Лекция 11

§ 6.3. Полиномиальная интерполяция. Многочлен Лагранжа

1. Интерполяционный многочлен. Начнем с рассмотрения задачи интерполяции в наиболее простом и полно исследованном случае интерполирования алгебраическими многочленами. Для заданной таблицы (6.1) многочлен $P_n(x) = \sum_{k=0}^n a_k x^k$ степени n называется интерполяционным многочленом, если он удовлетворяет условиям

$$P_n(x_i) = y_i \quad (i = 0, 1, ..., n).$$
 (6.21)

Равенство (6.21) можно записать аналогично (6.8) в виде системы уравнений

относительно коэффициентов многочлена. Эта система однозначно разрешима, так как система функций 1, x, x^2 , ..., x^n линейно независима в точках x_0, x_1, \ldots, x_n (см. утверждение 6.1 и теорему 6.1). Таким образом, верна следующая теорема.

Теорема 6.2. *Существует единственный интерполяционный* многочлен степени п, удовлетворяющий условиям (6.21).

3 а м е ч а н и е. На практике система (6.22) никогда не используется для вычисления коэффициентов интерполяционного многочлена. Дело в том, что она является плохо обусловленной. Кроме того существуют различные явные формы записи интерполяционного многочлена, которые применяются при интерполяции. Наконец, в большинстве приложений интерполяционного многочлена явное вычисление коэффициентов a_k не нужно.

2. Многочлен Лагранжа. Приведем одну из форм записи интерполяционного многочлена – *многочлен* **Лагранжа**

$$L_n(x) = \sum_{j=0}^n y_j \ l_{nj}(x). \tag{6.23}$$

Здесь
$$l_{nj}(x) = \prod_{k=1, k \neq j}^{n} \frac{x - x_k}{x_j - x_k} = \frac{(x - x_0)(x - x_1)...(x - x_{j-1})(x - x_{j+1})...(x - x_n)}{(x_j - x_0)(x_j - x_1)...(x_j - x_{j-1})(x_j - x_{j+1})...(x_j - x_n)}.$$

Как нетрудно видеть, $l_{nj}(x)$ представляет собой многочлен степени n, удовлетворяющий условию

$$l_{nj}(x_i) = \begin{cases} 1, \text{при } i = j \\ 0, \text{при } i \neq j \end{cases}$$

Таким образом, степень многочлена L_n равна n и при $x=x_i$ в сумме (6.22) обращаются в ноль все слагаемые, кроме слагаемого с номером j=i, равного y_i . Поэтому многочлен Лагранжа (6.23) действительно является интерполяционным.

Заметим, что на практике интерполяционный многочлен Лагранжа используется так, что нет необходимости его преобразования к каноническому виду $L_n(x) = \sum_{j=0}^n a_k \, x^k$.

Приведем формулы для записи многочленов Лагранжа первой и второй степени, которые часто используются на практике:

$$L_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}, \tag{6.24}$$

$$L_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$
 (6.25)

§ 6.4. Погрешность интерполяции

Приведем без доказательства наиболее известную теорему о погрешности интерполяции.

T е о р е м а 6.3. Пусть функция f дифференцируема n+1 разна отрезке [a,b], содержащем узлы интерполяции x_i , $i=0,1,\ldots,n$. Тогда для погрешности интерполяции в точке $x \in [a,b]$ справедливо равенство

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x), \tag{6.26}$$

в котором $\omega_{n+1}(x) = (x-x_0)(x-x_1)...(x-x_n)$, а ξ – некоторая точка, принадлежащая интервалу (a,b).

Основное неудобство в использовании этой теоремы состоит в том, что входящая в формулу (6.26) для погрешности точка ξ неизвестна. Поэтому чаще используется не сама теорема, а ее следствие.

Следствие. В условиях теоремы (6.3) справедлива оценка погрешности интерполяции в точке $x \in [a, b]$, имеющая вид

$$|f(x) - P_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\omega_{n+1}(x)|,$$
 (6.27)

а также оценка максимума модуля погрешности интерполяции на отрезке [a, b], имеющая вид

$$\max_{[a,b]} |f(x) - P_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{[a,b]} |\omega_{n+1}(x)|, \tag{6.28}$$

 $3 \partial e c b \qquad M_{n+1} = \max_{[a,b]} |f^{(n+1)}(x)|.$

Пусть теперь $x_0 < x_1 < \dots < x_n$ и пусть $h_i = x_i - x_{i-1} - i$ -й шаг таблицы, а $h_{max} = \max_{1 \le i \le n} h_i$. Несколько огрубляя оценку (6.28), можно получить следующее неравенство:

$$\max_{[x_0, x_n]} |f(x) - P_n(x)| \le \frac{M_{n+1}}{4(n+1)} h_{max}^{n+1}.$$
 (6.29)

Оно позволяет утверждать, что для достаточно гладкой функции fфиксированной степени интерполяционного многочлена на отрезке $[x_0, x_n]$ при $h_{max} \rightarrow 0$ погрешность интерполяции нулю не медленнее, чем К некоторая величина, h_{max}^{n+1} . Этот факт принято формулировать так: пропорциональная интерполяция многочленом степени п имеет (n+1)-й порядок точности относительно h_{max} . В частности, линейная и квадратичная второй третий интерполяции имеют И порядок точности соответственно.

