Automatenminimierung: Vorbemerkung 1/3

Verfahren zur

Minimierung eines (deterministischen) Automaten

basieren auf den beiden anfänglichen (0-Schritt)-Äquivalenzklassen, die aus den

- akzeptierenden bzw. den
- nicht-akzeptierenden

Zuständen bestehen.

Anschließend geht es um die Aufspaltung der n-Schritt-Äquivalenzklassen in (n+1)-Schritt-Äquivalenzklassen und zwar so lange, bis sich erstmals nichts mehr ändert.

Im Wesentlichen werden hierbei zwei Methoden verwendet.

Automatenminimierung: Vorbemerkung 2/3

Wenig Schreibaufwand erfordert die Methode 1, deren tabellarisches Zwischenergebnis so aussieht (oder je nach Variante ähnlich, z.B. mit genaueren Angaben anstelle von X):

gegeben:

berechnet:

Automatenminimierung: Vorbemerkung 3/3

Der Nachteil von Methode 1 ist, dass bei ihrer manuellen Anwendung so viele Schritte im Kopf durchzuführen sind, dass dabei sehr häufig Fehler gemacht werden!

Daher wird hier

- sowohl die Methode 1
 (einschließlich einer von ihren vielen kursierenden Varianten,
 Methode 1a, bei der anstelle des Kreuzes notiert wird, nach
 welchem Zeichen man auf zwei bereits als nicht äquivalent
 bekannte Zustände trifft.)
- als auch eine ausführlichere Methode 2 vorgeführt.

Der erste Schritt ist allen gemeinsam: ...

Methode 1&1a&2

Schritt 0: Unerreichbare Zustände

werden gestrichen.

Methode 1&1a&2

Schritt 0: Unerreichbare Zustände (braun) werden gestrichen.

Weiter für ...

Methode 1/1a: nächste Seite

Methode 2: Seite 48

Methode 1&1a

Methode 1&1a

Schritt 1: Zeichne ein Feld pro Zweiermenge $\{z_i, z_k\}$ (natürlich mit $i \neq k$!)

a,b

Methode 1&1a

Schritt 1: Zeichne ein Feld pro Zweiermenge $\{z_i, z_k\}$ (natürlich mit $i \neq k$!)

Vorüberlegung:

Das geht leicht mit der rechten oberen (i<k) oder der linken unteren (i>k) Dreiecksmatrix einer Matrix mit einer Spalte und einer Zeile pro Zustand.

Methode 1&1a

Schritt 1: Zeichne ein Feld pro Zweiermenge $\{z_i, z_k\}$ (natürlich mit $i \neq k$!)

Vorüberlegung:

 Z_0 Z_1 Z_2 Z_3 Z_4

 Z_0

 Z_1

 Z_2

Z₃

 Z_4

Methode 1&1a

Schritt 1: Zeichne ein Feld pro Zweiermenge $\{z_i, z_k\}$ (natürlich mit $i \neq k$!)

Vorüberlegung:

 Z_0 Z_1 Z_2 Z_3 Z_4

Methode 1&1a

Schritt 1: Zeichne ein Feld pro Zweiermenge $\{z_i, z_k\}$ (natürlich mit $i \neq k$!)

Vorüberlegung:

überflüssige Zeile und Spalte weglassen

Beschriftung an die längere Seite

Methode 1

Schritt 1: Zeichne ein Feld pro Zweiermenge $\{z_i, z_k\}$ (natürlich mit $i \neq k$!)

Weiter für ...

Methode 1: nächste Seite

Methode 1a: Seite 31

Methode 1

Schritt 2: Kreuze jedes Feld { z_i, z_k } an, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

a,b

Methode 1

Schritt 2: Kreuze jedes Feld $\{z_i, z_k\}$ an, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 \boldsymbol{a}

a,b

Methode 1

Schritt 2: Kreuze jedes Feld $\{z_i, z_k\}$ an, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 \boldsymbol{a}

a,b

Methode 1

Schritt 2: Kreuze jedes Feld $\{z_i, z_k\}$ an, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 \boldsymbol{a}

a,b

Methode 1

Schritt 2: Kreuze jedes Feld $\{z_i, z_k\}$ an, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

