

Normalisation – Part 2

3NF

From BCNF to 3NF

Facts

- (1) There exists an algorithm that can generate **a lossless** decomposition into BCNF.
- (2) However, a BCNF-decomposition that is both lossless and dependency-preserving does not always exist.

 3NF is a less restrictive normal form such that a lossless and dependency preserving decomposition can always be found.

3NF - Definition

- A relation schema R is in **3NF** if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.
- 3NF allows data redundancy but excludes relation schemas with certain kinds of FDs (i.e., partial FDs and transitive FDs).

- Consider the following FDs of ENROL:
 - {StudentID, CourseNo, Semester} → {ConfirmedBy_ID, StaffName};
 - {ConfirmedBy_ID} \rightarrow {StaffName}.

Enrol						
StudentID	<u>CourseNo</u>	<u>Semester</u>	ConfirmedBy_ID	StaffName		
123456	COMP2400	2010 S2	u12	Jane		
123458	COMP2400	2008 S2	u13	Linda		
123458	COMP2600	2008 S2	u13	Linda		

Is ENROL in 3NF?

- {StudentID, CourseNo, Semester} is the only key.
- ENROL is not in 3NF because {ConfirmedBy_ID} → {StaffName}, {ConfirmedBy_ID} is not a superkey and {StaffName} is not prime attribute.

Algorithm for a dependency-preserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

Output: a set S of relation schemas in 3NF, each having a set of FDs

- Compute a **minimal cover** Σ' for Σ and start with $S = \phi$
- Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct left-hand-side X_i of FDs in Σ' that includes $X_i \rightarrow A_1, X_i \rightarrow A_2, \dots, X_i \rightarrow A_k$:
 - Add $R_i = X_i \cup \{A_1\} \cup \{A_2\} \cdots \cup \{A_k\}$ to S
- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_i$)
- if S does not contain a superkey of R, add a key of R as R_0 into S.
- Project the FDs in Σ' onto each relation schema in S

R

$$R_1 = X_1 A_1 ... A_K$$

...

$$R_n = X_n A$$

$$X_1 \rightarrow A_1$$

 $X_n \rightarrow A$

$$X_1 \rightarrow A_K$$

Minimal Cover - The Hard Part!

- Let Σ be a set of FDs. A **minimal cover** Σ_m of Σ is a set of FDs such that
 - ① Σ_m is equivalent to Σ , i.e., start with $\Sigma_m = \Sigma$;
 - **Dependent:** each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \to \{A_1, \ldots, A_k\}$ in Σ_m with $X \to A_1, \ldots, X \to A_k$;
 - **3 Determinant:** each FD has as few attributes on the left hand side as possible, i.e., for each FD $X \to A$ in Σ_m , check each attribute B of X to see if we can replace $X \to A$ with $(X B) \to A$ in Σ_m ;
 - 4 Remove a FD from Σ_m if it is redundant.

Minimal Cover

Theorem:

The minimal cover of a set of functional dependencies Σ always exists but is not necessarily unique.

• Examples: Consider the following set of functional dependencies:

$$\Sigma = \{ \textit{A} \rightarrow \textit{BC}, \textit{B} \rightarrow \textit{C}, \textit{B} \rightarrow \textit{A}, \textit{C} \rightarrow \textit{AB} \}$$

 Σ has two different minimal covers:

- $\bullet \ \Sigma_1 = \{A \to B, B \to C, C \to A\}$
- $\bullet \ \Sigma_2 = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$

Minimal Cover - Examples

- The set $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$ can be reduced to $\{A \rightarrow B, B \rightarrow C\}$, because $\{A \rightarrow C\}$ is implied by the other two.
- Given the set of FDs $\Sigma = \{B \to A, D \to A, AB \to D\}$, we can compute the minimal cover of Σ as follows:
 - start from Σ;
 - 2 check whether all the FDs in Σ have only one attribute on the right hand side (look good);
 - 3 determine if $AB \rightarrow D$ has any redundant attribute on the left hand side $(AB \rightarrow D)$ can be replaced by $B \rightarrow D$;
 - 4 look for a redundant FD in $\{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$ $(B \rightarrow A \text{ is redundant})$;

Therefore, the minimal cover of Σ is $\{D \to A, B \to D\}$.

Normalisation to 3NF – Example

- Consider ENROL again:
 - $\bullet \ \{StudentID, CourseNo, Semester\} \rightarrow \{ConfirmedBy_ID, StaffName\}$
 - $\bullet \ \{ConfirmedBy_ID\} \to \{StaffName\}$

StudentID	CourseNo	Semester	ConfirmedBy_ID	StaffName

 Can we normalise ENROL into 3NF by a lossless and dependency preserving decomposition?

Normalisation to 3NF – Example

- Consider ENROL again:
 - $\bullet \ \{StudentID, CourseNo, Semester\} \rightarrow \{ConfirmedBy_ID, StaffName\}$
 - $\bullet \ \{ConfirmedBy_ID\} \to \{StaffName\}$

StudentID	CourseNo	Semester	ConfirmedBy_ID	StaffName

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {ConfirmedBy_ID} → {StaffName}}.
- Hence, we have:
 - R_1 ={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} \rightarrow {ConfirmedBy_ID}
 - R₂={ConfirmedBy_ID, StaffName} with {ConfirmedBy_ID} → {StaffName}
 - Omit R₀ because R₁ is a superkey of ENROL.

3NF - Exercises

- Let us do some exercises for the 3NF-decomposition algorithm.
 - Exercise 1: $R = \{A, B, C, D\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:

• Exercise 2: $R = \{A, B, C, D\}$ and $\Sigma = \{AD \rightarrow B, AB \rightarrow C, C \rightarrow B\}$:

3NF - Exercises

- Let us do some exercises for the 3NF-decomposition algorithm.
 - Exercise 1: $R = \{A, B, C, D\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:
 - $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$ is a minimal cover.
 - $R_1 = ABD$, $R_2 = BC$ (omit R_0 because R_1 is a superkey of R)
 - The 3NF-decomposition is {ABD, BC}.
 - Exercise 2: $R = \{A, B, C, D\}$ and $\Sigma = \{AD \rightarrow B, AB \rightarrow C, C \rightarrow B\}$:
 - Σ is its own minimal cover.
 - $R_1 = ABD$, $R_2 = ABC$, $R_3 = CB$ (omit R_3 because $R_3 \subseteq R_2$ and omit R_0 because R_1 is a superkey of R)
 - The 3NF-decomposition is {ABD, ABC}.