ELSEVIER

Contents lists available at SciVerse ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

The selective catalytic reduction of N₂O with CH₄ on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese

Maria Cristina Campa a,*, Valerio Indovina Daniela Pietrogiacomi a,b

^a Istituto per lo Studio dei Materiali Nanostrutturati-CNR, c/o Dipartimento di Chimica, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

ARTICLE INFO

Article history:
Received 6 July 2011
Received in revised form
15 September 2011
Accepted 19 September 2011
Available online 24 September 2011

Keywords: N₂O SCR with CH₄ Cu-MOR Cu-MFI Co-MOR Co-MFI Mn-MFI

ABSTRACT

Cu-MOR, Cu-MFI, Co-MOR, Co-MFI and Mn-MFI were prepared by ion-exchange of Na-MOR or Na-MFI. On all samples, the catalytic activity for N_2O decomposition, $CH_4 + N_2O$, $CH_4 + O_2$, and for the selective catalytic reduction (SCR) of N_2O in the presence of O_2 was studied in a flow apparatus with GC analysis of reactants and products.

Extensively exchanged Cu-MOR and Cu-MFI were active for N_2O decomposition. Cu-MOR and Cu-MFI exchanged at about 20% were much less active. All Co-MOR and Co-MFI catalysts, irrespective of the exchange-extent, were active for the same reaction. Mn-MFI was nearly inactive up to 773 K. All catalysts were active for $CH_4 + N_2O$. Cu-MOR and Cu-MFI were active for $CH_4 + O_2$, whereas Co-MOR, Co-MFI and Mn-MFI were much less active for this reaction. Irrespective of the exchange extent, Cu-MOR, Cu-MFI, Co-MOR, and Co-MFI were active for the SCR of N_2O with CH_4 . Conversely, Mn-MFI was not active for this reaction. Turnover frequency was slightly higher for the various reactions on Me-MFI (Me = Cu or Co) than for the corresponding reactions on Me-MOR.

We conclude that on Cu- and Co-zeolites, the SCR of N_2O with CH_4 consists of two nearly independent reactions: $CH_4 + N_2O$ prevails at high temperature (673–773 K), and $CH_4 + O_2$ at lower temperature. The two reactions involve different catalytically active oxygen species: $CH_4 + O_2$ involves a molecular form, and $CH_4 + N_2O$ a monoatomic form, arising from N_2O . Because Co-MOR and Co-MFI are also active for the SCR of NO_x , we suggest that these materials are promising catalysts for the simultaneous SCR of N_2O and NO_x with CH_4 .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Uhde's proprietary EnviNOx® process performs the tail-gas abatement of N_2O and NO_x over iron containing zeolite catalysts. In cooperation with Süd-Chemie, Uhde has developed special iron-exchanged zeolite catalysts for use in the EnviNOx® process [1]. For EnviNOx®, Hevia and Pérez-Ramírez evaluated a possible variant for the low-temperature abatement process (<700 K), in which NH_3 selectively reduces NO_x , and CH_4 selectively reduces N_2O . For this purpose, these investigators ran activity tests with mixtures N_2O , O_2 , NO, NH_3 , and CH_4 at different temperatures and partial pressures over steam-activated FeZSM-5 [2].

Iron-containing MFI zeolites are active for N_2O abatement with various hydrocarbons (CH₄, C_2H_6 , C_2H_4 , C_2H_2 , C_3H_8 , C_3H_4) [3] and with CH₄, CO, or CH₄ +CO mixtures [4]. These catalysts and analogous iron-containing catalysts are poorly active for N_2O decomposition [4,5] and inactive for NO_X abatement with CH₄ in

the presence of excess O_2 [6]. A drawback with the iron-containing zeolites is the CO formation during N_2O or NO_x abatement using hydrocarbon reducing agents [3,7–9].

