Package 'minSNPs'

March 5, 2024

174101 5, 2021	
Fitle Resolution-Optimised SNPs Searcher	
Version 0.2.0	
Description This is a R implementation of ``Minimum SNPs" software as described in ``Price E.P., I man-Bamber, J., Thiruvenkataswamy, V., Huygens, F and Giffard, P.M." (2007) <doi:10.1186 1471-2105-8-278=""> ``Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants."</doi:10.1186>	
Depends R (>= 3.4.0)	
License MIT + file LICENSE	
mports BiocParallel, data.table	
Encoding UTF-8	
RoxygenNote 7.2.3	
Suggests knitr, testthat, pkgdown, rmarkdown, withr	
VignetteBuilder knitr	
URL https://github.com/ludwigHoon/minSNPs	
NeedsCompilation no	
Author Ludwig Kian Soon Hoon [aut, cre] (https://orcid.org/0000-0002-2310-3403), Peter Shaw [aut, ctb] (https://orcid.org/0000-0002-3187-8938), Phil Giffard [aut, ctb] (https://orcid.org/0000-0002-3030-9127)	
Maintainer Ludwig Kian Soon Hoon <ldwgkshoon@gmail.com></ldwgkshoon@gmail.com>	
Repository CRAN	
Date/Publication 2024-03-05 14:30:02 UTC	
R topics documented:	
binomial_naive_bayes calculate_mcc calculate_mcc_multi calculate_percent calculate_simpson	4

calculate_simpson_by_group	. 6
calculate_state	
calculate_variant_within_group	. 7
cal_fn	. 7
cal_fp	. 8
cal_met_snp	. 8
check_fasta_meta_mapping	9
check_meta_target	
check_multistate	
check_percent	
coef.binomial_naive_bayes	
combine_fastq_search_result	
combine_search_string_result	
combine_search_string_result_from_files	
combine_search_string_result_from_list	
estimate_coverage	
extend_length	
find_optimised_snps	
•	
full_merge	
full_merge_1	
generate_kmers	
generate_kmer_search_string	
generate_pattern	
generate_prioritisation	
generate_snp_search_string	
get_all_process_methods	
get_binomial_tables	
get_metric_fun	
get_snps_set	
dentify_overlaps	
nfer_from_combined	
terate_merge	25
terate_through	26
map_profile_to_target	. 26
match_count	. 27
mcc_calculation	. 27
merge_fasta	. 28
output_result	29
	29
parse_group_mcc	
parse_group_mcc_multi	
oredict.binomial_naive_bayes	
predict_balk	
print.binomial_naive_bayes	
process_allele	
process_kmer_result	
process_result_file	
process snp result	
/11/05/00 0011/ 15/04IL	JT

	profile_to_group_result	35
	read_fasta	35
	read_sequences_from_fastq	36
	remove_snp_conflict	37
	resolve_IUPAC_missing	37
	reverse_complement	38
	scramble_sequence	39
	search_from_fastq_reads	
	search_from_reads	1 0
	sequence_reads_match_count	1 1
	summarise_result	
	summary.binomial_naive_bayes	13
	train_balk	
	transform_snp	14
	translate_position	
	view_mcc	
	view_mcc_multi	
	view_percent	16
	view_simpson	
	write_fasta	
Index		48

binomial_naive_bayes binomial_naive_bayes

Description

binomial_naive_bayes is an implementation of the binomial naive bayes algorithm. modified from bernoulli_naive_bayes function in the naivebayes package

Usage

```
binomial_naive_bayes(x, y, prior = NULL, laplace = 1, ...)
```

Arguments

```
x a matrix with numeric: 0,1, up to binomial_n columns
y a factor or character or logical vector
prior a vector of prior probabilities
laplace a numeric value for Laplace smoothing
... additional arguments
```

Value

return a binomial_naive_bayes object

4 calculate_mcc_multi

calculate_mcc	calculate_mcc
---------------	---------------

Description

calculate_mcc is used to calculate the MCC score given the SNP profile.

Usage

```
calculate_mcc(pattern, goi, MUST_HAVE_TARGET = TRUE)
```

Arguments

pattern the SNP profile for each samples

goi the samples belonging to the group of interest

MUST_HAVE_TARGET

whether to force the profile to have at least 1 target profile (the profile containing

the most goi)

Value

the MCC score

```
calculate_mcc_multi calculate_mcc_multi
```

Description

calculate_mcc_multi Calculate the multi-class MCC score for the SNPs. It assigns each SNP profile to a class, based on the majority of the samples having the profile, targets with the less samples are prioritised first, breaking ties by alphabetical order.

Usage

```
calculate_mcc_multi(pattern, meta, target = "target", priority = NULL)
```

Arguments

pattern the SNP profile for each samples
meta A data.table containing the meta data

target the column name of the target in the meta data, default to target

priority A data.table of the targets and priority, either supplied by user, or by default

 $generated\ by\ generate_prioritisation.$

Value

multiclass-MCC score

calculate_percent 5

calculate_percent calculate_percent

Description

calculate_percent is used to calculate dissimilarity index, proportion of isolates not in goi that have been discriminated against. 1 being all and 0 being none.

Usage

```
calculate_percent(pattern, goi)
```

Arguments

pattern list of sequences' pattern (profile)

goi group of interest

Value

Will return the dissimilarity index of the list of patterns.

calculate_simpson calculate_simpson

Description

calculate_simpson is used to calculate Simpson's index. Which is in the range of 0-1, where the greater the value, the more diverse the population.

Usage

```
calculate_simpson(pattern)
```

Arguments

pattern list of sequences' pattern (profile)

Value

Will return the Simpson's index of the list of patterns.

6 calculate_state

Description

calculate_simpson_by_group is used to calculate Simpson's index. Which is in the range of 0-1, where the greater the value, the more diverse the population.

Usage

```
calculate_simpson_by_group(pattern, meta, target)
```

Arguments

pattern list of sequences' pattern (profile)

meta the metadata

target the target column name

Value

Will return the Simpson's index of the list of patterns.

calculate_state calculate_state

Description

 $calculate_state$ calculate the number of states given the SNP(s)

Usage

```
calculate_state(pattern)
```

Arguments

pattern list of sequences' pattern (profile)

Value

number of states

Description

calculate_variant_within_group is used to identify proportion of different samples having the same profile.

Usage

```
calculate_variant_within_group(pattern, meta, target, get_count = FALSE)
```

Arguments

pattern list of sequences' pattern (profile)

meta metadata of the sequences

target column name of the target group

get_count whether to return the count of samples rather than the raw number, default to

FALSE.

Value

Will return the Simpson's index of the list of patterns.

```
cal_fn cal_fn
```

Description

cal_fn is used to check if the proportion of false negative fastas and metas are compatible.

Usage

```
cal_fn(pattern, goi, target)
```

Arguments

pattern the pattern from generate_pattern goi the group of interest (names of isolates)

 $target \hspace{1.5cm} the \hspace{1.5cm} target \hspace{1.5cm} sequence(s)$

Value

proportion: no. false negative/number of isolates

8 cal_met_snp

cal_fp cal_fp	
---------------	--

Description

cal_fp is used to check if the proportion of false positive fastas and metas are compatible.

Usage

```
cal_fp(pattern, goi, target)
```

Arguments

pattern the pattern from generate_pattern goi the group of interest (names of isolates)

target the target sequence(s)

Value

proportion: no. false positive/number of isolates

```
cal_met_snp cal_met_snp
```

Description

cal_met_snp is used to calculate the metric at each position

Usage

```
cal_met_snp(position, metric, seqc, prepend_position = c(), ...)
```

Arguments

position position to check

metric either 'simpson' or 'percent'

seqc list of sequences, either passed directly from process_allele or read_fasta

or equivalence

 ${\sf prepend_position}$

is the position to be added to the

... other parameters as needed

Value

return the value at that position, as well as base pattern for next iteration.

Description

check_fasta_meta_mapping is used to check if fastas and metas are compatible.

Usage

```
check_fasta_meta_mapping(fasta, meta)
```

Arguments

fasta the fasta read into memory to join meta the meta read into memory to join

Value

TRUE/FALSE if the fasta and meta are compatible

```
check_meta_target check_meta_target
```

Description

check_meta_target is used to check if parameters needed by calculate_mcc_multi and simpson_by_group are all present.

Usage

```
check_meta_target(list_of_parameters)
```

Arguments

```
list_of_parameters
```

is a list of parameter passed to functions that will perform the calculation

Value

TRUE if the parameters exists, else FALSE

check_percent

check_multistate

check_multistate

Description

check_multistate is used to remove positions where there are more than 1 state within the group of interest.

Usage

```
check_multistate(position, sequences)
```

Arguments

position

position to check

sequences

sequences from group of interest

Value

return 'TRUE' if the position contains multistate otherwise 'FALSE'

check_percent

check_percent

Description

check_percent is used to check if parameters needed by calculate_percent are all present.

Usage

```
check_percent(list_of_parameters)
```

Arguments

```
list_of_parameters
```

is a list of parameter passed to functions that will perform the calculation

Value

TRUE if goi exists, else FALSE

Description

coef.binomial_naive_bayes is an implementation of the coef method for the binomial naive bayes algorithm. modified from bernoulli_naive_bayes function in the naivebayes package

Usage

```
## S3 method for class 'binomial_naive_bayes'
coef(object, ...)
```

Arguments

```
object a binomial_naive_bayes object ... additional arguments
```

Value

return a data frame of coefficients

Description

combine_fastq_search_result combines the search results from search_from_fastq_reads

Usage

```
combine_fastq_search_result(
  results,
  search_table,
  previous_result = NULL,
  bp = MulticoreParam()
)
```

Arguments

```
results the result (fastq_search_result) from search_from_fastq_reads to combine.

search_table a dataframe with the following columns: - "id", "type", "sequence", "strand", "result", "extra", "match_ref_se previous_result the result (fastq_search_result) to append to
```

bp BiocParallel backend to use for parallelization

Value

```
will return a dataframe containing: - 'sequence', 'search_id', 'reads', 'raw_match', 'mean_qualities', 'indexes', 'id', 'type', 'strand', 'result', 'extra', 'match_ref_seq', 'n_reads'
```

Description

combine_search_string_result combines the search results from search_from_fastq_reads

Usage

```
combine_search_string_result(
  results,
  search_table,
  append_to_current_result = data.frame(),
  bp = MulticoreParam()
)
```

Arguments

```
results the dataframes to collapse.

search_table a dataframe with the following columns: - "id","type","sequence","strand","result","extra","match_ref_se append_to_current_result the dataframe of previous result to append to

bp BiocParallel backend to use for parallelization
```

Value

```
will return a dataframe containing: - 'sequence', 'search_id', 'reads', 'raw_match', 'mean_qualities', 'indexes', 'id', 'type', 'strand', 'result', 'extra', 'match_ref_seq', 'n_reads'
```

Description

combine_search_string_result_from_files combine_search_string_result combines the search results from temp file generated from search_from_fastq_reads

