part of each of a series of frames.

1. A method for communicating between a plurality of nodes of a
communication system in which a series of fixed-length frames pass between the nodes
of the system comprising:
provisioning the communication system, including allocating in each frame a
fixed part, said fixed part including a first part of the frame for passing control
information between the nodes and a second part for passing data streams over a plurality
of dynamically allocated channels between the nodes;
at a first node in the system, (1) receiving a communication request for a
dynamically allocated channel between a second node and a third node including
receiving request data from the second node in the first part of a received frame, (2)
allocating a portion of the second part of the frames to said dynamically allocated
channel, and (3) broadcasting a response to the request including transmitting control
data in the first part of a frame; and
at the second node, (1) receiving the control data transmitted by the first node
(2) determining the portion of the second part of each of the frames that is allocated to
said dynamically allocated channel, (2) sending a data stream over said dynamically
allocated channel to the third node, including passing data in said portion of the second

- 2. The method of claim 1 wherein receiving the request for the dynamically allocated channel between the second node and the third node includes receiving a request to assign a communication session for passing a data stream between the second node and the third node.
- 3. The method of claim 1 wherein receiving the request to assign the
 communication session includes receiving a priority for said communication session.

1	4. The method of claim 1 wherein receiving the request for the dynamically
2	allocated channel between the second node and the third node includes receiving a
3	request to change an allocated capacity of a communication channel previously allocated
4	to communication between the second node and the third node.
1	5. The method of claim 1 wherein allocating the portion of the second part of the
2	frames to said communication channel includes modifying allocated capacities of
3	multiple communication channels.
1	6. The method of claim 1 wherein the fixed part includes a third part that is
2	allocate for fixed-rate channels between the nodes.
1	7. The method of claim 1 wherein the communication system includes a SONET
2	network and each frame includes a Synchronous Payload Envelope (SPE), and wherein
3	allocating the fixed part of each frame includes allocating a portion of the SPE of each
4	frame.
1	8. The method of claim 1 wherein the portion of the SPE is the entire SPE.
1	9. The method of claim 1 wherein the portion of the SPE includes a virtual
2	tributary group.
1	10. The method of claim 1 wherein provisioning the communication system
2	further includes allocating a portion of the SPE to conventional SONET virtual
3	tributaries, whereby a portion of the communication capacity of the SONET network is
4	used for conventional communication on statically allocated virtual paths.

1	11. The method of claim 1 wherein the portion of the SPE includes a virtual
2	tributary.
1	12. The method of claim 1 wherein the first part of the frame and the second part
2	of the frame are each integral numbers of columns of the SPE.
1	13. The method of claim 1 wherein allocating a portion of the second part of the
2	frames includes allocating an integral number of nine-byte columns of the SPE.
1	14. A method for passing data between nodes of a SONET network comprising:
2	provisioning the SONET network, including identifying a fixed portion of
3	synchronous frames transmitted over the SONET network for passing the data between
4	the nodes, said fixed portion including a first part of the frame for passing control
5	information between the nodes and a second part for passing data streams over
6	dynamically allocated channels between the nodes;
7	establishing a plurality of communication channels for passing data between
8	the nodes and associating each communication channel with a plurality of terminal nodes
9	wherein the plurality of communication channels includes a first communication channel
10	coupling a second node to a third node;
11	at a first node, determining an allocation of a portion of the second part of the
12	frames for each of the communication channels;
13	broadcasting the allocation from the first node to the other nodes including
14	passing information in the first part of one or more frames;
15	at each of the second and the third nodes, receiving control information in the
16	first part of a sequence of frames and processing the received control information to
17	determine the portion of a frame that is allocated to the first communication channel;
18	at the second node, receiving a first frame from the network, adding data for
19	transmission to the third node into the portion of the first frame that is allocated to the

20	first communication channel; and transmitting the first frame onto the network; and
21	at the third node, receiving the first frame from the network, and extracting
22	the data from the portion of the first frame that is allocated to the first communication
23	channel.
1	15. The method of claim 14 further comprising:
2	sending a request from the second node to the first node to change the
3	allocated capacity of the first communication channel; and
4	at the first node, receiving the request, determining an update to the allocation
5	of the second part of the frames for the communication channels, and broadcasting
6	control information to the other nodes encoding the update to the allocation.
1	16. A communication system comprising a plurality of nodes coupled by a
2	communication path, wherein one of the nodes is an arbiter node, and wherein each node
3	includes:
4	a framer for receiving a series of communication frames from the
5	communication path, and for transmitting the communication frames along the
6	communication path;
7	circuitry for identifying control information in each of the communication
8	frames;
9	circuitry for determining an allocated location and a size of a portion of each
10	communication frame that is allocated to a selected one of the traffic streams using the
11	identified control information; and
12	circuitry for inserting data for the selected traffic stream into the
13	communication frame at the determined location for the selected stream.
1	17. The communication system of claim 16 further comprising:
2	circuitry for inserting a request to change the allocated size for the traffic
3	stream in the communication frame prior to its transmission.
4	
1	24