MAP-Style Homicide Cluster Analyzer

A concise, field-ready guide for law-enforcement analysts

This README explains what the tool does, how to run it, and how to interpret the results when screening homicide data for low-clearance clusters. It assumes a single script named map_cluster.py (the one we've been iterating on).

1) What this tool does (in plain terms)

Goal: Rapidly surface *where and how* homicides go unsolved in your jurisdiction(s), so command staff can direct investigative reviews, quality-assurance (QA) checks, and targeted interventions.

Method (MAP-style, adapted): 1. Recodes "solved" from your data (default: use the dataset's own Solved field; the old Offender-Sex proxy is still available but discouraged). 2. **Derives victim-sex code** (1=Male, 2=Female, 9=Unknown) and creates **cluster IDs**: - **County view** (MURDGRP1) = County + Victim-Sex + Weapon - **MSA view** (MURDGRP2) = MSA + Victim-Sex + Weapon - If county/MSA is text, a **stable hash fallback** is used so groups don't collapse. 3. **Aggregates** cases per cluster: TOTAL, SOLVED, PERCENT cleared, and UNSOLVED. 4. **Optional filters**: female/male/all; clearance threshold; minimum support; decade slicing; metadata completeness stats for **Relationship** and **Circumstance**. 5. **Outputs** ranked CSVs and a console preview.

Key idea: Two recurring "low-clearance" archetypes usually appear: - **Method-driven** (e.g., strangulation/ hanging). - **Data-gap-driven** (e.g., "Firearm, type not stated", "Other/unknown" weapon) where metadata holes travel with low clearance.

2) Data requirements (minimum viable columns)

Your CSV should include headers (case-insensitive accepted if you normalized them). Critical fields:
CNTYFIPS (text or numeric OK), MSA (text or numeric OK) - VicSex, OffSex, Weapon - Solved

(values like Yes/No or Y/N)

Relationship, Circumstance, Situation, Year, Month, Ori, Agency, VicAge, OffAge

Notes: - Numeric sentinels like OffAge=999 are treated as unknowns. - If a county/MSA is a name (e.g., "Anchorage, AK"), the tool uses the label and a stable hash so clusters remain distinct.

3) Installation (once per workstation)

- Python 3.9+ and pip install pandas
- Save the script as map_cluster.py in a working folder.

• Your homicide CSV goes in the same (or supply full path).

Windows tip: Use cmd.exe or PowerShell. Examples below use python on PATH.

4) Quick start (copy-paste ready)

Baseline female/MSA scan (modern era, ≥2010):

```
python map_cluster.py SHR.csv --group msa --solved-source field --focus-sex
female ^
    --relcirc --min-decade 2010 --min-total 15 --threshold 0.33 --top 20 --outdir
out
```

County view:

```
python map_cluster.py SHR.csv --group county --solved-source field --focus-sex
female ^
    --relcirc --min-decade 2010 --min-total 15 --threshold 0.33 --top 20 --outdir
out
```

Tighten the bar (modern, \geq 20 cases, \leq 30% cleared):

```
python map_cluster.py SHR.csv --group msa --solved-source field --focus-sex
female ^
    --relcirc --min-decade 2010 --min-total 20 --threshold 0.30 --top 20 --outdir
out
```

Case-level dump for a flagged cluster:

```
python map_cluster.py SHR.csv --group msa --solved-source field --focus-sex
female ^
    --dump-msa "St. Louis, MO-IL" --dump-weapon "Firearm, type not stated" ^
    --dump-out out/stl_firearm_not_stated_cases.csv --outdir out
```

Batch sweep (Windows CMD) over thresholds):

```
for %t in (0.25 0.28 0.30 0.33) do python map_cluster.py SHR.csv --group msa --
solved-source field --focus-sex female --relcirc --min-decade 2010 --min-total
20 --threshold %t --top 10 --outdir out
```

5) Output files & how to read them

- AGGREGATE_COUNTY.csv or AGGREGATE_MSA.csv : all clusters (no filter), sorted by UNSOLVED.
- FILTERED_*.csv: the filtered/thresholded list shown in the console preview.
- WEAPON_CODEBOOK.csv (optional): mapping of weapon string→code for the run.
- Optional **case dumps**: per your | --dump-* | flags.

Important columns: - PERCENT = clearance rate in that cluster; UNSOLVED = TOTAL - SOLVED. - REL_UNK_RATE and CIRC_UNK_RATE = share of cases where Relationship/Circumstance are unknown/ undetermined/unspecified/blank. - REL_TOP1 / CIRC_TOP1 = most frequent known category (e.g., Acquaintance, Rape, Other arguments). - REPORT_GAP_IDX (if present) ≈ average of the two unknown rates.

