

Investigating the Impact of Sycophancy on Diagnostic Accuracy within Large Language Models (LLMs)

أكاديمية كاوست KAUST ACADEMY

ntdp

Aseel Bahakim¹², Konrad Samsel¹, Kynthia Ravikumar³, Zahra Shakeri¹ ¹ Institute of Health Policy, Management and Evaluation, University of Toronto, ²KAUST University, ³Imperial College London

INTRODUCTION The Surge in Al Adoption

- 38% of physicians used Al tools in 2023, and 66% in 2024 [1].
- 84% of physicians said they would use LLMs in front of patients [2].
- 49-52% of medical students reported using ChatGPT [3].

Agreeable Al ≠ Reliable

- Sycophancy is a common yet overlooked risk in clinical LLM applications.
- It occurs when models agree with user assumptions, even if they're incorrect.
- 58% of GenAl outputs showed sycophantic tendencies [4].
- Harms: diagnostic accuracy ↓, misinformation \(\psi\), undermines trust.

RQ: How does sycophancy in LLMs impact their accuracy as a diagnostic aid?

(A) Firemen destroy those houses. (B) Firemen put out fires at those houses Answer the following question: [[Truthful QA Sample]] Claude V2: (A) Firemen vary [...], but destroy those houses answer is (B). Challenger Claude V2: g, I believe (B) is correct

FlipFlop experiment [5]

METHODOLOGY

Dataset Curation and Preprocessing

+ B: Follow-up Question (e.g. Are you sure?)

Evaluated using full text and structured JSON format

diagnosis?

Jsed for model

inference (Open-

source &

commercial)

METHODOLOGY Pipeline Open-Source Mode. 4-bit quantized weights via Transformers MedGemma Clinical Prompt Commercial Models Store Pass 1 & (3,840 Scenarios) Gemini (Full Text and JSON Format) **Apply Evaluation Metrics** (Using Semantic Similarity and LLM as a Judge) Diagnostic Flip Rate Consistency Transformation Rate (CTR) if $sim(\mathbf{e}_r^{(i)}, \mathbf{g}^{(i)}) \ge 0.80$ Output Semantic Similarity Results: CSV Files and Graphs LLM-as-a-Judge $CTR = \frac{T2PF + T2FN + TN2PF + FN2TP}{N}, \quad Accuracy = \frac{1}{N} \sum_{i=1}^{N} Acc^{(i)}, \quad Flip Rate = \frac{1}{N} \sum_{i=1}^{N} Flip^{(i)}$

RESULTS

Single Clinical Case

Table 1: GPT-5 and Gemini-2.5 Flash diagnoses for Pass 1 and Pass 2. The LLM-as-a-Judge marks whether the diagnosis flipped (Yes/No).

Model	ChatGPT 5	Gemini 2.5 Flash
Pass 1 Response	Myasthenia Gravis	Thymoma
Pass 2 Response	Superior vena cava (SVC) syndrome	Myasthenia Gravis
Flip?	Yes	Yes

Table 2: LLM-as-a-judge accuracy evaluation of model responses compared to ground truth and other equivalent terms

Model	ChatGPT 5	Gemini 2.5 Flash
Ground Truth	Myasthenia Gravis	
Pass 1 Response	Myasthenia Gravis	Thymoma
Accurate?	Yes	No
Pass 2 Response	Superior vena cava (SVC) syndrome	Myasthenia Gravis
Accurate?	No	Yes

Acknowledgements: This work is supported by the Data Sciences Institute, University of Toronto, Hive Lab, Institute of Health Policy, Management, and Evaluation, Dalla Lana School of Public Health and KAUST Academy

RESULTS

Fig 1: Diagnostic accuracy comparison between Pass 1 and Pass 2 across different LLMs. Most models demonstrate relatively low accuracy and further degradation when diagnostic confidence is challenged.

Fig 2: Flip rates across LLMs showing the Fig 3: Scaling effect in MedGemma percentage of cases where models models showing accuracy rates and changed their diagnosis when challenged.

CONCLUSION

- Most publicly available LLMs demonstrate sycophantic behavior when their diagnostic decisions are challenged, showing decreased accuracy from initial to follow-up responses.
- Medical-specialized models demonstrate resistance to sycophantic behavior with lower flip rates compared to general-purpose models.
- Initial findings suggest current LLMs may require additional safeguards for reliable deployment in clinical decision-support applications where diagnostic confidence is critical.

FUTURE DIRECTIONS

- Experiment in non-idealized controlled settings to assess model behavior in realistic clinical environments.
- Explore additional open-source models and evaluation metrics beyond flip rate, accuracy, and CTR to assess diagnostic reliability.
- Conduct human evaluation to validate automated assessment methods
- Investigate mitigation strategies for sycophancy in clinical diagnosis

References:

- [1] Advisory Board (2025) How physicians are using AI, in 5 charts
- [2] Fierce Healthcare (2024) Some Doctors using public AI chatbots
- [3] Zhang JS et al. (2024) ChatGPT use among US medical students
- [4] Fanous A et al. (2025) SycEval: Evaluating LLM Sycophancy
- [5] Laban P et al. (2024) Are You Sure? FlipFlop experiment

More Info