

DSA Sheet by Love Babbar

Last Updated: 06 Oct, 2023

Who is Love Babbar?

Love Babbar is a famous Youtuber, graduated from NSUT Delhi who has also worked as a Software Engineer at Amazon.

What is a DSA Sheet?

A sheet that covers almost every concept of Data Structures and Algorithms.

So, this DSA sheet by Love Babbar contains 450 coding questions which will help in:

- Understanding each and every concept of DSA.
- Clearing the DSA round for the Interviews, as these are the questions generally asked in the companies like Amazon, Microsoft, Google, etc.
- Basic Knowledge of <u>Data Structures</u> and <u>Algorithms</u>.
- Having good knowledge of at-least one programming knowledge like <u>C++</u>,
 <u>Java</u>, <u>Python</u>.
- Know how to use <u>STL</u> as it will make data structures and few techniques easier to implement.

Below is the topic-wise distribution of 450 questions:

- Arrays(36)
- Matrix(10)
- <u>Strings(43)</u>
- Searching and Sorting (36)
- Linked List(36)
- Bit Manipulation (10)
- <u>Greedy(35)</u>
- Backtracking(19)

- <u>Dynamic Programming (60)</u>
- Stacks and Queues (38)
- Binary Trees (35)
- Binary Search Tree(22)
- **Graphs**(44)
- <u>Heap(18)</u>
- <u>Trie(6)</u>

This sheet can be completed within 2-3 months without any cheat day.

So, Start solving this 450 DSA Cracker from today itself. Keep a track of all the problems mentioned below: Practice Love Babbar DSA Sheet

Arrays

Question	Article	Practice
Reverse an Array/String	<u>Link</u>	<u>Link</u>
Find the maximum and minimum element in an array	<u>Link</u>	<u>Link</u>
Find the "Kth" max and min element of an array	<u>Link</u>	<u>Link</u>
Given an array which consists of only 0, 1 and 2. Sort the array without using any sorting algo	<u>Link</u>	<u>Link</u>
Move all the negative elements to one side of the array	<u>Link</u>	<u>Link</u>
Find the Union and Intersection of the two sorted arrays.	<u>Link</u>	<u>Link</u>
Write a program to cyclically rotate an array by one.	<u>Link</u>	<u>Link</u>
Find Largest sum contiguous Subarray [V. IMP]	<u>Link</u>	<u>Link</u>
Minimize the maximum difference between heights [V.IMP]	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Minimum no. of Jumps to reach end of an array	<u>Link</u>	<u>Link</u>
Find duplicate in an array of N+1 Integers	<u>Link</u>	<u>Link</u>
Merge 2 sorted arrays without using Extra space.	<u>Link</u>	<u>Link</u>
Kadane's Algo [V.V.V.V IMP]	<u>Link</u>	<u>Link</u>
Merge Intervals	<u>Link</u>	<u>Link</u>
Next Permutation	<u>Link</u>	<u>Link</u>
Count Inversion	<u>Link</u>	<u>Link</u>
Best time to buy and Sell stock	<u>Link</u>	<u>Link</u>
Find all pairs on integer array whose sum is equal to given number	<u>Link</u>	<u>Link</u>
Find common elements In 3 sorted arrays	<u>Link</u>	<u>Link</u>
Rearrange the array in alternating positive and negative items with O(1) extra space	<u>Link</u>	<u>Link</u>
Find if there is any subarray with sum equal to 0	<u>Link</u>	<u>Link</u>
Find factorial of a large number	<u>Link</u>	<u>Link</u>
Find maximum product subarray	<u>Link</u>	<u>Link</u>
Find longest consecutive subsequence	<u>Link</u>	<u>Link</u>
Given an array of size n and a number k, fin all elements that appear more than " n/k " times.	<u>Link</u>	<u>Link</u>
Maximum profit by buying and selling a share at most twice	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Find whether an array is a subset of another array	<u>Link</u>	<u>Link</u>
Find the triplet that sum to a given value	<u>Link</u>	<u>Link</u>
Trapping Rain water problem	<u>Link</u>	<u>Link</u>
Chocolate Distribution problem	<u>Link</u>	<u>Link</u>
Smallest Subarray with sum greater than a given value	<u>Link</u>	<u>Link</u>
Three way partitioning of an array around a given value	<u>Link</u>	<u>Link</u>
Minimum swaps required bring elements less equal K together	<u>Link</u>	<u>Link</u>
Minimum no. of operations required to make an array palindrome	<u>Link</u>	<u>Link</u>
Median of 2 sorted arrays of equal size	<u>Link</u>	<u>Link</u>
Median of 2 sorted arrays of different size	<u>Link</u>	<u>Link</u>

Matrix

Question	Article	Practice
Spiral traversal on a Matrix	<u>Link</u>	<u>Llnk</u>
Search an element in a Matrix	<u>Link</u>	<u>Link</u>
Find median in a row wise sorted matrix	<u>Link</u>	<u>Link</u>
Find row with maximum no. of 1's	<u>Link</u>	<u>Link</u>
Print elements in sorted order using row-column wise sorted matrix	<u>Link</u>	<u>Link</u>
Maximum size rectangle	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Find a specific pair in matrix	<u>Link</u>	NA
Rotate matrix by 90 degrees	<u>Link</u>	<u>Link</u>
Kth smallest element in a row-column wise sorted matrix	<u>Link</u>	<u>Link</u>
Common elements in all rows of a given matrix	<u>Link</u>	<u>Link</u>

