# Image Processing COMP 4421 Fall 2019

Instructor: Albert Chung

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

Email: achung@cse.ust.hk

Instructor webpage: <a href="http://www.cse.ust.hk/~achung">http://www.cse.ust.hk/~achung</a>

### **COMP 4421**

• Lecture:

Wednesday and Friday, 1:30pm-2:50pm, Room 1103.

- Tutorial 1: Monday, 2pm-2:50pm, Rm 2463, Lift 25-26.
- Tutorial 2: Thursday, 5pm-5:50pm, Rm 6591, Lift31-32.
- Class Dates: Sep 2, 2019 Nov 30, 2019.
- Lecture notes will be available on-line.
- Office Hours: by appointment.
- No lab sessions.

### Teaching assistants (TAs)

- TA 1: MOK, Chi Wing (Tony), cwmokab@connect.ust.hk
- TA 2: WANG Jierong, jwangdh@connect.ust.hk

- Office: Room 4208, Medical Image Analysis Laboratory
- Office Hours: By appointment.

### Computing requirements



We use MATLAB
<a href="http://www.mathworks.com/">http://www.mathworks.com/</a>
for assignments

Image Source: http://www.mathworks.com/

- Workstations in <u>ITSC Computer Barns</u>
   <a href="http://www.ust.hk/itsc/computerbarn/">http://www.ust.hk/itsc/computerbarn/</a>
- MATLAB software and related toolboxes are available in the computer barns, e.g., image processing toolbox.

### Expected background and related courses

- Basic partial derivatives and multiple integrals (mainly two-dimensional)
- Programming in C++/MATLAB
- Basic linear algebra, e.g., eigenvalues and eigenvectors
- Basic statistics and probability

### Course topics

#### *Topics*

- 1. Introduction, Image Representation, MATLAB
- 2. Enhancement in the Spatial Domain
- 3. Enhancement in the Frequency Domain
- 4. Restoration and Filtering, Non-linear Filtering
- 5. Morphological Image Processing
- 6. Segmentation of Images
- 7. Registration of Images
- 8. Image Compression
- 9. Feature Descriptors, e.g., LBP/LTP, SIFT and others
- 10. Applications, e.g., Face/Iris Recognition and Fingerprint Recognition.
- 11. Guest lectures (1-2)

### Course outcomes

On successful completion of this course, students are expected to be able to

- 1. Identify basic image enhancement techniques in both the spatial and frequency domains
- 2. Enhance an image in the presence of noise and distortion
- 3. Apply basic morphological image processing techniques
- 4. Segment image components from an image
- 5. Register images with similarity metrics and transformations
- 6. Compress an image with lossless or lossy compression methods
- 7. Represent and describe an image using different feature descriptors

### Course references

#### • References:

- *Digital Image Processing*, by Gonzalez and Woods, 3<sup>rd</sup> Ed., Prentice Hall, 2008.
- *Digital Image Processing using MATLAB*, by Gonzalez and Woods, Prentice Hall, 2004.
- *The Image Processing Handbook*, by John C. Russ (On-line at UST Library).
- Digital Image Processing, by Kenneth R. Castleman, Prentice Hall, 1996.
- *Two-dimensional Signal and Image Processing*, by Jae S. Lim, Prentice Hall, 1990.
- Computer Vision: A Modern Approach by Forsyth and Ponce, Prentice Hall, 2003.

### Course requirements

- Homework assignments
  - 3 assignments
  - Written: write answers on paper
  - Programming: write computer programs using MATLAB

- Midterm and Final examinations
  - Written: write answers on paper

### **Evaluations**

### Assignments (30%)

- Written and programming based; analyzing and implementing topics we cover in class
- Assignments must be submitted by midnight of the due day. Late assignments will incur a 10% penalty
- Assignments more than one day late will not be accepted
- More information about the submission procedure will be given

### Examinations (70%)

- Midterm (20-30%): Nov 1, 2019, Friday. The midterm exam will be given in-class, and venue and coverage will be announced.
- Final (40-50%): TBC

## What is Image Processing?

Processing of "pictorial" information



## Find face from an image



Problem: How to find a person in an image?

## "Pictorial" Information based on Image Intensity



## "Pictorial" Information based on Image Intensity and after processing



## After processing of pictorial information, we find a face



## Two principal applications

### Machine Perception



Derive useful information [Edges, Regions, Objects, Color. . . ]

Used for further "Machine" Processing, e.g., face detection, object detection, object tracking, diagnosis, etc.

### Human Perception

### New Image

Often
"perceptually"
enhanced, e.g.,
image/feature
enhancement for
finger print
analysis.



## Two principal applications

Machine Perception



Human Perception





Still has two colors (perceptually clearer)

## Two words: image processing

### image

- Fundamentals
  - Image formation based on individual elements (pixels)
- Representations
  - Sampling and Quantization
  - Alternative representations (Transforms)

## Two words: image processing

### processing

- manipulation of the image data
  - Geometric transformations, e.g., rotation.
  - Enhancement/Restoration
  - Segmentation
  - Object Detection

## Examples of image processing usage













## Where does image processing fit in?

