Vecteurs aléatoires Gaussiens

Préliminaires

Notation pour les vecteurs et les matrices. Tout vecteur $u \in \mathbb{R}^d$ est un vecteur colonne (autrement dit une matrice avec une colonne et d lignes, ou $d \times 1$). Si $A \in \mathbb{R}^{mn}$ est une matrice $m \times n$ (m lignes et n colonnes) d'élément courant A_{ij} pour i = 1, ..., m, j = 1, ..., n alors A^T est la matrice transposée qui est une matrice $n \times m$ d'élément courant $(A^T)_{ij} = A_{ji}$, i = 1, ..., n, j = 1, ..., m.

Si A est une matrice $n \times m$ et B une matrice $m \times k$ alors le produit (lignes par colonnes) AB est défini étant la matrice $n \times k$ d'élément courant $(AB)_{ij} = \sum_{\ell=1}^m A_{i\ell} B_{\ell j}$ pour i=1,...,n et j=1,...,k. On a que $(AB)^T = B^T A^T$. On note \mathbb{I}_d la matrice identité $d \times d$, i.e. $(\mathbb{I}_d)_{ij} = 1$ si i=j=1,...,d et $(\mathbb{I}_d)_{ij} = 0$ si $i \neq j, i, j=1,...,d$.

La transposée u^T d'un vecteur $u \in \mathbb{R}^d$ est un vecteur ligne (ce qui revient au même à une matrice $1 \times d$); si $u \in \mathbb{R}^n$ et $v \in \mathbb{R}^m$ alors le produit matriciel uv^T est une matrice $n \times m$ d'élément courant $(uv^T)_{ij} = u_{i1}(v^T)_{1j} = u_{i1}v_{j1} = u_i v_j$ pour i = 1, ..., n et j = 1, ..., m; si $u \in \mathbb{R}^n$ et $v \in \mathbb{R}^n$ le produit matriciel u^Tv est une matrice 1×1 d'élément $(u^Tv)_{11} = \sum_{i=1}^n (u^T)_{1i} \ v_{i1} = \sum_{i=1}^n u_i v_i$ qui n'est rien d'autre que le produit scalaire des deux vecteurs u et v.

Si X est un vecteur aléatoire de dimension d alors $\mathbb{E}[X]$ est le vecteur de dimension d tel que $(\mathbb{E}[X])_i = \mathbb{E}[X_i]$. Si A est une matrice aléatoire alors $\mathbb{E}[A]$ est la matrice d'élément courant $(\mathbb{E}[A])_{ij} = \mathbb{E}[A_{ij}]$.

Matrice de covariance. Soit $X = (X_1, ..., X_n)$ un vecteur aléatoire dans \mathbb{R}^d tel que $\mathbb{E}[X_j^2] < + \infty$ pour tout j = 1, ..., d. On appelle matrice de covariance du vecteur X, et on la notera Σ , la matrice d'élément courant $\Sigma_{ij} = \text{Cov}(X_i, X_j), i, j = 1, ..., d$.

Proposition 1.

- 1. $\Sigma = \mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^T]$
- 2. Les éléments diagonaux sont les variances des composantes de X: $\Sigma_{ii} = Var(X_i)$.
- 3. Pour tout $u \in \mathbb{R}^d$: $Var(u^T X) = u^T \Sigma u$.
- 4. Σ est symétrique et semi-définie positive: $\Sigma_{ij} = \Sigma_{ji}$ et $u^T \Sigma u \geqslant 0$ pour tout $u \in \mathbb{R}^d$.

Démonstration.

- 1. $\mathbb{E}[(X \mathbb{E}[X])(X \mathbb{E}[X])^T]$ est une matrice d'élément courant $\mathbb{E}[(X_i \mathbb{E}[X_i])(X_j \mathbb{E}[X_j])] = \text{Cov}(X_i, X_j) = \Sigma_{ij}$.
- 2. $\Sigma_{ii} = \text{Cov}(X_i, X_i) = \text{Var}(X_i)$
- 3. $\operatorname{Var}(u^TX) = \operatorname{Var}(u_1X_1 + \dots + u_dX_d) = \operatorname{Cov}(\sum_{i=1}^d u_iX_i, \sum_{j=1}^d u_jX_j) = \sum_{i,j=1}^d u_ju_j\operatorname{Cov}(X_i, X_j) = \sum_{i,j=1}^d u_ju_j\Sigma_{ij} = u^T\Sigma u$. La covariance étant une fonction bilinéaire.
- 4. $\Sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \operatorname{Cov}(X_j, X_i) = \Sigma_{ji}. \ u^T \Sigma u = \operatorname{Var}(u^T X) \geqslant 0.$

