## TRANSMISII PRIN LANTURI

### 1. Scopul lucrării

Restabilirea elementelor geometrice pentru o transmisie prin lanțuri. Verificarea transmisiei prin lanț.

### 2. Elemente teoretice

O transmisie prin lanț se compune din lanțul propriuzis, figura 1, roțile de lanț, dispozitive de întindere, dispozitive de ungere și carcase sau apărători de protecție.

## 2.1. Lantul cu bolturi, bucșe și role

Lanțul este format din zale, articulate între ele, figura 1, care îi asigură flexibilitatea necesară pentru înfășurarea pe roțile de lanț, figura 2. Elementele componente ale unui lanț cu role și zale scurte sunt: eclisa exterioară 1, eclisa interioară 2, bolțul 3, bucșa 4 și rola 5. Pasul p, figura 1, este elementul principal care stabilește proporțiile dimensionale ale componentelor lanțului.



Fig. 1 Geometria lanțului cu role și zale scurte

Pasul este normalizat, în milimetri sau în țoli (inch, 1" = 25,4 mm). Acest tip de lanț se realizează cu un singur sau cu două (trei) rânduri de zale. Elementele geometrice ale lanțului sunt: distanța între eclisele interioare  $a_1$ , distanța între eclisele exterioare  $a_2$ , lățimea eclisei exterioare  $b_1$ , lățimea eclisei interioare  $b_2$ , diametrul exterior al rolei  $d_1$ , diametrul interior al bucșei  $d_2$ , diametrul bolțului  $d_3$ , lungimea finală a bolțului  $L_1$  și pasul p.

## 2.2. Roata de lanț

Pentru roata de lanț dimensiunile caracteristice sunt prezentate în figura 2. Pasul p şi numărul de dinți z determină valoarea diametrului de divizare definit ca locul geometric al centrelor rolelor lanțului înfășurat pe roata de lant.

$$D_{d} = \frac{p}{\sin\left(\frac{180^{\circ}}{z}\right)}; \qquad D_{i} = D_{d} - d_{1}$$

$$\tag{1}$$

Forma profilului dintelui roții de lanț este realizată din arce de cerc, figura 2, fară a fi optimizată geometric în sensul egalizării vectorilor viteză pentru punctele în contact de pe dintele roții și rola cilindrică a lanțului. Semiunghiul dintre flancurile dintelui roții de lanț:

$$\gamma_{\text{max}} = 35^{\circ} - \frac{120^{\circ}}{z}, \qquad \gamma_{\text{min}} = 17^{\circ} - \frac{64^{\circ}}{z}$$
 (2)



Fig. 2 Forma constructivă a roții de lanț

Diametrul de cap, minim și maxim, al roții de lanț:

$$D_{emin} = D_d + p \cdot \left(1 - \frac{1.6}{z}\right) - d_1; D_{emax} = D_d + 1.25 \cdot p - d_1$$
 (3)

Înălțimea dintelui roții de lanț:

$$K_{dmin} = 0.5 \cdot (p - d_1); K_{dmax} = p \cdot \left(0.625 + \frac{0.8}{z}\right)$$
 (4)

Razele de racordare a flancurilor și la fundul dintelui roții de lanț:

$$R_{1min} = 0.505 \cdot d_1$$
;  $R_{2min} = 0.12 \cdot d_1 \cdot (z+2)$ ;  $R_{3min} = p$  (5)

Lățimea dintelui:

$$B_1 = (0.93...0.95) \cdot a_{min} \tag{6}$$

unde: z - numărul de dinți al roții,  $d_1$  - diametrul nominal al rolei lanțului, mm,  $a_{min}$  - distanța minimă între eclisele interioare ale lanțului, mm. Pentru viteze  $v \le 8$  m/s,  $\gamma = 13^{\circ}...17^{\circ}$ , iar pentru viteze  $v \ge 12$  m/s,  $\gamma = 19^{\circ}$ . Relațiile (1),(2)...(6) pot fi scrise atât pentru roata de lanț conducătoare 1, cât și pentru roata de lant condusă 2.

