Lista 5 - MAT0317/MAT5741 Topologia 2023

Instruções para a entrega:

- Dois dos exercícios 58, 59, 63 e 65 devem ser entregues em grupos de 3 a 5 pessoas até o dia 7 de julho.
- A entrega deve ser feita pelo edisciplinas.
- Basta que uma pessoa do grupo publique as soluções. O documento publicado deve conter o nome e o número usp dos componentes do grupo.

Exercício 53. Verifique, utilizando a definição de compacidade, se os seguintes subconjuntos de \mathbb{R} são compactos com a topologia usual.

- a.]0,1[
- b. $\{\frac{1}{n}: n \in \mathbb{N}\}$
- c. $\{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$

Exercício 54. Sejam X um espaço topológico, $(x_n)_{n\in\mathbb{N}}$ uma sequência em X e $x\in X$ tal que $x_n\to x$. Prove que $\{x_n:n\in\mathbb{N}\}\cup\{x\}$ é um subconjunto compacto de X.

Exercício 55. Prove que se X tem a topologia cofinita, todo subconjunto $Y \subseteq X$ é compacto.

Exercício 56. Prove que se X tem a topologia coenumerável, um subconjunto $Y \subseteq X$ é compacto se, e somente se, Y é finito.

Exercício 57. Seja $\langle X, \tau \rangle$ um espaço topológico compacto e $N := \{x \in X : \{x\} \in \tau\}$. Prove que se $F \subseteq N$ é fechado em X, então F é finito.

Exercício 58. Sejam X um espaço topológico e $K_1, K_2 \subseteq X$ subconjuntos compactos de X.

- a. Prove que $K_1 \cup K_2$ é compacto.
- b. Prove que se X é Hausdorff, então $K_1 \cap K_2$ é compacto.
- c. Exiba um exemplo para mostrar que a hipótese de que X é Hausdorff não pode ser removida do item anterior.

Exercício 59. Sejam X um espaço topológico compacto, $U \subseteq X$ um aberto de X e \mathcal{F} uma família de fechados de X tal que $\bigcap \mathcal{F} \subseteq U$. Prove que existe $\mathcal{F}' \subseteq \mathcal{F}$ finito tal que $\bigcap \mathcal{F}' \subseteq U$.

Exercício 60. Considere a topologia usual sobre \mathbb{Q} . Fixe $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Para cada $n \in \mathbb{N}$, defina

$$F_n := \mathbb{Q} \cap \left[\alpha - \frac{1}{2^n}, \alpha + \frac{1}{2^n}\right].$$

- a. Mostre que a família $\{F_n:n\in\mathbb{N}\}$ possui a propriedade da intersecção finita.
- b. Conclua que Q não é compacto.

Exercício 61. Sejam X um espaço vetorial sobre um corpo \mathbb{K} (\mathbb{R} ou \mathbb{C}) e τ uma topologia sobre X tal que, munindo $X \times X$ e $\mathbb{K} \times X$ das usuais topologias produto, as operações de soma e multiplicação por escalar

$$+: (x,y) \in X \times X \mapsto x + y \in X$$

 $\cdot: (\lambda,x) \in \mathbb{K} \times X \mapsto \lambda x \in X$

sejam contínuas.

- a. Fixe $a \in X$ e $\lambda \in \mathbb{K} \setminus \{0\}$. Prove que as funções $T_a(x) = a + x$ e $M_{\lambda}(x) = \lambda x$ são homeomorfismos.
- b. Prove que se U é uma vizinhança de 0 em X, então existe uma vizinhança V de 0 tal que $V+V\subset U$ e V=-V.

Sugestão: Aplique a continuidade da soma em 0+0=0 e use que a intersecção finita de abertos é um aberto, além do item anterior.

c. Prove que se $K\subseteq X$ é compacto, $C\subseteq X$ é fechado e $K\cap C=\varnothing$, então existe uma vizinhança V de 0 tal que

$$(K+V)\cap (C+V)=\varnothing.$$

Nota: $A + B := \{x + y : x \in A, y \in B\}$

d. Use (c) para provar que se X é T_1 , então X é Hausdorff.

Exercício 62. Sejam τ a topologia usual do intervalo [0,1] e $p \in \mathbb{R} \setminus [0,1]$. Considere, sobre o conjunto $X = [0,1] \cup \{p\}$, a topologia gerada por

$$\mathcal{B} = \tau \cup \left\{ \left[1 - \frac{1}{2^n}, 1 \right[\cup \{p\} : n \in \mathbb{N} \right\}.$$

Mostre que, com essa topologia, X é um espaço T_1 que não é T_2 . Verifique que $[0,1] \subseteq X$ é um subconjunto compacto de X que não é fechado em X.

