# Aprendizagem Automática Aula Prática

Métricas de Distância Classificadores Baseados em Distâncias

G. Marques

- Métricas de Distâncias
- Classificadores Baseados em Distâncias
  - Classificador de distância ao centroide
  - Classificador dos k-vizinhos mais próximos

- Para os humanos, o conceito de distância está intrinsecamente relacionado com a percepção do espaço Euclideano tridimensional, e traduz o grau de proximidade entre objetos, pontos, etc. Do ponto de vista matemático, distância é conceito mais geral e abstrato, que abrange não só a distância Euclideana, bem como um grande número de outras mediadas (métricas).
- Para uma função D(x,y), com x, y ∈ R<sup>d</sup> ser uma métrica de distância entre os vectores d-dimensionais x e y, necessita de satisfazer as seguintes quatro propriedades:

1. Não-Negatividade:  $\mathcal{D}(\mathbf{x}, \mathbf{y}) \ge 0$ 

2. Identidade:  $\mathcal{D}(\mathbf{x}, \mathbf{y}) = 0$  se e só se  $\mathbf{x} = \mathbf{y}$ 

3. Simetria:  $\mathcal{D}(\mathbf{x}, \mathbf{y}) = \mathcal{D}(\mathbf{y}, \mathbf{x})$ 

4. Designaldade Triangular:  $\mathcal{D}(\mathbf{x}, \mathbf{y}) \leq \mathcal{D}(\mathbf{x}, \mathbf{z}) + \mathcal{D}(\mathbf{z}, \mathbf{y})$  com  $\mathbf{z} \in \mathbb{R}^d$ 

- Algumas métricas de distância habitualmente usadas no contexto de aprendizagem automática (para vectores  $\mathbf{x} \in \mathbb{R}^d$ ,  $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$ ).
  - Distância Euclideana:

$$\mathcal{D}_{\ell_2}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = \left(\sum_{k=1}^d (x_k - y_k)^2\right)^{\frac{1}{2}}$$

Distância de City-block ou de Manhattan:

$$\mathcal{D}_{\ell_1}(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}| = \sum_{k=1}^{d} |x_k - y_k|$$

Distância de cosseno:

$$\mathcal{D}_{\cos}(\mathbf{x}, \mathbf{y}) = 1 - \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = 1 - \frac{\sum_{k=1}^{d} x_k y_k}{(\sum_{k=1}^{d} x_k^2)^{\frac{1}{2}} (\sum_{k=1}^{d} y_k^2)^{\frac{1}{2}}} = 1 - \cos(\theta)$$

 $\theta$ : ângulo formado pelos dois vectores

- Métricas de distância são uma ferramenta essencial para diversos tópicos de aprendizagem automática, entre os quais técnicas de regressão, classificação, modelos probabilísticos, e métodos de agrupamentos.
- Matrizes de distância:
  - ▶ Dado um conjunto de N vectores,  $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ , com  $\mathbf{x} \in \mathbb{R}^d$ , a matriz de distâncias é uma matriz quadrada de  $N \times N$  em que cada elemento (linha i, coluna j) é a distância,  $\mathcal{D}(\mathbf{x}_i, \mathbf{x}_j)$ , entre os vectores  $\mathbf{x}_i$  e  $\mathbf{x}_j$ .
  - Em classificação, a matriz de distâncias dos pontos ordenados por classe permite ter uma percepção visual da separabilidade entre classes.
  - A matriz de distâncias permite igualmente ter uma ideia geral de qual métrica de distância e/ou qual tipo de pré-processamento de dados pode ser mais adequados.

### Exemplo com dados sintéticos LAB2distancias001.p

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N=2000)
- Probabilidades a priori:  $p(\varpi_1) = 0.45, p(\varpi_2) = 0.35, p(\varpi_1) = 0.20$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

$$\mu_1 = \begin{bmatrix} 1.1 \\ 0.0 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} -0.9 \\ 1.0 \end{bmatrix}, \quad \mu_3 = \begin{bmatrix} -0.9 \\ -1.7 \end{bmatrix}$$

$$\Sigma_i = \begin{bmatrix} \sigma_i^2 & 0 \\ 0 & \sigma_i^2 \end{bmatrix} \text{com } \sigma_{1,2,3} = [0.3, 0.2, 0.1]$$









