

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 5 – Cinématique du solide indéformable

Centrifugeuse humaine développée par le CNRS / MEDES [1]

Modélisation cinématique

Savoirs:

- Mod-C11: Modélisation géométrique et cinématique des mouvements entre solides indéformables
 - Mod-C11.2: Champ des vecteurs vitesses des points d'un solide
 - Mod-C11.4: Composition des vitesses
 - Mod-C11.6 : Champ des vecteurs accélérations des points d'un solide
 - Mod-C11.6: Composition des accélérations
 - Mod-C11-S5 : Déterminer la trajectoire d'un point d'un solide
 - Mod-C11-S8 : Écrire le vecteur accélération d'un point d'un solide

Ce document est en évolution permanente. Merci de signaler toutes erreurs ou coquilles.

1	Availt propos	4
	1.1 Notion de solide indéformable	2
	1.2 Notion de point appartenant à un solide	2
2	Trajectoire d'un point appartenant à un solide	
3	Vitesse d'un point appartenant à un solide	
	3.1 Le vecteur vitesse	4
	3.2 Vecteur instantané de rotation	7
	3.3 Dérivation vectorielle – Formule de Bour	8
	3.4 Champ du vecteur vitesse dans un solide en mouvement	
4	Composition des mouvements	10
	4.1 Composition du vecteur vitesse	10
	4.2 Composition du vecteur instantané de rotation	11
5	Accélération d'un point appartenant à un solide	13
	5.1 Définition	13
	5.2 Champ d'accélération d'un solide en mouvement	13
	5.3 Composition des accélérations	13

6	Mou	vements élémentaires	. 15
	6.1	Loi de vitesse uniforme	. 15
	6.2	Loi de vitesse en trapèze	15

1 Avant propos

1.1 Notion de solide indéformable

Lorsqu'un objet ou un système est soumis à des efforts, il peut subir, suivant la nature du matériau de grandes ou de petites déformations.

Dans le cadre du programme de CPGE (PTSI et PT), plusieurs hypothèses peuvent être retenues. En résistance des matériaux (programme de PT), ou lors des essais sur les matériaux (essai de traction par exemple), les matériaux sont considérés comme déformables. En effet, on observe la déformation de la matière au cours du temps.

En cinématique (PTSI), en statique (PTSI) et en dynamique (PT) les solides seront considérés comme indéformables. On considère en effet que les déformations sont négligeables par rapport aux études réalisées.

Solide indéformable

On considère deux points A et B d'un solide indéformable noté S. On note t le temps.

$$\forall A, B \in S, \forall t \in \mathbb{R}, \overrightarrow{AB(t)}^2 = \text{constante}$$

En cinématique du solide indéformable, les fluides et les ressorts ne seront pas étudiés.

Hypothèse

1.2 Notion de point appartenant à un solide

Attention

En cinématique, il faudra vérifier si les points considérés sont bien des points matériels des solides considérés.

 $t=t_1$

Dans le cas d'une roue de voiture, le point de contact entre la roue et le sol n'est pas un point matériel, il change au cours du temps...

... il en est de même pour le point de contact entre la came et le plateau.

Dans une transmission par engrenage simple, on modélise le contact entre S_1 et S_2 par un point qui est fixe par rapport au bâti. Ce point n'appartient ni au solide 1, ni au solide 2.

2 Trajectoire d'un point appartenant à un solide

Définition

Trajectoire d'un point dans l'espace

Soit un point P se déplaçant dans un repère \mathcal{R}_0 . La trajectoire du point P est définie par la courbe $\mathcal{C}(t)$ paramétrée

Définition

par le temps t. On a :

$$\forall t \in \mathbb{R}^+, \overrightarrow{OM(t)} = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}_{\Re_0} = x(t)\overrightarrow{x_0} + y(t)\overrightarrow{y_0} + z(t)\overrightarrow{z_0}$$

Centrifugeuse

Le paramétrage de la centrifugeuse est donnée ci dessous :

Les paramètres constants du système sont les suivants :

$$-\overrightarrow{O_0O_1} = a\overrightarrow{i_1}$$

$$-\overrightarrow{O_1G} = b\overrightarrow{i_2} + c\overrightarrow{k_2}$$

La trajectoire du point G dans le repère \mathcal{R}_0 est donnée par le vecteur

$$\overrightarrow{O_0G}(t) = \overrightarrow{O_0O_1} + \overrightarrow{O_1G} = a\overrightarrow{i_1} + b\overrightarrow{i_2} + c\overrightarrow{k_2}$$

Il faut alors projeter les vecteurs dans \mathcal{R}_0 :

$$\overrightarrow{O_0G}(t) = a\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) + b\left(\cos\beta(t)\overrightarrow{i_1} - \sin\beta(t)\overrightarrow{k_1}\right)$$

$$= a\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) + b\left(\cos\beta(t)\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) - \sin\beta(t)\overrightarrow{k_0}\right)$$

$$= \begin{bmatrix} a\cos\alpha(t) + b\cos\beta(t)\cos\alpha(t) \\ a\sin\alpha(t) + b\cos\beta(t)\sin\alpha(t) \\ -\sin\beta(t) \end{bmatrix}_{\mathcal{R}_0}$$

On a ainsi l'équation paramétrique de la position du point *G*.

