Systematische Studie der Peakextraktion neutraler Pionen in pp-Kollisionen bei $\sqrt{s}=13$ TeV mit Hilfe von Templates

Bachelorarbeit

vorgelegt von

Marvin Hemmer

am Institut für Kernphysik

dem Fachbereich Physik

der Goethe-Universität Frankfurt am Main
Februar 2019

Erstgutachter: Prof. Dr. H. Büsching

Zweitgutachter: F. Pliquett

Inhaltsverzeichnis

1	The	oretische Grundlagen	3
	1.1	Standardmodell der Elementarteilchenphysik	3
	1.2	Starke Wechselwirkung und das Quark-Gluon-Plasma	4
	1.3	Proton-Proton-Kollisionen	6
	1.4	Messung neutraler Pionen zur Untersuchung des Quark-Gluon-Plasma	7
2	Exp	erimenteller Aufbau	10
	2.1	ALICE	10
	2.2	Elektromagnetische Kaloriemeter EMCal	12
3	Me	sung neutraler Pionen mit Hilfe des EMCal	14
	3.1	Datenauswahl	14
		3.1.1 Datensatz	14
		3.1.2 Clusterauswahlkriterien	14
	3.2	Clusterkombination	15
	3.3	Abschätzung des unkorrelierten Untergrunds	18
	3.4	Abschätzung des korrelierten Untergrunds mit der Standardmethode	20
	3.5	Peakextraktion mit Hilfe von Parametrisierungen von Templates	22
		3.5.1 Template des Signals	22
		3.5.2 Template des korrelierten Untergrunds	23
		3.5.3 Parametriesierungsmethode	26
		3.5.4 Abzug des korrelierten Untergrunds und Integration des Signals	29
4	Kor	rigierter Yield	32
	4.1	Akzeptanz und Effizienz	32
	4.2	Systematische Unsicherheit	33
	4.3	Vergleich mit Standardmethode	36
5	Zus	ammenfassung und Ausblick	37
$\mathbf{A}_{\mathbf{j}}$	ppen	dices	38

Einleitung

1 Theoretische Grundlagen

1.1 Standardmodell der Elementarteilchenphysik

Im Standardmodell der Elementarteilchenphysik werden die sogenannten Elementarteilchen in zwei Gruppen, die sogenannten Quarks und die sogenannten Leptonen, unterteilt. Als Elementarteilchen werden alle Teilchen bezeichnet, die nach heutigem Kenntnisstand nicht weiter teilbar sind. Beide Gruppen beinhalten nach aktuellem Wissensstand jeweils sechs Teilchen, die sechs Quarks up(u), down(d), charm(c), strange(s), top(t) und bottom(b) und die sechs Leptonen Elektron (e), Elektron-Neutrino (ν_e) , Myon (μ) , Myon-Neutrino (ν_μ) , Tau (τ) und Tau-Neutrino (ν_τ) . Tabelle 1 listet die Elementarteilchen, geordnet nach ihrer sogenannten Generation und ihrer elektrischen Ladung, auf.

Neben der elektrische Ladung gibt es im Rahmen des Standardmodells noch zwei weitere Ladungen, die schwache Ladung und die starke Ladung, auch Farbladung genannt. Trägt ein Teilchen eine Ladung, so koppelt das Teilchen an eine sogenannte Wechselwirkung, die beschreibt, wie Teilchen sich gegenseitig beeinflussen können. Jede Ladung lässt sich dabei einer Wechselwirkung zuordnen, die elektrische Ladung der elektromagnetischen Wechselwirkung, die schwache Ladung der schwachen Wechselwirkung und die Farbladung der starken Wechselwirkung.

Wechselwirkungen zwischen zwei Teilchen werden durch den Austausch von sogenannten Austauschteilchen vermittelt. Zu den heute bekannten Austauschteilchen gehören das Photon (γ) , das Gluon (g), das Z-Boson (Z^0) und die W-Bosonen (W^{\pm}) . Tabelle 2 zeigt die Zuordnung der Austauschteilchen zu ihrer entsprechende Wechselwirkung.

Für die vorliegenden Arbeit spielen die starke Wechselwirkung, Quarks, Gluonen und die Farbladung eine wichtige Rolle. Deshalb wird im folgenden Abschnitt genauer auf diese Themen einge-

Generation	I	II	III	el. Ladung [e]
Quarks	up(u)	$\operatorname{charm}\ (c)$	top(t)	+2/3
Quarks	down(d)	strange (s)	bottom (b)	-1/3
Lontonon	Elektron (e)	$Myon(\mu)$	$\mathrm{Tau}(au)$	-1
Leptonen	Elektron-Neutrino (ν_e)	Myon-Neutrino (ν_{μ})	Tau-Neutrino (ν_{τ})	0

Tabelle 1: Elementarteilchen geordnet nach ihrer Generation und ihrer elektrische Ladung. [T⁺18]

Wechselwirkung	elektromagnetisch	stark	schwach	
Austauschteilchen	Photon (γ)	Gluon (g)	W^{\pm}, Z^0 - Bosonen	

Tabelle 2: Austauschteilchen geordnet zu ihrer entsprechenden Wechselwirkung

gangen.

1.2 Starke Wechselwirkung und das Quark-Gluon-Plasma

Wie eben diskutiert, koppelt die starke Wechselwirkung an Teilchen, die Farbladung tragen. Die Farbladung hat hierbei drei mögliche Zustände: rot, blau und grün. Dabei spielt der Zustand der Farbladung für die Stärke der starken Wechselwirkung keine Rolle. Zusätzlich zu den drei Zuständen der Farbladung gibt es auch drei Zustände der Antifarbladung, antirot, antiblau und antigrün. Die Kombination der drei (Anti-)Farbladungen, oder die Kombination von Farbladung mit entsprechender Antifarbladung, ergibt, angelehnt an die Farblehre, weiß. Teilchen mit einer solchen

sprechender Antifarbladung, ergibt, angelehnt an die Farblehre, weiß. Teilchen mit einer solchen Kombination der Farbladung ergeben entsprechend nach außen hin farbneutralen Teilchen, auch wenn sie aus farbgeladenen Teilchen aufgebaut sind.

Quarks, Antiquarks und Gluonen tragen Farbladung, wodurch sie an der starken Wechselwirkung teilnehmen. Unter anderem bindet die starke Wechselwirkung Quarks und Antiquarks zu sogenannten Hadronen, die wiederum in sogenannte Baryonen, aufgebaut aus drei Quarks, und sogenannte Mesonen, aufgebaut aus einem Quark-Antiquark-Paar und entsprechende Antiteilchen, unterteilt werden.

Die Wechselwirkung zur Bindung eines Quark-Antiquark-Paars folgt dabei einem Potential V(r) [Büs18]:

$$V(r) = -\frac{4}{3}\frac{\alpha_{\rm s}}{r} + kr \tag{1}$$

Der erste Teil $-\frac{4}{3}\frac{\alpha_{\rm s}}{r}$ verhält sich proportional zur sogenannten Kopplungskonstanten der starken Wechselwirkung $\alpha_{\rm s}$ und antiproportional zum Abstand r zwischen Quark und Antiquark.

Der zweite Teil des Potentials +kr weist eine lineare Abhängigkeit von r auf. Der Vorfaktor k wird als Stringspannung bezeichnet und liegt in der Größenordnung von etwa 1 GeV/fm. Für große Abstände dominiert der lineare Teil. Das Feld der starken Wechselwirkung zwischen den beiden Teilchen wird immer stärker und wird deshalb als String bezeichnet. Für kleine r nähert sich V(r) einem Coulombpotential.

Um den Abstand zwischen sich zu vergrößern, müssen die zwei Teilchen immer mehr Energie besitzen, die insgesamt gleich der Energie des *String* entspricht. Ab einem bestimmten Abstand reicht die Energie in dem *String* aus, um ein weiteres Quark-Antiquark-Paar zu erzeugen. In dem String

Abbildung 1: Phasendiagramm stark wechselwirkender Materie in Abhängigkeit der Baryonendichte ρ und der Temperatur T. [Rog17]

bildet sich ein neues Quark-Antiquark-Paar, das sich mit dem ursprüngliche Quark-Antiquark-Paar zu zwei Quark-Antiquark-Paaren kombiniert. Es liegen dann zwei Quark-Antiquark-Paare vor, die jeweils aus einem ursprünglichen Teilchen und einem neu entstandenen Teilchen bestehen. Deshalb können Quarks nur in gebundenen Zuständen gemessen werden. Dieses Phänomen wird als Confinement bezeichnet. Aus dem Confinement folgt, dass in der Natur nur farbneutrale Teilchen frei vorkommen, sprich (Anti-)Quarks bilden immer andere Teilchen.

Anders als die Bezeichnung vermuten lässt, ist α_s nicht konstant, sondern abhängig von der Auflösung, mit der die Wechselwirkung betrachtet wird. Je genauer die Auflösung wird, umso kleiner wird α_s . Aufgrund dieses Verhaltens von α_s bezüglich der Auflösung nennt man α_s auch laufende Kopplungskonstante. Farbgeladene Teilchen spüren für eine genaue Auflösung beziehungsweise kleines α_s nur eine kleine Wechselwirkung. Halten sich viele (Anti)Quarks und Gluonen auf kleinem Raum auf, so befindet sich ein Teilchen immer nah an einem anderen Teilchen. Dadurch können sich die Teilchen innerhalb eines solchen Zustands quasi frei bewegen. Den Zustand, wenn sich farbgeladene Teilchen frei bewegen können, nennt man asymptotische Freiheit.

Eine theoretische Beschreibung eines solchen Zustands ist das sogenannte Quark-Gluon-Plasma (QGP). Das QGP entspricht einem Medium mit hoher Dichte von (Anti)Quarks und Gluonen und beziehungsweise oder hoher Temperatur.

Ein solcher heißer und dichter Zustand kann kurz nach der Kollision von zwei hochenergetischen

Atomkernen entstehen [Kar06]. In der Überlappregion der beiden Atomkerne bildet sich ein QGP aus, das expandiert und abkühlt. Durch das Expandieren und Abkühlen ändert sich der Zustand des Mediums und die farbgeladenen Teilchen schließen sich in der sogenannten Hadronisierung wieder zu Hadronen zusammen. Bei dem beschriebene Übergang des QGP in hadronische Materie handelt es sich um einen Phasenübergang stark wechselwirkender Materie.

Für die Erforschung des QGP spielt das Phasendiagramm stark wechselwirkender Materie eine wichtige Rolle. Abbildung 1 skizziert das Phasendiagramm stark wechselwirkender Materie in Abhängigkeit von der Baryonendichte $\mu_{\rm B}$ und der Temperatur T. Bei geringem $\mu_{\rm B}$ und niedrigem T, wie etwa Raumtemperatur, sind alle Quarks und Gluonen in Hadronen gebunden. Erhöht man T oder beide Größen stark, wird ein Übergang in das QGP erwartet, in dem sich die Quarks und Gluonen quasi frei bewegen können. Außerdem muss die Energiedichte groß genug sein, um ein QGP erzeugen zu können, weshalb davon ausgegangen wird, dass im frühen Universum kurz nach dem Urknall die gesamte Materie als QGP vorlag [Kap00]. Es wird außerdem davon ausgegangen, dass sich dieses bei Kern-Kern-Kollisionen im Labor ausbilden kann, wie sie beim ALICE Experiment untersucht werden.

Zum besseren Verständnis von Kern-Kern-Kollisionen werden auch Proton-Proton-Kollisionen (pp-Kollisionen) studiert. Letztere werden in dieser Arbeit analysiert und im folgenden Abschnitt näher erläutert.

1.3 Proton-Proton-Kollisionen

Neben der direkten Referenz können in der Untersuchung von pp-Kollisionen aber auch Informationen über die stark wechselwirkende Materie beziehungsweise über die starke Wechselwirkung selbst gewonnen werden. pp-Kollisionen haben hierbei den Vorteil, dass sie besser theoretisch verstanden sind als Kern-Kern-Kollisionen. Dabei führt man unter anderem die sogenannte Partonendichtefunktion der Protonen ein, die angibt, wie wahrscheinlich es ist, ein (Anti)Quark oder Gluon mit einem bestimmten Impulsanteil des Protons vorzufinden. Dies wiederum ermöglicht genauere theoretische Beschreibungen von pp-Kollisionen, bei denen im engeren Sinne die Partonen, also die (Anti)Quarks und beziehungsweise oder Gluonen, miteinander stoßen.

Bei einem solchen Stoß entstehen viele neue Teilchen. Die Produktionsrate der neuen Teilchen wird dabei in einem Spektrum in Abhängigkeit vom Transversalimpuls angegeben. Der Transversalimpuls gibt dabei den Impulsanteil an, der senkrecht zur Strahlachse eines Kollisionsexperi-

ments liegt. Der Transversalimpuls wird deshalb betrachtet, da die kollidierenden Teilchen bei einem solchen Experiment keinen Transversalimpuls besitzen und der gesamte Transversalimpuls der entstandenen Teilchen deshalb aus den physikalischen Prozessen während und nach der Kollision kommt.

Ein mögliches Teilchen, das in Kollisionen produziert wird, ist das neutrale Pion. Dieses wird in dieser Arbeit analysiert und der Yield des neutralen Pions in pp Kollisionen extrahiert.

1.4 Messung neutraler Pionen zur Untersuchung des Quark-Gluon-Plasma

Das neutrale Pion π^0 besteht aus einem Quark-Antiquark-Paar und gehört damit zu den Mesonen. Genauer lässt sich das π^0 als eine Überlagerung zweier quantenmechanischer Zustände, bestehend aus u und d Quarks und den entsprechenden Antiquarks, beschreiben:

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle - |d\bar{d}\rangle \right)$$
 (2)

Mit einer Masse von $m_{\pi^0}=(134,9770\pm0,0005)\,\mathrm{MeV/c^2}$ [T⁺18] stellt das π^0 das leichteste Meson dar. Ein π^0 zerfällt zu $(98,823\pm0,034)\,\%$ nach einer mittleren Weglänge von $c\tau=(25,5\pm0,5)\,\mathrm{nm}$ [T⁺18] in zwei Photonen.

Beim ALICE Experiment in Kern-Kern-Kollisionen werden unter anderem direkte Photonen untersucht. Als direkte Photonen werden solche Photonen bezeichnet, die in der Kollision entstehen und nicht aus Zerfällen stammen. Direkte Photonen können allerdings nicht direkt bestimmt werden. Stattdessen werden alle Photonen, die produziert wurden, gemessen und die Anzahl Photonen aus Zerfällen werden von der Anzahl aller Photonen subtrahiert. Dazu muss zuerst die Anzahl der Photonen, die aus Zerfällen kommen, bestimmt werden, wozu wiederum die Yields von Teilchen extrahiert werden müssen, die in Photonen zerfallen. Aufgrund der hohen Produktionsrate von π^0 in Kern-Kern-Kollisionen und der hohen Zerfallswahrscheinlichkeit in zwei Photonen stellen Photonen aus π^0 -Zerfällen den größten Anteil von Zerfallsphotonen.

Direkte Photonen können auch in pp-Kollisionen betrachtet werden. In pp-Kollisionen gibt es dabei ebenfalls eine hohe Produktionsrate von π^0 , weshalb die Analyse von π^0 , für die Bestimmung von direkten Photonen essentiell ist. Die Analyse von π^0 in pp-Kollisionen liefert somit eine direkte Referenzgröße in Form des Yields von π^0 , als auch eine Referenz für direkte Photonen. Das Verhältnis der Produktionsraten von π^0 in Kern-Kern-Kollisionen gegenüber der Produktionsraten von π^0 in

pp-Kollisionen kann so beispielsweise Aufschluss geben auf den Energieverlust von Teilchen innerhalb des QGP. Deshalb werden in dieser Arbeit die Produktion von π^0 in pp-Kollisionen analysiert. Gemessen werden bei ALICE allerdings nicht π^0 direkt, sondern nur die Photonen, aufgrund der kurzen Lebensdauer des π^0 . Deshalb müssen π^0 über Messungen der Photonen rekonstruiert werden. Durch geeignete Messungen können Energie und Position der beiden Photonen bestimmt werden. Durch die Information über die Position der Photonen kann auch der Zerfallswinkel zwischen den beiden Photonen $\theta_{\gamma\gamma}$ bestimmt werden. Die Energien $E_{\gamma 1}$ und $E_{\gamma 2}$ der beiden Photonen sowie der Zerfallswinkel $\theta_{\gamma\gamma}$ werden benötigt, um die invariante Masse $m_{\rm inv}$ eines π^0 zu berechnen. Für diese gilt:

$$m_{\rm inv} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1 - \cos(\theta_{\gamma \gamma}))}$$
 (3)

Neben der Bestimmung der invarianten Masse kann der Impuls der Photonen aufgeteilt werden, in den Transversalimpuls und den Longitudinalimpuls. Dabei wird in dieser Arbeit nur der Transversalimpuls $p_{\rm T}$ des π^0 betrachtet für den gilt:

$$p_{T\pi^0} = \sqrt{(p_{x1} + p_{x2})^2 + (p_{y1} + p_{y2})^2}$$
(4)

Die Indizes x und y beziehen sich auf die Raumrichtungen.

In einer Kollision entstehen allerdings mehrere π^0 auf einmal. Die Information, welche Photonen dabei aus welchem Zerfall stammen, geht bei der Messung verloren. Deshalb werden alle gemessenen Photonen miteinander kombiniert, wodurch einerseits π^0 rekonstruiert werden, andererseits werden aber auch Photonenpaare miteinander kombiniert, die nicht aus einer Zerfallskette stammen, oder nicht aus einem π^0 -Zerfall. Um die Anzahl an Photonenpaaren, die nicht aus einem π^0 -Zerfall kommen, abzuschätzen, werden in dieser Arbeit sogenannte Templates aus einer Monte Carlo Simulation verwendet. Für eine detailliertere Beschreibung von Monte Carlo Simulationen sei an dieser Stelle auf [Sch19] verwiesen. Templates beschreiben in dieser Analyse Verteilungen der invarianten Masse, die aus Monte Carlo Simulationen stammen. Durch das Verwenden von Templates in dieser Arbeit kann das theoretische Verständnis von pp-Kollisionen überprüft und vertieft werden. Eine genauere Erläuterung der Templates die für diese Arbeit verwendet werden, folgt in den Abschnit-

ten 3.5.1 und 3.5.2.

Nachdem die theoretischen Grundlagen für die Analyse von π^0 dargelegt wurden, wird in Abschnitt 2 der experimentelle Aufbau näher erläutert.

2 Experimenteller Aufbau

In dieser Arbeit werden Messdaten des ALICE Experiments verwendet. Das ALICE Experiment befindet sich am LHC, dem weltweit größte Beschleunigerring, am Kernforschungszentrum CERN. Im LHC werden Teilchen, hauptsächlich Blei-Ionen und Protonen auf fast Lichtgeschwindigkeit beschleunigt und zum Kollidieren gebracht. Die Beschleunigung geschieht durch elektrische Felder, während Dipolmagnete die beschleunigten Teilchen auf einer Kreisbahn halten. Kollisionen finden im LHC Ring an vier unterschiedlichen Stellen statt, wo sich die Strahlrohre, in denen Teilchen gegenläufig beschleunigt werden, kreuzen. An einem dieser Punkte befindet sich das ALICE Experiment.

