Question number	Scheme	Marks		
1. (a)	Take a (simple) random sample from (mutually exclusive) groups of the population 1g/1h Sample sizes within strata in strict proportion to numbers in each strata in the population Advantage:	B1 B1		
	More accurate estimate of variance of population mean Individual estimates for strata available Any one Disadvantage:	B1		
(b)	Difficult if strata are large Definition of strata problematic (may overlap) Any one	B1 (4	4)	
	Non-random sampling from groups of the population Advantage: Representative sample can be achieved with small sample size	B1 B1dep		
	Cheap (costs kept to a minimum) Administration relatively easy Any one (not quick) Disadvantage Not possible to estimate sampling errors due to lack of randomness	B1		
	Judgment of interviewer can affect choice of sample – bias OK Non-response not recorded Difficulties of defining controls e.g. social class Any one	B1 (4	4)	
		8)	
2. (a)	$X \sim N$ (124, 20 ²) or $\overline{X} \sim$ (124, $\frac{20^2}{30}$ or assume σ^2 estimated by s ² or CLT, vals.	B1,B1		
	$\overline{x} \pm 2.5758 \frac{\sigma}{\sqrt{n}} = 124 \pm 2.5758 \frac{20}{\sqrt{30}}$ 2.5758, formula + attempt, all correct&2.58,2.576 = 124 ± 9.405	B1M1A1		
(b)	= (115,133) 140 is not in confidence interval Underweight apples chosen or Sample may not be representative/may be biased Any one	M1	6)	
	Any one		2)	

number			Marks						
3. (a)	E(X-Y)=20-10=10	Requ	uire minus, 10						
(b)	Var(X-Y)=5+4=9			Ro	equire plus, 9	M1A1	(2		
(c)	X-Y □ N(10,9)				Implied	B1 ∫			
	P(13 <x-y-< td=""><td><16)=P(X-Y<16</td><td>(1)-P(X-Y<13)</td><td></td><td>Subtract</td><td>M1</td><td></td></x-y-<>	<16)=P(X-Y<16	(1)-P(X-Y<13)		Subtract	M1			
		, ,	$\frac{0}{0}$) - P(Z< $\frac{13-10}{3}$)		Standardise	M1			
		= P(Z<2) - I	2		2&1	A1			
			0.8413 = 0.1359		0.1359	A1			
4.	H_0 : Taking drug and H_1 : Taking drug and	_	_) both	B1 B1			
4.	·	catching a cold are	not independent (ass		1	B1			
I.	·	_	_		All totals				
i.	H_1 : Taking drug and	catching a cold are	not independent (ass	100 100	1	B1			
i.	H ₁ : Taking drug and Drug	Cold 34 (39.5)	not independent (ass Not Cold 66 (60.5)	sociated) (not ditto	All totals	B1 B1			
i.	H ₁ : Taking drug and Drug	Cold 34 (39.5) 45 (39.5)	not independent (ass Not Cold 66 (60.5) 55 (60.5) 121 $(O-E)^2$	100 100	All totals $E = \frac{RT \times CT}{}$	B1 B1			
l.	Taking drug and Drug Dummy	Cold 34 (39.5) 45 (39.5) 79	not independent (ass Not Cold 66 (60.5) 55 (60.5) 121 $(O-E)^2$ E	100 100	All totals $E = \frac{RT \times CT}{}$	B1 B1			
i.	H ₁ : Taking drug and Drug Dummy	Cold 34 (39.5) 45 (39.5) 79	not independent (ass Not Cold 66 (60.5) 55 (60.5) 121 $(O-E)^2$	100 100	All totals $E = \frac{RT \times CT}{}$	B1 B1			
1.	Drug Dummy O 34	Cold 34 (39.5) 45 (39.5) 79 E 39.5	not independent (ass Not Cold 66 (60.5) 55 (60.5) 121 $\frac{(O-E)^2}{E}$ 0.766	100 100	All totals $E = \frac{RT \times CT}{}$	B1 B1			

Question number	Scheme									
5	μ_a and μ_b are mean weight of population after and before closure respectively.									B1
	$H_0: \ \mu_b = \mu_a$ $H_1: \mu_b > \mu_a$		B1B1							
	$z = \frac{10 - 8}{\sqrt{\frac{2.64^2}{100} + \frac{1.94^2}{120}}}$ Fraction, denom Ok alone								M1A1 M1A1	
	$z = \frac{2}{\sqrt{0.1011}} = 6.29$ awrt 6.2									
	Critical region is $z \ge 1.6$				_	-	Ü	1.6449	B1, M1	
	(or $P(Z \ge 6.29) = 0.0$) There is evidence that clo		A15	(11)						
6 (a)										
		5 3	7	8	1	4	6		d M 1	
		$\begin{bmatrix} 2 & 6 \\ 3 & 3 \end{bmatrix}$	5 2	7	3	3	8 2		$\sum d^2 M$	141
		9 9	4	1	9	9	4	46	_ u .w	1711
	$r_s = 1 - \frac{6 \times 46}{8 \times 63}$ $r_s = 0.452$							0.452	M1A1∫ A1	
										(6)
(b)	H ₀ : $\rho = 0$, H ₁ : $\rho \neq 0 (\rho > 0)$ critical values are $\pm 0.7381 (0.6429)$ 0.7381(0.642)								B1B1 9) B1	
	0.452<0.7381 (0.452<0.6	429) or not sig	g or Insuf	ficient evi	dence to	reject H_0			M1	
	No agreement between th	e two judges.					Conte	ext	A1∫	(5)

Question number			\$	Scheme)			N	Iarks	
7 (a)	$\mu = 0.3 \times 50 + 0.2 \times 10 + 0.5 \times 2 = 18$ $\sigma^{2} = (0.3 \times 50^{2} + 0.2 \times 10^{2} + 0.5 \times 2^{2}) - 18^{2} = 448$								M1A1 M1A1	
(b)	(50,50) (10,2) (2,10) (10,10) (50,10) (10,50) (2,2) (50,2)	O:		(50,50) (10,2) (10,10) (50,10) (2,2) (50,2)	withou	t ordere			D2	(4)
(c)	$(2,50)$ \overline{x} $P(\overline{X} = \overline{x})$	2 0.25	6 0.2	10 0.04	26	30 0.12	50 0.09	her, -1 each missing pair	B2	(2)
(d)	$P(2 \le \overline{X} < 7) = 0$	025 + 0.2	2 = 0.4	15	Α	All meai		babs muiltiplied, -1 each errobabs bilities of 2 and 6 added, 0.4		11 A2 (4)
(e)	$E(\overline{X}) = 2 \times 0.25 + 6 \times 0.2 = 18$ $\sum xP(X = x)$ from table, 18 $Var(\overline{X}) = 2^2 \times 0.25 + 6^2 \times 0.2 + 18^2 = 224$ $\sum x^2P(X = x) - (theirs)^2$, 224 M1A1								M1 A1	(2)
	So $E(\overline{X}) = 18 = \mu$ and $Var(\overline{X}) = 224 = \frac{1}{2}\sigma^2$ as required.								A1	(5)
									17	