Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 9 Notes

These notes correspond to Section 2.2 in the text.

Fixed-point Iteration

A nonlinear equation of the form f(x) = 0 can be rewritten to obtain an equation of the form

$$g(x) = x$$

in which case the solution is a fixed point of the function g. This formulation of the original problem f(x) = 0 will leads to a simple solution method known as fixed-point iteration. Before we describe this method, however, we must first discuss the questions of existence and uniqueness of a solution to the modified problem g(x) = x. The following result answers these questions.

Theorem Let g be a continuous function on the interval [a,b]. If $g(x) \in [a,b]$ for each $x \in [a,b]$, then g has a fixed point in [a,b]. Furthermore, if g is differentiable on (a,b) and there exists a constant k < 1 such that

$$|g'(x)| \le k, \quad x \in (a, b),$$

then g has exactly one fixed point in [a, b].

Given a continuous function g that is known to have a fixed point in an interval [a, b], we can try to find this fixed point by repeatedly evaluating g at points in [a, b] until we find a point x for which g(x) = x. This is the essence of the method of fixed-point iteration, the implementation of which we now describe.

Algorithm (Fixed-Point Iteration) Let g be a continuous function defined on the interval [a, b]. The following algorithm computes a number $x^* \in (a, b)$ that is a solution to the equation g(x) = x.

```
Choose an initial guess x_0 in [a,b].

for k=0,1,2,\ldots do

x_{k+1}=g(x_k)

if |x_{k+1}-x_k| is sufficiently small then

x^*=x_{k+1}

return x^*

end

end
```

Under what circumstances will fixed-point iteration converge to the exact solution x^* ? If we denote the error in x_k by $e_k = x_k - x^*$, we can see from Taylor's Theorem and the fact that $g(x^*) = x^*$ that $e_{k+1} \approx g'(x^*)e_k$. Therefore, if $|g'(x^*)| \leq k$, where k < 1, then fixed-point iteration is *locally convergent*; that is, it converges if x_0 is chosen sufficiently close to x^* . This leads to the following result.

Theorem (Fixed-Point Theorem) Let g be a continuous function on the interval [a,b]. If $g(x) \in [a,b]$ for each $x \in [a,b]$, and if there exists a constant k < 1 such that

$$|g'(x)| \le k, \quad x \in (a, b),$$

then the sequence of iterates $\{x_k\}_{k=0}^{\infty}$ converges to the unique fixed point x^* of g in [a,b], for any initial guess $x_0 \in [a,b]$.

It can be seen from the preceding discussion why g'(x) must be bounded away from 1 on (a, b), as opposed to the weaker condition |g'(x)| < 1 on (a, b). If g'(x) is allowed to approach 1 as x approaches a point $c \in (a, b)$, then it is possible that the error e_k might not approach zero as k increases, in which case fixed-point iteration would not converge.

In general, when fixed-point iteration converges, it does so at a rate that varies inversely with the constant k that bounds |g'(x)|. In the extreme case where derivatives of g are equal to zero at the solution x^* , the method can converge much more rapidly. We will discuss convergence behavior of various methods for solving nonlinear equations in a later lecture.

Often, there are many ways to convert an equation of the form f(x) = 0 to one of the form g(x) = x, the simplest being $g(x) = x - \phi(x)f(x)$ for any function ϕ . However, it is important to ensure that the conversion yields a function g for which fixed-point iteration will converge.

Example We use fixed-point iteration to compute a fixed point of $g(x) = \cos x$ in the interval [0,1]. Since $|\cos x| \le 1$ for all x, and $\cos x \ge 0$ on $[0,\pi/2]$, and $\pi/2 > 1$, we know that $\cos x$ maps [0,1] into [0,1]. Since $\cos x$ is continuous for all x, we can conclude that $\cos x$ has a fixed point in [0,1]. Because $g'(x) = -\sin x$, and $|-\sin x| \le |-\sin 1| < 1$ on [0,1], we can also conclude that this fixed point is unique.

To use fixed-point iteration, we first choose an initial guess x_0 in [0,1]. As discussed above, fixed-point iteration will converge for any initial guess, so we choose $x_0 = 0.5$. The table on page 4 shows the outcome of several iterations, in which we compute $x_{k+1} = \cos x_k$ for $k = 0, 1, 2, \ldots$ As the table shows, it takes nearly 30 iterations to obtain the fixed point to five decimal places, and there is considerable oscillation in the first iterations before a reasonable approximate solution is obtained. This oscillation is shown in Figure 1.

As x_k converges, it can be seen from the table that the error is reduced by a factor of roughly 2/3 from iteration to iteration. In other words, fixed-point iteration, in this case, converges even more slowly than the bisection method. This suggests that $\cos x$ is a relatively poor choice for the iteration function g(x) to solve the equation $g(x) = \cos x$. \square

Figure 1: Fixed-point iteration applied to the equation $\cos x = x$, with $x_0 = 0.5$.

k	x_k	$g(x_k)$
0	0.500000000000000	0.87758256189037
1	0.87758256189037	0.63901249416526
2	0.63901249416526	0.80268510068233
3	0.80268510068233	0.69477802678801
4	0.69477802678801	0.76819583128202
5	0.76819583128202	0.71916544594242
6	0.71916544594242	0.75235575942153
7	0.75235575942153	0.73008106313782
8	0.73008106313782	0.74512034135144
9	0.74512034135144	0.73500630901484
10	0.73500630901484	0.74182652264325
11	0.74182652264325	0.73723572544223
12	0.73723572544223	0.74032965187826
13	0.74032965187826	0.73824623833223
14	0.73824623833223	0.73964996276966
15	0.73964996276966	0.73870453935698
16	0.73870453935698	0.73934145228121
17	0.73934145228121	0.73891244933210
18	0.73891244933210	0.73920144413580
19	0.73920144413580	0.73900677978081
20	0.73900677978081	0.73913791076229
21	0.73913791076229	0.73904958059521
22	0.73904958059521	0.73910908142053
23	0.73910908142053	0.73906900120401
24	0.73906900120401	0.73909599983575
25	0.73909599983575	0.73907781328518
26	0.73907781328518	0.73909006398825
27	0.73909006398825	0.73908181177811
28	0.73908181177811	0.73908737057104
29	0.73908737057104	0.73908362610348
30	0.73908362610348	0.73908614842288