2000-198477

DIALOG(R)File 347:JAP10 (c) 2001 JPO & JAPIO. All rts. reserv.

Image available 06612669 ILLUMINATION LIGHTING CONTROL DEVICE FOR BICYCLE

PUB. NO.:

2000-198477 [JP 2000198477 A]

PUBLISHED:

July 18, 2000 (20000718)

INVENTOR(s):

MATSUMOTO KENJI

FUTAMI KAZUMITSU

YAMAZAKI YUJI

SEKIMOTO TSUTOMU

APPLICANT(s): MIYATA IND CO LTD

APPL. NO.:

11-002085 [JP 992085]

FILED:

January 07, 1999 (19990107)

ABSTRACT

PROBLEM TO BE SOLVED: To provide an illumination lighting control device for bicycles, by which shortage of illuminance does not occur during low speed traveling, when a lighting system of a bicycle is driven by a bicycle dynamo.

SOLUTION: Generated power of a hub-dynamo 1 of a bicycle is rectified by a rectification circuit 2, and rectified output thereof is supplied to a lighting system 3, and battery voltage of a secondary battery 4 is supplied to the lighting system 3 through a switching transistor Q2. Output voltage of the hub-dynamo 1 is pulsed by a pulse forming circuit 7 to be supplied to a microcomputer 6 to calculate the bicycle speed. When the bicycle speed set speed, the switching transistor Q2 is brought to an is less than a battery voltage is supplied to the voltage of the and operating state, light and control the lighting system 3. When the bicycle hub-dynamo to speed exceeds the set speed, the switching transistor Q2 is brought to an off state, and the lighting system 3 is allowed to light by only the hub-dynamo voltage.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-198477 (P2000-198477A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.CL⁷

B60Q

識別記号

FΙ

テーマコート*(参考)

B62J 6/00

1/02

B62J 6/00 N 3K039

B60Q

1/02

E

審査請求 未請求 請求項の数8 OL (全 10 頁)

(21)出願番号

特願平11-2085

(22)出願日

平成11年1月7日(1999.1.7)

(71)出願人 000161437

宫田工業株式会社

神奈川県茅ヶ崎市下町屋1丁目1番1号

(72)発明者 松本 堅治

神奈川県茅ヶ崎市下町屋1-1-1 宮田

工業株式会社内

(72)発明者 二見 和光

神奈川県茅ヶ崎市下町屋1-1-1 宮田

工業株式会社内

(74)代理人 100066980

弁理士 森 哲也 (外3名)

最終頁に続く

(54) 【発明の名称】 自転車用照明点灯制御装置

(57)【要約】

【課題】 自転車の照明装置を自転車用ダイナモで駆動 する場合に、低速走行時に照度不足を生じることがない 自転車用照明点灯制御装置を提供する。

【解決手段】 自転車のハブダイナモ1の発電電力を整 流回路2で整流し、その整流出力を照明装置3に供給す ると共に、二次電池4の電池電圧をスイッチング用トラ ンジスタQ2を介して照明装置3に供給する。ハブダイ ナモ1の出力電圧をパルス形成回路7でパルス化し、こ れをマイクロコンピュータ6に供給することにより、車 速を算出し、この車速が設定車速以下であるときには、 スイッチング用トランジスタQ2を作動状態として、ハ ブダイナモ電圧に電池電圧を補充して照明装置3を点灯 制御し、設定車速を上回ったときには、スイッチング用 トランジスタQ2をオフ状態としてハブダイナモ電圧の みで照明装置3を点灯させる。

【特許請求の範囲】

【請求項1】 自転車に装着された自転車用ダイナモと、該自転車用ダイナモで発電された電圧で照明装置を点灯制御する制御手段とを備えた自転車用照明点灯制御装置において、前記制御手段は、自転車用ダイナモの発電電力を整流し、その整流出力を前記照明装置に供給する整流手段と、該整流手段と前記照明装置との間にスイッチング手段を介して整流出力を補充して当該照明装置を所定照度で点灯させる直流電力を供給する電池と、前記整流手段及び前記電池の電力によって駆動され、前記 10 自転車用ダイナモの出力信号に基づいて前記スイッチング手段及び前記照明装置を制御する点灯制御回路とを備えたことを特徴とする自転車用照明点灯制御装置。

1

【請求項2】 自転車に装着された自転車用ダイナモ と、該自転車用ダイナモで発電された電圧で照明装置を 点灯制御する制御手段とを備えた自転車用照明点灯制御 装置において、前記制御手段は、自転車用ダイナモの発 電電力を整流し、その整流出力を前記照明装置に供給す る整流手段と、該整流手段と前記照明装置との間にスイ ッチング手段を介して整流出力を補充して当該照明装置 20 を所定照度で点灯させる直流電力を供給する電池と、自 転車の車速を検出する車速検出手段と、周囲の光量を検 出する光量検出手段と、前記整流手段及び前記電池の電 力によって駆動され、前記車速検出手段で自転車の走行 状態を検出し、且つ光量検出手段の光量が設定値以下で あるときに、前記自転車用ダイナモの出力信号に基づい て前記スイッチング手段及び前記照明装置を制御する点 灯制御回路とを備えたことを特徴とする自転車用照明点 灯制御装置。

【請求項3】 前記点灯制御回路は、自転車用ダイナモ 30 の周波数に基づいて車速を検出する車速検出手段を有し、該車速検出手段で検出した車速が設定車速以下となる低車速域であるときに前記スイッチング手段を作動状態として、前記電池の電力を前記照明装置に供給するように構成されていることを特徴とする請求項1又は2に記載の自転車用照明点灯制御装置。

