```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
\verb|import statsmodels.api| as sm
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
df=pd.read_csv('/content/archive.zip')
```

_		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potabilit
	0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	
	1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076	4.500656	
	2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093	3.055934	
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	
	3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419	66.687695	4.435821	
	3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.903225	NaN	2.798243	
	3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.039070	69.845400	3.298875	
	3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.168946	77.488213	4.708658	
	3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.140368	78.698446	2.309149	
	076 ro	v 10 aal	lumno								•

df.columns

```
dtype='object')
```

df.shape

→ (3276, 10)

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):
     # Column
                          Non-Null Count Dtype
    ---
         -----
                           -----
                          2785 non-null
     0
                                           float64
         ph
         Hardness
                          3276 non-null
                                           float64
         Solids
                           3276 non-null
                                            float64
         Chloramines 3276 non-null
                                           float64
         Sulfate
                           2495 non-null
                                            float64
         Conductivity
                           3276 non-null
                                           float64
         Organic_carbon 3276 non-null Trihalomethanes 3114 non-null
                                            float64
                                           float64
         Turbidity
                           3276 non-null
                                           float64
                           3276 non-null
                                           int64
         Potability
    dtypes: float64(9), int64(1)
    memory usage: 256.1 KB
```

df.isnull().sum()

ph	491
Hardness	0
Solids	0
Chloramines	0
Sulfate	781
Conductivity	0
Organic_carbon	0
Trihalomethanes	162
Turbidity	0
Potability	0
dtype: int64	
	Hardness Solids Chloramines Sulfate Conductivity Organic_carbon Trihalomethanes Turbidity Potability

df1=df.dropna()
df1

→		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potabili
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	
	5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735	54.917862	2.559708	
	6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695	84.603556	2.672989	
	7	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817	62.798309	4.401425	
	3267	8.989900	215.047358	15921.412018	6.297312	312.931022	390.410231	9.899115	55.069304	4.613843	
	3268	6.702547	207.321086	17246.920347	7.708117	304.510230	329.266002	16.217303	28.878601	3.442983	
	3269	11.491011	94.812545	37188.826022	9.263166	258.930600	439.893618	16.172755	41.558501	4.369264	
	3270	6.069616	186.659040	26138.780191	7.747547	345.700257	415.886955	12.067620	60.419921	3.669712	
	3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419	66.687695	4.435821	
ŕ	0011 ro	v 10 oolu	mno								•

df1.isnull().sum()

⇒ ph Hardness 0 0 Solids 0 Chloramines 0 Sulfate 0 Conductivity 0 Organic_carbon 0 Trihalomethanes 0 Turbidity Potability dtype: int64

df1.info()

<</pre>
<<class 'pandas.core.frame.DataFrame'>
 Int64Index: 2011 entries, 3 to 3271
 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype							
0	ph	2011 non-null	float64							
1	Hardness	2011 non-null	float64							
2	Solids	2011 non-null	float64							
3	Chloramines	2011 non-null	float64							
4	Sulfate	2011 non-null	float64							
5	Conductivity	2011 non-null	float64							
6	Organic_carbon	2011 non-null	float64							
7	Trihalomethanes	2011 non-null	float64							
8	Turbidity	2011 non-null	float64							
9	Potability	2011 non-null	int64							
dtvn	$\frac{1}{1}$									

dtypes: float64(9), int64(1)
memory usage: 172.8 KB

df1.shape

→ (2011, 10)

df1.corr()

df["Potability"].value_counts()

Name: Potability, dtype: int64

plt.figure(figsize=(12,8))
sns.heatmap(df.corr(),annot=True)

→ <Axes: >

df1.describe()

→		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	P
	count	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	20
	mean	7.085990	195.968072	21917.441374	7.134338	333.224672	426.526409	14.357709	66.400859	3.969729	
	std	1.573337	32.635085	8642.239815	1.584820	41.205172	80.712572	3.324959	16.077109	0.780346	
	min	0.227499	73.492234	320.942611	1.390871	129.000000	201.619737	2.200000	8.577013	1.450000	
	25%	6.089723	176.744938	15615.665390	6.138895	307.632511	366.680307	12.124105	55.952664	3.442915	
	50%	7.027297	197.191839	20933.512750	7.143907	332.232177	423.455906	14.322019	66.542198	3.968177	
	75%	8.052969	216.441070	27182.587067	8.109726	359.330555	482.373169	16.683049	77.291925	4.514175	
	may 4	1/ 000000	217 22210/	56/88 672/13	13 127000	ለ ደ1 በ 2 በፍለን	753 3/2620	27 በበፍ7በ7	12/ 000000	6 /0/7/0	•

df1.head()

₹		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0
	5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735	54.917862	2.559708	0
	6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695	84.603556	2.672989	0
	7	8 635810	2013 361E33	12672 001764	4 563000	202 200771	A7A 6076A5	12 262917	£2 708300	A A0143E	•

df1.tail()

₹		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potabili
	3267	8.989900	215.047358	15921.412018	6.297312	312.931022	390.410231	9.899115	55.069304	4.613843	
	3268	6.702547	207.321086	17246.920347	7.708117	304.510230	329.266002	16.217303	28.878601	3.442983	
	3269	11.491011	94.812545	37188.826022	9.263166	258.930600	439.893618	16.172755	41.558501	4.369264	
	3270	6.069616	186.659040	26138.780191	7.747547	345.700257	415.886955	12.067620	60.419921	3.669712	
	2274	4 EEQ100	103 691735	475 <u>80 001603</u>	7 166630	350 0/957/	EGE 191171	12 201/110	66 697605	ላ ላሪድዕንተ	>

