# Implementation of Reinforcement Learning for LunarLander-v2

Saumya Maurya - 200552573 Tanveer Singh - 200554065 Sanket Shreekant Parab - 200555449

November 30, 2024

#### 1. Introduction

This report describes the implementation of reinforcement learning algorithms to solve the LunarLander-v2 problem. Using the forward-view approach, we trained an agent to land a spacecraft safely between two flags. The project is implemented in Jupyter Notebook, and all source code is provided in an organized manner.

## 2. Network Architecture

We implemented two different architectures to explore the agent's performance:

#### • Deep Q-Network (DQN):

- Input Layer: Accepts the 8-dimensional state vector from the environment.
- **Hidden Layers**: Two fully connected layers with 128 and 64 neurons, using the ReLU activation function.
- Output Layer: A linear layer producing four outputs corresponding to the discrete action space.
- **Optimizer**: Adam optimizer with a learning rate of 0.001.
- Loss Function: Mean Squared Error (MSE).

#### • Actor-Critic Algorithm:

#### – Actor Network:

- \* Input Layer: Takes the state as input.
- \* Hidden Layers: Two fully connected layers with 128 and 64 neurons, activated by ReLU.
- \* Output Layer: Outputs probabilities of actions using the Softmax activation function.

#### - Critic Network:

\* Similar architecture but produces a scalar value representing the statevalue function.

# 3. Training Process

## 3.1 Environment Setup

- Environment: LunarLander-v2 initialized using Gymnasium.
- State: The 8-dimensional vector includes position, velocity, and orientation.
- Rewards: Encourages smooth and safe landings.

## 3.2 Algorithm Implementation

- **DQN**: Experience replay was used to store and sample transitions. The target network was updated every 10 episodes.
- Actor-Critic: Forward view of the temporal-difference (TD) update was used to adjust actor and critic networks simultaneously.

## 3.3 Training Hyperparameters

- Number of Episodes: 2000.
- Exploration Strategy: Epsilon-greedy policy with epsilon decay (from 1.0 to 0.01).
- Discount Factor  $(\gamma)$ : 0.99.

#### 3.4 Visualization

- Training rewards were tracked, and episodes were rendered every 100 iterations.
- Performance was analyzed by observing cumulative rewards over episodes.

## 4. Results

#### 4.1 Performance

- DQN: Stable landings observed after 1000 episodes, with an average reward of 200.
- Actor-Critic: Faster convergence, with stable rewards achieved after 600 episodes.



Figure 1: Lunar Lander visualization at step 11.



Figure 2: Lunar Lander visualization at step 100.

#### 4.2 Visualizations

# 5. Challenges and Solutions

• Sparse Reward Structure: The environment's sparse rewards caused slow learning in early episodes.

**Solution**: Applied reward shaping to encourage intermediate goals, such as reducing velocity and maintaining orientation.

• Balancing Exploration and Exploitation: Balancing exploration and exploitation was challenging.

**Solution**: Used a decaying epsilon strategy to gradually shift from exploration to exploitation.

• Stability in DQN Training: Training was unstable due to non-stationary updates.

**Solution**: Used a separate target network and experience replay to stabilize learning.

# 6. Suggestions for Improvement

- **Algorithm Enhancements**: Implement prioritized experience replay and curiosity-driven exploration.
- Network Architecture: Experiment with deeper networks or convolutional layers
- Additional Environments: Test the algorithms in more complex continuousaction environments.

# 7. Instructions for Running the Code

## 7.1 Prerequisites

- Install required libraries: gymnasium, torch, numpy, and matplotlib.
- Ensure a Python 3.x environment with Jupyter Notebook support.

# 7.2 Running the Code

- Navigate to the directory containing the Jupyter Notebook.
- Run LunarLander\_Training\_and\_Visualization\_Fixed.ipynb.

# 8. Conclusion

The project successfully demonstrated forward-view reinforcement learning algorithms in the LunarLander-v2 environment. Results show promising performance with room for further improvements through advanced techniques and architectures.