PROGRAMMATION RÉSEAU

Arnaud Sangnier sangnier@irif.fr

INTRODUCTION

Objectifs du cours

- · Ceci n'est pas un cours de réseau
- C'est un cours de programmation réseau
- Comprendre les mécanismes réseau
 - Communication
 - Codage de l'information
- · Apprendre à programmer en C et en Java
- Programmer des clients d'application déjà existantes
 - Client pour serveur d'envoi de mails
 - Client pour serveur web (qui fait ce que fait un navigateur)
- · Développer une application réseau

Quelques informations

- Un tp par semaine (Respectez votre groupe de tp)
- Tps :
 - TP Groupe 1: Mardi 14h00-16h00 Patrick Lambein-Monette
 - TP Groupe 2: Lundi 10h45-12h45 Thomas Colcombet
 - TP Groupe 3: Mercredi 14h00-16h00 Anne Micheli
 - TP Groupe 4: Mardi 8h30-10h30 Patrick Lambein-Monette
 - TP Groupe 5A: Jeudi 16h15-18h15 Alliaume Lopez
 - TP Groupe 5B: Vendredi 8h30-10h30 Giulia Manara
- · Page web du cours :

https://www.irif.fr/~sangnier/enseignement/reseaux.html

- Évaluation :
 - 1ère session : 40 % Examen + 40 % Projet + 10% TP noté + 10 % QCM
 - · Projet donné vers la quatrième semaine
 - Un Tp noté et un QCM
 - 2ème session : 70 % Examen + 30%Projet

PR - INTRODUCTION

2

À quelles questions ce cours répond

- Comment deux machines peuvent-elles communiquer?
- Comment connaître la machine avec laquelle on souhaite communiquer ?
- Communiquer pour quoi faire ?
- Quelles sont les différentes façons de communiquer ?
- Quelles informations envoyer?
- · Comment recevoir l'information envoyée ?

PR - INTRODUCTION 3 PR - INTRODUCTION 4

Généralités réseaux et outils UNIX

Transmission non fiable de données

- Comment peut-on garantir une certaine fiabilité dans l'information envoyée ?
 - Le service de base envoie des données binaires (sous forme de paquets d'octets)
 - Les paquets peuvent être perdus ou dégradés

Comment communiquer

- Il faut envoyer de l'information
- · Cette information passe d'une application vers une autre
 - Par exemple :

Un navigateur envoie une requête vers un serveur web

- · En pratique l'information qui circule est codée en octet
- · Cette information peut-être perdue ou erronée
- · L'ordre des messages peut être changé
- Allons nous gérer la perte des messages, le fait que des 'bits' d'information peuvent être changés ?

NON pour le changement des messages Pour la perte des messages, parfois

PR - INTRODUCTION

6

Un système de couches

- Comment gère-t-on les pertes d'information ?
 - Mécanisme de détection de pertes
 - Réémission de messages
- · Comment gère-t-on la dégradation
 - Redondance de l'information
 - Ajout de bits permettant de savoir les parties du paquet erronées
 - (cf code correcteur d'erreurs)
- · Ces mécanismes existent et nous n'avons pas à les programmer
- Comment passe-t-on d'un service avec paquets non fiables à un service fiable ?
 - superposition de couches logicielles chacune avec une mission spécifique

PR - INTRODUCTION 7 PR - INTRODUCTION

Modèle de référence

• Modèle ISO/OSI (Open System Interconnection) en 7 couches

PR - INTRODUCTION

9

Les couches matérielles

1. Couche Physique

• Rôle : Transmission des données sous forme binaire

· Protocoles : Fibre, câble radio, ...

2. Couche Liaison

• Rôle : Gère la communication entre machines, adresse physique MAC

· Protocoles: Ethernet, Wifi, ...

3. Couche Réseau

 Rôle : Détermine le parcours des données et l'adressage logique (adresse IP)

• Protocoles: IPv4, IPv6, ...

