```
In []: import sys
         !{sys.executable} -m pip install --user scikit-allel
In [45]:
         import numpy as np
         import scipy
         import pandas
         import matplotlib as mpl
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         sns.set_style('white')
         sns.set_style('ticks')
         sns.set_context('notebook')
         import h5py
         import allel; print('scikit-allel', allel.__version__)
        scikit-allel 1.3.8
```

VCF to HDF5

In []: #allel.vcf_to_hdf5('/users/mcevoysu/scratch/output/Aalba/vcf_filtering/ra

Get data

```
In [46]: callset_var_fn = '/users/mcevoysu/scratch/output/Aalba/scikit-allel/raw_S
    callset_var = h5py.File(callset_var_fn, mode='r')

In [47]: calldata_var = callset_var['calldata']
    list(calldata_var)

Out[47]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
    B']

In [48]: list(callset_var['variants'])
```

```
Out[48]:
          ['AC',
            'AF',
            'ALT',
            'AN',
            'BaseQRankSum',
            'CHROM',
            'DP',
            'END',
            'ExcessHet',
            'FILTER_LowQual',
            'FILTER_PASS',
            'FS',
            'ID',
            'InbreedingCoeff',
            'MLEAC',
            'MLEAF',
            'MQ',
            'MQRankSum',
            'POS',
            'QD',
            'QUAL',
            'RAW_MQandDP',
            'REF',
            'ReadPosRankSum',
            'SOR',
            'altlen',
            'is snp',
            'numalt'l
```

Make datasets

```
In [49]: variants = allel.VariantChunkedTable(callset_var['variants'])
variants
```

Out [49]: <VariantChunkedTable shape=(300764,) dtype=[('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('END', '<i4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')] nbytes=51.3M cbytes=11.1M cratio=4.6 values=h5py._hl.group.Group>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	E
0	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	-1.039	b'aalba5_s00000025'	14531	
1	[1 -1 -1]	[0.001157 nan nan]	[b'*' b'' b'']	864	nan	b'aalba5_s00000025'	12677	
2	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	0.319	b'aalba5_s00000025'	12506	
•••								
300761	[4 -1 -1]	[0.00463 nan nan]	[b'T' b'' b'']	864	0.0	b'aalba5_s01418300'	2578	
300762	[1 -1 -1]	[0.001157 nan nan]	[b'A' b'' b'']	864	0.0	b'aalba5_s01418300'	1258	
300763	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	0.431	b'aalba5_s01418300'	880	

```
In [50]: variants_np = variants[:]
  rawsnps = variants_np.query('(is_snp == True)')
  rawsnps
```

Out [50]: <VariantTable shape=(198625,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	E
0	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	-1.039	b'aalba5_s00000025'	14531	
1	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	0.319	b'aalba5_s00000025'	12506	
2	[14 -1 -1]	[0.016 nan nan]	[b'T' b'' b'']	864	0.214	b'aalba5_s00000025'	12170	
•••								
198622	[4 -1 -1]	[0.00463 nan nan]	[b'T' b'' b'']	864	0.0	b'aalba5_s01418300'	2578	
198623	[1 -1 -1]	[0.001157 nan nan]	[b'A' b'' b'']	864	0.0	b'aalba5_s01418300'	1258	
198624	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	0.431	b'aalba5_s01418300'	880	

In [51]: notsnp = variants_np.query('(is_snp != True)')
 notsnp

Out [51]: <VariantTable shape=(102139,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	E
0	[1 -1 -1]	[0.001157 nan nan]	[b'*' b'' b'']	864	nan	b'aalba5_s00000025'	12677	
1	[28 2 -1]	[0.032 0.002315 nan]	[b'C' b'*' b'']	864	0.423	b'aalba5_s00000025'	11564	
2	[1 -1 -1]	[0.001157 nan nan]	[b'*' b'' b'']	864	nan	b'aalba5_s00000025'	2513	
•••								
102136	[3 -1 -1]	[0.003472 nan nan]	[b'*' b'' b'']	864	nan	b'aalba5_s01418300'	4272	
102137	[3 -1 -1]	[0.003472 nan nan]	[b'*' b'' b'']	864	nan	b'aalba5_s01418300'	4254	
102138	[3 -1 -1]	[0.003472 nan nan]	[b'*' b'' b'']	864	nan	b'aalba5_s01418300'	4177	

Plot function

```
In [52]: def plot_hist(f, dsubset='', bins=30, ):
             if dsubset == 'var':
                  x = variants[f][:]
                  l = 'Variant'
             elif dsubset == 'snp':
                  x = rawsnps[f][:]
                  l = 'Raw SNP'
             elif dsubset == 'notsnp':
                  x = notsnp[f][:]
                  l = 'Raw Not SNP'
             elif dsubset == 'biallelic':
                  x = biallelic np[f][:]
                  l = 'Biallelic SNP'
             elif dsubset == 'varsel':
                  x = var_selection[f][:]
                  l = 'Filtered Variants'
             elif dsubset == 'snpsel':
                  x = snp selection[f][:]
                  l = 'Filtered SNP'
             else:
```

```
x = bi_selection[f][:]
    l = 'Biallelic SNP'
fig, ax = plt.subplots(figsize=(10, 5))
sns.despine(ax=ax, offset=10)
ax.hist(x, bins=bins)
ax.set_xlabel(f)
ax.set_ylabel('No. variants')
ax.set_title('%s %s distribution' % (l, f))
```

