ТЭМ-104

ОПИСАНИЕ ПРОТОКОЛА ОБМЕНА АРВС 746967.039.000 ПО

СОДЕРЖАНИЕ

1 НАСТРОЙКИ ЛИНИИ СВЯЗИ	3
2 ОБЩАЯ СТРУКТУРА ПАКЕТА ДАННЫХ	3
3 КОМАНДЫ УСТАНОВЛЕНИЯ СВЯЗИ	4
3.1 Идентификация устройства (команда 0000)	4
4 КОМАНДЫ ЧТЕНИЯ ИЗ ПАМЯТИ	5
4.1 Чтение конфигурации (команды 0F01 и 8F01#)	5
4.2 Чтение архива (команды 0F03 и 8F03#)	5
4.3 Чтение мгновенных значений (команды 0C01h и 8C01h)	7
4.4 Чтение/запись часов реального времени (команды 0F02h и 0182h).	7
4.6 Поиск архивной записи по дате (команды 0D11# и 8D11#)	9
5 СТРУКТУРА ДАННЫХ, ХРАНЯЩИХСЯ В ПАМЯТИ ТЕПЛОСЧЕТЧИКА.	10
5.1 Карта памяти настроек и параметров теплосчетчика	10
5.2 Память часов реального времени	15
5.3 Оперативная память	15
5.4 Архивная память	16
5.4.1 формат записи событий	16
ЗАМЕЧАНИЯ ПО РАСШИФРОВКЕ АРХИВА	18
5.5 Определение конфигурации прибора	18
5.6 Расшифровка текущих показаний теплосчетчика	19
5.7 Расшифровка архива	20

1 НАСТРОЙКИ ЛИНИИ СВЯЗИ

Интерфейс	RS-232C	RS-485
Скорость обмена, бит/с	9600; 19200; 57600; 115200	9600; 19200
Сетевой адрес	1 – 32	
Старт-бит	1	
Стоп-бит	1	
Бит данных	8	
Управление потоком	нет	
Контроль чётности	нет	

2 ОБЩАЯ СТРУКТУРА ПАКЕТА ДАННЫХ

Посылка «ведущего» устройства (ПК)

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд: 00 – команды установления связи; 0F – команды чтения памяти;
4	CMD	02	Идентификатор команды
5	LEN	02	Число байт посылаемых данных (040)
			Данные (если таковые есть)
5+LEN	CS		Контрольная сумма (дополнение до нуля)*

Примечание: все значения чисел шестнадцатеричные.

Ответ «ведомого» устройства (теплосчетчик, АПД)

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	02	Идентификатор команды
5	LEN	02	Число байт посылаемых данных
6	DATA	04	
5+LEN	CS		Контрольная сумма (дополнение до нуля)

^{*} Контрольная сумма посылаемого/принимаемого пакета рассчитывается как $CS = NOT (B_1+B_2+B_3+...+B_N)$, где $B_1...B_N$ - последовательность байт пакета, исключая байт контрольной суммы, NOT – операция побитного логического «HE».

3 КОМАНДЫ УСТАНОВЛЕНИЯ СВЯЗИ

3.1 Идентификация устройства (команда 0000)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, кото- рому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	00	Группа команд
4	CMD	00	Идентификация устройства
5	LEN	00	Число байт посылаемых данных (0)
6	CS	AB	Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	00	Группа команд
4	CMD	00	Идентификатор команды
5	LEN	07	Число байт посылаемых данных
6	DATA		'T'
7	DATA		'E'
8	DATA		'M'
9	DATA		
Α	DATA		'1'
В	DATA		·0·
С	DATA		'4'
D	DATA		'M'
Е	CS		Контрольная сумма (дополнение до нуля)

