

Agenda

Item	Presenter
Business Problem	Anna
Dataset & Preparation	Anna
EDA	Anna
Featured Engineering	Wesley
Model and its hyper parameter	Wesley & Jieyuan
Model comparison and evaluation	Jianlong
Ensemble	Filbert
Conclusion	Filbert

Models

Business Problem

Hotel Goal:

Overbooking as revenue management practice to minimize losses from late cancellations and no-shows (Kimes and Chase, 1998)

Problem:

Repercussions of this revenue management strategy

Repercussions

1. Compensation incurred

today), we found that approximately 30 percent of participants also expected a free night or discounted stay at the original hotel at a later time in order to ensure their ongoing patronage (see Table VI). In addition, a complementary meal at the hotel was mentioned by 12 percent of participants. Furthermore, 14 percent of participants pointed to the quality of the hotel they were walked to as important. They expected the hotel to be the same as or nicer than the

2. Bad customer experience

As previously mentioned, it is widely believed that the use of revenue management practices may alienate customers owing to perceived unfairness, thus leading to decreased customer satisfaction and goodwill and, ultimately, to a loss in customer loyalty (Kahneman *et al.*, 1986a; Kimes, 1994; Wirtz *et al.*, 2002) and long-run profits (Kimes, 2002). Yet, the behavioral

3. Bad reputation

consequences, **Blodgett** *et al.* (1997) found that people who perceived injustice were more likely to exhibit anger toward, engage in negative word-of-mouth publicity about, and detach themselves from the service provider perceived as unjust. In their model of the determinants

Literature review: The effect of perceived fairness toward hotel overbooking and compensation practices on customer loyalty (<u>Hwang, J. and Wen, L., 2009</u>)

Feature Engineering

Agenda

Business Proposal

Aim:

Predict hotel booking cancellation using ML with customers' booking information.

Pros:

Analyze accurately in advance how many rooms can be overbooked

Feature

Engineering

1) Resolve repercussions

Data Preparation

- Maximize revenue via improve occupancy
- 3) Better customer experience and reputations

Data Preparation

Dataset:

Hotel Booking Demand Datasets

~ written by Nuno Antonio, Ana Almeida, and Luis Nunes for Data in Brief, Volume 22, February 2019

Consist:

2 separate files (119,390 rows and 31 columns)

EDA

- 1) H1.csv 40,060 rows
- 2) H2.csv 79,310 rows

Split:

80% training data and 20% test data

Models

Conclusion

We used SweetViz library to aid in visualizing our overall dataset.

Models

Conclusion

63% of bookings were not cancelled, 37% of the bookings were cancelled

Feature

Engineering

Bookings made via:

Online Travel Agent – 47%

Offline Travel Agents – 20%

Groups – 17%

Direct – 11%

Others - < 5%

Feature

Engineering

Cancelling rate for the top 3 Market Segment is the highest

Feature Engineering

Inverse relationship between Number of Special Request made and cancelling rate

Feature Engineering

Returned customers lower tendency to cancel

Agenda Business Problem Data Preparation EDA Feature Engineering Models Models Comparison Ensemble Conclusion

Feature Engineering for All Model

Based on SweetViz charting, we performed feature engineering as follow:

- Drop features that is not meaningful to the target
 - 'ArrivalDateYear', 'ArrivalDateDayOfMonth'

		3	3855
17	4406	30	3853
5	4317	6	3833
15	4196	14	3819
25	4160	27	3802
26	4147	21	3767
9	4096	4	3763
12	4087	-	
16	4078	13	3745
2	4055	7	3665
19	4052	1	3626
20	4032	23	3616
18	4002	11	3599
24	3993	22	3596
28	3946	29	3580
8	3921	10	3575
0	3321	31	2208

- Quasi Separation Issue
 - 'ReservationStatusDate', 'ReservationStatus',
 'RequiredCarParkingSpaces'

Feature Engineering for All Model

- Highly Correlation Feature
 - 'ArrivalDateMonth'

- Outlier
 - 'ADR', 'Adults', 'StaysInWeekNights', 'Babies', 'Children'

Additional Feature Engineering for Naïve Bayes

- New Column Added
 - 'Region', 'TotalStay', 'SameRoomAssigned'
- Highly Correlation Feature

Business Problem

'StaysInWeekNights'

