

1 of 1

AD 603 876

ON A THEOREM OF DOOB

T. E. Harris

P - 139

17 April 1950

Approved for OTS release

10p
hc - 1.00
mf - 0.50

The RAND Corporation

SANTA MONICA • CALIFORNIA

ON A THEOREM OF DOOB

T. E. Harris

SUMMARY

This note gives a justification for the interchange of limiting processes required in Doob's "heuristic" approach to the Kolmogorov limiting distribution of the maximum deviation between a theoretical and an empirical distribution function.

A number of writers have recently treated the Kolmogorov-Smirnov limiting distributions from the point of view of stochastic processes. (1, 2, and 3.) For example, let

$$D_n = \sup_{-\infty < x < \infty} \sqrt{n} |F(x) - F_n(x)|$$

where $F(x)$ is an arbitrary continuous cumulative distribution and the random variable $F_n(x)$ is the sample cumulative: $nF_n(x)$ is the number of values which are $\leq x$ in a sample of n from a population described by $F(x)$.

Since the limiting distribution of D_n is the same for any continuous F , it is sufficient to let $F(t) = t$, $0 \leq t \leq 1$, and to consider

$$u_n(t) = \sqrt{n} (F_n(t) - t), \quad 0 \leq t \leq 1,$$

where the n sample values are picked according to the uniform distribution on $(0,1)$. For any fixed set of values t_1, \dots, t_k , the joint distribution of $u_n(t_1), \dots, u_n(t_k)$ approaches that of $y(t_1), \dots, y(t_k)$ as $n \rightarrow \infty$, where

$y(t)$ is the Gaussian process defined by

$$y(t) = x(t) - tx(1),$$

$x(t)$ being the Wiener process. This is the heuristic guide to the fact shown by Doob [2] that the limiting distribution of D_n is the same as the distribution of

$$D = \sup_{0 \leq t \leq 1} |y(t)|.$$

It appears worthwhile to give a simple and rigorous justification for the transition from D_n to D . Such questions come up frequently, and are also of some theoretical interest in connection with "Monte Carlo" procedures where continuous stochastic processes are approximated with random walks.

Let

$$\theta(z) = P(D \leq z)$$

$$\theta_n(z) = P(D_n \leq z) = P \sup_{0 \leq t \leq 1} u_n(t) \leq z.$$

We wish to show that for any z ,

$$(1) \quad \lim_{n \rightarrow \infty} \theta_n(z) = \theta(z).$$

The desired result will follow from Theorem 1.

Theorem 1. Let a and b be arbitrary positive numbers. Then n_0 and $\Delta_0 > 0$ can be determined so that for all $n \geq n_0$

$$P \left\{ \max_{0 \leq t_1 \leq t_2 \leq t_1 + \Delta_0} |u_n(t_2) - u_n(t_1)| > a \right\} < b.$$

We make use of an idea going back to W. K. Clifford 1866; see Moran [4]. This is the fact that if T_1, \dots, T_{n+1} are independent random variables each having the density e^{-ct} for any $c > 0$, the quantities $T_j/(T_1 + \dots + T_{n+1})$ are jointly distributed like the $n+1$ intervals which are obtained when n points are picked uniformly and independently at random on the interval $(0,1)$. In other words let $G_n(t)$ be a Poisson process with rate n ; i.e., the probability of a jump of $+1$ between t and $t+dt$ is $nt + O(dt)^2$. Let L_n be the time when the $(n+1)$ st jump occurs. Then the two stochastic processes $F_n(t)$ and $G_n(L_n t)$ are equivalent for t in $(0,1)$. Now for large n , L_n converges stochastically to 1, and thus to prove theorem 1 we consider first $G_n(t)$.

