OPERASI MATRIKS

1. Transposisi Matriks (Matrix Transpose)

Diberikan matriks **A** berukuran $m \times n$ (yaitu m baris dan n kolom) berikut:

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n-1} & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n-1} & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m-1,1} & a_{m-1,2} & \cdots & a_{m-1,n-1} & a_{m-1,n} \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n-1} & a_{m,n} \end{bmatrix}$$

Transposisi matriks A, dinotasikan dengan A^{T} , adalah pertukaran posisi elemen-elemen matriks sedemikian rupa sehingga setiap elemen yang menempati baris ke-i kolom ke-j di A (yaitu $a_{i,j}$) menjadi menempati baris ke-j kolom ke-i di A^{T} (yaitu $a_{j,i}^{T} = a_{i,j}$).

Dengan kata lain, setiap *baris* di A menjadi *kolom* di A^{T} . Jelaslah elemen-elemen matriks $a_{i,i}$ tidak bertransposisi sehingga susunan elemen-elemen matriks A^{T} adalah:

$$\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a_{1,1} & a_{2,1} & \cdots & a_{m-1,1} & a_{m,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{m-1,2} & a_{m,2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{1,n-1} & a_{2,n-1} & \cdots & a_{m-1,n-1} & a_{m,n-1} \\ a_{1,n} & a_{2,n} & \cdots & a_{m-1,n} & a_{m,n} \end{bmatrix}$$

Contoh: Berikut ini adalah dua buah matriks A dan B dengan masing-masing transposisinya.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}, \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}, \qquad B^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Algoritma transposisi matriks berikut dirancang untuk matriks bujur sangkar (*square matrix*) $n \times n$, yaitu matriks dengan jumlah baris sama dengan jumlah kolom.

1.1. Algoritma Sekuensial

Algoritma sekuensial transposisi matriks adalah sangat sederhana, yaitu:

procedure seq_transpose (A)

- **(1) for** i = 1 **to** n **do**
- (2) **for** j = 1 **to** i 1 **do**
- (3) $a_{i,j} \leftrightarrow a_{j,i}$
- (4) end for
- (5) end for

Dalam algoritma di atas, $a_{i,i} \leftrightarrow a_{j,i}$ adalah **procedure** *swap* berikut:

procedure swap(x, y)

- (1) $temp \leftarrow x$
- (2) $x \leftarrow y$
- (3) $y \leftarrow temp$

Pada **procedure** *seq_transpose*, banyaknya iterasi pada *loop* (2) bergantung pada nilai *i* yang diberikan pada *loop* (1); banyaknya iterasi akibat kedua *loop* tersebut adalah:

$$0+1+2+3+...+(n-1)=(n-1)\times n/2=(n^2-n)/2$$

Sementara itu *running time* **procedure** *swap* adalah konstan. Dengan demikian *running time* **procedure** *seq_transpose* adalah $O(n^2)$; nilai *running time* ini optimal.

1.2. Algoritma Paralel

1.2.1. IN (Interconnection Network) Perfect Shuffle

Dalam algoritma ini, $n=2^q$ dengan $q\in\{1,2,3,...\}$. IN *Perfect Shuffle* yang akan digunakan terdiri dari n^2 prosesor, yaitu: $P_0, P_1, P_2, ..., P_{2^{2q}-1}$ (ingat, karena ada n^2 prosesor, $n=2^q$, indeks prosesor pertama adalah 0, yaitu P_0 , maka indeks prosesor terakhir, atau ke- n^2 , adalah n^2 -1 atau 2^{2^q} - 1, yaitu 2^q - 1, yaitu 2^q), yaitu sebanyak elemen matriks yang akan dicari transpose-nya, dengan $n=2^q, q\in\{1,2,3,...\}$. Elemen $a_{i,j}$ dari matriks \mathbf{A} dipegang oleh prosesor 2^q , dengan 2^q , den

Contoh: Untuk q=2, maka $n=2^2=4$, dengan demikian matriks **A** berukuran 4×4 , dan prosesor IN *Perfect Shuffle* adalah $P_0, P_1, P_2, ..., P_{15}$. Elemen matriks a_{23} dipegang oleh prosesor P_k dengan $k=2^2(2-1)+(3-1)=6$ yaitu P_6 , elemen matriks a_{32} dipegang oleh prosesor P_k dengan $k=2^2(3-1)+(2-1)=9$ yaitu P_9 , elemen a_{44} dipegang oleh prosesor P_k dengan $k=2^2(4-1)+(4-1)=15$ yaitu P_{15} .

Untuk melihat koneksi antar prosesor, indeks-indeks prosesor dinyatakan dalam biner. Untuk q = 2 kita mempunya prosesor-prosesor beserta indeknya sebagai berikut: P_{0000} ,

 P_{0001} , P_{0010} , P_{0011} , ..., P_{1111} . Prosesor P_k terhubung ke prosesor P_m , dengan k dan m adalah representasi biner, jika m diperoleh dengan **menggeser** satu posisi ke kiri secara **siklus** (*cyclic left shifting*). Dengan aturan ini $P_{0000} = P_0$ terhubung ke dirinya sendiri, $P_{0001} = P_1$ terhubung ke $P_{0010} = P_2$, $P_{0010} = P_2$ terhubung ke $P_{0100} = P_4$, $P_{0100} = P_4$ terhubung ke $P_{1000} = P_8$, dan $P_{1000} = P_4$ terhubung ke $P_{0001} = P_8$. Lihat Gambar 1.

