CEFET-MG Engenharia da Computação

Disciplina: Controle de Sistemas Dinâmicos

Professor: Ramon C. Lopes TRABALHO PRÁTICO 01-03

Assunto: Estudo de funções de transferência

Objetivo: Estudar funções de transferência de sistemas dinâmicos

1 Sistemas

São apresentados modelos matemáticos de sistemas dinâmicos para os quais deverão ser obtidas a representação temporal, frequencial e espaço de estados (considere todos os parâmetros entre 1 e 10) [1]:

Sistema	Modelo
1-Acionador para correia de impressora[]	$G(s) = \frac{-15s}{s^3 + 25s^2 + 14.5ks + 1000k(0.25 + .15k_2)}$
2-Laminadora de chapas de aço	$G(s) = \frac{3}{s+3} \frac{333.3}{s^2+bs+10000} \frac{\kappa(s+.1)}{s}$
3-Volante de retífica de superfície[]	$G(s) = \frac{1}{s(.25s+1)(.1s+1)}$
4-Distrib. fluido automático[](pg.133Dorf)	$G(s) = \frac{1}{s(.25s+1)(.1s+1)}$ $G(s) = \frac{1}{s(s+5)(s+10)}$
5-Acionador de disco magnético[](pg166Dorf)	$G(s) = \frac{10}{s(\tau s + 1)}$
6-Escoamento de fluido[](pg167Dorf)	$G(s) = \frac{1}{\tau s + 1}$
Thais Diniz Braz	73.12
7-Bomba de infusão[](pag219Dorf)	$G(s) = \frac{s+2}{s(s+1)}$ $G(s) = \frac{100}{c^2}$
8-Plotadora HP[](pg218Dorf)	$G(s) = \frac{100}{s^2}$
Marcela Letícia Carneiro Januário	
9-Controle de feixe de laser[](pg221Dorf)	$G(s) = \frac{K}{s^2}$
Max Wilson Ramos Filho	
10-Cônica de câmara de TV[](pag220Dorf)	$G(s)\frac{K_m}{s\tau_m+1}$

