Module: ECG Amplifier

บล็อกไดอะแกรมหลักของระบบวัดคลื่นไฟฟ้าหัวใจ

Module: ECG Amplifier: Active Filter

ให้นิสิตออกแบบและสร้างวงจรกรองผ่านแถบ ที่มีอัตราขยาย 50–200 เท่า แบนด์วิดท์ 0.5–100 Hz โดยกำหนดให้วงจรกรองผ่านแถบประกอบด้วย

- 1) <u>วงจรกรองผ่านสูงอันดับหนึ่ง</u>แบบไวงาน มีความถี่ตัดผ่าน = 0.5 Hz
- 2) <u>วงจรกรองผ่านต่ำอันดับสองหรือสูงกว่าแบบไวงาน</u> มีความถี่ตัดผ่าน = 100 Hz
- 3) ให้กลุ่มที่ 1 สร้างวงจรกรองที่มีอัตราขยาย 60 เท่า
 กลุ่มที่ 2 สร้างวงจรกรองที่มีอัตราขยาย 70 เท่า
 กลุ่มที่ 3 สร้างวงจรกรองที่มีอัตราขยาย 80 เท่า
 กลุ่มที่ 4 สร้างวงจรกรองที่มีอัตราขยาย 90 เท่า
 กลุ่มที่ 5 สร้างวงจรกรองที่มีอัตราขยาย 100 เท่า
 กลุ่มที่ 6 สร้างวงจรกรองที่มีอัตราขยาย 110 เท่า
 กลุ่มที่ N สร้างวงจรกรองที่มีอัตราขยาย (5+N)*10 เท่า
- 4) นำวงจรทั้งสองส่วนมาต่ออนุกรมกัน <u>ให้ภาคแรกเป็นวงจรกรองผ่านสูง และภาคที่สอง</u> <u>เป็นวงจรกรองผ่านต่ำ</u>

Module: ECG Amplifier

สิ่งที่กำหนดให้

- ไอซีออปแอมป์เบอร์ TL064 จำนวน 1 ตัว (ภายในประกอบด้วยออปแอมป์ จำนวน 4 ตัว) ให้ใช้แบบจำลองของ TL064 สามารถดาวน์โหลดได้เองหรือ ใช้ตัวที่มีอยู่ใน MCV แล้ว
- ค่าความเก็บประจุที่ใช้ในวงจร คือ 10–1000 nF
- ค่าความต้านทานที่ใช้ 1–1000 kΩ
- แหล่งจ่ายไฟตรง ±9 V ให้ใช้เป็นไฟเลี้ยงให้กับวงจร
- Breadboard (พยายามใช้เนื้อที่อย่างประหยัด)

film capacitor

Standard Resistor Values: 5% tolerance

900 11	Et a	Standard	Resistor \	values (±2	70)	
1.0	10	100	1.0K	10K	100K	1.0M
1.1	11	110	1.1K	11K	110K	1.1M
1.2	12	120	1.2K	12K	120K	1.2M
1.3	13	130	1.3K	13K	130K	1.3M
1.5	15	150	1.5K	15K	150K	1.5M
1.6	16	160	1.6K	16K	160K	1.6M
1.8	18	180	1.8K	18K	180K	1.8M
2.0	20	200	2.0K	20K	200K	2.0M
2.2	22	220	2.2K	22K	220K	2.2M
2.4	24	240	2.4K	24K	240K	2.4M
2.7	27	270	2.7K	27K	270K	2.7M
3.0	30	300	3.0K	30K	300K	3.0M
3.3	33	330	3.3K	33K	330K	3.3M
3.6	36	360	3.6K	36K	360K	3.6M
3.9	39	390	3.9K	39K	390K	3.9M
4.3	43	430	4.3K	43K	430K	4.3M
4.7	47	470	4.7K	47K	470K	4.7M
5.1	51	510	5.1K	51K	510K	5.1M
5.6	56	560	5.6K	56K	560K	5.6M
6.2	62	620	6.2K	62K	620K	6.2M
6.8	68	680	6.8K	68K	680K	6.8M
7.5	75	750	7.5K	75K	750K	7.5M
8.2	82	820	8.2K	82K	820K	8.2M
9.1	91	910	9.1K	91K	910K	9.1M