Find Biallelic SNPS

Out [56]: <VariantTable shape=(193794,) dtype=(numpy.record, [('AC', '<i4', (3,)), ('AF', '<f4', (3,)), ('ALT', 'O', (3,)), ('AN', '<i4'), ('BaseQRankSum', '<f4'), ('CHROM', 'O'), ('DP', '<i4'), ('END', '<i4'), ('ExcessHet', '<f4'), ('FILTER_LowQual', '?'), ('FILTER_PASS', '?'), ('FS', '<f4'), ('ID', 'O'), ('InbreedingCoeff', '<f4'), ('MLEAC', '<i4', (3,)), ('MLEAF', '<f4', (3,)), ('MQ', '<f4'), ('MQRankSum', '<f4'), ('POS', '<i4'), ('QD', '<f4'), ('QUAL', '<f4'), ('RAW_MQandDP', '<i4', (2,)), ('REF', 'O'), ('ReadPosRankSum', '<f4'), ('SOR', '<f4'), ('altlen', '<i4', (3,)), ('is_snp', '?'), ('numalt', '<i4')])>

	AC	AF	ALT	AN	BaseQRankSum	CHROM	DP	E
0	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	-1.039	b'aalba5_s00000025'	14531	
1	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	0.319	b'aalba5_s00000025'	12506	
2	[14 -1 -1]	[0.016 nan nan]	[b'T' b'' b'']	864	0.214	b'aalba5_s00000025'	12170	
•••								
193791	[4 -1 -1]	[0.00463 nan nan]	[b'T' b'' b'']	864	0.0	b'aalba5_s01418300'	2578	
193792	[1 -1 -1]	[0.001157 nan nan]	[b'A' b'' b'']	864	0.0	b'aalba5_s01418300'	1258	
193793	[2 -1 -1]	[0.002315 nan nan]	[b'C' b'' b'']	864	0.431	b'aalba5_s01418300'	880	

MQ - RMS mapping quality

In [14]: plot_hist('MQ','var') # RMS mapping quality


```
In [16]: filter_expression = '(MQ < 55)'
bi_selection = biallelic_np.query(filter_expression)[:]
#np.count_nonzero(var_selection)</pre>
```

```
In [17]: plot_hist('MQ')
```


In [18]: filter_expression = '(MQ < 40)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>

In [20]: plot_hist('MQ','notsnp')

QD - Variant Confidence/Quality by Depth

plot_hist('QD','biallelic') # Variant Confidence/Quality by Depth


```
In [23]: filter_expression = '(QD < 2)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```


In [25]: plot_hist('QD','notsnp') # Variant Confidence/Quality by Depth

SOR - Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

Biallelic SNP SOR distribution

In [28]: filter_expression = '(SOR > 3)'
bi_selection = biallelic_np.query(filter_expression)[:]

In [29]: plot_hist('SOR') # Symmetric Odds Ratio of 2x2 contingency table to detec

In [30]: plot_hist('SOR','notsnp') # Symmetric Odds Ratio of 2x2 contingency table

MQRankSum - Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities

In [32]: plot_hist('MQRankSum','biallelic') # Z-score From Wilcoxon rank sum test

In [34]: plot_hist('MQRankSum') # Z-score From Wilcoxon rank sum test of Alt vs. R

In [35]: plot_hist('MQRankSum','notsnp') # Z-score From Wilcoxon rank sum test of

ReadPosRankSum - Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias

In [38]: plot_hist('ReadPosRankSum','notsnp') # Z-score from Wilcoxon rank sum tes

DP - Approximate read depth


```
In [41]: filter_expression = '(DP > 20000) & (DP < 40000)'
bi_selection = biallelic_np.query(filter_expression)[:]</pre>
```

In [42]: plot_hist('DP')

AN - Total number of alleles in called genotypes

In [44]: plot_hist('AN','var') # Total number of alleles in called genotypes

plot_hist('AN','biallelic') # Total number of alleles in called genotypes Biallelic SNP AN distribution No. variants ΑN

In [46]: plot_hist('AN', 'notsnp') # Total number of alleles in called genotypes

Selected filter

```
In [57]: # QD: Variant Confidence/Quality by Depth
# AN: Total number of alleles in called genotypes
filter_expression = '(QD >= 2) & (MQ >= 40) & (MQRankSum >= -12.5) & (is_
variant_selection = variants_np.eval(filter_expression)[:]
np.count_nonzero(variant_selection)
```

Out[57]: 175671

Genotype

```
In [58]: calldata_var = callset_var['calldata']
list(calldata_var)

Out[58]: ['AD', 'DP', 'GQ', 'GT', 'MIN_DP', 'PGT', 'PID', 'PL', 'PS', 'RGQ', 'S
B']

In [59]: genotypes_var = allel.GenotypeChunkedArray(calldata_var['GT'])
genotypes_var
```

Out [59]: <GenotypeChunkedArray shape=(300764, 432, 2) dtype=int8 chunks=(65536, 64, 2) nbytes=247.8M cbytes=10.6M cratio=23.4 compression=gzip compression_opts=1 values=h5py._hl.dataset.Dataset>

										430	
0	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••	0/0 0/0										
300761	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
300761 300762 300763	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
300763	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0

