

Prof. Marcus Vinicius Lamar

Universidade de Brasília

Departamento de Ciência da Computação

Aula 0 Apresentação e Motivação

> E é isso que você aprende na disciplina de arquitetura de computadores

- Como os programas escritos em linguagem de alto nível (C, Java, Python etc.), são traduzidos em linguagem do processador e como o processador os executa?
- Qual é a interface entre software e hardware e como o software diz ao hardware o que fazer?
- O que determina o desempenho de um programa e como o programador pode melhorá-lo?
- Quais técnicas são usadas pelos projetistas de hardware para aumentar o desempenho e a eficiência energética?
- Quais são as razões e as consequências da troca do paradigma de processamento sequencial para o processamento paralelo?

Por que aprender esse assunto?

Você deseja entender como os modernos processadores funcionam 🙉

- Você deseja criar seu próprio processador 🤢
- Você deseja desenvolver softwares eficientes 😏
- Você precisa tomar uma decisão em relação a uma compra ou prestar consultoria 👀
- Está no currículo como disciplina obrigatória

O que é:

Organização e Arquitetura de Computadores?

Arquitetura do conjunto de instruções

Organização da máquina

Computadores:

- **Diferentes tipos**: Servidores, desktops, notebooks, tablets, smartphones.
- **Diferentes usos**: escritório, design gráfico, bancos de dados, computação científica (simulação), redes sociais, CP2077, CS, games, games,
- Diferentes fabricantes: HP, IBM, Dell, ASUS, Sun, Apple, Samsung, ...
- **Diferentes processadores:** Intel, AMD, IBM, Motorola, HP, Sun, MIPS, ARM, RISC-V, Apple (M2, IBM, Intel, ARM), ...
- Diferentes tecnologias subjacentes : SSD, HD, Placa-mãe, RAM, GPU,...

Assim: diferentes custos e diferentes desempenhos!

- Melhor maneira de aprender:
 - Concentrar em um exemplo específico, aprender como ele funciona e generalizar, exemplificando os conceitos em dispositivos modernos.

Ciência ×Tecnologia

- Servidores
- Pessoais
- Embarcados

Principais Classes de Sistemas Computacionais

Servidores

- □ Recursos compartilhados entre vários usuários
- Geralmente sistemas de software específicos
- □ Ex.: Desde simples servidores de arquivo, webservers até supercomputadores
- Alta dependabilidade (confiabilidade, segurança, disponibilidade)
 e mantenabilidade)
 geralmente alto custo.
- Pessoais

Embarcados

Frontier (8.730.112 cores AMD)

FaceBook

Principais Classes de Sistemas Computacionais

- Servidores
- Pessoais
 - □ Recursos utilizados geralmente por um único usuário
 - □ Geralmente programas de terceiros
 - □ Ex.: Desktops, notebooks, tablets, smartphones, etc.
 - □ Compromisso entre custo e desempenho para o usuário
- Embarcados

Principais Classes de Sistemas Computacionais

- Servidores
- Pessoais
- Embarcados
 - □ Recursos projetados para fins específicos
 - □ Software de difícil customização, geralmente integrado ao hardware.
 - □ Ex.: Eletroeletrônicos (TV, DVD, Conversores, eletrodomésticos,...),
 Automóveis/Barcos/Aviões, Industriais, Brinquedos, Robôs, IoT.
 - ☐ Geralmente baixo custo e baixa dependabilidade, embora alguns precisem de baixa taxas de falhas (sistemas redundantes).

Máquina de lavar

Aeronaves

Casa inteligente

Veículos autônomos

Era Pós-PC

1940 - 1970: *Criação*. Grandes computadores (ENIAC)

1970 - 2000: *Popularização*. Computadores pessoais (PCs)

2000 - hoje: Individualização. Dispositivos portáteis pessoais (celular),

embarcados (TV), internet das coisas (IoT),

computação vestível, computação em nuvem

As oito grandes ideias (do Patterson) na Arquitetura e Organização de Computadores

Projetos considerando a Lei de Moore

Uso da abstração para simplificar os projetos

Tornar o caso comum rápido

Aumentar o desempenho via paralelismo

Aumentar o desempenho via pipeline

Aumentar o desempenho via predição

Hierarquia da memória

Dependabilidade via redundância

Placa mãe para Pentium IV

NetBurst

Placa mãe para Core2

.... Optional

Placa mãe para Core i7

Nehalem Westmere

Nehalem Vestmere

Nehalem Vest

Placa mãe para Core i7 3ª geração

Ivy Bridge

Intel® Z77 Express Chipset Platform Block Diagram

Placa mãe para Core i7 9ª geração

Core

Core

Core

DDR PHY

Core

SoC – System on Chip Chipset integrado

Placa mãe para Core i9 10^a geração

Comet Lake

Dual-Channel DDR4 Interface

L3

System Agent and Core

Core

Ringbus Interconnect

L3

Gen 9.5 Integrated

Graphics

Placa mãe para Core i7 11ª geração

Z490 – mesma do 10^a geração

Rocket Lake

Processamento Heterogêneo: CPU+μCPU+GPU+DSP+ASIC+FPGA+Interfaces

Ex.: Smartphones ⇒ Arm big.LITTLE

Placa mãe para Core i9 12ª geração Intel adota modelo Híbrido

Alder Lake