4 КОМАНДЫ ЧТЕНИЯ ИЗ ПАМЯТИ

4.1 Чтение конфигурации (команды 0F01 и 8F01#)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F(8F#)	Группа команд
4	CMD	01	Чтение памяти таймера 2К
5	LEN	03	Число байт посылаемых данных (3)
6	TADRH	01	Начальный адрес в памяти таймера 2K (старший байт)
7	TADRL	80	Начальный адрес в памяти таймера 2K (младший байт)
8	TLEN	40	Длина считываемого блока данных (164 байт, 1256 байт для команды 8F01)
9	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F (TADRH#)	Группа команд Для команды 8F01 равно значению TADRH из посылки «ведущего»
4	CMD	01 (TADRL#)	Чтение памяти таймера 2К Для команды 8F01 равно значению TADRL из посылки «ведущего»
5	LEN	40	Число байт посылаемых данных (равно по- лю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.2 Чтение архива (команды 0F03 и 8F03#)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, кото-
'	ADDIN	01	рому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F(8F#)	Группа команд
4	CMD	03	Чтение памяти Flash
5	LEN	05	Число байт посылаемых данных (5)
6	TLEN	40	Длина считываемого блока данных (164
U	ILLIN	40	байт, 1256 байт для команды 8F03)
7	FADR3	00	Начальный адрес в памяти Flash (старший байт)
8	FADR2	01	

Теплосчетчик ТЭМ-104М. Описание протокола обмена.

9	FADR1	00	
Α	FADR0	80	Начальный адрес в памяти Flash (младший байт)
В	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F (FADR1#)	Группа команд Для команды 8F03 равно значению FADR1 из посылки «ведущего»
4	CMD	03 (FADR0#)	Идентификатор команды Для команды 8F03 равно значению FADR0 из посылки «ведущего»
5	LEN	40	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.3 Чтение мгновенных значений (команды 0C01h и 8C01h)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0C(8C#)	Группа команд
4	CMD	01	Чтение оперативной памяти
5	LEN	03	Число байт посылаемых данных (3)
6	TADRH	01	Начальный адрес в оперативной памяти (старший байт)
7	TADRL	80	Начальный адрес в оперативной памяти (младший байт)
8	TLEN	40	Длина считываемого блока данных (164 байт)
9	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0C (TADRH#)	Группа команд Для команды 8C01 равно значению TADRH из посылки «ведущего»
4	CMD	01 (TADRL#)	Чтение памяти таймера 128 Для команды 8C01 равно значению TADRL из посылки «ведущего»
5	LEN	40	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.4 Чтение/запись часов реального времени (команды 0F02h и 0182h)

4.5.1 Посылка «ведущего» устройства при чтении

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	02	Чтение регистров часов реального времени
5	LEN	02	Число байт посылаемых данных (2)
6	TADR	01	Начальный регистр
7	TLEN	6	Длина считываемого блока данных (16 байт)

8	CS	Контрольная сумма (дополнение до нуля)
U	03	контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0F	Группа команд
4	CMD	02	Чтение регистров часов реального времени
5	LEN	6	Число байт посылаемых данных (равно полю TLEN в посылке ведущего)
6	DATA		Данные
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.5.2 Посылка «ведущего» устройства при записи

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, кото- рому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	01	Группа команд
4	CMD	82	Чтение регистров часов реального времени
5	LEN	08	Число байт посылаемых данных (8)
6	TADR	00	Начальный регистр
7	DATA	32	сек
8	DATA	12	Мин
9	DATA	18	Час
10	DATA	3	Дата
11	DATA	7	месяц
12	DATA	17	Год – 2017
13	DATA	1	понедельник
14	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	01	Группа команд
4	CMD	82	Чтение регистров часов реального времени
5	LEN	7	Число байт посылаемых данных
6	DATA		Значения регистров таймера (дата-время)
	DATA		
5+LEN	CS		Контрольная сумма (дополнение до нуля)

4.6 Поиск архивной записи по дате (команды 0D11# и 8D11#)

Посылка «ведущего» устройства

Байт	Обозначение	Пример	Описание
0	SIG	55	Признак начала пакета
1	ADDR	01	Сетевой адрес ведомого устройства, которому адресуется пакет
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0D(8D)	Группа команд
4	CMD	11	Поиск записи
5	LEN	05	Число байт посылаемых данных (5)
6	STAT_TYPE	40	Тип архива: 0 – часовой; 1 – суточный; 2 – месячный.
7	HOUR	00	Yac (BCD)
8	DAY	01	День (BCD)
9	MONTH	00	Месяц (ВСD)
Α	YEAR	80	Год (BCD)
В	CS		Контрольная сумма (дополнение до нуля)

Ответ «ведомого» устройства

Байт	Обозначение	Пример	Описание
0	SIG	AA	Признак начала пакета
1	ADDR	01	Сетевой адрес устройства
2	!ADDR	FE	Инверсное значение сетевого адреса
3	CGRP	0D(8D)	Группа команд
4	CMD	11	Идентификатор команды
5	LEN	2	Число байт посылаемых данных
6	NUML		Номер записи (младший байт)**
7	NUMH		Номер записи (старший байт)**
8	CS		Контрольная сумма (дополнение до нуля)

