

COMP9020

Foundations of Computer Science

Lecture 10: Induction

Outline

Motivation

Basic Induction

Variations on Basic Induction

Structural Induction

Outline

Motivation

Basic Induction

Variations on Basic Induction

Structural Induction

Recursive datatypes

Describe arbitrarily large objects in a finite way

Recursive functions

Define behaviour for these objects in a finite way

Induction

Reason about these objects in a finite way

Example

Recall the recursive program:

Example

Summing the first *n* natural numbers:

```
\begin{aligned} & \operatorname{sum}(n) : \\ & \operatorname{if}(n=0) : 0 \\ & \operatorname{else}: n + \operatorname{sum}(n-1) \end{aligned}
```

Another attempt:

Example

Induction proof **guarantees** that these programs will behave the same.

Inductive Reasoning

Suppose we would like to reach a conclusion of the form P(x) for all x (of some type)

Inductive reasoning (as understood in philosophy) proceeds from examples.

E.g. From "This swan is white, that swan is white, in fact every swan I have seen so far is white"

Conclude: "Every Swan is white"

NB

This may be a good way to discover hypotheses. But it is not a valid principle of reasoning!

Mathematical induction is a variant that is valid.

Mathematical Induction

Mathematical Induction is based not just on a set of examples, but also a rule for deriving new cases of P(x) from cases for which P is known to hold.

General structure of reasoning by mathematical induction:

Base Case [B]: $P(a_1), P(a_2), \dots, P(a_n)$ for some small set of examples $a_1 \dots a_n$ (often n = 1)

Inductive Step [I]: A general rule showing that if P(x) holds for some cases $x = x_1, \ldots, x_k$ then P(y) holds for some new case y, constructed in some way from x_1, \ldots, x_k .

Conclusion: Starting with $a_1 \dots a_n$ and repeatedly applying the construction of y from existing values, we can eventually construct all values in the domain of interest.

7

Induction proof structure

Let P(x) be the proposition that ...

We will show that P(x) holds for all x by induction on x.

Base case: x = ...:

- *P*(*x*): ...
-
- so P(x) holds.

[Repeat for all base cases]

Inductive case:

- Assume P(x) holds. That is,
- We will show P(y) holds.
- ...
- So P(x) implies P(y).

[Repeat for all inductive cases]

Therefore, by induction, P(x) holds for all x.

Outline

Motivation

Basic Induction

Variations on Basic Induction

Structural Induction

Basic induction

Basic induction is the general principle applied to the natural numbers.

Goal: Show P(n) holds for all $n \in \mathbb{N}$.

Approach: Show that:

Base case (B): P(0) holds; and

Inductive case (I): If P(k) holds then P(k+1) holds.

Example

Recall the recursive program:

Example

Summing the first *n* natural numbers:

```
\begin{aligned} & \operatorname{sum}(n) \\ & \operatorname{if}(n=0) \\ & \operatorname{else:} n + \operatorname{sum}(n-1) \end{aligned}
```

Another attempt:

Example

$$sum2(n):$$
 return $n*(n+1)/2$

Induction proof **guarantees** that these programs will behave the same.

Example

Let P(n) be the proposition that:

$$P(n): \sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

We will show that P(n) holds for all $n \in \mathbb{N}$ by induction on n.

Proof.

[B] P(0), i.e.

$$\sum_{i=0}^{0} i = \frac{0(0+1)}{2}$$

[I] $\forall k \ge 0 (P(k) \to P(k+1))$, i.e.

$$\sum_{i=0}^{k} i = \frac{k(k+1)}{2} \rightarrow \sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$$

(proof?)

Example (cont'd)

Proof.

Inductive step [I]:

$$\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i\right) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1) \quad \text{(by the inductive hypothesis)}$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

╝,

Outline

Motivation

Basic Induction

Variations on Basic Induction

Structural Induction

Variations

- 1 Induction from *m* upwards
- 2 Induction steps > 1
- Strong induction
- Backward induction
- Forward-backward induction
- 6 Structural induction

Induction From *m* Upwards

```
 \begin{array}{ll} \text{If} & & \\ [\mathsf{B}] & P(m) \\ [\mathsf{I}] & \forall k \geq m \left( P(k) \rightarrow P(k+1) \right) \\ \text{then} & \\ [\mathsf{C}] & \forall n \geq m \left( P(n) \right) \end{array}
```

Example

Theorem. For all $n \ge 1$, the number $8^n - 2^n$ is divisible by 6.

