

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

1. Inference Methods

- Bayesian Inference
- Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Probabilistic Machine Learning: Terminology

Given:

- **1. Training Data**: $D \in (\mathcal{X} \times \mathcal{Y})^n$ of n (labelled) examples from the input space \mathcal{X} and output space \mathcal{Y}
 - Binary Classification: $\mathcal{Y} = \{0,1\}$
 - Regression: $\mathcal{Y} = \mathbb{R}$
- 2. Prior belief over functions from X to Y: p(f), $f \in \mathcal{F}$
 - Space of functions, \mathcal{F} , is also called *hypothesis space*.
- 3. Likelihood of function: $p(D|f) =: \ell(f)$
 - Link between data and functions
 - Normalizes over D but not over f never say "likelihood of data"!
 - Models all assumptions how data/labels are generated from a function

Key Questions in Machine Learning:

- **Prediction**: What is p(y|x, D) for an example x and having seen D?
- **Decision Making**: What prediction \hat{y} shall be made for an example x having seen D?

Introduction to Probabilistic Machine Learning

Probabilistic Machine Learning: Polynomial Regression

Training Data

 $D \in \mathbb{R}^2$

Prior

 $p(\mathbf{w}) = \mathcal{N}(w_1; 0, 1) \cdot \mathcal{N}(w_2; 0, 1)$

$$f(x; \mathbf{w}) = w_1 \cdot x + w_2 \cdot x^2$$

Likelihood

$$\ell(\mathbf{w}) = \prod_{i} \mathcal{N}(y_i; w_1 x_i + w_2 x_i^2, \sigma^2)$$

Unit 2 - Inference & Decision Making

Predictions and Predictive Distributions

5.0 -5.0

5.0 -5.0

5.0 -5.0

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Probabilistic Machine Learning: Bayesian Inference

Two computational difficulties:

Posterior p(f|D) requires the *multiplication* of likelihood with prior which often results in a distribution which is no longer in a family with very few parameters.

$$p(f|D) = \frac{p(D|f) \cdot p(f)}{p(D)} \propto \ell(f) \cdot p(f)$$

2. Predictive distribution p(y|x,D) requires the *summation* of the data distribution over all prediction functions. This is only feasible for a small number of parametric distributions.

$$p(y|x,D) = \int p(y|x,f) \cdot p(f|D) df$$

Introduction to Probabilistic Machine Learning

Probability Distributions: Conjugacy

■ Bayes Rule for Random Variables. For any probability distribution p over two random variables X and Θ , it holds

Conjugacy. A family $\{p(x,\theta)\}_{x,\theta}$ is conjugate if the posterior $p(\theta|x)$ is part of the same family as the prior $p(\theta)$ for any value of x.

Likelihood $p(x \theta)$	Prior $p(\theta)$	Posterior $p(\theta x)$
$\mathrm{Ber}(x; \theta)$	Beta $(\theta; \alpha, \beta)$	$Beta(\theta; \alpha + x, \beta + (1 - x))$
$Bin(x; n, \theta)$	Beta $(\theta; \alpha, \beta)$	$Beta(\theta; \alpha + x, \beta + (n - x))$
$\mathcal{N}(x;\theta,\sigma^2)$	$\mathcal{N}(\theta; m, s^2)$	$\mathcal{N}\left(\theta; x \cdot \frac{s^2}{s^2 + \sigma^2} + m \cdot \frac{\sigma^2}{s^2 + \sigma^2}, s^2 \cdot \frac{\sigma^2}{s^2 + \sigma^2}\right)$

Howard Raiffa

(1924 - 2016)

Robert Osher Schlaifer (1914 – 1994)

Unit 2 - Inference & Decision Making

Learning

Big Advantage: Computing the exact posterior is computationally efficient!

Normal Distribution: Representations

- Two Parameterizations (for different purposes):
 - Scale-Location Parameters

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Natural Parameters

$$G(x; \tau, \rho) = \sqrt{\frac{\rho}{2\pi}} \cdot \exp\left(-\frac{\tau^2}{2\rho}\right) \cdot \exp\left(\tau \cdot x - \rho \cdot \frac{x^2}{2}\right)$$

Conversions

Two divisions only!
$$\mathcal{N}(x;\mu,\sigma^2) = \mathcal{G}\left(x;\frac{\mu}{\sigma^2},\frac{1}{\sigma^2}\right). \qquad \mathcal{G}(x;\tau,\rho) = \mathcal{N}\left(x;\frac{\tau}{\rho},\frac{1}{\rho}\right)$$