Standard Capacitor Values: 10% tolerance

	S	tandard Ca	apacitor V	alues (±1	0%)	
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10µF
12pF	120pF	1200pF	.012µF	.12µF	1.2µF	0.900ft.w.c
15pF	150pF	1500pF	.015µF	.15µF	1.5μF	
18pF	180pF	1800pF	.018µF	.18µF	1.8µF	
22pF	220pF	2200pF	.022µF	.22µF	2.2µF	22μF
27pF	270pF	2700pF	.027µF	.27µF	2.7µF	
33pF	330pF	3300pF	.033µF	.33µF	3.3µF	33µF
39pF	390pF	3900pF	.039µF	.39µF	3.9µF	WF
47pF	470pF	4700pF	.047µF	.47μF	4.7μF	47uF
56pF	560pF	5600pF	.056µF	.56µF	5.6µF	
68pF	680pF	6800pF	.068µF	.68µF	6.8µF	
82pF	820pF	8200pF	.082µF	.82µF	8.2µF	

https://en.wikipedia.org/wiki/Film capacitor#/media/File:Electrolytic https://en.wikipedia.org/wiki/Film capacitor#/media/File:Wiki-Folkoscapacitors-P1090328.JPG

P1090317-1.jpg

Filter

Filter is used to receive an impure electrical signal and pass a desired signal while removing undesired components often referred as noises.

Filter Design

- \Box Gain $|A(\omega)|$ and cutoff frequency ω_C
- \square γ_{max} is the variation in gain over the passband
- \Box γ_{min} is the relative attenuation over the stopband
- \Box Transition region lying between passband and stopband specified by a passband cutoff frequency ω_C and a stopband edge ω_S

Active Filter

Filter families

- Butterworth filters: Maximum flat response
- Chebyshev filters: Fast transition
- Elliptic filters: Fast transition
- Bessel filters: Linear phase response

Active Filter: Butterworth Filter

Butterworth filters are characterized by a maximally flat pass-band frequency response.

Butterworth low-pass filter: magnitude ratio

$$|H(j\omega)| = \frac{H_0}{\sqrt{1+\varepsilon^2\omega^{2n}}} = \frac{H_0}{\sqrt{1+\omega^{2n}}}$$

Where $\varepsilon = 1$ for maximally flat response and n is the filter order

$$\frac{\left|H(j\omega)\right|}{H_0} = \frac{1}{\sqrt{1 + (\omega/\omega_C)^{2n}}}$$

Active Filter: Butterworth Filter

Normalized Butterworth polynomials ($\omega_c = 1 \text{ rad/s}$) or $s \equiv j\omega/\omega_c$

Order n	Characteristic Equations	
1	s+1	
2	$s^2 + \sqrt{2}s + 1$	
3	$(s+1)(s^2+s+1)$	The denominator of $H(j\omega)$
4	$(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)$	•
5	$(s+1)(s^2+0.6180s+1)(s^2+1.6180s+1)$	

Ex: for 3rd order filter

$$H(j\omega) = \frac{H_0}{(s+1)(s^2+s+1)} = \frac{H_0}{\left(\frac{j\omega}{\omega_c} + 1\right)\left(\left(\frac{j\omega}{\omega_c}\right)^2 + \frac{j\omega}{\omega_c} + 1\right)}$$

From this table, we can see that the higher order filter can be realized by the combination of first and second order filters.

Active Filter: Realization

1st order active filters

วงจรกรองผ่านต่ำอันดับหนึ่งที่มีอัตราขยายเท่ากับ $\left(1+rac{R_F}{R_+}
ight)$

$$A_{LF}(j\omega) = \left(1 + \frac{R_F}{R_A}\right) \frac{1}{1 + j(\omega/\omega_C)}$$

