

Trasforma le seguenti espre	ssioni in funzione solta	anto di sin $lpha$, sapendo c	he $0 < \alpha < \frac{\pi}{2}$:	
$\frac{\tan \alpha + \cos \alpha}{\tan^2 \alpha} \cdot \frac{1}{\cos \alpha}$	$-\frac{1}{\tan^2\alpha} =$			$\left[\frac{1}{\sin\alpha}\right]$
			sin' x + co, 2x = 1	
sind + cood		1 =	tand = Sind	
sin²d Gos²d	Cos d	in²d cos²d		
sind + co2x				
- Cond.	Cosó	$\frac{\cos^2 d}{\sin^2 d} =$		
Sen ² d Cos ² d	920			
Sind + cos ² d	Cost Con	2 d Sind to	62°d - 65°d Sino	d
= sind + cord	sin ² d sin	² d se	12 d - 95 d = Since 112 d Shi	٤٠.
= 1 Sind				
OSSERVAZIONE			Sind = ± V1- 600 d	
Dolla relatione	$\sin^2 x + \cos^2 x =$	1 si Mara		
			Cost = ± V1- sin2d	
			se + 6 - dero sof	
		in quole i	internally maris a	
Ad esempis, se	T < 2 < T			
7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	$=-\sqrt{1-\sin^2 d}$		
π		$= -\sqrt{1-9md}$ $4 = +\sqrt{1-cod}$		
	Sin o	4 = + V1-cond		

$$\frac{\cos^2\alpha}{1-\cos^2\alpha} - \tan\alpha + \frac{1-\sin^2\alpha}{\cos^2\alpha} - \frac{1}{\sin^2\alpha}$$

$$= \frac{\cos^2 \alpha}{\sin^2 \alpha} - \frac{\sin \alpha}{\cos \alpha} + \frac{\cos^2 \alpha}{\cos^2 \alpha} - \frac{1}{\sin^2 \alpha}$$

$$= \frac{\cos^2 \alpha}{\sin^2 \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 - \frac{1}{\sin^2 \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\sin^2 \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} - \frac{\cos^2 \alpha}{\cos \alpha} + 1 = \frac{\cos^2 \alpha}{\cos \alpha} + \frac{\cos^2 \alpha}{\cos \alpha$$

Calcola il coseno dell'angolo che la retta di equazione $y = -\frac{3}{4}x + 5$ forma con l'asse x.

$$\left[-\frac{4}{5}\right]$$

$$\left(-\frac{3}{4}\cos^{2}\right)^{2} + \cos^{2}\alpha = 1$$

$$\cos^2 \alpha = \frac{16}{25}$$

$$\cos^2 \alpha = \frac{4}{5}$$

$$\cos^2 \alpha = \frac{4}{5}$$

Trova l'equazione della retta passante per il punto A(-2;1) e che forma un angolo di $\frac{2}{3}\pi$ con l'asse x.

$$[y = -\sqrt{3}x - 2\sqrt{3} + 1]$$

$$y - y_A = m(x - x_A)$$

$$m = \tan\left(\frac{2}{3}\pi\right) = \frac{\sin\frac{2}{3}\pi}{\cos\frac{2}{3}\pi} = \frac{\sqrt{3}}{2}$$

$$y-1=-\sqrt{3}(x+2)$$

$$y = -\sqrt{3} \times -2\sqrt{3} + 1$$

SECANTE

$$\alpha \neq \frac{\pi}{2} + K\pi$$

$$CSC d = \frac{1}{Sin d} d \neq K\pi$$

COTANGENTE

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} \quad \alpha \neq K\pi$$

$$d \neq K\pi$$

(se
$$\[\angle \] \neq \[\] \[\] \[\$$