Chapter Clustering K-means based method

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means Mô phòng K-means

Úng dung

Diểm mạnh và điểm yếu Điểm manh

Điểm yếu Tổng kết

Nguyễn Giáp Nguyên Sinh Nguyễn Quốc Long Khoa Khoa học và Kỹ thuật Máy tính Đai học Bách Khoa TP.HCM

Nội dung

- 1 Giới thiệu về phân cụm Phân cụm Kỹ thuật phân cụm
- Vấn đề & K-means K-means Mô phỏng K-means
- 3 Ứng dụng
- 4 Điểm mạnh và điểm yếu Điểm mạnh Điểm yếu
- **5** Tổng kết

Nội dung

Giới thiệu về phân cụm Phân cụm Kỹ thuật phân cụm

Vấn đề & K-means

K-means Mô phỏng K-means

Úng dung

Diểm mạnh và điểm yếu Điểm manh

Điểm mạnh Điểm yếu

Phân cụm

Phân cụm là gì?

- Việc tổ chức dữ liệu chưa được gán nhãn (label) vào các nhóm tương tự nhau được gọi là phân cụm
- Một cụm là một tập hợp các phần tử dữ liệu có sự giống nhau về mặt dữ liệu và sẽ khác với các phần tử dữ liệu ở các cụm khác.

Nội dung

Giới thiệu về phân cụm

Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Úng dung

Điểm manh và điểm

yếu Điểm mạnh Điểm yếu

Kỹ thuật phân cụm

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means

K-means Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh Điểm yếu

Vấn đề

Khi nào nghĩ đến K-means

- Không biết nhãn(label) của điểm dữ liệu
- Mục đích: Phân dữ liệu thành các cụm (cluster) khác nhau sao cho dữ liệu trong một cụm có tính chất giống nhau.

K-means cluster

- K-means được đề xuất bởi MacQueen năm 1967
- Giải thuật k-means chia tập dữ liệu thành k cụm (cluster)
 - Mỗi cluster có một điểm trung tâm , gọi là centroid
 - K được chỉ định bởi nhân viên phân tích dữ liệu (Data analytics)

Nội dung

Giới thiệu về phân cụm Phân cụm Kỹ thuật phân cụm

Vấn đề & K-means

K-means

Mô phỏng K-means

Úng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm yếu

Giải thất k-means

Nhập giá trị k, giải thuật k-means sẽ thực thi các bước như sau:

- 1 Chọn ngẫu nhiên k điểm dữ liệu làm centroids, điểm trung tâm của cum dữ liệu.
- 2 Phân mỗi điểm dữ liệu vào cluster có điểm trung tâm (center) gần nó nhất.
- 3 Nếu việc gán dữ liệu vào từng cluster ở bước 2 không thay đổi so với vòng lặp trước nó thì ta dừng thuật toán.
- 4 Cập nhật center cho từng cluster bằng cách lấy lấy trung bình công của tất cả các điểm dữ liệu đã được gán vào cluster đó sau buốc 2
- 6 Quay lai bước 2.

Nội dung

Giới thiệu về phân cụm Phân cum Kỹ thuật phân cụm

Vấn đề & K-means

K-means

Mô phỏng K-means

Űng dung

Điểm manh và điểm vêu Điểm manh Điểm yếu

Cơ chế của giải thuật K-means có thể tổng quát bằng sơ đồ dưới đây:

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means

K-means Mô phòng K-means

Ûng dung

Điểm mạnh và điểm yếu

Điểm mạnh Điểm yếu

Cách tính khoảng cách và điểm trung tâm

Cách tính khoảng cách trong giải thuật K-means

Để tìm được điểm dữ liệu gần với điểm trung tâm nào nhất thì ta dựa vào giá trị nhỏ nhất của hàm tính khoảng cách Euclidean.

- Với dữ liệu 1 chiều, với 2 điểm dữ liệu p và q $\sqrt{p-q} = |p-q|$
- Với dữ liệu 2 chiều, với 2 điểm dữ liệu p (p1,p2) và q (q1, q2) $\sqrt{(p1-q1)^2+(p2-q2)^2}$
- Với dữ liệu 3 chiều, với 2 dữ liệu p(p1,p2,p3) và q(q1,q2,q3) $\sqrt{(p1-q1)^2+(p2-q2)^2+(p3-q3)^2}$
- Với dữ liệu n chiều, với 2 dữ liệu p(p1,p2,...,pn) và q(q1,q2,...,qn) $\sqrt{(p1-q1)^2+(p2-q2)^2+...+(pn-qn)^2}$

Cách tính điểm trung tâm

Điểm trung tâm *centroid* của cluster là trung bình cộng của các điểm trong cluster đó.

