HHS Public Access

Author manuscript

Biol Psychiatry. Author manuscript; available in PMC 2020 September 15.

Published in final edited form as:

Biol Psychiatry. 2019 September 15; 86(6): 464–473. doi:10.1016/j.biopsych.2019.04.033.

Neurobiological markers of resilience to depression and anxiety following childhood maltreatment: The role of neural circuits supporting the cognitive control of emotion

Alexandra M. Rodman¹, Jessica L. Jenness², David G. Weissman¹, Daniel S. Pine³, Katie A. McLaughlin¹

- ¹ Department of Psychology, Harvard University
- ² Department of Psychiatry and Behavioral Sciences, University of Washington
- 3. The National Institute for Mental Health, USA

Abstract

Childhood adversity is strongly linked to negative mental health outcomes, including depression and anxiety. Leveraging cognitive neuroscience to identify mechanisms that contribute to resilience in children with a history of maltreatment may provide viable intervention targets for the treatment or prevention of psychopathology. We present a conceptual model of a potential neurobiological mechanism of resilience to depression and anxiety following childhood adversity. Specifically, we argue that neural circuits underlying the cognitive control of emotion may promote resilience, wherein a child's ability to recruit the frontoparietal control network to modulate amygdala reactivity to negative emotional cues—such as during cognitive reappraisal buffers risk for internalizing symptoms following exposure to adversity. We provide preliminary support for this model of resilience in a longitudinal sample of 151 participants aged 8-17 years with (n=79) and without (n=72) a history of childhood maltreatment who completed a cognitive reappraisal task while undergoing fMRI. Among maltreated youth, those who were better able to recruit prefrontal control regions and modulate amygdala reactivity during reappraisal exhibited lower risk for depression over time. By contrast, no association was observed between neural functioning during reappraisal and depression among youth without a history of maltreatment. These preliminary findings support the hypothesis that children who are better able to regulate emotion through recruitment of the frontoparietal network exhibit greater resilience to depression following childhood maltreatment. Interventions targeting cognitive reappraisal and other

Address correspondence to: Alexandra M. Rodman, Department of Psychology, Harvard University, William James Hall Room 1002, 33 Kirkland Street, Cambridge MA 02138, arodman@fas.harvard.edu.

Author Contributions

K.A.M., D.S.P., and A.M.R. designed the research; A.M.R. analyzed the data and drafted the manuscript; K.A.M., D.S.P., J.L.J., and D.G.W. provided critical comments and revisions. All authors approved the final version of the manuscript for submission.

All authors reported no financial interests or potential conflicts of interest.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

cognitive emotion regulation strategies may have potential for reducing vulnerability to depression among children exposed to adversity.

Keywords

Resilience; Neurobiological; Adversity; Emotion Regulation; Depression; Adolescence

Childhood adversity, which robustly predicts psychopathology (1-3), refers to negative experiences that deviate from the expectable environment, requiring meaningful adaptation by an average child (4). These experiences can reflect either *threat*, defined as relating to harmful experiences, or *deprivation*, the absence of expected environmental inputs, such as caregiver support and cognitive stimulation (5-7). The current paper focuses on childhood adversity in the form of threat, specifically maltreatment (e.g., physical or sexual abuse), as it has particularly strong ties to depression and anxiety (3, 8-10).

Although childhood adversity is a powerful predictor of psychopathology, this relationship is not deterministic; many children who have encountered severe forms of adversity demonstrate resilience and do not go on to develop mental health problems (11-15). Resilience involves processes that buffer children from risk for these negative consequences (16). Identifying mechanisms of resilience may reveal targets for preventative interventions designed to protect children following adversity (4). Considerable work examines factors that promote resilience (15, 16), but few studies examine neurobiological mechanisms conferring resilience among children exposed to threat-related adversity. Here, we advance a neurobiological model of resilience, focusing on neural circuits underlying the cognitive control of emotion. Specifically, we posit that a child's ability to recruit the frontoparietal control network to modulate amygdala reactivity to negative emotional cues—such as during cognitive reappraisal and other effortful forms of emotion regulation— buffers risk for internalizing symptoms following exposure to adversity. We provide preliminary data testing this proposed framework using neuroimaging data of cognitive reappraisal in a longitudinal sample of children and adolescents exposed to maltreatment.

Defining Resilience

Developmental and clinical psychologists have long been interested in resilience, and various definitions have been proposed. Some have conceived of resilience as a fixed trait or set of traits that are immutable (17-19) and may be present within an individual whether or not they have experienced adversity (20). Instead, we utilize the definition that resilience reflects an absence of negative outcomes despite exposure to adversity (15, 16, 21). To study this form of resilience from an empirical perspective, one must identify specific factors or developmental processes that moderate the association between adversity and negative outcomes, such that the adversity-negative outcome relationship is weaker among those who have higher levels of the resilience factor.

Resiliency factors can occur at multiple interacting levels of the bioecological milieu (22-24), from entire cultures (25) to neighborhoods (26) to families (27) to children's temperaments (28) all the way down to individual genes (29). In addition, the factors that

lead to resilience may depend on the nature of the adversity experienced and the social and cultural context to which an individual must adapt (24). Developmental cognitive neuroscience may generate unique insights into resiliency factors. Work in this area can be leveraged to identify resilience mechanisms at the level of specific cognitive-affective processes and their underlying neural networks that confer protection against psychopathology following experiences of adversity. Moreover, a rich history in this area informs research performed at the therapeutic level (30). Identifying specific neurobiological, cognitive, and affective mechanisms of resilience that are modifiable is critically important for informing models of risk and resilience, as well as identifying viable targets for intervention to treat or prevent psychopathology (4).

Here, we advance the possibility that the effective engagement of cognitive control networks in service of modulating negative emotions may be a neurobiological mechanism of resilience to depression and anxiety following childhood adversity. Neural circuits underlying the cognitive control of emotion, including the frontoparietal control network, have been most studied in relation to the emotion regulation strategy of cognitive reappraisal.

Cognitive Reappraisal

Cognitive reappraisal involves thinking about a stimulus in a way that changes the meaning to modify one's emotional response (e.g., to reduce negative or enhance positive emotion) (31-36). Cognitive reappraisal has been shown to modulate emotional responses in experimental settings (31, 32, 37-40), real-world settings (38, 41), and clinical intervention studies, where training to enhance reappraisal is associated with reductions in symptoms of depression and anxiety in children and adults (42-44).

