BAB 8 Usaha dan Energi

$$P = \frac{W}{t} = \frac{Fs}{t} = Fv$$

dengan

W = usaha(J),

t = waktu (s), dan

P = daya (J/s, watt, kilowatt).

Uji Kompetensi

- A. Pilihlah satu jawaban yang paling tepat dengan memberi tanda silang (X) pada salah satu huruf a, b, c, d, atau e.
- 1. Satuan berikut yang bukan merupakan satuan energi adalah
 - a. joule
- d. newton meter
- b. erg
- e. watt
- c. kwh
- 2. Dimensi dari usaha adalah
 - a. $[M[L]^{-2}[T]^2$
- d. $[M[L]^2[T]^{-3}$
- b. [M[L][T]⁻³
- e. $[M[L]^2[T]^{-2}$
- c. $[M[L][T]^{-2}$
- Benda bermassa 5 kg dipindahkan ke atas melalui bidang miring licin sepanjang 10 m dan tinggi 7 m seperti gambar berikut.

Usaha yang diperlukan untuk memindahkan benda adalah

- a. 175 J
- d. 425 J
- b. 200 J
- e. 600 J
- c. 350 J
- 4. Besar usaha untuk menggerakkan mobil bermassa 2 ton dari keadaan diam hingga bergerak dengan kecepatan 72 km/jam jika jalan licin adalah
 - a. $1,25 \times 10^4 \text{ J}$
 - b. $2.5 \times 10^4 \text{ J}$
 - c. $4 \times 10^5 \text{ J}$
 - d. $6.25 \times 10^5 \text{ J}$
 - e. 4×10^6 J

 Benda bermasssa 5 kg diberi gaya vertikal ke atas 75 N, selama 4 s seperti gambar berikut.

Besar usaha yang dilakukan gaya jika benda mula-mula diam adalah

- a. 3.000 J
- d. 1.000 J
- b. 2.000 J
- e. 375 J
- c. 1.500 J
- Jika kecepatan sebuah benda dijadikan
 kali semula, besar energi kinetiknya •
 menjadi . . . kali semula.
 - a. 4
- d. $\frac{1}{2}$
- b. 2
- e. $\frac{1}{4}$
- c. 1
- Sebuah balok ditahan di puncak bidang miring seperti gambar berikut.

Ketika dilepas, balok meluncur tanpa gesekan sepanjang bidang miring. Besar energi kinetik ketika balok tiba di dasar bidang miring adalah (massa balok

- = 1 kg
- a. 50 J
- d. 12,5 J
- b. 37,5 J
- e. 6,25 J
- c. 25 J

8. Sebuah meja bermassa 10 kg mulamula diam di atas lantai licin, kemudian didorong selama 3 s sehingga bergerak lurus dengan percepatan 2 m/s². Besar usaha yang terjadi adalah

a. 20 J

d. 180 J

b. 30 J

e. 360 J

c. 60 J

 Sebuah bola bermassa 1 kg dilempar dari tanah vertikal ke atas dengan kecepatan 12 m/s. Besar energi kinetik yang dialami bola pada ketinggian 5 m dari tanah adalah

a. 122 J

d. 22 J

b. 71 J

e. 20 J

c. 50 J

10. Sebuah balok bermassa *m* dilepaskan dari puncak bidang miring yang licin seperti gambar berikut.

Perbandingan energi potensial dan energi kinetik ketika balok berada di titik A adalah

a. EP : EK = 1 : 2

b. EP : EK = 1 : 3

c. EP : EK = 2 : 1

d. EP : EK = 2 : 3

e. EP : EK = 3 : 2

11. Sebuah bola bermassa 0,1 kg dilempar mendatar dengan kecepatan 6 m/s dari atap gedung setinggi 5 m. Jika $g = 10 \text{ m/s}^2$, besar energi kinetik bola pada ketinggian 2 m adalah

a. 6,8 J

d. 3 J

b. 4,8 J

e. 2 J

c. 3,8 J

12. Sebuah mobil bermassa 2.000 kg bergerak dengan kecepatan 25 m/s dalam arah horizontal. Tiba-tiba pengemudi mengurangi kecepatan mobil menjadi 10 m/s. Usaha yang dilakukan pengemudi selama proses tersebut adalah

a. $1,025 \times 10^5 \text{ J}$ d.

