

2814ICT – DATA MANAGEMENT 7003ICT – DATABASE DESIGN School of Information & Communication Technology Trimester 1, 2021

Assignment Part 1: Designing a Database for BigM

ASSIGNMENT TITLE: Designing a Database for BigM

Student 1	s-number: s5167765	Full name: Taehyun Lee
Student 2	s-number: s 5132372	Full name: Johnny Nguyen
Course Code: 2814ICT		Workshop/Lab day & time: Fri 12:00 pm
Sessional's name: Ms Nosheen Munir		Date submitted: Week 6, 23 Apr Fri 5:00 pm

Table of Contents

List of Illustrations		2
Statement of Completion		2
Acknowledgements		2
Case Example		3
Entity Relationship Diagram		4
Assumptions		4
Normalisation		5
a) Relation Schema		5
b) Normalisation		5
List of Illustrations		
Figure 1: Entity Relationship Diagran	n	4
Figure 2: Department Dependency D	iagram	5
Figure 3: Store Dependency diagram		5
Figure 4: Employee Dependency Dia	gram	6
Figure 5: Product Dependency Diagra	am	6
Figure 6: Customer Dependency Diag	gram	6
Figure 7: Order Dependency Diagram	n	6

Statement of Completion

All tasks have been completed.

Acknowledgements

N/A

Case Example

BigM operates stores in many cities in Australia. We have developed an aggregate that organically combines and stores the data required for various tasks of BigM. This was developed to process data efficiently, and it has the advantage that it is possible to eliminate the problem of overlapping the same data and that there is no need to prepare a new file even if the business is expanded.

Library DB consists of the following tables:

Product

For each product, it stores the product number, product description, product size, and price. It also records the date the product arrived and the date it was received by the customer. (This date may vary from product to product.)

Supervised Store

Supervisory stores with all training, salaries, server applications, and help desks can be assigned.

Store

Record each store name, phone, fax, and email. The store has several departments such as finance, accounts, sales, customer service, and more.

Store Manager

Each store is managed by an employee as a store manager.

Department

Each department has a department ID, department name, phone and email address. Each department has several employees.

Department Supervisor

Each department is supervised by employees. The department supervisor is also the supervisor of all employees in the department.

Employees

Record the employee ID, first name, last name, phone number, date of birth, start date of work, hourly wage, salary, and tax file number.

Customer

Customers can order from the store. Customer details are always taken from each order. Customers are referred to by customer number, customer first and last name, and phone number if possible.

Entity Relationship Diagram

Figure 1: Entity Relationship Diagram

Assumptions

- There is one supervisor per department
- Many employees can work in one department and a department needs an employee to work in the department
- Many customers can go to many stores
- Many BigM stores can purchase many products and purchasing products is optional

Normalisation

a) Relation Schema

Product

(<u>ProductNum</u>, ProductDesc, ProductSize, ProductPrice, ArrivalDate)

Store

(StoreCode, ManagerID, StoreSupervisorCode, StoreNum, Phone, Fax, Email)

Department

(<u>DepartmentID</u>, SupervisorID, DepartmentName, Phone, Email)

Employee

(<u>EmployeeID</u>, SupervisorID, ManagerID, FirstName, LastName, Sex, Phone, DoB, StartDate, HourlyRate, AnnualSalay, TFN, DepartmentID)

Customer

(<u>CustomerNum</u>, ProductDesc, ProductSize, ProductPrice, OrderID)

Order

(OrderID, DateOrdered, CustomerReceiveDate, ProductNum, CustomerID)

b) Normalisation

For department table the dependency diagram is:

The table is in 3NF because it has no partial dependency and no transitive dependency Full dependency: DepartmentID → DepartmentName, SupervisorID, Phone, Email

For store table the dependency diagram is:

 $Figure\ 3:\ Store\ Dependency\ diagram$

The table is in 3NF because it has no partial dependency and no transitive dependency Full dependency: StoreCode→StoreNum, SupervisedStoreCode, ManagerID, Phone, Fax, Email

For Employee table the dependency diagram is:

Figure 4: Employee Dependency Diagram

The table is in a 3NF because it has no transitive dependency and does not have partial dependency. Full dependency: EmployeeID→ FirstName, LastName, SupervisorID, ManagerID, Sex, Phone, DoB, StartDate, HourlyRate, AnnualSalay, TFN, DepartmentID

For product the dependency diagram is:

Figure 5: Product Dependency Diagram

The table is in 3NF because it has a transitive dependency Full dependency: ProductNum→ProductDesc,ProductSize,ProductPrice,ArrivalDate

For Customer the dependency diagram is:

Figure 6: Customer Dependency Diagram

The table is in 3NF because it has no partial dependency and no transitive dependency Full dependency: CustomerID—CustomerFirstName,CustomerLastName,PhoneNumber,OrderID

For Order the dependency diagram is:

Figure 7: Order Dependency Diagram

The table is in 3NF because it has no partial dependency and no transitive dependency Full dependency: OrderID—DateOrdered, CustomerReceivalDate, CustomerNum, ProductNum