

Abstract

Formal proofs on program correctness are becoming longer and more complex especially when dealing with critical software. Therefore, it is essential to make these proofs as structured as possible, legible and amendable. The purpose of this research is to study proofs specified in DEC, an intermediate deeply embedded language for the translation of the PIP protokernel, a minimal OS kernel with provable isolation, to C. We specifically want to check whether the strict structuring of DEC is reflected in invariant proofs and to compare them to those in the shallow embedding in which PIP is specified. To that end, three distinct invariants in the shallow embedding were replicated in DEC. Their program functions were modelled modularly and the invariant proofs were done correspondingly.

Keywords: formal proofs, deeply embedded language, shallow embedding

Acknowledgement

First and foremost, I wish to thank the whole 2XS team of the CRIStAL laboratory for their friendly welcome especially Prof. *Gilles Grimaud*, head of the team, for allowing me to perform this internship which turned out to be such an amazing experience and my supervisor, Dr. *Paolo Torrini*, postdoctoral researcher, without whom this work would have never been successfully accomplished, for his precious assistance, his dedicated involvement in every step throughout the whole process, his precious advices and his encouragement.

Furthermore, I would like to specially thank Dr. *David Nowak* and Dr. *Vlad Rusu*, research scientists in the 2XS team, for their precious help and last but not the least Mrs. *Narjes Jomaa*, PhD student, for her detailed explanations and her valuable support.

Finally, I would like to express my special appreciation and thanks to Prof. *Francesco De Comite*, associate professor in charge of training periods for 3rd year students in Computer Science in Lille 1 university, for his availability and understanding.

Contents

1	Intr	roduction	1
2	CR	IStAL laboratory	2
	2.1	History	2
	2.2	Research activities	3
	2.3	2XS team	3
3	Bac	kground: the PIP project	4
	3.1	PIP protokernel	4
		3.1.1 A minimal OS kernel with provable isolation	4
		3.1.2 Horizontal isolation & vertical sharing	5
		3.1.3 Proof-oriented design	7
		3.1.4 In-depth understanding of PIP's Data structures	11
	3.2	Hoare logic	14
		3.2.1 Introduction to Hoare logic theory	14
		3.2.2 Hoare logic in the shallow embedding	16
	3.3	The deep embedding	21
		3.3.1 DEC	21
		3.3.2 Deep embedding constructs	21
		3.3.3 Hoare logic in the deep embedding	26
4	Pro	ving invariants in the deep embedding	30
	4.1	Preliminary experiments	30
	4.2	Modelling the PIP state in the deep embedding	31
	4.3	1 st invariant and proof	32
		4.3.1 Invariant in the shallow embedding	32
		4.3.2 Modelling the getFstShadow function	34
		4.3.3 Invariant in the deep embedding	39
		4.3.4 Invariant proof	40
		4.3.5 The Apply approach	44
	4.4	2 nd invariant and proof	45

4.5	3 rd invariant and proof	47
4.6	Observations	51
	4.6.1 Deep vs shallow	51
	4.6.2 Limitations of DEC	53
	4.6.3 Further discussion about the deep implementation of	
	shallow functions	53
	1	
5 Coi	nclusion	55
Biblio	graphy	56
Appor	ndixes : Project Files	58
		59
A	IdModTypeA.v	
В	Pip_state.v	
С	Lib.v	62
D	Hoare_getFstShadow.v	63
${ m E}$	Hoare_writeVirtualInv.v	70
\mathbf{F}	Hoare_initVAddrTable.v	73

List of Scripts

3.1	PIP state definition
3.2	paddr type definition
3.3	page & index type definitions
3.4	value type definition
3.5	Pentry type definition
3.6	Ventry type definition
3.7	vaddr type definition
3.8	Hoare triple in the shallow embedding
3.9	Weakening Hoare triples in the shallow embedding 17
3.10	Hoare triples assignment rule in the shallow embedding 17
3.11	Horizontal isolation
3.12	Vertical sharing
3.13	Kernel data isolation
3.14	Example of partition-tree-consistency property
3.15	Example of a flags-semantics-consistency property 20
3.16	Example of a pages-consistency property
3.17	createPartition Hoare triple
3.18	Values in the deep embedding
	Quasi-values in the deep embedding
3.20	Functions in the deep embedding
3.21	Quasi-functions in the deep embedding
3.22	generic effects in the deep embedding
3.23	Tag type in the deep embedding
	Function parameters in the deep embedding
3.25	SKIP instruction in the deep embedding
3.26	Deep embedding expressions
3.27	Hoare triple for expressions in the deep embedding 27
3.28	Hoare triple for parameters in the deep embedding 27
3.29	Main Hoare triple rule for the Apply construct
4.1	PIP state in the deep embedding
4.2	getEstShadow invariant in the shallow embedding 32

4.3	getFstShadow function in the shallow embedding	32
4.4	nextEntryIsPP property	33
4.5	partitionDescriptorEntry property	33
4.6	getSh1idx definition in the deep embedding	34
4.7	Index successor function in the shallow embedding	34
4.8	Rewritten shallow index successor function	35
4.9	Definition of Succ	35
4.10	Definition of SuccD	35
4.11	Functions called in SuccD	36
4.12	Definition of PlusR	37
	Definition of SuccRec	37
4.14	readPhysical function in the shallow embedding	37
	Rewritten shallow readPhysical function	38
4.16	Definition of ReadPhysical	38
	Definition of getFstShadowBind	38
	Rewritten nextEntryIsPP property	39
	getFstShadow invariant definition	39
	Proof of the getFstShadow invariant	40
	getSh1idxWp lemma definition and proof	41
	succWp lemma definition and proof	42
	succW Lemma definition and proof	43
	readPhysicalW Lemma definition and proof	44
	Lifting Succ and readPhysical to quasi-functions	44
	getFstShadowApply definition	45
	writeVirtual function in the shallow embedding	45
	Rewritten shallow writeVirtual function	45
	WriteVirtual definition	46
	writeVirtualInvNewProp invariant definition	46
	writeVirtualWp lemma definition and proof	47
	initVAddrTable in the shallow embedding	48
	maxIndex definition	48
	LtLtb definition	49
	writeVirtual new definition	49
	ExtractIndex definition	49
	initVAddrTable definition in the deep embedding	50
	initVAddrTableNewProperty invariant in the deep embedding	50
	succWp false lemma definition	52
		_

List of Figures

2.1	CRIStAL laboratory Location	2
2.2	The 2XS team organizational chart	3
3.1	Software layers of an OS built on top of PIP	6
3.2	Horizontal isolation & vertical sharing in PIP	6
3.3	FreeRTOS task isolation using PIP	7
3.4	PIP design	7
	HAL and API relationship	
3.6	An example of a partition tree	12

Acronyms

API Application Programming Interface

DSL Domain Specific Language

HAL Hardware Abstraction Layer

IAL Interrupt Abstraction Layer

IPC Inter-Process Communication

MAL Memory Abstraction Layer

MMU Memory Management Unit

OS Operating System

SOS Structural Operational Semantics

TCB Trusted Computing Base

1. Introduction

The following report describes the activities carried out during a 12-week, full-time internship at the Research Center in Computer Science, Signal and Automatic Control of Lille (CRIStAL)[2]. This internship revolves around the PIP pretokernel and the DEC language currently being developed by the 2XS team. PIP[13] is an OS protokernel specified in Coq in terms of a shallow embedding of a fragment of the C language on which memory isolation is being proved using Hoare logic. DEC[16] is a language, deeply embedded in Coq, designed as an intermediate language for the translation of PIP to C. Specifying programs in the deep embedding has the great advantage of simplifying their syntactic manipulation. It also ensures a stricter structuring of program expressions. Therefore, we want to see whether this structure is reflected in the proofs and compare such proofs to those already given in the shallow embedding.

To that end, we will consider three distinct invariants in the shallow embedding. For each of them, we will model the program function in the deep embedding and carry out the proof for its corresponding invariant. The function of the first invariant reads the memory. The second one writes in the memory. The last one is a recursive function. One of the invariants propagates all of PIP's properties which include memory isolation, vertical sharing, kernel data isolation and consistency. We followed a modular approach in our implementation and we engineered our proofs correspondingly. We also did some preliminary work mostly to get familiar with Hoare logic and the deep embedding.

The first part of the report offers an overview of the CRIStAL laboratory, the 2XS team and their research activities. The second part is dedicated to the PIP protokenerel and focuses on its proof oriented design, its properties, its data structures, Hoare logic theory, the deep embedding and its constructs. The last part is dedicated to our contributions, detailing how we modelled the required functions, how we engineered our proofs in the deep embedding and our observations about the comparison between the deep and shallow proofs.

2. CRIStAL laboratory

2.1 History

CRIStAL¹[2] (Research Center in Computer Science, Signal and Automatic Control of Lille), founded on the 1st of January 2015, is a laboratory of CNRS² (National Center for Scientific Research), Lille 1 university and Centrale Lille in partnership with Lille 3 University, Inria (French National Institute for computer science and applied mathematics) and Mines Telecom Institute. It is the result of the fusion of LAGIS⁴ (Laboratory of Automatic Control, Computer Engineering and Signal) and LIFL⁴ (Laboratory of Fundamental Computing of Lille) to federate their complementary competencies in information sciences. It is a member the interdisciplinary research institute IRCICA⁵ (Research Institute on Software and Hardware Components for Advanced Information and Communication in Lille).

CRIStAL is located in Villeneuve d'Ascq city in Lille, the capital of the Hauts-de-France region and the prefecture of the Nord department and the fourth largest urban area in France after Paris, Lyon and Marseille. Chaired by *Prof.Olivier Colot*, it harbours about 430 personnel with exactly 228 permanents and more than 200 non-permanents. Permanent researchers are divided among more than 30 teams working on different themes and projects.

Figure 2.1: CRIStAL laboratory Location

¹ "Centre de Recherche en Informatique, Signal et Automatique de Lille"

² "Centre national de la recherche scientifique"

³ "Laboratoire d'Automatique, Génie Informatique et Signal"

⁴ "Laboratoire d'Informatique Fondamentale de Lille"

 $^{^5\,\}mathrm{``Institut}$ de recherche sur les composants logiciels et matériels pour l'information et la communication avancée de Lille"

2.2 Research activities

CRIStAL's research activities concern topics related to the major scientific and societal issues of the moment such as: Big Data, software, computer imaging, human-machine interactions, robotics, control and supervision of large systems, intelligent embedded systems, bioinformatics... The laboratory is involved in the development of revolutionary platforms such as Pharo, a pure object oriented language and a powerful yet simple development environment used worldwide.

2.3 2XS team

The 2XS (eXtra Small, eXtra Safe) team is working on highly constrained embedded devices, precisely on designing software and hardware that are secure, safe and efficient. Research in this team is focused on defining new system architectures or new languages to allow fast development of reliable embedded software. The team addresses issues concerning memory footprint, energy consumption and security and takes profit from proficiencies in formal verification, hardware/software co-design and operating system architectures to tackle the aforementioned issues.

The team is lead by *Prof.Gilles Grimaud* and has 15 members¹ as well as several trainees and most of its current work mainly revolves around the PIP project and its applications.

Figure 2.2: The 2XS team organizational chart[2]

¹as of August 21, 2017

3. Background: the PIP project

3.1 PIP protokernel

3.1.1 A minimal OS kernel with provable isolation

An operating system is organized as a hierarchy of layers[12], each one constructed upon the one below. Each layer focuses on an essential role of the operating system such as memory management, multiprogramming, input/output...Generally speaking, while developing a kernel for an operating system based on the layered approach, the designers have a choice where to draw the kernel-user boundary. Traditionally, all the layers went in the kernel, but that is not necessary. In fact, putting as little as possible in kernel mode is safer because kernel bugs can bring down the system instantly. In contrast, user processes/layers are set up to have less power so that a bug there may not be fatal.

Various studies on bug density, relatively to the developed module size, age as well as other factors, have been conducted (e.g. Basilli and Perricone in 1984; and Ostrand and Weyuker in 2002). A ballpark figure for serious industrial systems is ten bugs per a thousand lines of code. Operating systems are sufficiently buggy that computer manufacturers put reset buttons on them, something the manufacturers of cars, TV sets and stereos do not do, despite the large amount of software in these devices. Furthermore, Operating systems generally present hardware resources to applications through high-level abstractions such as (virtual) file systems.

Therefore, we can distinguish several OS kernel families such as:

- Monolithic kernels: All the OS layers are put in kernel space as in Windows and Linux;
- Microkernels: The basic idea behind a microkernel design is to achieve high reliability by splitting the operating system up into small, well-defined modules, only one of which, the microkernel, runs in kernel mode;
- Exokernels: The idea behind an exokernel is to force as few abstractions as possible on application developers, enabling them to make as

many decisions as possible about hardware abstractions.

Although the closest kernel design to PIP[13] is the exokernel, PIP does not belong to any of the kernel families featured in the state of art, but it is the first member of a new kernel family, **protokernels**, as compared to most microkernels and exokernels, the TCB in PIP is even more restricted:

- Scheduling and IPC are done in user mode unlike a microkernel;
- Multiplexing is also done in user mode unlike an exokernel.

whereas the kernel mode is only for **multi-level MMU control and configuration** (virtual memory) and **context switching**. This not only ensures less bugs but also more feasibility of formal proof that will warrant the memory isolation property of the protokernel[8].

As a minimal OS Kernel with provable isolation, PIP focuses more on security and safety without sacrificing efficiency and ensures memory isolation between different tasks running on the same device. PIP's algorithmic part is written in Gallina, the language of the Coq proof assistant, in a monadic style that allows direct translation into free standing C. We will refer to this implementation in *Gallina* as the shallow embedding in contrast to the deep embedding introduced in section 3.3 p.21.

3.1.2 Horizontal isolation & vertical sharing

PIP can be used to partition the available memory which will be initially allocated to the root partition on top of PIP. Any partition can read and write in the memory of its descendants. However, partitions in different branches of the partition tree are disjoint. The former is referred to as **vertical sharing** and the latter as **horizontal isolation**. Needless to say, all memory lent to PIP for storing kernel data, such as when creating partitions, is inaccessible for all partitions to prevent messing up PIP data structures which means that the kernel data is totally isolated.

Let us consider a more realistic partition tree, as shown in figure 3.1.2, in which we consider *Linux* and *FreeRTOS* as sub-partitions of a root partition, multiplexer. Knowing that *FreeRTOS* is a real-time OS that does not isolate its tasks, we have easily secured it with task isolation by porting it on PIP.

Figure 3.1: Software layers of an OS built on top of PIP[8]

Figure 3.2: Horizontal isolation & vertical sharing in PIP[7]

Figure 3.3: FreeRTOS task isolation using PIP[8]

3.1.3 Proof-oriented design

PIP's design

PIP's isolation properties are meant to be formally proven independently from the platform it's running onto. Consequently, the algorithm and the architecture dependant part were separated[7]. Indeed, as shown in figure 3.4, PIP is split into two distinct layers:

- HAL: gives direct access to the architecture and hardware;
- **API**: implements the algorithmic part to configure the virtual memory and the hardware.

The API code is written and proven using the Coq proof assistant, and uses the interface provided by the HAL to perform any hardware related operation. the proofs are based on Hoare logic theory introduced in section 3.2.2 p.16.

Figure 3.4: PIP design[7]

PIP's HAL is split into three components, as shown in figure 3.5, each handling a specific part of the target platform's hardware:

- Memory Abstraction Layer (MAL): provides an interface for the configuration of the MMU chip;
- Interrupt Abstraction Layer (IAL): provides an interface to dispatch interrupts and configure hardware;
- Bootstrap: contains the low-level code required to boot the system.

PIP only provides system calls for management of the partitions and for context switching, thus reducing the TCB to its bare minimum as explained in section 3.1.1 p.4. This user exposed API[13] can be called by any partition using a platform dependant call:

- **createPartition**: creates a new child (sub-partition) into the current partition;
- **deletePartition**: removes a child partition and puts all its used pages back in the current partition;
- **prepare**: adds required configuration tables into a child partition to map a new virtual address;
- **collect**: removes the empty configuration tables which are not used anymore and gives it back to the current partition;
- **countToMap**: returns the amount of configuration tables needed to perform a mapping for a given virtual address;
- addVaddr: maps a virtual address into the given child;
- removeVAddr: removes a given mapping from a given child.