Exemple

3 Vitesse d'un point appartenant à un solide

3.1 Le vecteur vitesse

3.1.1 Définition

Vitesse d'un point appartenant à un solide

Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 $\left(O_0, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $\left(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Soit un point P appartenant au solide S_1 . La vitesse du point P appartenant au solide S_1 par rapport au solide S_0 se

Définition

calcule donc ainsi:

$$\overrightarrow{V(P \in S_1/S_0)}(t) = \left[\frac{d\overrightarrow{O_0P(t)}}{dt} \right]_{\mathcal{R}_0}$$

Attention

- Attention à respecter rigoureusement la notation.
- La vitesse dépend du point d'application.
- Attention, « dériver un vecteur par rapport à une base » est différent de « exprimer un vecteur dans une base».

Remarque

- $\overrightarrow{V(P \in S_1/S_0)}(t)$ dépend du temps t. On l'appelle vitesse instantannée.
- $V(P \in S_1/S_0)(t)$ est tangent à la trajectoire du point P dans \mathcal{R}_0 . $V(P \in S_1/S_0)(t)$ peut s'exprimer dans n'importe quelle base.

3.1.2 Calcul du vecteur vitesse – Application directe

Soit un avion S_1 repéré par le repère $\mathcal{R}_1\left(O_1,\overrightarrow{i_1},\overrightarrow{j_1},\overrightarrow{k_1}\right)$ en mouvement libre par rapport à un repère $\mathcal{R}_0\left(O_0,\overrightarrow{i_0},\overrightarrow{j_0},\overrightarrow{k_0}\right)$. La position de l'avion dans l'espace est repéré par le vecteur $\overrightarrow{O_0O_1} = x(t)\overrightarrow{i_0} + y(t)\overrightarrow{j_0} + z(t)\overrightarrow{j_0}$ ainsi que par les angles d'Euler.

Calculons la vitesse du point O_1 par rapport à \mathcal{R}_0 :

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{d\overrightarrow{O_0O_1}(t)}{dt} \right]_{\mathcal{R}}$$

Remarque

Pour dériver le vecteur $\overrightarrow{O_0O_1}(t)$ par rapport au repère \mathscr{R}_0 une méthode consiste en exprimer le vecteur $\overrightarrow{O_0O_1}(t)$ dans \mathcal{R}_0 puis en dériver chacune des composantes.

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{d \left(x(t) \overrightarrow{i_0} + y(t) \overrightarrow{j_0} + z(t) \overrightarrow{j_0} \right)}{dt} \right]_{\mathcal{R}_0} = \left[\frac{d \left(x(t) \overrightarrow{i_0} \right)}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d \left(y(t) \overrightarrow{j_0} \right)}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d \left(z(t) \overrightarrow{k_0} \right)}{dt} \right]_{\mathcal{R}_0} + \left[\frac{d \left(z(t$$

On a:

Remarque

$$\left[\frac{d\overrightarrow{i_0}}{dt}\right]_{\mathcal{R}_0} = \begin{bmatrix} \frac{d1}{dt} \\ \frac{d0}{dt} \\ \frac{d0}{dt} \end{bmatrix}_{\mathcal{R}_0} = \overrightarrow{0}$$

Il est est de même pour $\left[\frac{d\overrightarrow{j_0}}{dt}\right]_{\Re_0}$ et $\left[\frac{d\overrightarrow{k_0}}{dt}\right]_{\Re_0}$.

– La dérivée d'un vecteur fixe \overrightarrow{V} exprimé dans une base \mathscr{B}_i par rapport à \mathscr{B}_i est nul. Ainsi, $\left[\frac{d\overrightarrow{i_i}}{dt}\right]_{\mathscr{B}_i} = \overrightarrow{0}$.

- On note par un · la dérivée d'une fonction par rapport au temps : $\left[\frac{dx(t)}{dt}\right] = x(t)$.

Au final, on a donc:

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \overrightarrow{x(t)} \overrightarrow{i_0} + \overrightarrow{y(t)} \overrightarrow{j_0} + \overrightarrow{z(t)} \overrightarrow{k_0}$$

Centrifugeuse

Calculer $\overrightarrow{V(O_1 \in S_1/S_0)}$.

