EXAMEN DE DEUXIÈME SESSION

Modèles Aléatoires Discrets—2021-2022 Pierre-O Goffard

Instructions: On éteint et on range son téléphone.

- La calculatrice et les appareils éléctroniques ne sont pas autorisés.
- Vous devez justifier vos réponses de manière claire et concise.
- Vous devez écrire de la manière la plus lisible possible. Souligner ou encadrer votre réponse finale.
- Document autorisé: Une feuille manuscrite recto-verso

Question:	1	2	3	Total
Points:	9	3	11	23
Score:				

- 1. Soit deux joueurs A et B engagés dans un jeu. Initialement, les deux joueurs sont à égalité, la victoire revient au joueur qui parvient à gagner deux parties successivement. Le temps est indicé sur chaque partie et l'état du jeu est modélisé par une chaine de Markov $(X_n)_{n\geqslant 0}$ à 5 états avec
 - Etat 1: Egalité (E)
 - Etat 2: Avantage A (AvA)
 - Etat 3: Avantage B (AvB)
 - Etat 4: Victoire A (VA)
 - Etat 5: Victoire B (VB)

La probabilité que A remporte une manche est égale à 3/5 (celle de B est donc 2/5) et on suppose que $X_0 = E$. Une trajectoire possible du processus est par exemple E - AvA - E - AvA - VA, cela signifie que A a remporté la première partie puis B a remporté la deuxième (remettant les deux joueurs à égalité) puis A a gagné les deux parties suivantes le menant à la victoire. La victoire de l'un des deux joueurs entrainent l'arrêt du jeu.

(a) (2 points) Donner le graph et la matrice des transitions de $(X_n)_{n\geqslant 0}$

(b) (3 points) Donner les classes de communications de $(X_n)_{n\geqslant 0}$. Sont-elles ouvertes ou fermées? La chaine $(X_n)_{n\geqslant 0}$ est-elle irréductible?

Solution: 3 classes de communications

- $\{E, AvA, AvB\}$ est ouverte
- $\{VA\}$ et $\{VB\}$ sont fermées

 $(X_n)_{n\geq 0}$ n'est pas irréductible.

(c) (2 points) Calculer la durée (le nombre de partie à jouer) moyenne du jeu sachant que $X_0 = E$.

Indication: Introduire le temps d'arrêt

$$\tau = \inf\{n \geqslant 0 : X_n \in \{VA, VB\}\},\$$

et calculer l'espérance

$$\mathbb{E}_E(\tau) = \mathbb{E}(\tau | X_0 = E),$$

via l'analyse à un pas.

Solution: Soit le temps d'arrêt

$$\tau = \inf\{n \geqslant 0 ; X_n \in \{VA, VB\}\}\$$

On a $\mathbb{E}_{VA}(\tau) = \mathbb{E}_{VG}(\tau) = 0$ et en utilisant l'analyse à un pas

$$\begin{cases} \mathbb{E}_E(\tau) = 1 + \frac{3}{5} \mathbb{E}_{AvA}(\tau) + \frac{2}{5} \mathbb{E}_{AvB}(\tau) \\ \mathbb{E}_{AvA}(\tau) = 1 + \frac{2}{5} \mathbb{E}_E(\tau) \\ \mathbb{E}_{AvB}(\tau) = 1 + \frac{3}{5} \mathbb{E}_E(\tau) \end{cases}$$

Il vient donc, après resolution du système $E_E(\tau) = 50/13$.

(d) (2 points) Calculer la probabilité que A remporte le jeu sachant que $X_0 = E$.

Solution: On utilise l'analyse à un pas. Soit l'évènement VA = "Le joueur A remporte le jeu", on a

$$\mathbb{P}_{VA}(VA) = 1 \text{ et } \mathbb{P}_{VB}(VA) = 0$$

La résolution du système

$$\begin{cases} \mathbb{P}_E(VA) = \frac{3}{5} \mathbb{P}_{AvA}(VA) + \frac{2}{5} \mathbb{P}_{AvB}(VA) \\ \mathbb{P}_{AvA}(VA) = \frac{2}{5} \mathbb{P}_E(VA) + \frac{3}{5} \\ \mathbb{P}_{AvB}(VA) = \frac{3}{5} \mathbb{P}_E(VA) \end{cases}$$

donne $\mathbb{P}_E(VA) = 9/13$.