```
In [60]: # using the selected filters set above
  gt_filtered_snps = genotypes_var.subset(variant_selection)
  gt_filtered_snps
```

Out[60]: <GenotypeChunkedArray shape=(175671, 432, 2) dtype=int8 chunks=(1373, 432, 2)
nbytes=144.7M cbytes=12.0M cratio=12.0 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

										430	
0	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
•••	0/0 0/0 0/0 0/0 0.0 0/0 0										
175668	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
175668 175669 175670	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
175670	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0

```
In [61]: # grab the allele counts for the populations
ac = gt_filtered_snps.count_alleles()
ac
```

	0	1	2	3
0	862	2	0	0
1	850	14	0	0
2	858	6	0	0
•••				
175668	861	3	0	0
175669	860	4	0	0
175670	863	1	0	0

```
In [62]: ac[:]
```

Out [62]: <AlleleCountsArray shape=(175671, 4) dtype=int32>

	0	1	2	3
0	862	2	0	0
1	850	14	0	0
2	858	6	0	0
•••		•••		
175668	861	3	0	0
175669	860	4	0	0
175670	863	1	0	0

```
In [63]: # Which ones are biallelic?
  is_biallelic_01 = ac.is_biallelic_01()[:]
  ac1 = ac.compress(is_biallelic_01, axis=0)[:, :2]
  ac1
  ##this part of the code is only for graphing the SFS, is not useful for f
```

```
In [64]: # plot the sfs of the derived allele
s = allel.sfs_folded(ac1)
allel.plot_sfs(s, yscale="linear", n=ac1.sum(axis=1).max())
```

Out[64]: <Axes: xlabel='derived allele frequency', ylabel='site frequency'>


```
In [65]: biallelic = (ac.max_allele() == 1)
###This is the filter expression for biallelic sites
biallelic
```

```
In [66]: # select only the biallelic variants
gt_biallelic = gt_filtered_snps.compress(biallelic)
gt_biallelic
```

out[66]: <GenotypeChunkedArray shape=(171143, 432, 2) dtype=int8 chunks=(1338, 432, 2)
nbytes=141.0M cbytes=11.4M cratio=12.4 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1	2	3	4	•••	427	428	429	430	431
0	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
1	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
2	0/0	0/0	0/0	0/0	0/0		0/0	0/0	0/0	0/0	0/0
•••											
171140	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0
171141											
171142	0/0	0/0	0/0	0/0	0/0	•••	0/0	0/0	0/0	0/0	0/0

```
In [67]: n_variants = len(gt_biallelic)
n_variants

Out[67]: 171143

In [68]: pc_missing = gt_biallelic.count_missing(axis=0)[:] * 100 / n_variants
    pc_het = gt_biallelic.count_het(axis=0)[:] * 100 / n_variants
```

Samples

```
In [69]: samples_var = callset_var['samples']
    samples_var = list(samples_var)
    samples_var
```

```
Out[69]:
          [b'1-ATAA51-001-AA01-A01',
           b'10-ATAA51-010-AA01-B02'
           b'100-ITAA57-025-AA02-D01'
           b'101-SIAA62-001-AA02-E01'
           b'102-SIAA62-002-AA02-F01',
           b'103-SIAA62-003-AA02-G01'
           b'104-SIAA62-004-AA02-H01'
           b'105-SIAA62-005-AA02-A02',
           b'106-SIAA62-006-AA02-B02',
           b'107-SIAA62-007-AA02-C02'
           b'108-SIAA62-008-AA02-D02'
           b'109-SIAA62-009-AA02-E02',
           b'11-ATAA51-011-AA01-C02',
           b'110-SIAA62-010-AA02-F02'
           b'111-SIAA62-011-AA02-G02'
           b'112-SIAA62-012-AA02-H02'
           b'113-SIAA62-013-AA02-A03'
           b'114-SIAA62-014-AA02-B03'
           b'115-SIAA62-015-AA02-C03'
           b'116-SIAA62-016-AA02-D03',
           b'117-SIAA62-017-AA02-E03'
           b'118-SIAA62-018-AA02-F03'
           b'119-SIAA62-019-AA02-G03',
           b'12-ATAA51-012-AA01-D02',
           b'120-SIAA62-020-AA02-H03'
           b'121-SIAA62-021-AA02-A04'
           b'122-SIAA62-022-AA02-B04',
           b'123-SIAA62-023-AA02-C04'
           b'124-SIAA62-024-AA02-D04'
           b'125-SIAA62-025-AA02-E04'
           b'126-SIAA63-001-AA02-F04',
           b'127-SIAA63-002-AA02-G04'
           b'128-SIAA63-003-AA02-H04'
           b'129-SIAA63-004-AA02-A05',
           b'13-ATAA51-013-AA01-E02'
           b'130-SIAA63-005-AA02-B05'
           b'131-SIAA63-006-AA02-C05'
           b'132-SIAA63-007-AA02-D05'
           b'133-SIAA63-008-AA02-E05'
           b'134-SIAA63-009-AA02-F05'
           b'135-SIAA63-010-AA02-G05'
           b'136-SIAA63-011-AA02-H05',
           b'137-SIAA63-012-AA02-A06'
           b'138-SIAA63-013-AA02-B06'
           b'139-SIAA63-014-AA02-C06',
           b'14-ATAA51-014-AA01-F02'
           b'140-SIAA63-015-AA02-D06'
           b'141-SIAA63-016-AA02-E06'
           b'142-SIAA63-017-AA02-F06',
           b'143-SIAA63-018-AA02-G06',
           b'144-SIAA63-019-AA02-H06'
           b'145-SIAA63-020-AA02-A07'
           b'146-SIAA63-021-AA02-B07'
           b'147-SIAA63-022-AA02-C07'
           b'148-SIAA63-023-AA02-D07'
           b'149-SIAA63-024-AA02-E07',
           b'15-ATAA51-015-AA01-G02',
           b'150-SIAA63-025-AA02-F07'
           b'151-ITAA64-001-AA02-G07'
           b'152-ITAA64-002-AA02-H07',
```

```
b'154-ITAA64-004-AA02-B08'.
b'155-ITAA64-005-AA02-C08'
b'156-ITAA64-006-AA02-D08'
b'157-ITAA64-007-AA02-E08',
b'158-ITAA64-008-AA02-F08',
b'159-ITAA64-009-AA02-G08'
b'16-ATAA51-016-AA01-H02'
b'160-ITAA64-010-AA02-H08'
b'161-ITAA64-011-AA02-A09'
b'162-ITAA64-012-AA02-B09'
b'163-ITAA64-013-AA02-C09',
b'164-ITAA64-014-AA02-D09'.
b'165-ITAA64-015-AA02-E09'
b'166-ITAA64-016-AA02-F09'
b'167-ITAA64-017-AA02-G09',
b'168-ITAA64-018-AA02-H09',
b'169-ITAA64-019-AA02-A10'
b'17-ATAA51-017-AA01-A03'
b'170-ITAA64-020-AA02-B10'
b'171-ITAA64-021-AA02-C10'
b'172-ITAA64-022-AA02-D10'
b'173-ITAA64-023-AA02-E10'
b'174-ITAA64-024-AA02-F10',
b'175-ITAA64-025-AA02-G10'
b'176-R0AA58-001-AA02-H10'
b'177-R0AA58-002-AA02-A11',
b'178-R0AA58-003-AA02-B11',
b'179-R0AA58-004-AA02-C11'
b'18-ATAA51-018-AA01-B03'
b'180-R0AA58-005-AA02-D11'
b'181-R0AA58-006-AA02-E11'
b'182-R0AA58-007-AA02-F11'
b'183-R0AA58-008-AA02-G11',
b'184-ROAA58-009-AA02-H11',
b'185-R0AA58-010-AA02-A12'
b'186-R0AA58-011-AA02-B12'
b'187-R0AA58-012-AA02-C12'
b'188-R0AA58-013-AA02-D12'
b'189-R0AA58-014-AA02-E12'
b'19-ATAA51-019-AA01-C03'
b'190-R0AA58-015-AA02-F12'
b'191-R0AA58-016-AA02-G12'
b'192-R0AA58-017-AA02-H12'
b'193-R0AA58-018-AA03-A01'
b'194-R0AA58-019-AA03-B01',
b'195-R0AA58-020-AA03-C01'
b'196-R0AA58-021-AA03-D01'
b'197-R0AA58-022-AA03-E01',
b'198-R0AA58-023-AA03-F01'
b'199-R0AA58-024-AA03-G01'
b'2-ATAA51-002-AA01-B01',
b'20-ATAA51-020-AA01-D03'
b'200-R0AA58-025-AA03-H01'
b'201-R0AA59-001-AA03-A02'
b'202-R0AA59-002-AA03-B02'
b'203-R0AA59-003-AA03-C02'
b'204-R0AA59-004-AA03-D02'
b'205-R0AA59-005-AA03-E02'
b'206-R0AA59-006-AA03-F02',
b'207-ROAA59-007-AA03-G02',
```

```
b'208-R0AA59-008-AA03-H02'.
b'209-R0AA59-009-AA03-A03'
b'21-ATAA51-021-AA01-E03'
b'210-R0AA59-010-AA03-B03'
b'211-R0AA59-011-AA03-C03'
b'212-R0AA59-012-AA03-D03'
b'213-R0AA59-013-AA03-E03'
b'214-R0AA59-014-AA03-F03',
b'215-R0AA59-015-AA03-G03'
b'216-R0AA59-016-AA03-H03'
b'218-ROAA59-018-AA03-B04',
b'219-R0AA59-019-AA03-C04'.
b'22-ATAA51-022-AA01-F03'
b'220-R0AA59-020-AA03-D04'
b'221-R0AA59-021-AA03-E04',
b'222-R0AA59-022-AA03-F04',
b'223-R0AA59-023-AA03-G04'
b'224-R0AA59-024-AA03-H04'
b'225-R0AA59-025-AA03-A05'
b'226-R0AA60-001-AA03-B05'
b'227-R0AA60-002-AA03-C05'
b'228-R0AA60-003-AA03-D05'
b'229-ROAA60-004-AA03-E05',
b'23-ATAA51-023-AA01-G03'
b'230-R0AA60-005-AA03-F05'
b'231-R0AA60-006-AA03-G05'
b'232-R0AA60-007-AA03-H05'
b'233-R0AA60-008-AA03-A06'
b'234-R0AA60-009-AA03-B06'
b'235-R0AA60-010-AA03-C06',
b'236-R0AA60-011-AA03-D06'
b'237-R0AA60-012-AA03-E06'
b'238-R0AA60-013-AA03-F06',
b'239-R0AA60-014-AA03-G06',
b'24-ATAA51-024-AA01-H03'
b'240-R0AA60-015-AA03-H06'
b'241-R0AA60-016-AA03-A07',
b'242-R0AA60-017-AA03-B07'
b'243-R0AA60-018-AA03-C07'
b'244-ROAA60-019-AA03-D07'
b'245-R0AA60-020-AA03-E07'
b'246-R0AA60-021-AA03-F07'
b'247-R0AA60-022-AA03-G07'
b'248-R0AA60-023-AA03-H07'
b'249-R0AA60-024-AA03-A08',
b'25-ATAA51-025-AA01-A04'
b'250-R0AA60-025-AA03-B08'
b'251-R0AA61-001-AA03-C08',
b'252-R0AA61-002-AA03-D08'
b'253-R0AA61-003-AA03-E08'
b'254-R0AA61-004-AA03-F08'
b'255-ROAA61-005-AA03-G08',
b'256-R0AA61-006-AA03-H08'
b'257-R0AA61-007-AA03-A09'
b'258-R0AA61-008-AA03-B09',
b'259-R0AA61-009-AA03-C09',
b'26-ATAA52-001-AA01-B04'
b'260-R0AA61-010-AA03-D09'
b'261-R0AA61-011-AA03-E09',
b'262-ROAA61-012-AA03-F09',
```

