Lab 9, Numerical Calculus

Gaussian Quadratures

Implement a Matlab routine (or separate routines for each case) that, for the 5 cases in the table (Laguerre, Chebyshev of the $1^{\rm st}$ kind, Chebyshev of the $2^{\rm nd}$ kind, Legendre and Hermite), computes the nodes, the coefficients and the approximate value of the integral, for a Gaussian quadrature, in the form

$$[I, gn, gc] = Name(f, n, case)$$
 (or for each case $[I, gn, gc] = Name(f, n)$),

where

f is the integrand, n is the number of nodes,

I is the approximate value of $\int_{-b}^{b} w(x)f(x) dx$,

gn and gc are vectors containing the nodes and the coefficients of the Gaussian quadrature formula.

Applications

Use appropriate Gaussian quadratures with n=2 and 8 nodes, to approximate the following integrals:

$$\mathbf{1.} \int_{-\infty}^{\infty} e^{-x^2} dx \ (=\sqrt{\pi})$$

2.
$$\int_{-1}^{1} \sqrt{1-x^2} \, dx \ \left(= \frac{\pi}{2} \right)$$

$$\mathbf{3.} \int_{-1}^{1} \sin x^2 \, dx$$

$$\mathbf{4.} \int\limits_{0}^{\infty} x e^{-x} \sin x \ dx \ \left(= \frac{1}{2} \right)$$

5.
$$\int_{-1}^{1} \frac{x^2}{\sqrt{1-x^2}} dx \ \left(= \frac{\pi}{2} \right)$$

Orthogonal Polynomials and Recurrence Coefficients

Name	Notation	Polynomial	Weight Fn.	Interval	$lpha_k$	$eta_{m{k}}$
						$\beta_0 = 2,$
Legendre	l_m	$\left[(x^2 - 1)^m \right]^{(m)}$	1	[-1, 1]	0	$\beta_k = (4 - k^{-2})^{-1}, k \ge 1$
			_			$\beta_0 = \pi,$
Chebyshev 1 st	T_m	$\cos\left(m \arccos x\right)$	$(1-x^2)^{-\frac{1}{2}}$	[-1, 1]	0	$\beta_1 = \frac{1}{2},$
						$\beta_k = \frac{1}{4}, \tilde{k} \ge 2$
		. [/]				$\beta_0 = \frac{\pi}{2},$
Chebyshev 2 nd	Q_m	$\frac{\sin\left[(m+1)\arccos x\right]}{\sqrt{1-x^2}}$	$(1-x^2)^{\frac{1}{2}}$	[-1,1]	0	$\beta_k = \frac{1}{4}, k \ge 1$
						$\beta_0 = \Gamma(1+a),$
Laguerre	L_m^a	$x^{-a}e^x \left(x^{m+a}e^{-x}\right)^{(m)}$	$x^a e^{-x}, \ a > -1$	$[0,\infty)$	2k + a + 1	$\beta_k = k(k+a), k \ge 1$
						$\beta_0 = \sqrt{\pi},$
Hermite	H_m	$(-1)^m e^{x^2} \left(e^{-x^2}\right)^{(m)}$	e^{-x^2}	IR	0	$\beta_k = \frac{k}{2}, k \ge 1$