Hálózatok II. A hálózati réteg funkciói, szervezése

2007/2008. tanév, I. félév

Dr. Kovács Szilveszter

E-mail: szkovacs@iit.uni-miskolc.hu

Miskolci Egyetem

Informatikai Intézet 106. sz. szoba

Tel: (46) 565-111 / 21-06 mellék

A hálózati réteg funkciói

- A hálózati réteg
 - Feladata a csomagok forráscsomóponttól célcsomópontig való eljuttatása
 - felette, alatta vég-vég (end-to-end) alapú, itt az egész hálózat látszik
 - címzések, funkciók, hálózatszervezés (ÖK alapú, ÖK mentesség)
- Forgalomirányítás
- Torlódásvezérlés
- Hálózatközi együttműködés

A hálózati réteg feladata

- Csomagok <u>forráscsomóponttól</u> <u>célcsomópontig</u> való eljuttatása
 - Az adatkapcsolati réteg: csak egyetlen "vonal" (single link) két vége közötti keretmozgatást végzi, pl. hibajavítás, sorrendezés, forgalomszabályozás
 - A szállítási réteg: valódi vég-vég (end-to-end) alapú (valódi forrás-cél kapcsolat)
 - a hálózat topológiáját a csomagok célba juttatásának módját nem ismeri.
- A hálózati réteg két végpont közötti (end-to-end) átvitellel mikéntjével foglakozik

(ismernie kell a hálózatot, topológia stb.)

Szállítási réteg Hálózati réteg

Adatkapcs. réteg

Fizikai réteg

A hálózati réteg feladata

• Általánosan:

- jól meghatározott szolgáltatások a szállítási réteg felé, azaz
- a szállítási funkcionális elemtől NSAP-on át
 (Network Services Access Point) kapott és
 megcímzett (hálózati célcím, forráscím) adategységet
 (csomagot) a cím szerinti NSAP-hoz (a funkcionális
 társelemhez) (és sehová máshová) eljuttatni.

NSAP (Network Service Access Point) cím: hálózati szolgálatot azonosít

A hálózati réteg funkciói

• Forgalomirányítás

- a csomag célba juttatása.
- ismerni kell a topológiát
- terhelésmegosztás (alternatív utak)

Torlódásvezérlés

- Ne legyenek a hálózat egyes részei túlterheltek
- Hasonló a forgalomszabályozáshoz, de ez nem csak két pont (adó-vevő) közötti, hanem a hálózat egészére vonatkozik.

Hálózatközi együttműködés

 Ez az első réteg, ahol különböző hálózatok összekapcsolhatók (heterogén hálózatok kialakítása)

Hálózatközi együttműködés

- A hálózati csomópontok funkciói (forgalomirányítás, torlódásvezérlés) csak a hálózati rétegig terjednek
- Különböző adatkapcsolati rétegek (heterogén hálózat) lehetnek alattuk

Címek:

- LNA: Hálózat cím (Logical Network Address), HA: Hoszt cím (Host Address)
- VA: virtuális áramkörön cím (ha van)
- MAC: Media Access Control (üzenetszórásos közeg esetén)

A szállítási rétegnek nyújtott szolgálatok

- Lehetnek:
 - Összeköttetés alapú (virtuális áramkör)
 - Összeköttetés-mentes (datagram)
- Ezen szolgálattípusok több szinten is jelentkeznek, esetleg szintenként más-más lehet

Pl: ÖK alapú adatkapcsolati szolgálaton lehet ÖK mentes hálózati szolgálat (pl: kapcsolt vonalon ÖK mentes hálózat) – és fordítva

Szolgálattípusok

- Összeköttetés alapú szolgálat (Virtuális áramkör, Circuit Switching)
- F N N C

- Összeköttetés-mentes szolgálat
 - Üzenetkapcsolásos (Message Switching)

- Csomagkapcsolásos (Packet Switching)
 - Datagram Packet Switching

• Virtual Circuit Packet Switching

VC#2:P3, P4

VC#1:P1, P2

A hálózati réteg belső szervezése

Két különböző alhálózat-szervezési filozófia:

Összeköttetéseken – virtuális áramkörökön alapuló

Összeköttetés mentes – datagram

A virtuális áramkör szervezés kedvező, ha:

- Elsődlegesen összeköttetés alapú szolgálatot biztosít
- Ne legyen minden egyes csomagra forgalomirányítás (datagram alhálózatban nincs előre meghatározott útvonal még akkor sem, ha a szolgálat ÖK alapú)

A virtuális áramkörön alapuló alhálózat-szervezés

- A hívásfelépítés során a forrás és célállomás között virtuális áramkör (Virtual Circuit) alakul ki.
- ⇒A forgalomirányítás a hívásfelépítéskor történik!
- A kommunikáció során a csomagok ugyanazon az úton, a nyitott virtuális áramkörön (VC) haladnak (mindkét irányban).
- A kommunikáció befejeztével a virtuális áramkört fel kell szabadítani
- Az egyes csatornákon több virtuális áramkör is lehet (számuk maximált).

A virtuális áramkörön alapuló alhálózat-szervezés

Címzés:

- Csak a hívásfelépítés során van szükség a teljes forrás, célcímre
 - Ezt követően már elegendő a virtuális áramkör jelzése
 - ⇒Minden csomagban mező a virtuális áramkör jelzésére

(Az egyes csatornákon több virtuális áramkör is lehet (számuk maximált)).

A virtuális áramkörön alapuló alhálózat-szervezés

Hívásfelépítéskor:

- A csomópont kiválasztja a megfelelő irányú csatornát (útvonalat) és azon virtuális áramkört foglal le (pl. a legkisebb szabad sorszámút)
- Ha nincs szabad áramkör, másik útvonalat választ. Ha ez sincs, a hívásfelépítés sikertelen.
- Ez ismétlődik az útvonalat érintő valamennyi csomópontra
- ⇒Minden csomópontban táblázat a nyitott virtuális áramkörökről: melyik vonal melyik áramköre – melyik vonal melyik áramköréhez kapcsolódik

Példa virtuális áramkörön alapuló alhálózat-szervezésre

- Van 5 csomópont: A, B, C, D, E
- Az egyes csomópontokban csatornák jele a szomszéd neve.
- Induláskor már létezzen B-C-D között egy virtuális áramkör.
- · Egy csatornán maximum 2 VC alakítható ki.
- Feladat: A és D között két VC létrehozása

Az első VC A-ból D-be ...

A táblák a csomópontokban

A	В	C	D	E
	C0	B0 - D0	C0	
C0		A0 - D1	C1	

VC alapú hívásfelépítés: első

A másik VC A-ból D-be ...

A táblák a csomópontokban

A	В	С	D	E
	C0	B0 - D0		
C0		A0 - D1	C1	
C1		A1 - E0	E0	C0 - D0

VC alapú hívásfelépítés: második

A kommunikáció C szempontjából

- Ha C az A-tól VC#0 csomagot kap: a virtuális áramkör azonosítót VC#1-re módosítja és továbbadja D felé (a táblázata 2. sora szerint)
- Ha C az A-tól #1 jelzésű csomagot kap: a csatorna azonosítót VC#0-ra módosítja és továbbadja E felé
- Ha C a B-től #0-val kap csomagot: VC#0-val továbbítja D-nek

A csatorna lebontása: a táblabejegyzések törlése

VC alapú kommunikáció

VC alapú kommunikáció

- Lehetne más technika?
 - Pl:
 - Nincsenek táblák a csomópontokon (de a csatornacímek ismertek!)
 - Hívásfelépítéskor a forrás összegyűjti az útvonal csatornacímeit, és ezt elhelyezi minden csomag címében

pl VC#0 A-tól D-ig: A-C-D

VC#1 A-tól D-ig: A-C-E-D

 A router így minden beérkező csomagnál a címből közvetlenül tudja, hogy azt melyik csatornáján kell továbbítani (ez a forrás általi forgalomirányítás - source routing)

Datagram alapú alhálózat szervezés

Minden csomag teljes cél, forráscímet tartalmaz

Cím = állomás cím + NSAP cím (az állomás cím lehet hálózat + hoszt cím)

Az egyes csomagok egymástól függetlenül haladnak,

- ⇒minden csomagra külön-külön van forgalomirányítás
 - (mehetnek más-más úton is)

A virtuális áramkör és a datagram alapú alhálózat-szervezés összehasonlítása

	Virt. áramkör	Datagram	
Áramkör létesítés	Szükséges	Nem lehetséges (független)	
Címzés	Minden csomag csak rövid VC címet tartalmaz	Minden csomag teljes címet tartalmaz (ovehead)	
Állapotinformáció	Minden nyitott VC táblabejegyzést igényel valamennyi érintett csomópontban	Az alhálózat állapotmentes	
Forgalomirányítás	Csak áramkörfelépítéskor	Minden csomag esetén újból	
Torlódásvezérlés	Könnyű: ismert számú VC re lehet előre puffereket foglalni	Nehéz	
Csomóponti hibák hatása	A csomóponton átmenő valamennyi VC megszakad	Nincs, legfeljebb egyes csomagokra	
Összetettség	A hálózati rétegben	A szállítási rétegben	
Tipikusan alkalmas	ÖK alapú szolgálatra	ÖK mentes szogálatra	

De alkalmasak mindketten ÖK alapú és ÖK mentes szolgálat nyújtására is.

A hálózati réteg funkciói

Forgalomirányítás

- a csomag célba juttatása.
- ismerni kell a topológiát
- terhelésmegosztás (alternatív utak)

Torlódásvezérlés

- Ne legyenek a hálózat egyes részei túlterheltek
- Hasonló a forgalomszabályozáshoz, de ez nem csak két pont (adó-vevő) közötti, hanem a hálózat egészére vonatkozik.

Hálózatközi együttműködés

 Ez az első réteg, ahol különböző hálózatok összekapcsolhatók (heterogén hálózatok kialakítása)

A hálózati réteg funkciói

Forgalomirányítás

- a csomag célba juttatása.
- ismerni kell a topológiát
- terhelésmegosztás (alternatív utak)

Torlódásvezérlés

- Ne legyenek a hálózat egyes részei túlterheltek
- Hasonló a forgalomszabályozáshoz, de ez nem csak két pont (adó-vevő) közötti, hanem a hálózat egészére vonatkozik.
- Hálózatközi együttműködés
 - Ez az első réteg, ahol különböző hálózatok összekapcsolhatók (heterogén hálózatok kialakítása)

