

Efficient Parallel Learning of Linear Dynamical Systems on SMPs

Lei Li

Computer Science Department School of Computer Science Carnegie Mellon University leili@cs.cmu.edu Motion stitching via effort minimization with James McCann, Nancy Pollard and Christos Faloutsos
[Eurographics 2008]

Parallel learning of linear dynamical systems with Wenjie Fu, Fan Guo, Todd Mowry and Christos Faloutsos

[KDD 2008]

Background

Motion Capture

- Markers on human body, optical cameras to capture the marker positions, and translated into body local coordinates.
- Application:
 - Movie/game/medical industry

Outline

- Background
- Motivation: effortless motion stitching
- Parallel learning with Cut-And-Stitch
- Experiments and Results
- Conclusion

Motivation

 Given two human motion sequences, how to stitch them together in a natural way(= looks natural in human's eyes)?

e.g. walking to running

 Given a human motion sequence, how to find the best natural stitchable motion in motion capture database?

Intuition

- Intuition:
 - Laziness is a virtue. Natural motion use minimum energy
- Laziness-score (L-score) = energy used during stitching
- Objective:
 - Minimize laziness-score

Example

landing

Taking off

Example, Natural stitching

But, how about this way?

Observations

- Naturalness depends on smoothness
- Naturalness also depends on motion speed

Proposed Method

 Estimate stitching path using Linear Dynamical Systems

Proposed Method (cont')

 Estimate the velocity and acceleration during the stitching, compute energy (defined as Lscore)

Proposed Method (cont')

 Minimize L-score with respect to any stitching hops. (defined as elastic L-score)

Example stitching

Link to video

Outline

- Background
- Motivation: effortless motion stitching
- Parallel learning with Cut-And-Stitch
- Experiments and Results
- Conclusion

Parallel Learning for LDS

- Challenge:
 - Learning Linear Dynamical System is slow for long sequences
- Traditional Method:
 - Maximum Likelihood Estimation via Expectation-Maximization(EM) algorithm
- Objective:
 - Parallelize the learning algorithm
- Assumption:
 - shared memory architecture

Carnegie Mellon

Linear Dynamical System

aka. Kalman Filter

- Parameters: $\theta = (u_0, V_0, A, \Gamma, C, \Sigma)$
- Observation: $y_1...y_n$
- Hidden variables: $z_1...z_n$

Example

given positions, estimate dynamics (i.e. params)

Traditional: How to learn LDS?

Compute $P(z_1 | y_1)$

From $P(z_1 | y_1) \rightarrow Compute P(z_2 | y_1, y_2)$

From $P(z_2 | y_1, y_2) \rightarrow Compute P(z_3 | y_1, y_2, y_3)$

From $P(z_3 | y_1, y_2, y_3) \rightarrow \text{Compute } P(z_4 | y_1, y_2, y_3, y_4)$

From $P(z_4 | y_1, y_2, y_3, y_4) \rightarrow \text{Compute } P(z_5 | y_1, y_2, y_3, y_4, y_5)$

From $P(z_5 | y_1, y_2, y_3, y_4, y_5) \rightarrow Compute P(z_6 | y_1, y_2, y_3, y_4, y_5, y_6)$

From $P(z_6 | y_1, y_2, y_3, y_4, y_5, y_6) \rightarrow Compute P(z_5 | y_1, y_2, y_3, y_4, y_5, y_6)$

From $P(z_6 | y_1, y_2, y_3, y_4, y_5, y_6) \rightarrow Compute P(z_4 | y_1, y_2, y_3, y_4, y_5, y_6)$

From $P(z_4 | y_1, y_2, y_3, y_4, y_5, y_6) \rightarrow Compute P(z_3 | y_1, y_2, y_3, y_4, y_5, y_6)$

From $P(z_3 | y_1, y_2, y_3, y_4, y_5, y_6) \rightarrow Compute P(z_2 | y_1, y_2, y_3, y_4, y_5, y_6)$

From $P(z_2 | y_1, y_2, y_3, y_4, y_5, y_6) \rightarrow \text{Compute } P(z_1 | y_1, y_2, y_3, y_4, y_5, y_6)$


```
From all posterior z_1, z_2, z_3, z_4, z_5, z_6
P(z_1 | y_1, y_2, y_3, y_4, y_5, y_6), P(z_2 | y_1, y_2, y_3, y_4, y_5, y_6)...
Compute sufficient statistics
E[z_i]
E[z_iz_i']
E[z_{i-1}z_i']
```


with sufficient statistics, compute argmax \leftarrow likelihood(θ)

Carnegie Mellon

Speed Bottleneck: sequential computation of posterior

How to *parallelize* it?

"Leap of faith"

start computation without feedback from previous node (cut), and reconcile later (stitch)

Carnegie Mellon

Proposed Method: Cut-And-Stitch

**

Carnegie Mellon

<u>Carnegie Mellon</u>

Carnegie Mellon

<u>Carnegie Mellon</u>

**

Carnegie Mellon

Outline

- Background
- Motivation: effortless motion stitching
- Parallel learning with Cut-And-Stitch
- Experiments and Results
- Conclusion

Experiments

Q1: How much speed up can we get?

Q2: How good is the reconstruction accuracy?

Carnegie Mellon

Experiments

Dataset:

- 58 human motion sequences, 200 500 frames
- Each frame with 93 bone positions in body local coordinates
- http://mocap.cs.cmu.edu

Setup:

- Supercomputer: SGI Altix system, distributed shared memory architecture
- Multi-core desktop: 4 Intel Xeon cores, shared memory

Task:

 Learn the dynamics, hidden variables and reconstruct motion

Q1: How much speed up?

Q1: How much speed up?

Q2: How good?

Result: ~ IDENTICAL accuracy

Carnegie Mellon

Conclusion & Contributions

- A distance function for motion stitching
 - Based on first principle: minimize effort
- General approximate parallel learning algorithm for LDS
 - Near linear speed up
 - Accuracy (NRE): ~ identical to sequential learning
 - Easily extended to HMM and other chain Markovian models
- Software (C++ w. openMP) and datasets:
 www.cs.cmu.edu/~leili/paralearn

Promising Extensions

- Extension
 - HMM
 - other Markov models (similar graphical model)
- Open Problem:
 - Can prove the error bound?

Thank you

Questions