CSE 259 - Logic in Computer Science

Recitation-10

Project 3: Wang and Kobsa's Algorithm

Waqar Hassan Khan

Project 3

- The partial implementation wangs_algorithm.pl is runnable
- Sample input/output:
 - Premises as list ([p ^ q])
 - A formula as conclusion.
 - We can derive the conclusion from the premise

We can derive the conclusion from the premises. **true**.

Project 3

- Write your codes here
- I have implemented some. The rest is your task

Project 3

- Two types of rules
 - Non-branching
 - o Branching

Project 3: Non-branching Rules

Rule-1

If one of the formulae separated by commas is the negation of a formula, drop the negation sign and move it to the other side of the arrow.

Example:

Formula: $p, \sim (q \land r) \Rightarrow p \land r$

Change to: p => p ^ r, q ^ r

Project 3: Non-branching Rules

Rule-2

If the last connective of a formula on the left is ^ (and), or on the right of the arrow is v (or), replace the connective by a comma.

Example-1:

Formula: $p, p ^ q => r, s$

Change to: $p, p, q \Rightarrow r, s$

Example-2:

Formula: $p, q \Rightarrow r \vee p$

Change to: $p, q \Rightarrow r, p$

Project 3: Non-branching Rules

Rule-3

If the last connective of a formula on the right is $A \rightarrow B$, remove $A \rightarrow B$ from the right and then add A to the left and B to the right.

•

Example-1:

Formula: $p \vee q \Rightarrow q \rightarrow p$

Change to: $p \vee q, q \Rightarrow p$

Project 3: Branching Rules

Rule-4

If the last connective of a formula on the left is v (or), or on the right of the arrow is ^ (and), then produce two new lines, each with one of the two sub formulae replacing the formula. Both of these must be proved in order to prove the original theorem.

Example-1:

Formula: $p v q, r, s \Rightarrow q v p$

Change to:

p, r, s => q v p

q, r, s => q v p

Example-2:

Formula: $p, r, s \Rightarrow q p$

Change to:

p, r, s => q

p, r, s => p

Project 3: Branching Rules

Rule-5

If the last connective of a formula on the left is $A \rightarrow B$, remove $A \rightarrow B$ from the left and then create two new lines, one with B added to the left, and the other with A added to the right.

Example-1:

Formula: $p, p \rightarrow q \Rightarrow p \vee q$

Change to:

$$p, q => p v q$$

$$p => p v q, p$$

Project 3: Non-branching Rules – Rule 1

```
* example rule: negation
 * non-branching rule
 * If one of the formulae separated by commas is the
 * negation of a formula, drop the negation sign and
 * move it to the other side of the arrow.
prove(L => R):-
   member(~X, L),
   del(~X, L, NewL),
   nl, write('=\t'), write(NewL => [X \mid R]),
   write('\t (by negation/left)'),
   prove(NewL => [X | R]).
prove(L => R):-
   member(~X, R),
   del(~X, R, NewR),
   nl, write('=\t'), write([X | L] => NewR),
   write('\t (by negation/right)'),
   prove([X | L] => NewR).
```

Example:

Formula: $p, \sim (q \wedge r) \Rightarrow p \wedge r$

Change to: $p \Rightarrow p r, q r$

Output:

Project 3: Non-branching Rules – Rule 2

```
* Rule-2
* example rule: left conjuction
* non-branching rule
* If the last connective of a formula on the left is ^ (and),
st or on the right of the arrow is v (or), replace the connective by a comma.
prove(L => R) :-
 member(A ^ B, L),
 del(A ^ B, L, NewL),
 nl, write('=\t'), write([A, B | NewL] => R),
 write('\t (by and/left)'),
 prove([A, B | NewL] => R).
prove(L => R) :-
 member(A v B, R),
 del(A v B, R, NewR),
 nl, write('=\t'), write(L => [A, B | NewR]),
 write('\t (by or/right)'),
 prove(L \Rightarrow [A, B | NewR]).
```

Project 3: Non-branching Rules – Rule 2 contd.

Example-1:

Formula: $p, p ^ q => r, s$

Change to: $p, p, q \Rightarrow r, s$

Example-2:

Formula: $p, q \Rightarrow r \vee p$

Change to: p, q => r, p

Project 3: Branching Rules – Rule 5

```
* example rule: left implication
* branching rule
* If the last connective of a formula on the left is A \rightarrow B,
* remove A \rightarrow B from the left and then create two new lines,
* one with B added to the left, and the other with A added to the right.
prove(L => R) :-
 member(A \rightarrow B, L),
 del(A \rightarrow B, L, NewL),
 nl,
 write('\tFirst branch: '),
 nl,
 write('=\t'),
 write([B | NewL] => R),
 write('\t (by arrow/left)'),
 prove([B | NewL] => R),
 write('\tSecond branch: '),
 nl.
 write('=\t'),
 write(NewL => [A | R]),
 write('\t (by arrow/left)'),
 prove(NewL => [A | R]).
```

Project 3: Your Tasks

- Rule-3: Non-branching rule
- Rule-4: Branching rule