PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-327792

(43) Date of publication of application: 19.11.2003

(51)Int.CI.

CO8L 63/00 CO8G 59/62 CO8K 3/00 CO8K 5/3465 H01L 23/29 H01L 23/31

(21)Application number : 2002-141852

(71)Applicant: KYOCERA CHEMICAL CORP

(22)Date of filing:

16.05.2002

(72)Inventor: UCHIDA TAKESHI

SADO SATOSHI

(54) SEALING RESIN COMPOSITION AND SEALED SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a sealing resin composition which shows good colorability, inhibits occurrence of a rejected article caused by electrostatic discharge failure which occurs when packaging a sealed semiconductor device having delicate wiring and can inhibit migration of wiring and generation of dendrite.

SOLUTION: The sealing resin composition essentially comprises (A) an epoxy resin, (B) a phenol resin hardener, (C) an inorganic filler and (D) a colorant which partially comprises aniline black.

LEGAL STATUS

[Date of request for examination]

14.03.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-327792 (P2003-327792A)

(43)公開日 平成15年11月19日(2003.11.19)

(51) Int.Cl. ⁷		識別記号		FΙ				デ	-7]-ド(参考)
C08L	63/00			C08L	63/00		(C	4J002
C08G	59/62			C 0 8 G	59/62				4J036
C08K	3/00			C08K	3/00				4M109
	5/3465				5/3465				
H01L	23/29			H01L	23/30		I	2	
			審查請求	水精 水龍朱	頁の数2	OL	(全 5]	頁)	最終頁に続く

(21) 出願番号 特願2002-141852(P2002-141852)

(22) 出願日 平成14年5月16日(2002.5.16)

(71)出願人 390022415

京セラケミカル株式会社

埼玉県川口市領家五丁目14番25号

(72)発明者 内田 健

埼玉県川口市領家5丁目14番25号 東芝ケ

ミカル株式会社川口工場内

(72)発明者 佐渡 智

埼玉県川口市領家 5 丁目14番25号 東芝ケ

ミカル株式会社川口工場内

(74)代理人 100077849

弁理士 須山 佐一

最終頁に続く

(54) 【発明の名称】 封止用樹脂組成物および半導体封止装置

(57)【要約】

【課題】 良好な着色性を有するとともに、微細配線を有する半導体封止装置の封止成形時に生じる静電気破壊による不良発生を抑制し、かつ配線のマイグレーションやデンドライトの発生も抑制することが可能な封止用樹脂組成物の提供。

【解決手段】 (A) エポキシ樹脂、(B) フェノール 樹脂硬化剤、(C) 無機質充填材および(D) 着色剤を 必須成分として含有する封止用樹脂組成物において、前 記(D) 着色剤の少なくとも一部をアニリンブラックと する。 1

【特許請求の範囲】

【請求項1】 (A)エポキシ樹脂、(B)フェノール 樹脂硬化剤、(C)無機質充填材および(D)着色剤を 必須成分として含有する封止用樹脂組成物であって、前 記(D) 着色剤の少なくとも一部がアニリンブラックで あることを特徴とする封止用樹脂組成物。

【請求項2】 請求項1記載の前記封止用樹脂組成物の 硬化物によって、電子部品が封止されてなることを特徴 とする半導体封止装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、微細配線を有する 半導体封止装置の信頼性向上、特に封止成形時に生じる 静電気破壊による不良発生を抑制し、かつ配線のマイグ レーションやデンドライトの発生を抑制することを目的 としたものであって、着色剤の少なくとも一部がアニリ ンブラックである封止用樹脂組成物およびその硬化物に よって電子部品が封止されてなる半導体封止装置に関す る。

[0002]

【従来の技術】半導体素子などの電子部品が封止されて なる半導体封止装置は、多機能化、高集積化および高速 化の要求と、設計技術、製造技術の進歩とにより、年々 微細化が進んでいる。しかしながら、高集積化や微細化 に伴い半導体デバイスの静電気破壊耐性は低下する傾向 にあり、半導体封止装置の製造者および使用者にとって 静電気破壊を抑制することは重要な課題となっている。