Nội dung

Giới thiệu về phân cụm Phân cụm Kỹ thuật phân cụm

Vấn đề & K-means

Mô phòng K-means

Úng dụng

K-means

Điểm mạnh và điểm yếu Điểm mạnh Điểm yếu

Chọn ngẫu nhiên các centroid

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm yếu

Xác định cluster cho từng điểm dữ liệu

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm yếu

Xác định lại centroid cho các cluster

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm mạnh Điểm yếu

Kết quả của vòng lặp thứ nhất

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm yếu

Vòng lặp thứ 2, xác định lại các điểm centroid

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh Điểm yếu

Kết quả của vòng lặp thứ hai

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm yếu

Ứng dụng phân loại hình ảnh

Examples of visual words

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K- means

Mô phòng K-means

Úng dụng

Diểm mạnh và điểm yếu Điểm mạnh Điểm yếu

Điểm mạnh và điểm yếu

Điểm mạnh

- Đơn giản: Dễ dàng hiểu và thực thi
- Rất hiệu quả: Độ phức tạp chỉ là O(tkn), trong đó:
 - k là số cụm
 - t là số lần lặp

Vì k và t đều nhỏ nên giải thuật K-mean thuộc giải thuật tuyến tính

K-means là một giải thuật phân cụm phổ biến

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means Mô phỏng K-means

Ứng dụng

Điểm mạnh và điểm yếu

Điểm mạnh

Điểm yếu

Điểm mạnh và điểm yếu

Điểm yếu

- Người phân tích dữ liệu phải chỉ định số cluster K
- Rất hiệu quả: Độ phức tạp chỉ là O(tkn), trong đó:
 - k là số cụm
 - t là số lần lặp

Vì k và t đều nhỏ nên giải thuật K-mean thuộc giải thuật tuyến tính

- Giải thuật rất dễ sai với các điểm nhiễu outliers
 - Outlier là những điểm dữ liệu quá xa so với các điểm dữ liệu còn lai.
 - Outlier có thể xảy ra khi xảy ra lỗi khi ghi dữ liệu hoặc một số điểm dữ liệu đặc biệt với các giá trị rất khác nhau.

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means Mô phòng K-means

Úng dụng

Diểm mạnh và điểm yếu Điểm manh

Điểm yếu

Dielli yeu

Điểm yếu

Outliers outlier (A): Undesirable clusters outlier (B): Ideal clusters

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phỏng K-means

Ứng dụng

Điểm mạnh và điểm yếu

Điểm mạnh

Điểm yếu

Giải quyết Outlier

- Xóa một số điểm dữ liệu ở rất xa centroid so với đa số các điểm dữ liêu khác
 - Để an toàn, chúng ta có thể theo dõi những điểm oulier này một vài lần lặp rồi mới quyết định loại bỏ chúng hay không.
- Thực hiện lấy mẫu ngẫu nhiên: bằng cách chọn một tập hợp con cảu các điểm dữ liệu, cơ hội lựa chọn một outlier là nhỏ hơn nhiều.
 - Gán những phần còn lại của các điểm dữ liệu cho các cluster bằng khoảng cách

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm Vấn đề & K-means

K-means Mô phỏng K-means

Ứng dụng

Diểm mạnh và điểm yếu Điểm mạnh

Điểm yếu

Điểm yếu

Sensitivity to initial seeds Random selection of seeds (centroids) Random selection of seeds (centroids) Iteration 1 Iteration 2 Iteration 1 Iteration 2

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Ứng dụng

Diểm mạnh và điểm yếu

Điểm mạnh

Điểm yếu

Điểm yếu

Cấu trúc dữ liệu đặc biệt

Giải thuật K-means không phù hợp cho xác định các cụm mà hình không phải là hình elip hay hình cầu

(A): Two natural clusters

(B): k-means clusters

Nội dung

Giới thiệu về phân cụm Phân cụm

Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Ứng dụng

Điểm mạnh và điểm yếu

Điểm mạnh Điểm yếu

Tổng kết

- Mặc dù có điểm yếu nhưng k-means vẫn là giải thuật phổ biến do tính đơn giản và tính hiệu quả của nó.
- Chưa có bằng chứng nào chứng tỏ giải thuật phân cụm nào là tốt nhất.

Nội dung

Giới thiệu về phân cụm Phân cụm Kỹ thuật phân cụm

Vấn đề & K-means K-means

Mô phòng K-means

Úng dụng

Điểm mạnh và điểm yếu Điểm mạnh

Điểm yếu