### Exemplo dígitos MNIST

#### Dados disponibilizados:

- Ficheiro "pickle" MNISTsmall.p
- Dados guardados num dicionário.
- Chaves do dicionário:
  - X: 15000 imagens de dígitos manuscritos (matriz de 784×15000)
  - trueClass: array de 15000 entradas com classe dos dado (classes de 0 a 9)
  - ▶ foldTrain: array de 15000 entradas com dados de treino (True: treino)
  - foldTest: array de 15000 entradas com dados de teste (True: teste)
- Cada dígito é uma imagem em tons de cinzento (uint8) de 28×28 pixeis, representados vetorialmente: vetores de 784=28² dimensões. As primeiras 28 correspondem aos pixeis da 1ª coluna, as segundas 28 dimensões aos da 2ª coluna, e por aí em diante.

### Exemplo dígitos MNIST

- Selecionados os 200 primeiros exemplos de cada dígito de treino
- Nº total de pontos: N=2000
- Dados em "bruto": vectores de 784×1



• Em Python usar módulo scipy.spatial.distance:

```
# x - matriz de dígitos (784×2000)
>>> import scipy.spatial.distance as spd
# usar 'euclidean', 'cityblock', e'cosine'
>>> D=spd.squareform(spd.pdist(X.T,'euclidean'))
```

Várias técnicas de classificação são direta ou indiretamente baseadas em medidas de distância. Dois dos métodos de classificação mais simples são:

- Classificador de distância ao centroide:
  - Este método classifica uma nova observação (novo vector) baseado na distâncias às médias (centroides) das classes no conjunto de treino. A classe atribuída é a do centroide que estiver mais próximo do vector.
- Classificador do *k* vizinhos mais próximos (*k*-NN):
  - Este método classifica uma nova observação baseado nas classes dos k vizinhos mais próximos do conjunto de treino. A classe atribuída por votação classe maioritária nos k vizinhos.

### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N=3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$



### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N=3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Distância Euclideana:

• Para um conjunto  $\mathcal{X}$ , a distância Euclideana dum vector  $\mathbf{x}$  à média é:

$$\mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_{\mathbf{x}}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\top}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})} = \sqrt{(x_1 - \mu_{x_1})^2 + \ldots + (x_d - \mu_{x_d})^2}$$

- Classificação:
  - Calcular  $\mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_i) = \sqrt{(\mathbf{x} \boldsymbol{\mu}_i)^{\top}(\mathbf{x} \boldsymbol{\mu}_i)}$ , para i = 1, 2, 3
  - $\mathbf{x} \in \hat{\varpi}_j$ , se  $\hat{\mathcal{D}}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_j) \leq \hat{\mathcal{D}}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_i)$

### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N=3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Distância Euclideana:

• Para um conjunto  $\mathcal{X}$ , a distância Euclideana dum vector  $\mathbf{x}$  à média é:

$$\mathcal{D}_{\ell_2}(\mathbf{X}, \boldsymbol{\mu}_{\mathbf{X}}) = \sqrt{(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})^{\top} (\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})} = \sqrt{(x_1 - \mu_{x_1})^2 + \ldots + (x_d - \mu_{x_d})^2}$$

Em Python: (ex: cálculo das distâncias à classe ω<sub>1</sub>)
 # x matriz com pontos (2×3000), m1= μ<sub>1</sub> (2×1)

```
>>> Xn=X-m1
```

>>> D1=np.sqrt (np.sum (Xn\*Xn,axis=0)) #D1, array de (3000,)

### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\bullet$   $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ .  $(N^{\circ} \text{ total de pontos: } N = 3000)$
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Distância Euclideana:

• Para um conjunto  $\mathcal{X}$ , a distância Euclideana dum vector  $\mathbf{x}$  à média é:

$$\mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu_x}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu_x})^{\top} (\mathbf{x} - \boldsymbol{\mu_x})} = \sqrt{(x_1 - \mu_{x_1})^2 + \ldots + (x_d - \mu_{x_d})^2}$$

· Construir matriz de distâncias a todas as classes e ver qual a menor

```
>>> Dtotal=np.vstack((D1,D2,D3))#Dtotal, matriz de 3×3000
```

>>> estClass=np.argmin(Dtotal,axis=0)

### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N = 3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Classificação:

- ullet Distância Euclideana:  $\mathcal{D}_{\ell_2}$
- $\mathbf{x} \in \hat{\varpi}_j$  se  $\mathcal{D}_{\ell_2}(\mathbf{x}, \boldsymbol{\mu}_j) \leq \mathcal{D}_{\ell_2}^{\mathsf{L}}(\mathbf{x}, \boldsymbol{\mu}_i), i, j = 1, 2, 3$

#### Resultados:

$$P = \begin{bmatrix} 1000 & 0 & 0 \\ 0 & 997 & 3 \\ 111 & 148 & 741 \end{bmatrix} \quad \text{Prob.Erro} = \frac{262}{3000}$$



### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N=3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Distância de Mahalanobis:

- Para um conjunto  $\mathcal X$  com média  $\mu_{\mathbf x}$  e matriz de convariância  $\Sigma_{\mathbf x}$ , a distância de Mahalanobis dum vector  $\mathbf x$  ao conjunto é:  $\mathcal D_{\mathcal M}(\mathbf x,\mu_{\mathbf x}) = \sqrt{(\mathbf x-\mu_{\mathbf x})^{\top}\Sigma_{\mathbf x}^{-1}(\mathbf x-\mu_{\mathbf x})}$
- Classificação:
  - Calcular  $\mathcal{D}_{\mathcal{M}}(\mathbf{x}, \boldsymbol{\mu}_i) = \sqrt{(\mathbf{x} \boldsymbol{\mu}_i)^{\top} \Sigma_i^{-1} (\mathbf{x} \boldsymbol{\mu}_i)}$ , para i = 1, 2, 3
  - $\mathbf{x} \in \hat{\varpi}_j$ , se  $\mathcal{D}_{\mathcal{M}}(\mathbf{x}, \mu_i) \leq \mathcal{D}_{\mathcal{M}}(\mathbf{x}, \mu_i)$

Como calcular transformações do tipo  $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$  para um conjunto,  $\mathbf{X}$ , de N vectores de d dimensões?

Exemplo com N pontos a 2 dimensões:

$$\mathbf{x}^{\top} A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} a_{11} x_1 + a_{12} x_2 \\ a_{21} x_1 + a_{22} x_2 \end{bmatrix}}_{2 \times 1} = \underbrace{\begin{bmatrix} x_1 (a_{11} x_1 + a_{12} x_2) \\ x_2 (a_{21} x_1 + a_{22} x_2) \end{bmatrix}}_{\text{escalar}}$$

$$A \mathbf{X} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \begin{bmatrix} 1 \end{bmatrix} & x_1 \begin{bmatrix} 2 \end{bmatrix} & \cdots & x_1 \begin{bmatrix} N \end{bmatrix} \\ x_2 \begin{bmatrix} 1 \end{bmatrix} & x_2 \begin{bmatrix} 2 \end{bmatrix} & \cdots & x_2 \begin{bmatrix} N \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} x_1 \begin{bmatrix} 1 \end{bmatrix} + a_{12} x_2 \begin{bmatrix} 1 \end{bmatrix} & a_{11} x_1 \begin{bmatrix} 2 \end{bmatrix} + a_{12} x_2 \begin{bmatrix} 2 \end{bmatrix} & \cdots & a_{11} x_1 \begin{bmatrix} N \end{bmatrix} + a_{12} x_2 \begin{bmatrix} N \end{bmatrix} \\ a_{21} x_1 \begin{bmatrix} 1 \end{bmatrix} + a_{22} x_2 \begin{bmatrix} 1 \end{bmatrix} & a_{21} x_1 \begin{bmatrix} 2 \end{bmatrix} + a_{22} x_2 \begin{bmatrix} 2 \end{bmatrix} & \cdots & a_{21} x_1 \begin{bmatrix} N \end{bmatrix} + a_{22} x_2 \begin{bmatrix} N \end{bmatrix}$$

• Em NumPy AX ⇔ np.dot (A, X)



Como calcular transformações do tipo  $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$  para um conjunto,  $\mathbf{X}$ , de N vectores de d dimensões?

Exemplo com N pontos a 2 dimensões:

$$\mathbf{x}^{\mathsf{T}} A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} a_{11} x_1 + a_{12} x_2 \\ a_{21} x_1 + a_{22} x_2 \end{bmatrix}}_{2 \times 1} = \underbrace{\begin{bmatrix} x_1 (a_{11} x_1 + a_{12} x_2) \\ x_2 (a_{21} x_1 + a_{22} x_2) \\ escalar \end{bmatrix}}_{escalar}$$

• Em NumPy  $X*(np.dot(A,X)) \Leftrightarrow$ 

$$\begin{bmatrix} x_1[1](a_{11}x_1[1] + a_{12}x_2[1]) & x_1[2](a_{11}x_1[2] + a_{12}x_2[2]) & \cdots & x_1[N](a_{11}x_1[N] + a_{12}x_2[N]) \\ x_2[1](a_{21}x_1[1] + a_{22}x_2[1]) & x_2[2](a_{21}x_1[2] + a_{22}x_2[2]) & \cdots & x_2[N](a_{21}x_1[N] + a_{22}x_2[N]) \end{bmatrix}$$

• Basta somar as colunas e obtém-se os valores  $\mathbf{x}_n^T A \mathbf{x}_n$  para n = 1, ..., N



### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- X, conjunto de pontos 2D dividido em três classes Ω = {ω<sub>1</sub>, ω<sub>2</sub>, ω<sub>3</sub>}.
   (Nº total de pontos: N=3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Distância de Mahalanobis:

- Para um conjunto  $\mathcal X$  com média  $\mu_{\mathbf X}$  e matriz de convariância  $\Sigma_{\mathbf X}$ , a distância de Mahalanobis dum vector  $\mathbf X$  ao conjunto é:  $\mathcal D_{\mathcal M}(\mathbf X,\mu_{\mathbf X}) = \sqrt{(\mathbf X-\mu_{\mathbf X})^{\top}\Sigma_{\mathbf X}^{-1}(\mathbf X-\mu_{\mathbf X})}$
- Em Python: (ex: cálculo das distâncias à classe  $\varpi_1$ )
  # x matriz com pontos (2×3000), SI1=  $\Sigma_1^{-1}$  (2×2), m1=  $\mu_1$  (2×1)
  >>> Xn=X-m1
  >>> D1=np.sqrt (np.sum (Xn\*np.dot (SI1,Xn),axis=0))

### Classificador de Distância ao Centroide

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ . (Nº total de pontos: N = 3000)
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

#### Classificação:

- Distância de Mahalanobis:  $\mathcal{D}_{\mathcal{M}}$
- $\mathbf{x} \in \hat{\varpi}_i$ , se  $\mathcal{D}_{\mathcal{M}}(\mathbf{x}, \boldsymbol{\mu}_i) \leq \mathcal{D}_{\mathcal{M}}(\mathbf{x}, \boldsymbol{\mu}_i)$ , i, j = 1, 2, 3

#### Resultados:

$$P = \begin{bmatrix} 992 & 0 & 8 \\ 0 & 991 & 9 \\ 2 & 3 & 995 \end{bmatrix} \quad \text{Prob.Erro} = \frac{22}{3000}$$



#### Classificador de Distância ao Centroide

Dados Reais: Iris Dataset

Comandos:

```
Importar dados de scikit-learn
   >>> from sklearn import datasets
   Carregar os dados do dataset "Iris"
   (íris são plantas com flor, vulgarmente designadas por lírios)
   >>> Iris=datasets.load_iris()
   Iris: variável do tipo dictionary, com vários campos:
   >>> Iris.keys() # ver os campos do dicionário
   ['target_names', 'data', 'target', 'DESCR', 'feature_names']
Dados - X é um np.array de (150,4):
   >>> X=Tris.data
Classe dos dados - trueClass é um np.array de (150,):
   >>> trueClass=Iris.target
```

#### Classificador de Distância ao Centroide

Dados Reais: Iris Dataset

Variável X é uma matriz de 150 x 4 (transpor matriz para ficar d x N)

```
>>> X=X.T
```

Calcular os centroides (médias das classes):

```
>>> m0=np.mean(X[:,trueClass==0],axis=1) # array de (4,)
>>> m1=np.mean(X[:,trueClass==1],axis=1)
>>> m2=np.mean(X[:,trueClass==2],axis=1)
```

Calcular calcular distâncias das 3 médias a todos os pontos:

```
>>> X0=X-m0[:,np.newaxis] #m0, agora com dim. (4,1)
>>> D0=np.sqrt(np.sum(X0*X0,axis=0)) . . .
```

