The fast and the Sustainable:

Unleash the Power of Sustainable IT & High-Performance Green Code

Alexandru – Madalin Ghenea & Marc Cortada Bertomeu October 2023

Climate change is accelerating

June - August 2023 hottest three-month period on record*

^{*} According to World Meteorological Organization

Climate change is accelerating

8 out last 10 years were the warmest years on record*

^{*} According to World Meteorological Organization

Climate change is accelerating

Record breaking sea temperature this year*

^{*} According to World Meteorological Organization

Carbon emissions in ICT*

ICT represents 3-5% of global carbon emissions

* According to European Commission

Carbon emissions in ICT

Aviation represents 3.8% in EU*

~3% worldwide**

^{*} According to European Parliament

^{**} Multiple sources

Energy consumption of ICT technologies 2020*

ICT represents 7% out of the worldwide energy consumption

^{*} According to European Commission

Energy consumption of ICT technologies 2020*

^{*} According to European Commission

Energy consumption of ICT technologies expectations for 2030*

^{*} According to European Commission

It's fair to mention

ICT contributes to reduce the CO2 emissions

It's fair to mention

ICT contributes to reduce the CO2 emissions

But,

CO2 emissions in ICT are significant and growing

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

Key concepts

- Carbon awareness
- Carbon intensity
- Software Carbon Intensity

Energy sources

High carbon sources

Low carbon sources

Carbon awareness

- Do more when energy comes from low carbon sources
- Do less when energy comes from high carbon sources

Carbon intensity

How much CO2 is emitted per kilowatt-hour

Carbon intensity

How much CO2 is emitted per kilowatt-hour

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

If you can't measure it, you can't improve it

Peter Ferdinand Drucker

 Management consultant, educator and author


```
Software Carbon
Intensity
SCI =
```


Tools to measure carbon footprint

Cloud

- Amazon: Customer Carbon Footprint Tool
- Azure: Microsoft Emissions Impact Dashboard
- Google Cloud: Carbon Footprint
- Multiplatform: Cloud Carbon Footprint

- Java: JoularJX
- Android: ecoCode
- Python: codecarbon.io
- Web
 - Websitecarbon.com

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

Demand shifting

- Reducing carbon intensity for your application
- Types
 - Spatial shifting
 - Temporal shifting

Spatial shifting

Trade-offs

- Privacy & security
- Carbon footprint & carbon intensity
- Latency

Spatial shifting – SCI impact

Spatial shifting – SCI impact

Temporal shifting

Time-shift recurrent jobs

- Time shift recurrent jobs
 - Batches
 - Queue non-urgent requests
 - ML training jobs
 - OS Updates [1]
 - ...
- Use carbon aware time scheduling [2]

^{*} Google Carbon Aware Data Centers

^[1] Windows 11 is now carbon aware

^[2] Forecast carbon intensity

Time-shift – Suggestion

Provide green/eco mode option to your users:

Time-shift recurrent jobs – SCI Impact

Time-shift recurrent jobs – SCI Impact

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

Delete unused data

 Set storage retention policies (Automatically delete unneeded data)

Delete unused data

- Set storage retention policies (Automatically delete unneeded data)
- Keep only artifacts that are needed

Delete unused data

- Set storage retention policies (Automatically delete unneeded data)
- Keep only artifacts that are needed
- Set appropriate log levels
- ...

Delete unused data - SCI impact

$$SCI = ((E * I) + M) / R$$

Delete unused data - SCI impact

Be efficient with files

- Use efficient data formats
 - CSV → Parquet

Size comparison Sizes might be slightly different in Linux and Windows File .7z from .csv .parquet .7z from .parquet CSV fhv tripdata 2022-01 70,8 MB 11,7 MB 11,7 MB 8,4 MB green tripdata 2022-01 6,6 MB 0,8359 MB 1,3 MB 1.2 MB yellow tripdata 2022-01 257,6 MB 31,1 MB 38,1 MB 38,3 MB

Be efficient with files

- Use efficient file formats
 - XML → Protobuf
 - o gif → mp4
 - jpeg → webp
 - Consider svg
- Optimize image sizes