Remarque 2. Si X est tel que les composantes X_j sont indépendantes, alors la matrice de covariance Σ est diagonale car $\Sigma_{ij} = \text{Cov}(X_i, X_j) = 0$ si $i \neq j$. Et donc $\text{Var}(u^T X) = \sum_{i=1}^d u_i^2 \text{Var}(X_i)$ pour tout $u \in \mathbb{R}^d$.

Définition 3. La fonction caractéristique $\phi_X \colon \mathbb{R} \to \mathbb{C}$ d'une v.a. réelle X est la transformée de Fourier de sa loi de probabilité:

$$\phi_X(t) = \mathbb{E}[e^{itX}], \qquad t \in \mathbb{R}$$

Si X admet une densité f_X alors $\phi_X(t) = \int_{\mathbb{R}} e^{itx} f_X(x) dx$.

La fonction caractéristique détermine de manière unique une loi de probabilité, d'où son nom.

Proposition 4. Deux v.a. réelles X et Y telles que $\phi_X(t) = \phi_Y(t)$ pour tout $t \in \mathbb{R}$ ont la même loi, c-à-d: $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$ pour tout Borélien A de \mathbb{R} . Si X ou Y admet une densité alors l'autre v.a. admet une densité aussi et $f_X(z) = f_Y(z)$ pour tout $z \in \mathbb{R}$.

Quelques propriétés calculatoires...

Proposition 5.

- 1. Pour tout $\lambda \in \mathbb{R}$: $\phi_{\lambda X}(t) = \phi_X(\lambda t)$.
- 2. Pour tout $a \in \mathbb{R}$: $\phi_{X+a}(t) = e^{iat}\phi_X(t)$.
- 3. Soit $\mu = \mathbb{E}[X]$ et $\sigma^2 = \text{Var}(X)$ et $U = (X \mu)/\sigma$ alors $\phi_X(t) = \phi_U(\sigma t)e^{it\mu}$ et $\phi_U(t) = \phi_X(t/\sigma)e^{it\mu/\sigma}$.
- 4. Si X et Y sont indépendantes alors $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.

Démonstration. $\phi_{\lambda X}(t) = \mathbb{E}[e^{it\lambda X}] = \phi_X(\lambda t)$. $\phi_{X+a}(t) = \mathbb{E}[e^{it(X+a)}] = e^{ita}\mathbb{E}[e^{itX}] = e^{ia}\phi_X(t)$. $\phi_X(t) = \mathbb{E}[e^{itX}] = \mathbb{E}[e^{it(\mu+\sigma U)}] = e^{it\mu}\mathbb{E}[e^{i\sigma U}] = e^{it\mu}\phi_U(\sigma t)$. Pour X et Y indépendantes on a $\mathbb{E}[e^{i(X+Y)t}] = \mathbb{E}[e^{iXt}e^{iYt}] = \mathbb{E}[e^{iXt}]\mathbb{E}[e^{iYt}] = \phi_X(t)\phi_Y(t)$.

Exemple 6. Si $X \sim \mathcal{E}(\lambda)$ alors

$$\phi_X(t) = \mathbb{E}[e^{iXt}] = \lambda \int_0^\infty e^{ixt - \lambda x} dx = \frac{\lambda}{\lambda - it}.$$

En effet si $F(x) = e^{(it-\lambda)x}/(it-\lambda)$ alors $F'(x) = e^{(it-\lambda)x}$ et

$$\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \frac{\cos(t)e^{-\lambda x}}{it - \lambda} + i \lim_{x \to +\infty} \frac{\sin(t)e^{-\lambda x}}{it - \lambda} = 0$$

donc

$$\int_0^\infty e^{ixt-\lambda x} \mathrm{d}x = F(+\infty) - F(0) = -F(0) = \frac{1}{\lambda - it}.$$

Exemple 7. Si $Z \sim \mathcal{N}(0,1)$ alors

$$\phi_Z(t) = \int_{\mathbb{R}} e^{itx - x^2/2} \frac{\mathrm{d}x}{\sqrt{2\pi}} = e^{-t^2/2}, \quad \forall t \in \mathbb{R}.$$

