Note: There are 6 problems with a total of 130 points. You are required to do all the problems. In the problems, the base of $\log n$ is 2.

- 1. $(7 \times 5 = 35 \text{ points})$ Let f(n) and g(n) be two functions from N^+ to R^+ . Prove or disprove the following assertions. To disprove, you only need to give a counter example for functions f(n) and/or g(n) which make the assertion false.
 - (a) O(O(f(n))) = O(f(n))
 - (b) $O(\Theta(f(n))) = O(f(n))$
 - (c) $\Theta(O(f(n))) = \Theta(f(n))$
 - (d) $\Omega(O(f(n))) = O(\Omega(f(n)))$
 - (e) If $f(n) = \Theta(h(n))$ and $g(n) = \Theta(h(n))$, then $f(n) + g(n) = \Theta(h(n))$
 - (f) If $f(n) = \Theta(g(n))$, then $2^{f(n)} = \Theta(2^{g(n)})$
 - (g) $f(n) + g(n) = \Theta(\min(f(n) + g(n)))$
- 2. $(2 \times 5 = 10 \text{ points})$ Use mathematical induction to prove the following.
 - (a) $\sum_{i=1}^{n} ir^{i-1} = \frac{1-r^{n+1}-(n+1)(1-r)r^n}{(1-r)^2}$ for all $n \ge 1$, where $0 \le r < 1$.
 - (b) Every integer $n \ge 1$ can be represented as the sum of distinct Fibonacci numbers, no two of which are consecutive in the Fibonacci sequence.
- 3. $(4 \times 5 = 20 \text{ points})$ Prove or disprove the following assertions.
 - (a) $n! = O(n^n)$
 - (b) $\sum_{i=1}^{n} i \log i = \Theta(n^2 \log n)$
 - (c) If $n = 2^k$, then $\sum_{i=0}^k \log(n/2^i) = \Theta(\log^2 n)$
 - (d) $n^n = O(2^n)$
- 4. (15 points) Rank the following functions in asymptotically increasing order based on O-notation and justify your ordering: n!, $(lgn)^{lg(lgn)}$, $[lg(lgn)]^{lgn}$, $2^{n^{0.001}}$, $n^{1/lgn}$, $lg^*(lgn)$, $2^{\sqrt{2lgn}}$, 2^{2^n} , n^5 , \sqrt{lgn} .
- 5. $(8 \times 5 = 40 \text{ points})$ Find a closed form for each T(n). You may assume that T(1) = 1.
 - (a) $T(n) = T(n-1) + 2^n$
 - (b) $T(n) = 4T(n/3) + n^2$
 - (c) T(n) = 6T(n/7) + n
 - (d) $T(n) = T(\sqrt{n}) + \log n$
 - (e) $T(n) = 2 + \sum_{i=1}^{n-1} T(i)$
 - (f) $T(n) = 3T(n/2) + n \log n$
 - (g) $T(n) = 2T(n/2) + n/\log n$
 - (h) $T(n) = \sqrt{n}T(\sqrt{n}) + n$
- 6. (10 points) The sequence $\langle a_n \rangle$ is defined for $n \geq 0$ by $a_0 = 2$, $a_1 = 5$, and $a_n = 5a_{n-1} 6a_{n-2}$ for n > 1. The first few elements of the sequence are 2, 5, 13, 35, 97. Find a closed form for a_n .