ECE100 Homework-8

Total Points: 100

Submit your work in a pdf file electronically in the CCLE website before May 30th 11:59 pm. Late homework will not get credit!

1. Consider the circuit of Figure. The capacitors are very large, so they discharge only a very small amount per cycle. Sketch the voltage at point A versus time. Find the voltage across the load. Why is this called a voltage doubler? What is the peak inverse voltage across each diode? (10 points)

- 2. Two points in the saturation region of a certain NMOS transistor are $(v_{GS} = 2 \text{ V}, i_D = 0.2\text{mA})$ and $(v_{GS} = 3 \text{ V}, i_D = 1.8 \text{ mA})$. Determine the values of V_{to} and K for this transistor. (10 points)
- 3. Given that the enhancement transistor shown in Figure P12.14 has $V_{to} = 1 \text{ V}$ and $K = 0.5 \text{ mA/V}^2$, find the value of the resistance R. (10 points)

- 4. A p-channel enhancement MOSFET has V_{to} = 0.5 V and K = 0.2 mA/V². Assuming operation in the saturation region, what value of v_{GS} is required for i_D = 0.8 mA? (10 points)
- 5. Find I_{DQ} and V_{DSQ} for the circuit shown in Figure. The MOSFET has V_{to} = 1V and K = 0.25 mA/V². (10 points)

6. Find I_{DQ} and V_{DSQ} for the circuit shown in Figure. The MOSFET has $V_{to} = 1V$ and $K = 0.25 \text{ mA/V}^2$. (10 points)

- 7. In transistor small signal analysis, give definitions of g_m and r_d as partial derivatives. (5 points)
- 8. Suppose that we have an unusual type of FET for which $i_D = 3 \ v_{GS}^3 + 0.1 v_{DS}$ Here, i_D is in mA, v_{GS} is in volts, and v_{DS} is in volts. Determine the values of g_m and r_d for a Q point of $V_{GSQ} = 1 \ V$ and $V_{DSQ} = 10 \ V$. (10 points)
- 9. Draw the circuit diagram of a two-input CMOS AND gate. (Hint: Use a two-input NAND followed by an inverter.) (10 points)
- 10. Find V_{DSQ} and I_{DQ} for the FET shown in Figure, given $V_{to} = 3$ V and K = 0.5 mA/V². Find the value of g_m at the operating point. Draw the small-signal equivalent circuit, assuming that $r_d = \infty$. Derive an expression for the resistance R_o in terms of R_D and g_m . Evaluate the expression for the values given. (15 points)

