

第四章: 大数定律与中心极限定理

赵俊舟

junzhou.zhao@xjtu.edu.cn

2025年4月9日

- 随机变量序列的收敛性
- ② 大数定律
- ③ 中心极限定理

- 随机变量序列的收敛性
 - 概率与事件发生频率的稳定值
 - 切比雪夫不等式
 - 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理

- 随机变量序列的收敛性
 - 概率与事件发生频率的稳定值
 - 切比雪夫不等式
 - 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理

抛硬币试验

• 抛硬币试验: 连续抛一枚硬币 n 次,记 $A = \{$ 正面朝上 $\}$, n_A 表示 n 次试验中事件 A 发生的次数,则事件 A 发生的频率为 $f_n(A) = \frac{n_A}{n}$

• 概率论历史上几个有名的"抛硬币"试验:

实验者	n	n_A	n_A/n
德·摩根	2048	1061	0.5181
蒲丰	4048	2048	0.5069
皮尔逊	12000	6019	0.5016
皮尔逊	24000	12012	0.5005
罗曼诺夫斯基	80640	39699	0.4923

• 可见
$$f_n(A) = \frac{n_A}{n} \rightarrow P(A) = 0.5, \quad n \rightarrow \infty$$

抛硬币试验中的统计规律性

蒲丰投针试验

例 (蒲丰投针试验, 1777年)

- 令针与平行线的夹角为 θ ,针的中点与离它比较近的平行线的距离为 x,则 $\theta \sim U(0,\pi), X \sim U(0,d/2)$
- 针与平行线相交的条件为 $X < \frac{1}{2}\sin\theta$

$$P(A) = P(X < \frac{1}{2}\sin\theta) = \int_0^{\pi} d\theta \int_0^{\frac{1}{2}\sin\theta} \frac{2}{\pi d} dx = \frac{2I}{\pi d}$$

蒲丰投针试验

• 记投针总数为 n, 针与平行线相交次数为 nA, 则

$$\frac{n_A}{n} \to \frac{2I}{\pi d} \quad \Rightarrow \quad \frac{2nI}{n_A d} \to \tau$$

• 19-20 世纪几个有名的"投针"试验

试验者	时间	针长 d	n	n_A	$\hat{\pi}$
Buffon	1777	0.5	2212	704	3.142
Wolf	1850	0.8	5000	2532	3.1596
Smith	1855	0.6	3204	1219	3.1554
De.morgan	1860	1	600	383	3.137
Fox	1884	0.75	1030	489	3.1595
Lazzerini	1901	0.83	3408	1801	3.14159
Reina	1925	0.54	2520	859	3.1683

蒲丰投针试验中的统计规律性

概率与事件发生频率的稳定值

- 在大量重复试验中,事件发生的频率稳定于它发生的概率,即频率稳定于概率。
- 频率的稳定性: 设 n 次独立重复试验中事件 A 发生的次数为 n_A , 则当 n 越来越大时,有

$$f_n(A) = \frac{n_A}{n} \to P(A), \quad n \to \infty$$

问题

- 频率稳定于概率,但是"稳定"的严格数学定义是什么?
- 如何定义随机变量的收敛性?

- 随机变量序列的收敛性
 - 概率与事件发生频率的稳定值
 - 切比雪夫不等式
 - 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理

切比雪夫不等式

定理(切比雪夫不等式)

设随机变量 X 的数学期望 $\mathbb{E}(X)$ 和方差 D(X) 都存在,则对任 意常数 $\epsilon>0$,有

$$P(|X - \mathbb{E}(X)| \ge \epsilon) \le \frac{D(X)}{\epsilon^2}$$

或

$$P(|X - \mathbb{E}(X)| < \epsilon) \ge 1 - \frac{D(X)}{\epsilon^2}$$

- 如果随机变量 X 的方差 D(X) 越小,则随机变量 X 落入区间 $(\mathbb{E}(X) \epsilon, \mathbb{E}(X) + \epsilon)$ 的概率就越大;
- 切比雪夫不等式表明,方差是反映随机变量取值集中在
 区(X)附近的程度的数量指标。

切比雪夫不等式的证明

引理 (Markov 不等式)

对随机变量 X,若 $\mathbb{E}(|X|^r) < \infty, r > 0$,则对任意 $\epsilon > 0$,有

$$P(|X| \ge \epsilon) \le \frac{\mathbb{E}(|X|^r)}{\epsilon^r}$$

证明.

