

Assignment Project Exam Help DR H.K. LAM

https://eduassistpro.github.

Office S2.14, Strand Building, Stra

Add What edu_assist_pr

Nature-Inspired Learning Algorithms (7CCSMBIM)

Assignment Project Exam Help

- Po
- Nat https://eduassistpro.github.
- Crossover
- Muta Ardd WeChat edu_assist_pr
- Examples

Learning Aims and Objectives

Aims

Assignments Projecte Exam Help

- To apply the continuous genetic algorithm to optimisation problems.
- objectiv https://eduassistpro.github.
 - To study how the continuous genetic algorithm wo
 - To conduct dimbridge lication to conduct assist_pr

Assignment Project Exam Help

https://eduassistpro.github.

Introduction

The Continuous Genetic Algorithm

As Seign Tenns regettan Deproject Exam Help A single floating-point number v.s. N_{bit} of '0's and '1's.

- Allo
- Inhehttps://eduassistpro.github.
- Deals Aith domble Woblen With high dimension assist_pr
- More logical to represent variables by floating-poi problems are continuous.

The Continuous Genetic Algorithm

Figure 1: Flowchart of a continuous genetic algorithm

Mutation

Variables and Cost Function

• The optimisation variables are represented by chromosome.

Assignment Project Exam Help

- Eac
- The https://eduassistpro.github. cost = f(chromosome)
- Variation of the last of the
- No encoding and decoding before cost function evaluation.
- Only limited to the internal precision and round-off error of computers.
- Natural form of real-valued cost function can be used directly.

ullet The GA starts with an initial population with N_{pop} chromosomes with an

As Sylvathan transfer two paragraphs and the extra $\frac{1}{2}$ Example: A cost function: $cost = f(x,y) = x \sin(4x) + 1.1y \sin(2y)$ subject to

 $0 \le x \le$

https://eduassistpro.github.

13.752

Table 1: Example initial population

9.8784

6.8537

Natural Selection: X_{rate}

• N_{pop} chromosomes are ranked from lowest cost to highest cost. As Shippenetral Selected Berning Wile the restarding ded Help

https://eduassistpro.github.

WeChatedu_assist_pr

Selection

ullet Pairing from top to bottom until the top N_{keep} chromosomes are selected for

Assignment Project Exam Help

- Random pairing: All chromosomes have the same probabilities to mate.
- Wei https://eduassistpro.github. Cost weighting
- Tournament selection/picks randomly a small edu_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in this subset bec_assist_processing the chromosome with the lowest cost in the chromosome with the lowest cost in the chromosome with the c

1) Swapping

Assignment Project Exam Help

1c)

- ^{2) Ble} https://eduassistpro.github.
- 3) Extr

Crossover: Swapping

Single-point crossover:

```
Sarent igning Property in the Property is Property in Exam Help
offspring_1 = [p , p , p , p , p , p , p , p ]
```

https://eduassistpro.github.

Crossover: Swapping

Single-point crossover:

```
\begin{array}{l} \textbf{\textit{Asssign}} & \textbf{\textit{proposition}} & \textbf{\textit
```


Single-point crossover:

```
Assist property of the parenty of the property of the propert
```

Disadvantage: Crossover by swapping does not introduce new information, just differet combinations. It totally relies on mutation to introduce new genetic material.

• The new offspring comes from a combination of the two parents.

Assignment Project | Exam Help

- * https://eduassistpro.github.
- β is a random number in the range of 0 and 1.
- The same or different a cambo e used to leach variable of the right ____ assist__property of the same of the sam
- Linear combination process is done for all variables to the right — point.
- Any number of points can be chosen to blend.
- Disadvantage: It does not allow the introduction of values beyond the extremes already represented in the population.

Crossover: Blending

• Generate a random position n.

Assignment Project Exam Help Method 1. Solending at the n^{th} point and swap genes from n+1 to N_{var}

https://eduassistpro.github.

$$\underbrace{Add}_{offspring_2} \underbrace{WeChatedu_assist_pr}_{p_{d1},p_{d2},\cdots,\underbrace{p_{new}}_{n^{th}gene}}$$

Crossover: Blending

Method 2: blending genes from the point n to point N_{var}

Assignment Project Exam Help offspring₁ = $p_{m1}, p_{m2}, p_{new_1,n}, p_{new_1,n+1}, p_{new_1,N_{var}}$

https://eduassistpro.github.

offspring₂ =
$$p_{d1}, p_{d2}, \cdots, p_{new_2,n}$$

 $\begin{array}{l} \textit{offspring}_2 = p_{d1}, p_{d2}, \cdots, p_{\textit{new}_2, n}, \\ \textbf{Add WeCh}^{\text{that}} \ \textbf{edu_assist_pr} \end{array}$

Crossover: Extrapolation

• The new offspring comes from a combination of the two parents.

