Introduction to Deep Learning (CS474)

Lecture 20

Outline

Module 2

- Examples related to Classic Networks in Computer Vision
- Building Very Deep Models in Pytorch

Building Very Deep Models in Pytorch

 We talked about exceeding 100 layers in a convolutional neural network.

 How can we build that network in PyTorch without losing our minds in the process?

• The standard strategy is to define a building block, such as a (Conv2d, ReLU, Conv2d) + skip connection block, and then build the network dynamically in a for loop.

Building Very Deep Models in Pytorch

Slide Credit: E. STEVENS, L. ANTIGA, and T. VIEHMANN

References

• All the contents present in the slides are taken from various online resources. Due credit is given in the respective slides. These slides are used for *academic* purposes only.

[4] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.