Unsupervised Learning

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or clustering, data segmentation, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering for Data Understanding and Applications

- Biology: taxonomy of living things: kingdom, phylum, class, order, family, genus and species
- Information retrieval: document clustering
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults
- Climate: understanding earth climate, find patterns of atmospheric and ocean
- Economic Science: market resarch

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

Dissimilarity/Similarity metric

- Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
- Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. nonexclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS, FCM
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSCAN, OPTICS, DenClue
- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Partitioning Algorithms: Basic Concept

Partitioning method: Partitioning a database **D** of **n** objects into a set of **k** clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u>: Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of *K-Means* Clustering

Until no change

Comments on the K-Means Method

- Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
 - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- Comment: Often terminates at a local optimal.
- Weakness
 - Applicable only to objects in a continuous n-dimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the number of clusters, in advance
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

Variations of the *K-Means* Method

- Most of the variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means

- Handling categorical data: k-modes
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method

Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters k as an input, but needs a termination condition

AGNES (Agglomerative Nesting)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical packages, e.g., Splus
- Use the single-link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How Clusters are Merged

DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min(t_{ip}, t_{iq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_i) = max(t_{ip}, t_{iq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dist(K_i, K_j) = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dist(K_i, K_j) = dist(M_i, M_j)
 - Medoid: a chosen, centrally located object in the cluster

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape(S or oval shaped)
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - Eps: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- N_{Eps}(p): {q belongs to D | dist(p,q) ≤ Eps}
- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, MinPts if
 - p belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| \ge MinPts$$

MinPts = 5

Eps = 1 cm

Density-Reachable and Density-Connected

Density-reachable:

■ A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points $p_1, ..., p_n, p_1 =$ $q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

Algorithm: DBSCAN: a density-based clustering algorithm.

Input:

- D: a data set containing n objects,
- ϵ : the radius parameter, and
- MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

```
(1)
     mark all objects as unvisited;
(2)
     do
(3)
           randomly select an unvisited object p;
(4)
           mark p as visited;
           if the \epsilon-neighborhood of p has at least MinPts objects
(5)
                 create a new cluster C, and add p to C;
(6)
                 let N be the set of objects in the \epsilon-neighborhood of p;
(7)
                 for each point p' in N
(8)
                       if p' is unvisited
(9)
                            mark p' as visited;
(10)
                            if the \epsilon-neighborhood of p' has at least MinPts points,
(11)
                            add those points to N;
                       if p' is not yet a member of any cluster, add p' to C;
(12)
                 end for
(13)
(14)
                 output C;
(15)
           else mark p as noise;
(16) until no object is unvisited;
```

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

What Are Outliers?

- Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism
 - Ex.: Unusual credit card purchase, sports: Michael Jordon, Wayne Gretzky, ...
- Outliers are different from the noise data
 - Noise is random error or variance in a measured variable
 - Noise should be removed before outlier detection
- Outliers are interesting: It violates the mechanism that generates the normal data
- Outlier detection vs. novelty detection: early stage, outlier; but later merged into the model
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis

Types of Outliers (I)

- Three kinds: global, contextual and collective outliers
- Global outlier (or point anomaly)
 - Object is O_g if it significantly deviates from the rest of the data set
 - Ex. Intrusion detection in computer networks
 - Issue: Find an appropriate measurement of deviation
- Contextual outlier (or conditional outlier)
 - Object is O_c if it deviates significantly based on a selected context
 - Ex. 80° F in Urbana: outlier? (depending on summer or winter?)
 - Attributes of data objects should be divided into two groups
 - Contextual attributes: defines the context, e.g., time & location
 - Behavioral attributes: characteristics of the object, used in outlier evaluation, e.g., temperature
 - Can be viewed as a generalization of *local outliers*—whose density significantly deviates from its local area
 - Issue: How to define or formulate meaningful context?

Types of Outliers (II)

Collective Outliers

- A subset of data objects *collectively* deviate significantly from the whole data set, even if the individual data objects may not be outliers
- Applications: E.g., intrusion detection:
 - When a number of computers keep sending denial-of-service packages to each other
 - Detection of collective outliers
 - Consider not only behavior of individual objects, but also that of groups of objects
 - Need to have the background knowledge on the relationship among data objects, such as a distance or similarity measure on objects.
- A data set may have multiple types of outlier
- One object may belong to more than one type of outlier

Collective Outlier

Challenges of Outlier Detection

- Modeling normal objects and outliers properly
 - Hard to enumerate all possible normal behaviors in an application
 - The border between normal and outlier objects is often a gray area
- Application-specific outlier detection
 - Choice of distance measure among objects and the model of relationship among objects are often application-dependent
 - E.g., clinic data: a small deviation could be an outlier; while in marketing analysis, larger fluctuations
- Handling noise in outlier detection
 - Noise may distort the normal objects and blur the distinction between normal objects and outliers. It may help hide outliers and reduce the effectiveness of outlier detection
- Understandability
 - Understand why these are outliers: Justification of the detection
 - Specify the degree of an outlier: the unlikelihood of the object being generated by a normal mechanism

Supervised Methods

- Two ways to categorize outlier detection methods:
 - Based on <u>whether user-labeled examples of outliers can be obtained</u>:
 - Supervised, semi-supervised vs. unsupervised methods
 - Based on <u>assumptions about normal data and outliers</u>:
 - Statistical, proximity-based, and clustering-based methods

Outlier Detection I: Supervised Methods

- Modeling outlier detection as a classification problem
 - Samples examined by domain experts used for training & testing
- Methods for Learning a classifier for outlier detection effectively:
 - Model normal objects & report those not matching the model as outliers, or
 - Model outliers and treat those not matching the model as normal
- Challenges
 - Imbalanced classes, i.e., outliers are rare: Boost the outlier class and make up some artificial outliers
 - Catch as many outliers as possible, i.e., recall is more important than accuracy (i.e., not mislabeling normal objects as outliers)

Classification-Based Method: One-Class Model

- Idea: Train a classification model that can distinguish "normal" data from outliers
- A brute-force approach: Consider a training set that contains samples labeled as "normal" and others labeled as "outlier"
 - But, the training set is typically heavily biased: # of "normal" samples likely far exceeds # of outlier samples
 - Cannot detect unseen anomaly
- One-class model: A classifier is built to describe only the normal class.
 - Learn the decision boundary of the normal class using classification methods such as SVM
 - Any samples that do not belong to the normal class (not within the decision boundary) are declared as outliers
 - Adv: can detect new outliers that may not appear close to any outlier objects in the training set
 - Extension: Normal objects may belong to multiple classes

Semi-Supervised Methods

- Semi-supervised learning: Combining classificationbased and clustering-based methods
- Method
 - Using a clustering-based approach, find a large cluster, C, and a small cluster, C₁
 - Since some objects in C carry the label "normal", a treat all objects in C as normal
 - Use the one-class model of this cluster to identify normal objects in outlier detection
 - Since some objects in cluster C₁ carry the label "outlier", declare all objects in C₁ as outliers
 - Any object that does not fall into the model for C (such as a) is considered an outlier as well
- objects with lable "normal" objects with label "outlier"

C1

- objects without label
- Comments on classification-based outlier detection methods
 - Strength: Outlier detection is fast
 - Bottleneck: Quality heavily depends on the availability and quality of the training set, but often difficult to obtain representative and highquality training data

Unsupervised Methods

- Assume the normal objects are somewhat ``clustered' into multiple groups, each having some distinct features
- An outlier is expected to be far away from any groups of normal objects
- Weakness: Cannot detect collective outlier effectively
 - Normal objects may not share any strong patterns, but the collective outliers may share high similarity in a small area
- Ex. In some intrusion or virus detection, normal activities are diverse
 - Unsupervised methods may have a high false positive rate but still miss many real outliers.
 - Supervised methods can be more effective, e.g., identify attacking some key resources
- Many clustering methods can be adapted for unsupervised methods
 - Find clusters, then outliers: not belonging to any cluster
 - Problem 1: Hard to distinguish noise from outliers
 - Problem 2: Costly since first clustering: but far less outliers than normal objects
 - Newer methods: tackle outliers directly

Clustering-Based Methods

- Normal data belong to large and dense clusters, whereas outliers belong to small or sparse clusters, or do not belong to any clusters
 - Example (right figure): two clusters
 - All points not in R form a large cluster
 - The two points in R form a tiny cluster, thus are outliers
 - Since there are many clustering methods, there are many clustering-based outlier detection methods as well
 - Clustering is expensive: straightforward adaption of a clustering method for outlier detection can be costly and does not scale up well for large data sets

Clustering-Based Outlier Detection

- An object is an outlier if (1) it does not belong to any cluster, (2) there is a large distance between the object and its closest cluster, or (3) it belongs to a small or sparse cluster
- Case I: Not belong to any cluster
 - Identify animals not part of a flock: Using a densitybased clustering method such as DBSCAN
- Case 2: Far from its closest cluster
 - Using k-means, partition data points of into clusters
 - For each object o, assign an outlier score based on its distance from its closest center
 - If dist(o, c₀)/avg_dist(c₀) is large, likely an outlier
- Ex. Intrusion detection: Consider the similarity between data points and the clusters in a training data set
 - Use a training set to find patterns of "normal" data, e.g., frequent itemsets in each segment, and cluster similar connections into groups
 - Compare new data points with the clusters mined—Outliers are possible attacks

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications

36

Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,
{Beer, Diaper}:3

- Association rules: (many more!)
 - Beer \rightarrow Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k
 frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

3

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Itemset sup {A} 2 {B} {C} 3 1st scan

{D}

{E}

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

			_
L_2	Itemset	sup	
_	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

sup {A, B} {A, C} 2 {A, E} {B, C} {B, E} {C, E} 2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

3rd scan

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

 C_{ν} : Candidate itemset of size k

 L_k : frequent itemset of size k

```
L_1 = \{ frequent items \};
for (k = 1; L_k != \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
     increment the count of all candidates in C_{k+1} that are
      contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \cup_k L_k;
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - C₄ = {abcd}