YNIE 214 SAYISAL ANALIA

Dr. Öğretim Üyesi Bihter DAŞ

Fırat Üniversitesi Teknoloji Fakültesi Yazılım Mühendisliği

10.Hafta

Ara Değer Bulma Yöntemleri

- ➤ Newton Interpolasyon Polinomları
- Lagrange Interpolasyon Polinomları

Ara Değer Bulma Yöntemleri

- interpolasyon işlemi, bilinen veri noktaları arasındaki bilinmeyen değerin tahmin edilmesidir veya verilerin çok hassas olarak bilindiği durumlarda tüm noktalardan geçen eğriyi uydurmaktır.
- > Termodinamikte buhar tabloları, Sıcaklık yoğunluk ilişkileri gibi tablolar için kullanılabilir.
- Polinom İnterpolasyonu: n+1 noktadan geçen, n. dereceden polinomun belirlenmesi olarak ifade edilebilir. Bu polinom belirlendikten sonra ara değerler kolaylıkla hesaplanabilmektedir.
- > Genellikle tablo halinde verilen değerleri kullanarak tabloda olmayan bir değerin belirlenmesi gerekir.
- Interpolasyon işleminde bilinmeyen bir f(x) fonksiyonun; x_0 , x_1 , x_2 ,... x_n ayrık noktaları için verilen $f(x_0)$, $f(x_1)$, $f(x_2)$... $f(x_n)$ değerlerini kullanarak bu fonksiyondan daha basit bir $f_i(x)$ interpolasyon fonksiyonu elde edilir.
- ➤ **İnterpolasyon fonksiyonu f**_i(x) polinom, trigonometrik, üslü, logoritmik, ya da özel bir fonksiyon olabilir.

Ara Değer Bulma Yöntemleri

Genel bir yöntem verilmeden önce 1. ve 2. dereceden interpolasyonlar basit ve sık kullanılmalarından dolayı anlatılmaktadır.

Ara Değer Bulma Yöntemleri

- > n+1 adet nokta için tüm noktalardan geçen n. dereceden bir polinom vardır.
- Daha sonra bu polinom kullanılarak ara değer hesaplanır.
- > n+1 veri noktasından geçen n. dereceden bir polinomun çok sayıda ifade ediliş şekli vardır. Bunlardan en çok kullanılan ve bilgisayar uygulamalarına uygun olanları Newton ve Langrange polinomlarıdır.

Newton'un Bölünmüş Fark Interpolasyon Polinomları

$$P(x)=b_0+b_1(x-x_0)+b_2(x-x_0)(x-x_1)+b_3(x-x_0)(x-x_1)(x-x_2)...$$

Soru 1:

x	F(x)
1	0
4	1,38
6	1.79

Yukarıdaki tabloda F(x) fonksiyonunun x değerleri verilmektedir. F(2) için fonksiyonun değerini Newton Interpolasyon Polinomları yöntemi ile bulunuz.

Çözüm:

Şimdi yukarda bulunan değerleri Newton İnterpolasyon Polinom formülüne göre yazalım.

$$P(x)=b_0+b_1(x-x_0)+b_2(x-x_0)(x-x_1)+b_3(x-x_0)(x-x_1)(x-x_2)...$$

$$P(x)=0+0.46(x-1)-0.042(x-1)(x-4)$$

$$P(2)=0+0.46(2-1)-0.042(2-1)(2-4)=0.544$$

Soru 2:

x	F(x)
3	1
1	-3
5	2
6	4

Yukarıdaki tabloda F(x) fonksiyonunun x değerleri verilmektedir. F(4) için fonksiyonun değerini Newton Interpolasyon Polinomları yöntemi ile bulunuz.

Çözüm:

Şimdi yukarda bulunan değerleri Newton İnterpolasyon Polinom formülüne göre yazalım.

$$P(x)=b_0+b_1(x-x_0)+b_2(x-x_0)(x-x_1)+b_3(x-x_0)(x-x_1)(x-x_2)...$$

$$P(x)=1+2(x-3)-3/8(x-3)(x-1)+7/40(x-3)(x-1)(x-5)$$

$$P(4)=1+2(4-3)-3/8(4-3)(4-1)+7/40(4-3)(4-1)(4-5)=1.35$$

Lagrange Interpolasyon Polinomları

Lagrange İnterpolasyon polinomları aşağıdaki denklem ile ifade edilir. Bazı kaynaklarda $f_n(x)$ yerine $P_n(x)$ kullanılır.

$$\Rightarrow f_n(x) = \sum_{i=0}^n L_i(x) f(x_i) \quad \text{Burada} \quad \Rightarrow L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$
 Çarpımı

➤ n+1 adet nokta için n. dereceden bir polinom belirlenir.

