

Roll No: AA.SC.P2MCA2107423

Date: 15-04-2021

# MCA AI- Business Analytics (S1) Assignment 4

1. Plot the latitudes and longitudes of any 5 cities in India (include your hometown as well), on the map.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['axes.facecolor'] = 'white'
import seaborn as sns
sns.set_style('whitegrid')
from shapely.geometry import Point
import plotly.express as px
import chart_studio.plotly as pl
import plotly.graph_objs as gobj
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
init_notebook_mode(connected=True)
#import geopandas as gpd
#from geopandas import GeoDataFrame
```

| ut[2]: |   | City    | State         | Latitude  | Longitude |
|--------|---|---------|---------------|-----------|-----------|
|        | 0 | Delhi   | Delhi         | 28.679079 | 77.069710 |
|        | 1 | Mumbai  | Maharastra    | 19.076090 | 72.877426 |
|        | 2 | Lucknow | Uttar Pradesh | 26.850000 | 80.949997 |
|        | 3 | Kolkata | West Bengal   | 22.572645 | 88.363892 |
|        | 4 | Raipur  | Chhattisgarh  | 21.250000 | 81.629997 |
|        | 5 | Kollam  | Kerala        | 8.893212  | 76.614143 |

#### 2. Illustrate by few example plots (minimum 5 plots/tool):

- a. Plotly
- b. Bokéh
- c. Tableau

```
In [3]: plt.scatter(x=df_cities['Longitude'], y=df_cities['Latitude'])
plt.show()
```



```
In [4]:
    fig = px.scatter_geo(df_cities,lat='Latitude',lon='Longitude')
    fig.update_layout(title = 'Indian Cities', title_x=0.5)
    fig.show()
```

#### **Indian Cities**



```
In [5]: fig = px.choropleth(
    df_cities,

geojson="https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c

featureidkey='properties.ST_NM',
    locations='State',
    color='Latitude',
    color_continuous_scale='Reds'
)

fig.update_geos(fitbounds="locations", visible=True)

fig.show()
```



## 3. Table shows the distribution of various ethnic groups in the population of a particular state based on a decennial US, census

| Ethnicity  | White | Black | AmerIndian | Hispanic | Asian | Others |
|------------|-------|-------|------------|----------|-------|--------|
| Proportion | 0.743 | 0.216 | 0.012      | 0.012    | 0.008 | 0.009  |

Five years later a random sample of 2,500 residents of the state was taken, with the results given in Table. Test, at the 1% level of significance, whether there is sufficient evidence in the sample to conclude that the distribution of ethnic groups in this state five years after the census had changed from that in the census year

| Ethnicity       | Observed Frequency |
|-----------------|--------------------|
| White           | 1732               |
| Black           | 538                |
| American-Indian | 32                 |
| Hispanic        | 42                 |
| Asian           | 133                |
| Others          | 23                 |

|   | Ethnicity       | <b>Assumed Distribution</b> | <b>Observed Frequency</b> |
|---|-----------------|-----------------------------|---------------------------|
| 0 | White           | 0.743                       | 1732                      |
| 1 | Black           | 0.216                       | 538                       |
| 2 | American-Indian | 0.012                       | 32                        |
| 3 | Hispanic        | 0.012                       | 42                        |
| 4 | Asian           | 0.008                       | 133                       |
| 5 | Others          | 0.009                       | 23                        |

Out[6]:

Out[7]

### Step 1. The hypotheses of interest in this case can be expressed as

HO: The distribution of ethnic groups has not changed

Ha: The distribution of ethnic groups has changed

#### Step 2. The distribution is chi-square.

## Step 3. To compute the value of the test statistic we must first compute the expected number for each row of Table

```
In [7]: df_Ethnicity['Expected Frequency'] = 2500 * df_Ethnicity['Assumed Distribution']
    df_Ethnicity
```

| : _ | Ethnicity       | Assumed Distribution | Observed Frequency | Expected Frequency |
|-----|-----------------|----------------------|--------------------|--------------------|
| 0   | White           | 0.743                | 1732               | 1857.5             |
| 1   | Black           | 0.216                | 538                | 540.0              |
| 2   | American-Indian | 0.012                | 32                 | 30.0               |
| 3   | Hispanic        | 0.012                | 42                 | 30.0               |
| 4   | Asian           | 0.008                | 133                | 20.0               |
| 5   | Others          | 0.009                | 23                 | 22.5               |

```
In [8]:
    df_Ethnicity.info()
    <class 'pandas.core.frame.DataFrame'>
```

