Homework 7

Jim Zieleman

October 19, 2020

1. Define $f:[0,\infty)\to R$ by $f(x)=\sqrt{x}$. Prove that f is continuous.

Unless both
$$x, x_0$$
 are zero we have:
$$\sqrt{x} - \sqrt{y} = (\sqrt{x} - \sqrt{y}) \frac{(\sqrt{x} + \sqrt{y})}{(\sqrt{x} + \sqrt{y})} = \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$$

We have two cases where x > 0 and x = 0.

Case 1: x > 0

Let
$$\delta = x\sqrt{\epsilon}$$
 s.t $|x - x_0| < \delta$ then

Let
$$\delta = x\sqrt{\epsilon}$$
 s.t $|x - x_0| < \delta$ then
$$|\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{|\sqrt{x} - \sqrt{x_0}|} \le \frac{|x - x_0|}{\sqrt{x}} < \frac{\epsilon\sqrt{x}}{\sqrt{x}} = \epsilon$$

So
$$|\sqrt{x} - \sqrt{x_0}| < \epsilon$$

Let
$$\delta = \epsilon^2$$
 s.t $|x - x_0| < \delta$ so $x_0 > 0$ then

Case 2:
$$x = 0$$

Let $\delta = \epsilon^2$ s.t $|x - x_0| < \delta$ so $x_0 > 0$ then $|\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} \le \frac{|0 - x_0|}{\sqrt{0} + \sqrt{x_0}} = \sqrt{x_0} < \sqrt{\epsilon^2} = \epsilon$

So for all $x_0 \in [0, \infty)$, x_0 is a limit point of $[0, \infty)$ so f is continuous.

2. Define $f: R \to R$ by f(x) = x if $x \in \mathbf{Q}$ and f(x) = 0 if $x \notin \mathbf{Q}$. Prove that f is continuous at 0. (This function f is called the modified Dirichlet function.)

Define
$$f: \mathbf{R} \to \mathbf{R}$$

$$f(x) = x \text{ if } x \in \mathbf{Q}$$

$$f(x) = 0 \text{ if } x \notin \mathbf{Q}$$

Let $\epsilon > 0$

Set
$$\delta = \epsilon$$
 s.t $|x - 0| = |x| < \delta$

if
$$x \in \mathbf{Q}$$
 then $|f(x) - f(0)| = |x - 0| = |x| < \delta = \epsilon$

if
$$x \notin \mathbf{Q}$$
 then $|f(x) - f(0)| = |0 - 0| = |0| < \epsilon$

So for all $\epsilon > 0$ there exists $\delta > 0$ s.t if $|x - 0| < \delta$, then $|f(x) - 0| < \epsilon$. Thus f is continuous at 0.

3. Define $f: R \to R$ by f(x) = 1 if $x \in \mathbf{Q}$ and f(x) = 0 if $x \notin \mathbf{Q}$. Prove that f is not continuous at any $x_0 \in \mathbf{R}$. (This function f is called the Dirichlet function.)

Suppose f is continuous at x_0 .

Set $\epsilon = 1$.

Then there exists $\delta > 0$ s.t for all $x \in \mathbf{R}$ s.t $|x-x_0| < \delta$ so $|f(x)-f(x_0)| < 1$

If
$$x_0 \in \mathbf{Q}$$
 then $f(x_0) = 1$.

By density of irrationals, pick $x \in (x_0 - \delta, x + \delta)$ so f(x) = 0 then $|f(x) - f(x_0)| < 1$ so |0 - 1| < 1 so |1 < 1|.

If
$$x_0 \in \mathbf{Q}$$
 then $f(x_0) = 0$

By density of rationals, pick $x \in (x_0 - \delta, x + \delta)$ so f(x) = 0 then $|f(x) - f(x_0)| < 1$ so |1 - 0| < 1 so 1 < 1.

So in both cases we have a contradiction so x_0 is not continuous at any point for all $x_0 \in \mathbf{R}$.

7. Let $X \subseteq R$ and $C \subseteq X$. Prove that C is closed in X if and only if $X \setminus C$ is open in X

Assume that C is closed in X. Then there exists a closed set D so that $C = X \cap D$.

Then we have:

$$X\backslash C=X\cap C^c=X\cap (X\cap D)^c=X\cap (X^c\cup D^c)=(X\cap X^c)\cup (X\cap D^c)=\emptyset\cup (X\cap D^c)=X\cap D^c.$$

Since D is closed D^c is open. So $X \setminus C$ is open in X. So if C is closed in X then $X \setminus C$ is open in X

For the other way we assume that $X \setminus C$ is open in X then there exists an open set V s.t $X \setminus C = X \cap V$. So $X \setminus (X \setminus C)$ is closed.

Then we have:

$$X \setminus (X \setminus C) = X \setminus (X \cap C^c) = X \cap (X \cap C^c)^c = X \cap (X^c \cup C) = (X \cap X^c) \cup (X \cap C) = \emptyset \cup C = C.$$

So C is closed. So if $X \setminus C$ is open in X then C is closed in X.

Thus, C is closed in X if and only if $X \setminus C$ is open in X

9. Assume that $f:X\to Y$ has the property that $f^1(U)$ is open in X for all sets $U\subseteq Y$ that are open in Y. Prove that f is continuous.

Let $U \subseteq Y$ be open in Y. Then for all $u_0 \in U$, there exists an $\epsilon > 0$ such that $(u_0 - \epsilon, u_0 + \epsilon) \subseteq Y$.

Then by assumption $f^{-1}(U)$ is open in X. For all $f^{-1}(u_0) = x \in f^{-1}(U)$ there exists $\delta > 0$ s.t $(u_0 - \epsilon, u_0 + \epsilon) \subseteq X$.

Then x is not a limit point of X so f is continuous at x.