1

B.5 Results for GS1

In this section, we describe the results for RQ1, RQ2 and RQ4 (i.e., Sections B.5.1–Section B.5.3 respectively) for use case GS1.

B.5.1 Experiment Results for RQ1

This section describes the results for Experiment Results for RQ1.

B.5.1.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM))

TD	A 1: 11 A	A 1: (1 D	P	ET	P	TR	A	UM	О	FV	H	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.5.1.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUS))

TD	A 1: 11 A	A1::(1D	P	ET	P	TR	P	US	О	FV	I	łV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TD010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 Dood	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.5.1.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	A.	NU	0	FV	I	IV	IC	GD
10	AigontilliA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			P	ET	P'	ΓR	A	NU	O	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TD000	SPEA2	SimpleRS	>0.5	<0.01	>0.9	<0.01	<0.1	<0.01	>0.9	<0.01	< 0.5	<0.01	<0.1	<0.01
TB020	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10090	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.5.1.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUU))

ТВ	A 1 A	A languith and D	P	ET	P	TR	P	UU	О	FV	H	IV	I	GD
1 D	AlgorithmA	AlgorithmB	A12	p	A12	p	A12	p	A12	p	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

ТВ	A 1 A	A loonith no D	P	ET	P	TR	Pl	UU	О	FV	I	IV	I	GD
1 D	AlgorithmA	AlgorithmB	A12	p	A12	р	A12	p	A12	р	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.5.1.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM, PUS))

тр	A 1 A	A la a si the see D	P	ET	P	TR	A	UM	P	US	О	FV	I.	IV	I	GD
TB	AigorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 00/0	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

ТВ	AlgorithmA	AlgorithmR	P	ET	P	TR	A	UM	P	US	О	FV	H	IV	I	GD
1 1 1	AigoriumA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0070	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 00 90	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.5.1.6 Problem 6: This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM, ANU))

ТВ	A 1 A	A la a si the see D	P	ET	P	TR	A	UM	A	NU	О	FV	F	IV	I	GD
1 D	AlgorithmA	Aigorithmb	A12	р												
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TP010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	1
1 0040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	> 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	> 0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	> 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	>0.9	< 0.01	< 0.1	<0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	>0.5	>0.05		< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	> 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05		< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	> 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	> 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	> 0.5	< 0.01	> 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	> 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	> 0.5	< 0.01	> 0.5	< 0.01	> 0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	1 1
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	
15070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TR	AlgorithmA	AlgorithmR	P	ET	P'	TR	Al	UM	A]	NU	О	FV	I	IV	IC	GD
10	Aigonumia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.5.1.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, AUM, PUU))

TD	A.1 '.1 A	A1 '(1 P	P	ET	P'	TR	A	UM	P	UU	О	FV	I	IV	I	GD
TB	AigorithmA	AlgorithmB	A12	р	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TDOO	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	<0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	<0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	<0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	<0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.5.1.8 Problem 8: This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUS, ANU))

TED	A.1 '-1 A	41 'd D	P	ET	P'	TR	P	US	A	NU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
ED 04 0	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01		< 0.01		< 0.01	< 0.1	
TB010	SPEA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	1	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TD000	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	_	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TPO20	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
IDOOO	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	>0.05	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	1	< 0.01	1	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	1	< 0.01		< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
12000	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	1	< 0.01	1	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	1	< 0.01	< 0.1	< 0.01
12070	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
<u> </u>	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01		< 0.01	<0.1	< 0.01
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	1	< 0.01	<0.1	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	<0.1	< 0.01
	SPEA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.5.1.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, PUS, PUU))

ТВ	AlgorithmA	AlgorithmR	P	ET	P'	TR	P	US	P	UU	О	FV	H	IV	I	GD
10	AiguittiiiA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB010	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

			P	ET	P	TR	P	US	P	UU	О	FV	I	ΙV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	p								
TD000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TPO20	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	=0.5	>0.05
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 00 90	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01		>0.05
1 100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

B.5.1.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (GS1, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmR	P	ET	P	TR	A	NU	Pl	UU	О	FV	Н	IV	IC	GD
1 1 1	Aigonumia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TRO40	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	SPEA2	SimpleRS	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	A loosith on D	P	ET	P	TR	A.	NU	Pl	UU	О	FV	I.	IV	IC	GD
1 D	AigoriumA	Aigoriumb	A12	p	A12	р	A12	р	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.5.1.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 11. Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Multi-Objective Algorithms and RS for HV and IGD (GS1)

Problem	TB	Adjusted_p	Reject
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB050	< 0.01	Y
F100.1 J(FL1,F1K,AUNI)	TB060	< 0.01	Y
	TB070 <0.01		Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040 <0.01	< 0.01	Y
Prob.2 f(PET,PTR,PUS)	TB050	< 0.01	Y
1700.2 ((1 £1,1 110,1 03)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB040	< 0.01	Y
1100.5 (1 L1,1 110,21104)	TB050	< 0.01	Y
	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y

Problem	ТВ	Adjusted_p	Reject
DI. 2 ((DET DED ANUI)	TB090	<0.01	Y
Prob.3 f(PET,PTR,ANU)	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D 1.4 ((DET DED DILLI)	TB050	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D. A. F. ((DET DED. ALIAA DIIC)	TB050	< 0.01	Y
Prob.5 f(PET,PTR,AUM,PUS)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Dual (WDET DTD ALIM ANIL)	TB050	< 0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Drob 7 f(DET DTD ALIM DILLI)	TB050	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y
1 100.0 j(1 L1,F1K,FU3,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB030	< 0.01	Y
1100.0 1/1 [11,1 [13,1 [43,1 [44]]	TB040	< 0.01	Y
	TB050	< 0.01	Y
	TB060	< 0.01	Y

Problem	TB	Adjusted_p	Reject		
	TB070	< 0.01	Y		
Prob.9 f(PET,PTR,PUS,PUU)	TB080	< 0.01	Y		
F100.9 j(FL1,F1K,F43,F44)	TB090	< 0.01	Y		
	TB100	< 0.01	Y		
	TB010	< 0.01	Y		
	TB020	< 0.01	Y		
	TB030 <0.01				
	TB040	< 0.01	Y		
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y		
1700.10 j(1 L1,1 1 K,211va,1 aa)	TB060	< 0.01	Y		
	TB070	< 0.01	Y		
	TB080	< 0.01	Y		
	TB090	< 0.01	Y		
	TB100	< 0.01	Y		

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.
* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.5.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

B.5.2.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 12. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM))

ТВ	Metric	ChiSq	DF	p
	ET	27926.73	3	< 0.01
	CTR	3288.81	3	< 0.01
TB010	UM	26892.24	3	< 0.01
1 DO10	OFV	24265.11	3	< 0.01
	HV	341.79	3	< 0.01
	IGD	354.99	3	< 0.01
	ET	25404.75	3	< 0.01
	CTR	2900.68	3	< 0.01
TB020	UM	24379.53	3	< 0.01
1 0020	OFV	24741.28	3	< 0.01
	HV	358.13	3	< 0.01
	IGD	360.39	3	< 0.01
	ET	24324.22	3	< 0.01
	CTR	2202.45	3	< 0.01
TB030	UM	23137.36	3	< 0.01
1 0000	OFV	24487.82	3	< 0.01
	HV	362.31	3	< 0.01
	IGD	361.22	3	< 0.01
	ET	17167.65	3	< 0.01
	CTR	2412.61	3	< 0.01
TB040	UM	16283.69	3	< 0.01
1 0040	OFV	17267.73	3	< 0.01
	HV	362.68	3	< 0.01
	IGD	361.37	3	< 0.01
	ET	14811.38	3	< 0.01
	CTR	2923.23	3	< 0.01
TB050	UM	14532.51	3	< 0.01
1 0000	OFV	14954.83	3	< 0.01
	HV	366.5	3	< 0.01
	IGD	365.73	3	< 0.01
	ET	11290.46	3	< 0.01
TB060	CTR	2844.64	3	< 0.01
1 0000	UM	10975.68	3	< 0.01
	OFV	11365.86	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB060	HV	362.38	3	< 0.01
1 0000	IGD	361.66	3	< 0.01
	ET	9787.76	3	< 0.01
	CTR	2299.46	3	< 0.01
TB070	UM	9577.27	3	< 0.01
1 D070	OFV	9846.18	3	< 0.01
	HV	362.27	3	< 0.01
	IGD	362.96	3	< 0.01
	ET	8825.22	3	< 0.01
	CTR	2628.34	3	< 0.01
TB080	UM	8761.78	3	< 0.01
1 0000	OFV	8878.64	3	< 0.01
	HV	361.05	3	< 0.01
	IGD	360.2	3	< 0.01
	ET	8028.61	3	< 0.01
	CTR	2609.39	3	< 0.01
TB090	UM	7700.71	3	< 0.01
1 0090	OFV	8061.59	3	< 0.01
	HV	360.03	3	< 0.01
	IGD	358.62	3	< 0.01
	ET	7898.74	3	< 0.01
	CTR	2326.44	3	< 0.01
TB100	UM	7768.88	3	< 0.01
1 1 1 1 1 0 0	OFV	7935.71	3	< 0.01
	HV	363.86	3	< 0.01
	IGD	363.32	3	< 0.01

TABLE 13. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM))

ТВ	A 1 A	A la a with me D	E	ET	C	TR	U	M	О	FV	H	IV	IC	GD
1 D	AlgorithmA	AlgorithmB	A12	p	A12	р								
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

			I	ET	C	TR	T.	M		FV	T	IV	10	13 GD
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	CellDE	<0.1	<0.01	<0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
TB050	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
TED 0.40	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 50/0	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 14. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM))

ТВ	Metric		Rai	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	1	4	30%	20%	10%	40%
TB010	UM	2	3	1	4	20%	30%	10%	40%
10010	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB020	UM	2	3	1	4	20%	30%	10%	40%
1 0020	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	4	1	3	20%	40%	10%	30%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%

