1.	Using the Principle of Mathematical Induction, prove that $\sum_{r=1}^{n} (6r+1) = n(3n+4)$ for all $n \in \mathbb{Z}^+$.
2.	Sketch the graph of $y = 2 x+1 $ and $y = 2 - x $ in the same diagram. Hence or otherwise , find all real values
2.	
2.	Sketch the graph of $y = 2 x+1 $ and $y = 2 - x $ in the same diagram. Hence or otherwise , find all real values of x satisfying the inequality $2 x+2 + x \le 4$.
2.	
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.
2.	of x satisfying the inequality $2 x+2 + x \le 4$.

AL/2021(2022)/S-1

	Sketch, in an Argand diagram, the locus of the points that represent complex numbers z satisfying $Arg(z-1-i) = -\frac{\pi}{4}$.
I	Hence or otherwise, show that the minimum value of $ z-2+i $ satisfying $Arg(iz+1-i) = \frac{\pi}{4}$ is $\frac{1}{\sqrt{2}}$.
••••	
••••	
••••	
•••••	
•••••	
••••	
••••	
•••••	
•••••	
•••••	
•••••	
••••	
4. I	Let k > 0 It is given that the coefficient of x^7 in the binomial expansion of $(x^2 + \frac{k}{x})^{11}$ and the coefficient of
	*
2	x^{-7} in the binomial expansion of $(x - \frac{1}{x^2})^{11}$ are equal. Show that $k = 1$.
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·
	·

5.	Show that $\lim_{n \to \infty} \frac{tan2x - sin2x}{x^2(\sqrt{1+x} - \sqrt{1-x})} = 4$
	,
	,
6.	Let S be the region enclosed by the curves $y = \frac{lnx}{\sqrt{x}}$, $y = 0$ and $x = e^2$. Show that the area of S is 4 square
	units.
	The region S is rotated about the x-axis through 2π radians. Show that the volume of the solid thus
	generated is $\frac{8\pi}{3}$. $y \uparrow$
	$\frac{1}{\sqrt{1-e^2}} \times x$
	2

AL/2021(2022)/S-1

7.	Show that the equation of the tangent line to the rectangular hyperbola parametrically given by $x = ct$ and
	$y = \frac{c}{t}$ for $t \neq 0$. at the point $P \equiv (cp, \frac{c}{p})$ is given by $x + p^2y = 2cp$.
	The normal line to this hyperbola at P meets the hyperbola again at another point $Q \equiv (cq, \frac{c}{q})$.
	Show that $p^3q = -1$.

8.	Let $A \equiv (0,-1)$ and $B \equiv (9,8)$. The point C lines on AB such that AC:CB =1:2 Show that the equation of the
	straight line l through C perpendicular to AB is $x + y - 5 = 0$.
	Let D be the point on l such that AD is parallel to the straight line $y = 5x + 1$. Find The coordinates of D.
	Δ

AL/2021	(2022)	/S-1
---------	--------	------

	Show that the straight line $x + 2y = 3$ intersects the circle $S = x^2 + y^2 - 4x + 1 = 0$ at two distinct points.
	Fine the equation of the circle passing through these two points and the center of the circle $S = 0$.
J.	Express $2\cos^2 x + 2\sqrt{3}\sin x \cos x - 1$ in the form $R\cos\left(2x - a\right)$, where $R > 0$ and $0 < a < \frac{1}{2}$.
	Express $2\cos^2 x + 2\sqrt{3}\sin x \cos x - 1$ in the form $R\cos(2x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. Hence, solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.
	Hence , solve the equation $\cos^2 x + \sqrt{3}\sin x \cos x = 1$.

හිටලු ම හිමිකම් ඇවරුම්/(மුழுப் பதிப்புரிமையுடையது/All Rights Reserved)

இல்ல சிறும் ஒருப்படுகளும் இல்ல சிறும் ஒருப்படுகளுக்கு இருந்து இருப்படுகளுக்கு இரும் இருப்படுகளுக்கு இரும் இருப்படுகளுக்கு இரும் இருப்படுகளுக்கு இருப்படுக்கு இருப்படுகளுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்கு இருப்படுக்களுக்கு இருப்படுக்கு இ

අධනයන පොදු සහකික පතු (උසස් පෙළ) විභාගය, 2021(2022) සහඛාධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

සංයුක්ත ගණිතය l இணைந்த கணிதம் l Combined Mathematics l

Part B

- * Answer five questions only.
- 11.(a) Let k > 1. Show that the equation $x^2 2(k+1)x + (k-3)^2 = 0$ has real distinct roots.