```
b'263-R0AA61-013-AA03-G09'.
b'264-R0AA61-014-AA03-H09'
b'265-R0AA61-015-AA03-A10'
b'266-R0AA61-016-AA03-B10',
b'267-R0AA61-017-AA03-C10'
b'268-R0AA61-018-AA03-D10'
b'269-R0AA61-019-AA03-E10'
b'27-ATAA52-002-AA01-C04',
b'270-R0AA61-020-AA03-F10'
b'271-R0AA61-021-AA03-G10'
b'272-ROAA61-022-AA03-H10',
b'273-R0AA61-023-AA03-A11'.
b'274-R0AA61-024-AA03-B11'
b'275-R0AA61-025-AA03-C11'
b'276-DEAA55-001-AA03-D11',
b'277-DEAA55-002-AA03-E11',
b'278-DEAA55-003-AA03-F11'
b'279-DEAA55-004-AA03-G11',
b'28-ATAA52-003-AA01-D04',
b'280-DEAA55-005-AA03-H11'
b'281-DEAA55-006-AA03-A12'
b'282-DEAA55-007-AA03-B12'
b'283-DEAA55-008-AA03-C12',
b'284-DEAA55-009-AA03-D12'
b'285-DEAA55-010-AA03-E12'
b'286-DEAA55-011-AA03-F12',
b'287-DEAA55-012-AA03-G12'
b'288-DEAA55-013-AA03-H12'
b'289-DEAA55-014-AA04-A01'
b'29-ATAA52-004-AA01-E04',
b'290-DEAA55-015-AA04-B01'
b'291-DEAA55-016-AA04-C01'
b'292-DEAA55-017-AA04-D01'
b'293-DEAA55-018-AA04-E01',
b'294-DEAA55-019-AA04-F01'
b'295-DEAA55-020-AA04-G01'
b'296-DEAA55-021-AA04-H01',
b'297-DEAA55-022-AA04-A02'
b'298-DEAA55-023-AA04-B02'
b'299-DEAA55-024-AA04-C02',
b'3-ATAA51-003-AA01-C01',
b'30-ATAA52-005-AA01-F04'
b'300-DEAA55-025-AA04-D02'
b'301-FRAA54-001-AA04-E02',
b'302-FRAA54-002-AA04-F02',
b'303-FRAA54-003-AA04-G02'
b'304-FRAA54-004-AA04-H02'
b'305-FRAA54-005-AA04-A03'
b'306-FRAA54-006-AA04-B03'
b'307-FRAA54-007-AA04-C03'
b'308-FRAA54-008-AA04-D03'
b'309-FRAA54-009-AA04-E03',
b'31-ATAA52-006-AA01-G04'
b'310-FRAA54-010-AA04-F03'
b'311-FRAA54-011-AA04-G03'
b'312-FRAA54-012-AA04-H03'
b'313-FRAA54-013-AA04-A04'
b'314-FRAA54-014-AA04-B04'
b'315-FRAA54-015-AA04-C04'
b'316-FRAA54-016-AA04-D04',
```