PR - INTRODUCTION 10

Les couches segments et données

4. Couche Transport

· Rôle : Connexion bout à bout, contrôle de flux

· Protocoles: TCP, UDP

5. Couche Session

• Rôle: Communication points à point

· Protocoles: TLS

6. Couche Présentation

· Rôle : Chiffrement et déchiffrement des donnés

· Protocoles: SSL, WEP

7. Couche Application

• Rôle : Point d'accès aux services réseaux

Protocoles: SMTP, IRC, HTTP, SSH

Modèle Internet

• Modèle plus simple à 4 couches

1. Liaison

· Protocoles : ARP, Ethernet

2. Internet

• Protocoles: IPv4, IPv6

3. Transport

· Protocoles: TCP, UDP

4. Application

Protocoles: FTP, HTTP, IMAP, POP, SMTP

Ce qui va nous intéresser

- · Développer des applications ou services
- Ce que nous développerons se situera à la couche Application
- Nous utiliserons les protocoles de la couche Transport
- · Quels protocoles sous-jacents allons-nous utiliser :
- TCP (modèle par flux)
- UDP (modèle par paquet)
- Pour utiliser ces services, nécessité de savoir le nom ou l'adresse des machines (adresse IPv4, IPv6)

PR - INTRODUCTION

13

15

Les services en réseau

- La couche transport nous fournit des services de communication
 - · Envoi de données
- · Réception de données
- · Connexion à une machine
- · Pour communiquer ces machines doivent se connaître
 - Mécanisme de nommage des machines
- · Comment identifier la machine
- elle est identifiée par une adresse
- Comment trouver une application ou un service sur une machine

PR - INTRODUCTION

Chaque service est identifiée par un port

Résumé graphique

PR - INTRODUCTION

14

Sur une machine

PR - INTRODUCTION 16

Sur le réseau Adresse machine 1 Adresse machine 2 Adresse machine 3

Informations pour communiquer

- Un couple (adresse, port) est un point de communication
- Pour communiquer il faut deux points de communication
- 1. (adresse1,port1) d'un côté
- 2. (adresse2, port2) de l'autre côté
- Exemple :

17

- Quand on fait http://www.google.com dans le navigateur
- Connexion à une des machines correspondant à www.google.com
- Sur le port 80 qui correspond au service http
- Dans ce cas, notre port de sortie n'est pas important ni notre adresse
- Souvent quand on fera une architecture client-serveur, notre port pour le client sera attribué à une valeur automatique

PR - INTRODUCTION 18

Communication entre deux machines

PR - INTRODUCTION

- Du côté du client, un port et une adresse
- Du côté du serveur
- Pour certaines applications, le 'programmeur' n'a pas besoin de connaître le port côté client
- Connaître le port côté serveur est nécessaire pour se connecter

Identification d'une machine

- Par un nom internet (pas forcément nécessaire)
- · Par exemple : www.google.com, www.informatique.univ-paris-diderot.fr
- Une machine peut posséder plusieurs noms
- Un nom peut correspondre à plusieurs machines
- Par une adresse internet (obligatoire pour toute machine sur le réseau)
- en fait, adresse d'un dispositif réseau sur une machine
- · donc plusieurs adresses possibles pour une machine
- · une adresse par dispositif
- · plusieurs dispositifs par machine
- Adresse (organisation structurelle) -> mieux pour les machines
- Nom (organisation logique) -> mieux pour les humains

PR - INTRODUCTION 19 PR - INTRODUCTION 20

Question?

- Il y en a plusieurs, par exemple: 173.194.40.144
- On verra :
- comment trouver un nom à partir d'une adresse
- · comment trouver une adresse à partir d'un nom

PR - INTRODUCTION

21

Comment marchent les noms?

- Un nom représente une structure hiérarchique
- Par exemple : www.informatique.univ-paris-diderot.fr
- la machine www
- dans le sous-domaine informatique
- qui est lui-même dans le sous-domaine univ-paris-diderot
- · qui est dans le domaine fr
- Deux parties dans le nom :

PR - INTRODUCTION

22

À propos des domaines

- Le nom de domaine caractérise la hiérarchie des responsabilités
- Par exemple : l'ufr d'informatique de l'université Paris Diderot située dans le domaine français
- Le domaine le plus à droite est appelé domaine de premier niveau (top level domain)
 - · On distingue en gros deux types :
 - 1) Génériques (par exemple : .com, .edu, ...)
 - 2) Nationaux (par exemple : .fr, .tz, ...)