§ 6.5. Интерполяция с кратными узлами

1. Интерполяционный многочлен с кратными узлами. Иногда в узлах x_i ($i=0,1,\ldots,m$) бывают заданы не только значения $y_i=f(x_i)$ функции f, но и значения ее производных $y_i'=f'(x_i), y_i''=f''(x_i),\ldots,$ $y_i^{(k_i-1)}=f^{(k_i-1)}(x_i)$ до некоторого порядка k_i-1 . В этом случае узел x_i называют *кратным*, а число k_i , равное количеству заданных значений, — *кратностью узла*. Пусть $n=k_0+k_1+\cdots+k_m-1$. Можно доказать, что существует единственный многочлен $P_n(x)$ степени n, удовлетворяющий условиям

$$P_n(x_i) = y_i, \ P_n{}'(x_i) = y_i', \ \dots, \ P_n{}^{(k_i-1)}(x_i) = y_i^{(k_i-1)}$$
для $i=0,\ 1,\ \dots,\ m.$

Этот многочлен называют интерполяционным многочленом с кратными узлами. Можно указать и явную формулу его записи, аналогичную форме Лагранжа. Мы этого делать не будем, а отметим лишь два важных частных случая.

1). Пусть на концах отрезка $[x_0, x_1]$ заданы значения y_0, y_1, y_0', y_1' . Тогда $m=1, k_0=2, k_1=2, n=3$ и интерполяционный многочлен $P_3(x)$, удовлетворяющий условиям $P_3(x_0)=y_0, P_3(x_1)=y_1, P_3'(x_0)=y_0'$, $P_3'(x_1)=y_1'$, может быть представлен в следующем виде:

$$P_3(x) = y_0 \frac{(x_1 - x)^2 (2(x - x_0) + h)}{h^3} + y_0' \frac{(x_1 - x)^2 (x - x_0)}{h^2} + y_1 \frac{(x - x_0)^2 (2(x_1 - x) + h)}{h^3} + y_1' \frac{(x - x_0)^2 (x - x_1)}{h^2}, \quad \text{где } h = x_1 - x_0. \quad (6.30)$$

Многочлен (6.30) принято называть *кубическим интерполяционным многочленом Эрмита*.

2). Пусть в точке x_0 заданы значения y_0, y_0', \dots, y_0^n . Тогда многочлен $P_n(x)$, удовлетворяющий условиям

$$P_n(x_0) = y_0, P_n'(x_0) = y_0', \dots, P_n^{(n)}(x_0) = y_0^{(n)},$$

представляется в виде:

$$P_n(x) = \sum_{k=0}^n y_0^{(k)} \frac{(x - x_0)^k}{k!}.$$
 (6.31)

Как нетрудно видеть, многочлен $P_n(x)$ представляет собой отрезок ряда Тейлора. Таким образом, формула Тейлора дает решение задачи интерполяции с одним узлом кратности (n+1). Заметим, что в действительности с ее помощью осуществляется экстраполяция.

2. Погрешность интерполяции с кратными узлами.

Для формулы Тейлора ($m=0,\ k_0=n+1$) теорема 6.4 дает известную формулу остаточного члена в форме Лагранжа. Для кубического многочлена Эрмита ($m=0,\ k_0=2,\ k_1=2$) неравенство (6.29) приводит к следующей оценке погрешности:

$$\max_{[x_0, x_1]} |f(x) - P_3(x)| \le \frac{M_4}{384} h^4. \tag{6.32}$$

Здесь учтено то, что максимум функции $\omega_4(x) = (x - x_0)^2 (x - x_1)^2$ на отрезке $[x_0, x_1]$ достигается в точке $x = (x_0 + x_1) / 2$ и равен $h^4/16$.

§ 6.6. Минимизация оценки погрешности интерполяции. Многочлены Чебышева.

