$11n_{94} (K11n_{94})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 16u^{18} - 65u^{17} + \dots + 39b + 33, \ -20u^{18} + 91u^{17} + \dots + 39a - 129, \ u^{19} - 5u^{18} + \dots + 10u^2 - 3 \rangle \\ I_2^u &= \langle u^9 + 2u^8 - 4u^6 - 2u^5 + 4u^4 + 3u^3 - u^2 + b + 1, \ -u^9 - 2u^8 + u^7 + 5u^6 + u^5 - 7u^4 - 3u^3 + 4u^2 + a + u - 2u^{10} + 2u^9 - 4u^7 - 2u^6 + 4u^5 + 4u^4 - u^3 - u^2 + u + 1 \rangle \\ I_3^u &= \langle -2u^9 - 3u^8 - u^7 + 5u^6 - 3u^4 - u^2a - 2u^3 - au + 6u^2 + b - 2u - 3, \ -3u^9a + 2u^9 + \dots - 4a + 2, \ u^{10} + 2u^9 + u^8 - 3u^7 - 2u^6 + 2u^5 + 3u^4 - 2u^3 - u^2 + 2u + 1 \rangle \\ I_4^u &= \langle b - 1, \ a^2 - a - 1, \ u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 52 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 16u^{18} - 65u^{17} + \dots + 39b + 33, -20u^{18} + 91u^{17} + \dots + 39a - 129, u^{19} - 5u^{18} + \dots + 10u^2 - 3 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.512821u^{18} - 2.33333u^{17} + \dots + 2.12821u + 3.30769 \\ -0.410256u^{18} + 1.66667u^{17} + \dots - 1.76923u - 0.846154 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.923077u^{18} - 4u^{17} + \dots + 3.89744u + 4.15385 \\ -0.410256u^{18} + 1.66667u^{17} + \dots - 1.76923u - 0.846154 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.153846u^{18} - 0.794872u^{16} + \dots - 2.46154u - 0.307692 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.10256u^{18} - 8u^{17} + \dots + 7.35897u + 10.4615 \\ -3.94872u^{18} + 18.3333u^{17} + \dots - 6.15385u - 10.7692 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.307692u^{18} + 2.66667u^{17} + \dots - 3.41026u - 1.38462 \\ 6.20513u^{18} - 25.6667u^{17} + \dots + 0.384615u + 11.9231 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.41026u^{18} - 5.33333u^{17} + \dots + 1.56410u + 2.84615 \\ -1.12821u^{18} + 3.33333u^{17} + \dots + 2.38462u + 0.923077 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.41026u^{18} - 5.33333u^{17} + \dots - 1.56410u + 2.84615 \\ -1.12821u^{18} + 3.33333u^{17} + \dots + 2.38462u + 0.923077 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{389}{39}u^{18} \frac{140}{3}u^{17} + \dots \frac{38}{13}u + \frac{356}{13}u^{18} + \dots + \frac{380}{13}u^{18} + \dots + \frac{380}{13}u^{18$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{19} + 5u^{18} + \dots - 10u^2 + 3$
c_2	$u^{19} + 5u^{18} + \dots + 60u + 9$
c_3	$u^{19} + 8u^{17} + \dots - u + 5$
c_4, c_6	$u^{19} + u^{18} + \dots + 4u + 1$
	$u^{19} + 20u^{17} + \dots + 3u + 1$
c_8, c_{11}	$u^{19} - 18u^{17} + \dots + 13u + 1$
<i>c</i> ₉	$u^{19} - 14u^{18} + \dots - 30u + 3$
c_{10}	$u^{19} - 21u^{18} + \dots - 1792u + 512$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{19} - 5y^{18} + \dots + 60y - 9$
c_2	$y^{19} + 23y^{18} + \dots - 1872y - 81$