Sistema	Modelo
11-Trem de alta velocidade[] (pag225Dorf)	$G(s) = \frac{15}{(s+5)(s+7)}$
Talita Santana Orfanó	(3 / 3)(2 / 1 /)
12-Motor CC[](pag225Dorf)	$G(s) = \frac{K_m}{(s+.01)}$
13-Controle de rolamento de caça a jato[] (pag226Dorf)	$G(s) = \frac{11.4K}{s(s+10)(s+1.4)}$
14-Satélite espacial[](pag226Dorf)	$G(s) = \frac{10}{(s+1)(s+9)}$
Rômulo Rocha Lemes	(3 / 2) (3 / 3)
15-Robô de controle de posição[] (pag227Dorf)	$G(s) = \frac{K_1}{s(s+1)}$
Guilherme Alvarenga Andrade	
16-Sistema de suspensão ativa[] (pag226Dorf)	$G(s) = \frac{K}{s(s+q)}$
GUILHERME CLÁUDIO ROQUETTE SALES	
17-Piloto automático de aeronave[] (pag228Dorf)	$G(s) = \frac{10(s+5)}{s(s+10)(s^2+3.5s+6)}$
Bruna Castelo Branco Santos	, , ,
18-Velocidade de míssil[](pag228Dorf)	$G(s) = \frac{100(s+1)}{s^2 + 2s + 100}$
LUÍS FERNANDO DE QUADROS	
19-Estação espacial[](pg303Dorf)	$G(s) = \frac{K(s+20)}{s(s^2+24s+144)}$ $G(s) = \frac{K(s+10)}{s(s+1)(s+20)(s+50)}$
20-Elevador[](pg303Dorf)	$G(s) = \frac{K(s+10)}{s(s+1)(s+20)(s+50)}$
Carlos Henrique Alvarenga Soares	
21-Registrador de fita[](pg303Dorf)	$G(s) = \frac{K}{s(s+2)(s^2+4s+5)}$
22-Telescópio[](pg304Dorf)	$G(s) = \frac{K}{s(s+2)(s^2+4s+5)}$ $G(s) = \frac{K}{s(s^2+2s+5)}$
23-Míssil lançado de satélite[](pg305Dorf)	$G(s) = \frac{K(s^2+10)(s+2)}{(s^2-2)(s+10)}$ $G(s) = \frac{25(s+.03)}{(s+.4)(s^236s+.16)}$ $G(s) = \frac{1}{0.25s+1}$
24-Helicóptero[](pg305Dorf)	$G(s) = \frac{25(s+.03)}{(s+4)(s^2-36s+16)}$
25-Turbina a vapor[](pg306Dorf)	$G(s) = \frac{1}{0.25s+1}$
Pedro Felipe Froes Silva	0.200 (1)
26-Veículos guiados(pg309Dorf)	$G(s) = \frac{K_a(s^2+3.6s+81)}{s(s+1)(s+5)}$
27-Controle de emissão de $CO_2[102203](pg311Dorf)$	$G(s) = \frac{K(s+2)(s+7)}{s(s+5)(s+4)}$
28-Robô móvel[](pg311Dorf)	$G(s) = \frac{K(s+2)(s+7)}{s(s+5)(s+4)}$ $G(s) = \frac{K(s+1)(s+5)}{s(s+1.5)(s+2)}$
JÔNATAS RIBEIRO TONHOLO	s(s+1.0)(s+2)
29-Rotor basculante[](pg311Dorf)	$G(s) = \frac{.5}{(s^2 + 1.5s + .5)}$
Diego Dinarte Xavier Parreiras de Rezende	(3 +1.03+.0)
30-Controle de combustível de automóvel[](pg311Dorf)	$G(s) = \frac{K(s+1.5)}{(s+1)(s+2)(s+4)(s+10)}$
SAULO HENRIQUE GUIMARÃES SILVA	(0+1)(0+2)(0+4)(0+10)
31-Controle de uma perna de um robô de 8 patas(pg.Dorf	$G(s) = \frac{1}{s(s^2 + 2s + 10)}$
YURI BRUNO FERNANDES DOS SANTOS	

• Etapas do trabalho

- Descrição do problema $\left(01/11/2014\right)$
- Função temporal (01/11/2014)
- -Representação Espaço de Estados (contínuo) $\left(29/01/2015\right)$
- Conclusões (29/01/2015)

Para o texto final em duas colunas, utilizar o modelo encontrado no link.

ONDE PESQUISAR

- Instituto Nacional de Eficiência Energética. http://www.inee.org.br
- Energy Technology Data Exchange http://www.etde.org
- Revista SBA Controle e Automação. http://www.fee.unicamp.br/revista_sba
- Congresso Brasileiro de Automática CBA. http://www.cba2008jf.com.br.
- Simpósio Brasileiro de Sistemas Elétricos SBSE. http://www.sbse2008.org.br
- Sociedade Brasileira de Eletrônica de Potência. http://www.sobraep.org.br.
- Revista Brasileira de Engenharia Biomédica. http://www.sbeb.org.br/rbeb
- Sociedade Brasileira de Engenharia Biomédica. http://www.sbeb.org.br
- Revista Eletrônica de Iniciação Científica Sociedade Brasileira de Computação.
 http://www.sbc.org.br/reic/revista.html
- Sociedade Brasileira de Matemática Aplicada e Computacional. http://www.sbmac.org.br
- Seminário Nacional de Produção e Transmissão de Energia Elétrica http://www.xxsnptee.com.br/
- Artigos diversos: http://www.scielo.org
- Artigos atualizados: http://www.sciencedirect.com

References

[1] R. C. Dorf and R. H. Bishop. Sistemas de Controle Modernos. LTC Editora, Rio de Janeiro, 2001.