Methode 1

Schritt 2: Kreuze jedes Feld { z_i, z_k } an, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

z.B. zeilenweise – insgesamt:

Methode 1

$$\{\delta(\mathbf{z}_1,\mathbf{a}),\delta(\mathbf{z}_0,\mathbf{a})\}=\{\mathbf{z}_4,\mathbf{z}_1\}\Longrightarrow X$$

Methode 1

Methode 1

Methode 1

Methode 1

Methode 1

Methode 1

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & kreuze an, wenn für mind. eines der Symbole $s \in \Sigma$ das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und angekreuzt ist.

Schritt 3.i hat neue Kreuze gebracht. Also nochmal Schritt 3, zweite Runde: 3.ii.

Methode 1

$$\{\delta(z_4,a),\delta(z_3,a)\} = \{z_3,z_3\} - \text{ ex. nicht } \{\delta(z_4,b),\delta(z_3,b)\} = \{z_3,z_3\} - \text{ ex. nicht }$$

Methode 1

Schritt 3.ii: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & kreuze an, wenn für mind. eines der Symbole $s \in \Sigma$ das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und angekreuzt ist.

Schritt 3.ii hat keine neuen Kreuze gebracht. Also jetzt zu Schritt 4.

Methode 1

Schritt 4: Ziehe die äquivalenten Zustände z_i , z_k – erkennbar am fehlenden Kreuz – jeweils zu einem Zustand zusammen.

Methode 1

Schritt 4: Ziehe die äquivalenten Zustände z_i , z_k – erkennbar am fehlenden Kreuz – jeweils zu einem Zustand zusammen.

Methode 1a

 Z_0

Schritt 2: Trage ε in jedes Feld $\{z_i, z_k\}$ ein, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 Z_1

 Z_2

 \boldsymbol{a}

a,b

Methode 1a

Schritt 2: Trage ϵ in jedes Feld $\{z_i, z_k\}$ ein, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 \boldsymbol{a}

a,b

Methode 1a

Schritt 2: Trage ϵ in jedes Feld $\{z_i, z_k\}$ ein, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 \boldsymbol{a}

a,b

Methode 1

Schritt 2: Trage ϵ in jedes Feld $\{z_i, z_k\}$ ein, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

 \boldsymbol{a}

a,b

Methode 1a

Schritt 2: Trage ϵ in jedes Feld $\{z_i, z_k\}$ ein, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

Methode 1a

Schritt 2: Trage ε in jedes Feld $\{z_i, z_k\}$ ein, bei dem einer der beiden Zustände Endzustand ist, der andere nicht.

z.B. zeilenweise – insgesamt:

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und dort etwas eingetragen ist.

$$\{\delta(\mathbf{z}_1,\mathbf{a}),\delta(\mathbf{z}_0,\mathbf{a})\}=\{\mathbf{z}_4,\mathbf{z}_1\}\Rightarrow\mathbf{a}$$

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und dort etwas eingetragen ist.

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und dort etwas eingetragen ist.

$$\begin{split} \{\delta(\boldsymbol{z}_{1}, a), &\delta(\boldsymbol{z}_{0}, a)\} = \{\boldsymbol{z}_{4}, \boldsymbol{z}_{1}\} \Rightarrow \boldsymbol{a} \\ \{\delta(\boldsymbol{z}_{2}, a), &\delta(\boldsymbol{z}_{0}, a)\} = \{\boldsymbol{z}_{4}, \boldsymbol{z}_{1}\} \Rightarrow \boldsymbol{a} \end{split}$$

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i,s),\delta(z_k,s)\}$ existiert und dort etwas eingetragen ist.

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i,s),\delta(z_k,s)\}$ existiert und dort etwas eingetragen ist.

