Retail Giant Sales Forecasting

Submitted by-VAIBHAV BHARGAVA (DS-C42)

Problem statement

- Global Mart is an online supergiant store that has worldwide operations. This store takes orders and delivers across the globe and deals with all the major product categories consumer, corporate and home office.
- As a sales manager for this store, you have to forecast the sales of the products for the next 6 months, so that you have a proper estimate and can plan your inventory and business processes accordingly.

Approach for the Assignment

- Importing "Global Superstore" Dataset

 Understanding basic structure of the data

 Preparing the data by changing the datatype of "Order Date", concatenating "Market" and "Segment" Column

 Performing Exploratory Data Analysis on "Sales" and "Profit" columns

 Pre-processing data for Model Building which includes creating Pivot Table, Train-Test Split, calculation of COV and extracting Final Dataset

 Time Series Decomposition(Additive and Multiplicative) to check Trend, Seasonality and Residual Noise in the data

 Creating Exponential Smoothing Models which includes Simple, Holt's Method and Holt's Winter Method
 - Checking Stationarity of Given Dataset using Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Auto Regressive Test
 - Carrying out Box-Cox Transformation and Differencing to make Dataset Stationary and again doing ADF and KPSS test to confirm the same.
 - Performing Train-Test Split and moving Forward for building Auto-Regressive Models like AR,MA,ARMA,ARIMA,SARIMA Models
 - Evaluating all the models on the basis of Mean Absolute Percentage Error (MAPE).
 - Concluding the Best Model based on Lowest MAPE value

Market Segments and their respective CoV Values

Market Segment	CoV
APAC-Consumer	0.596
EU-Consumer	0.647
LATAM-Consumer	0.681
EU-Corporate	0.689
APAC-Corporate	0.732
LATAM-Corporate	0.880
US-Corporate	1.027
APAC-Home Office	1.049
US-Consumer	1.095
EU-Home Office	1.114
Canada-Corporate	1.197
US-Home Office	1.217
LATAM-Home Office	1.344
Africa-Consumer	1.429

Market Segment	CoV
Canada-Consumer	1.476
Africa-Corporate	1.665
Africa-Home Office	1.990
Canada-Home Office	2.188
EMEA-Consumer	2.717
EMEA-Home Office	6.067
EMEA-Corporate	6.780

Conclusion:-

Since we want very less variation in profit we will choose the Market Segment with least value of COV i.e. APAC-Customer for our further forecasting purposes.

Time Series Decomposition-Additive

Time Series Decomposition-Multiplicative

Flowchart

Choosing the Right Time Series Method

□ Conclusion:

Since the no of Data Points are more than 10 and Data Set is showing Trend and Seasonal pattern as shown in Previous Slides. Hence, we can conclude that Holt Winters from Exponential Smoothing and SARIMA Model from ARIMA Models will perform better as they take care of Seasonality and Trend better than other Models.

Exponential Smoothing Models

Method	MAPE
Simple Exponential	27.70
Holt's Exponential	26.12

Exponential Smoothing Models

Method	MAPE
Simple Exponential	27.70
Holt's Exponential	26.12
Holt Winters Additive	17.32
Holt Winters Multiplicative	18.27

Auto Regressive Models

Method	MAPE
Simple Exponential	27.70
Holt's Exponential	26.12
Holt Winters Additive	17.32
Holt Winters Multiplicative	18.27
Auto Regressive(AR)	27.27
Moving Average(MA)	81.64

Auto Regressive Models

Method	MAPE
Simple Exponential	27.70
Holt's Exponential	26.12
Holt Winters Additive	17.32
Holt Winters Multiplicative	18.27
Auto Regressive(AR)	27.27
Moving Average(MA)	81.64
ARMA	77.66
ARIMA	77.66

Auto Regressive Models

Method	MAPE
Simple Exponential	27.70
Holt's Exponential	26.12
Holt Winters Additive	17.32
Holt Winters Multiplicative	18.27
Auto Regressive(AR)	27.27
Moving Average(MA)	81.64
ARMA	77.66
ARIMA	77.66
SARIMA	18.38

Conclusion

- APAC-Consumer Segment proved to be most Profitable Segment based on COV Value.
- From the Simple Exponential Smoothing Methods Holt Winter's Additive Method performed best since it has lowest MAPE value among exponential Smoothing Methods
- From the Auto Regressive Models SARIMA method performed best since it has lowest MAPE value among auto regressive models
- Overall Holt Winter's Method performed best since it has lowest MAPE value among all.
- While Doing Time Series Decomposition we have observed that data has Trend and Seasonality hence Holt Winters or SARIMA model will perform better on this data since they capture Trend and Seasonality better than any other Models.
- While referring Forecast Plots of Holt Winter's and SARIMA Models we can see clearly that the model is capturing the Trend and Seasonality of Test Data quite well compared to other Models and hence has lower MAPE values.

Thank you!