$$A(0) = \left(1 + \frac{R_F}{R_A}\right)$$

$$\omega_C = \frac{1}{R_1 C_1}$$

วงจรกรองผ่านต่ำอันดับหนึ่งที่มีอัตราขยายเท่ากับ 1

$$A_{LF}(j\omega) = \frac{1}{1 + j(\omega/\omega_C)}$$

$$A(0)=1$$

$$\omega_C = \frac{1}{R_1 C_1}$$

Active Filter: Realization

2nd order active filters

วงจรกรองผ่านต่ำอันดับสองที่มีอัตราขยายเท่ากับ $\left(1+rac{R_F}{R_+}
ight)$

$$\left(1 + \frac{R_F}{R_A}\right)$$

ผลตอบสนองเชิงความถี่
$$A_{LF}(j\omega) = \left(1 + \frac{R_F}{R_A}\right) \frac{1}{1 + j\omega \left((R_1 + R_2)C_1 - \frac{R_F}{R_A}R_2C_2\right) + \left(j\omega\right)^2 \left(R_1C_1R_2C_2\right)}$$

อัตราขยายที่ความถี่ต่ำ
$$A(0) = \left(1 + \frac{R_F}{R_A}\right)$$

เวามถี่ตัดผ่าน
$$\omega_{C}=rac{1}{\sqrt{R_{1}C_{1}R_{2}C_{1}}}$$

ความถี่ตัดผ่าน
$$\omega_C = \frac{1}{\sqrt{R_1C_1R_2C_2}}$$
 ตัวประกอบคุณภาพ
$$\frac{1}{Q} = 2\zeta = \omega_C \left[(R_1 + R_2)C_1 - \frac{R_F}{R_A}R_2C_2 \right]$$

วงจรกรองผ่านต่ำอันดับสองที่มีอัตราขยายเท่ากับ 1

ผลตอบสนองเชิงความถึ่

$$A_{LF}(j\omega) = \frac{1}{1 + j\omega(R_1 + R_2)C_1 + (j\omega)^2 (R_1C_1R_2C_2)}$$

อัตราขยายที่ความถี่ต่ำ

$$A(0)=1$$

ความถี่ตัดผ่าน

$$\omega_C = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}}$$

ตัวประกอบคุณภาพ

$$\frac{1}{O} = 2\zeta = \omega_C \left[(R_1 + R_2)C_1 \right]$$

Ex: Design a fourth-order low-pass Butterworth filter with the cutoff frequency = 1 kHz = 6.2832 krad/s, and let $R_1 = R_2 = R$ and $C_1 = C_2 = C$

จากเงื่อนไขที่กำหนดให้ $R_1=R_2=R$ และ $C_1=C_2=C$ ทำให้การคำนวณของ ω_C และ ζ ของ วงจรกรองผ่านต่ำอันดับสองเป็นอิสระต่อกัน

$$\omega_C = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}} = \frac{1}{RC} \qquad 2\zeta = \omega_C \left[(R_1 + R_2)C_1 - \frac{R_F}{R_A} R_2 C_2 \right] = 2 - \frac{R_F}{R_A}$$

วงจรกรองผ่านต่ำอันดับสี่ สามารถสร้างจากวงจรกรองผ่านต่ำอันดับสอง 2 วงจรมาต่ออนุกรมกัน จากตาราง Normalized Butterworth polynomial อันดับสี่

$$(s^{2} + 0.7654s + 1)(s^{2} + 1.8478s + 1)$$

$$H(j\omega) = \frac{1}{(j\omega/\omega_{c})^{2} + 2\zeta_{1}(j\omega/\omega_{c}) + 1} \frac{1}{(j\omega/\omega_{c})^{2} + 2\zeta_{2}(j\omega/\omega_{c}) + 1}$$

$$(s^{2} + 2\zeta_{1}s + 1)(s^{2} + 2\zeta_{2}s + 1) = (s^{2} + 0.7654s + 1)(s^{2} + 1.87478s + 1)$$

ดังนั้น วงจรกรองผ่านต่ำมี $\zeta_1 = 0.3827$ และ $\zeta_2 = 0.9239$ สำหรับวงจรกรองตัวที่ 1 และตัวที่ 2