Exercício 63. Prove que se X é compacto e Y é Hausdorff, então toda função contínua $f: X \to Y$ é fechada. Conclua que se f for também bijetora, então f é um homeomorfismo.

Exercício 64. Sejam τ e τ' topologias sobre um conjunto X. Prove que se $\tau' \subseteq \tau$ e $\langle X, \tau \rangle$ é compacto, então $\langle X, \tau' \rangle$ é compacto.

Exercício 65. Suponha que $\langle X, \tau \rangle$ é um espaço compacto e Hausdorff. Mostre que não existe uma topologia τ' sobre X tal que $\langle X, \tau' \rangle$ é Hausdorff e $\tau' \subsetneq \tau$. Conclua daí que também não existe uma topologia τ'' sobre X tal que $\langle X, \tau'' \rangle$ é compacto e $\tau \subsetneq \tau''$.

Exercício 66. Mostre que todo espaço métrico compacto é segundo enumerável.

Os exercícios a seguir estão mais relacionados a alguns dos últimos capítulos da apostila que não serão tratados em aula.

Exercício 67 (Teorema de Baire). Sejam X um espaço compacto Hausdorff e $\{U_n : n \in \mathbb{N}\}$ uma família de abertos densos de X. Prove que $\bigcap_{n \in \mathbb{N}} U_n$ é denso em X.

Sugestão: Tente reproduzir a prova do teorema de Baire para espaços métricos completos (Teorema 19.5 das notas de aula).

Exercício 68. Um espaço topologócio é dito *localmente compacto* se todo ponto admite um sistema fundamental de vizinhanças compactas.

- a. Mostre que se X é locamente compacto e T_2 , então X é T_3
- b. Suponha que X é Hausdorff. Prove que X é localmente compacto se, e somente se, para todo $x \in X$ e para todo aberto V de X tal que $x \in V$, existe W aberto em X tal que \overline{W} é compacto e

$$x \in W \subseteq \overline{W} \subseteq V$$
.

- c. Mostre que todo espaço compacto e Hausdorff é localmente compacto.
- d. Mostre que se X é T_2 e localmente compacto, vale o Teorema de Baire. Isto é, a interseccção enumerável de abertos densos de X é um subconjunto denso de X.
- e. Prove que todo espaço localmente compacto e Hausdorff é $T_{3\frac{1}{8}}$.

Exercício 69. Dizemos que um espaço topológico X é um espaço de Baire se a intersecção de qualquer família enumerável de abertos densos de X é um subconjunto denso de X.

- a. Mostre que, se X é um espaço de Baire e $U\subseteq X$ é aberto em X, então U é um espaço de Baire.
- b. Mostre que, se X é um espaço de Baire e $\{U_n : n \in \mathbb{N}\}$ é uma família de abertos densos de X, então $\bigcap_{n \in \mathbb{N}} U_n$ é um espaço de Baire.

Exercício 70. Sejam X e Y espaços topológicos. Dizemos que Y é uma compactificação de X se Y for compacto Hausdorff e existir um homeomorfismo na imagem $\varphi: X \to Y$ tal que $\varphi[X]$ seja denso em Y. Prove que um espaço topológico X admite uma compactificação se, e somente se, X é $T_{3\frac{1}{2}}$

Exercício 71. Mostre que um espaço topológico não unitário X com a topologia cofinita é conexo se, e somente se, X é infinito.

Exercício 72. Seja X um espaço topológico e $x \in X$. A componente conexa de x é o maior subconjunto conexo de X que contém x.

- a. Prove que a componente conexa de um ponto é sempre um subconjunto fechado de X.
- b. Como são as componentes conexas na reta de Sorgenfrey?

Exercício 73. Mostre que se $f: \mathbb{R} \to \mathbb{N}$ é contínua, então f é constante.

Exercício 74. Sejam X um espaço topológico e $A \subseteq X$ aberto e fechado em X. Prove que se A é conexo e não-vazio, então A é uma componente conexa em X.

Exercício 75 (Teorema do Valor Intermediário). Sejam X um espaço topológico conexo, $f: X \to \mathbb{R}$ contínua e $a, b \in X$ distintos. Suponha que $f(a) \leq f(b)$. Prove, dado $c \in [f(a), f(b)]$, existe $x \in X$ tal que f(x) = c.