THIRD SUPPLEMENTAL DECLARATION EXHIBIT B

DISCLOSURES

EXHIBIT B

DISCLOSURES APPLICATION SERIAL NO. 10/179,589

PAGE 4, LINE 1 - PAGE 5, LINE 14

Growth factors can be utilized to induce the growth of "hard tissue" or bone and "soft tissues" like ectodermal and mesodermal tissues. As used herein, the term growth factor encompasses compositions and living organisms which promote the growth of hard tissue, such as bone, or soft tissue, in the body of a patient. The compositions include organic and inorganic matter. The compositions can be genetically produced or manipulated. The living organisms can be bacteria, viruses, or any other living organism which promote tissue growth. By way of example and not limitation, growth factors can include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (acidic/basis (FGF a,b), interleukins (IL's), tumor necrosis factor (TNF), transforming growth factor (TGF-B), colony-stimulating factor (CSF), osteopontin (Eta-1 OPN), platelet-derived growth factor (PDGF), interferon (INF), bone morphogenic protein 1 (BMP-1), and insulin growth factor (IGF). Recombinant and nonrecombinant growth factors can be utilized as desired. Bacteria or viruses can, when appropriate, be utilized as growth factors. For example, there is a bacterial hydrophilic polypeptide that selfassembles into a nanometer internal diameter pore to build a selective lipid body. Various enzymes can be utilized for the synthesis of peptides which contain amino acids that control three-dimensional protein structure and growth. Growth factors can be applied in gels or other carriers which regulate the rate of release of the growth factors and help maintain the growth factors and the carrier, at a desired location in the body. Time release capsules, granules, or other carriers containing growth factor can be activated by tissue pH, by enzymes, by ultrasound, by electricity, by heat, by selected *in vivo* chemicals or by any other selected means to release the growth factor. The carrier can be resorbable or non-resorbable. Or, the growth factor itself can be activated by similar means. Either the carrier or the growth factor can mimic extracellular fluid to control cell growth, migration, and function. The growth factor can be administered orally, systemically, in a carrier, by hypodermic needle, through the respiratory tract, or by any other desired method. The growth factor an also be administered into a capsule or other manmade composition or structure placed in the body. While administration of the growth factor is presently usually localized in the patient's body, circumstances may arise where it is advantageous to distribute a growth factor throughout the patient's body in uniform or non-uniform concentrations. An advantage to growth factors is that they can often, especially when in capsule form or in some other containment system, be inserted to a desired site in the body by simply making a small incision and inserting the growth factor. The making of such small incision comprises minor surgery which an often be accomplished on an out-patient basis. The growth factors can be multifactorial and nonspecific.

PAGE 13, LINES 3-10

Multifactorial and nonspecific cells (such as stem cells and germinal cells) can provide the necessary *in vivo* and *in vitro* cascade of genetic material once an implanted master control gene's transcription has been activated. Likewise, any host cell, cloned cell, cultured cell, or cell would work. Genetic switches (such as the insect hormone ecdysone) can be used to control genes inserted into humans and animals. These gene switches can also be used in cultured cells or other cells. Gene switches govern whether a gene is on or off making possible precise time of gene activity.

PAGE 22, LINE 5 – PAGE 24, LINE 15

Genetic material comprising a portion of a gene, a gene, genes, a gene product (i.e., a composition a gene causes to be produced like, for example, an organ-producing growth factor), growth factor, or an ECM (extracellular matrix) can be used in or on the body to grow an organ to tissue. For example, the vascular epithelial growth factor gene (VEGF) or its growth factor equivalent can be inserted into the body to cause an artery to grow. When insertion of a gene, portion of a gene, gene product, growth factor, or ECM *in vivo* or *ex vivo* is referred to herein in connection with any of the implant techniques of the invention, it is understood that a cell nutrient culture(s), physiological nutrient culture(s), carrier (s), enhancer(s), promoter(s), or any other desired auxiliary component(s) can be inserted with the gene or at the same location as the gene, growth factor, ECM, etc.