```
b'317-FRAA54-017-AA04-E04'.
b'318-FRAA54-018-AA04-F04'
b'319-FRAA54-019-AA04-G04'
b'32-ATAA52-007-AA01-H04',
b'320-FRAA54-020-AA04-H04'
b'321-FRAA54-021-AA04-A05'
b'322-FRAA54-022-AA04-B05'
b'323-FRAA54-023-AA04-C05',
b'324-FRAA54-024-AA04-D05'
b'325-FRAA54-025-AA04-E05'
b'326-ITAA65-001-AA04-F05'
b'327-ITAA65-002-AA04-G05'
b'328-ITAA65-003-AA04-H05'
b'329-ITAA65-004-AA04-A06'
b'33-ATAA52-008-AA01-A05',
b'330-ITAA65-005-AA04-B06'
b'331-ITAA65-006-AA04-C06'
b'332-ITAA65-007-AA04-D06'
b'333-ITAA65-008-AA04-E06',
b'334-ITAA65-009-AA04-F06'
b'335-ITAA65-010-AA04-G06'
b'336-ITAA65-011-AA04-H06',
b'337-ITAA65-012-AA04-A07',
b'338-ITAA65-013-AA04-B07'
b'339-ITAA65-014-AA04-C07'
b'34-ATAA52-009-AA01-B05',
b'340-ITAA65-015-AA04-D07'
b'341-ITAA65-016-AA04-E07'
b'342-ITAA65-017-AA04-F07'
b'343-ITAA65-018-AA04-G07'
b'344-ITAA65-019-AA04-H07'
b'345-ITAA65-020-AA04-A08'
b'346-ITAA65-021-AA04-B08'
b'347-ITAA65-022-AA04-C08',
b'348-ITAA65-023-AA04-D08'
b'349-ITAA65-024-AA04-E08'
b'35-ATAA52-010-AA01-C05'
b'350-ITAA65-025-AA04-F08'
b'36-ATAA52-011-AA01-D05'
b'37-ATAA52-012-AA01-E05'
b'38-ATAA52-013-AA01-F05'
b'381-ITAA64-031-AA04-E12'
b'382-R0AA59-032-AA04-F12'
b'385-FRAA03-001-AA05-A01'
b'386-FRAA03-002-AA05-B01',
b'387-FRAA03-004-AA05-C01'
b'388-FRAA03-005-AA05-D01'
b'389-FRAA03-006-AA05-E01',
b'39-ATAA52-014-AA01-G05'
b'390-FRAA03-009-AA05-F01'
b'391-FRAA03-010-AA05-G01'
b'392-FRAA03-011-AA05-H01',
b'393-FRAA03-012-AA05-A02'
b'394-FRAA03-013-AA05-B02'
b'395-FRAA03-014-AA05-C02'
b'396-FRAA03-016-AA05-D02'
b'397-FRAA03-017-AA05-E02'
b'398-FRAA03-019-AA05-F02'
b'399-FRAA03-020-AA05-G02',
b'4-ATAA51-004-AA01-D01',
```

```
b'40-ATAA52-015-AA01-H05'
b'400-FRAA03-021-AA05-H02'
b'401-FRAA03-022-AA05-A03'
b'402-FRAA03-023-AA05-B03'
b'403-FRAA03-025-AA05-C03'
b'404-FRAA05-001-AA05-D03'
b'405-FRAA05-002-AA05-E03'
b'406-FRAA05-003-AA05-F03',
b'407-FRAA05-004-AA05-G03'
b'408-FRAA05-006-AA05-H03'
b'409-FRAA05-007-AA05-A04',
b'41-ATAA52-016-AA01-A06'.
b'410-FRAA05-008-AA05-B04'
b'411-FRAA05-010-AA05-C04'
b'412-FRAA05-011-AA05-D04',
b'413-FRAA05-012-AA05-E04',
b'414-FRAA05-013-AA05-F04'
b'415-FRAA05-015-AA05-G04'
b'416-FRAA05-017-AA05-H04'
b'417-FRAA05-018-AA05-A05'
b'418-FRAA05-019-AA05-B05'
b'419-FRAA05-020-AA05-C05'
b'42-ATAA52-017-AA01-B06',
b'420-FRAA05-021-AA05-D05'
b'421-FRAA05-023-AA05-E05'
b'422-FRAA05-024-AA05-F05'
b'423-ESAA01-001-AA05-G05'
b'424-ESAA01-002-AA05-H05'
b'425-ESAA01-003-AA05-A06'
b'426-ESAA01-004-AA05-B06',
b'427-ESAA01-005-AA05-C06'
b'428-ESAA01-007-AA05-D06'
b'429-ESAA01-010-AA05-E06',
b'43-ATAA52-018-AA01-C06',
b'430-ESAA01-011-AA05-F06'
b'431-ESAA01-013-AA05-G06'
b'432-ESAA01-015-AA05-H06',
b'433-ESAA01-017-AA05-A07'
b'434-ESAA01-018-AA05-B07'
b'435-ESAA01-019-AA05-C07'
b'436-ESAA01-020-AA05-D07'
b'437-ESAA01-021-AA05-E07'
b'438-ESAA01-022-AA05-F07'
b'439-ESAA01-023-AA05-G07'
b'44-ATAA52-019-AA01-D06',
b'440-ESAA01-024-AA05-H07'
b'441-ESAA01-025-AA05-A08'
b'442-ITAA66-001-AA05-B08',
b'443-ITAA66-002-AA05-C08'
b'444-ITAA66-003-AA05-D08'
b'445-ITAA66-004-AA05-E08'
b'446-ITAA66-005-AA05-F08',
b'447-ITAA66-006-AA05-G08',
b'448-ITAA66-007-AA05-H08'
b'449-ITAA66-008-AA05-A09',
b'45-ATAA52-020-AA01-E06',
b'450-ITAA66-009-AA05-B09'
b'451-ITAA66-010-AA05-C09'
b'452-ITAA66-011-AA05-D09',
b'453-ITAA66-012-AA05-E09',
```

