Multivariate Statistical Analysis

Lecture 09

Fudan University

luoluo@fudan.edu.cn

Outline

James-Stein Estimator

2 Noncentral Chi-Squared Distribution

3 Hypothesis Testing for the Mean (Covariance is Known)

Outline

James–Stein Estimator

2 Noncentral Chi-Squared Distribution

3 Hypothesis Testing for the Mean (Covariance is Known)

The Biased Estimator

The sample mean $\bar{\mathbf{x}}$ seems the natural estimator of the population mean μ .

However, Stein (1956) showed $\bar{\mathbf{x}}$ is not admissible with respect to the mean squared loss when $p \geq 3$.

James-Stein Estimator

Consider the loss function

$$L(\boldsymbol{\mu}, \mathbf{m}) = \|\mathbf{m} - \boldsymbol{\mu}\|_2^2,$$

where **m** is an estimator of the mean μ .

The estimator proposed by James and Stein is

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu},$$

where $\nu \in \mathbb{R}^p$ is an arbitrary fixed vector and $p \geq 3$.

Bayesian Estimation View

Consider $\mathbf{x}_{\alpha} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{NI})$ for $\alpha = 1, \dots, \mathbf{N}$, we additionally suppose

$$\mu \sim \mathcal{N}(oldsymbol{
u}, au^2 oldsymbol{\mathsf{I}}).$$

Then the posterior distribution of μ given $\mathbf{x}_1, \dots, \mathbf{x}_N$ has mean

$$\left(1 - \mathbb{E}\left[\frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right]\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}.$$

James-Stein Estimator

Interestingly, we have

$$\mathbb{E}\left[\left\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\right\|_2^2\right] < \mathbb{E}\left[\left\|\bar{\mathbf{x}} - \boldsymbol{\mu}\right\|_2^2\right]$$

by only suppose $\mathbf{x}_{\alpha} \sim \mathcal{N}(\boldsymbol{\mu}, N\mathbf{I})$ without prior on $\boldsymbol{\mu}$, where

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}.$$

Improved Biased Estimator

The James-Stein estimator is

$$\mathbf{m}(\bar{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)(\bar{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu}.$$

For small values of $\|\bar{\mathbf{x}} - \boldsymbol{\nu}\|_2$, the multiplier of $(\bar{\mathbf{x}} - \boldsymbol{\nu})$ is negative; that is, the estimator $\mathbf{m}(\bar{\mathbf{x}})$ is in the direction from $\boldsymbol{\nu}$ opposite to that of $\bar{\mathbf{x}}$.

We can improve $m(\bar{x})$ by using

$$\widetilde{\mathbf{m}}(\overline{\mathbf{x}}) = \left(1 - \frac{p-2}{\|\overline{\mathbf{x}} - \boldsymbol{\nu}\|_2^2}\right)^+ (\overline{\mathbf{x}} - \boldsymbol{\nu}) + \boldsymbol{\nu},$$

which holds that $\mathbb{E}\left[\left\|\tilde{\mathbf{m}}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\right\|_2^2\right] \leq \mathbb{E}\left[\left\|\mathbf{m}(\bar{\mathbf{x}}) - \boldsymbol{\mu}\right\|_2^2\right]$.

Outline

James–Stein Estimator

2 Noncentral Chi-Squared Distribution

3 Hypothesis Testing for the Mean (Covariance is Known)

Hypothesis Testing for the Mean

In the univariate case, the difference between the sample mean and the population mean is normally distributed.

We consider

$$z=\frac{\sqrt{N}}{\sigma}(\bar{x}-\mu_0).$$

- **1** For significance level $\alpha = 0.05$ and p = 1, we have $1 \alpha = 0.95$.
- What about multivariate case?

Chi-Squared Distribution

If x_1, \ldots, x_n are independent, standard normal random variables, then the sum of their squares,

$$y = \sum_{i=1}^{n} x_i^2,$$

is distributed according to the (central) chi-squared distribution (χ^2 -distribution) with n degrees of freedom. One may write $y \sim \chi_n^2$.

We have $\mathbb{E}[y] = n$ and Var[y] = 2n.

Chi-Squared Distribution

The probability density function of the (central) chi-squared distribution is

$$f(y; n) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} y^{\frac{n}{2} - 1} \exp\left(-\frac{y}{2}\right), & y > 0; \\ 0, & \text{otherwise,} \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha - 1} \exp(-t) dt.$$

Chi-Squared Distribution

The derivation for the density of Chi-square distribution:

- Show that $\Gamma(1/2) = \sqrt{\pi}$.
- ② For $y_1 = x^2$ with $x \sim \mathcal{N}(0,1)$, the density function of y_1 is

$$\frac{1}{\sqrt{2\pi y_1}} \exp\left(-\frac{1}{2}y_1\right).$$

3 For beta function $B(\alpha,\beta) = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$, we have

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

3 Show the density of $y_n = \sum_{i=1}^n x_i^2$ by induction.

If x_1, \ldots, x_n are independent and each x_i are normally distributed random variables with means μ_i and unit variances, then the sum of their squares,

$$y = \sum_{i=1}^{n} x_i^2,$$

is distributed according to the noncentral Chi-squared distribution with n degrees of freedom and noncentrality parameter

$$\lambda = \sum_{i=1}^{n} \mu_i^2.$$

One may write $y \sim \chi^2_{n,\lambda}$.

