Question1 Part 1:

The class priors are P(L=0) = 0.9 and P(L=1) = 0.1

The parameters of the class-conditional Gaussian pdfs are:

$$\mathbf{m}_0 = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$
 $\mathbf{C}_0 = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 2 \end{bmatrix}$ $\mathbf{m}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\mathbf{C}_1 = \begin{bmatrix} 2 & 0.9 \\ 0.9 & 1 \end{bmatrix}$

Determine the classifier that achieves the minimum probability of error using the knowledge of the true pdf:

$$\frac{P(X|L=1)}{P(X|L=0)} \underbrace{\frac{P(L=0)(\lambda_{10}-\lambda_{10})}{P(L=1)(\lambda_{01}-\lambda_{10})}}_{Q(X|L=0)} \underbrace{\frac{O.9}{P(L=1)(\lambda_{01}-\lambda_{10})}}_{Q(X|m_{1},C.)} \underbrace{\frac{O.9}{P(L=1)(\lambda_{01}-\lambda_{10})}}_{Q(X|m_{0},C.)}$$

Figure 1. Data and their true labels for the validation

Figure 2. ROC curve and the location of the min-P(error)

Estimated min-P(error):

```
"Min Perror is " "0.0264"

"Best threshold is " "11.9971"

"tp is " "0.80199|"

"fp is " "0.0072262"

"perror" "0.0267"
```


Figure 3. Decision boundary overlaid on the validation dataset

Question 1 Part 2:

How to use a class-label-posterior approximation to classify a sample:

Figure 4. Decision boundary for D=10 Training Data

Figure 5. Decision boundary for D=10 on the validation dataset Probability of error:

Total error (classifier using fminsearch): 4.63%

Figure 6. Decision boundary for D=100 Training Data

Probability of error:

Total error (classifier using fminsearch): 3.15%

Figure 8. Decision boundary for D=1000 Training Data

Probability of error:

Total error (classifier using fminsearch): 2.90%

Question 1 Part3:

Figure 10. Decision boundary for D=10 on the validation dataset

Figure 11. Decision boundary for D=100 on the validation dataset

Figure 12. Decision boundary for D=1000 on the validation dataset

Question2:

Determine the MAP estimate:

= aymax or
$$(-\frac{d^2+b^2+c^2+d^2}{27^2})\frac{n}{\binom{n}{2}}$$
 exp $(-\frac{(9i-6)(3^2-b)(3^2-c)(3-d)^2}{2-62})$

= ary min
$$\frac{a^2+b^2+c^2+d^2}{23^2} + \frac{x}{i^4} \frac{(3i-ax)^3-3x^3-6x^3-6x^2-6x^2-1)^2}{2x^2}$$

Figure 13. MAP estimator for each value of γ in a single plot

From the plot, we can see that as the gamma increases, the squared error decreased at first. However, after gamma = 10, the squared error increased significantly when gamma goes up.

Question 3:

LMM componers:

In order to perform cross-validation. I find split the detaste to be block. Then, in each iteration. I we you as the validation set. He rest of the dates will be the terming see. Each cross validation probe current number of gastrian components for the number of vandom initializations.

Avorage	, log-like	had of	tesling di	ta for	6 compu	ent :
comprog	(2	3	4	4	6
10	-7.94	-10.14	-12.2	- 36.6	-110.4	-116.4
100	71.65	-69.4	-70.48	-68.76	-69.9	-71.66
1000	-722.8	-70b.4	-6929	-68-5	-686. 3	-600-6.
—	l	1				(

For los samples, the selection is I comparere.

For los samples, the selection is 4 comparere.

For los samples. the selection is 4 comparere.

Figure 14. Sample data generated by GMM when N = 10

Figure 15. Validation log-likelihoods when N = 10 using cross-validation

Figure 16. Sample data generated by GMM when N = 100

Figure 17. Validation \log -likelihoods when N = 100 using cross-validation

Figure 18. Sample data generated by GMM when N = 1000

Figure 19. Validation log-likelihoods when N = 1000 using cross-validation