

Pablo Barenbaum^{1,2}

- ¹ Universidad de Buenos Aires
- ² Universidad Nacional de Quilmes

Ongoing work with Federico Lochbaum and Mariana Milicich.

Table of Contents

Motivation

Technical challenges

Operational semantics

Denotational semantics

Future work

Logic programming

```
father(a, b).
father(b, c).

grandfather(A, B) :-
father(A, C),
father(C, B).

grandson(A, B) :-
grandfather(B, A).
```

Logic programming Functional logic programming (Curry, Mozart/OZ, ...) father(a, b). father A = Bfather(b, c). father B = Cgrandfather(A, B) :- grandfather = father . father father(A, C), father(C, B). grandson(A, B) :grandson = inverse grandfather grandfather(B, A). inverse: $(a \rightarrow b) \rightarrow b \rightarrow a$

inverse f b = ν a. ((f a $\stackrel{\bullet}{=}$ b) ; a)

Logic programming Functional logic programming (Curry, Mozart/OZ, ...) father(a, b). father A = Bfather(b, c). father B = Cgrandfather(A, B) :- grandfather = father . father father(A, C), father(C, B). grandson(A, B) :grandson = inverse grandfather grandfather(B, A). inverse: $(a \rightarrow b) \rightarrow b \rightarrow a$

inverse f b = ν a. ((f a $\stackrel{\bullet}{=}$ b) : a)

Inversible programs — e.g. parser \leftrightarrow pretty printer.

λ -calculus

$$\begin{array}{cccc} t & ::= & x \\ & \mid & \lambda x.\,t \\ & \mid & t\,t \end{array}$$

miniKanren

$$G ::= T \stackrel{\bullet}{=} T$$

$$\mid R(T_1, \dots, T_n)$$

$$\mid G ; G$$

$$\mid G \boxplus G$$

$$\mid \nu x . G$$

(T, T₁, . . . are terms of a first-order language)

λ -calculus

$$\begin{array}{cccc} t & ::= & x \\ & \mid & \lambda x.\,t \\ & \mid & t\,t \end{array}$$

miniKanren

$$G ::= T \stackrel{\bullet}{=} T$$

$$\mid R(T_1, \dots, T_n)$$

$$\mid G ; G$$

$$\mid G \boxplus G$$

$$\mid \nu x . G$$

 $(T, T_1, \ldots$ are terms of a first-order language)

Related work

- ► Hanus et al. (2005)

 Operational Semantics for Declarative Multi-Paradigm Languages
- ► Rozplokhas, Vyatkin, Boulytchev (2019) Certified Semantics for miniKanren
- ► Lambda-calculi with stochastic/erratic choice.

Table of Contents

Motivation

Technical challenges

Operational semantics

Denotational semantics

Future work

Our first approach

Our first approach

For example, if
$$M \stackrel{\text{def}}{=} \lambda x. \nu y. \left(\left(\left(x \stackrel{\bullet}{=} \mathbf{c} y \right) ; y \right) \boxplus \left(\left(x \stackrel{\bullet}{=} \mathbf{d} \right) ; x \right) \right)$$
:
$$M(\mathbf{c} \mathbf{e}) \longrightarrow \nu y. \left(\left(\left(\mathbf{c} \mathbf{e} \stackrel{\bullet}{=} \mathbf{c} y \right) ; y \right) \boxplus \left(\left(\mathbf{c} \mathbf{e} \stackrel{\bullet}{=} \mathbf{d} \right) ; x \right) \right)$$

$$\longrightarrow \left(\left(\mathbf{c} \mathbf{e} \stackrel{\bullet}{=} \mathbf{c} y \right) ; y \right) \boxplus \left(\left(\mathbf{c} \mathbf{e} \stackrel{\bullet}{=} \mathbf{d} \right) ; x \right)$$

$$\longrightarrow \left(\mathbf{o} \mathbf{k} ; \mathbf{e} \right) \boxplus \left(\left(\mathbf{c} \mathbf{e} \stackrel{\bullet}{=} \mathbf{d} \right) ; x \right)$$

