Algoritmi avansați

C12 - Elemente de programare liniară

Mihai-Sorin Stupariu

Sem. al II-lea, 2020-2021

Motivație: turnarea pieselor în matrițe

Intersecții de semiplane - abordare cantitativă

Dualitate

Intersecții de semiplane - abordare calitativă. Programare liniară

Problematizare

Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.

Problematizare

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate; există obiecte pentru care nu există o matriță adecvată.

Problematizare

- Turnarea pieselor în matrițe și extragerea lor fără distrugerea matriței.
- Neajunsuri: unele obiecte pot rămâne blocate; există obiecte pentru care nu există o matriță adecvată.

▶ **Problema studiată.** Dat un obiect, există o matriță din care să poată fi extras?

► Obiectele: **poliedrale**.

- Obiectele: poliedrale.
- Matrițele: formate dintr-o singură piesă; fiecărui obiect \mathcal{P} îi este asociată o matriță $\mathcal{M}_{\mathcal{P}}$

- Obiectele: poliedrale.
- Matrițele: formate dintr-o singură piesă; fiecărui obiect \mathcal{P} îi este asociată o matriță $\mathcal{M}_{\mathcal{P}}$
- Obiectul: extras printr-o singură translație (sau o succesiune de translații)

- Obiectele: poliedrale.
- Matrițele: formate dintr-o singură piesă; fiecărui obiect \mathcal{P} îi este asociată o matriță $\mathcal{M}_{\mathcal{P}}$
- Obiectul: extras printr-o singură translație (sau o succesiune de translații)
- Alegerea orientării: diverse orientări ale obiectului pot genera diverse matrițe.

Terminologie și convenții

▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard \hat{f} a obiectului corespunde unei fețe standard \hat{f} a matriței.

Terminologie și convenții

- **Fața superioară:** prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: **standard**; orice față standard f a obiectului corespunde unei fețe standard \hat{f} a matriței.
- ▶ Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): directie admisibilă.

Terminologie și convenții

- ▶ Fața superioară: prin convenție, obiectele au (cel puțin) o fața superioară (este orizontală, este singura care nu este adiacentă cu matrița). Celelalte fețe: standard; orice față standard f a obiectului corespunde unei fețe standard \hat{f} a matriței.
- Obiect care poate fi turnat (castable): există o orientare pentru care acesta poate fi turnat și apoi extras printr-o translație (succesiune de translații): direcție admisibilă.
- Convenţii: Matriţa este paralelipipedică şi are o cavitate corespunzătoare obiectului; faţa superioară a obiectului (şi a matriţei) este perpendiculară cu planul Oxy.

Descrierea proprietății de a putea extrage o piesă într-o direcție dată

Detaliere (scriere în coordonate)

- **Condiție necesară:** direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}

- lacktriangle Condiție necesară: direcția de extragere $ec{d}$ trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.

- lacktriangle Condiție necesară: direcția de extragere $ec{d}$ trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90°.
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.

- ightharpoonup Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90° .
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.
- ▶ Analitic toate fețele: Fie 𝒯 un poliedru; fața superioară fixată, paralelă cu planul Oxy. Considerăm matrița asociată și toate fețele matriței (i.e. toate fețele standard ale poliedrului). A determina o direcție admisibilă revine la a determina o direcție care verifică toate inegalitățile de tip (*), deci un sistem de inecuații.

- ightharpoonup Condiție necesară: direcția de extragere \vec{d} trebuie să aibă componenta z pozitivă
- ▶ În general: o față standard \hat{f} a matriței (corespunzătoare unei fețe f a piesei) pentru care unghiul dintre normala exterioară $\vec{v}(f)$ la față f și \vec{d} este mai mic de 90° împiedică translația în direcția \vec{d}
- ▶ **Propoziție.** Un poliedru \mathcal{P} poate fi extras din matrița sa $\mathcal{M}_{\mathcal{P}}$ prin translație în direcția \vec{d} dacă și numai dacă \vec{d} face un unghi de cel puțin 90° cu normala exterioară a fiecărei fețe standard a lui \mathcal{P} .
- ▶ **Reformulare.** Dat \mathcal{P} , trebuie găsită o direcție \vec{d} astfel încât, pentru fiecare față standard f, unghiul dintre \vec{d} și $\vec{v}(f)$ să fie cel puțin 90° .
- ▶ Analitic pentru o față: fiecare față definește un semiplan, i.e. dată o față standard f a poliedrului / matriței, a găsi o direcție admisibilă revine la a rezolva o inecuație $(*_f)$, care corespunde unui semiplan.
- ▶ Analitic toate fețele: Fie 𝒯 un poliedru; fața superioară fixată, paralelă cu planul 𝒪xy. Considerăm matrița asociată și toate fețele matriței (i.e. toate fețele standard ale poliedrului). A determina o direcție admisibilă revine la a determina o direcție care verifică toate inegalitățile de tip (*), deci un sistem de inecuații.
- Concluzie: Pentru a stabili dacă există o direcție admisibilă, trebuie stabilit dacă o intersecție de semiplane este nevidă.

