Topics to discuss

Solve
$$T(n) = \begin{cases} T(n-1) + Logn, n>0 \\ 1, m=0 \end{cases}$$

by Recursion Tree Method

Solve
$$T(n) = \begin{cases} T(n-1) + \log n, & n > 0 \\ 1, & n = 0 \end{cases}$$
 $T(m) = 1; & n = 0$
 $T(n) = 1; & n =$

T.C =
$$\log n + \log(n-1) + \log(n-2) + \cdots + \log 2 + \log 1$$
.

= $\log (n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1)$

T.C = $\log (n!)$

T.C = $O(n \log n)$

T.C = $O(n \log n)$

We know,

 $n! \leq n^n$
 $\log n! \leq \log n^n$
 $\log n! \leq n \log n$

Upper bound for $\log n!$ is $O(n \log n)$

Follow Now

Start Practicing

i._am._arfin

Arfin Parween