<i>c</i> ₃	$y^{19} + 16y^{18} + \dots - 109y - 25$
c_4, c_6	$y^{19} - 7y^{18} + \dots + 16y - 1$
	$y^{19} + 40y^{18} + \dots + 7y - 1$
c_8, c_{11}	$y^{19} - 36y^{18} + \dots + 39y - 1$
<i>c</i> ₉	$y^{19} + 38y^{17} + \dots + 42y - 9$
c_{10}	$y^{19} - 9y^{18} + \dots + 2162688y - 262144$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.350966 + 0.908273I		
a = 0.497187 - 0.151368I	2.38098 - 2.19136I	4.02486 + 1.79521I
b = -0.408408 - 0.715459I		
u = -0.350966 - 0.908273I		
a = 0.497187 + 0.151368I	2.38098 + 2.19136I	4.02486 - 1.79521I
b = -0.408408 + 0.715459I		
u = -0.779496 + 0.468978I		
a = -0.091107 + 0.590275I	0.99904 + 3.33102I	2.55789 - 7.26755I
b = 0.602057 + 0.798290I		
u = -0.779496 - 0.468978I		
a = -0.091107 - 0.590275I	0.99904 - 3.33102I	2.55789 + 7.26755I
b = 0.602057 - 0.798290I		
u = 1.077080 + 0.271096I		
a = 0.401351 + 0.468581I	-2.28578 - 0.47591I	-3.82840 + 3.46313I
b = -0.142788 + 0.130045I		
u = 1.077080 - 0.271096I		
a = 0.401351 - 0.468581I	-2.28578 + 0.47591I	-3.82840 - 3.46313I
b = -0.142788 - 0.130045I		
u = 0.761451		
a = 1.02355	-1.28421	-7.36270
b = -0.185922		
u = 0.898363 + 0.894383I		
a = -1.77752 - 0.80237I	8.84727 - 4.55297I	5.83723 + 8.19473I
b = 2.15592 - 0.55152I		
u = 0.898363 - 0.894383I		
a = -1.77752 + 0.80237I	8.84727 + 4.55297I	5.83723 - 8.19473I
b = 2.15592 + 0.55152I		
u = 0.956723 + 0.863236I		
a = -1.21407 - 1.44574I	8.65502 - 1.95883I	4.78017 - 2.64502I
b = 2.09496 + 0.17987I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.956723 - 0.863236I		
a = -1.21407 + 1.44574I	8.65502 + 1.95883I	4.78017 + 2.64502I
b = 2.09496 - 0.17987I		
u = -1.200480 + 0.502359I		
a = -0.256728 - 0.089743I	-0.51529 + 7.49251I	1.46560 - 6.64058I
b = -0.766723 + 0.224201I		
u = -1.200480 - 0.502359I		
a = -0.256728 + 0.089743I	-0.51529 - 7.49251I	1.46560 + 6.64058I
b = -0.766723 - 0.224201I		
u = 0.869568 + 1.036960I		
a = 1.19820 + 0.93760I	10.89150 + 6.89079I	1.93588 - 3.17270I
b = -2.14294 - 0.19617I		
u = 0.869568 - 1.036960I		
a = 1.19820 - 0.93760I	10.89150 - 6.89079I	1.93588 + 3.17270I
b = -2.14294 + 0.19617I		
u = 1.063600 + 0.913849I		
a = 1.35608 + 1.04713I	10.2390 - 14.0065I	0.95958 + 7.34096I
b = -2.11940 + 0.59325I		
u = 1.063600 - 0.913849I		
a = 1.35608 - 1.04713I	10.2390 + 14.0065I	0.95958 - 7.34096I
b = -2.11940 - 0.59325I		
u = -0.415119 + 0.278912I		
a = 0.874831 + 0.733477I	1.73128 - 0.06651I	5.44854 - 0.44003I
b = 0.820280 - 0.072764I		
u = -0.415119 - 0.278912I		
a = 0.874831 - 0.733477I	1.73128 + 0.06651I	5.44854 + 0.44003I
b = 0.820280 + 0.072764I		

