Quicksort

Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Quicksort [Hoare, 62]

- Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, ...
- Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
 - Στοιχεία αριστερής υπο-ακολ. ≤ στοιχείο διαχωρισμού.
 - Στοιχεία δεξιάς υπο-ακολ. ≥ στοιχείο διαχωρισμού.
- Ταξινόμηση υπο-ακολουθιών αναδρομικά.
- Ακολουθία ταξινομημένη όχι σύνθεση!

```
quickSort(int A[], int left, int right) {
   if (left >= right) return; // At most 1 element
   q = partition(A, left, right);
   quickSort(A, left, q);
   quickSort(A, q+1, right);
}
```

Διαίρεση

- Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, ...
- Διαίρεση σε ένα πέρασμα :
 - Σάρωση από αριστερά (με δείκτη i) μέχρι $A[i] \ge pivot$.
 - Σάρωση από δεξιά (με δείκτη j) μέχρι $A[j] \le pivot$.
 - Αν δεν έχουν εξεταστεί όλα τα στοιχεία (i < j): αντιμετάθεση(A[i], A[j]) και συνέχεια.
 - Αν έχουν εξεταστεί όλα: επιστροφή ορίου διαχωρισμού (δείκτη *j*).

Διαίρεση

```
partition(int A[], int left, int right) {
   int pivot = A[left]; i = left - 1; j = right + 1;
   while (1) {
      while (A[++i] < pivot) ;
      while (A[--j] > pivot) ;
      if (i < j) swap(A[i], A[j]);
      else return(j); }
}</pre>
```


Στοιχείο διαχωρισμού: 13

Διαίρεση

```
partition(int A[], int left, int right) {
   int pivot = A[left]; i = left - 1; j = right + 1;
   while (1) {
      while (A[++i] < pivot) ;
      while (A[--j] > pivot) ;
      if (i < j) swap(A[i], A[j]);
      else return(j); }
}</pre>
```


Στοιχείο διαχωρισμού: 10

Ανάλυση Διαχωρισμού

- Ορθότητα partition :
 - Διατηρεί και επεκτείνει αριστερή περιοχή με στοιχεία ≤ pivot και δεξιά περιοχή με στοιχεία ≥ pivot.
 - $A[i] \ge pivot : επέκταση αριστερής περιοχής σταματά.$
 - $A[j] \le pivot : επέκταση δεξιάς περιοχής σταματά.$
 - Ξένες περιοχές : αντιμετάθεση στοιχείων και συνέχεια.
 - Επικάλυψη : ολοκλήρωση διαίρεσης.
 - Τελικά τα στοιχεία αριστερά ≤ pivot και τα στοιχεία δεξιά ≥ pivot, όπως απαιτείται.
- □ Κάθε περιοχή ≥ 1 στοιχείο. **Quicksort τερματίζει.** (1 \leq σημείο διαχωρισμού $\leq n 1$)
 - Απαραίτητα: *i* και *j* σταματούν στο pivot.

Ανάλυση Διαχωρισμού

- □ Χρόνος εκτέλεσης **partition**:
 - Κάθε στοιχείο συγκρίνεται με pivot μία φορά (εκτός από στοιχεία εκατέρωθεν σημείου χωρισμού).
 - Τελικά *i* και *j* «δείχνουν» είτε γειτονικές είτε ίδια θέση γιατί όπου πέρασε το *i* δεν συνεχίζει *j*.
 - Χρόνος εκτέλεσης partition για η στοιχεία = Θ(η).
- Μετά τον διαχωρισμό, στοιχεία δεν αλλάζουν «πλευρά»
 (δηλ. αριστερά μένουν αριστερά, δεξιά μένουν δεξιά).
- Υπάρχουν πολλές άλλες μορφές διαίρεσης, π.χ. pivot παίρνει τελική του θέση στον πίνακα, διαίρεση στα τρία, ...

Παράδειγμα Quicksort

Ορθότητα Quicksort

- □ Συνέπεια ορθότητας **partition**:
 - Τερματισμός : μέγεθος υπο-ακολουθιών $\leq n-1$.
 - Ταξινόμηση :
 - □ Αριστερά στοιχεία ≤ pivot ≤ δεξιά στοιχεία.
 - Επαγωγικά, αριστερή περιοχή και δεξιά περιοχή ταξινομημένες.
 - Συνολικά, πίνακας ταξινομημένος.

Χρόνος Εκτέλεσης (χ.π.)

- Χρόνος εκτελ. αναδρομικών αλγ. με διατύπωση και λύση αναδρομικής εξίσωσης.
- \square Χρόνος εκτέλεσης **partition**(*n* στοιχεία) : $\Theta(n)$
- **Τ(n)** : χρόνος (χ.π.) για ταξινόμηση *n* στοιχείων.
 - Θ(n): αναδιάταξη και διαίρεση εισόδου.
 - T(k): ταξινόμηση αριστερού τμήματος (k στοιχεία).
 - T(n-k): ταξινόμηση δεξιού τμήματος (n-k) στοιχεία).

$$T(n) = \Theta(n) + \max_{1 \le k \le n-1} \{ T(k) + T(n-k) \}, \quad T(1) = \Theta(1)$$

Χρόνος Εκτέλεσης (χ.π.)

$$T(n) = \Theta(n) + \max_{1 \le k \le n-1} \{ T(k) + T(n-k) \}, \quad T(1) = \Theta(1)$$

- Χειρότερη περίπτωση : k = 1 ή k = n 1 (σε κάθε κλήση).
 - Ουσιαστικά δεν γίνεται διαίρεση (μόνο αναδιάταξη)!
 - Partition «βοηθάει ελάχιστα» τον αλγόριθμο.