Functional magnetic resonance imaging (fMRI) studies reveal a network of brain regions recruited during cognitive reappraisal that modulate amygdala activation (45). These studies typically use specific reappraisal strategies, such as psychological distancing or reinterpretation, as tactics for reducing emotional responses to negative stimuli (e.g., images of a car crash) (31, 34, 35, 46-49). Meta-analysis shows that during cognitive reappraisal compared to passive viewing of emotional stimuli, regulatory regions of the frontoparietal network are engaged and modulate amygdala activity (50). The frontoparietal regions recruited during cognitive reappraisal are broadly involved in cognitive control (51, 52) and include multiple prefrontal regions in both dorsal and ventral areas, the dorsal anterior cingulate, as well as posterior association cortex encompassing inferior parietal sulcus (31, 34, 50, 53-57). Recruitment of the frontoparietal network during reappraisal may serve to select and maintain reappraisal-related features and goals while engaging in and monitoring progress of the construction of a new appraisal (45, 56).

Studies examining reappraisal in youth have shown that children as young as six years old can successfully employ this technique (57). Moreover, the extent of reappraisal success appears to improve linearly with age (36, 57-59) in association with increasing recruitment of prefrontal regions and diminishing activation in the amygdala, as well as greater inverse coupling between prefrontal regions and the amygdala (57). It should be noted, however,

that some studies show behavioral indices of reappraisal success appear similar across development (60, 61), which could be explained by the type of reappraisal tactic being used (e.g., reinterpretation vs. distancing), as reinterpretation requires more complex, higher-order thinking.

Both adults and youth express patterns of frontoparietal recruitment during reappraisal in ways that modulate amygdala activation (36, 57, 59, 62-64). Given the amygdala's role in the processing of salient events (65-67), levels of amygdala modulation may reflect successful regulation of affective responding, although the specific patterns of connectivity that underlie this modulation remain a source of debate. Because lateral prefrontal regions have sparse direct projections to the amygdala, some studies suggest that activation in these regions modulates amygdala function via projections through the more densely-connected medial prefrontal cortex (53, 57, 68-72). Alternatively, lateral prefrontal regions may modulate amygdala activity via projections through lateral temporal cortex regions involved in semantic representation (34, 39, 50, 64). In either case, stronger inverse coupling between the prefrontal cortex and the amygdala is believed to produce greater reductions in negative emotion during reappraisal (53, 55). Below, we argue that the ability to successfully modulate the amygdala by recruiting this cognitive control circuitry in the service of reappraisal is a key neurobiological mechanism of resilience to depression and anxiety following experiences of adversity.

Cognitive Reappraisal Neural Circuitry in Depression and Anxiety

Behaviorally, children and adults with depression and anxiety report similar reductions in negative emotion following reappraisal as those without psychopathology (31, 48, 73-77). However, those with depression and anxiety appear to use less efficient reappraisal strategies (73, 74). Disruptions in neural activation of frontoparietal and limbic regions involved in cognitive reappraisal have also been associated with depression and anxiety. However, findings vary across age and diagnosis. Some studies find affected relative to unaffected individuals to show greater recruitment of frontoparietal regions and heightened amygdala activity during cognitive reappraisal (48, 69, 73, 76), whereas others find affected individuals to show reduced recruitment across prefrontal regions (77, 78) or no amygdala differences (31, 75, 78). Taken together, data suggest that affected individuals manifest some form of disrupted prefrontal capacity to modulate the amygdala, which may reflect less efficient recruitment of regions supporting reappraisal processes.

Cognitive Control Circuitry as a Mechanism of Resilience following Childhood Adversity

The ability to effectively recruit frontoparietal circuitry in support of effortful emotion regulation strategies, such as cognitive reappraisal, could be a critical compensatory mechanism that may help to buffer against the heightened emotional and neurobiological reactivity that has been commonly observed following maltreatment and other forms of childhood adversity. Prior work consistently demonstrates that children exposed to adversity, particularly experiences of threat, exhibit elevated emotional responses to negative stimuli assessed at multiple levels of analysis, including subjective report (79-82), autonomic

nervous system response (83, 84), and amygdala reactivity (49, 85-89), the latter of which has also been confirmed in meta-analysis (90). Heightened emotional reactivity is a well-established risk factor for the emergence of depression and anxiety in youth (80, 81, 91-96). The ability to recruit frontoparietal circuitry to modulate amygdala reactivity may buffer children from internalizing problems that arise following these adversity-related increases in emotional reactivity. Indeed, among children exposed to adversity, preliminary evidence links greater structural and functional integrity within emotion regulatory circuits—encompassing connections between multiple regions of the medial prefrontal cortex and the amygdala—to resilience, in the form of lower risk for negative mental and physical health outcomes (97-100). These studies provide preliminary support for the notion that the ability to recruit prefrontal circuitry to modulate amygdala responses may be a neurobiological mechanism underlying adaptation to childhood adversity that dampens emotional and neurobiological hyper-reactivity to salient environmental stimuli, ultimately contributing to lower risk for psychopathology.

Effective cognitive reappraisal capacity may also be particularly important for children who have experienced adversity due to the strong continuity between exposure to adversity and subsequent exposure to stressful life events. Experiences of childhood adversity are highly cooccurring, such that children who experience one form of adversity (e.g., sexual abuse) typically experience several others (e.g., neglect and domestic violence) (1, 3). In addition, children exposed to adversity experience higher levels of stressful life events and chronic stress across academic, peer, and family domains (98, 101). Exposure to stressful life events and chronic stressors are well-established risk factors for depression and anxiety (102-105), and the link between stressful life events and internalizing psychopathology is stronger among those who have experienced childhood adversity (101, 106-109). The ability to effectively utilize cognitive reappraisal may protect children from the negative mental health consequences of ongoing exposure to stressors, as has been shown in adults (110). Indeed, animal models of stress in non-human primate research support the notion that enhanced recruitment of regulatory circuits may promote resilience following early life stress (e.g., maternal separation; 111). For children who have experienced maltreatment, the capacity to flexibly deploy cognitive reappraisal and underlying control circuitry may be all the more important, considering the high likelihood that these children live in chronically stressful environments that frequently elicit negative emotions. However, no study to date has explicitly tested whether children's ability to explicitly engage effortful strategies and recruit prefrontal circuitry to modulate amygdala responses to negative emotional cues moderates risk for depression and anxiety following adversity.

Evaluating a Neurobiological Mechanism of Resilience

Using preliminary data from our group, we completed a set of exploratory analyses to provide an empirical test of our proposed mechanism of resilience. Specifically, we assessed whether the ability to modulate amygdala reactivity using cognitive reappraisal is a potential neurobiological mechanism of resilience to depression and anxiety among children exposed to maltreatment, a form of adversity that has particularly strong associations with internalizing psychopathology. If the proposed neurobiological mechanism of resilience is valid, we should expect that the association between child maltreatment and depression and

anxiety symptoms will be lower among children and adolescents who exhibit: 1) greater modulation of amygdala responses to negative stimuli using cognitive reappraisal; 2) greater recruitment of prefrontal regions known to be engaged during successful cognitive reappraisal; and 3) a greater tendency to use reappraisal strategies in their daily lives.

