```
In [3]:
import warnings
warnings.filterwarnings('ignore')
In [4]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [5]:
df=pd.read csv("https://raw.githubusercontent.com/ingledarshan/AIML-B2/main/data.csv")
In [6]:
df
Out[6]:
            id diagnosis
                         radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_
   0
       842302
                      М
                                 17.99
                                               10.38
                                                              122.80
                                                                         1001.0
                                                                                           0.11840
                                                                                                              0.27760
                                                                                                                              0.
                                                                                           0.08474
   1
        842517
                       М
                                 20.57
                                               17.77
                                                              132.90
                                                                         1326.0
                                                                                                              0.07864
                                                                                                                              0.
     84300903
                       М
                                 19.69
                                               21.25
                                                              130.00
                                                                         1203.0
                                                                                           0.10960
                                                                                                              0.15990
                                                                                                                              0.
     84348301
                                 11.42
                                               20.38
                                                               77.58
                                                                          386.1
                                                                                           0.14250
                                                                                                              0.28390
                                                                                                                              0.
     84358402
                                               14 34
                                                                         1297 0
                                                                                           0.10030
                                                                                                              0.13280
                       M
                                 20 29
                                                              135 10
                                                                                                                              0
  ...
            ...
                       ...
                                    ...
                                                 ...
                                                                             ...
                                 21.56
                                               22.39
                                                                         1479.0
 564
        926424
                       М
                                                              142.00
                                                                                           0.11100
                                                                                                              0.11590
                                                                                                                              0.
 565
        926682
                       Μ
                                 20.13
                                               28.25
                                                              131.20
                                                                         1261.0
                                                                                           0.09780
                                                                                                              0.10340
                                                                                                                              0.
 566
        926954
                                 16.60
                                               28.08
                                                              108.30
                                                                          858.1
                                                                                           0.08455
                                                                                                              0.10230
                                                                                                                              0.
 567
        927241
                       Μ
                                 20.60
                                               29.33
                                                              140.10
                                                                         1265.0
                                                                                           0.11780
                                                                                                              0.27700
                                                                                                                              0.
 568
         92751
                       В
                                  7.76
                                               24.54
                                                               47.92
                                                                           181.0
                                                                                           0.05263
                                                                                                              0.04362
                                                                                                                              0.
569 rows × 33 columns
In [7]:
df.head()
Out[7]:
          id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_m
     842302
                    М
                               17.99
                                                            122.80
                                                                       1001.0
                                                                                                                              0.3
0
                                             10.38
                                                                                         0.11840
                                                                                                            0.27760
     842517
                               20.57
                                             17.77
                                                            132.90
                                                                       1326.0
                                                                                         0.08474
                                                                                                            0.07864
                                                                                                                              0.0
                    M
 2 84300903
                     M
                               19.69
                                             21.25
                                                            130.00
                                                                       1203.0
                                                                                         0.10960
                                                                                                            0.15990
                                                                                                                              0.1
 3 84348301
                                             20.38
                                                             77.58
                                                                        386.1
                                                                                                            0.28390
                     M
                               11.42
                                                                                         0.14250
                                                                                                                              0.2
                     Μ
                               20.29
                                                            135.10
                                                                        1297.0
                                                                                         0.10030
                                                                                                            0.13280
 4 84358402
                                             14.34
                                                                                                                              0.1
5 rows × 33 columns
In [8]:
df.tail()
```

Out[8]:

id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_m 0.24 **564** 926424 21.56 22.39 142.00 1479.0 0.11100 0.11590 1261.0 **565** 926682 М 20.13 28.25 131.20 0.09780 0.10340 0.14 **566** 926954 90.0 16.60 28.08 108.30 858.1 0.08455 0.10230 **567** 927241 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35 M **568** 92751 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00

5 rows × 33 columns

In [9]:

df.columns

Out[9]:

