Datos Multivariados Estadística Computacional

Juan Zamora Osorio juan.zamora@pucv.cl

Instituto de Estadística Pontificia Universidad Católica de Valparaíso

28 de agosto de 2023

Datos bivariados

id Pasajero	Clase	Satisfacción
1	Е	2
2	E	4
2 3	Е	1
4	В	3
5	Е	1
6	В	2
7	Р	4
8	Ε	3
9	Ε	2
10	В	4
11	Ε	3
12	В	3
:	:	:

id Pasajero	Clase	Satisfacción
1	Е	2
2	E	4
3	E	1
4	В	3
5	Е	1
6	В	2
7	Р	4
8	Е	3
9	Е	2
10	В	4
11	Е	3
12	В	3
÷	:	:

		Sa	atisf	Total		
		1	2			
	Е	2	2	2	1	7
Clase	В	0	1	2	1	4
	Р	0	0	0	1	1
Total		2	3	4	3	12

		9	Satisf	Total		
		1	2			
	Е	10	33		4	62
Clase	В	0	3	20	2	25
	Р	0	0	5	8	13
Total		10	36	40	14	100

Clases bivariadas

- ► (E,1), (E,2), (E,3), (E,4), (B,2), (B,3), (B,4), (P,3), (P,4).
- ► ¡Pueden ser muchas!

				Y			Total
		<i>y</i> 1		Уј		УЈ	
	<i>x</i> ₁	n ₁₁	• • •	n_{1j}	• • •	n_{1J}	n_1 .
	:	:	٠	:	٠	:	:
X	x_k	n_{k1}		n_{kj}	• • •	n_{kJ}	n_k .
	:	:	٠	:	٠	:	:
	XK	n_{K1}	• • •	n_{Kj}	• • •	n_{KJ}	n_K .
Total		n. ₁		n.j		n. j	n

Frecuencias absolutas marginales

$$n = \sum_{k=1}^{K} n_{k.} = \sum_{j=1}^{J} n_{.j} = \sum_{k=1}^{K} \sum_{j=1}^{J} n_{kj}.$$

				Y			Total
		<i>y</i> ₁		Уј		УЈ	_
	<i>x</i> ₁	f_{11}		f_{1j}		f_{1J}	f_{1} .
	:	:	٠	:	٠	:	:
X	x_k	f_{k1}	• • •	f_{kj}	• • •	f_{kJ}	f_k .
	:	:	٠	:	٠	÷	:
	XK	f_{K1}	• • •	f_{Kj}		f_{KJ}	f_{K} .
Total		f. ₁		f.j		f. j	1

Frecuencias relativas marginales

$$1 = \sum_{k=1}^{K} f_{k} = \sum_{j=1}^{J} f_{j} = \sum_{k=1}^{K} \sum_{j=1}^{J} f_{kj}.$$

Datos bivariados categóricos - frecuencias condicionales

				Y			Total
		<i>y</i> ₁	• • •	Уј	• • •	УЈ	
	<i>x</i> ₁	f_{11}	• • •	f_{1j}		f_{1J}	f_1 .
	:	:	٠	:	٠	:	:
X	x_k	f_{k1}	• • •	f_{kj}	• • •	f_{kJ}	f_k .
	:	:	٠	:	٠	÷	:
	XK	f_{K1}	• • •	f_{Kj}	• • •	f_{KJ}	f_{K} .
Total		f. ₁		f.j		f. j	1