在 Markov 不等式中,以 $X - \mathbb{E}(X)$ 代替 X,并令 r = 2,则对 任意正数 ϵ ,有

$$P(|X - \mathbb{E}(X)| \ge \epsilon) \le \frac{\mathbb{E}([X - \mathbb{E}(X)]^2)}{\epsilon^2} = \frac{D(X)}{\epsilon^2}$$

举例:切比雪夫不等式

例 (估计及格率的下界)

若某班考试平均成绩是 75 分, 方差为 10, 估计及格率下界。

- 设随机变量 X 表示学生成绩,则 $\mathbb{E}(X) = 75, D(X) = 10$ 。
- 于是

$$P(60 \le X \le 100) = P(-15 \le X - 75 \le 25)$$

 $\ge P(|X - 75| < 15) \ge 1 - \frac{10}{225} = 0.956$

- 表明及格率至少为 95.6%。
- 若 $X \sim N(75, 10)$,则实际概率为

$$P(60 \le X \le 100) = P(\frac{-15}{\sqrt{10}} \le \frac{X - 75}{\sqrt{10}} \le \frac{25}{\sqrt{10}}) \approx 1$$

切比雪夫不等式

- 切比雪夫不等式所得概率下界可能与实际概率相差较大。
- 切比雪夫不等式经常作为理论工具,用于证明某些定理。

- 随机变量序列的收敛性
 - 概率与事件发生频率的稳定值
 - 切比雪夫不等式
 - 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理

随机变量序列的收敛性

- 目标: 研究随机变量序列 $\{X_n: n=1,2,...\}$ 的收敛性。
- 高等数学中,级数 $\{x_n: n=1,2,\ldots\}$ 的收敛性可以定义为: $\lim_{n\to\infty} x_n = x$
- 能否直接将级数的收敛性推广到随机变量序列的收敛性?

随机变量序列的收敛性

例

研究随机变量序列 $\{X_n: n=1,2,\ldots\}$ 。设 $X_n \sim N(0,1)$,能否说 X_n 收敛到 $X \sim N(0,1)$,即 $\lim_{n\to\infty} X_n = X$?

不能! 因为对于连续型随机变量, $P(X_n = X) = 0, \forall n$ 。

例

研究随机变量序列 $\{X_n: n=1,2,\ldots\}$ 。设 $X_n \sim N(0,1/n)$,当 n 很大时, X_n 集中到 0,能否说 X_n 收敛到 0,即 $\lim_{n\to\infty} X_n = 0$?

不能! 因为对于连续型随机变量, $P(X_n = 0) = 0, \forall n$.

需要提出新的数学工具,能够适用于研究随机变量序列的收敛性!

依概率收敛

定义(依概率收敛)

设 $\{X_n: n = 1, 2, ...\}$ 为随机变量序列,X 是另一个随机变量,如果对任意 $\epsilon > 0$ 有

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

或

$$\lim_{n\to\infty} P(|X_n - X| < \epsilon) = 1$$

则称随机变量序列 $\{X_n\}$ 依概率收敛于 X,记作 $X_n \stackrel{p}{\longrightarrow} X$ 。

特别地,若 X 为单点分布,即 P(X=a)=1,则称随机变量序列 $\{X_n\}$ 依概率收敛于常数 a,记作 $X_n \stackrel{p}{\longrightarrow} a$ 。

依概率收敛

定理

如果 $X_n \stackrel{p}{\longrightarrow} a, Y_n \stackrel{p}{\longrightarrow} b$,又函数 g(x,y) 在点 (a,b) 处连续,则 $g(X_n, Y_n) \stackrel{p}{\longrightarrow} g(a,b)$ 。

特例,如果
$$X_n \stackrel{p}{\longrightarrow} a$$
, $Y_n \stackrel{p}{\longrightarrow} b$, 则: $X_n \pm Y_n \stackrel{p}{\longrightarrow} a \pm b$ $X_n Y_n \stackrel{p}{\longrightarrow} ab$ $\frac{X_n}{Y_n} \stackrel{p}{\longrightarrow} \frac{a}{b}$ $(Y_n, b \neq 0)$

依分布收敛

定义(依分布收敛)