Co-MOR and Co-MFI [5,10-12] and extensively exchanged Cu-MOR and Cu-MFI [10,11,13] are strongly active for N₂O decomposition. Co-MOR, Co-MFI and Mn-MFI are active and selective for NO_x abatement with CH_4 in the presence of excess O_2 . On cobalt and manganese zeolites, in the selective catalytic reduction of NO with CH₄ in the presence of excess O₂, no CO formed [14–16]. This result differed from that on iron-containing zeolites, on which CO formed [3,7–9]. These findings prompted us to study the catalytic activity of Cu-MOR, Cu-MFI, Co-MOR, Co-MFI and Mn-MFI for the selective catalytic reduction of N₂O with CH₄ in the presence of O₂ (SCR of N₂O with CH₄). The catalysts we tested were nearly identical to or portions of those we have previously characterized by FTIR, using CO or NO as probe molecules, and volumetric adsorption of CO [11,16,17]. In preliminary experiments, we checked that the activity for the N₂O decomposition of Cu-MOR, Cu-MFI, Co-MOR, and Co-MFI matched that of the analogous samples investigated previously for this reaction [11], and we measured the activity of Mn-MFI for the same reaction. The primary aim of the investigation

^b Dipartimento di Chimica, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy

^{*} Corresponding author. Fax: +39 06 490324. E-mail address: mariacristina.campa@uniroma1.it (M.C. Campa).

Table 1Copper-, cobalt-, or manganese-exchanged MOR or MFI: starting materials, analytical copper, cobalt, manganese, and sodium amounts.

Starting materials	Catalysts	Na ⁺ /Al	2Me ²⁺ /Al ^a
Na-MOR-9.2		1.05	
	Cu-Na-MOR-9.2-20	0.82	0.20
	Cu-Na-MOR-9.2-100	0.36	1.05
	Co-Na-MOR-9.2-23	0.79	0.23
	Co-Na-MOR-9.2-104	0.28	1.04
Na-MFI-11.9		1.00	
	Cu-Na-MFI-11.9-22		0.22
	Cu-Na-MFI-11.9-93	0.17	0.93
	Co-Na-MFI-11.9-15	0.79	0.15
	Co-Na-MFI-11.9-92	0.05	0.92
	Mn-Na-MFI-11.9-53	0.49	0.53

^a Me²⁺/Al is Cu²⁺/Al, Co²⁺/Al, or Mn²⁺/Al, depending on the catalyst.

was to gain a basic understanding of (i) the SCR of N_2O with CH_4 and (ii) the selectivity dependence on temperature, with Cu-MOR, Cu-MFI, Co-MOR, Co-MFI and Mn-MFI as catalysts. To this aim, we compared the activity of these samples for N_2O decomposition with that of the same samples for $CH_4 + N_2O$, $CH_4 + O_2$, and SCR of N_2O with CH_4 .

Because Co-MOR and Co-MFI [14,15], and Mn-MFI [16] are active for the SCR of NO_x with CH₄, we also investigated which of these materials might be potential catalysts for the simultaneous SCR of N_2O and NO_x using CH₄ as the only reducing agent.

2. Experimental

2.1. Catalysts

Cu-, Co-, Mn-exchanged zeolites and the starting materials for their preparation are listed in Table 1. Na-MOR (Si/Al = 9.2), and Na-MFI (Si/Al = 11.9), kindly supplied by Tosoh Corporation, were used for ion exchange. In Na-MOR and in Na-MFI samples, the analytical Na content equalled the Al content calculated from the analytical Si/Al ratio given by the supplier. Copper, cobalt or manganese containing samples were ion-exchanged at 350 K by contacting a weighted amount of zeolite (MOR or MFI) with an aqueous solution of acetates of copper, cobalt, or manganese, as required. To obtain extensively exchanged samples, up to three exchange procedures were run in sequence. After the exchange procedure, samples were thoroughly washed with distilled water, and dried overnight at 383 K.

The sodium, the copper, the cobalt, and the manganese content of wet samples (equilibrated at ca. 79% relative humidity over a saturated solution of NH₄Cl) were determined by atomic absorption (Varian SpectrAA-30), and expressed as Na⁺/Al and $2Me^{2+}$ /Al ratios, where Me is the transition metal ion exchanged (Cu, Co, or Mn). Exchanged samples are labeled as Me–Na–ZEO-a-b, where Me specifies the transition metal ion exchanged (Cu, Co or Mn), Na specifies that the zeolite used in the preparation was in the sodic form, ZEO specifies the type of zeolite (MOR or MFI), a is the Si/Al ratio value, and b is the analytical metal ion exchange percentage, calculated assuming that *one* Me corresponded to *two* Al atoms (Table 1).

