

รายงานโครงงานวิทยาศาสตร์ ประเภทสิ่งประดิษฐ์

เรื่อง ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug)

โดย

- ๑. นายสุเทพ จันทร์ชูผล
- ๒. นายปฐมพงษ์ วิมลเจริญ
- ๓. นางสาวสุธาธินี มณีรัตนนาวิน

ครูที่ปรึกษา

- ๑. นางอัจฉรัตน์ ยืนนาน
- ๒. นายสมพงษ์ นาคเจือ

โรงเรียนเบญจมราชรังสฤษฎิ์ สำนักงานเขตพื้นที่การศึกษาฉะเชิงเทราเขต ๖
รายงานฉบับนี้เป็นส่วนประกอบของโครงงานวิทยาศาสตร์
ประเภทสิ่งประดิษฐ์ ระดับชั้นมัธยมศึกษาตอนปลาย
เนื่องในงานศิลปหัตถกรรมนักเรียน ครั้งที่ ๖๗ วันที่ ๘ พฤศจิกายน พ.ศ.๒๕๖๐

ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug)

โดย

- ๑. นายสุเทพ จันทร์ชูผล
- ๒. นายปฐมพงษ์ วิมลเจริญ
- ๓. นางสาวสุธาธินี มณีรัตนนาวิน

ครูที่ปรึกษา

- ๑. นางอัจฉรัตน์ ยืนนาน
- ๒. นายสมพงษ์ นาคเจือ

บทคัดย่อ

ชื่อโครงงาน: ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

Wi-Fi or Internet controlled Plug

ผู้จัดทำโครงงาน: ๑. นายสุเทพ จันทร์ชูผล

๒. นายปฐมพงษ์ วิมลเจริญ

๓. นางสาวสุธาธินี มณีรัตนนาวิน

ครูที่ปรึกษา: ๑. นางอัจฉรัตน์ ยืนนาน

๒. นายสมพงษ์ นาคเจือ

ในปัจจุบันนี้ มีผู้ป่วยในโรคกลุ่มอาการสมองเสื่อมถึงร้อยละ 60 ซึ่งทำให้การดูแลสิ่งต่างๆ ให้ ทั่วถึงเป็นไปได้ยาก โดยเฉพาะในเรื่องอุปกรณ์เครื่องใช้ไฟฟ้า ถ้าหากเราไม่ดูแลให้ดีอาจทำให้เกิดไฟฟ้า ลัดวงจร หรือเพลิงใหม่ได้ ซึ่งสามารถสร้างความเสียหายได้ คณะผู้จัดทำจึงได้คิดค้นปลั๊กไฟที่สามารถ ควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตได้ เนื่องจากในปัจจุบันคนส่วนใหญ่ใช้อินเทอร์เน็ต เป็นเวลาหนึ่งในสี่ของชีวิตประจำวัน และอุปกรณ์ส่วนใหญ่ในปัจจุบันรองรับการเชื่อมต่อสัญญาณไวไฟ ในการประดิษฐ์ครั้งนี้จำเป็นต้องใช้ความรู้เกี่ยวกับไมโครคอนโทรลเลอร์ ซึ่งเป็นอุปกรณ์ที่สามารถ ประมวลผลตามที่ผู้ใช้เขียนชุดคำสั่งต่างๆ ใส่ไว้ในอุปกรณ์ได้ คณะผู้จัดทำได้แบ่งขั้นตอนการทำเป็น ๔ ช่วง ได้แก่ ๑. วางแผนออกแบบสิ่งประดิษฐ์ ๒. ลงมือประดิษฐ์สิ่งประดิษฐ์ ๓. ตรวจสอบแล้วทดลอง สิ่งประดิษฐ์ ๔. นำสิ่งประดิษฐ์สู่ไปใช้แล้วนำมาปรับปรุง เมื่อทำการประดิษฐ์สรีจสิ้นแล้วจึงนำอุปกรณ์ไป ทดสอบพบว่า ปลั๊กไฟทั่วไปและปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถให้ พลังงานไฟฟ้าได้เหมือนปลั๊กไฟทั่วไป โดยสามารถควบคุมผ่านการเชื่อมต่ออุปกรณ์ที่สามารถเชื่อมต่อ กับสัญญาณไวไฟได้เข้ากับสัญญาณไวไฟของปลั๊กไฟ หรือนำปลั๊กไฟไปเชื่อมต่อกับเครือข่ายอินเทอร์เน็ต เพื่อควบคุมผ่านเครือข่ายอินเทอร์เน็ต เพื่อควบคุมผ่านเครือข่ายอินเทอร์เน็ตได้ อีกทั้งยังสามารถบอกข้อมูลพยากรณ์อากาศ วันและเวลาได้ เมื่อใต้กลับต่อเข้ากับแคร็อข่ายอินเทอร์เน็ตได้อีกด้วย

กิตติกรรมประกาศ

คณะผู้จัดทำได้ร่วมแรงกายและแรงใจเป็นอย่างมากในการทำโครงงานในครั้งนี้ โครงงานนี้จะ ไม่สามารถสำเร็จลุล่วงได้ถ้าไม่มีคุณครูอัจฉรัตน์ ยืนนาน ที่มอบโอกาสให้พวกเราได้จัดทำโครงงานเรื่อง ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug) นี้ ขึ้น จึงทำให้พวกเราได้เรียนรู้ ได้รับคำแนะนำและการช่วยเหลือเป็นอย่างมากจากคุณครูสมพงษ์ นาค เจือในการทำโครงงานนี้จนสำเร็จเสร็จสิ้น ขอขอบพระคุณครูลำยอง ไทยตระกูล หัวหน้ากลุ่มสาระการ เรียนรู้วิทยาศาสตร์ที่ช่วยอำนวยความสะดวกด้านแผงโครงงาน และทางคณะผู้จัดทำใคร่ขอขอบคุณครู ที่ปรึกษาเพิ่มเติม บิดามารดา เพื่อนๆ และผู้ให้คำแนะนำเพิ่มเติมทุกๆ ท่านที่ช่วยทำให้โครงงานนี้ สามารถสำเร็จลุล่วงไปได้ด้วยดีภายใต้เวลาอันจำกัดเช่นนี้ ทางคณะผู้จัดทำต้องขออภัยเป็นอย่างสูง หากมิได้กล่าวถึงผู้ใดมา ณ ที่นี้

