28.04.2017

INFO-4185 Grundlagen des Maschinellen Lernens

Andreas Schilling

Inhalt

28.04.2017

Heute:

- Einführung
- Anwendungen
- Techniken

Was ist Maschinelles Lernen?

28.04.2017

Lernen: Verhaltensanpassung durch

- Erwerb von Wissen und Fähigkeiten
- Das Wesentliche, die Essenz aus (möglichst wenigen) Beispieldaten extrahieren

Die Fähigkeit, aus Erfahrung zu Lernen, ist wesentlicher Teil jedes intelligenten Systems

Die Beschäftigung mit Maschinenlernen hilft, auch das menschliche Lernen besser zu verstehen

Was ist Machine Learning?

28.04.2017

Voraussetzung:

Verschiedene Situationen sind ähnlich

Frage:

Was ist Ähnlichkeit

Anwendungen:

28.04.2017

- Klassifizierung
- Regression
- Bestimmung von Parametern aus Daten
- Prädiktion
- Dimensionalitätsreduktion (Beseitigung von Redundanz, Extraktion von Wesentlichem)
- Clusteranalyse
- Modellierung der Datenentstehung
- Detektion von Ausreißern

auf der Grundlage von (Beispiel-)Daten

Klassifizierung

28.04.2017

Automatische Unterscheidung zw. Lachs und Seebarsch

FIGURE 1.1. The objects to be classified are first sensed by a transducer (camera), whose signals are preprocessed. Next the features are extracted and finally the classification is emitted, here either "salmon" or "sea bass." Although the information flow is often chosen to be from the source to the classifier, some systems employ information flow in which earlier levels of processing can be altered based on the tentative or preliminary response in later levels (gray arrows). Yet others combine two or more stages into a unified step, such as simultaneous segmentation and feature extraction. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Klassifizierung

28.04.2017

Gesichtsdetektion

Diplomarbeit W Kienzle 2003

Regression – Bestimmung von Parametern aus Daten

28.04.2017

Prädiktion

28.04.2017

Börsenvorhersagen

Expert Prediction, Symbolic Learning, and Neural Networks: An Experiment on Greyhound Racing

H. Chen¹, P. Buntin, L. She, S. Sutjahjo, C. Sommer, D. Neely

Conclusion

In terms of prediction accuracy and monetary payoff, both the Backpropagation network and ID3 performed better than human experts. Both algorithms

Dimensionalitätsreduktion (Beseitigung von Redundanz)

28.04.2017

Beispiel: Eigenfaces

Clustering

28.04.2017

Beispiel: Segmentierung

28.04.2017

28.04.2017

Trainingsdaten:

28.04.2017

Testdaten:

28.04.2017

Trainingsdaten:

28.04.2017

Testdaten:

Maschinelles Lernen: Was wird gelernt

28.04.2017

Die Aufgabe:

oft als Funktion darstellbar: y = f(x, w)

x, y: Eingabe, Ausgabe; w: Parameter

- Regression: y ist kontinuierlich
- Klassifikation: y ist diskret
- manchmal interessiert auch eine Verteilung p(y|x)
 (Density Estimation)

28.04.2017

Voraussage des Körperfettes durch den BMI

Abbildung aus: http://www.unizh.ch/biostat/Lehre/korr-regr-1jk.pdf

Klassifikation: Beispiele

28.04.2017

Zeichenerkennung

spam filter

Maschinen Lernen: Besser werden!

28.04.2017

Wie wird Erfolg gemessen?

- Maßzahl, z.B. Anteil korrekt klassifizierter Bilder
 - Bei Anwendung auf Trainingsdaten
 - Bei Anwendung auf neue Daten (Generalisierung)

Maschinen Lernen: Womit wird gelernt

28.04.2017

Die Daten:

Supervised Learning:

Daten mit Kennzeichnung (Ein- und Ausgabe)

Unsupervised Learning:

Daten ohne Kennzeichnung

Maschinen Lernen: Wie wird gelernt

28.04.2017

Lernen ist Optimieren:

Maximierung der Performanz:

- Suche nach bestem Modell
- Suche nach besten Parametern

28.04.2017

Grundlagen

Normalverteilung, Kovarianz

28.04.2017

Normalverteilung:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

- innerhalb ±σ: ~68%
- innerhalb ±2σ: ~ 95%
- innerhalb ±3σ: ~ 99.7%

28.04.2017

Zwei Normalverteilungen:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-a)^2}{2\sigma_1^2}}$$

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-b)^2}{2\sigma_2^2}}$$

28.04.2017

Kombination

durch Multiplikation

$$h(x)$$

$$= f(x)g(x)$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1\sigma_2} e^{-\frac{(x-a)^2}{2\sigma_1^2} - \frac{(x-b)^2}{2\sigma_2^2}}$$

28.04.2017

Normierung von h(x):

$$h_n(x) = \frac{1}{\sqrt{2\pi\sigma_3}} e^{-\frac{(x-c)^2}{2\sigma_3^2}}$$

$$c = \frac{a\sigma_2^2 + b\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$

$$\frac{1}{\sigma_3^2} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}$$

28.04.2017

2-Dimensional:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\frac{1}{2}\left(\frac{(x-a)^2}{\sigma_x^2} + \frac{(y-b)^2}{\sigma_y^2}\right)}$$

28.04.2017

2-Dimensional,
nicht achsenparallel (mit
Hilfe der Kovarianzmatrix
[σ²]=C):

$$f(\mathbf{x}) = ce^{-\frac{1}{2}\mathbf{x}^T\mathbf{C}^{-1}\mathbf{x}}$$

28.04.2017

Kovarianzmatrix kann berechnet werden als Erwartungswert der quadrierten Abweichungen vom wahrscheinlichsten Wert.

Inneres Produkt (Skalarprodukt): y^Tx

$$\begin{vmatrix} \mathbf{y}^T \mathbf{x} = (y_1 & y_2 & y_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Äußeres Produkt: yx^T

$$\begin{vmatrix} \mathbf{y} \mathbf{x}^T = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} = \begin{pmatrix} y_1 x_1 & y_1 x_2 & y_1 x_3 \\ y_2 x_1 & y_2 x_2 & y_2 x_3 \\ y_3 x_1 & y_3 x_2 & y_3 x_3 \end{pmatrix}$$

28.04.2017

Kovarianzmatrix

$$\mathbf{d}_{i} = \begin{pmatrix} d_{x,i} \\ d_{y,i} \\ d_{z,i} \end{pmatrix} = \mathbf{x}_{i} - \overline{\mathbf{x}}_{i} = \begin{pmatrix} x_{i} \\ y_{i} \\ z_{i} \end{pmatrix} - \begin{pmatrix} \overline{x}_{i} \\ \overline{y}_{i} \\ \overline{z}_{i} \end{pmatrix}$$

$$\mathbf{C} = \mathbf{E} \left[\mathbf{d} \mathbf{d}^{T} \right] = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} d_{x,i}^{2} & d_{x,i} d_{y,i} & d_{x,i} d_{z,i} \\ d_{x,i} d_{y,i} & d_{y,i}^{2} & d_{y,i} d_{z,i} \\ d_{x,i} d_{z,i} & d_{y,i} d_{z,i} & d_{z}^{2} \end{bmatrix}$$

Übungen / Praktikum Bewertung und Anrechnung

28.04.2017

Zusammenhängende Lehrveranstaltungen:

- Vorlesung + Übungen 2-stündig (6 LP)
- Praktikum im Wintersemester
 4-stündig (INFO-4162) für Master
- 6 LP Praktische Informatik

Benotung für BSc/MSc

- Vorlesung: Klausur am 28. Juli (Voraussetzung: Übungen)
- Übungen: Bonus für Klausur (max. 20%).

Kriterien für Übungen:

- alle Übungsblätter bearbeitet
- mindestens 50% der Punkte

28.04.2017

Tobias Lang
Raum C411
Tel. 78968
t.lang@uni-tuebingen.de

Mathias Schickel
Raum C411
Tel. 78968
msch@fa.uni-tuebingen.de

Ressourcen

28.04.2017

Vorlesungsfolien, Papers usw.

- ILIAS-System
 - Informatik » Visual Computing
 » INF4185 Grundlagen des Maschinellen Lernens
- Password: evidence17