	Kittel TP
5.1	Set up chemical potential per particle analogous to (eq.5.17),
	$\mu = \gamma \left[h \frac{n L r^2}{h \varrho} + \frac{L}{2} M r^2 w^2 \right].$
	$m(0) = \gamma \ln \frac{m(0)}{n \alpha}$
	Af equilibrium, MC+J=MCO>.
	$u(x) = \ln(\underline{n(x)}) + \frac{1}{2} \frac{M}{7} + 2w^2 = \ln[\underline{n(x)}]$
	$ \frac{1}{\ln\left[\frac{n(r)}{n(s)}\right]} = -\frac{1}{2}\frac{M}{7}r^2w^2. $
	$h(r) = h(\sigma) e^{\frac{1}{2} \frac{M}{7} F \omega^2}$
	This is counterintuitive as one expects n(r) to increase with r
	due to centripital force, yet n(r) decreases exponentially
	with r?
	Davidson Change
2	