This API is sufficient as far as memory requirements are concerned but it lacks a way to handle interrupts. Hardware interrupts are implicitly handled by PIP and automatically dispatched to the root partition, while software interrupts, such as system calls, are notified to the parent partition of the caller[7] and can be managed by these two additional services of PIP:

- **dispatch**: notifies an interrupt to a given partition, interrupting its current control flow and backing it up for a further resume call;
- resume : restores a previously interrupted context.

Formal proofs using Coq

Figure 3.5: HAL and API relationship[7]

Coq[15] is the result of about 30 years of research. It started in 1984 as an implementation of the Calculus of Constructions, an expressive formal language, at INRIA by *Thierry Coquand* and *Gérard Huet* and was extended, later in 1991, by *Christine Paulin* to the Calculus of Inductive Constructions[9].

Coq is a **formal proof management system**. It provides a formal language to write mathematical definitions, executable algorithms and theorems together with an environment for semi-interactive development of machine-checked proofs. Typical applications include the certification of properties of programming languages (e.g. the *CompCert* compiler certification project, or the *Bedrock* verified low-level programming library), the formalization of mathematics and teaching. It implements a program specification and mathematical higher-level language called *Gallina* that is based on the Calculus of Inductive Constructions combining both a higher-order logic and a richly-typed functional programming language.

As a **proof development system**, Coq provides interactive proof methods, decision and semi-decision algorithms as well as a tactic language letting the user define his own proof methods. Furthermore, as a **platform for the formalization of mathematics or the development of programs**, Coq provides support for high-level notations, implicit contents and various other useful kinds of macros.

For this project, the latest version of Coq, 8.6 released in December 2016, was used. It features among other things a faster universe checker, asynchronous error processing, proof search improvements, generalized introduction patterns, a new warning system and subterm selection algorithm.

The Coq proof assistant provides us with powerful tactics to perform proofs[14]. Here is a non exhaustive list of these tactics:

- simpl: simplifies the current goal;
- assumption: solves the current goal if it is computationally equal to a hypothesis;
- reflexivity: solves the current goal if it is a valid equality;
- unfold t: unfolds the definition of t in the current goal;
- **clear H**: removes hypothesis H from the context;
- **auto**: tries to solve the current goal automatically by using a collection of tactics;
- rewrite H: uses an equality hypothesis H to replace a term in the current goal;
- induction t: applies the induction principle for the type of t, generates subgoals as many as there are constructors, and adds the inductive hypotheses in the contexts;
- inversion H: resembles the induction tactic, but pays attention to the particular form of the type of H, and will only consider the cases that could have been used, so it discards some impossible cases quickly and efficiently;
- omega: carries out an automatic decision procedure for *Presburger* arithmetic;
- apply H: mainly tries to unify the current goal with the conclusion of the type of H. If it succeeds, then the tactic returns as many subgoals as non-dependent premises of the type of H;
- **f_equal**: applies to a goal of the form f $a_1 ldots a_n = g$ $b_1 ldots b_n$ and leads to subgoals f = g and $a_1 = b_1$ and so on up to $a_n = b_n$. Amongst these subgoals, the simple ones are automatically solved;
- contradiction: tries to find a contradiction amongst the hypotheses.

Coq also provides several tactics to deal with higher-order logic, particularly targeting binary connectives and quantifiers such as **split** for conjunction, **left** and **right** for disjunction, **intros** for implication and universal quantifiers and **exists** for existential quantifiers when they are in the goal. In

addition, We have **destruct** for conjunction and disjunction, **apply** for implication, **elim** for existential quantifiers and **specialize** for universal quantifiers when they are in the hypothesis. Furthermore, many tactics can be preceded with the letter *e* like **eauto**, **eassumption** and **eapply** to deal with existential variables. Some tactics can also be applied on hypotheses if we use the reserved clause *in* with the name of the hypothesis such as unfold, apply and simpl.

3.1.4 In-depth understanding of PIP's Data structures

The memory

PIP uses several data structures per partition[7], which will represent the global state of the partition's memory state. This is necessary as it has to keep track of pages allocated to partitions in order to allow or deny derivation and partition creation while preserving the required properties.

Figure 3.6 shows a partition tree example consisting of a partition, Parent, that has a single child, Child1. A partition is identified by a partition descriptor which is a page number essential to access the whole data structure of a partition. In our case, the partition descriptors of Parent and Child1 are respectively 1 and 12. The pages lent to PIP to manage a partition are organized in a tree with three branches: the MMU tables, the first shadow and the second shadow. The aim of this organization is to keep additional information about each page lent to a partition. Moreover these structures have multiple goals:

- Access control: the first shadow is used to avoid deriving the same page multiple times;
- **Performance**: the second shadow and the configuration list are used to quickly find the virtual address of a page without having to parse the whole virtual space when the parent partition reclaims it.

As such, adding an indirection table in the MMU configuration requires two additional pages for the shadows. Therefore, this model is estimated to require roughly three times the amount of memory a simple virtual environment would need, nevertheless it provides a secure and an efficient API.

To prove the isolation properties on this memory structure, it is essential to ensure its consistency relative to the partition tree, the well-typedness as well as some other consistency properties that will be detailed in section 3.2.2 p.16.

Figure 3.6: An example of a partition tree [7]

The state

The PIP state[6] is defined as follows :

Script 3.1: PIP state definition

```
Record state : Type :=
{ currentPartition: page ; memory: list (paddr * value) }.
```

The list in the state corresponds to the physical memory and maps physical addresses to values. A physical address is defined by a physical page number and a position into this page :

```
Script 3.2: paddr type definition
```

```
Definition paddr : Type := page * index.
```

where pages and indexes are positive integers bounded respectively by the overall number of pages and the table size :

Script 3.3: page & index type definitions

```
Record page := { p :> nat ; Hp : p < nbPage }.
Record index := { i :> nat ; Hi : i < tableSize }.</pre>
```

Different types of values could be stored in the physical memory by Pip. So, the type *value* is an inductive type defined as follows:

Script 3.4: value type definition

```
Inductive value : Type :=

| PE: Pentry → value
| VE: Ventry → value
| PP: page → value
| VA: vaddr → value
| I: index → value.
```

The type *Pentry*, which represents a physical entry, consists of a physical page number along with several flags:

Script 3.5: Pentry type definition

```
Record Pentry : Type := {
    read: bool;
    write: bool;
    exec: bool;
    present: bool;
    user: bool;
    pa: page }.
```

Finally, the Ventry type consists of a virtual address with a unique boolean flag:

Script 3.6: Ventry type definition

```
Record Ventry : Type := { pd: bool ; va: vaddr }.
```

with virtual addresses modelled as a list of indexes of length the number of levels of the MMU plus one :

Script 3.7: vaddr type definition

```
Record vaddr : Type :=
{ va :> list index ; Hva : length va = nbLevel + 1 }.
```

3.2 Hoare logic

3.2.1 Introduction to Hoare logic theory

How can we argue that a program is correct? Nowadays, Building reliable software is becoming more and more difficult considering the growing scale, specifications and complexity of modern systems. Therefore, tests alone can no longer ascertain the reliability of programs especially if we're talking about critical systems. Logicians, computer scientists and software engineers have responded to these challenges by developing different kinds of techniques some of which are based on formal reasoning about properties of software and tools for helping validate these properties. One of these reasoning techniques that was used to prove PIP's properties is Floyd–Hoare logic, often shortened to just Hoare Logic. It was proposed in 1969 by the British computer scientist and logician Tony Hoare[4] and it continues to be the subject of intensive research right up to the present day. It is not only a natural way of writing down specifications of programs but also a technique for proving that programs are correct with respect to such specifications.

Let S be a program that we want to execute starting from a certain state s, P a predicate on the state describing the condition S relies on for correct execution and Q a predicate on the resulting state after the execution of S describing the condition S establishes after correctly running. Knowing that P is verified on s, if we prove that Q is verified after the execution of s, we can ascertain that S is partially correct. And by partial correctness of S we mean that S is correct if it terminates. Using standard Hoare logic, only partial correctness can be proven, while termination needs to be proven separately. This triple S, P and Q, written as $\{P\}$ S $\{Q\}$, is referred to as a Hoare triple. The assertions P and Q are respectively referred to as the precondition and the postcondition.

For example let's consider simple Hoare triples about an assignment command :

- $\{X=2\}X:=X+1\{X=3\}$: is a valid Hoare triple, that can be easily formally proved in Coq, since the postcondition is verified after the execution of the assign command relatively to the precondition;
- $\{X = 2\}X := X * 2\{X = 3\}$: is not a valid Hoare triple since the postcondition would not be verified after the execution of the command.

Now, let's introduce some facts and rules about Hoare triples:

1. If an assertion P implies another precondition P' of a valid Hoare triple $\{P'\}$ S $\{Q\}$ then $\{P\}$ S $\{Q\}$ is also a valid Hoare triple. This is referred to as **weakening the precondition of a Hoare triple** and can be formally defined as follows:

$$\frac{P \to P' \quad \{P'\} S \{Q\}}{\{P\} S \{Q\}} \text{ Hoare_weaken}$$

- 2. If we can weaken a Hoare triple, we expect it to have a **weakest precondition**. This notion was introduced by Dijkstra in 1976[3] and is very important since it enables us to prove total correctness and in particular program termination. Indeed, if a program doesn't terminate, its weakest precondition would be *True* and it would verify any postcondition.
- 3. If we consider a language containing a **SKIP** instruction which practically does nothing, we can affirm that this command preserves any property which means:

$$\overline{\{P\} \text{ SKIP } \{P\}}$$
 Hoare_skip

4. If we consider a language that allows **assignments**, in the form of X := a, then we can conclude that an arbitrary property Q holds after such assignment if we assume $Q[X \rightarrow a]$ which means Q with all occurrences of X replaced by a:

$$\overline{ \{Q[X\rightarrow a]\} \ X:=a \ \{Q\} }$$
 Hoare_assign

5. Generally speaking, every Program is built using **sequencing** of commands that we will write as C1;C2. Our aim is to prove a Hoare triple on this sequence with P and Q respectively as the precondition and the postcondition. This requires proving that C1 takes any state where P holds to a state where an intermediate assertion I holds and C2 takes any state where I holds to one where Q holds which could be formally stated as:

$$\frac{\{P\}\ C1\ \{I\}}{\{P\}\ C1;C2\ \{Q\}} \frac{\{I\}\ C2\ \{Q\}}{\{Q\}}$$
 Hoare_seq

6. Finally, let's not forget **conditional structures** that we can write in the form of *IF B THEN C1 ELSE C2*. To verify a Hoare triple about this instruction with P and Q respectively as the precondition and postcondition, we need to consider both cases where B is evaluated to *true* and *false* and prove that Q holds on the resulting state in each one. We can also disregard a case if there is some sort of contradiction relatively to the property P. This rule can be written as follows:

$$\frac{\{P \land B\} C1 \{Q\} \qquad \{P \land \neg B\} C2 \{Q\}}{\{P\} \text{ IF B THEN C1 ELSE C2 } \{Q\}} \text{ Hoare_if}$$

The rules defined above are in their simplest form and we need to adapt them to the language or semantics we are working on. Also, This list is not exhaustive[10]. For example, we did not define a rule for *While* loops because the Coq model of PIP doesn't actually use them and uses recursion instead. Likewise, We're sure that all PIP's functions terminate since recursive functions are bounded by a maximum number of iterations.

3.2.2 Hoare logic in the shallow embedding

The Hoare logic devised for the shallow embedding is slightly different from what we saw in the previous section. A program in the shallow embedding is defined in a monadic style that returns a pair of values, the first being the resulting state and the second the value returned by the program which generally corresponds to a function. Thus, as shown in script 3.8, the postcondition is a predicate on the resulting state and the returned value so that we can verify it and propagate it in the case of long proofs. The notation chosen for the Hoare triple stays the same as the one mentioned in the previous section except for the brackets that are doubled since single brackets are already used in Coq.

Script 3.8: Hoare triple in the shallow embedding

```
Definition hoareTriple {A : Type} (P : state → Prop)
(m : LLI A) (Q : A → state → Prop) : Prop :=
    ∀ s, P s → match (m s) with
    | val (a, s') => Q a s'
    | undef _ _=> False
    end.

Notation "{{ P }} m {{ Q }}" := (hoareTriple P m Q)
    (at level 90, format "'[' '[' {{ P }} ']' '/ '
    '[' m ']' '[' {{ Q }} ']' ']'") : state_scope.
```

The weakening lemma on Hoare triples was also defined and proven as shown in script 3.9. This Lemma is extensively used in PIP's proofs.

Script 3.9: Weakening Hoare triples in the shallow embedding

```
Lemma weaken (A : Type) (m : LLI A) (P Q : state \rightarrow Prop) (R : A \rightarrow state \rightarrow Prop) : {{ Q }} m {{ R }} \rightarrow (\forall s, P s \rightarrow Q s) \rightarrow {{ P }} m {{ R }}. Proof. intros H1 H2 s H3. case_eq (m s); [intros [a s'] H4 | intros a H4 ]; apply H2 in H3; apply H1 in H3; try rewrite H4 in H3; trivial. intros. rewrite H in H3. assumption. Qed.
```

Some simple instructions were considered as primitive like conditional structures while some others were explicitly defined, like assignments in the form of **perform** x := m in e where the value of the program m gets assigned to x in the evaluation of the program e. Furthermore, a Hoare triple rule was devised for assignments.

Script 3.10: Hoare triples assignment rule in the shallow embedding

```
Lemma bind (A B : Type) (m : LLI A) (f : A \rightarrow LLI B) (P : state \rightarrow Prop) (Q : A \rightarrow state \rightarrow Prop) (R : B \rightarrow state \rightarrow Prop) : (\forall a, {{Q a }} f a {{R }}) \rightarrow {{P }} m {{Q }} \rightarrow fa {{R }}. Proof. intros H1 H2 s H3; unfold bind; case_eq (m s); [intros [a s'] H4 | intros k s' H4]; apply H2 in H3; rewrite H4 in H3; trivial. case_eq (f a s'); [intros [b s''] H5 | intros k s'' H5]; apply H1 in H3; rewrite H5 in H3; trivial. Qed.
```

Finally, to reason with Hoare logic we need to formally specify the properties we want to prove[5][7], the most important being partition memory isolation, kernel data isolation, vertical sharing and consistency mentioned in 3.1.2 p.5. To that end, the following necessary functions on PIP's data structures were defined:

- **getChildren**: returns the list of all children of a given parent partition in the partition tree of a given state;
- **getAncestors**: returns the list of all ancestors of a given partition in the partition tree of a given state;
- **getMappedPages**: returns the list of mapped pages of a given partition;
- **getAccessibleMappedPages**: returns the list of all mapped pages, of a given partition, marked as accessible;
- **getUsedPages**: returns the list of all the pages that are used by a given partition including the pages lent to PIP;
- **getConfigPages**: returns the list of configuration pages lent to PIP to manage a given partition;
- **getPartitions**: returns the list of all existing partitions of a given state which is naturally obtained by a search on the partition tree.

