Part 1 Extra Credit

April 29, 2025

```
[]: import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Merge both dataframes vertically (same columns)
     \#merged\_df = pd.concat([df\_noncoding, df\_coding], axis=0).reset\_index(drop=True)
     # Save to a new CSV file
     merged_path = "Z.variantCall.SNPs_anno.complete.csv"
     #merged_df.to_csv(merged_path, index=False)
     merged_df = pd.read_csv(merged_path)
     # Display basic info
     merged_info = {
         "num_rows": merged_df.shape[0],
         "num_columns": merged_df.shape[1],
         "column_names_sample": merged_df.columns[:10].tolist()
     }
     merged_info
    /var/folders/dh/ct60f64n7r30w2htbyy2py5c0000gn/T/ipykernel_28414/2326261280.py:1
    0: DtypeWarning: Columns (19,20,21,35,36) have mixed types. Specify dtype option
    on import or set low_memory=False.
      merged_df = pd.read_csv(merged_path)
[]: {'num_rows': 3495851,
      'num_columns': 91,
      'column names sample': ['Gene',
       'Gene Full Name',
       'Chrom/Position',
       'Change',
       'Filter',
       'Mapping Quality (MQ)',
       'Genotype',
       'Frequency',
       'GQ Score',
       'Ref Depth']}
```

[2]: merged_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3495851 entries, 0 to 3495850
Data columns (total 91 columns):

Data	columns (total 91 columns):			
#	Column	Dtype		
0	Gene	object		
1	Gene Full Name	object		
2	Chrom/Position	object		
3	Change	object		
4	Filter	object		
5	Mapping Quality (MQ)	float64		
6	Genotype	object		
7	Frequency	object		
8	GQ Score	int64		
9	Ref Depth	int64		
10	Alt Depth	int64		
11	Top Consequence	object		
12	Consequence	object		
13	Impact	object		
14	Splice Site	object		
15	Max. Population Frequency	float64		
16	Max. Sub-Population Frequency	float64		
17	ClinVar Evaluation	object		
18	ClinVar Phenotype	object		
19	OMIM	object		
20	HPO Phenotype	object		
21	GenCC Disease	object		
22	pLI	object		
23	SIFT	object		
24		object		
25	Effect Prediction	object		
	Effect Score	int64		
	CADD Conservation	object		
28	Intolerance	object		
29	GERP++ Score	object		
30	PhyloP46 Conservation	object		
31	PhyloP46 Conservation Score	object		
32	HGVS (RefGene)	object		
33	HGVS (VEP)	object		
34	Gene Family	object		
35	Gene Description	object		
36	GO Function	object		
37	GO Cell Component	object		
38	GO Pathway	object		
39	Literature	object		
40	COSMIC Count	object		

41	COSMIC Types	object
42	Regulatory	object
43	Interpro	object
44	Splicing dbscSNV11	object
45	SpliceAI Max. Score	object
46	SpliceAI Type (Max. Score)	object
47	SpliceAI Position (Max. Score)	object
48	M-CAP Pathogenicity Score	object
49	REVEL Pathogenicity Score	object
50	regSNP-intron Pathogenicity	object
51	Spidex Zscore	object
52	Spidex Max Tissue	object
53	MANE SELECT	object
54	MANE CLINICAL	object
55	dbSNP	object
56	Cytoband	object
57	SegDup	object
58	Yale MedExome	float64
59	gnomAD Exome	float64
60	gnomAD Genome	float64
61	gnomADg (AFR)	float64
62	gnomADg (AMI)	float64
63	gnomADg (AMR)	float64
64	gnomADg (ASJ)	float64
65	gnomADg (EAS)	float64
66	gnomADg (FIN)	float64
67	gnomADg (MID)	float64
68	gnomADg (NFE)	float64
69	gnomADg (OTH)	float64
70	gnomADg (SAS)	float64
71	LOFTEE	object
72	LOFTEE Details	object
73	SIFT Prediction	object
74	SIFT-4G Prediction	object
75	Polyphen2 HDIV Prediction	object
76	Polyphen2 HVAR Prediction	object
77	FATHMM Prediction	object
78	MetaSVM Prediction	object
79	LRT Prediction	object
80	MutationTaster Prediction	object
81	MutationAssessor Prediction	object
82	MetaLR Prediction	object
83	PROVEAN Prediction	object
84	MVP Score	object
85	MPC Score	object
86	VEST4 Score	object
87	PhyloP 46-way Score	object
88	PhyloP100 Vertebrate	object

