浙江大学实验报告

专业:电子信息工程姓名:王涵学号:320010地点:教二—213

课程名称:	控制理论 指导老师:	韦巍	 成绩:	
实验名称:	频率特性的	测量		

一、 实验目的

- 1.掌握通过实验测量典型环节的频率特性的方法。
- 2.掌握利用测量数据,作出对数幅频、相频特性曲线,并根据对数幅频曲线的渐近线估计出开环系统的传递函数的方法。

二、 实验原理和内容

对于稳定的线性定常系统或环节,当其输入端加入一正弦信号 $X(t)=X_m sin\omega t$ 。它的稳定输出是与输入信号同频率的正弦信号,但其幅值和相位将随着输入信号频率 ω 的变化而变化。

$$Y(t) = Y_m sin(\omega t + \phi) = X_m |G(j\omega)| sin(j\omega + \phi)$$

幅值比:
$$|G(j\omega)| = \frac{Y_m}{X_m}$$
, 相位差: $\phi(\omega) = \arg G(j\omega)$

双踪信号比较法:

李沙育图形法:

以时间为参变量,绘制输入输出波形采取逐点,形成一个椭圆(或直线)。频率特性可以通过测量椭圆上的相应参数获得。

双踪信号比较法

李沙育图

$$t = 0, x(0) = 0, y(0) = Y_m sin(\phi(\omega))$$

$$\varphi(\omega) = \sin^{-1} \frac{2Y_0}{2Y_m} = \sin^{-1} \frac{Y_0}{Y_m}$$

Y0 为椭圆和 Y 轴交点间的长度的一半

$$|G(j\omega)| = \frac{2Y_m}{2X_m}$$

$$L(\omega) = 20 \, lg |G(j\omega)| = 20 lg(\frac{2Y_m}{2X_m})$$

李沙育图形法

实验一: RC 网络的频率特性测试

$$R_1 = R_2 = 10K, C_1 = 0.01uF, C_2 = 0.1uF$$

输入是有效值为 5V,频率变化的交流电源,被测部分是 R_2 、 C_2 串联部分,以输入为 X轴,输出为 Y 轴,利用示波器双踪示波 X-Y 模式绘制李沙育图形,通过测量 Xm、Ym、Y0即可得到系统的幅频和相频特性曲线。

实验二: 二阶闭环系统幅频特性

$$G_2(s) = \frac{10}{s(1+0.2s)}$$

二阶系统开环传递函数:

闭环系统示意图如下所示

三、 实验数据记录、处理和分析

实验一: RC 网络的频率特性测试,被测环节和系统的模拟电路图如下

根据上述具体模拟电路图进行实验测量,得到实验数据如下表记录所示

RC网络特性							
Hz	logf	2Xm(V)	2Ym(V)	2Y0(V)	w(rad/s)	L(w)	φ(w)
10	1	5.6	5.2	0	62.83185	FALSE	0
20	1.30103	5.24	5.2	-0.8	125.6637	-0.06656	-8.18636
30	1.477121	5.2	5.04	-1.2	188.4956	-0.27146	-12.7414
40	1.60206	5.2	4.88	-1.2	251.3274	-0.55167	-13.1678
50	1.69897	5.04	4.4	-0.88	314.1593	-1.17956	-10.672
60	1.778151	5.08	4.24	-1.04	376.9911	-1.56996	-13.134
70	1.845098	5.08	4	-0.88	439.823	-2.07607	-11.7562
80	1.90309	5.08	3.92	-0.88	502.6548	-2.25155	-12.0002
90	1.954243	5.08	3.76	-0.96	565.4867	-2.61352	-13.6834
100	2	5.08	3.6	-0.96	628.3185	-2.99122	-14.3064
110	2.041393	5.08	3.48	-1.04	691.1504	-3.28569	-16.0849
150	2.176091	5.08	3.16	-0.8	942.4778	-4.12353	-13.5653
200	2.30103	5.08	2.92	-0.84	1256.637	-4.80962	-15.4651
300	2.477121	5.08	2.74	-0.44	1884.956	-5.36226	-8.54796
400	2.60206	5.08	2.7	-0.24	2513.274	-5.49	-4.71734
500	2.69897	5.08	2.66	-0.08	3141.593	-5.61964	-1.59423
700	2.845098	5.08	2.72	0.12	4398.23	-5.4259	2.338994
800	2.90309	5.08	2.74	0.16	5026.548	-5.36226	3.096652
1000	3	5.08	2.82	0.48	6283.185	-5.11229	9.065416
2000	3.30103	5.08	3.34	0.76	12566.37	-3.64234	12.16645
3000	3.477121	5.08	3.8	0.88	18849.56	-2.5216	12.38612
5000	3.69897	5.08	4.32	0.88	31415.93	-1.4076	10.87239
7000	3.845098	5.08	4.56	0.44	43982.3	-0.93798	5.122004
10000	4	5.08	4.72	0.48	62831.85	-0.63843	5.399164
20000	4.30103	5.08	4.84	0.24	125663.7	-0.42037	2.629177
40000	4.60206	5.08	4.88	0.08	251327.4	-0.34888	0.868891
100000	5	5.08	4.96	0	628318.5	-0.20764	0

数据处理:

得到的系统传递函数为
$$G(S) = \frac{10^{-4}S^2 + (10^{-1} + 1)S + 10^3}{10^{-4}S^2 + (10^{-1} + 2)S + 10^3}$$

使用图中数据绘制 Bode 图如下,

误差分析:

对于幅频特性曲线,实测图与理论图的趋势基本一致,不过因为刚开始实验时,值较大,光标测量时误差较大,因此引入了一定程度上的误差。

对于相频特性曲线,在实际实验中 Y0 较难精准测量,均是通过光标粗略的观察 Y0 的大小,因此存在较大误差,画出的波形图与理论的观察,发现趋势基本一致,但是由于观测误差较大等原因,波形并不光滑,存在较大的误差。

测量分析:

根据理论推导,超前滞后无源网络的理论模型和特性如下图所示

可以得到传递函数如下

$$G_c(s) = \frac{R_2 + 1/sR_2}{R_2 + \frac{1}{sR_2} + R_1//\frac{1}{sC_1}} = \frac{(sR_1C_1 + 1)(sR_2C_2 + 1)}{(sR_1C_1 + 1)(sR_2C_2 + 1) + sR_1C_2}$$

结合实测数据,得到 $R_1C_1=10^{-4}s,R_2C_2=10^{-3}s,R_1C_2=10^{-3}s$

带入数据,最终得到开环传递函数
$$\mathbf{G}(\mathbf{S}) = \frac{\mathbf{10^{-4}S^2 + (10^{-1} + 1)S + 10^3}}{2 \times \mathbf{10^{-5}S^2 + (10^{-2} + 2)S + 10^3}}$$

实验数据实测得到的开环传递函数与理论推导值存在差异,这是由于进行实测实验时,取点的范围有限,且间隔较大,引入了一定的误差。

实验二: 二阶闭环系统幅频特性

实验模拟电路图如下,被测环节和模拟电路图如下

实测得到的数据记录在下表中

二阶闭环系统频率响应特性							
Hz		2Xm (V)	2Ym(V)	2YO (V)	w (rad/s)	L(w)	ф (w)
	0.5	5. 12	5. 76	2.04	3. 14	1.02	-20.7424
	0.7	5. 12	5. 96	3.56	4.40	1.32	-36.6779
	0.8	5. 12	6.4	4.86	5.03	1.94	-49.4091
	0.9	5. 12	5. 76	5. 12	5.65	1.02	-62.734
	1	5. 12	5. 12	5	6.28	0.00	-77. 5707
	1.1	5. 12	4.58	4.54	6.91	-0.97	-97. 5779
	1.2	5. 12	4.2	3.88	7.54	-1.72	-112.51
	1.3	5. 12	3.88	3.04	8.17	-2.41	-128.417
	1.6	5. 12	3. 1	1.96	10.05	-4.36	-140.783
	2	5. 12	2.26	0.92	12.57	-7.10	-155.978
	5	5. 12	0.592	0.12	31.42	-18.74	-168.305
	7	5. 12	0.336	0.04	43.98	-23.66	-173. 163

数据分析:

开环传递函数:

$$G_2(s) = \frac{10}{s(1+0.2s)}$$

闭环传递函数:

$$G_1(s) = \frac{G_2(s)}{1 + G_2(s)} = \frac{10}{0.2s^2 + s + 10}$$

得到幅频、相频特性曲线如下图所示

数据分析:

实际实验中,幅频特性曲线峰值在 f=0.7Hz, w=4.392rad/s 取到,且此时 Magnitude 为 2.72db。与理论值 w=6.15rad/s,Magnitube3.58db 存在一定的误差,可能的原因是信号源输出的信号频率不准确,以及搭建电路时可变电阻误差较大,导致放大增益与理论值差距较大。幅频特性曲线的总体趋势与理论推导吻合,但是相频曲线光滑度不高,原因可能是测量的时候光标没有定位的十分精确,引入了粗大误差,不过曲线和趋势和理论曲线一致。

四、思考题

1、相频特性时,若把信号发生器的正弦信号送入 Y 轴,而把被测系统的输出信号送入 X 轴,试问这种情况下如何根据旋转的光电方向来确定相位的超前与滞后。

当输入信号为 Y 轴,输出信号为 X 轴时,旋转的方向为顺时针为滞后,逆时针为超前。

2、请阐述开环与闭环伯德图的意义。

开环伯德图能提供的信息有: 开环频率响应, 进而可以通过图解法求得闭环频率响应(向量图/等 M 圆图/等 N 圆图); 稳定性特性——幅值裕度、相位裕度; 开环伯德图的形状也表征了闭环系统的响应特性:

闭环伯德图能提供的信息: 幅值峰值 M_p ,峰值频率 $^{\omega_p}$,系统带宽 $^{\omega_{BW}}$,其中频率指标与时域指标对应关系:

$$M_p=rac{1}{2\zeta\sqrt{1-\zeta^2}}$$

$$\omega_p = \omega_n \sqrt{1-2\zeta^2}$$

$$egin{aligned} \omega_{BW} &= \omega_n \sqrt{(1-2\zeta^2) + (4\zeta^4 - 4\zeta^2 + 2)} \ &= rac{\pi}{T_p \sqrt{1-\zeta^2}} \sqrt{(1-2\zeta^2) + (4\zeta^4 - 4\zeta^2 + 2)} \end{aligned}$$

综合分析开环波特图和闭环波特图之间的差异:

- (1)可以通过开环伯德图较方便地获取系统稳定性信息,通过调整开环伯德图的形状以达到期望的控制性能;
- (2) 闭环伯德图直观展示整个系统输入输出响应特性,也能与时域响应紧密联系,适用于设计结果验证,不适合用于分析控制回路在整个系统中的作用;
- (3) 某些系统开环频域响应数据更容易获取;
- (4) 开环伯德图更适用于控制器设计,因为开环回路就是控制器所需要调整和处理的回路。