Strings

Question	Article	Practice
Reverse a String	<u>Link</u>	<u>Link</u>
Check whether a String is Palindrome or not	<u>Link</u>	<u>Link</u>
Find Duplicate characters in a string	<u>Link</u>	NA
Why strings are immutable in Java?	<u>Link</u>	NA
Write a Code to check whether one string is a rotation of another	<u>Link</u>	<u>Link</u>
Write a Program to check whether a string is a valid shuffle of two strings or not	<u>Link</u>	NA
Count and Say problem	<u>Link</u>	<u>Link</u>
Write a program to find the longest Palindrome in a string.[Longest palindromic Substring]	<u>Link</u>	<u>Link</u>
Find Longest Recurring Subsequence in String	<u>Link</u>	<u>Link</u>
Print all Subsequences of a string.	<u>Link</u>	NA
Print all the permutations of the given string	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Split the Binary string into two substring with equal 0's and 1's	<u>Link</u>	NA
Word Wrap Problem [VERY IMP].	<u>Link</u>	<u>Link</u>
EDIT Distance [Very Imp]	<u>Link</u>	<u>Link</u>
Find next greater number with same set of digits. [Very Very IMP]	<u>Link</u>	<u>Link</u>
Balanced Parenthesis problem.[Imp]	<u>Link</u>	<u>Link</u>
Word break Problem[Very Imp]	<u>Link</u>	<u>Link</u>
Rabin Karp Algorithm	<u>Link</u>	<u>Link</u>
KMP Algorithm	<u>Link</u>	<u>Link</u>
Convert a Sentence into its equivalent mobile numeric keypad sequence.	<u>Link</u>	<u>Link</u>
Minimum number of bracket reversals needed to make an expression balanced.	<u>Link</u>	<u>Link</u>
Count All Palindromic Subsequence in a given String.	<u>Link</u>	<u>Link</u>
Count of number of given string in 2D character array	<u>Link</u>	<u>Link</u>
Search a Word in a 2D Grid of characters.	<u>Link</u>	<u>Link</u>
Boyer Moore Algorithm for Pattern Searching.	<u>Link</u>	<u>Link</u>
Converting Roman Numerals to Decimal	<u>Link</u>	<u>Link</u>
Longest Common Prefix	<u>Link</u>	<u>Link</u>
Number of flips to make binary string alternate	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Find the first repeated word in string.	<u>Link</u>	<u>Link</u>
Minimum number of swaps for bracket balancing.	<u>Link</u>	<u>Link</u>
Find the longest common subsequence between two strings.	<u>Link</u>	<u>Link</u>
Program to generate all possible valid IP addresses from given string.	<u>Link</u>	<u>Link</u>
Write a program to find the smallest window that contains all characters of string itself.	<u>Link</u>	<u>Link</u>
Rearrange characters in a string such that no two adjacent are same	<u>Link</u>	<u>Link</u>
Minimum characters to be added at front to make string palindrome	<u>Link</u>	<u>Link</u>
Given a sequence of words, print all anagrams together	<u>Link</u>	<u>Link</u>
Find the smallest window in a string containing all characters of another string	<u>Link</u>	<u>Link</u>
Recursively remove all adjacent duplicates	<u>Link</u>	<u>Link</u>
String matching where one string contains wildcard characters	<u>Link</u>	<u>Link</u>
Function to find Number of customers who could not get a computer	<u>Link</u>	NA
Transform One String to Another using Minimum Number of Given Operation	<u>Link</u>	<u>Link</u>
Check if two given strings are isomorphic to each other	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Recursively print all sentences that can be formed from list of word lists	<u>Link</u>	NA

Searching and Sorting:

Question	Article	Practice
Find first and last positions of an element in a sorted array	<u>Link</u>	<u>Link</u>
Find a Fixed Point (Value equal to index) in a given array	<u>Link</u>	<u>Link</u>
Search in a rotated sorted array	<u>Link</u>	<u>Link</u>
Square root of an integer	<u>Link</u>	<u>Link</u>
Maximum and minimum of an array using minimum number of comparisons	<u>Link</u>	<u>Link</u>
Optimum location of point to minimize total distance	<u>Link</u>	Link
Find the repeating and the missing	<u>Link</u>	<u>Link</u>
Find majority element	<u>Link</u>	<u>Link</u>
Searching in an array where adjacent differ by at most k	<u>Link</u>	Link
Find a pair with a given difference	<u>Link</u>	<u>Link</u>
Find four elements that sum to a given value	<u>Link</u>	<u>Link</u>
Maximum sum such that no 2 elements are adjacent	<u>Link</u>	<u>Link</u>
Count triplet with sum smaller than a given value	<u>Link</u>	<u>Link</u>
Merge 2 sorted arrays	<u>Link</u>	<u>Link</u>
Product array Puzzle	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Sort array according to count of set bits	<u>Link</u>	<u>Link</u>
Minimum no. of swaps required to sort the array	<u>Link</u>	<u>Link</u>
Bishu and Soldiers	Link	Link
Rasta and Kheshtak	Link	<u>Link</u>
Kth smallest number again	<u>Link</u>	Link
Find pivot element in a sorted array	<u>Link</u>	<u>Link</u>
K-th Element of Two Sorted Arrays	<u>Link</u>	<u>Link</u>
Aggressive cows	Link	<u>Link</u>
Book Allocation Problem	<u>Link</u>	<u>Link</u>
EKOSPOJ:	Link	<u>Link</u>
Job Scheduling Algo	<u>Link</u>	Link
Missing Number in AP	<u>Link</u>	<u>Link</u>
Smallest number with atleast n trailing zeroes in factorial	<u>Link</u>	<u>Link</u>
Painters Partition Problem:	Link	<u>Link</u>
ROTI-Prata SPOJ	Link	<u>Link</u>
DoubleHelix SPOJ	Link	<u>Link</u>
Subset Sums	Link	<u>Link</u>
Find the inversion count	<u>Link</u>	<u>Link</u>
Implement Merge-sort in-place	<u>Link</u>	Link

