AUTOEVALUACIÓN 4.2

I)
$$i \cdot j =$$
_____.

b)
$$\sqrt{(0-1)^2+(1-0)^2}$$

$$d$$
) $i+j$

II)
$$(3, 4) \cdot (3, 2) =$$
_____.

a)
$$(3+3)(4+2) = 36$$

b)
$$(3)(3) + (4)(2) = 17$$

c)
$$(3-3)(2-4)=0$$

d)
$$(3)(3) - (4)(2) = 1$$

III) El coseno del ángulo entre
$$\mathbf{i} + \mathbf{j} \in \mathbf{i} - \mathbf{j}$$
 es _____.

$$a$$
) $0\mathbf{i} + 0\mathbf{j}$

c)
$$\sqrt{2}$$

d)
$$\frac{1}{\sqrt{2+0}}$$

IV) Los vectores
$$2\mathbf{i} - 12\mathbf{j} \text{ y } 3\mathbf{i} + \left(\frac{1}{2}\right)\mathbf{j} \text{ son } \underline{\hspace{1cm}}$$

- a) Ni paralelos ni ortogonales
- b) Paralelos

c) Ortogonales

d) Idénticos

$$\mathbf{V}$$
) Proy_w $\mathbf{u} = \underline{\qquad}$.

a)
$$\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{w}|}$$

$$b) \frac{\mathbf{w}}{|\mathbf{w}|}$$

c)
$$\frac{\mathbf{u} \cdot \mathbf{w} \cdot \mathbf{w}}{|\mathbf{w}| |\mathbf{w}|}$$

$$d$$
) $\frac{\mathbf{u} \cdot \mathbf{w} \, \mathbf{u}}{|\mathbf{u}| |\mathbf{u}|}$

Respuestas a la autoevaluación

PROBLEMAS 4.2

De los problemas 1 al 11 calcule el producto escalar de los dos vectores y el coseno del ángulo entre

1.
$$u = 3i - 5j$$
; $v = -i + j$ 2. $u = i + j$; $v = i - j$ 3. $u = 3i$; $v = -7j$

2.
$$u = i + j$$
; $v = i - j$

3.
$$\mathbf{u} = 3\mathbf{i}; \mathbf{v} = -7$$

4.
$$\mathbf{u} = \begin{pmatrix} 3 \\ -8 \end{pmatrix}$$
; $\mathbf{v} = \begin{pmatrix} -5 \\ 1 \end{pmatrix}$ **5.** $\mathbf{u} = \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}$; $\mathbf{v} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ **6.** $\mathbf{u} = \alpha \mathbf{i}$; $\mathbf{v} = \beta \mathbf{j}$; α, β reales

5.
$$\mathbf{u} = \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

6.
$$\mathbf{u} = \alpha \mathbf{i}$$
; $\mathbf{v} = \beta \mathbf{j}$; α, β reales

7.
$$\mathbf{u} = \begin{pmatrix} 10 \\ 10 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} -7 \\ 10 \end{pmatrix}$$
 8. $\mathbf{u} = 2\mathbf{i} + 5\mathbf{j}; \mathbf{v} = 5\mathbf{i} + 2\mathbf{j}$ 9. $\mathbf{u} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$

8.
$$\mathbf{u} = 2\mathbf{i} + 5\mathbf{j}$$
; $\mathbf{v} = 5\mathbf{i} + 2\mathbf{j}$

9.
$$\mathbf{u} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}; \mathbf{v} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

10.
$$\mathbf{u} = \alpha \mathbf{i} + 2\mathbf{j}$$
; $\mathbf{v} = 3\mathbf{i} + \beta \mathbf{j}$ **11.** $\mathbf{u} = 4\mathbf{i} + 5\mathbf{j}$; $\mathbf{v} = 5\mathbf{i} - 4\mathbf{j}$

11
$$u - 4i + 5i \cdot v - 5i - 4i$$

- 12. Demuestre que para cualesquiera números reales α y β , los vectores $\mathbf{u} = \alpha \mathbf{i} + \beta \mathbf{j}$ y $\mathbf{v} = \beta \mathbf{i} \alpha \mathbf{j}$ son ortogonales.
- 13. Sean \mathbf{u} , \mathbf{v} y \mathbf{w} tres vectores arbitrarios. Explique por qué el producto $\mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$ no está definido.