CAD 3010/3011

BEDIENUNGS - UND SERVICEANLEITUNG

Prepared and edited by

STUDER-REVOX Technical documentation Althardstrasse 146 CH-8105 Regensdorf-Zürich Switzerland

We reserve the right to make alterations.

Copyright by Willi Studer Printed in Switzerland

Order number 23.505.1282

Switzerland:

STUDER INTERNATIONAL AG

Althardstrasse 10 CH-8105 Regensdorf

Phone: (01) 840 29 60 Telex: 58489 stui ch

EUROPE

Germany: STUDER REVOX GmbH

Studiotechnik Talstrasse 7 D-7827 Löffingen

Phone: 07654/1021 Telex: 7722118 rvox d

Austria:

STUDER REVOX WIEN GES. M.B.H.

Ludwiggasse 4 A-1180 Wien

Phone: (0200) 47 33 09 / 47 34 65

Telex: 07/5275 studr a

France:

STUDER FRANCE S.A.R.L.

12 - 14, rue Desnouettes F-75015 Paris

Phone: 533 58 58 +

Telex: studer 204744 f

Italy:

STUDER ITALIANA Viale Campania 39 I-20133 Milano

Phone: 73 84 751 / 52 / 53 Telex: 335230 audiom Cables: beppatomil milano

United Kingdom:

F.W.O. BAUCH LIMITED

49 Theobald Street

Boreham Wood, Herts WD6 4 RZ

Phone: 01 - 953 00 91 Telex: 27502 bauch g Cables: bauch borehamwood

AFRICA

Republic of South Africa:

STUDER REVOX SOUTH AFRICA (PTY.) LTD

P.O. Box 31282

Braamfontein 2017 (Johannesburg)

Phone: 35 - 90 76/77 Telex: 4-22401

Cables: revox hifi johannesburg

FAR EAST

Hong Kong:

STUDER REVOX (Far East) Limited 25th Floor, Arion Commercial Bldg

25th Floor, Arion Commercial Bldg 2-12 Queens Road West

Hong Kong

Phone: 5 - 45 96 88 / 5 - 44 13 10 / 5 - 45 99 24

Telex: 60185 srfel hx

Japan: STUDER REVOX JAPAN LTD.

1-22-2 Yoyogi Shibuya-ku Tokyo 151

Phone: 03 320 1101 Telex: j 27618 rfent

Australia:

SYNTEC INTERNATIONAL PTY LTD

P.O. Box 165 North Sydney Australia 2060

Phone: 4064700, 4064557, 4064627

Telex: 70570 syntec

NORTH AND SOUTH AMERICA

Canada:

STUDER REVOX CANADA LTD

14, Banigan Drive

Toronto 17, Ontario M4H 1E9

Phone: (416) 423 - 2831 Telex: 06-23310 studer tor

USA:

STUDER REVOX AMERICA INC.

1425 Elm Hill Pike Nashville, Tennessee 37210

Phone: (615) 254 - 5651

Telex: 065230/554453 studer nas

Brazil:

CENTELEC

Equipamentos e Sistemas Electronicos Ltd.

Av. Ataulfo de Paiva 135/1710 22440 Rio de Janeiro - RJ

Phone: (021) 259 36 99 Telex: 2130842 cosl br

SICHERHEIT

Durch Entfernen von Gehäuseteilen, Abschirmungen etc. werden stromführende Teile freigelegt. Aus diesem Grunde müssen die folgenden Sicherheitsvorschriften unbedingt beachtet werden:

1. Eingriffe in ein Gerät

dürfen nur von Fachpersonal vorgenommen werden.

2. Vor Entfernen von Gehäuseteilen:

Gerät ausschalten und vom Netz trennen.

3. Bei geöffnetem Gerät:

- Netzteil- oder Motorkondensatoren mit einem passenden Widerstand entladen.
- Bauteile grosser Leistung, wie Leistungstransistoren und -widerstände sowie Magnetspulen und Wickelmotoren erst nach dem Abkühlen berühren.

4. Servicearbeiten bei geöffnetem, unter Spannung stehendem Gerät:

- Keine blanken Schaltungsteile berühren
- Isolierte Werkzeuge verwenden
- Metallene Halbleitergehäuse nicht berühren, da sie hohe Spannungen aufweisen können.

ERSTE HILFE (bei Stromunfällen)

1. Bei einem Stromunfall die betroffene Person raschmöglichst vom Strom

- Durch Ausschalten des Gerätes
- Ausziehen oder Unterbrechen der Netzzuleitung
- Betroffene Person mit isolierendem Material (Holz, Kunstoff) von der Gefahrenquelle wegstossen
- Nach einem Stromunfall sollte immer ein Arzt aufgesucht werden.

ACHTUNG

EINE UNTER SPANNUNG STEHENDE PER-SON DARF NICHT BERÜHRT WERDEN, SIE KÖNNEN DABEI SELBST ELEKTRI-SIERT WERDEN!

2. Bei Bewusstlosigkeit des Verunfallten:

- Puls kontrollieren,
- bei ausgesetzter Atmung künstlich beatmen,
- Seitenlagerung des Verunfallten und Arzt verständigen.

SAFETY

There are no user serviceable components inside the equipment, live parts are laid open when removing protective covers and shieldings. It is essential therefore to ensure that the subsequent safety rules are strictly observed when performing service work or repairs.

1. Servicing of electronic equipment must be performed by qualified personnel only.

2. Before removing covers:

Switch off the equipment and unplug the mains cable.

3. When the equipment is open:

- Discharge power supply- and motor capacitors through a suitable resistor.
- Components, that carry heavy electrical loads, such as power transistors and resistors as well as solenoid coils and motors should not be touched before a cooling off interval, as a precaution to avoid burns.

4. Servicing unprotected and operating equipment:

- Never touch bare wires or circuitry
- Use insulated tools only
- Never touch metal semiconductor cases because they may carry high voltages.

FIRST AID (in case of electric shock)

Separate the person as quickly as possible from the electric power source:

- by switching off the equipment,
- unplugging or disconnecting the mains cable,
- pushing the person away from the power source by using dry insulating material (such as wood or plastic).
- After having sustained an electric shock, always consult a doctor.

WARNING:

DO NOT TOUCH THE PERSON OR HIS CLOTHING BEFORE POWER IS TURNED OFF, OTHERWISE YOU STAND THE RISK OF SUSTAINING AN ELECTRIC SHOCK AS WELL!

2. If the person is unconscious

- Check the pulse,
- reanimate the person if respiration is poor.
- lay the body down and turn it to one side, call for a doctor immediately.

SÉCURITÉ

Si les couvercles de protection sont enlevés, les parties de l'appareil qui sont sous tension ne sont plus protégées. Il est donc d'une nécessitée absolue de suivre les instructions suivantes:

1. Les intervensions dans les appareils électriques

doivent être faites uniquement que par du personnel qualifié

2. Avant d'enlever les couvercles de protection:

Couper l'interrupteur principal et débrancher le câble secteur.

3. Après avoir enlevé les couvercles de protection:

- Les condensateurs de l'alimentation et des moteurs doivent être déchargés à l'aide d'une résistance appropriée.
- Il est prudent de laisser refroidir les composants de haute puissance, par ex.: transistors de puissance, résistances de puissances de même que des électroaimants et les moteurs de bobinage.