Question	Article	Practice
Partitioning and Sorting Arrays with Many Repeated Entries	<u>Link</u>	Link

LinkedList:

Question	Article	Practice
Write a Program to reverse the Linked List. (Both Iterative and recursive)	<u>Link</u>	<u>Link</u>
Reverse a Linked List in group of Given Size. [Very Imp]	<u>Link</u>	<u>Link</u>
Write a program to Detect loop in a linked list.	<u>Link</u>	<u>Link</u>
Write a program to Delete loop in a linked list.	<u>Link</u>	<u>Link</u>
Find the starting point of the loop.	<u>Link</u>	Link
Remove Duplicates in a sorted Linked List.	<u>Link</u>	<u>Link</u>
Remove Duplicates in a Un-sorted Linked List.	<u>Link</u>	<u>Link</u>
Write a Program to Move the last element to Front in a Linked List.	<u>Link</u>	Link
Add "1" to a number represented as a Linked List.	<u>Link</u>	<u>Link</u>
Add two numbers represented by linked lists.	<u>Link</u>	<u>Link</u>
Intersection of two Sorted Linked List.	<u>Link</u>	<u>Link</u>
Intersection Point of two Linked Lists.	<u>Link</u>	<u>Link</u>
Merge Sort For Linked lists.[Very Important]	<u>Link</u>	<u>Link</u>
Quicksort for Linked Lists.[Very Important]	<u>Link</u>	<u>Link</u>
Find the middle Element of a linked list.	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Check if a linked list is a circular linked list.	<u>Link</u>	<u>Link</u>
Split a Circular linked list into two halves.	<u>Link</u>	<u>Link</u>
Write a Program to check whether the Singly Linked list is a palindrome or not.	<u>Link</u>	<u>Link</u>
Deletion from a Circular Linked List.	<u>Link</u>	Link
Reverse a Doubly Linked list.	<u>Link</u>	<u>Link</u>
Find pairs with a given sum in a DLL.	<u>Link</u>	Link
Count triplets in a sorted DLL whose sum is equal to given value "X".	<u>Link</u>	Link
Sort a "k"sorted Doubly Linked list.[Very IMP]	<u>Link</u>	Link
Rotate Doubly Linked list by N nodes.	<u>Link</u>	Link
Rotate a Doubly Linked list in group of Given Size.[Very IMP]	<u>Link</u>	Link
Can we reverse a linked list in less than O(n)?	Link	Link
Why Quicksort is preferred for. Arrays and Merge Sort for Linked Lists?	Link	Link
Flatten a Linked List	<u>Link</u>	<u>Link</u>
Sort a LL of 0's, 1's and 2's	<u>Link</u>	<u>Link</u>
Clone a linked list with next and random pointer	<u>Link</u>	<u>Link</u>
Merge K sorted Linked list	<u>Link</u>	<u>Link</u>
Multiply 2 no. represented by LL	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Delete nodes which have a greater value on right side	<u>Link</u>	<u>Link</u>
Segregate even and odd nodes in a Linked List	<u>Link</u>	<u>Link</u>
Program for n'th node from the end of a Linked List	<u>Link</u>	<u>Link</u>

Bit Manipulation:

Question	Article	Practice
Count set bits in an integer	<u>Link</u>	<u>Link</u>
Find the two non-repeating elements in an array of repeating elements	<u>Link</u>	<u>Link</u>
Count number of bits to be flipped to convert A to B	<u>Link</u>	<u>Link</u>
Count total set bits in all numbers from 1 to n	<u>Link</u>	<u>Link</u>
Program to find whether a no is power of two	<u>Link</u>	<u>Link</u>
Find position of the only set bit	<u>Link</u>	<u>Link</u>
Copy set bits in a range	<u>Link</u>	<u>Link</u>
Divide two integers without using multiplication, division and mod operator	<u>Link</u>	<u>Link</u>
Calculate square of a number without using *, / and pow()	<u>Link</u>	Link
Power Set	<u>Link</u>	<u>Link</u>