1.Постановка задачи минимизации оценки погрешности. Предположим, что значение заданной на отрезке [a,b] функции f можно вычислить в произвольной точке x. Однако по некоторым причинам (например, вычисление значений f(x) – трудоемкая операция) целесообразнее заменить прямое вычисление функции f вычислением значений ее интерполяционного многочлена P_n . Для такой замены необходимо один раз получить таблицу значений функции f в выбранных на отрезке [a,b] точках x_i , $i=0,1,\ldots$, n. При этом естественно стремиться к такому выбору узлов интерполяции, который позволит сделать минимальной величину $\Delta(P_n) = \max_{[a,b]} |f(x) - P_n(x)|$ — погрешность интерполяции на отрезке [a,b].

Пусть о функции f известно лишь то, что она непрерывно дифференцируема n+1 раз на отрезке [a,b]. Тогда неравенство (6.28) дает верхнюю границу погрешности интерполяции:

$$\bar{\Delta}(P_n) = \frac{M_{n+1}}{(n+1)!} \max_{[a,b]} |\omega_{n+1}(x)|. \tag{6.33}$$

Поставим теперь задачу определить набор узлов x_0 , x_1 , ..., x_n , при котором величина $\bar{\Delta}(P_n)$ минимальна. Для решения этой задачи нам потребуются некоторые сведения о многочленах Чебышева.

2. Многочлены Чебышева. Введенные П.Л.Чебышевым многочлены $T_n(x)$ широко используются в вычислительной математике. При n=0 и n=1 они определяются явными формулами

$$T_0(x) = 1, \quad T_1(x) = x,$$
 (6.34)

а при $n \ge 2$ рекуррентной формулой

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x). (6.35)$$

Запишем явные формулы для многочленов Чебышева $T_n(x)$

для n = 2, 3, 4, 5:

$$T_2(x) = 2xT_1(x) - T_0(x) = 2x^2 - 1,$$

$$T_3(x) = 2xT_2(x) - T_1(x) = 4x^3 - 3x,$$

$$T_4(x) = 2xT_3(x) - T_2(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 2xT_4(x) - T_3(x) = 16x^5 - 20x^3 + 5x.$$

Аналогично можно записать явные формулы и при $n \ge 6$.

Приведем некоторые свойства многочленов Чебышева.

- 1). При четном п многочлен $T_n(x)$ содержит только четные степени x и является четной функцией, а при нечетном п многочлен $T_n(x)$ содержит только нечетные степени x и является нечетной функцией.
- 2). При $n \geq 1$ старший коэффициент многочлена $T_n(x)$ равен 2^{n-1} , т.е. $T_n(x) = 2^{n-1}x^n + \dots$

Справедливость свойств 1) и 2) следует непосредственно из определения (6.34), (6.35).

3). Для $x \in [-1, 1]$ справедлива формула

$$T_n(x) = \cos(n \cdot \arccos x). \tag{6.36}$$

При n=0 и n=1 формула (6.36) верна, так как $\cos{(0 \cdot \arccos{x})} = I$, $\cos{(1 \cdot \arccos{x})} = x$. Для того, чтобы доказать справедливость формулы для всех $n \ge 0$, достаточно показать, что функции $C_n(x) = \cos{(n \cdot \arccos{x})}$ удовлетворяют такому же, как и многочлены Чебышева, рекуррентному соотношению

$$C_n(x) = 2xC_{n-1}(x) - C_{n-2}(x). (6.37)$$

Соотношение (6.37) получится, если в легко проверяемом тригонометрическом тождестве

$$\cos \left[(m+1)\varphi \right] + \cos \left[(m-1)\varphi \right] = 2\cos \varphi \cos m\varphi$$

положить m = n - 1 и $\varphi = \arccos x$.

4). При $n \ge 1$ многочлен $T_n(x)$ имеет ровно n действительных корней, расположенных на отрезке [-1, 1] и вычисляемых по формуле

$$x_k = \cos\frac{(2k+1)\pi}{2n}, \quad k = 0, 1, \dots, n-1.$$
 (6.38)

5). При $n \ge 0$ справедливо равенство $\max_{[-1,1]} |T_n(x)| = 1$. Если $n \ge 1$, то этот максимум достигается ровно в n+1 точках, которые находятся по формуле

$$x_m = \cos\frac{\pi m}{n}, \quad m = 0, 1, \dots, n.$$
 (6.39)

При этом $T_n(x_m) = (-1)^m$, т.е. максимумы и минимумы многочлена Чебышева чередуются.

Доказательство свойств 4) и 5) основано на применении формулы (6.36). Например, в силу этой формулы корни многочлена $T_n(x)$, расположенные на отрезке [-1, 1], совпадают с корнями уравнения $\cos(n \cdot \arccos x) = 0$. Эквивалентное преобразование этого уравнения дает $n \cdot \arccos x = \pi/2 + \pi k$, $k = 0, \pm 1, \pm 2, \ldots$ Так как $0 \le \arccos x \le \pi$, то заключаем, что имеется ровно n корней x_k , отвечающих значениям $k = 0, 1, 2, \ldots, n-1$ и удовлетворяющих равенствам $\arccos x_k = \frac{(2k+1)\pi}{2n}$, эквивалентным формуле (6.38).

