Proposição

- (a) Sejam \mathcal{F} um subespaço afim de \mathbb{R}^n e $A \in \mathcal{F}$. Então $F = \{ \overrightarrow{v} \in \mathbb{R}^n : A + \overrightarrow{v} \in \mathcal{F} \}$ é subespaço vetorial de \mathbb{R}^n . Além disso, $P \in \mathcal{F}$ sse $\exists \overrightarrow{v} \in F$ $P = A + \overrightarrow{v}$.
- (b) Sejam F subespaço vetorial de \mathbb{R}^n e A um ponto de \mathbb{R}^n . Então $\mathcal{F} = \{ P \in \mathbb{R}^n : \exists \overrightarrow{v} \in F, P = A + \overrightarrow{v} \}$ é um subespaço afim de \mathbb{R}^n .

Observação

Nas condições da alínea (b) escreve-se

$$\mathcal{F} = \left\{ P \in \mathbb{R}^n : \exists \overrightarrow{v} \in F, \ P = A + \overrightarrow{v} \right\} = A + F$$

Assim, cada subespaço afim \mathcal{F} de \mathbb{R}^n é um subconjunto de pontos de \mathbb{R}^n que se descreve como soma de um ponto A e um subespaço vetorial $F \leq \mathbb{R}^n$.

Proposição

Sejam $P, Q \in \mathbb{R}^n$ e $W \leq \mathbb{R}^n$. São equivalentes as condições

(a)
$$P + W = Q + W$$

(b)
$$P \in Q + W$$

(c)
$$\exists A \in \mathbb{R}^n P, Q \in A + W$$

(d)
$$Q - P = \overrightarrow{PQ} \in W$$