We examined these hypotheses in a longitudinal sample of 151 participants aged 8-17 with (n=79) and without (n=72) history of childhood maltreatment (e.g., physical or sexual abuse) who completed an emotion regulation task while undergoing fMRI. This task assessed neural activation during passive viewing and effortful attempts to regulate emotional responses to negative stimuli using cognitive reappraisal (Figure 1). Participants also reported on their tendency to engage in reappraisal in their daily lives. Symptoms of depression and anxiety were assessed at the time of the initial neuroimaging assessment and at a follow up assessment approximately two years later. See Table 1 for participant characteristics. All analyses were completed controlling for sex, age, race/ethnicity, and socioeconomic status (the income-to-needs ratio). We found no evidence for these patterns of resilience in relation to symptoms of anxiety. Below, we report the pattern of results for depression symptoms. For more details on participants, inclusion and exclusion criteria of the study, task design, measures, and analytical approach, see Supplemental Materials.

Preliminary Evidence

Across the entire sample, the use of cognitive reappraisal elicited the expected pattern of activation of frontoparietal regions and decreased activation of the amygdala (Supplemental Figure 1). Our primary hypothesis was that maltreated children who exhibited greater modulation of the amygdala during reappraisal (i.e., lower amygdala activity during reappraisal relative to passive viewing of negative stimuli) would be at lower risk for developing depression. To evaluate this hypothesis, we examined whether reappraisal-related amygdala modulation moderated the association between child maltreatment and depression symptoms and observed a significant maltreatment-by-brain function interaction (b=4.20, t=2.41, p=.018). Greater reappraisal-related amygdala modulation predicted lower risk for depression at follow up among maltreated youth but had no relationship to depression among those without a history of maltreatment (Figure 2), suggesting that the ability to modulate amygdala responses using cognitive reappraisal may be a marker of resilience. This finding remained significant after numerous sensitivity analyses (e.g., including pubertal stage as a covariate rather than age, including IQ as a covariate) and survived correction for multiple comparisons. Greater information on the analytical approach and sensitivity analyses can be found in Supplemental Materials.

To follow up this finding, we conducted a set of exploratory analyses examining whether reappraisal-related recruitment of prefrontal regions moderated the association between child maltreatment and depression symptoms. To do so, we examined a set of prefrontal regions that were engaged during reappraisal relative to passive viewing of emotional stimuli in the whole sample (Supplemental Figure 1). This analysis revealed a significant maltreatment-by-brain function interaction in two regions consistently implicated in cognitive reappraisal (50): the right superior frontal gyrus (SFG by maltreatment interaction: b=-3.11, t=-2.50, p=.014) and right dorsal anterior cingulate cortex (dACC by maltreatment

interaction: b=-2.65, t=-1.95, p=.052). In both cases, greater recruitment during reappraisal predicted lower depression symptoms at baseline, but only for those with a history of maltreatment (Figure 3). Due to the exploratory nature of these analyses, the results presented here were not corrected for multiple comparisons. However, these patterns persist in multiple sensitivity analyses examining additional covariates (see Supplemental Materials).

Finally, we assessed of whether greater use of cognitive reappraisal as an emotion regulation strategy in everyday life moderated the association between child maltreatment and depression symptoms. Again, we observed a significant maltreatment-by-use interaction in the expected direction (b=-0.044, t=-2.420, p=.017), whereby the association between severity of child maltreatment and depression symptoms was weaker among those who reported greater use of cognitive reappraisal (Figure 4). This finding suggests that not only is the efficacy of cognitive reappraisal associated with resilience to depression following child maltreatment, but also the tendency to use reappraisal techniques in everyday life.

Discussion

The ability to modulate negative emotion using cognitive control strategies may represent a resiliency marker, which protects against depression in children who have experienced adversity. The current report finds evidence of such a relationship. Specifically, greater capacity to modulate amygdala activation using cognitive reappraisal predicts decreasing levels of depressive symptoms across a two-year follow-up period. Similarly, greater recruitment of prefrontal regions also predicts lower concurrent symptoms of depression among children with history of maltreatment. Finally, maltreated children who reported a greater tendency to use reappraisal as a coping strategy in everyday life have lower levels of depressive symptoms than those who did not. Of note, in youth unexposed to maltreatment, neither amygdala modulation, prefrontal function, nor reported use of cognitive reappraisal in daily life related to symptoms of depression. These preliminary findings support the proposed model of resilience. This model underscores specific neurobiological factors involved in the cognitive control of emotion as a potential protective factor buffering children who have experienced adversity from negative outcomes later in life.

Examining these questions in a youth sample is particularly advantageous, as insights about mechanisms of resilience can be leveraged to inform early interventions. Additionally, studies examining resilience to psychopathology in adulthood following childhood adversity often reflect differences in the accumulation of environmental stressors over the life course and suffer from recall biases that are mitigated, at least somewhat, when studying resilience in closer proximity to the initial source of adversity. The major contribution from the current study relates to the contrast of brain-behavior associations in youth with and without maltreatment. Specific neural markers of effective cognitive reappraisal only related to depressive symptoms in children with a history of maltreatment. As such, the current study delineated a marker of resilience.

Resilience involves many dynamic and interacting factors that modulate risk in the face of adversity (24), including cultural (25), familial (27), and genetic factors (29). The current

study leverages advances in developmental cognitive neuroscience to examine brain function supporting specific cognitive processes as a mechanistic path to resilience. An analysis of resilience on this neural-psychological level is advantageous as it can be used to identify malleable targets for preventing the onset or progression of internalizing disorders. This approach has been successfully undertaken in the context of anxiety and posttraumatic stress disorders, wherein basic mechanistic understanding of threat-related biases in information processing and associated neural functioning has shaped therapeutic approaches (e.g., attention bias modification therapy, ABMT) aimed at mitigating anxiety and trauma-related symptoms (30, 112-115). ABMT was designed to explicitly target the types of attentional biases towards threat that characterize anxiety disorders by training subjects to orient attention away from threatening cues in the task (116, 117). As such, it is a model of how basic understanding of neurobiological mechanisms can directly inform preventative and treatment approaches (30, 114, 118).

