Exercise 1. Do the following:

- i) Let $q = (a_1, ..., a_n)$ be a point in \mathbb{A}^n . Using the fact that I(q) is a maximal ideal in $\mathbb{C}[x_1, ..., x_n]$, prove that the coordinate ring of q is isomorphic to \mathbb{C} .
- ii) If $i : \{q\} \to \mathbb{A}^n$ is the inclusion map, show that the pullback homomorphism

$$i^{\sharp}: \mathbb{C}[x_1, \dots, x_n] \to \mathbb{C}[q] = \mathbb{C}$$

sends a function $f(x_1, ..., x_n)$ to the complex number $f(a_1, ..., a_n)$ obtained by evaluating at that point.

Answer

i) The ideal I(q) is in fact $gen(x_1 - a_1, ..., x_n - a_n)$, a maximal ideal in $\mathbb{C}[x_1, ..., x_n]$. Then the coordinate ring of $\{q\}$ is precisely

$$\mathbb{C}[q] = \frac{\mathbb{C}[x_1, \dots, x_n]}{I(\lbrace q \rbrace)} = \frac{\mathbb{C}[x_1, \dots, x_n]}{\gcd(x_1 - a_1, \dots, x_n - a_n)}.$$

The evaluation homomorphism ε_q with help of the 1st isomorphism theorem gives us the desired isomorphism. This is clearly a surjective map since we can get to any complex number by solving a linear equation and its kernel is the aforementioned ideal.

ii) Since the inclusion mapping is a morphism of algebraic varieties, then it induces a pullback homomorphism between the coordinate rings. By definition its action is as follows:

$$i^{\sharp}: \mathbb{C}[\mathbb{A}^n] \to \mathbb{C}[q], \ g \mapsto g \circ i.$$

Let us unpack the terminology. First, the inclusion homomorphism is the identity mapping restricted to $\{q\}$. Then the pullback can be expressed as

$$i^{\sharp}: \mathbb{C}[x_1,\ldots,x_n] \to \mathbb{C}, \ g(\mathbf{z}) \mapsto g(\mathrm{id}|_{\{q\}}(\mathbf{z})).$$

In this sense the action of $g \circ i$ is

$$\mathbb{A}^n \xrightarrow{\mathrm{id}|_{\{q\}}} \mathbb{A}^n \xrightarrow{g} \mathbb{C} \Rightarrow \mathbb{A}^n \xrightarrow{g \circ i} \mathbb{C},$$

and thus, since the action of this map is the same as ε_q , we conclude that $i^{\sharp} = \varepsilon_q$.

Exercise 2. Prove that if $F: V \to W$ is an isomorphism of affine algebraic varieties, then the pullback homomorphism is a ring isomorphism.

Answer

The pullback homomorphism is precisely $F^{\sharp}: \mathbb{C}[W] \to \mathbb{C}[V]$ such that $g \mapsto g \circ F$. Since the pullback is already a ring homomorphism, it suffices to show that it is invertible by explicitly constructing an inverse.

The map $F^{-1}:W\to V$ defines a pullback from $\mathbb{C}[V]$ to $\mathbb{C}[W]$ such that $(F^{-1})^{\sharp}(h)=h\circ F^{-1}$. Now this last map is an inverse to F^{\sharp} since

$$F^{\sharp}((F^{-1})^{\sharp}(h)) = F^{\sharp}(h \circ F^{-1}) = (h \circ F^{-1}) \circ F = h,$$

and likewise on the other side. It follows that $(F^{-1})^{\sharp} = (F^{\sharp})^{-1}$.

Exercise 3. Let $V \subseteq \mathbb{A}^n$, $W \subseteq \mathbb{A}^m$ be affine algebraic varieties. Let $\widetilde{F} : \mathbb{A}^n \to \mathbb{A}^m$ be a morphism. Show that

$$\widetilde{F}(V) \subseteq W \iff \widetilde{F}^{\sharp} : \mathbb{C}[y_1, \dots, y_m] \to \mathbb{C}[x_1, \dots, x_n] \text{ sends } I(W) \text{ to } I(V).$$

 $[\![Hint: W=V(I(W)).]\!]$

Answer

i) Let us consider $q \in \widetilde{F}^\sharp(I(W))$, we want to show that $q(\mathbf{a}) = 0$ for $\mathbf{a} \in V$. By definition of direct image, there exists a polynomial $p \in I(W)$ such that $\widetilde{F}^\sharp(p) = q$, thus if $\mathbf{a} \in V$

$$q(\mathbf{a}) = \widetilde{F}^{\sharp}(p)(\mathbf{a}) = p(F(\mathbf{a})) = 0$$

where the last equality follows from the fact that $F(\mathbf{a}) \in W$ and $p(\mathbf{x}) = 0$ for any $\mathbf{x} \in W$.

ii) On the other hand, let us consider a $\mathbf{b} \in \widetilde{F}(V)$. We want to show that $\mathbf{b} \in W$. By the Nullstellensatz, this is equivalent to showing that $\mathbf{b} \in V(I(W))$. Or equivalently, that $q(\mathbf{b}) = 0$ for $q \in I(W)$.