Frecuencias condicionales

$$f_{k|j} = \frac{f_{kj}}{f_{\cdot j}} = \frac{n_{kj}}{n_{\cdot j}},$$

 $f_{j|k} = \frac{f_{kj}}{f_{k\cdot}} = \frac{n_{kj}}{n_{k\cdot}}.$

		5	Satisfacción					
		1	1 2 3 4					
	Е	10	33	15	4	62		
Clase	В	0	3	20	2	25		
	Р	0	0	5	8	13		
Total		10	36	40	14	100		

		9	Satisfacción				
		1	2	3	4		
	Е	10	33	15	4	62	
Clase	В	0	3	20	2	25	
	Р	0	0	5	8	13	
Total		10	36	40	14	100	

		9	Satisfacción				
		1	2	3	4		
	Е	10	33	15	4	62	
Clase	В	0	3	20	2	25	
	Р	0	0	5	8	13	
Total		10	36	40	14	100	

Independencia

		5	Satisfacción				
		1	1 2 3 4				
	Е	10	33	15	4	62	
Clase	В	0	3	20	2	25	
	Р	0	0	5	8	13	
Total		10	36	40	14	100	

Se busca

Luego

$$f_{kj} = f_k \cdot f_{\cdot j}$$
.

Esperamos frecuencia absoluta $n_{kj} = nf_{kj} = nf_k.f._j = n\frac{n_k.}{n}\frac{n_{.j}}{n} = \frac{n_k.n._j}{n}.$

Independencia

		5	Satisfacción					
		1	1 2 3 4					
	Е	10	33	15	4	62		
Clase	В	0	3	20	2	25		
	Р	0	0	5	8	13		
Total		10	36	40	14	100		

Datos bivariados continuos

Tweets	Followers
25	7194
11,800	43,400,000
99	324,000
1934	2,330,000
199	39,000
2539	189,000
4334	639,000
952	688,000
3245	2,690,000
2468	110,000
	25 11,800 99 1934 199 2539 4334 952 3245

Mapas de calor

Mapas de calor

Mapas de calor – contorno

Datos multivariados

Correlación

Covarianza

$$Cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}).$$

- Indica dependencia lineal.

Correlación

$$r_{xy} = \frac{\mathsf{Cov}(x,y)}{s_x s_y}.$$

- Indica dependencia *lineal*.
- ▶ Se puede mostrar que $-1 \le r_{xy} \le 1$.

Correlación

Matriz de varianzas y covarianzas

$$\mathsf{S} = \begin{bmatrix} \mathsf{Cov}(x^1, x^1) & \cdots & \mathsf{Cov}(x^1, x^j) & \cdots & \mathsf{Cov}(x^1, x^J) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(x^j, x^1) & \cdots & \mathsf{Cov}(x^j, x^j) & \cdots & \mathsf{Cov}(x^j, x^J) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathsf{Cov}(x^J, x^1) & \cdots & \mathsf{Cov}(x^J, x^j) & \cdots & \mathsf{Cov}(x^J, x^J) \end{bmatrix}$$

Propiedades

- Diagonal contiene las varianzas.
- ▶ Simétrica: $S = S^T$.
- Semidefinida positiva:
 - $\forall a \in \mathbb{R}^J, a^T Sa \geq 0.$
 - Valores propios son todos no negativos.

Matriz de varianzas y covarianzas

Matriz de datos

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}^{1} & \cdots & \mathbf{x}_{1}^{j} & \cdots & \mathbf{x}_{1}^{J} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{x}_{i}^{1} & \cdots & \mathbf{x}_{i}^{j} & \cdots & \mathbf{x}_{i}^{J} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n}^{1} & \cdots & \mathbf{x}_{n}^{j} & \cdots & \mathbf{x}_{n}^{J} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}^{T} \\ \vdots \\ \mathbf{x}_{i}^{T} \\ \vdots \\ \mathbf{x}_{n}^{T} \end{bmatrix}$$

Construcción

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i,$$

$$\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T.$$

Matriz de correlación

$$R = \begin{bmatrix} 1 & \cdots & r_{1j} & \cdots & r_{1J} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ r_{j1} & \cdots & 1 & \cdots & r_{jJ} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ r_{J1} & \cdots & r_{Jj} & \cdots & 1 \end{bmatrix}$$

Propiedades

- No es igual a la matriz de varianzas y covarianzas escalada.
- Se puede construir como S estandarizando los atributos primero.

Matriz de correlación

Matriz de correlación

Matrices de correlación y de varianzas y covarianzas