2.2. Catalytic experiments

The catalytic activity was measured in a flow apparatus at atmospheric pressure. The apparatus included a feeding section where four gas streams (He, 3% N₂O in He, 1.5% CH₄ in He, 15% O₂ in He) were regulated by means of independent mass flow controllermeters (MKS mod. 1259, driven by a four-channel unit MKS mod. 247 c) and mixed in a glass ampoule before entering the reactor.

 Table 2

 Catalytic reactions and feed mixture composition.

Reaction	Composition mixture/ppm (v/v)
$N_2O \to N_2 + 1/2O_2$	$N_2O = 4000$
$CH_4 + 4N_2O \rightarrow 4N_2 + CO_2 + 2H_2O$	$CH_4:N_2O = 1000:4000$
$(CH_4 + 3N_2O \rightarrow 3N_2 + CO + 2H_2O)^a$	
$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	$CH_4:O_2 = 1000:2000 \text{ (or } 20,000)$
$(CH_4 + 3/2O_2 \rightarrow CO + 2H_2O)^a$	
$(CH_4 + 2N_2O + O_2 \rightarrow 2N_2 + CO_2 + 2H_2O)^a$	$CH_4:N_2O:O_2 = 1000:4000:2000$
	(or 20,000)
$(CH_4 + N_2O + O_2 \rightarrow N_2 + CO + 2H_2O)^a$	

 $^{^{\}rm a}$ Because on our catalysts no CO formed in any of the experiments, and $\text{CH}_4+\text{N}_2\text{O}+\text{O}_2$ did not react according to the 1:2:1 stoichiometry, the reactions in parentheses will not be considered.

Gas mixtures were purchased from RIVOIRA and used without further purification. The reactor was made of silica with an internal sintered frit of about 12 mm diameter supporting the powdered catalyst $(0.1\,\mathrm{g})$. In all experiments, reactants and products were analyzed by gas-chromatography. The gas chromatograph (Varian Micro-GC CP-4900) was equipped with two columns: (i) 10 m Molsieve 5A BF, for detecting O_2 , N_2 , and CO, and (ii) 10 m Poraplot Q, for detecting CH_4 , CO_2 , and N_2O . All possible reactions are listed in Table 2. No CO formed in any of the experiments. All experiments yielded satisfactory nitrogen, carbon and oxygen balances. For the SCR of N_2O with CH_4 , the stoichiometric ratios (N_2O molecules reacted)/(CH_4 molecules reacted) and (O_2 molecules reacted)/(CH_4 molecules reacted) markedly changed as a function of temperature,

Fig. 1. Percent N₂O conversion (Section a) and percent CH₄ conversion (Section b), as a function of temperature on Cu–Na-MOR-9.2-20, reactions as indicated.

 $\label{eq:Fig.2.} \textbf{Fig. 2.} \ \ Percent \ N_2O \ conversion \ (Section \ a) \ and \ percent \ CH_4 \ conversion \ (Section \ b), \\ as \ a \ function \ of \ temperature \ on \ Cu-Na-MOR-9.2-100, \ reactions \ as \ indicated.$

showing that on our catalysts $CH_4 + N_2O + O_2$ did not react according to the 1:2:1 stoichiometry (Table 2). The stoichiometric ratio (N_2O molecules reacted)/(CH_4 molecules reacted) will hereafter be referred to as N_2O/CH_4 and that (O_2 molecules reacted)/(CH_4 molecules reacted) as O_2/CH_4 .

A fresh portion of catalyst was treated in a flow of $2.5\%~O_2/He$ mixture ($100~cm^3~min^{-1}$), while the reactor was heated from room temperature to 773 K in about 45 min and then isothermally at 773 K for 90 min. After this treatment, the reactor was bypassed and the temperature adjusted to the desired value. Catalysis was run by contacting catalysts with mixtures of various composition (Table 2). The reaction temperature was changed at random without intermediate activation treatment. For all reactions, all catalysts were stable as a function of the time on stream, throughout experiments lasting up to about 25 h. The total flow rate was maintained at $50~cm^3~STP/min$, and space velocity (GHSV) was $15,000~h^{-1}$, based on the apparent sample density of $0.5~g~cm^{-3}$.

