1

Assignment 11

Priya Bhatia

Abstract—This document demonstrate how to find the dimension of the subspace.

Download latex-tikz codes from

https://github.com/priya6971/ matrix_theory_EE5609/tree/master/ Assignment11 From (2.0.1),(2.0.2) and (2.0.3) we can conclude the following:

$$\epsilon_i \notin \bigcup_{j=1}^{n-1} N_{f_i} \tag{2.0.4}$$

$$\dim \bigcap_{i=1}^{i} N_{f_i} = n - i \tag{2.0.5}$$

Thus when i = n, dimension of the subspace is given by:

$$\dim \bigcap_{i=1}^{n} N_{f_i} = 0 (2.0.6)$$

1 Problem

Let F be a subfield of the complex numbers. We define n linear functionals on $F^n(n \ge 2)$ by

$$f_k(x_1, ..., x_n) = \sum_{j=1}^n (k - j)x_j, 1 \le k \le n.$$
 (1.0.1)

What is the dimension of the subspace annihilated by $f_1, f_2, ..., f_n$?

2 Solution

 N_{f_k} is the subspace annihilated by f_k . Then the dimension of N_{f_k} is given by:

$$\dim N_{f_k} = n - 1 \tag{2.0.1}$$

Now the standard basis vector ϵ_2 is in N_{f_2} but is not in N_{f_1} . Thus N_{f_1} and N_{f_2} are distinct hyperspaces. Thus, the intersection of N_{f_1} and N_{f_2} dimension is given by:

$$\dim N_{f_1} \cap N_{f_2} = n - 2 \tag{2.0.2}$$

Now the standard basis vector ϵ_3 is in N_{f_3} but is not in $N_{f_1} \cup N_{f_2}$. Thus N_{f_1}, N_{f_2} and N_{f_3} are distinct hyperspaces. Thus, the intersection of N_{f_1}, N_{f_2} and N_{f_3} dimension is given by:

$$\dim N_{f_1} \cap N_{f_2} \cap N_{f_3} = n - 3 \tag{2.0.3}$$