The first property defines horizontal isolation between children i.e., for any state s of the system, all memory pages owned by two different children of a given parent partition in the partition tree must be distinct. This property is formally defined in the Coq proof assistant as follows:

Script 3.11: Horizontal isolation

```
Definition horizontalIsolation s := \forall parent child1 child2, parent \in getPartitions s \rightarrow child1 \in getChildren parent s \rightarrow child2 \in getChildren parent s \rightarrow child1 \neq child2 \rightarrow (getUsedPages child1 s) \cap (getUsedPages child2 s) = \emptyset.
```

The second property defines vertical sharing between a parent partition and its children i.e. it ensures that all pages mapped by a child are mapped in its parent. This property is formally defined as follows:

Script 3.12: Vertical sharing

```
\begin{array}{ll} \textbf{Definition} & \texttt{verticalSharing s :=} \\ \forall & \texttt{parent child,} \\ \texttt{parent} & \in & \texttt{getPartitions s} \rightarrow \\ \texttt{child} & \in & \texttt{getChildren parent s} \rightarrow \\ \texttt{getUsedPages child s} & \subseteq & \texttt{getMappedPages parent s.} \end{array}
```

The third property defines kernel data isolation meaning it ensures that for any state of the system and any given two possibly-equal partitions, the code running in the second partition cannot access the pages containing configuration tables lent to PIP to manage the first partition. This property is formally defined as follows:

Script 3.13: Kernel data isolation

```
Definition kernelDataIsolation s := \forall partition1 partition2, partition1 \in getPartitions s \rightarrow partition2 \in getPartitions s \rightarrow (getAccessibleMappedPages partition1 s) \cap (getConfigPages partition2 s) = \emptyset.
```

The last property of consistency is mandatory to prove the previously detailed properties. Consistency encompasses different sub-properties that were divided into four categories. As the definition of this property is quite cumbersome, we will only disclose these categories and illustrate each one with an example :

• Partition tree structure: the properties in this category ensure that the partition tree of a given state is consistent relatively to its awaited structure preset in section 3.1.4 p.11. For example, one of the properties defined in this category and called no CycleInPartitionTree ensures that there is no cycle in the partition tree of a given system i.e. each partition is different from all its ancestors in the partition tree. This property is formally defined as follows:

Script 3.14: Example of partition-tree-consistency property

• Flag semantics: This category focuses on the signification of flags used in the data structures. For instance, a property called *isPresentNotDefaultIff* states that the associated page number of a physical entry whose *present* flag is set to *false*, corresponds to the predefined default page value. This property is formally defined as shown in script 3.15 where *readPhyEntry* and *readPresent* are predefined functions that respectively read, for a given table, index and memory state, the present flag of a physical entry and its value:

Script 3.15: Example of a flags-semantics-consistency property

```
 \begin{array}{lll} \textbf{Definition} & \texttt{isPresentNotDefaultIff s} := \\ \forall & \texttt{table idx,} \\ \texttt{readPresent table idx (s.memory)} = \texttt{Some false} \leftrightarrow \\ \texttt{readPhyEntry table idx (s.memory)} = \texttt{Some defaultPage.} \\ \end{array}
```

• Pages properties: This category concerns several properties about the partitions' mapped pages, the pages lent to the kernel as well as the relations between them. For example, the noDupMappedPagesList requires that the mapped pages of partitions be distinct from each other, using the function NoDup which verifies whether a list contains duplicates or not. This property is formally defined as follows:

Script 3.16: Example of a pages-consistency property

• Well-typedness: This last category concerns kernel data types and ensures that PIP doesn't contain any type confusion. For instance, when PIP writes a virtual address in the memory, it should be read later as a virtual address which is ensured by a property called dataStructurePdSh1Sh2asRoot. Otherwise, it is considered as an undefined behaviour in the model.

The most difficult system call invariant, called *createPartition*, was successfully proven. It required about 60000 lines of code to prove. It is defined as follows:

Script 3.17: createPartition Hoare triple

3.3 The deep embedding

3.3.1 DEC

DEC[16] (Deep Embedding of a terminating C-style language with effects) is a Domain Specific Language (DSL) embedded in *Gallina* and developed as an intermediate language for the translation of PIP to C. DEC Relies on Coq modules to define parametrisable state and identifiers types which are both specified in a module type (*IdModType* defined in annex A p.59). The dynamic semantics of DEC is specified in the small-step style of Structural Operational Semantics (SOS), introduced by *Plotkin*[11], which formally describe how the individual steps of a computation take place enabling us to perform software verification by reasoning on formulas' structure. In small-step semantics, program behaviour is specified in terms of atomic steps and this makes it easier to specify constructs in dependently of one another[1].

The DEC language has the following properties:

- 1. **Type soundness:** no well-typed program gets stuck on a non-value, and when a well-typed program terminates it gives a value of the right type;
- 2. **Termination:** every execution of a well-typed program ends with a value:
- 3. **Subject reduction:** the execution of a well-typed program preserves its type at each step;
- 4. **Determinism**: given an initial state, each well-typed program can only evaluate to one value and one new state;
- 5. **Type uniqueness:** each program has at most one type.

DEC supports Hoare logic reasoning, providing proven Hoare logic rules that will be detailed in section 3.3.3 p.26.

3.3.2 Deep embedding constructs

Before we move on to the main constructs of the deep embedding, we need to introduce essential background types and structures:

• **Id type**: represents the identifiers' type in the deep embedding. Typically, identifiers of variables are strings but we can use any other type;

• Value type: represents the actual values the programs will be manipulating. They can be built using the constructor *cst* followed by a shallow type and a value that should be of that type. The value type and its constructor are defined as follows:

Script 3.18: Values in the deep embedding

• QValue type: represents head normal forms for expressions (here called quasi-values) in the deep embedding which can be either actual values lifted to quasi-values using the constructor QV or identifiers of variables in the variable environment that we lift to quasi-functions using the constructor Var, as shown in the following script:

Script 3.19: Quasi-values in the deep embedding

- Fun type: represents functions in the deep embedding. The definition of this type is detailed in script 3.20 where:
 - fenv corresponds to the function environment which maps identifiers to functions:
 - tenv corresponds to the typing environment for parameters which maps identifiers to value types;
 - -e0 and e1 are expressions in the deep embedding corresponding respectively to the base case and step case;
 - -x corresponds to the name of the function;
 - n is the bound. If its value is 0, the first expression $e\theta$ is evaluated else the second expression $e\theta$ gets evaluated. This enables us to define terminating recursive functions.

Script 3.20: Functions in the deep embedding

• **QFun type:** represents quasi-functions in the deep embedding which can be either actual functions that we lift to quasi-functions using the constructor QF or identifiers of functions in the function environment that we lift to quasi-functions using the constructor FVar, as shown in the following script:

Script 3.21: Quasi-functions in the deep embedding

```
Inductive QFun : Type := FVar (x: Id) | QF (f: Fun).
```

• XFun type: represents generic effects (external stateful functions) in the deep embedding used to define prospective operations on the state and/or an input. It is used by the *Modify* construct of the deep embedding defined in script 3.26 p.25, when we want to read the state or perform changes on it and also when we need to implement external functions. As shown in script 3.22, it requires an input type T1 as well as an output type T2. Thus, to define state operations, we will mainly need generic effects with *unit* as the input and output type. Moreover, when specifying a generic effect, we only need to worry about the b_mod attribute as b_exec and b_eval are already preset to build respectively the resulting state and value. This implementation deals with the issue of construct extensibility since it enables us to add shallow constructs and even use shallow functions:

Script 3.22: generic effects in the deep embedding

```
Record XFun (T1 T2: Type) : Type := {
    b_mod : W \rightarrow T1 \rightarrow prod W T2 ;
    b_exec : W \rightarrow T1 \rightarrow W :=
    fun state input \Rightarrow fst (b_mod state input) ;
    b_eval : W \rightarrow T1 \rightarrow T2 :=
    fun state input \Rightarrow snd (b_mod state input)
}.
```

As shown in script 3.26, The deep embedding provides us with 8 constructs to build expressions :

- 1. Val v: lifts the value v to an expression using the constructor Val;
- 2. **BindN** e1 e2: represents a **sequence** of instructions where the expression e1 is evaluated first then e2 next. It is equivalent to "e1;;e2" in the shallow embedding;
- 3. **BindS** x e1 e2: represents an **assignment**. It is equivalent to "perform x := e1 in e2" in the shallow embedding. More precisely, the expression e2 is evaluated in the updated variable environment where x gets mapped to the resulting value of the evaluation of e1;
- 4. **BindMS** $fenv \ env \ e$: the expression e is considered in the function environment fenv and variable environment env;
- 5. **IfThenElse** *e1 e2 e3* : represents a **conditional structure**. It is equivalent to "*if e1 then e2 else e3*" in the shallow embedding. This expression is considered well-typed only when *e1* gets evaluated to a deep boolean value;
- 6. **Return** G qv: lifts the quasi-value qv to an expression using the constructor Return. If qv is a variable, it gets evaluated in the variable environment. G is a flag which affirms whether the construct should get translated to an actual return in C or not. The type Tag of G is defined as follows:

Script 3.23: Tag type in the deep embedding

Inductive Tag : Type := LL | RR.

7. **Apply** *qf ps* : represents **function application**. If *qf* is a variable it gets evaluated in the function environment. *ps* is the list of parameters which are expressions. They should be well-typed relatively to the typing environment of the function i.e. the resulting value of the evaluation of each parameter's expression should match its awaited type preset in the typing environment. The type *Prms* of *ps* is defined as follows:

Script 3.24: Function parameters in the deep embedding

```
Inductive Prms : Type := PS (es: list Exp).
```

8. Modify T1 T2 VT1 VT2 xf qv: is used to define effectful state operations and functions. xf is the generic effect that specifies the operation, T1 and T2 are respectively its input and output types and VT1 and VT2 assure that T1 and T2 are admissible value types. If qv is a variable it gets evaluated in the variable environment. For instance, we can define a simple SKIP instruction with the Modify construct as follows:

Script 3.25: SKIP instruction in the deep embedding

```
Definition xf_skip : XFun unit unit := {|
    b_mod := fun state input => (state,tt) |}.

Definition SKIP : Exp := Modify unit unit
    UnitVT UnitVT xf_skip (QV(cst unit tt))
```

More examples of these constructs will be detailed in section 4 p.30.

Script 3.26: Deep embedding expressions

The deep expressions are meant to be evaluated in certain variable and function environments. To that end, single and multi-step evaluation were defined as follows:

• EStep fenv env (Conf Exp n e) (Conf Exp n' e'): represents a single-step evaluation of the expression e, in the function environment fenv and variable environment env, with n as the current state. The constructor Conf builds a configuration of the type we seek to evaluate which, in our case, is Exp and contains the current state as well as the starting expression. n' and e' are respectively the resulting state and expression.

- PrmsStep fenv env (Conf Prms n es) (Conf Prms n' es'): represents a single-step evaluation of the list of parameters *es* which conducts a single-step evaluation of the first expression in the list. If the first expression is a value, it moves on to the next parameter;
- EClosure fenv env (Conf Exp n e) (Conf Exp n' e'): represents a multi-step evaluation of the expression e which is defined as a reflexive transitive closure. It uses the predefined single evaluation steps. It is important to note that there exists a state where any expression gets evaluated to a certain value which we conclude from the termination property of the deep embedding. Furthermore, since the evaluation process is deterministic, an expression gets evaluated to a unique value.
- PrmsClosure fenv env (Conf Prms n es) (Conf Exp n' es'): represents a multi-step evaluation of the list of parameters *es* which conducts a multi-step evaluation of each expression in the list.

Finally, the state in the deep embedding is represented with a type parameter W, as shown in script 3.22 p.23, that can be specified as required.

3.3.3 Hoare logic in the deep embedding

A Hoare triple in the deep embedding is slightly different from its counterpart in the shallow embedding. Indeed, this new version of the Hoare triple depends on the function environment as well as the variable environment we're evaluating the expression in. Both will be passed to the Hoare triple as parameters along with the expression, the precondition and the postcondition. The precondition is a predicate on the state while the postcondition is a predicate on both the resulting value and state. We must also ensure that the expression we are dealing with is well-typed. Therefore, as shown in script 3.27, a Hoare triple is considered valid if and only if the expression e is well-typed and there is an *EClosure* from a certain starting state verifying the precondition to a certain resulting state and value that verify the postcondition with e evaluated in the given function and variable environments fenv and env. $\{\{P\}\}\}$ fenv >> env >> e $\{\{Q\}\}$ is the chosen notation for the Hoare triple in the deep embedding where P, Q, e, fenv, and env are respectively the precondition, the postcondition, the expression, the function environment and the variable environment. Furthermore, as the evaluation of parameters is different from that of expressions, we need to devise a separate Hoare triple for parameters as shown in script 3.28 where EClosure is replaced by *PrmsClosure*.

Script 3.27: Hoare triple for expressions in the deep embedding

```
Definition ThoareTriple_Eval
    (P : W → Prop) (Q : Value → W → Prop)
    (fenv: funEnv) (env: valEnv) (e: Exp) : Prop :=
    ∀ (ftenv: funTC) (tenv: valTC)
    (k1: FEnvTyping fenv ftenv)
    (k2: EnvTyping env tenv)
    (t: VTyp)
    (k3: ExpTyping ftenv tenv fenv e t)
    (s s': W) (v: Value),
    EClosure fenv env (Conf Exp s e) (Conf Exp s' (Val v))
    → P s → Q v s'.

Notation "{{ P }} fenv >> env >> e {{ Q }}" :=
    (THoareTriple_Eval P Q fenv env e) (at level 90).
```

Script 3.28: Hoare triple for parameters in the deep embedding

Several Hoare triple rules were devised and proven. We show the importance of these rules in section 4.6.1 p.51. For simplicity's sake, We will only give the formal definition of some of these rules and not their actual implementation in Coq:

• weakening lemmas: the weakening lemma on expressions is the same as the one defined for the shallow embedding in script 3.9 p.17. However, we need another weakening lemma for a Hoare triple on parameters. The weakest preconditions for expression and parameter triples were also defined as functions called respectively wp and wpPrms. The two weakening lemmas are formally defined as follows:

$$\frac{\{\{P'\}\} \text{ fenv} >> \text{ env} >> \text{ e} \{\{Q\}\} \quad P \to P'}{\{\{P\}\} \text{ fenv} >> \text{ env} >> \text{ e} \{\{Q\}\}} \text{ weakenEval}}$$

$$\frac{\text{THoarePrmsTriple_Eval P' Q fenv env ps}}{\text{THoarePrmsTriple_Eval P Q fenv env ps}} \xrightarrow{\text{P} \rightarrow \text{P'}} \text{weakenPrms}$$

• BindS rule: the assignment rule in the deep embedding is quite different from the shallow one, defined in script 3.10 p.17, as environments are now explicitly manipulated. Therefore, to prove a Hoare triple on an assignment of the form $BindS\ x\ e1\ e2$, we need to prove a Hoare triple on e2 where x is mapped to the resulting value of e1 in the updated variable environment. To that end, we need an intermediate predicate that will ascertain the validity of the resulting value. This rule is formally defined as follows:

• BindN rule: a variant of the *Hoare_seq* rule, introduced in section 3.2.1 p.14, which requires an intermediate predicate to prove a Hoare triple on a sequence of instructions. It is formally defined as follows:

• IfThenElse rule: a variant of the *Hoare_if* rule, introduced in section 3.2.1 p.14. In the deep embedding, we need an intermediate predicate to evaluate the condition then we reason on both possible cases. This rule is formally defined as follows:

- Apply rules: the apply construct has several rules:
 - Apply_VHTT1: the main rule of the Apply construct which evaluates not only the parameters but also the next recursive call of the function by performing a pattern matching on the bound. It is formally defined in Coq as follows:

Script 3.29: Main Hoare triple rule for the Apply construct

```
Lemma Apply_VHTT1 (P0: W → Prop)
   (P1: list Value \rightarrow W \rightarrow Prop)
    (P2: Value \rightarrow W \rightarrow Prop)
   (fenv: funEnv) (env: valEnv)
   (f: Fun) (es: list Exp) :
 THoarePrmsTriple_Eval PO P1 fenv env (PS es) 
ightarrow
 match f with
  | FC fenv' tenv' e0 e1 x n \Rightarrow
     length tenv' = length es /\
    match n with
     \mid 0 \Rightarrow (\forall vs: list Value,
        THoareTriple_Eval (P1 vs) P2 fenv'
             (mkVEnv tenv' vs) e0)
     | S n' \Rightarrow (\forall vs: list Value,
        THoareTriple_Eval (P1 vs) P2
             ((x,FC fenv' tenv' e0 e1 x n')::fenv')
             (mkVEnv tenv' vs) e1)
     end
  end \rightarrow
 THoareTriple_Eval PO P2 fenv env (Apply (QF f) (PS es))
```

Apply_VHTT2: only evaluates the parameters in a function application.
 It's defined as follows:

 QFun_VHTT: evaluates a function variable in an Apply construct by searching its value in the function environment. It is formally defined as follows:

4. Proving invariants in the deep embedding

In this section, we show how we proved three different invariants of PIP. The first one is about a function that reads the memory. The second one is about a function that writes in the memory. The last invariant is about a recursive function. We explain throughout this section our approach in modelling these functions and the way we engineered our proofs while trying to make them modular and as simple as possible. The first section is dedicated to a briefing on the preliminary work we did to become more familiar with the deep embedding and the Hoare logic we built on progressively. In the second section, we explain how we modelled the PIP monad by replicating the PIP state. It is important to note that, since we don't have error handling in the deep embedding, we are going to use option types to deal with undefined behaviour of the PIP monad. In later sections we show how we modelled the shallow functions and proved their invariants in the deep embedding. Although some functions are defined in the hardware model and not in the PIP code, we chose to model them in the deep embedding as part of our experimentation with DEC. The last section is dedicated to our observations on the difference between shallow and deep proof and the limitations of the DEC language.

