How 2 blink LEDs

Joshua Fleming

About me

- Computer Engineer, '19
- Cybersecurity Club Secretary
- STICs Facilitator CMSC389R
- Bitcamp Organizer Hardware

Follow Along

 Code and slides available at https://github.com/jsfleming/bitcamp-led-workshop

Electronics Fundamentals

- Voltage: "force" to drive current through components
- Current: flow of charge through components
- Resistance: "force" against current
- \bullet V = I x R

Types of components

- Resistors: devices that add resistance in a circuit
 - Necessary to prevent too much current
 - Too much current = smoking, fire, explosions, etc
- Capacitors: devices that can store charge temporarily
 - As long as a voltage difference is applied, capacitors will fill with charge
 - Discharge as voltage difference decreases
- Diodes: allow current to flow only one way
 - LEDs are diodes that light up!

Types of components

- Sensors: detect physical properties and convert to something usable in a circuit
 - Photoresistor: resistor that decreases as light increases
 - Thermister: resistor that decreases as heat increases
 - Proximity sensor: detects proximity to device and represents as voltage, resistance, number, etc (dependent on sensor)

Types of components

Breadboard

- Connect stuff together
- Power rails vertical
- Main board rails horizontal

Turning on an LED

- Voltage difference across LED will make it glow
- CAUTION: diodes don't stop current from flowing
 - Put a resistor in between LED and voltage source
 - Can actually explode an LED w/ too much current

Onto the circuits!

Basic circuit

- We'll be using the Arduino for our power source (for now)
- Plug in the Arduino to your computer
- Share with others who have a kit!

Basic circuit

- LED
 - Longer leg = higher voltage
 - Shorter leg = lower voltage
- Resistor

Fancy circuit

LED

- Longer leg = higher voltage
- Shorter leg = lower voltage

Photoresistor

- LED strength changes with light
- Shine your phone's light against the photoresistor to see the LED brightness change!
- Keep this a bit farther away from LED to see the changes

Button circuit

- LED
 - Longer leg = higher voltage
 - Shorter leg = lower voltage
- Resistor
- Button
 - Terminals connected diagonally when button pressed
 - o i.e. top left -> bottom right, etc

Controlling with Arduino!

Arduino Programming

- Uses a C-like language
- Basic, easy to pick up
- Lots of libraries to make writing code faster and easier

- void setup()
 - This function runs once
 - Use to set variables to initial values
- void loop()
 - This function runs indefinitely
 - Program body will go here
- Declare variables outside of functions

```
#include "some_library.h"
int number;
void setup() {
  number = 0;
void loop() {
  number = number + 1;
```

- pinMode(PIN, MODE)
 - Use to declare pins on Arduino to receive input or to send outputs
 - o PIN is pin number
 - MODE is either INPUT or OUTPUT
- Digital pins: 0, 1, 2, 3, ... 13
 - Pins with ~ can use PWM
 - PWM is "fake" analog using digital pins -- can write values from 0 to 255
- Analog pins: A0, A1, ..., A5
 - Read values from 0 to 1023
 - Analog pins can ONLY be input

- digitalRead(PIN) returns HIGH or LOW from pin PIN
- digitalWrite(PIN, HIGH or LOW) writes HIGH or LOW to pin PIN
- analogRead(PIN) returns value from 0 to 255
- analogWrite(PIN, VALUE) writes a value VALUE from 0 to 255 to pin PIN
- Serial.begin(BAUD_RATE) sets up printing on Serial console
 - Tools > Serial Monitor
- Serial.print(STUFF) prints STUFF to Serial console
- delay(MILLISECONDS) pause code execution for some MILLISECONDS
 - \circ 1s = 1000ms

```
digitalRead(PIN) - returns HIGH or LOW from pin PI
```

- digitalWrite(PIN, HIGH or LOW) writes HIGH or LO³
- analogRead(PIN) returns value from 0 to 255
 analogWrite(PIN, VALUE) writes a value VALUE from 0
- Serial.begin(BAUD_RATE) sets up printing on Serial
- Tools > Serial Monitor
- Serial.print(STUFF) prints STUFF to Serial console

```
void setup() {
   pinMode(digitalPin, INPUT);
   pinMode(analogPin, INPUT);
   pinMode(pwmPin, OUTPUT);
   Serial.begin(9600);
}
```

int digitalPin = 2; int analogPin = A3; int pwmPin = 11;

int val;
int num;

void loop() {

digitalWrite(pwmPin, HIGH);
 delay(100);
ri digitalWrite(pwmPin, LOW);
 analogWrite(pwmPin, 135);

val = digitalRead(digitalPin);

num = analogRead(analogPin);

```
Serial.print("Digital Value:\n");
Serial.print(val);
Serial.print("Analog Number:\n");
Serial.println(num);
```

Circuits with Arduino!

Essence of Arduino Projects

- Figure out what you want to do
- Determine what parts you need
 - Which parts generate something? (motors, speakers, lights, etc)
 - Which parts detect something? (sensors, buttons, switches, scanners, etc)
- Use Arduino to control external components
 - digital/analog write for outputs (motors, speakers, lights, etc)
 - digital/analog read for inputs (sensors, buttons, switches, scanners, etc)
- Write program to perform task
 - What does something
 - When to do something
 - How long to do something

Blinky Circuit

- Arduino
- LED
 - Longer leg = higher voltage
 - Shorter leg = lower voltage
- Resistor
- Controlled from pin 3
 - digitalWrite

Fancy Blinky Circuit

- Arduino
- LED
 - Longer leg = higher voltage
 - Shorter leg = lower voltage
- Resistor
- Controlled from pin 3
 - analogWrite

Proximity Blinky Circuit

- Arduino
- LED pin 3
 - Longer leg = higher voltage
 - Shorter leg = lower voltage
- Resistor
- Distance Sensor
 - o Pin 9 -> TRIG
 - o Pin 10 -> ECHO
 - 5V -> VCC
 - o GND -> GND