Si $X = \mu + \sigma Z$ alors $X \sim \mathcal{N}(\mu, \sigma^2)$ et donc

$$\phi_X(t) = e^{i\mu}\phi_Z(\sigma t) = e^{it\mu - \sigma^2 t^2/2} = \exp(it\mathbb{E}[X] - \text{Var}(X)t^2/2).$$

Exemple 8. Soit $Y \sim \mathcal{P}(\lambda)$ (Poisson) et $X|Y \sim \mathcal{B}in(Y, p)$ c-à-d

$$\mathbb{P}(X=k|Y=n) = \binom{n}{k} p^k (1-p)^{n-k}$$

alors

$$\mathbb{E}[e^{iXt}|Y] = (1 + p(e^{it} - 1))^Y, \qquad \mathbb{E}[e^{itY}] = e^{\lambda(e^{it} - 1)}$$

et

$$\phi_X(t) = \mathbb{E}[e^{iXt}] = \mathbb{E}[\mathbb{E}[e^{iXt}|Y]] = \mathbb{E}[(1 + p(e^{it} - 1))^Y] = e^{\lambda[(1 + p(e^{it} - 1)) - 1]} = e^{\lambda p(e^{it} - 1)}$$

et donc la loi marginale de X est la loi de Poisson de paramètre λp .

Définition 9. Soit X un vecteur aléatoire dans \mathbb{R}^d . La fonction caractéristique $\phi_X \colon \mathbb{R}^d \to \mathbb{C}$ de X est donnée par

$$\phi_X(t) = \mathbb{E}[e^{it^T X}] = \mathbb{E}[e^{i(t_1 X_1 + \dots + t_d X_d)}] \qquad \forall t \in \mathbb{R}^d.$$

Proposition 10. Soit X un vecteur aléatoire dans \mathbb{R}^d . Les v.a. $X_1, ..., X_d$ sont indépendantes ssi

$$\phi_X(t) = \prod_{i=1}^d \phi_{X_i}(t_i) \quad \forall t \in \mathbb{R}^d.$$

Proposition 11. Deux vecteurs aléatoires X, Y ont la même loi ssi $\phi_X(t) = \phi_Y(t)$ pour tout $t \in \mathbb{R}^d$. En particulier si l'une des deux v.a. admet densité alors il en est de même pour l'autre v.a. et $f_X = f_Y$.

Vecteurs Gaussiens

Proposition 12. (Stabilité) Soient $X_1, ..., X_d$ des v.a. Gaussiennes indépendantes. Pour tout $u \in \mathbb{R}^d$ la combinaison linéaire $u^T X = u_1 X_1 + \cdots + u_d X_d$ est une v.a. Gaussienne réelle.

Démonstration. Il suffi de montrer que la fonction caractéristique de $Y = u^T X$ est la f.c. d'une v.a. Gaussienne réelle, i.e.

$$\phi_Y(t) = \exp(i t \mathbb{E}[Y] - \operatorname{Var}(Y)t^2/2)$$

(voir l'Exemple 7). Or: $\mathbb{E}[Y] = \sum_{i=1}^d u_i \mathbb{E}[X_i]$ et $\text{Var}(Y) = \sum_{i=1}^d u_i^2 \text{Var}(X_i)$ par l'indépendance des X_i . Donc

$$\phi_Y(t) = \mathbb{E}[e^{it(u_1X_1 + \dots + u_dX_d)}] = \mathbb{E}[\prod_{j=1}^d e^{itu_jX_j}] = \prod_{j=1}^d e^{i(tu_j\mathbb{E}[X_j] - \operatorname{Var}(X_j)u_j^2t^2/2)}$$

$$= e^{(t\sum_{j=1}^{d} \mathbb{E}[u_j X_j] - \sum_{j=1}^{d} \text{Var}(u_j X_j) t^2 / 2)} = \exp(i t \mathbb{E}[Y] - \text{Var}(Y) t^2 / 2)$$

On en déduit par l'unicité de la fonction caractéristique que Y est une v.a. Gaussienne. \Box

Définition 13. On appelle vecteur Gaussien de dimension d un vecteur aléatoire $X = (X_1, ..., X_d)$ tel que toute combinaison linéaire de ses composantes $(X_j)_{j=1,...,d}$ est une v.a. réelle Gaussienne, c-à-d $\forall u \in \mathbb{R}^d$ la v.a. u^TX est Gaussienne. (En particulier, toutes ses composantes X_j sont Gaussiennes.)

