Bisection Method

April 20, 2022

1 The Bisection Method.

An algorithms for solving non-linear equations, applied to any continuous function we know two values with opposite signs.

To find a solution of the equation

$$f(x) = 0$$

We find the midpoint c of the interval [a, b]. Suppose that $f(c) \neq 0$ (otherwise we have found a solution). Either $f(a) \times f(c)$ is negative, so that the interval [a, c] must contain a solution of the equation, or $f(c) \times f(b)$ is negative, so that the interval [c, b] contains a solution of the equation. Therefore, we can construct an interval containing solution, and whose length is half the length of the interval [a, b]. By iterating this construction, we obtain a sequence of intervals with the expected properties.

1.0.1 Implementation

We define bisection_method function

```
[1]: def bisection_method(f, start_point, end_point, number_of_iterations = 10):
    # if f(a) × f(b) is positive, there are no roots

if (f(start_point) * f(end_point) > 0) :
    return None

for i in range(number_of_iterations):
    mid_point = (start_point + end_point) / 2

if (f(mid_point) == 0) :
    return mid_point

elif (f(start_point) * f(mid_point) < 0) :
    end_point = mid_point

elif (f(start_point) * f(mid_point) > 0) :
    start_point = mid_point
```

return mid_point

1.1 Test with an example

Use the bisection method to find a solution to the equation

$$x^2 + ln(x) = 0$$

using 4 iterations of the bisection method over the interval [0.5, 1]

Find maximum error bound ε , error measured to exact solution and plot f(x)

```
[2]: \# Define \ f(x)
f(x) = x^2 + ln(x)
```

```
[3]: our_solution = bisection_method(f, 0.5, 1, 4) our_solution
```

[3]: 0.656250000000000

Exact value

```
[4]: exact_solution = solve(f(x) == 0, x)
exact_solution
```

```
[4]: [x == -\operatorname{sqrt}(-\log(x)), x == \operatorname{sqrt}(-\log(x))]
```

As seen, sage can't find a numerical solution for the equation using solve function, here is the explination and alternative method from sage documentation

1.1.1 Solving Equations Numerically

Often times, solve will not be able to find an exact solution to the equation or equations specified. When it fails, you can use find_root to find a numerical solution. For example, solve does not return anything interesting for the following equation:

```
sage: theta = var('theta')
sage: solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]
```

On the other hand, we can use find_root to find a solution to the above equation in the range $0 < \varphi < \pi/2$:

```
sage: phi = var('phi')
sage: find_root(cos(phi)==sin(phi),0,pi/2)
0.785398163397448...
```

```
[5]: exact_solution = find_root(f, 0.5, 1)
exact_solution
```

[5]: 0.6529186404192052

Find error and maximum error bound ε

```
[6]: error = abs(our_solution - exact_solution)
error
```

[6]: 0.00333135958079478

```
[7]: maximum_error_bound = (1 - 0.5) / 2^4 maximum_error_bound
```

[7]: 0.0312500000000000

As seen, error is much less than maximum error bound

plot the function and the solution

```
[8]: p1 = plot (f, x)

p2 = line([(our_solution, -5), (our_solution, 1.5)], color = "green")

my_plot = p1 + p2

my_plot
```

verbose 0 (3835: plot.py, generate_plot_points) WARNING: When plotting, failed
to evaluate function at 100 points.
verbose 0 (3835: plot.py, generate_plot_points) Last error message: 'can't

convert complex to float'

[8]:

