Cohen's d

Do movie ratings differ between websites? And if so, how much?

TOMATOMETER (2)

Average Rating: 7.3/10

Reviews Counted: 162

Fresh: 128

Rotten: 34

IMDB - TomatoMeter

8.9 - 7.3

IMDB — TomatoMeter

Standard Deviation

8.9 - 7.3

1.4

8.9 - 7.3 1.4

Cohen's d=1.14

Cohen's *d* ranges from 0 (no effect) to ∞

Use benchmarks 'large', 'medium', or 'small' only as a last resort.

Cohen's d is the difference divided by the standard deviation

But slightly different versions exist: d, (within) d_s (sample) d_{av} (corrected within)

Lakens, 2013

Hedges' g is an unbiased version of Cohen's d.

$$g = d \times \left(1 - \frac{3}{4(n_1 + n_2) - 9}\right)$$

d can be calculated from t and n

$$d_S = t \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Cohen's d for a within and between design (same Mand SD) differ by $\sqrt{2(1-r)}$

When r > 0.5, $\sqrt{2}(1 - r) > 1$, dis higher, power is higher.

When needed, Cohen's d provides a standardized mean difference effect size.