Similar translational approaches leveraging neurocognitive understanding of cognitive reappraisal could be useful in preventative and intervention efforts aimed at mitigating risk for internalizing disorders, especially in children who have experienced adversity. Cognitive reappraisal is a core intervention technique central to evidence-based psychotherapy practices for depression and anxiety, such as cognitive behavioral therapy (CBT) (42). Moreover, CBT for depression and anxiety has been associated with changes in frontoamygdala neural circuitry, including reductions in amygdala hyperresponsiveness and increased engagement of medial and lateral regions of the prefrontal cortex during both resting state and task performance (119, 120). Further, our findings show that in addition to cognitive reappraisal ability, the tendency to use it in everyday life may also serve as an important buffer for depression following adversity. Therefore, clinicians may incorporate training geared towards scaffolding and encouraging the use of reappraisal in the daily lives of children exposed to adversity. These strategies may be a useful component of early interventions designed to prevent the onset of internalizing psychopathology following adversity.

The present study was designed to test the proposed framework that the neurobiological underpinnings of emotion regulatory capacity may serve as a buffer against the negative mental health outcomes typically associated with adversity. However, this study should be considered in light of its limitations and the unresolved questions that remain. We focus specifically on outcomes related to early life experiences of threat or maltreatment. Given the highly overlapping experiences of maltreatment and neglect, it is important to make note that children who experience other forms of adversity, such as deprivation or neglect, could also benefit from the protective effects of successful recruitment of regulatory circuitry. Similarly, we have focused on a specific form of cognitive control of emotion—cognitive reappraisal—it is possible that other forms of cognitive control of emotion, such as acceptance of emotional experiences, may modulate negative emotional experiences and the associated amygdala response in a similar way. Future work should investigate the boundary conditions of this model of resilience and determine whether other strategies of emotional regulation may also function as a protective factor buffering children exposed to various forms adversity from development of psychopathology. In addition, the aim of the current study was to determine resilience factors. However, the finding that emotion regulation does

not benefit those without a history of maltreatment is interesting and may reflect differential etiological mechanisms of depression in those with and without a history of maltreatment, as proposed by Teicher and colleagues (121). Finally, these analyses identified markers of resilience that were specific to symptoms of depression and not anxiety, which may reflect factors specific to depression (e.g., rumination over past events) that are more readily reframed using reappraisal, as opposed to anxious worries that have yet to occur. Nonetheless, this divergence provides an important target for future research.

Conclusion

Exposure to child adversity is a potent risk factor for depression and anxiety. Here, we argue that the ability to recruit frontoparietal control networks to modulate amygdala reactivity to negative cues may be a protective factor that buffers children from developing internalizing problems following exposure to adversity. Our findings are consistent with this possibility, demonstrating that children who are more able to modulate amygdala reactivity and recruit prefrontal regions of the frontoparietal network during cognitive reappraisal are less likely to exhibit symptoms of depression following exposure to maltreatment—pointing to a potential neurobiological mechanism of resilience. Greater efforts to identify resilience factors at the neural and behavioral levels can provide mechanistic translational targets for interventions aimed at preventing or treating psychopathology among children who have experienced adversity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by R01-MH103291 and R01-MH106482 to K.A.M.; NIMH Intramural Research Program ZIAMH002782 to D.S.P.; and NIMH K23MH112872 and Brain and Behavior Research Foundation NARSAD Young Investigator Grant to J.L.J. We are grateful to Debbie Bitran, Andrea Duys, and Azure Reid-Russell for help with participant recruitment and testing, Kelly Sambrook for imaging technical support, and the Stress and Development Lab at Harvard University for helpful discussion.

References

- Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC (2010): Childhood Adversities and Adult Psychiatric Disorders in the National Comorbidity Survey Replication I: Associations With First Onset of DSM-IV Disorders. Arch Gen Psychiatry. 67: 113–123. [PubMed: 20124111]
- Kessler RC, McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM, et al. (2010): Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. British Journal of Psychiatry. 197: 378–385. [PubMed: 21037215]
- 3. McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC (2012): Childhood Adversities and First Onset of Psychiatric Disorders in a National Sample of US Adolescents. Arch Gen Psychiatry. 69: 1151–1160. [PubMed: 23117636]
- McLaughlin KA (2016): Future Directions in Childhood Adversity and Youth Psychopathology.
 Journal of Clinical Child & Adolescent Psychology. 45: 361–382. [PubMed: 26849071]
- 5. Sheridan MA, McLaughlin KA (2014): Dimensions of early experience and neural development: deprivation and threat. Trends in Cognitive Sciences. 18: 580–585. [PubMed: 25305194]

 McLaughlin KA, Sheridan MA (2016): Beyond Cumulative Risk: A Dimensional Approach to Childhood Adversity. Curr Dir Psychol Sci. 25: 239–245. [PubMed: 27773969]