Greedy

Question	Article	Practice
Activity Selection Problem	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Job Sequencing Problem	<u>Link</u>	<u>Link</u>
Huffman Coding	<u>Link</u>	<u>Link</u>
Water Connection Problem	<u>Link</u>	<u>Link</u>
Fractional Knapsack Problem	<u>Link</u>	<u>Link</u>
Greedy Algorithm to find Minimum number of Coins	<u>Link</u>	<u>Link</u>
Maximum trains for which stoppage can be provided	<u>Link</u>	Link
Minimum Platforms Problem	<u>Link</u>	<u>Link</u>
Buy Maximum Stocks if i stocks can be bought on i-th day	<u>Link</u>	Link
Find the minimum and maximum amount to buy all N candies	<u>Link</u>	<u>Link</u>
Minimize Cash Flow among a given set of friends who have borrowed money from each other	<u>Link</u>	Link
Minimum Cost to cut a board into squares	<u>Link</u>	Link
Check if it is possible to survive on Island	<u>Link</u>	Link
Find maximum meetings in one room	<u>Link</u>	Link
Maximum product subset of an array	<u>Link</u>	Link
Maximize array sum after K negations	<u>Link</u>	<u>Link</u>
Maximize the sum of arr[i]*i	<u>Link</u>	<u>Link</u>
Maximum sum of absolute difference of an array	<u>Link</u>	Link
Maximize sum of consecutive differences in a circular	<u>Link</u>	<u>Link</u>

Question	Article	Practice
array		
Minimum sum of absolute difference of pairs of two arrays	<u>Link</u>	Link
Program for Shortest Job First (or SJF) CPU Scheduling	<u>Link</u>	Link
Program for Least Recently Used (LRU) Page Replacement algorithm	<u>Link</u>	<u>Link</u>
Smallest subset with sum greater than all other elements	<u>Link</u>	Link
Chocolate Distribution Problem	<u>Link</u>	<u>Link</u>
DEFKIN -Defense of a Kingdom	Link	<u>Link</u>
DIEHARD -DIE HARD	Link	<u>Link</u>
GERGOVIA -Wine trading in Gergovia	Link	<u>Link</u>
Picking Up Chicks	Link	<u>Link</u>
CHOCOLA –Chocolate	Link	<u>Link</u>
ARRANGE -Arranging Amplifiers	Link	<u>Link</u>
K Centers Problem	<u>Link</u>	Link
Minimum Cost of ropes	<u>Link</u>	<u>Link</u>
Find smallest number with given number of digits and sum of digits	<u>Link</u>	<u>Link</u>
Rearrange characters in a string such that no two adjacent are same	<u>Link</u>	<u>Link</u>
Find maximum sum possible equal sum of three stacks	<u>Link</u>	Link

Question	Article	Practice
Rat in a maze Problem	<u>Link</u>	<u>Link</u>
Printing all solutions in N-Queen	<u>Link</u>	Link
Word Break Problem using Backtracking	<u>Link</u>	<u>Link</u>
Remove Invalid Parentheses	<u>Link</u>	Link
Sudoku Solver	<u>Link</u>	<u>Link</u>
M Coloring Problem	<u>Link</u>	<u>Link</u>
Print all palindromic partitions of a string	<u>Link</u>	Link
Subset Sum Problem	<u>Link</u>	<u>Link</u>
The Knight's tour problem	<u>Link</u>	Link
Tug of War	<u>Link</u>	Link
Find shortest safe route in a path with landmines	<u>Link</u>	Link
Combinational Sum	<u>Link</u>	<u>Link</u>
Find Maximum number possible by doing at-most K swaps	<u>Link</u>	<u>Link</u>
Print all permutations of a string	<u>Link</u>	<u>Link</u>
Find if there is a path of more than k length from a source	<u>Link</u>	Link
Longest Possible Route in a Matrix with Hurdles	<u>Link</u>	Link
Print all possible paths from top left to bottom right of a mXn matrix	<u>Link</u>	Link
Partition of a set into K subsets with equal sum	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Find the K-th Permutation Sequence of first N natural numbers	<u>Link</u>	Link

Dynamic Programming

Question	Article	Practice
Coin Change Problem	<u>Link</u>	<u>Link</u>
Knapsack Problem	<u>Link</u>	<u>Link</u>
Binomial Coefficient Problem	<u>Link</u>	<u>Link</u>
Permutation Coefficient Problem	<u>Link</u>	Link
Program for nth Catalan Number	<u>Link</u>	Link
Matrix Chain Multiplication	<u>Link</u>	Link
Edit Distance	<u>Link</u>	<u>Link</u>
Subset Sum Problem	<u>Link</u>	Link
Friends Pairing Problem	<u>Link</u>	<u>Link</u>
Gold Mine Problem	<u>Link</u>	Link
Assembly Line Scheduling Problem	<u>Link</u>	Link
Painting the Fence problem	<u>Link</u>	<u>Link</u>
Maximize The Cut Segments	<u>Link</u>	<u>Link</u>
Longest Common Subsequence	<u>Link</u>	<u>Link</u>
Longest Repeated Subsequence	<u>Link</u>	<u>Link</u>
Longest Increasing Subsequence	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Space Optimized Solution of LCS	<u>Link</u>	Link
LCS (Longest Common Subsequence) of three strings	<u>Link</u>	<u>Link</u>
Maximum Sum Increasing Subsequence	<u>Link</u>	<u>Link</u>
Count all subsequences having product less than K	<u>Link</u>	Link
Longest subsequence such that difference between adjacent is one	<u>Link</u>	<u>Link</u>
Maximum subsequence sum such that no three are consecutive	<u>Link</u>	Link
Egg Dropping Problem	<u>Link</u>	<u>Link</u>
Maximum Length Chain of Pairs	<u>Link</u>	<u>Link</u>
Maximum size square sub-matrix with all 1s	<u>Link</u>	<u>Link</u>
Maximum sum of pairs with specific difference	<u>Link</u>	<u>Link</u>
Min Cost Path Problem	<u>Link</u>	<u>Link</u>
Maximum difference of zeros and ones in binary string	<u>Link</u>	<u>Link</u>
Minimum number of jumps to reach end	<u>Link</u>	<u>Link</u>
Minimum cost to fill given weight in a bag	<u>Link</u>	<u>Link</u>
Minimum removals from array to make max –min <= K	<u>Link</u>	Link
Longest Common Substring	<u>Link</u>	<u>Link</u>
Count number of ways to reach a given score in a game	<u>Link</u>	<u>Link</u>
Count Balanced Binary Trees of Height h	<u>Link</u>	<u>Link</u>