2. Soit $(N_t)_{t\geq 0}$ un processus de Poisson d'intensité $\lambda>0$. Soit le processus $(X_t)_{t\geq 0}$ défini par

$$X_t = X_0(-1)^{N_t}, \ t \geqslant 0,$$

où X_0 est une variable aléatoire d'espérance μ et de variance σ^2 , indépendante de $(N_t)_{t\geq 0}$. Rappel: La covariance de deux variables aléatoires X et Y est donnée par

$$Cov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y)) \right] = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

(a) (2 points) Calculer $\mathbb{E}(X_t)$ et $\mathbb{V}(X_t)$ en fonction de μ, λ , et t.

Solution: $\mathbb{E}(X_t) = \mu e^{-2\lambda t}$ et $\mathbb{V}(X_t) = \sigma^2 + \mu^2 (1 - e^{-4\lambda t})$.

(b) (1 point) Calculer $Cov(X_t, X_s)$ en fonction de μ, σ^2, λ , et t.

Solution:
$$Cov(X_t, X_s) = (\sigma^2 + \mu^2)e^{-2\lambda|t-s|} - \mu^2 e^{-2\lambda(t+s)}$$
.

3. Soit $p \in [0,1]$ et q = 1-p. Soit la chaine de Markov $(X_n)_{n \ge 0}$ sur l'espace d'état $E = \{0, \ldots, N\}$, avec $N \in \mathbb{N}$ et de graph des transitions

On adopte les notations suivantes

$$\mathbb{P}_x(\cdot) = \mathbb{P}(\cdot|X_0 = k), \text{ et } , \mathbb{P}_x(\cdot) = \mathbb{P}(\cdot|X_0 = x)$$

pour la probabilité et l'espérance conditionnelle sachant $X_0 = x$ et $x \in \{0, ..., N\}$.

(a) (3 points) Pour quelles valeurs de p la chaine est-elle irréductible? Quand la chaine n'est pas irréductible, combien de classes de communication? Sont-elles ouvertes ou fermées?

Solution: La chaine est irréductible si $p \in (0,1)$. Si p=0 ou p=1 alors il y a N+1 classes de communication. Si p=0 alors $\{0\}$ est la seule classe fermée et $\{1\}, \ldots \{N\}$ sont des classes ouvertes. Si p=1 alors $\{N\}$ est la seule classe fermée et $\{0\}, \ldots \{N-1\}$ sont des classes ouvertes.

Dans la suite on suppose que $p \in (0,1)$.

(b) (1 point) Soit

$$\tau = \inf \{ n \ge 0 ; X_n \in \{0, N\} \}$$

et

$$f(x,\lambda) = \mathbb{E}_x(e^{-\lambda \tau}), \text{ pour } \lambda \in \mathbb{R}.$$

Donner la valeur de $f(0,\lambda)$ et $f(N,\lambda)$.

Solution: $f(0,\lambda) = f(N,\lambda) = 1$.

(c) (1 point) Exprimer $\mathbb{P}_x(\tau = n)$ en fonction de $\mathbb{P}_{x-1}(\tau = n-1)$ et $\mathbb{P}_{x+1}(\tau = n-1)$, pour n > 1 et $x \in \{1, \dots, N-1\}$.

Solution: Il s'agit d'une analyse à un pas, nous avons

$$\mathbb{P}_x(\tau = n) = q\mathbb{P}_{x-1}(\tau = n - 1) + p\mathbb{P}_{x+1}(\tau = n - 1).$$