设 $\{X_n\}$ 为随机变量序列,其分布函数序列为 $\{F_n(x)\}$ 。 X 是随机变量,其分布函数为 F(x)。若对 F(x) 的每个连续点 x,有 $\lim F_n(x) = F(x)$

则称随机变量序列
$$\{X_n\}$$
 依分布收敛于 X , 记作 $X_n \stackrel{d}{\longrightarrow} X$, 或

- 称分布函数序列 $\{F_n(x)\}$ 弱收敛于 F(x),记作 $F_n(x) \xrightarrow{w} F(x)$ 。
- 依分布收敛是最宽松的收敛方式之一;
- 一个依概率收敛的随机变量序列必然也依分布收敛到同一个 极限,即依概率收敛强于依分布收敛;
- 依分布收敛蕴含依概率收敛当且仅当依分布收敛的极限是一个常数。

举例: 随机变量序列的收敛性

例 (随机变量序列的收敛性分析)

设随机变量 $X_n \sim N(0, 1/n)$,分析 $\{X_n\}$ 的收敛性。

对任意 ∈ > 0, 由切比雪夫不等式, 有

$$P(|X_n| \ge \epsilon) \le \frac{D(X_n)}{\epsilon^2} = \frac{1}{n\epsilon^2} \to 0$$

- 所以 $X_n \stackrel{p}{\longrightarrow} 0$
- 注意到 $\sqrt{n}X_n \sim N(0,1)$, 令 $Z \triangleq \sqrt{n}X_n$, 则 $Z \sim N(0,1)$ 。
- 当 t < 0 时. $F_n(t) = P(X_n < t) = P(\sqrt{n}X_n < \sqrt{n}t) = P(Z < \sqrt{n}t) \rightarrow 0$
- 当 t > 0 时。

$$F_n(t) = P(X_n < t) = P(Z < \sqrt{nt}) \rightarrow 1$$

举例: 随机变量序列的收敛性

• 令 F(t) 为单点分布 P(X=0)=1 的分布函数,则对于任意 $t\neq 0$,有 $\lim_{n\to\infty}F_n(t)=F(t)$ 。

- 说明 $X_n \stackrel{d}{\longrightarrow} 0$
- 注意 $F_n(0) = 1/2 \neq F(0) = 1$,所以在 t = 0 处不收敛,但不影响 X_n 的依分布收敛性,因为 t = 0 不是 F 的连续点。

举例: 随机变量序列的收敛性

例 (依概率收敛性与期望)

设随机变量 X_n 的分布律为

$$\begin{array}{c|cc} x & 0 & n^2 \\ \hline p & 1 - 1/n & 1/n \end{array}$$

分析 $\{X_n\}$ 的依概率收敛性及 X_n 的数学期望的极限。

• 因为对任意 $\epsilon > 0$,有

$$P(|X_n| < \epsilon) = P(X_n = 0) = 1 - \frac{1}{n} \to 1$$

- 所以 $X_n \stackrel{p}{\longrightarrow} 0$.
- 但是 $\mathbb{E}(X_n) = n^2 \times 1/n = n \neq 0$,且 $\lim_{n \to \infty} \mathbb{E}(X_n) = \infty$ 。

- ② 大数定律
 - 伯努利大数定律
 - 切比雪夫大数定律
 - 辛钦大数定律
- 中心极限定理

- ② 大数定律
 - 伯努利大数定律
 - 切比雪夫大数定律
 - 辛钦大数定律
- 中心极限定理

伯努利大数定律

定理(伯努利大数定律)

设 $\eta_n \sim B(n, p)$,则对任意常数 $\epsilon > 0$,有

$$\lim_{n\to\infty} P\left(\left|\frac{\eta_n}{n} - p\right| < \epsilon\right) = 1$$

证明.

