Jesse Cai MATH 164 Homework 2304634445

- 1. 9.3 Consider minimizing $f(x) = x^{\frac{4}{3}}$
 - (a) We can find $\nabla f(x) = g(x) = \frac{4}{3} \sqrt[3]{x}$ and $f''(x) = \frac{4}{9} x^{-\frac{2}{3}}$

$$x^{k+1} = x^k - F(x^k)^{-1}g^k = x^k - \left(\frac{4}{9}x^{-\frac{2}{3}}\right)^{-1}\frac{4}{3}x^{\frac{1}{3}} = x^k - 3x^k = -2x^k$$

- (b) We can expand the formula to get $x^k = -2^k x^0$ which does not converge to 0 except when $x^0 = 0$.
- 2. **9.4 Consider minimizing** $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2$
 - (a) Note $f(x) \ge 0$, so the minima occurs when f(x) = 0. For this to be true, we can see that both $(1-x_1)^2$ and $(100(x_2-x_1^2)^2)$ are 0. Solving the first equation yields $x_1 = 1$ and plugging this into the second part and solving yields $x_2 = 1$. So the unique minima is [1, 1].
 - (b) $\nabla f(x) = [400x_1^3 400x_1x_2 + 2x_1 2, 200(x_2 x_1^2)]^T$

$$F(x) = \begin{bmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{bmatrix}$$

$$F(x)^{-1} = \frac{1}{80000(x_1^2 - x_2) + 400} \begin{bmatrix} 200 & 400x_1 \\ 400x_1 & 1200x_1^2 - 400x_2 + 2 \end{bmatrix}$$

$$x_0 = [0, 0]^T, g_0 = [-2, 0], x_1 = x_0 - F(x^0)^{-1}g^0 = -\frac{1}{400} \begin{bmatrix} 200 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$x_1 = [1, 0]^T, g_1 = [400, -200], x_2 = x_1 - F(x^1)^{-1}g^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \frac{1}{80400} \begin{bmatrix} 200 & 400 \\ 400 & 1202 \end{bmatrix} \begin{bmatrix} 400 \\ -200 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(c) $x_0 = [0, 0]^T, g_0 = [-2, 0], x_1 = x_0 - 0.05g_0 = [0.1, 0]^T$

$$x_1 = [0.1, 0]^T, g_1 = [-1.4, 2], x_2 = x_1 - 0.05g_1 = [0.17, 0.1]^T$$

3. 10.1 Show that $d^0 ext{...} d^{n-1}$ are Q conjugate

We can do this via induction. Let $P(n) = \forall i < n : d_i^T Q d_n = 0$.

Base Case: $d_0 = p_0$ and $d_1 = p_1 - \frac{p_1^T Q d_0}{d_0^T Q d_0} d_0$

$$d_0^T Q d_1 = p_0^T Q (p_1 - \frac{p_1^T Q p_0}{p_0^T Q p_0} p_0) = p_0^T Q p_1 - \frac{p_1^T Q p_0}{p_0^T Q p_0} p_0^T Q p_0 = (p_1^T Q p_0)(1 - 1) = 0$$

Inductive Step: Assume P(n) holds, then we want to show $P(n) \implies P(n+1)$.

$$d_{k+1} = p_{k+1} - \sum_{i=0}^{k} \frac{p_{k+1}^{T} Q d_i}{d_i^{T} Q d_i} d_i \implies d_j^{T} Q d_{k+1} = d_j^{T} Q p_{k+1} - \sum_{i=0}^{k} \frac{p_{k+1}^{T} Q d_i}{d_i^{T} Q d_i} d_i$$

But we know by P(n) that $i \neq j \implies d_j^T d_i = 0$ and then by symmetry of Q.

$$d_j^T Q d_{k+1} = d_j^T Q p_{k+1} - \frac{p_{k+1}^T Q d_j}{d_j^T Q d_j} d_j^T Q d_j = d_j^T Q p_{k+1} - p_{k+1}^T Q d_j = 0$$

4. 10.2 Show that if $g_k^T d_k \neq 0$ then $\{d_0 \dots d_{n-1}\}$ are Q-conjugate.

$$f(x_k + \alpha d_k) = \frac{1}{2} (x_k + \alpha d_k)^T Q(x_k + \alpha d_k) - (x_k + \alpha d_k)^T b = \frac{1}{2} d_k^T Q d_k \alpha^2 + g_k^T d_k \alpha + C$$

We can take the derivitave of ϕ with respect to α , which is 0 due to Lemma 10.2.

$$\phi'(\alpha_k) = \nabla f(x_k + \alpha_k d_k)^T d_k = g_{k+1}^t d_k = 0$$

But then since $g_k^T d_i = 0$:

$$d_k^T Q d_i = \frac{1}{\alpha_k} (x_{k+1} - x_k)^T Q d_i = \frac{1}{\alpha_k} (g_{k+1} - g_k)^T Q d_i = 0$$

5. 10.3 Show that in the conjugate gradient method for a standard quadratic $d_k^T Q d_k = -d_k^T Q g_k$

Again we can do this via induction. Let $P(k) = d_k^T Q d_k = -d_k^T Q g_k$

Base Case: By definition $g_0 = -d_0 \implies d_0^T Q d_0 = -d_0^T g_0$ so P(0) holds.

