Concours National Commun - Session 2011

Corrigé de l'épreuve d'analyse

Étude de la somme de la série de Fourier lacunaire quadratique : $x \longmapsto \sum_{n=1}^{\infty} \frac{e^{i\pi n^2 x}}{i\pi n^2}$

Corrigé par Mohamed TARQI¹

1^{ère} partie Formule sommatoire de Poisson

1.1. D'après les hypothèses, il existe M>0 et A>0 tels que $|t|\geq A \Longrightarrow |g(t)|\leq \frac{M}{t^2}$, ainsi les intégrales $\int_{-\infty}^{-A}|g(t)|dt$ et $\int_{A}^{+\infty}|g(t)|dt$ existent, il est de même de l'intégrale $\int_{-\infty}^{+\infty}|g(t)|dt$, donc pour tout $x\in\mathbb{R}$, la fonction $t\longmapsto g(t)e^{-ixt}$ est absolument intégrable sur \mathbb{R} ($|e^{-ixt}|=1$) et donc elle est intégrable sur \mathbb{R} .

1.2. Soit $t \in [-a, a]$ (a > 0). Il existe un entier $n_0 \in \mathbb{N}$ et supérieure à a tel que :

$$n \ge n_0 \Longrightarrow |g_n(t)| \le \frac{M}{(t + 2n\pi)^2} + \frac{M}{(t - 2n\pi)^2} = v_n(t).$$

Il est clair que v_n est paire et décroissante sur [0,a] et donc pour tout $t \in [-a,a], \ |v_n(t)| \le v_n(0)$ et comme la série numérique $\sum v_n(0)$ est convergente, alors la série $\sum g_n$ est uniformément convergente sur tout [-a,a] et donc sur tout segment de \mathbb{R} .

1.3.1. Les applications g_n sont de classe \mathcal{C}^1 sur \mathbb{R} et on a :

$$g'_0(t) = g'(t), \quad g'_n(t) = g'(t + 2n\pi) + g'(t - 2n\pi) \quad t \in \mathbb{R}, \ n \in \mathbb{N}^*$$

Donc comme la série $\sum g_n$, on montre que la série $\sum g'_n$ est uniformément convergente sur tout segment de \mathbb{R} , ceci permet de conclure par un théorème du cours que \widetilde{g} est de classe \mathcal{C}^1 sur \mathbb{R} .

1.3.2. Notons $S_n(t) = \sum\limits_{p=-n}^n g(t+2p\pi)$, alors, pour tout $t\in\mathbb{R}$, on a :

$$S_n(t+2\pi) = \sum_{p=-n}^n g(t+2(p+1)\pi)$$

$$= \sum_{p=-n+1}^{n+1} g(t+2p\pi)$$

$$= \sum_{p=-n+1}^{n-1} g(t+2p\pi) + g(t+2n\pi) + g(t+2(n+1)\pi)$$

Donc

$$S_n(t+2\pi) = S_{n-1}(t) + g(t+2n\pi) + g(t+2(n-1)\pi).$$

Mais $\lim_{t\to\infty}g(t)=0$, alors l'égalité précédente entraı̂ne, quand n tend vers l'infini,

$$\widetilde{g}(t+2\pi) = \widetilde{g}(t)$$

¹Si vous avez des critiques ou des encouragements à formuler sur le contenu, n'hésitez pas à nous en faire part, et surtout n'hésitez pas de me signaler les erreurs rencontrées.

donc \widetilde{g} est 2π périodique.

