About 10% of users do not close Windows properly. Suppose that Windows is installed in a public library that is used by random people in a random order:

1. On the average, how many users of this computer *do not* close Windows properly before someone *does* close it properly?

Since there are two outcomes of a trial resulting in either failure (of not closing Windows properly) or success (of closing Windows properly), the given example deals with a Bernoulli process.

The trials will be repeated until a fixed number of successes occurs (somebody closing Windows properly first time).

The number X of trials required to produce k successes is a negative binomial random variable and its probability distribution is called the negative binomial distribution:

$$b^*(x; k, p) = {x-1 \choose k-1} p^k q^{x-k}, \qquad x = k, k+1, k+2,$$

Since in this case k=1, the number of trials required for a single success, the distribution is a special case of the negative binomial distribution, the **geometric distribution**.

If repeated independent trials (of closing Windows) result in a success with probability p and a failure with probability q=l-p, then the probability distribution of the random variable X, the number of the trial on which the first success occurs is:

$$g(x,p) = pq^{x-1}, \qquad x = 1, 2, 3 \dots$$

Using the formula to calculate the mean of the random variable *X*, following a geometric distribution, I can obtain the average number of users, that do not close Windows properly, before somebody does close it properly.

p=0.9 (success of closing windows properly)

$$\mu = \frac{1}{p}$$

$$\mu = \frac{1}{0.9} \approx 1.111$$

On average, 1.1 users do not close Windows properly, before somebody does close it properly.

2. Suppose that in one day, 25 users make use of Windows. How many users are expected to have closed Windows properly? How many of them are expected to *not* close Windows properly?

From the information given, the variable *X* follows a **binomial distribution**.

n=25 (number of trials) p=0.9 (success case - closing Windows properly) q=0.1 (failure case - closing Windows not properly)

X = binomial random variable, representing the number of successes in 25 trials. Using the formula for the mean, I can calculate the average number of users that can close Windows properly.

$$\mu = np$$

$$\mu = 25(0.9)$$

$$\mu = 22.5$$

$$\sigma^{2} = npq$$

$$\sigma^{2} = 25(0.9)(0.1)$$

$$\sigma^{2} = 2.25$$

$$\sigma = 1.5$$

About 22.5±1.5 users will be able to close Windows properly on a day with 25 users.

n=25 (number of trials) p=0.1 (success case - closing windows not properly) q=0.9 (failure case - closing windows properly)

X = binomial random variable, representing the number of successes in 25 trials. Using the formula for the mean, I can calculate the average number of users that cannot close Windows properly.

$$\mu = np$$

$$\mu = 25(0.1)$$

$$\mu = 2.5$$

$$\sigma^{2} = npq$$

$$\sigma^{2} = 25(0.9)(0.1)$$

$$\sigma^{2} = 2.25$$

$$\sigma = 1.5$$

About 2.5 ± 1.5 users won't be able to close Windows properly on a day with 25 users.

The number of computer shutdowns during any month has a Poisson distribution, averaging 0.25 shutdowns per month.

3. What is the probability of at least 3 computer shutdowns during the next year?

0.25 shutdowns per month -> (0.25) (12) = average shutdowns per year (Property of Proportionality) $\lambda t = 3$

Let *X* be the Poisson random variable of the number of computer shutdowns in the next year. At least 3 computer shutdowns mean, that there are equal than or more than 3 shutdowns in a year.

$$P(X \ge 3) = 1 - P(\le 2) = 1 - \sum_{x=0}^{2} p(x;3)$$

Use of R to compute the probability:

```
> 1-ppois(2,3)
[1] 0.5768099
```

This calculation war verified using table A2 from the textbook:

$$P(X \ge 3) = 1 - P(\le 2) = 1 - \sum_{x=0}^{2} p(x;3) = 1 - 0.4232 = 0.5768$$

The probability, that at least 3 computer shutdowns are going to happen the next year is about 0.5778.

4. During the next year, what is the probability of at least 3 months (out of 12) with exactly 1 computer shutdown each?

 $\lambda t = 1$ (Arrival rate: exactly 1 Computer shutdown per month)

Let *X* be the Poisson random variable of the number of computer shutdowns in the next year. At least 3 months with exactly one computer shutdown means:

$$P(3 \le X \le 12) = \sum_{x=3}^{12} p(x;1)$$

Use of R to compute the probability:

```
> sum=0
> for(i in 3:12)
+ sum=sum+dpois(i, 1)
> sum
[1] 0.0803014
```

The probability, that there are at least 3 months with exactly 1 computer shutdown in the next year is 0.0803.