Bio-plausible learning rules for KANs and SNNs

By: Irene Acero, Hojjat Mokhtharabadi, Tomas Berjaga, Andrew Tien Anh Vu, Dennis Layh, Harshit

Pateria, Zeynab Razzaghpanah, Reagan Tshiangomba TAs: Patricia Rubisch, Aakash Agrawal

Branched Bioprop Brigade

Questions

 How different biologically-plausible learning rules behave across different types of neural architectures (MLPs, KANs, SNNs)?

Questions

- How different biologically-plausible learning rules behave across different types of neural architectures (MLPs, KANs, SNNs)?
- What learning rules would be suitable for what neural architectures in terms of performance and learning?

Questions

- How different biologically-plausible learning rules behave across different types of neural architectures (MLPs, KANs, SNNs)?
- What learning rules would be suitable for what neural architectures in terms of performance and learning?
- How representations of learning rules are close to each other and how they are clustered in a low dimensional space?

Kolmogorov Arnold Networks

- Based on Kolmogorov-Arnold representation theorem
- Learnable nonlinear activation functions on edges
- Sum operation on nodes
- Forward pass for layer $I \rightarrow x_{l+1,j} = \sum_{i=1}^{n} \tilde{x}_{l,j,i} = \sum_{i=1}^{n} \phi_{l,j,i}(x_{l,i})$

Spiking Neural Networks

- Mimic Biological Neural Spiking Networks.
- Inputs encoded as spikes
- IF model represents neuronal population

Methodology

- Dataset: MNIST
- Implement a simple KAN, MLP and SNN neural network (2 linear layers) with different biologically plausible learning rules
- Record the performance metrics during training and evaluation (loss, accuracy), bias (cosine similarity) and variance (SNR) for gradient of weights
- Compare the representations from the network's layer using dissimilarity matrices and project them into low dimensional space to see clusters

Learning performance across learning rules in MLP vs SNN

MLP using Hebbian

SNN using Hebbian

MLP using Backpropagation

SNN using Backpropagation

Learning performance across learning rules in MLP vs SNN

MLP using Kollen-Pollak

SNN using Kollen-Pollak

MLP using Feedback Alignment

SNN using Feedback Alignment

Result: training loss across learning rules in MLP vs SNN

Result: training accuracy across learning rules in MLP vs SNN

Result: Gradient variance across learning rules

Result: Gradient bias with respect to error backpropagation

RDMs across layers for Backprop SNN

Result: Compare representational dissimilarity matrices

RDMs across layers for Backprop MLP

fc1

10

-0.8

-0.6

-0.4

-0.2

20 30

Input Index

Result: Representational geometry of learning rules in SNN

KAN Results:

KAN w WP and HL Losses

KAN w Backprop WP and HL Losses

KAN w WP and HL Accuracies

KAN w Backprop WP and HL Accuracies

Conclusions

- Feedback alignment and Kolen-Pollack perform well on SNNs and MLPs (~70-80% accuracy) but are not as effective as backpropagation (> 90% accuracy)
- Hebbian learning failed to perform above chance in any of the tested architectures
- Only backprop achieved above chance performance for the KAN network

mgflip.com