Par définition,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{d \overrightarrow{O_0 O_1}(t)}{dt} \right]_{\mathcal{R}_0} = \left[\frac{d \left(a \overrightarrow{i_1} \right)}{dt} \right]_{\mathcal{R}_0} = a \left[\frac{d \overrightarrow{i_1}}{dt} \right]_{\mathcal{R}_0}$$

On a:

$$\begin{bmatrix} d\overrightarrow{i_1} \\ dt \end{bmatrix}_{\mathcal{R}_0} = \begin{bmatrix} d\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) \\ dt \end{bmatrix}_{\mathcal{R}_0} = \begin{bmatrix} d\cos\alpha(t)\overrightarrow{i_0} \\ dt \end{bmatrix}_{\mathcal{R}_0} + \begin{bmatrix} d\sin\alpha(t)\overrightarrow{j_0} \\ dt \end{bmatrix}_{\mathcal{R}_0} + \begin{bmatrix} d\sin\alpha(t)\overrightarrow{j_0} \\ dt \end{bmatrix}_{\mathcal{R}_0} = \frac{d\cos\alpha(t)}{dt}\overrightarrow{i_0} + \cos\alpha(t)\underbrace{\begin{bmatrix} d\overrightarrow{i_0} \\ dt \end{bmatrix}_{\mathcal{R}_0}}_{0} + \frac{d\sin\alpha(t)}{dt}\overrightarrow{i_0} + \sin(t)\underbrace{\begin{bmatrix} d\overrightarrow{j_0} \\ dt \end{bmatrix}_{\mathcal{R}_0}}_{0} = -\alpha(t)\sin\alpha(t)\overrightarrow{i_0} + \alpha(t)\cos\alpha(t)\overrightarrow{j_0} = \alpha(t)\overrightarrow{j_1}$$

Ainsi,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \begin{bmatrix} -a\alpha(t)\sin\alpha(t) \\ a\alpha(t)\cos\alpha(t) \\ 0 \end{bmatrix}_{\mathcal{R}_0} = \begin{bmatrix} 0 \\ a\alpha(t) \\ 0 \end{bmatrix}_{\mathcal{R}_1}$$

Dans les deux cas, $\overrightarrow{O_0O_1}(t)$ est dérivé par rapport \mathcal{R}_0 mais il s'exprime différemment dans \mathcal{R}_0 et \mathcal{R}_1 :

- $\overrightarrow{V(O_1 \in S_1/S_0)} = -a\alpha(t)\sin\alpha(t)\overrightarrow{i_0} + a\alpha(t)\cos\alpha(t)\overrightarrow{j_0} : \text{ici la base de projection et de dérivation est la base } \mathscr{B}_0;$
- $-\overrightarrow{V(O_1 \in S_1/S_0)} = a\alpha(t)\overrightarrow{j_1}$: ici la base de dérivation est la base \mathscr{B}_0 et la base de projection est \mathscr{B}_1 .

Remarque

Exemple

Lorsqu'un point est confondu pour deux solides et qu'il n'y a pas de mouvement relatif entre les solides, (centre d'une liaison pivot ou d'une liaison rotule par exemple) les vitesses sont égales ainsi, ici:

$$\overrightarrow{V(0_1 \in S_1/S_0)}(t) = \overrightarrow{V(0_1 \in S_2/S_0)}(t)$$

Par ailleurs,

$$\overrightarrow{V(0_1 \in S_1/S_2)}(t) = \overrightarrow{0}$$

3.1.3 Détermination du vecteur vitesse dans les liaisons cinématiques

Lorsque il n'y a pas de degré de liberté de translation dans une liaison, la vitesse au centre de la liaison est nulle. Ainsi :

- si les solides S_1 et S_2 sont en liaison rotule de centre O alors $\overrightarrow{V(O \in S_2/S_1)} = \overrightarrow{0}$;
- si les solides S_1 et S_2 sont en liaison pivot de centre O alors $\overrightarrow{V(O \in S_2/S_1)} = \overrightarrow{O}$;
- si les solides S_1 et S_2 sont en liaison rotule à doigt de centre O alors $V(O \in S_2/S_1) = \overrightarrow{O}$.

Centrifugeuse humaine

Dans ce cas, on peut affirmer que:

$$\overrightarrow{V(O_0 \in S_1/S_0)} = \overrightarrow{0}$$
 et $\overrightarrow{V(O_1 \in S_2/S_1)} = \overrightarrow{0}$

Attention : ces relations ne sont vraies qu'au centre des liaisons et pour les mouvements entre les deux solides participant à la liaison.

3.2 Vecteur instantané de rotation

3.2.1 Définition

Vitesse instantané de rotation entre deux solides - Vecteur taux de rotation

Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 $\left(O_0, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $\left(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Les rotations entre le solide S_0 et le solide S_1 sont paramétrés par les angles d'Euler $\psi(t)$, $\theta(t)$ et $\varphi(t)$.