d. $6,25 \times 10^5 \text{ J}$

b. $1,225 \times 10^5 \text{ J}$ e. $7,25 \times 10^5 \text{ J}$

c. $5,25 \times 10^5 \text{ J}$

13. Sebuah benda bermassa 5 kg mula-mula diam, kemudian bergerak lurus dengan percepatan 3 m/s². Besar usaha yang diubah menjadi energi kinetik selama 2 s adalah

a. 15 J

d. 60 J

b. 30 J

e. 90 J

c. 45 J

14. Sebuah benda bermassa 500 g jatuh bebas dari ketinggian 100 m di atas tanah. Besar energi kinetik benda pada ketinggian 50 m di atas tanah adalah

a. 250 J

d. 1.000 J

b. 500 J

e. 1.500 J

c. 750 J

15. Sebuah palu bermassa 2 kg digunakan untuk menghantam sebuah paku dengan kecepatan 10 m/s pada sebuah balok kayu. Ternyata paku masuk ke dalam balok sedalam 0,5 m. Besar gaya yang dilakukan oleh palu adalah

a. 1.000 N

d. 50 N

b. 200 N

e. 20 N

c. 100 N

16. Bola yang bermassa 600 g dilemparkan vertikal ke atas dengan kecepatan awal 30 m/s. Saat mencapai titik tertinggi, besar energi potensial bola adalah

a. 120 J

d. 540 J

b. 240 J

e. 780 J

c. 270 J

17. Sebuah benda bermassa 100 g jatuh bebas dari ketinggian 20 m. Energi kinetik benda saat mencapai ketinggian 5 m dari permukaan tanah adalah

a. 5 J

d. 500 J

b. 15 J

e. 1.500 J

c. 20 J

18. Jika anda bersepeda menuruni bukit tanpa mengayuh dengan besar kecepatan tetap, terjadi perubahan energi dari

a. kinetik menjadi potensial

b. potensial menjadi kinetik

c. potensial menjadi kalor

d. kalor menjadi kinetik

e. kinetik menjadi kalor

- 19. Air terjun setinggi 100 m mengalirkan air sebanyak 1.200 m3 tiap 2 s. Tiga per empat energi kinetik air ketika jatuh diubah menjadi energi listrik oleh generator hidrolistrik. Jika $g = 10 \text{ m/s}^2$, daya yang keluar dari generator tersebut adalah . .
 - a.

No. of the contract of the con

- $4.5 \times 10^{2} \text{ kW}$ d. $9 \times 10^{5} \text{ kW}$
- b.
- $4.5 \times 10^5 \text{ kW}$ e. $18 \times 10^2 \text{ kW}$
- $9 \times 10^2 \text{ kW}$
- 20. Hal yang terjadi jika sebuah benda dijatuhkan tanpa kecepatan awal dan gesekan udara diabaikan adalah
 - energi kinetiknya bertambah
 - energi kinetiknya berkurang b.
 - energi potensialnya bertambah
 - energi mekaniknya berkurang d.
 - energi mekaniknya bertambah
- 21. Sebuah benda jatuh bebas dari ketinggian h dan pada suatu saat energi kinetiknya mencapai tiga kali energi potensialnya. Pada saat itu tinggi benda adalah
- 2h

- 22. Sebuah benda dilemparkan vertikal ke atas dengan kecepatan awal 20 m/s. Pada ketinggian tertentu, energi potensialnya mencapai tiga kali energi kinetiknya, maka kecepatan benda saat itu adalah
 - 2 m/s
- d. 10 m/s
- 5 m/s b.
- 15 m/s e.
- 8 m/s C.
- 23. Benda dengan massa 10 kg bergerak dengan kecepatan 2 m/s pada bidang datar. Oleh karena pengaruh gaya, kecepatannya berubah menjadi 7 m/s. Besar usaha selama bergerak adalah
 - 450 J
- 250 J
- 375 J b.
- e. 225 J
- 325 J
- 24. Benda dengan massa 2 kg jatuh bebas dari ketinggian 9 m di atas tanah. Usaha dari gaya berat hingga benda berada 2 m di atas tanah adalah