Question	Article	Practice
LargestSum Contiguous Subarray [V>V>V>V IMP]	<u>Link</u>	<u>Link</u>
Smallest sum contiguous subarray	<u>Link</u>	Link
Unbounded Knapsack (Repetition of items allowed)	<u>Link</u>	<u>Link</u>
Word Break Problem	<u>Link</u>	<u>Link</u>
Largest Independent Set Problem	<u>Link</u>	<u>Link</u>
Partition problem	<u>Link</u>	<u>Link</u>
Longest Palindromic Subsequence	<u>Link</u>	<u>Link</u>
Count All Palindromic Subsequence in a given String	<u>Link</u>	<u>Link</u>
Longest Palindromic Substring	<u>Link</u>	<u>Link</u>
Longest alternating subsequence	<u>Link</u>	<u>Link</u>
Weighted Job Scheduling	<u>Link</u>	Link
Coin game winner where every player has three choices	<u>Link</u>	Link
Count Derangements (Permutation such that no element appears in its original position) [IMPORTANT]	<u>Link</u>	Link
Maximum profit by buying and selling a share at most twice [IMP]	<u>Link</u>	<u>Link</u>
Optimal Strategy for a Game	<u>Link</u>	<u>Link</u>
Optimal Binary Search Tree	<u>Link</u>	<u>Link</u>
Palindrome Partitioning Problem	<u>Link</u>	<u>Link</u>
Word Wrap Problem	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Mobile Numeric Keypad Problem [IMP]	<u>Link</u>	<u>Link</u>
Boolean Parenthesization Problem	<u>Link</u>	<u>Link</u>
Largest rectangular sub-matrix whose sum is 0	<u>Link</u>	Link
Largest area rectangular sub-matrix with equal number of 1's and 0's [IMP]	<u>Link</u>	Link
Maximum sum rectangle in a 2D matrix	<u>Link</u>	<u>Link</u>
Maximum profit by buying and selling a share at most k times	<u>Link</u>	<u>Link</u>
Find if a string is interleaved of two other strings	<u>Link</u>	<u>Link</u>
Maximum Length of Pair Chain	<u>Link</u>	<u>Link</u>

Stacks and Queues

Question	Article	Practice
Implement Stack from Scratch	<u>Link</u>	<u>Link</u>
Implement Queue from Scratch	<u>Link</u>	<u>Link</u>
Implement 2 stack in an array	<u>Link</u>	<u>Link</u>
Find the middle element of a stack	<u>Link</u>	Link
Implement "N" stacks in an Array	<u>Link</u>	Link
Check the expression has valid or Balanced parenthesis or not.	<u>Link</u>	<u>Link</u>
Reverse a String using Stack	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Design a Stack that supports getMin() in O(1) time and O(1) extra space.	<u>Link</u>	<u>Link</u>
Find the next Greater element	<u>Link</u>	<u>Link</u>
The celebrity Problem	<u>Link</u>	<u>Link</u>
Arithmetic Expression evaluation	<u>Link</u>	Link
Evaluation of Postfix expression	<u>Link</u>	<u>Link</u>
Implement a method to insert an element at its bottom without using any other data structure.	<u>Link</u>	Link
Reverse a stack using recursion	<u>Link</u>	Link
Sort a Stack using recursion	<u>Link</u>	<u>Link</u>
Merge Overlapping Intervals	<u>Link</u>	<u>Link</u>
Largest rectangular Area in Histogram	<u>Link</u>	<u>Link</u>
Length of the Longest Valid Substring	<u>Link</u>	<u>Link</u>
Expression contains redundant bracket or not	<u>Link</u>	Link
Implement Stack using Queue	<u>Link</u>	<u>Link</u>
Implement Stack using Deque	<u>Link</u>	Link
Stack Permutations (Check if an array is stack permutation of other)	<u>Link</u>	Link
Implement Queue using Stack	<u>Link</u>	<u>Link</u>
Implement "n" queue in an array	<u>Link</u>	Link

Question	Article	Practice
Implement a Circular queue	<u>Link</u>	Link
LRU Cache Implementation	<u>Link</u>	<u>Link</u>
Reverse a Queue using recursion	<u>Link</u>	<u>Link</u>
Reverse the first "K" elements of a queue	<u>Link</u>	<u>Link</u>
Interleave the first half of the queue with second half	<u>Link</u>	Link
Find the first circular tour that visits all Petrol Pumps	<u>Link</u>	<u>Link</u>
Minimum time required to rot all oranges	<u>Link</u>	<u>Link</u>
Distance of nearest cell having 1 in a binary matrix	<u>Link</u>	<u>Link</u>
First negative integer in every window of size "k"	<u>Link</u>	<u>Link</u>
Check if all levels of two trees are anagrams or not.	<u>Link</u>	Link
Sum of minimum and maximum elements of all subarrays of size "k".	<u>Link</u>	Link
Minimum sum of squares of character counts in a given string after removing "k" characters.	<u>Link</u>	<u>Link</u>
Queue based approach or first non-repeating character in a stream.	<u>Link</u>	<u>Link</u>
Next Smaller Element	<u>Link</u>	Link

