SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Damir Bakić

Zagreb, 2019.

Ovaj diplomski rad obranjen je dana	pred ispitnim povjerenstvom
u sastavu:	
1.	, predsjednik
2.	, član
3.	 , član
Povjerenstvo je rad ocijenilo ocjenom	<u> </u>
	Potpisi članova povjerenstva:
	1.
	2.
	3.

Sadržaj

Sa	adržaj	iv
U	vod	1
1	Rjetka rješenja 1.1 Naslov sekcije u sadržaju	3
Bi	ibliografija	7

Uvod

...

Poglavlje 1

Rjetka rješenja

1.1 Sparsity and compressibilty

Naslov podsekcije

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1,2,...,N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \setminus S$.

Definicija 1.1.1. *Nosač vektora* $x \in \mathbb{C}^{\mathbb{N}}$ *je skup indeksa njegovih ne-nul elemenata, tj.*

$$supp(x):=\{j\in [N]: x_j\neq 0\}$$

Za vektor $x \in \mathbb{C}^{\mathbb{N}}$ kažemo da je s-rjedak ako vrijedi $||x||_0 := card(supp(x)) \le s$.

Teorem 1.1.2. *Iskaz teorema u kojem se javljaju skupovi* \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} i \mathbb{C} .

Slutnja 1.1.3. *Iskaz slutnje u kojoj se javljaju funkcije* tg, th *i* sh.

Korolar 1.1.4. *Iskaz posljedice u kojoj se javljaju skupovi* Ker *T i* Im *T*..

Dokaz. Dokaz posljedice se nalazi u [1]. Pogledajte i [3], [4] te [2].

jsfdsqF SG SFG FSG DF GS FG SFG SFG SG SDFG SF GS DG SD S SD DFGSDFG SDGSDF **SDGSDGF**

SDGFSFDG

SDGSDG sdfsfg f fdh fgj gh jgjk jkj k yk k klk l fs fd gsdfg dfh dfghj fj ghjk gjk jlk sdf $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ $x_1 + x_2 + x_3 + x_4 = 12$ SDGSG sdfsfg f fdh fgj gh jgjk jkj k yk k klk l fs fd gsdfg dfh dfghj fj ghjk gjk jlk sdf sfdh j fj tuk ugad h j yrtu iru i

$$z\left(1 + \sqrt{\omega_{i+1} + \zeta - \frac{x+1}{\Theta+1}y + 1}\right) = 1$$

GSDFGSDFG

$$1 + 1 = 2 \tag{1.1}$$

SDG SDFGS

SDFGSFG

SFGSFG

SDFGSFG

SDGSFG

Na stranici 4 se nalaza slika u **png** formatu.

Na slici 1.2 se nalazi 3D graf neke funkcije.

kao i jedna vrlo komplicirana formula koja slijedi iz (1.1)

$$\sum_{i=1}^{\infty} A_{x_1} \times A_{\alpha_2} \oslash \iint_{\Omega} x^2 \ddagger \limsup_{n \in \mathbb{N}} \frac{\alpha + \theta + \gamma}{n^{\omega}} \text{ je u stvari } \biguplus_{r \in \mathbb{Q}} \frac{\Xi_i \bigoplus_{\substack{j \in \mathbb{C} \\ j \ni i \mathbb{Q}}} \Upsilon^{kj} \Psi \hbar|_{\{\alpha\}}.$$

Slika 1.1: Prva slika

Slika 1.2: Druga slika

Bibliografija

- [1] I. Autor, Naslov Knjige, Samizdat, 2052.
- [2] D. E. Dutkay, D. Han, Q. Sun i E. Weber, *Hearing the Hausdorff dimension*, (2009), http://arxiv.org/abs/0910.5433.
- [3] S. Kurepa, Convex functions, Glasnik Mat.-Fiz. Astr. Ser. II 11 (1956), br. 2, 89–93.
- [4] _____, Funkcionalna analiza, Školska Knjiga, 1981.

Sažetak

Ukratko ...

Summary

In this ...

Životopis

Dana ...