CME307/MS&E311 Optimization Theory Summary

Yinyu Ye
Department of Management Science and
Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

Optimization Problems

- A set of decision variables, x, in vector or matrix form with dimension n
- A continuous and sometime differentiable objective function f(x)min f(x)
- A feasible region where x
 can be in
- One can smooth them by reformulation as constrained optimization:

max min_i{
$$f_i(x)$$
, $i=1,...,n$ } ->
max α s.t. α - $f_i(x) \leq 0$, for $i=1,...,n$

 $X \in X$

Function, Gradient Vector and Hessian Matrix

- A function f of x in Rⁿ
- The Gradient Vector of f at x

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \dots \frac{\partial f}{\partial x_n}\right)$$

The <u>Hessian Matrix</u> of f at x

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial f^{2}}{\partial x_{1} \partial x_{1}} & \dots & \frac{\partial f^{2}}{\partial x_{1} \partial x_{n}} \\ \dots & \dots \\ \frac{\partial f^{2}}{\partial x_{n} \partial x_{1}} & \dots & \frac{\partial f^{2}}{\partial x_{n} \partial x_{n}} \end{bmatrix}$$

Taylor's Expansion Theorem

Convex and Concave Functions

f(x) is a <u>convex function</u> if and only if for any given two points x_1 and x_2 in the function domain and for any constant $0 \le \alpha \le 1$

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$

Strictly convex if $x_1 \neq x_2$, $f(0.5x_1 + 0.5x_2) < 0.5f(x_1) + 0.5f(x_2)$

Convex Quadratic Functions

 $f(x)=x^TQx+c^Tx$ is a convex function if and only if Hessian matrix Q is positive semi-definite (PSD).

 $f(x)=x^{T}Qx+c^{T}x$ is a strictly convex function if and only if Q is positive definite (PD).

Q is PSD if and only if $x^TQx \ge 0$ for all x.

A 2x2 matrix is PSD (or PD) if and only if two diagonal entries and the determinant are nonnegative (or positive)

Convex Sets

- A set is <u>convex</u> if every line segment connecting any two points in the set is contained entirely within the set
 - Ex polyhedron
 - Ex ball
- An <u>extreme point</u> of a convex set is any point that is not on any line segment connecting any other two distinct points of the set
- The intersection of convex sets is a convex set
- A set is closed if the limit of any convergent sequence of the set belongs to the set

Properties of Convex Function

If f(x) is a convex function, then the lower level set $\{x: f(x) \le b\}$ is a convex set for any constant b.

The graph of a convex function lies above its <u>tangent line (planes)</u>. The Hessian matrix of a convex function is <u>positive semi-definite</u>.

Optimization Problem Classes

- Unconstrained Optimization
 - Convex or Nonconvex
- Constrained Optimization

- Conic Linear Optimization/Programming (CLO/CLP)
- Convex Constrained Optimization (CCO)
 - Feasible region/set convex; objective general
- Generally Constrained Optimization (GCO)
- Convex Optimization (CO)
 - Minimize a convex function over a convex feasible set
 - Maximize a concave function over a convex feasible set

Optimization Problem Forms

min
$$c^T x$$

s.t.
$$A\mathbf{x} - \mathbf{b} = 0$$
,

$$X \in K$$

min
$$f(x)$$

s.t.
$$h_i(x) = 0$$
, i=1,...,m

$$c_i(x) \ge 0$$
, i=1,...,p

Conic Linear Optimization (CLO)

A: an m x n matrix
c: objective coefficient
K: a closed convex cone

This is convex optimization

Generally Contrained Optimization (GCO)

Each function can be continuous, continuously differentiable (C¹), or twice continuously differentiable (C²)

It is CCO if c_i are all concave, and h_i are all linear/affine functions. In addition, if f is convex, it is CO.

Why do we care about convex optimization?

