Exoplanet prediction using feedforward net

We will use NASA's Kepler open exoplanet archive dataset (cumulative)

Source (https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=cumulative)

This will be a binary classification task (i.e, planet or false positive aka not planet). The table contains useful properties of the planetary transit and other features like mass, orbital period etc. More details below.

→

Importing the Dataset

```
In [1]:
    import numpy as np # linear algebra
    import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
    import os
    koi_cumm_path = os.path.join('../input', 'koi-cummulative/koi_cummulative.csv')

In [2]:
    dfc = pd.read_csv(koi_cumm_path)
    dfc.shape

Out[2]:
    (9564, 49)
```

The Cumulative data has 9564 data points, however, we will soon see that we wont be able to use all of them

For now, lets see what our Categorizations might be.

Each observation in the KOI dataset has a disposition value which tells us what that Object is confirmed to be.

- 1. CONFIRMED confirmed planets, these are confirmed to be exoplanets. These are our positive examples.
- 2. FALSE POSITIVE as the name suggests, these were thought to be exoplanets but turned out to be false. These will serve us as negative examples.
- 3. CANDIDATE these are potential candidates for exoplanets. These will be used for prediction

The KOI dataset also has a koi-pdisposition value which tells us the most probable explanation. koi-disposition values are finalized after further observations and analyses.

```
In [120]:
          dfc = pd.read_csv(koi_cumm_path)
          dfc['koi_disposition'].unique()
Out[120]:
          array(['CONFIRMED', 'CANDIDATE', 'FALSE POSITIVE'], dtype=object)
In [123]:
          dfc['koi_pdisposition'].unique()
Out[123]:
          array(['CANDIDATE', 'FALSE POSITIVE'], dtype=object)
 In [5]:
          # 2418 candidates
          (dfc['koi_disposition'] == "CANDIDATE").value_counts()
  Out[5]:
          False
                   7146
                   2418
          True
          Name: koi_disposition, dtype: int64
```

Lets take a look at our dataset before deconstructing it.

In [6]: dfc.head(10) # first 20 samples

Out[6]:

i_pdisposition	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec		koi_steff_e
INDIDATE	1.000	0	0	0	0		-81.0
ANDIDATE	0.969	0	0	0	0		-81.0
ANDIDATE	0.000	0	0	0	0		-176.0
LSE)SITIVE	0.000	0	1	0	0		-174.0
ANDIDATE	1.000	0	0	0	0		-211.0
ANDIDATE	1.000	0	0	0	0	•••	-232.0
ANDIDATE	1.000	0	0	0	0	•••	-232.0
ANDIDATE	0.992	0	0	0	0		-232.0
LSE)SITIVE	0.000	0	1	1	0		-124.0
ANDIDATE	1.000	0	0	0	0		-83.0
4							•

10 rows × 49 columns

```
In [7]:
        # the columns
        dfc.columns
Out[7]:
        Index(['kepid', 'kepoi_name', 'kepler_name', 'koi_disposition',
                'koi_pdisposition', 'koi_score', 'koi_fpflag_nt', 'koi_fpflag_s
        s',
               'koi_fpflag_co', 'koi_fpflag_ec', 'koi_period', 'koi_period_err
        1',
               'koi_period_err2', 'koi_time0bk', 'koi_time0bk_err1',
               'koi_time0bk_err2', 'koi_impact', 'koi_impact_err1', 'koi_impac
        t_err2',
               'koi_duration', 'koi_duration_err1', 'koi_duration_err2', 'koi_
        depth',
                'koi_depth_err1', 'koi_depth_err2', 'koi_prad', 'koi_prad_err
        1',
                'koi_prad_err2', 'koi_teq', 'koi_teq_err1', 'koi_teq_err2', 'ko
        i_insol',
                'koi_insol_err1', 'koi_insol_err2', 'koi_model_snr', 'koi_tce_p
        lnt_num',
               'koi_tce_delivname', 'koi_steff', 'koi_steff_err1', 'koi_steff_
        err2',
                'koi_slogg', 'koi_slogg_err1', 'koi_slogg_err2', 'koi_srad',
                'koi_srad_err1', 'koi_srad_err2', 'ra', 'dec', 'koi_kepmag'],
              dtype='object')
```

We use pandas.DataFrame.info() method to get more info on the dataset. As we see, so many columns have null values in them. Also so many columns which we do not need, like the kepler_name would not help in our classification at all.

In [8]:
 dfc.info()

__notebook__

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9564 entries, 0 to 9563
Data columns (total 49 columns):

#	Column (total 49	Non-Null Count	Dtype
0	kepid	9564 non-null	int64
1	kepoi_name	9564 non-null	object
2	kepler_name	2308 non-null	object
3	koi_disposition	9564 non-null	object
4	koi_pdisposition	9564 non-null	object
5	koi_score	8054 non-null	float64
6	koi_fpflag_nt	9564 non-null	int64
7	koi_fpflag_ss	9564 non-null	int64
8	koi_fpflag_co	9564 non-null	int64
9	koi_fpflag_ec	9564 non-null	int64
10	koi_period	9564 non-null	float64
11	koi_period_err1	9110 non-null	float64
12	koi_period_err2	9110 non-null	float64
13	koi_time0bk	9564 non-null	float64
14	koi_time0bk_err1	9110 non-null	float64
15	koi_time0bk_err2	9110 non-null	float64
16	koi_impact	9201 non-null	float64
17	koi_impact_err1	9110 non-null	float64
18	koi_impact_err2	9110 non-null	float64
19	koi_duration	9564 non-null	float64
20	koi_duration_err1	9110 non-null	float64
21	koi_duration_err2	9110 non-null	float64
22	koi_depth	9201 non-null	float64
23	koi_depth_err1	9110 non-null	float64
24	koi_depth_err2	9110 non-null	float64
25	koi_prad	9201 non-null	float64
26	koi_prad_err1	9201 non-null	float64
27	koi_prad_err2	9201 non-null	float64
28	koi_teq	9201 non-null	float64
29	koi_teq_err1	0 non-null	float64
30	koi_teq_err2	0 non-null	float64
31	koi_insol	9243 non-null	float64
32	koi_insol_err1	9243 non-null	float64
33	koi_insol_err2	9243 non-null	float64
34	koi_model_snr	9201 non-null	float64

35	koi_tce_plnt_num	9218	non-null	float64
36	koi_tce_delivname	9218	non-null	object
37	koi_steff	9201	non-null	float64
38	koi_steff_err1	9096	non-null	float64
39	koi_steff_err2	9081	non-null	float64
40	koi_slogg	9201	non-null	float64
41	koi_slogg_err1	9096	non-null	float64
42	koi_slogg_err2	9096	non-null	float64
43	koi_srad	9201	non-null	float64
44	koi_srad_err1	9096	non-null	float64
45	koi_srad_err2	9096	non-null	float64
46	ra	9564	non-null	float64
47	dec	9564	non-null	float64
48	koi_kepmag	9563	non-null	float64

dtypes: float64(39), int64(5), object(5)

memory usage: 3.6+ MB

Basic preprocessing

We filter out the non numeric columns as they would serve us no purpose. Except koi_disposition since that is for labelling purpose.

Now, we need to encode the labels, ie, the koi_disposition values. We replace 'CONFIRMED' with 1 and 'FALSE POSITIVE' with 0 because we will use these label values for categorization. The other two values are arbitrary and serve only to filter out CANDIDATES and NOT DISPOSITIONED samples.

Also, we do the same with koi-pdisposition column as well.

In [9]:

```
# all the non-numeric columns
df_numeric = dfc.copy()
koi_disposition_labels = {
    "koi_disposition": {
        "CONFIRMED": 1,
        "FALSE POSITIVE": 0,
        "CANDIDATE": 2,
        "NOT DISPOSITIONED": 3
    },
    "koi_pdisposition": {
        "CONFIRMED": 1,
        "FALSE POSITIVE": 0,
        "CANDIDATE": 2,
        "NOT DISPOSITIONED": 3
    }
}
df_numeric.replace(koi_disposition_labels, inplace=True)
df_numeric
```

 \oplus

Out[9]:

	kepid	kepoi_name	kepler_name	koi_disposition	koi_pdisposition	koi_score	koi_f
0	10797460	K00752.01	Kepler-227 b	1	2	1.000	0
1	10797460	K00752.02	Kepler-227 c	1	2	0.969	0
2	10811496	K00753.01	NaN	2	2	0.000	0
3	10848459	K00754.01	NaN	0	0	0.000	0
4	10854555	K00755.01	Kepler-664 b	1	2	1.000	0
	•••	•••	•••			•••	
9559	10090151	K07985.01	NaN	0	0	0.000	0
9560	10128825	K07986.01	NaN	2	2	0.497	0
9561	10147276	K07987.01	NaN	0	0	0.021	0
9562	10155286	K07988.01	NaN	2	2	0.092	0
9563	10156110	K07989.01	NaN	0	0	0.000	0
4							>

9564 rows × 49 columns

We now want to filter out some more columns.

koi_score is not needed. It is the probability values for the categorization. However, these probability values will help us in the test phase on hunting new exoplanets among the candidates. So we will need it later.

SO, it is ideal to make a copy of the dataframe at its current state because we will need to come back to some columns again.

Finally, koi_time0bk and koi_time0bk_err1 and 2 are removed because they are the time of the first detected transit minus some offset which is not a useful feature.

for more info on columns check out

https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html (https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html)

Let us create two copies of the dataframe now, we will use one containing koi-pdisposition and koi-score for test phase, and the dataframe containing none of these in train phase.

```
In [10]:
```

```
# this is train data
# first we remove all string type columns from the dataframe
df_numeric = df_numeric.select_dtypes(exclude=['object']).copy()
df_test = df_numeric.copy() # test data
# second, we manually remove some columns which are not needed as mentioned
above.
# additionally, 'koi_teq_err1' and 'koi_teq_err2' have all null values so t
hey too need to be removed
rem_cols = ['kepid', 'koi_pdisposition', 'koi_score', 'koi_time0bk', 'koi
_time0bk_err1', 'koi_time0bk_err2', 'koi_teq_err1', 'koi_teq_err2']
df_numeric.drop(rem_cols, axis=1, inplace=True)
# this is test data
rem_cols_test = [col for col in rem_cols if col not in ['koi_pdispositio"]
n', 'koi_score']]
df_test.drop(rem_cols_test, axis=1, inplace=True)
df_numeric.head()
```

Out[10]:

	koi_disposition	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_pe
0	1	0	0	0	0	9.488036	2.7800
1	1	0	0	0	0	54.418383	2.4800
2	2	0	0	0	0	19.899140	1.4900
3	0	0	1	0	0	1.736952	2.6300
4	1	0	0	0	0	2.525592	3.7600
4	4					•	

5 rows × 38 columns

```
In [11]:
    df_test.head()
```

Out[11]:

	koi_disposition	koi_pdisposition	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fp
0	1	2	1.000	0	0	0	0
1	1	2	0.969	0	0	0	0
2	2	2	0.000	0	0	0	0
3	0	0	0.000	0	1	0	0
4	1	2	1.000	0	0	0	0
4							•

5 rows × 40 columns

Now we have a somewhat decent dataset, however, this dataset still has a lot of missing values.

We will simply discard the rows that have atleast one null entry and only consider the non-null dataset for our training.

```
In [12]:
    df_numeric = df_numeric[df_numeric.isnull().sum(axis=1) == 0]
    df_numeric.describe()
```

Out[12]:

	koi_disposition	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period
count	8744.000000	8744.000000	8744.000000	8744.000000	8744.000000	8744.0000
mean	0.774817	0.183211	0.242681	0.203454	0.125000	56.080618
std	0.829487	4.982739	0.428728	0.402590	0.330738	117.38528
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.259820
25%	0.000000	0.000000	0.000000	0.000000	0.000000	2.667824
50%	1.000000	0.000000	0.000000	0.000000	0.000000	8.970985
75%	2.000000	0.000000	0.000000	0.000000	0.000000	34.190033
max	2.000000	465.000000	1.000000	1.000000	1.000000	1071.2326
4						•

8 rows × 38 columns

As we see, koi_fpflag_nt has an outlier max value of 465.0 which is improbable since it is a flag and all the other flags are 0 or 1 valued.

```
index = df_numeric[df_numeric.koi_fpflag_nt == df_numeric.koi_fpflag_nt.m
ax()].index
df_numeric.drop(index, inplace=True)
```

In [14]:
 df_numeric.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8743 entries, 0 to 9563
Data columns (total 38 columns):

#	Column	Non-Null Count	Dtype
0	koi_disposition	8743 non-null	int64
1	koi_fpflag_nt	8743 non-null	int64
2	koi_fpflag_ss	8743 non-null	int64
3	koi_fpflag_co	8743 non-null	int64
4	koi_fpflag_ec	8743 non-null	int64
5	koi_period	8743 non-null	float64
6	koi_period_err1	8743 non-null	float64
7	koi_period_err2	8743 non-null	float64
8	koi_impact	8743 non-null	float64
9	koi_impact_err1	8743 non-null	float64
10	koi_impact_err2	8743 non-null	float64
11	koi_duration	8743 non-null	float64
12	koi_duration_err1	8743 non-null	float64
13	koi_duration_err2	8743 non-null	float64
14	koi_depth	8743 non-null	float64
15	koi_depth_err1	8743 non-null	float64
16	koi_depth_err2	8743 non-null	float64
17	koi_prad	8743 non-null	float64
18	koi_prad_err1	8743 non-null	float64
19	koi_prad_err2	8743 non-null	float64
20	koi_teq	8743 non-null	float64
21	koi_insol	8743 non-null	float64
22	koi_insol_err1	8743 non-null	float64
23	koi_insol_err2	8743 non-null	float64
24	koi_model_snr	8743 non-null	float64
25	koi_tce_plnt_num	8743 non-null	float64
26	koi_steff	8743 non-null	float64
27	koi_steff_err1	8743 non-null	float64
28	koi_steff_err2	8743 non-null	float64
29	koi_slogg	8743 non-null	float64
30	koi_slogg_err1	8743 non-null	float64
31	koi_slogg_err2	8743 non-null	float64
32	koi_srad	8743 non-null	float64
33	koi_srad_err1	8743 non-null	float64
34	koi_srad_err2	8743 non-null	float64

 35 ra
 8743 non-null float64

 36 dec
 8743 non-null float64

 37 koi_kepmag
 8743 non-null float64

dtypes: float64(33), int64(5)

memory usage: 2.6 MB

```
In [15]:
    df_test = df_test[df_test.isnull().sum(axis=1) == 0]
    df_test.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 7803 entries, 0 to 9563
Data columns (total 40 columns):

#	Column	Non-Null Count	Dtype
0	koi_disposition	7803 non-null	 int64
1	koi_pdisposition	7803 non-null	int64
2	koi_score	7803 non-null	float64
3	koi_fpflag_nt	7803 non-null	int64
4	koi_fpflag_ss	7803 non-null	int64
5	koi_fpflag_co	7803 non-null	int64
6	koi_fpflag_ec	7803 non-null	int64
7	koi_period	7803 non-null	float64
8	koi_period_err1	7803 non-null	float64
9	koi_period_err2	7803 non-null	float64
10	koi_impact	7803 non-null	float64
11	koi_impact_err1	7803 non-null	float64
12	koi_impact_err2	7803 non-null	float64
13	koi_duration	7803 non-null	float64
14	koi_duration_err1	7803 non-null	float64
15	koi_duration_err2	7803 non-null	float64
16	koi_depth	7803 non-null	float64
17	koi_depth_err1	7803 non-null	float64
18	koi_depth_err2	7803 non-null	float64
19	koi_prad	7803 non-null	float64
20	koi_prad_err1	7803 non-null	float64
21	koi_prad_err2	7803 non-null	float64
22	koi_teq	7803 non-null	float64
23	koi_insol	7803 non-null	float64
24	koi_insol_err1	7803 non-null	float64
25	koi_insol_err2	7803 non-null	float64
26	koi_model_snr	7803 non-null	float64
27	koi_tce_plnt_num	7803 non-null	float64
28	koi_steff	7803 non-null	float64
29	koi_steff_err1	7803 non-null	float64
30	koi_steff_err2	7803 non-null	float64
31	koi_slogg	7803 non-null	float64
32	koi_slogg_err1	7803 non-null	float64
33	koi_slogg_err2	7803 non-null	float64
34	koi_srad	7803 non-null	float64

35	koi_srad_err1	7803	non-null	float64
36	koi_srad_err2	7803	non-null	float64
37	ra	7803	non-null	float64
38	dec	7803	non-null	float64
39	koi_kepmag	7803	non-null	float64

dtypes: float64(34), int64(6)

memory usage: 2.4 MB

Test dataset should only contain koi_disposition value 2, since these are all candidate data. We will come back to this dataset later to predict

```
In [16]:
    df_test = df_test[df_test.koi_disposition == 2]
    df_test
```

Out[16]:

	koi_disposition	koi_pdisposition	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	k
2	2	2	0.000	0	0	0	0
37	2	2	1.000	0	0	0	0
58	2	2	0.999	0	0	0	0
62	2	2	0.993	0	0	0	0
63	2	2	0.871	0	0	0	0
9538	2	2	0.843	0	0	0	0
9542	2	2	0.189	0	0	0	0
9552	2	2	0.519	0	0	0	0
9560	2	2	0.497	0	0	0	0
9562	2	2	0.092	0	0	0	0
4							•

1787 rows × 40 columns

Now is a good time to save the df_test dataframe to csv for future use.

```
In [17]:
    df_test.to_csv('koi_test.csv')
```

We create a copy of this dataframe now to use it for our first neural network training, but we will come back to this dataframe again later. For now we are saving the df_numeric into a csv which can be later found in input/koinumeric/koi_numeric.csv file.

```
In [18]:
    df_numeric.to_csv('koi_numeric.csv')

In [19]:
    df_numeric1 = df_numeric.copy()
```

In [20]:
 df_numeric1.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 8743 entries, 0 to 9563
Data columns (total 38 columns):

#	Column	Non-Null Count	Dtype
0	koi_disposition	8743 non-null	 int64
1	koi_fpflag_nt	8743 non-null	int64
2	koi_fpflag_ss	8743 non-null	int64
3	koi_fpflag_co	8743 non-null	int64
4	koi_fpflag_ec	8743 non-null	int64
5	koi_period	8743 non-null	float64
6	koi_period_err1	8743 non-null	float64
7	koi_period_err2	8743 non-null	float64
8	koi_impact	8743 non-null	float64
9	koi_impact_err1	8743 non-null	float64
10	koi_impact_err2	8743 non-null	float64
11	koi_duration	8743 non-null	float64
12	koi_duration_err1	8743 non-null	float64
13	koi_duration_err2	8743 non-null	float64
14	koi_depth	8743 non-null	float64
15	koi_depth_err1	8743 non-null	float64
16	koi_depth_err2	8743 non-null	float64
17	koi_prad	8743 non-null	float64
18	koi_prad_err1	8743 non-null	float64
19	koi_prad_err2	8743 non-null	float64
20	koi_teq	8743 non-null	float64
21	koi_insol	8743 non-null	float64
22	koi_insol_err1	8743 non-null	float64
23	koi_insol_err2	8743 non-null	float64
24	koi_model_snr	8743 non-null	float64
25	koi_tce_plnt_num	8743 non-null	float64
26	koi_steff	8743 non-null	float64
27	koi_steff_err1	8743 non-null	float64
28	koi_steff_err2	8743 non-null	float64
29	koi_slogg	8743 non-null	float64
30	koi_slogg_err1	8743 non-null	float64
31	koi_slogg_err2	8743 non-null	float64
32	koi_srad	8743 non-null	float64
33	koi_srad_err1	8743 non-null	float64
34	koi_srad_err2	8743 non-null	float64

35 ra 8743 non-null float64 36 dec 8743 non-null float64 37 koi_kepmag 8743 non-null float64

dtypes: float64(33), int64(5)

memory usage: 2.6 MB

We plot a heatmap of the correlation matrix for our dataframe and we see that overall the data has a lot of uncertainties and very few columns are sufficiently correlated to the target koi_disposition

```
import seaborn as sns
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(30, 30))
sns.heatmap(df_numeric1.corr(), annot=True, cmap="RdYlGn", ax=ax)
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fcfccbfd290>

We try to standardize our dataframe because a lot of columns have huge values while others have very small values.

```
In [22]:
        from sklearn.preprocessing import StandardScaler
        std_scaler = StandardScaler()
        # need to exclude the `koi_disposition` column from being standardized
        df_numeric1.iloc[:, 5:] = std_scaler.fit_transform(df_numeric1.iloc[:, 5
         :])
        # df_numeric.iloc[:, 0].to_numpy().reshape(-1, 1).shape
        # df_standardized_w_labels = np.c_[df_standardized, df_numeric.iloc[:, 0].t
        o_numpy().reshape(-1, 1)]
        # df_standardized_w_labels[:3]
        df_numeric1.values
Out[22]:
         array([[ 1. , 0. , 0.
                                                     , ..., -0.02937441,
                 1.1984836 , 0.79871776],
                                                     , ..., -0.02937441,
                              0.
                                           0.
                 1.1984836 , 0.79871776],
                              0.
                                           0.
                                                     , ..., 1.03307595,
                 1.19639385, 0.86496258],
                       , 0.
               [ 0.
                                                       ..., 0.43802002,
                 0.93028566, 0.82700207],
                      , 0.
               [ 2.
                                           0.
                                                             0.9823818 ,
                 0.92163466, -2.43834614],
                                                     , ..., 1.03411313,
                                        , 0.
                 0.91493339, 0.4109251 ]])
```

Congratulations. Now we have a complete dataframe with no null values, and also standardized for easier processing.

Now that the preprocessing part is over, we want to create a PyTorch dataset to handle this data and create DataLoader batches

```
import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.utils.data import random_split
```

We create a custom PyTorch dataset called KeplerDataset class by inheriting the torch.utils.data.Dataset class and overriding the init, len and getitem methods.

