

Contents

- Types of Transistors: Bipolar and field effect.
- Physical construction
- Modes of Operation
- Types of Configurations
- Input/output characteristics
- Application as an Amplifier

Bipolar Junction Transistors

Physical Construction

BJT: Symbols and junction models

- Emitter Medium sized and heavily doped, to inject majority carriers to collector through Base.
- Collector Thick and lightly doped, designed to collect the majority carriers from emitter.
- Base Thin and medium doped, control the flow of current between Emitter and Collector.

BJT: Modes of Operation

S. No.	Mode	Emitter- Base Junction	Collector Base Junction	Action	Application
1	Cut-off	Reverse	Reverse	Open	
2	Saturation	forward	forward	Short	Switch
3	Active	Forward	Reverse		Amplifier
4	Reverse active	Reverse	Forward		

- Cut-off Mode:
- No collector current and no emitter current.
- · Very much like a open circuit

- · Saturation mode: on state
- Acts like a short circuit between the collector and emitter.
- Both the junctions are forward biased, V_B must be at higher potential than V_C and V_E .
- V_C must be slightly greater than V_E .
- $V_{CF} = 0.2 \text{ V}.$

- Active Mode:
- V_{BE} must be positive and V_{CB} must be negative. $V_C > V_B > V_E$.
- Gain (amplification factor) B
- Common base current gain a

$$I_C = \beta I_B$$

$$\beta = \frac{\alpha}{(1-\alpha)}$$

$$I_C = \alpha I_E$$

$$\alpha = \frac{\beta}{\beta+1}$$

Transistor Action: Active mode

• Emitter-Base junction is Forward Biased, Collector-Base junction is Reverse Biased

Leakage Current

BJT: Bias and Current Flow

- For linear amplification, BE junction is forward bias and CE junction is reverse biased.
- Base region is made very small such that the carriers are swept across it from emitter to collector.

BJT: operating Configurations

Symbols and simplified junction models

Common Emitter: Input Characteristics

V_{BE} Vs I_B

• Small current flows until V_{BE} exceeds 0.6 V, shows the Si diode forward char.

Common Emitter: Output Characteristics

- V_{CE} Vs I_{C}
- There modes of operation are shown
- $I_B = 0$ cut-off
- V_{CE} < V_{CEsat} saturation

BJT: Parameters

• Input resistance:

Static (or d.c.) input resistance =
$$\frac{V_{\text{BE}}}{I_{\text{B}}}$$

Dynamic (or a.c.) input resistance = $\frac{\Delta V_{\text{BE}}}{\Delta I_{\text{B}}}$

• Output resistance:

Static (or d.c.) output resistance =
$$\frac{V_{\text{CE}}}{I_{\text{C}}}$$

Dynamic (or a.c.) output resistance = $\frac{\Delta V_{\text{CE}}}{\Delta I_{\text{C}}}$

• Current Gain:

Static (or d.c.) current gain =
$$\frac{I_{\rm C}}{I_{\rm B}}$$

Dynamic (or a.c.) current gain =
$$\frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$

For a transistor circuit, the base terminal is grounded, and Collector is connected to a supply voltage of 10 V via R_{c} = 5 K ohms and emitter is connected to a supply voltage of -10 V via R_{E} = 10 K ohms, the voltage at the emitter was measured and found to be -0.7 V. if β = 50, find I_{E} , I_{B} , I_{C} , and V_{C} .

- $I_F = 0.93 \text{ mA}$
- $I_B = 18.2 \, \mu A$
- $I_C = 0.91 \text{ mA}$
- $V_C = 5.45 \text{ V}$