Masarykova univerzita Fakulta informatiky

Použitie BPMN pre malé SW projekty

DIPLOMOVÁ PRÁCA

Bc. Miroslav Ligas

Vyhlasujem

Prehlasujem, že táto diplomová práca je mojím pôvodným autorským dielom, ktoré som vypracoval samostatne. Všetky zdroje, pramene a literatúru, ktoré som pri vypracovaní používal alebo z nich čerpal, v práci riadne citujem s uvedením úplného odkazu na príslušný zdroj.

Vedúci práce: RNDr. Tomáš Ludík

Poďakovanie

Na tomto mieste by som sa chcel poďakovať vedúcemu mojej diplomovej práce, pánovi RNDr. Tomášovi Ludíkovi, za jeho podporu a smerovanie pri písaní tejto práce.

Zhrnutie

Diplomová práca je zameraná na použitie Business Process Modeling Notation po vývoji systémov pre malé spoločnosti. Zaoberá sa súčasne používanými postupmi pre tvorbu informačných systémov, a to hlavne na Business Driven Development. Na základe získaných znalostí je navrhnutá metóda pre vývoj malých softvérových projektov – Minimalistický procesne zameraný vývoj (Minimal Proces Driven Development MPDD). Záverečnú časť práce tvorí prípadová štúdia popisujúca tvorbu systému pre správu vedeckého časopisu.

Kľúčové slová

Business Process Modeling Notation, Unified Modeling Language, Vodopád, Iteratívny vývoj, Inkrementálny vývoj, Agilné metódy vývoja, Business Driven Development, Servisne Orientovaná Architektúra, Minimal Proces Driven Development

Obsah

1	Úvo	d		3			
	1.1	Štrukt	úra práce	3			
2	Modelovacie nástroje						
	2.1	Busine	ess Process Modeling Notation	5			
		2.1.1	Rozdelenie objektov v BPMN	5			
		2.1.2	Tokové objekty	5			
		2.1.3	Spojovacie objekty	7			
		2.1.4	Plavecké dráhy	8			
		2.1.5	Artefakty	9			
		2.1.6	Využitie BPMN	10			
	2.2	Unifie	d Modeling Language	11			
		2.2.1	Diagram prípadov použitia	11			
		2.2.2	Diagram tried	12			
3	Prís	tupy k		13			
	3.1	Metoc	liky vývoja softvéru	13			
		3.1.1	Vodopád	13			
		3.1.2	Iteratívny a inkrementálny vývoj	14			
		3.1.3	Agilné metódy vývoja	15			
	3.2	Busine		17			
		3.2.1	BDD model činností	17			
		3.2.2	Analýza firemných požiadaviek	19			
		3.2.3		19			
		3.2.4	Modelovanie prípadov použitia	19			
		3.2.5	Modelovanie služieb – SOA	20			
		3.2.6	Systémový návrh a vývoj	22			
		3.2.7	Nasadenie, monitorovanie a analýza zozbieraných dát	23			
		3.2.8	Definované roly	23			
4	Náv	rh vývo	ojovej metodiky MPDD	25			
	4.1	Chara	kteristika metódy	25			
		4.1.1	Model životného cyklu	25			
		4.1.2	Agilné prvky	26			
		4.1.3	Využitie BPMN	27			
		4.1.4	Inšpirácia BDD	27			
	4.2						
	4.3	Životr	ný cyklus	29			
	4.4	Vývoj	softvérového projektu	30			
		4.4.1	Modelovanie firemných procesov	30			
		4.4.2	Návrh systému	31			
		4.4.3	Vývoi	31			

		4.4.4	Testovanie	32			
		4.4.5	Nasadenie	32			
5	Prípadová štúdia						
	5.1	Model	lovanie firemných procesov	33			
		5.1.1	Špecifikácia požiadaviek	33			
		5.1.2		35			
		5.1.3	Naplánovanie iterácií	37			
	5.2	Návrh	systému	38			
		5.2.1	Jednoduché zobrazenie, vkladanie článkov a užívateľské roly	38			
		5.2.2	Recenzovanie a zostavovanie čísla časopisu	40			
		5.2.3	Vyhľadávanie a úprava profilu	41			
		5.2.4	Správa systému	42			
6	Záve	er		45			
A	Diagramy firemných procesov						
В	Diag	gramy 1	návrhovej fázy	52			
C	Obs	ah prile	oženého CD	55			

Kapitola 1

Úvod

Pri riešení softvérových projektov vznikajú rôzne problémy, ktoré môžu viesť k zlyhaniu projektu. Pri vývoji je snaha tieto riziká odstrániť zavedením metodík, ktoré napomáhajú uchopiť projekt, rozanalyzovať problematické miesta a navrhnúť čo najlepšie riešenie. Splniteľ nosť projektu nebude zaistená žiadnou metodikou, ale jej využitie minimalizuje riziko krachu projektu.

Najfrekventovanejšie modelovacie metodiky súčasnej doby sú veľmi rozsiahle a silné nástroje. Definujú veľké množstvo rolí a zavádzajú komplexné procesy, čím dokážu zvládať veľké projekty. Vnášajú tým do vývoja veľký prínos, prostredníctvom ktorého je projekt lepšie zvládnuteľný, ale zároveň sa i predlžuje. Čím je projekt menší, tým je citeľnejšia záťaž komplexnej metodiky. Opomenutie metodík by zbavilo projekty všetkej réžie a ušetrilo by čas aj prostriedky, ale riziko, ktoré by vzniklo, by mnohonásobne prevýšilo úsporu.

Pri modernom vývoji nie je preto rozumné postupovať bez metodík. Napriek tomu sa naskytuje priestor pre hľadanie nových ciest na ich vylepšenie a tým zefektívnenie vývoja. Namiesto využívania rozsiahlych používaných a overených metodík sa treba zamerať na ich esenciálne časti. Na základe týchto častí sa vybuduje ľahko zvládnuteľná a flexibilná metóda.

Malé softvérové projekty sú väčšinou spracúvané neveľkým počtom pracovníkov tak zo strany vývojára, ako aj zo strany klienta. Objavuje sa tu preto miesto pre rýchlu a flexibilnú metódu, ktorá dokáže rýchlo produkovať funkčné moduly a flexibilne reagovať na požiadavky klienta.

Cieľ om tejto práce je oboznámiť sa so súčasnými trendmi v softvérovom vývoji. Osvojiť si modelovacie nástroje na modelovanie firemných procesov a systémových návrhov. Po porozumení a osvojení si súdobých modelovacích konceptov treba využiť tieto znalosti na zostavenie vlastnej metódy, ktorá efektívne rieši malé softvérové projekty. Na záver je navrhnutá metóda preverená na konkrétnom príklade prípadovej štúdie systému pre správu vedeckého časopisu.

1.1 Štruktúra práce

Druhá kapitola práce sa zaoberá najpoužívanejšími modelovacími nástrojmi, ktoré sa v súčasnosti používajú na zachytenie interakcie a stavu daného systému. Podrobne sa tu popisuje rozšírený, i keď možno nie príliš známy, nástroj na modelovanie firemných procesov Business Process Modeling Notation (BPMN). Okrajovo sa spomína aj Unified Modeling Language (UML). Popisované sú len niektoré prvky UML použité v práci.

Tretia kapitola je venovaná metodikám. Popisuje rôzne prístupy, ako riešiť budovanie systému počnúc modelom vodopád a iteratívnym model. Zaoberá sa agilnými metodikami, ktoré sa vyznačujú rýchlosť ou a flexibilitou. Podrobnejšie je venovaná pozornosť najmä

Business Driven Development (BDD), z ktorého je čerpaná hlavná inšpirácia na zostavenie vlastnej metódy.

Štvrtá kapitola zachytáva hlavnú časť práce, čiže definovanie metódy pre malé softvérové projekty s využitím BPMN. Uplatňujú sa tu nástroje a postupy definované v predchádzajúcich kapitolách. Metóda je zostavená zo zaužívaných metodík, z ktorých sa vyberajú relevantné časti. Spája sa v nej agilný prístup a tradičné štruktúrované metodiky. Na zachytenie požiadaviek a identifikáciu modulov v projektovanom systéme používa hierarchiu BPMN diagramov. Jednotlivé moduly sú následne modelované pomocou tradičných UML diagramov.

Záverečná piata kapitola overuje vhodnosť definovanej metódy. Na základe jej využitia je vytvorená prípadová štúdia, popisujúca tvorbu informačného systému pre správu vedeckého časopisu. Pomocou uvedených nástrojov modeluje hierarchiu procesov prebiehajúcich pri fungovaní časopisu. Vo vzniknutom súbore diagramov sú identifikované automatizovateľné procesy. Následne sú určené komponenty modelované pomocou prípadov použitia a diagramu tried.

Kapitola 2

Modelovacie nástroje

2.1 Business Process Modeling Notation

V roku 2004 vydal Business Process Management Initiative (BPMI) štandard BPMN 1.0 [2]. Cieľ om tohto štandardu je poskytnúť ľahko pochopiteľ nú notáciu pre všetkých užívateľ ov podieľ ajúcich sa na tvorení, implementácii, spravovaní a monitorovaní firemných procesov. Súčasť ou BPMN je aj interný model, ktorý umožňuje prevod na spustiteľ ný BPEL4WS kód. Vypĺňa sa tým medzera medzi firemným procesným návrhom a implementáciou.

BPMN definuje Business Process Diagram (BPD), ktorý graficky znázorňuje postupnosti firemných procesov. Objekty zachytené v grafe reprezentujú aktivity a orientované hrany naznačujú poradie ich vykonania.

2.1.1 Rozdelenie objektov v BPMN

BPD diagramy sú tvorené z jednoduchých elementov, ktoré umožňujú ľahké tvorenie modelov, ktoré sú intuitívne pochopiteľné väčšine podnikových analytikov. Tvary elementov boli navrhnuté s ohľadom na už používané nástroje v procesnom modelovaní. Napríklad aktivity sa znázorňujú pomocou štvoruholníka a rozhodnutia sú značené diamantom. Pri vývoji BPMN bol kladený dôraz na to, aby bolo možné pomocou neho zachytiť aj komplexné firemné procesy. Pre lepšie zvládnutie týchto protichodných požiadaviek bolo navrhnuté malé množstvo kategórií, ktoré napomáhajú ľahšej orientácii v základných typoch. V rámci každej zo základných kategórií je možné modifikovať definované elementy prostredníctvom rozširujúcich informácií. Rozšírenia však nesmú narúšať základné charakteristiky elementov, čím by znižovali ich zrozumiteľnosť.

Základné kategórie elementov sú:

- Tokové objekty (Flow Objects)
- Spojovacie objekty (Connecting Objects)
- Plavecké dráhy (Swimlanes)
- Artefakty (Artifacts)

2.1.2 Tokové objekty

Tokové objekty sú základné objekty BPD, udávajú správanie firemného procesu. Umožňujú modelovanie akcií vykonávaných počas procesu, udalostí ovplyvňujúcich tok činností a rozhodnutí usmerňujúcich proces. Definované sú tri Flow Objects [1] zachytené na obrázku 2.1.

Obrázok 2.1: Tokové objekty

Udalosť

Udalosť (Event) je reprezentovaná krúžkom a vyjadruje niečo, čo sa stalo počas chodu firemného procesu. Tieto udalosti ovplyvňujú tok procesu a obyčajne majú príčinu (spúšťač) alebo dôsledok (výsledok). Definované sú tri typy udalostí. Na začiatku toku sa umiestňujú štartovacie udalosti (Start), v priebehu používame medziľahlé (Intermediate) a tok ukončujeme koncovými udalosťami (End).

Pre každú udalosť môžeme do krúžku umiestniť symbol spresňujúceho spúšťača alebo výsledku. V BPMN je definovaných desať podtypov udalostí [1]. Nie všetky podtypy sa však môžu používať s každým typom udalostí. Na obrázku (Obr. 2.2) sú znázornené všetky podtypy. Medziľahlými udalosťami môžeme nadviazať na aktivity, čím určíme ich alternatívne ukončenia. Napríklad vypršanie času na ukončenie aktivity, výskyt chyby počas procesu a ďalšie podľa uvedeného zoznamu.

Obrázok 2.2: Zoznam podtypov udalostí.

Aktivita

Aktivita (Activity) je spoločný pojem pre činnosť, ktorá prebieha vo firme. Aktivita môže byť atomická alebo sa môže skladať z viacerých úloh. Typmi aktivít sú: proces (Process), podproces (Sub-Process), úloha (Task). Podproces a úloha sa značia štvorcom so zaoblenými rohmi, pričom podproces je odlíšený malým plusovým znamienkom v spodnej časti. Proces je obsiahnutý vo vnútri poolu.

Brána

Bránou (Gateway) sa zabezpečuje rozdelenie a zlúčenie sekvenčného toku. Reprezentuje ho diamant, v ktorého strede sú zobrazené spresňujúce symboly. Tie špecifikujú, o aký typ vetvenia ide. Na výber máme rozhodovacie a paralelné delenie založené na vstupných dátach alebo na vyskytnutej sa udalosti (obr. 2.3). K týmto deleniam sú definované zodpovedajúce zlučovania.

Obrázok 2.3: Typy rozhodnutí pre brány.

2.1.3 Spojovacie objekty

Tokové objekty sa spájajú a vytvárajú základnú kostru firemného procesu. Spojovacie objekty (Connecting Objects) zachytené na obrázku 2.4 zabezpečujú toto prepojenie a taktiež umožňujú pripájanie artefaktov.

Obrázok 2.4: Spojovacie objekty

Sekvenčný tok

Sekvenčný tok (Sequence Flow) reprezentuje neprerušovaná čiara s vyplnenou šípkou. Vyznačuje poradie, v akom sú aktivity v procese vykonávané. Tok správ môže byť podmie-

nený. Graficky sa podmienená správa označí umiestnením diamantu na začiatku čiary a podmienka je zaznamenaná v názve toku. Pri používaní podmienených správ je dôležité, aby bola splnená aspoň jedna podmienka na to, aby proces mohol pokračovať. Na zaistenie pokračovania toku sa môže použiť implicitný tok, ktorý sa značí preškrtnutím na začiatku čiary. Uplatňuje sa v prípadoch, ak sa všetky ostatné podmienené správy vyhodnotia záporne.[2]

Tok správ

Tok správ (Message Flow) reprezentuje prerušovaná čiara s prázdnou šípkou. Používa sa na znázornenie interakcie medzi dvomi separátnymi účastníkmi procesu, ktorí sú schopní prijímať a odosielať správy. Každej vymedzenej entite podieľajúcej sa na interakcii je pridelený pool, pričom tok správ môže smerovať len medzi poolmi.

Asociácia

Na znázornenie asociácie (Association) sa používa prerušovaná čiara. Pomocou nej prirad'ujeme k tokovým objektom textové popisy alebo iné objekty, ktoré nepatria do skupiny tokových objektov. Pridaním šípky k prerušovanej čiare môžeme určiť smer priradenia.

2.1.4 Plavecké dráhy

Plavecké dráhy (Swimlanes) sa používajú ako prostriedok na organizáciu aktivít. Opticky sa pomocou nich oddeľ ujú zodpovednosti roly alebo usporiadanie činnosti v procese. Obrázok 2.5 zachytáva príklad zobrazenia plaveckých dráh.

