## 1. Práctica: Many Time Pad

## 1 Objetivo

Has interceptado 14 mensajes encriptados utilizando el *stream cipher one-time-pad*. Sospechas que se ha utilizado la misma clave para cifrar todos los mensajes, y sabéis que la estrategia *two-time pad* es incorrecta. **Por ello, vas a intentar adivinar la clave y descifrar los 14 mensajes originales.** 

Ten en cuenta que los siguientes 14 mensajes están representados con notación hexadecimal.

| c0  | 1a1617451a411517490b061b0f08535404044e17450c1c45326222420a00340006544 |
|-----|-----------------------------------------------------------------------|
|     | 816170b54030b55020d530046                                             |
| c1  | 184f184f0a081a000016071a00010017090b00100416010054530e060c52301b0c000 |
|     | a131304430e0a0640                                                     |
| c2  | 09001a5248041b04490a4f060b07550601115953150c010007000604134f2b4f01481 |
|     | a0417115348                                                           |
| c3  | 7926114506151f1159461b1d0b025454010850120617014542104b08104c35061a4e4 |
|     | 8201b00520f0c1400170e                                                 |
| c4  | 0c3c5547071713174e0b0a1b1a445018090b5353110c5216044505015904685a55420 |
|     | 10d1a0c4f084f1a0044430d0a005200000007171d54124b                       |
| с5  | la001c4e480c1f0b490808551e1645070d0b5400450252071d474b020b4f2e1b1d000 |
|     | 10f560659040a070d1649190d4b                                           |
| c6  | 0d0710003d32560c5346211a4e550000091747161143140a06001f040b473c1b10444 |
|     | 80002114105040640                                                     |
| с7  | 1c02054c0718130000080a12020d47110606455306021c45174f06150b4f340606454 |
|     | 80f131157091d1e4e1745171d1749071c4d                                   |
| с8  | 103b55530d02031749121655070a541104094914000d1100544918450c4e3d0a07551 |
|     | c081a0c5a030b5b                                                       |
| с9  | 120a1050010f1145410a03551d0b46001f0452164516020115540e0159492a4f14441 |
|     | e0805004448                                                           |
| c10 | 793b024f48151f0845461f140a444907480b4f074510170601520e4959552a0a55414 |
|     | 80f1312000d0a0c4e0141170045541a08065c                                 |
| c11 | 163b55530d020317491216551e1645070d0b54004502520b11574b161c54790013000 |
|     | b0917094c0301120b170e                                                 |
| c12 | 100021000c04000c43031c550d054e54010b43010002010054530e060c52301b0c001 |
|     | e141a0b45140e17070849000100535d                                       |
| c13 | 793b1d451a04560c53460e550d1d42111a4553160616000c00594b161249350306001 |
|     | b0919175407081040                                                     |
| L   |                                                                       |

## 2 One time pad

One time pad consiste en cifrar y descifrar mensajes utilizando la operación lógica XOR.



¿Por qué es peligroso utilizar la misma clave para cifrar múltiples mensajes?

Supongamos que ciframos dos mensajes utilizando la misma clave.

$$c0 = k \oplus m0$$

$$c1=k\oplus m1$$

Si combinamos los dos mensajes cifrados podemos obtener información sobre los mensajes originales m0 y m1.

$$c0 \oplus c1 = m0 \oplus k \oplus m1 \oplus k$$
  
 $c0 \oplus c1 = m0 \oplus m1 \oplus k \oplus k$   
 $c0 \oplus c1 = m0 \oplus m1$ 

Si tenemos más de dos mensajes, podemos obtener más información combinándolos.

¿Y cómo podemos utilizar esta información para descifrar los mensajes interceptados?

Pista: piensa que ocurre al realizar la operación XOR entre [a-z] o [A-Z] y el espacio (" " = 0x20).