ECE 6350

Review of Field Representation Via Potential Integrals

D. R. Wilton

University of Houston

Ref: Scattering Notes, p. 2

Maxwell's Equations

Maxwell's equations in frequency domain with $e^{j\omega t}$ time convention factor assumed and suppressed:

•
$$\nabla \times \mathbf{E} = -j\omega \mathbf{B}$$
 (Faraday's Law)

•
$$\nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J}$$
 (Ampere's Law)

•
$$\nabla \cdot \mathbf{D} = q$$
 (Electric Form of Gauss's Law)

•
$$\nabla \cdot \mathbf{B} = 0$$
 (Magnetic Form of Gauss's Law)

Supplementary Equations

Continuity Equation:

• $\nabla \cdot \mathbf{J} = -j\omega q$ (q is volume charge density)

Constitutive Relations for Linear, Isotropic, Homogeneous Materials:

• **B** =
$$\mu$$
H $(\mu_0 \equiv 4\pi \times 10^{-7} [H/m])$

•
$$\mathbf{D} = \varepsilon \mathbf{E}$$
 $(\varepsilon_0 = \frac{1}{\mu_0 c_0^2}, c_0 = 2.99792458 \times 10^8 [\text{m/s}])$

Potential Representations

Magnetic Vector Potential:

$$\nabla \cdot \mathbf{B} = 0$$

$$\Rightarrow \mid \mathbf{B} = \nabla \times \mathbf{A}$$

Identities:

$$\nabla \cdot \nabla \times \mathbf{A} = 0$$

$$\nabla \times \nabla \Phi = 0$$

Electric Scalar Potential:

•
$$\nabla \times \mathbf{E} + j\omega \mathbf{B} = \nabla \times (\mathbf{E} + j\omega \mathbf{A}) = \mathbf{0} = -\nabla \times \nabla \Phi$$

$$\Rightarrow \qquad \mathbf{E} = -j\omega\mathbf{A} - \nabla\Phi$$

Vector Potential Helmholtz Equation

• Multiply Ampere's Law by μ , obtaining $\nabla \times (\mu \mathbf{H}) = j\omega \varepsilon \mu \mathbf{E} + \mu \mathbf{J}$, and substitute potential representations for \mathbf{E} , \mathbf{H} :

$$\nabla \times (\nabla \times \mathbf{A}) - k^2 \mathbf{A} + j\omega \varepsilon \mu \nabla \Phi = \mu \mathbf{J},$$
 where $k = \omega \sqrt{\varepsilon \mu}$ is the wavenumber

• Use identity $\nabla \times (\nabla \times \mathbf{A}) \equiv \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$ to write $\nabla^2 \mathbf{A} + k^2 \mathbf{A} - \nabla (\nabla \cdot \mathbf{A} + j\omega \varepsilon \mu \Phi) = -\mu \mathbf{J}$

• Choose the Loren's z gauge condition, $\nabla \cdot \mathbf{A} = -j\omega\varepsilon\mu\Phi$ to obtain the vector (Helmholtz) wave equation

$$\nabla^2 \mathbf{A} + k^2 \mathbf{A} = -\mu \mathbf{J}$$

Solution for Vector Potential Wave Equation

The *outgoing* solution for the wave equation,

$$\nabla^2 \mathbf{A} + k^2 \mathbf{A} = -\mu \mathbf{J}$$

in infinite, linear, homogeneous, isotropic media is

$$\mathbf{A}(\mathbf{r}) = \mu \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \mathbf{J}(\mathbf{r}') d\mathcal{V}'$$

where
$$G(\mathbf{r},\mathbf{r}') \equiv \frac{e^{-jkR}}{4\pi R}$$
, $R \equiv |\mathbf{r} - \mathbf{r}'|$. $G(\mathbf{r},\mathbf{r}')$ is the free space or homogeneous medium

Green's function

Definitions of Geometrical Quantities

Definitions of Geometrical Quantities

Scalar Potential Wave Equation

 Substitute both the constitutive equation and potential representation into Gauss's Law:

$$\nabla \cdot \mathbf{D} = \nabla \cdot \left[\varepsilon (\underbrace{-j\omega \mathbf{A} - \nabla \Phi}) \right] = q$$

