CONTENTS

Jacob Goodale Lipman—Biographical Sketch	1
Jacob G. Lipman and Soil Science. E. J. RUSSELL	
Jacob G. Lipman as an Investigator. Selman A. Waksman	11
Jacob G. Lipman and New Jersey Agriculture. A. W. BLAIR	25
Jacob G. Lipman as Teacher and Director of Research. ROBERT V. ALLISON	31
Early Fertilizer Work in the United States. OSWALD SCHREINER	39
The Beginnings and Development of Soil Microbiology in the United States. P. E.	
Brown	49
The Method in Soil Microbiology as Illustrated by Studies on Azotobacter and the Nitri-	
fying Organisms. S. Winogradsky	
Development of Soil Science. Alexius A. J. de'Sigmond	
The Influence of the Soil Upon the Growth of the Plant. Henrik Lundegårdh	
The Agronomic Importance of Calcium. W. P. Kelley	
The Clay Content of the Soil as Related to Climatic Factors, Particularly Temperature.	
Hans Jenny	
Sorption of Phosphates by Non-Calcareous Hawaiian Soils. L. E. Davis	
A New Method of Estimating Exchangeable Bases in Soils. Amar Nath Puri	
A Comparison Between the Suction Method and the Centrifuge Method for Determining	
the Moisture Equivalent of Soils. George John Bouyoucos	
A Machine for the Subsurface Treatment of Soils with Chloropicrin and with Carbon Bi-	
sulfide for Nematode Control Under Field Conditions. J. R. Neller and R. V.	
Allison	
A Comparative Study of the Bacterial Flora of Windblown Soil: VI. Death Valley, Cali-	
fornia, with Summary of Six Soil Studies. LAETITIA M. SNOW	181
Phosphate Fixation in Soils, Particularly as Influenced by Organic Matter. J. L.	
Doughty	191
Fluorine, Its Effect on Plant Growth and Its Relation to the Availability to Plants of	
Phosphorus in Phosphate Rocks. R. P. BARTHOLOMEW	
The Effect of Nitrogen Content of Rye on its Rate of Decomposition. W. B. Andrews	219
Some Chemical and Biological Changes Produced in a Fox Sandy Loam by Certain Soil	
Management Practices. L. S. CARTER	223
Absorbed Sodium in Soils as Affected by the Soil-Water Ratio. Frank M. Eaton and	
V. P. Sokoloff	237
Estimation of Replaceable Na and K, Exchange Capacity, and Degree of Alkalization	
in Alkali Soils by Ammonium Carbonate Extraction. Amar Nath Puri	249
The Laws of Soil Colloidal Behavior: XVII. Magnesium Silicate—Its Base-Exchange	
Properties. J. S. Joffe, L. T. Kardos and Sante Mattson	255
Mathematical Relations Between Total Exchange Capacity and Absorption of Am-	
monium and Potassium by Soils. J. F. FUDGE	
Soil Temperature Apparatus for Field Work. G. Allen Mail	
Corrosiveness of Certain Ohio Soils. I. A. Denison and S. P. Ewing	287
A Comparison of Potassium Permanganate and Ceric Sulfate for the Oxidation of Co-	
baltinitrite in the Estimation of Potassium in KCl Solution and in Ammonium Ace-	
tate Soil-Extracts. Henry C. Harris	301
Organic Soil Carbon by Reduction of Chromic Acid. L. E. Allison	311

The Chemical and Biological Nature of Certain Forest Soils. W. L. Powers and W. B. Bollen
Microbial Activities in Soil: II. Activity of Specific Groups of Microbes in Relation to
Organic Matter Transformation in Palouse Silt Loam. S. C. VANDECAVEYE AND
M. C. Allen
Curtis F. Marbut, 1863–1935
Chemical Nature of Organic Matter in Different Soil Types. Selman A. Waksman
AND I. J. HUTCHINGS
The Availability of Soil Potassium. JOHN LAMB, JR
A Simple Method of Estimating Exchangeable Calcium and Other Bases in Non-Cal-
careous Soils. Amar Nath Puri
A Device for Measuring Precipitation Waters Lost from the Soil as Surface Runoff, Per-
colation, Evaporation, and Transpiration. G. W. Musgrave
Sorption of Liquids by Soil Colloids: II. Surface Behavior in the Hydration of Clays.
L. D. BAVER AND HANS WINTERKORN. 403
John Sharkey Carroll, 1871–1935. 421
The Relation of Soil Treatment to the Nodulation of Peanuts. H. B. Mann
The Relation of Soil Erosion to Certain Inherent Soil Properties. J. F. Lutz 439
The Influence of Exchangeable Sodium in the Soil on its Properties as a Medium for
Plant Growth. E. I. RATNER. 459
A Sedimentation Tube for Analyzing Water-Stable Soil Aggregates. R. C. Cole and
N. E. Edlefsen. 473
A Method for Making Mechanical Analysis of the Ultimate Natural Structure of Soils.
George John Bouyoucos. 481
The Rôle of Plant Constituents in the Preservation of Nitrogen in the Soil. Selman A.
Waksman and I. J. Hutchings