Die Beschleunigung auf nahezu Lichtgeschwindigkeit ermöglicht hohe Schwerpunktsenergieen \sqrt{s} zu erreichen. Dabei spiegelt \sqrt{s} die Energie wieder, die das System in einer Kollision zur Verfügung hat. Dementsprechend können mehr und auch schwerere Teilchen bei höherem \sqrt{s} in einer Kollision entstehen. Ein hohes \sqrt{s} hat auch eine höhere Temperatur des Mediums, was bei einer solchen Kollision entstehen kann, zur Folge. So befinden sich Messungen des ALICE Experiments am LHC im Phasendiagramm stark wechselwirkender Materie, wie es in Abbildung 1 skizziert ist, bei hohen Temperaturen und einer geringen Baryonendichte. \sqrt{s} hängt dabei von der Energie der kollidierende Teilchen ab. Für Kollisionsexperimente zweier identischer Teilchen mit gleicher Energie E gilt:

$$\sqrt{s} = 2E \tag{5}$$

Die in dieser Arbeit verwendeten Daten stammen von pp-Kollisionen bei $\sqrt{s}=13$ TeV.

2.1 ALICE

Das ALICE Experiment wurde speziell zur Untersuchung des Quark-Gluonen-Plasmas konzipiert und gebaut. Abbildung 2 zeigt schematisch einen Querschnitt des ALICE Experiments. Der zylinderförmige Aufbau um das Kollisionszentrum ist typisch für Kollisionsexperimente.

Um die zentralen Detektoren herum befindet sich ein Solenoid-Magnet, der ein Magnetfeld von 0,5 T erzeugt, wodurch geladene Teilchen auf gekrümmte Flugbahnen gelenkt werden. Mit Hilfe der Radien der gekrümmten Flugbahnen können geladenen Teilchen identifiziert werden. Im Folgenden werden die für diese Analyse wichtigsten Detektoren kurz eingeführt.

2.1 ALICE 11

Abbildung 2: Schematische Darstellung des Querschnitts des ALICE Experiments. [Wik18]

Das Inner Tracking System, kurz ITS, befindet sich am nächsten zum Strahlrohr des ALICE Experiments und besteht aus sechs Schichten. In dieser Analyse wird das ITS zur Abschätzung des Kollisionspunktes, dem sogenannten primären Vertex, benutzt.

Die **Time Projection Chamber**, kurz TPC, umschließt das ITS und dient als Detektor der Spurrekonstruktion. Geladene Teilchen hinterlassen in der TPC Spuren, anhand dieser können die geladene Teilchen identifiziert werden.

Das V0-Detektorsystem besteht aus zwei einzelnen Detektoren, welche sich jeweils an einem Ende des ITS um das Strahlenrohr befinden. Messen beide V0 Detektoren eine bestimmte Mindestanzahl an Teilchen, so wird eine Aufzeichnung des Ereignisses (engl. event) gestartet. Die Anforderungen für die Messung eines events werden allgemein als trigger bezeichnet. Dass die V0-Detektoren eine Mindestanzahl an Teilchen detektieren, entspricht einer Mindestanforderung an das event. Entsprechend wird diese Mindestanforderung minimum-bias trigger und das event minimum-bias event genannt.

Genau wie das V0-Detektorsystem bestehen das **T0-Detektorsystem** aus zwei einzelnen Detektoren, die sich an den Enden des ITS befinden. Die T0-Detektoren sind auf präzise Zeitmessungen spezialisiert und legen den Zeitpunkt der Kollision fest.

Das **Elektromagnetisches Kalorimeter**, kurz EMCal, befindet sich am äußersten Rand des zentralen Detektors. Da in dieser Analyse Messungen des EMCals verwendet werden, wird der Aufbau und die Funktionsweise des EMCals im folgenden Abschnitt genauer erläutert.

2.2 Elektromagnetische Kaloriemeter EMCal

In einem Abstand von circa 4,5 m vom Kollisionspunkt deckt das EMCal einen Azimuthalwinkelbereich von $\phi=107^\circ$ und einen Pseudorapiditätsbreich von $|\eta|\leq 0,7$ ab. Das EMCal besteht aus zwölf sogenannten Supermodulen, zehn normal großen und zwei kleineren. Ein normal großes Supermodul besteht aus 24 × 48 Zellen, ein kleineres Supermodul aus 8 × 48 Zellen. Insgesamt hat das EMCal also 12288 Zellen, die hauptsächlich Photonen, Elektronen und Positronen detektieren und dabei die Energie dieser Teilchen messen. Eine einzelne Zelle besteht aus abwechselnd 77 Szintillatoren- und 76 Bleischichten. In den Bleischichten entstehen sogenannten elektromagnetische Schauer, indem eintreffende Photonen durch Paarerzeugung in ein Elektron und ein Positron konvertieren, die wiederum durch Bremsstrahlung weitere Photonen abstrahlen. Die Szintillatoren werden durch die Photonen angeregt und geben ein messbares Lichtsignal ab. Alle Szintillatorschichten einer Zelle sind über einen Lichtleiter mit einem Photomultiplier verbunden. Der Photomultiplier wandelt das Lichtsignal in ein elektrisches Signal um, das proportional zur detektierten Energie der Zelle ist.

Jeder elektromagnetischer Schauer besitzt eine gewisse Ausdehnung, die über den sogenannten Molière-Radius $R_{\rm M}$ definiert ist. Der Molière-Radius gibt den Radius passend zu einem Zylinder an, in dem 90% der gesamten Energie eines Schauers vom Detektor gemessen wird. Für das EM-Cal beträgt der Moliére-Radius $R_{\rm M}=3.7$ cm, während die quadratischen Zellen eine Seitenlänge von 6 cm besitzen. Der Schauer eines einzelnen Teilchens erstreckt sich also über mehrere Zellen. Benachbarte Zellen werden durch einen Algorithmus zu sogenannten Clustern zusammengefasst. Algorithmen zur Rekonstruktion von Clustern werden als Clusterizer bezeichnet. In der hier vorliegenden Analyse wird der sogenannte v2-Clusterizer verwendet. Dieser sucht zunächst nach der Zelle mit der größten deponierten Energie, die noch keinem Cluster angehört und eine Schwellenenergie von typischerweise 600 MeV besitzt. Von dieser Startzelle ausgehend werden die Nachbarzellen abgesucht und zum Cluster hinzugefügt, wenn sie die Mindestenergie von typischerweise 100 MeV überschreiten, aber eine geringere Energie als die Startzelle haben und ebefalls keinem weiteren Cluster zugeordnet sind. Dies Suche nach Nachbarzellen geschieht dabei iterativ solange, bis keine

Abbildung 3: Schematische Darstellung eines *Clusters*. Die Ellipsenhalbachsen M_{20} und M_{02} definieren eine Ellipse, die alle orange markierten Zellen, die zu einem *Cluster* in einem Kalorimeter mit quadratischen Zellen gehören, umfasst. [[Mec18]]

Nachbarzellen die nötigen Kriterien erfüllen um dem Cluster hinzugefügt zu werden. Anschließend wird eine neue Startzelle für ein neues Cluster gesucht und der Prozess beginnt von vorne. Abbildung 3 zeigt eine schematische Darstellung eines Clusters. Alle orange eingefärbten Zellen gehören dabei zu dem Cluster. Die eingezeichnete Ellipse, beziehungsweise ihre Halbachsen M_{02} und M_{20} , helfen dabei, das Cluster zu parametrisieren. Die Form eines Clusters und damit die Größe von M_{02} und M_{20} unterscheidet sich abhängig davon, ob das Cluster durch ein Photon entstanden ist oder nicht. Dadurch kann M_{02} benutzt werden, um Cluster, die durch Photonen entstanden sind, zu identifizieren. Für M_{02} gilt:

$$M_{02} = \frac{1}{2} \sum_{i} E_i(x_i^2 + y_i^2) + \sqrt{\frac{1}{4} \sum_{i} (x_i^2 + y_i^2)^2 + \left(\sum_{i} E_i x_i y_i\right)}$$
 (6)

Wobei E_i für die Energie einer Zelle und x_i und y_i für die relative Position einer Zelle zur Startzelle steht.

Nachdem die Grundlagen zur Theorie und dem Experiment erklärt wurden, wird im nächsten Abschnitt die Analyse erläutert. Dazu wird zunächst die Auswahl der Daten, die in dieser Arbeit benutzt werden, aufgeführt.

3 Messung neutraler Pionen mit Hilfe des EMCal

3.1 Datenauswahl

3.1.1 Datensatz

In der in dieser Arbeit vorstellten Analyse werden Daten von pp-Kollisionen bei $\sqrt{s}=13$ TeV verwendet, die mit dem ALICE Experiment gemessen wurden. Datensätze des ALICE Experiments werden in Perioden unterteilt, die ungefähr einem Monat Aufnahmezeit entsprechen. Für die Perioden gibt es eine Namenskonvention: LHC[Jahr][Perioden-Index]. Das Jahr wird dabei nicht vollständig angegeben, sondern nur die beiden letzten Ziffern. Bei dem Perioden-Index handelt es sich um einen Kleinbuchstaben. Er sortiert die Perioden absteigend, beginnend bei a. Die Perioden die in dieser Analyse verwendet werden sind LHC16h,i,j,k,l. Diese umfassen zusammen circa 250 Millionen minimum-bias events.