- McLaughlin KA, Sheridan MA, Lambert HK (2014): Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience & Biobehavioral Reviews. 47: 578–591. [PubMed: 25454359]
- Cicchetti D, Toth SL (1995): A Developmental Psychopathology Perspective on Child Abuse and Neglect. Journal of the American Academy of Child & Adolescent Psychiatry. 34: 541–565.
 [PubMed: 7775351]
- Cohen P, Brown J, Smailes E (2001): Child abuse and neglect and the development of mental disorders in the general population. Development and Psychopathology. 13: 981–999. [PubMed: 11771917]
- Lansford JE, Dodge KA, Pettit GS, Bates JE, Crozier J, Kaplow J (2002): A 12-Year Prospective Study of the Long-term Effects of Early Child Physical Maltreatment on Psychological, Behavioral, and Academic Problems in Adolescence. Arch Pediatr Adolesc Med. 156: 824–830. [PubMed: 12144375]
- Barnes AJ, Lafavor TL, Cutuli JJ, Zhang L, Oberg CN, Masten AS (2017): Health and Self-Regulation among School-Age Children Experiencing Family Homelessness. Children. 4: 70.
- 12. Beardslee WR, Podorefsky D (1988): Resilient adolescents whose parents have serious affective and other psychiatric disorders: importance of self-understanding and relationships. AJP. 145: 63–69.
- 13. Cicchetti D, Rogosch FA, Lynch M, Holt KD (1993): Resilience in maltreated children: Processes leading to adaptive outcome. Development and Psychopathology. 5: 629–647.
- Garmezy N (1993): Children in Poverty: Resilience Despite Risk. Psychiatry. 56: 127–136.
 [PubMed: 8488208]
- 15. Masten AS, Best KM, Garmezy N (1990): Resilience and development: Contributions from the study of children who overcome adversity. Development and Psychopathology. 2: 425–444.
- 16. Luthar SS, Cicchetti D, Becker B (2000): The Construct of Resilience: A Critical Evaluation and Guidelines for Future Work. Child Development. 71: 543–562. [PubMed: 10953923]
- 17. Connor KM, Davidson JRT (2003): Development of a new resilience scale: The Connor-Davidson Resilience Scale (CD-RISC). Depression and Anxiety. 18: 76–82. [PubMed: 12964174]
- Wagnild G (2009): A Review of the Resilience Scale. Journal of Nursing Measurement. 17: 105– 113. [PubMed: 19711709]
- 19. Wagnild G, Young HM (1990): Resilience Among Older Women. Image: the Journal of Nursing Scholarship. 22: 252–255. [PubMed: 2292448]
- 20. Southwick SM, Charney DS (2012): The Science of Resilience: Implications for the Prevention and Treatment of Depression. Science. 338: 79–82. [PubMed: 23042887]
- 21. Rutter M (1985): Resilience in the Face of Adversity: Protective Factors and Resistance to Psychiatric Disorder. The British Journal of Psychiatry. 147: 598–611. [PubMed: 3830321]
- 22. Bronfenbrenner U, Ceci SJ (1994): Nature-nuture reconceptualized in developmental perspective: A bioecological model. Psychological Review. 101: 568–586. [PubMed: 7984707]
- 23. Ungar M (2011): The Social Ecology of Resilience: Addressing Contextual and Cultural Ambiguity of a Nascent Construct. American Journal of Orthopsychiatry. 81: 1–17. [PubMed: 21219271]
- 24. Ungar M, Ghazinour M, Richter J (2013): Annual Research Review: What is resilience within the social ecology of human development? Journal of Child Psychology and Psychiatry. 54: 348–366. [PubMed: 23215898]
- 25. Ungar M (2008): Resilience across Cultures. Br JSoc Work. 38: 218-235.
- Odgers CL, Moffitt TE, Tach LM, Sampson RJ, Taylor A, Matthews CL, Caspi A (2009): The
 protective effects of neighborhood collective efficacy on British children growing up in
 deprivation: A developmental analysis. Developmental Psychology. 45: 942–957. [PubMed:
 19586172]
- 27. Benzies K, Mychasiuk R (2009): Fostering family resiliency: a review of the key protective factors. Child & Family Social Work. 14: 103–114.

 Wachs TD (2006): Contributions of Temperament to Buffering and Sensitization Processes in Children's Development. Annals of the New York Academy of Sciences. 1094: 28–39. [PubMed: 17347339]

- Kim-Cohen J, Gold AL (2009): Measured Gene–Environment Interactions and Mechanisms Promoting Resilient Development. Curr Dir Psychol Sci. 18: 138–142.
- Shechner T, Britton JC, Pérez-Edgar K, Bar-Haim Y, Ernst M, Fox NA, et al. (2012): Attention biases, anxiety, and development: toward or away from threats or rewards?: Special Article: Attention Biases, Anxiety, and Development. Depression and Anxiety. 29: 282–294. [PubMed: 22170764]
- 31. Goldin PR, McRae K, Ramel W, Gross JJ (2008): The Neural Bases of Emotion Regulation: Reappraisal and Suppression of Negative Emotion. Biological Psychiatry, Stress, Anxiety, and Post-Traumatic Stress Disorder. 63: 577–586.
- 32. Gross JJ (1998): The Emerging Field of Emotion Regulation: An Integrative Review. Review of General Psychology. 2: 271–299.
- Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, Kolden GG, et al. (2009): Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. PNAS. 106: 22445–22450. [PubMed: 20080793]
- 34. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE (2002): Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. Journal of Cognitive Neuroscience. 14: 1215–1229. [PubMed: 12495527]
- 35. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JDE, Gross JJ (2004): For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage. 23: 483–499. [PubMed: 15488398]
- Silvers JA, Shu J, Hubbard AD, Weber J, Ochsner KN (2015): Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood. Developmental Science. 18: 771–784. [PubMed: 25439326]
- 37. Gross JJ (1998): Antecedent- and Response-Focused Emotion Regulation: Divergent Consequences for Experience, Expression, and Physiology. 14.
- 38. Gross JJ, John OP (2003): Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology. 85: 348–362. [PubMed: 12916575]
- 39. McRae K, Hughes B, Chopra S, Gabrieli JDE, Gross JJ, Ochsner KN (2009): The Neural Bases of Distraction and Reappraisal. Journal of Cognitive Neuroscience. 22: 248–262.
- 40. Webb TL, Miles E, Sheeran P (2012): Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin. 138: 775–808. [PubMed: 22582737]
- 41. John OP, Gross JJ (2004): Healthy and Unhealthy Emotion Regulation: Personality Processes, Individual Differences, and Life Span Development. Journal of Personality. 72:1301–1334. [PubMed: 15509284]
- 42. Beck AT (1979): Cognitive Therapy of Depression. Guilford Press.
- 43. Chorpita BF, Daleiden EL (2009): Mapping evidence-based treatments for children and adolescents: Application of the distillation and matching model to 615 treatments from 322 randomized trials. Journal of Consulting and Clinical Psychology. 77: 566–579. [PubMed: 19485596]
- 44. Compton SN, March JS, Brent D, Albano AM, Weersing VR, Curry J (2004): Cognitive-Behavioral Psychotherapy for Anxiety and Depressive Disorders in Children and Adolescents: An Evidence-Based Medicine Review. Journal of the American Academy of Child & Adolescent Psychiatry. 43: 930–959. [PubMed: 15266189]
- 45. Ochsner KN, Gross JJ (2005): The cognitive control of emotion. Trends in Cognitive Sciences. 9: 242–249. [PubMed: 15866151]
- 46. Davis JI, Gross JJ, Ochsner KN (2011): Psychological distance and emotional experience: What you see is what you get. Emotion. 11: 438–444. [PubMed: 21500912]
- 47. Denny BT, Ochsner KN (2014): Behavioral effects of longitudinal training in cognitive reappraisal. Emotion. 14: 425–433. [PubMed: 24364856]

 Erk S, Mikschl A, Stier S, Ciaramidaro A, Gapp V, Weber B, Walter H (2010): Acute and Sustained Effects of Cognitive Emotion Regulation in Major Depression. JNeurosci. 30: 15726– 15734. [PubMed: 21106812]

