COGNOMS: _	NOM:
ONI:	SIGNATURA:

Normativa:

- La durada de l'examen és de 2 hores.
- Escriviu el nom i els cognoms en lletres MAJÚSCULES i signeu en TOTS els fulls.
- Heu de respondre dins l'espai assignat.
- No es permeten calculadores ni apunts.
- Heu de romandre en silenci durant la realització de l'examen.
- No es pot abandonar l'examen fins que el professor ho indique.
- Heu de tenir una identificació damunt la taula, a la vista del professor (DNI, carnet UPV, targeta de resident, etc.).
- 1. **(1 punt)** Representeu en binari el nombre decimal 167,875. Detalleu els passos seguits per a obtenir la resposta.

Solució

Obtenim la part entera aplicant el mètode de les divisions successives:

```
167/2= 83 residu <u>1</u>
83/2= 41 residu <u>1</u>
41/2= 20 residu <u>1</u>
20/2= 10 residu <u>0</u>
10/2= 5 residu <u>0</u>
5/2= 2 residu <u>1</u>
2/2= 1 residu 0
167<sub>10</sub>= 10100111<sub>2</sub>
```

Obtenim la part fraccionària aplicant el mètode de les multiplicacions successives:

Resultat:

167,875₁₀= **10100111,111**₂

2. **(1,5 punts)** Per a realitzar el control automàtic d'un tendal elèctric, es disposa d'un sensor de pluja i vent, que dóna com a eixida un codi de 3 bits $(C_2C_1C_0)$ amb el significat següent:

C ₂	C ₁	C ₀	Significat del codi d'eixida del sensor de pluja i vent		
0	0	0	Ni plou ni fa vent.		
0	0	1	Plou sense vent.		
0	1	0	Només vent fluix.		
0	1	1	Pluja i vent fluix.		
1	0	0	Només vent fort.		
1	0	1	Pluja i vent fort.		
1	1	0	No utilitzat.		
1	1	1	No utilitzat.		

El control també inclou un sensor de llum que genera un senyal, anomenat *Sol*, que s'activa amb valor 1 quan la intensitat de llum és superior a un valor configurable.

Implementeu un circuit amb una eixida *Obrir* que òbriga o no el tendal tenint en compte el valor del codi $C_2C_1C_0$ i el del senyal *Sol*.

El funcionament del circuit ha de ser com segueix:

- Si el senyal Sol està desactivat, el tendal s'ha de tancar.
- Si el senyal *Sol* està activat, el tendal s'ha d'obrir **per complet** llevat dels casos següents:
 - o Si plou, tant si fa vent com si no, el tendal s'ha de tancar.
 - Si no plou i el vent és fort, el tendal s'ha de tancar, però si no plou i el vent és fluix, el tendal s'ha d'obrir fins a la meitat.

El senyal *Obrir* és una eixida amb 2 bits, connectada al motor del tendal, i que l'obri i el tanca seguint la taula següent:

COGNOMS:		NOM:
DNI:	SIGNATURA:	

Obrir ₁	Obrir ₀	Significat del valor del senyal <i>Obri</i>
0	0	Es tanca el tendal.
0	1	El tendal s'obri completament.
1	0	No utilitzat.
1	1	S'obri el tendal fins a la meitat.

Obteniu la taula de veritat del circuit que controla l'eixida Obrir:

Solució:

	Sol	C ₂	C_1	C_0	Obrir ₁	Obrir ₀
0	0	0	0	0	0	0
1	0	0	0	1	0	0
2	0	0	1	0	0	0
3	0	0	1	1	0	0
4	0	1	0	0	0	0
5	0	1	0	1	0	0
6	0	1	1	0	X	Χ
7	0	1	1	1	X	Χ
8	1	0	0	0	0	1
9	1	0	0	1	0	0
10	1	0	1	0	1	1
11	1	0	1	1	0	0
12	1	1	0	0	0	0
13	1	1	0	1	0	0
14	1	1	1	0	X	Χ
15	1	1	1	1	Χ	Χ

Procediment:

L'eixida per a les valoracions 6, 7, 14, 15 pren valor X (entrades indiferents) perquè els codis corresponents al senyal de tres bits $(C_2C_1C_0)$ no poden produir-se, ja que no són utilitzats pel sensor.

D'altra banda, el tendal només s'obri completament per a la combinació de les entrades (valoració) 10 (Obri = 11₂) i s'obri fins a la meitat per a la combinació de les entrades (valoració) 8 (Obri = 01₂).

Per a la resta de casos el tendal roman tancat (Obri = 00_2).

3. (2,5 punts) Implementeu un circuit partint de la taula de veritat següent:

	D	С	В	Α	S_2	S ₁	S_0
0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0
3	0	0	1	1	Χ	Χ	Χ
4	0	1	0	0	0	0	1
5	0	1	0	1	0	1	1
6	0	1	1	0	1	0	1
7	0	1	1	1	Χ	Χ	Χ
8	1	0	0	0	0	0	1
9	1	0	0	1	0	1	1
10	1	0	1	0	1	0	1
11	1	0	1	1	Χ	Χ	Χ
12	1	1	0	0	Χ	Χ	Χ
13	1	1	0	1	Χ	Χ	Χ
14	1	1	1	0	Χ	Χ	Χ
15	1	1	1	1	Χ	Χ	Χ

a) Obtingueu la forma canònica disjuntiva (suma de minitermes) del senyal S_2 : (0,5 punts).

Resposta:

$$S_2 = \sum_{D,C,B,A} (2,6,10) + \sum_{\phi} (3,7,11,12,13,14,15)$$

b) Escriviu l'equació de l'eixida S₁ resultant de **simplificar per zeros** emprant mapes de Karnaugh: (1 punt).

Solució:

Simplificació por zeros de la funció \boldsymbol{S}_{1}

$$S_1 = A$$

COGNOMS:	NOM:
DNI:	SIGNATURA:

c) Escriviu l'equació de l'eixida S_0 resultant de simplificar per zeros emprant mapes de Karnaugh: (1 punt)

Soluci	ó:								
Simplifi	Simplificació per uns de la funció S ₀								
DC									
ВА	00	01	11	10					
00	0	1	X	1					
01	0	1	X	1					
11	Χ	Х	X	X					
10	0	1	X	1					
	0 0 0								
	$S_0 = D + C$								

4. **(1 punt)** Realitzeu la composició d'un multiplexor de 2 entrades de dades de 4 bits (A3, A2, A1, A0 i B3, B2, B1, B0) i 1 eixida de 4 bits (Y3, Y2, Y1, Y0), amb entrada d'habilitació /G, activa a nivell baix.

Els únics elements bàsics de disseny que es poden emprar són multiplexors de 2 entrades de dades, cadascuna d'un bit, i una eixida d'un bit, amb entrada d'habilitació /E activa a nivell baix. Podeu fer servir tants multiplexors com necessiteu, però només multiplexors.

- a) Dibuixeu la interfície (o símbol lògic) del circuit que cal dissenyar (0,25 punts).
- b) Dibuixeu els elements bàsics i les connexions entre aquests, així com les connexions amb les entrades i eixides del circuit que cal dissenyar (0,75 punts).

Solució

- 5. **(1,5 punts)** Dissenyeu un descodificador de 4 entrades BCD a 10 eixides actives a nivell baix. El descodificador cal que tinga una entrada d'habilitació (/E) activa a nivell baix.
 - **a)** Dibuixeu la interfície (o símbol lògic) del circuit que cal dissenyar (0,5 punts).

COGNOMS:		NOM:
DNI:	SIGNATURA:	

b) Termineu d'omplir la taula de veritat (1 punt).

		Entra	ades	;		Е					ixides			
/E	D	С	В	Α	/D9	/D8	/D7	/D6	/D5	/D4	/D3	/D2	/D1	/D0
0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	1	1	1	1	0	1
0	0	0	1	0	1	1	1	1	1	1	1	0	1	1
0	0	0	1	1	1	1	1	1	1	1	0	1	1	1
0	0	1	0	0	1	1	1	1	1	0	1	1	1	1
0	0	1	0	1	1	1	1	1	0	1	1	1	1	1
0	0	1	1	0	1	1	1	0	1	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	1	1	1	1	1	1	1	1
0	1	0	0	1	0	1	1	1	1	1	1	1	1	1
0	1	0	1	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
0	1	0	1	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
0	1	1	0	0	Х	Х	X	Х	Х	Х	Х	Х	X	X
0	1	1	0	1	X	X	Х	X	X	X	X	X	Х	X
0	1	1	1	0	Χ	X	X	X	X	X	X	X	X	X
0	1	1	1	1	X	Х	Х	X	X	Х	Х	X	Х	X
1	0	0	0	0	1	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1	1	1	1	1	1
1	0	1	0	0	1	1	1	1	1	1	1	1	1	1
1	0	1	0	1	1	1	1	1	1	1	1	1	1	1
1	0	1	1	0	1	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	0	0	1	1	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	0	Х	Х	X	Х	X	X	Х	Х	X	X
1	1	0	1	1	Х	Х	X	Х	Х	Х	Х	Х	X	X
1	1	1	0	0	Х	Х	X	Х	Х	Х	Х	Х	X	X
1	1	1	0	1	Х	Х	X	Х	Х	Х	Х	Х	X	X
1	1	1	1	0	Х	Х	X	X	X	Х	Х	Х	X	X
1	1	1	1	1	Χ	X	X	X	X	X	X	X	X	X

6. **(2,5 punts)** Responeu les qüestions següents relatives al circuit mostrat a sota:

a) Ompliu la taula de funcionament dels biestables J-K i T (Nota: El nombre de files de les taules no és indicatiu) (0,5 punts)

CLK	J	K	Q(t+1)	/Q(t+1)
0/1/↑	Х	Χ	Q(t)	/Q(t)
1	0	0	Q(t)	/Q(t)
1	0	1	0	1
Į	1	0	1	0
1	1	1	Not(Q(t))	Not(/Q(t))

CLK	T	Q(t+1)	/Q(t+1)
0/1/↑	Х	Q(t)	/Q(t)
Į	0	Q(t)	/Q(t)
Į	0	Not(Q(t))	Not(/Q(t))

b) Resoleu el cronograma següent. (2 punts):

