

第一节 多元函数的基本概念

- 1 平面点集与n 维空间 2 多元函数的概念
- 3 多元函数的极限 4 多元函数的连续性
- 5 内容小结

- > 理解多元函数的概念
- > 掌握多元函数极限的概念
- > 掌握多元函数连续的概念
- 掌握有界闭区域上连续函数的性质

教学目标----

重难点

重点: 多元函数的概念

> 二重极限的计算

> 连续的性质

难点: 二重极限的计算

> 二重极限不存在判定方法

> 二元函数连续性的概念

一、平面点集与n维空间

1、平面点集:

平面上引入了一个直角坐标系后,

二元有序实数组(x,y)全体

$$R^{2} = R \times R = \{(x, y) | x, y \in R\}$$

就表示坐标平面.

(1)平面点集:

坐标面上具有某种性质的点的集合, 称为平面点集,

记作
$$E = \{(x, y) | (x, y) \text{具有性质} P \}$$

例如 平面上以原点为中心、*r*为半径的圆内所有点的集合可以表示为

$$C = \{(x, y) | x^2 + y^2 < r^2 \}$$

(2)邻域:

设 $P_0(x_0,y_0)$ 是xoy平面上一点, δ 是一正数,

点 P_0 的 δ 邻域:

与 $P_0(x_0,y_0)$ 距离小于 δ 的点P(x,y)的全体,记作 $U(P_0,\delta)$

$$\mathbb{E} \mathbb{I} \qquad U(P_0, \delta) = \{ P | | PP_0 | < \delta \} = \{ (x, y) | \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \}.$$

点 P_0 的去心 δ 邻域:

记作
$$U(P_0, \delta) = \{P \mid 0 \triangleleft PP_0 \mid <\delta\} = \{(x, y) \mid 0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta\}.$$

(3)区域

设 E 是平面上一个点集, P 是平面上一个点.

内点: 若存在点 P的某一邻域 $U(P) \subset E$, 则称 P 为E 的内点. E 的内点属于E .

外点: 若存在点 P 的某一邻域 U(P),使 $U(P) \cap E = \emptyset$,则称 P 为 E 的外点. E 的外点必不属于 E.

边界点: 若P的任一邻域内既有属于E的点,也有不属于E的点,称P为E的边界点. E的边界点全体称为E的边界,记为 ∂E

聚点: 对 $\forall \delta > 0$,点P的去心邻域 $\overset{\circ}{U}(P,\delta)$ 内总有E中的点,称P为E的聚点.

孤立点: $\exists \delta > 0$,使得 $U(P,\delta) \cap E = \emptyset$,则称 P 为 E 的孤立点.

- 注: (1)内点一定是聚点;
 - (2) 边界点可能是聚点;
 - (3) 点集 E的聚点可以属于E,也可以不属于E.

开集: 若点集E的点都是内点,则称E为开集.

例如 $E_1 = \{(x,y) | 1 < x^2 + y^2 < 4 \}$ 即为开集.

连通集: 若对开集 D 内任何两点都可用折线连接,

且折线上点都属于D,则称开集D为连通的.

开区域:连通的开集称为开区域或区域.

闭区域: 开区域连同它的边界一起称为闭区域.

有界(无界)点集:

对于点集 E, 如果存在正数 K, 使一切点 $P \in E$ 与某一定点 A 间的距离 |AP| 不超过 K,即 $|AP| \le K$,对一切 $P \in E$ 成立,

则称 E 为有界点集,否则称为无界点集.

2、n维空间

n维空间: n为取定的一个自然数,称n元数组(x_1, x_2, \dots, x_n) 的全体为n维空间,而每个n元数组(x_1, x_2, \dots, x_n) 称为n维空间的一个点或一个n维向量,数 x_i 称为该点的第i个坐标或第i个分量.

注: (1) n维空间的记号为 R^n ;

(2) R^n 中零元 $\vec{0}$ 称为 R^n 的坐标原点或n维零向量.

