Лекция 6: Методы оптимизации для задач машинного обучения

10

Задача оптимизации

Безусловная:

```
\min f(x)
x \in \mathbb{R}^n — переменные
f: \mathbb{R}^n \to \mathbb{R}^1 — целевая функция
```

$$x * \in \underset{X}{\operatorname{argmin}} f(x)$$
 — точка минимума, $f^* = f(x^*)$ — значение минимума

Условная:

$$\min f(x)$$
 $x \in X$ — множество ограничений $f: Y \to \mathbb{R}^1, X, Y \subseteq \mathbb{R}^n, X \subseteq Y$

Определение минимума функции

Точка x^* называется точкой локального минимума функции f(x), если существует $\varepsilon > 0$ такое, что $f(x) \ge f(x^*)$ для всех $x: \|x - x^*\| \le \varepsilon$

Точка x^* называется точкой глобального минимума функции f(x), если $f(x) \ge f(x^*)$ для всех $x \in \mathbb{R}^n$

Глобальное решение является локальным, обратное неверно

Может быть много локальных решений, глобальное решение единственно

10

Некоторые важные определения

$$f: \mathbb{R}^n \to \mathbb{R}$$

Градиент (вектор первых производных) – направление наибольшего роста функции в точке (можно доказать через разложение в ряд Тейлора и неравенство Коши-Буняковского):

$$f'(x) = \nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

Матрица вторых производных, матрица Гессе, гессиан:

$$f''(x) = \nabla^2 f(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{i,j=\overline{1,n}}$$

Выпуклые множества

Определение. Непустое множество $X \subseteq \mathbb{R}^n$ называется выпуклым, если для любых $x,y \in X, \lambda \in [0,1]$ выполняется $\lambda x + (1-\lambda)y \in X$

Свойства выпуклых множеств:

- Пересечение выпуклых множеств выпукло
- Линейная комбинация выпуклых множеств выпукло
- Проекция на выпуклое множество единственна

1

Выпуклые функции

Функция $f: \mathbb{R}^n \to \mathbb{R}^1$, определенная на выпуклом множестве $X \subset \mathbb{R}^n$, называется выпуклой, если для любых $x, y \in X, \lambda \in [0,1]$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

строго выпуклой

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

сильно выпуклой

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \alpha \lambda (1 - \lambda) ||x - y||^2$$

Свойства:

- Линейная комбинация выпуклых функций выпукла
- Надграфики выпуклой функции является выпуклым множеством

Свойства выпуклых функций для задач оптимизации

Выпуклая функция достигает максимума и минимума в **единственной точке**

Неравенство Йенсена:

Пусть f(x) – выпуклая функция на выпуклом множестве X, тогда:

$$f(\sum_{i=1}^{m} \lambda_i x^i) \le \sum_{i=1}^{m} \lambda_i f(x^i),$$

$$\forall m = 1, 2, \dots, x^{i} \in X,$$

$$\lambda_{i} \geq 0, i = \overline{1, m}, \sum_{i=1}^{m} \lambda_{i} = 1$$

Условие выпуклости первого порядка:

• График функции лежит не ниже касательной гиперплоскости к нему в точке

$$\forall x, y \in X, f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle$$

- Строго выпукла, если строгое неравенство
- Сильно выпукла, если есть «отступ» = λ :

$$f(y) - f(x) \ge \langle \nabla f(x), y - x \rangle + \lambda ||y||^2 / 2$$

Условие выпуклости

$$-f:\mathbb{R}^d\to\mathbb{R} \quad -g:\mathbb{R}^d\to\mathbb{R} \qquad -g:\mathbb{R}^d\to\mathbb{R}$$

$$-q:\mathbb{R}^d o\mathbb{R}$$

строго

$$-g:\mathbb{R}^d o\mathbb{R}$$

СИЛЬНО

Необходимые и достаточные условия экстремума

Условия первого порядка:

- □ **Теорема**. (*необходимое условие*) Если x^* точка минимума дифференцируемой в точке x^* функции f(x). Тогда $\nabla f(x^*) = 0$.
- □ **Теорема** (достаточное условие). Пусть f(x) выпуклая функция, дифференцируемая в точке x^* , и $\nabla f(x^*) = 0$. Тогда x^* точка глобального минимума функции f(x)

Условия второго порядка:

- □ **Теорема.** (*необходимое условие*) Пусть x^* точка минимума функции f(x), дважды дифференцируема в точке x^* . Тогда гессиан $\nabla^2 f(x^*)$ неотрицательно определен: $\forall h \langle \nabla^2 f(x^*)h, h \rangle \geq 0$
- □ **Теорема.** (достаточное условие) Пусть f(x) дважды дифференцируема в точке x^* , $\nabla f(x^*) = 0$ и $\nabla^2 f(x^*)$ неотрицательно определен. Тогда x^* точка локального минимума.