La série définissant \widetilde{g} peut être intégrée terme à terme sur $[0,2\pi]$ grâce à la convergence uniforme et donc

$$c_{k}(\widetilde{g}) = \frac{1}{2\pi} \int_{0}^{2\pi} \widetilde{g}(t)e^{-ikt}dt$$

$$= \lim_{n \to \infty} \frac{1}{2\pi} \sum_{p=-n}^{n} \int_{0}^{2\pi} g(t+2p\pi)e^{-ikt}dt$$

$$= \lim_{n \to \infty} \frac{1}{2\pi} \sum_{p=-n}^{n} \int_{-2p\pi}^{2(p+1)\pi} g(u)e^{-iku}du, \quad u = t + 2p\pi$$

$$= \lim_{n \to \infty} \frac{1}{2\pi} \int_{-2n\pi}^{2(n+1)\pi} g(u)e^{-iku}du$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} g(u)e^{-iku}du = \frac{1}{2\pi} \widehat{g}(k).$$

1.3.3. L'égalité $|g(2n\pi)| = O\left(\frac{1}{n^2}\right)$, montre que la famille $(g(2n\pi))_{n\in\mathbb{Z}}$ est sommable et que

(*)
$$\widetilde{g}(0) = \lim_{n \to \infty} \sum_{p=-n}^{p=n} g(2p\pi).$$

Puisque \widetilde{g} est 2π périodique et \mathcal{C}^1 sur \mathbb{R} , alors, d'après le théorème de Dirichlet, la famille $(c_n(\widetilde{g}))_{n\in\mathbb{Z}}$ est sommable et

(**)
$$\forall x \in \mathbb{R}$$
, $\widetilde{g}(x) = c_0(g) + \sum_{n=1}^{\infty} c_n(g)e^{inx} + \sum_{n=1}^{\infty} c_{-n}(g)e^{-inx}$

et comme $\widehat{g}(k) = 2\pi c_n(\widehat{g})$, alors la famille $(\widehat{g}(n))_{n \in \mathbb{Z}}$ est sommable.

L'égalité (**) entraı̂ne pour x=0, l'égalité $\widetilde{g}(0)=\sum_{n\in\mathbb{Z}}c_n(\widetilde{g})=\frac{1}{2\pi}\sum_{n\in\mathbb{Z}}\widehat{g}(n)$ et en tenant compte de la relation (*), on obtient l'égalité demandée :

$$\sum_{n\in\mathbb{Z}}g(2n\pi)=\frac{1}{2\pi}\sum_{n\in\mathbb{Z}}\widehat{g}(n).$$

2^{ème} partie

Application de la formule sommatoire de Poisson

- **2.1.** Il est clair que la fonction h_{α} est \mathcal{C}^1 sur \mathbb{R} et $\lim_{|t|\to\infty} t^2 h_{\alpha}(t) = \lim_{|t|\to\infty} t^2 h'_{\alpha}(t) = 0$, donc les les fonctions $t\longmapsto t^2 h_{\alpha}(t)$ et $t\longmapsto t^2 h_{\alpha}(t)$ sont bornées à l'infini.
- **2.2.** On a $\widehat{h_1}(x)=\int_{-\infty}^{+\infty}e^{-t^2}e^{-ixt}dt$. On peut dériver la fonction sous signe intégrale, en effet,
- La fonction $f:(x,t)\longmapsto e^{-t^2}e^{-ixt}$ admet une dérivée partielle $\frac{\partial f}{\partial x}(x,t):(x,t)\longmapsto -ite^{-t^2}e^{-ixt}$ qui est intégrable sur \mathbb{R} .
- $\forall x \in \mathbb{R}, \left| \frac{\partial f}{\partial x}(x,t) \right| = |-itf(x,t)| \le |t|e^{-t^2} = \varphi(t)$ et φ est intégrable sur \mathbb{R} .

Donc $\widehat{h_1}$ est dérivable sur $\mathbb R$ et $\widehat{h_1}'(x)=-i\int_{-\infty}^{+\infty}te^{-t^2}e^{-ixt}dt$ et une intégration par parties donne

$$\widehat{h_1}'(x) = -\frac{x}{2}\widehat{h_1}(x).$$

Ainsi $\widehat{h_1}$ est solution de l'équation différentielle $y' + \frac{x}{2}y = 0$.

