Mantissenlänge und relative Maschinengenauigkeit macheps

1. Gegeben seien $z=\pm m\cdot 2^e$, $e\in\{e_{\min},\ldots,e_{\max}\}$ mit $m=(1.\ a_{-1}\ a_{-2}\ a_{-3}\ldots)_2$. Zudem sei $\varepsilon>0$ gegeben. Angenommen Sie wollen z als binäre Gleitkommazahl $\overline{z}=fl(z)$ mit Mantissenlänge N darstellen, wobei fl gemäß roundest-to-nearest rundet. Wie groß müssen Sie N wählen, sodass für den relativen Fehler

$$\frac{|z-\overline{z}|}{|z|}<\varepsilon$$

gilt? Berechnen Sie N beispielhaft für 10^{-7} und 10^{-16} .

2. Schreiben Sie ein Python-Programm, dass die Maschinengenauigkeit ermittelt, indem es einen Wert ε so lange halbiert, bis $1+\varepsilon>\varepsilon$ als Falsch gewertet wird. Geben Sie diese Zahl an.

Solution:

Vorlesung

$$\begin{aligned} &\frac{|z-\overline{z}|}{|z|} \leq \left(\frac{1}{2}\right)^N < \varepsilon \\ &\Leftrightarrow N < \frac{\log(\varepsilon)}{\log(\frac{1}{2})} \end{aligned}$$

```
>>> eps = 1
>>> while 1+eps > 1:
... eps /= 2
>>> eps
1.1102230246251565e-16
```