考試日期: 2024/12/11

學號: _____

Quiz 12

不可使用手機、計算器,禁止作弊!

1. Determinant whether the given 4 points lie in a plane in \mathbb{R}^3 . If so, find its area. If not, find its volume.

$$A(2,0,1), B(3,2,4), C(1,2,0), D(1,6,2)$$

Answer: \checkmark ABCD are coplanar(共平面), and the area is $\sqrt{336} + \sqrt{84}$.

 \nearrow ABCD are NOT coplanar(共平面), and the volume is N/A.

Solution:

Similar with 112-1 quiz 14. The volume is 0, thus they are coplanar.

The area of a triangle in \mathbb{R}^3 can be determined using the method outlined in Example 5 of Section 4-1.

The area of \overrightarrow{ABD} , using $\overrightarrow{AB} = [3-1, 2-0, 4-1] = [1, 2, 3], \overrightarrow{AD} = [1-2, 6-0, 2-1] = [-1, 6, 1]$

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ -1 & 6 & 1 \end{vmatrix} = [-16, -4, 8], \Rightarrow ||[-16, -4, 8]|| = \sqrt{336}$$

The area of \overrightarrow{ACD} , using $\overrightarrow{AC} = [1-2, 2-0, 0-1] = [-1, 2, -1], \overrightarrow{AD} = [1-2, 6-0, 2-1] = [-1, 6, 1]$

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 2 & -1 \\ -1 & 6 & 1 \end{vmatrix} = [8, 2, -4], \implies ||[8, 2, -4]|| = \sqrt{84}$$

2. Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$. Show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

Solution:

Section 4-1 problem 59. 用定義驗證