Optimisation Stages Discussion

For the same set of data:

```
299
       1
               0
298
       2
               0
       4
296
               0
292
               0
284
       16
               0
                                  # handshakes = 10;
269
       31
               0
247
       50
                                  infectious period = 5;
               3
                                  initial # infected people = 1;
212
       79
               9
                                  total # people = 300.
       103
               25
172
122
       141
               37
89
               75
       136
65
       114
               121
51
       85
               164
47
       53
               200
43
       33
               224
41
       14
               245
41
               253
       6
       3
41
               256
41
       1
               258
41
       0
               259
```

Stage 1:

Treat β and γ as unknown parameters and solve for them to minimise the residuals.

Residual = 11446 $\beta = 1.0041$ $\gamma = 0.3267$

Stage 2:

Set $\gamma=Ae^{Bt}$, where A and B are unknowns, and $\beta=const$. Solve for β , A and B to minimise the residuals.

Residual = 344.6369

 $\beta = 0.7211$

 $\gamma = 0.0128e^{0.3065t}$

Stage 3:

Set $\beta=\frac{L}{1+e^{k(t-t_0)}}$ and $\gamma=const$. Solve for L,k,t_0 , and γ to minimise the residuals.

Residual = 9115
$$\beta = \frac{1.0078}{1 + e^{0.5476(t-13.4508)}} \qquad \gamma = 0.3182$$

Stage 4:

Set $\beta=\frac{L}{1+e^{k(t-t_0)}}$ and $\gamma=Ae^{Bt}$. Solve for $L,k,t_0,A,$ and B to minimise the residuals.

Residual = 287.8341

$$\beta = \frac{0.7265}{1 + e^{0.8729(t - 14.6384)}}$$

$$\gamma = 0.0145e^{0.2920t}$$