$$\longrightarrow \mathbf{e} \boxplus \left(\left(\mathbf{c} \mathbf{e} \stackrel{\bullet}{=} \mathbf{d} \right) ; x \right)$$

$$\longrightarrow \mathbf{e} \boxplus \text{FAIL}$$

$$\longrightarrow \mathbf{e}$$

Fresh variables should be local to "threads" delimited by \boxplus

$$\nu x. \left(\left(\left(\left(x \stackrel{\bullet}{=} \mathbf{c} \right) ; x \right) \boxplus \left(\left(x \stackrel{\bullet}{=} \mathbf{d} \right) ; x \right) \right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

Commutative conversions are needed to unblock redexes

$$(t \boxplus \lambda x. s) u \longrightarrow (t u) \boxplus ((\lambda x. s) u)$$

Commutative conversions are needed to unblock redexes

$$(t \boxplus \lambda x. s) u \longrightarrow (t u) \boxplus ((\lambda x. s) u)$$

...so we must work up to associativity and commutativity of \boxplus

Non-deterministic choice is an effect (not a value)

Non-deterministic choice is an effect (not a value)

It does not commute with abstraction

$$(\lambda x. t) \boxplus (\lambda x. s) \not\equiv \lambda x. (t \boxplus s)$$

$$(\lambda f. (f \text{ ok}) (f \text{ ok}))((\lambda x. c) \boxplus (\lambda x. d)) \quad \twoheadrightarrow \quad c c \boxplus d d$$

$$(\lambda f. (f \text{ ok}) (f \text{ ok}))(\lambda x. (c \boxplus d)) \quad \twoheadrightarrow \quad c c \boxplus c d \boxplus d c \boxplus d d$$

Unification should only be performed under weak contexts Let $F \stackrel{\text{def}}{=} \lambda y$. $((y \stackrel{\bullet}{=} x); x)$.

If we allow reduction under lambdas, $F \rightarrow \lambda y$. (ok; y).

We cannot solve higher-order unification

$$\nu f. ((f\mathbf{c} \stackrel{\bullet}{=} \mathbf{c}); f) \longrightarrow ?$$

- ► There are no most general unifiers.
- ► Higher-order unification is undecidable.

We cannot solve higher-order unification

$$\nu f.((f\mathbf{c} \stackrel{\bullet}{=} \mathbf{c}); f) \longrightarrow ?$$

- ► There are no most general unifiers.
- ► Higher-order unification is undecidable.

...but we do want to pattern match against functions

$$(\mathbf{c}x \stackrel{\bullet}{=} \mathbf{c}(\lambda y. y)); (x \stackrel{\bullet}{=} x) \longrightarrow (\lambda y. y) \stackrel{\bullet}{=} (\lambda y. y) \longrightarrow \mathbf{ok}$$

Comparing functions by syntactic equality breaks confluence

Table of Contents

Motivation

Technical challenges

Operational semantics

Denotational semantics

Future work

The λ^{U} -calculus

Programs are of the form $P = t_1 \oplus \ldots \oplus t_n$.

$$\text{FAIL} \stackrel{\text{def}}{=} (\lambda x. \, \mathbf{fail}) \, \mathbf{ok} \qquad (t \boxplus s) \stackrel{\text{def}}{=} (\lambda x. \, t \oplus s) \, \mathbf{ok}$$

Invariant

Two abstractions with the same location are equal.

