INTRODUCTION TO BIOLOGY

Dr. Manu Smriti Singh

Department of Biotechnology

Bennett University

CENTRAL DOGWA OF LIFE

GRIFTITH'S EXPERIMENT

1928
-Frederick Griffith

Conclusion: A chemical substance from one cell is genetically transforming another cell

DNA- INFORMATION MOLECULE

NUCLEIC ACIDS

- Composed of elements C, H, O, N, P
- Deoxyribonucleic Acid → Codes for protein/RNA sequence

Ribonucleic Acid → Reads DNA-coded information to direct protein synthesis

COMPONENTS OF NUCLEOSIDES

DNA IS A REPEAT OF NUCLEOTIDES

DNA VS RNA

DNA VS RNA

CHARGAFF'S RULE

CULTURALUM

- The amount of Adenine = the amount of Thymine.
- The amount of Guanine = the amount of Cytosine.
- He failed to make a connection to the structure of DNA.
- · Indicated that DNA is symmetrical.

7

In other words- A/T=1; G/C=1 Also, Purines = Pyrimidines (A+G= C+T)

Avg. Molecular Weight of 1 base pair (bp) = 650

Q. What is the MW of duplex DNA needed to code a protein of 200 amino acids?

Q. What is the MW of the gene needed to code a protein of 200 amino acids?

Answer: Each amino acid is coded by 3 DNA molecules

So, 3X200 = 600 base pairs (bp)

Now MW for each bp = 650

Therefore, MW of DNA = 650X600 = 390,000

1st

Dr. Hargobind Khorana

	Second Letter										
		υ		С		A		G			
	υ	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	UCAG	
	С	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	Arg	UCAG	3rd
r	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	UCAG	letter
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	UCAG	

Second Letter

Amino Acid Codons

What is DNA?

- deoxyribonucleic acid
- hereditary material
- Nearly every cell in a person's body has the same DNA.
- Most DNA is located in the cell nucleus, but a small amount of DNA can also be found in the mitochondria.

EARLY BREAKTHROUGH DISCOVERIES

- 1. Erwin Chargaff (1951):
 - Rule of Base pairing

- 2. Rosalind Franklin & Maurice Wilkins (1953):
 - X-ray diffraction pattern of DNA

- 3. James Watson & Francis Crick (1953):
 - Molecular structure of DNA

What is RNA?

"Ribonucleic acid," a type of nucleic acid

- R = "ribose" (a type of sugar)
- Single stranded
- Can be found inside OR outside the nucleus
- Made of monomers (building blocks) called nucleotides. Each nucleotide has a sugar, phosphate, and nitrogenous base.

What is RNA?

- RNA is short for Ribonucleic Acid
- Very similar to DNA, except it is single-stranded and has the nitrogenous base uracil instead of thymine
- RNA is made from DNA, and has many functions, including helping to manufacture proteins
- Examples of RNA include tRNA, rRNA, and mRNA

RIBONUCLEIC ACIDS (RNA)

- DNA never leaves nucleus. How does it pass information/ codes?
- RNA Roles:
- 1. Genetic: Transfer of genetic info during protein synthesis
- 2. Non-genetic: Control of gene expression

CENTRAL DOGWA

RNA: CONTROL OF GENE EXPRESSION

Pfizer Vaccine Based on mRNA

RNA: CONTROL OF GENE EXPRESSION

- Certain genes are over-expressed in disease conditions like cancer
- Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA non-coding RNA molecules, typically 20-27 base pairs in length. It interferes with the expression of specific genes with complementary nucleotide sequences by degrading mRNA after transcription, preventing translation.
- A microRNA (miRNA) is a small single-stranded noncoding RNA molecule (containing about 22 nucleotides) found in plants, animals and some viruses, that functions in RNA silencing and post-transcriptional regulation of gene expression.

CARBOHYDRATES

- Hydrates of Carbon (H and O present in the same ratio as water)- $C_nH_{2n}O_n$ (Ratio 1:2:1)
- Examples-Sugar, Starch, Cellulose
- Monosaccharides (monomer)
- Oligosaccharides (2-10 monosaccharides)
- Polysaccharides (100-1000s of monosaccharides)

DISACCHARIDES

Sucrose: $\begin{pmatrix} ^{6}\text{CH}_{2}\text{OH} \\ H \end{pmatrix} \begin{pmatrix} ^{6}\text{CH}_{2}\text{OH} \\ H \end{pmatrix} \begin{pmatrix} ^{1}\text{CH}_{2} \\ \text{OH} \end{pmatrix} \begin{pmatrix} ^{1}\text{H} \\ \text{OH} \end{pmatrix} \begin{pmatrix} ^{1}\text{CH}_{2} \\ \text{OH} \end{pmatrix} \begin{pmatrix} ^{1}\text{CH$

GLYCOSIDIC LINKAGES

ISOMERS AND STEROISOMERS

FIGURE 3.24

Isomers and stereoisomers. Glucose, fructose, and galactose are isomers with the empirical formula C₆H₁₂O₆. A structural isomer of glucose, such as fructose, has identical chemical groups bonded to different carbon atoms, while a stereoisomer of glucose, such as galactose, has identical chemical groups bonded to the same carbon atoms but in different orientations.

SUCROSE

is often called table sugar.

Made up from glucose and fructose, it is extracted from sugar cane or sugar beet and is naturally present in most fruits and vegetables

GLUCOSE & FRUCTOSE

are found in fruits, vegetables and honey

LACTOSE

is commonly called milk sugar because it is found in milk and dairy products

MALTOSE

is also commonly known as malt sugar, found in malted drinks and beer

POLYSACCHARIDES: NON-SUGARS

Starch-Simple polysaccharide with glucose repeats

Cellulose- Polysaccharide with glucose cross-links. Forms plant cell walls.

Animals store glucose as glycogen, similar to starch

STRUCTURAL COMPONENT

Chitin- Forms cell wall of fungi and exoskeleton of arthropods

