Machine Learning Interpretability - Black Box Models

- White-box models (regression, decision trees): transparent, interpretable, suitable for smaller datasets
- **Black-box models** (neural networks, gradient-boosted trees): handle large datasets, higher accuracy, but harder to interpret
- Goal: Learn methods to interpret black-box models

White-Box vs Black-Box

- White-box: Easy to interpret, transparent decision-making
- Black-box: Complex, less interpretable but more powerful with large datasets
- Advances in computing → more widespread use of black-box models

Common Black-Box Models

Gradient Boosted Decision Trees (GBDT)

- Ensemble of weak learners combined via gradient boosting
- Applications:
 - Fraud detection
 - Medical outcome prediction
 - Recommender systems
 - Computer vision (e.g., self-driving cars)
 - Customer churn prediction

Neural Networks

- Inspired by biological neurons.
- Structure: Input → Hidden layers → Output.
- Applications in medicine:
 - Medical imaging (X-ray, MRI analysis)
 - Drug discovery (predict effectiveness & side effects)
 - Patient outcome prediction (e.g., disease progression)
- White-box = simple, interpretable.
- **Black-box** = complex, less transparent, but more accurate.

Interpretation methods exist to explain black-box models.

Explaining Black-Boxes: Neural Networks

- Neural networks are powerful but hard to interpret due to their non-linear nature.
- Interpretation tools (e.g., weight/activation visualization, gradients, LIME) help explain how inputs affect outputs.
- This lesson builds and explains a neural network with scikit-learn using the Wisconsin Breast Cancer Dataset.

GOAL

Describe methods for interpreting/explaining neural networks

Build and interpret a neural network with scikitlearn

Dataset

- **Wisconsin Breast Cancer Dataset**: 569 samples, 30 features, 2 classes (benign/malignant)
- No missing values, but **class imbalance** (357 benign vs. 212 malignant)
- Features: mean, standard error (SE), and "worst" values of cell nuclei characteristics (radius, perimeter, texture)
- Larger nuclei ("worst") often relate to malignancy

Import Data

```
In [1]: from sklearn.datasets import load_breast_cancer

# Load the dataset
data = load_breast_cancer()
```

Basic EDA

```
In [2]: # print the dataset description
print(data.DESCR)
```

.. _breast_cancer_dataset:

Breast cancer wisconsin (diagnostic) dataset

Data Set Characteristics:

:Number of Instances: 569

:Number of Attributes: 30 numeric, predictive attributes and the class

:Attribute Information:

- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" 1)

The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius.

- class:
 - WDBC-Malignant
 - WDBC-Benign

:Summary Statistics:

	=====	=====
	Min	Max
	=====	=====
radius (mean):	6.981	28.11
texture (mean):	9.71	39.28
perimeter (mean):	43.79	188.5
area (mean):	143.5	2501.0
<pre>smoothness (mean):</pre>	0.053	0.163
<pre>compactness (mean):</pre>	0.019	0.345
<pre>concavity (mean):</pre>	0.0	0.427
<pre>concave points (mean):</pre>	0.0	0.201
<pre>symmetry (mean):</pre>	0.106	0.304
fractal dimension (mean):	0.05	0.097
radius (standard error):	0.112	2.873
texture (standard error):	0.36	4.885
perimeter (standard error):	0.757	21.98
area (standard error):	6.802	542.2
smoothness (standard error):	0.002	0.031
compactness (standard error):	0.002	0.135
concavity (standard error):	0.0	0.396
concave points (standard error):	0.0	0.053
symmetry (standard error):	0.008	0.079

```
fractal dimension (standard error):
                                0.001 0.03
radius (worst):
                                7.93 36.04
                                12.02 49.54
texture (worst):
perimeter (worst):
                                50.41 251.2
area (worst):
                                185.2 4254.0
                                0.071 0.223
smoothness (worst):
compactness (worst):
                                0.027 1.058
concavity (worst):
                                0.0
                                       1.252
concave points (worst):
                                0.0
                                       0.291
symmetry (worst):
                                0.156 0.664
fractal dimension (worst):
                                0.055 0.208
______
```

:Missing Attribute Values: None

:Class Distribution: 212 - Malignant, 357 - Benign

:Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

:Donor: Nick Street

:Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

|details-start|
References
|details-split|

- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on

Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.

- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

|details-end|

Detecting Class Imbalance

```
In [4]: # assign the feature matrix and target vector
X = data.data
y = data.target

In [5]: import pandas as pd

y_data = pd.Series(y)
print(y_data.value_counts())

1     357
0     212
Name: count, dtype: int64
```

Modeling

Neural Network

- Model: **MLPClassifier** (feedforward NN, trained via backpropagation)
- Parameters tuned: hidden layers, iterations, solver, learning rate
- Train/test split (80/20)

We will use the **scikit-learn** neural network library and import the MLPClassifier

The MLPClassifier is a multi-layer feedforward neural network trained using the backpropagation algorithm

What does that mean?

Feedforward Neural Network

Each neuron in a layer receives input from the previous layer, computes a value, and passes it to the next layer

Training Objective

Adjust the **weights** of the connections so the network can map inputs to the correct outputs

Backpropagation

A supervised learning algorithm that iteratively updates weights to minimize the error between the predicted and true output

Tuning Parameters

The MLPClassifier provides several parameters to control the model. Here are a few we'll tune in this project:

hidden_layer_sizes

Defines the number of hidden layers and the number of neurons in each Example: (100, 100) two hidden layers, each with 100 neurons

max_iter

Sets the maximum number of iterations (epochs) for the solver to run before stopping

solver

Defines the optimization algorithm used to train the network

For more details on all parameters, check the scikit-learn documentation.

