Introducing machine learning for high-performance scenario access and accurate EC control

A. Rothstein¹, C.S.Byun¹, S. K. Kim², M.S. Kim¹, M.H. Woo³, M.S. Cha⁴, Y.H. Lee³, S.M.Yang², G.W.Shin³, H.H. Lee³, Y.H. Lee³, H.S.Kim³, Q.Hu², M.W.Kim³, J.Chung³, G.Y.Park³, J.W. Kim³, W.H. Ko³, J.Lee³, and E.Kolemen^{1,2}

¹ PU, ² PPPL, ³ KFE, ⁴ SNU

Intershot Bayesian Optimization for developing highperformance KSTAR scenario

- Goal of maximize performance (β_N) in the flattop of the shot
- Use historical KSTAR data to pretrain models, then <u>update model based on</u> results during experiment
- Adjust I_P , P_{NBI} , P_{EC} , gas feedforward waveforms between shots according to ML optimization
 - Do more exploration in early shots and focus in on high performance in later shots

ML TORBEAM surrogate for feedback EC steering

- Accurate EC steering and control is desirable for variety of tasks:
 - NTM island suppression
 - ST control

3

- Improved ELM suppression with edge ECCD
- Impurity shielding effects
- Real-time TORBEAM code computationally expensive to run and can be inaccurate due to instability in rtEFITs
 - ML surrogate faster to run and more robust to numerical noise in real-time equilibria

Torbeam-nn Inputs

rtEFIT scalars

Real-time n_e profile - NERECON

Shot Plan (13-20 shots)

- 1. Stage 1: Restore H-mode reference (36497) (1-2 shots)
- 2. Stage 2: Bayesian optimization exploration (10-14 shots)
 - I. Start Start with larger exploration BO settings for BO of feedforward waveforms.
 - II. Commission feedback EC steering in flattop.
 - Scan ECH Z positions to tune PID gains and assess accuracy of Torbeam-nn
- 3. Stage 3: Bayesian optimization high performance (2-4 shots)
 - Reduce exploration settings for BO to achieve high performance ramp-up scenario
 - II. If Torbeam-nn steering successful, add in scans over toroidal angles to validate tracking

Hardware requirements and team

- B_T : -1.9T
- I_p: 0.5MA
- 5 NBI (all except NB2B)
- EC4 and EC5
 - Feedback mirror steering required
- Standard feedforward gas
- SL: Andy Rothstein
- CPO: Sanghee Lee
- ECH aimer: Minho Woo
- BO task coordinator: Minseok Kim
- PID tuning coordinator: Cheolsik Byun

