

Team Presentation

Shailza Rattu

Susana Villagrana

Jennifer Rocha

Process

Key Details

Key Partners

- Shailza Rattu
- Susana Villagrana
- Jennifer Rocha

Data

- <u>2015.csv</u> "Happiness by Country for 2015"
- <u>2016.csv</u> "Happiness by Country for 2016"
- master.csv "Suicide Rates by year and country from 1985 to 2016"

Data ETL

- Extracted from Kaggle data sets.

Transform:

- These files did not have columns with the year so that was added.
- Concat was used to stack the two dataframes.
- Renamed some columns for ease of use in the database.
- Added country code for use with visualizations

Loading:

- Once the data was cleaned up pandas was used to turn the dataframe into a dictionary. Pymongo helped to load the data into a "happy_db" MongoDB DataBase with collection names of "happy" and "suicide."

Flask

- Used to connect database from MongoDb to feed to our JavaScript for plotting.
- Created route that included both collections within the database.
- Returned the results jsonified for use in JS.
- -Removed nulls

HTML/CSS

- Used to display the dashboard of interactive visuals.
- Drop down menu operates all visuals.
- Bootstrap file added to style the page
- Anime script added for to animate the page header.
- Scrolling function added to table.

JavaScript

- Used to display the dashboard of interactive visuals.
- Drop down menu operates all visuals.
- Filters to sort data by year.
- Plotly for plotting multiple traces to different table, bubble, bar, and map plots.
- Anime.js to animate the header.
- optionChanged, aggregation and unpack functions used on the data for plotting.

Tools and Languages

- Jupyter Notebook
- Flask
- MongoDB
- JavaScript
- Plotly
- -HTML
- CSS/Bootstrap
- Anime.js to animate the
- GitHub

Additional Analysis Considerations

- Relationship between suicide rates and life expectancy.
- Additional years available to see if there are more trends for the data pieces over a longer period of time.
- Connection between population and either suicide rate, life expectancy, or overall happiness.
- Do the other factors like Freedom, Generosity, or Government Corruption impact any of the rates we have been evaluating?


```
var ss_filtered = myData.suicide.filter(x => x.year == '2015');
                         Project-3-happiness-t var suicide = [];
                                     from flas | var tmp_sNo = 0;
                                     from flasi var sPer = 0;
for (var i = 0; i < ss_filtered.length; i++) [
Key Partners
                                                                                                                                                                                              nguages
- Shailza Rattu
                                                                                                                                                                                              book
                                                            if (i == (ss_filtered.length-1)) {
                                                               tmp sNo = tmp sNo + ss filtered[i].suicides no;
                                     app = Flas
- Susana Villagrana
                                                               tmp_pop = tmp_pop + ss_filtered[i].population;
                                                               sPer = (tmp sNo / tmp pop)* 100000;
                                                               suicide.push({"country": ss_filtered[i].country,
- Jennifer Rocha
                                                                   "year": ss_filtered[i].year,
                                     mongo = P\
                                                                   "suicideNo": tmp sNo,
                                                                   "population": tmp_pop,
                                                                   "perOne": sPer})
                                                               tmp_sNo = 0;
                                     @app.route
                                                               tmp pop = 0;
                                                            else if (ss_filtered[i].country==ss_filtered[i+1].country && ss_filtered[i].year==ss_filtered[i+1].year) {
                                     def db pir
                                                               tmp_sNo = tmp_sNo + ss_filtered[i].suicides_no;
                                                               tmp_pop = tmp_pop + ss_filtered[i].population;
                                                           } else {
                                                               tmp_sNo = tmp_sNo + ss_filtered[i].suicides_no;
Data
                                             returi
                                                               tmp_pop = tmp_pop + ss_filtered[i].population;
                                                               sPer = (tmp sNo / tmp pop) * 100000;
                                                                                                                                                                                              nimate the
CSV files from Kaggle
                           12
                                                               suicide.push({"country": ss_filtered[i].country,
                                                                   "year": ss_filtered[i].year,
                            13
- 2015.csv "Happines
                                     @app.route
                                                                   "suicideNo": tmp_sNo,
                                                                   "population": tmp pop,
for 2015"
                                     def db dat
                                                                   "perOne": sPer})
                                                               tmp_sNo = 0;
- 2016.csv "Happines
                                                               tmp pop = 0;
for 2016"
                                             db da1
                                                                                                                                                             ror': False})
- master.csv "Suicide
                                                           happy_filtered = myData.happiness.filter(x => x.year == '2015');
                                                                                                                                                             ear': False})
and country from 198
                                             data = var scatterData = [];
                                                                                                                                                             x in ss data]}
                                             print( var tmp_sNo = 0;
 var tmp_pop = 0;
Additional Analysi
                                                        var sPer = 0;
                                             returi for (var z = 0; z < suicide.length; z++) {
- Relationship betwe
                                                            for (var t = 0; t < happy filtered.length; t++) {
                            21
                                                               if (suicide[z].country==happy_filtered[t].Country && suicide[z].year==happy_filtered[t].year) {
- Additional years ava
                                                                   scatterData.push({"country": suicide[z].country,
                            22
                                     if name
                                                                       "year": suicide[z].year,
                                                                       "suicideNo": suicide[z].suicideNo.
                           23
- Connection betwee
                                             app.ru
                                                                       "population": suicide[z].population,
                                                                       "perOne": suicide[z].perOne,
                           24
- Do the other factors
                                                                       "happiness_score": happy_filtered[t].happiness_score})
```

Key Details

Key Partners

- Shailza Rattu
- Susana Villagrana
- Jennifer Rocha

Data

CSV files from Kaggle:

- <u>2015.csv</u> "Happiness by Country for 2015"
- <u>2016.csv</u> "Happiness by Country for 2016"
- master.csv "Suicide Rates by year and country from 1985 to 2016"

Data ETL

Extracting:

- Extracted from Kaggle data sets.