Задача безусловной оптимизации

Чтобы найти $x^* = \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x)$ необходимо решить $\nabla f(x) = 0$

Если f(x) выпуклая \Rightarrow единственный минимум Если f(x) невыпуклая:

- решения может не быть (функция вогнута, не имеет минимума)
- решений может быть много ⇒ необходимо определить, является ли оно экстремумом, если да, то максимум или минимум.

Если нет аналитического решения \Rightarrow итерационная процедура, определяющее решение приближенно: $|f(x) - f(x*)| \le \varepsilon$

Поиск приближенного решения

Метод решения задачи оптимизации – построение приближения к решению исходной задачи (точке минимума x^*) на основе информации о характеристиках целевой функции.

Методы нулевого порядка используют только значения функции

Методы первого порядка – первые производные

Методы второго порядка – вторые производные

Общий вид метода оптимизации

Многие методы оптимизации имеют вид

$$x^{k+1} = x^k + \eta_k d^k$$
, $d^k \in \mathbb{R}^n$, $\eta_k \in \mathbb{R}$, $k = 0,1$...

 x^0 - начальное приближение

 d^k – направление минимизации, определяется характеристиками минимизируемой функции и выбранной процедуры

 η_k – длина шага (в МО называют скорость обучения)

- Если точное решение находится за конечное число шагов, метод называется *конечношаговым*, иначе *бесконечношаговым*
- Бесконечношаговый сходится, если $x^k \to x^*$, $k \to \infty$
- Скорость сходимости (число шагов, не количество вычислений):
 - \square Линейная $||x^{k+1} x^*|| \le q ||x^k x^*||, q \in (0,1)$
 - \square Сверхлинейная $||x^{k+1} x^*|| \le q_k ||x^k x^*||, q_k \to 0$
 - □ Квадратичная $||x^{k+1} x^*|| \le q ||x^k x^*||^2$
 - □ и т.д.

r,

Методы спуска

Определение. Вектор $d \in \mathbb{R}^n$ называется направлением убывания функции $f : \mathbb{R}^n \to \mathbb{R}$ в точке $x \in \mathbb{R}^n$, если для малого η :

$$f(x + \eta d) < f(x)$$

 $D_f(x)$ — множество (конус) всех направлений убывания в точке (все вектора, чье скалярное произведение с антиградиентом положительно)

$$\forall d \in D_f(x), \langle \nabla f(x), d \rangle \leq 0$$

Методы спуска:

$$x^{k+1} = x^k + \eta_k d^k, d \in D_f(x^k), k = 0,1,...,$$
 $\eta_k : \{f(x^k)\}$ убывает

Каждый метод – свой подход к выбору **шага** и выбору **направления** убывания

Критерии остановки: число шагов, малое изменение целевой функции, близость нормы градиента к 0

w

Градиентный метод

Направление спуска противоположно градиенту: $d^k = -\nabla f(x)$

- Выбираем начальное приближение $x^0 \in \mathbb{R}^n$
- Каждое следующее приближение определяется по правилу:

$$x^{k+1} = x^k - \eta_k \nabla f(x^k), k = 0,1,...$$

Правила выбора шага:

■ априорное задание $\{\eta_k\}_{k=0}^{\infty}$ в виде константы или правил пересчета, например:

$$\eta_k = \eta, \eta_k = \frac{\eta}{1 + \beta k}$$

■ полная релаксация - метод наискорейшего спуска

$$\eta_k = \arg\min_{\eta \ge 0} (x^k - \eta \nabla f(x^k))$$

правило Армихо, Вульфа и другие

w

Правило Армихо (линейный поиск)

Фиксируем параметры: дробления θ (например, пополам), допуск $\varepsilon \in (0,1)$, начальный шаг $\eta_0 > 0$

Путем дробления $\eta \coloneqq \eta \theta$ добиваемся выполнения неравенства $f(x^k + \eta d^k) \le f(x^k) + \varepsilon \eta \langle f(x^k), d^k \rangle$

Как только неравенство выполнено, полагаем $\eta_k \coloneqq \eta$ Полезные свойства, доказанные для случая выбора шага по правилу Армихо:

- Сходимость к стационарной точке (минимуму если выпуклая функция), если градиент удовлетворяет условию Липшица $\forall x, y: ||\nabla f(x) \nabla f(y)|| \le L||x y||$
- Линейная скорость сходимости, если функция дважды дифференцируема и выполнено ограничение на гессиан:

$$\forall x, h: \langle \nabla^2 f(x)h, h \rangle \leq D \|h\|^2$$

Градиентный метод: примеры

M

Покоординатный спуск

Суть метода:

- \square спуск, но по одной или нескольким координатам, их компоненты в d^k ненулевые, остальные равны 0
- □ Выбор шага обычно наискорейший спуск
- □ Популярный частный случай alternating optimization, исходя из условий $\nabla f(x^*) = 0$ выражаются и последовательно вычисляются $x_i^k = g(x_1^{k-1}, ..., x_{i-1}^{k-1}, x_{i-1}^{k-1}, ..., x_n^{k-1})$
- □ Метод ведет себя разумно только для гладких функций

Выбор ненулевых направлений:

- □ Последовательный
- □ Блочный
- □ Случайный

v

Метод Ньютона

Пусть f(x) – выпуклая дважды дифференцируемая функция По определению дважды дифференцируемой функции (разложим в ряд Тейлора)

$$f(x) - f(x^k) = \left\langle \nabla f(x^k), x - x^k \right\rangle + \frac{1}{2} \left\langle \nabla^2 f(x^k)(x - x^k), x - x^k \right\rangle + o(\left\| x - x^k \right\|^2)$$

Минимизируем квадратичную часть:

$$\langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2} \langle \nabla^2 f(x^k)(x - x^k), x - x^k \rangle \to \min$$

Она выпукла, так как ее гессиан $\nabla^2 f(x^k) \ge 0$

Необходимое и достаточное условие минимума:

$$\nabla f(x^k) + \nabla^2 f(x^k)(x - x^k) = 0$$

Отсюда получаем метод Ньютона:

$$x^{k+1} = x^k + h^k, h^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

Пример

38 итераций

57 итераций

Не нужно задавать длину шага, мало итераций, но много вычислений на каждой – нужно считать матрицу вторых производных и обращать ее

M

Особенности метода Ньютона

- Нет проблемы выбора шага
- Сходимость:
- □ Если целевая функция дважды дифференцируема, сильно выпуклая, тогда получаемая в методе Ньютона последовательность приближений сходится к точке минимума с квадратичной скоростью.
- Для невыпуклых функций сходимость гарантирована только при условии близости начальной точки к точке минимума.
- Необходимость выбора начального приближения:
 - □ в окрестности решения, условие близости трудно проверить
- Вычислительная трудоемкость, а иногда и нестабильность:
- нужно вычислять на каждом шаге матрицу вторых производных и затем обратную к ней.
- Желание сохранить быструю скорость сходимости и устранить недостатки привели к разработке множества **модификаций** метода Ньютона и **квазиньютоновских** методов

Простые модификации метода Ньютона

Метод Ньютона с регулировкой шага:

$$x^{k+1} = x^k + \eta_k h^k, \eta_k > 0, h^k = -(\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

- □ Шаг выбирается либо из условия минимизации функции вдоль заданного направления (наискорейший спуск), либо по правилу дробления шага (линейный поиск).
- □ Скорость сходимости сверхлинейная или квадратичная
- Сократить вычисления можно, пересчитывая гессиан один раз в несколько шагов. Шаг пересчета подбирается эмпирически.

Быстрое обратное распространение ошибки:

□ Приближаем целевую функцию «параболой», вычисляем диагональ Гессиана «приближенной» функции:

$$x^{k+1} = x^k - [diag(\widetilde{H})]^{-1} \nabla f(x^k), H \approx \nabla^2 f(x^k)$$

Регуляризация:

$$x^{k+1} = x^k - [\nabla^2 f(x^k) + \gamma I]^{-1} \nabla f(x^k)$$

×

Общая схема квазиньютоновских методов

Суть подхода:

$$x^{k+1} = x^k + \eta_k d^k, d^k = -H_k \nabla f(x^k), k = 0,1,...$$
 $H_k \in \mathbb{R}(n,n)$ - некоторая симметричная положительно определенная матрица, тогда d^k - направление спуска, поскольку $\left\langle \nabla f\left(x^k\right), d^k \right\rangle = -\left\langle H_k \nabla f(x^k), \nabla f(x^k) \right\rangle < 0$ Если $Q_k \equiv I$ - градиентный метод, если $H_k = (\nabla^2 f(x^k))^{-1}$ и $\eta_k = 1$ - метод Ньютона

