上海交通大学试卷(<u>A</u>卷)

(2020 至 2021 学年 第 __1__学期)

课程名称 EI243 数字电子技术

成绩_____

PART I Multiple Choice (单选题, 40%)

- **1.** The pulse width of the nonideal pulse in Figure 1 is defined by ().
 - (A)a (B) b (C) c (D) d

- **2.** Figure 2 is an example of a () diagram.
 - (A) circuit (B) logic (C) state (D) timing

- **3.** In BCD addition, if a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, add () to the 4-bit sum.
 - $(A) \ 2 \ (0010) \ \ (B) \ 4 \ (0100) \ \ (C) \ 6 \ (0110) \ \ (D) \ 8 \ (1000)$
- **4.** The OR operation is equivalent to ().
 - (A) Boolean addition (B) Boolean multiplication (C) Boolean negation (D) mod-2 addition
- **5.** The data selection function is performed by a logic circuit called a/an ().
 - (A) decoder (B) demultiplexer (C) encoder (D) multiplexer
- **6.** The logic expression $A\overline{B}\overline{C}\overline{D} + AB\overline{C}D$ is equivalent to ().

我承诺, 我将严格 遵守考试纪律。

承诺人: _______.

题号	I	II	III			
	1-20	21-32	33	34	/	/
得分					/	/
批阅人(流水阅 卷教师签名处)					/	/

(A)
$$A\overline{C}(\overline{B}\overline{D} + BD)$$
 (B) $A\overline{C}\overline{B} \oplus \overline{D}$ (C) $A\overline{C}\overline{\overline{B}D + BD}$ (D) all of the above

7. () is a POS expression.

(A)
$$AB + CD$$
 (B) $\overline{A + B + C + D}$ (C) $(A + B)(C + D)$ (D) $\overline{AB CD}$

- **8.** The AND operation is the dual of the () operation.
 - (A) NAND (B) negative OR (C) OR (D) none of the above
- **9.** The logic expressions for the circuit in Figure 3 are (), and $Z = \overline{X + Y}$.

(A)
$$X = \overline{A_1}B_1 + \overline{A_1 \oplus B_1} \overline{A_0}B_0, Y = \overline{A_1 \oplus B_1} \overline{A_0 \oplus B_0}$$

(B)
$$X = A_1 \overline{B}_1 + \overline{A_1 \oplus B_1} A_0 \overline{B}_0, Y = \overline{A_1 \oplus B_1} \overline{A_0 \oplus B_0}$$

(C)
$$X = \overline{A}_1 B_1 + (A_1 \oplus B_1) \overline{A}_0 B_0, Y = (A_1 \oplus B_1)(A_0 \oplus B_0)$$

(D)
$$X = A_1 \overline{B}_1 + (A_1 \oplus B_1) A_0 \overline{B}_0, Y = (A_1 \oplus B_1)(A_0 \oplus B_0)$$

Figure 3

10. The logic expression for the circuit in Figure 4 is ().

(A)
$$\overline{A}\overline{B}C + \overline{A}B\overline{C} + AB\overline{C} + ABC$$

(B)
$$\overline{A}\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

(C) $\overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C$

(D) none of the above

11. The expression for the circuit in Figure 5 is ().

(A)
$$\overline{A}\overline{B}\overline{C} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

(B)
$$\overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

(C)
$$\overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

- (D) none of the above
- **12.** Consider the circuit in Figure 6. If $D = (D_2D_1D_0)_2$, $Y = (Y_4Y_3Y_2Y_1Y_0)_2$, then ().
 - (A) Y = D (B) Y = 2D (C) Y = 3D (D) none of the above

Figure 6

- **13.** A combinational circuit accepts a 2-bit number $A = (A_1 A_0)_2$ and produces a 5-bit binary number $X = (X_4 X_3 X_2 X_1 X_0)_2$. If $X = A^3$, then $X_4 = ($).
 - (A) 0 (B) A_0 (C) A_1 (D) A_1A_0

- 14. Draw the Q output relative to the clock with the input as shown in Figure 7. Assume that Q is initially LOW. ()
 - (A) a (B) b (C) c (D) none of the above

Figure 7

- 15. Draw the Q output relative to the clock with the inputs as shown in Figure 8. Assume that Q is initially LOW.
 - (A) a (B) b (C) c (D) none of the above

- **16.** Figure 9 shows the logic symbol for a () one-shot.
 - (A) negative-edge triggered nonretriggerable
 - (B) negative-edge triggered retriggerable
 - (C) positive-edge triggered nonretriggerable
 - (D) positive-edge triggered retriggerable

- **17.** Figure 10 shows a ().
 - (A) D flip-flop (B) D latch (C) J-K latch (D) J-K flip-flop

- **18.** In the general sequential logic model in Figure 11, the outputs of the memory are called the () variables of the sequential logic.
 - (A) excitation (B) input (C) output (D) state

Figure 11

- **19.** We need at least () flip-flops to design a counter to produce the following binary sequence: 0, 9, 1, 8, 2, 7, 3, 6, 0, ...
 - (A) 4 (B) 3 (C) 2 (D) 1
- **20.** For the cascaded counter configuration in Figure 12, the waveform at point () has a frequency of 1 kHz.
 - (A) ① (B) ② (C) ③ (D) ④

PART II Filling Blanks (填空题, 36%)

21. Figure 13 shows the operation of a two-input () gate.

Figure 13

- **22.** Convert the unsigned binary number 101 0110 to decimal. (
- **23.** Convert the decimal number 177.8125 to binary. (
- **24.** Determine the decimal value of the signed binary number in the 2's complement form:

- **25.** Add the two hexadecimal numbers: $1A58_{16}$ and $81D0_{16}$. (
- **26.** Determine the minimum expression for the circuit in Figure 14.

Figure 14

)

27. Write the NOR-NOR expression for the truth in Figure 15. Minimization is not required.

- **28.** Minimize the expression: $X = A\overline{B}D + \overline{A}\overline{B}\overline{C}D + \overline{B}CD + \overline{A}\overline{B} + \overline{C}(B+D)$.
- **29.** Determine the even parity bit for the 7-bit group: 101 0111. ()
- **30.** Determine the modulus of the cascaded counter in Figure 16. (

Figure 15 Figure 16

31. Determine the modulus of the counter in Figure 17. (

Figure 17 Figure 18

32. Figure 18 shows a 2-bit asynchronous counter connected to a decoder (the AND gate). Decoding glitch can be seen when the counter state Q_1Q_0 changes from () to ().

PART III Design (设计题, 24%)

33. Design a circuit with three input variables that will only produce a 1 output when two or three input variables are 1s. (9%)

34. Design a synchronous counter with the binary count sequence 000, 001, 010, 011, 100, 000, Use D flip-flops. (15%)