

VISIÓN ARTIFICIAL

2020 - 02

Github: https://github.com/jwbranch/Vision_Artificial

MinasLAP: https://minaslap.net/course/view.php?id=510

JOHN W. BRANCH

Profesor Titular

Departamento de Ciencias de la Computación y de la Decisión

Director del Grupo de I+D en Inteligencia Artificial – GIDIA

jwbranch@unal.edu.co

ESTEBAN BRITO

Monitor dbrito@unal.edu.co

LOS MATERIALES DE ESTA ASIGNATURA, SE BASAN EN LA EVOLUCIÓN Y ELABORACIÓN DE ANTERIORES

SEMESTRES, EN LOS CUALES HAN CONTRIBUIDO Y COLABORADO, LOS PROFESORES DIEGO PATIÑO, CARLOS

MERA, PEDRO ATENCIO, ALBERTO CEBALLOS Y JAIRO RODRÍGUEZ, A LOS CUALES DAMOS CRÉDITO.

METODOLOGÍA ENSEÑANZA – APRENDIZAJE

Sesiones Remotas vía Google.Meet Sincrónicas y Asincrónicas

El <u>aprendizaje sincrónico</u> involucra estudios online a través de una plataforma. Este tipo de aprendizaje sólo ocurre en línea. Al estar en línea, el estudiante se mantiene en contacto con el docente y con sus compañeros. Se llama aprendizaje sincrónico porque la plataforma estudiantes permite que los pregunten al docente o compañeros de manera instantánea a través de herramientas como el chat o el video chat.

El <u>aprendizaje asincrónico</u> puede ser llevado a cabo online u offline. El aprendizaje asincrónico implica un trabajo de curso proporcionado a través de la plataforma o el correo electrónico para que el estudiante desarrolle. de acuerdo a las orientaciones del docente, de forma independiente. Un beneficio que tiene el aprendizaje asincrónico es que el estudiante puede ir a su propio ritmo.

EN LA CLASE DE HOY ...

PRE-PROCESAMIENTO DE IMÁGENES

- Ruido
- Operaciones por vecindarios
 - Onvolución
 - Filtrado espacial

ETAPAS DE UN SISTEMA DE VISIÓN ARTIFICIAL

EL PREPROCESAMIENTO

El objetivo del Preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su análisis e interpretación.

EL PREPROCESAMIENTO

Alteración píxel a píxel de la imagen (Operaciones Puntuales)

Operaciones Unarias

Operaciones Binarias

Operaciones basadas en múltiples puntos u Operaciones de Vecindad

EL RUIDO EN LAS IMÁGENES

- El ruido digital es algún tipo de información no deseada que contamina una imagen y/o degrada su calidad.
- Existen diferentes Tipos de Ruido cuyas características probabilísticas permiten clasificarlos en dos:
 - El Ruido Local Determinístico
 - Presenta una forma y apariencia constante para cada sistema en particular
 - Se manifiesta como una distribución constante y determinada dentro de la imagen
 - El Ruido Aleatorio que es producido por fuentes imprevistas y su distribución es aleatoria y cambiante con el tiempo
- El ruido se puede producir tanto en el proceso de adquisición de la imagen (por error en los sensores), así cómo por la transmisión (debido a interferencias en el canal de transmisión).

EL RUIDO EN LAS IMÁGENES

El Ruido Gaussiano (o normal): Modela el ruido producido por los circuitos electrónicos o ruido de los sensores por falta de iluminación y/o altas temperaturas.

Un ejemplo de este tipo de ruido es el provocado en el revelado de las películas.

EL RUIDO EN LAS IMÁGENES

El Ruido Gaussiano (o normal):

Ejemplo de Ruido producido con un ISO100 y un ISO1600

EL RUIDO EN LAS IMÁGENES

© El Ruido Uniforme toma valores en un determinado intervalo de forma equiprobable. Se da en un menor número de situaciones reales.

EL RUIDO EN LAS IMÁGENES

El Ruido Impulsivo (o Sal y Pimienta) se produce normalmente en la cuantificación que se realiza en el proceso de digitalización y es muy común en la transmisión.

