Introduction to Al

Weather Data Analysis Report

by

Tanmay Kesharwani

CSEAI-D

Class roll no. 41

The Problem

1. Data Acquisition and Quality:

Weather data typically comes from various sources and can be inconsistent, contain missing values, or have varying formats. This poses challenges in reliably ingesting and cleaning the data.

2. Data Heterogeneity:

The dataset might include different types of information—such as temperature, humidity, rainfall, and wind speed—each with its own units and scales. Integrating these varied elements into a coherent analysis requires careful normalization and handling.

3. Identifying Patterns and Trends:

Weather data is inherently time-dependent. The goal is to identify seasonal trends, anomalies, and relationships between different meteorological variables. This involves both statistical summarization and visual exploration.

4. Interpretability and Actionability:

Beyond just processing the data, the analysis must provide insights that are interpretable by decision-makers. This means the system should not only compute statistics but also generate visualizations and summaries that clearly communicate trends and potential anomalies.

The Approach

1. Data Ingestion and Cleaning:

- Collection: Gather data from reliable sources such as weather stations, satellites, or public datasets.
- Cleaning: Address missing values, outliers, or errors in the dataset to ensure the data is reliable for analysis.
- Normalization: Convert different units and scales to a consistent format to allow for meaningful comparisons.

2. Exploratory Data Analysis (EDA):

- Descriptive Statistics: Compute measures like mean, median, standard deviation, and quartiles to understand the distribution of weather variables.
- Visualizations: Use plots such as histograms, line charts, and scatter plots to reveal patterns and trends over time, and to explore relationships between different weather parameters.
- Correlation Analysis: Identify how variables interact, for example, how temperature might correlate with humidity or rainfall.

3. Pattern Recognition and Trend Analysis:

- Time-Series Analysis: Examine the data over time to identify seasonal patterns, trends, or cyclic behaviours.
- Anomaly Detection: Highlight unusual weather events or outliers that deviate significantly from typical patterns. These could indicate rare events or potential data quality issues.

4. Interpretation and Communication:

- Summary Reports: Generate clear summaries and visual reports that convey key insights—such as typical weather patterns, unexpected anomalies, or the relationship between different variables—to help inform decision-making.
- Actionable Insights: Ensure that the analysis provides value, whether for planning, forecasting, or understanding climate trends, by highlighting significant observations that can lead to further investigation or action.

Code

Import necessary libraries

import pandas as pd # Used for data manipulation and analysis

import numpy as np # Used for numerical operations

import matplotlib.pyplot as plt # Used for creating visualizations

1. Load the dataset

df = pd.read_csv('weather_data.csv') # Reads data from a CSV file named 'weather_data.csv' into a pandas DataFrame called 'df'

#2. Visualization

2a. Histogram of each numerical feature

numeric_cols = ['Temperature', 'Rainfall', 'Humidity'] # Define the columns containing numerical weather data

df[numeric_cols].hist(bins=15, figsize=(12, 5)) # Create histograms for each numerical column with 15 bins

plt.suptitle("Histograms of Weather Variables") # Set the title for the entire histogram plot plt.show() # Display the histograms

2b. Line plot of temperature over index or date

plt.figure(figsize=(10, 4)) # Create a new figure with a specific size

plt.plot(df['Temperature'], marker='o', label='Temperature') # Plot temperature data as a line with circular markers

plt.title("Temperature Over Time (Index-Based)") # Set the plot title

plt.xlabel("Index (or Date)") # Set the x-axis label

plt.ylabel("Temperature") # Set the y-axis label

plt.legend() # Display a legend to identify the data being plotted

plt.show() # Display the line plot

```
# 2c. Scatter plot: Temperature vs. Humidity
plt.figure(figsize=(6, 4)) # Create a new figure with a specific size
plt.scatter(df['Temperature'], df['Humidity'], alpha=0.7, c='green') # Create a scatter plot of
Temperature vs. Humidity
plt.title("Temperature vs. Humidity") # Set the plot title
plt.xlabel("Temperature") # Set the x-axis label
plt.ylabel("Humidity") # Set the y-axis label
plt.show() # Display the scatter plot
# 2d. Scatter plot: Rainfall vs. Temperature
plt.figure(figsize=(6, 4)) # Create a new figure with a specific size
plt.scatter(df['Rainfall'], df['Temperature'], alpha=0.7, c='blue') # Create a scatter plot of Rainfall vs.
Temperature
plt.title("Rainfall vs. Temperature") # Set the plot title
plt.xlabel("Rainfall") # Set the x-axis label
plt.ylabel("Temperature") # Set the y-axis label
plt.show() # Display the scatter plot
# 3. Correlation matrix (purely for numeric insight)
correlation matrix = df[numeric cols].corr() # Calculate the correlation between numerical columns
# Heatmap of correlation matrix
plt.figure(figsize=(6, 5)) # Create a new figure with a specific size
plt.imshow(correlation_matrix, cmap='coolwarm', interpolation='none') # Create a heatmap of the
correlation matrix
plt.colorbar(label='Correlation Coefficient') # Add a colorbar to the heatmap
plt.xticks(range(len(numeric_cols)), numeric_cols, rotation=45) # Set x-axis ticks and labels
plt.yticks(range(len(numeric_cols)), numeric_cols) # Set y-axis ticks and labels
plt.title("Correlation Matrix Heatmap") # Set the plot title
plt.show() # Display the heatmap
```

Histograms of Weather Variables

References:

- OpenAI ChatGPT. (2025, March 11). Explanation of the problem and approach used to create a weather analysis system.
- Sample Weather Dataset. Embedded weather data used for analysis. (Provided by the researcher).