MA4702. Programación Lineal Mixta: Teoría y Laboratorio. 2018.

**Profesor:** José Soto.

Profesor Auxiliar: Arturo Merino Profesor Ayudante: Obed Ulloa



## Laboratorio 1: Modelamiento de kendokus

- Reglas: Este laboratorio tiene una parte presencial obligatoria y una parte no-presencial opcional.
  - Si su grupo hace solo la parte obligatoria, su nota será 30 % (TI) + 70 % (TP).
  - Si hacen la parte opcional su nota será 30% (TI) + 40% (TP) + 30% (TNP) pero tendrán el siguiente beneficio: podrá volver a entregar si lo desea (una versión corregida de) su tarea y su parte presencial.

## • Entregables:

- Cada archivo que entregue o genere mediante un script **debe** comenzar con una línea de identificación:

  ## Archivo (nombrearchivo). Entregado por Grupo (xx): (nombreintegrantes) ##

  donde (nombrearchivo) es el nombre del archivo incluyendo extensión, (xx) es el número de su grupo, y

  (nombreintegrantes) son los nombres y apellidos de cada integrante del grupo.
- Presencial. Se entregan en ucursos antes de la hora de término del laboratorio los 9 archivos siguientes:
  - ∘ grupoxx-facil.mod ∘ grupoxx-facil.run ∘ grupoxx-facil-reporte.txt.
  - ∘ grupoxx-normal.mod ∘ grupoxx-normal.run ∘ grupoxx-normal-reporte.txt.
  - o grupoxx-dificil.mod o grupoxx-dificil.run o grupoxx-dificil-reporte.txt.
- No presencial. Se entrega en ucursos antes de las 23:59 del día lunes 2 de abril, los siguientes archivos:
   grupoxx-noop.mod
   grupoxx-noop.run
   grupoxx-noop-reporte.txt.

## 1. Parte presencial: Kendoku

Un tablero M es una matriz en  $[N]^{N\times N}$ . Los subconjuntos no vacíos de índices  $C\subseteq [N]\times [N]$  se llaman **jaulas**. Una jaula C se dice **bloque de M** si todos los elementos  $\{M_{ij}\colon ij\in C\}$  son diferentes. Un par ordenado (k; op), con  $k\in\mathbb{N}$  es una **declaración válida** para una jaula C si alguno de los siguientes ocurre:

| Declaración   | Codificación | Condición                                                                                                                         |  |  |
|---------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| (k;=)         | (k, 0)       | $ C =1$ y el único elemento $(i,j)\in C$ satisface $M_{ij}=k$ .                                                                   |  |  |
| (k; +)        | (k,1)        | $\sum_{(i,j)\in C} M_{ij} = k.$                                                                                                   |  |  |
| (k; -)        | (k,2)        | $ C  = 2$ , digamos $C = \{(i, j), (i', j')\}$ y además $ M_{ij} - M_{i'j'}  = k$ .                                               |  |  |
| $(k; \times)$ | (k,3)        | $\prod_{(i,j)\in C} M_{ij} = k.$                                                                                                  |  |  |
| $(k; \div)$   | (k,4)        | $ C  = 2$ , digamos $C = \{(i, j), (i', j')\}$ y además $k \in \left\{\frac{M_{ij}}{M_{i'j'}}, \frac{M_{i'j'}}{M_{ij}}\right\}$ . |  |  |

En palabras: la declaración es válida si es posible combinar los valores presentes en la jaula usando el operador op, de modo de obtener el resultado k. Solo se permite jaulas de tamaño 2 para los operadores - y  $\div$ , ya que estos no son asociativos. La columna codificación contiene una codificación de las declaraciones que solo usa números naturales. Por ejemplo (k,3) es una codificación de la declaración  $(k;\times)$ .

Un **kendoku**, es un tablero M cuyas filas y columnas son bloques, junto una partición de sus casilleros en jaulas  $\{C_1, \ldots, C_q\}$  con declaraciones válidas para cada uno. En el **juego del kendoku** recibimos como entrada un tablero vacío particionado en jaulas, junto con una declaración para cada jaula. El objetivo es llenar el tablero con valores en [N] de modo tal que el tablero resultante sea un kendoku.