We have $\mathbb{E}[y] = n + \lambda$ and $Var[y] = 2n + 4\lambda$.

Theorem

If y_1, \ldots, y_k are independent and each y_i is distributed according to the noncentral χ^2 -distribution with n_i degrees of freedom and noncentrality parameter λ_i , then

$$\sum_{i=1}^k y_i \sim \chi_{n,\lambda}^2,$$

where

$$n = \sum_{i=1}^{k} n_i$$
 and $\lambda = \sum_{i=1}^{k} \lambda_i$.

Theorem

If the n-component random vector \mathbf{y} is distributed according to $\mathcal{N}_n(\nu, \mathbf{T})$ with $\mathbf{T} \succ \mathbf{0}$, then

$$\mathbf{y}^{\top}\mathbf{T}^{-1}\mathbf{y}\sim\chi_{\mathbf{n},\lambda}^{2},$$

where

$$\lambda = \boldsymbol{\nu}^{\top} \mathbf{T}^{-1} \boldsymbol{\nu}.$$

If $\nu = \mathbf{0}$, the distribution is the central χ_n^2 -distribution.

Let $\mathbf{y} \sim \mathcal{N}_p(\boldsymbol{\lambda}, \mathbf{I})$, then

$$v = \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

is distributed according to the noncentral χ^2 -distribution with p degrees of freedom and noncentral parameter $\lambda = \lambda^{\top} \lambda$.

The probability density function is

$$f(\nu; p, \lambda) = \begin{cases} \sum_{\beta=0}^{\infty} \frac{(\lambda/2)^{\beta} \exp\left(-(\lambda/2)\right)}{\beta!} \cdot \frac{1}{2^{\frac{p+2\beta}{2}} \Gamma\left(\frac{p}{2} + \beta\right)} y^{\frac{p}{2} + \beta - 1} \exp\left(-\frac{\nu}{2}\right) & \nu > 0, \\ 0, & \nu \leq 0. \end{cases}$$

Outline

James–Stein Estimator

2 Noncentral Chi-Squared Distribution

3 Hypothesis Testing for the Mean (Covariance is Known)

Hypothesis Testing for the Mean (Covariance is Known)

In the univariate case, the difference between the sample mean and the population mean is normally distributed. We consider

$$z=\frac{\sqrt{N}}{\sigma}(\bar{x}-\mu_0).$$

What about multivariate case?

Hypothesis Testing for the Mean (Covariance is Known)

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$.

What about multivariate case to test $\mu=\mu_0$?

$$\frac{\sqrt{N}}{\sigma}(\bar{\mathbf{x}}-\mu_0) \implies \frac{N}{\sigma^2}(\bar{\mathbf{x}}-\mu_0)^2 \implies N(\bar{\mathbf{x}}-\mu_0)^{\top}\mathbf{\Sigma}^{-1}(\bar{\mathbf{x}}-\mu_0).$$

Rejection Region

Let $\chi_p^2(\alpha)$ be the number such that

$$\Pr\left\{N(\bar{\mathbf{x}}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})>\chi_p^2(\alpha)\right\}=\alpha.$$

To test the hypothesis that $\mu=\mu_0$ where μ_0 is a specified vector, we use as our rejection region (critical region)

$$N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top} \boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0) > \chi_p^2(\alpha).$$

If above inequality is satisfied, we reject the null hypothesis.

Confidence Region

Consider the statement made on the basis of a sample with mean $\bar{\mathbf{x}}$:

"The mean of the distribution satisfies

$$N(\bar{\mathbf{x}} - \boldsymbol{\mu}^*)^{\top} \boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}^*) \leq \chi_p^2(\alpha).$$

as an inequality on μ^* ." This statement is true with probability $1-\alpha$.

Thus, the set of μ^* satisfying above inequality is a confidence region for μ with confidence $1-\alpha$.

Two-Sample Problems

Suppose there are two samples:

$$lackbox{1}{} \mathbf{x}_1^{(1)},\ldots,\mathbf{x}_{\mathcal{N}_1}^{(1)} ext{ from } \mathcal{N}ig(\mu^{(1)},oldsymbol{\Sigma}ig);$$

2
$$\mathbf{x}_{1}^{(2)}, \dots, \mathbf{x}_{N_{2}}^{(2)}$$
 from $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma})$;

where Σ is known.

How to test the hypothesis $\mu^{(1)} = \mu^{(2)}$?