中国石油大学(北京) 2023— 2024学年 春季学期

《概率论与数理统计》结课考试试卷 (A卷)

考核方式: 笔试(闭卷)

班级:_____

姓名:

学号:

题号	 Z.	3	四	五.	六	七	八	九	总分
得分									

注: 1. 试卷共6页(含封面),请勿漏答。

2. 试卷(及所附草稿纸)不得拆开,所有答案均写在题后空白处。

一、填空题(请在下列表格中填上正确答案,共5题,每题3分,共15分)

1	2	3	4	5

1、	假设事件 A 和 B 清	 境足 $P(B/A) = 1$,	则 A 和 B 的关系是_	
----	--------------	---------------------------	-------------------	--

2、设随机变量
$$X \sim \pi(\lambda)$$
,且 $P\{X=1\} = P\{X=2\}$,则 $P\{X=k\} =$ ______。

3、设
$$X$$
服从参数为1的指数分布,则 $E(X^2) = _____$ 。

4、设
$$X \sim N(0,2), Y \sim N(0,1),$$
且 X 与 Y 相互独立,则 $Z = X - Y \sim$ _______。

5、
$$X \sim N(1,5), Y \sim N(1,16),$$
 且 X 与 Y 相互独立,令 $Z = 2X - Y - 1$,则 $\rho_{YZ} =$ _____。

二、单项选择题(请在下列表格中填上正确答案,共5题,每小题3分,共15 分)

1	2	3	4	5

1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为()

$$A \cdot \frac{3}{32}$$

$$B \cdot \frac{3}{8}$$

$$C \cdot \frac{1}{16}$$

$$D \cdot \frac{1}{8}$$

2、随机变量X和Y的 $\rho_{XY}=0$,则下列结论不正确的是(

$$A \cdot D(X-Y) = D(X) + D(Y)$$
 $B \cdot X + a 与 Y - b$ 必相互独立

$$B \times X + a 与 Y - b$$
 必相互独立

$$C$$
、 X 与 Y 可能服从二维均匀分布 D 、 $E(XY) = E(X)E(Y)$

$$D \setminus E(XY) = E(X)E(Y)$$

3、样本 X_1, X_2, \dots, X_n 来自总体X, $E(X) = \mu, D(X) = \sigma^2$,则有(

 $A \times {X_i}^2 \ (1 \le i \le n)$ 都是 μ 的无偏估计 $B \times \overline{X}$ 是 μ 的无偏估计

C、 X_i^2 ($1 \le i \le n$) 是 σ^2 的无偏估计 D、 \overline{X}^2 是 σ^2 的无偏估计

4、设 X_1,X_2,\cdots,X_n 来自正态总体 $N(\mu,\sigma^2)$ 的样本,其中 μ 已知, σ^2 未知,则下列不是 统计量的是(

 $A \cdot \min_{1 \le i \le n} X_i$ $B \cdot \overline{X} - \mu$ $C \cdot \sum_{i=1}^n \frac{X_i}{\sigma}$ $D \cdot X_n - X_1$

5、在假设检验中,检验水平 α 的意义是(

A、原假设 H_0 成立,经检验被拒绝的概率

B、原假设 H_0 不成立,经检验被拒绝的概率

C、原假设 H_0 成立,经检验不能拒绝的概率

D、原假设 H_0 不成立,经检验不能拒绝的概率

三、(10分)用3台机床加工同一种零件,零件由各机床加工的概率分别为 0.5, 0.3, 0.2, 各机床加工的零件合格品的概率分别为0.94, 0.9, 0.95,

- (1)求全部产品的合格率;
- (2)任取一个零件,它是合格品,求该零件是由第一台车床加工的概率。

四、(12分)设连续型随机变量 X的分布函数为

$$F(x) = \begin{cases} 0, & x < -\frac{\pi}{2} \\ \frac{\sin x + 1}{A}, & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ 1, & x \ge \frac{\pi}{2} \end{cases}$$

求: (1) 系数 A;

- (2) $P\left(\frac{\pi}{6} < X < \frac{\pi}{2}\right);$
- (3) 概率密度f(x).

五、(10分)已知连续随机变量 X的概率密度为 $f_X(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, 0 < x, \\ 0, 其他 \end{cases}$ 求 Y = 3X - 1的概率密度函数 $f_Y(y)$.

六、(12分)设二维随机变量(X,Y)具有概率密度函数

$$f(x,y) =$$
 $\begin{cases} kxy^2, 0 < x < 1, 0 < y < 1 \\ 0, 其他 \end{cases}$

求:(1)系数k;

- (2)求X,Y的边缘密度函数 $f_X(x),f_Y(y)$.
- (3)判断X,Y是否独立。

七、(9分)已知一批零件的长度X(单位cm) 服从正态分布 $N(\mu,1)$,从中随机抽取16个零件,得到长度的平均值为40(cm),求 μ 的置信水平为0.95的置信区间. 注: $\Phi(1.96)=0.975,\Phi(1.64)=0.95$.

八、(12分)设总体X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, 0 < x < 1, & 其中 \theta > 0, X_1, X_2, \cdots, X_n$ 是来自0, 其他

总体X 的样本,

- (1)求 θ 的最大似然估计量 $\hat{\theta}$;
- (2)证明 $\hat{\theta}$ 是 θ 的无偏估计。

九、(5分)设A,B,C是不能同时发生但两两相互独立的随机事件,且 $P(A) = P(B) = P(C) = \rho$.

证明: ρ 可能取的最大值为 $\frac{1}{2}$