$$\begin{array}{l} \text{II. } I_2^u = \langle u^9 + 2u^8 - 4u^6 - 2u^5 + 4u^4 + 3u^3 - u^2 + b + 1, \ -u^9 - 2u^8 + \cdots + \\ a - 2, \ u^{10} + 2u^9 + \cdots + u + 1 \rangle \end{array}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} + 2u^{8} - u^{7} - 5u^{6} - u^{5} + 7u^{4} + 3u^{3} - 4u^{2} - u + 2 \\ -u^{9} - 2u^{8} + 4u^{6} + 2u^{5} - 4u^{4} - 3u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2u^{9} + 4u^{8} - u^{7} - 9u^{6} - 3u^{5} + 11u^{4} + 6u^{3} - 5u^{2} - u + 3 \\ -u^{9} - 2u^{8} + 4u^{6} + 2u^{5} - 4u^{4} - 3u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} + 2u^{8} - u^{7} - 5u^{6} - u^{5} + 6u^{4} + 3u^{3} - 3u^{2} - u + 1 \\ -u^{8} - u^{7} + u^{6} + 3u^{5} - 3u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{9} - u^{8} + 2u^{7} + 3u^{6} - 3u^{5} - 4u^{4} + 2u^{3} + 3u^{2} - 2u \\ u^{9} + u^{8} - 2u^{7} - 3u^{6} + 2u^{5} + 4u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{8} + u^{7} - u^{6} - 3u^{5} + u^{4} + 3u^{3} + u^{2} - u + 1 \\ -u^{9} - u^{8} + u^{7} + 2u^{6} - u^{5} - 2u^{4} + u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{9} - 2u^{8} + 3u^{7} + 6u^{6} - 3u^{5} - 8u^{4} + 4u^{2} - u - 1 \\ u^{9} + u^{8} - u^{7} - 3u^{6} + 3u^{4} + 2u^{3} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2u^{9} - 2u^{8} + 3u^{7} + 6u^{6} - 3u^{5} - 8u^{4} + 4u^{2} - u - 1 \\ u^{9} + u^{8} - u^{7} - 3u^{6} + 3u^{4} + 2u^{3} \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$6u^9 + 13u^8 - u^7 - 23u^6 - 11u^5 + 23u^4 + 15u^3 - 3u^2 + u + 5u^4 + 15u^4 + 15u^4$$

Crossings	u-Polynomials at each crossing
c_1	$u^{10} + 2u^9 - 4u^7 - 2u^6 + 4u^5 + 4u^4 - u^3 - u^2 + u + 1$
c_2	$u^{10} + 4u^9 + \dots + 3u + 1$
<i>c</i> ₃	$u^{10} + u^9 + 3u^8 + 2u^7 + 3u^6 + u^5 + 3u^4 + u^3 + u^2 + 1$
c_4, c_6	$u^{10} + u^8 - u^7 + 3u^6 - u^5 + 3u^4 - 2u^3 + 3u^2 - u + 1$
<i>C</i> ₅	$u^{10} - 2u^9 + 4u^7 - 2u^6 - 4u^5 + 4u^4 + u^3 - u^2 - u + 1$
C ₇	$u^{10} + u^9 + 3u^8 - 8u^6 + 3u^5 + 9u^4 + 6u^3 + 9u^2 + 4u + 1$
<i>c</i> ₈	$u^{10} + 5u^9 + 11u^8 + 18u^7 + 23u^6 + 21u^5 + 19u^4 + 11u^3 + 7u^2 + 2u + 1$
c_9	$u^{10} + 5u^9 + 11u^8 + 10u^7 - 5u^6 - 23u^5 - 21u^4 + u^3 + 18u^2 + 15u + 5$
c_{10}	$u^{10} + 3u^9 - 11u^7 - 14u^6 + 4u^5 + 20u^4 + 14u^3 + 5u^2 + 2u + 1$
c_{11}	$u^{10} - 5u^9 + 11u^8 - 18u^7 + 23u^6 - 21u^5 + 19u^4 - 11u^3 + 7u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{10} - 4y^9 + \dots - 3y + 1$
c_2	$y^{10} + 8y^9 + \dots + 13y + 1$
c_3	$y^{10} + 5y^9 + 11y^8 + 18y^7 + 23y^6 + 21y^5 + 19y^4 + 11y^3 + 7y^2 + 2y + 1$
c_4, c_6	$y^{10} + 2y^9 + 7y^8 + 11y^7 + 19y^6 + 21y^5 + 23y^4 + 18y^3 + 11y^2 + 5y + 1$
c ₇	$y^{10} + 5y^9 + \dots + 2y + 1$
c_{8}, c_{11}	$y^{10} - 3y^9 + \dots + 10y + 1$
<i>c</i> 9	$y^{10} - 3y^9 + \dots - 45y + 25$
c_{10}	$y^{10} - 9y^9 + \dots + 6y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.032960 + 0.512793I		
a = -0.926519 - 0.444783I	-1.82490 + 7.04514I	-4.29839 - 6.63243I
b = -0.031024 + 0.608247I		
u = -1.032960 - 0.512793I		
a = -0.926519 + 0.444783I	-1.82490 - 7.04514I	-4.29839 + 6.63243I
b = -0.031024 - 0.608247I		