We have included a flag called test which, if set to True, will generate the dataset with koi_disposition value 2 or CANDIDATE, which we will use for testing

```
In [24]:
         class KeplerDataset(Dataset):
             def __init__(self, test=False):
                 self.dataframe_orig = pd.read_csv(koi_cumm_path)
                 if (test == False):
                     self.data = df_numeric1[( df_numeric1.koi_disposition == 1 )
         [ ( df_numeric1.koi_disposition == 0 )].values
                 else:
                     self.data = df_numeric1[~(( df_numeric1.koi_disposition == 1
         ) | ( df_numeric1.koi_disposition == 0 ))].values
                 self.X_data = torch.FloatTensor(self.data[:, 1:])
                 self.y_data = torch.FloatTensor(self.data[:, 0])
             def __len__(self):
                 return len(self.data)
             def __getitem__(self, index):
                 return self.X_data[index], self.y_data[index]
             def get_col_len(self):
                 return self.X_data.shape[1]
         kepler_df = KeplerDataset()
```

```
In [25]:
         feature, target = kepler_df[1]
        target, feature
Out[25]:
         (tensor(1.),
          tensor([ 0.0000, 0.0000, 0.0000, 0.0000, -0.0142, -0.2187, 0.218
         7, -0.0417,
                  -0.2022, -0.0919, -0.1606, -0.3148, 0.3148, -0.2771, -0.020
         1, 0.0201.
                  -0.0321, -0.0436, 0.0277, -0.7682, -0.0454, -0.0661,
         5, -0.2988,
                   1.1600, -0.3049, -1.3345, 1.1010, 0.3633, -0.4272, 0.535
         5, -0.1369,
                  -0.2735, 0.1761, -0.0294, 1.1985, 0.7987))
In [26]:
        kepler_df.get_col_len()
Out[26]:
```

Now, we want to split our data into training and validation set and also transfer the data to a cuda-enabled device before performing computations

37

```
In [27]:
         # splitting into training and validation set
         torch.manual_seed(42)
         split_ratio = .7 # 70 / 30 split
         train_size = int(len(kepler_df) * split_ratio)
         val_size = len(kepler_df) - train_size
         train_ds, val_ds = random_split(kepler_df, [train_size, val_size])
         len(train_ds), len(val_ds)
Out[27]:
         (4548, 1950)
In [28]:
         batch_size = 32
         train_loader = DataLoader(train_ds, batch_size, shuffle=True, num_workers
         =4, pin_memory=True)
         val_loader = DataLoader(val_ds, batch_size, num_workers=4, pin_memory=Tru
         e)
In [29]:
         for features, target in train_loader:
             print(features.size(), target.size())
             break
         torch.Size([32, 37]) torch.Size([32])
```

First feedforward network model

This is a rather simple feedforward architecture with just linear combinations and sigmoid activation. The model architecture is as followed:

- 1. Input-layer (fully connected) (37 x 32)
- 2. Sigmoid activation (32)
- 3. 1st Hidden-layer (fully connected) (32 x 16)
- 4. Sigmoid activation (16)
- 5. 2nd Hidden-layer (fully connected) (16 x 8)
- 6. Sigmoid activation (8)
- 7. Output-layer (fully connected) (8 x 1)
- 8. Sigmoid activation (output) (1)

Note that this model incorporates sigmoid at the output layer, so BCELoss() is used.

```
In [30]:
         class KOIClassifier(nn.Module):
             def __init__(self, input_dim, out_dim):
                 super(KOIClassifier, self).__init__()
                 self.linear1 = nn.Linear(input_dim, 32)
                 self.linear2 = nn.Linear(32, 32)
                 self.linear3 = nn.Linear(32, 16)
                 self.linear4 = nn.Linear(16, 8)
                 self.linear5 = nn.Linear(8, out_dim)
             def forward(self, xb):
                 out = self.linear1(xb)
                 out = torch.sigmoid(out)
                 out = self.linear2(out)
                 out = torch.sigmoid(out)
                 out = self.linear3(out)
                 out = torch.sigmoid(out)
                 out = self.linear4(out)
                 out = torch.sigmoid(out)
                 out = self.linear5(out)
                 out = torch.sigmoid(out)
                 return out
             def predict(self, x):
                 pred = self.forward(x)
                 return pred
             def print_params(self):
                 for params in self.parameters():
                     print(params)
```

```
in [31]:
    input_dim = kepler_df.get_col_len()
    out_dim = 1
    model = KOIClassifier(input_dim, out_dim)
```

I have already trained this model using the same hyperparameters, the stats are located in \input\first-nn-stats

If you want to use the previous stats then uncomment the following cell and run

```
In [ ]:
        model_prev = KOIClassifier(input_dim, out_dim)
        construct = torch.load('../input/first-nn-stats/checkpoint.pth')
        model_prev.load_state_dict(construct['state_dict'])
        import seaborn as sns
        %matplotlib inline
        cf_mat_train = pred_confusion_matrix(model_prev, train_loader)
        cf_mat_val = pred_confusion_matrix(model_prev, val_loader)
        fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
        ax1, ax2 = axes
        sns.heatmap(cf_mat_train, fmt='g', annot=True, ax=ax1)
        ax1.set_title('Training Data')
        sns.heatmap(cf_mat_val, fmt='g', annot=True, ax=ax2)
        ax2.set_title('Validation Data')
        n n n
```

This is where the training happens.

- optimiser = SGD
- number of epochs = 1000
- learning-rate = 0.01
- device of computation = CPU

```
In []:
    # training phase
    criterion = nn.BCELoss()
    optim = torch.optim.SGD(model.parameters(), lr=0.01)
    n_epochs = 1000

def train_model():
    for X, y in train_loader:
        for epoch in range(n_epochs):
            optim.zero_grad()
            y_pred = model.forward(X).flatten()
            loss = criterion(y_pred, y)
            loss.backward()
            optim.step()
```

```
In []:
    # testing the predictions
    for X, y in train_loader:
        y_pred = model.forward(X)
        y_pred = y_pred > 0.5
        y_pred = torch.tensor(y_pred, dtype=torch.int32)
        print(y_pred)
        break
```

```
In [ ]:
    from sklearn.metrics import confusion_matrix
    def pred_confusion_matrix(model, loader):
        with torch.no_grad():
        all_preds = torch.tensor([])
        all_true = torch.tensor([])
        for X, y in loader:
            y_pred = model(X)
            y_pred = torch.tensor(y_pred > 0.5, dtype=torch.float32).flat
    ten()
        all_preds = torch.cat([all_preds, y_pred])
        all_true = torch.cat([all_true, y])

    return confusion_matrix(all_true.numpy(), all_preds.numpy())
```

```
import seaborn as sns
%matplotlib inline

cf_mat_train = pred_confusion_matrix(model, train_loader)
cf_mat_val = pred_confusion_matrix(model, val_loader)
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))

ax1, ax2 = axes
sns.heatmap(cf_mat_train, fmt='g', annot=True, ax=ax1)
ax1.set_title('Training Data')

sns.heatmap(cf_mat_val, fmt='g', annot=True, ax=ax2)
ax2.set_title('Validation Data')
```

```
In []:
    checkpoint = {
        'state_dict': model.state_dict(),
        'optimizer': optim.state_dict()
    }
    torch.save(checkpoint, 'checkpoint.pth')
```

More preprocessing and feature selection

→

Even though the model seems to perform exceptionally well, we have made some fatal mistakes. Firstly, we standardized the whole dataset, as a result, the informations about the test data got mixed up with the train data. The test data and train data should be separate. Secondly, we added so many columns which are not much needed, for example the columns which have very high correlation coefficient with some others.

