## **DAILY ASSESSMENT FORMAT**

| Date:       | 28-05-2020                                                           | Name:                  | Neha T        |
|-------------|----------------------------------------------------------------------|------------------------|---------------|
| Course:     | Logic Design                                                         | USN:                   | 4AL18EC035    |
| Topic:      | 1.Analysis of clocked sequential circuits     2.Digital clock design | Semester<br>& Section: | 4th sem A sec |
| Github      | Neha-T                                                               |                        |               |
| Repository: |                                                                      |                        |               |



## Report – Report can be typed or handwritten for up to two pages.

- ➤ Analysis of Clocked sequential circuits
  - Under this session I learnt how to approach sequential circuits
  - Analysis of clocked sequential circuits with D flip flop were discussed under this session
  - Some flip-flop have asynchronous inputs that are used to force the flip flop to a particular state independently of the clock
  - The input that sets the flip flop tp 1 present or direct set
  - The input that clears the flip flop to 0 clear or direct reset
  - When power is turned on in a digital system, the state of the flip flop is unknown
  - The direct inputs are useful for bringing all the flip flops in the system to a known starting state prior to the clocked operation
  - Basically there are 3 steps
    - **★** Find out the input and output equations
    - ★ State table
    - ★ State diagram

## Digital clock design

- A digital clock is a type of clock that displays the time digitally as opposed to an analogue clock, where the time is indicated by the positions of rotating hands.
- Digital clocks are often associated with electronic drives, but the "digital" description refers only to the display, not to the drive mechanism.
- Construction -
  - ★ Digital clocks typically use the 50 or 65 hertz oscillation of AC power or a 32,768 hertz crystal oscillator as in a quartz clock to keep time.
  - ★ Most digital clocks display the hour of the day in 24-hour format; in the United States and a few other countries, a commonly used hour sequence option is 12-hour format (with some indication of AM or PM).
  - ★ Some timepieces, such as many digital watches, can be switched between 12-hour and 24-hour modes.
  - ★ Emulations of analog-style faces often use an LCD screen, and these are also sometimes described as "digital

Date: 28-05-2020 Name: Neha T

Course: Python USN: 4AL18EC035
Topic: Object Oriented Programming Semester 4th sem A sec

& Section:









| Report – Report can be typed or handwritten for up to two pages.                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Object Oriented Programming                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>■ Briefing of Object Oriented Programming</li> <li>★ Type of computer programming (software design) in which programmers define the data type of a data structure, and also the types of operations (functions) that can be applied to the data structure</li> <li>★ Objects can inherit characteristics from other objects</li> </ul> |
| Under this session                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>★ Turning this Application into OOP style</li> <li>★ Creating a Bank Account Object</li> <li>★ Inheritance</li> <li>★ OOP Glossary</li> <li>★ Practicing GUI in OOP Design</li> </ul>                                                                                                                                                  |
| were discussed                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |