03. Divide-and-Conquer 1/37

03. Divide-and-Conquer

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

03. Divide-and-Conquer 2/37

Divide-and-Conquer

One of the big ideas of computer science problem solving

- 1. **Divide** a problem into smaller parts
- 2. Conquer the smaller problems recursively
- 3. Combine the smaller solutions into one solution for the original problem

Divide-and-conquer, outside of algorithm design

- Software design; breaking features into classes, functions
- Software process; agile methods; sprints

03. Divide-and-Conquer 3/37

Divide-and-conquer at a high level

```
1: function DIVIDE-AND-CONQUER(INPUT)
 2:
        if INPUT is base case then
            return trivial base case solution
 3:
        else
 4:
            x_1, x_2, \dots, x_k = \text{divide INPUT into } k \text{ pieces (often 2)}
 5:
            s_1 = \text{DIVIDE-AND-CONQUER}(x_1)
 6:
 7:
            . . .
            s_k = \text{DIVIDE-AND-CONQUER}(x_k)
 8:
            S = \text{combine } s_1, \dots, s_k \text{ into one solution}
 9:
            return S
10.
        end if
11.
12: end function
```

03. Divide-and-Conquer 4/37

Time complexity recurrences

Recursive pseudocode leads to recurrences in run-time functions

Suppose base case is n=1 and takes $\Theta(1)$ time; in the recursive case we divide evenly into k pieces of size $\approx n/k$, recurse once on each, and spend f(n) time in the *divide* and *conquer* phases:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ kT(n/k) + f(n) & \text{if } n > 1. \end{cases}$$

Recall merge sort divides into k = 2 pieces, merge takes $\Theta(n)$ time:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

03. Divide-and-Conquer 5/37

Taking liberties with recurrences

General math: bound recurrences precisely including constant factors

Algorithm analysis: ordinarily bounding asymptotically; Θ notation will hide constant factors anyway; drop math details that can only impact constants and add clutter

- ▶ drop ceilings/floors, so write e.g. n/2 in lieu of $\lceil n/2 \rceil$ or $\lceil n/2 \rceil$ is more precise
- ▶ when the base case is $\Theta(1)$ time for n < c for some $c \in \Theta(1)$, don't bother writing it explicitly; so

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

is abbreviated as

$$T(n) = 2T(n/2) + \Theta(n)$$

03. Divide-and-Conquer 6/37

Maximum subarray problem

Maximum subarray problem

input: an array $\langle p_1, p_2, \dots, p_n \rangle$ where each $p_i \in \mathbb{R}$ is a *profit* (or loss) on day i **output:** indices s, e with $s \leq e$, maximizing the total profit

$$\sum_{i=s}^{e} p_i$$

Applications

- buy then sell a stock/security
- pick opening/closing time of a retail store with slow periods
- computer vision, data mining: identify region most consistent with a pattern e.g. street striping

03. Divide-and-Conquer 7/37

Examples

The optimal subarray may involve negative elements:

$$\langle 100,-1,-1,-1,5,3\rangle$$

Application: when to open/close a cafe:

03. Divide-and-Conquer 8/37

Greedy fails

Straightforward greedy algorithm would be:

- buy at the lowest price or sell at the highest price
- incorrect; best "run" could be elsewhere
- \triangleright example: (0, 1, 10, 4, 4, 4, 4)
 - $ightharpoonup \langle 1, 10 \rangle$ is the biggest trough-to-peak; sum 11
 - but slow-and-steady $\langle 4, 4, 4, 4 \rangle$ has sum 12
- ▶ not always correct ⇒ not actually an algorithm

03. Divide-and-Conquer 9/37

Brute force

```
Exhaustive search: try every legal start/end
 1: function BRUTE-FORCE-MAX-SUBARRAY(P)
       s = e = 1
    for i from 1 to n do
           for i from i to n do
              if (\sum p_i \dots p_i) > (\sum p_s \dots p_e) then
 5:
                  s = i, e = i
 6:
              end if
           end for
 9:
       end for
       return (s, e)
10:
11: end function
\Theta(n^3) time as written; can cache sums to achieve \Theta(n^2)
```