คณะผู้จัดทำ

สารบัญ

เรื่อง	หน้า
บทคัดย่อ	ุก
กิตติกรรมประกาศ	ข
สารบัญ	ค
สารบัญตาราง	. 9
สารบัญรูปภาพ	ูจ
บทที่ ๑ – บทนำ	o
บทที่ ๒ – เอกสารที่เกี่ยวข้อง	ď
บทที่ ๓ – อุปกรณ์และวิธีดำเนินการ	ಡ
บทที่ ๔ – ผลการดำเนินงาน	o o
บทที่ ๕ – สรุปผลการดำเนินการ/อภิปรายผลการดำเนินการ	୍ ୭୯
บรรณานุกรม	ฉ
ภาคผนวก	

สารบัญตาราง

เรื่อง	หน้า
ตาราง ๑ – แผนการปฏิบัติงาน	ಳ
ตาราง ๒ – ผลการวัดค่ากระแสไฟฟ้าระหว่างปลั๊กไฟทั่วไปกับปลั๊กไฟควบคุมผ่านสัญญาณไวไพ	ใหรือ
เครือข่ายอินเทอร์เน็ต	ത

สารบัญรูปภาพ

เรื่อง	หน้า
ภาพ ๑ – การทำงานของเซิฟเวอร์	
&	
ภาพ ๒ – ไมโครคอนโทรลเลอร์ NodeMCU V.๓	р
ภาพ ๓ – ไมโครคอนโทรลเลอร์ Arduino UNO R๓	р
ภาพ ๔ – รีเลย์	ଚା
ภาพ ๕ – ส่วนประกอบภายในของรีเลย์	ଚା
ภาพ ๖ – จุดต่อใช้งานมาตรฐานของรีเลย์	ଚା
ภาพ ๗ – การทดสอบการเชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟของปลั๊กไฟควบคุมผ่านสัญญาณไว	วไฟ
หรือเครือข่ายอินเทอร์เน็ต	൭൭
ภาพ ๘ – การทดสอบการเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตเข้า	กับ
สัญญาณไวไฟเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ต	രി

บทน้ำ

ที่มาและความสำคัญ

ในปัจจุบันนี้ มีผู้ป่วยในโรคกลุ่มอาการสมองเสื่อมถึงร้อยละ 60 แม้แต่คนทำงานธรรมดา ก็ยัง ต้องทำงานต่างๆ มากยิ่งขึ้น ส่งผลให้การดูแลสิ่งต่างๆ ให้ทั่วถึงเป็นไปได้ยาก โดยเฉพาะในเรื่องอุปกรณ์ เครื่องใช้ไฟฟ้าแล้ว ถ้าหากเราไม่ดูแลให้ดีแล้วก็อาจเกิดไฟฟ้าลัดวงจร หรืออาจเกิดเพลิงไหม้ได้ ซึ่ง สามารถสร้างความเสียหายและคร่าชีวิตคนที่คุณรักไปได้

หนึ่งในวิธีแก้ไขปัญหาคือ ควบคุมปลั๊กไฟผ่านเครือข่ายอินเทอร์เน็ต จากข้อมูลพฤติกรรม การใช้อินเทอร์เน็ต ปี พ.ศ. ๒๕๕๙ โดยสำนักงานพัฒนาธุรกรรมทางอิเล็กทรอนิกส์ (องค์การมหาชน) กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคมพบว่า ผู้ใช้ ๑ คนใช้อินเทอร์เน็ตโดยเฉลี่ย ๖.๔ ชั่วโมงต่อวัน นับเป็นหนึ่งในสี่ของชีวิตประจำวัน ดังนั้นการควบคุมปลั๊กไฟผ่านเครือข่ายอินเทอร์เน็ตจึงเป็นวิธีหนึ่งที่ สร้างความสะดวกสบายให้กับผู้ใช้ได้

คณะผู้จัดทำได้ทำการใช้ไมโครคอนโทรลเลอร์ ซึ่งเป็นอุปกรณ์ที่สามารถรับข้อมูล ประมวลผล และส่งออกข้อมูลได้ตามที่ได้ทำการเขียนโปรแกรมไว้ โดยได้เลือกใช้ไมโครคอนโทรลเลอร์ NodeMCU เนื่องจากสามารถเชื่อมต่ออินเทอร์เน็ตโดยใช้เทคโนโลยี ไว่ไฟ ซึ่งเป็นเทคโนโลยีที่ใช้คลื่นสัญญาณวิทยุ สร้างเครือข่ายไร้สายที่ช่วยในการติดต่อสื่อสารระหว่างกลุ่มอุปกรณ์ที่สามารถเชื่อมต่อสัญญาณไว่ไฟ เช่น คอมพิวเตอร์ สมาร์ทโฟนได้ และยังสามารถปล่อยสัญญาณไว่ไฟออกมาให้อุปกรณ์เชื่อมต่อได้ใน ระยะสั้นๆ อีกด้วย ทำให้ผู้ใช้สามารถควบคุมปลั๊กไฟผ่านได้ทั้งสองช่องทาง คือทางอินเทอร์เน็ตผ่าน ทางหน้าเว็บไซต์ควบคุมปลั๊กไฟ และเชื่อมต่อเข้ากับสัญญาณไว่ไฟของอุปกรณ์โดยตรง และเพื่อเป็นการ ขยายความสามารถของอุปกรณ์มากขึ้น ทางคณะผู้จัดทำได้ทำการเพิ่มหน้าจอแสดงผล เพื่อแสดง สถานะของการเชื่อมต่อ การเปิดใช้ปลั๊กไฟ นาฬิกา ปฏิทิน และรายงานสภาพอากาศประจำวัน โดยทำ การดึงข้อมูลจากเครือข่ายอินเทอร์เน็ตมาแสดงผล