Train, Test, Split

```
In [7]: from sklearn.model_selection import train_test_split
    # split your data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta)
```

```
# train the classifier on the train dataset
clf.fit(X_train, y_train)

# predict labels for test dataset
y_pred = clf.predict(X_test)
```

Interpreting & Explaining Neural Networks

There are several ways to **interpret and explain** the results of a neural network These methods provide insight into:

- How predictions are made
- Which features influence outcomes
- Where improvements can be made

We'll demonstrate how to apply these techniques with **Python** and **scikit-learn**

Global vs. Local Interpretation

- Global Explanations Explain the overall behavior of the model and how it makes
 decisions across the dataset
- **Local Explanations** Focus on understanding the prediction for a single observation (why was *this* patient classified as high-risk?)

We'll first explore global interpretation methods, then move on to local explanations

Global Explanations

Model Evaluation Metrics

To evaluate the performance of a neural network, we can use standard classification metrics such as:

- **Accuracy** Proportion of correct predictions
- **Precision** How many predicted positives are truly positive
- Recall (Sensitivity) How many actual positives were correctly identified
- **F1-Score** Harmonic mean of precision and recall (balances the two)

```
In [8]: from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
# Compute accuracy
acc = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(acc * 100))

# Compute precision
prec = precision_score(y_test, y_pred)
print("Precision: {:.2f}%".format(prec * 100))
```

```
# Compute recall
rec = recall_score(y_test, y_pred)
print("Recall: {:.2f}%".format(rec * 100))

# Compute F1 score
f1 = f1_score(y_test, y_pred)
print("F1 Score: {:.2f}%".format(f1 * 100))
```

Accuracy: 62.28% Precision: 62.28% Recall: 100.00% F1 Score: 76.76%

A recall of 100% means that every negative prediction is correct

Confusion Matrix

```
In [9]: # pip install matplotlib seaborn --upgrade

In [10]: import seaborn as sns
    from sklearn.metrics import confusion_matrix
    import matplotlib.pyplot as plt

# Compute the confusion matrix
    cm = confusion_matrix(y_test, y_pred)

# Visualize the confusion matrix
    sns.heatmap(cm, annot=True, cmap="YlGnBu", fmt='g')
    plt.xlabel('Predicted labels')
    plt.ylabel('True labels')
    plt.title('Confusion Matrix')
    plt.show()
```


So what can we infer?

Key Insight

The model is **cautious** when predicting benign cases and tends to misclassify negatives as positive

Local Explanations with LIME

LIME

LIME (Local Interpretable Model-Agnostic Explanations):

- Provides explanations for individual predictions.
- Approximates the model **locally** around one instance (row)
- Model-agnostic works with any ML model
- With neural networks, using predict_proba helps:
 - Shows the probability distribution for each class.
 - Reveals the certainty of predictions

LIME highlights which **features** most influenced a single prediction and how confident the model was

LIME Code Block Explanation

 we use the lime_tabular.LimeTabularExplainer() class to create a LIME explainer for the training data. You can pass the number of features you want to see the explanation for using the num_features parameter.

we choose a sample from the test set (X_test[0]) and use the
 explain_instance() method to obtain an explanation for the prediction of the
 sample.

• we use the as_list() method to print the explanation as a list of feature-value pairs.

Visualize the explanation:

Interpreting the LIME Graph

So what does this graph suggest? Let's examine the pieces from left to right.

Top Left

The prediction probabilities for the observation (first row in the data frame, i.e., index 0) are displayed:

- Probability of malignant = 0.62
- Probability of benign = 0.38

Center

- The bar divides features into two groups:
 - **0** → features typically associated with **benign**
 - 1 → features typically associated with **malignant**
- In this case, the only feature in group 1 is fractal_dimension_mean.
 - Range: greater than 0.32 but less than 0.47
 - True value for this row: 0.40

Right Side Table

- Displays **Feature** and **Value** columns.
- fractal_dimension_mean is highlighted in orange.
- True value = 0.40.

Inference

The model is **mildly confident** that this observation is **malignant**, primarily due to the fractal_dimension_mean_feature.

- since other feature values are typically associated with **benign**, the model's confidence is **diminished**.
- we will look at another visualization that further explains these results.

```
In [14]: import matplotlib as pyplot
fig = exp.as_pyplot_figure(label=1)
```


So what can we infer?

• In the chart above, we see that fractal_dimension_mean was the main contributor to the classification of malignant. and that perimeter_worst was the main contributor to uncertainty about the classification.

Below, we express the same values as a table.

Results & Interpretability

Global Explanations

- **Metrics**: Accuracy (62%), Precision (62%), Recall (100%), F1 (76%).
- High recall → Model catches all malignant cases but cautious with benign.
- Confusion Matrix: Misclassifies benign as malignant more often.

Local Explanations (LIME)

- LIME explains predictions for single observations.
- Example:
 - fractal_dimension_mean strongly pushed prediction toward malignant
 - perimeter_worst contributed to uncertainty
- Shows which features drive local predictions and model confidence

Key Insights

- Features like "worst" radius/perimeter are linked to malignancy.
- Recall = 100% no false negatives, but potential false positives (linked to imbalance).
- Neural network explanations improve trust in predictions.

Summary

We built a neural network on medical data, evaluated it with global metrics, and explained predictions using **LIME**. While accuracy was modest, interpretation revealed **why** the model made certain decisions, helping improve reliability in sensitive applications like healthcare.

```
In []:
```