Summary of NIST SP Documents: Cloud Computing Reference Architecture

- NIST SP 800-145 defines cloud computing
- **NIST SP 500-292** (document on which this notes are based on) provides a reference architecture for cloud computing
- **NIST SP 500-322** provides a methodology to evaluate whether a specific service offering truly aligns with the NIST definition of cloud computing outlined in SP 800-145, so it offers criteria and worksheets to assess if a service exhibits the five essential characteristics.

In essence, 800-145 sets the foundational definition, and 500-292 uses that definition to create a blueprint for implementing and managing cloud systems, while 500-322 offers the tools and criteria to determine if a given service actually is a cloud service according to that initial definition.

1. Conceptual Reference Model & Major Actors

The reference architecture is actor/role-based and identifies **five** major actors which roles and responsibilities vary based on the service mode (laaS, PaaS, SaaS):

Cloud Consumer:

• **Person/Organization** that maintains a business relationship and uses services from Cloud Providers.

• Cloud Provider (CSP):

- Person/Organization/Entity responsible for making a service available to Cloud Consumers.
- Major activity areas: Service Deployment, Service Orchestration, Cloud Service Management,
 Security, and Privacy.

Cloud Auditor:

 Independent third-party entity that assesses cloud services for performance, security, and conformance to standards and policies (e.g., security controls, privacy impact).

• Cloud Broker:

- **Entity** that manages the use, performance, and delivery of cloud services, and negotiates relationships between Cloud Providers and Cloud Consumers.
- Can offer services in three categories:
 - **Service Intermediation:** Enhances a given service or provides value-added services (e.g., identity management, security enhancements).
 - Service Aggregation: Combines and integrates multiple services into new services, ensuring data integration and security.
 - **Service Arbitrage:** Similar to aggregation but services are not fixed; the broker has flexibility to choose services from multiple providers (e.g., for best pricing or performance).

- **Cloud Carrier:** Intermediary that provides connectivity of cloud services from Cloud Providers to Cloud Consumers (e.g., network providers).
- Interactions between roles:
 - Consumers can request services directly from Providers or via Brokers.
 - Auditors interact with Consumers and Providers for assessments.
 - Carriers provide the network link between Consumers and Providers.

2. Scope of Control (Provider vs. Consumer)

The level of control a consumer has over resources depends on the service model:

- Application Layer: Used by SaaS consumers; installed/managed by PaaS/laaS consumers and SaaS providers.
- **Middleware Layer:** Used by PaaS consumers; installed/managed by IaaS consumers or PaaS providers; hidden from SaaS consumers.
- **Operating System Layer:** Hidden from SaaS/PaaS consumers. IaaS consumers manage guest OS(s); IaaS providers control the host OS.
 - SaaS: Consumer has minimal control (user-specific application configurations).
 - PaaS: Consumer controls deployed applications and some hosting environment configurations.
 - **IaaS:** Consumer controls OS, storage, deployed applications, and some networking components.

3. Architectural Components (Cloud Provider Activities)

3.1. Service Deployment

Refers to how the cloud infrastructure is operated and made available.

The **four** deployment models are:

- Public Cloud: Infrastructure is available to the general public, owned by a cloud services seller.
- **Private Cloud:** Infrastructure is for exclusive use by a single organization. Can be on-site or outsourced (on-premises and off-premises, respectively).
- **Community Cloud:** Infrastructure is shared by several organizations with common concerns (e.g., mission, security). Can be on-site or outsourced (on-premises and off-premises, respectively).
- **Hybrid Cloud:** Composition of two or more distinct cloud infrastructures (private, community, or public) bound by technology enabling data/application portability.

3.2. Service Orchestration

Service Orchestration: Coordination and Management of computing resources to support Cloud Providers to provide cloud services.

It involves a **three-layered** model:

• Service Layer: Defines interfaces for consumers to access SaaS, PaaS, and IaaS.

Services can be:

- **Interdependent**: Operating in a connected way, where one cloud service layer relies on or utilizes functionalities provided by other cloud service layers within the same orchestration model.
 - **Example**: SaaS application can be built on top of virtual machines from an IaaS cloud
- **Standalone**: Operating independently and without requiring or relying on other cloud service layers within the same orchestration model.
 - **Example:** SaaS application can be built directly on top of cloud resouces without using IaaS virtual machines
- **Resource Abstraction and Control Layer:** Contains software components (e.g., hypervisors, VMs, virtual storage) that abstract physical resources (*Resource Abstraction*) and manage their access, allocation, and monitoring (*Control Layer*). This layer enables resource pooling, dynamic allocation, and measured service.
- **Physical Resource Layer:** Includes all physical computing resources (hardware: CPUs, memory, networks, storage) and facility resources (HVAC, power, communications).

3.3. Cloud Service Management

Cloud Service Management includes all of the service-related functions that are necessary for the management and operation of those services required by or proposed to cloud consumers.

It includes:

- **Business Support:** Business Support entails the set of business-related services dealing with clients and supporting processes. It includes the components used to run business operations that are client-facing:
 - Customer Management: Manage customer accounts, open/close/terminate accounts.
 - Contract Management: Manage service contracts
 - Pricing & Rating: Evaluate cloud services and determine pricing rules based on a user's profile,
 etc.

• Provisioning and Configuration:

- Rapid Provisioning: (automated deployment)
- Resource Changing (upgrades, repairs, adding nodes)
- Monitoring & Reporting (virtual resources, cloud operations, performance)
- Metering (tracking usage for billing)
- SLA Management (definition, monitoring, enforcement)

• Portability and Interoperability:

- Data Portability: Ability to copy data into/out of a cloud or use disk for bulk data transfer. (Bulk data transfer: Trasferimento in blocco)
- Service Interoperability: Ability to use data and services across multiple clouds with a unified interface.
- *System Portability:* Ability to migrate VM instances or images, applications, and services between providers.

3.4. Security

• **Service Model Perspectives:** Different service models (SaaS, PaaS, IaaS) present different attack surfaces and security needs.

- Example: Browser security for SaaS, Hypervisor security for IaaS.
- **Deployment Model Implications:** Security concerns vary by deployment model.
 - Example: Workload isolation is more critical in public clouds than private clouds
 - Example: Access boundaries differ for on-site vs. outsourced clouds.
- **Shared Security Responsibilities:** Both providers and consumers share security responsibilities. The split depends on the service model and who has control over specific resources.

3.5. Privacy

Cloud providers must protect:

- **Personal Information** (*PI*): A broad category and encompasses any data that can lead to the identification of an individual.
 - Example:: browsing history, location data, purchase history.
- **Personally Identifiable Information** (*PII*): information that can be used to trace an individual's identity
 - Example: name, social security number, biometric