Für die Monte Carlo Simulation wurde der Ereignisgenerator PYTHIA 8 mit dem tune Monash 2013 benutzt [Sch19]. Außerdem wurde GEANT3 verwendet um die möglichen Interaktionen der in der Kollision entstandenen Teilchen mit dem ALICE Experiment zu simulieren [BHHL78]. Die Monte Carlo Simulation wurde dabei an die Perioden LHC16h,i,j,k,l angepasst. Insgesamt umfasst die Monte Carlo Simulation etwa 280 Millionen minimum-bias events.

3.1.2 Clusterauswahlkriterien

An die *Cluster* aus dem gewählten Datensatz werden unterschiedliche Anforderungen gestellt. Tabelle 3 listet die in dieser Analyse gestellten Anforderungen auf.

Der zeitliche Rahmen, in dem die *Cluster* enstehen sind, wird eingeschränkt, um *Cluster* von Teilchen auszuschließen, die nicht von einem *event* stammen. Die *Bad Cell Map* wird verwendet

Clusterauswahlkriterien					
Zeit	$-30 \text{ ns} < t_{\text{clust}} < 35 \text{ ns}$				
Bad Cell Map	angewandt				
Energie	$E_{clust} \ge 700 \text{ MeV}$				
Anzahl Zellen	$N_{\mathrm{Zellen}} \geq 2$				
Form	$0.1 < M_{02} < 0.7$				
Track matching	$p_{\rm T}$ abhängig: $\Delta \eta \ \Delta \phi$				
Öffnungswinkel	$\theta > 0.017 \text{ rad}$				

Tabelle 3: Auswahlkriterien für die Cluster des EMCals.

3.2 Clusterkombination 15

um schlechte Zellen von der Analyse auszuschließen [Kön17].

Die Energie die ein Cluster mindestens braucht, sowie die Anforderung an die Form und die Anzahl an Zellen, aus denen ein Cluster mindestens bestehen muss, helfen Cluster von Photonen zu selektieren: Die Mindestenergie von 700 MeV wir benötigt um detektorbedingtes Rauschen zu unterdrücken. Der Schwellenwert für die Energie steht dabei im direkten Zusammenhang mit der Mindestanzahl an Zellen. Wie in Abschnitt 2.2 erwähnt, benötigt die Startzelle mindestens 600 MeV und jede weitere Zelle mindestens 100 MeV, um zu einem Cluster hinzugefügt zu werden. Um die angegebene Mindestenergie zu erreichen benötigt ein Cluster entsprechend mindestens zwei Zellen. Die Form charakterisiert durch den Parameter M_{02} wurde in Abschnitt 2.2 ebenfalls bereits erläutert. Mit Hilfe des Track matching können Cluster, die von geladenen Teilchen kommen, ausgeschlossen werden. Dafür werden die Spuren der geladenen Teilchen, die in der TPC hinterlassen wurden, rekonstruiert und bis zum EMCal extrapoliert. Einige Photonen konvertieren außerhalb der TPC. Cluster durch Elektronen und beziehungsweise oder Positronen aus diesen Konversionen können entsprechend nicht durch das track matching ausgeschlossen werden.

Durch die Anforderung an den Öffnungswinkel wird sicher gestellt, dass der Abstand zwischen zwei Clustern mindestens der Größe einer Zellendiagonale entspricht. Diese Anforderung wird für die Bestimmung des Untergrunds benötigt.

3.2 Clusterkombination

Die gewählten Cluster nach den Kriterien aus Abschnitt 3.1.2 bestehen fast ausschließlich aus Photonen

Um die Anzahl der π^0 zu messen, werden von Clusterpaaren $m_{\rm inv}$ und $p_{\rm T}$ nach Gleichungen 3 und 4 bestimmt. Da die Information fehlt, ob und welche Cluster von einem Teilchen aus dem Zerfall eines π^0 stammen, werden alle Cluster eines events paarweise mit einander kombiniert. Diese Methode wird als same event Methode bezeichnet. Abbildung 4 zeigt die Anzahl der Clusterpaare in Abhängigkeit von $m_{\rm inv}$ und $p_{\rm T}$. Durch die paarweise Kombination aller Cluster eines Events gibt es sowohl Kombinationen von Clustern von Teilchen die über den Zerfall eines π^0 zusammenhängen, als auch von Clustern von Teilchen, die nicht über den Zerfall eines einzelnen π^0 zusammenhängen. Es zeichnet sich eine Häufung der Datenpunkte um die π^0 Masse ab. Dieser Häufung liegt das Signal zugrunde. Als Signal wird die Summe aller Clusterpaare, die aus einem Zerfall eines π^0 kommen, bezeichnet. Da Photonen durch Paarbildung in ein Elektron und ein Positron konvertieren

3.2 Clusterkombination 16

Abbildung 4: $p_{\rm T}$ und $m_{\rm inv}$ als Funktion der Anzahl von kombinierten Cluster-Paaren aus der gleichen Kollision. Die rote Linie bei $m_{\rm inv}\approx 0.135~{\rm GeV}/c^2$, indiziert die π^0 Masse, wo sich eine deutliche Häufung der Einträge abzeichnet. Die schwarzen Linien stellen die Grenzen der $p_{\rm T}$ -Intervalle dar.

können, bestehen einige Cluster aus nur einem der beiden Konversionsprodukte. Diese Cluster besitzen eine geringere Energie als das eigentliche Photon besaß. Entsprechend liegen Einträge von Kombinationen mit diesen Clustern bei kleinerem $m_{\rm inv}$, als wenn diese Cluster aus den Photonen, die konvertiert sind, entstanden wären. Deshalb wird bei $m_{\rm inv} < 0.135~{\rm GeV}/c^2$ ebenfalls Signal erwartet.

Alle Clusterpaare, die nicht zum Signal zählen, werden als Untergrund bezeichnet. Dieser wird in zwei Teile unterteilt: den kombinatorischen oder auch unkorrelierten Untergrund und den korrelierten Untergrund. Der korrelierten Untergrund entsteht durch paarweise Kombinationen von Clustern, zwischen denen eine Korrelation besteht. Das heißt, dass die Teilchen, durch die die eben genannten Cluster entstanden sind, nicht aus dem Zerfall desselben π^0 stammen, aber über andere Zerfälle zusammenhängen. Durch die paarweise Kombination von Clustern von unkorrelierten Teilchen entsteht der unkorrelierte Untergrund.

Abbildung 5: Projektion von Abbildung 4 im $p_{\rm T}$ -Intervall $(3, 2-3, 4)({\rm GeV}/c)$. Es ist ein deutlicher Peak um $m_{\pi^0} \approx 0.135~{\rm GeV}/c^2$ zu erkennen, aber auch Untergrund, da das Signal zu höheren Massen gaußförmig abklingen sollte. Bei $m_{\rm inv} < m_{\pi^0}$ kann Signal vorliegen, das aus konvertierten Photonen besteht, weshalb eine Aussage über die Form, beziehungsweise den Untergrund dort schwer möglich ist.

Damit zwei Teilchen nicht zu einem Cluster zusammengefasst werden, benötigen die Cluster dieser Teilchen eine Zellendiagonale als Mindestabstand. Dieser Mindestabstand entspricht einem minimalen Öffnungswinkel. Aufgrund des minimalen Öffnungswinkel gibt es für $m_{\rm inv}$ ein Minimum, das von $p_{\rm T}$ abhängt, zusätzlich zum Öffnungswinkel.

Die Anzahl der π^0 weist eine p_T -Abhängigkeit auf. Deshalb wird die Verteilung aus Abbildung 4 in einzelnen p_T -Intervallen analysiert. Die Intervalle werden so gewählt, dass sie möglichst klein sind, während die statistischen Unsicherheiten der Datenpunkte nicht zu groß werden.

Abbildung 5 zeigt die Anzahl der Clusterpaare in Abhängigkeit der invariante Massen im $p_{\rm T}$ Intervall von $(3,2-3,4)({\rm GeV}/c)$. Die in Abbildung 4 beschriebene Anhäufung der Datenpunkten zeigt sich auch hier deutlich und wird im Folgenden als Peak bezeichnet. Der Peak besteht wie zuvor erwähnt aus Signal.

Im folgenden Abschnitt wird eine Methode zur Abschätzung des unkorrelierten Untergrunds vorgestellt.

Abbildung 6: $p_{\rm T}$ und $m_{\rm inv}$ als Funktion von der Anzahl von kombinierten Clusterpaaren aus unterschiedlichen events.

3.3 Abschätzung des unkorrelierten Untergrunds

Durch die paarweise Kombinationen aller Cluster eines events, wie es in Abschnitt 3.2 vorgestellt wurde, ensteht unkorrelierter Untergrund. Um den unkorrelierten Untergrund abzuschätzen werden Cluster aus unterschiedlichen events paarweise miteinander kombiniert. Dadurch wird sichergestellt, dass zwischen den Teilchen, die den Clustern zugrunde liegen, keine Korrelation besteht. Diese Methode wird als mixed event Methode bezeichnet. Abbildung 6 zeigt die Verteilung, bei der Cluster aus unterschiedlichen events miteinander kombiniert wurden. Da keine Korrelationen zwischen den Clustern vorliegen, gibt es keine eine Häufung der Datenpunkte um eine bestimmte invariante Masse.

Im selben event würden Cluster, die näher als eine Zelldiagonale aneinander liegen zu einem Cluster zusammengefasst werden. Beim Kombinieren von Clustern aus unterschiedlichen events wird der Zellabstand durch die Anforderung an den Öffnungswinkel auf mindestens eine Zelldiagonale gesetzt. Durch diese Anforderung gibt es, wie zuvor in Abschnitt 3.2 erläutert, ein p_T abhängiges

Abbildung 7: Nach Gleichung 7 skalierte *mixed event* Kombinationen als Abschätzung des unkorrelierten Untergrunds zusammen aufgetragen mit Signal zuzüglich beiden Untergrundkomponenten wie in Abbildung 5.

Minimum für m_{inv} , wie zuvor bei Abbildung 4.

In der mixed event Methode gibt es eine größere Anzahl an Kombinationsmöglichkeiten, als in der same event Methode. Daraus resultiert eine größere Anzahl an Einträgen in der Verteilung der invarianten Masse und des Transversalimpulses aus der mixed event Methode, als in der Verteilung aus der same event Methode. Deshalb muss die Verteilung, die aus der mixed event Methode kommt, skaliert werden an die Verteilung aus der same event Methode. Die Skalierung erfolgt bei $m_{\rm inv} \in [0,19,3,0] \, ({\rm GeV}/c^2)$, da dort kein Signal erwartet wird. Es ergibt sich für den Skalierungsfaktor:

$$\alpha = \frac{\sum_{i \neq j} \sum_{n} m_{\text{inv}} \left(\gamma_i^{(n)}, \gamma_j^{(n)} \right)}{\sum_{i,j} \sum_{n \neq m} m_{\text{inv}} \left(\gamma_i^{(n)}, \gamma_j^{(m)} \right)}$$

$$(7)$$

Die oberen Indize m und n stehen hierbei für ein Event, aus dem ein Photon kommt und die unteren Indize i und j numerieren die Photonen (γ) .

Abbildung 7 zeigt die skalierten mixed event Kombinationen und die same event Kombinationen. Nachdem der unkorrelierte Untergrund abgeschätzt wurde, wird dieser von der Verteilung der invarianten Masse aus der same event Methode subtrahiert.

Abbildung 8 zeigt die Verteilung der invarianten Masse aus der same Event Methode, nachdem die

Abbildung 8: Verteilung der invarianten Masse aus der *same Event* Methode nach Abzug des unkorrelierten Untergrunds.

skalierte Verteilung aus der mixed Event Methode abgezogen wurden.

Der nächste Schritt in der Analyse neutraler Pionen ist die Bestimmung des korrelierten Untergrunds. Das Abschätzen mit einer linearen Funktion hat sich als gängigste Methode zur Abschätzung des korrelierten Untergrunds entwickelt und wird im Folgenden als Standardmethode bezeichnet. In dieser Arbeit wird der korrelierte Untergrund sowie das π^0 -Signal mit Hilfe von Monte Carlo Templates bestimmt. Die Ergebnisse der Analyse mit Hilfe von Monte Carlo Templates, sowie mit der Standardmethode werden miteinander vergleichen, um eine Aussage über den möglichen Nutzen der Verwendung von Monte Carlo Templates in der Analyse von π^0 treffen zu können. Im folgenden Abschnitt wird zunächst die Standardmethode kurz erläutert.

3.4 Abschätzung des korrelierten Untergrunds mit der Standardmethode

Da es sich bei dem Signal ohne Konversionsanteil um eine statistische Größe handelt, wird eine gaußförmig Funktion benutzt, um dieses zu beschreiben.

Die *Tail* Komponente wird durch eine exponentielle Funktion und einer gaußförmigen Funktion beschrieben. Sie dient der Abschätzung des Anteils des Signals, dem Konversionselektronen oder Konversionspositronen zu Grunde liegen. Für die Abschätzung des korrelierten Untergrund wird eine lineare Funktion angenommen. Die drei Funktionen werden kombiniert an die Verteilung der

Abbildung 9: Signal mit korreliertem Untergrund sowie den Funktionen zur Beschreibung des Signals mit korreliertem Untergrund.

invarianten Masse angepasst.

Abbildung 9 zeigt die Verteilung der invariante Masse bestehend aus Signal und korreliertem Untergrund, sowie das Ergebnis der an die Daten angepassten Funktion. Die grüne Funktion entspricht der Summe der drei einzelnen Komponenten, wobei die Gauß-Funktion in blau, die Tail-Funktion in pink und die lineare Funktion in orange, dargestellt sind. Dabei wird deutlich, dass durch die Abschätzung des korrelierten Untergrunds über die lineare Funktion bei $m_{\rm inv} < 0.06~{\rm GeV}/c^2$, kein Signal erwartet wird. Für $m_{\rm inv} < 0.02~{\rm GeV}/c^2$ gibt es keine Einträge in der Verteilung aufgrund des minimalen Öffnungswinkels. Dieses Verhalten wird nicht von der Abschätzung des korrelierten Untergrunds berücksichtigt.

Um die Anzahl der produzierten π^0 mit der Standardmethode zu bestimmen, wird die Anzahl der Einträge, die unter der lineare Parametrisierung liegen, von der Summe der Einträge der Daten abgezogen. Anschließend werden die übrigen Daten, also das Signal, über einen festen Bereich um den Erwartungswert der Gauß-Funktion integriert. Für eine detaillierte Beschreibung der Standardmethode sei an dieser Stelle auf [Mec18] verwiesen.

Im folgenden Abschnitt wird die Abschätzung des korrelierten Untergrunds mit Hilfe von Templates beschrieben.

Abbildung 10: Template des Signals (grün) mit seinen drei Teilkomponenten. Diese bestehen aus Kombinationen mit zwei Photonen (blau), einem Photon und einem Konversionselektron oder Konversionspositron (gelb) und zwei unterschiedlichen Konversionselektron oder Konversionspositron (grau).

3.5 Peakextraktion mit Hilfe von Parametrisierungen von Templates

Um das Signal mit Hilfe von Templates zu extrahieren wird, wie auch bei der Standardmethode, zunächst eine Abschätzung des korrelierten Untergrunds gemacht. Hierfür werden je $p_{\rm T}$ -Intervall zwei Templates an die Daten angepasst. Eine Template wird verwendet um das Signal, ein zweite um den korrelierten Untergrund zu beschreiben.

Im folgenden Abschnitt wird das Template des Signals diskutiert.

3.5.1 Template des Signals

Das Template des Signals wird mit Hilfe der Information der Monte Carlo Simulation erstellt. Dabei wird ausgenutzt, dass in der Simulation bekannt ist, welchen Ursprung welches Teilchen hat und welches Teilchen auf das EMCal trifft. Dadurch wird ermöglicht, genau bestimmen zu können, ob ein Photonkandidat aus dem Zerfall eines π^0 oder einem anderen Prozesse stammt und ob es sich dabei um ein Photon, ein konvertiertes Elektron oder Positron, oder ein anderes Teilchen handelt. Abbildung 10 zeigt das Template des Signals in grün, sowie die Aufteilung des Signals in seine einzelnen Komponenten. Die Komponenten setzen sich aus den drei möglichen Kombinationen von Clustern zusammen. Zum einen aus Cluster aus Photonen, in der Abbildung als γ bezeichnet und

Abbildung 11: Template des korrelierten Untergrunds in pink entstanden durch den Abzug des Templates des Signals (grün) von der Verteilung der invarianten Masse aus einer Monte Carlo Simulation (schwarz).

zum anderen aus Cluster aus einem Elektron oder Positron, die durch die Konversion eines Photonen entstanden sind. Letztere werden in der Abbildung durch γ_{conv} symbolisiert.

In blau sind die Kombinationen aus zwei Photonen ($\gamma\gamma$) dargestellt, in gelb die Kombination aus Photon und Elektron oder Positron ($\gamma\gamma_{\rm conv}$) und in grau die Kombination aus Konversionselektron oder Konversionspositron miteinander ($\gamma_{\rm conv}\gamma_{\rm conv}$).

Die Abbildung zeigt außerdem, wie zuvor angesprochen, dass bis $m_{\rm inv} > 0.05~{\rm GeV}/c^2$ Signal vorliegt. Der Anteil des Signals um diese invariante Masse besteht hauptsächlich aus zwei Teilchen einer Photonkonversion. Genau dieser Teil des Signals wird nicht durch die Standardmethode berücksichtigt. Durch das Berücksichtigen in der Analyse mit Hilfe der Templates kann ein größerer Anteil des Signals gezählt werden. Deshalb wird eine geringere statistische Unsicherheit erwartet.

3.5.2 Template des korrelierten Untergrunds

Für die Bestimmung des Templates des korrelierten Untergrunds wird das Template des Signals von einer Verteilung der invarianter Masse aus der Monte Carlo Simulation abgezogen, die im gleichen $p_{\rm T}$ -Intervall liegt, wie das Template des Signals.

Abbildung 11 zeigt in pink das Template des korrelierten Untergrunds für das $p_{\rm T}$ -Intervall (3,2 – 3,4)(GeV/c). Zur Verdeutlichung sind ebenfalls die oben beschriebene Verteilung in schwarz und

Abbildung 12: **Oben:** Template des korrelierten Untergrunds aus einem einzelnen $p_{\rm T}$ -Intervall in pink und aus mehreren $p_{\rm T}$ -Intervallen kombiniert in orange. **Unten:** Verhältnis der beiden Verteilungen in schwarz, sowie Parametrisierung einer Konstante an das Verhältnis in rot.

das Template des Signals in grün eingezeichnet.

