MA1522 Linear Algebra for Computing

AY 24/25 Sem 1 — github/omgeta

1. Vector Spaces

A vector space V is a nonempty set of vectors with the following properties for all vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and for all scalars c and d:

i.
$$\vec{u} + \vec{v} \in V$$

ii.
$$c\vec{u} \in V$$

iii.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

iv.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

v.
$$\vec{0} \in V$$
 such that $\vec{u} + \vec{0} = \vec{u}$

vi.
$$c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$$

vii.
$$(c+d)\vec{u} = c\vec{u} + d\vec{u}$$

viii.
$$c(d\vec{u}) = (cd)\vec{u}$$

ix.
$$1\vec{u} = \vec{u}$$

A subspace W of a vector space V is a subset with the following properties for all vectors $\vec{u}, \vec{v} \in W$ and for all scalars c:

i.
$$0 \in W$$
 (Includes zero vector)
ii. $\vec{u} + \vec{v} \in W$ (Closure over addition)
iii. $c\vec{u} \in W$ (Closure over multiplication)

A linear map from V to W is a function $T: V \to W$ with the following properties for linear maps R, S, T and for all scalars c, d for which the following are defined:

i.
$$S+T=T+S$$
 (Commutative)

ii. $(R+S)+T=R+(S+T)$ (Associative)

iii. $T+\mathbf{0}=T$ (Additive Identity)

iv. $T+(-T)=\mathbf{0}$ (Additive Inverse)

v. $c(dT)=(cd)T$ (Distributive)

vii. $c(S+T)=cS+cT$ (Distributive)

viii. $R(ST)=(RS)T$ (Associative)

ix. $R(S+T)=RS+RT$ (Distributive)

x. $(S+T)R=SR+TR$ (Distributive)

xi. $c(ST)=(cS)T=S(cT)$ (Associative)

xii. $TI=IT=T$ (Identity)

2. Vectors

For some vector $\vec{v} \in \mathbb{R}^n$, where $v_1, \ldots, v_n \in \mathbb{R}$:

$$\vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

Linear Combinations

For vectors $\vec{v}_1, \ldots, \vec{v}_p \in V$ and scalars c_1, \ldots, c_p , the vector \vec{y} given by:

$$\vec{y} = c_1 \vec{v}_1 + \ldots + c_p \vec{v}_p$$

is a linear combination of $\vec{v}_1, \ldots, \vec{v}_p$ with weights c_1, \ldots, c_p

Linear Span

For a set of vectors $S = \{\vec{v}_1, \dots, \vec{v}_p\} \subseteq V$, $\operatorname{Span}(S) \subseteq V$ denotes the set of all linear combinations of $\vec{v}_1, \dots, \vec{v}_p$ and is given by:

$$Span(S) = \{ \sum_{i=1}^{p} c_i \vec{v}_i | \vec{v}_i \in S, c_i \in K \}$$

Linear Dependence

For a set of non-zero vectors $S = \{\vec{v}_1, \dots, \vec{v}_p\} \subseteq V$, S is linearly dependent if and only if some vector \vec{v}_i is a linear combination of the others. Any set $\{\vec{v}_1, \dots, \vec{v}_p\} \in \mathbb{R}^n$ is linearly dependent if p > n.

A linearly independent set of vectors forms a matrix with a pivot position in every column.

Basis

For a set of non-zero vectors $S = \{\vec{v}_1, \dots, \vec{v}_p\} \subseteq V$, S is a basis for $W \subseteq V$ if:

- i. S is a linearly independent set, and
- ii. Span(S) = W

3. Matrices

For some matrix $A \in \mathbb{R}^{m \times n}$, where $a_{11}, \ldots, a_{mn} \in \mathbb{R}$:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

For some matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$:

$$AB = A \begin{bmatrix} \vec{b_1} & \cdots & \vec{b_p} \end{bmatrix}$$

$$= \begin{bmatrix} A\vec{b_1} & \cdots & A\vec{b_p} \end{bmatrix}$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$row_i(AB) = row_i(A) \cdot B$$

Additional properties:

- i. $AB \neq BA$ in general (Not commutative)
- ii. $\exists A, B \neq 0, AB = 0$ (Zero divisor)
- iii. A0 = 0A = 0 (Zero matrix)
- iv. A has zero row $\implies AB$ has zero row
- v. B has zero column $\implies AB$ has zero column

Transpose

For some matrix $A \in \mathbb{R}^{m \times n}$, the transpose $A^T \in \mathbb{R}^{n \times m}$ is given by:

$$A_{ij}^T = A_j i$$
$$row_i(A^T) = column_i(A)$$

Properties:

i.
$$(A^T)^T = A$$

ii.
$$(cA)^T = cA^T$$

iii.
$$(A+B)^T = A^T + B^T$$

iv.
$$(AB)^T = B^T A^T$$

$$v. A^T A = 0 \iff A = 0$$

Systems of Linear Equations

Systems of linear equations of the form:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_n$$

can be expressed in the matrix-vector form, $A\vec{x} = \vec{b}$, where $A \in \mathbb{R}^{m \times n}$ is the coefficient matrix and $\vec{x} \in \mathbb{R}^n$ is the solution vector:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

By finding the RREF of the augmented matrix, we can find the solution set for the original system.

