Logische Verknüpfungen

Für N eingänge hat man 2^N Eingangskombinationen. Elementare Logische Funktionen: NOT, AND, OR, NAND, NOR, XOR, XNOR

Zahlensysteme

Dezimal	Binary	Hex	
0	0000	0	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	
7	0111	7	
8	1000	8	
9	1001	9	
10	1010	A	
11	1011	В	
12	1100	C	
13	1101	D	
14	1110	Е	
15	1111	F	

LSB: Least Significant Bit - z.B.: 2^0

Nibble: Gruppe von 4 Bit

Byte: Gruppe von 8 Bit (2Nibble)

Word: Gruppe von mehr als 8 Bit (Meisstens 16Bit) DWord: Double Word: oft eine Gruppe von 32 Bit

Bsp: $1011 \ 1100 \ 0010 \ (BIN) = BC2 \ (HEX)$

 $101\ 111\ 000\ 010\ (BIN) = 5702\ (OCTAL)$

Divisionsmethode:

47 b10 = 101111 b2

47: 2 = 23 r1

23: 2 = 11 r1

11:2=5 r1

5:2=2 r1

 $2:\,2=1\;\mathrm{r0}$

1:2=0 r1

Schaltalgebra

Funktion	NOR	NAND
NOT	$x\overline{\vee}x$	x NAND x
OR	$(x\overline{\vee}y)\overline{\vee}(x\overline{\vee}y)$	(x NAND x) NAND (y NAND y)
AND	$(x\overline{\vee}x)\overline{\vee}(y\overline{\vee}y)$	(x NAND y) NAND (x NAND y)

Vereinfachungen

- Kommutativgesetze
 - X1 & X2 = X2 & X1
 - X1 # X2 = X2 # X1
- Assoziativgesetze
 - -(X1 & X2) & X3 = X1 & (X2 & X3)
 - (X1 # X2) # X3 = X1 # (X2 # X3)
- Distributivgesetze
 - (X1 # X2) & X3 = (X1 & X3) # (X2 & X3)
 - (X1 & X2) # X3 = (X1 # X3) & (X2 # X3)

Disjunktive Normalform

- \bullet OR Verknüpfung von AND Blöcken für K=1
- Jeder AND-Block ist ein MINTERM
- Die DNF K ist eine OR-Verknüpfung aller guten MINTERME (gut = Wahrheitstabelle 1)

Für die Darstellung mit NAND anstelle von OR:

Das DeMorgan Theorem anwenden: K = !(!K) und dann weiter vereinfachen.

Konjunktive Normalform

- AND Verknüpfung von OR Blöcken
- Herstellen durch DNF von K=0, dann DeMorgan Theorem anwenden
- Jeder OR-Block ist ein MAXTERM, der einer Zeile in der Wahrheitstabelle entspricht, negiert, wenn in der Wahrheitstabelle =1, direkt falls WT=0.

Multiplexer:

Art von Drehschalter, umschalten zwischen verschiedenen Eingängen

Vorzeichenlose und Vorzeichenbehaftete Zahlen

Тур	min	-2	-1	0	1	2	max
Unsigned	-	-	-	0000	0001	0010	1111 (15)
One's Complement	1000 (-7)	1101	1110	0000, 1111	0001	0010	0111 (7)
Two's Complement	1000 (-8)	1110	1111	0000	0001	0010	0111 (7)
Sign Magnitude	1111 (-7)	1010	1001	0000, 1000	0001	0010	0111 (7)

CF: Carry Flag: Übertrag beim Addieren OF: Overflow Flag: Über oder Unterlaufen