

FIG. 1: Example VDSL Spectral Plan

FIG. 2: Multi-Carrier Modulation Implementation of Example VDSL Spectral Plan

FIG. 3: Adjustment of Total Bandwidth in an MCM System

FIG. 4: Adjustment of Total Bandwidth in a SCM System

Step 7: Calculate the Total Bit Rate Function $S(E_n, K_n)$ for the Entire Set of Selection Vectors E_n . $S(E_n, K_n)$ Measures the Total Bit Rate Delivered Across the B Bands for the Case Where the (Symbol Rate, Center Frequency) Pairs and Constellation Values Used for Those Bands are Indicated by the Given Value of E_n and K_n , Respectively.

460

Step 8: Divide the Set of Selection Vectors $\{E_n\}$ into Two Sets, SV_1 and SV_2 . Where SV_1 is the Set of E_n for Which the Total Bit Rate $S(E_n, K_n)$ Equals or Exceeds the Target Bit Rate \wp . The Set SV_2 Contains the Remaining Elements of $\{E_n\}$.

470

Step 9: For Each Selection Vector E_n in Set SV_1 , Iteratively Reduce the K_n Component Associated with the Minimum Margin Band, Stopping Just before Making $S(E_n) < \rho$. Repeat for Second Lowest Margin, Then Third Lowest, etc. Update M_n and $S(E_n, K_n)$ Following Each Reduction in a Component of K_n .

Step 10: Define Set X as Those Elements E_n of Set SV_1 Whose Minimum Margin Function m_n All Have the Greatest Value. Select From Set X the Element $E_{n\theta}$ whose Maximum Applied Constellation Component is the Least, or Whose Next Minimum Margin Component is Greatest.

492

Step 11: Define Set Y as Those Elements E_n of Set SV_2 Whose Total Bit Rate Function $S(E_n, K_n)$ Has the Greatest Value. Select From Set Y The Element $E_{n\theta}$ Whose Maximum Applied Constellation Component is the Least, or Whose Minimum Margin Component is Greatest.

-494

FIG. 10