- 注: (3)在 R^n 中可定义线性运算(和、差、数乘).
 - (4) Rⁿ 中两点 $\vec{x} = (x_1, x_2, \dots, x_n), \vec{y} = (x_1, x_2, \dots, x_n)$ 距离定义:

$$\rho(\vec{x}, \vec{y}) = |\vec{x} - \vec{y}| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}.$$

特殊地, $\rho(\vec{x}, \vec{0}) = |\vec{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

- (5) 设 $\vec{x} = (x_1, x_2, \dots, x_n), \vec{a} = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$,若 $|\vec{x} \vec{a}| \to 0$ 则称变元 \vec{x} 在 \mathbb{R}^n 中趋于 \vec{a} ,记作 $\vec{x} \to \vec{a}$.
- (6) n维空间中邻域: $U(P_0,\delta)=\{P||PP_0|<\delta,P\in R^n\}$.

二、多元函数概念

定义1: 设D是 R^2 的一个非空子集,称**映射** $f:D \to R$ 为定义在D上的二元函数,通常记为 $z = f(x,y),(x,y) \in D$ (或记为 $z = f(P),P \in D$).

| 点集D — 定义域,x,y — 自变量,z — 因变量,函数值 | f(x,y)的集合— 值域,记作 $f(D) = \{z \mid z = f(x,y), (x,y) \in D\}$.

注: 类似可定义n元函数, $n \ge 2$ 时统称为多元函数.

二元函数 z = f(x, y)的图形

设函数 z = f(x,y) 的定义域为 D,对于任意取定的 $P(x,y) \in D$,对应有函数值 z = f(x,y),这样就确定空间一点 M(x,y,z),当 x 取遍 D 上一切点时,得一个空间点集

 $\{(x, y, z)|z = f(x, y), (x, y) \in D\}$

一称为**二元函数的图形**, 通常为一张曲面

例1 求
$$f(x,y) = \frac{\arcsin(3-x^2-y^2)}{\sqrt{x-y^2}}$$
的定义域.

解 函数 f(x,y) 的定义域为 $\begin{cases} |3-x^2-y^2| \le 1\\ |x-y^2>0 \end{cases}$ 即 $\begin{cases} 2 \le x^2 + y^2 \le 4\\ |x>y^2 \end{cases}$

所求定义域为 $D = \{(x,y) | 2 \le x^2 + y^2 \le 4, x > y^2 \}$.

三、多元函数的极限

定义2: 设函数 z = f(x,y) 的定义域为 D, $P_0(x_0,y_0)$ 是

其**聚点**,如果对 $\forall \varepsilon > 0$,总存在 $\delta > 0$,对满足不等

式
$$0 < |PP_0| = \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$$
的点 $P(x,y)$,都有
$$|f(x,y) - A| < \varepsilon$$

则称 A为函数 z=f(x,y) 当 $P \to P_0$ 时的极限,记作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A, \quad \lim_{x\to x_0} f(x,y) = A, \quad \text{Im}_{\rho\to 0} f(x,y) = A(\rho = |PP_0|).$$

- \triangleright 定义中 $P \rightarrow P_0$ 的方式是任意的;
- > 二元函数的极限也叫二重极限.
- 二元函数的极限形式可以推广到n元函数的极限:

定义3: 设n元函数f(P)的定义域为点集D, P_0 是其聚点,若对 $\forall \varepsilon > 0$,总存在 $\delta > 0$,使得对于适合 $0 < |PP_0| < \delta$ 的点 $P \in D$,都有 $|f(P) - A| < \varepsilon$,则称A为函数f(P)当 $P \to P_0$ 时的极限,记为 $\lim_{P \to P_0} f(P) = A$

例2 利用极限的定义证明 $\lim_{(x,y)\to(0,0)}(x^2+y^2)\sin\frac{1}{x^2+y^2}=0, (x^2+y^2\neq 0).$

证明 对
$$\forall \varepsilon > 0$$
,由于 $|(x^2 + y^2)\sin\frac{1}{x^2 + y^2} - 0| = |x^2 + y^2| \cdot |\sin\frac{1}{x^2 + y^2}| \le x^2 + y^2$,所以取 $\delta = \sqrt{\varepsilon}$,当 $0 < \sqrt{(x-0)^2 + (y-0)^2} < \delta$ 时,有 $|(x^2 + y^2)\sin\frac{1}{x^2 + y^2} - 0| < \varepsilon$

Fig.
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \sin\frac{1}{x^2 + y^2} = 0, (x^2 + y^2 \neq 0).$$

二重极限定义中 $P \rightarrow P_0$ 的方式是任意的,所以有

极限不存在的判定方法

若能找到不同的方式, 让点 P(x,y) 趋于 $P(x_0,y_0)$ 时, **函数极限不同或有的极限不存在**, 则可以判定函数极限、 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 不存在.