TD	35		Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB030	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TD040	UM	2	3	1	4	20%	30%	10%	40%
TB040	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TROFO	UM	2	3	1	4	20%	30%	10%	40%
TB050	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB060	UM	2	3	1	4	20%	30%	10%	40%
1 0000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB070	UM	2	3	1	4	20%	30%	10%	40%
1 0070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB080	UM	2	3	1	4	20%	30%	10%	40%
10000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB090	UM	2	3	1	4	20%	30%	10%	40%
10070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB100	UM	2	3	1	4	20%	30%	10%	40%
15100	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.5.2.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 15. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	1877.67	3	< 0.01
	CTR	253.4	3	< 0.01
TB010	USP	5.66	3	>0.05
16010	OFV	1183.39	3	< 0.01
	HV	356.39	3	< 0.01
	IGD	NaN	3	NaN
	ET	768.49	3	< 0.01
TB020	CTR	238.1	3	< 0.01
	USP	15.2	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	OFV	764.3	3	< 0.01
TB020	HV	352.55	3	< 0.01
	IGD	NaN	3	NaN
	ET	502.81	3	< 0.01
	CTR	208.24	3	< 0.01
TD020	USP	19.84	3	< 0.01
TB030	OFV	505.09	3	< 0.01
	HV	354.24	3	< 0.01
	IGD	NaN	3	NaN
	ET	466.69	3	< 0.01
	CTR	127.81	3	< 0.01
TB040	USP	3	3	>0.05
10040	OFV	464.49	3	< 0.01
	HV	356.71	3	< 0.01
	IGD	NaN	3	NaN
	ET	425.13	3	< 0.01
	CTR	178.26	3	< 0.01
TB050	USP	3.25	3	>0.05
1 0000	OFV	425.46	3	< 0.01
	HV	356.56	3	< 0.01
	IGD	NaN	3	NaN
	ET	394.88	3	< 0.01
	CTR	125.55	3	< 0.01
TB060	USP	30.6	3	< 0.01
1 0000	OFV	395.63	3	< 0.01
	HV	349.16	3	< 0.01
	IGD	NaN	3	NaN
	ET	401.81	3	< 0.01
	CTR	209.43	3	< 0.01
TB070	USP	3	3	>0.05
10070	OFV	403.98	3	< 0.01
	HV	343.68	3	< 0.01
	IGD	NaN	3	NaN
	ET	387.38	3	< 0.01
	CTR	216.55	3	< 0.01
TB080	USP	6.01	3	>0.05
10000	OFV	389.67	3	< 0.01
	HV	338.67	3	< 0.01
	IGD	NaN	3	NaN
	ET	339.42	3	< 0.01
	CTR	172.1	3	< 0.01
TB090	USP	15.14	3	< 0.01
	OFV	344.94	3	< 0.01
	HV	335.87	3	<0.01
	IGD	NaN	3	NaN
	ET	350.38	3	< 0.01
	CTR	174.3	3	< 0.01
TB100	USP	3.68	3	>0.05
	OFV	352.37	3	<0.01
	HV	340.83	3	<0.01
	IGD	NaN	3	NaN

TABLE 16. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV		IGD	
			A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB010	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05

ТВ	AlgorithmA	AlgorithmB		ET	1	TR	1	SP		FV		IV		GD
			A12	p <0.01	A12	p <0.01	A12	p	A12	p	A12	p <0.01	A12	p
	NSGA2 NSGA2	SPEA2	>0.9	< 0.01	<0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	<0.5 >0.9	< 0.01	=0.5	>0.05
TB010	MoCell	CellDE SPEA2	<0.1 >0.9	<0.01	<0.5 <0.5	<0.01	<0.5 >0.5	> 0.05 <0.05	<0.1 >0.5	<0.01	<0.1	<0.01	=0.5 =0.5	>0.05 >0.05
10010	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.03	>0.5	>0.05	<0.1	< 0.01	>0.1	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.1	< 0.01	<0.5	< 0.01	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
12010	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	<0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	<0.01	<0.5	>0.05	<0.5	>0.05	<0.1	< 0.01	>0.9	<0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	<0.5	>0.05	>0.9	< 0.01	<0.5	< 0.01	=0.5	>0.05
TB050	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	MoCell McCell	SPEA2 CellDE	>0.9	<0.01	>0.5	< 0.05	<0.5	>0.05	>0.9	<0.01	<0.1	<0.01	=0.5	>0.05
	MoCell SPEA2	CellDE	<0.1	<0.01 <0.01	<0.5 <0.1	<0.01	<0.5 >0.5	>0.05 >0.05	<0.1	<0.01 <0.01	>0.9	<0.01 <0.01	=0.5 =0.5	>0.05 >0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.1	>0.01	=0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.1	< 0.01	<0.5	< 0.05	=0.5	>0.05	>0.1	< 0.01	<0.5	< 0.01	=0.5	>0.05
	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.03	<0.5	<0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.01	>0.1	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01		>0.05
TDOTO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01		>0.05
TB070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	<0.1	< 0.01	<0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	=0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	<0.01	<0.5	>0.05	=0.5	>0.05	>0.5	<0.01	<0.5	< 0.01	=0.5	>0.05
TB090	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	<0.05	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	MoCell	SPEA2	>0.9	<0.01	>0.5	>0.05	=0.5	>0.05	>0.9	<0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	<0.5	<0.01	<0.1	<0.01	<0.5	< 0.05	<0.5	<0.01	>0.5	<0.01	=0.5	>0.05
	SPEA2	CellDE	<0.1	<0.01	<0.1	<0.01	<0.5	<0.05	<0.1	<0.01	>0.9	<0.01	=0.5	>0.05
	NSGA2 NSGA2	MoCell SPEA2	<0.1 >0.5	<0.01 <0.01	>0.5 <0.5	<0.05 <0.01	>0.5	>0.05 >0.05	<0.1 >0.5	<0.01	>0.9	<0.01 <0.01	=0.5 =0.5	>0.05 >0.05
TB100	NSGA2 NSGA2	CellDE	>0.5	<0.01	<0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01		>0.05
	MoCell	SPEA2	>0.1	< 0.01	< 0.5	< 0.01	>0.5 = 0.5	>0.05	>0.1	< 0.01	<0.1	< 0.01		>0.05
	MIOCEII	UI LAZ	/ 0./	\0.01	\ \0.5	\ \ 0.01	_0.5	/ 0.03	/ 0.7	\0.01	\0.1	\0.01	-0.5	/ 0.00

ТВ	AlgorithmA	AlgorithmB	I	ET (CTR		USP		OFV		HV		IGD	
10	Aigontillia	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	
TB100	MoCell	CellDE	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05	
1 1 1 1 1 0 0	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05	

TABLE 17. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUS))

ТВ	Matria		Ra	nk	Confidence						
1 B	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	2	3	14%	14%	29%	43%		
TB010	USP	1	2	1	2	17%	33%	17%	33%		
10010	OFV	1	2	1	3	14%	29%	14%	43%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TD020	USP	1	2	1	2	17%	33%	17%	33%		
TB020	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
	USP	1	1	1	2	20%	20%	20%	40%		
TB030	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	1	2	20%	20%	20%	40%		
	USP	1	1	1	1	25%	25%	25%	25%		
TB040	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4		30%	20%	40%	10%		
	IGD	1		1	1 1	25%	25%	25%	25%		
	ET	3	1			30%	20%	40%	10%		
			2	4	1						
	CTR	1	2	1	3	14%	29%	14%	43%		
TB050	USP	1	1	1	1	25%	25%	25%	25%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	1	1	2	3	14%	14%	29%	43%		
TB060	USP	1	1	1	2	20%	20%	20%	40%		
	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	3	2	1	4	30%	20%	10%	40%		
TB070	USP	1	1	1	1	25%	25%	25%	25%		
10070	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
	ET	3	2	4	1	30%	20%	40%	10%		
	CTR	2	2	1	3	25%	25%	12%	38%		
TDOO	USP	1	1	1	1	25%	25%	25%	25%		
TB080	OFV	2	3	1	4	20%	30%	10%	40%		
	HV	3	2	4	1	30%	20%	40%	10%		
	IGD	1	1	1	1	25%	25%	25%	25%		
TB090	ET	3	2	4	1	30%	20%	40%	10%		

ТВ	Metric		Rai	nk		Confidence						
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	CTR	1	1	1	2	20%	20%	20%	40%			
	USP	1	1	1	2	20%	20%	20%	40%			
TB090	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	1	3	4	20%	10%	30%	40%			
TB100	USP	1	1	1	1	25%	25%	25%	25%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	1	1	1	1	25%	25%	25%	25%			

 $\hbox{B.5.2.3} \quad \hbox{Problem 3: This section describes the results for prioritization problem } f(PET, PTR, ANU).$

TABLE 18. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU))

ТВ	Metric	ChiSq	DF	p
	ET	610.77	3	< 0.01
	CTR	924.33	3	< 0.01
TB010	NU	2541.87	3	< 0.01
1 DU10	OFV	840.47	3	< 0.01
	HV	355.11	3	< 0.01
	IGD	313.67	3	< 0.01
	ET	831.87	3	< 0.01
	CTR	1926.14	3	< 0.01
TB020	NU	3494.81	3	< 0.01
1 D020	OFV	1826.97	3	< 0.01
	HV	352.95	3	< 0.01
	IGD	335.88	3	< 0.01
	ET	478.14	3	< 0.01
	CTR	2920.67	3	< 0.01
TB030	NU	3026.75	3	< 0.01
1 0000	OFV	2732.16	3	< 0.01
	HV	339.94	3	< 0.01
	IGD	323.92	3	< 0.01
	ET	562.68	3	< 0.01
	CTR	3772.52	3	< 0.01
TB040	NU	3169.37	3	< 0.01
10040	OFV	3484.69	3	< 0.01
	HV	329.65	3	< 0.01
	IGD	322.76	3	< 0.01
	ET	434.19	3	< 0.01
	CTR	3595.17	3	< 0.01
TB050	NU	3002.03	3	< 0.01
10000	OFV	3214.6	3	< 0.01
	HV	310.74	3	< 0.01
	IGD	309.89	3	< 0.01
	ET	350.28	3	< 0.01
	CTR	2965.48	3	< 0.01
TB060	NU	2734.86	3	< 0.01
10000	OFV	2440.93	3	< 0.01
	HV	299.15	3	< 0.01
	IGD	327.79	3	< 0.01
	ET	407.75	3	< 0.01
	CTR	2511.89	3	< 0.01
TB070	NU	3370.04	3	< 0.01
	OFV	2002.24	3	< 0.01
	HV	286.34	3	< 0.01