4.1 Preliminary experiments

For this preliminary work, we used an untyped form of the Hoare logic triple which was later refined to the one we defined in section 3.3.3 p.26. We started working with a natural number state on which we defined two functions. The first function called ReadN simply reads the current value of the state while the second one called WriteN writes a given value in the state. To model these functions, we used generic effects since they act directly on the state. We proved several Hoare triple rules about these functions. For instance, we proved that if we write a value x in the state then read it immediately after, we should get the same value x. This is quite similar to an invariant we proved on the PIP state, called writeVirtualInvNewProp, which is detailed in section 4.4 p.45.

Then, we switched to an association list state which resembles more the PIP state. We also devised shallow reading and writing functions on this state as the ones defined on the PIP state in annex C p.62. We used these functions to define deep reading and writing functions on such state using generic effects. Then we proved similar lemmas to the one we did on the natural number state.

4.2 Modelling the PIP state in the deep embedding

To prove invariants of PIP in the deep embedding, it is essential to replicate the PIP state. To that end, all type definitions mentioned in section $3.1.4~\mathrm{p.}12$ are copied in the file $PIP_state.v$. All the axioms, constructors, comparison functions as well as predefined values were also copied in this file as shown in annex B p.60. Then, we defined a module of type IdModType, detailed in annex A p.59, where the type parameter W is set to the PIP state record type, defined in script $3.1~\mathrm{p.}12$. We defined the initial value of this type parameter which corresponding to an empty memory. Furthermore, The Id type parameter for identifiers is set to string. This module, called IdModP, will be passed as a parameter to the modules we're going to work on later. It is defined in the the file IdModPip.v as follows:

Script 4.1: PIP state in the deep embedding

```
Require Import Pip_state.

Module IdModP <: IdModType.
   Definition Id := string.

Definition W := state.

Definition Loc_PI := valTyp_irrelevance.

Definition BInit := {|
        currentPartition := defaultPage;
        memory:= @nil (paddr * value);
        |}.

End IdModP.</pre>
```

4.3 1st invariant and proof

4.3.1 Invariant in the shallow embedding

This invariant concerns a function named getFstShadow. We want to prove that if the necessary properties for the correct execution of this function are verified then any precondition on the state persists after its execution since this function doesn't change it. We also need to ascertain the validity of the returned value. This invariant is defined as follows:

Script 4.2: getFstShadow invariant in the shallow embedding

```
Lemma getFstShadow (partition : page) (P : state \rightarrow Prop) : { fun s \Rightarrow P s \bigwedge partitionDescriptorEntry s \bigwedge partition \in (getPartitions multiplexer s) } } Internal.getFstShadow partition { fun (sh1 : page) (s : state) \Rightarrow P s \bigwedge nextEntryIsPP partition sh1idx sh1 s } }.
```

where:

• getFstShadow: is a function that returns the physical page of the first shadow for a given partition. The index of the virtual address of the first shadow, called sh1idx as shown in annex B p.60, is predefined in PIP as the 4th index of a partition. Furthermore, we know that the virtual address and the physical address of any page are consecutive. Therefore, we only need to fetch the predefined index of the first shadow, calculate its successor then read the corresponding page in the given partition. It is defined as follows:

Script 4.3: getFstShadow function in the shallow embedding

```
Definition getFstShadow (partition : page):=
  perform idx := getSh1idx in
  perform idxsucc := MALInternal.Index.succ idx in
  readPhysical partition idxsucc.
```

- P: is the propagated property on the state;
- **getPartitions**: is a function that returns the list of all sub-partitions of a given partition. In our case, since we give it the multiplexer partition which is the root partition, it returns all the partitions in the memory. This function is used to verify that the partition we give to the *getFstShadow* function is valid by checking its presence in the partition tree;

• nextEntryIsPP: returns *True* if the entry at position successor of the given index in the given table is a physical page and is equal to another given page. It is defined as follows:

Script 4.4: nextEntryIsPP property

```
Definition nextEntryIsPP table idxroot tableroot s : Prop:=
match Index.succ idxroot with
   | Some idxsucc =>
   match lookup table idxsucc (memory s) beqPage beqIndex with
   | Some (PP table) => tableroot = table
   |_ => False
   end
   |_ => False
end.
```

• partitionDescriptorEntry: defines some properties of the partition descriptor. All the predefined indexes in the file PIPstate.v, shown in annex B p.60, should be less than the table size minus one and contain virtual addresses. This is verified by the isVA property which returns True if the entry at the position of the given index in the given table is a virtual address and is equal to a given value. The successors of these indexes contain physical pages which should not be equal to the default page. This is verified by the nextEntryIsPP property. The partitionDescriptorEntry property is defined as follows:

Script 4.5: partitionDescriptorEntry property

```
Definition partitionDescriptorEntry s :=
∀ (partition: page),
partition ∈ (getPartitions multiplexer s) →
∀ (idxroot : index),
(idxroot = PDidx ∨ idxroot = sh1idx ∨
idxroot = sh2idx ∨ idxroot = sh3idx ∨
idxroot = PPRidx ∨ idxroot = PRidx) →
idxroot < tableSize - 1 ∧ isVA partition idxroot s ∧
∃ entry, nextEntryIsPP partition idxroot entry s ∧
entry ≠ defaultPage.</pre>
```

In the next sections we will rewrite the *getFstShadow* function as well as adapt these properties in order to prove this invariant in the deep embedding.

4.3.2 Modelling the getFstShadow function

We worked on several possible definitions in the deep embedding for the getFstShadow function, defined in script 4.3 p.32 taking into account the limitations of the deep embedding especially in dealing with inductive data types as it doesn't provide us with a pattern matching construct.

getSh1idx function

First, let's define getSh1idx which returns the value of sh1idx. In the deep embedding, we defined it as a deep index value of the predefined first shadow index :

Script 4.6: getSh1idx definition in the deep embedding

```
Definition getSh1idx : Exp := Val (cst index sh1idx).
```

Index successor function

Next, we need to implement the index successor function in the deep embedding. An index value has to be less then the preset table size. This property should be verified before calculating the successor. This function is defined as follows in the shallow embedding:

Script 4.7: Index successor function in the shallow embedding

```
Program Definition succ (n : index) : LLI index :=
let isucc := n+1 in
if (lt_dec isucc tableSize)
then ret (Build_index isucc _)
else undefined 28.
```

Although this function is defined in the hardware model, we chose to model it as part of our experimentation with the deep embedding. Our approach is to rewrite this function in the deep embedding while leaving shallow bits that we progressively replace with deep definitions in order to make the shift from shallow proofs to deep ones gradual and modular. First, we rewrote this function so that we could use it in a *Modify* construct replacing the output type by *option index*. We used the index constructor *CIndex* to build the new index. The new shallow version is defined as follows:

Script 4.8: Rewritten shallow index successor function

```
Definition succIndexInternal (idx:index) : option index :=
let (i,_) := idx in
if lt_dec i tableSize
then Some (CIndex (i+1))
else None.
```

Thus, the first version of the index successor function, called Succ, is defined as a Modify construct that uses a generic effect, called xf_succ, of input type index and output type $option\ index$, which calls the rewritten shallow function succIndexInternal. Succ is parametrised by the name of the input index variable which will be evaluated in the variable environment:

Script 4.9: Definition of Succ

The second version of the successor function, called SuccD, is different from the former one. In this version we don't want to call the shallow function succIndexInternal. Instead, we are trying to devise a comparatively deeper definition of successor where the conditional structure is replaced by the deep construct IfThenElse and the assignments are defined using the BindS construct. The new version is defined as follows:

Script 4.10: Definition of SuccD

where prj1 is a projection of the first value of an index record which corresponds to the actual value of the index, LtDec is the definition of the comparison function using its shallow version, SomeCindexQF is a quasifunction that lifts a natural number to an $option\ index$ typed value using the shallow constructors Cindex and $Some\ successively$ and SuccR is a function that calculates the successor of a natural number. It is important to note that SomeCindex is defined as a $Modify\ construct\ using\ a\ generic\ effect\ instead\ of\ a\ pure\ deep\ function\ since\ the\ deep\ embedding\ doesn't\ provide\ a\ pattern\ matching\ construct\ to\ deal\ with\ such\ cases.$ Their formal definitions in $Cog\ are\ as\ follows$:

Script 4.11: Functions called in SuccD

```
(* projection function *)
Definition xf_prj1 : XFun index nat := {|
   b_{mod} := fun s (idx:index) => (s,let (i,_) := idx in i)
|}.
Definition prj1 (x:Id) : Exp :=
  Modify index nat VT_index VT_nat xf_prj1 (Var x).
(* comparision function *)
Definition xf_LtDec (n: nat) : XFun nat bool := {|
   b_{mod} := fun s i \Rightarrow (s, if lt_dec i n then true else false)
|}.
Definition LtDec (x:Id) (n:nat): Exp :=
 Modify nat bool VT_nat VT_bool (xf_LtDec n) (Var x).
(* lifting funtion *)
Definition xf_SomeCindex : XFun nat (option index) := {|
   b_{mod} := fun s i \Rightarrow (s, Some (CIndex i))
|}.
Definition SomeCindex (x:Id) : Exp :=
 Modify nat (option index) VT_nat VT_option_index
              xf_SomeCindex (Var x).
Definition SomeCindexQF := QF
(FC emptyE [("i", Nat)] (SomeCindex "i")
    (Val (cst (option index) None)) "SomeCindex" 0).
(* successor function for natural numbers *)
Definition xf_SuccD : XFun nat nat := {|
   b_mod := fun s i \Rightarrow (s, S i)
|}.
Definition SuccR (x:Id) : Exp :=
  Modify nat nat VT_nat VT_nat xf_SuccD (Var x).
```

The last version calls a recursive function plusR that calculates the sum of two natural numbers. More precisely, we replace the call of SuccR in the former definition with plusR 1 which adds one to its given parameter. plusR and the new successor function, called SuccRec, are defined as follows:

Script 4.12: Definition of PlusR

```
Definition plusR' (f: Id) (x:Id) : Exp :=
         Apply (FVar f) (PS [VLift (Var x)]).

Definition plusR (n:nat) := QF
(FC emptyE [("i",Nat)] (VLift(Var "i"))
         (BindS "p" (plusR' "plusR" "i") (SuccR "p")) "plusR" n).
```

Script 4.13: Definition of SuccRec

readPhysical function

Now, we need to define the function that will read the physical page in the given index. This function, called *readPhysical* in the shallow embedding, uses the predefined lookup function that returns the value mapped to the address-index pair we give it. As shown in script 4.14, *readPhysical* checks whether the read page is actually a physical page by performing a match on the returned entry. *beqPage* and *beqIndex* are comparison functions respectively for pages and indexes.

Script 4.14: readPhysical function in the shallow embedding

```
Definition readPhysical (paddr: page) (idx: index) : LLI page:=
  perform s := get in
  let entry := lookup paddr idx s.(memory) beqPage beqIndex in
  match entry with
   | Some (PP a) ⇒ ret a
   | Some _ ⇒ undefined 5
   | None ⇒ undefined 4
  end.
```

To implement this function in the deep embedding, we first copied all the predefined association list functions in a file we named Liv.v, as shown in annex C p.62. We then rewrote this function so that we could use it in a Modify construct replacing the output type by $option\ page$ as follows:

Script 4.15: Rewritten shallow readPhysical function

```
Definition readPhysicalInternal p i memory :option page := match (lookup p i memory beqPage beqIndex) with | Some (PP a) \Rightarrow Some a | \_ \Rightarrow None end.
```

The function is called *ReadPhysical* in the deep embedding and is parametrised by the name of the *option index* typed variable. *ReadPhysical* performs a match on its input to verify that it's a valid index then naturally calls *read-PhysicalInternal*. It is defined as follows:

Script 4.16: Definition of ReadPhysical

Using these definitions we are going to define three versions of getFst-Shadow in the deep embedding, each calling a different version of the index successor function. These functions are named getFstShadowBind, getFst-ShadowBindDeep and getFstShadowBindDeepRec and respectively call Succ, SuccD and SuccRec. Since their definitions are same, we will only give the definition of getFstShadowBind:

Script 4.17: Definition of getFstShadowBind

4.3.3 Invariant in the deep embedding

To model this invariant in the deep embedding we will use the Hoare triple we defined in section 3.3.3 p.26. However, we need to adapt some of the properties mentioned in section 4.3.1 p.32. In particular, the property nextEntryIsPP, defined in script 4.4 p.33, needs to be parametrised by the resulting deep value. So the page we need to compare is of type Value instead of page. the comparison between the fetched and given value now becomes a comparison between two deep values and not shallow ones. Also, to calculate the successor of the given index we use the rewritten successor function succIndexInternal, defined in script 4.8 p.35. Also, when we call this property in partitionDescriptorEntry, defined in script 4.5 p.33, we need to lift the page to an option page typed deep value. This property is now defined as follows:

Script 4.18: Rewritten nextEntryIsPP property

```
Definition nextEntryIsPP (p:page) (idx:index) (p':Value) (s:W) :=
match succIndexInternal idx with
   | Some i =>
   match lookup p i (memory s) beqPage beqIndex with
   | Some (PP table) => p' = cst (option page) (Some table)
   |_ => False
   end
   |_ => False
end.
```

Finally, we can write the deep Hoare triple which is not only parametrised by the partition and the propagated property but also by the function environment as well as the variable environment we want to evaluate the getFst-Shadow function in. It is formally defined in Coq as follows:

Script 4.19: getFstShadow invariant definition

Naturally, since we defined three getFstShadow functions, each calling a different version of the deep index successor function, we only need to specify the name of version of getFstShadow we want to call. In this case we are calling getFstShadowBind defined in script 4.17 p.38.

4.3.4 Invariant proof

Script 4.20: Proof of the getFstShadow invariant

```
Proof.
  unfold getFstShadowBind. (* or other called function *)
3 eapply BindS_VHTT1.
  eapply getSh1idxWp.
  simpl; intros.
5
6 eapply BindS_VHTT1.
7
   eapply weakenEval.
  eapply succWp. (* or other Lemma for called function *)
   simpl; intros; intuition.
9
10
  | instantiate (1:=(fun s => P s \wedge partitionDescriptorEntry s \wedge
11
                     partition \in (getPartitions multiplexer s))).
12 simpl. intuition. instantiate (1:=sh1idx).
13 eapply HO in H3.
14
  specialize H3 with sh1idx.
15 eapply H3. auto. auto.
16 simpl; intros.
17 eapply weakenEval.
18 eapply readPhysicalW.
19
  simpl; intros; intuition.
20 destruct H3. exists x.
21 unfold partitionDescriptorEntry in H1.
22 apply H1 with partition sh1idx in H4.
23
  clear H1; intuition.
  destruct H5. exists x0. intuition.
24
25 unfold nextEntryIsPP in H4.
26 unfold readPhysicalInternal; subst.
27 inversion H2.
28 repeat apply inj_pair2 in H3.
29 unfold nextEntryIsPP in H5.
30 rewrite H3 in H5.
  destruct (lookup partition x (memory s) beqPage beqIndex).
31
32 unfold cst in H5.
33 destruct v0; try contradiction.
34 apply inj_pairT2 in H5.
35 inversion H5. auto.
  unfold isVA in H4.
36
  destruct (lookup partition sh1idx (memory s) beqPage beqIndex)
38
  in H2; try contradiction. auto.
39
  Qed.
```

As shown in the previous script, we start the proof by evaluating the first assignment using the assignment rule $BindS_-VHTT1$ defined in section 3.3.3 p.26. This implies evaluating getSh1idx and mapping its resulting value to x in the variable environment then evaluating the rest of the function in this updated environment. To evaluate getSh1idx, we use a lemma that we have proven called getSh1idxWp. This lemma also propagates any property on the state.