Percent N₂O, CH₄, or O₂ conversion was calculated from molecules consumed/molecules injected. Turnover frequency, $N_{\rm N_2O}$ or $N_{\rm CH_4}$ (N/molecules s⁻¹ atom⁻¹), was calculated as N = R/[L], where R is the specific velocity $R_{\rm N_2O}$ or $R_{\rm CH_4}$ (R/molecules s⁻¹ g⁻¹), and [L] is the concentration of active sites ([L]/atoms g⁻¹). To calculate N, we assumed that all exchanged transition metal ions were active, [L] = [Me^{2+}]_{tot}.

In the SCR of N_2O with CH_4 , the CH_4 selectivity for N_2O was calculated as $S_{N_2O} = (CH_4 \text{ molecules reacted with } N_2O)/(CH_4 \text{ molecules reacted with } N_2O + CH_4 \text{ molecules reacted with } O_2)$,

Fig. 3. Stoichiometric ratio for CH_4+N_2O , and CH_4+O_2 and $CH_4+N_2O+O_2$ reactions (Section a) and selectivities in the $CH_4+N_2O+O_2$ reaction (Section b). Section a: stoichiometric ratio of reacted molecules as a function of temperature for CH_4+N_2O , and CH_4+O_2 (closed points, reaction as indicated), and for $CH_4+N_2O+O_2$ (open points, $CH_4:N_2O:O_2=1000:4000:2000$). Section b: selectivities, S_{N_2O} , S_{O_2} , and $S_{N_2O}+S_{O_2}$, in the $CH_4+N_2O+O_2$ reaction ($CH_4:N_2O:O_2=1000:4000:2000$), as a function of temperature. $S_{N_2O}=(CH_4)$ molecules reacted with N_2O /(CH_4) molecules reacted with N_2O /(CH_4) molecules reacted with N_2O -(CH_4). Catalyst: $CU-N_0-M_0$ -(CH_4).

where CH₄ molecules reacted with N₂O were determined from N₂O molecules consumed, and CH₄ molecules reacted with O₂ were determined from O₂ molecules consumed. In the same reaction, we also calculated CH₄ selectivity for O₂ as $S_{\rm O_2} = (\text{CH}_4 \text{ molecules reacted with O}_2)/(\text{CH}_4 \text{ molecules reacted with N}_2\text{O} + \text{CH}_4 \text{ molecules reacted with O}_2).$

3. Results and discussion

3.1. The catalytic activity of Cu-Na-MOR and Cu-Na-MFI

On Cu–Na-MOR-9.2-20 and Cu–Na-MOR-9.2-100, the N_2O conversion in the N_2O decomposition matched that we previously measured on the corresponding Cu–Na-MOR samples [11]. Conversion was very low on Cu–Na-MOR-9.2-20, and was much higher on Cu–Na-MOR-9.2-100. This conversion dependence resembled that we have previously observed on Cu–Na-MOR and Cu–Na-MFI [11] and it agreed with that reported by Smeets et al. on Cu–MFI [13].

On the Cu–Na-MOR-9.2-20 sample, the N_2O conversion in $CH_4 + N_2O$, and in the SCR of N_2O with CH_4 was much higher than in N_2O decomposition (Fig 1a). On the same sample, the CH_4

Fig. 4. Percent N₂O conversion (Section a) and percent CH₄ conversion (Section b), as a function of temperature on Co–Na–MOR-9.2-23, reactions as indicated.

conversion was roughly the same in CH_4+N_2O and in the SCR of N_2O with CH_4 , and it was slightly higher in these two reactions than in CH_4+O_2 (Fig. 1b). The results on Cu-Na-MOR-9.2-100 sample were analogous to those observed on Cu-Na-MOR-9.2-20. An important difference between Cu-Na-MOR-9.2-20 and Cu-Na-MOR-9.2-100 was that on Cu-Na-MOR-9.2-100 N_2O conversion in N_2O decomposition differed little from that measured in CH_4+N_2O and in the SCR of N_2O with CH_4 (Fig. 2a andb). Namely, CH_4 favoured CU-Na-MOR-9.2-2O than on CU-Na-MOR-9.2-10O.

