Project: Exploratory Data Analysis on (Should This Loan be Approved or Denied?)

Context of the problem

The Small Business Administration (SBA) is a United States Government Agency formed in 1953 that provides support to entrepreneurs and small businesses. SBA acts much like an insurance provider to reduce the risk for a bank by taking on some of the risks by guaranteeing a portion of the loan. In the case that a loan goes into default, SBA then covers the amount they guaranteed. Since SBA loans only guarantee a portion of the entire loan balance, banks will incur some losses if a small business defaults on its SBA-guaranteed loan. Therefore, banks are still faced with a difficult choice as to whether they should grant such a loan because of the high risk of default.

Description about the data files

Here we are using a dataset from the U.S SBA which includes Historical data from 1987 through 2014 (899,164 observations).

Link of the dataset -

The link to the dataset is given below.

https://www.kaggle.com/mirbektoktogaraev/should-this-loan-be-approved-or-denied

Agenda:

Identify Explanatory Variables (Indicators or Predictors) based on which we can make our decision about the Loan Pass. Among 27 different variables from this dataset, we would mainly focus on the below 7 variables:

- 1. Location which state had the highest rate of the defaulted loan
- 2. Industry which industry was the most defaulted industry.
- 3. Gross Disbursement: Amount Disbursed
- 4. New Versus Established Business
- 5. Loans backed by Real Estate
- 6. Economic Recession
- 7. SBA's Guaranteed Portion of Approved Loan

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

The variable name, the data type, and a brief description of each variable are provided for the 27 variables are given below.

Description of 27 variables in both datasets.

Variable name	Data type	Description of variable
LoanNr_ChkDgt	Text	Identifier – Primary key
Name	Text	Borrower name
City	Text	Borrower city
State	Text	Borrower state
Zip	Text	Borrower zip code
Rank	Toyt	Rank name

Dalik ICAL Datik Hattic BankState Text Bank state NAICS North American industry classification Text system code ApprovalDate Date/Time Date SBA commitment issued Fiscal year of commitment ApprovalFY Text Term Number Loan term in months NoEmp Number Number of business employees NewExist Text 1 = Existing business, 2 = New business CreateJob Number of jobs created Number RetainedJob Number Number of jobs retained FranchiseCode Franchise code, (00000 or 00001) = No Text UrbanRural Text 1 = Urban, 2 = rural, 0 = undefined RevLineCr Revolving line of credit: Y = Yes, N = No Text LowDoc Text LowDoc Loan Program: Y = Yes, N = No ChgOffDate Date/Time The date when a loan is declared to be in default DisbursementDate Date/Time Disbursement date DisbursementGross Amount disbursed Currency BalanceGross Gross amount outstanding Currency MIS_Status Loan status charged off = CHGOFF, Paid Text in full = PIF ChgOffPrinGr Charged-off amount Currency GrAppy Currency Gross amount of loan approved by bank SBA's guaranteed amount of approved SBA Appv Currency

Import Libraries

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Data Wrangling

```
In [2]:
```

```
# Import data file
df = pd.read_csv(r'C:\Users\mehta\OneDrive\Desktop\Priya\data analytics career track\capst
one-2\sba_files\SBAnational.csv')

C:\Users\mehta\anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3444: DtypeWar
ning: Columns (9) have mixed types.Specify dtype option on import or set low_memory=False.
    exec(code_obj, self.user_global_ns, self.user_ns)
```

In [3]:

```
# Let's check how many total numbers of rows and columns we have in this dataset
f"Total number of rows = {df.shape[0]} and Total number of coulumns = {df.shape[1]}"
```

Out[3]:

'Total number of rows = 899164 and Total number of coulumns = 27'

In [4]:

Top few rows of this dataset
df.head()

Out[4]:

	Loan	Nr_ChkDgt	Name	City	State	Zip	Bank	BankState	NAICS	ApprovalDate	ApprovalFY	
0) 1	1000014003	ABC HOBBYCRAFT	EVANSVILLE	IN	47711	FIFTH THIRD BANK	ОН	451120	28-Feb-97	1997	