- **2.3.** La solution générale de (1) s'écrit $y(x) = \lambda e^{\frac{-x^2}{4}}$. Mais $\widehat{h_1}$ étant l'unique solution de (1) vérifiant $\widehat{h_1}(0) = \sqrt{\pi}$, donc $\widehat{h_1}(x) = \sqrt{\pi}e^{\frac{-x^2}{4}}$.
- **2.4.** On a, grâce au changement de variable, $u = \alpha t$,

$$\widehat{h_{\alpha}}(x) = \int_{-\infty}^{+\infty} e^{-\alpha^2 t^2} e^{-ixt} = \int_{-\infty}^{+\infty} e^{-u^2} e^{-ix\frac{u}{\alpha}} \frac{du}{\alpha} = \frac{1}{\alpha} \widehat{h_1} \left(\frac{x}{\alpha} \right) = \frac{\sqrt{\pi}}{\alpha} e^{\frac{-x^2}{4\alpha^2}}.$$

2.5. Posons $\alpha = \frac{\sqrt{a}}{2\sqrt{\pi}}$, alors pour tout entier n, on a $\widehat{h_{\alpha}}(n) = \frac{2\pi}{\sqrt{a}}e^{\frac{-\pi n^2}{a}}$ et $h_{\alpha}(2n\pi) = e^{-\pi n^2 a}$. La formule de Poisson appliquée à h_{α} , donne :

$$2\pi \left(1 + 2\sum_{n=1}^{\infty} h_{\alpha}(2n\pi)\right) = 1 + 2\sum_{n=1}^{\infty} \widehat{h_{\alpha}}(n)$$

égalité qui s'écrit encore sous la forme demandée :

$$\sqrt{a}\left(1+2\sum_{n=1}^{\infty}e^{-\pi n^2a}\right) = 1+2\sum_{n=1}^{\infty}e^{-\frac{\pi n^2}{a}}.$$

3^{ème} partie

Un résultat général sur les fonctions holomorphes

3.1. Ω est un ouvert de $\mathbb C$ comme image réciproque de l'ouvert $]0,+\infty[$, par l'application continue $z\longmapsto \mathrm{Im}(z).$

Soit a et b dans Ω , alors pour tout $t \in]0,1[$, $\operatorname{Im}((1-t)a+tb)=(1-t)\operatorname{Im}(a)+t\operatorname{Im}(b)>0$, donc $(1-t)a+tb\in \Omega$ et donc $[a,b]\subset \Omega$. Ceci montre aussi que Ω est connexe par arcs de $\mathbb C$.

- **3.2.** Soit $a \in \Omega$ fixé. Pour tout $t \in [0,1]$, $(1-t)a+tb \in \Omega$, et donc l'application $b \longmapsto f((1-)a+tb)$ est bien définie et continue sur Ω , donc l'application Φ_a est continue sur Ω comme produit de deux fonctions continues.
- 3.3. Soit $c \in \Omega$ tel que $\int_{\gamma_{a,c}} \psi(z)dz + \int_{\gamma_{c,b}} \psi(z)dz = \int_{\gamma_{a,b}} \psi(z)dz$ alors cette relation s'écrit encore, après simplification, sous la forme

$$(\overline{a} - \overline{b})c - (a - b)\overline{c} = b\overline{a} - a\overline{b}$$

Donc $\operatorname{Im}((\overline{a}-\overline{b})c)=\operatorname{Im}(\overline{a}b)$, donc $c\in\Omega$ décrit une droite parallèle à l'axe des x, où une demi-droite dans le cas contraire.

3.4.

3.4.1. La fonction f=P+iQ étant holomorphe sur Ω , donc elle vérifie les conditions Cauchy-Riemann :

$$\begin{cases} \frac{\partial P}{\partial x}(x,y) = \frac{\partial Q}{\partial y}(x,y) \\ \frac{\partial P}{\partial y}(x,y) = -\frac{\partial Q}{\partial x}(x,y), \end{cases}$$

pour tout $(x,y) \in \Omega^2$.