Par la Proposition 12 de tels vecteurs existent bien. Si $g\colon \mathbb{R}^d \to \mathbb{R}^m$ est une application linéaire et X est un vecteur Gaussien de dimension d alors la composée Y=g(X) est un vecteur Gaussien de dimension m. En effet si $g_k(x)=\sum_{j=1}^d g_{kj}x_j$ alors pour tout $u\in \mathbb{R}^m$, la v.a.

$$u^{T}Y = \sum_{k=1}^{m} u_{k}Y_{k} = \sum_{k=1}^{m} u_{k}g_{k}(X) = \sum_{k=1}^{m} u_{k}\sum_{j=1}^{d} g_{kj}X_{j} = \sum_{j=1}^{d} \left(\sum_{k=1}^{m} u_{k}g_{kj}\right)X_{j} = (g^{T}u)^{T}X_{j}$$

est Gaussienne, car combinaison linéaire des composantes de X.

Si X est un vecteur Gaussien (de dimension d) alors $Y = X - \mathbb{E}[X]$ est encore un vecteur Gaussien: $u^TY = u^TX - u^T\mathbb{E}[X]$ est Gaussienne car somme d'une Gaussienne et une constante (à vérifier à l'aide de la fonction caractéristique).

Théorème 14. Soit X un vecteur Gaussien de dimension d. Soit $\mu = \mathbb{E}[X] \in \mathbb{R}^d$ l'espérance de X et Σ la matrice de covariance de X. La fonction caractéristique du vecteur X est donnée par

$$\phi_X(t) = \exp\!\left(i\,t^T\!\mu - \frac{1}{2}t^T\Sigma t\,\right) \qquad \forall t \in \mathbb{R}^d.$$

Démonstration. $Y = t^T X$ est une v.a. Gaussienne. $\mathbb{E}[Y] = t^T \mu$. $Var(Y) = t^T \Sigma t$.

$$\phi_X(t) = \phi_Y(1) = e^{i\mathbb{E}[Y] - \text{Var}(Y)/2} = e^{it^T \mu - t^T \Sigma t/2}.$$

Remarque: la loi du vecteur Gaussien ne dépend que de son espérance et de sa covariance. La quantité $t^T \Sigma t$ est toujours $\geqslant 0$.

Définition 15. Soit X un vecteur Gaussien d'espérance μ et matrice de covariance Σ . On note sa loi par $\mathcal{N}_d(\mu, \Sigma)$.

Lemme 16. Soit Σ une matrice $d \times d$, symétrique et semi-définie positive. Alors il existe une matrice carrée A de dimension $d \times d$ telle que $\Sigma = AA^T$. On dit que A est une racine carrée de Σ . De plus si Σ est inversible alors il en est de même de A.

Démonstration. Du fait que Σ est symétrique on déduit que elle est diagonalisable et donc qu'il existent une matrice orthogonale O (i.e. telle que $O^T = O^{-1}$) et une matrice diagonale Λ avec $\Lambda_{ii} = \lambda_i$ telles que $\Sigma = O^T \Lambda O$. Puisque Σ est semi-définie positive on a que les valeurs propres de Σ sont $\geqslant 0$ et donc que $\lambda_i \geqslant 0$ pour tout i = 1, ..., d. Soit $\Lambda^{1/2}$ la matrice diagonale telle que $(\Lambda^{1/2})_{ii} = \sqrt{\lambda_i}$, donc $\Lambda^{1/2}\Lambda^{1/2} = \Lambda$ et si on pose $A = O^T\Lambda^{1/2}$ on a que $AA^T = O^T\Lambda^{1/2}(O^T\Lambda^{1/2})^T = O^T\Lambda^{1/2}\Lambda^{1/2}O = O^T\Lambda O = \Sigma$. Si Σ est inversible alors $\lambda_i > 0$ pour tout i = 1, ..., d et donc $\Lambda^{1/2}$ est inversible et $(\Lambda^{1/2})^{-1}$ est la matrice diagonale avec éléments $1/\sqrt{\lambda_i}$ sur la diagonale. Donc $A^{-1} = (O^T\Lambda^{1/2})^{-1} = (\Lambda^{1/2})^{-1}(O^T)^{-1} = (\Lambda^{1/2})^{-1}O$ qui montre que A est inversible (étant le produit de deux matrices inversibles).

