E.1 On considère la suite (u_n) définie par : $u_0 = 5$; $u_{n+1} = \frac{1}{3} \cdot u_n + 4$ pour tout $n \in \mathbb{N}$

- 1 A l'aide d'un raisonnement par récurrence, montrer que la suite (u_n) est majorée par 7.
- 2 A l'aide d'un raisonnement par récurrence, montrer que la suite (u_n) est croissante.
- 3 En déduire que la suite (u_n) est convergente.

E.2 On considère la suite (u_n) définie par:

$$u_0 = 1$$
 ; $u_{n+1} = \sqrt{2u_n}$ pour tout entier naturel n .

- 1 Démontrer que, pour tout entier naturel $n: 0 < u_n \le 2$.
- 2 Déterminer le sens de variation de la suite (u_n) .
- 3 Démontrer que la suite (u_n) est convergente. On ne demande pas la valeur de sa limite.