Post Graduate Program - Data Science In Partnership With Purdue University

Course Project - Data Science with Python California Housing Price Prediction

Submitted by:

Lavkush Singh

Submiffed to:

Purdue University - Simplilearn

Agenda

- > Introduction
- Dataset Summary
- Exploratory Data Analysis Column Variables
- > Exploratory Data Analysis Columns w.r.t New Feature
- Correlation Matrix
- Predictive Model Analysis
- > Predictive Model Summary
- > Appendix

Introduction

- California Census Data published by US Census Bureau
- Dataset has 10 types of metrics such as the population, median income, median housing price, and so on for each block group in California.
- There are 20,640 districts in the project dataset.
- This is **Supervised Regression** Problem
- This project aims at building a model of housing prices to predict median house values in California using the provided dataset.
- Linear Regression is used to report the results. However, Random Forest Regressor is also used for comparison purpose.

Dataset Summary

- > 20640 observations (rows) of 10 variables (columns)
- 'total_bedrooms' column had 207 missing values, median value is imputed
- All the columns were numerical except 'ocean_proximity' column which had 5 categories.
- One hot encoding was used to pre-process 'ocean_proximity' column
- Numerical column values varies in scale and range
- Data has skewed distributions. It is visually presented in the code file, however it is not accounted because the tasks given were predefined, and was not a part of 'Analysis Tasks to be performed'

Exploratory Data Analysis Column Variables

Understanding Data – Datatypes, Dimension, Null Values Summary

```
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
    Column
                       Non-Null Count
#
                                      Dtype
   longitude
                       20640 non-null float64
    latitude
                       20640 non-null float64
    housing median_age 20640 non-null int64
   total rooms
                 20640 non-null int64
   total bedrooms
                      20433 non-null float64
   population
                      20640 non-null int64
   households
                      20640 non-null int64
   median income 20640 non-null float64
    ocean proximity 20640 non-null
                                      object
    median house value 20640 non-null
                                      int64
dtypes: float64(4), int64(5), object(1)
```

Distribution - 'population', 'total_rooms'

Distribution – 'total_bedrooms', 'households'

Distribution – 'housing_median_age', 'median_income'

Distribution – 'median_house_value', 'ocean_proximity'

Exploratory Analysis Summary

- > We have 10 columns and 20640 entries in dataset
- 'total_bedrooms' column has total of 207 missing observations
- 'latitude' and 'longitude' are spatial data columns
- Columns ['population', 'total_rooms', 'total_bedrooms', 'households', 'median_income'] has similar distribution Right Tailed or Right Skewed Distribution
- Columns ['housing_median_age', 'median_house_value'] has uneven distribution.
- Column 'ocean_proximity' is categorical of which houses near '<1H Ocean' are highest and houses near 'Island' are lowest.</p>

Exploratory Analysis Summary

'latitude' and 'longitude' columns has been converted to categorical column using KMeans Clustering Algorithm with K = 6 based on the below elbow method plot. (Refer code file submitted)

Exploratory Data Analysis Features based on Latitude-Longitude Clusters

Exploratory Data Analysis Insights

- Latitude and Longitude data has been converted to six clusters (0 to 5), based on KMeans Clustering Algorithm
- Cluster 1 has highest number of instances, where as cluster 5 has lowest
- Similar trend follows for sum of 'median_house_value'. It means that the median house values (total) is more for cluster 1 and low for cluster 5
- Population living in cluster 2 are rich, meaning their mean income is highest, and lowest is for people living in cluster 5
- Oldest house of the city are located in cluster 1 and 2, where as newer houses have been constructed in rest of the clusters

