

## Случайный лес

- специальный метод ансамблирования

= бэггинг + специальное построение деревьев (подмножество признаков при расщеплении)

Качество одного дерева очень низкое!





Брейман, 1928 – 2005







## Построение случайного леса

- 1. Выбирается подвыборка samplesize (м.б. с повторением) на ней строится дерево
- 2. Строим дерево
- 2.1. Для построения каждого расщепления просматриваем mtry / max\_features случайных признаков
- 2.2. Как правило, дерево строится до исчерпания выборки (без прунинга)

Ответ леса: по большинству (в задачах классификации) среднее арифметическое (в задачах регрессии)

```
Автоматически: рейтинг признаков — importance (model) / .feature importances
```

#### Бэггинг и ООВ (out of bag)



Выбор объектов для обучения (с помощью бутстрепа), остальные – локальный контроль...



Ответы разных деревьев – можно усреднить и вычислить качество

#### «Решающее дерево»

criterion - критерий расщепления «gini» / «entropy» splitter - разбиение «best» / «random» max depth - допустимая глубина min samples split - минимальная выборка для разбиения min samples leaf - минимальная мощность листа min weight fraction leaf - аналогично с весом max features - число признаков, которые смотрим для нахождения разбиения random state - инициализация генератора случайных чисел max leaf nodes - допустимое число листьев min\_impurity\_decrease - порог «зашумлённости» для разбиения min impurity split - порог «зашумлённости» для останова class weight - веса классов («balanced» или словарь, список словарей)

#### «Случайный лес»

```
n estimators - число деревьев
          criterion
          max depth
      min samples split
      min samples leaf
        max features
       max leaf nodes
    min impurity decrease
     min impurity split
bootstrap - делать ли бутстреп
oob_score - вычислять ли ООВ-
           ошибку
            n jobs
         random state
 verbose - контроль процесса
warm start - использовать ли
существующий лес, чтобы его
 дополнить или учить заново
```

class weight

### Параметры случайного леса

```
class
sklearn.ensemble.RandomForestClassifier
           (n estimators=10,
           criterion='gini',
            max depth=None,
         min samples split=2,
          min samples leaf=1,
    min weight fraction leaf=0.0,
         max features='auto',
         max leaf nodes=None,
            bootstrap=True,
           oob score=False,
               n jobs=1,
          random state=None,
              verbose=0,
           warm start=False,
          class weight=None)
```

```
{randomForest} randomForest(
      x, y, xtest, ytest,
          ntree=500,
   mtry=if (!is.null(y) &&
        !is.factor(y))
\max(floor(ncol(x)/3), 1) else
     floor(sqrt(ncol(x))),
         replace=TRUE,
         classwt=NULL,
            cutoff,
            strata,
sampsize = if (replace) nrow(x)
 else ceiling(.632*nrow(x)),
nodesize = if (!is.null(y) &&
   !is.factor(y)) 5 else 1,
       maxnodes = NULL,
       importance=FALSE,
        localImp=FALSE,
           nPerm=1,
proximity, oob.prox=proximity)
```

### «Случайный лес»

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n\_estimators=1)
rf.fit(X\_train, y\_train)







## Различные критерии расщеления



в авторском коде был реализован Джини...

## Настройка параметров: размер подвыборки sampsize

- 1. Определиться с типом выбора
  - с возвратом / без возврата
    - 2. Настройка по объёму
      - не в первую очередь

Часто «нужны все объекты»

Чем больше – тем однотипнее деревья

Что из этого следует?

## **Настройка параметров: размер подвыборки sampsize (СберБанк)**



### Всю выборку надо использовать по максимуму!

**Настройка параметров: число признаков** mtry / max\_features

Самый серьёзный параметр

По умолчанию:

 $\sqrt{n}$  – классификация n/3 – регрессия

Зависимость унимодальная Настраивается в первую очередь

Зависит от числа шумовых признаков Надо перенастраивать при добавлении новых признаков

**Чем больше – тем однотипнее деревья. Чем больше – тем медленнее настройка!** 

Kaggle: часто суммируют алгоритмы с разными mtry.

## Hастройка параметров: число признаков mtry / max\_features



## Hастройка mtry / max\_features (СберБанк)



## **Hactpoйкa** mtry / max\_features (ed Бозон)



в задаче ~ 33 признака

## **Hacтройкa** mtry / max\_features





## Настройка параметров ntree / n\_estimators (СберБанк)



## Чем больше деревьев – тем лучше!

## Настройка параметров ntree / n\_estimators (ed Бозон)



## **Настройка параметров** ntree / n\_estimators



Настройка параметров ntree / n\_estimators (СберБанк)

Чем больше – тем лучше!

