

ISF Löwen

R. Hartung, M. Kleinert, M. Tiede, D. Bräckelmann, M. Überheide

Team ISF Löwen

Mitglieder

Robert Hartung

Matthias Kleinert

Michael Tiede

Daniel Bräckelmann

Matthias Überheide

Rollen

[TL, HW, SW, BO]

[SW, MK, BO]

[SW, MK, BO]

[BV, SW]

[BV]

Studiengänge

- Informatik
- Informations-Systemtechnik

TL = Teamleiter, HW = Hardware, SW = Software, BV = Bildverarbeitung,

MK = Modellbau / Konstruktion, BO = Beschaffung / Organisation

Unser Fahrzeug "Simba"

Unser Fahrzeug "Simba"

Gesamtkonzept - Hardware

Modularer Aufbau

- Elektronik (Platine, Lichtverkabelung)
- Modellbau (Karosserie nur als Deko)

Fahrzeug

- Tamiya TT-02 Chassis
- Eagle Racing Aufhängungsset + Lenkhebel von Square
 - Verbesserung des Lenkwinkels
- Harte Federsätze (einstellbar)
- Grip-Reifen und geringe Spurverbreiterung
- LRP Motor und Fahrtenregler (11,1 V)

Gesamtkonzept - Hardware

Plattform

- Hardware: UDOO (ARM v7 Prozessor mit 4 Kernen + Arduino)
- Leerlauf ohne Motor: 7 Watt Leistungsaufnahme
- Eigene Platine zur Verteilung
 - Sensoren sind abschaltbar
 - LEDs dimmbar (PWM)

Kamera

- UDOO Kamera
- Auflösung 640x480 @ 10 FPS

Sensorik

- Vorne
 - 2x Sensoren 4-30 cm (Parken und nahe Hindernisse)
 - 1x 20-150 cm (Mitte für weit entfernte Hindernisse)
- Hinten
 - 2x Sensoren 4-30 cm (Parken und nahe Hindernisse)
- Rechte Seite
 - 2x Sensoren 4-30 cm (Erkennung von Parklücken und Überholmanöver)

Gesamtkonzept - Software

Basis

- Eigenes Plugin-basiertes Framework (Java 1.8)
 - Profile (Laden von bestimmten Funktionen)
 - Einfaches Anbinden von neuen Plugins
- Schnittstellen
 - u. a. PluginActivator, Anbindung über Dependencies und Extension Points
- Wartbarkeit (Modularität, lose Kopplung, Dokumentation)
- Entzerrung auf GPU, Weiterverarbeitung auf CPU

Steuerung und Regelung

- Arduino
 - Buttons
 - Sensoren
 - Motorsteuerung

Gesamtkonzept - Kosten

• Fahrzeugwert: 919,09 Euro

Gesamtkonzept - Probleme

Probleme

- Scheduling (teils problematisch)
- Garbage Collection (Lösung z.B. Objekt-Pool)
- Wenig Ressourcen (RAM, Prozessorleistung)
 - Begrenzte Performance
- Kamera-Performance (Treiberseitig auf 30 FPS limitiert, statt möglichen 90 FPS)
 - Effektiv nur 10 FPS (nach vollständiger Bildverarbeitung)

Gesamtkonzept - Zukünftige Lösungen / Ausblick

Fahrzeug

Alu-Chassie statt Plastik

Hardware

- Bessere Performance
- Bessere Treiberunterstützung

Software

- Mehr Berechnungen auf der GPU (z.B. CUDA)
- Teile in C++ auslagern

Bildverarbeitung - Übersicht

Bildverarbeitung - Fischaugenlinse: Bild in RGB

Bildverarbeitung - Entzerrung

Bildverarbeitung - Kantendetektion

Bildverarbeitung - Punktauswahl

Bildverarbeitung - Umrechnung in Weltkoordinaten

Modellbildung auf Basis der Bildverarbeitung

Pfaddetektion

- Aus Linien zusammenhängende Pfade bilden
- Pfadglättung mit Douglas Peucker
- Segmentierung in Abschnitte gleicher Länge

Lokalisierung

- Prüfen der Pfade auf bekannte Kriterien (Abstand, Parallelität, Lage in der Ebene)
- Spurdifferenzierung (Links, Mitte, Rechts)

Trajektorienbildung

- Interpolation verschiedener Spuren
- Bildung einer Ideallinie Kubische Interpolation (Hermite Spline)
- Mittelung über mehrere Frames (ähnlich Gedächtnis)

Besonderheiten

Live Parametriesierung (max. Winkel und Segmentlänge, Abstände, etc.)

Modellbildung auf Basis der Bildverarbeitung

Modellbildung auf Basis der Bildverarbeitung

Einparken

Konzept

- Folgen einer Spur auf Basis der Kamera
- Möglichst geringer Offset zur rechten Spurbegrenzung
- Seitensensoren messen die Länge der Parklänge
- Bei Eignung der Parklücke wird eine Parkroutine gestartet
 - Voller Lenkeinschlag Rechts
 - Gerade zurück
 - Voller Lenkeinschlag Links
 - Fahrzeug gerade ziehen
 - Signalgebung

Anmerkung

Linienlaser zum Ausmessen von Parklücken montiert, jedoch nicht implementiert

Hinderniserkennung

Sensorik

- Infrarotsensoren messen den Abstand zu Hindernissen.
 - vorne f
 ür Notbremse
 - seitlich nur bei Rundkurs mit Hindernissen

Anmerkung

• Linienlaser zum Erkennen von Hindernissen über die Kamera montiert, jedoch nicht vollständig implementiert (Skeleton implementiert, aber zeitlich nicht geschafft)