The λ^{U} -calculus

Usual operation to plug a term into a context:

$$W\langle t \rangle$$

Plus an operation to plug a program into a context:

$$W\langle t_1 \oplus \ldots \oplus t_n \rangle \stackrel{\text{def}}{=} W\langle t_1 \rangle \oplus \ldots \oplus W\langle t_n \rangle$$

$$P_1 \oplus \mathsf{W}\langle \lambda x. \, Q \rangle \oplus P_2 \quad \stackrel{\mathtt{alloc}}{\longrightarrow} \quad P_1 \oplus \mathsf{W}\langle \lambda^\ell x. \, Q \rangle \oplus P_2 \qquad \qquad \ell \; \mathsf{fresh}$$

$$\begin{array}{cccc} P_1 \oplus \mathsf{W}\langle \lambda x.\, Q \rangle \oplus P_2 & \xrightarrow{\mathtt{alloc}} & P_1 \oplus \mathsf{W}\langle \lambda^\ell x.\, Q \rangle \oplus P_2 & \ell \text{ fresh} \\ \\ P_1 \oplus \mathsf{W}\langle (\lambda^\ell x.\, Q)\, \mathtt{v} \rangle \oplus P_2 & \xrightarrow{\mathtt{beta}} & P_1 \oplus \mathsf{W}\langle Q\{x := \mathtt{v}\} \rangle \oplus P_2 \end{array}$$

$$\begin{array}{cccc} P_1 \oplus \mathsf{W}\langle \lambda x.\, Q \rangle \oplus P_2 & \xrightarrow{\mathtt{alloc}} & P_1 \oplus \mathsf{W}\langle \lambda^\ell x.\, Q \rangle \oplus P_2 & \ell \text{ fresh} \\ \\ P_1 \oplus \mathsf{W}\langle (\lambda^\ell x.\, Q)\, \mathtt{v} \rangle \oplus P_2 & \xrightarrow{\mathtt{beta}} & P_1 \oplus \mathsf{W}\langle Q\{x:=\mathtt{v}\}\rangle \oplus P_2 \\ \\ & P_1 \oplus \mathsf{W}\langle \mathtt{v}\, ;\, t \rangle \oplus P_2 & \xrightarrow{\mathtt{seq}} & P_1 \oplus \mathsf{W}\langle t \rangle \oplus P_2 \end{array}$$

$$\begin{array}{cccc} P_1 \oplus \mathbb{W}\langle \lambda x. \ Q \rangle \oplus P_2 & \xrightarrow{\mathtt{alloc}} & P_1 \oplus \mathbb{W}\langle \lambda^\ell x. \ Q \rangle \oplus P_2 & \ell \text{ fresh} \\ \\ P_1 \oplus \mathbb{W}\langle (\lambda^\ell x. \ Q) \ \mathtt{v} \rangle \oplus P_2 & \xrightarrow{\mathtt{beta}} & P_1 \oplus \mathbb{W}\langle Q\{x := \mathtt{v}\} \rangle \oplus P_2 \\ \\ P_1 \oplus \mathbb{W}\langle \mathtt{v} \ ; \ t \rangle \oplus P_2 & \xrightarrow{\mathtt{seq}} & P_1 \oplus \mathbb{W}\langle t \rangle \oplus P_2 \\ \\ P_1 \oplus \mathbb{W}\langle \nu x. \ t \rangle \oplus P_2 & \xrightarrow{\mathtt{fresh}} & P_1 \oplus \mathbb{W}\langle t \{x := y\} \rangle \oplus P_2 & y \text{ fresh} \end{array}$$