Europe countries:								
array(['GBR',	'PRT',	'BEL',	'DEU',	'IRL',	'RUS',	'ESP',	'AUT',	'NLD',
'FRA',	'ITA',	'LUX',	'FIN',	'POL',	'CHE',	'DNK',	'NOR',	'ROU',
'SWE',	'HUN',	'HRV',	'JEY',	'LVA',	'SVN',	'UKR',	'SRB',	'MCO',
'CZE',	'BGR',	'EST',	'GRC',	'ALB',	'SVK',	'BIH',	'BLR',	'LTU',
'MNE',	'ISL',	'AND',	'MLT',	'GIB',	'LIE',	'MKD',	'FRO',	'IMN',
'GGY',	'SMR']	, dtype=	object))				

	AssignedRoomType	Reserved Room Type	SameRoomAssigned
0	А	А	1
1	A	A	1
2	D	D	1
3	A	A	1
4	D	A	0
5	A	A	1

Data Preparation

EDA

	TotalStay	StaysInWeekendNights	StaysInWeekNights
0	4	2	2
1	3	2	1
2	5	2	3
3	3	0	3
4	3	1	2

92431	1	0	1
92432	4	1	3
92433	5	0	5
92434	3	0	3
92435	10	3	7

Conclusion

Additional Feature Engineering for Naïve Bayes

- Aggregated Representative:
 - 'Country'
- Convert Features into Binary Value
 - Features: 'Hotel', 'Children', 'Babies'. 'PreviousCancellations'. 'PreviousBookingsNotCanceled', 'BookingChanges', 'Agent', 'Company', 'DaysInWaitingList'
 - For all 0 and NaN value -> 0
 - All other than above -> 1

Feature Engineering

- One-Hot-Encoding on categorical variables:
 - Generic Model: All categorical features

Data Preparation

- Naïve Bayes Model: All categorical features that are non-binary value
- Scaling:
 - StandardScaler: Logistic Regression, K-Nearest Neighbor, Neural Network
 - MinMaxScaler: Naïve Bayes (except Gaussian Naïve Bayes)

Naïve Bayes

Since Naïve Bayes do not have hyperparameter besides alpha, we also tried multiple variations of Naïve Bayes model and compared their F1 Score.

As alpha increases, the likelihood probability moves toward uniform distribution

EDA

Alpha does not change the performance of the model that much

Naïve Bayes Model Used:

- Gaussian Naïve Bayes
- Categorical Naïve Bayes
- Multinomial Naïve Bayes
- Complement Naïve Bayes
- Gaussian Naïve Bayes + Categorical Naïve Bayes

Model (common feature engineering)	Test Accuracy
GaussianNB	0.464301168
CategoricalNB	0.75049762
MultinomialNB	0.749675465
ComplementNB	0.747468628
GaussianNB + CatNB	0.762786672

Naïve Bayes

We noticed an extremely low accuracy on GaussianNB model, this might be due to

- Naïve Bayes performs better with categorical variables
- Sensitive to outliers and one-sided numerical data as they will affect the mean and standard deviation
- Gaussian perform internal standardization by calculating based on distance from center of distribution

Further feature engineering specifically for Naïve Bayes model.

Data Preparation

Model (NB feature engineering)	Test Accuracy	Cross Validation mean (std)
GaussianNB	0.624275206	0.627 (0.007)
CategoricalNB	0.712159238	0.717 (0.002)
MultinomialNB W	0.750930333	0.752 (0.001)
ComplementNB	0.703331891	0.704 (0.002)
GaussianNB + CatNB	0.750367806	-

Conclusion

Random Forest

For random forest hyper-parameter tuning, we tried two-steps approach using GridSearchCV and plotting the

numerical hyper-parameter with F1 Score.

Step 1: Optimize the following three parameters

- max_features: ['auto', 'sqrt', 'log2'],
- oob_score: [True, False],
- criterion :['gini', 'entropy']

Step 2: Optimize the following numerical features:


```
random_state= 2021, max_features='auto', criterion="gini",
oob_score=True, max_depth=20,
min_samples_split=2,max_leaf_nodes=40,n_estimators= 30,
min_samples_leaf=20
```

Models

Logistic Regression

For logistic regression hyper-parameter tuning, we tried two-steps approach using GridSearchCV and plotting the

numerical hyper-parameter with F1 Score.

