MLP Előrejelzések

Kovászna MLP (12, 12, 12,)	
Előrejelzés	Valódi adat
4.33	4.60
4.56	4.30
4.18	4.20
4.04	4.10
4.04	4.00
3.96	3.80
3.76	3.80
3.81	3.80
3.86	3.80
3.86	3.80
3.86	4.20
4.34	4.90

Hargita MLP (12, 12, 12,)			
Előrejelzés	Valódi adat		
3.98	3.90		
4.03	4.00		
4.10	4.20		
4.24	4.40		
4.44	4.40		
4.38	4.50		
4.47	4.30		
4.20	4.20		
4.10	4.00		
3.91	3.80		
3.79	3.80		
3.88	3.70		

Maros MLP (12, 12, 12,)	
Előrejelzés	Valódi adat
2.80	2.80
2.88	2.90
2.99	3.10
3.19	3.20
3.24	3.20
3.13	3.10
2.95	3.10
2.96	3.00
2.87	2.70
2.49	2.70
2.60	2.70
2.75	2.70

Kovászna MLP	Kovászna MLP (12, 12, 12,)		
Előrejelzés Valódi adat			
(Ljung-box-teszt)			
statisztika	p-érték		
0.48	0.49		
Nincs autokorreláció a hibaváltozók között			

Hargita MLP (12, 12, 12,)		
Előrejelzés Valódi adat		
(Ljung-box-teszt)		
statisztika	p-érték	
0.09	0.76	
Nincs autokorreláció a hibaváltozók között		

Maros MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
(Ljung-box-teszt)		
statisztika	p-érték	
1.33 0.25		
Nincs autokorreláció a hibaváltozók között		

Model	MSE	RRMSE	МАРЕ
Kovászna MLP ((12, 12, 12,), 5 réteg)	5.12 %	5.58 %	3.78 %
Hargita MLP ((12, 12, 12,), 5 réteg)	1.21 %	2.66 %	2.24 %
Maros MLP ((12, 12, 12,), 5 réteg)	1.06 %	3.55 %	2.81 %