Row Equivalence

Two matrices $A, B \in \mathbb{R}^{m \times n}$ are row equivalent if one can be changed to the other by a sequence of elementary row operations, that is:

$$B = E_k E_{k-1} \dots E_1 A \iff A \sim B$$

Elementary row operations:

- i. Add a multiple of a row to another row $(R_n + cR_m)$
- ii. Scale a row by a nonzero constant (cR_n)
- iii. Interchange two rows $(R_n \leftrightarrow R_m)$

Row Echelon Forms

A matrix is in row echelon form (REF) if:

- i. All nonzero rows are above all zero rows
- ii. Each pivot is to the right of the pivot of the row above it
- iii. All entries below a pivot are zeros

A matrix is in reduced row echelon form (RREF) if:

- i. All pivots are 1
- ii. All other entries in the pivot column are 0

Inverse

For some square matrix $A \in \mathbb{R}^{n \times n}$, A is invertible/nonsingular if there exists the inverse $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I$$

For matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Using row reduction, we can solve for A^{-1} by:

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

Properties:

- i. $(A^{-1})^{-1} = A$
- ii. $(cA)^{-1} = c^{-1}A^{-1}$
- iii. $(A^T)^{-1} = (A^{-1})^T$
- iv. $(AB)^{-1} = B^{-1}A^{-1}$
- v. $AB = AC \implies B = C$
- vi. $BA = CA \implies B = C$

Invertible Matrix Theorem

Let A be a $n \times n$ matrix. The following statements are equivalent:

- i. A is invertible
- ii. A^T is invertible
- iii. A has a left inverse, C, such that CA = I
- iv. A has a right inverse, D, such that AD = I
- v. RREF of A is I
- vi. Columns of A form a basis for \mathbb{R}^n
- vii. $A\vec{x} = \vec{0}$ has only the trivial solution
- viii. $A\vec{x} = \vec{b}$ has a unique solution, $\forall \vec{b} \in \mathbb{R}^n$
- ix. $Nul(A) = \{\mathbf{0}\} \iff nullity(A) = 0$
- x. $Col(A) = \mathbb{R}^n \iff rank(A) = n$
- xi. $det(A) \neq 0$
- xii. 0 is not an eigenvalue

Determinant

For some square matrix $A \in \mathbb{R}^{n \times n}$, the determinant $\det(A)$ or |A| is given by:

$$\det(A) = \sum_{j=1 \text{ or } i=1}^{n} a_{ij} A_{ij}$$

where A_{ij} is the (i, j) cofactor of A given by:

$$A_{ij} = (-1)^{i+j} \det(M_{ij})$$

where $M_{ij} \in \mathbb{R}^{(n-1)\times(n-1)}$ is the (i,j) matrix minor of A obtained by deleting the *i*th row and *j*th column of A.

For matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\det(A) = ad - bc$

Properties:

- i. $det(A^T) = det(A)$
- ii. det(AB) = det(A) det(B)
- iii. $\det(A^{-1}) = \frac{1}{\det(A)}$
- iv. $det(cA) = c^n det(A)$
- v. If A is triangular, det(A) is the product of the entries on the main diagonal of A

For the elementary matrix $E \in \mathbb{R}^{m \times n}$, $\det(A)$ is given by the type of elementary row operation:

- i. $R_n + cR_m \implies \det(E) = 1$
- ii. $cR_n \implies \det(E) = c$
- iii. $R_n \leftrightarrow R_m \implies \det(E) = -1$

Cramer's Rule

Let an invertible matrix A and any $b \in \mathbb{R}^n$, the unique solution of $A\vec{x} = \vec{b}$ has it's entries given by:

$$x_i = \frac{\det(A_i(\vec{b}))}{\det(A)}$$

where $A_i(\vec{b})$ is the matrix obtained by replacing column_i(A) with \vec{b} .

