Lagrangian Dynamics Project

Rigid-Body Spring Pendulum

December 3, 2018

By:

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene

Submitted to:
Dr. Mark Sensmeier
In Partial Fulfillment of the Requirements of ES204 Dynamics – Fall 2018

College of Engineering Embry-Riddle Aeronautical University Prescott, AZ

Contents

1

1

1

2 3 4 5 6 7 8	Free Body Diagram Coordinate Frame Sum of Forces Constraints Solve for the Equations of Motion Solve the Equations of Motion Does it Make Sense?
	8.1 Units
0	8.2 Magnitude
9	Appendix 5 9.1 Attributions
	9.2 Analytical Solution
	9.3 Numerical Solution
	List of Figures
1	Coordinate Frame
2	Numerical Solution Motion Behavior Plots, $(\theta_o: 0, \phi_o: 0) \dots \dots$
	a Spring Length vs. Time
3	Numerical Solution Motion Behavior Plots, $(\theta_o: \pi/18, \phi_o: \pi/9)$
4	Numerical Solution Motion Behavior Plots, $(\theta_o: \pi/6, \phi_o: \pi/3)$

1 Conceptualize the Problem

The pendulum system consists of a rigid bar pinned to the free end of a linear spring, which rotates about its opposite end at a fixed point; there are three degrees of freedom, since the spring and bar each have an individual angular deflection with respect to the vertical, and the radial distance the bar is from the point of rotation due to the variation in the length of the spring.

1.1 Constants and Assumptions

Constants: Assumptions:

Bar Mass: m=1 kgNo Losses

Bar Length: L = 1 mReleased from Rest $g = 9.81^{m/s^2}$ Gravity: Uniform Slender Bar

Linear Spring: Planar

Spring Coefficient: $k = 25 \ ^{N/m}$ Rigid-Body Dynamics

Unstretched Length: L = 0.5 m

We are asked to determine the following:

- 1. The Equations of Motion for the system via the Lagrangian method.
- 2. Integrate the Equations of Motion using various initial conditions and plot the behavior of the system for 10 seconds.
 - (a) $\theta_o = 0 \ rad$, $\phi_o = 0 \ rad$ (b) $\theta_o = \pi/18 \ rad$, $\phi_o = \pi/9 \ rad$

 - (c) $\theta_o = \pi/6 \ rad$, $\phi_o = \pi/3 \ rad$
- 3. Plot the total energy versus time for all 3 cases.
- 4. Repeat 2. and 3. using a 'RelTol' of 1e-6 and 'AbsTol' of 1e-9 for the ode45 integration tolerances.

2 Free Body Diagram

G: Center of gravity of the bar

3 Coordinate Frame

Figure 1: Coordinate Frame

- Motion Variables:
- θ : Angle of spring relative to vertical
- ϕ : Angle of bar relative to vertical
- r: Radial length of spring

Supplemental Variables:

 \vec{r}_G : Vector to bar center of mass from origin

4 Sum of Forces

5 Constraints

The system is fully constrained, therefore no constrain equations were needed to solve the problem.

6 Solve for the Equations of Motion

7 Solve the Equations of Motion

Figure 2: Numerical Solution Motion Behavior Plots, $(\theta_o: 0, \phi_o: 0)$

Figure 3: Numerical Solution Motion Behavior Plots, $(\theta_o:\pi/18,\ \phi_o:\pi/9)$

8 Does it Make Sense?

8.1 Units

Checking with the MATLAB symbolic units tool (from Section 9.3):

Figure 4: Numerical Solution Motion Behavior Plots, $(\theta_o:\pi/6,\ \phi_o:\pi/3)$

- 8.2 Magnitude
- 9 Appendix
- 9.1 Attributions

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene Joint Effort

9.2 Analytical Solution

9.3 Numerical Solution