

第60讲: 拟合优度检验

前面介绍的各种检验都是在总体服从 正态分布前提下,对参数进行假设检验的。 实际中可能遇到这样的情形,总体服从何 种理论分布并不知道,要求我们直接对总 体分布提出一个假设。

例1: 一淘宝店主搜集了一年中每天的订单数X,除去春节期间及双十一前后外,按330天计,具体数据如下:

订单数X	0	1	2	3	4	5	6	7	
天数	3	6	21	46	48	61	52	42	

订单数X	8	9	10	11	12	13	16	
天数	27	11	6	4	1	1	1	

通常认为每天的订单数服从泊松分布,以上的数据是否支持这个结论?

问题:根据上面的数据是否可以得出每天的订单数服从泊松分布假设?

记: F(x)为总体X的未知的分布函数,

假设: $F_0(x)$ 是形式已知,但含有若干个 未知参数的分布函数。

检验假设:

$$H_0: F(x) = F_0(x) \quad \forall x \in R$$

注: 若总体X为离散型,则假设 H_0 为:

 H_0 : 总体X的分布律为 $P\{X = t_i\} = p_i, i = 1, 2,$

若总体X为连续型,则假设 H_0 为:

 H_0 :总体X的概率密度为f(x)。

检验方法: 拟合优度检验

拟合优度检验的基本原理和步骤:

 $1. 在 H_0$ 下,总体X取值的全体分成k个两两不相交的子集 A_1, \ldots, A_k .

 $2.以n_i(i=1,...,k)$ 记样本观察值 $x_1,...,x_n$ 中落在 A_i 的个数(实际频数).

3. 当 H_0 为真且 $F_0(x)$ 完全已知时,计算事件 A_i 发生的概率 $p_i = P_{F_0}(A_i), i = 1,...,k;$

当 $F_0(x)$ 含有r个未知参数时,先利用极大似然法估计r个未知参数,然后求得 p_i 的估计 \hat{p}_i .

此时称 np_i (或 $n\hat{p}_i$)为理论频数.

4.检验统计量 $\sum_{i=1}^{k} h_i (n_i - np_i)^2$, $h_i = ?$

检验的拒绝域形式为:
$$\sum_{i=1}^k h_i (n_i - np_i)^2 \ge c.$$

定理: $若n充分大,则当<math>H_0$ 为真时,统计量

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}} \stackrel{\text{till}}{\sim} \chi^{2}(k-1)$$

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - n\hat{p}_{i})^{2}}{n\hat{p}_{i}} \stackrel{\text{if } id}{\sim} \chi^{2}(k - r - 1)$$

其中k为分类数,r为 $F_0(x)$ 中被估未知参数个数.

所以,取检验统计量为
$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

$$= \sum_{i=1}^k \frac{n_i^2}{np_i} - 2\sum_{i=1}^k n_i + n\sum_{i=1}^k p_i$$

$$= \sum_{i=1}^k \frac{n_i^2}{np_i} - n$$
或 $\chi^2 = \sum_{i=1}^k \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} = \sum_{i=1}^k \frac{n_i^2}{n\hat{p}_i} - n$

即在显著水平α下拒绝域为

$$\chi^2 = \sum_{i=1}^k \frac{{n_i}^2}{np_i} - n \ge {\chi_{\alpha}}^2 (k-1)$$
, (没有参数需要估计)

$$\chi^2 = \sum_{i=1}^k \frac{n_i^2}{n\hat{p}_i} - n \ge \chi_{\alpha}^2 (k-r-1)$$
, (有r个参数需要估计)

注: χ²拟合检验使用时必须注意:

n要足够大, $np_i(\mathfrak{A}n\hat{p}_i)$ 不能太小。

根据实践,要求 $n \geq 50$, np_i (或 $n\hat{p}_i$) ≥ 5 ,

否则应适当合并相邻的类, 以满足要求。

例1的Excel实现见实验24.

解: $H_0: X \sim \pi(\lambda)$, λ 未知, 总订单数为1749,

所以,平均每天订单数 $\hat{\lambda} = \overline{X} = 1749/330 = 5.3.$

概率估计(大于11的订单次数较小,所以将大于等于11的合并): 需注意!

$$\hat{p}_i = \frac{\hat{\lambda}^i e^{-\hat{\lambda}}}{i!}, i = 0, 1, ..., 10, \quad \hat{p}_{11} = \sum_{j=11}^{\infty} \frac{\hat{\lambda}^j e^{-\hat{\lambda}}}{j!} = 1 - \sum_{i=0}^{10} \hat{p}_i.$$

理论频数: $n\hat{p}_i$, i = 0,1,...,10,11, $n\hat{p}_0 = 1.65 < 5$, 4x = 0, 5x = 1, 5x

订单数X	0	1	2	3	4	5
天数	3	6	21	46	48	61
概率估计	0.005	0.026	0.070	0.124	0.164	0.174
理论频数	1.65	8.73	23.13	40.87	54.16	57.41

订单数X	6	7	8	9	10	≥11	
天数	52	42	27	11	6	7	
概率估计	0.154	0.116	0.077	0.045	0.024	0.021	
理论频数	50.71	38.39	25.44	14.98	7.94	6.60	14

检验统计量的值为

$$\chi^{2} = \sum_{i=1}^{k} \frac{n_{i}^{2}}{n\hat{p}_{i}} - n = \sum_{i=1}^{11} \frac{n_{i}^{2}}{n\hat{p}_{i}} - 330 = 3.97$$

即在显著性水平 $\alpha = 0.05$ 下临界值 $\chi_{\alpha}^{2}(k-r-1) = \chi_{0.05}^{2}(11-1-1) = 16.92$ 于是, 3.97 < 16.92,接受原假设。

例2:孟德尔遗传理论断言, 当两个品种的豆杂 交时, 圆的和黄的、起皱的和黄的、圆的和绿 的、起皱的和绿的豆的频数将以比例9:3:3: 1发生。在检验这个理论时,孟德尔分别得到 频数315、101、108、32、这些数据是否支持 该理论?

$$R: \ \mathcal{L}X = egin{cases} 1, & \hbox{ Ξ 豆 \mathcal{T} 是 圆 的 和 黄 的} \\ 2, & \hbox{ Ξ 豆 \mathcal{T} 是 起 皱 的 和 黄 的} \\ 3, & \hbox{ Ξ 豆 \mathcal{T} 是 圆 的 和 绿 的} \\ 4, & \hbox{ Ξ 互 \mathcal{T} 是 起 皱 的 和 绿 的} \end{cases}$$

$$H_0: p_1 = P(X = 1) = \frac{9}{16}, p_2 = P(X = 2) = \frac{3}{16},$$

 $p_3 = P(X = 3) = \frac{3}{16}, p_4 = P(X = 4) = \frac{1}{16}.$

豆子状态	X	1	2	3	4
实测频数	n_i	315	101	108	32
概率	p_i	9/16	3/16	3/16	1/16
理论频数	np_i	312.75	104.25	104.25	34.75

$$\chi^2 = \sum_{i=1}^4 \frac{n_i^2}{np_i^2} - n = 0.47 < \chi^2_{0.05}(3) = 7.815,$$

不拒绝原接受,即数据支持该理论.