A Brief Overview of Diversity-Preservation Methodologies in Evolutionary Optimization

Giovanni Squillero giovanni squillero@polito.it Alberto Tonda alberto.tonda@grignon.inra.fr

Why yet another taxonomy?

- Offer a unifying view to the many research lines
- Re-orders and re-interprets the different approaches into a single framework
- Unlink the techniques from the paradigm they were developed in (as far as possible)
- Allow comparisons

WCCI 2014

Outline

- Instructions and warnings
- Divergence of character in natural and artificial evolution
- Background (diversity and similarity, ...)
- Mechanisms for promoting diversity
 - Proposed taxonomy
 - Well-known techniques
- Conclusion

WCCI 2014

7

Instructions and warnings

A rough idea about "what" an evolutionary algorithm is

Optimization, not artificial life!

WCCI 2014

Divergence of character

- "Great diversity of forms in nature"
- "The principle, which I have designated by this term, is of high importance, and explains, as I believe, several important facts"

"The varying descendants of each species try to occupy as many and as different places as possible in the economy of nature"

WCCI 2014

Premature convergence

- I.e., the tendency of an algorithm to converge towards a point where it was not supposed to converge to in the first place
- Probably an oxymoron
- Holland's "Lack of speciation"
- EAs general inability to exploit environmental niches

WCCI 2014

Niches

- Niches favor the divergence of character
- Niches and speciation
- How to create "niches" in EAs since the environment is missing?

WCCI 2014

13

Exploration vs. Exploitation

- Recombination
 - mixes together two or more solutions to create the offspring
 - associated with the idea of exploration
- Mutation
 - performs a (usually small) change in an individual
 - associated with the idea of exploitation

WCCI 2014

15

Exploration vs. Exploitation

- When all parents are very similar, the effectiveness of recombination is limited
- The ability to explore remote parts of the search space is impaired
- "Conventional wisdom suggests that increasing diversity should be generally beneficial"

WCCI 2014

16

- Genotype: the genetic constitution of an organism
- Phenotype: the composite of the organism's observable characteristics or traits
- Fitness: individual's ability to propagate its genes (almost)

Richard Dawkins

The Extended Phenotype: The Long Reach of the Gene

Oxford University Press, 1982 (revised ed. 1999)

Levels in EC (proposal)

- Fitness: how well the candidate solution is able to solve the target problem
- Genotype: the internal representation of the individual, i.e., what is directly manipulated by genetic operators
- Phenotype: the candidate solution that is encoded in the genotype
 - the intermediate form in which the genotype needs to be transformed into for evaluating fitness
 - if genotype can be directly evaluated: genotype and phenotype coincide

WCCI 2014

Niches in EA

- Niching: grouping similar individual
 - similar spatial positions (i.e., islands)
 - similar genotypes (i.e., niching)
 - similar phenotypes
- Several approaches are based on niching

WCCI 2014

Measuring diversity

 Different fitness values imply different phenotypes, different phenotypes imply different genotypes

$$F_x \neq F_y \Rightarrow P_x \neq P_y \Rightarrow G_x \neq G_y$$

WCCI 2014

25

Measuring diversity

- What about "diversity"?
- Locality principle
- Rechenberg's strong causality

Measuring diversity

- Phenotype
 - Usually ad-hoc
- Genotype
 - Different genotypes in the population
 - GP subtree frequency
 - Edit distance (a.k.a., Levenshtein distance)
 - Entropy and free energy
- Fitness
 - Usually trivial

WCCI 2014

27

Outline

- Instructions and warr
- Divergence of charact evolution

What has been proposed to alleviate it?

- Background (diversity and similarity, ...
- Mechanisms for promoting diversity
 - Proposed taxonomy
 - Well-known techniques
- Conclusion?

WCCI 2014

28

End goal vs. Means goal

- The end goal in optimization is reaching better solutions in less time
- Promoting diversity has often been seen as the key factor to improve performances
- Promoting diversity is a mere means goal (yet a quite important one)
- No distinction is made here whether the means goal is
 - preserve existing diversity
 - increase diversity

WCCI 2014

29

How diversity is promoted (theory)

A methodology for promoting diversity alters the selection probability of individuals

$$\bar{p}_{x|\Psi} = p_{x|\Psi} \cdot \xi(x, \Psi)$$

- Mere definition: we do not imply that a mechanism operates explicitly on the selection operators
- But the effects on selection probabilities are assessed to classify it

WCCI 2014

Relevant characteristic

- Lineage (LIN)
- Phenotype (PHE)
- Genotype (GEN)
- Fitness (used as a proxy for either phenotype or genotype)

WCCI 2014

Lineage-based methodologies

- The value of ξ does not depend on individual structure nor behavior, but it can be determined considering circumstances of its birth (e.g., time, position)
- LBMs can be applied to any kind of problem, even in addition to other diversity preservation methods