Finally, we need a more organized model with fewer parameters, otherwise we will risk overfitting.

Let us try to reduce dimensions first by removing columns which have correlation coeffs higher than 0.80

```
In [32]:
```

```
# this is where we return back to the point from where we branched, we take
the numeric dataframe again and apply some feature selection
df_new = pd.read_csv('koi_numeric.csv', index_col=0)
df_new.head()
```

Out[32]:

	koi_disposition	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_pe
0	1	0	0	0	0	9.488036	2.7800
1	1	0	0	0	0	54.418383	2.4800
2	2	0	0	0	0	19.899140	1.4900
3	0	0	1	0	0	1.736952	2.6300
4	1	0	0	0	0	2.525592	3.7600
4							•

5 rows × 38 columns

```
In [33]:
```

```
# a function to remove high correlation columns by selecting the upper tria
    ngle of the correlation matrix
# and dropping all columns which have corr value > threshold at any row

def remove_high_corr(df, threshold):
    corr_mat = df.corr()
    trimask = corr_mat.abs().mask(~np.triu(np.ones(corr_mat.shape, dtype=
    bool), k=1))
    blocklist = [col for col in trimask.columns if (trimask[col] > thresh
    old).any()]
    df.drop(columns=blocklist, axis=1,inplace=True)
    return blocklist
```

```
In [34]:
    remove_high_corr(df_new, 0.80)

Out[34]:
    ['koi_period_err2',
        'koi_impact_err2',
        'koi_duration_err2',
        'koi_depth_err2',
        'koi_prad_err2',
        'koi_insol_err1',
        'koi_insol_err2',
        'koi_steff_err2',
        'koi_srad_err2']
```

```
fig, ax = plt.subplots(figsize=(20, 20))
sns.heatmap(df_new.corr(), cmap="Blues", ax=ax)
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fcfc5a8a590>

Great! Now we can save this csv again and move on the the next parts

```
In [36]:
    df_new.head()
```

Out[36]:

	koi_disposition	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_pe
0	1	0	0	0	0	9.488036	2.7800
1	1	0	0	0	0	54.418383	2.4800
2	2	0	0	0	0	19.899140	1.4900
3	0	0	1	0	0	1.736952	2.6300
4	1	0	0	0	0	2.525592	3.7600
4							•

5 rows × 29 columns

So now we have a reduced dataset with 29 columns.

Let us save this reduced dataset also, so that we can use it in our pytorch dataset

```
In [37]:
    df_new.to_csv('koi_numeric_reduced.csv')
```

Trying GPU accelaration, new Dataset and model architecture

We want to change the way our dataset class performs. Earlier we stiched together a bunch of modification but this time we want to maintain consistency. We previously standardized the entire dataset, including the test set (which included koi_disposition value 2) which was a bad practice. We will now only do standardization on the training data and validation data. When using test data we will do the standardization separately.

```
In [38]:
         def get_default_device():
             if torch.cuda.is_available():
                 return torch.device('cuda')
             else:
                 return torch.device('cpu')
         def to_device(data, device):
             """Move tensor(s) to chosen device"""
             if isinstance(data, (list,tuple)):
                 return [to_device(x, device) for x in data]
             return data.to(device, non_blocking=True)
         class DeviceDataLoader():
             """Wrap a dataloader to move data to a device"""
             def __init__(self, dl, device):
                 self.dl = dl
                 self.device = device
             def __iter__(self):
                 """Yield a batch of data after moving it to device"""
                 for b in self.dl:
                     yield to_device(b, self.device)
             def __len__(self):
                 """Number of batches"""
                 return len(self.dl)
         device = get_default_device()
         device
Out[38]:
         device(type='cuda')
```

The standardization process in the previous model was flawed because it standardized the entire dataset, introducing test data statistics into training and validation data. This is bad, because then our model will be influenced by test data and will never truly learn anything.

I therefore, used sklearn.model_selection.train_test_split to split the training data into training and validation data, and created a separate test data by filtering out based on koi-disposition values.

I then used StandardScaler separately on each dataset to produce independently standardized samples.

The rest of it are similar as before.

_notebook In [39]: from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split std_scaler = StandardScaler() dataframe = pd.read_csv('koi_numeric_reduced.csv', index_col=0) train_data = dataframe.query('not koi_disposition == 2').values $X = train_data[:, 1:]$ y = train_data[:, 0] $val_size = .3$ train_X, val_X, train_y, val_y = train_test_split(X, y, test_size=val_siz e. shuffle=True) train_X[:, 4:] = std_scaler.fit_transform(train_X[:, 4:]) val_X[:, 4:] = std_scaler.fit_transform(val_X[:, 4:]) # print(f'train_X = {train_X.shape}\n\nval_X = {val_X.shape}\n') class KOIDataset(Dataset): def __init__(self, X_data, y_data): self.X_data = torch.FloatTensor(X_data) self.y_data = torch.FloatTensor(y_data) def __len__(self): return len(self.X_data) def __getitem__(self, index): return self.X_data[index], self.y_data[index]

```
train_ds = KOIDataset(train_X, train_y)
val_ds = KOIDataset(val_X, val_y)
```

```
for feature, target in train_ds:
    print(feature, target)
    break
```

This time, I used a batch size of 64

```
In [40]:
    batch_size = 64
    train_loader = DataLoader(train_ds, batch_size, shuffle=True, num_workers
    =4, pin_memory=True)
    val_loader = DataLoader(val_ds, batch_size, num_workers=4, pin_memory=Tru
    e)
```

Ported all the dataloaders to GPU for faster processing.

```
In [41]:
    train_loader = DeviceDataLoader(train_loader, device)
    val_loader = DeviceDataLoader(val_loader, device)
```

```
In [42]:
```

```
for features, target in train_loader:
    print(target, features)
    break
```

```
tensor([0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0.,
1., 1., 0.,
       1., 1., 0., 1., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0.,
0., 0., 1.,
       1., 0., 1., 0., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1.,
0., 0., 1.,
        0., 0., 1., 0., 1., 0., 1., 0., 1., 0.], device='cuda:0') tens
or([[ 0.0000, 1.0000, 0.0000, ..., -2.3706, 1.0594, 1.9648],
        [ 0.0000, 0.0000, 1.0000, ..., 1.3903, 1.0862, 1.2464],
        [ 0.0000, 0.0000, 0.0000,
                                    \dots, -0.3760, -0.7383, 0.6718],
        [ 0.0000, 0.0000,
                          1.0000,
                                    \dots, -0.5046, -1.2720, 0.4178],
                           0.0000,
                                    \dots, -0.8612, -0.4007, -0.5102],
        [ 0.0000, 0.0000,
                          1.0000, ..., 1.1460, -0.9188, 0.9431]],
        [ 1.0000, 0.0000,
      device='cuda:0')
```

New feedforward network

The architecture is as followed.

- 1. Input Layer (fully connected) (28 x 24)
- 2. Sigmoid (Activation) (24)
- 3. Batch Normalization Layer (1D) (24)
- 4. Hidden Layer (1st) (24 x 16)
- 5. Sigmoid (Activation) (16)
- 6. Batch Normalization Layer (1D) (16)
- 7. Dropout Layer with probability 0.1 (16)
- 8. A. Output Layer (fully connected) (16 x 1)

In [43]:

```
# a function to measure prediction accuracy

def accuracy(outputs, labels):
    output_labels = torch.round(torch.sigmoid(outputs))  # manually have
to activate sigmoid since the nn does not incorporate sigmoid at final laye
r

return torch.tensor(torch.sum(output_labels == labels.unsqueeze(1)).i
tem() / len(output_labels))
```

In [58]:

```
from collections import OrderedDict
input_dim = train_X.shape[1]
class KOIClassifierSeq(nn.Module):
    def __init__(self):
        super(KOIClassifierSeq, self).__init__()
        self.model = nn.Sequential(OrderedDict([
              ('fc1', nn.Linear(input_dim, 24)),
              ('sigmoid1', nn.Sigmoid()),
              ('batchnorm1', nn.BatchNorm1d(24)),
              ('fc2', nn.Linear(24, 16)),
              ('sigmoid2', nn.Sigmoid()),
              ('batchnorm2', nn.BatchNorm1d(16)),
              ('dropout', nn.Dropout(p=0.1)),
              ('fc3', nn.Linear(16, 1))
            ]))
    def forward(self, xb):
        return self.model(xb)
    def training_step(self, batch):
        features, label = batch
        out = self(features)
        loss = F.binary_cross_entropy_with_logits(out, label.unsqueeze(1
)) # Calculate loss
        return loss
    def validation_step(self, batch):
        features, label = batch
        out = self(features)
        loss = F.binary_cross_entropy_with_logits(out, label.unsqueeze(1
     # Calculate loss
))
        acc = accuracy(out, label)
                                             # Calculate accuracy
        return {'val_loss': loss.detach(), 'val_acc': acc}
    def validation_epoch_end(self, outputs):
        batch_losses = [x['val_loss'] for x in outputs]
        epoch_loss = torch.stack(batch_losses).mean()
                                                        # Combine losses
        batch_accs = [x['val_acc'] for x in outputs]
```

```
In [59]:
         @torch.no_grad()
         def evaluate(model, val_loader):
             outputs = [model.validation_step(batch) for batch in val_loader]
             return model.validation_epoch_end(outputs)
         def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim
         .SGD):
             history = []
             optimizer = opt_func(model.parameters(), lr)
             for epoch in range(epochs):
                 # Training Phase
                 model.train()
                 train_losses = []
                 for batch in train_loader:
                     loss = model.training_step(batch)
                     train_losses.append(loss)
                     loss.backward()
                     optimizer.step()
                     optimizer.zero_grad()
                 # Validation phase
                 result = evaluate(model, val_loader)
                 result['train_loss'] = torch.stack(train_losses).mean().item()
                 model.epoch_end(epoch, result)
                 history.append(result)
             return history
```

Finally, I have my model ready now. I ported the model to GPU again. The layers can be seen from the following output.

```
In [72]:
         model1 = to_device(KOIClassifierSeq(), device)
         model1
Out[72]:
         KOIClassifierSeq(
           (model): Sequential(
             (fc1): Linear(in_features=28, out_features=24, bias=True)
             (sigmoid1): Sigmoid()
             (batchnorm1): BatchNorm1d(24, eps=1e-05, momentum=0.1, affine=Tru
         e, track_running_stats=True)
             (fc2): Linear(in_features=24, out_features=16, bias=True)
             (sigmoid2): Sigmoid()
             (batchnorm2): BatchNorm1d(16, eps=1e-05, momentum=0.1, affine=Tru
         e, track_running_stats=True)
             (dropout): Dropout(p=0.1, inplace=False)
             (fc3): Linear(in_features=16, out_features=1, bias=True)
           )
         )
```

Let us fit our model using Adam optimiser and a small learning rate 1e-5

```
In [73]:
    num_epochs = 10
    lr = 1e-4
    history = fit(num_epochs, lr, model1, train_loader, val_loader, opt_func=
    torch.optim.Adam)

Epoch [0], train_loss: 0.6957, val_loss: 0.6354, val_acc: 0.6627
    Epoch [1], train_loss: 0.5986, val_loss: 0.5548, val_acc: 0.7708
    Epoch [2], train_loss: 0.5233, val_loss: 0.4909, val_acc: 0.8283
    Epoch [3], train_loss: 0.4732, val_loss: 0.4411, val_acc: 0.8511
    Epoch [4], train_loss: 0.4228, val_loss: 0.4006, val_acc: 0.8809
    Epoch [5], train_loss: 0.3846, val_loss: 0.3654, val_acc: 0.8889
    Epoch [6], train_loss: 0.3492, val_loss: 0.3361, val_acc: 0.9036
    Epoch [7], train_loss: 0.3169, val_loss: 0.3098, val_acc: 0.9057
    Epoch [8], train_loss: 0.3052, val_loss: 0.2893, val_acc: 0.9117
```

Epoch [9], train_loss: 0.2816, val_loss: 0.2684, val_acc: 0.9274

this seems to perform really well. It got a steep jump in terms of accuracy. Let us keep training.

```
In [74]:
    num_epochs = 5
    lr = 1e-4
    history = fit(num_epochs, lr, model1, train_loader, val_loader, opt_func=
    torch.optim.Adam)

Epoch [0], train_loss: 0.2528, val_loss: 0.2501, val_acc: 0.9293
    Epoch [1], train_loss: 0.2350, val_loss: 0.2292, val_acc: 0.9374
    Epoch [2], train_loss: 0.2206, val_loss: 0.2160, val_acc: 0.9415
    Epoch [3], train_loss: 0.2007, val_loss: 0.2010, val_acc: 0.9414
    Epoch [4], train_loss: 0.1907, val_loss: 0.1908, val_acc: 0.9444
```

```
In [75]:
# a function to calculate training accuracy

def train_accuracy(model):
    train_acc = []
    for X, y in train_loader:
        out = model(X)
        train_acc.append(accuracy(out, y))

return torch.stack(train_acc).mean().item()
```

```
In [76]:
    train_accuracy(model1)

Out[76]:
    0.9555121660232544
```

So, at the end of training which was relatively fast, We have 97.7% training accuracy and 97.2% validation accuracy. Let us calculate confusion matrix and visualize our predictions.

```
from sklearn.metrics import confusion_matrix
  def pred_confusion_matrix(model, loader):
    with torch.no_grad():
        all_preds = to_device(torch.tensor([]), device)
        all_true = to_device(torch.tensor([]), device)
        for X, y in loader:
            y_pred = model(X)
            y_pred = torch.round(torch.sigmoid(y_pred))
            all_preds = torch.cat([all_preds, y_pred])
        all_true = torch.cat([all_true, y.unsqueeze(1)])

        return confusion_matrix(all_true.cpu().numpy(), all_preds.cpu().numpy
        ())
```

```
In [78]:
    cf_mat_train = pred_confusion_matrix(model1, train_loader)
    cf_mat_val = pred_confusion_matrix(model1, val_loader)
    fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 3))

ax1, ax2 = axes
    sns.heatmap(cf_mat_train, fmt='g', annot=True, ax=ax1)
    ax1.set_title('Training Data')

sns.heatmap(cf_mat_val, fmt='g', annot=True, ax=ax2)
    ax2.set_title('Validation Data')
```

Out[78]:

Text(0.5, 1.0, 'Validation Data')

As we can see, both training and validation data are predicted super accurately. We are not going to train any further. This is more than enough stats for a feedforward neural network classification.

Let us plot the accuracies and predictions.