Defectos que contribuyen a este tipo incluyen un CCD defectuoso, que realizará una captura errónea.

EL RUIDO EN LAS IMÁGENES

¿Cómo se puede suprimir el Ruido en las imágenes?

Las técnicas de supresión del ruido están estrechamente relacionadas con los algoritmos de suavizado y perfilado.

Aunque todas las técnicas suprimen el ruido satisfactoriamente, se prefieren los filtros espaciales ya que en general, tienen un mejor rendimiento con un menor costo en memoria y en tiempo de ejecución.

OJO: no existe un único FILTRO Lineal o NO Lineal que sea óptimo para todas las imágenes.

Convolución

La Convolución es la operación elemental usada para aplicar las operaciones de vecindad.

Su propósito es resaltar o atenuar los detalles espaciales de la imagen para mejorar su interpretación visual o facilitar su procesamiento posterior. Para ello se usan diferentes mascaras de convolución.

Convolución

Matemáticamente ... $I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$

K determina el número de vecinos que se tienen en cuenta y H es el kernel (o máscara de convolución)

Convolución

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

90	67	68	75	78
92	87	73	78	82
63	102	89	76	98
45	83	109	80	130
39	69	92	115	154

$$l'(2, 1) = (67*0) + (68*1) + (75*0) + (87*2) + (73*1) + (78*-2) + (102*0) + (89*-1) + (76*0)$$

= ???

Convolución

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

90	67	68	75	78
92	87	73	78	82
63	102	89	76	98
45	83	109	80	130
39	69	92	115	154

Imagen de Entrada (I)

	1	2	1
$\frac{1}{15}$ ×	2	3	2
	1	2	1

Kernel de Convolución (H)

Imagen de Salida (l')

$$I'(1,1) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} I(1+u,1+v) \cdot H(u,v) = \frac{\left[(90\times1) + (67\times2) + (68\times1) + (92\times2) + (87\times3) + (73\times2) + (63\times1) + (102\times2) + (89\times1) \right]}{15}$$

$$= 104$$

Convolución

$$I'(x,y) = \sum_{k=0}^{k} \sum_{k=0}^{k} I(x+u,y+v) \cdot H(u,v)$$

90	67	68	75	78
92	87	73	78	82
63	102	89	76	98
45	83	109	80	130
39	69	92	115	154

Imagen	de	Entrada
	(1)	

Kernel de Convolución (H)

Imagen de Salida (l')

$$I'(1,2) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} I(1+u,2+v) \cdot H(u,v) = \frac{\left[(67\times1) + (68\times2) + (75\times1) + (87\times2) + (73\times3) + (78\times2) + (102\times1) + (89\times2) + (76\times1) \right]}{15}$$

$$= 79$$

CONVOLUCIÓN - EJERCICIO

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

128	125	124	45	48
125	124	45	48	123
124	45	48	123	120
45	48	123	121	118
48	123	120	115	114

Imagen de Entrada

1	2	1
0	0	0
-1	-2	-1

Mascara de Convolución

Imagen de Salida

✗ CONVOLUCIÓN − TRATAMIENTO DE BORDES

- Un problema que se debe considerar cuando se realiza la convolución de una imagen es ...
- ¿Qué pasa con los bordes de la imagen?

?	?	?		
?	90	67	68	75
?	92	87	73	78
	63	102	89	76
	45	83	109	80

UNIVERSIDAD

DE COLOMBIA

CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: se tratan los borde la imagen con valor cero (zero-padding). No es conveniente si los bordes de la imagen son importantes.

0	0	0		
0	90	67	68	75
0	92	87	73	78
	63	102	89	76
	45	83	109	80

CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: duplicar (extend) los bordes de la imagen tantos píxeles como vecinos se consideren en la máscara de convolución.

90	90	67	68	75
90	90	67	68	75
92	92	87	73	78
63	63	102	89	76
45	45	83	109	80

CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: envolver la imagen (wrap), es decir, considerar como píxel contiguo al del borde izquierdo, el píxel del borde derecho y viceversa, así como con los del borde superior e inferior.

