RF TEST REPORT

Report No.: CE_SL18040201-RIO-001_BT

Supersede Report No.: None

Applicant	Resin.io		
Product Name Raspberry Compute Module 3 Lite			
Model No.	Balena Fin		
Test Standard	EN 300 328 V2.1.1 (2016-11)		
Test Method	EN 300 328 V2.1.1 (2016-11)		
Date of test	05/01/2018 - 06/14/2018		
Issue Date	06/15/2018		
Test Result	<u>Pass</u> Fail		
Equipment complied with the specification [x]		[x]	
Equipment did not comply with the specification []		[]	
my and			
Benjamin Jing Chen Ge		Chen Ge	
Test Engineer Engineer Reviewer		Engineer Reviewer	
This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only			

Issued By: SIEMIC Laboratories 775 Montague Expressway, Milpitas, 95035 CA

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	2 of 38

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

ricoroditations for comorning ricoccomonic			
Country/Region	Accreditation Body	Scope	
USA	FCC, A2LA	EMC, RF/Wireless, Telecom	
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom	
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety	
Hong Kong	OFTA, NIST	RF/Wireless, Telecom	
Australia	NATA, NIST	EMC, RF, Telecom, Safety	
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety	
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom	
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom	
Europe	A2LA, NIST	EMC, RF, Telecom, Safety	
Israel	MOC, NIST	EMC, RF, Telecom, Safety	

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_RF_SL18040201-RIO-001_BT	
Page	3 of 38	

CONTENTS

1	R	EPORT REVISION HISTORY	4
2	E	XECUTIVE SUMMARY	5
3	С	SUSTOMER INFORMATION	5
4	Т	EST SITE INFORMATION	5
5	M	ODIFICATION	5
6	Ε	UT INFORMATION	6
	6.1	EUT Description	6
	6.2	Radio Description	6
	6.3	EUT Operational Condition	7
	6.4	Adaptive Equipment	7
	6.5	EUT test modes/configuration Description	7
7	S	UPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	8
	7.1	Supporting Equipment	8
	7.2	Cabling Description	8
	7.3	Test Software Description	8
8	T	EST SUMMARY	9
9	M	IEASUREMENT UNCERTAINTY	10
	9.1	Radiated Emissions (30MHz to 1GHz)	10
	9.2	Radiated Emissions (1GHz to 40GHz)	10
	9.3	RF conducted measurement	11
10)	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	12
	10.1	RF Output Power	12
	10.2	Hopping Frequency Separation	15
	10.3	Dwell time, Minimum Frequency Occupation and Hopping Sequence	18
	10.4	Occupied Channel Bandwidth	22
	10.5	TX Unwanted Emissions in the OOB domain	24
	10.6	·	
	10.7	•	
	10.8	G	
Α	NNE	X A. TEST INSTRUMENT	36
Α	NNE	X B. SIEMIC ACCREDITATION	37

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	4 of 38

Report Revision History

Report No.	Report Version	Description	Issue Date
CE_SL18040201-RIO-001_BT	None	Original	06/15/2018
			·

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	5 of 38

2 Executive Summary

The purpose of this test program was to demonstrate compliance of following product

Company: Resin.io

Product: Raspberry Compute Module 3 Lite

Model: Balena Fin

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	Resin.io
Applicant Address	One London Wall 6th floor London EC2Y 5EB United Kingdom
Manufacturer Name	Resin.io
Manufacturer Address	One London Wall 6th floor London EC2Y 5EB United Kingdom

4 Test site information

Lab performing tests	SIEMIC Laboratories
Lab Address	775 Montague Expressway, Milpitas, CA 95035
FCC Test Site No.	881796
IC Test Site No.	4842D-2
VCCI Test Site No.	A0133

5 Modification

Index	Item	Description	Note
-	-	-	-
			_

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	6 of 38

EUT Information

EUT Description <u>6.1</u>

Product Name	Raspberry Compute Module 3 Lite	
Model No.	Balena Fin	
Trade Name	Resin.io	
Serial No.	N/A	
Input Power	220VAC/ 50Hz	
Power Adapter Manu/Model	VEL36US120-US-JA	
Power Adapter SN	E317867	
Hardware version	N/A	
Software version	N/A	
Date of EUT received	04/15/2018	
Equipment Class/ Category	DTS	
Port/Connectors	1 X RJ45, 2 X USB, 1 X mini USB, 1 X HDMI	•
Remark	NONE	

Radio Description <u>6.2</u>

Specs for Bluetooth

Specs for bluetooth	
Radio Type	Bluetooth (Ver4.0+EDR)
Operating Frequency	2402MHz-2480MHz
Modulation	FHSS (BDR, EDR)
Channel Spacing	1MHz (BDR, EDR)
Antenna Type	External antenna : 1/4 Dipole Omni Embedded antenna : SMT
Antenna Gain	External antenna : 2 dBi Embedded antenna : 1 dBi
Antenna Connector Type	U.FL

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	7 of 38

EUT Operational Condition 6.3

Item		Range		
Battery Voltage	N/A			
AC Adapter Voltage	220VAC			
Environmental Condition	Tnom = 25 °C			