I ANDMADY 19T

_1	LoanNo@24Dgs	BAR & G MRIDE	NEW PA (Pits	Sta jię	46 5219	SOUPROE BANK	BankSta ję	MAKA8	Approvally ate	Approve@%	
2	1000034009	WHITLOCK DDS, TODD M.	BLOOMINGTON	IN	47401	GRANT COUNTY STATE BANK	IN	621210	28-Feb-97	1997	
3	1000044001	BIG BUCKS PAWN & JEWELRY, LLC	BROKEN ARROW	ок	74012	1ST NATL BK & TR CO OF BROKEN	ок	0	28-Feb-97	1997	
4	1000054004	ANASTASIA CONFECTIONS, INC.	ORLANDO	FL	32801	FLORIDA BUS. DEVEL CORP	FL	0	28-Feb-97	1997	

5 rows × 27 columns

In [5]:

Total number of missing values we have in this dataset for each column
df.isnull().sum()

Out[5]:

LoanNr ChkDgt

Hodinii_Ciikbgc	0
Name	14
City	30
State	14
Zip	0
Bank	1559
BankState	1566
NAICS	0
ApprovalDate	0
ApprovalFY	0
Term	0
NoEmp	0
NewExist	136
CreateJob	0
RetainedJob	0
FranchiseCode	0
UrbanRural	0
RevLineCr	4528
LowDoc	2582
ChgOffDate	736465
DisbursementDate	2368
DisbursementGross	0
BalanceGross	0
MIS Status	1997
ChgOffPrinGr	0
GrAppv	0
SBA_Appv	0
dtype: int64	

0

Let's just drop the chargeoffDate column. since it has a ton of null values and doesn't even provide any useful information. and also remove other null rows to get the most accurate results or predictions.

In [6]:

```
# drop all the rows which have null values to clean our dataset for better prediction or a
nalysis
df = df.drop(columns = 'ChgOffDate')
df = df.dropna()
```

Let's take a look on our dataset after removing all the null values and let's start to digging our dataset to get some analysis

```
Out[7]:
LoanNr ChkDgt
                       int64
Name
                      object
City
                      object
State
                      object
Zip
                      int64
Bank
                      object
BankState
                      object
NAICS
                      int64
                    object
ApprovalDate
ApprovalFY
                     object
Term
                      int64
NoEmp
                       int64
                    float64
NewExist
CreateJob
                      int64
RetainedJob
                      int64
FranchiseCode
                      int64
UrbanRural
                       int64
RevLineCr
                      object
LowDoc
                      object
DisbursementDate
                      object
DisbursementDate
DisbursementGross
                      object
BalanceGross
                      object
MIS Status
                      object
ChgOffPrinGr
                      object
GrAppv
                      object
SBA Appv
                      object
dtype: object
Some of the columns like BalanceGross and GrAppv are objects but should be floating in order for us to start
comparing them numerically.
In [8]:
#let's make a function to convert all currencies columns data type from object to float
list col = ['DisbursementGross', 'BalanceGross', 'ChgOffPrinGr', 'GrAppv', 'SBA Appv']
def func1(df, list col):
    for i in list col:
        #print(df[i].astype(str).str.replace('$',''))
        df[i] = df[i].astype(str).str.replace('$','').str.replace(',','')
        df[i] = pd.to numeric(df[i])
        df[i]
In [9]:
func1(df, list col)
C:\Users\mehta\AppData\Local\Temp/ipykernel 280/2876218139.py:6: FutureWarning: The defaul
t value of regex will change from True to False in a future version. In addition, single c
haracter regular expressions will *not* be treated as literal strings when regex=True.
  df[i] = df[i].astype(str).str.replace('$','').str.replace(',','')
In [10]:
#Let's take a look on the datatypes of all the coulmns one more time
df.dtypes
Out[10]:
LoanNr ChkDgt
                      int64
Name
                      object
City
                      object
State
                     object
                       int64
Zip
Bank
                      object
BankState
                      object
```