TB	Metric	ChiSq	DF	p
TB070	IGD	308.18	3	< 0.01
	ET	468.64	3	< 0.01
	CTR	1975.29	3	< 0.01
TB080	NU	3229.26	3	< 0.01
1 0000	OFV	1371.44	3	< 0.01
	HV	271.28	3	< 0.01
	IGD	316.2	3	< 0.01
	ET	703.59	3	< 0.01
	CTR	902.16	3	< 0.01
TB090	NU	3183.03	3	< 0.01
1 0090	OFV	591.7	3	< 0.01
	HV	269.7	3	< 0.01
	IGD	321.63	3	< 0.01
	ET	617.21	3	< 0.01
	CTR	926.77	3	< 0.01
TB100	NU	3587.09	3	< 0.01
1 0100	OFV	580.36	3	< 0.01
	HV	264.96	3	< 0.01
	IGD	335.9	3	< 0.01

TABLE 19. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	I	ET	С	TR	N	NU	О	FV	H	IV	IC	GD
10	AigonumiA	Aigonumi	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	NSGA2	CellDE	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	NSGA2	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01
TB060	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01

ТВ	Alaarithm A	A loosith m D	I	ET	C	TR	N	IU	О	FV	I	ΙV	IC	GD
1 D	AlgorithmA	AlgorithmB	A12	р	A12	p								
	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01

TABLE 20. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, ANU))

TD	Metric		Rai	ık			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	1	3	33%	22%	11%	33%
	CTR	2	1	4	3	20%	10%	40%	30%
TB010	NU	2	3	1	4	20%	30%	10%	40%
1 10010	OFV	2	1	3	2	25%	12%	38%	25%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	2	1	4	30%	20%	10%	40%
	CTR	3	2	4	1	30%	20%	40%	10%
TB020	NU	2	3	1	4	20%	30%	10%	40%
1 0020	OFV	3	2	4	1	30%	20%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	2	3	33%	11%	22%	33%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	NU	3	2	1	4	30%	20%	10%	40%
1 0000	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	1	2	43%	14%	14%	29%
	CTR	3	2	4	1	30%	20%	40%	10%
TB040	NU	2	2	1	3	25%	25%	12%	38%
1 0040	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%

тр	Matria		Ra	nk			Confid	dence	
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	4	1	2	3	40%	10%	20%	30%
	CTR	3	2	4	1	30%	20%	40%	10%
TB050	NU	2	2	1	3	25%	25%	12%	38%
1 0000	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	1	2	3	40%	10%	20%	30%
	CTR	2	2	3	1	25%	25%	38%	12%
TB060	NU	2	3	1	4	20%	30%	10%	40%
1 0000	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	1	2	3	40%	10%	20%	30%
	CTR	2	2	3	1	25%	25%	38%	12%
TB070	NU	2	3	1	4	20%	30%	10%	40%
1 00/0	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	2	3	1	25%	25%	38%	12%
TB080	NU	2	3	1	4	20%	30%	10%	40%
1 0000	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
TB090	NU	2	3	1	4	20%	30%	10%	40%
1 0090	OFV	2	4	3	1	20%	40%	30%	10%
	HV	3	3	1	2	33%	33%	11%	22%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	3	2	33%	11%	33%	22%
	CTR	2	3	4	1	20%	30%	40%	10%
TB100	NU	2	3	1	4	20%	30%	10%	40%
1 1 1 1 1 0 0	OFV	2	4	3	1	20%	40%	30%	10%
	HV	3	3	1	2	33%	33%	11%	22%
	IGD	4	3	1	2	40%	30%	10%	20%

B.5.2.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 21. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	2726.07	3	< 0.01
	CTR	460.03	3	< 0.01
TB010	NUU	52.53	3	< 0.01
1 0010	OFV	1739.1	3	< 0.01
	HV	349.06	3	< 0.01
	IGD	349.43	3	< 0.01
	ET	808.48	3	< 0.01
	CTR	266.97	3	< 0.01
TB020	NUU	40.27	3	< 0.01
1 0020	OFV	724.43	3	< 0.01
	HV	349.41	3	< 0.01
	IGD	NaN	3	NaN
	ET	532.31	3	< 0.01
TB030	CTR	233.73	3	< 0.01
1 0000	NUU	54.15	3	< 0.01
	OFV	537.87	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	354.93	3	< 0.01
10000	IGD	NaN	3	NaN
	ET	525.29	3	< 0.01
	CTR	197.11	3	< 0.01
TB040	NUU	35.97	3	< 0.01
10040	OFV	528.6	3	< 0.01
	HV	352.87	3	< 0.01
	IGD	NaN	3	NaN
	ET	438.11	3	< 0.01
	CTR	175.06	3	< 0.01
TB050	NUU	42.71	3	< 0.01
10000	OFV	443.82	3	< 0.01
	HV	355.98	3	< 0.01
	IGD	NaN	3	NaN
	ET	445.63	3	< 0.01
	CTR	258.06	3	< 0.01
TB060	NUU	128.56	3	< 0.01
1 0000	OFV	446.34	3	< 0.01
	HV	354.23	3	< 0.01
	IGD	NaN	3	NaN
	ET	406.58	3	< 0.01
	CTR	175.08	3	< 0.01
TB070	NUU	53.31	3	< 0.01
1 D07 U	OFV	408.06	3	< 0.01
	HV	347.18	3	< 0.01
	IGD	NaN	3	NaN
	ET	403.33	3	< 0.01
	CTR	184.15	3	< 0.01
TB080	NUU	87.42	3	< 0.01
1 0000	OFV	405.59	3	< 0.01
	HV	353.23	3	< 0.01
	IGD	NaN	3	NaN
	ET	381.34	3	< 0.01
	CTR	229.57	3	< 0.01
TB090	NUU	109.13	3	< 0.01
1 D090	OFV	385.52	3	< 0.01
	HV	347.01	3	< 0.01
	IGD	NaN	3	NaN
	ET	375.5	3	< 0.01
	CTR	209.22	3	< 0.01
TP100	NUU	97.25	3	< 0.01
TB100	OFV	377.98	3	< 0.01
	HV	346.54	3	< 0.01
	IGD	NaN	3	NaN

TABLE 22. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	I	ΞT	С	TR	N	UU	0	FV	F	IV	I	GD
10	Aigonumia	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	NSGA2	SPEA2	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	=0.5	>0.05

TED	A.1 '-1 A	41 'd D	I	ET	С	TR	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р								
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TDOO	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
TB020	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TD040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROFO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOTO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB070	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TDOOO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB080	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROOG	NSGA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TD100	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01		>0.05
	MoCell	CellDE	<0.1	< 0.01	< 0.1	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01		>0.05
	SPEA2	CellDE	<0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	1	1		1	1	1	1	I	1	1	l	1	1	

TABLE 23. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUU))

			Rai	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB010	NUU	1	2	1	1	20%	40%	20%	20%
1 0010	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	1	1	1	2	20%	20%	20%	40%
TB020	NUU	2	2	1	2	29%	29%	14%	29%
1 D020	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	1	4	30%	20%	10%	40%
TB030	NUU	3	2	1	3	33%	22%	11%	33%
1 0000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB040	NUU	2	2	1	3	25%	25%	12%	38%
10010	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
TB050	NUU	1	1	1	2	20%	20%	20%	40%
12000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB060	NUU	3	2	1	4	30%	20%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
TB070	NUU	1	1	2	2	17%	17%	33%	33%
-	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
TB080	NUU	2	1	1	3	29%	14%	14%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	1	4	30%	20%	10%	40%
TB090	NUU	2	1	1	3	29%	14%	14%	43%
-	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%

ТВ	Metric	Rank Confidence							
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB100	NUU	2	1	1	3	29%	14%	14%	43%
10100	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%

B.5.2.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 24. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	28423.92	3	< 0.01
	CTR	2498.64	3	< 0.01
	UM	26671.39	3	< 0.01
TB010	USP	2206.91	3	< 0.01
	OFV	23767.89	3	< 0.01
	HV	331.16	3	< 0.01
	IGD	345.41	3	< 0.01
	ET	26215.56	3	< 0.01
	CTR	3281.1	3	< 0.01
	UM	24447.9	3	< 0.01
TB020	USP	1838.86	3	< 0.01
	OFV	25193.7	3	< 0.01
	HV	350.72	3	< 0.01
	IGD	NaN	3	NaN
	ET	16284.87	3	< 0.01
	CTR	1496.64	3	<0.01
	UM	15318.06	3	<0.01
TB030	USP	549.35	3	<0.01
	OFV	16244.77	3	<0.01
	HV	356.16	3	< 0.01
	IGD	NaN	3	NaN
	ET	10710.8	3	< 0.01
	CTR	1962.15	3	<0.01
	UM	10136.71	3	<0.01
TB040	USP	477.88	3	<0.01
12010	OFV	10792.74	3	<0.01
	HV	358.09	3	<0.01
	IGD	NaN	3	NaN
	ET	7792.66	3	< 0.01
	CTR	1625.13	3	< 0.01
	UM	7277.37	3	<0.01
TB050	USP	151.58	3	<0.01
	OFV	7837.33	3	< 0.01
	HV	363.16	3	<0.01
	IGD	NaN	3	NaN
	ET	6507.72	3	< 0.01
	CTR	1119.09	3	<0.01
	UM	6284.14	3	<0.01
TB060	USP	14.64	3	< 0.01
	OFV	6523.68	3	<0.01
	HV	361.85	3	<0.01
	IGD	NaN	3	NaN
	ET	5520.02	3	<0.01
	CTR	1378.19	3	<0.01
TB070	UM	5318.91	3	<0.01
	USP	53.93	3	<0.01

ТВ	Metric	ChiSq	DF	p
	OFV	5562.51	3	< 0.01
TB070	HV	357.56	3	< 0.01
	IGD	NaN	3	NaN
	ET	4829.83	3	< 0.01
	CTR	1479.65	3	< 0.01
	UM	4666.42	3	< 0.01
TB080	USP	77.51	3	< 0.01
	OFV	4838.33	3	< 0.01
	HV	360.45	3	< 0.01
	IGD	NaN	3	NaN
	ET	4958.03	3	< 0.01
	CTR	1744.4	3	< 0.01
	UM	4838.68	3	< 0.01
TB090	USP	54.67	3	< 0.01
	OFV	4982.69	3	< 0.01
	HV	362.06	3	< 0.01
	IGD	NaN	3	NaN
	ET	4773.04	3	< 0.01
	CTR	1548.09	3	< 0.01
	UM	4515.81	3	< 0.01
TB100	USP	62.92	3	< 0.01
	OFV	4783	3	< 0.01
	HV	365.25	3	< 0.01
	IGD	NaN	3	NaN

