2.2.4 Técnica esencial: convergencia de los tipos distribucionales

El ingrediente esencial es la proposición siguiente.

Definition 2.10. 1. Funciones de distribución F y G son **del mísmo tipo** de distribución, si existen a > 0 y $b \in \mathbb{R}$ tal que F(ax + b) = G(x) para toda $x \in \mathbb{R}$.

2. Una distribución F se llama **degenerada** si existe una $b \in \mathbb{R}$ tal que

$$F(x) = \mathbf{1}_{[b,\infty)}(x).$$

En el caso contrario se llama no degenerado.

Theorem 2.11 (Convergencia a los tipos distribucionales).

- Sea $(F_n)_{n\in\mathbb{N}}$ una sucesión de funciones de distribución, G y H distribuciones **no-degeneradas**.
- Sean $(a_n)_n$, $a_n > 0$, y $(b_n)_n$ successores reales tal que $F_n(a_n x + b_n) \xrightarrow{n \to \infty} G(x) \quad \text{para toda } x \in \mathbb{R} \text{ punto de continuidad de } G.$
- Sean $(u_n)_n$, $u_n > 0$, $y(v_n)_n$ successores reales tal que $F_n(u_n x + v_n) \xrightarrow{n \to \infty} H(x) \quad \text{para toda } x \in \mathbb{R} \text{ punto de continuidad de } H.$

Entonces existen $\alpha > 0$ y $\beta \in \mathbb{R}$ tal que

$$\alpha = \lim_{n \to \infty} \frac{a_n}{u_n},$$
$$\beta = \lim_{n \to \infty} \frac{b_n - v_n}{u_n}$$

y

$$H(x) = G(\alpha x + \beta).$$

Remark 2.16. En el lenguaje de variables aletórias se lee así. Sean $(A_n)_{n\in\mathbb{N}}$, B, C variables aleatórias y constantes $a_n, u_n > 0$ y b_n, b_n . Asumiendo que

$$\frac{A_n - b_n}{a_n} \stackrel{d}{\to} B,$$

У

$$\frac{A_n - v_n}{u_n} \stackrel{d}{\to} C,$$

para otra v.a. C si y sólo si

$$\lim_{n \to \infty} \frac{a_n}{u_n} = a \in [0, \infty)$$
$$\lim_{n \to \infty} \frac{b_n - v_n}{u_n} = b \in \mathbb{R}.$$

Si el primer límite es cierto entonces

$$C \stackrel{d}{=} aB + b.$$

En particular, C es no-degenerado si y sólo si b > 0.

Lemma 2.17 (Claim 1).

$$Si \ F_n \xrightarrow{d} H, \ a_n \to a \ y \ b_n \to b \ entonces$$

$$\lim_{n\to\infty} F_n(a_nx+b_n) = H(ax+b) \qquad para \ todos \ los \ puntos \ de \ continuidad \ ax+b \ de \ H.$$

Este es el caso "bueno" que vamos a usar para concluir en la demostración del teorema.

Proof. • Sea ax + b un punto de continuidad de H.

• Sea $\varepsilon > 0$ entonces existen puntos u < ax + b < v tal que

$$H(u) - H(v) \le |H(u) - H(ax + b)| + |H(ax + b) - v| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Además u, v puede ser también puntos de continuidad de H. Esto es posible H es una función monótona y acotada y sólo puede tener un número contable de discontinuidades.

• Por $F_n \to H$ en distribución (convergencia puntual en los puntos de continuidad) tenemos que para $n \ge N$ suficientemente grande

$$u < ax + b < v$$

$$|F_n(u) - H(u)| < \frac{\varepsilon}{2}$$

$$|F_n(v) - H(v)| < \frac{\varepsilon}{2}$$

• Entonces para toda $n \ge N$ tenemos que

$$\begin{split} H(ax+b) - \varepsilon &< H(u) - \frac{\varepsilon}{2} \leqslant F_n(u) \\ &\leqslant F_n(a_n x + b_n) \\ &\leqslant F_n(v) &< H(v) + \frac{\varepsilon}{2} < H(ax+b) + \varepsilon. \end{split}$$

que es la definición de

$$\lim_{n \to \infty} F_n(a_n x + b_n) = H(ax + b).$$

Lemma 2.18 (Claim 2).

 $Si\ F_n \stackrel{d}{\longrightarrow} H\ y\ a_n \to \infty$, entonces $F_n(a_n x) \longrightarrow \mathbf{1}_{(0,\infty)}(x)$, es decir, converge, pero degenera.

Proof. • Sea $\varepsilon > 0$, u punto de continuidad de H tal que $H(u) > 1 - \varepsilon$.