Définition

On appelle vecteur instantané de rotation entre les solides S_0 et S_1 le vecteur

$$\overrightarrow{\Omega(S_1/S_0)} = \psi(t)\overrightarrow{k_0} + \theta(t)\overrightarrow{u} + \varphi(t)\overrightarrow{k_1}$$

 $\psi(t)$, $\theta(t)$ et $\varphi(t)$ sont en rad/s.

Remarque

- On note sans distinction $\overline{\Omega(S_1/S_0)}$ et $\overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)}$.
- Le vecteur instantané de rotation est indépendant du point d'application.
- On a la relation suivante:

$$\overrightarrow{\Omega(S_1/S_0)} = -\overrightarrow{\Omega(S_0/S_1)}$$

3.2.2 Détermination du vecteur vitesse instantané de rotation dans les liaisons cinématiques

Lorsque il y a pas des degrés de liberté de rotation dans une liaison et que ces degrés de liberté sont paramétrés, on

a:

- si les solides S_1 et S_2 sont en liaison pivot de centre O, d'angle α et d'axe \overrightarrow{k} alors $\Omega(S_2/S_1) = \overrightarrow{\alpha} \overrightarrow{k}$;

- si les solides S_1 et S_2 sont en liaison glissière d'axe \overrightarrow{z} , $\Omega(S_2/S_1) = \overrightarrow{0}$;
- si les solides S_1 et S_2 sont en liaison rotule de centre O, et d'orientations $(\psi, \overrightarrow{k})$, $(\theta, \overrightarrow{u})$, $(\varphi, \overrightarrow{k_1})$, alors $\Omega(S_2/S_1) = S_1$ $\dot{\psi} \overrightarrow{k} + \dot{\theta} \overrightarrow{u} + \dot{\varphi} \overrightarrow{k_1};$

Centrifugeuse

On a:

$$\overrightarrow{\Omega(S_1/S_0)} = \dot{\alpha} \overrightarrow{k_0} \qquad \overrightarrow{\Omega(S_2/S_1)} = \dot{\beta} \overrightarrow{j_1}$$

3.3 Dérivation vectorielle - Formule de Bour

Dérivation vectorielle

Soient S_0 et S_1 deux solides en mouvements relatifs et \mathcal{R}_0 et \mathcal{R}_1 les repères orthonormés directs associés. Soit \overrightarrow{v} un vecteur de l'espace. On note $\overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)}$ le vecteur instantané de rotation permettant d'exprimer les rotations entre chacune des deux bases.

La dérivée d'un vecteur dans une base mobile se calcule donc ainsi :

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathscr{R}_0} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathscr{R}_1} + \overrightarrow{\Omega(\mathscr{R}_1/\mathscr{R}_0)} \wedge \overrightarrow{v}$$

Exemple

Exemple Centrifugeuse

Calcul de $V(O_1 \in S_1/S_0)$.

On rappelle que:

$$\overrightarrow{V(O_1 \in S_1/S_0)} = a \left[\frac{d \overrightarrow{i_1}}{d t} \right]_{\mathcal{R}_0}$$

Le calcul de $\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\Re_0}$ peut donc être réalisé ainsi :

$$\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\mathcal{R}_0} = \underbrace{\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\mathcal{R}_1}}_{\overrightarrow{0}} + \underbrace{\Omega(S_1/S_0)} \wedge \overrightarrow{i_1} = \dot{\alpha} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\alpha} \overrightarrow{j_1}$$

Ainsi

$$\overrightarrow{V(O_1 \in S_1/S_0)} = a\dot{\alpha}\overrightarrow{j_1}$$

3.4 Champ du vecteur vitesse dans un solide en mouvement

3.4.1 Mise en évidence

Reprenons le cas d'un avion en déplacement dans le ciel . Soit P un point appartenant à l'avion tel que $\overrightarrow{O_1P} = a\overrightarrow{i_1} + b\overrightarrow{j_1} + c\overrightarrow{k_1}$. Calculons la vitesse du point P par rapport à \mathcal{R}_0 :

$$\overline{V(P \in S_1/S_0)} = \left[\frac{d \overrightarrow{O_0P}(t)}{dt} \right]_{\mathcal{R}_0} = \left[\frac{d \left(\overrightarrow{O_0O_1} + \overrightarrow{O_1P} \right)(t)}{dt} \right]_{\mathcal{R}_0}$$

$$= \overline{V(O_1 \in S_1/S_0)} + \left[\frac{d \overrightarrow{O_1P}(t)}{dt} \right]_{\mathcal{R}_0}$$

Calculons maintenant $\left[\frac{d\overrightarrow{O_1P}(t)}{dt}\right]_{\mathcal{R}_0}$:

$$\left[\frac{d\overrightarrow{O_1P}(t)}{dt}\right]_{\mathcal{R}_0} = \left[\frac{d\overrightarrow{O_1P}(t)}{dt}\right]_{\mathcal{R}_1} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{O_1P}(t)$$

 $\overrightarrow{O_1P}$ étant fixe dans le repère \mathcal{R}_1 , $\left[\frac{d\overrightarrow{O_1P}(t)}{dt} \right]_{\mathcal{R}_1} = \overrightarrow{0}$.