```
b'454-ITAA66-013-AA05-F09'.
b'455-ITAA66-014-AA05-G09'
b'456-ITAA66-015-AA05-H09'
b'457-ITAA66-016-AA05-A10',
b'458-ITAA66-017-AA05-B10',
b'459-ITAA66-018-AA05-C10'
b'46-ATAA52-021-AA01-F06'
b'460-ITAA66-019-AA05-D10'
b'461-ITAA66-020-AA05-E10'
b'462-ITAA66-021-AA05-F10'
b'463-ITAA66-022-AA05-G10',
b'464-ITAA66-023-AA05-H10'.
b'465-ITAA66-024-AA05-A11'
b'466-ITAA66-025-AA05-B11'
b'47-ATAA52-022-AA01-G06',
b'48-ATAA52-023-AA01-H06'
b'49-ATAA52-024-AA01-A07'
b'5-ATAA51-005-AA01-E01'
b'50-ATAA52-025-AA01-B07'
b'51-ITAA56-001-AA01-C07'
b'52-ITAA56-002-AA01-D07'
b'53-ITAA56-003-AA01-E07'
b'54-ITAA56-004-AA01-F07'
b'55-ITAA56-005-AA01-G07'
b'56-ITAA56-006-AA01-H07'
b'57-ITAA56-007-AA01-A08'
b'58-ITAA56-008-AA01-B08'
b'59-ITAA56-009-AA01-C08'
b'6-ATAA51-006-AA01-F01'
b'60-ITAA56-010-AA01-D08'
b'61-ITAA56-011-AA01-E08'
b'62-ITAA56-012-AA01-F08'
b'63-ITAA56-013-AA01-G08'
b'64-ITAA56-014-AA01-H08'
b'65-ITAA56-015-AA01-A09'
b'66-ITAA56-016-AA01-B09'
b'67-ITAA56-017-AA01-C09'
b'68-ITAA56-018-AA01-D09'
b'69-ITAA56-019-AA01-E09'
b'7-ATAA51-007-AA01-G01'
b'70-ITAA56-020-AA01-F09'
b'71-ITAA56-021-AA01-G09'
b'72-ITAA56-022-AA01-H09'
b'73-ITAA56-023-AA01-A10'
b'74-ITAA56-024-AA01-B10'
b'75-ITAA56-025-AA01-C10'
b'76-ITAA57-001-AA01-D10'
b'77-ITAA57-002-AA01-E10'
b'78-ITAA57-003-AA01-F10'
b'79-ITAA57-004-AA01-G10'
b'8-ATAA51-008-AA01-H01'
b'80-ITAA57-005-AA01-H10'
b'81-ITAA57-006-AA01-A11'
b'82-ITAA57-007-AA01-B11'
b'83-ITAA57-008-AA01-C11'
b'84-ITAA57-009-AA01-D11'
b'85-ITAA57-010-AA01-E11'
b'86-ITAA57-011-AA01-F11'
b'87-ITAA57-012-AA01-G11',
b'88-ITAA57-013-AA01-H11',
```

```
b'89-ITAA57-014-AA01-A12',
           b'9-ATAA51-009-AA01-A02'
           b'90-ITAA57-015-AA01-B12'
           b'91-ITAA57-016-AA01-C12',
           b'92-ITAA57-017-AA01-D12'
           b'93-ITAA57-018-AA01-E12'
           b'94-ITAA57-019-AA01-F12'
           b'95-ITAA57-020-AA01-G12',
           b'96-ITAA57-021-AA01-H12'
           b'97-ITAA57-022-AA02-A01'
           b'98-ITAA57-023-AA02-B01',
           b'99-ITAA57-024-AA02-C01'l
         samples_fn = '~/scratch/data/Aalba/aalba_sample_list-scikit-allel.txt'
In [70]:
         samples = pandas.read_csv(samples_fn, sep='\t')
         samples
Out [70]:
                                    ID Population
            0
                 1-ATAA51-001-AA01-A01
                                        AUT00179
                10-ATAA51-010-AA01-B02
                                        AUT00179
```

2 100-ITAA57-025-AA02-D01 ITA00271 101-SIAA62-001-AA02-E01 SVN00025 102-SIAA62-002-AA02-F01 SVN00025 427 95-ITAA57-020-AA01-G12 ITA00271 428 96-ITAA57-021-AA01-H12 ITA00271 429 97-ITAA57-022-AA02-A01 ITA00271 430 98-ITAA57-023-AA02-B01 ITA00271 431 99-ITAA57-024-AA02-C01 ITA00271

432 rows × 2 columns

```
In [71]: samples.Population.value_counts()
```

```
Out[71]:
           Population
           AUT00179
                        25
                        25
           ITA00271
                        25
           SVN00025
                        25
           SVN00023
           ITA00260
                        25
           R0U00358
                        25
           R0U00104
                        25
           R0U00389
                        25
           R0U00477
                        25
           AUT00215
                        25
           DEU00114
                        25
                        25
           FRA00006
                        25
           ITA00069
           ITA00029
                        25
                        25
           ITA00217
           FRA00019
                        19
                        19
           ESP00339
                        19
           FRA00004
           Name: count, dtype: int64
In [72]:
          populations = samples.Population.unique()
          populations
          ###This identifiers come from the metadata file
Out[72]: array(['AUT00179', 'ITA00271', 'SVN00025', 'SVN00023', 'ITA00260',
                   'ROU00358', 'ROU00104', 'ROU00389', 'ROU00477', 'AUT00215', 'DEU00114', 'FRA00006', 'ITA00069', 'FRA00019', 'FRA00004',
                   'ESP00339', 'ITA00217', 'ITA00029'], dtype=object)
```

Gt frequency function