WCCI 2014

35

Genotype-based methodologies

- Particularly effective when it is possible to define a sensible distance between genotypes
- Often used to
 - avoid overexploitation of peaks in the fitness landscape
 - promote the generation of new solutions very far from the most successful ones
 - preserve variability in the gene pool

WCCI 2014

Phenotype-based methodologies

- Usually impractical
- Sometimes fitness distance can be used as a proxy for phenotype distance (multi objective EAs, or many objective EAs)
- Spam: tutorial authors are actively studying genotypic distances that can be used to predict phenotypic distances

WCCI 2014

37

Type of selection

- Parent selection (a or a)
 - Usually non-determinstic
- Survival selection (w or ₩)
 - Usually deterministic

WCCI 2014

Context dependency

Context independent (CI)

$$\forall x, \Psi : \xi(x, \Psi) = \xi(x, \emptyset) = \xi(x)$$

Context dependent (CD)

$$\exists x, \Psi_1, \Psi_2 \colon \xi(x, \Psi_1) \neq \xi(x, \Psi_2)$$

WCCI 2014

39

Proposed taxonomy

Methodology	Element	Select Parent	Survival	Context dep.	
Allopatric Selection [TLS12]	Lineage	no	yes	n.a.	
Cellular EAs [Rob87]	Lineage	yes	yes	yes	
Deterministic Crowding [Mah95]	Lineage	no	yes	n.a.	
Gender [All92] Island Models [WRH99]	Lineage Lineage	yes	no	yes	
Segregation [Aff01]	Lineage	yes	yes	yes	
Clearing [Pét96]	Genotype	yes	yes	no	
Delta (pseudo) entropy [ST08, SSS11]	Genotype	ves	no	no	
Diversifiers [KB95]	Genotype	yes	ves	no	
Fitness Sharing [DG89]	Genotype	yes	yes	no	
FOCUS [DJWP01]	Genotype	no	yes	no	
Gender ¹ [All92]	Genotype	yes	no	yes	
GDEM [TB03]	Genotype	no	yes	1	no
Reference points partitioning [DJeda, DJedb]	Genotype	no	yes	no	
Restricted Tournament Selection [Har95]	Genotype	no	yes	no	
Sequential Niching [BBM93]	Genotype	no	yes		no
Standard Crowding [DJ75]	Genotype	no	ves	, \	no
Tarpeian Method [Pol03]	Genotype	yes	yes	s \	no
Two-level Diversity Selection [BB02]	Genotype	yes	no	· \	yes
Crowded-Comparison Operator [DPAM02]	Phenotype	yes	ne	o	no
Extinction [GFC99]	Phenotype	no	ye	es \	nc
Hierarchical Fair Competition [HGS ⁺ 05]	Phenotype	yes	y y	es \	ye
Random Immigrants [Gre92]	Phenotype	e yes	s y	es	n
Strength Pareto [ZT99]	Phenotype	yes	s 1	on	\ r
VEGA [Sch85] [HL92]	Phenotype	e ve	s	no	/ 3

Island model

- Recipe [LIN αω CD]
 - The population is partitioned into sub-populations
 - Only local interactions are allowed
 - Periodically, individuals are moved between subpopulations (migrations)
- Rationale
 - Since EAs are stochastic in nature, different populations will tend to explore different parts of the search space
 - ... but global interactions can be useful

WCCI 2014 4

Segregation

- Recipe [LIN αω CD]
 - The population is partitioned into N subpopulations
 - Only local interactions are allowed
 - Upon stagnation, the N sub-populations are merged into N-1 sub-populations
- Rationale
 - same as island models
 - the selective pressure decreases during evolution

WCCI 2014

43

Hierarchical fair competition

- Recipe [PHE αω CD]
 - The population is partitioned into sub-populations with similar fitness
 - Only local interactions are allowed
 - The offspring is promoted or demoted according to fitness
 - New random individuals are constantly generated
- Rationale
 - Hard niching with implicit neighborhood
 - Reduce competition between newborns and already optimized individuals (ladder)

WCCI 2014 4

Deterministic crowding

- Recipe [LIN αω --]
 - Offspring compete against parents for survival
- Rationale
 - Flexible niching with implicit neighborhood
 - Parents and offspring occupy the same niche
 - No need for evaluating the similarity

WCCI 2014

Allopatric selection

- Recipe [LIN αω --]
 - The whole offspring compete for survival
- Rationale
 - Flexible niching with implicit neighborhood
 - No need for evaluating the similarity
 - Genetic operators that create large offspring can be exploited without the risk for the offspring to invade the population

