Transport 3: Periodic Truck Shipments

- One-Time (operational decision): know shipment size q
 - Know when and how much to ship
- **Periodic** (*tactical*): must determine size *q*
 - Need to determine how often and how much to ship

9. Continuing with the example: assuming a constant annual demand for the product of 20 tons, what is the number of full truckloads per year?

$$f = 20$$
 ton/yr $q = q_{\text{max}} = 6.1111$ ton/TL (full truckload $\Rightarrow q \equiv q_{\text{max}}$)
$$n = \frac{f}{g} = \frac{20}{6.1111} = 3.2727$$
 TL/yr, average shipment frequency

 Why should this number not be rounded to an integer value?

10. What is the shipment interval?

$$t = \frac{1}{n} = \frac{q}{f} = \frac{6.1111}{20} = 0.3056 \text{ yr/TL}$$
, average shipment interval

How many days are there between shipments?

365.25 day/yr

$$t \times 365.25 = \frac{365.25}{n} = 111.6042 \text{ day/TL}$$

11. What is the annual full-truckload transport cost?

$$d = 532 \text{ mi}, \quad r_{TL} = \frac{PPI_{TL}^{Jan\ 2018}}{102.7} \times \$2.00 / \text{mi} = \frac{131.0}{102.7} \times \$2.00 / \text{mi} = \$2.5511 / \text{mi}$$

$$r_{FTL} = \frac{r_{TL}}{q_{\text{max}}} = \frac{2.5511}{6.1111} = \$0.4175 / \text{ton-mi}$$

$$TC_{FTL} = f r_{FTL} d = n r_{TL} d$$
 (= w d, w = monetary weight in \$/mi)
= 3.2727 (2.5511) 532 = \$4,441.73/yr

 What would be the cost if the shipments were to be made at least every three months?

$$t_{\text{max}} = \frac{3}{12} \text{ yr/TL} \implies n_{\text{min}} = \frac{1}{t_{\text{max}}} = 4 \text{ TL/yr} \implies q = \frac{f}{\text{max}\{n, n_{\text{min}}\}}$$

$$TC'_{FTL} = \max\{n, n_{\min}\} r_{TL}d$$

= $\max\{3.2727, 4\} 2.5511(532) = \$5,428.78/\text{yr}$

Independent and allocated full-truckload charges:

$$q \le q_{\text{max}} \Rightarrow [UB, LB] = [c_0(q), qr_{FTL}d]$$

Transport Charge for a Shipment

 Same units of inventory can serve multiple roles at each position in a production process

		Position				
		Raw Material	Work in Process	Finished Goods		
Role	Working Stock					
	Economic Stock					
	Safety Stock					

- Working stock: held as part of production process
 - (in-process, pipeline, in-transit, presentation)
- Economic stock: held to allow cheaper production
 - (cycle, anticipation)
- Safety stock: held to buffer effects of uncertainty
 - (decoupling, MRO (maintenance, repair, and operations))

 Total Logistics Cost (TLC) includes all costs that could change as a result of a logistics-related decision

$$TLC = TC + IC + PC$$
 $TC = \text{transport cost}$
 $IC = \text{inventory cost}$
 $= IC_{\text{working}} + IC_{\text{economic}} + IC_{\text{safety}}$
 $PC = \text{purchase cost}$

Total logistics costs are any of the relevant costs associated with providing a logistics service, where a relevant cost is a cost that differs when comparing multiple alternatives and, as such, can be used in making a decision between the alternatives.

- Economic (cycle) stock: held to allow cheaper large shipments
- Working (in-transit) stock: goods in transit or awaiting transshipment
- Safety stock: held due to transport uncertainty (e.g., shipment arriving earlier than needed "just in case")
- *Purchase cost*: can be different for different suppliers

12. Since demand is constant throughout the year, one half of a shipment is stored at the destination, on average. Assuming that the production rate is also constant, one half of a shipment will also be stored at the origin, on average. Assuming each ton of the product is valued at \$25,000, what is a "reasonable estimate" for the total annual cost for this cycle inventory?

```
IC_{\text{cycle}} = (\text{annual cost of holding one ton})(\text{average annual inventory level})
= vh (\$/\text{ton-yr}) \times \alpha q (\text{ton}) = (\$/\text{yr})
v = \text{unit value of shipment (\$/\text{ton})}
h = \text{inventory carrying rate, cost per dollar of inventory per year (\$/\$-\text{yr} = 1/\text{yr})}
\alpha = \text{average inter-shipment inventory fraction at Origin and Destination}
q = \text{shipment size (ton)}
```

- Inv. Carrying Rate (h) = interest + warehousing + obsolescence
- Interest: 5% per Total U.S. Logistics Costs
- Warehousing: 6% per Total U.S. Logistics Costs
- Obsolescence: default rate (yr) $h = 0.3 \Rightarrow h_{\rm obs} \approx 0.2$ (mfg product)
 - Low FGI cost (yr): $h = h_{int} + h_{wh} + h_{obs}$
 - High FGI cost (hr): $h \approx h_{\rm obs}$, can ignore interest & warehousing
 - $(h_{\text{int}} + h_{\text{wh}})/H = (0.05 + 0.06)/2000 = 0.000055$ (H = oper. hr/yr)
 - Estimate $h_{\rm obs}$ using "percent-reduction interval" method: given time t_h when product loses x_h -percent of its original value v, find $h_{\rm obs}$

$$h_{\text{obs}}t_hv = x_hv \Rightarrow h_{\text{obs}}t_h = x_h \Rightarrow h_{\text{obs}} = \frac{x_h}{t_h}, \quad \text{and} \quad t_h = \frac{x_h}{h_{\text{obs}}}$$

Example: If a product loses 80% of its value after 2 hours 40 minutes:

$$t_h = 2 + \frac{40}{60} = 2.67 \text{ hr} \Rightarrow h = \frac{x_h}{t_h} = \frac{0.8}{2.67} = 0.3$$

- Important: t_h should be in same time units as t_{CT}

• Average annual inventory level $=\frac{q}{2} + \frac{q}{2} = \left(\frac{1}{2} + \frac{1}{2}\right)q = (1)q \Rightarrow \alpha = 1$

Inter-shipment inventory fraction alternatives: $\alpha = \alpha_O + \alpha_D$

$$\alpha = 0 + 0 = 0$$

 "Reasonable estimate" for the total annual cost for the cycle inventory:

$$IC_{\text{cycle}} = \alpha v h q$$

= (1)(25,000)(0.3)6.1111
= \$45,833.33 / yr

where

$$\alpha = \frac{1}{2}$$
 at Origin + $\frac{1}{2}$ at Destination = 1
 $v = \$25,000 = \text{unit value of shipment (\$/ton)}$
 $h = 0.3 = \text{estimated carrying rate for manufactured products (1/yr)}$
 $q = q_{\text{max}} = 6.111 = \text{FTL shipment size (ton)}$

13. What is the annual total logistics cost (TLC) for these full-truckload TL shipments?

$$TLC_{FTL} = TC_{FTL} + IC_{cycle}$$

$$= n r_{TL}d + \alpha v h q$$

$$= 3.2727 (2.5511) 532 + (1)(25,000)(0.3)6.1111$$

$$= 4,441.73 + 45,833.33$$

$$= $50,275.06 / yr$$

14. What is minimum possible annual total logistics cost for TL shipments, where the shipment size can now be less than a full truckload?

$$TLC_{TL}(q) = TC_{TL}(q) + IC(q) = \frac{f}{q}c_{TL}(q) + \alpha vhq = \frac{f}{q}rd + \alpha vhq$$

$$\frac{dTLC_{TL}(q)}{dq} = 0 \Rightarrow q_{TL}^* = \sqrt{\frac{fr_{TL}d}{\alpha vh}} = \sqrt{\frac{20(2.5511)532}{(1)25000(0.3)}} = 1.9024 \text{ ton}$$

$$TLC_{TL}(q_{TL}^*) = \frac{f}{q_{TL}}r_{TL}d + \alpha vhq_{TL}^*$$

$$= \frac{20}{1.9024}(2.5511)532 + (1)25000(0.3)1.9024$$

$$= 14,268.12 + 14,268.12$$

$$= $28,536.25 / \text{yr}$$

Including the minimum charge and maximum payload restrictions:

$$q_{TL}^* = \min \left\{ \sqrt{\frac{f \max \left\{ r_{TL}d, MC_{TL} \right\}}{\alpha v h}}, q_{\max} \right\} \approx \sqrt{\frac{f r_{TL}d}{\alpha v h}}$$

 What is the TLC if this size shipment could be made as an allocated full-truckload?

$$TLC_{AllocFTL}(q_{TL}^*) = \frac{f}{q_{TL}^*} \left(q_{TL}^* r_{FTL} d \right) + \alpha v h q_{TL}^* = f \frac{r_{TL}}{q_{max}} d + \alpha v h q_{TL}^*$$

$$= 20 \frac{2.5511}{6.1111} 532 + (1)25000 (0.3)1.9024$$

$$= 4,441.73 + 14,268.12$$

$$= $18,709.85 / \text{ yr} \quad (\text{vs. } $28,536.25 \text{ as independent P2P TL})$$

