Foundation of Cryptography, Lecture 10 Pseudorandom Generator from One-Way Functions

Iftach Haitner, Tel Aviv University

Tel Aviv University.

May 27, 2014

Section 1

Entropy

¹All logarithmic are on base 2.

Let X be a random variable over \mathcal{U} and let $X(x) = \Pr_X[x]$.

• Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.
- Sample entropy: For $x \in \text{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.
- Sample entropy: For $x \in \operatorname{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.
- Sample entropy: For $x \in \operatorname{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$
- Collision probability: $CP(X) = \sum_{x \in \mathcal{U}} X(x)^2 = Pr_{x,x' \leftarrow X}[x = x']$

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |\operatorname{Supp}(X)|$.
- Sample entropy: For $x \in \text{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$
- Collision probability: $CP(X) = \sum_{x \in \mathcal{U}} X(x)^2 = Pr_{x,x' \leftarrow X} [x = x']$
- Renyi entropy: $H_2(X) = \log \frac{1}{CP(X)}$

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.
- Sample entropy: For $x \in \text{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$
- Collision probability: $CP(X) = \sum_{x \in \mathcal{U}} X(x)^2 = Pr_{x,x' \leftarrow X} [x = x']$
- Renyi entropy: $H_2(X) = \log \frac{1}{CP(X)}$
- Min entropy: $H_{\infty}(X) = \min_{x \in \text{Supp}(x)} \{H_X(x)\}$

¹All logarithmic are on base 2.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.
- Sample entropy: For $x \in \text{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$
- Collision probability: $CP(X) = \sum_{x \in \mathcal{U}} X(x)^2 = Pr_{x,x' \leftarrow X} [x = x']$
- Renyi entropy: $H_2(X) = \log \frac{1}{CP(X)}$
- Min entropy: $H_{\infty}(X) = \min_{x \in \text{Supp}(x)} \{H_X(x)\}$

¹All logarithmic are on base 2.

Let X be a random variable over \mathcal{U} and let $X(x) = \Pr_X[x]$.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |Supp(X)|$.
- Sample entropy: For $x \in \text{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$
- Collision probability: $CP(X) = \sum_{x \in \mathcal{U}} X(x)^2 = Pr_{x,x' \leftarrow X} [x = x']$
- Renyi entropy: $H_2(X) = \log \frac{1}{CP(X)}$
- Min entropy: $H_{\infty}(X) = \min_{x \in \text{Supp}(x)} \{H_X(x)\}$

It holds that $0 \le H_{\infty}(X) \le H_2(X) \le H(X) \le H_0(X)$.

¹All logarithmic are on base 2.

Let X be a random variable over \mathcal{U} and let $X(x) = \Pr_X[x]$.

- Support: Supp(X) := { $x \in \mathcal{U} : X(x) > 0$ }.
- Max entropy: $H_0(X) = \log |\operatorname{Supp}(X)|$.
- Sample entropy: For $x \in \operatorname{Supp}(X)$: $H_X(x) = \log \frac{1}{X(x)}$.
- Shannon entropy: $H(X) = \sum_{x \in \mathcal{U}} X(x) \cdot H_X(x) = E_X [H_X(x)]$
- Collision probability: $CP(X) = \sum_{x \in \mathcal{U}} X(x)^2 = Pr_{x,x' \leftarrow X} [x = x']$
- Renyi entropy: $H_2(X) = \log \frac{1}{CP(X)}$
- Min entropy: $H_{\infty}(X) = \min_{x \in \text{Supp}(x)} \{H_X(x)\}$

It holds that $0 \le H_{\infty}(X) \le H_2(X) \le H(X) \le H_0(X)$.

Equality iff X is **uniform**.

¹All logarithmic are on base 2.

Conditional Entropy

Given two random variable X and Y, the conditional Shannon entropy of X given Y is defined as

$$\mathsf{H}(X\mid Y) = \mathop{\mathsf{E}}_{y\leftarrow Y}[\mathsf{H}(X\mid Y=y)]$$

.

