

Машинное обучение в науках о Земле

Михаил Криницкий

к.т.н., с.н.с. Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

Непараметрические методы машинного обучения

Михаил Криницкий

к.т.н., с.н.с. Институт океанологии РАН им. П.П. Ширшова

Лаборатория взаимодействия океана и атмосферы и мониторинга климатических изменений (ЛВОАМКИ)

Деревья решений

ЗАДАЧА КЛАССИФИКАЦИИ

В качестве упрощенного примера рассмотрим задачу бинарной классификации, в которой объекты описываются двумерными векторами:

$$X \in \mathbb{R}^2$$
$$Y \in \{0, 1\}$$

Легко обнаружить, что линейные модели не смогут хорошо решить представленную задачу.

Варианты решения в рамках известных моделей:

- GLM, GAM при условии расширения признакового пространства («вручную», согласно соображениям исследователя);
- SVM с применением kernel trick, виртуально расширяющим признаковое пространство;
- Искусственные нейронные сети

ЗАДАЧА КЛАССИФИКАЦИИ

Варианты решения в рамках известных моделей:

- GLM, GAM при условии расширения признакового пространства («вручную», согласно соображениям исследователя);
 - В случае сложных данных с признаковым описанием высокой размерности решения исследователя могут быть субоптимальными;
 - GLM и GAM модели со слабой выразительной способностью; в случае данных с повышенной сложностью этой выразительной способности может не хватать даже на новом пространстве признаков;
 - порождение «подходящих» признаков может оказаться непосильной задачей для исследователя;
- SVM с применением kernel trick, виртуально расширяющим признаковое пространство;
 - подбор ядра для хорошего решения задачи искусство, задача может быть решена субоптимально при условии неверно выбранного ядра;
 - на больших выборках данных обучение SVM с ядром может занимать существенное время (см. лекцию 17); SVM может демонстрировать субоптимальное решение на шумных данных с пересекающимися классами, особенно при неверном подборе гиперпараметров метода;
- Искусственные нейронные сети
 - может быть слишком выразительным решением; оптимизация соотношения выразительной способности и сложности данных искусство, на настоящий момент не автоматизируется;
 - существенные вычислительные затраты

Альтернатива - деревья решений (Decision Trees, DT)

Идея:

- строить разделяющую поверхность максимально просто, понятно и инетрпретируемо;
- имитировать процесс принятия решений в сценарии «вопрос-решение».
- Пусть эта поверхность будет линейна. Даже пусть она будет кусочно-постоянна

Кусочно-постоянная разделяющая поверхность составляется из участков гиперплоскостей, каждая из которых разделяет пространство примеров только по одному из признаков.

Формализация в рекурсивной записи:

- пусть R_p^l ("parent" sample) выборка тестовых примеров $\{x_i, y_i\}_p^l$ на очередном l-том этапе ветвления;
- по определенному условию $[x^{(j)} \ge t^{(l)}]$ на j_l -й признак производится деление выборки на R_{c1} и R_{c2} ("child" samples):

$$R_{c1}^{l} = \{X | x^{(j_l)} < t^{(l)}, x \in R_p^l\}$$

$$R_{c2}^{l} = \{X | x^{(j_l)} \ge t^{(l)}, x \in R_p^l\}$$

NOTE: деление применяется только к тому подмножеству примеров, которое содержится в «родительской» выборке R_p . Из этого следует, например, что каждый пример окажется в одной из выборок R_{c1} или R_{c2} и только одной из них.

• если на этом этапе деление останавливается, множества примеров в R_{c1}^l и в R_{c2}^l называют «**листьями**» ("leafs")

NOTE: в экстремальном случае построения на этапе обучения дерева «до конца» в каждом листе содержится только один элемент.

- после l-го деления каждая из выборок R^l_{c1} , R^l_{c2} становится «родительской» для очередного ветвления; процедура разделения повторяется для вновь образованных R^{l+1}_p .
- <u>классификация</u>: элементам в «листьях» присваивается (взвешенный) majority-класс (определяется на этапе обучения как класс, имеющий численное преимущество в этом листе)
- <u>регрессия</u>: элементам в «листьях» присваивается (взвешенное) среднее значение, определяемое на этапе обучения

На рисунке: деление выборки всех примеров R_p^0 на R_{c1}^0 , R_{c2}^0 . Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

DT <u>в режиме исполнения</u>

Вычисление целевой переменной \hat{y} для объектов в листе

• (!!!) Все объекты листа будут иметь одно и то же значение целевой переменной

Классификация:

$$\widehat{c_R} = \operatorname*{argmax} p_c^{(R)}$$

 $m{p_c^{(R)}}$ - доля **обучающих** примеров класса $m{c}$ в листе R (может вычисляться с учетом весов примеров $\{w_i\}$)

 $p_c^{(R)}$ вычисляется <u>на этапе обучения</u>

$$p_c^{(R)} = \frac{1}{\sum_{i=1}^{|R|} w_i} * \sum_{i=1}^{|R|} w_i * [y_i^{(train,R)} == c]$$