【0003】基本的な静電気対策としては、静電気の発 生を減少させ、半導体封止装置の帯電を抑制すること、 また帯電した電荷をすみやかに除電すること等が挙げら 30 れる。一方、封止樹脂側からの静電気対策としては、成 形時の静電気による帯電を減少させ、半導体封止装置の 静電気破壊を抑制すること等が挙げられる。

【0004】また、半導体封止装置の高集積化や微細化 に伴い、これを搭載する基板の微細化も進んできてお り、特にBGA(Ball Grid Array)タイプのパッケージ においては、基板配線におけるマイグレーションやデン ドライトの発生により信頼性が損なわれる場合がでてき ている。

[0005]

【発明が解決しようとする課題】本発明は上記したよう な課題を解決するためになされたものであって、微細配 線を有する半導体封止装置の信頼性向上、特に封止成形 時に生じる静電気破壊による不良発生を抑制し、配線に おけるマイグレーションやデンドライトの発生を抑制す ることが可能な封止用樹脂組成物およびそれを用いた半 導体封止装置を提供することを目的としている。

[0006]

【課題を解決するための手段】本発明の封止用樹脂組成

剤、(C)無機質充填材および(D)着色剤を必須成分 として含有する封止用樹脂組成物であって、前記(D) 着色剤の少なくとも一部がアニリンブラックであること を特徴としている。

. 2

【0007】また、本発明の半導体封止装置は、前記封 止用樹脂組成物の硬化物によって、電子部品が封止され てなることを特徴としている。

[0008]

【発明の実施の形態】以下、本発明について詳細に説明 10 する。

【0009】本発明の封止用樹脂組成物は、(A)エポ キシ樹脂、(B)フェノール樹脂硬化剤、(C)無機質 充填材および(D)着色剤を必須成分として含有する封 止用樹脂組成物において、前記(D)着色剤の少なくと も一部をアニリンブラックとしたものである。

【0010】本発明に用いられる(A)エポキシ樹脂 は、その分子中にエポキシ基を2個以上の有するエポキ シ樹脂であればよく、分子構造、分子量等は特に限定さ れるものではない。具体的には、フェノールあるいはア ルキルフェノール類とヒドロキシベンズアルデヒドとの 縮合物をエポキシ化することによって得られるエポキシ 樹脂、フェノールノボラック型エポキシ樹脂、クレゾー ルノボラック型エポキシ樹脂、ナフトールのノボラック 型エポキシ樹脂、ビスフェノールAのノボラック型エポ キシ樹脂、ビスフェノールAのグリシジルエーテル、テ トラ(ヒドロキシフェニル)アルカンのエポキシ化物、 ビスヒドロキシビフェニル系エポキシ樹脂等が挙げられ る。

【0011】上記エポキシ樹脂は、1種のみで使用して もよいし、2種以上混合して使用してもかまわない。ま た、これらの樹脂においては、半導体封止装置の信頼性 を確保するため、樹脂中に含まれる塩素の量が1000 ppm以下であることが好ましい。

【OO12】本発明に用いられる(B)フェノール樹脂 硬化剤は、(A)エポキシ樹脂のエポキシ基と反応し得 るフェノール性水酸基を有するものであれば特に制限さ れるものではなく、1種のみで使用してもよいし、2種 以上混合して使用してもよい。

【OO13】(B)フェノール樹脂硬化剤は水酸基当量 が130以上のものを用いることが好ましい。これは十 分な難燃性・低吸湿性が得られるためである。また信頼 性を確保するため、封止用樹脂組成物中に含まれるフリ ーのフェノール類の濃度を1重量%以下とすることが好 ましい。

【0014】これらフェノール樹脂の具体例としては、 ビフェノールノボラック型フェノール樹脂(明和化成 (株) MEH-7851シリーズ)、フェノールアラル キル樹脂(三井化学(株)XL、XLCシリーズ)、多 官芳香族フェノール樹脂(鹿島工業(株)FPIシリー 物は、(A)エポキシ樹脂、(B)フェノール樹脂硬化 50 ズ)、テルペンフェノール樹脂等が挙げられる。