จุดประสงค์ของโครงงาน

- ๑. เพื่อเข้าใจความหมายของโครงงานวิทยาศาสตร์และจัดทำโครงงานวิทยาศาสตร์ที่สนใจ
- ๒. เพื่อศึกษาการทำงานของไมโครคอนโทรลเลอร์
- ๓. เพื่อฝึกการทำงานเป็นกลุ่มและนำความรู้ไปประยุกต์ใช้ในชีวิตประจำวัน

สมมติฐาน

- ๑. ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถใช้งานได้จริง
- ๒. ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถควบคุมผ่านอุปกรณ์ต่างๆ ได้โดยการเชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟของปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือ เครือข่ายอินเทอร์เน็ต
- ๓. ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถควบคุมผ่านอุปกรณ์ต่างๆ ได้โดยการเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตเข้ากับสัญญาณ ไวไฟเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ต

ตัวแปรในการทดลอง

ตอนที่ ๑ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถใช้งานได้จริง

- ตัวแปรต้น: ปลั๊กไฟทั่วไป ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต
- ตัวแปรตาม: กระแสไฟฟ้าออก
- ตัวแปรควบคุม: กระแสไฟฟ้าเข้า

ตอนที่ ๒ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถควบคุมผ่าน อุปกรณ์ต่างๆ ได้โดยการเชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟของปลั๊กไฟควบคุมผ่านสัญญาณ ไวไฟหรือเครือข่ายอินเทอร์เน็ต

• ตัวแปรต้น: อุปกรณ์ที่สามารถเชื่อมต่อสัญญาณไวไฟได้

• ตัวแปรตาม: กระแสไฟฟ้า

ตัวแปรควบคุม: ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

ตอนที่ ๓ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถควบคุมผ่าน อุปกรณ์ต่างๆ ได้โดยการเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต เข้ากับสัญญาณไวไฟเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ต

• ตัวแปรต้น: สัญญาณไวไฟที่ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่าย อินเทอร์เน็ตเชื่อมต่อ

ตัวแปรตาม: กระแสไฟฟ้า

• ตัวแปรควบคุม: ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

นิยามเชิงปฏิบัติการ

- ปลั๊กไฟ หมายถึง อุปกรณ์ไฟฟ้ามีขาโลหะ ๒ ขา (บางแบบมี ๓ ขา) ปลายข้างหนึ่งของแต่ละขา ตรึงอยู่กับวัตถุหุ้ม ซึ่งเป็นฉนวนไฟฟ้า ใช้เสียบเข้ากับเต้ารับเพื่อให้กระแสไฟฟ้าเคลื่อนที่ผ่าน เข้าสู่เครื่องใช้ไฟฟ้าได้ครบวงจร เต้าเสียบ ก็เรียก
- ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug) หมายถึงอุปกรณ์ที่ผู้ใช้สามารถควบคุมปลั๊กไฟได้ผ่านทางเครือข่ายอินเทอร์เน็ตหรือผ่าน การเชื่อมต่ออุปกรณ์ที่สามารถเชื่อมต่อสัญญาณไวไฟเข้ากับสัญญาณที่ปลั๊กไฟปล่อยออกมาได้ และสามารถบอกข้อมูลวันเวลา พยากรณ์อากาศได้เมื่อเชื่อมต่อเครือข่ายอินเทอร์เน็ต

- ไวไฟ (Wi-Fi) หมายถึงเทคโนโลยีที่ใช้คลื่นวิทยุสร้างเครือข่ายสัญญาณไร้สาย ทำให้อุปกรณ์ที่ สามารถเชื่อมต่อสัญญาณไวไฟสามารถติดต่อสื่อสารกันได้
- อุปกรณ์ที่สามารถเชื่อมต่อสัญญาณไวไฟ หมายถึงอุปกรณ์ที่ติดตั้งชิปเซ็ตไวไฟไว้ในอุปกรณ์ ทำ ให้สามารถเชื่อมต่อสัญญาณอินเทอร์เน็ตได้ เช่น คอมพิวเตอร์ สมาร์ทโฟน เป็นต้น
- อินเทอร์เน็ต (Internet) หมายถึงเครือข่ายคอมพิวเตอร์ที่เชื่อมต่อกันเป็นจำนวนมาก ครอบคลุมไปทั่วโลกรวมกันเป็นหนึ่งเดียวทั้งโลก โดยอาศัยโครงสร้างระบบสื่อสารโทรคมนาคม เป็นตัวกลางในการแลกเปลี่ยนข้อมูล
- เชิฟเวอร์ (Server) หมายถึงคอมพิวเตอร์ชนิดหนึ่ง ทำหน้าที่เก็บข้อมูลเพื่อแสดงเว็บไซต์และ ให้บริการกับลูกข่าย (Client) โดยการตอบกลับความต้องการ (Request) ของลูกข่าย
- ไมโครคอนโทรลเลอร์ (Microcontroller) หมายถึงอุปกรณ์ที่สามารถรับเข้า ประมวลผล และ ส่งข้อมูลการประมวลผลต่างๆ ออกมาได้ โดยสามารถเขียนชุดคำสั่งต่างๆ ใส่ไว้ในอุปกรณ์ เพื่อให้อุปกรณ์ทำงานตามคำสั่งที่ได้ทำการเขียนไว้ได้

