Formal Languages Turing Machines

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^R

Regular Languages

*a**

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

Time 0

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

Remark: the input string is never empty

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Example:

Time 1

Example:

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No lambda transitions allowed

Partial Transition Function

Example:

<u> Allowed:</u>

No transition for input symbol c

Halting

The machine *halts* if there are no possible transitions to follow

Example:

No possible transition

HALT!!!

Final States

· Final states have no outgoing transitions

In a final state the machine halts

Acceptance

Accept Input

If machine halts in a final state

Reject Input

If machine halts in a non-final state or

If machine enters an infinite loop

Turing Machine Example

Language?

Turing Machine Example

A Turing machine that accepts the language:

aa*

Rejection Example

No possible Transition Halt & Reject

Language?

Infinite Loop Example

A Turing machine for language aa*+b(a+b)*

Time 2

Time 3

Time 4

Time 5

Because of the infinite loop:

·The final state cannot be reached

The machine never halts

The input is not accepted

Another Turing Machine Example

Language?

Another Turing Machine Example

Turing machine for the language $\{a^nb^n\}$

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Machine for $L = \{vv | v \text{ in } \{a,b\}^*\}$?

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move: $q_2 xayb \succ x q_0 ayb$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation:
$$q_2 xayb \succ xxy q_1 b$$

Initial configuration: $q_0 w$

Input string

The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
 Initial state Final state

Standard Turing Machine

The machine we described is the standard:

· Deterministic

· Infinite tape in both directions

·Tape is the input/output file

Computing Functions with Turing Machines

A function

f(w)

has:

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \succ q_f \ f(w)$$
Initial Final
Configuration

For all $w \in D$ Domain

Example

The function
$$f(x, y) = x + y$$
 is computable

x, y are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

The 0 is the delimiter that separates the two numbers

The 0 helps when we use the result for other operations

Turing machine for function f(x, y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (2)

$$y = 11$$
 (2)

Final Result

$$\begin{array}{c|c|c|c} x+y \\ \hline & \Diamond & 1 & 1 & 1 & 1 & 0 & \Diamond \\ \hline & q_4 & & & & \end{array}$$

Time 3

Time 5

Time 8

Another Example

$$f(x) = 2x$$

The function f(x) = 2x is computable

is integer

Turing Machine:

Input string:

 \mathcal{X}

unary

Output string:

 $\mathcal{X}\mathcal{X}$

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- Repeat:
 - Find rightmost \$, replace it with 1

· Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Finish

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$
 is computable

Turing Machine for

$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

Input: x0y

Output: 1 or 0

Turing Machine Pseudocode:

Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else

erase tape, write 0 $(x \le y)$

Combining Turing Machines

Block Diagram

$$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