Adjoint

For some square matrix $A \in \mathbb{R}^{n \times n}$, the adjoint $\operatorname{adj}(A)$ is given by:

$$\operatorname{adj}(A) = (A_{ij})^T = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n_1} \\ A_{12} & A_{22} & \cdots & A_{n_2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

Properties:

- i. $A \cdot \operatorname{adj}(A) = \det(A) \cdot I$
- ii. A is singular \iff adj(A) is singular
- iii. adj(AB) = adj(B) adj(A)
- iv. $\det(\operatorname{adj}(A)) = \det(A)^{-1}$
- v. $adj(cA) = c^{n-1} adj(A)$
- vi. $adj(A^{-1}) = adj(A)^{-1}$
- vii. $adj(adj(A)) = (det(A))^{n-2}A$

Change of Basis

For bases $\mathcal{B} = \{\vec{b_1}, \dots, \vec{b_n}\}$ and $\mathcal{C} = \{\vec{c_1}, \dots, \vec{c_n}\}$ of a vector space \mathbb{R}^n , there is a unique change of basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}} \in \mathbb{R}^{n \times n}$ such that:

$$\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
$$(P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
$$\implies (P_{\mathcal{C} \leftarrow \mathcal{B}})^{-1} = P_{\mathcal{B} \leftarrow \mathcal{C}}$$

where $[\vec{x}]_{\mathcal{B}}$ and $[\vec{x}]_{\mathcal{C}}$ are the vector \vec{x} represented in the coordinate system used by the bases \mathcal{B} and mcC respectively.

Using row reduction, we can solve for $P_{C \leftarrow B}$ by:

$$\begin{bmatrix} \vec{c_1} & \cdots & \vec{c_n} & | & \vec{b_1} & \cdots & \vec{b_n} \end{bmatrix} \xrightarrow{RREF} \begin{bmatrix} I & | & P_{C \leftarrow B} \end{bmatrix}$$

When converting from a basis \mathcal{B} to the standard basis $\mathcal{E} = \{\vec{e_1}, \dots, \vec{e_n}\}$, change of basis matrix $P_{\mathcal{B}}$ is given by $P_{\mathcal{B}} = \begin{bmatrix} \vec{b_1} \cdots \vec{b_n} \end{bmatrix}$ such that:

$$\vec{x} = P_{\mathcal{B}} \left[\vec{x} \right]_{\mathcal{B}}$$
$$(P_{\mathcal{B}})^{-1} \vec{x} = \left[\vec{x} \right]_{\mathcal{B}}$$

4. Subspaces

Null Space

For any matrix $A \in \mathbb{R}^{m \times n}$, the null space $\operatorname{Nul}(A) \in \mathbb{R}^n$ is the solution space to the homogenous equation $A\vec{x} = \vec{0}$ given by:

$$Nul(A) = \{ \vec{x} \in \mathbb{R}^n | A\vec{x} = \vec{0} \}$$

Column Space

For any matrix $A = \begin{bmatrix} \vec{a_1} & \cdots & \vec{a_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$, the column space $\operatorname{Col}(A) \in \mathbb{R}^m$ is the set of all linear combinations of the columns of A given by:

$$\operatorname{Col}(A) = \operatorname{Span}(\{\vec{a_1}, \dots, \vec{a_n}\})$$
$$= \{\vec{b} \in \mathbb{R}^m : A\vec{x} = \vec{b} \text{ for some } \vec{x} \in \mathbb{R}^n\}$$

Row Space

For any matrix $A \in \mathbb{R}^{m \times n}$, the row space $\text{Row}(A) \in \mathbb{R}^n$ is the set of all linear combinations of the rows of A given by:

$$Row(A) = Col(A^T)$$

Dimension

If a vector space V is spanned by a finite set, V is finite-dimensional and the dimension $\dim(V)$ is the number of vectors in any basis for V.

$$\operatorname{rank}(A) = \dim(\operatorname{Col}(A)) = \dim(\operatorname{Row}(A))$$

$$= \operatorname{number} \text{ of pivot columns}$$

$$= \operatorname{number} \text{ of pivot rows}$$

$$\operatorname{nullity}(A) = \dim(\operatorname{Nul}(A))$$

$$= \operatorname{number} \text{ of free variables}$$

Rank-Nullity Theorem

Rank and nullity of any matrix $A \in \mathbb{R}^{m \times n}$ satisfy the equation:

$$rank(A) + nullity(A) = number of columns in A$$

5. Eigenvectors

For some square matrix $A \in \mathbb{R}^{n \times n}$, the nonzero eigenvector \vec{x} and its corresponding eigenvalue λ satisfy the equation:

$$A\vec{x} = \lambda \vec{x}$$

For some eigenvalue λ , the corresponding eigenvectors are found as the nontrivial solutions to $(A - \lambda I) = 0$ as elements of the corresponding eigenspace of A.

