# data preparation, dan pre processing data

Pertemuan 4

## Data Preparation

- Data Preparation dilakukan setelah rangkaian proses business understanding dan data understanding
- Proses Data Preparation setidaknya terdiri atas: Memilah data, membersihkan data, mengkontruksi data, menentukan label data dan mengintegrasikan data.
- Untuk Tahapan Data Preparation digunakan rujukan SKKNI 299 terkait Al-Data Science yang juga dapat digunakan sebagai kerangka Data Anlytics.





## Urgensi Data Preparation



- Data Preparation seringkali mangambil porsi kurang lebih 60% dari seluruh proses project berbasis data (Data Analytics). Sehingga keberhasilan project data analytics seringkali dipengaruhi sangat vital dari proses Data Preparation.
- Proses Data Analytics bertujuan merubah data menjadi informasi bermanfaat yang mendukung Keputusan strategis bisnis.
- Hasil Analisa data valid, jika didukung oleh data yang berkualitas.
- Oleh karenanya, data preparation ditujukan untuk menghasilkan Analisa yang valid yang mendukung Keputusan bisnis

### Urgensi Data Preparation

Case of Failure Due to Data Preparation

Deteksi ASD (Autism spectrum disorder) melalui Analisis rekam EEG menggunakan Random Forest

- Data diambil dari 15 pasien (4 normal, 11 ASD)
- Signal direkam melalui 15 channel EEG
- First order statistics digunakan untuk ekstraski fitur



| 1  | Anak_Channel | Mean         | Variance    | Skewness     | Kurtosis    | Kondisi |  |
|----|--------------|--------------|-------------|--------------|-------------|---------|--|
| 2  | amerFP1      | 0,001625845  | 2819,300414 | 0,388569232  | 12,62257062 | Normal  |  |
| 3  | amerF3       | -0,000160359 | 1663,379895 | -0,1088111   | 14,31750639 | Normal  |  |
| 4  | amerF7       | 6,44833E-05  | 1618,864577 | -1,487005131 | 36,34590976 | Normal  |  |
| 5  | amerT3       | 6,5804E-05   | 839,1332168 | -0,329921397 | 15,90329851 | Normal  |  |
| 6  | amerT5       | 8,27872E-05  | 702,9375687 | -1,914153844 | 71,22939993 | Normal  |  |
| 7  | amerO1       | -5,54296E-05 | 660,8209878 | -0,058461045 | 4,33513732  | Normal  |  |
| 8  | amerC4       | 0,000188206  | 219,1661912 | 3,14679394   | 57,00550545 | Normal  |  |
| 9  | amerFP2      | 4,9322E-05   | 85,40465013 | -0,018590194 | 3,035755416 | Normal  |  |
| 10 | amerFZ       | 0,000194675  | 44,90004573 | -0,248984657 | 7,353518709 | Normal  |  |
| 11 | amerF4       | 0,000119959  | 52,17514946 | 0,060609521  | 0,087413313 | Normal  |  |
| 12 | amerF8       | 0,000302437  | 23,89251052 | 0,09572071   | 3,74004792  | Normal  |  |
| 13 | amerC3       | 1,34068E-05  | 33,50399758 | 0,027604081  | 1,311062702 | Normal  |  |
| 14 | amerCZ       | 0,000225541  | 27,89194903 | 0,035711643  | 0,257191446 | Normal  |  |
| 15 | amerPZ       | 0,000303029  | 13,0898407  | -0,011293946 | 0,560008267 | Normal  |  |
| 16 | amerOZ       | 0,000208415  | 13,0898407  | -0,011293946 | 0,560008267 | Normal  |  |
| 17 | baderFP1     | 4,10794E-05  | 1555,008001 | -0,282258297 | 28,73907626 | Autism  |  |
| 18 | baderF3      | -0,000310223 | 447,1542274 | -1,12225671  | 216,1231373 | Autism  |  |
| 19 | baderF7      | -1,64774E-05 | 481,3650347 | 2,744673139  | 23,95638428 | Autism  |  |
| 20 | baderT3      | -0,000294799 | 394,1237034 | -0,116256322 | 4,462771723 | Autism  |  |
| 21 | baderT5      | 2,61057E-05  | 175,2856712 | 28,53596145  | 1387,499012 | Autism  |  |
| 22 | baderO1      | 4,9797E-05   | 210,8495705 | -2,579784799 | 89,69251698 | Autism  |  |
| 23 | baderC4      | 0,000394642  | 146,6346402 | 1,047424499  | 8,751996036 | Autism  |  |
| 24 | baderFP2     | 0,000356232  | 156,4813777 | 2,339591043  | 31,26598051 | Autism  |  |
| 25 | baderFZ      | 0.000377359  | 123.2009437 | 0.530040872  | 10.53435248 | Autism  |  |



