Ox2: Synthese von Benzoesäure aus Toluol

1. Reaktionsgleichung

Toluol C_7H_8 92,14 $\frac{g}{mol}$

Benzoesäure $C_7H_6O_2$ 122,12 $\frac{g}{mol}$

2. Versuchsapparaturen:

Abb. 1: Heizplatte mit Ölbad und Rührfisch; Dreihalskolben mit Thermometer, Rührfisch und Rückflusskühler

Abb. 2: Saugflasche mit Büchnertrichter und Filterpapier

3. Versuchsdurchführung: (1)

In einem Rundkolben wurden 3,4 Toluol (32 mmol), 3 g Natriumcarbonat (28 mmol) und 9 g Kaliumpermanganat (56 mmol) und 225 ml Wasser ca. 2 Stunden unter Rückfluss erhitzt (vgl. Abb. 1). Der noch heißen Lösung wurden einige Tropfen Ethanol hinzugegeben, um das übrige Permanganat zu entfernen. Anschließend wurde der gebildete Braunstein mit Hilfe eines Büchnertrichters und einer Saugflasche (Abb. 2) abfiltriert. Nachdem die Lösung etwa 65 Stunden über das Wochenende auf Raumtemperatur abgekühlt ist, wurde das Filtrat mit einer halbkonzentrierten Schwefelsäure-Lösung angesäuert und die entstandenen Kristalle abfiltriert.

Es wurden 0,83 g (21% der theoretischen Ausbeute) eines kristallinen weißen Feststoffs erhalten.

4. Ergebnisse und Analytik:

Ausbeute: Produkt: 0.83 g (21 % der theoretischen Ausbeute)

Schmelzpunkt:

Produkt:

121°C

Literaturwert:

122°C (2)

IR-Banden:

3070 cm⁻¹

30 70 cm⁻¹ -1970 cm⁻¹

1677 cm⁻¹

C-H-Valenzschwingungen

C=O-Valenzschwingungen (in Carbonsäuren)

Accumulation Zero Filling Gain Date/Time Operator File Name Sample Name Comment		16 OFF 16 12.09.2022.14:21 Memory#2				Resolution Apodizatio Scanning S Update	4 cm-1 Cosine 2 mm/sec 12.09.2022 14:23							
No.	cm-1	%Т	No.	cm-1	%Т	No.	cm-1	%T	No.	cm-1	%Т	No.	cm-1	%Т
1	3070.12	77.2267	2	2821.35	71.8508	3	2551.36	68.2626	4	1970.89	82.0565	5	1914.97	81.1953
6	1677.77	37.2964	7	1600.63	60.1391	8	1581.34	58.0844	9	1496.49	75.1826	10	1452.14	56.5303
11	1419.35	52.5986	12	1322.93	47.5514	13	1286.29	37.2373	14	1178.29	52.8144	15	1126.22	56.6144
16	1101.15	66.451	17	1072.23	59.2599	18	1025.94	58.5582	19	998.946	67.9371	20	929.521	44.8812
21	804.171	52.7155	22	703.89	32.1099	23	682.677	42.3342	24	665.321	34.3381	25	617.109	57.105
26	609.396	58.3721												

Abb. 3: IR-Spektrum der hergestellten Benzoesäure

5. Reaktionsmechanismus

Das Toluol wird durch Zugabe von Kaliumpermanganat als Oxidationsmittel zu Benzoesäure oxidiert.

Redoxreaktion:
$$+ 2 \text{ MnO}_{4}^{-} \longrightarrow + \text{MnO}_{2}^{-} + \text{H}_{2}\text{O} + \text{OH}^{-}$$

6. Literatur

- (1) Versuchsanleitung. "Synthese von Benzoesäure aus Toluol". Goethe Universität Frankfurt am Main
- (2) GESTIS-Stoffdatenbank https://gestis.dguv.de/data?name=022810, aufgerufen am 23.09.2022