3. (3) Given only a 2:1 mux, a not gate, and a 2 input or gate implement a circuit that behaves like the following function: $M_2 \times M_4 \times M_6$ There are 3 input variables for this problem x_2, x_1, x_0 .

y _o	У,	Y 2		U
	0	0	1	0
1.	0	0	1	(
0	1	0	0.	2
	1	0	1	
0	0	1	0.	4
	0	1		5
0	1	0.5	0	6
	1	1	1	7

7.	00	0'	11	10
0	(1)	0	0	D
1	17	1	1	
	1			1

