## Dynamic Structural Models for Policy Evaluation

### Sergi Quintana

Universitat Autònoma de Barcelona Barcelona School of Economics

BSE Summer School, 2024





### **Practical Sessions Outline**

- 1. Solving Value Functions
- 2. Solving the model
- 3. Conditional Choice Probability (CCP) estimation
- 4. CCP estimation finite dependence





# Session 4: CCP estimation - finite dependence

BSE Summer School, 2024





### Session Outline

Conditional Choice Probability

Model

Data

Results

Extensions



## Conditional Choice Probability

#### Introduction

- ▶ Based on the seminal paper of Hotz and Miller (1993)
- ▶ Idea: use the mapping between conditional value functions  $v_{jt}(x_t)$  and CCP probabilities  $p_t(x_t)$
- ▶ Write DP as a function of data, parameters and CCP:

$$v_{jt}(\mathbf{x}_t) = u_{jt}(\mathbf{x}_t) + \beta \int V_{t+1}(\mathbf{x}_{t+1}) dF_x(\mathbf{x}_{t+1}|\mathbf{x}_t, j)$$

$$= u_{jt}(\mathbf{x}_t) + \beta \int \left[ v_{kt+1}(\mathbf{x}_{t+1}) + \psi_k(\mathbf{p}_{t+1}(\mathbf{x}_{t+1})) \right] dF_x(\mathbf{x}_{t+1}|\mathbf{x}_t, j)$$

▶ since using the main **theorem** in Hotz and Miller (1993):

$$\psi_k(\boldsymbol{p}_t(\boldsymbol{x}_t)) \equiv V_t(\boldsymbol{x}_t) - v_{kt}(\boldsymbol{x}_t)$$



## Conditional Choice Probability

#### Introduction

- $\rho$ -periods-ahead CCP,  $\rho = 1, 2, ..., k$
- ► Two types of problems:
  - 1. Terminal/renewal action CCP
  - 2. Finite Dependence
- ► Finite Dependence:
  - ▶ introduced by Altug and Miller (1998), Arcidiacono and Miller (2011)
  - ▶ Idea: After the  $\rho$ -periods, the specified combination of actions across the two paths leads to the same distribution of states.





### **Infinite Horizon**

#### Finite dependence - Steps

Remember that we have finite number of states  $x_t = 1, ..., X$ , however infinite time horizon  $(T = \infty)$ .

#### Steps:

- 1. Formulate the dynamic programming problem (conditional value functions  $v_{jt}(x_t)$  and  $V_t(x)$ ) using finite dependence feature.
- 2. Formulate *conditional choice probabilities* and map them into conditional value functions.
- 3. Substitute  $p_1$  by  $\hat{p}_1$  in conditional value functions using two possible methods (i.e. frequencies).
- 4. Construct log-likelihood function with the new probabilities.
- 5. Solve the maximization problem.



#### Framework

- ightharpoonup Each period t agents decide to work (W) or stay at home (H)
- $ightharpoonup x_t$  labour market experience of individual (in years)
- ► Utility:

$$u(x_t, d_t, \epsilon_t) = \begin{cases} \varphi_0 + \varphi_1 x_t + \varphi_2 x_t^2 + \epsilon_{Wt} & \text{if } d_t = W \\ \epsilon_{Ht} & \text{if } d_t = H \end{cases}$$

where  $\epsilon_{0t}$  and  $\epsilon_{1t}$  are unobserved by econometrician, iid with all Rust assumptions,  $d_t \in \{H, W\}$ 

- $ightharpoonup \varphi_0$  represents unemployment benefit or utility from leisure
- ▶ Support of  $x_t = 1, ..., X$  is finite





#### **Analytical solution**

► Formulate conditional value functions:

$$v_{Wt}(x_t) = u_W(x_t) + \beta V_{t+1}(x_t + 1)$$

$$= u_W(x_t) + \beta (v_{Ht+1}(x_t + 1) + \psi_H(\mathbf{p}(x_t + 1)))$$

$$= u_W(x_t) + \beta (u_H(x_t + 1) + \psi_H(\mathbf{p}(x_t + 1))) + \beta^2 V_{t+2}(x_t + 1)$$

$$v_{Ht}(x_t) = u_H(x_t) + \beta V_{t+1}(x_t)$$

$$= u_H(x_t) + \beta (v_{Wt+1}(x_t) + \psi_W(\mathbf{p}(x_t)))$$

$$= u_H(x_t) + \beta (u_W(x_t) + \psi_W(\mathbf{p}(x_t))) + \beta^2 V_{t+2}(x_t + 1)$$