6.4 Adaptive Equipment

			Adaptive Equipment				
	Adapti	Adaptive Equipment without the possibility to switch to a non-adaptive mode:					
		The	equipment has implemented an LBT based DAA mechanism				
			The equipment is Frame Based equipment				
			□ The equipment is Load Based equipment				
			☐ The equipment can switch dynamically between Frame Based and Load Based equipment				
		The	The equipment has implemented and non-LBT based DAA mechanism				
		The	The equipment can operate in more than one adaptive mode				
		Adaptive Frequency Hopping using other forms of DAA (non-LBT based) / without Short Control Signaling Transmissions					
X	Equipr	Equipment which operate in a non-adaptive mode					

EUT test modes/configuration Description <u>6.5</u>

Test mode

Test Mode		
Pre_test_mode_1	Continuous Transmit	-
Pre_test_mode_2	Normal Operation Mode (duty cycle transmit power)	-

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	8 of 38

Supporting Equipment/Software and cabling Description

Supporting Equipment <u>7.1</u>

Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	LATITUDE 3550	N/A	Dell	-
2	Router	WNR2000	N/A	Netgear	

Cabling Description 7.2

Name Connection Sta		on Start	Connection Stop		Length / shielding Info		Note
Name	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
Ethernet	RJ-45	EUT	RJ-45	Laptop	Ethernet 1 m	no	Unshiel ded

7.3 **Test Software Description**

Test Item	Software	Description		
RF Testing	Dut Labtool	Set the EUT to transmit continuously in different test mode		

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	9 of 38

Test Summary

Summary for FHSS (BDR+EDR)

Test Item		Test standard	Test Method/Procedure	Pass / Fail		
	RF Output Power	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
P	ower Spectral Density	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A*		
DutyC	cycle, Tx-sequence, Tx-gap	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A*		
Dwell time, N	Minimum Frequency Occupation & Hopping Sequence	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
Норр	ing Frequency Separation	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
	Medium Utilisation	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A*		
Adaptivity		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A*		
Occi	upied Channel Bandwidth	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
TX Unwante	ed Emissions in the OOB domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
TX Unwanted	Emissions in the spurious domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11) EN 300 328 V2.1.1 (2016-11)			
Rec	eiver spurious emissions	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
	Receiver Blocking	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass		
Remark	 The applicant shall ensuall normal operating cor 	surement uncertainties do not take into consideration for all presented test results. Ilicant shall ensure frequency stability by showing that an emission is maintained within the band of operation under all operating conditions as specified in the user's manual. not applicable due to output power less than 10dBm e.i.r.p.				

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	10 of 38

9 Measurement Uncertainty

9.1 Radiated Emissions (30MHz to 1GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- NSA Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Filter Insertion Loss	0.25	Normal	2	1	0.125
Antenna Factor	0.65	Normal	2	1	0.325
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.86605081
PRF Response	1.5	Rectangular	1.732	1	0.86605081
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
NSA Calibration	4.0	U-Shape	1.414	1	2.8288543
Combined Standard Uncertaint	3.0059131				
Expanded Uncertainty (K=2)	6.0118262				

The total derived measurement uncertainty is +/- 6.00 dB.

9.2 Radiated Emissions (1GHz to 40GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- VSWR Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty		
Receiver Reading	0.12	Rectangular	1.732	1	0.0692840		
Cable Insertion Loss	0.21	Normal	2	1	0.1050000		
Filter Insertion Loss	0.25	Normal	2	1	0.1250000		
Antenna Factor	0.65	Normal	2	1	0.3250000		
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836		
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.8660508		
PRF Response	1.5	Rectangular	1.732	1	0.8660508		
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033		
VSWR Calibration	2.0	U-Shape	1.414	1	1.4144272		
Combined Standard Uncertain	4.2363						
Expanded Uncertainty (K=2)	Expanded Uncertainty (K=2)						

The total derived measurement uncertainty is +/- 8.47 dB.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	11 of 38

9.3 RF conducted measurement

The test is to measure the RF output power from the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the Reference Level Uncertainty
- Uncertainty of variable attenuators
- Uncertainty of cables
- Uncertainty due to the mismatches

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Reference Level	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Attenuator	0.25	Normal	2	1	0.125
Mismatch	0.25	U-Shape	1.414	1	0.1768033
Combined Standard Unce	0.476087				
Expanded Uncertainty (I	K=2)				0.952174

The total derived measurement uncertainty is +/- 0.95 dB.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	12 of 38

