Mini-Project on Big Data (MPBD)

Git:

https://github.com/wingyeung0317/EEE4463/blob/master/BD_Labs_V3/Lab6/YeungWing_MPBD.

•••

→

Requirement 1

Consolidate 5 CSV files into a single CSV file

```
import pandas as pd
        df1 = pd.read_csv("S1.csv").astype(float, errors='ignore')
In [ ]: |
        df2 = pd.read_csv("S2.csv").astype(float, errors='ignore')
        df3 = pd.read_csv("S3.csv").astype(float, errors='ignore')
        df4 = pd.read_csv("S4.csv").astype(float, errors='ignore')
        df5 = pd.read_csv("S5.csv").astype(float, errors='ignore')
In [ ]:
        # if the students completed all 5 semesters, then their ID should be in every csv f
        all5SemDF = pd.merge(df1, df2, on='Student', how='inner')
        all5SemDF = pd.merge(all5SemDF, df3, on='Student', how='inner')
        all5SemDF = pd.merge(all5SemDF, df4, on='Student', how='inner')
        all5SemDF = pd.merge(all5SemDF, df5, on='Student', how='inner')
        # drop rows with NaN values
        all5SemDF noNaN = all5SemDF.dropna(how='any')
        all5SemDF noNaN.reset index(drop=True, inplace=True)
        all5SemDF_noNaN
In [ ]:
```

2024, 17:51							Υ	'eungWir	ng_MPBI)						
Out[]:		Student	L001	V001	V002	V003	V004	V005	V006	V007	L002	•••	L004	V019	V020	\
	0	S001	56.0	82.0	74.0	68.0	78.0	87.0	63.0	79.0	54.0		63.0	76.0	70.0	
	1	S003	52.0	83.0	88.0	79.0	85.0	66.0	62.0	74.0	56.0		67.0	74.0	69.0	
	2	S005	56.0	74.0	54.0	49.0	53.0	60.0	54.0	73.0	43.0		36.0	58.0	60.0	
	3	S007	61.0	85.0	76.0	79.0	79.0	64.0	66.0	82.0	66.0		46.0	11.0	62.0	
	4	S008	58.0	72.0	69.0	82.0	76.0	77.0	68.0	74.0	61.0		67.0	79.0	69.0	
	5	S010	59.0	56.0	42.0	60.0	33.0	65.0	60.0	67.0	50.0		50.0	56.0	61.0	
	6	S011	53.0	69.0	68.0	65.0	49.0	73.0	62.0	68.0	48.0		58.0	68.0	66.0	
	7	S012	58.0	72.0	65.0	60.0	65.0	69.0	63.0	64.0	51.0		55.0	74.0	71.0	
	8	S013	57.0	72.0	54.0	53.0	41.0	71.0	64.0	69.0	56.0		48.0	57.0	54.0	
	9	S014	50.0	87.0	92.0	80.0	75.0	72.0	71.0	82.0	59.0		49.0	74.0	65.0	
	10	S018	54.0	84.0	85.0	88.0	61.0	83.0	65.0	66.0	55.0		60.0	77.0	72.0	
	11	S019	61.0	80.0	81.0	79.0	79.0	61.0	70.0	71.0	63.0		68.0	82.0	72.0	
	12	S021	56.0	76.0	67.0	66.0	63.0	62.0	61.0	77.0	68.0		50.0	77.0	64.0	
	13	S022	55.0	55.0	59.0	55.0	46.0	63.0	63.0	52.0	53.0		63.0	72.0	57.0	
	14	S023	59.0	49.0	34.0	55.0	42.0	50.0	53.0	58.0	47.0		47.0	47.0	64.0	
	15	S026	60.0	80.0	65.0	74.0	58.0	66.0	61.0	77.0	46.0		58.0	57.0	73.0	
	16	S028	54.0	91.0	81.0	82.0	92.0	61.0	60.0	83.0	55.0		52.0	80.0	68.0	
	17	S029	52.0	64.0	52.0	61.0	57.0	59.0	46.0	61.0	44.0		49.0	50.0	58.0	
	18	S030	62.0	68.0	64.0	71.0	53.0	74.0	66.0	53.0	59.0		70.0	71.0	70.0	
	19	S033	62.0	91.0	86.0	79.0	91.0	71.0	71.0	71.0	61.0		64.0	74.0	63.0	
	20	S037	66.0	65.0	55.0	65.0	53.0	58.0	59.0	73.0	52.0		47.0	73.0	67.0	
	21	S040	58.0	57.0	50.0	59.0	39.0	63.0	56.0	74.0	53.0		41.0	64.0	53.0	
	22	S041	52.0	88.0	71.0	76.0	92.0	66.0	60.0	63.0	64.0		52.0	68.0	79.0	
	23	S044	58.0	82.0	75.0	69.0	64.0	73.0	73.0	69.0	52.0		63.0	76.0	72.0	
	24	S045	59.0	85.0	76.0	72.0	70.0	85.0	69.0	77.0	53.0		66.0	77.0	68.0	
	25	S046	62.0	88.0	77.0	74.0	92.0	55.0	74.0	74.0	58.0		52.0	83.0	66.0	
	26	S047	67.0	64.0	73.0	64.0	79.0	68.0	66.0	62.0	64.0		58.0	71.0	65.0	
	27	S050	58.0	76.0	73.0	73.0	77.0	68.0	65.0	59.0	57.0		62.0	57.0	62.0	
	28	S053	60.0	71.0	69.0	60.0	37.0	77.0	53.0	64.0	62.0		65.0	71.0	69.0	
	29	S054	53.0	69.0	62.0	64.0	62.0	56.0	63.0	66.0	50.0		53.0	59.0	68.0	
	30	S055	61.0	66.0	69.0	69.0	63.0	80.0	69.0	66.0	50.0		56.0	55.0	56.0	
	31	S056	63.0	82.0	66.0	60.0	84.0	61.0	66.0	63.0	61.0	•••	50.0	53.0	66.0	
	32	S057	59.0	88.0	83.0	80.0	90.0	65.0	68.0	75.0	64.0	•••	62.0	82.0	74.0	
	33	S058	57.0	66.0	76.0	72.0	64.0	75.0	56.0	70.0	58.0		58.0	80.0	70.0	
	34	S059	59.0	95.0	87.0	81.0	95.0	80.0	71.0	82.0	69.0		65.0	76.0	64.0	
	35	S060	73.0	83.0	73.0	76.0	86.0	69.0	72.0	76.0	67.0		68.0	74.0	77.0	

