

VASIREDDY VENKATADRI INSTITUTE OF TECHNOLOGY NAMBUR-522508 ANDHRA

YEAR: III B.Tech SEMESTER:II

COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHMS

COURSE CODE: XXXXXXXX

BRANCH: COMMON TO CSE & IT BRANCHES

PREREQUISITE: Knowledge of programming language(s) and basic Algorithms

COURSE OBJECTIVE: To provide an introduction to formalisms to understand, analyze and denote time complexities of algorithms, to introduce the different algorithmic approaches for problem solving through numerous example problems, and to provide some theoretical grounding in terms of finding the lower bounds of algorithms and the NP-completeness

COURSE OUTCOMES: Students will be able to:

SN	OUTCOME	Cognitive Levels as per Bloom's Taxonomy	Weightage (%)
CO1	Infer the divide-and-conquer paradigm and its context. Recite algorithms that employ this paradigm. Apply this paradigm to design algorithms for apt problems. Derive and solve recurrences describing the performance of divide-and-conquer algorithms.	L1,L2,L3, L4	20
CO2	Infer the greedy paradigm and its context. Recite algorithms that employ this paradigm. Apply this paradigm to design algorithms for apt problems.	L1,L2,L3, L4	20
СОЗ	Infer the dynamic-programming paradigm and its context. Recite algorithms that employ this paradigm. Apply this paradigm to design algorithms for apt problems.	L1,L2,L3, L4	20
CO4	Infer the backtracking paradigm and its context. Recite algorithms that employ this paradigm. Apply this paradigm to design algorithms for apt problems.	L1,L2,L3, L4	20
CO5	Infer the branch and bound paradigm and its context. Recite algorithms that employ this paradigm. Apply this paradigm to design algorithms for apt problems.	L1,L2,L3, L4	20

WEIGHTAGE OF BLOOM'S LEGENDS & PERCENTAGEOF QUESTIONS IN EXAMINATIONS:

L1 (Remembering) = 30-40%, L2 (Understanding) = 30 - 40%,

L3 (Applying) = 10-20 %, L4 (Analysing) = 10 - 20%,

Easy (%) = 15%-20%, Average (%)= 60% - 70%, Difficult (%)= 15% - 20%

TOTAL = L1 + L2 + L3 + L4 = 100% (on an average about 2minutes per mark)

Note: This specification weightage in above shall be treated as a general guideline for students, teachers and paper setters. The actual distribution of marks in the question paper may vary slightly.

DETAILED SYLLABUS:

UNIT-1: INTRODUCTION: Algorithm Definition, Algorithm Specification, Performance Analysis, Performance Measurement, Asymptotic notations.

DIVIDE AND CONQUER: General Method, Binary Search, Finding the Maximum and Minimum, Quick Sort.

UNIT-II: THE GREEDY METHOD: The General Method, Knapsack Problem, Single Source Shortest Path Problem, Optimal Storage on Tapes Problem, Optimal Merge Patterns Problem

UNIT-III: DYNAMIC PROGRAMMING: The General Method, 0/1 Knapsack Problem, Single Source Shortest Path – General Weights, All Pairs-Shortest Paths Problem, Traveling Salesperson Problem, String Editing Problem.

UNIT-IV: BACKTRACKING: The General Method, The N-Queens Problem, Sum of Subsets Problem, Graph Coloring Problem, Hamiltonian Cycles Problem.

UNIT-V: BRANCH AND BOUND: The General Method, FIFO Branch-and-Bound, LC Branch-and-Bound, 0/1 Knapsack Problem, Travelling Salesperson Problem.

NP-HARD AND NP-COMPLETE PROBLEMS: Basic concepts, Cook's Theorem.

TEXTBOOKS:

1. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, "Fundamentals of Computer Al-gorithms", 2nd Edition, Universities Press

REFERENCEBOOKS:

- 1. Harsh Bhasin, "Algorithms Design & Analysis", Oxford University Press.
- 2. S. Sridhar, "Design and Analysis of Algorithms", Oxford University Press.

ONLINE REFERENCES:

1. http://nptel.ac.in/courses/106101060/

MICRO-SYLLABUS:

Unit	Module	Micro content	
	Algorithm Analysis	Definition and Algorithm Specification	
		Performance Analysis – time and space complexity	
		Performance Measurement – step count and frequency count	
		Asymptotic Notations – Big Oh, Big Omega, Big Theta	
1	Divide and Conquer	General Method	
		Binary Search – Procedure, Example, Algorithm and Computing Time Complexity.	
		Finding the Maximum and Minimum -	
		Procedure, Example, Algorithm, and	
		Computing Time Complexity.	
		Quick Sort - Procedure, Example, Algorithm	
		and Computing Time Complexity.	
Unit	Module	Microcontent	

