

Examples of Sequence Data Sequence Sequence **Element Event Database** (Transaction) (Item) Customer A set of items bought by Books, diary products, Purchase history of a given customer a customer at time t CDs, etc Web Data Browsing activity of a A collection of files Home page, index particular Web visitor viewed by a Web visitor page, contact info, etc after a single mouse click Event data History of events generated Events triggered by a Types of alarms sensor at time t generated by sensors by a given sensor DNA sequence of a An element of the DNA Bases A,T,G,C Genome sequences particular species sequence Element **Event** (Transaction) E3 (Item) Sequence © Tan,Steinbach, Kumar 4/18/2004 Introduction to Data Mining

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$s = < e_1 e_2 e_3 ... >$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

-

Examples of Sequence

- Web sequence:
 - < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >
- Sequence of initiating events causing the nuclear accident at 3-mile Island:

 $(http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)$

- < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}>
- Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Formal Definition of a Subsequence

• A sequence $< a_1 a_2 \dots a_n >$ is contained in another sequence $< b_1 b_2 \dots b_m >$ $(m \ge n)$ if there exist integers $i_1 < i_2 < \dots < i_n$ such that $a_1 \subseteq b_{i1}$, $a_2 \subseteq b_{i1}$, ..., $a_n \subseteq b_{in}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 5

Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, *minsup*
- Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences: <{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc.
- How many k-subsequences can be extracted from a given n-sequence?

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

7

Sequential Pattern Mining: Example

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	1, 2 2,3,4 2,4,5
D	1	2
D	2	3, 4 4, 5
D	3	4, 5
E	1	1, 3
F	2	2 4 5

Minsup = 50%

Examples of Frequent Subsequences:

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

Candidate 2-subsequences:

$$\{i_1, i_2\}$$
>, $\{i_1, i_3\}$ >, ..., $\{i_1\} \{i_1\}$ >, $\{i_1\} \{i_2\}$ >, ..., $\{i_{n-1}\} \{i_n\}$ >

Candidate 3-subsequences:

$$<\{i_1, i_2, i_3\}>, <\{i_1, i_2, i_4\}>, ..., <\{i_1, i_2\} \{i_1\}>, <\{i_1, i_2\} \{i_2\}>, ..., \\ <\{i_1\} \{i_1, i_2\}>, <\{i_1\} \{i_1, i_3\}>, ..., <\{i_1\} \{i_1\} \{i_1\}>, <\{i_1\} \{i_2\}>, ... \\$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

9

Generalized Sequential Pattern (GSP)

- Step 1:
 - Make the first pass over the sequence database D to yield all the 1element frequent sequences
- Step 2:

Repeat until no new frequent sequences are found

- Candidate Generation:
 - Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items
- Candidate Pruning:
 - ◆ Prune candidate k-sequences that contain infrequent (k-1)-subsequences
- Support Counting:
 - Make a new pass over the sequence database D to find the support for these candidate sequences
- Candidate Elimination:
 - Eliminate candidate k-sequences whose actual support is less than minsup

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences <\(i_1\) and <\(i_2\) will produce two candidate 2-sequences: <\(i_1\) \(i_2\) and <\(i_1\) i₂\>
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - ◆ The resulting candidate after merging is given by the sequence w₁ extended with the last event of w₂.
 - If the last two events in w₂ belong to the same element, then the last event in w₂ becomes part of the last element in w₁
 - Otherwise, the last event in w₂ becomes a separate element appended to the end of w₁

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

11

Candidate Generation Examples

- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\} \{2 \ 6\} \{4\} >$ and $w_2 = <\{1\} \{2 \ 4 \ 5\} >$ to produce the candidate $<\{1\} \{2 \ 6\} \{4 \ 5\} >$ because if the latter is a viable candidate, then it can be obtained by merging w_1 with $<\{1\} \{2 \ 6\} \{5\} >$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

x_g: max-gap

n_g: min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Mining Sequential Patterns with Timing Constraints

Approach 1:

- Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- Question:
 - Does Apriori principle still hold?

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

15

Apriori Principle for Sequence Data

Object	Timestamp	Events
Α	1	1,2,4
Α	2	2,3
Α	3	5
В	1	1,2 2,3,4 1, 2 2,3,4 2,4,5
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
F	2	2 4 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 16

Contiguous Subsequences

s is a contiguous subsequence of

$$w = \langle e_1 \rangle \langle e_2 \rangle ... \langle e_k \rangle$$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e₁ or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains at least 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: s = < {1} {2} >
 - is a contiguous subsequence of < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} >
 - is not a contiguous subsequence of < {1} {3} {2}> and < {2} {1} {3} {2}>

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

17

Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

Timing Constraints (II)

x_q: max-gap

n_q: min-gap

ws: window size

m_s: maximum span

$$x_q = 2$$
, $n_q = 0$, $ws = 1$, $m_s = 5$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,6} {8} >	< {3} {5} >	No
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 19

Modified Support Counting Step

- Given a candidate pattern: <{a, c}>
 - Any data sequences that contain

$$<\dots \{a\} \ \dots \ \{c\} \dots > \quad (\ where \ time(\{c\}) - time(\{a\}) \leq ws)$$

$$<...\{c\}...\{a\}...>$$
 (where time($\{a\}$) – time($\{c\}$) \leq ws)

will contribute to the support count of candidate pattern

Other Formulation

- In some domains, we may have only one very long time series
 - Example:

© Tan,Steinbach, Kumar

- monitoring network traffic events for attacks
- monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining

4/18/2004

Introduction to Data Mining

General Support Counting Schemes

Object's Timeline

Sequence: (p) (q)

Method Support
Count

COBJ 1

CWIN 6

Assume: $x_g = 2 \text{ (max-gap)}$ $n_g = 0 \text{ (min-gap)}$ ws = 0 (window size) $m_s = 2 \text{ (maximum span)}$