Claims

1. (previously presented) A compound represented by structure 1:

$$R_{5}$$
 X
 Y
 P
 ZR
 R_{5}
 X
 Y
 R_{2}
 R_{3}

1

wherein

X represents O;

Y represents independently for each occurrence O;

Z represents independently for each occurrence O;

R is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aralkyl, heteroaryl, and heteroaralkyl;

R' is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

 R_2 , R_3 , and R_4 are independently selected from the group consisting of R_6 , -OR', -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_5 is selected from the group consisting of R_6 , -(CR₂)_nOR', -(CR₂)_nSR', and -(CR₂)_nNR'₂;

R₆ is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl; and

n is an integer selected from the range 0 to 10 inclusive.

Claims 2-22 (canceled)

23. (currently amended) The compound of claim 1, wherein said compound is represented by one of the following structures:

Glucose

t t

Galactose

wherein

TIPS represents triisopropylsilyl;

PMP represents paramethoxyphenyl; and

Bn represents benzyl.

Claims 24-41 (canceled)

42. (previously presented) A method of synthesizing a compound represented by 1, wherein said method is represented by the following scheme:

wherein

X represents O;

Y represents independently for each occurrence O;

Z represents independently for each occurrence O;

the oxidizing agent is selected from the group consisting or dioxiranes, percarboxylates, and persulfates;

R is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl;

R' is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

R₂ is OR';

 R_3 , and R_4 are independently selected from the group consisting of R, -OR', -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_5 is selected from the group consisting of R, -(CR₂)_nOR', -(CR₂)_nSR', and -(CR₂)_nNR'₂; and

n is an integer selected from the range 0 to 10 inclusive.

- 43. (original) The method of claim 42, wherein the oxidizing agent is a dioxirane.
- 44. (original) The method of claim 43, wherein the oxidizing agent is dimethyl dioxirane (DMDO).
- 45. (previously presented) A compound represented by structure 2:

2

wherein

X represents O;

Y represents independently for each occurrence O;

Z represents independently for each occurrence O;

R represents independently for each occurrence aryl;

R' is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, heteroaralkyl, acyl, and sulfonyl;

 $R_2 \ is \ selected \ from \ the \ group \ consisting \ of \ R_6, \ -OR', \ -SR', \ -NR'_2, \ -OSO_3H, \ -OPO_3H_2;$

 R_3 , and R_4 are independently selected from the group consisting of R_6 , -OR₇, -SR', -NR'₂, -OSO₃H, and -OPO₃H₂;

 R_5 is selected from the group consisting of R_6 , -(CR₂)_nOR₇, -(CR₂)_nSR', and -(CR₂)_nNR'₂;

R₆ is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, aralkyl, heteroaryl, and heteroaralkyl;

R₇ is selected, independently for each occurrence, from the group consisting of H, alkyl, heteroalkyl, aryl, heteroaryl, heteroaralkyl, and sulfonyl; and

n is an integer selected from the range 0 to 10 inclusive.