Exemple

1. Intersecția semiplanelor

$$-x + y + 1 \le 0$$
; $-y - 3 \le 0$; $2x + 3y - 5 \le 0$.

Exemple

2 (a). Normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,-1,1), (0,1,1), (0,1,0), (0,0,-1), (0,-1,0).$$

Temă

2 (b). Normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,1,0), (0,1,-1), (0,0,-1), (0,-1,-1), (0,-1,0).$$

Probleme studiate:

Probleme studiate:

(i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.

Probleme studiate:

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.

- Probleme studiate:
 - (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
 - (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)

Probleme studiate:

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)
 - (i) Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.

▶ Probleme studiate:

- (i) Caracterizare explicită: Să se determine care sunt elementele (vârfuri, muchii, etc.) care determină o intersecție de semiplane.
- (ii) Calitativ: Să se stabilească dacă o intersecție de semiplane este nevidă.
- Rezultate: (descrise în detaliu ulterior)
 - (i) Intersecția unei mulțimi de n semiplane poate fi determinată cu complexitate-timp $O(n \log n)$ și folosind O(n) memorie.
 - (ii) Se poate stabili cu complexitate-timp medie O(n) dacă o intersecție de semiplane este nevidă.
 - (ii) Fie P un poliedru cu n fețe. Se poate decide dacă P reprezintă un obiect care poate fi turnat cu complexitate-timp medie O(n²) și folosind O(n) spațiu. În caz afirmativ, o matriță și o direcție admisibilă în care poate fi extras P este determinată cu aceeași complexitate-timp.

(i) Caracterizare explicită - Formularea problemei

▶ Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y + c_i \leq 0$$

(i) Caracterizare explicită - Formularea problemei

Fie $\mathcal{H} = \{H_1, H_2, \dots, H_n\}$ o mulțime de semiplane din \mathbb{R}^2 ; semiplanul H_i dat de o relație de forma

$$a_i x + b_i y + c_i \leq 0$$

Intersecția $H_1 \cap H_2 \cap ... \cap H_n$ este dată de un sistem de inecuații; este o mulțime poligonală convexă, mărginită de cel mult n muchii (poate fi vidă, mărginită, nemărginită,...)

Dualitate — motivație euristică

De câte informații (numerice) este nevoie pentru a indica un punct în plan?

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **>** 2

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **>** 2

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?
- ► DA: dualitate

- De câte informații (numerice) este nevoie pentru a indica un punct în plan?
- **2**
- De câte informații (numerice) este nevoie pentru a indica o dreaptă în plan?
- **2**
- Există o modalitate naturală de a stabili o corespondență între puncte și drepte?
- DA: dualitate
- Cum se reflectă / respectă diferite proprietăți geometrice (de exemplu incidența) prin dualitate?

Dualitate – definiții

- unui punct $p = (p_x, p_y)$ diu planul \mathbb{R}^2 (plan primal) i se asociază o dreaptă notată p^* (îu planul dual) $p^* : (y = p_x x p_y)$ duala hii p
 - · unei drepte neverticale $d: (y = m_d.x + m_d)$ din planul primal i se asociaçã un punct du planul dual, notat d^* :

