Матмодель Задача двоетапного стохастичного програмування.

i — номер авіалінії,

k — вид літака, $k=\overline{1..3}$

 \overline{a}_{i} — місячна потреба в пассажироперевозках. Рівномірно розподілена на відрізку $[\gamma_{i}, \delta_{i}]$.

 b_k — загальне число літаків $k^{
m oro}$ типу

 c_{ik} — експлуатаційні витрати $k^{\scriptscriptstyle
m Hreve{I}}$ тип, на $i^{\scriptscriptstyle
m Ireve{I}}$ авіалінії (у тис. грн)

 s_i — додаткові організаційні витрати на $i^{\mathrm{i} \mathrm{i} \mathrm{i}}$ авіалінії

 x_{ik} — кількість літаків $k^{
m oro}$ типу, на $i^{
m ireve{i}}$ авіалінії

 r_k — витрати на простій літака $k^{
m oro}$ типу

 s_i — додаткові витрати на організацію додаткових літаків на $i^{ ext{i}ar{u}}$ авіалінії λ_{ik} — середня кількість пасажирів, яку може перевезти літак $k^{ ext{oro}}$ типу, з $i^{ ext{o}ar{i}}$ авіалінії

Перший етап треба знайти такий план $x = \|x_{ik}\|$, для якого

$$\min M \left\{ \sum_{i=1}^{4} \sum_{k=1}^{3} c_{ik} x_{ik} \right\} \tag{1}$$

за обмежень

$$\sum_{i=1}^{4} x_{ik} \le b_k$$
 , $k = \overline{1..3}$ (2) обмеження на кількість літаків

$$\sum_{k=1}^{3} \lambda_{ik} x_{ik} \ge a_i , i = \overline{1..4}$$
 (3) план перевезення

Позначимо обсяг перевезень, який перевіз літак $k^{
m oro}$ типу, з $i^{
m o\"i}$ авіалінії через W_i

$$\sum_{k=1}^{3} \lambda_{ik} x_{ik} = W_i, i = \overline{1..4}$$
 (4)

Введемо вектор компенсації $Y = \|y_i\|$, де $\mathbf{y_i} = a_i - W_i$, $i = \overline{1..4}$

Та матрицю компенсації $Q(x,a) = \sum_{i=1}^4 Q(x,a_i) = \sum_{i=1}^4 Q_i(W_i,a_i)$ (5)

$$\text{де Q}_{\mathrm{i}}(W_{i},a_{i}) = \begin{cases} c_{ik}\left(\frac{a_{i}-W_{i}}{\lambda_{ip}}+1\right) + s_{i} \text{ якщо } a_{i} \geq W_{i}; (\text{витрати на дод. літаки}) \\ \sum_{k=1}^{3} r_{k}x_{ik} \text{ , якщо } a_{i} < W_{i}. (\text{втрати від простою літака}) \end{cases} \tag{6}$$

Використовуючи відношення (1) — (5) запишемо детермінований еквівалент в такому вигляді:

$$\min M \left\{ \sum_{i=1}^{4} \sum_{k=1}^{3} c_{ik} x_{ik} + \sum_{i=1}^{4} Q_i(W_i, a_i) \right\}$$
 (7)

за обмежень

$$\sum_{i=1}^{4} x_{ik} \le b_k \, , k = \overline{1..3} \tag{8}$$

$$\sum_{k=1}^{3} \lambda_{ik} x_{ik} \ge a_i, i = \overline{1..4}$$
 (9)

$$\sum_{k=1}^{3} \lambda_{ik} x_{ik} = W_i, i = \overline{1..4}, \tag{10}$$

$$x_{ik} \ge 0 \tag{11}$$

Така задача (7) — (11) зводиться до задачі квадратичного програмування

$$\min M \left\{ \sum_{i=1}^{4} \sum_{k=1}^{3} c_{ik} x_{ik} + \sum_{i=1}^{4} q_i^{(1)} (\overline{a}_i - W_i) + \sum_{i=1}^{4} \frac{\left(q_i^{(1)} + q_i^{(2)}\right)}{2} (W_i - \gamma_i)^2 \right\}$$
(12)

за обмежень

$$\sum_{i=1}^{4} x_{ik} \le b_k \, , k = \overline{1..3} \tag{13}$$

$$\sum_{k=1}^{3} \lambda_{ik} x_{ik} \ge a_i, i = \overline{1..4}$$
 (14)

$$\sum_{k=1}^{3} \lambda_{ik} x_{ik} = W_i, i = \overline{1..4}, \tag{15}$$

$$x_{ik} \ge 0 \tag{16}$$