Conditional Entropy

Given two random variable X and Y, the conditional Shannon entropy of X given Y is defined as

$$\mathsf{H}(X\mid Y) = \mathop{\mathsf{E}}_{y\leftarrow Y}[\mathsf{H}(X\mid Y=y)]$$

Example: let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a 2^k regular function. Let X be uniform over $\{0,1\}^n$ and let Y = f(X). Then $H(X \mid Y) = E_{Y \leftarrow Y} \lceil \log 2^k \rceil = k$.

Conditional Entropy

Given two random variable X and Y, the conditional Shannon entropy of X given Y is defined as

$$\mathsf{H}(X\mid Y) = \mathop{\mathsf{E}}_{y\leftarrow Y}[\mathsf{H}(X\mid Y=y)]$$

Example: let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a 2^k regular function. Let X be uniform over $\{0,1\}^n$ and let Y = f(X). Then $H(X \mid Y) = E_{Y \leftarrow Y} \lceil \log 2^k \rceil = k$.

Flattening Shannon entropy

Lemma 1

Let *X* be a rv over \mathcal{U} , let $t \in \mathbb{N}$ and let $\varepsilon > 0$. Then $\exists rv Z$ that is $(\varepsilon + 2^{-t})$ -close to X^t , and $H_{\infty}(Z) \ge t \cdot H(X) - O(\sqrt{t \cdot \log(1/\varepsilon)} \cdot \log(|\mathcal{U}| \cdot t)$.

Flattening Shannon entropy

Lemma 1

Let X be a rv over \mathcal{U} , let $t \in \mathbb{N}$ and let $\varepsilon > 0$. Then $\exists \text{ rv } Z \text{ that is } (\varepsilon + 2^{-t})$ -close to X^t , and $H_{\infty}(Z) \geq t \cdot H(X) - O(\sqrt{t \cdot \log(1/\varepsilon)} \cdot \log(|\mathcal{U}| \cdot t)$.

Proof: ?

Definition 2 (pairwise independent function family)

A function family $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Definition 2 (pairwise independent function family)

A function family $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Example $\mathcal{H} = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m\}$ with $(A, b)(x) = A \times x + b$.

Definition 2 (pairwise independent function family)

A function family $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Example $\mathcal{H} = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m\}$ with $(A, b)(x) = A \times x + b$.

Definition 2 (pairwise independent function family)

A function family $\mathcal{H} = \{h : \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Example
$$\mathcal{H} = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m\}$$
 with $(A, b)(x) = A \times x + b$.

We identify functions with their description, and assume wlg. that (the description of) a random element from $\mathcal H$ is a uniform string.

Definition 2 (pairwise independent function family)

A function family $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Example
$$\mathcal{H} = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m\}$$
 with $(A, b)(x) = A \times x + b$.

We identify functions with their description, and assume wlg. that (the description of) a random element from $\mathcal H$ is a uniform string.

Lemma 3 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_2(X) \ge k$ and let $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ be pairwise independent, then

$$SD((H, H(X)), (H, U_m)) \le 2^{(m-k-2))/2},$$

where H is uniformly distributed over \mathcal{H} and U_m is uniformly distributed over $\{0,1\}^m$.

Definition 2 (pairwise independent function family)

A function family $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Example
$$\mathcal{H} = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m\}$$
 with $(A, b)(x) = A \times x + b$.

We identify functions with their description, and assume wlg. that (the description of) a random element from $\mathcal H$ is a uniform string.

Lemma 3 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_2(X) \ge k$ and let $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ be pairwise independent, then

$$SD((H, H(X)), (H, U_m)) \le 2^{(m-k-2))/2},$$

where H is uniformly distributed over \mathcal{H} and U_m is uniformly distributed over $\{0,1\}^m$.

Definition 4

A random variable has pseudoentropy at least k, if it is computationally indistinguishable from a RV Y with $H(Y) \ge k$.

Definition 4

A random variable has pseudoentropy at least k, if it is computationally indistinguishable from a RV Y with $H(Y) \ge k$.

Pseudo min/Reiny -entropy are analogously defined.

Definition 4

A random variable has pseudoentropy at least k, if it is computationally indistinguishable from a RV Y with $H(Y) \ge k$. Pseudo min/Reiny -entropy are analogously defined.

Examples

Definition 4

A random variable has pseudoentropy at least k, if it is computationally indistinguishable from a RV Y with $H(Y) \ge k$. Pseudo min/Reiny -entropy are analogously defined.