Регрессия:

$$\hat{y}(R) = \frac{1}{\sum_{i=1}^{|R|} w_i} * \sum_{i=1}^{|R|} w_i * y_i^{(train,R)}$$

Схема ветвления на первом уровне (l=0)

На рисунке: деление выборки всех примеров R_p^0 на R_{c1}^0 , R_{c2}^0 . Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

Схема ветвления на втором уровне (l=1)

На рисунке: деление выборки всех примеров R_p^0 на второй итерации ветвления. Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

Схема ветвления на третьем уровне (l=2)

На рисунке: деление выборки всех примеров R_p^0 на третьей итерации ветвления. Внимание: на рисунке — тестовая выборка, правила деления (номер признака j_l и пороговое значение $t^{(l)}$) были определены во время обучения.

На рисунке — результат после l-го ветвления **тренировочной** выборки.

Цель: осуществить деление подвыборки тренировочных примеров $R^l_{\mathcal{D}}$.

- Если в R_p^l примеры только одного класса, нет смысла их делить: в обеих областях после разделения будут присваиваться те же самые метки, что и в R_p^l ; в этом случае разделение не производится, в текущей ветке останавливается ветвление.
- Для ветвления $s(j_l,t^{(l)})$ следует выбрать номер признака j_l и пороговое значение $t^{(l)}$, исходя из каких-то соображений. **КАКИХ?**

На рисунке — результат после l-го ветвления **тренировочной** выборки. Цель: осуществить деление подвыборки тренировочных примеров R_p^l .

• Для ветвления $s(j_l, t^{(l)})$ следует выбрать **номер признака** j_l и **пороговое значение** $t^{(l)}$, исходя из <u>оптимизации приращения</u> функции потерь. В результате ветвления суммарная функция должна уменьшиться как можно сильнее.

ИДЕЯ функции потерь: это ф-я, которая должна характеризовать качество классификации в листе R. Напомним, что всем примерам, оказавшимся в листе, присваивается одинаковый класс, определяемый голосованием по классам тренировочных примеров в этом листе.

Обозначим: $p_c^{(R)}$ - доля обучающих примеров класса c в листе R Тогда класс, присваиваемый примерам в этом листе на этапе исполнения:

$$\widehat{c_R} = \operatorname*{argmax} p_c^{(R)}$$

ИДЕЯ функции потерь: это ф-я, которая должна характеризовать качество классификации в листе R. Напомним, что всем примерам, оказавшимся в листе, присваивается одинаковый класс, определяемый голосованием по классам тренировочных примеров в этом листе.

Обозначим: $p_c^{(R)}$ - доля обучающих примеров класса c в листе R (может вычисляться с учетом весов примеров $\{w_i\}$)

Тогда класс, присваиваемый примерам в этом листе на этапе исполнения:

$$\widehat{c_R} = \operatorname*{argmax}_{c \in \mathbb{Y}} p_c^{(R)}$$

Варианты функции потерь:

• Доля неверно классифицированных обучающих примеров:

$$\mathcal{L}_{mc} = 1 - \max_{c \in \mathbb{Y}} p_c^{(R)}$$

• Коэффициент Джини (отражает степень непохожести классов в R):

$$\mathcal{L}_{gini} = \sum_{c \in \mathbb{Y}} p_c^{(R)} (1 - p_c^{(R)})$$

• Перекрестная энтропия:

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{Y}} p_c^{(R)} \log p_c^{(R)}$$

Общее в этих функциях: чем более однородна подвыборка R в смысле классов обучающих примеров, тем меньше значение функции. Альтернативно: чем больше доля класса, по которому определяется метка для всех примеров из R, тем меньше значение функции.

$$\mathcal{L}_{mc} = 1 - \max_{c \in \mathbb{Y}} p_c^{(R)}$$

$$\mathcal{L}_{gini} = \sum_{c \in \mathbb{Y}} p_c^{(R)} (1 - p_c^{(R)})$$

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{V}} p_c^{(R)} \log p_c^{(R)}$$

Разделение обучающей подвыборки R_p^l приводит к тому, что суммарная функция потерь снижается на величину $\Delta \mathcal{L}$.

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{Y}} p_c^{(R)} \log p_c^{(R)}$$

Разделение обучающей подвыборки R_p^l приводит к тому, что суммарная функция потерь снижается на величину $\Delta \mathcal{L}$.

Заметим, что в случае функции потерь, характеризующей долю неверно классифицированных примеров, снижение суммарной функции потерь может быть нулевым => \mathcal{L}_{mc} - не лучший вариант функции потерь для настройки деревьев решений.

$$\mathcal{L}_{ce} = -\sum_{c \in \mathbb{Y}} p_c^{(R)} \log p_c^{(R)}$$

На рисунке — результат после l-го ветвления **тренировочной** выборки. Цель: осуществить деление подвыборки тренировочных примеров R_p^l .

