Computer Networking

Network Model Chapter 2

Protocol Layering

- Protocol: The rules that the sender, receiver and all intermediate devices follow to communicate effectively
- ▶ Simple communication → Simple protocol
- ▶ Complex communication → Protocol layering
- Computer networks are complex systems
 - Tasks involve varieties of hardware and software components, and protocols
- Networking task is divided into several subtasks, or layers

Real World Example

Communication between managers of two companies

What Actually happens

Communication takes place thru many layers

Layer Model

 \blacktriangleright Layer N uses services provided by Layer N-1

Virtual Communication System

Why Layers?

- Guidelines for protocol developments
 - Reference model
- Modularity
 - Eases maintenance and updating of systems
 - ▶ A change in one layer is transparent to the rest
- It allows us to separate the services from the implementation.

Two Principles of Protocol Layering

- Bidirectional communication.
- The objects under each layer at both sites should be identical.

Internet Layer Model: TCP/IP Protocol Suite

▶ The Internet Protocol Stack

Application Layer

Responsible for providing services to the user

The only layer to interact with user

Transport Layer

Responsible for delivery of a message from one process to another

- Duties/services
 - Port addressing
 - Segmentation and reassembly
 - Connection control
 - Flow control (end-to-end)
 - Error control (end-to-end)

Transport Layer

Network Layer

Responsible for the delivery of packets from the original source to the destination

- Duties/services
 - Logical addressing
 - Routing

Network Layer

Network Layer

Responsible for transmitting frames from one node to the next

- Duties/services
 - Framing
 - Physical addressing
 - Flow control (hop-to-hop)
 - Error control (hop-to-hop)
 - Access control

A3, 3B, 82, 9F, ... are physical addresses

Physical Layer

Responsible for transmitting individual bits from one node to the next

- Duties/services
 - Physical characteristics of interfaces and media
 - Representation of bits
 - Data rate (transmission rate)
 - Synchronization of bits

Physical Layer

The Big Picture

Internet Model

Internet Model

Protocol Suites

- A set of protocols must be constructed
 - to ensure that the resulting communication system is complete and efficient
- Each protocol should handle a part of communication not handled by other protocols
- How can we guarantee that protocols work well together?
 - Instead of creating each protocol in isolation, protocols are designed in complete, cooperative sets called suites or families

Internet Protocol Suite

Layer	Protocols
Application	HTTP, FTP, Telnet, SSH, SMTP, DNS, SNMP, IGMP,
Transport	TCP, UDP, SCTP,
Network	IP (IPv4), IPv6, ICMP, IGMP, ARP, RARP,
Data Link	Ethernet, Wi-Fi, PPP,
Physical	RS-232, DSL, 10Base-T,

Addresses in TCP/IP

Addressing in TCP/IP

Physical Addresses

Logical/IP Addresses

Copyright © The McGraw Hill Companies, Inc.

Port Addresses

Copyright © The McGraw Hill Companies, Inc.

OSI Model

User

- 7. Application Layer
- 6.Presentation Layer
 - 5. Session Layer
 - 4. Transport Layer
 - 3.Network Layer
 - 2.Data Link Layer
 - 1.Physical Layer

Transmission Medium

- OSI <u>O</u>pen <u>S</u>ystems
 Interconnection
- Developed by the <u>International</u>
 <u>S</u>tandards <u>O</u>rganizations (ISO)

- Two additional layers
 - Presentation layer
 - Session layer

Session Layer

Responsible for establishing, managing and terminating connections between applications

- Duties/services
 - Interaction management
 - ⇒ Simplex, half-duplex, full-duplex
 - Session recovery

Presentation Layer

Responsible for handling differences in data representation to applications

- Duties/services
 - Data translation
 - Encryption
 - Decryption
 - Compression

OSI Layers in Real World

Lack of OSI Model's Success

- Costly
- Some of layers were never fully defined
- Performance