GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Análisis de Procesos Estocásticos

	1.00	
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	170501	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante los conocimientos, las habilidades y la aptitud de la teoría de los procesos estocásticos, que le permitan modelar matemáticamente problemas no determinísticos relacionados con fenómenos y parámetros físicos aleatorios.

TEMAS Y SUBTEMAS

1. Variables aleatorias bivariables

- 1.1 Distribución bivariadas.
- 1.2 Distribuciones marginales.
- 1.3 Variables aleatorias independientes.
- 1.4 Distribución Condicional.
- 1.5 Funciones de varias variables.

2. Variables aleatorias muldimensionales

- 2.1 Distribución de probabilidad conjunta.
- 2.2 Función de distribución acumulativa conjunta.
- 2.3 Función de densidad de probabilidad conjunta.
- 2.4 Distribuciones marginales y condicionales.
- 2.5 Independencia.

3. Introducción a los procesos estocásticos

- 3.1 Definiciones.
- 3.2 Clasificación.
- 3.3 Ejemplos: Bernoulli, Poisson, Browniano.

4. Cadenas de Markov en tiempo discreto

- 4.1 Definiciones.
- 4.2 Matriz de probabilidades de transición.
- 4.3 Ecuaciones de Chapman-Kolmogorov.
- 4.4 Análisis de primer paso.
- 4.5 Cadenas regulares.
- 4.6 Clasificación de estados.
- 4.7 Teorema límite.
- 4.8 Cadena de Markov irreducible.

5. La distribución y el proceso de Poisson

- 5.1 Distribución del proceso de Poisson.
- 5.2 Ley de eventos raros.
- 5.3 Distribuciones asociadas con el proceso de Poisson.
- 5.4 La distribución uniforme y el proceso de Poisson.

6. Cadenas de Markov en tiempo continuo

- 6.1 Definiciones.
- 6.2 Procesos de nacimiento puro.

- 6.3 Procesos de muerte puro.
- 6.4 Procesos de nacimiento y muerte.
- 6.5 Comportamiento límite de los procesos de nacimiento y muerte.
- 6.6 Procesos de nacimiento y muerte con estados absorbentes.
- 6.7 Cadenas de Markov en tiempo continuo de estados finitos.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son el pizarrón y la computadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. En cada evaluación parcial se considerará la participación, asistencia a clases y a asesoría, entrega de problemas resueltos por el alumno y proyectos. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- An Introduction to Stochastic Modeling, Howard M. Taylor, Samuel Karlin, third edition, Academic Press.
- 2. Markov Chains, J. R. Norris, Cambridge Series in Statistical and Probabilistic Mathematics, 1999.
- 3. Introduction to Stochastic Process, Paul Gerhard Hoel, Sidney C. Port & Charles J. Stone, Hougthan Mifflin Company. 1997.
- 4. **Probability, Random Variables, and Stochastic Processes,** Athanasios Papoulis, third edition. 1991.

Libros de Consulta:

- Introducción a la teoría de probabilidades y sus aplicaciones, Feller, W. Volumen I. Editorial Limusa. 1993.
- 2. Investigación de Operaciones, Hillier & Lieberman. Mc Graw-Hill, séptima edición, 2002.
- 3. Introduction to Probability Models, Shaldon M. Ross, John Wiley, Ninth Edition, 2007.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o doctorado en Matemáticas o Matemáticas Aplicadas.

