

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

Concurrency and redundancy at RT-level

A. Ejlali

Assignment

- Develop the gate level models of:
 - Ripple carry adder
 - CLA adder
 - Hint: Develop behavioral models and use synthesis tools to generate gate-level models.
- Estimate the C_{eff} redundancy
 - Hint: Use Modelsim and use transition*fan-out as a gate-level measure for $C_{\it eff}$, or use Synopsys power compiler.
- Estimate the speed-up of the CLA adder over the ripple carry adder.
- Estimate the power reduction factor.
 - Hint: Recall

$$P'_{SW} = (R \times C_{eff}) \cdot (\frac{V_{DD}}{S})^2 \frac{f}{S}] = \frac{R}{S^3} P_{SW}$$

Voltage Reduction Using Parallelism

• Redundancy and concurrency

Parallel Shift Register

• Redundancy and concurrency

DFF Parallelization

• Redundancy and concurrency

References

H. Mizas, et.al., "Structure of the Low-Power Design Flow", *LPGD/WP1/DUTH/D1.2R1*, 1998.

R. Hossain, et. al.,"Low Power Design Using Double Edge Wggered Flip-Flops", *IEEE Transactoins on VLSI*, 1994.