จาก
$$2\zeta = 2 - \frac{R_F}{R_A}$$

สำหรับวงจรงกรองตัวที่ 1 ζ_1 = 0.3827 เราจะได้ $\frac{R_F}{R_A}$ = 1.2346 เลือก R_A = $10~\mathrm{k}\Omega$ ได้ R_F = 12.4 $\mathrm{k}\Omega$ สำหรับวงจรงกรองตัวที่ 2 ζ_2 = 0.9239 เราจะได้ $\frac{R_F}{R_A}$ = 0.1522 เลือก R_A = $10~\mathrm{k}\Omega$ ได้ R_F = 1.54 $\mathrm{k}\Omega$

จาก
$$\omega_C = \frac{1}{RC} = 6.2832 \text{ krad/s}$$

ในที่นี้ เลือก C = 0.01 $\mu \mathrm{F}$ ทำให้เราได้ $R=15.92~\mathrm{k}\Omega pprox 15.8~\mathrm{k}\Omega$

ดังนั้นวงจรกรองอันดับสี่ที่ได้จะเกิดจากวงจรกรองอันดับสอง 2 วงจรมาต่ออนุกรมกัน ลำดับของ การต่อไม่มีความสำคัญสามารถสลับตำแหน่งกันได้

Ex: Design a fourth-order low-pass Butterworth filter Given: Gain = 1, cutoff frequency = 1 kHz = 6.2832 krad/s

วงจรกรองผ่านต่ำอันดับสี่ สามารถสร้างจากวงจรกรองผ่านต่ำอันดับสอง 2 วงจรมาต่ออนุกรมกัน จากตาราง Normalized Butterworth polynomial อันดับสี่

$$(s^2 + 0.7654s + 1)(s^2 + 1.8478s + 1)$$

$$H(j\omega) = \frac{1}{(j\omega/\omega_C)^2 + 2\zeta_1(j\omega/\omega_C) + 1} \frac{1}{(j\omega/\omega_C)^2 + 2\zeta_2(j\omega/\omega_C) + 1}$$

$$(s^2 + 2\zeta_1 s + 1)(s^2 + 2\zeta_2 s + 1) = (s^2 + 0.7654s + 1)(s^2 + 1.87478s + 1)$$

ดังนั้น วงจรกรองผ่านต่ำมี $\zeta_1 = 0.3827$ และ $\zeta_2 = 0.9239$ สำหรับวงจรกรองตัวที่ 1 และตัวที่ 2 ดังนั้นเราจะได้ สำหรับวงจรงกรองตัวที่ 1 และตัวที่ 2

$$\omega_C = \frac{1}{\sqrt{R_1 C_1 R_2 C_2}} = 6.2832 \text{ krad/s}$$
 $\zeta = \frac{1}{2} \omega_C (R_1 + R_2) C_1 = 3.1416 \times 10^3 (R_1 + R_2) C_1$

สำหรับวงจรกรองอันดับสอง วงจรที่ 1 $\zeta_1=0.3827$ เนื่องจากมีสองเงื่อนไขของ ω_C และ ζ แต่มี 4 ตัวแปรของ $R_1,R_2,C_1,$ และ C_2 ทำให้เรามีอิสระ 2 ตัวแปร ในที่นี้ เลือก $C_1=0.01~\mu {
m F}$ ทำให้ได้เงื่อนไขดังนี้

$$R_1 + R_2 = 12.82 \text{ k}\Omega$$
 และ $R_1 R_2 C_2 = 2.5330$

ขั้นต่อไป คือ การเลือกค่า C_2 ต้องทำให้ได้ค่า R_1 และ R_2 และมีค่าเป็นจำนวนจริงบวกและเหมาะสมใน การต่อวงจร อาจจะต้องมีการลองผิดลองถูกดู เลือก $C_2=0.082~\mu {
m F}$ ทำให้ได้ค่า

$$R_1 + R_2 = 12.82 \text{ k}\Omega$$
 $R_1 R_2 = 30.89 \times 10^6$

$$R_1 = 8.582 \approx 8.56 \text{ k}\Omega$$

$$R_2 = 3.599 \approx 3.61 \text{ k}\Omega$$

หมายเหตุ การเลือกค่า C_2 ที่เหมาะสม ในกรณีข้างบน จะต้องสอดคล้องกับเงื่อนไข

$$\left(R_1 + R_2\right)^2 \ge 4R_1R_2$$

สำหรับวงจรกรองอันดับสอง วงจรที่ 2 $\zeta_1=0.9239$ เนื่องจากมีสองเงื่อนรไขของ ω_C และ ζ แต่มี 4 ตัวแปรของ $R_1,R_2,C_1,$ และ C_2 ทำให้เรามีอิสระ 2 ตัวแปร ในที่นี้ เลือก $C_1=0.01~\mu {
m F}$ ทำให้ได้เงื่อนไขดังนี้