03. Divide-and-Conquer 10/37

Divide-and-conquer brainstorm

Divide: chop array in half into two smaller arrays L, R

Conquer: recursively compute maximum subarray in L and in R

Combine: maximum subarray of entire *P* could be

- 1. subarray entirely in *L*;
- 2. subarray entirely in R; or
- 3. crossing subarray that starts in L and ends in R

(exhaustive case analysis)

Theme with **combine**: choose best among small solutions (easy) or a distinct solution that crosses boundaries (trickier)

03. Divide-and-Conquer 11/37

Identify crossing subarray — try 1

Suppose the two pieces of P are P[low ...mid] and P[mid + 1...high]

Tempting to try all pairs of $s \in \{low, \dots, mid\}$ and $e \in \{mid + 1, \dots, high\}$

Would work, but

- ▶ time becomes $T(n) = 2T(n/2) + \Theta(n^2)$ which is $\Theta(n^2)$ by master theorem
- ▶ same time as brute force, but more complicated ⇒ not a win

03. Divide-and-Conquer 12/37

Identify crossing subarray — insight

Theme in algorithm design: in general, a more specific problem admits a faster and/or simpler algorithm

First try is not using the fact that a crossing subarray must cross mid

- substantially simplifies the search
- \triangleright s is how far before mid; separately, e is how far after mid?
- ▶ two separate 1D searches ⇒ two linear loops
- \triangleright $\Theta(n) + \Theta(n) = \Theta(2n) = \Theta(n)$ time
- versus: s is where, and e is how much later?
- ▶ 2D search \implies two nested loops \implies $\Theta(n^2)$ time
- ▶ location of the "2" is profound; $\Theta(2n) \ll \Theta(n^2)$

03. Divide-and-Conquer

Identify crossing subarray — try 2

```
1: function MAX-CROSSING-SUBARRAY(P, low, mid, high)
      leftsum = rightsum = -\infty
      sum = 0
      for i from mid down to low do
          sum = sum + P[i]
          if sum > leftsum then
             leftsum = sum
             maxleft = i
          end if
        end for
        sum = 0
        for i from mid + 1 to high do
            sum = sum + P[i]
14:
15:
16:
17:
18:
19:
            if sum > rightsum then
               rightsum = sum
               maxright = i
            end if
        and for
        return (maxleft, maxright, leftsum + rightsum)
     end function
```

 $\Theta(n)$ time

(Note scoping of *maxleft*, *maxright*, and that they are inevitably initialized.)

03. Divide-and-Conquer

Maximum subarray algorithm

1: function MAX-SUBARRAY(P, low, high)

```
2:
3:
4:
5:
6:
7:
8:
9:
         if low == high then
            return (low, high, P[low])
         else
            mid = |(low + high)/2|
            (leftlow, lefthigh, leftsum) = MAX - SUBARRAY(P, low, mid)
            (rightlow, righthigh, rightsum) = MAX - SUBARRAY(P, mid + 1, high)
            (crosslow, crosshigh, crosssum) = MAX - CROSSING - SUBARRAY(A, low, mid, high)
            if leftsum > rightsum and leftsum > crosssum then
                  return (leftlow, lefthigh, leftsum)
                                                                                                                                                      ▷ entirely-left subarray
  11:
              else if rightsum > leftsum and rightsum > crosssum then
  12:
                  return (rightlow, righthigh, rightsum)
                                                                                                                                                    ▷ entirely-right subarray
  13:
14:
15:
16:
                  return (crosslow, crosshigh, crosssum)
                                                                                                                                                     ▷ mid-crossing subarray
              end if
```

03. Divide-and-Conquer 15/37

Maximum subarray analysis

D&C runtime is

$$T(n) = 2T(n/2) + \Theta(n)$$

Solves to $\Theta(n \log n)$, by master theorem, same as merge sort.