		1		
Z_1	a			
Z_2	a			
Z_3	3	3	3	
Z_4	3	3	3	
	Z_0	Z ₁	Z_2	Z_3

$$\begin{split} \{\delta(z_1,a), &\delta(z_0,a)\} = \{z_4,z_1\} \Rightarrow a \\ \{\delta(z_2,a), &\delta(z_0,a)\} = \{z_4,z_1\} \Rightarrow a \\ \{\delta(z_2,a), &\delta(z_1,a)\} = \{z_4,z_4\} - \text{ ex. nicht} \\ \{\delta(z_2,b), &\delta(z_1,b)\} = \{z_0,z_2\} \Rightarrow b \end{split}$$

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i,s),\delta(z_k,s)\}$ existiert und dort etwas eingetragen ist.

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und dort etwas eingetragen ist.

	Ī	7		
\mathbf{Z}_1	a		_	
Z_2	a	b		-
Z_3	3	3	3	
Z_4	3	3	3	
	Zο	Z ₁	Z ₂	Za

Schritt 3.i hat neue Einträge gebracht. Also nochmal Schritt 3, zweite Runde: 3.ii.

Methode 1a

Schritt 3.ii: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i, s), \delta(z_k, s)\}$ existiert und dort etwas eingetragen ist.

		-		
Z_1	a			
Z_2	a	b		-
Z_3	3	3	3	
Z_4	3	3	3	
	Z_0	Z ₁	Z_2	Z_3

$$\{\delta(z_4,a),\delta(z_3,a)\} = \{z_3,z_3\} - \text{ ex. nicht } \{\delta(z_4,b),\delta(z_3,b)\} = \{z_3,z_3\} - \text{ ex. nicht }$$

Methode 1a

Schritt 3.i: Durchlaufe die leeren Felder $\{z_i, z_k\}$ & trage ein $s \in \Sigma$ ein, für welches das Feld $\{\delta(z_i,s),\delta(z_k,s)\}$ existiert und dort etwas eingetragen ist.

Z ₁	a			
Z ₂	a	b		
z_3	8	ε	8	
Z_4	3	3	3	
	Z_0	Z ₁	Z_2	Z 3

Schritt 3.ii hat keine neuen Einträge gebracht. Also jetzt zu Schritt 4.

Methode 1a

Schritt 4: Ziehe die äquivalenten Zustände z_i , z_k – erkennbar am leeeren Feld – jeweils zu einem Zustand zusammen.

Methode 1a

Schritt 4: Ziehe die äquivalenten Zustände z_i , z_k – erkennbar am leeeren Feld – jeweils zu einem Zustand zusammen.

Methode 2

Methode 2

0. Leere Zustandsübergangstabelle mit Extraspalte

Methode 2

1. Die beiden Anfangsklassen, einerseits die akzeptierenden, andererseits die nicht akzeptierenden Zustände, werden benannt.

	a	b
z_0		
Z_1		
Z_2		
Z ₃		
Z_4		

Methode 2

 Z_4

1. Die beiden Anfangsklassen, einerseits die nicht akzeptierenden, andererseits die akzeptierenden Zustände, werden benannt Z

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

		a	b
z_0	Α		
Z_1	Α		
Z_2	Α		
Z_3	Z		
Z_4	Z		

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

z.B. $z_0 -a \rightarrow$ welche Klasse?

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

und so weiter ausfüllen ...

		a	b
z_0	Α	Α	Z
Z_1	A		
Z_2	Α		
Z_3	Z		
Z_4	Z		

Methode 2

		a	b
Z_0	Α	Α	Z
Z_1	Α	Z	Α
Z_2	Α	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

Methode 2

3. Welche Klassen sind wie aufzuspalten?

		a	b
Z_0	A	Α	Z
Z_1	Α	Z	Α
Z_2	A	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

Methode 2

3. Welche Klassen sind wie aufzuspalten?

A-Zustände haben unterschiedliche "Zukünfte": A Z und Z A → Trennung!

		a	b
Z_0	Α	Α	Z
Z_1	A	Z	A
Z_2	Α	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