- 220 J
- 70 J
- 180 J b.
- 40 J e.
- 140 J
- 25. Sebuah benda bermassa 4 kg mulamula diam, kemudian bergerak lurus dengan percepatan 4 m/s2. Usaha yang diperlukan untuk diubah menjadi energi kinetik setelah 2 s adalah
 - 236 1
- 128 J
- 216 J b.
- 64 J
- 192 J C.
- 26. Dua benda bermassa sama A dan B jatuh bebas dari ketinggian yang berbeda, vaitu h dan 2h. Jika A menyentuh permukaan tanah dengan kecepatan v, benda B akan menyentuh permukaan tanah dengan energi kinetik sebesar
- b. $\frac{1}{2}mv^2$ e. $\frac{3}{2}mv^2$
- 27. Dua benda masing-masing mempunyai massa m_1 dan m_2 yang berbeda. Jika kedua benda mempunyai energi kinetik yang sama, kedua benda juga mempunyai
 - kecepatan yang sama a.
 - momentum yang sama b.
 - percepatan yang sama C.
 - momentum yang berbeda d.
 - gaya yang sama e.
- 28. Sebuah mobil bermassa m memiliki mesin berdaya P. Jika pengaruh gaya kecil, waktu minimum yang diperlukan agar mencapai kecepatan v dari keadaan diamnya adalah

- 29. Sebuah balok ditarik dengan gaya 100 N yang membentuk sudut 37° terhadap arah mendatar. Besar usaha yang dilakukan oleh gaya untuk berpindah sejauh 5 m adalah

- a. 100 J
- d. 400 J
- b. 200 J
- e. 500 J
- c. 300 J
- Sebuah benda bermassa 2 kg mulamula bergerak dengan kecepatan 72 km/jam. Setelah bergerak sejauh 400 m, kecepatan benda menjadi 144 km/jam. Usaha total yang dilakukan benda tersebut jika g = 10 m/s² adalah
 - a. 20 J
- d. 2.000 J
- b. 60 J
- e. 2.400 J
- c. 1.200 J
- 31. Sebuah bola bermassa 1 kg dijatuhkan tanpa kecepatan awal dari atas gedung. Bola meluncur melewati jendela A di lantai atas ke jendela B di lantai bawah dengan beda tinggi 2,5 m (g = 10 m/s²). Besar usaha untuk perpindahan bola dari jendela A ke jendela B adalah
 - a. 5 J
- d. 25 J
- b. 15 J
- e. 50 J
- c. 20 J
- 32. Untuk meregangkan sebuah pegas sejauh 5 cm diperlukan gaya sebesar 20 N. Energi potensial pegas ketika meregang sejauh 10 cm adalah
 - a. 2 J
- d. 50 J
- b. 4 J
- e. 100 J
- c. 20 J
- 33. Sebuah mobil bermassa 1.000 kg bergerak dengan kecepatan 20 m/s dalam arah horizontal. Tiba-tiba pengemudi mengurangi kecepatan mobil menjadi 10 m/s. Usaha yang dilakukan pengemudi selama proses tersebut adalah
 - a. $15 \times 10^4 \text{ J}$
 - b. $30 \times 10^4 \text{ J}$
 - c. $45 \times 10^4 \text{ J}$
 - d. 60×10^4 J
 - e. $75 \times 10^4 J$
- 34. Sebuah peluru bermassa 100 g ditembakkan dengan kecepatan awal 40 m/s dan sudut elevasi 30°, maka besar energi kinetik di titik tertinggi adalah
 - a. nol
- d. 150 J
- b. 60 J
- e. 200 J
- c. 120 J