On Cu–Na-MOR, in the SCR of N₂O with CH₄, the N₂O/CH₄ ratio markedly increased with temperature reaching a value close to the stoichiometric ratio in the reaction CH₄+4N₂O \rightarrow 4N₂+CO₂+2H₂O. In parallel, the O₂/CH₄ ratio progressively and markedly decreased with temperature starting from a value close to the stoichiometric ratio in the reaction CH₄+2O₂ \rightarrow CO₂+2H₂O (Fig. 3a). In agreement, the selectivity S_{N₂O} markedly increased with temperature, reaching a value close to 1 at 773 K, and the selectivity S_{O₂} markedly decreased with temperature, reaching a value close to zero at the same temperature. At all temperatures, the sum S_{N₂O} + S_{O₂} was close to 1 (Fig. 3b).

For all reactions, N_2O decomposition, $CH_4 + N_2O$, $CH_4 + O_2$, and $CH_4 + N_2O + O_2$, the results we obtained on Cu–Na-MFI were analogous to those obtained on Cu–Na-MOR. Specifically, the catalytic behaviour of Cu–Na-MFI-11.9-22 (data not shown) was

Fig. 5. Stoichiometric ratio for CH₄ + N₂O, and CH₄ + O₂ and CH₄ + N₂O + O₂ reactions (Section a) and selectivities in the CH₄ + N₂O + O₂ reaction (Section b). Section a: stoichiometric ratio of reacted molecules as a function of temperature for CH₄ + N₂O, and CH₄ + O₂ (closed points, reaction as indicated), and for CH₄ + N₂O + O₂ (open points, CH₄:N₂O:O₂ = 1000:4000:2000). Section b: selectivities, S_{N_2O} , S_{O_2} , and S_{N_2O} + S_{O_2} , in the CH₄ + N₂O + O₂ reaction (CH₄:N₂O:O₂ = 1000:4000:2000), as a function of temperature. S_{N_2O} = (CH₄ molecules reacted with N₂O)/(CH₄ molecules reacted with N₂O + CH₄ molecules reacted with O₂). Catalyst: Co-Na-MOR-9.2-104.

analogous to that of Cu–Na-MOR-9.2-20 and the catalytic behaviour of Cu–Na-MFI-11.9-93 (data not shown) was analogous to that of Cu–Na-MOR-9.2-100. The turnover frequency for the various reactions on Cu–Na-MFI was slightly higher than that for the corresponding reactions on Cu–Na-MOR (data not shown).

Collectively, these findings strongly suggest that on Cu–Na-MOR and Cu–Na-MFI the SCR of N₂O with CH₄ consists of two independent reactions, taking place on the same copper containing active site: (i) CH₄+4N₂O \rightarrow 4N₂+CO₂+2H₂O and (ii) CH₄+2O₂ \rightarrow CO₂+2H₂O.

3.2. The catalytic activity of Co-Na-MOR and Co-Na-MFI

On Co–Na-MOR-9.2-23 and Co–Na-MOR-9.2-104, N₂O conversion in the N₂O decomposition equalled that we previously measured on the corresponding Co–Na-MOR samples [11]. Namely, $R_{\rm N_2O}$ velocity ($R_{\rm N_2O}$ /molecules s⁻¹ atom⁻¹, data not shown) increased proportionally to the cobalt content, as we previously observed on Co–Na-MOR samples with Co-exchange percentage from 6 to 104% [11].

Fig. 6. Percent N₂O conversion (Section a) and percent CH₄ conversion (Section b), as a function of temperature on Mn–Na-MFI-11.9-53, reactions as indicated.

On Co–Na-MOR-9.2-23, the N_2O conversion in N_2O decomposition equalled that in CH_4+N_2O , and was slightly higher than that in $CH_4+N_2O+O_2$ (Fig. 4a). On the same sample, the CH_4 conversion was roughly the same in CH_4+N_2O , and $CH_4+N_2O+O_2$, and it was much higher in these two reactions than that in CH_4+O_2 (Fig. 4b). The results on Co–Na–MOR-9.2-104 sample were analogous to those on Co–Na–MOR-9.2-23 (data not shown).

On Co–Na-MOR, in the SCR of N₂O with CH₄, the N₂O/CH₄ ratio markedly increased with temperature reaching a value close to the stoichiometric ratio in the reaction CH₄+4N₂O \rightarrow 4N₂+CO₂+2H₂O. In parallel, the O₂/CH₄ ratio markedly decreased with temperature starting from a value close to the stoichiometric ratio in the reaction CH₄+2O₂ \rightarrow CO₂+2H₂O (Fig. 5a). In agreement, the selectivity S_{N2O} markedly increased with temperature, reaching a value close to 0.8 at 773 K, and the selectivity S_{O2} markedly decreased with temperature, reaching a value close to 0.2 at the same temperature. At all temperatures, the sum S_{N2O} + S_{O2} was close to 1 (Fig. 5b).