A scalar λ is an eigenvalue if and only if λ satisfies the characteristic equation:

$$\det(A - \lambda I) = 0$$

6. Dot Product

Dot product of two vectors, $\vec{u}, \vec{v} \in \mathbb{R}^n$ is given by:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$
$$= u_1 v_1 + \cdots + u_n v_n$$
$$= \|\vec{u}\| \|\vec{v}\| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

Length of \vec{v} is given by:

$$||v|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$

 $||v||^2 = \vec{v} \cdot \vec{v}$

Distance between \vec{u} and \vec{v} is given by:

$$\operatorname{dist}(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$$

Properties:

i.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

ii.
$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$$

iii.
$$(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{v})$$

iv.
$$\vec{u} \cdot \vec{u} \ge 0$$
, and $\vec{u} \cdot \vec{u} = 0 \iff \vec{u} = \vec{0}$

7. Orthogonality

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ be orthogonal vectors. The following statements are equivalent:

i.
$$\vec{u} \cdot \vec{v} = 0$$

ii.
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$$

iii.
$$\operatorname{dist}(\vec{u}, \vec{v}) = \operatorname{dist}(\vec{u}, -\vec{v})$$

A set of vectors is orthogonal if all vectors are mutually orthogonal.

A set of vectors is orthonormal if it is orthogonal and every vector is a unit vector.

Orthogonal Basis

An orthogonal set of nonzero vectors is linearly independent and a basis for the subspace it spans.

Any orthonormal set is automatically an orthonormal basis for the subspace it spans.

For any orthogonal basis $S = \{\vec{u_1}, \dots, \vec{u_n}\}$ of subspace V:

$$\vec{v} = \frac{\vec{v} \cdot \vec{u_1}}{\|u_1\|^2} \vec{u_1} + \dots + \frac{\vec{v} \cdot \vec{u_n}}{\|u_n\|^2} \vec{u_n}$$
$$[\vec{v}]_S = \begin{bmatrix} \vec{v} \cdot \vec{u_1} / \|u_1\|^2 \\ \vdots \\ \vec{v} \cdot \vec{u_n} / \|u_n\|^2 \end{bmatrix}$$

Orthogonal Matrix

For some square matrix $A \in \mathbb{R}^{n \times n}$, A is orthogonal if it has orthonormal columns (and equivalently rows) or:

$$A^T A = I$$
$$A^T = A^{-1}$$

Properties:

i.
$$||U\vec{x}|| = ||\vec{x}||$$

ii.
$$(U\vec{x}) \cdot (U\vec{y}) = \vec{x} \cdot \vec{y}$$

iii.
$$(U\vec{x}) \cdot (U\vec{y}) = 0 \iff \vec{x} \cdot \vec{y} = 0$$

Projection

For any two vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$, the projection of \vec{y} onto \vec{x} , proj $_{\vec{x}}\vec{y}$, is given by:

$$\operatorname{proj}_{\vec{x}} \vec{y} = (\vec{y} \cdot \hat{x})\hat{x}$$
$$= \frac{\vec{y} \cdot \vec{x}}{\|\vec{x}^2\|} \vec{x}$$

For any vector $\vec{y} \in \mathbb{R}^n$ and subspace $W \subseteq \mathbb{R}^n$ with orthogonal basis $\{\vec{v_1}, \dots, \vec{v_p}\}$, the projection of \vec{y} onto W, proj_w \vec{y} or \hat{y} , is given by:

$$\operatorname{proj}_{w} \vec{y} = \hat{y} = \frac{\vec{y} \cdot \vec{v_{1}}}{\|\vec{v_{1}}\|^{2}} \vec{v_{1}} + \dots + \frac{\vec{y} \cdot \vec{v_{p}}}{\|\vec{v_{p}}\|^{2}} \vec{v_{p}}$$

Gram-Schmidt Process

Let $X = \{x_1, \ldots, x_p\}$ be a basis for a nonzero subspace $W \subset \mathbb{R}^n$.

$$v_1 = x_1$$

$$v_2 = x_2 - \frac{\vec{x_2} \cdot \vec{v_1}}{\|v_1\|^2} v_1$$

:

$$v_p = x_p - \frac{\vec{x_p} \cdot \vec{v_1}}{\|v_1\|^2} v_1 - \frac{\vec{x_p} \cdot \vec{v_2}}{\|v_2\|^2} v_2 - \dots - \frac{\vec{x_p} \cdot \vec{v_{p-1}}}{\|v_{p-1}\|^2} v_{p-1}$$