- Examples
- Repeated sampling

Section 2

PRG from Regular OWF

PRG from Regular OWF

Definition 5

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$ and function family $\mathcal{H}: \{0,1\}^n \mapsto \{0,1\}^m$, let $g = g(f,\mathcal{H}): \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^m$ be defined by g(h,x) = g(x), h, h(x).

In case f and \mathcal{H} are function families, we let $g(f,\mathcal{H}) = \{g(f_n,\mathcal{H}_n)\}_{n \in \mathbb{N}}$.

PRG from Regular OWF

Definition 5

Given a function $f: \{0,1\}^n \mapsto \{0,1\}^n$ and function family $\mathcal{H}: \{0,1\}^n \mapsto \{0,1\}^m$, let $g = g(f,\mathcal{H}): \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^m$ be defined by g(h,x) = g(x), h, h(x). In case f and \mathcal{H} are function families, we let $g(f,\mathcal{H}) = \{g(f_n,\mathcal{H}_n)\}_{n \in \mathbb{N}}$.

Claim 6

Let f be a $2^{k-k(n)}$ -regular OWF, $\mathcal{H} = \{\mathcal{H}_n \colon \{0,1\}^n \mapsto \{0,1\}^{m(n)-k(n)+\log n}\}$ be efficient family of pairwise independent hash function family, and let $g = g(f,\mathcal{H})$. Then

- **1** $H(g(U_n, H_n)) \ge n + H(H_n) \frac{1}{n}$, where H_n is uniform over \mathcal{H}_n .
- \bigcirc g is one-way.

g has high entropy

$$\begin{split} \mathsf{CP}(g(U_n, H_n)) &:= \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}_n} [g(w) = g(w')] \\ &= \Pr_{h, h' \leftarrow \mathcal{H}_n} [h = h'] \cdot \Pr_{x, x' \leftarrow \{0,1\}^n} [f(x) = f(x')] \\ &\cdot \Pr_{h \leftarrow \mathcal{H}_n; x, x' \leftarrow zn} [h(x) = h(x') \mid f(x) = f(x')] \\ &= \mathsf{CP}(\mathsf{H}_n) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-m}) \\ &\leq \mathsf{CP}(H_n) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + 2^{-m}) \\ &\leq \mathsf{CP}(H_n) (2^{-n} + 2^{-n - \log n}) = \mathsf{CP}(H_n) \cdot \mathsf{CP}(U_n) \cdot (1 + \frac{1}{n}). \end{split}$$

g has high entropy

$$\begin{split} \mathsf{CP}(g(U_n,H_n)) &:= \Pr_{w,w' \leftarrow \{0,1\}^n \times \mathcal{H}_n} [g(w) = g(w')] \\ &= \Pr_{h,h' \leftarrow \mathcal{H}_n} [h = h'] \cdot \Pr_{x,x' \leftarrow \{0,1\}^n} [f(x) = f(x')] \\ &\cdot \Pr_{h \leftarrow \mathcal{H}_n; x,x' \leftarrow zn} [h(x) = h(x') \mid f(x) = f(x')] \\ &= \mathsf{CP}(\mathsf{H}_n) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-m}) \\ &\leq \mathsf{CP}(H_n) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + 2^{-m}) \\ &\leq \mathsf{CP}(H_n) (2^{-n} + 2^{-n - \log n}) = \mathsf{CP}(H_n) \cdot \mathsf{CP}(U_n) \cdot (1 + \frac{1}{n}). \end{split}$$

Hence, $H_2(g(U_n, H_n)) \ge H_2(\mathcal{H}_n) + H_2(U_n) + \log \frac{1}{1 + \frac{1}{2}} \ge H(H_n) + n - \frac{1}{n}$.

g has high entropy

$$\begin{split} \mathsf{CP}(g(U_n, H_n)) &:= \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}_n} [g(w) = g(w')] \\ &= \Pr_{h, h' \leftarrow \mathcal{H}_n} [h = h'] \cdot \Pr_{x, x' \leftarrow \{0,1\}^n} [f(x) = f(x')] \\ &\cdot \Pr_{h \leftarrow \mathcal{H}_n; x, x' \leftarrow zn} [h(x) = h(x') \mid f(x) = f(x')] \\ &= \mathsf{CP}(\mathsf{H}_n) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-m}) \\ &\leq \mathsf{CP}(H_n) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + 2^{-m}) \\ &\leq \mathsf{CP}(H_n) (2^{-n} + 2^{-n - \log n}) = \mathsf{CP}(H_n) \cdot \mathsf{CP}(U_n) \cdot (1 + \frac{1}{n}). \end{split}$$