80	45	83	68	80	45
75	90	67	68	75	90
78	92	87	73	78	92
76	63	102	89	76	63
80	45	83	109	80	45
			68	75	90

CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: se puede empezar la convolución en la primera posición donde la ventana no sobresalga de la imagen (crop). En este caso, la imagen resultante será más pequeña que la original.

90	67	68	75
92	87	73	78
63	102	89	76
45	83	109	80

CONVOLUCIÓN - PROPIEDADES

Propiedad Conmutatividad de la Convolución:

$$I * H = H * I$$

- Esta propiedad indica que podemos pensar en la imagen como un kernel y en el kernel como la imagen y obtener el mismo resultado. En otras palabras, se puede dejar la imagen fija y deslizar el kernel o dejar el kernel fijo y deslizar la imagen.
- Propiedad Asociativa de la Convolución:

$$(I * H_1) * H_2 = I * (H_1 * H_2)$$

Esto significa que podemos aplicar H₁ a I seguido de H₂, o podemos convolucionar los kernels H₂ * H₁ y luego aplicar la convolución resultante a I

CONVOLUCIÓN - PROPIEDADES

Propiedad de Linealidad de la Convolución:

$$(a \cdot I) * H = a \cdot (I * H)$$

$$(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$$

Esta propiedad permite que podemos multiplicar la imagen por una constante antes o después de convolución, y también que podemos sumar dos imágenes antes o después de la convolución y obtener los mismos resultados.

FILTRADO ESPACIAL

- El Filtrado Espacial se emplea para resaltar o atenuar los detalles espaciales de una imagen. Existen diferentes tipos de filtros espaciales y existen diferentes clasificaciones para los mismos:
- Filtros Lineales (filtros basados en máscaras de convolución):
 - Filtros de Suavizado o Paso Bajo que permite el paso de frecuencias bajas
 - Filtros de Realzado o Paso Alto que permite el paso de frecuencias altas
 - Filtros Paso Banda que permite el paso de un rango intermedio de frecuencias
- Filtros NO Lineales (Filtros estadísticos)

FILTROS LINEALES PARA

SUAVIZADO

FILTRADO ESPACIAL - SUAVIZADO

- Los Filtros de Suavizado (o Paso Bajo) se usan para suavizar los detalles de la imagen, reducir el ruido y atenuar otros detalles irrelevantes de la imagen.
- El filtro de suavizado más simple, intuitivo y fácil de implementar es el Filtro de la Media. Este filtro permite reducir las variaciones de intensidad entre píxeles vecinos, calculando el promedio de los mismos.
- ¿Cómo funciona? Se visita cada píxel de la imagen y se reemplaza por el promedio de los píxeles vecinos.

Ejemplo de máscara de convolución de 3x3 para el filtro de la media

FILTRADO ESPACIAL - SUAVIZADO

El Filtro Media (o Promedio) promedia los valores de intensidad de los píxeles en el vecindario.

¿Cómo será la máscara de filtro de media de tamaño 5x5?

FILTRADO ESPACIAL - SUAVIZADO

- El Filtro de la Media tiene algunas desventajas, entre ellas:
- Dado que la media, como medida estadística, es sensible a los valores extremos, este filtro tiene a ser muy sensible a los cambios de intensidad en la vecindad.
- ② Como se promedian los valores de intensidad de píxeles vecinos, existe la posibilidad de que se generen valores de grises que originalmente no se encontraban en la imagen.
- El efecto de suavizado (o difuminado) se acentúa más conforme crece el tamaño de la mascara de convolución.