Assignment Project Exam Help

whe https://eduassistpro.github.

- It allows offspring generation outside of the two par
- The analysis and disable crush at the actumassist_pr
- ullet Variations include choosing any number of variables to modify and generating different eta for each variable.

Crossover: Extrapolation

Method 1: blending at the n^{th} point and swap genes from n+1 to N_{var}

Assignment, Project, Exam, Help

Method 2: blendin

https://eduassistpro.github.

Add Wachet adu acciet n

Example Add: Wie Chat edu_assist_property (1976 8 0271)

 $chromosome_2 = [0.1876, 8.9371]$

 $chromosome_3 = [2.6974, 6.2647]$

 $\textit{offspring}_1 = [0.1876 - 0.0272 \times (0.1876 - 2.6974), 6.2647] = [0.2559, 6.2647]$

 $\textit{offspring}_2 = [2.6974 + 0.0272 \times (0.1876 - 2.6974), 8.9371] = [2.6291, 8.9371]$

Mutations:

Assignment Project Exam Help

• Total number of variables that can be mutated in the population:

 $\mu(N)$

- Mut https://eduassistpro.github.
 - σ is a chosen constant.
- $N_{v}(0,1)$: standard normal-distribution (mean of the choice of the
- If bounds exceed, discard and generate again.
- Generally not allowed on the best solution (elitism).

Example: $\mu = 20\%$.

Aumber of variables to be mutated: Project Exam Help

 $Row = [4 \ 4 \ 7]; Column = [1 \ 2 \ 1]$

8.9371

0.18758

https://eduassistpro.github.

8.9371

0.18758

Table 3: Mutating Population.

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

https://eduassistpro.github.

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Chrom

https://eduassistpro.github.

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Chrom

https://eduassistpro.github.

```
Add Wethat edu_assist_pr
```

- 2 [2.8355, 3.6406, 4.8725] -3.1928
- $3 \quad [4.4442, 4.7174, 2.3810] \quad -30.3429$
- 4 [4.8947, 2.4728, 4.9118] -4.5771

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 2: Ran

https://eduassistpro.github.

1 [4.4442, 4.7174, 2.3810]

Add [We con has edu_assist_production of the control of the contro

4 [2.8355, 3.6406, 4.8725] -3.1928

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 3: Selection with rank weighting (roulette wheel weighting)

n	https://ed	duas	sistpi	ro.g ¤իւ	ıb.
1	[4.4442, 4.7174, 2.3810]	-30.3429	0.5	0.5	
2	[4,7401, 3.8971, 2.2926]	25.3274	، مار،	!-1	
3	[4,7401, 3.8971, 2.2926] 4.1907, 0.728/491	nat	eau_	_assist_	_pr
	[2.8355, 3.6406, 4.8725]				

• Generate two random numbers: 0.0975, 0.6324

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 4: Cro

 p_1 : [4.444] https://eduassistpro.github.

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help

Step 4: Cro

 p_1 : [4.444] https://eduassistpro.github.

• Generate randomly the crossover point: 2

offspring₁ A. 4. 2.3.8 V 2.61 Flat: edu_assist_pring2: [4.7401, 4.7174, 2.3810] ⇒ Cost: −

Consider GA example by hand

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

 $2 \le x, y, z \le 5$.

Assignment Project Exam Help $\mu = 0.2$; #mutation = $0.2(4 \quad 1)3 = 1.8 \quad 2$

 $Row = [2 \ 3]; C$

"https://eduassistpro.github. [4.4442, 4.7174, 2.3810] [4.4442, 4.7174, 2.3810]

- 2 A.7491, 3.8971, 2.2926 [1.5570, 3.8] 3 A. d. d. 472, 472, 56. C. h. a.t. edu_assist_pr
 - [4.7401, 4.7174, 2.3810] [4.7401, 4.7174, 2.3810]
- $\bullet \sigma = 1$
- $4.7401 + \sigma \times rand = 4.7401 0.1831 = 4.5570$
- \bullet 2.4728 + $\sigma \times rand$ = 2.4728 + 0.8584 = 3.3312

Consider GA example by hand

Example: Consider a function f(x, y, z) = x - 2xy + 3z to be minimised, where

Assignment Project Exam Help Ranked population at the next iteration:

https://eduassistpro.github.

2 [4.4442, 4.7174, 2.3810]

Add have edu_assist_predu_assist_predu_assist_predu_assist_predu_assist_predu_assist_predu_assist_predu_assist_predu_assist_preduction and the state of the state