Perception and Navigation for Autonomous Rotorcraft

S. Saeedi, A. Nagaty, C. Thibault, M. Trentini, and H. Li

THE UNIVERSITY OF NEW BRUNSWICK September 2014

Outline:

- 1. Introduction
- 2. Rotorcraft Autonomy
- 3. Experiments
- 4. Conclusion

Quadrotor Rotorcraft

Advantages:

- Maneuverability
- Vantage Point

Applications:

- Fast First-responder
- Monitoring
- Surveillance

Problems:

- Nonlinear and Fast Dynamics and Vibration Effects
- Limited Payload
- **Odometry Limitation**
- Perception
- Navigation

Introduction 000

Required tasks to accomplish navigation. Each level relies on information received from the next higher level.

Autonomous Navigation

Tasks that need to be accomplished towards map learning.

COBRA quadrotor

Simulated quadrotor

Proposed perception and autonomous navigation.

An example of the wavefront algorithm. a) A simulated environment. b) Obstacles are dilated. c) A wave is generated. d) A path is designed.

A sample mission composed of basic navigation behaviors.

•00

Experiment with COBRA quadrotor. a) The test environment. b) The developed map and trajectory of the robot.

000

Other Experiments:

- Simulation in ROS/Gazebo
- Unamend Ground Vehicle
- DraganFlyer X8
- Quadrotor in an Indoor Environment
- Autonomous Entry and Exit
- Outdoor Unstructured Environment

Rotorcraft Autonomy:

- SLAM
- Path Planning
- Exploration
- Autonomous Behaviors

Future Work:

- Multiple quadrotors
- More Behaviours
- 3D navigation

Thank You.