4. S'il faut que l'appareil soit sous tension pendent les réglages internes:

- Ne jamais toucher les circuits non isolés
- Travailler seulement avec des outils isolés

PREMIERS SECOURS (en cas d'électrocution)

1. Si la personne est dans l'impossibilité de se libérer:

- Couper l'interrupteur principal
- Couper le courant
- Repousser la personne de l'appareil à l'aide d'un objet en matière non conductrice (matière plastique ou boîs)
- Après une électrocution, consulter un médecin.

ATTENTION

NE JAMAIS TOUCHER UNE PERSONNE QUI EST SOUS TENSION, SOUS PEINE DE SUBIR ÉGALEMENT UNE ÉLECTROCU-TION!

2. En cas de perte de connaissance de la personne électrocutée:

- Controller le pouls
- Si nécessaire, pratiquer la respiration artificielle
- Mettre l'accidenté sur le coté latérale et consulter un médecin.

1 TECHNISCHE DATEN

1 TECHNISCHE DATEN	
STEREO-UNISETTE CASSETTE DECK CAD 3010/3011 UNISETTE®=EINGETRAGENES WARENZEICHEN DER BASF	
Modelle CAD 3010 Maschine fuer Audio-Wiedergabe CAD 3011 Maschine fuer Audio-Wiedergabe und -Aufnahme	Umspulzeit Spieldauer 15min : 20s Spieldauer 30min : 40s
<pre>Laufwerk 1 AC-Capstanmotor 2 DC-Wickelmotoren 1 DC-Positionierungsmotor (Kassettentraeger)</pre>	Umspulgeschwindigkeit durchschnittlich 4,75m/s
Bandgeschwindigkeit 9,5cm/s 3,75ips	Bandzug Konstant geregelt. Einstellung: 40 +/-5g
Bandgeschwindigkeits-Abweichung +/-0,2%	Bandzugmaximum waehrend Bandstart: 100g
Bandschlupf 0,1% oder besser	Spurbreiten Audio 2×2 mm Code (Mittelspur) 1×0,6mm
Kassettenart BASF UNISETTE ®	Eingaenge (nur CAD 3011) symmetrisch, erdfrei Impedanz 30Hz20kHz min. 5kOhm
Bandbreite 6,3mm 1/4"	Eingangspegel (nur CAD 3011) fuer 185nWb/m min20dBm max. +22dBm
Tonhoehenschwankungen IEC 368 (DIN 45507) Spitze bewertet 0,08% oder besser	Ausgaenge symmetrisch, erdfrei Impedanz 30Hz20kHz max.50 Ohm Abschlusswiderstand min.200 Ohm
Startzeit max.200ms zum Erreichen des zweifachen spezifizierten Tonhoehen-Schwankungswertes	Ausgangspegel (RL = 6000hm) max. 22dBm
Stopzeit aus Umspulmodus (incl. Codelesen) max.2s aus Wiedergabemodus max.40ms	Code-Ausgang gemaess IEC 60B, 1974 4Vpp
Positionierungs-Bandanzeige SMPTE-Code, 25 Frames/s (EBU 80-Bit-Code Tech 3097E, Juni 1980)	Entzerrung NAB/CCIR 90/3180us
Positionierungs-Genauigkeit typ。 +/-40ms	Bandtyp BASF LP31 CrO2, T 149 AM 15 Minuten
Positionierungs-Aufloesung fuer die Anzeige in 1/10s 80 bzw•120ms Schritte aufgerundet	Bezugspegel 320nWb/m
Zugriffszeit aus Band-Mittenposition Spieldauer 15min: max. 15s Spieldauer 30min: max. 25s	Frequenzgang 60Hz••12kHz +/-1dB 30Hz••18kHz +/-2dB (Toleranz des Bezugsbandes DIN 45513-4 nicht beruecksichtigt)

Fremd- und Geraeuschspannungsabstand Effektivwerte Aufnahme / Wiedergabe	Serielle Schnittstelle RS232 Spezifikationen: 2400 Baud
,	Half Duplex
320nWb/m Bandfluss	1 Startbit
- Fremdspannung linear 55dB	7 Databits
- Geraeuschspannung CCIR 468, bewertet 53dB (49dB Quasi-Peak)	1 Parity bit odd 2 Stopbits
- Geraeuschspannung A-bewertet, nach IEC 179 (DIN 45633) 62dB	
Klirrfaktor (K3)	Externe Anschluesse
Aufnahme / Wiedergabe 1kHz besser 1,5%	Audio XLR (IEC 268 14B) Audio/Code D-Mehrfachstecker
Alabamana halama firma	Avafrakavaa
Stereo bei 80Hz8kHz min. 40dB bei 1kHz 45dB	Ausfuehrung 19"Rack-Einbau
Code Nebeneseaber	Cartaka
Code-Vebersprechen min. 75dB	Gewicht Netto 21,5kg (471bs)
May Augustana AMOL 101	Abassayasas
Max.Ausgangspegel (MOL 10) 10kHz (bezogen auf OdB,320nWb/m,315Hz) -2dB	Abmessungen Breite 483mm
Tokniz (bezogen auf odbyszonwb/mystsniz) zab	Hoehe 399mm
	Tiefe (ohne Schwenktraeger) 420mm
*******************************	Tiefe maximal 505mm
Loeschdaempfung bei 1kHz min. 75dB	
Loeschfrequenz	
150kHz	
Vormagnetisierungsfrequenz	
150kHz	Technische Daten mit TELEFUNKEN-Kompander TELCOM C4
Stromversorgung	
umschaltbar 100140V, 200240V +/-10% 50 oder 60 Hz	
Leistungsaufnahme	Bezugspegel
maximal 150VA (Laufwerk, Verstaerker und Fernsteuerung)	(315Hz) 250nWb/m
Umgebungstemperatur-Bereich	Klirrfaktor (K3)
Grad Celsius 1040 Grad Fahrenheit 50104	Aufnahme / Wiedergabe lkHz besser l%
Luftfeuchtigkeit	Maximaler Ausgangspegel (MOL 10)
20%95%	10kHz OdB
kein Kondenswasser	(bezogen auf OdB, 250nWb/m, 315Hz)
C'-b-ub-'AAAd	
Sicherheitsstandard Gemaess IEC-Empfehlung, Publikation 65	Fremd- und Geraeuschspannungsabstand
Schutzklasse 1	Effektivwerte Aufnahme/Wiedergabe - Fremdspannung, linear 76dB - Geraeuschspannung, CCIR 468, bewertet 74dB
	(Quasi-Peak 70dB)
Laufwerk-Bedienkassetten LOCAL CONTROL Parallele Ansteuerung REMOTE CONTROL (CAC) Serielle Ansteuerung	- Geraeuschspannung A-bewertet nach IEC 179 (DIN 45633) 80dB

