MATE 5201: Tarea 4

Due on 8 de octubre

Prof. Alejandro Velez, C41, 8 de octubre

Sergio Rodriguez

Problem 1

(6 puntos) – Demuestre que un espacio metrico (X,d) es conexo si y solo si los unicos subconjuntos E abiertos y cerrados de X son $E=\emptyset$ y E=X.

Prueba:

 (\Longrightarrow)

Suponga que (X,d) es conexo. Note que $x\in\emptyset\Longrightarrow\exists r\in\mathbb{R}$ tal que $B(x;r)\in X\Longrightarrow\emptyset$ es abierto y $\emptyset^{\mathbb{C}}=X$ es cerrado. Tambien $x\in\emptyset\Longrightarrow U_r(x)\setminus\{x\}\cap X\neq\emptyset\Longrightarrow\emptyset$ es cerrado y $\emptyset^{\mathbb{C}}=X$ es abierto. Entonces, solo falta probar que estos subconjuntos son los unicos que son abiertos y cerrados. Haremos esto por contrareciproco.

Suponga que $E \subsetneq X$ con $E \neq \emptyset$ es abierto y cerrado. Es claro que $E^{\mathbb{C}} \neq \emptyset$, $E \cup E^{\mathbb{C}} = X$, y $E \cap E^{\mathbb{C}} = \emptyset$. Como E es cerrado, tenemos que $E = \overline{E} \Longrightarrow \overline{E} \cap E^{\mathbb{C}} = \emptyset$. Similarmente, como E es abierto, $E^{\mathbb{C}}$ es cerrado, lo que implica que $E^{\mathbb{C}} = \overline{E^{\mathbb{C}}} \Longrightarrow E \cap \overline{E^{\mathbb{C}}} = \emptyset$.

 $\div E$ y $E^{\mathbb{C}}$ estan separados $\Longrightarrow X$ no es conexo.

(⇐=)

Por contrareciproco, suponga que X no es conexo, entonces $\exists A, B \subseteq X$ con $A, B \neq \emptyset, A, B \neq X$, y $A \cup B = X$ tal que $\overline{A} \cap B = \emptyset$ y $A \cap \overline{B} = \emptyset$. Note que $A \cup B = X$ y A y B son disjuntos, lo que implica que los conjuntos son complementos en X. Entonces llame E := A y $E^{\mathbb{C}} := B$.

Tome x punto limite de E y note que $x \notin E^{\mathbb{C}}$ ($\because x \in E^{\mathbb{C}} \Longrightarrow x \in \overline{E} \cap E^{\mathbb{C}} \cancel{\times}$) $\Longrightarrow x \in E \Longrightarrow E$ es cerrado. Similarmente, tome x punto limite de $E^{\mathbb{C}}$ y note que $x \notin E \Longrightarrow x \in E^{\mathbb{C}} \Longrightarrow E^{\mathbb{C}}$ es cerrado $\Longrightarrow E$ es abierto.

 $\therefore \exists E \subseteq X \text{ con } E \neq \emptyset \text{ y } E \neq X \text{ abierto y cerrado.}$

MEP

Problem 2

(4 puntos) – $Si E \subseteq \mathbb{R}^n$ es convexo, pruebe que E es conexo.

Prueba:

Por contrareciproco, suponga que E no es conexo, entonces $\exists A, B \subseteq E$ con $A, B \neq \emptyset, A, B \neq E$, y $A \cup B = E$ tal que $\overline{A} \cap B = \emptyset$. Fije $a \in A \subseteq E$, y $b \in B \subseteq E$. Ahora, sean:

$$\begin{split} L_A &:= \{ \lambda \in [0,1] \mid \lambda a + (1-\lambda)b \in A \}, y \\ L_B &:= \{ \lambda \in [0,1] \mid \lambda a + (1-\lambda)b \in B \}. \end{split} \tag{1}$$

Note que ambos L_A y L_B son subconjuntos de \mathbb{R} , $1 \in L_A \Longrightarrow L_A \neq \emptyset$, $0 \in L_B \Longrightarrow L_B \neq \emptyset$, y ambos L_A y L_B estan claramente acotados por 0 y 1. Entonces, por la propiedad de la cota superior minima y la propiedad de la cota inferior maxima de los numeros reales, tenemos que $\exists \alpha, \beta \in \mathbb{R}$ tal que $\alpha = \sup(L_A)$ y $\beta = \inf(L_B)$.