Gambar 1. Perfect Shuffle 16 Prosesor

Dengan $n = 2^q$, setelah q **pergeseran siklus** bit-bit indeks prosesor, elemen a_{ij} dari matriks A yang semula dipegang prosesor P_k , dengan $k = 2^q(i - 1) + (j - 1)$, sekarang dipegang oleh P_r , dengan $r = 2^q(j - 1) + (i - 1)$, yaitu prosesor yang semula memegang elemen a_{ii} dari matriks A.

Contoh: Kembali, misalkan q=2; IN *Perfect Shuffle* terkait seperti gambar di atas. Pada gambar tersebut mula-mula $P_1=P_{0001}$ memegang elemen a_{12} . Pada pergeseran pertama elemen a_{12} ini berpindah ke $P_2=P_{0010}$. Pada pergeseran kedua elemen a_{12} ini akhirnya berpindah ke $P_4=P_{0100}$, yaitu prosesor yang semula memegang a_{21} . Di lain pihak, pada pergeseran pertama elemen a_{21} yang mula-mula dipegang oleh prosesor $P_4=P_{0100}$ berpindah ke $P_8=P_{1000}$, dan pada pergeseran kedua elemen a_{21} ini akhirnya berpindah ke $P_1=P_{0001}$ yang mula-mula memegang a_{12} . Perhatikan bahwa setelah 2 pergeseran ini P_0 dan P_{15} sama sekali tidak memindahkan elemen matriks yang dipegangnya sedangkan elemen yang dipegang P_5 dan P_{10} kembali kepada keadaan semula setelah dua pergeseran ini, seperti terlihat pada Gambar 6.1.

Dengan demikian, procedure transpose matriks *A* menggunakan IN *Perfect Shuffle* adalah sebagai berikut:

procedure par_shuffle_transpose (A)

- **(1) for** i = 1 **to** q **do**
- (2) **for** k = 1 **to** $2^{2q} 2$ **do in parallel** {'-2' karena P_0 dan P_{2q} tidak diikutsertakan}
- $(3.1) r \leftarrow 2^{k \bmod (2^{2q} 1)}$
- (3.2) P_k mengirimkan elemen yang dipegangnya ke P_r
- (4) end for
- (5) end for

Langkah (3.1) dan (3.2) memerlukan waktu konstan, sedangkan iterasi (1) terdiri dari q langkah atau log n langkah mengingat $n = 2^q$. Dengan demikian running time **procedure** $par_shuffle_transpose$ di atas adalah $t(n) = O(\log n)$. Jumlah prosesor yang digunakan adalah $p(n) = n^2$ sehingga cost procedure ini adalah $c(n) = O(n^2 \log n)$ yang **tidak optimal** karena running time procedure sekuensial adalah **lebih kecil**, yaitu $O(n^2)$.

1.2.2. SIMD-EREW

Pada awalnya seluruh elemen matriks A berukuran $n \times n$ tersimpan di dalam *shared memory* bersama dengan informasi posisi baris dan kolomnya (indeks) (i, j). **Tugas** setiap prosesor SIMD-EREW adalah menukarkan elemen matriks berindeks (i, j) dengan elemen matriks berindeks (j, i). Selanjutnya adalah **fakta** bahwa dalam transposisi matriks A semua elemen matriks A berindeks (i, i) tidak mengalami transposisi. Dengan tugas dan fakta ini maka jumlah prosesor SIMD-EREW yang diperlukan adalah $p(n) = (n^2 - n)/2$. Untuk n = 3, proses transposisi ini diperlihatkan pada Gambar 2. Dalam gambar tersebut prosesor-prosesor P_{21} , P_{32} , dan P_{31} berturutturut bertugas menukarkan elemen-elemen matriks a_{21} dengan a_{12} , a_{32} dengan a_{23} , dan a_{31} dengan a_{13} .

Gambar.2. Transposisi matriks A berukuran 3×3 dengan 3 prosesor.

Dengan demikian, procedure transpose matriks A menggunakan SIMD-EREW adalah sebagai berikut:

procedure par_SIMD-EREW_transpose (A)

- (1) for i = 2 to n do in parralel
- (2) for j = 1 to i 1 do in parallel
- (3) $a_{i,i} \leftrightarrow a_{i,i}$
- (4) end for
- (5) end for

Running time **procedure** swap (yaitu $a_{i,j} \leftrightarrow a_{j,i}$) adalah konstan sehingga running time **procedure** par_SIMD-EREW transpose adalah konstan, atau t(n) = O(1), sehingga cost procedure ini adalah $c(n) = p(n) \times t(n) = O(n^2)$ yang berarti **procedure** par_SIMD-EREW transpose adalah cost optimal.