

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-084101
 (43)Date of publication of application : 19.03.2003

(51)Int.Cl. G02B 1/04
 G02B 3/00
 G02B 3/08
 G03B 21/62

(21)Application number : 2001-280843

(71)Applicant : DAINIPPON PRINTING CO LTD

(22)Date of filing : 17.09.2001

(72)Inventor : DOI YASUHIRO

(54) RESIN COMPOSITION FOR OPTICAL DEVICE, OPTICAL DEVICE AND PROJECTION SCREEN

(57)Abstract:

PROBLEM TO BE SOLVED: To overcome such problems wherein if faces of optical devices are to be adhered, the contour of the optical devices are apt to be damaged and deforms, that even when the hardness is increased, the face of the optical device is easily chipped to induce troubles for handling or cutting, that when the glass transition temperature of the resin is low, rubber elasticity is not obtained and the material plastically deforms by pressure and can not keep its form, and that when the glass transition temperature is too high, the material has high rigidity to produce warpage of the lens sheet.

SOLUTION: The above problems can be overcome by specifying the ranges of the half width, 0.1 width and the maximum loss tangent obtained from the loss tangent vs. temperature curve and the temperature corresponding to the maximum loss tangent of the resin composition which constitutes a Fresnel lens sheet 2 or a lenticular lens sheet 3 constituting a projection screen 1.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2003-84101

(P2003-84101A)

(43) 公開日 平成15年3月19日 (2003.3.19)

(51) Int.Cl.

G 02 B 1/04
3/00
3/08
G 03 B 21/62

識別記号

F.I.

G 02 B 1/04
3/00
3/08
G 03 B 21/62

デマヨーク(参考)

2 H 021

A

審査請求 未請求 請求項の数 7 O.L. (全 9 頁)

(21) 出願番号

特願2001-280843(P2001-280843)

(22) 出願日

平成13年9月17日 (2001.9.17)

(71) 出願人 000002897

大日本印刷株式会社

東京都新宿区市谷加賀町一丁目1番1号

(72) 発明者 土井 康裕

東京都新宿区市谷加賀町一丁目1番1号

大日本印刷株式会社内

(74) 代理人 100111659

弁理士 金山 晴

F ターム(参考) 2H021 BA22 BA24 BA29

(54) 【発明の名称】 光学素子用樹脂組成物、光学素子、およびプロジェクションスクリーン

(57) 【要約】

【課題】 光学素子面どうしが密着する際に、形状が潰れて変形する恐れがあった点、単に硬度を高めても、光学素子面が欠けやすくなり、取扱い時や断裁時に問題を招ぐ恐れがあった点、樹脂のガラス転移点が低いと、ゴム弾性が得られず、圧力に対して塑性変形して、形状の保持ができない点、もしくはガラス点移転があまりに高いと、剛性が高すぎる結果、レンズシートの湾曲を生じる点等を解消することを課題とするものである。

【解決手段】 プロジェクションスクリーン1を構成するフレネルレンズシート2もしくはレンヂキュラーレンズシート3を構成する樹脂組成物として、損失正接～温度曲線から求めた半値幅、0:1幅、損失正接の最大値および相当する温度等の範囲を規定することにより、課題を解決することができた。

1

【特許請求の範囲】

【請求項1】 光学素子を構成するためのものであって、温度変化に関して損失正接を測定した損失正接～温度曲線における山の部分の損失正接の最大値の $1/2$ である位置における前記山の幅を $W_{1/2}$ (°C)、前記損失正接が0.1である位置における前記山の幅を $W_{0.1}$ (°C)、および前記の二つの山の幅の差△W(°C)を△W = $W_{0.1} - W_{1/2}$ と定めるとき、△Wが、1.6°C～31°Cあることを特徴とする光学素子用樹脂組成物。

【請求項2】 光学素子を構成するためのものであって、温度変化に関して損失正接を測定した損失正接～温度曲線における山の部分の損失正接の最大値の $1/2$ である位置における山の幅を $W_{1/2}$ (°C)、および前記損失正接が0.1である位置における前記山の幅を $W_{0.1}$ (°C)とするととき、前記の二つの山の幅の比である $W_{0.1}/W_{1/2}$ が、1.4～2.7であることを特徴とする光学素子用樹脂組成物。

【請求項3】 光学素子を構成するためのものであって、温度変化に関して損失正接を測定した損失正接～温度曲線における山の部分の損失正接の最大値の $1/2$ である位置における前記山の幅 $W_{1/2}$ (°C)が、13°C～50°Cで、かつ前記損失正接の最大値における温度の値Tp(°C)が、18°C～47°C、もしくは52°C～80°Cあることを特徴とする光学素子用樹脂組成物。

【請求項4】 前記損失正接の最大値が、0.4～1.2であることを特徴とする請求項1～請求項3いずれか記載の光学素子用樹脂組成物。

【請求項5】 請求項1～請求項4いずれか記載の光学素子用樹脂組成物で、その全部もしくは一部が構成されていることを特徴とする光学素子。

【請求項6】 前記光学素子がフレネルレンズシートであることを特徴とする請求項5記載の光学素子。

【請求項7】 請求項5もしくは請求項6記載の光学素子と、レンチキュラーレンズシートとかなるプロジェクションスクリーン。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、光学素子用樹脂組成物に関するものであって、粘弾性に関連するパラメータで規定することにより、この樹脂組成物で構成された光学素子が使用される際に、表面が削り取られたり、摩耗することや、加圧によりつぶされることを最小限とした光学素子用樹脂組成物に関するものである。また、本発明は、光学素子をレンチキュラーレンズシートのような、他の光学部材と組み合わせて用いる場合、光学素子により、光学部材の表面が削れたり、摩耗したりすることを最小限とすることが可能な光学素子、および、レンチキュラーレンズシートとの組み合わせからなるプロジェクションスクリーンに関するものもある。

【0002】

2

【従来の技術】 光学素子は、透明な基材上に、光学的形状を付与した樹脂組成物の層が積層されて光学素子面を有しているか、もしくはそのような樹脂組成物単独の層に直接に光学的形状が付与された光学素子面を有するものである。光学素子面の光学的形状には種々のものがあるが、樹脂組成物を用いて形成される光学素子には、微細なレンズ形状を配列した、全体として見れば多数の凹凸からなるものが多い。

【0003】 ところで、光学素子を使用する際に、複数の光学素子を組み合わせて使用することがあり、二枚以上の光学素子を組み合わせて使用する際、効果を最大限に發揮するためと、光学素子面の保護を兼ねて、光学素子面どうしを向かい合わせて密着させることがしばしば行なわれている。最も典型的な例が、プロジェクションスクリーンにおけるフレネルレンズシートとレンチキュラーレンズシートの場合で、通常、フレネルレンズ面(サーキュラーフレネル凸レンズである。)とレンチキュラーレンズ面を密着させて使用する。

【0004】 このように、光学素子を光学素子面どうしで密着させる際には、いずれもが凹凸面であるため、互いに他に対する影響を及ぼす。例えば、上記の典型的な例においては、フレネルレンズ面の断面形状は、鋸刃状で、先端が尖っており、レンチキュラーレンズは、断面が円形もしくは橢円形等の丸みを有し、盛り上がった形状を有している。このようなフレネルレンズシートとレンチキュラーレンズシートとが密着すると、レンチキュラーレンズの盛り上がった頂部と、フレネルレンズの尖った先端とが、点接触するので、接触圧により、レンチキュラーレンズおよび/またはフレネルレンズの形状が潰れる変形が生じ得る。

【0005】 上記のようなレンズの形状の潰れは、レンズを構成する樹脂の硬度を高めることにより解消が可能ではあるが、単に硬度を高めるのみでは、取扱い時や断裁時にレンズが欠けやすくなり、かえって問題を招くので、硬度を高める一方、粘性の要素も残すことが望まれる。また、樹脂の硬度は、一般にガラス転移温度(Tg)との関係が深いが、樹脂のガラス転移温度(Tg)をあまりに低くしそぎると、ゴム弾性が得られなくなり、圧力がかかると塑性変形するに至る。通常、ある程度の架橋密度を有していれば、ガラス転移温度が低くてもゴム弾性が発現し、圧力がかかるでも、塑性変形するには至らないが、光学素子用樹脂組成物においては、樹脂のガラス転移温度を下げ、かつ架橋密度を上げようすると、光学素子用としては必須である屈折率の向上のためにベンゼン環等からなる剛直な鎖を導入しなければならず、この事がガラス転移温度を上昇させる原因となる。逆に、ガラス転移温度を高くする方向は、屈折率の向上の点では有利となるが、あまりにガラス転移温度を高くしそぎると、剛性が高くなりすぎる結果、レンズシートの湾曲を生じることにもなる。また、光学素子は必

ずしも常温で使用されるとは限らず、光学機器やディスプレイ装置において使用される際に、機器や装置の発熱により、高温にさらされることがあり得るし、製品が製造工場から出荷され、輸送される途上においては、コンテナ内や船倉内の温度が60°C程度になることもあり得るが、上記の欠点は、これらの高温においては、一層、増幅される。

