Section 9.6: Inverse Functions

Juan Patricio Carrizales Torres

Aug 6, 2022

A part from its properties, functions come with an interesting concept, namley, the **inverse function**. Let $f: A \to B$ be some function. Then, the inverse f^{-1} is a relation defined by

$$f^{-1} = \{(b, a) : (a, b) \in f\}.$$

In fact, f^{-1} is a function from B to A if and only if f is bijective. Furthermore, f being bijective implies that f^{-1} is bijective. This points out that all **inverse functions** are bijective. Also, for some function f from A to B, if $f \circ f^{-1} = B$ and $f^{-1} \circ f = A$, then f is bijective. In fact, for functions $f: A \to B$ and $g: B \to A$ such that $f \circ g = i_A$ and $g \circ f = i_B$, both g and f are bijective and $g = f^{-1}$.

Moreover, for any function $f: A \to B$, let g be some function such that $f \circ g = i_B$. Then, g is known as the **right inverse** of f. In fact, if $h \circ f = i_A$ for some function h, then h is the left inverse of f. The following can be proven:

- (a) f is surjective \iff function g exists.
- (b) f is injective \iff function h exists.

Problem 51. Show that the function $f: \mathbb{R} - \{3\} \to \mathbb{R} - \{5\}$ defined by $f(x) = \frac{5x}{x-3}$ is bijective and determine $f^{-1}(x)$ for $x \in \mathbb{R} - \{5\}$.

Proof. We first show that $f: \mathbb{R} - \{3\} \to \mathbb{R} - \{5\}$ is bijective. Consider some $a, b \in \mathbb{R} - \{3\}$ such that f(a) = f(b). Then, $\frac{5a}{a-3} = \frac{5b}{b-3}$. Multiplying by (a-3)(b-3) we have (5a)(b-3) = (5b)(a-3). Hence, 5ab-15a = 5ba-15b. Substracting 5ba and then dividing by -15 results in a = b. The function f is one-to-one. Now, consider any $y \in \mathbb{R} - \{5\}$. Then, $r = \frac{-3y}{5-y}$ is defined and $r \neq 3$ (otherwise 15 = 0). Hence, $r \in \mathbb{R} - \{3\}$ and so

$$f(r) = \frac{5r}{r - 3} = \frac{5\left(\frac{-3y}{5 - y}\right)}{\left(\frac{-3y}{5 - y}\right) - 3}$$
$$= \frac{\frac{-15y}{5 - y}}{\frac{-3y - 15 + 3y}{5 - y}}$$
$$= \frac{\frac{-15y}{5 - y}}{\frac{-15}{5 - y}} = y.$$

Thus, f is onto and so bijective.

Since f is bijective, it follows that f^{-1} is a bijective function. We determine $f^{-1}(x)$ for any $x \in \mathbb{R} - \{5\}$. Consider some $x \in \mathbb{R} - \{5\}$. Because f is onto, it follows that there is some $a \in \mathbb{R} - \{3\}$ such that f(a) = x and so $f^{-1}(x) = a$. Hence,

$$f(f^{-1}(x)) = \frac{5f^{-1}(x)}{f^{-1}(x) - 3} = x.$$

Hence, $5f^{-1}(x) = xf^{-1} - 3x$ and so $f^{-1}(x)(5-x) = -3x$. This implies that $f^{-1}(x) = \frac{3x}{x-5}$.

Problem 53. Let A and B be sets with |A| = |B| = 3. How many functions from A to B have inverse functions?

Solution Recall that a function has an inverse function if and only if it is bijective. Since there are 3! bijective functions from A to B, it follows that only 3! = 6 functions from A to B have inverse functions.

Problem 56. Let A, B and C be nonempty sets and let f, g and h be functions such that $f: A \to B, g: B \to C$ and $h: B \to C$. For each of the following, prove or disprove:

(a) If $g \circ f = h \circ f$, then g = h.

Solution This is false. Let $A = \{1\}, B = \{1, 2, 3\}$ and $C = \{b, c\}$. Also, let $f = \{(1, 1)\}, g = \{(1, b), (2, c), (3, c)\}$ and $h = \{(1, b), (2, b), (3, b)\}$. Then, $g \circ f = \{(1, b)\} = h \circ f$ and $h \neq g$.

(b) If f is one-to-one and $g \circ f = h \circ f$, then g = h.

Solution This is also false. Note that in the previous counterexample, $f = \{(1,1)\}$ is one-to-one.