Las instancias tienen kendokus vacíos con el siguiente formato. La primera linea contiene dos números: el tamaño N y el número de jaulas q. Luego recibirá una matriz de N por N llena con símbolos en [q] que representa la partición del tablero en las q jaulas. Finalmente recibirá q líneas con dos números naturales k, op de modo que la i-ésima línea es la codificación de una declaración para la i-ésima jaula. Por ejemplo, la descripción del kendoku vacío siguiente (guardado en kendoku-21.txt) y su kendoku solución se encuentran a continuación:

| 5 1              | 13 |    |    |    |
|------------------|----|----|----|----|
| 1                | 2  | 3  | 3  | 4  |
| 1                | 2  | 3  | 5  | 6  |
| 7                | 8  | 8  | 5  | 9  |
| 10               | 8  | 11 | 12 | 12 |
| 10               | 10 | 11 | 13 | 13 |
| 4                | 1  |    |    |    |
| 2                | 4  |    |    |    |
| 75               | 3  |    |    |    |
| 2                | 0  |    |    |    |
| 2                | 3  |    |    |    |
| 2<br>2<br>4<br>5 | 0  |    |    |    |
|                  | 0  |    |    |    |
| 60               | 3  |    |    |    |
| 1                | 0  |    |    |    |
| 8                | 3  |    |    |    |
| 2                | 2  |    |    |    |
| 1                | 2  |    |    |    |
| 8                | 1  |    |    |    |

| 1        | 2÷<br>4  | 75×<br>3 | 5       | <sup>2</sup> = 2 |
|----------|----------|----------|---------|------------------|
| 3        | 2        | 5        | 2×<br>1 | 4 = 4            |
| 5 =<br>5 | 60×<br>3 | 4        | 2       | 1 =<br>1         |
| 8×<br>2  | 5        | 1        | 4       | 3                |
| 4        | 1        | 2        | 8+3     | 5                |

Las siguientes partes son incrementales: La parte 3 contiene a la parte 2 y esta a su vez contiene a la parte 1. Aún así, no intente hacer la parte 3 sin hacer la parte 2, ni la parte 2 sin hacer la parte 1 ya que así se asegura de cometer menos errores.

Parte 1: Escriba un archivo de modelo grupoxx-facil.mod y un script grupoxx-facil.run, donde xx es el número de su grupo que realicen lo siguiente.

- Deben permitir resolver kendokus que usen solo declaraciones del tipo (k, =) y (k, +).
- El archivo de modelo debe describir un conjunto lineal binario que represente las condiciones que satisface un kendoku. debe incluir los parámetros N y q asociados a la descripción del kendoku vacío. Use variables binarias  $\{x[i,j,k]:i,j,k\in N\}$ , tal que x[i,j,k]=1 si y solo si M[i,j]=k, donde M representa el kendoku resuelto. Si lo desea puede usar variables, parámetros y conjuntos auxiliares.

- El archivo de script debe al menos:
  - 1. Tener la linea de identificación indicada en las instrucciones.
  - 2. Cargar su modelo.
  - 3. Ejecutar los comandos siguientes:

```
option solver cplex; option display_1col 0; option display_width 300;
```

- 4. Leer y resolver los kendokus de cada archivo kendoku-nn.txt con nn entre 01 y 10.
- 5. Escribir un archivo qrupoxx-facil-reporte.txt que siga el siguiente formato:

```
## Archivo (nombrearchivo). Entregado por (nombreintegrantes) ##

Instancia: kendoku-01.txt
tiempo de resolucion: ampl (_ampl_time ), solver (_solve_elapsed_time)
solucion:
1 2
2 1

Instancia: kendoku-2.txt
(...)
```

Los archivos a entregar son grupoxx-facil.mod, grupoxx-facil.run y grupoxx-facil-reporte.txt.