【請求項4】 前記点灯制御回路は、前記スイッチング 手段を車速に応じたデューティ比でデューティ制御する ようにしたことを特徴とする請求項3記載の自転車用照 明点灯制御装置。

【請求項5】 前記点灯制御回路は、車速検出手段で検出した車速が零となったときに、照明装置の点灯制御を所定時間継続するように構成されていることを特徴とする請求項2乃至4の何れかに記載の自転車用照明点灯制御装置。

【請求項6】 前記点灯制御回路は、前記整流手段の出力電圧を監視し、前記照明装置に印加する電圧を定格電圧に維持する過電圧防止手段を備えていることを特徴とする請求項1乃至5の何れかに記載の自転車用照明点灯制御装置。

【請求項7】 前記点灯制御回路は、前記照明装置の点灯モードを設定する点灯設定手段を有し、前記車速検出手段で算出される車速が零であり、且つ前記点灯設定手段で点灯モードを設定したときに、前記照明装置を前記電池の電力で点灯制御するように構成されていることを特徴とする請求項2乃至5の何れかに記載の自転車用照明点灯制御装置。

【請求項8】 前記電池が充電可能な二次電池で構成され、前記点灯制御回路は、前記自転車用ダイナモ及び二次電池間に充電用スイッチング手段を有し、前記整流手段の出力電圧が設定電圧以上であるときに、前記充電用スイッチング手段を作動状態として、二次電池を充電するように構成されていることを特徴とする請求項1乃至6の何れかに記載の自転車用照明点灯制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自転車用ダイナモ で発電した電力によって前照灯等の照明装置を点灯制御 する自転車用照明点灯制御装置に関する。

[0002]

【従来の技術】従来の自転車用照明点灯制御装置としては、例えば特開平8-164787号公報に記載されたものがある。この従来例には、車輪の回転により発電する発電機と、電力を発生する電源となる電池と、前記発電機と照明灯との間に接続された第1のスイッチ手段と、前記電池と照明灯との間に接続された第2のスイッチ手と、周囲の明るさに応じて前記第1のスイッチ手段を切換る自動点灯消灯回路と、夜間の通常速度での走行時には前記第1のスイッチ手段により前記発電機と照明灯とを接続し、且つ夜間の低速走行時及び夜間停止後一定時間に前記第2のスイッチ手段により前記電池と照明灯とを接続するように切替を制御する切替制御手段とを具える自転車用照明装置が記載されている。

[0003]

40

【発明が解決しようとする課題】しかしながら、上記従来例にあっては、自転車の夜間における低速走行時及び走行停止後一定時間は、電池の電力を照明灯に供給してこれを点灯し、通常速度での走行状態となると、電池に代えて発電機の発電力を照明灯に供給してこれを点灯するようにしているので、低速走行時には電池の電力のみにようにしているので、低速走行時には電池の電力のみによって照明灯を点灯させるので、電池の電力から発電機の電力に切替える設定電圧を低く設定すると、発電機の電力が脈流であることにより、照明灯がちらつくと共に、電池による発光量に対して発電機による発光量があることにより違和感を与えることになるため、電力を切替える設定電圧を高めに設定する必要があり、電池の消費電力が大きくなって電池寿命が低下するという未解決の課題がある。

50 【0004】そこで、本発明は、上記従来例の未解決の

課題に着目してなされたものであり、低速走行時には自 転車用ダイナモの発電力の不足分を電池の電力で補充す ることにより、照明装置で所定の光量を維持しながら電 池の寿命を長寿命化させることができる自転車用照明点 灯制御装置を提供することを目的としている。

[0005]

【課題を解決するための手段】上記目的を達成するため に、請求項1に係る自転車用照明点灯制御装置は、自転 車に装着された自転車用ダイナモと、該自転車用ダイナ モで発電された電圧で照明装置を点灯制御する制御手段 10 とを備えた自転車用照明点灯制御装置において、前記制 御手段は、自転車用ダイナモの発電電力を整流し、その 整流出力を前記照明装置に供給する整流手段と、該整流 手段と前記照明装置との間にスイッチング手段を介して 整流出力を補充して当該照明装置を所定照度で点灯させ る直流電力を供給する電池と、前記整流手段及び前記電 池の電力によって駆動され、前記自転車用ダイナモの出 力信号に基づいて前記スイッチング手段及び前記照明装 置を制御する点灯制御回路とを備えたことを特徴として いる。

【0006】また、請求項2に係る自転車用照明点灯制 御装置は、自転車に装着された自転車用ダイナモと、該 自転車用ダイナモで発電された電圧で照明装置を点灯制 御する制御手段とを備えた自転車用照明点灯制御装置に おいて、前記制御手段は、自転車用ダイナモの発電電力 を整流し、その整流出力を前記照明装置に供給する整流 手段と、該整流手段と前記照明装置との間にスイッチン グ手段を介して整流出力を補充して当該照明装置を所定 照度で点灯させる直流電力を供給する電池と、自転車の 車速を検出する車速検出手段と、周囲の光量を検出する 30 光量検出手段と、前記整流手段及び前記電池の電力によ って駆動され、前記車速検出手段で自転車の走行状態を 検出し、且つ光量検出手段の光量が設定値以下であると きに、前記自転車用ダイナモの出力信号に基づいて前記 スイッチング手段及び前記照明装置を制御する点灯制御 回路とを備えたことを特徴としている。

