1、实验名称及目的

姿态控制器设计实验: 熟悉实飞实验流程。

2、实验效果

实现飞思 X450 无人机正常起飞,完成姿态控制。

3、文件目录

文件夹/文件名称		说明	
icon	Init.m	模型初始化参数文件。	
	MavLinkStruct.mat	MAVLink 结构体数据文件。	
	pixhawk.png	Pixhawk 硬件图片。	
	readme.pdf	机架类型修改说明文件。	
	UE_Logo.jpg	RflySim3D软件图片。	
	F450.png	F450飞机模型图片。	
msg	costom_attctrl_e5.msg	自定义的 uORB 消息。	
	PX4uORBMsgGen.m	自动生成自定义 uORB 消息脚本。	
Init_control.m		控制器初始化参数文件。	
AttitudeControl_FLY.slx		实飞模型文件(遥控器输入归一化处理)。	
dataprocess.m		实飞日志文件处理程序。	
ulog2csv.m		日志.ulg 文件转换 csv 格式文件。	
zyfc-h7_0.0.8.px4		卓翼 H7 官方实飞固件	
X450.params		X450飞机参数。	

4、运行环境

序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	飞思 X450 飞机 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
		数据线、杜邦线等	若干

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 本实验在进行实飞时,安全环境下进行,飞机相关配置见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 福斯 FS-i6S、配套接收器为: FS-iA6B。遥控器相关配置见: http://doc.rflysim.com/hardware.html

5、官方固件实飞步骤

Step 1:

请扫码或点击下方二维码,将本例程文件夹下: zyfc-h7_0.0.8.px4(飞控固件)上传至飞

控中。

Step 2:

将飞机通过 USB 与电脑进行连接, 打开 QGC 软件, 设置机架为: DJI F450 w/ DJI ES Cs;

Step 3:

依次校核传感器、遥控器和电池。

Step 4:

设置飞行模式如下:

Step 5:

选择加载本例程文件夹下的参数文件: X450.params 文件。

加载成功后, 断开飞机, 再次进行连接飞机确保所有设置均已完成。

Step 6:

请在指定飞场进行无人机实飞,若正常起飞,说明无人机状态良好;若未正常起飞,请检查传感器校准、参数设置等,具体请联系飞机生产厂家进行解决。请务必保证飞机状态良好的情况下,再进行下一步操作。

6、本实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中打开 Init_control.m 文件,点击运行,运行之后会自动打开 AttitudeControl_FLY.slx 文件。

Step 2:

运行 msg\PX4uORBMsgGen.m 文件,将自动生成自定义的 uORB 消息,消息类型请见 msg\costom_attctrl_e5.msg 文件。

Step 3:

在打开的 AttitudeControl_FLY.slx 文件的 Simulink 模型界面下,点击编译命令。

Step 4:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左侧为生成的编 译报告。

Step 5:

用 USB 数据线链接飞控(或飞机)与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行,弹出 CMD 对话框,显示正在上传固件至飞机中,等待上传成功。

Step 6:

打开 QGroundComtrol 软件,等待飞机连接成功。确认无人机机架类型选择如下图,并设置遥控器通道如下,其中 CH5 为解锁, CH6 为模式切换。

Step 7:

遥控器的设置如下图。注:遥控器设置中,CH5 通道需设置为二段式开关,CH6 通道设置为三段式开关。具体设置请见本平台的遥控器配置手册。

Step 8:

为确保安全,可在飞机上系上安全绳,并将安全绳的另一端固定在重物上。飞行时人在安全半径以外,在姿态模式下,高度可能比较难控,注意不要急推油门,让油门在中位附近,缓慢推油门。

Step 9:

从飞控上取出 SD 卡,使用读卡器读出 logger 文件 "log001.ulg",并将该文件复制到本实验文件夹下。

Step 10:

在 MATLAB 中打开 dataprocess.m 文件, 修改 filename 变量为 Step 9 中命名相同。运行本文件。

```
Init_control.m × dataprocess.m × +
        clear
        close all
        filename = 'log001';
        if ~exist(filename, 'file')
            ulog2csv([filename,'.ulg'],filename);
        csvname = ['./',filename,'/',filename,'_costom_attctrl_e5_0.csv'];
        M = xlsread(csvname);
10
11 -
       timestamp = M(:,1)*1e-6; % s
12 -
       pitch = M(:,3);
13
14 -
       figure
15 -
       plot(timestamp, pitch)
```

日志数据经过解析后将全部放置在 log001 文件夹下, 自定义消息的数据在 "log001/log001_costom_attctrl_e5_0.csv" 文件中。可以看到俯仰角对期望的响应

7、参考文献

- [1]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版 社,2018.
- [2]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社,2020.