

Лекция 3. Топология нейронных сетей. Синхронизация

Николай Ильич Базенков, к.т.н.

Институт проблем управления им. В.А. Трапезникова РАН

План

- 1. Введение в теорию сложных сетей
- 2. Сети в мозге
 - 1. Экспериментальные методы
 - 2. Коннектом
- 3. Синхронизация
 - 1. Экспериментальные наблюдения
 - 2. Модели осцилляторов
 - 3. Синхронизация в сетях простых нейронов

Что такое сеть

Сети, или графы, служат для описания бинарных отношений между объектами.

Сеть (граф) G(V,E) задается множеством узлов (вершин) V и множеством ребер E

- Алиса и Боб друзья неориентированное ребро
- Шарик любит колбасу ориентированное ребро

Сложные сети

Простые сети

SO N1M N2v N3t

Сложные сети

Vavoulis, D. et.al. 2007. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. (2007)

https://wormwiring.org/pages/network%20diagrams.html

Сложные сети

- Биология:
 - Генные сети
 - Нейронные сети мозга
- Социальные сети
- Компьютерные сети (Интернет)
- Транспортные и инфраструктурные сети
- Лингвистические и когнитивные
- Финансовые и экономические

Как описать сложную сеть?

Основные характеристики:

- Связность и длина путей
- Кластеризация узлов
- Распределение степеней
- Модулярность

Вспомогательные:

- Ассортативность (связи возникают между похожими узлами)
- «Клуб богатых» (Rich club network) большая доля связей приходится на небольшую долю узлов

Математическое моделирование:

Построить модель формирования сети, которая воспроизводит характеристики реальных сетей

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. *Nature reviews neuroscience*, *10*(3), 186-198.

Связность и длина путей

Связность

Граф (неориентированный) связен, если между любыми двумя вершинами существует путь

Сильная и слабая связность

Ориентированный граф сильно (слабо) связен, если между любыми вершинами существует путь с учетом (без учета) ориентации

Плотность

Отношение числа ребер в графе к числу ребер в полном графе

Диаметр

Длина пути между двумя наиболее удаленными друг от друга вершинами

Плотность сложных сетей

Сложные сети, как правило, связные и разреженные. Число ребер намного меньше числа ребер в полном графе.

Сеть	C.Elegans	WWW (nd.edu) 1999	WWW 2014	LiveJournal RUS 2011	Facebook 2011
Количество узлов	272	3.26×10^{5}	1.7×10^{9}	2.92×10^{5}	7.21×10^{8}
Количество ребер	4451	1.47×10^{6}	64 × 10 ⁹	6.2×10^{6}	6.87×10^{10}
$\frac{2 E }{n(n-1)}$	0.06	1.39×10^{-5}	2.21×10^{-8}	7.27×10^{-5}	1.32×10^{-6}

Связность в сложных сетях

Население США в 1967 ≈ 200 млн чел Длина пути ≈ 5 посредников (6 рукопожатий)

Стэнли Милгрэм

S. Milgram The Small-World Problem. – 1967

Распределение степеней

Степень вершины

Количество ее ребер в графе

Распределение степеней

p(k) – доля узлов степени k в графе

Степенной закон (безмасштабное распределение)

$$p(k) \sim k^{-\gamma}$$
$$\gamma > 1$$

$$\gamma > 1$$

Безмасштабные распределения

Распределение степеней Интернета подчиняется степенному закону с показателем 2 < γ < 3

Albert-László Barabási

Réka Albert

R. Albert, A.-L. Barabasi Emergence of scaling in random networks. – 1999

Кластеризация

Кластеризация

Плотность связей между соседями некоторой вершины і больше, чем между случайными узлами в графе

Коэффициент кластеризации C_i вершины i:

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$

 e_i - число связей между соседями вершины i k_i — степень вершины i

В сложных сетях кластеризация, как правило, высокая

Модулярность и сообщества

Сложные сети часто организованы как отдельные сообщества, связанные редкими связями через хабы

Сообщество

Группа узлов, которые связаны друг с другом теснее, чем с другими узлами в сети

Модели сетей

- Регулярные сети
- Случайные сети
- Сети тесного мира
- Безмасштабные сети

Случайные графы

Поль Эрдёш

Альфред Реньи

Erdos P., Renyi A. On Random Graphs. – 1959

Случайные графы

Ребро между парой вершин появляется с вероятностью р

Случайные графы. Связность

Начиная с некоторой вероятности р, случайный граф почти всегда связен.