Can You Spot what is the mistakes here?

## Data Preparation

- A. Memilah Data
- B. Membersihkan data
- C. Mengkontruksi- Transformasi data
- D. Menentukan label data
- E. Mengintegrasikan data

## A. MEMILAH DATA (Menentukan Object Data)

KODE UNIT : J.62DMI00.007.1

JUDUL UNIT : Menentukan Objek Data

DESKRIPSI UNIT: Unit kompetensi ini berhubungan dengan

pengetahuan, keterampilan, dan sikap kerja yang dibutuhkan dalam memilah dan memilih data yang

sesuai permintaan atau kebutuhan.

| ELEMEN KOMPETENSI                                               | KRITERIA UNJUK KERJA                                                                                                                                                           |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memutuskan kriteria<br>dan teknik pemilihan<br>data             | Kriteria pemilihan data diidentifikasi<br>sesuai dengan tujuan teknis dan aturan<br>yang berlaku<br>Teknik pemilihan data ditetapkan<br>sesuai dengan kriteria pemilihan data. |
| 2. Menentukan attributes<br>(columns) dan records<br>(row) data | Attributes (columns) data diidentifikasi<br>sesuai dengan kriteria pemilihan data.<br>Records (row) data diidentifikasi sesuai<br>dengan kriteria pemilihan data.              |

#### A. MEMILAH DATA (Menentukan Object Data)

- Hal ini terkait dengan menentukan dataset yang digunakan untuk membangun model.
- Data analytics adalah proses mengubah data menjadi informasi yang bermanfaat.
- Oleh karenanya dataset yang berkualitas sangat diperlukan
- Dataset berkualitas memiliki kriteria: relevan dengan permasalahan bisnis, representative, memiliki fitur yang lengkap sesuai dengan tujuan teknis dan tidak mengandung missing value ataupun duplicate data.

## A. Memilah Data (Menentukan Object Data)

- Jika menggunakan data menggunakan data sekunder maka seringkali diperlukan dari beberapa sumber sehingga memerlukan proses integrasi data (akan dijelaskan berikutnya)
- Jika menggunakan data primer maka beberapa hal berikut wajib diperhatikan
  - Tentukan informasi yang diproyeksikan untuk diperoleh sesuai dengan tujuan teknis
  - Tentukan fitur yang representative dan hendak diukur sesuai dengan tujuan teknis
  - Tentukan mekanisme pengambilan data
  - Tentukan metode sampling

## A. Memilah Data (Menentukan Object Data) Metode Sampling



**KODE UNIT** : J.62DMI00.008.1

JUDUL UNIT : Membersihkan Data

**DESKRIPSI UNIT:** Unit kompetensi ini berhubungan dengan

pengetahuan, keterampilan, dan sikap kerja yang dibutuhkan dalam membersihkan data yang sesuai

permintaan atau kebutuhan.