ขั้นต่อไป คือ การเลือกค่า C_2 ต้องทำให้ได้ค่า R_1 และ R_2 และมีค่าเป็นจำนวนจริงบวกและเหมาะสมใน การต่อวงจร อาจจะต้องมีการลองผิดลองถูกดู เลือก $C_2=0.082~\mu {
m F}$ ทำให้ได้ค่า

$$R_1 + R_2 = 29.409 \text{ k}\Omega$$
 $R_1 R_2 = 30.89 \times 10^6$

 $R_1 = 1.091 \approx 1.09 \text{ k}\Omega$

 $R_2 = 28.318 \approx 28.4 \text{ k}\Omega$

ผลการจำลองผลตอบสนองเชิงความถี่ของวงจรกรองผ่านต่ำอันดับสี่ ด้วย LTspice

Design Guideline

Design specifications: Gain = 50; Bandwidth = 0.5-100 Hz :Select the 2nd order lowpass filter

Case 1:
$$Gain_{Hi} = 50$$
 $Gain_{Lo} = 1$; See Ex 1

Case 2:
$$Gain_{Hi} = \frac{50}{(3-2\zeta)}$$
 $Gain_{Lo} = (3-2\zeta)$ See Ex 2

In which $R_1 = R_2 = R$ and $C_1 = C_2 = C$

Other cases: 1) Add another gain stage

2) Play with the conditions of f_c and ζ

Filter Design Tool

Case 2: $Gain_{LO} = (3 - 2\zeta)$ In which $R_1 = R_2 = R$ and $C_1 = C_2 = C$

For the 2nd order Butterworth filter $\zeta = 1/\sqrt{2}$ Therefore $Gain_{Lo} = 1.59$

Filter Design Tool

Instrumentation Amplifier (IA)

Instrumentation amplifiers is a dedicate differential amplifier with extremely high input impedance. Its gain can be precisely set by a single internal or external resistor. The high common-mode rejection makes IA very useful in recovering small signals buried in large common-mode offsets or noise.

Bridge circuit for sensor applications

Equivalent circuit for a Load cell

Instrumentation Amplifier (IA)

Front end circuit

Differential amp

Three-Op Amp Instrumentation Amplifiers

In the case of $R_1 = R_2 = R_3 = R_4 = R$

$$v_{out} = (1 + \frac{2R}{R_g})(v_2 - v_1) + V_{ref}$$
 where $A_{dm} = \left(1 + \frac{2R}{R_g}\right)$

Common mode rejection ratio

$$CMRR = 20 \log_{10} \left(\frac{A_{dm}}{A_{cm}} \right)$$

IA Module: Experimental section

- ให้ออกแบบและจำลองวงจรขยายแบบอินสตรูเมนเตชัน ที่ใช้ออปแอมป์ 3 ตัว กำหนดให้ วงจรขยายแบบอินสตรูเมนเตชัน มีอัตราขยาย เท่ากับ 5
 - ใช้แรงดันอ้างอิง เท่ากับ 0 โวลต์
 - แรงดันของแหล่งจ่าย กำหนดให้มีค่าอยู่ระหว่าง ±9 V
 - ค่าความต้านทานที่ใช้ในวงจร สามารถเลือกใช้ได้ คือ ค่า 10 kΩ 500 kΩ***
 - ไอซีของออปแอมป์ที่ใช้ในการทดลองกำหนดให้ คือ TL064