Au final,

$$\overrightarrow{V(P \in S_1/S_0)} = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{O_1P}(t) = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{PO_1}(t) \wedge \overrightarrow{\Omega(S_1/S_0)}$$

3.4.2 Résultat

Champ du vecteur vitesse dans un solide - Formule de Varignon

Soient A et B deux points appartenant à un solide S_1 en mouvement par rapport à S_0 . Le champ des vecteurs vitesses est donc déterminé ainsi :

$$\overrightarrow{V(B \in S_1/S_0)} = \overrightarrow{V(A \in S_1/S_0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(S_1/S_0)}$$

Moyen mnémotechnique

Comme la dérivée vectorielle, l'utilisation de cette formule est indispensable en mécanique en général et en cinématique en particulier.

On verra par la suite que le vecteur $\overrightarrow{\Omega}$ est appelé **R**ésultante du torseur cinématique.

En conséquence, en utilisant le moyen mnémotechnique on a :

$$\overrightarrow{V(\mathbf{B} \in S_1/S_0)} = \overrightarrow{V(\mathbf{A} \in S_1/S_0)} + \overrightarrow{\mathbf{BA}} \wedge \underbrace{\Omega(S_1/S_0)}_{\mathbf{R}}$$

Remarque

Remarque

Utilisation du champ de vecteur

La formule du champ de vecteur est utilisée à chaque fois que la vitesse est connue en un point d'un solide et qu'on veut la calculer en un point appartenant à un autre point d'un même solide.

Centrifugeuse

Calcul de $\overline{V(O_1 \in S_1/S_0)}$.

 S_1 et S_0 sont en liaison pivot de centre O_0 , on a donc : $\overrightarrow{V(O_0 \in S_1/S_0)} = \overrightarrow{O}$.

En conséquence,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \overrightarrow{V(O_0 \in S_1/S_0)} + \overrightarrow{O_1O_0} \wedge \overrightarrow{\Omega(S_1/S_0)} = \overrightarrow{0} - a \overrightarrow{i_1} \wedge \left(\dot{\alpha} \overrightarrow{k_0} \right) = a \dot{\alpha} \overrightarrow{j_1}$$

Exemple

3.4.3 Équiprojectivité du champ des vecteurs vitesses

Equiprojectivité

Soit un solide S_1 en mouvement par rapport à un repère fixe \mathcal{R}_0 . Soient deux points A et B appartenant au solide S_1 . On démontre qu'à chaque instant t:

$$\overrightarrow{V(A \in S_1/\mathscr{R}_0)} \cdot \overrightarrow{AB} = \overrightarrow{V(B \in S_1/\mathscr{R}_0)} \cdot \overrightarrow{AB}$$

Résultat

Cette propriété sera très utilisée en cinématique graphique lors de l'étude des mouvements plans.

4 Composition des mouvements

4.1 Composition du vecteur vitesse

Composition du vecteur vitesse

Soit un solide S_1 en mouvement par rapport à un repère \mathcal{R}_0 et un solide S_2 par rapport au solide S_1 . Pour chacun des points A appartenant au solide S_2 , on a :

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(A \in S_1/\mathscr{R}_0)}$$

Démontrons ce résultat. O_1 est le centre de la liaison entre \mathcal{R}_0 et S_1 . O_1 est donc fixe dans le repère \mathcal{R}_0 . O_2 est le centre de la liaison entre S_1 et S_2 . A appartient à S_2 .

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \left[\overrightarrow{\frac{dO_1A}{dt}} \right]_{\mathscr{R}_0} = \left[\overrightarrow{\frac{dO_1O_2}{dt}} \right]_{\mathscr{R}_0} + \left[\overrightarrow{\frac{dO_2A}{dt}} \right]_{\mathscr{R}_0} = \overrightarrow{V(O_2 \in S_1/\mathscr{R}_0)} + \left[\overrightarrow{\frac{dO_2A}{dt}} \right]_{S_1} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{O_2A}$$

$$\overrightarrow{V(A \in S_2/\mathcal{R}_0)} = \underbrace{\left[\frac{\overrightarrow{dO_2A}}{dt}\right]_{S_1}}_{\overrightarrow{V(A \in S_2/S_1)}} + \underbrace{\overrightarrow{V(O_2 \in S_1/\mathcal{R}_0)} + \overrightarrow{AO_2} \wedge \overrightarrow{\Omega(S_1/\mathcal{R}_0)}}_{\overrightarrow{V(A \in S_1/\mathcal{R}_0)}}$$

On a donc bien:

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(A \in S_1/\mathscr{R}_0)}$$

- $\overrightarrow{V(A \in S_2/\mathcal{R}_0)}$ est appelé vecteur vitesse absolu;
- $\overrightarrow{V(A \in S_2/S_1)}$ est appelé vecteur vitesse relatif;
- $-\overrightarrow{V(A \in S_1/\mathcal{R}_0)}$ est appelé vecteur vitesse d'entraînement.

