Retour aux grammaires...

INFO010 – Théorie des langages – Partie pratique

S. COLLETTE et G. GEERAERTS

Retour aux grammaires — n 1/30

Suppresion des symboles inutiles

• Un symbole $X \in V \cup T$ est inutile s'il n'existe pas de dérivation de la forme

$$\underbrace{S \overset{*}{\Rightarrow} wXy}_{\text{accessible}} \underbrace{wxy}_{\text{productif}}$$

- Pour supprimer les symboles inutiles :
 - On supprime les symboles qui ne produisent rien.
 - On supprime les symboles inaccessibles.
- L'ordre est important!!

Sciences – Info

Retour aux grammaires... – p.3/30

Les grammaires

Une grammaire est un quadruplet

$$G = \langle V, T, P, S \rangle$$
 où

- V est l'ensemble des variables ;
- T est l'ensemble des terminaux;
- P est l'ensemble des règles de production.

$$P \subseteq (V \cup T)^*V(V \cup T)^* \times (V \cup T)^*$$
;

• $S \in V$ est le symbole de départ.

Sciences – Informatique

Symboles inutiles – Exemples

• Grammaire dont le langage est vide

$$S \rightarrow aAb$$

$$A \rightarrow aA$$

$$C \rightarrow Ab$$

Grammaire avec une variable inaccessible (C)

$$S \rightarrow aAb$$

$$A \rightarrow aA$$

$$C \rightarrow bA$$

Sciences - Informatique

Symboles inutiles – Algorithmes – 1

 $\begin{array}{l} \text{ begin } \\ & V_0 \leftarrow \emptyset \, ; \, i \leftarrow 0 \, ; \\ & \text{ répéter } \\ & \mid i \leftarrow i+1 \, ; \\ & \mid V_i \leftarrow \{A | A \rightarrow \alpha \in P \land \alpha \in (V_{i-1} \cup T)^*\} \cup V_{i-1} \, ; \\ & \text{ jusqu'à } V_i = V_{i-1}; \\ & V' \leftarrow V_i \, ; \\ & P' \leftarrow \text{ ensemble des règles de } P \text{ qui ne contiennent pas de variables dans } V \setminus V' \, ; \\ & \text{ retourner} \left(G' = \langle V', T, P', S \rangle \right) \, ; \end{array}$

Sciences – Informatique

tour aux grammaires... – p.5/30

Symboles inutiles – Algorithmes – 3

Pour supprimer les symboles inutiles :

```
\begin{aligned} & \textbf{Grammaire SuppInut}(\textbf{Grammaire}\,G = \langle V, T, P, S \rangle) \\ & \textbf{begin} \\ & | \textbf{Grammaire}\,G_1 \leftarrow \texttt{SuppNonProd}(G) \ ; \\ & | \textbf{Grammaire}\,G_2 \leftarrow \texttt{SuppInacc}(G_1) \ ; \\ & | \text{retourner}(G_2) \ ; \\ & \textbf{end} \end{aligned}
```

Sciences – Inf

Retour aux grammaires... – p.7/30

Symboles inutiles – Algorithmes – 2

 $\begin{array}{l} \textbf{ Grammaire SuppInacc}\,(\,\textbf{Grammaire}\,G=\langle V,T,P,S\rangle\,) \\ \textbf{ begin} \\ & \mid V_0 \leftarrow \{S\}\,;\, i \leftarrow 0\;; \\ \textbf{ répéter} \\ & \mid i \leftarrow i+1\;; \\ & \mid V_i \leftarrow \{X|\exists A \rightarrow \alpha X\beta\;\mathrm{dans}\;P \land A \in V_{i-1}\} \cup V_{i-1}\;; \\ \textbf{ jusqu'à}\,\,V_i = V_{i-1}; \\ & V' \leftarrow V_i \cap V\;;\, T' \leftarrow V_i \cap T\;; \\ & P' \leftarrow \text{les productions de }P\;\mathrm{qui\;contiennent} \\ & \text{uniquement des symboles de }V_i\;; \\ & \text{retourner}\,(\,G'=\langle V',T',P',S\rangle\,)\;; \end{array}$

end III

Sciences – Informatique

Exercice 1

Supprimez les symboles inutiles dans les grammaires suivantes : $S \rightarrow A$

$$S \rightarrow a|A$$

$$A \rightarrow AB$$

$$B \rightarrow b$$

$$\begin{array}{c}
B \\
A \rightarrow aB \\
bS \\
b \\
B \rightarrow AB
\end{array}$$

$$B \rightarrow AB$$

$$Ba$$

$$C \rightarrow AS$$

$$b$$

Exercice 1 – solution

- Suppression des symboles non-productifs. À la stabilisation, on trouve $V_i = \{S, B\}$ et donc $G_1 = \langle \{S, B\}, \{a, b\}, \{S \rightarrow a, B \rightarrow b\}, S \rangle.$
- Mais B n'est pas accessible à partir de S, on a donc: $G' = \{S\}, \{a\}, \{S \to a\}, S > .$