Transform:

- These files did not have columns with the year so that was added.
- Concat was used to stack the two dataframes.
- Renamed some columns for ease of use in the database.
- Added country code for use with visualizations

Loading:

- Once the data was cleaned up pandas was used to turn the dataframe into a dictionary. Pymongo helped to load the data into a "happy_db" MongoDB DataBase with collection names of "happy" and "suicide."

- MongoDb to feed to our JavaScript for plotting.
- Created route that included both collections within the database.
- Returned the results jsonified for use in JS.
- -Removed nulls

HTML/CSS

- Used to display the dashboard of interactive visuals.
- Drop down menu operates all visuals.
- Bootstrap file added to style the page
- Anime script added for to animate the page header.
- Scrolling function added to table.

JavaScript

- Used to display the dashboard of interactive visuals.
- Drop down menu operates all visuals.
- Filters to sort data by year.
- Plotly for plotting multiple traces to different table, bubble, bar, and map plots.
- Anime.js to animate the header.
- optionChanged, aggregation and unpack functions used on the data for plotting.

Tools and Languages

- MongoDB
- JavaScript
- Plotly
- -HTML
- CSS/Bootstrap
- Anime.js to animate the
- GitHub

Additional Analysis Considerations

- Relationship between suicide rates and life expectancy.
- Additional years available to see if there are more trends for the data pieces over a longer period of time.
- Connection between population and either suicide rate, life expectancy, or overall happiness.
- Do the other factors like Freedom, Generosity, or Government Corruption impact any of the rates we have been evaluating?

A few questions we had of the data:

- What country ranks the highest for the happiest people?
- Are there any large variations between the years?
- Can you see any correlation between suicide rates and countries happiness score?
- Is there a connection between a country's happiness score and their life expectancy rates?

Maps

Use the drop down button below to view charts by year.

May Select One

World Happiness Map

Countries that were happy stayed happy

Country	Happiness Score	Happiness Rank
Switzerland	7.587	1
Iceland	7.561	2
Denmark	7.527	3
Norway	7.522	4
Canada	7.427	5
Finland	7.406	6
Netherlands	7.378	7
Sweden	7.364	8
New Zealand	7.286	9
Australia	7.284	10
Israel	7.278	11
Costa Rica	7.226	12
Austria	7.2	13
Mexico	7.187	14
United States	7.119	15
Brazil	6.983	16
Luxembourg	6.946	17

Denmark	7.526	1
Switzerland	7.509	2
Iceland	7.501	3
Norway	7.498	4
Finland	7.413	5
Canada	7.404	6
Netherlands	7.339	7
New Zealand	7.334	8
Australia	7.313	9
Sweden	7.291	10
Israel	7.267	11
Austria	7.119	12
United States	7.104	13
Costa Rica	7.087	14
Puerto Rico	7.039	15
Germany	6.994	16
Brazil	6.952	17
Belgium	6.929	18

JavaScript code that went into building these:

Sont the Data

Prep data for plotting

```
function unpack(rows, key) {
    return rows.map(function (row) { return row[key]; });
var data = [{
    type: 'choropleth',
    locations: unpack(rows, 'code'),
    z: unpack(rows, 'score'),
    text: unpack(rows, 'country'),
    colorscale: 'Portland',
    autocolorscale: false,
    reversescale: true.
    marker: {
        line: {
            color: 'rgb(180,180,180)',
            width: 0.5
    tick0: 0,
    zmin: 0,
    dtick: 1000,
    colorbar: {
        autotic: false.
        tickprefix: '',
        title: 'Happiness<br>Score'
```

Plot data to map and table

```
var layout = {
    geo: {
        showframe: false.
        showcoastlines: false,
        projection: {
            type: 'mercator'
    width: 800,
    height: 650
Plotly.newPlot("myDiv", data, layout, {showLink: false}, {responsive: true});
rows.forEach((row data) => {
    // Create tr for each row of the table
    const row = tbody.append("tr");
    // Create multiple td cells for each row
    Object.values(row data).forEach((value) => {
        if (value != '2015') {
            let cell = row.append("td");
            cell.text(value):
```


Based on average there seem to be a relation

Country happiness score vs it's number of suicides

Happiness Score vs Suicide Rates by Country

In addition to the analysis mentioned before, our wishlist is as below:

- Alignment fine tuning of certain elements throughout the page, including the colorbar on the world map, the card holders for the visuals, and the buttons on the bar graphs,
- Additional styling available,
- Additional pages to dig deeper into the visualizations,
- Reset the table data upon reload of the button.

Thanks!

Any questions?