- 35. Sebuah gaya $F = (2\mathbf{i} + 3\mathbf{j})$ N melakukan usaha dengan titik tangkapnya berpindah sejauh $r = (4\mathbf{i} + a\mathbf{j})$ m. Jika usahanya sebesar 26 J, nilai a adalah
 - a. 12
- d. 6
- b. 8
- e. 5
- c. 7
- 36. Sebuah benda jatuh bebas dari ketinggian 20 m. Perbandingan energi potensial dengan energi kinetik benda pada ketinggian 5 m dari tanah adalah
 - a. 1:2
- d. 3:1
- b. 1:3
- e. 3:4
- c. 2:1
- 37. Sebuah mobil bermassa 2 ton melaju dengan kecepatan 36 km/jam menjadi 72 km/jam dalam waktu 10 s. Daya keluaran rata-rata mesin mobil adalah
 - a. 20 kW
- d. 45 kW
- b. 30 kW
- e. 50 kW
- c. 40 kW
- 38. Besarnya usaha untuk menggerakkan mobil bermassa 2 ton dari 18 km/jam sehingga mencapai kecepatan 72 km/jam pada jalan tanpa gesekan adalah
 - a. $4 \times 10^5 \text{ J}$
 - b. $3,75 \times 10^5 \text{ J}$
 - c. $3.5 \times 10^5 \text{ J}$
 - d. $3 \times 10^5 \text{ J}$
 - e. $2.5 \times 10^5 \text{ J}$
- Bandul dari sebuah ayunan dengan panjang 125 cm disimpangkan dengan sudut simpangan 60° seperti gambar berikut.

Setelah disimpangkan, bandul kemudian dilepas tanpa kecepatan awal. Kelajuan bandul saat melewati titik terendah adalah

- a. 2 m/s
- d. 3,5 m/s
- b. 2,5 m/s
- e. 4 m/s
- c. 3 m/s

40. Grafik berikut menunjukkan hubungan pertambahan panjang pegas karena pengaruh gaya yang berbeda-beda.

Besar energi potensial pegas pada saat pertambahan panjang 8 cm adalah

0.12 J

The same of the sa

- 0,25 J d.
- 0,16 J
- 0,32 J e.
- 0.24 J C.
- 41. Sebuah benda beratnya 10 N, berada pada bidang datar licin. Pada benda bekerja gaya 40 N yang membentuk sudut 60° terhadap bidang horizontal. Usaha yang dilakukan gaya setelah berpindah sejauh 10 m adalah
 - 100 J a.
- 200√3 J d.
- 200 J b.
- 400 J e.
- 100√3 J C.
- 42. Untuk menarik sebuah pegas agar bertambah panjang 25 cm, diperlukan gaya 18 N. Usaha yang diperlukan untuk menarik pegas tersebut adalah
 - 2.25 J a.
- 5,25 J d.
- 3.25 J b.
- 5.50 J
- 3.60 J
- 43. Untuk memindahkan sebuah benda yang bermassa 2 kg pada arah vertikal diperlukan usaha sebesar 150 J. Jika $g = 10 \text{ m/s}^2$, besarnya perpindahan benda adalah
 - 0,5 m
- d. $7.5 \, \text{m}$
- 1,5 m b.
- 15 m e.
- 3,5 m C.
- 44. Sebuah mobil bermassa 1 ton sedang melaju dengan kelajuan 12 m/s. Setelah dilakukan pengereman, mobil menempuh jarak 15 m sebelum berhenti. Gaya ratarata yang dilakukan oleh rem mobil adalah
 - 1.300 N
- 4.800 N d.
- 2.200 N
- 7.200 N e.
- 3.500 N

- 45. Benda yang bermassa 2 kg mulamula bergerak dengan kecepatan 10 m/s, kemudian diberi gaya sehingga kecepatannya menjadi 14 m/s. Usaha yang dilakukan oleh gaya tersebut adalah
 - 48 J a.
- 196 J d.
- 96 J b.
- 296 J e.
- 192 J
- 46. Sebuah benda bermassa 10 kg bergerak sepanjang garis lurus. Pada benda bekerja gaya yang berubah-ubah terhadap posisi seperti grafik.

