Reg.No: 210701301

Exp.No: 8b

IMPLEMENT SVM/DECISION TREE CLASSIFICATION TECHNIQUES

AIM:

To write an R code to implement SVM/decision tree classification techniques.

PROCEDURE:

- 1. Install and load the required packages (e1071 for SVM and rpart for Decision Tree) and load the iris dataset.
- 2. Split the dataset into training (70%) and testing (30%) sets using a reproducible random sampling method.
- 3. Fit the SVM model with a radial kernel using the training data, print the model summary, and evaluate its performance using a confusion matrix and accuracy calculation.
- 4. Fit the Decision Tree model using the rpart function with the training data, print the model summary, visualize the tree, and evaluate its performance using a confusion matrix and accuracy calculation.
- 5. Predict the test set results for both SVM and Decision Tree models and assess their accuracy.

PROGRAM CODE:

b) Decision tree in R

```
# Install and load the rpart package (if not already installed) install.packages("rpart") library(rpart)

# Load the iris dataset data(iris)

# Split the data into training (70%) and testing (30%) sets set.seed(123)

# For reproducibility sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris)) train_data

<- iris[sample_indices, ]

test_data <- iris[-sample_indices, ]

# Fit the Decision Tree model tree_model <- rpart(Species ~ ., data = train_data, method = "class")
```

Reg.No: 210701301

```
# Print the summary of the model summary(tree_model)

# Plot the Decision Tree plot(tree_model)

text(tree_model, pretty = 0)

# Predict the test set predictions <- predict(tree_model, newdata = test_data,
type = "class")

# Evaluate the model's performance
confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion_matrix)

# Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix) cat("Accuracy:",
accuracy * 100, "%\n")</pre>
```

OUTPUT:

RESULT:

Thus the R program to implement SVM/decision tree classification techniques has been executed and verified successfully.