WCCI 2014

49

Fitness Sharing

- Recipe [GEN αω CI]
 - Scale down individual fitness

$$\bar{f}(I_k) = \frac{f(I_k)}{\sum_i sh(I_k, I_i)}$$

- with sh(x, y) depending on the distance between the individuals, and is 0 beyond a fixed radius
- Rationale
 - Flexible niching with explicit neighborhood
 - Reduce attractiveness of densely populated area

WCCI 2014

Clearing

- Recipe [GEN αω CI]
 - Inside niches of a certain radius, the best k individuals retain their fitness while the rest are zeroed
- Rationale
 - Flexible niching with explicit neighborhood
 - Set a hard limit to population density

WCCI 2014

51

Standard crowding

- Recipe [GEN αω CI]
 - New individuals replace the most similar individual in a random niche of size CF
- Rationale
 - Flexible niching with implicit neighborhood
 - Favor novelty (generational approach)

WCCI 2014

52

Crowded-comparison operator Recipe [PHE a CI] Estimate the free territory around solutions and favor solutions less crowded regions Rationale Smart implementation of artificial niches Requires a strong correlation between phenotype and fitness NSGA-III introduces e-domination (adaptive disgretization)

Reference points partitioning

- Recipe [GEN αω CI]
 - Population is partitioned using in clusters centered around a set of reference points
 - Reference points are initially chosen by the user, then can be dynamically updated
 - New individuals compete for survival inside their own niche
- Rationale

WCCI 2014

Flexible niching with implicit neighborhood

WCCI 2014

Restricted tournament selection

- Recipe [GEN αω CI]
 - New individuals compete with the most similar individual in a random niche of size CF
- Rationale
 - Flexible niching with implicit neighborhood

WCCI 2014

55

Sequential niching

- Recipe [GEN αω CI]
 - The most promising points in the search space after each run are altered so to become less interesting in further executions
- Rationale
 - Avoid over exploitation

WCCI 2014

56

Vector evaluated genetic algorithm

- Recipe [PHE α⇔ CD]
 - Divide the mating pool in N parts, each one filled with individual selected on their i-th component of the fitness
 - Alternative: select on a weighted sum, but use different weight sets for the different parts
- Rationale
 - Increase the push towards specialization
- Caveats
 - Only applicable to MOEAs

WCCI 2014

57

Gender

- Recipe [LIN/GEN α⇔ CD]
 - Add gender to individual and enforce sexual reproduction
 - More than two sexes are possible, with different mutation probabilities
 - Gender might be part of the genome or not
- Rationale
 - Prevent crossover between clones
 - Limit interactions between related individuals

WCCI 2014

58

29

Tarpeian method

- Recipe [PHE αω CI]
 - Randomly kill individual who don't adhere to given standards
- Rationale
 - Note: originally used to prevent bloat
 - Creating dynamic and non-deterministic fitness holes may have several beneficial effects, including to promote diversity

WCCI 2014

59

Diversifiers

- Recipe [GEN αω CI]
 - Detect less populated areas in the search space and try to generate random inhabitants
- Rationale
 - Increase variability in the gene pool regardless the fitness
 - Require a reliable distance metric

WCCI 2014

Random immigrants

- Recipe [PHE αω CI]
 - Periodically insert random individuals in the population
- Rationale
 - Try to introduce novelty
- Caveats
 - Newborns may need to be artificially kept alive when competing against already optimized individuals

WCCI 2014

61

Extinction

- Recipe [PHE αω CI]
 - Upon convergence (or periodically) remove a significant part of the population
 - Then fill up the population with the offspring of the survivors and/or random individuals
- Rationale
 - A gust of fresh air: already optimized individuals are not enough to occupy the whole population and newborns may start exploring new regions
- Caveat
 - Fitness variability used as phenotype variability

WCCI 2014

62

Two-level diversity selection Recipe [GEN α⇔ CI] Select three individuals using fitness, then pick the two with maximum distance for reproduction Rationale Exploit a reliable distance metric to increase the efficacy of crossover Not so far from reality (?)

GDEM — Genetic Diversity Evaluation Method

- Recipe [GEN αω CI]
 - Add diversity as an explicit goal and go MO
- Rationale

WCCI 2014

- Modify the domination criteria
- Need a reliable diversity metric
- Historical note
 - See: Find Only and Complete Undominated Sets (FOCUS)

WCCI 2014

Delta entropy and pseudo entropy

- Recipe [GEN α CI]
 - With a certain probability select individuals on their ability to increase the global entropy of the population instead of fitness
- Rationale
 - Not-so-fit individual with peculiar traits should be preserved
 - Measuring the entropy of the population is easier than defining a distance function

WCCI 2014

65

Outline

- Instructions and warnings
- Divergence of character in natural and artificial evolution
- Background (diversity and similarity, ...)
- Mechanisms for promoting diversity
 - Proposed taxonomy
 - Well-known techniques
- **●** Conclusion

WCCI 2014

66