In [10]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column (total 33 Column		-Null Count	Dtype
0	id	569	non-null	int64
1	diagnosis	569	non-null	object
2	radius_mean	569	non-null	float64
3	texture_mean	569	non-null	float64
4	perimeter_mean	569	non-null	float64
5	area_mean	569	non-null	float64
6	smoothness_mean	569	non-null	float64
7	compactness_mean	569	non-null	float64
8	concavity_mean	569	non-null	float64
9	concave points_mean	569	non-null	float64
10	symmetry_mean	569	non-null	float64
11	fractal_dimension_mean	569	non-null	float64
12	radius_se	569	non-null	float64
13	texture_se	569	non-null	float64
14	perimeter_se	569	non-null	float64
15	area_se	569	non-null	float64
16	smoothness_se	569	non-null	float64
17	compactness_se	569	non-null	float64
18	concavity_se	569	non-null	float64
19	concave points_se	569	non-null	float64
20	symmetry_se	569	non-null	float64
21	fractal_dimension_se	569	non-null	float64
22	radius_worst	569	non-null	float64
23	texture_worst	569	non-null	float64
24	perimeter_worst	569	non-null	float64
25	area_worst	569	non-null	float64
26	smoothness_worst	569	non-null	float64
27	compactness_worst	569	non-null	float64
28	concavity_worst	569		float64
29	concave points_worst		non-null	float64
30	symmetry_worst	569	non-null	float64
31	fractal_dimension_worst	569	non-null	float64
20	1 20	^	7 7	C7 . C 4

```
32 Unnamed: 32
                                  U non-null
                                                    iloat64
dtypes: float64(31), int64(1), object(1)
memory usage: 144.5+ KB
In [11]:
df['Unnamed: 32']
Out[11]:
0
       NaN
       NaN
1
2
       NaN
3
       NaN
       NaN
564
       NaN
565
       NaN
566
       NaN
567
       NaN
568
Name: Unnamed: 32, Length: 569, dtype: float64
In [12]:
df=df.drop("Unnamed: 32",axis=1)
In [13]:
df.head()
Out[13]:
         id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_m
     842302
 0
                   M
                            17.99
                                         10.38
                                                      122.80
                                                                 1001.0
                                                                                 0.11840
                                                                                                  0.27760
                                                                                                                 0.3
     842517
                   Μ
                            20.57
                                         17.77
                                                      132.90
                                                                 1326.0
                                                                                 0.08474
                                                                                                  0.07864
                                                                                                                 0.0
 2 84300903
                   M
                            19.69
                                         21.25
                                                      130.00
                                                                 1203.0
                                                                                 0.10960
                                                                                                  0.15990
                                                                                                                 0.1
 3 84348301
                   Μ
                            11.42
                                         20.38
                                                       77.58
                                                                 386.1
                                                                                 0.14250
                                                                                                  0.28390
                                                                                                                 0.2
 4 84358402
                   Μ
                            20.29
                                         14.34
                                                      135.10
                                                                 1297.0
                                                                                 0.10030
                                                                                                  0.13280
                                                                                                                 0.1
5 rows × 32 columns
4
In [14]:
df.columns
Out[14]:
Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
         'area mean', 'smoothness mean', 'compactness mean', 'concavity mean',
         'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
         'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
         'fractal_dimension_se', 'radius_worst', 'texture_worst',
        'perimeter worst', 'area worst', 'smoothness worst',
        'compactness worst', 'concavity worst', 'concave points worst',
         'symmetry_worst', 'fractal_dimension_worst'],
       dtype='object')
In [15]:
df=df.drop("id",axis=1)
#df.drop('id',axis=1,inplace=True)
In [16]:
```

Out[16]:

features worst=1[21:]

```
diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
            М
                      17 99
                                    10.38
                                                  122 80
                                                             1001 0
                                                                              0.11840
                                                                                                                 0.30010
                                                                                                 0.27760
  1
                      20.57
                                    17.77
                                                  132.90
                                                              1326.0
                                                                              0.08474
                                                                                                 0.07864
                                                                                                                 0.08690
            Μ
  2
                      19.69
                                    21.25
                                                  130.00
                                                              1203.0
                                                                              0.10960
                                                                                                 0.15990
                                                                                                                 0.19740
            M
  3
            Μ
                      11.42
                                    20.38
                                                   77.58
                                                              386.1
                                                                              0.14250
                                                                                                 0.28390
                                                                                                                 0.24140
                                                                                                                 0.19800
  4
                      20.29
                                                  135.10
                                                                              0.10030
                                                                                                 0.13280
            M
                                    14.34
                                                              1297 0
 564
            Μ
                      21.56
                                    22.39
                                                  142.00
                                                              1479.0
                                                                              0.11100
                                                                                                 0.11590
                                                                                                                 0.24390
                      20.13
                                    28.25
                                                              1261.0
                                                                              0.09780
                                                                                                 0.10340
                                                                                                                 0.14400
 565
            М
                                                  131.20
 566
                      16.60
                                    28.08
                                                  108.30
                                                              858.1
                                                                              0.08455
                                                                                                 0.10230
                                                                                                                 0.09251
                      20.60
                                    29 33
                                                  140 10
                                                              1265 0
                                                                              0.11780
                                                                                                 0.27700
                                                                                                                 0.35140
 567
            M
            В
                       7.76
                                    24.54
                                                   47.92
                                                              181.0
                                                                              0.05263
                                                                                                 0.04362
                                                                                                                 0.00000
569 rows × 31 columns
In [17]:
df.columns
Out[17]:
Index(['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
         'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
         'concave points mean', 'symmetry mean', 'fractal dimension mean',
         'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
         'compactness se', 'concavity se', 'concave points se', 'symmetry se',
         'fractal dimension se', 'radius worst', 'texture worst',
         'perimeter_worst', 'area_worst', 'smoothness_worst',
         'compactness worst', 'concavity worst', 'concave points worst',
         'symmetry_worst', 'fractal_dimension_worst'],
       dtype='object')
In [18]:
type (df.columns)
Out[18]:
pandas.core.indexes.base.Index
In [19]:
l=list(df.columns)
print(1)
['diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean',
'compactness mean', 'concavity mean', 'concave points mean', 'symmetry mean',
'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst',
'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst',
'fractal dimension worst']
In [201:
features mean=1[1:11]
features_se=1[11:21]
```

```
In [21]:
print(features mean)
['radius mean', 'texture mean', 'perimeter mean', 'area mean', 'smoothness mean',
'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean',
'fractal_dimension_mean']
In [22]:
df.head(2)
Out[22]:
   diagnosis \ \ radius\_mean \ \ texture\_mean \ \ perimeter\_mean \ \ area\_mean \ \ smoothness\_mean \ \ compactness\_mean \ \ concavity\_mean
                  17.99
                               10.38
                                             122.8
                                                      1001.0
                                                                     0.11840
                                                                                       0.27760
                                                                                                      0.3001
                  20.57
                                             132.9
                                                                     0.08474
                                                                                       0.07864
                                                                                                      0.0869
         М
                              17.77
                                                      1326.0
1
2 rows × 31 columns
In [23]:
df['diagnosis'].unique()
#M=Maligant cancer,B=Benign cancer
Out[23]:
array(['M', 'B'], dtype=object)
In [24]:
df['diagnosis'].value counts()
Out[24]:
    212
Name: diagnosis, dtype: int64
In [25]:
df.shape
#rows,columns
Out[25]:
(569, 31)
sns.countplot(df['diagnosis'],label="Count")
Out[26]:
<matplotlib.axes. subplots.AxesSubplot at 0x9c24bf0>
   350
   300
   250
 ti 200
```


explore the data

```
In [27]:
```

```
df.describe()
#summary of all the numeric columns
```

Out[27]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concav points_mea
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.00000
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.04891
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.03880
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.00000
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.02031
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.03350
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.07400
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.20120

8 rows × 30 columns

1

In [28]:

```
len(df.columns)
```

Out[28]:

31

In [29]:

```
#correlation plot(+ve,_ve,No)[-1,+1]
```

In [30]:

```
corr=df.corr()
corr
```

Out[30]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_m
radius_mean	1.000000	0.323782	0.997855	0.987357	0.170581	0.506124	0.676
texture_mean	0.323782	1.000000	0.329533	0.321086	-0.023389	0.236702	0.302
perimeter_mean	0.997855	0.329533	1.000000	0.986507	0.207278	0.556936	0.716
area_mean	0.987357	0.321086	0.986507	1.000000	0.177028	0.498502	0.685
smoothness_mean	0.170581	-0.023389	0.207278	0.177028	1.000000	0.659123	0.521
compactness_mean	0.506124	0.236702	0.556936	0.498502	0.659123	1.000000	0.883
concavity_mean	0.676764	0.302418	0.716136	0.685983	0.521984	0.883121	1.000
concave points_mean	0.822529	0.293464	0.850977	0.823269	0.553695	0.831135	0.921
eummatru maan	N 1/177/11	0 071/101	N 183N27	N 1512Q2	0 557775	0 602641	0.500