Inductive Step: Assume $d_k^T Q d_k = -d_k^T Q g_k$. By definition $d_{k+1} = -g_{k+1} - \beta_k d_k$

Then since d_k, d_{k+1} are Q-conjugate:

$$d_{k+1}^T Q d_{k+1} = d_{k+1}^T Q (-g_{k+1} - \beta_k d_k) = -d_{k+1}^T Q g_{k+1} - \beta_k d_{k+1}^T Q d_k = -d_{k+1}^T Q g_{k+1}$$

- 6. 10.4 Let Q be a real symmetric matrix
 - (a) Since Q is a real symmetric matrix, there exists an orthogonal basis of eigenvectors $\{v_1 \dots v_n\}$. This basis is Q-conjugate.

Pick i, j s.t. $i \neq j$. Then because v_j is an eigenvector and since v_i, v_j are orthogonal.

$$\implies v_i^T Q v_j = v^i \lambda_j v_j = \lambda_j v_i^T v_j = 0$$

(b) If $\{d_1 \dots d_n\}$ is Q-conjugate and also orthogonal then.

$$d_i^T Q d_j = 0 = d_i^T d_j = \lambda_j d_i^T d_j = d_i^T \lambda_j d_j \implies Q d_j = \lambda_j d_j$$

So d_j must be an eigenvector.

7. 10.5 For a standard quadratic with $d_{k+1} = \gamma_k g_{k+1} + d_k$ find an expression for γ_k

Recall that our original definition of the conjugate gradient method gives $d_{k+1} = -g_{k+1} + \beta_k d_k$.

So we can plug in and solve:

$$\gamma_k g_{k+1} + d_k = -g_{k+1} + \beta_k d_k \implies \gamma_k = \frac{-1}{\beta_k} = \frac{d_k^T Q d_k}{g_{k+1}^T Q d_k}$$

- 8. 10.6 Suppose we are minimizing a standard quadratic with update rule $d_{k+1} = \alpha_k g_{k+1} + \beta_k d_{\alpha_k}, \beta_k \in \mathbb{R}$.
 - (a) Show that $d_k \in V_{k+1}$ and $x_k \in V_k$. We can prove this by induction. Let $P(k) = d_k \in V_{k+1} \land x_k \in V_k$.

Base Case P(0):

 $d_0 = a_0 g_0 = -a_0 b \in V_1$ since $b \in V_1$ $x_0 = 0 \in V_0$ as 0 is in every subspace.

Inductive Step: Assume $d_k \in V_{k+1} \land x_k \in V_k$.

Note $V_k \subset V_{k+1} \implies x_k \in V_{k+1}$ so

 $x_{k+1} = x_k + \alpha_k d_k \implies x_{k+1} \in V_{k+1}$

 $d_{k+1} = a_k g_{k+1} + b_k d_k$. But $Qx_{k+1} - b \in V_{k+2}$ by definition so $d_{k+1} \in V_{k+2}$

- (b) The conjugate gradient algorithm finds the min of each subspace V_k along each step.
- 9. 10.7 Consider a standard quadratic function f(x) and $\phi(a) = f(x_0 + Da)$ where D is a matrix of rank r. Show ϕ is a standard quadratic

Note $f(x) = \frac{1}{2}x^TQx - x^Tb + c$

$$\phi(a) = \frac{1}{2}(x_0 + Da)^T Q(x_0 + Da) - (x_0 + Da)^T b = x_0^T Q x_0 + (aD)^T Q Da - x_0^T b - (Da)^T b$$

Using the fact that x_0 and b are constants, and then $(Da)^T = a^T D^T$ we get:

$$\phi(a) = (Da)^T Q D a - (Da)^T b + c = a D^T Q D a = a^T D b \implies Q' = D^T Q D, b' = D b$$

So $\phi(a)$ can be written in the standard quadratic form.

