18.06

Review for Midterm 3

Main Topics:

Eigenvalues/eigenvectors

Diagonalization

Applications of Determinants

Volume

Cofactors

Eigenvalues and Eigenvectors: Definition

Square matrix A

If $Av = \lambda v$, $v \neq 0$ a vector and λ a scalar Then v is eigenvector of A with eigenvalue λ

v is a very special vector

Applying A to v only changes the magnitude of v, not direction Applying A to v produces λv

 λv is scaled version of v

Eigenvalues and Eigenvectors: Existence

When will $v \neq 0$ a vector and λ a scalar satisfy $Av = \lambda v$?

$$Av = \lambda v \text{ iff } 0 = \lambda v - Av = (\lambda I - A)v$$

For any λ , equation $(\lambda I - A)v = 0$ always has solution v = 0

When does it have other solutions?

Exactly when $(\lambda I - A)$ is singular

Exactly when $det(\lambda I - A) = 0$

When does equation (in λ) $\det(\lambda I - A) = 0$ have a solution?

Always!

Why?

Characteristic Polynomial

Why does equation $\det(\lambda I - A) = 0$ always have a solution?

Ex:
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $\lambda I - A = \begin{pmatrix} \lambda - a_{11} & -a_{12} \\ -a_{21} & \lambda - a_{22} \end{pmatrix}$

$$\det(\lambda I - A) = (\lambda - a_{11})(\lambda - a_{22}) - a_{12}a_{21}$$

 $\det(\lambda I - A)$ is a polynomial in λ , with real coefficients
True for all (square) matrices, not just this example
Every such polynomial has a (possibly complex) root
Call this the characteristic polynomial of A
Notation: $p_A(\lambda) = \det(\lambda I - A)$

Characteristic Polynomial: Properties

 $A \ n \times n$ matrix, $p_A(\lambda) = \det(\lambda I - A)$ its characteristic polynomial

- $p_A(\lambda)$ is a polynomial of degree n, with real coefficients Compute determinant using cofactors
- $p_A(\lambda)$ has exactly n (possibly complex) roots, counting multiplicity

Example:
$$\lambda^3 - 3\lambda + 2 = (\lambda - 1)^2(\lambda + 2)$$

root at $\lambda = -2$, (double) root at $\lambda = 1$

Example:
$$\lambda^2 - 2\lambda + 2 = (\lambda - (1+i))(\lambda - (1-i))$$

root at
$$\lambda = 1 + i$$
 and $\lambda = 1 - i$

The roots of $p_A(\lambda)$ are the eigenvalues of A

Eigenvalues and Eigenvectors

Square matrix A,

Vector $v \neq 0$ is an eigenvector with eigenvalue λ if $Av = \lambda v$

Eigenvalues are the roots of $p_A(\lambda) = \det(\lambda I - A)$

What about eigenvectors?

If λ is an eigenvalue,

 $v \neq 0$ is eigenvector with with eigenvalue λ if $(\lambda I - A)v = 0$

All $v \in \text{null}(\lambda I - A)$, except v = 0

Eigenvectors not unique,

Each eigenvalue λ has infinitely many corresponding eigenvectors

Example: If v eigenvector with eigenvalue λ , so is $2v, \frac{3}{2}v, -7v, ...$

Generally just write down a collection of lin. indep. eigenvectors

$$P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, Projection onto x-axis

What are its eigenvalues/eigenvectors?

Eigenvalue 1 with eigenvector
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Vectors pointing along x-axis are not changed by P

Eigenvalue 0 with eigenvector
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Vectors pointing along y-axis are sent to 0 by P

P is 2×2 , so these are only eigenvalues

$$D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$
, diagonal matrix

What are its eigenvalues/eigenvectors?

Eigenvalue d_1 with eigenvector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Vectors pointing along x-axis are scaled by d_1

Eigenvalue d_2 with eigenvector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Vectors pointing along y-axis are scaled by d_2 D is 2×2 , so these are only eigenvalues

$$L = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
, a particular lower triangular matrix

What are its eigenvalues/eigenvectors?

