Data Mining

Lecture 10 - Deep Learning

The Deep Learning Revolution

EVERY INDUSTRY WANTS DEEP LEARNING

Cloud Service Provider

Medicine

Media & Entertainment

Security & Defense

Autonomous Machines

- > Image/Video classification
- Speech recognition
- Natural language processing
- Cancer cell detection
- Diabetic grading
- > Drug discovery

- Video captioning
- Content based search
- Real time translation
- > Face recognition
- > Video surveillance
- > Cyber security

- » Pedestrian detection.
- > Lane tracking
- > Recognize traffic sign

Video: https://www.youtube.com/watch?v=Dy0hJWltsyE

Why now?

KEY DRIVERS FOR DEEP LEARNING

Big Data

Better Algorithms

GPU Acceleration

facebook.

350 millions images uploaded per day

2.5 Petabytes of customer data hourly

300 hours of video uploaded every minute

"The Three Breakthroughs that have Finally Unleashed A.I. on the World"

The number of trainable parameters becomes extremely large

Little or no invariance to shifting, scaling, and other forms of distortion

Little or no invariance to shifting, scaling, and other forms of distortion

Shift left

The topology of the input data is completely ignored

Convolutional neural networks (CNNs)

About CNN's

- CNN's were neurobiologically motivated by the findings of locally sensitive and orientation-selective nerve cells in the visual cortex.

- They designed a network structure that implicitly extracts relevant features.
- Convolutional Neural Networks are a special kind of multi-layer neural networks.

CNN's Topology

Feature extraction

- Shared weights: all neurons in a feature share the same weights
- In this way all neurons detect the same feature at different positions in the input image.
- Reduce the number of free parameters.

Local connectivity

Convolution Details

Video at: http://cs231n.github.io/convolutional-networks/

Feature extraction

If a neuron in the feature map fires, this corresponds to a match with the template.

Subsampling layer

- The subsampling layers reduce the spatial resolution of each feature map (also called pooling)
- By reducing the spatial resolution of the feature map, a certain degree of shift and distortion invariance is achieved.

ImageNet - image classification

- 1.000 different classes
- 1.000.000 training images

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Learned features of first layer

Deepvis: https://www.youtube.com/watch?v=AgkflQ4lGaM&feature=youtu.be

Deep Learning = Learning Hierarchical Representations

Y LeCun

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Network Example

- Often resolution is decreased and channels increased going up
- Important: Each unit looks at all channels of the previous layer
- Recent trends go towards small filters (3 × 3), sometimes even without pooling

Can also be used for Semantic Segmentation

 Basic idea: Slide a CNN to classify each location of the image

Long et al., 2015

(Tensorflow+Keras)

```
47
     model = Sequential()
48
     model.add(Conv2D(32, kernel_size=(3, 3),
                      activation='relu'.
49
50
                      input shape=input shape))
51
     model.add(Conv2D(64, (3, 3), activation='relu'))
     model.add(MaxPooling2D(pool_size=(2, 2)))
52
53
     model.add(Dropout(0.25))
54
     model.add(Flatten())
     model.add(Dense(128, activation='relu'))
55
56
     model.add(Dropout(0.5))
57
     model.add(Dense(num_classes, activation='softmax'))
58
     model.compile(loss=keras.losses.categorical crossentropy,
59
60
                   optimizer=keras.optimizers.Adadelta(),
61
                   metrics=['accuracy'])
62
63
     model.fit(x train, y train,
               batch size=batch size,
64
65
               epochs=epochs,
66
               verbose=1,
               validation_data=(x_test, y_test))
67
     score = model.evaluate(x_test, y_test, verbose=0)
68
69
     print('Test loss:', score[0])
     print('Test accuracy:', score[1])
70
```

Recurrent Networks can learn sequential tasks

Recurrent Network Unrolled

Sequence to Sequence Learning with Neural Networks

Ilya Sutskever
Google
ilyasu@google.com

Oriol Vinyals
Google
vinyals@google.com

Quoc V. Le Google qvl@google.com

Neural network attention mechanisms

A woman is throwing a <u>frisbee</u> in a park.

The more parameters, the higher the chances of overfitting

Tricks of the Trade: Early stopping

- Divide data into three sets:
 - Training
 - Testing
 - Validation
- Train model on training set
- Stop when error on validation set increases
- Evaluate accuracy on test set

Tricks of the Trade cont.

- Careful initialisation
- Dropout
- Regularization (L1, L2)
- And many more

Srivastava et al., 2014

Deep Q-Learning: Mnih et al. "Humanlevel control through deep reinforcement learning"

Also works for Doom!

Videos: https://www.youtube.com/playlist?list=PLduGZax9wmiHg-XPFSgqGg8PEAV51q1FT

Paners https://projectors/pdf/1400.0FE21v1.pd

AlphaGo

 Combining Deep Neural Networks with Tree Search