```
In [73]:
         def plot_genotype_frequency(pc, title):
             fig, ax = plt.subplots(figsize=(24, 5))
             sns.despine(ax=ax, offset=24)
             left = np.arange(len(pc))
             palette = sns.color_palette("hls", 18)
             pop2color = {'AUT00179': palette[0],
                           'ITA00271': palette[9],
                           'SVN00025': palette[1],
                           'SVN00023': palette[10],
                           'ITA00260': palette[2],
                           'R0U00358': palette[11],
                           'R0U00104': palette[3],
                           'R0U00389': palette[12],
                           'R0U00477': palette[4],
                           'AUT00215': palette[13],
                           'DEU00114': palette[5],
                           'FRA00006': palette[14],
                           'ITA00069': palette[6],
                           'FRA00019': palette[15],
                           'FRA00004': palette[7],
                           'ESP00339': palette[16],
                           'ITA00217': palette[8],
                           'ITA00029': palette[17]}
             colors = [pop2color[p] for p in samples.Population]
             ax.bar(left, pc, color=colors)
             ax.set_xlim(0, len(pc))
```

```
ax.set_xlabel('Sample index')
ax.set_ylabel('Percent calls')
ax.set title(title)
handles = [mpl.patches.Patch(color=palette[0]),
            mpl.patches.Patch(color=palette[9]),
            mpl.patches.Patch(color=palette[1]),
            mpl.patches.Patch(color=palette[10]),
            mpl.patches.Patch(color=palette[2]),
            mpl.patches.Patch(color=palette[11]),
            mpl.patches.Patch(color=palette[3]),
            mpl.patches.Patch(color=palette[12]),
            mpl.patches.Patch(color=palette[4]),
            mpl.patches.Patch(color=palette[13]),
            mpl.patches.Patch(color=palette[5]),
            mpl.patches.Patch(color=palette[14]),
            mpl.patches.Patch(color=palette[6]),
            mpl.patches.Patch(color=palette[15]),
            mpl.patches.Patch(color=palette[7]),
            mpl.patches.Patch(color=palette[16]),
            mpl.patches.Patch(color=palette[8]),
            mpl.patches.Patch(color=palette[17])]
ax.legend(handles=handles, labels=['AUT00179', 'ITA00271', 'SVN00025'
   'ROU00358', 'ROU00104', 'ROU00389', 'ROU00477', 'AUT00215', 'DEU00114', 'FRA00006', 'ITA00069', 'FRA00019', 'FRA00004', 'ESP00339', 'ITA00217', 'ITA00029'], title='Population',
           bbox_to_anchor=(1, 1), loc='upper left')
```

Plot missing

Plot heterozygosity

PCA

```
palette = sns.color palette("hls",18)
         pop_colours = { 'AUT00179': palette[0],
                           'ITA00271': palette[9],
                           'SVN00025': palette[1],
                           'SVN00023': palette[10],
                           'ITA00260': palette[2],
                           'R0U00358': palette[11],
                           'R0U00104': palette[3],
                           'R0U00389': palette[12],
                           'R0U00477': palette[4],
                           'AUT00215': palette[13],
                           'DEU00114': palette[5],
                           'FRA00006': palette[14],
                           'ITA00069': palette[6],
                           'FRA00019': palette[15],
                           'FRA00004': palette[7],
                           'ESP00339': palette[16],
                           'ITA00217': palette[8],
                           'ITA00029': palette[17]
         }
In [77]: def plot_pca_coords(coords, model, pc1, pc2, ax, sample_population):
             sns.despine(ax=ax, offset=5)
             x = coords[:, pc1]
             y = coords[:, pc2]
             for pop in populations:
                 flt = (sample_population == pop)
                 ax.plot(x[flt], y[flt], marker='o', linestyle=' ', color=pop_colo
                          label=pop, markersize=6, mec='k', mew=.5)
             ax.set xlabel('PC%s (%.1f%%)' % (pc1+1, model.explained variance rati
             ax.set_ylabel('PC%s (%.1f%%)' % (pc2+1, model.explained_variance_rati
         def fig_pca(coords, model, title, sample_population=None):
             if sample_population is None:
                  sample_population = samples.Population
             # plot coords for PCs 1 vs 2, 3 vs 4
             fig = plt.figure(figsize=(10, 5))
             ax = fig.add_subplot(1, 2, 1)
             plot_pca_coords(coords, model, 0, 1, ax, sample_population)
             ax = fig.add_subplot(1, 2, 2)
             plot_pca_coords(coords, model, 2, 3, ax, sample_population)
             ax.legend(bbox_to_anchor=(1, 1), loc='upper left')
             fig.suptitle(title, y=1.02)
             fig.tight_layout()
In [78]:
         ac2 = gt_biallelic.count_alleles()
         ac2
```

out[78]: <AlleleCountsChunkedArray shape=(171143, 2) dtype=int32 chunks=(42786, 2)
nbytes=1.3M cbytes=348.7K cratio=3.8 compression=blosc compression_opts=
{'cname': 'lz4', 'clevel': 5, 'shuffle': 1, 'blocksize': 0} values=zarr.core.Array>

	0	1		
0	862	2		
1	850	14		
2	858	6		
•••				
171140	861	3		
171141	860	4		
171142	863	1		

```
In [79]: flt = (ac2[:, :2].min(axis=1) > 1)
   gf = gt_biallelic.compress(flt, axis=0)
   gn = gf.to_n_alt()
   gn
```

```
In [80]: coords1, model1 = allel.pca(gn, n_components=10, scaler='patterson')
```

In [81]: fig_pca(coords1, model1, 'Figure 1. Conventional PCA.')

Figure 1. Conventional PCA.