Construir matriz de distâncias (3 x 150)

```
>>> Dtotal=np.vstack((D0,D1,D2))
```

Classificar:

```
>>> estClass=np.argmin(Dtotal,axis=0)
```

#### Classificador de Distância ao Centroide

Dados Reais: Iris Dataset

Resultados:

$$P = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 46 & 4 \\ 0 & 7 & 43 \end{bmatrix}$$
Prob. Total de Erro=  $\frac{11}{150} \approx 7.33\%$ 



2 primeiras dimensões dos dados (erros - pts cinza)

Atenção: Modelo e avaliação estimados com todo o conjunto de dados. Para ter uma medida fidedigna do desempenho, é necessário avaliar o classificador com dados que não foram usados para estimar o modelo. Neste caso, devido à simplicidade do modelo (a classificação é feita com distâncias a 3 médias), a estimativa do desempenho não é tão enviesada como em outros classificadores mais complexos.

### Classificador de Distância ao Centroide Dígitos manuscritos

- Onjunto de dígitos manuscritos (10 classes).
  - Nº de pontos treino: 1000 pts por classe
  - Nº de pontos teste: 500 pts por classe

#### Classificação: Distância Euclideana

```
Matriz de confusão -Dados de treino:

873
0
8
9
2
62
25
6
14
1

0
976
3
0
0
14
0
2
3
2

14
80
763
28
28
10
25
13
32
7

6
39
27
762
2
69
10
20
39
26

1
24
7
0
813
5
16
5
8
121

27
65
6
163
24
646
22
5
16
26

16
50
22
0
20
23
866
0
3
0

8
55
6
0
27
3
1
836
7
57

8
67
16
87
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
47
12
4
```

Probabilidade Total de Erro=  $\frac{1962}{10000} \approx 19.62\%$ 



### Classificador de Distância ao Centroide Dígitos manuscritos

- Conjunto de dígitos manuscritos (10 classes).
  - Nº de pontos treino: 1000 pts por classe
  - Nº de pontos teste: 500 pts por classe

#### Classificação: Distância Euclideana

Matriz de confusão -Dados de teste:

| r421 | 0   | 5   | 0   | 0   | 50  | 16  | 0   | 7   | 1 7 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0    | 477 | 1   | 4   | 0   | 13  | 3   | 0   | 2   | 0   |
| 8    | 70  | 331 | 32  | 9   | 2   | 7   | 15  | 24  | 2   |
| 2    | 16  | 3   | 393 | 1   | 46  | 4   | 12  | 16  | 7   |
| 0    | 10  | 2   | 0   | 389 | 4   | 13  | 1   | 4   | 77  |
| 8    | 16  | 2   | 89  | 17  | 322 | 10  | 9   | 11  | 16  |
| 10   | 22  | 21  | 0   | 36  | 33  | 377 | 0   | 1   | 0   |
| 1    | 51  | 9   | 1   | 15  | 2   | 0   | 387 | 4   | 30  |
| 5    | 25  | 4   | 66  | 8   | 30  | 7   | 7   | 322 | 26  |
| L 4  | 12  | 8   | 9   | 63  | 10  | 1   | 10  | 3   | 380 |

Probabilidade Total de Erro=  $\frac{1201}{5000} \approx 24.02\%$ 

### Classificador de Distância ao Centroide Dígitos manuscritos

- Conjunto de dígitos manuscritos (10 classes).
  - Nº de pontos treino: 1000 pts por classe
  - Nº de pontos teste: 500 pts por classe

#### Classificação: Distância de Mahalanobis

Matriz de confusão -Dados de treino:

| г995 | 0   | 1   | 4   | 0   | 0   | 0   | 0   | 0   | 0 7 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0    | 847 | 24  | 3   | 9   | 0   | 0   | 1   | 114 | 2   |
| 0    | 0   | 986 | 12  | 0   | 0   | 0   | 0   | 2   | 0   |
| 0    | 0   | 2   | 994 | 0   | 0   | 0   | 0   | 3   | 1   |
| 0    | 0   | 0   | 40  | 957 | 0   | 0   | 0   | 1   | 2   |
| 1    | 0   | 0   | 213 | 0   | 783 | 0   | 0   | 3   | 0   |
| 0    | 0   | 0   | 115 | 0   | 4   | 875 | 0   | 6   | 0   |
| 0    | 0   | 1   | 4   | 1   | 0   | 0   | 988 | 6   | 0   |
| 0    | 0   | 1   | 49  | 0   | 0   | 0   | 0   | 950 | o   |
| Lo   | 0   | 0   | 4   | 2   | 0   | 0   | 2   | 10  | 982 |