2	REDIEKUNG	
	UEBERSICHT (Klappseite)	2/ 2
2•1	VGRBEREITUNGEN/KONTROLLEN	2/2
2 • 2	CAD 3011 (PLAY/REC)	2/ 2
2.2.2	Bestuecken Bedienungselemente (LOCAL CONTROL) AUDIO-Aufnahme CODE-Aufnahme SMPTE-Zeitcodetest	2/ 2 2/ 2 2/ 5 2/ 5 2/ 6
2•3	CAD 3010 (PLAY ONLY)	2/ 7
2.3.2	Bestuecken Bedienungselemente (LOCAL CONTROL) SMPTE-Zeitcodetest	2/ 7 2/ 7 2/10
2 • 4	FERNBEDIENUNG MIT TERMINAL/RECHNER	2/11
2.4.2	Serielle Schnittstelle RS 232C Vorbereitungen Bedienungs-Hinweise (LOCAL CONTROL) Anwendungen 1. Befehle Terminal > CAD 2. Statusmeldungen CAD > Terminal 3. Eingabe Titel-Endzeit/-Startzeit 4. Zeitabfrage	2/12 2/12 2/13

SECTION 2/2 CAD 3010/3011 STUDER

VORBEREITUNGEN / KONTROLLEN Kontrolle des Netzspannungwaehlers (13) auf korrekte Einstellung. Kontrolle der Netzsicherung (12) auf korrekt, der Speisespannung entsprechend einqesetzten Wert. Lokal- Bedienungseinheit (10) an LOCAL CON-TROL-Buchse (7) anschliessen. Netzanschluss (1) erstellen. AUDIO-Anschluesse (4/5) erstellen. Schalter MAINS (14) druecken. Kontrolle: Die 5 Kontroll-Led's (11) fuer die Sekundaerspannungen muessen aufleuchten. Lokal-Bedienungseinheit: Die EJECT-Led (D) leuchtet auf. Display-Anzeige: Pl

CAD 3011 (PLAY/REC) BEDIENUNG / ANWENDUNGEN

2.2.1 Bestuecken

 Kassette (mit SMPTE-Zeitcode-Aufzeichnung) lagerichtig in Kassettentraeger (9) einfueh-

Die einseitig der Kassette angebrachte Codierkerbe muss sich links des Kassettentraegersbe-

Folge: Der Kassettentraeger (9) schwenkt ein, die Kassette wird auf Mitte Magnetbandbereich gespult*,- die STOP-Led (J) leuchtet auf.

* Wird beim Bestuecken der Kassettenmaschine keine Mittenpositionierung (Grobpositionierung) des Magnetbandes gewuenscht, ist waehrend dem Einfuehren der Kassette die STOP-Taste zu druecken, bis am Display (A) der Zeitcode angezeigt wird.

2.2.2 Bedienungselemente (LOCAL CONTROL UNIT) ______

(A) DISPLAY a) als Anzeige der Magnetband-Position

Darstellung: Echtzeit Die Echtzeitanzeige erfolgt durch SMPTE-Zeitcode-Detektion:

•••waehrend des PLAY-Betriebsmodus, ...waehrend des REC-Betriebsmodus,

•••nach beendigter Bandsektor-Anwahl (Tasten 2..4, resp. |<|).

•••nach Beendigung des |<| und |>| -Betriebs-

•••nach betaetigter STOP-Taste•

Approximative Bandposition Die Anzeige wird, (ohne Band-Kopfkontakt) von den Tachogeneratoren der Wickelmotoren abgeleitet und angezeigt:

...waehrend des |>| -Betriebsmodus, ...waehrend des |<| -Betriebsmodus, ...waehrend des TAPE MOTION-Betriebsmodus.

- Die Anzeige der 1/10-Sekunden wird unter-

drueckt. Anzeige-Genauigkeit: ca. +/- 4 Sekunden.

15284 Min. Sek. 1/10 Sek 1320

b) als Fehleranzeige

Darstellung:

Bedeutung:

- E1 SMPTE-Zeitcode defekt.
 (siehe auch Abschnitt "CODE-AUFNAHMETEST").
- E2 Hemmung oder Blockade des Magnetband-Transports.
- E3 In falscher Lage zugefuehrte Kassette: Codierkerbe(15) seitlich der Kassette muss sich links im Kassettentraeger befinden.
- E4 Magnetband gerissen (registriert durch die Tachosteuerung der Wickelmotoren), oder: Unkorrekte Bandfuehrung infolge Magnetband-Schlaufenbildung um den Bandende-Sensor, waehrend der Kassettentraeger-Einschwenk-

bewegung.
Ablauf: Der Kassettentraeger faehrt aus und unternimmt einen zweiten Versuch die Kassette mit korrekter Bandfuehrung einzufuehren. Gelingt dies auch im zweiten Versuch nicht, faehrt der Kassettentraeger erneut aus und die Maschine verbleibt im Fehlzustand E4.
Massnahme:

Kassette auswerfen (EJECT) und Schlaufe manuell eliminieren:

Mechanische Wickelbremse manuell loesen, indem ein passender Gegenstand durch den Verriegelungsmechanismus gefuehrt und nach unten geschoben wird, Bandwickel drehen, bis Schlaufe eliminiert ist.

- c) als Anzeige der Software-Version bei ausgeschwenktem Kassettentraeger• Darstellung:
- d) als Zaehler von SMPTE-Zeitcode-Fehlern. Darstellung: Anwendung: Siehe Abschnitt "CODE-AUFNAHME-TEST".
- e) als Betriebsmodusanzeige waehrend der SMPTE-Codeaufzeichnung (siehe Kap. 2.2.4). Darstellung:
- CLEAR-Taste
- Loeschen der Bandsektor-Vorwahl.
 (Vorwahltasten |2|3|4|).
 Nur aus STOP-Zustand bedienbar.
- Bei Einsatz im CAMOS-System: Bus-Umschaltung CAMOS-Bus >> REMOTE-Bus und Loeschen der Titel-Start/Endzeit-Eingabe.
- © |2|3|4| Bandsektor-Vorwahltasten

Siehe nebenstehende Skizze der Bandsektor-Konfiguration:

Die Magnetbandlaenge ist in vier Sektoren, zur Aufnahme je eines Titels aufgeteilt. Die einzelnen Sektoren koennen mit der entsprechenden Vorwahltaste [2]3]4], resp. [<] fuer Sektorl, angewaehlt werden. Dabei wird das Magnetband automatisch auf Sektoranfang positioniert (Voraussetzung: Das Magnetband ist mit SMPTE-Zeitcodeaufzeichnung versehen). Erreicht das Band im PLAY, REC oder [>]-Betriebsmodus das Sektorende, resp. den Anfang des nachfolgenden Sektors, bleibt der gewaehlte Modus erhalten; es erfolgt kein automatischer Maschinenstop.[<]-Modus: Band wird auf Sektoranfang positioniert. (Bedienung der Tasten [2]3]4] nur aus STOP-Zustand moeglich).

EJECT-Taste

Die Betaetigung der EJECT-Taste bewirkt das Entstuecken der Kassettenmaschine (Kassetten-Auswurf):

- (STOP-Taste betaetigen).
- EJECT-Taste druecken. Folge: Die Kassette wird auf Mitte Magnetbandbereich (grob-) positioniert, der Kassettentraeger faehrt aus und gibt die Kassette frei (aktivieren des Auswurfmagneten). Die EJECT-Funktion laesst sich nur aus dem STOP-Zustand (Led (J) leuchtet) aktivieren.

