Instrumental Variables

Ani Katchova

Instrumental Variables Overview

- Endogeneity examples
- Endogeneity definitions
- Instrumental variables set up
- The two stage least squares (2SLS) estimation procedure
- Identification issues
- Endogeneity tests
- Weak instrumental variables
- Systems of equations (2SLS and 3SLS)

Instrumental Variables

Endogeneity examples

- Wages and education jointly depend on ability which is not directly observable. We can use available test results to proxy for ability.
- Consumption and income are both determined by macroeconomic factors. We can use investments to control for endogeneity.

Causes of endogeneity

- The explanatory variables are measured with errors
- Reverse causality (the explanatory variable is caused by the dependent variable)

Endogeneity definitions

A regressor is endogenous when it is correlated with the error term.

Example: y is earnings, x is years of schooling, u is error term (including ability), z is proximity to college.

Exogeneity: regressors x and the error term u are independent causes of the dependent variable y.

Endogeneity: the error u is affecting the regressors x and therefore indirectly affecting y.

Instrumental variables: instruments z are associated with x but not with the error term u.

Requirements for instruments *z*:

- z is correlated with the regressors x, $E[z'x] \neq 0$ (z predicts or causes x),
- z is uncorrelated with the error term u, E[z'u] = 0 (z is not endogenous),
- z is not a direct cause of the dependent variable y, cov[y, z|x] = 0 (z is not in the y equation).

Instrumental variables set up

- Consider the linear model: $y = x\beta + u$
- Endogeneity is when one or more explanatory variables are correlated with the error term: $E[x|u] = cov(x'u) \neq 0$.
- The estimated coefficients from the OLS estimation are biased:

$$b = \beta + (x'x)^{-1}x'u, E[b] \neq \beta.$$

• We re-write the model as the following structural equation:

$$y_1 = y_2' \beta_1 + x_1' \beta_2 + u$$

where y_1 is the dependent variable, y_2 is the endogenous variable, and x_1 are the exogenous variables.

- The structural equation model involves a combined set $x = [y_2, x_1]$ of both endogenous and exogenous variables.
- We need to find a set of instrument $z = [x_1, x_2]$ of only exogenous variables, where x_1 is instrument for itself and x_2 is instrument for y_2 .

The two stage least squares (2SLS) estimation procedure

- The 2SLS procedure replaces the endogenous variable with predicted values of this endogenous variable when regressed on instruments.
- 1. Estimate the first stage (reduced form) equation with only exogenous regressors.

$$y_2 = x_1^{'} \gamma_1 + x_2^{'} \gamma_2 + e$$

2. Calculate the predicted values \hat{y}_2 and substitute them in the structural equation model.

$$y_1 = \hat{y}_2' \beta_1 + x_1' \beta_2 + u$$

Identification issues

- Order condition: The number of omitted instrumental variables must be at least as large as the number of endogenous regressor.
- Rank condition: The matrices z'x must have a full rank in order to be inverted.

Just-identified model

• An IV model is just identified if there is one instrument x_2 for each endogenous variable y_2 .

$$b_{IV} = (z'x)^{-1}z'y = (z'x)^{-1}z'(x\beta + u) = \beta + (z'x)^{-1}z'u$$

• This estimator is unbiased.

Under-identified model

- An IV model is under-identified if there are fewer instruments x_2 than endogenous variables y_2 .
- The under-identified model has an infinite number of solutions and therefore no consistent estimator exists.

Over-identified model

- An IV model is over-identified if there are more instruments than endogenous variables.
- There are two efficient estimators that can be used:

• The two stage least squares (2SLS) (best if the error term is iid and homoskedastic):

$$b_{2sls} = [x'z(z'z)^{-1}z'x]^{-1}x'z(z'z)^{-1}z'y$$

• The generalized method of moments (GMM):

$$b_{GMM} = (x'zwz'x)^{-1}x'zwz'y$$

If $w = (z'z)^{-1}$, then this is the 2SLS estimate.