10 Measurements, Examination and Derived Results

10.1 RF Output Power

Spec	Item	Requirement			Applicable			
EN 300 328 V2.1.1 (2016-11)	4.3.1	The maximum RF out be equal to or less that	put power for adaptive Frequency an 20 dBm.	Hopping equipment shall	X			
EN 300 328 V2.1.1 (2016-11)	4.3.1	shall be equal to or les	maximum RF output power for non-adaptive Frequency Hopping equipment, be equal to or less than the value declared by the supplier. This declared shall be equal to or less than 20 dBm.					
EN 300 328 V2.1.1 (2016-11)	4.3.2		adaptive equipment using wide band modulations other than FHSS, the mum RF output power shall be 20 dBm.					
EN 300 328 V2.1.1 (2016-11)	4.3.2	The maximum RF out the supplier and shall	put power for non-adaptive equiponot exceed 20 dBm.	ment shall be declared by				
Test Setup		EUT Environmental Cham		wer Meter				
Procedure	2. F - (t) 3. F - (t) - 1 4. F 5. E 5. E 6. 7 8 (t)	For conducted measurer Connect the power sensinese stored samples in For conducted measurer Connect one power sensionts. Frigger the power sensoretween the samples of For each instant in time, hese stored samples in Find the start and stop till Between	ments on devices with multiple tra sor to each transmit port for a syn- rs so that they start sampling at the all sensors is less than half the tir sum the power of the individual s all following steps. mes of each burst in the stored m op times of each individual burst of a assembly gain "G" in dBm) will be un a assembly gain "G" in dBi of the individual beamforming gain "Y" in of a assembly is intended for this por	it chain: e transmit signal and store the transmit chains: chronous measurement on a me same time. Make sure the me between two samples. amples of all ports and store easurement samples. calculate the RMS power over some soft or each burst, sed for maximum e.i.r.p. calculational antenna. dB. wer setting, the maximum over mula below:	all transmits time difference them. Use or the burst. culations.			
Test Date	05/13/2	018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 42 % 1019 mbar			
Result	⊠ Pas	s 🗆 Fail		·				
Test Data ⊠ Yes	(See bel	ow) 🗆 N/A						

Test Plot ☐ Yes (See below) \boxtimes N/A

Test was done by Benjamin Jing at RF Test Site.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	13 of 38

Test Result:

BDR- Low CH: 2402 MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm (220Vac)	0.30	2	2.30	20
	Low Temp (-20 °C)	Vmax (240 Vac)	0.28	2	2.28	20
EIRP	Low Temp (-20 °C)	Vmin (206 Vac)	0.28	2	2.28	20
	High Temp (55°C)	Vmax (240 Vac)	0.35	2	2.35	20
	High Temp (55°C)	Vmin (206 Vac)	0.35	2	2.35	20

BDR- Mid CH: 2441 MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm (220Vac)	0.01	2	2.01	20
	Low Temp (-20 °C)	Vmax (240 Vac)	-0.03	2	1.97	20
EIRP	Low Temp (-20 °C)	Vmin (206 Vac)	-0.03	2	1.97	20
	High Temp (55°C)	Vmax (240 Vac)	0.24	2	2.24	20
	High Temp (55°C)	Vmin (206 Vac)	0.24	2	2.24	20

BDR- High CH: 2480MHz

2211	Thigh of the Frontine							
Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)		
	Norm Temp (25°C)	Vnorm (220Vac)	-0.43	2	1.57	20		
	Low Temp (-20 °C)	Vmax (240 Vac)	-0.49	2	1.51	20		
EIRP	Low Temp (-20 °C)	Vmin (206 Vac)	-0.49	2	1.51	20		
	High Temp (55°C)	Vmax (240 Vac)	-0.32	2	1.68	20		
	High Temp (55°C)	Vmin (206 Vac)	-0.32	2	1.68	20		

EDR- Low CH: 2402 MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm (220Vac)	0.31	2	2.31	20
	Low Temp (-20 °C)	Vmax (240 Vac)	0.25	2	2.25	20
EIRP	Low Temp (-20 °C)	Vmin (206 Vac)	0.25	2	2.25	20
	High Temp (55°C)	Vmax (240 Vac)	0.36	2	2.36	20
	High Temp (55°C)	Vmin (206 Vac)	0.36	2	2.36	20

EDR- Mid CH: 2441 MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm (220Vac)	0.01	2	2.01	20
	Low Temp (-20 °C)	Vmax (240 Vac)	-0.04	2	1.96	20
EIRP	Low Temp (-20 °C)	Vmin (206 Vac)	-0.04	2	1.96	20
	High Temp (55°C)	Vmax (240 Vac)	0.25	2	2.25	20
	High Temp (55°C)	Vmin (206 Vac)	0.25	2	2.25	20

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	14 of 38

EDR- High CH: 2480MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm (220Vac)	-0.47	2	1.53	20
	Low Temp (-20 °C)	Vmax (240 Vac)	-0.52	2	1.48	20
EIRP	Low Temp (-20 °C)	Vmin (206 Vac)	-0.52	2	1.48	20
	High Temp (55°C)	Vmax (240 Vac)	-0.31	2	1.69	20
	High Temp (55°C)	Vmin (206 Vac)	-0.31	2	1.69	20

Note: EIRP is calculated by external antenna gain 2 dBi.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	15 of 38

10.2 Hopping Frequency Separation

Requirement(s):

Spec	Item	Requirement			Applicable
EN 300 328 V2.1.1		The minimum Channel Sepa shall be equal to or more that	ration for Adaptive Frequency n 100KHz.	Hopping equipment	\boxtimes
(2016-11)	4.3.1		ration for Non-Adaptive Freque hannel Bandwidth of a single h		
Test Setup		Spectrum Analyzer	EUT		
Procedure	2. 3.	 Center Frequency: Center Frequency Span: Sufficience Resolution BW: 1% of the Video BW: 3 X RBW Detector: RMS Trace Mode: Max Hold Sweep time: Auto Allow the trace to stabilize. 	ion to determine the Hopping F	uencies envelope of both hopping	
Test Date	05/13/2	2018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 42 % 1019 mbar
Remark	NONE				
Result	⊠ Pas	ss 🗆 Fail			