Brute force was $\Theta(n^2)$

- ▶ D&C is much faster
- perhaps counterintuitive due to recursion's reputation for sloth
- ▶ D&C benefits from observation that subarrays are contiguous, so extend in two directions from a middle
- brute force is oblivious to this
- human mathematical insight eliminates wasted effort

03. Divide-and-Conquer 16/37

Matrix multiplication

Matrix multiplication problem

input: A, B each an $n \times n$ matrix **output:** matrix product C = AB

Recall notation: element at row i and column j of matrix A is denoted a_{ij}

Definition of matrix multiplication:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}.$$

03. Divide-and-Conquer 17/37

Naïve matrix multiplication

```
1: function MATRIX-MULTIPLY(A, B)
        C = \text{new } n \times n \text{ matrix}
        for i from 1 to n do
            for j from 1 to n do
 5:
                c_{ii}=0
                for k from 1 to n do
 6:
                    c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
 7:
                end for
            end for
 9:
        end for
10:
        return C
11:
12: end function
\Theta(n^3) time
```

03. Divide-and-Conquer 18/37

Is naïve optimal?

The definition of matrix multiplication involves a sum that is iterated n times, for each of the $n \times n$ elements of C, which might seem to require exactly n^3 scalar multiply instructions, and imply an $\Omega(n^3)$ lower bound for matrix multiplication.

Surprise! Strassen's algorithm (1969) takes $O(n^{\lg 7}) = O(n^{2.81})$ time; more complicated Williams-Le Gall algorithm (2014) takes $O(n^{2.37})$ time

Insight: per the definition of matrix multiplication, some elements of A and B are multiplied together more than once; avoid duplicating these efforts.

03. Divide-and-Conquer 19/37

Moving to divide-and-conquer

Suppose n is an even power of 2, i.e. $n = 2^k$ for $k \ge 0$ (Can preprocess A, B by adding padding zeroes, then trim the zeroes out of C.) Divide A into four equal-size submatrices, and same for B, C.

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},$$

so we can compute C as

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}.$$

03. Divide-and-Conquer 20/37

Moving to divide-and-conquer (continued)

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

can be broken down into four separate computations

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

each of which can be performed recursively.

03. Divide-and-Conquer

Divide-and-conquer matrix multiplication — try 1

```
1: function MMR(A, B)
 2. C = \text{new } n \times n \text{ matrix}
 3. if n == 1 then
        c_{11} = a_{11} \cdot b_{11}
 5.
        else
            quadrisect A. B. C
            C_{11} = MMR(A_{11}, B_{11}) + MMR(A_{12}, B_{21})
            C_{12} = MMR(A_{11}, B_{12}) + MMR(A_{12}, B_{22})
            C_{21} = MMR(A_{21}, B_{11}) + MMR(A_{22}, B_{21})
            C_{22} = MMR(A_{21}, B_{12}) + MMR(A_{22}, B_{22})
10.
        end if
11.
        return C
12:
13: end function
```

03. Divide-and-Conquer 22/37

Analysis

- \triangleright each of the submatrices A_{11} , etc. has size n/2
- quadrisecting A, B is $\Theta(n^2)$ time; same for assembling C
- each matrix + takes $\Theta((\frac{n}{2})^2) = \Theta(\frac{n^2}{4}) = \Theta(n^2)$ time
- 8 recursive calls

$$T(n) = 8T(n/2) + \Theta(n^2)$$

Solves to $T(n) \in \Theta(n^3)$ by master theorem; same as naïve

Observe: the 8 factor is meaningful, but the $\frac{1}{4}$ isn't

⇒ it's a win to have fewer recursive calls, but more work (by a constant factor) in the **combine** step

03. Divide-and-Conquer

Strassen's insight

Use algebra to refactor into 7 recursive multiplies instead of 8

- 1. quadrisect A, B, C as before
- 2. create 10 $(n/2) \times (n/2)$ submatrices S_1, \ldots, S_{10} using matrix + and -
- 3. recursively compute 7 submatrix products P_1, \ldots, P_7 in terms of the matrices from steps 1, 2
- 4. compute $C_{11}, C_{12}, C_{21}, C_{22}$ using matrix + and -