Hence, $H_2(g(U_n, H_n)) \ge H_2(\mathcal{H}_n) + H_2(U_n) + \log \frac{1}{1 + \frac{1}{n}} \ge H(H_n) + n - \frac{1}{n}$. Thus, $H(g(U_n, H_n)) \ge H(H_n) + n - \frac{1}{n}$.

g is one-way

Assume g is not one-way and let A be a PPT that inverts g w.p 1/p(n), for some $p \in \text{poly}$, for infinitely many n's.

g is one-way

Assume g is not one-way and let A be a PPT that inverts g w.p 1/p(n), for some $p \in \text{poly}$, for infinitely many n's.

The following algorithm inverts *f* with non-negligible probability.

g is one-way

Assume g is not one-way and let A be a PPT that inverts g w.p 1/p(n), for some $p \in \text{poly}$, for infinitely many n's.

The following algorithm inverts f with non-negligible probability.

Let
$$t = t(n) = k(n) - 2 \lceil \log(p(n)) \rceil$$
.

Algorithm 7 (B)

Input: $y \in \{0, 1\}^n$.

Sample $h \leftarrow \mathcal{H}_n$ and $z \leftarrow \{0,1\}^t$, and return D(y,h,z)

Algorithm 8 (D)

Input: $y \in \{0,1\}^n$, $h \in \mathcal{H}_n$ and $z_1 \in \{0,1\}^t$. For all $z_2 \in \{0,1\}^{m-t}$:

- 2 If f(x) = y, return x.

g is one-way

Assume g is not one-way and let A be a PPT that inverts g w.p 1/p(n), for some $p \in \text{poly}$, for infinitely many n's.

The following algorithm inverts *f* with non-negligible probability.

Let
$$t = t(n) = k(n) - 2 \lceil \log(p(n)) \rceil$$
.

Algorithm 7 (B)

Input: $y \in \{0, 1\}^n$.

Sample $h \leftarrow \mathcal{H}_n$ and $z \leftarrow \{0,1\}^t$, and return D(y,h,z)

Algorithm 8 (D)

Input: $y \in \{0,1\}^n$, $h \in \mathcal{H}_n$ and $z_1 \in \{0,1\}^t$. For all $z_2 \in \{0,1\}^{m-t}$:

- 2 If f(x) = y, return x.

$$\Pr_{x \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}_n} \left[\mathsf{D}(f(x), h, h(x)_{1,\dots,t}) \in f^{-1}(f(x)) \right] \ge \frac{1}{p(n)} \tag{1}$$

g is one-way, cont.

By the leftover hash lemma(?)

$$SD((f(x), h, h(x)_{1,...,t})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}_n}, (f(x), h, U_t)_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}_n}) \leq \frac{1}{2p(n)}$$
 (2)

g is one-way, cont.

By the leftover hash lemma(?)

$$SD((f(x), h, h(x)_{1,...,t})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}_n}, (f(x), h, U_t)_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}_n}) \leq \frac{1}{2p(n)}$$
 (2)

Hence,

$$\Pr_{x \leftarrow \{0,1\}^n} \left[\mathsf{B}(f(x)) \in f^{-1}(f(x)) \right] \ge \frac{1}{p(n)} - \frac{1}{2p(n)} = \frac{1}{2p(n)}.$$

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Proof: ?

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Proof: ?

We call such g a pseudo-entropy generator.

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Proof: ?

We call such g a pseudo-entropy generator.

Claim 10

The function $g^{n^2}(x_1,...,x_{n^2}) = g(x_1),...,g(x_{n^2})$ has pseudo min-entropy $n(n+\frac{1}{2}) - O(\sqrt{n\log^2 n} \cdot \log(n^2)) \ge n^2 + n/2 - O(n^{2/3})$.

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Proof: ?

We call such g a pseudo-entropy generator.