TABLE 25. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUS))

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	U	JM	U	USP OFV		HV		IGD		
1 D	AigoriumA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB050	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
1 0000	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05

NSGA2 MoCell Coll	IGD A12 p =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0 =0.5 >0.0	A12 =0.5 =0.5 =0.5 =0.5	<0.01 <0.01 <0.01	>0.9	p					_		_		ı	1 / Loouthm K		
TB050	=0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00	=0.5 =0.5 =0.5	<0.01 <0.01 <0.01	1			1 P	A12	р	A12	р	A12	р	A12	Aigoriumib	AigoriilliA	1 B
NSGA2	=0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00 =0.5 >0.00	=0.5 =0.5	< 0.01	>0.9		< 0.1	>0.05	>0.5		< 0.1	< 0.01	< 0.5		< 0.1	CellDE	MoCell	TROFO
TB060	=0.5 > 0.00 =0.5 > 0.00 =0.5 > 0.00 =0.5 > 0.00 =0.5 > 0.00 =0.5 > 0.00	=0.5			< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE	SPEA2	1 B050
TB060	=0.5 > 0.00 =0.5 > 0.00 =0.5 > 0.00 =0.5 > 0.00		-	>0.9	< 0.01	< 0.1	>0.05	>0.5	< 0.01	< 0.1	>0.05	< 0.5	< 0.01	< 0.1	MoCell	NSGA2	
MoCell SPEA2 So.9 So.01 So.5 So.01 So.5 So.05 So.9 So.01 So.1 So.01	=0.5 >0.05 =0.5 >0.05 =0.5 >0.05 =0.5 >0.05 =0.5 >0.05 =0.5 >0.05 =0.5 =0.5 >0.05 =0.5 =0	=0.5	<0.01	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	SPEA2	NSGA2	
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 >0.05 >0.05 <0.01 <0.1 <0.01 <0.01 <0.05 <0.01 <0.5 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	=0.5 >0.05 =0.5 >0.05		< 0.01	>0.9	< 0.01	< 0.1	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE	NSGA2	TDOGO
TB070	=0.5 > 0.0	=0.5	< 0.01	< 0.1	< 0.01	>0.9	>0.05	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	SPEA2	MoCell	1 0000
TB070 NSGA2		=0.5	< 0.01	>0.9	< 0.01	< 0.1	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE	MoCell	
TB070 NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	=0.5 > 0.0	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE	SPEA2	
TB070		=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.05	>0.5	< 0.01	< 0.1	>0.05	>0.5	< 0.01	< 0.1	MoCell	NSGA2	
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	=0.5 > 0.08	=0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	SPEA2	NSGA2	
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	=0.5 > 0.03	=0.5	< 0.01	>0.9	< 0.01	< 0.1	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1			TB070
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	=0.5 > 0.0	=0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	SPEA2	MoCell	1 0070
TB080 NSGA2 MoCell <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	=0.5 > 0.03	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE	MoCell	
TB080 NSGA2 SPEA2 SPEA2 SO.5 < 0.01	=0.5 > 0.03	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE		
TB080	=0.5 > 0.0	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1			
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	=0.5 > 0.08	=0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	1	< 0.01	>0.5			
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	=0.5 > 0.03	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1		NSGA2	TROSO
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	=0.5 > 0.03	=0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9		MoCell	1 0000
NSGA2 MoCell <0.1 <0.01 <0.5 > 0.05 <0.1 <0.01 <0.5 > 0.05 <0.1 <0.01 <0.5 > 0.05 <0.1 <0.01 >0.9 <0.01 NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 >0.05 >0.05 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	=0.5 > 0.03													< 0.1			
NSGA2 SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 > 0.05 > 0.05 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <	=0.5 > 0.08	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE		
NSGA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	=0.5 > 0.0	=0.5	< 0.01	>0.9	1	1	>0.05	< 0.5	< 0.01	< 0.1	>0.05	< 0.5	< 0.01	< 0.1			
TROUGH I I I I I I I I I I I I I I I I I I I	=0.5 > 0.03		< 0.01	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5			
	=0.5 > 0.03	=0.5	< 0.01			1					< 0.01	< 0.5	< 0.01	< 0.1			TROOO
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.01 <0.01 <0.01 <0.01	=0.5 > 0.08	=0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	> 0.5	< 0.01	>0.9	SPEA2	MoCell	10070
	=0.5 > 0.08	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE		
	=0.5 > 0.08	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1			
NSGA2 MoCell <0.1 <0.01 <0.5 <0.05 <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01 >0.9 <0.01	=0.5 > 0.05	=0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.05	< 0.5	< 0.01	< 0.1			
	=0.5 > 0.03	=0.5	< 0.01	< 0.1			< 0.05		< 0.01	>0.5	< 0.01		< 0.01	>0.5			
TTRIMOL I I I I I I I I I I I I I I I I I I I	=0.5 > 0.03	=0.5		1		1				< 0.1	< 0.01	< 0.5	< 0.01	< 0.1			TR100
MoCell SPEA2 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.5 <0.01 >0.9 <0.01 >0.01 <0.01 <0.01	=0.5 > 0.08	=0.5	< 0.01	<0.1	< 0.01	>0.9			< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9			10100
	0.5 > 0.0	=0.5	< 0.01	>0.9	< 0.01	<0.1	>0.05		< 0.01	< 0.1	< 0.01		< 0.01	< 0.1			
SPEA2 CellDE <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.1 <0.01 >0.9 <0.01	=0.5 >0.08	=0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	CellDE	SPEA2	

TABLE 26. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
	UM	2	3	1	4	20%	30%	10%	40%
TB010	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3 1		4	20%	30%	10%	40%
	UM	2	3	1	4	20%	30%	10%	40%
TB020	USP	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	USP	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%

	25.4		Rank				Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TDOO	HV	3	2	4	1	30%	20%	40%	10%
TB030	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	UM	2	3	1	4	20%	30%	10%	40%
TB040	USP	1	3	1	2	14%	43%	14%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	UM	2	3	1	4	20%	30%	10%	40%
TB050	USP	2	2	1	2	29%	29%	14%	29%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	UM	2	3	1	4	20%	30%	10%	40%
TB060	USP	1	1	1	1	25%	25%	25%	25%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
TB070	UM	2	3	1	4	20%	30%	10%	40%
	USP	3	2	1	3	33%	22%	11%	33%
12070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	UM	2	3	1	4	20%	30%	10%	40%
TB080	USP	1	3	1	2	14%	43%	14%	29%
10000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	USP	1	2	1	3	14%	29%	14%	43%
10070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	UM	2	3	1	4	20%	30%	10%	40%
TB100	USP	2	3	1	3	20%	33%	10%	33%
1 10100	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	IGD	1	1	1	1	2370	2370	2370	2370

 $\text{B.5.2.6} \quad \text{Problem 6: This section describes the results for prioritization problem } f(PET, PTR, AUM, ANU). \\$

TABLE 27. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, ANU))

TB	Metric	ChiSq	DF	p
TB010	ET	324.34	3	< 0.01

ТВ	Metric	ChiSq	DF	p
	CTR	1222.25	3	< 0.01
	UM	1424.25	3	< 0.01
FD040	NU	1756.56	3	< 0.01
TB010	OFV	1435.72	3	< 0.01
	HV	317.4	3	< 0.01
	IGD	334.44	3	< 0.01
	ET	612.18	3	< 0.01
	CTR	2126.97	3	< 0.01
	UM	803.27	3	<0.01
TB020	NU	2705.73	3	<0.01
15020	OFV	2079.02	3	<0.01
	HV	357.58	3	<0.01
	IGD	337.19	3	<0.01
	ET	745.94	3	<0.01
	CTR	2930.53	3	<0.01
	UM	643.46	3	<0.01
TB030	NU	3305.44	3	<0.01
1 DU3U	OFV	2784.67	3	<0.01
	HV	361.53	3	<0.01
	IGD	336.6	3	<0.01
	ET	745.9	3	< 0.01
	CTR	2853.45	3	< 0.01
	UM	553.26	3	< 0.01
TB040	NU	3435.94	3	< 0.01
	OFV	2635.85	3	< 0.01
	HV	359.08	3	< 0.01
	IGD	334.97	3	< 0.01
	ET	619.54	3	< 0.01
	CTR	2354.61	3	< 0.01
	UM	240.06	3	< 0.01
TB050	NU	2949.43	3	< 0.01
	OFV	2041.84	3	< 0.01
	HV	348.58	3	< 0.01
	IGD	335.07	3	< 0.01
	ET	604.83	3	< 0.01
	CTR	2238.37	3	< 0.01
	UM	108.95	3	< 0.01
TB060	NU	3072.22	3	< 0.01
	OFV	1891.29	3	< 0.01
	HV	346.3	3	< 0.01
	IGD	336.65	3	< 0.01
	ET	549.28	3	< 0.01
	CTR	1711.04	3	< 0.01
	UM	75.18	3	< 0.01
TB070	NU	2518.26	3	< 0.01
	OFV	1267.33	3	< 0.01
	HV	335.54	3	< 0.01
	IGD	333.93	3	< 0.01
	ET	435.91	3	< 0.01
	CTR	1768.72	3	<0.01
	UM	106.91	3	<0.01
TB080	NU	2613.96	3	<0.01
12000	OFV	1300.94	3	<0.01
	HV	334.49	3	<0.01
	IGD	334.88	3	<0.01
	ET	574.08	3	<0.01
TB090	CTR	1417.53	3	<0.01
1 00/0	UM	302.61	3	<0.01
	0171	002.01	<u> </u>	V0.01

TB	Metric	ChiSq	DF	p
	NU	2603.37	3	< 0.01
TB090	OFV	950.73	3	< 0.01
1 0090	HV	330.19	3	< 0.01
	IGD	337.97	3	< 0.01
	ET	464.01	3	< 0.01
	CTR	989.38	3	< 0.01
	UM	880.28	3	< 0.01
TB100	NU	2252.5	3	< 0.01
	OFV	587.62	3	< 0.01
	HV	323.87	3	< 0.01
	IGD	335.36	3	< 0.01