Exemple 17. Si $X \sim \mathcal{N}_d(\mu, \Sigma)$, A est une matrice $n \times d$ et $v \in \mathbb{R}^n$ alors

$$v + AX \sim \mathcal{N}_n(v + A\mu, A\Sigma A^T).$$

En effet on remarque que $t^T A X = (A^T t)^T X$ et donc

$$\phi_{v+AX}(t) = e^{it^T v} \phi_X(A^T t) = \exp\left(i[t^T v + (A^T t)^T \mu] - \frac{1}{2}(A^T t)^T \Sigma(A^T t)\right)$$
$$= \exp\left(it^T [v + A\mu] - \frac{1}{2}t^T A \Sigma A^T t\right).$$

En particulier si on considère un vecteur aléatoire $Z = (Z_1, ..., Z_d)$ dans \mathbb{R}^d tel que $Z_i \sim \mathcal{N}(0, 1)$ pour tout i = 1, ..., d et les v.a. $Z_i, i = 1, ..., d$ sont indépendantes alors $Z \sim \mathcal{N}_d(0, \mathbb{I}_d)$. Si A est une matrice telle que $AA^T = \Sigma$ (une racine carrée de Σ donné par le Lemme 16) alors $X = \mu + AZ \sim \mathcal{N}_d(\mu, \Sigma)$. D'une famille de v.a. Gaussiennes indépendantes on peut donc construire n'importe quel vecteur Gaussien. Si Σ est inversible alors il en est de même de A et

$$Z = A^{-1}(X - \mu).$$

Théorème 18. Soit $\mu = (\mu_1, ..., \mu_d) \in \mathbb{R}^d$ un vecteur et Σ une matrice $d \times d$, la fonction

$$f_{\mu,\Sigma}(t) = \exp(i t^T \mu - t^T \Sigma t/2)$$

est la fonction caractéristique d'un vecteur Gaussien d'espérance μ et matrice de covariance Σ ssi Σ est symétrique et semi-définie positive. Pour tout $\mu \in \mathbb{R}^d$ et Σ matrice $d \times d$ symétrique et semi-définie positive il existe un vecteur $X \sim \mathcal{N}_d(\mu, \Sigma)$.

Démonstration. On a déjà vu que si $X \sim \mathcal{N}_d(\mu, \Sigma)$ alors $\phi_X(t) = f_{\mu, \Sigma}(t)$. Il nous reste donc de montrer que si Σ est semi-définie positive et symétrique alors il existe bien un vecteur aléatoire Gaussien X de moyenne μ et matrice de covariance Σ (et donc tel que $\phi_X(t) = f_{\mu, \Sigma}(t)$). Mais par l'exemple 17 et le lemme 16 on a que il existe une matrice A telle que $\Sigma = AA^T$ et que si $Z \sim \mathcal{N}_d(0, \mathbb{I}_d)$ alors $X = \mu + AX$ est un vecteur aléatoire gaussien de moyenne μ et matrice de covariance $AA^T = \Sigma$.

Proposition 19. Le vecteur aléatoire $X \sim \mathcal{N}_d(\mu, \Sigma)$ admet une densité si et seulement si Σ est inversible (i.e. définie positive) et alors

$$f_X(x) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \quad \forall x \in \mathbb{R}^d$$
 (1)

Démonstration. On montre seulement que si Σ est inversible alors X admet la densité donnée en eq. (1). On considère le vecteur aléatoire $Z = (Z_1, ..., Z_d)$ dans \mathbb{R}^d tel que $Z_i \sim \mathcal{N}(0, 1)$ pour tout i = 1, ..., d et les v.a. $Z_i, i = 1, ..., d$ sont indépendantes. Donc la densité de Z est donnée par

$$f_Z(z) = f_{Z_1}(z_1) \cdots f_{Z_d}(z_d) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(z_1^2 + \dots + z_d^2)\right) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{t^T t}{2}\right)$$

pour tout $z \in \mathbb{R}^d$. Par l'exemple 17 on a que la v.a. $X = \mu + AZ$ (ou $\Sigma = AA^T$) est bien un vecteur gaussien de moyenne μ et matrice de covariance Σ . Donc la densité de Z est donnée par la formule de changement de variables à partir de la densité de Z. Si l'on pose $\Psi(z) = \mu + Az$ alors $z = \Psi^{-1}(x) = A^{-1}(x - \mu)$ et

$$f_X(x) = f_Z(\Psi^{-1}(x))J\Psi^{-1}(x) = \frac{1}{(2\pi)^{d/2}}\det(A^{-1})\exp(-\frac{(\Psi^{-1}(x))^T\Psi^{-1}(x)}{2}).$$

