SE 4367 Homework #13, DFG

For the following program P written in pseudocode,

- a) Draw the data flow graph for P.
- b) Build the dcu/dpu table for P.
 - See Mathur's Example 7.31 (slide 34 in the lecture on data flow) as an illustration.

```
Program P
1) integer X, Y, Z;
2) input (X, Y);
3) if (X<0 or X>8 or Y<1 or Y>3)
4) {
        output ("Boundary condition failure.");
5)
6) } // end if invalid inputs
7) else
8) {
9)
        z = 0;
10)
        if (X < 5)
11)
12)
              Z = X + Y;
13)
             if (Y == 1)
14)
15)
                   z = x ^2;
16)
            } // end if (Y==1)
17)
        } // end if (X<5)
18)
        else
19)
        {
20)
            z = z - x;
21)
            if (Y == 0)
22)
23)
                  Z = Z * Z;
24)
            } // end if (Y==2)
25)
             else
26)
            {
27)
                   Z = Z + X;
28)
            } // end else !(Y==2)
29)
             Z = Z + 1;
30)
        } // end else !(X<5)
31)
       output (X,Y,Z);
32) } // end else legal inputs
33) output ("Program ends.");
34) end;
```

Grading Rubric

13.1) Max of 50 points

- For each block (in the CFG) incorrectly created, -5 points
- Incorrectly labeled nodes in the DFG, -1 point each
- Incorrectly labeled edges in the DFG, -1 point each

13.2) Max of 50 points

 For each incorrect (added or left out) variable in the dcu/dpu variable/defines pair, dcu, or dpu, -1 point each

Formatting Submissions

In the file name, include:

- class
- assignment identifier
- your name (or team's name)
 - e.g., se4367a01jdoe

In the file (or hardcopy) submitted, include the class, assignment, and name information at the top.

Minus 5 points per violation. Potentially 30 points off for formatting mistakes!

```
Program P
1) integer X, Y, Z;
2) input (X, Y);
3) if (X<0 or X>8 or Y<1 or Y>3)
<del>4) </del>
5)
        output ("Boundary condition failure.");
6) } // end if invalid inputs
7) else
8) ←
        z = 0;
9)
        if (X < 5)
10)
11)
12)
              Z = X + Y:
             if (Y == 1)
13)
14)
15)
                   z = x ^2
16)
           \tag{X<5}
<del>17)</del>
18) else
<del>19)</del>
            z = z - x;
20)
             if (Y == 0)
21)
22)
23)
                  Z = Z * Z:
24)
            25)
            else
26)
                   Z = Z + X:
27)
            <del>} // end else ! (Y==2)</del>
28)
             Z = Z + 1;
29)
30 \ \ \ \ \ \ end else ! (X<5)
       output (X,Y,Z);
31)
32) } // end else legal inputs
33) output ("Program ends.");
34) end;
```

Basic Blocks

$$1-1, 2, 3 (4)$$

$$2-5(6,7,8)$$

$$3 - 9$$
, $10 (11)$

$$6 - 20, 21 (22)$$

$$8 - 27(28)$$

$$9 - 29(30)$$

$$10 - 31(32)$$

$$11 - 33 (34)$$

CFG

Block	LOC
1	1,2,3
2	5
3	9,10
4	12,13
5	15
6	20,21
7	23 (infeasible)
8	27
9	29
10	31
11	33

Creating the dcu/dpu Table

Note that it is helpful to have the DFG to draw the dcu/dpu table.

It may also be useful to have the def-use table, which has the same definition and usage information, but cannot be used to identify the def-clear paths.

Def-Use Table

<u>Node</u>	def	c-use	p-use
1	$\{X,Y,Z\}$	{ }	{X,Y}
2	{ }	{ }	{}
3	{ Z }	{ }	{X}
4	{ Z }	{X,Y}	{Y }
5	{ Z }	{X}	{}
6	{ Z }	{X,Z}	{Y}
7	{ Z }	{Z }	{ }
8	{ Z }	{X,Z}	{}
9	{ Z }	{ Z }	{ }
10	{ }	{X,Y,Z}	{ }
11	{ }	{ }	{ }

13.2 dcu/dpu Table

Variable (v)	Defined at node (n)	dcu (v,n)	dpu (v,n)
X	1	{4,5,6,8,10}	{(1,2),(1,3), (3,4),(3,6)}
Y	1	{4,10}	{(1,2),(1,3), (4,5),(4,10), (6,7),(6,8)}
Z	1	{ }	
Z	3	{6 }	
Z	4	{10}	
Z	5	{10}	
Z	6	{6,7,8}	
Z	7	{7,9}	
Z	8	{8,9}	
Z	9	{9,10}	