• Use the Loren z gauge condition, $\nabla \cdot \mathbf{A} = -j\omega \varepsilon \mu \Phi$, and $\nabla \cdot \nabla \equiv \nabla^2$ to obtain the scalar wave (Helmholtz) equation

$$\nabla^2 \Phi + k^2 \Phi = -\frac{q}{\varepsilon}, \quad \left(k^2 = \omega^2 \varepsilon \mu\right)$$

Solution for Scalar Potential Wave Equation

The outgoing solution of the scalar wave equation,

$$\nabla^2 \Phi + k^2 \Phi = -\frac{q}{\varepsilon} ,$$

is

$$\Phi(\mathbf{r}) = \frac{1}{\varepsilon} \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') q(\mathbf{r}') d\mathcal{V}'$$
$$= -\frac{1}{j\omega\varepsilon} \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{J}(\mathbf{r}') d\mathcal{V}'$$

where $G(\mathbf{r}, \mathbf{r}') = \frac{e^{-jkR}}{4\pi R}$ is the homogeneous medium

scalar Green's function and $R \equiv |\mathbf{r} - \mathbf{r}'|$

Summary of Mixed Potential Representation for Electric and Magnetic Fields Produced by Electric Current Sources

$$\mathbf{E} = -j\omega\mathbf{A} - \nabla\Phi$$

$$\mathbf{H} = \frac{1}{\mu} \nabla \times \mathbf{A}$$

where the magnetic vector potential is

$$\mathbf{A}(\mathbf{r}) = \mu \int_{\mathcal{V}} \frac{e^{-jkR}}{4\pi R} \mathbf{J}(\mathbf{r}') d\mathcal{V}' = \mu \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \mathbf{J}(\mathbf{r}') d\mathcal{V}'$$

and the electric scalar potential is

$$\Phi(\mathbf{r}) = \int_{\mathcal{V}} \frac{e^{-jkR}}{4\pi\varepsilon R} \ q(\mathbf{r}') d\mathcal{V}' = -\frac{1}{j\omega\varepsilon} \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \ \nabla' \cdot \mathbf{J}(\mathbf{r}') d\mathcal{V}'$$

The Mixed Potential Representation Applies to More General Electric Current Density Types

$$\mathbf{E} = -j\omega\mathbf{A} - \nabla\Phi$$

$$\mathbf{H} = \frac{1}{\mu} \nabla \times \mathbf{A}$$

 The potential representation also applies to other current density distributions. E.g. one can write

$$\mathbf{A}(\mathbf{r}) = \mu \int_{\mathcal{D}} \frac{e^{-jkR}}{4\pi R} \mathbf{J}_{\mathcal{D}}(\mathbf{r}') d\mathcal{D}' = \mu \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \mathbf{J}_{\mathcal{D}}(\mathbf{r}') d\mathcal{D}'$$

where $\mathcal{D} = \mathcal{V}, \mathcal{S}$, or \mathcal{C} and $\mathbf{J}_{\mathcal{D}}(\mathbf{r}') d\mathcal{D}'$ is an elemental dipole, $\mathbf{J}_{\mathcal{V}}(\mathbf{r}') d\mathcal{V}'$, $\mathbf{J}_{\mathcal{S}}(\mathbf{r}') d\mathcal{S}'$, or $\mathbf{J}_{\mathcal{C}}(\mathbf{r}') d\mathcal{C}' \equiv I \hat{\ell} d\mathcal{C}'$, respectively.

Similarly, the scalar potential is

$$\Phi(\mathbf{r}) = \frac{1}{\varepsilon} \int_{\mathcal{D}} \frac{e^{-jkR}}{4\pi R} q_{\mathcal{D}}(\mathbf{r}') d\mathcal{D}' = \frac{1}{\varepsilon} \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') q_{\mathcal{D}}(\mathbf{r}') d\mathcal{D}'$$

For mixed density types, superposition applies

Note: Alternative Potential Representations for Electric Field Are Not as Convenient as *Mixed Potentials* for Numerical Work

•
$$\mathbf{E} = -j\omega\mathbf{A} - \nabla\Phi$$
 (mixed potential) (1)
Using the Loren \mathbf{X} gauge,
$$\Phi = -\frac{1}{2}\nabla \cdot \mathbf{A}$$

$$\Phi = -\frac{1}{j\omega\varepsilon\mu}\nabla\cdot\mathbf{A}\,,$$

 \Rightarrow

$$\mathbf{E} = \frac{-j\omega}{k^2} \left(k^2 \mathbf{A} + \nabla \nabla \cdot \mathbf{A} \right)$$
 (vector potential) (2)

• (1) and (2) are *analytically* equivalent, but (2) is more difficult to evaluate numerically!

