Characterization of Motor Functions and Nuclear Localization of Truncated CtCIN8

By: Daniel Kim Jiarong Liang

Kinesin-5 Motor Proteins are critical for mitotic spindle assembly & elongation during Mitotic Anaphase

Anaphase

Panel 17-1, Bruce Albert, et. al., Molecular Biology of the Cell, 5/d, Garland Science, 2008, Page 1073

Homotetrameric Cin8 facilitates the antiparallel movement of Microtubules

Figure 17-30, Bruce Albert, et. al., Molecular Biology of the Cell, 5/d, Garland Science, 2008, Page 1077 Figure 8. K. Bell, et. al. *Jol. Bio. Chem.* Vol 292 (35), 2007

Structural and Functional Conservation of Kinesin-5 CIN8 in Saccharomyces Cerevisiae & Chaetomium Thermophilum

Saccharomyces cerevisiae Budding yeast

Chaetonium thermophilum Filamentous fungus

Prof. Isabelle Leblanc, Fa2024 MCB C110L, Lecture 1, 2024.

Nuclear Localization Signal located in different domains of CtCin8 & ScCin8

Prof. Isabelle Leblanc, Fa2024 MCB C110L, Lecture 1 & 2, 2024.

Visualizing Protein Localization

DDY904 Strain Contains mCherry (RFP) - Tagged Tub Gene

DDY904:

MATα ura3-52 leu2-3,112 his3Δ200 lys2-802 mCherry (RFP)-tagged tubulin

RFP - mCherry, FBBase.org, 2004. GFP - EGFP, FBBase.org, 1996

Visualizing Subcellular Localization

Figure 1, Cytoskeleton, C.Sing, et. al., Research Gate, Jan. 2022, Page 88

Full-Length CtCin8 exhibits high degree of localization.

Ct800 demonstrates a slightly lower degree of localization than Full-Length Cin8.

Ct533 exhibits much lower levels of Cin8-GFP localization than full-length CtCin8.

Ct429 displays virtually no Cin8-GFP localization

Malachite Assay to measure enzyme Kinetics

Measuring Kinetic Properties of Cin8

• 1)

- A) ATPase Activity
- B) NADH Coupled Assay

2) Temperature Dependence Assay

BellBrookLabs, Activity Assays, Dec. 2018

R. Yadav., et. al., L. aegytiaca, ResearchGate.com, Jan. 2011

K. Sozanski, et. al., Motor Domain Diffusion, ResearchGate.com, Nov. 2015

Column Chromatography

Purification Wash Buffer (W1, W3, & W4):

50 mM Hepes pH: 7.5

150 mM KCI

5 mM MgCl₂

20 mM Imidazole

10 % Glycerol

1 mM DTT

0.1 mM ADP pH 7.0

Purification Elution Buffer:

50 mM Hepes pH: 7.5

150 mM KCI

5 mM MgCl₂

250 mM Imidazole

10 % Glycerol

1 mM DTT

0.1 mM ADP

Wash Buffer (W2): except 1 mM ATP replacing ADP (same as Wash buffer above)

Malachite Green as a Phosphate Sensitive Dye

Upon addition of Malachite Green, the presence of Phosphate makes initially yellow dye turn green.

12
$$H_2MoO_4$$
 + Malachite green = Yellow (λ_{max} = 446nm)
 $H_2PO_4(MoO_3)_{12}$ + Malachite green = Green (λ_{max} = 650nm)

Prof. Isabelle Leblanc, Fa2024 MCB C110L, Lecture 1 & 2, 2024.

Quenching Continuous Assay EA & SA

34% Sodium Citrate

Prevents further color development of the continuous Malachite Green Assay

Enzyme Activity (**EA**) = $\mathbf{U} = \mathbf{A}/\mathbf{I}\boldsymbol{\varepsilon} * \mathbf{V} / \mathbf{time}$ ($\boldsymbol{\varepsilon}$ _Malachite Green = 99.4 M^-1 * C^-1)

Specific Activity (SA) = EA/mass

ATPase/NADH Assay

ATPase Assay

NADH Coupled Assay

Temperature Binding Assay

Rescuing Growth in Auxin and Cincreasin Conditions

Y119 contained Aid-6Flag Tag and Kip1 \Delta

Y119

MATα CIN8-AID-6FLAG::pHyg TIR1::LEU2 kip1Δ::HIS3 ura3-52 leu2-3, 112, lys1-801 his3Δ200

Auxin

 Recognizes & Binds to AID sequence to induce degradation via ubiquitination

Cincreasin

Removes the cell cycle checkpoint for spindle assembly

K. Phanindhar, et. al., Biotechniques, Vol 74. (4), 2023 R. Dorer, et. al., Current Biology, Vol. 15, Jun. 2005, Pg 1073

Phenotype Analysis of Cin8 Predictions

+: Growth

-: No Growth

?: Uncertain Growth

Plasmid	YPD	Auxin	Cincreasin	Auxin + Cinc.
ScCin8	+	+	+	+
CtCin8	+	?	?	?
Ct800	+	?	?	?
Ct533	+	?	?	?
Ct429	+	-	?	-

Plate Reader's Results

- GFP/ΔGFP Cin8 Incubated in YPD
- Experiments done in Triplicate
- Reading Taken per 15 minutes:
- Average Growth per 2hr of the fastest growth period

Average Growth in YPD exhibits Size Dependent Growth

In YPD setting, Cin8 Constructs demonstrate size dependent growth

↑ Genome Size = ↑ Growth

Auxin influences growth of full length ScCin8 & CtCin8 less than YPD

No significant impact to full length constructs of ScCin8 and CtCin8

Truncated constructs exhibit less growth in YPD

Cincreasin influences growth of full length ScCin8 & CtCin8 less than Auxin

No significant impact to full length constructs of ScCin8 and CtCin8

Truncated constructs exhibit less growth in YPD but more than Auxin

Average Growth in Aux/Cin exhibits Similar Growth Pattern as Auxin-only conditions

No significant impact to full length constructs of ScCin8 and CtCin8

Truncated constructs similar growth to Auxin only conditions

Future Direction

- 3D Crystallization of Truncated CtCin8
 - How do the missing coiled domains affect CtCin8 folding?

Are there any conserved regions to ScCin8?

Q/A

APPENDIX

MT Binding Assay

Note: No strong representation of Full Length CtCin8