89 PhyloP30 Mammalian object 90 PrimateAI object dtypes: float64(16), int64(4), object(71)

memory usage: 2.4+ GB

3495849 3495850

merged_d	f								
	Gene	Gene	Full Na	ame	Chrom/Po	sition	Change	e Filte	r \
0	NONE; DDX11L17]	NaN	1	:10247	SNP:T>C	C PAS	S
1	NONE; DDX11L17]	NaN	1	:10248	SNP:A>T	T PAS	S
2	DDX11L1;DDX11L17]	NaN	1	:12783	SNP:G>A	A PAS	S
3	WASH7P]	NaN	1	:14464	SNP:A>T	PAS	S
4	WASH7P		1	NaN	1	:15118	SNP:A>C	PAS	S
 3495846	 NONE; NONE		··· 1	NaN	 M	 T:8764	 SNP:G>A	A PAS	S
3495847	NONE; NONE			NaN		T:8860	SNP:A>0		
3495848	NONE; NONE			NaN		1:14869	SNP:G>A		
3495849	NONE; NONE			NaN		:15326	SNP:A>0		
3495850	NONE; NONE			NaN		:15736	SNP:A>0		
	Mapping Quality	(MQ)	Genotype	e Fi	requency	GQ Sco	re Ref	Depth	
0	35	5.36	Hom_1/:	1	100%		6	0	•••
1	38	5.36	Hom_1/:	1	100%		6	0	
2	25	5.12	Het_0/	1	70%		99	7	
3	33	3.27	Het_0/	1	28%		99	26	
4	25	5.47	Het_0/	1	42%		99	49	•••
 3495846	 46	3.71	 Hom_1/:	 1	 99%		99	1	
3495847	35	5.17	Hom_1/:		100%		99	0	•••
3495848	59	9.35	Hom_1/:	1	100%		99	0	•••
3495849	60	0.00	Hom_1/:	1	100%		99	0	
3495850	60	0.00	Hom_1/	1	100%		99	0	
	MutationAssessor	Pred	liction l	Meta	aLR Predi	ction F	PROVEAN F	redict	ion
0			•			•			
1									
2			•			•			•
3			•			•			•
4			•			•			•
•••			•••		•••			•••	
3495846			•			•			•
3495847			•						
3495848						•			

MVP Score MPC Score VEST4 Score PhyloP 46-way Score $\$

```
1
     2
                                                             -0.783
     3
                                                             -0.640
                                                             0.621
     3495846
                                                             -0.903
                                                             -1.746
     3495847
     3495848
                                                             4.578
     3495849
                                                             -4.154
     3495850
                                                              3.798
             PhyloP100 Vertebrate PhyloP30 Mammalian PrimateAI
     0
     1
     2
     3
     4
     3495846
     3495847
     3495848
     3495849
     3495850
     [3495851 rows x 91 columns]
[4]: merged_df_chr22 = merged_df[merged_df["Chrom/Position"].str.startswith("22:")].
      ⇔copy()
[5]: merged_df_chr22
[5]:
                     Gene
                            Gene Full Name Chrom/Position
                                                             Change Filter
     3336481 NONE; DUXAP8
                                       NaN
                                              22:16050822 SNP:G>A
                                                                      PASS
     3336482 NONE; DUXAP8
                                       NaN
                                              22:16051249 SNP:T>C
                                                                      PASS
                                       NaN
     3336483 NONE; DUXAP8
                                              22:16051347
                                                            SNP:G>C
                                                                      PASS
     3336484 NONE; DUXAP8
                                       NaN
                                              22:16051453
                                                           SNP:A>C
                                                                      PASS
     3336485 NONE; DUXAP8
                                       NaN
                                              22:16051497
                                                           SNP:A>G
                                                                      PASS
                                              22:51064039 SNP:G>C
                                                                      PASS
     3495414
                     ARSA
                           arylsulfatase A
                     ARSA
                           arylsulfatase A
                                                                      PASS
     3495415
                                              22:51064068
                                                            SNP:G>A
                     ARSA arylsulfatase A
                                                                      PASS
     3495416
                                              22:51064416
                                                           SNP:T>C
     3495417
                     ARSA arylsulfatase A
                                                            SNP:G>A
                                                                      PASS
                                              22:51065600
     3495418
                      ACR
                                   acrosin
                                              22:51183255
                                                            SNP:A>G
                                                                      PASS
              Mapping Quality (MQ) Genotype Frequency GQ Score Ref Depth ...
     3336481
                             29.34 Het_0/1
                                                  48%
                                                              99
                                                                         17 ...
```