u = 1.081750 + 0.414901I		
a = 0.291782 + 0.133729I	-2.42349 + 0.47280I	-4.60679 - 3.67832I
b = 0.431318 + 0.661100I		
u = 1.081750 - 0.414901I		
a = 0.291782 - 0.133729I	-2.42349 - 0.47280I	-4.60679 + 3.67832I
b = 0.431318 - 0.661100I		
u = -0.620721 + 0.483253I		
a = 0.78365 + 1.55026I	-0.43993 - 2.89386I	-0.09413 + 2.87221I
b = -0.186622 - 0.818442I		
u = -0.620721 - 0.483253I		
a = 0.78365 - 1.55026I	-0.43993 + 2.89386I	-0.09413 - 2.87221I
b = -0.186622 + 0.818442I		
u = 0.517593 + 0.494789I		
a = -0.808469 - 0.682785I	-0.42431 - 4.26902I	-1.08356 + 8.09272I
b = 0.250433 - 1.183290I		
u = 0.517593 - 0.494789I		
a = -0.808469 + 0.682785I	-0.42431 + 4.26902I	-1.08356 - 8.09272I
b = 0.250433 + 1.183290I		
u = -0.945660 + 0.933377I		
a = -1.34045 + 0.96068I	8.40249 + 3.42159I	1.58287 - 2.15087I
b = 2.03589 + 0.22886I		
u = -0.945660 - 0.933377I		
a = -1.34045 - 0.96068I	8.40249 - 3.42159I	1.58287 + 2.15087I
b = 2.03589 - 0.22886I		

$$III. \\ I_3^u = \langle -2u^9 - 3u^8 + \dots + b - 3, \ -3u^9a + 2u^9 + \dots - 4a + 2, \ u^{10} + 2u^9 + \dots + 2u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{9} + 3u^{8} + u^{7} - 5u^{6} + 3u^{4} + u^{2}a + 2u^{3} + au - 6u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{9} - 3u^{8} - u^{7} + 5u^{6} - 3u^{4} - u^{2}a - 2u^{3} - au + 6u^{2} + a - 2u - 3 \\ 2u^{9} + 3u^{8} + u^{7} - 5u^{6} + 3u^{4} + u^{2}a + 2u^{3} + au - 6u^{2} + 2u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{9} - 2u^{8} - u^{7} + 3u^{6} + 2u^{5} - u^{3}a - u^{4} - u^{2}a - 2u^{3} + 2u^{2} + a - 1 \\ 3u^{9} + 5u^{8} + \dots + 2u + 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{9}a + u^{9} + \dots + 2a + 1 \\ -u^{9}a - 2u^{9} + \dots - a - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9}a + u^{9} + \dots + 2a + 1 \\ -u^{9}a - 2u^{9} + \dots - a - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{9} + 3u^{8} + \dots - a + 3 \\ -u^{9}a - 2u^{9} + \dots - a - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{9} + 3u^{8} + \dots - a + 3 \\ -u^{9}a - 2u^{9} + \dots - a - 3 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{9} + 3u^{8} + \dots - a + 3 \\ -u^{9}a - 2u^{9} + \dots - a - 3 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^{10} - 2u^9 + u^8 + 3u^7 - 2u^6 - 2u^5 + 3u^4 + 2u^3 - u^2 - 2u + 1)^2$
c_2	$(u^{10} + 2u^9 + 9u^8 + 15u^7 + 28u^6 + 36u^5 + 35u^4 + 22u^3 + 15u^2 + 6u + 1)$
<i>c</i> ₃	$u^{20} + 2u^{19} + \dots - 301u + 457$
c_4, c_6	$u^{20} + 2u^{19} + \dots - 5u + 5$
C ₇	$u^{20} + 12u^{18} + \dots - 989u + 1201$
c_8, c_{11}	$u^{20} - 3u^{19} + \dots + 410u + 55$
<i>C</i> 9	$(u^{10} + 3u^9 + 6u^8 + 7u^7 + 9u^6 + 9u^5 + 10u^4 + 6u^3 + 5u^2 + 3u + 2)^2$
c_{10}	$(u+1)^{20}$

Crossings	Riley Polynomials at each crossing
c_1,c_5	$ (y^{10} - 2y^9 + 9y^8 - 15y^7 + 28y^6 - 36y^5 + 35y^4 - 22y^3 + 15y^2 - 6y + 1)^2 $
