Atty Dk . 2225-0003 USSN 09/775,879 PATENT

Appendix C

Full Text PDF (293 K)

Plant Molecular Biology 39 (5): 891-906, March 1999 Copyright © 1999 Kluwer Academic Publishers All rights reserved

RECEIVED

AUG 0 1 2002

TECH CENTER 1600/2900

Δ7-Sterol-C5-desaturase: molecular characterization and functional expression of wild-type and mutant alleles

Tania Husselstein

Institut de Biologie Moléculaire des Plantes, Département d'Enzymologie Cellulaire et Moleculaire, UPR 406 du CNRS, 28 rue Goethe, 67083 Strasbourg Cédex, France

Hubert Schaller

Institut de Biologie Moléculaire des Plantes, Département d'Enzymologie Cellulaire et Moleculaire, UPR 406 du CNRS, 28 rue Goethe, 67083 Strasbourg Cédex, France

Daniel Gachotte

Present address: Department of Biology, Indiana University-Purdue University at Indianapolis, 723 W. Michigan Street, Indianapolis, IN 46202, USA

Pierre Benveniste

Institut de Biologie Moléculaire des Plantes, Département d'Enzymologie Cellulaire et Moleculaire, UPR 406 du CNRS, 28 rue Goethe, 67083 Strasbourg Cédex, France

Abstract

An Arabidopsis thaliana recessive monogenic mutant (ste1-1) presenting a deficiency of the Δ 7sterol-C5(6)-desaturase step in the sterol pathway has been reported previously [12]. To further characterize ste 1-1, Arabidopsis, Nicotiana tabacum and Homo sapiens cDNAs encoding Δ7-sterol-C5(6)-desaturases were isolated and identified on the basis of their ability to restore ergosterol synthesis in erg3, a yeast null mutant whose gene encoding the Δ7-sterol-C5(6)-desaturase was disrupted. Overexpression of the Arabidopsis cDNA driven by a 35S promoter in transgenic ste1-1 plants led to full complementation of the mutant. This result demonstrates that STE1 was the impaired component in the desaturation system. Four independent reverse transcriptions of ste1-1 RNA followed by polymerase chain reactions (RT-PCRs), yielded a single product. Alignment of the wild-type ORF with the RT-PCR derived ste1-1 ORF revealed a single amino acid substitution: Thr-114 in the wild-type is changed to Ile in ste1-1. Expression in erg3 resulted in a 6-fold lowered efficiency of the ste1-1 ORF in complementing the yeast biosynthetic pathway when compared to the wild-type ORF. The presence of this mutation in the mutant stel-1 genomic sequence (and no additional modification between stel-1 and wild-type genes) demonstrates that the change of the Thr-114 to Ile is necessary and sufficient to create the leaky allele ste1-1. The occurrence of a hydroxylated amino acid (Thr or Ser) at the position corresponding to Thr-114 in the five $\Delta 7$ -sterol-C5(6)-desaturases identified so far suggests that this amino acid is important for normal enzymatic function.

Keywords

sterol, $\Delta 7$ -sterol-C5(6)-desaturase, deficient mutant, complementation, Arabidopsis

Article ID: 200124

SearchPLUS	Open SearchRLUS Navigator

Use the pop-up window to navigate search results and find highlighted terms in this document.

☐ Hide SearchPLUS

Disable Highlights

Reload this page