Claim 10

The function $g^{n^2}(x_1,...,x_{n^2}) = g(x_1),...,g(x_{n^2})$ has pseudo min-entropy $n(n+\frac{1}{2}) - O(\sqrt{n\log^2 n} \cdot \log(n^2)) \ge n^2 + n/2 - O(n^{2/3})$.

Proof: by the flattening lemma, taking $\varepsilon = 2^{-\log^2 n}$ and t = n.

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Proof: ?

We call such g a pseudo-entropy generator.

Claim 10

The function $g^{n^2}(x_1,...,x_{n^2}) = g(x_1),...,g(x_{n^2})$ has pseudo min-entropy $n(n+\frac{1}{2}) - O(\sqrt{n\log^2 n} \cdot \log(n^2)) \ge n^2 + n/2 - O(n^{2/3})$.

Proof: by the flattening lemma, taking $\varepsilon = 2^{-\log^2 n}$ and t = n.

Claim 11

Let $\mathcal{H}: \{0,1\}^{n^2+n} \mapsto \{0,1\}^{n^2+n/4}$ be an efficient pairwise hash function, then $G: \{0,1\}^{n^2} \times \mathcal{H}_n$ defined by $G(x_1,\ldots,x_{n^2},h) = (h,h(g^{n^2}(x_1,\ldots,x_{n^2})))$, is a PRG.

Proof:

Claim 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^m$ be a OWF with $H(f(U_n)) \ge n - \frac{1}{2}$, and let b be an hardcore predicate for f. Then $g(x) = f(x) \circ b(x)$ has pseudoentropy $n + \frac{1}{2}$.

Proof: ?

We call such g a pseudo-entropy generator.

Claim 10

The function $g^{n^2}(x_1,...,x_{n^2}) = g(x_1),...,g(x_{n^2})$ has pseudo min-entropy $n(n+\frac{1}{2}) - O(\sqrt{n\log^2 n} \cdot \log(n^2)) \ge n^2 + n/2 - O(n^{2/3})$.

Proof: by the flattening lemma, taking $\varepsilon = 2^{-\log^2 n}$ and t = n.

Claim 11

Let $\mathcal{H}: \{0,1\}^{n^2+n} \mapsto \{0,1\}^{n^2+n/4}$ be an efficient pairwise hash function, then $G: \{0,1\}^{n^2} \times \mathcal{H}_n$ defined by $G(x_1,\ldots,x_{n^2},h) = (h,h(g^{n^2}(x_1,\ldots,x_{n^2})))$, is a PRG.

Proof: by the leftover hash lemma

Section 3

PRG from any OWF

Definition 12

```
Given a function f: \{0,1\}^n \mapsto \{0,1\}^m and x \in \{0,1\}^n, let d_f(x) = \lceil \log(|f^{-1}(f(x)|) + \log n \rceil]. Given \mathcal{H}: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}, let g = g(f,\mathcal{H}): \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,x) = f(x), h, h(x)_{1,...,d_f(x)}, 1^{n+\log n-d_f(x)}.
```

Definition 12

```
Given a function f: \{0,1\}^n \mapsto \{0,1\}^m and x \in \{0,1\}^n, let d_f(x) = \lceil \log(|f^{-1}(f(x)|) + \log n \rceil].

Given \mathcal{H}: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}, let g = g(f,\mathcal{H}): \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,x) = f(x), h, h(x)_{1,...,d_f(x)}, 1^{n+\log n-d_f(x)}.
```

Claim 13

Let f be a OWF, $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$ be efficient family of pairwise independent hash function family, and let $g = g(f,\mathcal{H})$. Then

- **1** $H(g(U_n, H_n)) \ge n + H(H_n) \frac{1}{n}$, where H_n is uniform over \mathcal{H}_n .
- 2 Assume d_f is poly-time computable, then g is a one-way function.

Definition 12

```
Given a function f: \{0,1\}^n \mapsto \{0,1\}^m and x \in \{0,1\}^n, let d_f(x) = \lceil \log(|f^{-1}(f(x)|) + \log n \rceil].

Given \mathcal{H}: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}, let g = g(f,\mathcal{H}): \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,x) = f(x), h, h(x)_{1,...,d_f(x)}, 1^{n+\log n-d_f(x)}.
```

Claim 13

Let f be a OWF, $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$ be efficient family of pairwise independent hash function family, and let $g = g(f,\mathcal{H})$. Then

- **1** $H(g(U_n, H_n)) \ge n + H(H_n) \frac{1}{n}$, where H_n is uniform over \mathcal{H}_n .
- 2 Assume d_f is poly-time computable, then g is a one-way function.

