532 Final Project

Anish Mitagar, Karishma Manchanda, Scott Fortune, Sugun Yadla

Project Description

Our project aims to discover the effects of horizontal scaling on the execution time of a basic ML pipeline. We measure the execution time of each stage in the pipeline.

Dataset: Diabetes Diagnosis

- Diabetes prediction dataset: collection of medical and demographic data from patients, plus their diabetes diagnosis (positive or negative)
- The dataset has many attributes that justify different types of data processing/transformation like One-Hot Encoding and Normalization
- Link: https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset

Design Description

 Implemented a pipeline using Apache Spark that predict diabetes in patients based on their medical history and demographic information

Design Description

 Using Docker + Docker Compose to start up multiple containers (or small virtual machines) within one host machine to best simulate a distributed computing environment

Program Description

- data: stores execution times recorded in the experiments
- diabetes_prediction_dataset.csv: our dataset for training random forests
- docker-compose.yml: defines and configures all services, networks and volumes for a multi-container Docker application
- Dockerfile: Defines and generates docker images
- _profiles: stores the execution profiles of functions called in pipeline.py (and the other variants)

- > **m** _profiles
- > 💼 data
- official_results
 - comparision_visuals.py
 - diabetes_prediction_dataset.csv
 - docker-compose.yml
 - Dockerfile
 - generate_stats.py
 - generate_visuals.py
 - pipeline_w_prof.py
 - pipeline_w_prof2.py
 - pipeline.ipynb
 - pipeline.py
 - profilerdeck.py
 - README.md
 - run_tests_w_prof.sh
 - run_tests_w_prof2.sh
 - run_tests.sh

Program Description

- run_tests.sh: a script for running the experiments
- generate_visuals.py: generates graphs of the execution time distributions of the pipeline stages per experiment run
- comparision_visuals.py: generate graphs comparing the execution time distributions for two experiments
- generate _stats.py: generate basic statistics for the execution times of the pipeline stages per experiment

- > **m** _profiles
- > 💼 data
- > official_results
 - comparision_visuals.py
 - diabetes_prediction_dataset.csv
 - docker-compose.yml
 - Dockerfile
 - generate_stats.py
 - generate_visuals.py
 - pipeline_w_prof.py
 - pipeline_w_prof2.py
 - pipeline.ipynb
 - pipeline.py
 - profilerdeck.py
 - MI README.md
 - run_tests_w_prof.sh
 - run_tests_w_prof2.sh
 - run_tests.sh

Design Decisions

- PySpark over SciKit Learn: We had experience using PySpark from earlier homeworks; more support for distribution.
- Docker or Kubernetes: Team members had some exposure with Docker.
 Docker-compose was an easy solution for setting up many containers to run together.
- Trouble running the pipeline on Windows OS versus a Unix based OS (Experiments were run on Macbook Pro M1 Max 32GB RAM)

Tests

- run_tests.sh: Runs the pipeline.py on multiple hardware configurations, confirming that the pipeline executes correctly in different hardware configurations. By Hardware configurations we mean number of running Docker container nodes/workers
- pipeline.py: We test the ML pipeline and the printed accuracy of the chosen best model on predicting the test set. The accuracy was consistently around 97%

More Tests: Using Profiler

```
@profile
def benchmark_preprocessing_stage(stage, df):
    start time = time.perf counter()
    # For estimators (like StringIndexer, Onel
    if isinstance(stage, StringIndexer) or isi
        model = stage.fit(df)
        df = model.transform(df)
    else: # For transformers (like VectorAsse
        df = stage.transform(df)
    end time = time.perf counter()
    return end time - start time, df
@profile
def benchmark_validator_stage(crossval, df):
    start_time = time.perf_counter()
    cvModel = crossval.fit(df)
    end_time = time.perf_counter()
    return end time - start time, cvModel
```

versus

```
@profile
def benchmark preprocessing stage(stage, df):
    # For estimators (like StringIndexer, Onel
    if isinstance(stage, StringIndexer) or isi
        model = stage.fit(df)
        df = model.transform(df)
    else: # For transformers (like VectorAsse
        df = stage.transform(df)
    return df
@profile
def benchmark validator stage(crossval, df):
    cvModel = crossval.fit(df)
    return cvModel
for stage in stages:
   start_time = time.perf_counter()
   df = benchmark_preprocessing_stage(stage, df)
   end time = time.perf counter()
   time_taken = end_time - start_time
start time = time.perf counter()
```

cvModel = benchmark_validator_stage(crossval, df)