Script 4.21: getSh1idxWp lemma definition and proof

```
Lemma getSh1idxW (P: Value -> W -> Prop)
                  (fenv: funEnv) (env: valEnv) :
  {{wp P fenv env getSh1idx}} fenv >> env >> getSh1idx {{P}}.
(* the weakest precondition is a precondition *)
apply wpIsPrecondition.
Qed.
Lemma getSh1idxWp P fenv env :
{{P}} fenv >> env >> getSh1idx
\{\{\text{fun (idxSh1 : Value) (s : state)} \Rightarrow P s \}
             \land idxSh1 = cst index sh1idx \}.
Proof.
eapply weakenEval. (* weakening precondition *)
eapply getSh1idxW.
intros.
unfold wp.
intros.
unfold getSh1idx in X.
inversion X; subst.
auto.
inversion XO.
Qed.
```

In script 4.3.1, two lines change in the the proof for the different getFst-Shadow functions. Indeed, in the first line, we need to adapt the name of the unfolded function according to the one we call in the Hoare triple definition. Later, we call the assignment rule again and we need to evaluate the successor function which is different in each getFstShadow definition. Therefore, we need to define a lemma for each version and call it when needed in the $8^{\rm th}$ line. The version which corresponds to our case is defined and proven as follows:

Script 4.22: succWp lemma definition and proof

```
1
   Lemma succWp (x:Id) (v:Value) P (fenv: funEnv) (env: valEnv) :
 2
    \forall (idx:index),
 3
     \{\{\text{fun s} \Rightarrow P \text{ s} \land \text{idx} < \text{tableSize} - 1 \land \text{v=cst index idx}\}\}
 4
      fenv >> (x,v)::env >> Succ x (* or other successor function *)
     \{\{\text{fun (idxsuc : Value) (s : state)} \Rightarrow P s \land \}
 5
 6
               idxsuc = cst (option index) (succIndexInternal idx) \( \)
 7
              \exists i, idxsuc = cst (option index) (Some i)}}.
 8
   Proof.
9
   intros.
10
   eapply weakenEval.
11
   eapply succW. (* or other lemma for called function *)
12
   intros.
   simpl.
13
14
   split.
   instantiate (1:=idx).
15
16
   intuition.
17
   intros.
18
   intuition.
19
   destruct idx.
20
   exists (CIndex (i + 1)).
21
   f_equal.
22
   unfold succIndexInternal.
23
   case_eq (lt_dec i tableSize).
24
   intros.
25
   auto.
26
   intros.
27
   contradiction.
28
   Qed.
```

This lemma proves that we get a valid index after executing successor since the precondition assures its correct execution. Only the 11th line of the proof changes according the the called successor function. The lemma defined in the 11th line proves that the resulting value of the execution of the successor function is equal the the value we get when we apply the shallow succIndexInternal function to the same given index. The proof of this evaluation lemma is quite different between the various versions which is logical since evaluating a Modify that calls the shallow succIndexInternal function is different from evaluating all the deep constructs in the deep and recursive versions of the successor function.

The proof of the first lemma, called succ W, which evaluates the Succ function defined in script 4.9 p.35, goes naturally by inversion on the closure. It is defined and proven as follows:

Script 4.23: succW Lemma definition and proof

```
(x : Id) (P: Value \rightarrow W \rightarrow Prop) (v:Value)
Lemma succW
              (fenv: funEnv) (env: valEnv) :
\forall (idx:index),
 {{fun s \Rightarrow idx < (tableSize -1) \land \forall 1 : idx + 1 < tableSize,
    P (cst (option index) (succIndexInternal idx)) s \wedge
    v = cst index idx }}
  fenv >> (x,v)::env >> Succ x {{ P }}.
Proof.
intros.
unfold THoareTriple_Eval; intros; intuition.
destruct H1 as [H1 H1'].
omega.
inversion X; subst.
inversion X0; subst.
repeat apply inj_pair2 in H7; subst.
inversion X2; subst.
inversion X3; subst.
inversion H; subst.
destruct IdModP.IdEqDec in H3.
inversion H3; subst.
clear H3 e X3 H XF1.
inversion X1; subst.
inversion X3; subst.
repeat apply inj_pair2 in H7.
repeat apply inj_pair2 in H9. subst.
unfold b_exec,b_eval,xf_succ,b_mod in *.
simpl in *.
inversion X4; subst.
apply H1.
inversion X5.
inversion X5.
contradiction.
Qed.
```

The proof of the second lemma, called succDW, which evaluates the SuccD function defined in script 4.10 p.35, is quite longer than the previous one. Indeed, we need to proceed by inversion on the evaluation of every deep construct. This lemma is defined and proven in annex D p.63.

For The third lemma, which evaluates the *SuccRec* function defined in script 4.13 p.37, we did two different proofs: one using only inversions, called *succRecWByInversion*, and the other using the predefined Hoare triple rules mentioned in section 3.3.3 p.26, called *succRecW*. The former takes about 480 lines to prove while the latter takes approximatively 350 lines wich amounts to 130 lines less. Furthermore, the proof of the lemma *succRecW*, which uses Hoare triple rules seems more organised since we deal with the poof of each instruction at a time and not the function as a whole.

Finally, all what is left in the main proof is to evaluate the last function *ReadPhysical* and prove the implication between properties. To that end, we defined the following lemma, called *readPhysicalW* and proven in annex D p.63, as follows:

Script 4.24: readPhysicalW Lemma definition and proof

```
Lemma readPhysicalW (y:Id) table (v:Value)  (P': Value \rightarrow W \rightarrow Prop) \ (fenv: funEnv) \ (env: valEnv) : \\ \{ \{fun \ s \Rightarrow \exists \ idxsucc \ p1, \ v = cst \ (option \ index) \ (Some \ idxsucc) \\ \land \ readPhysicalInternal \ table \ idxsucc \ (memory \ s) = Some \ p1 \\ \land \ P' \ (cst \ (option \ page) \ (Some \ p1)) \ s \} \} \\ fenv >> (y,v)::env >> ReadPhysical \ table \ y \ \{ \{ P' \} \} .
```

4.3.5 The Apply approach

For this approach, we chose to replace assignments in the getFstShadow function with function applications. For simplicity's sake, We chose to use the first version of the index successor function called Succ defined in script 4.9 p.35. However, considering our modular approach for its definition, we could easily replace it with its other versions and use the lemmas we devised for them in the new proof. To the Apply construct, we need to lift both SuccD and readPhysical, defined in script 4.16 p.38, to quasi-functions as follows:

Script 4.25: Lifting Succ and readPhysical to quasi-functions

```
Definition SuccQF := QF (FC emptyE [("y",indexType)]
  (Succ "y") (Val (cst (option index) None)) "Succ" 0).

Definition ReadPhysicalQF (p:page) := QF (FC
  emptyE [("x",optionIndexType)] (ReadPhysical p "x")
  (Val (cst (option page) None)) "ReadPhysical" 0).
```

The new version of the getFstShadow function, called getFstShadowApply is defined as follows:

Script 4.26: getFstShadowApply definition

For the proof, we didn't need to define any additional lemma about the intermediate functions. This is due to the use of the Hoare triple rules. The new invariant, called *getFstShadowApplyH'*, is defined and proven in annex D p.63.

4.4 2nd invariant and proof

This new invariant is about a function called *writeVirtual* that writes a virtual address in the memory. We want to prove that this function verifies all of PIP's properties which include memory isolation, vertical sharing, kernel data isolation and consistency properties, mentioned in section 3.1.2 p.5. In the shallow embedding, *writeVirtual* is defined as follows:

Script 4.27: writeVirtual function in the shallow embedding

First, we rewrote this function to act directly on the state as follows:

Script 4.28: Rewritten shallow writeVirtual function

```
Definition writeVirtualInternal (p:page) (i:index) (v:vaddr) :=
fun s ⇒ {|
  currentPartition := s.(currentPartition);
  memory := add p i (VA v) s.(memory) beqPage beqIndex |}.
```

It is clear that the write Virtual function is purely a generic effect. Its output value is irrelevant so its output type is declared as unit. We only need to call the write Virtual Internal function in the generic effect which will be used the Modify construct to define the deep version, called Write Virtual, as follows:

Script 4.29: WriteVirtual definition

To check that our implementation is correct, we first focused on a simpler invariant which asserts a relevant property of the writeVirtual function. This property is included in the postcondition of the main invariant we want to prove. Indeed, when we write a virtual address v in the page p in the memory, at a certain position, and when we read the page p immediately after, at the exact same position, we should get the same value v. This Lemma is defined and proven as follows:

Script 4.30: writeVirtualInvNewProp invariant definition

```
Lemma writeVirtualInvNewProp (p : page) (i:index) (v:vaddr)
                                 (fenv: funEnv) (env: valEnv) :
 \{\{\text{fun }\_\Rightarrow \text{True}\}\}
  fenv >> env >> WriteVirtual p i v
 \{\{\text{fun } \_ \text{s} \Rightarrow \text{readVirtualInternal p i s.(memory)} = \text{Some v}\}\}.
Proof.
unfold THoareTriple_Eval; intros.
clear H k3 t k2 k1 tenv ftenv.
inversion X; subst.
inversion X0; subst.
repeat apply inj_pair2 in H5.
apply inj_pair2 in H7.
subst.
unfold b_eval, b_exec, xf_writeVirtual, b_mod in *.
simpl in *.
inversion X1; subst.
unfold writeVirtualInternal; simpl.
unfold add.
unfold readVirtualInternal; simpl.
specialize beqPairsTrue with p i p i.
intros; intuition.
rewrite H. reflexivity.
inversion X2.
inversion X2.
Qed.
```

To define the main invariant, we copied all the definitions of PIP's propagated properties as well as PIP's internal and dependant-type lemmas respectively in the files $Pip_Prop.v$ $Pip_InternalLemmas.v$ and $Pip_DependentType_Lemmas.v$. Then we defined and proved the following lemma about the write-Virtual function:

Script 4.31: writeVirtualWp lemma definition and proof

```
Lemma writeVirtualWp (p: page) (idx: index) (vad: vaddr)
      (P: Value \rightarrow state \rightarrow Prop) (fenv: funEnv) (env: valEnv) :
 {{fun s \Rightarrow P (cst unit tt) {|}}
   currentPartition := currentPartition s;
   memory := add p idx (VA vad) (memory s) beqPage beqIndex |} }}
fenv >> env >> WriteVirtual table idx addr
Proof.
unfold THoareTriple_Eval.
intros.
inversion X; subst.
inversion X0; subst.
repeat apply inj_pair2 in H6.
repeat apply inj_pair2 in H8.
subst.
unfold xf_writeVirtual, b_eval, b_exec, b_mod in *.
simpl in *.
inversion X1; subst.
inversion X2.
inversion X2.
Qed.
```

Finally, we use the lemma above to prove the main invariant. As expected, the deep proof is practically identical to the shallow proof since we're weakening the Hoare triple first to use the *writeVirtualWp* lemma then we're proving a direct implication between properties on the state. The main invariant, called *writeVirtualInv*, is defined and proven in annex E p.70.

4.5 3rd invariant and proof

The third invariant is about a recursive function of PIP called initVAd-drTable that initializes virtual addresses of a given table to the default value defaultVAddr defined in annex B p.60. This function is defined as follows in the shallow embedding:

Script 4.32: initVAddrTable in the shallow embedding

```
Fixpoint initVAddrTableAux timeout shadow2 idx :=
 match timeout with
  | 0 \Rightarrow \text{ret tt}
  | S timeout1 \Rightarrow
    perform maxindex := getMaxIndex in
    perform res := MALInternal.Index.ltb idx maxindex in
    if (res)
    then
      perform defaultVAddr := getDefaultVAddr in
      writeVirtual shadow2 idx defaultVAddr;;
      perform nextIdx := MALInternal.Index.succ idx in
      initVAddrTableAux timeout1 shadow2 nextIdx
    else
      perform defaultVAddr := getDefaultVAddr in
      writeVirtual shadow2 idx defaultVAddr
 end.
(* Specifies the timeout of initVAddrTableAux *)
Definition initVAddrTable sh2 n :=
  initVAddrTableAux tableSize sh2 n.
```

where:

• **getMaxIndex**: returns the value of the maximum index which is equal to the table size minus one, knowing that the table size is different than 0. We wrote the following simplified definition to use in the deep embedding:

Script 4.33: maxIndex definition

```
Axiom tableSizeNotZero : tableSize <> 0.

Definition maxIndex : index := CIndex(tableSize-1).
```

- **succ**: is the index successor function defined in script 4.7 p.34. We will replace it with its deep implementation *SuccD* defined in script 4.10 p.35;
- ltb: is a comparison function for indexes similar to the mathematical comparison operator < for natural numbers. In the deep embedding, we will define this function by calling its shallow version in as a generic effect as follows:

Script 4.34: LtLtb definition

```
Definition xf_Ltb (i:index) : XFun index bool :=
{| b_mod := fun s idx => (s,Index.ltb idx i) |}.

Definition LtLtb (x:Id) (i:index) : Exp :=
  Modify index bool VT_index VT_bool (xf_Ltb i) (Var x).
```

• writeVirtual: is the function, defined in script 4.27 p.45, that writes a virtual address in the memory. We couldn't use its previous implementation, called WriteVirtual, defined in script 4.29 p46 because we're not working directly with the value of the given index but with a variable which we need to evaluate in the variable environment. The new version of this function called writeVirtual' is defined as follows:

Script 4.35: writeVirtual new definition

```
Definition xf_writeVirtual' (p:page) (v:vaddr) :XFun index unit:=
    {| b_mod := fun s i => (writeVirtualInternal p i v s,tt) |}.

Definition WriteVirtual' (p:page) (i:Id) (v:vaddr) :Exp :=
    Modify index unit VT_index VT_unit (xf_writeVirtual' p v) (Var i).
```

We also need to define *ExtractIndex* which extracts an index from an *option* index typed value by performing a pattern matching. This is only possible by using a generic effect as follows:

Script 4.36: ExtractIndex definition

To simplify the proof and avoid repetition, we will place the instruction that calls $Write\,Virtual'$ before the conditional structure. $init\,VA\,ddr\,Table\,Aux$ and $init\,VA\,ddr\,Table$ are defined as follows:

Script 4.37: initVAddrTable definition in the deep embedding

The invariant we want to prove, called *initVAddrTableNewProperty*, is defined in script 4.38. The proof is done by induction on the bound. More precisely, we suppose that the Hoare triple is valid for the bound n and we need to prove it's valid for S n. We mainly used the Hoare triple rules defined in section 3.3.3 p.26 to evaluate each deep construct to get to the next function application where n is the bound which we have as a hypothesis. The main difficulty was to get to the exact same expression as well as the same function and variable environments as we have in the hypothesis without unfolding the Hoare triple. Indeed, if we unfold the Hoare triple at some point earlier, we have to reason by inversion on large expressions and we may encounter some typing problems which makes the proof much more complicated. In order to break down the proof of the step case, we defined a new lemma about the successor function, called succWp', similar to the succ Wp lemma defined in script 4.22 p.42, in which we propagate the specification of the value added to the environment. It is also important to note that, to prove succ Wp', we used succ DW, the evaluation lemma for the index successor function defined and proven in annex D p.63, which reinforces the importance of our modular approach. succ Wp' and the proof of the initVAddrTableNewProperty lemma is detailed in annex F p.73.