Dimension-Independent Divergence Definition and Theorem

Definitions:

- J,D,B are "flux" ("flow") vectors
- Domain $\mathcal{D} = \mathcal{P}, \mathcal{C}, \mathcal{S}, \mathcal{V}$ (point, curve, surface, volume)

• "Boundary of
$$\mathcal{D}$$
" = $\partial \mathcal{D} \equiv \mathcal{B} = \begin{cases} \mathcal{P} \text{ if } \mathcal{D} = \mathcal{C} \text{ (open),} \\ \mathcal{C} \text{(closed)} \text{ if } \mathcal{D} = \mathcal{S} \text{ (open),} \\ \mathcal{S} \text{(closed) if } \mathcal{D} = \mathcal{V} \end{cases}$

• "Measure of
$$\mathcal{D}$$
" = meas \mathcal{D} =
$$\begin{cases} length of \mathcal{C} \\ area of \mathcal{S} \\ volume of \mathcal{V} \end{cases}$$

- $\hat{\mathbf{u}}$ is normal to \mathcal{B} and "tangent" to \mathcal{D}
- Flux of a vector $\mathbf{F} = \oint_{\partial \mathcal{D}} \mathbf{F} \cdot \hat{\mathbf{u}} \, d\mathcal{B}$
- "Divergence of \mathbf{F} " $\equiv \nabla \cdot \mathbf{F} \equiv \lim_{\substack{\text{meas } \mathcal{D} \\ \to 0}} \frac{1}{\text{meas } \mathcal{D}} \oint_{\partial \mathcal{D}} \mathbf{F} \cdot \hat{\mathbf{u}} d\mathcal{B}$
- Divergence Thm: $\int_{\mathcal{D}} \nabla \cdot \mathbf{F} d\mathcal{D} = \oint_{\partial \mathcal{D}} \mathbf{F} \cdot \hat{\mathbf{u}} d\mathcal{B}$

Examples of Divergence Theorem

Application

• In 3 - D, $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$

$$\nabla \cdot \mathbf{r} = \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}\right) \cdot \left(x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}\right) = 1 + 1 + 1 = 3$$

Applying to tetrahedron shown $\Rightarrow \int_{\mathcal{V}} \nabla \cdot \mathbf{r} \, d\mathcal{V} = 3 \int_{\mathcal{V}} d\mathcal{V} = 3 \mathcal{V} = \oint_{\mathcal{S}} \mathbf{r} \cdot \hat{\mathbf{u}} \, d\mathcal{S}$ $= \oint_{\mathcal{S}} \mathbf{r} \cdot \hat{\mathbf{z}} \, d\mathcal{S} = \oint_{\mathcal{S}} h \, d\mathcal{S} = h\mathcal{S}$

$$\Rightarrow \boxed{\mathcal{V} = \frac{1}{3}h\mathcal{S}}$$

• In 2 - D, $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}}$

$$\nabla \cdot \mathbf{r} = \left(\hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y}\right) \cdot \left(x\hat{\mathbf{x}} + y\hat{\mathbf{y}}\right) = 1 + 1 = 2$$

Applying to triangle shown, $\Rightarrow \int_{\mathcal{S}} \nabla \cdot \mathbf{r} \, d\mathcal{S} = 2 \int_{\mathcal{S}} d\mathcal{S} = 2 \mathcal{S} \stackrel{\text{thm.}}{=} \oint_{\mathcal{C}} \mathbf{r} \cdot \hat{\mathbf{u}} \, d\mathcal{C} = \oint_{\mathcal{C}} h \, d\mathcal{C} = h\ell$

$$\Rightarrow \boxed{\mathcal{S} = \frac{1}{2}h\ell}$$

Use Superposition and Duality to Include **Magnetic Current Sources**

Maxwell's Equations: E = E + E, H = H + H

•
$$\nabla \times \mathbf{E} = -j\omega\mu\mathbf{H} - \mathbf{M}$$
 (Faraday's Law)