**Parte 2:** Repita las mismas instrucciones anteriores para kendokus que usen declaraciones del tipo (k, =), (k, +) y (k, -). Los archivos de instancias están en **kendoku-nn.txt**, con nn entre 01 y 20 (note que contiene las instancias de la parte anterior)

Los archivos a entregar son qrupoxx-normal.mod, qrupoxx-normal.run y qrupoxx-normal-reporte.txt.

Indicación: si J denota un conjunto con 2 elementos (digamos  $J = \{(i1, j1); (i2, j2)\}$ ), y necesitamos agregar una restricción del tipo y[i1,j1]-y[i2,j2]=LADO DERECHO en AMPL, puede intentar lo siguiente:

Parte 3: Repita las mismas instrucciones de la parte anterior para kendokus con todo tipo de declaraciones. Los archivos de instancias están en kendoku-nn.txt, con nn entre 01 y 30 (note que contiene las instancias de la parte anterior)

Los archivos a entregar son grupoxx-dificil.mod, grupoxx-dificil.run y grupoxx-dificil-reporte.txt.

Indicación: En AMPL, log(t) es el comando para obtener el logaritmo natural de t.

## 2. Parte no presencial: Kendoku No-op

Kendoku No-op es una variante del juego de kendoku donde se reciben declaraciones incompletas, es decir declaraciones que **no tienen operadores fijos** Es decir, recibimos como entrada un tablero vacío particionado en jaulas, junto con un valor objetivo para cada jaula. El objetivo es llenar el tablero con valores en [N] de modo tal que existan símbolos op para cada jaula que hagan que el tablero resultante sea un kendoku.

Los archivos de instancias tienen formatos similares a los del kendoku tradicional, a excepción que las q líneas que representaban las declaraciones completas de cada jaula son reemplazadas por q líneas que solo tienen los valores objetivos.

Por ejemplo, la descripción del kendoku no-op vacío siguiente (guardado en noop-01.txt) y su solución se encuentran a continuación:

| 4           | 8 |   |   |  |
|-------------|---|---|---|--|
| 1           | 1 | 2 | 3 |  |
| 4           | 1 | 2 | 3 |  |
| 5           | 5 | 6 | 7 |  |
| 5           | 8 | 6 | 7 |  |
| 7           |   |   |   |  |
| 3           |   |   |   |  |
| 3<br>2<br>2 |   |   |   |  |
|             |   |   |   |  |
| 16          | 5 |   |   |  |
| 2           |   |   |   |  |
| 1           |   |   |   |  |
| 4           |   |   |   |  |
|             |   |   |   |  |

| 3       | 1   | <sup>3</sup> 4 | 2 |
|---------|-----|----------------|---|
| 2       | 3   | 1              | 4 |
| 16<br>1 | 4   | 2              | 3 |
| 4       | 2 2 | 3              | 1 |

Parte única: Repita las mismas instrucciones de las partes anteriores para kendokus no-op. Los archivos de instancias están en noop-nn.txt, con nn entre 01 y 08.

Los archivos a entregar son grupoxx-noop.mod, grupoxx-noop.run y grupoxx-noop-reporte.txt.

**Indicación:** Le puede ser útil generalizar la siguiente idea: si  $A_1$  y  $A_2$  son variables acotadas (digamos  $0 \le A_1, A_2 \le M$ ), entonces la condición  $A_1 = a_1$  ó  $A_2 = a_2$  con  $a_1$  y  $a_2$  constantes se puede escribir como

$$\begin{cases} A_1 = z \cdot a_1 + b, \\ A_2 = w \cdot a_2 + c, \\ z + w = 1; \quad z, w \in \{0, 1\} \\ 0 \le b \le Mw \\ 0 < c < Mz \end{cases}$$

de ese modo:

$$z = 0, w = 1$$
 equivale a  $0 \le A_1 \le M, A_2 = a_2$   
 $z = 1, w = 0$  equivale a  $A_1 = a_1, 0 \le A_2 \le M$ .

**Notas:** Las instancias fueron extraidas de diversas fuentes. En particular se usaron instancias de www.calcudoku.org, kenkenpuzzle.com, www.webkendoku.com.