Obs. Accorta transformare este polaritatea fata de parabola $y=\frac{x^2}{2}$

Dualitate – proprietăți elementare

Pastreazā incidenta

$$p \in d \iff d^* \in p^*$$

Exemple

Pl. primal

 $d: (y = 2x + 1)$
 $p = (1,3)$
 $p^*: (y = x - 3)$

Dualitate – proprietăți elementare

Exemple P = (1,1) A: (y = 0) P

Pl. dual

 $p^*: (y = x - 1)$ $d^* = (0,0)$

Dualitate – "dicționar" concepte și configurații

Plan primal	Plan dual		
Punct p	Dreaptă neverticală <i>p</i> *		
Dreaptă neverticală d	Punct d*		
Dreaptă determinată de două puncte	Punct de intersecție a două drepte		
Punctul <i>p</i> deasupra dreptei <i>d</i>	Punctul d^* deasupra dreptei p^*		
Segment	Fascicul de drepte (wedge)		

Exemplu

3 puncte mecoliniare si dreptele determinate de ele Configuration duala

3 drepte core nu tree prin acelai punct si pundele determinate de cle

Semiplane inferioare și semiplane superioare

Exemple.

semiplan inferior

semiplan superior

Semiplane inferioare și semiplane superioare

Exemple.

Dat un semiplan delimitat de o dreaptă neverticală

$$ax + by + c \le 0$$

cum se decide dacă este semiplan inferior sau semiplan superior? Exemple:

$$-x + y + 3 \le 0$$
 semiplan inferior $x - y - 3 \le 0$ semiplan superior

Semiplane inferioare și semiplane superioare

Când determinăm o intersecție de semiplane inferioare / superioare, nu sunt neapărat relevante toate semiplanele. În figura de mai jos sunt considerate cinci semiplane inferioare s_1, s_2, s_3, s_4, s_5 dintre care relevante pentru intersecție sunt doar s_2 și s_4 .

Fie p, q cu $p \neq q$ și dreapta d = pq neverticală. Fie r un punct situat dedesubtul dreptei d = pq. Care este configurația duală?

ightharpoonup Fie $\mathcal P$ o mulţime de puncte.

- Fie P o mulţime de puncte.
- ▶ **Q:** Ce înseamnă că un segment [pq] $(p, q \in P)$ participă la frontiera superioară a acoperirii convexe a lui P?

- Fie P o mulţime de puncte.
- ▶ **Q:** Ce înseamnă că un segment [pq] $(p, q \in P)$ participă la frontiera superioară a acoperirii convexe a lui P?
- ▶ **A:** Toate celelalte puncte sunt dedesubtul dreptei d = pq.

- ▶ Fie P o mulţime de puncte.
- ▶ **Q:** Ce înseamnă că un segment [pq] $(p, q \in P)$ participă la frontiera superioară a acoperirii convexe a lui P?
- A: Toate celelalte puncte sunt dedesubtul dreptei d = pq.
- Configurația duală: Punctul d* este situat dedesubtul dreptelor corespunzătoare celorlalte puncte și, prin trecere la semiplane inferioare, "contează" semiplanele inferioare determinate de p* și q*.

Concluzie pentru (i) - abordarea cantitativă

▶ Pentru a determina o intersecţie de semiplane inferioare se consideră mulţimea de puncte din planul dual şi se determină frontiera superioară a acoperirii convexe a mulţimii respective. Un rezultat analog are loc pentru intersecţii de semiplane superioare şi frontiera inferioară a acoperirii convexe a mulţimii de puncte duale. În consecintă:

Concluzie pentru (i) - abordarea cantitativă

- Pentru a determina o intersecție de semiplane inferioare se consideră mulțimea de puncte din planul dual și se determină frontiera superioară a acoperirii convexe a mulțimii respective. Un rezultat analog are loc pentru intersecții de semiplane superioare și frontiera inferioară a acoperirii convexe a mulțimii de puncte duale. În consecință:
- ► **Teoremă** Intersecția a n semiplane poate fi descrisă cu un algoritm de complexitate $O(n \log n)$.

Exemplu

Exemplu

► Sunt realizate 3 produse (notate 1, 2 și 3) pe 2 aparate (notate X și Y).

- Sunt realizate 3 produse (notate 1, 2 şi 3) pe 2 aparate (notate X şi Y).
- Ciclul de producție este săptămânal (40h de lucru). Timpul de producție (în minute) pentru produs este indicat în tabel.

	X	Y	Obs.	Nr. prod.	Spaţiu	Profit
			pe ambele	<i>X</i> ₁	0.1m^2	10
2	12	19	în paralel, simultan	x_2 , respectiv y_2	0.2m ²	13
3	8	24	în paralel, simultan	x_3 , respectiv y_3	$0.05 m^2$	9

- Sunt realizate 3 produse (notate 1, 2 și 3) pe 2 aparate (notate X și Y).
- Ciclul de producție este săptămânal (40h de lucru). Timpul de producție (în minute) pentru produs este indicat în tabel.

