

HIGH FREQUENCY COMMUNICATION SYSTEMS

Lecture 3

Hasan T Abbas & Qammer H Abbasi Spring 2021

LECTURE OUTLINE

- · Antennas and Radiation
- · Potential Functions
- · Antenna Characteristics

1

SOURCES OF ELECTROMAGNETIC FIELDS

- · A distribution of currents and charges can generate and radiate electromagnetic fields
 - \cdot The distribution is typically localised in a region of space
 - · As an example, a simple wire can act as an antenna
- · We are interested in determining the electromagnetic fields in space, given a current distribution

- Antennas are most widely used for wireless communications
- Modern antenna invention is attributed to Heinrich Hertz (1887)
 - Radio system was developed by Guglielmo Marconi (1897)
- Due to the duality principle, an antenna can also act as a receiver to FM radiation

Figure 1: The Hertz's invention

- We need a disturbance in the EM fields
 - Most commonly, this is caused by a time-varying electric current
- The disturbance also depends on the nature of the antenna
 - For a wire antenna, the discontinuities at the ends cause radiation

Figure 2: Antenna Radiation Mechanism

• There are mainly two ways to find the radiated fields from a given current distribution

Figure 3: Two ways to find the radiated EM fields

- · Solving EM fields directly using the Maxwell's equations is often very difficult, especially in the spatial domain
- · The introduction of scalar $(\vec{\phi})$ and vector $\vec{\bf A}$ potential functions simplify the process
- · We start from the fact:
 - · Magnetic field is divergence-less (${f \nabla}\cdot{f B}=0$). We can therefore, say that:

$$\nabla \cdot \nabla \times \vec{\mathbf{A}} \equiv 0$$

$$\Rightarrow \vec{\mathbf{H}} = \frac{1}{\mu} \nabla \times \vec{\mathbf{A}}$$

We can write the Ampere's law as:

$$\mathbf{\nabla} \times \vec{\mathbf{E}} = -j\omega\mu\vec{\mathbf{H}} = j\omega\mathbf{\nabla} \times \vec{\mathbf{A}}$$
$$\mathbf{\nabla} \times (\vec{\mathbf{E}} + j\omega\vec{\mathbf{A}}) = 0$$

Knowing that the $\nabla \times (-\nabla \phi) \equiv 0$, we set:

$$\vec{\mathbf{E}} + j\omega \vec{\mathbf{A}} = -\nabla \phi$$
$$\vec{\mathbf{E}} = -\nabla \phi - j\omega \vec{\mathbf{A}}$$

- \cdot ϕ is the electric scalar potential and its a function of position.
- · If we know $\vec{\bf A}$ and ϕ , we can find $\vec{\bf E}$ and $\vec{\bf H}$

- · We still need to figure out how to find the potentials, $\vec{\bf A}$ and ϕ for a given current density $\vec{\bf J}$.
- For this we move back to the Maxwell's equations and find a relationship

$$\nabla \times \vec{\mathbf{H}} = j\omega\varepsilon\vec{\mathbf{E}} + \vec{\mathbf{J}}$$

$$\nabla \times (\nabla \times \vec{\mathbf{A}}) = j\omega\mu\varepsilon\vec{\mathbf{E}} + \mu\vec{\mathbf{J}}$$

$$\nabla \times \nabla \times \vec{\mathbf{A}} = j\omega\mu\varepsilon (-j\omega\vec{\mathbf{A}} - \nabla\phi) + \mu\vec{\mathbf{J}}$$

Continuing and using the vector identity,

$$m{
abla} imes m{
abla} imes m{\vec{A}} = m{
abla} \Big(m{
abla} \cdot m{\vec{A}} -
abla^2 m{\vec{A}} \Big)$$
 and rearranging, we get,

$$\nabla^2 \vec{\mathbf{A}} + \omega^2 \mu \varepsilon \vec{\mathbf{A}} = -\mu \vec{\mathbf{J}} + \nabla \Big(\nabla \cdot \vec{\mathbf{A}} + j \omega \mu \varepsilon \phi \Big)$$

The solution is complete by defining $\vec{\mathbf{A}}$ in terms of ϕ through the Lorentz gauge,

$$\mathbf{\nabla \cdot \vec{A}} = -j\omega\mu\varepsilon\phi$$

SUMMARY - THE POTENTIAL FUNCTION

- \cdot Given an electric current density $ec{\mathbf{J}}$
- · Solve for the magnetic vector potential \vec{A}
 - · Solve for \vec{E} and \vec{H}

There are some assumptions in this method, namely:

- · The space is homogeneous (only one material)
- \cdot The magnetic current density \vec{M} is zero.

MTFX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added t

If you rerun the document (without altering it) this surplus page v go away, because LTFX now knows how many pages to expect for the

the final page this extra page has been added to receive it.

Temporary page!

document.