【0006】

【発明が解決しようとする課題】本発明においては、従来、光学素子の光学素子面どうしが密着する際に、接触圧により、光学素子の形状が潰れて変形する恐れがあった点、単に硬度を高めても、光学素子面が欠けやすくなり、取扱い時や断裁時に問題を招く恐れがあった点、また、樹脂のガラス転移温度をあまりに低くしすぎると、ゴム弾性が得られなくなり、圧力がかかると塑性変形する点、これを架橋密度の向上により解消しようとしても、屈折率の向上を図らなければならないためにガラス転移温度を下げることが阻害される点、もしくは高くしそぎると、剛性が高くなりすぎる結果、レンズシートの湾曲をまねぐ点を、上記した広い温度範囲において解消することを課題とするものである。また、本発明においては、このような改良された光学素子用樹脂組成物で構成された光学素子を提供することも課題とするものである。

【0007】

【課題を解決する手段】上記の課題は、樹脂組成物の損失正接と温度の関係を求めて、ピーク幅の範囲を規定することにより、あるいはさらに、損失正接のピークに相当する温度(ガラス転移温度を反映し得る温度である。)の範囲を規定することにより、解決することができた。

【0008】第1の発明は、光学素子を構成するためのものであって、温度変化に関して損失正接を測定した損失正接～温度曲線における山の部分の損失正接の最大値の1/2である位置における前記山の幅をW_{1,2}(°C)、前記損失正接が0.1である位置における前記山の幅をW_{0,1}(°C)、および前記の二つの山の幅の差△W(°C)を△W=W_{0,1}-W_{1,2}と定めるとき、△Wが、16°C～31°Cであることを特徴とする光学素子用樹脂組成物に関するものである。第2の発明は、光学素子を構成するためのものであって、温度変化に関して損失正接を測定した損失正接～温度曲線における山の部分の損失正接の最大値の1/2である位置における山の幅をW_{1,2}(°C)、および前記損失正接が0.1である位置における前記山の幅をW_{0,1}(°C)とするとき、前記の二つの山の幅の比であるW_{0,1}/W_{1,2}が、1.4～2.7であることを特徴とする光学素子用樹脂組成物に関するものである。第3の発明は、光学素子を構成するためのものであって、温度変化に関して損失正接を測定した損失正接～温度曲線における山の部分の損失正接の

最大値の1/2である位置における前記山の幅W_{1,2}(°C)が、13°C～50°Cで、かつ前記損失正接の最大値における温度の値T_p(°C)が、18°C～47°C、もしくは52°C～80°Cであることを特徴とする光学素子用樹脂組成物に関するものである。第4の発明は、第1～第3いずれかの発明において、前記損失正接の最大値が、0.4～1.2であることを特徴とする光学素子用樹脂組成物に関するものである。第5の発明は、第1～第4いずれかの発明の光学素子用樹脂組成物で、その全部もしくは一部が構成されていることを特徴とする光学素子に関するものである。第6の発明は、第5の発明において、前記光学素子がフレネルレンズシートであることを特徴とする光学素子に関するものである。第7の発明は、第5もしくは第6の発明の光学素子と、レンチキュラーレンズシートとかなるプロジェクションスクリーンに関するものである。

【0009】

【発明の実施の形態】図1は、本発明の実施例の光学素子を示す模式図で、フレネルレンズシート2とレンチキュラーレンズシート3とが、各々のレンズ面2cおよび3cと向かい合うように設置され、互いに密着して、プロジェクションスクリーン1を構成したものである。また、図1においては、いずれのレンズシート2、3においても、基材2a、3aに、レンズ層2b、3bがそれぞれ積層されたものとして描いてあるが、基材とレンズ層が別層ではなく、一体化したものであってもよい。さらに、図1に示すように、レンチキュラーレンズシート3は、フレネルレンズシート2側とは反対側の面に、小レンチキュラーレンズと突起部およびブラックストライプを有していてもよい。

【0010】光学素子は、図1を引用して説明したレンチキュラーレンズ、フレネル(凸)レンジ以外にも、フレネル凹レンズ、プリズム、もしくは蝶の目レンズ等の任意の光学形状を有するものであってよい。また、一つの光学素子が、その両面に、同種、もしくは異種の光学形状のものであってもよい。

【0011】本発明においては、光学素子全体、もしくは光学素子が基材上にレンズ層を有する場合には、そのレンズ層を構成するために、損失正接～温度曲線から求めた、以降に説明するような種々の指標で規定した樹脂組成物を使用する。なお、ここで、樹脂組成物とは、直接的には、製品の状態、もしくは測定のためであれば、薄い板状の樹脂板やレンズ層となった状態を指す。ただし、製品を製造する前の素材の状態のものであって、製品の状態にしたとすれば、もしくは測定のために薄い板状にしたとすれば、以降に説明するような種々の指標を満たし得る未硬化の組成物を含むものとする。樹脂組成物は、電離放射線硬化性のラジカル重合型であるアクリレート系化合物のオリゴマーおよび/またはモノマーを主体とする電離放射線硬化性物質、あるいはカチオン重

合型であるエポキシ系化合物、もしくはオキセタン系化合物のオリゴマーおよび／またはモノマーを素材とし、必要に応じ、紫外線重合開始剤、増感剤等の硬化のための添加剤が配合されたものであってもよい。これら、硬化のための添加剤は、樹脂組成物が重合を起こす際に分解するので、製品の状態では、それらの分解物が残存する。また、得られる製品の性状を改善する目的で、熱可塑性樹脂がブレンドされたものであってもよい。また、樹脂組成物は、通常のシート状もしくは板状の樹脂製品を製造する際に添加され得る様々な添加剤が配合されていてもよく、さらに、光学素子の光学性能を改善する目的で、光拡散剤や着色剤等が配合されたものであってもよい。

【0012】各々の樹脂組成物の損失正接～温度曲線を求めるには、動的粘弾性測定装置を使用し、試料の長軸方向に一定周期で振動を与えるながら、損失正接の測定を行ない、測定する際の試料の温度を変えて測定することにより、損失正接の温度変化を求める。なお、種々の指標を求めるための測定の詳細は、後に、実証例において、説明するものと同じである。損失正接～温度曲線は、典型的には、図2に示すように、各々の樹脂組成物に特有な温度付近で、上に凸な、山の形状をなし、各々の樹脂組成物の性質の違いに応じて、異なる山の形状を示す。ここから、山の形状におけるピーク値、即ち、損失正接の最大値を求めることができるが、損失正接の最大値における温度の値Tpは、樹脂組成物の挙動が、温度の変化に最も鋭敏な臨界的温度を示し、いわゆるガラス転移温度に類似するが、製造上、あるいは、製品の保管の上で、最も避けた方がよい温度であるので、各々の樹脂組成物を規定する指標とする。

【0013】各々の樹脂組成物の損失正接～温度曲線のような山の形状が険しいか、なだらかであるかは、山の形状に対して、横軸に平行な直線を交差させ、二交点間の距離（即ち幅である。）と高さとの関係から判断され得るが、しばしば、このような山の形状の曲線について論ずる際に、山の最も高い部分の半分の高さにおける幅を代表値とすることがあり、通常、この幅を、半值幅と呼ぶが、ここでも、この半值幅W_{1/2}を代表値とする。ただし、半值幅は、山の形状が互いに相似形であるときには有効であるが、山の形状が互いに相似形でないときには、山の形の違いを充分表現し得ない。そこで、山の最も高い部分の1/10、すなわち0.1の高さにおける幅W_{0.1}（仮に0.1幅と言う。）をもう一つの代表値として用いることとする。ここで、山の幅の値が二つ生じるので、両者をまとめて表示するために、差および比を取ることとし、W_{0.1}-W_{1/2}を二つの山の幅の差△Wとし、また、W_{0.1}/W_{1/2}を二つの山の幅の比とする。これらW_{0.1}およびW_{1/2}の組み合わせにより、山の形状をより的確に示すことができる。

【0014】また、動的粘弾性を測定する際に求められ

る貯蔵弾性率が、温度を変えて測定したときに、高温側において、平衡状態になる部分の値を、平衡弾性率として求め、指標の一つとすることとし、具体的には温度が80°Cにおける貯蔵弾性率をもって、平衡弾性率とする。

【0015】本発明の光学素子用樹脂組成物は、先に定めた△Wの値が、16°C～31°Cであることとが好ましく、16°C未満の場合には、損失正接の最大値付近において、樹脂組成物の挙動が、温度の変化に鋭敏すぎるため、製造上、もしくは製品の保管上、好ましくなく、また、31°Cを超えると、損失正接の最大値付近において、樹脂組成物の挙動が、温度の変化に対し、温度の変化に鋭敏であることはなくなるものの、この光学素子用樹脂組成物で構成した光学素子の光学素子面の形状が使用時にもたらされる圧力により損なわれやすく、また、光学素子を水平に積み重ねた際にも、つぶれやすく、光学素子の保管や輸送等の取扱いの上で好ましくない。

【0016】本発明の光学素子用樹脂組成物は、先に定めた二つの山の値の比が、1.4～2.7であることが好ましい。1.4未満、もしくは2.7を超える場合に生じる問題点は、各々、前段落における、△Wが好ましい範囲から下回ったとき、もしくは上回ったときに生じる問題点と同様である。

【0017】また、本発明の光学素子用樹脂組成物は、先に定めた半値幅（W_{1/2}）が、13°C～50°Cであることが好ましく、W_{1/2}が、13°C～44°Cであるとさらに好ましい。13°C未満の場合には、先に定めた0.1幅の値にかかわらず、損失正接の最大値付近において、樹脂組成物の挙動が、温度の変化に鋭敏すぎるため、製造上、もしくは製品の保管上、好ましくない。また、50°Cを超えた場合はTpも考慮する必要がある。