Квазиньютоновские методы аппроксимируют:

$$H_k \approx \left[\nabla^2 f(x^k)\right]^{-1}$$

Например, метод Бройдена-Флетчера-Голдфарба-Шэнно (БФГШ) (Broyden-Fletcher-Goldfarb-Shanno):

$$H_{k+1} = H_k + \frac{(r^k - H_k s^k)(r^k)^T + r^k(r^k - H s^k)^T}{\langle r^k, s^k \rangle} - \frac{\langle r^k - H_k s^k, s^k \rangle r^k(r^k)^T}{\langle r^k, s^k \rangle^2}$$

$$r^k = x^{k+1} - x^k, s^k = \nabla f(x^{k+1}) - \nabla f(x^k)$$

Задача математического программирования (условная оптимизация)

3МП:

$$\min f(x)$$

$$g_i(x) \le 0, i = \overline{1, k} = E$$

$$g_i(x) = 0, i = \overline{k+1, m} = I$$

$$x \in P$$

Допустимое множество $X = \{x \in P | g_i(x) \le 0, i \in I; g_i(x) = 0, i \in E\}$

- □ линейное программирование целевая функция и ограничения линейны
- □ квадратичное программирование квадратичная целевая функция и линейные ограничения
- \square выпуклое программирование ограничения и целевая функции выпуклые, P выпуклое множество

M

Принцип Лагранжа

Функция Лагранжа:
$$L(x,\lambda)=f(x)+\langle\lambda,g(x)\rangle,$$
 множители Лагранжа $\lambda=(\lambda_1,\ldots,\lambda_m)$ $L\colon\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}, f,g_i(x)\colon\mathbb{R}^m\to\mathbb{R},$ $\nabla L(x,\lambda)=\nabla f(x)+\sum_{i=1}^m\lambda_i\nabla g_i(x)$

Рассмотрим случай отсутствия ограничений-неравенств **Принцип Лагранжа** (необходимое условие оптимальности):

- Пусть f дифференцируема в точке $x^* \in R^n$, g_i , $i = \overline{1,m}$ непрерывно дифференцируемы в некоторой окрестности x^* и в точке x^* выполнено дополнительное условие регулярности.
- Если x^* является локальным решением задачи (ЗМП), то существует $\lambda^* \in \mathbb{R}^m$: $\nabla L(x^*, \lambda^*) = 0$

Система Лагранжа:

$$\begin{cases} \nabla L(x,\lambda) = 0\\ g(x) = 0 \end{cases}$$

 $\bar{x} \in X$: $\nabla L(\bar{x}, \bar{\lambda}) = 0$ для некоторого $\bar{\lambda}$ - стационарная точка (ЗМП)

Условия Каруша-Куна-Таккера

Общий случай (смешанные ограничения) $0 \le k \le m$

Теорема. Каруша-Куна-Таккера (ККТ) (необходимое условие оптимальности).

Пусть $f, g_i, i = \overline{1, k}$, дифференцируемы в точке $x^*, g_i, i = \overline{k+1, m}$ непрерывно дифференцируемы в некоторой окрестности x^* и в точке x^* выполнено условие регулярности.

Если x^* является локальным решением задачи (ЗМП), то существует λ^* :

$$abla_{x}L(x^{*},\lambda^{*})=0$$
 - стационарность $\lambda_{i}^{*}g_{i}(x^{*})=0$ - дополняющая нежёсткость $g_{i}(x^{*})=0$, $i=\overline{1,k}$, $g_{i}(x^{*})\leq0$, $i=\overline{k+1,m}$ $\lambda_{i}^{*}\geq0$, - неотрицательность (знакоопределенность)

М

Двойственность

Прямая задача

$$f(x) \to min$$

$$g_i(x) \le 0, i = \overline{1, k}$$

$$g_i(x) = 0, i = \overline{k + 1, m}$$

$$x \in P \subseteq \mathbb{R}^n$$

$$f^* = \inf_{x \in X} f(x)$$

Двойственная задача

$$\varphi(\lambda) \to \max$$

$$\varphi(\lambda) = \inf_{x \in P} L(x, \lambda) = \inf_{x \in P} (f(x) + \langle \lambda, g(x) \rangle)$$

$$\lambda \in Y = \{\lambda \in Q | \varphi(\lambda) > -\infty\}$$

$$Q = \{\lambda \in \mathbb{R}^m | \lambda_i \ge 0, i = \overline{1, k}\}$$

$$\varphi^* = \sup_{\lambda \in Y} \varphi(\lambda)$$

Прямая задача представима в виде, где $\psi(x) = \sup_{\lambda \in Q} L(x,\lambda)$:

$$\min \psi(x)$$
$$x \in P$$

Значения экстремумов полагаются бесконечными вне допустимого множества.

