红色标注的语句,为重点。

蓝色下划线标注的语句,说明给出了参考阅读链接,可依兴趣阅读。

写在Lecture6之前

转眼间,我们的Python普及分享会进展已经过半,在后半部分的分享中,我们主要关注使用 Python进行机器学习、深度学习。

按照原计划,机器学习部分打算安排两个Lecture,一部分普及常见机器学习算法,另一部分关注sklearn模块的基本使用。但经过这一段时间的交流,发现大家对于机器学习的常见算法还是比较了解的(也有很多和我一样的调包侠);而对于不是很了解的同学,这些知识在互联网上可以很方便地获得,而且互联网上的知识质量很多是显著高于我能提供的(笑)。

因此,我打算只用Lecture6将机器学习的基本概念、sklearn的使用方法做一个简单的扫盲,并提供进一步学习的一个路线图和资料。

对于Lecture7,我计划插入一部分网络爬虫的延伸内容,可能会考虑app端抓包爬虫,或者将爬虫部署到服务器等内容,具体安排未定,也要看大家的意见。

1. 机器学习解决什么样的问题

1.1 机器学习的主要类别

机器学习的划分方式不一,主要有<mark>有监督学习、无监督学习、半监督学习、强化学习等</mark>几个 大类。

有监督学习指,已知数据和其一一对应的标签(例如每条数据代表一个猫或狗的各个特征值,并告诉了算法每条数据究竟是猫还是狗),训练一个算法,智能地将一个新的输入数据映射到一个标签的过程。

无监督学习,并不知道数据的标签,希望按照一定的指定偏好,训练一个算法,智能地将所有数据映射到不同的若干标签的过程。例如,仅仅提供猫或狗的数据,并不告诉程序哪一条数据是猫或狗,程序也许会根据耳朵、鼻子的不同来将原始数据划分为泾渭分明的若干类,每个类均为猫/狗占绝大部分。

半监督学习是前两种的综合,即有一部分数据标签已知,另一部分标签未知的学习任务。半监督学习关注的核心就是该如何利用标签未知的数据,尤其是关注标签未知数据的分布。

强化学习类似各位玩游戏的过程,通过设定规则、奖惩机制,程序会通过不断地试错,来提升任务性能。一个经典的例子是通过强化学习,来玩很久以前很经典的flappy bird游戏,程序通过大量的死亡后,会逐渐掌握该采用何种方式让小鸟顺利通过水管。

在金融领域,我们主要关注有监督学习和无监督学习。

1.2 分类、聚类、回归、降维

分类、聚类、回归、降维是有监督学习和无监督学习的主要表现形式

	分类	聚类	回归	降维
类别	有监督学习	无监督学习	有监督学习	无监督学习
含义	已知有若干类,将 给定样本分入对应 类别	不知道总体中每个 样本的类别,将总 体样本划分成若干 组内相似,组外相 异的类	用函数去拟合点 集,这样对于一个 新样本,能给出连 续的估计值	减少高维数据维 度,尽可能保留更 多信息,但缩小体 积
经典例子	客户流失预警(二 分类),拍照识花 (多分类)	用户画像细分,自 动生成多个用户群 体	预测股价	将高维数据可视化
常用算法	logistic回归 决策树-分类树 深度学习 支持向量机 朴素贝叶斯	K均值聚类 层次聚类 DBSCAN聚类	线性回归 决策树-回归树 深度学习	PCA主成分分解 特征选择 非负矩阵分解

结合第三行的例子,相信大家可以初步理解这四大机器学习任务的主要内容。

2. 一个机器学习项目的流程

对于一个机器学习项目,将其当作一个黑箱的话,其输入为数据,输出则为一个可以解决问题的模型(如分类模型)。因此,可以这样理解机器学习的过程:通过对一部分数据内部规律的探寻,将规律转化成计算机可以理解的模型,来外延解决类似数据的问题。

对于一个常见的机器学习过程, 主要有以下四步:

抽象成数学问题:在一切开始前,我们需要将实际业务、实际学术中的问题进行数学抽象,询问自己,我们是想通过数据获得一个分类模型,抑或是回归等其他模型。

数据预处理: 我们获取的原始数据, 往往要经历以下分析/处理流程:

- ——数据清洗、整理:原始数据往往杂乱无章,缺失、异常值也很多。在进行下一步动作前,我们需要对其进行整理、查缺补漏、删除异常等操作。
- ——特征工程:清洗整理完毕后,我们的数据已经变得"好看",但我们还要对数据做精加工处理,使其变得"好用"。这一步叫做特征工程,主要包括计算新的特征、筛选可用的特征等工作。

数据预处理这一步骤非常重要,在一个大型的机器学习项目中,花在这一步的时间往往超过 40%。可见其对结果的影响之大。

Ps:

要记住的是,<mark>数据预处理并不能改变数据内在的固有质量</mark>,*Garbage in, garbage out*是一句著名的定律,对于原本就包含错误信息,或信息含量低的数据,数据预处理过程并不能使其变得能用。任何算法性能都是由数据的内在质量决定上限的,我们仅仅能通过数据预处理,使其逼近这个上限,但无法突破由垃圾数据决定的极低上限。

训练和调试:

这一步,是机器学习中看起来最"高大上",但实际操作很简单,然而又很费事费神的一步。

我们需要针对数据的质量、类型、大小<mark>评估哪些算法在性能、运算开销上适合本次任务</mark>。这需要丰富的经验,例如,支持向量机在处理多特征的数据时会有一定的性能优势;而对很多看上去复杂的问题,其实logistic回归就已经能很好;XGBoost在各大竞赛中所向披靡,但其搜索过程是完全遍历,堪称内存黑洞……

