Table 1: The mechanisms of four consensus filtering approaches

Types	Structures of Consensus Filters *	References
CE	$\hat{x}_{k}^{i} = \hat{x}_{k k-1}^{i} + K_{k}^{i}(z_{k}^{i} - H_{k}^{i}\hat{x}_{k k-1}^{i}) + u_{k}^{i}$ $u_{k}^{i} = C_{k}^{i} \sum_{j \in N_{i}} (\hat{x}_{k k-1}^{j} - \hat{x}_{k k-1}^{i})$	[58],[59]
СМ	$\begin{split} \Omega_{k k}^i &= \Omega_{k k-1}^i + \mathcal{N} \sum_{j \in \mathcal{N}} \pi_{L,k}^{i,j} (H_k^j)^T (R_k^j)^{-1} H_k^j \\ q_{k k}^i &= q_{k k-1}^i + \mathcal{N} \sum_{j \in \mathcal{N}} \pi_{L,k}^{i,j} (H_k^j)^T (R_k^j)^{-1} z_k^j \end{split}$	[16],[58]
CI	$\begin{split} &\Omega_{k k}^{i} = \sum_{j \in \mathcal{N}} \pi_{L,k}^{i,j} \left[\Omega_{k k-1}^{j} + (H_{k}^{j})^{T} (R_{k}^{j})^{-1} H_{k}^{j} \right] \\ &q_{k k}^{i} = \sum_{j \in \mathcal{N}} \pi_{L,k}^{i,j} \left[q_{k k-1}^{j} + (H_{k}^{j})^{T} (R_{k}^{j})^{-1} z_{k}^{j} \right] \end{split}$	[19],[75]
H_{∞} consensus	$\begin{cases} \hat{x}_{k}^{i} = A_{k} \hat{x}_{k-1}^{i} + K_{k}^{i} (z_{k}^{i} - H_{k}^{i} \hat{x}_{k-1}^{i}) + u_{k}^{i} \\ u_{k}^{i} = C_{k}^{i} \sum_{j \in N_{i}} (\hat{x}_{k-1}^{j} - \hat{x}_{k-1}^{i}) \\ \frac{1}{n} \sum_{i \in \mathcal{N}} \ \tilde{z}^{i}\ ^{2} \leq \gamma^{2} \{\ v\ _{2}^{2} + \frac{1}{n} \sum_{i \in \mathcal{N}} (e_{0}^{i})^{T} S^{i} e_{0}^{i} \} \end{cases}$	[78],[80]

^{*} Throughout the table, A_k is the systems matrix, H_k^i , R_k^i and z_k^i are respectively measurement matrix, covariance matrix of measurement noise and measurement output value of node i. Further, denote $\Omega_{k|k} \triangleq (P_{k|k})^{-1}$ and $q_{k|k} = (P_{k|k})^{-1} \hat{x}_{k|k}$ as information matrix and information vector.