Eric J. Earley

Curriculum Vitae

(He/him)
earley@chalmers.se

SUMMARY

I am a postdoctoral researcher at the Chalmers University of Technology, working with Max Ortiz-Catalán at the Center for Bionics and Pain Research. I oversee and direct our research on sensory feedback to improve osseointegrated prosthetic limb use and control by stimulating peripheral nerves via implanted electrodes.

My research focuses on developing utilitarian solutions to prosthetic limitations which are impactful not only in a laboratory setting, but at home and during daily use. This requires a multidisciplinary and collaborative approach bringing together engineers, scientists, clinicians, therapists, and patients to develop novel technologies.

EDUCATION

Postdoctoral Researcher	2020 – present	Chalmers University of Technology
Ph.D. Biomedical Engineering	2014 - 2020	Northwestern University
M.S. Biomedical Engineering	2012 - 2014	Northwestern University
B.S. Engineering: Mechanical Specialty	2008 - 2012	Colorado School of Mines

RESEARCH EXPERIENCE

Postdoctoral Research 2020 - present

Chalmers University of Technology ◆ Department of Electrical Engineering

Center for Bionics and Pain Research ♦ Bionic Arms

Mentor: Dr. Max Ortiz-Catalán

Developing sensory feedback via nerve stimulation for use with osseointegrated prosthetic limbs. Investigating longitudinal behavioral and functional impacts of sensory feedback on prosthesis use at home, and quantifying perceptions and psychophysical metrics of varying stimulation parameters.

Doctoral Research 2014 – 2020

Northwestern University • Shirley Ryan AbilityLab

Center for Bionic Medicine ◆ Neural Engineering for Prosthetics and Orthotics

Advisors: Dr. Levi Hargrove, Dr. Jon Sensinger

Used sensory feedback to improve motor adaptation by providing information not accurately available via vision, as determined by psychophysical analysis.

Master's Research 2012 – 2014

Northwestern University ◆ Rehabilitation Institute of Chicago

Center for Bionic Medicine • Neural Engineering for Prosthetics and Orthotics

Advisor: Dr. Levi Hargrove

Improved control of partial-hand prostheses through optimization of EMG pattern-recognition parameters and dynamic window lengths while preserving wrist mobility.

Volunteer Internship 2012

University of Colorado ◆ Anschutz Medical Campus

BioMechatronics Development Laboratory

Advisor: Dr. Richard F. ff Weir

Designed thumb actuation mechanism and housing and created SolidWorks models of prototype 3-DOF prosthetic hand.

www.EricJEarley.com

PUBLICATIONS

Peer-Reviewed Publications

• E. Lendaro, E.J. Earley, M. Ortiz-Catalán. "Statistical analysis plan for an international, double-blind, randomized controlled clinical trial on the use of phantom motor execution as a treatment for phantom limb pain," *Trials*, 2022.

- E.J. Earley, R.E. Johnson, J.W. Sensinger, L.J. Hargrove. "Joint Speed Feedback Improves Myoelectric Prosthesis Adaptation after Perturbed Reaches in Non Amputees," *Scientific Reports*, 2021.
- E.J. Earley, R.E. Johnson, L.J. Hargrove, J.W. Sensinger. "Joint Speed Discrimination and Augmentation for Prosthesis Feedback," *Scientific Reports*, 2018.
- E.J. Earley, L.J. Hargrove, T.A. Kuiken. "Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control," *Frontiers in Neuroscience*, 2016.

Conference Papers and Posters

Selected for Oral Presentation

- E.J. Earley, E. Mastinu, M. Ortiz-Catalán. "Cross-Channel Impedance Measurement for Monitoring Implanted Electrodes," *IEEE Engineering in Medicine and Biology Society (EMBC)*, 2022. Accepted.
- B.M. Musolf, E.J. Earley, M. Muñoz-Novoa, M. Ortiz-Catalán. "Analysis and Design of a Bypass Socket for Transradial Amputations," *IEEE Engineering in Medicine and Biology Society (EMBC)*, 2021.
- ◆ E.J. Earley, L.J. Hargrove. "Modeling Expected Reaching Error and Behaviors for Motor Adaptation," *IEEE Engineering in Medicine and Biology Society (EMBC)*, 2019.

