longest increasing subsequence: $O(n^2)$: L(j)=len of longest subsequence ending @ j. $L(j) = 1 + \max\{L(i)\}$ where $i < j, a_i < a_j \to (i,j)$ is an edge. Return $\max\{L(i)fori \le n\}$, and loop from $i = n \to 0$

edit distance: $O(m \cdot n)$: $E[m, n] = \min$ num of edits to change $x[1 \cdots m]$ to $y[1 \cdots n]$. E[m, n] =

$$\min \left\{ \begin{array}{l} \cdots x[m], \cdots - \\ \text{delete x[m]: } E[m,n] = 1 + E[m-1,n] \\ \cdots -, \cdots y[n] \\ \text{insert y[n]: } E[m,n] = 1 + E[m,n-1] \\ \cdots x[m], \cdots y[n] \\ \text{change x[m] to y[n]:} \\ E[m,n] = E[m-1,n-1] + (1 \text{ if diff, 0 else}) \end{array} \right.$$

Initialize $i=0\cdots m: E[i,0]=i$ $j=0\cdots n: E[0,j]=j.$ Loop $i=1\cdots m, j=1\cdots n, E[i,j]$

Knapsack: $O(W_{\text{max}} \cdot n)$: K(w) = max value of weight $w \leq W_{\text{max}}$. $K(w) = \max_{w_i \leq w} \{v_i + K(w - w_i)\}$

K(0) = 0. Loop $w = 1 \cdots W_{\text{max}}$

Chain Matrix Multiply: $O(n^3)$: $C(i,j) = \cos t$ of best solution to multiplying $A_i \cdots A_j$.

$$C(i,j) = \min_{i \leq k \leq j} \{C(i,k) + C(k+1,j) + m_{i-1} \cdot m_k \cdot m_j\}$$

Solve in order of increasing subproblem length: for $i = 1 \cdots n - 1$: C(i, i = 0). for $s = 1 \cdots n - 1$, for $i = 1 \cdots n - s$: j = i + s; update. Return C(1, n).

Shortest path (all pairs of vertices): $O(|V| \cdot (|V| + |E|))$: dist(v, i) = dist from s to v using i edges. $dist(v, i) = \min_{e=(w, v)} \{len(e) + dist(w, i - 1)\}.$

For all $v \in V$ $dist(v, 0) = \infty, dist(s, 0) = 0$. for $i = 1 \cdot |V|$, for all $v \in V$, update.

Independent Sets: O(|V| + |E|): I(u) =size of largest independent set in subtree rooted at u.

$$I(u) = \max \begin{cases} 1 + \sum_{\substack{grandchildren}} I(g_i) & \text{if } u \in I(n) \\ \sum_{\substack{children}} I(c_i) & \text{u isn't} \end{cases}$$

DFS traversal: postvisit[u] = update (does u after children of u are done)

Travelling Salesman: $O(2^n n^2)$ Subset $S \leq V$, $\{1\} \in S$.

for $j \in S$, C(S, j) =length of shortest path that starts at 1, ends at j, and visits each vertex in S once. If |S| > 1, $C(S, 1) = \infty$.

update: $C(S, j) = \min_{i \in S, i \neq j, (i, j) \in E} \{C(S - \{j\}, i) + len(i, j)\}$

For $S=2\cdots n$: for all sizes of S, for all subsets $S\leq \{1\cdots n\}$ of size s (including $\{i\}$): $C(S,1)=\infty$ for all $j\in S, j\neq 1, update$