DATA 101

Today's Agenda

Housekeeping = [hw format, links to data, zip, office hours]

Homework review and questions

5 Min Helpers

MATH! Basic Stats & Probability

Logic! Basic logic discussion

Data Exploration - Pandas and Matplotlib.pyplot

Review of resources

https://github.com/wesm/pydata-book

https://github.com/jakevdp/PythonDataScienceHandbook/tree/master/notebooks

5 Minute Helpers

Reading Documentation

Searching for Errors

Python Nits

Simple Probability

Probability is measured in [0,1] interval with 0 being not possible and 1 being absolute.

Examples:

Suppose that you are going to throw a standard dice, and you want to know what your chances are of throwing a 6.

Now suppose that you want to know what your chances are of throwing 1 or 6.

If you throw three dice, what is the probability that you do not throw any 4s, 5s, or 6s?

$$1, \% \% \%, \% \%, \% \% \% = 3/6 * 3/6 * 3/6 = 27/216$$

Independence vs. Dependence

Simple Probability - Dependence

To work out the probability of **both** events (AND), you **multiply** the probability of one by the probability of the other.

To work out the probability of either event (OR), you add the probability of one to the probability of the other.

What is the probability of drawing at least one ace from a pack of cards on two draws, if you do not replace the cards in between?

There are 52 cards in the pack, four of which are aces. There are three possible favourable outcomes:

You could draw two aces - Ace/Ace, Or draw one ace, either as the first or second card - Ace/Not, Not/Ace.

In AND/OR terms, these are:

- Ace AND Ace OR
- Ace AND Not Ace OR
- Not Ace AND Ace.

Worked Out Example

The first scenario: Ace and Ace

The probability of drawing an ace on the first card is 4/52 = 1/13.

Once you have drawn one ace, there are only 51 cards left from which to draw the second card, and only three of them are aces. The probability of drawing a second ace is therefore 3/51. You want both events, so you need to multiply them.

The probability of drawing Ace AND Ace is $1/13 \times 3/51 = 1/221$

The second scenario: Ace and Not Ace

The probability of drawing an ace remains 1/13. But now you have 51 cards left, all but three of which are not aces. 51–3=48.

Your chance of drawing a 'not ace' on the second card is therefore 48/51, and the chance of drawing Ace AND Not Ace is $1/13 \times 48/51 = 16/221$

The third scenario: Not Ace and Ace

he probability of drawing a 'not ace' on the first card is $(52-4) \div 52 = 48/52$

The probability of drawing an ace on the second card is 4/51.

The probability of drawing Not Ace AND Ace is therefore $48/52 \times 4/51 = 16/221$

The answer is then an OR = 1/221 + 16/221 + 16/221 = 33/221

Probability practice

One Die

- 1) Odd
- 2) Even
- 3) 2 and 2

Two Dice

- 1) 7 and 11
- 2) 8,8

Two Dice...you roll one...its a 3... Probability of a total of 7?

Probabilities

Summary of probabilities

Event	Probability			
Α	$P(A) \in [0,1]$ Definitely Important			
not A	$P(A^{\complement}) = 1 - P(A)$ Don't memorize the formula	Don't memorize the formula just know what it means		
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive These are results of ^^			
A and B	$P(A \cap B) = P(A B)P(B) = P(B A)P(A)$ but do not memorize formulas			
A given B	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B A)P(A)}{P(B)}$			

BAYES THEOREM! The most important thing you know for now...welllll in a week from now...

Sets, Venn Diagrams, Number Line, Intervals

{ notation }
AND
OR
NOT

Need to work on writing this out in our data to make execution easier!

Introduction to Gaussian Distribution

Note: S^2 is the formula for unbiased sample variance, since we're dividing by n-1.

Standard deviation
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$
 $S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$

Note: Finding S by taking $\sqrt{S^2}$ reintroduces bias.

Mean, Median, Variance, Standard Deviation

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true