Selected for Poster Presentation

- ◆ E.J. Earley, K.J. Kaveny, R.E. Johnson, L.J. Hargrove and J.W. Sensinger. "Joint-based velocity feedback improves myoelectric prosthesis performance," *Myoelectric Controls and Upper Limb Prosthetics Symposium (MEC)*, 2017.
- E.J. Earley, K.J. Kaveny, R.E. Johnson, L.J. Hargrove and J.W. Sensinger. "Joint-based velocity feedback to virtual limb dynamic perturbations," *International Conference on Rehabilitation Robotics (ICORR)*, 2017.
- E.J. Earley, A.A. Adewuyi, and L.J. Hargrove. "Optimizing Pattern Recognition-Based Control for Partial-Hand Prosthesis Application," *IEEE Engineering in Medicine and Biology Society (EMBC)*, 2014.

Other Conference Proceedings

- ◆ E.J. Earley, R.E. Johnson, L.J. Hargrove and J.W. Sensinger. "Visual Discrimination of Biomimetic Arm Speeds," *School and Symposium on Advanced Neurorehabilitation (SSNR)*, 2018.
- E. Earley, K. Kaveny, R. Johnson, L. Hargrove, J. Sensinger. "Appropriate Sensory Feedback Improves Performance," *ISPO World Congress*, 2017.
- ◆ E.J. Earley and L.J. Hargrove. "The Effect of Wrist Position and Hand-Grasp Pattern on Virtual Prosthesis Task Performance," *IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)*, 2016.

Publications In Preparation

- B. Ahkami, E. Mastinu, **E.J. Earley**, M. Ortiz-Catalán. "Extra-neural signals from severed nerves enable intrinsic hand movements in transhumeral amputations," *Scientific Reports*. Revision submitted.
- ◆ E.J. Earley, J. Zbinden, M. Muñoz-Novoa, E. Mastinu, A. Smiles, M. Ortiz-Catalán. "Competitive Motivation Increased Home Use and Improved Prosthesis Self-Perception after Cybathlon 2020 for x-OPRA Pilot," *Journal of Neuroengineering and Rehabilitation*. Revision submitted.
- ◆ J. Zbinden, P. Sassu, E. Mastinu, **E.J. Earley**, M. Muñoz-Novoa, R. Brånemark, M. Ortiz-Catalán. "Nerve transfer to native and free grafted muscles for the control of bionic limbs," *Science: Translational Medicine*. Submitted.
- E.J. Earley, R.E. Johnson, J.W. Sensinger, L.J. Hargrove. "Wrist Speed Feedback Improves Elbow Compensation and Reaching Accuracy for Myoelectric Transradial Prosthesis Users in Hybrid Virtual Reaching Task." In preparation (receiving edits from co-authors).

E.J. Earley*, A. Berneving*, M. Ortiz-Catalán. "Neurostimulation Artifact Removal Improves Signal Clarity and Prosthesis Control for Implantable Sensors." In preparation (receiving edits from co-authors).

- A. Smiles, E.J. Earley, M. Ortiz-Catalán, N. Jiang. "Providing sensation of prosthetic grip stability to amputees through neural interface." In preparation (receiving edits from co-authors).
- E. Lendaro, C.K. Van der Sluis, L. Hermansson, E. Keesom, M.J. Muñoz-Novoa, L. Bunketorp-Käll, C. Widehammar, H. Burger, P. O' Reilly, B.E. McGuire, E.J. Earley, C.S. von Waldheim, E. Diamantidis, A. Stockselius, L. Gudmundson, W. Hill, M. Diers, L. Hargrove, K. Turner, M. Ortiz-Catalán. "Results of an international, double-blind, randomized controlled clinical trial for phantom motor execution as a treatment for phantom limb pain." In preparation (receiving edits from co-authors).
- M. Ortiz-Catalán, J. Zbinden, J. Millenaar, D. D'Accolti, E.J. Earley, E. Mastinu, J. Kolankowska, M. Muñoz-Novoa, C. Cipriani, P. Sassu, R. Brånemark. "A highly integrated below-elbow bionic hand for use in daily life with neural control and feedback." In preparation (receiving edits from co-authors).

