Lost in translation?

Insights from the GLAD elementary flow mapping project

2022-05-16

Carl Vadenbo (vadenbo@ecoinvent.org) & Thomas Sonderegger, ecoinvent Association
Antonio Valente & Simone Fazio (formerly), EC-JRC
Koichi Shobatake, TCO2 Ltd for IDEA Japan
Ashley Edelen, Eastern Research Group (ERG) for U.S. EPA/Federal LCA Commons

- Databases, organisations, and people involved:
 - IDEA Japan/TCO2 Ltd: Koichi Shobatake, Selim Karkour
 - LCDN/EC-JRC: Simone Fazio, Antonio Valente + team
 - Federal LCA Commons/U.S. EPA: Wes Ingwersen, Ashley Edelen, and Troy Hottle (until Dec 2020)
 - ecoinvent Association (project coordination): Carl Vadenbo,
 Thomas Sonderegger, Gregor Wernet (during project initiation)

In addition to in-kind contributions by all database providers involved, ecoinvent and TCO2 Ltd received financial support from:

Project commissioned by:

The Global LCA Data Access (GLAD) network

www.globallcadataaccess.org

- Hosted by the UNEP under the Life Cycle Initiative
- A directory of LCA datasets from independent data providers (nodes) worldwide
 - Including datasets available for free and subjected to commercial licenses
 - Available to data providers and users free of charge
- Aim to advance use of LCA through better accessibility and interoperability of LCA data

BUT several different nomenclature systems exist in parallel in LCA databases and software tools...

Goal and scope of GLAD EF mapping project

- A dedicated project under the GLAD Nomenclature Working Group
 - Duration: October 2020 September 2021
- Aim: a common system for mapping nomenclature lists for elementary flows (EFs) among GLAD nodes
- Goals
 - To create mapped EF files between the nomenclature/EF lists of four major LCA database sources (GLAD nodes)
 - Documentation of common issues, and proposed or implemented solutions
- Limitations what was not included in the scope:
 - Establishing a 'central' or 'universal' GLAD EF list
 - Imposing any modifications to the native EF lists (or otherwise ensuring 100% of EFs mapped)
 - Ensuring LCIA result consistency a general ambition

What is an elementary flow (EF) anyway..?

- An (environmentally-relevant) interaction between the technosphere and the natural environment
 - Materials, energy, space, ...
- 'elementary flow' = 'flowable' + 'context' + 'flow unit'
 - flowable: flow name, e.g. "sulfur dioxide"
 - **context**: environmental compartment + sub-compartment(s), e.g., "emission/air/urban close to ground"
 - flow unit and its associated flow property e.g., "kg" for mass

EF list	Flowables	Contexts	Flows
ILCD-EF 3.0	7'741	36	93'993
FEDEFL v1.0.3	5'933	114	278'602
IDEA v2.3	612	20	903
ecoinvent v3.7	1'404	22	4'310

Approach of the GLAD EF mapping project The GLAD Mapper tool

Outline of the mapping algorithm

- 1. Mapping (or not!) based on user-defined mapping inputs
- 2. Automated matching based on flow attributes
 - i. By CAS Registry Number, for chemical substances
 - ii. By flow name (flowable)
 - iii. By flow name \leftrightarrow synonyms
- 3. Additional matching
 - By secondary CAS number (sourced from PubChem)
 - ii. Matching flowables of lower priority (more generic or acceptable proxies)
- 4. Drop unmatched items
- 5. Assign conversion factors (where available)

Approach of the GLAD EF mapping project

Context (compartment) mapping

Technosphere

emission/air emission/air Source-side context Target-side context IDEA/EF ecoinvent/EF Emissions/air/non-urban air/non-urban air or from high stacks now Emissions/air/unspecified air/unspecified emission/soil emission/ground air/non-urban air or from high stacks Emissions/air/urban high stacks >100 years long-term) agricultural agricultural Emissions/air/urban air close to ground air/urban air close to ground sphere sphere Emissions/ground/unspecified soil/unspecified n Factor Emissions/water/sea water water/ocean Emissions/water/unspecified water/unspecified ıl manual modificatio Resources/land use/land occupation natural resource/land emission/air emission/air Resources/land use/Land transformation natural resource/land stratosphere lower stratosphere Resources/air/Renewable element resources natural resource/in air + upper troposphere echnosphere sphere natural resource/in air very high Resources/air/Renewable energy resources (non-urban or) high stacks high Resources/air/Renewable material resources natural resource/in air (urban air) close to ground ground level Both 'default' + acceptable 'proxy' options defined!

Technosphere

Approach of the GLAD EF mapping project

Flowable library

Mapping outputs

Coverage of elementary flow map files

Final mapping coverage (7th iteration)							
Target Source	ILCD-EF 3.0	ecoinvent EF v3.7	FEDEFL v1.0.3	IDEA v2.3	(IDEA v2.2)		
ILCD-EF 3.0	Χ	23.5%	62.3%	17.3%	15.1%		
ecoinvent EF v3.7	98.6%	X	94.5%	41.2%	31.3%		
FEDEFL v1.0.3	89.4%	28.8%	Χ	20.7%	16.5%		
IDEA v2.3	95.0%	68.0%	90.3%	Χ	X		
(IDEA v2.2)	92.9%	89.8%	84.9%	Χ	X		

Breakdown of total number of matches (over the four lists)

Global **LCA**Data Access

Discussion

- A learning process: unique opportunity explore similarities and differences between elementary flow lists
- A key limitation: focus on flow-level equivalence, largely disregarding:
 - Inventory modelling approaches
 - LCIA method implementations

Highly important to ensure score consistency

- The trade-offs
 - Precision vs. coverage of mapped files
 - Mapping consistency across EF list combinations
 - Manual mapping+review vs. auto-generated matches and proxies

Outlook and ongoing work

- Test mapping outputs in data exchange format conversions
 - GLAD Converter
 - Lavoisier Converter (developed by UTFPR/IBICT for the SICV database in Brazil)
- Dissemination of project deliverables on UNEP's GitHub repository
 - Mapping scripts and mapped files

https://github.com/UNEP-Economy-Division

- Guidance and documentation
- Release of GLAD Mapper tool by the EC-JRC (freely available)
- Underpin GLAD-GLAM* dialogue
- Scientific publication of GLAD EF mapping approach (in preparation)

Thank you for your attention!

In addition to in-kind contributions by all database providers involved, ecoinvent and TCO2 Ltd received financial support from:

Project commissioned by:

www.globallcadataaccess.org