$$T(n) = \Theta(n^2) + \Theta(10\frac{n}{4}) + 7T(n/2) + T(4\frac{n}{4})$$

= $7T(n/2) + \Theta(n^2)$
 $\in \Theta(n^{\lg 7})$

by master theorem

03. Divide-and-Conquer 24/37

Divide-and-conquer matrix multiplication — try 2

```
1: function MMS(A, B)
2:
3:
4:
5:
7:
8:
9:
10:
         C = \text{new } n \times n \text{ matrix}
         if n == 1 then
            c_{11} = a_{11} \cdot b_{11}
        else
            quadrisect A, B, C
            form S_1, \ldots, S_{10} as shown on next slide
            P_1 = MMS(A_{11}, S_1)
            P_2 = MMS(S_2, B22)
            P_3 = MMS(S_3, B11)
 11:
            P_A = MMS(A_{22}, S_A)
 12:
           P_{\rm E} = MMS(S_{\rm E}, S_{\rm E})
 13:
          P_6 = MMS(S_7, S_8)
 14:
           P_7 = MMS(S_0, S_{10})
 15:
           C_{11} = P_5 + P_4 - P_2 + P_6
 16:
           C_{12} = P_1 + P_2
 17:
          C_{21} = P_3 + P_4
 18:
            C_{22} = P_5 + P_1 - P_3 - P_7
           end if
```

03. Divide-and-Conquer 25/37

Details of Strassen's algorithm

$$S_1 = B_{12} - B_{22}$$

$$S_2 = A_{11} + A_{12}$$

$$S_3 = A_{21} + A_{22}$$

$$S_4 = B_{21} - B_{11}$$

$$S_5 = A_{11} + A_{22}$$

$$S_6 = B_{11} + B_{22}$$

$$S_7 = A_{12} - A_{22}$$

$$S_8 = B_{21} + B_{22}$$

$$S_9 = A_{11} - A_{21}$$

$$S_{10} = B_{11} + B_{12}$$

$$P_{1} = A_{11} \cdot S_{1}$$

$$P_{2} = S_{2} \cdot B_{22}$$

$$P_{3} = S_{3} \cdot B_{11}$$

$$P_{4} = A_{22} \cdot S_{4}$$

$$P_{5} = S_{5} \cdot S_{6}$$

$$P_{6} = S_{7} \cdot S_{8}$$

$$P_{7} = S_{9} \cdot S_{10}$$

$$C_{11} = P_{5} + P_{4} - P_{2} + P_{6}$$

$$C_{12} = P_{1} + P_{2}$$

$$C_{21} = P_{3} + P_{4}$$

$$C_{22} = P_{5} + P_{1} - P_{3} - P_{7}$$

03. Divide-and-Conquer 26/37

Editorial Commentary

- proof that 7 recursive multiplies suffice, instead of 8, is surprising and therefore interesting
- equations on previous slide are relatively uninteresting (though not unimportant)
 technical detail
- \triangleright $o(n^3)$ matrix multiply is of great theoretical interest (because surprise)
- but the naïve alg. has substantially better constant factors, and the gap between $\Theta(n^3)$ and $\Theta(n^{2.81})$ is narrow
- ► Strassen (and descendants) are only practical for very large *n*
- ▶ in practice: naïve alg. for base case n < 128 (say)

03. Divide-and-Conquer 27/37

Takeaways

Recall

- ▶ insertion sort is $\Theta(n^2)$; D&C merge sort is $\Theta(n \log n)$
- ▶ brute force maximum subarray is $\Theta(n^2)$; D&C alg. is $\Theta(n \log n)$
- ▶ naïve matrix multiply is $\Theta(n^3)$; Strassen's alg. is $\Theta(n^{2.81})$

In each case study,

- ▶ first try was no faster; just using D&C isn't an automatic improvement
- master method analyses hinted at the bottleneck
- shift work around to decrease asymptotic time complexity (but increase constant factors);
 beneficial trade-off
- optimization comes from human insight into the problem
- unclear how to make these insights w/o the D&C framing

03. Divide-and-Conquer 28/37

Master Method

- ▶ Master method: plug-and-chug process for solving some recurrences
 - doesn't work for all
 - but works for *typical* D&C recurrences
- ▶ Master theorem: proof that the method is sound

03. Divide-and-Conquer 29/37

Master Theorem

Let $a \ge 1, b > 1$ be constants, f(n) be a function, and T(n) be the recurrence

$$T(n) = aT(n/b) + f(n).$$

Then

- 1. If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = O(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $af(n/b) \le cf(n)$ for some c < 1 and sufficiently large n, then $T(n) = \Theta(f(n))$.

Step 1: Identify Relevant Case

3 cases: f(n) is asymptotically

- 1. less than,
- 2. equal,
- 3. greater than the benchmark $n^{\log_b a}$.

