Appln. Serial No. 10/774,272

Filed: February 6, 2004 Docket No.: 8932-876-999 CAM No.: 232200-999224

Amendments to the Specification:

Please amend paragraph [0055], beginning at page 10 of the specification, to correct a typographical error in the spelling of the word "grooves" as follows:

When implant 20 is received in bore 66 in intramedullary nail 22 and body [0055] member 60 is located in channel 64 with tabs 85 bottomed out on ends 67 of grooves groves 65, prong 76 interacts with implant 20 to substantially prevent rotation of implant 20 about its longitudinal axis 30. More specifically, prong 76 fits tightly in the space between channel 64 and implant 20 such that first and second engagement surfaces 86, 90 are maintained in contact under the constraints of channel 64. In this configuration, implant 20 is substantially prevented from rotation about its longitudinal axis 30 due to abutment of substantially flat first and second engagement surfaces 86, 90. The coupling mechanism may thus be used to maintain implant 20 in its intended rotational orientation within the bone. If provided, stops 92, 94 prevent implant 20 and implant 22 from coming apart, and may also limit the amount of sliding of implant 20 along its longitudinal axis 30 to the length of second engagement surface 90. For example, once implant 20 slides distally until first stop 92 contacts prong 76, any further sliding in the distal direction is prevented. Likewise, once implant 20 slides proximally until second stop 94 contacts prong 76, any further sliding in the proximal direction is prevented. Thus, first and second stops 92, 94 may be selectively spaced apart along longitudinal axis 30 to provide for a desirable amount of sliding between implant 20 and intramedullary nail 22, such as to provide for compression between the two fractured bone fragments. For example, limited sliding may be desirable during implantation, to compress a fractured femur head toward the trochanteric region. Additionally, limited motion may also stimulate bone growth and fracture healing during service. One of ordinary skill in the art will know and appreciate that first engagement surface 86 and second engagement surface 90 are not limited to the substantially flat configurations shown herein. Rather, first and second engagement surfaces 86, 90 may have any geometries that, when located adjacent one another, prevent rotation of implant 20 about axis 30, yet provide for sliding of implant 20 along longitudinal axis 30.