Test Data	□ N/A
Test Plot	□ N/A

Test was done by Benjamin Jing at RF Test Site.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	16 of 38

Hopping Frequency Separation

Туре	Frequency (MHz)	Mode	Channel	Measured Separation (KHz)	Limit (KHz)	Result
	2402	GFSK	Low	1004	≥100	Pass
BDR	2441	GFSK	Mid	1006	≥100	Pass
	2480	GFSK	High	1002	≥100	Pass
	2402	8DPSK	Low	1018	≥100	Pass
EDR	2441	8DPSK	Mid	1002	≥100	Pass
	2480	8DPSK	High	1002	≥100	Pass

Test report No. CE RF SL18040201-RIO-001 BT Page 17 of 38

Channel Separation Test Plot (Bluetooth BDR/EDR)

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	18 of 38

10.3 <u>Dwell time, Minimum Frequency Occupation and Hopping Sequence</u>

Requirement(s):

	Item	Requirement		Applicable		
EN 300 328 V2.1.1 (2016-11)	4.3.1	Adaptive Frequency hopping systems	The maximum Dwell Time shall be equal to or less than 400ms. The Minimum frequency Occupation time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and number of hopping frequencies in use. The hopping sequence shall contain at least 15 hopping frequencies or 15 divided by hopping frequency separation (MHz), whichever is the greater. Also shall be capable of operating over a minimum of 70% of the specified band.			
(=====		Non-Adaptive Frequency hopping systems	The maximum Dwell Time shall be equal to or less than 15ms. The Minimum frequency Occupation time shall be equal to one dwell time within a period not exceeding four times the product of the dwell time per hop and number of hopping frequencies in use. The hopping sequence shall contain at least 15 hopping frequencies or 15 divided by hopping frequency separation (MHz), whichever is the greater.			
Test Setup		Spectrum Analyzer				
	1		UUT to the spectrum analyser and use the following settings:			
Procedure	2	- Frequency - Resolution - Video BW: - Detector: R - Trace Mode - Sweep time - Number of s - Trace mode - Trigger: Fre If possible, us	BW: ~50% of the Occupied Channel Bandwidth ≥RBW RMS e: Max Hold e: Equal to the Dwell Time X minimum number of hopping frequencies sweep points: 30000 e: Clear/Write	es with		
Procedure Test Date	06/13/:	- Frequency - Resolution - Video BW: - Detector: R - Trace Mode - Sweep time - Number of s - Trace mode - Trigger: Fre - If possible, us different mode variation.	Span: 0 Hz BW: ~50% of the Occupied Channel Bandwidth ≥RBW RMS e: Max Hold e: Equal to the Dwell Time X minimum number of hopping frequencies sweep points: 30000 e: Clear/Write te Run te the marker-delta function to determine the dwell time. If this value varies	es with		
		- Frequency - Resolution - Video BW: - Detector: R - Trace Mode - Sweep time - Number of s - Trace mode - Trigger: Fre - If possible, us different mode variation.	Span: 0 Hz BW: ~50% of the Occupied Channel Bandwidth ≥RBW RMS e: Max Hold e: Equal to the Dwell Time X minimum number of hopping frequencies sweep points: 30000 e: Clear/Write ee Run te the marker-delta function to determine the dwell time. If this value varies of operation (e.g., data rate, modulation format, etc.), repeat this test the state of the condition Environmental condition Temperature Relative Humidity	es with for each		

Test Data \boxtimes Yes (See below) \square N/A
Test Plot \boxtimes Yes (See below) \square N/A

Test was done by Benjamin Jing at RF Test Site.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	19 of 38

Dwell Time

BDR Mode

Channel	Channel Frequency (MHz)	On Time (mSec)	Dwell Time (Sec)	Limit (Sec)
Low	2402	2.893	0.31	0.4
Mid	2441	2.893	0.31	0.4
High	2480	2.904	0.31	0.4

EDR Mode

Channel	Channel Frequency (MHz)	On Time (mSec)	Dwell Time (Sec)	Limit (Sec)
Low	2402	2.896	0.31	0.4
Mid	2441	2.900	0.31	0.4
High	2480	2.896	0.31	0.4

Minimum Frequency Occupation

Туре	Number of Hopping	Length of transmission time (ms)	Minimum Frequency Occupation (ms)	Limit (ms)	Result
BDR	79	0.216	1.25	≥0.388	Pass
EDR	79	0.216	1.25	≥0.388	Pass

Hopping Sequence

Туре	Number of Hopping Channels	Limit	Result
BDR	79	> 15 hopping frequencies	Pass
EDR	79	≥ 15 hopping frequencies	Pass

Operating frequency Range

Туре	Hopping Frequency Range(MHZ)	Limit(MHZ)	Result
BDR	78.57	≥ 70%x(2483.5-2400)	Pass
EDR	78.57	2 70%x(2403.3-2400)	Pass

