STAT560 National Survey of Children's Health

Brandon Miner

Preface

This project was structured by Prof. Xin Wang at San Diego State University. The questions were prepared by the professor.

1. About the survey

Summary

The 2022 National Survey of Children's Health (NSCH) was conducted by the U.S. Census Bureau for the Health Resources and Services Administration, Maternal and Child Health Bureau (HRSA MCHB) within the U.S. Department of Health and Human Services (HHS). The purpose of the NSCH is to "collect information on factors related to the well-being of children, including access to and quality of health care, family interactions, parental health, school and after-school experiences, and neighborhood characteristics."

The survey design is a two-Stage design.

Stage-1 Stratified Sample of households without Replacement.

Stage-2 Cluster questionnaire for selected household parents.

- PSU: Primary Sampling Unit, households
- SSU: Secondary Sampling Unit, parents

Estimation

The three types of weights in the data set is:

- C_FWS : Child Weight
- FWC : Selected Child Weight
- FWH: Household Weight

To set up the design, we need the clusters(~HHID), strata(~STRATUM and ~FIPSST combined into on column named ~strat), weights(~FWC), and data(nsch_data).

- HHID: Topical variable cluster
- STRATUM: Sampling stratum(1, 2A)
- FIPSST: State FIPS Code(1, 2, 3, ..., 56)
- strat: Combination of STRATUM and FIPSST (1-1, 1-2A, 2-1, 2-2A, ..., 56-1, 56-2A)
- FWC :Selected Child Weight
- nsch_data: data frame of NSCH data from nsch_2022e_topical.sas7bdat

2. Estimates using survey package

Loading required package: grid

```
## Loading required package: Matrix

## Loading required package: survival

## ## Attaching package: 'survey'

## The following object is masked from 'package:graphics':
## ## dotchart

# Creating survey design
nsch_data$strat <- paste(nsch_data$FIPSST,nsch_data$STRATUM, sep= "-")
nsch_design = svydesign(ids = ~HHID,strata = ~strat, weights = ~FWC, data = nsch_data)</pre>
```

Question 1

Estimate the average family poverty ratio using the variable FPL_I1 , along with SE.

```
svymean(~FPL_I1,nsch_design, na.rm = TRUE)

mean     SE
FPL_I1 256.79 1.1622
```

The average poverty ratio is estimated at 256.79% with a standard error of 1.1622%. This means that, on average, children's families are well above the poverty line, with an average family having more than double the required income.

Quesiton 2

Certain governmental agencies use income and poverty levels to determine eligibility for programs. Estimate the proportions of children with Family poverty ratio less than 200.

```
svymean(~FPL_I1 < 200,nsch_design, na.rm = TRUE)</pre>
```

```
mean SE

FPL_I1 < 200FALSE 0.61932 0.0044

FPL_I1 < 200TRUE 0.38068 0.0044
```

Based on the analysis, approximately 61.932% of families have a poverty ratio greater than 200%, indicating a majority are well above the poverty line.

Question 3

Estimate the average number of family members (FAMCOUNT) along with SE.

```
svymean(~FAMCOUNT,nsch_design, na.rm = TRUE)
```

```
mean SE
FAMCOUNT 4.2663 0.0117
```

The average family size for children is 4.27 members with a standard error of 1.17%. This likely represents two parents and two children on average.

Question 4

Estimate the proportion of families with the number of members greater than 4, along with SE.

```
svymean(~nsch_data$FAMCOUNT > 4, nsch_design, na.rm = TRUE)
```

```
mean SE
nsch_data$FAMCOUNT > 4FALSE 0.60272 0.0045
nsch_data$FAMCOUNT > 4TRUE 0.39728 0.0045
```

The proportion of families with the number of members greater than 4 is 39.728% with a SE of 0.45%. This means more families, given they have at least one child, have less than or equal to 4 members.