Let

$$v_n(t) = \sqrt{n} [G_n(t)/n - t].$$

$$H_{a,n}(\Delta) = P \left[\max_{0 \leq t \leq \Delta} |v_n(t)| \geq a \right].$$

Lemma. $H_{a,n}(\Delta) \leq \frac{4}{\sqrt{2\pi}} \int_{a/\sqrt{2\Delta}}^{\infty} e^{-\frac{1}{2} y^2} dy$

for $n \geq n(a, \Delta)$.

This lemma could be strengthened by general methods used by Erdos and Kac [5], but the following simple derivation is sufficient here. Let T be the smallest t -value for which $v_n(t) \geq a$. Let $K_{an}(T)$ be the cumulative

distribution of T and let

$$Q_{an}(t) = P \left[v_n(t) \geq a \right]$$

Then

$$(2) \quad Q_{an}(2\Delta) \geq \int_0^{2\Delta} Q_{an}(2\Delta - T) dK_{an}(T)$$

$$\geq \int_0^{\Delta} Q_{an}(2\Delta - T) dK_{an}(T)$$

The first \geq sign in (2) appears because $v_n(t)$ is a discontinuous differential process; for a continuous differential process equality would hold. Now

$$Q_{an}(2\Delta) \rightarrow \frac{1}{\sqrt{2\pi}} \int_{a/\sqrt{2\Delta}}^{\infty} e^{-\frac{1}{2}y^2} dy$$

as $n \rightarrow \infty$, and $K_{an}(\sigma) \rightarrow \frac{1}{2}$ uniformly in σ for $\Delta \leq \sigma \leq 2\Delta$. Hence (2) implies that

$$\frac{2}{\sqrt{2\pi}} \int_{a/\sqrt{2\Delta}}^{\infty} e^{-\frac{1}{2}y^2} dy \geq K_{an}(\Delta)$$

for $n \geq n(a, \Delta)$. A similar argument applies to

$$K_{an}^*(\Delta) = P \left[\min_{0 \leq t \leq \Delta} v_n(t) \leq -a \right] ,$$

and the lemma follows from the obvious fact that

$$H_{an}(\Delta) \leq K_{an}(\Delta) + K_{an}^*(\Delta).$$

A standard type of argument now tells us that theorem 1 holds if $u_n(t)$ is replaced by $v_n(t)$. For we may divide the interval $(0,1)$ into k equal parts of length $\frac{1}{k}$. The probability that on none of these intervals does $v_n(t)$ differ from its initial value on that interval by more than $\frac{a}{4}$ is

$$\left[1 - H_{\frac{a}{4}, n} \left(\frac{1}{k} \right) \right]^k = P_k .$$

We may then choose $\Delta_0 = \frac{1}{k_0}$ small enough so that

$$\left[1 - \frac{4}{2\pi} \int_{a/(4\sqrt{2}\Delta)}^{+\infty} e^{-\frac{1}{2}y^2} dy \right]^k \geq 1 - b$$

for $\frac{1}{\Delta} = k \geq k_0$. By virtue of lemma 1, we can then choose n_0 so that

$$\left[1 - H_{\frac{a}{4}, n} (\Delta_0) \right]^{k_0} \geq 1 - b$$

for $n \geq n_0$. Theorem 1 now holds for $v_n(t)$, with the quantities a , b , Δ_0 , and n_0 just chosen, since with probability $\geq 1 - b$, $v_n(t)$ has no oscillations

$\geq \frac{a}{2}$ in any of the intervals $(\frac{j-1}{k}, \frac{j}{k})$ and thus no oscillations $\geq a$ in any interval of length Δ_0 .

Now

$$(3) \quad v_n(L_n t) = \sqrt{n} \left(\frac{G(L_n t)}{\frac{L_n t}{n}} - L_n t \right) = u_n(t) + t \xi_n$$

where the random variable ξ_n ,

$$\xi_n = \sqrt{n} (1 - L_n)$$

is asymptotically normal with zero mean and unit variance.

