4. Find a function whose *derivative* is

$$f'(x) = \frac{(3x^2 - 1)(x^2 + 3x - 1) - (x^3 - x + 5)(2x + 3)}{(x^2 + 3x - 1)^2}.$$

5. Suppose f(x) is a function with the following properties:

$$f(x)$$
 has domain $(-\infty, 4) \cup (4, \infty)$, and $f(-1) = 2$, $f(1) = 3$, $f(2) = 0$, $f(3) = -2$, and $f(6) = 3$.

f'(x) is zero only at x = 1 and x = 3, and f'(x) does not exist at x = 4.

$$\lim_{x\to\infty} f(x) = 1$$
 and $\lim_{x\to\infty} f(x) = 1$.

$$\lim_{x \to \infty} \lim_{x \to \infty} f(x) = 1 \text{ and } \lim_{x \to -\infty} f(x) = 1.$$

$$\lim_{x \to 4^+} \lim_{x \to 4^+} f(x) = \infty \text{ and } \lim_{x \to 4^-} f(x) = \infty.$$

Given the information above, find the global extrema of f(x) on each of the intervals below.

(a)
$$[-1, 4)$$

(b)
$$[-1, 2]$$

(c)
$$(-1, 2)$$

6. Let *f* be the rational function graphed below. Determine graphically the global extrema of f (if any) on each of the following intervals:

(a)
$$[-1, 1]$$

(b)
$$(-1, 1)$$

(c)
$$[-1, 3)$$

(d)
$$[-3, 1]$$

Skills

 \blacksquare For each rational function f and value c below, use the definition of derivative (or the "alternative" definition) to calculate f'(c).

7.
$$f(x) = \frac{x-1}{x+3}$$
, $c=2$

8.
$$f(x) = \frac{1}{x^2 - 1}$$
, $c = -2$

9.
$$f(x) = \frac{x^2 - 3x}{x^2 - 2x + 1}$$
, $c = 0$

10.
$$f(x) = \frac{x-1}{(x+1)(x+2)}$$
, $c=1$

■ Calculate the derivatives of the rational functions below by using the definition of derivative (or the "alternative" definition of derivative).

11.
$$f(x) = \frac{x-1}{x+3}$$

12.
$$f(x) = \frac{1}{x^2 - 1}$$

13.
$$f(x) = \frac{x^2 - 3x}{x^2 - 2x + 1}$$
 14. $f(x) = \frac{x - 1}{(x + 1)(x + 2)}$

16.
$$f(z)$$

15.
$$f(x) = \frac{x^3}{x+1}$$
 16. $f(x) = \frac{x^2-1}{x^2-x^2}$

We use the quotient rule to calculate the derivatives of the following rational functions.

17.
$$f(x) = \frac{2x-3}{5x+4}$$

18.
$$f(x) = \frac{x^3}{x+1}$$

19.
$$f(x) = \frac{x^2 - 3x}{x^2 - 2x + 1}$$

20.
$$f(x) = \frac{1}{x^3 - 2x^2 + x - 3}$$

21.
$$f(x) = \frac{x^7 - 3x^5 + 4}{1 - 3x^4}$$

22.
$$f(x) = \frac{x^2}{x^3 + 5x^2 - 3x}$$

23.
$$f(x) = \frac{1}{(x+1)^3}$$

24.
$$f(x) = \frac{x-1}{(x+1)(x+2)}$$

25.
$$f(x) = \frac{(x-2)^2}{(x^2+1)(x-3)}$$

 \blacksquare Find the critical points of each rational function f.

26.
$$f(x) = \frac{1+x+x^2}{x^2+x-2}$$
 27. $f(x) = \frac{(x-1)^2}{x+2}$

28.
$$f(x) = \frac{x^3}{x^2 - 3x + 2}$$
 29. $f(x) = \frac{x^2 - 2x + 1}{x^2 - 1}$

30.
$$f(x) = \frac{x^2(x-1)}{(x-2)^2}$$
 31. $f(x) = \frac{1}{x^3 - x}$

Find the local extrema of the following rational functions. Do all work algebraically (by hand), and then check your answers with a graphing calculator. Notice that the first six problems involve the same functions you investigated in the block of problems above.

32.
$$f(x) = \frac{1+x+x^2}{x^2+x-2}$$
 33. $f(x) = \frac{(x-1)^2}{x+2}$

34.
$$f(x) = \frac{x^3}{x^2 - 3x + 2}$$
 35. $f(x) = \frac{x^2 - 2x + 1}{x^2 - 1}$

36.
$$f(x) = \frac{x^2(x-1)}{(x-2)^2}$$

38.
$$f(x) = \frac{x^2 - x - 2}{x^3}$$
 39. $f(x) = \frac{1}{(x - 2)^2}$

37. $f(x) = \frac{1}{x^3}$

40.
$$f(x) = \frac{x^2 - 4x + 4}{x^2 - 4x + 4}$$