Numerical Analysis – Lecture 11

7.5Least squares fitting to discrete function values

Suppose that $m \geq n+1$. We are given m function values $f(x_1), f(x_2), \ldots, f(x_m)$, where the x_k s are pairwise distinct, and seek $p \in \mathbb{P}_n[x]$ that minimizes $\langle f - p, f - p \rangle$, where

$$\langle g, h \rangle := \sum_{k=1}^{m} g(x_k) h(x_k). \tag{7.1}$$

One alternative is to express p as $\sum_{\ell=0}^{n} c_{\ell} x^{\ell}$ and find optimal c_0, \ldots, c_n as a solution of a linear least squares problem à la Section 5. An alternative is to construct orthogonal polynomials w.r.t. the scalar product (7.1). The theory is identical to that of subsections 7.1-4, except that we can evaluate only $p_0, p_1, \ldots, p_{m-1}$ but we need just p, p_1, \ldots, p_n and $n \leq m-1$, so it doesn't matter!

- Employ the three-term recurrence (7.2) to calculate p_0, p_1, \ldots, p_n (of course, using the scalar 1. product (7.1);
- Form $p = \sum_{k=0}^{n} (\langle p_k, f \rangle / \langle p_k, p_k \rangle) p_k$. Since the work for each k is bounded by a constant multiple of m, the complete cost is $\mathcal{O}(mn)$, as compared with $\mathcal{O}(n^2m)$ if QR is used.

7.6Gaussian quadrature

We are again in C[a,b] and a scalar product is defined as in subsection 7.1, namely $\langle f,g\rangle =$ $\int_a^b w(x) f(x) g(x) dx$, where w > 0 in (a,b). Our goal is to approximate integrals by finite sums,

$$\int_{a}^{b} w(x)f(x) dx \approx \sum_{k=1}^{\nu} b_k f(c_k), \qquad f \in C[a, b].$$

Here ν is given, whereas the points b_1, \ldots, b_{ν} (the weights) and c_1, \ldots, c_{ν} (the nodes) are independent of the choice of f.

A reasonable approach to achieving high accuracy is to require that the approximant is exact for all $f \in \mathbb{P}_m[x]$, where m is as large as possible – this results in Gaussian quadrature and we will demonstrate that $m = 2\nu - 1$ can be attained.

Firstly, we claim that $m=2\nu$ is impossible. To prove this, note that $p(x):=\prod_{k=1}^{\nu}(x-c_k)^2$ lives

in $\mathbb{P}_{2\nu}[x]$, $\int_a^b w(x)p(x)\,\mathrm{d}x > 0$ and $\sum_{k=1}^\nu b_k p(c_k) = 0$. Let p_0, p_1, p_2, \ldots denote, again, the monic polynomials which are orthogonal w.r.t. the underlying scalar product.

Theorem All the zeros of p_n are real, distinct and lie in the interval (a,b) for all $n \ge 1$. **Proof.** Since $\int_a^b w(x)p_k(x) dx = \int_a^b w(x)p_0(x)p_n(x) dx = 0$, p_n changes sign at least once in (a,b). Let us denote by $m \ge 1$ the number of its sign changes in (a,b) and assume that $m \le n-1$. Denoting the points where the sign change occurs by $\xi_1, \xi_2, \dots, \xi_m$, we let $q(x) := \prod_{j=1}^m (x - \xi_j)$. Since $q \in \mathbb{P}_m[x], m \le n-1$, it follows that $\langle q, p_n \rangle = 0$. On the other hand, qp_n is of the same sign throughout [a,b] and vanishes at a finite number of points, hence $|\langle q,p_n\rangle|=\left|\int_a^b w(x)q(x)p_n(x)\,\mathrm{d}x\right|=$

 $\int_a^b w(x) |q(x)p_n(x)| \, \mathrm{d}x > 0$ – a contradiction. It follows that m=n and the proof is complete.

We commence by choosing pairwise-distinct $c_1, c_2, \ldots, c_{\nu} \in (a, b)$ and define the *interpolatory* weights

$$b_k := \int_a^b w(x) \prod_{\substack{j=1\\j \neq k}}^{\nu} \frac{x - c_j}{c_k - c_j} dx, \qquad k = 1, 2, \dots, \nu.$$

Theorem The quadrature formula with the above choice is exact for all $f \in \mathbb{P}_{\nu-1}[x]$. However, if $c_1, c_2, \ldots, c_{\nu}$ are the zeros of p_{ν} then it is exact for all $f \in \mathbb{P}_{2\nu-1}[x]$.

Proof. Every $f \in \mathbb{P}_{\nu-1}[x]$ is its own interpolating polynomial, hence by Lagrange's formula

$$f(x) = \sum_{k=0}^{\nu} f(c_k) \prod_{\substack{j=1\\j\neq k}}^{\nu} \frac{x - c_j}{c_k - c_j}.$$
 (7.2)

The quadrature is exact for all $f \in \mathbb{P}_{\nu-1}[x]$ if $\int_a^b w(x)f(x) dx = \sum_{k=1}^{\nu} b_k f(c_k)$, and this, in tandem with the interpolating-polynomial representation, yields the stipulated form of b_1, \ldots, b_{ν} . Let c_1, \ldots, c_{ν} be the zeros of p_{ν} , Given $f \in \mathbb{P}_{2\nu-1}[x]$, we can represent it uniquely as $f = qp_{\nu} + r$, where $q, r \in \mathbb{P}_{\nu-1}[x]$. Thus, by orthogonality,

$$\int_{a}^{b} w(x)f(x) dx = \int_{a}^{b} w(x)[q(x)p_{\nu}(x) + r(x)] dx = \langle q, p_{\nu} \rangle + \int_{a}^{b} w(x)r(x) dx$$
$$= \int_{a}^{b} w(x)r(x) dx.$$

On the other hand, the choice of quadrature knots gives

$$\sum_{k=1}^{\nu} b_k f(c_k) = \sum_{k=1}^{\nu} b_k [q(c_k)p_{\nu}(c_k) + r(c_k)] = \sum_{k=1}^{\nu} b_k r(c_k).$$

Hence the integral and its approximant coincide, because $r \in \mathbb{P}_{\nu-1}[x]$.

Example Let [a,b] = [-1,1], $w(x) \equiv 1$. Then the underlying orthogonal polynomials are the Legendre polynomials $P_0 \equiv 1$, $P_1(x) = x$, $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$, $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$, $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$ (it is customary to use this, non-monic, normalization). Hence Gaussian quadrature nodes are

$$\begin{array}{ll} n=1: & c_1=0; \\ n=2: & c_1=-\frac{\sqrt{3}}{3}, \ c_2=\frac{\sqrt{3}}{3}; \\ n=3: & c_1=-\frac{\sqrt{15}}{5}, \ c_2=0, \ c_3=\frac{\sqrt{15}}{5}; \\ n=4: & c_1=-\sqrt{\frac{3}{7}+\frac{2}{35}\sqrt{30}}, \ c_2=-\sqrt{\frac{3}{7}-\frac{2}{35}\sqrt{30}}, \ c_3=\sqrt{\frac{3}{7}-\frac{2}{35}\sqrt{30}}, \ c_4=\sqrt{\frac{3}{7}+\frac{2}{35}\sqrt{30}}. \end{array}$$