Eigen Values and Eigen Vectors

Study Material for Week 3

Lecture Two

Recall

Let A be an $n \times n$ matrix. A scalar (real number) λ is called **eigen value** of A if there is a **non-zero** vector X such that $AX = \lambda X$. The vector X is called an **eigen vector** of A corresponding to λ .

Note That:

- 1) If matrix is singular, one of its eigen value is zero.
- 2) The eigen values of upper and lower triangular matrices are diagonal elements themselves.
- 3) Eigen vector is a null space of $A \lambda I$ for every eigen value λ .
- 4) Eigen vector cannot be zero.
- 5) λ is an eigen value of A, if and only if the system of homogeneous equations $(A-\lambda I)X=0$ has a non-trivial solution. This implies $\det(A-\lambda I)$ has to be zero, i.e., rank of $A-\lambda I$ must be less than n.
- 6) X is an eigen vector of A, if $AX = \lambda X$, $X \neq 0$. Consider, A be a matrix of order 3×3 . Let λ_1 , λ_2 , λ_3 be its eigen values.
- 1. If all eigen values are distinct, i.e., $\lambda_1 \neq \lambda_2 \neq \lambda_3$ then there are 3 linearly independent eigen vectors.
- 2. If one of the eigen values is repeated, say, $\lambda_1 \neq \lambda_2 = \lambda_3$, then

$$\begin{cases} 2 \text{ linearly independent eign vectors if } rank, \ \rho(A - \lambda_1 I) = 1 \\ 1 \text{ linearly independent eigen vectors if } rank, \ \rho(A - \lambda_1 I) = 2 \end{cases}$$

Further eigen vectors corresponding to distinct eigen values λ_1 and λ_3 are linearly independent.

3. If all the eigen values are repeated, i. e., $\lambda_1 = \lambda_2 = \lambda_3$, then number of linearly independent eigen vectors = 3 - r, where $r = \rho[A - \lambda_1 I]$

Note That: Number of linearly independent eigen vectors corresponding to each eigen value is the dimension of the null space of $A - \lambda I$, i. e., dimension of null space of $A - \lambda I$, dim Null $(A - \lambda I)$.

Properties of eigen values and eigen vectors

If X is an eigen vector of A , corresponding to eigen value λ , then

- 1. λ^k is eigen value of A^k with same eigen vector X.
- 2. If all eigen values of A are non-zero the eigen values of A^{-1} are $\frac{1}{\lambda}$.
- 3. eigen values of kA is eigen value of $k\lambda, k \in \mathbb{R}$ with same eigen vector X.
- 4. eigen values of $A^3 + k_1A^2 + k_2A + k_3I$ is $\lambda^3 + k_1\lambda^2 + k_2\lambda + k_3$, where k_1 , k_2 and k_3 are real numbers.

Example

- 1. If 3 is eigen value of A then find the eigen value of $A^2 + 5A$. By above property 1 and 3, eigen value of A^2 is $3^2 = 9$ and eigen value of 5A is $5 \times 3 = 15$. Therefore eigen value of $A^2 + 5A$ is 9 + 15 = 24.
- 2. For what values of a, does the matrix $\begin{bmatrix} 0 & 1 \\ a & 1 \end{bmatrix}$ have the characteristics listed below.
 - i) A has an eigen value of multiplicity 2.
 - ii) A has -1 and -2 as eigen values.
 - iii) A has 1 and 2 as eigen values.
 - iv) A has real eigen values.

Characteristic equation of A is $\lambda^2 - S_1 \lambda + |A| = 0$.

For given matrix $S_1 = 1$, |A| = -a. Therefore equation is $\lambda^2 - \lambda - a = 0$. This will have repeated roots if $b^2 - 4ac = 0$, i.e., 1 + 4a = 0. This gives $a = \frac{-1}{4}$.

A has -1 and -2 as eigen values. Therefore roots of characteristic equation are -1 and -2. Now Trace = sum of eigen values = <math>-1-2=-3, but for given matrix trace is one, so this is not possible. Hence there is no real value of α which satisfy given condition.

A has -1 and 2 as eigen values. With these eigen values Trace = sum of eigen values = -1 + 2 = 1Now det =product of eigen values= $-1 \times 2 = -2 = -a$: a = 2.

