DIOFANTOVE *m*-TORKE I ELIPTIČKE KRIVULJE

3. zadaća

1. Neka je E eliptička krivulja s jednadžbom

$$y^2 = x^3 + ax + b.$$

Neka je $P = (x_1, y_1)$ točka na E, te neka je $2P = (x_2, y_2)$. Dokažite da vrijedi

$$y_1^2(4x_2(3x_1^2+4a)-3x_1^3+5ax_1+27b)=4a^3+27b^2.$$

2. Nađite sve točke konačnog reda te odredite strukturu torzijske grupe za eliptičku krivulju

$$y^{2} = \left(\frac{12}{7}x + 1\right)\left(-\frac{15}{28}x + 1\right)\left(\frac{7}{4}x + 1\right)$$

induciranu racionalnom Diofantovom trojkom $\{\frac{12}{7}, -\frac{15}{28}, \frac{7}{4}\}$. Odredite sve proste brojeve p za koje vrijedi $|E(\mathbb{Q})_{\text{tors}}| = |E(\mathbb{F}_p)|$.

3. Izračunajte rang eliptičke krivulje nad $\mathbb Q$ zadane jednadžbom

$$y^2 = x^3 - 82x.$$

Koje od jednadžbi četvrtog stupnja koje je javljaju u algoritmu silaska s pomoću 2-izogenije imaju rješenja?

- 4. Neka su $a_1, a_2, a_3, a_4, a_5, a_6$ različiti prirodni brojevi. Neka je $p(x) = (x^2 a_1^2)(x^2 a_2^2)(x^2 a_3^2)(x^2 a_4^2)(x^2 a_5^2)(x^2 a_6^2)$, te neka su q(x) i r(x) polinomi s racionalnim koeficijentima takvi da je $p = q^2 r$ i deg $r \le 4$. Odredite prirodne brojeve $a_1, a_2, a_3, a_4, a_5, a_6$ tako da vrijedi:
 - $\deg r = 4$,
 - r nema višestrukih korijena,
 - vodeći koeficijent od r je kvadrat racionalnog broja,
 - eliptička krivulja E ekvivalentna krivulji $y^2 = r(x)$ ima rang ≥ 6 .

Napomena: polinom r(x) je paran, pa eliptička krivulja E ima točku reda 2.

5. Nađite jednu krivulju nad Q takvu da je

$$E(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}^2.$$