Usage

```
combine_search_string_result_from_files(
  result_files,
  search_table,
  read_length_files = c(),
  append_to_current_result = NULL,
  bp = MulticoreParam()
)
```

Arguments

```
result_files the output files from search_from_fastq_reads to combine

search_table a dataframe with the following columns: - "id","type","sequence","strand","result","extra","match_ref_se

read_length_files

the read_length output files from search_from_fastq_reads

append_to_current_result

the fastq_search_result of result to append to
```

Value

bp

```
will return a fastq_search_result object containing read_lengths and a dataframe containing: - 'sequence', 'search_id', 'reads', 'raw_match', 'mean_qualities', 'indexes', 'id', 'type', 'strand', 'result', 'extra', 'match_ref_seq', 'n_reads'
```

BiocParallel backend to use for parallelization

Description

combine_search_string_result_from_list combines the search results from search_from_fastq_reads

Usage

```
combine_search_string_result_from_list(
  results,
  search_table,
  append_to_current_result = data.frame(),
  bp = MulticoreParam()
)
```

14 estimate_coverage

Arguments

```
results
                  the dataframes from search_from_fastq_reads to combine.
                  a dataframe with the following columns: - "id", "type", "sequence", "strand", "result", "extra", "match_ref_se
search_table
append_to_current_result
                  the dataframe of previous result to append to
                  BiocParallel backend to use for parallelization
bp
```

Value

```
will return a dataframe containing: - 'sequence', 'search_id', 'reads', 'raw_match', 'mean_qualities',
'indexes', 'id', 'type', 'strand', 'result', 'extra', 'match_ref_seq', 'n_reads'
```

estimate_coverage

estimate_coverage

Description

estimate_coverage estimate_coverage estimate the average coverage by comparing number of bases from reads to genome size

Usage

```
estimate_coverage(read_lengths, genome_size)
```

Arguments

read_lengths the lengths of the reads

genome_size the genome size

Value

will return an estimated average coverage

extend_length 15

ctend_length		
--------------	--	--

Description

extend_length extend the search sequence such that there will always be (prev) bases before the SNPs and (after) bases after the SNPs.

Usage

```
extend_length(
  overlaps,
  position_reference,
  genome_position,
  prev,
  after,
  ori_string_start,
  ori_string_end,
  ori_snp_pos,
  genome_max
)
```

Arguments

```
overlaps
                  Overlappings
position_reference
                  the mapping of position in SNP matrix to reference genome
genome_position
                  the position of the SNP in the reference genome
prev
                  number of bases before the SNP included in the search string
                  number of bases after the SNP included in the search string
after
ori_string_start
                  original starting point of search string
ori_string_end original ending point of the search string
                  original SNP position in search string
ori_snp_pos
                  length of the reference genome
genome_max
```

Value

```
a list containing the new 'string_start', 'string_end', 'snp_pos', 'snps_in_string'.
```

16 find_optimised_snps

```
find_optimised_snps find_optimised_snps
```

Description

find_optimised_snps is used to find optimised SNPs set.

Usage

```
find_optimised_snps(
    seqc,
    metric = "simpson",
    goi = c(),
    accept_multiallelic = TRUE,
    number_of_result = 1,
    max_depth = 1,
    included_positions = c(),
    excluded_positions = c(),
    search_from = NULL,
    iterate_included = FALSE,
    completely_unique = FALSE,
    bp = SerialParam(),
    ...
)
```

Arguments

seqc list of sequences, either passed directly from process_allele or read_fasta

or equivalence

metric either 'simpson' or 'percent'

goi group of interest, if creteria is percent, must be specified, ignored otherwise

accept_multiallelic

whether include positions with > 1 state in goi

number_of_result

number of results to return, 0 will be coerced to 1

max_depth maximum depth to go before terminating, 0 means it will only calculate the

metric for included position

included_positions

included positions

excluded_positions

excluded positions

search_from search only from these positions, i.e., any positions not in here are excluded,

default to NULL

iterate_included

whether to calculate index at each level of the included SNPs

full_merge 17

Value

Will return the resolution-optimised SNPs set, based on the metric.

```
full_merge full_merge
```

Description

full_merge is used to merge 2 fasta, where a position exist only in 1 of the fasta, the fasta without allele in that positions are given reference genome's allele at that position. **Doesn't work for large dataset, hence the need for full_merge_1**

Usage

```
full_merge(
   fasta_1,
   fasta_2,
   meta_1,
   meta_2,
   ref,
   bp = BiocParallel::MulticoreParam(),
   ...
)
```

Arguments

```
fasta_1 fasta read into memory to join

fasta_2 fasta read into memory to join

meta_1 meta_1' denoting all positions of SNPs and position in reference genome

meta_2 meta_file for 'fasta_2' denoting all positions of SNPs and position in reference genome

ref name of the reference genome (needs to be in both fasta files)

bp the BiocParallel backend

... all other arguments
```

Value

merged fasta and meta

full_merge_1

```
full_merge_1 full_merge_1
```

Description

full_merge_1 is used to merge 2 fasta, where a position exist only in 1 of the fasta, the fasta without allele in that positions are given reference genome's allele at that position.