Only eigenvalue is 1

$$p_L(\lambda) = \det(\lambda I - L) = (\lambda - 1)^2$$

Only eigenvector is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (and scalar multiples of course)

Eigenvectors are $v \in \text{null}(1I - A), v \neq 0$

$$I - A = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$
, which has rank 1

L does not have two lin. indep. eigenvectors

 $\frac{d}{dx}$ the derivative operator (on vector space of all differentiable func.)

What are its eigenvalues/eigenvectors?

For which functions f(x) is there a scalar c where $\frac{d}{dx}f(x) = cf(x)$?

Such f(x) is eigenvector with eigenvalue c

Each $c \in \mathbb{C}$ is eigenvalue

with eigenvector (eigenfunction) $f(x) = e^{cx}$

Why are Eigenvectors Useful?

Example: A a 2 \times 2 matrix,

That has two lin. indep. eigenvectors v_1 , v_2

With corresponding eigenvalues λ_1 , λ_2

 v_1, v_2 form a basis of \mathbb{R}^2 (eigenbasis)

Can write any $x \in \mathbb{R}^2$ as $c_1v_1 + c_2v_2$, for some $c_1, c_2 \in \mathbb{R}$

$$Ax = A(c_1v_1 + c_2v_2)$$

= $c_1Av_1 + c_2Av_2$

$$= c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2$$

Each component scales by corresponding eigenvector

Why are Eigenvectors Useful?

Example: A an $n \times n$ matrix,

That has n lin. indep. eigenvectors v_1 , ..., v_n

With corresponding eigenvalues $\lambda_1, \dots, \lambda_n$

 $v_1, ..., v_n$ form a basis of \mathbb{R}^n (eigenbasis)

Can write any $x \in \mathbb{R}^n$ as $c_1v_1 + \cdots + c_nv_n$, for some $c_i \in \mathbb{R}$

$$Ax = A(c_1v_1 + \dots + c_nv_n)$$

$$= c_1Av_1 + \dots + c_nAv_n$$

$$= c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$$

Each component scales by corresponding eigenvector Much easier to compute in an eigenbasis, A behaves like diagonal matrix

Diagonalization

```
Consider A an n \times n matrix,
       That has n lin. indep. eigenvectors v_1, \dots, v_n
       With corresponding eigenvalues \lambda_1, \dots, \lambda_n
Let X be n \times n matrix with eigenvectors v_1, \dots, v_n in the columns
       X invertible because it is a square matrix with lin. Indep. cols
Let \Lambda be n \times n diagonal matrix with eigenvalues \lambda_1, \dots, \lambda_n along diagonal
Then AX = X\Lambda,
       So A = X \Lambda X^{-1}
       and \Lambda = X^{-1}AX
```

Diagonalization

If we can write $A = X\Lambda X^{-1}$, where Λ is diagonal, we say we have diagonalized A because A is "similar" to a diagonal matrix

We say matrices B and C are similar if there is an invertible matrix T, such that $B = TCT^{-1}$ Similar matrices represent the same function, in different bases Sometimes one basis is easier to work in than another

Diagonal matrices are especially easy to work with

Consider
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $\lambda I - A = \begin{pmatrix} \lambda - a_{11} & -a_{12} \\ -a_{21} & \lambda - a_{22} \end{pmatrix}$

$$\det(\lambda I - A) = (\lambda - a_{11})(\lambda - a_{22}) - a_{12}a_{21}$$

$$= \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21})$$

$$= \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$

$$= (\lambda - \lambda_1)(\lambda - \lambda_2)$$

Eigenvalues λ_1 , λ_2 satisfy

$$\lambda_1 + \lambda_2 = \operatorname{tr}(A)$$

 $\lambda_1 \lambda_2 = \det(A)$

Consider $n \times n$ matrix A with eigenvalues $\lambda_1, \dots, \lambda_n$ (with multiplicity)

