Evolutionary Game Theory

Patrick Roos

Department of Computer Science Universities of Maryland

CMSC 828N, Game Theory - Spring 2009

Evolutionary Game Theory (EGT) Origin in Biology

- Ronald A. Fisher
 - The Genetic Theory of Natural Selection 1930
 - Why equal sex ratio?
 - Frequency Dependent Individual Fitness
- Richard C. Lewontin
 - Evolution and the Theory of Games 1961
 - Explicitly: game theory → evolutionary biology
- Taylor and Jonker (1978) and Zeeman (1979)
 - Replicator Equations as evolutionary dynamic in EGT
- John Maynard Smith
 - "The Logic of Animal Conflict" Nature 1973 (G. R. Price)
 - Evolution and the Theory of Games 1982
 - Evolutionarily Stable Strategy (ESS)

Evolutionary Game Theory Spread to Other Fields

Economics, Sociology, Anthropology, Philosophy, etc.

Appeal:

- No "Rational Player" → players learn, adapt, and evolve
- Focus on Population Dynamics rather than individual 'solutions' based on a priori reasoning
- Evolution can be viewed as Cultural Evolution change in beliefs and norms (learning through imitation)

Evolutionary Game Theory

Maynard Smith's shifts from Classical GT

- Strategy
 - Species have strategy sets (not players)
 - Individuals inherit strategy possibly mutated
- Equilibrium
 - Evolutionarily Stable Strategy (ESS) in place of NE
 - Population using strategy A cannot be invaded by a small group using strategy B
- Player Interactions
 - Repeated, random pairings of agents in population

Hawk Dove Game

(Chicken Game if C > G)

- "The Logic of Animal Conflict"
- Population of birds fighting over food
- · Hawk: escalate battle
- Dove: retreat if opponent escalates

Payoff Matrix

$$\begin{array}{cccc} & H & D \\ H & (G-C)/2 & G \\ D & 0 & G/2 \end{array}$$

G = Payoff from food, C = Cost of injury

Frequency Dependent Fitness

- $W_{\sigma\mu}$ is payoff of σ when playing μ
- F_i is fitness of strategy i analogous to payoff received

If we have two strategies $\sigma \in S$ and $\mu \in S$, $\mu \neq \sigma$, then

$$F_{\sigma} = (1 - p) * W_{\sigma\sigma} + p * W_{\sigma\mu}$$

$$F_{\mu} = (1-p)*W_{\mu\sigma} + p*W_{\mu\mu}$$

where p is proportion of μ in population.

Evolutionary Stability

A strategy is *evolutionarily stable* if no other strategy can invade it under the influence of natural selection. We say a strategy μ can *invade* a population of σ if $F_{\mu} \geq F_{\sigma}$.

Strategy σ is an *evolutionary stable strategy* if, for all strategies $\mu \neq \sigma$,

$$W_{\sigma\sigma} \geq W_{\mu\sigma}$$

and if
$$W_{\sigma\sigma} = W_{\mu\sigma}$$
,

$$W_{\sigma\mu} > W_{\mu\mu}$$

- *S* = {Hawk, Dove}
- Is a strategy evolutionarily stable if G ≥ C?
 - $W_{HH} \geq W_{DH}$?

	Payoff Matrix		Payoff Matrix				
	Н	D		Н	D		
4	(G - C)/2	G	Η	1	3		
D	0	<i>G</i> /2	D	0	1.5		

- *S* = {Hawk, Dove}
- Is a strategy evolutionarily stable if G ≥ C?
 - $W_{HH} > W_{DH}$?
- · Hawk is evolutionarily stable

	Payoff Matrix		Pa	Payoff Matri			
	Н	D		Н	D		
Η	(G - C)/2	G	Н	1	3		
D	0	G/2	D	0	1.5		

• *S* = {Hawk, Dove}

Н

- Is a strategy evolutionarily stable if G < C?
 - $W_{HH} \geq W_{DH}$?
 - $W_{DD} \geq W_{HD}$?

Payoff Matr	ix	Payo	Payoff Matri	
Н	D		Н	D
(G - C)/2	G	Н	-1	2
0	G/2	D	Λ	1

- *S* = {Hawk, Dove}
- Is a strategy evolutionarily stable if G < C?
 - $W_{HH} > W_{DH}$?
 - $W_{DD} \geq W_{HD}$?
- Neither is evolutionarily stable
- So, what happens in a pop of H and D?

	Payoff Matr	Payoff Matrix			
	Н	D		Н	D
Η	(G - C)/2	G	Н	-1	2
D	0	<i>G</i> /2	D	0	1

Replicator Dynamics

Replicator

- Central actor in an evolutionary system
- Means of making approximately accurate copies of itself
- Gene, Organism, Strategy, Belief, Convention, etc.

Evolutionary Dynamic

- Process of change over time in the frequency distribution of replicators
- Darwinian natural selection:
 higher payoff → faster reproduction
- Replicator Equation is most popular way of specifying dynamic

Replicator Equation

If we express evolutionary success as the difference between the fitness of a replicator (player or strategy in evolutionary game theory) and the average fitness in the population, we obtain the ODE:

$$\dot{\mathbf{x}}_i = \mathbf{x}_i[\mathbf{F}_i(\mathbf{x}) - \theta(\mathbf{x})],$$

where \mathbf{x} is a vector holding the proportions of all player types in the population, \mathbf{x}_i is the proportion of player type i in the population, $\dot{\mathbf{x}}_i$ is the rate of change, $F_i(\mathbf{x})$ is the average fitness of a player of type i (depending on the population make-up \mathbf{x}), and $\theta(\mathbf{x})$ is the average fitness in the population.