Für die Anpassung der Templates an die Daten werden, relative zu den Werten der Einträge in den Templates, geringe statistische Unsicherheiten benötigt. Um die Unsicherheit zu verkleinern wird in dieser Arbeit der korrelierte Untergrund aus einem größeren p_T -Intervallen verwendet. Dieses Template wird im folgenden als kombiniertes Template des korrelierten Untergrunds bezeichnet, da das vergrößerte p_T -Intervall mehrere der normal großen p_T -Intervalle kombiniert. Dabei wird angenommen, dass sich nicht die Form, sondern nur die Anzahl der Einträge in den p_T -Intervallen unterscheidet. Für das kombinierte Template des korrelierten Untergrunds wird $p_T \geq 1,8~{\rm GeV}/c$ bis $p_T \leq 3,2~{\rm GeV}/c$ benutzt, da in diesem Bereich die statistische Unsicherheit am geringsten ist. Abbildung 12 zeigt in orange ein kombiniertes Template des korrelierten Untergrunds und in pink das Template des korrelierten Untergrunds für das p_T -Intervall $(3,2-3,4)({\rm GeV}/c)$. Um zu zeigen, dass die Annahme ihre Richtigkeit hat wird in Abbildung 12 das Verhältnis aus einzelnen Template des korrelierten Untergrunds zu dem Kombinierten dargestellt. Die rote Linie im unteren

Teil der Abbildung basiert auf einer konstanten Parametrisierung des Verhältnisses. Die getroffene Annahme wird bestätigt, da die konstante Parametrisierung und das Verhältnis gut miteinander übereinstimmen. Die große Unsicherheit im Verhältnis um $m_{\rm inv}=0,225~{\rm GeV/}c^2$ entsteht, da beide Templates an dieser Stelle eine Anzahl an Einträgen im Bereich nah um die Null besitzen. Teilt man zwei kleine Zahlen durch einander, so ändert sich der Quotientenwert stark, wenn man nur eine der beiden kleinen Zahlen leicht ändert. Die Unsicherheit der Einträge der Templates repräsentieren eine mögliche Variation der Einträge. Diese Unsicherheit im Falle des einzelnen Templates des korrelierten Untergrunds besitzt einen großen absoluten Wert verglichen mit den Werten der Einträge um $m_{\rm inv}=0,225~{\rm GeV/}c^2$. Dadurch wird auch die Unsicherheit auf den Quotientenwert deutlich größer, als in den anderen $m_{\rm inv}$ Bereichen.

In Abschnitt 3.2 wurde bereits angesprochen, dass die Anforderung an den Öffnungswinkel von p_{T} abhängt. Um das kombinierte Template des korrelieren Untergrunds daran anzupassen wird eine für diesen Zweck angepasste Monte Carlo Simulation betrachtet. In der Simulation werden π^0 mit zufälliger Energie simuliert, die in zwei Photonen zerfallen. Die Photonen müssen dann auf einen Fläche auftreten die der Fläche des EMCals entspricht, um als detektiert zu gelten. Die Photonen werden hierbei nicht durch Cluster repräsentiert. Dadurch sind Kombinationen von Photonenpaaren möglich, deren Öffnungswinkel unter der Anforderung an den Öffnungswinkel liegt. Die Photonen werden paarweise kombiniert, wie bei der Clusterkombination. Dabei wird einmal die Anforderung an den Offnungswinkel gestellt wie sie in der Analyse vorliegt und einmal wird keine Anforderung an den Öffnungswinkel gestellt. In beiden Fällen werden so viele π^0 erzeugt, dass am Ende die gleiche Anzahl an Photonenpaaren kombiniert wurde. Daraus entstehen zwei Verteilungen, die die Anzahl kombinierter Photonenpaare als Funktion von $m_{\rm inv}$ und $p_{\rm T}$ darstellen, einmal für den Fall, dass es keine Anforderung an den Öffnungswinkel gibt und einmal mit der Anforderung an den Offnungswinkel. Da beide Teilsimulationen die gleiche Anzahl an kombinierten Photonenpaaren haben, kann aus dem Verhältnis der Verteilung mit Anforderung an den Öffnungswinkel zur Verteilung ohne Anforderung an den Öffnungswinkel, bestimmt werden, wie wahrscheinlich es ist einen Photonenkombination bei einem bestimmen $m_{\rm inv}$ und $p_{\rm T}$ zu messen. Mit Hilfe dieser Wahrscheinlichkeitsverteilung werden die Templates des korrelierten Untergrunds, die das kombinierte Template des korrelierten Untergrunds bilden, an die unterschiedlichen p_{T} -Intervalle skaliert. Dadurch konnten größere Abweichungen für kleinere invariante Massen vermieden werden.

In Abschnitt 4.2 wird für die Bestimmung der systematischen Unsicherheit die Wahl des Templates des korrelierten Untergrunds variiert.

Zum einen werden die Templates einzeln verwendet, also jeweils das Template des korrelierten Untergrunds aus dem jeweiligen $p_{\rm T}$ -Intervall, aus dem auch die Verteilung der invarianten Masse und das Template des Signals kommen. Somit Wie bereits erwähnt wird die statistisch Unsicherheit, relativ gesehen zu den Werten der Templates, groß. Das hat zur Folge, dass je stärker das Template des korrelierten Untergrunds skaliert wird, desto größer werden die statistischen Unsicherheiten. Die statistischen Unsicherheiten sind jedoch immer groß genug, sodass die Werte des Template des korrelierten Untergrunds mit Null kompatibel sind. Effektiv wird nur die statistische Unsicherheit erhöht, was χ^2 verkleinert. Dadurch wird die Anpassung über χ^2 -Minimierung verfälscht. Die Berechnung von χ^2 wird im nächsten Abschnitt genauer erläutert.

Zum anderen wird die Kombination variiert, sodass das Template des korrelierten Untergrunds nicht aus einem festen vergrößerten $p_{\rm T}$ -Intervall stammt. Stattdessen wird das $p_{\rm T}$ -Intervall eines einzelnen Templates des korrelierten Untergrunds ausgeweitet, bis das Intervall mindestens 4 GeV/c umfasst. Die Annahme, dass sich die Form der korrelierten Untergrunds nicht ändert, kann dabei aufgelockert werden, da nur benachbarte $p_{\rm T}$ -Intervall kombiniert werden. Es wäre also akzeptabel, wenn sich die Form verändert, solange die Änderung kontinuierlich und langsam statt findet. Die dadurch entstehende Korrelation in den statistischen Unsicherheiten der verschiedenen kombinierten Templates des korrelierten Untergrunds kann dabei nur grob abgeschätzt werden.

Aus den genannten negativ Gründen, sowie der Bestätigung der Annahme, dass die Form des korrelierten Untergrund nicht von $p_{\rm T}$ abhängt, werden beide Methoden für die Bestimmung der systematischen Unsicherheiten benutzt und nicht als Standard.

Im Folgenden Abschnitt werden die Templates des Signals und des korrelierten Untergrunds so parametrisiert, dass sie die Daten nach Abschätzung des unkorrelierten Untergrunds bestmöglich beschreiben.

3.5.3 Parametriesierungsmethode

Die Parametrisierung der Templates des Signals und des korrelierten Untergrunds erfolgt durch die sogenannte χ^2 -Minimierung. χ^2 gibt dabei ein Maß an, wie gut eine Verteilung an gegebene Daten passt. Je kleiner χ^2 ist, umso besser beschreibt die Verteilung die Daten. Als freie Parameter werden zwei Skalierungsfaktoren benutzt, einmal ein Skalierungsfaktor für das Template des

Abbildung 13: χ^2 in Abhängigkeit der Skalierungsfaktoren für das Template des Signals und das Template des korrelierten Untergrunds in einem $p_{\rm T}$ -Intervall von $(3,2-3,4)({\rm GeV}/c)$. Das schwarze Kreuz in der Mitte liegt auf $\chi^2_{\rm min}$, während die weiße Kurve um das Minimum die Unsicherheit auf $\chi^2_{\rm min}$ darstellt.

Signals (SF_{Signal}) und einmal ein Skalierungsfaktor für das Template des korrelierten Untergrunds (SF_{korr, Untergrund}). Für χ^2 gilt dann:

$$\chi^{2} = \sum_{i} \left(\frac{\text{SF}_{\text{Signal}} \cdot x_{i} + \text{SF}_{\text{korr. Untergrund}} \cdot y_{i} - z_{i}}{\sqrt{(\text{SF}_{\text{Signal}} \cdot \Delta x_{i})^{2} + (\text{SF}_{\text{korr. Untergrund}} \cdot \Delta y_{i})^{2} + (\Delta z)^{2}}} \right)^{2}$$
(8)

Hierbei steht x für das Template des Signals, y für das Template des korrelierten Untergrunds und z für die Verteilung der invarianten Masse nach Abzug der unkorrelierten Untergrunds. Letzteres stammt dabei wieder aus den gemessenen Daten und nicht wie im Abschnitt davor aus einer Simulation. Der Index i, über den summiert wird, läuft über die Intervalle in der invarianten Masse innerhalb des Parametrisierungsbereiches. Der Parametrisierungsbereich wird so gewählt, dass die untere Seite außerhalb des Bereiches liegt wo die Anforderung an den Öffnungswinkel Kombinationsmöglichkeiten ausschließt. Um diese Werte zu bestimmen wird das Ergebnis der vereinfachten Monte Carlo Simulation benutzt.

Abbildung 14: $\frac{\chi^2_{\min}}{ndf}$ in Abhängigkeit von p_{T} .

Abbildung 13 zeigt die Verteilung von χ^2 für unterschiedliche Kombinationen der beiden Skalierungsfaktoren im $p_{\rm T}$ -Intervall $(3,2-3,4)({\rm GeV}/c)$. $\chi^2_{\rm min}$ liegt bei dem schwarzen Kreuz in der Mitte des Bildes. Die weiße Kurve, die das Minimum umgibt, gibt die Unsicherheit bezüglich der beiden Skalierungsfaktoren an. Die Werte auf der weißen Kurve liegen werden berechnet durch $(\chi^2_{\rm min}+1)$ [P⁺92].