Usage

```
full_merge_1(
   fasta_1,
   fasta_2,
   meta_1,
   meta_2,
   ref,
   bp = BiocParallel::SerialParam(),
   ...
)
```

Arguments

fasta_1	fasta read into memory to join
fasta_2	fasta read into memory to join
meta_1	meta file for 'fasta_1' denoting all positions of SNPs and position in reference genome
meta_2	meta file for 'fasta_2' denoting all positions of SNPs and position in reference genome
ref	name of the reference genome (needs to be in both fasta files)
bp	the BiocParallel backend
	all other arguments

Value

merged fasta and meta

generate_kmers 19

generate_kmers

generate_kmers

Description

generate_kmers generate the kmer sequences of the given length

Usage

```
generate_kmers(final_string, k)
```

Arguments

```
final_string the string to generate kmers k the length of the kmer
```

Value

a vector of kmers

Description

generate_kmer_search_string generate the search strings to detect genes' presence

Usage

```
generate_kmer_search_string(
  gene_seq,
  k,
  id_prefix = NULL,
  bp = MulticoreParam()
)
```

Arguments

```
gene_seq sequences to generate k_mers from k kmer length id_prefix prefix for the gene id bp BiocParallel backend to use
```

Value

a dataframe containing the search strings

20 generate_prioritisation

generate_pattern ge

generate_pattern

Description

generate_pattern is used to generate pattern for calculation.

Usage

```
generate_pattern(seqc, ordered_index = c(), append_to = list())
```

Arguments

seqc list of sequences

ordered_index list of indexes for the pattern in the order

append_to existing patterns to append to

Value

Will return concatenated list of string for searching.

```
generate_prioritisation
```

generate_prioritisation

Description

generate_prioritisation create a vector of the targets in order of priority. Targets with the less samples are prioritised first, breaking ties by alphabetical order.

Usage

```
generate_prioritisation(meta)
```

Arguments

meta

A data.table containing the meta data, expect the

Value

A data.table of the targets in order of priority

Description

generate_snp_search_string identify the SNPs that will overlap the search strings generated from the targeted SNPs

Usage

```
generate_snp_search_string(
    selected_snps,
    position_reference,
    ref_seq,
    snp_matrix,
    prev,
    after,
    position_type = "fasta",
    extend_length = TRUE,
    fasta_name_as_result = TRUE,
    bp = MulticoreParam()
)
```

Arguments

```
selected_snps list of targeted SNPs position_reference
```

the mapping between reference genome positions and orthologous SNP matrix

positions

ref_seq the reference genome sequence snp_matrix the orthologous SNP matrix

prev number of characters before the SNP number of characters after the SNP

position_type type of SNPs input, "fasta" (orthologous SNP matrix based) or "genome" (ref-

erence genome based); Default to "fasta"

extend_length whether to extend the search string before and after the SNP and ignore overlap-

ping SNPs

fasta_name_as_result

Whether the result should use the fasta matching sequence name or the fasta

position and allele, default to using fasta sequence name (TRUE)

bp BiocParallel backend to use

Value

a dataframe containing the search strings

22 get_binomial_tables

Description

get_all_process_methods is used to get the metrics function and required parameters. Additional metric may be set by assigning it to 'MinSNPs_process_methods' variable.

Usage

```
get_all_process_methods(process_name = "")
```

Arguments

```
process_name name of the metric, "" to return all, 'SNP' or 'KMER' are provided as default.
```

Value

a list, including the function to process the search sequence result

```
get_binomial_tables    get_binomial_tables
```

Description

get_binomial_tables is an internal function that returns a table of probability for binomial naive bayes. modified from bernoulli_naive_bayes function in the naivebayes package

Usage

```
get_binomial_tables(prob1)
```

Arguments

prob1 a matrix of probabilities

Value

return table of probability for binomial naive bayes

get_metric_fun 23

get_metric_fun get_metric_fun

Description

get_metric_fun is used to get the metrics function and required parameters. Additional metric may set by assigning to 'MinSNPs_metrics' variable.

Usage

```
get_metric_fun(metric_name = "")
```

Arguments

metric_name name of the metric, by default percent/simpson

Value

a list, including the function to calculate the metric based on a position ('calc'), and function to check for additional parameters the function need ('args')

Description

get_snps_set extract the SNP sets from the output of 'find_optimised_snps'.

Usage

```
get_snps_set(results, as = "data.frame")
```

Arguments

results output from 'find_optimised_snps'
as output format, either 'data.frame' or 'list'.

Value

will return either 1. a dataframe containing SNPs_set (SNP position separated by ",") and score 2. a list containing SNPs_set (SNP position as numeric vector) and score (attr of the list)

24 infer_from_combined

identify_overlaps

identify_overlaps

Description

identify_overlaps identify the overlapping SNPs in the sequences

Usage

```
identify_overlaps(position_reference, genome_position, prev, after)
```

Arguments

position_reference

the mapping of position in SNP matrix to reference genome

genome_position

the position of the SNP in the reference genome

prev number of bases before the SNP included in the search string after number of bases after the SNP included in the search string

Value

a list containing 2 dataframes listing the bystander SNPs in the flanking sequence before and after the SNPs

infer_from_combined

infer_from_combined

Description

infer_from_combined infers the results (presence/absense of genes & CC) from the combined result

Usage

```
infer_from_combined(combined_result, search_table, genome_size, ...)
```

Arguments

```
combined_result
```

the combined result from combine_fastq_search_result or equivalent, with a list containing: - result: a dataframe containing the following columns: 'sequence', 'search_id', 'reads', 'raw_match', 'mean_qualities', 'indexes', 'id', 'type', 'strand', 'result', 'extra', 'match_ref_seq', 'n_reads' - read_length: 'reads_id', 'reads_length'

iterate_merge 25

```
search_table a dataframe with the following columns: - "id", "type", "sequence", "strand", "result", "extra", "match_ref_se estimated genome size for coverage calculation

... additional arguments to pass to the process methods
```

Value

a dataframe containing the following columns: - type, rank, result, reads_count, proportion_matched, pass_filter

iterate_merge iterate_merge

Description

iterate_merge is used to combine > 2 fastas iteratively.