ขอบเขตของการศึกษา

- ใช้ไฟบ้าน (๒๒๐ โวลต์)
- ใช้ไมโครคอนโทรลเลอร์ NodeMCU V.m.

ประโยชน์ที่คาดว่าจะได้รับ

- ๒. ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตจะถูกประยุกต์ใช้กับเครื่องมืออื่นๆ
- ๓. ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตจะถูกพัฒนาต่อยอดในอนาคต

เอกสารที่เกี่ยวข้อง

ทฤษฎีหรือแนวคิดในการจัดทำโครงงานวิทยาศาสตร์

อินเทอร์เน็ต (Internet) คือเครือข่ายที่มีคอมพิวเตอร์และอุปกรณ์ต่างๆ เชื่อมต่อกันภายใต้ มาตรฐานการสื่อสารเดียวกันอย่างสากลรวมกันเป็นหนึ่งเดียวทั้งโลก โดยอาศัยโครงสร้างระบบสื่อสาร โทรคมนาคม เป็นตัวกลางในการแลกเปลี่ยนข้อมูล เนื่องจากเป็นเครือข่ายสาธารณะที่ไม่มีผู้ใดเป็น เจ้าของ ทำให้สามารถเข้าสู่เครือข่ายเป็นไปได้อย่างเสรีและเป็นแหล่งรวมข้อมูลที่ใช้เป็นเครื่องมือ สื่อสาร สืบค้นสารสนเทศต่างๆ จากทั่วโลกได้ในรูปแบบต่างๆ เช่น ข้อความ ภาพประกอบ เสียง หรือ วิดีโอเป็นต้น

เซิฟเวอร์ (Server) คือคอมพิวเตอร์ชนิดหนึ่งที่ทำหน้าให้บริการต่างๆ ในโครงข่าย อินเทอร์เน็ต เมื่อลูกข่าย (Client) ทำการร้องขอข้อมูล (Request) มา ก็จะทำการประมวลผลและส่ง ข้อมูลที่ได้เก็บไว้ให้กับลูกข่ายตามที่ร้องขอมา เนื่องจากลูกข่ายไม่ได้มีเพียงลูกข่ายเดียว เซิฟเวอร์จึง จำเป็นที่จะต้องสามารถรองรับ จัดสรรทรัพยากรเพื่อให้บริการต่างๆ ได้ทันที

ภาพ ๑ - การทำงานของเซิฟเวอร์

(อ้างอิง: http://computer.howstuffworks.com/web-server@.htm)

ไวไฟ (Wi-Fi) คือเทคโนโลยีที่ใช้คลื่นวิทยุสร้างเครือข่ายสัญญาณไร้สาย ทำให้อุปกรณ์ที่ สามารถเชื่อมต่อสัญญาณไวไฟสามารถติดต่อสื่อสารกันได้ โดยการเชื่อมต่อสัญญาณไวไฟนั้นจะต้องใช้ อุปกรณ์ปล่อยสัญญาณไวไฟเพื่อทำการปล่อยคลื่นวิทยุที่มีความถี่อยู่ในช่วง ๒.๔ – ๕.๐ กิโลเฮิรตซ์ ออกมา ซึ่งช่วงความถี่นี้จะขึ้นอยู่กับมาตรฐานและความต้องการของผู้ใช้ หลังจากนั้นอุปกรณ์ต่างๆ ก็ สามารถเชื่อมต่อได้ผ่านคลื่นวิทยุที่ปล่อยออกมา โดยเรียกจุดให้บริการเหล่านี้ว่า Access Point ใน ปัจจุบันนี้เทคโนโลยีไวไฟเป็นที่นิยมและแพร่หลายเป็นอย่างมากเนื่องจากสามารถเชื่อมต่ออุปกรณ์ทุก อย่างได้โดยไม่ต้องใช้สายสัญญาณเชื่อมต่อเข้ากับอุปกรณ์

ไมโครคอนโทรลเลอร์ (Microcontroller) คืออุปกรณ์ขนาดเล็กที่มีความคล้ายคลึงกับเครื่อง คอมพิวเตอร์ขนาดเล็กเครื่องหนึ่ง โดยอุปกรณ์นี้จะสามารถรับข้อมูลเข้า ประมวลผล และส่งออกข้อมูล ได้เช่นเดียวกับคอมพิวเตอร์ทั่วๆ ไป โดยทั่วไปแล้วมักจะมาเป็นบอร์ดวงจรไฟฟ้า ซึ่งทำให้ผู้ใช้สามารถ ใช้งานได้สะดวก และไมโครคอนโทรลเลอร์บางค่ายก็มีระบบปฏิบัติการติดมาด้วย ทำให้สามารถสั่งการ และทำงานที่ซับซ้อนได้มากยิ่งขึ้น ในปัจจุบันไมโครคอนโทรลเลอร์มีหลากหลายค่าย หลากหลาย รูปแบบ อาทิเช่น Arduino Raspberry Pi NodeMCU เป็นต้น โดยในการพัฒนาอุปกรณ์ครั้งนี้จะใช้ บอร์ดไมโครคอนโทรลเลอร์ NodeMCU

NodeMCU คือแผงวงจรไมโครคอนโทรลเลอร์รูปแบบหนึ่งที่ประกอบไปด้วย Development Kit (ตัวแผงวงจร) และ Firmware (ซอฟต์แวร์ในแผงวงจร) ที่เป็น Open source ซึ่งสามารถเขียน โปรแกรมด้วยภาษา Lau ได้ ทำให้สามารถใช้งานได้ง่าย และสิ่งที่พิเศษของ NodeMCU คือมีโมดูล Wi-Fi (ESP๘๒๖๖) ซึ่งสามารถเชื่อมต่อกับเครือข่ายอินเตอร์เน็ตได้ โดยโมดูล ESP๘๒๖๖ นั้นมีอยู่ ด้วยกันหลายรุ่น ตั้งแต่รุ่นแรก ESP-๑๑ จนถึงรุ่น ESP-๑๒ โดยใน NodeMCU V.๑ นั้นจะใช้ ESP-๑๒ ส่วนใน NodeMCU V.๒ และ NodeMCU V.๓ นั้นจะใช้ ESP-๑๒ ซึ่งโดยทั่วไปไม่แตกต่างกันมากนัก ซึ่งในการพัฒนาครั้งนี้จะใช้ NodeMCU V.๓

NodeMCU นั้นมีลักษณะคล้ายคลึงกับบอร์ดไมโครคอนโทรลเลอร์ Arduino ซึ่งเป็น
ไมโครคอนโทรลเลอร์ค่ายหนึ่งที่มีพอร์ต Input Output ในตัว ทำให้สามารถต่อเข้ากับอุปกรณ์
อิเล็กทรอนิกส์และควบคุมวงจรอิเล็กทรอนิกส์ได้ และไม่นานมานี้ก็มีนักพัฒนาที่ทำให้ Arduino IDE ซึ่ง
เป็นซอฟต์แวร์ในการเขียนคำสั่งควบคุมการทำงานของไมโครคอนโทรลเลอร์ Arduino สามารถใช้งาน
ร่วมกับ NodeMCU ได้ จึงทำให้ใช้ภาษา C/C++ ซึ่งปกติใช้ในการเขียนโปรแกรมควบคุม
ไมโครคอนโทรลเลอร์ Arduino สามารถเขียนควบคุม NodeMCU ได้ ทำให้สามารถใช้งานได้
หลากหลายมากยิ่งขึ้น

ภาพ ๒ – ไมโครคอนโทรลเลอร์ NodeMCU V.๓

(อ้างอิง: https://www.banggood.com/V๓-NodeMcu-Lua-WIFI-Development-Board-p-๙๙๒๗๓๓.html)

ภาพ ๓ – ไมโครคอนโทรลเลอร์ Arduino UNO R๓ (อ้างอิง:

http://www.hobbytronics.co.uk/arduino-uno-r

ണ)

รีเลย์ (Relay) เป็นอุปกรณ์ที่เปลี่ยนพลังงานไฟฟ้าให้เป็นพลังงานแม่เหล็กโดยการป้อน กระแสไฟฟ้าให้กับขดลวดเพื่อใช้ในการดึงดูดหน้าสัมผัสซึ่งทำหน้าที่เป็นเหมือนสวิตช์ให้เปลี่ยนสภาวะ เปิด/ปิด ซึ่งเราสามารถนำรีเลย์ไปประยุกต์ใช้ ในการควบคุมวงจรต่าง ๆ ในงานอิเล็กทรอนิกส์มากมาย

ภาพ ๔ - รีเลย์

(อ้างอิง: http://www.hobbytronics.co.uk/๕vrelay-๑๐a)

ภาพ ๕ – ส่วนประกอบภายในของรีเลย์

(อ้างอิง: http://fabacademy.org/archives/ ๒๑๑๔/students/shorer.oded/lesson๑๒.html)

รีเลย์ประกอบด้วยส่วนสำคัญ ๒ ส่วนหลักคือ

๑. ส่วนของขดลวด (Coil) เหนี่ยวนำกระแสต่ำ ทำหน้าที่สร้างสนามแม่เหล็กไฟฟ้าให้แกนโลหะไป กระทุ้งให้หน้าสัมผัสต่อกัน ทำงานโดยการรับแรงดันจากภายนอกที่ต่อคร่อมขดลวดเหนี่ยวนำซึ่งแรงดัน นั้นขึ้นกับชนิดและรุ่นตามที่ผู้ผลิตกำหนด เมื่อขดลวดได้รับแรงดันจะเกิดสนามแม่เหล็กไฟฟ้าทำให้แกน โลหะด้านในไปกระทุ้งให้แผ่นหน้าสัมผัสต่อกัน

๒. ส่วนของหน้าสัมผัส (Contact) ทำหน้าที่เหมือนสวิตช์จ่ายกระแสไฟให้กับอุปกรณ์ที่เราต้องการ

รีเลย์มีจุดต่อใช้งานมาตรฐาน ประกอบด้วย

- จุดต่อ C ย่อมากจาก Common คือ จุดร่วมที่ต่อมาจากแหล่งจ่ายไฟ
- จุดต่อ NC ย่อมาจาก Normal Close (ปกติปิด) คือจุดต่อที่จะมีไฟฟ้าจากจุด ต่อ C ใหลเมื่อยังไม่จ่ายไฟให้กับ ขดลวดเหนี่ยวนำหน้าสัมผัส
- จุดต่อ NO ย่อมาจาก Normal Open (ปกติเปิด) คือจุดต่อที่จะไม่มีไฟฟ้าจาก จุดต่อ C ไหลเมื่อยังไม่จ่ายไฟให้กับ ขดลวดเหนี่ยวนำหน้าสัมผัส