Question 5

Estimate the difference of family poverty ratio between large families (the number of members is greater than 4) and small families (the number of members is less than or equal to 4). Do you think the difference is significant? Why? What does it mean?

```
fam <- svyby(formula= ~FPL_I1,by= nsch_data$FAMCOUNT > 4,FUN= svymean,design= nsch_design, na.rm
= TRUE)
fam_diff <- abs(fam[["FPL_I1"]][2] - fam[["FPL_I1"]][1])
print(fam_diff)</pre>
```

```
[1] 40.91996
```

I believe the deference is significant because the output implies that children's families with more than 4 family members have a 40.91996% lower family poverty ratio than those with 4 or less family members.

Bonus question

Give the estimates of family poverty ratio for each state, along with SE.

```
# Calculation
fpl_state <- svyby(formula= ~FPL_I1,by= nsch_data$FIPSST, FUN= svymean, design= nsch_design, na.
rm = TRUE)

# Data frame manipulation
fpl_state = cbind(fpl_state, statesFIPSST)
colnames(fpl_state) = c("FIPSST", "FamilyPovertyRatio", "Standard Error", "drop", "State")
fpl_state = fpl_state[c(1:3, 5)]
print(fpl_state[c(4, 2, 3)])</pre>
```

	State	FamilyPovertyRatio	Standard Error
1	ALABAMA	234.8794	6.727803
2	ALASKA	271.9892	6.908569
4	ARIZONA	245.9686	
5	ARKANSAS	212.1054	
6	CALIFORNIA	262.5844	
8	COLORADO	285.5045	
9	CONNECTICUT	288.5393	6.721736
10	DELAWARE	259.6095	6.687724
	DISTRICT OF COLUMBIA	266.6139	
12	FLORIDA	250.3751	6.678128
13	GEORGIA	247.7263	5.386715
15	HAWAII	272.5489	
16	IDAHO	249.4782	5.549088
17	ILLINOIS	262.7548	6.435196
18	INDIANA	251.3352	6.043099
19	IOWA	269.1184	6.132384
20	KANSAS	262.8653	5.944062
21	KENTUCKY	230.8118	6.022362
22	LOUISIANA	228.6656	6.903088
23	MAINE	276.6508	5.905256
24	MARYLAND	280.9104	
25	MASSACHUSETTS	298.4257	
26	MICHIGAN	246.5863	6.288521
27	MINNESOTA	287.4908	6.457950
28	MISSISSIPPI	210.1100	6.353244
29	MISSOURI	255.9072	6.161865
30	MONTANA	259.8445	6.510544
31	NEBRASKA	263.3005	
32	NEVADA	242.8457	6.944958
33	NEW HAMPSHIRE	311.5625	5.729353
34	NEW JERSEY	280.1663	7.461422
35	NEW MEXICO	218.2090	6.293433
36	NEW YORK	253.1584	
37	NORTH CAROLINA	252.6062	6.939402
38	NORTH DAKOTA	276.4697	6.392636
39	OHIO	253.8087	4.703469
40	OKLAHOMA	230.5400	6.065548
41	OREGON	267.6921	3.879172
42	PENNSYLVANIA	260.1220	4.866819
44	RHODE ISLAND	264.2803	7.414906
45	SOUTH CAROLINA	234.8539	6.534230
46	SOUTH DAKOTA	261.8263	6.346100
47	TENNESSEE	239.9445	
48	TEXAS	238.3581	6.429886
49	UTAH	281.5731	5.407461
50	VERMONT	281.5881	6.696101
51	VIRGINIA	288.4895	6.291958
53	WASHINGTON	288.6601	6.502431
54	WEST VIRGINIA	230.5507	5.973456
			-

55	WISCONSIN	270.5758	6.528139
56	WYOMING	264.5006	4.863080

Trancparency Statement

This project was revised with the assistance of ChatGPT to improve the clarity, structure, and presentation of the content. All data analysis and code implementations remain my own, while the suggestions provided by ChatGPT focused on formatting, enhancing readability, and improving narrative flow.