•
$$\nabla \times \mathbf{H} = j\omega \varepsilon \mathbf{E} + \mathbf{J}$$
 (Ampere's Law)

$$\bullet \nabla \cdot \mathbf{D} = q = \frac{\nabla \cdot \mathbf{J}}{-j\omega}$$

(Electric Form of Gauss's Law)

$$\bullet \nabla \cdot \mathbf{B} = m = \frac{\nabla \cdot \mathbf{M}}{-j\omega}$$

(Magnetic Form of Gauss's Law)

$$\mathbf{E} = -j\omega\mathbf{A} - \nabla\Phi - \frac{1}{\varepsilon}\nabla \times \mathbf{F}$$

$$\mathbf{H} = -j\omega\mathbf{F} - \nabla\Psi + \frac{1}{\mu}\nabla \times \mathbf{A}$$

where

Magnetic vector potential

$$\mathbf{A}(\mathbf{r}) = \mu \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \, \mathbf{J}(\mathbf{r}') \, d\mathcal{D}'$$

$$\mathbf{F}(\mathbf{r}) = \varepsilon \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \, \mathbf{M}(\mathbf{r}') \, d\mathcal{D}'$$

Electric vector potential

Duality:

Red

only

source terms

Blue

source

 $\mathbf{E} \rightarrow \mathbf{H}$

 $H \rightarrow -E$

 $J \rightarrow M$

 $A \rightarrow F$

 $q \rightarrow m$

 $\Phi \rightarrow \Psi$

 $\varepsilon \rightarrow \mu$

 $\mu \rightarrow \varepsilon$

terms

$$\Phi(\mathbf{r}) = -\frac{1}{j\omega\varepsilon} \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{J}(\mathbf{r}') d\mathcal{D}' \left[\Psi(\mathbf{r}) = -\frac{1}{j\omega\mu} \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{M}(\mathbf{r}') d\mathcal{D}' \right]$$

$$\Psi(\mathbf{r}) = -\frac{1}{j\omega\mu} \int_{\mathcal{D}} G(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{M}(\mathbf{r}') d\mathcal{D}'$$

Electric scalar potential

Magnetic scalar potential

Electrostatic and Magnetostatic Problems May Be Treated as Special Case with $\omega=0$

Electrostatics

$$\bullet \nabla \times \mathbf{E} = \mathbf{0}$$

$$\bullet \nabla \cdot \mathbf{D} = q$$

$$\Rightarrow \mathbf{E} = -\nabla \Phi$$

$$\nabla^2 \Phi = -\frac{q}{\varepsilon}$$

Magnetostatics

$$\bullet \nabla \times \mathbf{H} = \mathbf{J} \quad (\nabla \cdot \mathbf{J} = 0)$$

$$\bullet \nabla \cdot \mathbf{B} = 0$$

$$\Rightarrow \mathbf{B} = \nabla \times \mathbf{A}$$

$$\nabla^2 \mathbf{A} = -\mu \mathbf{J}, \ (\nabla \cdot \mathbf{A} = 0)$$

$$\Phi(\mathbf{r}) = \frac{1}{\varepsilon} \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \ q(\mathbf{r}') d\mathcal{V}' \qquad \mathbf{A}(\mathbf{r}) = \mu \int_{\mathcal{V}} G(\mathbf{r}, \mathbf{r}') \ \mathbf{J}(\mathbf{r}') d\mathcal{V}'$$

where
$$G(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi R}$$
, $R = |\mathbf{r} - \mathbf{r}'|$ $G(\mathbf{r}, \mathbf{r}')$ is the *static*

 $G(\mathbf{r},\mathbf{r}')$ is the static Green's function

Electrostatics in Conducting Media

Electrostatics in Conducting Media

•
$$\nabla \times \mathbf{E} = \mathbf{0} \implies \mathbf{E} = -\nabla \Phi$$

•
$$\mathbf{J} = \sigma \mathbf{E}$$

•
$$\nabla \cdot \mathbf{J} = 0 = \nabla \cdot (\sigma \mathbf{E}) = -\nabla \cdot (\sigma \nabla \Phi)$$

$$\Rightarrow \nabla \cdot (\sigma \nabla \Phi) = 0$$

The End