Lagrange Interpolasyon Polinomları

➤ Doğrusal 1. derece yani n=1 için Lagrange İnterpolasyon Polinomu

$$\Rightarrow f_n(x) = \sum_{i=0}^{1} \left(\prod_{\substack{j=0 \ j \neq i}}^{1} \frac{x - x_j}{x_i - x_j} \right) f(x_i) \qquad \Rightarrow i = 0 \ i \varsigma in \ j = 1$$
$$\Rightarrow i = 1 \ i \varsigma in \ j = 0$$

$$\Rightarrow f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

Şeklinde elde edilir.

Lagrange Interpolasyon Polinomları

➤ 2. Dereceden Lagrange İnterpolasyon Polinomu ise

$$\Rightarrow f_n(x) = \sum_{i=0}^{2} \left(\prod_{\substack{j=0 \ j\neq i}}^{2} \frac{x - x_j}{x_i - x_j} \right) f(x_i) \qquad \Rightarrow i = 0 \quad i \leqslant in \quad j = 1 \quad ve \quad 2$$
$$\Rightarrow i = 1 \quad i \leqslant in \quad j = 0 \quad ve \quad 2$$
$$\Rightarrow i = 2 \quad i \leqslant in \quad j = 0 \quad ve \quad 1$$

$$\Rightarrow f_2(x) = \frac{\left(x - x_1\right)}{\left(x_0 - x_1\right)} \frac{\left(x - x_2\right)}{\left(x_0 - x_2\right)} f(x_0) + \frac{\left(x - x_0\right)}{\left(x_1 - x_0\right)} \frac{\left(x - x_2\right)}{\left(x_1 - x_2\right)} f(x_1) + \frac{\left(x - x_0\right)}{\left(x_2 - x_0\right)} \frac{\left(x - x_1\right)}{\left(x_2 - x_1\right)} f(x_2)$$

Sorul:

х	1	2	3	5	6
f(x)	4.75	4	5.25	19.75	36

Soruyu, f(4) değerine göre lagrange interpolasyon polinomlarını kullanarak çözün.

- a) 1. derece için $(x_0=3, x_1=5)$
- b) 2. derece için $(x_0=2,x_1=3,x_2=5)$

a)
$$\Rightarrow f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$f_1(x) = \frac{x-5}{3-5} f(3) + \frac{x-3}{5-3} f(5)$$
 f(4) değerini hesaplamak için x=4 yazılır.

$$f_1(4) = \frac{4-5}{3-5}$$
 5.25+ $\frac{4-3}{5-3}$ 19.75

$$f_1(4)=12.5$$

b) 2. derece için yani n=2 için $(x_0=2,x_1=3,x_2=5)$

$$\Rightarrow f_2(x) = \frac{\left(x - x_1\right)}{\left(x_0 - x_1\right)} \frac{\left(x - x_2\right)}{\left(x_0 - x_2\right)} f(x_0) + \frac{\left(x - x_0\right)}{\left(x_1 - x_0\right)} \frac{\left(x - x_2\right)}{\left(x_1 - x_2\right)} f(x_1) + \frac{\left(x - x_0\right)}{\left(x_2 - x_0\right)} \frac{\left(x - x_1\right)}{\left(x_2 - x_1\right)} f(x_2)$$

$$\mathbf{f}_{2}(\mathbf{x}) = \frac{(x-3)(x-5)}{(2-3)(2-5)} \mathbf{f}(2) + \frac{(x-2)(x-5)}{(3-2)(3-5)} \mathbf{f}(3) + \frac{(x-2)(x-3)}{(5-2)(5-3)} \mathbf{f}(5)$$

$$\mathbf{f}_{2}(4) = \frac{(4-3)(4-5)}{(2-3)(2-5)} \, 4 + \frac{(x-2)(x-5)}{(3-2)(3-5)} \, 5.25 + \frac{(x-2)(x-3)}{(5-2)(5-3)} \, 19.75$$

$$f_2(4)=10.5$$

Soru2:	x	2	3	5
	f(x)	5	7	8

x=4 yani f(4) değerini n=2 için lagrange polinomları kullanarak hesaplayınız. Matlab çözümünü gerçekleştiriniz.