15. What is the optimal LTL shipment size?

$$TLC_{LTL}(q) = TC_{LTL}(q) + IC(q) = \frac{f}{q}c_{LTL}(q) + \alpha vhq$$

$$q_{LTL}^* = \arg\min_{q} TLC_{LTL}(q) = 0.7622 \text{ ton}$$

 Must be careful in picking bounds for optimization since the LTL formula is only valid for a limited range of values:

$$r_{LTL} = PPI_{LTL} \left[\frac{\frac{s^2}{8} + 14}{\left(q^{\frac{1}{7}}d^{\frac{15}{29}} - \frac{7}{2}\right)(s^2 + 2s + 14)} \right], \quad \begin{cases} 37 \le d \le 3354 \text{ (dist)} \\ \frac{150}{2,000} \le q \le \frac{10,000}{2,000} \text{ (wt)} \\ 2000 \frac{q}{s} \le 650 \text{ ft}^3 \text{ (cube)} \end{cases}$$
$$\frac{150}{2000} \le q \le \min \left\{ \frac{10,000}{2,000}, \frac{650s}{2000} \right\} \Rightarrow 0.075 \le q \le 1.44$$

16. Should the product be shipped TL or LTL?

$$TLC_{LTL}(q_{LTL}^*) = TC_{LTL}(q_{LTL}^*) + IC(q_{LTL}^*) = 34,349.19 + 5,716.40 = $40,065.59 \text{/ yr}$$

17. If the value of the product increased to \$85,000 per ton, should the product be shipped TL or LTL?

Better to pick from separate optimal TL and LTL because independent charge has two local minima:

$$q_0^* = \arg\min_{q} \left\{ TLC_{TL}(q), TLC_{LTL}(q) \right\}$$

$$q_0^* = \arg\min_{q} \left\{ TLC_{TL}(q), TLC_{LTL}(q) \right\} \qquad q_0^* = \arg\min_{q} \left\{ \frac{f}{q} c_0(q) + \alpha vhq \right\}$$

18. On Jan 10, 2018, what was the optimal independent shipment size to ship 80 tons per year of a Class 60 product valued at \$5000 per ton between Raleigh and Gainesville?

$$s = 32.16 \text{ lb/ft}^3$$

$$q_0^* = \arg\min_{q} \left\{ TLC_{TL}(q), TLC_{LTL}(q) \right\} = 8.5079 \text{ ton}$$

$$TLC_{TL}(q_0^*) = \$25,523.60 / \text{yr} < TLC_{LTL}(q_0^*)$$

Class-Density Relationship

	Load Dens	ity (<u>lb</u> /ft ³)	Max Physical	Max Effective	
Class	Minimum	Average	Weight (tons)	Cube (ft³)	
500	-	0.52	0.72	2,750	
400	1	1.49	2.06	2,750	
300	2	2.49	3.43	2,750	
65	22.5	25.50	25	1,961	
60	30	32.16	25	1,555	
55	35	39.68	25	1,260	
50	50	56.18	25	890	

19. What is the optimal shipment size if both shipments will always be shipped together on the same truck (with same shipment interval)?

$$d_1 = d_2, \quad h_1 = h_2, \quad \alpha_1 = \alpha_2$$

$$f_{agg} = f_1 + f_2 = 20 + 80 = 100 \text{ ton}$$

$$s_{agg} = \frac{\text{(aggregate weight, in lb)}}{\text{(aggregate cube, in ft}^3)} = \frac{f_{agg}}{\frac{f_1}{s_1} + \frac{f_2}{s_2}} = \frac{100}{\frac{20}{4.44} + \frac{80}{32.16}} = 14.31 \text{ lb/ft}^3$$

$$v_{agg} = \frac{f_1}{f_{agg}} v_1 + \frac{f_2}{f_{agg}} v_2 = \frac{20}{100} 85,000 + \frac{80}{100} 5000 = \$21,000 / \text{ ton}$$

$$q_{TL}^* = \sqrt{\frac{f_{\text{agg}}rd}{\alpha v_{\text{agg}}h}} = \sqrt{\frac{100(2.5511)532}{(1)21000(0.3)}} = 4.6414 \text{ ton}$$

• Summary of results:

:	f	s	v	qmax	TLC	q	t
:-							
1:	20	4.44	85,000	6.11	47,801.01	0.27	5.00
2:	80	32.16	5,000	25.00	25,523.60	8.51	38.84
1+2:					73,324.60		
Aggregate:	100	14.31	21,000	19.68	58,481.90	4.64	16.95