VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Modelování a simulace Elektromobilita v Brně

Obsah

1	1 Uvod										
2	ktu										
3	Rozbor tématu a použitých metod/technologií										
	3.1 Elektrické vozidlo										
		3.1.1	Elektromotor								
		3.1.2	Baterie								
		3.1.3	Typy nabíjení								
	3.2	Elektr	onabíjecí stanice								
		3.2.1	Jak je na tom s elektrno stanicemi Brno?								
		3.2.2	Zpracování datasetu								
	3.3 Modelování elektromobility v Brně										
		3.3.1	Nabíjení pomocí střídavého proudu								
		3.3.2	Nabíjení pomocí stejnosměrného proudu								
		3.3.3	Petriho síť elektromobility v Brně								
4	Záv	ěr		,							
	4.1	Výstu	p programu								
		4.1.1	Momentální stav elektromobility v Brně								
		4.1.2	Stav v roce 2030 elektromobility v Brně								

1 Úvod

Jako téma našeho projektu jsme si zvolili modelování elektromobility v Brně. Elektromobilita je v posledních aktuálním trendem, který se v posledních letech stává stále populárnějším a je pravděpodné, že tomu bude tak i nadále. V rámci projektu se zaměříme na modelování elektromobily v Brně elektromobility v Brně s cílem určit zda je Brno, připraveno na budoucnost.[1]

2 Cíle projektu

Cílem projektu je vytvořit model, který bude schopen simulovat chování nabíjení elektromobilů v Brně. Model bude zahrnovat informace o elektromobilech a nabíjecích stanicích vyskytující se v Brně. Model bude schopen simulovat zátěž sítě nabíjecích stanic na základě zájmu o využítí stanic, celkové struktuře této sítě a to v závislosti na části dne. Chování modelu, lze ovlivnit jeho parametry volání, mezi které patří počet elektromobilů nacházející se ve městě, kolik procent z nich využíva veřejné stanice denně, počet stanic (lze specifikovat více druhů viz. kapitola 3.2.1), a dále čas kdy simulace bude probíhat celý den, tedy 24 hodin, denní režim a noční režim. Tento model lze využít k analýze a optimalizaci stavu sítě stanic pro nabíjení elektrických vozidel v Brně.

Model byl otestován s aktuálním stavem sítě a zájmem o nabíjení na veřejných stanicicí a pomocí experimentů, kde bylo zkoumáno, aktuální složení sítě a odhadovaným množstvím elektromobilů v Brně v roce 2030.

3 Rozbor tématu a použitých metod/technologií

Pro korektní modelování elektromobility je potřeba si nejprve uvědomit, jak elektromobily fungují, jaké jsou jejich vlastnosti/parametry, jelikož, elektrická vozidla budou v modelu představovat transakce. Je třeba si také uvědomit typy a počty nabíjecích stanic v Brně, tedy strukturu sítě, jak probíhá nabíjecí cyklus, jaké jsou fáze tohoto cyklus (tzv. SoC – State of Charge) a v neposlední řadě jaká je vůbec poptávka po nabíjecích stanicích.

3.1 Elektrické vozidlo

Tedy naše tranksakce, mezi hlavní aspekty, ovlivňující chování elektromobilu, patří v prvé řadě jeho motor, akumulátor/baterie a jeho vnitřní nabíječka, jež je využita v případě nabíjení pomocí střídavého proudu.

3.1.1 Elektromotor

U každého vozidla je nejdůležitější jeho pohon a palivo. Pro elektromobily je pohon zajištěn elektromotorem, který je základní součástí elektrického hnacího systému. Elektromotor přeměňuje elektrickou energii z baterie na mechanickou energii potřebnou pro pohyb vozidla a skládá se primárně ze dvou hlavních částí – rotoru a statoru. [2]

Rotor je pohyblivá část elektromotoru. Jedná se o součást, která se otáčí a přenáší mechanickou energii na hnací ústrojí vozidla. Pohyb rotoru je vyvolán magnetickými silami, které vznikají mezi ním a statorem. Rotor může být vyroben z permanentních magnetů (v motorech s permanentními magnety) nebo z vodivých materiálů, které reagují na elektromagnetické pole statoru (v asynchronních motorech). [3]

