UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE COMPUTAÇÃO - ICOMP INTELIGÊNCIA ARTIFICIAL PROF. EDJARD MOTA TURMA CB01 & CO01 SEMESTRE 2025/1

IA - 2º Trabalho - Raciocínio Probabilístico

Equipe:

- Allan Aguiar
- Bianka Vasconcelos
- Luã Souza
- Micael Viana
- Vinícius Chagas

Um sistema de diagnóstico deve ser feito para um farol de bicicleta movido a dinamo usando uma rede bayesiana. As variáveis na tabela a seguir são fornecidas:

Variável	Significado	Valores
Li	Luz ligada (Light is on)	t/f
Str	Condição da rua (Street condition)	dry, wet, snow_covered
Flw	Volante do Dínamo desgastado (Dynamo flywheel worn out)	t/f
R	Dínamo deslizante (Dynamo sliding)	t/f
V	Dínamos mostra a tensão (Voltagem) (Dynamo shows voltage)	t/f
В	Lâmpada ok (<i>Light bulb ok</i>)	t/f
K	Cabo ok (Cable ok)	t/f

As seguintes variáveis são independentes aos pares: Str, Flw, B, K. Além disso: (R, B), (R, K), (V, B), (V, K) são independentes e a seguinte equação é válida:

$$P(Li \mid V, R) = P(Li \mid V)$$

$$P(V \mid R, Str) = P(V \mid R)$$

$$P(V \mid R, Flw) = P(V \mid R)$$

V	\boldsymbol{B}	K	P(Li)
t	t	t	0.99
\overline{t}	t	f	0.01
t	f	t	0.01
t	f	f	0.001
\overline{f}	t	t	0.3
\overline{f}	t	f	0.005
\overline{f}	f	t	0.005
f	f	f	0

1ª Questão

(a) Desenhe a rede causalidade entre as variáveis Str, Flw, R, V, B, K e Li.

Resposta:

(b) Insira todos os CPTs faltantes no gráfico (tabela de probabilidades condicionais).

Resposta:

(c) Insira livremente valores plausíveis para as probabilidades.

Resposta:

• Para a variável Str.

P(Str = dry)	P(Str = wet)	P(Str = snow_covered)
0,9	0,09	0,01

• Para a variável Flw:

P(Flw = T)	P(<i>Flw</i> = <i>F</i>)
0,4	0,6

• Para a variável *R*:

Str	Flw	P(<i>R</i>)
dry	Т	0,05
dry	F	0
wet	Т	0,6
wet	F	0,05
snow_covered	Т	0,95
snow_covered	F	0,7

• Para a variável V:

R	P(V) = T	P(V) = F
T	0,04	0,96
F	0,99	0,01

• Para a variável B:

P(B = T)	P(<i>B</i> = <i>F</i>)
0,99	0,01

• Para a variável K:

P(K = T)	P(<i>K</i> = <i>F</i>)
0,9	0,1

(d) Mostre que a rede não contém uma aresta (Str, Li).

Resposta:

A aresta (Str, Li) não existe porque Li não depende de Str quando V é conhecido. Ou seja, saber a condição da rua (Str) não altera a probabilidade de Li (luz acesa), pois a rua influencia apenas o dínamo e a tensão, não a luz em si.

(e) Calcule P ($V \mid Str = snow_covered$).

Resposta:

$$P(R|Str = snow_covered) = P(R|Str, Flw) P(Flw) + P(R|Str, \sim Flw) P(\sim Flw)$$

= 0,95 * 0,4 + 0,7 * 0,6 = 0,8
 $P(V|Str = snow_covered) = P(V|R) P(R|Str) + P(V|\sim R) P(\sim R|Str)$
= 0,04 * 0,8 + 0,99 * 0,2
 $P(V|Str = snow_covered) = 0,23$

2ª Questão

Implemente em ProbLog o problema da questão anterior e mostre a solução para **1**^a(**e**). Se baseie no exemplo em: (https://dtai.cs.kuleuven.be/problog/tutorial/basic/02_bayes.html).

Link (GitHub): https://github.com/biankavm/raciocinio-probabilistico-trabalho-2-ia>