Remarks

The similarity between the forms of solutions of Cauchy-Euler equations and solutions of linear equations with constant coefficients is not just a coincidence. For example, when the roots of the auxiliary equations for ay'' + by' + cy = 0 and $ax^2y'' + bxy' + cy = 0$ are distinct and real, the respective general solutions are

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$
 and $y = c_1 x^{m_1} + c_2 x^{m_2}$, $x > 0$. (7)

In view of the identity $e^{\ln x} = x$, x > 0, the second solution given in (7) can be expressed in the same form as the first solution:

$$y = c_1 e^{m_1 \ln x} + c_2 e^{m_2 \ln x} = c_1 e^{m_1 t} + c_2 e^{m_2 t},$$

where $t = \ln x$. This last result illustrates another fact of mathematical life: Any Cauchy–Euler equation can always be rewritten as a linear differential equation with constant coefficients by means of the substitution $x = e^t$. The idea is to solve the new differential equation in terms of the variable t, using the methods of the previous sections, and once the general solution is obtained, resubstitute $t = \ln x$. Since this procedure provides a good review of the Chain Rule of differentiation, you are urged to work Problems 43-48 in Exercises 3.6.

3.6 Exercises Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18, solve the given differential equation.

1.
$$x^2y'' - 2y = 0$$

$$4x^2y'' + y = 0$$

3
$$vv'' + v' = 0$$

4.
$$xy'' - 3y' = 0$$

$$5. x^2y'' + xy' + 4y = 0$$

1.
$$x^2y'' - 2y = 0$$
 2. $4x^2y'' + y = 0$ **3.** $xy'' + y' = 0$ **4.** $xy'' - 3y' = 0$ **5.** $x^2y'' + xy' + 4y = 0$ **6.** $x^2y'' + 5xy' + 3y = 0$

7.
$$x^2y'' - 3xy' - 2y = 0$$
 8. $x^2y'' + 3xy' - 4y = 0$

$$8. x^2y'' + 3xy' - 4y = 0$$

9.
$$25x^2y'' + 25xy' + y = 0$$
 10. $4x^2y'' + 4xy' - y = 0$

11.
$$x^2y'' + 5xy' + 4y = 0$$

11.
$$x^2y'' + 5xy' + 4y = 0$$
 12. $x^2y'' + 8xy' + 6y = 0$

12
$$2x^2y'' + 6xy' + y = 0$$

13.
$$3x^2y'' + 6xy' + y = 0$$
 14. $x^2y'' - 7xy' + 41y = 0$

15.
$$x^3y''' - 6y = 0$$

16.
$$x^3y''' + xy' - y = 0$$

17.
$$xy^{(4)} + 6y''' = 0$$

18.
$$x^4y^{(4)} + 6x^3y''' + 9x^2y'' + 3xy' + y = 0$$

In Problems 19-24, solve the given differential equation by variation of parameters.

19.
$$xy'' - 4y' = x^4$$

20.
$$2x^2y'' + 5xy' + y = x^2 - x$$

21
$$y^2y'' - xy' + y = 2$$

23.
$$x^2y'' + xy' - y = \ln x$$

19.
$$xy'' - 4y' = x^4$$
 20. $2x^2y'' + 5xy' + y = x^2 - 2$ **21.** $x^2y'' - xy' + y = 2x$ **22.** $x^2y'' - 2xy' + 2y = x^4e^x$ **23.** $x^2y'' + xy' - y = \ln x$ **24.** $x^2y'' + xy' - y = \frac{1}{x+1}$

In Problems 25-30, solve the given initial-value problem. Use a graphing utility to graph the solution curve.

25.
$$x^2y'' + 3xy' = 0$$
, $y(1) = 0$, $y'(1) = 4$

26.
$$x^2y'' - 5xy' + 8y = 0$$
, $y(2) = 32$, $y'(2) = 0$

27.
$$x^2y'' + xy' + y = 0$$
, $y(1) = 1$, $y'(1) = 2$

28.
$$x^2y'' - 3xy' + 4y = 0$$
, $y(1) = 5$, $y'(1) = 3$

29.
$$xy'' + y' = x$$
, $y(1) = 1$, $y'(1) = -\frac{1}{2}$

30.
$$x^2y'' - 5xy' + 8y = 8x^6$$
, $y(\frac{1}{2}) = 0$, $y'(\frac{1}{2}) = 0$

In Problems 31 and 32, solve the given boundary-value problem.

31.
$$xy'' - 7xy' + 12y = 0$$
, $y(0) = 0$, $y(1) = 0$

32.
$$x^2y'' - 3xy' + 5y = 0$$
, $y(1) = 0$, $y(e) = 1$

In Problems 33-38, find a homogeneous Cauchy-Euler differential equation whose general solution is given.

33.
$$y = c_1 x^4 + c_2 x^{-2}$$

34.
$$y = c_1 + c_2 x^5$$

35.
$$y = c_1 x^{-3} + c_2 x^{-3} \ln x$$

36.
$$y = c_1 + c_2 x + c_3 x \ln x$$

37.
$$y = c_1 \cos(\ln x) + c_2 \sin(\ln x)$$

38.
$$y = c_1 x^{1/2} \cos(\frac{1}{2} \ln x) + c_2 x^{1/2} \sin(\frac{1}{2} \ln x)$$

In Problems 39–42, use the substitution $y = (x - x_0)^m$ to solve the given equation.

39.
$$(x+3)^2y'' - 8(x+3)y' + 14y = 0$$

40.
$$(x-1)^2 y'' - (x-1)y' + 5y = 0$$

41.
$$(x+2)^2y'' + (x+2)y' + y = 0$$

42.
$$(x-4)^2 y'' - 5(x-4)y' + 9y = 0$$

In Problems 43–48, use the substitution $x = e^t$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients. Solve the original equation by solving the new equation using the procedures in Sections 3.3-3.5.

$$42 \quad x^2 x'' + 0 x x' - 20 y = 0$$

43.
$$x^2y'' + 9xy' - 20y = 0$$
 44. $x^2y'' - 9xy' + 25y = 0$

45.
$$x^2y'' + 10xy' + 8y = x^2$$

45.
$$x^2y'' + 10xy' + 8y = x^2$$
 46. $x^2y'' - 4xy' + 6y = \ln x^2$

47.
$$x^2y'' - 3xy' + 13y = 4 + 3x$$

48.
$$x^3y''' - 3x^2y'' + 6xy' - 6y = 3 + \ln x^3$$

Problems 49 and 50, use the substitution t = -x to solve the given initial-value problem on the interval $(-\infty, 0)$.

4.
$$4x^2y'' + y = 0$$
, $y(-1) = 2$, $y'(-1) = 4$

$$2x^2y'' - 4xy' + 6y = 0, \ y(-2) = 8, y'(-2) = 0$$

Contributed Problem

Jean-Paul Pascal, Associate Professor Department of Mathematics Ryerson University, Toronto, Canada

Temperature of a Fluid A very long cylindrical shell is formed by two concentric circular cylinders of different radii. A chemically reactive fluid fills the space between the concentric cylinders as shown in green in FIGURE 3.6.2. The inner cylinder has a radius of 1 and is thermally insulated, while the outer cylinder has a radius of 2 and is maintained at a constant temperature T_0 . The rate of heat generation in the fluid due to the chemical reactions is proportional to \mathbb{Z}/r^2 , where T(r) is the temperature of the fluid within the space bounded between the cylinders defined by 1 < r < 2. Under these conditions the temperature of the fluid is defined by the following boundary-value problem:

$$\begin{split} &\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) = \frac{T}{r^2}, \ 1 < r < 2, \\ &\frac{dT}{dr}\Big|_{r=1} = 0, \ T(2) = T_0. \end{split}$$

- (a) Find the temperature distribution T(r) within the fluid.
- **(b)** Find the minimum and maximum values of T(r) on the interval defined by $1 \le r \le 2$. Why do these values make intuitive sense?

FIGURE 3.6.2 Cylindrical shell in Problem 51

■ Discussion Problems

- 52. Find a Cauchy-Euler differential equation of lowest order with real coefficients if it is known that 2 and 1 - i are two roots of its auxiliary equation.
- **53.** The initial conditions $y(0) = y_0$, $y'(0) = y_1$, apply to each of the following differential equations:

$$x^{2}y'' = 0,$$

$$x^{2}y'' - 2xy' + 2y = 0,$$

$$x^{2}y'' - 4xy' + 6y = 0.$$

For what values of y_0 and y_1 does each initial-value problem have a solution?

54. What are the x-intercepts of the solution curve shown in Figure 3.6.1? How many x-intercepts are there in the interval defined by $0 < x < \frac{1}{2}$?

≡ Computer Lab Assignments

In Problems 55-58, solve the given differential equation by using a CAS to find the (approximate) roots of the auxiliary equation.

55.
$$2x^3y''' - 10.98x^2y'' + 8.5xy' + 1.3y = 0$$

56.
$$x^3y''' + 4x^2y'' + 5xy' - 9y = 0$$

57.
$$x^4y^{(4)} + 6x^3y''' + 3x^2y'' - 3xy' + 4y = 0$$

58.
$$x^4y^{(4)} - 6x^3y''' + 33x^2y'' - 105xy' + 169y = 0$$

In Problems 59 and 60, use a CAS as an aid in computing roots of the auxiliary equation, the determinants given in (10) of Section 3.5, and integrations.

59.
$$x^3y''' - x^2y'' - 2xy' + 6y = x^2$$

59.
$$x^3y''' - x^2y'' - 2xy' + 6y = x^2$$

60. $x^3y''' - 2x^2y'' - 8xy' + 12y = x^{-4}$

Nonlinear Equations

- **Introduction** The difficulties that surround higher-order nonlinear DEs and the few methods that yield analytic solutions are examined next.
- Some Differences There are several significant differences between linear and nonlinear Effective equations. We saw in Section 3.1 that homogeneous linear equations of order two or