例3 己知函数
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, 求 $\lim_{(x,y)\to(0,0)} f(x,y)$.

 \mathbf{M} 当(x,y)沿y = kx 趋于(0,0) 时,

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \lim_{\substack{x\to 0\\y=kx}} \frac{kx^2}{x^2 + k^2x^2} = \frac{k}{1 + k^2},$$

其极限值随 k 不同而变化,所以 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在.

例4 证明
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^3y}{x^6+y^2}$$
 不存在.

证明 当 (x,y) 沿 $y = kx^3$ 趋于 (0,0) 时,

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 y}{x^6 + y^2} = \lim_{\substack{x \to 0 \\ y = kx^3}} \frac{x^3 \cdot kx^3}{x^6 + k^2 x^6} = \frac{k}{1 + k^2}$$

右端的极限值会随着k的变化而不同,因此重极限不存在

例5 求极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin(x^2y)}{x^2+y^2}$.

解 将原式化为

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2y)}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2y)}{x^2y} \cdot \frac{x^2y}{x^2 + y^2}$$

$$\boxplus \exists \lim_{(x,y)\to(0,0)} \frac{\sin(x^2y)}{x^2y} = \lim_{u\to 0} \frac{\sin u}{u} = 1, \qquad \left| \frac{x^2y}{x^2 + y^2} \right| \le \frac{1}{2}|x| \to 0, \quad (x \to 0)$$

由有界函数与无穷小的乘积是无穷小, 得 $\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin(x^2y)}{x^2+y^2} = 0.$

◆ 多元函数极限运算,有与一元函数类似的运算法则.

例6 求下列极限:

(1)
$$\lim_{\substack{x \to 0 \\ y \to 2}} \frac{\sin(xy)}{x}$$
; (2) $\lim_{\substack{x \to +\infty \\ y \to +\infty}} \frac{x+y}{x^2+y^2}$; (3) $\lim_{\substack{x \to +\infty \\ y \to a}} \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}}$.

$$\lim_{\substack{x \to 0 \\ y \to 2}} \frac{\sin(xy)}{x} = \lim_{\substack{x \to 0 \\ y \to 2}} \frac{\sin(xy)}{xy} \cdot y = \lim_{xy \to 0} \frac{\sin(xy)}{xy} \cdot \lim_{y \to 2} y = 1 \cdot 2 = 2$$

(2)
$$\exists y \ 0 \le \frac{x+y}{x^2+y^2} \le \frac{x+y}{2xy} = \frac{1}{2} \left(\frac{1}{y} + \frac{1}{x} \right),$$

又
$$\lim_{\substack{x \to +\infty \ y \to +\infty}} \frac{1}{2} \left(\frac{1}{y} + \frac{1}{x} \right) = 0$$
,由夹逼准则可知 $\lim_{\substack{x \to +\infty \ y \to +\infty}} \frac{x + y}{x^2 + y^2} = 0$.

例6 求下列极限:

(1)
$$\lim_{\substack{x \to 0 \\ y \to 2}} \frac{\sin(xy)}{x}$$
; (2) $\lim_{\substack{x \to +\infty \\ y \to +\infty}} \frac{x+y}{x^2+y^2}$; (3) $\lim_{\substack{x \to +\infty \\ y \to a}} \left(1 + \frac{1}{x}\right)^{\frac{x}{x+y}}$.

$$\lim_{\substack{x \to +\infty \\ y \to a}} \left(1 + \frac{1}{x} \right)^{\frac{x^2}{x+y}} = \lim_{\substack{x \to +\infty \\ y \to a}} \left(1 + \frac{1}{x} \right)^{x \cdot \frac{x}{x+y}} = \lim_{\substack{x \to +\infty \\ y \to a}} \left[\left(1 + \frac{1}{x} \right)^x \right]^{\frac{x}{x+y}}$$

$$= e^{\lim_{\substack{x \to +\infty \\ y \to a}} \frac{x}{x+y}} = e^{\lim_{\substack{x \to +\infty \\ y \to a}} \frac{1}{1+\frac{y}{x}}} = e.$$

四、多元函数的连续性

1、连续性

定义4: 设二元函数f(x,y)的定义域为点集D,

 $P_0(x_0, y_0)$ 是其聚点且 $P_0 \in D$,如果

$$\lim_{P \to P_0} f(P) = \lim_{(x,y) \to (x_0, y_0)} f(x,y) = f(x_0, y_0) = f(P_0)$$

则称二元函数f(x,y) 在 P_0 处**连续**.