因为 $\mathbb{E}(\eta_n) = np$, $D(\eta_n) = np(1-p)$, 由切比雪夫不等式, 对任

意
$$\epsilon > 0$$
,有

$$P\left(\left|\frac{\eta_n}{n} - p\right| < \epsilon\right) = P(|\eta_n - np| < n\epsilon) \ge 1 - \frac{np(1-p)}{(n\epsilon)^2} = 1 - \frac{p(1-p)}{n\epsilon^2}$$

令 $n \rightarrow \infty$,得

$$1 \ge \lim_{n \to \infty} P\left(\left|\frac{\eta_n}{n} - p\right| < \epsilon\right) \ge \lim_{n \to \infty} \left(1 - \frac{p(1-p)}{n\epsilon^2}\right) = 1$$

伯努利大数定律

- 伯努利大数定律是概率论历史上最早出现的大数定律,由瑞士数学家雅各布·伯努利在著作《猜度术》中首次提出。
- 伯努利大数定律描述了当试验次数 $n \to \infty$ 时,频率 η_n/n 的极限状态: 事件发生的频率 η_n/n 依概率收敛于概率 p,即 $\frac{\eta_n}{n} \stackrel{p}{\longrightarrow} p$,或者说频率依概率收敛于概率。
- 伯努利大数定律提供了用频率来确定概率的理论依据。
- 伯努利大数定律也是蒙特卡洛(Monte Carlo)方法的数学理 论基础。

举例:伯努利大数定律

例 (蒙特卡洛方法计算定积分,也称为随机投点法)

设 $f(x) \in [0,1]$, 求 f(x) 在区间 [0,1] 上的积分值 $\int_0^1 f(x) dx$ 。

- 设 (X, Y) 服从正方形区域 $[0,1] \times [0,1]$ 上的均匀分布,即 $X \sim U(0,1), Y \sim U(0,1)$
- 记事件 A = {Y ≤ f(X)}, 则事件 A 发生 的概率为

$$p = P(Y \le f(X)) = \int_0^1 \int_0^{f(x)} \mathrm{d}y \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x \triangleq J$$

- 即定积分的值 J 就是事件 A 发生的概率。
- 由伯努利大数定律,可以用重复试验中事件 A 发生的频率作为 p 的估计值。

f(x)

举例:伯努利大数定律

随机投点法

- **①** 用计算机产生 [0,1] 上的均匀分布的 2n 个随机数: $x_i, y_i, i = 1, ..., n$, 例如 $n = 10^5$ 。
- ② 对 n 对数据 (x_i, y_i) , i = 1, ..., n, 记录满足 $y_i \le f(x_i)$ 的次数, 这就是事件 A 发生的频数 η_n , 则事件 A 发生的频率 $\eta_n/n \approx J$ 。

例如计算 $\frac{1}{\sqrt{2\pi}}\int_0^1 e^{-x^2/2} dx$, 其精确值和 $n=10^4$, $n=10^5$ 时的近似值如下

精确值	$n = 10^4$	$n = 10^5$
0.341344	0.340698	0.341355

举例:伯努利大数定律

- 对于一般区间 [a, b] 上的定积分 $J' = \int_a^b g(x) dx$,可以通过线性变换 y = (x a)/(b a) 转化成 [0, 1] 区间上的积分。
- 进一步,若 $c \leq g(x) \leq d$,可令

$$f(y) \triangleq \frac{g(a + (b - a)y) - c}{d - c}$$

则 $0 \le f(y) \le 1$ 。

此时有

$$J' = \int_{a}^{b} g(x) dx = S_{0} \int_{0}^{1} f(y) dy + c(b - a)$$

其中 $S_{0} = (b - a)(d - c)$ 。

• 说明用蒙特卡罗方法计算定积分具有普遍意义。

大数定律的一般形式

- 伯努利大数定律讨论的是一个独立同分布随机变量序列 $\{X_n\}$,每个随机变量 X_i 都服从两点分布,即 $X_i \sim B(1, p)$ 。
- 考察该序列前 n 个随机变量之和 $\eta_n = \sum_{i=1}^n X_i$,其频率和频率的数学期望分别为

$$\frac{\eta_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i \qquad \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}\left(X_i\right) = p$$

• 那么伯努利大数定律可表述为: 对任意 $\epsilon > 0$,有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left(X_{i}\right)\right|<\epsilon\right)=1$$

上式为大数定律的一般表达形式,不同大数定律的区别只是 针对不同的随机变量序列。

- 随机变量序列的收敛性
- ② 大数定律
 - 伯努利大数定律
 - 切比雪夫大数定律
 - 辛钦大数定律
- ③ 中心极限定理

切比雪夫大数定律

定理(切比雪夫大数定律)

设 $\{X_n\}$ 是两两不相关的随机变量序列,若每个 X_i 的方差存在,且有共同上界,即 $D(X_i) \leq c, i = 1, \ldots, n$,则对任意 $\epsilon > 0$,都

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n \mathbb{E}\left(X_i\right)\right| \ge \epsilon\right) = 0$$

或

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left(X_{i}\right)\right|<\epsilon\right)=1$$

注意: 切比雪夫大数定律只要求 $\{X_n\}$ 两两不相关,并不要求它们独立同分布。

切比雪夫大数定律

证明.

