Clustering:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
 - Group emails or search results
 - Customer shopping patterns
 - Regions of images
- Useful when don't know what you're looking for
- But: can get gibberish

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small Euclidean distance (squared)

$$dist(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||_2^2$$

 Clustering results are crucially dependent on the measure of similarity (or distance) between "points" to be clustered

Clustering algorithms

- Partition algorithms (Flat)
 - K-means
 - Mixture of Gaussian 混合高斯
 - Spectral Clustering _{谱聚类}

- Hierarchical algorithms
 - Bottom up agglomerative
 - Top down divisive

Clustering examples

Image segmentation

Goal: Break up the image into meaningful or perceptually similar regions

Clustering examples

Clustering gene expression data

Eisen et al, PNAS 1998

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

Pick K random
points as cluster
centers (means)

Shown here for K=2

Iterative Step 1Assign data points to closest cluster center

Iterative Step 2Change the cluster center to the average of the assigned points

Repeat until convergence

Properties of K-means algorithm

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - 1. Assign data points to closest cluster center
 - O(KN) time
 - 2. Change the cluster center to the average of its assigned points

O(N)

What properties should a distance measure have?

- Symmetric
 - -D(A,B)=D(B,A)
 - Otherwise, we can say A looks like B but B does not look like A
- Positivity, and self-similarity
 - D(A,B)≥0, and D(A,B)=0 iff A=B
 - Otherwise there will different objects that we cannot tell apart
- Triangle inequality
 - $-D(A,B)+D(B,C) \ge D(A,C)$
 - Otherwise one can say "A is like B, B is like C, but A is not like C at all"