So identify a and b, substitute into $n^{\log_b a}$, simplify, and decide among the cases.

If unsure, take the limit

$$\lim_{n\to\infty}\frac{f(n)}{n^{\log_b a}}$$

Step 1: Identify Relevant Case

Example:

$$T(n) = 2T(n/2) + 7$$

Identify: a = 2, b = 2

Plug and chug:

$$n^{\log_b a} = n^{\log_{(2)}(2)} = n^{(1)} = n$$

Is 7 less than, equal, or greater than n?

Intuition: less than

Check:

$$\lim_{n\to\infty}\frac{7}{n}=0$$

Step 2 alternative 1: Justify Case 1

Need to Prove: If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.

Prove by showing an example of a ϵ that makes $f(n) = O(n^{log_b a - \epsilon})$.

Continuing example: show ϵ s.t. $7=O(n^{1-\epsilon})$ Choose $\epsilon=1$, so we have $7=O(n^{1-(1)})=O(n^0)=O(1)$

Justification: "We have f(n) = 7 and $n^{\log_b a} = n^{\log_{(2)}(2)} = n^{(1)} = n$. Let $\epsilon = 1$; then $f(n) = O(n^{\log_b a - \epsilon}) = O(n^{(1) - (1)}) = O(n^{(0)}) = O(1)$, and by case 1 of the master theorem, $T(n) = \Theta(n^{\log_b a}) = \Theta(n)$."

Step 2 alternative 2: Justify Case 2

Need to Prove: If $f(n) = O(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.

Case 2 is true without qualification; don't need to show anything else.

Example: T(n) = 2T(n/2) + 5n, so a = 2, b = 2, and f(n) = 5n.

 $n^{\log_b a} = n^{\log_{(2)}(2)} = n^{(1)} = n$ is asymptotically equal to f(n) = 5n so case 2 applies and $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)$.

Justification: "We have f(n) = 5n and $n^{\log_b a} = n^{\log_{(2)}(2)} = n^{(1)} = n$. Case 2 of the master theorem applies, so $T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n^{(1)} \log n) = \Theta(n \log n)$."

Step 2 alternative 3: Justify Case 3

Need to Prove: If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $af(n/b) \le cf(n)$ for some c < 1 and sufficiently large n, then $T(n) = \Theta(f(n))$.

Prove by showing examples of ϵ , c that makes $f(n) = O(n^{\log_b a + \epsilon})$ and $af(n/b) \le cf(n)$ for large n.

Example:
$$T(n) = 2T(n/2) + n^2$$
, so $a = 2$, $b = 2$, and $f(n) = n^2$.

$$n^{\log_b a} = n^{\log_{(2)}(2)} = n^{(1)} = n$$
. Can choose $\epsilon = 1$ to have $\Omega(n^{1+(1)})$.

Step 2 alternative 3: Justify Case 3 (cont'd)

Need

$$af(n/b) \le cf(n)$$

$$(2)f(\frac{n}{2}) \le c(n^2)$$

$$2 \cdot (\frac{n}{2})^2 \le cn^2$$

$$2 \cdot \frac{n^2}{4} \le cn^2$$

$$\frac{1}{2} \le c$$

Any c satisfying $\frac{1}{2} \leq c < 1$ can work; arbitrarily choose $c = \frac{3}{4}$.

Step 2 alternative 3: Justify Case 3 (cont'd)

```
Justification: "We have f(n) = n^2 and n^{\log_b a} = n^{\log_{(2)}(2)} = n^{(1)} = n. Let \epsilon = 1; then f(n) = \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{(1) + (1)}) = \Omega(n^2). Let c = \frac{3}{4}; then af(n/b) = (2)f(n/(2)) = 2(n/2)^2 = 2(n^2/4) = n^2/2 \le cf(n) = (\frac{3}{4})n^2 for sufficiently large n. Case 3 of the master theorem applies, so T(n) = \Theta(f(n)) = \Theta(n^2)."
```

03. Divide-and-Conquer 37/37

Limitations Of The Master Method

Master Theorem is a big "if/then"

Theorem does not apply when:

- ightharpoonup T(n) not in the necessary form, or
- ▶ none of cases 1, 2, 3 apply

There are gaps between the cases.

However, when an algo. is designed according to the D&C pattern, the master theorem almost always applies.