TML STRAIN GAUGE TEST DATA

GAUGE TYPE : FLA-10-11 TESTED ON

COEFFICIENT
THERMAL EXPA

GAUGE FACTOR : 2.11 ±1%

COEFFICIENT
COEFFICIENT

TESTED ON : SS 400 COEFFICIENT OF THERMAL EXPANSION : 11.8 $\times 10^{-6}$ $^{\circ}$ C TEMPERATURE COEFFICIENT OF G.F. : $+0.1\pm0.05$ %/10 $^{\circ}$ C

ADHESIVE : P-2

DATA NO. : A0960

THERMAL OUTPUT (& app : APPARENT STRAIN)

 ε app = -2.68×10¹+2.42×T¹-6.16×10⁻²×T²+3.93×10⁻⁴×T³-8.68×10⁻⁷×T⁴ (μ m/m)

TOLERANCE: ± 0.85 [(μ m/m)/°C], T: TEMPERATURE

ひずみゲージ取扱いの注意事項

- ●上記の特性データは、リード線の取付けによる影響を含んでおりません。裏面記載のリード線の測定値への影響に従って補正してください。
- ●ゲージの使用温度は、接着剤の耐熱温度などにより変わります。
- ●絶縁抵抗などの点検は、印加電圧を50V以下にしてください。
- ●ゲージリード線に無理な力を加えないでください。
- ●ゲージ裏面に接着剤を塗布して接着してください。
- ●ひずみゲージの裏面は脱脂洗浄してありますので、汚さないように取扱いしてください。
- ●ゲージの包装を開封後は、乾燥した場所で保管してください。
- ●ご使用に際してご不明な点などがございましたら、当社までお問い合わせください。

CAUTIONS ON HANDLING STRAIN GAUGES

- The above characteristic data do not include influence due to lead wires. Correct the data in accordance with the influence of lead wires on measured values described overleaf
- The service temperature of strain gauge depends on the operating temperature of adhesive, etc.
- Check of insulation resistance, etc. should be made at a voltage of less than 50V.
- Do not apply an excessive force to the gauge leads.
- Apply an adhesive to the back of a strain gauge and stick the gauge to a specimen.
- As the back of strain gauge has been degreased and washed, do not contaminate it.
- After unpacking, store strain gauges in a dry place.
- If you have any questions on strain gauges or installation, contact TML or your local agent.

Made in Japan

TML〉株式

> 株式會社 東京 測器研究所

〒 140-8560 東京都品川区南大井 6 - 8 - 2 TEL 03 - 3763 - 5611 FAX 03 - 3763 - 6128 Tokyo Sokki Kenkyujo Co., Ltd.

8 - 2, Minami - Ohi 6 - Chome Shinagawa - ku, Tokyo 140-8560

TMLひずみゲージの取扱い方法

基本的な接着手順

1. 接着剤の選択 使用する条件に合った、ひずみ ゲージ用の接着剤を選びます。

2. 表面 処理

理 被接着面のさび・塗料などを除 去し、120~180番(アルミニウム:240~320番)のサンドペーパで軽く 磨きアセトンなどで清浄して、 ゲージ接着位置をけがいてください。

3. ゲージ接着

着 接着剤の取扱説明書を参照して ください。

4. キュアリング

リング 接着剤の取扱説明書を参照して ください。

5. 点 検

ひずみゲージのゲージ抵抗値・ 絶縁抵抗値の点検を行ってくだ さい。

6. 結 線

リード線はゲージ端子を使用して、はんだ付けで接続してください。

・必要に応じて防湿処理を施してください。

リード線の測定値への影響

●リード線の温度変化による影響。 (3線式結線法では、温度影響はありません。)

$$\varepsilon l = \frac{\mathbf{r} \cdot \mathbf{L} \cdot \boldsymbol{\alpha} \cdot \Delta T}{\mathsf{K} \left(\mathsf{R} + \mathbf{r} \cdot \mathbf{L} \right)}$$
 <式

 $\varepsilon l =$ リード線の熱出力

r=リード線1 m当たりの往復の抵抗値(Ω /m)

L=リード線の長さ (m)

α=リード線の抵抗温度係数 (銅線=3.9×10⁻³/℃)

∆T=温度変化量

K=ゲージ率

R=ゲージ抵抗

●リード線の結線によるゲージ率の補正。

・2線式の場合

$$K_0 = \frac{R}{R + r \cdot L} \cdot K < \pm 2 >$$

・3線式の場合

$$K_0 = \frac{R}{R + \frac{r \cdot L}{2}} \cdot K$$
 $< \pm 3 >$

Ko=補正したゲージ率

HANDLING METHOD OF TML STRAIN GAUGES

Basic Bonding Procedures

1. Select adhesive

Select an adhesive most suitable for test conditions.

2. Surface treatment

Remove grease, rust, paint, etc. from the bonding surface of a specimen, lightly polish with an abrasive paper of $\#120 \sim 180$ ($\#240 \sim 320$ for aluminium), wipe with acetone, etc. and mark gauge installation position.

3. Gauge installation

Refer to the operation manual of adhesive.

4. Adhesive curing

Refer to the operation manual of adhesive.

5. Gauge installation check

Check gauge resistance and insulation resistance.

6. Lead wire attachment

Solder lead wires to the strain gauges through connecting terminals.

· If necessary, apply waterproof coating.

Influence of Lead Wires on Measured Values

Influence of temperature variation of lead wires (3-wire system is independent of temperature.)

 $\varepsilon l = \frac{r \cdot L \cdot \alpha \cdot \Delta T}{K (R + r \cdot L)}$ < Equation 1 >

 εl = thermal output of lead wires r = total resistance per meter of

lead wires (Ω /m)

L = length of lead wires (m)
α = temperature coefficient of resistance

of lead wires (copper wire = $3.9 \times 10^{-3} / ^{\circ}\text{C}$)

 $\Delta \top$ = temperature variation

K = gauge factor

R = gauge resistance

Gauge Factor Correction due to Lead Wire Attachment

· In case of 2-wire system

$$Ko = \frac{R}{R + r \cdot L} \cdot K$$
 < Equation 2 >

· In case of 3-wire system

$$Ko = \frac{R}{R + \frac{r \cdot L}{2}} \cdot K \quad$$

where

where

K o = corrected gauge factor

リード線 1 m当たりの往復の抵抗値 Total Resistance per Meter of Lead Wires

構成(心数/直径) Lead wires(number of cores / diameter)	ポリイミド線 polyimide	ポリイミド線 polyimide	7/0.12	10/0.12	12/0.18	20/0.18
リード線の直径または断面積 Diarneter or cross sectional area of lead wires	φ 0.14mm	φ 0.18mm	0.08 mm ²	0.11 mm ²	0.3 mm ²	0.5 mm²
1m 当たりの往復の抵抗値 Total resistance per meter	2.5 Ω/m	1.5 Ω/m	0.44 Ω/m	0.32 Ω/m	0.12 Ω/m	0.07 Ω/m