Interpretation pattern: - **Method-driven pockets** (e.g., *Strangulation - hanging*): often operational challenge even with decent metadata. - **Data-gap pockets** (e.g., *Firearm, type not stated*): usually correctable via QA/training; clearance tends to improve when metadata improves.

6) Flags (cheat sheet)

Flag	What it does	Typical values
csv (positional)	Input CSV path	SHR65_23.csv
group	Cluster by county or MSA	county msa
solved-source	How to mark SOLVED	field (recommended) offsex (legacy proxy)
focus-sex	Victim sex filter	female (default) male
threshold	Keep clusters with PERCENT ≤ t	0.33 default; try 0.30, 0.25
min-total	Require at least N cases in a cluster	e.g., 15, 20
by-decade	Adds DECADE to grouping/ outputs	toggle
min-decade	Drop cases before given decade	2000), 2010
relcirc	Adds Relationship/ Circumstance stats	toggle
min-known-rel	Require share of known Relationship \geq k	e.g., 0.30

Flag	What it does	Typical values
top	How many rows to print	e.g., 10, 20
outdir	Output directory	out
no-filter	Produce aggregates only	toggle
dump-msa,dump- weapon,dump-out	Export case-level rows matching MSA + weapon	strings + path
weapon,dump-out	matching MSA + Weapon	

7) Recommended analyst workflow (LEA context)

- 1. Scan (broad): --group msa --solved-source field --focus-sex female --relcirc --min-total 15 --threshold 0.33 (optionally add --min-decade 2000).
- 2. **Validate:** sanity-check that PERCENT is consistent with the dataset's Solved values (you're already using --solved-source field).
- 3. **Triage:** separate **method-driven** vs **data-gap-driven** clusters. Modern, large-support pockets (e.g., ≥2010, ≥20 cases) get priority.
- 4. **Deep-dive:** use case dumps to sort by **ORI/Agency**, year, Relationship, Circumstance. Look for one or two submitters driving the pocket.
- 5. Action:
- 6. Data gaps: coding retraining, form fixes, NIBRS/SHR crosswalks.
- 7. **Method pockets:** specialized investigative playbooks (e.g., asphyxia: ligature trace, forensic timelines, victimology linkage).
- 8. **Re-run** with the same flags to measure lift post-intervention.

8) Hiring note: what skills this analyst needs

- Pandas proficiency (groupby, filtering, joins), CSV hygiene, and comfort with Windows/PowerShell.
- Ability to produce **actionable triage memos**: explain *why* a cluster popped (method vs data gap), *who* (agencies/ORIs), *when* (decade), and *what next* (QA or investigative).
- Basic CJIS/PII hygiene and chain-of-custody discipline for data extracts.

9) Troubleshooting (fast answers)

- **Empty table:** Your thresholds are too strict. Loosen --threshold (e.g., 0.33) or lower --min-total, or widen the era via --min-decade 2000.
- "Anchorage/Unknown" mega-clusters: Use the latest script with hash fallback and label grouping; switch to --group msa if county codes are messy.
- OffSex proxy inflated unsolved: Always use --solved-source field when the dataset has a Solved column.

- **KeyError on label columns:** Don't aggregate a column that's also in your groupby keys (we patched aggregate).
- Regex "unknown" didn't count 'undetermined': The updated helper counts unknown/not determined/undetermined/unspecified/blank .

10) Privacy, security & ethics

- Keep extracts on secured drives; follow agency data-handling SOPs.
- Limit case-level dumps to personnel with a need-to-know; redact PII where policy requires.
- Treat "data-gap" findings as opportunities for **training and system fixes**, not blame. The target is **better clearance**, not scorekeeping.

11) Appendix: example recipes

Modern near-outliers (female/MSA):

```
python map_cluster.py SHR.csv --group msa --solved-source field --focus-sex
female ^
    --relcirc --min-decade 2010 --min-total 20 --threshold 0.33 --top 20 --outdir
out
```

Method pockets only (strangulation):

```
python map_cluster.py SHR.csv --group msa --solved-source field --focus-sex
female ^
    --relcirc --min-decade 2000 --min-total 15 --threshold 0.33 --top 20 --outdir
out
```

Data-gap pockets only (weapon under-specified):

```
python map_cluster.py SHR.csv --group msa --solved-source field --focus-sex
female ^
    --relcirc --min-decade 2000 --min-total 15 --threshold 0.33 --top 20 --outdir
out
```

Version notes - Hash fallback for text county/MSA is deterministic (MD5 modulo). Re-running with the same inputs yields the same clusters. - The tool never uploads data; all processing is local.

Prepared for agency leadership evaluating analyst workflows that use the MAP-style clustering approach.