【0007】さらに、請求項3に係る自転車用照明点灯 制御装置は、請求項1又は2に係る発明において、前記 点灯制御回路は、自転車用ダイナモの周波数に基づいて 車速を検出する車速検出手段を有し、該車速検出手段で 40 検出した車速が設定車速以下となる低車速域であるとき に前記スイッチング手段を作動状態として、前記電池の 電力を前記照明装置に供給するように構成されているこ とを特徴とする。

【0008】さらにまた、請求項4に係る自転車用照明 点灯制御装置は、請求項3に係る発明において、前記点 灯制御回路は、前記スイッチング手段を車速に応じたデ ューティ比でデューティ制御するようにしたことを特徴 とする。なおさらに、請求項5に係る自転車用照明点灯 制御装置は、請求項2乃至4の何れかに係る発明におい 50 て、前記点灯制御回路は、車速検出手段で検出した車速 が零となったときに、照明装置の点灯制御を所定時間継 続するように構成されていることを特徴とする。

【0009】また、請求項6に係る自転車用照明点灯制 御装置は、請求項1乃至5の何れかに係る発明におい て、前記点灯制御回路は、前記整流手段の出力電圧を監 視し、前記照明装置に印加する電圧を定格電圧に維持す る過電圧防止手段を備えていることを特徴とする。さら に、請求項7に係る自転車用照明点灯制御装置は、請求 項2乃至6の何れかに係る発明において、前記点灯制御 回路は、前記照明装置の点灯モードを設定する点灯設定 手段を有し、前記車速検出手段で算出される車速が零で あり、且つ前記点灯設定手段で点灯モードを設定したと きに、前記照明装置を前記電池の電力で点灯制御するよ うに構成されていることを特徴とする。

【0010】さらにまた、請求項8に係る自転車用照明 点灯制御装置は、請求項1乃至7の何れかに係る発明に おいて、前記電池が充電可能な二次電池で構成され、前 記点灯制御回路は、前記自転車用ダイナモ及び二次電池 間に充電用スイッチング手段を有し、前記整流手段の出 力電圧が設定電圧以上であるときに、前記充電用スイッ チング手段を作動状態として、二次電池を充電するよう に構成されていることを特徴とする。

[0011]

20

【実施の形態】以下、本発明の実施の形態を図面に基づ いて説明する。図1は本発明の一実施形態における電気 的接続関係を示す回路図である。図中、1は自転車の非 駆動輪となる前輪のハブに内蔵された自転車用ダイナモ としてのハブダイナモであって、このハブダイナモ1か ら前輪の回転数即ち車速に応じた周波数の交流信号が出 力される。

【0012】このハブダイナモ1の出力側には、負極出 力端子が接地された全波整流を行うダイオードブリッジ 回路で構成される整流手段としての整流回路2の入力端 子tii及びtizが接続され、この整流回路2の出力端子 to1及びto2に正極側ラインLp及び負極側ラインLn が接続され、これら正極側ラインLp及び負極側ライン L_N の終端に照明装置としての前照灯3とその通電を制 御する通電制御素子としてのPNP型のスイッチングト ランジスタQ1とが直列に接続されている。

【0013】また、正極側ラインし。及び負極側ライン Lnには、前照灯3及びスイッチングトランジスタQ1 と並列にアルカリマンガン蓄電池、アルカリ蓄電池等の 充電可能な二次電池4と放電用スイッチング手段として のNPN型のスイッチングトランジスタQ2との直列回 路が接続され、このスイッチングトランジスタQ2と並 列に充電用スイッチング手段としてのPNP型のスイッ チングトランジスタQ3が接続されている。

【0014】さらに、一端が、正極側ラインしゃにダイ オードD1を介して接続されていると共に、二次電池4

6

にメインスイッチSWM 及びダイオードD2を介して接続され、他端が負極側ラインLMに接続された充電用コンデンサCと、この充電用コンデンサCの両端と並列に接続された定電圧用ツェナーダイオードZDとで構成される制御電源回路5が設けられ、この制御電源回路5の出力電力が点灯制御回路としてのマイクロコンピュータ6に動作電源として供給されている。

【0015】このマイクロコンピュータ6には、前述したハブダイナモ1の出力電圧を半波整流してパルス信号を形成するパルス形成回路7のパルス信号が入力される 10 と共に、自転車の周囲の光量を検出する光量検出手段としての光量検出回路8の光量検出信号と、マルチプレクサ9で選択された整流回路2から出力されるハブダイナモ電圧V_H及び二次電池4の出力電圧V_Bの何れかをデジタル信号に変換するA/D変換器10の出力信号とが入力され、さらに各スイッチングトランジスタQ1~Q3を制御する制御信号CS₁~CS₃が出力される。

【0016】ここで、パルス形成回路路7は、ハブダイ ナモ1の出力電圧を半波整流するダイオードD3と、こ のダイオードD3のカソード側と設置との間に接続され 20 た抵抗R1と、これらダイオードD3及び抵抗R1の接 続点がベースに接続され、コレクタが抵抗R2を介して 正極側ラインLPに接続され、エミッタが接地されたN PN型のスイッチング用トランジスタQ4とで構成さ れ、ハブダイナモ1の半波出力が所定電圧未満であると きには、スイッチング用トランジスタQ4がオフ状態を 維持して、そのコレクタ電圧がハブダイナモ1と二次電 池4とによって形成される前照灯3の点灯電圧となる高 レベルに維持され、この状態からハブダイナモ1の半波 出力が所定電圧以上となると、スイッチング用トランジ 30 スタQ4がオン状態に切換わって、そのコレクタ電圧が 接地レベルなり、ハブダイナモ1の半波出力の周波数に 対応した周期のパルス信号PSがマイクロコンピュータ 6に入力される。