- **[B]** $8^1 2^1$ is divisible by 6
- [I] if $8^k 2^k$ is divisible by 6, then so is $8^{k+1} 2^{k+1}$, for all $k \ge 1$

Prove [I] using the "trick" to rewrite 8^{k+1} as $8 \cdot (8^k - 2^k + 2^k)$ which allows you to apply the IH on $8^k - 2^k$

Induction Steps $\ell > 1$

```
If  [B] \qquad P(m) \\ [I] \qquad P(k) \to P(k+\ell) \text{ for all } k \geq m \\ \text{then} \\ [C] \qquad P(n) \text{ for every } \ell \text{'th } n \geq m
```

Example

Every 4th Fibonacci number is divisible by 3.

- **[B]** $F_4 = 3$ is divisible by 3
- [I] if $3 \mid F_k$, then $3 \mid F_{k+4}$, for all $k \geq 4$

Prove [I] by rewriting F_{k+4} in such a way that you can apply the IH on F_k

Strong Induction

This is a version in which the inductive hypothesis is stronger. Rather than using the fact that P(k) holds for a single value, we use *all* values up to k.

```
If  [B] \qquad P(m) \\ [I] \qquad [P(m) \wedge P(m+1) \wedge \ldots \wedge P(k)] \rightarrow P(k+1) \quad \text{ for all } k \geq m \\ \text{then} \\ [C] \qquad P(n), \text{ for all } n \geq m
```

Example

Claim: All integers ≥ 2 can be written as a product of primes.

- [B] 2 is a product of primes
- [I] If all x with $2 \le x \le k$ can be written as a product of primes, then k+1 can be written as a product of primes, for all $k \ge 2$

Proof for [I]?

Negative Integers, Backward Induction

NB

Induction can be conducted over any subset of \mathbb{Z} with least element. Thus m can be negative; eg. base case $m = -10^6$.

NB

One can apply induction in the 'opposite' direction $p(m) \to p(m-1)$. It means considering the integers with the opposite ordering where the next number after n is n-1. Such induction would be used to prove some p(n) for all $n \le m$.

NB

Sometimes one needs to reason about all integers \mathbb{Z} . This requires two separate simple induction proofs: one for \mathbb{N} , another for $-\mathbb{N}$. They both would start form some initial values, which could be the same, e.g. zero. Then the first proof would proceed through positive integers; the second proof through negative integers.

Forward-Backward Induction

Idea

To prove P(n) for all $n \ge k_0$

- verify $P(k_0)$
- prove $P(k_i)$ for infinitely many $k_0 < k_1 < k_2 < k_3 < \dots$
- fill the gaps

$$P(k_1) \to P(k_1 - 1) \to P(k_1 - 2) \to \dots \to P(k_0 + 1)$$

 $P(k_2) \to P(k_2 - 1) \to P(k_2 - 2) \to \dots \to P(k_1 + 1)$

NB

This form of induction is extremely important for the analysis of algorithms.

Outline

Motivation

Basic Induction

Variations on Basic Induction

Structural Induction

Structural Induction

Basic induction allows us to assert properties over **all natural numbers**. The induction scheme (layout) uses the recursive definition of \mathbb{N} .

The induction schemes can be applied not only to natural numbers (and integers) but to any partially ordered set in general – especially those defined recursively.

The basic approach is always the same — we need to verify that

- [B] the property holds for all minimal objects objects that have no predecessors; they are usually very simple objects allowing immediate verification
- [I] for any given object, if the property in question holds for all its predecessors ('smaller' objects) then it holds for the object itself

Recall definition of Σ^* :

$$\lambda \in \Sigma^*$$

If $w \in \Sigma^*$ then $aw \in \Sigma^*$ for all $a \in \Sigma$

Structural induction on Σ^* :

Goal: Show P(w) holds for all $w \in \Sigma^*$.

Approach: Show that:

Base case (B): $P(\lambda)$ holds; and

Inductive case (I): If P(w) holds then P(aw) holds for all $a \in \Sigma$.

Recall:

Formal definition of Σ^* :

$$\lambda \in \Sigma^*$$

If $w \in \Sigma^*$ then $aw \in \Sigma^*$ for all $a \in \Sigma$

Formal definition of concatenation:

(concat.B)
$$\lambda v = v$$

(concat.I) $(aw)v = a(wv)$

Formal definition of length:

(length.B) length(
$$\lambda$$
) = 0
(length.I) length(aw) = 1 + length(w)

Prove:

$$length(wv) = length(w) + length(v)$$

Let P(w) be the proposition that, for all $v \in \Sigma^*$:

$$length(wv) = length(w) + length(v).$$

We will show that P(w) holds for all $w \in \Sigma^*$ by **structural** induction on w.

