

how to attach module to dee: some ideas to explore this summer

Jim Alexander

TFPX Mechanics mtg

2 May 2019

Summer Projects at Cornell

- Address "macro" thermal problem comprehensively. Define macro thermal problem: "performance of thermal pathway from ROCs and Sensors actually on a Dee" (conductance, resistance)
- Distinguish from micro thermal studies, defined by "measurements of intrinsic thermal conductivities in materials" – ie, Purdue. (conductivity, resistivity)
- Must demonstrate control of this critical problem by time of Final Design Review in September
- Resources for macro studies:
 - Postdoc (Jose), Grad Student (Sam), +5 undergrads
 - CO₂ cooling plant and associated infrastructure
 - RTDs, thermal camera, LabView, etc etc
 - 2 dees, plus miscellaneous scraps
 - ANSYS + smart students + Yadira's expertise
 - Tech support, shop support, 3D printing, etc etc

Basic issue: How to Attach Module to Dee: (1)

Basic issue: How to Attach Module to Dee: (2)

Alum Nitride layer eliminates conductivity issue and provide high-quality surface

Basic issue: How to Attach Module to Dee: (2a)

What happens to thermal grease after irradiation?

Alum Nitride layer eliminates conductivity issue and provide high-quality surface

Thermal score cards

Version 0

TFPX-0						@253K			
	thickness	circumf			Area				
Material	(mm)	erence	width (mm)	L (mm)	(mm^2)	k (W/m.K)	symmetry	kA/t (W/C)	R (C/W)
Sensor- Si	0.075		4.65	43.45	202	191	4	2058.140	0.0005
Bumpbonds	0.010		0.010		25	36	4	365.607	0.0027
ROC - Si	0.150		4.65	43.45	202	191	4	1029.070	0.0010
adhesive	0.100		4.65	43.45	202	2.00	4	16.163	0.0619
carbon Fiber thru	0.240		4.65	43.45	202	1.08	4	3.637	0.2750
Carbon Foam	2.000		2.33	43.45	87	20	4	2.990	0.3344
adhesive	0.100	0.25	1.41	43.45	61	2.00	4	4.914	0.2035
SS	0.125	0.25	1.41	43.45	61	12.5	4	24.570	0.0407
boundary layer	n/a	0.25	1.41	43.45	61	12000	4	2.948	0.3392
								total R	1.26
TFPX-1						@253K			

Version 5

						C ===::			
	thickness	circumf			Area				
Material	(mm)	erence	width (mm)	L (mm)	(mm^2)	k (W/m.K)	symmetry	kA/t (W/C)	R (C/W)
Sensor- Si	0.075		4.65	43.45	202	191	4	2058.140	0.0005
Bumpbonds	0.010		0.010		25	36	4	365.607	0.0027
ROC - Si	0.150		4.65	43.45	202	191	4	1029.070	0.0010
contact layer	n/a		4.65	43.45	202	5000	2	2.02043	0.4949
Al-N plate	0.100		4.65	43.45	202	200	2	808.17000	0.0012
adhesive	0.100		4.65	43.45	202	2.00	4	16.163	0.0619
carbon Fiber thru	0.240		4.65	43.45	202	1.08	4	3.637	0.2750
Carbon Foam	2.000		2.33	43.45	87	20	4	2.990	0.3344
adhesive	0.100	0.25	1.41	43.45	61	2.00	4	4.914	0.2035
SS	0.125	0.25	1.41	43.45	61	12.5	4	24.570	0.0407
boundary layer	n/a	0.25	1.41	43.45	61	12000	4	2.948	0.3392
								total R	1.76

Assumes contact conductance h=5000 W/m²K... may be impossible

Miscellaneous materials data

graphite sheets, 17um - 100um

Product Name	Test Method	Tgon 9017	Tgon 9025	Tgon 9040	Tgon 9070	Tgon 9100
Thickness (mm)	ASTM D374	0.017+/- 0.005	0.025+/- 0.005	0.04+/-0.005	0.07+/-0.01	0.1+/-0.01
Thermal X,Y conductivity direction	ASTM E1461	1650~1900	1500~1700	1150~1400	700~1000	500~700
(W/mK) Z direction		15	15	15	15	15
Thermal diffusivity (cm²/s)	ASTM E1461	9	9	8	7	7
Density (g/cm³)	ASTM D792	2.05~2.25	2.05~2.25	1.65~1.85	1.0~1.3	0.7~1.0

Indium foil, 2um – 100um

IN000040 Indium Foil

Thickness: 0.002mm, Purity: 99.8%, Support: Temporary Acrylic

IN000050 Indium Foil

Thickness: 0.0025mm, Purity: 99.8%, Support: Temporary Acrylic

IN000060 Indium Foil

Thickness: 0.003mm, Purity: 99.8%, Support: Temporary Acrylic

IN000070 Indium Foil

Thickness: 0.004mm, Purity: 99.8%, Support: Temporary Acrylic

IN000080 Indium Foil

Thickness: 0.005mm, Purity: 99.8%, Support: Temporary Acrylic

IN000090 Indium Foil

Thickness: 0.006mm, Purity: 99.8%, Support: Temporary Acrylic

slightly weird...

NASA rad hardness table

Extent of damage

Utility of organic materials

(Data from ref. 20)

Polyvinylidene fluoride (Kynar 400)

Styrene-butadiene (SBR)

Neoprene rubber

Silicone rubber

Figure 3. — Relative radiation resistance of organic materials based upon changes in physical properties.

YIIIIIII

///

1111

Basic issue: How to Attach Module to Dee: (3)

- What is Pressure ?
 - How much do we need?
 - How do we impose it?
 - How does thermal performance correlate with it?
- What is Adhesive ?
 - many options (Laird, Hysol, Araldite, loaded, what loading material, etc.) We will take guidance from Purdue
 - How do we achieve thin, uniform, performant* layers?
- What is Nothing
 ?
 - more specifically, what do we need to know about surface quality to achieve decent thermal performance in a dry contact?
- * CERN-glish for "high performing"

Contact conductance (1)

Fig. 7 Plot of thermal contact conductance estimated from the phase lag measurements as a function of compressive load for the Al-Si interface

Contact Conductance (2)

profile matching data are available.

How to push?

Yadira's picture frame

TEPX spider

Elephant

