Measuring GNSS Satellite Transmit Power

Peter Steigenberger, Steffen Thölert, Oliver Montenbruck

Deutsches Zentrum für Luft- und Raumfahrt

- Antenna thrust is caused by transmission of GNSS navigation signals, mainly radial effect
- IGS GPS power model based on minimum received RF power from IS-GPS and empirical scaling factors
- Scaling factors too large by 1.5 dB
- No/limited data for other GNSS

$$\mathbf{a}_{\mathrm{AT}} = \frac{P}{c \cdot m} \cdot \frac{\mathbf{x}}{|\mathbf{x}|}$$

$$\Delta r_{\rm AT} = -\frac{1}{3} \left(\frac{T}{2\pi} \right)^2 |\mathbf{a}_{\rm AT}|$$

P transmit power [W]

c vacuum speed of light

m satellite mass [kg]

x position vector of the satellite

T orbital period [s]

Measurement Facility

- DLR ground station Weilheim (Germany)
- 30 m dish antenna, L-band 50 dB gain
- Operated by German Space Operations Center (GSOC) of DLR

Measurement Setup

Link Budget and EIRP Estimation

$$P_r = P_s + G_s + G_r - L_0 - L_a$$

 P_r received power [dBW]

 P_s transmitted power [dBW]

 G_s transmit antenna gain [dB]

 G_r receive antenna gain [dB]

 L_0 free space loss [dB]

 L_a atmospheric loss [dB]

Measured Effective Isotropic Radiated Power (EIRP)

Transmit Power GPS

Comparison Block IIR with Wu (2002)

Wu A. (2002) Predictions and field measurements of the GPS Block IIR L1 and L2 ground powers. ION NTM 2002, pp 931–938

Transmit Power GLONASS

GLONASS-M:

- three groups of transmit power levels for L1 and L2 frequencies
- 6 subgroups of satellites

Transmit Power Galileo

- IOVn Nominal transmit power before July 2014
- IOVr Reduced transmit power after July 2014 with status "all bands aligned"
- IOVb Reduced transmit power after July 2014 with status "temporary back-off"

Transmit Power BeiDou

• Only low elevation observations for IGSO satellites

Impact of Antenna Thrust on Precise Orbit Determination

SLR Validation

- October 2012 March 2013 for GPS
- December 2016 May 2017 for other GNSS
- Station coordinates fixed to SI RF2014
- Residuals between orbit derived from GNSS measurements and range observed by SLR
- SLR biases typically in the range of -2 to +3 cm
- Deficiencies in solar radiation pressure modeling have impact on SLR bias (e.g., 10 cm for GIOVE-B)

Summary and Outlook

- Modeling of antenna thrust requires knowledge of GNSS satellite transmit power
- Transmit power **measurements with 30 m dish** antenna:
 - Generally 20 280 W depending on satellite block
 - Changes with time: Galileo IOV, one GLONASS-M
 - Six different transmit power levels on L1 and L2 frequencies for GLONASS-M
 - GPS transmit power in general smaller than the current IGS model
- Impact on orbit determination 1 27 mm depending on transmit power, mass, and orbit height

- Uncertain satellite mass for
 - BeiDou
 - QZSS
- Uncertain GPS IIF transmit antenna gain pattern
- Lack of publicly available transmit antenna gain pattern for
 - GLONASS
 - BeiDou
- Support of GNSS providers needed for historic data, mass, gain pattern
- Regular monitoring of GNSS transmit power necessary

Proposal for SINEX Metadata Blocks

- Proposed extension of SINEX format to document transmit power in machine-readable format
- See MGEX splinter meeting on Tuesday 4 July 2017, 15:30 17:00

