Elastic Net

Wesley_Tao 2018/3/30

Data preprocessing

```
Census data <- read.csv("... / data / Census data with variables 2016.csv", header = T, sep=",", as.is = T)
rate_2014 <-read.table("../output/rate_2014.tsv",header=T)</pre>
# first row seems to be the description of the variable
var des
           <-Census_data[1,] # store description
Census_data<-Census_data[-1,-1] # rest of the data, drop the first column
head(Census_data[,c(1,2,3,4,5,6)])
                   GEO.display.label HC01 VC03 HC02 VC03 HC03 VC03 HC04 VC03
     GEO.id2
      01001 Autauga County, Alabama
## 2
                                          42712
                                                      218
                                                               42712
                                                                            (X)
## 3 01003 Baldwin County, Alabama
                                         160301
                                                       451
                                                              160301
                                                                            (X)
## 4 01005 Barbour County, Alabama
                                                                            (X)
                                          21476
                                                       68
                                                               21476
## 5 01007
                Bibb County, Alabama
                                          18496
                                                      145
                                                               18496
                                                                            (X)
       01009 Blount County, Alabama
                                          46007
                                                                            (X)
## 6
                                                      136
                                                               46007
## 7
     01011 Bullock County, Alabama
                                           8547
                                                       57
                                                                8547
                                                                           (X)
library(dplyr)
# combine the data of social capital index with cencus
# head(Census_data)
# head(rate_2014)
rate_2014$id
                      <- as.integer(rate_2014$id)</pre>
Census_data$GEO.id2 <- as.integer(Census_data$GEO.id2)</pre>
                      <-c("GEO.id2", "SK14")
names(rate_2014)
newdata<-rate_2014 %>%
                 left_join(Census_data,by="GEO.id2") # we are interested in sk2014
setdiff(rate 2014$GEO.id2, Census data$GEO.id2) # code 2270 46113 are mismatched
## [1] 2270 46113
# we dig into the cencus data we found that HCO3_VCO3 is the population
                                      and HCO3 VC(##) is the ## variable divided by population
# therefore we select those variables HCO3_VC(##)
X pattern
                <-"HC03 VC[0-9]+"
newdata_colnames<-names(newdata)</pre>
X_{index}
                <-grep(X_pattern,newdata_colnames)</pre>
head(newdata_colnames[X_index]) # but HCO3_VC_O3 is the population
## [1] "HCO3_VCO3" "HCO3_VCO4" "HCO3_VCO5" "HCO3_VCO6" "HCO3_VCO7" "HCO3_VCO8"
X_index<-X_index[-1] # remove the first HCO3_VC_03</pre>
v index<-2
subset_index<-c(y_index,X_index) # combine with y</pre>
# we also find some variables have (X) we have to get rid of them
head(newdata[,"HCO3_VC118"])
```

```
## [1] "(X)" "(X)" "(X)" "(X)" "(X)" "(X)"
newdata.subset<-apply(newdata[,subset_index],2,as.numeric)# these '(X)' will be automatically handled b
# head(newdata.subset)
# it seems that we also have some variables which are population labor force, we have to get rid of the
# rules are if value is larger than 200 then
log.index<-apply(newdata.subset,2,mean,na.rm=T)<200
new_index<-which(log.index)

cleaned_data<-newdata.subset[,new_index]
cleaned_data<-na.omit(cleaned_data) # omit na by row</pre>
```

Train and test split

Heat map of variable correlation

```
library(ggplot2)
library(reshape2)
cormat <-round(cor(X_train),2)
melted_cormat<-melt(cormat) # transform to a narrow format

ggplot(data = melted_cormat, aes(x=Var1, y=Var2, fill=value)) +
    geom_tile()</pre>
```


it seems that this data set has a lot of collinearity, It might cause a lot of problem, we need regul

Elastic Net for variable selection

My original idea is to use lasso for variable selection, however , we can see clearly that some of the X variables are highly correlated thus regularizaiton of L2 penalty is needed. for more details about the loss function of the model:

$$\min_{\beta_0,\beta} \left(\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda [(1-\alpha)||\beta||_2^2 / 2 + \alpha ||\beta||_1)] \right)$$