Proof:

Definition 12

```
Given a function f: \{0,1\}^n \mapsto \{0,1\}^m and x \in \{0,1\}^n, let d_f(x) = \lceil \log(|f^{-1}(f(x)|) + \log n \rceil.

Given \mathcal{H}: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}, let g = g(f,\mathcal{H}): \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,x) = f(x), h, h(x)_{1,...,d_f(x)}, 1^{n+\log n-d_f(x)}.
```

Claim 13

Let f be a OWF, $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$ be efficient family of pairwise independent hash function family, and let $g = g(f,\mathcal{H})$. Then

- **1** $H(g(U_n, H_n)) \ge n + H(H_n) \frac{1}{n}$, where H_n is uniform over \mathcal{H}_n .
- 2 Assume d_f is poly-time computable, then g is a one-way function.

Proof:

Hence, if d_f is poly-time computable, then building a PRG from f follows the same lines we used for regular OWF.

Definition 12

```
Given a function f \colon \{0,1\}^n \mapsto \{0,1\}^m and x \in \{0,1\}^n, let d_f(x) = \lceil \log(|f^{-1}(f(x)|) + \log n \rceil.
Given \mathcal{H} \colon \{0,1\}^n \mapsto \{0,1\}^{n+\log n}, let g = g(f,\mathcal{H}) \colon \mathcal{H} \times \{0,1\}^n \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,x) = f(x), h, h(x)_{1,...,d_f(x)}, 1^{n+\log n-d_f(x)}.
```

Claim 13

Let f be a OWF, $\mathcal{H} = \{\mathcal{H}_n : \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$ be efficient family of pairwise independent hash function family, and let $g = g(f,\mathcal{H})$. Then

- **1** $H(g(U_n, H_n)) \ge n + H(H_n) \frac{1}{n}$, where H_n is uniform over \mathcal{H}_n .
- 2 Assume d_f is poly-time computable, then g is a one-way function.

Proof:

Hence, if d_f is poly-time computable, then building a PRG from f follows the same lines we used for regular OWF.

Should we expect d_f to be poly-time computable?

Definition 14

```
For f \colon \{0,1\}^n \mapsto \{0,1\}^n and \mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}, let g = g(f,\mathcal{H}) \colon \mathcal{H} \times [n] \times \{0,1\}^n \mapsto \mathcal{H} \times [n] \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,i,x) = f(x), h,i,h(x)_{1,\dots,i+\log n},1^{n+\log n-i}.
```

Definition 14

```
For f: \{0,1\}^n \mapsto \{0,1\}^n and \mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}, let g = g(f,\mathcal{H}) \colon \mathcal{H} \times [n] \times \{0,1\}^n \mapsto \mathcal{H} \times [n] \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,i,x) = f(x), h, i, h(x)_{1,...,i+\log n}, 1^{n+\log n-i}.
```

Claim 15

Assume f is OWF and that \mathcal{H} is the Matrix-based pairwise-independent hash functions. Then the pseudo Shannon-entropy of $g(H_n, I_n, U_n)$, where I_n is uniform over [n], is larger by at least 1/n than its (real) Shannon entropy.

Definition 14

```
For f: \{0,1\}^n \mapsto \{0,1\}^n and \mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}, let g = g(f,\mathcal{H}) \colon \mathcal{H} \times [n] \times \{0,1\}^n \mapsto \mathcal{H} \times [n] \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,i,x) = f(x), h, i, h(x)_{1,...,i+\log n}, 1^{n+\log n-i}.
```

Claim 15

Assume f is OWF and that \mathcal{H} is the Matrix-based pairwise-independent hash functions. Then the pseudo Shannon-entropy of $g(H_n, I_n, U_n)$, where I_n is uniform over [n], is larger by at least 1/n than its (real) Shannon entropy.

We call such g a false-pseudoentropy generator.

