A Generalization of Transformer Networks to Graphs

Vijay Prakash Dwivedi, Xavier Bresson
Paper report by
Aleksandr Kariakin, Lev Leontev, Nikita Ivlev

Recall: Transformer, Attention

Attention is a complete graph between words

Graph Neural Networks (GNNs)

Merging Graphs and Transformers

Chemistry [1]

- Learn on molecules and predict chemical properties
- Use in drug repurposing

Physics [2]

- Learn from interactions of particles in systems
- Accelerate physics research

Neuroscience [5]

- Learn functions of brain regions through connectivity
- Accelerate brain-understanding and neuro-disease research

Social networks [3]

- Learn from multi-faceted interactions among users
- Use for commercial and social applications

Medicine [4]

- Learn the effects of multiple drugs on body proteins
- Use for efficient multi-drug medical therapies

Combinatorial Optimization [6]

- Exploit the fact that most CO problems are rep. as graphs
- Develop better approximated solutions for NP-hard problems

Numerous such examples of graph data.

Proposed architecture

Laplacian Positional Encoding

Eigenvectors are defined via the factorization of the graph Laplacian matrix;

$$\Delta = I - D^{-1/2} A D^{-1/2} = U^T \Lambda U, \tag{1}$$

where A is the $n \times n$ adjacency matrix, D is the degree matrix, and Λ , U correspond to the eigenvalues and eigenvectors respectively. We use the k smallest non-trivial eigenvectors of a node as its positional encoding and denote by λ_i for node i.

Laplacian Positional Encoding

Figure 3: Examples of eigenvalues λ_i and eigenvectors ϕ_i for molecular graphs. The low-frequency eigenvectors ϕ_1 , ϕ_2 are spread across the graph, while higher frequencies, such as ϕ_{14} , ϕ_{15} for the left molecule or ϕ_{10} , ϕ_{11} for the right molecule, often resonate in local structures.

Just as the Fourier transform captures the frequency content of a signal, Laplacian eigenvectors capture the structural content of a graph. They help encode distance-aware information, which means that nearby nodes have similar positional features, and farther nodes have dissimilar positional features. Essentially, Laplacian eigenvectors help in understanding the geometrical structure of the graph.

Laplacian Positional Encoding

Multi-head attention

$$\begin{aligned} \hat{\hat{h}}_{i}^{\ell+1} &= \operatorname{Norm} \left(h_{i}^{\ell} + \hat{h}_{i}^{\ell+1} \right), \\ \hat{\hat{h}}_{i}^{\ell+1} &= W_{2}^{\ell} \operatorname{ReLU} (W_{1}^{\ell} \hat{\hat{h}}_{i}^{\ell+1}), \\ h_{i}^{\ell+1} &= \operatorname{Norm} \left(\hat{\hat{h}}_{i}^{\ell+1} + \hat{\hat{h}}_{i}^{\ell+1} \right) \end{aligned}$$

BatchNorm

$$\mu_B=rac{1}{m}\sum_{i=1}^m x_i ext{ and } \sigma_B^2=rac{1}{m}\sum_{i=1}^m (x_i-\mu_B)^2.$$

$$\hat{x}_{i}^{(k)} = rac{x_{i}^{(k)} - \mu_{B}^{(k)}}{\sqrt{\left(\sigma_{B}^{(k)}
ight)^{2} + \epsilon}}$$

What if we have edge features?

 Just multiply the weights in the attention on the edge features! And then softmax

Update the edge features with the new values

What if we have edge features? Example: molecules

Graph benchmark datasets: ZINC

Other example of edge features: link prediction

Graph benchmark datasets: PATTERN and CLUSTER

Comparison to previous models

Model	ZIN	IC	CLUSTER	PATTERN			
GNN BA	ASELINE	SCORE	ES from (Dwived	li et al. 2020)			
GCN	$0.367 \pm$	0.011	68.498 ± 0.976	71.892 ± 0.334			
GAT	$0.384\pm$	0.007	70.587 ± 0.447	78.271 ± 0.186			
GatedGCN	$0.214 \pm$	0.013	76.082 ± 0.196	86.508 ± 0.085			
OUR RESULTS							
GT (Ours)	$0.226 \pm$	0.014	73.169+0.622	84.808+0.068			

Comparison to other PEs

Dataset			Sparse Graph				
	PE	#Param	Test Perf.±s.d.	Train Perf.±s.d.	#Epoch	Epoch/Total	
		Batch	Norm: True; Lay	er Norm: False; L	= 10		
ZINC	X	588353	0.264±0.008	0.048±0.006	321.50	28.01s/2.52hr	
	L	588929	0.226±0.014	0.059 ± 0.011	287.50	27.78s/2.25hr	
	W	590721	0.267±0.012	0.059 ± 0.010	263.25	27.04s/2.00hr	
CLUSTER	X	523146	72.139±0.405	85.857±0.555	121.75	200.85s/6.88hr	
	L	524026	73.169±0.622	86.585±0.905	126.50	201.06s/7.20hr	
	W	531146	70.790±0.537	86.829 ± 0.745	119.00	196.41s/6.69hr	
PATTERN	X	522742	83.949±0.303	83.864±0.489	236.50	299.54s/19.71hr	
	L	522982	84.808±0.068	86.559±0.116	145.25	309.95s/12.67hr	
	W	530742	75.489±0.216	97.028 ± 0.104	109.25	310.11s/9.73hr	

Analysis of GraphTransformer (GT) using different PE schemes. Notations x: No PE; L: LapPE (ours); W: WLPE (Zhang et al. 2020). Bold: the best performing model for each dataset.

Thank you for your attention