symmetry_mean	0.147741	0.07 1401	U. 100021	0.131233	0.551115	U.UUZU 1 I	0.500
fractal_dimension_mean	radius, mean	texture mean	perimeter mean	area mean	smoothness mean	compactness mean	concavity ₃ st
radius_se	0.679090	0.275869	0.691765	0.732562	0.301467	0.497473	0.631
texture_se	-0.097317	0.386358	-0.086761	-0.066280	0.068406	0.046205	0.07€
perimeter_se	0.674172	0.281673	0.693135	0.726628	0.296092	0.548905	0.660
area_se	0.735864	0.259845	0.744983	0.800086	0.246552	0.455653	0.617
smoothness_se	-0.222600	0.006614	-0.202694	-0.166777	0.332375	0.135299	0.098
compactness_se	0.206000	0.191975	0.250744	0.212583	0.318943	0.738722	0.670
concavity_se	0.194204	0.143293	0.228082	0.207660	0.248396	0.570517	0.691
concave points_se	0.376169	0.163851	0.407217	0.372320	0.380676	0.642262	0.683
symmetry_se	-0.104321	0.009127	-0.081629	-0.072497	0.200774	0.229977	0.178
fractal_dimension_se	-0.042641	0.054458	-0.005523	-0.019887	0.283607	0.507318	0.449
radius_worst	0.969539	0.352573	0.969476	0.962746	0.213120	0.535315	0.688
texture_worst	0.297008	0.912045	0.303038	0.287489	0.036072	0.248133	0.299
perimeter_worst	0.965137	0.358040	0.970387	0.959120	0.238853	0.590210	0.729
area_worst	0.941082	0.343546	0.941550	0.959213	0.206718	0.509604	0.675
smoothness_worst	0.119616	0.077503	0.150549	0.123523	0.805324	0.565541	0.448
compactness_worst	0.413463	0.277830	0.455774	0.390410	0.472468	0.865809	0.754
concavity_worst	0.526911	0.301025	0.563879	0.512606	0.434926	0.816275	0.884
concave points_worst	0.744214	0.295316	0.771241	0.722017	0.503053	0.815573	0.861
symmetry_worst	0.163953	0.105008	0.189115	0.143570	0.394309	0.510223	0.409
fractal_dimension_worst	0.007066	0.119205	0.051019	0.003738	0.499316	0.687382	0.514
30 rows × 30 columns							
4]							Þ

In [31]:

corr.shape

Out[31]:

(30, 30)

In [32]:

plt.figure(figsize=(4,4))
sns.heatmap(corr);

In [33]:

df.head()

Out[33]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	c point:
0	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	
1	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	
2	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	
3	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	
4	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	

5 rows × 31 columns

In [34]:

```
df['diagnosis']=df['diagnosis'].map({'M':1,'B':0})
```

In [35]:

df.head()

Out[35]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	c point:
0	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	
1	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	
2	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	
3	1	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	
4	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	

5 rows × 31 columns

•

In [36]:

```
df['diagnosis'].unique()
```

Out[36]:

array([1, 0], dtype=int64)

In [37]:

```
x = df.drop('diagnosis', axis=1)
x.head()
```

Out[37]:

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	sy
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	

5 rows × 30 columns

In [38]:

v=df['diagnosis']

```
y.head()
Out[38]:
Ω
    1
1
    1
3
Name: diagnosis, dtype: int64
In [39]:
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [40]:
x_train.shape
Out[40]:
(398, 30)
In [41]:
x test.shape
Out[41]:
(171, 30)
In [42]:
y_train.shape
Out[42]:
(398,)
In [43]:
y_test.shape
Out[43]:
(171,)
In [44]:
x train.head(1)
Out[44]:
     radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
                                                                                                points_mean
 465
          13.24
                      20.13
                                   86.87
                                             542.9
                                                           0.08284
                                                                            0.1223
                                                                                           0.101
                                                                                                    0.02833
1 rows × 30 columns
4
In [45]:
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
x train=ss.fit transform(x train)
x_test=ss.transform(x_test)
```

```
In [46]:
x train
Out[46]:
array([[-0.22629234, 0.18547336, -0.1853857, ..., 0.3250308,
        -0.09925287, 2.2706719],
       [-0.29517323, 1.33784151, -0.36281398, ..., -0.85545553,
       -0.98919743, -1.19725023],
       [ 0.48834693, -1.85421826, 0.47809611, ..., 0.4716463, -0.57477055, -0.13992279],
       [1.42684911, -0.09570446, 1.33608264, ..., 0.11050916,
       -0.10585728, -1.0573921 ],
       [ 0.12959228, 0.49200329, 0.12199005, ..., 0.12131241, 0.18969017, -0.88676519],
       [ 2.10704794, -0.97380899, 2.08161462, ..., 1.26491336,
        -0.28912972, 0.13140198]])
Machine learning models
1.logistic Regression
In [47]:
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x train, y train)
Out[47]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept scaling=1, l1 ratio=None, max iter=100,
                   multi_class='warn', n_jobs=None, penalty='12',
                   random_state=None, solver='warn', tol=0.0001, verbose=0,
                   warm start=False)
In [48]:
y pred=lr.predict(x test)
In [49]:
y_pred
Out[49]:
array([1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,
       0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
       1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
       0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,
       0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
       0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
       0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1], dtype=int64)
In [50]:
y_test
Out[50]:
75
      1
561
      0
454
       0
241
       0
402
```

```
39
     1
     1
533
382
      0
108
      1
274
      1
Name: diagnosis, Length: 171, dtype: int64
In [51]:
from sklearn.metrics import accuracy_score
print(accuracy score(y test, y pred))
0.9766081871345029
In [52]:
lr_acc = accuracy_score(y_test, y_pred)
print(lr acc)
0.9766081871345029
In [53]:
results = pd.DataFrame()
results
Out [53]:
In [57]:
tempResults = pd.DataFrame({'Algorithm':['LogisticRegressionMethod'], 'Accuracy':[lr acc]})
results = pd.concat( [results, tempResults] )
results = results[['Algorithm','Accuracy']]
results
Out[57]:
             Algorithm Accuracy
0 LogisticRegressionMethod 0.976608
Decision Tree Classifier
In [58]:
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(x train, y train)
Out[58]:
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
                       max features=None, max leaf nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min weight fraction leaf=0.0, presort=False,
                       random state=None, splitter='best')
```