Step 1: Optimize the following two parameters

- penalty: [111, 12', 'elasticnet', 'none'],
- solver: ['liblinear', 'sag', 'saga', 'newton-cg', 'lbfgs']

Step 2: Optimize regularization C

• C: [0.001, 0.01, <u>0.1</u>, 1, 10, 100, 1000]

Without hyper parameter tuning

	•			
Confusion_mat	rix:			
[[12973 1438	3]			
[2742 5957	7]]			
Accuracy: 0.8	319125919515	3613		
Classification	n Report:			
	precision	recall	f1-score	support
0	0.83	0.90	0.86	14411
1	0.81	0.68	0.74	8699
accuracy			0.82	23110
macro avg	0.82	0.79	0.80	23110
weighted avg	0.82	0.82	0.82	23110

With hyper parameter tuning

Feature

Engineering

	. p		9				
Confusion_matrix: [[12985							
Accuracy: 0.8	190826482043	2406					
Classificatio							
	precision	recall	f1-score	support			
0	0.82	0.90	0.86	14411			
1	0.81	0.68	0.74	8699			
accuracy			0.82	23110			
macro avg	0.82	0.79	0.80	23110			
weighted avg	0.82	0.82	0.82	23110			
3							

EDA

K Nearest Neighbour

- Used standard scaler
- Hyperparameter tuning:
 - weights: ['uniform', 'distance'],
 - n_neighbors: odd numbers in between 1 40
 - → Best F1 score at n_neighbors = 17

Weight = 'uniform', n_neighbors = 1

```
Confusion matrix:
[[12041 2485]
  2052 6814]]
    Accuracy: 0.8060448016415869
    Classification Report:
              precision
                           recall f1-score
                                               support
                                        0.84
                   0.85
                             0.83
                                                 14526
                   0.73
                             0.77
                                        0.75
                                                  8866
                                        0.81
                                                 23392
    accuracy
  macro avg
                                        0.80
                                                 23392
                   0.79
                             0.80
weighted avg
                   0.81
                             0.81
                                        0.81
                                                 23392
```


Weight = 'distance', n_neighbors = 17

Confusion matrix: [[12762 1649] 2301 6398]] Accuracy: 0.8290783210731285 Classification Report: precision recall f1-score

0	0.85	0.89	0.87	14411
1	0.80	0.74	0.76	8699
accuracy			0.83	23110
macro avg	0.82	0.81	0.82	23110
weighted avg	0.83	0.83	0.83	23110

Neural Network

- Tried the following hyperparameter tuning:
- Learning rate = [0.01, 0.02, 0.03],
- Batch size = [16, 32, 64, 128, 256, 512, 1024]
- ✓ Optimizer = [Adam, SGD]
- \checkmark Epoch = [20, 50, 100]
- Used Standard Scaler
- Tried with/without down sampling

example: batch size = 16 with 2 hidden layers

```
model = Sequential()
model.add(Dense(50, input dim=x train one hot data.shape[1], activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(20, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='relu'))
model.add(Dropout(0.2))
model.add(layers.Dense(1, activation='sigmoid'))
                                                 recall f1-score
                                   precision
                                         0.87
                                                    0.92
                                                                0.89
                               1
                                        0.84
                                                    0.76
                                                                0.80
                                                               0.86
                       accuracy
                                        0.86
                                                    0.84
                                                               0.85
                      macro avg
                   weighted avg
                                        0.86
                                                               0.86
                                                    0.86
```

Best results: batch size = 1024 with 3 hidden layers, without down sampling

<pre>modelFinal = Sequential()</pre>	n	recision	recall	f1-score	support
<pre>modelFinal.add(Dense(78, input_dim=x_train_one_hot_data.shape[1], activation='relu'))</pre>	· ·				0.000
<pre>modelFinal.add(Dropout(0.2))</pre>		0.07	0.00	0.00	14411
<pre>modelFinal.add(Dense(39, activation='relu'))</pre>	0	0.87	0.92	0.89	14411
modelFinal.add(Dropout(0.2))	1	0.85	0.78	0.81	8699
<pre>modelFinal.add(Dense(19, activation='relu'))</pre>					
<pre>modelFinal.add(Dropout(0.2))</pre>	accuracy			0.86	23110
<pre>modelFinal.add(Dense(10, activation='relu'))</pre>	macro avg	0.86	0.85	0.85	23110
<pre>modelFinal.add(Dropout(0.2))</pre>	weighted avg	0.86	0.86	0.86	23110
modelFinal.add(layers.Dense(1, activation='sigmoid'))	weighted avg	V.00	Ø.00	0.00	23110

