W.A.M.P.

 $\bullet \bullet \bullet$

Team: Blue Jeans

By: Matthew Wesley-James, Tarun Kalikivaya, Martin Klamrowski, Angie Byun

Objective: Finding & Retrieving your pants from a maze

WAMP

W Where A are M my P Pants?!?

WAMP

Demo:

Steps:

- Explore & Find the Pants
- Pick up the Pants
- Escape with the Pants

Demo:

Steps:

- Generate Maze
- Explore & Find the Pants
- Pick up the Pants
- Escape with the Pants

Why WAMP?

- a Managerial Perspective

- Can be broken down to problems with known solutions
 - More likely to stay on schedule
- Distributable between all 4 team members:

Why WAMP?

- a Managerial Perspective

- Can be broken down to problems with known solutions
 - More likely to stay on schedule
- Distributable between all 4 team members:

Why WAMP?

- a Managerial Perspective

- Can be broken down to problems with known solutions
 - More likely to stay on schedule
- Distributable between all 4 team members:

WBS

Maze

Maze Modelling

- 9 x 9 metre Square Maze
- Support for other complexities possible

Maze Modeling

Maze Engine

- Prim's Random Maze Generation
- More blocks = Higher complexity

Sensors

Sensing Engine: Vision Sensor

- 2 vision sensor at the front of the robot
- Projection Type: Orthographic and Perspective
- Detection range: 1 block

Sensing Engine: Proximity Sensor

- 3 proximity sensors
- View Type: Ray
- Detection range: 2 blocks

Sensors Overview

Robot

- Givens:
 - Sensor Data

- Givens:
 - Sensor Data
 - o Entrance Data
 - Length & width of maze

- Givens:
 - o Sensor Data
 - o Entrance Data
 - length & width of maze

Legend

Unknown

- Givens:
 - Sensor Data
 - o Entrance Data
 - length & width of maze

W	W	W	W	W	W	W	w	W
W								W
W								W
w								W
W								W
W								W
W								W
W	W	W	w	W	W	w	w	W

	Legend	
	Unknown	•
w	Wall	

- Givens:
 - Sensor Data
 - Entrance Data
 - length & width of maze
 - Exit node = Starting node

	Legend
	Unknown
w	Wall
R	Robot

- Exploration Loop:
 - o Pull Sensors

- Exploration Loop:
 - o Pull Sensors
 - Update Map

- o Pull Sensors
- o Update Map
- Decide Next Move(s)
- Move

Legend					
	Unknown				
W	Wall				
R	Robot				
S	Seen by Vision & Proxy				
proxy	ONLY Seen by Proxy				

- o Pull Sensors
- Update Map
- Decide Next Move(s)
- Move

	Legend						
	Unknown						
w	Wall						
R	Robot						
s	Seen by Vision & Proxy						
proxy	ONLY Seen by Proxy						

- o Pull Sensors
- Update Map
- Decide Next Move(s)
- Move

	Legend						
	Unknown						
w	Wall						
R	Robot						
s	Seen by Vision & Proxy						
proxy	ONLY Seen by Proxy						

- Pull Sensors
- o Update Map
- Decide Next Move(s)
- Move

	Legend					
	Unknown					
W	Wall					
R	Robot					
S	Seen by Vision & Proxy					
proxy	ONLY Seen by Proxy					

W	W	W	W	W	W	W	W	V
s	S	w	3					v
W	s	s	w					V
W	w	s	w					v
W	ргоху	R	s	ргоху				v
W		w						V
W								V
w	w	W	w	w	w	w	w	v

- Decide Next Move(s)
 - Flood Fill (with ranking system)

W Wall
R Robot
S Seen by Vision & Proxy
Proxy ONLY Seen by Proxy

Legend

- Decide Next Move(s)
 - Flood Fill (with ranking system)

https://en.wikipedia.org/wiki/Flood_fill

- Decide Next Move(s)
 - Flood Fill (with ranking system)

	Туре		Valid?	Points
	Unknown	=	yes	2
w	Wall	8=	NO	
S	Seen by Vision & Proxy	=	yes	0
ргоху	ONLY Seen by Proxy	S=	yes	1

Pathfinding

- Decide Next Move(s)
 - Flood Fill (with ranking system)
 - IF tie then move away from middle

Unknown

W Wall

R Robot

S Seen by Vision & Proxy

proxy ONLY Seen by Proxy

Legend

Motor Functions : Steering

- Remote controlled for streamlined testing
- Brought to you in part by Pythagoras

Motor Functions : Prongs

- Objective securing
- Simplicity over complexity
- Sensors are not obstructed, maneuverability is maintained

Challenges

- Strange behaviour
 - Imprecise shape dimensions
 - Physics engines
 - Thanks Jasleen
- Project management
 - Development coordination
 - Git
 - Project scheduling; deadlines

Achievements

- Pseudo-random maze generation
- Robust motor and prong function
- Successful integration of all major components

To Do

To Do

- Autonomous operation
- Objective alignment
- End-to-end testing

Future Plans

- Create more complex mazes
- Improve the forking functionality
- Get funding from NASA
- Build robot
- Sell to NASA :)

Thank you!

•••

Questions?

ROUGH WORK

 $\bullet \bullet \bullet$

Questions?

Pathfinding

• Exploration Loop:

- o Pull Sensors
- Update Map
- Decide Next Move(s)
- Move

<u>Legend</u>	
	Unknown
w	Wall
R	Robot
s	Seen by Vision & Proxy
proxy	ONLY Seen by Proxy

Pathfinding

• Exploration Loop:

- Pull Sensors
- Update Map
- Decide Next Move(s)
- Move

W Wall
R Robot
S Seen by Vision & Proxy
Proxy ONLY Seen by Proxy

Legend