Epreuve de moyenne durée : T.G L2 ISIL :A

EX :1 Un commissariat doit effectuer 8 surveillances selon des horaires fixes par le tableau suivant :

surveillance n°	1	2	3	4	5	6	7	8
début	5h	15 h	8 h	7h	3h	13h	11h	19h
fin	10h	18 h	18h	12h	14h	21h	20h	23h

- 1) Modéliser cette situation par un graphe ? (Bien définir les sommets et les arêtes)
- 2) Trouver le nombre chromatique du graphe?
- 3) En déduire le nombre minimal de policiers nécessaires pour assurer ces surveillances ? (remarque dans les horaires de début et de fin sont comptabilises les déplacements depuis ou bien jusqu'au commissariat).

EXO 2: Soit le réseau ci-dessous, représentant les routes a sens unique reliant des villes . Les valeurs indiquées sur chaque arc sont des distances kilométriques

- 1) Faire la mise en ordre du graphe ? (dans la mesure du possible)
- 2)Trouver l'arbre de poids minimum ?Donner son poids ? trouver son code de Prufer (Omettre l'orientation des arcs)
- 3)Trouver le plus court chemin du sommet 1 au sommet 10 (argumenter le choix de votre algorithme)
- **4**)Existe-il un plus long chemin du sommet 1 au sommet 10? Argumenter?

EX:3 : 1) Déterminez la quantité maximale pouvant transiter entre le nœud E et le nœud E dans le réseau ci-dessous, dont les arcs sont limités en capacité. Il vous est imposé de faire circuler à la première itération du flot sur le chemin $E \to 2 \to 4 \to S$. 2) Trouvez ensuite la coupe minimale.

EX :4 : Le tableau suivant répertorie les tâches et les contraintes d'enchainements.

Tâches	Durée en jours	Travaux antérieurs
Α	10	-
В	20	-
C	5	_
D	40	A
E	10	A, B, C
F	4	A, C
G	12	E, F
H	5	G
1	15	G
J	3	D, H, I

- 1) Trouver le graphe prenant en la méthode M.P.M.
- 2) Déterminer les dates au plutôt et les dates au plus tard et en déduire le chemin et les taches critiques
- 3) En déduire la durée du projet

Examen Théorie des graphes

Exercice 1

Soit M la matrice d'adjacence associée à un graphe G(X,E):

1. Ce graphe est-il oriente?

Précisez la valeur du demi-degré extérieur du nœud 5

3. Précisez la valeur du demi-degré intérieur du nœud 4

4. Dessinez le graphe

Exercice 2 '

 Montrez qu'un graphe biparti ne peut pas contenir un cycle de longueur impaire (nombre d'arêtes impair).

 Existe-t-il un graphe simple dont la suite de degrés est (3, 3, 3, 3, 3, 3, 3) ? Justifiez votre réponse

Exercice 3

On désire faire un réseau de 5 machines (nommées 1 a 5) fonctionnant en Wifi. Le nombre de canaux disponibles est limite. Les machines fonctionnent avec les contraintes suivantes :

Les deux premières machines ne peuvent pas fonctionner simultanément.

Les deux dernières aussi.

• Au plus une seule des machines 1,3 et 4 peut fonctionner a un instant donne.

Combien de machines au maximum peuvent fonctionner simultanément et lesquelles ? Quel est le problème formel (justifiez votre réponse)?

Exercice 4

On considère le graphe orienté et pondéré suivant:

Calculez le plus court chemin du sommet a vers tous les autres sommets.