end_time = time.perf_counter()
time_taken = end_time - start_time

	Preprocessing S Preprocessing S	Preprocessing S	Preprocessing S Prepro	cessing S Prepr	ocessing S	Preprocessing S	CrossValidator	Total Time
Results_num_node_1_Mean	0.5365745019 0.01327376996	0.1703237659	0.01256727912 0.0062	23423502 0.47	16166877	0.00638390164	21.53970804	22.75668218
Results_num_node_1_Median	0.528660334 0.012477271	0.1686474165	0.012259667 0.00	05924146 0.4	63601938	0.006223312	21.39982236	22.61244868
Results_num_node_1_Standard Deviation	0.05459817772 0.005353088124	0.01114089496	0.001923141993 0.0022	240763984 0.036	81296633	0.001217014795	0.6143254101	0.7053366261
Results_num_node_2_Mean	1.062638651 0.01329799162	0.4539008586	0.0126862509 0.006	65000842 0.60	98502513	0.00652169742	23.15251854	25.31791432
Results_num_node_2_Median	1.01245698 0.0124151665	0.244146396	0.0124145835 0.00	06139854 0.49	18484375	0.006338146	23.08982899	25.2816151
Results_num_node_2_Standard Deviation	0.4605166768 0.005565021228	0.3766766478	0.00214218872€ 0.0024	189520691 0.28	82362228	0.001039239486	0.6258136784	0.7482981964
Results_num_node_3_Mean	1.097853071 0.01326023334	0.9262228497	0.01237177504 0.0064	41299334 0.6	77088747	0.00649725254	24.72184479	27.46155171
Results_num_node_3_Median	1.017930084 0.0119575625	1.002200709	0.0119813125 0.006	60433745 0.50	91217505	0.00629575	24.71241541	27.32626251
Results_num_node_3_Standard Deviation	0.4248585374 0.005624571661	0.5646432137	0.00236714349€ 0.0028	319103594 0.38	309354147	0.001336245401	0.9200762802	0.7633365385
Results_num_node_4_Mean	1.195033335 0.0132309866	0.7850728179	0.01250561752 0.0061	19945906 0.9	990270543	0.00667524172	26.79327042	29.80225842
Results_num_node_4_Median	1.518952897 0.012214271	0.5731200205	0.0121405835 0.005	57523745 0.7	09190834	0.006181958	26.63037978	29.71743664
Results_num_node_4_Standard Deviation	0.4314810406 0.00532045113	0.5745930187	0.001880472807 0.0021	183372108 0.55	39303891	0.002209242173	1.058287846	0.6923572252
Results_num_node_5_Mean	1.261407485 0.01312077662	0.8971519637	0.01239413078 0.0064	41394584 1.1	89646516	0.00636872826	28.59252084	31.97902438
Results_num_node_5_Median	1.537422646 0.0123151045	1.001204396	0.0121657915 0.00	05961875 1.1	81402126	0.006124042	28.44641224	31.9047477
Results_num_node_5_Standard Deviation	0.4060235487 0.005577354027	0.5832247807	0.00199654637 0.0022	22340633€ 0.54	51589236	0.001220676125	1.03791027	0.8152981632
Results_num_node_6_Mean	1.216500569 0.0134856158	1.031333715	0.01275883334 0.0063	31659664 1.2	237027096	0.00647354082	30.5106642	34.03456017
Results_num_node_6_Median	1.523853376 0.0127132295	1.520886064	0.012277604 0.00	06002833 1.6	78838834	0.006181021	30.51015966	34.02012881
Results_num_node_6_Standard Deviation	0.4351735279 0.005598707519	0.5921442511	0.00202098705 0.0021	113930497 0.54	01002437	0.001415681324	1.217653118	0.9786246947
Results_num_node_7_Mean	1.321246313 0.01392664412	1.203815786	0.01312679342 0.0063	39042998 1	.30879657	0.00641633504	32.18570125	36.05942012
Results_num_node_7_Median	1.541004271 0.0130031455	1.546808584	0.0120884165 0.00	05995271 1.6	86779333	0.006220729	32.24763445	36.12089064
Results_num_node_7_Standard Deviation	0.3817497358 0.005748684052	0.4961197265	0.0032978731410.0020	090911388 0.51	88681851	0.00133704967	1.123426008	0.9038165686
Results_num_node_8_Mean	1.356419476 0.01348154668	1.088352522	0.0125400766 0.0063	32114758 1.2	228671177	0.0064810192	34.30915959	38.02142656
Results_num_node_8_Median	1.542367375 0.0122324375	1.532600959	0.011981292 0.0059	925770999 1	.67522548	0.0063131045	34.54633891	38.11362987
Results_num_node_8_Standard Deviation	0.3274429982 0.006257810329	0.5895134726	0.002078609284 0.0022	229696371 0.57	03185752	0.001363003769	1.341448729	1.228832134

- Expectation: greater number of nodes/workers → runtime decreases
- Result: greater number of nodes/workers → runtime increased
- Two Possible Explanations:
- Communication Overhead between nodes/workers > processing gains
- Overhead from nodes/workers competing for limited resources
 - Processes > Cores available per node/worker

Goals

- Runtime on Distributed vs Single System (Success with caveat): we only had the resources and time to conduct the research on a single system, but we did conduct research on multiple "virtual" machines on a single system
- Runtime vs Number of Nodes (Success): Created graphs and conducted analysis for 1, 2, 4, and 8 running workers/nodes
- Demonstrated the benefits of distributed computing on heavy workloads (Failed): insufficient hardware setup because of lack of time and money

Possible Improvements

- Better hardware: Poor execution times most likely due to running ML code on laptops. Overhead of distribution protocols may be more prominent on lower spec hardware.
- Explore more ML Families: Performances gains scaling when other model families are trained such as neural networks.
- Pick more appropriate workload for appropriate hardware: Perhaps ML pipeline is not meant for lower spec hardware.
- Better simulation of distributed computing (on a budget): Instead of a single host machine with many small VMs, link several physical Raspberry Pis together