1100CST301122204

		1/2	13%		The same	15/
Reg No.:	Name:	×	E K		X	B
	APJ ABDUL KALAM TECHNOLOGICAL UNIVE	RŞI	TY	STON	Jes Se	12
B.Tech	Degree S5 (R, S) / S5 (PT) (R, S) Examination December 2	023	(2019	Scheme)	E)	7
		11	5 T	413086	/ 1	+ //

Course Code: CST 301

Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY

Ma	x. M	Jarks: 100 Duration: 3	Hours
		PART A	
		(Answer all questions; each question carries 3 marks)	Marks
1		Draw transition diagram for NFA (without ϵ -moves) for strings starting with '10'	3
		or '11'. $\Sigma = \{0,1\}$.	
2		Design a DFA for strings in which fist and last letters do not match. $\Sigma = \{a, b\}$.	3
3	Give a regular expression for the set of all strings not containing 101 as a		3
		Substring.	
4		State the closure properties of regular language.	3
5		Explain with the help of example ambiguous grammar.	3
6		Write CFG equivalent to the regular expression $0*1(0+1)*+1$.	3
7		What are the conditions required for push down automata to qualify as	3
,		deterministic push down automata?	
8		Can we construct a DPDA for the language wwr? Justify your answer.	3
9		Differentiate Recursive and Recursively Enumerable Languages.	3
10		Design a TM to find the 1's complement of a binary number.	3
٧	r.	PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Construct an $\varepsilon\textsc{-NFA}$ for the language $L=\{0^n1^m2^p\:/\:n,m,p\ge 0\}$ and convert it into	8
		equivalent DFA.	
	b)	Design a DFA for strings in which number of a's is multiple of 3 and number of	6
		b's is multiple of 2. $\Sigma = \{a, b\}.$	
12	a)	Draw the state-transition diagram showing an NFA N for the following language	7

1100CST301122204

L. Obtain the DFA D equivalent to N by applying the subset construction algorithm.

 $L = \{x \in \{a, b\} * | x \text{ contains 'bab' as a substring}\}.$

b) Construct a regular grammar for L= $\{0^n \ 11|\ n\ge 1\}$. Construct deterministic finite 7 automata for the same.

Module -2

7

7

a) Find the Regular Expression for the following DFA

b) Obtain the minimum state DFA from the following DFA

7 a, b

- 14 a) Develop equivalent automata for the R.E. (ab + b)*(a+bb)*a*. 7
 - Using Pumping Lemma for regular language prove that the language L= 0ⁿ |n is 7 perfect square} is not regular.

Module -3

- State Myhill- Nerode Theorem. Prove the language L={anbn,where n>=1 is not 15 a) 7 Regular using Myhill-Nerode Theorem.
 - b) Convert the grammar $\{S \rightarrow AaCb / ABa, A \rightarrow bAa / a, B \rightarrow BaB / b, C \rightarrow c\}$ to CNF
- 16 Convert the Context-Free Grammar with productions: 7 $\{S \rightarrow aSb|\epsilon\}$ into Greibach Normal form.
 - b) Convert the Context-Free Grammar with productions: 7 $\{S \rightarrow aSa|bSb|SS|\epsilon\}$ into Chomsky Normal form.

Module -4

- Design a PDA for the language L= { $WW^r | W \in \{a,b\}^*$ }. Also illustrate the 7 computation of the PDA on the string 'aabbaa'.
 - b) State Equivalence theorem between empty stack PDA and Final State PDA. 7
- Design a PDA for strings in which number of a's is less than number of b's.

1100CST301122204

	b)	Using Pumping lemma prove the given language is not context free.	7
		$L=\{a^nb^{2n}c^n \text{where }n>=1\}.$	
		Module -5	
19	a)	Define formally Type 0, Type 1, Type 2 and Type 3 grammar. Show the	7
		corresponding automata for each class	
	b)	Design a TM to find the sum of two numbers m and n. Assume that initially the tape	7
•		contains m number of 0s followed by # followed by n number of 0s	
20	a)	Design a Liner Bounded Automata for the language $L=a^nb^nc^n \mid n>=1$	7
	b)	Prove that 'Turing Machine halting problem' is undecidable.	7
		[경영화 : 10 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Ktunotes.in