0x04 - Flops and Metrics

ENGR 3410: Computer Architecture

Jon Tse

Fall 2020

Feedback - Workload

Feedback - Pace

Feedback - Understanding

Feedback - Unix

Verilog/UNIX/Docker Comfort Level

23 responses

Feedback - More Time On?

I wish we spent more time on...

23 responses

Feedback - Communication

Justified Expressions of Frustration

- I'm having issues with the lab.
- I have been debugging and can't figure it out.
- I'm stuck!

Actionable Requests for Help

- My full and half adder are working, but my ripple carry adder testbench reports failures. I don't understand why!
- iverilog gives me <X> error message!?

Feedback - Final Project

Scheduling Question

Lab Discussion

Review

S	R	Q
0	0	:(
0	1	1
1	0	0
1	1	Q

Review

 $\overline{\mathbf{R}}$

Today

Finish up State Holding Elements

Look at Examples of Design Metrics

How to evaluate said metrics

Digestible examples, not memorization fodder

Data "D" Latch

D	Ε	Q _{next}
0	0	Q_{curr}
1	0	Q_{curr}
0	1	0
1	1	1

	D	Ε	S	R	
•	X	0	1	1	
	0	1	1	0	
	1	1	0	1	
1					

g(f(x))

Data "D" Flip Flop

Two D-Latches in Series Opposite Enable Polarity

Edge Triggered D-Flip Flop

Functionally similar to prior dual latch flip flop

• Edge Triggered, not Pulse

- Implementation process dependent
 - Can be roughly three SR Latches
 - Can be dynamic logic learn in VLSt

Edge Triggered D-Flip Flop

 Cl	k,	D,	Q

Rising edge-

Clk	D	Q
↑	0	0

Other	

Χ

Edge Triggered D-Flip Flop

- Always has:
 - Clk, D, Q

Clk	D	Q
↑	0	0
↑	1	1
Other	X	Q

- May also have:
 - S, R, ~Q
 - Set and Reset are asynchronous (ignore clock)
 - Can be used to define initial conditions (e.g. at boot)

Reminder

Lots of different Flop/Latch types

Each type has little idiosyncrasies

Big Picture - Hold State, Time Matters

Can be clocked or enabled

Common Uses

In between processing stages

- "Debounce" inputs
 - Hide external noise / uncertainty from the inputs

Synchronization

Design Evaluation

Area

Delay/Performance

Energy/Power - Next Time

Full Adder

Calculate Propagation Delays

Multiple Paths? Choose Worst

	Α	В	Cin
S um	6	6	3
Cout	5	5	2

				_		
	Α	В	CI	СО	S	
,	0	0	0	0	0	
	0	0	1	0	1	
	0	1	0	0	1	
	0	1	1	1	0	
	1	0	0	0	1	
	1	0	1	1	0	
	1	1	0	1	0	
	1	1	1	1	1	

Multi-Bit Addition

Using previous slides' design, find worst prop delay

	Α	В	Cin
Sum	6	6	3
Cout	5	5	2

	A/B0	A/B1	A/B2
S0	9		(
C1			
S1	5+2	6]
C2	5+2	5	Y
S2	54283	5+3	0
C3	5+2+2	5+2	5

Multi-Bit Addition

Using previous slides' design, find worst prop delay

	Α	В	Cin
Sum	6	6	3
Cout	5	5	2

	A/B0	A/B1	A/B2	
S0	6	-	_	
C1	5	-	-	
S1	5+3	6	ı	
C2	5+2	5	-	
S2	5+2+3	5+3	6	
C3(5+2+2	5+2	5	

Full Adder as a LUT in Gates

- Only half, slide too small to show Sum
- Area Cost?
- Speed?

	Α	В	Cin
Sum	N	3	√
Cout	3	3	3

NAND -2

Timing with Alternate Topology

Using new prop delays, find total delay

	Α	В	Cin
Sum	3	3	3
Cout	3	3	3

	A/B0	A/B1	A/B2
S0	3	ı	-
C1	3	-	-
S1 (3+3	3	-
C2	3+3	3	-
S2	3+3+3	3+3	3
C3	3+3+3	3+3	3

Growth Rates

- What changes as a specific design 'grows'
 - Propagation delay
 - Silicon area

- Propagation Delay for an N bit adder?
 - Design 1: NAND Gates
 - Design 2: Small LUT

Growth Rates

- What changes as a specific design 'grows'
 - Propagation delay
 - Silicon area
- Propagation Delay for an N bit adder?
 Design 1: 2N + 5
 Design 2: 3N

Which design is faster? Larger?

Size in Silicon

- Physical Area drives manufacturing cost ____
 - # Chips per silicon wafer

- Number of inputs drives gate size
 - Two transistors per input
 - Slightly worse than linear growth
- Total Gate Inputs □ Rough Cost Estimate

 For a decoder with S select bits and D $- D = 2^{S}$

~> S

- Need
- S Inverters
 - D AND Gates with S inputs → ▷ S
- Total Size:

DS+S = 5(2° +1)=(D+1)land

Growth Characteristics

- This has 12 Gate Inputs
 - -4 AND2 (8)
 - 1 OR4 (4)
- Per decode line:
 - 1 AND2
 - 1 input of the OR
- (#Decode Lines)*3

LUT Growth Review

- For a LUT with Depth D and Output Width W
- Need
 - 1 Decoder
 - W Output Structures

• Total Size:

LUT Growth Review

- For a LUT with Depth D and Output Width W
- Need
 - -1 Decoder (D+1)log2(D)
 - W Output Structures W(3D)
- Total Size: (**D**+1)log2(**D**) + **W**(3**D**)

Single stage adder

 Returning to our adder example, how does the size of each implementation scale?

Full Adder

Calculate Propagation Delays

Multiple Paths? Choose Worst

	Α	В	Cin
Sum	6	6	3
Cout	5	5	2

	R	CL	l co	<u>s</u>
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder as a LUT in Gates

 Only shows Cout, need another LUT for Sum

How to build a LUT

	Α	В	Cin
Sum	3	3	3
Cout	3	3	<u>3</u>

Single stage adder

 Let's eliminate propagation delay by implementing an adder as large single LUT...

Adder Comparison

LUT for 32bit + 32bit = 32bit addition

- S = (32+32) = 64
- W = 32
- $D = 2^S = 18446744073709551616$

Total Size =
$$(D+1)\log_2(D) + W(3D)$$

2951479051793528258624 $\approx 3 \times 10^{21}$

Adder Comparison

- LUT for 32bit + 32bit = 32bit addition
 - Size $\approx 3 * 10^{21}$

- Chained Full Adder
 - 9 NAND2 Gates per bit
 - Size = 32 * 18 = 576
- Apollo Guidance Computer
 - 4100 NOR3

Better Gate Delay Estimation

- Model gate delay as proportional to the number of inputs in the gate
- Basic gates: NAND, NOR, NOT
- AND, OR, etc have "hidden" extra inverters
- e.g. for unit delay of 10:
 - 8-input NOR delay = 80
 - 8-input OR delay = 90 (extra inverter)