Consider the matrix,

$$A = [1 \ 1 \ 1 \ 1].$$

The objective is to find the singular value decomposition (SVD) and the pseudoinverse $V\Sigma^+U^T$.

The SVD of an $m \times n$ matrix A is $A = U \Sigma V^T$.

Here, the matrix U consists the unit eigenvectors of the matrix AA^T as columns, the matrix V consists the unit eigenvectors of the matrix Σ consists the square roots of the nonzero eigenvalues of the matrices AA^T and A^TA on its main diagonal.

Step-2

The transpose of the matrix A is,

$$A^{T} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Find the product AA^T .

$$AA^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1) + 1(1) + 1(1) + 1(1) \end{bmatrix}$$
$$= \begin{bmatrix} 1 + 1 + 1 + 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \end{bmatrix}$$

Step-3

Now find the product $A^T A$.

Now find the eigenvalues and eigenvectors of the matrix AA^T .

The characteristic equation of the matrix AA^{T} is,

$$\det(AA^{T} - \lambda I) = 0$$
$$|4 - \lambda| = 0$$
$$(4 - \lambda) = 0$$
$$\lambda = 4$$

Therefore, the eigenvalue of the matrix AA^{T} is $\lambda = 4$.

Step-5

Find the eigenvectors of the matrix AA^T corresponding to the eigenvalue $\lambda = 4$.

The eigenvector \mathbf{x} to the matrix A is the solution space of the system $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

For
$$\lambda = 4$$
, the system $(A - \lambda I)x = 0$ becomes,

$$(AA^{T} - \lambda I)[x] = 0$$
$$[4-4][x] = 0$$
$$[0][x] = 0$$

Here, x is a free variable.

So choose x = t, where t is any parameter.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = [t]$$
$$= t[1]$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 4$ is [1].

Now find the eigenvalues and eigenvectors of the matrix A^TA .

The characteristic equation of the matrix $A^{T}A$ is,

$$\det \begin{pmatrix} AA^T - \lambda I \end{pmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 1 & 1 & 1 \\ 1 & 1 - \lambda & 1 & 1 \\ 1 & 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 & 1 - \lambda \end{vmatrix} = 0$$

$$\lambda^4 - 4\lambda^3 = 0$$

$$\lambda^{3} (\lambda - 4) = 0$$

$$\lambda^{3} = 0 \text{ and } \lambda - 4 = 0$$

$$\lambda = 0, 0, 0 \text{ and } \lambda = 4$$

Thus, the eigenvalues of $A^T A$ are $\lambda_1 = 4$ and $\lambda_2 = 0$ with multiplicity 3.

Step-6

Find the eigenvectors of the matrix $A^T A$ corresponding to the eigenvalue $\lambda = 4$.

The eigenvector \mathbf{x} to the matrix A is the solution space of the system $(A^T A - \lambda I)\mathbf{x} = \mathbf{0}$.

For $\lambda = 4$, the system $(A^T A - \lambda I) \mathbf{x} = \mathbf{0}$ becomes,

$$\begin{bmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{bmatrix}_{is} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
 The reduced row echelon form of the matrix

Thus, the system
$$\begin{bmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 is equivalent to

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

From this, the following equations are obtained:

$$x_1 - x_4 = 0$$
, $x_2 - x_4 = 0$ and $x_3 - x_4 = 0$.

Step-8

Here, x_4 is a free variable.

So choose $x_4 = t$, where t is any parameter.

Then $x_1 = t, x_2 = t, x_3 = t$.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$= \begin{bmatrix} t \\ t \\ t \end{bmatrix}$$

$$= t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 4$ is $\begin{bmatrix} 1 \end{bmatrix}$

For $\lambda = 0$, the system $(A - \lambda I) \mathbf{x} = \mathbf{0}$ becomes,

Step-9

From this, the following equations are obtained:

$$x_1 + x_2 + x_3 + x_4 = 0.$$

Step-10

Here, x_2, x_3, x_4 are free variables.

So choose $x_2 = s, x_3 = t, x_4 = u$, where s, t, u are any parameters.

Then $x_1 = -s - t - u$.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$= \begin{bmatrix} -s - t - u \\ s \\ t \\ u \end{bmatrix}$$

$$= s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Hence, the eigenvectors corresponding to the eigenvalue $\lambda = 0$ is $\begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$

Step-11

Find the unit vectors corresponding to the eigenvectors of the matrix $A^{T}A$.

The unit eigenvectors are,

$$V_{1} = \frac{1}{\sqrt{1^{2} + 1^{2} + 1^{2} + 1^{2}}} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$= \frac{1}{\sqrt{4}} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2\\1/2\\1/2\\1/2 \end{bmatrix}$$

Similarly, the remaining unit eigenvectors are obtained as,

$$\mathbf{v}_{2} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_{3} = \begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \mathbf{v}_{4} = \begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 0 \\ 1/\sqrt{2} \end{bmatrix}.$$

The matrix U can be written as,

$$U = [1].$$

The matrix V can be written as,

$$V = \begin{bmatrix} 1/2 & -1/\sqrt{2} & -1/\sqrt{2} & -1/\sqrt{2} \\ 1/2 & 1/\sqrt{2} & 0 & 0 \\ 1/2 & 0 & 1/\sqrt{2} & 0 \\ 1/2 & 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

$$V^{T} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \end{bmatrix}.$$

Ther

And the matrix Σ can be written as,

$$\Sigma = \begin{bmatrix} \sqrt{4} & 0 & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix}$$

Step-12

The SVD of the matrix A is,

$$A = U\Sigma V^T$$

$$= \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

Hence, the singular value decomposition of the matrix A is

$$A = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

Step-13

Now find the pseudoinverse of the matrix A.

The pseudoinverse of the matrix A is $A^+ = V\Sigma^+U^T$.

The transpose of the matrix U is $U^T = [1]$.

The matrix Σ^+ can be written as,

$$\Sigma^+ = \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Thus, the pseudoinverse of the matrix A is,

$$A^+ = V \Sigma^+ U^T$$

$$= \begin{bmatrix} 1/2 & -1/\sqrt{2} & -1/\sqrt{2} & -1/\sqrt{2} \\ 1/2 & 1/\sqrt{2} & 0 & 0 \\ 1/2 & 0 & 1/\sqrt{2} & 0 \\ 1/2 & 0 & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 0 \end{bmatrix} [1]$$

$$= \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

Hence, the pseudoinverse of the matrix A is

Step-14

Consider the matrix,

$$B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

The objective is to find the singular value decomposition (SVD) and the pseudoinverse of the matrix B.

The SVD of an $m \times n$ matrix B is $B = U_1 \Sigma_1 V_1^T$.

Here, the matrix U_1 consists the unit eigenvectors of the matrix BB^T as columns, the matrix V_1 consists the unit eigenvectors of the matrix B^TB and the matrix B^TB and the matrix B^TB and B^TB on its main diagonal.

Step-15

The transpose of the matrix B is,

$$B^T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Find the product BB^T .

$$BB^{T} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0(0)+1(1)+0(0) & 0(1)+1(0)+0(0) \\ 1(0)+0(1)+0(0) & 1(1)+0(0)+0(0) \end{bmatrix}$$
$$= \begin{bmatrix} 0+1+0 & 0+0+0 \\ 0+0+0 & 1+0+0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Step-16

Now find the product B^TB .

$$B^{T}B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0(0)+1(1) & 0(1)+1(0) & 0(0)+1(0) \\ 1(0)+0(1) & 1(1)+0(0) & 1(0)+0(0) \\ 0(0)+0(1) & 0(1)+0(0) & 0(0)+0(0) \end{bmatrix}$$

$$= \begin{bmatrix} 0+1 & 0+0 & 0+0 \\ 0+0 & 1+0 & 0+0 \\ 0+0 & 0+0 & 0+0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Step-17

Now find the eigenvalues and eigenvectors of the matrix BB^{T} .

The characteristic equation of the matrix BB^{T} is,

$$\det \begin{pmatrix} BB^T - \lambda I \end{pmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)^2 = 0$$

$$1 - \lambda = 0$$

$$\lambda = 1$$

Therefore, the eigenvalue of the matrix BB^{T} is $\lambda = 1$.

Step-18

Find the eigenvectors of the matrix BB^T corresponding to the eigenvalue $\lambda = 1$.

The eigenvector \mathbf{x} to the matrix A is the solution space of the system $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

For
$$\lambda = 1$$
, the system $(BB^T - \lambda I)\mathbf{x} = \mathbf{0}$ becomes,

$$(BB^{T} - 1I)\mathbf{x} = 0$$

$$\begin{bmatrix} 1-1 & 0 \\ 0 & 1-1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Step-19

Here, x_1 and x_2 are free variables.

So choose $x_1 = s$ and $x_2 = t$, where s, t are any parameters.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} s \\ t \end{bmatrix}$$

$$= s \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Hence, the eigenvectors corresponding to the eigenvalue $\lambda = 1$ are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Therefore, the unit eigenvectors of the matrix BB^{T} are,

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

$$U_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$
 Thus, the matrix

Step-20

Now find the eigenvalues and eigenvectors of the matrix B^TB .

The characteristic equation of the matrix B^TB is,

$$\det \begin{pmatrix} B^T B - \lambda I \end{pmatrix} = 0$$

$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 0 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)(1 - \lambda)(-\lambda) = 0$$

$$(1 - \lambda)^2 = 0 \text{ or } \lambda = 0$$

$$\lambda = 1 \text{ or } \lambda = 0$$

Therefore, the eigenvalue of the matrix $B^T B$ is $\lambda_1 = 0$ and $\lambda_2 = 1$.

Step-21

Find the eigenvectors of the matrix B^TB corresponding to the eigenvalues

$$\lambda_1 = 0$$
 and $\lambda_2 = 1$.

The eigenvector \mathbf{x} to the matrix A is the solution space of the system $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

For
$$\lambda = 0$$
, the system $(B^T B - \lambda I) \mathbf{x} = \mathbf{0}$ becomes,

$$(BB^{T} - 0I)\mathbf{x} = 0$$

$$\begin{bmatrix} 1 - 0 & 0 & 0 \\ 0 & 1 - 0 & 0 \\ 0 & 0 & 0 - 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = 0$$

From this the following equations are obtained:

$$x_1=0\ , x_2=0$$

Here, x_3 is a free variable.

So choose $x_3 = t$, where t is any parameter.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \\ t \end{bmatrix}$$

$$= t \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 0_{is} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Step-23

For $\lambda = 1$, the system $(B^T B - \lambda I) \mathbf{x} = \mathbf{0}$ becomes,

$$(BB^{T} - 1I) \mathbf{x} = 0$$

$$\begin{bmatrix} 1 - 1 & 0 & 0 \\ 0 & 1 - 1 & 0 \\ 0 & 0 & 0 - 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = 0$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = 0$$

From this the following equations are obtained:

 $x_3 = 0$

Here, x_1 and x_2 are free variables.

So choose $x_1 = s$ and $x_2 = t$, where s, t are any parameters.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} s \\ t \\ 0 \end{bmatrix}$$

$$= s \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Step-25

Hence, the eigenvectors corresponding to the eigenvalue $\lambda = 1_{are} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

Therefore, the unit eigenvectors of the matrix $B^T B$ are,

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

$$V_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Thus, the matrix

The transpose of the matrix V_1 is,

$$V_1^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Step-26

The singular values of the matrix B are the square roots of the nonzero eigenvalues.

Thus,

$$\sigma_1 = \sqrt{1}$$

$$= 1$$

$$\sigma_2 = \sqrt{1}$$

=1

Now write the matrix Σ_1 .

$$\Sigma_1 = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Substitute the known matrices in $B = U_1 \Sigma_1 V_1^T$.

$$B = U_1 \Sigma_1 V_1^T$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Hence, the SVD of the matrix B is

Step-27

Now find the pseudoinverse of the matrix B.

