COMPUTER ARCHITECTURE EXPERIMENT – 3

Implementation of Synchronous Sequential Circuits

Aim: In this experiment, students will be introduced to the concept of sequential circuits and implement a 2-bit Counter.

Experimental Work:

Given the following sequential circuit:

- 1. Draw the logic diagram of the given sequential circuit in Circuit Maker 6.0.
 - a) Implement your inputs as logic switches.

Devices → *Hotkeys2* → *logic switch*

b) Implement your circuit using logic gates and JK- Flip Flops (4027).

(You can search devices from devices \rightarrow search)

c) Implement your outputs as logic displays.

Devices \rightarrow Hotkeys $l \rightarrow logic display$

ID:

Name/Surname:

2. Run your circuit and complete the following state table:

Present State			Next State	
A(t)	B(t)	X	A(t+1)	B(t+1)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

3. Supply your flip-flop input equations: