WEEK-7

Linear Discriminanat Analysis

<class 'pandas.core.frame.DataFrame'> RangeIndex: 178 entries, 0 to 177

Linear Discriminant Analysis (LDA) is a supervised learning algorithm used for classification tasks in machine learning. It is a technique used to find a linear combination of features that best separates the classes in a dataset. LDA works by projecting the data onto a lower-dimensional space that maximizes the separation between the classes. It does this by finding a set of linear discriminants that maximize the ratio of between-class variance to within-class variance. In other words, it finds the directions in the feature space that best separate the different classes of data.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sn
from sklearn.datasets import load wine
wine_info=load_wine()
X=pd.DataFrame(wine_info.data,columns=wine_info.feature_names)
X.head()
 alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \
0 14.23
             1.71 2.43
                               15.6
                                      127.0
                                                  2.80
1
  13.20
             1.78 2.14
                               11.2
                                      100.0
                                                  2.65
  13.16
             2.36 2.67
                               18.6
                                      101.0
                                                 2.80
3
  14.37
             1.95 2.50
                               16.8
                                      113.0
                                                 3.85
4 13.24
             2.59 2.87
                               21.0
                                      118.0
                                                 2.80
 flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \
                    0.28
                               2.29
                                           5.64 1.04
0
     3.06
1
     2.76
                    0.26
                               1.28
                                           4.38 1.05
2
     3.24
                    0.30
                               2.81
                                           5.68 1.03
3
     3.49
                    0.24
                               2.18
                                          7.80 0.86
     2.69
                    0.39
                               1.82
                                           4.32 1.04
 od280/od315_of_diluted_wines proline
                3.92 1065.0
0
1
                3.40 1050.0
2
                3.17 1185.0
3
                3.45 1480.0
4
                2.93 735.0
X.shape
(178, 13)
X.info()
```

Data columns (total 13 columns): # Column Non-Null Count Dty

#	Column	Non-Null Count Dtype			
0	alcohol	178 non-null float64			
1	malic_acid	178 non-null float64			
2	ash	178 non-null float64			
3	alcalinity_of_ash	178 non-null float64			
4	magnesium	178 non-null float64			
5	total_phenols	178 non-null float64			
6	flavanoids	178 non-null float64			
7	nonflavanoid_phen	ols 178 non-null float64			
8	proanthocyanins	178 non-null float64			
9	color_intensity	178 non-null float64			
10	hue	178 non-null float64			
11	od280/od315_of_d	iluted_wines 178 non-null float64			
12	proline	178 non-null float64			
dty	pes: float64(13)				
me	mory usage: 18.2 KI	3			

X.describe()

	alcohol mali	c_acid	ash alcalinity	_of_ash	magnesium \
count	178.000000	178.000000	178.000000	178.	000000 178.000000
mean	13.000618	2.336348	2.366517	19.494	944 99.741573
std	0.811827	1.117146 0).274344	3.33956	4 14.282484
min	11.030000	0.740000	1.360000	10.6000	000 70.000000
25%	12.362500	1.602500	2.210000	17.200	000 88.000000
50%	13.050000	1.865000	2.360000	19.500	000 98.000000
75%	13.677500	3.082500	2.557500	21.500	000 107.000000
max	14.830000	5.800000	3.230000	30.000	000 162.000000

tota	al_phenols f	lavanoids nonfl	avanoid_phenols	proanthocyanins \
count	178.000000	178.000000	178.000000	178.000000
mean	2.295112	2.029270	0.361854	1.590899
std	0.625851	0.998859	0.124453	0.572359
min	0.980000	0.340000	0.130000	0.410000
25%	1.742500	1.205000	0.270000	1.250000
50%	2.355000	2.135000	0.340000	1.555000
75%	2.800000	2.875000	0.437500	1.950000
max	3.880000	5.080000	0.660000	3.580000

colo	r_intensity	hue od280/o	od315_of_diluted_wines proline
count	178.000000	178.000000	178.000000 178.000000
mean	5.058090	0.957449	2.611685 746.893258
std	2.318286	0.228572	0.709990 314.907474
min	1.280000	0.480000	1.270000 278.000000
25%	3.220000	0.782500	1.937500 500.500000
50%	4.690000	0.965000	2.780000 673.500000
75%	6.200000	1.120000	3.170000 985.000000
max	13.000000	1.710000	4.000000 1680.000000

```
Y = pd. Categorical. from\_codes (wine\_info.target, wine\_info.target\_names)
```

Y.unique()

```
['class_0', 'class_1', 'class_2']
```

Categories (3, object): ['class_0', 'class_1', 'class_2']

df=X.join(pd.Series(Y,name="class"))

df.head()

```
alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \
0
   14.23
             1.71 2.43
                               15.6
                                      127.0
                                                 2.80
1
   13.20
             1.78 2.14
                               11.2
                                      100.0
                                                 2.65
2
                                                 2.80
  13.16
             2.36 2.67
                               18.6
                                      101.0
3
  14.37
             1.95 2.50
                               16.8
                                      113.0
                                                 3.85
  13.24
                               21.0
                                                 2.80
             2.59 2.87
                                      118.0
```

flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \

0	3.06	0.28	2.29	5.64 1.04	
1	2.76	0.26	1.28	4.38 1.05	
2	3.24	0.30	2.81	5.68 1.03	
3	3.49	0.24	2.18	7.80 0.86	
4	2.69	0.39	1.82	4.32 1.04	

od280/od315_of_diluted_wines proline class

0	3.92	1065.0 class_0
1	3.40	1050.0 class_0
2	3.17	1185.0 class_0
3	3.45	1480.0 class_0
4	2.93	735.0 class 0

sn.swarmplot(x=df["class"],y=df["alcohol"])


```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
y_labelled=le.fit_transform(Y)
y_labelled[0:5]
array([0, 0, 0, 0, 0])
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
lda=LinearDiscriminantAnalysis()
X_lda=lda.fit_transform(X,y_labelled)
lda.explained_variance_ratio_
array([0.68747889, 0.31252111])
plt.xlabel("LDA1")
plt.ylabel("LDA2")
plt.scatter(
  X_lda[:,0],
  X_{lda}[:,1],
  c=y_labelled,
  cmap="rainbow",
  alpha=0.4,
  edgecolors='b'
```

<matplotlib.collections.PathCollection at 0x1b1c890a500>

X_train, X_test, Y_train, Y_test=train_test_split(X_lda, y_labelled, random_state=20, test_size=0.4)

from sklearn.tree import DecisionTreeClassifier

model=DecisionTreeClassifier()
model.fit(X_train,Y_train)
model.score(X_test,Y_test)

0.98611111111111112