	X	Y	Obs.	Nr. prod.	Spaţiu	Profit
			pe ambele	<i>X</i> ₁	0.1m^2	10
2	12	19	în paralel, simultan	x_2 , respectiv y_2	0.2m ²	13
3	8	24	în paralel, simultan	x_3 , respectiv y_3	0.05m ²	9

▶ Aparatele X şi Y au un interval de mentenanţă de 5%, respectiv 7% din timpul de lucru. Spaţiul total de depozitare este de 50m².

- Sunt realizate 3 produse (notate 1, 2 şi 3) pe 2 aparate (notate X şi Y).
- Ciclul de producție este săptămânal (40h de lucru). Timpul de producție (în minute) pentru produs este indicat în tabel.

	X	Y	Obs.	Nr. prod.	Spaţiu	Profit
1	10	27	pe ambele	<i>X</i> ₁	0.1m^2	10
2	12	19	în paralel, simultan	x_2 , respectiv y_2	$0.2m^{2}$	13
3	8	24	în paralel, simultan	x3, respectiv y3	0.05m^2	9

- ▶ Aparatele X şi Y au un interval de mentenanţă de 5%, respectiv 7% din timpul de lucru. Spaţiul total de depozitare este de 50m².
- Modelul matematic:

Constrângeri:

$$0.1x_1 + 0.2(x_2 + y_2) + 0.05(x_3 + y_3) \le 50$$
 Spaţiu de depozitare $10x_1 + 12x_2 + 8x_3 \le 0.95 \cdot 40 \cdot 60$ Timp aparatul X $27x_1 + 19y_2 + 24y_3 \le 0.93 \cdot 40 \cdot 60$ Timp aparatul Y

Cerința:

maximizează
$$(10x_1 + 13(x_2 + y_2) + 9(x_3 + y_3))$$

► Formulare generală (în spațiul *d*-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n
\end{cases} (1)$$

► Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

date constrângerile liniare (inegalități)

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n
\end{cases} (1)$$

Denumiri:

► Formulare generală (în spațiul d-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n
\end{cases} (1)$$

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n},j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$

Formulare generală (în spațiul *d*-dimensional):

maximizează
$$(c_1x_1+c_2x_2+\ldots+c_dx_d)$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n
\end{cases}$$
(1)

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n}, j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$

Formulare generală (în spațiul *d*-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n
\end{cases} (1)$$

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n}, j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$

 - constrângeri: inegalitățile (1)

Formulare generală (în spațiul *d*-dimensional):

maximizează
$$(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \leq b_n
\end{cases} (1)$$

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n}, j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$

 - constrângeri: inegalitățile (1)
 - regiune realizabilă (fezabilă): intersecția semispațiilor care definesc constrângerile problemei

Formulare generală (în spațiul *d*-dimensional):

$$\mathsf{maximizeaz} \check{\mathsf{a}} \big(c_1 x_1 + c_2 x_2 + \ldots + c_d x_d \big)$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots a_{1d}x_d \leq b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots a_{2d}x_d \leq b_2 \\
\dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots a_{nd}x_d \leq b_n
\end{cases} (1)$$

- Denumiri:
 - ▶ date de intrare: $(a_{ij})_{i=\overline{1,n}, j=\overline{1,d}}, (b_i)_{i=\overline{1,n}}, (c_j)_{j=\overline{1,d}}$ ▶ funcție obiectiv: $(c_1x_1 + c_2x_2 + \ldots + c_dx_d)$

 - constrângeri: inegalitățile (1)
 - regiune realizabilă (fezabilă): intersecția semispațiilor care definesc constrângerile problemei
- Obs. Interpretare a cerinței de maximizare: Maximizarea funcției obiectiv revine la a determina un punct al cărui vector de poziție are proiecția maximă de direcția dată de vectorul $\vec{c} = (c_1, c_2, \dots, c_d)$.

Exemplu - cazul 1D (d = 1)

Exemplu - cazul 1D (d = 1)

Lemă. (Pentru d = 1) Un program liniar 1-dimensional poate fi rezolvat în timp liniar.

