Rings

Definitions and Basic Properties

Abhijit Das

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 5, 2020

Definitions

- A set R with two binary operations $+: R \times R \to R$ and $\cdot: R \times R \to R$ is called a **ring** if for all $a, b, c \in R$, the following conditions are satisfied.
 - (1) a+b=b+a

[+ is commutative]

(2) (a+b)+c=a+(b+c)

[+ is associative] [additive identity]

(3) There exists $0 \in R$ such that 0 + a = a + 0 = a

[additive inverse]

(5) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

[· is associative]

(6) $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$

(4) There exists $-a \in R$ such that a + (-a) = (-a) + a = 0

[· is distributive over +]

- A ring $(R, +, \cdot)$ is called **commutative** if for all $a, b \in R$, we have:
 - (7) $a \cdot b = b \cdot a$

[· is commutative]

- A ring $(R, +, \cdot)$ is called a **ring with identity** (or a **ring with unity**) if
 - (8) there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$.

[multiplicative identity]

Examples

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} under standard addition and multiplication are commutative rings with identity.
- Let $n \in \mathbb{N}$, $n \ge 2$. Denote by $M_n(\mathbb{Z})$ (resp. $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$, $M_n(\mathbb{C})$) the set of all $n \times n$ matrices with integer (resp. rational, real, complex) entries. These sets are rings under matrix addition and multiplication. These rings are not commutative, but contains the identity element (the $n \times n$ identity matrix).
- Let S be a set with at least two elements (S may be infinite). $\mathcal{P}(S)$ is a commutative ring with identity under the operations Δ (symmetric difference) and \cap (intersection). The additive identity is \emptyset , and the multiplicative identity is S. The additive inverse of $A \subseteq S$ is A itself.
- Let $n \in \mathbb{N}$, $n \ge 2$. The set $\{0,1\}^n$ of *n*-bit vectors is a commutative ring with identity under bit-wise XOR and AND operations. The zero vector is the additive identity, and the all-1 vector is the multiplicative identity. The additive inverse of a bit vector v is v.

Examples

 \mathbb{Z} under the two operations

$$a \oplus b = a+b-1$$

$$a \odot b = a+b-ab$$

is a commutative ring with identity.

• Check associativity of \oplus and \odot :

$$(a \oplus b) \oplus c = a \oplus (b \oplus c) = a + b + c - 2,$$

$$(a \odot b) \odot c = a \odot (b \odot c) = a + b + c - ab - bc - ca + abc.$$

• Check distributivity of \odot over \oplus :

$$(a \oplus b) \odot c = (a \odot c) \oplus (b \odot c) = a + b + 2c - ac - bc - 1.$$

- 1 is the additive identity because $a \oplus 1 = 1 \oplus a = a + 1 1 = a$ for all $a \in \mathbb{Z}$.
- The additive inverse of a is 2-a because $a \oplus (2-a) = a + (2-a) 1 = 1$.
- 0 is the multiplicative identity because $a \odot 0 = 0 \odot a = a + 0 a \times 0 = a$ for all $a \in \mathbb{Z}$.

Zero Divisors

An element $a \in R$ is called a **zero divisor** if $a \cdot b = 0$ for some $b \neq 0$. 0 is always a zero divisor.

We are interested in non-zero (or proper) zero divisors.

- $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ under standard operations do not contain non-zero zero divisors.
- The matrix rings contain non-zero zero divisors. For example,

$$\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

- $\mathscr{P}(S)$ contains non-zero zero divisors. Take any non-empty proper subset A of S. Then $A \cap (S \setminus A) = \emptyset$.
- The ring $(\mathbb{Z}, \oplus, \odot)$ does not contain non-zero zero divisors, because $a \odot b = a + b ab = 1$ implies (a 1)(b 1) = 0, that is, either a = 1 or b = 1.

Units

Let *R* be a ring with identity.

An element $a \in R$ is called a **unit** if there exists $b \in R$ such that ab = ba = 1 (so b is also a unit). We say a and b are **multiplicative inverses** of one another.

We write $b = a^{-1}$ and $a = b^{-1}$.

- The only units of $(\mathbb{Z}, +, \cdot)$ are ± 1 .
- All non-zero elements of \mathbb{Q} , \mathbb{R} and \mathbb{C} are units.
- The units of $M_n(\mathbb{Z})$ are precisely those matrices with determinant ± 1 .
- The units of $M_n(\mathbb{Q})$, $M_n(\mathbb{R})$ and $M_n(\mathbb{C})$ are the invertible matrices.
- The only unit in $\mathcal{P}(S)$ is S.
- Consider $(\mathbb{Z}, \oplus, \odot)$. $a \odot b = 0$ implies a + b ab = 0, that is, $b = \frac{a}{a-1}$. Since b is an integer, the only possibilities for a are 0 and 2. These are the only units, and are equal to their respective inverses.

