Cara Kerja Arsitektur GAN

Arsitektur Jaringan Adversarial Generatif (GAN) bekerja melalui interaksi antara dua jaringan saraf, yaitu Generator dan Discriminator. Berikut adalah langkah-langkah dan cara kerja dari arsitektur tersebut:

1. Generator

- Input: Generator menerima input berupa vektor noise acak berdimensi rendah.
- Output: Generator menghasilkan data baru yang bertujuan menyerupai data asli dalam set pelatihan.
- Tujuan: Generator dilatih untuk "menipu" Discriminator dengan menghasilkan data yang cukup realistis sehingga sulit dibedakan dari data asli.

2. Discriminator

- Input: Discriminator menerima dua jenis input: data asli dari set pelatihan dan data palsu yang dihasilkan oleh Generator.
- Output: Discriminator memberikan output berupa probabilitas, yaitu label "nyata" untuk data asli dan "palsu" untuk data palsu.
- Tujuan: Discriminator dilatih untuk membedakan antara data asli dan data palsu dengan akurasi yang tinggi.

3. Proses Pelatihan GAN

Pelatihan GAN melibatkan proses yang iteratif dan berulang antara Generator dan Discriminator. Berikut adalah langkah-langkah detailnya:

a. Generasi Data Palsu

• Generator menghasilkan data baru dari vektor noise acak. Data ini disebut sebagai data palsu atau sintetis.

b. Discriminator Menerima Data

- Discriminator menerima data asli dari set pelatihan dan data palsu yang dihasilkan oleh Generator.
- Discriminator mencoba membedakan antara data asli dan palsu, memberikan label "nyata" atau "palsu".

c. Perbarui Discriminator

- Discriminator dilatih menggunakan fungsi kerugian (loss function) yang mendorongnya untuk menjadi lebih baik dalam membedakan antara data asli dan palsu.
- Fungsi kerugian ini dihitung berdasarkan perbedaan antara label yang benar (nyata/palsu) dan label yang diprediksi oleh Discriminator.

d. Perbarui Generator

- Generator dilatih menggunakan fungsi kerugian yang dihitung berdasarkan umpan balik dari Discriminator.
- Generator berusaha meminimalkan kerugian dengan menghasilkan data yang lebih realistis, yang bisa menipu Discriminator agar memberikan label "nyata".

4. Siklus Pelatihan Berulang

- Langkah-langkah di atas diulang berkali-kali dalam siklus pelatihan.
- Seiring waktu, Generator menjadi lebih baik dalam menghasilkan data realistis, sementara Discriminator menjadi lebih baik dalam membedakan data asli dari data palsu.

5. Konvergensi

- Proses pelatihan terus berlangsung hingga konvergensi tercapai, yaitu ketika Generator menghasilkan data yang sangat realistis sehingga sulit dibedakan oleh Discriminator.
- Pada titik ini, Discriminator tidak dapat lagi secara akurat membedakan antara data asli dan palsu, menunjukkan bahwa Generator telah berhasil.