TABLE 28. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, ANU))

NSGA2	TD	A.1 '(1 A	A1 '(1 D	I	ET	С	TR	ι	J M	N	IU	О	FV	I	IV	I	GD
TB010	TB	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	p	A12	p	A12	p	A12	p		
TB010		NSGA2	MoCell											< 0.5		< 0.5	< 0.05
TB010 MoCell SPEA2 C.5 C.0.1 C.0.5 C.0.1 C.5 C					-												< 0.01
MoCell SPEA2 C.0.5 C.0.1 C.0.5 C.0.1 C.0.5 C.0.01 C.0.5 C.0.01 C.0.5 C.0.01 C.0.9 C.0.01 C.0.1 C.0.0 C.0.0 C.0.1 C.0.0	TD010		CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01				< 0.01	< 0.1	< 0.01
MoCell CelIDE 9.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.01 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1B010									1							< 0.01
SPEA2 CelIDE S.5 S.001 S.5 S.001 S.5 S.005 S.05 S.001 S.5 S.005 S.05 S.001 S.05 S.005 S.05 S.005		MoCell				1								l			< 0.01
TB020			CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01
TB020		NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01		>0.05	< 0.5	< 0.01	< 0.5	>0.05
TB020		NSGA2		< 0.5						1			< 0.01	l			< 0.01
MoCell SPEA2 C.	TD000		CellDE	>0.5	< 0.01		< 0.01			1	< 0.01			>0.9	< 0.01	< 0.1	< 0.01
MoCell CeliDE >0.5 <0.01 <0.5 <0.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.0 <0.01 <0.1 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.00 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	TB020										< 0.01			l			< 0.01
NSGA2		MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5			< 0.01		< 0.01	< 0.1	< 0.01
NSGA2 SPEA2 Co.5 Co.01 Co.		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
NSGA2 SPEA2 Co.5 Co.01 Co.		NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05
TB030			SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5				< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2 SO.5 SO.01 SO	ED 020									1							< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 >0.05 <0.01 >0.5 >0.05 >0.05 >0.05 <0.01 <0.01 >0.5 >0.05 >0	TB030			>0.5	< 0.01	1		1	< 0.01	1						< 0.1	< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 >0.05 <0.01 >0.5 >0.05 >0.05 >0.05 <0.01 <0.01 >0.5 >0.05 >0				>0.5	< 0.01	1	< 0.01	1		1					< 0.01	< 0.1	< 0.01
TB040 NSGA2 MoCell Co.5 Co.01 Co.5 Co.			CellDE	>0.5	< 0.01		< 0.01	1		1				< 0.1	< 0.01	>0.9	< 0.01
TB040 NSGA2 SPEA2 Co.5 Co.01 Co.5 Co.0		NSGA2	MoCell	< 0.5	< 0.01			< 0.5						< 0.1	< 0.01	< 0.5	>0.05
MoCell SPEA2 So.5 So.01 So																	< 0.01
MoCell SPEA2 So.5 So.01 So	TD040	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.1 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	1 B040	MoCell	SPEA2	>0.5	< 0.01			< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 NSGA2 MoCell <0.5 <0.01 >0.5 >0.05 <0.01 >0.5 >0.05 <0.01 >0.5 >0.05 <0.01 <0.01 >0.5 >0.05 >0.05 <0.01 <0.01 >0.5 >0.05 >0.05 <0.01 <0.01 >0.5 >0.05 >0.01 <0.01 >0.5 >0.05 >0.01 <0.01 >0.5 >0.00 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 NSGA2 SPEA2 SO.5 SO.01 SO.5 SO.0		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB050		NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.5	>0.05
MoCell SPEA2 >0.5 >0.05 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.		NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2 >0.5 >0.05 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.0 <0.01 <0.0 <0.0 <0.0 <0.01 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	TROFO	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	1 0000	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 MoCell <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 >0.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0		MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060 NSGA2 SPEA2 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060 NSGA2 CellDE		NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
MoCell SPEA2 >0.5 >0.05 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2 >0.5 >0.05 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.0 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	TPOCO	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	1 0000	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
		MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.5 <0.01 >0.5 >0.05 <0.01 >0.5 >0.05 <0.01 >0.5 >0.05 <0.05 <0.05 <0.01 <0.01 >0.5 <0.00		NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.5	< 0.05
NSGA2 CellDE >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	TD070	NSGA2	CellDE									< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB070 MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	1 DU/U	MoCell	SPEA2														
MoCell CellDE >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.0		MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 <0.01 >0.0 >0.0 <0.01 >0.0 >0.0 <0.01 >0.0 >0.0 <0.0 >0.0 >0.0 <0.0 >0.0		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

ТВ	Alaarithm A	AlaarithmD	I	ET	C	TR	ι	J M	N	NU	О	FV	I	ΙV	I	GD
1 D	AigoriumA	AlgorithmB	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0090	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	NSGA2	CellDE	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 29. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, ANU))

ТВ	Matria		Rai	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	2	1	3	25%	25%	12%	38%
	CTR	1	1	3	2	14%	14%	SPEA2 (29%
	UM	1	1	2	2	17%	17%	33%	33%
TB010	NU	2	3	1	3	22%	33%		33%
	OFV	1	1	3	2	14%	14%	43%	29%
	HV	3	4	1	2	30%	40%		20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	2	2	1	3	25%	25%	12%	38%
	CTR	1	1	3	2	14%	14%	43%	29%
	UM	1	1	3	2	14%	14%	43%	29%
TB020	NU	2	3	1	4	20%	30%	10%	40%
	OFV	1	1	3	2	14%	14%		29%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	3	1	2	4	30%	10%	20%	40%
	CTR	2	1	4	3	20%	10%	40%	30%
	UM	1	1	3	2	14%	14%	43%	29%
TB030	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	1	3	2	25%	12%	38%	25%
	HV	3	4	1	2	30%	40%		20%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	3	1	2	4	30%	10%		40%
	CTR	1	1	3	2	14%	14%		29%
	UM	1	2	3	2	12%	25%		25%
TB040	NU	2	2	1	3	25%	25%		38%
	OFV	1	1	3	2	14%	14%		29%
	HV	3	4	1	2	30%	40%		20%
	IGD	3	3	1	2	33%	33%		22%
	ET	2	1	3	4	20%	10%		40%
	CTR	1	1	3	2	14%	14%		29%
TB050	UM	1	2	3	1	14%	29%		14%
	NU	2	2	1	3	25%	25%		38%
	OFV	2	1	4	3	20%	10%	40%	30%

TD	Matri		Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TDOEO	HV	3	4	1	2	30%	40%	10%	20%
TB050	IGD	3	3	1	2	33%	33%	11%	22%
	ET	2	1	1	3	29%	14%	14%	43%
	CTR	2	1	4	3	20%	10%	40%	30%
	UM	1	2	3	1	14%	29%	43%	14%
TB060	NU	2	2	1	3	25%	25%	12%	38%
	OFV	1	2	4	3	10%	20%	40%	30%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	2	3	25%	12%	25%	38%
	CTR	1	1	3	2	14%	14%	43%	29%
	UM	1	3	2	1	14%	43%	29%	14%
TB070	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	1	4	3	20%	10%	40%	30%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	1	4	3	20%	10%	40%	30%
	UM	1	2	1	1	20%	40%	20%	20%
TB080	ET 2 1 CTR 2 1 UM 1 2 NU 2 2 OFV 1 3			1	3	25%	25%	12%	38%
				4	2	10%	30%	40%	20%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	2	4	3	10%	20%	40%	30%
	UM	2	3	1	2	25%	38%	12%	25%
TB090	NU	3	2	1	4	30%	20%	10%	40%
	OFV	1	3	4	2	10%	30%	40%	20%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	1	3	4	2	10%	30%	40%	20%
	UM	2	3	1	2	25%	38%	12%	25%
TB100	NU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	3	1	22%	33%	33%	11%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	3	1	2	33%	33%	11%	22%

B.5.2.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU). TABLE 30. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	31821.62	3	< 0.01
	CTR	6259.56	3	< 0.01
	UM	30506.68	3	< 0.01
TB010	NUU	8803.89	3	< 0.01
	OFV	20563.95	3	< 0.01
	HV	317.44	3	< 0.01
	IGD	325.8	3	< 0.01
	ET	33473.56	3	< 0.01
	CTR	12343.82	3	< 0.01
	UM	31033.13	3	< 0.01
TB020	NUU	5205.39	3	< 0.01
	OFV	30031.94	3	< 0.01
	HV	348.43	3	< 0.01
	IGD	351.43	3	< 0.01
TB030	ET	27425.29	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	8192.22	3	< 0.01
	UM	25213.52	3	< 0.01
TB030	NUU	2974.57	3	< 0.01
1 0030	OFV	26430.3	3	< 0.01
	HV	358.62	3	< 0.01
	IGD	356.83	3	< 0.01
	ET	21623.02	3	< 0.01
	CTR	6183.42	3	< 0.01
	UM	21231.81	3	< 0.01
TB040	NUU	2036.41	3	< 0.01
	OFV	21573.67	3	< 0.01
	HV	356.73	3	< 0.01
	IGD	355.29	3	< 0.01
	ET	17487.42	3	< 0.01
	CTR	5527.47	3	< 0.01
	UM	16837.88	3	< 0.01
TB050	NUU	1683.01	3	< 0.01
	OFV	17454.71	3	< 0.01
	HV	356.64	3	< 0.01
	IGD	355.47	3	< 0.01
	ET	14209.85	3	< 0.01
	CTR	5751.97	3	< 0.01
	UM	13945.15	3	< 0.01
TB060	NUU	1840.2	3	< 0.01
	OFV	14486.93	3	< 0.01
	HV	353.64	3	< 0.01
	IGD	348.94	3	< 0.01
	ET	13829.27	3	< 0.01
	CTR	4993.1	3	< 0.01
	UM	12676.93	3	< 0.01
TB070	NUU	1680.86	3	< 0.01
	OFV	13880.98	3	< 0.01
	HV	356.3	3	< 0.01
	IGD	354.69	3	< 0.01
	ET	9992.36	3	< 0.01
	CTR	4241.75	3	< 0.01
TTD 0.00	UM	9427.19	3	< 0.01
TB080	NUU	1235.49	3	<0.01
	OFV	10069.44	3	<0.01
	HV	353.17	3	<0.01
	IGD	351.53	3	<0.01
	ET	9468.71	3	<0.01
	CTR	3570.32	3	<0.01
TDOO	UM	8661.83	3	<0.01
TB090	NUU OFV	878.76	3	<0.01
		9502.74	3	<0.01
	HV	358.27	3 3	<0.01 <0.01
	IGD ET	354.32		<0.01 <0.01
		8026.2	3	
	CTR	3509.65	3	<0.01
TD100	UM	7473.86	3	<0.01
TB100	NUU	895.87	3	<0.01
	OFV HV	8045.72 357.89	3 3	<0.01
	IGD		3	<0.01
	IGD	355.27	3	< 0.01