```
Data columns (total 4 columns):
             Column
                                  Non-Null Count Dtype
            Ethnicity
                                  6 non-null
                                                 object
            Assumed Distribution 6 non-null
                                                 float64
            Observed Frequency
                                                 int64
                                  6 non-null
            Expected Frequency
                                  6 non-null
                                                 float64
        dtypes: float64(2), int64(1), object(1)
        memory usage: 320.0+ bytes
In [9]:
         sum = 0
         for i in df Ethnicity.index:
             sq = np.power((df Ethnicity.loc[i, 'Observed Frequency'] - df Ethnicity.loc[i, 'Expected Frequency']), 2) /
         df_Ethnicity.loc[i, 'Expected Frequency']
             sum = sum + sq
```

```
In [10]: sum
```

#### Out[10]: 651.881125068541

RangeIndex: 6 entries, 0 to 5

Since the random variable takes six values, I = 6. Thus the test statistic follows the chi-square distribution with df=6-1=5 degrees of freedom.

Since the test is right-tailed, the critical value is  $X^2(0.01)$ . Reading from below figure,  $X^2(0.01) = 15.086$ , so the rejection region is  $[15.086, \infty)$ .

|     | Critical Values of Chi-Square Distributions |       |       |       |       |        |        |        |        |        |
|-----|---------------------------------------------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
|     | x <sup>2</sup> Right-Tail Area              |       |       |       |       |        |        |        |        |        |
| df  | 0.995                                       | 0.99  | 0.975 | 0.95  | 0.90  | 0.10   | 0.05   | 0.025  | 0.01   | 0.005  |
| - 1 | 0.000                                       | 0.000 | 0.001 | 0.004 | 0.016 | 2.706  | 3.841  | 5.024  | 6.635  | 7.879  |
| 2   | 0.010                                       | 0.020 | 0.051 | 0.103 | 0.211 | 4.605  | 5.991  | 7.378  | 9.210  | 10.597 |
| 3   | 0.072                                       | 0.115 | 0.216 | 0.352 | 0.584 | 6.251  | 7.815  | 9.348  | 11.345 | 12.838 |
| 4   | 0.207                                       | 0.297 | 0.484 | 0.711 | 1.064 | 7.779  | 9.488  | 11.143 | 13.277 | 14.860 |
| - 5 | 0.412                                       | 0.554 | 0.831 | 1.145 | 1.610 | 9.236  | 11.070 | 12.833 | 15.086 | 16.750 |
| 6   | 0.676                                       | 0.872 | 1.237 | 1.635 | 2.204 | 10.645 | 12.592 | 14,449 | 16.812 | 18.548 |
| 7   | 0.989                                       | 1.239 | 1.690 | 2.167 | 2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 |
| 8   | 1.344                                       | 1.646 | 2.180 | 2.733 | 3.490 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 |
| 9   | 1.735                                       | 2.088 | 2.700 | 3.325 | 4.168 | 14,684 | 16.919 | 19.023 | 21.666 | 23.589 |
| 10  | 2.156                                       | 2.558 | 3.247 | 3.940 | 4.865 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 |
| 11  | 2.603                                       | 3.053 | 3.816 | 4.575 | 5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 |
| 12  | 3.074                                       | 3.571 | 4.404 | 5.226 | 6.304 | 18.549 | 21.026 | 23.337 | 26.217 | 28.300 |
| 13  | 3.565                                       | 4.107 | 5.009 | 5.892 | 7.042 | 19,812 | 22.362 | 24.736 | 27.688 | 29.819 |
| 14  | 4.075                                       | 4.660 | 5.629 | 6.571 | 7.790 | 21.064 | 23.685 | 26.119 | 29.141 | 31.319 |
| 15  | 4.601                                       | 5.229 | 6.262 | 7.261 | 8.547 | 22.307 | 24.996 | 27.488 | 30.578 | 32.801 |
