WRITTEN ASSIGNMENT 6 MATH 290, DR. WALNUT

LUCAS BOUCK

1. Problem 1a

Use induction to prove that for all natural numbers n, and all real numbers $r \neq 1$,

$$\sum_{j=0}^{n-1} r^j = \frac{r^n - 1}{r - 1}$$

Proof:

Let n = 1. Then $\frac{r^n - 1}{r - 1} = \frac{r - 1}{r - 1} = 1$. Also, $\sum_{j=0}^{n-1} r^j = \sum_{j=0}^{n-1} r^j = r^0 = 1$. Thus, the result holds for n = 1.

Let n be a natural number. Assume $\sum_{j=0}^{n-1} r^j = \frac{r^{n}-1}{r-1}$ is true. We want to show that $\sum_{j=0}^n r^j = \frac{r^{n+1}-1}{r-1}$. Since r = r, then $r^n = r^n$. By adding $\sum_{j=0}^{n-1} r^j$ to both sides, we get $r^n + \sum_{j=0}^{n-1} r^j = r^n + \sum_{j=0}^{n-1} r^j$. By the induction hypothesis, $r^n + \sum_{j=0}^{n-1} r^j = r^n + \frac{r^n-1}{r-1}$. Then, $r^n + \sum_{j=0}^{n-1} r^j = \sum_{j=0}^n r^j = r^n + \frac{r^n-1}{r-1} = \frac{r^n(r-1)}{r-1} + \frac{r^n-1}{r-1} = \frac{r^{n+1}-r^n}{r-1} + \frac{r^n-1}{r-1} = \frac{r^{n+1}-r^n+r^n-1}{r-1} = \frac{r^{n+1}-1}{r-1}$. Thus, $\sum_{j=0}^n r^j = \frac{r^{n+1}-1}{r-1}$, which is what we want. Therefore, for all natural numbers n and all real numbers $r \neq 1$, $\sum_{j=0}^{n-1} r^j = \frac{r^n-1}{r-1}$.

2. Problem 1b

Prove that if $2^p - 1$ is prime, then p is prime.

Proof: (By contrapositive)

Let p be a natural number. Assume p is not prime. This means that there exist two natural numbers m and k such that mk = p, $m, k \neq 1$ and $m, k \neq p$. Since $m, k \in \mathbb{N}$ and $m, k \neq 1$, m, k > 1. Also, let $k \leq m$ without loss of generality. Since mk = p, we can write

Date: 11/9/15.

 $2^p - 1 = 2^{mk} - 1$. From the previous result proved and because 2 is a real number and not equal to 1, $\frac{2^{mk} - 1}{2 - 1} = 2^{mk} - 1 = \sum_{j=0}^{mk-1} 2^j$. We can rewrite this as

$$\sum_{j=0}^{mk-1} 2^j = \sum_{j=0}^{k-1} 2^j + \dots + \sum_{j=(m-1)k}^{mk-1} 2^j = \sum_{i=1}^m \left(\sum_{j=(i-1)k}^{ik-1} 2^j \right)$$

Since k > 1, we know the first term will be greater than 1. Also, from the first sum, we know there are mk iterations in the sum. Each subsum is k iterations long, so we know that there will be m subsums of k length. Then, we will factor out a $2^{(i-1)k}$ from each subsum. Then, our sum is,

$$2^{0} \sum_{j=0}^{k-1} 2^{j-0} + \dots + 2^{(m-1)k} \sum_{j=(m-1)k}^{mk-1} 2^{j-(m-1)k} = \sum_{i=1}^{m} \left(2^{(i-1)k} \sum_{j=(i-1)k}^{ik-1} 2^{j-(i-1)k} \right)$$

We can then adjust each index and exponent of 2 in each subsum. The sum is now equal to,

$$2^{0} \sum_{j=0}^{k-1} 2^{j} + \dots + 2^{(m-1)k} \sum_{j=0}^{k-1} 2^{j} = \sum_{i=1}^{m} \left(2^{(i-1)k} \sum_{j=0}^{k-1} 2^{j} \right)$$

Since k is a natural number, i is a natural number, and $i \ge 1$, $2^{(i-1)k}$ is an integer. Since each term of the total sum is $\sum_{j=0}^{k-1} 2^j$ multiplied by some integer, $\sum_{j=0}^{k-1} 2^j$ is a divisor of each

term. Let $a = \sum_{j=0}^{k-1} 2^j$. Since $2^0 = 1$ and $2^j \in \mathbb{N}$ where $j \ge 1$, $a \in \mathbb{N}$. Since a divides each term and $2^p - 1$ is equal to the sum of all the terms, based on a previous result proved, $a|2^p - 1$. Since k > 1, $a = \sum_{j=0}^{k-1} 2^j > 1$. Thus, $a = \sum_{j=0}^{k-1} 2^j \ne 1$. Since $k \in \mathbb{N}$ and $2 \in \mathbb{R}$,

$$a = \sum_{j=0}^{k-1} 2^j = 2^k - 1$$
. Since $k < p$, $2^k < 2^p$, and $2^k - 1 < 2^p - 1$. Thus, $a = \sum_{j=0}^{k-1} 2^j \neq 2^p - 1$.

Therefore there exists a natural number a such that $a|(2^p-1)$, $a \neq 1$, and $a \neq 2^p-1$. Therefore, 2^p-1 is not prime. By contrapositive, if 2^p-1 is prime, then p is prime.

3. Problem 2

Define the relation S on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ by (m, n)S(p, q) if and only if mq = np. Prove S is an equivalence relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$.

Proof:

Let S be a relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Define the relation S by (m, n)S(p, q) if and only if mq = np. We want to show that S is an equivalence relation.

We first want to show that S is reflexive. Let $(m, n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Since mn = nm, (m, n)S(m, n). Thus, S is reflexive.

Next, we want to show that S is symmetric. Let $(m, n), (p, q) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, and let (m, n)S(p, q). Then, mq = np. Then, pn = qm. Therefore, (p, q)S(m, n). Therefore, S is symmetric.

The last thing we want to show is that S is transitive. Let $(m, n), (p, q), (k, l) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$, and let (m, n)S(p, q) and (p, q)S(k, l). Then, mq = np, and pl = qk. By multiplying n to both sides of pl = qk, we get npl = nqk. Since mq = np, mql = nqk. Then, ml = nk. Therefore, (m, n)S(k, l). Therefore, S is transitive.

Since S is reflexive, symmetric, and transitive, S is an equivalence relation.