Obrázok 2.5: Plavecké dráhy

Pool

Pool (Pool) ohraničuje proces a graficky vymedzuje jeho hranice. V rámci jedného poolu sa nachádza len jeden proces. Interakcia medzi poolmi prebieha pomocou správ. Pooly sa v diagrame používajú na zachytenie dvoch separátnych firemných entít alebo účastníkov. Proces každého účastníka je uzavretý v jeho vlastnom poole, čím je stanovené jeho jasné ohraničenie. Zachytený proces nemôže interagovať s okolitými procesmi pomocou sekvenčných tokov. Na interakciu medzi dvomi poolmi je určený mechanizmus toku správ. Správy nesmú byť použité v rámci jedného poolu (obr. 2.6).

Obrázok 2.6: Príklad využitia poolu.

Dráha

Dráha (Lane) delí pool na menšie časti po celej jeho dĺžke. Slúži na usporiadanie a kategorizáciu aktivít. Môže znázorňovať roly, oddelenia alebo funkcie organizácie. Komunikácia medzi jednotlivými dráhami prebieha pomocou sekvenčných tokov. Toky správ sa nesmú používať na komunikáciu medzi tokovými objektmi v dráhach jedného poolu (obr. 2.7).

Obrázok 2.7: Príklad využitia dráhy.

2.1.5 Artefakty

Artefakty (Artifacts) neovplyvňujú základnú štruktúru procesu budovanú z aktivít, brán a sekvenčných tokov. Ponúkajú však spresňujúce informácie o elementoch procesu. Užívateľ si môže sám doplniť sadu artefaktov na uľahčenie a sprehľadnenie diagramov. V BPMN [1] sú preddefinované len tri typy artefaktov (obr. 2.8).

Obrázok 2.8: Artefakty BPMN.

Dátový objekt

Dátový objekt (Data Object) slúži na zobrazenie toku dát v procese. Pomocou neho je možné modelovať, aké dáta sú požadované, a aké dáta systém produkuje. Dátový objekt je k aktivitám pripájaný pomocou asociácie. Graficky je reprezentovaný obdĺžnikom s ohnutým rohom.

Skupina

Skupina (Group) je znázorňovaná prerušovaným obdĺžnikom a používa sa na dokumentačné a analytické účely. Firemný analytik ju môže využiť na sprehľadnenie diagramov vytvorením skupín zlučujúcich súvisiace procesy. Vytvorené skupiny nijako neovplyvňujú tok procesu.

Poznámka

Anotácia (Annotation) slúži čitateľovi diagramu na zachytenie dodatočnej textovej informácie. Zvyšuje zrozumiteľnosť modelov a podáva vysvetľujúcu textovú informáciu o elementoch vyskytujúcich sa v diagrame. Anotácia je k objektu pripojená pomocou asociácie.

2.1.6 Využitie BPMN

Pomocou BPMN sme schopní modelovať procesy na rôznych úrovniach. Od detailného popisu jednotlivých čiastočných procesov ku globálnej orchestrácii firemných procesov, ktoré sa javia ako čierna skrinka. BPMN tým oslovuje rôznorodé publikum, ktorému podáva široké spektrum informácií na rozličných úrovniach detailu. Podľa miery záberu moderovaných procesov sa BPD delia na dve základné skupiny:

Kooperatívne medzifiremné procesy – Kooperatívny typ diagramu zachytáva medzifiremné procesy (Business to Business – B2B) [3]. Jeho hlavným cieľ om je znázornenie vzť ahov medzi dvomi a viacerými procesmi. Dôraz je kladený na modelovanie vzájomnej komunikácie. Obrázok 2.6 je príkladom kooperatívneho medzifiremného procesu.

Interné firemné procesy – Interné procesy firmy sú zachytené v hierarchii diagramov. Najvyššia úroveň zachytáva hlavný firemný proces, ktorý je prostredníctvom podprocesov podrobne popísaný. Najnižšia úroveň podrobne modeluje všetky činnosti, ktoré prebiehajú v procese. Príkladom procesu vysokej úrovne je obrázok 2.9. Diagram sa skladá z podprocesov, ktoré reprezentujú nižšie úrovne. Rozkreslením niektorého z podprocesov možno získať podrobný diagram jeho fungovania. Takýto diagram je znázornený na obrázku 2.10.

Obrázok 2.9: Interný proces vysokej úrovne.

Obrázok 2.10: Interný proces nízkej úrovne – príjem objednávky.

2.2 Unified Modeling Language

Unified Modeling Language (UML) [4] je v súčasnej dobe najrozšírenejším modelovacím nástrojom. Jeho uplatnenie je široké a nie je používaný len v oblasti vývoja softvéru. Vzhľadom na jeho veľké rozšírenie a predpokladanú zrejmosť notácie sa ním táto práca nebude podrobne zaoberať. Zmienené budú len niektoré diagramy, ktoré budú v práci využité.

2.2.1 Diagram prípadov použitia

Diagram prípadov použitia (Use Case Diagram) slúži na zachytenie základných funkčných požiadaviek, ktoré má systém spĺňať. Poskytuje vonkajší pohľad na systém z perspektívy osôb pracujúcich so systémom, čím vymedzuje hranice systému. Diagram sa skladá z troch základných častí:

Hranice systému – Vymedzujú modelovanú oblasť.

Aktér – Predstavuje entitu (rola, systém, čas) mimo systému, ktorá so systémom spolupracuje.

Prípad použitia – Zachytáva ucelenú funkčnú jednotku systému.

Pomocou týchto častí je možné modelovať interakciu okolitého sveta s budovaným systémom. Diagram nesmie obsahovať interakciu medzi aktérmi, ani medzi prípadmi použitia. Môže však obsahovať väzbu *používa* (*include*), naznačujúcu, že jeden prípad použitia vyžaduje pre svoju funkčnosť iný prípad, bez ktorého je nekompletný. Druhou možnosť ou je väzba *rozširuje* (*extend*), ponúkajúca rozšírenie funkcionality hlavného prípadu. Rozširovaný proces by mal byť úplný sám o sebe. Súčasť ou diagramu je aj detailná dokumentácia jednotlivých prípadov použitia. Na obrázku 2.11 je jednoduchý príklad diagramu.

Obrázok 2.11: Príklad na diagram prípadu použitia.

2.2.2 Diagram tried

Diagram tried (obr. 2.12) graficky zachytáva statickú štruktúru systému. Jeho stavebnými prvkami sú triedy a asociácie. Triedy obsahujú atribúty a operácie a môžu sa hierarchicky radiť pomocou generalizácie a špecializácie. Asociácii slúžia na modelovanie vzájomných vzťahov medzi triedami. Môžeme určiť ich smer a kardinalitu.

Obrázok 2.12: Príklad na diagram tried.

Kapitola 3

Prístupy k vývoju softvéru

V súčasnosti sa vo vývoji softvérových produktov v prevažnej väčšine prípadov používa objektovo orientovaná analýza a návrh. V tomto prístupe sa entity modelovaného systému reprezentujú pomocou objektov, ktoré zachytávajú ich stav, správanie sa a identitu. Na uľahčenie zvládnutia problému sa využíva rôzna úroveň abstrakcie. Zakrývajú sa ňou nepodstatné časti problému a pozornosť sa sústredí na podstatné aspekty.

3.1 Metodiky vývoja softvéru

Pri využití objektovo orientovanej analýzy sa v najväčšej miere používajú modely: vodopád, iteratívny a inkrementálny vývoj. Črty týchto modelov možno nájsť vo všetkých moderných modelovacích metodikách.

3.1.1 Vodopád

Vodopád patrí medzi najtradičnejšie modely vývoja. Historicky patrí medzi najstaršie ucelené predlohy na vývoj softvéru. Definuje jasné postupy pri zvládaní projektu počas celého jeho životného cyklu. Rozdeľuje projekt na základe vykonávaných aktivít na: definovanie problému, analýzu a špecifikáciu požiadaviek, návrh, implementovanie, testovanie a integrovanie, údržbu. Tieto etapy sa zoradia a postupne sa začnú sekvenčne vykonávať [5]. Ďalšia aktivita môže začať, až keď skončí predchádzajúca. Pri výskyte chyby sa projekt vracia späť do etapy, v ktorej chyba vznikla, a chyba musí byť opravená. Po opravení chyby sa proces spúšť a od toho miesta, kde chyba nastala. Postupnosť činností modelu vodopád znázorňuje obrázok 3.1.

Výhodou aj nevýhodou vodopádu je jeho jednoduchosť a ľahká pochopiteľ nosť. Umožňuje ľahkú kontrolu postupu práce pomocou sledovania výstupov jednotlivých etáp vývoja. V súčasnej dobe však už nedokáže pokryť väčšie projekty pre ich zložitosť.

Pri práci podľa modelu vodopád sa rýchlo narazí na viaceré úskalia. Jedným z nich je správne odhadnutie času prechodu z jednej etapy projektu do nasledujúcej. Problémom môže byť aj to, že vodopád neumožňuje prekrývania sa etáp. Najväčším problémom však je neskoré odhalenie chyby v analýze alebo návrhu, ktoré sa prejaví až pri testovaní. Takáto chyba vracia projekt na jeho úplný začiatok a môže ľahko viesť k jeho neúspechu. Napokon na tieto ťažkosti nadväzuje problematický odhad ceny projektu.

Spôsob, akým vodopád funguje, prináša ešte jednu veľkú nevýhodu. Počas celej doby trvania vývoja nemá zákazník žiadnu možnosť zistiť, či dodaný systém bude zodpovedať jeho predstavám, a zasahovať do jeho vývoja. Nemá možnosť získať funkčné podčasti systému, s ktorými už môže pracovať, ale musí čakať až na ukončenie vývoja. Po ukončení projektu môže ľahko nastať situácia, kedy je zákazník prekvapený z výsledku, ktorý dostane.

Obrázok 3.1: Schéma životného cyklu vodopád.

3.1.2 Iteratívny a inkrementálny vývoj

Iteratívny a inkrementálny vývoj sú dva rôzne modely na vývoj softvéru. Veľmi dobre spolu fungujú, a preto sa aj často súčasne používajú. Niektoré pramene ich dokonca považujú za jeden model. Obidva prístupy majú však svoje špecifiká. [8] Hlavnou snahou týchto modelov je zníženie rizika zlyhania projektu. Celý projekt je rozdelený na časti podľa budúcej funkcionality systému. Pre každú časť sa vykoná analýza, návrh, implementácia a testovanie. Výsledný systém sa vybuduje z podčastí. Rozdelenie projektu umožní skoršiu detekciu chýb a hlavne nie je nutné prepracúvať celý systém, ale len časť, v ktorej sa vyskytla chyba.

Pri využití týchto modelov vznikajú problémy s integráciou. Vzniká réžia, ktorá musí zabezpečovať funkcionalitu neúplného systému, ako napríklad vytvorenie protéz. Tvorí sa priestor na vznik nových chýb pri integrácii častí systému. Okrem technických problémov sa komplikuje aj časový návrh práce na projekte, lebo nie každá iterácia zaberá rovnaký čas. Úvodné iterácie sa predlžujú z analytických dôvodov, aby bol nastávajúci systém dobre pochopený. Záverečné iterácie zas v sebe zahrňujú sprievodné činnosti projektu, ako zaškolenie užívateľov.

Odlišnosti modelov

Pomocou inkrementálneho vývoja je systém tvorený z nezávislých funkčných častí, ktoré sú osobitne vytvárané za pomoci vodopádu alebo iteratívneho vývoja. Celkový systém dostávame spojením jednotlivých častí do jedného celku. Inkrementálny vývoj je založený na filozofii pridávania k už existujúcim častiam systému. [6]

Pri iteratívnom vývoji sa postupuje cestou zdokonaľovania, rozširovania a opravovania už existujúceho systému. Značná časť kódu je ďalšími iteráciami prepisovaná, prípadne vymazaná a nahradená. Preferuje sa prepísanie zlého kódu namiesto jeho obchádzania. [7] Tento postup sa v prevažnej väčšine prípadov spája s inkrementálnym vývojom a veľmi dobre spolu fungujú.

3.1.3 Agilné metódy vývoja

Súčasný svet sa veľmi rýchlo mení. Pri vývoji softvéru sa preto kladie veľký doraz na rýchlosť a flexibilitu. Aplikácie sa počas vývoja musia prispôsobovať meniacim sa podmienkam a byť čo najskôr k dispozícii zákazníkovi.

Z obrázku 3.2 vidíme, že klasické metódy vývoja sa zakladajú na fixnej funkcionalite, ktorá je daná špecifikáciou požiadaviek. Funkcionalita je hlavným meradlom úspešnosti projektu. V prípade nesplnenia požiadaviek projekt zlyháva. Čas a prostriedky na daný projekt sa odvíjajú od funkcionality. Často sa preto stáva, že dochádza k posúvaniu termínov odovzdania a k zvyšovaniu nákladov na zvládnutie projektu.

Agilné metódy sa k problému stavajú úplne opačne. Za fixné považujú zdroje a čas potrebný na zvládnutie projektu. Zákazníkovi dodajú nie vždy úplnú, ale pre neho najpodstatnejšiu funkcionalitu vždy v čase, keď ju potrebuje. Programy vyvíjané agilnými metódami sú ľahko rozšíriteľné, a preto nie je problém s dodaním zvyšných častí systému. Ďalším dôsledkom nefixnej funkcionality je možnosť menenia požiadaviek zákazníka počas vývoja. Vyvíjaný produkt tým lepšie spĺňa zákazníkove potreby. [10]

Obrázok 3.2: Porovnanie klasického a agilného prístupu.

Manifest agilného programovania

K agilným metódam vývoja patria viaceré metodiky. Všetky majú spoločný základ v častých kontrolách a úpravách, vysoko kvalifikovaných samoorganizovaných tímoch a zainteresovanosti zákazníka na procese. Filozofia agilných metód je zachytená v manifeste [9]:

- Osoby a interakcia majú prednosť pred procesmi a nástrojmi.
- Fungujúci softvér má prednosť pred obsiahlou dokumentáciou.
- Spolupráca so zákazníkom je uprednostnená pred vyjednávaním o zmluvách.
- Reagovanie na zmenu má prednosť pred dodržiavaním plánu.

Osoby a interakcia majú prednosť pred procesmi a nástrojmi

Tento bod vyjadruje zameranie metódy na človeka a jeho schopnosti a skúsenosti. Uprednostňovaný je malý efektívny tím, ktorého členovia medzi sebou intenzívne komunikujú pri

riešení problémov. Preferované je riešenie problémov pomocou komunikácie tvárou v tvár, ktorá je rýchlejšia a efektívnejšia ako iné formy komunikácie. Je preto dobré, aby bol celý tím fyzicky situovaný na jednom mieste. Umožňuje to lepšiu spoluprácu na projekte a tým aj rýchlejšie produkovanie kódu. Programovanie často prebieha v skupinkách, ktorých členovia sa striedajú pri kódovaní daného úseku programu.