df.dtypes

NATCS

ApprovalDate

int64

object

```
Approvall'Y
                     object
Term
                      int64
NoEmp
                      int64
NewExist
                    float64
CreateJob
                     int64
RetainedJob
                      int64
FranchiseCode
                     int64
UrbanRural
                      int64
RevLineCr
                     object
LowDoc
                     object
DisbursementDate
                     object
DisbursementGross
                   float64
BalanceGross
                   float64
MIS Status
                     object
                    float64
ChgOffPrinGr
                    float64
GrAppv
                    float64
SBA Appv
dtype: object
```

In [15]:

Now we have all the currencies columns with numeric values, now let's take a look at categorial columns which we would use to make our analysis accurate and predictable

```
In [11]:

# Making column Loan_Status, where 0 would indicate a loan that has been successfully paid
in full and 1 would indicate defaulted charges off the loan.
df['Loan_Status'] = df['MIS_Status'].replace({'PIF': '0', 'CHGOFF': '1'})
df['Loan_Status'] = df['Loan_Status'].astype(int)
Other columns need some work on their formatting too, let's chahe their formating according to our
requirements
```

```
In [12]:
df['ApprovalFY'].unique()
# as we can see below we have one value 1976 which is connected with the alphabetical lett
er A, here to change its datatype from object to int first we have to remove this letter A
Out[12]:
array([1997, 1980, 2006, 1998, 1999, 2000, 2001, 1972, 2003, 2004, 1978,
      1979, 1981, 2005, 1982, 1983, 1973, 1984, 2007, 1985, 1986, 1987,
       2008, 1988, 2009, 1989, 1991, 1990, 1974, 2010, 2011, 1992, 1993,
      2002, 2012, 2013, 1994, 2014, 1975, 1977, 1976, '2004', '1994',
       '1979', '1976', '1975', '1974', '1977', '1981', '1982', '1983',
       '1984', '1978', '1980', '1968', '1976A', '1969', '1995', '1970',
       '2005', '1996', '1971', 1996, 1971], dtype=object)
In [13]:
#let's change fiscal year from object to int by replacing A
df['ApprovalFY'] = df['ApprovalFY'].replace({'A': ''}, regex = True).astype(int)
In [14]:
# now let's work on the 'New' column, which is indicating 2 to new business and 1 to exist
```

```
# now let's work on the 'New' column, which is indicating 2 to new business and 1 to exist
ing business
# let's change new business to 1 and Existing Business to 0

df['NewExist'] = df['NewExist'].replace(1,0)
df['NewExist'] = df['NewExist'].replace(2,1)
```

```
#change RevLineCr to binary variable
df['RevLineCr'] = df['RevLineCr'].replace({'Y':'1','N':'0'}, regex=True)
valid = ['1', '0']
df = df.loc[df['RevLineCr'].isin(valid)]
df['RevLineCr'] = df['RevLineCr'].astype(int)
```

```
In [16]:
#change the LowDoc to binary variables
df['LowDoc'] = df['LowDoc'].replace({'Y':'1','N':'0'},regex = True)
valid = ['1', '0']
df = df.loc[df['LowDoc'].isin(valid)]
df['LowDoc'] = df['LowDoc'].astype(int)
```

In this dataset, we have a very critical point that could affect our analysis, that is its time period.