Analyse d'un nom

- Pour www.informatique.univ-paris-diderot.fr
 - fr est le domaine national attribué par l'ICANN (Internet Corporation for Assigned Names and Numbers) à la France avec délégation à l'AFNIC (Association Française pour le Nommage Internet en Coopération)
 - univ-paris-diderot est le sous-domaine attribué par l'AFNIC à l'université Paris Diderot avec délégation à la DSI de l'université
 - informatique est le sous-domaine attribué par la DSI à l'UFR d'informatique avec délégation au service informatique de l'UFR
 - www est le nom d'une des machines sous la responsabilité de l'UFR d'informatique

PR - INTRODUCTION 23 PR - INTRODUCTION 24

À propos des adresses

- Exemple d'adresse pour www.informatique.univ-paris-diderot.fr :
- 194.254.199.98
- · Les adresses aussi sont structurées
- La structure des adresses est un reflet de la structure physique du réseau (tout du moins en théorie)
- Dans ce cours nous nous intéresserons pas à la structure des adresses
- MAIS nous utiliserons les adresses (et pas seulement les noms)
- ATTENTION: les adresses correspondent à des machines et la plupart du temps pas à des domaines

PR - INTRODUCTION

24

26

Les adresses IPv6

- Elle sont codées sur 16 octets (donc 128 bits)
- Par exemple: 2a00:1450:400c:c02:0:0:93
- On les écrit habituellement comme 8 groupes de deux octets
- Chaque octet est écrit en hexadécimal (valeur allant de 0 à F)
- On supprime parfois les 0 consécutifs par ::
- L'exemple précédent devient : 2a00:1450:400c:c02::93
- Comme pour IPv4, certaines adresses IP sont réservées à un usage particulier
- Il n'existe pas de correspondance automatique entre adresses IPv4 et IPv6
- Les réseaux IPv4 et IPv6 cohabitent

Les adresses IPv4

- Elle sont codées sur 4 octets (donc 32 bits)
- par exemple : 173.194.66.106
- · Actuellement encore les plus utilisées
- Certaines adresses IP sont réservées à un usage particulier :
- 127.0.0.1 : adresses pour l'hôte local localhost (en fait adresses comprises entre 127.0.0.1 et 127.255.255.255)
- 192.168.0.0/16 : adresses privées
- 224.0.0.4 : adresses pour la multidiffusion
- 255.255.255 : adresse de diffusion
- · Les adresses privées ne sont pas routées par Internet

Liens entre noms et adresse

PR - INTRODUCTION

- Service de nom : service permettant de faire la traduction d'un nom en une adresse
- Il faut penser à un annuaire
- Le système le plus répandu aujourd'hui est le DNS (Domain Name Service)
- Il s'agit d'un annuaire distribué (il y a donc plusieurs serveurs DNS)
- Le DNS contient aussi d'autres informations lié à un nom de domaine
- Exemple d'informations fournies par le DNS :
 - L'adresse IPV4 (A record)
 - L'adresse IPv6 (AAAA record)
- Les serveurs de courrier électronique pour le domaine (MX record)
- Les serveurs DNS de ce domaine (NS record)

PR - INTRODUCTION 27 PR - INTRODUCTION 28

Interrogation des services de nom

- · Différentes commandes LINUX :
- host
- nslookup (souvent considérée comme obsolète)
- dig
- Commande pour connaître le nom de sa machine :
- hostname
- Ces commandes peuvent être utilisées pour connaître l'adresse IP à partir d'un nom
- Parfois aussi pour connaître le nom à partir d'une adresse IP (peut être plus difficile à utiliser/comprendre)

PR - INTRODUCTION

Exemple d'utilisation de host (2)

```
sangnier — bash — 80×24

bash-3.2$ host www.lemonde.fr

www.lemonde.fr is an alias for s2.shared.global.fastly.net.
s2.shared.global.fastly.net has address 151.101.122.217

bash-3.2$
```

Exemple d'utilisation de host

À propos de dig

PR - INTRODUCTION

30

- Obtenir la liste des serveur de messagerie de google.com
 - · dig MX google.com
- · Pour obtenir l'adresse d'une machine
- · dig www.informatique.univ-paris-diderot.fr
- Attention : aux requêtes que vous faîtes
- google.com est un domaine et www.informatique.univ-paris-diderot.fr est une machine
- Pour obtenir le nom d'une machine à partir d'une adresse IP
- dig -x 194.254.61.138
- Pour avoir une réponse lisible : utiliser l'option +short

PR - INTRODUCTION 31 PR - INTRODUCTION 32

Exemple d'utilisation de dig

```
bash-3.2$ dig www.informatique.univ-paris-diderot.fr
; <<>> DiG 9.10.6 <<>> www.informatique.univ-paris-diderot.fr
;; global options: +cmd
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20365
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 3, ADDITIONAL: 6
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
:www.informatique.univ-paris-diderot.fr.
                                                TN A
www.informatique.univ-paris-diderot.fr. 81969 IN CNAME trotinette.infornatique.univ-paris-dide
trotinette.informatique.univ-paris-diderot.fr. 81969 IN A 194.254.199.80
;; AUTHORITY SECTION:
informatique.univ-paris-diderot.fr. 11813 IN NS korolev.univ-paris7.fr.
informatique.univ-paris-diderot.fr. 11813 IN NS shiva.jussieu.fr.
informatique.univ-paris-diderot.fr. 11813 IN NS potemkin.univ-paris7.fr
;; ADDITIONAL SECTION:
shiva.jussieu.fr.
                       104323 TN
                                                134.157.0.129
potemkin.univ-paris7.fr. 17827 IN
                                                194.254.61.141
potemkin.univ-paris7.fr. 20630 IN
                                       ΔΔΔΔ
                                                2001:660:3301:8000::1:1
korolev.univ-paris7.fr. 20114
                                                194.254.61.138
                                       AAAA
                                                2001:660:3301:8000::1:2
korolev.univ-paris7.fr. 20630
:: Query time: 8 msec
;; SERVER: 194.254.200.25#53(194.254.200.25)
;; WHEN: Mon Jan 18 08:59:54 CET 2021
;; MSG SIZE rcvd: 297
```

Plusieurs ports sur une machine

• Plusieurs points de communication depuis une machine (ports)

Une machine avec une adresse

Exemple d'utilisation de dig (2)

```
name and sangaier — bash — 80×24
bash-3.2$ dig MX u-paris.fr
; <<>> DiG 9.10.6 <<>> MX u-paris.fr
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7705
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 3, ADDITIONAL: 8
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
                                       MX
;u-paris.fr.
                                IN
;; ANSWER SECTION:
u-paris.fr.
                        86400
                              IN
                                       MX
                                                10 mx1.u-paris.fr.
u-paris.fr.
                        86400
                                       MX
                                                30 korolev.univ-paris7.fr.
                               TN
u-paris.fr.
                        86400
                                                30 potemkin.univ-paris7.fr.
                        86400
                              IN
                                       MX
                                                30 mataram.parisdescartes.fr.
u-paris.fr.
;; AUTHORITY SECTION:
                        19970
                              TN
                                        NS
                                                potemkin.univ-paris7.fr.
u-paris.fr.
u-paris.fr.
                        19970
                               IN
                                        NS
                                                korolev.univ-paris7.fr.
u-paris.fr.
                        19970
                                IN
                                        NS
                                                delta.univ-paris5.fr.
```

PR - INTRODUCTION 34

À propos des ports

- Les communication sur différents ports peuvent avoir lieu simultanément
- Toute communication passe par un port
- Un flux de communication est donc identifié par une adresse ET un port
- Les ports sont des numéros
- Il existe trois types de ports :
- 1) Les ports reconnus (numéros allant de 0 à 1023)
- 2) Les ports réservés (numéros allant de 1024 à 49151)
- 3) Les ports libres (numéros allant de 49152 à 65535)

PR - INTRODUCTION 35 PR - INTRODUCTION 36

Les ports reconnus

- En anglais : Well-known ports
- Ils sont utilisés par des services réseau d'usage général et commun :
- Par exemple :
- 20 et 21 pour le service FTP
- 25 pour le service SMTP
- 80 pour le service HTTP
- Ainsi pour une établir une connexion avec un serveur web, on s'adresse au port 80 de la machine concernée (par exemple le port 80 de www.informatique.univ-paris-diderot.fr)
- Ainsi pour les services que vous développerez, évitez d'utiliser les numéros de ports entre 0 et 1023

PR - INTRODUCTION

37

Le fichier /etc/services

 Sur les machines de type Linux donne les numéros de port utilisés et le nom du service correspondant

> n sangnier — bash — 80×24 Unassigned [was netstat] 15/tcp 15/udp Unassigned 16/tcp Unassigned 16/udp Unassigned gotd 17/udp # Quote of the Day 17/tcp # Quote of the Day aotd Jon Postel <postel@isi.edu> # Message Send Protocol msp msp # Message Send Protocol 18/tcp Rina Nethaniel <---none---> 19/udp chargen # Character Generator chargen 19/tcp # Character Generator ftp-data 20/udp # File Transfer [Default Data] # File Transfer [Default Data] ftp-data 20/tcp ftp 21/udp # File Transfer [Control] # File Transfer [Control] ftp Jon Postel <postel@isi.edu> ssh 22/udp # SSH Remote Login Protocol # SSH Remote Login Protocol ssh 22/tcp Tatu Ylonen <ylo@cs.hut.fi> telnet 23/udp # Telnet 23/tcp # Telnet Jon Postel <postel@isi.edu> # any private mail system PR - INTRODUCTION