損失正接の最大値付近において、樹脂組成物の挙動が、温度の変化に対し、温度の変化に鋭敏であることはなくなるものの、Tpが常温より高いと、この光学素子用樹脂組成物で構成した光学素子の光学素子面の形状が使用時にもたらされる圧力により損なわれやすく、また、光学素子を水平に積み重ねた際にも、つぶれやすく、光学素子の保管や輸送等の取扱いの上で好ましくない。ただし、Tpが常温より低いと、逆に変形しにくくなる傾向があるため、W_{1/2}に加えて、Tpも考慮する必要がある。

【0018】従って、上記の半値幅が13°C～50°Cであることに加えて、本発明の樹脂組成物は、先に定めたTpが、18°C～47°C、もしくは52°C～80°Cであることが必要である。Tpは、18°C～47°C、もしくは52°C～71°Cであるとさらに好ましい。Tpは、先に述べたように、樹脂組成物の挙動が、温度の変化に最も鋭敏な臨界的温度で、いわゆるガラス転移温度に類似するが、製造上、あるいは、製品の保管の上で、最も避けた方がよい温度である。18°C未満では、ガラス転移

温度が常温（25°C）との差が少なく、常に樹脂樹脂組成物の挙動が不安定となるため好ましくない。80°Cを超えると、熱的な意味では、光学機器やディスプレイ装置に組み込まれて使用される際に、さらされる温度に耐え得るもの、硬度が高くなる過ぎる結果、取扱いや加工時に欠けを生じたり、光学素子どうしを密着させたときに、湾曲する原因ともなるので、好ましくない。

【0019】上記において、18°C～47°C、もしくは52°C～80°Cと規定するのは、47°Cを超える、52°C未満の範囲の樹脂樹脂組成物で構成された光学素子は、光学機器やディスプレイ装置において実際に使用される温度域とほぼ一致するため、加温の影響を受けやすいという、実用上の不利があるからである。もちろん、熱源と隔離されてたり、送風等の適宜な冷却手段を利用して、実際に使用される温度域を下げることが出来れば、上記の47°Cを超える、52°C未満の範囲の樹脂樹脂組成物も使用可能である。

【0020】本発明の光学素子用樹脂組成物は、以上の△W_{1,1}もしくはW_{1,1}/W_{1,2}の規定、またはW_{1,2}の規定にT_pの範囲の規定を加えたものに、さらに、損失正接の最大値の範囲を規定することがなお一層好ましい。損失正接の最大値は、0.4～1.2であることが好ましく、0.46～1.12であるとさらに好ましい。損失正接の最大値が0.4未満の光学素子用樹脂組成物は、外力に対する変形抵抗が大きい点では好ましいものの、擦れに対する耐久性振動に対する緩和抵抗が乏しくなる結果、摩耗による損傷が避けにくくなる欠点が生じ、損失正接の最大値が1.2を超えると、高温時の機械的性質が低下し、変形しやすくなる欠点が生じるからである。

【0.021】

【実施例】以下に、樹脂組成物を用いて、試料を作成し、上記した種々のパラメータの測定の結果、および、フレネルレンズシートとしたものの実用的な評価の結果を示す。パラメータとしては、圧縮弾性率、最大変形量、T_p、損失正接の最大値、平衡弾性率、ならびに損失正接～温度曲線におけるW_{1,1}およびW_{0,1}を求めており、製品の実用的な評価の項目としては、実装時のスクリーン潰れ、スクリーン荷重積載潰れ、およびフレネルレンズシートの荷重積載潰れを求めた。特に、温度の定めの無い項目については、温度：25°Cで求めた。

【0.022】〔圧縮弾性率・最大変形量の測定用の試料の調製〕フレネルレンズの逆型形状を有するフレネルレンズ成形用金型を加温し、金型面に電離放射線硬化性樹脂組成物を厚みが20.0μmになるよう塗布した。塗付された樹脂組成物の温度を42°Cに保ちながら、メタルハライドタイプの紫外線ランプ（日本電池（株）製）を用い、積算光量：2000mJ/cm²、ピーク照度：250mW/cm²の条件で照射を行なって、樹脂組成物を硬化させ、脱型し、試料用のフレネルレンズシート

を得た。

【0023】〔圧縮弾性率・最大変形量の測定〕圧縮弾性率および最大変形量の測定のため、超微小硬度計（德国フィッシャー社製、H-100V）を用いたユニバーサル硬さ試験を応用し、圧子による荷重を所定の値になるまで徐々に増加させ、その後、徐々に減少させることにより、荷重～侵入深さ曲線を求め、この結果より解析によって圧縮弾性率および最大変形量を求めた。圧子として、半径Rが0.4mmのタンガステンカーバイド（WC）製のポール圧子を使用した。

【0024】荷重～侵入深さ曲線は、典型的には、図3に示すような様相を示す。まず、荷重0の点①から荷重fを徐々に増加させると塑性変形が起き、徐々に圧子の侵入深さが増加する。ある荷重値で荷重の増加を停止させると、点②の箇所におけるように、塑性変形による侵入が停止し、その後、荷重値をそのまま維持すると、その間、クリープ変形により侵入深さの増加が続き、荷重値の維持を止める点③に至る。その後、荷重を徐々に減少させると、弾性変形によって、点④に向かって侵入深さが減少する。

【0025】上記において、図3中の点②における荷重値である最大荷重値Fは、20mNに設定した。実際のプロジェクションスクリーンにおけるフレネルレンズシートとレンチキュラーレンズシートとの接触圧は小さく、実測が困難であるが、スクリーンを構成するレンズシートの変形が、条件の厳しいレンズシートの外周部で10μm程度であれば、レンズの性能上、許容できるところから、従来用いられているレンズシートが10μm変形するのに必要な荷重が、ほぼ20mNであるため、最大荷重値をそのように定めた。また、クリープ変形を行なわせる時間は、適宜に6.0秒間とした。

【0026】結局、荷重～侵入深さ曲線を求める手順は、次のようにある。

- (1) 圧縮のための荷重値を0から20mNになるまで、0.1秒毎に100ステップで増加させる。
- (2) 20mNになった荷重値を6.0秒間維持し、クリープ変形を起させる。
- (3) 荷重値が0.4mN（試験機最低荷重）になるまで、0.1秒毎に40ステップで減少させる。
- (4) 荷重値が0.4mNのまま6.0秒間維持し、侵入深さを回復させる。

(5) 以上の(1)～(4)を三回繰返す。

なお、ポール圧子を作用させる部位としては、図4に示すように、フレネルレンズを構成する個々の細分化されたレンズ面、例えば、図4中、2c、2c'、および2c''で示すような部分の、中央部付近であることが好ましい。レンズ面の隣接する凹部どうしの間隔をピッチPとすれば、P/2に相当する位置の付近である。そのほかのレンズ形状の場合にも、レンズを形成する個々のレンズ面の中央付近にポール圧子を作用させることが好ま

しい。

【0027】圧縮弾性率(E)は、下記の式により求め*

$$E = (2h^*(2R-h^*)^{-1/2} \times H \times (\Delta H/\Delta f) - (1-n)/e \\ = 1/(5.586 \times h^* \times H \times (\Delta H/\Delta f)) - 7.813 \times 10^{-7}$$

ここで、 h^* は、荷重fが最大値Fであるときの荷重減少区域(図3中の点③、点④、およびHで囲まれる区域)の荷重～侵入深さ曲線の接線と侵入深さ軸(横軸)との交点の侵入深さ(単位:mm)である。 R は、圧子の先端の半径($R=0.4\text{ mm}$)である。 H は、侵入深さhの最大値(単位:mm)である。 $\Delta H/\Delta f$ は、荷重fが最大値Fであるときの荷重減少区域(図3中の点③、点④、およびHで囲まれる区域)の荷重～侵入深さ曲線の傾きの逆数である。 n は、ポール圧子の素材(WC)のボアソン比($n=0.22$)である。 e は、ポール圧子の素材(WC)の弾性率($e=5.3 \times 10^5 \text{ N/mm}^2$) 0.22 である。前段落で説明したように、荷重の増減等を(1)～(4)の順で3回繰り返して、その都度、荷重～侵入深さ曲線を求め、各々について、圧縮弾性率(E)(単位:Mpa)を求めて、平均値を求める。

【0028】最大変形量は、前段落で説明したように、荷重値が、最大荷重値の 2.0 mN になった後に、60秒間維持し、クリープ変形した直後の侵入深さ(単位: μm)を示す。

【0029】〔Tp、損失正接の最大値、平衡弾性率、 $W_{1,2}$ 、および $W_{0,1}$ の測定用の試料の調製〕表面が鏡面のステンレス板をフレネルレンズの逆型形状を有するフレネルレンズ成形用金型に替えて用いた以外は、圧縮弾性率・最大変形量の測定用の試料の調製と同様にして、試料用の樹脂シートを得た。