Usually $w = \hat{S}^{-1}$, where \hat{S} is the estimated variance of z'u.

This estimator is optimal in presence of heteroscedasticity.

Instrumental variables tests

Hausman test for endogeneity

- The Hausman test checks if a regressor is exogenous or endogenous.
- The Hausman test compares the OLS and IV estimates to check for significant differences.
 - o If there are significant differences, then the regressor is endogenous.
 - o If there are no significant differences, then the regressor is exogenous.

Durbin-Wu-Hausman test for exogenous regressors

- The Durbin-Wu-Hausman test is a procedure that checks whether $E[x|e] = cov(xe) \neq 0$.
- Estimate the first-stage model: $y_2 = x_1' \gamma_1 + x_2' \gamma_2 + u$
- Include the residuals (\hat{u}) from the first-stage regression in the structural equation regression:

$$y_1 = y_2' \beta_1 + x_1' \beta_2 + \hat{u}\rho + e$$

- \circ If the coefficient on the residuals from the first-stage regression ρ is not significantly different from zero then the regressors are exogenous.
- \circ If the coefficient ρ is significantly different from zero then the regressors are endogenous.

Tests for overidentifying restrictions

• Estimate model using GMM and form a test statistic:

$$Q(\beta) = (1/N)(y - x\beta)'z(S^{-1})(1/N)z'(y - x\beta)$$

- It is distributed as chi-square with degrees of freedom of the number of overidentifying restrictions.
- Rejection of null hypothesis at least one instrument is not valid.

Weak Instrumental Variables

A weak instrument has a low correlation with the endogenous variable.

Tests for weak instruments

- In a case of one endogenous regressor and one instrument, a low correlation between instrument and the endogenous variable would indicate a weak instrument.
- When several instruments are used for one endogenous variable, the weakness of the instruments can be measured by the partial R² and partial F-statistic from the first stage regression.
 - o The instrument is weak if the partial F-statistic testing the joint significance of the coefficients of the instruments ($\gamma_2 = 0$) is less than 10.

Consequences of weak instruments

• A weak instrument will undermine the precision of the estimator.

$$V(\hat{\beta}_{IV}) = V(\hat{\beta}_{OLS})/r_{\chi_Z}^2$$

• The IV estimator is asymptotically consistent but biased toward OLS estimator in finite-sample. The size of the bias is positively related to the weakness of the instrument(s) and inversely related with the size of the sample.

Instrumental Variables and Simultaneous Systems of Equations

Simultaneous systems of equations with two endogenous variables

• The system of structural equations is:

$$y_{1} = y_{2}'\beta_{1} + z_{1}'\gamma_{1} + u_{1}$$

$$y_{2} = y_{1}'\beta_{2} + z_{2}'\gamma_{2} + u_{2}$$

- There are endogenous variables as independent variables in both equations.
- The reduced form equation is:

$$y = z'\Gamma + u$$

The two stage least squares (2SLS) or three stage least squares (3SLS) procedure:

- 1. Estimate the reduced form equation by OLS regression and obtain \hat{y} .
- 2. Use the estimates \hat{y} from the first stage to estimate the structural equations:

$$y_1 = \hat{y}_2' \beta_1 + z_1' \gamma_1 + u_1$$

$$y_2 = \hat{y}_1' \beta_2 + z_2' \gamma_2 + u_2$$

These estimates are the 2SLS estimates.

3. Use the 2SLS estimates to compute the 3SLS using the following estimator:

$$\hat{\beta}_{3SLS} = \left\{ X' \left(\Sigma^{-1} \otimes I_N \right) X \right\}^{-1} \left\{ X' \left(\Sigma^{-1} \otimes I_N \right) y \right\}$$

2SLS and 3SLS comparison

- 3SLS is more efficient than 2SLS because it uses cross-equation information.
- 3SLS is inconsistent if the error term is heteroscedastic.