(d) (1 point) En déduire que

$$f(x,\lambda) = e^{-\lambda} \left[qf(x-1,\lambda) + pf(x+1,\lambda) \right],$$

pour $x \in \{1, ..., N-1\}$

Solution:

$$f(x,\lambda) = \sum_{n=0}^{+\infty} e^{-\lambda n} \mathbb{P}_x(\tau = n)$$

$$= \sum_{n=1}^{+\infty} e^{-\lambda n} \mathbb{P}_x(\tau = n)$$

$$= \sum_{n=1}^{+\infty} e^{-\lambda n} q \mathbb{P}_{x-1}(\tau = n - 1) + p \mathbb{P}_{x+1}(\tau = n - 1)$$

$$= e^{-\lambda} q \sum_{n=0}^{+\infty} e^{-\lambda n} \mathbb{P}_{x-1}(\tau = n) + e^{-\lambda} p \sum_{n=0}^{+\infty} e^{-\lambda n} \mathbb{P}_{x+1}(\tau = n)$$

$$= e^{-\lambda} q f(x - 1, \lambda) + e^{-\lambda} p f(x + 1, \lambda)$$

(e) (1 point) Soit $g(x) = \mathbb{E}_x(\tau)$. Donner g(0) et g(N)

Solution: g(0) = g(N) = 0

(f) (1 point) On note que

$$g(x) = -\frac{\partial f}{\partial \lambda}(x, 0).$$

En déduire (en utilisant (c)) que

$$g(x) = qg(x-1) + pg(x+1) + 1,$$

pour $x \in \{1, ..., N-1\}$.

Solution: On dérive l'équation

$$f(x,\lambda) = e^{-\lambda} \left[qf(x-1,\lambda) + pf(x+1,\lambda) \right],$$

par rapport à λ et on évalue pour $\lambda = 0$.

Dans la suite on suppose que $p \neq q$ et on rappelle que q = 1 - p.

(g) (1 point) Trouver $c \in \mathbb{R}$ pour que g(x) = cx soit une solution de l'équation

$$g(x) = qg(x-1) + pg(x+1) + 1.$$

Solution: c = 1/(q - p)

(h) (1 point) Quelles sont les valeurs de $r \in \mathbb{R}$ pour lesquels la fonction $g_0(r) = r^x$ est solution de l'équation homogène

$$g_0(x) = qg_0(x-1) + pg_0(x+1).$$

Indication: Bien remplacer q par 1-p dans l'équation homogène.

Solution: Les valeurs de r possibles sont les solutions de l'équation

$$pr^2 - r + 1 - p = 0.$$

L'équation précédente à deux solutions réelles avec

$$r_1 = \frac{1-p}{p} \text{ et } r_2 = 1$$

(i) (1 point) En déduire $E_x(\tau)$ pour $x \in \{1, \dots, N-1\}$.

Solution: La forme générale des solutions de l'équation

$$g(x) = qg(x-1) + pg(x+1) + 1.$$

est donnée par

$$g(x) = \frac{x}{q-p} + Ar_1^x + Br_2^x.$$

avec A et B des constantes que l'on identifie grâce aux conditions initiales avec g(0) = g(N) = 0. ON obtient finalement

$$g(x) = \frac{x}{q-p} + \frac{p^N}{p^N - q^N} \frac{N}{1 - 2p} \left[1 - \left(\frac{1-p}{p}\right)^x \right].$$

FORMULAIRE

Nom	abbrev.	Loi	$\mathbb{E}(X)$	$\operatorname{Var}(X)$	FGM
Binomial	Bin(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)	$[(1-p)+pe^t]^n$
Poisson	$\mathrm{Pois}(\lambda)$	$e^{-\lambda} rac{\lambda^k}{k!}$	λ	λ	$\exp(\lambda(e^t - 1))$
Geometric	$\operatorname{Geom}(p)$	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t} \text{ pour } t < -\ln(1-p)$
Uniform	$\mathrm{Unif}(a,b)$	$\begin{cases} \frac{1}{b-a} & a \leqslant t \leqslant b \\ 0 & \text{sinon} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb}-e^{ta}}{t(b-a)}$
Exponential	$\mathrm{Exp}(\lambda)$	$\begin{cases} \lambda e^{-\lambda t} & t \geqslant 0\\ 0 & t < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$ pour $t < \lambda$
Normal	$N(\mu, \sigma^2)$	$\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)\exp\left(\frac{-(t-\mu)^2}{2\sigma^2}\right)$	μ	σ^2	$e^{\mu t}e^{\sigma^2t^2/2}$