#### Проблемы:

- как использовать при настройке параметров очень большое число деревьев
- что делать, если не помещаются в память... (в R)

Настройка параметров: число объектов в листе, число объектов для расщепления, максимальная глубина дерева

От параметров существенно зависит скорость построения леса

Оптимальные значения, как правило, - несколько объектов в листе.

Настраиваются не в первую очередь

В классическом случайном лесе деревья строятся до исчерпания выборки...

«Good results are often achieved when setting max\_depth=None in combination with min\_samples\_split=1»

#### randomForest: nodesize



умолчание: 1 - классификация, 5 - регрессия

## RandomForestClassifier: min\_samples\_split (СберБанк)







## RandomForestClassifier: min\_samples\_split



## RandomForestClassifier: min\_samples\_leaf (СберБанк)







## RandomForestClassifier: min\_samples\_leaf



## Глубина дерева: max\_depth (СберБанк)



## Как правило, чем больше, тем лучше!

## Глубина дерева: max\_depth



## Глубина дерева: max\_depth

#### Неглубокие деревья:

- в задачах с выбросами
- когда много объектов (деревья большие и долго строятся)
- настройка некоторых других (каких?) параметров не имеет смысла

### Важность признаков (СберБанк)



```
rf = RandomForestClassifier(n_estimators=1000, max_features=30, n_jobs=-1)
rf.fit(X, y)
plt.bar(np.arange(len(rf.feature_importances_)), rf.feature_importances_,
color='black')
```

#### Можно сразу увидеть важные признаки и целые группы...

### Важность признаков (Металлургия)



### сразу понятно, от чего зависит целевой признак

### Важность признаков: два подхода (importance (model) в R)

#### %IncMSE

#### OOB (out of bag)

- 1. Вычисляем качество  ${\it Q}$  на ООВ
- 2. Для i-го признака делаем случайную перестановку значений, вычисляем качество  $Q_i$  на ООВ
- **3.** Информативность i-го признака =  $\max(Q Q_i, 0)$

## Важность признаков: два подхода (importance (model) в R)

#### IncNodePurity

# При каждом расщеплении – $RSS_{ m old} - RSS_{ m new}$

# Берётся сумма по всем расщеплениям для конкретной переменной, по всем деревьям.

## residual sum of squares (RSS)

$$\sum_{i \in \text{left}} (y_{\text{left}} - y_i)^2 + \sum_{i \in \text{right}} (y_{\text{right}} - y_i)^2$$





B sklearn (feature\_importances\_) аналогичная идея с критерием Gini

#### Shuffle-важность

```
e = [] # качество классификации

a = rf.predict(X2)

q = roc_auc_score(y2, a) # базовое качество классификации

for t in range(X2.shape[1]):
    Xt = X2.copy()
    np.random.shuffle(Xt[:, t]) # перемешиваем
    at = rf.predict(Xt)
    e.append(roc_auc_score(y2, at))

e = np.array(e)

plt.bar(np.arange(len(e)), e*0 + q, color = '#990000')

plt.bar(np.arange(len(e)), e, color = '#8888AA')
```



## **Proximity**

при построении деревьев можно много чего считать...

Чем чаще 2 объекта попадают в один лист, тем они ближе...

Какую метрику можно придумать?

#### **Extreme Random Trees**

- нет бутстрепа (используем всю выборку)
- генерируем несколько пар (признак, порог)
- выбираем оптимальную для разбиения пару
- также есть параметр «число признаков для просмотра»

- ET быстрее RF
- ET чуть хуже RF, когда много шумных признаков

## Когда плохи методы, основанные на деревьях...



Машинное обучение и анализ данных

## Градиентный бустинг над деревьями

## Вспоминаем идею...



## Идея градиентного бустинга

FSAM + минимизация в случае дифференцируемой ф-ии ошибки

## Задача регрессии

$$(x_i, y_i)_{i=1}^m$$

дифференцируемая функция ошибки

уже есть алгоритм a(x) строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}$$

#### Надо:

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min,$$

а не

$$\sum_{i=1}^{m} L(y_i - a(x_i), b(x_i)) \to \min$$

## Проблема

## Задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

#### может не решаться аналитически

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \to \min_{(b_1, \dots, b_m)}$$

# Функция $F(b_1,...,b_m)$ убывает в направлении антиградиента, поэтому выгодно считать

$$b_i = -L'(y_i, a(x_i)), i \in \{1, 2, ..., m\},$$

#### новая задача для настройки второго алгорпитма:

$$(x_i, -L'(y_i, a(x_i)))_{i=1}^m$$

## **Алгоритм градиентного бустинга** (примитивный вариант)

• Строим алгоритм в виде

$$a_n(x) = \sum_{t=1}^n b_t(x),$$

для удобства можно даже считать, что  $a_0(x) \equiv 0$ .

