DIGITAL DESIGN

LAB SUPPLEMENTARY INTRODUCTION TO PS/2 KEYBOARD

2022 SUMMER TERM

EGO1

编号	描述	编号	描述		
1	VGA接口	9	5个按键		
2	音频接口	10	1个模拟电压输入		
3	USB转Type-C接口	11	1个DAC输出接口		
4	USB接口	12	SRAM存储器		
5	2个4位数码管	13	SPI FLASH存储器		
6	16个LED灯	14	蓝牙模块		
7	8个拔码开关	15	通用扩展接口		
8	1个8位DIP开关				

INTRODUCTION

- Common keyboard and mouse interfaces
 - PS/2 (traditional)
 - USB (modern)
- EGO1 includes a USB to PS/2 converter
- We will use PS/2 keyboard protocol

PS/2 KEYBOARD PROTOCOL

- A bidirectional synchronous serial protocol
- Two directions
 - Keyboard-to-host communication
 - Host-to-keyboard communication
- Clock signal is always generated by the keyboard
- Clock frequency: 10kHZ~16.7kHz

KEYBOARD-TO-HOST COMMUNICATION

- 11-bit frames
 - 1 start bit, always 0
 - 8 data bits
 - 1 parity bit (odd parity)
 - 1 stop bit, always 1
- Data sent to the host is read on the falling edge of the clock signal

CODES

- Each key has two kinds of unique codes
 - Make code: when a key is pressed
 - Break code: when a key is released
- Commonly, break codes are two-byte long where the first byte is F0 and the second byte is the make code for that key
 - Some keys have 2-byte long make codes, starting with EO
 - PrintScreen 4-byte long make code
 - Pause 8-byte long make code

CODES

key	透码	斯玛	key	通码	斯码	key	通码	新码
A	ıc	F0,1C	-,-	0E	F0,0E	FI	05	F0,05
В	32	F0,32		4E	F0,4E	F2	06	F0,06
С	21	F0,21	-	55	F0,55	F3	04	F0,04
D	23	F0,23	1	5D	F0,5D	F4	0C	F0,0C
E	24	F0,24	BKSP	66	F0,66	F5	03	F0,03
F	2B	F0,2B	SPACE	29	F0,29	F6	0B	F0,0B
G	34	F0,34	TAB	0D	F0,0D	F7	83	F0,83
н	33	F0,33	CAPS	58	F0,58 -	F8	0A	F0,0A
I	43	F0,43	L-Shift	12	F0,12	F9	01	F0,01
J	3B	F0,3B	R-Shift	59	F0,59	F10	.09	F0,09
K	42	F0,42	L Ctrl	14	F0,14	F11	78	F0,78
L	4B	F0,4B	R Ctrl	E0,14	F0,E0,14	F12	07	F0,07
M	3A	F0,3A	LAI	o.H.	F0,11	Num	77	F0,77
N	31	F0,31	R.Alt	E0,11	E0,F0,11	KP/	E0,4A	E0,F0,4A
0	- 44	F0,44	L GUI	E0,1F	E0,F0,1F	KP*	7C	F0,7C
P	4D	F0,4D	R GUI	E0,27	E0,F0,27	KP-	7B	F0,7B
Q	15	F0,15	Apps	E0,2F	E0,F0,2F	KP+	79	F0,79
R	2D	F0,2D	Enter	5A	F0,5A	KP EN	E0,5A	E0,F0,5A
s	18	F0,1B	ESC	76	F0,76	KP.	71	F0,71
T	2C	F0,2C	Scroll	-7E	F0,7E	KP0	70	F0,70
U	3C	F0,3C	Insert	E0,70	E0,F0,70	KP1	69	F0,69
v	2A	F0,2A	Home	B0,6C	E0,F0,6C	KP2	72	F0,72
w	1D	F0,1D	Page Up	E0,7D	E0,F0,7D	KP3	7A	F0,7A
x	22	F0,22	Page Dn	E0,7A	E0,F0,7A	KP4	6B	F0,6B
Y	35	F0,35	Delete	E0,71	E0,F0,71	KP5	73	F0,73
z	14	F0,1A	End	E0,69	E0,F0,69	KP6	74	F0.74

