Correction Examen 2021

Valeran MAYTIE

Exercice 1 – Rétro-ingénierie

1. Ocaml $(e_1 = e_2) = e_3$

Python : $(e_1 == e_2 == e_3)$ vérifie qu'ils soient tous égaux

2. Ocaml : le type de e_1 et e_2 doivent être similair et e_3 doit être de type bool

Python : à l'aire d'accèpter n'importe quelle combinaison de types

Exercice 2 – 1. Grammaire G

$$\begin{array}{cccc} \mathbf{S} & ::= & \mathbf{E} \# \\ \mathbf{E} & ::= & (\mathbf{L}) \\ & \mid & \mathbf{sym} \\ \mathbf{L} & ::= & \varepsilon \\ & \mid & \mathbf{E} & \mathbf{L} \end{array}$$

2. Déterminisation :

- 3. Il peut y avoir des conflits (reduction/transition) pour les blocs avec la règle $L \to \varepsilon \bullet$ Si le prochain symbole est un symbole ou une parenthèse Exemple : (L)
- 4. Table:

100							
	Action				Sauts		
	#	()	sym	S	$\mid E \mid$	L
0		2		5		1	
1	OK						
2		2		5		3	6
۷		L	$\prec \varepsilon$				
3		2		5		3	4
3	$L \prec \varepsilon$						
4	$L \prec EL$						
5		$E \prec$	syn	n			
6			7				
7		<i>E</i> ~	$\langle (L) \rangle$)			

	S	E	L
0.	Ø	Ø	Ø
1.	Ø	(, sym	Ø
2.	(, sym	(, sym	(, sym
3.	(, sym	(, sym	(, sym

Permier

	S	\mathbf{E}	L
0.	Ø	Ø	Ø
1.	Ø	#)
2.	Ø	#, (, sym,))
3.	Ø	#, (, sym,))

Suivant

${\bf Exercice}~{\bf 3}$ — Compilation vers de valeurs optionnelles :

1. Description:

$\operatorname{registre}$	valeurs
\$a0	8
\$v0	0x10040008
t0	1

0x10040000 0x10040008

1 2 1 0x10040000

 $2. \ \$ a0 = \texttt{0x10040000}$

Tas:	
0x10040000	1
	0x10040008
0x10040008	1
	0x10040010
0x10040010	1
	3

3. récupère la valeur n de Somme (Somme n) dans le registre \$v0

4. code de la fonction f :

$$\begin{array}{lll} f: & & & \\ & beqz & \$a0 \;,\; N \\ & lw & \$v0 \;,\; 4(\$a0) \\ & addi & \$v0 \;,\; \$v0 \;,\; 1 \\ & jr & \$ra \\ & N: & \\ & li \; \$v0 \;,\; -1 \\ & jr \; \$ra \end{array}$$

5. Code :