

WP3: modélisation

Vincent Guigue (AgroParisTech)
Laurent Decreusefond (Telecom Paris)
Jérome Dantan (UniLaSalle)
ExxactRobotics

- Proposer une méthodologie (plus) générique
- Comparer des approches mécanistes et data + les hybrider
- Traiter les cas d'usage du projet : défi + opportunité

- Proposer une méthodologie (plus) générique
- Comparer des approches mécanistes et data + les hybrider
- Traiter les cas d'usage du projet : défi + opportunité

AgroParisTech Approches mécanistes

- I. Observations & hypothèses préliminaires
 - Identification des entrées / sorties
- 2. Formulation du problème / mise en équations
 - [OPT] Simplification
 - Physique, équations, équations différentielles
- 3. Calibration, résolution numérique
 - Exploitation des données

- + Explicable / garanties théoriques
- + Peu de données requises (calibration)
- ~Coût de la résolution numérique
- Cout de l'expertise / spécificité sur un problème
- Hypothèses / simplifications parfois trop fortes

Les questions du modélisateur:

- Que cherchez-vous à prédire?
- Y arrivez-vous actuellement?
 - A partir de quelles intuitions?
 - A partir de quelles équations?
 - A partir de quelles grandeurs? (= entrées)

Numérisation de la connaissance existante

Approches données

- Observations & hypothèses préliminaires
 - Identification des entrées / sorties
- Formulation du problème DATA [++simple & générique]
 - Nombreux paramètres / modèle peu-pas explicite
- 3. Optimisation = coller aux données observées

+ => - Pas-peu explicable / moins de garanties théoriques

+ => - Plus / beaucoup de données requises

~ => ~Coût de l'optimisation numérique [mais une seule fois]

- => + Moins d'expertise / plus générique

Approches données

Les questions du data-scientist:

- Que cherchez-vous à prédire?
- Y arrivez-vous actuellement?
 - A partir de quelles intuitions?
 - A partir de quelles équations?
 - A partir de quelles grandeurs? (= entrées)
 - Avez-vous un historique de ces données + prédictions cibles?
 - Quel est le format des données? (excel vs pdf)
 - Ces données sont-elles complètes / de qualité?

- Garder le meilleur des deux mondes
- Palier les faiblesses de certains modèles dans certaines situations

Technique I

- Bon modèle...
- Mais lent/coûteux

- Garder le meilleur des deux mondes
- Palier les faiblesses de certains modèles dans certaines situations

Technique 2

- PINNs = physics informed neural network
- Injecter de la modélisation dans le NN...
- ... Tout en restant suffisamment générique
- Neural ODE

- Garder le meilleur des deux mondes
- Palier les faiblesses de certains modèles dans certaines situations

Technique 3: Combinaison(s)

Répartition (préliminaire) des use cases

- Séries temporelles contextualisées
 - Elevage / Méthaniseur
 - => AgroParisTech
- Expertise / décision séquentielle
 - Eau
 - Fermes prototypes
 - => Telecom Paris
- Vigne / vision
 - => Exxact Robotics
- Modélisation des sols
 - => UniLaSalle

Répartition non figée, non exclusive => gestion / interlocuteur privilégié