Script 4.38: initVAddrTableNewProperty invariant in the deep embedding

4.6 Observations

4.6.1 Deep vs shallow

Specifying programs in the deep embedding has the great advantage of simplifying their syntactic manipulation. It also ensures a stricter structuring of program expressions. An interesting conjecture is whether this structure is reflected in the proofs. If we consider naive proofs mostly done by applying inversions, this is not the case. Such proofs can be really monotonous but overall they lack structure and readability since we deal with the program as a whole and not each instruction at a time like we do in the shallow proofs. However using the Hoare rules, defined in section 3.3.3 p.26, we could make proofs that compare favourably with the shallow ones in terms of structuring. Nevertheless, they become comparatively longer. Furthermore, proof specifications are generally more complex in the deep embedding as we need to worry about the specification of deep values among others.

Proof structuring

Importance of Hoare triple rules Throughout our experiments, the Hoare triple rules mentioned in section 3.3.3 p.26 have proven efficient at dealing with proofs in the deep embedding and this is due to many reasons:

- They enable us to structurally decompose our proofs and deal with each instruction at a time which makes them well structured and legible. This is really important when dealing with large expressions and it is what made our modular approach possible.
- They enable us to construct shorter proofs as was the case with the succRecW lemma, mentioned in section 4.3.4 p.40, which was 130 lines less than its counterpart with inversions only.
- They internally deal with well-typedness issues which simplifies further our proofs.

To summarise, Hoare triple rules make our proofs **simpler**, **shorter**, **more structured** and **legible**. That's why we strongly advise their use in deep proofs.

Proof specifications

Dealing with values in the deep embedding Values in the deep embedding encapsulate their shallow type and value. This has a big impact on deep proofs. Indeed, when we need to communicate a value to certain lemma, we would naturally parametrise the lemma by a Value typed parameter as in lemma succ Wp, defined in script 4.22 p.42. In script 4.39, we give a slightly different definition of this lemma in which we omit the value specification part in the precondition. Proving this lemma is impossible as we don't have any information about the deep value v. Thus, we can't ascertain that it is index typed as a deep value nor that its actual value is idx. This differs from shallow proofs where we manipulate directly shallow typed values. Furthermore, this makes dealing with variable and function environments more complicated as we may have to propagate some values in the environments as we did with lemma succ Wp' mentioned in section 4.5 p.47.

Script 4.39: succWp false lemma definition

Defining Shallow functions As there is a dimorphism between the deep embedding and the logic, it is generally necessary to have both a shallow and deep version of each function. The shallow versions are mainly used in the predicates included in the preconditions and postconditions of Hoare triples. For example, we used the shallow succIndexInternal function, defined in script 4.8 p.35, in the postcondition of the succWp lemma, defined in script 4.22 42, to describe the resulting value of the deep index successor function. We also used it extensively in the proof of the third invariant init-VAddrTableNewProperty, detailed in annex F p.73. This practically implies double amount of work for deep proofs compared to shallow ones where we use only shallow functions. A possible solution to this problem is to define a deep language with embedded logic[10].

4.6.2 Limitations imposed on the verification by DEC

As DEC is intended to support translation and syntactic manipulation, not modelling and verification, some limitations were imposed by DEC on our verification proofs. Indeed, DEC doesn't feature error handling which we tried to manage using pattern matching. However, the deep embedding doesn't provide us with a pattern matching construct which makes dealing with inductive types rather intricate. Indeed, we have to deal with such types at the shallow level, which is possible using generic effects. This is clearly outlined in the definition of ReadPhysical in script 4.14 p.37, where we had to specify its input type as option index instead of index and perform the pattern matching before reading the state. In this case, we couldn't put the pattern matching in a separate generic effect since we would have had an issue with the *None* case. Another problem which arises in this case is that we may need to duplicate functions if, for instance, we need to use a definition of ReadPhysical without pattern matching. An effective solution to this problem would be to devise a pattern matching construct in the deep embedding. It is important to note that, if we still intend for DEC to support only translation and syntactic manipulation, the lack of a pattern matching construct will not be an issue since there aren't inductive types in C.

4.6.3 Further discussion about the deep implementation of shallow functions

What should we consider as a sufficiently deep implementation of a shallow function? The deep embedding of PIP is implemented in a way that allows extensibility of deep constructs using generic effects. This enabled us to model our functions gradually and temporarily resolved the problem of the lack of a pattern matching construct. But, it still remains quite risky since we can confuse deep with shallow. Indeed, the first version of the index successor function, called *Succ* and defined in script 4.9 p.35, is merely a call to the shallow function *succIndexInternal*, defined in script 4.8 p.35, that we wrapped in the *Modify* construct. Although, *Succ* was defined as a deep expression, it is just the outer shell of the function that is deep but structurally it is shallow.

Then, we devised a comparatively deeper version of this function, called SuccD and defined in script 4.10 p.35. But, there are still shallow bits in this version like the index comparison function in particular. In a completely deep definition of a shallow function, generic effects should be used just for essentially stateful operations. However, the degree to which we should deepen a shallow function is a choice that must be set according to our needs. For example, in our experiments we chose to omit completely deepening comparison functions. In the case of the PIP protokernel, deepening a shallow function depends on whether it is part of the PIP code or not. Therefore, we don't need to devise a deep implementation of shallow functions defined in the hardware model.

5. Conclusion

In this report, we explained how we proved three different invariants of PIP in the deep embedding after modelling their corresponding functions while following a modular approach. The results we obtained were interesting with respect to our initial conjecture concerning proof structuring. Indeed, although the deep embedding ensures a stricter structuring of program expressions, this structure isn't reflected in naive proofs done by inversion. However, by using Hoare triple rules we managed to make our proofs more structured than shallow ones by decomposing our programs to simple instructions instead of considering them as a whole. Nevertheless, specifications of such proofs remain more complicated than the ones done in the shallow embedding. Wildmoser and Nipkow identified the same disadvantage while working on a deep assembly language using the Isabelle proof assistant[17]. Aside from the main differences between deep and shallow proofs, we also pointed out the limitations of the deep embedding and mainly error handling and pattern matching.

Many different adaptations, tests, and experiments have been left for the future due to lack of time. Possible future work may also involve the automation of proofs in the deep embedding as they seemed monotonous when done by inversion and predictable when it came to applying Hoare rules as each one was devised for a specific instruction of DEC. This is also possible since we are dealing with a closed language.

Logic theory and formal proofs in particular remain two of the most currently researched scientific fields. Indeed, proving that programs are correct became essential especially when we are dealing with critical systems. It is also important to make these proofs as structured as possible in order to make them legible and amendable. This is also crucial if we want to simplify further these proofs.

This internship was a beneficial first-hand research experience in such a renowned laboratory as CRIStAL. And although many technical difficulties were encountered, overcoming those challenges was the best way to learn. This experience was not only constructive but also enjoyable as the atmosphere within the team was both professional and friendly.

Bibliography

- Churchill, M. et al. "Reusable Components of Semantic Specifications".
 In: TAOSD. LNCS 8989 12. Springer, 2015, pp. 132–179.
- [2] CRIStAL. Official website. URL: https://www.cristal.univ-lille.fr/.
- [3] Dijkstra, E. W. A discipline of programming. Prentice-Hall Englewood Cliffs, N.J, 1976. ISBN: 013215871.
- [4] Hoare, C. A. R. "An Axiomatic Basis for Computer Programming".
 In: Commun. ACM 12.10 (Oct. 1969), pp. 576-580. ISSN: 0001-0782.
 DOI: 10.1145/363235.363259. URL: http://doi.acm.org/10.1145/363235.363259.
- [5] Jomaa, N. et al. "Formal Proof of Dynamic Memory Isolation Based on MMU". In: Science of Computer Programming (2017). ISSN: 01676423.
- [6] Jomaa, N. et al. "Coding a real OS kernel in Coq and formalising its security (unpublished paper draft)". Jan. 2017.
- [7] Jomaa, N. et al. "PIP: A Minimal Kernel with Provable isolation (unpublished paper draft)". 2017.
- [8] Nowak, D. Pip: A Minimal OS Kernel with Provable Isolation. Third French-Japanese Meeting on Cybersecurity. Apr. 2017. URL: https://project.inria.fr/FranceJapanICST/files/2017/05/DNowak_presentation_2017.pdf.
- [9] Paulin-Mohring, C. "Introduction to the Calculus of Inductive Constructions". In: *All about Proofs, Proofs for All.* Ed. by B. W. Paleo and D. Delahaye. Vol. 55. Studies in Logic (Mathematical logic and foundations). College Publications, 2014. Chap. Structural abstract interpretation, A formal study using Coq. ISBN: 978-1-84890-166-7.
- [10] Pierce, B. C. et al. *Software Foundations*. Ebook version 4.2. Electronic textbook, 2017. URL: http://www.cis.upenn.edu/~bcpierce/sf.

- [11] Plotkin, G. D. "A Structural Approach to Operational Semantics". In: J. Log. Algebr. Program. 60-61 (2004), pp. 17–139.
- [12] Tanenbaum, A. "Modern Operating Systems". In: 3rd. Pearson, 2009. Chap. History of Operation Systems, pp. 60–69. ISBN: 013359162X.
- [13] The 2XS team. The PIP protokernel official Website. CRIStAL laboratry. URL: http://pip.univ-lille1.fr.
- [14] The Coq Development Team. The Coq Proof Assistant. Reference Manual. Coq version 8.6.1. INRIA, July 2017. URL: https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf.
- [15] The Coq development team. Coq official website. Inria. URL: https://coq.inria.fr.
- [16] Torrini, P. and Nowak, D. "The DEC language repository". Aug. 2017. URL: https://github.com/ptorrx/DeepC4Pip.
- [17] Wildmoser, M. and Nipkow, T. "Certifying Machine Code Safety: Shallow versus Deep Embedding". In: *Theorem Proving in Higher Order Logics (TPHOLs 2004)*. Ed. by K. Slind, A. Bunker, and G. Gopalakrishnan. Vol. 3223. 2004, pp. 305–320.

Appendixes: Project Files

A. IdModTypeA.v

```
1
   (* Imports ... *)
2
  Module Type IdModType.
3
4
5
   Parameter Id : Type.
6
   Parameter IdEqDec : forall (x y : Id), \{x = y\} + \{x \iff y\}.
9
   Instance IdEq : DEq Id :=
10
11
   dEq := IdEqDec
12
13
14
   Parameter W : Type.
15
16
   Parameter Loc_PI : forall (T: Type) (p1 p2: ValTyp T), p1 = p2.
17
   Parameter BInit : W.
18
19
20
   Instance WP : PState W :=
21
22
     loc_pi := Loc_PI;
23
24
    b_init := BInit
25
   }.
26
27 End IdModType.
```

B. Pip_state.v

```
(* Imports ... *)
1
2
   (* PIP axioms *)
3
4 Axiom tableSize nbLevel nbPage: nat.
5 Axiom nbLevelNotZero: nbLevel > 0.
   Axiom nbPageNotZero: nbPage > 0.
   Axiom tableSizeIsEven : Nat.Even tableSize.
   Definition tableSizeLowerBound := 14.
   Axiom tableSizeBigEnough : tableSize > tableSizeLowerBound.
9
10
   (* Type definitions ... *)
11
12
13
   (*Constructors*)
14
  Parameter index_d : index.
   Parameter page_d : page.
   Parameter level_d : level.
16
17
18
  Program Definition CIndex
                               (p : nat) : index :=
19
   if (lt_dec p tableSize)
20
    then Build_index p _
21
    else index_d.
22
23
   Program Definition CPage (p : nat) : page :=
24
    if (lt_dec p nbPage)
25
    then Build_page p _
26
    else page_d.
27
28
   Program Definition CVaddr (1: list index) : vaddr :=
29
    if ( Nat.eq_dec (length 1) (nbLevel+1))
    then Build_vaddr l _
30
31
    else Build_vaddr (repeat (CIndex 0) (nbLevel+1)) _.
32
33
  Program Definition CLevel ( a :nat) : level :=
34
   if lt_dec a nbLevel
35
    then Build_level a _
36
   else level_d.
37
38
   (* Comparison functions *)
39 Definition beqIndex (a b : index) : bool := a =? b.
40 Definition beqPage (a b : page) : bool := a =? b.
```

APPENDIX B. PIP_STATE.V

```
41 Definition beqVAddr (a b : vaddr) : bool := eqList a b beqIndex.
42
43 (* Predefined values *)
   Definition multiplexer := CPage 1.
44
   Definition PRidx := CIndex 0. (* descriptor *)
Definition PDidx := CIndex 2. (* page directory *)
47
   Definition sh1idx := CIndex 4. (* shadow1 *)
48
   Definition sh2idx := CIndex 6. (* shadow2 *)
49
   Definition sh3idx := CIndex 8. (* configuration pages *)
50
   Definition PPRidx := CIndex 10. (* parent *)
51
52 Definition defaultIndex := CIndex 0.
53 Definition defaultVAddr := CVaddr (repeat (CIndex 0) nbLevel).
54 Definition defaultPage := CPage 0.
55 Definition fstLevel := CLevel 0.
56 Definition Kidx := CIndex 1.
```

C. Lib.v

```
1
   (* Imports ... *)
2
   Fixpoint eqList {A : Type} (11 12 : list A)
3
4
             (eq : A \rightarrow A \rightarrow bool) : bool :=
   match 11, 12 with
5
6
     |nil,nil => true
7
     |a::11' , b::12' \Rightarrow if eq a b then eqList 11' 12' eq else false
8
     |_ , _ => false
9
    end.
10
   Definition beqPairs {A B: Type} (a : (A*B)) (b : (A*B))
11
12
               (eqA : A \rightarrow A \rightarrow bool) (eqB : B \rightarrow B \rightarrow bool) :=
    if (eqA (fst a) (fst b)) && (eqB (snd a) (snd b))
13
    then true else false.
14
15
   Fixpoint lookup {A B C: Type} (k : A) (i : B) (assoc : list
16
17
     ((A * B)*C)) (eqA : A -> A -> bool) (eqB : B -> B -> bool) :=
18
    match assoc with
19
     | nil => None
     | (a, b) :: assoc' => if beqPairs a (k,i) eqA eqB
20
21
             then Some b else lookup k i assoc' eqA eqB
22
    end.
23
   Fixpoint removeDup {A B C: Type} (k : A) (i : B) (assoc : list
24
25
     ((A * B)*C) )(eqA : A -> A -> bool) (eqB : B -> B -> bool)
26
    match assoc with
27
     | nil => nil
28
     | (a, b) :: assoc' => if beqPairs a (k,i) eqA eqB
29
            then removeDup k i assoc' eqA eqB
30
            else (a, b) :: (removeDup k i assoc' eqA eqB)
31
    end.
32
33
   Definition add {A B C: Type} (k : A) (i : B) (v : C) (assoc : list
34
     ((A * B)*C) ) (eqA : A -> A -> bool) (eqB : B -> B -> bool)
35
    (k,i,v) :: removeDup k i assoc eqA eqB.
36
37
   Definition disjoint {A : Type} (11 12 : list A) : Prop :=
38
  forall x : A, In x 11 \rightarrow  In x 12.
```

