Exploring data quality

```
Content:
Part 1: Duplicates
Part 2: Missing data
Part 3: Curves with normalised responses above 1.0
Part 4: Curves with normalised responses above 1.0 but low final responses
Part 5: Cut off outliers inside drug response curves
```

Main findings

- 1. Original data 225384 samples
- Among all 250 drugs, 15 drugs have 2 different drug_id:
 'AKT inhibitor VIII': [228, 171], 'AZD6482': [156, 1066], 'Afatinib': [1032, 1377], 'Avagacestat': [205, 1072], 'BMS-536924': [62, 1091], 'Bicalutamide': [150, 1502], 'CHIR-99021': [154, 1241], 'GSK269962A': [127, 1192], 'JQ1': [163, 1218], 'Olaparib': [1017, 1495], 'PLX-4720': [1036, 1371], 'Pictilisib': [1058, 1527], 'Refametinib': [1014, 1526], 'Selumetinib': [1062, 1498], 'UNC0638': [245, 1236]
- 3. For all the pairs drug+CCL with one concentraion and two records, one of the records is reduced, i.e has missing values
- 4. There are 33740 profiles with missing points. And among them only 9120 have dublicates/alternatives
- 5. Curves with up to 7 suspiciously high normalised responses can look pretty reasonable

Main question - what drug response curves are valid for further analysis

In [1]:

```
import pandas as pd
import numpy as np
import gc
import matplotlib.pyplot as plt
import os, sys
sys.path.insert(1, os.path.relpath("../functions"))
from filtering import *
from plotting import *

_FOLDER = "../data/"
_FOLDER_2 = "../figures/"
_FOLDER_3 = "../results/"
SAVE_FIGURES = False
```

Original data

In [2]:

```
drug_curves = pd.read_csv(_FOLDER+"normalised_dose_response_data.csv")
if "Unnamed: 0" in drug_curves:
    drug_curves.drop("Unnamed: 0", axis=1, inplace =True)

col_to_drop = ["per_slope_change_"+str(i) for i in range(8)]+\( \text{\text{"slope}" + str(i) for i in range(9)]} \)
drug_curves.drop(col_to_drop, axis=1, inplace=True)

conc_columns= ["fd_num_"+str(i) for i in range(10)]
response_norm = ['norm_cells_'+str(i) for i in range(10)]
CCL_names = dict(zip(drug_curves["COSMIC_ID"], drug_curves["CELL_LINE_NAME"]))
df= pd.read_csv(_FOLDER+'Drug_Features.csv')
drug_names = dict(zip(df["Drug_ID"].values, df["Drug_Name"].values))
del df
drug_curves["drug_name"] = drug_curves["DRUG_ID"].map(drug_names)
drug_curves["CCL_name"] = drug_curves["COSMIC_ID"].map(CCL_names)
drug_curves.shape
```

Out[2]:

(225384, 28)

In [3]:

```
drug_curves["MAX_CONC"].value_counts()
Out[3]:
20.0000
              29693
10.2400
              29275
10.0000
              28841
2.0000
              15984
5.1200
              15672
5.0000
              15154
              11652
16.0000
2.5600
               8985
               8315
4.0000
1.0240
               8032
1.0000
               5838
               5415
8.0000
0.1000
               4150
32.0000
               3771
0.1280
               2903
0.5120
               2814
0.5000
               2733
0.2000
               2681
2.5000
               2295
0.2560
               2212
4000.0000
               1916
1.2800
               1791
0.2500
               1712
5.2400
                980
40.0000
                975
                973
50.0000
0.0500
                969
6.6000
                967
30.0000
                945
0.0640
                941
                932
0.0080
64.0000
                932
0.0320
                932
65.8000
                911
0.0125
                894
2000.0000
                893
                427
1.2000
0.0200
                427
0.1024
                427
                 25
6.0000
Name: MAX_CONC, dtype: int64
In [4]:
drug_curves["FOLD_DILUTION"].value_counts()
```

Out [4]:

2 191644 33740

Name: FOLD_DILUTION, dtype: int64

Part 1: Duplicates

Some drugs have several Drug_ld

```
In [5]:
```

```
print("All drugs:", drug_curves["DRUG_ID"].nunique())
print("Unique drug names:", drug_curves["drug_name"].nunique())
ar = drug_curves.groupby("drug_name").agg(n_ids = ("DRUG_ID", "nunique"))
gr["n_ids"].value_counts()
All drugs: 265
Unique drug names: 250
Out [5]:
     235
1
      15
Name: n_ids, dtype: int64
In [6]:
print("Drugs with several drug ids:")
multiple_ids = list(gr[gr["n_ids"]>1].index)
drugs_with_id = {}
for drug_name in multiple_ids:
    ids = drug_curves[drug_curves["drug_name"]== drug_name]["DRUG_ID"].unique()
    drugs_with_id[drug_name] = list(ids)
print(drugs_with_id)
Drugs with several drug ids:
{'AKT inhibitor VIII': [228, 171], 'AZD6482': [156, 1066], 'Afatinib': [1032, 137
7], 'Avagacestat': [205, 1072], 'BMS-536924': [62, 1091], 'Bicalutamide': [150, 1
502], 'CHIR-99021': [154, 1241], 'GSK269962A': [127, 1192], 'JQ1': [163, 1218],
'Olaparib': [1017, 1495], 'PLX-4720': [1036, 1371], 'Pictilisib': [1058, 1527],
'Refametinib': [1014, 1526], 'Selumetinib': [1062, 1498], 'UNC0638': [245, 1236]}
```

Several MAX_CONC for a pair drug+CCL

In [7]:

Out [7]:

(213603, 3)

In [8]:

```
df_multi = conc_gr[(conc_gr["n_conc"]>1) | (conc_gr["n_samples"]>1)].copy()
df_multi["compare"] = df_multi["n_conc"] - df_multi["n_samples"]
df_multi["compare"].value_counts()
```

Out[8]:

0 8573 -1 3208

Name: compare, dtype: int64

In [9]:

```
df_multi[df_multi["compare"] == 0]["n_conc"].value_counts()
```

Out[9]:

2 8573

Name: n_conc, dtype: int64

In [10]:

```
df_multi["n_conc"].value_counts()
```

Out[10]:

2 85731 3208

Name: n_conc, dtype: int64

In [11]:

```
conc_multi = df_multi[df_multi["n_conc"]>1]
conc_multi
```

Out[11]:

n_conc	n_samples	sum_missing	compare
--------	-----------	-------------	---------

drug_name	CCL_name				
	201T	2	2	0	0
	22RV1	2	2	0	0
AKT inhibitor VIII	23132-87	2	2	0	0
	42-MG-BA	2	2	0	0
	451Lu	2	2	0	0
	YKG-1	2	2	4	0
	YT	2	2	4	0
UNC0638	huH-1	2	2	4	0
	no-10	2	2	4	0
	no-11	2	2	4	0

```
In [12]:
```

```
conc_multi["sum_missing"].value_counts()
```

Out[12]:

4 5912 0 2661

Name: sum_missing, dtype: int64

In [13]:

```
conc_multi[conc_multi["sum_missing"]==0]
```

Out[13]:

n_conc	n_samples	sum_missing	compare
--------	-----------	-------------	---------

drug_name	CCL_name				
	201T	2	2	0	0
	22RV1	2	2	0	0
AKT inhibitor VIII	23132-87	2	2	0	0
	42-MG-BA	2	2	0	0
	451Lu	2	2	0	0
	YKG-1	2	2	0	0
	YT	2	2	0	0
Avagacestat	huH-1	2	2	0	0
	no-10	2	2	0	0
	no-11	2	2	0	0

2661 rows × 4 columns

In [14]:

Out[14]:

2661

In [15]:

```
multi_pairs[1000]
```

Out[15]:

```
('AZD6482', 'CAL-54')
```

In [16]:

```
drug_curves[(drug_curves["drug_name"]=="AKT inhibitor VIII") & (drug_curves["CCL_name"]=="201T")
```

Out[16]:

	CELL_LINE_NAME	COSMIC_ID	DRUG_ID	DRUGID_COSMICID	FOLD_DILUTION	MA
120529	201T	1287381	228	228_1287381	2	
126556	201T	1287381	171	171_1287381	2	

2 rows × 29 columns

→

In [17]:

Conclusion: Low concentration didn't work well (but effect was recognisable), so they increased the concentration 4 times (case for drug_id=228) ???

In [18]:

	CELL_LINE_NAME	COSMIC_ID	DRUG_ID	DRUGID_COSMICID	FOLD_DILUTION	MA
109714	no-11	908450	205	205_908450	2	
161336	no-11	908450	1072	1072_908450	2	

Need for explanation: Some effect for low concentration and no effect for higher concentration???