- Two Special Cases (in terms of σ^2)
 - **1.** Constant function: $c(x) = 1 = \exp(0) = \lim_{\sigma^2 \to \infty} \exp\left(-\frac{x^2}{\sigma^2}\right) = \frac{g(x;0,0)}{\mathcal{N}(0;0,0)}$
 - **2.** Dirac Delta: $\delta(x) = \lim_{\sigma^2 \to 0} \mathcal{N}(x; 0, \sigma^2)$

Introduction to Probabilistic Machine Learning

Normal Distributions and the Product Rule

Theorem (Multiplication). Given two one-dimensional Gaussian distributions $G(x; \tau_1, \rho_1)$ and $G(x; \tau_2, \rho_2)$ we have

Gaussian density

$$\mathcal{G}(x;\tau_1,\rho_1)\cdot\mathcal{G}(x;\tau_2,\rho_2)=\mathcal{G}(x;\tau_1+\tau_2,\rho_1+\rho_2)\cdot\mathcal{N}(\mu_1;\mu_2,\sigma_1^2+\sigma_2^2)$$
Additive updates!

■ **Theorem (Division)**. Given two one-dimensional Gaussian distributions $G(x; \tau_1, \rho_1)$ and $G(x; \tau_2, \rho_2)$ we have

Gaussian density

Introduction to Probabilistic Machine Learning

Probability Distributions: Exponential Family

Exponential Family. A family of distributions is said to belong to the exponential family if the probability density/mass function in terms of the parameterisation θ is

$$p(x) = \exp\left(\sum_{i} \eta_{i}(\boldsymbol{\theta}) \cdot T_{i}(x) - A(\boldsymbol{\theta})\right)$$

Distribution $p(x)$	Canonical Parameters $\eta(heta)$	Sufficient Statistic $T(x)$
$Bin(x; n, \pi)$	$\log\left(\frac{\pi}{1-\pi}\right)$	x
$Beta(\pi; \alpha, \beta)$	$[\alpha, \beta]$	$[\log(\pi),\log(1-\pi)]$
$\mathcal{N}(x;\mu,\sigma^2)$	$\left[\frac{\mu}{\sigma^2}, \frac{1}{\sigma^2}\right]$	$\left[x,-\frac{x^2}{2}\right]$

Big Advantage: Closed and efficient under multiplication (Bayes' rule!)

$$p(x; \boldsymbol{\eta}_1) \cdot p(x; \boldsymbol{\eta}_2) = p(x; \boldsymbol{\eta}_1 + \boldsymbol{\eta}_2)$$

Edwin Pitman Georges Darmo (1897 - 1993) (1888 - 1960)

Bernhard Koopman (1900 - 1991) Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

- 1. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Maximum Likelihood/Maximum A-Posteriori Inference

1. Maximum Likelihood. Find the most *likely* function $f_{ML}(D)$ given the data D and approximate p(f|D) by a single point distribution around

$$f_{\mathrm{ML}}(D) = \operatorname*{argmax}_{f} p(D|f)$$

2. **Maximum A Posterior**. Find the most *probable* function $f_{MAP}(D)$ given the data D and prior approximate p(f|D) by a single point distribution around

$$f_{\text{MAP}}(D) = \underset{f}{\operatorname{argmax}} p(D|f) \cdot p(f)$$

- Learning = optimization in the hypothesis space ("gradient descent")
- 2. Storing the model = storing the function parameters

Cons:

- 1. The posterior/likelihood is "peaked" around a single best predictor (convergence)
- 2. No model uncertainty after learning from data

Sir Ronald Fisher (1890 – 1962)

Introduction to Probabilistic Machine Learning

Maximum Likelihood/Maximum A-Posteriori Inference

1. Maximum Likelihood. Find the most *likely* function $f_{\rm ML}(D)$ given the data D and approximate p(f|D) by a single point distribution around

$$f_{\mathrm{ML}}(D) = \operatorname*{argmax}_{f} p(D|f)$$

2. Maximum A Posterior. Find the most *probable* function $f_{MAP}(D)$ given the data D and prior approximate p(f|D) by a single point distribution around

$$f_{\text{MAP}}(D) = \max_{f} p(D|f) \cdot p(f)$$

- Learning = optimization in the hypothesis space ("gradient descent")
- 2. Storing the model = storing the function parameters

Cons:

- The posterior/likelihood is "peaked" around a single best predictor (convergence)
- 2. No model uncertainty after learning from data

Sir Ronald Fisher (1890 – 1962)