we must also consider what time period to include in the analyses. For example, in our assignment, an emphasis is placed on the default rates of loans with a disbursement date through 2010. We chose this time period for two reasons. We want to account for variation due to the Great Recession (December 2007 to June 2009) so loans disbursed before, during, and after this time frame are needed. Secondly, we restrict the time frame to loans by excluding those disbursed after 2010 due to the fact the term of a loan is frequently 5 or more years. We believe that the inclusion of loans with disbursement dates after 2010 would provide greater weight to those loans that are charged off versus paid in full. More specifically, loans that are charged off will do so prior to the maturity date of the loan, while loans that will likely be paid in full will do so at the maturity date of the loan (which would extend beyond the dataset ending in 2014). Since this dataset has been restricted to loans for which the outcome is known, there is a greater chance that those loans charged off prior to maturity date will be included in the dataset, while those that might be paid in full have been excluded. It is important to keep in mind that any time restriction on the loans included in the data analyses could introduce selection bias, particularly toward the end of time period. This may impact the performance of any predictive models based on these data.

```
In [17]:
```

```
# I'd like to add a column that would segregate the recession data from others
# recession - 1 if the year of approval is during recession, 0 if not

rec_years = [1969,1970,1969,1970,1973,1974,1975,1980,1981,1982,1990,1991,2001,2007,2008,20
09]
df['Recession'] = df['ApprovalFY'].isin(rec_years)
df['Recession'] = df['Recession'].astype(str)
df['Recession'] = df['Recession'].replace({'False' : '0','True':'1'},regex=True).astype(int)
```

one more very crucial variable we have in our dataset that is Term. which we can use to get our most important variable that is Loans Backed by Real Estate:

Since the term of the loan is a function of the expected lifetime of the assets, loans backed by real estate will have terms 20 years or greater (>= 240 months) and are the only loans granted for such a long term, whereas loans not backed by real estate will have terms less than 20 years (<240 months). Therefore i have created a variable "RealEstate", where "Realestate" = 1 if "Term" >= 240 months and "RealEstate" = 0 if "Term" < 240 months.

```
In [18]:

df['RealEstate'] = df['Term'] > 240
df['RealEstate'] = df['RealEstate'].astype(str)
df['RealEstate'] = df['RealEstate'].replace({'False':'0','True':'1'},regex = True).astype
(int)

In [19]:

df.to csv('file name.csv', encoding='utf-8')
```

Exploratory Data Analysis

we have done with our cleaning, now it's time to get some analysis.

Identifying Explanatory Variables (Indicators or Predictors) of Potential Risk

1. Location By State:

Tn [201.

```
# let's take a look on which state had higher default rate
data = df.groupby(['State', 'Loan_Status'])['State'].count().unstack('Loan_Status')
data.head()
```

Out[20]:

Loan_Status	0	1
State		
AK	2082	269
AL	6834	1356
AR	5139	1033
AZ	13621	3477
CA	104437	22504

In [21]:

```
# let's take a look on a bar chart to show loan status by each state.
fig1 = plt.figure(figsize=(60,15))
ax1 = fig1.add_subplot(2,4,4)
data = df.groupby(['State','Loan_Status'])['State'].count().unstack('Loan_Status')
ax1.bar(data.index, data[1], color='cyan',label = 'Charged off')
ax1.bar(data.index, data[0], color='red',bottom=data[1],label = 'paid in full')
ax1.set_xlabel('State')
ax1.set_ylabel('Loan Status Count')
ax1.legend()
plt.title('Loan Status By State',size=20)
plt.tight_layout()
plt.show()
```


From the above Bar chart, we can say that California state has a higher default rate than other states. But still, because of their size, it's difficult to interpret. A table showing the percentage of loans defaulted on may be easier to read.

```
In [22]:
```

```
per_st=df.groupby(['State', 'Loan_Status'])['State'].count().unstack('Loan_Status')
per_st['Percent'] = per_st[1] / (per_st[1] + per_st[0])
per_st.sort_values(by='Percent', ascending=False)
```

```
Out[22]:
```