| ELEMEN KOMPETENSI                                                | KRITERIA UNJUK KERJA                                                                                               |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Melakukan pembersihan<br>data yang kotor                         | 1.1 <b>Strategi pembersihan data</b> ditentukan berdasarkan hasil telaah data.                                     |
|                                                                  | 1.2 <b>Data yang kotor</b> dikoreksi berdasarkan strategi pembersihan data.                                        |
| 2. Membuat laporan dan<br>rekomendasi hasil<br>membersihkan data | 2.1 Masalah dan teknis koreksi data<br>dideskripsikan sesuai dengan kondisi<br>data dan strategi pembersihan data. |
|                                                                  | 2.2 Evaluasi dihasilkan berdasarkan analisis koreksi yang telah dilakukan.                                         |
|                                                                  | 2.3 Evaluasi proses dan hasilnya didokumentasikan.                                                                 |

- Data seringkali dikatakan "data kotor" jika terdapat beberapa kondisi tidak ideal yang nantinya akan mempengaruhi validitas pembangunan model ataupun Analisa statistic terkait dengan data tersebut.
- Data dikatakan data kotor jika memuat setidaknya salah satu dari:
  - Missing value (nilai yang hilang)
  - Nilai Outlier (nilai pencilan)
- Secara Umum tujuan Membersihkan data adalah memastikan seluruh elemen data valid digunakan. Dalam hal ini data sudah tidak memuat nilai *outliers* ataupun nilai *missing value* sudat tertangani.
- Proses membersihkan data memastikan data valid akan membantu performasi model pembelajaran lebih baik dan hasil yang lebih robust terhadap bias.

#### Missing value – define dan jenisnya

- Sebuah kondisi dimana sebuah nilai yang harusnya tersedia pada sebuah variable tidak ditemukan dengan beberapa alasan.
- Namun secara umum kondisi ini terjadi disebabkan oleh nonsampling error (interviewer recording error, respondent inability error, dan respondent unwillingness error).

#### Missing value – define dan jenisnya

#### Jenis Missing value

- Missing Completely At Random (MCAR):
  - Probabilitas nilai yang hilang tidak bergantung pada nilai yang ada ataupun pada nilai yang hilang itu sendiri
  - Nilai yang hilang diasumsikan mengikuti distribusi nilai yang diketahui
- Missing at Random (MAR):
  - Probabilitas nilai yang hilang mungkin bergantung pada nilai yang diketahui namun tidak pada nilai yang hilang itu sendiri. Hilangnya nilai bergantung pada factor diluar dari nilai tersebut
- Missing not at Random (MNAR)
  - Hilangnya sebuah nilai bergantung pada nilai variable itu sendiri

#### Missing value – Cara Menangani

- Penghapusan data yang hilang secara lengkap. Hal ini bisa dilakukan jika missing value hanya terjadi pada sedikit field data sehingga tidak terlalu mempengaruhi informasi dataset secara keseluruhan
- Menggunakan beberapa Teknik Imputasi (dijelaskan lebih detail dalam Teknik kontruksi data). Pada Teknik ini penting dipahami tipe data dan keterhubungan informasi.
- Metode Khusus. Sebenarnya cara ini sama dengan imputasi, hanya Teknik proyeksi nilai yang hilang tidak hanya menggunakan parameter first order statistic saja. Beberapa teknik dalam metode ini: Hot-Deck-Imputation, K-NN, Expectation Maximization, Full Information Maximum Likelihood (FIML)

#### Penanganan Missing Value

IMPUTASI adalah Teknik yang digunakan untuk mengatasi missing value. Secara definisi imputasi adalah mengganti nilai yang hilang dengan sebuah nilai pengganti

Imputasi Data Numerik

- Imputasi Mean atau Median
- Imputasi Nilai suka-suka (arbitrary)
- Imputasi nilai ujung (end of tail)
- Imputasi K-NN
- Imputasi Regresi

Imputasi Data Kategori

- Imputasi Mode
- Imputasi *New Missing category*
- Imputasi nol

#### Penanganan Missing Value – IMPUTASI MEAN

Mengganti nilai yang hilang dengan nilai mean data

| Age |      | Age  |
|-----|------|------|
| 34  | Mean | 34   |
| 37  | 35,2 | 37   |
| NA  |      | 35,2 |
| 29  |      | 29   |
| 33  |      | 33   |
| NA  |      | 35,2 |
| 43  |      | 43   |