20

【0015】これらのエポキシ樹脂とフェノール樹脂硬化剤との配合は、フェノール樹脂硬化剤のフェノール性水酸基数とエポキシ樹脂のエポキシ基数の比(フェノール性水酸基数/エポキシ基数)が0.5~1.5の範囲となるように配合することが望ましい。上記値が0.5 未満では硬化反応が充分に起こりにくくなり、一方、上記値が1.5を超えると、硬化物の特性、特に耐湿性が劣化しやすくなるためである。

【0016】また本発明においては、上記フェノール樹脂硬化剤に加えて他の硬化剤を併用してもよい。他の硬 10 化剤としては、一般に封止用エポキシ樹脂組成物の硬化剤として用いられるものであればよく、例えば酸無水物やアミン類を用いることができる。

【0017】本発明に用いられる(C)無機質充填材としては、例えば溶融シリカ、結晶性シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素、窒化ケイ素および窒化アルミニウム等の粉末、これらを球形化したビーズ、単結晶繊維等が挙げられる。これらの中でも、コストや特性の点から溶融シリカを用いるのが最適である。

【0018】封止用樹脂組成物全体に対する無機質充填材の配合割合は、シリカとして80~90重量%である。80重量%未満では成形性、耐リフロークラック性等に劣り、また90重量%を超える場合には、流動性が低下するため成形性が悪くなる。

【0019】本発明に用いられる(D)着色剤は、少なくともその一部をアニリンブラックとしたものである。 従来、封止用樹脂組成物の着色剤としては、カーボンブラックなどの無機質着色剤が使用されていたが、このような着色剤のすくなくとも一部をアニリンブラックにす 30ることで、成形時の帯電を減少させ、また配線間のマイグレーションやデンドライトの発生を抑制することができる。

【0020】アニリンブラックを添加することによる帯電、マイグレーション等の抑制機構は現在のところ明らかではないが、アニリンブラックに含まれるポリアニリンが有効に作用しているものと推測される。ポリアニリンは代表的な導電性ポリマーであり、電気的現象である成形時の帯電やマイグレーションの発生に関係していることが考えられる。

【0021】本発明に用いられるアニリンブラックは、通常着色剤として用いられているものであればいかなるものであってもよく、例えばアニリンを硫酸酸性下クロム酸カリウムで酸化することにより得られるものである。また、環境に与える影響を少なくすること等から、クロムのような重金属を含まないアニリンブラックを使用することが好ましい。このようなアニリンブラックとしては、例えばFA-3000(野間化学工業(株)製、商品名)が挙げられる。

【OO22】(D) 着色剤は、封止用樹脂組成物全体に 50 ム系あるいはシリコーン系ポリマーが挙げられる。

対して0.2~2.0重量%配合することが好ましい。本発明においては、この(D)着色剤の少なくとも一部がアニリンブラックであればよく、また着色剤全てをアニリンブラックとしてもかまわない。

【0023】アニリンブラックと併用される他の着色剤としては、カーボンブラック、コバルトブルーおよび二酸化チタン等が挙げられる。このような着色剤とアニリンブラックとを併用する場合、着色剤全体に対するアニリンブラックの配合量が、30重量%以上、さらには70重量%以上となるように配合することが好ましい。このような割合とすることで、静電気破壊の発生、並びにマイグレーションやデンドライトの発生をより有効に抑制することができる。

【0024】また、本発明の封止用樹脂組成物においては、速やかな硬化性を付与するために硬化促進剤を加えることが好ましい。硬化促進剤としては、フェノール樹脂硬化剤を用いてエポキシ樹脂を硬化する際に硬化促進剤として使用されることが知られているものであればいかなるものであってもよい。

【0025】このような硬化促進剤としては、例えばト リメチルホスフィン、トリエチルホスフィン、トリブチ ルホスフィン、トリフェニルホスフィン、トリ(pーメ チルフェニル)ホスフィン、トリ(ノニルフェニルホス フィン)、メチルジフェニルホスフィン、ジブチルフェ ニルホスフィン、トリシクロヘキシルホスフィン、1, 2ービス (ジフェニルホスフィノ) エタン、ビス (ジフ エニルホスフィノ) メタンなどの有機ホスフィン化合 物、2-メチルイミダゾール、2,4-ジメチルイミダ ゾール、2-エチルー4-メチルイミダゾール、2-フ エニルイミダゾール、2-フェニル-4-メチルイミダ ゾール、2-ヘプタデシルイミダゾールなどのイミダゾ ール化合物またはその誘導体、DBU(1,8ージアザ ビシクロ(5,4,0)ウンデセン-7)またはそのフ エノール塩などがあり、これらは1種だけで用いてもよ いし、必要に応じてこれらを組み合わせて用いてもよ V\.