Models

Model Results Comparison

Machine Learning Models	Accuracy	Precision	Recall	F1	Log Loss
Neural Network	0.86	0.85	0.78	0.81	4.67
Random Forest	0.83	0.82	0.71	0.76	5.87
K Nearest Neighbors	0.83	0.80	0.74	0.76	5.90
Logistic Regression	0.82	0.81	0.68	0.74	6.25
Multinomial NB	0.75	0.75	0.51	0.61	8.60

EDA

ROC Comparison

Feature Engineering

Models

EDA

Model Specification Comparison

Machine Learning Models	Model Size	Training Time	Test Time	Scaling
Neural Network	1.05 MB	52s	1s	Yes
Random Forest	1.23 MB	7s	1s	No
K Nearest Neighbors	667 MB	56s	46s	Yes
Logistic Regression	7 kb	49s	1s	Yes
Multinomial NB	4 kb	3s	1s	Yes

EDA

Models

Ensemble – Majority Voting

Data Preparation

Models

Ensemble – Majority Voting

Machine Learning Models	Accuracy	Precision	Recall	F1
Neural Network	0.86	0.85	0.78	0.81
Random Forest	0.83	0.82	0.71	0.76
K Nearest Neighbors	0.83	0.80	0.74	0.76
Logistic Regression	0.82	0.81	0.68	0.74
Multinomial NB	0.75	0.75	0.51	0.61
Ensemble	0.85	0.88	0.70	0.78

EDA

Ensemble – Majority Voting Error Correlation

Voting Error Correlation

Feature

Engineering

Ensemble – Majority Voting

Machine Learning Models	Accuracy	Precision	Recall	F1
Neural Network	0.86	0.85	0.78	0.81
Random Forest	0.83	0.82	0.71	0.76
K Nearest Neighbors	0.83	0.80	0.74	0.76
Logistic Regression	0.82	0.81	0.68	0.74
Multinomial NB	0.75	0.75	0.51	0.61
Ensemble	0.85	0.88	0.70	0.78
Ensemble - After Dropping Random Forest and Logistic Regression Models	0.86	0.89	0.71	0.79

Models

EDA

Implication for Business

1000 simulation run for scenario that expected cancellation rate changes in the future to vary in the range of 35% to 45% randomly

- Gut Feeling: Cancellation rate ~40%, based on historical cancellation rate
- Machine learning: Predict cancellation based on features

EDA

Result:

For every 100 room	Gut Feeling	Machine Learning
no of room overbooked	11.21	1.31
no of room underbooked	6.19	5.32
Observation	Will result in the huge error; leading to potential revenue loss	Consistently low error for both overbooking and underbooking

Simulation

Hotel Cancellation Simulation Result

Gut Feeling Overload: 11.212

Gut Feeling Empty Room: 6.191

Machine Overload: 1.314

Machine Empty Room: 5.322

Back

DEMO

Flask	

03/21/202	Date 2 - 03/21/2022
Adults	AssignedRoomType
2	C v
Children	BookingChanges
0	0
Babies	DepositType
0	No Deposit v
Meal	Agent
BB V	NULL V
Country	Company
Country PRT ✓	NULL
MarketSegment	DaysInWaitingList
Direct	0
DistributionChannel	CustomerType
Direct	Transient
sRepeatedGuest	ADR
Yes V	200
PreviousCancellations	TotalOfSpecialRequests
0	0
PreviousBookingsNotCanceled	Hotel
0	H1 V
Decembed Decem True -	
ReservedRoomType C ~	

Hotel Cancellation Result Neutral Network: 0 Random Forest: 0 K Nearest Neighbor: 1 Logistic Regression: 0 Multinormal NB: 0

Conclusion

Neural network is the best machine learning model for the prediction,

 Ensemble learning does not guarantee better result as the weaker model drag down the overall ensemble model performance,

 Deploying the Machine Learning model will minimize the hotel room overbooking and maximize the hotel booking capacity

Feature

Enaineerina

- Improve customers' experience
- Improve the hotel profit in the long run

Agenda

Thank you! ©