Numărul minim de dinți al roții conducătoare z<sub>1</sub> depinde în principal de:

- viteza lanţului: dacă  $v \le 2$  m/s,  $z_{1min} = 13...15$ , iar pentru viteze  $v \ge 2$  m/s,  $z_{1min} \ge 19$ , și
- raportul de transmitere,  $z_{1min} = 29 2 \cdot i$  și tabelul 1. Numărul de dinți al roții conduse:  $z_2 = i \cdot z_1$



Fig. 3 Geometria unei transmisii prin lanț

# 2.3. Elemente de geometrie a transmisiei prin lanț cu bucșe și role

Pentru ansamblul transmisiei, figura 3, se definesc următoarele caracteristici principale:

- raportul de transmitere,  $u = D_{d2}/D_{d1} = i = z_2/z_1$ ;
- distanța necorectată dintre axe (valoare recomandată), A = (20...50)·p;
- unghiul de înclinare a transmisiei față de orizontală, φ;
- unghiul ramurii de lanț față de axa transmisiei:

$$\gamma = \arcsin((D_{d2} - D_{d1})/(2 \cdot A));$$

- lungimea lanțului,  $L = 2 \cdot A + 0.5 \cdot p \cdot (z_2 + z_1) + 0.25 \cdot (z_2 z_1)^2 \cdot p^2 / (\pi^2 \cdot A)$ ,
- numărul total de zale, X = L/p.

**Tabelul 1** Numărul de dinți al roții conducătoare, z<sub>1</sub> [1]

|                  | Raportul de transmitere i       |            |      |      |      |      |  |  |  |  |  |  |
|------------------|---------------------------------|------------|------|------|------|------|--|--|--|--|--|--|
| Lanț             | 12                              | 12 23 34 4 |      |      |      | 6    |  |  |  |  |  |  |
|                  | Numărul de dinți z <sub>1</sub> |            |      |      |      |      |  |  |  |  |  |  |
| cu bucșe și role | 3027                            | 2725       | 2523 | 2321 | 2117 | 1715 |  |  |  |  |  |  |
| dințat           | 3532                            | 3230       | 3027 | 2723 | 2319 | 1917 |  |  |  |  |  |  |
| v ≥ 25 [m/s]     | $35 \le z_1 \le 120$            |            |      |      |      |      |  |  |  |  |  |  |

# 2.4. Elemente cinematice și dinamice ale transmisiilor prin lanțuri

Solicitările din ramurile transmisiei sunt puternic influențate de efectele de greutate, inerție și șoc. În ramura conducătoare forța totală este:

$$F_1 = F_U + F_{cf} + F_{a1} + F_{a1} \tag{7}$$

iar în ramura condusă:

$$F_2 = F_{cf} + F_{d2} + F_{d2} \tag{8}$$

unde:  $F_u$  este forța utilă,  $F_{cf}$  este forța centrifugă  $F_{g1}$  și  $F_{g2}$  sunt forțele determinate de greutatea lanțului, iar  $F_{d1}$  și  $F_{d2}$  sunt forțele dinamice.

Forța utilă din ramura conducătoare rezultă din condiția de transmitere a puterii:

$$F_U = \frac{2 \cdot M_{11(2)}}{D_{cl1(2)}} \tag{9}$$

unde:  $M_{f1(2)}$  - momentul de torsiune la arborele 1,(2) N·mm, iar  $D_{d1(2)}$  - diametrul de divizare al roții 1,(2) mm.

Forța centrifugă  $F_{cf}$  ia în considerare efectele masice (centrifugale) datorate mișcării de rotație:

$$F_{cf} = q \cdot v^2 \tag{10}$$

unde: q - masa lanțului pe metru liniar, kg/m; iar v - viteza tangențială a lanțului, m/s.

Forțele de greutate depind și de poziția transmisiei  $F_g$ :

$$F_{\mathbf{q}} = k_{\mathbf{p}} \cdot \mathbf{q} \cdot \mathbf{A} \tag{11}$$

unde: A - distanța între axe, m, iar  $k_P$  - factor de poziție,  $k_P$  = 10 la transmisiile în plan vertical și  $k_P$  = 60 pentru transmisiile în plan orizontal.

Forțele dinamice  $F_d$  sunt provocate de efectul înfășurării poligonale a lanțului pe roată și sunt date ca mărime, direcție și sens de accelerațiile longitudinale:

$$F_{d max} = a_{l max} \cdot (m_l + m_{red}) \tag{12}$$

unde:  $m_l$  este masa lanțului, iar  $m_{red}$  este masa redusă la nivelul roții conduse pentru elementele antrenate.

#### Modul de lucru

### 3.1. Identificarea lantului

Utilizând notațiile din STAS 5174, [2] (tabelul 2), se măsoară următoarele elemente geometrice:

- 1) lățimile minime: a între eclisele interioare,  $a_1$  peste eclisele interioare,  $a_2$  între eclisele exterioare.
- 2) diametrul exterior al rolei,  $d_1$ ;
- 3) cota  $d_{2R}$  peste 2 role pentru stabilirea pasului lanțului:  $p = d_{2R} d_1$ , iar valoarea calculată se rotunjește la o valoare normalizată (tabelul 2).