For all reactions, the catalytic behaviour of Co–Na-MFI was analogous to that of Co–Na-MOR, and the turnover frequency on Co–Na-MFI was slightly higher than that for the corresponding reactions on Co–Na-MOR (data not shown).

All these findings strongly suggest that the SCR of N_2O with CH₄ on Co–Na-MOR and Co–Na-MFI consists of two independent reactions, taking place on cobalt containing active site: $CH_4 + 4N_2O \rightarrow 4N_2 + CO_2 + 2H_2O$ and $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$.

Fig. 7. Arrhenius plots, $\log N_{\rm N_2O}$ vs. $1/T(N_{\rm N_2O}/{\rm molecules}\ {\rm s}^{-1}\ {\rm atom}^{-1}$), for the $\rm N_2O$ decomposition (Section a) and for $\rm CH_4+N_2O$ (Section b) on Me–Na-MFI catalysts (Me = Cu, Co, or Mn), as indicated.

3.3. The catalytic activity of Mn–Na-MFI

On Mn–Na-MFI-11.9-53, the N_2O conversion in the N_2O decomposition was very low, resulting $\leq 5\%$ at 773 K. This result agrees with that previously reported by Li and Armor on an extensively exchanged Mn-MFI catalyst [5].

On Mn–Na-MFI-11.9-53, the N_2O conversion in CH_4+N_2O was much higher than in N_2O decomposition and in $CH_4+N_2O+O_2$ (Fig 6a). The CH_4 conversion in $CH_4+N_2O+O_2$ and that in CH_4+O_2 was roughly the same and it was substantially lower than that in CH_4+N_2O (Fig. 6b).

On this sample, in the SCR of N_2O with CH_4 , the N_2O/CH_4 ratio was close to zero at all temperatures. In parallel, the O_2/CH_4 ratio was close to 2. In agreement, the selectivity S_{N_2O} was nearly zero at all temperature, whereas the selectivity S_{O_2} was close to 1 at all temperatures (data not shown).

3.4. A comparison of the catalytic activity of Me–Na-MFI (Me = Cu, Co, or Mn)

In N_2O decomposition, the comparison among the various Me–Na-MFI shows that N_{N_2O} (N_2O molecules converted s^{-1} atom⁻¹) on Co–Na-MFI and Cu–Na-MFI was much higher than that on Mn–Na-MFI (Fig. 7a). The fact that N_{N_2O} on Cu–Na-MFI-11.9-93 was higher than that on Cu–Na-MFI-11.9-22 (Fig. 7a) has been already discussed in a previous paper from our group [11].

Conversely, in $CH_4 + N_2O$, the comparison shows that N_{N_2O} changed little among the various Me–Na-MFI (Fig. 7b).

Fig. 8. Arrhenius plots for $CH_4+N_2O+O_2$ ($CH_4:N_2O:O_2=1000:4000:20,000$), on Me–Na-MFI catalysts (Me=Cu, Co, or Mn), as indicated. Section a: log N_{N_2O} vs. 1/T (N_{N_2O}/m olecules s^{-1} atom $^{-1}$). Section b: log N_{CH_4} vs. 1/T (N_{CH_4}/m olecules s^{-1} atom $^{-1}$).

 $10^3 (T/K)^{-1}$

In $CH_4 + O_2$, N_{CH_4} (CH_4 molecules converted s^{-1} atom⁻¹) on Co-Na-MFI nearly equalled that on Mn-Na-MFI, and it was substantially lower than that on Cu-Na-MFI (data not shown).

In the SCR of N_2O with CH_4 , N_{N_2O} on Co-Na-MFI equalled that on Cu-Na-MFI, and it was much higher than that on Mn-Na-MFI (Fig. 8a). Analogously, in the same reaction, N_{CH_4} on Co-Na-MFI equalled that on Cu-Na-MFI, and was higher than that on Mn-Na-MFI (Fig. 8b).

4. Conclusions

To be active for the SCR of N_2O with CH_4 , catalysts must be active for CH_4+N_2O . Catalytic activity for CH_4+N_2O does not

guarantee SCR activity, as shown for Mn-MFI, a catalyst that is active for $CH_4 + N_2O$ but inactive for the SCR of N_2O with CH_4 .

