12ML:: BASICS

Data

 $\mathcal{X} \subset \mathbb{R}^p$: p-dim. **input space** with p features Usually we assume $\mathcal{X} = \mathbb{R}^p$, but categorical **features** can also occur

 $\mathcal{Y} \in \mathbb{R}^g$: target space e.g.: $\mathcal{Y} = \mathbb{R}$, $\mathcal{Y} = \{0,1\}$, $\mathcal{Y} = \{-1,1\}$, $\mathcal{Y} = \{1,\ldots,g\}$ with g classes $x = (x_1,\ldots,x_p)^T \in \mathcal{X}$: feature vector

 $y \in \mathcal{Y}$: target / label / output

 $\mathbb{D} \in \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets with n oberservations

 $\mathbb{D}_n \in (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets of size n

 $\mathcal{D} = \left(\left(\mathsf{x}^{(1)}, y^{(1)}\right), \ldots, \left(\mathsf{x}^{(n)}, y^{(n)}\right)\right) \in \mathbb{D}: \mathbf{data} \ \mathbf{set} \ \mathsf{with} \ \mathit{n} \ \mathsf{observations}$

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subset \mathcal{D}$: data for training and testing (Often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$)

 $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X} \times \mathcal{Y}$: *i* -th **observation** or **instance**

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} \times \mathcal{Y}$

p(x, y) or $p(x, y \mid \theta)$: joint probability density function (pdf)

Model and Learner

Model (or hypothesis): $f: \mathcal{X} \to \mathbb{R}^g$ is a function that maps feature vectors to predictions.

f(x) or $f(x \mid \theta) \in \mathbb{R}$ or \mathbb{R}^g : prediction function (**model**) We might suppress θ in notation.

 $h(\mathsf{x})$ or $h(\mathsf{x}|\boldsymbol{ heta}) \in \mathcal{Y}$: discrete prediction for classification.

 $\Theta \subset \mathbb{R}^d$: parameter space

 $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameters** Some models may traditionally use different symbols.

 $\mathcal{H} = \{f : f \text{ belongs to a certain functional family} : hypothesis space}$

f lives here, restricts the functional form of f.

Learner $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ takes a data set with features and outputs (**training set**, $\in \mathbb{D}$) and produces a **model** (which is a function $f: \mathcal{X} \to \mathbb{R}^g$)

For a parametrized model the definition can be adapted $\mathcal{I}: \mathbb{D} imes \mathbf{\Lambda} o \Theta$

 Λ : hyperparameter space

 $\pmb{\lambda} \in \pmb{\Lambda}$: hyperparameter

 $\pi_k(x) = \mathbb{P}(y = k \mid x)$: **posterior probability** for class k, given x In case of binary labels we might abbreviate $\pi(x) = \mathbb{P}(y = 1 \mid x)$.

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate $\pi = \mathbb{P}(y = 1)$.

 $\mathcal{L}(\theta)$ and $\ell(\theta)$: Likelihood and log-Likelihood for a parameter θ These are based on a statistical model.

 $\epsilon = y - f(x)$ or $\epsilon^{(i)} = y^{(i)} - f(x^{(i)})$: **residual** in regression.

yf(x) or $y^{(i)}f(x^{(i)})$: **margin** for binary classification With, $\mathcal{Y} = \{-1, 1\}$.

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(\mathbf{x})$, $\hat{\pi}(\mathbf{x})$ and $\hat{\boldsymbol{\theta}}$

These are learned functions and parameters (These are estimators of corresponding functions and parameters).

Loss and Risk

 $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}$.: **loss function:** L(y, f(x)) quantifies the "quality" of the prediction f(x) of a single observation x.

 $\mathcal{R}_{\text{emp}}:\mathcal{H}\to\mathbb{R}$: The ability of a model f to reproduce the association between x and y that is present in the data \mathcal{D} can be measured by the summed loss, the **empirical risk**:

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Since f is usually defined by **parameters** θ , this becomes:

$$\mathcal{R}_{emp}:\mathbb{R}^d o\mathbb{R}$$

$$\mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta}) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight)$$

Learning then amounts to **empirical risk minimization** – figuring out which model f has the smallest average loss:

$$\hat{f} = rg \min_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(f).$$

Regression Losses

Basic Idea (L2 loss/ squared error):

$$L(y, f(x)) = (y - f(x))^2 \text{ or } L(y, f(x)) = 0.5(y - f(x))^2$$

Convex and differentiable.

Tries to reduce large residuals (if residual is twice as large, loss is 4 times as large)

Basic Idea (L1 loss/ absolute error):

$$L(y, f(x)) = |y - f(x)|$$

Convex and more robust

No derivatives for = 0, y = f(x), optimization becomes harder

 $\hat{f}(x) = \text{median of } y | x$

Components of learning

Learning = Hypothesis space + Risk + Optimization.

Hypothesis space: Defines (and restricts!) what kind of model *f* can be learned from the data.

Example: Linear functions, Decision trees etc.

Risk: Quantifies how well a specific model performs on a given data set. This allows us to rank candidate models in order to choose the best one.

Example: Squared error, Likelihood etc.

Optimization: Defines how to search for the best model in the hypothesis space, i.e., the model with the smallest risk. **Example:** Gradient descent, Quadratic programming etc.

Classification

Assume we are given a classification problem:

$$x \in \mathcal{X}$$
 feature vector $y \in \mathcal{Y} = \{1, \dots, g\}$ categorical output variable (label) $\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)}\right)\right)$ observations of x and y

Classification usually means to construct g discriminant functions:

 $f_1(\mathsf{x}),\ldots,f_g(\mathsf{x})$, so that we choose our class as $h(\mathsf{x})=\arg\max_k f_k(\mathsf{x})$ for $k=1,2,\ldots,g$

Linear Classifier:

If the functions $f_k(x)$ can be specified as linear functions, we will call the classifier a *linear classifier*.

Binary classification: If only 2 classes exist, we can use a single discriminant function $f(x) = f_1(x) - f_2(x)$.