• Для ветвления $s(j_{l+1}, t^{(l+1)})$ следует выбрать **номер признака** j_{l+1} и **пороговое значение** $t^{(l+1)}$, исходя из <u>оптимизации приращения функции потерь</u>. В результате ветвления суммарная функция должна уменьшиться как можно сильнее.

Разделение обучающей подвыборки R_p^l приводит к тому, что суммарная функция потерь снижается на величину $\Delta \mathcal{L}$.

Это означает, что можно искать разделение l+1 как решение задачи оптимизации:

$$j_{l+1}, t^{(l+1)} = \underset{j \in [1...f], t_j \in X_j}{\operatorname{argmax}} \Delta \mathcal{L}(R_p^l, R_{c1}^l, R_{c2}^l)$$

- f количество признаков признакового описания объектов
- пороговое значение t_i ищется среди всех возможных значений j-го признака

это – т.н. «жадный» (greedy) подход: получение локально оптимального решения на каждой итерации.

Псевдоалгоритм построения дерева решений на основании выборки $R = \{X,Y\}$:

Начальное состояние:

Выборка $R_p^l = R$; l = 0

<u>Выполнять</u> до тех пор, пока не будет удовлетворено условие останова:

1. метка для присвоения элементам текущего подмножества:

$$\hat{c}(R_p^l) = \operatorname*{argmax}_{c \in \mathbb{Y}} p_c^{(R_p^l)}$$

- 1. $\mathcal{L} = \mathcal{L}_{ce}\left(R_p^l, \hat{c}(R_p^l)\right)$
- 2. если $\mathcal{L}=0$ <u>останов</u> в этой ветке дерева (такое может быть, когда в R_p^l элементы обучающей выборки только одного класса)
- 3. если $\mathcal{L}>0$ поиск признака и порогового значения по этому признаку в рамках оптимизационной задачи:

$$R_{c1}^{l} = \{X | x^{(j_l)} < t^{(l)}, x \in R_p^l \}$$

$$R_{c2}^{l} = \{X | x^{(j_l)} \ge t^{(l)}, x \in R_p^l \}$$

$$j_l, t^{(l)} = \underset{j \in [1...f], t_i \in \mathbb{X}_j}{\operatorname{argmax}} \Delta \mathcal{L}(R_p^l, R_{c1}^l, R_{c2}^l)$$

4. повторять с п.1 для подвыборок R_{c1}^l , R_{c2}^l как «родительских».

Деревья решений в задаче регрессии Regression trees

Меняются только:

• способ вычисления целевой переменной в листе:

$$\hat{y}(R) = \frac{1}{|R|} \sum_{i=1}^{|R|} y_i$$

• форма функции потерь:

$$\mathcal{L}(R) = MSE(\hat{y}(R), Y_R)$$

Деревья решений

Особенности метода

- алгоритм обучения быстрый и вычислительно недорогой
- в режиме применения метод интерпретируем (можно продемонстрировать последовательность вопросов и соответствующих решений в ветвлениях)
- ДР естественным образом учитывают категориальные признаки: правило ветвления логическое, поэтому для ветвлений можно ставить условие типа совпадения категорий:

$$R_{c1}^{l} = \{X | x^{(j_l)} == t^{(l)}, x \in R_p^l\}$$

$$R_{c2}^{l} = \{X | x^{(j_l)} \neq t^{(l)}, x \in R_p^l\}$$

Деревья решений

Особенности метода

- деревья решений сильно склонны к переобучению; для борьбы с этим можно применять эвристические способы ограничения выразительной способности во время обучения:
 - ограничивать глубину дерева (max_depth*): если достигнута максимальная глубина, критерий останова ветвления считается выполненным;
 - ограничивать минимальный размер листа (min_samples_leaf*): если количество элементов в очередном листе не превышает этого значения, критерий останова ветвления в этой ветке считается выполненным;
 - ограничивать максимальное количество листьев дерева при его построении (max_leaf_nodes*): если количество листьев достигло определенного предела, обучение всего дерева прекращается;
 - ограничивать минимальное снижение функции потерь при ветвлении (min_impurity_decrease*): если максимально достижимое снижение функции потерь при ветвлении не превышает порогового, критерий останова ветвления в этой ветке считается выполненным

Эти <u>гиперпараметры</u> можно оптимизировать на основании меры качества на валидационной выборке, на выборках ООВ в подходе bootstrap или в подходе скользящего контроля.

• альтернативно: ведется полное обучение всего дерева без ограничений, после чего выполняется обрезка (pruning) дерева: оставляются ветвления до определенной глубины (подбирается на основании меры качества на валидационной выборке).

НИКОГДА НЕ ПРИМЕНЯЙТЕ деревья решений как таковые!

^{*} приводятся имена параметров моделей DecisionTreeClassifier и DecisionTreeRegressor пакета scikit-learn