Let α and β be these roots. Write down $\alpha+\beta$ and $\alpha\beta$ in terms of k, and find the values of k such that both α and β are positive.

Now, let 1 < k < 3. Find the quadratic equation whose roots are $\frac{1}{\sqrt{\alpha}}$ and $\frac{1}{\sqrt{\beta}}$, in terms of k.

(b) Let $f(x) = 2x^3 + ax^2 + bx + 1$ and $g(x) = x^3 + cx^2 + ax + 1$, where $a, b, c \in \mathbb{R}$. It is given that the remainder when f(x) is divided by (x - 1) is 5, and that the remainder when g(x) is divided by $x^2 + x - 2$ is x + 1. Find the values of a, b and c.

Also, with these values for a, b and c, show that $f(x) - 2g(x) \le \frac{13}{12}$ for all $x \in \mathbb{R}$.

(a) It is required to form a 4-digit number consisting of 4 digits taken from the 10 digits given below:

Find the number of different such 4-digit numbers that can be formed

- (i) if all 4 digits chosen are different,
- (ii) if any 4 digits can be chosen.
- (b) Let $U_r = \frac{-16r^3 + 12r^2 + 40r + 9}{5(2r+1)^2(2r-1)^2}$ for $r \in \mathbb{Z}^+$.

Determine the values of the real constants A and B such that $U_r = \frac{A(r-1)}{(2r+1)^2} - \frac{(r-B)}{(2r-1)^2}$ for $r \in \mathbb{Z}^+$.

Hence, find f(r) such that $\frac{1}{5^{r-1}}U_r = f(r) - f(r-1)$ for $r \in \mathbb{Z}^+$, and

show that $\sum_{r=1}^{n} \frac{1}{5^{r-1}} U_r = 1 + \frac{n-1}{5^n (2n+1)^2}$ for $n \in \mathbb{Z}^+$.

Deduce that the infinite series $\sum_{r=1}^{\infty} \frac{1}{5^{r-1}} U_r$ is convergent and find its sum.

13)(a) Let
$$A = \begin{pmatrix} a & 0 & 3 \\ 0 & a & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} a & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, where $a \in \mathbb{R}$.

Also, let $C = AB^T$. Find C in terms of a, and show that C^{-1} exists for all $a \neq 0$.

Write down C^{-1} in terms of a, when it exists.

Show that if
$$C^{-1}\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{1}{8}\begin{pmatrix} 9 \\ -11 \end{pmatrix}$$
, then $a = 2$.

With this value for a, find the matrix D such that $DC - C^TC = 8I$, where I is the identity matrix of order 2.

- (b) Let $z_1 = 1 + \sqrt{3}i$ and $z_2 = 1 + i$. Express $\frac{z_1}{z_2}$ in the form x + iy, where $x, y \in \mathbb{R}$.

 Also, express each of the complex numbers z_1 and z_2 in the form $r(\cos \theta + i\sin \theta)$, where r > 0 and $0 < \theta < \frac{\pi}{2}$, and hence, show that $\frac{z_1}{z_2} = \sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$.

 Deduce that $\cos \left(\frac{\pi}{12} \right) = \frac{1 + \sqrt{3}}{2\sqrt{2}}$.
- (c) Let $n \in \mathbb{Z}^+$ and $\theta \neq 2k\pi \pm \frac{\pi}{2}$ for $k \in \mathbb{Z}$. Using De Moivre's theorem, show that $(1+i\tan\theta)^n = \sec^n\theta(\cos n\theta + i\sin n\theta)$. Hence, obtain a similar expression for $(1-i\tan\theta)^n$, and show that $(1+i\tan\theta)^n + (1-i\tan\theta)^n = 2\sec^n\theta\cos n\theta$. Deduce that $z=i\tan\left(\frac{\pi}{10}\right)$ is a solution of $(1+z)^{25}+(1-z)^{25}=0$.

