Семинар 25

Задачи:

1. Опишите инвариантные подпространства следующих операторов:

(a)
$$\phi \colon \mathbb{R}^4 \to \mathbb{R}^4$$
, где $\phi(x) = Ax$ и $A = \begin{pmatrix} 1 & & \\ & 1 & & \\ & & & 4 \end{pmatrix}$.

(b)
$$\phi \colon \mathbb{R}^4 \to \mathbb{R}^4$$
, где $\phi(x) = Ax$ и $A = \begin{pmatrix} \lambda & 1 & 1 & 1 \\ & \lambda & 1 & 1 \\ & & \lambda & 1 \end{pmatrix}$.

- (c) $d/dx : \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 3}$.
- (d) $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$, где $\phi(x) = Ax$ и $A = \begin{pmatrix} \cos \alpha \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.
- (e) $\phi \colon \mathbb{C}^2 \to \mathbb{C}^2$, где $\phi(x) = Ax$ и $A = \begin{pmatrix} \cos \alpha \sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$.
- 2. Пусть линейный оператор $\phi\colon V\to V$ обратим. Показать, что у ϕ и ϕ^{-1} одни и те же инвариантные подпространства.
- 3. Пусть $\beta \colon V \times V^* \to \mathbb{R}$ билинейная форма вычисления на векторе, т.е. $(v,\xi) \mapsto \xi(v)$. Пусть $\phi \colon V \to V$ линейный оператор, $\phi^* \colon V^* \to V^*$ двойственный оператор, т.е. $\phi^*(\xi) = \xi \circ \phi$. Докажите, что если $U \subseteq V$ инвариантное подпространство для ϕ , то $U^{\perp} \subseteq V^*$ является инвариантным для ϕ^* .
- 4. Описать операторы, для которых все подпространства являются инвариантными.
- 5. Задачник. §40, задача 40.12.
- 6. Задачник. §40, задача 40.11.
- 7. Задачник. §40, задача 40.32 (a).