$$\begin{array}{cccc} P_1 \oplus \mathsf{W}\langle \lambda x. \, Q \rangle \oplus P_2 & \xrightarrow{\mathtt{alloc}} & P_1 \oplus \mathsf{W}\langle \lambda^\ell x. \, Q \rangle \oplus P_2 & \ell \text{ fresh} \\ \\ P_1 \oplus \mathsf{W}\langle (\lambda^\ell x. \, Q) \, \mathtt{v} \rangle \oplus P_2 & \xrightarrow{\mathtt{beta}} & P_1 \oplus \mathsf{W}\langle Q\{x := \mathtt{v}\} \rangle \oplus P_2 \\ \\ P_1 \oplus \mathsf{W}\langle \mathtt{v} \; ; \; t \rangle \oplus P_2 & \xrightarrow{\mathtt{seq}} & P_1 \oplus \mathsf{W}\langle t \rangle \oplus P_2 \\ \\ P_1 \oplus \mathsf{W}\langle \nu x. \; t \rangle \oplus P_2 & \xrightarrow{\mathtt{fresh}} & P_1 \oplus \mathsf{W}\langle t \{x := y\} \rangle \oplus P_2 & y \text{ fresh} \\ \\ P_1 \oplus \mathsf{W}\langle \mathtt{v} \overset{\bullet}{=} \mathtt{w} \rangle \oplus P_2 & \xrightarrow{\mathtt{unif}} & P_1 \oplus \mathsf{W}\langle \mathtt{ok} \rangle^\sigma \oplus P_2 \\ \\ & \sigma = \mathsf{mgu}(\{\mathtt{v} \overset{\bullet}{=} \mathtt{w}\}) \end{array}$$

Unification

The most general unifier:

$$mgu(\{v_1 \stackrel{\bullet}{=} w_1, \ldots, v_n \stackrel{\bullet}{=} w_n\})$$

can be computed as usual, with a few tweaks on the algorithm:

$$\{\lambda^{\ell} x. P \stackrel{\bullet}{=} \lambda^{\ell'} y. Q\} \uplus G \quad \leadsto \quad \begin{cases} G & \text{if } \ell = \ell' \\ \text{fails} & \text{otherwise} \end{cases}$$

If mgu(G) succeeds, it is an idempotent most general unifier for G.

Example

```
father \stackrel{\text{def}}{=} \lambda x. ((x \stackrel{\bullet}{=} \mathbf{a}; \mathbf{b}) \oplus (x \stackrel{\bullet}{=} \mathbf{b}; \mathbf{c}))
grandfather \stackrel{\text{def}}{=} \lambda x. father (father x)

    \text{grandson} \stackrel{\text{def}}{=} \text{inverse grandfather}

            inverse \stackrel{\text{def}}{=} \lambda f. \lambda v. \nu x. (f x \stackrel{\bullet}{=} v : x)
 grandson \mathbf{c} \rightarrow \nu x. ((\text{grandfather } x \stackrel{\bullet}{=} \mathbf{c}); x)
                                    \rightarrow (father (father x) \stackrel{\bullet}{=} c); x
                                    \rightarrow (((father x \stackrel{\bullet}{=} a); b) \stackrel{\bullet}{=} c); x
                                     \oplus (((father x \stackrel{\bullet}{=} \mathbf{b}) ; \mathbf{c}) \stackrel{\bullet}{=} \mathbf{c}) ; x
                                    \rightarrow ((((x \stackrel{\bullet}{=} a ; b) \stackrel{\bullet}{=} a) ; b) \stackrel{\bullet}{=} c) ; x
                                     \oplus ((((x \stackrel{\bullet}{=} b ; c) \stackrel{\bullet}{=} a); b) \stackrel{\bullet}{=} c); x
                                     \oplus ((((x \stackrel{\bullet}{=} a ; b) \stackrel{\bullet}{=} b); c) \stackrel{\bullet}{=} c): x
                                     \oplus ((((x \stackrel{\bullet}{=} \mathbf{b} : \mathbf{c}) \stackrel{\bullet}{=} \mathbf{b}); \mathbf{c}) \stackrel{\bullet}{=} \mathbf{c}); x
```

Example

Type inference algorithm for the simply-typed λ -calculus:

```
\mathbb{W}[x] \stackrel{\text{def}}{=} a_{x}
\mathbb{W}[\lambda x. t] \stackrel{\text{def}}{=} \nu a_{x}. \operatorname{\mathbf{fun}} a_{x} \mathbb{W}[t]
\mathbb{W}[t s] \stackrel{\text{def}}{=} \nu a. ((\mathbb{W}[t] \stackrel{\bullet}{=} \operatorname{\mathbf{fun}} \mathbb{W}[s] a); a)
\mathbb{W}[\lambda x. \lambda y. yx] = \nu a. \operatorname{\mathbf{fun}} a(\nu b. \operatorname{\mathbf{fun}} b(\nu c. (b \stackrel{\bullet}{=} \operatorname{\mathbf{fun}} ac); c))
\to \operatorname{\mathbf{fun}} a(\operatorname{\mathbf{fun}} (\operatorname{\mathbf{fun}} ac) c)
```