Manažéri a vývojári sú v tíme na rovnataktiežkej úrovni. Pri rozhodnutiach, ktoré sa týkajú technických riešení, majú hlavné slovo vývojári. Manažéri majú za úlohu odstraňovať problémy netechnického rázu, ktoré by mohli projekt ohroziť. Obidve skupiny navzájom intenzívne komunikujú v záujme dosiahnutia čo najlepších výsledkov.

Fungujúci softvér má prednosť pred obsiahlou dokumentáciou

Klasické postupy stavajú dokumentáciu na základe špecifikácie požiadaviek. Snažia sa tak zachytiť funkcionalitu budovaného systému. Výsledkom vývojového procesu je systém, ktorý zákazník na začiatku procesu definoval. Manažment sa týmto postupom snaží minimalizovať možnosť zlyhania projektu. Klasický prístup má však dva výrazné nedostatky. Počíta s presnou predstavou zákazníka o vznikajúcom systéme, ktorú obyčajne zákazník nemá, a nereaguje na zmeny v požiadavkách. Od definovania požiadaviek po odovzdanie systému uplynie veľa času. Svet však nestojí a taktiež ani požiadavky zákazníka na systém nestagnujú. Výsledkom klasických postupov je preto často systém, ktorý presne spĺňa špecifikáciu požiadaviek, ale nespĺňa aktuálne potreby zákazníka.

Agilné metodiky sa snažia tejto nepružnosti vyhnúť. Nemajú jasne stanovené požiadavky na systém na začiatku vývoja, preto nie je možné zostaviť klasickú dokumentáciu. Šetrí sa tým čas potrebný na vývoj. Za kľúčovú časť dokumentácie je považovaný samotný kód. Agilné metodiky priniesli koncept jednoduchosti: Neprodukovať viac, ako je treba, a nesnažiť sa tvoriť dokumenty, ktoré zachytávajú budúcnosť. Šetrí sa tým veľa úsilia, ktoré by bolo potrebné na vyhľadávanie v rozsiahlych dokumentáciách a na udržovanie týchto dokumentov v aktuálnom stave.

Za hlavný návrh systému je považovaný budovaný zdrojový kód. Tento prístup umožňuje rýchly presun do fázy programovania, ktorá priamo zachytáva požiadavky zákazníka. Preskakuje sa tým modelovanie rôznych abstraktných modelov, čím sa šetrí čas. Vzniká tu však riziko, že zákazník musí byť pripravený na pracovanie so systémom počas jeho vývoja.

Spolupráca so zákazníkom je uprednostnená pred vyjednávaním o zmluvách

Agilné metódy sú založené na flexibilite a ich sila spočíva v možnosti rýchleho prispôsobenia sa meniacim sa požiadavkám. Pri vývoji sa intenzívne komunikuje so zákazníkom a funkcionalita sa vytvára a upravuje podľa jeho predstáv. Zákazník sa stáva členom vývojového tímu, spolupracuje na odsúhlasovaní rozhodnutí a ovplyvňuje vývoj.

Klasické metódy dojednávania kontraktu sa opierajú o špecifikáciu budúceho systému. Podľa nej sa vypočíta fixná cena projektu. Pre agilné metódy tento postup nie je aplikovateľný, lebo konečná funkcionalita budúceho systému sa začne rysovať až počas samotného vývoja. Agilné metódy musia byť preto podporené novým druhom kontraktu, ktorý nie je založený na fixnej cene dodávky.

Vzniká tu potreba nového obchodného vzťahu, ktorý je založený na úzkej spolupráci zákazníka s dodávateľom. Zákazník má veľkú moc v ovplyvňovaní celého vývoja a nesie aj veľkú časť zodpovednosti za úspech projektu.

Reagovanie na zmenu má prednosť pred dodržiavaním plánu

V súčasnom rýchlo sa meniacom svete je ťažké používať prediktívne metodiky alebo definovať stabilnú špecifikáciu požiadaviek. Klasické postupy sa pomocou plánovania snažia zamedziť zlyhaniu projektu a tým šetriť náklady na projekt. Ich výsledok však nemusí splniť momentálne očakávania zákazníka.

Agilné metódy volia iný prístup. Zmenám sa nedá vyhnúť, a preto sa proti nim nesnažia bojovať. Vzniká tu snaha o minimalizáciu nákladov na vykonanie potrebných zmien počas vývoja. Vývoj striktne nenasleduje stanovený plán. Na začiatku je identifikovaná počiatočná funkcionalita, ktorá je počas vývoja prispôsobovaná. Jednotlivým funkčným častiam je pridelená priorita, podľa ktorej sa vo vývoji postupuje. Zákazník má možnosť ovplyvňovať prioritu jednotlivých funkcií: vyžiadať doplnenie novej funkcionality systému, modifikovanie už existujúcich častí a vymazanie nevhodnej funkcionality.

3.2 Business Driven Development

Business Driven Development (BDD) je moderný robustný prístup k tvoreniu softvéru. Podobne ako agilné metodiky sa snaží reagovať na časté a rýchle zmeny vo vývoji softvéru v dnešnom dynamicky sa meniacom svete. Dôraz je kladený na budovanie softvéru, ktorý zodpovedá trhovým trendom a firemným potrebám. Do popredia sa vyzdvihuje súlad IT riešení s firemnými požiadavkami. [16]

Klasické softvérové riešenia boli tvorené na základe stanovených požiadaviek. Systémy vzniknuté týmto spôsobom boli do veľkej miery neflexibilné. Ich rozširovanie bolo veľmi komplikované a nákladné. Znovu použitie funkcionality taktiež nebolo veľké. V súčasnom meniacom sa svete nemá takýto prístup miesto. Firmy musia byť každodenne pripravené na meniace sa prostredie, aby si zachovali konkurencieschopnosť. Informačné systémy musia preto držať krok s týmito zmenami a podporovať firemné procesy. Kľúčovým sa stáva prepojenie produktov IT s potrebami firmy [18].

Pri dosahovaní potrebného prepojenia firemných potrieb a IT sa možno odraziť od modelovania firemných procesov a rôznych metrík, ako napríklad návratnosť investícií (return of investments ROI) [11] a kľúčových indikátorov výkonu (key performance indicaotrs KPI) [12]. Ako hlavný prvok premostenia firemných potrieb a IT je vhodné využiť modely firemných procesov (Business proces models BPMs). Je preto dôležité, aby IT odborníci boli schopní tieto diagramy čítať a pochopiť.

Analyzovaním procesov možno dospieť k tomu, že požadovaná funkcionalita už existuje a môže byť znovu použitá, prípadne sú doprogramované len malé časti na prepojenie už existujúcich modulov. V prípade, že sa nedá znovu použiť žiadna časť systému, je potrebné vyvíjať od začiatku.

3.2.1 BDD model činností

Vzniká snaha na uzavretie priepasti medzi firemnými potrebami a IT riešeniami. Toto prepojenie však musí zostať pružné a prístupné pre vytváranie IT riešení. Tieto trendy viedli k zavedeniu servisne orientovanej architektúry (Service-Oriented Architecture SOA) [14].

SOA poskytuje rámec (framework) – spolu s princípmi a smernicami – na vytváranie znovu použiteľných, zlučiteľných a nastaviteľných platformovo nezávislých služieb (services). Využitie SOA vyžaduje BDD prístup, ktorý spracúva firemné ciele a požiadavky zhora na-

dol, do návrhov, vývoja a testovania. Získava sa tým prostredie, v ktorom sa aplikácie tvoria zo znovu použiteľ ných služieb alebo z nových služieb, ktoré sú vyvíjané podľa aktuálnych firemných potrieb. Tým sa zabezpečuje potrebná flexibilita v IT.

Nasledujúci obrázok 3.3 znázorňuje vysokoúrovňový náhľad na typickú postupnosť činností v BDD metodike [13].

Obrázok 3.3: BDD model činností.

Prvým korkom vo vývoji nového IT riešenia je navrhnutie firemného procesu. Odporúča sa začať modelovaním kľúčových firemných procesov. Výsledkom modelovania je odovzdanie firemných požiadaviek na systém IT riešiteľskému tímu. Navrhnutým firemným procesom musí byť zo strany firemných návrhárov určená dôležitosť, ktorá je vypočítaná pomocou rôznych metrík, ako napríklad ROI a KPI.

Po ukončení modelovania firemných procesov nastupuje fáza zbierania požiadaviek na systém. Modely vzniknuté v predchádzajúcej fáze sú hlavným vstupom. Identifikujú sa v nich prípady použitia (use case), od ktorých sa odvíja návrh služieb. Stále sa pritom berie ohľad na firemné procesy, ktoré zachytávajú vzájomné prepojenie jednotlivých prípadov použitia. Po tom, ako je služba implementovaná, pokračuje sa ďalšou fázou, a to nasadením. Služba je nasadená na aplikačný server, kde je verejne prístupná, a je možné ju vyhľadať.

Po uvedení služby do prevádzky následuje fáza monitorovania. Zbierajú sa v nej informácie o behu služby v skutočnom čase, spracovávaných dátach a hláseniach. Sledovanie je doplnené o širokú paletu meraní podľa vopred definovaných metrík a výkonnostných parametrov. Fáza monitorovania je podstatná pre určenie funkčnosti a správnosti vytvorenej služby. Správne vytvorená služba musí spĺňať všetky požadované parametre.

Na záver nastupuje analyzovanie nazbieraných dát z predchádzajúcej fázy. Dáta sú dané na analýzu architektom, návrhárom a vývojárom. Všetci zúčastnení na vývoji vyhodnotia zozbierané údaje a na ich základe navrhnú vylepšenia systému. Niekedy sa zmeny môžu prejaviť aj na firemnej úrovni zmenou firemných pravidiel a externých rozhraní. Zmenami sa proces opäť posúva do fázy modelovania, čím sa postup činností uzatvára a začína sa nové kolo vývoja. Ustavičným vylepšovaním existujúceho systému umožňuje tento mechanizmus rýchle prispôsobenie sa meniacim sa podmienkam.

3.2.2 Analýza firemných požiadaviek

Prvým a veľmi podstatným krokom pri vývoji softvéru je pochopenie firemných požiadaviek. Získavajú sa pomocou komunikácie so zainteresovanými osobami a pozorovaním už existujúceho systému. Je veľmi dôležité komunikovať so všetkými vrstvami pracovníkov vo firme, aj s najzaneprázdnenejšími manažérmi a vedúcimi. Výsledky treba zachytiť a zdokumentovať. Dokumenty by mali obsahovať minimálne:

- firemnú víziu,
- firemné ciele (krátkodobé a dlhodobé), ktorými uskutočňujú víziu spoločnosti,
- firemné požiadavky vysokej úrovne, ktoré napomáhajú dosiahnuť ciele,
- Problémy s existujúcimi firemnými procesmi.

Taktiež je veľmi dôležité pochopiť prostredie a organizačnú štruktúru firmy. Rozčleniť firmu na funkčné celky, ktorým je jasne pridelená firemná funkcionalita vyššej úrovne. Tieto poznatky treba sformovať a prehľadne zachytiť.

3.2.3 Modelovanie firemných procesov

Modelovanie firemných procesov (Business process modeling – BPM) [15] je technika na vizuálne zachytenie firemných procesov pomocou postupnosti aktivít a rozhodovacích uzlov. Účelom BPM je vytvoriť modely, ktoré môžu inžinierske skupiny použiť na implementovanie služieb. Stanovuje sa ideálny firemný proces, ktorý je treba sa snažiť dosiahnuť.

Každá organizácia alebo jej sektor má vymedzenú firemnú funkcionalitu, ktorú podporuje alebo poskytuje. Pomocou BPM je možné modelovať tieto funkcionality. Každá úloha je pridelená role, ktorá zodpovedá nejakej entite alebo skupine entít. Rola môže byť pridelená viacerým entitám a jedna entita môže vystupovať vo viacerých rolách.

Firemný proces môže byť po analýze reprezentovaný postupnosťou aktivít a úloh. Úloha je najmenšia celistvá jednotka funkcionality, ktorá má pre užívateľa význam. Zložitejšie procesy sa podrobnejšie modelujú v podprocesoch, z ktorých sa skladá hlavný proces. Príklady procesov sú uvedené na obrázkoch 2.9 a 2.10.

Celistvý úsek procesu obyčajne zodpovedá istej funkčnej jednotke firmy, niekedy je však nevyhnutné priradiť funkčnú jednotku do organizácie procesu. Získavame tým hlboké pochopenie rozloženia zodpovedností a úloh vo firme, ktoré neskôr zužitkujeme pri návrhu a vývoji softvérového projektu.

Navrhnuté modely sa dajú testovať, prípadne sú do nich zavedené monitorovacie parametre, aby bolo uľahčené meranie výkonu a funkčnosti procesov. Možno nimi vykonávať simulácie, prostredníctvom ktorých sa dajú získať informácie na vylepšenie modelov.

Modelovaním BPM je možné nadobudnúť súbor modelov, ktoré slúžia ako hlavný vstup do nasledujúcej fázy. Plne popisujú všetky funkčné časti firmy a procesy v nich prebiehajúce. Poskytujú tým náhľad na vzťahy medzi jednotlivými sekciami firmy. Na základe týchto znalostí sa ľahko vytvorí dátový model budúceho systému.

3.2.4 Modelovanie prípadov použitia

Pri modelovaní prípadov použitia je potrebné využiť firemné procesy, pomocou ktorých vytvárame jednotlivé prípady použitia. Roly z firemných procesov sú prevedené na aktérov

a prípady použitia sa dajú získať prevedením jednotlivých firemných procesov, prípadne podprocesov. Vlastný prevod modelov poskytuje značnú mieru flexibility. Na prevod nie je jasne definovaný formálny postup, ale je možné naznačiť použiteľný mechanizmus prevádzania BPMs na modely prípadov použitia.

Nie je vhodné mapovať jednu aktivitu či úlohu v procese na jeden prípad použitia. Prípady použitia by pri takomto postupe znázorňovali len jednu interakciu, pretože úloha zodpovedá jednej interakcii. Podľa definície jazyka UML je ale prípad použitia úplná postupnosť interakcií. Znamená to, že jeden prípad použitia by mal zahŕňať všetky interakcie, ktoré privedú systém do takého stavu, aby mohla byť vykonávaná operácia znovu spustená. [13] Vyplýva z toho, že zachytávanie jednotlivých interakcií v prípadoch použitia nie je vhodné. Podobne aj mapovanie celého firemného procesu na prípad použitia by bolo značne zložité a neprehľadné. Vyskytovalo by sa tu veľké množstvo rol a vznikal by veľký počet alternatívnych ciest.

Jedným spôsobom, ako sa k tomuto problému možno postaviť, je zavedenie krokov. Jeden krok sa dá definovať ako postupnosť úloh, ktoré môžu byť vykonané bez prerušenia tou istou rolou. Napríklad uloženie "ulož rezerváciu" môže byť prípad použitia, ale "ulož rezerváciu a zašli dovolenkový leták" nemôže byť prípadom použitia, lebo uplynie istý čas od momentu, ako je rezervácia uložená, až do momentu, keď je možné vytvoriť, prispôsobiť a zaslať dovolenkový leták užívateľovi. Na firemné procesy sa ale dá pozerať aj ako na postupnosť krokov, pričom každý krok je prípad použitia s požadovaným výstupom a správaním. Hneď, ako je možné identifikovať prípad použitia, je nutné popísať jeho hlavné kroky cez aktivity, ktoré v ňom prebiehajú. Takýmto spôsobom sa získa popis prípadu použitia pomocou postupnosti krokov.