In [19]:

	CELL_LINE_NAME	COSMIC_ID	DRUG_ID	DRUGID_COSMICID	FOLD_DILUTION	MA
122793	no-10	908452	205	205_908452	2	
167111	no-10	908452	1072	1072_908452	2	

In [20]:

CELL_LINE_NAME COSMIC_ID DRUG_ID DRUGID_COSMICID FOLD_DILUTION MAX 84299 YAPC 909904 205 205_909904 2 173538 YAPC 909904 1072 1072_909904 2

Conclusion: Strange case for Avagacestat

In [21]:

	CELL_LINE_NAME	COSMIC_ID	DRUG_ID	DRUGID_COSMICID	FOLD_DILUTION	MA
30665	CAL-54	910952	156	156_910952	2	
151706	CAL-54	910952	1066	1066_910952	2	

In [22]:

	CELL_LINE_NAME	COSMIC_ID	DRUG_ID	DRUGID_COSMICID	FOLD_DILUTION	MA.
175276	22RV1	924100	1017	1017_924100	2	
210290	22RV1	924100	1495	1495_924100	4	

2 rows × 29 columns

Pairs with one concentration and two records

In [23]:

```
df_multi[df_multi["compare"] == -1]["n_conc"].value_counts()
```

Out [23]:

1 3208

Name: n_conc, dtype: int64

```
In [24]:
```

```
df_multi[(df_multi["compare"]==-1)]
```

Out [24]:

		n_conc	n_samples	sum_missing	compare
drug_name	CCL_name				
	22RV1	1	2	4	-1
	23132-87	1	2	4	-1
PLX-4720	42-MG-BA	1	2	4	-1
	451Lu	1	2	4	-1
	5637	1	2	4	-1
	YKG-1	1	2	4	-1
	YT	1	2	4	-1
Selumetinib	ZR-75-30	1	2	4	-1
	huH-1	1	2	4	-1
	no-11	1	2	4	-1

3208 rows × 4 columns

In [25]:

```
multi_pairs = list(df_multi[(df_multi["compare"]==-1)].index.unique())
len(multi_pairs)
```

Out[25]:

3208

In [26]:

```
[multi_pairs[i] for i in [10, 1000, 2000, 3000]]
```

Out[26]:

```
[('PLX-4720', '8305C'),
('Pictilisib', 'EN'),
('Refametinib', 'LS-411N'),
('Selumetinib', 'OVKATE')]
```

One concentration and 2 records for each pair

In [27]:

Hypothesis: for the pairs drug+CCL with one concentraion and two records, one of the records is reduced, i.e has missing values

In [28]:

```
nul_samples = df_multi[(df_multi["compare"]==-1) & (df_multi["sum_missing"]>0)].index.unique()
print("Total number of multiples:", len(multi_pairs))
print("Number of pairs with missing data:", len(nul_samples))
```

Total number of multiples: 3208 Number of pairs with missing data: 3208

Conclusions: for all the pairs drug+CCL with one concentraion and two records, one of the records is reduced, i.e has missing values

Part 2: Missing values

In [29]:

```
drug_curves["count_missing"] = drug_curves[response_norm].isnull().sum(axis=1)
drug_curves["count_missing"].value_counts()
```

Out [29]:

```
0 191644
4 33740
```

Name: count_missing, dtype: int64

In [30]:

```
df = drug_curves[drug_curves["count_missing"]!=0]
df[["drug_name", "CCL_name"] + conc_columns + response_norm].head()
```

Out[30]:

	drug_name	CCL_name	fd_num_0	fd_num_1	fd_num_2	fd_num_3	fd_num_4	fd_n
191644	IOX2	HDQ-P1	0	0.2	0.4	0.6	0.8	
191645	UNC0638	HDQ-P1	0	0.2	0.4	0.6	0.8	
191646	UNC1215	HDQ-P1	0	0.2	0.4	0.6	0.8	
191647	Tamoxifen	HDQ-P1	0	0.2	0.4	0.6	0.8	
191648	(5Z)-7- Oxozeaenol	HDQ-P1	0	0.2	0.4	0.6	0.8	

5 rows × 22 columns

 $local host: 8888/notebooks/other_notebooks/1_1_EDA_Data_Quality.ipynb$

Conclusion: 33740 profiles have only 6 points (instead of usual 10)

In [31]:

Number of samples with missing data 33740

Hypothesis: for all the records with missing data there is a "dublicate" with the whole range

In [32]:

Out[32]:

count

sum_missing	n_samples	
0	1	177202
U	2	2661
4	1	24620
4	2	9120

Conclusion: Among 33740 profiles with missing points, only 9120 have dublicates/alternatives

Some of the profiles with missing data are not so bad

In [33]:

Number of not bad data: 1389

Ambigous data: Are some points wrong?

