# An Image Dataset for Benchmarking Recommender Systems with Raw Pixels

Yu Cheng<sup>1,2</sup>, Yunzhu Pan<sup>2</sup>, Jiaqi Zhang<sup>2</sup>, Yongxin Ni<sup>2</sup>, Aixin Sun<sup>3</sup>, and Fajie Yuan<sup>2</sup>

<sup>1</sup> Zhejiang University; <sup>2</sup> Westlake University

<sup>3</sup> Nanyang Technological University



#### Overview

- 1. Background and Motivation
- 2. PixelRec Dataset
- 3. Contribution
- 4. Future Works

# Background





**ID-based Recsys** 

Targeting at foundation models in Recsys

Modality-based Recsys

# Background



BUT particular important in art, short videos ...

## Background



#### **PixelNet**

- Only take raw images as input of item (remove item ID in recommender model)
- Train recommender model and image encoder under end to end manner (guarantee high accuracy)

#### Motivation

Key weaknesses of existing visual recsys dataset

Pre-extracted feature vectors



(1) Mismatch in tasks and vocabs

#### Motivation

#### Key weaknesses of existing visual recsys dataset

Pre-extracted feature vectors



Updated vision models



- (1) Mismatch in tasks and vocabs
- (2) Hindering technological advancement

#### Motivation

#### Key weaknesses of existing visual recsys dataset



85M

393.2K

#### E-commence dataset



## Not a typical visual recommendation scenario





" A black and white football "

- E-commence is not a contentdriven scenario

- Images are relatively simple and easy to describe

## Overview

1. Background and Motivation

2. PixelRec Dataset

3. Contribution

4. Future Works

## PixelRec (Overview)



- Raw images
- Diversity of visual elements
- Rich features
- Content-driven scenario

- Large scale
- Pivot role of image

# PixelRec (Details)



From September 2021 to October 2022, 13 months in total

# PixelRec (Statistics)

|              | 3 (5) (2) (7) (2) |             |             |
|--------------|-------------------|-------------|-------------|
|              | Pixel1M           | Pixel8M     | PixelRec    |
| #User        | 1,001,822         | 8,886,078   | 29,845,039  |
| #Item        | 100,541           | 407,082     | 408,374     |
| #Interaction | 19,886,579        | 158,488,652 | 195,755,320 |

#### Statistics of Pixel200K

| 7 | #User     | 200,000 | #Item     | 96,282 | #Inter.  | 3,965,656 |
|---|-----------|---------|-----------|--------|----------|-----------|
|   | #User.avg | 19.83   | #Item.avg | 41.19  | Sparsity | 99.97%    |



## Overview

1. Background and Motivation

2. PixelRec Dataset

3. Contribution

4. Future Works

## Contribution

PixelRec dataset

PixelRec benchmark

Exploratory results

Baseline algorithms & Operating pipeline

PixelRec dataset

High-resolution raw images

Effective and precise image-based recommendation

#### PixelRec dataset

High-resolution raw images

Rich features

• Short-video/ multimodal recommendation

• Short video domain

#### PixelRec dataset

High-resolution raw images

Diversity of visual elements

Pivot role of image in user decision making

 Challenging and high-quality benchmark for image recommendation tasks

Facilitate Bridging of RS and CV domains

#### PixelRec dataset

High-resolution raw images

• Large scale

Diversity of visual elements

Pivot role of image in user decision making

Pre-training resource for foundation vision recommendation models

PixelRec dataset

Content-driven scenario ------

 Developing recommender models that prioritize item contents.

PixelRec dataset

Pivot role of image in user decision making ----

Studying preference models founded solely on images

## Contribution (PixelRec benchmark)

- 9 recommender models
  - non-sequential : MF, DSSM, FM
  - sequential: GRU4Rec, NextItNet, SR-GNN, SASRec, BERT4Rec, LightSANs

- 9 image encoders
  - Transformer backbone: CLIP-ViT, Swin Transformer tiny, Swin Transformer base, BEiT
  - CNN backbone: ResNet50, CLIP-RN50, CLIP-RN50x4, CLIP-RN50x16, CLIP-RN50x64

- Exhaustive search on hyper-parameters of IDNet baselines
  - embedding size [128, 512, 1024, 2048, 4096, 8192]
  - batch size [64, 128, 512, 1024]

• • •

# Contribution (Exploratory results)

| ItemEnc | Metrics             | Non-Sequential Recommender |                | Sequential Recommender |                |                |                |                |                |                |
|---------|---------------------|----------------------------|----------------|------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
|         |                     | MF                         | FM             | DSSM                   | SRGNN          | GRU4Rec        | BERT4Rec       | NextItNet      | SASRec         | LightSANs      |
| ID      | Recall@10<br>NDCG@1 |                            | 1.357 $0.679$  | 1.401<br>0.701         | 1.597<br>0.808 | 1.833<br>0.937 | 1.972 $0.994$  | 2.187<br>1.153 | 2.500<br>1.350 | 2.578<br>1.384 |
| RN50    | Recall@10<br>NDCG@1 | 0.357<br>0.169             | 1.024<br>0.501 | 0.960<br>0.475         | 2.224<br>1.132 | 2.294<br>1.138 | 2.391<br>1.199 | 2.140<br>1.073 | 2.633<br>1.321 | 2.417<br>1.226 |
| ViT     | Recall@10<br>NDCG@1 | 0.472<br>0.229             | 1.124<br>0.543 | 1.242<br>0.617         | 2.152<br>1.065 | 2.102<br>1.031 | 2.450<br>1.230 | 2.215<br>1.106 | 2.583<br>1.292 | 2.461 $1.224$  |
| 3/0     |                     | 147 TV                     | 2 3/h          |                        |                | 472 3/n        |                |                | 7. 3/n         |                |

#### Observation:

For Non-Sequential Recommender:

PixelNet << corresponding IDNet counterparts

For Sequential Recommender:

PixelNet ≈ corresponding IDNet counterparts

## Contribution (Exploratory results)

| ItemEnc | Metrics _ | Non-Sequential Recommender |       |       | Sequential Recommender |         |          |           |        |          |
|---------|-----------|----------------------------|-------|-------|------------------------|---------|----------|-----------|--------|----------|
|         |           | MF                         | FM    | DSSM  | SRGNN                  | GRU4Rec | BERT4Rec | NextItNet | SASRec | LightSAN |
| ID      | Recall@10 | 1.013                      | 1.357 | 1.401 | 1.597                  | 1.833   | 1.972    | 2.187     | 2.500  | 2.578    |
| ID      | NDCG@10   | 0.490                      | 0.679 | 0.701 | 0.808                  | 0.937   | 0.994    | 1.153     | 1.350  | 1.384    |
| DNEO    | Recall@10 | 0.357                      | 1.024 | 0.960 | 2.224                  | 2.294   | 2.391    | 2.140     | 2.633  | 2.417    |
| RN50    | NDCG@10   | 0.169                      | 0.501 | 0.475 | 1.132                  | 1.138   | 1.199    | 1.073     | 1.321  | 1.226    |
| ViT     | Recall@10 | 0.472                      | 1.124 | 1.242 | 2.152                  | 2.102   | 2.450    | 2.215     | 2.583  | 2.461    |
|         | NDCG@10   | 0.229                      | 0.543 | 0.617 | 1.065                  | 1.031   | 1.230    | 1.106     | 1.292  | 1.224    |

#### Conclusion:

- 1. Adopting sequential recommender backbone and end2end training strategy, PixelNet perform satisfactorily in regular recommendation setting
- 2. The performance of PixelNet may be significantly influenced by the specific recommendation backbone network and training approach used

## Contribution (Exploratory results)



Figure 4: Benchmark image encoders on Pixel200K. The dashed yellow line is the accuracy of IDNet. The green bar chart is the number of trainable parameters. The red line chart is the recall@10.

#### Conclusion:

 Larger image encoders do lead to improved performance, but only up to a certain point

 Both recommendation architectures and image encoders play important roles in the effectiveness of PixeNet

## Contribution (Baseline algorithms & Operating pipeline)



**Abundant Baseline algorithms** 

Traditional ID-based recommender
Traditional visual recommender
Pixel-based recommender

#### Complete operating pipeline

Data processing

Model loading

Model training

Model inference

Hyper-parameter record

....

Access link: <a href="https://github.com/westlake-repl/PixelRec">https://github.com/westlake-repl/PixelRec</a>

## Overview

**Background and Motivation** 

PixelNet Dataset

Contribution

**Future Works** 

#### Future works

Reducing computation consumption of end2end training

Effective hyper-parameter tuning of PixelNet

Building foundation vision recommender models

# An Image Dataset for Benchmarking Recommender Systems with Raw Pixels

Yu Cheng<sup>1,2</sup>, Yunzhu Pan<sup>2</sup>, Jiaqi Zhang<sup>2</sup>, Yongxin Ni<sup>2</sup>, Aixin Sun<sup>3</sup>, and Fajie Yuan<sup>2</sup>

Q&A



#### Reference

- [1] Ruining He, Chen Fang, Zhaowen Wang, and Julian McAuley. 2016. Vista: A visually, socially, and temporally-aware model for artistic recommendation. In Proceedings of the 10th ACM conference on recommender systems. 309–316.
- [2] Le Wu, Lei Chen, Richang Hong, Yanjie Fu, Xing Xie, and Meng Wang. 2019. A hierarchical attention model for social contextual image recommendation. IEEE Transactions on Knowledge and Data Engineering (2019).
- [3] C. Gao, S. Li, W. Lei, J. Chen, B. Li, P. Jiang, X. He, J. Mao, and T.-S. Chua, Kuairec: A fully-observed dataset and insights for evaluating recommender systems, in Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022, pp. 540–550.
- [4] Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. 2015. Learning image and user features for recommendation in social networks. In ICCV.

#### Reference

- [5] Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, Patricio Cerda-Mardini, and Felipe del Rio. 2021. VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems. In 26th International Conference on Intelligent User Interfaces-Companion. 5–6.
- [6] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. 2015. Image-based recommendations on styles and substitutes. In SIGIR.
- [7] <a href="https://www.kaggle.com/competitions/h-and-m-personalized-fashionrecommendations">https://www.kaggle.com/competitions/h-and-m-personalized-fashionrecommendations</a>
- [8] An Yan, Zhankui He, Jiacheng Li, Tianyang Zhang, and Julian McAuley. 2022. Personalized Showcases: Generating Multi-Modal Explanations for Recommendations.