Once again, using the definition of the direct image, we may find an element $\mathbf{a} \in V$ such that $\widetilde{F}(\mathbf{a}) = \mathbf{b}$. Thus if we take $g \in I(W)$, then

$$q(\mathbf{b}) = q(\widetilde{F}(\mathbf{a})) = (q \circ \widetilde{F})(\mathbf{a}) = (\widetilde{F}^{\sharp}(q))(\mathbf{a}) = 0$$

where the last equality follows from the fact that $\widetilde{F}^\sharp(q)$ is a polynomial in I(V).

I wanted to answer the last exercise directly without separating the directions in the equivalence. However the proof would go along the lines of

$$\widetilde{F}(V) \subseteq W \iff I(F(V)) \supseteq I(W) \iff I(V) \supseteq \widetilde{F}^{\sharp}(I(W))$$

using *I* as a contravariant functor. I feel that this diagram comes in handy: My question

is, can this statement be proven in a direct way? Using the equivalence of categories maybe?

Exercise 4 (2.6.1). Prove that the spectrum $\operatorname{Spec}(R)$ of a commutative ring R can be given the structure of a topological space whose closed sets are of the form $V(I) = \{ \mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \supseteq I \}$ for $I \leqslant R$.

Answer

First, the whole set and the empty set are closed:

- \diamond Since every prime ideal $\mathfrak p$ is an ideal, we get $0 \in \mathfrak p$ and then $\{0\} \subseteq \mathfrak p$. Then $V(0) = \{\mathfrak p \in \operatorname{Spec}(R) : \mathfrak p \supseteq \{0\}\}$, and this is the whole set. Thus $V(0) = \operatorname{Spec}(R)$.
- \diamond On the other hand, if $V(I) = \emptyset$, then, there's no prime ideal which contains I besides the whole ring. It follows that $V(R) = \emptyset$.

Let us now prove that the finite union of closed sets is closed. This is, we are looking for $K \leq R$ such that $V(I) \cup V(J) = V(K)$. Let us take K = IJ, then

$$IJ \leqslant I, J \Rightarrow V(I) \cup V(J) \subseteq V(IJ), \ (\mathfrak{p} \supseteq IJ) \Rightarrow [(\mathfrak{p} \supseteq I) \lor (\mathfrak{p} \supseteq J)]$$

and the last assertion gives us the other inclusion. We conclude that $V(IJ) = V(I) \cup V(J)$ and by induction we can prove the equality for a countable number of ideals.

Finally, consider a collection of ideals $(I_{\alpha})_{\alpha \in \mathcal{A}}$. We want to find an ideal $J \bowtie R$ such that $\bigcap_{\alpha \in \mathcal{A}} V(I_{\alpha}) = V(J)$. For that effect we shall take $J = \sum_{\alpha \in \mathcal{A}} I_{\alpha}$. Since J is the smallest ideal which contains all of the I_{α} 's, then

$$\forall \alpha (V(J) \subseteq V(I_{\alpha})) \Rightarrow V(J) \subseteq \bigcap_{\alpha \in \mathcal{A}} V(I_{\alpha}).$$

On the other hand, by minimality of J,

$$\forall \alpha(\mathfrak{p} \supseteq I_{\alpha}) \Rightarrow \mathfrak{p} \supseteq \sum I_{\alpha}$$

and this guarantees the other side of the inclusion.

We conclude that in fact the Zariski topology defined on $\operatorname{Spec}(R)$ is in fact a topology.

Exercise 5 (2.5.(1,2)). Do the following:

- i) Show that the pullback $\mathbb{C}[W] \xrightarrow{F^{\sharp}} \mathbb{C}[V]$ is injective if and only if F is *dominant*. This is, F(V) is dense in W.
- ii) Show that the pullback $\mathbb{C}[W] \xrightarrow{F^{\sharp}} \mathbb{C}[V]$ is surjective if and only if F defines an isomorphism between V and some algebraic subvariety of W.

Answer

- i) Recall F is dense in E whenever $\overline{F}=E$. The Zariski closure operator is $V(I(\cdot))$, so it is equivalent to show that F^{\sharp} is injective if and only if V(I(F(V)))=W.
- ii) (Hmmm?)

I must admit that this time I've got to optimize since there's 161 exam on Thursday and I haven't started my Combinatorics homework due Friday. Today is (202209131754).