Definitions

Let *R* be a commutative ring with identity.

R is called an **integral domain** if R contains no non-zero zero divisors.

R is called a **field** if every non-zero element of R is a unit.

- $(\mathbb{Z}, +, \cdot)$ is an integral domain but not a field.
- \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.
- The matrix rings are neither integral domains nor fields.
- $\mathcal{P}(S)$ is neither an integral domain nor a field.
- $(\mathbb{Z}, \oplus, \odot)$ is an integral domain but not a field.

Theorem: In a ring R, the additive identity is unique. Moreover, for every $a \in R$, the additive inverse -a is unique.

Proof Let 0 and 0' be additive indentities. Then 0 = 0 + 0' = 0'.

If b and c are additive inverses of a, we have

$$b = b + 0 = b + (a + c) = (b + a) + c = 0 + c = c.$$

Theorem: In a ring R with identity, the multiplicative identity is unique. Moreover, for every unit a in R, the multiplicative inverse a^{-1} is unique.

Theorem: (Cancellation laws of addition) Let a, b, c be elements in a ring R.

- (i) If a + b = a + c, then b = c.
- (ii) If a+c=b+c, then a=b.

Proof
$$a+b=a+c \Rightarrow -a+(a+b)=-a+(a+c) \Rightarrow (-a+a)+b=(-a+a)+c \Rightarrow 0+b=0+c \Rightarrow b=c.$$

Theorem: (Cancellation laws of multiplication) Let R be a ring with identity. Let a be a unit in R, and b, c any elements in R.

- (i) If ab = ac, then b = c.
- (ii) If ba = ca, then b = c.

Theorem: Let *R* be a ring, and $a, b, c \in R$.

- (i) $a \cdot 0 = 0$.
- (ii) -(-a) = a.
- (iii) (-a)b = a(-b) = -(ab).
- (iv) (-a)(-b) = ab.

Proof (i) $0+0=0 \Rightarrow a \cdot (0+0) = a \cdot 0 \Rightarrow a \cdot 0 + a \cdot 0 = a \cdot 0 = a \cdot 0 + 0$. Now use cancellation.

(ii)
$$(-a) + a = a + (-a) = 0 \Rightarrow -(-a) = a$$
.

(iii)
$$(-a)b + ab = (-a+a)b = 0b = 0$$
, so $-(ab) = (-a)b$. Likewise, $-(ab) = a(-b)$.

(iv)
$$(-a)(-b) = -(a(-b)) = -(-(ab)) = ab$$
.

Theorem: Let R be an integral domain. Let a, b, c be elements of R with $a \neq 0$. Then ab = ac implies b = c.

Proof $ab = ac \Rightarrow ab - ac = 0 \Rightarrow a(b - c) = 0 \Rightarrow b - c = 0$ (since *R* does not contain non-zero zero divisors) $\Rightarrow b = c$.

Theorem: Every field is an integral domain.

Proof Let F be a field. Take $a, b \in F$ such that ab = 0. We have to show that either a = 0 or b = 0. Suppose that $a \neq 0$. Then a is a unit. We can use cancellation from $ab = 0 = a \cdot 0$ to get b = 0.

Theorem: Every *finite* integral domain is a field.

Proof Let R be an integral domain consisting of only finitely many elements. Take any non-zero $a \in R$. The map $R \to R$ taking $x \mapsto ax$ is injective and so bijective. In particular, there exists x such that ax = 1. Thus a is a unit.

Subrings

Definition: Let $(R, +, \cdot)$ be a ring. A non-empty subset S of R is called a **subring** of R if S is a ring under the operations + and \cdot inherited from R.

Theorem: *S* is a subring of *R* if for all $a,b \in S$, we have $a-b,ab \in S$.

Proof Commutativity of addition, associativity of addition and multiplication, and distributivity of multiplication over addition are inherited from R.

Since *S* is non-empty, there exists $a \in S$, so $a - a = 0 \in S$. Therefore $0 - a = -a \in S$. Finally, for $a, b \in S$, we have $a + b = a - (-b) \in S$. So *S* is closed under addition and multiplication.