$$\Rightarrow f_2(x) = \frac{\left(x - x_1\right)}{\left(x_0 - x_1\right)} \frac{\left(x - x_2\right)}{\left(x_0 - x_2\right)} f(x_0) + \frac{\left(x - x_0\right)}{\left(x_1 - x_0\right)} \frac{\left(x - x_2\right)}{\left(x_1 - x_2\right)} f(x_1) + \frac{\left(x - x_0\right)}{\left(x_2 - x_0\right)} \frac{\left(x - x_1\right)}{\left(x_2 - x_1\right)} f(x_2)$$

$$\mathbf{f}_{2}(\mathbf{x}) = \frac{(x-3)(x-5)}{(2-3)(2-5)} \mathbf{f}(\mathbf{x}_{0}) + \frac{(x-2)(x-5)}{(3-2)(3-5)} \mathbf{f}(\mathbf{x}_{1}) + \frac{(x-2)(x-3)}{(5-2)(5-3)} \mathbf{f}(\mathbf{x}_{2}) = \frac{(x-3)(x-5)}{(2-3)(2-5)} \mathbf{5} + \frac{(x-2)(x-5)}{(3-2)(3-5)} \mathbf{7} + \frac{(x-2)(x-3)}{(5-2)(5-3)} \mathbf{8}$$

$$f_2(x) = (1.66x^2 - 13.33x + 25) + (3.5x^2 + 24.5x - 35) + (1.33x^2 - 6.66x + 8)$$

$$\mathbf{f}_{2}(\mathbf{x}) = \begin{pmatrix}
\mathbf{L}_{0} \mathbf{f}(\mathbf{x}_{0}) \\
\mathbf{L}_{1} \mathbf{f}(\mathbf{x}_{1}) \\
\mathbf{L}_{2} \mathbf{f}(\mathbf{x}_{2})
\end{pmatrix}$$

$$\mathbf{f}_{2}(\mathbf{x}) = \begin{pmatrix}
\mathbf{1}.66x^{2}-13.33x+25 \\
-3.5x^{2}+24.5x-35 \\
1.33x^{2}-6.66x+8
\end{pmatrix}$$

$$\mathbf{f}_{2}(\mathbf{x}) = -0.5x^{2}+4.5x-2 \\
\mathbf{f}_{2}(4) = -0.5*(4)^{2}+4.5*4-2=8$$

Lagrange Polinomları için Matlab Komutları

```
clear all;close all;clc
 xdeger=[2 3 5];
 ydeger=[5 7 8];
 x=4;
 n=length(xdeger);
 L=ones(n,n);
□ for i=1:n
     for j=1:n
          if(i~=j)
              L(i,:)=L(i,:).*(x-xdeger(j))/(xdeger(i)-xdeger(j));
          end
     end
     y=0;
     for i=1:n
          y=y+ydeger(i)*L(i,:);
     end
 end
 У
```


Program Çıktısı

```
y = 8 8 8 ×>
```

Lagrange Polinomları için Matlab Komutları

```
clear all;close all;clc
  x=[2 \ 3 \ 5];
  y=[5 7 8];
  n = length(x)
  f<sub>≡</sub>zeros(n,n)
□ for i=1:n
     L=1;
      for j=1:n
           if i~=j
                L=conv(L,poly(x(j)))/(x(i)-x(j));
           end
      end
      f(i,:)=L*y(i);
  end
  P \equiv sum(f)
```

Program Çıktısı

```
n =
     3
f =
                 0
     0
f =
    1.6667
            -13.3333
                        25.0000
   -3.5000
            24.5000
                       -35.0000
    1.3333
             -6.6667
                         8.0000
P =
   -0.5000
              4.5000
                        -2.0000
```