10. 10.8 Consider a conjugate gradient algorithm applied to a quadratic function

(a) WTS $\forall 0 \le k \le n - 1 \land 0 \le i \le k : g_{k+1}^T g_i = 0.$ Recall that $d_{k+1} = -g_{k+1} + \beta_k d_k \implies g_{k+1} = \beta_k d_k - d_{k+1}.$

$$g_{k+1}^T g_i = (\beta_k d_k - d_{k+1})^T g_i$$

and by Lemma 10.2 $d_k^T g_i$ and $d_{k+1}^T g_i = 0$

(b) $g_{k+1}^T Q g_i = (\beta_k d_k - d_{k+1})^T Q (\beta_{i-1} d_{i-1} - d_i)$

$$= \beta_k \beta_{i-1} d_k^T Q d_{i-1} \beta_k d_k^T Q d_i - \beta_{i-1} d_{k+1}^T Q d_{i-1} + d_{k+1}^T Q d_i$$

Then by Q-conjuacy this is 0 so g_{k+1} and g_i are Q-conjugate. $rank(D) = r \implies Da = 0 \iff a = 0 \implies Q'$ is positive definite.

11. 10.9 Represent $f(x_1, x_2) = \frac{5}{2}x_1^2 + x_2^2 - 3x_1x_2 - x_2 - 7$ in standard form and find d_1 .

$$f(x) = \frac{1}{2}x^T \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix} x - [0, 1]^T x - 7$$

Recall $d_0 = g_0 = Qx_0 - b = Q(0) - b = [0, 1]^T$

$$x_1 = x_0 - \alpha_0 d_0 = -\frac{g_0^T d_0}{d_0^T Q d_0} d_0 = [0, \frac{1}{2}]^T$$

$$g_1 = \nabla f(x_1) = Q[0, \frac{1}{2}] - b = [-\frac{3}{2}, 0]^T$$

$$d_1 = -\left[-\frac{3}{2}, 0\right]^T + \frac{\left[-\frac{3}{2}, 0\right]^T \left[0, 1\right]}{2} [0, 1]^T = \left[\frac{3}{2}, \frac{9}{4}\right]^T$$

12. **10.10 Consider minimizing** $f(x_1, x_2) = \frac{5}{2}x_1^2 + \frac{1}{2}x_2^2 + 2x_1x_2 - 3x_1 - x_2$.

(a)

$$f(x) = \frac{1}{2}x^T \begin{bmatrix} 5 & 2\\ 2 & 1 \end{bmatrix} x - [3, 1]^T x$$

- (b) $x_0 = 0, -d_0 = g_0 = [3, 1]^T, x_1 = -\frac{g_0^T g_0}{g_0^T Q g_0} d_0 = \frac{5}{29} [3, 1]^T$ $g_1 = d_1 = -g_1 + \beta_0 d_0$ $g_1 = [1, -1]^T$.
- (c) Solving this analyticaly, we get the same answeras above.

$$x^* = Q^{-1}b = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

13. **11.1**

- (a) $\phi(\alpha) = f(x_k + \alpha d_k) \implies \phi'(\alpha) = d_k^T g_k$. But ϕ' is continuous so if $d_k^T g_k < 0 \implies \exists \alpha : \forall \alpha \in (0, \alpha) \phi(\alpha) > \phi(0)$
- (b) We know that $alpha_k = \arg\min_{\alpha \geq 0} \phi(\alpha)$ so either $alpha_k > 0$ or $\alpha_k = 0$, but $\alpha_k = 0$ leads to a contradiction with a) so $alpha_k > 0$.
- (c) $g_{k+1} = f'(x_k + \alpha d_k) = \phi'(alpha_k) = 0$
- (d) i. $d_k = -g_k \implies d_k^T g_k = -g_k^T g_k = -\|g_k\|^2 < 0$
 - ii. $d_k = -F(x_k)^{-1}g_k$. But Q is positive definite $\implies Q^{-1}$ is positive definite. So $d_k^T g_k = -g_k^T F(x_k^{-1})g_k < 0$
 - iii. $d_k = -g_k + \beta_{k-1} d_{k-1}$ So using Lemma 10.2 we get $d_k^T g_k = -g_k^T g_k + \beta_{k-1} d_{k-1}^T g_k = -g_k^T g_k < 0$
- iv. $d_k = -H_k g_k$ If $H_k > 0 \implies d_k^T g_k = -g_k^T H g_k < 0$
- (e) $\alpha_k = -\frac{d_k^T g_k}{d_k^T Q d_k}$

14. 11.3 Consider minimizing $\phi(\alpha) = f(x_k + \alpha d_k)$ where f is a standard quadratic.

