Module B: Al and Machine Learning

Lecture 21-22 Linear Regression

Kazi Saeed Alam, Assistant Professor, Dept. of CSE, KUET email: saeed.alam@cse.kuet.ac.bd

Machine Learning

❖ Machine Learning is the science to make computers learn from data without explicitly program them and improve their learning over time in autonomous fashion.

❖ This learning comes by feeding them **data** in the form of observations and real-world interactions."

❖ Machine Learning can also be defined as a tool to **predict** future events or values using past **data**.

Types of Data

❖ Based on Values

- ❖ Continuous data (ex. Age − 0-100)
- Categorical data (ex. Gender- Male/Female)

❖ Based on pattern

- Structured data (ex. Databases)
- Unstructured data (ex. Audio, Video, Text)

Types of Data- continued

❖ Labelled data – consists of input output pair. For every set input features the output/response/label is present in dataset. (ex- labelled image as cat's or dog's photo)

$$\{(x_1, y_1), (x_2, y_2), (x_3, y_3) \dots \dots (x_n, y_n)\}$$

❖ Unlabelled data- There is no output/response/label for the input features in data. (ex. news articles, tweets, audio)

$$\{x_1, x_2, x_3 \dots \dots x_n\}$$

Types of Data- continued

- ❖ Training Data Sample data points which are used to train the machine learning model.
- ❖ Test Data- sample data points that are used to test the performance of machine learning model.

Note- For modelling, the original dataset is partitioned into the ratio of 70:30 or 75:25 as training data and test data.

Types of Machine Learning

Supervised Learning

- Class of machine learning that work on externally supplied instances in form of predictor attributes and associated target values.
- ❖ The model learns from the training data using these 'target variables' as reference variables.
 - Ex1 : model to predict the resale value of a car based on its mileage, age, color etc.
- ❖ The target values are the 'correct answers' for the predictor model which can either be a regression model or a classification model.

Motivation for learning

- It is being assumed that there exists a relationship/association between input features and target variable.
- ❖ Relationship can be observed by plotting a scatter plot between the two variables.

Relationship measure can be quantified by calculating correlation between two the variables.

$$corr(x,y) = \frac{cov(x,y)}{var(x).var(y)} = \frac{\sum (x_i - \bar{x}) * (y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

Linear Regression

- Linear regression is a way to identify a relationship between two or more variables and use these relationships to predict values of one variable for given value(s) of other variable(s).
- Linear regression assume the relationship between variables can be modelled through linear equation or an equation of line

Multiple Regression

- ❖ Last slide showed the linear regression model with one independent and one dependent variable.
- ❖ In Real world a data point has various important attributes and they need to be catered to while developing a regression model. (Many independent variables and one dependent variable)

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 \dots \dots w_n x_n$$

Regression – Problem Formulation

Let you have given with a data:

Age in Years (X)	Blood Pressure (Y)
56	147
49	145
72	160
38	115
63	130
47	128

Linear Regression

For given example the Linear Regression is modeled as:

$$BloodPressure(y) = w_0 + w_1AgeinYear(X)$$

OR

$$y = w_0 + w_1 X$$
 – Equation of line

with w_0 is intercept on Y_axis and w_1 is slope of line

Blood Pressure - Dependent Variable

Age in Year - Independent Variable

Linear Regression- Best Fit Line

- * Regression uses line to show the trend of distribution.
- There can be many lines that try to fit the data points in scatter diagram
- ❖ The aim is to find Best fit Line

What is Best Fit Line

❖ Best fit line tries to explain the variance in given data. (minimize the total residual/error)

What is Best Fit Line

❖ Best fit line tries to explain the variance in given data. (minimize the total residual/error)

Linear Regression- Methods to Get Best

❖Least Square

❖ Gradient Descent

Linear Regression-Least Square

Model: $Y = w_0 + w_1 X$

Task: Estimate the value of w_0 and w_1

According to principle of least square the normal equations to solve for w_0 and w_1

$$\sum_{i=1}^{n} X_i Y_i = w_0 \sum_{i=1}^{n} X_i + w_1 \sum_{i=1}^{n} X_i^2 \dots \dots \dots (2)$$

Linear Regression–Least Square

Let divide the equation (1) by n (number of sample points) we get:

$$\frac{1}{n} \sum_{i=1}^{n} Y_i = w_0 + w_1 \frac{1}{n} \sum_{i=1}^{n} X_i$$

OR

$$\bar{y} = w_0 + w_1 \bar{x} \dots (3)$$

So line of regression will always passes through the points (\bar{x}, \bar{y})

Linear Regression–Least Square

Now we know:

$$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x}\bar{y} := \frac{1}{n} \sum_{i=1}^{n} x_i y_i = cov(x,y) + \bar{x}\bar{y}$$
(4)

and

$$var(x) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \bar{x}^2$$
 and $var(y) = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \bar{y}^2$

Dividing equation (2) by n and using equation (4) and (5) we get:

$$cov(x,y) + \bar{x}\bar{y} = w_0\bar{x} + w_1(var(x) + \bar{x}^2)$$
....(5)

Linear Regression–Least Square

Now by using equation

$$\bar{y} = w_0 + w_1 \bar{x}$$

and

$$cov(x, y) + \bar{x}\bar{y} = w_0\bar{x} + w_1(var(x) + \bar{x}^2)$$

We will get:

$$w_1 = \frac{cov(x, y)}{var(x)}$$

and

$$w_0 = \bar{y} - w_1 \bar{x}$$

Performance metric for least square regression

$$R^{2} = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - yhat_{i})^{2}}{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$R_{adj}^2 = 1 - \frac{(1 - R^2)(n - 1)}{(n - k - 1)}$$

Interpretation:

- $R^2 \in [0,1]$: A value close to 1 indicates a good fit.
- $R^2 = 0$: The model explains none of the variability in y.
- ullet A negative R^2 can occur if the model performs worse than a horizontal line at $ar{y}$.

Model: $Y = w_0 + w_1 X$

Task: Estimate the value of w_0 and w_1

Define the cost function,

$$cost(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - yhat_i)^2$$

Objective of gradient Descent

$$\min_{\mathbf{w_0, w_1}} cost(\mathbf{w_0, w_1}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\mathbf{w_0} + \mathbf{w_1} x_i))^2$$

Model: $Y = w_0 + w_1 X$

Task: Estimate the value of w_0 and w_1 the objective,

$$\min_{\mathbf{w_0}, \mathbf{w_1}} cost(\mathbf{w_0}, \mathbf{w_1}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\mathbf{w_0} + \mathbf{w_1} x_i))^2$$

- Gradient descent works if following steps:
 - 1. Initialize the parameters to some random variable
 - 2. Calculate the gradient of cost function w. r. t. to parameters
 - 3. Update the parameters using gradient in opposite direction.
 - 4. Repeat step-2 and step-3 for some number of times or till it reaches to minimum cost value.

$$cost(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Calculating gradients of cost function:

$$gradw_0 = \frac{\partial cost(w_0, w_1)}{\partial w_0} = \frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))(-1)$$

$$gradw_1 = \frac{\partial cost(w_0, w_1)}{\partial w_1} = \frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))(-x)$$

Parameter update:

$$w_0 = w_0 - learningrate * gradw_0$$

$$w_1 = w_1 - learningrate * gradw_1$$

Performance metric for gradient based regression

Root Mean Square Error (RMSE) is the standard deviation of prediction errors.

$$RMSE = \sqrt{\frac{(y_i - yhat_i)^2}{n}}$$

Mean absolute error (MAE) is a measure of difference between two variables.

$$MAE = \frac{|y_i - yhat_i|}{n}$$