Таблица 10 Значения интегралов столкновений $\mathfrak{Q}^{(1,1)^*}$ и $\mathfrak{Q}^{(2,2)^*}$ для различных T^*

<i>T</i> *	Ω(1,1)*	Q(2,2)*	<i>T</i> •	_Q (1,1)*	Q(2,2) *
0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,85 0,90 0,95 1,00 1,05 1,10 1,15 1,25 1,30 1,35 1,40 1,45 1,50 1,55 1,65 1,70 1,75 1,85 1,90 1,95 2,00 2,10 2,20 2,30 2,40 2,50 2,60	2,662 2,476 2,318 2,184 2,066 1,966 1,877 1,798 1,729 1,667 1,612 1,562 1,517 1,476 1,439 1,406 1,375 1,346 1,320 1,296 1,273 1,253 1,253 1,253 1,215 1,198 1,182 1,167 1,153 1,140 1,128 1,167 1,105 1,094 1,084 1,075 1,084 1,075 1,084 1,075 1,026 1,012 0,9996 0,9878	2,785 2,628 2,492 2,368 2,257 2,156 2,065 1,982 1,908 1,841 1,780 1,725 1,627 1,587 1,549 1,514 1,482 1,452 1,424 1,399 1,375 1,353 1,333 1,314 1,296 1,279 1,248 1,234 1,221 1,209 1,197 1,186 1,175 1,156 1,138 1,107 1,093 1,081	2,70 2,80 2,90 3,00 3,10 3,20 3,30 3,40 3,50 3,60 3,70 3,80 3,90 4,00 4,10 4,20 4,30 4,40 4,50 4,60 4,70 4,80 4,90 5,00 6,0 7,0 8,0 90,0 10,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 90,0 100,0 200,0 300,0 400,0 300,0 400,0	0,9770 0,9672 0,9576 0,9490 0,9406 0,9328 0,9256 0,9186 0,9120 0,9058 0,8998 0,8942 0,8888 0,8740 0,8694 0,8652 0,8610 0,8568 0,8530 0,8492 0,8492 0,8492 0,8492 0,7712 0,7556 0,7424 0,6640 0,6232 0,5969 0,5756 0,5596 0,5596 0,5464 0,5352 0,5556 0,5170 0,4644 0,4360 0,4170	1,069 1,058 1,048 1,039 1,030 1,022 1,014 1,007 0,9999 0,9832 0,9870 0,9811 0,9755 0,9700 0,9553 0,9507 0,9464 0,9422 0,9382 0,9383 0,9305 0,9269 0,8963 0,8727 0,8538 0,8379 0,8242 0,7432 0,7005 0,6718 0,6504 0,6335 0,6194 0,6335 0,6194 0,6573 0,55882 0,5320 0,5016 0,4811

Для полярных газов пользуются потенциалом Штокмайера

$$u(r) = 4 \varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] - \frac{2 \mu^{2}}{r^{3}}.$$

Эта потенциальная функция межмолекулярного взаимодействия является суммой потенциала Леннарда-Джонса и дополнительного члена, учитывающего взаимодействие двух диполей. Формула для вязкости полярных газов имеет вид: