Coursework 7: STAT 570

Philip Pham

November 24, 2018

1. Create a binary variable Z_i , with $Z_i = 0$ corresponding to $Y_i \in \{0,1\}$ and $Z_i = 1$ corresponding to $Y_i \in \{2,3\}$. Let $q(x_i) = \mathbb{P}(Z_i = 1 \mid x_i)$, with $\mathbf{x}_i = \begin{pmatrix} 1 & x_{1i} & x_{2i} \end{pmatrix}^\mathsf{T}$, represent the probability of mental impairment being *Moderate* or *Impaired*, given covariates \mathbf{x}_i , $i = 1, \ldots, n = 40$. Provide a single plot that shows the association between $q(x_i)$ and x_{1i} and x_{2i} , on a response scale you feel is appropriate. Comment on the plot.

Figure 1: Orange denotes $Z_i = 1$ and blue denotes $Z_i = 0$.

Solution: See Figure 1. Conditioned on SES, those that are impaired $(Z_i = 1)$ have a greater number of life events on average.

2. Suppose $Z_i \mid q_i \sim \text{Binomial}(1, q_i)$ independently for $i = 1, \dots, n = 40$, where $q_i = q(x_i)$. Consider the logistic regression model,

$$q(x_i) = \log\left(\frac{q(\mathbf{x}_i)}{1 - q(\mathbf{x}_i)}\right) = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma} = \gamma_0 + \gamma_1 x_{1i} + \gamma_2 x_{2i}, \tag{1}$$

where $\boldsymbol{\gamma} = \begin{pmatrix} \gamma_0 & \gamma_1 & \gamma_2 \end{pmatrix}^{\mathsf{T}}$. Write down the log-likelihood $l(\boldsymbol{\gamma})$ for the sample z_i , $i = 1, \ldots, n$.

Solution: Solving for $q(\mathbf{x}_i)$ in Equation 1, we find

$$q\left(\mathbf{x}_{i}\right) = \frac{\exp\left(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\gamma}\right)}{1 + \exp\left(\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\gamma}\right)} = \frac{1}{1 + \exp\left(-\mathbf{x}_{i}^{\mathsf{T}}\boldsymbol{\gamma}\right)}.$$
 (2)

The likelihood function is $L(\gamma) = \prod_{i=1}^{n} (q(\mathbf{x}_i))^{z_i} (1 - q(\mathbf{x}_i))^{1-z_i}$, so the log-likelihood function becomes

$$l(\gamma) = \log L(\gamma) = \sum_{i=1}^{n} (z_i \log q(\mathbf{x}_i) + (1 - z_i) \log (1 - q(\mathbf{x}_i)))$$

$$= \sum_{i=1}^{n} \left(z_i \log \frac{q(\mathbf{x}_i)}{1 - q(\mathbf{x}_i)} + \log (1 - q(\mathbf{x}_i)) \right)$$

$$= \sum_{i=1}^{n} \left(z_i \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma} + \log \frac{1}{1 + \exp(\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma})} \right) = \sum_{i=1}^{n} -\log (1 + \exp((1 - 2z_i) \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\gamma})).$$
(3)

3. Fit the model described in the previous part, and give confidence intervals for the odds ratios

Carefully interpret these odds ratios.

	Estimate	Standard error	95% CI lower bound	95% CI upper bound
γ_0	-0.925065	0.723346	-2.342797	0.492666
γ_1	-1.629731	0.780849	-3.160167	-0.099296
γ_2	0.309899	0.147920	0.019980	0.599818

Table 1: Estimates and confidence intervals for $\hat{\gamma}$ using maximum likelihood estimation.

Solution: Taking the derivative of Equation 3, we have the score function:

$$S(\gamma) = \nabla^{\mathsf{T}} l(\gamma) = \sum_{i=1}^{n} \frac{2z_{i} - 1}{1 + \exp\left((1 - 2z_{i}) \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\gamma}\right)} \exp\left((1 - 2z_{i}) \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\gamma}\right) \mathbf{x}_{i}.$$

$$= \sum_{i=1}^{n} \frac{2z_{i} - 1}{1 + \exp\left((2z_{i} - 1) \mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\gamma}\right)} \mathbf{x}_{i}$$

$$= X^{\mathsf{T}} \left(\mathbf{z} - \mathbf{q}(X)\right), \tag{4}$$

where $\mathbf{z} = \begin{pmatrix} z_1 & z_2 & \cdots & z_n \end{pmatrix}^\mathsf{T}$ and $\mathbf{q}(X) = \begin{pmatrix} q_1 & q_2 & \cdots & q_n \end{pmatrix}^\mathsf{T}$. From Equation 4, we have the Fisher information matrix:

$$I_{n}(\gamma) = \operatorname{var}(S(\gamma) \mid \gamma) = \mathbb{E}[S(\gamma)S(\gamma)^{\mathsf{T}} \mid \gamma]$$

$$= \mathbb{E}[X^{\mathsf{T}}(\mathbf{z} - \mathbf{q}(X))(\mathbf{z} - \mathbf{q}(X))^{\mathsf{T}}X \mid \gamma]$$

$$= X^{\mathsf{T}}\mathbb{E}[(\mathbf{z} - \mathbf{q}(X))(\mathbf{z} - \mathbf{q}(X))^{\mathsf{T}} \mid \gamma]X$$

$$= \sum_{i=1}^{n} q(\mathbf{x}_{i})(1 - q(\mathbf{x}_{i}))\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}} = \sum_{i=1}^{n} \frac{1}{2 + \exp(-\mathbf{x}_{i}^{\mathsf{T}}\gamma) + \exp(\mathbf{x}_{i}^{\mathsf{T}}\gamma)}\mathbf{x}_{i}\mathbf{x}_{i}^{\mathsf{T}}, (5)$$

where we have used independence of the observations and variance of the binomial distribution to get the last line.

We solve Equation 4, $S\left(\hat{\gamma}\right)=\mathbf{0},$ to get an estimate for $\gamma.$ Using Equation 5, we have that

$$\hat{\gamma} \xrightarrow{\mathcal{D}} \mathcal{N}\left(\gamma, I_n^{-1}\left(\hat{\gamma}\right)\right),$$
 (6)

that is, $\hat{\gamma}$ is asymptotically normal.

Using Equation 6, we obtain the estimates and intervals in Table 1.

The predicted log odds ratio given some \mathbf{x}_i is

$$\hat{\theta}_i = \mathbf{x}_i^{\mathsf{T}} \hat{\boldsymbol{\gamma}},\tag{7}$$

which will have variance

$$\operatorname{var}\left(\hat{\theta}_{i}\right) = \mathbf{x}_{i}^{\mathsf{T}} \operatorname{var}\left(\hat{\boldsymbol{\gamma}}\right) \mathbf{x}_{i} \approx \mathbf{x}_{i}^{\mathsf{T}} I_{n}^{-1}\left(\hat{\boldsymbol{\gamma}}\right) \mathbf{x}_{i}, \tag{8}$$

using Equation 6.