Penanganan Missing Value – IMPUTASI Nilai Suka suka (Arbitrary value)

Mengganti nilai yang hilang dengan nilai suka suak

#### Kelebihan

- Mudah diimplementasi
- Cocok untuk dataset numerik berukuran kecil
- Cocok untuk MCAR

#### Kekurangan

- Tidak mempertimbangkan factor korelasi antara fitur
- Kurang akurat
- Tidak memperhitungkan unsur probabilitas
- Tidak cocok untuk penggantian missing value lebih dari 5%

| Age |      | Age  |
|-----|------|------|
| 34  | Mean | 34   |
| 37  | 35,2 | 37   |
| NA  |      | 35,2 |
| 29  |      | 29   |
| 33  |      | 33   |
| NA  |      | 35,2 |
| 43  |      | 43   |

#### Penanganan Missing Value - IMPUTASI Nilai Nilai Ujung (End of Tail)

Mengganti nilai yang hilang dengan nilai end of tail

#### Kelebihan

- Mudah diimplementasi
- cocok diguakan untuk data numerik

#### **Ketentuan Khurus**

Dalam menentukan nilai end-of tail perlu diperhatikan bentuk sebaran data

- Jika persebaran data normal
  - Nilai end of tail = mean + 3\*std
- Jika persebaran data skewed
  - Nilai end of tail menggunakan aproksimasi inter quartile (IQR)
- Imputasi ini hanya diberlakukan untuk data training saja

| Age | Mean         | 35,20 | Age   |
|-----|--------------|-------|-------|
| 34  | Std          | 5,22  | 34    |
| 37  | Mean + 3 std | 50,85 | 37    |
| NA  |              |       | 50,82 |
| 29  |              |       | 29    |
| 33  |              |       | 33    |
| NA  |              |       | 50,82 |
| 43  |              |       | 43    |

<sup>\*</sup> Asumsi data terdistribusi Normal

#### Penanganan Missing Value – IMPUTASI Modus

Mengganti nilai yang hilang dengan nilai modus data

#### Kelebihan

- Mudah diimplementasi
- cocok diguakan untuk data kategori
- Cocok untuk data Missing at random
- Cocok untuk data dengan persebaran skew

#### Kekurangan

- Mendistorsi relasi label dengan frekuensi tertinggi vs variable lain
- Menghasilkan over-representation jika banyak data yang hilang

| Data Jenjang Peneliti |               | Data Jenjang Peneliti |
|-----------------------|---------------|-----------------------|
| Peneliti Muda         |               | Peneliti Muda         |
| Peneliti Pertama      |               | Peneliti Pertama      |
| Peneliti Pertama      | Mode          | Peneliti Pertama      |
| Peneliti Muda         | Peneliti Muda | Peneliti Muda         |
| Peneliti Utama        |               | Peneliti Utama        |
| Peneliti Utama        |               | Peneliti Utama        |
| Peneliti Madya        |               | Peneliti Madya        |
|                       |               | Peneliti Muda         |
| Peneliti Utama        |               | Peneliti Utama        |
| Peneliti Madya        |               | Peneliti Madya        |
| Peneliti Muda         |               | Peneliti Muda         |
| Peneliti Muda         |               | Peneliti Muda         |
| Peneliti Muda         |               | Peneliti Muda         |
| Peneliti Madya        |               | Peneliti Madya        |
| Peneliti Pertama      |               | Peneliti Pertama      |
|                       |               | Peneliti Muda         |
| Peneliti Muda         |               | Peneliti Muda         |
| Peneliti Pertama      |               | Peneliti Pertama      |

#### Penanganan Missing Value – IMPUTASI Nol/ Konstanta

Mengganti nilai yang hilang dengan (dalam hal ini label data) dengan konstanta nol