【0030】〔Tp、損失正接の最大値、平衡弾性率、 $W_{1,2}$ 、および $W_{0,1}$ の測定〕上記試料を用い、動的粘弹性測定装置((株)オリエンテック製)により貯蔵弾性率、および損失正接の測定を行なった。試料の長軸方向に 1 Hz の周波数の強制振動を与えた、毎分 $3\text{ }^\circ\text{C}$ の昇温速度で、設定温度を $-100\text{ }^\circ\text{C} \sim 100\text{ }^\circ\text{C}$ の間で昇温させた。損失正接の最大値($\tan\delta(\text{m.a.x.})$)は、得られた損失正接～温度曲線より、山の形状におけるピーク値から求め、また、このときの温度をTp(単位: $^\circ\text{C}$)とした。平衡弾性率に関しては、得られた貯蔵弾性率～温度曲線より、 $80\text{ }^\circ\text{C}$ における貯蔵弾性率を求めて、平衡弾性率(単位: dynes/cm^2)とした。 $W_{1,2}$ としては、損失正接の最大値の $1/2$ の値で山を切断したときの切断部の幅を求め、また、 $W_{0,1}$ としては、損失正接の最大値の $1/10$ 、即ち 0.1 の値で山を切断したときの切断部の幅を求めた。いずれも、単位は $^\circ\text{C}$ である。

【0031】〔スクリーン潰れの評価〕フレネルレンズシートとレンチキュラーレンズシートとを、各々のレンズ面どうしを密着させてプロジェクションスクリーンと

* る。

し、プロジェクション型TVセットのスクリーン取付用枠に固定した実装状態にて、プロジェクターにより、全体が白色の画面を投映し、24時間後に、画面を観察した。観察により、レンズ形状の潰れによる輝度ムラが明瞭に認められるものを×、輝度ムラが認められるものの目立たないものを△、輝度ムラが認められないものを○とした。以上の評価を室温($25\text{ }^\circ\text{C}$)、 $40\text{ }^\circ\text{C}$ 、および $50\text{ }^\circ\text{C}$ にて行なった。

【0032】〔スクリーン荷重積載潰れの評価〕フレネルレンズシートとレンチキュラーレンズシートとを、各々のレンズ面どうしを密着させ、全周を粘着テープで固定したものを作成し、それらを発泡ポリエチレンシートを各々の組の間にはさんで、積み重ね、室温($25\text{ }^\circ\text{C}$)で1週間置いた。この場合、最も下側における面圧は約 2.0 g/cm^2 になる。その後、最も下側にあった組のレンチキュラーレンズシートとフレネルレンズシートとを、前段落の実装時のスクリーン潰れの評価におけるのと同様にして、プロジェクション型TVセットのスクリーン取付用枠に固定し、プロジェクターにより、全体が白色の画面を投映し、画面を観察した。観察により、レンズ形状の潰れによる、もしくは発泡ポリエチレンシートの模様の転写による輝度ムラが明瞭に認められるものを×、輝度ムラが認められるものの、目立たない許容範囲であるものを△、輝度ムラが認められないものを○とした。

【0033】〔フレネルレンズ荷重積載潰れの評価〕フレネルレンズシートを、各々のレンズ面が上になるようにし、各フレネルレンズシートの間に、発泡ポリエチレンシートをはさんで、100枚積み重ねたものを二組準備し、一方の組を室温($25\text{ }^\circ\text{C}$)で、他方の組を $50\text{ }^\circ\text{C}$ で、いずれも1週間置いた。 $50\text{ }^\circ\text{C}$ で置いたものは、その後、2.4時間室温にて放置した。この場合も、最も下側における面圧は約 2.0 g/cm^2 になる。その後、最も下側にあったフレネルレンズシートを取り出し、前段落の実装時のスクリーン潰れの評価におけるのと同様にして、レンチキュラーレンズシートと共にプロジェクション型TVセットのスクリーン取付用枠に固定し、プロジェクターにより、全体が白色の画面を投映し、画面を観察した。観察により、レンズ形状の潰れによる輝度ムラが明瞭に認められるものを×、輝度ムラが認められるものの、目立たない許容範囲であるものを△、輝度ムラが認められないものを○とした。

【0034】以上の種々のバラメータの測定の結果、および、フレネルレンズシートとしたものの実用的な評価の結果を次の「表1」、「表2」に分けて示す。「表1」、「表2」中、試料記号B～H、およびL～Vは実

施例に関するものであり、試料記号A、およびI～Kは比較例に関するものである。また、図5～図10に、損失正接～温度曲線の測定例をグラフで示す。グラフに付した試料記号は、「表1」、「表2」中の試料記号と共に

* 通である。

【0035】

【表1】

試料記号	A	B	C	D	E	F	G	H	I	J	K
屈折率	1.561	1.560	1.560	1.561	1.563	1.551	1.553	1.563	1.561	1.551	1.551
圧縮弾性率	459	185	128	323	1405	498	1190	1627	746	886	969
最大変形量	3.54	6.21	6.41	5.46	1.27	3.01	1.17	0.96	1.81	1.57	2.39
T _p	18.4	18.5	19.2	23.8	35.0	35.8	40.0	42.0	47.3	49.3	51.9
tan δ (max.)	0.16	1.00	1.12	1.05	0.71	0.88	0.62	0.66	0.93	0.91	0.88
平衡弾性率($\times 10^3$)	18.5	9.1	7.5	6.12	29.8	6.59	29.8	18.7	6.78	9.21	9.52
W _{1/2}	9.8	25.5	33.2	12.5	27.3	30.0	32.2	48.6	17.8	15.6	20.2
W _{0.1}	43.6	45.2	57.5	43.8	48.1	55.3	60.0	68.9	56.1	49.4	56.2
W _{0.1} -W _{1/2}	39.8	19.7	24.3	31.3	20.8	16.3	27.8	20.3	38.3	33.8	36.0
W _{0.1} /W _{1/2}	4.5	1.8	1.7	3.6	1.6	1.4	1.9	1.4	3.2	3.2	2.8
スクリーン濡れ											
25°C	×	△	○	×	○	○	○	○	×	△	×
40°C	×	○	○	×	○	○	○	○	×	×	×
50°C	△	○	○	△	○	○	○	○	×	×	×
スクリーン											
荷重載荷濡れ	×	△	○	△	○	○	○	○	×	×	×
フレネルレンズ											
荷重載荷濡れ											
25°C	△	△	○	△	○	○	○	○	×	△	×
50°C	×	○	○	×	○	○	○	○	×	○	○

【0036】

※ ※ 【表2】

試料記号	L	M	N	O	P	Q	R	S	T	U	V
屈折率	1.554	1.553	1.551	1.551	1.553	1.553	1.553	1.554	1.552	1.552	1.553
圧縮弾性率	1916	2909	1527	1147	2161	2328	2797	2900	1929	2549	3040
最大変形量	0.90	0.63	1.11	1.35	0.88	0.60	0.61	0.58	0.93	0.68	0.77
T _p	52.8	53.0	56.4	57.0	59.0	59.2	60.0	62.0	70.0	70.0	71.0
tan δ (max.)	1.06	1.08	0.81	0.92	0.98	0.92	1.01	0.85	0.63	0.46	0.51
平衡弾性率($\times 10^3$)	11.3	12.4	15.8	45.8	20.5	17.4	11.5	21.5	35.6	47.9	28.7
W _{1/2}	18.4	17.2	20.3	18.8	17.2	20.6	18.1	19.8	21.2	43.3	36.6
W _{0.1}	41.2	39.5	47.6	48.4	40.2	44.8	42.2	41.5	42.6	68.3	57.1
W _{0.1} -W _{1/2}	22.8	22.3	27.3	29.6	23.0	24.2	24.1	21.7	21.4	25.0	20.5
W _{0.1} /W _{1/2}	2.2	12.3	2.3	2.6	2.3	2.2	2.3	2.1	2.0	1.6	1.6
スクリーン濡れ											
25°C	○	○	○	○	○	○	○	○	○	○	○
40°C	△	○	○	○	○	○	○	○	○	○	○
50°C	△	△	△	△	○	△	○	○	○	○	○
スクリーン											
荷重載荷濡れ	○	○	○	○	○	○	○	○	○	○	○
フレネルレンズ											
荷重載荷濡れ											
25°C	○	○	○	○	○	○	○	○	○	○	○
50°C	△	△	△	△	○	△	○	○	○	○	○

【0037】

【発明の効果】請求項1の発明によれば、損失正接～温度曲線の半値幅と0.1幅との差の範囲を規定したので、その挙動が、温度の変化に対し、鋭敏すぎることがなく、しかも、粘弾性体としての適度な弾性を備え、通常の使用温度域において、この樹脂組成物を用いて得られる光学素子の取扱いに支障となるような、使用時にかかる圧力による損傷や、水平に積み重ねた際のつぶれが生じることが無い光学素子用樹脂組成物を提供することができる。請求項2の発明によれば、損失正接～温度曲線の半値幅と0.1幅との比の範囲を規定したので、第50

40 1.の発明におけるのと同様、その挙動が、温度の変化に対し、鋭敏すぎることがなく、しかも、適度な弾性を備え、通常の使用温度域において、この樹脂組成物を用いて得られる光学素子の取扱いに支障となるような、使用時にかかる圧力による損傷や、水平に積み重ねた際のつぶれが生じることが無い光学素子用樹脂組成物を提供することができる。請求項3の発明によれば、損失正接～温度曲線の半値幅の範囲、およびT_pの値の範囲を規定したので、請求項1と同様な効果に加えて、ゴム弾性および剛性を兼ね備えることにより、形状の保持性が高く、またレンズシートの湾曲を生じることが無い光学素