- S = {Hawk, Dove}
- Is a strategy evolutionarily stable if G < C?
 - $W_{HH} > W_{DH}$?
 - $W_{DD} \geq W_{HD}$?
- Neither is evolutionarily stable
- So, what happens in a pop of H and D?

Payoff Matrix

Hawk Dove Under Replicator

Hawk Dove Under Replicator

Replicator Equation Rest Points

If we have an $n \times n$ matrix **U**, such that $F_i(\mathbf{x}) = (\mathbf{U}\mathbf{x})_i$, then the replicator equation

$$\dot{\mathbf{x}}_i = \mathbf{x}_i[\mathbf{F}_i(\mathbf{x}) - \theta(\mathbf{x})],$$

takes the form

$$\dot{\mathbf{x}}_i = \mathbf{x}_i[(\mathbf{U}\mathbf{x})_i - \mathbf{x} \cdot \mathbf{U}\mathbf{x}],$$

the rest points of which are the solutions of

$$(Ux)_1 = \dots = (Ux)_n$$

Hawk Dove Rest Point

State of population:
$$\mathbf{x} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

Payoff matrix:
$$\mathbf{U} = \begin{bmatrix} 0 & 7 \\ 2 & 6 \end{bmatrix}$$

Then,

$$\mathbf{U}\mathbf{x} = \begin{bmatrix} 0 & 7 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} = \begin{bmatrix} \frac{14}{3} & \frac{14}{3} \end{bmatrix}$$
$$(\mathbf{U}\mathbf{x})_1 = (\mathbf{U}\mathbf{x})_2$$

Evolutionary Stability Implication

Theorem

If \mathbf{x}_* is an evolutionarily stable strategy, then \mathbf{x}_* is an evolutionary equilibrium of the replicator dynamic. Moreover, if \mathbf{x}_* uses all strategies with positive probability, then σ is a globally stable fixed point.

Evolutionary equilibrium = asymptotically stable fixed point

Replicator Dynamic Implications

Theorem

Under replicator dynamic,

- If x_{*} is a Nash equilibrium of the evolutionary game, x_{*} is a fixed (rest) point of the replicator dynamic.
- If x_{*} is an evolutionary equilibrium of the replicator dynamic, then it is a Nash equilibrium.

Replicator Equation and ESS

Things to Note

- Frequency of strategy increases exactly when it has above average payoff
- Replicator dynamic does NOT mean agents adopt a best reply to the overall frequency distribution of strategies in previous population (bounded rationality?)
- If a strategy does not exist at any point, it will never exist in the future (no incorporation of mutation or innovation)
- Assumes no mistakes (generally does not make a difference in system behavior)
- Idealized version of how agent systems develop, number of players must be sufficiently large
- ESS assumes random pairings

Prisoner's Dilemma in EGT

Payoff Matrix

C D C 3 0 D 5 1

What happens under replicator Dynamics?

Prisoner's Dilemma in EGT

Payoff Matrix

- What happens under replicator Dynamics?
- D always takes over entire population : (
- D is evolutionarily stable

Cooperation in the IPD

Cooperation is a popular problem in EGT

- Robert Axelrod: The Evolution of Cooperation Science 1981
- Iterated games
- Tit for Tat (TFT)
- Reciprocity explains cooperation

TFT and evolutionary stability

Strategy σ is an *evolutionary stable strategy* if, for all strategies $\mu \neq \sigma$,

$$W_{\sigma\sigma} \geq W_{\mu\sigma}$$

and if $W_{\sigma\sigma} = W_{\mu\sigma}$,

$$W_{\sigma\mu} > W_{\mu\mu}$$

TFT evolutionarily stable ?

TFT and evolutionary stability

Strategy σ is an *evolutionary stable strategy* if, for all strategies $\mu \neq \sigma$,

$$W_{\sigma\sigma} \geq W_{\mu\sigma}$$

and if $W_{\sigma\sigma}=W_{\mu\sigma}$,

$$W_{\sigma\mu} > W_{\mu\mu}$$

- TFT evolutionarily stable ?
- Not under definition above (e.g. TF2T)
- TFT satisfies $W_{\sigma\sigma} \geq W_{\mu\sigma}$
- Bendor et. al.: Types of evolutionary stability and the problem of cooperation 1995

Cooperation in (Non-Iterated) PD

- Riolo et. al.: Evolution of cooperation without reciprocity. Nature, 2001
- Hales and Edmonds: Evolving Social Rationality for MAS using "Tags", 2003
- Pure cooperators and defectors
- · Agents matched up to play by tag
- Tags as well as strategy are inherited by offspring (with mutation)
- Emerging 'groups' of cooperators

Cooperation in (Non-Iterated) PD

Other explanations for cooperation:

- Kin selection
 - Hamilton 1964
 - Fitness of the behavior induced by a certain gene should include the behavior's effect on kin who might carry the same gene
- Group selection
 - A. Traulsen, M. A. Nowak 2006
 - Interaction within group
 - Agents reproduce proportional to fitness, but into their own group
 - · Groups split when large enough
- Punishment
 - Boyd and P. J. Richerson 2005
- ..

References

- Hofbauer and Sigmund, "Evolutionary Games and Population Dynamics", Cambridge University Press, 1998
- Herbert Gintis, "Game Theory Evolving", Princeton University Press, 2000

Thank You!