DA5401 A4: GMM-Based Synthetic Sampling for Imbalanced Data

Objective: This assignment will challenge you to apply a sophisticated, model-based approach to tackle the class imbalance problem. You will use a Gaussian Mixture Model (GMM) to generate synthetic samples for the minority class, and then evaluate its effectiveness compared to a baseline model. This assignment focuses on the **theoretical and practical aspects of using probabilistic models for data augmentation**.

1. Problem Statement

You are a data scientist tasked with building a fraud detection model for a financial institution. You have been given a highly imbalanced dataset where a tiny fraction of transactions are fraudulent. Your main challenge is to create a training set that allows a classifier to learn the nuances of the minority (fraudulent) class without overfitting or misclassifying. You will implement a GMM-based synthetic data generation pipeline and analyze its impact on model performance.

You will submit a Jupyter Notebook with your complete code, visualizations, and a plausible story that explains your findings. The notebook should be well-commented, reproducible, and easy to follow.

Dataset: The dataset is available on Kaggle: <u>Credit Card Fraud Detection</u>.

2. Tasks

Part A: Baseline Model and Data Analysis [To Borrow from A3]

- 1. Data Loading and Analysis:
 - Load the creditcard.csv dataset.
 - Print the class distribution and discuss the degree of imbalance.

2. Model Training:

- Split the dataset into training and testing sets. Crucially, the test set should be an accurate reflection of the original class imbalance.
- Train a Logistic Regression classifier on the imbalanced training data to establish a performance baseline.

3. Baseline Evaluation:

 Evaluate the model's performance on the test set. Explain why metrics such as Precision, Recall, and F1-score for the minority class are more informative than accuracy for this problem.

Part B: Gaussian Mixture Model (GMM) for Synthetic Sampling [35 points]

1. Theoretical Foundation [5]:

- In a markdown cell, explain the fundamental difference between GMM-based synthetic sampling and simpler methods like SMOTE.
- Discuss why GMM is theoretically better at capturing the underlying data distribution, especially when the minority class has multiple sub-groups or complex shapes in the feature space.

2. GMM Implementation [10]:

- Fit a Gaussian Mixture Model to the training data of the minority class only.
- Explain how you determined the optimal number of components (k) for the GMM.
 You can use a metric like the Akaike Information Criterion (AIC) or Bayesian
 Information Criterion (BIC) to justify your choice.

3. Synthetic Data Generation [10]:

- Use the fitted GMM to generate a sufficient number of new synthetic samples to balance the dataset. Explain the process of sampling from a GMM.
- Combine these newly generated samples with the original training data.

4. Rebalancing with CBU [10]:

- Use clustering-based Undersampling on the majority dataset to bring it down to a suitable population.
- Use GMM-based synthetic sampling on the minority dataset to match the majority population and hence create a balanced dataset.

Part C: Performance Evaluation and Conclusion [15 points]

1. Model Training and Evaluation [5]:

- Train a new Logistic Regression classifier on the GMM-balanced training data (both versions).
- Evaluate the model's performance on the same, original, imbalanced test set from Part A.

2. Comparative Analysis [5]:

- Create a summary table or a bar chart comparing the Precision, Recall, and F1-score of the GMM-based model against the baseline model.
- Discuss the impact of GMM-based oversampling on the classifier's performance.
 Did it improve the model's ability to detect the minority class?

3. Final Recommendation [5]:

 Based on your analysis, provide a clear recommendation on the effectiveness of using GMM for synthetic data generation in this context. Justify your answer using both your results and your theoretical understanding of the method.

3. Submission Guidelines

• The assignment is due on 15th September 2025, 4.30 pm. [2 pm if done remotely]

- Submit a single Jupyter Notebook with all your code, visualizations, and answers to the conceptual questions.
- Ensure your code is clean, readable, and well-commented.

Evaluation Criteria:

- Correct implementation of the GMM-based oversampling pipeline.
- Correct use of evaluation metrics and a valid comparison with the baseline.
- Clear and insightful explanation of the theoretical concepts.
- Well-reasoned conclusions based on the empirical results.

PS: You may reuse the results from A3 in A4.

Good luck!