子用樹脂組成物を提供することができる。請求項4の発明によれば、請求項1～請求項3いずれかの発明の効果に加え、損失正接～温度曲線における損失正接の最大値の範囲を規定したので、擦れに対する耐久性を有し、かつ、高温時の機械的性質が確保された光学素子用樹脂組成物を提供することができる。請求項5の発明によれば、請求項1～請求項4いずれかの発明の効果を發揮し得る光学素子用樹脂組成物で構成された光学素子を提供することができる。請求項6の発明によれば、光学素子面の断面形状が鋸刃状で、先端が尖っており、潰れや欠けに敏感なフレネルレンズシートに適用した場合に、請求項5の発明の効果が、より一層発揮される光学素子を提供することができる。請求項7の発明によれば、フレネルレンズシートとレンチキュラーレンズシートとを組み合わせた構造において、請求項5もしくは請求項6の発明の効果が発揮されるプロジェクションスクリーンを提供することができる。

【図面の簡単な説明】

* 【図1】光学素子であるプロジェクションスクリーンを示す図である。

【図2】損失正接～温度曲線を説明するための図である。

【図3】荷重～侵入深さ曲線を説明するための図である。

【図4】圧子を作用させる部位を示す図である。

【図5】試料記号Dの損失正接～温度曲線である。

【図6】試料記号Eの損失正接～温度曲線である。

【図7】試料記号Fの損失正接～温度曲線である。

【図8】試料記号Hの損失正接～温度曲線である。

【図9】試料記号Rの損失正接～温度曲線である。

【図10】試料記号Vの損失正接～温度曲線である。

【符号の説明】

1 プロジェクションスクリーン

2 フレネルレンズシート

3 レンチキュラーレンズシート

【図1】

【図2】

【図3】

【図4】

【図5】

試料記号:D

【図6】

試料記号:E

【図7】

試料記号:F

【図8】

試料記号:H

【図9】

試料記号:R

【図10】

試料記号:V

*** NOTICES ***

JPO and NCIP are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.
2. **** shows the word which can not be translated.
3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The width of face of said crest in the location which is for constituting an optical element and is 1/2 of the maximum of the loss tangent of the part of the crest in the loss tangent which measured the loss tangent about the temperature change - a temperature curve $W_{1/2}$ (degree-C), The resin constituent for optical elements with which ΔW is characterized by being 16 degrees C - 31 degrees C when said loss tangent determines difference Δ of the width of face of $W_{0.1}$ (degree C) and the two aforementioned crests] W (degree C) for the width of face of said crest in the location which is 0.1 as $\Delta W = W_{0.1} - W_{1/2}$.

[Claim 2] The width of face of the crest in the location which is for constituting an optical element and is 1/2 of the maximum of the loss tangent of the part of the crest in the loss tangent which measured the loss tangent about the temperature change - a temperature curve $W_{1/2}$ (degree-C), And the resin constituent for optical elements with which $W_{0.1}/W_{1/2}$ which are the ratio of the width of face of the two aforementioned crests are characterized by being 1.4-2.7 when said loss tangent sets to $W_{0.1}$ (degree C) width of face of said crest in the location which is 0.1.

[Claim 3] the width of face W of said crest in the location which is for constituting an optical element and is 1/2 of the maximum of the loss tangent of the part of the crest in the loss tangent which measured the loss tangent about the temperature change - a temperature curve -- one half (degree C) at 13 degrees C - 50 degrees C And the resin constituent for optical elements with which the value T_p of the temperature in the maximum of said loss tangent (degree C) is characterized by being 18 degrees C - 47 degrees C or 52 degrees C - 80 degrees C.

[Claim 4] claim 1 to which maximum of said loss tangent is characterized by being 0.4-1.2 - claim 3 -- either -- the resin constituent for optical elements of a publication.

[Claim 5] claim 1 - a claim -- the optical element characterized by constituting the all or part with the resin constituent for optical elements of a publication 4 either.

[Claim 6] The optical element according to claim 5 characterized by said optical element being a Fresnel lens sheet.

[Claim 7] The projection screen which consists of claim 5 or an optical element according to claim 6, and a lenticular lens sheet.

[Translation done.]

*** NOTICES ***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] A front face is shaved off or this invention relates to the resin constituent for optical elements which made it the minimum to wear out or to be crushed by pressurization, in case the optical element which consisted of this resin constituent by specifying with the parameter relevant to viscoelasticity is used about the resin constituent for optical elements. Moreover, this invention is [0002] which is also a thing about the optical element which can make to be able to delete the front face of an optical member or to wear out by the optical element when using an optical element combining other optical members like a lenticular lens sheet into the minimum, and the projection screen which consists of combination with a lenticular lens sheet.

[Description of the Prior Art] An optical element has the optical element side where the laminating of the layer of the resin constituent which gave the optical configuration on the transparent base material is carried out, and it has the optical element side, or the optical configuration was directly given to the such resin constituent independent layer. Although there are various things in the optical configuration of an optical element side, the optical element formed using a resin constituent has many things for which the detailed lens configuration was arranged and which consist of much irregularity, if it sees as a whole.

[0003] By the way, in case it may be used combining two or more optical elements in case an optical element is used, and it is used combining the optical element of two or more sheets, in order to demonstrate effectiveness to the maximum extent, opposing optical element sides and making it stick to serve also as protection of an optical element side is often performed. In the case of a lenticular lens sheet [the Fresnel lens sheet in a projection screen, and], the most typical example usually uses it, sticking a Fresnel lens side (it being a circular Fresnel convex lens.) and a lenticular lens side.

[0004] thus -- the time of sticking an optical element in optical element sides -- any -- although -- since it is a concave convex, effect of [else] is done mutually. For example, in the above-mentioned typical example, the cross-section configuration of a Fresnel lens side is a serrated knife-like, and a tip is sharp, and it has radii of circle, such as an ellipse form, and has that a lenticular lens has a circular cross section or the configuration which rose. If such a Fresnel lens sheet and a lenticular lens sheet stick, since the crowning in which the lenticular lens rose, and the tip where the Fresnel lens sharpened will carry out point contact, the deformation by which the configuration of a lenticular lens and/or a Fresnel lens is crushed may arise by contact pressure.

[0005] Although it is cancelable by raising the degree of hardness of the resin which constitutes a lens, since a lens becomes easy to be missing only by only raising a degree of hardness at the time of handling and cutting and crushing of the above configurations of a lens causes a problem on the contrary, while raising a degree of hardness, to also leave a viscous element is desired. Moreover, although relation with glass transition temperature (Tg) is generally deep, if glass transition temperature (Tg) of resin is made too much low too much, rubber elasticity will no longer be obtained, and if a pressure is applied, it will come to deform the degree of hardness of resin plastically. Usually, if the glass transition temperature of resin tends to be lowered [if it has a certain amount of crosslinking density, even if rubber elasticity is discovered even if glass transition temperature is low, and a pressure is applied, it will not come to deform plastically] in the resin constituent for optical elements although, and it is going to raise crosslinking density, the upright chain

which benefits improvement in a refractive index indispensable as an object for optical elements from the benzene ring etc. must be introduced, and it will become the cause by which this thing raises glass transition temperature. On the contrary, although the direction which makes glass transition temperature high becomes advantageous in respect of improvement in a refractive index, if glass transition temperature is made high too much, as a result of rigidity's becoming high too much, it also becomes producing the curve of a lens sheet. In case an optical element does not necessarily restrict being used in ordinary temperature but is used in an optical instrument or a display unit, moreover, by generation of heat of a device or equipment In the way which may be exposed to an elevated temperature, and a product is shipped from a plant and conveyed, although the temperature in a container and a boathouse can become about 60 degrees C, the above-mentioned fault is further amplified in these elevated temperatures.

[0006]

[Problem(s) to be Solved by the Invention] In case the optical element sides of an optical element stick conventionally, in this invention by contact pressure a point with a possibility that the configuration of an optical element may crush and deform, even if it only raises a degree of hardness If a point with a possibility of an optical element side becoming easy to be missing and causing a problem at the time of handling and cutting, and glass transition temperature of resin are made too much low too much Even if it is going to cancel the point and this which will be deformed plastically if rubber elasticity is no longer obtained and a pressure is applied by improvement in crosslinking density In order to have to aim at improvement in a refractive index, the point that lowering glass transition temperature is checked, or as a result of [if it is made high too much,] rigidity's becoming high too much, let it be a technical problem to cancel the curve of a lens sheet in the large temperature requirement which described loam **** above. Moreover, also let it be a technical problem to offer the optical element which consisted of such improved resin constituents for optical elements in this invention.

[0007]

[Means for Solving the Problem] The above-mentioned technical problem was solvable asking for the loss tangent of a resin constituent, and the relation of temperature, and specifying the range of peak width, or by specifying further the range of temperature (it being the temperature which may reflect glass transition temperature.) equivalent to the peak of a loss tangent.