Um die Stabilität der Methode zu prüfen wird $\frac{\chi^2_{\min}}{ndf}$ in Abhängigkeit von p_T betrachtet. Der Nenner ndf steht für die Anzahl der Freiheitsgrade (in englisch numbers of degrees of freedom). Die Anzahl an Freiheitsgraden setzt sich dabei aus zwei Teilen zusammen. Zum einen gilt jeder Datenpunkt in der Verteilung der invarianten Masse, der weder in Daten, noch in einem der Templates den Wert 0 besitzt und sich innerhalb des Parametrisierungsbereiches befindet, als ein Freiheitsgrad. Zum anderen wird für jeden freien Parameter die Anzahl an Freiheitsgraden um eins reduziert. Die Anforderungen an den Öffnungswinkel reduzieren zu höherem p_T hin die Anzahl an Freiheitsgraden zunehmend, weshalb die Normierung von χ^2_{\min} auf die Anzahl an Freiheitsgraden für einen p_T -differenzierten Vergleich notwendig ist. Außerdem gibt der Wert von $\frac{\chi^2_{\min}}{ndf}$ einen allgemeinen Hinweis auf die Güte der Parametrisierung. Für $\frac{\chi^2_{\min}}{ndf} > 1$ gilt, dass die Parametrisierung der Templates und die Verteilung der Daten immer weniger gut übereinstimmen. Umgekehrt gilt für $\frac{\chi^2_{\min}}{ndf} < 1$, dass die Unsicherheiten in der Verteilung der Daten oder den Templates zu groß sind, für eine sinnvolle Parametrisierung.

Abbildung 14 zeigt $\frac{\chi^2_{\min}}{ndf}$ in Abhängigkeit von p_{T} . Anfänglich liegt der Wert von $\frac{\chi^2_{\min}}{ndf}$ recht hoch

Abbildung 15: Skalierungsfaktoren der Templates des korrelierten Untergrunds und des Signals in Abhängigkeit von $p_{\rm T}$.

bei fast 4,5, bis er bei $p_T > 2,2$ GeV/c schnell sinkt. Nach dem Absinken schwankt $\frac{\chi^2_{\min}}{ndf}$ um 1,25 herum bis $p_T = 7,5$ GeV/c. Ab dort liegt der Wert für $\frac{\chi^2_{\min}}{ndf}$ um 1 herum, nur für das letzte gezeigte p_T -Intervall steigt $\frac{\chi^2_{\min}}{ndf}$ auf den größten Wert von 2,5. Insgesamt beschreiben die Templates also die Daten sehr gut.

Die Skalierungsfaktoren aus die aus der χ^2 -Minimierung folgen werden in Abbildung 15 gezeigt. Für $SF_{korr.\ Untergrund}$ zeigt sich ein Anstieg bis es sein Maximum bei $1.8 \le p_T/(\ GeV/c) < 2.0$ erreicht. Vom Maximum aus fällt $SF_{korr.\ Untergrund}$ ab, bis runter zur Null. Da für alle p_T -Intervall das gleiche Template des korrelierten Untergrunds verwendet wird, kann aus dem Verlauf von $SF_{korr.\ Untergrund}$ direkt auf die Menge an korrelierten Untergrund geschlossen werden. So wird für große p_T kaum bis gar kein korrelierter Untergrund erwartet.

Die Templates des Signals sind jedoch für jeden p_T -Intervall unterschiedlich. Das annähernd konstante Verhalten von SF_{Signal} zeigt entsprechend, dass die Produktionsrate von π^0 in der Simulation gleichmäßig gut die Produktionsrate von π^0 im Experiment beschreibt.

3.5.4 Abzug des korrelierten Untergrunds und Integration des Signals

Das Ergebnis der Parametrisierung der Templates für das p_T -Intervall (3,2-3,4)(GeV/c) wird in Abbildung 16 dargestellt. Die Parametrisierung der beiden Templates stimmt innerhalb der Unsicherheiten gut mit den Daten überein, wie zu erwarten war, nach Abbildung 14.

Um die Anzahl produzierter π^0 nun zu bestimmen, wird das skalierte Template des korrelierten

Abbildung 16: Signal mit unkorreliertem Untergrund zusammen mit Parametrisierung der Templates des korrelierten Untergrund und des Signals.

Abbildung 17: Anzahl produzierter π^0 in Abhängigkeit von p_T .

Untergrunds von dem Signal ohne kombinatorischen Untergrund abgezogen. Anschließend wird in einem bestimmten Zählbereich über die Werte des Signals summiert. Dies wird für jedes p_T -Intervall durchgeführt.

Der Zählbereich hängt dabei von $p_{\rm T}$ ab, da er so gewählt wurde, dass die untere Grenze immer groß genug ist, um nicht von den Anforderungen an den Öffnungswinkel betroffen zu sein. Die obere Grenze liegt fest bei $p_{\rm T}=0.25~{\rm GeV}/c$. In Abbildung 16 wird er Zählbereich durch eine blaue Linie markiert.

Das so erhaltene rohe Spektrum wird zusätzlich noch normiert, auf die Anzahl an events $N_{\rm evt}$, den

Pseudorapiditätsbereich η , den Transversalimpuls $p_{\rm T}$, die Wahrscheinlichkeit, dass ein π^0 in zwei Photonen zerfällt und 2π . Letzteres ist reine Konvention, während die anderen Normierungen einen Vergleich zwischen unterschiedlichen Analysen ermöglichen. Abbildung 17 zeigt eine normiertes rohes Spektrum. Das Spektrum steigt zunächst leicht an, bis es bei $1.8 \le p_{\rm T}/({\rm ~GeV}/c) < 2.0$ sein Maximum erreicht. Danach sinkt das Spektrum kontinuierlich.

Für eine genaue Aussage über die Produktionsrate von π^0 sowie einen allgemeinen Vergleich wird allerdings noch die Korrektur auf die Detektorakzeptanz sowie die Effizienz benötigt.

Abbildung 18: Detektorakzeptanz und Effizienz in Abhängigkeit von $p_{\rm T}$.

4 Korrigierter Yield

4.1 Akzeptanz und Effizienz

Die Korrekturen die auf das rohe Spektrum angewandt werden basieren auf der Monte Carlo Simulationen, aus der auch die Templates für diese Analyse stammen.

Die Detektorakzeptanz spiegelt dabei die Abdeckung des EMCals wider. Sie berechnet sich aus dem Verhältnis der *Clusterpaare*, die auf das EMCal treffen, zu den produzierten *Clusterpaaren*.

Die Effizienz berechnet sich aus der Division der *Clusterpaare* aus dem Template des Signals geteilt durch die Anzahl der akzeptierten *Clusterpaaren*. Für die Effizienz wird der m_{inv} Bereich zum Zählen benutzt, der auch für die Bestimmung des rohen Spektrums benutzt wurde.

Durch das Korrigieren des rohen Spektrums mit der Detektorakzeptanz und der Effizienz, wird die Anzahl der detektierten und extrahierten π^0 auf die Anzahl der produzierten π^0 korrigiert. Abbildung 18 zeigt die beiden Korrekturgrößen Detektorakzeptanz und Effizienz.

Zerfällt ein π^0 in zwei Photonen, so fliegen die Photonen im System des π^0 entgegengesetzt zu einander weg, $\theta_{\gamma\gamma}$ beträgt in diesem System 180°. Abhängig vom $p_{\rm T}$ den ein π^0 im Laborsystem hat verringert sich $\theta_{\gamma\gamma}$. Je größer $p_{\rm T}$ umso kleiner $\theta_{\gamma\gamma}$. Deshalb treffen beide Photonen aus einem π^0 -Zerfall bei niedrigem $p_{\rm T}$ seltener auf das EMCal. Aus diesem Grund steigt die Detektorakzeptanz leicht an.

Durch die Anforderungen an die Cluster werden unter anderem auch Cluster ausgeschlossen, deren

Abbildung 19: Relative systematische Unsicherheit durch die Variation des Zählbereiches abhängig von $p_{\rm T}$.

zugrunde liegende Teilchen aus dem Zerfall eines π^0 stammen, aber zu wenig Energie besitzen. Gerade asymmetrische Zerfälle, bei denen der Anteil der zur Verfügung stehenden Energie ungleichmäßig auf die Zerfallsprodukte aufgeteilt wird, werden durch die Energieanforderung an die Cluster ausgeschlossen. Deshalb steigt die Effizienz bis $p_{\rm T} \approx 8~{\rm GeV}/c$ an und saturiert dann.

4.2 Systematische Unsicherheit

Für den korrigierten Yield wird zuletzt noch die systematische Unsicherheit bestimmt. Dabei wird sich in dieser Arbeit rein auf die systematische Unsicherheit, die durch Variation in der Peakextraktion kommt, fokussiert. Die Variationen die in dieser Arbeit verwendet wurden lassen sich in vier Abschnitte unterteilen.

Bei der Variation des Zählbereiches, wird der Zählbereich einmal ausgeweitet und ein anderes mal verkleinert. Für das Verkleinern wird dabei der untere Wert für $m_{\rm inv}$ um 0,01 GeV/ c^2 erhöht, während der obere Wert für $m_{\rm inv}$ um 0,025 GeV/ c^2 verringert wird. Entsprechend wird beim Ausweiten der untere Wert für $m_{\rm inv}$ um 0,025 GeV/ c^2 verringert der obere Wert für $m_{\rm inv}$ um 0,025 GeV/ c^2 erhöht.

Abbildung 19 zeigt die relative systematische Unsicherheit für die Variation des Zählbereiches. Die Abweichungen zeigen sowohl für breite als auch für schmale Grenzen einen annähernd linearen Verlauf, wobei sie im Fall der schmalen Grenzen positiv sind und im Fall der breiten Grenzen negativ. Das bedeutet, dass das kombinierte Template des korrelierten Untergrunds für kleine m_{inv} nicht

Abbildung 20: Relative systematische Unsicherheit durch die Variation des Paramtrisierungsbereiches abhängig von $p_{\rm T}$.

