Radicali

Radice n-esima

•
$$b^n = a \Rightarrow b = \sqrt[n]{a}$$

Radice con n pari:

- Esiste se e solo se $a \ge 0$ (in R)
- $\sqrt[n]{a} = b \Longrightarrow b \ge 0$ per convenzione

Radice con n dispari:

• Esiste $\forall a$

Proprietà:

- $\sqrt[n]{a^k} = (\sqrt[n]{a})^k$ ammenochè a < 0, n pari, k pari.
- $(\sqrt[n]{a})^n = a$, se esiste $\sqrt[n]{a}$
- $\sqrt[n]{a^k} = \sqrt[n\cdot p]{a^{k \cdot p}}$, purché se $a \le 0$, allora $a^{k \cdot p} \le 0$
- $n \text{ pari} \Rightarrow \sqrt[n]{a^n} = |a|$; $n \text{ dispari} \Rightarrow \sqrt[n]{a^n} = a$

Operazioni:

$$\bullet \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

•
$$c\sqrt[n]{a} + b\sqrt[n]{a} = (c + b)\sqrt[n]{a}$$

Radicali come potenze:

•
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 e $a^{\frac{n}{m}} = \sqrt[m]{a^n}$