Binary Trees

Question	Article	Practice
Level order traversal	<u>Link</u>	<u>Link</u>
Reverse Level Order traversal	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Height of a tree	<u>Link</u>	<u>Link</u>
Diameter of a tree	<u>Link</u>	<u>Link</u>
Mirror of a tree	<u>Link</u>	<u>Link</u>
Inorder Traversal of a tree both using recursion and Iteration	<u>Link</u>	Link
Preorder Traversal of a tree both using recursion and Iteration	<u>Link</u>	Link
Postorder Traversal of a tree both using recursion and Iteration	<u>Link</u>	Link
Left View of a tree	<u>Link</u>	<u>Link</u>
Right View of Tree	<u>Link</u>	<u>Link</u>
Top View of a tree	<u>Link</u>	<u>Link</u>
Bottom View of a tree	<u>Link</u>	<u>Link</u>
Zig-Zag traversal of a binary tree	<u>Link</u>	<u>Link</u>
Check if a tree is balanced or not	<u>Link</u>	<u>Link</u>
Diagonal Traversal of a Binary tree	<u>Link</u>	<u>Link</u>
Boundary traversal of a Binary tree	<u>Link</u>	<u>Link</u>
Construct Binary Tree from String with Bracket Representation	<u>Link</u>	Link
Convert Binary tree into Doubly Linked List	<u>Link</u>	<u>Link</u>
Convert Binary tree into Sum tree	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Construct Binary tree from Inorder and preorder traversal	<u>Link</u>	<u>Link</u>
Find minimum swaps required to convert a Binary tree into BST	<u>Link</u>	Link
Check if Binary tree is Sum tree or not	<u>Link</u>	<u>Link</u>
Check if all leaf nodes are at same level or not	<u>Link</u>	<u>Link</u>
Check if a Binary Tree contains duplicate subtrees of size 2 or more [IMP]	<u>Link</u>	<u>Link</u>
Check if 2 trees are mirror or not	<u>Link</u>	<u>Link</u>
Sum of Nodes on the Longest path from root to leaf node	<u>Link</u>	<u>Link</u>
Check if given graph is tree or not. [IMP]	<u>Link</u>	Link
Find Largest subtree sum in a tree	<u>Link</u>	Link

What is Software Development SDLC Models Agile Software Development Software Developer SDE Roadm

Maximum Sum of nodes in Binary tree such that no two are adjacent	<u>Link</u>	<u>Link</u>
Print all "K" Sum paths in a Binary tree	<u>Link</u>	<u>Link</u>
Find LCA in a Binary tree	<u>Link</u>	<u>Link</u>
Find distance between 2 nodes in a Binary tree	<u>Link</u>	<u>Link</u>
Kth Ancestor of node in a Binary tree	<u>Link</u>	<u>Link</u>
Find all Duplicate subtrees in a Binary tree [IMP]	<u>Link</u>	<u>Link</u>
Tree Isomorphism Problem	<u>Link</u>	<u>Link</u>

Binary Search Tree:

Question	Article	Practice
Find a value in a BST	<u>Link</u>	Link
Deletion of a node in a BST	<u>Link</u>	Link
Find min and max value in a BST	<u>Link</u>	<u>Link</u>
Find inorder successor and inorder predecessor in a BST	<u>Link</u>	<u>Link</u>
Check if a tree is a BST or not	<u>Link</u>	<u>Link</u>
Populate Inorder successor of all nodes	<u>Link</u>	<u>Link</u>
Find LCA of 2 nodes in a BST	<u>Link</u>	<u>Link</u>
Construct BST from preorder traversal	<u>Link</u>	Link
Convert Binary tree into BST	<u>Link</u>	<u>Link</u>
Convert a normal BST into a Balanced BST	<u>Link</u>	<u>Link</u>
Merge two BST [V.V.V>IMP]	<u>Link</u>	<u>Link</u>
Find Kth largest element in a BST	<u>Link</u>	<u>Link</u>
Find Kth smallest element in a BST	<u>Link</u>	<u>Link</u>
Count pairs from 2 BST whose sum is equal to given value "X"	<u>Link</u>	<u>Link</u>
Find the median of BST in O(n) time and O(1) space	<u>Link</u>	<u>Link</u>
Count BST nodes that lie in a given range	<u>Link</u>	<u>Link</u>
Replace every element with the least greater element on its right	<u>Link</u>	Link
Given "n" appointments, find the conflicting appointments	<u>Link</u>	Link

Question	Article	Practice
Check preorder is valid or not	<u>Link</u>	<u>Link</u>
Check whether BST contains Dead end	<u>Link</u>	<u>Link</u>
Largest BST in a Binary Tree [V.V.V.V.V IMP]	<u>Link</u>	<u>Link</u>
Flatten BST to sorted list	<u>Link</u>	Link

