

TensorFlow (1)

고려대학교 INI Lab

Contents

- 01 Deep Learning
- **02** Deep Learning Framework
- **03** TensorFlow Introduction

Deep Learning

Deep Learning?

Deep Learning?

Neural Network

신경 세포와 뇌가 지식을 추론하고 학습하는 구조를 추상화한 모델

Neural Network

신경 세포와 뇌가 지식을 추론하고 학습하는 구조를 추상화한 모델

Neural Network ≠ Brain

Perceptron

Perceptron

Linear Classification

Why Deep?

단일 Linear Classification으로는 해결할 수 없는 문제가 존재

▶ 여러 개의 Linear Classification을 적용 해서 문제를 해결

Why Deep?

Low Level

High Level

Why Deep Learning Again?

본래 SVM 등의 다른 기계학습 기법에 밀려 사용되지 않았으나, 최근 들어 다시 각광받고 있음

하드웨어의 발전

다른 기계 학습에 비해 느린 학습 속도

- ▶ 발전된 하드웨어 성능
- ▶ GPU를 이용한 학습

빅 데이터

데이터의 개수가 적을 경우 일반화를 잘 하지 못함 ▶ Web2.0으로 등장한 빅

▶ Web2.0으로 등장한 빅 데이터로 해결

기존 문제 해결

Gradient Vanishment 과적합(Overfitting) 등

▶ 새로운 기법 개발

Deep Learning Framework

Deep Learning Framework

History of Deep Learning Framework

출처: https://www.popit.kr/딥러닝-프레임워크-조사와-몇가지-홍보

Deep Learning Framework Comparison

F/W	주체	플랫폼	모바일	언어	인터페이스	OpenMP	CUDA	OpenCL	멀티GPU	분산
Caffe	BAIR	Linux, Mac	-	C++	Python, MATAB	Υ	Υ	-	Υ	
Chainer	Preferred Networks	Linux	-	Python	Python	-	Υ	-	Υ	Υ
		Linux, Windows	-	C++	Python, C++	Υ	Υ	-	Υ	Υ
DL4J	SkyMind	Cross- platform (JVM)	Android	Java	Java, Scala, Python	Υ	Υ	-	Υ	Y (Spark)
Keras	François Chollet	Linux, Mac, Windows	-	Python	Python	Y(Theano) N(TF)	Υ	-	Υ	
MXNet	DMLC Linux, Mac, Windows, Javascript Android, iOS C++ C++ C++ JavaScript, Go, R, Scala, Perl		Υ	Υ	·	Υ	Υ			
TensorFlow	Google	Linux, Mac, Windows	Android, iOS	C++, Python	Python, C/C++, Java, Go	N	Υ	-	Υ	Υ
Theano	Université de Montréal	Linux, Mac, Windows	-	Python	Python	Y	Υ	-	Υ	
Torch	Ronan, Clément, Koray, Soumith Linux, Mac, Windows Android, iOS C, Lua Lua		Lua	Υ	Υ	Y	Y	Not officiall y		

출처: https://www.popit.kr/딥러닝-프레임워크-조사와-몇가지-홍보

Deep Learning Framework Comparison

Design Choice	Torch.nn	Theano	Caffe	Chainer	MXNet	Tensor- Flow	PyTorch
NN definition	Script (Lua)	Script* (Python)	Data (protobuf)	Script (Python)	Script (many)	Script (Python)	Script (Python)
Backprop	Through graph	Extended graph	Through graph	Through graph	Extended graph	Extended graph	Through graph
Parameters	Hidden in operators	Separate nodes	Hidden in operators	Separate nodes	Separate nodes	Separate nodes	Separate nodes
Update formula	Outside of graphs	Part of graphs	Outside of graphs	Outside of graphs	Outside of graphs	Part of graphs	Outside of graphs
Graph construction	Static	Static	Static	Dynamic	Static	Static	Dynamic
Graph Optimization	5	Supported	(3)	ē	٠	Supported	121
Parallel computation	Multi GPU*	Multi GPU	Multi GPU*	Multi GPU**	Multi node Multi GPU	Multi node Multi GPU	Multi GPU**

출처: DLIF: Differences of deep learning frameworks

Deep Learning Framework Comparison

출처: Benchmarking State-of-the-Art Deep Learning Software Tools

Which Framework to Choose?

- 1. You are a PhD student on DL itself: TensorFlow, Theano, Torch
- 2. You want to use DL only to get features: Keras, Caffe
- 3. You work in industry: TensorFlow, Caffe
- 4. You started your 2 month internship: Keras, Caffe
- 5. You want to give practice works to your students: Keras, Caffe
- 6. You are curious about deep learning: Caffe
- 7. You don't even know python: Keras, Torch

Library	Rank	Overall	Github	Stack Overflow	Google Results
tensorflow	1	10.87	4.25	4.37	2.24
keras	2	1.93	0.61	0.83	0.48
caffe	3	1.86	1.00	0.30	0.55
theano	4	0.76	-0.16	0.36	0.55
pytorch	5	0.48	-0.20	-0.30	0.98
sonnet	6	0.43	-0.33	-0.36	1.12
mxnet	7	0.10	0.12	-0.31	0.28
torch	8	0.01	-0.15	-0.01	0.17
cntk	9	-0.02	0.10	-0.28	0.17
dlib	10	-0.60	-0.40	-0.22	0.02
caffe2	11	-0.67	-0.27	-0.36	-0.04
chainer	12	-0.70	-0.40	-0.23	-0.07
paddlepaddle	13	-0.83	-0.27	-0.37	-0.20
deeplearning4j	14	-0.89	-0.06	-0.32	-0.51
lasagne	15	-1.11	-0.38	-0.29	-0.44
bigdl	16	-1.13	-0.46	-0.37	-0.30
dynet	17	-1.25	-0.47	-0.37	-0.42
apache singa	18	-1.34	-0.50	-0.37	-0.47
nvidia digits	19	-1.39	-0.41	-0.35	-0.64
matconvnet	20	-1.41	-0.49	-0.35	-0.58
tflearn	21	-1.45	-0.23	-0.28	-0.94
nervana neon	22	-1.65	-0.39	-0.37	-0.89
opennn	23	-1.97	-0.53	-0.37	-1.07

많은 사람들이 쓴다!

- ▶ 새로운 기능이 빠르게 추가
- ▶ 이미 만들어놓은 모델이 많음
- ▶ 문제가 생길 경우 해법을 찾기 쉬움

TensorFlow Introduction

TensorFlow?

TensorFlow?

Tensor + Flow

Tensor

TensorFlow 등의 Deep Learning Framework에서 사용하는 데이터의 기본 단위

Matrix / 2-D Array

Tensor

TensorFlow 등의 Deep Learning Framework에서 사용하는 데이터의 기본 단위

Array ()

Tensor()

Array (O)

Tensor (O)

Array()

Tensor ()

dil	#	T	A name	T	A Gender	T	A Eye color	T	A Race	T	A Hair color	T
	Row Identification		The name or aka hero	of super	Gender of the S	Super Hero	Color of the eye.					
			Goliath	0%	Male	69%	blue	31%	-	41%	-	23%
			Spider-Man	0%	Female	27%	-	23%	Human	28%	Black	22%
	0.00	733	Other (713)	99%	Other (1)	4%	Other (21)	46%	Other (60)	30%	Other (28)	55%
1		0	A-Bomb		Male		yellow		Human		No Hair	
2		1	Abe Sapien		Male		blue		Icthyo Sapien		No Hair	
3		2	Abin Sur		Male		blue		Ungaran		No Hair	
4		3	Abomination		Male		green		Human / Radiatio	on	No Hair	
5		4	Abraxas		Male		blue		Cosmic Entity		Black	
6		5	Absorbing Man		Male		blue		Human		No Hair	
7		6	Adam Monroe		Male		blue		-		Blond	
8		7	Adam Strange		Male		blue		Human		Blond	
9		8	Agent 13		Female		blue		-		Blond	
10		9	Agent Bob		Male		brown		Human		Brown	

Array (O)

Tensor (X)

Data Must be Represented in Vector Space

One-hot Encoding

Religion	Catholic	Protestant	Jewish	Muslim
Catholic	1	0	0	0
Muslim	0	0	0	1
Jewish	0	0	1	0
Protestant	0	1	0	0
Catholic	1	0	0	0
Catholic	1	0	0	0
Jewish	0	0	1	0
Protestant	0	1	0	0
Muslim	0	0	0	1
Protestant	0	1	0	0

Data Must be Represented in Vector Space

Data Embedding

Flow

Tensor의 계산은 graph의 flow 형태로 표현

Main Graph

Symbol-to-Symbol Approach

모델 그래프를 먼저 구성한 후, 데이터를 넣어서 모델 학습

출처 : DLIF: Differences of deep learning frameworks, Complex neural networks made easy by Chainer

Symbol-to-Value Approach

데이터를 이용하여 모델을 학습하는 과정에서, 동시에 모델 그래프를 생성

출처 : DLIF: Differences of deep learning frameworks, Complex neural networks made easy by Chainer