【0017】また、光量検出回路8は、エミッタが接地され、且つコレクタがコレクタ抵抗R5を介して制御電源回路5の電力が供給される端子VDDに接続されたNPN型のフォトトランジスタPTと、このトランジスタPTのコレクタ及びエミッタ間に接続された充放電用コンデンサC2とで構成され、フォトトランジスタPTのコ 40レクタから周囲が明るいときに低レベル、逆に暗いときに高レベルとなる光量検出信号SLがマイクロコンピュータ6に出力される。

【0018】また、マイクロコンピュータ6には、ハンドル(図示せず)の近傍に設けられた照明装置の点灯モードを設定する点灯設定手段としての点灯設定スイッチ11のスイッチ信号SSが入力されると共に、二次電池に対する充電を行うか否かを選択する充電選択スイッチ12のスイッチ信号SCが入力される。さらに、マイクロコンピュータ6には、ハンドル(図示せず)の近傍に50

設けられた小型液晶表示装置13が接続され、この小型 液晶表示装置13に、車速データ、走行距離データ、電 池交換警告等を表示するようにしている。

【0019】そして、マイクロコンピュータ6では、パルス形成回路7からのパルス信号PSに基づいて車速を検出し、光量センサ8からの光量検出値が少なく前照灯3を点灯制御する必要性があるものと判断したときに、検出した車速に基づいて設定車速より低い低車速域では、ハブダイナモ1による電力不足分を二次電池4の電力で補って前照灯3に供給することにより、前照灯3を走行開始時点から定格照度で点灯させ、この状態から車速の増加によってハブダイナモ1による発電量が増加するに応じて二次電池4の補充分を少なくし、設定車速以上では二次電池4による補充を停止し、これに応じて必要に応じて二次電池4を充電すると共に、前照灯3への供給電力が定格以上となることを抑制し、さらに走行状態から停車状態となったときに、前照灯3の点灯状態を所定時間継続させる等の点灯制御を行う。

【0020】次に、上記実施形態の動作をマイクロコン ピュータ6で実行される図2に示す車速演算処理及び図 3に示す点灯制御処理を伴って説明する。すなわち、マ イクロコンピュータ6では、メインスイッチS W_M が投 入されて制御電源回路5から直流電力が供給されること により動作状態となって、図2の点灯制御処理をメイン プログラムとして実行し、先ず、ステップS1で、光量 センサ8で検出した自転車周囲の光量検出信号SLを読 込み、次いでステップS2に移行して読込んだ光量検出 信号SLが高レベルであるか否かを判定し、低レベルで あるときには、周囲が明るく前照灯3を点灯させる必要 がないものと判断してステップS3に移行して、マルチ プレクサ9に対して、例えば論理値"1"の制御信号S м を出力して、二次電池4からの電池電圧VвをA/D 変換器10を介して読込み、次いでステップS4に移行 して電池電圧VBが予め設定した電池容量不足となる閾 値電圧V_{BS}未満であるか否かを判定し、V_B < V_{BS}であ るときには、電池容量不足であると判断してステップS 5に移行して、液晶表示装置13に対して電池容量不足 のメッセージを出力してからステップS6に移行し、V в ≧ Vвs であるときには電池容量が十分であると判断し てそのままステップS6に移行する。

【0021】ステップS6では、別途メインプログラムに対する割込み処理として実行される車速検出処理で、パルス発生回路7から入力されるパルス信号PSの単位時間当たりのパルス数又は1のパルスから次のパルスが得られるまでの経過時間に基づいて検出された車速 V_{SP} を読込み、次いでステップS7に移行して、車速 V_{SP} データを液晶表示装置13に出力してから前記ステップS1に戻る。

【0022】一方、ステップS2の判定結果が、光量検 出信号が高レベルであるときには、周囲が暗く前照灯3 を点灯させる必要があるものと判断してステップS8に 移行し、前述したステップS6と同様に、車速V_{SP}を読 込み、次いでステップS9に移行して、車速V_{SP}が

"0"であるか否かを判定し、 V_{SP} =0であるときには自転車が停車中であると判断してステップS10に移行する。

【0023】このステップS10では、点灯設定スイッチ11のスイッチ信号SSを読込み、次いでステップS11に移行して、スイッチ信号SSがオン状態であるか否かを判定し、これがオン状態であるときには、前照灯103を点灯する意志があるものと判断して、ステップS12に移行して、スイッチング用トランジスタQ1、Q2をオン状態に制御し、且つスイッチング用トランジスタQ3をオフ状態に制御してから前記ステップS1に戻り、スイッチ信号SSがオフ状態であるときには、前照灯3を点灯する意志がないものと判断して、ステップS1に戻りまるにオフ状態に制御してから前記ステップS1に戻る。

【0024】また、ステップS9の判定結果が、V_{SP}> 20 0であるときには、自転車が走行中であると判断して、 ステップS14に移行し、車速Vspが予め設定した整流 回路 2 から出力されるハブダイナモ電圧 V_H が二次電池 4の電池電圧V_Bを越えるに十分な電圧に相当する設定 車速V_{SET} 以下であるか否かを判定し、V_{SP}≦V_{SET}で あるときには、ハブダイナモ電圧Vn が前照灯3を定格 照度で点灯させる電圧より低いものと判断して、ステッ プS15に移行し、車速VsPに対応するデューティ比D 2 を例えば予めメモリに記憶された車速 Vspとデューテ ィ比D2 との関係を表すデューティ比算出マップを参照 30 して算出し、次いで、ステップS16に移行して、トラ ンジスタQ1に対してデューティ比D,が100%即ち オン状態となる制御信号を出力すると共に、トランジス タQ2に対してステップS15で算出されたデューティ 比D₂の制御信号を出力してから後述するステップS2 5に移行する。