Then $X' = \{v_1, \dots, v_n\}$ is an orthogonal basis for W

Least Squares Approximation

For any matrix equation $A\vec{x} = \vec{b}, A \in \mathbb{R}^{m \times n} \vec{b} \in \mathbb{R}^m$, the vector $\hat{x} \in \mathbb{R}^n$ is the least-squares solution such that:

$$\|\vec{b} - A\hat{x}\| \le \|\vec{b} - A\vec{x}\|, \forall \vec{x} \in \mathbb{R}^n$$

with the least squares solution \hat{x} given by the solution set of:

$$A^T A \vec{x} = A^T \vec{b}$$

8. Factorisations

LU Factorisation

Suppose matrix $A \in \mathbb{R}^{m \times n}$ can be reduced to row echelon form U without row interchanges, then A can be factorised as:

$$A = LU$$

$$= \begin{bmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ * & * & \cdots & 1 \end{bmatrix} \begin{bmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & * \end{bmatrix}$$

where upper triangular matrix $U \in \mathbb{R}^{m \times n}$ is given by:

$$U = REF(A)$$
, without row interchanges
= $E_k ... E_1 A$

and unit lower triangular matrix $L \in \mathbb{R}^{m \times m}$ is constructed from unit pivot columns of A (and additional columns of I if there are insufficient pivot columns) such that:

$$E_k \dots E_1 L = I$$

QR Factorisation

Suppose matrix $A \in \mathbb{R}^{m \times n}$ has linearly independent columns (full column rank), then A can be factorised as:

$$A = QR$$

where orthogonal matrix $Q \in \mathbb{R}^{m \times n}$ is constructed from orthonormal basis vectors for Col(A) given by:

Orthonormal Basis A' = Gram-Schmidt on A

$$Q = \left[\vec{a_1'} \cdots \vec{a_n'} \right]$$

and invertible upper triangular matrix $R = P_{A \to Q} \in \mathbb{R}^{n \times n}$ with positive diagonals given by:

$$R = Q^T A$$

ensuring R has positive diagonals by multiplying columns of Q by -1 as needed.

Diagonalisation

Suppose matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $\{\vec{v_1}, \dots, \vec{v_n}\}$, then A can be diagonalised as:

$$A = PDP^{-1}$$

where invertible change of basis matrix $P \in \mathbb{R}^{n \times n}$ is constructed from the linearly independent eigenvectors of A such that:

$$P = \left[\vec{v_1} \cdots \vec{v_n} \right]$$

and diagonal matrix $D \in \mathbb{R}^{n \times n}$ is constructed from the corresponding eigenvalues of the eigenvectors chosen for the columns of P in the same order:

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Orthogonal Diagonalisation

Suppose matrix $A \in \mathbb{R}^{n \times n}$ is symmetric, then A is orthogonally diagonalisable as:

$$A = PDP^T$$

where invertible change of basis matrix $P \in \mathbb{R}^{n \times n}$ is also orthogonal.

A is symmetric \iff A is orthogonally diagonalisable.

Spectral Theorem

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ has the following properties:

- i. A has n real eigenvalues, counting multiplicities
- ii. Dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation
- iii. Eigenspaces are mutually orthogonal, such that eigenvectors corresponding to different eigenvalues are orthogonal
- iv. A is orthogonally diagonalisable

Singular Value Decomposition (SVD)

Any matrix $A \in \mathbb{R}^{m \times n}$ with rank r can be decomposed as:

$$A = U\Sigma V^T$$

where "diagonal" matrix $\Sigma \in \mathbb{R}^{m \times n}$ is constructed with the decreasing r singular values $\sigma = \sqrt{\lambda}$ of A, for eigenvalues σ of the symmetric matrix $A^T A$, such that:

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$$

$$D = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix}$$

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r$$

and orthogonal matrix $V \in \mathbb{R}^{n \times n}$ is constructed with the corresponding right singular vectors of A, given by the corresponding unit eigenvectors $\{\vec{v_1}, \dots, \vec{v_n}\}$ of $A^T A$, such that:

$$V = \left[\vec{v_1} \cdots \vec{v_n} \right]$$

and orthogonal matrix $U \in \mathbb{R}^{m \times m}$ is constructed with the corresponding left singular vectors of A, such that:

$$\vec{u_i} = \frac{1}{\sigma_i} A \vec{v_i}$$

$$U = [\vec{u_1} \cdots \vec{u_m}]$$

During construction of U and V, if there are insufficient singular vectors to form an orthogonal matrix, additional orthonormal vectors can be formed from the Gram-Schmidt process.