```
In [79]:
         def plot_accuracies(history):
             accuracies = [x['val_acc'] for x in history]
             plt.plot(accuracies, '-rx')
             plt.xlabel('epoch')
             plt.ylabel('accuracy')
             plt.title('Accuracy vs. No. of epochs')
         def plot_losses(history):
             train_losses = [x.get('train_loss') for x in history]
             val_losses = [x['val_loss'] for x in history]
             plt.plot(train_losses, '-bx')
             plt.plot(val_losses, '-rx')
             plt.xlabel('epoch')
             plt.ylabel('loss')
             plt.legend(['Training', 'Validation'])
             plt.title('Loss vs. No. of epochs')
```



```
In [81]:
    plot_losses(history)
```


Saving our model state similar as before.

```
In [82]:
    second_model = {
        'state_dict': model1.state_dict()
    }

    torch.save(second_model, 'second_model.pth')

# I have uploaded the pth file to the /input directory. If needed, you can load it from there and load it into a model instance of KOIClassifierSeq
```

Testing on the Test data

```
In [83]:
    test_df = pd.read_csv('koi_test.csv', index_col=0)
    test_df
```

Out[83]:

	koi_disposition	koi_pdisposition	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	kı
2	2	2	0.000	0	0	0	0
37	2	2	1.000	0	0	0	0
58	2	2	0.999	0	0	0	0
62	2	2	0.993	0	0	0	0
63	2	2	0.871	0	0	0	0
•••							•••
9538	2	2	0.843	0	0	0	0
9542	2	2	0.189	0	0	0	0
9552	2	2	0.519	0	0	0	0
9560	2	2	0.497	0	0	0	0
9562	2	2	0.092	0	0	0	0
4							•

1787 rows × 40 columns

We need to apply the same preprocessing steps on the test dataset as well.

We can remove koi_disposition column as only has value 2 for CANDIDATE, We can remove koi_pdisposition aswell since it contains same data as koi_disposition. We will use the koi_score to see our prediction accuracy. We also have to remove the columns we had removed previously from the train and validation data, otherwise there will be a dimensionality mismatch.

```
In [84]:
    cols = [
        'koi_disposition',
        'koi_period_err2',
        'koi_impact_err2',
        'koi_duration_err2',
        'koi_depth_err2',
        'koi_prad_err2',
        'koi_insol_err1',
        'koi_steff_err2',
        'koi_steff_err2',
        'koi_srad_err2']

    test_df.drop(cols, axis=1, inplace=True)
```

```
In [85]:
    test_df.head()
```

Out[85]:

	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_period
2	0.000	0	0	0	0	19.899140	1.490000
37	1.000	0	0	0	0	4.959319	5.150000
58	0.999	0	0	0	0	40.419504	1.140000
62	0.993	0	0	0	0	7.240661	1.620000
63	0.871	0	0	0	0	3.435916	4.730000
4	0.071	0		0	0	3.433910	4.730000

5 rows × 29 columns

We perform standardization same as before.

```
In [86]:
    test_X = test_df.iloc[:, 1:].values
    test_probs = test_df.iloc[:, 0].values

    test_X[:, 4:] = std_scaler.fit_transform(test_X[:, 4:])

KOI_test = KOIDataset(test_X, test_probs)

In [87]:
    hatch_size = 64
```

```
In [87]:
    batch_size = 64
    test_loader = DataLoader(KOI_test, batch_size, num_workers=4, pin_memory=
        True)
    test_loader = DeviceDataLoader(test_loader, device)

for X, y in test_loader:
    print(X.size(), y.size())
    break
```

```
torch.Size([64, 28]) torch.Size([64])
```

```
def predict_probs(model, X):
    probs = torch.sigmoid(model(X))
    return probs
```

As we can see, the predictions are not as accurate.

```
model prediction: 0.07717135548591614
                                         KOI prediction: 0.0
model prediction: 0.1424451470375061
                                         KOI prediction: 1.0
model prediction: 0.2067536562681198
                                         KOI prediction: 0.999000012874
6033
model prediction: 0.2110399454832077
                                         KOI prediction: 0.992999970912
9333
model prediction: 0.7160056829452515
                                         KOI prediction: 0.870999991893
7683
model prediction: 0.11829042434692383
                                         KOI prediction: 1.0
model prediction: 0.17240147292613983
                                         KOI prediction: 1.0
model prediction: 0.7823303937911987
                                         KOI prediction: 1.0
model prediction: 0.666327953338623
                                         KOI prediction: 1.0
model prediction: 0.28639310598373413
                                         KOI prediction: 1.0
model prediction: 0.01969689503312111
                                         KOI prediction: 0.0
model prediction: 0.8551582098007202
                                         KOI prediction: 1.0
model prediction: 0.11600252240896225
                                         KOI prediction: 0.998000025749
2065
model prediction: 0.056901298463344574
                                         KOI prediction: 0.994000017642
9749
model prediction: 0.09051447361707687
                                         KOI prediction: 0.0
model prediction: 0.7346372008323669
                                         KOI prediction: 1.0
model prediction: 0.050027504563331604
                                         KOI prediction: 0.0
model prediction: 0.013841806910932064
                                         KOI prediction: 1.0
model prediction: 0.8167394399642944
                                         KOI prediction: 1.0
model prediction: 0.07456996291875839
                                         KOI prediction: 0.996999979019
165
model prediction: 0.03901781886816025
                                         KOI prediction: 1.0
model prediction: 0.34758153557777405
                                         KOI prediction: 0.966000020503
9978
model prediction: 0.3728058338165283
                                         KOI prediction: 1.0
model prediction: 0.530924916267395
                                         KOI prediction: 1.0
model prediction: 0.7859179973602295
                                         KOI prediction: 1.0
model prediction: 0.38144832849502563
                                         KOI prediction: 1.0
model prediction: 0.9131045937538147
                                         KOI prediction: 0.975000023841
8579
model prediction: 0.26961037516593933
                                         KOI prediction: 1.0
model prediction: 0.4234529435634613
                                        KOI prediction: 1.0
model prediction: 0.7373707294464111
                                         KOI prediction: 0.964999973773
9563
                                         KOI prediction: 0.0
model prediction: 0.0106026791036129
```

model 165	prediction:	0.7614726424217224	KOI	prediction:	0.996999979019
model 0667	prediction:	0.5415418148040771	KOI	prediction:	0.632000029087
	prediction:	0.6718788146972656	KOI	prediction:	0.0
	•	0.742770791053772		•	0.999000012874
6033					
model	prediction:	0.38225802779197693	KOI	prediction:	1.0
model	prediction:	0.1969139277935028	KOI	prediction:	0.751999974250
7935					
model	prediction:	0.48439592123031616	KOI	prediction:	0.0
model	prediction:	0.7461593747138977	KOI	prediction:	0.930999994277
9541					
model	prediction:	0.5529417991638184	KOI	prediction:	0.711000025272
3694					
model	prediction:	0.3997315466403961	KOI	prediction:	1.0
model	prediction:	0.20839659869670868	KOI	prediction:	1.0
model	<pre>prediction:</pre>	0.9239524006843567	KOI	<pre>prediction:</pre>	0.0
model	prediction:	0.8166447281837463	KOI	prediction:	1.0
model	<pre>prediction:</pre>	0.5223369598388672	KOI	<pre>prediction:</pre>	1.0
model	<pre>prediction:</pre>	0.5239954590797424	KOI	<pre>prediction:</pre>	0.990000009536
7432					
model	prediction:	0.06393381953239441	KOI	${\tt prediction:}$	1.0
model	prediction:	0.45012158155441284	KOI	<pre>prediction:</pre>	1.0
model	prediction:	0.19938087463378906	KOI	${\tt prediction:}$	1.0
model	prediction:	0.8943300247192383	KOI	${\tt prediction:}$	0.995999991893
7683					
model	prediction:	0.8696718811988831	KOI	<pre>prediction:</pre>	1.0
model	prediction:	0.8192925453186035	KOI	${\tt prediction:}$	0.999000012874
6033					
model	prediction:	0.0764036476612091	KOI	${\tt prediction:}$	0.0
model	prediction:	0.9203847050666809	KOI	<pre>prediction:</pre>	1.0
model	prediction:	0.9479935169219971	KOI	<pre>prediction:</pre>	0.694999992847
4426					
model	prediction:	0.14783397316932678	KOI	<pre>prediction:</pre>	0.992999970912
9333					
model	<pre>prediction:</pre>	0.9288195967674255	KOI	<pre>prediction:</pre>	0.992999970912
9333					
model	prediction:	0.01872302033007145	KOI	prediction:	0.870999991893
7683					
model	prediction:	0.6556954383850098	KOI	<pre>prediction:</pre>	1.0

tem() / len(output_labels))

def test_accuracy(model):

with torch.no_grad():

for X, y in test_loader:
 out = model(X)

return torch.stack(test_acc).mean().item()

test_acc = []

