Prediction Oil Price for better planification: A Machine Learning Approach

Abstract— Index Terms—

I. Introducción

El petróleo representa uno de los principales rubros dentro de las exportaciones en la economía ecuatoriana. Por esto, el precio del petróleo es transcendental para elaboración del presupuesto general del estado. Según la Proforma Presupuestaria del Gobierno de Ecuador para el 2019, se espera tener ingresos totales por USD \$22.361 millones. Esto se proyecta tomando en consideración un precio del barril de petróleo de USD \$58,29. Además se espera que la producción petrolera se incremente en un 9%, representando una producción de 206,21 millones de barriles al año.

La correcta proyección del precio del barril de petróleo le permite al estado planificar sus ingresos y gastos. Si la proyección está sobreestimada, esto se traducirá en que el estado gastará recursos en función de un ingreso menor a lo planificado por lo que incurrirá en un déficit. Por otro lado, si la proyección está subestimada causaría que se asignen menos recursos a sectores específicos de la economía.

Como es lógico pensar, tener una idea del comportamiento futuro de los precios del barril de petróleo es vital para planificación no solo a nivel de gobierno sino también para el sector privado. Por tanto, el presente trabajo tiene como objetivo proponer 2 modelos de aprendisaje automático que sirvan de comparativa con modelos econométricos clásicos para la elaboración de un pronóstico de la serie de precios del barril West Texas Intermediate (WTI). Se espera que estos modelos sirvan como herramientas para la proyección del precio del barril de petróleo WTI y sean un insumo para la correcta planificación del sector público y privado.

II. LITERATURA PREVIA

III. DATASET

Los datos de la serie histórica del precio del barril de petróleo fueron obtenidos de Investing.com, la cual es una plataforma financiera que ofrece cotizaciones de activos financieros e información en tiempo real de las principales bolsas de valores del mundo.

Se cuenta con información histórica desde el 19 de diciembre de 2002 hasta el 18 de enero de 2019, dando un total de 4105 observaciones.

En la figura 1 se presenta la serie de los precios del barril de petróleo que se tratará de modelar en este documento. Note que la serie exhibe una estructura no estacionaria. Además, observe que durante el año 2008, el precio subió a niveles

Fig. 1: Serie histórica de precios diarios Barril de Petróleo WTI

nunca antes vistos, sobrepasando los USD \$140, siguiendo de una caída estrepitosa durante el siguiente año a un precio cercano a los USD \$35. Esto fenómeno sin duda puede ser explicado por la Gran Crisis Financiera de las hipotecas subprime del año 2008 y la posteror caída de Lehman Brothers, provocando un sentimiento de incertidumbre general en los mercados mundiales.

Otro comportamiento poco inusual de la serie se dá durante el 2015 y 2016. Hubo una caída del 72% del precio del barril con respecto al 2014, donde el precio promedio fue de aproximadamente USD \$110. Durante estos años, el precio cayó por debajo de los USD \$30 debido, probablemente, a la preocupación mundial por la desacelaración de la economía china y la desafiante producción de petróleo de esquisto estadounidense. Por tanto, con la incertidumbre de una menor demanda (si la economía de China decrece, necesitará menos petróleo) y una mayor oferta, los precios se desplomaron a niveles similares al 2003.

Finalmente, para los objetivos de este artículo, se usará la información desde 2002 hasta 2017 com $training\ set\ y$ la información restante como $validation\ set$

IV. METODOLOGÍA

En esta sección se presenta una breve explicación de los 4 modelos utilizados para modelar la serie del precio del barril de petróleo WTI.

A. Linear Regression

El primer modelo y el más básico es la regresión lineal. Este modelo permite ver la relación entre un set de variables independientes contra una variable dependiente continua. Dada la naturaleza del data set, se propuso varios *features*

relacionados con la fecha de negociación que sirvan como variables predictoras del precio del barril. Estas variables puedes ser dummys que indiquen el año, mes, semana, día de negociación, si es inicio/fin de mes, si es inicio/fin de semestre o si es inicio/fin de año. La creación de estas variables se la realizó con la libreria fastai en python. Por tanto, el modelo viene especificado con la siguiente estructura:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + \epsilon_i \quad (1)$$

B. k-Nearest Neighbour Regression

Utilizando los mismos *features* mencionados en la sección anterior, se propone utilizar una regresión k-nn. El algoritmo de k-nnn utiliza una métrica de distancia que para el caso que nos compete es la distancia euclidiana:

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \tag{2}$$

El valor asignado a la estimación es computado con la media de los valores de sus vecinos más cercanos. Se propuso un rango de vecinos más cercanos de k=2,3,...,9, escogiendo el mejor parámetro mediante un algoritmo de gridsearch.

C. Autoregressive Integrated Moving Average

Un algoritmo clásico para realizar *forecast* de series de tiempo son los modelos ARIMA. La mayoría de organismos gubernamentales utilizan estos modelos para realizar proyecciones de las principales variables económicas, por lo cual será el modelo *benchmark*.