Loan_Status	0	1	Percent
State			
FL	29078	10105	0.257892
DC	1199	370	0.235819
GA	16571	4875	0.227315
IL	22223	6481	0.225787
NV	6033	1754	0.225247
MI	15428	4474	0.224802
TN	7199	1869	0.206109
AZ	13621	3477	0.203357
NJ	18524	4492	0.195169
NY	44871	10870	0.195009
sc	4328	1034	0.192838
KY	6026	1429	0.191683
MD	10326	2437	0.190943
TX	55409	12671	0.186119
NC	11218	2542	0.184738
LA	7682	1699	0.181111
VA	10346	2286	0.180969
co	16606	3604	0.178328
CA	104437	22504	0.177279
DE	1726	367	0.175346
UT	14967	3181	0.175281
IN	11278	2394	0.175102
AR	5139	1033	0.167369
AL	6834	1356	0.165568
ОН	26585	5197	0.163520
wv	2682	520	0.162399
MS	6330	1184	0.157573
ОК	8208	1496	0.154163
HI	2978	536	0.152533
МО	17022	3031	0.151149
OR	9152	1614	0.149916
PA	28294	4795	0.144912
ID	7825	1281	0.140676
СТ	10141	1603	0.136495
WA	19568	3012	0.133392
KS	9744	1447	0.129300
MA	21192	3087	0.127147
WI	17980	2473	0.120911
RI	7261	977	0.118597
MN	21091	2774	0.116237
IA	10349	1349	0.115319
AK	2082	269	0.114419
NE	5526	703	0.112859

Loan_StaNM	520 6	624	9PL97729R
Stalle	10489	1239	0.105645
ME	5226	556	0.096160
SD	3983	339	0.078436
ND	4759	395	0.076640
VT	4941	392	0.073505
WY	2579	193	0.069625
МТ	7948	584	0.068448

According to this table, the state where the most defaulted loans are in Florida, followed by Arizona and Nevada.

2. Industry: It is important for banks to know what industry is more likely to default on a loan

```
In [23]:
```

```
#First, let's decode the code of the 'NAICS' column to a specific industry name.
df['NAICS Label'] = df['NAICS'].astype('str').apply(lambda x: x[:2])
df['NAICS Label'] = df['NAICS Label'].map({
    '11': 'Agriculture',
    '21': 'Mining/Oil',
    '22': 'Utilities',
    '23': 'Construction',
    '31': 'Manufacturing',
    '32': 'Manufacturing',
    '33': 'Manufacturing',
    '42': 'Wholesale trade',
    '44': 'Retail trade',
    '45': 'Retail trade',
    '48': 'Trans/Ware',
    '49': 'Trans/Ware',
    '51': 'Information',
    '52': 'Finance/Insurance',
    '53': 'Real Estate',
    '54': 'Prof/Science/Tech',
    '55': 'Industry_Manage',
    '56': 'Admin/Waste',
    '61': 'Educational',
    '62': 'Health/Social',
    '71': 'Arts/Entertain/Rec',
    '72': 'Accom/Food',
    '81': 'Other',
    '92': 'Public Admin'
})
```

In [24]:

```
fig1 = plt.figure(figsize=(60,25))
ax1 = fig1.add_subplot(2, 4, 4)
data = df.groupby(['NAICS_Label','Loan_Status'])['NAICS_Label'].count().unstack('Loan_Sta
tus')
ax1.bar(data.index, data[1], color='cyan', label = 'Charged off')
ax1.bar(data.index, data[0], color='red',bottom=data[1],label = 'paid in full')
ax1.set xticklabels(data.index, rotation = 75, fontsize = 10)
ax1.set xlabel('Industry')
ax1.set ylabel('Loan Status By State')
ax1.legend()
plt.title('Loan Status By Industry', size=20)
plt.tight layout()
plt.show()
C:\Users\mehta\AppData\Local\Temp/ipykernel 280/108167904.py:6: UserWarning: FixedFormatte
r should only be used together with FixedLocator
  ax1.set xticklabels(data.index, rotation = 75, fontsize = 10)
```


From the above Bar chart, we can say that Retail Trade Industry has a higher default rate than other industries. But still, because of their size, it's difficult to interpret. A table showing the percentage of loans defaulted on may be easier to read.

```
In [25]:
```

```
# Percentage table for each industry level
per_ind=df.groupby(['NAICS_Label', 'Loan_Status'])['NAICS_Label'].count().unstack('Loan_S
tatus')
per_ind['Percent']= per_ind[1]/(per_ind[1] + per_ind[0])
per_ind.sort_values(by='Percent', ascending=False)
```

