MA5233 Computational Mathematics

Lecture 13: Multigrid

Simon Etter

2019/2020

Multigrid algorithm

- ▶ Another algorithm for solving the Poisson equation.
- ► Key selling point: requires only $\mathcal{O}(N)$ FLOP. As before, N denotes the matrix size. $N = n^2$ for 2d Poisson on $n \times n$ grid.
 - ▶ LU factorisation: $\mathcal{O}(N^{3/2})$ FLOP in 2d.
 - ▶ Fourier transform: $\mathcal{O}(N \log N)$ FLOP.
- ► Generality: somewhere between LU (solves any linear system) and fast Fourier transform (only solves very specific problem).

Outline

- ► Jacobi and Gauss-Seidel methods.
- Convergence analysis for Jacobi method.
- From Jacobi to multigrid.

Jacobi iteration for Poisson equation

Assume we have an initial guess $x^{(0)}$ for the linear system

$$(3+1)^2 \begin{pmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Solving each equation for the "diagonal" unknown yields

$$x_1^{(1)} = \frac{1}{2} \left(\frac{b_1}{(3+1)^2} + x_2^{(0)} \right),$$

$$x_2^{(1)} = \frac{1}{2} \left(\frac{b_2}{(3+1)^2} + x_1^{(0)} + x_3^{(0)} \right),$$

$$x_3^{(1)} = \frac{1}{2} \left(\frac{b_3}{(3+1)^2} + x_2^{(0)} \right).$$

The resulting $x^{(1)}$ is not the exact solution in general, but we may hope that it is a better approximation to x than $x^{(0)}$.

Idea: iterate the map $x^{(0)} \mapsto x^{(1)}$ until convergence.

See jacobi_step() in 13_multigrid.jl.

Gauss-Seidel iteration

Minor modification on Jacobi:

$$\begin{split} x_1^{(1)} &= \frac{1}{2} \left(\frac{b_1}{(3+1)^2} + x_2^{(0)} \right), \\ x_2^{(1)} &= \frac{1}{2} \left(\frac{b_2}{(3+1)^2} + x_1^{(1)} + x_3^{(0)} \right), \\ x_3^{(1)} &= \frac{1}{2} \left(\frac{b_3}{(3+1)^2} + x_2^{(1)} \right). \end{split}$$

See gauss_seidel_step() in 13_multigrid.jl

Comparison with Jacobi iteration:

- ► Good: iteration can be done *in-place*:
 - ▶ Jacobi: read from $x^{(0)}$, write to $x^{(1)}$.
 - ► Gauss-Seidel: read to and write from single vector.
- Good: convergence is faster.
- ► Bad: loss of parallelism:
 - ▶ Jacobi: every entry of $x^{(1)}$ can be computed independently.
 - ▶ Gauss-Seidel: $x_k^{(1)}$ must be computed after $x_\ell^{(1)}$ with $\ell < k$.

Discussion of Jacobi-type methods

- ▶ Good: performing a single iteration is very fast if matrix is sparse.
- Bad: many iterations are needed to reach a reasonable accuracy.

See plot_convergence() in 13_multigrid.jl.

Next steps

Goal: convergence estimate $||x^{(k)} - x|| = \mathcal{O}(f(k))$. Intermediate step: matrix formula for Jacobi iteration.

Remarks

- We will discuss only the Jacobi iteration in this lecture.
- Analysis of Gauss-Seidel is analogous but more complicated.

Jacobi iteration, general definition

Let A be an invertible matrix with nonzero diagonal D. Jacobi iteration is defined as follows.

Algorithm 1 Jacobi iteration

- 1: **for** k = 1, 2, ... **do**
- 2: $x^{(k)} = D^{-1} (b (A D) x^{(k-1)})$
- 3: end for

The next slide demonstrates that the general definition reduces to the concrete Jacobi iteration when applied to the Poisson matrix.