ตัวต้านทาน	ค่าที่ออกแบบไว้ (kΩ)	ค่าที่วัดด้วยมัลติมิเตอร์ (kΩ)
R		
R_g		
R_1		
R_2		
R_3		
R_4		

Ex 1: Differential and Common Mode Gain (A_{dm} and A_{cm})

- ต่อวงจรขยายอินสตรูเมนเตชัน โดยใช้ค่าความต้านทานที่ได้ออกแบบไว้
- lacktriangle ตั้ง v_{in} เป็นแหล่งกำเนิดสัญญาณไซน์ ความถี่ 1000 Hz
- ปรับค่าแรงดันของ v_{in} ตามที่กำหนดในการทดลอง ใช้ดิจิทัลออสซิลโลสโคปวัด แรงดันค่ายอดของ v_{in} และ v_{out}
- lacktriangle พล็อตกราฟระหว่าง v_{out} กับ v_{in}
- หาอัตราขยายผลต่างจากความขั้นของกราฟ

Ex 1: Differential and Common Mode Gain (A_{dm} and A_{cm})

วงจรสำหรับหาอัตราขยายผลร่วม

- ต่อวงจรตามรูป
- lacktriangle ตั้ง v_{in} เป็นแหล่งกำเนิดสัญญาณไซน์ ความถี่ 50 Hz ตั้งขนาดของสัญญาณ
- เพิ่มขนาดของสัญญาณไซน์ของสัญญาณขาเข้า V_{in} จนกระทั่งสามารถสังเกตเห็น สัญญาณขาออก V_{out} ที่ขั้วออก วัดขนาดจากยอดถึงยอด (Peak-to-peak value) ของสัญญาณขาเข้าและขาออกเพื่อใช้คำนวณหาอัตราขยายผลร่วม

Remark

- ก่อนเริ่มการทดลองอันใหม่ ตรวจสอบการเชื่อมต่อภาค input ทุกครั้ง เพื่อความ ถูกต้องและรวมเร็วในการทดลอง ส่วนใหญ่ลืมปรับตรงส่วนนี้ทำให้วัดไม่ออกครับ
- การตั้งสเกลแกนเวลาให้เหมาะสมกับคาบของสัญญาณไซน์ ในแต่ละเงื่อนไขควรให้ เห็นสัญญาณ 2-3 คาบของสัญญาณไซน์ที่ความถี่นั้นๆ

(หมายเหตุ พลาดตรงนี้กันค่อนข้างมาก)

Ex 2: Frequency Response of an ECG Amplifier

วงจรขยายคลื่นไฟฟ้าหัวใจซึ่งประกอบด้วยวงจรขยายแบบอินสตรูเมนเตชันและวงจรกรอง

และการวัดผลตอบสนองเชิงความถึ่

- สร้างวงจรขยายคลื่นไฟฟ้าหัวใจ โดยนำวงจรขยายแบบอินสตรูเมนเตชันมาต่อเข้ากับวงจรกรองที่ได้จากการ
 ทดลองในสัปดาห์แรก
- ต่อวงจรแบ่งแรงดัน ที่มีอัตราส่วนการแบ่งแรงดันให้ลดทอนสัญญาณลง 50 เท่า คำนวณค่าความต้านทานที่ต้อง นำมาใช้ สาเหตุที่ต้องแบ่งแรงดันเนื่องจากเครื่องกำเนิดสัญญาณที่ใช้ในห้องปฏิบัติการฯ สามารถกำเนิดสัญญาณ ได้ขนาดเล็กสุด 100 mVpp ซึ่งถ้าป้อนเข้าวงจรโดยตรงจะเกิดการอื่มตัวของวงจรได้ $Atten = \frac{R_B}{R_A + R_B}$
- $^{-}$ ต่อขาเข้าของวงจรขยายแบบอินสตรูเมนเตชันเข้ากับเครื่องกำเนิดสัญญาณ ผ่านทางวงจรแบ่งแรงดัน
- วัดแรงดันขาเข้าและขาออก โดยต่อ CH1 ของ DSO เข้ากับขาเข้าของวงจรขยาย และ CH2 เข้ากับขาออกของ วงจรกรอง
- ป้อนสัญญาณไซน์ที่ความถี่ตั้งแต่ 0.1 1000 Hz คำนวณค่าอัตราขยาย $Gain(dB) = 20 \log \left(\frac{v_{out}}{v_{in} \times Atten} \right)$
- พล็อตกราฟของอัตราขยายเทียบกับความถื่

