TP 1.1 - Cocktail et vinaigrette

Objectifs de la séance :

- Connaître le vocabulaire associé aux corps purs et mélanges.
- Connaître et manipuler la verrerie de base en chimie.
- **>** Comprendre la notion de masse volumique.

En cuisine, mélanger deux liquides peut amener à des résultats différents selon les combinaisons. Préparer un cocktail ou une vinaigrette ce n'est pas la même chose!

→ Quels notions physico-chimique utilise-t-on pour décrire les propriétés d'un mélange?

Document 1 - Un peu de vocabulaire

La matière est constituée **d'entités chimiques** microscopiques :

Une **espèce chimique** est constituée d'un très grand nombre d'entités chimiques identiques.

- Un corps pur est constitué de
- Un mélange est constitué de

Document 2 - Type de mélange

Un mélange est **homogène** si on ne peut pas distinguer ses constituants. Un mélange homogène est constitué d'une seule phase.

Un mélange est **hétérogène** si on peut distinguer ses constituants. Un mélange hétérogène est constitué de **plusieurs phases**.

On dit que deux liquides sont **miscible** s'ils forment un

Inversement, deux liquides sont non miscibles s'ils forment un mélange hétérogène.

Miscible vient du latin « misceo », qui veut dire mélanger.

➢▲ Sur la paillasse se trouve une pissette d'eau distillée, de l'huile et de l'éthanol. Dans les tubes à essais, verser :

• Tube 1 : eau. • Tube 2 : eau + huile. • Tube 3 : eau + sirop.

▲ Il faut faire attention à ne pas remplir les tubes, quelques centimètres suffisent.

🖊 Utiliser les bouchons pour agiter les différents mélanges.

1 - Attendre un peu, puis schématiser le résultat obtenu dans chaque tube à essais.

2	2 -	Décri	re le o	conten	u des	tubes	en ut	ilisant	le vo	cabula	aire de	s docu	iments	1 et 2		
													• • • • • •			
•	3 –	Indiq	uer si	l'eau	et l'h	uile so	nt mis	scibles	et si	le siro	p et l'	huile s	sont mi	iscibles	5.	

Document 3 - Notion de masse volumique

La masse volumique est une grandeur qui représente la masse par unité de volume d'un échantillon de matière.

Si l'échantillon a une masse m et un volume V, sa masse volumique est définie par $\rho = \frac{m}{V}$

- $\rho(\text{eau liquide}) = 1,00 \,\text{g} \cdot \text{mL}^{-1}$
- $\rho(\text{huile}) = 0.92 \,\text{g} \cdot \text{mL}^{-1}$
- $\rho(\text{sirop}) > 1.00 \,\text{g} \cdot \text{mL}^{-1}$

▲ La masse volumique d'un échantillon est toujours la même, quelque soit sa taille ou sa forme. Par contre la masse volumique dépend des conditions de température et de pression.

l'h		flo								ic)I	ıs	d	lu	l (do	OC	eu	ın	1e	en	ıt	3	3,	fo	01	n	าเ	ıle	er	: 1	lľ.	ıe	h	У	po	ot	h	ès	е	qı	лi	e	хŢ	ol	iq	ue	er	ai	t	po	эu	r	ąυ	10	i
	 		 · • •	 	 	 																																												•						
	 		 · • •	 	 	 																																												•						

➢▲ En utilisant les connaissances accumulées sur la masse volumique, essayer de préparer un tube à essai avec trois étages de liquide distincts.