Exercice 1 – solution – suite

• On a donc pour P':

$$S \rightarrow A$$

$$A \rightarrow bS$$

b

$$C \rightarrow AS$$

Exercice 1 – solution – suite

Étapes du calcul de V_i :

 , , .						
i	V_{i}					
0	Ø					
1	$\{C,A\}$					
2	$\{C,A,S\}$					
3	$\{C,A,S\}$					

Exercice 1 – solution – suite

 Supprimons maintenant les symboles inaccessibles:

• On a donc G' avec : $V' = \{S, A\}$, $P' = \{S \to A, A \to bS | b\}, T' = \{b\} \text{ et } S' = S.$

Transformations des CFG

Lever les ambiguïtés Un grammaire G est dite ambiquë s'il existe un mot $w \in G$ tel qu'il existe au moins deux arbres de dérivation différents pour w. Par exemple (nb désigne un nombre entier):

$$\begin{array}{ccc} E & \rightarrow & E + E \\ & E * E \\ & (E) \\ & nb \end{array}$$

est ambiguë. Considérez par exemple le mot 5+3+2.

Lever les ambiguïtés

On résout les deux premiers problèmes en transformant G en G' (ce qui fixe l'associativité à gauche):

$$E \rightarrow E + T$$

$$E * T$$

$$T$$

$$T \rightarrow (E)$$

$$nb$$

Transformations des CFG

- Associativité des opérateurs On peut vouloir imposer une certaine associativité aux opérateurs. Dans l'exemple précédent, l'associativité n'est pas fixée (en raison de l'ambiguïté).
- Priorité des opérateurs De façon similaire, on peut constater que le * n'a pas priorité sur le +.

Lever les ambiguïtés – suite

On impose ensuite la priorité de * par rapport à + en transformant G' en G'':

$$E \rightarrow E + T$$

$$T$$

$$T \rightarrow T * F$$

$$F \rightarrow (E)$$

$$nb$$

Exercice 2

Soit la grammaire G:

$$E \rightarrow E \text{ op } E$$

$$ID[E]$$

$$ID$$

$$op \rightarrow *$$

$$/$$

$$+$$

$$-$$

- Montrez que la grammaire est ambiguë.
- · L'ordre de priorité des opéle suivant : rateurs est $\{[], ->\} > \{*, /\} > \{+, -\}.$ Modifiez \mathcal{G} de manière à prendre en compte la priorité des opérateurs, ainsi que l'associativité à gauche.

Factorisation

- La factorisation a pour but de supprimer les règles ayant un préfixe commun (qui posent des problèmes de prédiction aux analyseurs).
- Le cas échéant, la factorisation peut permettre de transformer en grammaire LL(1) une grammaire qui ne l'était pas!
- Exemple : $S \rightarrow ab|aa$ n'est pas LL(1)
- Après factorisation on a la grammaire LL(1) :

$$S \to aN$$

$$N \to a|b$$

Correction de l'exercice 2

$$E \rightarrow E+T$$

$$E-T$$

$$T$$

$$T \rightarrow T*F$$

$$T/F$$

$$F$$

$$F \rightarrow F->G$$

$$ID[E]$$

$$G$$

$$G \rightarrow ID$$

Factorisation – algorithme

Factorise (Grammaire $G = \langle V, T, P, S \rangle$) begin tant que G possède au moins deux règles avec le même

membre gauche et un préfixe commun faire

Soit $E = \{A \to \alpha\beta, \dots, A \to \alpha\zeta\}$ un tel ensemble de règles;

Soit V une nouvelle variable;

$$V \leftarrow V \cup \{\mathcal{V}\}$$

$$P \leftarrow P \setminus E$$

$$P \leftarrow P \setminus E;$$

$$P \leftarrow P \cup \{A \rightarrow \alpha \mathcal{V}, \mathcal{V} \rightarrow \beta, \dots, \mathcal{V} \rightarrow \zeta\};$$

end

Exercice 3

Appliquez ce principe à la grammaire suivante :