Exemplu - cazul 2D (d = 2)

Notam condonatele
$$ax x y$$
.

mozimizeoză (y) ; $\vec{c} = (0,1)$, dote $\begin{cases} x + y \le 1 \\ -y \le 0 \end{cases}$
 $x+y=1$
 $-x+y=1$
 $-x+y=1$

regime fezoloila

Functio are valorea maxima 1, atinsa in punctul (0,1).

- Convenţii şi terminologie:
 - Coordonatele: x și y

- Coordonatele: x și y
- Funcția obiectiv: $f_{\overrightarrow{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.

- Coordonatele: x şi y
- Funcția obiectiv: $f_{\stackrel{\rightarrow}{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.
- Constrângerile: h_1, h_2, \ldots, h_n (semiplane); se notează $H = \{h_1, h_2, \ldots, h_n\}$
- Regiunea fezabilă este $C = h_1 \cap h_2 \cap \ldots \cap h_n$.

- Coordonatele: x şi y
- Funcția obiectiv: $f_{\stackrel{\rightarrow}{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.
- Constrângerile: h_1, h_2, \ldots, h_n (semiplane); se notează $H = \{h_1, h_2, \ldots, h_n\}$
- Regiunea fezabilă este $C = h_1 \cap h_2 \cap \ldots \cap h_n$.
- **Program liniar:** (H, \overrightarrow{c}) .
- **Scop:** Se caută $p \in C$ astfel ca $f_{\stackrel{\leftarrow}{C}}(p)$ să fie maximă.

- Coordonatele: x și y
- Funcția obiectiv: $f_{\stackrel{\rightarrow}{c}}(p) = c_x x + c_y y$, unde $\overrightarrow{c} = (c_x, c_y)$.
- Constrângerile: h_1, h_2, \ldots, h_n (semiplane); se notează $H = \{h_1, h_2, \ldots, h_n\}$
- Regiunea fezabilă este $C = h_1 \cap h_2 \cap \ldots \cap h_n$.
- **Program liniar:** (H, \overrightarrow{c}) .
- ▶ **Scop:** Se caută $p \in C$ astfel ca $f_{C}(p)$ să fie maximă.
- Pentru o problemă de programare liniară în plan pot fi distinse patru situații: (i) o soluție unică; (ii) toate punctele de pe o muchie sunt soluții; (iii) regiunea fezabilă este nemărginită și pot fi găsite soluții de-a lungul unei semidrepte; (iv) regiunea fezabilă este vidă.

Cazul 2D (d = 2) - exemple de regiuni fezabile

Principii:

- Principii:
 - constrângerile sunt adăugate una câte una;

- Principii:
 - constrângerile sunt adăugate una câte una;
 - presupunem că la fiecare pas soluția (punctul de maxim) există, apoi actualizează;
 - sunt adăugate la început constrângeri care garantează mărginirea programului liniar, definite astfel: se alege M>>0 și se definesc noi constrângeri convenabile;

- Principii:
 - constrângerile sunt adăugate una câte una;
 - presupunem că la fiecare pas soluția (punctul de maxim) există, apoi actualizează;
 - sunt adăugate la început constrângeri care garantează mărginirea programului liniar, definite astfel: se alege M >> 0 și se definesc noi constrângeri convenabile;
 - se lucrează cu convenţia de ordonare lexicografică, astfel încât există o unică soluţie optimă.

- Principii:
 - constrângerile sunt adăugate una câte una;
 - presupunem că la fiecare pas soluția (punctul de maxim) există, apoi actualizează;
 - sunt adăugate la început constrângeri care garantează mărginirea programului liniar, definite astfel: se alege M >> 0 și se definesc noi constrângeri convenabile;
 - se lucrează cu convenţia de ordonare lexicografică, astfel încât există o unică soluţie optimă.
- lacktriangle Vom considera în continuare $\overset{
 ightharpoonup}{c}=(0,-1)$, iar noile constrângeri vor fi:

$$m_1: x \ge -M, \qquad m_2: y \ge -M.$$

► Fie (H, \overrightarrow{c}) un program liniar cu constrângerile h_1, h_2, \ldots, h_n . Se notează:

$$H_i = \{m_1, m_2, h_1, h_2, \dots, h_i\},$$
 mulțime de semiplane

$$C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \ldots \cap h_i$$
, regiune fezabilă.