	Student	L001	V001	V002	V003	V004	V005	V006	V007	L002	•••	L004	V019	V020	١
36	S064	55.0	77.0	65.0	55.0	89.0	85.0	58.0	75.0	55.0		56.0	70.0	74.0	
37	S067	62.0	70.0	79.0	78.0	74.0	64.0	67.0	74.0	60.0		62.0	72.0	71.0	
38	S068	51.0	86.0	81.0	83.0	79.0	79.0	62.0	73.0	60.0		56.0	86.0	69.0	
39	S069	63.0	66.0	51.0	53.0	84.0	67.0	64.0	72.0	59.0		60.0	64.0	57.0	
40	S070	42.0	55.0	61.0	61.0	48.0	75.0	64.0	62.0	51.0		44.0	77.0	68.0	
41	S073	64.0	83.0	88.0	80.0	82.0	55.0	69.0	60.0	62.0		69.0	61.0	65.0	
42	S074	59.0	77.0	78.0	73.0	93.0	67.0	63.0	72.0	60.0		59.0	58.0	66.0	
43	S075	58.0	83.0	56.0	59.0	78.0	69.0	64.0	73.0	49.0		47.0	64.0	68.0	
44	S079	60.0	62.0	66.0	65.0	59.0	69.0	62.0	67.0	62.0		63.0	58.0	65.0	
45	S081	62.0	82.0	70.0	72.0	81.0	73.0	55.0	72.0	65.0		64.0	70.0	70.0	
46	S082	58.0	85.0	93.0	82.0	88.0	68.0	65.0	74.0	64.0		67.0	96.0	72.0	
47	S083	69.0	57.0	65.0	58.0	56.0	63.0	67.0	68.0	54.0		66.0	58.0	64.0	
48	S084	55.0	79.0	71.0	67.0	68.0	54.0	67.0	80.0	53.0		53.0	72.0	63.0	
49	S085	61.0	85.0	81.0	82.0	88.0	70.0	67.0	61.0	65.0		59.0	68.0	71.0	

```
In [ ]: all5SemDF_noNaN.to_csv("Yeung_Wing.csv", index=False)
```