The pseudoinverse of the matrix B is $B^+ = V_1 \Sigma_1^+ U_1^T$.

The transpose of the matrix U_1 is $\begin{bmatrix} U_1^T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

The matrix Σ^+ can be written as,

$$\Sigma^+ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Thus, the pseudoinverse of the matrix B is,

$$B^{+} = V_{1} \Sigma_{1}^{+} U_{1}^{T}.$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$B^+ = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence, the pseudoinverse of the matrix B is

Step-28

Consider the matrix,

$$C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

The objective is to find the singular value decomposition (SVD) and the pseudoinverse of the matrix C.

The SVD of an $m \times n$ matrix C is $C = U_2 \Sigma_2 V_2^T$.

Here, the matrix U_2 consists the unit eigenvectors of the matrix CC^T as columns, the matrix V_2 consists the unit eigenvectors of the matrix C^TC and the matrix C^TC and the matrix C^TC and C^TC on its main diagonal.

The transpose of the matrix C is,

$$C^T = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}.$$

Find the product CC^T .

$$CC^{T} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1)+1(1) & 1(0)+1(0) \\ 0(1)+0(1) & 0(0)+0(0) \end{bmatrix}$$
$$= \begin{bmatrix} 1+1 & 0+0 \\ 0+0 & 0+0 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

Step-29

Now find the product C^TC .

$$C^{T}C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1) + 0(0) & 1(1) + 0(0) \\ 1(1) + 0(0) & 1(1) + 0(0) \end{bmatrix}$$
$$= \begin{bmatrix} 1 + 0 & 1 + 0 \\ 1 + 0 & 1 + 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Step-30

Now find the eigenvalues and eigenvectors of the matrix CC^{T} .

The characteristic equation of the matrix CC^{T} is,

$$\det \left(CC^{T} - \lambda I\right) = 0$$

$$\begin{vmatrix} 2 - \lambda & 0 \\ 0 & 0 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)(-\lambda) = 0$$

$$2 - \lambda = 0 \text{ or } \lambda = 0$$

$$\lambda = 2 \text{ or } \lambda = 0$$

Therefore, the eigenvalue of the matrix CC^{T} is $\lambda_1 = 0$ and $\lambda_2 = 2$.

Step-31

Find the eigenvectors of the matrix CC^T corresponding to the eigenvalues $\lambda_1 = 0$ and $\lambda_2 = 2$.

The eigenvector \mathbf{x} to the matrix A is the solution space of the system $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

For $\lambda = 0$, the system $(CC^T - \lambda I)\mathbf{x} = \mathbf{0}$ becomes,

$$(CC^{T} - 0I)\mathbf{x} = 0$$

$$\begin{bmatrix} 2 - 0 & 0 \\ 0 & 0 - 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

Step-32

From this, the obtained equation is $2x_1 = 0$.

Here, x_2 is a free variable and $x_1 = 0$.

So choose $x_2 = t$, where t is any parameter.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ t \end{bmatrix}$$
$$= t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 0$ is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Step-33

For $\lambda = 2$, the system $(CC^T - \lambda I)\mathbf{x} = \mathbf{0}$ becomes,

$$\left(CC^T - 1I\right)\mathbf{x} = 0$$

$$\begin{bmatrix} 2-2 & 0 \\ 0 & 0-2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$
$$\begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

From this, the obtained equation is $-2x_2 = 0$.

Here, x_1 is a free variable and $x_2 = 0$.

So choose $x_1 = t$, where t is any parameter.

Thus, the vector \mathbf{x} can be written as,

Step-34

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$=\begin{bmatrix} t \\ 0 \end{bmatrix}$$

$$=t\begin{bmatrix}1\\0\end{bmatrix}$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 2_{is} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Therefore, the unit eigenvectors of the matrix CC^{T} are,

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Thus, the matrix
$$U_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Now find the eigenvalues and eigenvectors of the matrix C^TC .

The characteristic equation of the matrix C^TC is,

$$\det \left(C^T C - \lambda I\right) = 0$$

$$\begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)^2 - 1 = 0$$

$$\lambda^2 - 2\lambda = 0$$

$$\lambda(\lambda - 2) = 0$$

$$\lambda = 0 \text{ or } \lambda - 2 = 0$$

$$\lambda = 0 \text{ or } \lambda = 2$$

Therefore, the eigenvalue of the matrix $C^T C_{is}$ $\lambda_1 = 0$ and $\lambda_2 = 2$.

Step-36

Find the eigenvectors of the matrix C^TC corresponding to the eigenvalues $\lambda_1 = 0$ and $\lambda_2 = 2$.

The eigenvector \mathbf{x} to the matrix A is the solution space of the system $(A - \lambda I)\mathbf{x} = \mathbf{0}$.

For
$$\lambda = 0$$
, the system $(C^T C - \lambda I) \mathbf{x} = \mathbf{0}$ becomes,

$$\begin{pmatrix} C^T C - 0I \end{pmatrix} \mathbf{x} = 0$$

$$\begin{bmatrix} 1 - 0 & 1 \\ 1 & 1 - 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ 0 & 0 \end{bmatrix}$$
Therefore, the systems are equivalent.

Step-37

From this, the obtained equation is $x_1 + x_2 = 0$.

Here, x_2 is a free variable.

So choose $x_2 = t$, where t is any parameter.

Then $x_1 = -t$.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} -t \\ t \end{bmatrix}$$
$$= t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 0$ is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Step-38

For $\lambda = 2$, the system $(C^T C - \lambda I)\mathbf{x} = \mathbf{0}$ becomes,

$$\begin{pmatrix} C^T C - 0I \end{pmatrix} \mathbf{x} = 0$$

$$\begin{bmatrix} 1-2 & 1 \\ 1 & 1-2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{pmatrix} \text{Reduced row echelon form of } \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \text{ is } \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

$$\text{Therefore, the systems are equivalent.}$$

From this, the obtained equation is $x_1 - x_2 = 0$.

Step-39

Here, x_2 is a free variable.

So choose $x_2 = t$, where t is any parameter.

Then $x_1 = t$.

Thus, the vector \mathbf{x} can be written as,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} t \\ t \end{bmatrix}$$
$$= t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Hence, the eigenvector corresponding to the eigenvalue $\lambda = 2$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Step-40

The unit eigenvectors of the matrix C^TC are,

$$\mathbf{v}_1 = \frac{1}{\sqrt{(-1)^2 + (1)^2}} \begin{bmatrix} -1\\1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} -1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$$

$$\mathbf{v}_2 = \frac{1}{\sqrt{(1)^2 + (1)^2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2} \end{bmatrix}$$

Step-41

The matrix V_2 can be written as,

$$V_2 = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

Thus, the transpose of the matrix V_2 is,

$$V_2^T = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

The singular values of the matrix C are the square roots of the nonzero eigenvalues.

Thus,
$$\sigma = \sqrt{2}$$
.

Now write the matrix Σ_2 .

$$\Sigma_2 = \begin{bmatrix} \sigma & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$$

Substitute the known matrices in $C = U_2 \Sigma_2 V_2^T$.

$$\begin{split} C &= U_2 \Sigma_2 V_2^T \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \end{split}$$

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Hence, the SVD of the matrix *C* is

Step-42

Now find the pseudoinverse of the matrix C.

The pseudoinverse of the matrix C is $C^+ = V_2 \Sigma_2^+ U_2^T$.

The transpose of the matrix U_2 is $U_2^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

$$\Sigma^+ = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 0 \end{bmatrix}$$

The matrix Σ^+ can be written as

Thus, the pseudoinverse of the matrix A is,

$$C^{+} = V_{2} \Sigma_{2}^{+} U_{2}^{T}.$$

$$= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$C^+ = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & 0 \end{bmatrix}.$$

Hence, the pseudoinverse of the matrix C is