Назовем величину $\max_{[-1,1]} |P_n(x)|$ уклонением многочлена $P_n(x)$ от нуля. Эта величина характеризует максимальное отклонение (уклонение) графика многочлена P_n от графика функции y=0 на отрезке [-1,1]. Можно доказать следующее утверждение.

6). Среди всех многочленов фиксированной степени n со старшим коэффициентом a_n , равным l, наименьшее уклонение от нуля (равное 2^{1-n}) имеет многочлен $\overline{T_n}(x) = 2^{1-n} T_n(x)$.

Благодаря этому свойству, имеющему особую ценность для приложений, многочлены Чебышева иногда называют наименее уклоняющимися от нуля. Свойство 6) можно сформулировать так: для любого многочлена вида $P_n(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$, отличного от $\overline{T_n}(x)$, справедливо неравенство

$$2^{1-n} = \max_{[-1,1]} |\overline{T_n}(x)| < \max_{[-1,1]} |P_n(x)|.$$

3 а м е ч а н и е. Из свойства 6) следует, что среди всех многочленов $P_n(x)$ фиксированной степени $n \ge l$ со старшим коэффициентом $a_n \ne 0$ наименьшее уклонение от нуля (равное $|a_n| \ 2^{1-n}$) имеет многочлен $a_n \ \overline{T_n}(x)$.

3. Решение задачи минимизации оценки погрешности. Найдем сначала решение задачи в предположении, что отрезок интерполяции [a, b] совпадает с отрезком [-1, 1]. В этом случае величина (6.33) будет минимальной при таком выборе узлов x_0 , x_1 , ..., x_n , при котором минимальна величина $\max_{[-1,1]} |\omega_{n+1}(x)|$, т.е. минимально уклонение многочлена $\omega_{n+1}(x) = (x-x_0) (x-x_1) \dots (x-x_n)$ от нуля. В силу свойств 4) и 6) многочленов Чебышева решение задачи дает набор узлов

$$x_k = \cos\left(\frac{2k+1}{2n+2}\pi\right), \quad k = 0, 1, \dots, n,$$

являющихся нулями многочлена T_{n+1} , так как в этом случае $\omega_{n+1} = \overline{T_{n+1}}$.

Заметим, что при таком выборе

$$\bar{\Delta}(P_n) = \frac{M_{n+1}}{(n+1)!2^n},\tag{6.40}$$

Причем в силу свойства 6) любой другой выбор узлов дает большее значение верхней границы погрешности. Для сравнения укажем, что при использовании для приближения функции f отрезка ряда Тейлора $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} \ x^k$ верхняя граница оценки погрешности такова:

$$\bar{\Delta}(P_n) = \frac{M_{n+1}}{(n+1)!}.$$

Следовательно, она в 2^n раз хуже, чем при интерполяции с оптимальным выбором узлов.

Пусть теперь отрезок интерполяции [a, b] произволен. Приведем его к стандартному отрезку [-1, 1] заменой

$$x = \frac{a+b}{2} + \frac{b-a}{2}t$$
, где $t \in [-1, 1]$. (6.41)

Как нетрудно видеть, в этом случае

$$\omega_{n+1}(x) = \left(\frac{b-a}{2}\right)^{n+1}\widetilde{\omega}_{n+1}(t)$$
, где $\widetilde{\omega}_{n+1}(t) =$
$$(t-t_0)(t-t_1) \dots (t-t_n), \ \text{и} \ x_k = \frac{\mathsf{a}+\mathsf{b}}{2} + \frac{\mathsf{b}-\mathsf{a}}{2}t_k \ , \ k=0,\ 1,\ \dots \ , n.$$

Следовательно,

$$\bar{\Delta}(P_n) = \frac{M_{n+1}}{(n+1)!} \left(\frac{b-a}{2}\right)^{n+1} \max_{[-1,1]} \widetilde{\omega}_{n+1}(t)$$

и минимум этой величины достигается при значениях t_0, t_1, \dots, t_n , совпадающих с нулями многочлена T_{n+1} . Значит, решение поставленной задачи дает выбор узлов

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos\left(\frac{2k+1}{2n+2}\pi\right), \quad k = 0, 1, \dots, n,$$
 (6.42)

которому отвечает минимальное значение верхней границы погрешности интерполяции, равное

$$\bar{\Delta}(P_n) = \frac{M_{n+1}}{(n+1)!2^n} \left(\frac{b-a}{2}\right)^{n+1}$$
.