Généralisation

La décomposition du vecteur vitesse peut se généraliser avec n solides :

 $\overrightarrow{V(A \in S_n/S_0)} = \overrightarrow{V(A \in S_n/S_{n-1})} + \dots + \overrightarrow{V(A \in S_1/S_0)}$

Remarque

4

Résultat

4.2 Composition du vecteur instantané de rotation

Composition du vecteur vitesse

Soit un solide S_1 en mouvement par rapport à un repère \mathcal{R}_0 et un solide S_2 par rapport au solide S_1 . On a :

$$\overrightarrow{\Omega(S_2/\mathcal{R}_0)} = \overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathcal{R}_0)}$$

Pour démontrer ce résultat, prenons un vecteur \overrightarrow{v} :

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{S_1} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} + \overline{\Omega(S_2/S_1)} \wedge \overrightarrow{v}$$

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{S_1} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathscr{R}_0} + \overrightarrow{\Omega(\mathscr{R}_0/S_1)} \wedge \overrightarrow{v}$$

$$\left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathcal{R}_0} = \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} + \overrightarrow{\Omega(S_2/\mathcal{R}_0)} \wedge \overrightarrow{v} \Longleftrightarrow \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathcal{R}_0} - \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} = \overrightarrow{\Omega(S_2/\mathcal{R}_0)} \wedge \overrightarrow{v}$$

En faisant la soustraction des deux premières expressions on obtient :

$$\overrightarrow{0} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{S_2} - \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \overrightarrow{\Omega(S_2/S_1)} \wedge \overrightarrow{v} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{S_2} - \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\overrightarrow{\Omega(S_2/S_1)} - \overrightarrow{\Omega(\mathcal{R}_0/S_1)} \right) \wedge \overrightarrow{v} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \overrightarrow{U} = \left[\frac{d \overrightarrow{v}}{dt} \right]_{\mathcal{R}_0} + \left(\frac{d \overrightarrow{v}}{dt} \right)_{\mathcal{R}_0} + \left(\frac{d \overrightarrow{v}}{dt}$$

$$\iff \left[\frac{d\overrightarrow{v}}{dt}\right]_{\mathscr{R}_0} - \left[\frac{d\overrightarrow{v}}{dt}\right]_{S_2} = \left(\overline{\Omega(S_2/S_1)} + \overline{\Omega(S_1/\mathscr{R}_0)}\right) \wedge \overrightarrow{v}$$

En utilisant la dernière relation on a donc :

$$\overrightarrow{\Omega(S_2/\mathscr{R}_0)} \wedge \overrightarrow{v} = \left(\overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)}\right) \wedge \overrightarrow{v} \Longleftrightarrow \overrightarrow{\Omega(S_2/\mathscr{R}_0)} = \overrightarrow{\Omega(S_2/S_1)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

Généralisation

La décomposition du vecteur instantané de rotation peut se généraliser avec n solides :

$$\overrightarrow{\Omega(S_n/S_0)} = \overrightarrow{\Omega(S_n/S_{n-1})} + ... + \overrightarrow{\Omega(S_1/S_0)}$$

4.2.1 Exemple

Centrifugeuse

Calcul de $\overrightarrow{V(G \in S_2/S_0)}$.

On a:

$$\overrightarrow{V(G \in S_2/S_0)} = \overrightarrow{V(G \in S_2/S_1)} + \overrightarrow{V(G \in S_1/S_0)}$$

Résultat

Calculons $\overrightarrow{V(G \in S_1/S_0)}$:

$$\overrightarrow{V(G \in S_1/S_0)} = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{GO_1} \wedge \overrightarrow{\Omega(S_1/S_0)} = a \dot{\alpha} \overrightarrow{j_1} - \left(b \overrightarrow{i_2} + c \overrightarrow{k_2} \right) \wedge \left(\dot{\alpha} \overrightarrow{k_0} \right)$$

$$\overrightarrow{V(G \in S_1/S_0)} = a \dot{\alpha} \overrightarrow{j_1} + b \dot{\alpha} \sin(\beta + \pi/2) \overrightarrow{j_1} + c \dot{\alpha} \sin\beta \overrightarrow{j_1} = \dot{\alpha} (a + b \cos\beta + c \sin\beta) \overrightarrow{j_1}$$

