

TYPES OF EXERCISES

CONVEX C = 10 AH
CLOSED (=> HALF SPACES
ON DC

FOONVEX (=> F=SUP{L;}
AFFINE

C⊆|Rh CONVEX → Va.beC, (a.b) ∈ C → A+B OF CONVEX SETS IS CONVEX

F = epi(f)
CONVEX

SNOW f IS CONVEX: \rightarrow $(\nabla f(x) \cdot \nabla f(y) \cdot (x-y) \geq 0)$ \rightarrow EPIGRAPH IS CONVEX: \rightarrow $f(b) \cdot f(a)$ \rightarrow CONVEXITY -PRESERVING
TRANSFORMATIONS

WRITE THE FAMILY \Rightarrow OF AFFINE FUNCTIONS: $\{f(x_0) + w \cdot (x-x_0) | x_0 \in \partial f(x_0)\}$ ST. f IS $\sup\{f(x)\}$ \Rightarrow Limit CHARACTER!S ATTON: $\forall x, y, \lambda \mapsto 0$ $f(x) \leq \liminf\{\lambda f(x) + (1-\lambda_k)f(y)\}$ $\lambda \in \{0, 1\}$

COMPUTING f^* : $f^*(\hat{\xi}) = \sup_{x \in \text{dom}(\hat{\xi})} [\hat{\xi} \cdot x - \hat{\xi}(x)]$ $x \in \text{dom}(\hat{\xi})$ 1. $g(\hat{\xi}, x) = \hat{\xi} x - \hat{\xi}(x)$ 2. $SOLVE \quad g_x = 0$,
3. $SOLVE \quad FOR \quad \hat{\xi} \quad SUCU \quad THAT$ $\forall x \in \text{dom}(\hat{f}) \quad g_{xx} < 0$ 4. $FOR \quad EVERY \quad OTHER \quad INTERVAL$, $FIND : \quad EG. \quad IF \quad g_x > 0$, $SUB \quad TO \quad X \in \text{dom}(\hat{f})$ $X \in \text{dom}(\hat{f})$