- It guarantees that every local optimizer is a global optimizer
- It guarantees that every (first-order) KKT (or stationary) point/solution is a global optimizer
- This is significant because all of our numerical optimization algorithms search/generate a KKT point/solution
- Sometime the problem can be "convexfied":

min
$$c^{T}x$$
, s.t. $||x||^{2}=1$
min $c^{T}x$, s.t. $||x||^{2} \le 1$

Optimization Theory: Mathematical Foundations

Theory: Feasibility Conditions

- <u>Feasibility Conditions or Farkas' Lemmas</u> are developed to characterize and certify feasibility or infeasibility of a feasible region
- Alternative Systems X and Y: X has a feasible solution if and only if Y has no feasible solution
 - X and Y cannot both have feasible solution
 - Exactly one of them has a feasible solution
- They can be viewed as special cases of Linear Programming primal and dual pairs

Alternative Systems and CLO Pairs I

$$Ax - b = 0$$
,

$$X \in K$$

System X A: an m x n matrix **b**: m-dimension vector K: a closed convex cone

s.t.
$$Ax - b = 0$$
,

$$X \in K$$

$$b^{T}y=1(>0)$$
$$A^{T}y+s=0,$$

$$A^T y + s = 0$$

$$s \in K^*$$

System Y

K* is the dual cone

$$d^*=\max b^T y$$

s.t.
$$A^T y + s = 0$$
,
 $s \in K^*$

Alternative Systems and CLO Pairs II

$$c^{\mathsf{T}} \mathbf{x} = -1 (< 0)$$

$$Ax = 0$$
,

$$X \in K$$

$$A^T y + s - c = 0,$$

$$s \in K^*$$

$$s \in K^*$$

System X A: an m x n matrix c: n-dimension vector K: a closed convex cone

System Y

K* is the dual cone

$$p^*=mi$$
 c^Tx
 n
 $s.t.$ $Ax = 0$

d*=max
$$\mathbf{0}^T \mathbf{y}$$

s.t. $A^T \mathbf{y} + \mathbf{s} - \mathbf{c} = \mathbf{0}$,
 $\mathbf{s} \in \mathbf{K}$

Feasibility Test Machine

General Rules to Construct the CLO Dual

OBJ Vector/Matrix	RHS Vector/Matrix
RHS Vector/Matrix	OBJ Vector/matrix
A	$\mathcal{A}^{\mathcal{T}}$
Max model	Min model
$x_j \geq_{\kappa} 0$	<i>j</i> th constraint ≥ _{K*}
$x_j \leq_K 0$	jth constraint ≤ _{K*}
x _j free	<i>j</i> th constraint =
<i>i</i> th constraint ≤ _K	$y_i \geq_{K^*} 0$
<i>i</i> th constraint ≥ _K	$y_i \leq_{K^*} 0$
<i>i</i> th constraint =	y _i free

The dual of the dual is the primal

Theory: Optimality Conditions

- Optimality (KKT) Conditions are developed to characterize and certify possible minimizers
 - Feasibility of original variables
 - Optimality conditions consist of original variables and Lagrange multipliers
 - Zero-order, First-order, Second-order, necessary, sufficient
- They may not lead directly to a very efficient algorithm for solving problems, but they do have a number of benefits:
 - They give insight into what optimal solutions look like
 - They provide a way to set up and solve small problems
 - They provide a method to check solutions to large problems
 - The Lagrange multipliers can be seen as sensitivities of the constraints
- A minimizers may not satisfy optimality conditions unless certain constraint qualifications hold.

KKT Optimality Condition Test Machine

Duality Theorems for CLO

$$p^*=\min \qquad c^T x$$

s.t.
$$Ax - b = 0$$
,

$$X \in K$$

$$d^*=\max \qquad \qquad \boldsymbol{b}^T\boldsymbol{y}$$

s.t.
$$A^{T}y + s - c = 0$$
,

$$s \in K^*$$

Primal Problem
A: an m x n matrix
c: objective coefficient
K: a closed convex cone

Weak
Duality
Theorem

Dual Problem

K* is the dual cone

O-Order Condition: $p^* = d^*$

Sufficient!

Strong Duality Theorem: They must equal?

"Yes" under certain conditions of cone *K* and data matrix *A*,*b*,*c*:

- a) K is a polyhedron cone, or
- b) either one has an interior feasible solution

The Lagrange Function of GCO

min
$$f(\mathbf{x})$$

s.t. $c_i(\mathbf{x}) (\leq, =, \geq) 0$, i=1,...,m

Restriction on multipliers
$$y_i$$
, y_i (\leq ,"free", \geq) 0 , $i=1,...,m$

The Largrange Function

$$L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \sum_{i} y_{i} c_{i}(\mathbf{x})$$

The Lagrange function can be interpreted as a "penalized" aggregated objective function:

 y_i free: can be penalized either way

 $y_i \ge 0$: can be penalized when $c_i(\mathbf{x}) \le 0$

 $y_i \le 0$: can be penalized when $c_i(\mathbf{x}) \ge 0$

The Lagrangian Duality for GCO

$$p^*=\min$$
 $f(x)$
s.t. $c_i(x) (\geq,=,\leq) 0$, $i=1,...,m$

Weak
Duality
Theorem
P* ≥ d*

Let
$$\phi(y) = \inf_{x} L(x,y)$$

Strong
Duality
Theorem
They must
equal?

$$d^*=\max \quad \phi(\mathbf{y})$$

s.t. $y_i (\leq, \text{"free"}, \geq) 0, i=1,...,m$

Not necessarily!

0-Order Condition: $p^* = d^*$

Sufficient!

Zero-Order Optimality Test for CLO and GCO

1 and 2-order Conditions: Unconstrained

- Problem:
 - Minimize f(x), where x is a vector that could have any values, positive or negative
- First Order Necessary Condition (min or max):
 - $\nabla f(x) = 0$ ($\partial f/\partial x_i = 0$ for all i) is the first order necessary condition for optimization
- Second Order Necessary Condition:
 - $-\nabla^2 f(x)$ is positive semidefinite (PSD)
 - [$d^T\nabla^2 f(x)d \ge 0$ for all d]
- <u>Second Order Sufficient Condition</u>
 (Given FONC satisfied)
 - $-\nabla^2 f(x)$ is positive definite (PD)
 - $[d^T\nabla^2 f(x)d > 0 \text{ for all } d \neq 0]$

1-Order KKT Condition for GCO

Recall the Largrange Function

$$L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \sum_{i} c_{i}(\mathbf{x}) y_{i}$$

$$\nabla_x L(\mathbf{x}, \mathbf{y}) = \mathbf{0}$$
, that is, $\partial L(\mathbf{x}, \mathbf{y})/\partial \mathbf{x}_j = \mathbf{0}$, for all $j=1,...,n$, and $c_i(\mathbf{x})y_i = 0$, for all $i=1,...,m$ $c_i(\mathbf{x})$ $(\leq, =, \geq)$ 0 , y_i $(\leq, \text{"free"}, \geq)$ 0 , $i=1,...,m$

Optimality Test for CCO

Optimality Test for GCO

2-Order KKT Condition for GCO

Tangent Plane:

 $T = \{ z: \nabla c_i(\mathbf{x})z = 0, \text{ for all } i, \text{ such that } c_i(\mathbf{x}) = 0 \}$

Necessary Condition: $z^T \nabla_x^2 L(x,y) z \ge 0$, for all z in T

Sufficient Condition: $z^{T}\nabla_{x}^{2}L(x,y)z > 0$, for all non-zero z in T

This can be done by checking positive semi-definiteness (or definiteness) of the projected Hessian of the Lagrange function

Example: Optimality Conditions

min
$$x_1^2 + x_2^2$$

s.t. $1 - 0.25 \cdot (x_1 - 2)^2 - (x_2 - 2)^2 \ge 0$

$$L(x_1, x_2, \lambda) = x_1^2 + x_2^2 - \lambda (1 - 0.25 \cdot (x_1 - 2)^2 - (x_2 - 2)^2)$$

$$\begin{pmatrix} \partial L / \partial x_1 \\ \partial L / \partial x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix} - \lambda \cdot \begin{pmatrix} 0.5(2 - x_1) \\ 2(2 - x_2) \end{pmatrix} = 0$$

$$1 - 0.25 \cdot (x_1 - 2)^2 - (x_2 - 2)^2 \ge 0, \quad \lambda \ge 0$$

$$\lambda (1 - 0.25 \cdot (x_1 - 2)^2 - (x_2 - 2)^2) = 0$$

Example: KKT Conditions

Example: Computation of a KKT Point

- If λ = 0, then x_1 = 0 and x_2 = 0, and thus the constraint would not hold with equality. Therefore, λ must be positive.
- Plugging the two values of $x_1(\lambda)$ and $x_2(\lambda)$ into the constraint with equality gives us $\lambda = 1.8$.
- We can then solve for $x_1 = .61$ and $x_2 = 1.28$.

Applications: Optimality Conditions

- The market equilibrium theory
 - Fisher market, Arrow-Debreu market
 - Duality and optimality lead to equilibrium conditions
- Sensor localization
 - SOCP: KKT conditions explain observations
 - SDP: Duality explains localizability
- Offline and Online LP
 - Learning optimal dual solution helps to make primal decisions online
- Non-convex regularization
 - L_p norm regulation function for unconstrained or constrained minimization
 - KKT conditions establish a desired thresh-holding properties at any KKT solution (first or second order)