TEORIA DE GRAFOS E COMPUTABILIDADE

GRAFOS EULERIANOS E UNICURSAIS

Prof. Alexei Machado

CIÊNCIA DA COMPUTAÇÃO

- As pontes de Königsberg.
- É possível sair de um ponto, passar por todas as pontes uma única vez e retornar ao ponto inicial?

- Vértices: regiões da cidade
- □ Arestas: pontes

Vértices: regiões da cidade

□ Arestas: pontes

- É possível sair de uma região, passar por todas as pontes uma única vez e retornar ao ponto inicial?
- Problema: encontrar um caminho fechado que passe por todas as arestas uma única vez

- Problema do Explorador: um explorador deseja explorar todas as estradas entre um número de cidades. É possível encontrar um roteiro que passe por cada estrada apenas uma vez e volte a cidade inicial?
- Vértices: cidades
- Arestas: estradas

 Problema: encontrar um caminho fechado que passe por todas as arestas uma única vez

 Em grafos conexos, se é possível encontrar um caminho fechado que passe por todas as arestas uma única vez, dizemos que G é um grafo euleriano

 Em grafos conexos, se é possível encontrar um caminho fechado que passe por todas as arestas uma única vez, dizemos que G é um grafo euleriano

□ TEOREMA: Um grafo conexo é euleriano se, e somente se, todos os seus vértices tiverem grau par

Exercício

Encontre um caminho fechado que passe por todos os arcos. Se não for possível, induza um subgrafo para que ele se torne euleriano com o menor número de alterações possível

Algoritmo de Hierholzer (1873)

- □ Partindo do princípio que um grafo G é euleriano
 - Escolher um vértice v aleatório de G
 - Atravessar uma aresta aleatória v,w
 - Repetir o processo a partir de w até formar um caminho fechado C
 - Remover as arestas pertencentes a C
 - Se não sobram arestas, encontramos o caminho euleriano

Algoritmo de Hierholzer (1873)

- Caso contrário, escolher um vértice v' pertencente a C e com grau > 0 e repetir o processo para achar um novo caminho fechado C'
- □ <u>Unir</u> C' a C
- Repetir os passos até não sobrarem arestas

C:

C:

C: 5-2

C: 5-2-3

C: 5-2-3-4

C: 5-2-3-4-5

C: 5-2-3-4-5

C: 5-2-3-4-5

C': 2

C: 5-2-3-4-5

C': 2-1

C: 5-2-3-4-5

C': 2-1-4

C: 5-2-3-4-5

C': 2-1-4-2

C: 5-2-3-4-5

C': 2-1-4-2

3

CAMINHO:

C: 5-2-1-4-2-3-4-5

C: 5-2-1-4-2-3-4-5

C':1

3

CAMINHO:

C: 5-2-1-4-2-3-4-5

C':1-6

CAMINHO:

C: 5-2-1-4-2-3-4-5

C':1-6-5

CAMINHO:

C: 5-2-1-4-2-3-4-5

C':1-6-5-1

2

6

5

CAMINHO:

C: 5-2-1-4-2-3-4-5

C':1-6-5-1

5

CAMINHO:

C: 5-2-1-6-5-1-4-2-3-4-5

C':1-6-5-1

C: 5-2-1-6-5-1-4-2-3-4-5

Mapa do Departamento de Matemática

A figura abaixo ilustra o mapa do Departamento de Matemática de uma importante Universidade. A entrada principal está na parte norte do Departamento. Determine se é possível que uma pessoa possa andar pelo Departamento passando através de cada porta exatamente uma vez e terminando onde começou.

-

Grafos semieulerianos ou unicursais

 Um grafo é dito semieuleriano se existe um caminho aberto que passe por todas as arestas

 □ TEOREMA: um grafo é unicursal se e somente se existem exatamente dois vértices com grau ímpar

 □ TEOREMA: um grafo é unicursal se e somente se existem exatamente dois vértices com grau ímpar

TEOREMA: Em um grafo conexo G com exatamente 2K vértices de grau ímpar, existem K subgrafos disjuntos de arestas, todos eles unicursais, de maneira que juntos eles contêm todas as arestas de G

Grafos, em resumo

- □ Grafo euleriano: todos os vértices de grau par
- □ Grafo unicursal: dois vértices de grau ímpar
- Grafo qualquer: 2K vértices de grau ímpar (k-traçável)

 □ É possível fazer o desenho abaixo sem retirar o lápis do papel e sem retroceder?

 É possível fazer o desenho abaixo sem retirar o lápis do papel e sem retroceder?

É possível fazer a mesma coisa terminando no ponto de partida?