Stator je naopak pevná část elektromotoru, která obklopuje rotor. Obsahuje sady cívek, které jsou napájeny elektrickým proudem z baterie. Když těmito cívkami prochází proud, vytváří elektromagnetické pole. Toto pole interaguje s magnetickým polem rotoru a vytváří točivý moment, který pohání rotor. [3]

Obrázek 1: Schéma synchronního elektromotoru [3]

3.1.2 Baterie

Baterie je další důležitou součástí elektromobilu. Stejně jako existuje více typů elektromotorů, liší se i baterie, používané jednotlivými výrobci. V zásadě se ale jedná o lithium-iontové baterie (varianty LIB a Li-NMC), poskytující přijatelný poměr mezi kapacitou, hmotností a prostorem, který zabírají.[4] Liší se však v použitelné kapacitě této baterie, které se pohybuje v rozmezí od 123 kWh, po 21.3 kWh na základě dat z webové stránky www.ev-database.org [5], poskytující databázi o elektromobilech. Tato databáze zároveň poskytuje informaci o průměrné kapacitě baterie, která činí 71.6 kWh, tato hodnota bude dále v modelu využita pro výpočet času stráveného autem nabíjením na stanici.

3.1.3 Typy nabíjení

Elektromobil, lze nabíjet hned několika způsoby, faktorů je mnoho, výkon elektrostanice, typ proudu, konektor,... My jsme se v našem modelu rozhodli zachovat pouze podstatné parametry, které v našem případě budou mít největší vliv na chování elektromobilů a to nabíjecí výkon a druh proudu. Elektromobil, zde obvykle nabíjet jak stejnosměrným proudem, tak střídavým proudem.

Obrázek 2: Rozdíl mezi nabíjením střídavým a stejnosměrným proudem [6]

Rozdíl ale je v jejich efektivitě, u nabíjení střídavým proudem nezáleží pouze na výkonu nabíjecí stanice, ale také na samotném vozidle. Baterie elektromobilu je schopna pracovat pouze se stejnosměrným proudem, proto je potřeba mít v elektromobilu vestavěný měnič (palubní nabíječka), který střídavý proud převede na stejnosměrný. Palubní nabíječka obvykle pracuje s výkonem 3,6 kW, 7,2 kW, 11 kW nebo 22 kW, který obvykle limituje nabíjení elektromobilu, daleko víc než výkon nabíjecí stanice. [7] Zato nabíjení stejnosměrným proudem je mnohem efektivnější, nemusí se měnit typ proud

a nabíjení není limitováno vůbec výkonem palubní nabíječky. Tyto nabíjecí stanice obvykle poskytují výkon 50 kW, 150 kW nebo až 350 kW.[7, 8]

U nabíjení stejnosměrným proudem se standardně cyklus nabíjení skládá ze tří fází (tzv. SoC – State of Charge), první fáze se pohybuje v rozmezí 0 až 20% kapacity baterie, zde pomalu výkon narůstá, tato fáze je omezena komunikací mezi nabíjecí stanicí a elektromobilem a také teplotou baterie. Druhá fáze začíná na 20% až 80% zde se na začátku stavu dosáhne maximální výkon stanice (většínou stanice jelikož elektromobily mají zpravidla povolený větší maximální výkon než dnešní stanice standardně nabízejí) a následně začíná pokles, tento sestupný trend nastává jak se baterie plní a zároveň se přehřívá. Poslední fází je rozsah mezi 80% až 100%, zde se výkon nabíjení opět snižuje, jelikož dochází k protekci před přebitím baterie a i chemický proces, ke kterému dochází v baterii je méně efektivní při vyšších úrovních nabití, což má za následek že stejný nabíjecí proud má menší dopad na zvýšení kapacity.[9]

Obrázek 3: Efektivita nabíjení pomocí stejnosměrného a střídavého proudu [10]

U nabíjení na střídavý proud je situace jiná, tím, že je výkon primárně limitován elektromobilem – tedy palubní nabíječkou (OBC - On-Board Charger), výrobce automobilu zaručuje, že baterie je schopna pracovat s určitým výkonem, který externí nabíjecí stanice schopna poskytnout.

