

Application Definition

Nomad lab

Andrea Albino

July 5, 2022

Application Definition

Covering Multiple Fields

Schema and Template concepts

SCHEMA

A formal description of data, data types, and data file structures, such as XML files.

The blueprint of a toolbox

TEMPLATE

A physical object from which other objects are based or derived.

A toolbox that can be filled with a set of tools fitting in it

Area C, Area B and Area A

We can use pretty much the same tools.

Area B refers to communities using standard schemas (NeXus)

Area A needs to define some "standard" schema for Synthesis.

Area C could contaminate and enrich the Sample standard schema.

A standard enables and enhances exchange!

Even more: standard classes can be made searchable in NOMAD

The SAMPLE base class

NXsample:

exists: [min, 1, max, unbounded]

sample_id(NXid):

method: [experimental, simulation, declared by

vendor]

qualification:

set of measured properties...

COMPONENT(NXsample):

• The sample tree hierarchy may be visualized in some way inside ELNs to have the whole composition of the sample at a glance

The SAMPLE base class

Implementing the SAMPLE base class

Sample:

General Info

Component

Qualifying Info

Substance

Basic Info

Sample:

ID name user reference doi method: [exp. sim. declared] properties ...

Component

geometry physical state role_in_experiment amount or conc. (extension of Component class) properties ...

Substance

INCHI CAS IUPAC name molecular mass concentration amount or conc. (extension of Substance class)

properties ...

Implementing the SAMPLE base class

Sample:

General Info

Qualifying Info

Basic Info

Sample

General Info

Qualifying Info

Basic Info

Composing an Application Definition

How to combine these entities to compose our application definition?

Data

Instrument

Sample

Process

Multiple concatenations can be envisioned.

We need to instantiate a "master class" that represents our application definition containing the already mentioned base classes:

> Synthesis Experiment

Simulation Experiment Measurement Experiment

Composing an Application Definition

Data Instrument

Sample

Process User

Measurement

Simulation

Synthesis

(ny_experiment:)
(operator(NXuser):
(NXinstrument)

(NXprocess)

NXsynthesis step:

parent(NXsample):

child(NXsample): parameters(NXdata):

post processing (NXprocess)
Characterization(NXentry):

plot(NXdata)

my_experiment:

operator(NXuser):

NXinstrument

raw_materials(NXsample):

(NXprocess)

NXsynthesis_step:

parameters(NXdata):

obtained_sample(NXsample):

Characterization(NXentry):

plot(NXdata)

my_experiment:

operator(NXuser):

NXinstrument NXsample:

my_synthesis(NXsynthesis):
(NXprocess)

precursor(NXsample): NXsynthesis_step:

parameters(NXdata):

post processing (NXprocess)

plot(NXdata)


```
MOVPE STO:
       (User):
       (Instrument):
       Materials:
```



```
MOVPE STO:
       (User):
       (Instrument):
       Materials:
             Precursor(Sample)
              Substrate(Sample)
             Final Sample(Sample)
      Generic(Step):
             Step Type: [pre, process, post, measurement, storage]
             Timestamp:
             Generic Quantities:
             Reagent(Component):
                     Amount: [concentration, %w/w, ..]
                    Precursor(Sample):
```



```
MOVPE STO:
       (User):
       (Instrument):
       Materials:
       Steps:
             (Initialize:
                     Step Type: [pre, process, post, measurement, storage]
                     Timestamp:
                     Pressure:
                     Temperature:
                     Gas Flow Rate:
                     Substrate(Sample):
             Precursor Supply:
                     Step Type: [pre, process, post, measurement, storage]
                     Timestamp:
                     Generic Quantities:
                     Reagent(Component):
                            Amount: [concentration, %w/w, ..]
                            Precursor(Sample):
              Characterization:
                     Step Type: [pre, process, post, measurement, storage]
                     Timestamp:
                     My Relevant Quantities:
                     NXxrd(NXentry):
```

Final Sample(Sample)


```
MOVPE STO:
       (User):
       (Instrument):
      Materials:
       Steps:
              (Initialize:
                     Step Type: [pre, process, post, measurement, storage]
                     Timestamp:
                     Pressure:
                     Temperature:
                     Gas Flow Rate:
                     Substrate(Sample):
              Precursor Supply:
                     Step Type: [pre, process, post, measurement, storage]
                     Timestamp:
                     Generic Quantities:
                     Reagent(Component):
                             Amount: [concentration, %w/w, ..]
                            Precursor(Sample):
              Characterization:
                     Step Type: [pre, process, post, measurement, storage]
                     Timestamp:
                     My Relevant Quantities:
                     NXxrd(NXentry):
```

Final Sample(Sample)

```
NXxrd(NXentry):
       (User):
       (Instrument):
               Source:
               Beam:
              Detector
       Final Sample(Sample)
               Rotation Angle
              Synthetic Process:
       Monitor:
               Mode:
               Integral:
       Data:
               Link to Data:
       Process:
               Vertical Lattice Parameters:
```


Redundant Linking Structure

Nearest Neighbours

Connect the parts and the whole

Collecting all these use cases and looking at their schemas could lead us to generalize it!