[0008] The width of face of said crest in the location which the 1st invention is for constituting an optical element, and is 1/2 of the maximum of the loss tangent of the part of the crest in the loss tangent which measured the loss tangent about the temperature change - a temperature curve W1/2(degree-C), When said loss tangent determines difference delta[of the width of face of W0.1 (degree C) and the two aforementioned crests] W (degree C) for the width of face of said crest in the location which is 0.1 as $\Delta W = W0.1 - W1/2$, ΔW is related with the resin constituent for optical elements characterized by being 16 degrees C - 31 degrees C. The width of face of the crest in the location which the 2nd invention is for constituting an optical element, and is 1/2 of the maximum of the loss tangent of the part of the crest in the loss tangent which measured the loss tangent about the temperature change - a temperature curve W1/2 (degree-C), And when said loss tangent sets to W0.1 (degree C) width of face of said crest in the location which is 0.1, $W0.1/W1/2$ which are the ratio of the width of face of the two aforementioned crests are related with the resin constituent for optical elements characterized by being 1.4-2.7. the width of face W of said crest in the location which the 3rd invention is for constituting an optical element, and is 1/2 of the maximum of the loss tangent of the part of the crest in the loss tangent which measured the loss tangent about the temperature change - a temperature curve -- one half (degree C) It is related with the resin constituent for optical elements with which it is 13 degrees C - 50 degrees C, and the value Tp of the temperature in the maximum of said loss tangent (degree C) is characterized by being 18 degrees C - 47 degrees C or 52 degrees C - 80 degrees C. The 4th invention relates to the resin constituent for optical elements with which maximum of said loss tangent is characterized by being 0.4-1.2 in the 1st - the 3rd one of invention. The 5th invention is the resin constituent for optical elements of the 1st - the 4th one of invention, and relates to the optical element characterized by constituting the all or part. The 6th invention relates to the optical element characterized by said optical element being a Fresnel lens sheet in the 5th invention. The 7th invention relates to the projection screen which consists of an optical element of the 5th or the 6th invention, and a lenticular lens sheet.

[0009]

[Embodiment of the Invention] Drawing 1 is the mimetic diagram showing the optical element of the example of this invention, the Fresnel lens sheet 2 and the lenticular lens sheet 3 are installed so that each lens sides 2c and 3c may be faced, and is stuck mutually, and constitutes the projection screen 1. Moreover, in drawing 1, also in which lens sheets 2 and 3, although drawn as that by which the laminating of lens layer 2b and the 3b was carried out to base materials 2a and 3a, respectively, a base material and a lens layer are not another layers, and may unify. Furthermore, as shown in drawing 1, the lenticular lens sheet 3 may have the small lenticular lens, the height, and the black stripe in the field of the opposite side with the Fresnel lens sheet 2 side.

[0010] An optical element may have the optical configuration of arbitration, such as the Fresnel concave lens, prism, or an eye lens of a fly, besides the lenticular lens which quoted and explained drawing 1, and a Fresnel (convex) range. Moreover, one optical element may be the thing of congener or an optical configuration of a different kind to the both sides.

[0011] In this invention, since the lens layer is constituted when the whole optical element or an optical element has a lens layer on a base material, the resin constituent specified with various indexes which are explained after asking from a loss tangent - a temperature curve is used. In addition, directly, if a resin constituent is for the condition of a product, or measurement, it will point out the condition of having become a thin tabular resin plate and a lens layer here. However, the non-hardened constituent which is the thing of the condition of the material before manufacturing a product, and may fill various indexes which are explained henceforth supposing it changes into the condition of a product, or if it was made tabular [thin for measurement] shall be included. A resin constituent is made from the oligomer and/or the monomer of the epoxy compound which is the ionizing-radiation hardenability matter which makes a subject the oligomer and/or the monomer of an acrylate system compound which are the radical polymerization mold of ionizing-radiation hardenability, or a cationic polymerization mold, or an oxetane system compound, and additives for hardening, such as an ultraviolet-rays polymerization initiator and a sensitizer, may be blended if needed. Since the additive for these hardening is disassembled in case a resin constituent causes a polymerization, those decomposition products remain in the state of a product. Moreover, thermoplastics may be blended in order to improve the description of the product obtained. Moreover, various additives which may be added in case a resin constituent manufactures the usual shape of a sheet and a usual tabular resin product may be blended, further, it is the purpose which improves the optical-character ability of an optical element, and a light diffusion agent, a coloring agent, etc. may be blended.

[0012] The temperature change of a loss tangent is searched for by measuring a loss tangent, and changing and measuring the temperature of the sample at the time of measuring, using a dynamic viscoelasticity measuring device and giving vibration in the direction of a major axis of a sample a fixed period, in order to ask for the loss tangent of each resin constituent - a temperature curve. In addition, the detail of the measurement for asking for various indexes is the same as what is explained in the example of an actual proof behind. Typically, as shown in drawing 2, a loss tangent - a temperature curve are near [peculiar to each resin constituent] temperature, and show the configuration of a crest which is different according to the difference in the property of nothing and each resin constituent in the convex configuration of a crest. Although the value T_p of the temperature in the maximum of a loss tangent although the peak value in the configuration of a crest, i.e., the maximum of a loss tangent, can be calculated from here shows the sharpest critical-like [the behavior of a resin constituent] temperature to change of temperature and is similar to the so-called glass transition temperature, on manufacture or after that a product keeps it, since it is temperature with it better [to avoid most], let it be the index which specifies each resin constituent.

[0013] Although whether the configuration of a crest like the loss tangent of each resin constituent - a temperature curve is steep or to be gently-sloping make a straight line parallel to an axis of abscissa cross and it may be judged to the configuration of a crest from the relation between the distance during 2 intersections (that is, it is width of face.), and height Although width of face in the height of the one half of the highest part of a crest may be made into central value and this width of face is usually called half-value width in case the curve of the configuration of such a crest is often discussed, let these half-value-width $W_{1/2}$ be central value also here. However, half-value width is effective when the configuration of a crest is an analog mutually, but when the configuration of a crest is not an analog mutually, it cannot express the

difference in the form of a crest enough. Then, suppose that the width of face W0.1 (it is temporarily called 0.1 pieces.) in 1/10 of the highest part of a crest, i.e., the height of 0.1, is used as another central value. Here, since two values of the width of face of a crest arise, in order to display both collectively, it supposes that a difference and a ratio are taken, and set W0.1-W1/2 to difference deltaW of the width of face of two crests, and let W0.1/W1/2 be the ratios of the width of face of two crests. These [W0.1] and the combination of W1/2 can show the configuration of a crest more exactly.

[0014] Moreover, when the storage modulus called for in case dynamic viscoelasticity is measured changed and measures temperature, the value of the part which will be in equilibrium at an elevated-temperature side is calculated as a balanced elastic modulus, and it supposes that it is referred to as one of the indexes, and temperature specifically has a storage modulus in 80 degrees C, and it considers as a balanced elastic modulus.

[0015] In it is desirable that the value of deltaW defined previously is 16 degrees C - 31 degrees C as for the resin constituent for optical elements of this invention and being less than 16 degrees C Since the behavior of a resin constituent is too sharp to change of temperature in near the maximum of a loss tangent, If it is not desirable and exceeds 31 degrees C on manufacture or storage of a product, it will set near the maximum of a loss tangent. That from which the behavior of being sharp to change of temperature of a resin constituent is lost to change of temperature, Also when the pressure to which the configuration of the optical element side of the optical element constituted from this resin constituent for optical elements is brought at the time of use is easy to be spoiled and an optical element is accumulated horizontally, it is easy to be crushed and is not desirable after handling [storage of an optical element, transportation, etc.].

[0016] As for the resin constituent for optical elements of this invention, it is desirable that the ratios of the value of two crests defined previously are 1.4-2.7. The trouble produced when exceeding less than 1.4 and 2.7 is the same as the trouble respectively produced when deltaW in the last paragraph is less from the desirable range, or when it exceeds.

[0017] Moreover, as for the resin constituent for optical elements of this invention, it is desirable that the half-value width (W1/2) defined previously is 13 degrees C - 50 degrees C, and it is still more desirable in W1/2 being 13 degrees C - 44 degrees C. In the case of less than 13 degrees C, since the behavior of a resin constituent is too sharp to change of temperature in near the maximum of a loss tangent irrespective of the value of 0.1 pieces defined previously, it is not desirable on manufacture or storage of a product. Moreover, when it exceeds 50 degrees C, it is necessary to also take Tp into consideration. In near the maximum of a loss tangent, if Tp of what is lost is higher than ordinary temperature, that the behavior of a resin constituent is sharp to change of temperature to change of temperature Also when the pressure to which the configuration of the optical element side of the optical element constituted from this resin constituent for optical elements is brought at the time of use is easy to be spoiled and an optical element is accumulated horizontally, it is easy to be crushed and is not desirable after handling [storage of an optical element, transportation, etc.]. However, since there is an inclination it is hard coming to deform conversely when Tp is lower than ordinary temperature, in addition to W1/2, it is necessary to also take Tp into consideration.

[0018] therefore, the above-mentioned half-value width is 13 degrees C - 50 degrees C -- in addition, the resin constituent of this invention requires that Tp defined previously should be 18 degrees C - 47 degrees C or 52 degrees C - 80 degrees C. Tp is still more desirable in it being 18 degrees C - 47 degrees C or 52 degrees C - 71 degrees C. Tp is temperature with it better [to avoid most, on manufacture or after that a product keeps it], although the behavior of a resin constituent is the sharpest critical-like temperature to change of temperature and is similar to the so-called glass transition temperature, as stated previously. Since a difference with ordinary temperature (25 degrees C) has little glass transition temperature and the behavior of a resin resin constituent always becomes unstable at less than 18 degrees C, it is not desirable. Since it will also become a straight cause when producing a chip at the time of handling or processing or sticking optical elements as a result of a degree's of hardness becoming high too much although the temperature exposed can be borne in case it is used in thermal semantics, being included in an optical instrument or a display unit if it exceeds 80 degrees C, it is not desirable.