0

```
3336482
                        58.93 Het_0/1
                                             45%
                                                         99
                                                                    21 ...
3336483
                        36.08 Hom_1/1
                                            100%
                                                         81
                                                                     0 ...
3336484
                        34.75 Het_0/1
                                             44%
                                                         99
                                                                    23 ...
3336485
                        36.21 Hom_1/1
                                            100%
                                                         99
3495414
                        60.00 Hom_1/1
                                            100%
                                                                     0 ...
                                                         77
                                                                    10 ...
3495415
                        60.00 Het_0/1
                                             57%
                                                         99
                        60.00 Het_0/1
                                                         99
                                                                    20 ...
3495416
                                              46%
3495417
                        60.00 Het 0/1
                                              33%
                                                         99
                                                                    16 ...
3495418
                        40.28 Het_0/1
                                              50%
                                                         99
                                                                     5 ...
        MutationAssessor Prediction MetaLR Prediction PROVEAN Prediction \
3336481
3336482
3336483
3336484
3336485
3495414
                                                                         N
3495415
3495416
                                                      Т
                                                                         N
3495417
3495418
                                   М
                                                      Т
                                                                         N
        MVP Score MPC Score VEST4 Score PhyloP 46-way Score \
3336481
                                                        -1.656
                                                         0.058
3336482
3336483
                                                         0.064
3336484
                                                         0.058
3336485
                                                         0.058
3495414
                                   0.031
                                                        -0.076
                                                        -1.434
3495415
                                                        1.967
3495416
                                   0.149
3495417
                                                        -1.003
3495418
                                   0.053
                                                        0.234
        PhyloP100 Vertebrate PhyloP30 Mammalian PrimateAI
3336481
3336482
3336483
3336484
3336485
3495414
                       0.122
                                         -1.913
3495415
3495416
                                          1.138
                       1.458
```

/var/folders/dh/ct60f64n7r30w2htbyy2py5c0000gn/T/ipykernel_28414/3233792492.py:2 : DtypeWarning: Columns (19,20,21,35,36) have mixed types. Specify dtype option on import or set low_memory=False.

df = pd.read_csv("Z.variantCall.SNPs_anno.complete.csv")

```
[7]: df_chr22['Top Consequence'].value_counts()
```

intron wariant	24731
_	13520
upstream_gene_variant	3802
non_coding_transcript_intron_variant	900
non_coding_transcript_exon_variant	840
3_prime_UTR_variant	564
downstream_gene_variant	368
missense_variant	315
synonymous_variant	308
5_prime_UTR_variant	92
splice_polypyrimidine_tract_variant	56
splice_region_variant	51
splice_donor_region_variant	10
splice_donor_variant	8
splice_donor_5th_base_variant	7
splice_acceptor_variant	6
stop_gained	5
start_lost	4
mature_miRNA_variant	3
non_coding_transcript_splicing_variant	1
<pre>incomplete_terminal_codon_variant</pre>	1
	non_coding_transcript_exon_variant 3_prime_UTR_variant downstream_gene_variant missense_variant synonymous_variant 5_prime_UTR_variant splice_polypyrimidine_tract_variant splice_region_variant splice_donor_region_variant splice_donor_variant splice_donor_5th_base_variant splice_acceptor_variant splice_acceptor_variant stop_gained start_lost mature_miRNA_variant non_coding_transcript_splicing_variant

Name: Top Consequence, dtype: int64 [16]: df_chr22['Impact'].value_counts() [16]: . 44821 Low 433 Medium 315 23 High Name: Impact, dtype: int64 []: # -----# 1. Keep only the genes of interest # -----_____ genes = ["LARGE1", "TAFA5", "SYN3", "TBC1D22A", "SEZ6L", "CELSR1", "EFCAB6", "CECR2", "MYO18B", "PACSIN2" filtered = df_chr22[df_chr22["Gene"].isin(genes)] # 2. Sanity-check the raw mutation counts # ----mutation counts = (filtered["Gene"] .value counts() .reindex(genes, fill_value=0)) print("Raw mutation counts:") print(mutation_counts) # ------# 3. Impact counts per gene (Low / Medium / High) # ----impact_levels = ["Low", "Medium", "High"] impact_counts = (filtered.groupby(["Gene", "Impact"]) .size() # Impact → columns .unstack(fill_value=0) # keep our gene order .reindex(index=genes) .reindex(columns=impact_levels, # ensure all 3 cols exist fill_value=0))