TABLE 31. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUU))

TD	A 1 ~ ~ ~ 41 ~ ~ A	A loo a si the see D	I	ET	C	TR	U	M	N	UU	О	FV	H	IV	IC	GD
TB	AlgorithmA	Algorithmb	A12	р												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TD010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9		1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1		>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5		>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	I	>0.9	< 0.01	< 0.1	< 0.01
1 0040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	I	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	>0.5	I	< 0.1	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	I	1		< 0.1	
1 Dooo	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9			< 0.01	>0.9	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1		1	< 0.01	< 0.1	
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1			< 0.01	< 0.1	
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1			< 0.01	< 0.1	
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01	>0.9		< 0.1	< 0.01	>0.5	
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1		>0.9	< 0.01	< 0.1	
12000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	
	SPEA2	CellDE	< 0.1	< 0.01			< 0.1			< 0.01	< 0.1		1		< 0.1	
	NSGA2	MoCell								< 0.01						
	NSGA2	SPEA2								< 0.01						
TB070	NSGA2	CellDE					ı	< 0.01					1		1	
	MoCell	SPEA2		1			1	< 0.01			1	I	1			
	MoCell	CellDE		< 0.01			ı	l		>0.05			1		1	
	SPEA2	CellDE		< 0.01								< 0.01				
	NSGA2	MoCell		< 0.01												
	NSGA2	SPEA2					ı	< 0.01								
TB080	NSGA2	CellDE								< 0.01						
	MoCell	SPEA2								< 0.01						
	MoCell	CellDE								< 0.01						
	SPEA2	CellDE		< 0.01								< 0.01				
	NSGA2	MoCell	<0.1			< 0.01	ı	l				< 0.01	1		1	<0.01
	NSGA2	SPEA2					ı	< 0.01				< 0.01	1		1	
TB090	NSGA2	CellDE								< 0.01						
	MoCell	SPEA2								< 0.01						
	MoCell	CellDE					ı	l		< 0.01			1		1	
	SPEA2	CellDE	< 0.1	<0.01	<0.1	<0.01	<0.1	<0.01	< 0.5	< 0.01	<0.1	<0.01	>0.9	<0.01	<0.1	<0.01

ТВ	AlgorithmA	AlgorithmB	ET		CTR		UM		NUU		OFV		HV		IGD	
			A12	p												
TB100	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 32. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, AUM, PUU))

TD	Metric		Ra	nk		Confidence				
TB		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	1	4	30%	20%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB010	NUU	4	3	2	1	40%	30%	20%	10%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB020	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB030	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB040	NUU	2	4	1	3	20%	40%	10%	30%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB050	NUU	2	4	1	3	20%	40%	10%	30%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB060	NUU	2	3	1	4	20%	30%	10%	40%	
10000	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
TB070	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
	UIVI		ا ع	1	4	ZU70	<i>3</i> 076	1070	4U70	

ТВ	Metric		Rai	nk		Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
TB070	NUU	2	3	1	3	22%	33%	11%	33%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB080	NUU	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	4	20%	30%	10%	40%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB090	NUU	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	2	1	3	25%	25%	12%	38%	
TB100	UM	2	3	1	4	20%	30%	10%	40%	
	NUU	2	3	1	4	20%	30%	10%	40%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	

 $\mbox{B.5.2.8} \quad \mbox{Problem 8: This section describes the results for prioritization problem } f(PET, PTR, PUS, ANU).$

TABLE 33. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	487.75	3	< 0.01
	CTR	971.99	3	< 0.01
	USP	5507.16	3	< 0.01
TB010	NU	2594.5	3	< 0.01
	OFV	865.54	3	< 0.01
	HV	343.09	3	< 0.01
	IGD	285.98	3	< 0.01
	ET	595.9	3	< 0.01
	CTR	1882.26	3	< 0.01
	USP	6056.19	3	< 0.01
TB020	NU	3313.61	3	< 0.01
	OFV	1756.84	3	< 0.01
	HV	336.01	3	< 0.01
	IGD	323	3	< 0.01
	ET	429.42	3	< 0.01
	CTR	2948.79	3	< 0.01
	USP	6961.18	3	< 0.01
TB030	NU	3386.44	3	< 0.01
	OFV	2770.21	3	< 0.01
	HV	336.23	3	< 0.01
	IGD	297.88	3	< 0.01
	ET	199.95	3	< 0.01
	CTR	3897.07	3	< 0.01
TB040	USP	6724.66	3	< 0.01
1 0040	NU	3348.3	3	< 0.01
	OFV	3592.21	3	< 0.01
	HV	314.77	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB040	IGD	310.1	3	< 0.01
	ET	186.52	3	< 0.01
	CTR	3914.47	3	< 0.01
	USP	6733.53	3	< 0.01
TB050	NU	3490.03	3	< 0.01
	OFV	3543.13	3	< 0.01
	HV	298.17	3	< 0.01
	IGD	316.72	3	< 0.01
	ET	107.08	3	< 0.01
	CTR	3386.52	3	< 0.01
	USP	7269.21	3	< 0.01
TB060	NU	3272.57	3	< 0.01
	OFV	2841.08	3	< 0.01
	HV	288.19	3	< 0.01
	IGD	326.42	3	< 0.01
	ET	131.12	3	< 0.01
	CTR	2171.87	3	< 0.01
	USP	6838.49	3	< 0.01
TB070	NU	3372.7	3	< 0.01
	OFV	1673.83	3	< 0.01
	HV	268.95	3	< 0.01
	IGD	319.72	3	< 0.01
	ET	217.97	3	< 0.01
	CTR	2057.32	3	< 0.01
	USP	7224.66	3	< 0.01
TB080	NU	3047.17	3	< 0.01
	OFV	1422.75	3	< 0.01
	HV	260.68	3	< 0.01
	IGD	315.76	3	< 0.01
	ET	218.5	3	< 0.01
	CTR	1444.56	3	< 0.01
	USP	6959.2	3	< 0.01
TB090	NU	3957.17	3	< 0.01
	OFV	943.62	3	< 0.01
	HV	253.94	3	< 0.01
	IGD	355.77	3	< 0.01
	ET	512.25	3	< 0.01
	CTR	907.19	3	< 0.01
	USP	7146.03	3	< 0.01
TB100	NU	3739.35	3	< 0.01
	OFV	548.05	3	< 0.01
	HV	263.94	3	< 0.01
	IGD	320.81	3	< 0.01

TABLE 34. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, ANU))

ТВ	Algorithm A	AlgorithmB	I	ET	C	TR	U	SP	N	IU	О	FV	H	IV	IC	GD
10	AigontiiliA	Aigontiiiib	A12	p												
	NSGA2	MoCell	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	NSGA2	CellDE	>0.5	< 0.05	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
TB020	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01

MoCell SPEA2 Cols	TD	A.1 '.1 A	A1 '(1 D	I	ET	С	TR	U	SP	N	IU	О	FV	I	IV	I	GD
TB020	TB	AlgorithmA	AlgorithmB	A12	р												
SPEA2		MoCell	SPEA2	< 0.5		< 0.5	< 0.01	>0.5		>0.5		< 0.5		>0.9		< 0.1	< 0.01
NSGA2	TB020	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
NSGA2		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 C.0.5 C.0.1 C.0.5 C.0.1 C.0.5 C.0.1 C.0.5 C.0.1 C.0.5 C.0.1 C.0		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2	TD020			< 0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5				>0.9			< 0.01
MoCell CelIDE >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.0 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.0 <0.01 <0.1 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0	1B030	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040		MoCell	CellDE		< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
TB040 McCell SPEA2 Co.5 Co.01 Co.5 Co		NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 CellDE SPEA2 Co.5 Co.01 Co.5 Co.01 Spead CellDE Spead Spea		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2 Co.0 Co.01 Co.0	TD040	NSGA2	CellDE	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CeliDE S.5 S.0.01 S.5 S.0.01 S.5 S.0.01 S.5 S.0.01 S.5 S.0.01 S.5 S.0.01 S.5	18040	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 CeliDE S.0.5 S.0.01 S.0.		MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
NSGA2		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 Co.5 Co.01 Co		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01		< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE O.5 O.01 O.5 O.01 O.5 O.01 O.5 O.01 O.5 O.01 O.5 O.01 O.0	TROFO	NSGA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0	18050	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 MoCell <0.5 <0.01 <0.5 <0.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0		MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SPEA2 Col.		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 >0.5 >0.05 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.9 <0.01 <0.5 <0.01 >0.9 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.9 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	TDOCO	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE So.5 So.01 So	18060	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 NSGA2 MoCell <0.5 <0.01 <0.5 <0.05 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0		MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070		SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB070		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.0 <0.01 <0.1 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	TDOTO	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE <0.5 >0.05 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.1 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0	18070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 MoCell <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0		MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB080		SPEA2	CellDE	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
TB080		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.9 <0.01 <0.1 <0.1 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	TRACA	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 MoCell <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 >0.05 <0.1 <		MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
		SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
NICCAD CDEAD 20 E 20 01 20 E 20 E		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
NSGA2 SPEA2 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 CellDE <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <	TROOG	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB090 MoCell SPEA2 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 0090	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
MoCell CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.9 <		SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
NSGA2 MoCell <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
NSGA2 SPEA2 >0.5 >0.05 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.5 <0.01 >0.9 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	İ	NSGA2		>0.5										>0.9	< 0.01		
NSGA2 CellDE <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5	TD100	NSGA2															< 0.01
TB100 MoCell SPEA2 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	1 D 1 0 0	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5								< 0.1	< 0.01
MoCell CellDE >0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.5 <0.01 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0	İ	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
SPEA2 CellDE <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.5 <0.01 >0.5 <0.01 >0.5 <0.01 <0.1 <0.1 <0.01 >0.5 <		SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01

TABLE 35. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, ANU))

			Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	2	1	3	25%	25%	12%	38%
	CTR	1	1	2	1	20%	20%	40%	20%
	USP	2	4	1	3	20%	40%	10%	30%
TB010	NU	2	3	1	4	20%	30%	10%	40%
	OFV	1	1	2	1	20%	20%	40%	20%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	2	1	3	33%	22%	11%	33%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	4	1	3	20%	40%	10%	30%
TB020	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	2	1	3	40%	20%	10%	30%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	4	1	3	20%	40%	10%	30%
TB030	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	2	1	3	33%	22%	11%	33%
	CTR	2	2	3	1	25%	25%	38%	12%
	USP	2	4	1	3	20%	40%	10%	30%
TB040	NU	2	3	1	4	20%	30%	10%	40%
12010	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	2	1	3	33%	22%	11%	33%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	4	1	3	20%	40%	10%	30%
TB050	NU	2	3	1	4	20%	30%	10%	40%
12000	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	1	2	43%	14%	14%	29%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	4	1	3	20%	40%	10%	30%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	2	2	38%	12%	25%	25%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	4	1	3	20%	40%	10%	30%
TB070	NU	2	3	1	4	20%	30%	10%	40%
12070	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
TB080	USP	2	4	1	3	20%	40%	10%	30%
1 0000	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	Of v			4	1	ZU /0	JU /0	4 U /0	10 /0

ТВ	Metric		Rai	nk			Confid	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	HV	3	4	1	2	30%	40%	10%	20%
1 0000	IGD	4	3	1	2	40%	30%	10%	20%
	ET	4	1	3	2	40%	10%	30%	20%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	3	1	2	25%	38%	12%	25%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	3	1	22%	33%	33%	11%
	HV	3	3	1	2	33%	33%	11%	22%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	3	2	33%	11%	33%	22%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	3	4	1	2	30%	40%	10%	20%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	4	3	1	20%	40%	30%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%

B.5.2.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU). TABLE 36. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, PUU))

TB	Metric	ChiSq	DF	p
	ET	2518.42	3	< 0.01
	CTR	452.49	3	< 0.01
	USP	27.91	3	< 0.01
TB010	NUU	49.6	3	< 0.01
	OFV	1689.9	3	< 0.01
	HV	352.8	3	< 0.01
	IGD	NaN	3	NaN
	ET	1071.05	3	< 0.01
	CTR	476.41	3	< 0.01
	USP	27.51	3	< 0.01
TB020	NUU	90.41	3	< 0.01
	OFV	1058.76	3	< 0.01
	HV	350.8	3	< 0.01
	IGD	NaN	3	NaN
	ET	535.27	3	< 0.01
	CTR	111.01	3	< 0.01
	USP	3	3	>0.05
TB030	NUU	14.87	3	< 0.01
	OFV	532.81	3	< 0.01
	HV	354.56	3	< 0.01
	IGD	354.51	3	< 0.01
	ET	429.38	3	< 0.01
	CTR	141.37	3	< 0.01
	USP	14.73	3	< 0.01
TB040	NUU	33.8	3	< 0.01
	OFV	429.33	3	< 0.01
	HV	348.39	3	< 0.01
	IGD	NaN	3	NaN
	ET	462.86	3	< 0.01
	CTR	231.64	3	< 0.01
	USP	11.81	3	< 0.01
TB050	NUU	65.39	3	< 0.01
	OFV	461.75	3	< 0.01
	HV	356.85	3	< 0.01
	IGD	NaN	3	NaN
TB060	ET	429.12	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	186.03	3	< 0.01
	USP	3	3	>0.05
TB060	NUU	42.61	3	< 0.01
1 0000	OFV	431.45	3	< 0.01
	HV	354.19	3	< 0.01
	IGD	NaN	3	NaN
	ET	418.7	3	< 0.01
	CTR	226.34	3	< 0.01
	USP	3	3	>0.05
TB070	NUU	112.26	3	< 0.01
	OFV	419.83	3	< 0.01
	HV	356.76	3	< 0.01
	IGD	NaN	3	NaN
	ET	385.77	3	< 0.01
	CTR	188.9	3	< 0.01
	USP	1	3	>0.05
TB080	NUU	56.83	3	< 0.01
	OFV	387.25	3	< 0.01
	HV	349.85	3	< 0.01
	IGD	NaN	3	NaN
	ET	386.25	3	< 0.01
	CTR	277.41	3	< 0.01
	USP	3	3	>0.05
TB090	NUU	116.97	3	< 0.01
	OFV	391	3	< 0.01
	HV	347.51	3	< 0.01
	IGD	NaN	3	NaN
	ET	372.63	3	< 0.01
	CTR	181.87	3	< 0.01
	USP	NaN	3	NaN
TB100	NUU	72.96	3	< 0.01
TB100	OFV	379.02	3	< 0.01
	HV	353.05	3	< 0.01
	IGD	NaN	3	NaN

TABLE 37. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB	E	ET	С	TR	U	SP	N	UU	О	FV	ŀ	IV	I	GD
1 1	AigontiiliA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10010	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

	A.1 A	41 1:1 B	I	ET	С	TR	U	SP	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5		>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01		>0.05
TD040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5		< 0.5	>0.05		< 0.01	>0.9	< 0.01		>0.05
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5		< 0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROFO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		>0.05
TB050	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TROCO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 5070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	=0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	< 0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	=0.5	>0.05
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
1 0000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05		< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5		< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	=0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	=0.5	>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	=0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	=0.5	>0.05
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	1	>0.05
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	=0.5	>0.05	< 0.5	>0.05		< 0.01	< 0.1	< 0.01		>0.05
	MoCell	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05
	SPEA2	CellDE	< 0.1	< 0.01	< 0.1	< 0.01	=0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	=0.5	>0.05

TABLE 38. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, PUS, PUU))

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
	USP	3	2	2	1	38%	25%	25%	12%
TB010	NUU	2	2	1	1	33%	33%	17%	17%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
TB020	ET	3	2	4	1	30%	20%	40%	10%
1 0020	CTR	2	2	1	3	25%	25%	12%	38%

			Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	USP	2	1	1	1	40%	20%	20%	20%
	NUU	2	2	1	2	29%	29%	14%	29%
TB020	OFV	2	3	1	4	20%	30%	10%	40%
10020	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	2	3	25%	12%	25%	38%
	USP	1	1	1	1	25%	25%	25%	25%
TB030	NUU	2	1	2	2	29%	14%	29%	29%
1 0000	OFV	2	3	1	4	29 /6	30%	10%	40%
	HV	3	2	4		30%	20%	40%	10%
	IGD	3	2		1 1	30%		40%	10%
				4			20%		
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	1	1	3	29%	14%	14%	43%
TD 040	USP	2	1	2	1	33%	17%	33%	17%
TB040	NUU	2	1	2	3	25%	12%	25%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	1	1	2	1	20%	20%	40%	20%
TB050	NUU	1	1	1	2	20%	20%	20%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
	USP	1	1	1	1	25%	25%	25%	25%
TB060	NUU	1	1	2	3	14%	14%	29%	43%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	1	1	1	1	25%	25%	25%	25%
TB070	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	1	1	2	3	14%	14%	29%	43%
	USP	1	1	1	1	25%	25%	25%	25%
TB080	NUU	1	1	2	3	14%	14%	29%	43%
1 1000	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	1	1	1	1	25%	25%	25%	25%
TB090	NUU	2			3	25%	25%	12%	38%
1 0090	OFV		2	1		25%			
		2	3	1	4		30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%
TD100	ET	3	2	4	1	30%	20%	40%	10%
TB100	CTR	1	1	1	2	20%	20%	20%	40%
	USP	1	1	1	1	25%	25%	25%	25%

ТВ	Metric		Rai	ık			Confid	lence	
1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	NUU	1	1	1	2	20%	20%	20%	40%
TB100	OFV	2	3	1	4	20%	30%	10%	40%
1 1 100	HV	3	2	4	1	30%	20%	40%	10%
	IGD	1	1	1	1	25%	25%	25%	25%

B.5.2.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU). TABLE 39. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU, PUU))

ТВ	Metric	ChiSq	DF	p
	ET	1373.14	3	< 0.01
	CTR	1866.83	3	< 0.01
	NU	4338.07	3	< 0.01
TB010	NUU	898.31	3	< 0.01
	OFV	1361.87	3	< 0.01
	HV	364.8	3	< 0.01
	IGD	263.52	3	< 0.01
	ET	1523.25	3	< 0.01
	CTR	3897.47	3	< 0.01
	NU	5559.88	3	< 0.01
TB020	NUU	1313.62	3	< 0.01
	OFV	2715.09	3	< 0.01
	HV	348.4	3	< 0.01
	IGD	322.31	3	< 0.01
	ET	1456.39	3	< 0.01
	CTR	5496.83	3	< 0.01
	NU	5911.74	3	< 0.01
TB030	NUU	2000.7	3	< 0.01
	OFV	4001.07	3	< 0.01
	HV	327.9	3	< 0.01
	IGD	301.46	3	< 0.01
	ET	1132.36	3	< 0.01
	CTR	5955	3	< 0.01
	NU	5482.68	3	< 0.01
TB040	NUU	2241.63	3	< 0.01
	OFV	4366.48	3	< 0.01
	HV	311.82	3	< 0.01
	IGD	285.91	3	< 0.01
	ET	945.89	3	< 0.01
	CTR	5794.85	3	< 0.01
	NU	4798.96	3	< 0.01
TB050	NUU	2097.03	3	< 0.01
	OFV	4167.63	3	< 0.01
	HV	291.02	3	< 0.01
	IGD	298.37	3	< 0.01
	ET	879.56	3	< 0.01
	CTR	5829.69	3	< 0.01
	NU	5957.36	3	< 0.01
TB060	NUU	1862.41	3	< 0.01
	OFV	4020.79	3	< 0.01
	HV	270.27	3	<0.01
	IGD	289.94	3	<0.01
	ET	793.2	3	<0.01
	CTR	4299.08	3	<0.01
TB070	NU	5657.38	3	< 0.01
	NUU	1309.42	3	<0.01
	OFV	2742.48	3	< 0.01
	HV	268.8	3	< 0.01

