STAT 709 Final Exam 10:05am-12:05pm, Dec. 18, 2009

Please show all your work for full credits.

- 1. Let $X_1, ..., X_n$ be i.i.d. random variables with finite $E(X_1^2)$. Define $T = \sum_{i=1}^n X_i$ and $S = n^{-1} \sum_{i=1}^n X_i^2$.
 - (a) (3 points) Show that $E(X_i|T) = T/n$ for any i.
 - (b) (3 points) Show that $E(X_iX_j|T,S) = [n(n-1)]^{-1} \sum_{k \neq l} X_kX_l$ for any $i \neq j$.
 - (c) (3 points) Show that, when $n \to \infty$ and $i \neq j$, $E(X_i X_j | T, S)$ and $E(X_i | T, S)E(X_j | T, S)$ converge in probability to the same limit.
- 2. Let $X_1, ..., X_n$ be i.i.d. from a population with Lebesgue p.d.f.

$$\frac{x-a}{\theta^2}e^{-(x-a)/\theta}I_{(a,\infty)}(x),$$

where $\theta > 0$ and $a \in \mathcal{R}$ are unknown parameters.

- (a) (3 points) Derive estimators \hat{a} and $\hat{\theta}$ of a and θ , respectively, using the method of moments.
- (b) (4 points) Derive the asymptotic distributions of $\sqrt{n}(\hat{\theta} \theta)$ and $\sqrt{n}(\hat{a} a)$.
- (c) (3 points) Obtain a sufficient statistic T for θ and a and $T \neq (X_1, ..., X_n)$. You need to show why T is sufficient.
- (d) (3 points) Assume that n=2. Find a minimal sufficient statistic for θ and a. You need to show why it is minimal sufficient.
- (e) (2 points) Assume that $\theta = 1$ is known. Show that the bias of $X_{(1)} = \min_{i=1,\dots,n} X_i$ as an estimator of a is

$$n \int_0^\infty \left(\int_x^\infty t e^{-t} dt \right)^{n-1} x^2 e^{-x} dx.$$

- 3. Let $X_1, ..., X_n$ be i.i.d. random variables with finite $\mu = E(X_1)$ and $\sigma^2 = \text{Var}(X_1)$, n > 2. Suppose that there is a known function g(x) such that $E[g(X_1)] = \sigma^{-1}$.
 - (a) (2 points) Find a U-statistic U_n such that $E(U_n) = \mu/\sigma$.
 - (b) (2 points) Find the $h_1(x)$ function for U_n .
 - (c) (3 points) Assume that h_1 is not constant. Obtain the asymptotic distribution of $\sqrt{n}(U_n \mu/\sigma)$ in terms of μ , σ , $Var(g(X_1))$, and $Cov(X_1, g(X_1))$.

(There is another problem on page 2)

4. Consider a linear model

$$X = Z\beta + \varepsilon$$
,

where $E(\varepsilon) = 0$ and ε has a finite covariance matrix.

(a) (3 points) Suppose that ε is normal, $Var(\varepsilon) = \sigma^2 I_4$ (the identity matrix of order 4), and

$$Z = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1/2 & 1/2 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Obtain the forms of all $l \in \mathbb{R}^3$ such that $l^{\tau}\beta$ is estimable.

(b) (3 points) Suppose that

$$Z(Z^{\tau}Z)^{-1}Z^{\tau} = \begin{bmatrix} a & u^{\tau} \\ u & C \end{bmatrix}$$
 and $Var(\varepsilon) = \begin{bmatrix} r^2 & 0^{\tau} \\ 0 & \sigma^2 I \end{bmatrix}$,

where $a \in \mathcal{R}$, $r^2 \neq \sigma^2$, I is the identity matrix of the same order as C, u is a vector of appropriate order, and 0 is the zero vector of the same order as u. Obtain a sufficient and necessary condition for the LSE to be BLUE.

(c) (3 points) Suppose that $Var(\varepsilon) = \sigma^2 I_4$ and

$$Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & -1 \\ 0 & -1 \end{bmatrix}$$

2

Obtain the covariance matrix of the LSE $\hat{\beta}$.