GRANT FUNDING

Current Research Support

Vetenskapsrådet: 2020-04817 (PI: Max Ortiz-Catalán)

Integrerade bionisk proteser/Highly integrated bionic prostheses

2021/01/01 - 2024/12/31Role: Co-Investigator

Completed Research Support

NSF-NRI: Small: 1317379 (PI: Levi Hargrove) Modeling, Quantification, and Optimization of Prosthesis-User Interface

2014/09/01 - 2018/08/31Role: Co-Investigator

NRSA T32: HD07418 (PI: Eric Perreault)

Pathophysiology & Rehabilitation of Neural Dysfunction 2016/09/01 - 2018/08/31Role: Pre-Doctoral Trainee

NIDILRR: 90RE5014-02-00 (PI: Levi Hargrove)

Pattern Recognition-Based Myoelectric Control of Partial-Hand Prostheses

2013/01/01 - 2014/08/31Role: Co-Investigator

PROFESSIONAL MEMBERSHIPS & SERVICE

Professional Memberships

2014 – present ♦ Member, IEEE 2019 – present

◆ Member, IEEE Engineering in Medicine and Biology Society 2022

♦ Member, ISPO

Journal Referee

- ♦ ACM Transactions on Internet of Things
- Allied Academies Biomedical Research
- Annals of Physical and Rehabilitation Medicine
- Assistive Technology
- Biomedical Signal Processing and Control
- Computer Methods in Biomechanics and Biomedical Engineering
- IEEE EMBS Conference on Neural Engineering
- IEEE Engineering in Medicine and Biology Conference
- ◆ IEEE International Conference on Biomedical Robotics and Biomechatronics
- IEEE International Conference on Intelligent Robots and Systems

- ◆ IEEE International Conference on Rehabilitation Robotics
- IEEE Robotics and Automation Letters
- IEEE Transactions on Biomedical Engineering
- IEEE Transactions on Human-Machine Systems
- IEEE Transactions on Mechatronics
- IEEE Transactions on Medical Robotics and Bionics
- IEEE Transactions on Neural Systems & Rehabilitation Engineering
- Journal of NeuroEngineering and Rehabilitation
- ♦ Myoelectric Control Conference
- ◆ PLOS ONE
- Scientific Reports
- Wearable Technologies

TEACHING

Chalmers University of Technology – EEM076 – Electric Circuits and Fields

2020-present

Lecturer, Examiner

Learning objectives: analyze linear circuits using DC and AC calculation methods, perform electromagnetic field calculations based on simple geometries, and use computer-based tools to analyze simpler electrical circuits.

Course development included refining electromagnetic field module to better integrate with the circuits modules and adapting the course for digital instruction and examination during the COVID-19 pandemic.

Nettelhorst Elementary – Get-a-Grip Program

2017-2018

Student Mentor

Through Northwestern's Science Club, mentored elementary school students in the fundamentals of engineering design, construction, and analysis, and guided them as they developed a prosthetic device made from household items.

Notre Dame University – PHIL 20632/STV 20233 – Robot Ethics

2016 - 2018

Guest Lecturer

Along with Max Shepherd, gave guest lectures titled "ProstEthics" for Dr. Don Howard's Robot Ethics course focused on historical and current research of prosthetic limbs, and ethical considerations related to prosthetic design and transhumanism.

Northwestern University McCormick Graduate Leadership Council

2013 - 2017

Workshop Coordinator and Instructor

Coordinated workshops to teach introductory through advanced MATLAB and SolidWorks skills, and additional workshops on other transferable skills, for over 600 graduate students.

Northwestern University – BME 307 – Quantitative Experimentation and Design

2015

Teaching Assistant

Mentored biomedical engineering undergraduate students as they learned to answer questions using experimental means, and to quantify their results using statistical analysis

ADVISING & MENTORING

PhD Students 2020 – present • Jan Zbinden, Electrical Engineering 3-Degree-of-Freedom Simultaneous and Proportional Control of Prosthetic Hands 2020 – present • Riccardo Collu, Engineering & Architecture Novel Waveform Shapes for Neurostimulation MS Students 2022 • Nathaly Sanchez Chan, Biomedical Engineering ADS BP v4 Open-Source Release 2021 • Anton Berneving, Engineering Mathematics and Computational Science Neurostimulation Artifact Removal Algorithms for iEMG Prosthesis Control 2020 - 2021• Brett Musolf, Biomedical Engineering Design of a Bypass Socket for Transradial Prosthesis Use 2020 - 2021• Andrew Smiles, Engineering

LEADERSHIP

Workforce for Inclusive Science

2021 - present

Organizing Committee

Facilitating meetings and seminars aimed at promoting and fostering equity and inclusion in academia.