c_2	$(y^{10} + 14y^9 + \dots - 6y + 1)^2$
c_3	$y^{20} + 12y^{19} + \dots - 305391y + 208849$
c_4, c_6	$y^{20} + 28y^{18} + \dots - 275y + 25$
	$y^{20} + 24y^{19} + \dots - 10199399y + 1442401$
c_8, c_{11}	$y^{20} - 23y^{19} + \dots - 8050y + 3025$
<i>c</i> ₉	$(y^{10} + 3y^9 + \dots + 11y + 4)^2$
c_{10}	$(y-1)^{20}$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.975430 + 0.320615I		
a = 0.583170 - 0.332488I	-0.581891 + 0.600845I	-1.31849 - 3.40041I
b = -0.819443 + 0.010673I		
u = 0.975430 + 0.320615I		
a = 1.43037 - 0.39642I	-0.581891 + 0.600845I	-1.31849 - 3.40041I
b = 0.786422 + 0.695571I		
u = 0.975430 - 0.320615I		
a = 0.583170 + 0.332488I	-0.581891 - 0.600845I	-1.31849 + 3.40041I
b = -0.819443 - 0.010673I		
u = 0.975430 - 0.320615I		
a = 1.43037 + 0.39642I	-0.581891 - 0.600845I	-1.31849 + 3.40041I
b = 0.786422 - 0.695571I		
u = 0.541733 + 0.670646I		
a = -1.108000 + 0.503913I	1.08979 - 4.58635I	4.20678 + 7.42430I
b = 0.88831 - 1.63472I		
u = 0.541733 + 0.670646I		
a = -0.11061 + 1.52297I	1.08979 - 4.58635I	4.20678 + 7.42430I
b = -0.151145 + 0.151691I		
u = 0.541733 - 0.670646I		
a = -1.108000 - 0.503913I	1.08979 + 4.58635I	4.20678 - 7.42430I
b = 0.88831 + 1.63472I		
u = 0.541733 - 0.670646I		
a = -0.11061 - 1.52297I	1.08979 + 4.58635I	4.20678 - 7.42430I
b = -0.151145 - 0.151691I		
u = -0.876556 + 1.026090I		
a = -1.059400 + 0.874691I	9.46664 + 1.75340I	5.39474 + 0.85033I
b = 2.32466 - 0.31720I		
u = -0.876556 + 1.026090I		
a = 1.32869 - 0.69669I	9.46664 + 1.75340I	5.39474 + 0.85033I
b = -1.66238 - 0.33815I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.876556 - 1.026090I		
a = -1.059400 - 0.874691I	9.46664 - 1.75340I	5.39474 - 0.85033I
b = 2.32466 + 0.31720I		
u = -0.876556 - 1.026090I		
a = 1.32869 + 0.69669I	9.46664 - 1.75340I	5.39474 - 0.85033I
b = -1.66238 + 0.33815I		
u = -0.580680 + 0.133301I		
a = 1.356460 + 0.199192I	-1.56776 + 3.93250I	-8.27914 - 6.71393I
b = -0.57404 + 1.29815I		
u = -0.580680 + 0.133301I		
a = -2.24080 + 1.97323I	-1.56776 + 3.93250I	-8.27914 - 6.71393I
b = 0.403939 + 0.912038I		
u = -0.580680 - 0.133301I		
a = 1.356460 - 0.199192I	-1.56776 - 3.93250I	-8.27914 + 6.71393I
b = -0.57404 - 1.29815I		
u = -0.580680 - 0.133301I		
a = -2.24080 - 1.97323I	-1.56776 - 3.93250I	-8.27914 + 6.71393I
b = 0.403939 - 0.912038I		
u = -1.059930 + 0.922349I		
a = 1.041530 - 0.882518I	8.86503 + 5.36397I	3.49612 - 6.50559I
b = -1.74793 - 0.01501I		
u = -1.059930 + 0.922349I		
a = -1.22140 + 1.07135I	8.86503 + 5.36397I	3.49612 - 6.50559I
b = 2.05160 + 0.78425I		
u = -1.059930 - 0.922349I		
a = 1.041530 + 0.882518I	8.86503 - 5.36397I	3.49612 + 6.50559I
b = -1.74793 + 0.01501I		
u = -1.059930 - 0.922349I		
a = -1.22140 - 1.07135I	8.86503 - 5.36397I	3.49612 + 6.50559I
b = 2.05160 - 0.78425I		

IV.