(a)
$$\phi'(\alpha) = 0 = d_k^T f'(x + \alpha d_k)$$

$$= d_k^T (Q(x + \alpha d_k) - b) = d_k^T (Qx - b) + \alpha d_k^T Q d_k$$

Solving for α yields $\alpha = \frac{d_k^T g_k}{d_k^T Q d_k}$

- (b) we can expand $d_k^T Q d_k$ as $g_k^T H_k^T Q H g_k$ so we know that H_k must be positive definite to ensure Q is as well
- 15. **11.5 Minimize** $f(x) = \frac{1}{2}x^T \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} x + x^T \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

$$g_0 = Qx_0 - b = -b = [-1, 1]^T$$
 and $d_0 = -H_0g_0 = -g_0 = [1, -1]^T$

$$\alpha_0 = \frac{g_0^T d_0}{d_0^T Q d_0} = \frac{2}{3}$$

$$x_1 = x_0 + \frac{2}{3}[1, -1]^T = \left[\frac{2}{3}, -\frac{2}{3}\right]^T$$

$$g_1 = Qx_1 - b = \left[-\frac{1}{3}, -\frac{1}{3}\right]^T$$

$$\Delta x_0 - H_0 \Delta g_0 = \begin{bmatrix} 0 - \frac{2}{3} \\ 0 + \frac{2}{3} \end{bmatrix} - \begin{bmatrix} 1 + \frac{1}{3} \\ -1 + \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0, \frac{2}{3} \end{bmatrix}$$

$$\Delta g_0^T (\Delta x_0 - H_0 \Delta g_0) = -\frac{8}{9}$$

$$H_1 = H_0 + \frac{(\Delta x_0 - H_0 \Delta g_0)(\Delta x_0 - H_0 \Delta g_0)^T}{\Delta g_0^T (\Delta x_0 - H_0 \Delta g_0)} = I + -\frac{9}{8} \begin{bmatrix} 0 & 0 \\ 0 & \frac{9}{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$$

$$d_1 = -H_1 g_1 = -\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{6} \end{bmatrix}$$

$$\alpha_1 = \frac{g_1^T d_1}{d_1^T Q d_1} = 1$$

$$x_2 = x_* = \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix}$$

16. 11.7 Show that if $H_k > 0$ and $\Delta g_k^T(\Delta x_k - H_k \Delta g_k) > 0$ then $H_{k+1} > 0$.

Recall that

$$H_{k+1} = H_k + \frac{(\Delta x_k - H_k \Delta g_k)(\Delta x_k - H_k \Delta g_k)^T}{g_k^T (\Delta x_k - H_k \Delta g_k)}$$

.

$$x^{T}H_{k+1}x = x^{T}H_{k}x + \frac{x^{T}(\Delta x_{k} - H_{k}\Delta g_{k})(\Delta x_{k} - H_{k}\Delta g_{k})^{T}x}{g_{k}^{T}(\Delta x_{k} - H_{k}\Delta g_{k})}$$
$$= x^{T}H_{k}x + \frac{[x^{T}(\Delta x_{k} - H_{k}\Delta g_{k})]^{2}}{g_{k}^{T}(\Delta x_{k} - H_{k}\Delta g_{k})}$$

$$=>0+>0$$

since there's a square and we know the denominator is > 0 by assumption.

17. 11.9 Use rank-one correction method to generate two Q-conjugate directions.

This is the exact same equation as 11.5, so we can take the two vectors generated there:

$$d_0 = -H_0 g_0 = -g_0 = [1, -1]^T$$

$$d_1 = -H_1 g_1 = -\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{6} \end{bmatrix}$$

18. 11.10 Apply the rank-1 algorithm to $f(x) = \frac{1}{2}x^T \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} x - x^T \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$g_0 = Qx_0 - b = -b = [-1, 1]^T$$
 and $d_0 = -H_0g_0 = -g_0 = [1, -1]^T$

$$\alpha_0 = \frac{g_0^T d_0}{d_0^T Q d_0} = \frac{2}{3}$$

$$x_1 = x_0 + \frac{2}{3}[1, -1]^T = \left[\frac{2}{3}, -\frac{2}{3}\right]^T$$

$$g_1 = Qx_1 - b = \left[\frac{4}{3}, 0\right]^T$$

$$\Delta x_0 - H_0 \Delta g_0 = \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \end{bmatrix} - \begin{bmatrix} \frac{4}{3} - 1 \\ 0 + 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{-5}{3} \end{bmatrix}$$

$$\Delta g_0^T (\Delta x_0 - H_0 \Delta g_0) = \left[\frac{1}{3}, 1\right]^T \begin{bmatrix} \frac{1}{3} \\ -\frac{5}{3} \end{bmatrix} = -\frac{14}{9}$$

$$H_1 = H_0 + \frac{(\Delta x_0 - H_0 \Delta g_0)(\Delta x_0 - H_0 \Delta g_0)^T}{\Delta g_0^T (\Delta x_0 - H_0 \Delta g_0)} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$d_1 = -H_1 g_1 = -\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} = 0$$

So this algorithm fails for this problem.