

Introduction to Ethereum

State changes in Blockchain

Consensus (nonce): Ø 0xab 0xbv

State change: \varnothing Transaction 1 Transaction 2 $A \longrightarrow B$, 3 $B \longrightarrow C$, 2

Transaction 3 C —> D, 1

Is this transaction 3 valid?

Store explicit state

Consensus (nonce): 0xab 0xbv

State change: Transaction 1 Transaction 2 $A \longrightarrow B$, 3 $B \longrightarrow C$, 2

State commitment: {A:50} {A:47, B:3} {A:47, B:1, C:2}

Advantages of explicit state storage

State commitment: {A:50} {A:47, B:3} {A:47, B:1, C:2}

- No need to go through whole history
- Sequence between any two blocks can be verified
- Light clients can sync up quickly

Ethereum - A universal Replicated State Machine

consensus mechanisms and voluntary respect of the social contract that it is possible to use the internet to make a decentralised value-transfer system, shared across the world and virtually free to use. This system can be said to be a very specialised version of a cryptographically secure, transaction-based state machine. Follow-up systems such as Namecoin adapted this original "currency application" of the technology into other applications albeit rather simplistic ones.

Ethereum is a project which attempts to build the gen-

how those outcomes might come about.

1.2. **Previous Work.** Buterin [2013a] first proposed the kernel of this work in late November, 2013. Though now evolved in many ways, the key functionality of a blockchain with a Turing-complete language and an effectively unlimited inter-transaction storage capability remains unchanged.

Dwork and Naor [1992] provided the first work into the usage of a cryptographic proof of computational expendi-

Ethereum

- A (slow and expensive) world computer
- Consensus among all nodes about the execution
- More transaction type flexibility than Bitcoin
- Quasi-Turing complete language

Replicated State Machine

- Set of possible states: S
- Set of possible inputs: I
- Set of possible outputs: O
- Transition function f: $S \times I \rightarrow S \times O$
- Start state s ∈ S (genesis block)

Arbitrary programs

Execute programs

Ethereum

States S = a map from address to state

address code	storage	balance	nonce
--------------	---------	---------	-------

Inputs I (transactions)

from sig nonce

- Transition f:
 - Validate signature, nonce
 - Execute code (from, data, value, gaslimit, gasprice)
- Start state: Ø