- $\langle stmt \rangle \rightarrow if \langle expr \rangle then \langle stmt | list \rangle end if$
- \rightarrow if <expr> then <stmt list> else <stmt list> end if

Dérécursification

- Pour les mêmes raisons, on aime souvent supprimer la récursivité à gauche (ou à droite) dans une grammaire.
- Par exemple :
 - La règle suivante est récursive à gauche : $S \to S\alpha | \beta$

$$S \rightarrow \mathcal{V}\mathcal{T}$$

• On peut la transformer en : $V \rightarrow \beta$

$$\mathcal{T} \rightarrow \alpha \mathcal{T} | \varepsilon$$

Exercice 3 – solution

- if <expr> then <stmt list> <iftail>
- <iftail> end if
- <iftail> else <stmt list> end if

Dérécursification – Algorithme

Derecursifie (Grammaire $G = \langle V, T, P, S \rangle$) begin

tant que G contient une variable A récursive à gauche faire

Soit
$$E = \{A \rightarrow A\alpha, A \rightarrow \beta, \dots, A \rightarrow \zeta\}$$

l'ensemble des productions ayant A pour membre de gauche;

Soient \mathcal{U} et \mathcal{V} deux nouvelles variables ;

$$V \leftarrow V \cup \{\mathcal{U}, \mathcal{V}\}$$
;

$$P \leftarrow P \setminus E$$

$$P \leftarrow P \cup \{A \rightarrow \mathcal{UV}, \mathcal{U} \rightarrow \beta, \dots, \mathcal{U} \rightarrow \zeta, \\ \mathcal{V} \rightarrow \alpha \mathcal{V}, \mathcal{V} \rightarrow \varepsilon\};$$

Exercice 4

Appliquez l'algorithme de dérécursification à la grammaire suivante :

$$\begin{array}{ccc} E & \rightarrow & E+T \\ & & T \\ T & \rightarrow & T*P \\ & & P \\ P & \rightarrow & ID \end{array}$$

Sciences – Informatique

Retour aux grammaires ... – p 25/30

Exercice 5 – Question d'examen

Transformez la grammaire suivante pour la rendre LL(1):

$$S \rightarrow aE|bF$$

$$E \rightarrow bE|\varepsilon$$

$$F \rightarrow aF|aG|aHD$$

$$G \rightarrow Gc|d$$

$$H \rightarrow Ca$$

$$C \rightarrow Hb$$

$$D \rightarrow ab$$

Sciences – Info

$$E \rightarrow AB$$

$$A \rightarrow T$$

$$B \rightarrow +TB$$

$$\varepsilon$$

$$T \rightarrow CD$$

$$C \rightarrow P$$

$$D \rightarrow *PD$$

$$\varepsilon$$

$$P \rightarrow ID$$

Exercice 5 – Correction

- Suppression des symboles non-productifs: H
 et C ne produisent rien car ils sont
 mutuellement récursifs et que rien ne permet
 d'arrêter cette récursivité. On enlève donc les
 règles H → Ca, C → Hb et F → aHD.
- Suppression des symboles inaccessibles : de par la suppression de $F \to aHD$, D devient inaccessible. On supprime donc $D \to ab$.

Exercice 5 – Correction – 2

 $S \rightarrow aE|bF$

On a maintenant : $\stackrel{E}{\sim} bE|\varepsilon$

$$F \rightarrow aF|aG$$

$$G \rightarrow Gc|d$$

- Suppression de la récursivité : $G \to Gc$ est récursive. On remplace $G \to Gc|d$ par $G \to dG'$ et $G' \to cG'|\varepsilon$.
- Factorisation : On remplace $F \to aF|aG$ par $F \to aF'$ et $F' \to F|G$.

Determination p.20/20

Exercice 5 – Correction – 3

Au final, on a bien une grammaire LL(1):

$$(0) \quad S' \quad \to \quad S\$$$

$$(1,2)$$
 $S \rightarrow aE|bF$

$$(3,4)$$
 $E \rightarrow bE|\varepsilon$

$$(5)$$
 $F \rightarrow aF'$

$$(6,7)$$
 $F' \rightarrow F|G$

(8)
$$G \rightarrow dG'$$

$$(9,10)$$
 $G' \rightarrow cG'|\varepsilon$

	a	b	С	d	\$
S'	P0	P0	×	×	×
S	P1	P2	×	×	×
Е	×	P3	×	×	P4
F	P5	×	×	×	×
F'	P6	×	×	P7	×
G	×	×	×	P8	×
G'	×	×	P9	×	P10

Retour aux grammaires...-