3.4.2 D'après Formule de Green-Riemann, on a :

$$\int_{\partial \mathcal{T}^+} P dx - Q dy = \int \int_{\mathcal{T}} \left(-\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = 0.$$

De même

$$\int_{\partial \mathcal{T}^+} Q dx + P dy = \int \int_{\mathcal{T}} \left(-\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy = 0.$$

D'autre part, $\int_{\partial T^+} f(z)dz = \int_{\partial T^+} Pdx - Qdy + i \int_{\partial T^+} Qdx + Pdy = 0$, or $\partial T^+ = \gamma_{a,c} + \gamma_{c,b} + \gamma_{b,a}$, donc l'égalité $\int_{\partial T^{\perp}} f(z)dz = 0$ est équivalent aussi à

$$\int_{\gamma_{a,c}} f(z)dz + \int_{\gamma_{c,b}} f(z)dz = -\int_{\gamma_{b,a}} f(z)dz = \int_{\gamma_{a,b}} f(z)dz.$$

3.4.3. Soit $c \in \Omega$ et $c \neq b$, alors $\Phi_a(c) - \Phi_a(b) = \int_{\gamma_{a,b}} f(z)dz - \int_{\gamma_{a,b}} f(z)dz = -\int_{\gamma_{c,b}} f(z)dz = \Phi_b(c)$ et donc

 $\frac{\Phi_a(c) - \Phi_a(b)}{c} = \Phi_b(c)$

et comme Φ_b est continue en b, alors

$$\lim_{c \to b} \frac{\Phi_a(c) - \Phi_a(b)}{c - b} = \lim_{c \to b} \Phi_b(c) = \int_0^1 f((1 - t)b + tb)dt = f(b).$$

Ceci montre que Φ_a est holomorphe sur Ω et que $\Phi'_a = f$.

3.4.4. Pour tout r > 0, on peut écrire :

$$\Phi(ir,c) - \Phi(ir,b) = \Phi(b,c)$$

et quand r tend vers 0^+ , on obtient l'égalité :

$$F(c) - F(b) = \Phi(b, c)$$

et comme précédament,

$$\lim_{c \to b} \frac{F(c) - F(b)}{c - b} = \lim_{c \to b} \Phi_b(c) = f(b).$$

Ceci montre que F est holomorphe sur Ω et que F' = f sur Ω .

4^{ème} partie Étude d'un exemple

- **4.1.** La fonction f_{λ} apparaît comme composée et produit de fonctions holomrphes sur Ω , donc elle holomorphe sur Ω .
- **4.2.** On a pour tout $z = \alpha + i\beta \in \Omega$,

$$|f_{\lambda}(z)| = |z^{\lambda}| |\exp\left(-\frac{i}{z}\right)| = |z|^{\lambda} \exp\left(\frac{-\beta}{|z|^2}\right) \le |z|^{\lambda}.$$

Soit maintenant $(r_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positives de limite nulle, on a :

$$J_{\lambda,b}(r_n) = \int_{\gamma_{ir_n}} f_{\lambda}(z)dz = (b - ir_n) \int_0^1 f_{\lambda}((1 - t)ir_n + tb)dt$$

On a $\lim_{n\to\infty} f_{\lambda}(1-t)ir_n+tb)=f_{\lambda}(tb)$ et pour tout $n\in\mathbb{N}$,

$$|f_{\lambda}((1-t)ir_n+tb)| \le |(1-t)ir_n+tb|^{\lambda} \le \frac{|b|^{\lambda}}{t^{-\lambda}} = \varphi(t)$$

et comme $0 < -\lambda < 1$, alors φ est intégrable sur]0,1] et donc le théorème de convergence dominée s'applique:

$$\lim_{n \to \infty} J_{\lambda,b}(r_n) = b \int_0^1 f_{\lambda}(tb) = t^{\lambda+1} \int_0^1 t^{\lambda} \exp\left(\frac{-i}{tb}\right) dt.$$

4.3.

4.3.1. D'après la $4^{\operatorname{ème}}$ partie, F_{λ} est holomorphe sur Ω et $F'_{\lambda}=f_{\lambda}$. Donc G_{λ} est holomorphe sur Ω comme produit de fonctions holomorphes.