^{**}Примечание: в случае, если запись с заданной датой не найдена, в полях NUMH и NUML возвращается значение FFFFh

5 СТРУКТУРА ДАННЫХ, ХРАНЯЩИХСЯ В ПАМЯТИ ТЕПЛОСЧЕТЧИКА

5.1 Карта памяти настроек и параметров теплосчетчика

Адрес (HEX)	Имя	Тип	Описание	Единицы измерения				
0000		Настройки прибора, подробно см 5.1.1						
		•						
	Н	астройки с	истем, подробно см 5.1.2					
0800			Система 1					
00CD			Система 2					
011A			Система 3					
0167			Система 4					
			,					
0440		Α	дреса архивных записей					
0480		Настройки	измерительных каналов, см 5.1.3					
			,					
0620		Ce	тевые настройки, см 5.1.4					
			,					
0800	Накопл	енные знач	чения параметров(интеграторы), см	5.1.5				
			<u> </u>	-				
а) Типы	Примечания: а) Типы данных: F – float (4 байта); L – long (4 байта); I – lnt (2 байта); C – Char (1 байт); BCD – число в двоично-десятичном коде.							

Далее будут представлены карты памяти каждой из областей карты п 5.1. Данные доступны по команде 0F01 (п 4.2)

5.1.1 Карта области настроек прибора

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	number	L	заводской номер прибора	
0004	systems	С	число систем	
0005	rep_date	С	отчетная дата	
0007	net_addr	С	номер прибора в сети	
000A	energy_units	С	Единицы измерения энергии 0 – ГДж 1 – Гкал 2 – МВт*ч	
000B	display_pressure	С	Отображение давления на экране 0 – нет 1 - да	
000F	type_g	С	тип датчиков расхода: 0 - частотные 1 - импульсные	

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
			Используемый протокол:	
0017	protocol_type	C	0 - проприетарный	
			1 - ModBus	

5.1.2 Карта настройки системы

смещение (НЕХ)	Имя	Тип	Описание	Единицы измерения
0000	sys_type	С	тип системы (00F) возможные значения типов систем: 00 - Расходомер V 01 - Расходомер М 02 - Магистраль 03 - Подача 04 - Обратка 05 - Холод 06 - Тупиковая ГВС 07 - Подпитка НСО 08 - Подпитка источника 09 - Тепло/Холод 0A - Подача + Р 0B - Открытая 0C - ГВС с рециркуляцией 0D - Источник 0E - Р-подача+Подпитка 0F - НСО	
0001	G_prog	C[4]	Расход по каналам: 0 – измеряемый 1-100 в % от Gмакс.	%
0005	G_chan	C[4]	Используемые системой ка- налы расхода	
0009	T_prog	C[4]	Температура по каналам: 0 – измеряемая 1-151 прогр. (t-1)	°C
000D	T_chan	C[4]	Используемые системой ка- налы температуры	
0011	P_prog	C[4]	Давление по каналам: 0 – измеряемое 1-25 - прогр.	0.1 МПа
0015	P_chan	C[4]	Используемые системой ка- налы давления	
0019	UseDgv	С	Использование договорных значений: 0 - нет 1 – да	
0022	P_dgv	C[4]	Договорные значения каналов давления: 1- 25	0.1 МПа
0026	StopCount	С	Останов счета: 0 - нет 1 – останов по G↑ G↓ dT 2 – dT	
	1	1	1	1

смещение (НЕХ)	Имя	Тип	Описание	Единицы измерения
0027	deltaT	С	Минимальная разница температур	°C
0028	Open_s_Q	С	переключатель формулы от- крытой системы: 0 – Q = Q1 + Q2 1 – Q = Q1	
0029	RevMode	С	Режим реверса в схеме "От- крытая": 0 - Основной 1 – Лето1 (G1 = 0) 2 – Лето2 (G2 = 0) 3 – Авто	
002A	sys_enabled	С	Работа системы: 0 - запрещена 1 – разрешена	
002B	GVS_C_sens	С	Схема установки датчиков потока для схемы «ГВС цир-куляция»: 0 — Циркуляция - ХВ 1 — ГВ - Циркуляция	
002C	th_G_sens_place	С	Размещение датчик потока для схемы «Холод»: 0 - Подача 1 – Обратка	

5.1.3 Адреса архивных записей

смещение (HEX)	Имя	Тип	Описание
0000	next_h_rec	L	Адрес следующей записи часового архива
0004	next_day_rec	L	- / - суточного архива
800	next_mon_rec	L	- / - месячного архива
00C	next_sys_ev	L[4]	- / - события по системе
001C	next_dev_ev	L	- / - события по прибору

- Для получения адреса последней сделанной прибором записи следует от значения в указанных ячейках отнять размер соответствующей записи (352 для часовых/суточных/месячных записей) и 16 байт для событий.
- Диапазон значений адресов для каждого типа (часовой, суточный и т.д.) см п 5.4.

5.1.4 Карта настроек измерительных каналов

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	du_ind	I[4]	Диаметр условного прохода по каналам *	
8000	g_max	F[4]	Максимальный расход в канале	м ³ /ч

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0018	g_max_prcnt	C[4]	Значение максимальной уставки по расходу в процентах от g_{max} . Значение G_{max} рассчитывается как $G_{max} = g_{max} * g_{max}$ -prcnt / 100	%
001C	g_min_prcnt	F[4]	Значение минимальной уставки по расходу в процентах от g_max. Значение G _{min} рассчитывается как G _{min} = g_max * g_min_prcnt / 100	%
002C	Fmax	I[2]	Максимальная частота по кана- лам F/N	Гц
0030	Kv	F[2]	Вес импульса по каналам F/N	л/имп
0039	did_range	C[4]	Диапазон измерения тока дат- чиками давления: 0 – 0-5 мА 1 – 0-20 мА 2 – 4-20 мА Всегда равно 2.	
003D	did_p_max	C[4]	Максимальное значение давления по каналам 1- 25	0.1 МПа
0041	did_p_dgv	C[4]	Договорные значения давления по каналам 1- 25	0.1 МПа
0046	pt_G12	C[2]	Разрешение детектирования ПТ в каналах расхода G1, G2 0 - нет 1 – да	
0048	vzb_G12	C[2]	Разрешение детектирования ошибки возбуждения для каналов расхода G1, G2 0 - нет 1 – да	
004A	pt_did_G34	C[2]	Разрешение детектирования ПТ в каналах расхода G3, G4 0 - нет 1 – да	
004C	g12_cut	F	Значение отсечки по расходу для каналов G1, G2	%Gmax

 $[\]ast$ для индукционных каналов значение - индекс в массиве диаметров $\{15, 25, 32, 40, 50, 80, 100, 150\}$, для каналов F/N – значение диаметра в мм

5.1.5 Сетевые настройки

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	MAC	C[8]	МАС адрес прибора	
0008	IP	C[4]	IP адрес прибора	
000C	netmask	C[4]	Маска подсети	

смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0010	gateway	C[4]	Шлюз	
0014	listen_port	I	Порт для подключения к при- бору	
0016	srv_IP	C[4]	IP адрес сервера	
001A	srv_port	I	Порт для подключения к серверу	
1C	DHCP_ena	С	Разрешение работы DHCP клиента 0 – нет 1 – да	

5.1.6 Карта накопленных значений параметров (интеграторы)

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	tek_dat	UTC32	Время и дата записи	сек
0004	prev_dat	UTC	Время и дата предыдущей записи	сек
0008	h_IntV	L[4]	Целая часть интеграторов объема по каналам	M^3
0018	h_IntM	L[4]	Целая часть интеграторов массы по каналам	Т
0028	h_IntQ	L[4]	Целая часть интеграторов энергии по системам	Гкал
0038	h_IntQ_err	L[4]	Целая часть интеграторов энергии в ошибках G>Gmax, G <gmin *<="" td="" по="" системам=""><td>Гкал</td></gmin>	Гкал
0048	I_IntV	F[4]	Дробная часть интеграторов объема по каналам	M^3
0058	I_IntM	F[4]	Дробная часть интеграторов массы по каналам	т
0068	I_IntQ	F[4]	Дробная часть интеграторов энергии по системам	Гкал
0078	I_IntQ_err	F[4]	Дробная часть интеграторов энергии в ошибках G>Gmax, G <gmin *<="" td="" по="" системам=""><td>Гкал</td></gmin>	Гкал
0098	TRab	L	время работы прибора при поданном питании	сек
009C	Toffline	L	время отсутствия электро- питания	сек
00A0	TNar	L[4]	время работы систем без ошибок	сек
00B0	Tmin	L[4]	расход меньше минимального	сек
00C0	Tmax	L[4]	расход больше макси- мального	сек
00D0	Tdt	L[4]	разность температур меньше минимальной	сек