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	20 of 38

Test Plots

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	21 of 38

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	22 of 38

10.4 Occupied Channel Bandwidth

Spec	Item	Requirement			Applicable		
EN 300 328 V2.1.1 (2016-11)	4.3.2	The Occupied Chanr 2483.5 MHz.	nel Bandwidth shall fall completely w	rithin the band of 2400 –	X		
EN 300 328 V2.1.1 (2016-11)	4.3.2	For non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz					
Test Setup	Spectrum Analyzer						
Procedure	4. Connect the UUT to the spectrum analyser and use the following settings: - Centre Frequency: The centre frequency of the channel under test - Resolution BW: ~ 1 % of the span without going below 1 % - Video BW: 3 × RBW - Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel) - Detector Mode: RMS 5. Wait until the trace is completed. Find the peak value of the trace and place the analyser marker on this peak. 6. Use the 99 % bandwidth function of the spectrum analyser to measure the Occupied Channel Bandwidth of the UUT. This value shall be recorded. NOTE: Make sure that the power envelope is sufficiently above the noise floor of the analyzer to avoid the noise signals left and right from the power envelope being taken into account by this measurement.						
Test Date	05/24/2018 Environmental condition Temperature 21 °C Relative Humidity 43 % Atmospheric Pressure 1018 mb						
Remark	Norma	test condition		•			
Result	⊠ Pas	s 🗆 Fail					

Test Data		□ N/A
Test Plot	⊠ Yes	□ N/A

Test was done by Benjamin Jing at RF Test Site.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	23 of 38

Test Result:

Туре	Freq (MHz)	Test mode	99% Bandwidth (MHz)	FL at 99% Bandwidth (MHz)	FH at 99% Bandwidth (MHz)	Limit (FL/FH) (MHz)	Pass/Fail
	2402	BDR	1.22	2401.563	2402.437	>2400	Pass
000/ ODW	2480	BDR	1.27	2479.566	2480.434	<2483.5	Pass
99% OBW	2402	EDR	1.33	2401.389	2402.612	>2400	Pass
	2480	EDR	1.32	2479.389	2480.611	<2483.5	Pass

Test Plots

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	24 of 38

10.5 TX Unwanted Emissions in the OOB domain

Spec	Item	Requirement	Applicable
EN 300 328 V2.1.1 (2016-11)	4.3.1, 4.3.2	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in figure at below, Spurious Domain Out Of Band Domain (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Domain (OOB) Spurious Domain (OOB) A lineated Band Out Of Band Domain (OOB) Spurious Domain (OOB) A : -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Sourious Domain limits	
Test Setup		EUT Spectrum Analyzer	
Procedure	2.	Connect the UUT to the spectrum analyser and use the following settings: - Centre Frequency: 2 484 MHz - Span: 0 Hz - Resolution BW: 1 MHz - Filter mode: Channel filter - Video BW: 3 MHz - Detector Mode: RMS - Trace Mode: Clear / Write - Sweep Mode: Continuous - Sweep Points: 5 000 - Trigger Mode: Video trigger - Sweep Time: Suitable to capture one transmission burst (segment 2 483,5 MHz to 2 483,5 MHz + BW) - Adjust the trigger level to select the transmissions with the highest power level For frequency hopping equipment operating in a normal hopping mode, the different hops signal bursts with different power levels. In this case the burst with the highest power level selected Set a window (start and stop lines) to match with the start and end of the burst and in whice power shall be measured using the Time Domain Power function Select RMS power to be measured within the selected window and note the result which is power within this 1 MHz segment (2 483,5 MHz to 2 484,5 MHz). Compare this value with applicable limit provided by the mask Increase the centre frequency in steps of 1 MHz and repeat this measurement for every 1 segment within the range 2 483,5 MHz to 2 483,5 MHz + BW. The centre frequency of the segment shall be set to 2 483,5 MHz + BW - 0,5 MHz (which means this may partly overlaprevious 1 MHz segment).	shall be th the RMS the RMS the MHz last 1 MHz

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	25 of 38

- 3. (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)
- Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW 0,5 MHz.
- 4. (segment 2 400 MHz BW to 2 400 MHz)
- Change the centre frequency of the analyser to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 5. (segment 2 400 MHz 2BW to 2 400 MHz BW)
- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.
- 6. In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- 7. In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.
- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

Test Date	06/07/2018		Environmental condition	Temperature Relative Humidity Atmospheric Pressure	24 °C 40 % 1019 mbar			
Remark	Normal test condition							
Result	⊠ Pass	☐ Fail						

Test Data		□ N/A
-----------	--	-------

Test Plot ☐ Yes (See below) ☐ N/A

Test was done by Benjamin Jing at RF Test Site.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	26 of 38

Test Result

Туре	Frequency (MHz)	Test mode	OOB Frequency (MHz)	OOB Emission level (dBm)	Limit (dBm)
OOB	2402	2 BDR 2399.994 -37.6		-37.69	-10
OOB	2480	BDR	2484.119	-40.28	-10
OOB	2402	EDR	2399.998	-27.07	-10
OOB	2480	EDR	2484.505	-38.68	-10

Note: The results above show only the worst case.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	27 of 38