Subrings: Examples

- Z is a subring of Q,R,C.
 Q is a subring of R,C.
 R is a subring of C.
- Let $n \in \mathbb{N}$. $n\mathbb{Z} = \{na \mid a \in \mathbb{Z}\}$ is a subring of \mathbb{Z} .
- Let $S = \left\{ \begin{pmatrix} x & x+y \\ x+y & x \end{pmatrix} \mid x,y \in \mathbb{Z} \right\}$ is a subring of $M_2(\mathbb{Z})$.

$$\bullet \ \begin{pmatrix} x & x+y \\ x+y & x \end{pmatrix} - \begin{pmatrix} u & u+v \\ u+v & u \end{pmatrix} = \begin{pmatrix} x-u & (x-u)+(y-v) \\ (x-u)+(y-v) & x-u \end{pmatrix}.$$

Ring Homomorphisms and Isomorphisms

Definition: Let $(R, +, \cdot)$ and (S, \oplus, \odot) be rings. A function $f : R \to S$ is called a **homomorphism** if for all $a, b \in R$, we have:

- (1) $f(a+b) = f(a) \oplus f(b)$, and
- $(2) f(a \cdot b) = f(a) \odot f(b).$

A bijective homomorphism is called an **isomorphism**.

- The map $\mathbb{C} \to \mathbb{C}$ taking a + ib to a ib is an isomorphism of fields.
- The map $\mathbb{R} \to M_2(\mathbb{R})$ taking a to $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ is a homomorphism of rings.
- The map $\mathbb{C} o M_2(\mathbb{R})$ taking $a+\mathrm{i} b$ to $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a homomorphism of rings.

Ring Homomorphisms and Isomorphisms

- $(\mathbb{Z},+,\cdot)$ is a ring.
- $(\mathbb{Z}, \oplus, \odot)$ is a ring, where $a \oplus b = a + b 1$, and $a \odot b = a + b ab$.
- Define a map $f: \mathbb{Z} \to \mathbb{Z}$ taking a to 1-a.
- f(a+b) = 1-a-b, whereas $f(a) \oplus f(b) = (1-a) \oplus (1-b) = 1-a+1-b-1 = 1-a-b$.
- f(ab) = 1 ab, whereas $f(a) \odot f(b) = (1 a) \odot (1 b) = (1 a) + (1 b) (1 a)(1 b) = 2 a b 1 + a + b ab = 1 ab$.
- *f* is clearly bijective.
- f is therefore an isomorphism from $(\mathbb{Z}, +, \cdot)$ to $(\mathbb{Z}, \oplus, \odot)$.

Properties of Homomorphisms

Theorem: Let $f:(R,+,\cdot)\to (S,\oplus,\odot)$ be a ring homomorphism.

- (i) $f(0_R) = 0_S$.
- (ii) f(-a) = -f(a) for all $a \in R$.
- (iii) f(na) = nf(a) for all $a \in R$ and $n \in \mathbb{Z}$.
- (iv) $f(a^n) = f(a)^n$ for all $a \in R$ and $n \in \mathbb{N}$.
- (v) If A is a subring of R, then f(A) is a subring of S.

Proof (i)
$$0_R + 0_R = 0_R \Rightarrow 0_S \oplus f(0_R) = f(0_R) = f(0_R + 0_R) = f(0_R) \oplus f(0_R)$$
.

- (ii) $f(a+(-a)) = f(0_R) = 0_S$, that is, $f(a) \oplus f(-a) = 0_S$.
- (iii) and (iv) Use induction on n and (ii).
- (v) Since A is non-empty, f(A) is non-empty too. Let $u, v \in f(A)$. Then u = f(a) and v = f(b) for some $a, b \in A$. $a b \in A$ (since A is a subring of R). So

$$f(a-b) = f(a) \ominus f(b) = u \ominus v \in f(A)$$
. Likewise, show that $u \odot v \in f(A)$.

Properties of Homomorphisms

Theorem: Let $f:(R,+,\cdot)\to(S,\oplus,\odot)$ be a *surjective* ring homomorphism, where |S|>1.

- (i) If R has the identity 1_R , then $f(1_R)$ is the identity of S.
- (ii) If a is a unit in R, then f(a) is a unit in S, and $f(a^{-1}) = f(a)^{-1}$.
- (iii) If *R* is commutative, then *S* is commutative.

Proof (i) Take any $u \in S$. Since f is surjective, u = f(a) for some $a \in R$. But then $u = f(a) = f(a \cdot 1_R) = f(a) \odot f(1_R) = u \odot f(1_R)$. Likewise, $u = f(1_R) \odot u$.