Probability review

Adopted from notes of Andrew W. Moore and Eric Xing from CMU

So far our classifiers are deterministic!

- For a given X, the classifiers we learned so far give a single predicted y value
- In contrast, a probabilistic prediction returns a probability over the output space
 P(y=0|X), P(y=1|X)
- We can easily think of situations when this would be very useful!
 - Given P(y=1|X) =0.49, P(y=-1|X)=0.51, how would you predict?
 - What if I tell you it is much more costly to miss an positive example than the other way around?

Discrete Random Variables

- A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs.
- Examples
- A = The US president in 2023 will be male
- A = You wake up tomorrow with a headache
- A = You have Ebola

Probabilities

- We write P(A) as "the fraction of possible worlds in which A is true"
- We could at this point spend 2 hours on the philosophy of this.
- But we won't.

Visualizing A

Event space of all possible worlds

Its area is 1

P(A) = Area of reddish oval

Basic axioms

- $0 \le P(A) \le 1$
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

Simple addition and subtraction

Elementary Probability Theorems

- $P(\sim A) + P(A) = 1$
- $P(B) = P(B \land A) + P(B \land \sim A)$

Multinomial Random Variables

- Suppose A can take on more than 2 values
- A is a random variable with arity k if it can take on exactly one value out of $\{v_1, v_2, ... v_k\}$
- Thus...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$

An easy fact about Multinomial Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{j=1}^{t} P(A = v_j)$$

An easy fact about Multinomial Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

 $P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$

It's easy to prove that

$$P(A = v_1 \lor A = v_2 \lor A = v_i) = \sum_{i=1}^{r} P(A = v_j)$$

And thus we can prove

$$\sum_{j=1}^k P(A=v_j)=1$$

Another fact about Multinomial Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$

It's easy to prove that

$$P(B \land [A = v_1 \lor A = v_2 \lor A = v_i]) = \sum_{j=1}^{n} P(B \land A = v_j)$$

Another fact about Multinomial Random Variables:

Using the axioms of probability...

$$0 \le P(A) \le 1$$
, $P(True) = 1$, $P(False) = 0$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$

And assuming that A obeys...

$$P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$$

$$P(A = v_1 \lor A = v_2 \lor A = v_k) = 1$$

It's easy to prove that

$$P(B \land [A = v_1 \lor A = v_2 \lor A = v_i]) = \sum_{i=1}^{r} P(B \land A = v_j)$$

And thus we can prove

$$P(B) = \sum_{j=1}^{k} P(B \land A = v_j)$$

Conditional Probability

 P(A|B) = Fraction of worlds in which B is true that also have A true

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 50-50 chance you'll have a headache."

Conditional Probability

H = "Have a headache" F = "Coming down with Flu"

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

P(H|F) = Fraction of flu-inflicted worlds in which you have a headache

= #worlds with flu and headache ------#worlds with flu

= Area of "H and F" region

Area of "F" region

= P(H ^ F) ------P(F)

Definition of Conditional Probability

$$P(A \land B)$$

$$P(A/B) = -----$$

$$P(B)$$

Corollary: The Chain Rule

$$P(A \land B) = P(A/B) P(B)$$

Probabilistic Inference

H = "Have a headache"F = "Coming down with Flu"

P(H) = 1/10 P(F) = 1/40P(H|F) = 1/2

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu"

Is this reasoning good?

Probabilistic Inference

$$P(H) = 1/10$$

 $P(F) = 1/40$
 $P(H|F) = 1/2$

$$P(F ^ H) = ...$$

$$P(F|H) = ...$$

What we just did...

This is Bayes Rule

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* **53:370-418**

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Trivial question: someone draws an envelope at random and offers to sell it to you. How much should you pay?

Using Bayes Rule to Gamble

The "Win" envelope has a dollar and four beads in it

The "Lose" envelope has three beads and no money

Interesting question: before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay? Suppose it's red: How much should you pay?

Calculation...

More General Forms of Bayes Rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

More General Forms of Bayes Rule

$$P(A=v_{i}|B) = \frac{P(B|A=v_{i})P(A=v_{i})}{\sum_{k=1}^{n_{A}} P(B|A=v_{k})P(A=v_{k})}$$

Useful Easy-to-prove facts

$$P(A | B) + P(\neg A | B) = 1$$

$$\sum_{k=1}^{n_A} P(A = v_k \mid B) = 1$$

Continuous Probability Distribution

- A continuous random variable x can take any value in an interval on the real line
 - X usually corresponds to some real-valued measurements, e.g., today's lowest temperature
 - It is not possible to talk about the probability of a continuous random variable taking an exact value --- P(x=56.2)=0
 - Instead we talk about the probability of the random variable taking a value within a given interval P(x∈[50, 60])

PDF: probability density function

- The probability of X taking value in a given range [x1, x2] is defined to be the area under the PDF curve between x1 and x2
- We use f(x) to represent the PDF of x
- Note:
 - $f(x) \ge 0$
 - f(x) can be larger than 1

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

•
$$P(X \in [x1, x2]) = \int_{x1}^{x2} f(x) dx$$

What is the intuitive meaning of f(x)?

If
$$f(x1)=\alpha*a$$
 and $f(x2)=a$

Then when x is sampled from this distribution, you are α times more likely to see that x is "very close to" x1 than that x is "very close to" x2

Some commonly used distributions

Bernoulli distribution: Ber(*p*)

$$P(x) = \begin{cases} 1-p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases} \Rightarrow P(x) = p^{x} (1-p)^{1-x}$$

Binomial distribution: Binomial(n, p)

the probability to see x heads out of n flips

$$P(x) = \frac{n(n-1)\cdots(n-x+1)}{x!} p^{x} (1-p)^{n-x}$$

Multinomial distribution: Multinomial(n, $[x_1, x_2, ..., x_k]$)

The probability to see x_1 ones, x_2 twos, etc, out of n dice rolls

$$P([x_1, x_2, ..., x_k]) = \frac{n!}{x_1! x_2! \cdots x_k!} \theta_1^{x_1} \theta_2^{x_2} \cdots \theta_k^{x_k}$$

Continuous Distributions

Uniform Probability Density Function

$$f(x) = 1/(b-a)$$
 for $a \le x \le b$
= 0 elsewhere

Normal (Gaussian) Probability Density Function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

Exponential Probability Distribution

$$f(x) = \frac{1}{\mu} e^{-x/\mu}$$

Expected value

Given a random variable x characterized by a distribution p(x), what is the *expected* value of x?

The expectation of x.

$$\mathbb{E}[x] = \sum_{x} p(x)x$$

or

$$\mathbb{E}[x] = \int p(x)x dx$$

Example

What is the expected value when rolling one die?

X	p(x)	
1	$\frac{1}{6}$	$\mathbb{E}[x] = \sum p(x)x$
2	$\frac{1}{6}$	x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3	$\frac{1}{6}$	$= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}$
4	$\frac{1}{6}$	$= \frac{21}{6} = 3.5$
5	$\frac{1}{6}$	
6	$\frac{1}{6}$	

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint

One you have the JD you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

$$P(Poor Male) = 0.4654$$

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}}$$