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
00E0	Ttn	L[4]	техническая неисправность	сек
00F0	Trev	L[4]	Реверс в системе	сек
0100	Tpt	L[4]	Отсутствие теплоносителя	сек
0110	tekerr	C[4]	Ошибки по системам	
0114	teherr	I[4]	Ошибки по системам	
011C	t	I[4][3]	Температура по системам	°C/100
0134	р	C[4][3]	Давление по системам	MΠa/100
0140	Rshv_max	I[4]	Максимальный расход по каналам	0.1 м ³ /ч
015F	check	С	Контрольная сумма **	

^{*} для системы Тепло/Холод здесь соответствующий интегратор холода

5.2 Память часов реального времени

Адрес (HEX)	Имя	Тип	Описание	Единицы измерения
0000	t_ss	С	Текущее время (секунды)	
0001	t_mm	С	Текущее время (минуты)	
0002	t_hh	С	Текущее время (часы)	
0003	t_dm	С	Текущая дата (день)	
0004	t_my	С	Текущая дата (месяц)	
0005	t_yy	С	Текущая дата (год) - 2000	
0006	t_dw	С	Текущий день недели, 0-Вс6-Сб	

Данные доступны по команде 0F02 (чтение) 0F82 (запись) см п 4.5

5.3 Оперативная память

В оперативной памяти хранится ряд текущих параметров по системам, начиная с адреса 0h (4 структуры SysPar, описанных ниже).

Структура SysPar

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	tmp	F[4]	Текущие значения темпера- туры по каналам	°C
0010	prs	F[4]	Текущие значения давления по каналам	Мпа
0020	ro	F[4]	Текущие значения плотности теплоносителя	
0030	hent	F[4]	Текущие значения энталь- пии	
0040	rshv	F[4]	Текущие значения объемно- го расхода	м ³ /ч
0050	rshm	F[4]	Текущие значения массово- го расхода	т/ч

^{**} Контрольная сумма записи статистики рассчитывается как инверсия суммы всех байт записи по модулю 8, кроме байта контрольной суммы

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0060	pwr	F[4]	Текущие значения мощности	Гкал/ч
0070	tekerr	С	Ошибки	
0071	teherr	I	Технеисправности	

Данные доступны по команде 0С01 см п 4.3

5.4 Архивная память

Архив прибора хранится в энергонезависимой памяти объемом 1Мб и состоит из однотипных записей, приведенных в п 5.1.5.

Записи распределены в адресном пространстве памяти следующим образом:

Адресное пространство	Описание
00000000 - 000897FF	Часовые записи (1600)
00089800 - 000CE3FF	Суточные записи (800)
000CE400 - 000D367F	Записи на отчетную дату (60)
000D3680 - 000DD2BF	Записи событий по системе 1
000DD3C0 - 000E6EFF	Записи событий по системе 2
000E6F00 - 000F0B3F	Записи событий по системе 3
000F0B40 - 000FA77F	Записи событий по системе 4
000FA780 - 000FF27F	Записи событий по прибору

5.4.1 формат записи событий

Смещение (HEX)	Имя	Тип	Описание	Единицы измерения
0000	tek_dat	UTC32	Время и дата записи	сек
0004	Ev_prev	L	Предыдущее состояние	
0008	Ev_new	L	Текущее состояние	
000F	check	С	Контрольная сумма **	

^{**} Контрольная сумма записи статистики рассчитывается как простая сумма всех байт записи, кроме байта контрольной суммы

5.4.2 расшифровка событий по системе

Битовая маска	Описание
0x0000001	Обрыв/КЗ первого датчика температуры
0x00000002	Обрыв/КЗ второго датчика температуры
0x0000001	Обрыв/КЗ третьего датчика температуры
0x00000008	Ошибка dT
0x00000010	Расход меньше уставки Gmin в первом канале расхода системы
0x00000020	Расход меньше уставки Gmin во втором канале расхода системы
0x00000040	Расход меньше уставки Gmin в третьем канале расхода системы
0x00000080	Расход больше уставки Gmax в первом канале расхода системы

емы
емы
I
Ы
Ы
1

Возникновение события определяется как взведенный бит в поле Ev_new и сброшенный бит на той же позиции в поле Ev_prev .

Пропадание события определяется как сброшенный бит в поле Ev_new и взведенный бит на той же позиции в поле Ev_prev.

5.4.3 расшифровка событий по прибору

Битовая маска	Описание
0x0000001	Пропадание электропитания прибора
0x00000002	Возобновление электропитания прибора
0x0000001	Изменение общих настроек прибора
0x00000010	Сработал цифровой вход №1 (тревога)
0x00000020	Сработал цифровой выход №1 по превышению порога по расходу
0x00000040	Сработал цифровой выход №2 по превышению порога по расходу
0x00000080	Сработал цифровой выход №1 по падению расхода ниже порога
0x00000100	Сработал цифровой выход №2 по падению расхода ниже порога
0x00000200	Сработал цифровой выход №1 по превышению порога по температуре
0x00000400	Сработал цифровой выход №2 по превышению порога по температуре
0x00000800	Сработал цифровой выход №1 по падению температуры ниже порога
0x00001000	Сработал цифровой выход №2 по падению температуры ниже порога
0x00002000	Сработал цифровой выход №1 по превышению порога по разнице температур
0x00004000	Сработал цифровой выход №2 по превышению порога по разнице температур
0x000080000	Сработал цифровой выход №1 по падению разницы температуры ниже порога
0x00010000	Сработал цифровой выход №2 по падению разницы температуры ниже порога
0x00020000	Сработал цифровой выход №1 по превышению порога по мощности
0x00040000	Сработал цифровой выход №2 по превышению порога по мощности
0x00080000	Сработал цифровой выход №1 по падению мощности ниже порога
0x00100000	Сработал цифровой выход №2 по падению мощности ниже порога

0x00200000	Изменение настроек измерительных каналов
0x00400000	Изменение настроек Системы 1
0x00800000	Изменение настроек Системы 2
0x01000000	Изменение настроек Системы 3
0x02000000	Изменение настроек Системы 4
0x04000000	Изменение настроек цифровых входов/выходов
0x08000000	Изменение даты/времени
0x10000000	Изменение настроек интерфейса Ethernet

Возникновение и пропадание события определяется аналогично п 5.4.2

ЗАМЕЧАНИЯ ПО РАСШИФРОВКЕ АРХИВА

5.5 Определение конфигурации прибора

- 5.5.1 Число систем байт systems по адресу 0004 из памяти настроек прибора (п.5.1.1), может принимать значения от 1 до 4;
- 5.5.2 Тип каждой из систем определяется при помощи значений sys_type из структур настроек системы(SysCon) (хранятся в памяти настроек начиная с адреса 0080), расшифровка значений дана в таблице п 5.1.2;
- 5.5.3 Используемые в каждой из систем каналы расхода, давления и температуры определяются путем анализа соответствующих элементов массива структур SysCon (массивы Gchan, Tchan и Pchan). Количество каналов расхода (G), давления (P) и температуры (T) для различных типов систем приведено в таблице:

Тип системы (НЕХ)	G	Р	Т
0	1	0	0
1	1	1	1
2	1	1	1
3	1	2	2
4	1	2	2
5	1	2	2
6	1	2	2
7	1	2	2
8	1	2	2
9	2	2	2
A	2	2	2
В	2	3	3
С	2	3	3
D	3	3	3
E	3	2	2
F	3	3	3

<u>Пример:</u> значения массива Gchan 00 01 XX XX (XX - любое значение) для системы «Открытая» (код 0Ah) означают, что используются 1-й и 2-й каналы расхода;

- 5.5.4 Значения G_{max} (метрологические) хранятся <u>поканально</u>, т.е. в качестве индекса массива g_max необходимо брать не номер системы, а номер соответствующего канала расхода в системе;
- 5.5.5 Установленные в приборе значения $G_{\text{min.уст.}}$ и $G_{\text{max уст.}}$ вычисляются следующим образом:
 - $G_{\text{max.ycr.}}$ = G_{max} * $G_{\text{%max}}$ * 0.01, где $G_{\text{%max}}$ значение элемента массива g_{pcnt} _max для соответствующего канала расхода
 - G_{min.ycr.} = G_{max} * G_{%min} * 0.0005, где G_{%min} значение элемента массива g_pcnt_min для соответствующего канала расхода;
- 5.5.6 Значения диаметра условного прохода d_y <u>по каналам</u> хранятся в массиве diam; для импульсных каналов 3 и 4 значения d_y берутся напрямую из элементов массива diam; для частотных каналов 1 и 2 значения определяются следующим образом:

