Protocole IP (Internet Protocole)

- Couche Réseau (Niveau 3 OSI) équivalent la couche Internet (TCP/IP)
- Identification Logique des cartes réseaux
- Indépendant au médium (filaire/wireless,...)

Toute carte réseau possède 2 identifiants : -

- Identifiant physique : @ Mac (fixe/unique) : codée sur 48 bits en hexadécimal
- Identifiant logique : @ IP (unique dans son réseau) : codée sur 32 bits en décimal

32 bits → décimal → 4 octets → Nombre maximal d'@IPv4 = 2³²

A.B.C.D

[0-255]

1 octet = 8 bits

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2º	
128	64	32	16	8	4	2	1	
0	0	0	0	0	0	0	0	
1	1	1	1	1	1	1	1	

Toute @IPv4:

Net-id	Host-id

Classes:

Classe A:

8 bits	24 bits
Net-id	Host-id
0xxxxxxx	

[**0**.a.b.c -----→ **127**.a.b.c]

0.a.b.c

127.a.b.c (localhost : exple 127.0.0.1)

Nbre de réseaux = 2^{N} = 2^{7} - 2 = 126 @réseaux

Avec N: Nombre de bit dans la partie Net-id

Nbre de machine/réseau = $2^{N}-2 = 2^{24}-2$

Avec N: Nombre de bit dans la partie Host-id

Deux adresses qu'on ne peut pas affecter à une machine :

- 1- @Réseau
- 2- @Diffusion

Types de communication en IPv4:

- Unicast: One-to-one (une machine -to- machine)
- Multicast: One-to-many (une machine-to-plusieurs machines)
- Broadcast (diffusion): One-to-all hosts in the same Network

Classe B:

16 bits	16 bits
Net-id	Host-id
10 xxxxxx.a.	b.c

[128.a.b.c -→ **191**.a.b.c]

Nbre de réseaux = 2^N = 2¹⁴ @réseaux

Nbre de machine/réseau = $2^{N} - 2 = 2^{16} - 2$ machines/réseau

Classe C:

24 bits	8bits
Net-id	Host-id
110xxxxx.a.b.	С

[192.a.b.c → 223.a.b.c]

Nombre de réseaux = 2²¹ réseaux

Nombre de machine/réseau = $2^8 - 2 = 254$ machines

<u>Classe D</u>: Multicast

 $[224.0.0.0 \rightarrow 224.255.255.255]$

3 types d'adresse :

1- Adresse réseau : Tous les bits de la partie Host-id sont à 0

Exemple: 192.168.43.0, 50.0.0.0, 172.16.0.0

2- Adresse de diffusion : Tous les bits de la partie Host-id sont à 1

Exemple: 192.168.43.255; 50.255.255.255; 172.16.255.255

3- Adresse machine : la partie Host-id est formée des bits à 0 et à 1

Adresse Réseau: 192.168.43.0

1^{ère} machine: 192.168.43.1

Dernière machine: 192.168.43.254

Adresse Diffusion: 192.168.43.255

Masque : une suite des bits 1 successifs suivie d'une suite de bits à 0 1111111111110000000000

Les bits à 1 : Net-id Les bits à 0 : Host-id

Masque par défaut des classes :

Classe A: 11111111.00000000.00000000.000000000

255.0.0.0 => /8 (8 bits dans la partie Net-id)

Exemple: 10.0.0.0/8

Classe B: 11111111.11111111.00000000.00000000

255.255.0.0 => /16 (16 bits dans la partie Net-id)

Exemple: 172.16.0.0/16

Classe C: 11111111.11111111.11111111.000000000

255.255.255.0 => /24

Exemple: 192.168.43.0/24