

Dipartimento di Fisica "E. Amaldi"

A Monte Carlo code for accreting sources

Francesco Tamborra

Giorgio Matt

Stefano Bianchi

Outline

- the project
- scientific goals
- the model
- the code
- future developments

WORK IN PROGRESS

The project

Fully relativistic (special + general) code + polarimetry

Polarization probes both

- the emission geometry
- and the emission mechanism

of processes characterized by high temperature and magnetic field.

launch scheduled in 2014

(see Fabio's talk!)

Time Projection Chamber

Gas Pixel Detector

First scientific goals

Galactic BHs & AGN:

- property of the scattering medium: geometry, density, thermal energy
- property of the compact object: spin (see Michal's talk!)

LMXRBs

nature of broad in iron lines

The model behind the MC

Optically thick, geometrically thin α -disc

Shakura & Sunyaev, 1973

Haardt & Maraschi, 1991

The code

main.pro

ShakSun.pro Planck.pro Chandra.pro Init_Direction.pro Renorm.pro Stokes.pro MFP.pro Controllers.pro MaxBoltz.pro Lorentz.pro CrossSec.pro InvComp.pro Sdriection.pro

vector oriented, image processing

The code

Input parameters:

Black Hole: Massa Mdot

Disc: Inner radius 1 Outer radius

Corona: Geometry tau (n_e)

Initial position

 $oldsymbol{\phi}_{0(d)} \in [0,2\pi]$ random

 $heta_{0(ext{d})} = \pi/2$ fixed

 $R_{0(d)} \; \varepsilon \; [R_{min}, \, R_{max}] \; \stackrel{\text{emissivity law}}{\text{(α R-1)}} \;$

Initial direction

 $\Phi_{(d)} \in [0,2\pi]$ random

 $\mu = \cos(\theta_{ ext{(d)}}) \in [0,1]$ Chandrasekhar, 1960

Initial angular distribution

limb darkening

Initial angular distribution

Binned

Initial degree of polarization

Chandrasekhar 1960

The scattering

potential point of interaction

The velocity of an hot, but thermal, electron is extracted...

...but the Maxwell-Boltzmann distribution cannot be used above 100KeV!

the proper distribution should be the Maxwell-Juttner one!

The scattering

energy, phi, theta, Stokes parameters of the photon are saved (and binned)

Previous works

Polarization

General relativity

Thomson scattering

Maxwell-Boltzmann distribution (?)

Schnittman & Krolik, 2009

Future developments

- finish it! (at the end of this summer)
- solve MB issue
- include general relativity (spin)
- include reflection from the disc

ray-tracing code

