

MITx: 6.008.1x Computational Probability and Inference

Heli

■ Bookmarks

- **▶** Introduction
- ▼ Part 1: Probability and Inference

Week 1: Introduction to Probability

due Sep 22, 2016 02:30 IST

Week 1: Probability Spaces and Events

due Sep 22, 2016 02:30 IST

Week 1: Random Variables
due Sep 22, 2016 02:30 IST

Week 2: Jointly Distributed
Random Variables

due Sep 29, 2016 02:30 IST

Week 2: Conditioning on Events

due Sep 29, 2016 02:30 IST

 Part 1: Probability and Inference > Week 2: Jointly Distributed Random Variables > Exercise: Marginalization

Exercise: Marginalization

☐ Bookmark this page

Exercise: Marginalization

5 points possible (graded)

Consider the following two joint probability tables.

Y 0 0 1/2 0 1/4 1/4 sunnv sunnv 1/12 1/12 W rainy 1/6 X rainy 1/3 1/6 1/6 0 snowy snowy

• Express the probability table for random variable X as a Python dictionary (the keys should be the Python strings 'sunny', 'rainy', and 'snowy'). (Your answer should be the Python dictionary itself, and not the dictionary assigned to a variable, so please do not include, for instance, "prob_table =" before specifying your answer. You can use fractions. If you use decimals instead, please be accurate and use at least 5 decimal places.)

Answer: {'sunny': 1/2, 'rainy': 1/6, 'snowy': 1/3}

Week 3: Inference with Bayes' Theorem for Randor Variables due Oct 6, 2016 02:30 IST	 Express the probability table for random variable Y as a Python dictionary (the keys should be the Python integers @ and 1). (Your answer should be the Python dictionary itself, and not the dictionary assigned to a variable, so please do not include, for instance, "prob_table =" before specifying your answer. You can use fractions. If you use decimals instead, please be accurate and use at least 5
Week 3: Independence	decimal places.)
Structure due Oct 6, 2016 02:30 IST	Answer: {1: 1/2, 0: 1/2}
Week 3: Homework 2 due Oct 6, 2016 02:30 IST	3 Tananan (11 172)
Notation Summary Up Through Week 3	$ullet$ For two random variables U and V that take on values in the same alphabet, we say that U and V have the same distribution if $p_U(a)=p_V(a)$ for all a . For the above tables:
Weeks 3 and 4: Mini-project on Movie Recommendation due Oct 21, 2016 02:30 IST	LIO WE AND A DAVE THE SAME DISTRIBUTION?
Week 4: Decisions and Expectations due Oct 13, 2016 02:30 IST	O Yes
	No No
Week 4: Measuring Randomness due Oct 13, 2016 02:30 IST	
Week 4: Towards Infinity in Modeling Uncertainty due Oct 13, 2016 02:30 IST	Do $m{I}$ and $m{Y}$ have the same distribution?
Week 4: Homework 3 due Oct 13, 2016 02:30 IST	Yes
	O No
Part 2: Inference in Graphical Models	

- Part 3: LearningProbabilistic Models
- ▶ Final Project

• For a pair of random variables (S,T), and another pair (U,V), we say that the pair (S,T) and the pair (U,V) have the same joint distribution if $p_{S,T}(a,b)=p_{U,V}(a,b)$ for all a,b.

True or false: Consider two random variables (S,T) and (U,V), where S and U have the same distribution, and T and V have the same distribution. Then (S,T) and (U,V) have the same joint distribution.

_	
	True
	HUC

False

Solution:

• Express the probability table for random variable X as a Python dictionary (the keys should be the Python strings 'sunny', 'rainy', and 'snowy').

Solution: To get the probability table p_X , we sum across the columns in the table shown for $p_{X,Y}$:

$$\mathbb{P}(ext{sunny}) = 1/4 + 1/4 = 1/2, \ \mathbb{P}(ext{rainy}) = 1/12 + 1/12 = 1/6, \ \mathbb{P}(ext{snowy}) = 1/6 + 1/6 = 1/3.$$

As a Python dictionary: {'sunny': 1/2, 'rainy': 1/6, 'snowy': 1/3}"

• Express the probability table for random variable Y as a Python dictionary (the keys should be the Python integers 0 and 1).

Solution: To get the probability table p_Y , we sum across the rows in the table shown for $p_{X,Y}$:

$$\mathbb{P}(1) = 1/4 + 1/12 + 1/6 = 1/2,$$

 $\mathbb{P}(0) = 1/4 + 1/12 + 1/6 = 1/2.$

As a Python dictionary: **{1: 1/2, 0: 1/2}**

• For two random variables U and V that take on values in the same alphabet, we say that U and V have the same distribution if $p_U(a)=p_V(a)$ for all a. For the above tables:

Do W and X have the same distribution?

Solution: To get the probability table p_W , we sum across the columns in the table shown for $p_{W,I}$:

$$\mathbb{P}(ext{sunny}) = 1/2 + 0 = 1/2, \ \mathbb{P}(ext{rainy}) = 0 + 1/6 = 1/6, \ \mathbb{P}(ext{snowy}) = 0 + 1/3 = 1/3.$$

Yes, this is the same distribution as p_X .

Do \boldsymbol{I} and \boldsymbol{Y} have the same distribution?

Solution: To get the probability table p_I , we sum across the rows in the table shown for $p_{W,I}$:

$$\mathbb{P}(1) = 1/2 + 0 + 0 = 1/2,$$

 $\mathbb{P}(0) = 0 + 1/6 + 1/3 = 1/2.$

Yes, this is the same distribution as p_Y .

ullet For a pair of random variables (S,T), and another pair (U,V), we say that the pair (S,T) and the pair (U,V) have the same joint distribution if $p_{S,T}(a,b)=p_{U,V}(a,b)$ for all a,b.

True or false: Consider two random variables (S,T) and (U,V), where S and U have the same distribution, and T and V have the same distribution. Then (S,T) and (U,V) have the same joint distribution.

Solution:False. We just saw a counter-example! Consider when the pair (S,T) is equal to the pair (W,I) above, and when (U,V) is equal to the pair (X,Y) above. W and X have the same distribution. I and Y have the same distribution. However, the joint distribution for W and I is different from the joint distribution for X and Y, as we can see from their two tables above.

Submit

You have used 0 of 5 attempts

Discussion

Topic: Jointly Distributed Random Variables / Exercise: Marginalization

Hide Discussion

Add a Post

Question 2

discussion posted 2 months ago by nandhamarobar

Am i getting the question wrong here {'sunny': value, 'rainy':value, 'snowy': value} Kindly let me know the correct format or i should think...

This post is visible to everyone.

+ Expand discussion

formatting errors

discussion posted 2 months ago by bhaskarv2758282

I had formatting errors for the first two questions. Will this be marked correct?

This post is visible to everyone.

+ Expand discussion

format of the dictionary

discussion posted 2 months ago by ebadgen

I'm using the same format as the one in the example but I keep getting error. for example: {'sunny': {value of I: value of p('sunny', value of...

This post is visible to everyone.

+ Expand discussion

NUMPY library

discussion posted 2 months ago by yasser-5

Could anyone guys provide a link for numpy library and how to use its methods specially the ones relevant to our work.

I'm trying to understand...

This post is visible to everyone.

+ Expand discussion

1

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