Probabilidade Total de Erro=  $\frac{643}{10000} \approx 6.43\%$ 

### Classificador de Distância ao Centroide Dígitos manuscritos

- Onjunto de dígitos manuscritos (10 classes).
  - Nº de pontos treino: 1000 pts por classe
  - Nº de pontos teste: 500 pts por classe

#### Classificação: Distância de Mahalanobis

| Mati | riz de       | confu | usão - | Dado | s de t | teste: |     |     |     |     |  |
|------|--------------|-------|--------|------|--------|--------|-----|-----|-----|-----|--|
|      | <b>г</b> 457 | 0     | 25     | 5    | 2      | 0      | 2   | 0   | 9   | 0 7 |  |
|      | 0            | 385   | 26     | 2    | 7      | 0      | 3   | 0   | 77  | 0   |  |
|      | 11           | 0     | 458    | 9    | 4      | 1      | 1   | 2   | 14  | 0   |  |
|      | 3            | 0     | 46     | 415  | 3      | 1      | 0   | 3   | 27  | 2   |  |
|      | 5            | 0     | 38     | 18   | 411    | 0      | 1   | 3   | 16  | 8   |  |
|      | 17           | 0     | 22     | 149  | 12     | 218    | 1   | 1   | 79  | 1   |  |
|      | 19           | 0     | 41     | 55   | 16     | 13     | 336 | 0   | 20  | 0   |  |
|      | 3            | 0     | 42     | 20   | 39     | 0      | 0   | 358 | 19  | 19  |  |
|      | 10           | 0     | 40     | 57   | 7      | 6      | 1   | 4   | 374 | 1   |  |
|      | l 3          | 0     | 14     | 11   | 70     | 0      | 0   | 9   | 31  | 362 |  |

Probabilidade Total de Erro=  $\frac{1226}{5000} \approx 24.52\%$ 

### Classificador dos k-Vizinhos Mais Próximos (k-NN)

- k-NN é um classificador não-paramétrico.
- Não existe fase de treino para este classificador.
- A classificação é baseada nos exemplos de treino. A classe atribuída a um dado objecto (ponto/vector não classificado) é a classe maioritária entre os k-vizinhos mais próximos do objecto.
- O valor óptimo para k é dependente do problema. Valores pequenos de k dão origem a zonas e fronteiras de decisão irregulares (efeito de sobre-aprendizagem). Valores muitos elevados podem resultar em regiões e fronteiras de decisão demasiado regulares.



Exemplo tirado da página de Burton DeWilde

(http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/)

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Em Python usando *k*-NN implementado em scikit-learn

#### Comandos:

Importar classificador de vizinho mais próximo de scikit-learn

>>> from sklearn.neighbors import KNeighborsClassifier Instanciar classificador k-NN com k = 5

>>> kNN=KNeighborsClassifier(n\_neighbors=5, weights='uniform')
Treino:

- >>> kNN.fit (trainData, trainClasses) # dados de treino
  - trainData: dados de treino, matriz N×d (N nº de exemplos, d dimensão)
  - trainClasses: N índices das classes (números inteiros)

#### Classificar:

- >>> resultados=kNN.predict(testData)
  - testData: dados de teste, matriz  $M \times d$  (M nº de exemplos, d dimensão)
  - resultados: M estimativas dos índices das classes

Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Em Python usando *k*-NN implementado em scikit-learn

Ver parametros da função KNeighborsClassifier:
 n\_neighbors, weights, algorithm, leaf\_size, metric, e outros.

