Lecture #3 Recursion (2)

Algorithm
JBNU Spring 2021
Jinhong Jung

In Previous Lecture

Concept of recursion

- When it is defined in terms of itself, it is called recursion
 - Base case(s) and recursive step
- Recursion can simply describe an algorithm into several terms

How to design and analyze recursion

- Divide and conqure
 - Divide the problem into several (smaller) sub-problems
 - Conquer them separately & aggregate the results if necessary
- Mathematical induction
 - \circ If k-1-th domino falls, then k-th domino falls surely
 - Prove base cases and inductive step

In This Lecture

How to analyze a recursive complexity function

- Repeated substitution
- Mathmetical induction
- Master theorem

Outline

Recursive complexity 5

Repeated substitution

Mathematical induction

Master theorem

Complexity of Recursive Alg.

Problem: Exponentiation (or power)

- Input: base number a and exponent n (non-negative int.)
- Output: to calculate *a*ⁿ

```
def power(a, n):
    if n == 0:
        return 1
    else:
        return power(a, n-1) * a
```

- Q: What is the time complexity of the above algorithm?
 - It's also represented recursively as recurrence relation
 - We need to solve the recurrence relation to obtain its closed form

Recursive Complexity

Let T(n) denote the time complexity of power(a, n)

- T(n): # of operations to solve the problem which size is n
 - \circ If n is a base case,
 - It just returns 1 requiring constant time, i.e., T(n) = C

sub-problem of size n-1

- \circ If n is in a recursive step,
 - 1) power(a, n) calls power(a, n-1) which requires T(n-1)
 - 2) After then, the result is multiplied by a requiring constant time $\mathcal C$

- i.e.,
$$T(n) = T(n-1) + C$$

$$T(n) = \begin{cases} C & n = 0 \\ T(n-1) + C & n > 0 \end{cases}$$

Q. What is its closed form?

Another Recursive Algorithm

Let's divide the problem as follows:

If
$$n$$
 is even: $a^n = (a \times a) \times (a \times a) \times \dots \times (a \times a) = (a^2)^{\frac{n}{2}}$

If
$$n$$
 is odd: $a^n = a \times (a \times a) \times (a \times a) \times \cdots \times (a \times a) = a \times (a^2)^{\frac{n-1}{2}}$

$$T(n) = \begin{cases} C & n == 0 \\ T\left(\frac{n}{2}\right) + C & n \text{ is even} \end{cases}$$

$$T(n) = \begin{cases} T\left(\frac{n-1}{2}\right) + C & n \text{ is odd} \end{cases}$$

Q. What is its closed form?

Fibonacci Number

Problem: Fibonacci number

- Input: n indicates n-th Fibonacci number, i.e., F_n
- Output: to calculate n-th Fibonacci number F_n defined by

$$F_n = F_{n-2} + F_{n-1}$$

- The sum of two consecutive Fibonacci numbers
- $\circ F_0 = 0$ and $F_1 = 1$ by its definition (base cases)
- Let T(n) be the time complexity of its recursive algorithm

def fib(n):
 if n <= 1:
 return n
 else:
 return fib(n-2) + fib(n-1)
$$T(n) = \begin{cases} C & n \leq 1 \\ T(n-2) + T(n-1) + C & n > 1 \end{cases}$$

Outline

Recursive complexity

Repeated Substitution

Mathematical induction

Master theorem

Repeated Substitution (1)

Basic idea of repeated substitution

 Repeatedly substitute the complexity function whose input size decreases toward a base case

 $= T(1) + (n-1)C \le Cn = O(n)$

Example:
$$T(n) = T(n-1) + C$$

■ $T(1) \le C$ as its base case substitute T(n) = T(n-1) + C = T(n-2) + 2C = T(n-3) + 3C $= \cdots$

Repeated Substitution (2)