- \diamondsuit $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$, \bigvee $\mathbb{E}(Y_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}(X_i)$.
- 由于 {X_n} 两两不相关,则有

$$D(Y_n) = \frac{1}{n^2} \sum_{i=1}^n D(X_i) \le \frac{c}{n}$$

• 对任意 $\epsilon > 0$,应用切比雪夫不等式

$$1 \ge P(|Y_n - \mathbb{E}(Y_n)| < \epsilon) \ge 1 - \frac{D(Y_n)}{\epsilon^2} \ge 1 - \frac{c}{n\epsilon^2}$$

• 令 $n \to \infty$, 由夹逼法则得

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left(X_{i}\right)\right|<\epsilon\right)=1$$

切比雪夫大数定律

推论

设 $\{X_n\}$ 是相互独立的随机变量序列,且每个 X_i 有相同的期望 $\mathbb{E}(X_i) = \mu$ 和方差 $D(X_i) = \sigma^2$,则对任意 $\epsilon > 0$,都有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \epsilon\right) = 1$$

- 当 n 很大时,事件 $\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right|<\epsilon$ 发生的概率接近 1。
- 称概率接近于 1 的事件为大概率事件,称概率接近于 0 的事件为小概率事件。
- 实践发现,大概率事件在一次试验中几乎肯定要发生,而小概率事件在一次试验中几乎不可能发生,称为实际推断原理。

实际推断原理与数学期望的统计估计

- 设 X 是一个概率分布未知的随机变量,希望估计其数学期望 $\mathbb{E}(X)$ 。
- 对 X 进行一次 n 重观测试验,记 X_i 为第 i 次观测的结果, $i = 1, \ldots, n$ X_i 为随机变量且彼此相互独立。
- 当 n 很大时, $\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}\left(X\right)\right|<\epsilon$ 为大概率事件。
- 因此对一次 n 重观测试验的结果 x_1, \ldots, x_n ,几乎可以肯定有 $\left|\frac{1}{n}\sum_{i=1}^n x_i \mathbb{E}(X)\right| < \epsilon$,所以 $\mathbb{E}(X) \approx \frac{1}{n}\sum_{i=1}^n x_i$ 。
- 以上方法称为数学期望的统计估计法。

弱大数定律

上述推论的一个特殊情况是随机变量序列独立同分布。

定理 (弱大数定律 The Weak Law of Large Numbers, WLLN)

设 $\{X_n\}$ 是独立同分布的随机变量序列,且存在数学期望 $\mathbb{E}(X_i) = \mu$ 与方差 $D(X_i) = \sigma^2, i = 1, 2, \ldots$,则对任意 $\epsilon > 0$ 有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \ge \epsilon\right) = 0$$

或

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \epsilon\right) = 1$$

- ② 大数定律
 - 伯努利大数定律
 - 切比雪夫大数定律
 - 辛钦大数定律
- 中心极限定理

辛钦大数定律

- 注意:以上大数定律都要求方差存在(方差存在则数学期望必然存在,但反之不一定成立)。
- 辛钦大数定律去掉了方差存在的假设,仅要求数学期望存在。

定理(辛钦大数定律)

设 $\{X_n\}$ 是独立同分布的随机变量序列,若每个随机变量 X_i 的数学期望 $\mathbb{E}(X_i) = \mu$ 存在,则对任意 $\epsilon > 0$ 有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \ge \epsilon\right) = 0$$

或

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \epsilon\right) = 1$$

举例: 辛钦大数定律

例

设 $\{X_n\}$ 是独立同分布的随机变量序列,其分布律为

$$P(X_k = (-1)^{k-1}k) = \frac{6}{\pi^2 k^2}$$
 $k = 1, 2, ...$

问 {X_n} 是否依概率收敛于其数学期望?