#### Kelebihan

- Mudah diimplementasi
- cocok diguakan untuk data kategori

#### Kekurangan

- Tidak mempertimbangkan korelasi antar fitur
- Berpotensi menimbulkan bias

|   | col1 | col2 | col3 | col4 | col5 |              |   | col1 | col2 | col3 | col4 | col5 |
|---|------|------|------|------|------|--------------|---|------|------|------|------|------|
| 0 | 2    | 5.0  | 3.0  | 6    | NaN  | df.fillna(0) | 0 | 2    | 5.0  | 3.0  | 6    | 0.0  |
| 1 | 9    | NaN  | 9.0  | 0    | 7.0  |              | 1 | 9    | 0.0  | 9.0  | 0    | 7.0  |
| 2 | 19   | 17.0 | NaN  | 9    | NaN  |              | 2 | 19   | 17.0 | 0.0  | 9    | 0.0  |

#### **Data Outlier –** define dan jenisnya

Disebut sebagai nilai pencilan yang melekat pada sebuah variable. Setiap variable memiliki elemen nilai sejumlah tertentu dengan persebaran tertentu. Sebuah nilai  $\alpha$  dikatakan outlier atau pencilan pada variable x, jika nilai tersebut berada jauh dari persebaran nilai lainnya dalam variable x.

#note: Data adalah kombinasi variable dan nilai

Nilai pencilan dapat mempengaruhi keakuratan hasil prediksi model Beberapa penyebab terjadinya data pencilan

- Kesalahan pencatatan/pengukuran baik yang dilakukan secara manual maupun menggunakan alat.
- Kerusakan data.
- Data yang sesuai kenyataan/hasil obervasi

#### Data Outlier - Cara Mendeteksi

#### Teknik Standard Deviation

- O Dengan asumsi data memiliki sebaran normal dengan nilai rata-rata  $\mu$  dan deviasi standar  $\sigma$  maka deviasi standar dari nilai rata-rata data dapat dipergunakan untuk memprediksi jumlah sampel dalam sebuah selang nilai.
- $\circ$  Sebuah nilai fitur diprediksi sebagai outlier jika nilainya diluar dari selang  $[\mu-3\sigma,\mu+3\sigma]$



$$\Pr(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 68.27\%$$
  
 $\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 95.45\%$   
 $\Pr(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 99.73\%$ 

#### Data Outlier - Cara Mendeteksi

#### ■ Teknik *Interquartil Range* (IQR).3

- Metode IQR dipergunakan jika nilai fitur dipandang tidak menyebar normal.
- $\circ$  IQR = Q<sub>3</sub> Q<sub>1</sub> dimana Q<sub>3</sub> adalah kuartil ke-3 dan Q<sub>1</sub> adalah kuartil ke-1.
- Sebuah nilai fitur diprediksi sebagai outlier jika nilainya diluar dari selang

$$[Q_1 - 1.5 \times IQR, Q_3 + 1.5 \times IQR]$$



#### **Data Outlier –** Cara Mendeteksi

#### ■ Teknik *One-class Classification*

- Model Support Vector Machine (SVM) ditraining dengan dataset yang hanya memiliki satu kategori (kategori positif).
- Model hasil training dipergunakan untuk memprediksi data test apakah termasuk kedalam kategori positif atau tidak.



#### Data Outlier – Mengatasi Outlier

- Secara Umum menangani data outlier Mirip dengan penanganan missing value.
- Penanganan Data Outlier:
  - <u>Dibuang</u>, jika: 1. Terdapat kesalahan dalam pengambilan data, 2. Sedikit outlier pada dataset yang besar, 3. saat dimungkinkan mengambil data baru.
  - Ditangani, jika: keberadaan data outlier terlalu banyak sehingga berpotensi memunculkan bias pada analisis data.
    - Trimming, Winsorizing, Imputing, Z-score
    - Mengganti model Prediksi juga dapat membantu mengurangi potensi bias pada data yang mempertahankan nilai bias.