- McLaughlin KA, Peverill M, Gold AL, Alves S, Sheridan MA (2015): Child Maltreatment and Neural Systems Underlying Emotion Regulation. J Am Acad Child Adolesc Psychiatry. 54: 753–762. [PubMed: 26299297]
- Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. (2014): Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cerebral Cortex. 24: 2981–2990. [PubMed: 23765157]
- Miller EK, Cohen JD (2001): An Integrative Theory of Prefrontal Cortex Function. Annu Rev Neurosci. 24: 167–202. [PubMed: 11283309]
- 52. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012): Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 12: 241–268. [PubMed: 22282036]
- 53. Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL (2007): Amygdala–frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2: 303–312. [PubMed: 18985136]
- 54. Eippert F, Veit R, Weiskopf N, Erb M, Birbaumer N, Anders S (2007): Regulation of emotional responses elicited by threat-related stimuli. Human Brain Mapping. 28: 409–423. [PubMed: 17133391]
- 55. Lee H, Heller AS, van Reekum CM, Nelson B, Davidson RJ (2012): Amygdala–prefrontal coupling underlies individual differences in emotion regulation. NeuroImage. 62: 1575–1581. [PubMed: 22634856]
- 56. Ochsner KN, Silvers JA, Buhle JT (2012): Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences. 1251: E1–E24. [PubMed: 23025352]
- 57. Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin RE, et al. (2017): vlPFC–vmPFC–Amygdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion. Cereb Cortex. 27: 3502–3514. [PubMed: 27341851]
- 58. McRae K, Gross JJ, Weber J, Robertson ER, Sokol-Hessner P, Ray RD, et al. (2012): The development of emotion regulation: an fMRI study of cognitive reappraisal in children, adolescents and young adults. Social cognitive and affective neuroscience. 7: 11–22. [PubMed: 22228751]
- Silvers JA, McRae K, Gabrieli JDE, Gross JJ, Remy KA, Ochsner KN (2012): Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion. 12: 1235–1247. [PubMed: 22642356]
- 60. Ahmed SP, Somerville LH, Sebastian CL (2018): Using temporal distancing to regulate emotion in adolescence: modulation by reactive aggression. Cognition and Emotion. 32: 812–826. [PubMed: 28814201]
- 61. Van Cauwenberge V, Van Leeuwen K, Hoppenbrouwers K, Wiersema JR (2017): Developmental changes in neural correlates of cognitive reappraisal: An ERP study using the late positive potential. Neuropsychologia. 95: 94–100. [PubMed: 27988161]
- 62. Levesque J, Joanette Y, Mensour B, Beaudoin G, Leroux J-M, Bourgouin P, Beauregard M (2004): Neural basis of emotional self-regulation in childhood. Neuroscience. 129: 361–369. [PubMed: 15501593]
- 63. McRae K, Misra S, Prasad AK, Pereira SC, Gross JJ (2012): Bottom-up and top-down emotion generation: implications for emotion regulation. Soc Cogn Affect Neurosci. 7: 253–262. [PubMed: 21296865]
- 64. Pitskel NB, Bolling DZ, Kaiser MD, Crowley MJ, Pelphrey KA (2011): How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Developmental Cognitive Neuroscience. 1: 324–337. [PubMed: 21686071]
- 65. Anderson AK, Phelps EA (2001): Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature. 411: 305–309. [PubMed: 11357132]
- 66. Cunningham WA, Brosch T (2012): Motivational Salience: Amygdala Tuning From Traits, Needs, Values, and Goals. Current Directions in Psychological Science. 21: 54–59.

67. Vuilleumier P, Pourtois G (2007): Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia, The Perception of Emotion and Social Cues in Faces. 45: 174–194.

- 68. Hartley CA, Phelps EA (2010): Changing Fear: The Neurocircuitry of Emotion Regulation. Neuropsychopharmacology. 35: 136–146. [PubMed: 19710632]
- 69. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007): Failure to Regulate: Counterproductive Recruitment of Top-Down Prefrontal-Subcortical Circuitry in Major Depression. J Neurosci. 27: 8877–8884. [PubMed: 17699669]
- 70. Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004): Extinction Learning in Humans: Role of the Amygdala and vmPFC. Neuron. 43: 897–905. [PubMed: 15363399]
- 71. Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003): Stimulation of Medial Prefrontal Cortex Decreases the Responsiveness of Central Amygdala Output Neurons. JNeurosci. 23: 8800–8807. [PubMed: 14507980]
- 72. Urry HL, van Reekum CM, Johnstone T, Kalin NH, Thurow ME, Schaefer HS, et al. (2006): Amygdala and Ventromedial Prefrontal Cortex Are Inversely Coupled during Regulation of Negative Affect and Predict the Diurnal Pattern of Cortisol Secretion among Older Adults. J Neurosci. 26: 4415–4425. [PubMed: 16624961]
- 73. Beauregard M, Paquette V, Levesque J (2006): Dysfunction in the neural circuitry of emotional self-regulation in major depressive disorder. NeuroReport. 17: 843. [PubMed: 16708026]
- Carthy T, Horesh N, Apter A, Edge MD, Gross JJ (2010): Emotional reactivity and cognitive regulation in anxious children. Behaviour Research and Therapy. 48: 384–393. [PubMed: 20089246]
- 75. Goldin PR, Manber T, Hakimi S, Canli T, Gross JJ (2009): Neural Bases of Social Anxiety Disorder: Emotional Reactivity and Cognitive Regulation During Social and Physical Threat. Arch Gen Psychiatry. 66: 170–180. [PubMed: 19188539]
- 76. Miller AB, McLaughlin KA, Busso DS, Brueck S, Peverill M, Sheridan MA (2018): Neural Correlates of Emotion Regulation and Adolescent Suicidal Ideation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 3: 125–132. [PubMed: 29529407]
- 77. Perlman G, Simmons AN, Wu J, Hahn KS, Tapert SF, Max JE, et al. (2012): Amygdala response and functional connectivity during emotion regulation: A study of 14 depressed adolescents. Journal of Affective Disorders. 139: 75–84. [PubMed: 22401827]
- 78. Pico-Perez M, Radua J, Steward T, Menchón JM, Soriano-Mas C (2017): Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 79: 96–104. [PubMed: 28579400]
- Glaser JP, van Os J, Portegijs PJM, Myin-Germeys I (2006): Childhood trauma and emotional reactivity to daily life stress in adult frequent attenders of general practitioners. Journal of Psychosomatic Research. 61: 229–236. [PubMed: 16880026]
- 80. Heleniak C, Jenness JL, Vander Stoep A, McCauley E, McLaughlin KA (2016): Childhood Maltreatment Exposure and Disruptions in Emotion Regulation: A Transdiagnostic Pathway to Adolescent Internalizing and Externalizing Psychopathology. Cogn Ther Res. 40: 394–415.
- 81. Weissman DG, Bitran D, Miller AB, Schaefer JD, Sheridan MA, McLaughlin KA (in press): Disruptions in emotion regulation as a transdiagnostic mechanism linking child maltreatment with the emergence of psychopathology. Development and Psychopathology.
- 82. Wichers M, Schrijvers D, Geschwind N, Jacobs N, Myin-Germeys I, Thiery E, et al. (2009): Mechanisms of gene-environment interactions in depression: evidence that genes potentiate multiple sources of adversity. Psychological Medicine. 39: 1077–1086. [PubMed: 18834553]
- 83. Heleniak C, McLaughlin KA, Ormel J, Riese H (2016): Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology. Biological Psychology. 120: 108–119. [PubMed: 27568327]
- 84. McLaughlin KA, Sheridan MA, Alves S, Mendes WB (2014): Child Maltreatment and Autonomic Nervous System Reactivity: Identifying Dysregulated Stress Reactivity Patterns by Using the Biopsychosocial Model of Challenge and Threat. Psychosomatic Medicine. 76: 538–546. [PubMed: 25170753]