- Si x > 0 entonces para toda n suficientemente grande tenemos que
 - (a) $a_n x > u$

(b)
$$|F_n(u) - H(u)| < \varepsilon$$
.

 \bullet Por tanto para n suficientemente grande tenemos que

$$F_n(a_n x) \geqslant F_n(u) > H(u) - \varepsilon > 1 - 2\varepsilon.$$

• En otras palabras

$$\lim_{n \to \infty} F_n(a_n x) = 1 \qquad \text{para } x > 0.$$

• Análogamente para x < 0 obtenemos que

$$\lim_{n \to \infty} F_n(a_n x) = 0 \qquad \text{para } x < 0.$$

(¡múestrelo!)

Lemma 2.19 (Claim 3).

 $Si \ F_n \stackrel{d}{\longrightarrow} H \ y \ (b_n)_n \ no \ est\'a \ acotada, \ entonces \ cualquier funci\'on \ l\'imite$

$$H(x) := \lim_{n \to \infty} F_n(x + b_n), \quad n \to \infty, x \in \mathbb{R} \text{ punto de continuidad}$$

no es una función de distribución. (¡ni siquiera a una distribución degenerada!)

Por contraposición: Este resultado nos dice: La convergencia débil de

$$\lim_{n \to \infty} F_n(x + b_n) = H(x)$$

a una función de distribución H, implica que la sucesión $(b_n)_{n\in\mathbb{N}}$ esté acotada.

Proof. • Sea $(b_n)_n$ no acotada y $b_n \to \infty$ a lo largo de una subsucesión.

• Asumimos que

$$F_n(x+b_n) \longrightarrow H(x), \quad n \to \infty,$$

para una función de distribución H y para toda x un punto de continuidad de H.

- Sea $\varepsilon > 0$ y u un punto de continuidad de H tal que $H(u) > 1 \varepsilon$.
- Para toda x tenemos que para n suficientemente grande que $x+b_n>u$ tal que

$$F_n(x+b_n) \geqslant F_n(u) > 1-2\varepsilon.$$

Consecuentemente tenemos que

$$H(x) = \lim_{n \to \infty} F_n(x + b_n) = 1$$
 para todos los puntos de continuidad x de H ,

lo que es una contradicción a H ser una función de distribución. Si H fuera una función de disribución tendríamos que $\lim_{x\to-\infty} H(x)=0$. Sin embargo, función constante H(x)=1 en todos los puntos de continuidad (que son todas las $x\in\mathbb{R}$ menos un número contable) no puede tender a 0 para $x\to-\infty$.

Lemma 2.20 (Claim 4).

Sean H, G no degenerados. Si $F_n(x) \longrightarrow H(x)$ y $F_n(a_nx + b_n) \longrightarrow G(x)$ entonces

$$0 < \inf_{n} a_n \leqslant \sup_{n} a_n < \infty$$
$$\sup_{n \to \infty} |b_n| < \infty.$$

Proof. Asumimos $\sup_n a_n = \infty$

- Sea $\sup_n a_n = \infty$ entonces existe una subsucesión $a_n \to \infty$ (abuso de notación).
- Por Claim 2 sabemos que

$$\tilde{F}_n(x) := F_n(a_n x) \to \mathbf{1}_{(0,\infty)}(x).$$

Ahora como por hipótesis

$$\tilde{F}_n(x + \frac{b_n}{a_n}) = F_n(a_n(x + \frac{b_n}{a_n})) = F_n(a_nx + b_n) \longrightarrow G(x).$$

Claim 3 nos da que para la sucesión de funciones de distribución \tilde{F}_n que

$$\tilde{b}_n := \frac{b_n}{a_n}$$

es forzosamente acotado (a lo largo de esta subsucesión de los a_n).

• Por tanto (sucesiones acotadas en los números reales están contenido en un intervalo cerrado, que es compacto, y por tanto) existe una subsucesión de esta subsucesión (otra vez abuso de notación) tal que

$$\tilde{b}_n = \frac{b_n}{a_n} \longrightarrow c.$$

para algún valor c.

• Pero

$$F_n(a_n x) \to \mathbf{1}_{(0,\infty)}(x).$$

y Claim 1 nos dicen entonces que a lo large de nuestra subsucesión

$$G(x) = \lim_{n \to \infty} F_n(a_n x + b_n) = \lim_{n \to \infty} F_n(a_n (x + \frac{b_n}{a_n})) = \mathbf{1}_{(0,\infty)}(x + c)$$

lo que implica que G es degenerada, contradiciendo la hipótesis global.