© TAPE MOTION CONTROL

Bedienung

- TAPE MOTION-Drehknopf druecken und drehen.
 Drehung im Uhrzeigersinn entspricht der Wiedergaberichtung.
 Waehrend der Drehknopfbedienung erfolgt Audic-Wiedergabe.
 Am Display wird die approximative Bandposition angezeigt (Unterdrueckung der 1/10 Sekunden-Anzeige).
- Mit der Einstellung der Drehknopfbedienung (Lcslassen) schaltet die Maschine kurzzeitig auf PLAY-Modus um den Zeitcode fuer die Echtzeitangabe zu detektieren. Das fuer die Code-Lesephase transportierte Band wird anschliessend durch entsprechend bemessenen Bandrueckzug kompensiert. Die am Display erscheinende Echtzeit entspricht der Bandposition bei Einstellung der Drehknopfbedienung.

🖲 |<| Taste fuer Band-Rueckspulen

Mit der Betaetigung der Taste |<| wird das Magnetband auf den Anfang, entsprechend dem Zeit-code-Anfang zurueckgespult (Display: 0.00.0). Die Bandpositionierung erfolgt, unter Detektion des Zeitcodes, im PLAY-Betrieb. Waehrend des Betriebsmodus |<| zeigt das Display die approximative Bandposition an (keine Echtzeitangabe).

© |>| Taste fuer Band-Vorspulen

Mit der Betaetigung der Taste |>| wird das Magnetband, detektiert durch den optischen Bandendesensor, bis zum transparenten Magnetband-Nachspann vor-, und anschliessend um ca. zwei Wickelumdrehungen (*) in den Magnetbandbereich zurueckgespult.

(*)Die nach abgeschlossenem Vorspulvorgang am Display angezeigte Echtzeitangabe entspricht demzufolge nicht dem exakten Bandende (Zeit-code-Ende).

Waehrend des Betriebsmodus |>| zeigt das Display die approximative Bandposition an (keine Echtzeitangabe).

(H) PLAY-Taste

Die Betaetigung der PLAY-Taste aktiviert die AUDIO-Wiedergabe. Am Display wird die Echtzeit angezeigt.

① STOP-Taste

STOP aus Betriebsmodus PLAY oder REC:
Das Magnetband stoppt mit dem Betaetigen
der STOP-Taste, das Display zeigt die Position des parkierten Magnetbandes in Echtzeit an.

STOP aus Betriebsmodus |<| Rueckspulen oder |>| Vorspulen

Folge: Nach dem Betaetigen der STOP-Taste wird, unter kurzzeitigem (ca.80ms) PLAY-Modus, die Bandposition detektiert (Code lesen), bevor das Magnetband gestoppt wird (STOP-Led leuchtet auf).

Am Display wird die Magnetbandposition in Echtzeit angezeigt.

2.2.3 AUDIO-Aufnahme

Aufnahmewahlschalter (6) REC MODE in Position AUDIO stellen.

- Maschine mit SMPTE-Codeaufzeichnung versehenen Kassette bestuecken und evo gewuenschten Bandsektor anwaehleno (Taste |<| fuer Sektor 1, oder entsprechende Vorwahltasten |2|,|3| oder |4|).

- Aufnahme: Tasten PLAY und REC gleichzeitig druecken.

Ausstieg aus Aufnahmemodus:

- Taste STOP druecken•

oder

- Taste PLAY druecken.

Wirkung: Der Oscillator wird ausgeschaltet.

- Taste STCP druecken.

2.2.4 CODE-Aufnahre

Das zur Code-Aufzeichnung gelangende Magnetband darf keine Modulation aufweisen。 (Loeschung der Code- und Audiospur)*

- Aufnahmewahlschalter (6) REC MODE in Position CODE stellen.
- Maschine mit Kassette bestuecken.
 Folge: Kassette wird auf Mitte Magnetbandbereich positioniert. STOP-Led leuchtet.
- REC-Taste druecken (ohne zusaetzlich, wie bei AUDIO-Aufnahme, die PLAY-Taste zu betaetigen!).
 Folge: Das Magnetband wird auf Bandanfang zurueckgespult.
 Die Aufzeichnung des SMPTE-Zeitcodes erfolgt anschliessend automatisch.

Displaydarstellung:

Bandende:

- Die Kassette wird auf Mitte Magnetbandbereich zurueckgespult.
- Am Display wird die gesamte Spielkapazitaet des Bandes in Echtzeit angezeigt.
 Displaydarstellung (Beispiel):
- Kassetten-Auswurf: EJECT-Taste betaetigen.
- * Hinweis
 Die Zeitcodeaufzeichnung laesst sich auf der
 Kassettenmaschine nicht loeschen.
 Eine Loeschung erfolgt extern der Kassettenmaschine, unter Verwendung einer Entmagnetisierungsdrossel, wobei bemerkt werden muss, dass
 eine etwaige Audioaufzeichnung ebenfalls geloescht wird.

15.30.4 Min. Sek. 1/10 Sek.

2.2.5 SMPTE-Zeitcodetest

- Aufnahme-Wahlschalter REC MODE in Stellung AUDIO bringen.
- Maschine mit Kassette bestuecken.
- Nach Aufleuchten der STOP-Led: Taste |<|
 druecken.
 Folge: Das Band wird auf Zeitcode-Anfang
 positioniert.
- Nach Aufleuchten der STOP-Led: Aufnahmewahlschalter REC MODE in Stellung CODE bringen.
- Taste PLAY betaetigen.
- Beachte Display: Waehrend des Bandlaufs det

Waehrend des Bandlaufs detektierte Fehler der SMPTE-Codeaufzeichnung werden addiert.

1 Fehler = 1 Drop Out >5ms

oder

= 1 unkorrektes Frame (fehlerhaftes SMPTE-Codewort) von 40ms Laenge∘

Beachte: Beim Wechsel des Betriebsmodus von PLAY auf |<| oder |>| wird der Stand der Display-Anzeige geloescht.

Bei STOP bleibt der Zaehlerstand erhalten.

Die Testdauer soll sich ueber die ganze Bandlaenge erstrecken•

Wichtig: Der Test muss abgebrochen werden, bevor der transparente Nachspann den Codekopf erreicht!

Richtlinien fuer die Testauswertung bei einer Bandlaenge von ca.15 Minuten:

Bis 100 eingezaehlte Fehler pro Bandlaenge zeichnen die Code-Aufnahme als brauchbar aus; vorausgesetzt, die Fehler sind einigermassen gleichmaessig auf die gesamte Bandlaenge verteilt. (Einzeln auftretende Frames-Fehler werden beim Codelesen vom Mikroprozessor korrigiert).

2.3 CAD 3010 (PLAY ONLY) BEDIENUNG / ANWENDUNGEN

2.3.1 Bestuecken

 Kassette (mit SMPTE-Zeitcode-Aufzeichnung)
 lagerichtig in Kassettentraeger (9) einfuehren:

Die einseitig der Kassette angebrachte Codierkerbe muss sich links des Kassettentraegers befinden•

Folge: Der Kassettentraeger (9) schwenkt ein, die Kassette wird auf Mitte Magnetbandbereich gespult*,- die STOP-Led (J) leuchtet auf.