► From Hotz and Miller (1993):

$$\psi_W(\boldsymbol{p}(x_t)) = V_t(x_t) - v_{Wt}(x_t)$$



#### Analytical solution

► Recall from the full solution method:

$$V_t(x_t) = \ln \left( \sum_{h \in D} \exp\{v_{ht}(x_t)\} \right) + \gamma$$

Conditional choice probabilities are given by:

$$p_W(x_t) = \frac{\exp\{v_{Wt}(x_t)\}}{\sum_{h \in D} \exp\{v_{ht}(x_t)\}} \Longrightarrow \ln\left(\sum_{h \in D} \exp\{v_{ht}(x_t)\}\right) = v_{Wt}(x_t) - \ln p_W(x_t)$$

► As a result:

$$\psi_W(\mathbf{p}(x_t)) = V_t(x_t) - v_{Wt}(x_t) = = v_{Wt}(x_t) - \ln p_W(x_t) + \gamma - v_{Wt}(x_t) = -\ln p_W(x_t) + \gamma$$





#### **Analytical solution**

➤ The difference between two conditional values (using final dependence):

$$\begin{split} v_{Wt}(x_t) - v_{Ht}(x_t) &= u_W(x_t) - u_H(x_t) + \beta \big[ u_H(x_t + 1) - u_W(x_t) \\ &+ \ln p_W(x_t) - \ln p_H(x_t + 1) \big] \\ &= (1 - \beta) \big[ \varphi_0 + \varphi_1 \, x_t + \varphi_2 \, x_t^2 \big] + \beta \big[ \ln \hat{p}_W(x_t) - \ln \hat{p}_H(x_t + 1) \big] \end{split}$$

► CPP probabilities:

$$\begin{split} p_W(x) &= \frac{e^{v_W(x)}}{e^{v_H} + e^{v_W(x)}} = \frac{e^{v_W(x) - v_H}}{1 + e^{v_W(x) - v_H}} \\ p_H(x) &= \frac{e^{v_H}}{e^{v_H} + e^{v_W(x)}} = \frac{1}{1 + e^{v_W(x) - v_H}} \end{split}$$





# Data Description

- ► **GSOEP**, panel 1984-2018
- ► Yearly labor participation decision
- ► Individuals aged 25 60
- ► Time interval: 2008 2012
- ▶ Work: if worked for 6 or more months per year
- ► Experience = number of working years
- ightharpoonup Years of experience: 0 45
- Only individuals with complete records both within a year and observed in all panel years
- ▶ Final sample: 11,515 observations of 2,303 individuals





## Data

#### **Statistics**

Table: GSOEP, sample statistics

|                | Full Sample        |                          |                    | Subsample |                    |                       |                    |
|----------------|--------------------|--------------------------|--------------------|-----------|--------------------|-----------------------|--------------------|
|                | female (share)     | experience<br>(avg, yrs) | lfp<br>(share)     |           | female (%)         | experience (avg, yrs) | lfp<br>(%)         |
| 2008           | $0.500 \\ (0.500)$ | 16.56<br>(9.62)          | 0.761 $(0.426)$    |           | 0.503 $(0.500)$    | 15.57<br>(8.47)       | 0.762 $(0.426)$    |
| 2009           | 0.503<br>(0.500)   | 16.75 $(9.59)$           | 0.754<br>(0.431)   |           | 0.503<br>(0.500)   | 16.31<br>(8.65)       | 0.758<br>(0.428)   |
| 2010           | $0.520 \\ (0.500)$ | 14.30<br>(9.11)          | 0.682 $(0.466)$    |           | 0.503 $(0.500)$    | 17.06<br>(8.82)       | 0.764 $(0.425)$    |
| 2011           | $0.520 \\ (0.500)$ | 14.68 $(9.22)$           | $0.676 \\ (0.467)$ |           | $0.503 \\ (0.500)$ | 17.80<br>(8.99)       | $0.765 \\ (0.413)$ |
| 2012           | 0.519 $(0.500)$    | 14.91 (9.28)             | $0.705 \\ (0.456)$ |           | $0.503 \\ (0.500)$ | 18.52<br>(9.16)       | 0.769 $(0.422)$    |
| Total          | 0.515<br>(0.500)   | 15.19<br>(9.37)          | $0.706 \\ (0.455)$ |           | 0.503<br>(0.500)   | 17.05<br>(8.89)       | $0.763 \\ (0.425)$ |
| $\overline{N}$ |                    | 33,554                   |                    |           |                    | 11,515                |                    |