Por tanto

$$\sup_{n} a_n < \infty.$$

• Si

$$G_n(x) := F_n(a_n x + b_n)$$

entonces por hipótesis $G_n \stackrel{d}{\longrightarrow} G$ y

$$G_n(\frac{x}{a_n} - \frac{b_n}{a_n}) = F_n(x) \longrightarrow H(x)$$

por construcción.

• Podemos repetir la demostración del primer resultado cambiando los papeles de F_n por $G_n,\,G$ por H y a_n por $\frac{1}{a_n}$ nos muestra que

$$\sup_n a_n^{-1} < \infty$$

y por tanto $0 < \inf_n a_n$. (¡muéstrelo!).

Por tanto

$$0 < \inf_{n} a_n \leqslant \sup_{n} a_n < \infty,$$

es decir que a_n que da separado de 0 y ∞ para toda n suficientemente grande. Asumimos que $(b_n)_n$ no esté actodado.

- Si b_n no está acotado entonces bajo las conclusiones arriba tampoco lo será $\frac{b_n}{a_n}$ por $0 < \inf_n a_n \le \sup_n a_n < \infty$.
- Pasando a una subsucesión obtenemos que $\frac{b_n}{a_n} \to \infty$ y a_n converge a un valor a > 0.
- Claim 1 nos da que

$$F_n(a_n x) \longrightarrow F(ax).$$

• Por Claim 3 y

$$\frac{b_n}{a_n} \to \infty$$

obtenemos que

$$\tilde{F}_n(x + \frac{b_n}{a_n}) = F_n(a_n(x + \frac{b_n}{a_n})) = F_n(a_nx + b_n)$$

no converge, mientras por hipótesis

$$F_n(a_nx+b_n)\to H(x).$$

Esto genera una contradicción a la hipótesis global.

Por tanto $\sup_n |b_n| < \infty$.

Lemma 2.21 (Claim 5).

Si F(x) = F(ax + b) para todas x y F no es degenerado entonces a = 1 y b = 0. Esto significa evidentemente que F(ax + b) = F(ux + v) implica que a = u y a = v.

Proof. • $F(x) = F(ax + b) = F(a(ax + b) + b) = F(a^2x + (a + 1)b) = F(a^nx + (a^{n-1} + a + 1)b)$ para toda n y x

- \bullet Claim 4 nos dice que a^n entonces está acotado separado de 0 y de ∞ . Por tanto a=1.
- Además para que $(1^{n-1}+\cdots+1^1+1)b=nb$ esté acotado implica que b=0 por Claim 3.

Proof of Theorem 2.11

Proof.

$$F_n(a_nx + b_n) \stackrel{d}{\longrightarrow} G(x)$$

 $F_n(u_nx + v_n) \stackrel{d}{\longrightarrow} H(x)$

Primer caso:

- Asumimos $a_n \to \alpha$ y $b_n \to \beta$.
- Si $u_n = 1$ y $v_n = 0$ entonces tenemos que

$$0 < \inf_{n} u_n \leqslant \sup_{n} u_n < \infty$$
$$\sup_{n \to \infty} |v_n| < \infty.$$

- Fijemos una subsucesión tal que $a_n \to \alpha$ y $b_n \to \beta$.
- Claim 1 nos dice que entonces (por $u_n = 1$ y $v_n = 0$).

$$F_n(a_nx+b_n) \xrightarrow{d} H(\alpha x+\beta).$$

• La hipótesis nos da que $F_n(a_nx + b_n) \xrightarrow{d} G(x)$.

La únicidad del límite nos da que

$$H(ax + b) = G(x).$$

Segundo caso:

 $\bullet \ a_n \to u > 0$ y $b_n \to v$ a lo largo de
 otra subsucesión. Entonces

$$F(ux + v) = G(x)$$

y también

$$F(\alpha x + \beta) = G(x).$$

Por tanto por Claim 5 tenemos que $u = \alpha$ y $v = \beta$.

• Por tanto todas las subsucesiones de $(a_n, b_n) \to (\alpha, \beta)$ y por tanto

$$\lim_{n\to\infty} (a_n, b_n) = (\alpha, \beta).$$

Caso general:

- $\bullet \ H_n(x) = F_n(u_n x + v_n)$
- Entonces $H_n(x) \to H(x)$ y

$$H_n(\frac{a_n}{u_n}x + \frac{(b_n - v_n)}{u_n}) \to G(x)$$

• Ahora por el caso anterior tenemos que $a_n/u_n \longrightarrow \alpha > 0$ y $\frac{b_n-v_n}{u_n} \to \beta$ y como antes

$$H(\alpha x + \beta) = G(x).$$