在选取了模型后,只需要借助sklearn的几行代码,就可以使其在你的机器上以原生C的速度飞快地训练出一个可用的模型。训练的过程,本质上是从数据里挖掘信息,拟合出该模型最适合这批数据的表达形式。我们会从原有数据集中,挑出一部分(往往是一大部分)作为训练集

(train),来让模型进行训练。有些模型的训练是迭代式,主要的训练过程就是不断减小误差值(损失函数),例如诸多使用随机梯度下降的算法;而部分模型则不需要这个迭代过程,如贝叶斯相关的各类模型,以及谱聚类等聚类算法。

模型训练完毕后,我们就可以用其来执行任务了,如进行一些分类等。但此时我们还不知道 其效果究竟如何,为了解决这一问题,<mark>我们会从原始数据集中,不属于训练集(train)的部分中挑</mark> 出一部分做验证集(validation),测试模型在这一部分没见过的数据集上的效果究竟如何。

通常情况下,第一次训练出来的模型往往效果不好,这时就需要我们进行复盘。分析误差的由来,究竟是来自数据还是来自我们的算法,如果是前者需要回滚到特征工程一步,如果是后者需要调试算法中的各项参数。这是一个痛苦的过程,在深度学习中,这一步往往被称为"炼丹"。

部署上线:

模型在经过若干轮迭代,正式确定后还要经历最后一步,<mark>即从训练集(train)和验证集</mark>(validation)之外再从数据集中选取剩下的最后一部分,做测试集(test),来评定模型的最终效果。

如果模型的最终效果是令人满意的,就可以进行固化、导出等操作了,这时候,模型已经成为了一个可以重复使用的"制成品",可以投入到生产、学术应用中,供他人轻松使用。训练模型可能很耗时,但使用模型是很迅速的。

以上即为常见的机器学习过程。请注意区分在机器学习过程中,训练集(train)、验证集(validation)、测试集(test)等的作用。

3.常见的机器学习算法

这里列举几类常用的机器学习算法:线性模型类(线性回归、岭回归、Logistic回归)、决策树类(C4.5、CART)、神经网络类(CNN、RNN、LSTM)、支持向量机、贝叶斯类(朴素贝叶斯、贝叶斯网络)、集成学习(bagging与boosting)、聚类算法(k-means、层次聚类、DBSCAN)

指望一下子全理解这些算法显然不现实(显然,我也没有全理解,所以更不敢乱向大家讲这些算法),尤其是在某些算法完全理解还比较困难的基础上,如Logistic回归和LSTM。对于接触暂时较少的朋友,这里列两个层次的参考资料供大家学习:

Level1: (当作看小说)

对于仅仅想知道这些算法在干啥,优缺点何在,会用就行的朋友,<mark>我强烈推荐sklearn包的User Guide</mark>。虽然它是为了教用户如何使用这个包,但它考虑到了现在机器学习的低门槛(真实),从最实用最基础的角度介绍了各类算法,并且当场提供可供操作的代码,图文并茂,读起来非常易于理解,链接如下:

https://scikit-learn.org/stable/user_guide.html

Level2: (中期目标)

对于数学功底不错,想了解算法的来龙去脉、各种变种的推导,较深刻理解不同算法的朋友,<mark>南大周志华老师的西瓜书《机器学习》</mark>是大家都知道的教材。但我并不建议大家一上来就看西瓜书,可能会被比较多的数学公式弄昏(因为我数学比较菜)。

南大老师的书自然要买一本支持一下,就不贴链接了。建议学习第1-11章内容,即到"特征选择与稀疏学习"为止。

建议配合"南瓜书"来学习,"南瓜书"解释了一些周老师受限篇幅没有展开的推导过程:

https://datawhalechina.github.io/pumpkin-book/#/

综合了一下多方意见,<mark>我其实更推荐李航的《统计学习方法》</mark>,其内容编排更加细致,很有中国教材的风范。内容可能相对周老师的要陈旧些,但经典永流传。

Level3: (抢CS专业饭碗)

如果你想更进一步,我列出一些我尝试看过但看不懂(今后也不打算看),向上进阶必须要 掌握的书籍:

Pattern Recognition and Machine Learning by Christopher Bishop Machine Learning: A Probabilistic Perspective by Kevin P. Murphy

如果你已经掌握了这两本书,我愿称你为最强。

4. sklearn操作

这里列出两个学习的层次建议:

Level1:

了解sklearn的逻辑,建议使用官方的Getting Started:

https://scikit-learn.org/stable/getting_started.html

Level2:

没错,还是看User Guide,因为很长,所以建议等到要用的时候再看特定需要的算法。

https://scikit-learn.org/stable/user_guide.html

5.个人建议

关于机器学习部分,<mark>我还是建议大家根据日常实际需求</mark>,做有针对性的学习,没有必要"完全吃透",那可能是计算机专业博士生的工作。因为如果日常工作用不到机器学习的朋友,将来估计也用不到,真要用上了也肯定是小应用,临时学习可能更能解决问题,并且在现在的大环境下,机器学习越来越被封装化,更像是一个工具,而不是"看门本领";而对于日常工作经常用到机器学习的朋友,早就已经在各种业务场景里使用过各种工具了,相信也已经有了自己的理解,不需要这么简单入门的一份指引说明。

因此,Lecture6注定是一个矛盾的存在:了解的同学早就了解了,暂时没基础的同学也不可能一下子就补齐,这也是我前期规划时的漏洞,没有考虑到这一点,在这里向大家致歉~