Значение соответствующе- го элемента массива diam	Фактическое значение d _y , мм
0	15
1	25
2	32
3	40
4	50
5	80
6	100
7	150

5.6 Расшифровка текущих показаний теплосчетчика

5.6.1 Дата и время хранятся в памяти часов реального времени в 00 (секунды) и заканчивая адресом 06 (день недели):

<u>Пример:</u> цепочка десятичных значений 33 15 14 02 03 17 04 расшифровывается как 14 ч. 15 мин. 33 сек. 2 марта 2017 года, четверг;

- 5.6.2 Значения интеграторов накопленной энергии Q, массы M и объема V рассчитываются как:
 - Q = Q_{H} + Q_{L} , где Q_{H} и Q_{L} значения элементов массивов h_intQ и l_intQ структуры SysInt для соответствующей системы;
 - $M = M_H + M_L$, где M_H и M_L значения элементов массивов h_intM и I intM структуры SysInt для соответствующего канала;
 - $V=V_H+V_L$, где V_H и V_L значения элементов массивов h_intV и l_intV структуры SysInt для соответствующего канала;

19

- 5.6.3 Значения температур и давлений для соответствующих каналов по системам берутся из структур SysPar из оперативной памяти.
- 5.6.4 Интеграторы времени наработки (в секундах), а также времен работы прибора в нештатном режиме хранятся <u>по системам</u> в массивах TNar, Tmin, Tmax, Tdt, Ttn структуры SysInt; интегратор общего времени работы прибора при включенном питании хранится в переменной TRab.

5.7 Расшифровка архива

5.7.1 Дата и время создания записи хранятся в UNIX timestamp, UTC, начиная со смещения 0000

Пример: 1507813753 - 12 октября 2017г. 13:09:13 GMT;

- 5.7.2 Дата и время, за которые производится запись, хранятся начиная со смещения 0004
- 5.7.3 Значения интеграторов накопленной энергии Q рассчитываются следующим образом:
 - $Q = Q_H + Q_L,$ где Q_H и Q_L значения элементов массивов

h_intQ и I_intQ для соответствующего канала.;

- 5.7.4 Значения интеграторов массы и объема вычисляются аналогично п. 5.2.3;
- 5.7.5 Значения температур и давлений для соответствующих каналов берутся из массивов t и р соответственно;
- 5.7.6 Значения интеграторов времен получают аналогично п. 5.2.5:
- 5.7.7 Ошибки <u>по системам</u> за текущий час получают путем анализа значений tekerr и teherr (расшифровка значений отдельных битов приведена в таблице).

Расшифровка бит tekerr

Бит	Ошибка
0	G1 < min
1	G2 < min
2	G3 < min
3	G1 > max
4	G2 > max
5	G3 > max
6	dt1 < min
7	dt2 < min

Расшифровка бит teherr

Бит	Ошибка
0	тех. неиспр канала расхода 1
1	тех. неиспр канала расхода 2
2	тех. неиспр канала расхода 3
3	тех. неиспр канала температуры 1
4	тех. неиспр канала температуры 2
5	тех. неиспр канала температуры 3
6	тех. неиспр канала давления 1
7	тех. неиспр канала давления 2
8	тех. неиспр канала давления 3
9	Отсутствует теплоноситель в ка-
	нале расхода 1
10	Отсутствует теплоноситель в ка-
	нале расхода 2
11	Отсутствует теплоноситель в ка-
	нале расхода 3
12	Ошибка возбуждения канала1
13	Ошибка возбуждения канала2
14	-
15	выключение питания

СООО «АРВАС» Республика Беларусь 223035 Минский район, п. Ратомка, ул. Парковая, 10 секретарь: тел./факс (017) 502-11-11, 502-11-55 отдел продаж: тел. (017) 502-11-89, тел./факс (017) 502-22-31

сервисный центр: г. Минск, ул. Матусевича, 33

диспетчер: тел. (017) 363-21-08 ремонт: тел. (017) 202-60-58

e-mail: arvas@open.by, web: http://www.arvas.by