Kovászna MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	78
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard

```
Optimalizálási Algoritmus:
                                                                                       adam
Optimalizálási ciklus lépésszáma:
                                                                                       424
Rejtett rétegek Aktivációs függvénye:
                                                                                       relu
Kimeneti réteg Aktivációs függvénye:
                                                                                       identity
IJ. | IO. J IO. J.J| / O.J
                                                        Teszt párok (amiket meg kell jósoljon):
14. [10. 9.5 8.3] --> 8.4
                                                        1. [4.7 4.4 4.5] --> 4.6
15. [9.5 8.3 8.4] --> 8.4
                                                        2. [4.4 4.5 4.6] --> 4.3
16. [8.3 8.4 8.4] --> 7.7
                                                        3. [4.5 4.6 4.3] --> 4.2
17. [8.4 8.4 7.7] --> 8.2
                                                        4. [4.6 4.3 4.2] --> 4.1
18. [8.4 7.7 8.2] --> 7.9
                                                      ▼ 5. [4.3 4.2 4.1] --> 4.0
19. [7.7 8.2 7.9] --> 7.8
ELtolási értékek vektora:
                                                        Rétegek súlyai:
[array([-0.43618457, 0.72644521, 0.38343614,
                                                       [array([[-0.59769799, 0.31641279,
                                                                                                 0.42577351,
-0.5283658, -0.62713971, -0.32107459, -0.05138271, 0.10237687, 0.26254963, -0.09654184,
                                                                                                 0.46796432,
-0.19690814, 0.61520576, 0.49616321, -0.20137292, -0.30847405, -0.46018528, -0.00332336,
                                                                                                 0.10210154,
-0.54379749), array([-0.15338024, 0.61453559, 0.56118975], [0.28137092, -0.23576837, 0.06892502,
                                                                                                 0.53342819,
-0.16531035, 0.07090431, 0.66071266, 0.2414024 , \bigcirc 0.01633727, -0.03638818, 0.44507467,
```

```
Bemeneti neuronok száma:
                                                                                                    3
Kimeneti neuronok száma:
Legjobb random kezdőérték a súlyozásra:
                                                                                                    78
Rejtett rétegek és azok neuronjainak száma:
                                                                                                    (12, 12, 12,)
Normalizálási eljárás:
                                                                                                    standard
Optimalizálási Algoritmus:
                                                                                                    sgd
Optimalizálási ciklus lépésszáma:
                                                                                                    175
Rejtett rétegek Aktivációs függvénye:
                                                                                                    relu
                                                                                                    identity
Kimeneti réteg Aktivációs függvénye:
                                                                Teszt párok (amiket meg kell jósoljon):
Tanító párok: (amiből megtanulta a súlyokat)
1. [10.9 11.4 11.2] --> 10.7
                                                                1. [3.7 3.8 3.8] --> 3.9
2. [11.4 11.2 10.7] --> 9.6
                                                                2. [3.8 3.8 3.9] --> 4.0
```

```
3. [11.2 10.7 9.6] --> 9.3
4. [10.7 9.6 9.3] --> 8.6
5. [9.6 9.3 8.6] --> 8.7
```

```
3. [3.8 3.9 4. ] --> 4.2
  4. [3.9 4. 4.2] --> 4.4
5. [4. 4.2 4.4] --> 4.4
```

```
ELtolási értékek vektora:
[array([-0.51529878, 0.60997761, 0.54531239, [array([-0.53960819, 0.28825071, 0.28825071, 0.54531239, [array([-0.53960819, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0.28825071, 0
-0.5283658 , -0.62713971 , -0.2992529 , -0.0150215 , 0.37961024 , 0.58855896 , -0.02429075 ,
 -0.17972462, 0.68396668, 0.4574326 , -0.30129934,
```

Rétegek súlyai: 0.26282309, 0.39106184, -0.33232273, -0.41348501, -0.04414222, 0.22497264,

```
-0.56034 ]), array([-0.15225037, 0.55425503, 0.55538034], [ 0.33247965, -0.25489926, -0.08089006, -0.16531035, -0.02888733, 0.508233 , 0.37527284, 0.20755125, -0.2620914 , 0.49066712, 0.47825518,
```

Maros MLP modell összefoglaló

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	78
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	adam
Optimalizálási ciklus lépésszáma:	383
Rejtett rétegek Aktivációs függvénye:	relu
Kimeneti réteg Aktivációs függvénye:	identity

Tanító párok: (amiből megtanulta a súlyokat)

- 1. [8.3 8.4 8.5] --> 8.2
- 2. [8.4 8.5 8.2] --> 7.9
- 3. [8.5 8.2 7.9] --> 7.8

Teszt párok (amiket meg kell jósoljon):

- 1. [2.6 2.7 2.7] --> 2.8
- 2. [2.7 2.7 2.8] --> 2.9
- 3. [2.7 2.8 2.9] --> 3.1

4. [8.2 7.9 7.8] --> 7.9

4. [2.8 2.9 3.1] --> 3.2

ELtolási értékek vektora:

[array([-0.52150546, 0.70552522, 0.37840593, -0.16531035, 0.07706101, 0.63717856, 0.22083274, -0.0471653 , 0.46690861, 0.51729452, 0.08593793, -0.16531035

Rétegek súlyai:

[array([[-0.53164789, 0.2898673 , 0.39523811, 0.120429 -0.5283658 , -0.62713971, -0.29897934, -0.08723643, , 0.28826465, -0.06863893, 0.44963658, -0.31007078, -0.19526647, 0.58589492, 0.46304891, -0.23137657, -0.41888581, -0.00525331, 0.12608539, 0.55709076], [-0.56565191]), array([-0.1609193 , 0.58411272, 0.34103619, -0.25334914, 0.04431983, 0.02306849,