Requirement 1 is finished here. following are the DataFrames that are prepared for the relationship finding at the end.

```
In []: # all students include those who are not completed all 5 semesters
    df = pd.merge(df1, df2, on='Student', how='left')
    df = pd.merge(df, df3, on='Student', how='left')
    df = pd.merge(df, df4, on='Student', how='left')
    df = pd.merge(df, df5, on='Student', how='left')

In []: studentWithNANDF = df[~df['Student'].isin(all5SemDF_noNaN['Student'])]
    studentQuitDF = df[~df['Student'].isin(all5SemDF['Student'])]
    studentMaybeExecemption = studentWithNANDF[~studentWithNANDF['Student'].isin(student)].
```

Requirement 2

Count the number of students who completed all 5 semesters

```
In []: print(f"Number of students who confirmed completed all 5 semesters: {len(all5SemDF_print(f"Number of students who may completed all 5 semesters (Maybe NaN results due print(f"Number of students who are 100% did not completed all 5 semesters: {len(stuprint(f"Number of students who may be exempted or not completed all 5 semesters: {lprint(f"Number of students who may not completed all 5 semesters: {len(all5SemDF)-lprint(f"Total number of students: {len(df)}")
```

```
Number of students who confirmed completed all 5 semesters: 50

Number of students who may completed all 5 semesters (Maybe NaN results due to exe mption): 67

Number of students who are 100% did not completed all 5 semesters: 16

Number of students who may be exempted or not completed all 5 semesters: 17

Number of students who may not completed all 5 semesters: 17 + 16(100%) = 33

Total number of students: 83
```

Number of students who confirmed completed all 5 semesters: 50

Number of students who may completed all 5 semesters (Maybe NaN results due to exemption): 67

Number of students who are 100% did not completed all 5 semesters: 16

Number of students who may be exempted or not completed all 5 semesters: 17

Number of students who may not completed all 5 semesters: 17 + 16(100%) = 33

Total number of students: 83

Requirement 3

Statistics (mean/ maximum/ minimum/ standard deviation of module marks) of the designated modules - V???, V???, V???

```
all5SemDF noNaN.describe().iloc[:,1]
                  50.000000
        count
Out[ ]:
                  75.240000
        mean
        std
                  11.174972
        min
                  49.000000
        25%
                  66.500000
        50%
                  77.000000
        75%
                  83.750000
        max
                  95.000000
        Name: V001, dtype: float64
        all5SemDF noNaN.describe()
```

	L001	V001	V002	V003	V004	V005	V006	V007	
count	50.000000	50.000000	50.00000	50.000000	50.000000	50.000000	50.000000	50.00000	50.00
mean	58.380000	75.240000	69.92000	69.340000	69.800000	68.220000	63.660000	69.94000	56.96
std	5.158271	11.174972	12.78047	9.908994	17.235464	8.514789	5.727164	7.38838	6.49
min	42.000000	49.000000	34.00000	49.000000	33.000000	50.000000	46.000000	52.00000	43.00
25%	55.250000	66.500000	64.25000	60.250000	57.250000	63.000000	61.000000	64.50000	52.25
50%	58.500000	77.000000	70.50000	70.000000	74.500000	68.000000	64.000000	71.50000	57.50
75%	61.000000	83.750000	78.75000	79.000000	84.000000	73.000000	67.000000	74.00000	62.00
max	73.000000	95.000000	93.00000	88.000000	95.000000	87.000000	74.000000	83.00000	69.00
	mean std min 25% 50% 75%	ount 50.000000 mean 58.380000 std 5.158271 min 42.000000 25% 55.250000 50% 58.500000 75% 61.000000	ount 50.000000 50.000000 mean 58.380000 75.240000 std 5.158271 11.174972 min 42.000000 49.000000 25% 55.250000 66.500000 50% 58.500000 77.000000 75% 61.000000 83.750000	ount 50.000000 50.000000 50.00000 mean 58.380000 75.240000 69.92000 std 5.158271 11.174972 12.78047 min 42.000000 49.000000 34.00000 25% 55.250000 66.500000 64.25000 50% 58.500000 77.000000 70.50000 75% 61.000000 83.750000 78.75000	ount 50.000000 50.000000 50.00000 50.00000 std 5.158271 11.174972 12.78047 9.908994 min 42.000000 49.000000 34.00000 49.000000 25% 55.250000 66.500000 64.25000 60.250000 50% 58.500000 77.000000 70.50000 79.000000 75% 61.000000 83.750000 78.75000 79.000000	ount 50.000000 50.000000 50.000000 50.000000 50.000000 std 5.158271 11.174972 12.78047 9.908994 17.235464 min 42.000000 49.000000 34.00000 49.000000 33.000000 25% 55.250000 66.500000 64.25000 60.250000 72.50000 50% 58.500000 77.000000 78.75000 79.000000 84.000000	ount 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 68.220000 68.220000 68.220000 68.220000 68.514789 61.000000 49.000000 34.00000 49.000000 33.000000 50.000000 50.000000 57.250000 63.000000 50% 58.500000 77.000000 70.000000 70.000000 74.500000 68.000000 75.0000 79.000000 84.000000 73.000000	ount 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 63.660000 63.660000 63.660000 64.220000 63.660000 63.660000 64.000000 49.000000 33.000000 50.000000 46.000000 46.000000 46.000000 50.250000 63.000000 61.000000 64.000000 70.000000 74.500000 68.000000 64.000000 75.00000 79.000000 84.000000 73.000000 67.0000000	ount 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 50.000000 69.94000 69.94000 68.220000 63.660000 69.94000 69.94000 68.514789 5.727164 7.38838 7.

8 rows × 31 columns

```
pd.concat([all5SemDF_noNaN.describe().iloc[1:4], all5SemDF_noNaN.describe().iloc[7:
                              V001
                                       V002
                                                  V003
                                                            V004
                    L001
                                                                      V005
                                                                                 V006
                                                                                          V007
Out[]:
                                                                                                    Т
               58.380000 75.240000
                                    69.92000
                                             69.340000
                                                        69.800000 68.220000
                                                                            63.660000
                                                                                       69.94000
                                                                                                56.960
         mean
           std
                 5.158271
                         11.174972
                                    12.78047
                                               9.908994
                                                        17.235464
                                                                   8.514789
                                                                              5.727164
                                                                                        7.38838
                                                                                                 6.49
           min 42.000000 49.000000
                                    34.00000
                                              49.000000
                                                        33.000000
                                                                  50.000000
                                                                            46.000000
                                                                                       52.00000 43.000
          max 73.000000 95.000000 93.00000 88.000000 95.000000 87.000000 74.000000
                                                                                       83.00000 69.000
        4 rows × 31 columns
```

```
df['L003'].describe()
                  73.000000
        count
Out[]:
                  48.849315
        mean
                  11.878635
        std
                  0.000000
        min
        25%
                  46.000000
        50%
                  52.000000
        75%
                  56.000000
                  65.000000
        {\sf max}
        Name: L003, dtype: float64
        # mean of V001
In [ ]:
         df['V001'].mean()
        64.79518072289157
Out[ ]:
        # maximum value of V002
In [ ]:
         df['V002'].max()
        93.0
Out[]:
        # minimum value of V003
In [ ]:
         df['V003'].min()
        19.0
Out[]:
```

```
In []: # standard deviation of V004
df['V004'].std()
Out[]: 21.238891411158047
```

Requirement 4

Histogram of the designated module - V???

```
In [ ]: import matplotlib.pyplot as plt

In [ ]: plt.hist(all5SemDF_noNaN['V001'], rwidth=0.9) # rwidth is added for the space betwee plt.xlabel('Mark')
    plt.ylabel('Frequency')
    #set x axis range and step
    left, right = plt.xlim()
    plt.xticks(range(int(left)-1, int(right)+1, 5))
    plt.title('Histogram of V001')
    plt.show()
```

Histogram of V001

Requirement 5 (NOT needed for those who completed Requirement 1)

Box plot of the designated module - V???

```
In [ ]: # import matplotlib.pyplot as plt
```

```
In [ ]: plt.boxplot([al15SemDF_noNaN['V001'],al15SemDF_noNaN['V002'],al15SemDF_noNaN['V004'
    plt.ylabel('Mark')
    plt.xlabel('Module')
    plt.title('Boxplot of the designated module')
    plt.show()
```

Boxplot of the designated module

Requirement 6

Pie chart of the designated module - V???

```
# import matplotlib.pyplot as plt
In [ ]:
In [ ]:
        V003GradeA = len(all5SemDF_noNaN[all5SemDF_noNaN['V003']>=70]['V003'])
        V003GradeB = len(all5SemDF_noNaN[(all5SemDF_noNaN['V003']>=60) & (df['V003']<70)][
        V003GradeC = len(all5SemDF_noNaN[(all5SemDF_noNaN['V003']>=50) & (df['V003']<60)][
        V003GradeD = len(all5SemDF noNaN[(all5SemDF noNaN['V003']>=40) & (df['V003']<50)][
        V003GradeF = len(all5SemDF noNaN[all5SemDF noNaN['V003']<40]['V003'])
        C:\Users\admin\AppData\Local\Temp\ipykernel_10700\4009642701.py:2: UserWarning: Bo
        olean Series key will be reindexed to match DataFrame index.
          V003GradeB = len(all5SemDF_noNaN[(all5SemDF_noNaN['V003']>=60) & (df['V003']<7</pre>
        0)]['V003'])
        C:\Users\admin\AppData\Local\Temp\ipykernel_10700\4009642701.py:3: UserWarning: Bo
        olean Series key will be reindexed to match DataFrame index.
          V003GradeC = len(all5SemDF noNaN[(all5SemDF noNaN['V003']>=50) & (df['V003']<6
        0)]['V003'])
        C:\Users\admin\AppData\Local\Temp\ipykernel_10700\4009642701.py:4: UserWarning: Bo
        olean Series key will be reindexed to match DataFrame index.
          V003GradeD = len(all5SemDF_noNaN[(all5SemDF_noNaN['V003']>=40) & (df['V003']<5
        0)]['V003'])
```

```
In [ ]: plt.pie([V003GradeA,V003GradeB,V003GradeC,V003GradeD,V003GradeF], labels=['A','B',
    plt.title('Pie chart of V003 grades')
    plt.legend(title='Grade')
    plt.show()
```

Pie chart of V003 grades

Requirement 7A

Underlying relationship about project module to other modules

```
all5SemDF noNaN stundentIndex = all5SemDF noNaN.set index('Student')
In [ ]:
        # grab all result of module start with letter L
        1DF = all5SemDF noNaN stundentIndex.filter(regex='^L')
        # grab all result of module start with letter V
        vDF = all5SemDF_noNaN_stundentIndex.filter(regex='^V')
        # grab all result of module start with letter P
         pDF = all5SemDF noNaN stundentIndex.filter(regex='^P')
        ### Use all5SemDF noNaN to avoid outliner that some students did not complete all t
         print(f"Relationship between all language module: {lDF.corr().mean().mean()*100}%")
         print(f"Relationship between all vocation module: {vDF.corr().mean().mean()*100}%")
        print(f"Relationship between all project module: {pDF.corr().mean().mean()*100}% (1
        Relationship between all language module: 57.835510276836324%
        Relationship between all vocation module: 46.097306542476524%
        Relationship between all project module: 100.0% (100% because there is only one pr
        oject module)
        meanDF = pd.DataFrame(lDF.mean(axis=1), columns=['LAN'])
        meanDF = pd.merge(meanDF, pd.DataFrame(vDF.mean(axis=1), columns=['EEE']), on='Stuc
        meanDF = pd.merge(meanDF, pd.DataFrame(pDF.mean(axis=1), columns=['PROJ']), on='Sti
        display(meanDF.corr())
```

	LAN	EEE	PROJ
LAN	1.000000	0.575835	0.300924
EEE	0.575835	1.000000	0.449187
PROJ	0.300924	0.449187	1.000000

```
In []: lvCorr = meanDF.corr().loc["LAN", "EEE"]
lpCorr = meanDF.corr().loc["LAN", "PROJ"]
vpCorr = meanDF.corr().loc["EEE", "PROJ"]

print(f"Relationship between language and vocation module: {lvCorr*100}%")
print(f"Relationship between language and project module: {lpCorr*100}%")
print(f"Relationship between vocation and project module: {vpCorr*100}%")
print("")
print("We can see that in term of project module, the grade of vocation course is m

Relationship between language and vocation module: 57.583506636907224%
Relationship between language and project module: 30.092426414939265%
```

Relationship between vocation and project module: 44.91872964027379%

We can see that in term of project module, the grade of vocation course is more re lated then language module.