Introduction to Probabilistic Machine Learning

Newton-Raphson Algorithm

- **Problem**: Find the local extrema of a function $f: \mathbb{R} \to \mathbb{R}$
- **Idea**: Find the zeros of the first derivative *f'* of the function!
- Newton-Raphson Algorithm: Approximate f' at a point x_t with a linear function g(x) = ax + b and find update x_{t+1} such that $g(x_{t+1}) = 0$

$$a = f''(x_t)$$
$$b = f'(x_t) - f''(x_t) \cdot x_t$$

Sir Isaac Newton (1643 – 1727)

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

Maximum A-Posteriori Inference: Polynomial Regression

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + w_5 x^5 + w_6 x^6$$

$$f(x) = \sum_{i=0}^{10} w_i \cdot x^i$$

Introduction to Probabilistic Machine Learning

Relation to Deep Learning

- **Deep Learning** is maximum likelihood inference on a layered function model
 - **Neural Networks**: $f(x) = h(W_L \cdots h(W_2 h(W_1 x)))$ where h is a sigmoid
 - Number of layers: L
 - Each element of each vector is called a "neuron"
 - Each product of the inner products is called a "synapse"

- Maximum Likelihood optimization via gradient descent (w.r.t. $W_1, W_2, ..., W_L$)
 - Application of the chain rule of differentiation = back propagation
 - Predicting and gradient computations are matrix multiplications; today, they are sped up using GPUs (which parallelize matrix multiplication)

Regularization for the Deep Learning algorithms are equivalent to prior assumptions on $p(W_1, W_2, ..., W_L)$!

Introduction to Probabilistic Machine Learning

- I. Inference Methods
 - Bayesian Inference
 - Maximum Likelihood Estimation
- 2. Decision Making

Introduction to Probabilistic Machine Learning

Loss Functions

- **Decision Theory**: Decision theory is concerned with the theory of making decisions based on uncertain outcomes and assigning numerical consequences to the outcome.
 - Answers the second **key question of machine learning**: What prediction \hat{y} shall be made for an example x having seen D?
 - Requires knowledge of the numerical consequence of taking an action (*loss* or *utility* function)
- **Loss Function**: A loss function $l: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$ is a function mapping the outcome space \mathcal{Y} and an action space \mathcal{A} to a real number representing the "cost" associated with taking the action $\alpha \in \mathcal{A}$ when the true state of the world is $y \in \mathcal{Y}$.
 - Losses are given by the domain problem; there are no "true" losses!
 - Example:
 - 1. Giving a treatment after a cancer test (economic costs?!)
 - 2. Deciding which advertisement to show on a search result page (bids!)

		Actions		
		treat	nothing	
Outcomes	Cancer	0	1000	
	No cancer	1	0	

Introduction to Probabilistic Machine Learning

Optimal Decisions

Expected Loss Minimization. Given a predictive model p(y|x) and a loss function $l: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$, the optimal action a(x) is determined by minimizing the expected loss

$$a(x) \coloneqq \operatorname{argmin}_{a \in \mathcal{A}} E_{y \sim p(y|x)}[l(y, a)]$$

- Optimal decisions require (yet again) solving an optimization problem!
 - **Example**: If $\mathcal{Y} = \mathcal{A} = \mathbb{R}$ and $l(y, a(x)) = (y a(x))^2$ then $a(x) = E_{y \sim p(y|x)}[y]$
 - Proof: Taking the first derivative and setting it to zero gives

$$\frac{d}{da(x)}E_{y\sim p(y|x)}[l(y,a(x))] = \sum_{y}p(y|x)\cdot\frac{d}{da(x)}(y-a(x))^{2}$$

$$0 = \sum_{y}p(y|x)\cdot(2(a(x)-y))$$

$$0 = 2\cdot\left(\sum_{y}p(y|x)\cdot a(x) - \sum_{y}p(y|x)\cdot y\right)$$

$$0 = a(x) - E_{y\sim p(y|x)}[y]$$

Reinforcement Learning is optimizing the expected loss over an (infinite) sequence of predictions, not just for one prediction!

Introduction to Probabilistic Machine Learning

Example: Binary Classification

Introduction to Probabilistic Machine Learning

Unit 2 - Inference & Decision Making

22/23

Summary

Inference Methods

- Inference is the task of inferring what we know about the plausibility of a prediction function in light of training data
- Bayesian Inference is the only consistent inference technique requiring huge summations, but it is (usually) computationally too hard
- Maximum Likelihood Estimation is often easier and reduces machine learning to parameter optimization – but we are losing model uncertainty

2. Decision Making

- In order to make automatic decisions, we require domain-specific loss functions
- Decision making requires optimization (again!)

Introduction to
Probabilistic Machine
Learning

See you next week!