Example

Dynamic patterns:

$$(\lambda c. \lambda x. \nu y. (x \stackrel{\bullet}{=} (c y)); y) \mathbf{d} (\mathbf{d} c)$$
 $\rightarrow \nu y. ((\mathbf{d} c) \stackrel{\bullet}{=} (\mathbf{d} y)); y$
 $\rightarrow c$

Structural equivalence

Structural equivalence (between toplevel programs)

Reflexive, symmetric, and transitive closure of:

$$P \oplus t \oplus s \oplus Q \equiv P \oplus s \oplus t \oplus Q$$

$$P \oplus t \oplus Q \equiv P \oplus t\{x := y\} \oplus Q \text{ if } y \notin fv(t)$$

$$P \oplus t \oplus Q \equiv P \oplus t\{\ell := \ell'\} \oplus Q \text{ if } \ell' \notin locs(t)$$

Structural equivalence

Structural equivalence (between toplevel programs)

Reflexive, symmetric, and transitive closure of:

$$P \oplus t \oplus s \oplus Q \equiv P \oplus s \oplus t \oplus Q$$

$$P \oplus t \oplus Q \equiv P \oplus t\{x := y\} \oplus Q \text{ if } y \notin fv(t)$$

$$P \oplus t \oplus Q \equiv P \oplus t\{\ell := \ell'\} \oplus Q \text{ if } \ell' \notin locs(t)$$

Lemma

 \equiv is a strong bisimulation with respect to $\stackrel{\mathtt{r}}{ o}$ for each reduction rule \mathtt{r} .

Confluence

Theorem

The λ^{U} -calculus is confluent up to \equiv .

Confluence

Theorem

The λ^{U} -calculus is confluent up to \equiv .

Example

$$(\mathbf{c}x \stackrel{\bullet}{=} \mathbf{c}(\lambda y.y)) ; (x \stackrel{\bullet}{=} x) ; x \longrightarrow (\mathbf{c}x \stackrel{\bullet}{=} \mathbf{c}(\lambda y.y)) ; \mathbf{ok} ; x$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Confluence

Another example

The equivalence relies on the fact that:

$$\tau' \circ \sigma$$
 and $\sigma' \circ \tau$ are both most general unifiers of $\{\{v_1 \stackrel{\bullet}{=} v_2, w_1 \stackrel{\bullet}{=} w_2\}\}$

hence $\tau' \circ \sigma \equiv \sigma' \circ \tau$, up to renaming.

Proof of confluence

Simultaneous reduction $t \stackrel{\mathsf{G}}{\Rightarrow} P$ collects all the unification goals G .

$$\frac{t \xrightarrow{G_1} \bigoplus_{i=1}^n t_i \quad s \xrightarrow{G_2} \bigoplus_{j=1}^m s_j}{t s \xrightarrow{G_1 \cup G_2} \bigoplus_{i=1}^n \bigoplus_{j=1}^m t_i s_j} \quad v \xrightarrow{\bullet} \mathbf{w} \xrightarrow{\{v \xrightarrow{\bullet} \mathbf{w}\}} \mathbf{ok}$$

Moreover:

$$\frac{t_i \stackrel{\mathsf{G}_i}{\Longrightarrow} P_i \quad Q_i := \begin{cases} P_i^{\sigma} & \text{if } \sigma = \mathsf{mgu}(\mathsf{G}_i) \\ \mathsf{fail} & \text{if } \mathsf{mgu}(\mathsf{G}_i) \text{ fails} \end{cases}}{\bigoplus_{i=1}^n t_i \Rightarrow \bigoplus_{j=1}^n Q_j} \text{ for each } i = 1..n$$

Proof of confluence

Key lemma If $t \stackrel{G}{\Longrightarrow} P$ then $t^{\sigma} \stackrel{G^{\sigma}}{\Longrightarrow} P^{\sigma}$.

