MIKROVEZÉRLŐS RENDSZERFEJLESZTÉS

STMicroelectronics

STM32F407G-DISC1 Discovery Kit

Zsupányi Krisztián

Bevezetés a mikrovezérlők világába – A hardver

MOTIVÁCIÓ - MIÉRT ÉRDEMES MEGTANULNI?

- Mindenhol jelen vannak: okos eszközök, ipari gépek, autók, loT, orvosi műszerek.
- Fejlesztőként versenyelőny: aki tud firmware-t írni, az hardverközeli rendszerek tervezésébe is részt tud venni.
- Interdiszciplináris tudás: elektronika, szoftverfejlesztés, vezérléstechnika.
- Projekt- és karrierlehetőségek: ipari automatizálás, beágyazott rendszerek fejlesztése, robotika.
- A hétköznapi PC-s programozástól eltérően itt minden mikro- és milliszekundum számít és kézzel fogható az eredmény. ©

MIKRO - PROCESSZOR - VEZÉRLŐ

Mikroprocesszor (MPU – Microprocessor Unit)

- Egy központi feldolgozó egység (CPU), amely önmagában nem képes működő rendszerként funkcionálni.
- Nincs beépített memória, periféria vagy tároló – ezek külön chipekben vannak, és a processzor egy külső buszrendszeren keresztül éri el őket.

Programozás: Teljes értékű OS (Windows, Linux)

Mikrovezérlő (MCU – Microcontroller Unit)

Egy "minden az egyben" chip, amely tartalmazza:

- CPU-t, Memóriát (RAM, Flash)
- Perifériákat (GPIO, UART, SPI, I²C, ADC, PWM stb.)

Teljes önálló számítógép egyetlen chipen, ami közvetlenül vezérelhet eszközöket.

Programozás: Bare-metal vagy RTOS (ChibiOS, FreeRTOS)

MI AZ A MIKROVEZÉRLŐ?

A mikrovezérlő (MCU – Microcontroller Unit) egy **kis méretű számítógép** egyetlen integrált áramkörön, amely magában foglalja:

- CPU (központi feldolgozó egység)
- Memória (RAM és Flash)
- Perifériák (GPIO, UART, SPI, I²C, ADC, PWM stb.)
- Órajel-generátor és egyéb rendszerlogika
- Fogyasztás: Alacsony (milliwatt-mikrowatt tartomány)
- Frekvencia: Közepes (több tíz–száz MHz)
- Árazás: Pár száz, néhány ezer forint

évek elejére nyúlik

ARM = ADVANCED RISC MACHINE

ARM a világ egyik legnagyobb processzorarchitektúra-szállítója, de **nem gyárt chipeket** → csak a mag terveit licenceli (pl. ST, NXP, Qualcomm, Apple).

ARM architektúra főbb jellemzői

- Harvard architektúra: külön adat- és utasításbusz → párhuzamos elérés
- **32 és 64 bites magok** (ARMv7 32 bit, ARMv8 64 bit)
- Thumb és Thumb-2 utasításkészlet:
 - Thumb: 16 bites utasítások → kisebb kódméret
 - Thumb-2: vegyes 16 és 32 bites utasítások → nagyobb rugalmasság
- **Pipeline feldolgozás**: több utasítás párhuzamos feldolgozása (Cortex-M4 esetén 3 fokozatú pipeline)
- Energiatakarékosság: kis fogyasztás / teljesítmény arányban kiemelkedő
- Licencelhető mag: a gyártók egyedi perifériákkal bővítik → pl. STM32 család saját kommunikációs modulokkal

ARM MAGOK KATEGÓRIÁI

Jellemző	Cortex-A	Cortex-R	Cortex-M
Fő cél	Alkalmazás CPU	Valós idejű vezérlés	Beágyazott MCU
OS támogatás	Teljes OS (Linux, Android)	RTOS vagy bare- metal	RTOS vagy bare- metal
Órajel	1–3 GHz	200 MHz – 1 GHz	20–600 MHz
Fogyasztás	Magas	Közepes	Alacsony
Alkalmazás	Nagy számítási teljesítményt igénylő alkalmazások	Valós idejű, nagy megbízhatóságú rendszerek	Beágyazott rendszerek, kis energiafogyasztás, hardverközeli vezérlés
Példák	Okostelefon, tablet, laptop	Telekommunikáció (bázisállomás), Ipari vezérlések, Autóipari ECU	Beágyazott rendszerek, Szenzorok, IoT

980-as évek elejére nyúlik vissza

Bevezetés a mikrovezérlők világába

ARM CORTEX-M MAG

A Cortex-M mag egy **RISC** (**Reduced Instruction Set Computing**) alapú, 32 bites processzormag.