* Wird beim Bestuecken der Kassettenmaschine keine Mittenpositionierung (Grobpositionierung) des Magnetbandes gewuenscht, ist waehrend dem Einfuehren der Kassette die STOP-Taste zu druecken, bis am Display (A) der Zeitcode angezeigt wird.

2.3.2 Bedienungselemente

(LOCAL CONTROL UNIT)

(A) DISPLAY

a) als Anzeige der Magnetband-Position.

Echtzeit Darstellung: Die Echtzeitanzeige erfolgt durch SMPTE-Zeitcode-Detektion:

...waehrend des PLAY-Betriebsmodus,

•••nach beendigter Bandsektor-Anwahl (Tasten 2••4, resp. |<|)•

•••nach Beendigung des |<| und |>| -Betriebsmodus•

•••nach betaetigter STOP-Taste•

Approximative Bandposition Darstellung: Die Anzeige wird, (ohne Band-Kopfkontakt) von den Tachogeneratoren der Wickelmotoren abgeleitet und angezeigt:

•••waehrend des |>| -Betriebsmodus,

•••waehrend des |<| -Betriebsmodus•

...waehrend des TAPE MOTION-Betriebsmodus.

- Die Anzeige der 1/10-Sekunden wird unterdrueckt.
- Anzeige-Genauigkeit: ca. +/- 4 Sekunden.
- b) als Fehleranzeige

Darstellung:

Bedeutung:

- E1 SMPTE-Zeitcode defekt.
 (siehe auch Abschnitt "CODE-AUFNAHMETEST").
- E2 Hemmung oder Blockade des Magnetband-Transports.
- E3 In falscher Lage zugefuehrte Kassette. (Codierkerbe seitlich der Kassette muss sich links im Kassettentraeger befinden).
- E4 Magnetband gerissen (registriert durch die Tachosteuerung der Wickelmotoren), oder:

Unkorrekte Bandfuehrung infolge Magnetband-Schlaufenbildung um den Bandende-Sensor, waehrend der Kassettentraeger-Einschwenkbewegung.

Ablauf: Der Kassettentraeger faehrt aus und unternimmt einen zweiten Versuch die Kassette mit korrekter Bandfuehrung einzufuehren. Gelingt dies auch im zweiten Versuch nicht.

faehrt der Kassettentraeger erneut aus und die Maschine verbleibt im Fehlzustand E4. Massnahme

Kassette auswerfen (EJECT) und Schlaufe manuell eliminieren:

Mechanische Wickelbremse manuell loesen, indem ein passender Gegenstand durch den Verriegelungsmechanismus gefuehrt und nach unten geschoben wird, Bandwickel drehen, bis Schlaufe eliminiert ist.

c) als Anzeige der Software-Version bei ausgeschwenktem Kassettentraeger.

Darstellung:

d) als Zaehler von SMPTE-Zeitcode-Fehlern.

Darstellung:
Anwendung: Siehe Abschnitt "CODE - AUFNAHME-TEST".

® CLEAR-Taste

- Loeschen der Bandsektor-Vorwahl
 tasten |2||3||4|. (Nur aus STOP-Zustand bedienbar).
- Bei Einsatz im CAMOS-System: Bus-Umschaltung CAMOS-Bus >> REMOTE-Bus.
 Loeschen der Titel-Start/-Endzeiteingabe.

© [2]3[4] Bandsektor-Vorwahltasten

Siehe nebenstehende Skizze der Bandsektor-Konfiguration:

Die Magnetbandlaenge ist in vier Sektoren, zur Aufnahme je eines Titels aufgeteilt. Die einzelnen Sektoren koennen mit der entsprechenden Vorwahltaste |2|3|4|, resp. |<| fuer Sektorl, angewaehlt werden. Dabei wird das Magnetband automatisch auf Sektoranfang positioniert (Voraussetzung: Das Magnetband ist mit SMPTE-Zeitcodeaufzeichnung versehen). Erreicht das Band im PLAY, oder |>|-Betriebsmodus das Sektorende, resp. den Anfang des nachfolgenden Sektors, bleibt der gewaehlte Modus erhalten; es erfolgt kein automatischer Maschinenstop. |<|-Modus: Band wird auf Sektoranfang positioniert. (Bedienung der Tasten |2|3|4| nur aus STOP-Zustand moeglich).

© EJECT-Taste

Die Betaetigung der EJECT-Taste bewirkt das Entstuecken der Kassettenmaschine (Kassetten-Auswurf):

- (STOP-Taste betaetigen).EJECT-Taste druecken.
- Folge: Die Kassette wird auf Mitte Magnetbandbereich (grob-) positioniert, der Kassettentraeger faehrt aus und gibt die Kassette frei (aktivieren des Auswurfmagneten).

Die EJECT-Funktion laesst sich nur aus dem STOP-Zustand (Led (J) leuchtet) aktivieren.

E TAPE MOTION CONTROL

Bedienung

TAPE MOTION-Drehknopf druecken und drehen.
Drehung im Uhrzeigersinn entspricht der Wiedergaberichtung.
Waehrend der Drehknopfbedienung erfolgt Audic-Wiedergabe.
Am Display wird die approximative Bandposition angezeigt (Unterdrueckung der 1/10 Sekunden-Anzeige).

- Mit der Einstellung der Drehknopfbedienung (Loslassen) schaltet die Maschine kurzzeitig auf PLAY-Modus um den Zeitcode fuer die Echtzeitangabe zu detektieren. Das fuer die Code-Lesephase transportierte Band wird anschliessend durch entsprechend bemessenen Bandrueckzug kompensiert. Die am Display erscheinende Echtzeit entspricht der Bandposition bei Einstellung der Drehknopfbedienung.

F | < | Taste fuer Band-Rueckspulen

Mit der Betaetigung der Taste |<| wird das Magnetband auf den Anfang, entsprechend dem Zeitcode-Anfang zurueckgespult (Display: 0.00.0). Die Bandpositionierung erfolgt, unter Detektion des Zeitcodes, im PLAY-Betrieb. Waehrend des Betriebsmodus |<| zeigt das Display die approximative Bandposition an (keine Echtzeitangabe).

⑥ |>| Taste fuer Band-Vorspulen

Mit der Betaetigung der Taste |>| wird das Magnetband, detektiert durch den optischen Bandendesensor, bis zum transparenten Magnetband-Nachspann vor-, und anschliessend um ca. zwei Wickelumdrehungen (*) in den Magnetbandbereich zurueckgespult.

(*)Die nach abgeschlossenem Vorspulvorgang am Display angezeigte Echtzeitangabe entspricht demzufolge nicht dem exakten Bandende (Zeit-code-Ende).

Waehrend des Betriebsmodus |>| zeigt das Display die approximative Bandposition an (keine Echtzeitangabe).

(H) PLAY-Taste

Die Betaetigung der PLAY-Taste aktiviert die AUDIO-Wiedergabe. Am Display wird die Echtzeit angezeigt.

① STOP-Taste

STOP aus Betriebsmodus PLAY
Das Magnetband stoppt mit dem Betaetigen
der STOP-Taste, das Display zeigt die Position des parkierten Magnetbandes in Echtzeit an.

2.3.3 SMPTE-Zeitcodetest

- Maschine mit Kassette bestuecken.
 (Kassette wird auf Mitte Magnetbandbereich positioniert, die STOP-Led leuchtet auf).
- Taste |<| betaetigen: Das Magnetband wird auf Code-Anfang positioniert, die STDP-Led leuchtet auf.
- Steckerprint zu LOCAL CONTROL-Frontstecker (LOCAL CTRL CONNECTION PCB 1.830.331): Litzenbruecke (P7-P8) auftrennen.
- Taste PLAY betaetigen.

Beachte Display:

Waehrend des Bandlaufs detektierte Fehler der SMPTE-Codeaufzeichnung werden addiert•

1 Fehler = 1 Drop Out >5ms

oder

= 1 unkorrektes Frame (fehlerhaftes SMPTE-Codewort) von 40ms Laenge.

Beachte: Beim Wechsel des Betriebsmodus von PLAY auf |<| oder |>| wird der Stand der Display-Anzeige geloescht. Bei STOP bleibt der Zaehlerstand erhalten.

Die Testdauer soll sich ueber die ganze Bandlaenge erstrecken.

Wichtig: Der Test muss abgebrochen werden, bevor der transparente Nachspann den Codekopf erreicht!

Richtlinien fuer die Testauswertung bei einer Bandlaenge von ca. 15 Minuten:

Bis 100 eingezaehlte Fehler pro Bandlaenge zeichnen die Code-Aufnahme als brauchbar aus; vorausgesetzt, die Fehler sind einigermassen gleichmaessig auf die gesamte Bandlaenge verteilt. (Einzeln auftretende Frames-Fehler werden beim Codelesen vom Mikroprozessor korrigiert).

Nach Testabschluss:

- Litzenbruecke (P7-P8) schliessen.

2.4 FERNBEDIENUNG MIT TERMINAL ODER RECHNER

Ueber die serielle Schnittstelle RS 232C (Anschlussbuchse (2) REMOTE CONTROL) besteht die Moeglichkeit Kassettenmaschinen des Typs CAD unter Verwendung eines Terminals oder Rechners zu bedienen•

2.4.1 Serielle Schnittstelle RS 232C

Spezifikationen:

2400 Baud Odd Parity Half Duplex 7 Data-, 2 Stop Bit

Anschlussbelegung: Siehe nebenstehende Skizze:

Die MODEM – Funktion ist der Kassettenmaschine zugeordnet.

2.4.2 Vorbereitungen

Print "INTERFACE 2" 1.830.485:

- a) Bruecke MP1 und MP2 auftrennen.
- b) IC4 (DC-Converter) bestuecken.
- c) Jumper JS1 auf Stellung R setzen.
- d) Adresse der Kassettenmäschine bestimmen: Es stehen Adress-Kombinationen zweier hexadezimaler Stellen (SZ1 und SZ2) zur Verfuegung.

2.4.3 Bedienungs-Hinweise (LOCAL CONTROL UNIT)

Bei Anschluss der LOCAL CONTROL- Bedienungseinheit (10):

DISPLAY

Beim Betrieb der Kassettenmaschine ueber die serielle Schnittstelle muessen, um Interpretationsfehler der Displayanzeige auszuschliessen, die beiden Begriffe "Absolute Bandposition" und "Restlaufzeit" wie folgt differenziert wer-

Absolute Bandposition der Gesamtbandlaenge in Approximativ-Anzeige *

Die Anzeige der 1/10 Sekunden wird unterdrueckt•

in Echtzeit-Anzeige **
 Die Bandposition wird mit 1/10 Sekunden-Genauigkeit angezeigt.

Restlaufzeit innerhalb Start-/Endzeitmarke Anzeigemode:

"Count Down" (|>|, PLAY, TAPE MOTION CONTROL)
"Count Up" (|<|, TAPE MOTION CONTROL)

in Approximativ-Anzeige *
 Die Anzeige der 1/10 Sekunden wird unter drueckt•

in Echtzeit-Anzeige **
 Die Bandposition wird mit 1/10 Sekunden-Ge nauigkeit angezeigt.

* Wird von den Tachogeneratoren der Wickelmotoren abgeleitet (ohne Band-Kopfkontakt)

** Wird durch Detektion des SMPTE-Zeitcodes ermittelt (mit Band-Kopfkontakt).

INTERFACE 2 1.830.485

DISPLAY-Anzeige:

- Waehrend des PLAY- und REC- Betriebsmodus wird die Bandposition im "Count Down" als Titel-Restlaufzeit, in Echtzeit angezeigt.
- Waehrend des |>| und |<|- Betriebsmodus wird die Bandposition im "Count Down", bzwo "Count Up" in approximativer Restlaufzeit angezeigto
- Auf Start- und Endzeitmarke positionertes Band wird am Display in Echtzeit der absoluten Bandposition angezeigt.

TAPE MOTION CONTROL

Ermoeglicht das ranchieren des Bandes mit Audio-Wiedergabe:

•••innerhalb der gesetzten Start-/Endezeitmarke•

Display-Anzeige: Approximative Restlaufzeit, je nach Drehrichtung, im "Count Down"- bzw. "Count Up"- Modus.

Nach dem Loslassen des Drehknopfes wird, nach einer kurzen Code-Lesephase, die Titel-Restlaufzeit in Echtzeit angezeigt.

•••ueber die Startzeitmarke hinaus•
Display-Anzeige: Approximative Anzeige der
absoluten Bandposition•
Loslassen des Drehknopfes hat die Bandpositionierung auf die Startzeitmarke zur Folge•
Display-Anzeige: Echtzeit der absoluten
Bandposition•

•••ueber die Endzeitmarke hinaus• Display-Anzeige: Approximative Anzeige der absoluten Bandposition• Loslassen des Drehknopfes hat die Bandpositionierung auf die Endzeitmarke zur Folge• Display-Anzeige: Echtzeit der absoluten Bandposition•

Terminal -> CAD

2.4.4 Anwendungen

l. Befehle

Befehle	Bedeutung	Wirkung
:0XX_00 CR	EJECT	Kassette auswerfen
:0XX_10 CR	CLEAR	Loeschen: Titel-Start/ Endzeit oder Bandsektor
:0XX_20 CR	SEKTOR 2	KMx abspielbereit von Sektor 2.
:0XX_30 CR	SEKTOR 3	
:0XX_40 CR	SEKTOR 4	
:0XX_50 CR	CODE MODE	
:0XX_60 CR	REC/PLAY	
:0XX_70 CR	> F.FORWD	
:0XX_80 CR	< REWIND	Band rueckspulen
:0XX_90 CR	CMBUS ≉	Umschaltung REMOTE-Bus >> CAMOS-Bus
:OXX_AO CR	PLAY	Wiedergabemodus
:0XX_CO CR	STOP	Stoppen
:OXX_FO CR	REMOTE *	Umschaltung CAMOS-Bus >> REMOTE-Bus

* Verwendung nur im Einsatz mit CAMOS-System.