Definition 14

```
For f: \{0,1\}^n \mapsto \{0,1\}^n and \mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}, let g = g(f,\mathcal{H}) \colon \mathcal{H} \times [n] \times \{0,1\}^n \mapsto \mathcal{H} \times [n] \times \{0,1\}^n \times \{0,1\}^{n+\log n} be defined by g(h,i,x) = f(x), h,i,h(x)_{1,...,i+\log n},1^{n+\log n-i}.
```

Claim 15

Assume f is OWF and that \mathcal{H} is the Matrix-based pairwise-independent hash functions. Then the pseudo Shannon-entropy of $g(H_n, I_n, U_n)$, where I_n is uniform over [n], is larger by at least 1/n than its (real) Shannon entropy.

We call such g a false-pseudoentropy generator.

Proof: Define

$$g'(h, i, x) = \begin{cases} f(x), h, i, h(x)_{1, \dots, i + \log n - 1}, U, 1^{n + \log n - i}, & i = d_f(x) \\ g(h, i, x), & \text{otherwise.} \end{cases}$$

Definition 14

For $f \colon \{0,1\}^n \mapsto \{0,1\}^n$ and $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$, let $g = g(f,\mathcal{H}) \colon \mathcal{H} \times [n] \times \{0,1\}^n \mapsto \mathcal{H} \times [n] \times \{0,1\}^n \times \{0,1\}^{n+\log n}$ be defined by $g(h,i,x) = f(x), h,i,h(x)_{1,\dots,i+\log n},1^{n+\log n-i}$.

Claim 15

Assume f is OWF and that \mathcal{H} is the Matrix-based pairwise-independent hash functions. Then the pseudo Shannon-entropy of $g(H_n, I_n, U_n)$, where I_n is uniform over [n], is larger by at least 1/n than its (real) Shannon entropy.

We call such g a false-pseudoentropy generator.

Proof: Define

$$g'(h, i, x) = \begin{cases} f(x), h, i, h(x)_{1, \dots, i + \log n - 1}, U, 1^{n + \log n - i}, & i = d_f(x) \\ g(h, i, x), & \text{otherwise.} \end{cases}$$

Claim 16

2
$$H(g'(H_n, I_n, U_n) - H(g(H_n, I_n, U_n)) \ge 1/n$$

Using repetition convert the Shannon pseudoentropy of the output of g
into min pseudoentropy.

 Using repetition convert the Shannon pseudoentropy of the output of g into min pseudoentropy.

Problem: g' is not efficiently computable, and thus $g'(H_n, I_n, U_n)$ is not efficiently samplable

- Using repetition convert the Shannon pseudoentropy of the output of g into min pseudoentropy.
 - Problem: g' is not efficiently computable, and thus $g'(H_n, I_n, U_n)$ is not efficiently samplable
- "extract" this min-entropy, and also the (real) min-entropy "left" in the inputs.

- Using repetition convert the Shannon pseudoentropy of the output of g into min pseudoentropy.
 - Problem: g' is not efficiently computable, and thus $g'(H_n, I_n, U_n)$ is not efficiently samplable
- "extract" this min-entropy, and also the (real) min-entropy "left" in the inputs.

- Using repetition convert the Shannon pseudoentropy of the output of g into min pseudoentropy.
 - Problem: g' is not efficiently computable, and thus $g'(H_n, I_n, U_n)$ is not efficiently samplable
- "extract" this min-entropy, and also the (real) min-entropy "left" in the inputs.

Very complicated an inefficient construction. Seed length of PRG is $\Theta(n^8)$.

Efficient construction, second approach

Definition 17

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, and the Matrix-based pairwise-independent hash functions $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$, let $g: \mathcal{H} \times \{0,1\}^n] \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n}$ be defined by g(h,x) = f(x), h, h(x).

Efficient construction, second approach

Definition 17

For $f \colon \{0,1\}^n \mapsto \{0,1\}^n$, and the Matrix-based pairwise-independent hash functions $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$, let $g \colon \mathcal{H} \times \{0,1\}^n] \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n}$ be defined by g(h,x) = f(x), h, h(x).

But g is invertible and thus its output pseudoentropy is as large as its real entropy.(?)