There are two parameters, one is α another is λ . α is a compromise between Ridge($\alpha=0$) and Lasso regression ($\alpha=1$). We choose the ideal alpha based on 10-fold cross-validation. λ is the penalty we put on the parameter.

```
library(glmnet)
# 5-fold Cross validation for each alpha = 0, 0.1, ..., 0.9, 1.0
set.seed(4)
alpha_seq<-seq(10)/10

result<-data.frame(alpha=alpha_seq,mse=rep(NA,length(alpha_seq)))# generate a data frame to store the r

for(i in 1:length(alpha_seq)){
   this.alpha <-alpha_seq[i]
   fit.reg.cv <- cv.glmnet(X_train, y_train,nfold=10, type.measure="mse", alpha=this.alpha,</pre>
```

Select Alpha based on cross-validation error

it seems that lasso perform better than ridge regression. based on the pics above We are going to select alpha=0.9


```
yhat <- predict(fit.ela.cv, s=fit.ela.cv$lambda.1se, newx=X_test)
test_mse <- mean((y_test - yhat)^2)
test_mse</pre>
```

[1] 0.613089

But based on the graph above, we can select top 10 variables which might have statistical significant influence over the social capital index

```
# we are interested in those variabels
head(data.frame(n=fit.ela.cv$nzero,lambda=fit.ela.cv$lambda),14)
```

```
##
       n
            lambda
## s0
       0 0.6478059
## s1
       1 0.5902566
       1 0.5378199
       3 0.4900414
##
  s3
##
       5 0.4465075
       5 0.4068410
##
   s5
## s6
       5 0.3706984
       6 0.3377666
## s7
## s8
       6 0.3077603
## s9
       6 0.2804197
## s10 6 0.2555080
## s11 7 0.2328094
## s12 7 0.2121272
## s13 9 0.1932824
```

```
Based on the table above, I am going to select top 8 variables lambda=0.1932824
```

```
# use full data
final_model<-glmnet(cleaned_data[,-1], cleaned_data[,1], alpha=0.9, lambda=0.1932824,
                          family="gaussian")
head(final_model$beta,10) # as we can see many variables are shrink to seros
## 10 x 1 sparse Matrix of class "dgCMatrix"
##
                      s0
## HC03_VC04
## HC03_VC05
## HC03_VC06
## HC03_VC07 -0.05212367
## HC03_VC08
## HC03_VC09
## HC03_VC12
## HC03_VC15
## HC03_VC16
## HC03_VC17
we are interested in those non-zero varariables
myvar<-which(final_model$beta!=0)</pre>
# final_model$beta
x_names<-colnames(cleaned_data)[-1]</pre>
data.frame(code=x names[myvar],coe=final model$beta[myvar])
##
           code
## 1 HC03_VC07 -5.212367e-02
## 2 HC03_VC23 1.934705e-02
## 3 HC03_VC50 1.126535e-02
## 4 HC03_VC69 9.183745e-02
## 5 HC03_VC101 -4.350882e-05
## 6 HC03_VC131 2.422074e-03
## 7 HC03_VC132 1.600232e-03
## 8 HC03_VC134 -3.506262e-03
## 9 HC03_VC164 -3.522046e-02
we are also interested what are these
dex_index<-which(colnames(var_des) %in% x_names[myvar])</pre>
t(var_des[,dex_index])
##
## HCO3_VCO7 "Percent; EMPLOYMENT STATUS - Population 16 years and over - In labor force - Civilian la
## HCO3_VC23 "Percent; EMPLOYMENT STATUS - Own children of the householder 6 to 17 years - All parents
## HCO3_VC50 "Percent; INDUSTRY - Civilian employed population 16 years and over - Agriculture, forest
## HCO3_VC69 "Percent; CLASS OF WORKER - Civilian employed population 16 years and over - Self-employe
## HCO3_VC101 "Percent; INCOME AND BENEFITS (IN 2016 INFLATION-ADJUSTED DOLLARS) - With Food Stamp/SNAP
## HCO3_VC131 "Percent; HEALTH INSURANCE COVERAGE - Civilian noninstitutionalized population - With hea
## HCO3_VC132 "Percent; HEALTH INSURANCE COVERAGE - Civilian noninstitutionalized population - With hea
## HCO3_VC134 "Percent; HEALTH INSURANCE COVERAGE - Civilian noninstitutionalized population - No healt
```

HCO3_VC164 "Percent; PERCENTAGE OF FAMILIES AND PEOPLE WHOSE INCOME IN THE PAST 12 MONTHS IS BELOW T.

Conclusion

We found several varibles which are highly correlated to the social capital index, they are listed below.

- 1. Employment status (+)
- 2. Unemployed rate (-)
- 3. Health Insurance Coverage (+)
- 4. No Health cover (-)
- 5. Below Poverty (-)