Methode 2

O. Neue leere Tabelle

Methode 2

1. Die neuen Klassen, werden benannt (egal wie – nur nicht gleich).

		a	b		a	b
z_0	Α	Α	Z			
Z_1	A	Z	A			
Z_2	Α	Z	Α			
z_3	Z	Z	Z			
Z_4	Z	Z	Z			

Methode 2

1. Die neuen Klassen, werden benannt (egal wie – nur nicht gleich).

		a	b		a	b
Z_0	Α	Α	Z	A		
Z_1	A	Z	A	В		
Z_2	A	Z	A	В		
z_3	Z	Z	Z	Z		
Z ₄	Z	Z	Z	Z		

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

		а	b
z_0	Α	А	Z
Z ₁	Α	Z	Α
Z_2	Α	Z	Α
Z ₃	Z	Z	Z
Z ₄	Z	Z	Z

	a	b
Α		
В		
В		
Z		
Z		

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b?

z.B. $z_0 - a \rightarrow z_1$ in Klasse B

Methode 2

2. In welcher Klasse landet man aus jedem Zustand unter a/b? usw. wie in der ersten Tabelle

		a	b
z_0	Α	Α	Z
Z ₁	Α	Z	Α
Z_2	Α	Z	Α
Z ₃	Z	Z	Z
Z ₄	Z	Z	Z

	a	D
Α	В	Z
В	Z	В
В	Z	Α
Z	Z	Z
Z	Z	Z

Methode 2

3. Welche Klassen sind wie aufzuspalten? Wegen unterschiedlicher Zukünfte: Klasse B in zwei Klassen à 1 Zustand!

		a	b
Z ₀	A	А	Z
Z ₁	A	Z	Α
Z ₂	Α	Z	Α
Z ₃	Z	Z	Z
Z ₄	Z	Z	Z

	a	D
Α	В	Z
В	Z	В
В	Z	Α
Z	Z	Z
Z	Z	Z

Methode 2

 Z_0

 Z_1

 Z_2

Z₃

 Z_4

1. Die neuen Klassen, werden benannt (egal wie – nur nicht gleich).

	a	b
Α	А	Z
Α	Z	Α
A	Z	Α
2	Z	Z
Z	Z	Z

	a	D
Α	В	Z
В	Z	В
В	Z	Α
Z	Z	Z
Z	Z	Z

	a	D
Α		
В		
C		
Z		
Z		

Methode 2

b

Methode 2

b

a,b

a

Methode 2

3. Welche Klassen sind wie aufzuspalten? keine → fertig!

Methode 2

 Z_0

 Z_1

 Z_2

Z₃

 Z_4

3. Welche Klassen sind wie aufzuspalten? keine → fertig! Na ja, fast ...

ALT

	a	b
А	Α	Z
Α	Z	Α
A	Z	Α
7	Z	Z
Z	Z	Z

	a	b
Α	В	Z
В	Z	В
В	Z	Α
Z	Z	Z
Z	Z	Z

	a	b
Α	В	Z
В	Z	O
С	Z	Α
Z	Z	Z
Z	Z	Z

Methode 2

4. Endarbeiten:

- Zustände und Übergänge
- besondere Zustände

		a	b
Z_0	Α	В	Z
Z_1	В	Z	O
Z_2	O	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

Methode 2

4. Endarbeiten:

- Zustände und Übergänge
- besondere Zustände

		a	b
z_0	Α	В	Z
Z_1	В	Z	O
Z_2	O	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

Der Minimalautomat hat 4 Zustände, A, B, C, Z, mit Zustandsübergängen laut Tabelle.

Anfangszustand ist die Klasse, die $\rightarrow z_0$ enthält. Wer akzeptiert?

Alle Klassen die z₀ z₁ oder z₂ enthalten

a

Z_0	Α	В	Z
Z_1	В	Z	С
Z_2	C	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

Der Minimalautomat hat 4 Zustände, A, B, C, Z, mit Zustandsübergängen laut Tabelle.

Anfangszustand ist die Klasse, die →z₀ enthält.

Wer akzeptiert?

Alle Klassen die z_0 z_1 oder z_2 enthalten.

Methode 2

Z_0	Α	В	Z
Z_1	В	Z	C
Z_2	C	Z	Α
Z_3	Z	Z	Z
Z_4	Z	Z	Z

a

Der Minimalautomat hat 4 Zustände, A, B, C, Z, mit Zustandsübergängen laut Tabelle.

Anfangszustand: die Klasse die →z₀ enthält.

Wer akzeptiert?

Alle Klassen die z_0 z_1 oder z_2 enthalten.