Všetky identifikované prípady použitia majú význam, lebo vznikli identifikovaním krokov vo firemnom procese. Každý prípad použitia zodpovedá aspoň jednému firemnému procesu, či už celému alebo jeho oddielu, a je ho možné spojiť aspoň s jedným firemným procesom. Sú identifikované všetky prípady použitia, lebo každému kroku vo firemných procesoch je pridelený zodpovedajúci prípad použitia s popisom hlavných krokov. Ak sa úspešne podarí vykonať všetky tieto prevody, zvyšuje sa tým pravdepodobnosť úspechu IT projektu.

3.2.5 Modelovanie služieb - SOA

Ak chce spoločnosť využívať servisne orientovanú architektúru (SOA), musí si vytvoriť portfólio služieb, ktoré spoločnosť poskytuje pre interné alebo externé použitie. Pri dosahovaní SOA môže spoločnosť dosiahnuť rôzne úrovne. Väčšina spoločností zavádza webové služby, no sú aj omnoho vyššie úrovne implementovania SOA do spoločnosti. Určenie úrovne, na ktorej sa firma nachádza v rámci presadzovania SOA, je sám o sebe zložitý proces. Na to, aby spoločnosť dosiahla skutočné SOA, je potrebné pochopiť, prijať a nasledovať postupy SOA.

Proces vývoja informačného systému pre firmu, v ktorom sa využije SOA architektúra, bude pokračovať spracovaním výsledkov firemnej analýzy na identifikovanie a navrhnutie služieb. Je potrebné začať stavať na výsledkoch minulej fázy, na firemnej vízii a cieľoch organizácie. Pri automatizácii firemných procesov treba dodržať prioritné kritériá. Pri ich určení úzko spolupracuje IT a firemný manažment. Musia prehodnotiť kľúčové problémy firmy ako: napríklad určenie primárnych procesných slabostí a úzkych miest, problematické body vytknuté zákazníkom a procesy, ktoré musia byť škálovateľné s nárastom objemu

Obrázok 3.4: Úrovne servisne orientovanej architektúry.

transakcií.

Na základe takýchto analýz môže byť stanovený plán, v akom poradí budú procesy vyvíjané. Procesy sú vlastnené funkčnými časť ami firmy. Pár týchto jednotiek môže byť na začiatku vybraných, aby sa na ne IT sústredilo a získal sa tým krátkodobý okamžitý prospech. Akákoľ vek služba, ktorá môže byť identifikovateľ ná, musí podporovať ciele firmy, ktoré sa snaží sčasti alebo úplne vyriešiť. Týmto si možno pomôcť pri uprednostňovaní funkčných častí firmy pre IT vývoj. Pre veľ mi dôležité zložky firmy budú následne identifikované a definované služby. Problémy s existujúcimi firemnými procesmi môžu byť použité ako hlavné ciele zavádzania služieb. V každom prípade pri určovaní priority zamerania IT treba mať na pamäti firemné potreby.

Každý firemný proces, ako aj prípady použitia, ktoré boli identifikované v predchádzajúcich fázach vývoja systému, môžu byť pripísané na zoznam kandidátskych služieb. No nie všetky kandidátske služby sú aj realizované. Zmyslom SOA je zostaviť portfólio služieb, ktoré budú znovu použiteľné v čím viacerých firemných procesoch. Implementácia týchto služieb musí byť taktiež dobre premyslená, aby sa jednotlivo implementované časti dali využiť v rôznych implementáciách služieb.

Obrázok poskytuje náhľad na rôzne úrovne SOA. Zobrazuje kroky firemného procesu, ktoré sú prevedené na jednu službu alebo na skupinu viacerých služieb. Taktiež zobrazuje, ako môže byť služba implementovaná komponentmi. Tieto komponenty môžu byť pozostatky bývalého systému, komerčne dostupné riešenia alebo úplne od nuly vyvíjané komponenty.

Po zostavení listiny kandidátov na služby je snahou dopracovať sa ku konečnej podobe portfólia služieb a vypracovať model služieb pre firmu. Základné činnosti, ktoré musia byť vykonané na dosiahnutie modelu služieb, sú:

- analýza zhora dolu cez procesné modely,
- analýza už existujúceho systému a aplikácií,

- vytvorenie prvotného modelu služieb pre kandidátske služby,
- jasné stanovenie popisov vlastností a kvality služieb,
- zviazanie každej služby s firemným cieľom a zabezpečenie, aby sa služba podieľala aspoň na jednom firemnom procese.

3.2.6 Systémový návrh a vývoj

Počas vývojovej fázy tím pracuje s počiatočným prípadom použitia a modelom služieb. Vnára sa do modelu a špecifikuje funkcionalitu pre každý prípad použitia.

Systémový návrh

Na vytvorenie modelu systémových komponentov sa využije popis funkcionality jednotlivých prípadov použitia. Model komponentov popisuje rozhranie komponentov, ktoré ponúkajú, a zachytáva taktiež vzťahy medzi jednotlivými komponentmi v celom systéme. Delenie systému na komponenty zodpovedá navrhnutým službám v modeli služieb. V modeli môžu byť zahrnuté aj komponenty, ktoré priamo neimplementujú služby, ale poskytujú len podpornú funkcionalitu. Komponenty, ktoré nemajú rozhrania, sa nedajú externe využívať, tak sa využívajú len na vnútornú komunikáciu. Pre dôležité prípady použitia sú vytvárané sekvenčné diagramy cez rozhrania komponentov. Takto je systém navrhnutý, aby komponenty z modelu komponentov medzi sebou dobre komunikovali cez rozhranie.

V tejto fáze sa taktiež identifikujú a dokumentujú nefunkčné požiadavky na systém. Nevyužíva sa len vytvorenie SLA pre služby, ale sú tiež využité ako vstupy do operačného systémového modelu. Tento model okrem iného popisuje infraštruktúrové komponenty ako middleweare, zasielanie správ, správa súborov a ďalšie. Taktiež popisuje, ako sú komponenty distribuované po sieti a ako sú nasadené na hardvéry.

Pred samotnou implementáciou modelovaných procesov musia byť najskôr definované implementácie služieb, ich popisy a spôsob vyvolania. Nie všetky kroky procesov sa však implementujú ako priame vyvolania služieb. Jedným z hlavných dôvodov, prečo sa komponenty vyvolávajú priamo cez ich rozhranie, je zvýšenie výkonu systému odstránením nadbytočnej réžie vykonávania. Sú aj iné dôvody, prečo je vhodné zvoliť hybridný prístup pri implementácii procesov. Pri návrhu je preto dôležité uvedomiť si tieto potreby a zaznamenať ich pre ďalší vývoj.

Po ukončení makronávrhu na modelovanom diagrame komponentov a operačného modelu sa pristúpi k mikronávrhu, ktorý zahŕňa modelovanie diagramov tried a sekvenčných diagramov pre každý komponent systému. Pri návrhu sa postupuje iteratívne a využívajú sa overené návrhové vzory. Návrh tým získava na robustnosti a spoľahlivosti.

Systémový vývoj

Počas vývoja sa prevádzajú modely z návrhovej časti do praktickej nahraditeľnej podoby. Vyberá sa technológia (napr. Java 2 Enterprise Edition), programovací jazyk (napr. Java) a vývojové prostredie, v ktorom bude systém naprogramovaný. Firemné procesy sa prevádzajú do spustiteľnej formy využitím Business Process Execution Language (BPEL) [17] a slúžia ako východiskový bod pre implementáciu procesov do programovacieho jazyka. Pre

definície procesov je taktiež vybraná technológia. Vyvinuté služby sú medzi sebou previazané pomocou nástroja na koordinovanie procesov, ktorý poskytuje možnosť previazať služby cez rozhrania, ktoré poskytujú podľa navrhnutých firemných procesov.

Dôležitým aspektom takéhoto prístupu je, že jedna služba môže byť použitá vo viacerých procesoch, čo je hlavným prínosom BDD prístupu. Firemné procesy vznikajú zostavovaním služieb podľa potreby. Tento prístup poskytuje veľkú flexibilitu, lebo nevyhovujúce procesy sú vytvorené z nových lepších služieb a vyvinuté služby sa zas používajú v iných procesoch. Nové procesy nie sú tvorené úplne od nuly, ale môžu byť tvorené z už existujúcich služieb. Minimalizuje sa tým čas a náklady na rozširovanie a úpravy systému a IT môže ľahšie a rýchlejšie reagovať na potreby firmy.

Paralelne s vývojom je budovaná aj infraštruktúra pre budúci systém. Využíva sa pritom operačný model systému. Súčasne musí byť po dokončení vývoja pripravený aj hardvér, aby mohlo nastať nasadenie systému.

3.2.7 Nasadenie, monitorovanie a analýza zozbieraných dát

Po dovedení vývojovej snahy do bodu, keď je otestovaná a odobrená časť systému, nastáva jej nasadenie do skutočnej prevádzky. Tento okamih musí predchádzať zosynchronizovanie plánov projektu, aby bola pripravená infraštruktúra pre nasadzovaný systém. Nasadenie musí byť pozorne naplánované, aby nenastalo preť aženie určitých častí systému užívateľmi. Je treba uvažovať o distribuovanom rozložení softvérových artefaktov a vytváraní zhlukov (clusters). Prostredie pre beh (run-time enviroment) firemných procesov môže slúžiť aj na analyzovanie bežiacich procesov. Monitorovanie počas priebehu umožňuje merať výkon riešenia, vyhodnotiť jeho výkon a určiť, či spĺňa požiadavky, ktoré boli preň stanovené. Všetky dáta zozbierané počas chodu systému sa ukladajú na ďalšiu analýzu.

Pri vyhodnocovaní výsledkov monitorovacej fázy sa využijú simulácie firemných procesov, ktoré boli vytvorené v rámci BPM. Dáta nazbierané v priebehu sa porovnávajú s očakávanými výsledkami, ktoré sa získali zo simulácií. Ak sa výsledky od seba len zanedbateľ ne líšia, vývoj systému je označený za úspešný, lebo splnil zadané požiadavky. Naopak, ak sa výsledky od seba značne líšia, musia byť uskutočnené ďalšie činnosti. Dáta zozbierané počas priebehu systému sa analyzujú a identifikuje sa krok, v ktorom vzniká najväčší rozdiel medzi požadovanými a dosiahnutými výsledkami.

Ako prvá sa prevedie podrobná analýza implementovaného zdrojového kódu. Je tu snaha odhaliť miesta, ktorých prepísaním sa zvýši výkon systému. Ak sa po ukončení úpravy kódu nezíska žiadne priblíženie sa k požadovanému výkonu, pristúpi sa k opatrnej zmene firemného procesu. Prevedená zmena v procese musí byť následne analyzovaná a musí byť určený jej vplyv na spoločnosť. Ak by bol tento vplyv zásadný a nevyhnutný pre spoločnosť, musí byť zmenený krok procesu a identifikovaný nedostatok je odstránený. Do úvahy taktiež prichádza analýza infraštruktúry, na ktorej je systém nasadený. Jej prestavba môže zvýšiť výkon a rovnako môže byť ľahko prekročený rozpočet, preto je toto jedna z posledných možností.

3.2.8 Definované roly

Do úspešného zvládnutia projektu je potrebné zapojiť ľudí s rôznymi schopnosťami. BDD definuje roly, ktoré napomáhajú úspešné prevedenie IT projektu poháňaného firemnými cieľmi, víziami a potrebami. Obrázok 3.5 znázorňuje šesť najdôležitejších rol, ktoré sú nevy-

hnutné na vykonanie BDD vývojového cyklu [13]. Popis jednotlivých kľúčových rol:

- **Obchodný analytik** je rola vysokej úrovne, ktorá sa zaoberá obchodnými analýzami a BPM. Vykonáva identifikáciu prípadov použitia a vytvára špecifikácie pre každý prípad použitia. Analytik sa v tejto role môže podieľať v neskorších fázach projektu aj na špecializovanejších úlohách.
- **Architekt** je rola vysokej úrovne zodpovedná za architektúru a návrh systému. Táto rola zahrnuje špecializované vedľajšie roly, ako napríklad aplikačný architekt, SOA architekt, vedúci návrhár a ďalší. Tieto roly sú zodpovedné za rôznu architektonickú činnosť, ktorá súvisí s návrhom projektu.
- Vývojár je rola vysokej úrovne, ktorá zabezpečuje implementáciu navrhnutého riešenia. Opäť môže byť špecializovaná na vedľajšie roly určené na čiastočné úlohy, ako napríklad databázový programátor, vývojár, vývojár v jazyku java, vývojár webu a ďalší. Vývojári pracujú na rôznych úrovniach aplikačnej vrstvy podľa ich zamerania.
- **Tester** je rola zodpovedná za aktivity spojené s testovaním aplikácie pred jej nasadením do reálnej prevádzky. Tester vytvára testovacie skripty priamo podľa funkčných požiadaviek, ktoré vychádzajú z prípadov použitia. Tieto testovacie skripty sú následne spúšťané s rôznymi vstupnými dátami a je vyhodnocovaná správnosť navrátených hodnôt. Čím podrobnejšie sú testovacie prípady a ich vykonávanie, tým je robustnejšia aplikácia a minimalizuje sa v nej výskyt chýb.
- Manažér nasadenia je zodpovedný za nasadenie aplikácií do infraštruktúry v rôznych prostrediach. Taktiež je zodpovedný za činnosť spojenú s nasadzovaním aplikácií do cieľového prostredia. Napríklad vyvíjanie inštalačných skriptov, správne nakonfigurovanie aplikácie atď.
- **Správca systému** je zodpovedný za fungovanie aplikácie a jej správu počas jej priebehu a využívania. Táto rola taktiež môže byť zodpovedná za zbieranie dát počas chodu aplikácie, ich analyzovanie a porovnanie výsledkov s požiadavkami na systém.

Obrázok 3.5: Hlavné roly využívané v BDD.

Kapitola 4

Návrh vývojovej metodiky MPDD

Cieľ om tejto kapitoly jej navrhnúť metodiku pre vývoj malých softvérových projektov. Bude pomenovaná ako Minimalistický procesne zameraný vývoj (Minimal Proces Driven Development MPDD). Pri návrhu sa využijú zozbierané znalosti o moderných prístupoch navrhovania systémov. MPDD bude zameraná na maximálnu efektivitu. Vývoj postupujúci podľa navrhnutej metodiky musí zvládnuť tím minimálnej veľkosti. MPDD bude založená na osvedčených a už dlhé roky používaných metodikách tvoriacich jej základ a bude vychádzať z ich pozitívnych vlastností.