3.2 Elektronabíjecí stanice

3.2.1 Jak je na tom s elektrno stanicemi Brno?

V Brně je celkem 173 veřejných nabíjecích stanic, vyplývající z dat z webu www.data.brno.cz[8], na této stránce je i vytvořený dataset s mapou, kde jsou všechna data zaznamenána a zpřístupněna veřejnosti. My jsme tento dataset využili a zpracovaná data, lze najít ve složce data/. V souboru charging_stations_cez.json obsahuje seznam všech veřejných nabíjecích stanic společnosti ČEZ, charging_stations_PRE.pdf obsahuje list stanic skupiny PRE (Pražská energetika), mezi další velké hráče na poli elektromobility v Brně patří společnosti Teplárny Brno a.s. a E.ON. Dvě 11kWh stanice, devětadvacet 22kWh stanic, jedenáct 50kWh stanic a 5 stanic o výkonu 150kWh, poskytuje E.ON, jak vyplývá z dat dostupných na webu www.eon-drive.cz/mapa/. Zato společnosti Teplárny Brno a.s. poskutuje TODO, založeno na informacích z mapy na stránce www.emobilitabrno.cz/cs/verejne-dobijecky. Soubor charging_stations_others.xlsx stanice, které jsou vlastněny menšími firmami. V zásadě Brno disponuje nabíjecími stanicemi s výkonem od 3.7 kW (AC) až po 108 kW (DC), a nabíjecích bodů je celkově 173. [11, 12]

3.2.2 Zpracování datasetu

Data z datasetu poskytnutého portálem www.data.brno.cz [8], bylo třeba nejprve zpracovat a určit aktuální situaci v Brně. Zpracovaný dataset nacházející se v souboru brno_charging_summary.xlsx, obsahuje tedy roztřízené elektrostanice podle typu proudu (stejnosměrný/střídavý) a výkonu nabíjení. Jak již bylo řečeno Brno poskytuje nabíjecí stanice s výkonem od 3.7 kW (AC) až po 108 kW (DC), a nabíjecích bodů je celkově 173, do úvahy jsme však vybrali pouze stanice s nabíjecím výkonem od 11 kW, jelikož systému s výkonem 3.7 kW se dnes již neimplementují do veřejných nabíjecích stanic, jelikož nabíjení by trvalo příliš dlouho – vznikají tak malé ztráty modelu, které jsou však tolerovány, takový elektromobil s průměrnou kapacitou baterie 71.6 kWh by se z 0 na 100 procent nabíjel 19.43 hodin, model poskytuje simulaci trvající maximálně 24 hodin, tedy za dobu simulace by byl nabito pouze jedno vozidlo.¹.

Stanice	Výkon stanice	Typ stanice	Počet stanic
11kWh AC	11kWh	střídavý proud	6
12kWh AC	12kWh	střídavý proud	20
22kWh AC	22kWh	střídavý proud	77
50kWh DC	50 kWh	stejnosměrný proud	54
108kWh DC	108kWh	stejnosměrný proud	11
150kWh DC	$150 \mathrm{kWh}$	stejnosměrný proud	5

Tabulka 1: Rozdělení typu veřejných nabíjecích stanic v Brně podle výkonu a typu proudu

3.3 Modelování elektromobility v Brně

3.3.1 Nabíjení pomocí střídavého proudu

TODO Popis jak křivka vypadá a jak se došlo k hodnotám v tabulkách tedy k průměrnému nabíjecímu výkonu, proč křivka pro AC vypadá tak jak vypadá + popis fází. [13]

Obrázek 4: Efektivita nabíjení pomocí střídavého proudu [14]

 $^{^1\}mathrm{V}$ první fázi z 0 do 20 procent za 3.9, v druhé fázi od 20 do 80 procent by to trvalo 11.93 a poslední fáze z 80 do 100 procent by opět trvala 3.9 hodiny

