(Kerr) Naked Singularities Lurking in the Shadows

Bao "Tintin" Nguyen

The University of Arizona

Department of Astronomy and Physics

Nguyen et al. 2023 ApJ 954, 78

Chi-kwan Chan (U. Arizona)
Pierre Christian (Fairfield)

BLACK HOLE SHADOW

Black Hole "Shadow" - projection of unstable photon orbits

MOTIVATION

- EHT images of M87* and Sgr A*
- Shadows are signatures of Kerr (rotating) black holes in GR (Falcke et al. 2000, Johannsen & Psaltis 2010)
 - Projection of unstable photon orbits
 - Test of gravity
 - Independent from accretion physics
- Future space-based EHT will provide an even higher sensitive test of gravity!

M87*

BLACK HOLE MIMICKERS

Shadows are signatures of **Kerr black holes** in GR BUT shadows can also be mimicked by **other objects or gravity theories**

- Naked singularities (Hioki & Maeda 2009, Shaikh+ 2018)
- Boson stars (Vincent et al. 2016)
- No-horizon spacetimes (Kumar & Ghosh 2021)
- Deviations from Kerr spacetime (Vigeland et al. 2011, Johannsen & Psaltis 2011, Medeiros+ 2020)
- Constraints on these alternative models from images (M87* VI 2019, Sgr A* VI 2022)

The Black-Hole Shadow Test

Psaltis+ 2020

KERR NAKED SINGULARITY (KNS)

- Super-spinning "black holes", spin |a| > 1
 - Event horizon vanishes
- Theoretical motivation
 - O Cosmic censorship (Penrose 1969)
 - O String theory (Gimon & Horava 2009)
 - KNS is unstable in GR → test deviation
 from GR (Cardoso+ 2008, Dotti+ 2008)
 - M87* shadow is consistent with KNS with quantum gravity effects (Bambi+ 2018)

KNS SHADOW

KNS SHADOW

Fixed spin, varied inclination

NUMERICAL RAY TRACING

- Image plane with a 128 x 160 grid of photons
- Integrate light rays backward in time
- Differential geometry package fadge:

https://github.com/adxsrc/fadge (CK Chan)

NUMERICAL RESULTS

IMPLICATIONS

- Misconceptions that KNS shadow can't
 be closed (Kumar & Ghosh 2020)
- Test cosmic censorship from horizon-scale imaging
- Springboard to study perturbations of KNS and other naked singularity types

CONCLUSION

- KNS shadows can be closed, open, or vanishing
- Analytical results are reproduced by numerical ray tracing simulations
- Implications in testing gravitational physics through horizon-scale imaging

ApJ Paper

ACKNOWLEDGMENTS

Dr. Chi-kwan Chan (U. Arizona)

Dr. Pierre Christian (Fairfield U.)

Black Hole PIRE (U. Arizona)

NSF PIRE grant OISE-1743747

U. Arizona Department of Physics

THANK YOU FOR LISTENING!

Bao "Tintin" Nguyen
bnguyen20@arizona.edu
Nguyen et al. 2023 | ApJ 954, 78

Kerr metric

$$ds^{2} = \left(\frac{2Mr}{\Sigma} - 1\right) dt^{2} - \frac{4Mar}{\Sigma} \sin^{2}\theta \, dt \, d\phi$$
$$+ \frac{\Sigma}{\Delta} + \Sigma \, d\theta^{2} + \frac{\beta}{\Sigma} \sin^{2}\theta$$

$$\Sigma = r^2 + a^2 \cos \theta,$$

$$\Delta = r^2 + a^2 - 2Mr,$$

$$\beta = (r^2 + a^2)^2 - \Delta a^2 \sin^2 \theta.$$

Kerr metric

Hamilton-Jacobi equation (Carter 1968)

Radial effective potential $R(r, \Phi, Q)$

$$R(r) = r^4 + r^2(a^2 - \Phi^2 - Q)$$
$$+ 2Mr[(a - \Phi)^2 + Q] - a^2Q$$

Conserved: E = energy, L_z = angular momentum, C = Carter's Constant

Parameters: $\Phi = L_z/E$, Q = C/E

Kerr metric

Hamilton-Jacobi equation (Carter 1968)

Radial effective potential $R(r, \Phi, Q)$

Unstable SPOs: R(r) = dR/dr = 0 (Teo 2003)

 $\Phi(r)$, Q(r)

$$\Phi = -\frac{r^3 - 3r^2 + a^2r + a^2}{a(r-1)}$$

$$Q = -\frac{r^3(r^3 - 6r^2 + 9r - 4a^2)}{a^2(r-1)^2}$$

Conserved: E = energy, $L_7 = \text{angular momentum}$, C = Carter's Constant

Parameters: $\Phi = L_{7}/E$, Q = C/E

Kerr metric

Hamilton-Jacobi equation (Carter 1968)

Radial effective potential $R(r,\Phi,Q)$

Unstable SPOs: R(r) = dR/dr = 0 (Teo 2003)

 $\Phi(r)$, Q(r)

Projection (Bardeen et al. 1972)

 $\alpha[\Phi(r), Q(r)], \beta[\Phi(r), Q(r)]$

Credit: CK Chan (Arizona)

Conserved: E = energy, $L_7 = \text{angular momentum}$, C = Carter's Constant

Parameters: $\Phi = L_7/E$, Q = C/E

Kerr metric

Hamilton-Jacobi equation (Carter 1968)

Radial effective potential $R(r, \Phi, Q)$

Unstable SPOs: R(r) = dR/dr = 0 (Teo 2003)

$$\Phi(r)$$
, $Q(r)$

Projection (Bardeen et al. 1972)

$\alpha[\Phi(r), Q(r)], \beta[\Phi(r), Q(r)]$

Shadow α -axis symmetry

$$\beta(r) = 0 \rightarrow \text{solve for } r_p (-r_{ms})$$

Conserved: E = energy, $L_7 = \text{angular momentum}$, C = Carter's Constant

Kerr metric

Hamilton-Jacobi equation (Carter 1968)

Radial effective potential $R(r,\Phi,Q)$

Unstable SPOs: R(r) = dR/dr = 0 (Teo 2003)

$$\Phi(r)$$
, $Q(r)$

Projection (Bardeen et al. 1972)

$$\alpha[\Phi(r), Q(r)], \beta[\Phi(r), Q(r)]$$

Shadow α -axis symmetry

$$\beta(r) = 0 \rightarrow \text{solve for } r_p (-r_{ms})$$

(More on null geodesics/SPOs: Chandrasekhar 1983)

20

Parameters: $\Phi = L_{7}/E$, Q = C/E

0.0

-20

80

60

Φ of different orbits projected to the image plane's shadow

2.4 2.2 C 2.0 A: Shadow with no gap 1.8 B: Shadow with gap C: No shadow 1.6 1.4 B 1.2 20 40 60 80 *i*[°]

Maximum Φ to sustain spherical orbits

Close to unstable spherical photon orbit

Asymmetry between ingoing and outgoing geodesics