【0025】一方、前記ステップS140判定結果が、 $V_{SP}>V_{SET}$ であるときには、請求回路2から出力されるハブダイナモ電圧 V_H が前照灯3を点灯するに十分な電圧であると判断してステップS17に移行する。この40ステップS17では、マルチプレクサ9に対して論理値"0"の選択信号 S_M を出力して整流回路2から出力されるハブダイナモ電圧 V_H をA/D変換器10を介して読込み、次いでステップS18に移行して、読込んだハブダイナモ電圧 V_H が予め設定した前照灯3の許容電圧に相当す設定電圧 V_{HS} 以上であるか否かを判定し、 V_{HS} であるときには、ハブダイナモ電圧 V_{H} が適正電圧であると判断してステップS19に移行し、トランジスタQ1及びQ2に対してデューティ比 $D_1=100$ %即ちオン状態及 $D_2=0$ %即ちオフ状態とする制御信50

号を出力してからステップS 2 1 に移行し、 $V_H \ge V_{HS}$ であるときには、ハブダイナモ電圧 V_H が高過ぎるものと判断して、ステップS 2 0 に移行して、ハブダイナモ電圧 V_H が設定電圧 V_{HS} 未満となるようにトランジスタQ 1 に対して所定デューティ比D₁ の制御信号を出力してからステップS 2 1 に移行する。

【0026】ステップS21では、充電選択スイッチ12のスイッチ信号SCを読込み、次いでステップS22に移行して、スイッチ信号SCがオン状態であるか否かを判定し、これがオフ状態であるときには直接後述するステップS25に移行し、オン状態であるときには、二次電池4を充電するものと判断してステップS23に移行して、ハブダイナモ電圧 V_H が前記設定電圧 V_{HC} 以上であるか否かを判定し、 $V_H \ge V_{HC}$ であるときにはステップS24に移行して、トランジスタQ3をオン状態とする制御信号を出力してから後述するステップS25に移行し、 V_H < V_{HC} であるときには電圧が不安定であると判断して直接ステップS25に移行する。

【0027】ステップS25では、前述したステップS1と同様に光量センサ8の光量検出信号SLを読込み、次いでステップS26に移行して、前述したステップS2と同様に、光量検出信号SLが高レベルであるか否かを判定し、これが低レベルであるときには、周囲が明るくなって、前照灯3を点灯維持する必要がないものと判断してステップS27に移行する。

【0028】このステップS27では、トランジスタQ1に対して例えば前述したデューティ比D1の周期より長い周期でオン・オフを繰り返す制御信号を所定時間(例えば1分間)出力することにより、前照灯3を点滅駆動してから前記ステップS1に戻る。また、ステップS26の判定結果が、光量検出信号SLが高レベルであるときに前照灯3の点灯制御を継続するものと判断してステップS28に移行して、車速Vspが"0"であるか否かを判定し、これが"0"であるときには停車状態であると判断して前記ステップS27に移行し、"0"でないときには、走行中であると判断して前記ステップS14に戻る。

【0029】したがって、今、昼間にメインスイッチSWmをオフ状態として自転車が停止しているものとすると、この状態では、非駆動輪となる前輪が停止しているので、ハブダイナモ1は発電停止状態にあり、交流信号は出力されない状態となっており、従って整流回路2からも直流出力電圧は得られない状態となっている。この状態では、メインスイッチSWmがオフ状態であるので、二次電池4の出力電圧は制御電源回路5に供給されず、この制御電源回路5の出力電圧が"0"であるので、マイクロコンピュータ6、A/D変換器10、液晶表示装置13等に制御電源が供給されず、これらが作動停止状態にあり、当然前照灯3も消灯状態にある。

【0030】この停車状態で、メインスイッチSWMをオン状態とすると、制御電源回路5に二次電池4の出力電圧が供給されることにより、コンデンサCが充電され、ツェナーダイオード2Dで定電圧化されて、マイクロコンピュータ6、A/D変換器10、液晶表示装置13等に制御電源が供給される。このため、マイクロコンピュータ6が動作状態となり、図2の点灯制御処理が実行される。このとき、昼間であるので、光量検出回路8のフォトトランジスタPTがオン状態となって光量検出信号SLも低レベルを維持しているので、図2の点灯制10御処理で、ステップS2からステップS3に移行し、電池電圧 V_B を読込み、これが関値電圧 V_{BS} 未満であるか否かを判定し、 $V_B \ge V_{BS}$ であるときには、二次電池4の電圧が十分であると判断して、"0"の車速 V_{SP} を被晶表示装置13に表示する(ステップS6,S7)。

【0031】このとき、ステップS4での判定結果がVB
B<VBSであるときには、ステップS5に移行して、液晶表示装置13に電池電圧不足を表す警告表示が行われ、乗り手に喚起することができ、この警告表示を視認した乗り手が二次電池4を充電するための充電選択スイ20ッチ12をオン状態とすると、後述するように、車速VSFが設定車速VHC以上となったときに、スイッチング用トランジスタQ3がオン状態となって、整流回路2から出力されるハブダイナモ電圧VHによって二次電池4が充電される。

【0032】この結果、トランジスタQ1及びQ2がオフ状態を維持することから、前照灯3が消灯状態を継続する。この停止状態から自転車を走行させると、これに応じてハブダイナモ1から走行速度に応じた発電電力が出力され、これが整流回路2で整流されてハブダイナモ 30電圧V_Hが上昇する。

