Storage Systems

NPTEL Course Jan 2012

(Lecture 09)

K. GopinathIndian Institute of Science

SAN-NAS comparison

	SAN	NAS
Abstraction	Raw block device	File (byte-stream)
Access model	SCSI command set	File operations <offset, range=""></offset,>
Consumer	FS, DBMS	Application, DBMS
Naming & discovery	SCSI ITL nexus	Pre-configured names / DNS / WINS
Security	Transport layer	Transport layer / Independent mechanisms

09/25/13

NAS overview

- Application requirements
 - Consolidation, sharing, databases
 - Performance, resilience, scalability, manageability
- File-level access
 - Unix/NFS, Windows/CIFS
- Client-side I/O redirectors
 - VFS/vnode framework, IFS
- Server-side appliance model
 - Special-purpose systems, e.g. NetApp
- Why not cluster FS?
- _{09/25/13} POSIX semantics across clusters ₃

NAS implementation

09/25/13

NFS protocol

- Stateless protocol
 - "Smart client, dumb server"
 - Failure handling & crash recovery
- File handles
 - Mounting file-systems
 - Stale file handles
- Error handling
- Transport-independence
 - RPC/XDR, TCP/UDP
- Typical operation example

NFS protocol requests

- Data operations: READ, WRITE
- Directory operations: LOOKUP
 - READDIR, MKDIR, RMDIR
- File management
 - CREATE, REMOVE, RENAME
 - LINK, SYMLINK, READLINK
- File information: GETATTR
 - SETATTR
 - STATFS
- Mount operations

_{09/25/13}MNT, UMNT, EXPORT

NFS architecture

09/25/13 7

RPC/XDR overview

- RPC services RFC 1057
 - Request-response protocol
 - Reliable transmission
 - At least once/ At most once semantics
 - Message formats, marshalling, transmission
 - Authentication schemes: none, UNIX-based, key-based, Kerberos-based
 - RPC compilers
- Portmapper daemon
 - maps RPC prog # to TCP/IP ports where servers listen
- XDR services RFC 1014
 - Byte ordering (big-endian)
 - Date types & formats

NFSv2 implementation

- Components
 - Server & client daemons
 - Mount daemon
 - Lock manager
- Client-side caches
 - Attribute & data caches
- Client-side asynchronous I/O
 - Read-ahead/write-behind
- Server-side re-transmission (xid) cache
 - Idempotent vs. non-idempotent operations
 - Extreme: cache replies too
- Security: Authentication & access control

NFSv2 problems

- Maintaining UNIX semantics
 - Open file access permissions
 - Posix checks on 1st access; NFSv2 on every access
 - Atomic I/O operations
 - Deletion of open files: what if server deletes file?
- Cache consistency guarantees
 - NFS 2 checks if mod time of client cached data diff from server mod time. Works if server only making changes
- Security
 - Access control: User credentials
 - Securing data traffic
- Performance: UDP storms, Synch writes: ad-hoc opts.
- ស្ត្រខ្លួន Portmapper, mountd, lockd, statd 10
- Functionality: 4GB file size limit