Example: Jacobi iteration for Poisson matrix

Consider the matrix

$$A = (3+1)^2 \begin{pmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & -1 & 2 \end{pmatrix}$$

The Jacobi iteration takes the form

$$\begin{split} x^{(1)} &= D^{-1} \left(b - (A - D) x^{(0)} \right) \\ &= \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}^{-1} \left(\frac{1}{(3+1)^2} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} - \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} x_1^{(0)} \\ x_2^{(0)} \\ x_3^{(0)} \end{pmatrix} \right) \\ &= \begin{pmatrix} \frac{1}{2} \left(\frac{b_1}{(3+1)^2} + x_2^{(0)} \right) \\ \frac{1}{2} \left(\frac{b_2}{(3+1)^2} + x_1^{(0)} + x_3^{(0)} \right) \\ \frac{1}{2} \left(\frac{b_3}{(3+1)^2} + x_2^{(0)} \right) \end{pmatrix}. \end{split}$$

This is precisely the iteration we had before.

Towards a convergence estimate for Jacobi iteration

Using the Jacobi iteration formula and b = Ax, we obtain

$$x^{(k)} - x = D^{-1} \left(b - (A - D) x^{(k-1)} \right) - x$$
$$= D^{-1} \left(Ax - Dx - (A - D) x^{(k-1)} \right)$$
$$= -D^{-1} \left(A - D \right) \left(x^{(k-1)} - x \right).$$

Applying this formula repeatedly yields

$$x^{(k)} - x = R^k (x^{(0)} - x)$$
 where $R := -D^{-1} (A - D)$.

Let us expand initial error in terms of eigenvectors u_{ℓ} of R,

$$x^{(0)} - x = \sum_{\ell=1}^{N} c_{\ell} u_{\ell}.$$

Denoting the eigenvalue associated with u_{ℓ} by λ_{ℓ} , we obtain

$$x^{(k)} - x = R^k (x^{(0)} - x) = \sum_{\ell=1}^N c_\ell R^k u_\ell = \sum_{\ell=1}^N c_\ell \lambda_\ell^k u_\ell.$$

Towards a convergence estimate for Jacobi iteration

From previous slide:

$$x^{(k)} - x = \sum_{\ell=1}^{N} c_{\ell} \lambda_{\ell}^{k} u_{\ell}.$$

Assume $||u_{\ell}||=1$ and eigenvalues are sorted such that $|\lambda_1|\leq\ldots\leq |\lambda_N|$. Then,

$$||x^{(k)} - x|| \le \sum_{\ell=1}^{N} |c_{\ell}| |\lambda_{\ell}|^k \le \left(\sum_{\ell=1}^{N} |c_{\ell}|\right) |\lambda_{N}|^k.$$

Conclusion

Jacobi iterates $x^{(k)}$ satisfy

$$||x^{(k)} - x|| \le C|\lambda_N|^k$$

where λ_N is the eigenvalue of largest absolute value of

$$R = -D^{-1}(A - D).$$

Convergence rate of Jacobi iteration for Poisson equation

Let us consider

$$A = (N+1)^2 \begin{pmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{N \times N} \quad \implies \quad D = (N+1)^2 \begin{pmatrix} 2 & & & \\ & \ddots & & \\ & & \ddots & 2 \end{pmatrix}.$$

Let us introduce the following notation:

- $\lambda_{\ell} = (N+1)^2 \left(2 2\cos\left(\pi \frac{\ell}{N+1}\right)\right)$: eigenvalues of A.
- $\hat{\lambda}_{\ell}$: eigenvalues of $R = -D^{-1}(A D)$.

Since $D \propto I$, λ_{ℓ} and $\hat{\lambda}_{\ell}$ are related by $\hat{\lambda}_{\ell} = -\frac{1}{2} \left(-\frac{\lambda_{\ell}}{(N+1)^2} - 2 \right)$.

Inserting the known values for λ_{ℓ} yields $\hat{\lambda}_{\ell} = \cos\left(\pi \frac{\ell}{N+1}\right)$.

Largest absolute value is achieved for $\ell=1$ and $\ell=\mathit{N}$ for which we have

$$\lambda_1 = -\lambda_n = \cos\left(\frac{\pi}{N+1}\right) = 1 - \frac{\pi^2}{(N+1)^2} + \mathcal{O}(N^{-4}).$$

See 13_multigrid.jl.

Summary of Jacobi convergence theory

Let λ_N be the eigenvalue of largest absolute value of $R = -D^{-1}(A - D)$.

