Math 2551 Worksheet Section 15.7

- 1. Convert the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \int_{0}^{x} (x^2+y^2) dz dx dy$ into an integral in cylindrical coordinates, and evaluate the integral.
- 2. Let D be the right circular cylinder whose base is the circle $r=2\sin\theta$ in the xy-plane and whose top lies in plane z=4-y. Recall that $r=2\sin\theta$ describes a circle centered at (0,1) with radius 1 in the xy-plane. Using cylindrical coordinates,
 - (a) find the volume of the region D.
 - (b) find the \bar{x} component of the centroid of the region (hint: use symmetry).
- 3. Find the volume of the solid that is between the spheres $\rho = \sqrt{2}$ and $\rho = 2$, but outside of the circular cylinder $x^2 + y^2 = 1$.
- 4. Suppose $a \ge 0$. Find the volume of the region cut from the solid sphere $\rho \le a$ by the half-planes $\theta = 0$ and $\theta = \pi/6$ in the first octant.