Hlavným prínosom navrhovanej metódy je minimalizovanie prostriedkov a úsilia, ktoré nevedie priamo k tvorbe systému. Metodika bude slúžiť na vývoj malých projektov, ktoré sú ľahko uchopiteľné pre odborníka, a preto rozsiahle modelovanie problému nie je efektívne. Bude tu snaha o potlačenie nepotrebnej byrokracie a nadbytočného produkovania modelov a dokumentácie. Na druhej strane však nesmie byť ohrozená spoľahlivosť MPDD, ktorá by sa prejavila zlyhaním projektu. vyžadované

4.1 Charakteristika metódy

Pri modelovaní MPDD je ako prvý krok potrebné zostaviť jej charakteristiku. Popíšu sa v nej základné vlastnosti, ktoré budú metodiku charakterizovať a určovať, akým spôsobom bude fungovať. Inšpiráciu na stanovenie základných čŕt možno čerpať z historicky starších metodík. Možno sa opierať o výhody a nevýhody získané ich používaním. Na základe týchto znalostí sa vyberú také vlastnosti, ktoré budú pre charakter tohto projektu najvhodnejšie.

4.1.1 Model životného cyklu

V prvom rade je nutné sa zamyslieť nad najvhodnejším modelom navrhovanej metódy. Medzi historicky najstaršie modely patrí model vodopád. Tomuto modelu bola venovaná pozornosť v kapitole 3.1.1. Je založený na lineárnom postupe cez fázy vývoja. Jeho prínosom je jasné definovanie činností vývoja a jeho postupností. V súčasnosti je tento postup prekonaný, lebo ťažko sa ním zvládajú zložitejšie projekty. Hlavnou nevýhodou, okrem neflexibility a zložitej opravy chýb, je dlhý časový úsek od zadania projektu po štádium, keď sa zákazník môže stretnúť s objednanou aplikáciou. Zmodernizovaný návrh však neopomenul vodopád, ale využíva jeho vylepšenia.

Jedným z najrozšírenejších modelov, ktoré vychádzajú z vodopádu a používajú sa v moderných návrhoch, je iteratívny model. Rozdeľuje problém na menšie podproblémy na základe funkcionality. Pre každú čiastkovú úlohu sa potom vykonáva analýza, návrh, implementácia a testovanie. Prebieha tu vlastne malý vodopád. Práca s menšími funkčnými časťami uľahčuje zvládnutie aj zložitejších projektov. Koncový produkt sa získava po vykonaní

všetkých iterácií. Často sa tento prístup kombinuje s inkrementálnym vývojom, ktorého prínosom je postupné vyvíjanie systému v samostatných častiach. Projekt je rozdelený na inkrementy, ktoré sa osobitne vyvíjajú. Inkrementy sa po ich dokončení integrujú do výsledného riešenia. Podrobnejšie boli obidva modely popísané v tretej kapitole (3.1.2).

Z vopred získaných znalostí je ako najvhodnejší prístup vybraný iteratívny model. Umožňuje vyvíjať aplikáciu postupne, čím znižuje riziko zlyhania projektu a taktiež umožňuje dodávať zákazníkovi priebežné verzie systému, ku ktorým sa zákazník môže vyjadriť. Vybraný model je potrebné mierne poopraviť pre potreby MPDD. Keďže bol cieľ práce špecifikovaný len na malé softvérové projekty, nie je potrebné využívať veľké množstvo iterácií. Určenie počtu jednotlivých vývojových oddielov bude závisieť hlavne od funkcionality budúceho systému a od toho, ako bude systém dodávaný zákazníkovi.

4.1.2 Agilné prvky

Pri súdobom vývoji aplikácií sa stáva jedným z najdôležitejších faktorov schopnosť vývojárov reagovať na rýchlo sa meniace prostredie a požiadavky na vyvíjaný systém. Klasické metódy sú v súčasnej dobe ťažko efektívne využiteľné, lebo neposkytujú riešenia vo chvíľach, keď sú nevyhnutné. Problémom zvýšenia schopnosti prispôsobenia sa aktuálnym potrebám zákazníka sa zaoberala časť práce o agilných metódach vývoja 3.1.3.

V MPDD pôjde o snahu využiť vlastnosti agilných metodík, aby bola zabezpečená čo najvyššia flexibilita vývoja. Jedným z hlavných bodov v agilných postupoch je vysoká miera zainteresovania zákazníka do procesu vývoja. Napriek tomu, že navrhovaná metóda sa má zaoberať malými projektmi, ktoré by nemalo byť veľmi komplikované pochopiť, musí prevládať snaha o zapojenie zákazníka do vývoja. Pri dôležitých rozhodnutiach o poradí vývoja častí aplikácie a pri problematických bodoch vývoja by zákazník nikdy nemal chýbať. V prípade nezáujmu zo strany objednávateľa môže dôjsť k zníženiu kvality, prípadne k dodaniu úplne nežiaduceho systému.

Cieľom agilných metodík je čo najrýchlejšie sa dostať do fázy programovania. Modelovacia a dokumentačná činnosť je až na druhom mieste. V MPDD je tiež snaha o ušetrenie nákladov rýchlejším pristúpením k programovaniu. Modelovanie a dokumentovanie sa však nepovažuje za činnosť, ktorá spomaľuje vývoj. Naopak, dobrý návrh je spôsob, ako si čas pri vývoji ušetriť. Napriek tomu bude z efektívneho hľadiska obmedzený na tie najpotrebnejšie modely jasne stanovujúce funkcionalitu systému. Drobné implementačné detaily sa zbytočne pracne nemodelujú, je na kvalifikovanosti programátora, aby daný problém vyriešil.

Spolupráca a komunikácia je v riešiteľskom tíme maximálne dôležitá. Pracovníci musia byť ochotní pomáhať jeden druhému. Rozširujú tým svoje znalosti, zvyšujú priemernú kvalifikovanosť tímu a dokážu sa skôr vyrovnať s problémami. Minimalizuje sa formálna komunikácia, ktorá často spôsobuje len zbytočnú záťaž vývojového procesu a ľudia v tíme sa navzájom odcudzujú. Z charakteru projektov, pre ktoré je metóda navrhovaná, vyplýva, že na ich zvládnutie nebude potrebné veľké množstvo pracovníkov. Z týchto dôvodov by nemalo byť náročné splniť vyššie spomínané požiadavky na tímovú prácu. Všetky tieto kroky sú vedené k vytvoreniu pozitívnej, konštruktívnej atmosféry v riešiteľskom tíme, ktorá motivuje pracovníkov k podávaniu maximálneho výkonu a produkovaniu kvalitných riešení.

4.1.3 Využitie BPMN

BPMN slúži ako grafický jazyk, ktorý je špecializovaný na popis firemných procesov. Podrobný popis syntaxe bol podaný v druhej kapitole (2.1). Modelovanie firemných procesov bude slúžiť na objasnenie fungovania organizácie a presné určenie prebiehajúcich procesov. Vďaka týmto procesom je možné ľahko identifikovať automatizovateľné časti. Identifikované prípady použitia a namodelované procesy možno využiť ako grafické znázornenie krokov, ktoré treba pre daný prípad použitia vykonať. Touto činnosťou sa získa súbor diagramov zobrazujúcich firemné procesy, ktorých kroky sú priradené jednotlivým prípadom použitia [20].

Diagramy firemných procesov sú pre zákazníka veľmi intuitívne a podrobne popisujú systém, akým organizácia pracuje alebo akým sa určitá modelovaná činnosť vykonáva. V kontraste s klasicky používaným diagramom prípadov použitia, ktorý zachytáva požadovanú funkcionalitu len heslovite, v tomto prípade vidí zákazník presné postupy, s ktorými sa môže ľahko stotožniť. Získava sa tak pevný grafický model, v ktorom sa zákazník dokáže ľahko zorientovať. Pri vypracovaných diagramoch je možnosť ľahšej komunikácie so zákazníkom, lebo má presnejšiu predstavu o tom, čo sa v budúcom systéme bude nachádzať. Môže komentovať presnosť procesov, prípadne spolu s vývojárom diskutovať o ich vylepšení.

4.1.4 Inšpirácia BDD

MPDD čerpá veľkú inšpiráciu z Business Driven Development-u, ktorému bola venovaná pozornosť v kapitole 3.2. Preberá z BDD hlavnú myšlienku priblíženia vývoja potrebám zákazníka. Produkované systémy majú spĺňať aktuálne požiadavky a majú byť doručené čo najskôr, aby poskytli klientovi potrebnú konkurenčnú výhodu.

MPDD vychádza zo životného cyklu definovaného v BDD. Zjednodušuje celý cyklus a upravuje jednotlivé fázy, aby zaberali čo najmenej času a úsilia. Zmeny ale neovplyvňujú robustnosť riešenia a nevnášajú doň neistotu z neúspechu projektu. Podobne, ako bol pretransformovaný životný cyklus, sú pozmenené aj roly. Ich kompetencie sú v niektorých prípadoch rozšírené, niektoré roly sú zas okresané, prípadne úplne odstránené.

Podstatnou inšpiráciou bola prvá fáza, ktorá sa venuje firemným procesom a ich modelovaniu. Stala sa hybnou silou MPDD. Nový postup mení spôsob a význam použitia modelovania firemných procesov. Využíva ich na zachytenie požiadaviek na systém a podrobné grafické znázornenie procesov v organizácii, z ktorého je ľahké určiť prípady použitia a ich popis. Klient tak získava zrozumiteľnejší náhľad na budúci systém.

MPDD prináša aj nové špecifiká, ktoré sú ovplyvnené hlavne myšlienkami plynúcimi z manifestu agilného programovania [9]. Sú to hlavne myšlienky týkajúce sa práce v tíme a zavrhnutia nadbytočnej byrokracie. Ako bolo už vyššie zmienené, práca v tíme má byť inšpiratívna a povzbudzujúca na podávanie čo najlepších výsledkov.

Jedným z hlavných prvkov BDD je využitie servisne orientovanej architektúry (SOA)[14]. Koncepcia SOA je finančne aj technicky veľmi náročná a neoplatí sa ju využívať na malé softvérové projekty. Pre nevhodnosť prístupu SOA je preto vhodnejšie odkloniť sa od praktík odporúčaných v BDD. V navrhovanej metóde je adekvátnejšie použiť dostupnejšie riešenia.

4.2 Využité roly

Procesy prebiehajúce v MPDD vyžadujú zvládnutie znalosti z viacerých odborov informatiky a manažmentu. Osoby pracujúce na vývoji softvéru sa ocitajú v niekoľkých preddefinovaných rolách. Každá z rol vykonáva špecifickú úlohu počas životného cyklu tvorenia produktu a je nezastupiteľná pri úspešnom dosahovaní cieľa.

Pretože je tu venovaná pozornosť produkovaniu malých softvérových riešení, nie je pravdepodobné, že riešiteľ ský tím bude tvoriť veľ ké množstvo pracovníkov. Vďaka tomu, že na produkovaní riešenia sa bude podieľ ať pomerne malý tím, umožní to intenzívnu komunikáciu a podporu medzi jeho členmi. Jednotlivé osoby sa počas trvania projektu môžu dostať do viacerých rol v prípade, že spĺňajú potrebnú kvalifikáciu. Navrhovaná metóda definuje nasledujúce roly:

Firemný analytik – Jeho úlohou je komunikovať so zákazníkom, pochopiť jeho potreby a fungovanie prostredia, do ktorého bude systém vyvíjaný. Na základe zozbieraných znalostí vypracuje firemný analytik sadu modelov, ktoré zachytia procesy prebiehajúce v organizácii. Opierajúc sa o tieto diagramy komunikuje so zákazníkom o ich korektnosti a spoločne s návrhárom systému môžu diskutovať o možných vylepšeniach procesov. Firemný analytik zabezpečuje prevedenie fázy modelovania firemných procesov a ako konzultant sa podieľa na návrhu systému, prípadne aj na jeho vývoji.

Návrhár – Jeho hlavnou úlohou je zachytenie dynamickej a statickej štruktúry systému vo fáze návrhu systému. Využíva na to modely vyprodukované pri analýze podniku a komunikuje o riešeniach s firemným analytikom. Vo firemných procesoch identifikuje prípady použitia, čím zväzuje tieto modely s modelmi zachytávajúcimi návrh systému. Má za úlohu navrhnúť vykonateľné technické riešenia vzhľadom na požiadavky zákazníka. Úlohou návrhára je tiež voľba vhodnej architektúry systému po dohode so zákazníkom. Do povinností návrhára spadá aj konzultantská pozícia vo fáze modelovania firemných procesov a vývoji.

Vývojár – Má previesť navrhnuté modely do fungujúcej a realizovateľnej podoby. Väčšinu nízkoúrovňových otázok týkajúcich sa implementačných detailov má vyriešiť sám. V prípade nepochopenia zadania alebo pri prípadných komplikáciách počas práce môže konzultovať možné riešenia s návrhárom. Plní hlavnú úlohu pri vývoji systému a môže byť požiadaný návrhárom o technickú radu pri vývoji.

Tester – Vo fáze testovania overuje funkcionalitu a zaisť uje kvalitu odovzdaného systému. Tým, že pracuje s konečnou funkčnou podobou časti systému, je táto rola rozšírená aj o zodpovednosti týkajúce sa nasadenia systému. Pomáha zákazníkovi po predaní produktu s jeho realizovaním a poskytuje mu informácie týkajúce sa jeho fungovania. Prípadné konfigurovanie produktu patrí tiež k jeho povinnostiam.

Pre zákazníka nie je stanovená rola, lebo jeho pozícia pri vývoji zodpovedá jeho osobe. Má však vo všetkých prebiehajúcich procesoch významnú úlohu. Podieľa sa na vývoji produktu, a to nielen počas počiatočnej fázy, keď sú zbierané požiadavky na systém, ale aktívne sa podieľa aj na ovplyvňovaní vyvíjaného produktu počas celej doby vývoja. Neseriózny prístup k vývoju zo strany zákazníka vážne narúša úspešnosť zvládnutia projektu a kvalitu odovzdávaného produktu.

4.3 Životný cyklus

Pre navrhovanú metódu je definovaný životný cyklus, ktorý je zobrazený na obrázku 4.1. Zahŕňa vývoj od zozbierania požiadaviek až po nasadenie systému. Má cyklický charakter, ktorý naznačuje iteratívne vylepšovanie systému vývoja [19].

Obrázok 4.1: Schéma životného cyklu navrhovanej metódy.

Proces vývoja začína modelovaním firemných procesov, ktorého účelom je za pomoci klienta zozbierať požiadavky na budúci systém. Spísať špecifikáciu požiadaviek a hlavne vymodelovať firemné procesy. Po odsúhlasení modelov zákazníkom sa rozdelí funkcionalita a je určená priorita jednotlivých iterácií, ktoré postupne prechádzajú vývojovými fázami.

Najskôr prechádzajú návrhom systému začínajúcim určením technológie pre budovaný systém. Modely z predchádzajúcej činnosti sú spracované do návrhu budúceho systému. Identifikujú sa prípady použitia popísané pomocou krokov firemných procesov. V prípade potreby sú zriedkavo bližšie modelované sekvenčnými diagramami. Statická štruktúra budovaného systému je zachytená pomocou diagramu tried.

Vyprodukované modely slúžia ako vstup do vývojovej fázy. Riešenie implementačných detailov na najnižších úrovniach je ponechané na odbornej znalosti programátora. Problémy s porozumením diagramov či s kódovaním určitej časti systému sú riešené komunikáciou a dohodou v rámci riešiteľ ského tímu. Konečným produktom vývoja je testovateľ ná časť systému.

