Term-Indexing for Instantiation-Based First Order Theorem Proving

Alexander Maringele

January 27th, 2016

References

Alexandre Riazanov and Andrei Voronkov, *Efficient instance retrieval with standard and relational path indexing*, Automated Deduction – CADE-19 (Franz Baader, ed.), Lecture Notes in Computer Science, vol. 2741, Springer Berlin Heidelberg, 2003, pp. 380–396 (English).

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov, *Term indexing*, Handbook of Automated Reasoning (Alan Robinson and Andrei Voronkov, eds.), Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 2001, pp. 1853–1964.

Outline

1 Motivation

2 path indexing

3 discrimination trees

Resolution

Goal

A sound^o, refutational complete^o, and effective* procedure.

Alexander Maringele

A sound $^{\circ}$, refutational complete $^{\diamond}$, and effective * procedure.

Term retrieval problems

- Find terms that are variants of a given term. $\operatorname{variant}(\ell, t) \Leftrightarrow \exists \sigma \ \ell \sigma = t \text{ and } \sigma \text{ is renaming.}$
- Find terms that are unifiable with a given term. unifiable $(\ell, t) \Leftrightarrow \exists \sigma \ \ell \sigma = t \sigma$
- Find terms that are instances of a given term. instance(ℓ, t) $\Leftrightarrow \exists \sigma \ \ell = t \sigma$
- Find terms that are generalizations of a given term. generalization(ℓ, t) $\Leftrightarrow \exists \sigma \ \ell \sigma = t$

Definition

Definition

A position is a sequence of positive integers. The empty sequence ε denotes the root position, pq denotes the concatenation of positions. $\mathcal{P}\text{os}(t)$ denotes the set of positions in term t, and $t|_p$ denotes the subterm of t at position $p \in \mathcal{P}\text{os}(t)$.

Definition

A postion string is a nonempty string of the form $\langle p_1,s_1\rangle\dots\langle p_n,s_n\rangle$ where p_i are positions and s_i are function or variable symbols and

- 1) if p_i is a proper prefix of p_j then i < j
- 2

$$\{^{1:}\mathsf{h}(\mathsf{f}(x,x)),^{2:}\mathsf{h}(\mathsf{g}(\mathsf{a},x)),^{3:}\mathsf{h}(\mathsf{f}(y,z))^{4:}\mathsf{h}(\mathsf{g}(\mathsf{a},y)),^{5:}\mathsf{h}(\mathsf{f}(y,x)),^{6:}\mathsf{h}(\mathsf{g}(y,a))\}$$

$$h(g(y,x)) \mapsto \{ h.1.g.1.*, h.1.g.2.* \}$$

$$\begin{cases} \ ^{1} \mathsf{h}(\mathsf{f}(x,x)), & \ ^{2} \mathsf{h}(\mathsf{g}(\mathsf{a},x)), & \ ^{3} \mathsf{h}(\mathsf{f}(y,z)), \\ \ ^{4} \mathsf{h}(\mathsf{g}(\mathsf{a},y)), & \ ^{5} \mathsf{h}(\mathsf{f}(y,x)), & \ ^{6} \mathsf{h}(\mathsf{g}(y,a)) \end{cases}$$

Alexander Maringele