Be efficient with files – SCI Impact

$$SCI = ((\mathbf{E} * I) + \mathbf{M}) / R$$

Be efficient with files – SCI Impact

Be efficient with files – SCI Impact

Optimized files means more efficient data storage and retrieval, resulting in lower overall energy consumption

Less data needed to be stored => fewer of storage volumes are required => reduce the total embodied carbon

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

Performance improvement in code – SCI Impact

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

Our setup

- Epsilon GC
- Fixed CPU frequency
- Intellij profiler
- Joularjx
- PostgreSQL on Docker

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- StringBuilder

```
// Find if there is a number larger than 12 in a very large list list.stream().filter(n \rightarrow n > 12).toList().size() > 0
```

```
// Find if there is a number larger than 12 in a very large list list.stream().filter(n -> n > 12).toList().size() > 0 !list.stream().filter(n -> n > 12).toList().isEmpty()
```

```
// Find if there is a number larger than 12 in a very large list list.stream().filter(n -> n > 12).toList().size() > 0 
!list.stream().filter(n -> n > 12).toList().isEmpty() 
list.stream().filter(n -> n > 12).count() > 0
```

```
// Find if there is a number larger than 12 in a very large list list.stream().filter(n -> n > 12).toList().size() > 0 
!list.stream().filter(n -> n > 12).toList().isEmpty() 
list.stream().filter(n -> n > 12).count() > 0 
list.stream().anyMatch(n -> n > 12)
```

Question...

• What can be improved?

```
@Path("/isAlive")
public class IsAlive {
    @GET
    @Produces(MediaType.APPLICATION_JSON)
    public StatusResponse getMessage() {
        return StatusResponse.builder().status(MonitoringStatus.OK).build();
    }
}
```

Singleton

Use global singleton instances to create empty objects

```
@Path("/isAlive")
public class IsAlive {
    @GET
    @Produces(MediaType.APPLICATION_JSON)
    public StatusResponse getMessage() {
        return StatusResponse.builder().status(MonitoringStatus.OK).build();
    }
}
```

Singleton

Use global singleton instances to create empty objects

What about returning the same object?

```
final static StatusResponse r = StatusResponse.builder().status(MonitoringStatus.OK).build();
@Path("/isAlive")
public class IsAlive {
  @GET
  @Produces(MediaType.APPLICATION JSON)
  public StatusResponse getMessage() {
    return r;
```

- Our setup
- Loading data
- Pre-allocate the right collection size
- Use SQL instead of cursors
- Hibernate
- Regex validation
- Stream
- Singletons
- StringBuilder

Agenda

- Key concepts
- Software carbon intensity
- Green patterns & good practices
 - Demand shifting
 - Storage
 - Performance improvements in code
- Conclusions

To recap

- Serious challenge ahead of us
- It's crucial that we make a difference also in IT

To recap

- Serious challenge ahead of us
- It's crucial that we make a difference also in IT
- Good news! Growing number of tools, resources and solutions

To recap

- Serious challenge ahead of us
- It's crucial that we make a difference also in IT
- Good news! Growing number of tools, resources and solutions

Do you really need everything for now?

Small changes make big impact (e.g. sorting the trash)

MUNICIPAL WASTE

What is municipal waste?

It is everyday waste collected and treated by municipalities, which is mainly generated by households.

Municipal waste accounts for 27% of total waste generated in the EU

	Municipal waste generated (kg/capita - 2021)	Share of recycling and composting of municipal waste (2021)	Landfill rate of waste (excluding major mineral) (2020)
EU average	530	49.6%	<u>18%</u>

^{*} According to European Parliament

Small changes make big impact (e.g. sorting the trash)

MUNICIPAL WASTE

What is municipal waste?

It is everyday waste collected and treated by municipalities, which is mainly generated by households.

Municipal waste accounts for 27% of total waste generated in the EU

Municipal waste generated (kg/capita - 2021)

Share of recycling and composting of municipal waste (excluding major mineral) (2020)

EU average 530

49.6%

18%

^{*} According to European Parliament

Save the planet bit by bit

Let's keep in touch

Scan the QR code to get the presentation, the repos and the information

We'll see one to each other in the ING both