间断点: 若函数f(x,y)在 P_0 不连续,称P是函数的间断点.

- ightharpoonup 孤立点是函数 z = f(x,y)的不连续点.
- \triangleright 沿D内某些曲线,函数 f(x,y) 没有定义,则这些曲线上的点是函数的间断点.

例如 $z = \sin \frac{1}{x^2 + y^2 - 1}$ 在圆周 $x^2 + y^2 = 1$ 上没有定义,该圆周上各点均是其间断点.

例7 讨论
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, \quad (x,y) = (0,0) \end{cases}$$
在(0,0)处的连续性.

解法一
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \left(\frac{x^2}{x^2+y^2} \cdot x + \frac{y^2}{x^2+y^2} \cdot y\right)$$
由于 $\left|\frac{x^2}{x^2+y^2}\right| \le 1$ 有界, $\lim_{(x,y)\to(0,0)} x = 0$,
所以 $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2} = 0$, 同理 $\lim_{(x,y)\to(0,0)} \frac{y^3}{x^2+y^2} = 0$,
因此 $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$. 所以 $f(x,y)$ 在 $(0,0)$ 处连续.

例7 讨论
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, \quad (x,y) = (0,0) \end{cases}$$
在(0,0)处的连续性.

解法二 取 $x = \rho \cos \theta, y = \rho \sin \theta$,

$$|f(x,y)-f(0,0)|=|\rho(\sin^3\theta+\cos^3\theta)|<2\rho,$$

因为 $\lim_{\rho \to 0} \rho = 0$,

由夹逼准则可得 $\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0),$

即函数在(0,0) 处连续.

2、有界闭区域上多元连续函数的性质:

性质1、最大值和最小值定理:

在有界闭区域 D上的多元连续函数, 必定在 D上有界, 且能取得最大值和最小值.即在 D上至少存在点 P_1, P_2 , 使得 $\forall P \in D$, 有 $f(P_2) \leq f(P) \leq f(P_1)$.

性质2、介值定理:

在有界闭区域*D*上的多元连续函数必取得介于最大值和最小值之间的任何值.

3、多元初等函数

定义5: 由多元多项式及基本初等函数经过有限次的 四则运算和复合所构成的可用一个式子表示 的多元函数叫**多元初等函数**.

◆ 一切多元初等函数在其定义区域内是连续的.

求 $\lim_{P\to P_0} f(P)$ 时,如果f(P)是初等函数,且 P_0 是f(P)定义域的内点,则f(P)在点 P_0 处连续,即 $\lim_{P\to P_0} f(P)=f(P_0)$

例8 求 (1)
$$\lim_{(x,y)\to(0,1)} \frac{2-xy}{x^2+y^2}$$
; (2) $\lim_{\substack{x\to 0\\y\to 0}} \frac{xy}{2-\sqrt{xy+4}}$.

解 (1) 由连续性得
$$\lim_{(x,y)\to(0,1)} \frac{2-xy}{x^2+y^2} = \frac{2-0}{0+1} = 2.$$

(2) 原式
$$= \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(2 + \sqrt{xy + 4})}{4 - xy - 4}$$
$$= \lim_{\substack{x \to 0 \\ y \to 0}} -(2 + \sqrt{xy + 4}) = -(2 + 2) = -4.$$

五、内容小结

- > 多元函数的定义
- > 多元函数极限的概念(注意趋近方式的任意性)
- > 多元函数连续的概念; 闭区域上连续函数的性质

思考题

若点(x,y)沿着无数多条平面曲线趋向于点 (x_0,y_0) 时,函数f(x,y) 都趋向于A,能否断定 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$?

解不能 如
$$f(x,y) = \frac{x^3 y^2}{\left(x^2 + y^4\right)^2} (x,y) \to (0,0)$$

选取 $y = kx$, 则 $f(x,kx) = \frac{x^3 \cdot k^2 x^2}{\left(x^2 + k^4 x^4\right)^2} \to 0 \ (x \to 0)$,
如取 $x = y^2$ 则 $f(x,y) = \frac{y^6 y^2}{\left(y^4 + y^4\right)^2} \to \frac{1}{4}$.

