troduction Objectives Methodology Results and discussion Conclusions Acknowledgments

Inference on the Evolutionary History of Embryo-Cerebral Related Genes in Metazoan Using a novel Bionformatic Approach.

Participants : Ramírez R. Antonio Aviña P.Katia Gómez R.Ricardo Villegas J. Santiago Álvarez C. Sebastián TA: Valdivia M. Dulce I.

III Bioinformatics Summer School Instituto de Matemáticas, UNAM

June/24/18

Introduction Objectives Methodology Results and discussion Conclusions Acknowledgments

Evolutionary biology & genomics

- Modern genomics brings a radical change to evolutionary biology.
- Availability of multiple-complete genomes and bioinformatics tools.
- New perspectives for homologous-genes relationships.
- Evolutionary history of embryo-cerebral stage related genes*

Objectives

Objectives

Main Objective

Infer the evolutionary history of genes associated with the development of the brain in the embryonic stage of metazoan through an orthologous gene function analysis.

Specific Objectives

- Create an orthologous-genes graph from 5 different metazoan genomes using ProteinOrtho tools
- Determine orthologous genes for the DEG's during brain development in embryonic stage in mouse for further in silico analysis.
- Determine gene evolutionary events (speciation, duplication) using BFS and modular decomposition algorithm on python environment.
- Determine a GO comparative analysis from the phylogenetic trees obtained using our propoused bioinformatic approach.

Methodology

Methodology: Bioinformatics Approach

troduction Objectives Methodology **Results and discussion** Conclusions Acknowledgments

Results and Discussion

- Modular Descomposition
- Reconciliation

roduction Objectives Methodology Results and discussion Conclusions **Acknowledgments**

Thank you! Comments? Questions?