【0033】しかしながら、この状態でも光量検出回路8の光量検出信号SLが低レベルを維持していることから、ステップS1~ステップS7を繰り返し、液晶表示装置13で車速が表示され、且つトランジスタQ1及びQ2がオフ状態を維持し、前照灯3が消灯状態を維持する。この昼間の走行状態でトンネルや随道等の光量の少ない場所を走行する状態となると、これに応じて、光量検出回路8のフォトトランジスタPTがオフ状態となることにより、充電用コンデンサC2が充電状態となり、その充電電圧が高くなって光量検出信号SLが高レベルとなると、図2の点灯制御処理において、ステップS2からステップS8に移行し、車速VsFが"0"より大きいので、ステップS14に移行する。

【0034】このとき、自転車が閾値速度 V_{SET} (例えば 10 km/h)を上回る速度で走行しているときには、ハブダイナモ1の発電電力が前照灯3を点灯させるに充分であるので、ステップS14からステップS17に移行して、ハブダイナモ電圧 V_H を読込み、これが設定電圧 V_{HS} 未満であるときには、適正電圧であるとし

て、ステップS19に移行して、トランジスタQ1に対する制御信号がデューティ比 D_1 が100%となって、トランジスタQ1がオン状態に制御され、トランジスタQ2に対する制御信号がデューティ比 D_2 が0%となるオフ状態に制御されることにより、トランジスタQ2がオフ状態に制御される。

【0035】このため、前照灯3の通電路が形成されると共に、二次電池4から前照灯3への通電路が遮断されて、ハブダイナモ電圧 V_H が前照灯3に供給されることにより、これが点灯される。また、車速 V_{SP} が設定車速 V_{SET} 未満であるときには、ハブダイナモ電圧 V_H では前照灯3で必要とする電力を賄い切れないものと判断して、ステップS15に移行し、車速 V_{SP} に対応するデューティ比 D_2 が算出され、次いでステップS16に移行して、デューティ比 D_1 が100%に制御されてトランジスタQ1がオン状態となると共に、デューティ比 D_2 がステップS15で算出された値に制御されて、車速 V_{SP} に応じて不足する電圧分が二次電池4から補充されて、前照灯3が定格照度で明るく点灯される。

【0036】一方、夜間で自転車の走行を開始する場合には、自転車の停止状態では、光量検出回路8の光量検出信号SLが高レベルとなっても車速 V_{SP} が"0"であるので、ステップS9からステップS10に移行して、点灯設定スイッチ11のスイッチ信号SSを読込み、これがオン状態であるときには、乗り手が前照灯3を点灯する意志があるものと判断して、ステップS12に移行し、トランジスタQ1及びQ2をオン状態に制御することにより、二次電池4の電池電圧 V_B で前照灯3が明るく点灯される。

30 【0037】一方、点灯設定スイッチ11がオフ状態であるときには、トランジスタQ1~Q3がオフ状態に制御されて、前照灯3の消灯状態が継続される。この停止状態から、乗り手がペダルをこぐことにより、走行開始すると、車速Vspが増加することから、ステップS9からステップS14に移行して、前述したトンネル等の走行状態と同様に、車速Vspが設定車速Vse以下であるときには、ハブダイナモ電圧Vnが低い状態となるので、車速Vspの増加に応じて小さくなるデューティ比D2が算出され、これがトランジスタQ2に供給されるので、ハブダイナモ電圧Vnの不足分を二次電池4の電池電圧Vnで補って、前照灯3を明るく点灯させることができ、自転車前方の視認性を前述した従来例に比較して格段に向上させることができ、安全走行を確保することができる。

【0038】その後、車速の増加と共にハブダイナモ1の発電電力も増加することにより、二次電池4の電池電圧V_Bによる補充電圧も減少し、車速V_{SP}が設定車速V_{SET}以上を上回る状態となると、ステップS14からステップS17を経てステップS18に移行して、ハブダ イナモ電圧V_Hが許容電圧V_{HS}未満であるときにはステ

ップS19にトランジスタQ1がオン状態となり、トラ ンジスタQ2がオフ状態となることにより、二次電池4 から前照灯3への通電路が遮断され、ハブダイナモ電圧 V_Hのみが前照灯3に供給されて、その点灯制御が継続 されることになり、二次電池4の電力消費を防止して電 池寿命を長くすることができる。

【0039】この高速走行状態で、下り坂を走行する等 してさらに車速Vspが増加し、整流回路2から出力され るハブダイナモ電圧V_Hが閾値電圧V_{HS}以上となると、 ステップS18からステップS20に移行して、トラン 10 ジスタQ1のデューティ比D, がハブダイナモ電圧V_H が閾値電圧V_{HS}未満となるように制御されて、前照灯3 に対して定格電圧を越える過電圧が印加されることを防 止し、ランプ切れを確実に防止する。

【0040】その後、交差点での赤信号等によって、自 転車の車速を低下させて停止させると、車速の低下によ ってハブダイナモ1の発電電力が低下し、車速Vspが設 定車速Vset 以下となると、二次電池4による電圧補助 状態に復帰し、停止間際でも前照灯3を明るい状態に維 持することができる。その後、車速 V spが "O"となる 20 きる。さらに、上記実施形態では、自転車用ダイナモと と、ステップS28からステップS27に移行して、前 照灯3が1分間点滅制御状態となり、交差点周囲の自動 車等の他の車両に自転車の存在をより確実に視認させる ことができ、車両の左折時の巻き込み事故や右折時の事 故を未然に防止することができ、安全性を向上させるこ とができる。

