FMI, Info, Master I Logică avansată pentru informatică

\mathbf{E}	v	ar	ne	'n
. /	~ ~	71		7 I I

Nume:	
Prenume:	
Grupa:	

P1	P2	P3	P4	P5	P6	P7	Oficiu	TOTAL
/3	/2	/1,5	/1,5	/2	/2	/2	1	/15

1 Logică de ordinul întâi

(P1) [3 puncte]

- (i) Să se arate că pentru orice limbaj \mathcal{L} de ordinul I şi orice formule φ , ψ ale lui \mathcal{L} , avem:
 - (a) $\forall x(\varphi \wedge \psi) \vDash \exists x\varphi \wedge \exists x\psi$, pentru orice variabilă x.
 - (b) $\forall x (\varphi \lor \psi) \vDash \varphi \lor \forall x \psi$, pentru orice variabilă $x \not\in FV(\varphi)$.
- (ii) Să se dea exemplu de limbaj $\mathcal L$ de ordinul I și de formule φ, ψ ale lui $\mathcal L$ astfel încât:

$$\exists x\varphi \wedge \exists x\psi \not\vDash \forall x(\varphi \wedge \psi).$$

- (P2) [2 puncte] Fie $\mathcal L$ un limbaj de ordinul întâi care conține:
 - (i) două simboluri de relații unare Q,R și un simbol de relație binară S;

- (ii) un simbol de constantă d.
- (i) Să se găsească o formă normală prenex pentru următoarea formulă a lui \mathcal{L} :

$$\varphi \ = \ \exists x (S(x,d) \land S(x,z)) \to (\forall y R(y) \to \neg \forall z \neg Q(z)).$$

(ii) Să se găsească o formă normală Skolem pentru enunțul

$$\psi = \exists v_1 \forall v_3 \exists v_2 \forall v_4 \exists v_5 ((S(v_1, v_2) \to S(v_2, v_5)) \lor R(v_4) \land \neg (Q(v_5) \to Q(v_3))).$$

(P3) [1,5 puncte] Să se dea exemplu de mulţime Γ de $\mathcal{L}_{=}$ -enunţuri ce are proprietatea că pentru orice $\mathcal{L}_{=}$ -structură finită \mathcal{A} , avem:

 $\mathcal{A} \models \Gamma \iff \mathcal{A}$ conţine un număr par de elemente.

(P4) [1,5 puncte] Fie T teoria ordinii parțiale (în limbajul \mathcal{L}_{\leq}). Să se găsească un \mathcal{L}_{\leq} -enunț φ astfel încât

$$T \not\models \varphi \text{ si } T \not\models \neg \varphi.$$

2 Logică modală

(P5) [2 puncte] Demonstrați că următoarele formule nu sunt valide în clasa tuturor cadrelor:

- (i) $\Diamond p \to \Box p$;
- (ii) $\Diamond \Box p \to \Box \Diamond p$.

(P6) [2 puncte]

(i) Demonstrați următoarea regulă de deducție derivată în sistemul modal **K**:

$$\{p \to q\} \vdash \Diamond p \to \Diamond q.$$

(ii) Arătați că următoarea formulă este $\mathbf{K}\text{-}\mathrm{demonstrabilă:}$

$$\Box(p \land q) \to (\Box p \land \Box q).$$

(P7) [2 puncte] Fie Γ o A-MCS. Demonstrați că:

$$\Gamma \vdash_{\Lambda} \varphi \iff \varphi \in \Gamma.$$