

An overview of databases

Introduction

- A key pillar of data science is storage and manipulation of Big Data within databases
- Big data is defined by the three V's; a high Volume of Variable data stored at a high Velocity
- Big data storage relies on a variety of database classes that are optimised for specific roles and for specific data types
- These systems balance strengths and weaknesses which must be considered when producing systems that facilitate big data

Introduction

- This module aims to introduce an overview of database systems
- · A variety of database systems will be covered
 - The underlying concepts behind these databases will be summarised
 - The optimisations each of these systems will be covered
 - · Use cases of these systems will be explored
 - Practical skills related to use of these systems will be explained and taught

3

An overview of databases

Introduction

 This module will not explore implementation of these databases systems

```
Axiom of reflexivity [edit] If Y\subseteq X then X\to Y Axiom of augmentation [edit] If X\to Y, then XZ\to YZ for any Z Axiom of transitivity [edit] If X\to Y and Y\to Z, then X\to Z
```


Introduction

• This module will explore practical skills related to use of these database systems

SQL SELECT Syntax
SELECT column_name, column_name
FROM table_name;

5

An overview of databases

Introduction

• A database system is defined as:

"a comprehensive collection of related data organized for convenient access, generally in a computer."

Introduction

- A database system is an organised collection of data
- These collections typically facilitate:
 - · Insertion modification and deletion of data
 - · Retrieval of stored data
 - Administration of the database, such as providing security
- These collections are stored within abstractions and logical arrangements, such as tables

7

An overview of databases

Introduction

- The collections typically employ some indexing strategy to efficiently retrieve the data within
- The collections typically employ some storage rules to satisfy their design goals and indexing strategy
- The collections may have some design aspects to cater for security, data integrity and concurrent access

Introduction

- Databases can reside in the physical world and within computing
- · Physical world databases include:
 - An address book
 - · A phone book
 - Index Cards
 - The Dewey Decimal System*

9

An overview of databases

Introduction

- Generally computing based databases can either be locally hosted or server based
 - · Local databases include:
 - A spreadsheet*
 - A CSV file*
 - A locally hosted database system, such as SQLite, Libré Base or MS Access

Introduction

- Server based databases are generally performance optimised, shared, resources
- These have the greatest variety of design goals
- · Server based databases include:
 - MySQL A relational DB
 - InfluxDB A time series DB
 - MongoDB A document oriented DB
 - Neo4J a graph DB

11

An overview of databases

Database Variety

- Databases vary to optimise for specific use cases, within a set restrictions or goals
- However, it is possible to use these databases in ways beyond their intended use
- A number of physical world databases will be presented in the upcoming slides. Following this their misuse will be explored.

An overview of databases

Database Variety

- These databases have optimisations
- Phonebook
 - Use: retrieving a phone number given an name and contracted address in a combined field.
 - · Indexed alphabetically by surname
 - Read only
 - All fields non optional
 - Phone number is the unique key

An overview of databases

Database Variety

- These databases have optimisations
- Address book
 - Use: retrieving and storing a in-depth contact information about a person
 - Indexed alphabetically by forename or surname, as dictated by end user
 - Supports insertion of data but not reindexing/restructuring
 - All fields are optional, field size varies
 - There is no strictly enforced unique key

An overview of databases

Database Variety

- · These databases have optimisations
- Index card
 - Use: retrieving and storing user defined information
 - Index is as dictated by end-user, may be weakly enforced by storage container structure
 - · Supports insertion of data and re-indexing/restructuring
 - · Undefined quantity of fields, variable proportioned size*
 - Fields may vary per entry
 - · Supports image data
 - May support multiple indexing strategies
 - · No strictly enforced unique key

Database Variety

- It is possible to store the same types of information within each of these types of database
- Some types of information are more suited to specific types of database
- Selection of correct database for data type, retrieval strategy and purpose is essential

19

An overview of databases

Real world example

- Storage and processing of sensor data
- Data stored:
 - · Metadata about sensors inserted once per device
 - SensorID
 - Name
 - Location
 - Type
 - Manufacturer

Real world example

- · Storage and processing of sensor data
- · Data stored:
 - · Sensor Data
 - · Sensor records inserted at 6Hz, per device
 - Time
 - · SensorID
 - State
 - · JSON Data

21

An overview of databases

Real world example

- Initially stored all data in a "Big Data ready" relational database
 - Inserting, retrieving and modifying metadata individually took approximately 4 milliseconds
 - Inserting, retrieving and modifying metadata in bulk took approximately 30 milliseconds
 - Inserting, retrieving and modifying individual sensor records took approximately 4 milliseconds
 - Retrieving bulk sensor records for a 5 minute window from a single sensor took approximately 4 minutes

Real world example

- Transitioned sensor records to a time series DB
 - Retrieving bulk sensor records for a 5 minute window from a single sensor took approximately 0.3 seconds
- Selection of the correct database systems, given data types and volume is essential

23

An overview of databases

- In the remainder of this module we will cover the following types of database systems
 - Relational databases
 - Document-oriented databases
 - Time series Databases
 - Graph databases
 - Semantic stores

An overview of databases • Next topic: Relational databases

25