【0041】この状態から青信号によって走行を開始す ると、上述した場合と同様に走行開始直後は、二次電池 4によってハブダイナモ1の発電電力を補充することに より、前照灯3を明るく点灯させることができ、その後 30 自転車の走行を停止させたときには、1分間程度前照灯 3の点灯状態を継続することができるので、駐輪設備等 への自転車の格納などの作業を容易に行うことができ、 さらに照明が必要な場合には、点灯設定スイッチ11を オン状態とすることにより、前照灯3を点灯させること ができる。

【0042】また、自転車が設定車速Vser を上回る車 速Vspで走行している状態で、充電選択スイッチ12が オン状態となっているときには、ステップS22からス テップS23に移行して、ハブダイナモ電圧Vnが設定 40 電圧Vнс以上であるときに、トランジスタQ3がオン状 態に制御されて、ハブダイナモ電圧Vェが二次電池4に 供給されることにより、充電が開始されて、電池電圧不 足を解消することができる。

【0043】このように、上記実施形態によると、マイ クロコンピュータ6で、ハブダイナモ1の出力電圧に基 づくパルス形成回路 7 からのパルス信号 PSに基づいて 車速Vspを検出し、この車速Vspに基づいて二次電池4 からの電圧補充を行うか否かを判定するようにしたの で、ハブダイナモ1の回転に応じた正確な車速Vspを検 50

出することができ、二次電池4の電圧補充を正確に行っ て、前照灯3に適正な電圧を供給することができ、前照 灯3のちらつきや電圧変動による照度変化を確実に防止 することができる。

【0044】因みに、整流回路2から出力されるハブダ イナモ電圧Vn を監視することにより、二次電池4で電 圧補充を行うか否かを判定することもできるが、この場 合には、整流回路2から出力されるハブダイナモ電圧V н の変動が比較的大きく、安定した判定を行うことがで きず、前照灯3へ供給する電圧が変動して、ちらつきや 照度変化を生じるという問題点があるが、本発明では、 ハブダイナモの出力電圧の周波数に基づいて車速を検出 して、これに基づいて二次電池4での電圧補充判断を行 うので、正確な判断を行うことができる。

【0045】また、上記実施形態では、二次電池4での 補充電圧をスイッチング用トランジスタQ2をデューテ ィ制御することにより、前照灯3に供給するようにして いるので、車速に応じた必要な電圧分だけ補充すること ができ、二次電池4の消費電力を極力低減することがで して、非駆動輪のハブに内蔵されたハブダイナモを適用 しているので、乗り手にかける負担が少なくて済むとい う効果が得られる。

【0046】なお、上記実施形態では、周囲が明るいと きに電池電圧を監視するようにした場合について説明し たが、これに限定されるものではなく、表示装置とし て、発光ダイオード等の光輝性を有する表示装置を使用 する場合には、夜間等の暗いときでも視認できるので、 前照灯3の点灯制御中に電池電圧を監視するようにして もよく、さらには、二次電池を使用している場合には、 電池電圧が低いときには自動的に充電モードに設定する ようにしてもよい。

【0047】また、上記実施形態においては、前照灯3 の点灯制御状態で自転車を停止させたときに、前照灯3 を1分程度点滅制御させる場合について説明したが、そ の継続時間及び点滅周期は任意に設定することができ、 点滅制御にかかわらず、点灯状態を維持したり、前照灯 3への供給電圧を低下させて、多少暗めに点灯させるよ うにしてもよい。

【0048】さらに、上記実施形態においては、前照灯 3を点灯制御する場合について説明したが、これに限定 されるものではなく、自転車の側方や後方を照らす発光 ダイオード等の補助照明装置を設けて、これらを前照灯 と同時に又は個別に点灯制御するようにしてもよい。さ らにまた、上記実施形態においては、制御素子としてバ イポーラトランジスタを適用した場合について説明した が、これに限定されるものではなく、電界効果トランジ スタ等の他の制御素子を適用することができることは言 うまでもない。

【0049】なおさらに、上記実施形態においては、光

量検出回路9をフォトトランジスタPTを含んで構成し た場合について説明したが、これに限定されるものでは なく、フォトダイオードやСdS等の光センサを適用す ることができる。また、上記実施形態においては、自転 車用ダイナモとしてハブダイナモ1を適用した場合につ いて説明したが、これに限定されるものではなく、前輪 の側面に接触させるダイナモを適用してもよいことは言 うまでもない。

【0050】さらに、上記実施形態においては、電池と して充電可能な二次電池4を適用した場合について説明 10 したが、こされに限定されるものではなく、充電が不可 能なアルカリ電池、マンガン電池等の一次電池を適用す ることもでき、この場合には、充電選択スイッチ11及 び充電用トランジスタQ3を省略できる。さらにまた、 上記実施形態においては、ハブダイナモ1の出力電圧に 基づいて車速を検出する場合について説明したが、これ に限定されるものではなく、車輪の回転を検出して車速 を検出するようにしてもよい。

[0051]

【発明の効果】以上説明したように、請求項1に係る発 20 明によれば、前記制御手段は、自転車用ダイナモの発電 電力を整流し、その整流出力を前記照明装置に供給する 整流手段と、該整流手段と前記照明装置との間にスイッ チング手段を介して整流出力を補充して当該照明装置を 所定照度で点灯させる直流電力を供給する電池と、前記 整流手段及び前記電池の電力によって駆動され、前記自 転車用ダイナモの出力信号に基づいて前記スイッチング 手段及び前記照明装置を制御する点灯制御回路とを備え た構成としたので、自転車の走行直後や停止直前の自転 車用ダイナモの発電電力が照明装置の定格電圧より低い 30 場合には、自転車用ダイナモの電力不足分を一次電池で 補って照明装置を点灯制御することができ、自転車の走 行直後や停止直前でも前照灯を明るく点灯させることが できると共に、自転車用ダイナモの発電電力と電池の電 力とを併用しているので、電池の電力消費量を抑制して 電池寿命を長期化させることができ、さらに自転車用ダ イナモの出力信号は車輪の回転に比例した周波数の信号 であることにより、点灯制御回路におけるスイッチング 手段及び照明装置を制御を正確に行うことができるとい う効果が得られる。