A has real eigen values, implies discriminant of $\lambda^2 - S_1 \lambda + |A| = 0$ must be positive.

Thus
$$1+4a \ge 0 \Rightarrow \boxed{a \ge \frac{-1}{4}}$$

3. Find the eigen values of $A = \begin{bmatrix} 3 & 2 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{bmatrix}$. State geometric and algebraic multiplicities of

each eigen value. Is A inverible? If so, find eigen values of A⁻¹.

A is a upper triangular matrix, therefore diagonal elements are eigen values. Therefore eigen values of A are 3,1&3. Algebraic multiplicity of eigen value 1 is One as it appears only once, while

3 appears twice, so algebraic multiplicity of eigen value 3 is Two.

As AM of $\lambda = 1$ is One, there will be only one eigen vector, hence geometric multiplicity is also One.

Now GM of $\lambda = 3$ =dimension of kernel of A-3I, so we simply check rank of A-3I.

$$A-3I = \begin{bmatrix} 0 & 2 & 4 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 2 & 4 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}. \ \rho(A-3I) = 2 < 3. \ Therefore \ there \ will be \ only$$

one eigen vector. Therefore geometric multiplicity of $\lambda = 3$ is also One.

As all eigen values of A are non-zero, A is invertible. Eigen values of A^{-1} are $\frac{1}{3}$, $1 \& \frac{1}{3}$.

In particular, if A is a **symmetric matrix**, of order n then it has n linearly independent eigen vectors. Further eigen vectors corresponding to distinct eigen values are always orthogonal. If eigen values are repeared, we can find orthogonal eigen vectors.

Note That:

- 1. Orthogonal set of vectors are always linearly independent.
- 2. Eigen values of symmetric matrices are real.
- 3. If A is a symmetric matrix, then eigen vectors from different eigen spaces are Orthogonal. (u and v are orthogonal if and only if $\langle u, v \rangle = u^T v = 0$, $u, v \neq 0$.

Example

1. Find the eigen values and eigen vectors of $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.

Note that given matrix is symmetric.

Characteristic equation is $|A - \lambda I| = 0 \Rightarrow \lambda^3 - S_1 \lambda^2 + S_2 \lambda - |A| = 0$

$$S_1 = 6$$
, $S_2 = -4 - 7 - 7 = -15$, $|A| = 3(-4) - 2(-2) + 4(4) = -12 + 4 + 16 = 8$

Characteristic equation is $\lambda^3 - 6\lambda^2 - 15\lambda - 8 = 0$. $\therefore \lambda = 8, -1, -1$.

Consider eigen vector for
$$\lambda = 8$$
, $[A - 8I]X_1 = 0$

$$\begin{bmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\begin{bmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{cases} x_1 - 4x_2 + x_3 = 0 \\ -2x_2 + x_3 = 0 \end{cases}$$
. The solution is $x_3 = 2x_2, x_1 = 2x_2$, i.e.,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2t \\ t \\ 2t \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} t, t \neq 0 \in \mathbb{R}. \text{ Therefore eigen vector for } \lambda = 8 \text{ is } X_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}.$$

Note: AM and GM of $\lambda = 8 = 1$.

Consider eigen vector for
$$\lambda = -1 [A + I] X = 0 \Rightarrow \begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$
.

$$\begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow 2x_1 + x_2 + 2x_3 = 0. \ \rho[A+I] = 1 < 3.$$
 Therefore there are two

linearly independent vectors. The solution is $x_2 = -2x_1 - 2x_3$, $x_1 = t$, $x_2 = s$, $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -2t - 2s \\ s \end{bmatrix}$,

i.e.,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} t + \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} s, t, s \neq 0 \in \mathbb{R}$$
. Thus the two linearly independent eigen vectors are

$$X_2 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, X_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$
. Note AM and GM of λ =-1 are 2.

Note That: $X_1 \perp X_2$, $X_1 \perp X_3$, i.e., X_1 is orthogonal to both X_2 as well as X_3 . But $X_2 \not\perp X_3$, i.e., X_2 and X_3 are not orthogonal. Since A is symmetric $(A^T = A)$, we can find

$$V = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 for $\lambda = -1$ such that V is orthogonal to $X_1 \& X_2$ OR $X_1 \& X_3$.

$$\langle X_1, V \rangle = 0 \& \langle X_2, V \rangle = 0$$
 Implies $2x + y + 2z = 0 \& x - 2y = 0$. Therefore $V = \begin{bmatrix} 4 \\ 2 \\ -5 \end{bmatrix}$.