[0019] In the above, it is because the optical element which specifying it as 18 degrees C - 47 degrees C or 52 degrees C - 80 degrees C exceeded 47 degrees C, and consisted of resin resin constituents of the range of less than 52 degrees C is mostly in agreement with the temperature region actually used in an optical

instrument or a display unit, so there is practical disadvantage [say / that it is easy to be influenced of warming]. Of course, if it can be isolated with the heat source or the temperature region actually used can be lowered using proper cooling means, such as ventilation, it exceeds the above-mentioned 47 degrees C, and the resin resin constituent of the range of less than 52 degrees C is also usable.

[0020] As for the resin constituent for optical elements of this invention, it is still much more desirable to specify the range of the maximum of a loss tangent to what added the convention of the range of Tp to the above deltaW, the convention of W0.1/W1/2, or the convention of W1/2 further. As for the maximum of a loss tangent, it is desirable that it is 0.4-1.2, and it is still more desirable in it being 0.46-1.12. at the large point in deformation resistance [as opposed to / in the maximum of a loss tangent / external force], less than 0.4 resin constituent for optical elements grinds, although it is desirable -- it is because the fault which the mechanical property at the time of an elevated temperature deteriorates, and becomes easy to transform will arise if the fault which damage by wear stops being able to avoid easily arises as a result of are alike and the relaxation resistance to receiving endurance vibration becoming scarce, and the maximum of a loss tangent exceeds 1.2.

[0021]

[Example] A resin constituent is used for below, and although considered as the result of measurement of the various parameters which created and described the sample above, and the Fresnel lens sheet, the result of practical evaluation is shown. As a parameter, W1/2 in the maximum of compressibility, the maximum deformation, Tp, and a loss tangent, a balanced elastic modulus and a loss tangent - a temperature curve, and W0.1 are calculated, and it asked for screen crushing at the time of mounting, screen load loading crushing, and load loading crushing of a Fresnel lens sheet as an item of practical evaluation of a product. Especially about the item without the law of temperature, it asked at temperature;25 degree C.

[0022] [Preparation of the sample for measurement of compressibility and the maximum deformation] The Fresnel lens molding die which has the inversion configuration of a Fresnel lens was warmed, and it applied so that thickness might become 200 micrometers about an ionizing-radiation hardenability resin constituent in a metal mold side. Keeping the temperature of the resin constituent carried out with ** at 42 degrees C, using the metal halide type ultraviolet ray lamp (Japan Storage Battery Co., Ltd. make), it irradiated on condition that addition quantity of light;2000 mJ/cm² and peak illuminance;250 mW/cm², the resin constituent was stiffened, it unmolded, and the Fresnel lens sheet for samples was obtained.

[0023] [Measurement of compressibility and the maximum deformation] A measurement of compressibility and the maximum deformation sake, By applying the universal hardness test using a super-micro hardness tester (German country Fischer company make, H-100V), and making it increase gradually until it becomes a predetermined value, and decreasing the load by the indenter gradually after that It asked for the load - penetration depth curve, and compressibility and the maximum deformation were calculated in analysis from this result. As an indenter, the radius R used the ball indenter made from the tungsten carbide (WC) of 0.4mmphi.

[0024] Typically, a load - penetration depth curve shows a modality as shown in drawing 3 . First, if Load f is made to increase from point [of a load 0] ** gradually, plastic deformation will break out and the penetration depth of an indenter will increase gradually. If the invasion [as / in the part of point **] by plastic deformation will stop if the increment in a load is stopped with a certain load value, and a load value is maintained as it is after that, the increment in a penetration depth will continue according to creep deformation, and it will result in point ** which stops maintenance of a load value in the meantime. Then, if a load is decreased gradually, a penetration depth will decrease toward point ** by elastic deformation.

[0025] In the above, the maximum load value F which is a load value in point ** in drawing 3 was set as 20mN. Although the contact pressure of the Fresnel lens sheet and lenticular lens sheet in an actual projection screen is small and an observation is difficult, if deformation of the lens sheet which constitutes a screen was about 10 micrometers in the periphery section of the severe lens sheet of conditions, since it was permissible and loads required for the lens sheet used conventionally to transform 10 micrometers were about 20 mN(s) on the engine performance of a lens, the maximum load value was defined such. Moreover, time amount to which creep deformation is made to carry out was suitably set as for 60 seconds.

[0026] After all, the procedure of asking for a load - penetration depth curve is as follows.

(1) Make the load value for compression increase at 100 steps every 0.1 seconds until it is set to 20mN(s)

from 0.

- (2) Maintain the load value set to 20mN for 60 seconds, and make creep deformation cause.
- (3) Make it decrease at 40 steps every 0.1 seconds until a load value is set to 0.4mN(s) (the testing-machine minimum load).

(4) While load values have been 0.4mN(s), maintain for 60 seconds, and recover a penetration depth.

(5) Repeat the above (1) - (4) 3 times.

in addition -- a ball -- an indenter -- acting -- making -- a part -- ***** -- drawing 4 -- being shown -- as -- a Fresnel lens -- constituting -- each -- subdividing -- having had -- a lens -- a field -- for example, -- drawing 4 -- inside -- two -- c -- two -- c -- ' -- and -- two -- c -- " -- being shown -- as -- a part -- a center section -- the neighborhood -- it is -- things -- being desirable . It is near the location which is equivalent to a pitch P, then P/2 in spacing of the crevices which a lens side adjoins. It is desirable to make a ball indenter act near the center of each lens side which forms a lens also in the case of other lens configurations.

[0027] It asks for compressibility (E) by the following formula.

$E = (2h^*(2R-h^*)-1/2xHx(\Delta H/\Delta f)-(1-n)/e = 1/(5.586xh^*xHx (\Delta H/\Delta f) - 7.813 \times 10^{-7} \text{ -- here, } h^*))$

It is the penetration depth (unit; mm) of the intersection of the tangent of the load of a load reduction area (area surrounded by point [in drawing 3] **, point **, and H) in case Load f is Maximum F - a penetration depth curve, and a penetration depth shaft (axis of abscissa). R is the radius (R= 0.4mm) at the tip of an indenter. H is the maximum (unit; mm) of penetration depth h. $\Delta H/\Delta f$ is the inverse number of the inclination of the load of a load reduction area (area surrounded by point [in drawing 3] **, point **, and H) in case Load f is Maximum F - a penetration depth curve. n is the Poisson's ratio (n= 0.22) of the material (WC) of a ball indenter. e is the elastic modulus (e=5.3x105N/mm²) 0.22 of the material (WC) of a ball indenter. As the last paragraph explained, the change in a load etc. is repeated 3 times in order of (1) - (4), it asks for a load - penetration depth curve, and about each, compressibility (E) and (unit;Mpa) are calculated and the average is calculated each time.

[0028] The maximum deformation shows a penetration depth (unit;mum) after a load value is set to 20mN (s) of a maximum load value, immediately after it maintains for 60 seconds and carries out creep deformation, as the last paragraph explained.

[0029] [Preparation of the sample for measurement of the maximum of Tp and a loss tangent, a balanced elastic modulus, W1/2, and W0.1] The resin sheet for samples was obtained like preparation of the sample for measurement of compressibility and the maximum deformation except the front face having changed and used the stainless plate of a mirror plane for the Fresnel lens molding die which has the inversion configuration of a Fresnel lens.

[0030] [Measurement of the maximum of Tp and a loss tangent, a balanced elastic modulus, W1/2, and W0.1] The dynamic viscoelasticity measuring device (product made from Cage En Tech) performed measurement of a storage modulus and a loss tangent using the above-mentioned sample. Forced oscillation with a frequency of 1Hz was given in the direction of a major axis of a sample, and the temperature up of the laying temperature was carried out among -100 degrees C - 100 degrees C with the programming rate of 3 degrees C/m. From the obtained loss tangent - the temperature curve, the maximum (Δ (max)) of a loss tangent was calculated from the peak value in the configuration of a crest, and set temperature at this time to Tp (unit;**). About the balanced elastic modulus, from the obtained storage modulus - the temperature curve, it asked for the storage modulus in 80 degrees C, and considered as the balanced elastic modulus (unit; dyne/cm²). It asked for the width of face of the cutting section when asking for the width of face of the cutting section when cutting a crest with one half of the values of the maximum of a loss tangent as W1/2, and cutting a crest by 1/10 of the maximum of a loss tangent, i.e., the value of 0.1, as W0.1. All of a unit are **s.

[0031] [Evaluation of screen crushing] Each lens sides were stuck, the Fresnel lens sheet and the lenticular lens sheet were used as the projection screen, and in the state of mounting fixed to the frame for screen attachment of a projection mold TV set, with the projector, the whole projected the white screen and observed the screen 24 hours after. What ** and brightness nonuniformity are not accepted in what is not conspicuous although x and brightness nonuniformity are accepted in what the brightness nonuniformity by crushing of a lens configuration is clearly accepted in by observation was made into O. The above evaluation was performed at a room temperature (25 degrees C), 40 degrees C, and 50 degrees C.