Notația este pentru $i = 0, \ldots, n$, în particular

$$H_0 = \{m_1, m_2\}$$
 $C_0 = m_1 \cap m_2$.

► Fie (H, \overrightarrow{c}) un program liniar cu constrângerile h_1, h_2, \ldots, h_n . Se notează:

$$H_i = \{m_1, m_2, h_1, h_2, \dots, h_i\}, \text{ mulţime de semiplane}$$

$$C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \ldots \cap h_i$$
, regiune fezabilă.

Notația este pentru $i = 0, \ldots, n$, în particular

$$H_0 = \{m_1, m_2\}$$
 $C_0 = m_1 \cap m_2$.

Observaţii:

► Fie (H, \overrightarrow{c}) un program liniar cu constrângerile h_1, h_2, \ldots, h_n . Se notează:

$$H_i = \{m_1, m_2, h_1, h_2, \dots, h_i\}, \text{ mulţime de semiplane}$$

$$C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \ldots \cap h_i$$
, regiune fezabilă.

Notația este pentru $i = 0, \ldots, n$, în particular

$$H_0 = \{m_1, m_2\}$$
 $C_0 = m_1 \cap m_2.$

- Observatii:
 - (i) $C_0 \supseteq C_1 \supseteq C_2 \supseteq \ldots \supseteq C_n = C$.

► Fie (H, \overrightarrow{c}) un program liniar cu constrângerile h_1, h_2, \ldots, h_n . Se notează:

$$H_i = \{m_1, m_2, h_1, h_2, \dots, h_i\}, \text{ mulţime de semiplane}$$

$$C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \ldots \cap h_i$$
, regiune fezabilă.

Notația este pentru $i = 0, \ldots, n$, în particular

$$H_0 = \{m_1, m_2\}$$
 $C_0 = m_1 \cap m_2.$

- Observatii:
 - (i) $C_0 \supseteq C_1 \supseteq C_2 \supseteq ... \supseteq C_n = C$.
 - (ii) Pentru fiecare i, regiunea fezabilă C_i , dacă este nevidă, are un vârf care reprezintă o soluție optimă a problemei $(H_i, \overrightarrow{c})$. Punctul este notat cu v_i (depinde de alegerea lui m_1 și m_2).

Exemplu

Fie $1 \le i \le n$, presupunem că C_{i-1} și v_{i-1} sunt determinate. Considerăm h_i . Sunt două situații:

- Fie $1 \le i \le n$, presupunem că C_{i-1} și v_{i-1} sunt determinate. Considerăm h_i . Sunt două situații:
 - (i) dacă $v_{i-1} \in h_i$, atunci $v_i = v_{i-1}$,

- Fie $1 \le i \le n$, presupunem că C_{i-1} și v_{i-1} sunt determinate. Considerăm h_i . Sunt două situații:
 - (i) dacă $v_{i-1} \in h_i$, atunci $v_i = v_{i-1}$,
 - (ii) dacă $v_{i-1} \notin h_i$, atunci

- Fie $1 \le i \le n$, presupunem că C_{i-1} și v_{i-1} sunt determinate. Considerăm h_i . Sunt două situații:
 - (i) dacă $v_{i-1} \in h_i$, atunci $v_i = v_{i-1}$,
 - (ii) dacă $v_{i-1} \notin h_i$, atunci fie $C_i = \emptyset$

- Fie $1 \le i \le n$, presupunem că C_{i-1} și v_{i-1} sunt determinate. Considerăm h_i . Sunt două situații:
 - (i) dacă $v_{i-1} \in h_i$, atunci $v_i = v_{i-1}$,
 - (ii) dacă $v_{i-1} \not\in h_i$, atunci

fie $C_i = \emptyset$

fie $v_i \in d_i$, unde d_i este dreapta care mărginește h_i . În acest caz, găsirea lui v_i revine la găsirea lui $p \in d_i$ care maximizează $f_{\stackrel{\rightarrow}{c}}(p)$, date constrângerile deja existente $(p \in h, \forall h \in H_i)$. De fapt, aceasta este o problemă pe programare liniară 1-dimensională, care are complexitatea-timp liniară, adică O(i).