Tait-Martin-Löf's technique, up to ≡

- $1. \rightarrow \subseteq \Rightarrow \equiv$
- $2. \ \Rightarrow \, \subseteq \, \to^* \equiv$
- 3. \Rightarrow has the diamond property, up to \equiv .

Normal forms

Normal programs

$$P^* ::= \bigoplus_{i=1}^n t_i^*$$

Normal terms

$$t^* ::= v \mid S$$

Stuck terms

$$\begin{array}{lll} S & ::= & \times t_1^\star \dots t_n^\star & n > 0 \\ & \mid & \mathbf{c} \ t_1^\star \dots t_n^\star & \text{if} \ t_i^\star \ \text{stuck for some} \ i = 1..n \\ & \mid & (t_1^\star \ ; \ t_2^\star) \ s_1^\star \dots s_n^\star & \text{if} \ t_1^\star \ \text{stuck} \\ & \mid & (t_1^\star \ \stackrel{\bullet}{=} \ t_2^\star) \ s_1^\star \dots s_n^\star & \text{if} \ t_i^\star \ \text{stuck for some} \ i = 1..2 \\ & \mid & (\lambda^\ell \times . \ P) \ t^\star \ s_1^\star \dots s_n^\star & \text{if} \ t^\star \ \text{stuck} \end{array}$$

Proposition

Normal forms of \rightsquigarrow are given exactly by the grammar P^* .

Example

$$f \mathbf{c} \stackrel{\bullet}{=} \mathbf{c}$$

Type system

Providing a system of **simple types** is straightforward.

The rule for νx . t is logically unsound.

$$\frac{\Gamma, x : B \vdash t : A}{\Gamma \vdash \nu x. \ t : A}$$

(Weak) subject reduction

- ▶ If $\Gamma \vdash P : A$ and $P \xrightarrow{\neg fresh} Q$ then $\Gamma \vdash Q : A$.
- ▶ If $\Gamma \vdash P : A$ and $P \xrightarrow{\text{fresh}(x)} Q$ then $\Gamma, x : B \vdash Q : A$ for some B.

Normalization (?)

We have **not** been able to prove **strong normalization** for the simply typed variant of $\lambda^{\rm U}$ using:

- ► Reducibility candidates (Tait/Girard)
- ▶ Decreasing degrees of created redexes (Turing, Prawitz, ...)
- ► Increasing functionals (de Vrijer)
- ► Stratified regions (Amadio)

Types of constructors should verify a positivity condition.

E.g. if $\mathbf{c}: (A \to A) \to A$ we can type a non-terminating term:

$$\omega \stackrel{\text{def}}{=} \lambda x^{A} \cdot \nu y^{A \to A} \cdot (\mathbf{c} y \stackrel{\bullet}{=} x ; y x)$$
$$\omega(\mathbf{c} \omega) \to^{+} \omega(\mathbf{c} \omega)$$

Table of Contents

Motivation

Technical challenges

Operational semantics

Denotational semantics

Future work

A naive denotational semantics

A naive denotational semantics

```
Correctness If P \to Q then [\![P]\!] = [\![Q]\!].
```

(Work in progress)

Table of Contents

Motivation

Technical challenges

Operational semantics

Denotational semantics

Future work

Future work

Translation from a pattern calculus (e.g. PPC) $\star\star$ Extend with new constructs (e.g. " $\forall (P)$ ") $\star\star\star$ Evaluation strategies / abstract machines $\star\star\star$ Richer type systems (e.g. instantiation patterns) $\star\star\star\star$ Strong normalization $\star\star\star\star$

"Truly frightening"