Usage

```
iterate_merge(
  fastas,
  metas,
  ref,
  method = "full",
  bp = BiocParallel::SerialParam(),
  ...
)
```

Arguments

fastas list of fastas read into memory to join

metas list of metas read into memory to join

ref name of the reference genome (needs to be in both fasta files)

method how to join the 2 fasta, currently supported methods are: inner, full

bp the BiocParallel backend

... all other arguments

Value

Will return a list containing a merged FASTA and a meta.

iterate_through iterate_through

Description

iterate_through is used to calculate the metric at each position

Usage

```
iterate_through(metric, seqc, bp = MulticoreParam(), ...)
```

Arguments

metric either 'simpson' or 'percent'

seqc list of sequences, either passed directly from process_allele or read_fasta

or equivalence

bp BiocParallel backend. Rule of thumbs: use MulticoreParam(workers = ncpus -

2)

... other parameters as needed

Value

return a dataframe containing the position and result.

```
map_profile_to_target map_profile_to_target
```

Description

map_profile_to_target creates a mapping of the profile to the target, breaking the ties by the priority.

Usage

```
map_profile_to_target(meta, patterns, priority, sensitive_to_1 = FALSE)
```

Arguments

meta A data.table containing the meta data

patterns A list of the patterns from generate_pattern

priority A data.table of the targets and priority, either generated by generate_prioritisation

or supplied by user

sensitive_to_1 whether to be completely sensitive to the first target (percent default), set to

TRUE for percent

match_count 27

Value

A vector of the targets in order of priority

match_count match_count

Description

match_count return the number of matches of the target string in the given sequence

Usage

```
match_count(target, search_from)
```

Arguments

target the search target

search_from the sequence to search from

Value

number of matches

mcc_calculation mcc_calculation

Description

mcc_calculation calculate the MCC score given the truth and predicted target.

Usage

```
mcc_calculation(
  result_with_truth,
  is_multi = TRUE,
  return_all_intermediate = FALSE
)
```

Arguments

```
result\_with\_truth
```

the dataframe containing the truth and predicted target

is_multi Whether to use MCC-multi or MCC

return_all_intermediate

whether to return all intermediate values, only possible for binary class

28 merge_fasta

Value

Will return the mcc score

merge_fasta merge_fasta

Description

merge_fasta is used to combine 2 fasta.

Usage

```
merge_fasta(
  fasta_1,
  fasta_2,
  meta_1,
  meta_2,
  ref,
  method = "full",
  bp = BiocParallel::SerialParam(),
  ...
)
```

Arguments

fasta_1	fasta read into memory to join
fasta_2	fasta read into memory to join
meta_1	meta file for 'fasta_1' denoting all positions of SNPs and position in reference genome
meta_2	meta file for 'fasta_2' denoting all positions of SNPs and position in reference genome
ref	name of the reference genome (needs to be in both fasta files)
method	how to join the 2 fasta, currently supported methods are: inner, full
bp	the BiocParallel backend
	all other arguments

Value

Will return a list containing a merged FASTA and a meta.

output_result 29

Description

output_result is used to present the result and save the result as tsv.

Usage

```
output_result(result, view = "", ...)
```

Arguments

result is the result from find_optimised_snps

view how to present the output, "csv" or "tsv" will be saved as a file. Otherwise,

printed to console.

... if view is "tsv" or "csv", file name can be passed, e.g., file_name = "result.tsv",

otherwise, file is saved as <timestamp>.tsv.

Value

NULL, result either printed or saved as tsv.

```
output_to_files output_to_files
```

Description

```
output_to_files is write the result to files.
```

Usage

```
output_to_files(merged_result, filename = "merged")
```

Arguments

 $merged_result$ a list containing the merged fasta and meta.

filename filename to write to, will output <filename>.fasta and <filename>.csv.

Value

NULL, files written to filesystem

Description

parse_group_mcc is used to group the sample according to SNPs profile and present in a table format

Usage

```
parse_group_mcc(pattern, goi, MUST_HAVE_TARGET = TRUE)
```

Arguments

pattern the SNP profile for each samples

goi the samples belonging to the group of interest

MUST_HAVE_TARGET

whether to force the profile to have at least 1 target profile (the profile containing

the most goi)

Value

the parsed group views

```
parse_group_mcc_multi parse_group_mcc_multi
```

Description

parse_group_mcc_multi is used to put samples according to SNP profile, and put them into a table format.

Usage

```
parse_group_mcc_multi(result, as_string = TRUE)
```

Arguments

result result from find_optimised_snps

as_string whether to return the result as string or data.frame

Value

Will return the grouped samples.

Description

predict.binomial_naive_bayes is an implementation of the predict method for the binomial naive bayes algorithm. modified from bernoulli_naive_bayes function in the naivebayes package

Usage

```
## S3 method for class 'binomial_naive_bayes'
predict(object, newdata = NULL, type = c("class", "prob"), ...)
```

Arguments

object a binomial_naive_bayes object

newdata a matrix with numeric: 0,1,up to binomial_n columns

type a character string specifying the type of output: "class" or "prob"

... additional arguments

Value

return a factor or matrix of class probabilities

```
predict_balk predict_balk
```

Description

predict_balk is a function that predicts the class of new data using a binomial naive bayes classifier

Usage

```
predict_balk(object, newdata = NULL, snp_id = NULL, type = "prob")
```

Arguments

object The classifier object newdata A list of sequences snp_id A vector of SNP IDs

type The type of prediction, either "prob" or "class"

Value

A vector of either the class or the probability of the class

32 process_allele

Description

print.binomial_naive_bayes is an implementation of the print method for the binomial naive bayes algorithm. modified from bernoulli_naive_bayes function in the naivebayes package

Usage

```
## S3 method for class 'binomial_naive_bayes'
print(x, ...)
```

Arguments

```
x a binomial_naive_bayes object
... additional arguments
```

Value

return a binomial_naive_bayes object

```
process_allele process_allele
```

Description

process_allele is used to returned the processed allelic profiles, by removing the allele profile with duplicate name and length different from most. 1st allele profile with the duplicated name is returned, the longer length is taken as normal should there be 2 modes.