Les ports réservés et libres

• Les ports réservés :

• En anglais : Registered port

· Certains correspondent à des services d'usage moins général

• Par exemple : 3306 port utilisé par les bases de données MySQL

• N'importe quelle application peut les utiliser

• Pour les services que vous développerez, vous utiliserez ces ports

Les ports libres :

• En anglais : Dynamic, private or ephemeral port

• Ports normalement utilisés pour des durées limitées ...

PR - INTRODUCTION 38

Quelques commandes utiles

- La commande ping
- Permet de tester si une machine est présente sur le réseau
- Service d'écho réseau
- La commande envoie une requête Echo et attend une réponse Echo Reply
- · L'envoi est répétée pour des fins statistiques
- Pour déterminer le taux de perte des paquets et le délai moyen de réponse
- Certains pare-feux (en anglais firewall) bloquent les paquets de type Echo

PR - INTRODUCTION 40

Exemple d'utilisation de ping

PR - INTRODUCTION

Exemple d'utilisation de ssh

Quelques commandes utiles (2)

- La commande ssh
- Permet de se connecter à une machine à distance
- Votre machine doit autoriser ces connexions
- Exemple d'utilisation :
- ssh login@nom_machine
- Permet de vous connecter à la machine nom_machine où votre login pour cette machine est login
- Ensuite on vous demande (si la connexion est protégée) un mot de passe
- Parfois la connexion ne peut se faire uniquement via clef RSA
- Par exemple pour l'ufr d'informatique :
- Depuis l'extérieur vous pouvez vous connecter sur nivose.informatique.univparis-diderot.fr avec mot de passe et sur lulu.informatique.univ-parisdiderot.fr avec clef RSA et un jump via lucy.informatique.univ-paris-diderot.fr

PR - INTRODUCTION

Fonctionnement des clefs RSA

- Il s'agit d'une paire de clef (une clef étant un nombre entier) :
- 1) Une clef publique, que l'on donne aux autres
- 2) Une clef privée, que l'on garde
- Au moment de la connexion, le système vérifie si la paire clef publique-clef privée est la bonne
- Ainsi si vous donnez votre clef privée quelqu'un peut se faire passer pour vous

PR - INTRODUCTION

44

42

Connexion ssh vers l'ufr

- Générer votre couple (clef privée,clef publique)
- ssh-keygen -t rsa
- · Copier votre clef publique sur nivose
- Pour rappel l'accès à nivose se fait via mot de passe
- Comme nivose, lulu et lucy partagent le même système de fichier, votre clef publique est aussi sur lulu et lucy
- À la fin, vous pouvez vous connecter sur lulu
- Pourquoi vouloir se connecter à lulu plutôt qu'à nivose :
- Parce que lulu a la même configuration que les machines que vous utilisez en tp
- Ce sera en particulier utile pour les tp à distance et les projets
- Vous verrez en TP le détail de cette manipulation

PR - INTRODUCTION

Établir une connexion vers un service

- La commande telnet permet d'établir une liaison (TCP) interactive vers un service
- Rappel : pour ce connecter à un service il faut deux informations :
- 1)Le nom de la machine ou l'adresse
- 2)Le port du service
- Que veut dire interactive :
- Ce que vous tapez au clavier est envoyé au service
- Tous les messages que le service envoie sont affichés à l'écran
- Que veut dire TCP :
- · Liaison en mode connectée
- Pensez au téléphone, on se connecte, on communique, puis on se déconnecte
- Autre modes de liaisons UDP que l'on verra plus tard

Copies de fichiers à distance

- La commande scp (qui marche comme cp) permet de copier des fichiers à distance
- · Par exemple :
- scp test.txt sangnier@nivose.informatique.univ-paris-diderot.fr:~/Test/.
- copie le fichier test.txt de mon répertoire courant dans le répertoire ~/Test/ de mon compte sur nivose
- · Pour l'opération inverse :
 - scp sangnier@nivose.informatique.univ-paris-diderot.fr:~/Test/test.txt .