Pri testovaní prejde systém komplexným overením funcionality. Softvér, ktorý spĺňa požiadavky na funkčnosť, výkon a kvalitu, je posunutý do ďalšej fázy životného cyklu. Naopak, pri nesplnení funkčných požiadaviek sa projekt posúva do ďalšej iterácie, v ktorej budú chyby odstránené. Po ukončení testovania sa použiteľ ná časť systému zavádza do prevádzky. Zákazník má možnosť pracovať s odovzdanou časť ou systému. Po úspešnom nasadení verzie systému si môže zákazník určiť nasledujúcu funkcionalitu, ktorá bude spracovaná a pridaná do produktu.

V prípade vzniknutia neočakávaných nedostatkov produktu si môže zákazník vyžiadať úpravu vyvíjaného riešenia. Ak sa požiadavky nezmenenia, pokračuje cyklus podľa vopred stanovenej priority vývoja. Po ukončení poslednej iterácie a v prípade nevyskytnutia sa nových požiadaviek je vývoj softvéru ukončený.

4.4 Vývoj softvérového projektu

V nasledujúcej časti tejto práce je pozornosť venovaná postupu, akým bude softvér vyvíjaný pomocou novovyvíjanej metódy na spracovanie malých softvérových projektov. Pozornosť bude venovaná každej fáze životného cyklu a podrobne budú popísané roly a činnosti, ktoré sú tu aplikované.

4.4.1 Modelovanie firemných procesov

Počiatočná činnosť pri vyvíjaní softvérového projektu musí byť venovaná zbieraniu poznatkov o tvorenom systéme. Firemný analytik intenzívne komunikuje so zákazníkom. Pri vzájomnej komunikácii si analytik objasňuje nároky, ktoré bude zákazník klásť na budúci systém. V prípade, že s budúcim systémom bude pracovať širší okruh pracovníkov firmy, musia byť do zbierania požiadaviek zahrnutí aj oni.

Na základe požiadaviek zozbieraných od zákazníka je zostavený dokument špecifikácie požiadaviek na budúci systém. Pretože sa pracuje s neveľkými projektmi, špecifikácia by nemala byť extrémne rozsiahla a zákazník by nemal mať problém preštudovať ju a vyjadriť voči nej svoje pripomienky. Po dokončení špecifikácie požiadaviek a jej odsúhlasení zo strany klienta možno postúpiť k ďalšej činnosti. Míľnikom (Milestone) ukončenia prvej činnosti na projekte je odsúhlasená špecifikácia požiadaviek.

Podrobným preštudovaním špecifikácie a na základe získaných informácií z prostredia, kde bude systém realizovaný, firemný analytik začne modelovať firemné procesy. Na ich modelovanie využíva BPMN. Vzniknuté modely podrobne popisujú postup činností, ktoré vedú k vykonaniu určitého procesu vo firme. Jednotlivé diagramy obsahujú okrem sledu úloh aj roly zodpovedné za vykonanie určitých úloh. V procesoch sa identifikujú pasáže, ktoré môžu byť automatizované, a pridelí sa ich vykonanie systémovej role. Na prideľovanie činností rolám je možné použiť koncepciu plaveckých dráh, ktoré poskytuje BPMN.

Odporúčaným spôsobom návrhu firemných procesov je využitie prístupu modelovania zhora nadol [13]. Získava sa tým hierarchická štruktúra diagramov, v ktorej je na najvyššej úrovni zachytávaný globálny pohľad na hlavné činnosti vykonávané v organizácii. Postupnou dekompozíciou týchto hlavných aktivít sa získava podrobný popis aktivít definovaných na vyššej úrovni. Úlohy na najnižšej úrovni dekompozície zachytávajú atomické činnosti, ktoré sú vo firme vykonávané, a neskôr sa využívajú ako kroky prípadov použitia.

Po vymodelovaní kompletnej hierarchie procesov je potrebné konzultovať výsledky so zákazníkom a vykonať prípadné nutné úpravy. Po odsúhlasení modelov zo strany zákazníka nasleduje porada s návrhárom systému. Celý systém je rozdelený na menšie časti podľa funkcionality, ktoré predstavujú iterácie. Vymedzený oddiel musí poskytovať ucelenú funkcionalitu prínosnú pre zákazníka. Jednotlivým častiam je priradená priorita na základe

klientových požiadaviek, podľa ktorých je systém postupne vyvíjaný. Zostavením plánu na určenie poradia iterácií je ukončená prvá fáza životného cyklu.

Míľnikom fázy návrhu firemných procesov je hierarchická zostava diagramov, ktorá popisuje budúci systém a plán iterácií, podľa ktorého bude systém postupne vyvíjaný.

4.4.2 Návrh systému

Prvým významným rozhodnutím pre návrhára pri navrhovaní systému je zvolenie vhodnej architektúry pre budovaný produkt. Musí byť určený programovací jazyk, v akom bude systém implementovaný. Po dohode s klientom sú určené technológie, ktoré budú pri realizovaní projektu použité. Pri tejto činnosti je dôležité odborne poradiť klientovi, ktoré riešenie je pre jeho potreby najvhodnejšie.

Hlavnou činnosťou návrhovej fázy životného cyklu je spracovanie modelov firemných procesov. Identifikujú sa v nich prípady použitia popísané úlohami, z ktorých sú budované firemné procesy. Jasne sa tým previažu diagramy firemných procesov s prípadmi použitia, ktoré budú ďalej podľa potreby spracúvané.

Určenie prípadov použitia by malo byť pomerne jednoduché a mechanické. Po preštudovaní firemných procesov sa z nich vyberú časti, ktoré boli určené na automatizáciu, a neprerušený sled krokov je označený ako prípad použitia. Neprerušenosťou treba rozumieť to, že počas vykonávania sekvencie úloh nezasahuje do ich vykonávania žiadna rola identifikovaná v procesoch. [13]

Obyčajne sa diagramy prípadov použitia nepoužívajú ako primárna forma návrhového modelu, podľa ktorého sa programuje, ale pre jednoduchosť spracovávaného projektu a urýchlenie vývoja by mali stanovené modely postačovať. Dostatočne zachytávajú požadovanú dynamickú štruktúru budovaného systému. Implementačné detaily sú ponechané na programátorovi a jeho zručnosti. V prípade výskytu komplikovanejšieho prípadu použitia, pre ktorý by popis pomocou krokov z BPMN diagramu nestačil, môže byť na objasnenie funkcie použitý sekvenčný diagram[4].

Nasledujúca časť návrhovej fázy je zameraná na zachytenie statickej štruktúry systému. Na grafické zachytenie tohto pohľadu je využitý diagram tried. Návrhár pomocou tohto diagramu rozčleňuje budúcu funkcionalitu do logických zoskupení a sprehľadňuje štruktúru kódu. Môže ním nastoliť šablónu pre programátora vyznačením premenných a metód, ktoré budú v triede použité. Pri návrhu môžu byť použité návrhové vzory, čím sa zvyšuje robustnosť riešenia.

Hranicou ukončenia modelovania dynamickej štruktúry systému sú diagramy, ktoré zachytávajú statickú a dynamickú štruktúru systému. Dynamická je určená pomocou prípadov použitia, ktoré sú popísané pomocou krokov z firemných procesov. Statickú štruktúru určuje diagram tried.

4.4.3 Vývoj

Vo vývojovej fáze sa vyššie uvedené modely realizujú prostredníctvom kódovania do spustiteľ nej podoby. Programátori majú pomerne veľkú voľ nosť pri realizovaní najnižšej úrovne dodaných návrhov, ale rastie aj ich zodpovednosť za úspešnosť riešenia. Je preto náležité, aby programátori boli skúsení a schopní riešiť prichádzajúce implementačné výzvy. Prácou v tíme a komunikáciou medzi kolegami však môže byť ľahko doplnená neskúsenosť malého počtu programátorov.

Tímová práca napomáha rýchlejšie dospenie k riešeniu a tieto riešenia sú kvalitnejšie. Vzájomnou interakciu pracovníkov v tíme je každý z nich obohacovaný tými ostatnými o nové nápady a skúsenosti. Zvyšuje sa tým kvalifikácia zamestnancov, čo v konečnom dôsledku prispieva k efektivite vyvíjania softvéru. Ukončením fázy vývoja je ucelená spustiteľná časť budúceho systému.

4.4.4 Testovanie

Fáza testovania začína po dodaní prvej iterácie systému. Systém je podrobne testovaný, či spĺňa požadovanú funkcionalitu. Testery vykonávajú širokú paletu testov od manuálneho testovania funkcionality systému až po automatizované testy. Testovaná časť produktu musí adekvátne reagovať na všetky správne aj nesprávne vstupy. [21]

Po úspešnom otestovaní funkcionality komponentov systému postupuje vývoj do ďalšej fázy životného cyklu, a to do nasadenia. V prípade, že komponent neuspel pri testoch a vyskytli sa v ňom závažné chyby vo funkcionalite, ktoré znemožňujú nasadenie, vývoj pokračuje inou cestou. Preskakuje sa fáza nasadenia, keď že nemá zmysel odovzdávať nefunkčnú časť produktu zákazníkovi, a postupuje sa priamo k nasledujúcej iterácii, v ktorej musia byť zistené nedostatky odstránené. Produktom fázy testovania je správa o výsledkoch testov.

4.4.5 Nasadenie

Otestovaný produkt je daný do prevádzky a zákazník sa s ním môže oboznamovať a osobne ho vyskúšať. Pri nespokojnosti s prijatou časť ou systému môže zákazník vyjadriť svoje výhrady a prípadné nové potreby. Tieto dodatočné požiadavky sú spracované a postúpené do fázy modelovania na zakomponovanie do požiadaviek na systém. Po prebehnutí nasadenia systému pokračuje projekt ďalšou iteráciou.

Po nasadení kompletného systému a jeho odobrení zo strany zákazníka je projekt odovzdaný a ukončený. Dodatočne odhalené chyby a nové požiadavky od zákazníka, ktoré sa prejavia až pri dlhodobom používaní produktu, sú riešené formou otvorenia nového projektu. Nový projekt sa bude riadiť popisovanou metódou a požadovanú funkcionalitu do systému doplní.

Kapitola 5

Prípadová štúdia

Piata kapitola sa zaoberá predvedením metódy MPDD navrhnutej v predchádzajúcej kapitole. Overuje jej vhodnosť vytvorením prípadovej štúdie popisujúcej správu vedeckého časopisu. Názorne sú predvedené úvodné fázy životného cyklu definovanej metódy venované firemnej analýze a návrhu. Ukážku implementácie a následných činností už táto práca neponúka.

5.1 Modelovanie firemných procesov

Prvou fázou životného cyklu MPDD je modelovanie firemných procesov vykonávaných firemným analytikom. Tato fáza zahŕňa aj zachytenie špecifikácie požiadaviek, slúžiacej ako základný bod na začatie modelovacích aktivít. Na základe zachytených informácií sú následne s využitím BPMN modelované firemné procesy.

5.1.1 Špecifikácia požiadaviek

Účelom systému je zabezpečenie vedeckého časopisu. Webová aplikácia musí mať prvky redakčného systému, ktoré umožnia administrátorovi upravovať, pridávať a odoberať jej obsah. Aplikácia bude zabezpečovať zbieranie a sprostredkovávanie vedeckých článkov. Na webovom rozhraní budú zobrazované základné informácie o každom článku, obsahujúce meno a priezvisko autora, inštitúciu zastrešujúcu prispievateľa, názov vkladaného článku, kľúčové slová vyskytujúce sa v príspevku. Nesmie chýbať ani krátka anotácia a odkaz na plný text v PDF formáte prístupný len pre registrovaných užívateľov.

Aplikácia bude obsahovať rad notifikácií. Pri založení nového účtu bude administrátorovi po overení zaplatenia členského poplatku zaslaná informácia so žiadosťou o jeho potvrdenie. Po každom vložení nového článku registrovaným užívateľom budú vybraní a oboznámení s týmto článkom recenzenti, ktorých úlohou bude článok recenzovať. Registrovaní užívatelia si môžu povoliť oznámenie o nových zverejnených článkoch cez e-mail. Po dovŕšení limitu na zostavenie jedného čísla časopisu bude o tom informovaná redakčná rada a administrátor.

Informácie uložené v databáze bude možné prehľadávať. Vyhľadávanie bude uskutočniteľné podľa základných informácií, okrem anotácie. Taktiež sa nebude vyhľadávať v samotnom texte článkov. Rozhranie vyhľadávania bude čo najjednoduchšie. Systém poskytne užívateľovi na výber tri kategórie, podľa ktorých sa bude vyhľadávať. Prvou možnosťou je vyhľadávanie podľa mena, priezviska, inštitúcie a názvu. Druhý prípad vyhľadávania je podľa kľúčových slov. Poslednou možnosťou je vyhľadávanie článkov na základe príslušnosti k ročníku.

Konfigurácia a vzhľad systému

Redakčné prvky systému umožnia administrátorovi upravovať a dopĺňať webové rozhranie systému. Bude mať možnosť meniť logo portálu, texty na stránkach, pridávať nové stránky. Všetky zmeny rozloženia stránok sa budú prejavovať v štruktúre menu stránky. Stránky budú môcť byť dopĺňané do ktorejkoľvek jeho úrovne. Webové rozhranie bude umožňovať zmenu vzhľadu pomocou dodávaných tém. Aplikácia bude vyhotovená s jednou štandardnou témou a s jednou témou pre handicapovaných jedincov. Téma sa bude pre registrovaných užívateľov ukladať do ich profilu.

Nevyhnutná konfigurácia hotovej distribúcie prebehne pri prvom spustení. Vytvorí sa tu administrátorské konto a všetky nevyhnutné nastavenia aplikácie. Celý nasledujúci chod systému bude automatický a všetky prípadné zmeny nastavenia a obsahu sa budú diať cez webové rozhranie administrátora. Webové rozhranie bude prehľadné, zamerané na rýchle dosiahnutie požadovaných informácií. Na každej stránke bude zobrazené logo a základné údaje o organizácii zriaďujúcej virtuálny časopis. Ďalej na nich nesmie chýbať menu stránok webového rozhrania a možnosti prihlásenia sa, prípadne odhlásenia sa zo systému. Ak je užívateľ prihlásený, je na stránkach odkaz na jeho profil.

Informácie o uložených článkoch sa budú zobrazovať do prehľadného výpisu obsahujúceho základné informácie. Záznamy sa budú zobrazovať pre aktuálny rok, staršie ročníky budú uložené v archíve. Záznamy aktuálneho ročníka budú chronologicky usporiadané od najnovších po najstaršie. Archív bude usporiadaný podľa rokov a zoradený rovnako ako aktuálny ročník. Parameter zoraďovania bude môcť užívateľ pozmeniť na meno, inštitúciu, názov a dátum. Taktiež bude možnosť zmeniť vzostupnosť alebo zostupnosť usporiadania. V prípade, že záznamov bude viac, ako je limit zobrazenia na jednu stránku, zoznam sa stane viacstranovým. Užívateľ si bude môcť zvoliť, koľko záznamov chce zobraziť naraz.