Mais

$$(\Psi^{-1}(x))^T \Psi^{-1}(x) = [A^{-1}(x-\mu)]^T A^{-1}(x-\mu) = (x-\mu)^T (A^{-1})^T A^{-1}(x-\mu)$$

$$= (x - \mu)^T (A^T)^{-1} A^{-1} (x - \mu) = (x - \mu)^T (AA^T)^{-1} (x - \mu) = (x - \mu)^T \Sigma^{-1} (x - \mu)$$

et $\det(\Sigma) = \det(AA^T) = \det(A) \det(A^T) = [\det(A)]^2$ et $\det(A^{-1}) = 1/\det(A)$. Donc $\det(A^{-1}) = [\det \Sigma]^{-1/2}$ et on obtient la formule (1).

Lemme 20. Soit $X \sim \mathcal{N}_d(\mu, \Sigma)$. Les composantes $(X_j)_{j=1,\dots,d}$ de X sont affinement indépendantes (c-à-d il n'existe pas de vecteur $u \in \mathbb{R}^d$ et $c \in \mathbb{R}$ tels que $u \neq 0$ et $u^T X = c$) ssi Σ est inversible.

Démonstration. Montrons que si Σ est inversible les composantes de X sont affinement indépendantes: en effet si tel vecteur existait alors pour tout j = 1, ..., d:

$$0 = \operatorname{Cov}(c, X_j) = \operatorname{Cov}(u^T X, X_j) = \sum_{k=1}^d u_k \operatorname{Cov}(X_k, X_j) = \sum_{k=1}^d u_k \Sigma_{jk} = (\Sigma u)_j$$

et donc $\Sigma u=0$ qui montre que Σ a une valeur propre nulle et donc ne peut pas être inversible. Réciproquement si Σ est singulière (c-à-d elle n'est pas inversible) alors il existe $u\in\mathbb{R}^d,\ u\neq 0$ tel que $\Sigma u=0$ et donc $\mathrm{Var}(u^TX)=u^T\Sigma u=0$ ce qui implique que la v.a. u^TX est constante et égale à $\mathbb{E}[u^TX]=u^T\mu$ donc $u^TX=c=u^T\mu$ qui montre que les composantes de X sont affinement dépendantes.

Exemple 21. Soit (X,Y) un couple aléatoire Gaussien de matrice de covariance égale à

$$\Sigma = \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right).$$

- 1. Condition nécessaire et suffisante pour que Σ soit vraiment la matrice de covariance de (X,Y) est que Σ soit symétrique et semi-définie positive $(\det(\Sigma) \geqslant 0$ et $\mathrm{Tr}(\Sigma) \geqslant 0)$, i.e. $1-\rho^2 \geqslant 0 \Leftrightarrow |\rho| \leqslant 1$.
- 2. Condition nécessaire et suffisante sur Σ pour qu'en plus le couple (X,Y) admette une densité est que Σ soit inversible (i.e. définie positive \Leftrightarrow $\det(\Sigma) > 0$ et $\mathrm{Tr}(\Sigma) > 0$). Donc $1 \rho^2 > 0 \Leftrightarrow |\rho| < 1$.
- 3. Si $|\rho|<1$ et (X,Y) est supposé centré $(\mathbb{E}[X]=\mathbb{E}[Y]=0),$ alors (X,Y) admets pour densité

$$f_{(X,Y)}(x,y) = \frac{e^{-\frac{1}{2}(x,y)\Sigma^{-1}\left(\frac{x}{y}\right)}}{2\pi \det(\Sigma)^{1/2}}$$

et on a

$$\Sigma^{-1} = \frac{1}{1 - \rho^2} \begin{pmatrix} 1 & -\rho \\ -\rho & 1 \end{pmatrix}$$

$$(x, y) \Sigma^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{1 - \rho^2} (x, y) \begin{pmatrix} 1 & -\rho \\ -\rho & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{1 - \rho^2} (x, y) \begin{pmatrix} x - \rho y \\ y - \rho x \end{pmatrix}$$

$$= \frac{1}{1 - \rho^2} (x^2 - 2\rho x y + y^2)$$

$$f_{(X,Y)}(x, y) = \frac{e^{-\frac{1}{2(1 - \rho^2)}(x^2 - 2\rho x y + y^2)}}{2\pi\sqrt{1 - \rho^2}}, \quad x, y \in \mathbb{R}$$