Out[25]:

Loan_Status	0	1	Percent
NAICS_Label			
Real Estate	9434	3668	0.279957
Finance/Insurance	6579	2517	0.276715
Trans/Ware	15947	5546	0.258038
Information	8279	2650	0.242474
Educational	4685	1451	0.236473
Construction	49196	14513	0.227801
Admin/Waste	23997	6973	0.225153
Retail_trade	95445	27389	0.222976

Accom/Food Loan_Status	51655 0	14329	0.217159 Percent
Arts/Entertain/Rec NAICS_Label	11305	2876	0.202807
Other	56845	13445	0.191279
Wholesale_trade	38005	8761	0.187337
Prof/Science/Tech	53032	11982	0.184299
Public_Admin	184	34	0.155963
Manufacturing	55845	9853	0.149974
Utilities	554	88	0.137072
Health/Social	48297	5445	0.101317
Industry_Manage	230	25	0.098039
Agriculture	8024	792	0.089837
Mining/Oil	1652	150	0.083241

Finance loans are most likely to be defaulted on, followed by Real Estate and Transportation. Banks should be cautious when loaning to these industries.

3. New Versus Established Businesses:

```
In [26]:
```

```
# here 0 refers to new and 1 is for existing businesses
plt.figure(figsize=(12,8))
sns.countplot(x="NewExist", hue="MIS_Status", data=df)
plt.legend()
plt.title('Loan status by Business type (New-0 or Existing-1)', size=20)
plt.show()
```


In above bar chart we can clearly see that Default rate for new businesses are higher than the existing one.

4. Loans Backed by Real Estate:

fig = plt.figure(figsize=(10,5))
sns.barplot(x="RealEstate", y="Loan_Status", data=df)
plt.title('Paid in Full Rate for Loans backed by Real Estate')
plt.xlabel('Real Estate')
plt.show()

Loans backed by real estate have a significantly lower default rate than loans not backed by real estate

4. Apporoved Loans Over Time:

```
In [28]:
```

```
post_1985 = df[df['ApprovalFY'] >= 1986]
fig = plt.figure(figsize=(15,5))
sns.countplot(x="ApprovalFY", data=post_1985, hue="MIS_Status")
plt.title('Amount of Defulted vs Paid SBA Loans over Time')
plt.xticks(rotation=75)
plt.show()
```


Here in the above chart, we can see the behavior of approved loans over time, and here we have a very intersecting fact about recession on loans. Loans that had been passed during the recession period have a higher default rate.

5. Terms (Loan duration in months):

```
In [29]:
```

```
per_tr=df.groupby(['Term', 'Loan_Status'])['Term'].count().unstack('Loan_Status')
```

```
per_tr['Percent'] = per_tr[1] / (per_tr[1] + per_tr[0])
per_tr.sort_values(by='Percent', ascending=False).head(10)
Out[29]:
```

Loan_Status	0	1	Percent
Term			
0	67.0	690.0	0.911493
44	216.0	1947.0	0.900139
43	224.0	1907.0	0.894885
53	245.0	2010.0	0.891353
31	205.0	1643.0	0.889069
29	192.0	1460.0	0.883777
45	245.0	1836.0	0.882268
32	216.0	1601.0	0.881123
37	268.0	1884.0	0.875465
41	282.0	1945.0	0.873372

Based off of this table and chart, it seems loan terms in the 30-60 month range are most likely to be defaulted on. Banks should be cautious giving out mid-range Term loans.

6. Low Documents:

```
In [30]:
```

```
plt.figure(figsize=(10,6))
sns.countplot(x=df['LowDoc'], hue="MIS_Status", data=df)
plt.title('LowDoc Loan Program', size=20)
plt.show()
```


The above Bar chart is clearly indicating that loans with lower documents had a higher default rate.