Usaha yang dilakukan gaya untuk memindahkan benda dari posisi 0 m sampai 6 m adalah

- 62 J
- 36 J d.
- 56 J b.
- 28 J e.
- 46 J C.
- 47. Sebuah benda yang bermassa 0,5 kg dilempar vertikal ke atas dengan kecepatan awal 20 m/s. Jika g = 10 m/s², besar kecepatan benda saat mencapai 1/4 dari ketinggian maksimum adalah
 - 2.5 m/s
- 10 m/s d.
- 5 m/s b.
- 10 V3 m/s
- 5 \ 3 m/s
- 48. Perbandingan energi kinetik antara benda A dan B yang bergerak horizontal pada bidang licin, jika diketahui massa benda A = $0.5 \times \text{massa benda } B \text{ dan kecepatan}$ benda B = 3 kali benda A adalah
 - 1:27
- d. 2:9 2:3

e.

- 1:18 b. 1:6 C.
- 49. Benda yang bermassa 50 kg bergerak dengan kecepatan 4 m/s. Besar gaya perlawanan yang diberikan agar benda berhenti setelah menempuh jarak 10 m adalah

- a. 8 N
- d. 40 N
- b. 10 N
- e. 80 N
- c. 20 N
- **50.** Sebuah bola bermassa 100 g dilepas dari titik *P* tanpa kecepatan awal, kemudian bergerak menuruni permukaan talang licin yang bentuknya seperti gambar berikut.

Jika jari-jari R = 45 cm dan g = 10 m/s², kecepatan bola saat meninggalkan titik B adalah

- a. 1 m/s
- d. 4 m/s
- b. 2 m/s
- e. 5 m/s
- c. 3 m/s
- 51. Sebuah benda jatuh dari ketinggian 25 m dari atas tanah. Kecepatan benda saat mencapai ketinggian 5 m dari tanah adalah
 - a. 20 m/s
- d. 50 m/s
- b. 30 m/s
- e. 60 m/s
- c. 40 m/s
- 52. Gaya yang dikerjakan oleh sebuah benda yang memiliki daya 500 W, pada jarak 400 m dalam selang waktu 16 s adalah
 - a. 0,2 N
- d. 200 N
- b. 2 N
- e. 2.000 N
- c. 20 N
- 53. Seorang siswa melakukan percobaan menggunakan pegas dan beban. Data hasil percobaannya seperti pada tabel berikut.

Beban (N)	Panjang	pegas (cm)
0		27
0,6		29
0,9		30
1,2		31

Berdasarkan tabel tersebut, besar energi potensial yang dimiliki pegas ketika ditarik sejauh 10 cm dari titik setimbangnya adalah

- a. 0,15 J
- d. 0,6 J
- b. 0,3 J
- e. 0.75 J
- c. 0,45 J
- 54. Benda bermassa 500 g diberi gaya F hingga posisinya berubah-ubah seperti grafik berikut.

Usaha total yang dilakukan oleh gaya sampai benda bergerak selama 8 s adalah

- a. 110 J
- d. 70 J
- b. 90 J
- e. 60 J
- c. 80 J
- Faktor-faktor yang memengaruhi besarnya usaha pada saat benda bergerak adalah
 - a. gaya dan perpindahan
 - b. gaya dan selang waktu
 - c. perpindahan saja
 - d. perpindahan dan selang waktu
 - e. gaya dan sudut yang dibentuk oleh gaya