In [34]:

Part 3: Explore curves with normalised responses above 1.0

In [35]:

```
%%time
# Number of responses > 1
drug_curves["high_responses"] = drug_curves[response_norm].apply(lambda row: sum(row>1), axis=1)
drug_curves[["high_responses"]+ response_norm]
```

```
CPU times: user 44.3 s, sys: 385 ms, total: 44.6 s Wall time: 46.1 s
```

Out [35]:

	high_responses	norm_cells_0	norm_cells_1	norm_cells_2	norm_cells_3	norm_cells
0	7	1	1.039343	0.998020	1.005715	1.0557
1	6	1	0.969418	0.987582	1.052708	1.0728
2	1	1	0.956127	0.887779	0.941691	0.8390
3	4	1	1.087946	0.980767	1.118407	1.2347
4	6	1	1.035268	1.040170	0.972972	1.0297
225379	3	1	0.970321	0.864856	1.326808	1.1007
225380	3	1	0.329169	0.284518	1.088894	1.0906
225381	3	1	0.914628	0.840454	1.116674	1.0961
225382	2	1	0.884687	1.000038	1.051918	0.7900
225383	4	1	1.053967	0.831009	1.155885	1.1499

225384 rows × 11 columns

In [36]:

```
bad_data = drug_curves[drug_curves["high_responses"]>1]
print("Original data:", drug_curves.shape)
print("Ambiguos data:", bad_data.shape)
Original data: (225384, 30)
Ambiguos data: (127590, 30)
```

Note: Half of the data can be regarded as ambiguous!!!

In [37]:

```
bad_data["high_responses"].value_counts()
Out [37]:
2
     28485
3
     24334
4
     20015
5
     17201
6
     12366
7
     10712
8
      8487
9
      5990
Name: high_responses, dtype: int64
```

Bad data by drug

In [38]:

```
%%time
dr1 = drug_curves.groupby(["DRUG_ID"], as_index=False).agg(curves_count_all = ("COSMIC_ID", "cou
dr2 = bad_data.groupby(["DRUG_ID"], as_index=False).agg(curves_count_bad = ("COSMIC_ID", "count"
                                                       min_bad_responses = ("high_responses", "mi
                                                        max_bad_response = ("high_responses", "ma
                                                        avg_bad_responses = ("high_responses", "m
dr2["avg_bad_responses"] = round(dr2["avg_bad_responses"], 2)
dr = pd.merge(right = dr1, left = dr2, on="DRUG_ID", how="left")
dr["drug_name"] = dr["DRUG_ID"].map(drug_names)
dr["percent_bad"] = round(dr["curves_count_bad"]/dr["curves_count_all"], 3)
show_columns = ['DRUG_ID', 'drug_name', 'percent_bad', 'curves_count_all', 'curves_count_bad',
                'min_bad_responses', 'max_bad_response','avg_bad_responses']
dr = dr[show\_columns].copy()
CPU times: user 63.5 ms, sys: 9.51 ms, total: 73 ms
```

```
Wall time: 88.2 ms
```

```
In [39]:
```

```
dr.sort_values("percent_bad", ascending = False, inplace=True)
dr.head(10)
```

Out[39]:

	DRUG_ID	drug_name	percent_bad	curves_count_all	curves_count_bad	min_bad_rest
190	1025	SB216763	0.954	786	750	_
197	1033	Vismodegib	0.950	893	848	
47	150	Bicalutamide	0.947	932	883	
161	332	XMD15-27	0.947	980	928	
183	1018	Veliparib	0.919	894	822	
178	1013	Nilotinib	0.915	844	772	
182	1017	Olaparib	0.908	894	812	
185	1020	Lenalidomide	0.908	894	812	
232	1170	CCT-018159	0.901	945	851	
163	341	Selisistat	0.899	975	877	
4						•

Bad data by CCL

Wall time: 67.3 ms

In [40]:

In [41]:

```
cl.sort_values("percent_bad", ascending = False, inplace=True)
cl.head(10)
```

Out[41]:

	COSMIC_ID	CCL_name	percent_bad	curves_count_all	curves_count_bad	min_bad_res
62	688022	NCI-H378	1.000	2	2	
670	924241	NCI-H250	1.000	1	1	
985	1330969	NCI-H1404	0.837	43	36	
75	713880	SBC-5	0.816	217	177	
564	909907	ZR-75-30	0.813	91	74	
503	909711	SCH	0.806	252	203	
894	1298162	K8	0.802	126	101	
402	907799	MC116	0.802	258	207	
714	949092	CP67-MEL	0.800	25	20	
378	907312	KU-19-19	0.793	222	176	
4						•

Check whether bad data are actually bad

In [42]:

Samples with 2 bad responses

In [43]:

Number of samples with 2 bad responses: 28485

Among samples with only 2 norm_responses >1 some data are not so bad

→

In [44]:

In [45]:

Number of samples with 2 bad responses, but with 2 last responses below 0.2: 2728

Conclusion - we can't delete just samples which with 2 responses>1.0

The question: What is the accuracy of measuring responses? Can we treat samples with responses up to 1.01 as valid ones?

