

WHAT IS CLAIMED IS:

- 1 1. An electromagnetic interference cancellation system comprising
2 a control signal generation unit having a counter that counts n-bit signals to
3 output a first output signal of n bits with a count value, and a second output signal
4 having a level that is opposite to the first output signal, the control signal generation
5 unit alternately outputs the first and second output signals as control signals according
6 to a cycle of the counter;
7 a voltage control unit that outputs a voltage having a step index level
8 corresponding to the count value of the control signal; and
9 an oscillator that generates a clock signal having a frequency corresponding to
10 the voltage outputted from the voltage control unit.
- 1 2. The system of claim 1, wherein the counter comprises n first flip-flops that
2 output 1 bit of the first and second output signals respectively, the flip-flops being
3 coupled to each other in series, and
4 the first flip-flop is triggered to reverse an output at an edge where a first
5 output signal of a previous first flip-flop becomes a first level.
- 1 3. The system of claim 2, wherein the control signal generation unit
2 comprises:
3 a second flip-flop coupled to a final first flip-flop of the counter in series so as
4 to reverse an output at an edge where a first output signal of the final first flip-flop
5 becomes the first level; and
6 a multiplexer that alternately outputs the first and second output signals of the
7 n first flip-flops whenever the output level of the second flip-flop is reversed.
- 1 4. The system of claim 3, wherein the multiplexer comprises a first
2 transmission gate for passing the first output signal when the first and second output
3 signals of the first flip-flop are inputted and the output of the second flip-flop is a high

4 level, and a second transmission gate for passing the second output signal when the
5 output of the second flip-flop is a low level.

1 5. The system of claim 1, wherein the voltage control unit generates step index
2 voltage having $2n$ voltage levels corresponding to the count values, and the step index
3 voltage increases and decreases according to the cycle of the counter.

1 6. The system of claim 1, wherein the oscillator receives the voltage of the
2 voltage control unit as a high level voltage, and generates a clock signal having a
3 frequency which is in inverse proportion to a difference between the high level
4 voltage and a reference low level voltage.

1 7. An EMI cancellation system comprising:

2 a control signal generation unit comprising a counter having n first flip-flops
3 that respectively output first and second output signals with opposite levels, the n first
4 flip-flops being coupled to each other in series and each first flip-flop reversing
5 outputs at every cycle of the first and second signals of a previous first flip-flop, a
6 second flip-flop that outputs third and fourth output signals having opposite levels and
7 being reversed at every cycle of the first and second output signals of a final first flip-
8 flop of the counter, and a multiplexer for passing the first signals of the n first flip-
9 flops as a control signal of n bits when the third output signal of the second flip-flop is
10 a first level and passing the second output signals of the n first flip-flops as the control
11 signal of n bits when the third output signal of the second flip-flop is a second level;

12 a voltage control unit that outputs voltages having respective step index levels
13 corresponding to count values of n -bit control signals; and

14 an oscillator that generates a clock signal having a frequency corresponding to
15 the step index level of the voltage of the voltage control unit.

1 8. A method for canceling electromagnetic interference by generating clock
2 signals having various frequencies in a predetermined range, the method comprising:

3 alternately outputting an n -bit signal and a reverse signal of the n -bit signal at
4 every cycle of the counter, the n -bit signal being counted by an n -bit counter;

5 generating an output voltage having a step index level which increases or
6 decreases stepwise according to a count value of the control signal; and

7 generating a clock signal having a frequency corresponding to the level of the
8 output voltage.

1 9. The method of claim 8, wherein the step index level of the output voltage
2 alternately increases and decreases according to the cycle of the counter.

1 10. The method of claim 8, wherein the clock signal is generated by an
2 oscillator which receives the output voltage as a high level voltage such that the clock
3 signal has a pulse width proportional to a difference between the high level voltage
4 and a reference low level voltage.