#### **Data Outlier –** Mengatasi Outlier

#### **Trimming Vs Winsorizing**

- Trimming adalah metode penganganan outlier dengan menghilangkan dataset yang mengandung outlier.
- Winsorizing adalah metode penanganan outlier dengan mengganti nilai outlier tersebut dengan nilai inlier terdekat (batas atas atau batas bawah)



Source gambar: Nick Gigliotti, 2021: Trimming vs Winsorizing Outliers

#### **Data Outlier –** Mengatasi Outlier

#### **Imputing-Imputation**

- Mengganti nilai dari data outlier yang dibuang dengan sebuah nilai yang umumnya berasal dari central tendency measurement
- Pada umumnya pada data dengan outlier, mean menjadi tidak valid, sehingga proses imputasi untuk menangani data outlier seringkali menggunakan median.
- Teknik ini juga dapat digunakan untuk menangani kasus penggantian nilai pada data yang memuat missing values



Source gambar: Alamin musa Magaga,2021: Analytics Vidhya

#### **Data Outlier –** Mengatasi Outlier

#### **Z-Score**

- Salah satu dari metode mendeteksi outlier adalah melihat data yang berada diluar range (mean – 3\*std : mean+3\*std).
- Metode penanganan outlier dengan z-score memiliki makna membuang data yang berada diluar range tersebut.



Source gambar: Harika Bonthu, 2021, Analytics Vidhya

## C. Mengkonstruksi data

Kode Unit: J. 62DMI00.009.1

Judul Unit : Mengkonstruksi Data

| ELEMEN KOMPETENSI                        |     | KRITERIA UNJUK KERJA                                                                                                                  |
|------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| Menganalisis teknik<br>transformasi data |     | Analisis data untuk menentukan representasi fitur data awal.                                                                          |
|                                          | 1.2 | Analisis representasi fitur data awal untuk menentukan teknik rekayasa fitur yang diperlukan untuk pembangunan model data science.    |
| Melakukan transformasi data              | 2.1 | Transformasi dilakukan untuk<br>mendapatkan fitur data awal.                                                                          |
|                                          | 2.2 | <b>Rekayasa fitur data</b> dilakukan untuk<br>mendapatkan fitur baru yang diperlukan<br>untuk pembangunan model <i>data science</i> . |
| Membuat dokumentasi<br>konstruksi data   | 2.3 | Teknis transformasi data dijabarkan dalam bentuk tertulis.                                                                            |
|                                          | 2.4 | Hasil transformasi data dan rekomendasi<br>hasil transformasi dituangkan dalam<br>bentuk tertulis.                                    |

## C. Mengkonstruksi data

Berikut bagian dari Rekayasa Fitur dalam konteks Transformasi atau Kontruksi Data

- 1) Pemilihan fitur data (feature selection)
- 2) Transformasi fitur data (feature transformation)
  - 1) Imputation sudah dijelaskan
  - 2) Handling Outlier –sudah dijelaskan
  - 3) Scaling
  - 4) Encoding data kategorikal.
- 3) Reduksi dimensi data (dimensional reduction)

#### C. Mengkonstruksi data - Pemilihan Fitur

#### Pemilihan fitur data (feature selection)

- Tujuan dari pemilihan fitur data adalah mengurangi jumlah fitur yang merepresentasikan data.
  - Mengurangi beban komputasi,
  - Meningkatkankan kinerja model prediktif.
- Pendekatan pemilihan fitur data:
  - Unsupervised: tidak melibatkan fitur target.
    - Menghilangkan fitur yang memiliki deviasi standar yang rendah.
    - Menghilangkan sebuah fitur dari dua fitur yang memiliki korelasi tinggi.
  - o Supervised: melibatkan fitur target.
    - Metode wrapper,
    - Metode *filter*,
    - Metode *intrinsic*

### C. Mengkonstruksi data - Pemilihan Fitur

#### Pemilihan fitur data (feature selection) -metode supervised

#### o *Filter*:

- Memilih fitur data secara statistik.
- Memilih fitur yang memiliki hubungan tertinggi dengan fitur target, misalnya diukur dengan koefisien korelasi.

#### O Wrapper:

- Mengembangkan beberapa model prediktif dengan beberapa subset fitur data.
- Memilih subset fitur yang menghasilkan kinerja model tertinggi yang diukur dengan sebuah metrik kinerja.