Прямая и двойственная задачи определяются симметрично относительно функции Лагранжа (седловая точка):

$$f^* = \underset{x \in P}{\inf} \underset{\lambda \in Q}{\sup} L(x,\lambda)$$
 и $\varphi^* = \underset{\lambda \in Q}{\sup} \underset{x \in P}{\inf} L(x,\lambda)$

×

Теорема двойственности и седловые точки

Теорема двойственности.

Пусть в (ЗМП) существует вектор ККТ

$$\lambda^* \in Q: f^* \le f(x) + \langle \lambda^*, g(x) \rangle = L(x, \lambda^*) \ \forall x \in P$$

Если $f^* > -\infty$, то множество решений двойственной задачи не пусто и совпадает с множеством векторов ККТ прямой задачи.

При этом $f^* = \varphi^*$.

Пара
$$(x^*, \lambda^*) \in P \times Q$$
 седловая точка $L(x, \lambda)$ на $P \times Q$, если $L(x^*, \lambda^*) = \min_{x \in P} L(x, \lambda^*) = \max_{\lambda \in Q} L(x^*, \lambda)$,

т.е. иначе: $\forall x \in P, \lambda \in Q: L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda)$

Теорема ККТ.

Пусть в (ЗМП) существует вектор ККТ. Точка $x^* \in P$ является решением (ЗМП) тогда и только тогда, когда существует седловая точка $\lambda^* \in Q: (x^*, \lambda^*)$ функции Лагранжа $L(x, \lambda)$ на $P \times Q$

Классические методы оптимизации для задачи машинного обучения

- ☐ Целевая функция эмпирический риск, усредненная сумма значений функций риска для всех наблюдений
- □ Используют все наблюдения выборки для расчета эмпирического риска, его градиента или приближения гессиана
- □ Результат гладкая траектория оптимизации
- Но долго по времени и много по памяти

Градиентный спуск для задачи машинного обучения

Дана «размеченная» выборка :

$$Z = \{(x_i, y_i)\}_{i=1}^l \in X \times Y$$

Фиксируем параметрическое семейство алгоритмов (моделей)

$$A = \{g(x, w) \mid w \in W\}, g: X \times W \rightarrow Y$$

Минимизируем:

$$Q(w,Z) = \frac{1}{l} \sum_{Z} L(y_i, g(x_i, w)) \to min$$

- Градиентный спуск:
 - □ Выбираем начальное приближение $w^{(0)}$
 - □ В цикле до достижения условий сходимости считаем

$$w^{(t+1)} = w^{(t)} - \eta \nabla Q(w^{(t)}) = w^{(t)} - \eta \frac{1}{l} \sum_{\mathbf{Z}} \nabla L(\mathbf{y_i}, \mathbf{g}(\mathbf{x_i}, \mathbf{w^{(t)}}))$$

■ А что если считать ∇Q не по всей выборке?

Стохастические и пакетные методы обучения

- □ Аппроксимируют вычисление градиента эмпирического риска (или приближение гессиана) только по части выборки
- □ Стохастические методы используют только одно наблюдение
- Пакетные часть наблюдений
- □ Результат «хаотическая» траектория (чем больше пакет тем меньше «хаоса»)
- □ Зато быстро и не нужно все брать из памяти – MPP!!!

M

Стохастический градиентный спуск для задачи машинного обучения

- Параметры: η скорость обучения, λ скорость забывания
- Инициализация $w^{(0)}$ и $Q^{(0)}$ -средний по случайному подмножеству Z
- Цикл стохастического градиентного спуска
 - \square Выбираем x_i из Z
 - \square Вычисляем функцию потерь на нем $\varepsilon_i = L\left(y_i, g\left(x_i, w^{(t)}\right)\right)$
 - \square Делаем шаг градиента $w^{(t+1)} = w^{(t)} \eta \nabla L \left(y_i, g(x_i, w^{(t)}) \right)$
 - \square Оцениваем $Q^{(t)} = \lambda \varepsilon_i + (1 \lambda)Q^{(t-1)}$
- Приближение $Q^{(t)}$:
 - \square Среднее арифметическое $Q^{(t)}=rac{1}{t}arepsilon_t+rac{1}{t}arepsilon_{t-1}$... или $Q^{(t)}=rac{1}{t}arepsilon_t+\left(1-rac{1}{t}
 ight)Q^{(t-1)}$
 - \square Экспоненциальное сглаживание $Q^{(t)}=\lambda \varepsilon_t+(1-\lambda)Q^{(t-1)}$, λ порядка $\frac{1}{t}$
- Выбор объектов для обучения:
 - □ Случайный или на основе ошибки чем хуже тем лучше

M

Важные модификации градиентного метода

Учет инерции («метод моментов», или импульса) – «сгладить» траекторию за счет предыдущих направлений (импульса),
 α задает «важность» старого направления

$$w^{k+1} = w^k + v^k, v^k = -(1 - \alpha)\eta_k \nabla Q(w^k) + \alpha v^{k-1}$$

■ Метод Нестерова – «сглаживать» после применения старого шага:

$$v^{k} = -(1 - \alpha)\eta_{k}\nabla Q(w^{k} + \alpha v^{k-1})$$

• Регуляризация (штраф за сложность):

$$\min Q(w) + \gamma R(w)$$

R(.) — гладкая сильно выпуклая функция, например, регуляризация L_p

$$\gamma$$
-константа регуляризации

$$v^{k} = -\eta_{k} [\nabla Q(w^{k}) + \gamma \nabla R(w^{k})]$$

Другие популярные модификации SGD

- RProp устойчивый к угасанию градиента (в многослойных нейросетях)
- Adam экспоненциальное сглаживание градиентов
- AdaGrad и RMSProp индивидуальные скорости обучения для каждого параметра «по ситуации»
- и их комбинации ...

Пример простых линейных моделей

- Линейная модель: $a(x, w) = \langle x, w \rangle$
- Регрессия $(Y = \mathbb{R})$: $L(a(x_i, w), y_i) = (\langle x_i, w \rangle y_i)^2$
- Классификация $(Y = \{-1,1\})$: «отступ» $M(w) = \langle x_i, w \rangle, y_i$ $L(a(x_i, w), y_i) = F(M(w))$


```
V(M) = (1-M)_+ — кусочно-линейная (SVM); H(M) = (-M)_+ — кусочно-линейная (Hebb's rule); L(M) = \log_2(1+e^{-M}) — логарифмическая (LR); Q(M) = (1-M)^2 — квадратичная (FLD); S(M) = 2(1+e^M)^{-1} — сигмоидная (ANN); E(M) = e^{-M} — экспоненциальная (AdaBoost); — пороговая функция потерь.
```

- Эмпирический риск: $Q(w,Z) = \frac{1}{l} \sum_i L(a(x_i,w),y_i)$
- Регуляризация: L_2 : $R(w) = \sum w^2$ или L_1 : $R(w) = \sum |w|$

Пример классификации

```
import numpy as np
from sklearn.metrics import hinge_loss, log_loss
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings("ignore")

%matplotlib inline

def get_iter(size):
    np.random.seed(0)
    for i in range(50):
        yield np.random.randint(size)
```

import pandas as pd

```
def plot sgd decision(model, \overline{X}):
    X1 \text{ max}, X2 \text{ max} = X.\text{max}(axis=0)
    X1 min, X2 min = X.min(axis=0)
    xx1 = np.linspace(X1 min - 0.5, X1 max + 0.5, 20)
    xx2 = np.linspace(X2 min - 0.5, X2 max + 0.5, 20)
    X1, X2 = np.meshgrid(xx1, xx2)
    Z = np.empty(X1.shape)
    for (i, j), val in np.ndenumerate(X1):
        x1 = val
        x2 = X2[i, j]
        p = model.decision function([[x1, x2]])
        Z[i, j] = p[0]
    levels = [0.0]
    colors = "k"
    plt.contour(X1, X2, Z, levels, colors=colors)
def plot trace(X, y, wei):
    w1 max, w2 max = wei.max(axis=0)
    w1 min, w2 min = wei.min(axis=0)
    w0 = np.linspace(w1 min - 0.5, w1 max + 0.5, 20)
    w1 = np.linspace(w2 min - 0.5, w2 max + 0.5, 20)
    X1, X2 = np.meshgrid(w0, w1)
    vals = np.zeros(shape=(w0.size, w1.size))
    for i, value1 in enumerate(w0):
        for j, value2 in enumerate(w1):
            w temp = np.array([[value1, value2]])
            vals[i, j] = hinge_loss(y, np.dot(X, w_temp.T)[:,0])
    cp = plt.contour(X1, X2, vals.T, colors='black', linestyles='dashed', linewidths=1)
    plt.clabel(cp, inline=1, fontsize=10)
    cp = plt.contourf(X1, X2, vals.T, alpha=0.7)
    plt.plot(wei[:, 0], wei[:, 1], linewidth=2.0, marker='.', color="red")
    plt.scatter(wei[[-1], 0], wei[[-1], 1], marker='*', color="red", s=100)
    plt.xlabel("W0")
    plt.ylabel("W1")
    plt.show()
```