Proposition 22. Soit X un vecteur Gaussien de dimension d. Les v.a. Gaussiennes X_i et X_j sont indépendantes ssi $Cov(X_i, X_j) = \Sigma_{ij} = 0$. D'une manière générale $X_{i_1}, ..., X_{i_k}$ sont indépendantes ssi $Cov(X_{i_a}, X_{i_b}) = 0$ pour tout $a \neq b$ et a, b = 1, ..., k.

Démonstration. Il est clair que si X_i et X_j sont indépendantes alors $\Sigma_{ij} = 0$. Montrons alors que $\Sigma_{ij} = 0$ implique l'indépendance de X_i et X_j . Soit $t = (t_1, t_2) \in \mathbb{R}^2$ et $\mu = \mathbb{E}[X]$. La v.a. $Y = t_1X_i + t_2X_j$ est une v.a. Gaussienne de moyenne $\mathbb{E}[Y] = t_1\mu_i + t_2\mu_j$ et variance $\text{Var}(Y) = t_1^2\Sigma_{ii} + t_2^2\Sigma_{jj}$ et donc

$$\phi_{(X_i,X_j)}(t) = \phi_Y(1) = \mathbb{E}[e^{i(t_1X_i + t_2X_j)}] = e^{i(t_1X_i + t_2X_j) - (t_1^2\Sigma_{i\,i} + t_2^2\Sigma_{j\,j})/2} = \phi_{X_i}(t_1)\phi_{X_j}(t_2)$$

ce qui implique l'indépendance. (En effet, par la propriété fondamentale des fonctions caractéristiques, on a montré que le couple (X_i, X_j) a une densité égale à la densité d'un couple de v.a. indépendantes.)

Autres distributions classiques

Loi Gamma

La v.a. X suit une loi gamma de paramètres $\alpha > 0$ et $\beta > 0$ ssi sa densité est donnée par

$$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \mathbb{I}_{x > 0}$$

et on note $X \sim \mathcal{G}(\alpha, \beta)$. Le paramètre α est la forme de la loi Gamma et β son intensité. On rappelle que

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt, \quad \forall \alpha > 0$$

et que

- 1. $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$. $\Gamma(1) = 1$, $\Gamma(n+1) = n!$ si $n \in \mathbb{N}$.
- 2. $\mathbb{E}[X] = \alpha/\beta$, $\operatorname{Var}(X) = \alpha/\beta^2$.

Loi Bêta

On dit que X suit une loi bêta de paramètres a>0 et b>0 ssi la densité de X est donnée par

$$f_X(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \mathbb{I}_{0 < x < 1}$$

et on note $X \sim \mathcal{B}(a, b)$.

Proposition 23. On a $\mathbb{E}[X] = a/(a+b)$, $\operatorname{Var}(X) = a \, b/(a+b)^2(a+b+1)$. Si X et Y sont indépendantes et $X \sim \mathcal{G}(\alpha, \beta)$ et $Y \sim \mathcal{G}(\alpha', \beta)$ alors

$$S = X + Y \sim \mathcal{G}(\alpha + \alpha', \beta), \qquad R = \frac{X}{X + Y} \sim \mathcal{B}(\alpha, \alpha')$$

 $et \ S \ et \ R \ sont \ ind\'ependantes.$

Démonstration. Si $X \sim \mathcal{B}(a, b)$

$$\mathbb{E}[X] = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^1 x x^{a-1} (1-x)^{b-1} dx = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^1 x^{(a+1)-1} (1-x)^{b-1} dx$$
$$= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} = \frac{a}{a+b}$$

$$\mathbb{E}[X^2] = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^1 x^{(a+2)-1} (1-x)^{b-1} \mathrm{d}x = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)} = \frac{a(a+1)}{(a+b)(a+b+1)}.$$