Par ailleurs calculons $\overrightarrow{V(G \in S_2/S_1)}$:

$$\overrightarrow{V(G \in S_2/S_1)} = \overrightarrow{V(O_1 \in S_2/S_1)} + \overrightarrow{GO_1} \wedge \overrightarrow{\Omega(S_2/S_1)} = -\left(b \overrightarrow{i_2} + c \overrightarrow{k_2}\right) \wedge \left(\dot{\beta} \overrightarrow{j_1}\right) = -\dot{\beta} \left(b \overrightarrow{k_2} - c \overrightarrow{i_2}\right)$$

Au final,

$$\overrightarrow{V(G \in S_2/S_0)} = \dot{\alpha} \left(a + b \cos \beta + c \sin \beta \right) \overrightarrow{j_1} - \dot{\beta} \left(b \overrightarrow{k_2} - c \overrightarrow{i_2} \right)$$

Il est aussi possible de calculer $\overrightarrow{V(G \in S_2/S_0)}$ ainsi :

$$\overrightarrow{V(G \in S_2/S_0)} = \left[\frac{dO_0G}{dt}\right]_{\mathscr{R}_0}$$

Exemple

5 Accélération d'un point appartenant à un solide

5.1 Définition

Accélération d'un point appartenant à un solide

Soit un solide S_0 auquel on associe le repère \mathcal{R}_0 $\left(O_0, \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$. Soit un solide S_1 auquel on associe le repère \mathcal{R}_1 , $\left(O_1, \overrightarrow{i_1}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$. Le solide S_1 est en mouvement par rapport au solide S_0 .

Soit un point P appartenant au solide S_1 . L'accélération du point P appartenant au solide S_1 par rapport au solide S_0 se calcule donc ainsi :

 $\overline{\Gamma(P \in S_1/S_0)}(t) = \left[\frac{d\left(\overline{V(P \in S_1/S_0)}(t)\right)}{dt} \right]_{\mathscr{B}_0}$

Ófinition

5.2 Champ d'accélération d'un solide en mouvement

On a vu que $\overline{V(B \in S_1/S_0)} = \overline{V(A \in S_1/S_0)} + \overrightarrow{BA} \wedge \overline{\Omega(S_1/S_0)}$. En dérivant cette expression on a donc :

$$\overrightarrow{\Gamma(B \in S_1/S_0)} = \overrightarrow{\Gamma(A \in S_1/S_0)} + \left[\frac{d\overrightarrow{BA}}{dt} \right]_{S_0} \wedge \overrightarrow{\Omega(S_1/S_0)} + \overrightarrow{BA} \wedge \left[\frac{d\overrightarrow{\Omega(S_1/S_0)}}{dt} \right]_{S_0}$$

B et A sont des points du solide S_1 . On a donc :

$$\left[\frac{d\overrightarrow{BA}}{dt}\right]_{S_0} = \underbrace{\left[\frac{d\overrightarrow{BA}}{dt}\right]_{S_1}}_{S_0} + \underbrace{\Omega(S_1/S_0)} \wedge \overrightarrow{BA}$$

$$\overrightarrow{\Gamma(B \in S_1/S_0)} = \overrightarrow{\Gamma(A \in S_1/S_0)} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{BA} \wedge \overrightarrow{\Omega(S_1/S_0)} + \overrightarrow{BA} \wedge \left[\frac{d\overrightarrow{\Omega(S_1/S_0)}}{dt} \right]_{S_0}$$

$$\overrightarrow{\Gamma(B \in S_1/S_0)} = \overrightarrow{\Gamma(A \in S_1/S_0)} + \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{\Omega(S_1/S_0)} \wedge \overrightarrow{AB} + \left[\frac{d\overrightarrow{\Omega(S_1/S_0)}}{dt} \right] \wedge \overrightarrow{AB}$$

Le champ des accélérations n'est donc pas un champ de moment.

5.3 Composition des accélérations

On a vu que la vitesse d'un solide S_2 par rapport à \mathcal{R}_0 au point A pouvait s'exprimer ainsi (paragraphe 4.1, page 10):

$$\overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \underbrace{\left[\frac{\overrightarrow{dO_2A}}{dt}\right]_{S_1}}_{\overrightarrow{V(A \in S_2/S_1)}} + \underbrace{\overrightarrow{V(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{AO_2} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}}_{\overrightarrow{V(A \in S_1/\mathscr{R}_0)}} + \overrightarrow{\overrightarrow{AO_2}} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

$$\iff \overrightarrow{V(A \in S_2/\mathscr{R}_0)} = \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{V(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{AO_2} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