Fő célok:

- Determinisztikus működés → kiszámítható megszakítási idő
- Alacsony fogyasztás → energiatakarékos üzemmódok
- **Egyszerű fejlesztés** → C nyelv, kevesebb utasítás
- Alacsony költség → kis méretű logika, olcsó gyártás
- Cortex-M általában tartalmazza:
 - 1. Mikroproceszor mag
 - 2. Nested Vectored Interrupt Controller (NVIC)
 - 3. Busz rendszer és busz mátrix
 - 4. Memória és perifériák
 - 5. Hibakezelési támogatás (JTAG / SerialWire)

ARM CORTEX-M UTASÍTÁSKÉSZLETE

980 se évek elejére nyúlik SSIA

STM32 PROCESSZORCSALÁD

STM32F407 MIKROVEZÉRLŐ

STM32F407

System

Power supply 1.2 V regulator POR/PDR/PVD

Xtal oscillators 32 kHz + 4 ~26 MHz

Internal RC oscillators 32 kHz + 16 MHz

PLL

Clock control

RTC/AWU

SysTick timer

2x watchdogs (independent and window)

51/82/114/140 I/Os

Cyclic redundancy check (CRC)

Control

10x 16-bit timer

2x 16-bit motor control PWM synchronized AC timer

2x 32-bit timer

ART Accelerator™

Arm® Cortex®-M4 CPU

168 MHz

Floating point unit

(FPU)

Nested vector

interrupt

controller (NVIC)

JTAG/SW debug/ETM

Memory Protection Unit

(MPU)

Up to 1-Mbyte Flash memory

Up to 192-Kbyte SRAM

FSMC/ SRAM/NOR/NAND/CF/ LCD parallel interface

80-byte + 4-Kbyte backup SRAM

Connectivity

Camera interface

3x SPI, 2x I2S, 3x I2C

Ethernet MAC 10/100 with IEEE 1588

2x CAN 2.0B

1x USB 2.0 OTG FS/HS

1x USB 2.0 OTG FS

SDIO

6x USART LIN, smartcard, IrDA, modem control

Multi-AHB bus matrix

16-channel DMA with Batch Acquisition Mode (BAM)

True random number generator (RNG)

Analog

2-channel 2x 12-bit DAC 3x 12-bit ADC 24 channels/2.4 MSPS

Temperature sensor

STM32F407 - AHB ÉS APB BUSZOK

AHB – Advanced High-performance Bus

Fő szerepe: gyors, szélessávú kapcsolat biztosítása a nagy sebességű perifériák és a CPU/DMA között. Mire használják:

Memória (SRAM, Flash gyors elérés), DMA vezérlő, Ethernet MAC, USB OTG, GPIO gyors hozzáférés

Órajel: általában az MCU **fő órajeléhez** (HCLK) igazodik, tehát a leggyorsabb a rendszerben.

APB – Advanced Peripheral Bus

Fő szerepe: kapcsolat biztosítása a **lassabb perifériák** és a busz mátrix között.

Mire használják:

UART/USART, SPI/I²C, Timer egységek, ADC/DAC, Watchdog

Órajel: általában **alacsonyabb**, mint az AHB órajele (pl. AHB órajel / 2 vagy /4).

AHB-APB híd

Mivel az AHB gyorsabb, az APB lassabb, a kettőt **busz-híd (bridge)** köti össze.

Bevezetés a mikrovezérlők világába

STM3F407 - BUSZ MÁTRIX

A processzor az összes perifériát az AHB buszon keresztül éri el, jellemzően nagy sebességet igénylő perifériák:

RAM, FLASH, Ethernet, USB, DMA

Miért van rá szükség?

- A modern MCU-kban több mester (bus master) van, nem csak a CPU:
 - CPU mag
 - DMA vezérlő
 - Debug egység
 - Ethernet MAC (ha van)
- Ezek egyszerre szeretnék elérni a memóriát vagy perifériákat.
- A Busz Mátrix dönti el, ki mikor, melyik buszon férhet hozzá.

STM3F407 - DIRECT MEMORY ACCESS

Mi az a DMA?

- **Direct Memory Access** = közvetlen memória-hozzáférés
- Olyan hardveres egység, amely adatot tud másolni két memória/periféria között a CPU beavatkozása nélkül.

Miért jó?

- Tehermentesíti a CPU-t, így a CPU közben más feladatot végezhet
- Gyors, adatmozgatás párhuzamosan a CPU munkájával
- Determinisztikus adatátvitel, nincs függés a programkódtól

Tipikus adatátviteli irányok:

- Periféria → Memória (pl. ADC mérések betöltése RAM-ba)
- Memória → Periféria (pl. UART/SPI adatküldés)
- Memória → Memória (ritkább, de pl. képmásolásnál hasznos)

STM3F407 – ÓRAJEL KONFIGURÁCIÓ

Órajel források

HSI (High Speed Internal) **HSE** (High Speed External)

LSI (Low Speed Internal) **LSE** (Low Speed External)

PLL: A PLL egy órajel-szorzó és -osztó egység (pl. 8 MHz HSE → 168 MHz SYSCLK)

STM32F407 DISCOVERY

- STM32F407VGT6 mikrovezérlő 32-bit ARM®Cortex®-M4
- Cortex®-M floating-point unit (FPU)
- 1-Mbyte Flash memory
- 192-Kbyte RAM
- Beépített ST-LINK/V2 Debug port
- Virtuális Com port
- Tápellátás külső alkalmazásoknak: 3V és 5V
- LIS302DL vagy LIS3DSH ST MEMS 3 tengelyes gyorsulásmérő
- MP45DT02 MEMS digitális mikrofon
- CS43L22 audio driver
- LED, nyomógomb

MIKROE - STM32F4 DISCOVERY SHIELD

- Bővítőpanel a Discovery board-hoz
- mikroBUS csatlakozók
- USB-UART modul
- CAN busz illesztő

MIKROE - MIKROBUS CLICK-EK

"Ha beérjük annyival, hogy elátkozzuk vagy dicsőítjük a technikát, akkor sohasem jutunk el lényegének a megragadásához."

Martin Heidegger

KÖSZÖNÖM A FIGYELMET!

Zsupányi Krisztián

Bevezetés a mikrovezérlők világába – A hardver