TriX: Triangle Counting at Extreme Scale

Yang Hu Pradeep Kumar Guy Swope H. Howie Huang

Scaling to Big Graphs

- * Challenge #1: High computational cost of triangle counting
 - * Fast GPU based triangle counting

- * Challenge #2: Extremely large graph cannot fit in memory
 - * External memory algorithm using 2-D partitioning

Background: Triangle Counting Algorithm

* Intersection on each edge

Neighbors of vertex 0 1 2 3 4 5 6 7

Neighbors of vertex 1 0 3 5 8

- * Two Triangles (0,1,3) and (0,1,5)
 - * Start from edge (0,1)
 - * Compare the neighbors of both vertices
 - * Find shared neighbors 3 and 5

Binary Search Based Triangle Counting

- * Fine-grained parallelization on GPUs
- * Better locality for faster memory access

Background: Orientation and Directed Triangle

* Orientation

- * Topology order
- * Rank-by-degree

- Directed triangle
 - * Avoid redundant work

External Memory Triangle Counting

* Assumption: small internal memory size and unlimited external storage (disk) size

- * To find a triangle, three edges have to be in memory at same time
 - * Read everything from disk?

* Minimize external I/Os, while ensuring algorithm correctness

Naive 2-D Partitioning

* 2-D partitioning

* Sub-task

- * Achieves optimal I/O complexity
- * Support massive parallelism
- * Partitions are not balanced!

2-D Managed Partition

- * The edge contains first two vertices can be streamed.
- * The 1-D partitions can be balanced simply.

- * Use edge list for the first edges and focus on balancing the CSR partitions.
- * Partition the CSR columns and rows by different vertex ranges.

2-D Managed Partition

Corresponding edge partitioning

Experiments

* Environments

- * A cluster: each node with dual Intel Xeon E-2620 2.0GHz 6-core processors, 128GB memory and NVIDIA K20 GPUs
- * A server with dual Intel Xeon E5-2683 CPU, 512GB memory and NVIDIA K40 GPUs

* Datasets

* 13 graphs (real and synthetic), up to billion nodes and hundreds GB

Graph Datasets

Dataset	Description		E	Triangles
email-EuALL	Email network	265,215	364,481	267,313
soc-Epinions1	Who-trusts-whom network	75,880	405,740	1,624,481
flickerEdges	Image relationships	105,939	2,316,948	107,987,357
RoadNet	Road network of California	1,965,207	2,766,607	120,676
graph500-scale18-ef16	Synthetic	174,148	3,800,348	82,287,285
cit-Patents	Citation network US patents	3,774,769	16,518,947	7,515,023
Orkut	Social network	33,554,432	523,611,003	22,535,831,016
Kron-25-16	Synthetic	8,730,857	327,036,486	223,127,577
Friendster	Social network	11 41.652.230	1.202.513.046	34.824.916.864

TC Performance (Single GPU)

Dataset	Time (seconds)	MTEPS
email-EuALL	0.003009322	121.12
soc-Epinions1	0.004831075	84.08
flickerEdges	0.004825446	32.59
RoadNet	0.0196982	140.45
graph500-scale18-ef16	0.126783	29.98
cit-Patents	0.1280756	128.98
Orkut	10.65	30.7
Kron-25-16	72	7.27

TC Performance (32 GPUs)

Dataset	Time (seconds)	MTEPS
Friendster	17.12	70.25
Twitter MPI	43.51	41.64
Gsh-2015	2029.03	16.4
Kron-30-16	736.43	23.11
Kron-31-16	2079.33	16.4

Power Consumption

Dataset	Power (Watts)	KTEPS/Watt
Orkut	122.3	250.02
Kron-25-16	130.8	55.6
Twitter MPI	118.7	94.12
Friendster	127.8	140.58

TC Speedup over Serial Code

* Comparison vs. Serial Code (TC)

TC Scalability on GPU cluster

K-truss Performance

KTEMPS	Tiwtter MPI	Friendster	Orkut	Kron-25-16
k=3	5173.417266	12409.927	29730.58964	5903.168016
k=4	533.2362692	1432.29197	4523.326224	5305.076018
k=5	139.9433143	942.1993458	2137.493373	5540.857175
k=6	437.6643674	556.1231866	2319.407702	1637.307702
k=7	305.8757224	1242.695022	3865.679504	1590.729858
k=8	288.0275137	1241.843278	11199.87966	1546.016354

K-truss Performance

Dataset	Time (seconds)	MTEPS
email-EuALL	0.18	195.5
soc-Epinions1	0.946	202.5
flickerEdges	14.93	15.52
RoadNet	0.58	13.54
graph500-scale18-ef16	28.07	42.89
cit-Patents	8.45	477

Acknowledgement

howie@gwu.edu https://github.com/iHeartGraph