7. Correlations for all numerical variables:

```
In [31]:
```

let's try to find our some important aspects for our numeric data variables

```
# for that firstly i have craeted a seperate dataframe with all the numeric variables
num_list = ['RealEstate','Recession','Loan_Status','SBA_Appv','GrAppv','BalanceGross','Dis
bursementGross','LowDoc','RevLineCr','ApprovalFY', 'Term', 'NoEmp', 'NewExist', 'CreateJo
b', 'RetainedJob','UrbanRural']
num_df = df[num_list]
num_df.describe().T
```

Out[31]:

	count	mean	std	min	25%	50%	75%	max
RealEstate	869181.0	0.075470	0.264148	0.0	0.0	0.0	0.0	1.0
Recession	869181.0	0.221841	0.415485	0.0	0.0	0.0	0.0	1.0
Loan_Status	869181.0	0.171396	0.376855	0.0	0.0	0.0	0.0	1.0
SBA_Appv	869181.0	151962.798386	229145.682213	500.0	22500.0	63750.0	178500.0	4500000.0
GrAppv	869181.0	195784.310398	284814.292028	1000.0	35000.0	95000.0	231000.0	5000000.0
BalanceGross	869181.0	3.030043	1466.085598	0.0	0.0	0.0	0.0	996262.0
DisbursementGross	869181.0	203944.101982	288756.247983	4000.0	44000.0	100000.0	242600.0	11446325.0
LowDoc	869181.0	0.124118	0.329716	0.0	0.0	0.0	0.0	1.0
RevLineCr	869181.0	0.227916	0.419488	0.0	0.0	0.0	0.0	1.0
ApprovalFY	869181.0	2001.079421	5.901586	1968.0	1997.0	2002.0	2006.0	2014.0
Term	869181.0	111.775181	79.327933	0.0	60.0	84.0	120.0	569.0
NoEmp	869181.0	11.501969	74.850977	0.0	2.0	4.0	10.0	9999.0
NewExist	869181.0	0.281870	0.449911	0.0	0.0	0.0	1.0	1.0
CreateJob	869181.0	8.596320	239.613813	0.0	0.0	0.0	1.0	8800.0
RetainedJob	869181.0	10.945206	240.053842	0.0	0.0	1.0	4.0	9500.0
UrbanRural	869181.0	0.754572	0.648131	0.0	0.0	1.0	1.0	2.0

Noticeable Points:

- 1. RealEstate: had a mean of 0.07, it means only 7% of all Loans were backed by real estate.
- 2. NewExist: had a mean of 0.28, means 28% of all loans were given to new businesses.
- 3. Recession: had mean pf .22, means 22% of all loans were approved during Recession.

In [32]:

```
# let's see relationships between the variables with the help of graphics
fig, ax = plt.subplots(figsize=(14,14))
sns.heatmap(num_df.corr(),annot = True, cmap= "Blues")
plt.show()
```


The highest correlation is with DisbursementGross and GrAppv which makes sense as it is likely that the amount a business is approved for will be the amount that is disbursed to them. Nothing else on this heatmap appears to have a significant correlation.

Conclusions

- 1. State: The bank has to be a little careful while passing loans for the state of Florida, Arizona, and Nevada.
- 2. Industry: Finance loans are most likely to be defaulted on Real Estate and Transportation. Banks should be cautious when loaning to these industries.
- 3. New or Existing Business: This data has shown Default rate for new businesses is higher than the existing one.
- 4. Loans Backed by Real Estate: Loans backed by real estate have a significantly lower default rate than loans not backed by real estate. It means the value of land must be often large enough to cover the amount of any principal outstanding.
- 5. Economic Recession Small business loans are affected by the economy in general, and more small business loans tend to default right before and during an economic recession.
- 6. Term loan terms in the 30-60 month range are most likely to be defaulted on. Banks should be cautious giving out mid-range Term loans.
- 7. Low Documents: Loans with lower documents had a higher default rate. so, banks must be very careful with the documents while loaning to these industries.