Proof:

Base case ($w = \lambda$):

$$\begin{array}{ll} \mathsf{length}(\lambda v) &= \mathsf{length}(v) & (\mathsf{concat.B}) \\ &= 0 + \mathsf{length}(v) \\ &= \mathsf{length}(w) + \mathsf{length}(v) & (\mathsf{length.B}) \end{array}$$

Proof cont'd:

Inductive case (w = aw'**):** Assume that P(w') holds. That is, for all $v \in \Sigma^*$:

(IH):
$$\operatorname{length}(w'v) = \operatorname{length}(w') + \operatorname{length}(v)$$
.

Then, for all $a \in \Sigma$, we have:

$$\begin{array}{ll} \operatorname{length}((\mathit{a}\mathit{w}')\mathit{v}) &= \operatorname{length}(\mathit{a}(\mathit{w}'\mathit{v})) & (\operatorname{concat.I}) \\ &= 1 + \operatorname{length}(\mathit{w}'\mathit{v}) & (\operatorname{length.I}) \\ &= 1 + \operatorname{length}(\mathit{w}') + \operatorname{length}(\mathit{v}) & (\operatorname{IH}) \\ &= \operatorname{length}(\mathit{a}\mathit{w}') + \operatorname{length}(\mathit{v}) & (\operatorname{length.I}) \end{array}$$

So P(aw') holds.

We have $P(\lambda)$ and for all $w' \in \Sigma^*$ and $a \in \Sigma$: $P(w') \to P(aw')$. Hence P(w) holds for all $w \in \Sigma^*$.

Recall append : $\Sigma^* \times \Sigma \to \Sigma^*$ defined as:

- append $(\lambda, x) = x$
- append(aw, x) = a (append(w, x))

Prove:

For all $w, v \in \Sigma^*$ and $x \in \Sigma$:

$$append(wv, x) = w(append(v, x))$$

Theorem

```
For all w, v \in \Sigma^* and x \in \Sigma: append(wv, x) = w(append(v, x)).
```

Proof: By induction on w...

```
[B] append(\lambda v, x) = append(v, x) (concat.B)

[I] append((aw)v, x) = append(a(wv), x) (concat.I)

= a append(wv, x) (append.I)

= a (w \text{ append}(v, x)) (IH)

= (aw) \text{ append}(v, x) (concat.I)
```

31

```
Define rev : \Sigma^* \to \Sigma^*: 
 (\text{rev.B}) \text{ rev}(\lambda) = \lambda, 
 (\text{rev.I}) \text{ rev}(a \cdot w) = \text{append}(\text{reverse}(w), a)
```

Theorem

For all $w, v \in \Sigma^*$, $reverse(wv) = reverse(v) \cdot reverse(w)$.

```
Proof: By induction on w...

[B] \operatorname{rev}(\lambda v) = \operatorname{rev}(v)
= \operatorname{rev}(v)\lambda
= \operatorname{rev}(v)\operatorname{rev}(\lambda)

[I] \operatorname{rev}((aw')v) = \operatorname{rev}(a(w'v))
```

(concat.B) (*) (rev.B)

[I]
$$\operatorname{rev}((aw')v) = \operatorname{rev}(a(w'v))$$
 (concat.I)
 $= \operatorname{append}(\operatorname{rev}(w'v), a)$ (rev.I)
 $= \operatorname{append}(\operatorname{rev}(v)\operatorname{rev}(w'), a)$ (IH)
 $= \operatorname{rev}(v)\operatorname{append}(\operatorname{rev}(w'), a)$ (Example 2)
 $= \operatorname{rev}(v)\operatorname{rev}(aw')$ (rev.I)

Example 4: Induction on more complex structures

Recall expressions in the Proof assistant:

- (B) $A, B, \ldots, Z, a, b, \ldots z$ are expressions
- ullet (B) \emptyset and ${\mathcal U}$ are expressions
- (R) If E is an expression then so is (E) and E^c
- (R) If E_1 and E_2 are expressions then:
 - $(E_1 \cup E_2)$,
 - $(E_1 \cap E_2)$,
 - $(E_1 \setminus E_2)$, and
 - $(E_1 \oplus E_2)$ are expressions.

Theorem

In any valid expression, the number of (equals the number of)

Proof: By induction on the structure of E...

Exercise

Exercise

RW: 4.4.2 Define $s_1=1$ and $s_{n+1}=\frac{1}{1+s_n}$ for $n\geq 1$

Then $s_1 = 1$, $s_2 = \frac{1}{2}$, $s_3 = \frac{2}{3}$, $s_4 = \frac{3}{5}$, $s_5 = \frac{5}{8}$, ...

The numbers in numerator and denominator remind one of the Fibonacci sequence.

Prove by induction that

$$s_n = \frac{\text{FIB}(n)}{\text{FIB}(n+1)}$$

35