由于级数

$$\sum_{k=1}^{\infty} |(-1)^{k-1}k| \frac{6}{\pi^2 k^2} = \frac{6}{\pi^2} \sum_{k=1}^{\infty} \frac{1}{k}$$

不绝对收敛,故 X_k 的数学期望不存在,从而 $\{X_n\}$ 不依概率收敛于期望。

- 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理
 - 随机变量和的极限
 - 中心极限定理
 - 应用举例

- 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理
 - 随机变量和的极限
 - 中心极限定理
 - 应用举例

随机变量和的极限

- 大数定律讨论的是多个随机变量的平均 $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 的渐进性质,那么独立随机变量和 $\sum_{i=1}^{n}X_{i}$ 又有怎样的性质?
- 例如, 机床加工工件时总有误差, 导致误差的随机因素包括:
 - 机床振动与转速、刀具装配与磨损、钢材成分与产地、
 - 操作者注意力集中程度、当天的情绪、
 - 量具误差、测量技术、环境温度、湿度、照明、电压等。
- 误差由大量微小的相互独立的随机因素叠加而成,每个因素的出现无法控制、随机、时有时无、时大时小、时正时负。
- 记误差为 Y_n ,那么 Y_n 是很多微小随机波动 X_1, \ldots, X_n 之和 $Y_n = X_1 + X_2 + \cdots + X_n$, 人们关心当 $n \to \infty$ 时, Y_n 的分布是怎样的?

均匀分布和的极限

例 (独立同均匀分布随机变量和的极限)

设 $\{X_n\}$ 为独立同分布随机变量序列,且 $X_i \sim U(0,1)$ 。记 $Y_n = \sum_{i=1}^n X_i$,利用卷积公式可以求出 Y_n 的概率密度 $f_n(y)$ 。

 \P 随着 n 的增大, $f_n(y)$ 愈来愈平滑,愈来愈接近正态分布的概率密度曲线。同时,曲线也在右移,方差变大。

其他分布和的极限

• 当 X_i 服从其他分布时, $Y_n = \sum_{i=1}^n X_i$ 的分布也观察到类似的 现象。

 \P 随着 n 的增大, $f_n(y)$ 愈来愈接近正态分布的概率密度曲线的 同时,曲线也在右移,方差变大。

- 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理
 - 随机变量和的极限
 - 中心极限定理
 - 应用举例

独立同分布随机变量和的正态近似

• 为避免当 $n \to \infty$ 时 Y_n 的均值和方差趋于无穷大,对 Y_n 进行标准化: $Y_n^* \triangleq \frac{Y_n - \mathbb{E}(Y_n)}{\sqrt{D(Y_n)}}$,使 $\mathbb{E}(Y_n^*) = 0$, $D(Y_n^*) = 1$ 。

定理(林德贝格-勒维中心极限定理)

设 $\{X_n\}$ 是独立同分布的随机变量序列,且 $\mathbb{E}(X_n)=\mu$, $D(X_n)=\sigma^2>0$,则对任意 $y\in\mathbb{R}$,有

$$\lim_{n \to +\infty} P(Y_n^* \le y) = \Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

• 无论随机变量序列 $\{X_n\}$ 服从什么分布,只要独立同分布且 存在期望和方差,则 Y_n^* 依分布收敛于标准正态分布 N(0,1)。

举例:独立同分布随机变量和的正态近似

例 (元件寿命)

根据以往经验,某种电器元件的寿命服从均值为 100 小时的指数分布。现随机抽取 36 只,设它们的寿命是独立同分布的,求这 36 只元件的寿命总和超过 4000 小时的概率。

- 设 X_i 表示第 i 只元件的寿命,i = 1, ..., 36,则 $\mathbb{E}(X_i) = 100$, $D(X_i) = 100^2$ 。
- ullet 这 36 只元件的总寿命为 $\sum_{i=1}^{36} X_i$,所求概率为

$$P\left(\sum_{i=1}^{36} X_i > 4000\right) = P\left(\frac{\sum_{i=1}^{36} X_i - 3600}{\sqrt{36} \times 100} > \frac{4000 - 3600}{600}\right)$$
$$\approx 1 - \Phi(\frac{2}{3}) = 0.2514$$

举例: 独立同分布随机变量和的正态近似

例 (测量误差)

多次测量一个物理量,每次都产生一个随机误差且服从 U(-0.5, 0.5)。问: (1) 100 次测量的算术平均值与真实值的绝 对值小于 0.05 的概率是多少?(2) 需要进行多少次测量才能使 测量的算术均值与其真值的差小于 0.05 的概率不小于 0.95?