Pe baza celor măsurate se identifică mărimea lanțului și simbolul acestuia. Se extrag din STAS 5174 și celelalte dimensiuni:

- diametrul interior al bucşei, d<sub>2</sub>;
- 5) lățimea eclisei interioară, b<sub>1</sub> și exterioară, b<sub>2</sub>;
- 6) lungimea finală a bolțului L1;

Se extrag și valorile menționate de STAS 5174 pentru:

- sarcina minimă de rupere  $S_{r1}$ , și
- masa pe metru liniar.

### 3.2. Schita articulatiei lantului

- 1) Se execută schița articulației lanțului cu precizarea dimensiunilor și indicarea ajustajelor recomandate pentru următoarele îmbinări: bolț bucșă, bucșă rolă, bucșă eclisă interioară, bolț eclisă exterioară.
- 2) Se propun materialele și tratamentele termice pentru elementele articulației.
- 3) Se discută posibilitățile de ungere ale fiecărei articulații și natura regimului de ungere, [3].
- 4) Se calculează aria de strivire din articulația bucșă-bolţ.

### 4. Aplicatie

O transmisie mecanică a unui transportor cu bandă cuprinde un reductor de turație cu roți dințate cu raportul de transmitere  $i_{RD1}=3,15$  și  $i_{RD2}=2,5$  urmată de un lanț de uz general cu role și zale scurte (tabelul 2). Transmisia trebuie să asigure pe arborele condus o putere  $P_2=(5+r)$  kW. Antrenarea se face cu un electromotor asincron cu turația de sincronism  $n_1=750\cdot(1+r)$  rot/min. Roțile de lanț au numerele de dinți  $z_1=19+2\cdot r$  și  $z_2=75$ , iar distanța între axe este  $A=40\cdot p$ ,  $r\in\{0,1,2,3\}$ .

Axele arborilor formează un plan orizontal.

- a) Să se realizeze schița transmisiei cu precizarea turațiilor fiecărui arbore și să se determine puterea necesară pentru motorul de acționare.
- b) Folosind nomograma din figura 4 să se stabilească mărimea lanțului după care se extrag date principale menționate în STAS 5174 (tabelul 2).
- c) Să se determine diametrele de divizare ale roților de lanț și geometria profilului dinților roților de lanț.
- d) Să se calculeze viteza lanțului și să se discute soluțiile posibile de ungere a transmisiei prin lanț.

Viteza medie de deplasare a lanțului  $v = p \cdot z_1 \cdot \frac{n_1}{60}$  m/s.

- e) Să se determine: forța utilă, forța derivată din greutatea lanțului şi forța centrifugă.
- f) Să se verifice lanțul la tracțiune considerând forțele utilă, de greutate și centrifugă.

$$c_{st} = \frac{S_{r1}}{F_1} \ge 7$$

g) Să se verifice articulația lanțului la uzare.

$$\sigma_{strivire} = \frac{F_1 \cdot C}{j \cdot a_1 \cdot a_3} \le \sigma_{strivire\_ad} \approx 40 \text{ MPa}$$

unde j reprezintă numărul de rânduri de zale, iar C este un coeficient dinamic global, [1], [4]. Se va admite C = 3.



Fig. 4 Relația de interdependență dintre numărul de dinți zi și turație ni

## **Bibliografie**

- 1. Gafițanu, M., Crețu, S., Pavelescu D., ş.a., 1983, Organe de mașini, vol. II, Editura Tehnică, București.
- 2. STAS 5174 Lanțuri de uz general cu role și zale scurte.
- 3. Olaru, D., 2002, Fundamente de lubrificație, Editura Gh. Asachi, Iași.
- van Beek, A., 2009, Advanced engineering design lifetime performance and reliability, Delft University of Technology, www.engineering-abc.com, www.werktuigbouw.nl