print("\nImpact breakdown:")

```
print(impact_counts.head())
# 4. Stacked bar plot
# -----
plt.figure(figsize=(12, 7), dpi=120)
# three bars stacked for each gene
colors = ["#1f77b4", "#ff7f0e", "#d62728"]  # Low / Medium / High
bottom = None
for idx, impact in enumerate(["Low", "Medium", "High"]):
    plt.bar(
        impact_counts.index,
        impact_counts[impact],
        bottom=bottom,
        label=impact,
        color=colors[idx]
    )
    bottom = (
        impact_counts[impact] if bottom is None
        else bottom + impact_counts[impact]
    )
plt.title("Impact counts for Prioritized 10 genes",
          fontsize=16, weight="bold")
plt.xlabel("Gene", fontsize=14)
plt.ylabel("Variant count", fontsize=14)
plt.xticks(rotation=45, ha="right")
plt.legend(title="Impact", fontsize=12)
plt.tight_layout()
plt.savefig("impact_distribution_chr22_genes.png", bbox_inches="tight")
plt.show()
Raw mutation counts:
LARGE1
         808
          759
TAFA5
SYN3
          641
TBC1D22A 550
SEZ6L
          391
```

```
TBC1D22A 550
SEZ6L 391
CELSR1 388
EFCAB6 349
CECR2 343
MY018B 336
PACSIN2 330
Name: Gene, dtype: int64
```

Impact breakdown:

Impact	Low	Medium	High
Gene			
LARGE1	1	0	0
TAFA5	1	0	0
SYN3	0	0	0
TBC1D22A	0	1	0
SEZ6L	2	1	0

Impact breakdown (top-10 genes):
Impact Low Medium High
Gene
LARGE1 1 0 0
TAFA5 1 0 0

```
SYN3
        0
                  0
TBC1D22A
              1
        0
SEZ6L
        2
             1
CELSR1
       5
             8
                 0
       2
             4
EFCAB6
CECR2
       0
              0
                  0
MYO18B
              3
                 0
PACSIN2 1
              0
                  0
```

```
[22]: | # ------
     # 4. Top-Consequence breakdown for the same top-10 genes
     # -----
     # (a) overall frequency, just to eyeball the mix
     tc overall = (
        df_chr22[df_chr22["Gene"].isin(genes)]["Top Consequence"]
        .value_counts()
     print("\nOverall Top Consequence counts (top-10 genes):")
     print(tc_overall.head(15)) # show the 15 most common categories
     # (b) per-gene matrix (Gene × Top Consequence)
     tc_per_gene = (
        df_chr22[df_chr22["Gene"].isin(genes)]
          .groupby(["Gene", "Top Consequence"]).size()
          .unstack(fill_value=0)
          .reindex(index=genes)
                               # keep descending-mutation order
     )
     print("\nTop Consequence breakdown per gene:")
     print(tc_per_gene)
     # Optional: save to CSV for further inspection
     tc_per_gene.to_csv("chr22_top10_top_consequence_breakdown.csv")
```

```
Overall Top Consequence counts (top-10 genes):
intron variant
                              4801
3_prime_UTR_variant
                                31
upstream_gene_variant
                                19
missense variant
                                17
synonymous_variant
                                15
downstream_gene_variant
                                 6
intergenic_variant
5_prime_UTR_variant
splice_donor_region_variant
Name: Top Consequence, dtype: int64
```

Top Consequence breakdown per gene:

Top Consequence	3_prime_UTR_variant 5_	$prime_UTR_variant \setminus$				
Gene						
LARGE1	0	1				
TAFA5	0	1				
SYN3	19	0				
TBC1D22A	3	0				
SEZ6L	4	0				
CELSR1	0	0				
EFCAB6	0	0				
CECR2	5	0				
MYO18B	0	0				
PACSIN2	0	0				
Top Consequence	downstream_gene_variant	intergenic_variant	intron_variant \			
Gene						
LARGE1	C	0	805			
TAFA5	C	0	756			
SYN3	C) 3	618			
TBC1D22A	5	0	540			
SEZ6L	1	. 0	383			
CELSR1	C	0	373			
EFCAB6	C	0	343			
CECR2	C	0	330			
MYO18B	C	0	326			
PACSIN2	C	0	327			
	missense_variant splic	ce_donor_region_varia	nt \			
Gene						
LARGE1	0		0			
TAFA5	0		1			
SYN3	0	0				
TBC1D22A	1		0			
SEZ6L	1	0				
CELSR1	8		0			
EFCAB6	4		0			
CECR2	0		0			
MYO18B	3	0				
PACSIN2	0		0			
	synonymous_variant ups	stream_gene_variant				
Gene						
LARGE1	1	1				
TAFA5	0	1				
SYN3	0	1				
TBC1D22A	0	1				
SEZ6L	2	0				
CELSR1	5	2				
EFCAB6	2	0				

```
      CECR2
      0
      8

      MY018B
      4
      3

      PACSIN2
      1
      2
```