Пример классификации

```
from sklearn.datasets import make_blobs, make_classification
# X, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0)
X, y = make_classification(n_samples=200, n_classes=2, n_features=2, n_redundant=0, random_state=0)
```

```
from sklearn.linear_model import SGDClassifier

clf = SGDClassifier(loss="hinge", penalty="l1", alpha=0.5)

coefs = []
for i in get_iter(X.shape[0]):
    clf.partial_fit(X[[i]], y[[i]], classes=np.unique(y))
    coefs.append(clf.coef_.copy())

    plot_sgd_decision(clf, X)
    plt.scatter(X[:, 0], X[:, 1], c=np.where(y > 0, "blue", "orange"))
    plt.scatter(X[[i], 0], X[[i], 1], c=np.where(y[[i]] > 0, "blue", "orange"), edgecolor="red", linewidth=3.0, s=200)
    plt.show()
```

```
coefs = np.vstack(coefs)
plot_trace(X, y, coefs)
```



```
from sklearn.linear_model import SGDClassifier

clf = SGDClassifier(loss="hinge", penalty="l1", alpha=0.05)
```

```
from sklearn.linear_model import SGDClassifier

clf = SGDClassifier(loss="hinge", penalty="l1", alpha=0.005)
```



```
from sklearn.metrics import mean_squared_error
def plot sgd predict(model, X):
    xx = np.linspace(X.min() - 0.5, X.max() + 0.5, 20)
    Z = np.empty(xx.shape)
    for i, val in np.ndenumerate(xx):
        Z[i] = model.predict([[val]])[0]
    plt.plot(xx, Z, color="black")
def plot trace(X, y, wei):
    w1_max, w2_max = wei.max(axis=0)
    w1 min, w2 min = wei.min(axis=0)
    w0 = np.linspace(w1 min - 0.5, w1 max + 0.5, 20)
    w1 = np.linspace(w2 min - 0.5, w2 max + 0.5, 20)
    X1, X2 = np.meshgrid(w0, w1)
    vals = np.zeros(shape=(w0.size, w1.size))
    for i, value1 in enumerate(w0):
        for j, value2 in enumerate(w1):
            w temp = np.array([value1])
            vals[i, j] = mean squared error(y, np.dot(X, w temp) + value2)
    cp = plt.contour(X1, X2, vals.T, colors='black', linestyles='dashed', linewidths=1)
    plt.clabel(cp, inline=1, fontsize=10)
    cp = plt.contourf(X1, X2, vals.T, alpha=0.7)
    plt.plot(wei[:, 0], wei[:, 1], linewidth=2.0, marker='.', color="red")
    plt.scatter(wei[[-1], 0], wei[[-1], 1], marker='*', color="red", s=100)
    plt.xlabel("W0")
    plt.ylabel("Intercept")
    plt.show()
```

```
# https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html#sklearn.datasets.make_regression
from sklearn.datasets import make_regression, load_iris
X, y = make_regression(n_samples=100, n_features=1, n_informative=1, noise=10, random_state=0)
```

```
from sklearn.linear_model import SGDRegressor

clf = SGDRegressor(loss="squared_error", penalty="l1", alpha=0.0001, eta0=0.1)

coefs = []
for i in get_iter(X.shape[0]):
    clf.partial_fit(X[[i]], y[[i]])
    coefs.append([clf.coef_[0].copy(), clf.intercept_[0].copy()])

plot_sgd_predict(clf, X)
    plt.scatter(X, y)
    plt.scatter(X[[i]], y[[i]], color='C0', edgecolor="red", linewidth=3.0, s=200)
    plt.show()
```

```
coefs = np.vstack(coefs)
plot_trace(X, y, coefs)
```


