Constrained Language Models Yield Few-Shot Semantic Parsers

Richard Shin, Christopher H. Lin, Sam Thomson, Charles Chen, Subhro Roy, Emmanouil Antonios Platanios, Adam Pauls, Dan Klein, Jason Eisner, Benjamin Van Durme

Semantic parsing

Goal: low-resource semantic parsing

Motivation: prototyping domains, developing new features

Pre-trained language models

Pitfalls:

- 1. Pre-trained on language, rather than on meaning representations (code)
- 2. LMs don't know what functionality is available in the domain

Approach

Learn to map to canonical utterances

Dynamically select relevant examples for GPT-3 prompt

Constrained decoding to predict canonical utterance covered by SCFG

Case studies

Overnight: semantic parsing, contains 8 different domains

Break: question understanding, aggregates 10 benchmarks

SMCalFlow: task-oriented dialogue dataset

Annotators can find the correct output among 10 choices more than half the time