ILLUSTRATIONS

PLATES

	SPECIAL ISSUE DEDICATED TO DOCTOR LIPMAN
Jacob Go Plate 1. Plate 2.	The Campus of the New Jersey Agricultural Experiment Station
Plate 3.	Jersey Agricultural Experiment Station, 1932
A COMPA	ARISON BETWEEN THE SUCTION METHOD AND THE CENTRIFUGE METHOD FOR DETER- MINING THE MOISTURE EQUIVALENT OF SOILS
Plate 1.	The Suction Method for Determining Moisture Equivalent in Soils 171
А Масн	INE FOR THE SUBSURFACE TREATMENT OF SOILS WITH CHLOROPICRIN AND WITH CARBON BISULFIDE FOR NEMATODE CONTROL UNDER FIELD CONDITIONS
Plate 1.	Fig. 1. General view of the experimental machine showing the liquid supply tank and hose connection with the pipe leading to the subsurface outlet
	THE CHEMICAL AND BIOLOGICAL NATURE OF CERTAIN FOREST SOILS
Plate 1.	Growth of Oats in Sand Cultures Kept Moist with Culture Solution Lacking Nitrogen, and Supplied with 1.5 Gm. Nitrogen in Forest Soil Layers 329
a p	
Curtis F.	MarbutFrontispiece
	Marbut
A DEVICE	FOR MEASURING PRECIPITATION WATERS LOST FROM THE SOIL AS SURFACE RUNOFF, PERCOLATION, EVAPORATION, AND TRANSPIRATION Fig. 1. Method of sinking cylinder into selected soil area
A DEVICE	FOR MEASURING PRECIPITATION WATERS LOST FROM THE SOIL AS SURFACE RUNOFF, PERCOLATION, EVAPORATION, AND TRANSPIRATION Fig. 1. Method of sinking cylinder into selected soil area
A DEVICE	FOR MEASURING PRECIPITATION WATERS LOST FROM THE SOIL AS SURFACE RUNOFF, PERCOLATION, EVAPORATION, AND TRANSPIRATION Fig. 1. Method of sinking cylinder into selected soil area
A DEVICE	FOR MEASURING PRECIPITATION WATERS LOST FROM THE SOIL AS SURFACE RUNOFF, PERCOLATION, EVAPORATION, AND TRANSPIRATION Fig. 1. Method of sinking cylinder into selected soil area
A DEVICE Plate 1. Plate 2.	FOR MEASURING PRECIPITATION WATERS LOST FROM THE SOIL AS SURFACE RUNOFF, PERCOLATION, EVAPORATION, AND TRANSPIRATION Fig. 1. Method of sinking cylinder into selected soil area

Plate 2	. Nodulation of Peanuts in Virgin Norfolk Sandy Loam (pH 5.0) as Affected by Applications of Calcium Carbonate	35
Plate 3.		37 37
THE IN	FLUENCE OF EXCHANGEABLE SODIUM IN THE SOIL ON ITS PROPERTIES AS A MEDIU FOR PLANT GROWTH	M
Plate 1.	The Influence of Exchangeable Sodium in Chernozem Soil upon the Growth of Spring Wheat	1
	TEXT-FIGURES	
	THE INFLUENCE OF THE SOIL UPON THE GROWTH OF THE PLANT	
Fig. 1.	Diagram of the Antagonistic Action of One Ion (Mo) on the Absorption of a	
2.	Second Ion (M ₁)	2
3.	Oats and the Growth	3
	Concentration in the Plant (Oats)	6
4.	The Relation between the Amount of Calcium and Magnesium in the Soil (from Extracts with Citric Acid) and the Concentration of These Elements in the	_
-		7
5.	The Influence of the Calcium Content in the Soil on the Uptake of Manganese in Sugar Beets	9
THE	CLAY CONTENT OF THE SOIL AS RELATED TO CLIMATIC FACTORS, PARTICULARLY TEMPERATURE	
Fig. 1.	Map Showing the Location of the Counties or Areas Investigated	2
2.	General North-South Correlation between Clay Content of Soil and Latitude	
3.	(Annual Temperature)	
	(Annual Temperature)	
	Clay-Temperature Function for the Parent Material Group (a) Graintes 12	
	Clay-Temperature Function for the Parent Material Group (d) "Basic Rocks". 12	
	Clay-Temperature Function for the Parent Material Group (g) "Granites, Gneisses and Schists"	
8.	Idealized Clay-Climate Surface, Showing the Variation of "Climatic Clay" in Soils Derived from Granites and Gneisses as a Function of Moisture and Tem-	
	perature	7
	SORPTION OF PHOSPHATES BY NON-CALCAREOUS HAWAIIAN SOILS	
Fig. 1.	Equilibria between Soil and Phosphate Solutions	3
	Equilibria between Soil and Phosphate Solutions	
	Reversal of Equilibria between Soil and Phosphate Solutions	
	Equilibria between Soil and Potassium	
	Sorption of Phosphate from Solutions of Different pH Values	

ILLUSTRATIONS

Some Chemical and Biological Changes Produced in a Fox Sandy Loam by Certain Soil Management Practices
 Fig. 1. Numbers of Bacteria and Fungi in Relation to Soil Treatment, Soil Reaction, Content of Total Nitrogen, Available Phosphorus, and Ignition Loss
THE LAWS OF SOIL COLLOIDAL BEHAVIOR: XVII. MAGNESIUM SILICATE—ITS BASE- EXCHANGE PROPERTIES
Fig. 40. The Linear Relationship between the Exchangeable Ca and the Millimols of Mg-Silicate Complex Present
SOIL TEMPERATURE APPARATUS FOR FIELD WORK
Fig. 1. Soil Temperature Apparatus
CORROSIVENESS OF CERTAIN OHIO SOILS
Fig. 1. Typical Section of Pipe Lines Showing Repairs and Soil Data
MICROBIAL ACTIVITIES IN SOIL: II. ACTIVITY OF SPECIFIC GROUPS OF MICROBES IN RELATION TO ORGANIC MATTER TRANSFORMATION IN PALOUSE SILT LOAM
Fig. 1. CO ₂ Production and Microbial Development in Soil to Which Stubble Only Was Returned for 9 Consecutive Years
THE AVAILABILITY OF SOIL POTASSIUM
Fig. 1. Effect of the Addition of 5,000 p.p.m. of Dextrin to a Dutchess Silt Loam on the Potassium Extracted by NH ₄ C ₂ H ₃ O ₂ , on the NO ₃ Content, and on the Resistance Offered to an Electric Current by a 5.1 Water Extract
A Device for Measuring Precipitation Waters Lost from the Soil as Surface Runoff, Percolation, Evaporation, and Transpiration
Fig. 1. Plan and Elevation of Equipment Used in the Measurement of Surface Runoff and Percolation from Soil Columns of Undisturbed Structure
SORPTION OF LIQUIDS BY SOIL COLLOIDS: II. SURFACE BEHAVIOR IN THE HYDRATION OF CLAYS
Fig. 1. Colloidal Properties of Putnam Clay as Affected by Varying Amounts of Exchangeable Li and K Ions
THE RELATION OF SOIL EROSION TO CERTAIN INHERENT SOIL PROPERTIES
Fig. 1. Size-Frequency Distribution Curve of Iredell Sandy Clay Loam with and without Dispersion
4. Effect of Different Cations upon the Permeability of Iredell Clay Membranes 452

ILLUSTRATIONS

	5. Effect of Different Cations upon the Permeability of Putnam Clay Membranes.	
	6. Permeability of Different H-Clay Membranes	45
	7. Permeability of Different Ca-Clay Membranes	454
	8. Permeability of Different Na-Clay Membranes	454
Тн	E INFLUENCE OF EXCHANGEABLE SODIUM IN THE SOIL ON ITS PROPERTIES AS A MED FOR PLANT GROWTH	IUN
Fig.	. 1. Influence of Increasing Amounts of Exchangeable Sodium upon the Filterability	
	of Chernozem Soil	463
	2. Effect of 3 Years' Application of Various Types of Nitrogen Fertilizers on the	
	Filterability of the Soil	464
	3. Influence of Exchangeable Na upon the Filterability of Extremely Solonetzic Soil,	
	Horizon A	464
	4. Influence of Exchangeable Na upon the Filterability of Extremely Solonetzic Soil,	
	Horizon B.	465
	A SEDIMENTATION TUBE FOR ANALYZING WATER-STABLE SOIL AGGREGATES	
Fig.	. 1. Diagram of Sedimentation Tube	475
	2. Percentage of Particles Having Settling Velocities Equal to or Less than Values	
	Indicated on the Graph	477