Para modelar una serie con un modelo ARIMA se necesita que la serie cumpla condiciones de estacionariedad. Como es notorio a simple vista en la figura 1, la serie del precio del barril de petróleo no es estacionaria. Para corregir este problema se puede proponer varias soluciones: trabajar con la serie detrended, considerar fenómenos estacionales, diferenciar la serie o trabajar con modelos de series no estacionarias.

Por lo general, al trabajar con la serie diferenciada es probable que se pueda corregir problemas de no estacionariedad. Los modelos ARIMA(p,i,q) pueden estimarse mediante una serie diferenciada. De hecho, la cantidad de veces que se puede diferenciar una serie viene dada por el parámetro i del modelo. Los otros parámetros, p y q son el grado de la parte autorregresiva y de media móvil, respectivamente.

Elegir estos parámetros a menudo requiere de mucho tiempo y de varios ensayos. No obstante, en Python existe una función llamada $auto_arima$ que permite elegir estos parámetros de manera automática con base a los criterios de información AIC y BIC. Finalmente, la estructura del modelo ARIMA(p,i,q) viende dada por:

$$\Delta y_t = \sum_{i=1}^p \beta_i \Delta y_{t-i} + \sum_{i=1}^q \gamma_i \epsilon_{t-i} + \epsilon_t$$
 (3)

D. Long Short-Term Memory Neural Network

Una red LSTM es un tipo de Red Neuronal Recurrente (rnn) capaz de aprender sequencias ordenadas para problemas de predicción en series de tiempo. La aplicaciones de este tipo

Fig. 2: Arquitectura red LSTM

de redes neuronales van desde el reconocimiento del habla hasta identificación de patrones en los mercados financieros.

Bajo la premisa de que patrones del pasado pueden ocurrir nuevamente en el futuro, las redes LSTM han tomado gran popularidad en las finanzas cuantitativas debido a la habilidad de recordar u olvidar patrones selectivos de largo plazo. Por ejemplo, el precio del barril de petróle de hoy puede depender de:

- 1) La tendencia que ha tenido la serie en días anteriores;
- 2) El precio del barril de petróleo en días anteriores;
- 3) Y otros factores externos que puedan afectar el precio el día de hoy (nuevas noticias y hechos relevantes).

Por consiguiente, es un buen enfoque tener una arquitectura capaz de discernir entre información histórica relevante y no relevante para realizar una predicción acorde.

En la figura 2 se muestra la arquitectura de una red LSTM típica. Este tipo de redes están compuestas por diferentes memory blocks llamadas celdas. Existen dos estados que pueden ser transferidos a las siguientes celdas: cell state y hidden state. Las celdas son las responsables de recordar información y manipularla mediante 3 mecanismos llamados gates: 1) forget gate; 2) input gate; y 3) output gate.

El primer gate es el responsable de remover la información inncesaria para la red. El segundo gate es responsable de la adición de información a la celda de estado. El tercer gate es responsable de seleccionar la información útil y mostrarla como output.

V. RESULTADOS

En la figura 2 se graficó la serie real y la pronósticada utilizando el modelo de regresión lineal para el *validation set*. Como se puede observar, el rendimiento del algoritmo es bastante probe y siempre tiende a sobrestimar el precio real del barril de petróleo.

Asi mismo, en la figura 4 se muestra la serie real y pronosticada mediante el uso de la regresión k-nn. A diferencia del modelo de regresión lineal, knn tiende a subestimar el precio real del barril. Note que ambos modelos tiene un comportamiento cíclico debido a la naturaleza de los features que se están utilizando.

Por otro lado, el modelo *benchmark* presenta un mejor resultado en comparación a los dos algoritmos previos. La predicción del modelo ARIMA tiene a ser más conservadora, aunque proyecta que el precio del barril del petróleo tendrá un crecimiento paulatino.

Fig. 3: Predicción Regresión Lineal

Fig. 4: Predicción K-NN

Fig. 5: Predicción ARIMA

Fig. 6: Predicción LSTM

Algoritmo	RMSE
Linear Regression	14.3713
KNN Regression	25.8491
ARIMA	8.0410
LSTM	4

TABLE I: Rendimiento de los modelos por RMSE

En la figura 6 se muestra el resultado de la red LSTM. El resultado obtenido es bastante bueno en comparación con los otros 3 modelos. La serie proyectada tiene un comportamiento bastante similar a la serie real, por lo que da cuenta de la potencia de este tipo de algoritmos al proyectar variables financieras.

Finalmente, en la Tabla 1 se presenta un resumen del rendimiento en el *validation set* según la métrica propuesta. Como es notorio en el análsis gráfico, el algoritmo que presenta el mejor rendimiento es el de la red neuronal.

VI. CONCLUSIONES

En este documento se presentó un enfoque diferente para la proyección del precio del barril de petróleo WTI. Como se mencionó, la proyección de esta variable puede ser de vital importancia para la correcta planificación de un estado o cualquier agente del sector privado.

Se encontró que algoritmos de deeplearning como LSTM pueden presentar resultados muy precisos para el forescast a comparación de metodologías estándar como los modelos ARIMA. Finalmente, este artículo incentiva a planificadores de entes públicos y privado a la utilización de herramiente de machinelearning para realizar proyecciones más precisas con el objetivo de hacer eficiente la planificación presupuestaria.

REFERENCES