

Zero Knowledge Protocols and Signatures from the Restricted Syndrome Decoding Problem

Marco Baldi, <u>Sebastian Bitzer</u>, Alessio Pavoni, Paolo Santini, Antonia Wachter-Zeh, Violetta Weger

Technical University of Munich Università Politecnica delle Marche

PKC 2024

CROSS in a Nutshell

CROSS in a Nutshell

CVE-like ZK Protocol

- → simple and efficient
- \rightarrow standard optimizations

Restricted Decoding Problems

- → related to classical SDP
- → enable compact signatures

Syndrome Decoding Problem (SDP)

Given: $H \in \mathbb{F}_p^{(n-k)\times n}$, $s \in \mathbb{F}_p^{n-k}$, and $w \in \mathbb{N}$.

Find: $e \in \mathbb{F}_p^n$ with He = s and wt(e) = w.

Restricted SDP (R-SDP)

Given: $H \in \mathbb{F}_p^{(n-k)\times n}$, $s \in \mathbb{F}_p^{n-k}$, and $w \in \mathbb{N}$, restriction \mathbb{E} of size $z = |\mathbb{E}|$.

Find: $e \in (\mathbb{E} \cup \{0\})^n$ with He = s and wt(e) = w.

Restricted SDP (R-SDP)

Given: $H \in \mathbb{F}_p^{(n-k) \times n}$, $s \in \mathbb{F}_p^{n-k}$, and $w \in \mathbb{N}$, restriction \mathbb{E} of size $z = |\mathbb{E}|$.

Find: $e \in (\mathbb{E} \cup \{0\})^n$ with He = s and wt(e) = w.

Restricted SDP (R-SDP)

Given: $H \in \mathbb{F}_p^{(n-k) \times n}$, $s \in \mathbb{F}_p^{n-k}$, and $w \in \mathbb{N}$, restriction \mathbb{E} of size $z = |\mathbb{E}|$.

Find: $e \in (\mathbb{E} \cup \{0\})^n$ with He = s and wt(e) = w.

Restricted SDP (R-SDP)

Given: $H \in \mathbb{F}_p^{(n-k) \times n}$, $s \in \mathbb{F}_p^{n-k}$, and $w \in \mathbb{N}$, restriction \mathbb{E} of size $z = |\mathbb{E}|$.

Find: $e \in (\mathbb{E} \cup \{0\})^n$ with He = s and wt(e) = w.

Restricted SDP (R-SDP)

Given: $\boldsymbol{H} \in \mathbb{F}_p^{(n-k) \times n}$, $\boldsymbol{s} \in \mathbb{F}_p^{n-k}$, and $\boldsymbol{w} \in \mathbb{N}$, restriction \mathbb{E} of size $\boldsymbol{z} = |\mathbb{E}|$.

Find: $e \in (\mathbb{E} \cup \{0\})^n$ with He = s and wt(e) = w.

Designing \mathbb{E}

Error set E should

- → avoid additive structure
- → allow for efficient schemes

Designing \mathbb{E}

Error set \mathbb{E} should

- → avoid additive structure
- → allow for efficient schemes

Multiplicative Restriction

Let $g \in \mathbb{F}_p^*$ of order z. Set $\mathbb{E} = \{g^0, g^1, \dots, g^{z-1}\} \leq \mathbb{F}_p^*$.

Designing \mathbb{E}

Error set $\mathbb E$ should

- → avoid additive structure
- → allow for efficient schemes

Multiplicative Restriction

$$\begin{split} & \text{Let } g \in \mathbb{F}_p^* \text{ of order } z. \\ & \text{Set } \mathbb{E} = \left\{ g^0, g^1, \dots, g^{z-1} \right\} \leq \mathbb{F}_p^*. \end{split}$$

Disclaimer: not all, but many subgroups work nicely

	error e'	$map\ \sigma \colon \boldsymbol{e}' = \sigma(\boldsymbol{e})$
SDP	Hamming sphere	$S_n \rtimes (\mathbb{F}_p^*)^n$
R-SDP	restricted sphere	$S_n \rtimes \mathbb{E}^n$
w = n	\mathbb{E}^n	\mathbb{E}^n

errors and maps in \mathbb{E}^n

Observation: \mathbb{E}^n has group structure

errors and maps in \mathbb{E}^n

Observation: \mathbb{E}^n has group structure

errors and maps in $G \leq \mathbb{E}^n$

errors and maps in \mathbb{E}^n

Observation: \mathbb{E}^n has group structure

R-SDP(G): R-SDP with Subgroup G

Given: $\boldsymbol{H} \in \mathbb{F}_p^{(n-k)\times n}$, $\boldsymbol{s} \in \mathbb{F}_p^{n-k}$,

random subgroup $\vec{G} \leq \mathbb{E}^n$ of order z^m .

Find: $e \in G$ with He = s.

errors and maps in $G \leq \mathbb{E}^n$

errors and maps in \mathbb{E}^n

Observation: \mathbb{E}^n has group structure

R-SDP(G): R-SDP with Subgroup G

Given: $\boldsymbol{H} \in \mathbb{F}_p^{(n-k)\times n}, \, \boldsymbol{s} \in \mathbb{F}_p^{n-k},$

random subgroup $G \leq \mathbb{E}^n$ of order z^m .

Find: $e \in G$ with He = s.

① solvers use subgroup restriction

errors and maps in $G \leq \mathbb{E}^n$

errors and maps in \mathbb{E}^n

Observation: \mathbb{E}^n has group structure

R-SDP(G): R-SDP with Subgroup G

Given: $H \in \mathbb{F}_p^{(n-k) \times n}, s \in \mathbb{F}_p^{n-k},$

random subgroup $G \leq \mathbb{E}^n$ of order z^m .

Find: $e \in G$ with He = s.

- ① solvers use subgroup restriction
- \odot elements of G smaller than 2λ

errors and maps in $G \leq \mathbb{E}^n$

Adapting Modern Zero-Knowledge Protocols: R-BG

Bidoux, L., & Gaborit, P. (2022).Compact post-quantum signatures from proofs of knowledge leveraging structure for the PKP, SD and RSD problems. *C2SI*

Comparison with NIST submissions

PQShield. (2023). Post-Quantum Signatures Zoo. https://pqshield.github.io/nist-sigs-zoo/

Comparison with NIST submissions

PQShield. (2023). Post-Quantum Signatures Zoo. https://pqshield.github.io/nist-sigs-zoo/

Proof of concept implementation is promising ✓

R-SDP and R-SDP(G)

- generalize the classical SDP,
- enable compact messages,
- can be combined with various ZKPs.

R-SDP and R-SDP(G)

- generalize the classical SDP,
- enable compact messages,
- can be combined with various ZKPs.

Can one

- ? improve solvers?
- tailor protocols to R-SDP and RSDP(G)?
- Odevelop subgroup variants of other problems?

R-SDP and R-SDP(G)

- generalize the classical SDP,
- enable compact messages,
- can be combined with various ZKPs.

Can one

- improve solvers?
- tailor protocols to R-SDP and RSDP(G)?

develop subgroup variants of other problems?

R-SDP and R-SDP(G)

- generalize the classical SDP,
- enable compact messages,
- can be combined with various ZKPs.

Can one

- ? improve solvers?
- \bigcirc tailor protocols to R-SDP and RSDP(G)?
- Odevelop subgroup variants of other problems?

more on CROSS:

Thank you!

Questions?