It is easily seen that theorem 1 must also hold on $(0,1)$ for the random function $v_n(L_n t)$, which is produced from $v_n(t)$ by a random magnification of the t-scale; for an arbitrary $c > 0$ we can make the probability arbitrarily high, by taking n large enough, that the magnification L_n is between $1-c$ and $1+c$. Theorem 1 likewise holds for the random function $t \xi_n$; it must therefore hold for the difference

$$u_n(t) = v_n(L_n t) - t \xi_n.$$

The following scheme now gives (1).

Define

$$S_n = \sup_{0 \leq t \leq 1} |u_n(t)|$$

$$S_n^k = \sup_{0 \leq j \leq k} |u_n(\frac{j}{k})|$$

$$\Theta_n(z) = P(S_n \leq z)$$

$$\Theta_n^k(z) = P(S_n^k \leq z)$$

$$\psi(z) = P \left[\sup_{0 \leq t \leq 1} |y(t)| \leq z \right]$$

$$\psi^k(z) = P \left[\sup_{0 \leq j \leq k} |y(\frac{j}{k})| \leq z \right].$$

We use the known result that $\psi(z)$ is continuous. Let $z \geq 0$ and $\alpha > 0$ be given. Pick $\epsilon > 0$ so that $|h| \leq \epsilon$ implies $|\psi(z) - \psi(z+h)| < \alpha/4$. Then, using theorem 1 and observing that

$$\Theta_n(z) \geq P(S_n \leq z, S_n^k \leq z + \epsilon) =$$

$$P(S_n^k \leq z + \epsilon) - P(S_n^k \leq z + \epsilon, S_n > z)$$

we may, by theorem 1, pick n' and k' so that $n > n'$, $k > k'$, implies

$$\Theta_n^k(z + \epsilon) \leq \Theta_{n'}(z) + \alpha/4.$$

Next pick $k'' \geq k'$ so that $k \geq k''$ implies

$$|\psi(z) - \psi^{k''}(z)| < \alpha/4,$$

$$|\psi(z - \varepsilon) - \psi^{k''}(z - \varepsilon)| < \alpha/4.$$

Then choose $n'' \geq n'$ so that $n \geq n''$ implies

$$|\psi^{k''}(z) - \theta_n^{k''}(z)| < \alpha/4,$$

$$|\psi^{k''}(z - \varepsilon) - \theta_n^{k''}(z - \varepsilon)| < \alpha/4.$$

For all $n \geq n''$ we then have

$$(4) \quad \psi(z) \leq \psi(z - \varepsilon) + \alpha/4 \leq \psi^{k''}(z - \varepsilon) + 2\alpha/4 \leq$$

$$\theta_n^{k''}(z - \varepsilon) + 3\alpha/4 \leq \theta_n(z) + \alpha,$$

$$(5) \quad \psi(z) \geq \psi^{k''}(z) - \alpha/4 \geq \theta_n^{k''}(z) - \alpha/2 \geq \theta_n(z) - \alpha/2.$$

From (4) and (5) it follows that for all $n \geq n''$

$$\psi(z) - \alpha \leq \theta_n(z) \leq \psi(z) + \alpha/2$$

and this establishes (1).

REFERENCES

- [1] . T. W. Anderson and D. A. Darling, "Some Statistical Problems Connected with Stochastic Processes," to appear.
- [2] . J. L. Doob, "Heuristic Approach to the Kolmogorov-Smirnov Theorems," Annals of Math. Stat., 20 (1949), 393-403.
- [3] . M. Kac, "On Deviations between Theoretical and Empirical Distributions," Proc. Nat. Acad. of Sciences, 35 (1949), 252-257.
- [4] . P. A. P. Moran, "The Random Division of an Interval," Journal of the Royal Statistical Society Supplement, 9 (1947), 92-98.
- [5] . P. Erdos and M. Kac, "On Certain Limit Theorems of the Theory of Probability," BAMS, 52 (1946), 292-302.

TEH: Jo