2.4. Normal distribution and maximum likelihood

Prof. Dr. Christoph Lippert

Digital Health & Machine Learning

• Normal distribution (Gaussian distribution)

$$p(x; \mu, \sigma^2) = \mathcal{N}\left(x \mid \mu, \sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Multivariate normal distribution

$$\begin{split} p(\mathbf{x} \; ; \; \boldsymbol{\mu}, \boldsymbol{\Sigma}) &= \mathcal{N}\left(\mathbf{x} \, | \, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \\ &= \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \cdot \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right] \end{split}$$

Gaussian PDF

$$\mathcal{N}\left(x \mid \mu, \sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

- Positive: $\mathcal{N}\left(x \mid \mu, \sigma^2\right) > 0$
- Normalized: $\int_{-\infty}^{+\infty} \mathcal{N}(x \mid \mu, \sigma) dx = 1$ (check)
- Expectation: $E(x) = \int_{-\infty}^{+\infty} \mathcal{N}\left(x \mid \mu, \sigma^2\right) x dx = \mu$
- Variance: $\operatorname{Var}[x] = \langle x^2 \rangle \langle x \rangle^2$ = $\mu^2 + \sigma^2 - \mu^2 = \sigma^2$

Parameter estimation for the normal distribution

• Data sampled from unknown distribution $p(\mathcal{D}\;;\; \boldsymbol{\theta}_0)$

$$\mathcal{D} = \{x_1, \dots, x_N\} \sim p(\mathcal{D} ; \boldsymbol{\theta}_0)$$

• Model \mathcal{H}_{Gauss} – normal PDF

$$\mathcal{N}\left(x\,\middle|\,\mu,\sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$
$$\boldsymbol{\theta} = \left\{\mu,\sigma^2\right\}$$

Likelihood

$$p(\mathcal{D}; \boldsymbol{\theta}) = \prod_{n=1}^{N} \mathcal{N}\left(x_n \mid \mu, \sigma^2\right)$$

Parameter estimation for the normal distribution

Likelihood

$$p(\mathcal{D}; \boldsymbol{\theta}) = \prod_{n=1}^{N} \mathcal{N}\left(x_n \mid \mu, \sigma^2\right)$$

- Maximum likelihood
- Chose parameters $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood of \mathcal{D}

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} p(\mathcal{D} ; \boldsymbol{\theta})$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

Maximum likelihood estimation in the normal distribution

- ullet Data sample ${\mathcal D}$ of size N modeled by a univariate normal distribution
- Likelihood of the data under the model $p(\mathcal{D} \; ; \; \mu, \sigma^2)$:

$$\prod_{n=1}^{N} \mathcal{N}\left(x_n \mid \mu, \sigma^2\right)$$

$$= \prod_{n=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{1}{2\sigma^2}(x_n - \mu)^2}$$

• Chose parameters $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood of \mathcal{D}

• Equivalently maximize the log-Likelihood $\log p(\mathcal{D}~;~\mu,\sigma^2)$

$$\log p(\mathcal{D}; \mu, \sigma^2) = \sum_{n=1}^{N} \log \mathcal{N} \left(x_n \mid \mu, \sigma^2 \right)$$
$$= \sum_{n=1}^{N} -\frac{1}{2} \log \left(2\pi \sigma^2 \right) - \frac{1}{2\sigma^2} (x_n - \mu)^2$$

• Chose parameters $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood of \mathcal{D}

$$\log p(\mathcal{D}; \mu, \sigma^2) = \sum_{n=1}^{N} -\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (x_n - \mu)^2$$

• Take the derivative of $\log p(\mathcal{D}~;~\mu,\sigma^2)$ with respect to μ :

$$\frac{\partial \log p(\mathcal{D}; \mu, \sigma^2)}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu)$$

• set to zero and solve for $\hat{\mu}$:

$$-\frac{1}{\sigma^2}\sum_{n=1}^N(x_n-\hat{\mu})=0$$

$$-\frac{1}{\sigma^2}(\sum_{n=1}^Nx_n)+\frac{N}{\sigma^2}\hat{\mu}=0$$

$$\hat{\mu}=\frac{1}{N}\sum_{n=1}^Nx_n \text{ sample mean}$$

• Take the derivative of $\log p(\mathcal{D}~;~\mu,\sigma^2)$ with respect to σ^2 :

$$\frac{\partial \log p(\mathcal{D}; \mu, \sigma^2)}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \sum_{n=1}^{N} \frac{1}{2\sigma^4} (x_n - \mu)^2$$

• set to zero and solve for $\hat{\sigma}^2$:

$$-\frac{N}{2\hat{\sigma}^2} + \sum_{n=1}^{N} \frac{1}{2\hat{\sigma}^4} (x_n - \hat{\mu})^2 = 0$$
$$\frac{N\hat{\sigma}^2}{2} = \sum_{n=1}^{N} \frac{1}{2} (x_n - \hat{\mu})^2$$

 $\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_n - \hat{\mu})^2$ sample variance

Parameter estimation for the Gaussian

Maximum likelihood solutions

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2$$

Equivalent to common mean and variance estimators (almost).

The Normal distribution **Summary**

- The Normal Distribution
 - Maximum Likelihood Estimation
 - sample mean
 - sample variance

9 Normal distribution 31.04.2020