Es claro que $\alpha \ge 0$ y $\beta \le 1$. Pero ahora note que $\alpha < \beta$, porque si $\alpha \ge \beta$, entonces $\exists \lambda$ tal que $\lambda a + (1 - \lambda)b \in A \cap B$, lo que contradice que E no es conexo. Entonces, podemos usar la densidad en los

reales para conseguir $\lambda \in [0,1]$ tal que $\alpha < \lambda < \beta$. Pero esto implica que $\lambda a + (1-\lambda)b \notin A$, por definicion de α , y $\lambda a + (1-\lambda)b \notin B$, por definicion de β . Entonces, encontramos un $\lambda \in [0,1]$ tal que $\lambda a + (1-\lambda)b \notin E$.

 $\div E$ no es convexo.

MEP

Problem 3

(6 puntos) – Suponga que $0 < x_1 < 1$, y defina la sucesion recursiva: $x_{n+1} \coloneqq 1 - \sqrt{1-x_n}$. Demuestre que $\{x_n\}$ es decreciente, con $\lim_{n \to \infty} x_n = 0$. Luego pruebe que $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \frac{1}{2}$.

Prueba:

MEP

Problem 4

(4 puntos) – Sean $\{x_n\}, \{y_n\}$ sucesiones en un espacio metrico (X,d), tales que $x_n \to x$ y $y_n \to y$ en X. Demuestre que $\lim_{n \to \infty} d(x_n,y_n) = d(x,y)$.

Prueba:

MEP

Problem 5

(5 puntos) – En (X, d), si $E \subseteq X$ es completo, pruebe que E es cerrado.

Prueba:

MEP

Problem 6

(4 puntos) – Demuestre que $\overline{\mathbb{Q}} = \mathbb{R}$ de la siguiente forma: dado $x \in \mathbb{R}$, demuestre que existe una sucesion $\{x_n\} \subseteq \mathbb{Q}$ tal que $x_n \to x$.

Prueba:

MEP

Problem 7

 $\text{(4 puntos)} - \textit{Sea} \ \{x_n\} \ \textit{sucesion en} \ (X,d), \ \textit{y sea} \ E_n \coloneqq \{x_n, x_{n+1}, x_{n+2}, \ldots\}. \ \textit{Demuestre que} \ \{x_n\} \ \textit{es sucesion de Cauchy si y solamente si} \ \lim_{n \to \infty} \text{diam}(E_n) = 0.$

Prueba:

MEP

Problem 8

(8 puntos) – Sea $\{x_n\}$ una sucesion de numeros reales, y definamos:

$$y_n := \frac{1}{n} \sum_{j=1}^n x_j, \qquad z_n := \frac{x_n}{n}.$$
 (2)

(a) - (4 puntos) – $Si x_n \to x$ en \mathbb{R} , demuestre que $y_n \to x$.

Prueba:

MEP

(b) - (4 puntos) – Si $(x_{n+1}-x_n) \to x$ en \mathbb{R} , pruebe que $z_n \to x$.

Prueba:

MEP

Problem 9

(5 puntos) – Sean $\{x_n\}$ y $\{y_n\}$ dos sucesiones de Cauchy en (X,d), y definamos $\beta_n \coloneqq d(x_n,y_n)$. Pruebe que $\{\beta_n\}$ converge en \mathbb{R} .

Prueba:

MEP

Problem 10

(4 puntos) – Considere la sucesion $\{a_n\}$ definida como sigue:

$$a_1=0; \qquad a_{2n}=\frac{a_{2n-1}}{2}; \qquad a_{2n+1}=\frac{1}{2}+a_{2n}; \qquad (n\in\mathbb{N}). \tag{3}$$

 $\operatorname{Calcule} \limsup_{n \to \infty} a_n \ y \liminf_{n \to \infty} a_n.$

Prueba:

MEP

Problem 11

(4 puntos) – $Si\{x_n\}$ es una sucesion acotada en \mathbb{R} , demuestre que:

$$\lim \sup_{n \to \infty} (-x_n) = - \lim \inf_{n \to \infty} (x_n) \qquad \qquad y \qquad \quad \lim \inf_{n \to \infty} (-x_n) = - \lim \sup_{n \to \infty} (x_n) \tag{4}$$

Prueba:

MEP