

Lokalna gustoća – aproksimacija minimalnih slika

Periodični rubni uvjeti – probni pomaci

Lennard-Jones potencijalna energija (interakcija parova)

$$U = u(r_{12}) + u(r_{13}) + \dots + u(r_{23}) + \dots = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} u(r_{ij})$$

$$u(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$

Sila	24-5	1
$\mathbf{f}(r) = -\nabla u(r) =$	$\frac{24\epsilon}{r} \left[2(\frac{\sigma}{r})^{12} - \right]$	$-\left(\frac{\sigma}{r}\right)^6 \hat{\mathbf{r}}$

Tlak
$$P(t) = \frac{N}{V}kT(t) + \frac{1}{dV}\sum_{i < j} \mathbf{r}_{ij}(t) \cdot \mathbf{F}_{ij}(t)$$

quantity	unit	value for argon
length	σ	$3.4 \times 10^{-10} \mathrm{m}$
energy	ϵ	$1.65 \times 10^{-21} \mathrm{J}$
mass	m	$6.69 \times 10^{-26} \mathrm{kg}$
time	$\sigma(m/\epsilon)^{1/2}$	$2.17 \times 10^{-12} \mathrm{s}$
velocity	$(\epsilon/m)^{1/2}$	$1.57 \times 10^{2} \mathrm{m/s}$
force	ϵ/σ	$4.85 \times 10^{-12} \mathrm{N}$
pressure	ϵ/σ^2	$1.43 \times 10^{-2} \mathrm{N} \cdot \mathrm{m}^{-1}$
temperature	ϵ/k	$120\mathrm{K}$

Radijalna distribucijska funkcija (za bulk)

$$ho(r)=
ho^{bulk}g(r)$$

$$g(\mathbf{r}) = rac{1}{
ho} \langle \sum_{i
eq 0} \delta(\mathbf{r} - \mathbf{r}_i)
angle = V rac{N-1}{N} \left\langle \delta(\mathbf{r} - \mathbf{r}_1)
ight
angle$$

https://commons.wikimedia.org/wiki/File:Simulated_Radial_Distribution_Functions_for_Solid,_Liquid,_and_Gaseous_Argon.svg

Rzdioba međučestičnih udaljenosti

Primjeri za konačni sustav

- normu obično postavljamo na 1 ili N

Primjeri razdioba međučestičnih udaljenosti i gustoće u odnosu na CM

Z11:

Unutar mape 11 Klasicni sustavi priložen je klasicni_sustav.c kojeg treba dovršiti prema uputama – zadacima (ZAD). Simulirajte sustav koji nalikuje krutini (podesite parametre da bude takav). Uzmite šire područje od trenutno postavljenoga...

- Pokrenite i prilagodite xy_trokutasta.c za slaganje početnih položaja u trokutastu rešetku.
- Testirajte duljinu simulacija promatrajući kako se ukupna srednja energija i njen prosjek bloka ponašaju tijekom simulacije (priložite graf).
- Grafički prikažite g(r).
- Priložite kodove skripte i graf.