Calculons l'accélération du point :

$$\overline{\Gamma(A \in S_2/\mathscr{R}_0)} = \left[\frac{d\overline{V(A \in S_2/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0}$$

$$\overline{\Gamma(A \in S_2/\mathscr{R}_0)} = \left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{\mathscr{R}_0} + \left[\frac{d\overline{V(O_2 \in S_1/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0} + \left[\frac{d\overline{AO_2}}{dt} \right]_{\mathscr{R}_0} \wedge \overline{\Omega(S_1/\mathscr{R}_0)} + \overline{AO_2} \wedge \left[\frac{d\overline{\Omega(S_1/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0}$$

$$\left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{\mathscr{R}_0} = \left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{S_1} + \overline{\Omega(S_2/\mathscr{R}_0)} \wedge \overline{V(A \in S_2/S_1)}$$

$$\iff \left[\frac{d\overline{V(A \in S_2/S_1)}}{dt} \right]_{\mathscr{R}_0} = \overline{\Gamma(A \in S_2/S_1)} + \overline{\Omega(S_2/\mathscr{R}_0)} \wedge \overline{V(A \in S_2/S_1)}$$

$$\left[\frac{d\overline{V(O_2 \in S_1/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0} = \overline{\Gamma(O_2 \in S_1/\mathscr{R}_0)}$$

$$\left[\frac{d\overline{AO_2}}{dt} \right]_{\mathscr{R}_0} = \left[\frac{d\overline{AO_2}}{dt} \right]_{S_1} + \overline{\Omega(S_1/\mathscr{R}_0)} \wedge \overline{AO_2} = \overline{V(A \in S_2/S_1)} + \overline{\Omega(S_1/\mathscr{R}_0)} \wedge \overline{AO_2}$$

On a donc:

$$\overrightarrow{\Gamma(A \in S_2/\mathscr{R}_0)} = \overrightarrow{\Gamma(A \in S_2/S_1)} + \overrightarrow{\Omega(S_2/\mathscr{R}_0)} \wedge \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{\Gamma(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{V(A \in S_2/S_1)} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)}$$

$$+ \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{O_2A} + \left[\frac{d\overrightarrow{\Omega(S_1/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0} \wedge \overrightarrow{O_2A}$$

Par ailleurs d'après le paragraphe précédent,

$$\overrightarrow{\Gamma(A \in S_1/\mathscr{R}_0)} = \overrightarrow{\Gamma(O_2 \in S_1/\mathscr{R}_0)} + \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{\Omega(S_1/\mathscr{R}_0)} \wedge \overrightarrow{O_2A} + \left[\frac{d\overrightarrow{\Omega(S_1/\mathscr{R}_0)}}{dt} \right]_{\mathscr{R}_0} \wedge \overrightarrow{O_2A}$$

Au final,

$$\overrightarrow{\Gamma(A \in S_2/\mathcal{R}_0)} = \overrightarrow{\Gamma(A \in S_2/S_1)} + \underbrace{2\overrightarrow{\Omega(S_2/\mathcal{R}_0)}}_{\overrightarrow{\Gamma(A \in S_1/\mathcal{R}_0)_{Cor}}} \wedge \overrightarrow{V(A \in S_2/S_1)} + \overrightarrow{\Gamma(A \in S_1/\mathcal{R}_0)}$$

On ne peut donc pas composer les accélérations. On appelle :

- $\overline{\Gamma(A \in S_2/\mathcal{R}_0)}$: accélération absolue;
- $\overrightarrow{\Gamma(A \in S_2/S_1)}$: accélération relative;
- $-\overrightarrow{\Gamma(A \in S_1/\mathcal{R}_0)}$: accélération absolue;
- $-\overrightarrow{\Gamma(A \in S_1/\mathcal{R}_0)_{Cor}}$: accélération de Coriolis.

6 Mouvements élémentaires

En cinématique, les vitesses dépendront des dérivées des paramètres variables angulaires et linéaires. Pour les chaînes ouvertes, il sera nécessaire de disposer d'un actionneur par paramètre variable pour animer un système. Pour les chaînes fermées à une seule boucle, il suffira d'un actionneur en entrée du système pour l'animer.

Les lois d'évolution des actionneurs sont au choix du concepteur du système.

6.1 Loi de vitesse uniforme

Dans le cas où la vitesse est uniforme, on a la loi suivante :

6.2 Loi de vitesse en trapèze

Physiquement il est impossible de passer d'une vitesse nulle à une vitesse non nulle. Par une première approche, il est possible qu'un actionneur soit piloté par une loi de vitesse en trapèze :

Références

- [1] Centrifugeuse humaine CNRS Photothèque/Sébastien Godefroy et MEDES, *Avio et Tiger*, http://www.medes.fr/home_fr/fiche-centrifugeuse/mainColumnParagraphs/0/document/Presentation%20centrifugeuse%2018.12.07.pdf.
- [2] Wallace et Gromit, http://www.wallaceandgromit.com/goodies/.
- [3] Jean-Pierre Pupier Vitesse et accélération Dérivée vectorielle Mouvement de solides PTSI Lycée Rouvière Toulon.
- [4] Florestan Mathurin, *Champs des Vecteurs Vitesse des Points d'un Solide*, cours de PCSI / MPSI du lycée Bellevue de Toulouse, http://florestan.mathurin.free.fr.