Homework 11

Quantum Mechanics

January 19, 2023

C Seitz

Problem 1. No-cloning theorem

Solution. Assume we have a unitary copying operator U and two quantum states $|\phi\rangle$ and $|\psi\rangle$. Suppose this unknown copying operator U could transform $|s\rangle$ to either $|\phi\rangle$ or $|\psi\rangle$.

$$|\psi\rangle \otimes |s\rangle \xrightarrow{U} |\psi\rangle \otimes |\psi\rangle$$
$$|\phi\rangle \otimes |s\rangle \xrightarrow{U} |\phi\rangle \otimes |\phi\rangle$$

If U is unitary, then it preserves inner products, so

$$(\langle \psi | \otimes \langle s |)(|\phi\rangle \otimes |s\rangle) = \langle \psi | \phi\rangle \otimes \langle s | s\rangle = \langle \psi | \phi\rangle$$

After the copying transformation, we have

$$(\langle \psi | \otimes \langle \psi |)(|\phi\rangle \otimes |\phi\rangle) = \langle \psi | \phi\rangle \otimes \langle \psi | \phi\rangle$$
$$= (\langle \psi | \phi\rangle)^{2}$$

We demanded that the inner product be preserved, so these two results must be equivalent. However, there is only a solution when $|\psi\rangle = |\phi\rangle$ or $\langle\psi|\phi\rangle = 0$. Therefore, the copying circuit only works for orthogonal states, and not a general ket.

Problem 2. Calculations from section 1.3.7

Solution.

Problem 3. Carry out calculations from 1.4.3-1.4.4

Solution.