4.3.3. On a, pour tout $z \in \Omega$, en posant $t = \frac{1}{n}$

$$F_{\lambda}(z) = z^{\lambda+1} \int_{[0,1]} t^{\lambda} \exp\left(\frac{-i}{tz}\right) dt = z^{\lambda+1} \int_{1}^{+\infty} u^{-\lambda-2} \exp\left(\frac{-iu}{z}\right) du.$$

D'où:

$$G_{\lambda}(z) = \frac{1}{z} \exp\left(\frac{i}{z}\right) \int_{1}^{+\infty} u^{-\lambda - 2} \exp\left(\frac{-iu}{z}\right) du.$$

4.3.3 Une intégration parties donne :

$$G_{\lambda}(z) = \frac{-i^2}{z} \int_1^{+\infty} u^{-\lambda - 2} \exp\left(\frac{(1 - u)i}{z}\right) du$$

$$= i \left[u^{-\lambda - 2} \exp\left(\frac{(1 - u)i}{z}\right)\right]_1^{+\infty} + i(\lambda + 2) \int_1^{+\infty} u^{-\lambda - 3} \exp\left(\frac{(1 - u)i}{z}\right) du$$

$$= i + i(\lambda + 2) \int_1^{+\infty} u^{-\lambda - 3} \exp\left(\frac{(1 - u)i}{z}\right) du$$

et comme $\left| \exp \left(\frac{(1-u)i}{z} \right) \right| \le 1$, car $\operatorname{Im} \left(\frac{1-u}{z} \right) < 0$, il vient alors

$$|G_{\lambda}(z)| \le 1 + (\lambda + 2) \int_{1}^{+\infty} u^{-\lambda - 3} du = 2.$$

D'autre part on a, pour tout $z \in \Omega$, $F_{-1/2}(z) = z^{3/2} \exp\left(\frac{-i}{z}\right) G_{-1/2}(z)$ et donc $|F_{-1/2}| \le 2|z|^{3/2}$ puisque $\left| \exp\left(\frac{-i}{z}\right) \right| \le 1$.

5^{ème} partie Démonstration de la propriété proposée

5.1. Posons z = a + ib, alors on a :

$$\left| \frac{u_{n+1}(z)}{u_n(z)} \right| = e^{-b\pi((n+1)^2 - n^2)},$$

- si b>0 $\lim_{n\to\infty}\left|\frac{u_{n+1}(z)}{u_n(z)}\right|=0$ et dans ce cas la série $\sum u_n(z)$ converge; si b<0 $\lim_{n\to\infty}\left|\frac{u_{n+1}(z)}{u_n(z)}\right|=+\infty$ et la série $\sum u_n(z)$ diverge;
- si b = 0, $|u_n(z)| = 1$ et donc $u_n(z)$ ne tend pas vers 0.

Conclusion, la série $\sum u_n(z)$ converge si et seulement si $z \in \Omega$.

5.2. Si $z \in \Omega$, alors $z+1 \in \Omega$ et pour tout $n \in \mathbb{N}^*$, on a :

$$u_n(z+1) + u_n(z) = e^{i\pi n^2 z} (e^{i\pi n^2} + 1) = \begin{cases} 2u_p(4z), & \sin = 2p \\ 0, & \sin = 2p + 1 \end{cases}$$

d'où:

$$\sum_{n=1}^{\infty} u_n(z+1) + \sum_{n=1}^{\infty} u_n(z) = 2\sum_{p=1}^{\infty} u_p(4z)$$

c'est-à-dire u(z + 1) + u(z) = 2u(4z).

5.3.

5.3.1. Soit $(x,y) \in \mathbb{R} \times [a,+\infty[$, alors pour tout $k \in \mathbb{N}^*$, $|n^k u_n(x,y)| \le n^k e^{-y\pi n^2} \le n^k e^{-a\pi n^2}$ et la série $\sum n^k e^{-a\pi n^2}$ converge, car $\lim_{n\to\infty} n^2(n^k e^{-a\pi n^2}) = 0$, donc la série $\sum n^k \widetilde{u_n}$ converge normalement sur $\mathbb{R} \times [a,+\infty[$.