#### o Intrinsic :

 Menggunakan model machine learning untuk memilih fitur secara otomatik pada saat training model, misalnya: metode Recursive Feature Elimination (RFE)

## C. Mengkonstruksi data – Transformasi Fitur *Scaling*

- Beberapa model prediksi akan mencapai kinerja tinggi apabila seluruh fitur data input memiliki skala yang sama.
- Metode umum untuk merubah skala data:
  - O **Normalisasi**: teknik untuk merubah skala fitur sehingga nilai fitur berada pada selang [0,1] dengan persamaan:

$$x_i' = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

dimana:  $x_i'$  adalah data hasil perubahan skala,  $x_i$  adalah data asli,  $x_{min}$  adalah nilai minimum x, dan  $x_{max}$  adalah nilai maksimum x.

 Standardisasi: teknik untuk merubah skala fitur sehingga nilai fitur memiliki rata-rata – dan deviasi standar 1 dengan persamaan:

$$x_i' = \frac{x_i - \bar{x}}{s_x}$$

dimana:  $x_i'$  adalah data hasil perubahan skala,  $x_i$  adalah data asli,  $\bar{x}$  adalah rata-rata x, dan  $s_x$  adalah deviasi stadar x.

## C. Mengkonstruksi data – Transformasi Fitur *Encoding*

- Model prediksi dibangun dengan mensyaratkan seluruh nilai data sudah dalam bentuk representasi numerik.
- Data kategorikal harus dirubah menjadi representasi numerik dengan teknik encoding.
- Beberapa teknik encoding data kategorikal adalah:
  - One-hot encoding
  - Label encoding
  - Dealing with High Cardinality Categorical Data:
    - Hashing Encoding
    - Target Encoding
    - Weight of Evidence (WOE) Encoding
    - Count Encoding

#### C. Mengkonstruksi data – Transformasi Fitur **Ordinal encoding**

- Dipergunakan untuk jenis data kategorikal yang memiliki urutan nilai.
- Setiap kategori diberikan sebuah nilai bilangan bulat.
- Misalnya, data terdiri dari 3 kategori yatu: Merah, Hijau, Biru. Maka: encoding masing-masing kategori adalah:
  - o Merah 1
  - o Hijau 2
  - o Biru 3

#### C. Mengkonstruksi data – Transformasi Fitur

#### One-hot encoding

- Dipergunakan untuk jenis data kategorikal yang tidak memiliki urutan nilai.
- Setiap kategori diwakili dengan kode 1-bit.
- Jika data tidak masuk ke dalam lebih dari satu kategori maka hanya kategori tertentu yang diwakili dengan kode 1-bit.
- Misalnya, data terdiri dari 3 kategori yatu: Merah, Hijau, Biru. Maka: encoding masing-masing kategori adalah:
  - Merah [001]
  - Hijau [010]
  - o Biru [100]

## C. Mengkonstruksi data — Transformasi Fitur Dummy variabel encoding

- Jika terdapat C kategori maka setiap kategori direpresentasikan dengan C-1 bit
- Dummy variable encoding bertujuan untuk menghilangkan redundansi dari representasi kategori.
- Misalnya, data terdiri dari 3 kategori yatu: Merah, Hijau, Biru. Maka: encoding masing-masing kategori direpresentasikan dengan 2 bit atau (3-1) bit yaitu:
  - Merah [01]
  - Hijau [10]
  - o Biru [00]

## C. Mengkonstruksi data — Transformasi Fitur Reduksi dimensi data

- Dimensi data adalah jumlah fitur dari data tersebut.
- Curse of dimensionality adalah sejumlah masalah dibidang pemodelan prediktif yang disebabkan oleh dimensi data yang tinggi.
- Reduksi dimensi merupakan sebuah masalah yang bertujuan untuk mengurangi dimensi data.
- Beberapa metode untuk mereduksi dimensi data adalah:
  - Faktorisasi matriks
  - Pembelajaran Manifold
  - Metode Autoencoder
  - Linear Discriminant Analysis (LDA)
  - Principal Component Analysis (PCA)
  - Singular Value Decomposition (SVD)