Definované roly

Aplikácia bude rozlišovať užívateľov, ktorí do nej budú pristupovať. Každý užívateľ, ktorý sa neprihlási, bude mať právomoci neregistrovaného užívateľa. Na registráciu bude k dispozícii formulár na vytváranie nových registrovaných užívateľov. Administrátorský účet bude pridelený užívateľovi pri inicializačnom spustení webovej aplikácie. Prípadné ďalšie administrátorské účty musí vytvárať už existujúci administrátor. Systém rozoznáva nasledovné užívateľské skupiny:

- **Administrátor** Administrátor bude mať možnosť manipulovať s obsahom stránok, spravovať užívateľov a má na starosti prvotnú konfiguráciu. V správe užívateľov bude potvrdzovať nové žiadosti o registráciu, bude môcť pozmeňovať údaje o článkoch a mazať ich.
- **Neregistrovaný užívateľ** Bude mať možnosť prehliadať si zoznam uložených článkov, môže v nich vyhľadávať, ale nemá prístup k plným textom článkov.
- **Registrovaný užívateľ** Bude mať všetky práva neregistrovaného užívateľa a navyše aj prístup k plným textom článkov. Taktiež bude môcť za základný členský poplatok vložiť článok. Bude si môcť upravovať informácie v profile a meniť prístupové heslo.
- **Redakčná rada** Bude mať možnosť neumožniť uverejnenie príspevku s odôvodnením jeho pozastavenia.

Recenzenti - Budú mať prístup k textom článkov a k odovzdaným príspevkom budú mať možnosť pridávať recenzovanú verziu.

5.1.2 Návrh firemných procesov

Modelovanie firemných procesov začína preštudovaním špecifikácie požiadaviek. Identifikuje sa v nej hlavný proces, ktorý sa zachytáva pomocou BPMN diagramov, ako stanovuje MPDD. Na uľahčenie identifikácie tohto procesu pomôže otázka: Akým hlavným činnostiam sa firma venuje? Vymedzené činnosti budú graficky zachytené do diagramu podľa ich postupnosti.

Identifikácia hlavného procesu

Zo špecifikácie uvedenej v predchádzajúcej sekcii bol identifikovaný hlavný proces tvorený z piatich základných častí. Prvým v línii vykonávania je proces zabezpečujúci autentizáciu užívateľ a a jeho autorizovanie. Následne proces pokračuje podľa pridelenej roly. Neregistrovaný užívateľ si môže prehliadať virtuálny časopis a vyhľadávať v ňom, alebo sa zaregistrovať. Registrovaný užívateľ môže upravovať svoj profil a pridať článok. Recenzenti pristupujú k podprocesu recenzie článku. Administrátor má na starosti správu časopisu. Redakčná rada pristupuje k procesu zostavenia časopisu. Po grafickom zachytení postupnosti jednotlivých činností dostávame prvý diagram systému 5.1, popisujúci systém na najvyššej úrovni.

Obrázok 5.1: Diagram hlavného firemného procesu.

Dekompozícia hlavného procesu

Postupnou dekompozíciou hlavného procesu je budovaná hierarchia modelov, ktorá popisuje funkčnú štruktúru organizácie a po najnižšiu úroveň zachytáva základné činnosti vykonávané vo firme. V nasledujúcej časti sa budeme venovať popisu vybraných procesov. Zvyšné diagramy procesov sú umiestnené do dodatku A a na priloženom médiu je dostupná úplná sada diagramov.

Obrázok 5.2: Dekompozícia pridania článku.

Proces zachytený na obrázku 5.2 popisuje postup činností pri vkladaní čísla do časopisu. Prvým krokom procesu je vyplnenie formulára pre vloženie článku registrovaným užívateľom. Následne je formulár systémom skontrolovaný. V prípade výskytu chyby v zadávaných údajoch je formulár vrátený užívateľovi a je vyžiadaná oprava. Ak je všetko v poriadku, údaje sú uložené v databáze a článok je nahraný na server. Po zavedení článku do systému je rozoslaná notifikácia o pridaní nového príspevku. Proces pokračuje podprocesom priradenia recenzenta. Ak do siedmich dní nebude doručená recenzia, vyžiada sa opätovné priradenie recenzenta. Po doručení recenzie a na základe jej ohodnotenia je rozhodnuté, či je potreba vykonať korektúru článku. V prípade potreby korektúry je autor o tomto fakte informovaný a do piatich dní by mal vložiť opravený článok, nakoľko bude pomocou informačného mailu opäť informovaný o potrebe korektúry. Po vložení opravy sa proces dostáva späť do kroku vyžiadania recenzenta. Keď na základe stavu recenzie nie je potrebná oprava od autora, proces sa posúva do konečnej fázy, kde je najskôr skontrolovaná naplnenosť čísla časopisu, a ak ešte nie je splnený limit, proces končí. V prípade dosiahnutia naplnenia čísla je o tejto skutočnosti informovaná redakčná rada a proces je ukončený.

Obrázok 5.3: Proces priradenia recenzenta.

Firemný proces priradenia recenzenta (obr. 5.3) začína administrátorovým výberom recenzenta pre vložený článok. Ak administrátor nevykoná priradenie do 24 hodín, systém ho opätovne informuje. Po pridelení recenzenta systém vygeneruje informačný e-mail a zašle ho recenzentovi, aby vykonal recenziu.

Registrácia užívateľ a začína vyplnením registračného formulára užívateľ om. Formulár je následne vyhodnotený a odhaľ ujú sa v ňom chyby. V prípade nesprávneho zadania niektorej časti je formulár vrátený užívateľ ovi, aby vykonal opravu. Po úspešnom vyplnení

Obrázok 5.4: Diagramy popisujúce registráciu užívateľa.

formulára sú informácie uložené v databáze a žiadateľovi je zaslaný informačný e-mail s inštrukciami na uhradenie členského poplatku. Taktiež je o novej registrácii informovaný administrátor, ktorý priebežne kontroluje, či bol poplatok uhradený. Po vypršaní určitej doby ho môže zamietnuť alebo potvrdiť, ak bol poplatok uhradený. Na základe tohto rozhodnutia bude registrácia zrušená alebo systém registráciu potvrdí a informuje užívateľa o úspechu. Proces je zachytený na obrázku 5.4.

Obrázok 5.5: Firemný proces prihlásenia sa užívateľa.

Prihlásenie (obr. 5.5) sa začína vyžiadaním mena a hesla od užívateľa. Nasleduje overenie získaných informácií pomocou dát uložených v databáze. Ak autentizácia uspeje, užívateľovi sú pridelené práva a proces končí. V prípade, že sa zadané informácie nepodarí overiť, vyžiada sa opätovné zadanie mena a hesla od užívateľa.

5.1.3 Naplánovanie iterácií

Pomocou hierarchickej štruktúry procesov prebiehajúcich vo firme je možné pokračovať v ďalšom plánovaní. Funkcionalita celého systému je rozdelená na časti definované pre ľahšie zvládnutie projektu a rýchlejšie poskytnutie funkcionality zákazníkovi. Po identifikácii funkčných častí je rozdelenie prediskutované so zákazníkom. Objednávateľ na základe svojich najnutnejších potrieb určí poradie dodávaných komponentov.

V ukážkovom projekte je ako primárna časť systému označená funkcionalita poskytujúca jednoduché prelistovanie a vkladanie článkov do virtuálneho časopisu. K základnej funkcionalite patria aj užívateľské roly. Užívatelia sa budú môcť registrovať, prihlasovať, meniť svoje údaje. Prístup k plným zneniam článkov bude obmedzený len pre registrovaných

užívateľov. Po zvládnutí identifikácie užívateľa je spracovaná časť systému umožňujúca recenzovanie a zostavovanie čísla časopisu. Následne je systém rozšírený o možnosť vyhľadávania v databáze článkov a upravovania profilu užívateľa. Ako posledná funkcionalita je sprístupnená správa systému pre administrátora. Umožňuje mu úpravu obsahu webového rozhrania. Nasledujúci zoznam zoraďuje iterácie podľa postupnosti poradia vývoja:

- 1. jednoduché zobrazenie, vkladanie článkov a užívateľské roly,
- 2. recenzovanie a zostavovanie čísla časopisu,
- 3. vyhľadávanie a úprava profilu,
- 4. správa systému.

5.2 Návrh systému

Pomocou diagramov vypracovaných v predchádzajúcej fáze sa pristúpi k návrhu systému. Podľa plánu iterácií sa postupne vypracujú jednotlivé časti systému. Ako prvá funkcionalita, ktorá má byť vyprodukovaná, je vkladanie článkov a ich jednoduché zobrazenie.

5.2.1 Jednoduché zobrazenie, vkladanie článkov a užívateľské roly

Vychádza sa z diagramov firemných procesov popisujúcich procesy spojené s vkladaním článku (obr. 5.2, 5.3). Sú tam viditeľné súvislé automatizovateľné časti vykonávané systémom, ktoré poskytujú dobrých kandidátov na prípady použitia. Z diagramu taktiež možno vyčítať aktérov. Jasne viditeľní aktéri sú *registrovaný užívateľ* a *administrátor*. Posledný, trochu skrytý, je čas. Po malej úvahe sa prichádza k zisteniu, že okrem prípadov použitia na vloženie knihy, vyžiadanie recenzie a korektúry je vhodné vymedziť aj prípad použitia zabezpečujúci notifikáciu.

Zavedenie rol do systému vyžaduje funkcionalitu na ich vytvorenie a overenie. Obrázky 5.4 a 5.5 zobrazujú diagramy zachytávajúce úlohy spojené s vytvorením a overením registrovaného užívateľa. Pribudol v nich nový aktér, a to *užívateľ*. Prípady použitia, pozorovateľné v modeloch, sa týkajú vytvorenia registrácie s vyžiadaním uhradenia poplatku a jeho potvrdenia. V druhom firemnom procese je možné identifikovať prípad použitia pre prihlásenie sa.

Prípady použitia

Vloženie článku – Skladá sa z troch krokov určených v diagrame firemných procesov. Prvým je kontrola zadávaných údajov pri vkladaní článku, nasleduje jeho nahranie. Na záver využíva *notifikáciu* na zaslanie informácie o pridaní článku.

Priradenie recenzenta – Začína výberom recenzenta, ktorý je prostredníctvom *notifikácie* informovaný o potrebnej recenzii. Recenzentovi bude zaslaný informačný e-mail s odkazom na ohodnotenie článku. Formulár na zavádzanie recenzií bude pridaný až v druhej iterácii, preto je zasielanie recenzie dočasne riešené priamou cestou bez využitia systému.

Vloženie korektúry – Autor má po prihlásení možnosť vložiť do systému opravu článku, pričom je následne opäť spustené *priradenie recenzenta*.

Notifikácia – Upozorňuje daných užívateľov o výskyte udalosti. Zaslanie môže byť vyžiadané alebo pravidelne prebieha rozosielanie časovo podmienených správ. Využíva sa na to e-mail zadaný pri registrácii.

Prihlásenie sa – Od užívateľ a je vyžiadané meno a heslo, ktoré je overené pomocou hešovania a dát uložených v databáze.

Registrácia – Užívateľ dostane po vyplnení formulára variabilný symbol a číslo účtu na uhradenie členského poplatku. Administrátor je pomocou *notifikácie* informovaný o novej registrácii.

Potvrdenie registrácie – Po overení platby administrátor aktivuje uchádzačovi účet na registráciu a je mu zaslaný e-mail o schválení registrácie.

Obrázok 5.6: Diagram prípadov použitia prvej iterácie.

Statická štruktúra

Diagram tried (obr. 5.7), zachytávajúci statickú štruktúru systému, pomocou vypracovaného modelu prípadov použitia a pomocou špecifikácie požiadaviek. Na úvod sú načrtnuté hrubé obrysy diagramu, ktorý je postupne spresňovaný. Za výstup iterácie sa považuje presný návrhový diagram tried.

Diagram popisujúci prvú iteráciu stavia na dvoch triedach *Uzivatel* a *Clanok*. Prvá zabezpečuje zachytenie informácií o osobách pracujúcich so systémom. Pomocou dedičnosti sú definované triedy reprezentujúce roly vyskytujúce sa v systéme. S užívateľom je spojená aj trieda *ManazerUzivatelov* umožňujúca vytvorenie nového konta a možnosť nastavenia platnosti registrácie pre registrovaného užívateľa.

Článok virtuálneho časopisu je v systéme reprezentovaný triedou *Clanok*. Uchováva si informácie o príspevkoch vedených v časopise a odkazuje sa na ňu registrovaný užívateľ, čím sa tieto triedy zväzujú. Aj pre článok je vytvorený manažér spravujúci vytváranie príspevkov.

Pre účely notifikácie je vytvorená trieda *Akcia* aj s manažérom, udržujúca informácie o udalostiach nastávajúcich v systéme. Umožňuje taktiež rozosielanie informačných e-mailov, či už na priame vyžiadanie, alebo po časových intervaloch.

Obrázok 5.7: Diagram prípadov použitia prvej iterácie.

5.2.2 Recenzovanie a zostavovanie čísla časopisu

Po dokončení práce na prvej iterácii a posunutie jej výsledkov do fázy vývoja začína pre návrhára práca na ďalšej iterácii. Druhá iterácia má za cieľ rozšíriť doteraz vytvorený systém o časť na recenzovanie článkov a umožniť redakčnej rade zostaviť číslo časopisu. Zoberú sa preto firemné procesy popisujúce tieto činnosti (obr. A.6, A.7).

Z diagramov popisujúcich procesy je možné identifikovať dvoch aktérov. S recenziami je spojený textitrecenzent hodnotiaci článok a vytvárajúci recenziu. Druhým aktérom je *redakčná rada* majúca na starosti zostavovanie čísla časopisu, keď je dosiahnutý limit potrebný na jeho naplnenie. *Redakčná rada* má právo na vylúčenie článku. Obrázok B.1 zachytáva diagram prípadov použitia druhej iterácie.

Prípady použitia

Vloženie recenzie – Recenzent po vypracovaní hodnotenia vstúpi do systému a vyplní formulár pre recenziu. Systém formulár skontroluje, a ak je všetko v poriadku, recenzia

je nahraná a autor je pomocou *notifikácie* informovaný o vykonanej recenzii. Recenzent uvádza pri zadávaní recenzie, či je potrebná korektúra. V prípade, že je korektúra potrebná, je autor o tomto fakte informovaný. Ak korektúra nie je potrebná, skontroluje sa len stav naplnenia časopisu. Ak bol odovzdaný dostatok článkov, je informovaná redakčná rada.

Zostavenie čísla – Pri zostavení čísla je redakčnej rade zobrazený zoznam doručených publikácií. Rada si v zozname označí články, ktoré zaradí do budúceho čísla, a taktiež môže články podľa uváženia zo zoznamu vylúčiť. Autori vylúčených článkov budú o tom informovaní. Po určení obsahu vydania sú články zaradené do čísla v DB, pre číslo je vygenerovaná vlastná webová stránka. Je zostavený zoznam odkazov na plné texty článkov a tento zoznam je zaslaný do tlače.

Notifikácia – Na upozornenie užívateľov o výskyte udalosti sa využíva notifikácia navrhnutá v prvej iterácii.