```
x=df1.drop('Potability',axis=1)
y=df1["Potability"]
x.shape,y.shape
```

→ ((2011, 9), (2011,))

Normalization

```
scaler=StandardScaler()
x = scaler.fit_transform(x)
array([[ 0.7824658 , 0.56411376, 0.01168692, ..., 1.22703167, 2.11165179, 0.84476056],
            [ 1.27546291, -0.45565257, -0.45583491, ..., -0.84215371, -2.14039865, 0.13503344],
            [-0.95483488, -0.23461412, 0.7906452, ..., -1.79234008,
             -0.7144228 , -1.80736621],
            [ 2.8004919 , -3.10036538, 1.76750279, ..., 0.54602107,
             -1.5455849 , 0.51212515],
            [-0.64615977, -0.28531709, 0.48857575, ..., -0.6889287,
             -0.3721083 , -0.3845623 ],
            [-1.53717226, -0.07007504, 2.9702871 , ..., -0.139372 , 0.01784567, 0.59743748]])
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
x_train,x_test,y_train,y_test
                  ph
                        Hardness
                                         Solids
      1888 8.662710 173.531947 20333.079495
      301
           10.049674 132.832837 11557.032038
            5.290004 174.738423 28697.004827
      3027
      1919 8.458797 241.768340 29317.142440
      1587
            6.539546 215.445204 28979.767601
      2248 9.036504 199.321890 21696.003242
      2058 7.301563 177.662895 23441.267143
            8.384296 223.328185 27463.654795
      2272
            6.341751 139.959471 18058.320292
      1629
      2310 6.603641 206.919743 14598.025787
      [1407 rows x 3 columns],
                                           ph
                                                 Hardness
                                                                 Solids
      3103 5.967274 187.085084 30846.585474
           7.539882 185.825975 21575.245221
      1698 7.974065 160.224182 29477.764399
      3042 4.933106 162.184382 27771.080134
      394 8.736371 194.677687 24283.658791
           6.246264 163.218038
                                 26408.881768
      698
      2314 5.161879 179.636409
                                 18666,563638
           6.887864 173.325022 19947.924178
      426
      1628 6.769769 178.331753 16980.258481
      2409 5.678221 143.186508 18377.008261
      [604 rows x 3 columns], 1888
```

```
3027
      1919
              1
      1587
              1
      2248
              0
      2058
      2272
              0
      1629
              1
      2310
      Name: Potability, Length: 1407, dtype: int64, 3103
      466
      1698
      3042
      394
              1
      698
              1
      2314
              1
      426
              0
      1628
              1
      2409
      Name: Potability, Length: 604, dtype: int64)
x_train.shape,x_test.shape
```

```
→ ((1407, 3), (604, 3))
```

Logistic Regression

```
#Logistic Regression
from sklearn.linear_model import LogisticRegression
#Object of LR
model = LogisticRegression()
mode1
     ▼ LogisticRegression
     LogisticRegression()
#Training for this model
model.fit(x_train,y_train)
     ▼ LogisticRegression
     IngisticRegression()
#making Prediction
pred = model.predict(x_test)
# Accuaracy checking of Logistic Regression
accuracy_lr = accuracy_score(y_test,pred)
accuracy_lr*100
→ 60.59602649006622
```

Decision Tree Classifier