Ex 3: ECG Measurement

- ใช้วงจรขยายคลื่นไฟฟ้าหัวใจวัดสัญญาณคลื่นไฟฟ้าหัวใจ
- ให้สมาชิกในกลุ่ม 1 คน เป็นอาสาสมัคร ในการวัดสัญญาณคลื่นไฟฟ้าหัวใจ นำสายสัญญาณและขั้ว
 อิเล็กโทรดที่กำหนดให้ ต่อเข้ากับแขนซ้าย แขนขวา และขาขวา ต่อขาออกของวงจรเข้ากับ DSO
 CH1
- ปรับสเกลแนวนอนของออสซิลโลสโคป ให้เห็นรูปคลื่นไฟฟ้าหัวใจ ประมาณ 2-4 รูปคลื่น
- ปรับสเกลแกนตั้งของออสซิลโลสโคป ให้เห็นรูปคลื่นไฟฟ้าหัวใจอย่างสวยงามและชัดเจน
- บันทึกรูปคลื่นสัญญาณคลื่นไฟฟ้าหัวใจลงใน thumb drive โดยบันทึกแบบเป็นไฟล์รูปภาพ
 (นามสกุล .png หรือ .jpg) และ บันทึกแบบเป็นไฟล์ข้อมูล (นามสกุล .CSV)

ECG Module: Denoise

Here x(t) is ECG and n(t) is the signal with constant frequency of 50 Hz

ECG Module: Denoise

FFT (Fast Fourier Transform)

Discrete Fourier Transform (DFT)

Discrete Fourier transform converts the time domain signal to the frequency domain components. The time domain signal is a finite sequence of discrete-time samples

$$X(k) = \mathcal{F}[x(n)] = \frac{1}{N} \sum_{n=0}^{N-1} x(n)e^{-\frac{j2\pi kn}{N}}$$

x(n) is the time domain signal sampled at the sampling rate f_s or the sampling interval T_s = 1/ f_s

$$x(0), x(1), x(2), ..., x(N-1)$$

X(k) is the frequency domain signal.

$$X(0), X(1), X(2), ..., X(N-1)$$

Where
$$f_k = \frac{k}{N} f_S = k \Delta f$$
 and $\Delta f = \frac{1}{N} f_S$

Discrete Fourier Transform

$$x(n) = 5 \sin 2\pi 0.01 nT_S + \sin 2\pi 0.2 nT_S$$

$$T_S$$
 = 1 sec or f_S = 1 Hz

Example of DFT signals with different number of samples

Ex 1: Signal generation

$$S(n) = 5\sin 2\pi 0.01nT_S + \sin 2\pi 0.2nT_S$$

- ใช้ LabVIEW สร้างสัญญาณซึ่งผลรวมของสัญญาณไซน์สองความถึ่
 - i. ความยาวของสัญญาณทั้งสองเท่ากับ 256 Samples
 - ii. สุ่มสัญญาณทั้งสองด้วยอัตราการสุ่ม 1 Hz (f_S = 1 Hz หรือ T_S = 1 sec)
 - iii. สัญญาณไซน์ตัวที่ 1 แสดงสัญญาณตั้งต้นมี Amplitude เท่ากับ 5 และมีความถี่ เท่ากับ 0.01 Hz (สัญญาณ 100 ตัวแสดงค่าสัญญาณไซน์ 1 คาบ)
 - iv. สัญญาณไซน์ตัวที่ 2 แสดงสัญญาณรบกวนมี Amplitude เท่ากับ 1 และมีความถึ่ เท่ากับ 0.2 Hz (สัญญาณ 5 ตัวแสดงค่าสัญญาณไซน์ 1 คาบ)
- lacktriangle ใช้ LabVIEW คำนวณ DFT ของสัญญาณ S(n)
- lacktriangle จากกราฟของหาตำแหน่งของสัญญาณรบกวน $f_0pproxrac{k}{N}f_S$

