Future Challenges in Computer Graphics

Werner Purgathofer

Institute of Computer Graphics and Algorithms

Vienna University of Technology

What This Talk Is About

 overview of some current research trends & exploration of challenges in 3 subfields of CG:

interactive and photorealistic rendering visualization visual analytics

5 challenges play a role in all these areas:

```
scalability
semantics
fusion
interaction
acquisition
```


Interactive and Photorealistic Rendering

 goal of rendering research is to create perfectly realistic looking images of real-world objects in real-time

Visualization

 visualization tries to create images of data and structures that are otherwise invisible to the human eye or completely abstract

Visual Analytics

- combination of information visualization and scientific visualization
- focuses on analytical reasoning facilitated by interactive visual interfaces

Success of Computer Graphics

- High technology level!
 - one the most successful computer science fields during the last three centuries
 - methods and results available today have exceeded the expectations by far
 - some people consider most computer graphics problems as solved

But:

- ready to use set of tools for applications only in some areas with simple use of images
- embedding of CG in increasingly complex surroundings generates many new challenges.

5 Challenges

- 1 Scalability
- 2 Semantics
- 3 Fusion
- 4 Interaction
- 5 Acquisition

1 – Scalability

- how to cope with huge amounts of data, highly parallel computers and distributed devices
- example: reconstruction from many photos

Scalability Challenges

- enormous amounts of data (peta-scale!)
 - today and even more in the future
 - memory grows faster than speed
 - bottleneck: data transfer
- many existing algorithms are not designed to grow so much
- we need fundamental research on
 - scalable algorithms
 - scalable techniques
 - scalable systems

Scalability Challenges

- increasingly complicated data
 - 3D reconstruction
 - segmentation
 - object identification
- → parallelization and distributed computing
 - multi-core CPUs & GPUs
 - shared/distributed memory architectures
 - computation & visualization clusters
 - remote computation & visualization
 - cloud computing
- → multi-resolution approaches
 - semantic information at various scale levels

Scalability Challenges

- increasingly diverse devices
 - algorithms and interaction techniques have to scale to different possibilities
 - includes multi-display devices

- increasingly more users
 - new interaction techniques for multi-user applications

2 - Semantics

- how can meaning be extracted from data and context and be used for better insight
- example: segmenting of data

- more semantic data information necessary
 - for interpretation & analysis
 - for intelligent queries with semantic criteria
- semantic criteria can be based on
 - underlying data
 - analysis goals
 - application scenario
 - use history
 - user profile

- semantically enriched data allow for
 - context (audience) based visualizations
 - data compression

goals

- extract semantic information from data sets (huge, heterogeneous, unstructured)
 - atlasses, matching methods, sharing of insight
- find data structures for semantic information
 - flexible to include new knowledge
- extend rendering methods to use semantic inf.

- semantics will enable new user interfaces
 - in application domain (for application experts)
 - instead of data domain (for computer experts)
- semantics topics of research in visualization
 - knowledge-assisted visualization
 - knowledge-based navigation
 - semantics steered feature extraction

- semantics topics of research in rendering
 - enabling of contextual decisions
 - internal representation
 - highly abstract representation
 - distinguishing parameters are sufficient
 - know-how encoded in class description
 - more than just procedural modeling/rendering

3 - Fusion

- how can multiple techniques, data streams, and models be combined to solve complex problems
- example: combination of various data sources

Fusion Challenges

fusion issues

- multiple fields of visual computing
 - various display methods
 - integration of vision with rendering
- visual computing with other computing fields
 - integration instead of pre- or post-process
- multiple data sources
 - various scanning methodologies
 - measured and simulated data
 - structured and unstructured data

4 – Interaction

- how to combine multiple and ubiquitous input devices to create ergonomic user interfaces
- example: intuitive interface for untrained users

Interaction Challenges

- real-time data exploration and manipulation is more powerful than passive results
- emerging interface technologies
 - face, gesture, speech recognition
 - multi-touch displays
 - optical tracking
 - eye-tracking
 - 3D point clouds
 - EEG-based input
 - ubiquitous systems

Interaction Challenges

- development of new HCI techniques
 - virtual environments
 - tangible user interfaces
 - vision based interaction
- adaptation of interface to target audience
 - different levels of Uls
 - defined or learned UI level
 - single user or groups of users
 - explicit or pervasive interface

5 – Acquisition

- how can data from various input sources be processed to deal with missing data, contradictions, and uncertainty
- example: reconstruction from laser-scans

Acquisition Challenges

- analysis and display of real world data
 - diverse measurement techniques
 - measurement errors
 - noise, dropouts, repetition
 - lack of semantic information
 - normally not consistent
 - often incomplete

Acquisition Challenges

- examples of acquisition areas
 - architectural data
 - laser scans, photogrammetric data
 - medical and industrial data
 - CT, MRI, X-ray, ultrasound
 - geometry from depth images
 - GPS, GSM triangulation
 - satellite images
 - computer vision methods

Acquisition Challenges

challenges

- generate consistent, unambiguous models from hybrid measurement data
- interpolation of gaps
 - statistically valid or
 - empirically valid
- correction of known technology artifacts
- reduce data volume
- create representations for the next step

Summary

- many simple visual computing problems are solved
- but: the embedding of computer graphics technology in increasingly complex surroundings generates many new challenges.
- five major challenges are orthogonal to the traditional computer graphics fields: scalability, semantics, fusion, interaction, and acquisition.
- many open research issues

Thank You for Your Attention!

Questions?

