Counting and Sampling Triangles from a Graph Stream

A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu 2013, VLDB Conference

Marten Heidemeyer

Presentation for CMPT 843 Class

Outline

- Motivation
- Neighborhood Sampling
- 3 Counting Triangles
- 4 Bulk Processing
- Sampling Triangles
- 6 Experiments and Results
- Discussion

Motivation

- Triangle Counting is important in:
 - social networks
 - spam and fraud detection
 - link classification and recommendation
- Why use a streaming algorithm?
 - real-time processing of live data
 - analysis of large disk-resident graph data

The Adjacency Stream Model

 $\cdots e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_5 e_{16} e_{18} e_{19} e_6 e_{21} e_7$

 $\cdots e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_5 e_{16} e_{18} e_{19} e_6 e_{21} e_7$

The Adjacency Stream Model

 $\cdots e_{24} e_{14} e_{22} e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_5 e_{16} e_{18} e_{19}$

Neighborhood Sampling

- first sample a random edge r_1 from the edge stream
- then sample a random edge r_2 from those edges that appear after r_1 and are adjacent to r_1
- try to close r₁ and r₂ with a subsequent edge, to form a triangle t
- simple data structure: (r_1, r_2, t, c)
- sample r_1 and r_2 using reservoir sampling

The Algorithm

```
Upon receiving edge e at time step m
if coin(1/m) = "head" then
    (r_1, r_2, t, c) = (e, \emptyset, \emptyset, 0)
else
    if e is adjacent to r_1 then
        c \leftarrow c + 1
        if coin(1/c)="head" then
            (r_2, t) \leftarrow (e, \emptyset)
        else
             if e forms a triangle with r_1 and r_2 then
                 t \leftarrow \{r_1, r_2, e\}
             end if
        end if
    end if
end if
```


 $\dots e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_3 e_8 e_5 e_{14} e_{23} e_{21} e_7 \dots$

$$m = 1042$$
 estimator : $r_1 = e_{15} \ r_2 = e_{39} \ t = \emptyset \ c = 15$

 $\dots e_{13} e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_3 e_8 e_5 e_{14} e_{23} e_{21} \dots$

$$m = 1043$$

estimator : $r_1 = e_7$ $r_2 = \emptyset$ $t = \emptyset$ $c = 0$

 \dots e_9 e_{13} e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_3 e_8 e_5 e_{14} e_{23} \dots

$$m = 1044$$

estimator : $r_1 = e_7 \ r_2 = e_{23} \ t = \emptyset \ c = 1$

 $\dots e_{16} \ e_9 \ e_{13} \ e_{23} \ e_{17} \ e_4 \ e_{11} \ e_{12} \ e_1 \ e_2 \ e_3 \ e_8 \ e_5 \ e_{14} \dots$

$$m = 1045$$

estimator : $r_1 = e_7 \ r_2 = e_{23} \ t = \emptyset \ c = 1$

 $\dots e_{18} e_{16} e_9 e_{13} e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_3 e_8 e_5 \dots$

$$m = 1046$$

estimator : $r_1 = e_7 \ r_2 = e_{23} \ t = \emptyset \ c = 2$

 $\dots e_{20} e_{18} e_{16} e_9 e_{13} e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_3 e_8 \dots$

$$m = 1047$$

estimator : $r_1 = e_7$ $r_2 = e_{23}$ $t = \{e_7, e_{23}, e_8\}$ $c = 3$

Expectation value of au

- We want to find the number of triangles $\tau(G)$
- Let t and c be the values the neighborhood sampling algorithm maintains and m be the number of edges observed so far. Define:

$$ilde{ au} = egin{cases} c imes m & ext{if } t
eq \emptyset \\ 0 & ext{otherwise} \end{cases}$$

Then
$$\mathbf{E}[\tilde{\tau}] = \tau(G)$$

An (ϵ, δ) -approximation to the triangle count

- Take the average of r such estimators with
- \bullet With probability $1-\delta$ the average of the estimators is in

$$[(1-\epsilon)\tau(G),(1+\epsilon)\tau(G)]$$

An (ϵ, δ) -approximation to the triangle count

- Take the average of r such estimators with
- \bullet With probability $1-\delta$ the average of the estimators is in

$$[(1-\epsilon)\tau(G),(1+\epsilon)\tau(G)]$$

 Relation between number of estimators and error of the approximation:

$$r \geq \frac{6}{\epsilon^2} \frac{m\Delta}{\tau(G)} log(\frac{2}{\delta})$$

- Live Journal:
 - given m = 34.7M, $\Delta = 14815$, $\tau(G) = 177,820,130$
 - chose $\epsilon = 0.1, \delta = 0.05$
 - then r > 6.3M


```
\begin{array}{l} {\rm estimator1}: \ r_1 = e_{101} \ r_2 = \emptyset \ t = \emptyset \ c = 0 \\ {\rm estimator2}: \ r_1 = e_0 \ r_2 = e_{23} \ t = \emptyset \ c = 13 \\ {\rm estimator3}: \ r_1 = e_3 \ r_2 = \emptyset \ t = \emptyset \ c = 33 \\ {\rm estimator4}: \ r_1 = e_{99} \ r_2 = e_{42} \ t = \left\{e_{99}, e_{42}, e_{101}\right\} \ c = 33 \\ {\rm estimator5}: \ r_1 = e_7 \ r_2 = \emptyset \ t = \emptyset \ c = 0 \\ {\rm estimator6}: \ r_1 = e_8 \ r_2 = e_{23} \ t = \left\{e_7, e_{23}, e_8\right\} \ c = 31 \\ {\rm estimator7}: \ r_1 = e_{42} \ r_2 = \emptyset \ t = \emptyset \ c = 0 \\ {\rm estimator8}: \ r_1 = e_{17} \ r_2 = e_{42} \ t = \left\{e_{17}, e_{42}, e_{23}\right\} \ c = 92 \end{array}
```

m = 1042

 $\cdots e_{20} e_{18} e_{16} e_9 e_{13} e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_3 e_8 \cdots$

estimator1 :
$$r_1 = e_{101} \ r_2 = \emptyset \ t = \emptyset \ c = 0$$

estimator2 : $r_1 = e_9 \ r_2 = e_{23} \ t = \emptyset \ c = 13$
estimator3 : $r_1 = e_8 \ r_2 = \emptyset \ t = \emptyset \ c = 33$
estimator4 : $r_1 = e_9 \ r_2 = e_{42} \ t = \{e_{99}, e_{42}, e_{101}\} \ c = 33$
estimator5 : $r_1 = e_7 \ r_2 = \emptyset \ t = \emptyset \ c = 0$
estimator6 : $r_1 = e_8 \ r_2 = e_{23} \ t = \{e_7, e_{23}, e_8\} \ c = 31$
estimator7 : $r_1 = e_{42} \ r_2 = \emptyset \ t = \emptyset \ c = 0$
estimator8 : $r_1 = e_{17} \ r_2 = e_{42} \ t = \{e_{17}, e_{42}, e_{23}\} \ c = 92$

$$m = 1042$$

$$\tilde{\tau} = \begin{cases} c \times m & \text{if } t \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Nearly-Linear Time Triangle Counting

- so far we have a O(mr)-time implemenation
- with a small constant factor increase in space, we are able to achieve O(m+r)-time bound
- Bulk Processing Process edges in bulk. Read w edges at a time and update all estimators simultaneously.

$$\cdots e_{23} e_{17} e_4 e_{11} e_{12} e_1 e_2 e_5 e_{16} e_{18} e_{19} e_6 e_{21} e_7$$

Bulk Processing Step 1: Resample Level 1 edges

- sample new r_1 edges from the batch of size w. Keep current edge with probability $\frac{m}{w+m}$ and with remaining probability, replace it with edge uniformly chosen from B.
- for each estimator: draw random number between 1 and m + w.

Bulk Processing Step 2: Identify Level-2 candidates and sample from them

- The sample space we want to sample r_2 edges from, is those edges that are adjacent to r_1 and arrive after r_1 .
- Let $N(r_1)$ be those edges that arrive after r_1 in the stream.
- Suppose for each estimator we have the following values $(r_1 = (x, y))$:
 - $|N(r_1)| = c^- + c^+$
 - c^- : # edges in $N(r_1)$ before the badge.
 - $c^+ = a + b$: # of edges in $N(r_1)$ inside the badge.
 - a: # of edges in $N(r_1)$, sharing endpoint x with r_1 , inside badge.
 - b: # of edges in $N(r_1)$, sharing endpoint y with r_1 , inside badge.

Example: c^-, c^+, a, b

•
$$|N(r_1)| = c^- + c^+ = 6$$

•
$$c^{-} = 2$$

•
$$c^+ = a + b = 4$$

•
$$a = 2$$

•
$$b = 2$$

e₆ e₄ e₂₃ e₁ e₁₃ e₂ e₄₂ e₁₇ e₅ e₃ r₁

Example: c^-, c^+, a, b

•
$$|N(r_1)| = c^- + c^+ = 6$$

•
$$c^- = 2$$

•
$$c^+ = a + b = 4$$

•
$$a = 2$$

•
$$b = 2$$

• with probability $\frac{c^+}{c^++c^-}$ sample a r_1 adjacent edge from the badge as new r_2

Sampling new r_2 edges from the badge

• For each estimator draw random number φ between 1 and $c^- + c^+$

- if $\varphi \leq c^-$ don't sample new r_2 edge
- if $c^- \le \varphi \le c^- + a$ sample one of the edges that share endpoint x
- else sample one of the edges that share endpoint y

Sampling r_2 edges summary

- paper presents simple algorithm to get c^-, c^+, a, b which goes over the badge once
- then we go over all estimators to sample the r_2 edges
- then go over badge again to find edge that corresponds to offset in range c^- , $c^- + a$ or $c^- + a$, $c^- + a + b$

Bulk Processing Step 3: Detect edges that close the wedges

- For each estimator with r_1 and r_2 edges, check if badge contains an edge that comes after r_2 and closes r_1, r_2 to form a triangle
- Create hashtable that maps the needed edges to the estimators.
- Check if badge contains this edge and whether it comes after r_2

est.1:
$$r_1 = e_{12}, r_2 = e_4, t = \emptyset \dots$$
 $x_{,y}$
 e_{12}
 e_{2}
 e_{42}
 e_{17}
 e_{5}
 e_{42}
 e_{42}
 e_{42}
 e_{42}
 e_{43}
 e_{44}
 e_{45}
 $e_{$

Sample k uniformly chosen triangles with replacement

- so far we have an efficient algorithm to count triangles
- how do we sample triangles?
 - ullet let t and c be the values that are maintained in the estimators
 - Define unifTri(G) = $\begin{cases} t & \text{with prob.} \frac{c}{2\Delta} \\ \emptyset & \text{otherwise} \end{cases}$
 - If unifTri(G) produces a triangle, each triangle in the graph is equally likely to be produced
 - run r copies of unifTri(G), to sample k uniformly chosen triangles from the graph
 - ullet success with probability at least $1-\delta$ as long as

$$r \geq \frac{4mk\Delta ln(e/\delta)}{\tau(G)}$$

What we compare with

The space complexity of the presented method for triangle counting is

$$O(s(\epsilon,\delta)m\Delta/\tau(G))$$

- Jowhari and Ghodsi, 2005:
 - space and per-edge time: $O(s(\epsilon, \delta)m\Delta^2/\tau(G))$
- Pagh and Tsourakakis, 2012:
 - space: $O(1/\epsilon^2 \cdot m\sigma/\tau(G) \cdot log(1/\delta))$
- Kane, 2012:
 - space: $O(s(\epsilon, \delta) \cdot m^3/\tau(G)^2)$

• Syn 3-reg $n=2000, m=3000, \Delta=3, \tau=1000$

Algorithm	r = 1,000		r = 1	0,000	r = 100,000		
	MD	Time	MD	Time	MD	Time	
JG [9]	7.20	0.04	2.08	0.44	0.27	5.26	
Ours	4.28	0.004	1.52	0.01	0.93	0.07	

• Hep-Th n = 9877, m = 51971, $\Delta = 130$, $\tau = 90649$

Algorithm	r = 1,000		r = 10	0,000	r = 100,000		
	MD	Time	MD	Time	MD	Time	
JG [9]	79.33	0.71	86.86	7.17	86.66	86.02	
Ours	92.69	0.05	81.25	0.08	0.68	0.17	

Evaluation on real graphs

Dataset	r = 1 K		r = 128 K		r = 1M		I/O
	min/mean/max dev.	Time	min/mean/max dev.	Time	min/mean/max dev.	Time	
Amazon	1.60 / 6.28 / 12.45	0.41	0.11 / 0.84 / 1.52	1.06	0.08 / 0.25 / 0.40	3.72	0.26
DBLP	8.04 / 18.28 / 36.53	0.45	0.08 / 0.50 / 0.97	1.08	0.07 / 0.19 / 0.42	3.90	0.28
Youtube	12.56 / 59.45 / 79.76	1.25	9.37 / 21.46 / 38.49	2.39	1.75 / 4.42 / 10.18	5.26	0.79
LiveJournal	0.24 / 11.53 / 29.76	15.00	1.41 / 2.35 / 4.02	23.10	0.19 / 0.60 / 1.45	33.40	10.00
Orkut	4.61 / 31.93 / 58.93	52.40	2.13 / 4.69 / 12.69	75.20	1.48 / 3.55 / 5.93	103.00	33.40
Syn. ~d-regular	1.26 / 7.58 / 13.57	53.70	0.00 / 0.37 / 0.81	64.80	0.01 / 0.24 / 0.53	73.00	34.50

$$r = 1$$
K $r = 128$ K $r = 1$ M

Memory 36K 4.5M 36M

What I didn't talk about

Transitivity Coefficient

$$\mathcal{K}(G) = \frac{3\tau(G)}{\zeta(G)}$$
, where $\zeta(G)$ is number of connected triplets

• Extension to counting and sampling higher-order-cliques (4-Cliques,...)