Ex 2: IIR Filter and Butterworth Filter: Notch Filter

■ สร้าง Notch filter โดยใช้ IIR

$$H(z) = \frac{1 - 2\cos\omega_n z^{-1} + z^{-2}}{1 - 2r\cos\omega_n z^{-1} + r^2 z^{-2}} = \frac{b[0] + b[1]z^{-1} + b[2]z^{-2}}{a[0] + a[1]z^{-1} + a[2]z^{-2}}$$

โดยที่ a และ b เป็นสัมประสิทธิ์ที่ต้องนำไปใส่ใน LabVIEW

$$\omega_n = 2\pi rac{f_0}{f_S} = 2\pi rac{k}{N}$$
 ตำแหน่งที่ต้องการกรองความถี่ออก และ

r คือ สัมพันธ์กับความกว้างของ notch filter

ผลตอบสนองเชิงความถี่ของ notch filter มี $\omega_n=0.4\pi$ และ r=0.9

Ex 2: IIR Filter and Butterworth Filter: Notch Filter

- * สร้าง Notch filter โดยใช้ Butterworth polynomial อันดับ (Order) ที่ 7 โดยอาศัย คำสั่งใน LabVIEW ประเภทของวงจรกรอง (Filter type) ตั้งเป็น Band Stop ซึ่งต้องการ ความถี่ Cutoff ค่าสูง (f_h) และต่ำ (f_l) ที่ $f_l < f_h < 0.5 f_s$ (ในกรณีของวงจรกรอง แบบ Low pass และ High pass จะใช้เฉพาะค่า f_l เป็นความถี่ Cutoff
- กำหนดค่าพารามิเตอร์ของวงจรกรองทั้งสองดังนี้
 - a. วงจรกรอง Notch $f_{\scriptscriptstyle S}=1$, f_0 ที่คำนวณได้จาก $rac{k}{N}f_{\scriptscriptstyle S}$ และ r=0.9 โดยที่ $\omega_n=2\pirac{f_0}{f_{\scriptscriptstyle S}}$
 - b. วงจรกรอง Butterworth $f_S=1$, $f_l=rac{k}{N}f_S-0.5$ ป, $f_h=rac{k}{N}f_S+0.5$ ป เมื่อ $\varDelta=0.01$
- บันทึกผลการกรองจาก filter ทั้งสองที่ได้ทั้งในโดเมนเวลาและโดเมนความถี่ (สเปกตรัม)

Ex 3: Noise Reduction in ECG signal

- I เปิดไฟล์สัญญาณ ECG ที่ได้จากการทดลองในการเรียนก่อนหน้านี้ โปรแกรม spreadsheet เช่น Excel ให้ใช้ข้อมูลเวลา เพื่อคำนวณหาค่า f_S และหาจำนวนข้อมูลทั้งหมด N
- Input จากสัญญาณ Input จากสัญญาณไซน์สองสัญญาณ เป็นสัญญาณ ECG ที่ได้จากการ ทดลองในการเรียนก่อนหน้านี้
- lacktriangle ประมาณค่า f_0/f_S ของสัญญาณรบกวนจากสเปกตรัมของสัญญาณจากค่า k/N
- lacktriangle ดัดแปลง code ของ Notch filter แบบ IIR ในการทดลองที่ผ่านมา ทดลองปรับค่า r ที่ให้ ผลลัพธ์ที่มีสัญญาณรบกวนน้อยที่สุด
- ๑ัดแปลง code ของ Band-stop filter แบบ Butterworth ทดลองปรับค่า n อันดับของ วงจรกรอง และ Δ เพื่อคำนวณค่า $f_l = \frac{k}{N} f_S 0.5\Delta$, $f_h = \frac{k}{N} f_S + 0.5\Delta$ ของวงจรกรอง Butterworth ที่ให้ผลลัพธ์ที่มีสัญญาณรบกวนน้อยที่สุด
- บันทึกผลการกรองจาก filter ทั้งสองที่ได้ทั้งในโดเมนเวลาและโดเมนความถี่ (สเปกตรัม)