▶ Input. Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2

- ▶ Input. Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colțul" lui c_0

Algoritm LPMARG2D (H, \vec{c}, m_1, m_2)

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H

Algoritm LPMARG2D (H, \vec{c}, m_1, m_2)

- ▶ Input. Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n

- ▶ Input. Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\nearrow}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care } \\ \text{maximizează } f_{\overrightarrow{c}}(p) \text{ date constrângerile din } H_i$

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care } \\ \text{maximizează } f_{\overrightarrow{C}}(p) \text{ date constrângerile din } H_i$
- 7. **if** p nu există

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\nearrow}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care}$ maximizează $f_{\overrightarrow{c}}(p)$ date constrângerile din H_i
- 7. **if** *p* nu există
- 8. **then** raportează "nefezabil" **end**

- ▶ **Input.** Un program liniar $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ din \mathbb{R}^2
- ▶ Output. Dacă $(H \cup \{m_1, m_2\}, \overrightarrow{c})$ nu e realizabil (fezabil), raportează. În caz contrar, indică punctul cel mai mic lexicografic p care maximizează $f_{\overrightarrow{c}}(p)$.
- 1. $v_0 \leftarrow$ "colţul" lui c_0
- 2. fie h_1, h_2, \ldots, h_n semiplanele din H
- 3. for $i \leftarrow 1$ to n
- 4. **do if** $v_{i-1} \in h_i$
- 5. then $v_i \leftarrow v_{i-1}$
- 6. **else** $v_i \leftarrow \text{punctul } p \text{ de pe } d_i \text{ care } \\ \text{maximizează } f_{\overrightarrow{c}}(p) \text{ date constrângerile din } H_i$
- 7. **if** p nu există
- 8. **then** raportează "nefezabil" **end**
- 9. return v_n

Comentariu - ordinea contează

Algoritm aleatoriu

- ▶ Pasul **2.** este înlocuit cu:
 - Calculează o permutare arbitrară a semiplanelor, folosind o procedură adecvată.

Algoritm aleatoriu

- ▶ Pasul **2.** este înlocuit cu:
 - Calculează o permutare arbitrară a semiplanelor, folosind o procedură adecvată.
- Algoritmul incremental LPMARG2D are complexitate-timp $O(n^2)$, iar varianta bazată pe alegerea aleatorie a semiplanelor are complexitate-timp medie O(n) (n este numărul semiplanelor).

Analiza complexității-timp - varianta algoritmului probabilist (I)

Analiza complexității-timp - varianta algoritmului probabilist (II)

▶ Demonstrăm că $\mu(X_i) \leq \frac{2}{i}$, pentru orice i = 1, ..., n, adică probabilitatea ca $v_{i-1} \notin h_i$ este $\leq \frac{2}{i}$.

Analiza complexității-timp - varianta algoritmului probabilist (II)

- ▶ Demonstrăm că $\mu(X_i) \leq \frac{2}{i}$, pentru orice i = 1, ..., n, adică probabilitatea ca $v_{i-1} \notin h_i$ este $\leq \frac{2}{i}$.
- Arătăm inegalitatea pentru i = n (cazul general, analog). Presupunem algoritmul terminat, v_n vârful optim.

Analiza complexității-timp - varianta algoritmului probabilist (II)

- ▶ Demonstrăm că $\mu(X_i) \leq \frac{2}{i}$, pentru orice i = 1, ..., n, adică probabilitatea ca $v_{i-1} \notin h_i$ este $\leq \frac{2}{i}$.
- Arătăm inegalitatea pentru i = n (cazul general, analog). Presupunem algoritmul terminat, v_n vârful optim.
 - Care este probabilitatea ca $v_{n-1} \notin h_n$, adică la adăugarea lui h_n , vârful v_{n-1} să fie modificat în v_n ? \Leftrightarrow

Analiza complexității-timp - varianta algoritmului probabilist (II)

- ▶ Demonstrăm că $\mu(X_i) \leq \frac{2}{i}$, pentru orice i = 1, ..., n, adică probabilitatea ca $v_{i-1} \not\in h_i$ este $\leq \frac{2}{i}$.
- Arătăm inegalitatea pentru i = n (cazul general, analog). Presupunem algoritmul terminat, v_n vârful optim.
 - Care este probabilitatea ca $v_{n-1} \notin h_n$, adică la adăugarea lui h_n , vârful v_{n-1} să fie modificat în v_n ? \Leftrightarrow
 - Care este probabilitatea ca eliminând unul dintre semiplane să fie modificat vârful optim v_n ?

