Sampling from 1d distributions

We can always sample from uniform $\,\mathcal{U}[0,1]$

1d discrete distributions with finite number of values are easy

1d discrete distributions with finite number of values are easy

At least then number of values is < 100 000

Continuous sampling

Sampling from Gaussian distribution

Sampling from Gaussian distribution

$$z = \sum_{i=1}^{12} x_i - 6, \quad x_i \sim \mathcal{U}[0, 1]$$

Sampling from Gaussian distribution

$$z = \sum_{i=1}^{12} x_i - 6, \quad x_i \sim \mathcal{U}[0, 1]$$
$$p(z) \approx \mathcal{N}(0, 1)$$

Sampling from Gaussian distribution

Or call library function © z = numpy.random.randn()

Accept
$$\widetilde{x}$$
 with probability $\frac{p(x)}{2q(x)}$

Accept
$$\widetilde{\mathcal{X}}$$
 with probability $\frac{p(x)}{2q(x)}\colon$ if $y\leq p(x)$

Accept
$$\widetilde{\mathcal{X}}$$
 with probability $\frac{p(x)}{2q(x)}\colon$ if $y\leq p(x)$

Accept
$$\widetilde{\mathcal{X}}$$
 with probability $\frac{p(x)}{2q(x)}\colon$ if $y\leq p(x)$

$$p(x) \le Mq(x)$$

Accepts
$$\frac{1}{M}$$
 points on average

$$\widehat{p}(x) \leq \underbrace{ZM}_{\widetilde{M}} q(x)$$

Pros:

Works for most distributions (even unnormalized)

Pros:

Works for most distributions (even unnormalized)

Cons:

• If q and p are too different (M is large), rejects most of the points

Pros:

Works for most distributions (even unnormalized)

Cons:

- If q and p are too different (M is large), rejects most of the points
- M is large for d-dimensional distributions