TB	Metric	ChiSq	DF	p
TB070	IGD	325.3	3	< 0.01
	ET	1000.2	3	< 0.01
	CTR	3534.88	3	< 0.01
	NU	5250.43	3	< 0.01
TB080	NUU	1042.4	3	< 0.01
	OFV	2134.15	3	< 0.01
	HV	254.62	3	< 0.01
	IGD	320.71	3	< 0.01
	ET	1107.68	3	< 0.01
	CTR	2869.13	3	< 0.01
	NU	5640.44	3	< 0.01
TB090	NUU	1033	3	< 0.01
	OFV	1755.97	3	< 0.01
	HV	239.29	3	< 0.01
	IGD	323.25	3	< 0.01
	ET	1041.71	3	< 0.01
	CTR	2782.62	3	< 0.01
	NU	6528.2	3	< 0.01
TB100	NUU	961.07	3	< 0.01
	OFV	1592.91	3	< 0.01
	HV	249.8	3	< 0.01
	IGD	331.8	3	< 0.01

TABLE 40. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (GS1, f(PET, PTR, ANU, PUU))

ТВ	Algorithm A	A loosith m D	I	ET	С	TR	N	IU	N	UU	О	FV	H	IV	I	GD
1 D	AlgorithmA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	NSGA2	CellDE	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
1 0010	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	>0.05
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01

				ET CTR		1	TTT	.	T TT T		TX /	HV		т,	46	
TB	AlgorithmA	AlgorithmB						IU		UU		FV				GD
	ŭ		A12	p	A12	p	A12	р	A12	p	A12	p	A12	p	A12	p
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
12000	MoCell	SPEA2	> 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	> 0.5	< 0.01	> 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05		< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
1 0090	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB100	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
1 D100	MoCell	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

TABLE 41. Rank Results for each Multi-Objective Algorithms (GS1, f(PET, PTR, ANU, PUU))

ТВ	Metric		Rai	ık			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	1	4	30%	20%	10%	40%
	CTR	2	1	3	2	25%	12%	38%	25%
	NU	2	3	1	4	20%	30%	10%	40%
TB010	NUU	3	2	4	1	30%	20%	40%	10%
	OFV	3	1	4	2	30%	10%	40%	20%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	2	1	4	30%	20%	10%	40%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	2	1	3	25%	25%	12%	38%
TB020	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%
	ET	3	1	2	4	30%	10%	20%	40%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	2	1	3	25%	25%	12%	38%
TB030	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	4	3	1	2	40%	30%	10%	20%

TD	Matri		Ra	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	1	1	3	29%	14%	14%	43%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
TB040	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	2	2	1	1	33%	33%	17%	17%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
TB050	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	3	4	1	2	30%	40%	10%	20%
	IGD	3	4	1	2	30%	40%	10%	20%
	ET	3	1	2	4	30%	10%	20%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
TB060	NUU	2	3	4	1	20%	30%	40%	10%
12000	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	2	2	1	3	25%	25%	12%	38%
TB070	NUU	2	3	4	1	20%	30%	40%	10%
1 D07 U	OFV	2	3			20%	30%	40%	10%
	HV	2	3	4	2	25%	38%	12%	25%
	IGD	3	3	1	2	33%	33%	11%	22%
		2		1					
	ET		1	2	3	25%	12%	25%	38%
	CTR	2	3	4	1	20%	30%	40%	10%
TD a a a	NU	3	2	1	4	30%	20%	10%	40%
TB080	NUU	2	3	4	1	20%	30%	40%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	4	1	20%	30%	40%	10%
	NU	3	2	1	4	30%	20%	10%	40%
TB090	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	3	3	1	2	33%	33%	11%	22%
	ET	2	1	3	4	20%	10%	30%	40%
	CTR	2	3	3	1	22%	33%	33%	11%
	NU	2	2	1	3	25%	25%	12%	38%
TB100	NUU	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	2	1	25%	38%	25%	12%
	HV	2	3	1	2	25%	38%	12%	25%
	IGD	4	3	1	2	40%	30%	10%	20%

B.5.2.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 42. Results of the Holm–Bonferroni method among Multi-Objective Algorithms for HV and IGD (GS1)

Problem	ТВ	Kruskal-Wal	lis Test	Mann-Whitne	y U Test
Tiobieni	10	adjusted_p	reject	adjusted_p	reject
Prob.1 f(PET,PTR,AUM)	TB010	< 0.01	Y	< 0.01	Y
1700.1 j(1 L1,1 1 K,21 ClV1)	TB020	< 0.01	Y	< 0.01	Y

Problem	ТВ	Kruskal-Wa	ıllis Test	Mann-Whitne	y U Test
Tioblem		adjusted_p	reject	adjusted_p	reject
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.1 f(PET,PTR,AUM)</i>	TB060	< 0.01	Y	< 0.01	Y
-	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	N/A	N/A	< 0.01	Y
	TB020	N/A	N/A	< 0.01	Y
	TB030	N/A	N/A	< 0.01	Y
	TB040	N/A	N/A	< 0.01	Y
<i>Prob.2 f(PET,PTR,PUS)</i>	TB050	N/A	N/A	< 0.01	Y
1,00.2)(1,21),1110,10,10,1	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Duck 2 f(DET DTD ANII)	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.3 f(PET,PTR,ANU)</i>	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.05	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	N/A	N/A	<0.01	Y
	TB030	N/A	N/A	<0.01	Y
	TB040	N/A	N/A	<0.01	Y
	TB050	N/A	N/A	<0.01	Y
<i>Prob.4 f(PET,PTR,PUU)</i>	TB060	N/A	N/A	<0.01	Y
	TB070	N/A	N/A	<0.01	Y
	TB080	N/A	N/A	<0.01	Y
	TB090	N/A	N/A	<0.01	Y
	TB100	N/A	N/A	<0.01	Y
	TB010	<0.01	Y	<0.01	Y
	TB020	N/A	N/A	<0.01	Y
	TB030	N/A	N/A	<0.01	Y
	TB040	N/A N/A	N/A	<0.01	Y
	TB050	N/A N/A	N/A N/A	<0.01	Y
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	TB060	N/A N/A	N/A	<0.01	Y
	TB070	N/A N/A	N/A N/A	<0.01	<u>Y</u>
	TB080	N/A N/A	N/A N/A	<0.01	Y
	TB090	N/A N/A	N/A N/A	<0.01	Y
	TB100	N/A N/A	N/A N/A	<0.01	Y
			N/A Y	1	Y
	TB010	<0.01		<0.05	
	TB020	<0.01	Y	<0.01	Y
	TB030	<0.01	Y	<0.01	Y
D. 1. C. ((DETERMENT)	TB040	<0.01	Y	<0.01	Y
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	TB050	< 0.01	Y	< 0.01	Y
	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.05	Y
	TB080	< 0.01	Y	< 0.05	Y
	TB090	< 0.01	Y	< 0.01	Y

Problem	ТВ	Kruskal-Wa		Mann-Whitne	ey U Test
		adjusted_p	reject	adjusted_p	reject
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Dual 7 (/DET DTD ALIM DILLI)	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Dual O WOFT DTD DIJC ANIII)	TB050	< 0.01	Y	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	N/A	N/A	< 0.01	Y
	TB020	N/A	N/A	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	N/A	N/A	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB050	N/A	N/A	< 0.01	Y
F100.9 J(FE1,F1K,FU3,FUU)	TB060	N/A	N/A	< 0.01	Y
	TB070	N/A	N/A	< 0.01	Y
	TB080	N/A	N/A	< 0.01	Y
	TB090	N/A	N/A	< 0.01	Y
	TB100	N/A	N/A	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.05	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y	< 0.01	Y
1 100.10 J(FL1,F1K,ANU,FUU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.05	Y

Note that $\mathbf{Adjusted}_{\mathbf{p}}$ refers to all adjusted p-value results. If $\mathbf{Adjusted}_{\mathbf{p}} < 0.05$ (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If $\mathbf{Adjusted_p} > 0.05$, it means there is at least one adjusted p-value that is greater than 0.05. * **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.5.3 Experiment Results for RQ4

This section describes the results for Experiment Results for RQ4.

TABLE 43 Results for the Kruskal-Wallis Test among Test Case Prioritization Problems (GS1)

Metric	ChiSq	DF	p
ANOU	17838.18	9	< 0.01

TABLE 44. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (GS1)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	р
Prob.1 f(PET,PTR,AUM)	Prob.2 f(PET,PTR,PUS)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.3 f(PET,PTR,ANU)	SPEA2	NSGA2	<0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	>0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	MoCell	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	>0.5	>0.05
Prob.1 f(PET,PTR,AUM)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.3 f(PET,PTR,ANU)	SPEA2	NSGA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	MoCell	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.4 f(PET,PTR,PUU)	NSGA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.5 f(PET,PTR,AUM,PUS)	NSGA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	NSGA2	MoCell	< 0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	NSGA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.8 f(PET,PTR,PUS,ANU)	NSGA2	MoCell	< 0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	NSGA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	NSGA2	MoCell	< 0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	MoCell	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	< 0.5	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	MoCell	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	MoCell	MoCell	>0.5	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	MoCell	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	MoCell	MoCell	>0.5	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	<i>Prob.8 f(PET,PTR,PUS,ANU)</i>	SPEA2	MoCell	< 0.1	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	<i>Prob.9 f(PET,PTR,PUS,PUU)</i>	MoCell	SPEA2	>0.9	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	MoCell	MoCell	< 0.5	< 0.01
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	MoCell	< 0.1	< 0.01

TABLE 45
Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Test Case Prioritization Problems (GS1)

Metric	Adjusted_p	Reject
ANOU	< 0.01	Y

^{*} Note that ${\bf Adjusted_p}$ refers to all adjusted p-value results. If ${\bf Adjusted_p} < 0.01$, it means that all adjusted p-values are less than 0.01. **Reject** is ${\bf Y}$, meaning rejecting the null hypothesis.