• Пусть построен  $a_t(x)$ , тогда обучаем алгоритм  $b_t(x)$  на выборке  $(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$ 

• 
$$a_{t+1}(x) = a_t(x) + b_t(x)$$
.

Итерационно обучаем сумму алгоритмов...

Вот почему называется градиентный бустинг

## Частный случай

## Регрессия с СКО

$$L(y,a) = \frac{1}{2}(y-a)^{2}$$
$$L'(y,a) = -(y-a)$$

Задача для настройки следующего алгоритма

$$(x_i, y_i - a_t(x_i))_{i=1}^m$$

т.е. очень логично: настраиваемся на невязку!

## Частный случай

#### Классификация на два класса

надо найти дифференцируемую функцию ошибки...

- предполагаем, что алгоритм выдаёт вещественные значения
  - делаем функцию похожей на «совпадение»



## Частный случай

#### Классификация на два класса

## BinomialBoost – логистическая функция ошибки:

$$L(y,a) = \log(1 + e^{-y \cdot a}), a \in (-\infty, +\infty), y \in \{-1, +1\},$$

$$L'(y,a) = -\frac{y}{1 + e^{-y \cdot a}}.$$

## Функция ошибки типа Adaboost:

$$L(y,a) = e^{-y \cdot a}, a \in (-\infty, +\infty), y \in \{-1, +1\},$$
  
 $L(y,a) = -ye^{-y \cdot a}.$ 

здесь что-то выводится явно...

## Итерация градиентного бустинга

Как решать задачу

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$
?

Любым простым методом! Мы уже настраиваемся на нужную функцию ошибки.

## Проблема

Шаг в сторону антиградиента

- не приводит в локальный минимум (сразу) ⇒ итерации
- мы всё равно не можем сделать такой шаг, а лишь шаг по ответам какого-то алгоритма модели ⇒ не нужно стремиться шагать именно туда

Дальше решение проблем...

## Наискорейший спуск

$$\sum_{i=1}^{m} L(y_i, a_t(x_i) + \eta \cdot b_t(x_i)) \to \min_{\eta},$$

$$a_{t+1}(x) = a_t(x) + \eta_t \cdot b_t(x) = \eta_1 \cdot b_1(x) + \dots + \eta_t \cdot b_t(x)$$

## Эвристика сокращения – Shrinkage

$$a_{t+1}(x) = a_t(x) + \eta \cdot b_t(x),$$
  $\eta \in (0,1]$  – скорость (темп) обучения (learning rate)



Видно, что число слагаемых (базовых алгоритмов) – шагов бустинга – надо контролировать (при увеличении можем переобучиться)

Чем меньше скорость, тем больше итераций надо

## Стохастический градиентный бустинг (Stochastic gradient boosting)

## Идея бэгинга Бреймана



## bag fraction ~ берём часть всей выборки

- быстрее
- регуляризация
- аналог обучения по минибатчам
- J. Friedman «Stochastic Gradient Boost» // 1999 http://statweb.stanford.edu/~jhf/ftp/stobst.pdf

## **Column / Feature Subsampling for Regularization**

аналогичная идея с признаками

## TreeBoost – градиентный бустинг над деревьями

## Решающее дерево:

$$b(x) = \sum_{j} \beta_{j} I[x \in X_{j}].$$





## TreeBoost – градиентный бустинг над деревьями

### Наша основная задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + \sum_{j} \beta_j I[x \in X_j]) \to \min$$

#### Разбиваем по областям:

$$\sum_{x_i \in X_j} L(y_i, a(x_i) + \beta_j) \to \min_{\beta_j} .$$

#### Наша основная задача

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \to \min_{(b_1, \dots, b_m)},$$

#### заметим, что

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$\sum_{i=1}^{m} \left[ L(y_i, a(x_i)) + L'(y_i, a(x_i)) \cdot b_i + \frac{1}{2} L''(y_i, a(x_i)) \cdot b_i^2 \right]$$

(частные производные по второму аргументу функции ошибки)

$$\sum_{i=1}^{m} \left[ g_i b_i + \frac{1}{2} h_i b_i^2 \right] \rightarrow \min,$$

$$g_i = L(y_i, a(x_i))',$$

$$h_i = L''(y_i, a(x_i)).$$

Сделаем оптимизацию с регуляризацией.