- 设 a 为真值, X_i 表示第 i 次测量值, ε_i 表示第 i 次测量误差。
- 所以 $X_i = a + \epsilon_i$, $\epsilon_i \sim U(-0.5, 0.5)$, $\mathbb{E}(\epsilon_i) = 0$, $D(\epsilon_i) = 1/12$.

$$P\left(\left|\frac{1}{100}\sum_{i=1}^{100}X_{i}-a\right|<0.05\right)=P\left(\left|\sum_{i=1}^{100}X_{i}-100a\right|<5\right)$$

$$= P\left(\left|\sum_{i=1}^{100} \epsilon_i\right| < 5\right) = P\left(\left|\frac{\sum_{i=1}^{100} \epsilon_i}{\sqrt{100/12}}\right| < \frac{5\sqrt{12}}{10}\right) = P\left(|Z| < \sqrt{3}\right)$$

举例:独立同分布随机变量和的正态近似

$$= \Phi(\sqrt{3}) - \Phi(-\sqrt{3}) = 2\Phi(\sqrt{3}) - 1 = 0.9164$$

• 设需要测量 *n* 次,测量的算术均值与真值差小于 0.05 的概率 为

$$P\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-a<0.05\right)=P\left(\sum_{i=1}^{n}X_{i}-na<0.05n\right)$$

$$=P\left(\frac{\sum_{i=1}^{n}\epsilon_{i}}{\sqrt{n/12}}<\frac{0.05n}{\sqrt{n/12}}\right)$$

$$\approx\Phi(0.1\sqrt{3n})$$

• $\Phi(0.1\sqrt{3n}) \ge 0.95$, $\# n \ge 90.75$

二项分布的正态近似

定理 (德莫弗-拉普拉斯极限定理)

设 n 重伯努利试验中,事件 A 在每次试验中出现的概率为 $p \in (0,1)$ 。记 η_n 为 n 次试验中事件 A 出现的次数,且记

$$Y_n^* = \frac{\eta_n - np}{\sqrt{np(1-p)}}$$

则对任意实数 y, 有

$$\lim_{n\to+\infty} P(Y_n^* \le y) = \Phi(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^y e^{-t^2/2} dt$$

- 二项分布的极限分布是正态分布,故也称为"二项分布的正态近似"。当 n 较大时, η_n 可用 N(np, np(1-p)) 来近似。
- 泊松定理同时给出了二项分布的泊松近似。一般 p 较小 np 适中时,泊松近似较好;在 np > 5 时,正态近似较好。

举例: 二项分布的正态近似

例 (性状遗传)

根据孟德尔遗传理论,红、黄两种番茄杂交的第二代结红果植株和黄果植株的比率为 3:1,现在种植番茄杂交种 400 株,试求黄果植株介于 $83\sim117$ 的概率。

- 令 X 表示结黄果的植株数,由于结红、黄果彼此独立,则 $X \sim B(400, 0.25)$,且 $\mathbb{E}(X) = 100$,D(X) = 75。
- 由德莫弗-拉普拉斯定理得

$$P(83 < X < 117) = P(\frac{83 - 100}{\sqrt{75}} < \frac{X - 100}{\sqrt{75}} < \frac{117 - 100}{75})$$

$$\approx \Phi(1.96) - \Phi(-1.96)$$

$$= 2\Phi(1.96) - 1$$

$$= 0.95$$

- 随机变量序列的收敛性
- 2 大数定律
- ③ 中心极限定理
 - 随机变量和的极限
 - 中心极限定理
 - 应用举例

例 (治愈率)

某药厂断言,该厂生产的某种药品对于医治一种疾病的治愈率为 0.8。医院任意抽查服用该药的 100 位病人,若其中多于 75 人治愈,就接收断言,否则拒绝断言。

- (1) 若实际上该药治愈率为 0.8, 接受该断言的概率是多少?
- (2) 若实际上该药治愈率为 0.7, 接受该断言的概率是多少?