| 16  | 5 142                                       | 5.812 | 6.908 | 7 962 | 9312  | 23 542 | 26 296 | 28 845 | 32,000 | 34.267 |

| 10  | 20176  | 2017   | 0.300  | 7.502  | 21216  | 20072   | 20270   | 2007    | 32.000  | 34.207  | T |
|-----|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---|
| 17  | 5.697  | 6.408  | 7.564  | 8.672  | 10.085 | 24.769  | 27.587  | 30.191  | 33.409  | 35.718  |   |
| 18  | 6.265  | 7.015  | 8.231  | 9.390  | 10.865 | 25.989  | 28.869  | 31.526  | 34.805  | 37.156  |   |
| 19  | 6.844  | 7.633  | 8.907  | 10.117 | 11.651 | 27.204  | 30.144  | 32.852  | 36.191  | 38.582  |   |
| 20  | 7.434  | 8.260  | 9.591  | 10.851 | 12.443 | 28.412  | 31.410  | 34.170  | 37.566  | 39.997  |   |
| 21  | 8.034  | 8.897  | 10.283 | 11.591 | 13.240 | 29,615  | 32.671  | 35.479  | 38.932  | 41.401  |   |
| 22  | 8.643  | 9.542  | 10.982 | 12.338 | 14.041 | 30.813  | 33.924  | 36.781  | 40.289  | 42.796  |   |
| 23  | 9.260  | 10.196 | 11.689 | 13.091 | 14.848 | 32.007  | 35.172  | 38.076  | 41.638  | 44.181  |   |
| 24  | 9.886  | 10.856 | 12,401 | 13.848 | 15.659 | 33.196  | 36.415  | 39.364  | 42.980  | 45.559  |   |
| 25  | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382  | 37.652  | 40.646  | 44.314  | 46.928  |   |
| 26  | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563  | 38.885  | 41.923  | 45.642  | 48.290  |   |
| 27  | 11.808 | 12.879 | 14.573 | 16,151 | 18.114 | 36,741  | 40.113  | 43.195  | 46.963  | 49.645  |   |
| 28  | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916  | 41.337  | 44.461  | 48.278  | 50.993  |   |
| 29  | 13.121 | 14.256 | 16.047 | 17.708 | 19.768 | 39.087  | 42.557  | 45.722  | 49.588  | 52.336  |   |
| 30  | 13.787 | 14.953 | 16.791 | 18.493 | 20.599 | 40.256  | 43.773  | 46.979  | 50.892  | 53.672  |   |
| 31  | 14.458 | 15.655 | 17.539 | 19.281 | 21.434 | 41,422  | 44.985  | 48.232  | 52.191  | 55.003  |   |
| 32  | 15.134 | 16.362 | 18.291 | 20.072 | 22.271 | 42.585  | 46.194  | 49.480  | 53.486  | 56.328  |   |
| 33  | 15.815 | 17.074 | 19.047 | 20.867 | 23.110 | 43,745  | 47.400  | 50.725  | 54.776  | 57.648  |   |
| 34  | 16.501 | 17.789 | 19.806 | 21.664 | 23.952 | 44.903  | 48.602  | 51.966  | 56.061  | 58.964  |   |
| 35  | 17.192 | 18.509 | 20.569 | 22.465 | 24.797 | 46,059  | 49.802  | 53.203  | 57.342  | 60.275  |   |
| 36  | 17.887 | 19.233 | 21.336 | 23.269 | 25.643 | 47.212  | 50.998  | 54.437  | 58.619  | 61.581  |   |
| 37  | 18.586 | 19.96  | 22.106 | 24.075 | 26.492 | 48.363  | 52.192  | 55.668  | 59.893  | 62.883  |   |
| 38  | 19.289 | 20.691 | 22.878 | 24.884 | 27.343 | 49.513  | 53.384  | 56.896  | 61.162  | 64.181  |   |
| 39  | 19.996 | 21.426 | 23.654 | 25.695 | 28.196 | 50,660  | 54.572  | 58.120  | 62.428  | 65.476  |   |
| 40  | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51,805  | 55.758  | 59.342  | 63.691  | 66.766  |   |
| 41  | 21.421 | 22.906 | 25.215 | 27.326 | 29.907 | 52.949  | 56.942  | 60.561  | 64.950  | 68.053  |   |
| 42  | 22.138 | 23.650 | 25.999 | 28.144 | 30.765 | 54.090  | 58.124  | 61.777  | 66.206  | 69.336  |   |
| 43  | 22.859 | 24.398 | 26.785 | 28.965 | 31.625 | 55.230  | 59.304  | 62.990  | 67.459  | 70.616  |   |
| 44  | 23.584 | 25.148 | 27.575 | 29.787 | 32.487 | 56.369  | 60.481  | 64.201  | 68.710  | 71.893  |   |
| 45  | 24.311 | 25.901 | 28.366 | 30.612 | 33.350 | 57.505  | 61.656  | 65.410  | 69.957  | 73.166  |   |
| 100 | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118,498 | 124.342 | 129.561 | 135.807 | 140.169 |   |
|     |        |        |        |        |        |         |         |         |         |         |   |

Since 651.881 > 15.086 the decision is to reject the null hypothesis.

The data provide sufficient evidence, at the 1% level of significance, to conclude that the ethnic distribution in this state has changed in the five years since the U.S. census.