Filed: 10/28/02

Applicant: Stefan Kwiatkowski et al.
Title: Dichlorinated Heterocyclic

Compounds And Methods Of Synthesis

Atty. Docket No.: CUTLER-08522 Sheet 1 of 7

$$\begin{array}{c} P \\ O = 0 \\ O =$$

$$\begin{array}{c} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{array} \quad \mathbf{z}$$

$$O = \left\langle \begin{array}{c} \mathbf{F} \\ \mathbf{S} - \mathbf{F} \\ \mathbf{C} \\ \mathbf{$$

				ritle:	D C	ichlo	rinate unds	d Het And	erocy Meth	clic ods C)f		į
	1		ŀ	Atty. [Docke	t No.:	CUI	LER-	08522	2 Sh	eet 2	of 7)
<u>~</u>													
ኢ ਜ													1
T	- 1												- 1
0		Σ									E E		
IC ₅₀		127 µM									93.2 µM		.
		-									<u>ი</u>		
100	-												
% INHIBITION50 0 50 1	-	121		\square									
IIBIT 0			1		<u> </u>	N		_	7	<u> </u>	<u> </u>	<u> </u>	
三三													
% IN -50	-												
100	-												
T	%	22	45	83	49	26	œ	9	27	62	61	71	64
		Σ	Σ	Σ	Σ	S	Ş	Mu E	<u></u>	Ŋ	Σ	MIT C	MI
N N		100 μМ	Mu 000	o Z	<u></u>	o Z	0	S T	<u>2</u>	<u>0</u>	8	300 1	1001
CONC.		우	5	8	70	(T)	_		2	2	5	ဗ	7
빝		2	N	8	2	8	8	2	0	8	8	8	0
Ì										_			
d d		18	BOV						3	HOM	≥		
rch*SPP.		70 BOV	ğ										
2		976	167						971	972	169		
BAI		439	44						439	439	441		
		1											
		匝							员	E E			
		P							7	7			
		SE							SE	SE			
		¥							A.	Æ			
									<u>H</u>	卫			
h		<u>S</u>							ES	ES			
TARGET		18)						0))		
1A		Ĭ							Ĭ	Ī			
		SC))						SO))		
		품							Ĭ	Ĭ			
		146000 PHOSPHODIESTERASE PDE1	•						148000 PHOSPHODIESTERASE PDE2	152000 PHOSPHODIESTERASE PDE3	•		
CAT.#		300							800		,		
ည		1	•						1	<u> </u>	-		
1		ہ ا		_						_		_	_

Applicant: Stefan Kwiatkowski et al.

Filed: 10/28/02

*BATCH: REPRESENTS COMPOUNDS TESTED CONCURRENTLY IN THE SAME ASSAY(S).

◆ DENOTES ITEM MEETING THE CRITERIA FOR SIGNIFICANCE

(NEGATIVE VALUES CORRESPOND TO STIMULATION OF BINDING OR ENZYME ACTIVITY) RESULTS WITH≥ 50% STIMULATION OR INHIBITION ARE BOLDFACED.

R = ADDITIONAL COMMENTS

BOV = BOVINE; HUM = HUMAN

FIG. 2A

				Appli Title:		Stefa Dichle Comp Synth	orinat ound	ed H	etero	cyclic	Of		
K ₁ n _H R				Atty.	Dock	et No	.: Cl	JTLEI	R-085	22 S	heet 3	s of 7	
IC ₅₀							127 µM						
†% INHIBITION 00 -50 0 50 100	* * * *	8	Ø	-	N					8	Ŋ	.53	
-100	%	36	22	8	32	69	20	92	09	32	18	9	36
CONC.		30 µM	10 µM	3 µM	100 µМ	100 µM	1000 нМ	300 µM	100 µМ	30 µM	10 µM	3 µM	100 µM
٣		2	0	8	8	8	0	8	8	7	8	7	7
BATCH*SPP.						43974 HUM							43975 BOV
TARGET					154000 PHOSPHODIESTERASE PDE4	156000 PHOSPHODIESTERASE PDE5							156100 PHOSPHODIESTERASE PDE6
CAT.#					154000	156000							156100

Applicant: Stefan Kwiatkowski et al.

Filed: 10/28/02

*BATCH: REPRESENTS COMPOUNDS TESTED CONCURRENTLY IN THE SAME ASSAY(S).

◆ DENOTES ITEM MEETING THE CRITERIA FOR SIGNIFICANCE

(NEGATIVE VALUES CORRESPOND TO STIMULATION OF BINDING OR ENZYME ACTIVITY) RESULTS WITH≥ 50% STIMULATION OR INHIBITION ARE BOLDFACED.

R = ADDITIONAL COMMENTS

BOV = BOVINE; HUM = HUMAN

FIG. 2B

Atty. Docket No.: CUTLER-08522 Sheet 4 of 7

Divisional Appln. of Prior Serial No.: 10/281,563 Filed: 10/28/02

Applicant: Stefan Kwiatkowski et al.

Title: Dichlorinated Heterocyclic Compounds And Methods Of

Synthesis

Atty. Docket No.: CUTLER-08522 Sheet 5 of 7

Filed: 10/28/02

Applicant: Stefan Kwiatkowski et al.
Title: Dichlorinated Heterocyclic
Compounds And Methods Of

Synthesis

Atty. Docket No.: CUTLER-08522 Sheet 6 of 7

Filed: 10/28/02

Applicant: Stefan Kwiatkowski et al.

Title: Dichlorinated Heterocyclic
Compounds And Methods Of

Synthesis

Atty. Docket No.: CUTLER-08522 Sheet 7 of 7