85. Herringa RJ, Birn RM, Ruttle PL, Burghy CA, Stodola DE, Davidson RJ, Essex MJ (2013): Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. PNAS. 110: 19119–19124. [PubMed: 24191026]

- 86. Marusak HA, Martin KR, Etkin A, Thomason ME (2015): Childhood Trauma Exposure Disrupts the Automatic Regulation of Emotional Processing. Neuropsychopharmacology. 40: 1250–1258. [PubMed: 25413183]
- 87. McCrory EJ, Brito SAD, Kelly PA, Bird G, Sebastian CL, Mechelli A, et al. (2013): Amygdala activation in maltreated children during pre-attentive emotional processing. The British Journal of Psychiatry. 202: 269–276. [PubMed: 23470285]
- 88. McCrory EJ, De Brito SA, Viding E (2011): The Impact of Childhood Maltreatment: A Review of Neurobiological and Genetic Factors. Front Psychiatry. 2. doi: 10.3389/fpsyt.2011.00048.
- 89. Tottenham N, Hare TA, Millner A, Gilhooly T, Zevin J, Casey BJ (2011): Elevated Amygdala Response to Faces Following Early Deprivation. Dev Sci. 14: 190–204. [PubMed: 21399712]
- 90. Hein TC, Monk CS (2017): Research Review: Neural response to threat in children, adolescents, and adults after child maltreatment a quantitative meta-analysis. Journal of Child Psychology and Psychiatry. 58: 222–230. [PubMed: 27778344]
- 91. McLaughlin KA, Lambert HK (2017): Child trauma exposure and psychopathology: mechanisms of risk and resilience. Current Opinion in Psychology, Traumatic stress. 14: 29–34.
- Anthony JL, Lonigan CJ, Hooe ES, Phillips BM (2002): An Affect-Based, Hierarchical Model of Temperament and Its Relations With Internalizing Symptomatology. Journal of Clinical Child & Adolescent Psychology. 31: 480–490. [PubMed: 12402567]
- 93. Heleniak C, King KM, Monahan KC, McLaughlin KA (2018): Disruptions in Emotion Regulation as a Mechanism Linking Community Violence Exposure to Adolescent Internalizing Problems. Journal of Research on Adolescence. 28: 229–244. [PubMed: 28646545]
- 94. McLaughlin KA, Hatzenbuehler ML, Hilt LM (2009): Emotion dysregulation as a mechanism linking peer victimization to internalizing symptoms in adolescents. Journal of Consulting and Clinical Psychology. 77: 894–904. [PubMed: 19803569]
- Silk JS, Steinberg L, Morris AS (2003): Adolescents' Emotion Regulation in Daily Life: Links to Depressive Symptoms and Problem Behavior. Child Development. 74: 1869–1880. [PubMed: 14669901]
- Kim J, Cicchetti D (2010): Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. J Child Psychol Psychiatry. 51: 706–716. [PubMed: 20050965]
- 97. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH, et al. (2013): Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. PNAS. 201307893.
- Hanson JL, Chung MK, Avants BB, Shirtcliff EA, Gee JC, Davidson RJ, Pollak SD (2010): Early Stress Is Associated with Alterations in the Orbitofrontal Cortex: A Tensor-Based Morphometry Investigation of Brain Structure and Behavioral Risk. J Neurosci. 30: 7466–7472. [PubMed: 20519521]
- Herringa RJ, Burghy CA, Stodola DE, Fox ME, Davidson RJ, Essex MJ (2016): Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence. Biol Psychiatry Cogn Neurosci Neuroimaging. 1: 326–334.
 [PubMed: 27725969]
- 100. Miller GE, Chen E, Armstrong CC, Carroll AL, Ozturk S, Rydland KJ, et al. (2018): Functional connectivity in central executive network protects youth against cardiometabolic risks linked with neighborhood violence. Proceedings of the National Academy of Sciences. 6.
- 101. McLaughlin KA, Conron KJ, Koenen KC, Gilman SE (2010): Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: a test of the stress sensitization hypothesis in a population-based sample of adults. Psychological Medicine. 40: 1647–1658. [PubMed: 20018126]
- 102. Hammen C (1991): Generation of stress in the course of unipolar depression. Journal of Abnormal Psychology. 100: 555–561. [PubMed: 1757669]

103. Hammen C (2006): Stress generation in depression: Reflections on origins, research, and future directions. Journal of Clinical Psychology. 62: 1065–1082. [PubMed: 16810666]