National Communicating Science Conference

2017 – present

Leadership Team, Advisory Committee

Treasurer and advisory committee member, responsible for developing fiscal procedures and managing \$100,000 budget for flagship and local conferences. Program organizer for sixth annual national conference held summer 2018, responsible for selecting panelists and organizing non-panel workshops.

International Conference on Phantom Limb Pain

2021

Organizing Committee

Planned, oversaw, and executed social media plan before and during the event. Moderated discussion panel during final day of the conference.

Chicago Communicating Science Conference

2015 - 2017

Treasurer, Lead Organizer

Organizer and treasurer for second conference held summer 2016. Lead organizer for third conference held summer 2017. Tracked budget and donated funds, secured conference location, and oversaw the conference.

Northwestern University Biomedical Engineering Graduate Students Group

Slip Prediction and Stimulation System for Sensorized Prosthetic Hands

2013 - 2017

Co-President

Oversaw periodic academic and social events, maintained communication with other officers, proposed and facilitated changes to annual BME research day including pop talks (short 3-minute overviews of research using jargon-free language), and rebuilt website.

Colorado School of Mines Robotics Club

2008 - 2011

Treasurer, Mentor

Developed and managed \$26,000 annual budget. Co-initiated project to design, build and program self-balancing wheelchair. Mentored high school students for FIRST Robotics Competition

www.EricJEarley.com

PUBLIC OUTREACH & EDUCATION

SciShow YouTube Channel

2018 - 2020

Freelance script writer for SciShow, a YouTube channel which make easy-to-understand science videos

- Why Do Prosthetic Limbs Feel Way Heavier Than Biological Ones?
- Why Scientists are Giving Robots Human Muscles
- Why Do Batteries Taste Sour?
- Why Does Body-Temperature Air Feel Hot?
- Is Sitting up Straight Actually Good Posture?
- Does Medicine Actually Expire?
- Why Do Fetuses Kick So Much?

Sci-Inspiration YouTube Channel

2017 - 2018

Channel explores scientific topics through popular media including movies, television, and video games.

- Why can't we travel Faster than Light?
- How can we travel Faster than Light?

Other Science Videos 2016 – 2017

- "STEM Connect Careers: Eric Earley." Discovery Education, 2017.
- Prosthetic Limbs and Motor Adaptation

Science Writing 2017

• The Cybathlon: The Olympics of Restoring Daily Tasks, HELIX Magazine.

Public Talks & Demos 2014 – present

- Center for Bionics and Pain Research Inaugural Symposium, 2021.
- "Sensory Substitution in the Presence of Vision: Providing Joint Speed Feedback to Improve Myoelectric Prosthesis Control and Adaptation," Thesis defense, 2019.
- "Wunderbar Together Science Slam," Daley Plaza, Chicago, IL, 2019.
- "Neural Engineering: Designing Bionic Limbs Controlled by the Brain," College of DuPage STEMinar Series, 2018.
- ◆ Chicago Science Festival, Illinois Science Council, 2016 2019.
- ♦ Museum of Science and Industry Robotics Week, 2016 2019.
- "How Do I Talk to my Robo-Limb?", RSG Science Communicating Workshop, 2016.
- IEEE Engineer's Week, 2016.
- ◆ "Adler After Dark", Adler Planetarium, 2015 2018.
- Camp Neuro Chicago, 2015.

ACADEMIC & TECHNICAL SKILLS

- Prosthetic sensory feedback, sensory integration, psychophysics
- Pattern recognition, classification, and machine learning algorithms
- Human motor control, motor learning and adaptation, musculoskeletal anatomy
- Statistical analysis, hypothesis testing, power analysis, linear and nonlinear mixed effects modeling
- ♦ MATLAB, C, Simulink, LabVIEW
- SolidWorks, FEA
- ♦ HTML5, CSS
- Adobe Illustrator, Photoshop, Premiere; Affinity Designer, Photo
- Organization, scheduling, project management, Kanban, scrum
- Native English; limited working proficiency Swedish; elementary proficiency German, French