In [59]:

y_pred

y_pred = dtc.predict(x_test)

```
Out[59]:
array([1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
       0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
       1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
       0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,
       0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1,
       0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
       0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1], dtype=int64)
In [60]:
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
0.9415204678362573
In [61]:
dtc acc = accuracy score(y test, y pred)
print(dtc_acc)
0.9415204678362573
In [62]:
tempResults = pd.DataFrame({'Algorithm':['DecisionTreeClassifierMethod'], 'Accuracy':[dtc acc]})
results = pd.concat( [results, tempResults] )
results = results[['Algorithm','Accuracy']]
results
Out[62]:
               Algorithm Accuracy
     LogisticRegressionMethod
                        0.976608
0 DecisionTreeClassifierMethod 0.941520
In [63]:
#Random Forest Classifier
In [64]:
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(x_train, y_train)
Out[64]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                       max_depth=None, max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min samples leaf=1, min samples split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=10,
                       n_jobs=None, oob_score=False, random_state=None,
                       verbose=0, warm start=False)
In [65]:
y pred = rfc.predict(x test)
y_pred
Out[65]:
array([1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
```

```
0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
      1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,
      1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
      0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,
      0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
      0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
      0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1], dtype=int64)
In [66]:
from sklearn.metrics import accuracy score
print(accuracy_score(y_test, y_pred))
0.9649122807017544
In [67]:
rfc_acc = accuracy_score(y_test, y_pred)
print(rfc acc)
0.9649122807017544
In [68]:
tempResults = pd.DataFrame({'Algorithm':['RandomForestClassifierMethod'], 'Accuracy':[rfc acc]})
results = pd.concat( [results, tempResults] )
results = results[['Algorithm','Accuracy']]
results
Out[68]:
                Algorithm Accuracy
0
      LogisticRegressionMethod
                        0.976608
   DecisionTreeClassifierMethod
                       0.941520
0 RandomForestClassifierMethod 0.964912
In [69]:
#Support Vector Classifier
In [70]:
from sklearn import svm
svc = svm.SVC()
svc.fit(x train,y train)
Out[70]:
SVC(C=1.0, cache size=200, class weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
    kernel='rbf', max_iter=-1, probability=False, random_state=None,
    shrinking=True, tol=0.001, verbose=False)
In [71]:
y pred = svc.predict(x test)
y pred
Out[71]:
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1,
      1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
      0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,
      0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
```

```
0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1], dtype=int64)
In [72]:
from sklearn.metrics import accuracy score
print(accuracy_score(y_test, y_pred))
0.9766081871345029
In [73]:
svc_acc = accuracy_score(y_test, y_pred)
print(svc_acc)
0.9766081871345029
In [74]:
tempResults = pd.DataFrame({'Algorithm':['SupportVectorClassifierMethod'], 'Accuracy':[svc_acc]})
results = pd.concat( [results, tempResults] )
results = results[['Algorithm','Accuracy']]
results
Out[74]:
                   Algorithm Accuracy
0
       LogisticRegressionMethod 0.976608
   DecisionTreeClassifierMethod
                             0.941520
0 RandomForestClassifierMethod
                             0.964912
0 SupportVectorClassifierMethod 0.976608
In [ ]:
In [ ]:
```