Семинар №2 по дисциплине «Электроника»

Тема: расчёт и моделирование диодных схем (идеализированные модели)

1. Теоретическое введение	1
1.1. Передаточные характеристики	1
1.2. Разные модели для диода	2
1.3. Идеализированные модели диода в программе spice	2
1.4. Передаточные характеристики схемы с идеальной моделью	о и
оделью с постоянным падением напряжения	3
1.5. Применение диода: выпрямитель	4
1.6. Применение диода: ограничитель	5
2. Задание для работы	6
3. Таблица вариантов	7

1. Теоретическое введение

1.1. Передаточные характеристики

Когда $V_{_{\rm BX}} < 0$, диод не пропускает ток, поэтому $V_{_{\rm BMX}} = V_{_{\rm BX}}$. Когда $V_{_{\rm BX}} > 0$, диод пропускает ток, поэтому $V_{_{\rm BMX}} = 0$.

1.2. Разные модели для диода

1.3. Идеализированные модели диода в программе spice

Формат описания идеализированной модели (либо идеальной модели, либо модели с постоянным падением напряжения):

.model <hasbahue> D(Ron=.1 Roff=1Meg Vfwd=<hanpяжение_открытия>)

Пример описания модели диода (скобки не обязательны):

.model largemodel D (Ron=.1 Roff=1Meg Vfwd=3)

1.4. Передаточные характеристики схемы с идеальной моделью и моделью с постоянным падением напряжения

Изображение демонстрирует различие двух моделей; как видно, у них разные точки излома характеристики.

Для модели идеального диода:

$$V_{\text{вых}} = \frac{R_2}{R_1 + R_2} V_{\text{вх}}, V_{\text{вх}} > 0$$

Для модели с постоянным падением напряжения:

$$\frac{V_{\text{BX}} - V_{\text{BbiX}}}{R_1} = \frac{V_{\text{BbiX}} - V_{D,\text{BKJ}}}{R_2} \text{ (3TK)} \rightarrow V_{\text{BbiX}} = \frac{\frac{R_2}{R_1} V_{\text{BX}} + V_{D,\text{BKJ}}}{1 + \frac{R_2}{R_1}}$$

1.5. Применение диода: выпрямитель

Выпрямители пропускают положительные полупериоды синусоиды и блокируют отрицательные полупериоды, или наоборот.

Когда $V_{_{\rm BX}}>0$, диод пропускает ток, значит $V_{_{\rm BMX}}=V_{_{\rm BX}}$; однако, когда $V_{_{\rm BX}}<0$, диод не пропускает ток, $V_{_{\rm BMX}}=I_{_{RI}}R_{_I}=0$.

1.6. Применение диода: ограничитель

Ограничитель предназначен для поддержания выходного напряжения ниже определенного уровня.

Добавление постоянного источника = 1 В помогает диоду пропускать через себя ток при $V_{_1} > 1$ В.

2. Задание для работы

(без использования мобильных телефонов, соцсетей, разговоров и консультаций)

Задание 1 (ручной расчёт) (вариант по таблице 1).

- а) (4 балла) Для заданной схемы (столбец 3) с заданной моделью диода (столбец 4) и номиналами элементов (столбец 5) вручную постройте график выходного напряжения V_{out} от входного тока I_{in} ;
- **б)** (1 балл) По графику передаточной характеристики вручную определите максимальное, минимальное и среднее значения выходного напряжения для случая, когда I_{in} задан в виде синусоидальной функции: $I_{in}(t) = I_{in0} + I_{in,m} \cos \omega t$ (значения I_{in0} ; $I_{in,m}$; f заданы по варианту, столбцы 6–8);

Указание 1: приведите необходимые расчёты и построения по графику.

Задание 2 (проверка с помощью SPICE-моделирования) (используйте spice-модель идеализированного диода)

- **а)** (1 балл) Соберите модель схемы в программе SPICE; задайте и подключите модель идеализированного диода с параметрами по варианту (имя модели фамилия студента); задайте названия для точек, чьи напряжения вы строите;
- **б)** (2 балла) промоделируйте передаточную функцию (ту же самую, что в задании 1,а) (используйте для этого директивы .PARAM и .STEP). С помощью инструментов программы определите граничные значения для I_{in} и для выходной величины.

Yказание 2: диапазон изменения I_{in} следует подобрать таким, чтобы на графике были хорошо видна граничная точка и наклон на участках слева и справа от неё.

Yказание 3: шаг изменения I_{in} в команде на моделирование следует подобрать таким, чтобы график получился гладким, а не кусочно-линейным.

в) (2 балла) задайте I_{in} в виде синусоидальной функции с параметрами по варианту и промоделируйте переходную функцию (ту же самую, что в задании 1,б); постройте на отдельных полях графики входного и выходного напряжения. С помощью инструментов программы определите для каждой линии максимальное, минимальное и среднее (Average) значения выходной величины.

Указание 4: результаты пунктов б) и в) этого задания должны совпасть с результатами пунктов а) и б) задания 1.

_для БИТ-203				номиналы	параметры sin входного сигнала		
N⁰	Бригада	схема	модель диода	элементов	$I_{in heta},\ {\cal M} A$	$I_{in,m}$, $\mathcal{M}A$	f, κΓu,
1	2	3	4	5	6	7	8
1	1	Б	с пост. падением напряжения (0,8 B)	R1 = 4	-1	4	5
2	2	В	идеальный	R1 = 10 kOm; Vb = -0.5 B	0	4	8
3	3	A	идеальный	R1 = 1 кОм; Vb = 0,5 B	1	3	4
4	4	Б	с пост. падением напряжения (0,8 В)	R1 = 5 кOм; Vb = -0,5 B	-1	4	9
5	5	В	с пост. падением напряжения (0,8 B)	R1 = 1	-1	4	1
6	6	В	с пост. падением напряжения (0,8 В)	R1 = 8 kOm; Vb = 0,5 B	-1	4	1
7	7	Б	с пост. падением напряжения (0,7 B)	R1 = 8 kOm; Vb = 0,5 B	1	3	10
8	8	В	с пост. падением напряжения (0,8 В)	R1 = 3 кОм; Vb = 0,5 B	-1	3	8
9	9	Б	с пост. падением напряжения (0,7 В)	R1 = 2 кОм; Vb = -0,5 B	-1	2	4
10	10	Б	идеальный	R1 = 6 кОм; Vb = -0,5 В	-1	4	10
11	11	A	с пост. падением напряжения (0,8 B)	R1 = 4 кОм; Vb = -0,5 B	1	4	8
12	12	В	идеальный	R1 = 8 кOм; Vb = 0,5 B	0	2	8
13	13	Б	с пост. падением напряжения (0,7 В)	R1 = 4 кOм; Vb = 0,5 B	1	3	3
14	14	Б	с пост. падением напряжения (0,8 В)	R1 = 10 кOм; Vb = 0,5 B	0	2	7
15	15	В	с пост. падением напряжения (0,8 B)	R1 = 9 KOM; Vb = -0.5 B	-1	2	9