An artery is an organ from the circulatory system. An artery can be grown in the heart, legs, or other areas by injecting a gene or other genetic material into muscle at a desired site. Size, vascularity, simplicity of access, ease of exploitation, and any other desired factors can be utilized in selecting a desired site. The gene is one of several known VEGF genes which cause the production of vascular endothelial growth factors. Several VEGF genes which produce vascular endothelial growth factors are believed to exist because nature intends for there to be several pathways (i.e., genes) which enable the production of necessary growth factors. The existence of several pathways is believed important because if one of the genes is damaged or inoperative, other similar genes can still orchestrate the production of necessary growth factors. VEGF genes are used by the body to promote blood vessel growth. VEGF genes are assimilated

(taken in) by muscle cells. The genes cause the muscle cells to make a VEGF protein which promotes the growth of new arteries. VEGF proteins can be made in a lab and injected into a patient intravenously, intraluminally, or intramuscularly to promote the growth of an artery. Or, the genes (or other genetic material) can be applied with an angioplasty balloon, with the assistance of a vector, or by any other method.

It is not always desirable to grow a completely new organ. Sometimes growing a portion of an organ is desirable. For example, in some heart attacks or strokes, a portion of the heart or brain remains viable and a portion dies. An injection of a gene to form cardiac muscle and/or an injection of a gene to form an artery can be utilized to revive or replace the dead portion of the heart. The dead portion of the heart may (or may not) be used as a matrix while the new muscles and vessels grow. Thus, in this example, a partial new organ is grown in a pre-existing organ. A pacemaker may (or may not) be necessary. A second injection of a gene may (or may not) be necessary to stop cardiac muscle growth once it is completed. Portions of organs throughout the body can similarly be repaired or replaced. It may be necessary to provide gene(s) or growth factor(s) sequentially. For instance, one or more blood vessels are grown by inserting an appropriate gene or other genetic material into a selected area. Second, an appropriate gene or other genetic material is inserted in the selected area to grow a bone or other organ.

The size and shape limitation of the desired structure can come from a containment and boundary contact inhibition phenomenon or by a chemical inhibition.

A variation on the theme of growing a portion of an organ is as follows: a portion of a heart dies. The pericardium is utilized as a scaffold and seeded with cells and/or genes to grow new muscle, and genes (or other genetic material) to grow new arteries. Immediately adjacent the dead cardiac muscle, onto or into the pericardium, the appropriate cells, genes, and/or growth

factors (or other genetic material) are placed. Once the new muscle and blood vessels have grown, the function specific tissue can be applied to the damaged portion of the heart and paced, if necessary, to augment cardiac action. If the surgeon desires, the dead muscle can be removed and the new muscle and blood vessels can be surgically rotated into the excised region and secured. This probably can be done endoscopically. In essence, the pericardium is utilized to allow the new muscle wall to grow. The new muscle wall is then transplanted into the damaged heart wall. This procedure utilizes the body as a factor to grow an organ and/or tissue, after which the organ and/or tissue is transplanted to a desired region. On the other hand, the new muscle wall may integrate itself into the old wall and not require transplantation.

PAGE 26, LINE 3 - PAGE 27, LINE 3

Organs and/or tissues can be formed utilizing the patient's own cells. For example, a skin cell(s) is removed from the intraoral lining of a cheek. The cell is genetically screened to identify DNA damage or other structural and/or functional problems. Any existing prior art genetic screening technique can be utilized. Such methods can utilize lasers, DNA probes, PCR, or any other suitable device,. If the cell is damaged, a healthy undamaged cell is, if possible, identified and selected. If a healthy cell cannot be obtained, the damaged cell can be repaired by excision, alkylation, transition, or any other desired method. A growth factor(s) is added to the cell to facilitate dedifferentiation and then redifferentiation and morphogenesis into an organ or function specific tissue. Any machine known in the art can be used to check the genetic fitness of the organ and its stage of morphogenesis. A cell nutrient culture may or may not be utilized depending on the desired functional outcome (i.e., growth of an artery, of pancreatic Islet cells, of a heart, etc.) or other circumstances. Replantation can occur at any appropriate stage of

morphogenesis. The foregoing can be repeated without the patient's own cells if universal donor cells such as germinal cells are utilized. Germinal cells do not require a dedifferentiation. They simply differentiate into desired tissues or organs when properly stimulated. Similarly, the DNA utilized in the foreign procedure can come from the patient or from any desired source.

During reimplantation one of the patient's own cells is returned to the patient. During implantation, a cell not originally obtained from the patient is inserted on or in the patient.

In the example above, if germinal cells (and in some cases, stem cells) are utilized, a direct differentiation and morphogenesis into an organ can occur *in vivo*, *ex vivo*, or *in vitro*.