$D. Hoare_getFstShadow.v$

```
1
   (* Imports ... *)
2
3
   (* Definitions & lemmas ...*)
4
   5
6
                (fenv: funEnv) (env: valEnv) :
7
   \forall (idx:index),
    {{fun s \Rightarrow idx < (tableSize -1) \land \forall 1 : idx + 1 < tableSize,
8
9
       P (cst (option index) (succIndexInternal idx)) s \land
10
       v = cst index idx }}
     fenv >> (x,v)::env >> SuccD x {{ P }}.
11
12
   Proof.
13
   intros.
   unfold THoareTriple_Eval; intros.
   clear k3 t k2 k1 tenv ftenv.
16
   intuition.
17 destruct H1 as [H1 H1'].
   omega.
   inversion X; subst.
20
  inversion X0; subst.
21
   inversion X2; subst.
   repeat apply inj_pair2 in H7; subst.
   inversion X3; subst.
24 inversion X4; subst.
25
   inversion H; subst.
26
   destruct IdModP.IdEqDec in H3.
27
   inversion H3; subst.
28
   clear H3 e X4 H XF1.
  inversion X1; subst.
30
  inversion X4; subst.
31
   inversion X6; subst.
   repeat apply inj_pair2 in H7.
33
   repeat apply inj_pair2 in H9.
34
   subst.
   unfold xf_prj1 at 3 in X6.
   unfold b_exec,b_eval,b_mod in *.
37
   simpl in *.
38
   destruct idx.
   inversion X5; subst.
39
40 inversion X7; subst.
```

```
41 inversion X8; subst.
42 inversion X9; subst.
43 simpl in *.
44 inversion X11; subst.
45 inversion X12; subst.
46
   repeat apply inj_pair2 in H7.
47
   subst.
48
  inversion X13; subst.
49
   inversion X14; subst.
50 inversion H; subst.
51
   clear H X14 XF2.
52 inversion X10; subst.
53 inversion X14; subst.
54 simpl in *.
55 inversion X16; subst.
   inversion X17; subst.
56
57 repeat apply inj_pair2 in H7.
   repeat apply inj_pair2 in H10.
59
   subst.
60
   unfold xf_LtDec at 3 in X17.
61
   unfold b_exec,b_eval,b_mod in *.
62 simpl in *.
63
   case_eq (lt_dec i tableSize).
64
  intros.
65
   rewrite H in X17, H1.
66 inversion X15; subst.
67 inversion X18; subst.
68
   simpl in *.
   inversion X20; subst.
70 inversion X19; subst.
71
  inversion X21; subst.
72
  simpl in *.
73
   inversion X23; subst.
74
  inversion H10; subst.
   destruct vs; inversion H2.
76 inversion X24; subst.
77
   inversion X25; subst.
78
   repeat apply inj_pair2 in H11.
79
   subst.
80
   inversion X26; subst.
  inversion X27; subst.
82 inversion H2; subst.
83 clear X27 H2 XF3.
```

APPENDIX D. HOARE_GETFSTSHADOW.V

```
84 inversion X22; subst.
85 inversion X27; subst.
86 simpl in *.
87 inversion X29; subst.
88 inversion H10; subst.
89
    destruct vs; inversion H2.
90
   inversion X30; subst.
   inversion X31; subst.
91
92 repeat apply inj_pair2 in H11.
93 repeat apply inj_pair2 in H13.
94
   subst.
95 unfold xf_SuccD at 3 in X31.
96 unfold b_exec, b_eval, xf_SuccD, b_mod in *.
97 simpl in *.
98 inversion X28; subst.
99
   inversion X32; subst.
100 simpl in *.
101
   inversion X34; subst.
102
   inversion H10; subst.
103
   destruct vs.
104 inversion H2.
105 inversion H2; subst.
106 destruct vs.
107
   unfold mkVEnv in *; simpl in *.
108
    inversion X33; subst.
109
   inversion X35; subst.
110 inversion X37; subst.
111 simpl in *.
112 inversion X38; subst.
113 repeat apply inj_pair2 in H15.
114 subst.
115 inversion X39; subst.
116 inversion X40; subst.
117 inversion H3; subst.
118
    clear X40 H3 XF4 H5.
119
    inversion X36; subst.
120 inversion X40; subst.
121 inversion X42; subst.
122 simpl in *.
123
   inversion X43; subst.
124 repeat apply inj_pair2 in H14.
125
    repeat apply inj_pair2 in H16.
126 subst.
```

```
127 unfold xf_SomeCindex at 3 in X43.
128
    unfold b_exec,b_eval,b_mod in *.
129 | simpl in *.
130 inversion X41; subst.
131
   inversion X44; subst.
132
    simpl in *.
133 inversion X46; subst.
134 inversion X45; subst.
135
   inversion X47; subst.
136 inversion X48; subst.
137
    assert (Z : S i = i+1) by omega.
138 rewrite Z; auto.
139 inversion X49.
140 inversion X49.
141 inversion X47.
142 inversion X44.
143 inversion H5.
144 inversion X35; subst.
145 inversion X36.
146 inversion X36.
147 inversion X35.
148 inversion X32.
149 inversion X30.
150 inversion X24.
151
   repeat apply inj_pair2 in H6.
152 rewrite H in H6.
153 inversion H6.
154 rewrite H in X21.
155 inversion X21.
156 intros.
157 contradiction.
158 inversion X18.
159
   inversion X9.
160
   inversion X7.
161
    contradiction.
162 Qed.
163
164
   (* Lemma succRecW:
165 Proof using Hoare triple rules ... *)
166
167
    (* Lemma succRecWByInversion :
168
   Proof by inversions ... *)
169
```

```
170 Lemma readPhysicalW (y:Id) table (v:Value)
             (P': Value \rightarrow W \rightarrow Prop) (fenv: funEnv) (env: valEnv) :
171
172
     {fun s \Rightarrow \exists idxsucc p1, v = cst (option index) (Some idxsucc)
173
       ∧ readPhysicalInternal table idxsucc (memory s) = Some p1
       ∧ P' (cst (option page) (Some p1)) s}}
174
    fenv >> (y,v)::env >> ReadPhysical table y \{\{P'\}\}.
175
176
    Proof.
177
    intros.
178
    unfold THoareTriple_Eval.
179
    intros; intuition.
180
    destruct H.
181
    destruct H. intuition.
    inversion HO; subst.
182
183 clear k3 t k2 k1 ftenv tenv H1.
184 inversion X; subst.
    inversion X0; subst.
185
186 repeat apply inj_pair2 in H7. subst.
187
    inversion X2; subst.
188
   inversion X3; subst.
189
    inversion HO; subst.
190
    destruct IdEqDec in H3.
191
   inversion H3; subst.
192
    clear H3 e X3 H0 XF1.
193
   inversion X0; subst.
194
    repeat apply inj_pair2 in H7.
    repeat apply inj_pair2 in H11. subst.
195
196 inversion X1; subst.
197
    inversion X4; subst.
198
    repeat apply inj_pair2 in H7.
199
    apply inj_pair2 in H9. subst.
200
    unfold xf_read at 2 in X4.
201
    unfold b_eval,b_exec,b_mod in X4. simpl in *.
202
    rewrite H in X4.
    unfold xf_read,b_eval,b_exec,b_mod in X5. simpl in *.
203
204
    rewrite H in X5.
205
    inversion X5; subst. auto.
206 inversion X6.
207
    inversion X6.
208
    contradiction.
209
    Qed.
210
211
    (* Other lemmas ... *)
212
```

```
213 Lemma getFstShadowApplyH' (partition : page) (P : W -> Prop)
214
                                 (fenv: funEnv) (env: valEnv) :
215
     \{\{\text{fun s} \Rightarrow P \text{ s } \land \text{ partitionDescriptorEntry s } \land \}
216
             partition ∈ (getPartitions multiplexer s)}}
217
      fenv >> env >> (getFstShadowApply partition)
218
     \{\{\text{fun sh1 s} \Rightarrow P \text{ s} \land \text{nextEntryIsPP partition sh1idx sh1 s}\}\}.
219
    Proof.
220
   unfold getFstShadowApply.
221
    eapply Apply_VHTT1.
222
    eapply Prms_VHTT1.
223
    eapply Apply_VHTT1.
224 eapply Prms_VHTT1.
225
    eapply getSh1idxWp.
226 intros; unfold THoarePrmsTriple_Eval; intros; simpl.
227
   inversion X; subst.
228
    destruct vs; inversion H5.
229 instantiate (1:= fun vs s => P s /\ partitionDescriptorEntry s /\
230
          In partition (getPartitions multiplexer s) /\
231
         vs = [cst index sh1idx]).
232 intuition. f_equal. auto.
233 inversion XO. intuition.
234 destruct vs.
235
    unfold THoareTriple_Eval; intros.
236 intuition. inversion H3.
237
    destruct vs. Focus 2.
238
    unfold THoareTriple_Eval; intros.
239
   intuition. inversion H3.
240
    unfold mkVEnv. simpl.
241
    eapply weakenEval.
242
    eapply succWp.
243 simpl; intros.
244 instantiate (1:= sh1idx).
245
    instantiate (1:= fun s => P s /\ partitionDescriptorEntry s /\
        In partition (getPartitions multiplexer s)).
246
247
    simpl. intuition.
248
    eapply H in H1.
249
    specialize H1 with sh1idx.
250
    eapply H1. auto.
251 inversion H3;
252
    intuition. intros; simpl.
253 unfold THoarePrmsTriple_Eval; intros.
254 inversion X; subst.
255 destruct vs; inversion H5.
```

```
256 | instantiate (1:= fun vs s => P s /\ partitionDescriptorEntry s /\
257
         In partition (getPartitions multiplexer s) /\
258
         (exists i : index, succIndexInternal sh1idx = Some i /\
259
         vs = [cst (option index) (Some i)])).
260
    intuition.
261
    destruct H3. exists x. intuition.
262
    rewrite HO in H2. inversion H2; subst.
263
    repeat apply inj_pair2 in H6.
264
    auto. f_equal. auto.
265
    inversion XO. intuition.
266
    destruct vs.
267
    unfold THoareTriple_Eval; intros.
    destruct H as [a [b [c d]]].
268
269
    destruct d. destruct H.
270
   inversion HO.
271
    destruct vs. Focus 2.
272 unfold THoareTriple_Eval; intros.
273
    destruct H as [a [b [c d]]].
274
   destruct d. destruct H.
275
   inversion HO.
276
   unfold mkVEnv; simpl.
277
    eapply weakenEval.
278
    eapply readPhysicalW.
279
    simpl; intros. intuition.
280
    destruct H3. exists x.
281
    unfold partitionDescriptorEntry in H.
282
    apply H with partition sh1idx in H1.
283
    clear H. intuition. destruct H5.
284 exists x0. intuition.
285
   inversion H4; subst. auto.
286
    unfold nextEntryIsPP in H5.
287
    unfold readPhysicalInternal.
288
    rewrite H1 in H5.
    destruct (lookup partition x (memory s) beqPage beqIndex).
289
290
    destruct v0; try contradiction.
291
    unfold cst in H5.
292
    apply inj_pairT2 in H5.
293
   inversion H5. auto.
294 unfold isVA in H2.
295
    destruct (lookup partition sh1idx (memory s) beqPage beqIndex)
296
    in H2; try contradiction. auto.
297
   Qed.
```

E. Hoare_writeVirtualInv.v

```
(* Imports ... *)
1
2
   (* Definitions & lemmas ... *)
3
4
5
   Lemma writeVirtualInv (vaInCurrentPartition vaChild: vaddr)
          currentPart currentShadow descChild idxDescChild
6
7
          ptDescChild ptVaInCurPart idxvaInCurPart vainve
8
          isnotderiv currentPD ptVaInCurPartpd accessiblesrc
9
          presentmap ptDescChildpd idxDescChild1 presentDescPhy
10
          phyDescChild pdChildphy ptVaChildpd idxvaChild
11
          presentvaChild phyVaChild sh2Childphy ptVaChildsh2 level
12
                     (fenv: funEnv) (env: valEnv)
13
    isnotderiv && accessiblesrc &&
14
    presentmap && negb presentvaChild = true ->
15
    negb presentDescPhy = false ->
    {{ fun s : state => propagatedPropertiesAddVaddr
16
17
      s vaInCurrentPartition vaChild currentPart currentShadow
      descChild idxDescChild ptDescChild ptVaInCurPart idxvaInCurPart
18
19
      vainve isnotderiv currentPD ptVaInCurPartpd accessiblesrc
20
      presentmap ptDescChildpd idxDescChild1 presentDescPhy
21
      phyDescChild pdChildphy ptVaChildpd idxvaChild presentvaChild
22
      phyVaChild sh2Childphy ptVaChildsh2 level }} fenv >> env >>
23
      WriteVirtual ptVaChildsh2 idxvaChild vaInCurrentPartition
24
    {{ fun _ s => propagatedPropertiesAddVaddr
25
      s vaInCurrentPartition vaChild currentPart currentShadow
26
      descChild idxDescChild ptDescChild ptVaInCurPart idxvaInCurPart
27
      vainve isnotderiv currentPD ptVaInCurPartpd accessiblesrc
28
      presentmap ptDescChildpd idxDescChild1 presentDescPhy
      phyDescChild pdChildphy ptVaChildpd idxvaChild presentvaChild
29
30
      phyVaChild sh2Childphy ptVaChildsh2 level /\
      readVirtualInternal ptVaChildsh2 idxvaChild s.(memory) =
31
      Some vaInCurrentPartition }}.
32
   Proof.
33
34
   intros.
   eapply weakenEval. (* weakening precondition *)
36
   eapply writeVirtualWp. (* proven lemma about writeVirtual *)
   simpl; intros.
37
   (* The rest is identical to the shallow proof *)
38
39
   split.
40 unfold propagatedPropertiesAddVaddr in *.
```

```
assert(Hlookup :exists entry,
41
42
    lookup ptVaChildsh2 idxvaChild (memory s) beqPage beqIndex =
43
   Some (VA entry)).
44
   {assert(Hva: isVA ptVaChildsh2 (getIndexOfAddr vaChild fstLevel) s)
45
   by intuition.
46
    unfold isVA in *.
47
   assert(Hidx: getIndexOfAddr vaChild fstLevel = idxvaChild)
48
    by intuition.
49
    clear H. subst.
50
    destruct(lookup ptVaChildsh2 (getIndexOfAddr vaChild fstLevel)
51
          (memory s) beqPage beqIndex); intros; try now contradict Hva.
52
   destruct v; try now contradict Hva.
   do 2 f_equal.
53
54
   exists v;trivial. }
55
   destruct Hlookup as (entry & Hlookup).
  intuition try assumption.
56
57
   (** partitionsIsolation **)
  + apply partitionsIsolationUpdateSh2 with entry; trivial.
58
   (** kernelDataIsolation **)
59
60 | + apply kernelDataIsolationUpdateSh2 with entry; trivial.
61
  (** verticalSharing **)
62 | + apply verticalSharingUpdateSh2 with entry; trivial.
63
   (** consistency **)
64
  + apply consistencyUpdateSh2 with
65
       entry vaChild
66
       currentPart currentShadow descChild idxDescChild ptDescChild
67
       ptVaInCurPart idxvaInCurPart vainve isnotderiv currentPD
68
       ptVaInCurPartpd accessiblesrc presentmap ptDescChildpd
69
       idxDescChild1 presentDescPhy phyDescChild pdChildphy
70
       ptVaChildpd presentvaChild phyVaChild sh2Childphy level; trivial.
    unfold propagatedPropertiesAddVaddr ;intuition.
71
   (** Other Propagated properties **)
72
73
  + rewrite <- nextEntryIsPPUpdateSh2; trivial.
74
    exact Hlookup.
   + apply is VEUpdateSh2 with entry; trivial.
75
76
  + apply getTableAddrRootUpdateSh2 with entry; trivial.
77 | + apply entryPDFlagUpdateSh2 with entry; trivial.
78 + apply is VEUpdateSh2 with entry; trivial.
79 + apply getTableAddrRootUpdateSh2 with entry; trivial.
80 | + apply isEntryVAUpdateSh2 with entry; trivial.
81
  + rewrite <- nextEntryIsPPUpdateSh2; trivial.
82
     exact Hlookup.
83 + apply isPEUpdateSh2 with entry; trivial.
```

