Explanations for Analysis output files

Analysis Description.txt

This file contains a description of the settings and the methods used for analysis of the raw reads into clusters of OTUs. It contains three sections: input; settings; methods.

Example

```
Log of the AnalysisName study analysis.
Analysis Description: This is an analysis conducted as an example
Input
Run Name:Standard.
Are the reads paired: Yes.
The run has two indexes: Yes.
The reverse index filename (I1) is: I1.fastq.
The forward index filename (I2) is: I2.fastq.
The forward reads filename (R1) is: R1.fastq.
The reverse reads filename (R2) is: R2.fastq.
Settings
Number of allowed mismatches in the barcode: 2
Min fastq quality score for trimming of unpaired reads: 3
Min length of the paired sequence cutoff: 400
Max length of the paired sequence cutoff: 500
Max number of expected errors in paired sequences: 3
Length of trimming at the forward side of the seqs: 10
Length of trimming at the reverse side of the seqs: 10
Min relative abundance of OTU cutoff (0-1): 0.0025
Methods
This is a UPARSE based analysis pipeline (PMID:23955772).
{\tt Demultiplexing \ was \ performed \ with \ demultiplexor\_v4.pl \ (Unpublished \ Perl \ script).}
Pairing, quality filtering and OTU clustering was done using USEARCH7 (PMID:20709691).
Chimeras were filtered by using UCHIME (PMID:21700674) (with RDP set 10 as a reference database).
Taxonomic classification was based on RDP classifier version 2.10 training set 10 (PMID:17586664).
Sequence were aligned with MUSCLE (PMID:15034147) and the tree constructed using Fasttree(PMID:20224823).
### If you publish these results, please cite the above software. ###
```

OTUs-Seqs.fasta

This file contains all the sequences of the cluster centroids (OTUs). They can be used for recalculation of the phylogenetic tree or for obtaining a different taxonomic classification for the OTUs if needed.

Example

```
>OTU_1
GCTGCAGTGGGGAATATTGCACAATGGGGGGAACCCTGATGCAGCGACGCCGCGTGAGTG...
>OTU_2
GCTGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGACGCCGCGTGAGCG...
>OTU_3
GCTGCAGTGGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGACGCCGCGTGAAGG...
```

OTUs-Table.tab

A tab delimited file with the number of reads per sample that clustered within each OTU. All OTUs were taxonomically classified using the RDP classifier and the result was added in a taxonomy column at the right hand side of the table.

Example

```
#0TUId
        Sample1 Sample2 taxonomy
0TU 4
        11894
                7648
                        Bacteria; Firmicutes; Bacilli; Lactobacillales; Enterococcaceae; Enterococcus;
0TU 9
        10399
                7381
                        Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae 1; Bacillus;
OTU 5
                        Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; Clostridium XVIII;
        9710
                7256
OTU 16 9683
                7626
                        Bacteria; Firmicutes; Bacilli; Bacillales; Staphylococcaceae; Staphylococcus;
0TU 1
        7991
                8976
                        Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae;;
0TU 6
                        Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Flavonifractor;
        6871
                7912
8 UTO
        6020
                8384
                        Bacteria; Actinobacteria; Actinobacteria; Coriobacteriales; Coriobacteriaceae; Enterorhabdus;
OTU 11 4771
                7765
                         Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Porphyromonadaceae; Parabacteroides;
0TU 20 4486
                7858
                        Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;
OTU 14 3505
                6868
                        Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas;
OTU 10 3407
                7501
                        Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes;
0TU 15 2733
                6906
                        Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Actinomycetaceae; Actinomyces;
OTU 284 288 577 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;
OTU_19 148 6450
                    Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; Promicromonosporaceae; Cellulosimicrobium;
OTU 18 19 13 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;
OTU 2 18 21 Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Roseburia;
OTU 12 12 12 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Faecalibacterium;
OTU 22 8
           13 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides;
0TU 7 8
            6
                Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; ;
OTU 21 6
           13 Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Clostridium XlVa;
OTU 17 6 0
                Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Lachnospiracea incertae sedis;
```

OTUs-Tree.tre

This is a rooted tree (Newick format) calculated with fasttree (Maximum Likelihood approximation). A true ML tree can be produced with other common phylogenetic suits using the OTU sequences provided.

Barcodes mapping file

This file (with the name of the corresponding analysis) contains the barcodes for demultiplexing of the raw reads and generation of the OTU table.

A detailed mapping file template with explanations is available on the webfront.

Example

```
#Sample BarcodeSequence.reverse BarcodeSequence.forward
Sample1 CTCGACTT AAGCAGCA
Sample2 CTCGACTT ACGCGTGA
```

This example corresponds to a doubled-index paired-end sequencing project and thus contains two columns for barcode sequences.

stats.tab

A file tracking the number of sequences that pass each step of the pipeline for each sample. The steps are Demultiplexing, Merging (if paired), Expected error filtering, Chimeras/Artifacts filtering and Abundance of OTUs filtering.

Example