Abbildung 21: Relative systematische Unsicherheit durch die Variation der Templates des korrelierten Untergrunds abhängig von $p_{\rm T}$.

den Verlauf der Templates des korrelierten Untergrunds für $p_{\rm T} < 1,8{\rm GeV/c}$ wiedergeben kann.

Bei der Variation des Parametrisierungsbereiches wird analog verfahren, mit den gleichen Zahlenwerten.

Die Variation der Templates des korrelierten Untergrunds basiert auf den in Abschnitt 3.5.2 vorgestellten Methoden zur Bestimmung der Templates des korrelierten Untergrunds.

Als letztes wird noch die Breite der m_{inv} -Intervalle Δm_{inv} in der Variation des Rebinnings verändert. Die Werte für Δm_{inv} hängen zunächst von zwei Faktoren ab. Zum einen werden die

Abbildung 22: Relative systematische Unsicherheit durch die Variation des Rebinnings des korrelierten Untergrunds abhängig von $p_{\rm T}$.

Daten für die Analyse in 800 gleichgroße $m_{\rm inv}$ -Intervalle aufgeteilt, die von $m_{\rm inv}=0.0~{\rm GeV}/c^2$ bis $m_{\rm inv}=0.8~{\rm GeV}/c^2$ reichen. Somit beträgt $\Delta m_{\rm inv}$ anfangs immer 0,001 ${\rm GeV}/c^2$. Dieser Wert wird vergrößert um die statistische Unsicherheit möglichst klein zu halten, wobei darauf geachtet werden muss, dass es sich bei dem Faktor, um den $\Delta m_{\rm inv}$ vergrößert wird, um einen gemeinsamen Teiler von 800 handelt. Tabelle 4 zeigt $\Delta m_{\rm inv}$ im Normalfall, sowie für beide Variationen. Dabei hängt $\Delta m_{\rm inv}$ zusätzlich von $p_{\rm T}$ ab.

Zur Bestimmung der systematischen Unsicherheit $\sigma_{i,j}$ einer Variationsart j in einem p_T -Intervall i wird das quadratische Mittel der relativen Abweichungen der n unterschiedlichen Variationen k

	$\Delta m_{ m inv} \left({ m GeV}/c^2 \right)$	p_{T} -Intervall (GeV/c)
	0,004	1,4-7,5
Standard	0,008	7,5-10
	0,010	10 - 12
	0,005	1,4-7,5
Vergrößert	0,010	7,5 - 10
	0,020	10 - 12
	0,002	1,4-7,5
Verkleinert	0,005	7,5 - 10
	0,008	10 - 12

Tabelle 4: Die verschiedenen Breiten der m_{inv} -Intervalle Δm_{inv} in Abhängigkeit von p_{T} .

Abbildung 23: Gesamte relative systematische Unsicherheit des korrigierten π^0 -Spektrums.

verwendet. Es gilt:

$$\sigma_{i,j} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (\Delta y_{i,j,k})^2}$$
(9)

Die gesamte Systematische Unsicherheit σ_i in einem p_T -Intervall i ergibt sich aus dem quadratischen Mittelwert der systematischen Unsicherheiten der vier Variationsarten $\sigma_{i,j}$.

$$\sigma_i = \sqrt{\frac{1}{n} \sum_{j=1}^n (\sigma_{i,j})^2} \tag{10}$$

4.3 Vergleich mit Standardmethode

Abbildung 24: Korrigierter π^0 - Yield mit systematischen und statistischen Unsicherheiten.

5 Zusammenfassung und Ausblick

p_{T} -Intervall (GeV/c)	m _{inv} (G	$n_{\rm inv} ({\rm GeV}/c^2)$		p_{T} -Intervall (GeV/c)	m _{inv} (G	eV/c^2
1,4 - 1,6	0,0195	0,25		5,0 - 5,2	0,0475	0,25
1,6 - 1,8	0,0205	0,25		5,2 - 5,4	0,0495	0,25
1,8 - 2,0	0,0225	0,25		5,4 - 5,6	0,0515	0,25
2,0 - 2,2	0,0235	0,25		5,6 - 5,8	0,0525	0,25
2,2 - 2,4	0,0255	0,25		5,8 - 6,0	0,0545	0,25
2,4 - 2,6	0,0275	0,25		6,0 - 6,2	0,0555	0,25
2,6 - 2,8	0,0285	0,25		6,2 - 6,4	0,0575	0,25
2,8 - 3,0	0,0305	0,25		6,4 - 6,6	0,0595	0,25
3,0 - 3,2	0,0315	0,25		6,6 - 6,8	0,0605	0,25
3,2 - 3,4	0,0335	0,25		6,8 - 7,0	0,0625	0,25
3,4 - 3,6	0,0355	0,25		7,0 - 7,5	0,0645	0,25
3,6 - 3,8	0,0365	0,25		7,5 - 8,0	0,0675	0,25
3,8 - 4,0	0,0385	0,25		8,0 - 8,5	0,0715	0,25
4,0 - 4,2	0,0395	0,25		8,5 - 9,0	0,0755	0,25
4,2 - 4,4	0,0415	0,25		9,0 - 9,5	0,0795	0,25
4,4 - 4,6	0,0425	0,25		9,5 - 10,0	0,0835	0,25
4,6 - 4,8	0,0445	0,25		10,0 - 12,0	0,0895	0,25
4,8 - 5,0	0,0465	0,25				

Tabelle 5: Obere und untere Grenze des Parametrisierungs- und Zählbereichs

Appendices

Anhang A Anhang

LITERATUR 39

Binnumber	Int Value	Error Value	Binnumber	Int Value	Error Value
1,4 - 1,6	8183,77	248,36	5,0 - 5,2	375,78 ,	76,18
1,6 - 1,8	12696,80	319,21	5,2 - 5,4	183,20 ,	70,98
1,8 - 2,0	14928,40	335,82	5,4 - 5,6	273,14 ,	64,85
2,0 - 2,2	13686,40	323,90	5,6 - 5,8	105,55 ,	61,23
2,2 - 2,4	10766,10	300,70	5,8 - 6,0	106,59 ,	56,42
2,4 - 2,6	9047,53	273,67	6,0 - 6,2	34,35 & 52,23	
2,6 - 2,8	6901,65	246,32	6,2 - 6,4	3,41	49,94
2,8 - 3,0	5429,20	221,03	6,4 - 6,6	8,73	46,40
3,0 - 3,2	4220,52	198,67	6,6 - 6,8	-23,16	43,73
3,2 - 3,4	3253,74	178,66	6,8 - 7,0	-13,32	40,78
3,4 - 3,6	2660,09	160,66	7,0 - 7,5	-47,53	56,97
3,6 - 3,8	1994,75	144,91	7,5 - 8,0	-35,33	49,50
3,8 - 4,0	1537,27	130,91	8,0 - 8,5	-79,79	42,67
4,0 - 4,2	1411,16	118,39	8,5 - 9,0	-85,09 ,	39,43
4,2 - 4,4	852,25	108,17	9,0 - 9,5	-39,02 ,	35,48
4,4 - 4,6	817,07	99,02	, 9,5 - 10,0	-32,65 ,	31,98
4,6 - 4,8	590,26	89,73	10,0 - 12,0	-288,32 ,	50,04
4,8 - 5,0	460,15	82,49			

Tabelle 6: Integral und Unsicherheit der Templates des korrelierten Untergrunds

Literatur

- [BHHL78] R Brun, R Hagelberg, M Hansroul, and J C Lassalle. Simulation program for particle physics experiments, GEANT: user guide and reference manual. CERN, Geneva, 1978.
- [Büs18] Henner Büsching. Kerne und teilchen 1 die quarkstruktur der materie. https://elearning.physik.uni-frankfurt.de/goto_FB13-PhysikOnline_file_ 16390_download.html, 2018. Letzer Zugriff am 14.01.2019.
- [Kap00] Joseph I Kapusta. Quark gluon plasma in the early universe. In Phase transitions in the early universe: Theory and observations. Proceedings, NATO ASI, International School of Astrophysics 'Daniel Chalonge', 8th Course dedicated to Andrei D. Sakharov, Erice, Italy, December 6-17, 2000, pages 103–121, 2000.
- [Kar06] Frithjof Karsch. Lattice simulations of the thermodynamics of strongly interacting elementary particles and the exploration of new phases of matter in relativistic heavy ion collisions. J. Phys. Conf. Ser., 46:122–131, 2006.
- [Kön17] Joshua König. Studie zur datenqualität und signalextraktion in der messung von π^0 mesonen mit dem alice-emcal detektor in pb-pb kollisionen bei $\sqrt{s_{NN}}=5,02$ tev, 02

LITERATUR 40

2017.

[Mec18] Adrian Mechler. Messung neutraler pionen in pp-kollisionen bei $\sqrt{s_{\rm NN}}=5$ tev mit dem alice-dcal, 10 2018.

- [P⁺92] William Press et al. Numerical Recipes in C: The Art of Scientific Computing. Press Syndicate of the University of Cambridge,, 2 edition, 1992.
- [Rog17] Tim Rogoschinski. Signalextraktion neutraler pionen in p-pb-kollisionen bei $\sqrt{s_{\rm NN}}=5,02$ tev mit dem alice-phos-detektor, 12 2017.
- [Sch19] Kristina Schmitt. Multiplizitätzabhängigkeit der produktion geladener teilchen in proton-proton-kollision bei alice, 01 2019.
- $[T^{+}18]$ M. Tanabashi et al. *Physical Review D*, volume 98 of 3. American Physical Society, 3 edition, 08 2018.
- [Wik18] Wikipedia. Alice experiment. https://en.wikipedia.org/wiki/ALICE_experiment, 12 2018. Letzter Zugriff am 02.01.2019.