Report 3 – AEDs III

Willian de Souza Soares – 2014.1.08.034

March 10, 2020

Abstract

Some of the computational representations that can be used on graphs, including $Adjacency\ Matrix$, $Incidence\ Matrix$ and $Adjacency\ List$.

1 Adjacency Matrix

Adjacency: a is **adjacent** to b if a is connected to b.

An adjacency matrix is represented by a square matrix, having n elements, $n \times n$ is the number of Vertices on a graph G.

$$G = (V, E)$$

$$V = a, b, c$$

$$E = (a, b), (a, c), (b, c), (c, a), (c, b)$$

$$G: \begin{array}{c|c} a & b & c \\ \hline a & 1 & 1 \\ \hline c & 1 & 1 \\ \hline \end{array}$$

Advantages:

- $\theta(1)$ for access;
- Efficient when dealing with a complete graph.

Disadvantages:

- $\theta(V^2)$ for memory usage;
- Can be under-used and be made mostly of empty spaces, when dealing with a sparse graph;
- Cannot represent valued and parallel edges at the same time.

2 **Incidence Matrix**

Given a graph G = (V, E), the incidence matrix of G has the size $|V| \times |E|$.

$$G = (V, E)$$

 $V = a, b, c$

$$V = a, b, c$$

$$E = (a, b), (a, c), (b, c), (c, a), (c, b)$$

Advantages:

- $\theta(E)$ for access. Can be a disadvantage when dealing with too many edges;
- Efficient when dealing with sparse graphs

Disadvantages:

• $\theta(V \times E)$ for memory usage: uses too many space when dealing with graphs with many Edges;

Adjacency List 3

Given a graph G = (V, E), the graph G is represented by an array a_v of linked lists. Each of these linked lists represents an edge e adjacent to v.

$$G = (V, E)$$

$$V = a, b, c$$

$$E = (a,b), (a,c), (b,c), (c,a), (c,b)$$

$$a \rightarrow b c //$$
 $G: b \rightarrow c //$

Advantages:

• Uses the lowest memory than the another options, $\theta(V+E)$

Disadvantages:

• Slow for access and operations with edges, $\theta(E)$