Usage

```
process_allele(
    seqc,
    bp = BiocParallel::SerialParam(),
    check_length = TRUE,
    check_bases = TRUE,
    dash_ignore = TRUE,
    accepted_char = c("A", "C", "T", "G"),
    ignore_case = TRUE,
    remove_invariant = FALSE,
    biallelic_only = FALSE
)
```

process_kmer_result 33

Arguments

seqc a list containing list of nucleotides. To keep it simple, use provided read_fasta

to import the fasta file.

bp is the biocparallel backend, default to serialParam, most likely sufficient in most

scenario

check_length Check the length of each sample in the matrix, default to TRUE check_bases Check the bases of each sample in the matrix, default to TRUE

dash_ignore whether to treat '-' as another type

accepted_char character to accept, default to c("A", "C", "T", "G") ignore_case whether to be case insensitive, default to TRUE

remove_invariant

whether to remove invariant positions, default to FALSE

biallelic_only whether to remove positions with more than 2 alleles, default to FALSE

Value

Will return the processed allelic profiles.

```
process_kmer_result process_kmer_result
```

Description

process_kmer_result processes the KMER result from infer_from_combined

Usage

```
process_kmer_result(partial_result, search_table, min_match_per_read = 1, ...)
```

Arguments

```
partial_result the result from infer_from_combined with only KMER
search_table a dataframe with the following columns: - "id","type","sequence","strand","result","extra","match_ref_se
min_match_per_read
```

the minimum number of kmer matches in a read, discarding reads with less than

this number

... ignored

Value

a dataframe containing the following columns: - type, rank, result, reads_count, proportion_matched, pass_filter, proportion_scheme_found, details

34 process_snp_result

```
process_result_file process_result_file
```

Description

process_result_file extract the SNP sets from the saved output file.

Usage

```
process_result_file(result_filepath)
```

Arguments

```
result_filepath is the path of the saved output file.
```

Value

will return a list containing SNPs_set (SNP position as numeric vector).

```
process_snp_result process_snp_result
```

Description

process_snp_result processes the SNP result from infer_from_combined

Usage

```
process_snp_result(
  partial_result,
  search_table,
  count_measure = "n_reads",
  ...
)
```

Arguments

```
partial_result the result from infer_from_combined with only SNP

search_table a dataframe with the following columns: - "id","type","sequence","strand","result","extra","match_ref_se

count_measure the column name of the count measure to use for removing the conflicts

ignored
```

profile_to_group_result

Value

a list containing: - result: a dataframe containing the following columns: - type, rank, result, reads_count, proportion_matched, pass_filter, proportion_scheme_found, details - snps_found: a vector containing the SNPs ID that have been identified without conflict - proportion_snps_found: the proportion of SNPs found without conflict

Description

profile_to_group_result given profile target, return the result

Usage

```
profile_to_group_result(patterns, profile_target)
```

Arguments

```
patterns the SNP profile for each samples

profile_target the profile target - should be from samples previously seen, generate with map_profile_to_target
```

Value

Will return the result, given the SNP profile.

```
read_fasta read_fasta
```

Description

read_fasta is used to read fasta file, implementation similar to seqinr, but much simpler and allow for spaces in sample name.

Usage

```
read_fasta(file, force_to_upper = TRUE, bp = SerialParam())
```

Arguments

file file path

force_to_upper whether to transform sequences to upper case, default to TRUE

bp is the biocparallel backend, default to serialParam, most likely sufficient in most

scenario

Value

Will return list of named character vectors.

```
read_sequences_from_fastq
read_sequences_from_fastq
```

Description

read_sequences_from_fastq get the sequences from a fastq file, it completely ignores the quality scores

Usage

```
read_sequences_from_fastq(
  fastq_file,
  force_to_upper = TRUE,
  skip_n_reads = 0,
  max_n_reads = -1,
  output_quality = TRUE,
  quality_offset = 33,
  bp = MulticoreParam()
)
```

Arguments

```
fastq_file location of the fastq file

force_to_upper whether to transform sequences to upper case, default to TRUE

skip_n_reads number of reads to skip, default to 0

max_n_reads maximum number of reads to read, default to -1 (all)

output_quality whether to output the quality scores, default to TRUE

quality_offset the quality offset to use, default to 33

bp BiocParallel backend to use for parallelization
```

Value

will return a list of sequences, with qualities as attribute

remove_snp_conflict 37

```
remove_snp_conflict remove_snp_conflic
```

Description

remove_snp_conflic removes the reads with SNPs conflicts from the result

Usage

```
remove_snp_conflict(result, count_measure = "n_reads")
```

Arguments

```
result the result from infer_from_combined

count_measure the column name of the count measure to use for removing the conflicts
```

Value

a dataframe containing the same columns as the input result with row containing conflicts removed

```
resolve_IUPAC_missing resolve_IUPAC_missing
```

Description

resolve_IUPAC_missing is used to replace the ambiguity codes found in the sequences.

```
resolve_IUPAC_missing(
   seqc,
   log_operation = TRUE,
   log_file = "replace.log",
   max_ambiguity = -1,
   replace_method = "random",
   N_is_any_base = FALSE,
   output_progress = TRUE,
   bp = MulticoreParam()
)
```

38 reverse_complement

Arguments

seqc the sequences to be processed log_operation whether to log the operation log_file log file to write the operations

max_ambiguity proportion of ambiguity codes to tolerate, -1 = ignore. Default to -1

replace_method how to substitute the ambiguity codes, current supported methods:random and

most_common, default to "random".