Variant consequence proportions - top-10 genes


```
[]: # tc no intron already defined tc overall.drop("intron variant")
     labels = tc_no_intron.index.str.replace("_variant", "", regex=False) # shorter
     sizes = tc_no_intron.values
     explode = [0.03] * len(sizes) # uniform qap
     fig, ax = plt.subplots(figsize=(8, 6), dpi=120)
     wedges, texts, autotexts = ax.pie(
        sizes,
        explode=explode,
        startangle=90,
        labels=None.
                                          # no direct labels
        autopct=lambda p: f''\{p:.1f\}\%'' if p >= 2 else "",
        pctdistance=0.80,
        wedgeprops=dict(edgecolor="white", linewidth=1)
     # Donut hole
     ax.add_artist(plt.Circle((0, 0), 0.54, fc="white"))
     # Legend on the right
     ax.legend(wedges,
               labels,
               title="Top Consequence",
               loc="center left",
               bbox_to_anchor=(1.02, 0.5),
               fontsize=11)
     ax.set_title("Variant consequence proportions top 10 genes",
                  fontsize=14, weight="bold")
     plt.tight_layout()
     plt.savefig("tc_overall_donut_excl_intron_clean.png", bbox_inches="tight")
     plt.show()
```

Variant consequence proportions top 10 genes


```
[]: df_chr22['Polyphen2 HVAR Prediction']
 []: 3336481
      3336482
      3336483
      3336484
      3336485
      3495414
                T
      3495415
      3495416
                 T
      3495417
      3495418
                 Τ
     Name: SIFT4G, Length: 45592, dtype: object
[57]: df = merged_df
     df = pd.read_csv("Z.variantCall.SNPs_anno.coding.csv")
      # Filter for chromosome 22
     df_chr22 = df[df["Chrom/Position"].str.startswith("22:")].copy()
```

```
[58]: # exact column names in your frame
      sift_col = "SIFT-4G Prediction"
      poly_col = "Polyphen2 HVAR Prediction" # ← note the spacing/case
      # numeric-ise CADD (mixed floats / strings → float + NaN)
      df_chr22["CADD_Conservation"] = pd.to_numeric(
          df chr22["CADD Conservation"], errors="coerce"
      )
      # normalise the prediction symbols
      for col in [sift col, poly col]:
          df_chr22[col] = df_chr22[col].fillna(".").astype(str).str.strip()
      # non-synonymous list
      non_syn = {
          "missense_variant", "stop_gained", "start_lost",
          "splice_donor_variant", "splice_acceptor_variant",
          "splice_region_variant", "stop_lost",
          "frameshift_variant", "inframe_insertion", "inframe_deletion"
      }
      # four-way mask
      mask = (
          df chr22["Top Consequence"].isin(non syn) &
          (df_chr22["CADD_Conservation"] > 15) &
          df chr22[sift col].isin({"D", "."}) &
          df_chr22[poly_col].isin({"D", "P", "."})
      )
      df_chr22_filt = df_chr22.loc[mask].copy()
      print(f"Before: {len(df_chr22):,}")
      print(f"After : {len(df_chr22_filt):,} (passed all filters)")
     Before: 798
     After: 21 (passed all filters)
[59]: df_chr22_filt["Gene"].value_counts()
[59]: HPS4
                  2
      GAB4
                  1
      APOL5
                  1
                  1
      SMC1B
     EFCAB6
                  1
     TTLL12
                  1
      APOBEC3H
                  1
      C1QTNF6
                  1
      CIMIP4
```

```
APOL4
                   1
      PRR14L
                   1
      CLDN5
                   1
      PLA2G3
                   1
      NEFH
                   1
      RFPL1
                   1
      CCDC116
                   1
      GGT2P
                   1
      RIMBP3
                   1
      TBX1
                   1
      PRR34
      Name: Gene, dtype: int64
[65]: df_chr22_filt['Impact']
[65]: 30360
                  High
      30400
                  High
      30402
                Medium
      30421
                Medium
      30464
                Medium
      30477
                Medium
      30614
                Medium
      30615
                Medium
      30643
                Medium
      30646
                Medium
      30680
                Medium
      30697
                Medium
      30736
                Medium
      30744
                Medium
      30775
                Medium
      30786
                Medium
      30841
                Medium
      30941
                Medium
      30951
                Medium
      30986
                Medium
      31004
                Medium
      Name: Impact, dtype: object
```