Samples with 3 bad responses

In [46]:

Number of samples with 3 bad responses: 24334

In [47]:

In [48]:

Number of samples with 3 bad responses, but with 2 last responses below 0.2: 1780

Samples with 4 bad responses

```
In [49]:
```

Number of samples with 4 bad responses: 20015

In [50]:

```
specific_samples = [("THZ-2-49", "HDQ-P1"),
                         ("Cabozantinib", "NMC-G1"),
                          "Dacinostat", "JHH-2").
                          "JNK-9L", "BT-474")
show_specific(bad_data, specific_samples, conc_columns, response_norm, upper_limit=1, lower_limit
     Drug: THZ-2-49 / CCL: HDQ-P1
                                                                                     Drug: JNK-9L / CCL: BT-474
                            0.8
                                                      0.8
 0.8
                                                                                 0.8
                            0.6
                                                      0.6
 0.6
                            0.4
                                                      0.4
 0.4
                                                                                 0.4
```

In [51]:

Number of samples with 4 bad responses, but with 2 last responses below 0.2: 8 79

Samples with 5+ bad responses

In [52]:

Number of samples with more than 5 bad responses: 54756

In [53]:

Number of samples with 5 bad responses, but with 2 last responses below 0.2: 441

In [54]:

Number of samples with 6 bad responses, but with 2 last responses below 0.2: 135

In [55]:

Number of samples with 7 bad responses, but with 2 last responses below 0.2: 18

In [56]:

Number of samples with 8 bad responses, but with 2 last responses below 0.2: 0

<Figure size 1008x792 with 0 Axes>

```
In [57]:
```

Number of samples with 9 bad responses, but with 2 last responses below 0.2: 0

<Figure size 1008x792 with 0 Axes>

Conclusion from Part 3: Curves with up to 7 suspiciously high normalised responses look pretty reasonable

Part 4: Explore curves with normalised response above 1 but low final response

```
In [58]:
```

```
%%time
drug_curves["low_response_02"] = (drug_curves[response_norm]<=0.2).sum(axis=1)
drug_curves["low_response_04"] = (drug_curves[response_norm]<=0.4).sum(axis=1)

CPU times: user 44 ms, sys: 21.2 ms, total: 65.2 ms
Wall time: 62.7 ms

In [59]:

not_bad_02 = drug_curves[(drug_curves["high_responses"]>1) & (drug_curves["low_response_02"])]
not_bad_04 = drug_curves[(drug_curves["high_responses"]>1) & (drug_curves["low_response_04"])]
print("Number of all suspicious samples:", bad_data.shape[0])
print("WinNumber of potentionally good samples among all bad data:")
print("With responses below 0.2:", not_bad_02.shape[0])
print("With responses below 0.4:", not_bad_04.shape[0])
```

Number of all suspicious samples: 127590

Number of potentionally good samples among all bad data: With responses below 0.2: 9892

With responses below 0.4: 16438

In [60]:

```
not_bad_02["low_response_02"].value_counts()
```

Out[60]:

```
1 7742
3 1755
5 387
7 8
```

Name: low_response_02, dtype: int64

In [61]:

```
not_bad_04["low_response_04"].value_counts()
```

Out[61]:

1 12144 3 3301 5 974 7 19

Name: low_response_04, dtype: int64

In [62]:

Part 5: Repeat with an additional constrain

Among all "middle" datapoints a subsequent point should not be higher than antecedent by some limit

In [63]:

```
not_bad_02_2 = cut_off_outliers(drug_curves, middle_points_limit=-0.2, response_columns = respons
print("Before filtration: %d, After filtration: %d" % (not_bad_04.shape[0], not_bad_02_2.shape[0]
not_bad_02_2["low_response_02"].value_counts()
```

Before filtration: 16438, After filtration: 190245

Out [63]:

```
0
     151335
       16124
1
2
        7155
3
        5384
4
        4025
5
        2654
6
        1551
7
         857
9
         678
         482
8
```

Name: low_response_02, dtype: int64

In [64]:

Further ideas

Possible Scenarios for predicting drug response curves:

- 1. predict each point one-by-one
- 2. predict coefficents of some fitting sigmoid function (actually, that is equal to
 - classification of whether there was response to drugs or not
 - for good data prediction of coefficients
- 3. classify all the data into 3 categories:
 - no response/not valid data
 - some response
 - perfect sigmoid which we can treat with an average sigmoid function