 $N_is_any_base$ whether to treat N as any base or substitute it with one of the alleles found at the

position.

output_progress

whether to output progress

bp the BiocParallel backend

Value

Will return the processed sequences.

reverse_complement reverse_complement

Description

reverse_complement returns the reverse complement of the given sequence

Usage

```
reverse_complement(seq)
```

Arguments

seq the sequence to reverse complement

Value

reverse complemented sequence

scramble_sequence 39

scramble_sequence

Description

scramble_sequence scramble the orthologous matrix based on a seed

Usage

```
scramble_sequence(seqc, seed)
```

Arguments

seqc the sequence to scramble seed the seed to use for scrambling

Value

a named list, containing the scambled sequence and the new positions

Description

search_from_fastq_reads identify the matches from a list of search strings

```
search_from_fastq_reads(
  fastq_file,
  search_tables,
  skip_n_reads = 0,
  progress = TRUE,
  max_n_reads = -1,
  quality_offset = 33,
  output_temp_result = TRUE,
  temp_result_folder = "./temp_results",
  simplify_id = TRUE,
  output_read_length = TRUE,
  bp = MulticoreParam()
)
```

40 search_from_reads

Arguments

```
fastq_file
                   fastq file containing the runs to search from
                   a dataframe with the following columns: - ["id"], "type", ["sequence"], "strand", "result", "extra", "match_ref
search_tables
skip_n_reads
                   number of reads to skip, default is 0
progress
                   whether to show the progress bar
max_n_reads
                   maximum number of reads to read, default to -1 (all)
quality_offset the quality offset to use, default to 33
output_temp_result
                   whether to output the temporary results
temp_result_folder
                   directory to output the temporary results
simplify_id
                   simplify and shorten the read id to the first part
output_read_length
                   whether to output the read length, NULL - do not output; csv - output to csv file;
                   data - output to result
                   BiocParallel backend to use for parallelization
bp
```

Value

will return a list of dataframe containing: - 'search_id', 'sequence', 'reads', 'raw_match', 'mean_qualities', 'indexes'.

```
search_from_reads search_from_reads
```

Description

search_from_reads identify the matches from a list of search strings

```
search_from_reads(
   all_reads,
   search_tables,
   progress = TRUE,
   ID = "S1",
   all_qualities = NULL,
   output_temp_result = TRUE,
   temp_result_folder = "./temp_results",
   output_read_length = TRUE,
   bp = MulticoreParam()
)
```

Arguments

all_reads The reads containing the runs to search from

search_tables a dataframe with the following columns: - ["id"], "type", ["sequence"], "strand", "result", "extra", "match_ref

progress whether to show the progress bar

ID the ID to use, default to S1 all_qualities quality data, default to NULL

output_temp_result

whether to output the temporary results

temp_result_folder

directory to output the temporary results

output_read_length

whether to output the read length, NULL - do not output; csv - output to csv file;

data - output to result

bp BiocParallel backend to use for parallelization

Value

will return a list of dataframe containing: - 'search_id', 'sequence', 'reads', 'raw_match', 'mean_qualities', 'indexes'.

```
sequence_reads_match_count
```

sequence_reads_match_count

Description

sequence_reads_match_count look for the search sequences in reads and return the matches indexes and mean qualities

Usage

```
sequence_reads_match_count(search_sequence, reads, qualities)
```

Arguments

search_sequence

the search sequence to look for where '.' stands for any character.

reads the sequences reads to search for.

qualities the qualities of each bases in the reads.

Value

will return a list containing for each read: - count, mean_quality, indexes

42 summarise_result

```
summarise_result summarise_result
```

Description

 $summarise_result\ calculate\ the\ MCC\ score\ given\ the\ SNP\ sets,\ training,\ validation\ and\ metadata(s).$

Usage

```
summarise_result(
   snp_sets,
   training_seqs,
   validation_seqs,
   training_metadata,
   validation_metadata,
   priority,
   is_multi = TRUE,
   return_all_intermediate = FALSE,
   is_percent = FALSE
)
```

Arguments

```
snp_sets
                 the dataframe containing the truth and predicted target
training_seqs
                 the training sequences
validation_seqs
                 the validation sequences
training_metadata
                 the training metadata
validation_metadata
                 the validation metadata
priority
                  the priority of the target, generated by generate_prioritisation
is_multi
                  Whether to use MCC-multi or MCC
return_all_intermediate
                  whether to return all intermediate values, only possible for binary class
is_percent
                  whether to return result by considering all the profiles having a GOI as target
                 profile
```

Value

Will return the summarised result

Description

summary.binomial_naive_bayes is an implementation of the summary method for the binomial naive bayes algorithm. modified from bernoulli_naive_bayes function in the naivebayes package

Usage

```
## S3 method for class 'binomial_naive_bayes'
summary(object, ...)
```

Arguments

```
object a binomial_naive_bayes object ... additional arguments
```

Value

return a summary of the binomial_naive_bayes object

```
train_balk train_balk
```

Description

train_balk is a function that trains a binomial naive bayes classifier for sequence data

```
train_balk(
   seqc,
   snps_pos,
   meta,
   binomial_n = 1,
   laplace = 1,
   snp_id = NULL,
   prior = NULL,
   fit_prior = FALSE
)
```

44 transform_snp

Arguments

seqc A list of sequences

snps_pos A vector of SNP positions

meta A data frame containing the metadata, require isolate and target columns

binomial_n The number of classes for the binomial naive bayes, default to 1 - bernoulli, 2 -

binomial (support heterozygous SNPs)

laplace The Laplace smoothing parameter

snp_id A vector of SNP IDs, if not provided, it will be inferred from the SNP positions

prior The prior probabilities of the classes fit_prior Whether to learn class prior probabilities

Value

A list containing the classifier and the transformation levels

Description

transform_snp is a function that transforms a SNP into a matrix for binomial naive bayes.

