Mathematical Statistics I Recitation Session 2

Definition. Let X_1, X_2, \ldots, X_n denote a sample of size n from a distribution that has pdf or pmf $f(x;\theta)$, $\theta \in \Omega$. Let $Y = u(X_1, X_2, \ldots, X_n)$ be a statistic whose pdf or pmf is $f_Y(y;\theta)$. Then Y is a sufficient statistic for θ if and only if

$$\frac{f(x_1, x_2, \dots, x_n; \theta)}{f_Y[u(x_1, x_2, \dots, x_n); \theta)]} = H(x_1, x_2, \dots, x_n)$$

does not depend upon $\theta \in \Omega$, where $f(x_1, x_2, \dots, x_n; \theta)$ is the joint pdf or pmf of X_1, X_2, \dots, X_n .

Exercise. Let X_1, X_2, \ldots, X_n be a random sample from Poisson distribution $P(\lambda), \lambda > 0$. Show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for λ .

Exercise. Let X_1, X_2, \ldots, X_n be a random sample from normal distribution $N(0, \theta), \theta > 0$. Show that $\sum_{i=1}^{n} X_i^2$ is a sufficient statistic for θ .

Theorem. (Neyman). Let X_1, X_2, \ldots, X_n denote a sample from a distribution that has pdf or pmf $f(x; \theta)$, $\theta \in \Omega$. The statistic $Y = u(X_1, \ldots, X_n)$ is a sufficient statistic for θ if and only if we can find two nonnegative functions, k_1 and k_2 , such that

$$f(x_1, x_2, \dots, x_n; \theta) = k_1 [u(x_1, x_2, \dots, x_n); \theta] k_2 (x_1, x_2, \dots, x_n),$$

where $k_2(x_1, x_2, ..., x_n)$ does not depend upon θ .

Exercise. Let X_1, X_2, \ldots, X_n be a random sample of size n from a geometric distribution that has pmf $f(x; \theta) = (1 - \theta)^x \theta, x = 0, 1, 2, \ldots, 0 < \theta < 1$, zero elsewhere. Show that $\sum_{i=1}^n X_i$ is a sufficient statistic for θ .

Exercise. Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with pdf

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1} & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

where $0 < \theta$. Show that $\prod_{i=1}^{n} X_i$ is a sufficient statistic for θ .

Theorem. Let X_1, X_2, \ldots, X_n denote a sample from a distribution that has pdf or pmf $f(x; \theta)$, $\theta \in \Omega$. If a sufficient statistic $Y = u(X_1, X_2, \ldots, X_n)$ for θ exists and if a maximum likelihood estimator $\hat{\theta}$ of θ also exists uniquely, then $\hat{\theta}$ is a function of $Y = u(X_1, X_2, \ldots, X_n)$.

Exercise. Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with pdf

$$f(x; \theta) = \begin{cases} \theta e^{-\theta x} & 0 < x < \infty, \ \theta > 0 \\ 0 & \text{elsewhere} \end{cases}$$

- (a) Show that $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .
- (b) Show that the maximum likelihood estimator $\hat{\theta}$, is a function of Y.