랜덤 공간 분할 최적화기를 이용한 기계학습 자동화 시스템

김정택¹, 정종헌², 최승진¹

¹포항공과대학교 컴퓨터공학과 37673, 경상북도 포항시 남구 청암로 77 ²엑스브레인 37673, 경상북도 포항시 남구 청암로 77

2016 한국BI데이터마이닝학회 추계학술대회 2016년 11월 18일

목차

동기

일반적인 기계학습 프레임워크

기계학습 자동화

몬드리안 프로세스와 몬드리안 포레스트

제안 시스템

몬드리안 포레스트 최적화기

AutoML Challenge 결과

실험: 몬드리안 포레스트 최적화기

동기: 기계학습 자동화

- 최근, 기계학습을 비롯한 많은 분야에서 딥 신경망이 높은 성능을 보이고 있음.
- ▶ 딥 신경망은 성능외에도 전처리 과정과 표현학습 (representation learning)을 해결하는 기능도 있음. 또한, 종단간 학습(end-to-end learning)도 가능.
- 이러한 특성들은 알고리즘의 적용을 쉽게 만들면서 성능도 올리므로 많은 분야에서 사용이 가능.
- 하지만, 상대적으로 적은 양의 데이터셋과 낮은 컴퓨팅 성능 환경에서는 딥 신경망의 적용이 어려움.
- ▶ 따라서 전통적인 기계학습 알고리즘을 자동으로 적용할 기계학습 자동화 시스템이 필요.

동기: 제안 시스템, postech.mlg_exbrain

- 다양한 기계학습 알고리즘을 적용하기 위한 자동화 시스템을 만들기 위해선, 넓은 알고리즘·하이퍼파라미터·매개변수의 외적 공간에서 알맞은 알고리즘 구성을 찾아야 함.
 - ▶ 이 공간에는 숫자 변수(numerical variable)뿐만 아니라 분류 변수(categorical variable)도 포함.
- ▶ 기존의 회귀 방법들은 매우 넓은 공간에서 적절한 알고리즘 구성을 찾는데 부적합.
- ▶ 랜덤 공간 분할 최적화기(random space partitioning optimizer)를 하나의 방법으로 제안.

알고리즘 구성 공간

- ▶ 기계학습 알고리즘을 작동하는 하나의 설정을 알고리즘 구성이라 부름.
- ▶ 이 알고리즘 구성의 전체 집합을 알고리즘 구성 공간으로 정의;

정의 1 (알고리즘 구성 공간)

 $\Theta \times \Lambda \times \mathbf{A}$.

여기서 Θ 는 모델 매개변수의 전체 셋이며, Λ 는 하이퍼파라미터의 전체 셋, Λ 는 알고리즘의 전체 셋.

- ▶ 정의 1에서 정의한 알고리즘 구성 공간에서 가장 높은 성능을 보이는 알고리즘 구성을 찾는 것이 목표.
- ▶ 실제로, Λ는 약 250차원, **A**는 약 50차원으로 구성.

일반적인 기계학습 프레임워크

▶ 모델 매개변수 학습(model parameter learning)은

지도 학습 $\operatorname{argmin}_{\theta \in \Theta} \mathcal{L}(f(\theta; \lambda_i, A_i, \{(\mathbf{x}_k, y_k)\}_{k=1}^n))$ 비지도 학습 $\operatorname{argmin}_{\theta \in \Theta} \mathcal{L}(f(\theta; \lambda_i, A_i, \{\mathbf{x}_k\}_{k=1}^n))$

로 표현 가능. 여기서 \mathcal{L} 은 손실 함수, f는 예측 모델, 선택된 알고리즘 A_i 의 매개변수와 하이퍼파라미터의 집합은 θ 와 λ_i 임. \mathbf{x}_k 와 y_k 는 이미 알고 있는 알고리즘 구성과 그의 성능측정값.

▶ 일반적인 기계학습은 알고리즘과 하이퍼파라미터가 고정된 환경에서 알맞은 매개변수를 찾는 것으로 해석 가능.

기계학습 자동화

- 기계학습은 다음과 같이 순차적으로 매개화 가능. 최종적으로 기계학습 자동화 문제를 정의할 수 있음.
 - ▶ 하이퍼파라미터 최적화는 모델 매개변수와 하이퍼파라미터를 동시에 최적화함:

$$\underset{\theta \in \Theta, \lambda_i \in \Lambda}{\operatorname{argmin}} \mathcal{L}(f(\theta, \lambda_i; A_i, \{\mathbf{x}_k, y_k\}_{k=1}^n)).$$

 정의 2 (기계학습 자동화) 기계학습 자동화는 모델 매개변수, 하이퍼파라미터, 알고리즘을 동시에 최적화함;

$$\underset{\theta \in \Theta, \lambda_i \in \Lambda, A_i \in \mathcal{A}}{\operatorname{argmin}} \mathcal{L}(f(\theta, \lambda_i, A_i; \{\mathbf{x}_k, y_k\}_{k=1}^n)).$$