Пример: p=0.2

Распределение степеней

Безмасштабные сети

$$p(k) \sim k^{-\gamma},$$

$$\gamma > 1$$

Случайные графы

$$p(k) \sim \frac{\lambda^k}{k!} e^{-\lambda}$$

Свойства случайных графов Э-Р

Связность — при достаточно большой плотности ребер Длина пути — уменьшается с ростом плотности Распределение степеней — стремится к Пуассоновскому с ростом числа узлов Кластеризация — низкая

Несмотря на то, что свойства случайных графов плохо отражают свойства сложных сетей, их часто используют для моделирования сети с неизвестной топологией

Сети тесного мира

Формирование тесного мира

- 1. Расположим вершины на окружности
- 2. Соединим каждую вершину с k ближайших соседей
- 3. С вероятностью р разорвем ребро и соединим со случайной вершиной
- 4. Повторим п.3 для каждого ребра

D.J. Watts, S.H. Strogatz Collective Dynamics of Small-World Networks, 1998

Сети тесного мира

Свойства модели Уоттса-Строгатца

Граф связный, при этом разреженный

Малая длина путей

Высокая кластеризация

Распределение степеней похоже на случайный граф

Похоже на свойства реальных сетей:

	$L_{ m actual}$	$L_{ m random}$	C _{actual}	$C_{ m random}$
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

Модель предпочтительных присоединений

- 1. Начинаем с m_0 вершин
- 2. На шаге t добавляется новая вершина с m ребрами
- 3.Вероятность присоединения ребра к вершине і равна

$$P(k_i) = \frac{k_i}{\sum_{j=1}^{N-1} k_j}$$

k_i – степень вершины і

Сетевая организация мозга

Колонки

Колонка (column, macrocolumn)

Группа нейронов неокортекса, которые расположены рядом и имеют общее рецептивное поле.

Структура колонки

Связность в колонке

Колонки часто моделируют как несколько взаимодействующих популяций нейронов, каждая из которых представлена случайным графом

Крупные участки мозга. Коннектом

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. *Nature reviews neuroscience*, *10*(3), 186-198.

Виды связей

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. *Neuroimage*, *52*(3), 1059-1069.

Коннектом как сложная сеть

Свойства коннектома

- 1. Тесный мир
- 2. Модулярность
- 3. «Клуб богатых»

Van Den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. *Journal of Neuroscience*, *31*(44), 15775-15786.

Приложения в медицине

Baronchelli et.al. Networks in Cognitive Science. – 2013

Y. Liu et.al. Impaired Long Distance Functional Connectivity and Weighted Network Architecture in Alzheimer's Disease. – 2013

Резюме

Уровни организации мозга

Слои колонок (случайный граф)
Колонки (послойные случайные графы)
Крупные области (коннектом – сложная сети)

Исследовательские вопросы

- 1. Как происходит синхронизация в такой сети
- 2. Как влияют повреждения на синхронизацию

Синхронизация

Первооткрывателем считается Кристиан Гюйгенс, который заметил, что у часов, висящих рядом на стене, маятники всегда начинают раскачиваться синхронно.

S. Strogatz & Y. Stewart Coupled Oscillators and Biological Synchronization, Scientific American, 1993

Синхронизация

 $https://en.wikipedia.org/wiki/File:Wesphysdemo_-_Synchronized_Metronomes.webm$

Примеры

В биологии, химии и физике есть множество примеров, когда отдельные элементы системы синхронизируют свое поведение без внешнего управления

- Мерцание светлячков
- Сокращения клеток сердечной мышцы
- Циркадные ритмы, в которых клетки синхронизируют свои внутренние молекулярные реакции
- Электрогенераторы, подключенные к одной сети
- Колебательные химические реакции (Белоусова-Жаботинского)

S. Strogatz & Y. Stewart Coupled Oscillators and Biological Synchronization, Scientific American, 1993

Периодические процессы

POSITION TIME

Периодический процесс движется по замкнутой траектории в фазовом пространстве

Состояние однозначно описывается фазой процесса

Периодически спайкующий нейрон

Изолированный нейрон:

$$\dot{x}_i = f_i(x_i)$$

Если $f_i(x_i) > 0$ для $x_i \in [0,1]$, то нейрон спайкует, будучи изолированным от сети

Период:

$$T_i = \int_0^1 \frac{dx}{f_i(x)}$$

Частота:

$$\Omega_i = \frac{2\pi}{T_i}$$

Нейрон ФитцХью – Нагумо:

http://www.scholarpedia.org/article/Weakly_coupled_oscillators

Периодические процессы

Синхронизация – разность фаз между двумя процессами постоянна

Модель Курамото (1975)

$$\dot{\theta}_i = \omega_i + \sum_{j=1}^N \Gamma_{ij} (\theta_j - \theta_i), \quad i = 1, \dots, N$$

 θ_i – фаза і-го осциллятора

 ω_i — собственная частота і-го осциллятора

 $\Gamma_{\rm ii}$ — функция влияния.

В самом простом случае

$$\Gamma_{ij}(\theta_j - \theta_i) = \frac{K}{N}\sin(\theta_j - \theta_i).$$

S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 2000

Модель Курамото (1975)

$$\dot{\theta}_i = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i), \qquad (1)$$

Пусть $g(\omega)$ — распределение собственных частот. Предполагается, что $g(\omega)$ симметрично вокруг Ω - средней частоты: $g(\Omega - \omega) = g(\Omega + \omega)$

Можно сделать замену $\theta_i \to \theta_i + \Omega t$ Тогда средняя частота равна 0 и $g(-\omega) = g(\omega)$. Уравнение (1) остается неизменным

Мера упорядоченности (order parameter)

$$r e^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

r

 $0 \le r \le 1$ — мера упорядоченности колебаний Ψ — средняя фаза колебаний

Уравнение (1) теперь можно преобразовать в

$$\dot{\theta}_i = \omega_i + Kr\sin(\psi - \theta_i) \tag{2}$$

Получается, что на каждый отдельный осциллятор влияют средние значения: r и Ψ .

Переход от неупорядоченного движения к синхронизации

Kuramoto Oscillators

Nil, partial and full phase-locking in an all-to-all network of Kuramoto oscillators. Phase-locking is governed by the coupling strength K and the distribution of intrinsic frequencies ω . Here, the intrinsic frequencies were drawn from a normal distribution (M=0.5Hz, SD=0.5Hz). The yellow disk marks the phase centroid. Its radius is a measure of coherence.

Переход от неупорядоченного движения к синхронизации

Возможные состояния модели:

- 1. **Неупорядоченное (incoherent)** фазы осцилляторов распределены равномерно по окружности
- **2. Частичная синхронизация** часть осцилляторов синхронизировалась
- **3. Полная синхронизация** все осцилляторы колеблются с одной частотой

Синхронизация в популяции

Brunel network

Тормозящие нейроны N_{l}

https://neuronaldynamics-exercises.readthedocs.io/en/latest/exercises/brunel-network.html

Синхронизация в популяции

https://neuronaldynamics-exercises.readthedocs.io/en/latest/exercises/brunel-network.html

Приложения. Симуляция ритмов

Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., & Ritter, P. (2018). Inferring multiscale neural mechanisms with brain network modelling. *Elife*, 7, e28927.

Приложения. fMRI <-> EEG

Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., & Ritter, P. (2018). Inferring multiscale neural mechanisms with brain network modelling. *Elife*, 7, e28927.

Заключение

- 1. Сети мозга обладают характерной топологией
 - 1. Случайные графы на уровне колонки
 - 2. Тесный мир и клуб богатых на уровне крупных участков
- 2. Модели простых I&F нейронов позволяют исследовать синхронизацию в таких сетях
- 3. Приложения
 - 1. Моделирование ритмов fMRI, EEG
 - 2. Диагностика заболеваний?

Исследование нестандартной топологии сети

В сети спайкующих нейронов исследовать возникновение синхронных колебаний. Создать сеть со сложной топологией:

scale-free или small-world.

Исследовать, какое влияние на синхронизацию оказывает расположение нейрона в сети.

Roxin, A., Riecke, H., & Solla, S. A. (2004). Self-sustained activity in a small-world network of excitable neurons. *Physical review letters*, *92*(19), 198101. https://arxiv.org/pdf/nlin/0309067.pdf

Исследование нестандартной топологии сети

Мотивация: мозг это сеть «тесного мира», а не случайный граф. Сети тесного мира позволяют получить короткое расстояние между узлами при небольшом числе связей

Sporns, O. (2011). The human connectome: a complex network. *Annals of the new York Academy of Sciences*, *1224*(1), 109-125.