Квазиньютоновский метод (BFGS) с робастной кусочно-линейной функцией потерь

Условная оптимизация с регуляризацией L2

Регуляризация

- В оптимизации «улучшение» целевой функции $\min Q(w) + \gamma R(w)$
 - R(.) гладкая сильно выпуклая функция, γ -константа регуляризации есть методы меняющие γ или R(.) «на ходу»
- В машинном обучении контроль сложности модели для борьбы с переобучением.
 - Обычно γ и R(.) фиксированы и $R(w) = L_p(w)$, тогда градиенты легко модифицируются, но необходимо «нормализовывать» параметры
 - □ LASSO регуляризация $L_1(w) = \sum |w|$, градиент $\nabla Q(w) + \gamma sign(w)$
 - □ Ridge («квадратичная» или «гребневая») регуляризация»

$$L_2(w) = \sum w^2$$
, градиент $\nabla Q(w) + 2\gamma w$

□ Elastic Net= LASSO+Ridge

$$L_1(w) = \gamma_1 \sum |w| + \gamma_2 \sum w^2$$
, градиент $\nabla Q(w) + 2\gamma_2 w + \gamma_1 sign(w)$

и

Регуляризация для выпуклых целевых функций

- Выпуклые целевые функции достаточно часто встречаются в задачах машинного обучения (линейные регрессии с регуляризацией, SVM, обобщенные линейные модели и др.)
- Для выпуклых целевых функций, можно показать, что:

$$\min Q(w) + \gamma L_p(w) \Leftrightarrow \begin{cases} \min Q(w) \\ L_p \leq C \end{cases}$$

 Чем меньше р тем более модель настроена на «отбор» признаков

۲

Связь регуляризации с вероятностными моделями

Пусть:

- \square $X \times Y$ вероятностное пространство с неизвестной плотностью распределения
- \square $Z = \{(x_i, y_i)\}$ i.i.d. (все наблюдения независимы и одинаково распределены) выборка из $X \times Y$ размера l
- \square Искомая модель P(y|x,w)

Формула Байеса:

$$P(w|Z) = \frac{P(Z|w)P(w)}{P(Z)}$$

- \square $P(Z|w) = \prod_{i=1}^l P(x_i, y_i|w) = \prod_{i=1}^l P(y_i|w, x_i) P(x_i)$ правдоподобие
- \Box P(Z), P(x)— не зависит от параметров нашей модели, поэтому
- \square Оценка тах правдоподобия $\prod_{i=1}^l P(y_i|w,x_i) \to max$
- □ Логарифмическое правдоподобие

$$loglik(Z, w) = log P(Z|w) = \sum_{i} log(P(y_i|w, x_i)) \rightarrow max$$

м

Связь регуляризации с вероятностными моделями

■ Если взять логарифмическую функцию потерь

$$L(x_i, y_i, w) = -\log(P(y_i, | x_i, w))$$

 То максимизация правдоподобия эквивалентно минимизации эмпирического риска

$$Q(w) = -\frac{1}{l} \sum_{i=1}^{l} \log(P(y_i, | x_i, w)) \to min$$

- Но мы можем учесть P(w) из формулы Байеса, если «параметризируем» априорное распределение $P(w; \gamma)$, тогда максимизируем $P(Z|w)P(w) = \prod_{i=1}^l P(y_i|w,x_i)P(x_i)P(w;\gamma) \to max$
- И получаем:

$$Q(w) = -rac{1}{l} \sum_{i=1}^l \logig(P(y_i,|x_i,w)ig) - oldsymbol{\log}(P(w;oldsymbol{\gamma}))
ightarrow min$$
 $-\log(P(w;oldsymbol{\gamma})$ - регуляризатор

Связь регуляризации с вероятностными моделями

- Если предположить E(w) = 0 и D(w) = C, то:
- Квадратичный регуляризатор L₂ эквивалентен нормальному априорному распределению параметров модели

$$-\log(P(w,C)) = -\log\left[\frac{1}{(2\pi C)^{\frac{n}{2}}}\exp\left(-\frac{||w||^2}{2C}\right)\right] = \frac{||w||^2}{2C} + const$$

А абсолютный регуляризатор L_1 эквивалентен априорному распределению Лапласа параметров модели

$$-\log(P(w,C)) = -\log\left[\frac{1}{(2C)^n}\exp\left(-\frac{|w|}{C}\right)\right] = \frac{|w|}{2C} + const$$

■ С – параметр регуляризации