Beispiel: Befehl Antwort

Bandstop an KM4 :004_C0 CR

2. Statusmeldungen

CAD -> Terminal

ASCII-S	tatus		
0	EJECT (Kassettentraeger ohne Kas- sette in Position AUS)	Status-Abfrageformat: :OXX CR	
1	Zeitcode geloescht mit Start- und Endzeit (Display-Anzeige: El)		- Carriage Return - Adresse der KM (00FF)
2	Kassette blockiert (Display-An- zeige: E2):		,
3	Kassette in falscher Lage. (Display-Anzeige: E3)		
4	Bandriss (Display-Anzeige: E4)		
5	Zeitcode geloescht ohne Start- und Endzeit (Display-Anzeige El)		
6	· · · · · · · · · · · · · · · ·		
7	REC CODE		
8	BUSY (Maschine in Positionierungsphase)		
9	Kassettentraeger, mit Kassette, in ausgeschwenkter Stellung.		
A	PLAY oder REC AUDIO		
В	> F.FORWD		
С	STOP		
D	REC / PLAY - Bereitschaft (Band positioniert auf Titelanfang)	Beispiel: Abfrage	Statusabfrage der KM2 :002 CR
E	Zeitdifferenz vor Titelende (5sec)	Antwort Quittungszeichen	A (=Betriebsmodus PLAY) >

Beispiel:	Statusabfrage der KM2
Abfrage	:002 CR

3. Eingabe der Titel-Endzeit und -Startzeit

| < | REWIND

Anwendung Die Bedienung der Kassettenmaschine ueber die serielle Schnittstelle ermoeglicht beliebige Titel-Start und -Endzeiten zu waehlen.

Die Eingabe der End- und Startzeit erfordert 12 Befehle. Zuerst ist die Endzeitmarke einzugeben:

	Befehle		Bedeutung			
Endzeit	:OXX_EO	CR	ΕO	=	ENDZEIT	
	:0XX_Y1	CR	Υ1	=	Minuten	(Zehner)
	:OXX_Y2	CR	Y 2	=	Minuten	(Einer)
	:0XX_Y3	CR	Υ3	=	Sekunden	(Zehner)
	:0XX_Y4	CR	Y4	=	Sekunden	(Einer)
	:0XX_Y5	CR	Y5	=	Sekunden	(1/10)
Startzeit	:0XX_B0	CR	во	=	STARTZEII	r
	:OXX_Z1	CR	Z 1	=	Minuten	(Zehner)
	:0XX_Z2	CR	Z 2	=	Minuten	(Einer)
	:0XX_Z3	CR	Ζ3	=	Sekunden	(Zehner)
	:0XX_Z4	CR	Z4	=	Sekunden	(Einer)
	:OXX_Z5	CR	Z 5	=	Sekunden	(1/10)

```
Beispiel:
            Endzeit
                         10'46"8
            Startzeit
                         09 35 7
                         KM1
            Maschine
                                        10 9 46 9 8
Befehl 1
            :001_E0 CR
                              Endzeit
Antwort
                 1
Befehl 2
            :001_11 CR
Antwort
Befehl 3
            :001_02 CR
Antwort
            :001_43 CR
Befehl 4
Antwort
Befehl 5
            :001_64 CR
Antwort
            :001_85 CR
Befehl 6
Antwort
                              Startzeit 09°35"7
            :001_B0 CR
Befehl 7
Antwort
            :001_01 CR
Befehl 8
Antwort
Befehl 9
            :001_92 CR
Antwort
Befehl 10
            :001_33 CR
Antwort
Befehl 11
            :001_54 CR
Antwort
Befehl 12
            :001_75 CR
Antwort
```

4. Zeitabfrage

Durch den Befehl wird der Kassettenmaschine KM mitgeteilt, welche Ziffer gewuenscht wird. Auf diesen Befehl antwortet die KM nur mit dem Quittungszeichen ">".

Die Ziffer wird von der KM erst nach einem weiteren Befehl (Statusabfrage)* gesendet.

	Befehle	Bedeutung	
Zeitabfrage *	:OXX_Z1 CR :OXX CR	Minuten	(Zehner)
Zeitabfrage *	:OXX_Z2 CR :OXX CR	Minuten	(Einer)
Zeitabfrage *	:OXX_Z3 CR :OXX CR	Sekunden	(Zehner)
Zeitabfrage *	:OXX_Z4 CR :OXX CR	Sekunden	(Einer)
Zeitabfrage *	:OXX_Z5 CR :OXX CR	Sekunden	(1/10)
Abschluss	:OXX_Z3 CR		

3	AUDIC-EINSTELLUNGEN		
3.1	VOR AUS SET ZUNGEN	3/	3
3.1.1	Einstellungs-Grundlagen	3/	
3.1.2	Messgeraete und Hilfsmittel	3/	
3.1.3	Anschluesse	3/	5
3.1.4	Vorbereitungen	3/	5
3 • 2	WIEDERGABETEIL #	3/	6
3.2.1	wiedergabepegel "	3/	
3.2.2	wiedergabekopf-Spaltneigung	3/	
3.2.3	wiedergabe-Frequenzgang	3/	7
3 • 3	CODE-WIEDERGABETEIL	3/	8
3.3.1	Kombikopf-Spaltneigung	3/	
3.3.2	Code-Lesepegel (Kontrolle)	3/	8
3 • 4	AUFNAHMETEIL	3/	Ç
3.4.1	Voraussetzungen	3/	
3.4.2	Kontrolle der Oszillatorfrequenz	3/	
3.4.3	Vormagnetisierung	3/	
3.4.4	Ausgangspegel	3/	
3.4.5	Aufnahmekopf-Spaltneigung	3/	
3.4.6	Frequenzgang	3/	
3.4.7	Uebersprech-Kompensation	3/	1 2
3.5	CODE-AUFNAHMETEIL	3/	13
3.5.1	Code-Aufnahmepegel	3/	13

3.1 VORAUSSETZUNGEN

- a) Die Laufwerkmechanik muss nach Kapitel 4 "MECHANISCHE EINSTELLUNGEN" justiert sein.
- b) Die elektrischen Einstellungen des Laufwerkes muessen nach Kapitel 5 "ELEKTRISCHE EINSTELLUNGEN" abgeschlossen sein.
- c) Alle Bandfuehrungselemente, insbesondere aber die Kopfspiegel von Kombikopf und Tonkoepfen muessen einer gruendlichen Reinigung unterzogen werden.

 Vorsicht: Zur Reinigung kein aggressives Loesungsmittel verwenden!

 Spiritus, oder die spezielle Reinigungsfluessigkeit aus dem REVOX-Reinigungs-Set (Best.Nr.39000), eignen sich fuer die Kopftraegerpflege. Anschliessend mit fuselfreiem Lappen nachtrocknen.

 Achtung: Bei der Reinigung der Capstanachse darf keine Reinigungsfluessigkeit in das Lager gelangen!
- d) Die werkseitig ausgefuehrte Hoeheneinstellung der Bandfuehrung (1), des Kombikopfes (3) und der Tonkoepfe (5) muss unveraendert erhalten sein.

Kontrolle

Der Kontrollvorgang mit der Kopftraegerlehre (8) erfolgt mit Vorteil mit Blickrichtung gegen eine blendfreie, difuse Lichtquelle (z.B. Gluehlampe hinter Mattglas).