key	进码	新码	key	通码	斯群	key	通码	新码
0	45	F0,45	[]	54	F0,54	KP7	6C	F0,6C
1	16	F0,16	gas I con	5B	F0,5B	KP8	75	F0,75
2	18	F0,1E	100	4C	F0,4C	KP9	7D	F0,7D
3	26	F0,26		52	F0,52	U Arrow	E0,75	E0,F0,75
4	25	F0,25		41	F0,41	L Arrow	E0,6B	E0,F0,6B
5	2E	F0,2E		49	F0,49	D Arrow	E0,72	E0,F0,72
6	36	F0,36	1	4A	F0,4A	R Arrow	E0,74	E0,F0,74
7	3D	F0,3D	PrntScrn	E0,7C E0,12	E0,F0,7C E0,F0,12	Pause	E1,14,77,E1 F0,14,F0,77	None
8	3E	F0,3E					10	
9	46	F0,46						

IMPLEMENT

- Read data sent by the keyboard, and display the keycode using leds
- Need to filter clock and data signal
- Filtered data signals are stored by two 11-bit shift registers
 - shift2[8:1] the first byte
 - shift2[8:1] the second byte
- xkey[15:0] is the output of 2-byte keycode

MODULES (1)

```
module keyboard(
    input clk_25MHz,
    input clr,
    input PS2C,
    input PS2D,
    output [15:0] xkey
);

reg PS2Cf, PS2Df;
reg [7: 0]ps2c_filter, ps2d_filter;
reg[10:0]shift1, shift2;
    assign xkey = {shift2[8:1], shift1[8:1]};
    //filter for PS2 clock and data
    always @(posedge clk_25MHz or posedge clr)...
    //Shift register used to clock in scan codes from PS2
    always @(negedge PS2Cf or posedge clr)...
endmodule
```

```
//Shift register used to clock in scan codes from PS2
always @(negedge PS2Cf or posedge clr)
begin
    if(clr==0)
    begin
        shift1 <=0;
        shift2 <=1;
    end
    else
    begin
        shift1 <= {PS2Df, shift1[10:1]};
        shift2 <= {shift1[0], shift2[10:1]};
    end
end</pre>
```

```
//filter for PS2 clock and data
always @(posedge clk_25MHz or posedge clr)
begin
    if(c1r==0)
   begin
        ps2c_filter <= 0;
        ps2d_filter<=0;
       PS2Cf<=1:
        PS2Df<= 1;
    end
    else.
   begin
        ps2c filter[7] <= PS2C:
        ps2c_filter[6: 0] <= ps2c_filter[7: 1];
        ps2d filter[7] <= PS2D:
        ps2d_filter[6: 0] <=ps2d_filter[ 7: 1];
        if(ps2c_filter ==8'b11111111)
            PS2Cf<=1:
        else if(ps2c filter ==8'b000000000)
            PS2Cf<=0:
        if(ps2d filter ==8'b11111111)
            PS2Df<=1:
         else if(ps2d_filter ==8'b00000000)
            PS2Df<=0:
     end
 end
```

MODULES (2)

set_property PACKAGE_PIN K5 [get_ports PS2C]
set_property PACKAGE_PIN L4 [get_ports PS2D]

```
module keyboard_top(
    input wire clk_100MHz,
   input wire PS2C,
   input wire PS2D,
   input wire clr,
    output wire [15: 0] keyboard_out
   wire pclk, clk_25MHz;
    clkdiv #(4) U1(
       .clk_100MHz(clk_100MHz),
        .clr(clr),
        .clk_25MHz(clk_25MHz)
   keyboard U2(
        .clk_25MHz(clk_25MHz),
        .clr(clr),
        .PS2C(PS2C),
        .PS2D(PS2D),
        . xkey(keyboard_out)
endmodule
```