We can see that in term of project module, the grade of vocation course is more related then language module.

```
In [ ]: import seaborn as sns
    sns.heatmap(meanDF.corr()*100, annot=True, cmap='coolwarm')
    plt.title("Heatmap of the relationships between different modules")
    plt.show()
```


Requirement 7B

Underlying relationship between the student who didn't finished all 5 sems to other students

```
In [ ]: # only compare the module studied by the withdrawn students
    studentQuitNoNADF = studentQuitDF.dropna(how='any', axis=1)
    studentQuitNoNADF
```

Out[]:		Student	L001	V001	V002	V003	V004	V005	V006	V007
	8	S009	58.0	82.0	47.0	46.0	69.0	64.0	58.0	64.0
	14	S015	45.0	24.0	16.0	34.0	41.0	58.0	32.0	70.0
	30	S031	58.0	20.0	25.0	23.0	19.0	59.0	46.0	47.0
	32	S034	50.0	51.0	44.0	43.0	31.0	64.0	44.0	71.0
	33	S035	42.0	28.0	36.0	22.0	40.0	58.0	33.0	60.0
	34	S036	49.0	18.0	32.0	33.0	17.0	50.0	57.0	54.0
	45	S048	49.0	42.0	45.0	35.0	56.0	45.0	41.0	65.0
	46	S049	42.0	43.0	41.0	47.0	10.0	49.0	68.0	59.0
	49	S052	40.0	50.0	0.0	24.0	70.0	40.0	28.0	0.0
	60	S063	61.0	21.0	36.0	29.0	17.0	65.0	69.0	40.0
	62	S065	66.0	84.0	79.0	83.0	85.0	78.0	78.0	81.0
	68	S071	56.0	59.0	72.0	68.0	50.0	74.0	58.0	69.0
	69	S072	14.0	20.0	28.0	19.0	16.0	35.0	20.0	37.0
	74	S077	56.0	58.0	54.0	60.0	51.0	63.0	56.0	61.0
	75	S078	50.0	51.0	50.0	63.0	58.0	58.0	49.0	55.0
	77	S080	61.0	70.0	55.0	73.0	56.0	63.0	63.0	67.0

```
In [ ]: all5SemComparableDF = all5SemDF_noNaN[studentQuitNoNADF.columns]
    all5SemComparableDF['quit'] = False
    all5SemComparableDF
```

 $\label{local-temp-ipy-ernel_10700} C:\Users\admin\AppData\Local\Temp\ipy-kernel_10700\2722242388.py:2: SettingWithCopy Warning:$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy all5SemComparableDF['quit'] = False

٦	1.1	+	- 1	4
J			- 1	

	Student	L001	V001	V002	V003	V004	V005	V006	V007	quit
0	S001	56.0	82.0	74.0	68.0	78.0	87.0	63.0	79.0	False
1	S003	52.0	83.0	88.0	79.0	85.0	66.0	62.0	74.0	False
2	S005	56.0	74.0	54.0	49.0	53.0	60.0	54.0	73.0	False
3	S007	61.0	85.0	76.0	79.0	79.0	64.0	66.0	82.0	False
4	S008	58.0	72.0	69.0	82.0	76.0	77.0	68.0	74.0	False
5	S010	59.0	56.0	42.0	60.0	33.0	65.0	60.0	67.0	False
6	S011	53.0	69.0	68.0	65.0	49.0	73.0	62.0	68.0	False
7	S012	58.0	72.0	65.0	60.0	65.0	69.0	63.0	64.0	False
8	S013	57.0	72.0	54.0	53.0	41.0	71.0	64.0	69.0	False
9	S014	50.0	87.0	92.0	80.0	75.0	72.0	71.0	82.0	False
10	S018	54.0	84.0	85.0	88.0	61.0	83.0	65.0	66.0	False
11	S019	61.0	80.0	81.0	79.0	79.0	61.0	70.0	71.0	False
12	S021	56.0	76.0	67.0	66.0	63.0	62.0	61.0	77.0	False
13	S022	55.0	55.0	59.0	55.0	46.0	63.0	63.0	52.0	False
14	S023	59.0	49.0	34.0	55.0	42.0	50.0	53.0	58.0	False
15	S026	60.0	80.0	65.0	74.0	58.0	66.0	61.0	77.0	False
16	S028	54.0	91.0	81.0	82.0	92.0	61.0	60.0	83.0	False
17	S029	52.0	64.0	52.0	61.0	57.0	59.0	46.0	61.0	False
18	S030	62.0	68.0	64.0	71.0	53.0	74.0	66.0	53.0	False
19	S033	62.0	91.0	86.0	79.0	91.0	71.0	71.0	71.0	False
20	S037	66.0	65.0	55.0	65.0	53.0	58.0	59.0	73.0	False
21	S040	58.0	57.0	50.0	59.0	39.0	63.0	56.0	74.0	False
22	S041	52.0	88.0	71.0	76.0	92.0	66.0	60.0	63.0	False
23	S044	58.0	82.0	75.0	69.0	64.0	73.0	73.0	69.0	False
24	S045	59.0	85.0	76.0	72.0	70.0	85.0	69.0	77.0	False
25	S046	62.0	88.0	77.0	74.0	92.0	55.0	74.0	74.0	False
26	S047	67.0	64.0	73.0	64.0	79.0	68.0	66.0	62.0	False
27	S050	58.0	76.0	73.0	73.0	77.0	68.0	65.0	59.0	False
28	S053	60.0	71.0	69.0	60.0	37.0	77.0	53.0	64.0	False
29	S054	53.0	69.0	62.0	64.0	62.0	56.0	63.0	66.0	False
30	S055	61.0	66.0	69.0	69.0	63.0	80.0	69.0	66.0	False
31	S056	63.0	82.0	66.0	60.0	84.0	61.0	66.0	63.0	False
32	S057	59.0	88.0	83.0	80.0	90.0	65.0	68.0	75.0	False
33	S058	57.0	66.0	76.0	72.0	64.0	75.0	56.0	70.0	False
34	S059	59.0	95.0	87.0	81.0	95.0	80.0	71.0	82.0	False
35	S060	73.0	83.0	73.0	76.0	86.0	69.0	72.0	76.0	False