Пусть дерево b(x) делит пространство объектов на T областей  $X_1, \dots, X_T$ , в каждой области  $X_j$  принимает значение  $eta_j$ .

$$\Phi = \sum_{i=1}^{m} \left[ g_i b_i + \frac{1}{2} h_i b_i^2 \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} \beta_j^2 \to \min$$



$$\Phi = \sum_{j=1}^{T} \left[ \sum_{x_i \in X_j} \left[ g_i \beta_j + \frac{1}{2} h_i \beta_j^2 \right] + \lambda \frac{1}{2} \beta_j^2 \right] + \gamma T =$$

$$= \sum_{j=1}^{T} \left[ \beta_j \sum_{x_i \in X_j} g_i + \frac{1}{2} \beta_j^2 \left( \sum_{x_i \in X_j} h_i + \lambda \right) \right] + \gamma T$$

## Приравнивая производную к нулю:

$$\beta_j = -\frac{\sum_{x_i \in X_j} g_i}{\sum_{x_i \in X_j} h_i + \lambda}.$$

Минимальное значение (при фиксированной структуре дерева)

$$\Phi_{\min} = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{x_i \in X_j} g_i\right)^2}{\sum_{x_i \in X_j} h_i + \lambda} + \gamma T.$$

Можно использовать при построении дерева для его оценки.

Не используем какой-то традиционный критерий расщепления Исходим из функции ошибки!

## Параметры градиентного бустинга

- objective параметры определяющие, какая задача решается и в каком формате будет ответ
- eval\_metric значения какой функции ошибки смотреть на контроле (как правило, задание этого параметра не означает, что эту функцию будем минимизировать при настройке бустинга)

#### Параметры, определяющие тип бустинга

- booster какой бустинг проводить: над решающими деревьями или линейный
- способы построения деревьев (grow\_policy порядок построения дерева: на следующем шаге расщеплять вершину, ближайшую к корню, или на которой ошибка максимальна)

## параметр «распределение» см. дальше

Дьяконов А.Г. (Москва, МГУ)

#### Основные параметры:

- eta / learning\_rate темп (скорость) обучения
- num\_iterations / n\_estimators число итераций бустинга
- early\_stopping\_round если на отложенном контроле заданная функция ошибки не уменьшается такое число итераций, обучение останавливается

#### Параметры ограничивающие сложность дерева:

- max\_depth максимальная глубина
- max\_leaves / num\_leaves максимальное число вершин в дереве
- gamma / min\_gain\_to\_split порог на уменьшение функции ошибки при расщеплении в дереве
- min\_data\_in\_leaf минимальное число объектов в листе
- min\_sum\_hessian\_in\_leaf минимальная сумма весов объектов в листе, минимальное число объектов, при котором делается расщепление

#### Параметры формирования подвыборок

- subsample / bagging\_fraction какую часть объектов обучения использовать для построения одного дерева
- colsample\_bytree / feature\_fraction какую часть признаков использовать для построения одного дерева
- colsample\_bylevel какую часть признаков использовать для построения расщепления в дереве

#### Параметры регуляризации:

- lambda / lambda 12 (L2)
- alpha / lambda 11 (L1)

## Параметры которые помогают обучать бустинг быстрее:

- число используемых потоков
- CPU / GPU
- хранить модель в ОЗУ
- метод поиска расщепления

## Объём выборки subsample (ed Бозон)

61 слайд из 73



## Опять, больше – лучше (в XGBoost это не всегда так)

## Число деревьев: n\_estimators (ed Сбербанк)



Здесь уже нет логики «чем больше, тем лучше»

## Число деревьев: n\_estimators (ed Бозон)





## Темп обучения learning\_rate (ed Бозон)



## **Темп обучения** learning\_rate

Нет логики «уменьшили темп в 2 раза – число деревьев надо увеличить в 2 раза»!

Есть стратегия – сделать очень маленький темп и очень много деревьев (но для настройки других параметров не годится)

#### Совет:

- зафиксируйте достаточно большое число деревьев, которое ещё можно быстро построить
- **Hactpoure** learning\_rate
- настраивайте другие параметры (первым делом глубину), но помните, что оптимальный темп может поменяться!

## **Темп обучения** learning\_rate



## Глубина деревьев





## Глубина деревьев

Здесь есть понятие оптимальной глубины!

Как правило, строят неглубокие деревья (3 – 6).

## Ограничение на расщепления / листья





## Ограничение на расщепления / листья

Здесь могут быть большие оптимальные значения (10 – 50),

но параметры менее значимые, чем другие...

## **GBM** можно усреднять!



Качество может улучшиться, но оптимальные параметры меняются!

#### Важно



Значения gbm могут выходить за пределы отрезка!

## Литература

A. Liaw, M. Wiener Classification and Regression by randomForest // R News (2002) Vol. 2/3 p. 18.

http://www.bios.unc.edu/~dzeng/BIOS740/randomforest.pdf

И. Генрихов О критериях ветвления, используемых при синтезе решающих деревьев // Машинное обучение и анализ данных, 2014, Т.1, №8, С.988-1017

http://jmlda.org/papers/doc/2014/no8/Genrikhov2014Criteria.pdf

A. Natekin, A. Knoll Gradient boosting machines, a tutorial // Front Neurorobot. 2013; 7: 21.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/