APPENDIX E. HOARE_WRITEVIRTUALINV.V

```
84 | + apply getTableAddrRootUpdateSh2 with entry; trivial.
85 | + apply entryUserFlagUpdateSh2 with entry; trivial.
86 + apply entryPresentFlagUpdateSh2 with entry; trivial.
87
   + apply isPEUpdateSh2 with entry; trivial.
   + apply getTableAddrRootUpdateSh2 with entry; trivial.
   + apply entryPresentFlagUpdateSh2 with entry; trivial.
90
   + apply isEntryPageUpdateSh2 with entry; trivial.
   + assert(Hchildren: forall part, getChildren part
91
92
      {| currentPartition := currentPartition s;
93
         memory := add ptVaChildsh2 idxvaChild(VA vaInCurrentPartition)
94
         (memory s) beqPage beqIndex |} = getChildren part s).
95
     { intros; symmetry;
96
        apply getChildrenUpdateSh2 with entry; trivial. }
97
      rewrite Hchildren in *; trivial.
98 + rewrite <- nextEntryIsPPUpdateSh2; trivial.
      exact Hlookup.
99
100 + apply isPEUpdateSh2 with entry; trivial.
   + apply getTableAddrRootUpdateSh2 with entry; trivial.
101
102 | + apply entryPresentFlagUpdateSh2 with entry; trivial.
103 | + apply isEntryPageUpdateSh2 with entry; trivial.
104
   + rewrite <- nextEntryIsPPUpdateSh2; trivial.
105
     exact Hlookup.
106 + apply isVAUpdateSh2 with entry; trivial.
   | + apply getTableAddrRootUpdateSh2 with entry; trivial.
107
108
    (** new property **)
   + unfold readVirtualInternal. cbn.
109
110
      assert (Htrue: beqPairs (ptVaChildsh2, idxvaChild)
111
          (ptVaChildsh2, idxvaChild) beqPage beqIndex = true).
112
      apply beqPairsTrue; split; trivial.
113
      rewrite Htrue.
114
      trivial.
115 Qed.
```

F. Hoare_initVAddrTable.v

```
(* Imports ... *)
1
2
   (* Definitions & lemmas ...*)
3
4
   Lemma succDWp' (x:Id) (v:Value) P (fenv: funEnv) (env: valEnv) :
5
6
    \forall (idx:index),
    { \{fun s \Rightarrow P s /  idx < tableSize - 1 /  v=cst index idx \} }
     fenv >> (x,v)::env >> SuccD x
8
    {{fun (idxsuc: Value) (s: state) => P s /\ idx < tableSize - 1 /\
9
    v=cst index idx /\ idxsuc=cst (option index (succIndexInternal idx)
10
     / \setminus \exists i, idxsuc = cst (option index) (Some i)}}.
11
12
   Proof.
   intros.
13
   eapply weakenEval.
14
15 eapply succDW.
16 intros.
17 simpl.
18
   split.
   instantiate (1:=idx).
19
20
   intuition.
21
   intros.
22 intuition.
   destruct idx.
24 exists (CIndex (i + 1)).
25 f_equal.
26
   unfold succIndexInternal.
27
   case_eq (lt_dec i tableSize).
28
   intros.
29
   auto.
30
   intros.
31
   contradiction.
32
   Qed.
33
34
   Lemma initVAddrTableNewProperty table (curidx : index)
                      (fenv: funEnv) (env: valEnv) :
35
36
    {{ fun s \Rightarrow (\forall idx : index, idx < curidx \rightarrow
         (readVirtual table idx (memory s) = Some defaultVAddr) )}}
37
38
     fenv >> env >> initVAddrTable table curidx
39
    {\{\text{fun } \_ \text{s} \Rightarrow \forall \text{ idx, readVirtual table idx s.(memory)} = \}
                           Some defaultVAddr }}.
40
```

```
41 Proof.
   unfold initVAddrTable.
42
43 unfold initVAddrTableAux.
   assert(H : tableSize + curidx >= tableSize) by omega.
  revert fenv env H. revert curidx.
45
   generalize tableSize at 1 3.
   induction n. simpl.
47
48
   (** begin case n=0 *)
49
   intros.
50
  destruct curidx.
   simpl in *. omega.
51
52 (** end *)
53 intros; simpl.
54
   eapply Apply_VHTT1.
55
  (** begin PS [Val (cst index curidx)] *)
   instantiate (1:= fun vs s => (forall idx : index,
56
57 | idx < curidx -> readVirtual table idx (memory s) = Some defaultVAddr)
58
         /\ vs = [cst index curidx] ).
59
   unfold THoarePrmsTriple_Eval.
60
  intros.
61
  inversion X; subst.
62 destruct vs; inversion H6.
   destruct vs ; inversion H3 ; subst.
64
  intuition.
  inversion X0; subst.
65
66 inversion X2.
67 inversion X2.
68
   (** end *)
69 intuition; intros; simpl.
70 destruct vs.
71
   unfold THoareTriple_Eval; intros.
  intuition; inversion H2.
72
73
   destruct vs.
74 Focus 2.
   unfold THoareTriple_Eval; intros.
   intuition; inversion H2. simpl in *.
77
   (*eapply BindMS_VHTT1.*)
78
   eapply BindN_VHTT1.
79
   (** Begin write Virtual *)
   unfold THoareTriple_Eval; intros.
80
   clear IHn k3 k2 k1 t ftenv tenv env.
82
   intuition.
83 inversion H2; subst.
```

```
84 inversion X; subst.
85
   inversion X1; subst.
86 inversion XO; subst.
87
   inversion X0; subst.
   repeat apply inj_pair2 in H8. subst.
88
89
    inversion X4; subst.
90
   inversion X5; subst.
91 simpl in *.
92 inversion HO; subst.
93 clear X5 HO XF1.
94
   inversion X2; subst.
95 repeat apply inj_pair2 in H8.
96
    repeat apply inj_pair2 in H10. subst.
97
    unfold b_exec, b_eval, b_mod in *. simpl in *.
98
   inversion X3; subst.
    clear X0 X X1 X2 X3 X4.
99
100
   instantiate (1:= fun s => (forall idx : index,
    idx < curidx -> readVirtual table idx (memory s) = Some defaultVAddr)
101
102
    // v=cst index curidx // readVirtual table curidx s.(memory) =
103
        Some default VAddr).
104
    intuition. split.
105
   intros.
106
    unfold writeVirtualInternal. simpl.
    unfold readVirtual.
107
108
    unfold add. simpl.
109
    assert(Hfalse : Lib.beqPairs (table, curidx) (table, idx)
110
            beqPage beqIndex= false).
111
        { apply beqPairsFalse. right.
112
          apply indexDiffLtb. right; assumption. }
113
    rewrite Hfalse.
    assert (lookup table idx (Lib.removeDup table curidx (memory n')
114
115
            beqPage beqIndex)
116
               beqPage beqIndex = Lib.lookup
                                               table idx
                                                           (memory n')
               beqPage beqIndex) as Hmemory.
117
118
        { apply removeDupIdentity.
119
          right.
120
          apply indexDiffLtb.
121
          left; trivial. }
122
    rewrite Hmemory.
123
    apply H1 in H0.
124
    unfold readVirtual in *. auto. intuition.
125
    unfold writeVirtualInternal. simpl.
126 unfold readVirtual.
```

```
unfold add. simpl.
128
    assert(Htrue : Lib.beqPairs (table, curidx) (table, curidx)
129
            beqPage beqIndex= true).
130
        { apply beqPairsTrue. intuition. }
131
    rewrite Htrue. auto.
132
    inversion X5.
133
   inversion X5.
134
   (** end *)
135
    eapply IfTheElse_VHTT1.
136
   (** begin LtLtb *)
137
    unfold THoareTriple_Eval; intros.
138
   clear k3 k2 k1 t tenv ftenv.
139
   intuition. subst.
140 inversion X; subst.
141 inversion XO; subst.
142 repeat apply inj_pair2 in H8. subst.
143 inversion X2; subst.
144 inversion X3; subst.
145 simpl in *.
146 inversion HO; subst.
147 clear X3 HO XF1.
148 inversion X1; subst.
149
   inversion X3; subst.
150
    repeat apply inj_pair2 in H8.
151
    repeat apply inj_pair2 in H10. subst.
152
    unfold b_eval, b_exec, xf_Ltb, b_mod in *.
153 simpl in *.
154
   inversion X4; subst.
   instantiate (1:= fun b s => (forall idx : index,
156 | idx < curidx -> readVirtual table idx (memory s) = Some defaultVAddr)
    /\ readVirtual table curidx (memory s) = Some defaultVAddr
157
    /\ v=cst index curidx /\ b=cst bool (Index.ltb curidx maxIndex)).
158
159
   intuition.
160
   inversion X5.
161
    inversion X5.
162 (** end *)
163 simpl.
164
    eapply BindS_VHTT1.
165
    eapply BindS_VHTT1.
    (** begin SuccD *)
166
167
    eapply weakenEval.
    instantiate (2:= fun s => (fun s' => (forall idx : index,
168
169 | idx < curidx -> readVirtual table idx (memory s') = Some defaultVAddr)
```

APPENDIX F. HOARE_INITVADDRTABLE.V

```
/\ readVirtual table curidx (memory s) = Some defaultVAddr) s
170 \, \, \Box
    /\ curidx < tableSize - 1 /\ v=cst index curidx).
171
172 eapply succDWp'.
173
    simpl; intros; intuition.
   unfold maxIndex in H4.
174
175
    inversion H4.
176
   apply inj_pair2 in H5.
177
    symmetry in H5.
178
    apply index1tbTrue in H5.
179
    unfold CIndex in H5.
180
    destruct (lt_dec (tableSize - 1) tableSize).
181
    simpl in *. assumption. contradict n0.
182
    assert (tableSize > tableSizeLowerBound).
183
   apply tableSizeBigEnough.
184
   unfold tableSizeLowerBound in *. omega.
   (** end *)
185
186 (** begin ExtractIndex *)
187
    intros; simpl.
188
    instantiate (1:= fun v's => (forall idx : index,
189
   idx<curidx -> readVirtual table idx (memory s) = Some defaultVAddr)
190
    /\ readVirtual table curidx (memory s) = Some defaultVAddr
191
    /\ v = cst index curidx /\ curidx < tableSize - 1 /\
192
    v' = cst index (match succIndexInternal curidx with
193
                      | Some i => i | None => index_d end) ).
194
    unfold THoareTriple_Eval; intros.
195
    clear k3 k2 k1 t tenv ftenv.
196 destruct HO.
197
    destruct H1.
198
   destruct H2.
199
   destruct H3.
200 subst.
201 destruct H4.
202
   inversion H2.
203 repeat apply inj_pair2 in H4.
204
    rewrite H4 in *.
205
   inversion X; subst.
206 inversion XO; subst.
207
    repeat apply inj_pair2 in H10. subst.
208
   inversion X2; subst.
209
    inversion X3; subst.
210 simpl in *.
211 inversion H3; subst.
212 clear X3 H3 XF1.
```

APPENDIX F. HOARE_INITVADDRTABLE.V

```
213 inversion X1; subst.
214 inversion X3; subst.
215 repeat apply inj_pair2 in H10.
216
   repeat apply inj_pair2 in H12. subst.
    unfold b_eval, b_exec, xf_ExtractIndex, b_mod in *.
217
218
    simpl in *.
219
   inversion X4; subst.
220 intuition.
221
   inversion X5.
222 inversion X5.
223
   (** end *)
224 (* evaluating FVar and Prms*)
225
    intros; simpl.
226
    eapply QFun_VHTT.
227
    econstructor. econstructor.
228
    eapply Apply_VHTT2.
229
   instantiate(1:=fun vs s => (forall idx : index,
230 | idx < curidx -> readVirtual table idx (memory s) = Some defaultVAddr)
231
    /\ readVirtual table curidx (memory s) = Some defaultVAddr
232
    /\ v = cst index curidx /\ curidx < tableSize - 1
233
    /\ v0 = cst index match succIndexInternal curidx with
234
         | Some i \Rightarrow i | None \Rightarrow index_d end /\ vs = [v0]).
235
   unfold THoarePrmsTriple_Eval; intros.
236
   inversion X; subst.
237
    destruct vs; inversion H6.
238 inversion XO; subst.
239 inversion X2; subst.
240 inversion X3; subst.
241
   inversion X4; subst.
242 inversion H1; subst.
243 inversion X1; subst.
244 destruct vs; inversion H7.
245
   inversion X5; subst.
246 inversion X7; subst.
247
    inversion X6; subst.
248
    destruct vs; inversion H7; subst.
249
   destruct vs; inversion H4.
250 intuition.
251 inversion X8; subst.
252 inversion X10.
253 inversion X10.
254 inversion X8.
255 unfold mkVEnv in *; simpl in *.
```

```
256 intros; simpl.
257
    destruct vs.
258 unfold THoareTriple_Eval; intros; intuition.
259
   inversion H6.
260 destruct vs.
261
   Focus 2.
262 unfold THoareTriple_Eval; intros; intuition.
263
   inversion H6. simpl in *.
264
   (** recursive call *)
265 unfold THoareTriple_Eval.
266
   intros. intuition.
267 inversion H6; subst.
268 unfold succIndexInternal in *.
269 destruct curidx.
270 simpl in *.
271 case_eq (lt_dec i tableSize); intros; try contradiction.
272 rewrite H2 in *.
273
   specialize (IHn (CIndex(i+1))).
274 unfold CIndex in *.
275
   case_eq (lt_dec (i + 1) tableSize); intros.
276 rewrite H4 in *. simpl in *.
277
   assert (Z : n+(i+1) = S(n+i)) by omega.
278
    rewrite Z in *.
279
   eapply IHn in H as H5.
280
   clear IHn.
281
    eapply H5.
282 eauto. eauto. eauto. eauto.
283
   clear H6 H5 H k3 k2 k1 t ftenv tenv env idx.
284
   intuition; simpl in *.
285
    assert (Hor: idx = \{ | i := i; Hi := Hi | \} / idx < \{ | i := i; Hi := Hi | \} ).
286
        { simpl in *.
287
          unfold CIndex in H.
288
          destruct (lt_dec (i + 1) tableSize).
289
          subst. simpl in *.
290
          rewrite NPeano.Nat.add_1_r in H.
291
          apply lt_n_Sm_le in H.
292
          apply le_lt_or_eq in H.
293
          destruct H.
294
          right. assumption.
295
          left. subst.
296
          destruct idx. simpl in *. subst.
297
          assert (Hi = HiO).
298
          apply proof_irrelevance.
```

```
299
          subst. reflexivity. omega. }
300
    destruct Hor.
301
    subst. eassumption.
302
    apply H1; trivial.
    assert (i+1<tableSize) by omega;
303
304
    contradiction.
305
   (** false case*)
306 revert H. clear; intros.
307
    unfold mkVEnv in *; simpl in *.
308
    unfold THoareTriple_Eval; intros. intuition.
309
    clear k3 k2 k1 ftenv tenv.
310 inversion X; subst.
311 Focus 2. inversion XO.
312 inversion H4.
313 repeat apply inj_pair2 in H3.
    clear X H4.
314
315 assert (idx < CIndex (tableSize - 1) \/ idx = CIndex (tableSize - 1)).
316
        { destruct idx. simpl in *.
317
          unfold CIndex.
318
          case_eq (lt_dec (tableSize - 1) tableSize).
319
          intros. simpl in *.
320
          assert (i <= tableSize -1). omega.
321
          apply NPeano.Nat.le_lteq in H4.
322
          destruct H4.
323
          left. assumption. right. subst.
324
          assert (Hi = Pip_state.CIndex_obligation_1 (tableSize - 1) 1)
325
          apply proof_irrelevance.
326
          subst. reflexivity.
327
          intros. omega. }
328
    destruct H2.
329
    symmetry in H3.
    apply index1tbFalse in H3.
330
331
    generalize (H1 idx); clear H; intros Hmaxi.
332
    apply Hmaxi. subst.
333
    apply indexBoundEq in H3.
334
    subst. assumption.
335
    symmetry in H3.
336
    apply index1tbFalse in H3.
337
    apply indexBoundEq in H3.
338
    subst. assumption.
339
   (** end *)
340 Qed.
```