# Implementing the Core Chase for the Description Logic ALC

Maël Abily

INRIA

2021

### **Factbase**

We consider variables (x, y, ...), constants (a, b, Pierre, ...) and predicates (P, R, IsTheSonOf, ...)

term = variable or constant.

An *atom* is of the form  $P(t_1, \ldots, t_n)$  and is ground if  $t_1, \ldots, t_n$  are constants.

Example: IsTheSonOf(Pierre,Francis) is a ground atom.

Factbase = existentially closed formula of the form  $\exists x_1, \ldots, x_n. P_1(t_1^1, \ldots, t_{k_1}^1) \land \ldots \land P_m(t_1^m, \ldots, t_{k_m}^m)$  identify with:  $\{P_1(t_1^1, \ldots, t_{k_1}^1), \ldots, P_m(t_1^m, \ldots, t_{k_m}^m)\}$ 

## Homomorphism

A substitution  $\sigma: X \to \mathbf{Terms}$  is a function where X is a set of variables. For example  $\{x \mapsto z, y \mapsto a\}$  is a substitution from  $\{x,y\}$  to  $\mathbf{Terms}$ .

- ▶ if  $c \in \mathbf{Csts}$ , then  $\sigma(c) = c$ ;
- ▶ if  $x \in \mathbf{Vars} \setminus X$ ,  $\sigma(x) = x$ ;
- if  $f = P(t_1, ..., t_n)$  is an atom, then  $\sigma(f) = P(\sigma(t_1), ..., \sigma(t_n))$ ; and
- ▶ if  $F = \{f_1, \dots, f_n\}$  is a factbase, then  $\sigma(F) = \{\sigma(f_1), \dots, \sigma(f_n)\}.$

For two factbases F and F', a homomorphism from F to F' is a substitution  $\sigma: \mathbf{Vars}(F) \to \mathbf{Terms}$  where  $\sigma(F) \subseteq F'$ .

An isomorphism h from F to F' is a bijective homomorphism where its inverse is a homomorphism from F' to F.

#### Entailment

A factbase F entails another factbase Q if there exists a homomorphism from Q to F.

Example: The factbase  $F = \{P(b, a), A(x)\}$  entails the factbase  $Q = \{P(x, a), P(y, z)\}$  due to the homomorphism  $\{x \mapsto b, y \mapsto b, z \mapsto a\}.$ 

A factbase G is a *retract* of another factbase F if  $G \subseteq F$  and  $G \models F$ 

If a factbase F does not contain a strict retract, then we say that F is a *core*. A *core* of a factbase F (noted core(F)) is a subset of F that is a core.

The cores of a finite factbase F are unique up to isomorphism.



## The conjunctive query entailment