Correlation Matrix

	7	lat_long_cluster	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	less_1h_ocean	inland	near_bay	ne
	at_long_cluster											
	ng_median_age	-0.12										
	total_rooms	0.04	-0.36									
	otal_bedrooms	0.02	-0.32	0.93								
	population	-0.02	-0.30	0.86	0.87							
	households	0.01	-0.30	0.92	0.97	0.91						
	nedian_income	-0.04	-0.12	0.20	-0.01	0.00	0.01					
	less_1h_ocean	-0.36	0.05	-0.00	0.02	0.07	0.04	0.17				
	inland	0.04	-0.24	0.03	-0.01	-0.02	-0.04	-0.24	-0.61			
	near_bay	0.19	0.26	-0.02	-0.02	-0.06	-0.01	0.06	-0.31	-0.24		
	near_ocean	0.30	0.02	-0.01	0.00	-0.02	0.00	0.03	-0.34	-0.26	-0.14	
\	n_house_value	-0.08	0.11	0.13	0.05	-0.02	0.07	0.69	0.26	-0.48	0.16	

Mean Absolute Error: 52473.02

Mean Squared Error: 5242501202.4

Root Mean Squared Error: 72405.12

Mean Absolute Percent Error: 75.05%

R Squared: 0.6

Train Data Metrics - Single feature Regression - 'median_income'

Mean Absolute Error: 62495.08

Mean Squared Error: 6991447170.18

Root Mean Squared Error: 83614.87

Mean Absolute Percent Error: 70,06%

R Squared: 0.48

Test Data Metrics - Single feature Regression - 'median_income'

Mean Absolute Error: 62990.87

Mean Squared Error: 7091157771.77

Root Mean Squared Error: 84209.01

Mean Absolute Percent Error: 69.95%

R Squared: 0.46

OLS Regression Results							
Dep. Variable: me	edian_hou	se_value	R	d:	0.616		
Model:		OLS	Adj. R	d:	0.616		
Method:	Least	Squares	F	ic:	3305.		
Date:	Tue, 13 9	Sep 2022	Prob (F-	c):	0.00		
Time:		12:20:56	Log-Li	•d: -	-11758.		
No. Observations:		16512		C: 2.35	2.353e+04		
Df Residuals:		16503		C: 2.36	2.360e+04		
Df Model:		8					
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	1.4418	0.247	5.844	0.000	0.958	1.925	
housing_median_age	0.1425	0.007	21.170	0.000	0.129	0.156	
total_bedrooms	0.0619	0.003	18.074	0.000	0.055	0.069	
median_income	0.5786	0.005	122.366	0.000	0.569	0.588	
lat_long_cluster	-0.0581	0.003	-17.578	0.000	-0.065	-0.052	
less_1h_ocean	-1.1409	0.247	-4.624	0.000	-1.625	-0.657	
inland	-1.6228	0.247	-6.575	0.000	-2.107	-1.139	
near_bay	-1.0255	0.247	-4.152	0.000	-1.510	-0.541	
near_ocean	-0.9451	0.247	-3.827	0.000	-1.429	-0.461	

Test Data Metrics - Random Forest Regressor

Mean Absolute Error: 62495.08

Mean Squared Error: 6991447170.18

Root Mean Squared Error: 83614.87

Mean Absolute Percent Error: 70.06%

R Squared: 0.48

Predictive (Linear) Model Summary

- Regression Model did not perform well, has RMSE of 72405.12, MAPE 75.05% with R Square value of 0.6
- Using only single feature (median_income), the model gives better result in terms of MAPE, but does error increases and the model explainability decreases. It has RMSE of 84209.01, MAPE 69.95% with R Square value of 0.46 for test data.
- Comparing the regression metrics for single feature (median_income), of train and test data, observed that the metrics are almost same, which implies that data does not have problem of overfitting and underfitting, therefore, feature engineering is done well.
- Random Forest Regressor, which is believed to be robust against outliers, was also build on the data, and it did not show much improvement. RMSE 83614.87, MAPE 70.06% and R Squared 0.48
- However, future scope of predictive modelling could be to test out other ensemble models, cross validation techniques, further feature engineering and to get more relevant data.

Appendix

- Please refer 'California Housing Price Prediction-Lavkush.pdf' file, submitted along with this PPT
- Because the code was developed in jupyter notebook, it has source code along with the detailed analysis and report
- All the graphs included in this presentation can also be found in that project report
- This PPT is just a glimpse of the analysis done, for quick reference. Detailed work is present in the project report – "California Housing Price Prediction-Lavkush.pdf".

Thank you!