【0026】これら硬化促進剤の配合割合は、それぞれの触媒活性が異なるため一概にその好適量は決められないが、樹脂成分の総量に対し0.1~5重量%の範囲で加えることが好ましい。これは0.1重量%未満では硬化性能が劣り、5重量%を超えると耐湿信頼性が劣化する傾向があるからである。

【0027】また、本発明の封止用樹脂組成物においては、その目的に反しない限度において、無機質充填材の表面処理剤、低応力化剤等を適宣添加してもよい。無機質充填材の表面処理剤としては、シランカップリング剤等、離型剤としては、天然ワックス類、合成ワックス類、値鎖脂肪酸やその金層塩、酸アミド類、エステル類およびパラフィン類等、低応力化剤としては、ゴム系あるいけシリコーン系ポリマーが挙げられる

【0028】本発明の封止用樹脂組成物を成形材料とし て調整する方法としては、例えば上記原料成分(A)~ (D) および必要に応じて硬化促進剤等を配合し、ヘン シェルミキサー等のミキサーによって十分均一に混合 し、さらに熱ロールまたはニーダ等により加熱溶融混合 処理を行った後、冷却固化させ適当な大きさに粉砕する 方法が挙げられる。

【0029】本発明の電子部品封止装置は、上記したよ うな成形材料 (封止用樹脂組成物) を用いて半導体チッ プ等の電子部品を封止することによって製造することが 10 できる。具体的には、封止の際に成形材料を加熱して硬 化させることにより、最終的にこの硬化物によって電子 部品を封止することができる。この際の加熱温度は、1 50℃以上とすることが好ましい。封止方法としては、 最も一般的には低圧トランスファ成形が挙げられるが、 コンプレッション成形、インジェクション成形、注型等 の封止方法も用いることができる。

【0030】封止の対象となる電子部品は特に制限され るものではなく、例えば集積回路、大規模集積回路、ト ランジスタ、サイリスタおよびダイオード等が挙げられ 20 る。これらの中でも特に高集積化、微細化された電子部 品の封止に本発明の封止用樹脂組成物を用いることが有 効である。例えば、BGAタイプのパッケージ等におい ては基板配線にマイグレーションやデンドライトが発生 し信頼性が損なわれることがあるが、このようなものに 対して本発明の封止用樹脂組成物を用いることにより、 マイグレーションやデンドライトの発生を有効に抑制 し、信頼性を高めることができる。

[0031]

発明はこれらの実施例により限定されるものではない。 【0032】 (実施例1) 多官能型エポキシ樹脂 EP PN-502(日本化薬製、商品名) 9. 1重量%、臭 素化エポキシ樹脂 AER-8028 (旭化成製、商品 名) 3.0重量%、多官能型フェノール樹脂 MEH-7500 (明和化成製、商品名) 4.2重量%、硬化促 進剤イミダゾール C17Z(四国化成製、商品名) 0. 2重量%、エステル系ワックス ヘキストE (商品 名) O. 4重量%、シランカップリング剤 A-187 (日本ユニカー製、商品名) 0.3重量%、アニリンブ 40 ラックFAー3000(野間化学工業(株)製、商品 名) O. 8重量%、球状シリカ(平均粒径20μm、最 大粒径 7 5 μ m) 8 2. 0 重量%を配合し、常温で混合 し、さらに90~110℃で混練してこれらを冷却粉砕 し、成形材料とした。この材料を175℃に加熱した金 型内にトランスファー注入し、硬化させて成形品を作製

