Handbuch für Wetterapp-Tool

Gruppe A

CSV-Datei runterladen

Schritt 1: NASA Data Access Viewer

Öffnen Sie den NASA Data Access Viewer

Klicken Sie auf den bereitgestellten Link:

https://power.larc.nasa.gov/data-access-viewer/

um die Website des NASA Data Access Viewers zu öffnen.

Schritt 2: Single Point Auswahl

Wählen Sie **Single Point**, um einen spezifischen Standort festzulegen

Auf der Landkarte: Klicken Sie einfach auf einen Standort Ihrer Wahl. Es erscheint ein oranger Punkt, der den gewählten Standort markiert

Schritt 3: Einstellungen für Single Point

Gehen Sie zu **User Community** und wählen Sie **Renewable Energy** aus.

Bei Temporal Level: Wählen Sie Hourly aus.

Für **Time Extent**: Geben Sie den Zeitraum vom **1. Januar bis 31. Dezember eines einzelnen Jahres** ein.

Achtung: Nur ein Jahr auswählen, nicht mehrere!

Schritt 4: Parameter auswählen

Wählen Sie genau diese 4 Parameter aus:

- All Sky Surface Shortwave Downward Irradiance (für Solardaten).
- Precipitation (für Regen).
- Surface Pressure (für Druck).
- Wind Speed at 50 Meters (für Winddaten).

Schritt 5: CSV-Datei

CSV-Datei herunterladen

- Navigieren Sie zum Bereich Data Download
- Wählen Sie das Format CSV aus.
- Drücken Sie auf Submit, um die Datei herunterzuladen

Schritt 6: Datei in das Tool laden

- •Speichern Sie die CSV-Datei lokal auf Ihrem Computer ab.
- Gehen Sie zurück zum Tool und klicken Sie auf "WetterApp starten".
- •Sie gelangen auf die zweite Seite, wo Sie die CSV-Datei hochladen können, um zur Parameterauswahl zu gelangen.

Parameterauswahl

All Sky Shortwave Downward Irradiance

Solardaten

Best Case: Höchste Sonneneinstrahlung → maximale Energie für Solaranlagen.

Worst Case: Niedrigste Sonneneinstrahlung → minimale Energieproduktion.

Szenarien: Nullpunkt (keine Sonneneinstrahlung),

Hitzewelle (maximale Sonneneinstrahlung).

Precipitation

Niederschlag

Best Case: Kein Regen → keine Behinderungen für Solaranlagen.

Worst Case: Dauerregen → blockierte Strahlung, Korrosion.

Szenarien: Nullpunkt (kein Regen),

Dauerregen (maximaler Niederschlag)

Surface Pressure

Oberflächendruck

Best Case: Hoher Druck → stabiles Wetter.

Worst Case: Niedriger Druck → instabiles Wetter (z. B. Stürme)

Wind Speed at 50 Meters

Windgeschwindigkeit

Best Case: Höchste Windgeschwindigkeit → maximale Energieproduktion.

Worst Case: Niedrigste Windgeschwindigkeit → minimale Energie.

Szenarien: Nullpunkt (keine Windenergie),

Sturm (maximale Energie).

Benutzerinteraktion

Benutzer kann für jeden Parameter einen Zeitraum festlegen (z. B. "1. März bis 30. April")

Die Werte für diesen Zeitraum werden entsprechend dem gewählten Szenario angepasst.

Beispiel:

Zeitraum: "1. März – 30. April" für Windgeschwindigkeit.

Simulation: Nullpunkt → Werte auf "0" setzen;

Sturm → Werte auf "Maximalwert" setzen.

Ergebnisse

Originaldaten (oben):

Visualisiert die ursprünglichen Jahresdaten für den ausgewählten Parameter.

Dient als Basis für den Vergleich mit den simulierten Szenarien.

Simulierte Daten (unten):

Darstellung der Werte, die durch die Szenarien angepasst wurden (z. B. Nullpunkt, Hitzewelle).

Ergebnisse der Simulation

Zeitraum: 2022-01-01 bis 2022-02-28.

Szenario: Nullpunkt – Werte wurden auf "0" gesetzt.

Parameter: Solar (All Sky Surface Shortwave

Downward Irradiance)

Button mit der Beschriftung: "Simulierte Daten für Nullpunkt herunterladen".

Dies zeigt, dass die simulierten Ergebnisse exportiert und weiterverarbeitet werden können.

