

> Image Classification of Diabetic Retinopathy with CNN

Agenda

- Introduction
 - Diabetic Retinopathy
 - Project Goal
 - Data Set
- Task
- Code Presentation
- Result
- Discussion
- Conclusion

Introduction

Diabetic Retinopathy:

Vision-threatening damage to the retina of the eye caused by diabetes.

Project Goal:

Train a classifier to distinguish between the different stages of Diabetic Retinopathy and Evaluation.

HEALTHY EYE DIABETIC RETINOPATHY

https://www.allaboutvision.com/conditions/diabetic.htm

Introduction

Data set:

Classes: 1 normal and

4 classes of Diabetic Retinopathy's

images

Training Set:

600 – 900 images per class

Test Set:

100 images per class

Task

- Prepare the data using data augmentation
- Train the model using transfer learning
- Evaluate the model by losses and accuracies
- Generate the confusion matrix and the heat map

Code Presentation

See the link below:

https://colab.research.google.com/drive/1MejtLdiBBzUWYpRxldBdfkGIMBLYRTFS #scrollTo=VdQhpkw1eqxD

Result

Accuracy: 43.4%

Confusion matrix:

- Although the loss and accuracy improve with each epoch, there is no tendency to improve further
- To improve accuracy, consider the following:
 - 1. Ensure sufficient training data
 - Adjust hyperparameters
 e.g. learning rate, epochs, batch size
 - 3. Adjust data augmentation parameter
 - 4. Consider using different base models
 - 5. Adjust the current architecture e.g. dropout rates, normalization

• Review and exclude relatively ambiguous examples from the data For example, the case of misclassification, where an image label as class 4 is detected as class 2 because the features are not easily distinguishable.

 Reducing the classification categories from five levels to two or three may also improve the model accuracy.

Conclusion

Achieved 43% accuracy under the current training conditions

- To improve accuracy, ensure enough training data, adjust hyperparameters and data augmentation, try different base models, and tweak the architecture.
- If the accuracy enhanced, there is potential for using the model training in actual medical diagnoses, not only for eye conditions but also for other medical images like X-ray.

THANK YOU!

The severity of each grade of Diabetic Retinopathy

- None(0): no apparent retinopathy (no abnormalities).
- Mild(1): mild non-proliferative diabetic retinopathy (microaneurysms only).
- Moderate(2): moderate non-proliferative diabetic retinopathy (more than microaneurysms but less severe non-proliferative diabetic retinopathy).
- Severe(3): severe non-proliferative diabetic retinopathy (any extensive intraretinal hemorrhages in each of the four quadrants, definite venous beading in 2+ quadrants, prominent IRMA in 1+ quadrant, and no signs of proliferative retinopathy).
- Proliferative(4): proliferative diabetic retinopathy (one or more neovascularization and vitreous/preretinal hemorrhage).

As introduced in the datasets, the graders were CN-licensed ophthalmologists and had diabetic retinopathy diagnosis experience of at least 5 years.

- Although the loss and accuracy on the training set improve with each epoch, the loss and accuracy on the validation set do not change, indicating overfitting
- To avoid overfitting, consider the following:
 - Sufficient training data
 - Adjust data augmentation parameter
 - 3. Consider using simple base model
 - Adjust the current architecture by modifying dropout rates and adding normalization layers.

- Synthetic Data Generation: Use generative models like GANs (Generative Adversarial Networks) or VAEs (Variational Autoencoders) to generate synthetic data and augment the dataset.
- Applying Sample Weights: Assign weights to specific samples in the dataset so that the model can pay more attention to important samples.