```
features=['ph','Hardness','Solids']
x=df1[features]
y=df1['Potability']
х,у
→
    (
                 ph
                       Hardness
                                       Solids
            8.316766 214.373394 22018.417441
     4
            9.092223 181.101509 17978.986339
            5.584087 188.313324 28748.687739
           10.223862 248.071735 28749.716544
            8.635849 203.361523 13672.091764
            8.989900
                     215.047358
                                15921.412018
      3267
            6.702547
                     207.321086
                                 17246.920347
      3268
                      94.812545
                                 37188.826022
     3269 11.491011
            6.069616 186.659040
                                 26138.780191
     3270
            4.668102 193.681735
                                 47580.991603
     3271
      [2011 rows x 3 columns], 3
```

dtree.predict([[8.316766,214.373394,22018.417441]])

Name: Potability, Length: 2011, dtype: int64)

 $from \ sklearn.tree \ import \ Decision Tree Classifier$

/usr/local/lib/python3.9/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but DecisionTreeClassi warnings.warn(array([0])

dtree.predict([[11.491011,94.812545,37188.826022]])

/usr/local/lib/python3.9/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but DecisionTreeClassi warnings.warn(array([1])

Accuracy check for Decision Tree
accuracy_dt = accuracy_score(y_test,pred)
accuracy_dt*100

→ 60.59602649006622

18/08/2024, 20:11

5

6

3267

3268

3269

3270

3271

0

0

1

1

1

1

1

v DecisionTreeClassifier
DecisionTreeClassifier()

from sklearn import tree

#Creating a model tree
dtree=DecisionTreeClassifier()
#Traning Decision Tree
dtree.fit(x,y)

Support Vector Machine

```
#Import svm model
from sklearn import svm
#Create a svm Classifier
clf = svm.SVC(kernel='linear') # Linear Kernel
clf
            SVC
    SVC(kernel='linear')
#Train the model using the training sets
clf.fit(x_train,y_train)
\overline{\mathbf{x}}
            SVC
    SVC(kernel='linear')
#Predict the response for test dataset
y_pred = clf.predict(x_test)
y_pred
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
```

```
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,
                    0, 0,
                       0, 0,
                           0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
                           0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0,
   0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                    0, 0, 0, 0,
                           0, 0, 0, 0, 0,
 0,
   0, 0, 0, 0, 0, 0, 0, 0, 0,
                    0, 0, 0, 0,
                           0, 0,
                              0,
 0,
   0, 0, 0, 0, 0, 0, 0, 0, 0,
                    0, 0, 0, 0,
                           0, 0,
                              0, 0, 0,
 0,
   0, 0, 0,
        0, 0,
           0, 0, 0,
                0, 0,
                    0, 0, 0, 0,
                           0,
                             1,
                              0,
 0,
   0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0,
                           0,
 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0])
```

accuracy_svm=accuracy_score(y_test,y_pred) accuracy_svm*100

5▼ 58.94039735099338

Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
# Create a Random Forect Classifier
model = RandomForestClassifier()
mode1
\overline{2}
     RandomForestClassifier
     RandomForest(lassifier()
# Training model Forest
model.fit(x_train,y_train)
     ▼ RandomForestClassifier
     RandomForestClassifier()
#Predict the model forest
y_pred = model.predict(x_test)
y_pred
1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
             0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
                                           0, 0, 0, 0, 0, 0, 0, 0,
           0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                                                      0,
                                                            0,
                                                         1,
             0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                                           0, 1, 1, 0,
                                                      1, 0, 0, 0, 0,
             0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,
                                           0, 1, 0, 1,
                                                      0,
                                                         0,
                                                            1,
             1,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                                                         1,
             1,
                0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0,
             0, 1,
                   0, 1, 0, 1,
                              0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,
             0,
                0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,
                                                 1, 1, 0, 0,
           0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
             0,
                0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
                                                      0, 0,
           1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
                                                      1, 0,
                              1, 0, 0, 1, 0,
             1,
                0, 0, 0, 1,
                                           0, 0, 0, 0, 0, 0,
                           1,
           1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
             1,
                0, 0, 0, 0, 0, 1, 0, 1, 1, 1,
                                           0, 0, 0, 0, 0, 1, 1, 1,
             0,
                0, 0, 1,
                        1,
                           0,
                              0, 0, 1, 0, 0, 0, 0,
                                                 0, 0,
                                                       0,
             0,
                0,
                   0, 1, 0, 0, 1, 0, 1,
                                      0, 0,
                                           0, 1,
                                                 0, 0,
                                                      0,
                                                         0,
                                                            0, 0, 0,
             1,
                0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
                                                 0, 0,
                                                      1,
                                                         0,
                                                            0, 0, 0,
             0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0,
           0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1,
             0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,
                                                       1,
           0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,
             0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
          1,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,
           0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
```

accuracy_rf = accuracy_score(y_test,y_pred)

accuracy_rf*100

55.29801324503312

Start coding or generate with AI.