PR - INTRODUCTION 46

Comment utiliser telnet

- Syntaxe de la commande
- telnet nom machine port service
- nom machine est le nom de la machine où tourne le service
- port service est le port du service
- Pour certains services on peut donner le nom à la place du port
- Exemple :
- · telnet lampe.informatique.univ-paris-diderot.fr dict
- Liaison au service dict qui tourne sur la machine lampe.informatique.univparis-diderot.fr
- telnet lampe.informatique.univ-paris-diderot.fr 2628
- Liaison au service écoutant sur le port 2628 de la machine lampe,informatique,univ-paris-diderot,fr
- · Le port 2628 correspond au service dict

PR - INTRODUCTION 47 PR - INTRODUCTION 48

Exemple d'utilisation

Communication avec le service tcp dict (port 2628) sur lampe

Exemple d'utilisation depuis l'extérieur

```
[bash-3.2$ ssh -t sangnier@lulu -J sangnier@lucy.informatique.univ-pari...

[bash-3.2$ ssh -t sangnier@lulu -J sangnier@lucy.informatique.univ-paris-diderot.]

fr
Linux lulu 4.19.0-13-amd64 #1 SMP Debian 4.19.160-2 (2020-11-28) x86_64

Debian GNU/Linux 10

Bienvenue sur Lulu, le serveur linux généraliste de l'UFR d'informatique!

Voir http://www.informatique.univ-paris-diderot.fr/wiki/doku.php/wiki/linux

Last login: Mon Jan 18 09:10:58 2021 from fdc7:9dd5:2c66:be86:d294:66ff:fe06:d98 e

[sangnier@lulu:~$ telnet lampe dict

Trying fdc7:9dd5:2c66:be86:4849:43ff:fe49:79be...

Trying 192.168.70.237...

Connected to lampe.

Escape character is '^]'.

220 lampe.informatique.univ-paris-diderot.fr dictd 1.12.1/rf on Linux 4.19.0-13-

amd64 <auth.mime> <4.26037.1610959052@lampe.informatique.univ-paris-diderot.fr>

■
```

Quelques remarques

- Tous les services ne tournent pas toujours
- Pour les exemples précédents, les services sont ouverts depuis le sein de l'ufr, donc pour reproduire les exemples :
- · Se connecter à lucien
- Faire telnet depuis lucien
- Quand vous êtes sur une machine de l'ufr, il n'est pas nécessaire de répéter le suffixe informatique.univ-paris-diderot.fr, on peut faire :
- ssh nivose
- · telnet lampe dict
- telnet lampe 2628
- · telnet permet aussi de tester si un service est actif

PR - INTRODUCTION

50

Remarques

- Quand on communique avec un service en TCP
- Il est important de savoir quelle forme a la communication
- Qui commence à communiquer ?
- · Comment ont-lieu les échanges ?
- Quel est le format des messages ?
- Comment prend fin la communication ?
- Quand vous développerez vos services ou vos clients de service
- Il faudra faire attention aux points ci-dessus
- N'hésitez pas à utiliser telnet pour tester le comportement de services

PR - INTRODUCTION 51 PR - INTRODUCTION 52

Normalisation

- Dans le monde d'Internet il existe des procédures de Normalisation
- Les RFC (Request For Comments)
- · Documents officiels recouvrant tous les aspects d'Internet
- Voir : http://www.ietf.org/rfc.html
- Ces documents ne concernent pas que la description des services, mais aussi des protocoles, des programmes, parfois des compte-rendus de réunion
- Par exemple :
- RFC 867 concernant le Daytime Protocol
- RFC 793 concernant le protocole TCP
- RFC 882 concernant les noms de domaine

PR - INTRODUCTION

53

RFC pour le service dict

[Docs] [txt|pdf] [draft-rfced-inf...] [Tracker] [Diff1] [Diff2] [Errata]

INFORMATIONAL

Errata Exist

R. Faith

Request for Comments: 2229

U. North Carolina, Chapel Hill

B. Martin

Miranda Froductions

A Dictionary Server Protocol

October 1997

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (1997). All Rights Reserved.

Abstract

The Dictionary Server Protocol (DICT) is a TCP transaction based query/response protocol that allows a client to access dictionary definitions from a set of natural language dictionary databases.

Table of Content

1.	Introduction Requirements Protocol Overview Link Level
1.1 2	Requirements
2.	Protocol Overview
2.1.	Link Level
2.3.	Commands Responses Status Responses General Status Responses Text Responses
2.4.	Responses
2.4.1.	Status Responses
2.4.2.	General Status Responses
2.4.3.	Text Responses
3.	Command and Response Details
3.1.	Initial Connection

54