Then, there exists a constant
$$C \neq C(k)$$
 such that $\|x^{(k)} - x\| \leq C |\lambda_N|^k$.

For Poisson matrix

$$A = \begin{pmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{N \times N},$$

we have

$$|\lambda_N| = 1 - \mathcal{O}(N^{-2}).$$

Why Jacobi iteration for Poisson equation must be slow Consider

$$A = (N+1)^2 \begin{pmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix} \in \mathbb{R}^{N \times N}, \qquad b_i := \begin{cases} (N+1)^2 & \text{if } i = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Solution x is given by $x_i = 1 - \frac{i}{N+1} \neq 0$.

Jacobi iterates $x^{(k)}$ satisfy $x_i^{(k)} = 0$ if i > k + 1.

Conclusion: $x^{(k)}$ cannot be a good approximation to x for k < n.

See speed_of_propagation() in 13_multigrid.jl.

Why Krylov subspace methods for Poisson equation must be slow

- Above argument also applies to unpreconditioned Krylov methods since similarly $(A^k b)_i = 0$ if i > k + 1.
- ▶ A good preconditioner must introduce non-locality, i.e. P^{-1} should be a dense matrix. (ILU satisfies this requirement.)

A closer look at Jacobi convergence theory

Recall: every Jacobi iteration multiplies error by R,

$$x^{(k)} - x = R^k (x^{(0)} - x).$$

Eigenvalues of R for Poisson matrix: $\hat{\lambda}_{\ell} = \cos\left(\pi \frac{\ell}{N+1}\right)$

Only error components associated with $\ell \approx 1$ and $\ell \approx N$ converge slowly. Error components associated with $\ell \approx \frac{N}{2}$ converge very fast.

Let us take a closer look at the eigenfunctions for $\ell \approx 1$.

A closer look at Jacobi convergence theory

Eigenvectors of R are given by $(u_\ell)_i = \sin(\pi \frac{\ell i}{n+1})$.

Observations:

- \blacktriangleright ℓ indicates the *frequency* (number of oscillations) of u_{ℓ} .
- ▶ u_ℓ with small ℓ are *smooth*: only few grid points are necessary to capture the rough shape of the curve.

The multigrid idea

- Use Jacobi to reduce high-frequency errors.
 We have seen that Jacobi is good at reducing intermediate-frequency errors.
 We will see shortly how to use Jacobi to reduce high-frequency errors.
- Solve for low-frequency errors on coarser grid ("coarse grid correction").This switching between grids is why the method is called multigrid.

Benefits of switching to coarser grid

- Obvious: problem becomes smaller and hence more manageable.
- Less obvious: switching between grids allows us to reuse Jacobi smoothing on coarser levels.

Topics for the following slides

- ► How to use Jacobi to reduce high-frequency errors?
- How to perform coarse grid correction?

Jacobi smoothing for high-frequency errors

Observation in plot on slide 13:

High-frequency errors oscillate: $Ru_{\ell} \approx (-1) u_{\ell}$ for $\ell \approx N$.

Consequences:

▶ If we replace Jacobi iteration $x^{(k)} = D^{-1} (b - (A - D) x^{(k-1)})$ with

$$x^{(k)} = (1 - \theta) x^{(k-1)} + \theta D^{-1} (b - (A - D) x^{(k-1)})$$

for some $\theta \in (0,1]$, then high-frequency errors approximately cancel.

▶ More precisely, the error recursion formula becomes

$$x^{(k)} - x = \underbrace{\left((1 - \theta) I - \theta D^{-1} (A - D) \right)}_{R_{\theta}} (x^{(k-1)} - x),$$

and the eigenvalues of R_{θ} are

$$\hat{\lambda}_{\ell}^{(\theta)} = (1-\theta) + \theta \, \hat{\lambda}_{\ell} = (1-\theta) + \theta \, \cos\big(\pi \tfrac{\ell}{N+1}\big).$$

Jacobi smoothing for high-frequency errors (continued)

▶ For $\theta = \frac{2}{3}$, all error components for $\ell \geq \frac{N}{2}$ are multiplied by $\frac{1}{3}$ in every Jacobi iteration.

Jacobi smoothing for high-frequency errors (conclusion)

Relaxed Jacobi iteration

$$x^{(k)} = \frac{1}{3} x^{(k-1)} + \frac{2}{3} D^{-1} (b - (A - D) x^{(k-1)})$$

efficiently reduces high-frequency error.

Method is called *relaxed* because it takes only $\frac{2}{3}$ of the step proposed by Jacobi.

After a few steps of relaxed Jacobi, we obtain $\tilde{x}^{(0)}$ such that

$$\tilde{x}^{(0)} - x = \underbrace{\sum_{\ell=1}^{N/2} c_{\ell} \, u_{\ell}}_{A} + \underbrace{\sum_{\ell=N/2+1}^{N} c_{\ell} \, u_{\ell}}_{B}$$

where B is small and A is smooth.

Next topic: coarse grid correction for eliminating the smooth error A.

Coarse grid correction

Assume N = 2N' + 1.

- 1. Compute residual $r := b A\tilde{x}^{(0)}$.
- 2. Approximate residual on coarser grid:

$$r' \in \mathbb{R}^{N'}, \qquad r'_i = \frac{r_{2i-1}}{4} + \frac{r_{2i}}{2} + \frac{r_{2i+1}}{4}.$$

3. Solve on coarse grid: $\Delta x' := A'^{-1}r'$.

Coarse grid correction (continued)

4. Interpolate coarse grid correction $\Delta x'$ to fine grid:

$$\Delta x \in \mathbb{R}^N, \qquad \Delta x_{2i} := \Delta x_i', \qquad \Delta x_{2i+1} := \frac{\Delta x_i' + \Delta x_{i+1}'}{2}$$

5. Update $\tilde{x}^{(1)} := \tilde{x}^{(0)} + \Delta x$.

See twogrid_step() in 13_multigrid.jl.

Idea of coarse grid correction

Smoothness of $\tilde{x}^{(0)}-x$ implies smoothness of $r=-A(\tilde{x}^{(0)}-x)$. This smoothness ensures that coarse problem is "close" to fine problem. Hence, $\Delta x \approx A^{-1} \, r = x - \tilde{x}$ and $\tilde{x} + \Delta x \approx x$.

Solving the coarse grid problem

Step 3 of coarse grid correction: $\Delta x' = A'^{-1} r'$.

How to solve this linear system?

Key observation

Intermediate frequencies on fine grid \rightarrow high frequencies on coarse grid.

Idea: apply smoothing \rightarrow coarsening \rightarrow smoothing \rightarrow ... recursively. See multigrid_step() in 13_multigrid.jl.

Multigrid convergence theory

The algorithm implemented in twogrid_step() is as follows:

- 1. Compute $\tilde{x}^{(0)}$ from $x^{(0)}$ using one relaxed Jacobi step.
- 2. Compute and apply coarse grid correction, $\tilde{x}^{(1)} = \tilde{x}^{(0)} + \Delta x$
- 3. Compute $x^{(1)}$ from $\tilde{x}^{(1)}$ using one relaxed Jacobi step.

The error recursion formula for relaxed Jacobi from slide 16 yields

$$\tilde{x}^{(0)} - x = R_{2/3}(x^{(0)} - x)$$
 and $x^{(1)} - x = R_{2/3}(\tilde{x}^{(1)} - x)$.

The following slides derive a similar formula for the coarse grid correction.

Multigrid convergence theory (continued)

Observations:

▶ Approximation step can be written as $r' = \frac{1}{2} P^T r$ where

$$\frac{1}{2}P^{T} = \begin{pmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & & & & & \\ & & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & & & & & \\ & & & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & & & & & \\ & & & & \ddots & \ddots & \ddots \end{pmatrix}.$$

Interpolation step can be written as $\Delta x = P \Delta x'$ where

$$P = \begin{pmatrix} \frac{1}{2} & & \\ \frac{1}{2} & \frac{1}{2} & \\ & \frac{1}{2} & \frac{1}{2} & \\ & & \frac{1}{2} & \frac{1}{2} & \\ & & & \frac{1}{2} & \ddots \end{pmatrix}.$$

Multigrid convergence theory (continued)

Coarse grid correction takes the form $\tilde{x}^{(1)} = \tilde{x}^{(0)} + \Delta x$ where

$$\Delta x = \frac{1}{2} P A'^{-1} P^T r = -\frac{1}{2} P A'^{-1} P^T A (\tilde{x}^{(0)} - x).$$

Error recursion becomes

$$\tilde{x}^{(1)} - x = \tilde{x}^{(0)} - x + \Delta x
= \left(I - \frac{1}{2} P A'^{-1} P^T A\right) (\tilde{x}^{(0)} - x).$$

Inserting the relaxed Jacobi error recursion yields

$$x^{(1)} - x = R_{2/3} \left(I - \frac{1}{2} P A'^{-1} P^T A \right) R_{2/3} \left(x^{(0)} - x \right).$$

Multigrid convergence theory (continued)

Last formula on previous slide implies that convergence rate of twogrid_step() is given by eigenvalue of largest absolute value of

$$R_{2g} = R_{2/3} \left(I - \frac{1}{2} P A'^{-1} P^T A \right) R_{2/3}.$$

Observations:

- ▶ We already know the eigenvalues and eigenvectors of $R_{2/3}$, A and A'.
- ▶ It can be shown that with $(S_N)_{\ell k} := \sin(\pi \frac{\ell k}{N+1})$ we have

$$\left(S_{2N'+1} \, P \, S_{N'}\right)_{\ell,\ell'} \neq 0 \quad \iff \quad \ell = \ell' \text{ or } \ell = 2N'+1-\ell'.$$

▶ The nonzero entries of $S_{2N'+1} P S_{N'}$ can be computed explicitly.

Using these results, lengthy calculations will reveal that R_{2g} has only two distinct eigenvalues, namely $\frac{1}{9}$ and 0.

Disclaimer: I did not actually do these calculations, and it is possible that the above result is not 100% accurate. However, the $\frac{1}{9}$ convergence rate is confirmed numerically in 13_multigrid.jl.

Multigrid convergence theory (final remarks)

Key result from previous slide:

```
Convergence rate of multigrid is independent of grid size N!
```

This is what sets multigrid apart from Jacobi and Krylov type methods.

Further remarks:

- ► Convergence depends on dimension. Convergence is slower in 2d.
- ▶ twogrid_step() performs two relaxed Jacobi steps and hence reduces the high-frequency error by $\frac{1}{9}$. Heuristically, the result on the previous slide says that the coarse grid correction leads to the same reduction in the low-frequency errors.
- twogrid_step() is not a practical algorithm for more complicated problems because we solve the coarse grid problem explicitly. However, it is reasonable to assume and confirmed numerically that multigrid_step() performs only slightly worse.

Computational cost of multigrid

▶ Multigrid employs a stack of grids of sizes $N_{\ell} := 2^{\ell} - 1$.

- For each grid point in any grid in the multigrid stack of grids, we perform $\mathcal{O}(1)$ operations.
- ► Total number of grids points (on any level):

$$\sum_{\ell=1}^{L} (2^{\ell} - 1) = \frac{2^{L+1} - 1}{2 - 1} - L = \mathcal{O}(2^{L}) = \mathcal{O}(N_{L}).$$

Conclusion:

FLOP count of multigrid is proportional to number of grid points on finest level!

Summary of multigrid method

Each iteration requires $\mathcal{O}(N)$ FLOP and reduces error by factor ρ independent of N.

Why multigrid for Poisson equation can be fast

Recall finite speed of propagation problem for Jacobi-type and Krylov subspace methods.

The coarse grid correction step eliminates this problem for multigrid algorithms: Jacobi iteration on coarse grid propagates information much faster than Jacobi step on fine grid.

Geometric and algebraic multigrid

The algorithm presented here is known as *geometric* multigrid since it exploits the geometric interpretation of the linear system that we try to solve.

There is a generalisation called *algebraic* multigrid which tries to form the stack of grids by only looking at the sparsity pattern of A. Generally, algebraic multigrid is easier to use (you only have to provide A and no further information) but performance is worse.

References and further reading

Most of this lecture is based on Chapter 6 of the following book:

J. W. Demmel. *Applied Numerical Linear Algebra*. Society for Industrial and Applied Mathematics (1997), doi:10.1137/1.9781611971446