# Data Labour force participation in gender







### Data

### Labour force participation by age





# Results CCP estimation

Table: CCP labor force participation estimation, results

| Parameter | All sample            | Men                   | Women                 |
|-----------|-----------------------|-----------------------|-----------------------|
| $arphi_0$ | <b>-0.931</b> (1.190) | <b>27.043</b> (3.284) | <b>-0.438</b> (1.342) |
| $arphi_1$ | 0.244 $(0.195)$       | <b>-0.324</b> (0.410) | <b>-0.908</b> (0.251) |
| $arphi_2$ | <b>-0.004</b> (0.006) | <b>-0.014</b> (0.011) | 0.022 $(0.009)$       |





### Extensions

#### Alternative models

► Linear utility:

$$u(x_t, d_t, \epsilon_t) = \begin{cases} \varphi_0 + \varphi_1 x_t + \epsilon_{1t} & \text{if } d_t = W\\ \epsilon_{0t} & \text{if } d_t = H \end{cases}$$
 (1)

► Cubic utility:

$$u(x_t, d_t, \epsilon_t) = \begin{cases} \varphi_0 + \varphi_1 x_t + \varphi_2 x_t^2 + \varphi_3 x_t^3 + \epsilon_{1t} & \text{if } d_t = W \\ \epsilon_{0t} & \text{if } d_t = H \end{cases}$$
 (2)



# Extensions Results

Table: CCP estimation: extensions, results

| Parameter   | Quadratic             | Linear                | Cubic                  |
|-------------|-----------------------|-----------------------|------------------------|
| $arphi_0$   | <b>-0.931</b> (1.190) | <b>-0.355</b> (0.819) | <b>-0.827</b> (1.518)  |
| $\varphi_1$ | <b>0.244</b> (0.195)  | <b>0.120</b> (0.063)  | <b>0.203</b> (0.420)   |
| $arphi_2$   | <b>-0.004</b> (0.006) | -                     | - <b>0.001</b> (0.031) |
| $arphi_3$   | -                     | -                     | <b>0.7e-4</b> (0.6e-3) |



### Revision of Examples



# Choices over the error distribution

Researchers face trade-offs when choosing this distribution.

- ► Normal Errors: It has two advantages:
  - ► Flexible correlation structure and is therefore able to capture richer patterns of substitution across choices.
  - ► Easy to draw from it.
- ► **GEV**: Three advantages:
  - ► Closed form expressions for the CCPs.
  - Closed form expression for the expectation of the value function.
  - ► Easy mapping from CCPs to the value function.





# One Period Ahead CCP

### Some examples are those with terminal actions:

- ► Hotz and Miller 1993: Sterilization and fertility choices.
- ► Ericson and Paker 1995: Dynamic discrete game with permanent exit of a market.
- ▶ Joensen (2009): Studies drop out decisions of college.
- ▶ Murphy (2018): Landowners who choose to construct a house.





# Multiple Period Ahead CCPs Review

### Specific sequence of choices:

- ▶ Altug and Miller 1997: consider the first case, focusing on the example of female labor supply with human capital accumulation and depreciation
- ► Keane and Wolpin 1997: invesments in different human capitals (education or work).

Sometimes finite dependence does not hold but CCPs are still usefull:

- ► Forward simulation methods.
- ► Iterate until terminal period.





# Extensions Review

- ▶ Finite horizon backward solution by full solution: Keane and Wolpin 1994 interpolate the value function to reduce the computation complexity of the estimation.
- ► There can be uncertainty in individual's choices: Kennan and Walker 2011.
- ▶ Dynamic discrete-continuous choice models. Key assumption in the timming of the model.
  - ► Iskhakov et al. (2017): Studies consumption and retirement decisions.
  - ▶ Murphy (2018): Landowners choose to construct, and once price is realized, they choose the house size.
  - ▶ De Groote (2023): Academic track and study effort choice.





# Unobserved Heterogeneity Review

- ► Expected-Maximization algorithm.
  - The problem is that it breaks additive separability and complicates the estimation of the CCPs, Arcidiacono and Miller 2011 and Arcidiacono and Jones 2003 deal with these problems.
- ► Arcidiacono et al 2024. Measurement system.
- ▶ BLM 2022. Two-step grouped fixed-effects (GFE).