FILTRADO ESPACIAL - SUAVIZADO

Original

 7×7 15×15 41×41

FILTRADO ESPACIAL - SUAVIZADO

Imagen de entrada

Media de 5x5

Media de 11x11

Media de 21x21

FILTRADO ESPACIAL - SUAVIZADO

Existen otras máscaras para el Filtro de la Media que son "ponderadas", es decir, le dan más importancia a ciertos píxeles:

En algunos casos puede resultar útil aplicar este filtro de forma direccional:

1	
1	
1	

0	0	1
0	1	0
1	0	0

FILTRADO ESPACIAL - SUAVIZADO

Ejemplo de aplicación del Filtro de la Media en una sola dirección:

Media horiz. 31p

Media vert. 31p

FILTRADO ESPACIAL - SUAVIZADO

Otro de suavizado es el Filtro Gaussiano el cual se usa para suavizar imágenes y eliminar ruido. Es similar al filtro de media pero se usa una máscara diferente que se crea con base en una función gaussiana.

$$G(x,y) = rac{1}{2\pi\sigma^2} e^{-rac{x^2+y^2}{2\sigma^2}}$$

 $\ensuremath{\cancel{=}}$ Por ejemplo, una máscara de 5x5 con una σ = 1.0 es:

	1	4	7	4	1
$\frac{1}{273} \times$	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

FILTRADO ESPACIAL - SUAVIZADO

Al utilizarse una campana de Gauss el suavizado toma la forma de la campana. La varianza determina la amplitud de campana ... mayor varianza, mayor amplitud y viceversa.

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0

Esta no es una mascara Gausiana, y solo busca ilustrar su forma

FILTRADO ESPACIAL - SUAVIZADO

- Algunas de las propiedades del Filtro Gaussiano son:
- Su simetría rotacional lo que permite que el filtro tenga el mismo efecto en todas las direcciones
- El peso de los píxeles vecinos decrece con la distancia al centro, por lo que cuanto más alejado está un píxel, menos significativo es
- Preserva las bajas frecuencias y tiende a eliminar las altas (por ser un paso bajo)
- \bigcirc El grado de filtrado es controlado por σ , tal que a mayor σ mayor suavizado
- El filtro Gaussiano, en general, da mejores resultados que un simple promedio o media y se argumenta que la vista humana hace un filtrado de este tipo.

FILTRADO ESPACIAL - SUAVIZADO

Una de las ventajas del Filtro Gaussiano es que no produce los resultados "rectangulares" que suelen obtenerse con el Filtro de la Media cuando las máscaras son grandes:

Suavizado usando un Filtro Promedio

Suavizado usando un Filtro Gaussiano

FILTRADO ESPACIAL - SUAVIZADO

(a) The Lenna image; (b) (c) (d) filtered images using mean filtering with mask size 3, 7, 11; (e) (f) (g) filtered images using Gaussian filtering with different variances at 1, 5, 9.

FILTRADO ESPACIAL — SUAVIZADO

Media de 11x11

Media de 21x21

Gaussiana 21x21

Gaussiana 41x41

FILTRADO ESPACIAL - SUAVIZADO

Un ejemplo práctico (para efectos) del uso del Filtro Gaussiano:

FILTRADO ESPACIAL - SUAVIZADO

Creación del efecto de niebla usando un Filtro Gaussiano:

A. Imagen original

B. Suaviz. gauss. 40x40

Suma: 0,3**A**+0,7**B**

FILTRADO ESPACIAL - SUAVIZADO

El Filtro Gaussiano también es usado para dar resaltar ciertos objetos en la escena:

Preguntas

MOTIVACIÓN

- **✓ OBSERVE EL VIDEO Y RESPONDA A LAS SIGUIENTES PREGUNTAS:**
- ¿CUÁNTOS DATOS SE REQUIEREN PARA ENTRENAR UN SISTEMA DE VISIÓN ARTIFICIAL?
- ¿ES POSIBLE DECIR QUE LOS COMPUTADORES YA SOBREPASARON LA CAPACIDAD HUMANA?
- ¿QUÉ PROBLEMAS EVIDENCIAN LOS SISTEMAS DE VISIÓN ARTIFICIAL, Y EN GENERAL DE LOS SISTEMAS DE RECONOCIMIENTO DE PATRONES?

https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_co mputers to understand pictures?language=es