Thus
$$\left\{ X_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, X_2 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, V = \begin{bmatrix} 4 \\ 2 \\ -5 \end{bmatrix} \right\}$$
 is a set of orthogonal eigen vectors.

If the choice is

$$\langle X_1, V \rangle = 0 \& \langle X_3, V \rangle = 0$$
 Implies $2x + y + 2z = 0 \& -2y + z = 0$. Therefore $V = \begin{bmatrix} -5 \\ 2 \\ 4 \end{bmatrix}$.

Thus
$$\left\{ X_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, X_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}, V = \begin{bmatrix} -5 \\ 2 \\ 4 \end{bmatrix} \right\}$$
 is a set of orthogonal eigen vectors.

OR apply **Gram-Schmidt** orthogonalization process to
$$\left\{ X_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, X_2 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, X_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \right\}$$

to get a set of orthogonal eigen vectors.

2. Find the Eigen values and Eigen vectors of
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
.

Charactristic equation of A is $\lambda^3 - s_1 \lambda^2 + s_2 \lambda - |A| = 0$. $S_1 = 6$, $S_2 = 9$, |A| = 0.

Eigen values are
$$\lambda_1 = 0$$
, $\lambda_2 = \lambda_3 = 3$. Eigen vector for $\lambda_1 = 0$ is $X_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Eigen vectors for repeated eigen values
$$\lambda_2 = \lambda_3 = 3$$
 are $X_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ and $X_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

To obtained the orthogonal basis for \mathbb{R}^3 , by Gram Schmidt process.

Observe that
$$\langle X_1, X_2 \rangle = 0$$
 and $\langle X_1, X_3 \rangle = 0$ but $\langle X_2, X_2 \rangle \neq 0$.

By Gram-Schmidt process

$$v_1 = X_1$$
, $v_2 = X_2 - \frac{\langle v_1, X_2 \rangle}{\langle v_1, v_1 \rangle} v_1 = X_2$ as $\langle v_1, X_2 \rangle = \langle X_1, X_2 \rangle = 0$

$$v_3 = X_3 - \frac{\langle v_1, X_3 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle v_2, X_3 \rangle}{\langle v_2, v_2 \rangle} v_2, \langle v_1, X_3 \rangle = 0, \langle v_2, X_3 \rangle = 1, \langle v_2, v_2 \rangle = 2.$$

$$\therefore v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix} \approx \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}. \therefore \text{ Orthoganal eigen vectors are } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}.$$

Problem Session:

0.1		A 44 - 11 - 44 - 45 - 41 - 11 - 11 - 11 -
Q.1		Attempt the following
	1)	$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$
		Is $\lambda = -2$ eigen value of $\begin{vmatrix} 1 & -3 & 0 \end{vmatrix}$? If so find an eigen vector.
		Is $\lambda = -2$ eigen value of $\begin{bmatrix} 1 & 0 & -1 \\ 1 & -3 & 0 \\ 4 & -13 & 1 \end{bmatrix}$? If so find an eigen vector.
	2)	Find the values of a , b and c such that the chractistic polynomial of
		$A = \begin{vmatrix} 0 & 0 & 1 \end{vmatrix} $ is $-\lambda^3 + 4\lambda^2 + 5\lambda + 6$.
		$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{bmatrix} $ is $-\lambda^3 + 4\lambda^2 + 5\lambda + 6$.
	3)	Find the values of a and b if eigen values of $A = \begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix}$ are -4 and 7 .
	4)	$\begin{bmatrix} -2 & 5 & 4 \end{bmatrix}$
		Find orthogonal eigen vectors of $A = \begin{bmatrix} 5 & 7 & 5 \end{bmatrix}$.
		Find orthogonal eigen vectors of $A = \begin{bmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{bmatrix}$.
	5)	[3 2 4]
		Find orthogonal eigen vectors of $A = \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$.
		Find orthogonal eigen vectors of $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.