學號:B03505031 系級: 工海四 姓名:邱昱軒

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators:)

答:

原本利用 glove 訓練 vector, 但效果不佳, 所以改用 word2vec 訓練。

dim=300, min_count=15, alpha=0.005

Layer (type)≡∺ 💉	vscode 1 Output Shape	
embe <mark>dd i^{deskt}fp(Embedding)</mark>	² (None, 50, 300)	77678400 F
conv <mark>ld_1 (ConvlD)</mark>	4 (None, 48, 150)	1351502/7 下年
dropout≣F (Dropout)	dee(None, 48, 150) ensem1	0 ^{2017/12/7 下午} 2017/12/7 下午
lstm_1 (LSTM)	glov(None, 48)	3820811/30下
drop <mark>ou</mark> t 2 (Dropout)	(None, 48)	0 2017/12/5 上年
dense_lw(Dense)	Grap(None, 1)	49017/12/8下午
acti <mark>va</mark> tion_1 (Activatio	n) (None, 1)	0 2017/12/7 下午

epoch=70 batch=500 optimizer=binary_crossentropy loss fuction=rmsprop 每個句子的最大字數為 50 conv1d(150,kernel_size=3) LSTM(48,activation=tanh) Dense(1,activation=sigmoid)

Earlystop 的 val_acc=0.81217 以該 checkpoint 的模型預測, kaggle public= 0.80740 val_acc 大概在前 20 個 epoch 就會趨 近於收斂,過程中雖然大致是穩定上 升,但並不太平滑,應該是跟 RNN 本 身會有許多 error 坡度非常陡峭的地 方有關。

2.(1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? (Collaborators:)

答:

因為 BOW 無序的特性,先去除標點符號,再篩選出出現次數大於 15 次的字建立字典。 找到約 4000 個單詞,對 training data 建立 np array,再進 DNN 訓練。

Layer (type)	Output Shape		Param #
dense_1 (Dense)	(None, 256)	№ 工作管理員	1019136
dropout_1 (Dropout)	(None, 256)	檔案(F) 選項(O)) 0 檢視(V)
dense_2 (Dense)	(None, 64)	麦理程序 效能	16448
dropout_2 (Dropout)	(None, 64)	名稱	0
dense_3 (Dense)	(None, 1)	🍦 Python	65
activation_1 (Activation)	(None, 1)	Window	s 包囊總管

epoch=30 batch=128 optimizer=binary_crossentropy loss fuction=rmsprop

最好的 val_acc = 0.78652 kaggle public = 0.78290 在訓練過程中,validation 的進步情況很不好,嘗試了幾次都是會在大約第 $10^{\sim}15$ 個epoch 時達到最高值,隨後又會稍微下降。

3.(1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數, 並討論造成差異的原因。

(Collaborators:)

答:

	today is a good day, but it is hot	today is hot, but it is a good day
BOW	0. 40205988	0. 40205988
RNN	0. 22926138	0. 94598347

由於 BOW 無序的特性,這兩個句子在 BOW 中的表示都是一樣的,因此沒辦法辨別出由於語序所造成的情感差異。

4.(1%) 請比較"有無"包含標點符號兩種不同 **tokenize** 的方式,並討論兩者對準確率的影響。

(Collaborators:)

答:

捨棄的標點符號包含!@#\$%+-*/=()[],.

有標點的 tokenizer, kaggle 準確率 0.80740

沒標點的 tokenizer, kaggle 準確率 0.80314

因為標點符號(尤其是驚嘆號、問號等帶有情感的符號)也隱含了發文者當下的情緒。若捨棄標點符號,僅使用文字判斷,可能不足以準確的判斷。

5.(1%) 請描述在你的 semi-supervised 方法是如何標記 label, 並比較有無 semi-surpervised training 對準確率的影響。

(Collaborators:)

答:

載入第一次訓練好的 model,對 unlabel data 做 predict,將結果 0.97 以上的標記為 1,0.03 以下的標記為 0。第一次標記 label 約標記出 300000 筆資料。加上 semi-supervised 的步驟後,準確率反而下降(kaggle 0.80740 -> 0.80534)。猜測是因為使用第一次訓練出的模型來標記 no label,這些標記出來的資料本身就已經代表這個模型本身(因為可以貼合這個模型),繼續訓練可能會有 overfit 此模型的狀況。