10.6 Radiated TX Unwanted Emissions in the spurious domain

The spurious emissions of the transmitter shall not exceed the values in the tables bell in the indicated bands. Transmitter limits for narrowband spurious emissions Frequency range Maximum power Bandwidth 30 MHz to 47 MHz -36 dBm 100 KHz 47 MHz to 74 MHz -54 dBm 100 KHz 74 MHz to 87.5 MHz -36 dBm 100 KHz 87.5 MHz to 118 MHz -54 dBm 100 KHz	w	
Frequency range Maximum power Bandwidth 30 MHz to 47 MHz -36 dBm 100 KHz 47 MHz to 74 MHz -54 dBm 100 KHz 74 MHz to 87.5 MHz -36 dBm 100 KHz 75 MHz to 410 MHz -56 dBm 100 KHz		
30 MHz to 47 MHz -36 dBm 100 KHz 47 MHz to 74 MHz -54 dBm 100 KHz 47 MHz to 74 MHz -54 dBm 100 KHz 74 MHz to 87.5 MHz -36 dBm 100 KHz	$\neg 1$	
EN 300 328 4.3.1, 47 MHz to 74 MHz -54 dBm 100 KHz -36 dBm 100 KHz		
EN 300 328 4.3.1, 74 MHz to 87.5 MHz -36 dBm 100 KHz		
V2.1.1 (2016 4.3.1) 97.5 MHz to 440 MHz 54.4 Pm		
		\boxtimes
11) 4.3.2 4.3.2 118 MHz to 174 MHz -36 dBm 100 KHz		
174 MHz to 230 MHz -54 dBm 100 KHz		
230 MHz to 470 MHz -36 dBm 100 KHz		
470 MHz to 862 MHz -54 dBm 100 KHz		
862 MHz to 1 GHz -36 dBm 100 KHz		
1 GHz to 12.75 GHz -30 dBm 1 MHz		
TOTILE OF TELEVISION OF THE STATE OF THE STA		
Ground Plane	m Analyzer	
Test Setup Above 1GHz Radio Absorbing Material Antenna Antenna Antenna Antenna Antenna	m Analyzer	
Procedure Refer to Clause 5.3.10.2.2 of EN 300 328 V2.1.1 (2016-11)		
Remark Both horizontal and vertical polarities were investigated. The results show only the worst case		
Result ⊠ Pass □ Fail		

Test Data ⊠ Yes (See below) □ N/A Test Plot ⊠ Yes (See below) \square N/A

Test was done by Benjamin Jing at 10m Chamber.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	28 of 38

External Antenna

BDR - 2402 MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25
4804	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27
4804	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72

BDR - 2480 MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
225.44	-41.59	351	138	V	225.44	-65.29	0	1.35	-63.94	-54	-9.94
225.44	-35.63	124	147	Н	225.44	-59.34	0	1.35	-57.99	-54	-3.99
4960	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43
4960	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47

EDR - 2402 MHz

Ir	Indicated Test Antenna					Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
189.63	-48.27	275	110	V	189.63	-73.45	0	1.28	-72.17	-54	-18.17	
189.63	-44.46	96	229	Н	189.63	-65.41	0	1.28	-64.13	-54	-10.13	
4804	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07	
4804	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36	
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92	
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	29 of 38

EDR - 2480 MHz

In	dicated		Test A	Antenna		Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
225.44	-41.59	351	138	V	225.44	-65.29	0	1.35	-63.94	-54	-9.94			
225.44	-35.63	124	147	Н	225.44	-59.34	0	1.35	-57.99	-54	-3.99			
4960	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33			
4960	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54			
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26			
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12			

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case

Embedded Antenna

BDR - 2402 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
206.12	-46.52	70	130	V	206.12	-67.17	0	1.31	-65.86	-54	-11.86	
206.12	-40.48	142	220	Н	206.12	-64.56	0	1.31	-63.25	-54	-9.25	
4804	-65.13	236	165	V	4804	-42.05	10.54	4.32	-48.27	-30	-18.27	
4804	-67.24	167	176	Н	4804	-44.16	10.54	4.32	-50.38	-30	-20.38	
7206	-78.16	264	168	V	7206	-46.86	10.13	4.36	-52.63	-30	-22.63	
7206	-80.25	252	162	Н	7206	-48.95	10.13	4.36	-54.72	-30	-24.72	

BDR - 2480 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
225.44	-41.59	351	138	V	225.44	-65.29	0	1.35	-63.94	-54	-9.94	
225.44	-35.63	124	147	Н	225.44	-59.34	0	1.35	-57.99	-54	-3.99	
4960	-66.34	236	165	V	4960	-43.26	10.52	4.35	-49.43	-30	-19.43	
4960	-68.02	167	176	Н	4960	-44.94	10.52	4.35	-51.11	-30	-21.11	
7440	-78.64	264	168	V	7440	-47.34	10.67	4.38	-53.63	-30	-23.63	
7440	-80.48	252	162	Н	7440	-49.18	10.67	4.38	-55.47	-30	-25.47	

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	30 of 38

EDR - 2402 MHz

In	dicated		Test A	Antenna		Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)			
189.63	-48.27	275	110	V	189.63	-73.45	0	1.28	-72.17	-54	-18.17			
189.63	-44.46	96	229	Н	189.63	-65.41	0	1.28	-64.13	-54	-10.13			
4804	-66.93	236	165	V	4804	-43.85	10.54	4.32	-50.07	-30	-20.07			
4804	-68.22	167	176	Н	4804	-45.14	10.54	4.32	-51.36	-30	-21.36			
7206	-78.45	264	168	V	7206	-47.15	10.13	4.36	-52.92	-30	-22.92			
7206	-80.32	252	162	Н	7206	-49.02	10.13	4.36	-54.79	-30	-24.79			