14.(a) Let
$$f(x) = \frac{4x+1}{x(x-2)}$$
 for $x \neq 0, 2$.

Show that f'(x), the derivative of f(x), is given by $f'(x) = -\frac{2(2x-1)(x+1)}{x^2(x-2)^2}$ for $x \ne 0$, 2.

Hence, find the intervals on which f(x) is increasing and the intervals on which f(x) is decreasing. Sketch the graph of y = f(x) indicating the asymptotes, x-intercept and the turning points. Using this graph, find all real values of x satisfying the inequality f(x) + |f(x)| > 0.

(b) The shaded region S of the adjoining figure shows a garden consisting of a rectangle and two sectors of a circle each subtending an angle $\frac{3\pi}{8}$ at the centre. Its dimensions, in metres, are shown in the figure. The area of S is given to be 36 m^2 . Show that the perimeter p m of S is given by $p = 2x + \frac{72}{x}$ for x > 0 and that p is minimum when x = 6.

15.(a) Find the values of the constants A, B and C such that

$$x^4 + 3x^3 + 4x^2 + 3x + 1 = A(x^2 + 1)^2 + Bx(x^2 + 1) + Cx^2$$
 for all $x \in \mathbb{R}$.

Hence, write down $\frac{x^4 + 3x^3 + 4x^2 + 3x + 1}{x(x^2 + 1)^2}$ in partial fractions and

find
$$\int \frac{x^4 + 3x^3 + 4x^2 + 3x + 1}{x(x^2 + 1)^2} \, \mathrm{d}x$$
.

(b) Let
$$I = \int_0^{\frac{1}{4}} \sin^{-1}(\sqrt{x}) dx$$
. Show that $I = \frac{\pi}{24} - \frac{1}{2} \int_0^{\frac{1}{4}} \sqrt{\frac{x}{1-x}} dx$ and hence, evaluate I .

(c) Show that
$$\frac{d}{dx}(x\ln(x^2+1)+2\tan^{-1}x-2x) = \ln(x^2+1)$$
.

Hence, find
$$\int \ln(x^2+1) dx$$
 and show that $\int_{0}^{1} \ln(x^2+1) dx = \frac{1}{2} (\ln 4 + \pi - 4)$.

Using the result $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$, where a is a constant,

find the value of
$$\int_{0}^{1} \ln \left[(x^2 + 1)(x^2 - 2x + 2) \right] dx$$
.

16. Let $P \equiv (x_1, y_1)$ and l be the straight line given by ax + by + c = 0. Show that the coordinates of any point on the line through the point P and perpendicular to l are given by $(x_1 + at, y_1 + bt)$, where $t \in \mathbb{R}$.

Deduce that the perpendicular distance from P to l is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

Let l be the straight line x + y - 2 = 0. Show that the points $A \equiv (0, 6)$ and $B \equiv (3, -3)$ lie on opposite sides of l.

Find the acute angle between l and the line AB.

Find the equations of the circles S_1 and S_2 with centres at A and B, respectively, and touching l.

Let C be the point of intersection of l and the line AB. Find the coordinates of the point C.

Find also the equation of the other common tangent through C to S_1 and S_2 .

Show that the equation of the circle that passes through the origin, bisects the circumference of S_1 and orthogonal to S_2 is $3x^2 + 3y^2 - 38x - 22y = 0$.

Hence, show that $\cos(A+B)$ and $\cos(A-B)$ in terms of $\cos A$, $\cos B$, $\sin A$ and $\sin B$.

Deduce that $\cos C - \cos D = -2\sin\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right)$.

Solve the equation $\cos 9x + \cos 7x + \cot x (\cos 9x - \cos 7x) = 0$.

- (b) In the usual notation, state and prove the Cosine Rule for a triangle ABC. Let $x \neq n\pi + \frac{\pi}{2}$ for $n \in \mathbb{Z}$. Show that $\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$. In a triangle ABC, it is given that AB = 20 cm, BC = 10 cm and $\sin 2B = \frac{24}{25}$. Show that there are two distinct such triangles and find the length of AC for each.
- (c) Solve the equation $\sin^{-1}\left[\left(1+e^{-2x}\right)^{-\frac{1}{2}}\right] + \tan^{-1}(e^x) = \tan^{-1}(2)$.