		General Method		
		Knapsack Problem - Description, Example,		
		Algorithm.		
	Greedy Method	Optimal Storage on Tapes Problem -		
2	dreedy wedied	Description, Example, Algorithm.		
		Single Source Shortest Path Problem -		
		Description, Example, Algorithm.		
		Optimal Merge Patterns Problem -		
		Description, Example, Algorithm.		
Unit	Module	Microcontent		
		The General Method		
		0/1 Knapsack Problem - Description,		
		Example.		
	Dynamic Programming	Single Source Shortest Path – General Weights		
3		- Description, Example, Algorithm.		
		All Pairs-Shortest Paths Problem -		
		Description, Example, Algorithm.		
		Travelling Salesperson Problem - Description,		
		Example.		
		Ctring Editing Duchlam Description		
		String Editing Problem - Description,		
		Example.		
Unit	Module			
Unit	Module	Example.		
Unit	Module	Example. Microcontent		
Unit	Module	Example. Microcontent The General Method		
		Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description,		
Unit 4	Module Backtracking	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm.		
		Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description,		
		Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm.		
		Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description,		
4	Backtracking	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm.		
		Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent		
4	Backtracking	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method		
4	Backtracking	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method FIFO Branch and Bound		
4	Backtracking Module	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method FIFO Branch and Bound LC Branch and Bound		
4 Unit	Backtracking	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method FIFO Branch and Bound LC Branch and Bound 0/1 Knapsack Problem - Description, Example.		
4	Backtracking Module	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method FIFO Branch and Bound LC Branch and Bound 0/1 Knapsack Problem - Description, Example. Travelling Salesperson Problem - Description,		
4 Unit	Backtracking Module Branch and Bound	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method FIFO Branch and Bound LC Branch and Bound 0/1 Knapsack Problem - Description, Example. Travelling Salesperson Problem - Description, Example.		
4 Unit	Backtracking Module	Microcontent The General Method The 8-Queens Problem - Description, State Space Tree, Algorithm. Sum of Subsets Problem - Description, Example, State Space Tree, Algorithm. Graph Coloring Problem - Description, Example, State Space Tree, Algorithm. Hamiltonian Cycles Problem - Description, Example, State Space Tree, Algorithm. Microcontent The General Method FIFO Branch and Bound LC Branch and Bound 0/1 Knapsack Problem - Description, Example. Travelling Salesperson Problem - Description,		

III B. TECH II SEMESTER REGULAR EXAMINATION MODEL PAPER MICROPROCESSORSANDMICROCONTROLLERS (COMMON TO ECE & EEE BRANCHES)

Time: 3 Hours Max. Marks: 70

Note: Answer ONE question from each unit (5 × 14 = 70 Marks)

UNIT-I CO BLDiscuss various asymptotic notations used CO1 L2 1. [7M] a) represent complexity of algorithms with examples. Write algorithm for Min Max Problem. b) [7M] CO1 L3 (OR) Discuss Quick sort with an example and derive its 2. [7M] CO1 L2 time complexity in worst case. Write algorithm for calculating multiplication of [7M] CO1 L3 matrices and derive its time complexity using step count method. UNIT-II Find an optimal solution to the knapsack instance n=5 3. a) [7M] CO₂ L1objects and the capacity of knapsack m=10. The profits and weights of the objects are (P1, P2, P3, P4, P5) = (15, 7, 6, 18, 3), (W1, W2, W3, W4, W5) = (5, 7, 1, 4, 1) respectively. Define optimal merge pattern? Find optimal merge [7M] CO₂ L1 pattern for ten files whose record lengths are 28, 32, 12, 5, 84, 53, 91, 35, 3, and 11. (OR) Find shortest paths in the following graph using 4. a) [14M]CO₂ L1 Dijkstra's algorithm. 50 10 30 15 10 20 UNIT-III Define merging and purging rules in 0/1 knapsack L2 5. [7M] CO₃ problem and explain with an example.. Write and explain an algorithm to compute the all [7M] CO₃ L3 pairs shortest path using dynamic programming and prove that it is optimal. (OR) Explain the methodology of Dynamic programming. 6. [7M] CO₃ L2 Mention the applications of Dynamic programming. Let X = a,a,b,a,a,b,a,b,a,a and Y = b,a,b,a,a,b,a,b. Find [7M] CO3 L1 a minimum-cost edit sequence that transforms X and Y.

UNIT-IV					
7.	a) Explain the Graph–Coloring problem and d state space tree for m= 3 colors and n=4 graph.		[7M]	CO4	L2
	b)	Write an algorithm to determine the Hamiltonian Cycle in a given graph using backtracking.	[7M]	CO4	L3
(OR)					
8.	8. a) Find all possible subsets of <i>w</i> that sum to <i>m</i> . Let w={5,7,10,12,15,18,20}and <i>m</i> =35 and construct the portion of the state space tree that is generated using backtracking.		[7M]	CO4	L3
	b)	Illustrate the process of backtracking on the 8 Queens problem. Explain with a suitable example.	[7M]	CO4	L2
UNIT-V					
9.	a)	State the concept of branch and bound method and mention its applications.	[7M]	CO5	L1
	b)	Discuss 0/1 Knapsack problem with respect to branch and bound method.	[7M]	CO5	L2
		(OR)			
10.	a)	Deduce an optimal tour of the following travelling salesperson problem using LCBB.	[14M]	CO5	L4
		$ \left(\begin{array}{cccc} 0 & 10 & 9 & 3 \\ 5 & 0 & 6 & 2 \\ 9 & 6 & 0 & 7 \\ 7 & 3 & 5 & 0 \end{array}\right) $			

THE ABOVE MODEL PAPER ATTAINMENTS OF BLOOM'S TEXONOMY AS **FOLLOWS**

L1: 4*7 + 1*14 = 42= 30%

L2: 7*7 = 49 = 35%

L3: 5*7 = 35 = 25%

L4: 1*14 = 14 = 10%

SIGNATURES OF