Q5 ¶

Complete the f objective function in the skeleton code, which computes the objective function for Jlogistic(w). (Hint: you may get numerical overflow when computing the exponential literally, e.g. try e1000 in Numpy. Make sure to read about the log-sum-exp trick and use the numpy function logaddexp to get accurate calculations and to prevent overflow.

```
# numerical overflow check
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

np.exp(1000)
<ipython-input-1-f582a92b4683>:6: RuntimeWarning: overflow encountered in exp
    np.exp(1000)
```

inf

Complete the fit logistic regression function in the skeleton code using the minimize function from scipy.optimize. Use this function to train a model on the provided data. Make sure to take the appropriate preprocessing steps, such as standardizing the data and adding a column for the bias term.

```
from scipy.optimize import minimize
def fit_logistic_reg(X, y, objective_function, l2_param=1):
          X: 2D numpy array of size (num_instances, num_features)
          y: 1D numpy array of size num_instances objective_function: function returning the value of the objective l2_param: regularization parameter
     Returns:
     optimal_theta: 1D numpy array of size num_features
    # initialize optimal theta
    optimal_theta = np.zeros(X.shape[1])
     # update optimal theta by using minimize function
     optimal_theta = minimize(objective_function, optimal_theta, args = (X, y, l2_param)).x
    return optimal theta
# preprocessing steps: Source from HW2 code
def feature_normalization(train, test):
     # discard features that are constant in the training set
     remove = []
     for i in range(train.shape[1]):
         if len(set(train[:, i])) == 1:
    remove.append(i)
     for i in remove:
          np.delete(train, i, axis=1)
np.delete(test, i, axis=1)
     # min-max scaling
     train_normalized = np.array(train.shape)
test_normalized = np.array(test.shape)
train_max_vals = np.max(train, axis=0)
     train_min_vals = np.min(train, axis=0)
     # use train min-max to transform both train/test dataset
train_normalized = (train - train_min_vals) / (train_max_vals - train_min_vals)
test_normalized = (test - train_min_vals) / (train_max_vals - train_min_vals)
     return train_normalized, test_normalized
# import txt files
# Import tx fites
X_train = np.loadtxt('./X_train.txt', delimiter = ',')
y_train = np.loadtxt('./y_train.txt', delimiter = ',')
X_val = np.loadtxt('./X_val.txt', delimiter = ',')
y_val = np.loadtxt('./y_val.txt', delimiter = ',')
# standardizing the data
X_train_normalized, X_val_normalized = feature_normalization(X_train, X_val)
# adding a column for the bias term
X_train_normalized = np.hstack((X_train_normalized, np.ones((X_train_normalized.shape[0], 1))))
X_{val_normalized} = np.hstack((X_{val_normalized}, np.ones((X_{val_normalized}, shape[0], 1))))
# as we assume outcome space Y = \{-1, 1\}, convert y = 0 values into -1
y_train[y_train == 0] = -1
y_val[y_val == 0] = -1
# Train model
# we need to define f_objective
optimal_theta = fit_logistic_reg(X_train_normalized, y_train, f_objective, l2_param=1)
optimal_theta
          array([ 0.00098731,
          0.001781061)
```

Find the I2 regularization parameter that minimizes the log-likelihood on the validation set. Plot the log-likelihood for different values of the regularization parameter.

```
import matplotlib.pyplot as plt

def neg_log_likelihood(theta, X, y, l2_param):
    # From Q1, we know that n*Rn(w) = NLL(w), in terms of w
    # avg_loss
    avg_loss = (1/X.shape[0]) * sum(np.logaddexp(0, -y*(X @ theta.T )))|
    # return scalar value of objective function
    objective = avg_loss

# multiplying by n and return
    return X.shape[0] * objective

# creating nll empty set, and l2 param range
NLL_res = []
l2_param_range = np.arange(0.000001, 0.3, 0.0001)

# for given l2 param range, calculate theta
for l2_param in l2_param_range:
    optimal_theta = fit_logistic_reg(X_train_normalized, y_train, f_objective, l2_param)
    NLL_res.append(neg_log_likelihood(optimal_theta, X_val_normalized, y_val, l2_param))

# plotting the answers
print('Best l2 param:{}, NLL: {}'.format(l2_param_range[np.argmin(NLL_res)], np.min(NLL_res)))
plt.plot(np.log(l2_param_range), NLL_res)
plt.plot(np.log(l2_param_range), NLL_res)
plt.plot(np.log(l2_param_range), NLL_res, 'bx')
plt.xlabel('12_param')
plt.ylabel('NLL')
plt.show()
```

Best l2 param:0.000501, NLL: 232.9126744529017

Q8

[Optional]It seems reasonable to interpret the predictionf(x)= ϕ (wTx)=1/(1+e-wTx) as the probability that y = 1, for a randomly drawn pair (x, y). Since we only have a finite sample (and we are regularizing, which will bias things a bit) there is a question of how well "calibrated" our predicted probabilities are. Roughly speaking, we say f(x) is well calibrated if we look at all examples (x,y) for which f(x) \approx 0.7 and we find that close to 70% of those examples have y = 1, as predicted... and then we repeat that for all predicted probabilities in (0, 1). To see how well-calibrated our predicted probabilities are, break the predictions on the validation set into groups based on the predicted probability (you can play with the size of the groups to get a result you think is informative). For each group, examine the percentage of positive labels. You can make a table or graph. Summarize the results. You may get some ideas and references from scikit-learn's discussion.

Ans) LogisticRegression returns well calibrated predictions by default as it directly optimizes Log loss

```
# Best 12 param: 0.000501
from sklearn.calibration import calibration_curve

optimal_theta = fit_logistic_reg(X_train_normalized, y_train, f_objective, l2_param = 0.000501)
y_pred = 1/(1+np.exp(-(X_val_normalized @ optimal_theta.T)))

prob_true, prob_pred = calibration_curve(y_val, y_pred, normalize=False, n_bins=10)

plt.plot(prob_pred, prob_true, marker = 's', label = 'Logistic')
plt.plot([0, 1], [0, 1], label = 'Perfectly Calibrated')
plt.xlabel('Mean predicted probability(prob_pred)')
plt.ylabel('Fraction of positiveness(prob_true)')
plt.legend()
plt.show()
```


The percentage of positive labels for each group

```
# The percentage of positive labels for each group

for idx, value in enumerate(prob_true):
    print('Group {}) Percentage of positive labels: {:.2f}'.format(idx+1, value))

Group 1) Percentage of positive labels: 0.25

Group 2) Percentage of positive labels: 0.31

Group 3) Percentage of positive labels: 0.23

Group 4) Percentage of positive labels: 0.26

Group 5) Percentage of positive labels: 0.36

Group 6) Percentage of positive labels: 0.63

Group 7) Percentage of positive labels: 0.82

Group 8) Percentage of positive labels: 0.87

Group 9) Percentage of positive labels: 0.87

Group 10) Percentage of positive labels: 0.87
```