

Grundlagen Rechnernetze und Verteilte Systeme

IN0010, SoSe 2019

Übungsblatt 7

11. Juni - 21. Juni 2019

Wegen der Pfingsfeiertage wird dieses Blatt am 12. – 14. Juni sowie am 17. und 18. Juni besprochen. Die Übungsgruppen an den anderen Tagen entfallen.

Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar.

Aufgabe 1 Packet Pair Probing (Klausuraufgabe Endterm 2012)

Packet Pair Probing ist ein Verfahren, mit dem sich durch geschickte Ausnutzung von Serialisierungs- und Verzögerungszeiten die Bandbreite eines Linkabschnitts bestimmen lässt. Wir wollen dies anhand des in Abbildung 1 dargestellten Beispielnetzwerks nachvollziehen.

Die Knoten 1 und 4 sind mit ihren Routern jeweils über Ethernet mit einer Datenrate von 1 Gbit/s angebunden. Die Verbindung zwischen den Routern 2 und 3 ist jedoch deutlich langsamer. Diese Übertragungsrate r_{23} soll von 1 und 4 bestimmt werden, indem möglichst wenig Last auf der ohnehin langsamen Verbindung erzeugt wird.

Abbildung 1: Netztopologie

Wir leiten in dieser Aufgabe zunächst allgemein ein Verfahren her, mittels dem Knoten 1 und 4 die gefragte Übertragungsrate bestimmen können. Im Anschluss werten wir das Verfahren für konkrete Zahlenwerte aus und diskutieren mögliche Probleme, die in der Praxis auftreten werden.

- **a)*** Geben Sie die Serialisierungszeit $t_s(i, j)$ zwischen zwei benachbarten Knoten i und j in Abhängigkeit der Paketgröße p und der Übertragungsrate r_{ij} an.
- **b)*** Geben Sie die Ausbreitungsverzögerung $t_p(i,j)$ zwischen zwei benachbarten Knoten i und j in Abhängigkeit der Distanz d_{ij} an.
- c)* Erläutern Sie kurz, wie 1 bei Verwendung von IPv4 die maximale MTU auf dem Pfad nach 4 bestimmen kann.
- 1 sende nun unmittelbar nacheinander zwei Pakete der Länge p an 4. Sie können davon ausgehen, dass sonst kein weiterer Datenverkehr die Übertragung beeinflusst. Die Länge p sei so gewählt, dass keine Fragmentierung notwendig ist. Eventuelle Verarbeitungszeiten an den Knoten können Sie vernachlässigen.
- **d)** Zeichnen Sie ein Weg-Zeit-Diagramm, welches die Übertragung der beiden Pakete qualitativ richtig darstellt. Berücksichtigen Sie dabei insbesondere $r_{23} < r_{12} = r_{34}$ wie eingangs erwähnt.

Durch die geringe Übertragungsrate zwischen 2 und 3 entsteht an Knoten 3 eine Sendepause Δt zwischen den beiden weitergeleiteten Paketen. Diese kann von 4 gemessen und zur Bestimmung der Übertragungsrate zwischen 2 und 3 verwendet werden.

- e) Markieren Sie Δt in Ihrer Lösung von Teilaufgabe d).
- f) Von welchen Größen hängt Δt ab?

- g) Geben Sie einen Ausdruck für Δt an. Vereinfachen Sie den Ausdruck soweit wie möglich.
- **h)** Geben Sie einen Ausdruck für die gesuchte Datenrate r_{23} an. Vereinfachen Sie den Ausdruck soweit wie möglich.

Wiederholte Messungen an 4 ergeben einen Durchschnittswert von $\overline{\Delta t}$ = 1,2 ms bei einer Paketgröße von $p = 1500 \, \text{B}$.

i) Bestimmen Sie r₂₃ als Zahlenwert in Mbit/s.

Aufgabe 2 Drahthai

Gegeben sei der in Abbildung 2 dargestellte Hexdump in Network-Byte-Order eines Ethernet-Rahmens, ohne Checksum, welcher im Folgenden analysiert werden soll.

Header Lend

												_	_ IIIL "			
0x0000	00	16	3e	ff	ff	ff	00	16	3e	6d	cd	0d	08	00	45	00
0x0010	00	58	9f	47	40	00	40	06	47	33	ac	10	fe	02	ac	10
0x0010 0x0020 0x0030	fe	01	00	16	da	e2	02	5d	78	9a	f2	3d	99	17	80	18
0x0030	00	e3	54	70	00	00	01	01	08	0a	b3	13	65	ca	11	82
0x0040	53	20	53	53	48	2d	32	2e	30	2d	74	69	6e	79	73	73
0x0050	68	5f	6e	6f	76	65	72	73	69	6f	6e	20	5a	34	43	53
0x0060	69	31	5a	52	0d	0a										

Abbildung 2: Hexdump eines Ethernet-Rahmens, ohne Checksum, in Network-Byte-Order

Hinweis: Zur Lösung der Aufgabe sind Informationen aus dem Cheatsheet notwendig.

- a)* Markieren Sie in Abbildung 2 Beginn und Ende des Ethernet-Headers.
- **b)** Begründen Sie, durch Markieren und Beschreiben relevanter Headerfelder, welches Protokoll auf Schicht 3 verwendet wird.
- c) Beschreiben Sie, wie die Länge des Headers auf Schicht 3 bestimmt wird. Markieren und benennen Sie dafür relevante Abschnitte in Abbildung 2.
- d) Markieren Sie alle Schicht 3 Addressen und benennen Sie diese.
- e) Markieren Sie alle in Schicht 3 enthaltenen Extension Header. 📏
- f) Benennen und beschreiben Sie die drei kleinsten Headerfelder von Schicht 3. Geben Sie zudem die Größe der beschriebenen Headerfelder an. 1814 RES DF
- **g)** Falls es eine L3-SDU gibt, geben Sie ihren Typ an und begründen Sie die Angabe. Andernfalls, legen Sie Ihren Gedankengang dar und erörtern wie es zu dieser Situation kommen konnte.
- h) Die Bytes 0x0042 und Folgende sind Payload von Schicht 3. Geben Sie die ASCII Darstellung der ersten 7 B der Payload an.
- i) Um welches Protokoll der Anwendungsschicht handelt es sich also vermutlich und wozu wird dieses Protokoll verwendet?

Es handelt sich um SSH (Version 2.0), das für eine verschlüsselte Konsolensitzung unter Linux/Unix und neuerdings auch unter Windows verwendet wird.