Example:
$$T(n) \le 2T\left(\frac{n}{2}\right) + n$$

■ $T(1) \le C$ as its base case

$$T(n) \le 2T\left(\frac{n}{2}\right) + n$$

$$\le 2\left(2T\left(\frac{n}{4}\right) + \frac{n}{2}\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

$$\le 2^2\left(2T\left(\frac{n}{2^3}\right) + \frac{n}{2^2}\right) + 2n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

$$= \cdots$$

Assume
$$n = 2^k \rightarrow \leq 2^k T\left(\frac{n}{2^k}\right) + kn = nT(1) + n\log n$$

$$\leq nC + n\log n = O(n\log n)$$

Assumption on $n = 2^k$

$n=2^k$ is often assumed for computational ease

- Fact: There is always a power of 2 between n & 2n
 - \circ i.e., $n \le 2^k \le 2n$ (see the appendix)
- If $T(n) = O(n^r)$, $T(2n) = O((2n)^r) = O(2^r n^r) = O(n^r)$
 - \circ T(n) and T(2n) have the same asymptotic behavior, i.e., as $n \to \infty$, T(n) = T(2n)
- Suppose T(n) is monotonically increasing as $n \to \infty$
 - \circ e.g., T(n) is polynomial & its leading coefficient is positive,

$$0 \Rightarrow n \le 2^k \le 2n \Leftrightarrow T(n) \le T(2^k) \le T(2n)$$

- $\circ \Rightarrow T(n) = T(2^k) = T(2n)$ because T(n) = T(2n)
- Thus, it's okay if we assume the size n of input is 2^k since they have the same Big-O bound

Repeated Substitution

Pros

- Intuitive and easy to calculate
- Effective for a recursive complexity in a simple form

Cons

- Prone to make mistakes
- Require a lot of efforts when we apply the method to a complicated complexity function
 - Try to solve the following problem using repeated substitution

$$T(n) = 3T\left(\frac{n}{4}\right) + \sqrt{n} \times \log n$$

Outline

Recursive complexity

Repeated substitution

Mathematical induction TI

Master theorem

Mathematical Induction (1)

Basic idea of mathematical induction

 Estimate the closed form of a recursive complexity, and then prove it by induction

Example

- Claim: $T(n) \le 2T(n/2) + n$ and its closed form is $T(n) \le cn \log n$ for positive c and large n
- Base case
 - \circ If n = 2, there is always positive c such that $T(2) \le c2 \log 2$
- Inductive step
 - \circ **Previous case**: assume the claim holds for n=k/2
 - **Next case**: does the claim hold for n = k?

Mathematical Induction (2)

- Claim: $T(n) \le 2T(n/2) + n$ and its closed form is $T(n) \le cn \log n$ for positive c and large n
- Inductive step
 - Previous case: assume the claim holds for $\frac{k}{2} \Rightarrow T\left(\frac{k}{2}\right) \le c\left(\frac{k}{2}\right)\log\frac{k}{2}$
 - Next case: does the claim hold for n = k?

$$T(k) \le 2T\left(\frac{k}{2}\right) + k$$

Use the assumption
$$\rightarrow \leq 2c \left(\frac{k}{2}\right) \log \frac{k}{2} + k = ck \log k - ck \log 2 + k$$

$$= ck \log k + \left(-c \log 2 + 1\right) k$$
 Also true for $k \rightarrow \leq ck \log k$ Set c such that $-c \log 2 + 1 < 0 \Leftrightarrow c > \frac{1}{\log 2} = 1$

- \circ Thus, there is always c satisfying $T(n) \le cn \log n$ for any n
- Meaning $T(n) = O(n \log n)$

No Consideration of Base Case

Don't need to consider the part of base case

- When solving a recursive complexity by induction
- Why?
 - \circ Suppose we should show T(n) = f(n)
 - Then, we show $T(a) \le cf(a)$ for constant a as a base case
 - Note that T(a) is also constant and normally, & f(n) returns a positive number (imagine it's a time complexity)
 - \circ Thus, there is always c satisfying $T(a) \le cf(a)$
- Thus, we only consider the inductive step for such proofs

Other Example – Wrong Version

Claim: $T(n) \le 2T(n/2) + 1$ and it's O(n)

- Estimate $T(n) \le cn$
- Inductive step
 - \circ **Previous case**: assume the claim holds for $n=\frac{k}{2}$

$$T\left(\frac{k}{2}\right) \le c \, \frac{k}{2}$$

• **Next case**: does the claim hold for n = k?

$$T(k) \le 2T\left(\frac{k}{2}\right) + 1$$
$$\le 2c\frac{k}{2} + 1$$
$$= ck + 1$$

• Note that we cannot say $ck + 1 \le ck$; the proving fails

Other Example – Correct Version

Claim: $T(n) \le 2T(n/2) + 1$ and it's O(n)

- Estimate $T(n) \le cn 2$
- Inductive step
 - \circ **Previous case**: assume the claim holds for $n=rac{k}{2}$

$$T\left(\frac{k}{2}\right) \le c\frac{k}{2} - 2$$

• **Next case**: does the claim hold for n = k?

$$T(k) \le 2T\left(\frac{k}{2}\right) + 1$$

$$\le 2c\frac{k}{2} - 4 + 1$$

$$= ck - 3 \le ck - 2$$

Now the proving is correct since the result has the same form

Mathematical Induction

Pros

- For a complicated function, it's easier than the repeated substitution method
 - If an effective bound is provided...