Graphs

Question	Article	Practice
Create a Graph, print it	<u>Link</u>	Link
Implement BFS algorithm	<u>Link</u>	<u>Link</u>
Implement DFS Algo	<u>Link</u>	Link
Detect Cycle in Directed Graph using BFS/DFS Algo	<u>Link</u>	Link
Detect Cycle in UnDirected Graph using BFS/DFS Algo	<u>Link</u>	<u>Link</u>
Search in a Maze	<u>Link</u>	<u>Link</u>
Minimum Step by Knight	<u>Link</u>	<u>Link</u>
Flood fill algo	<u>Link</u>	<u>Link</u>
Clone a graph	<u>Link</u>	Link
Making wired Connections	<u>Link</u>	Link
Word Ladder	<u>Link</u>	<u>Link</u>
Dijkstra algo	<u>Link</u>	<u>Link</u>
Implement Topological Sort	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Minimum time taken by each job to be completed given by a Directed Acyclic Graph	<u>Link</u>	Link
Find whether it is possible to finish all tasks or not from given dependencies	<u>Link</u>	Link
Find the no. of Islands	<u>Link</u>	<u>Link</u>
Given a sorted Dictionary of an Alien Language, find order of characters	<u>Link</u>	<u>Link</u>
Implement Kruksal'sAlgorithm	<u>Link</u>	Link
Implement Prim's Algorithm	<u>Link</u>	<u>Link</u>
Total no. of Spanning tree in a graph	<u>Link</u>	Link
Implement Bellman Ford Algorithm	<u>Link</u>	<u>Link</u>
Implement Floyd warshall Algorithm	<u>Link</u>	<u>Link</u>
Travelling Salesman Problem	<u>Link</u>	<u>Link</u>
Graph Colouring Problem	<u>Link</u>	Link
Snake and Ladders Problem	<u>Link</u>	<u>Link</u>
Find bridge in a graph	<u>Link</u>	<u>Link</u>
Count Strongly connected Components(Kosaraju Algo)	<u>Link</u>	<u>Link</u>
Check whether a graph is Bipartite or Not	<u>Link</u>	<u>Link</u>
Detect Negative cycle in a graph	<u>Link</u>	Link
Longest path in a Directed Acyclic Graph	<u>Link</u>	Link

Question	Article	Practice
Journey to the Moon	Link	<u>Link</u>
Cheapest Flights Within K Stops	<u>Link</u>	<u>Link</u>
Oliver and the Game	Link	<u>Link</u>
Water Jug problem using BFS	<u>Link</u>	Link
Find if there is a path of more thank length from a source	<u>Link</u>	Link
M-Colouring Problem	<u>Link</u>	<u>Link</u>
Minimum edges to reverse to make path from source to destination	<u>Link</u>	Link
Paths to travel each nodes using each edge(Seven Bridges)	<u>Link</u>	Link
Vertex Cover Problem	<u>Link</u>	Link
Chinese Postman or Route Inspection	<u>Link</u>	Link
Number of Triangles in a Directed and Undirected Graph	<u>Link</u>	Link
Minimise the cashflow among a given set of friends who have borrowed money from each other	<u>Link</u>	Link
Two Clique Problem	<u>Link</u>	Link

Неар

Question	Article	Practice
Implement a Maxheap/MinHeap using arrays and recursion.	<u>Link</u>	Link
Sort an Array using heap. (HeapSort)	<u>Link</u>	Link

Question	Article	Practice
Maximum of all subarrays of size k.	<u>Link</u>	Link
"K" largest element in an array	<u>Link</u>	<u>Link</u>
Kth smallest and largest element in an unsorted array	<u>Link</u>	Link
Merge "K" sorted arrays. [IMP]	<u>Link</u>	<u>Link</u>
Merge 2 Binary Max Heaps	<u>Link</u>	<u>Link</u>
Kth largest sum continuous subarrays	<u>Link</u>	Link
Leetcode- reorganize strings	<u>Link</u>	Link
Merge "K" Sorted Linked Lists [V.IMP]	<u>Link</u>	<u>Link</u>
Smallest range in "K" Lists	<u>Link</u>	<u>Link</u>
Median in a stream of Integers	<u>Link</u>	<u>Link</u>
Check if a Binary Tree is Heap	<u>Link</u>	<u>Link</u>
Connect "n" ropes with minimum cost	<u>Link</u>	<u>Link</u>
Convert BST to Min Heap	<u>Link</u>	Link
Convert min heap to max heap	<u>Link</u>	Link
Rearrange characters in a string such that no two adjacent are same.	<u>Link</u>	<u>Link</u>
Minimum sum of two numbers formed from digits of an array	<u>Link</u>	<u>Link</u>

Question	Article	Practice
Construct a trie from scratch	<u>Link</u>	Link
Find shortest unique prefix for every word in a given list	<u>Link</u>	Link
Word Break Problem (Trie solution)	<u>Link</u>	Link
Given a sequence of words, print all anagrams together	<u>Link</u>	<u>Link</u>
Implement a Phone Directory	<u>Link</u>	<u>Link</u>
Print unique rows in a given boolean matrix	<u>Link</u>	<u>Link</u>

Three 90 Challenge is back on popular demand! After processing refunds worth INR 1CR+, we are back with the offer if you missed it the first time. Get 90% course fee refund in 90 days. Avail now!

Want to learn **Software Testing** and **Automation** to help give a kickstart to your career? Any student or professional looking to excel in Quality Assurance should enroll in our course, **Complete Guide to Software Testing and Automation**, only on GeeksforGeeks. Get hands-on learning experience with the latest testing methodologies, automation tools, and industry best practices through **practical projects** and **real-life scenarios**. Whether you are a beginner or just looking to build on existing skills, this course will give you the competence necessary to ensure the quality and reliability of software products. Ready to be a Pro in Software Testing? Enroll now and Take Your Career to a Whole New Level!