ภาพ ๖ - จุดต่อใช้งานมาตรฐานของรีเลย์

(อ้างอิง: http://www.hobbytronics.co.uk/๕vrelay-๑๐a)

อุปกรณ์และวิธีการดำเนินการ

จากการทำสิ่งประดิษฐ์ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug) มีวัสดุ อุปกรณ์ เครื่องมือ และวิธีการดำเนินการดังนี้

วัสดุ อุปกรณ์ เครื่องมือ

- วัสดุ อุปกรณ์
 - ๑. ไมโครคอนโทรลเลอร์ NodeMCU V.๓
 - ๒. โมดูลรีเลย์
 - ๓. ตัวต้านทาน
 - ๓.๑. ขนาด ๒๒๐ โอห์ม ๒ ตัว
 - ๓.๒. ขนาด ๒ กิโลโอห์ม ๑ ตัว
 - ๔. วงจรแปลงกระแสไฟจาก ๒๒๐ โวลต์เป็น ๕ โวลต์
 - ๕. වෙරම LCD Screen
 - ๖. ฟิวส์
 - ๗. Breadboard
 - ๘. สวิตช์
 - ๙. หัวปลั๊กไฟตัวผู้ ๑ ตัว
 - ๑๐.หัวปลั๊กไฟตัวเมีย ๒ ตัว
 - ๑๑.สายไฟ
 - ๑๒.เทปพันสายไฟ
 - ๑๓. ท่อหด
 - ๑๔.ตะกั่วบัดกรี
 - ๑๕.กล่องใส่วงจรไฟฟ้า
 - ๑๖.กาวสองหน้าแบบหนา
 - ๑๗.เข็มขัดรัดสายไฟ

• เครื่องมือ

- ๑. หัวแร้ง
- ๒. คอมพิวเตอร์
- ๓. คัตเตอร์
- ๔. มัลติมิเตอร์
- ๕. ปืนกาว

แผนการปฏิบัติงาน

การปฏิบัติงาน	พฤษภาคม	มิถุนายน	กรกฎาคม	สิงหาคม
1111000000118	0ල් නිඔ	රුදුනුඔ	ල් වර	0ල් නිඔ
๑. การเลือกโครงงาน				
๒. การเขียนเค้าโครง				
๓. การลงมือทำ				
๔. การเขียนรายงานผล				
๕. การนำเสนอโครงงาน				

ตาราง ๑ – แผนการปฏิบัติงาน

ขั้นตอนในการดำเนินงาน

- ๑. วางแผนแล้วออกแบบสิ่งประดิษฐ์
 - ๑.๑. วิเคราะห์ปัญหาและค้นหาวิธีการแก้ไขที่เหมาะสม
 - ๑.๒. ศึกษาทฤษฎีทางไฟฟ้าเบื้องต้น
 - ๑.๓. สืบค้นไมโครคอนโทรลเลอร์ที่มีความเหมาะสมกับการแก้ปัญหา
 - ๑.๔. ศึกษาศักยภาพของไมโครคอนโทรลเลอร์เพื่อให้สามารถใช้อย่างเต็มความสามารถ
 - ๑.๕. ศึกษาการเขียนโปรแกรมควบคุมไมโครคอนโทรลเลอร์

- ๑.๖. ศึกษาอุปกรณ์อื่นๆ ที่เกี่ยวข้องกับการทำสิ่งประดิษฐ์
- ๑.๗. ออกแบบลักษณะของอุปกรณ์และการเชื่อมต่อวงจร
- ๒. ลงมือประดิษฐ์สิ่งประดิษฐ์
 - ๒.๑. เขียนโปรแกรมให้กับไมโครคอนโทรลเลอร์เพื่อแก้ปัญหาตามต้องการ
 - ๒.๒. นำอุปกรณ์มาเชื่อมต่อลงในกล่องตามที่ได้ออกแบบไว้ในขั้นที่ ๑
- ๓. ตรวจสอบแล้วทดลองสิ่งประดิษฐ์

นำสิ่งประดิษฐ์มาตรวจสอบตามสมมติฐาน

- ๓.๑. สมมติฐานที่ ๑ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต สามารถใช้งานได้จริง
 - ๓.๑.๑. นำมัลติมิเตอร์วัดค่าความต่างศักย์และกระแสไฟฟ้าระหว่างปลั๊กไฟกับ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต
- ๓.๒. สมมติฐานที่ ๒ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต สามารถควบคุมผ่านอุปกรณ์ต่างๆ ได้โดยการเชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟ ของปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต
 - ๓.๒.๑. นำอุปกรณ์เชื่อมต่อเข้ากับสัญญาณไวไฟของปลั๊กไฟ
 - ๓.๒.๒. เข้าหน้าเว็บ ๑๙๒.๑๖๘.๑.๔
 - ๓.๒.๓. ทดลองควบคุมปลั๊กไฟผ่านหน้าเว็บ
- ๓.๓. สมมติฐานที่ ๓ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต สามารถควบคุมผ่านอุปกรณ์ต่างๆ ได้โดยการเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณ ไวไฟหรือเครือข่ายอินเทอร์เน็ตเข้ากับสัญญาณไวไฟเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ต
 - ๓.๓.๑. นำสิ่งประดิษฐ์เชื่อมต่อกับไวไฟ
 - ๓.๓.๒. เข้าหน้าเว็บ https://goo.gl/3XUPdt/
 - ๓.๓.๓. ลงชื่อเข้าใช้ด้วยชื่อผู้ใช้และรหัสผ่านที่ตั้งไว้
 - ๓.๓.๔. ทดลองควบคุมปลั๊กไฟผ่านหน้าเว็บ
- ๔. นำสิ่งประดิษฐ์ไปใช้แล้วนำมาปรับปรุง
 - ๔.๑. นำสิ่งประดิษฐ์ไปใช้งานจริงในชีวิตประจำวัน
 - ๔.๒. นำข้อผิดพลาดต่างๆ ที่ได้จากการใช้งานจริงมาปรับปรุง
 - ๔.๓. นำเสนอสิ่งประดิษฐ์

ผลการดำเนินงาน

จากการทำสิ่งประดิษฐ์ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug) ทางผู้จัดทำได้ทำการตรวจสอบตามสมมติฐานที่ตั้งไว้และได้ผลลัพธ์ดังนี้ ตอนที่ ๑ - ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถใช้งานได้จริง

• วิธีการตรวจสอบ

นำมัลติมิเตอร์วัดค่าความต่างศักย์และกระแสไฟฟ้าระหว่างปลั๊กไฟกับปลั๊กไฟควบคุมผ่าน สัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

• ผลการตรวจสอบ

ค่าไฟฟ้า	ปลั๊กไฟทั่วไป	ปลั๊กไฟควบคุมผ่าน สัญญาณไวไฟหรือเครือข่าย อินเทอร์เน็ต	ความแตกต่าง
ความต่างศักย์ (โวลต์)	୭୭๗.๖ โวลต์	๒๒๗.๐ โวลต์	0.๖ โวลต์

ตาราง ๒ – ผลการวัดค่ากระแสไฟฟ้าระหว่างปลั๊กไฟทั่วไปกับปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่าย กินเทอร์เน็ต

ตอนที่ ๒ - ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถควบคุมผ่าน อุปกรณ์ต่างๆ ได้โดยการเชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟของปลั๊กไฟควบคุมผ่านสัญญาณ ไวไฟหรือเครือข่ายอินเทอร์เน็ต

• วิธีการตรวจสอบ

เชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟของปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่าย อินเทอร์เน็ต

• ผลการตรวจสอบ

ภาพ ๗ – การทดสอบการเชื่อมต่ออุปกรณ์เข้ากับสัญญาณไวไฟ ของปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

จากภาพที่ ๗ จะพบว่าอุปกรณ์ที่สามารถเชื่อมต่อสัญญาณไวไฟสามารถควบคุมปลั๊กไฟ ควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตได้ ตอนที่ ๓ - ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถควบคุมผ่าน อุปกรณ์ต่างๆ ได้โดยการเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตเข้า กับสัญญาณไวไฟเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ต

• วิธีการตรวจสอบ

เชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตเข้ากับสัญญาณไวไฟ

• ผลการตรวจสอบ

ภาพ ๘ – การทดสอบการเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต เข้ากับสัญญาณไวไฟเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ต

จากภาพที่ ๘ จะพบว่าสามารถควบคุมปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่าย อินเทอร์เน็ตผ่านเครือข่ายอินเทอร์เน็ตได้เมื่อเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือ เครือข่ายอินเทอร์เน็ตเข้ากับไวไฟ นอกจากนี้ยังสามารถแสดงข้อมูลวัน เวลา พยากรณ์อากาศ ออกมาได้อีกด้วย

สรุปผลการดำเนินการ/อภิปรายผลการดำเนินการ

จากการทำสิ่งประดิษฐ์ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต (Wi-Fi or Internet controlled Plug) สามารถสรุปและอภิปรายผลได้ดังนี้

สรุปผลการดำเนินการ

การทำโครงงานวิทยาศาสตร์เรื่องปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต ในครั้งนี้ ทำให้คณะผู้จัดทำได้เข้าใจความหมายของโครงงานวิทยาศาสตร์ และได้ทำโครงงาน วิทยาศาสตร์ที่สนใจ ได้ศึกษาการทำงานของไมโครคอนโทรลเลอร์และนำมาปรับใช้เข้ากับ ชีวิตประจำวัน นอกจากนี้ ยังได้ฝึกการทำงานเป็นกลุ่มอีกด้วย

จากการตรวจสอบสิ่งประดิษฐ์ตามสมมติฐานที่ได้ตั้งไว้ ทางคณะผู้จัดทำสามารถสรุปได้ว่า ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตให้ความต่างศักย์ใกล้เคียงกับปลั๊กไฟทั่วไป โดยปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตสามารถใช้อุปกรณ์ที่สามารถเชื่อมต่อ สัญญาณไวไฟเชื่อมต่อเพื่อควบคุมได้ และยังสามารถควบคุมได้ผ่านการเชื่อมต่อปลั๊กไฟควบคุมผ่าน สัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตเข้ากับสัญญาณไวไฟ นอกจากนี้ ยังสามารถแสดงข้อมูลวัน เวลา พยากรณ์อากาศออกมาได้อีกด้วย

อภิปรายผลการดำเนินการ

กระแสไฟฟ้าในปลั๊กไฟทั่วไปไม่ต้องผ่านอุปกรณ์ไฟฟ้าอื่นๆ จึงทำให้มีความต่างศักย์สูงกว่า ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตเล็กน้อย เมื่อเชื่อมต่ออุปกรณ์เข้ากับ สัญญาณไวไฟของปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต ปลั๊กไฟควบคุมผ่าน สัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตจะทำหน้าที่เป็นเว็บเชิฟเวอร์และอนุญาตให้อุปกรณ์เข้าถึงหน้า เว็บเพื่อควบคุมปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต เมื่อมีการเปลี่ยนแปลงจาก หน้าเว็บ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตจะตรวจสอบและเปลี่ยนแปลงไป ตามสถานะของหน้าเว็บ และเมื่อเชื่อมต่อปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