• Ver métodos associado a KNeighborsClassifier:

```
kNN.fit()
kNN.predict()
kNN.predict_proba()
kNN.score()
kNN.kneighbors()
kNN.kneighbors_graph()
kNN.get_params()
kNN.set_params()
```

### Classificador dos k-Vizinhos Mais Próximos (k-NN)

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ .
  - Nº de pontos treino: 100 pts por classe
  - Nº de pontos teste: 500 pts por classe
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas: p(x|\opi\_i) = N(μ<sub>i</sub>, Σ<sub>i</sub>)

$$\begin{bmatrix} 495 & 0 & 5 \\ 0 & 500 & 0 \\ 4 & 8 & 488 \end{bmatrix} \quad \text{Prob.Erro} = \frac{17}{1500}$$



### Classificador dos k-Vizinhos Mais Próximos (k-NN)

Dados Sintéticos (LAB2distancias002.p)

- $\mathcal{X}$ , conjunto de pontos 2D dividido em três classes  $\Omega = \{\varpi_1, \varpi_2, \varpi_3\}$ .
  - Nº de pontos treino: 100 pts por classe
  - Nº de pontos teste: 500 pts por classe
- Probabilidades a priori:  $p(\varpi_1) = p(\varpi_2) = p(\varpi_3)$
- Probabilidades condicionadas gaussianas:  $p(\mathbf{x}|\varpi_i) = \mathcal{N}(\mu_i, \Sigma_i)$

$$\begin{bmatrix} 498 & 0 & 2 \\ 0 & 499 & 1 \\ 3 & 4 & 493 \end{bmatrix} \quad \text{Prob.Erro} = \frac{10}{1500}$$



### Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Dígitos Manuscritos

- $\bullet$   $\mathcal{X}$ , conjunto de dígitos dados em bruto (d = 784).
  - Nº de pontos treino: 1000 pts por classe
    Nº de pontos teste: 500 pts por classe

#### Classificação (k = 1):

Matriz de Confusão:

| Г496 | 0   | 1   | 0   | 0   | 1   | 2   | 0   | 0   | 0 ] |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0    | 495 | 1   | 2   | 0   | 0   | 2   | 0   | 0   | 0   |
| 7    | 11  | 452 | 7   | 1   | 0   | 3   | 18  | 1   | 0   |
| 0    | 1   | 1   | 461 | 1   | 13  | 2   | 9   | 7   | 5   |
| 0    | 5   | 0   | 0   | 460 | 0   | 3   | 2   | 1   | 29  |
| 3    | 3   | 0   | 13  | 2   | 466 | 3   | 2   | 3   | 5   |
| 8    | 3   | 0   | 0   | 3   | 4   | 481 | 0   | 1   | 0   |
| 0    | 22  | 3   | 2   | 4   | 1   | 0   | 456 | 0   | 12  |
| 5    | 3   | 6   | 27  | 4   | 16  | 6   | 7   | 421 | 5   |
| Lз   | 6   | 1   | 6   | 12  | 3   | 1   | 11  | 2   | 455 |

Prob.Erro = 
$$\frac{357}{5000}$$
 = 7.140%

### Classificador dos *k*-Vizinhos Mais Próximos (*k*-NN) Dígitos Manuscritos

- $\bullet$   $\mathcal{X}$ , conjunto de dígitos dados em bruto (d = 784).
  - Nº de pontos treino: 1000 pts por classe
    Nº de pontos teste: 500 pts por classe

#### Classificação (k = 5):

Matriz de Confusão:

| Г494 | 0   | 0   | 0   | 0   | 1   | 5   | 0   | 0   | 0 ] |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0    | 495 | 2   | 2   | 0   | 0   | 1   | 0   | 0   | 0   |
| 9    | 16  | 439 | 6   | 0   | 0   | 6   | 21  | 3   | 0   |
| 1    | 3   | 3   | 465 | 1   | 7   | 2   | 8   | 7   | 3   |
| 0    | 4   | 1   | 0   | 462 | 0   | 5   | 1   | 0   | 27  |
| 3    | 4   | 0   | 12  | 6   | 461 | 5   | 1   | 3   | 5   |
| 9    | 5   | 0   | 0   | 4   | 1   | 481 | 0   | 0   | 0   |
| 0    | 31  | 1   | 1   | 5   | 1   | 0   | 445 | 0   | 16  |
| 8    | 4   | 7   | 22  | 4   | 16  | 5   | 7   | 418 | 9   |
| L 4  | 7   | 2   | 8   | 11  | 2   | 1   | 12  | 2   | 451 |
|      |     |     |     |     |     |     |     |     |     |

Prob.Erro = 
$$\frac{389}{5000}$$
 = 7.780%