#### D. MENENTUKAN LABEL DATA

KODE UNIT : J.62DMI00.010.1

JUDUL UNIT : Menentukan Label Data

DESKRIPSI UNIT: Unit kompetensi ini berhubungan dengan

pengetahuan, keterampilan, dan sikap kerja yang dibutuhkan untuk menentukan label data untuk

pembangunan model data science

| ELEMEN KOMPETENSI                    | KRITERIA UNJUK KERJA                                                                                                                                                 |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Melakukan pelabelan<br>data       | 1.1 Analisis hasil <b>pelabelan data</b> sejenis<br>yang sudah ada diuraikan kesesuaiannya<br>dengan <b>Standard Operating Procedure</b><br>(SOP) <b>pelabelan</b> . |
|                                      | <ol> <li>Pelabelan data dilakukan sesuai dengan<br/>SOP pelabelan.</li> </ol>                                                                                        |
| Membuat laporan hasil pelabelan data | 2.1. Statistik hasil pelabelan diuraikan pada laporan.                                                                                                               |
|                                      | 2.2. Evaluasi proses pelabelan diuraikan pada laporan.                                                                                                               |

#### D. MENENTUKAN LABEL DATA

#### **Data Labeling** – Definisi dan Fenomena

- Proses ini sering dikenal dengan nama Anotasi data
- Dalam membangun model prediksi ataupun mempelajari pola sebab akibat sebuah fenomena, seringkali diperlukan data yang telah memiliki label.
- Namun demikian ada kalanya data tidak memiliki label dikarenakan objek yang diteliti tidak memiliki kompetensi untuk mendefinisikan label tersebut, ataupun data diambil tanpa pendampingan ahli pada domain terkait.
- Proses anotasi data dapat dilakukan secara:
  - Manual pelabelan menggunakan pengetahuan domain expert
  - Otomatis menggunakan pendekatan unsupervised learning
  - Semi otomatis mengkombinasikan pendekatan manual dan otomatis

#### E. INTEGRASI DATA

KODE UNIT : J.62DMI00.011.1

JUDUL UNIT : Mengintegrasikan Data

DESKRIPSI UNIT: Unit kompetensi ini berhubungan dengan

pengetahuan, keterampilan, dan sikap kerja yang dibutuhkan dalam integrasi data untuk pemodelan

data science.

| ELEMEN KOMPETENSI                 |     | KRITERIA UNJUK KERJA                                                                                     |
|-----------------------------------|-----|----------------------------------------------------------------------------------------------------------|
| Memeriksa dataset yang<br>beragam | 1.1 | Data yang ada diperiksa kesesuaiannya<br>dengan tujuan pemodelan data science.                           |
|                                   | 1.2 | Data yang ada dikumpulkan dengan data lainnya yang sesuai dengan tujuan pemodelan data science.          |
| 2. Menggabungkan dataset          |     | Data yang sesuai pemodelan data science<br>disatukan menjadi dataset terintegrasi<br>untuk data science. |
|                                   | 2.2 | Data yang sudah disatukan diperiksa<br>kualitas datanya terintegrasi.                                    |
|                                   | 2.3 | Data yang sudah disatukan diformat sesuai dengan tujuan pemodelan data science.                          |

#### E. INTEGRASI DATA

#### **Data Integration**— Definisi dan Fenomena

- Sebagaimana asas dalam kriteria memilah data, data yang digunakan harus representative sebagaimana tujuan teknis pada masalah bisnis yang hendak diselesaikan.
- Seringkali jika menggunakan data sekunder, membangun dataset utuh diperoleh dari beberapa sumber dengan format yang berbeda namun memiliki informasi yang saling berkesinambungan.
- Proses menyatukan beberapa sumber data tersebut menjadi sebuah kesatuan data tabular yang akan digunakan untuk Analisa data adalah merupakan proses integrasi data.