$$T(n) = \Theta(n) + T(n-1) + T(1), \quad T(1) = \Theta(1)$$

 $T(n) = \Theta(n) + \Theta(n-1) + \Theta(n-2) + \dots + \Theta(1) = \Theta(n^2)$

 \square Στιγμιότυπα που quicksort χρειάζεται χρόνο $\Omega(n^2)$;

Χρόνος Εκτέλεσης

- **Καλύτερη περίπτωση** : k = n / 2 (σε κάθε κλήση).
 - Ουσιαστικά τέλεια διαίρεση!
 - Partition «βοηθάει τα μέγιστα»!

$$T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$$

- \square Av $\min\{k, n-k\} \ge n/4$ (περίπου ίδιο μεγέθος) $T(n) = \Theta(n) + T(n/4) + T(3n/4) \Rightarrow T(n) = \Theta(n \log n)$
- Χειρότερη και καλύτερη περίπτωση εξαιρετικά σπάνιες!
- Αν τυχαίο στοιχείο pivot, πιθανότητα διαίρεσης (n/4, 3n/4) ή καλύτερης ≥ 1/2!

Πιθανοτική Quicksort

- Τυχαίο στοιχείο σαν στοιχείο χωρισμού (pivot).
- \square Για κάθε $k \in [n-1]$, πιθανότητα διαίρεσης $(k, n - k) = \frac{1}{n-1}$

```
randomQuickSort(int A[], int left, int right) {
  if (left >= right) return; // At most 1 element
  pivot = random(left, right);
  swap(A[left], A[pivot]);
  q = partition(A, left, right);
  randomQuickSort(A, left, q);
  randomQuickSort(A, q+1, right); }
```

Χρόνος Εκτέλεσης (μ.π.)

$$S(n) = \Theta(n) + \frac{1}{n-1} \sum_{k=1}^{n-1} [S(k) + S(n-k)]$$
$$= \Theta(n) + \frac{2}{n-1} \sum_{k=1}^{n-1} S(k)$$

- Λύση αναδρομής : $S(n) = \Theta(n \log n)$ Αυτός ο χρόνος εκτέλεσης με μεγάλη πιθανότητα!
- Πιθανότητα διαίρεσης (n/4, 3n/4) ή καλύτερης $\geq 1/2$!
 - Κατά «μέσο όρο», κάθε 2 επίπεδα στο δέντρο της αναδρομής, έχουμε «επιτυχημένη» διαίρεση.
 - Σε κάθε επίπεδο, συνολικός χρόνος διαίρεσης $\Theta(n)$.
 - $\Theta(n \log n)$ από «επιτυχημένες» διαιρέσεις + $\Theta(n \log n)$ από «αποτυχημένες» διαιρέσεις.

Χρόνος Εκτέλεσης (μ.π.)

- Πιθανότητα «αποτυχημένες» διαιρέσεις > c log n είναι εξαιρετικά μικρή!
 - Χρόνος εκτέλεσης Θ(n log n) με **μεγάλη πιθανότητα**!
- Μέση περίπτωση δεν εξαρτάται από είσοδο! Αφορά στη συμπεριφορά του αλγόριθμου.
- Εξαιρετικά μικρή πιθανότητα χειρότερης περίπτωσης.
 - Ανάλυση χειρότερης περίπτωσης δεν έχει νόημα!

Πιθανοτικοί Αλγόριθμοι

- Ντετερμινιστικοί αλγόριθμοι:
 - Προκαθορισμένη συμπεριφορά για κάθε είσοδο.
 - Υπάρχει χειρότερη περίπτωση και μπορεί να συμβεί.
- Πιθανοτικοί αλγόριθμοι:
 - Συμπεριφορά από είσοδο και τυχαίες επιλογές.
 - Χρήση τυχαιότητας ώστε χειρότερη περίπτωση να συμβαίνει με πολύ μικρή πιθανότητα.
 - Ποια είναι η χειρότερη περ. για πιθανοτική quicksort;
 - Χρόνος (απόδοση) κατά μέση τιμή. Ορθότητα με μεγάλη πιθανότητα.
 - Las-Vegas: αποτέλεσμα σωστό, χρόνος τυχαία μετ/τη.
 - Monte-Carlo: χρόνος προκαθορισμένος, μπορεί λάθος αποτέλεσμα (αλλά με πολύ μικρή πιθανότητα).

Σύνοψη

- Quicksort:
 - Πιθανοτικός αλγόριθμος.
 - Χρόνος χειρότερης περ.: $\Theta(n^2)$
 - Χρόνος μέσης περίπτωσης: $\Theta(n \log n)$
 - Χώρος: σχεδόν in-place.
 - Αναδρομή καθυστερεί και απαιτεί μνήμη.
 - Εύκολη και γρήγορη υλοποίηση.
 - Γρηγορότερος αλγόριθμος στην πράξη (για $n \ge 30$).

Σύνοψη

Αλγόριθμος	Καλύτερη	Μέση	Χειρότερη	Χώρος
BubbleS	$\Omega(n)$	O(<i>n</i> ²)	O(<i>n</i> ²)	O(1)
InsertionS	$\Omega(n)$	O(<i>n</i> ²)	O(<i>n</i> ²)	O(1)
SelectionS	$\Omega(n)$	O(<i>n</i> ²)	O(<i>n</i> ²)	O(1)
HeapS	$\Omega(n \log n)$	O(<i>n</i> log <i>n</i>)	O(<i>n</i> log <i>n</i>)	O(1)
MergeS	$\Omega(n \log n)$	O(<i>n</i> log <i>n</i>)	O(<i>n</i> log <i>n</i>)	O(<i>n</i>)
QuickS	$\Omega(n \log n)$	O(<i>n</i> log <i>n</i>)	O(<i>n</i> ²)	?