เข้ากับสัญญาณไวไฟ ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ตจะทำการดึงข้อมูล จากฐานข้อมูลและเปลี่ยนแปลงไปตามฐานข้อมูล

ข้อเสนอแนะ

ในการทำโครงงานวิทยาศาสตร์เรื่องปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่าย อินเทอร์เน็ตในครั้งนี้มีปัญหาหลายประการ โดยทางคณะผู้จัดทำได้เรียบเรียงไว้ดังนี้

- เมื่อกระแสไฟฟ้าขนาด ๒๒๐ โวลต์ใหลอยู่ข้างเคียงกับกระแสไฟฟ้าขนาด ๕ โวลต์จะทำ
 ให้เกิดคลื่นสัญญาณรบกวนกับกระแสไฟฟ้าขนาด ๕ โวลต์เนื่องจากคลื่นแม่เหล็กไฟฟ้าที่
 กระแสไฟฟ้าขนาด ๒๒๐ โวลต์ปล่อยออกมา
- การตั้งค่าสัญญาณไวไฟเพื่อให้ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต
 เชื่อมต่อเพื่อเข้าถึงเครือข่ายอินเทอร์เน็ตจำเป็นต้องตั้งค่าในคอมพิวเตอร์แล้วทำการอัพ
 โหลดโปรแกรมลงไมโครคอนโทรลเลอร์เท่านั้น

บรรณานุกรม

- "รูปแบบการเขียนบรรณานุกรม: ตัวอย่าง." [ออนไลน์]. เข้าถึงได้จาก: http://www.arts.chula.ac.th/ [ม.ป.ป.]. สืบค้น ๑๘ สิงหาคม ๒๕๖๐.
- "รีเลย์ (Relay) คืออะไร?." [ออนไลน์]. เข้าถึงได้จาก: http://www.psptech.co.th/ [๒๕๕๗]. สืบค้น ๑๘ สิงหาคม ๒๕๖๐.
- "Server คืออะไร ทำหน้าที่อะไร มีประโยชน์อย่างไร Server มีกี่ประเภท." [ออนไลน์]. เข้าถึงได้ จาก: http://www.xn--๑๒cg๑cxchdoa๒gzc๑c๕d๕a.net/server/ [ม.ป.ป.]. สืบค้น ๑๘ สิงหาคม ๒๕๖๐.
- "Server (เซิร์ฟเวอร์) คืออะไร." [ออนไลน์]. เข้าถึงได้จาก: http://ho.co.th/what-is-server/ [๒๕๖๐]. สืบค้น ๑๘ สิงหาคม ๒๕๖๐.
- "Internet คืออะไร อินเตอร์เน็ต คือ เครือข่ายคอมพิวเตอร์ซึ่งเชื่อมต่อคอมพิวเตอร์จากทั่วโลก." [ออนไลน์]. เข้าถึงได้จาก: http://www.mindphp.com/ [๒๕๖๐]. สืบค้น ๑๘ สิงหาคม ๒๕๖๐.
- "อินเทอร์เน็ต คืออะไร." [ออนไลน์]. เข้าถึงได้จาก: http://guru.sanook.com/๒๗๗๔/ [๒๕๕๖]. สืบค้น ๑๘ สิงหาคม ๒๕๖๐.
- "Wi-Fi และ Wireless คืออะไร แตกต่างกันไหม ทำไมคนชอบเรียกปนๆกันมาดู." [ออนไลน์]. เข้าถึงได้จาก: http://itnewscu.com/Different-between-WIFI-and-Wireless.html [ม.ป.ป.]. สืบค้น ๕ สิงหาคม ๒๕๖๐.
- "What is WiFi and How Does it Work?." [ออนไลน์]. เข้าถึงได้จาก: http://ccm.net/faq/ ๒๙๘-what-is-wifi-and-how-does-it-work [๒๕๖๐]. สืบค้น ๕ สิงหาคม ๒๕๖๐.
- "NodeMCU กับ IoT ตอนที่ ๑ : NodeMCU คืออะไร." [ออนไลน์]. เข้าถึงได้จาก: http://satle you.com/ [๒๕๖๐]. สืบค้น ๒๖ สิงหาคม ๒๕๖๐.
- chatchai nokdee. "ไทยป่วยอัลไซเมอร์กว่า 6 แสนคน." [ออนไลน์].เข้าถึงได้จาก:
 http://www.thaihealth.or.th/ [ม.ป.ป.]. สืบค้น ๕ สิงหาคม ๒๕๖๐.สำนักงานพัฒนาธุรกรรม ทางอิเล็กทรอนิกส์ (องค์การมหาชน) กระทรวงดิจิทัลเพื่อเศรษฐกิจและสังคม. "Thailand Internet User Profile ๒๐๑๗." [ออนไลน์]. เข้าถึงได้จาก:
 https://www.etda.or.th/download-publishing/๕๙/ [ม.ป.ป.]. สืบค้น ๕ สิงหาคม ๒๕๖๐.

ภาคผนวก

ปลั๊กไฟควบคุมผ่านสัญญาณไวไฟหรือเครือข่ายอินเทอร์เน็ต

หน้าเว็บไซต์ของ ioPlug (https://goo.gl/3XUPdt/)