5.3.2. Soit y>0 fixé. Les fonctions $v_n:x\longmapsto \widetilde{u_n}(x,y)$ sont dérivable sur $\mathbb R$ et

$$v'_n(x) = \frac{\partial u_n}{\partial x}(x, y) = i\pi n^2 u_n(x, y),$$

de plus la série $\sum v_n'=i\pi\sum n^2u_n$ est normalement convergente donc uniformément convergente, donc on peut conclure que \widetilde{u} possède une dérivée partielle en tout point par rapport à x et que

$$\forall (x,y) \in \mathbb{R} \times]0, +\infty[, \quad \frac{\partial \widetilde{u}}{\partial x}(x,y) = i\pi^2 \sum_{n=1}^{\infty} n^2 \widetilde{u_n}(x,y)$$

5.3.3. De la même façon, on montre que $\dfrac{\partial \widetilde{u}}{\partial y}(x,y)$ existe et que

$$\forall (x,y) \in \mathbb{R} \times]0, +\infty[, \quad \frac{\partial \widetilde{u}}{\partial y}(x,y) = -\pi^2 \sum_{n=1}^{\infty} n^2 \widetilde{u_n}(x,y) = i \frac{\partial \widetilde{u}}{\partial x}(x,y)$$

- **5.3.3.** La question précédente montre que u vérifie les conditions de Cauchy-Riemann sur Ω , donc u est holomorphe sur Ω .
- **5.4.** La formule (2) s'écrit, à l'aide de u, sous la forme :

$$\left(\frac{ia}{i}\right)^{1/2} (1 + 2u(ia)) = 1 + 2u\left(-\frac{1}{ia}\right),$$

et d'après le principe du prolongement analytique, cette égalité qui est vraie pour les points de Ω de la forme ia, se prolonge à Ω :

$$\forall z \in \Omega, \quad \left(\frac{z}{i}\right)^{1/2} \left(1 + 2u(z)\right) = 1 + 2u\left(-\frac{1}{z}\right)$$

5.5. Pour tout $z \in \Omega$, on a, en tenant compte des questions **5.2.** et **5.4.** :

$$\left(\frac{i}{z}\right)^{1/2} \sum_{n=1}^{\infty} \left(\exp\left(\frac{-i\pi n^2}{4z}\right) - \exp\left(\frac{-i\pi n^2}{z}\right)\right) = \left(\frac{i}{z}\right)^{1/2} u \left[\left(-\frac{1}{4z}\right) - u\left(-\frac{1}{z}\right)\right] \\
= \frac{1}{2} \left(\frac{i}{z}\right)^{1/2} \left[\left(\frac{4z}{i}\right)^{1/2} (1 + 2u(4z)) - \left(\frac{z}{i}\right)^{1/2} (1 + 2u(z))\right] \\
= \frac{1}{2} + u(z+1)$$

5.6. Pour tout $z \in \mathbb{C}$, on a $|u_n(z)| = e^{-\operatorname{Im}(z)\pi n^2} \le 1$ et donc $\left|\frac{u_n(z)}{i\pi n^2}\right| \le \frac{1}{\pi n^2}$, donc la série $\sum \frac{u_n}{i\pi n^2}$ est normalement convergente, donc uniformément convergente sur $\{z \in \mathbb{C}/\operatorname{Im}(z) \ge 0\}$ et comme les u_n sont continues, il est de même de la somme v.

5.7. On a pour tout $z \in \Omega$, $|F_{-1/2}(z)| \le 2|z|^{3/2}$ et donc

$$nF_{\frac{-1}{2}}\left(\frac{\alpha z}{\pi n^2}\right) \le 2\left|\frac{\alpha z}{\pi}\right|^{3/2}\frac{1}{n^2}$$

donc la série $\sum nF_{-1/2}\left(\frac{\alpha z}{\pi n^2}\right)$ est absolument convergente sur Ω , donc convergente sur Ω .

5.8.

5.8.1. Les fonctions u_n sont holomorphes sur Ω et $u_n'(z)=i\pi n^2u_n(z)$ pour tout $z\in\Omega$, et comme la série $\sum \frac{u_n}{i\pi n^2}$ converge uniformément sur Ω , alors v_1 est holomorphe et sa dérivée s'obtient, en dérivant terme à terme :

$$\forall z \in \Omega, \quad v_1'(z) = \sum_{n=1}^{\infty} u_n(z) = u(z).$$

5.8.2. Soit $\forall z \in \Omega$, alors :

$$w'(z)(z) = \frac{(i\pi)^{1/2}}{2} \sum_{n=1}^{\infty} \left(\frac{4}{\pi n} F'_{-1/2} \left(\frac{4z}{\pi n^2} \right) - \frac{2}{\pi n} F'_{-1/2} \left(\frac{z}{\pi n^2} \right) \right).$$

Mais $F_{1/2}' = f_{-1/2} = z^{-1/2} \exp(-\frac{i}{z})$, il vient alors, après simplification :

$$w'(z) = \frac{(i\pi)^{1/2}}{2} \sum_{n=1}^{\infty} \left(\frac{4}{\pi n} f_{-1/2} \left(\frac{4z}{\pi n^2} \right) - \frac{2}{\pi n} f_{-1/2} \left(\frac{z}{\pi n^2} \right) \right)$$
$$= \left(\frac{i}{z} \right)^{1/2} \sum_{n=1}^{\infty} \left(\exp\left(\frac{-i\pi n^2}{4z} \right) - \exp\left(\frac{-i\pi n^2}{z} \right) \right)$$
$$= u(1+z) + \frac{1}{2}.$$

5.8.3. On a $v_1' = u$ et

$$\forall z \in \Omega, \quad w'(z) = u(z+1) + \frac{1}{2} = \left(v_1(z+1) + \frac{z}{2}\right)'$$

et comme Ω est connexe par arcs, alors il existe $k\in\mathbb{C}$ tel que $v_1'(z+1)+\frac{z}{2}=w(z)+k$, mais l'inégalité $z\in\Omega$, $|F_{1/2}(z)|\leq 2|z|^{3/2}$ montre que $\lim_{z\to 0}w(z)=0$, donc k=v(1) et par conséquent :

$$\forall z \in \Omega, \quad v_1(z+1) - v(1) = -\frac{z}{2} + w(z).$$

5.9. On a $z \in \Omega$, $|F_{1/2}(z)| \le 2|z|^{3/2}$, donc $\forall N \in \mathbb{N}^*$,

$$\left| \sum_{n=1}^{N} \left(nF_{-1/2} \left(\frac{4z}{\pi n^2} \right) - 2nF_{-1/2} \left(\frac{z}{\pi n^2} \right) \right) \right| \le K|z|^{3/2} \sum_{n=1}^{N} \frac{1}{n^2},$$

où K>0 est une constante. D'où $|w(z)|\leq |z|^{3/2}K\frac{\pi^{1/2}}{2}\sum_{n=1}^\infty\frac{1}{n^2}$, il suffit donc de prendre donc $c=K\frac{\pi^{1/2}}{2}\sum_{n=1}^\infty\frac{1}{n^2}$.

5.10. Soit $(y_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positives de limite nulle, comme v est continue sur $\{z\in\mathbb{C}/\mathrm{Im}(z)\geq 0\}$, alors pour tout $x\in\mathbb{R}$, $\lim_{n\to\infty}v(x+iy_n)=v(x)=q(x)$, d'autre part on peut écrire pour tout $n\in\mathbb{N}$,

$$\left| v(x+iy_n+1) - v(1) + \frac{x+iy_n}{2} \right| \le c|x+iy_n|^{3/2}$$

et on obtient par passage à la limite :

$$\left| q(x+1) - q(1) + \frac{x}{2} \right| \le c|x|^{3/2}$$

et donc $q(x+1)-q(1)+\frac{x}{2}=O(x^{3/2})$, ceci montre que q est dérivable en et que $q'(1)=\frac{-1}{2}$.

•••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr