

Prædiktiv model til kapacitetsudnyttelse

P5 Semestersprojekt - Efteråret 2016 Gruppe 5405

5. SemesterSchool of Medicine and HealthSundhedsteknologiFredrik Bajers Vej 7A9220 Aalborg

Tema:	
Klinisk teknologi	
Projektperiode: P5, Efteråret 2016	
Projektgruppe: 5405	
Medvirkende: Linette Helena Poulsen Maria Kaalund Kroustrup Nirusha Jeevanadan Rolf Oberlin Hansen Sageevan Sayananthan Sebastian Munk	Synopsis:
Vejleder: Hovedevejleder: Sten Rasmussen Bivejleder: Pia B. Elberg Kliniske Vejleder: Christian Kruse.	
Sider: XX	
Appendikser: XX	
Afsluttet: Offentliggørelse af rapportens indhold, med kildeangivelse, må kun ske efter aftale m	$ned\ for fatterne.$

Indholds for tegnelse

	0.1	Forord	l	1			
1	Ind	dledning					
	1.1	Initier	rende problemstilling	4			
2	Pro	oblemanalyse 6					
	2.1	Kapac	citetsudnyttelse	6			
		2.1.1	Ortopædkirurgisk afdeling	7			
	2.2	Ubala	nce i kapacitetsudnyttelse	9			
		2.2.1	Arbejdsvilkår	10			
		2.2.2	Patientsikkerhed	10			
	2.3	Belæg	ningsgrad på ortopædkirurgisk afdeling	11			
		2.3.1	Problemformulering	13			
3	Pro	blemlø	øsning	14			
	3.1	Foruda	sigelse af indlæggelsesvarighed	14			
		3.1.1	Præoperativt	15			
		3.1.2	Postoperativt	15			
	3.2	Prædiktiv model					
		3.2.1	Forudsigelse før operation *BEDRE OVERSKRIFT*	16			
		3.2.2	Indsamling af data				
		3.2.3	Eksklusionskriterier for data	17			
		3.2.4	Opdatering af model	17			
		3.2.5	Præprocessering				
	.1	Bilag .	A	19			
	.2	Interv	iew skabelon	19			
		.2.1	Eksklusionskriterier	19			
		.2.2	Interviewet med sygeplejersker på ortopædkirurgisk afdeling .	19			
		.2.3	Interview med lægesekretær på ortopædkirurgisk afdeling	20			

Forord og læsevejledning

0.1 Forord

Dette projekt er udarbejdet af gruppe ST5405, 5. semesters studerende på ingeniøruddannelsen sundhedsteknologi på Aalborg Universitet. Projektet er udarbejdet
i perioden 1. september til 19. december år 2016. Projektet er opstillet af Sten
Rasmussen, som er overlæge på ortopædkirurgisk afdeling på Aalborg Universitetshospital, og omhandler risikovurdering ved ortopædkirurgi. På dette semester er der
samarbejdet med ortopædkirurgisk afdeling på Aalborg Universitetshospital. I projektet tages der udgangspunkt i en klinisk teknologi herunder en prædiktiv model til
forudsigelse af indlæggelsesvarigheden for pateinter på ortopædkirurgisk afdelingen.

Vi vil gerne takke vores hovedvejleder Pia B. Elberg, kliniske vejleder Sten Rasmussen samt bi-vejleder Christian Kruse for vejledning og feedback gennem hele projektperioden. Derudover vil vi give en særlig tak til ortopædkirurgisk afdeling på Aalborg Universitetshospital for samarbejdet.

Læsevejledning

Rapporten er udarbejdet efter den problembaserede AAU-model. Selve rapporten er inddelt i fire kapitler samt bilag. I første kapitel indeholder projektets indledning samt den initierende problemstilling der ligger til grund for problemanalysen, som fremgår af andet kapitel. Tredje kapitel beskriver problemløsningen, hvor det analyseres og vurderes brugen af prædiktiv modellering ift. Forudsigelse af indlæggelsesvarigheden. Det fjerde kapitel omhandler syntese, der indeholder en diskussion, konklusion samt perspektivering af projektet. Kapitlet efterfølges af litteraturliste samt bilag.

Til håndtering af kilder anvendes Vancouver-metoden. De anvendte kilder nummereres i kantede parenteser. Er referencen placeret efter et punktum i en sætning, tilhører den hele afsnittet. Er referencen placeret før et punktum, tilhører den sætningen. Er der placeret ere referencer efter hinanden, betyder dette, at der er anvendt flere referencer til den pågældende sætning eller afsnit. Kilderne er angivet i litteraturlisten med eksempelvis forfatter, titel samt årstal.

Anvendte forkortelser er skrevet ud første gang, hvorefter forkortelsen ses i en parentes efterfølgende og anvendes herefter fremadrettet i rapporten.

Rapporten er udarbejdet i Latex, herudover anvendes MATLAB til databehandling samt visualisering af grafer og SPSS til beregning af statisk.

Metode

Metode for rapporten

Denne rapport fokuserer på at analysere og vurdere, hvorvidt indlæggelsesvarigheden kan vurderes ud fra en prædiktiv model ved analyse af parametre, der har indflydelse på indlæggelsesvarigheden. For at kunne belyse den initierende problemstilling, blev der i problemanalysen undersøgt, hvilke problemer det kan medføre, hvis kapacitetsudnyttelsen ikke udnyttes optimal på afdelingen samt omfanget af belægning belyst.

Analysen af problemet leder frem til en problemformulering. I problemløsningen analyseres, hvilke parametre der har indflydelse på indlæggelsesvarigheden samt, hvorvidt der findes en sammenhæng mellem parametrene. Efterfølgende vurderes og analyseres modeller inden for prædiktion af indlæggelsesvarigheden samt, hvilke overvejelser der skal vurderes inden påbegyndelse af en model.

Problemløsningen er belyst ud fra problemformulering og vil blive diskuteret, konkluderet og perspektiveret i en syntese. Problemanalysen og problemløsning er understøttet med statistik, litteratur og udarbejdet interviews med ortopædkirurgisk afdeling på Aalborg Universitetshospital. /fxnoteVed ikke om vi skal have selve problemstillingen og problemformuleringen inde i metoden når den bliver nævnt..

Interview

Relevant information og forståelse af ortopædkirurgisk afdeling på Aalborg Universitet er indsamlet ved kvalitative interviews med sygeplejersker og lægesekretær. Før interviewet udarbejdes spørgsmål som fremgår af bilag ?? og opstillet eksklusionskriterier for interviewet.

Personalet må mindst have arbejdet på afdelingen 1 år, da der ikke ønskes en sammenligning med andre afdelinger. Derudover ønskes der en åben dialog, hvorfor personalet ikke må have kendskab til spørgsmålene inden interviewet. Interviewet er optaget og vil efterfølgende skriberes, hvor fyldeord som eksempelvis 'Ja' ¹ og 'Øh' er udeladt. Derudover kan der være byttet om på ordstillingen med henblik på tydeliggørelse af meningen. Interviewet er kortet ned til de spørgsmål, som fremgår af bilag ?? for at gøre sammenligningen mellem informanters svar tydeligere. ²

¹FiXme Note: ved ik om ja er et fyldeord?

²FiXme Note: Ved ikke lige hvordan jeg skulle skrive det her?? Vi tager den på mandag

Behandling af data

Aalborg Universitetshospital har i et tidligere projekt indsamlet data fra 970 hospitalsindlæggelser på ortopædkirurgisk afdeling. Dette er indsamlet fra digitale patientjournaler i perioden 1. august til 31 oktober år 2014 ³. Data fordeler sig på 78 forskellige parametre herunder demografiske og kliniske faktorer. I datasættet er flere datapunkter ikke udfyldt, hvorfor datasættet er behandlet. Datasættet er behandlet i MATLAB 2015b således udvalgte kolonner er samlet i et nyt sæt. Derudover er alle rækker med tomme eller korrupte celler blevet fjernet. Dette har medført, at datasættet er reduceret fra 970 til 472 datapunkter. I rapporten anvendes datasættet med 472 datapunkter til udarbejdelse af grafer og statistik.

³FiXme Note: Er i tvivl om vi skulle have det med digitale patientjournaler?

Indledning

Flere danske hospitalsafdelinger oplever i perioder at have flere patienter end der er kapacitet til. Dette medfører, at der sker en ubalance i kapacitetsudnyttelsen, da der forekommer mangel på sengepladser, personale og rum. [Company2013] I budgetfordelingen for Aalborg Universitetshospital i år 2017 indgår det, at ventetiden på en operation, for elektive patienter, skal reduceres fra 57 dage til 50 dage Budget 2016]. Dette forventes at medføre, at det daglige antal elektive patienter, der indlægges, vil skabe en reducering i antallet af ledige sengepladser til akutte patienter. Derudover forventes det, at procentdelen af danskere over 65 år vil stige fra 29 % til 34 % og dermed også antallet af fremtidige patienter[RegionNord2016]. En stigning i antallet af patienter vil i takt med kortere ventetid på behandling skabe en udfordring ift. planlægning af de elektive indlæggelser. Planlægning af indlæggelser har indflydelse på personalets arbejdsdag ift. hvor mange patienter de skal varetage. Dertil kan sygeplejersker i nogle perioder opleve at skulle varetage ekstra patienter. Hertil mener hver anden regionalt ansat sygeplejerske på tværs af regionerne, at den travle arbejdsdag påvirker patientsikkerheden [Kjeldsen 2015]. Et studie påviser, at ved blot én ekstra indlagt patient i 30 dage pr. sygeplejerske øges mortalitetsraten for patienten med 7 %[Aiken2002]. Foruden personalets øgede risiko for at begå fejl ift. behandlingen af patienter forekommer der ligeledes kapacitetsmangel, som medfører, at patienter overføres til uhensigtsmæssige områder som f.eks. gangarealer og fyldte stuer [Madsen2014]. Dette kan forårsage, at patienter såvel som pårørende oplever et skærpet privatliv[Heidmann2014].

På ortopædkirurgisk afdeling på Aalborg Universitetshospital opleves ligeledes en ubalance i kapacitetsudnyttelse. Over en 18 måneders periode forekommer der hhv. en belægning over og under 100 %[SDS2015]. Dette betyder, at ressourcerne ikke udnyttes optimalt, hvortil afdelingen eks. oplever perioder med mangel på personale og perioder med for meget personale ift. indlagte patienter.

1.1 Initierende problemstilling

På baggrund af ovenstående opstilles følgende initierende problemstilling: Hvordan påvirkes ortopædkirurgisk afdeling på Aalborg Universitetshospital af ubalance i kapacitetsudnyttelse og hvor udbredte er belægningsrelaterede problemer på afdelingen?

Problemanalyse 2

2.1 Kapacitetsudnyttelse

Kapacitetudnyttelse betegner forholdet mellem aktivitet og kapacitet. Aktivitet omhandler patient og kontakt, herunder består kontakt af forundersøgelse, behandling og kontrol. Kapacitet omfatter antallet af personale, udstyr og rum, hvor personalet består af læger, sygeplejersker og sekretærer. Udstyret beskriver antallet af maskiner på en afdeling og antallet af rum beskriver opbevarelsen af udstyret. Den samlede kapacitetsudnyttelse er defineret ud fra, at der produceres mest muligt for de investerede ressourcer. [Company2013]

Den samlede kapacitetsudnyttelse

Figur 2.1: Den samlede kapacitetsudnyttelse, som er definineret ved forholdet mellem aktivitet og kapacitet. Aktivitet omfatter antallet af patienter samt kontakter og kapacitet omfatter personale, rum og udstyr.[Company2013]

Ud fra figur 2.1 fremgår det, at kapacitetsudnyttelse er forholdet mellem aktivitet og kapacitet. Dertil ses aktivitet som antal patienter multipliceret med kontakter. Kapaciteten udgør personale, rum og udstyr lagt sammen. Antallet af patienter,

der repræsenterer en del af aktivitet beskriver ligeledes belægning på hospitalets afdelinger.[Company2013]

Belægning er defineret ud fra antallet af patienter, der er normeret til på en afdeling[Heidmann2014]. Når en 100 % belægning opnås, svarer dette til, at de disponible sengepladser på en afdeling er taget i brug. Ved en belægning på over 100 % betyder det, at der er flere patienter end afdelingen er normeret til, hvilket vil sige, at afdelingen yder mere end der er kapacitet til. Ud fra figur 2.1 vil dette betyde, at der ikke er ligevægt mellem aktivitet og kapacitet, hvilket i dette tilfælde vil forårsage kapacitetsmangel på afdelingen. Det kan derfor være nødvendigt, at personalet skal varetage flere patienter samt arbejdsopgaver. Herudover kan det være nødvendigt at tilkalde ekstra personale for at opnå en balance i kapacitetsudnyttelsen. Hvis der derimod er en belægning på under 100 % er der omvendt færre patienter end afdelingen er normeret til. Dette betyder, at der er flere sengepladser end patienter, hvilket ligeledes fører til en ubalance i kapacitetsudnyttelsen. I denne situation er der mere personale end nødvendigt, hvilket betyder, at der ikke er fuld udnyttelse af personalets arbejdskraft.[Pauly1986]

Det anses herved vigtigt, at der er balance mellem aktivitet og kapacitet, således de investerede ressourcer udnyttes optimalt. Det ønskes derfor at opnå en kapacitetsudnyttelse på 100 %. Ud fra dette vil der fremover undersøges betydningen af kapacitetsudnyttelse på ortopædkirurgisk afdeling på Aalborg Universitetshospital.

2.1.1 Ortopædkirurgisk afdeling

*** Skriv noget om de 10 forskellige fagområder der på OA + indsæt cirkeldiagram som viser fordelingen af disse *** Kapacitetsudnyttelse afhænger af det budget som hver afdeling har til rådighed. Dette budget udregner Sundhedsstyrrelsen ud fra diagnoserelaterede grupper (DRG). DRG anvendes til at analysere omkostninger og aktivitet på et hospital.[DRG2016] Ortopædkirurgisk afdeling har et budget på 700.872.744 kr, som svarer til 17,2 % af det samlede budget for alle afdelinger på Aalborg Universitetshospital. Det samlede DRG for afdelingerne på Aalborg Universitetshospital er illusteret af figur 2.2.[Rasmussen2016] Størstedelen af budgettet anvendes til personale- og patientudgifter, som svarer til hhv. 60 % og 32 %. Det resterende budget anvendes til bygninger, it, apparatur, inventar samt drift og service[Noegletal2016].

Ortopædkirurgisk afdeling

Fordeling af DRG budget for afdelingerne på Aalborg Universitetshopital

Figur 2.2: Fordeling af DRG for samtlige afdelinger på Aalborg Universitetshospital. Det fremgår, at ortopædkirurigisk afdeling har en større andel end de resterende afdelinger.[Rasmussen2016]

Personalearbejde

På ortopædkirurgisk afdeling på Aalborg Universitetshospital arbejder personalet i gennemsnit 37 timer om ugen[**Danske2015**]. Vagterne kan variere fra XX til XX timer, hvoraf det både kan være nat- og dagvagter. Der er indlagt betalte pauser, hvilket betyder, at personalet skal være til rådighed under pausen. Pauserne er opdelt i XX om dagen. Afdelingen er delt op i XX vagthold og har vagtskifte hver XX time. Personalet varetager XX patienter om dagen. ¹

Patientindlæggelse

*** DETTE AFSNIT KAN GODT SKRIVES FÆRDIGT UD FRA INTERVIEWET OM BOOKING + FIGUR OMKRING INDLÆGGELSE OG UDSKRIVELSE ***

Som beskrevet i afsnit 2.1 ønskes en 100 % kapacitetsudnyttelse, dertil ønskes ligeledes en belægning på 100 %. For at opfylde dette skal der være ligevægt mellem antallet af sengepladser og patientindlæggelser. På ortopædkirurgisk afdeling har de XX sengepladser til rådighed, som er fordelt på XX afsnit.

Ortopædkirurgisk afdeling modtager både elektive samt akutte patienter. Elektive patienter omfatter både indlagte og ambulante patienter. Ved pludselig forværret tilstand kan elektive patienter skifte status fra elektiv til akut. Akutte patienter defineres som personer, der er henvist til hospitalet efter en akut opstået tilstand. Sammenlignes der med de resterende afdelinger på Aalborg Universitetshospital,

¹FiXme Note: Vi mangler informationer for at kunne skrive dette færdigt.

har ortopædkirurgisk afdeling flest elektive indlæggelser.[RegionNord2016] En fordeling af de elektive og akutte patienter fremgår af figur 2.3.

Akutte og elektive patienter på Aalborg Universitetshospital

Figur 2.3: Fordeling af elektive og akutte patienter på ortopædkirurgisk afdeling på Aalborg Universitetshospital målt over en tre måneders periode fra august til november år 2014.

Af figur 2.3 illustreres det, at fordelingen mellem elektive og akutte patienter ikke er ligeligt fordelt på ortopædkirurgisk afdeling. Der ses over en tre måneders periode i år 2014, at de elektive patienter udgør 32 % og de akutte udgør 68 % af de samtlige patienter.

Elektive patienter indlægges i tidsrummet XX-XX og udskrives i tidsrummet XX-XX. Udskrivelsen af akutte patienter foregår i samme tidsrum. På afdelingen planlægges elektive patienter med forbehold for, at der er uforudsigelige indlæggelser af akutte patienter pr. XX. Herunder planlægges XX elektive patienter, således at der er plads til XX akutte patienter.²

2.2 Ubalance i kapacitetsudnyttelse

Ved kapacitetsmangel på ortopædkirurgisk afdeling forekommer en omstrukturering af personalets arbejdsopgaver, som sikre patientens behov, opretholdelse af kvalitet og udnyttelse af kompetencer. Dette er med henblik på at opnå en balance mellem de ressourcer og de krav, der stilles i den pågældende situation.[**Bjerg2016**]

 $^{^2\}mathsf{FiXme}$ Note: Vi mangler informationer for at kunne skrive dette færdigt + tilføjelse af Sebastians grafer (elektive/akuttte) + (indlæggelse/udskrivelse)

2.2.1 Arbejdsvilkår

I tilfælde af kapacitetsmangel er der udarbejdet en arbejdstilrettelæggelse af Region Nordjylland for personalet på ortopædkirurgisk afdeling. Ved kapacitetsmangel påtager lederen, eller dennes stedfortræder, ansvaret for at finde en løsning på dette problem. Dette kan betyde, at det afgående vagthold skal blive indtil en midlertidig løsning er fundet eller en tidligere indkaldelse af det næste vagthold. I nogle tilfælde kan det være nødvendigt at låne ressourcer fra andre afsnit eller indkalde personale fra vikarbureauet. Derudover undersøges det, hvorvidt behandlingen af elektive patienter kan aflyses.[Bjerg2016]

Ved overarbejde må en arbejdsuge for en sygeplejerske, ifølge arbejdstidsaftalen indgået med Dansk Sygeplejeråd, ikke overstige 48 timer[Danske2015]. ³ Hvis sundhedspersonalet er nødsaget til at arbejde længere end den normale arbejdstid, viser dette sig at have en negativ indvirkning på personalets arbejdesopgaver[Dinges2004]. Overarbejde kan resultere i en presset arbejdsdag og dermed en forringet kvalitet af behandlingen[Kjeldsen2015]. Dertil mener hver anden regionalt ansat sygeplejerske på tværs af regionerne, at den travle arbejdsdag påvirker patienternes sikkerhed[Kjeldsen2015].

2.2.2 Patientsikkerhed

Under perioder med kapacitetsmangel er det ofte nødvendigt at overflytte patienter til andre afdelinger, gangarealer eller fyldte stuer, herved er det ofte patienter, der snart udskrives, der overflyttes. ⁴ Overflytningen kan belaste både fysiske og psykiske forhold for patienter såvel som pårørende[Heidmann2014]. Herunder kan skærpet privatliv forekomme hos patienter, der er flyttet til gangarealer eller fyldte stuer[Madsen2014].

Som nævnt i afsnit 2.2.1 forringes kvaliteten af behandlingen ved overarbejde, dertil ses det ligeledes, at mortalitetsraten øges med 1,2 % ved en overskridelse af belægningen med 10 %, ifølge et dansk studie fra år 2014[Madsen2014]. Hertil understreges det, at der kan være ukendte parametre, der påvirker mortalitetsraten, og det nødvendigvis ikke er belægning, der er den primære årsag til en øget mortalitet. For at undgå forringet kvalitet af behandling forsøges det at få patienterne udskrevet tidligere, således et ønske om balance mellem aktivitet og kapacitet opnås.

Der tilkaldes en brandvagt til afdelingen, hvis en belægning over 100 % har fundet sted i over 4 timer for således at sikre patienterne ved evakuering under brand. En brandvagt kan højest overvåge to afdelinger på samme etage, hvorfor det kan være nødvendigt, at der indkaldes flere. Det er afdelingens ansvar at afvikle belægningsproblemet og kapacitetsmanglen hurtigst muligt ved at udskrive patienter eller overflytte patienter til andre afdelinger. ⁵ Hver gang der tilkaldes en brandvagt

³FiXme Note: Spørgsmål til sygeplejersker: Hvordan prioriteres pauser under overbelægning?

⁴FiXme Note: Sygeplejersker: Vi vil gerne høre om der prioriteres i forhold til hvilke patienter der flyttes. Er der en bestemt afdeling i flytter patienterne over på eventuelt en afdeling der ligner ortopædkirurgisk?

⁵FiXme Note: Har skal indsættes hvis de har et samarbejde med en anden afdeling

faktureres dette af Aalborg Universitetshospital. [Beredskab2016]

2.3 Belægningsgrad på ortopædkirurgisk afdeling

På ortopædkirurgisk afdeling på Aalborg Universitetshospital opleves en varierende belægningsgrad for hver måned. Som tidligere nævnt i afsnit 2.1 ønskes en fuld kapacitetsudnyttelse, hvoraf alle sengepladser ønskes at være i brug. Belægningsgraden er antallet af de anvendte disponible senge. På figur 2.4 ses belægningsgraden fra år 2014 til 2015 på ortopædkirurgisk afdeling. [SDS2015]

Figur 2.4: Belægningsgraden på ortopædkirurgisk afdelingen på Aalborg Universitetshospital målt over 18 måneder fra år 2014 til 2015. Søjlerne viser belægning ift. 100 %, hvortil maksimal og minimum belægning ligeledes illustreres. De blå punkter viser den gennemsnitlige belægning for hver måned.[SDS2015]

Det fremgår af figur 2.4, at ortopædkirurgisk afdeling oplever en belægning hhv. over og under den ønskede belægning på 100 %. I december måned år 2014 ses en maksimal belægning på 139 % og en minimums belægning på 78 %. Maksimums belægning kan indikere, at der er flere indlagte patienter end afdelingen er disponeret til, herved har afdelingen oplevet kapacitetsmangel. Minimums belægning kan

indikere, at der ikke har været tilstrækkelige elektive patienter i perioder, hvilket ligeledes medfører ubalance i kapacitetsudnyttelsen. Af figur 2.4 er den gennemsnitlige belægning pr. måned hyppigst under 100 %. I oktober og december måned år 2014 opleves dog en gennemsnitlig belægning over 100 %. Den gennemsnitlige belægning ses varierende mellem 90 og 100 % for de resterende måneder, hvilket kan indikere, at afdelingen oplever kapacitetsmangel i kortvarige perioder.[SDS2015] Det fremgår ikke af den anvendte data, hvorvidt belægningen opleves i timer eller flere døgn. Dertil skal der tages forbehold for, at det ikke er angivet om det er elektive eller akutte patienter, der udgør en belægning over 100 %.[SDS2015]

For at underbygge belægningsgraden yderligere, illustrerer figur 2.5 antal dage pr. måned med en belægningsgrad på over 100 %. Denne graf er udarbejdet ud fra ortopædkirurgisk afdeling over de samme 18 måneder som figur 2.4. [SDS2015]

Figur 2.5: Belægningsgrad over 100 % målt i antal dage over 18 måneder fra år 2014 til juni 2015 for ortopædkirugisk afdeling på Aalborg Universitetshospital. [**SDS2015**]

Det fremgår af figur 2.5, at der i oktober måned år 2014 opleves en belægning på over 100 % i 19 dage, sammenlignes dette med oktober måned på figur 2.4 ses en belægning på 130 %. Der ses ligeledes en sammenhæng mellem de resterende måneder for de to grafer. Ud fra den anvendte data fremgår det ikke, hvor mange patienter, der udgør en belægningsgrad over 100 %, samt hvor længe de enkelte patienter er indlagt på afdelingen. Da belægningsgraden og antal dage kan variere for hver måned, anses 18 måneder ikke som værende repræsentativ for at kunne vurdere problemets omfang. Ud fra belægningsgraden kan det dog tyde på, at en effektivisering

af planlægningen af patienter på ortopædkirurgisk afdelingen vil kunne medføre en balance i kapacitetsudnyttelsen.

2.3.1 Problemformulering

Hvordan kan indlæggelsesvarigheden for patienter på ortopædkirurgisk afdeling på Aalborg Universitetshospital forudsiges med henblik på at opretholde en kapacitetsudnyttelse på 100 %?

Problemløsning 3

På ortopædkirurgisk afdeling på Aalborg Universitetshospital ønskes der, på baggrund af afsnit 2.1, en 100 % kapacitetsudnyttelse med henblik på at udnytte de tilgængelige ressourcer optimalt. Kapacitetsudnyttelse er forholdet mellem aktivitet og kapacitet, hvoraf antal patienter er en betydende faktor ift. aktivitet. Det fremgår af afsnit 2.3, at belægningsgraden på ortopædkirurgisk afdelingen er varierende for hver måned. Ved en belægning over 100 % vil afdelingen opleve kapacitetsmangel, hvilket vil medføre, at personalet skal yde mere end afdelingen har kapacitet til. Derimod vil en belægning under 100 % forårsage, at der ikke er fuld udnyttelse af personalets arbejdskraft. Derved oplever ortopædkirurgisk afdeling en ubalance i kapacitetsudnyttelsen. For at opnå en kapacitetsudnyttelse på 100 %, skal en ligevægt mellem aktivitet og kapacitet forekomme. Denne ligevægt kan tilnærmes ved at justere på blot én af faktorerene under aktivitet eller kapacitet **Bames2015**]. Det kan herunder forsøges at effektivere planlægningen af patienter og dertil forsøge at estimere indlæggelsesvarigheden for de indlagte patienter. En planlægning kan resultere i strukturering af personalets arbejdsopgaver og bedre udnyttelse af disponible sengepladser. Planlægningen kan dog kun forekomme ved elektive patienter, da akutte patienters indlæggelse ikke kan forudsiges.

3.1 Forudsigelse af indlæggelsesvarighed

Der er forskellige parametre, der har betydning for indlæggelsesvarigheden af patienter. Dette kan eksempelvis være demografiske parametre som alder og køn, samt kliniske parametre som blodprøver, blodtab og operationstype. Da der kan opstå komplikationer under operationen, som kan ændre indlæggelsesvarigheden, vurderes parametrene præ- og postoperativt.

3.1.1 Præoperativt

3.1.2 Postoperativt

3.2 Prædiktiv model

Til at estimere indlæggelsesvarigheden for patienter kan en prædiktiv model anvendes. Prædiktiv modellering er en model, der udarbejdes med henblik på at forudsige hændelser. Denne model skal gøre det muligt at forstå og kvantificere nøjagtigheden af forudsigelsen ift. fremtidig data. [Kuhn2013] Kvantificeringen sker på baggrund af algoritmer.

Inden for sundhedssektoren er det muligt at prædiktere forskellige former for hændelser og forløb. Dette kan eksempelvis være en forudsigelse om, hvorvidt en patient, indlagt med hjertestop, har risiko for endnu et hjertestop, hvoraf vurderingen f.eks. baseres på demografi, livsstil samt kliniske målinger[Hastie2008].

Prædiktiv modellering kan opdeles i de to kategorier: parametrisk og ikke-parametrisk. Parametrisk anvendes, når samtlige parametre er kendte, hvorimod ikke-parametriske benyttes, hvis én eller flere er ukendte. [Sheskin2000]

Den prædiktive model kan både anvende matematiske- og computerbaserede modeller. Matematiske modeller er en ligningsbaseret model, der forudsiger på baggrund af ændring i input. Herunder anvendes ofte regression, hvor der tages udgangspunkt i lineær sammenhæng. Computerbaserede modeller kræver ofte en simuleringsteknik til forudsigelse. [MathWorks2016]

Som tidligere nævnt sker kvantificering ud fra algoritmer. For at kunne udarbejde en algoritme kræves et træningssæt [DIKU2010]. Et træningssæt kan både være supervised eller unsupervised. Supervised learning er når indholdet af datasamples har til formål at forudsige en hændelse på baggrund af den kendte input-output relation[Brownlee2013]. Modsat er unsupervised learning, når indholdet af datasamples ikke har til formål at prædiktere en hændelse, men derimod finde en sammenhæng mellem data[Brownlee2013, Kuhn2013]. På baggrund af ovenstående er figur 3.1 udarbejdet. Denne illustrerer de valg, der burde tages ift. prædiktive modeller.

Figur 3.1: Valg ift. prædiktiv modellering. De markerede felter illustrerer beslutningstagen.

Det fremgår af figur 3.1, hvilke modeller, der bør anvendes ud fra datasættet fra ortopædkirurgisk afdeling. Da flere af parametrene i datasættet ikke fremgår bør der anvendes ikke-parametrisk modellering. Datasættet består af flere parametre, hvilket medfører, at det ikke ses hensigtmæssigt at anvende ligningsbaseret modellering. Hertil kræves en simuleringsteknik, der anvendes under computerbaseret modellering. Der afgrænses til supervised learning, da datasættet indeholder input-output relation.

3.2.1 Forudsigelse før operation *BEDRE OVERSKRIFT*

Modellen er et redskab til sundhedspersonalet, der skal vurdere indlæggelsesvarigheden, når en operation planlægges og gennemføres.

Brugen af modellen, indsamlingen samt indtastningen af data bør ikke være mere tidskrævende end personalets nuværende arbejdsopgaver. Ved mere tidskrævende arbejdsprocedurer vil der være mindre tid til de nuværende arbejdsopgaver, hvorfor ønsket om effektivisering af kapacitetsudnyttelse ikke vil blive afhjulpet.

** NY INDLEDNING ** (OVERSTÅENDE KAN MÅSKE FLYTTES OP TIL PRÆDIKTIV MODEL) * Skal indeholde overskrifter for hele afsnittet

3.2.2 Indsamling af data

Den prædiktiv model skal designes specifikt til ortopædkirurgisk afdeling på Aalborg Universitetshospital, da der er bestemte parametre som f.eks. operationer, procedurer, udstyr, personale og medicinering. For at sikre, at indsamling af data er tilstrækkelig og relevant skal der opstilles stramme retningslinjer for, hvordan disse indsamles og noteres. På baggrund af afgrænsningen til supervised learning i afsnit 3.2, anses det nødvendigt, at hver indsamlede parameter kan have indflydelse for den enkelte patients indlæggelsesforløb. Disse overvejelser øger sandsynligheden for at opnå en brugbar prædiktiv model.

3.2.3 Eksklusionskriterier for data

For at udarbejde en prædiktiv model opstilles kriterier ift. dataindsamling ud fra formålet med modellen. Da nogle modeller er sensitive for strømlinet data er det vigtigt at bestemme, hvorvidt der skal opstilles eksklusionskriterier til dataindsamlingen eller om en forudbestemt prædiktiv model skal anvendes.[Kuhn2013] For at systemet kan sammenholde parametre er det nødvendigt, at data er indskrevet efter faste retningslinjer. Hvis der ikke opstilles faste retningslinjer for indskrevet data, kan dette have indflydelse på estimeringen af indlæggelsesvarigheden.[Kuhn2013]

Kategorisering af data

Ved at kategorisere data, anses det muligt at lave en prædiktiv model med en mindre mængde data. Denne model er dog ikke så specifik som en model uden kategoriseret data, da en mulig variation i parametrene kan reduceres.[Rowan2007] Derfor bør det overvejes, hvor stor datamængden skal være for at konstruere modellens træningssæt. Ved ikke at kategorisere data, bliver modellen mere specifik ift. hver enkelt patient, men kræver dertil også en større database for at lave en funktionel model. Dette kan f.eks. inkludere meget specifikke kirurgiske indgreb eller sjældne komorbiditeter. Et eksempel på kategorisering af data kan være alder, hvor denne kan inddeles i aldersgrupper. En gruppe kan eksempelvis være 20-29 år hvilket kræver en mindre database, end aldersinddelingen 20-25 år, der udspænder et mindre interval.[Rowan2007]

3.2.4 Opdatering af model

En vigtig del af en prædiktiv model er, at denne kan tilpasse ændringer i parametres vægtning løbende ved ny data. [Kuhn2013] Ved ændring i medicinering eller procedure af kirurgiske indgreb kan prædiktering af det gældende indgreb give misvisende estimateringer af indlæggelsesvarigheden. Derfor kan modellen ved transitioner mellem procedureændringer blive invalideret og dermed skal den prædiktive model have inkorporeret mere data før denne kan forudsige indlæggelsesvarigheden. Hvis et datapunkt ikke kan kategoriseres i systemet, kan det være nødsaget at ekskludere denne data fra indskrivelse i databasen.

3.2.5 Præprocessering

*** Her skal muligvis stå noget om missingness + SKAL SKRIVES OM SÅ DET PASSER TIL DET ANDET. DETTE ER ET ALTERNATIV TIL HVIS MAN ALLEREDE DATA *** Da flere parametre i datasættet fra ortopædkirurgisk afdeling på Aalborg Universitetshospital mangler, anses det nødvendigt at foretage præprocessering. Præprocessering foregår manuelt før en prædiktiv modellering kan foretages. Der findes flere metoder, der kan anvendes for at kompensere for de manglende parametre. Kompenseringen kan forekomme ved kassering af værdier, tilegne manglende værdier, reducering af værdier og imputering. Imputering opdeles i tre

underkategorier: Prædiktiv værdi imputation, Distribution-baserede imputation og Unik-værdi imputation. Prædiktiv værdi imputation erstatter den manglende værdi med estimerede værdier. Distribution-baserede imputation vægter værdien af manglende data mindre end det resterende, således disse får en mindre betydning under generering. Unik-værdi imputation erstatter den manglede værdi med en vilkårlig værdi fra samme parameter.[Saar2007]

.1 Bilag A

.2 Interview skabelon

.2.1 Eksklusionskriterier

Vi ønsker at snakke med 3 sygeplejersker (ikke samtidig) Vi forventer, at interviewet varer omkring 30 minutter per sygeplejerske. Vi ønsker, at sygeplejerskerne skal have arbejdet på ortopædkirurgisk afdeling på Aalborg Universitetshospital i mindst 1 år. Vi ønsker ikke, at personalet ser spørgsmålene på forhånd, da vi foretrækker en åben dialog. Interviewet skal bruges til at underbygge argumenter i rapporten, og personalet vil derfor muligvis blive citeret.

Vi er 5. semester sundhedsteknologistuderende på Aalborg Universitet. Vi har fået stillet projektforslaget: Risikovurdering på ortopædkirurgisk afdeling af Sten Rasmussen (Overlæge på ortopædkirurgisk afdeling). I forhold til dette har vi valgt at undersøge, hvordan indlæggelsesvarigheden kan estimeres på afdelingen med henblik på bedre kapacitetsudnyttelse. Formålet med interviewet er at belyse aspekter, som ikke er mulige at finde i litteratur og dertil bekræfte funden litteraturs validitet.

Introduktion: Interviewet omhandler udelukkende ortopædkirurgisk afdeling på Aalborg Universitetshospital, vi frabeder os derfor sammenligninger med andre hospitalsafdelinger. Interviewet forventes at tage 30 minutter. Interviewet er set som en dialog så, hvis du har lyst til at byde ind undervejs er dette i orden.

Hvem er du? Hvad er din stilling? Hvor længe har du arbejdet på ortopædkirurgisk afdeling på Aalborg Universitetshospital? Må vi citere dette interview i rapporten?

.2.2 Interviewet med sygeplejersker på ortopædkirurgisk afdeling

Hvor mange arbejdstimer har du om ugen? Der ønskes svar på: Gennemsnit, fordelingen af vagter uge for uge, længden af vagten, forskel på dag- og nattevagter, hvordan foregår vagtskifte.

Hvilke arbejdsopgaver har du på en normal vagt? Der ønskes svar på: Hvor mange patienter sygeplejesker varetager.

Hvordan forløber dine pauser? Der ønskes svar på: Sygeplejersker skal være til rådighed under pauser samt, hvorvidt denne er påtvungen.

Hvilke patienter modtager i på afdelingen? Der ønskes svar på: Hvordan og hvorvidt patienterne skemalægges. Hvordan foregår indlæggelses og udskrivelse samt, hvorvidt der er nogle faste tidspunkter. Planlægges elektive patienter ud fra pladsen til akutte patienter.

Hvor mange sengepladser har i til rådighed på afdelingen? Der ønskes svar på: Er der nogle sengepladser der er forbehold akutte patienter.

Hvad sker der, hvis i ikke har flere sengepladser til rådighed på afdelingen? Der ønskes svar på: Hvor placeres patienterne, har afdelingen et samarbejde

med andre afdelinger, er der prioritering mellem patienterne, fordeles patienterne mellem jer eller tilkaldes der ekstra personale, hvorfor opstår problemet og hvordan begrænser dette sygeplejerskerne, hvad gør de på afdelingen for at løse problemet udskydes elektive patienter.

Hvad sker der, hvis i har for mange sengepladser til rådighed?

Er der en standardliste med checkpunkter af parametre som altid skal registreres for patienter? Der ønskes svar på: Hvilke parametre sygeplejerskerne kigger på.

Er der noget du tænker, der er relevant at tilføje?

.2.3 Interview med lægesekretær på ortopædkirurgisk afdeling

Hvordan planlægges elektive patienter? Der ønskes svar på: Planlægges patienter med kort eller lang varsel, estimeres der hvor længe patienten er indlagt med henblik på at planlægge elektive patienter forud, vurderes der specielle parametre i forhold til planlægningen.

Er der noget du tænker, der er relevant at tilføje?