Problem 57. The function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x < 1\\ \sqrt{x-1} & \text{if } x \ge 1. \end{cases}$$

(a) Show that f is a bijection.

Proof. Note that for all real numbers a < 1 and $b \ge 1$ we have a - 1 < 0 and $0 \le b - 1$. Hence, f(a) = 1/(a-1) < 0 and $f(b) = \sqrt{b-1} \ge 0$. Also, $\sqrt{b-1} \ge 0 \implies b \ge 1$ and $1/(a-1) < 0 \implies a < 1$. Thus, $f(a) < 0 \iff a < 1$ and $f(b) \ge 0 \iff b \ge 1$. We first show that f is injective. Let f(a) = f(b). We consider two cases.

Case 1. f(a) = f(b) < 0 and so a, b < 1. Then, 1/(a-1) = 1/(b-1). Multiplying both sides by (a-1)(b-1) we have b-1=a-1 and so a=b. Case 2. $f(a) = f(b) \ge 0$ and so $a, b \ge 1$. Then, $\sqrt{a-1} = \sqrt{b-1}$. Squaring both sides

we have a - 1 = b - 1 and so a = b.

Now, we show that f is surjective. Consider some real number b. Case 1. b < 0. Let r = 1/b + 1. Hence,

$$f(r) = \frac{1}{r - 1}$$

$$= \frac{1}{\frac{1}{b} + 1 - 1} = \frac{1}{\frac{1}{b}}$$

$$= b.$$

Note that the fact that there is some real number r such that f(r) < 0 implies that r < 1.

Case 2. Consider some real number $b \ge 0$. Let $r = b^2 + 1$. Thus,

$$h(r) = \sqrt{(b^2 + 1) - 1}$$

= $\sqrt{b^2} = b$.

Therefore, f is bijective.

(b) Determine the inverse f^{-1} of f

Solution Since $f : \mathbb{R} \to \mathbb{R}$ is bijective, we know that $f \circ f^{-1}(x) = x$ for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$. We consider the following cases.

Case x < 0. Then, there is some real number a < 1 such that f(a) = x. Thus, $f^{-1}(x) = a$ and so $f^{-1}(x) < 1$. Then,

$$f \circ f^{-1}(x) = \frac{1}{f^{-1}(x) - 1} = x.$$

Multiplying both sides by $f^{-1}(x) - 1$ and adding x, we have $1 + x = xf^{-1}(x)$. Dividing by x we get $f^{-1}(x) = \frac{1+x}{x}$ for all real numbers x < 0.

Case $2 \times 2 = 0$. Then, there is some real number $a \ge 1$ such that f(a) = x. Thus, $f^{-1}(x) = a$ and so $f^{-1}(x) \ge 1$. Then,

$$f \circ f^{-1}(x) = \sqrt{f^{-1}(x) - 1} = x.$$

Squaring both sides and adding 1, we have $f^{-1}(x) = x^2 + 1$ for all real numbers greater than or equal to zero.

Hence, the function $f^{-1}: \mathbb{R} \to \mathbb{R}$ is defined by

$$f^{-1}(x) = \begin{cases} \frac{1+x}{x} & \text{if } x < 0\\ x^2 + 1 & \text{if } x \ge 0 \end{cases}$$

for all $x \in \mathbb{R}$.

Problem 58. Suppose, for a function $f: A \to B$, that there is a function $g: B \to A$ such that $f \circ g = i_B$. Prove that if g is surjective, then $g \circ f = i_A$.

Proof. Consider some $x \in A$. Since g is surjective, it follows that there is some $b \in B$ such that g(b) = x. Because $f(x) = f(g(b)) = (f \circ g)(b)$ and $f \circ g = i_B$, we have f(x) = b. Then, $(g \circ f)(x) = g(f(x)) = g(b) = x$. Therefore, $g \circ f = i_A$.

Problem 59. Let $f:A\to B,\ g:B\to C$ and $h:B\to C$ be functions where f is a bijection. Prove that if $g\circ f=h\circ f$, then g=h.

Proof. Consider some $b \in B$. Since $f: A \to B$ is bijective, it follows that f is surjective and so there is some $a \in A$ such that f(a) = b. Then, $(g \circ f)(a) = g(f(a)) = g(b) = (h \circ f)(a) = h(f(a)) = h(b)$. Hence, g(b) = h(b) for each $b \in B$ and so g = h.