Statická štruktúra

Druhá iterácia vnáša do systému recenzie a usporiadanie článkov do čísiel. Funkcionalita recenzovanie zasiahla aj do už existujúcich tried a pridala do nich premenné a funkcie udržujúce previazanie článku s recenziou. Trieda *Recenzia* si uchováva dátum zadania a autora jej vykonania. Recenzie sú vkladané do systému pomocou funkcionality poskytovanej manažérom recenzie.

Usporiadanie príspevkov do čísiel zabezpečuje trieda *Cislo*. Udržuje si informáciu o poradí vydania a odkazuje na všetky články zaradené do daného vydania. Vytváranie a vkladanie článkov do nových čísiel má na starosti trieda *ManazerCasopisu*. Taktiež má na starosti aj generovanie webových stránok pre novovytvorené číslo a generovanie zoznamov pre tlač. So zaraďovaním príspevkov do čísiel súvisí aj metóda vylučujúca článok, pridaná do manažéra článkov. Diagram tried druhej iterácie je zachytený na obrázku B.2.

5.2.3 Vyhľadávanie a úprava profilu

Tretia iterácia prináša do systému funkcionalitu spätú s vyhľadávaním článkov v databáze podľa rôznych kritérií. Taktiež je tu zavedená možnosť úpravy profilu. Firemné procesy zachytávajúce pridávanú funkcionalitu sú zobrazené na obrázkoch A.3, A.4 a A.5. Z uvedených procesov identifikujeme prípady použitia pre vyhľadávanie článkov v databáze, úpravu údajov o užívateľovi a zmenu prihlasovacieho hesla. Diagram znázorňujúci túto iteráciu je na obrázku B.4. Pridaním nových prípadov použitia nevstupujú do systému žiadni noví aktéri.

Prípady použitia

Vyhľadávanie – Užívateľ môže vyhľadávať pomocou reťazca overovaného voči menu a priezvisku autora, názvu organizácie alebo názvu článku. Ďalšou možnosťou je vyhľadávanie podľa kľúčových slov alebo čísla časopisu. Odpoveďou na vyhľadávané otázky je zoznam najvhodnejších nálezov článkov.

Úprava profilu – Ponúka registrovanému užívateľovi možnosť meniť svoje osobné údaje,

ako meno, priezvisko, príslušnosť k organizácii, e-mailovú adresu využívanú na zasielanie informačných e-mailov.

Zmena hesla – Registrovaný užívateľ je oprávnený meniť svoje prihlasovacie heslo. Pri zmene hesla je najskôr vyžiadané staré heslo, ktoré je overené, a až následne je povolená zmena.

Statická štruktúra

Zavedenie novej funkcionality do modelu v tretej iterácii neprináša žiadnu novú triedu, ale rozširujú sa už existujúce triedy. Funkcionalita vyhľadávania je zabezpečená cez metódy pridané do tried *Manazer Casopisu*, *ManazerCisla* a *ManazerUzivatelov*. Zmena osobných údajov užívateľa je, podobne ako vyhľadávanie, zabezpečená vložením zodpovedajúcich metód do triedy *ManazerUzivatelov* (obr. B.4).

5.2.4 Správa systému

Posledná iterácia dokončuje budovaný produkt pridaním správy systému. Administrátor využíva túto správu na upravovanie vzhľadu a obsahu virtuálneho časopisu. Správna aplikácia mu ponúka možnosť vkladať do rozhrania nové webové stránky, ktoré sú hierarchicky usporadúvané a zaradené do menu. Administrátor má takto možnosť bez zasahovania do kódu rozhrania pridať potrebné informácie na web. Firemné procesy popisujúce prácu administrátora sú zachytené na obrázkoch A.1 a A.2.

Z uvedených diagramov možno vyčítať prípady použitia zachytávajúce možnosť upravovania údajov o článku a v prípade núdze aj jeho vymazanie. Ďalším kandidátom na prípad použitia sú činnosti spojené s vytváraním nových stránok rozhrania a upravovaním obsahu už existujúcich stránok. Poslednou identifikovateľ nou funkcionalitou je upravovanie celkového vzhľadu rozhrania. Administrátor môže meniť logo a nadpis virtuálneho časopisu. Celkový vzhľad aplikácie je nastaviteľ ný pomocou dodávaných šablón. Konečný vzhľad diagramu tried je ukázaný na obrázku 5.8.

Prípady použitia

- **Úprava údajov o článkoch** Administrátor upravuje údaje o článkoch. Je oprávnený meniť názvy, anotácie, autorov a odkaz na umiestnenie súboru s plným textom.
- Vymazanie článku Administrátorovi je z technických príčin umožnené mať možnosť vymazať článok. Táto akcia je spojená s notifikáciou redakčnej rady a autora článku o vykonanom odstránení.
- Vytvorenie stránky Správca systému môže rozširovať grafické rozhranie aplikácie pridaním nových webových stránok a ich naplnenie obsahom. Stránky sú generované automaticky a dopĺňa sa do nich len samotný text pomocou jednoduchého rozhrania.
- **Upravenie stránky** Administrátor je oprávnený meniť obsah skupiny stránok, na ktorých nie sú zobrazované výpisy z databázy.
- **Úprava rozhrania** Rozhranie môže byť správcom upravené pomocou dodávaných tém. Je tiež umožnené meniť logo a názov virtuálneho časopisu.

Obrázok 5.8: Diagram prípadov použitia po druhej iterácii.

Statická štruktúra

Záverečný diagram tried (5.9) zachytáva komplexný pohľad na vypracovaný systém. V poslednej iterácii do neho pribudli triedy *AdresarStranok* a *WebStranka*, zabezpečujúce prácu so správou rozhrania. Držia informácie o vzhľade aplikácie a zachytávajú hierarchiu usporiadania webových stránok. Zabezpečujú aj generovanie nových stránok a prácu s upravovateľnými stránkami.

Obrázok 5.9: Diagram tried poslednej iterácie.

Kapitola 6

Záver

V súčasnej dobe je vývoj softvéru už takmer nepredstaviteľný bez využitia nejakej modelovacej metódy, ktorá tento vývoj dokáže usmerniť, napomôcť získanie kvalitného riešenia problému a rapídne zvýšiť úspešnosť projektu. Rôzne metódy majú rozdielne špecifické prvky a niektoré je potrebné prispôsobiť adekvátnemu využitiu a maximalizovaniu potenciálu skrývajúceho sa v nich. Výberom a prípadnou úpravou postupu modelovania je zvýšená efektívnosť práce, urýchlený vývoj a znížené náklady na projekt. Dôsledkom je dodávanie kvalitného softvéru v dostupných cenových reláciách.

Všeobecne je hlavnou myšlienkou používania metodík uľahčenie zvládnutia veľkých projektov. Keď sú však aplikované rozsiahle a robustné metódy na malé, jednoducho pochopiteľné a zvládnuteľné projekty, získava sa značný počet činností neposúvajúcich projekt k rýchlemu koncu. Veľký počet definovaných rol a modelov, ktoré musia byť vypracované, spomaľuje prechod k vlastnému produkovaniu systému. Tento prístup určite ponúka monumentálny základ pre vývoj aplikácií, ale pre zákazníka nemusí dodávať riešenia dostatočne rýchlo. Práve zákazník potrebuje rýchle zavedenie IT riešenia, aby zostala zachovaná jeho konkurencieschopnosť. Pri zdĺhavom dodávaní produktu môže nastať situácia, že systém nespĺňa rýchlo sa meniace požiadavky klienta.

Naštudovanie rozličných modelovacích metód využívaných v minulosti a súčasnosti slúžilo ako základ pre návrh metódy umožňujúcej efektívny vývoj malých softvérových projektov. Popri preštudovaní modelov bolo cieľ om tejto práce aj oboznámenie sa s grafickými modelovacími nástrojmi, hlavne s Business Process Modeling Notation, slúžiacim na popisovanie firemných procesov.

Navrhnutá metóda využíva BPMN diagramy na zachytenie požiadaviek užívateľa ako jeden zo vstupov do analytickej a vývojovej časti. Tieto diagramy sú intuitívne pre zákazníka, ktorý na základe nich môže s analytikom diskutovať o dodanej funkcionalite realizovaného systému. V prípade, že cieľová organizácia už má popísanú štruktúru fungovania pomocou procesov, je tým vývoj výrazne urýchlený.

Hlavným cieľ om metódy je rýchle dodávanie kvalitných IT riešení plniacich aktuálne zákazníkove potreby. V navrhnutom postupe sa preto uplatňujú myšlienky zachytené v manifeste agilného programovania. Vyzdvihovaná je spolupráca so zákazníkom a upravovanie návrhu a vývoja podľa jeho predstáv.

BPMN diagramy zachytávajú funkcionalitu budúceho systému. Charakterom použitia majú prvky diagramov dátových tokov, ktoré boli v minulosti používané pri návrhu softvéru. Získava sa tak pomerne intuitívny náhľad na fungovanie systému, ktorý keď spojíme s diagramami tried používanými pri objektovo orientovanom návrhu, dávajú programátorovi jasný rys budovaného systému, ale tiež mu ponechávajú dostatočný priestor na zapojenie svojej kreativity do realizovania výsledného riešenia.

Navrhnutá metóda bola overená pri vypracovaní informačného systému pre správu vedeckého časopisu. Podľa stanoveného postupu boli zachytené požiadavky na systém, ktoré

boli prevedené na BPMN modely, a s ich pomocou boli vypracované diagramy prípadov použitia a tried. Postupné odvodzovanie diagramov prebehlo bez väčších problémov. Získaný výsledný súbor modelov popisuje statickú a dynamickú štruktúru produktu.

Na úplné overenie metódy však chýba realizácia navrhnutých modelov, ktorá však nemôže byť prevedená tou istou osobou ako návrhová časť. Je potrebný náhľad druhej, nezainteresovanej osoby, ktorá nemá so systémom skúsenosti a musela by sa preto spoliehať len na poskytnuté modely a komunikáciu s návrhárom. Overila by sa tým miera zrozumiteľnosti a množstvo informácií poskytovaných modelmi.

Literatúra

- [1] White, Stephen A.: *Introduction to BPMN* [online]. Dostupné na URL: http://www.omg.org/spec/BPMN/1.2/PDF (marec 2009)
- [2] Object Management Group.: Business Process Modeling Notation (BPMN) [online]. január 2009. Dostupné na URL:
 - http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf (marec 2009)
- [3] William, W., Woods. A.: *Internetová tržiště B2B pro 21. století*. Praha, Petr Wimmer, 2004, 277 s.
- [4] Arlow, J., Neustadt. I.: *UML 2 a unifikovaný proces vývoje aplikací: objektově orientovaná analýza a návrh prakticky*. Brno, Computer Press, 2007, 567 s.
- [5] GIBBS, Dennis.: *Project Management with the IBM Rational Unified Process*. IBM Press, 2006. 312 s.
- [6] Cockburn, A.: *Using Both Incremental and Iterative Development* [online]. máj 2008. Dostupné na URL:
 - http://www.stsc.hill.af.mil/crosstalk/2008/05/0805Cockburn.html (marec 2009)
- [7] Spence, I., Bittner, K.: *What is iterative development?* [online]. 15. mája 2005. Dostupné na URL:
 - http://www.ibm.com/developerworks/rational/library/may05/bittner-spence/index.html (marec 2009)
- [8] Ošlejšek, R., Sochor, J.: *Objektové metody návrhu IS., Metodiky vývoje softwaru: vodopád, iterativní postupy, agilní vývoj* Brno, Masarykova univerzita, 2008.
- [9] *Manifesto for Agile Software Development* [online]. Dostupné na URL: http://agilemanifesto.org/ (marec 2009)
- [10] Keith, Everette R. *Agile Software Development Processes: A Different Approach to Software Design* [online]. 1. Dec 2002. Dostupné na URL:
 - http://www.agilealliance.com/system/article/file/1099/file.pdf (apríl 2009)
- [11] Cresswell. A. M.: Return on Investment In Information Technology: A Guide for Managers [online]. august 2004. Dostupné na URL:
 - http://www.ctg.albany.edu/publications/guides/roi/roi.pdf (apríl 2009)

- [12] Reh, F. J.: *Key Performance Indicators (KPI)* [online]. Dostupné na URL: http://management.about.com/cs/generalmanagement/a/keyperfindic.htm (april 2009)
- [13] Mitra, T. *Business-driven development* [online]. Dec 2005 [cit. 2009-3-2]. Dostupné na URL: http://www.ibm.com/developerworks/webservices/library/ws-bdd/
- [14] Bieberstein, N.: Service-oriented architecture (SOA) compass: business value, planning, and enterprise roadmap Upper Saddle River, NJ, IBM Press, 2006, 232 s.
- [15] Havey, M.: Essential business process modeling Sebastopol, CA, O'Reilly, 2005, 332 s.
- [16] KroLL, P., Royce W.: Key principles for business-driven development [online]. 15. októbra 2005. Dostupné na URL:
 http://www.ibm.com/developerworks/webservices/library/ws-bdd/ (apríl 2009)
- [17] Juric, M. B., Pant, K .,,Business process driven SOA using BPMN and BPEL: from business process modeling to orchestration and service oriented architecture Birmingham, Packt Publishing, 2008, 311 s.
- [18] Irany, M., Negrello, A., Magee, M., Palma C., Smith, J.: Rational Business Driven Development for Compliance [online]. 8. novembra 2006. Dostupné na URL: http://www.redbooks.ibm.com/redbooks/pdfs/sg247244.pdf (apríl 2009)
- [19] Boehm, B. W.: A Spiral Model of Software Development and Enhancement [online]. máj 1988. Dostupné na internete: http://www.ibm.com/developerworks/webservices/library/ws-bdd/
- [20] Fsost, S.: *The Select Perspective* Tesseract Publishing, 1995. 104 s. Dostupné na URL: http://www.ibm.com/developerworks/webservices/library/ws-bdd/
- [21] Chillarge, R.: *Software Testing Best Practices* [online]. Dostupné na URL: http://www.cs.usu.edu/supratik/CS%205370/r5061.pdf (máj 2009)

Dodatok A

Diagramy firemných procesov

Obrázok A.1: Firemný proces pre správu časopisu.

Obrázok A.2: Firemný proces pre úpravu článku.

Obrázok A.3: Proces vyhľadávania.

Obrázok A.4: Proces úpravy profilu.

Obrázok A.5: Proces zmeny hesla profilu.

Obrázok A.6: Model recenzovania čísla časopisu.

Obrázok A.7: Model zostavovania čísla časopisu.

Dodatok B Diagramy návrhovej fázy

Obrázok B.1: Diagram prípadov použitia po druhej iterácii.

Obrázok B.2: Diagram prípadov použitia pre druhú iterácu.

Obrázok B.3: Diagram prípadov použitia tretej iterácie.

Obrázok B.4: Diagram tried tretej iterácie.

Dodatok C

Obsah priloženého CD

Rozmiestnenie súborov na CD je nasledujúce:

Adresár	Obsah
/obr	Obrázky diagramov jednotlivých fáz MPDD.
/pdf	PDF súbor s diplomovou prácou.
/tex	LATEX zdrojové kódy textu diplomovej práce.
/vpp	Projekty v programoch Visual Paradigm a Visual Architect.