ANALISI MATEMATICA II

ESERCITAZIONE 4

Argomenti: equazioni non lineari

1. Si implementi il metodo di Newton per la determinazione delle radici reali di un'equazione non lineare f(x) = 0. Si fissino un numero massimo di iterazioni nmax ed una tolleranza relativa toll per definire i seguenti criteri d'arresto: n < nmax e $|x_{n+1} - x_n| < toll |x_{n+1}|$, ove x_{n+1} e x_n sono due iterate successive.

Si applichi il metodo di Newton (scegliendo nmax = 100 e toll = 1.0e - 10) all'equazione f(x) = 0 con:

- 1. $f(x) = x^2 a \cos a > 0$, per il calcolo della radice positiva di f;
- 2. $f(x) = x^3 x 1$, per il calcolo dell'unica radice reale di f;
- 3. $f(x) = (x 2^{-x})^3$, per il calcolo delle radici di f;
- 4. $f(x) = \exp(x) 2x^2$, per il calcolo della radice negativa di f.

Si osservi l'andamento dell'ordine sperimentale di convergenza e se ne dia una giustificazione per ciascuna funzione assegnata.

2. Si implementi il metodo iterativo $x_{n+1} = g(x_n)$ per la ricerca di un punto fisso della funzione g(x). Si fissino un numero massimo di iterazioni nmax ed una tolleranza relativa toll per definire i seguenti criteri d'arresto: n < nmax e $|x_{n+1} - x_n| < toll |x_{n+1}|$, ove x_{n+1} e x_n sono due iterate successive.

Si applichi il metodo di punto fisso scegliendo nmax = 100, toll = 1.0e - 10 e

- 1. $g(x) = -\sqrt{\frac{\exp(x)}{2}}$ per il calcolo della radice negativa di $f(x) = \exp(x) 2x^2$;
- 2. $g(x)=\frac{2x^3+4x^2+10}{3x^2+8x}$ per il calcolo dell'unica radice reale di $f(x)=x^3+4x^2-10$ appartenente all'intervallo [1, 2].

Si osservi l'andamento dell'ordine sperimentale di convergenza e se ne dia una giustificazione per ciascuna funzione assegnata.

- 3. Determinare la radice $\xi \approx 0.5$ dell'equazione $x + \log(x) = 0$, utilizzando le seguenti formule iterative:
 - i) $x_{n+1} = -\log(x_n);$
 - ii) $x_{n+1} = \exp(-x_n);$
 - iii) $x_{n+1} = \frac{x_n + \exp(-x_n)}{2}$

Quale di queste tre formule produce una successione convergente? Quale delle tre è da preferirsi? Costruirne una quarta migliore di quelle date.

1

Esercizi facoltativi

1. Supponiamo che si investano all'inizio di ogni anno v euro in un fondo e che alla fine dell'ennesimo anno si abbia accumulato un montante pari a M euro. Indicato con I il tasso medio di rendita del fondo, si ha

$$M = v \sum_{k=1}^{n} (1+I)^k = v \frac{1+I}{I} [(1+I)^n - 1]$$

da cui si deduce che I è la radice dell'equazione non lineare

$$f(x) = 0$$
 dove $f(x) = M - v \sum_{k=1}^{n} (1+I)^k = M - v \frac{1+I}{I} [(1+I)^n - 1].$

Supponendo che v=1000 euro e che, dopo 5 anni, M=6000 euro, calcolare con il metodo di Newton il tasso di interesse I con una tolleranza $toll=10^{-12}$.

2. L'equazione di stato di un gas, ossia l'equazione che lega il volume V occupato da un gas a una temperatura T e soggetto a una pressione p, è

$$\left[p + a\left(\frac{N}{V}\right)^2\right](V - Nb) = kNT$$

ove a e b sono dei coefficienti che dipendono dallo specifico tipo di gas, N è il numero di molecole di gas contenute nel volume V e k è la costante di Boltzmann. Per l'anidride carbonica si ha:

$$a = 0.401 \text{ Pa } m^6, \ b = 42.7 \cdot 10^{-6} \ m^3$$

Si trovi il volume occupato da 1000 molecole di anidride carbonica poste a una temperatura T = 300K e a una pressione $p = 3.5 \cdot 10^7$ Pa, sapendo che $k = 1.3806503 \cdot 10^{-23}$ Joule K^{-1} .