HSE and University of London Double Degree Programme in Data Science and Business Analytics

Elements of Econometrics, 2023-2024

Classteacher: Ksenia Kasianova.

Seminar 3. Pair linear regression

Problem 1.

Recall Gauss Markov theorem. What problems with can lead to violation of GMT? **Problem 2.**

Let Y_t be the aggregated consumption and X_t be aggregated disposable income. The regression model is

$$Y_t = \alpha + \beta X_t + \varepsilon_t, \quad t = 1, \dots, n$$

	t	Y_t	X_t		t	Y_t	X_t
1986	1	152	170	1992	7	177	200
1987	2	159	179	1993	8	179	207
1988	3	162	187	1994	9	184	215
1989	4	165	189	1995	10	186	216
1990	5	170	193	1996	11	190	220
1991	6	172	199	1997	12	191	225

$$n = 12,$$
 $\bar{X} = 200$
 $\sum X = 2400,$ $\bar{Y} = 173.92$
 $\sum Y = 2087,$ $\sum Y^2 = 364741$
 $\sum X^2 = 483236,$ $\sum XY = 419782$

- (a) (5 points) Calculate coefficient for pair linear regression, give an interpretation.
- (b) (10 points) Calculate $s^2, s^2_{\hat{\alpha}}, s^2_{\widehat{\beta}}.$
- (c) (5 points) Perform t-tests for both coefficients ($\alpha = 0.05$). Explain the results.
- (d) (5 points) Calculate 95%-confidence intervals.
- (e) (5 points) Calculate \mathbb{R}^2 .

Problem 3.

We are interested in investigating the factors governing the precision of regression coefficients. Consider the model

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$$

with OLS parameter estimates $\hat{\beta}_1, \hat{\beta}_2$ and $\hat{\beta}_3$. Under the Gauss Markov assumptions, we have

$$Var\left(\hat{\beta}_{2}\right) = \frac{\sigma_{\varepsilon}^{2}}{\sum_{i=1}^{n} \left(X_{2i} - \bar{X}_{2}\right)^{2}} \times \frac{1}{1 - r_{X_{2}X_{3}}^{2}},$$

where σ_{ε}^2 is the variance of ε and $r_{X_2X_3}$ is the sample correlation between X_2 and X_3 .

(a) **(4 marks)** Provide four factors that help with obtaining more precise parameter estimates for, say, $\hat{\beta}_2$.

Problem 4.

Consider a model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- (a) Derive confidence interval for prediction \hat{y}_{n+1} given new data x_{n+1} . Hint: Check if \hat{y}_{n+1} unbiased then consider the variance of $\hat{y}_{n+1} - y_{n+1}$.
- (b) Say, we have data for 10 observations:

$$\sum x_i = 20, \sum x_i^2 = 50, \sum y_i = 8, \sum y_i^2 = 26, \sum x_i y_i = 10$$

Find best linear unbiased prediction for y_{11} given that $x_{11} = 5$ and estimate it's precision by constructing confidence interval.