用 X 表示 100 人中的治愈人数。

(1) $X \sim B(100, 0.8)$, 则

$$P(X > 75) = P\left(\frac{X - 100 \times 0.8}{\sqrt{100 \times 0.8 \times 0.2}} > \frac{75 - 80}{4}\right)$$
$$\approx 1 - \Phi(-1.25)$$
$$= \Phi(1.25) = 0.8944$$

(2)
$$X \sim B(100, 0.7)$$
,则
$$P(X > 75) = P\left(\frac{X - 100 \times 0.7}{\sqrt{100 \times 0.7 \times 0.3}} > \frac{75 - 70}{\sqrt{21}}\right)$$
$$\approx 1 - \Phi(1.09)$$
$$= 0.1379$$

例(保单售价)

某保险公司欲推出一项新业务,经分析,该业务每份保单的年赔付金额 $X \sim \exp(0.001)$ 。试建立每份保单的售价 Q 与参保人数 n 的关系,使得保险公司有 95% 的概率盈利。

用 X_i 表示第 i 个人的赔付金, i = 1, ..., n,则 $\{X_i\}$ 独立同分布。 $\mathbb{E}(X_i) = 1000, D(X_i) = 1000^2$ 。盈利等价于 $\sum_{i=1}^n X_i \le nQ$ 。

$$P\left(\sum_{i=1}^{n} X_{i} \leq nQ\right) = P\left(\frac{\sum_{i=1}^{n} X_{i} - 1000n}{1000\sqrt{n}} \leq \frac{n(Q - 1000)}{1000\sqrt{n}}\right)$$

$$\approx \Phi\left(\frac{n(Q - 1000)}{1000\sqrt{n}}\right) = \Phi\left(\left(\frac{Q}{1000} - 1\right)\sqrt{n}\right)$$

$$= 0.95$$

查表得
$$(\frac{Q}{1000}-1)\sqrt{n}=1.65$$
,所以
$$Q=1000+\frac{1650}{\sqrt{n}}$$

例 (次品率)

某种产品的次品率为 5%, 装箱时,

- (1) 若每箱装 100 只,问至少有两件次品的概率?
- (2) 若要以 99% 的把握保证每箱合格品不少于 100 只,问每箱至少应多装几只?
- (1) 用 X 表示每箱次品数,则 $X \sim B(100, 0.05)$,于是

$$P(X \ge 2) = P(\frac{X - 100 \times 0.05}{\sqrt{100 \times 0.05 \times 0.95}} \ge \frac{2 - 5}{\sqrt{4.75}})$$

$$\approx 1 - \Phi(-1.3764)$$

$$= \Phi(1.3764)$$

$$= 0.9162$$

(2) 设每箱应多装
$$k$$
 只,则 $X \sim B(100+k,0.05)$,希望 $P(X \le k) \ge 0.99$,于是 $P(X \le k)$
$$= P\left(\frac{X - (100+k) \times 0.05}{\sqrt{(100+k) \times 0.05 \times 0.95}} \le \frac{k - (100+k) \times 0.05}{\sqrt{(100+k) \times 0.05 \times 0.95}}\right)$$
 $\approx \Phi(\frac{k - (100+k) \times 0.05}{\sqrt{(100+k) \times 0.05 \times 0.95}})$ ≥ 0.99 得 $k > 11$ 。

例 (电话交换机)

某单位电话交换机接有 500 部电话,在所有通话中有 96% 次通话是在各分机内进行的。假定每部分机是否需要打外线是相互独立的,问需要配备多少条外线才能以 95% 的概率保证每个分机要用外线时不必等候?

记 η 表示 500 台分机中同时打外线电话的分机台数,则 $\eta \sim B(500, 0.04)$ 。设需要外线 k 条使得 $P(\eta \le k) \ge 0.95$,即

$$P(\eta \le k) = P\left(\frac{\eta - 500 \times 0.04}{\sqrt{500 \times 0.04 \times 0.96}} \le \frac{k - 500 \times 0.04}{\sqrt{500 \times 0.04 \times 0.96}}\right)$$
$$\approx \Phi\left(\frac{k - 500 \times 0.04}{\sqrt{500 \times 0.04 \times 0.96}}\right) \ge 0.95$$

解得 $k \ge 27.23$,故需要 28 条。

- 随机变量序列的收敛性
- ② 大数定律
- ③ 中心极限定理