Usage

```
transform_snp(pat, binomial_n, levels = c(), get = c("levels", "transformed"))
```

Arguments

pat A string of a SNP

binomial_n The number of classes for the binomial naive bayes, default to 1 - bernoulli, 2 -

binomial (support heterozygous SNPs)

levels Existing transformation levels, if not provided, it will be inferred from the SNP

get What to return, either "levels" or "transformed", or both

Value

A vector of either the transformation levels or the transformed SNP or a list containing both

translate_position 45

translate_position translate_position

Description

translate_position translate the scambled position in the alignment to the original position or vice versa

the direction to translate, either "original" or "scrambled"

Usage

```
translate_position(position, positions_table, to = "original")
```

Arguments

to

```
\begin{array}{ll} \mbox{position} & \mbox{the position to translate} \\ \mbox{positions\_table} & \mbox{the table containing the original and scrambled positions} \end{array}
```

Value

the translated position

view_mcc view_mcc

Description

view_mcc is used to present the result of selected SNPs set based on the MCC score

Usage

```
view_mcc(result, ...)
```

Arguments

```
result is the result from find_optimised_snps
... other optional parameters
```

Value

formatted result list to be saved or presented.

view_percent

```
view_mcc_multi view_mcc_multi
```

Description

view_mcc_multi is used to present the result of selected SNPs set based on the multi-MCC score

Usage

```
view_mcc_multi(result, ...)
```

Arguments

```
result is the result from find_optimised_snps
... other optional parameters
```

Value

formatted result list to be saved or presented.

```
view_percent view_percent
```

Description

view_percent is used to present the result of selected SNPs set based on Simpson's Index.

Usage

```
view_percent(result, ...)
```

Arguments

```
result is the result from find_optimised_snps
... other optional parameters
```

Value

formatted result list to be saved or presented.

view_simpson 47

n view_simpson

Description

view_simpson is used to present the result of selected SNPs set based on Simpson's Index.

Usage

```
view_simpson(result, ...)
```

Arguments

result is the result from find_optimised_snps
... other optional parameters

Value

formatted result list to be saved or presented.

```
write_fasta write_fasta
```

Description

write_fasta is used to write the named character vectors to fasta file.

Usage

```
write_fasta(seqc, filename)
```

Arguments

seqc a list containing list of nucleotides. To keep it simple, use provided read_fasta

to import the fasta file.

filename of the output file

Value

will write the alignments to file

Index

hinamial maiva havea 2	identify evenlene 24
binomial_naive_bayes, 3	identify_overlaps, 24
cal fn 7	infer_from_combined, 24
cal_fn,7	iterate_merge, 25
cal_fp, 8	iterate_through, 26
cal_met_snp, 8	6:1
calculate_mcc, 4	map_profile_to_target, 26
calculate_mcc_multi,4	match_count, 27
calculate_percent, 5	mcc_calculation, 27
calculate_simpson, 5	merge_fasta, 28
calculate_simpson_by_group, 6	
calculate_state, 6	output_result, 29
calculate_variant_within_group,7	output_to_files, 29
check_fasta_meta_mapping, 9	20
check_meta_target, 9	parse_group_mcc, 30
check_multistate, 10	parse_group_mcc_multi, 30
check_percent, 10	<pre>predict.binomial_naive_bayes, 31</pre>
<pre>coef.binomial_naive_bayes, 11</pre>	predict_balk, 31
<pre>combine_fastq_search_result, 11</pre>	print.binomial_naive_bayes, 32
<pre>combine_search_string_result, 12</pre>	process_allele, 32
<pre>combine_search_string_result_from_files,</pre>	process_kmer_result, 33
12	process_result_file, 34
<pre>combine_search_string_result_from_list,</pre>	process_snp_result, 34
13	<pre>profile_to_group_result,35</pre>
estimate_coverage, 14	read_fasta, 35
extend_length, 15	read_sequences_from_fastq, 36
extend_rength, 15	remove_snp_conflict, 37
find_optimised_snps, 16	resolve_IUPAC_missing, 37
full_merge, 17	reverse_complement, 38
full_merge_1, 18	rever se_compremerre, so
1411_1161 86_1, 10	scramble_sequence, 39
<pre>generate_kmer_search_string, 19</pre>	search_from_fastq_reads, 39
generate_kmers, 19	search_from_reads, 40
generate_pattern, 20	sequence_reads_match_count, 41
generate_prioritisation, 20	summarise_result, 42
generate_snp_search_string, 21	summary.binomial_naive_bayes, 43
get_all_process_methods, 22	Summary Striomrat_narve_bayes, 15
get_binomial_tables, 22	train_balk,43
get_metric_fun, 23	transform_snp, 44
get_snps_set, 23	translate_position, 45
0	

INDEX 49

```
view_mcc, 45
view_mcc_multi, 46
view_percent, 46
view_simpson, 47
write_fasta, 47
```