3.3.2 Nabíjení pomocí stejnosměrného proudu

TODO Popis jak křivka vypadá a jak se došlo k hodnotám v tabulkách tedy k průměrnému nabíjecímu výkonu, proč křivka pro DC vypadá tak jak vypadá + popis fází. [15]

Obrázek 5: Efektivita nabíjení pomocí stejnosměrného proudu [16]

Prumerny nabijeci vykon nabijecky

	0 - 20 [%]	20 - 80 [%]	80 - 100 [%]
11kWh AC	12kWh	12kWh	9kWh
12kWh AC	12kWh	12kWh	9kWh
22kWh AC	22kWh	22kWh	16.5kWh
50kWh DC	26kWh	42kWh	17kWh
108kWh DC	54kWh	90kWh	36.72kWh
150kWh DC	54kWh	90kWh	36.72kWh

Tabulka 2: Průměrný nabíjecí výkon pro jednotlivé fáze nabíjení

	0 - 20 [%]	20 - 80 [%]	80 - 100 [%]
11kWh AC	0 - 1.30h.	0 - 3.90h.	0 - 2.60h.
12kWh AC	0 - 1.19h.	0 - 3.58h.	0 - 2.38h.
22kWh AC	0 - 0.65h.	0 - 1.95h.	0 - 1.30h.
50kWh DC	0 - 0.573h.	0 - 1.01h.	0 - 0.82h.
108kWh DC	0 - 0.26h.	0 - 0.47h.	0 - 0.38h.
150kWh DC	0 - 0.19h.	0 - 0.34h.	0 - 0.27h.

Tabulka 3: Čas potřebný k nabití baterie v jednotlivých fázích stanic

3.3.3 Petriho síť elektromobility v Brně

Obrázek 6: Petriho síť elektromobility v Brně

- 4 Závěr
- 4.1 Výstup programu
- 4.1.1 Momentální stav elektromobility v Brně
- 4.1.2 Stav v roce 2030 elektromobility v Brně

Reference

- [1] SIMLIB/C++. Simulation library for c++. [online], 2024. [cit. 2024-11-18].
- [2] Auto.cz. Přehledně: Všechny typy elektromotorů! Čím se liší? a jaké mají výhody/nevýhody? [online], 2024. [cit. 2024-11-18].
- [3] Mgr. Magda Králová. Techmania: Elektromotory. [online], 2024. [cit. 2024-11-18].
- [4] Wikipedia. Electric vehicle battery. [online], 2024. [cit. 2024-11-21].
- [5] Electric Vehicle Database. Useable battery capacity of full electric vehicles. [online], 2024. [cit. 2024-11-18].
- [6] wallbox. Ev charging current: What's the difference between ac and dc? [online], 2024. [cit. 2024-11-20].
- [7] Jan Strmiska. Ac vs. dc nabíjecí stanice elektromobilů. [online], 2024. [cit. 2024-11-18].
- [8] Datový portál města Brna. Elektrické nabíjecí stanice pro auta / ev charging points. [online], 2024. [cit. 2024-11-18].
- [9] eStation. Understanding the charging curve and the 80 [online], 2024. [cit. 2024-11-21].
- [10] Reccurent. Is your ev battery getting all the energy you pay for? [online], 2024. [cit. 2024-11-20].
- [11] E.ON Drive. mapa stanic. [online], 2024. [cit. 2024-11-29].
- [12] E-MOBILITA Teplárny Brno a.s. mapa stanic. [online], 2024. [cit. 2024-11-29].
- [13] Riken Solanki. Ac vs dc charger: Enabling smart charging decisions. [online], 2024. [cit. 2024-11-30].
- [14] EVBox. Ev charging: the difference between ac and dc [2023 update]. [online], 2024. [cit. 2024-11-30].
- [15] iVY Charging Network. A guide to ev charging speed. [online], 2024. [cit. 2024-11-30].
- [16] EVESCO Power Sonic Corporation. The ultimate guide to dc fast charging. [online], 2024. [cit. 2024-11-30].