- 104. Kendler KS, Karkowski LM, Prescott CA (1999): Causal Relationship Between Stressful Life Events and the Onset of Major Depression. AJP. 156: 837–841.
- 105. Mazure CM (1998): Life Stressors as Risk Factors in Depression. Clinical Psychology: Science and Practice. 5: 291–313.
- 106. Bandoli G, Campbell-Sills L, Kessler RC, Heeringa SG, Nock MK, Rosellini AJ, et al. (2017): Childhood adversity, adult stress, and the risk of major depression or generalized anxiety disorder in US soldiers: a test of the stress sensitization hypothesis. Psychological Medicine. 47: 2379– 2392. [PubMed: 28443533]
- 107. Espejo EP, Hammen CL, Connolly NP, Brennan PA, Najman JM, Bor W (2007): Stress Sensitization and Adolescent Depressive Severity as a Function of Childhood Adversity: A Link to Anxiety Disorders. J Abnorm Child Psychol. 35: 287–299. [PubMed: 17195949]
- 108. Hammen C, Henry R, Daley SE (2000): Depression and sensitization to stressors among young women as a function of childhood adversity. Journal of Consulting and Clinical Psychology. 68: 782–787. [PubMed: 11068964]
- 109. Kendler KS, Kuhn JW, Prescott CA (2004): Childhood sexual abuse, stressful life events and risk for major depression in women. Psychological Medicine. 34: 1475–1482. [PubMed: 15724878]
- 110. Troy AS, Wilhelm FH, Shallcross AJ, Mauss IB (2010): Seeing the Silver Lining: Cognitive Reappraisal Ability Moderates the Relationship Between Stress and Depressive Symptoms. Emotion. 10: 783–795. [PubMed: 21058843]
- 111. Lyons DM, Parker KJ, Schatzberg AF (2010): Animal models of early life stress: Implications for understanding resilience. Developmental Psychobiology. 52: 616–624. [PubMed: 20957724]
- 112. Badura-Brack AS, Naim R, Ryan TJ, Levy O, Abend R, Khanna MM, et al. (2015): Effect of Attention Training on Attention Bias Variability and PTSD Symptoms: Randomized Controlled Trials in Israeli and U.S. Combat Veterans. American Journal of Psychiatry. 172: 1233–1241. [PubMed: 26206075]
- 113. Lazarov A, Marom S, Yahalom N, Pine DS, Hermesh H, Bar-Haim Y (2018): Attention bias modification augments cognitive—behavioral group therapy for social anxiety disorder: a randomized controlled trial. Psychological Medicine. 48: 2177–2185. [PubMed: 29258631]
- 114. Wald I, Fruchter E, Ginat K, Stolin E, Dagan D, Bliese PD, et al. (2016): Selective prevention of combat-related post-traumatic stress disorder using attention bias modification training: a randomized controlled trial. Psychological Medicine. 46: 2627–2636. [PubMed: 27377418]
- 115. White LK, Sequeira S, Britton JC, Brotman MA, Gold AL, Berman E, et al. (2017): Complementary Features of Attention Bias Modification Therapy and Cognitive-Behavioral Therapy in Pediatric Anxiety Disorders. American Journal of Psychiatry. 174: 775–784. [PubMed: 28407726]
- 116. MacLeod C, Rutherford E, Campbell L, Ebsworthy G, Holker L (2002): Selective attention and emotional vulnerability: Assessing the causal basis of their association through the experimental manipulation of attentional bias. Journal of Abnormal Psychology. 111: 107–123. [PubMed: 11866165]
- 117. Bar-Haim Y (2010): Research Review: attention bias modification (ABM): a novel treatment for anxiety disorders. Journal of Child Psychology and Psychiatry. 51: 859–870. [PubMed: 20456540]
- 118. Briggs-Gowan MJ, Grasso D, Bar-Haim Y, Voss J, McCarthy KJ, Pine DS, Wakschlag LS (2016): Attention bias in the developmental unfolding of post-traumatic stress symptoms in young children at risk. Journal of Child Psychology and Psychiatry. 57: 1083–1091. [PubMed: 27296760]
- 119. Clark DA, Beck AT (2010): Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends in Cognitive Sciences. 14: 418–424. [PubMed: 20655801]
- 120. Frewen PA, Dozois DJA, Lanius RA (2008): Neuroimaging studies of psychological interventions for mood and anxiety disorders: Empirical and methodological review. Clinical Psychology Review. 28: 228–246. [PubMed: 17602811]

121. Teicher MH, Samson JA (2013): Childhood Maltreatment and Psychopathology: A Case for Ecophenotypic Variants as Clinically and Neurobiologically Distinct Subtypes. AJP. 170: 1114–1133.

Figure 1. Schematic representation of experimental task. While undergoing fMRI, participants were instructed to either look at an emotional image (neutral or negative) or attempt to decrease their emotional response using cognitive reappraisal (negative images only). Following the presentation of the image, participants reported the strength of emotion they experienced while viewing the image. Between trials, participants were instructed to relax.

Figure 2.

Amygdala activity during cognitive reappraisal moderates the association between child maltreatment and depression symptoms over time. A. Red mask overlay shows left amygdala ROI. B. Greater reduction in amygdala activation during cognitive reappraisal relative to passive viewing of negative emotional stimuli (decrease negative > look negative) is associated with lower depression symptoms over time among children who were maltreated (blue) but is unrelated to the development of depression symptoms among those without a history of maltreatment (black). Shaded region indicates 95% CI.

Figure 3.

Association of child maltreatment with depression is moderated by prefrontal recruitment during cognitive reappraisal. A. Red mask overlay shows right superior frontal gyrus (SFG) ROI. B. Greater recruitment of the right SFG during cognitive reappraisal relative to passive viewing of negative emotional stimuli (decrease negative > look negative) is associated with reduced symptoms of depression among children exposed to maltreatment (blue) but is unrelated to depression symptoms among those without a history of maltreatment (black). C. Red mask overlay shows right dorsal anterior cingulate cortex (dACC) ROI. D. Greater recruitment of the right dACC during cognitive reappraisal relative to passive viewing of negative emotional stimuli (decrease negative > look negative) is associated with reduced symptoms of depression among children exposed to maltreatment (blue) but is unrelated to depression symptoms among those without a history of maltreatment (black). Shaded region indicates 95% CI.

Figure 4. Association between reported tendency to engage in cognitive reappraisal in daily life and depression is moderated by severity of abuse history. Greater reported use of cognitive reappraisal strategies in response to stressful life events is associated with lower symptoms of depression, particularly among children with more severe maltreatment history (blue) compared to those with a less severe or no history of maltreatment (black). Reappraisal use measured using the Emotion Regulation Questionnaire (ERQ) (38). Shaded region indicates 95% CI.

Table 1.Summary of Participant Demographic and Clinical Characteristics

Participant Characteristics	Non-maltreated (N=72)		Maltreated (N=79)			
	Mean	SD	Mean	SD	t-value	p-value
Age	12.57	2.55	12.94	2.69	-0.86	0.394
Pubertal Stage	2.88	0.74	3.13	0.86	-1.8791	0.062
CDI at Baseline	5.54	4.27	12.16	8.72	-6.01	<.001
CDI at Follow Up	6.14	5.33	10.63	8.41	-3.37	<.001
SCARED at Baseline	26.51	15.70	15.26	10.52	-5.17	<.001
SCARED at Follow Up	21.58	15.12	16.72	9.43	-2.03	0.045
ERQ - Reappraisal	27.46	6.34	27.32	8.15	0.12	0.906
	N	%	N	%	X^2	p-value
Sex: Female	33	45.83%	43	54.43%	0.80	0.372
Attrition	15	20.83%	24	30.38%	1.33	0.249
Race: Non-White	22	30.56%	61	77.22%	31.27	<.001
Adversity Exposure						
Physical Abuse	0	0%	57	72%	80.41	<.001
Emotional Abuse	3	4%	44	56%	44.28	<.001
Sexual Abuse	0	0%	36	46%	40.61	<.001
Neglect	0	0%	19	24%	17.68	<.001