B. Jawab pertanyaan-pertanyaan berikut dengan jelas dan benar.

- 1. Sebuah benda berada di atas lantai yang licin, karena pengaruh gaya tetap sebesar 40 N yang membentuk sudut 60° terhadap bidang horizontal menyebabkan benda berpindah sejauh 10 m. Berapakah besar usaha yang dilakukan oleh gaya tersebut?
- 2. Sebuah benda bermassa 5 kg mula-mula diam, kemudian bergerak lurus dengan percepatan 4 m/s². Berapa besar usaha yang diubah menjadi energi kinetik setelah bergerak 3 s?
- 3. Sebuah benda bermassa 2 kg terletak di atas tanah. Benda ditarik vertikal ke atas dengan gaya 30 N selama 4 s kemudian dilepaskan. Jika $g = 10 \text{ m/s}^2$, berapa besar energi kinetik benda saat menyentuh tanah?
- 4. Sebuah balok yang bermassa 10 kg mula-mula diam, kemudian dilepas sehingga meluncur ke bawah pada bidang miring dengan sudut kemiringan 30° terhadap arah horizontal dan menempuh jarak 10 m sesaat sebelum sampai bidang datar. Berapa kecepatan balok saat mencapai bidang datar?
- 5. Sebuah truk yang bermassa 1 ton melaju dengan kecepatan 72 km/jam, kemudian menabrak sebuah pohon dan berhenti setelah menempuh jarak 50 m. Berapa besar gaya rata-rata yang diperlukan sampai truk berhenti bergerak?
- 6. Sebuah bola dengan massa 2 kg didorong dari permukaan meja hingga kecepatannya saat lepas dari bibir meja adalah 4 m/s seperti gambar di samping. Hitung besar energi kinetik dan energi mekanik saat bola berada pada ketinggian 1 m dari atas tanah.

- 7. Sebuah bola bermassa 2 kg jatuh bebas dari ketinggian 20 m dari atas tanah. Hitung:
 - a. energi kinetik benda pada saat ketinggian benda 10 m di atas tanah,
 - b. energi kinetik ketika bola sampai di tanah, dan
 - c. energi potensial bola setelah bergerak 1 s.
- 8. Sebuah bola bermassa 500 g bergerak dengan kelajuan 2 m/s, kemudian seorang anak menendang bola tersebut searah gerakan bola dengan gaya 100 N. Agar kelajuan bola menjadi 4 m/s, berapa jarak sentuhan kaki anak tersebut?
- 9. Sebuah peluru bermassa 100 g ditembakkan vertikal ke atas dengan kecepatan awal 144 km/jam. Jika $g=10 \text{ m/s}^2$, hitung besar energi kinetik peluru saat mengenai sasaran pada ketinggian 40 m.
- 10. Sebuah benda bermassa 4 kg, dilepas dari sisi dalam sebuah lingkaran yang berbentuk seperempat lingkaran yang berjari-jari 10 m dan bagian dalamnya licin seperti gambar di samping. Hitung besar kecepatan benda saat sampai di B dan C (Gunakan hukum kekekalan energi mekanik).

- 11. Sebuah benda bermassa 20 kg meluncur pada bidang miring dengan sudut kemiringan 30° seperti gambar di samping. Jika benda bergeser ke bawah sejauh 5 m, berapa besar usaha yang dilakukan oleh gaya berat?
- 5*R R* 0

12. Sebuah partikel dengan massa 10 g meluncur dari titik P sepanjang bidang lengkung seperti gambar di samping tanpa kecepatan awal. Jari-jari lingkaran kecil 20 cm, $g=10 \text{ m/s}^2$, dan gesekan antara partikel dengan bidang lengkung diabaikan. Hitung kecepatan partikel ketika sampai di Q.

- 13. Sebuah benda bermassa 1 kg dilempar vertikal ke atas dengan kecepatan awal 30 m/s. Hitung:
 - a. energi kinetik dan potensial benda setelah bergerak selama 2 s dan
 - b. energi potensial benda di titik tertinggi.
- 14. Air terjun setiap sekon mengalirkan 60 m³ air. Tinggi air terjun = 10 m,
 - $g = 10 \text{ m/s}^2$, dan massa jenis air = 1 g/cm³, hitung:
 - a. energi air terjun dan
 - b. daya air terjun tiap menit.
- **15.** Sebuah bola bermassa 3 kg jatuh bebas dari posisi *A* seperti gambar di samping. Ketika sampai di *B*, besar energi kinetiknya sama dengan 2 kali energi potensial. Hitung:
 - a. tinggi titik B dari tanah dan
 - b. kecepatan bola saat sampai di B.