[0032] [Evaluation of screen load loading crushing] Each lens sides were stuck for the Fresnel lens sheet and the lenticular lens sheet, 50 sets of things which fixed the perimeter with adhesive tape were prepared, and they were inserted between each groups, and the polyethylene foam sheet was accumulated, and was placed for one week at the room temperature (25 degrees C). In this case, the planar pressure in the bottom becomes about 20 g/cm². Then, the lenticular lens sheet and Fresnel lens sheet of a group which suited the bottom were fixed to the frame for screen attachment of a projection mold TV set similarly in evaluation of screen crushing at the time of mounting of the last paragraph, and with the projector, the whole projected the white screen and observed the screen. Although x and brightness nonuniformity were accepted in what the brightness nonuniformity by the imprint of the pattern of a polyethylene foam sheet according [or] to crushing of a lens configuration is clearly accepted in by observation, what ** and brightness nonuniformity are not accepted in what is the tolerance which is not conspicuous was made into O.

[0033] [Evaluation of Fresnel lens load loading crushing] A Fresnel lens sheet is made for each lens side to turn up, between each Fresnel lens sheet, the polyethylene foam sheet was inserted, 2 sets of things accumulated 100 sheets were prepared, one group was placed at the room temperature (25 degrees C), and each placed the group of another side for one week at 50 degrees C. What was placed at 50 degrees C was left at the room temperature after that for 24 hours. Also in this case, the planar pressure in the bottom becomes about 20 g/cm². Then, the Fresnel lens sheet which suited the bottom was taken out, and similarly in evaluation of screen crushing at the time of mounting of the last paragraph, it fixed to the frame for screen attachment of a projection mold TV set with the lenticular lens sheet, and with the projector, the whole projected the white screen and observed the screen. Although x and brightness nonuniformity were accepted in what the brightness nonuniformity by crushing of a lens configuration is clearly accepted in by observation, what ** and brightness nonuniformity are not accepted in what is the tolerance which is not conspicuous was made into O.

[0034] Although considered as the result of measurement of the above various parameters, and the Fresnel lens sheet, the result of practical evaluation is divided and shown in the next "table 1" and "Table 2." The sample notation A and I-K are related with the example of a comparison by sample notation B-H and L-V about an example among "Table 1" and "Table 2." Moreover, a graph shows the example of measurement of a loss tangent - a temperature curve to drawing 5 - drawing 10. The sample notation given to the graph is as common as the sample notation in "Table 1" and "Table 2."

[0035]

[Table 1]

試料記号	A	B	C	D	E	F	G	H	I	J	K
屈折率	1.551	1.550	1.550	1.551	1.553	1.551	1.553	1.553	1.551	1.551	1.551
圧縮弾性率	459	185	128	323	1405	498	1190	1627	746	888	969
最大変形量	3.54	6.21	6.41	5.46	1.27	3.01	1.17	0.96	1.81	1.57	2.39
T _p	18.4	18.5	19.2	23.8	35.0	35.8	40.0	42.0	47.3	49.3	51.9
tan δ (max)	1.16	1.00	1.12	1.05	0.71	0.88	0.62	0.66	0.93	0.91	0.88
平衡弾性率(×10 ⁷)	18.5	9.1	7.5	6.12	29.8	8.59	29.8	18.7	6.78	9.21	9.52
W _{1/2}	9.8	25.5	33.2	12.5	27.3	39.0	32.2	48.6	17.8	15.6	20.2
W _{0.1}	43.6	45.2	57.5	43.8	48.1	55.3	60.0	68.9	56.1	49.4	56.2
W _{0.1} -W _{1/2}	33.8	19.7	24.3	31.3	20.8	16.3	27.8	20.3	38.3	33.8	36.0
W _{0.1} /W _{1/2}	4.5	1.8	1.7	3.5	1.8	1.4	1.9	1.4	3.2	3.2	2.8
スクリーン濡れ											
25°C	×	△	○	×	○	○	○	○	×	△	×
40°C	×	○	○	×	○	○	○	○	×	×	×
50°C	△	○	○	△	○	○	○	○	×	×	×
スクリーン 荷重載荷濡れ	×	△	○	△	△	○	○	○	×	×	×
フレネルレンズ 荷重載荷濡れ											
25°C	△	△	○	△	○	○	○	○	×	△	×
50°C	×	○	○	×	○	○	○	○	×	×	×

[0036]

[Table 2]

試料記号	L	M	N	O	P	Q	R	S	T	U	V
屈折率	1.554	1.553	1.551	1.551	1.553	1.553	1.553	1.554	1.552	1.552	1.553
圧縮弾性率	1916	2909	1527	1147	2161	2328	2797	2900	1929	2549	3040
最大変形量	0.90	0.63	1.11	1.35	0.88	0.60	0.61	0.59	0.93	0.68	0.77
T _p	52.8	53.0	56.4	57.0	59.0	59.2	60.0	62.0	70.0	70.0	71.0
tan δ (max)	1.06	1.08	0.81	0.92	0.99	0.92	1.01	0.85	0.63	0.46	0.51
平衡弾性率(×10)	11.3	12.4	15.8	45.8	20.5	17.4	11.5	21.5	35.6	47.9	28.7
W _{1/2}	18.4	17.2	20.3	18.8	17.2	20.6	18.1	19.8	21.2	43.3	38.6
W _{D.1}	41.2	39.5	47.6	48.4	40.2	44.8	42.2	41.5	42.8	68.3	57.1
W _{D.1} -W _{1/2}	22.8	22.3	27.3	29.6	23.0	24.2	24.1	21.7	21.4	25.0	20.5
W _{D.1} /W _{1/2}	2.2	2.3	2.3	2.6	2.3	2.2	2.3	2.1	2.0	1.6	1.6
スクリーン濡れ 25°C	○	○	○	○	○	○	○	○	○	○	○
40°C	△	○	○	○	○	○	○	○	○	○	○
50°C	△	△	△	△	○	△	○	○	○	○	○
スクリーン 荷重積載濡れ	○	○	○	○	○	○	○	○	○	○	○
フレネルレンズ 荷重積載濡れ 25°C	○	○	○	○	○	○	○	○	○	○	○
50°C	△	△	△	△	○	△	○	○	○	○	○

[0037]

[Effect of the Invention] Since the range of the difference of the half-value width of a loss tangent - a temperature curve and 0.1 pieces was specified according to invention of claim 1 To change of temperature, the behavior is not too sharp, and, moreover, is equipped with the moderate elasticity as a viscoelastic body, and it sets in an anticipated-use temperature region. The resin constituent for optical elements which neither the damage by the pressure applied at the time of use which becomes the handling of the optical element obtained using this resin constituent with trouble, nor crushing at the time of putting horizontally produces can be offered. Since the range of the ratio of the half-value width of a loss tangent - a temperature curve and 0.1 pieces was specified according to invention of claim 2 Similarly in the 1st invention, the behavior is not too sharp, and, moreover, is equipped with moderate elasticity to change of temperature, and it sets in an anticipated-use temperature region. The resin constituent for optical elements which neither the damage by the pressure applied at the time of use which becomes the handling of the optical element obtained using this resin constituent with trouble, nor crushing at the time of putting horizontally produces can be offered.

According to invention of claim 3, since the range of the half-value width of a loss tangent - a temperature curve and the range of the value of T_p were specified, in addition to the same effectiveness as claim 1, by having rubber elasticity and rigidity, the holdout of a configuration is high and the resin constituent for optical elements which does not produce the curve of a lens sheet can be offered. according to invention of claim 4 -- claim 1 - claim 3 -- since the range of the maximum of the loss tangent in a loss tangent - a temperature curve was specified in addition to one of effects of the invention, grind -- the resin constituent for optical elements with which it is alike with a constituent, and has the receiving endurance, and the mechanical property at the time of an elevated temperature was secured can be offered. according to invention of claim 5 -- claim 1 - claim 4 -- the optical element which consisted of resin constituents for optical elements which can demonstrate one of effects of the invention can be offered. When according to invention of claim 6 the tip is sharp and the cross-section configuration of an optical element side applies to a Fresnel lens sheet sensitive to crushing or a chip by the shape of a serrated knife, the effect of the invention of claim 5 can offer the optical element demonstrated further. According to invention of claim 7, in the structure which combined the Fresnel lens sheet and the lenticular lens sheet, the projection screen with which the effect of the invention of claim 5 or claim 6 is demonstrated can be offered.

[Translation done.]

*** NOTICES ***

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1.This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing showing the projection screen which is an optical element.
[Drawing 2] It is drawing for explaining a loss tangent - a temperature curve.
[Drawing 3] It is drawing for explaining a load - penetration depth curve.
[Drawing 4] It is drawing showing the part on which an indenter is made to act.
[Drawing 5] They are the loss tangent of the sample notation D - a temperature curve.
[Drawing 6] They are the loss tangent of the sample notation E - a temperature curve.
[Drawing 7] They are the loss tangent of the sample notation F - a temperature curve.
[Drawing 8] They are the loss tangent of the sample notation H - a temperature curve.
[Drawing 9] They are the loss tangent of the sample notation R - a temperature curve.
[Drawing 10] They are the loss tangent of the sample notation V - a temperature curve.

[Description of Notations]

- 1 Projection Screen
- 2 Fresnel Lens Sheet
- 3 Lenticular Lens Sheet

[Translation done.]