Cons

- Need to estimate "effective" bound
 - Loose bound is meaningless
 - Excessively tight bound will not be proved
- Intuition for such estimate is from experience
 - Need to solve a lot of problems in this way

Outline

Recursive complexity

Repeated substitution

Mathematical induction

Master theorem 5

Generalization of Recursive Alg.

Most recursive algorithms are based on Divide & Conquer as follows

```
def procedure(n):
    if n <= some constant k like 1
        solve the input directly without recursion
    else:
        create a subproblems, each having size n/b
        call procedure p recursively on each subproblem
        aggregate the results from the subproblems</pre>
```


$$T(n) = aT\left(\frac{n}{h}\right) + f(n)$$

f(n): remaining cost to split the problem and recombining the results

Master Theorem

Master theorem allows many recurrence relations of the following form to be converted 0 directly!

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- *n*: input size for problem
- $a \ge 1$: number of sub-problems
- n/b: size of input for each sub-problem where $b \ge 1$
- f(n): remaining cost (overhead)
 - to split the problem and recombining the results at the top level

There is an exact version of Master Theorem

- But not discussed in this lecture since it's complicated
- Instead, let's check its approximate version

Master Theorem

Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Suppose $h(n) = n^{\log_b a}$
- Case 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = 0 \Rightarrow T(n) = \Theta(h(n))$

■ Case 2) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = \infty \& af\left(\frac{n}{b}\right) < f(n) \Rightarrow T(n) = \Theta(f(n))$

■ Case 3) $\frac{f(n)}{h(n)} = \Theta(1) \Rightarrow T(n) = \Theta(h(n) \log_2 n)$

Interpretation (1)

Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

t'0

Solution tree

- $\circ \Rightarrow$ # of problems where the input size is 1
- $\circ \Rightarrow$ cost for solving all problems where the input size is 1
- The depth of the solution tree is $k = \log_b n$
 - \circ Size changes as $n \to \frac{n}{b} \to \cdots \to \frac{n}{b^k}$; when $\frac{n}{b^k} = 1$, it reaches at a leaf
- The number of leaf nodes at level k is $a^k = a^{\log_b n} = n^{\log_b a}$

$$a^{\log_b n} = x \Leftrightarrow \log_b n \times \log_b a = \log_b x \Leftrightarrow \log_b n^{\log_b a} = \log_b x$$

Interpretation (2)

Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

■ Case 1)
$$\lim_{n\to\infty} \frac{f(n)}{h(n)} = 0 \Rightarrow T(n) = \Theta(h(n))$$

- ∘ Condition 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = 0$ meaning h(n) overwhelms f(n)
 - h(n): cost for solving all problems where the input size is 1
 - f(n): remaining cost (overhead) to split the problem & recombining the results at the top level
- \circ Then, h(n) determines the complexity T(n)
 - The condition is called "the solution tree is **leaf-heavy**"

Interpretation (3)

Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

■ Case 2)
$$\lim_{n\to\infty} \frac{f(n)}{h(n)} = \infty \& af\left(\frac{n}{b}\right) < f(n) \Rightarrow T(n) = \Theta(f(n))$$

- ∘ Condition 1) $\lim_{n\to\infty} \frac{f(n)}{h(n)} = \infty$ meaning if f(n) overwhelms h(n)
- ∘ Condition 2) $af\left(\frac{n}{b}\right) < f(n)$
 - $af\left(\frac{n}{b}\right)$: the sum of remaining costs of all sub-problems at the children level
 - f(n): remaining cost (overhead) of problem at the root level
 - When the recursion goes to the below level, the overhead cost should decrease!
- \circ Then, f(n) determines the complexity T(n)
 - These conditions are called "the solution tree is root-heavy"

Interpretation (4)

Master Theorem [approximate version]