	Student	L001	V001	V002	V003	V004	V005	V006	V007	quit
36	S064	55.0	77.0	65.0	55.0	89.0	85.0	58.0	75.0	False
37	S067	62.0	70.0	79.0	78.0	74.0	64.0	67.0	74.0	False
38	S068	51.0	86.0	81.0	83.0	79.0	79.0	62.0	73.0	False
39	S069	63.0	66.0	51.0	53.0	84.0	67.0	64.0	72.0	False
40	S070	42.0	55.0	61.0	61.0	48.0	75.0	64.0	62.0	False
41	S073	64.0	83.0	88.0	80.0	82.0	55.0	69.0	60.0	False
42	S074	59.0	77.0	78.0	73.0	93.0	67.0	63.0	72.0	False
43	S075	58.0	83.0	56.0	59.0	78.0	69.0	64.0	73.0	False
44	S079	60.0	62.0	66.0	65.0	59.0	69.0	62.0	67.0	False
45	S081	62.0	82.0	70.0	72.0	81.0	73.0	55.0	72.0	False
46	S082	58.0	85.0	93.0	82.0	88.0	68.0	65.0	74.0	False
47	S083	69.0	57.0	65.0	58.0	56.0	63.0	67.0	68.0	False
48	S084	55.0	79.0	71.0	67.0	68.0	54.0	67.0	80.0	False
49	S085	61.0	85.0	81.0	82.0	88.0	70.0	67.0	61.0	False

```
In [ ]: studentQuitNoNADF['quit'] = True
        relationshipDF = pd.concat([studentQuitNoNADF, all5SemComparableDF]).reset index(dr
        C:\Users\admin\AppData\Local\Temp\ipykernel_10700\2532102351.py:1: SettingWithCopy
        Warning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
        e/user guide/indexing.html#returning-a-view-versus-a-copy
          studentQuitNoNADF['quit'] = True
In [ ]:
        plt.boxplot([relationshipDF[relationshipDF["quit"]==True].mean(axis=1), relationshi
        plt.xlabel("Student Status")
        plt.ylabel("Mark")
        plt.title("Compare between withdrawn student and all modules completed student")
        plt.show()
        print("We can see although the mean of grade of the withdrawn students is much lowe
        C:\Users\admin\AppData\Local\Temp\ipykernel_10700\2361699887.py:1: FutureWarning:
        Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is
        deprecated; in a future version this will raise TypeError. Select only valid colu
        mns before calling the reduction.
          plt.boxplot([relationshipDF[relationshipDF["quit"]==True].mean(axis=1), relation
        shipDF[relationshipDF["quit"]==False].mean(axis=1), relationshipDF.mean(axis=1)],
        labels=["Withdrawn student", "All Completed student", "ALL STUDENTS"])
```

Compare between withdrawn student and all modules completed student

We can see although the mean of grade of the withdrawn students is much lower then the students completed all modules, there are still some examples that they get hi gh marks.

We can see although the mean of grade of the withdrawn students is much lower then the students completed all modules, there are still some examples that they get high marks.

```
In [ ]: modules = []
    for col, foo in enumerate(relationshipDF.columns.str.startswith(('L', 'V', 'P'))):
        if foo == True:
            modules.append(relationshipDF.columns[col])

passDF = relationshipDF.copy().set_index("Student")

for i in modules:
        passDF[i] = relationshipDF.set_index("Student")[i].apply(lambda x: True if x<4000 passDF)</pre>
```

Out[]:

									quit
Studer	nt								
S00	9 False	True							
S01	5 False	True	True	True	False	False	True	False	True
S03	1 False	True	True	True	True	False	False	False	True
S03	4 False	False	False	False	True	False	False	False	True
S03	5 False	True	True	True	False	False	True	False	True
	••								
S08	1 False	False							
S08	2 False	False							
S08	3 False	False							
S08	4 False	False							
S08	5 False	False							

L001 V001 V002 V003 V004 V005 V006 V007

66 rows × 9 columns

In Python, False = 0, True = 1, so we set false to be pass and true to be failed to see the relationship between withdrawn rate and pass rate to designated modules

```
passDF.corr()
In [ ]:
Out[ ]:
                    L001
                              V001
                                        V002
                                                  V003
                                                            V004
                                                                      V005
                                                                                V006
                                                                                          V007
                                                                                                     quit
          L001
                                              0.333974
                                                                 1.000000
                                                                            0.488325
                                                                                                0.219265
                 1.000000
                          0.392232
                                    0.333974
                                                        0.312147
                                                                                      0.701646
                 0.392232
                           1.000000
                                     0.851469
                                               0.851469
                                                        0.488663
                                                                  0.392232
                                                                            0.582334
                                                                                      0.251558
                                                                                                0.559017
          V002
                0.333974
                          0.851469
                                     1.000000
                                              0.857759
                                                        0.393535
                                                                  0.333974
                                                                            0.683917
                                                                                      0.475986
                                                                                                0.548204
          V003
                 0.333974
                          0.851469
                                     0.857759
                                               1.000000
                                                        0.393535
                                                                  0.333974
                                                                            0.683917
                                                                                      0.475986
                                                                                                0.656532
          V004
                 0.312147
                                     0.393535
                                               0.393535
                                                         1.000000
                                                                  0.312147
                                                                            0.084108
                                                                                                0.393366
                          0.488663
                                                                                      0.187317
          V005
                 1.000000
                          0.392232
                                     0.333974
                                               0.333974
                                                        0.312147
                                                                  1.000000
                                                                            0.488325
                                                                                      0.701646
                                                                                                0.219265
          V006
                0.488325
                          0.582334
                                    0.683917
                                               0.683917
                                                        0.084108
                                                                  0.488325
                                                                            1.000000
                                                                                      0.695971
                                                                                                0.449013
          V007
                 0.701646
                          0.251558
                                    0.475986
                                               0.475986
                                                        0.187317
                                                                  0.701646
                                                                            0.695971
                                                                                      1.000000
                                                                                                0.312500
           quit 0.219265
                          0.559017 0.548204
                                              0.656532
                                                        0.393366 0.219265
                                                                            0.449013
                                                                                      0.312500
                                                                                                1.000000
          sns.heatmap(passDF.corr()*100, annot=True, cmap='coolwarm')
          plt.title("Pass Rate Relationship between different modules and withdrawn rate")
          plt.show()
```

display(passDF.corr()["quit"]*100)
print("We can see the pass rate between V001, V002 and V003 are highly related, and

L001 21.926450 V001 55.901699 V002 54.820436 V003 65.653216 V004 39.336604 V005 21.926450 V006 44.901326 V007 31.250000 auit 100.000000

Name: quit, dtype: float64

We can see the pass rate between V001, V002 and V003 are highly related, and most withdrawn students are also failed to these modules.

We can see the pass rate between V001, V002 and V003 are highly related, and most withdrawn students are also failed to these modules.