```
model prediction: 0.32978981733322144
                                                  KOI prediction: 0.893999993801
         1169
                                                  KOI prediction: 1.0
         model prediction: 0.6975426077842712
         model prediction: 0.772310733795166
                                                  KOI prediction: 0.996999979019
         165
         model prediction: 0.48521891236305237
                                                  KOI prediction: 0.996999979019
         165
         model prediction: 0.8535788059234619
                                                  KOI prediction: 1.0
In [90]:
         def accuracy_test(outputs, label_prob):
             output_labels = torch.round(torch.sigmoid(outputs))
             labels = torch.round(label_prob)
```

return torch.tensor(torch.sum(output_labels == labels.unsqueeze(1)).i

```
In [91]: test_accuracy(model1)

Out[91]: 0.5341158509254456
```

test_acc.append(accuracy_test(out, y))

We got a test accuracy which is, unfortunately, not as good. But its a start. We will save the model at its current state.

```
In [92]:
    torch.save(model1.state_dict(), 'final_model_53_percent.pth')
```

Using a simpler model

We will now try a simpler model with only one hidden layer with no batchnorm or dropout layer and only sigmoid as activation.

```
notebook
In [100]:
          class KOIClassifierSimple(nn.Module):
              def __init__(self):
                  super(KOIClassifierSimple, self).__init__()
                  self.model = nn.Sequential(OrderedDict([
                        ('fc1', nn.Linear(input_dim, 24)),
                        ('sigmoid1', nn.Sigmoid()),
                        ('fc2', nn.Linear(24, 16)),
                        ('sigmoid2', nn.Sigmoid()),
                        ('fc3', nn.Linear(16, 1))
                      ]))
              def forward(self, xb):
                  return self.model(xb)
              def training_step(self, batch):
                  features, label = batch
                  out = self(features)
                  loss = F.binary_cross_entropy_with_logits(out, label.unsqueeze(1
          )) # Calculate loss
                  return loss
              def validation_step(self, batch):
                  features, label = batch
                  out = self(features)
                  loss = F.binary_cross_entropy_with_logits(out, label.unsqueeze(1
              # Calculate loss
          ))
                  acc = accuracy(out, label)
                                                       # Calculate accuracy
                  return {'val_loss': loss.detach(), 'val_acc': acc}
              def validation_epoch_end(self, outputs):
                  batch_losses = [x['val_loss'] for x in outputs]
                  epoch_loss = torch.stack(batch_losses).mean() # Combine losses
                  batch_accs = [x['val_acc'] for x in outputs]
                  epoch_acc = torch.stack(batch_accs).mean()
                                                                 # Combine accuraci
          es
                  return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item
          ()}
              def epoch_end(self, epoch, result):
```

print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc:

{:.4f}".format(

```
epoch, result['train_loss'], result['val_loss'], result['val_
          acc']))
In [113]:
          model2 = to_device(KOIClassifierSimple(), device)
          model2
Out[113]:
          KOIClassifierSimple(
            (model): Sequential(
              (fc1): Linear(in_features=28, out_features=24, bias=True)
              (sigmoid1): Sigmoid()
              (fc2): Linear(in_features=24, out_features=16, bias=True)
              (sigmoid2): Sigmoid()
              (fc3): Linear(in_features=16, out_features=1, bias=True)
            )
          )
In [114]:
          num_epochs = 10
          1r = 1e-3
          history2 = fit(num_epochs, lr, model2, train_loader, val_loader, opt_func
          =torch.optim.Adam)
          Epoch [0], train_loss: 0.6439, val_loss: 0.6193, val_acc: 0.6577
          Epoch [1], train_loss: 0.5932, val_loss: 0.5346, val_acc: 0.6648
          Epoch [2], train_loss: 0.4771, val_loss: 0.4006, val_acc: 0.8739
          Epoch [3], train_loss: 0.3529, val_loss: 0.2930, val_acc: 0.9213
          Epoch [4], train_loss: 0.2683, val_loss: 0.2162, val_acc: 0.9485
          Epoch [5], train_loss: 0.1965, val_loss: 0.1653, val_acc: 0.9713
          Epoch [6], train_loss: 0.1548, val_loss: 0.1320, val_acc: 0.9783
          Epoch [7], train_loss: 0.1223, val_loss: 0.1087, val_acc: 0.9834
          Epoch [8], train_loss: 0.0984, val_loss: 0.0904, val_acc: 0.9849
          Epoch [9], train_loss: 0.0817, val_loss: 0.0789, val_acc: 0.9869
```

```
In [115]:
    train_accuracy(model2)
```

Out[115]:

0.9893662929534912

In [112]: test_accuracy(model2)

0.6792524456977844

As we see, a simpler model was able to give us a test accuracy of 67.9% which is a lot better than our previous model. This goes to show that a more complex model might not always be the go-to solution for every task. We could even use other machine learning algorithms like SVM or Decision Trees to come into agreeable accuracy.

Conclusion

Out[112]:

There might be a number of reasons why our model failed to perform accurately in the test set. The test set is predominated by positive probabilities, with an uneven distribution of positive and negative candidates. For this reason our model might underperform. Another reason might be the case of overfitting. Simpler model is always better. Maybe by changing and tinkering with the network architecture a bit, we can come

And as evidently shown, a simpler model might be able to generalize better and give better estimations.

Although, this is nowhere close to being an actual prediction modelling for exoplanet search. A much better analysis would be on time-series data or transit curve images using CNN architectures.

Having basically no idea about the deeper intricacies of Astronomy, and only relying on the column descriptions from the official website, it was pretty much a wild guess but the fact that a seemingly random prediction model was able to perform with 53% accuracy and then being able to get a 68% accuracy on the test data with an even simpler model was pretty nice!

If anyone is interested in tinkering with this notebook even more and has domain-specific knowledge as to which columns are more imoprtant in planetary predictions, feel free to fork this and modify it. Thanks!

up to a decent enough prediction accuracy.