EDR - 2480 MHz

Ir	ndicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
225.44	-41.59	351	138	V	225.44	-65.29	0	1.35	-63.94	-54	-9.94	
225.44	-35.63	124	147	Н	225.44	-59.34	0	1.35	-57.99	-54	-3.99	
4960	-66.24	236	165	V	4960	-43.16	10.52	4.35	-49.33	-30	-19.33	
4960	-68.45	167	176	Н	4960	-45.37	10.52	4.35	-51.54	-30	-21.54	
7440	-78.27	264	168	V	7440	-46.97	10.67	4.38	-53.26	-30	-23.26	
7440	-79.13	252	162	Н	7440	-47.83	10.67	4.38	-54.12	-30	-24.12	

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	31 of 38

10.7 Radiated Receiver Spurious Emissions

Requirement(s):

Spec	Item	Requirement			Applicable
EN 300 328 V2.1.1 (2016- 11)	4.3.2.9	received mode.	receiver shall not exceed the value of Maximum power -57 dBm -47 dBm		
Test Setup Below 1GHz		Radio Absorbing Material EUT 1.5m	3rn Antenna Ground Plane	1-4m Spectrum Anal	b. J. Vyser
Test Setup Above 1GHz		Radio Absorbing Material EUT 1.5m		enna 1-4m Spectrum Ana	in.
Procedure	Refer to	Clause 5.3.11.2.1 of EN 300 32	8 V2.1.1 (2016-11)		
Remark	NONE				
Result	⊠ Pass	□ Fail			
Test Data ⊠ \	Yes (See b	pelow) \square N/A			
Test Plot ⊠ Y	∕es (See b	elow) 🗆 N/A			

Test was done by Benjamin Jing at 10m chamber.

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	32 of 38

External Antenna

BDR 2402 MHz

In	Indicated Test Antenna					Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
207.1	-46.55	66	100	V	207.1	-68.42	0	1.31	-67.11	-57	-10.11		
207.1	-40.47	138	229	Н	207.1	-62.58	0	1.31	-61.27	-57	-4.27		
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82		
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15		

BDR 2480 MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
227.3	-41.18	353	143	V	227.3	-63.27	0	1.35	-61.92	-57	-4.92	
227.3	-38.29	116	159	Н	227.3	-61.31	0	1.35	-59.96	-57	-2.96	
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83	
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94	

EDR 2402 MHz

In	dicated		Test A	Antenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
190.6	-48.14	280	100	V	190.6	-73.14	0	1.28	-71.86	-57	-14.86
190.6	-44.26	93	230	Н	190.6	-66.27	0	1.28	-64.99	-57	-7.99
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15

EDR 2480 MHz

In	Indicated Test Antenna				Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
207.1	-46.55	66	100	V	207.1	-68.42	0	1.31	-67.11	-57	-10.11	
207.1	-40.47	138	229	Н	207.1	-62.58	0	1.31	-61.27	-57	-4.27	
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83	
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94	

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	33 of 38

Embedded Antenna

BDR 2402 MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
207.1	-46.55	66	100	V	207.1	-68.42	0	1.31	-67.11	-57	-10.11
207.1	-40.47	138	229	Н	207.1	-62.58	0	1.31	-61.27	-57	-4.27
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15

BDR 2480 MHz

In	dicated		Test A	Antenna		Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)		
227.3	-41.18	353	143	V	227.3	-63.27	0	1.35	-61.92	-57	-4.92		
227.3	-38.29	116	159	Н	227.3	-61.31	0	1.35	-59.96	-57	-2.96		
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83		
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94		

FDR 2402 MHz

In	dicated		Test A	Antenna			Su	bstituted			
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
190.6	-48.14	280	100	V	190.6	-73.14	0	1.28	-71.86	-57	-14.86
190.6	-44.26	93	230	Н	190.6	-66.27	0	1.28	-64.99	-57	-7.99
1952	-79.43	236	150	V	1952	-66.65	10.25	2.08	-74.82	-47	-27.82
1952	-79.76	167	150	Н	1952	-66.98	10.25	2.08	-75.15	-47	-28.15

EDR 2480 MHz

In	Indicated Test Antenna				Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
207.1	-46.55	66	100	V	207.1	-68.42	0	1.31	-67.11	-57	-10.11	
207.1	-40.47	138	229	Н	207.1	-62.58	0	1.31	-61.27	-57	-4.27	
1632	-79.27	264	150	V	1632	-68.53	10.08	1.78	-76.83	-47	-29.83	
1632	-79.38	252	150	Н	1632	-68.64	10.08	1.78	-76.94	-47	-29.94	

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com: Follow us at:

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	34 of 38

10.8 Receiver Blocking

Spec	Item	Requirement					Applicable
		4.3.2.11.4.2 Table 14 cont	Receiver Catego ains the Receiver Blocking p Table 14: Receiver Blocking	arameters for Receiver			
EN 300			Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 2)	Type of blocking signal	
EN 200		*	P _{min} + 6 dB	2 380 2 503,5	-53	cw	
328 V2.1.1	4.3.2.11		P _{min} + 6 dB	2 300 2 330 2 360	-47	cw	X
(2016-11)			P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	cw	
			any blocking sign NOTE 2: The levels specifi	um level of the wanted nance criteria as define al. ed are levels in front o urements, the levels ha	d in clause 4.3.2.1 fthe UUT antenna	1.3 in the absence of . In case of	
EN 300		4.3.2.11.4.3 Table 15 conta	Receiver Catego ins the Receiver Blocking pa Table 15: Receiver Bl Wanted signal mean power from companion device (dBm)	rameters for Receiver	Blocking signal power (dBm)		
328 V2.1.1	4.3.2.11	A 15	P _{min} + 6 dB	2 380	(see note 2)	CW	
(2016-11)		10 1	P _{min} + 6 dB	2 503,5 2 300 2 583,5	-47	CW	
			any blocking signa NOTE 2: The levels specific	ance criteria as defined al. ed are levels in front of rements, the levels hav	in clause 4.3.2.11 the UUT antenna.	.3 in the absence of In case of	
Test Setup		Con D Block		Direct Coupser timer Spectrum Analyzer	Opponer	Performance Moritoring Device	
			- AF-100 Car	est Set-up for receive	r blocking		
Procedure	Refer to 0	Clause 5.4.11 of ET	TSI EN 300 328 V2.1.1	(2016-11)			
- 100000010				· /			

Test report No.	CE_RF_SL18040201-RIO-001_BT
Page	35 of 38

Test Data		□ N/A
Test Plot	☐ Yes (See below)	⊠ N/A

Test was done by Rachana Khanduri at RF test site.

Test Result for Receiver Blocking

Hopping:

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
Receiver Blocking	2380 2503.5	-57	CW	Pass
				Pass
	2300	-47		Pass
	2583.5			Pass

Note:

The EUT is category 2 receiver

Test report No.	CE_RF_SL18040201-RIO-001_BT		
Page	36 of 38		

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions		,		1		
Keysight EXA 44GHz Spectrum Analyzer	N9010A	MY51440112	08/02/2017	1 Year	08/02/2018	T
Keysight Signal Generator	MXG N5182A	MY47071065	04/12/2018	1 Year	04/12/2019	<u><</u>
Pre-Amplifier (1 - 40GHz)	SAS-474	579	04/04/2018	1 Year	04/04/2019	<
RF Preamplifier (100KHz-7GHz)	LPA-6-30	11170602	02/09/2018	1 Year	02/09/2019	~
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	01/13/2018	1 Year	01/13/2019	~
Horn Antenna (1-26.5GHz)	3115	10SL0059	08/11/2017	1 Year	08/11/2018	<
Horn Antenna (700MHz-18GHz)	SAS-571	411	05/13/2018	1 Year	05/13/2019	~
Tuned Dipole Antenna 30 - 1000 MHz (4pcs set)	AD-100	40133	03/08/2018	1 Year	03/08/2019	Y
3 Meters SAC	3M	N/A	09/09/2017	1 Year	09/09/2018	
10 Meters SAC	10M	N/A	10/06/2017	1 Year	10/06/2018	V
RF Conducted Measurement						
Agilent Spectrum Analyzer	N9010A	10SL0219	11/16/2017	1 Year	11/16/2018	(
Test Equity Environment Chamber	1007H	61201	07/21/2017	1 Year	07/21/2018	(
ETS-Lingren USB RF Power Sensor	7002-006	10SL0190	11/15/2017	1 Year	11/15/2018	<u>\</u>
Receiver Blocking						
R & S Wideband Communication Tester	CMW500	108852	07/28/2017	1 Year	07/28/2018	V

Test report No.	CE_RF_SL18040201-RIO-001_BT		
Page	37 of 38		

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark	
ISO 17025 (A2LA)		Please see the documents for the detailed scope	
ISO Guide 65 (A2LA)		Please see the documents for the detailed scope	
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C	
FCC DoC Accreditation		FCC Declaration of Conformity Accreditation	
FCC Site Registration		3 meter site	
FCC Site Registration		10 meter site	
IC Site Registration		3 meter site	
IC Site Registration		10 meter site	
		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025	
EU NB		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025	
Singapore iDA CB(Certification Body)	因因	Phase I, Phase II	
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope	
		(Phase II) OFCA Foreign Certification Body for Radio and Telecom	
Hong Kong OFCA	7	(Phase I) Conformity Assessment Body for Radio and Telecom	
	A	Radio: Scope A – All Radio Standard Specification in Category I	
Industry Canada CAB	Z.	Telecom: CS-03 Part I, II, V, VI, VII, VIII	

Test report No.	CE_RF_SL18040201-RIO-001_BT		
Page	38 of 38		

Japan Recognized Certification Body Designation		Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law	
Korea CAB Accreditation		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68	
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4	
Taiwan NCC CAB Recognition		LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08	
Taiwan BSMI CAB Recognition	7	CNS 13438	
Japan VCCI		R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measuremet	
		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4	
Australia CAB Regocnition		Radiocommunications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771	
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1	
Australia NATA Recognition	1	AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2	