JOHNS HOPKINS

of ENGINEERING

From Registration Uncertainty to Segmentation Uncertainty

Junyu Chen, Yihao Liu, Shuwen Wei, Zhangxing Bian,

Aaron Carass, and Yong Du Johns Hopkins University, MD, USA

Abstract #1130

Introduction

Segmentation

Uncertainty

→ Epistemic

→Aleatoric

Registration Uncertainty

Transformation Uncertainty

Epistemic [1]

Aleatoric [2]
Appearance
Uncertainty [2]

- Epistemic uncertainty: Quantifies uncertainty in the model.
- Aleatoric uncertainty: Quantifies uncertainty in the data.
- Registration Uncertainty Breakdown:
 - Transformation Uncertainty:
 - Quantifies ambiguity in deformation.
 - Large in areas with piece-wise constant intensity.
 - Appearance Uncertainty:
 - Quantifies uncertainty in image similarity matching.
 - Large during mismatches in image appearance.

However, neither the transformation nor the appearance uncertainty reliably indicates **segmentation errors** when using the registration model for label propagation.

Squared Label Errors for three different classes: right ventricular (RV), myocardium (MYO), and left ventricular (LV).

Our contribution:

 We bridge registration and segmentation uncertainty by developing a compact DNN that can be integrated with existing registration networks to estimate <u>segmentation</u> <u>uncertainty for image registration</u>.

Methods

Overall framework:

- Registration network:
- Uses a Monte-Carlo Dropout-based network to generate *T* deformation fields via Monte-Carlo sampling.
- Compact DNN:
 - *Input*: High-level features from the registration network as input.
 - Conditioning: Based on the appearance difference.
 - Output: Aleatoric segmentation uncertainty.

- I_m , I_f : Moving and fixed images
- S_m, S_f : Label maps for I_m, I_f
- ϕ : Deformation field

Warping function:

- Warping operations for both images and associated label maps use <u>linear</u> interpolation.
- For label maps, the operation is defined as: $S_m = \operatorname{argmax}_{\mathcal{C}}(S_m^{\mathcal{C}} \circ \phi)$

Transformation Uncertainty:

- Computed as the variance of T deformation fields:
 - $U_{Trans.}^{Reg.} = \frac{1}{T} \sum_{i}^{T} \left(\phi_i \frac{1}{T} \sum_{i}^{T} \phi_i \right)^2$

Appearance Uncertainty:

- Computed as the variance of *T* registered images:
- $U_{Apea.}^{Reg.} = \frac{1}{T} \sum_{i}^{T} (I_m \circ \phi_i I_f)^2$

Epistemic Segmentation Uncertainty:

- Requires label maps of the moving image to be available during testing.
- Voxel-wise entropy is calculated as:
 - $U_{Eni}^{Seg.} =$
 - $-\sum_{c \in C} \left(\frac{1}{T} \sum_{i}^{T} S_{m}^{c} \circ \phi_{i} \right) \log \left(\frac{1}{T} \sum_{i}^{T} S_{m}^{c} \circ \phi_{i} \right)$

Aleatoric Segmentation Uncertainty:

- Does not require label maps during testing.
- $U_{Ale}^{Seg.}$ is the variance, σ^2 , of the negative log-Gaussian likelihood [3]:
 - $\mathcal{L} = \frac{1}{\Omega} \sum_{p \in \Omega} [\sigma^2(p)] (\frac{1}{2} \sigma^{-2}(p) || S_m(p) S_f(p) ||^2 + \frac{1}{2} \sigma^2(p))$

Experimental Setup

Dataset:

- 3D cardiac MRI datasets: the ACDC [4] and the M&Ms [5] challenges.
- Registration task: Registration between the ED and ES stages.

Metrics:

- <u>Deformation</u>: Dice + Non-positive
 Jacobian Determinants (%|J|≤0) +
 Non-diffeomorphic Volumes (%NDV)
- Uncertainty: Pearson's correlation (r)
 to quantify the correlation between
 the segmentation uncertainty
 estimates with the squared label errors

Source code is available at:

Results & Discussion

Qualitative Results:

Quantitative Results:

Method	LV Dice ↑	RV Dice ↑	MYO Dice ↑	Mean Dice ↑	$% J \leq 0 \downarrow$	%NDV↓
Initial	0.595 ± 0.162	0.608 ± 0.114	0.445 ± 0.144	0.549 ± 0.112	-	-
SyN	0.691 ± 0.157	0.634 ± 0.134	0.687 ± 0.099	0.670 ± 0.110	0.000 ± 0.001	0.000 ± 0.000
SYMNet	0.766 ± 0.111	0.797 ± 0.102	0.765 ± 0.060	0.776 ± 0.068	1.735 ± 1.417	1.627 ± 1.544
VoxelMorph	0.836 ± 0.094	$0.788 {\pm} 0.097$	$0.786{\pm}0.058$	0.803 ± 0.063	$0.808 {\pm} 0.792$	$0.293{\pm}0.328$
TransMorph	0.859 ± 0.088	0.824 ± 0.093	0.832 ± 0.046	0.838 ± 0.057	1.216 ± 0.990	$0.230{\pm}0.187$
Proposed	$0.861 {\pm} 0.089$	$0.824 {\pm} 0.092$	$0.834 {\pm} 0.045$	$0.839 \!\pm\! 0.058$	1.297 ± 1.011	$0.268{\pm}0.206$
	LV r ↑	RV $r \uparrow$	MYO $r \uparrow$	Mean $r \uparrow$		
Transformation	0.078 ± 0.044	0.107 ± 0.047	0.080 ± 0.040	$0.088 {\pm} 0.030$		
Appearance	0.053 ± 0.047	0.080 ± 0.065	0.048 ± 0.029	0.060 ± 0.031		
Epistemic	0.531 ± 0.091	0.579 ± 0.086	0.546 ± 0.046	0.552 ± 0.056		
Aleatoric	0.376 ± 0.084	0.371 ± 0.075	0.399 ± 0.060	$0.382 {\pm} 0.059$		
Epi.+Ale.	0.567 ± 0.073	0.603 ± 0.077	0.579 ± 0.035	$0.583 {\pm} 0.045$		

Introduction of auxiliary DNN:

 We have implemented a compact DNN that estimates aleatoric segmentation uncertainty during label propagation in image registration, eliminating the need for label maps at test time.

Insights into registration process:

 By combining entropy to represent epistemic segmentation uncertainty, the method offers a comprehensive estimation of uncertainties for both image warping and label propagation.

Reference

- 1. Dalca, Adrian V., et al. "Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces." Medical image analysis 57 (2019): 226-236.
- 2. Chen, Junyu, et al. "Transmorph: Transformer for unsupervised medical image registration." Medical image analysis 82 (2022): 102615.
- 3. Seitzer, Maximilian, et al. "On the Pitfalls of Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks." International Conference on Learning Representations. 2021.
- 4. Bernard, Olivier, et al. "Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?." IEEE transactions on medical imaging 37.11 (2018): 2514-2525.
- 5. Campello, Victor M., et al. "Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge." IEEE Transactions on Medical Imaging 40.12 (2021): 3543-3554.