To be active in the SCR of N_2O with CH_4 , catalysts do not necessarily need to possess high catalytic activity for N_2O decomposition. Notwithstanding their inactivity for N_2O decomposition, Cu-Na-MOR-9.2-20, and Cu-Na-MFI-11.9-22 are active for the SCR of N_2O with CH_4 . Analogously, nor is low activity for CH_4 combustion with O_2 a prerequisite for catalyst to be active in the SCR of N_2O with CH_4 . Notwithstanding their high activity for $CH_4 + O_2$, Cu-MOR and Cu-MFI are active for the SCR of N_2O with CH_4 .

From a fundamental viewpoint, results clarify that on Cu-MOR, Cu-MFI, Co-MOR, and Co-MFI the SCR of N_2O with CH_4 consists of two nearly independent reactions: $CH_4 + N_2O$ and $CH_4 + O_2$. Selectivity data show that $CH_4 + N_2O$ prevails at high temperature, whereas $CH_4 + O_2$ prevails at low temperature. Based on these findings, we suggest that different oxygen species are active for $CH_4 + O_2$ and $CH_4 + N_2O$, most probably a molecular oxygen form for $CH_4 + O_2$, and a monoatomic oxygen form, arising from N_2O , for $CH_4 + N_2O$.

From an applied viewpoint, these results suggest that Co-MOR and Co-MFI, being highly active and selective for (i) the SCR of N_2O with CH₄ and (ii) the SCR of N_2O with CH₄ [14,15], are promising catalysts for the simultaneous SCR of N_2O and NO_X using CH₄ alone as the reducing agent.

Acknowledgements

We gratefully thank Dr. Daniele Di Lecce and Dr. Stefano Fiorani for preparing some Mn-zeolite samples, analyzing their chemical content, and performing some catalytic experiments.

References

- [1] Brochures of EnviNOx, are available at http://www.uhde.biz.
- [2] M.A.G. Hevia, J. Pérez-Ramírez, Appl. Catal. B 77 (2008) 248–254.
- [3] M.A.G. Hevia, J. Pérez-Ramírez, Environ. Sci. Technol. 42 (2008) 8896–8900.
- [4] M.N. Debbagh, C. Salinas Martínez de Lecea, J. Pérez-Ramírez, Appl. Catal. B 70 (2007) 335-341.
- [5] Y. Li, J.N. Armor, Appl. Catal. B 1 (1992) L21-L29.
- [6] V.I. Pârvulescu, P. Grange, B. Delmon, Catal. Today 46 (1998) 233-316.
- [7] X. Feng, W.K. Hall, J. Catal. 166 (1997) 368–376.
- [8] H.-Y. Chen, W.M.H. Sachtler, Catal. Today 42 (1998) 73–83.
- [9] H.-Y. Chen, X. Wang, W.M.H. Sachtler, Appl. Catal. A 194-195 (2000) 159-168.
- [10] F. Kapteijn, J. Rodriguez-Mirasol, J.A. Moulijn, Appl. Catal. B 9 (1996) 25–64.
- [11] M.C. Campa, V. Indovina, D. Pietrogiacomi, Appl. Catal. B 91 (2009) 347–354.
- [12] P.J. Smeets, Q. Meng, S. Corthals, H. Leeman, R.A. Schoonheydt, Appl. Catal. B 84 (2008) 505-513.
- [13] V.P.J. Smeets, M.H. Groothaert, R.M. van Teeffelen, H. Leeman, E.J.M. Hensen, R.A. Schoonheydt, J. Catal. 245 (2007) 358–368.
- [14] M.C. Campa, S. De Rossi, G. Ferraris, V. Indovina, Appl. Catal. B 8 (1996) 315–331.
- [15] M.C. Campa, I. Luisetto, D. Pietrogiacomi, V. Indovina, Appl. Catal. B 46 (2003) 511–522.
- [16] M.C. Campa, D. Pietrogiacomi, S. Tuti, G. Ferraris, V. Indovina, Appl. Catal. B 18 (1998) 151–162.
- [17] V. Indovina, M.C. Campa, D. Pietrogiacomi, J. Phys. Chem. C 112 (2008) 5093–5101.