【0052】また、請求項2に係る発明によれば、自転 車に装着された自転車用ダイナモと、該自転車用ダイナ モで発電された電圧で照明装置を点灯制御する制御手段 とを備えた自転車用照明点灯制御装置において、前記制 御手段は、自転車用ダイナモの発電電力を整流し、その 整流出力を前記照明装置に供給する整流手段と、該整流 手段と前記照明装置との間にスイッチング手段を介して 整流出力を補充して当該照明装置を所定照度で点灯させ る直流電力を供給する電池と、自転車の車速を検出する 車速検出手段と、周囲の光量を検出する光量検出手段

50

と、前記整流手段及び前記電池の電力によって駆動さ れ、前記車速検出手段で自転車の走行状態を検出し、且 つ光量検出手段の光量が設定値以下であるときに、前記 自転車用ダイナモの出力信号に基づいて前記スイッチン グ手段及び前記照明装置を制御する点灯制御回路とを備 えた構成としたので、前記請求項1に係る発明の効果に 加えて、車速検出手段で自転車の走行状態を正確に検出 することができ、正確な点灯制御を行うことができると 共に、自転車の走行時に前照灯の点灯が必要な状態とな ると自動的に前照灯を点灯制御することができるという 効果が得られる。

【0053】さらに、請求項3に係る発明によれば、前 記点灯制御回路は、自転車用ダイナモの周波数に基づい て車速を検出する車速検出手段を有し、該車速検出手段 で検出した車速が設定車速以下となる低車速域であると きに前記スイッチング手段を作動状態として、前記電池 の電力を前記照明装置に供給するように構成されている ので、車速検出手段で自転車用ダイナモの周波数に基づ いて車速を検出し、この車速に基づいてスイッチング手 段を作動制御することができ、自転車用ダイナモの電圧 変動にかかわらず、正確にスイッチング手段を作動制御 することができるという効果が得られる。

【0054】さらにまた、請求項4に係る発明によれ ば、前記点灯制御回路は、前記スイッチング手段を車速 に応じたデューティ比でデューティ制御するようにした ので、電池から補充する電池電圧を必要量に制御するこ とができ、電池の消費電力を抑制して、高寿命化させる ことができるという効果が得られる。なおさらに、請求 項5に係る発明によれば、前記点灯制御回路は、車速検 出手段で検出した車速が零となったときに、照明装置の 点灯制御を所定時間継続するように構成されているの で、交差点での赤信号による一時停止中に、照明装置の 点灯状態を維持することが可能となり、周囲の車両等に 自転車の存在を確実に視認させることができ、車両の右 左折時の事故を未然に防止することができると共に、停 止後に駐輪設備等への格納を容易に行うことができると いう効果が得られる。

【0055】また、請求項6に係る発明によれば、前記 点灯制御回路は、前記整流手段の出力電圧を監視し、前 40 記照明装置に印加する電圧を定格電圧に維持する過電圧 防止手段を備えているので、照明装置に過電圧が作用し てランプ切れ等を生じることを確実に防止して、安全走 行を確保することができるという効果が得られる。さら に、請求項7に係る発明によれば、前記点灯制御回路 は、前記照明装置の点灯モードを設定する点灯設定手段 を有し、前記車速検出手段で算出される車速が零であ り、且つ前記点灯設定手段で点灯モードを設定したとき に、前記照明装置を前記電池の電力で点灯制御するよう に構成されているので、夜間等の停車状態で、所望時に 照明装置を点灯させることができ、鍵の解除等を容易に

行うことができるという効果が得られる。

【0056】さらにまた、請求項8に係る発明によれば、前記電池が充電可能な二次電池で構成され、前記点灯制御回路は、前記自転車用ダイナモ及び二次電池間に充電用スイッチング手段を有し、前記整流手段の出力電圧が設定電圧以上であるときに、前記充電用スイッチング手段を作動状態として、二次電池を充電するように構成されているので、二次電池の充電を適正に行って、電池容量の低下を確実に防止することができるという効果が得られる。

【図面の簡単な説明】

【図1】本発明の一実施形態の電気的接続関係を示す回 路図である。

【図2】上記実施形態におけるマイクロコンピュータの

点灯制御処理の一例を示すフローチャートである。 【符号の説明】

- 1 ハブダイナモ (自転車用ダイナモ)
- 2 整流回路
- 3 前照灯 (照明装置)
- 4 二次電池
- 5 制御電源回路
- 6 マイクロコンピュータ
- 7 パルス形成回路
- 10 8 光量検出回路 (光量検出手段)
 - 11 点灯設定スイッチ
 - 12 充電選択スイッチ
 - 13 液晶表示装置

【図1】

【図2】

フロントページの続き

(72)発明者 山崎 祐路

神奈川県茅ヶ崎市下町屋1-1-1 宮田 工業株式会社内 (72) 発明者 関本 力

神奈川県茅ヶ崎市下町屋1-1-1 宮田 工業株式会社内

Fターム(参考) 3K039 AA08 BA01 DC02