랜덤 공간 분할: 몬드리안 프로세스 (Roy and Teh, 2009)

Algorithm 1 몬드리안 프로세스

```
1: function MONDRIAN(⊕)
```

- 2: return $MONDRIAN-STARTED-AT(\Theta,0)$
- 3: end function
- 4: function MONDRIAN-STARTED-AT(Θ , t_0)
- 5: $T \sim Exp(LD(\Theta))$
- 6: $d \sim Discrete(p_1, ..., p_D)$ where $p_d \propto (b_d a_d)$
- 7: $x \sim \mathcal{U}([a_d, b_d])$
- 8: $M^{<} \rightarrow MONDRIAN-STARTED-AT(\Theta^{<}, t_0 + T)$ where $\Theta^{<} = \{z \in \Theta | z_d \le x\}$
- 9: $M^{>} \rightarrow MONDRIAN-STARTED-AT(\Theta^{>}, t_0 + T)$ where $\Theta^{>} = \{\mathbf{z} \in \Theta | \mathbf{z}_d \geq \mathbf{x}\}$
- 10: end function
 - ▶ k-d 트리의 확률적인 일반화.
 - ▶ 푸아송 프로세스의 고차원 일반화.

몬드리안 트리와 몬드리안 포레스트 (Lakshminarayanan *et al.*, 2015)

- ▶ 몬드리안 트리는 데이터가 유한한 몬드리안 프로세스.
- ▶ 몬드리안 포레스트는 몬드리안 트리의 앙상블.
- ▶ 트리의 분할은 정의역에 의해서만 결정되며, <mark>함수의 값은 영향을 끼치지 않음</mark>.
- ▶ 유한한 수명(lifetime) 매개변수가 트리의 분할수를 결정 (일반적인 결정 트리의 최대 깊이와 같음).

제안 시스템, postech.mlg_exbrain

- ▶ 기반 시스템, auto-sklearn (Feurer et al., 2015)
 - ▶ 네 구성요소: 메타학습 초기화기(meta-learning), 베이지안 최적화기(Bayesian optimizer), 기계학습 프레임워크(machine learning framework), 앙상블 제조기(ensemble builder).
 - ▶ <mark>랜덤 포레스트</mark> 기반 베이지안 최적화기, SMAC (Hutter *et al.*, 2010).
- ▶ 제안 시스템

- ▶ 다섯 구성요소: 메타학습 초기화기, <mark>베이지안 최적화기,</mark> 성능측정값 예측기(response predictor), 측정기준 계산기 (metric calculator), 모델 제조기(model builder).
- ▶ 몬드리안 포레스트 기반 베이지안 최적화기, <mark>몬드리안</mark> 포레스트 최적화기.

몬드리안 포레스트 최적화기

- 랜덤 공간 분할 최적화기.
- ▶ 몬드리안 포레스트 회귀에서 확장 (Lakshminarayanan *et al.*, 2016).
- ▶ 숫자 변수와 분류 변수와 같은 모든 변수를 최적화.
- ▶ 몬드리안 포레스트 최적화기와 실제 성능측정값 추출기가 병렬로 작동.

AutoML Challenge 결과 (Guyon et al., 2015)

- ▶ 총 세 단계(AutoML, Tweakathon, Final)로 구성되어 있는 5 개의 라운드가 진행.
- ▶ 다섯 라운드에 걸쳐서 이진 분류, 다중 클래스 분류, 다중 레이블 분류, 회귀 문제를 해결.
- 총 30개의 데이터셋이 제공.

Final3		Final4		AutoML5	
Team	Rank	Team	Rank	Team	Rank
aad_freiburg	1 (1.80)	aad_freiburg	1 (1.60)	aad_freiburg	1 (1.60)
djajetic	2(2.00)	ideal.intel.analytics	2(3.60)	djajetic	2(2.60)
ideal.intel.analytics	3(3.80)	abhishek4	3(5.40)	postech.mlg_exbrain	3(4.60)
asml.intel.com	3 (3.80)	postech.mlg_exbrain	4 (5.80)		
$postech.mlg_exbrain$	4(5.40)				

실험: 몬드리안 포레스트 최적화기

▶ 3개의 전역 최적화 벤치마크에 대해서 전역 최적값을 찾는 실험.

Figure 1: Spearmint는 10번 반복. SMAC과 MFO는 50번 반복.

실험: 몬드리안 포레스트 최적화기

▶ SVM과 LDA에 대해 각각 3개의 하이퍼파라미터를 최적화.

Figure 2: Spearmint는 10번 반복. SMAC과 MFO는 50번 반복.

14/15

경청해 주셔서 감사합니다.