Efficient construction, second approach

Definition 17

For $f \colon \{0,1\}^n \mapsto \{0,1\}^n$, and the Matrix-based pairwise-independent hash functions $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^{n+\log n}\}$, let $g \colon \mathcal{H} \times \{0,1\}^n] \mapsto \mathcal{H} \times \{0,1\}^n \times \{0,1\}^{n+\log n}$ be defined by g(h,x) = f(x), h, h(x).

But g is invertible and thus its output pseudoentropy is as large as its real entropy.(?)

Right, but not in the eyes of an online observer.

Definition 18 (next-block pseudoentropy)

 $X = (X_1, ..., X_m)$ has next-block pseudoentropy at least k, \exists rv $Y = (Y_1, ..., Y_m)$, (jointly distributed with X), such that:

Definition 18 (next-block pseudoentropy)

 $X = (X_1, ..., X_m)$ has next-block pseudoentropy at least k, \exists rv $Y = (Y_1, ..., Y_m)$, (jointly distributed with X), such that:

- 2 $\sum_{i} H(Y_{i}|X_{1},...X_{i-1}) \geq k$.

Quantitative generalization of unpredictability: measures how hard it to predict X_i from X_1, X_2, \dots, X_{i-1} (for $i \leftarrow [k]$).

Definition 18 (next-block pseudoentropy)

 $X = (X_1, ..., X_m)$ has next-block pseudoentropy at least k, \exists rv $Y = (Y_1, ..., Y_m)$, (jointly distributed with X), such that:

Quantitative generalization of unpredictability: measures how hard it to predict X_i from X_1, X_2, \dots, X_{i-1} (for $i \leftarrow [k]$).

Claim 19

Assume f is OWF, then $g(U_n, H_n)$ has next-block pseudoentropy n + |h| + 1.

Definition 18 (next-block pseudoentropy)

 $X = (X_1, ..., X_m)$ has next-block pseudoentropy at least k, \exists rv $Y = (Y_1, ..., Y_m)$, (jointly distributed with X), such that:

Quantitative generalization of unpredictability: measures how hard it to predict X_i from X_1, X_2, \dots, X_{i-1} (for $i \leftarrow [k]$).

Claim 19

Assume f is OWF, then $g(U_n, H_n)$ has next-block pseudoentropy n + |h| + 1.

Proof: Define g'(h, x) by $g'(h, x)_i = \begin{cases} U, & i = n + |h| + d_f(x) + \log n \\ g(h, x)_i, & \text{otherwise.} \end{cases}$

Definition 18 (next-block pseudoentropy)

 $X = (X_1, ..., X_m)$ has next-block pseudoentropy at least k, \exists rv $Y = (Y_1, ..., Y_m)$, (jointly distributed with X), such that:

- 2 $\sum_{i} H(Y_{i}|X_{1},...X_{i-1}) \geq k$.

Quantitative generalization of unpredictability: measures how hard it to predict X_i from X_1, X_2, \dots, X_{i-1} (for $i \leftarrow [k]$).

Claim 19

Assume f is OWF, then $g(U_n, H_n)$ has next-block pseudoentropy n + |h| + 1.

Proof: Define g'(h,x) by $g'(h,x)_i = \begin{cases} U, & i = n + |h| + d_f(x) + \log n \\ g(h,x)_i, & \text{otherwise.} \end{cases}$ $g'(U_n, H_n)$ realizes the next-block pseudoentropy of $g(U_n, H_n)$.

Definition 18 (next-block pseudoentropy)

 $X = (X_1, ..., X_m)$ has next-block pseudoentropy at least k, \exists rv $Y = (Y_1, ..., Y_m)$, (jointly distributed with X), such that:

Quantitative generalization of unpredictability: measures how hard it to predict X_i from X_1, X_2, \dots, X_{i-1} (for $i \leftarrow [k]$).

Claim 19

Assume f is OWF, then $g(U_n, H_n)$ has next-block pseudoentropy n + |h| + 1.

Proof: Define g'(h,x) by $g'(h,x)_i = \begin{cases} U, & i = n + |h| + d_f(x) + \log n \\ g(h,x)_i, & \text{otherwise.} \end{cases}$ of $g'(U_n,H_n)$ realizes the next-block pseudoentropy of $g(U_n,H_n)$.

Continue to Power-point presentation.