Next Article

The Ultimate Beginner's Guide For DSA

What is DSA | DSA Full Form

What is DSA?DSA(Data Structures and Algorithms) is defined as a combination of two separate yet interrelated topics – Data Structure and Algorithms. DSA i...

(2 min read

Most Asked Problems in Data Structures and Algorithms | Beginner DSA...

In this Beginner DSA Sheet for Data Structures and Algorithms, we have curated a selective list of problems for you to solve as a beginner for DSA. Aft...

(3 min read

Circular Linked List meaning in DSA

A circular linked list is a special type of linked list in which the last node is connected to the first node, creating a continuous loop. In a circular linked list,...

(3 min read

EssenceMediacom has been declared the worl...

SPONSORED BY ESSENCEMEDIACOM INDIA

LEARN MOF

Queue meaning in DSA

A Queue is defined as a linear data structure that is open at both ends and the operations are performed in the First In First Out (FIFO) order. Characteristics o...

(S) 3 min read

Subarray meaning in DSA

A subarray is a portion of an array that consists of consecutive elements from the original array. Characteristics of a Subarray: Contiguity: The elements in a...

(L) 2 min read

Disjoint Set meaning and definition in DSA

Disjoint Set is a data structure that keeps track of a set of elements partitioned into a number of disjoint subsets and it is used to efficiently solve problems th...

(2 min read

What is Greedy Algorithm in DSA?

A Greedy Algorithm is defined as a problem-solving strategy that makes the locally optimal choice at each step of the algorithm, with the hope that this wil...

(4 min read

EssenceMediacom has been declared the worl...

SPONSORED BY ESSENCEMEDIACOM INDIA

LEARN MOF

Deque meaning in DSA

Deque, which stands for Double Ended Queue, is a special type of queue that allows adding and removing elements from both front and rear ends....

(2 min read

Balanced Binary Tree definition & amp; meaning in DSA

Balanced binary tree is defined as a binary tree data structure where there is no more than one height difference between the left and right subtrees of any...

(2 min reac

Min Heap meaning in DSA

A min heap is a binary tree-based data structure where the value of each node is less than or equal to its child nodes. In other words, the root node is always...

(3 min reac

Article Tags:

DSA

Software Development

GFG Sheets

SDE Sheet

EssenceMediacom has bee the world's biggest media r

SPONSORED BY ESSENCEMEDIACOM INDIA

Corporate & Communications Address:- A-143, 9th Floor, Sovereign Corporate Tower, Sector-136, Noida, Uttar Pradesh (201305) | Registered Address:- K 061, Tower K, Gulshan Vivante Apartment, Sector 137,

Company

About Us

Legal

Careers

In Media

Contact Us

Advertise with us

GFG Corporate Solution

Placement Training Program

Languages

Python

Java

C++

PHP

GoLang

SQL

R Language

Android Tutorial

Data Science & ML

Data Science With Python

Data Science For Beginner

Machine Learning Tutorial

ML Maths

Data Visualisation Tutorial

Pandas Tutorial

NumPy Tutorial

NLP Tutorial

Deep Learning Tutorial

Python Tutorial

Python Programming Examples

Django Tutorial

Python Projects

Python Tkinter

Web Scraping

OpenCV Tutorial

Python Interview Question

Explore

Job-A-Thon Hiring Challenge

Hack-A-Thon

GfG Weekly Contest

Offline Classes (Delhi/NCR)

DSA in JAVA/C++

Master System Design

Master CP

GeeksforGeeks Videos

Geeks Community

DSA

Data Structures

Algorithms

DSA for Beginners

Basic DSA Problems

DSA Roadmap

DSA Interview Questions

Competitive Programming

Web Technologies

HTML

CSS

JavaScript

TypeScript

ReactJS

NextJS

NodeJs

Bootstrap

Tailwind CSS

Computer Science

GATE CS Notes

Operating Systems

Computer Network

Database Management System

Software Engineering

Digital Logic Design

Engineering Maths

System Design

DevOps

Git
AWS
Docker
Kubernetes
Azure
GCP
DevOps Roadmap

High Level Design
Low Level Design
UML Diagrams
Interview Guide
Design Patterns
OOAD
System Design Bootcamp
Interview Questions

School Subjects

Mathematics
Physics
Chemistry
Biology
Social Science
English Grammar

Commerce

Accountancy
Business Studies
Economics
Management
HR Management
Finance
Income Tax

Databases

SQL MYSQL PostgreSQL PL/SQL MongoDB

Preparation Corner

Company-Wise Recruitment Process
Resume Templates
Aptitude Preparation
Puzzles
Company-Wise Preparation
Companies
Colleges

Competitive Exams

JEE Advanced
UGC NET
UPSC
SSC CGL
SBI PO
SBI Clerk
IBPS PO
IBPS Clerk

More Tutorials

Software Development
Software Testing
Product Management
Project Management
Linux
Excel
All Cheat Sheets

Free Online Tools

Typing Test
Image Editor
Code Formatters
Code Converters
Currency Converter
Random Number Generator
Random Password Generator

Write & Earn

Write an Article Improve an Article Pick Topics to Write Share your Experiences Internships