Knowledge Representation and Learning for Robotic Systems

Sarvjeet Singh

B.Tech. Seminar

Guide Prof. Pushpak Bhattacharyya

Motivation

- Natural Systems Best models for understanding intelligence
- Why robotic systems?
 - Intelligence can be isolated and studied:
 Dangerous assumption
 - Risk of oversimplification

Society of Mind

- How Mind Works
- Particles of Mind Agents

- Society of Mind
- Learning in Society of Mind

Theory of Memory

• Concept of **K-line**

Current mind state

K-line formed

(shaded agents are the active agents)

Organization of K-lines

• Disorganised

• Organised

Subsumption rchitecture

- Motivation
- Traditional Vs Brook's decomposition

Description of rchitecture

- No central model of world
- Distributed behavior
- Layers of control

• Suppression and Inhibition

Example

Level 0 control system

Example

Level 0 augmented with Level 1 control system

Hormonal activation

- Resolving conflicts between behaviors
- Based on Animal Hormone system
- Conditions Panic, Drowsiness
- Releasers Adrenaline, Sleepine
- Activation of behaviors based on releasers

Planning and learning

Reinforcement learning

- Motivation
- Agent and Environment

• Goal and Rewards

Reinforcement Learning

• Returns

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}; \ 0 \ ; \ \gamma \ ; \ 1$$

- Policy
- Finding an optimal policy
 - Ideal Case
 - * Finite Markov Decision process (FMDP)
 - * Complete model of system
 - Approximations

Conclusions

- Subsumption Architecture
 - Reflexive and fast
 - Not modular
 - Not appropriate for solving big and complex problems
- Reinforcement Learning
 - Difficult to solve for larger and complex problems
 - Need for instincts
- A possible solution