Tabelul 2 Caracteristici pentru lanțul cu role și zale scurte (extras din STAS 5174)

| Masa pe<br>metru<br>linior |                                           | σ                  | kg/m              | 0,18  | 0,40  | 0,60         | 0,70        | 0,1         | 0,95        | 1,52<br>28,1 | 1,25        | 2,60        | 3,85<br>3,85 | 5,90        | 7,50        | 9,90        | 17,20            | 22,60<br>22,60   |                  |
|----------------------------|-------------------------------------------|--------------------|-------------------|-------|-------|--------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|-------------|-------------|-------------|------------------|------------------|------------------|
| Iul                        | Lungimea                                  | Lungimea<br>finalò |                   | mm    | 8,60  | 13,50        | 18,80       | 17,00       | 21,18       | 19,60        | 26,90       | 22,70       | 33,50        | 41,10       | 50,80       | 54,90       | 65,50            | 80,30            | 95,50            |
| Bolful                     | 1000                                      | Diametru           | d <sub>3max</sub> | mm    | 2,31  | 3,28         | 3,96        | 4,45        | 5,08        | 5,08         | 5,94        | 5,72        | 7,92         | 9,53        | 11,10       | 12,70       | 14,27            | 19,84            | 23,80            |
| ecisei                     |                                           | exterioară         | b <sub>2max</sub> | mm    | 7,11  | 8,26         | 10,41       | 10,92       | 13,03       | 13,72        | 15,62       | 16,13       | 20,83        | 26,04       | 31,24       | 36,45       | 41,60            | 52,07            | 62,48            |
| Lătimea eclise             |                                           | inferioară         | bımax             | mm    | 7,11  | 8,26         | 12,07       | 11,81       | 15,09       | 14,73        | 18,08       | 16,13       | 21,13        | 30,18       | 36,20       | 42,24       | 48,26            | 60,33            | 72,39            |
| Diametrul                  | interior al                               | nordal             | d <sub>2min</sub> | mm    | 2,36  | 3,33         | 4.01        | 4.50        | 5,13        | 5,13         | 5,99        | 5.77        | 7.97         | 9.58        | 11,15       | 12,75       | 14,32            | 10,89            | 23,86            |
| Diametrul                  | exterior al                               | Ď<br>Ž             | d <sub>1max</sub> | mm    | 5,00  | 6,35         | 7.95        | 8,51        | 10,16       | 10,16        | 16,11       | 12,07       | 15,88        | 19,05       | 22,23       | 25,40       | 28,58            | 39,30            | 47,83            |
| Lărimeo                    | Lårimeo<br>intre<br>ecisele<br>exterioare |                    | <b>d</b> 2min     | mm    | 4,90  | 8,66         | 11,31       | 11,43       | 13,97       | 13,41        | 17,88       | 15,75       | 22,74        | 27,59       | 35,59       | 37,32       | 45,34            | 55,02            | 96'29            |
| Lărimea                    | eclisele                                  | interiocre         | <b>d</b> 1max     | mm    | 4,77  | 8,53         | 11,18       | 11,30       | 13,84       | 13,28        | 17,75       | 15,62       | 22,61        | 27,46       | 35,46       | 37,19       | 45,21            | 34,89            | 67,82            |
| Lātimea                    | minimö                                    | a language         | Qmin              | mm    | 3,00  | 5,72         | 7,95        | 7,75        | 9,53        | 6,65         | 12,70       | 11,68       | 15,88        | 19,05       | 25,40       | 25,10       | 31,75            | 38,10            | 47,63            |
| Sorcino                    | minimo                                    | aprincap           | Srı               | Z     | 4600  | 9000<br>7500 | 14000       | 18000       | 22000       | 23000        | 32000       | 30000       | 45000        | 89000       | 127000      | 172000      | 227000<br>160000 | 354000<br>270000 | 510000<br>351000 |
|                            | Pasul                                     |                    |                   | in    | 20    | 3/8"         | 1/2"        | 1/2         | 5/8"        | 5/8"         | 3/4"        | 3/4"        | 1.           | 1 1/4"      | 1/2"        | 3/4"        | 2                | 2<br>1/2         | 3,               |
|                            |                                           |                    | mm                | 8,000 | 9,525 | 12.700       | 12,700      | 15,875      | 15.875      | 19.050       | 19.050      | 25,40       | 31,750       | 38,100      | 44.450      | 50.800      | 63.500           | 76.200           |                  |
|                            | Simbolul<br>Iantulu                       |                    |                   |       | 05B   | 06B<br>06BX  | 08A<br>08AX | 08B<br>08BX | 10A<br>10AX | 10B<br>10BX  | 12A<br>12AX | 12B<br>12BX | 16A<br>16AX  | 20A<br>20AX | 24A<br>24AX | 28A<br>28AX | 32A<br>32AX      | 40A<br>40AX      | 48A<br>48AX      |