Predictive Maintenance of Turbojet Engine

Problem Statement:--

Description

Prognostics and health management is an important topic in industry for predicting state of assets to avoid downtime and failures. This data set is the version of the very well known asset degradation modeling from NASA. It includes Run-to-Failure simulated data from turbo jet engines. Engine degradation simulation was carried out using C-MAPSS. Four different were sets simulated under different combinations of operational conditions and fault modes. Records several sensor channels to characterize fault evolution. The data set was provided by the Prognostics CoE at NASA Ames.

Prediction Goal

In this dataset the goal is to predict the remaining useful life (RUL) of each engine in the test dataset. RUL is equivalent of number of flights remained for the engine after the last datapoint in the test dataset.

Data Description.

The engine is operating normally at the start of each time series, and develops a fault at some point during the series. In the training set, the fault grows in magnitude until system failure. In the test set, the time series ends some time prior to system failure. The objective is to predict Remaining Useful Life (RUL).

The data are provided as a zip-compressed text file with 26 columns of numbers, separated by spaces. Each row is a snapshot of data taken during a single operational cycle, each column is a different variable. The columns correspond to:

- 1) unit number
- 2) time, in cycles
- 3) operational setting 1

.....

26) operational setting 21

Checking data types of the columns

<class 'pandas.core.frame.DataFrame'>
Int64Index: 160359 entries, 0 to 61248
Data columns (total 26 columns):

#	Column	Non-Null Count	Dtype				
0	ID	160359 non-null	int64				
1	Cycle	160359 non-null	int64				
2	OpSet1	160359 non-null	float64				
3	OpSet2	160359 non-null	float64				
4	OpSet3	160359 non-null	float64				
5	SensorMeasure1	160359 non-null	float64				
6	SensorMeasure2	160359 non-null	float64				
7	SensorMeasure3	160359 non-null	float64				
8	SensorMeasure4	160359 non-null	float64				
9	SensorMeasure5	160359 non-null	float64				
10	SensorMeasure6	160359 non-null	float64				
11	SensorMeasure7	160359 non-null	float64				
12	SensorMeasure8	160359 non-null	float64				
13	SensorMeasure9	160359 non-null	float64				
14	SensorMeasure10	160359 non-null	float64				
15	SensorMeasure11	160359 non-null	float64				
16	SensorMeasure12	160359 non-null	float64				
17	SensorMeasure13	160359 non-null	float64				
18	SensorMeasure14	160359 non-null	float64				
19	SensorMeasure15	160359 non-null	float64				
20	SensorMeasure16	160359 non-null	float64				
21	SensorMeasure17	160359 non-null	int64				
22	SensorMeasure18	160359 non-null	int64				
23	SensorMeasure19	160359 non-null	float64				
24	SensorMeasure20	160359 non-null	float64				
25	SensorMeasure21	160359 non-null	float64				
dtypes: float64(22), int64(4)							
memo	ry usage: 33.0 ME	3					

We will display the mutual correlations of the signs on the "heat map", for this we will prepare an additional sign "RUL", showing the number of cycles to failure in the training data

Classification Problem Formulation

The challenge of this project was to predict the Remaining Useful Life of the engine by using the given sensor's data and operational conditions.

But in this project, we II try to simplify that by converting it to a Classification Problem. Where, the classes/labels will of 3 types, i.e. **Good Condition, Moderate Condition and Warning Condition**.

labels corresponding to each conditions

- Good Condition 0
- Moderate Condition 1
- Warning Condition 2

Defining the labels

Here we will define the engine's condition with **Life Ratio** (LR), which is the ratio between **Current Cycle** and the **End cycle/ End of Life(EOL)**. If **LR=0**, that means the component has just started its degradation and **LR=1** means, it is completely degraded.

- if LR <= 0.6 Good Condition
- if 0.6 < LR <= 0.8 Moderate Condition
- if 0.8 < LR Warning Condition

Model training

Model Training was done with two machine learning classification models

- -Random Forest
- -Logistic regression

From this 2 model Random forest gave the better performance while training and testing

Code Flow

Data Set Drift Monitoring

rift is detected for 0.00%	of features (0 out of 27). Dat	aset Drift is NOT detected.				
						Q Search
Feature	Туре	Reference Distribution	Current Distribution	Data Drift	Stat Test	Drift Score
> Cycle	num	III.	III	Not Detected	Wasserstein distance (normed)	0.005307
> OpSet2	num	I ,,	I	Not Detected	Wasserstein distance (normed)	0.004958
> Life_Ratio	num	III.	III.	Not Detected	Wasserstein distance (normed)	0.004953
> SensorMeasure11	num		• !!	Not Detected	Wasserstein distance (normed)	0.004444
> SensorMeasure4	num	•		Not Detected	Wasserstein distance (normed)	0.004272
> SensorMeasure17	num			Not Detected	Wasserstein distance (normed)	0.004241
> SensorMeasure14	num		_	Not Detected	Wasserstein distance (normed)	0.004182
> SensorMeasure10	num		. L	Not Detected	Wasserstein distance (normed)	0.00416
> SensorMeasure5	num	I	I	Not Detected	Wasserstein distance (normed)	0.004154
> SensorMeasure6	num			Not Detected	Wasserstein distance (normed)	0.00414
						10 rows ▼ 〈 1-10 of 27 〉

Predictive Maintanance Of Turbojet Engine Home View Logs View Artifacts View Trained Model Estimate Engine life Experiment History View Logs Predictive Maintanance of Turbojet Engine View Artifacts View Trained Model Turbo Engine data description Estimate Engine Life Description Train Engine Life Estimator Prognostics and health management is an important topic in industry for predicting state of assets to avoid downtime and failures. This data set is Update Model Config the version of the very well known asset degradation modeling from NASA. It includes Run-to-Failure simulated data from turbo jet engines. Engine degradation simulation was carried out using C-MAPSS. Four different were sets simulated under different combinations of operational conditions and fault modes. Records several sensor channels to characterize fault evolution. The data set was provided by the Prognostics CoE at NASA Ames. Prediction Goal In this dataset the goal is to predict the remaining useful life (RUL) of each engine in the test dataset. RUL is equivalent of number of flights remained for the engine after the last datapoint in the test dataset. **Check Dataset** View Logs View Artifacts View Trained Models Artifact Files Trained Models Log Files All model training log file can be downloaded. All model artifacts file can be downloaded. All model file can be downloaded. Check Artifacts Check Models Check Logs Estimate California price Train Engine Life estimator model. Access Turbojet life estimator Initiate model training. Form will be displayed. Submit the form to get estimated Life of Model training will be done. Files such as log, artifact and models can Turbojet Engine. be viewed and downloaded using appropriate link. Get Estimated Life Initiate Training in 0