$$\lambda_1 + \dots + \lambda_n = \operatorname{tr}(A)$$

$$\lambda_1 \cdots \lambda_n = \det(A)$$

If v is an eigenvector of A with eigenvalue λ

For any scalar α , αv is an eigenvector of A with eigenvalue λ

$$A(\alpha v) = \alpha(Av) = \alpha(\lambda v) = \lambda \alpha v$$

v is an eigenvector of A^2 with eigenvalue λ^2

$$A^2v = AAv = A(Av) = A(\lambda v) = \lambda(Av) = \lambda(\lambda v) = \lambda^2 v$$

Eigenvalues of A^k are $\lambda_1^k, \dots, \lambda_n^k$, for $k \in \mathbb{N} = \{0,1,2,\dots\}$

Consider $n \times n$ matrix A with eigenvalues $\lambda_1, \dots, \lambda_n$ (with multiplicity)

A is singular if and only if A has eigenvalue 0

A has eigenvalue 0 if and only if 0 = det(0I - A) = det(-A)If A invertible,

If v is an eigenvector of A with eigenvalue λ

v is an eigenvector of A^{-1} with eigenvalue λ^{-1}

If $Av = \lambda v$, then $A^{-1}Av = A^{-1}\lambda v$

Then $v = \lambda(A^{-1}v)$

So $\lambda^{-1}v = A^{-1}v$

Eigenvalues of A^{-1} are $\lambda_1^{-1}, \dots, \lambda_n^{-1}$

For any $n \times n$ matrix A, with distinct eigenvalues $\lambda_1, \dots, \lambda_n$ Corresponding eigenvectors are v_1, \dots, v_n are lin. Indep. So A is diagonalizable

If A does not have distinct eigenvalues

May or may not be diagonalizable

Symmetric matrices always diagonalizable

Determinant: Geometric Meaning in \mathbb{R}^2

Consider
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, 2 × 2 real matrix

and
$$e_1={1\choose 0}$$
, $e_2={0\choose 1}$ in \mathbb{R}^2

A transforms square of area 1 to parallelogram of area |det(A)|

A transforms e_1 , e_2 to

$$v_1 = Ae_1 = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix}$$

$$v_2 = Ae_2 = \binom{a_{12}}{a_{22}}$$

 1^{st} and 2^{nd} col of A

Determinant: Geometric Meaning in \mathbb{R}^n

```
Consider A, n \times n real matrix and e_1, e_2, \ldots, e_n \in \mathbb{R}^n, where e_i: i^{\text{th}} entry 1, all other entries 0
```

```
A transforms e_1, e_2, ..., e_n to v_1, v_2, ..., v_n, where v_i = Ae_i v_i is i^{\text{th}} col of A e_1, e_2, ..., e_n specify hypercube in \mathbb{R}^n (n-dimensional version of cube) v_1, v_2, ..., v_n specify parallelotope in \mathbb{R}^n (n-dimensional version of parallelogram)
```

A transforms hypercube $e_1, e_2, ..., e_n$ of volume 1 to parallelotope $v_1, v_2, ..., v_n$ of volume $|\det(A)|$

Minors and Cofactors

For an $n \times n$ matrix A

Define $n \times n$ matrix M, matrix of minors, by M_{ij} is det of A with row i and col j deleted

Define $n \times n$ matrix C, matrix of *cofactors*, by C_{ij} is $(-1)^{i+j}M_{ij}$

Cofactors: Properties

For any $n \times n$ matrix A and any row i

$$|A| = A_{i,1}C_{i,1} + A_{i,2}C_{i,2} + \dots + A_{i,n}C_{i,n}$$

For any invertible $n \times n$ matrix A

$$A^{-1} = \frac{C^{\mathsf{T}}}{|A|}$$