Bin Packing 2D

Edgar Arroyo

- Descripción del problema
- Planteamiento del problema
- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

Descripción del problema

- Planteamiento del problema
- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

Descripción del problema

Silvano Martello, lo define como

"Given a set of rectangular pieces to be cut from an unlimited number of standardized stock pieces (bins), the Two-Dimensional Finite Bin Packing Problem is to determine the minimum number of stock pieces that provide all the pieces"

Pero... En nuestro proyecto

"Dada un set de piezas rectangulares para ser cortadas en un bin con un área finita y una altura infinita, encontrar el mejor orden para cortar las piezas que minimice la altura ocupada"

Descripción del problema

Planteamiento del problema

- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

Planteamiento del problema

- Una Tela gigante (ancho finito, altura infinita)
- Piezas con una Altura y un Ancho.
- ¿Cuántos "metros" necesitamos para cortar todas esas piezas?
- Dividir la Tela gigante (La Tela Maestra) en Telas más pequeñas

Entonces...

- Descripción del problema
- Planteamiento del problema

• Descripción constructivo

- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

1. Rotamos y Ordenamos

2. Introducimos

- Descripción del problema
- Planteamiento del problema
- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

Descripción del movimiento

- Descripción del problema
- Planteamiento del problema
- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

Construcción de soluciones MA

.obtenerAlto()

Mayor

Menor

oobtenerAlto()

Construcción de soluciones MA

```
[�.obtenerAlto(),�.obtenerAlto() + \alpha(♠.obtenerAlto() - �.obtenerAlto()) ]

Resulta:
```

Aleatorio = 1 Se añade a la solución

- Descripción del problema
- Planteamiento del problema
- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones

Resultados

Instancía	Área necesaria	Sol. Inicial	Mejor Sol. Encontrada	GAP ÁreaNecesaria/ ÁreaOcupada	Gap Sol.Inicial/ Sol.Encontrada
M1A	2520	34	34	21.42	0
M1B	2597	35	35	17.55	0
M1C	2554	35	33	16.28	6.06
M1D	2846	36	36	13.84	0
M1E	2665	35	35	18.19	0
M2A	24753	326	326	18.53	0
M2B	25283	330	327	16.40	0.91
M2C	25200	331	331	18.21	0
M2D	25614	330	330	15.95	0
M2E	24811	321	321	16.44	0
МЗА	25703	519	519	81.72	0
мзв	27414	526	526	72.68	0
мзс	27953	527	527	69.67	0
МЗD	27439	509	509	66.95	0
МЗЕ	29530	501	501	52.69	0

Resultados

Instancia	Tiempo Total	Tiempo Constr	Tiempo Movim	Tiempo Multiarranque
M1A	95.27	0.003099	0.4198	94.8489
M1B	94.03	0.002944	0.4257	93.6056
M1C	96.24	0.003322	0.4226	95.8154
M1D	95.97	0.003189	0.4331	95.5396
M1E	95.87	0.002834	0.4220	95.4477
M2A	96.66	0.003222	0.4300	96.2346
M2B	97.51	0.003209	0.4314	96.0777
M2C	95.32	0.003346	0.4228	94.8954
M2D	98.38	0.003301	0.4232	97.9566
M2E	97.17	0.003202	0.42006	96.7543
МЗА	271.75	0.005090	1.21459	271.5338
МЗВ	272.76	0.004701	1.20777	271.5514
МЗС	265.60	0.004868	1.21040	264.3845
M3D	274.66	0.004802	1.22552	273.4309
МЗЕ	273.55	0.004960	1.20165	272.3482

macOS Sierra

Versión 10.12.4

iMac (21.5-inch, Late 2015)

Procesador 2.8 GHz Intel Core i5

Memoria 8 GB 1867 MHz DDR3

Gráficos Intel Iris Pro Graphics 6200 1536 MB

- Descripción del problema
- Planteamiento del problema
- Descripción constructivo
- Descripción de movimiento
- Construcción de Soluciones MA
- Resultados
- Conclusiones