した。

【0033】(実施例2)多官能型エポキシ樹脂 EP PN-502(日本化薬製、商品名) 9. 1 重量%、臭 素化エポキシ樹脂 AER-8028 (旭化成製、商品 名) 3. 0重量%、多官能型フェノール樹脂 MEH-7500 (明和化成製、商品名) 4.2 重量%、硬化促 進剤イミダゾール C17Z (四国化成製、商品名) 0. 2重量%、エステル系ワックス ヘキストE (商品 名) 0. 4重量%、シランカップリング剤 A-187 (日本ユニカー製、商品名) 0.3重量%、アニリンブ ラックFA-3000 (野間化学工業 (株) 製、商品 名) 0.6 重量%、カーボンブラック 0.2 重量%、 球状シリカ(平均粒径 2 0 μ m、最大粒径 7 5 μ m) 8 2. 0重量%を配合し、常温で混合し、さらに90~1 10℃で混練してこれらを冷却粉砕し、成形材料とし た。この材料を175℃に加熱した金型内にトランスフ ァー注入し、硬化させて成形品を作製した。

6

【0034】 (比較例1) 多官能型エポキシ樹脂 EP PN-502(日本化薬製、商品名) 9. 5重量%、臭 素化エポキシ樹脂 AER-8028 (旭化成製、商品 名) 3. 0重量%、多官能型フェノール樹脂 MEH-7500 (明和化成製、商品名) 4. 4重量%、硬化促 進剤イミダゾール C17Z (四国化成製、商品名) O. 2重量%、エステル系ワックス ヘキストE (商品 名) 0. 4 重量%、シランカップリング剤 A-187 (日本ユニカー製、商品名) 0.3重量%、カーボンブ ラック 0. 2 重量%、球状シリカ(平均粒径 2 0 μ m、 最大粒径 75 μm) 82.0重量%を配合し、常温で混 合し、さらに90~110℃で混練してこれらを冷却粉 【実施例】以下、本発明を実施例により説明するが、本 30 砕し、成形材料とした。この材料を175℃に加熱した 金型内にトランスファー注入し、硬化させて成形品を作 製した。

> 【0035】これら実施例および比較例の成形品につい て、着色性、帯電特性およびテスト基板を用いたデンド ライト発生の有無を調べた。結果を表1~3に示す。

> 【0036】なお、着色性は成形品の外観を目視するこ とにより評価した。帯電特性は成形直後の成形品の静電 電圧をSIMCO製 FMX-002にて測定した。ま た、デンドライト発生の有無は、50μmのライン/ス ペースのくし型配線を有するテスト基板上に樹脂を成形 後、この基板を85℃/85%RHの恒温恒湿下もとで 12 Vのバイアスを印加した状態で放置し、配線間にシ ョートが発生するまでの時間を測定した。

[0037]

【表1】

	実施例 l	実施例 2	比較例1	
蒼色性	問題なし	問題なし	問題なし	

7

	実施例 1	実施例 2	比較例1
带電電圧	0.2kV	0.2kV	2.1kV

[0039]

【表3】

		1201	
	実施例 1	実施例 2	比較例1
配線ショート までの時間	336 時間以上	336 時間以上	168 時間 (デンドライト発生)

【0040】表2および3に示されるように、実施例 1、2の封止用樹脂組成物は比較例1の封止用樹脂組成 10

物に比べ成形時の帯電が極めて小さく、またバイアスを 印加した恒温恒湿条件下においてもデンドライト発生に 起因する配線ショートの発生が有効に抑制されているこ とが確認された。また表1に示されるように、外観上の 着色性についても、カーボンブラックのみを使用した比 較例1と同等の着色性を有していることが認められた。 [0041]

10 【発明の効果】以上詳述したように、本発明の封止用樹脂組成物においては、従来と同等の着色性を有し、かつ微細配線を有する半導体封止装置の封止成形時に生じる静電気破壊による不良発生を抑制するとともに、配線間のマイグレーションやデンドライトの発生も抑制することが可能となる。

8

フロントページの続き

(51) Int.C1.⁷

識別記号

H01L 23/31

FI

テーマコート*(参考)

Fターム(参考) 4J002 CC042 CC062 CD041 CD051

CD061 CD071 CE002 DE116
DE136 DE146 DE236 DF016
DJ006 DJ016 DJ046 DK006
EU147 FD016 FD090 FD097

FD152 GJ00 GQ05

4J036 AA01 AC03 AD07 AD08 AF06 AF08 FA02 FA03 FA04 FA05 FA12 FA14 FB06 FB07 JA07 KA03

4M109 AA01 BA03 CA21 EA02 EB03 EB08 EB12 EC07