$$I_4^u = \langle b - 1, a^2 - a - 1, u - 1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a-1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} a-1\\1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a-1\\-a+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a+1\\1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -a - 1 \\ -a + 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -a-1 \\ -a+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 5

Crossings	u-Polynomials at each crossing
c_1, c_{10}, c_{11}	$(u-1)^2$
c_2, c_5, c_8	$(u+1)^2$
c_3, c_4, c_6 c_7	$u^2 + u - 1$
c_9	u^2

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_8, c_{10}, c_{11}$	$(y-1)^2$
c_3, c_4, c_6 c_7	$y^2 - 3y + 1$
<i>c</i> ₉	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.618034	0	5.00000
b = 1.00000		
u = 1.00000		
a = 1.61803	0	5.00000
b = 1.00000		

V.
$$I_1^v = \langle a, b-1, v-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
$c_1,c_2,c_5\\c_9$	u
c_3, c_4, c_6 c_7, c_8, c_{10} c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_9	y
$c_3, c_4, c_6 \\ c_7, c_8, c_{10} \\ c_{11}$	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	1.64493	6.00000
b = 1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{2}$ $\cdot (u^{10} - 2u^{9} + u^{8} + 3u^{7} - 2u^{6} - 2u^{5} + 3u^{4} + 2u^{3} - u^{2} - 2u + 1)^{2}$ $\cdot (u^{10} + 2u^{9} - 4u^{7} - 2u^{6} + 4u^{5} + 4u^{4} - u^{3} - u^{2} + u + 1)$
	$(u + 2u - 4u - 2u + 4u + 4u - u - u + u + 1)$ $(u^{19} + 5u^{18} + \dots - 10u^2 + 3)$
	$u(u+1)^{2}$ $\cdot (u^{10} + 2u^{9} + 9u^{8} + 15u^{7} + 28u^{6} + 36u^{5} + 35u^{4} + 22u^{3} + 15u^{2} + 6u + 1)^{2}$ $\cdot (u^{10} + 4u^{9} + \dots + 3u + 1)(u^{19} + 5u^{18} + \dots + 60u + 9)$
c_3	$(u-1)(u^{2}+u-1)(u^{10}+u^{9}+\cdots+u^{2}+1)$ $\cdot (u^{19}+8u^{17}+\cdots-u+5)(u^{20}+2u^{19}+\cdots-301u+457)$
c_4, c_6	$(u-1)(u^{2}+u-1)(u^{10}+u^{8}+\cdots-u+1)$ $\cdot (u^{19}+u^{18}+\cdots+4u+1)(u^{20}+2u^{19}+\cdots-5u+5)$
c_5	$u(u+1)^{2}(u^{10} - 2u^{9} + 4u^{7} - 2u^{6} - 4u^{5} + 4u^{4} + u^{3} - u^{2} - u + 1)$ $\cdot (u^{10} - 2u^{9} + u^{8} + 3u^{7} - 2u^{6} - 2u^{5} + 3u^{4} + 2u^{3} - u^{2} - 2u + 1)^{2}$ $\cdot (u^{19} + 5u^{18} + \dots - 10u^{2} + 3)$