Si $X \sim \mathcal{G}(\alpha, \beta)$ et $Y \sim \mathcal{G}(\alpha', \beta)$ alors on considère le changement de variables $\Psi(x, y) = (s, r)$ avec s = x + y et r = x/(x + y). $\Psi \colon \mathbb{R}^2_+ \to \mathbb{R}_+ \times (0, 1)$ et $\Psi^{-1}(s, r) = (x, y)$ avec x = rs et y = s(1 - r) La matrice Jacobienne de Ψ^{-1} est donnée par

$$J\Psi^{-1} = \frac{D\Psi^{-1}(s,r)}{D(s,r)} = \begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial r} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial r} \end{vmatrix} = \begin{vmatrix} r & s \\ (1-r) & -s \end{vmatrix} = -rs - s(1-r) = -s$$

et donc

$$f_{(S,R)}(s,r) = f_{(X,Y)}(x,y)s = \frac{\beta^{\alpha+\alpha'}}{\Gamma(\alpha)\Gamma(\alpha')}sx^{\alpha-1} \cdot y^{\alpha'-1}e^{-\beta(x+y)} \mathbb{I}_{x>0,y>0}$$

$$= \frac{\beta^{\alpha+\alpha'}}{\Gamma(\alpha)\Gamma(\alpha')} s^{\alpha+\alpha'-1} e^{-\beta s} r^{\alpha-1} (1-r)^{\alpha'-1} \mathbb{I}_{s>0} \mathbb{I}_{0 < r < 1} = f_R(r) f_S(s)$$

avec

$$f_R(r) = \frac{\Gamma(\alpha + \alpha')}{\Gamma(\alpha)\Gamma(\alpha')} r^{\alpha - 1} (1 - r)^{\alpha' - 1} \mathbb{I}_{0 < r < 1}, \qquad f_S(s) = \frac{\beta^{\alpha + \alpha'}}{\Gamma(\alpha + \alpha')} s^{\alpha + \alpha' - 1} e^{-\beta s} \mathbb{I}_{s > 0}$$

et donc $R \sim \mathcal{B}(\alpha, \alpha')$ et $S \sim \mathcal{G}(\alpha + \alpha', \beta)$ et S et R sont indépendantes.

Loi du Khi-deux (χ^2)

Définition 24. Soit $X = (X_1, ..., X_d)$ un vecteur aléatoire Gaussien centré de matrice de covariance identité (i.e. les composantes de X sont indépendantes et $X_i \sim \mathcal{N}(0,1)$). On appelle la loi du Khi-deux de $X_i \sim \mathcal{N}(0,1)$ du Value de la v.a.

$$Y = X_1^2 + \dots + X_d^2$$

et on la note $Y \sim \chi_d^2$.

Proposition 25. Si $Y \sim \chi_d^2$ alors $Y \sim \mathcal{G}(d/2, 1/2)$, $\mathbb{E}[Y] = d$, $\operatorname{Var}(Y) = 2d$.

Démonstration. La loi du carré de la Gaussienne standard $Q = X_1^2$ est $\mathcal{G}(1/2,1/2)$, en effet la méthode de la fonction muette donne

$$\mathbb{E}[h(Q)] = \int_{\mathbb{R}} h(x^2) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx = \frac{\sqrt{2}}{\sqrt{\pi}} \int h(q) e^{-q/2} q^{-1/2} dq.$$

Donc la loi de la somme de d carrées de Gaussiennes standards est $\mathcal{G}(d/2, 1/2)$ par les propriétés des lois Gamma (voir la Proposition 23).

On a que $\mathbb{E}[Q]=1$ et $\mathrm{Var}(Q)=2$ par les propriétés des Gammas, et donc $\mathbb{E}[Y]=d\,\mathbb{E}[Q]$ et $\mathrm{Var}(Y)=d\,\mathrm{Var}(Q)$.

Loi de Student

Définition 26. On appelle loi de Student de paramètre d, notée \mathcal{T}_d , la loi de la v.a.

$$T = \frac{X}{\sqrt{Y/d}}$$

où $X \sim \mathcal{N}(0,1), \ Y \sim \chi_d^2$ et, X et Y sont indépendantes. T admet pour densité

$$f_T(t) = \frac{\Gamma((d+1)/2)}{\Gamma(d/2)\sqrt{\pi d}} \left(1 + \frac{t^2}{d}\right)^{-(d+1)/2}.$$

Remarque 27. Lorsque $d \rightarrow \infty$ on a que

$$\lim_{d \to \infty} \frac{f_T(t)}{f_T(0)} = \lim_{d \to \infty} \left(1 + \frac{t^2}{d}\right)^{-(d+1)/2} = e^{-t^2/2}$$

limite qui est proportionnel à la densité d'une Gaussienne standard (centrée réduite).