

SCAN 2 — Quiz #10 — 10'

November 30, 2017

Name: MELLOUK Chounts

Exercise 1. Let $u: \mathbb{R}^2 \to \mathbb{R}$ and $v: \mathbb{R} \to \mathbb{R}$ be functions of class C^2 and define the function f as

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto u(2x+y,v(x)).$$

Compute, for $(x, y) \in \mathbb{R}^2$ the following partial derivatives:

$$\partial_{1}f(x,y) = 2 \partial_{1} \upsilon (2n+y,\upsilon(n)) + \upsilon'(n) \partial_{2} \upsilon (2n+y,\upsilon(n))$$

$$\partial_{1,1}^{2}f(x,y) = 4 \partial_{1,1}^{2} \upsilon (2n+y,\upsilon(n)) + 2 \upsilon'(n) \partial_{2,1}^{2} \upsilon (2n+y,\upsilon(n)) + \upsilon'(n) \partial_{2} \upsilon (2n+y,\upsilon(n))$$

$$+ \upsilon'(n) (2 \partial_{1,2}^{2} \upsilon (2n+y,\upsilon(n)) + \upsilon'(n) \partial_{2,2}^{2} \upsilon (2n+y,\upsilon(n))$$

Exercise 2. Let $n \in \mathbb{N}^*$, $k \in \mathbb{N}^* \cup \{\infty\}$ and let U and V be two open subsets of \mathbb{R}^n . Let $\psi : U \to V$. Recall the definition of

" ψ is a C^k -diffeomorphism."

Exercise 3. Let $n \in \mathbb{N}^*$, let U and V be two open subsets of \mathbb{R}^n and let $\varphi : U \to V$ be a C^1 -diffeomorphism. Let $y_0 \in V$. Express the Jacobian matrix of φ^{-1} at y_0 in terms of the Jacobian matrix of φ at a well-chosen point.

$$J_{y_0}(\varphi^{-1}) = \left(\int_{\mathbb{C}(y_0)} \mathbf{1} \right)^{-1}$$

Exercise 4. Recall the Global Inverse Function Theorem.

Let U and V be two open subsets of \mathbb{R}^n ; let $f: U \rightarrow V$ if f is a bijection such that it is of class C^k on U (K), and for all $n \in U$ D_n f is invertible, then f is a C^k diffeomorphism.

4

4

4