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 3) $\frac{f(n)}{h(n)} = \Theta(1) \Rightarrow T(n) = \Theta(h(n) \log n)$
 - \circ Condition 1) $\frac{f(n)}{h(n)} = \Theta(1)$ meaning if their weights are comparable by a constant
 - Work to split/recombine a problem is comparable to sub-problems
 - \circ Then, $h(n) \log n$ determines the complexity T(n)

Examples With Master Theorem

Get the closed form of the following complexities

- Case 1: $T(n) = 2T(\frac{n}{3}) + c$
 - $a = 2, b = 3 \Rightarrow h(n) = n^{\log_3 2}$ and f(n) = c
 - $\circ \lim_{n \to \infty} \frac{f(n)}{h(n)} = \lim_{n \to \infty} \frac{c}{n^{\log_3 2}} = \infty \text{ thus, } T(n) = \Theta\left(n^{\log_3 2}\right)$
- Case 2: $T(n) = 2T(\frac{n}{4}) + n$
 - a = 2, $b = 4 \Rightarrow h(n) = n^{\log_4 2} = \sqrt{n}$ and f(n) = n
 - $\circ \lim_{n \to \infty} \frac{f(n)}{h(n)} = \lim_{n \to \infty} \frac{n}{\sqrt{n}} = 0 \& af\left(\frac{n}{b}\right) < f(n) \Rightarrow 2\frac{n}{4} = \frac{n}{2} < n; \text{ thus, } T(n) = \Theta(n)$
- Case 3: $T(n) = 2T(\frac{n}{2}) + n$
 - $a = 2, b = 2 \Rightarrow h(n) = n^{\log_2 2} = n \text{ and } f(n) = n$
 - $\circ \frac{f(n)}{h(n)} = 1 = \Theta(1)$; thus, $T(n) = \Theta(n \log_2 n)$

Other Technique

Changing variables makes an equation simple

- $T(n) = 2T(\sqrt{n}) + \log_2 n$ • Let $m = \log_2 n \Rightarrow 2^m = n$
- ⇒ $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$ Let P(m) denote $T(2^m)$
- ⇒ $P(m) = 2P\left(\frac{m}{2}\right) + m$ By Master theorem, $P(m) = \Theta(m \log m)$
- Thus, $T(n) = P(m) = \Theta(m \log m) = \Theta(\log n \log(\log n))$

Master Theorem [Approx.]

Pros

- Very convenient and can apply it to an arbitrary complexity function in form of T(n) = aT(n/b) + f(n)
 - Do not need to calculate or prove something

Cons

- For some cases, this approximate version cannot be applied
 - In these cases, need to use the exact version (see the textbook)
- Note that not all recurrence relations can be solved with this theorem

What You Need To Know

Recursive complexity

 Complexity of a recursive algorithm is also represented recursively as recurrence relation

How to analyze a recursive complexity function

- Repeated substitution
 - Repeatedly substitute the complexity function whose input size decreases toward a base case
- Mathmetical induction
 - Estimate the closed form of a recursive complexity, and then prove it by induction
- Master theorem
 - Can solve any function in form of T(n) = aT(n/b) + f(n)
- For some cases, changing variables makes an equation simple

In Next Lecture

Sorting problem

Basic sorting algorithms

- Selection Sort
- Bubble Sort
- Insertion Sort

Thank You

Appendix: Proof for $n \le 2^k \le 2n$

Claim: there exists positive integer k s.t. $n \le 2^k \le 2n$ Proof

■ Note that $n = 2^{\log_2 n}$ for a natural number n

$$2^{\lfloor \log_2 n \rfloor} \le n \le 2^{\lceil \log_2 n \rceil}$$

$$\Rightarrow 2^{\lfloor \log_2 n \rfloor + 1} \le 2n \le 2^{\lceil \log_2 n \rceil + 1}$$

■ Note that $2^{\lceil \log_2 n \rceil} \le 2^{\lceil \log_2 n \rceil + 1}$

$$\circ \lceil \log_2 n \rceil - \lfloor \log_2 n \rfloor - 1 = \begin{cases} -1, & \log_2 n \text{ is integer} \\ 0, & \log_2 n \text{ isn't integer} \end{cases} \le 0$$

- Thus, $n \le 2^{\lceil \log_2 n \rceil} \le 2^{\lceil \log_2 n \rceil + 1} \le 2n$
- In other words, $k = \lceil \log_2 n \rceil$ or $\lceil \log_2 n \rceil + 1$ • If $\log_2 n$ isn't integer, $\lceil \log_2 n \rceil = \lceil \log_2 n \rceil + 1$