(6) Correlation Analysis

Dr. Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jul 16, 2023

Outlines

- Introduction
- Pearson's correlation
- Spearman's rank correlation
- Kendall's rank correlation

Expected outcomes

- Familiarize with correlation analyses between two variables
- Understand and able to interpret the results of the correlation analyses

Introduction

Correlation Analysis

- Statistical Analyses for correlations:
 - Two numerical variables: Pearson's correlation
 - Two numerical/ordinal variables: Spearman's rank correlation
 - Two ordinal variables: Kendall's rank correlation

Pearson's correlation

Pearson's correlation

- Purpose: Determine the strength of linear association between TWO numerical variables
- Assumptions:
 - 1. Numerical variables
 - 2. Normally distributed data
- Correlation coefficient, *r*

Pearson's correlation

Research objective:

To determine the strength of linear association between cholesterol level and age

Research question:

What is the strength of relationship between cholesterol level and age?

Example

- Sample size: 80
- Variables:
 - cholesterol level in mmol/L
 - Age in years

Normality

Scatter Plot

Cholesterol vs Age

Results

Pearson's product-moment correlation

```
data: chol and age

t = 3.7119, df = 78, p-value = 0.0003841

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.1833492 0.5595401

sample estimates:
```

cor 0.3874574

r coefficient = 0.39

→ Significant medium correlation

Strength of correlation	r coefficient
None or very small	< 0.1
Small	0.1 - 0.3
Medium	0.3 - 0.5
Large	> 0.5

- Purpose: Determine the strength of linear association between TWO numerical (or at least ordinal) variables
- Non-parametric version of Pearson's correlation
- Non-normally distributed numerical data and ranked data

- The procedure turns numerical → ranks
- e.g. Age = 32, 28, 41 \rightarrow 2, 1, 3
- Assumption:
 - 1. Numerical / ordinal variables
- Correlation coefficient, $rho(\rho)$

Research objective:

To determine the strength of linear association between cholesterol level and age

Research question:

What is the strength of relationship between cholesterol level and age?

Example

- Sample size: 80
- Variables:
 - cholesterol level in mmol/L
 - Age in years
- Assuming these variables are not normally distributed

Results

Spearman's rank correlation rho

rho coefficient = 0.38

→ Significant medium correlation

Strength of correlation	r coefficient
None or very small	< 0.1
Small	0.1 - 0.3
Medium	0.3 - 0.5
Large	> 0.5

Kendall's rank correlation

Kendall's rank correlation

- Purpose: Determine the strength of linear association between TWO ordinal variables
- Assumption:
 - 1. Ordinal variables
- Correlation coefficient, tau (τ)

Kendall's rank correlation

Research objective:

To determine the strength of ordinal association between education level and parity

Research question:

What is the strength of relationship between education level and parity?

Example

- Sample size: 248
- Variables:
 - Education years: 0-5 years = 0, 6-11 years = 1, 12+years = 2
 - Parity

Scatter Plot

Parity vs Education Level

Results

Kendall's rank correlation tau

tau coefficient = -0.19

→ Significant, small negative correlation

Strength of correlation	r coefficient
None or very small	< 0.1
Small	0.1 - 0.3
Medium	0.3 - 0.5
Large	> 0.5

- Describe the purpose of checking association by Pearson's correlation
- Describe the purpose of checking association by Spearman's rank correlation
- Describe the purpose of checking association by Kendall's rank correlation

Table 6. Correlation between perceived stress and child's and caregiver's characteristics

Variable	Pearson's correlation coefficient (r)	<i>P</i> -value
Child characteristics		
Age	0.057	0.431
Time since diagnosis	-0.057	0.456
Care dependency	0.037^a	0.615
Caregiver characteristics		
Age	-0.126	0.082
Number of disabled children	0.073^{a}	0.320
Number of children	-0.219	0.002^{b}
Monthly household income	0.015^{a}	0.842
Financial support received	-0.089ª	0.255

^a Spearman's correlation coefficient (r_s)

Isa, S. N. I., Ishak, I., Ab Rahman, A., Saat, N. Z. M., Din, N. C., Lubis, S. H., & Ismail, M. F. M. (2017). Perceived stress and coping styles among Malay caregivers of children with learning disabilities in Kelantan. The Malaysian journal of medical sciences: MJMS, 24(1), 81.

b Significant at 0.05 level (2-tailed)

Correlation between the IDAF-4C and IDAF-S Modules

Spearman's rank correlation yielded r values ranging from 0.278 to 0.566. Item Q3F (*Not knowing what the dentist is going to do*) had the highest correlation with the IDAF-4C module, while item Q3G (*The cost of dental treatment*) had the lowest correlation with the IDAF-4C module. All correlations were significant at the P < 0.001 level. The results are shown in Table 3.

orrelation between the IDAF-4C and each item in the IDAF-S module (n = 320)				
em in IDAF-S Module	Spearman's rank correlation, r			
Q3A	0.386			
Q3B	0.437			
Q3C	0.397			
Q3D	0.407			
Q3E	0.547			
Q3F	0.561			
Q3G	0.278			
QЗН	0.496			
Ø31	0.380			
Q3J	0.393			

Baharuddin, I. H., Arifin, W. N., Kueh, Y. C., & Abd Rahman, Normastura (2018). Adaptation and validation of the Malay version of the Index of Dental Anxiety and Fear (IDAF-4C+) for Malaysian secondary school children. The Malaysian journal of medical sciences: MJMS, 25(3), 111.

Correlation between the identified key genera-level relative abundances and BMI was further investigated. Interestingly, a negative correlation was found between BMI and *Akkermansia* (P < 0.05; tau = -0.413; Kendall rank correlation testing), *Olsenella* (P < 0.05; tau = -0.601; Kendall rank correlation testing) and *Oscillospira* (P < 0.05; tau = -0.593; Kendall rank correlation testing).

Abdullah, B., Idorus, M. Y., Daud, S., Aazmi, S., Pillai, T. K., & Zain, Z. M. (2023). Gut Microbiota Composition in the First and Third Trimester of Pregnancy among Malay Women is Associated with Body Mass Index: A Pilot Study. The Malaysian journal of medical sciences: MJMS, 30(1), 116.

Thank You