c_7	$(u-1)(u^{2}+u-1)(u^{10}+u^{9}+\cdots+4u+1)$ $\cdot (u^{19}+20u^{17}+\cdots+3u+1)(u^{20}+12u^{18}+\cdots-989u+1201)$
c ₈	$(u-1)(u+1)^{2}$ $\cdot (u^{10} + 5u^{9} + 11u^{8} + 18u^{7} + 23u^{6} + 21u^{5} + 19u^{4} + 11u^{3} + 7u^{2} + 2u + 1)$ $\cdot (u^{19} - 18u^{17} + \dots + 13u + 1)(u^{20} - 3u^{19} + \dots + 410u + 55)$
<i>c</i> 9	$u^{3}(u^{10} + 3u^{9} + 6u^{8} + 7u^{7} + 9u^{6} + 9u^{5} + 10u^{4} + 6u^{3} + 5u^{2} + 3u + 2)^{2}$ $\cdot (u^{10} + 5u^{9} + 11u^{8} + 10u^{7} - 5u^{6} - 23u^{5} - 21u^{4} + u^{3} + 18u^{2} + 15u + 5)$ $\cdot (u^{19} - 14u^{18} + \dots - 30u + 3)$
c_{10}	$(u-1)^{3}(u+1)^{20}$ $\cdot (u^{10} + 3u^{9} - 11u^{7} - 14u^{6} + 4u^{5} + 20u^{4} + 14u^{3} + 5u^{2} + 2u + 1)$ $\cdot (u^{19} - 21u^{18} + \dots - 1792u + 512)$
c_{11}	$(u-1)^{3}$ $\cdot (u^{10} - 5u^{9} + 11u^{8} - 18u^{7} + 23u^{6} - 21u^{5} + 19u^{4} - 11u^{3} + 7u^{2} - 2u + 1)$ $\cdot (u^{19} - 18u^{17} + \dots + 13u + 1)(u^{20} - 3u^{19} + \dots + 410u + 55)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y(y-1)^{2}(y^{10} - 4y^{9} + \dots - 3y + 1)$ $\cdot (y^{10} - 2y^{9} + 9y^{8} - 15y^{7} + 28y^{6} - 36y^{5} + 35y^{4} - 22y^{3} + 15y^{2} - 6y + 1)^{2}$ $\cdot (y^{19} - 5y^{18} + \dots + 60y - 9)$
c_2	$y(y-1)^{2}(y^{10} + 8y^{9} + \dots + 13y + 1)(y^{10} + 14y^{9} + \dots - 6y + 1)^{2}$ $(y^{19} + 23y^{18} + \dots - 1872y - 81)$
c_3	$(y-1)(y^2 - 3y + 1)$ $\cdot (y^{10} + 5y^9 + 11y^8 + 18y^7 + 23y^6 + 21y^5 + 19y^4 + 11y^3 + 7y^2 + 2y + 1)$ $\cdot (y^{19} + 16y^{18} + \dots - 109y - 25)$ $\cdot (y^{20} + 12y^{19} + \dots - 305391y + 208849)$
c_4, c_6	$(y-1)(y^2 - 3y + 1)$ $\cdot (y^{10} + 2y^9 + 7y^8 + 11y^7 + 19y^6 + 21y^5 + 23y^4 + 18y^3 + 11y^2 + 5y + 1)$ $\cdot (y^{19} - 7y^{18} + \dots + 16y - 1)(y^{20} + 28y^{18} + \dots - 275y + 25)$
c_7	$ (y-1)(y^2 - 3y + 1)(y^{10} + 5y^9 + \dots + 2y + 1)(y^{19} + 40y^{18} + \dots + 7y - 1) $ $ \cdot (y^{20} + 24y^{19} + \dots - 10199399y + 1442401) $
c_{8}, c_{11}	$((y-1)^3)(y^{10} - 3y^9 + \dots + 10y + 1)(y^{19} - 36y^{18} + \dots + 39y - 1)$ $\cdot (y^{20} - 23y^{19} + \dots - 8050y + 3025)$
c_9	$y^{3}(y^{10} - 3y^{9} + \dots - 45y + 25)(y^{10} + 3y^{9} + \dots + 11y + 4)^{2}$ $\cdot (y^{19} + 38y^{17} + \dots + 42y - 9)$
c_{10}	$((y-1)^{23})(y^{10} - 9y^9 + \dots + 6y + 1)$ $\cdot (y^{19} - 9y^{18} + \dots + 2162688y - 262144)$