

<u>PES University, Bengaluru</u> (Established under Karnataka Act No. 16 of 2013)

UE20CS931

October 2024: END SEMESTER ASSESSMENT (ESA) M TECH DATA SCIENCE AND MACHINE LEARNING_ SEMESTER II

UE20CS931- MACHINE LEARNING - II

Time: 3 Hrs Answer All Questions Max Marks: 100

Instructions

- 1. Answer all the questions.
- 2. Section A should be handwritten in the answer script provided.
- 3. Sections B and C are coding questions to be answered in the system and uploaded.
- 4. Smartly use GridSearchCV as it might impact the system's performance.
- 5. Write appropriate inferences.

		Section A (20 marks)	
1	a)	Explain the concept of Binomial Logistic Regression and its assumptions. How does it differ from linear regression?	4
	b)	Discuss the significance of coefficients in a logistic regression model. How can they be interpreted?	4
	c)	Describe the role of proximity measures in the K-Nearest Neighbors (K-NN) algorithm. How do these measures affect model performance?	4
	d)	Define the term "purity of a node" in the context of decision trees. Explain the metrics used to measure the purity of a node.	4
	e)	Compare AdaBoost and Gradient Boosting algorithms. Highlight their differences and similarities in terms of methodology and application.	4
		Section B (40 marks)	
2	a)	Read the dataset and print/perform the following - Shape of the data (2 mark) - Number of numerical and categorical variables (2 mark)	6
		- Descriptive stats of numerical data and write inference (2 mark)	
	b)	Create visualizations to explore the relationships between different numerical features in the dataset using suitable plots and share your inferences for the same.	6
	c)	Check for the correlation between various numerical features and share your inferences accordingly.	8
	d)	Perform appropriate encoding on the categorical attributes.	8
	e)	Perform the following steps on the dataset: - Check the distribution of the target column 'stroke', and comment on the class distribution (3 marks) - Segregate the dependent and the independent features. (2 marks)	5
	f)	Handle the imbalanced data using oversampling or undersampling technique, and check the distribution of the resampled target class.	5

SBN						
OIVIN						

	g)	Split the dataset into train and test data (80:20).	2						
	Section C (40 marks)								
3	a)	Make use of the imbalanced data and fit a Random forest classifier Model. Describe your observations based on output/results seen in the confusion matrix.							
	b)	Make use of the balanced data and fit a Random forest classifier Model and a Decision Tree Regressor model. Describe your observations based on output/results seen in the confusion matrix.	20						
		Note:							
		For each model built, follow the below approach:							
		- Build a base model using the balanced data							
		- Select K features using Wrapper or Embedded							
		Methods							
		- Perform hyperparameter tuning on all the models							
		to tune the hyperparameters and find the best hyperparameters.							
		- Scale the data using the StandardScaler() method							
		and build a model using the K selected feature and the hyperparameters, and compute its accuracy and Recall.							
	c)	Collectively compare the performance of all the models and find the best-performing model.	5						
	d)	From a business perspective,	5						
		a. Which data will you choose, Balanced or							
		Imbalanced and why?							
		b. Based on the given problem statement, explain which metric should be considered from the confusion matrix to gauge the effectiveness of the model built.							