- Maschine ausschalten, Kopftraeger ausbauen.
- Kopftraeger mit Raendelschrauben (9) von unten in Einstell-Lehre (8) einbauen. (Auf saubere Montageflaechen achten).

Tonkoepfe (5)

Haarwinkel (7) genau in Flucht zum Tonkopf, in Mitte dessen Kopfspiegels sorgfaeltig ansetzen.

Die erforderliche Winkligkeit ist gewaehrleistet, wenn zwischen Winkelscheitel und Kopfspiegel ein minimalster, paralleler Lichtspalt sichtbar ist.

Die korrekte Hoehenposition des Tonkopfes bildet die gleichmaessige Verteilung der Ueberstaende (x) des Winkelscheitels ueber den Anfraesungen (6) im Kopfspiegel.

Kombikopf(3)

- Winkligkeit: sinngemaess gleicher Kontrollvorgang wie beim Tonkopf.
- Hoehenposition: gleichmaessig verteilter Ueberstand der beiden Loeschkopfpartien (4) zum Winkelscheitel.

Bandfuehrungsbolzen (2)

- Genaue Einmittung der Bandfuehrungen (1) zu den Flanken des Haarwinkels•

Hinweis

 Einstellung der Kopfspiegel (Tangential-Einstellung): Siehe Kapitel 4 "MECHANISCHE EINSTELLUNGEN", unter Abschnitt 4.1.

10

Korrekturen

Vorsicht:

Eine Korrektur der Taumelplatte (Stuetzschrauben 10) darf nur bei einer offensichtlichen Veraenderung der werkseitig ausgefuehrten Grundeinstellung erfolgen. (Die Grundeinstellung wurde werkseitig durch Schrauben-Sicherungslack fixiert).

Kopf-Hoehenposition: Paralleles Verstellen beider Stuetzschrauben (10), unter Verwendung des Spezialschraubendrehers STI-Nr·1·337·944·00·Beachte: Mit dem Verstellen der Stuetzschrauben (10) veraendert sich die seitliche Neigung des Ton-, resp. Kombikopfes (Azimuth-Einstellung). Ein Korrekturvorgang muss deshalb in kleinen Verstellschritten, mit Zwischenkontrollen auf allseitige Winkligkeit und korrekte Hoehenpositionierung ausgefuehrt werden.

e) Bandfuehrungselemente und Tonkoepfe muessen entmagnetisiert werden:

Nach laengerer Betriebsdauer bauen sich in metallischen (ferromagnetischen) Bandfuehrungselementen, Ton- und Kombikopf-Werkstoffen magnetische Gleichfelder auf.

Diese Remanenzen von Magnetismus muessen vor Einstellungen am Audioteil, unter Verwendung einer Entmagnetisierungsdrossel, eliminiert werden. Letztere erzeugt ein starkes magnetisches Wechselfeld und bewirkt ein Neutralisieren magnetisch polarisierter Teile.

Zur Beachtung

- Bespielte Magnetbaender, insbesondere Bezugsbaender sind vor dem Einschalten der Entmagnetisierungsdrossel ausser Reichweite zu bringen (Das magnetische Wirkungsfeld der Drossel kann Bandaufzeichnungen in der Qualitaet beeintraechtigen oder gar zerstoeren).
- Die eingeschaltete Drossel darf nicht an Messinstrumente angenaehert werden.
- Betriebsvorschrift der Entmagnetisierungsdrossel beachten: Diese Geraete sind nur fuer kurze Betriebszeiten ausgelegt.

Anwendung

- Maschine ausschalten, Kopftraeger ausbauen.
- Sonde der eingeschalteten Drossel dem zu entmagnetisierenden Teil naehern, langsam darueber hinwegstreichen und anschliessend bis auf mindestens 50cm Distanz vom Objekt entfernen, - Drossel ausschalten, resp. deren Netzstecker ziehen (In der Regel genuegt das Annaehern der Sonde bis auf 3...5 Millimeter Distanz an das zu entmagnetisierende Teil).

3.1.1 Einstellungs-Grundlagen

- Entzerrungs-Zeitkonstante: CCIR 90/3180us
- Leitungspegel:

+6dBm = 1,55Veff

- Magnetisierung:

250nWb/m :

600 Ohm

Vollaussteuerung (Beachte auch separates Pruefprotokoll).

- Abschlusswiderstand fuer alle Messungen:

ENTMAGNETISIERUNGSDROSSEL STI-NR.10.042.002.01

VORSICHT

Netzschalter ausschalten:

•••beim Ein- und Ausstecken von Prints•

•••bei der Montage und Demontage des Kopftraegers (Vermeidung einer Tonkopf-Magnetisieruna).

Hinweis:

Einstellungen am Wiedergabeteil sind bei den Maschinentypen CAD 3010 (Nurwiedergabe) und CAD 3011 (Aufnahme/Wiedergabe) identisch.

3.1.2 Messgeraete und Hilfsmittel

Tonfrequenz-Millivoltmeter

Tonfrequenz-Generator

Cszilloskop

(STI-Nr.10.010.201.01) Phasenmessgeraet oder

2-Kanal-Oszilloskop

Digital-Frequenzzaehler

Nr.1.228.324-00 Verlaengerungsprint

Bezugsband-Kassette 3 3/4ips

(STI-Nr.10.010.001.26)

A-Leitung

B-Leitung

Kassette mit SMPTE Zeitcode-Aufzeichnung

Unbespielte, neuwertige Kassette

3.1.3 Anschluesse

Die AUDIO-Anschluesse sind symmetrisch ausgelegt und wahlweise* auf XLR- und Delta(D)-Mehrfachsteckbuchsen gefuehrt.

Gleichzeitig darf nur eine der beiden Anschlussarten verwendet werden!

XLR-Steckbuchsen

AUDIO-Erde Nr. 1 A-Leitung Nr. 2

(heiss)

(Nullleiter) B-Leitung Nr. 3

D-Mehrfachsteckbuchse

Pin 1] Pin 2] OUTPUT SMPTE-CODE

Pin 7 INPUT A-Leitung (heiss) Pin 7 } Pin 8 } B-Leitung CH1

Pin12 } Pin13 } OUTPUT A-Leitung (heiss) B-Leitung CH1

Pin 5 AUDIO-Pin10 Pin20 ERDE Pin25

INPUT A-Leitung (heiss) Pin17 B-Leitung Pin18 CH2

A-Leitung (heiss) OUTPUT Pin22 Pin23 CH2 B-Leitung

3.1.4 Vorbereitungen

Netzspannung anschliessen.

Audio-Anschluesse mit Messgeraeten verbinden (Abschlusswiderstand: 600 Ohm).

XLR	D		
CAD 3011			
CAD 3010			
CH1 OUTPUT CH2 CH1 INPUT CH2	AUDIO S		
J25 J26 P27 P28			
2 2 1			
13 12 10 8 7 5	2 1		
25 23 22 20 18 17			

Lokal-Bedienungseinheit (LOCAL CONTROL) anschliessen.

3.2 WIEDERGABETEIL

Tonfrequenz-Millivoltmeter Messgeraete Phasenmessgeraet 2-Kanal-Oszilloskop. Hilfsmittel Bezugsband-Kassette Sechskant-Steckschluessel SW 5,5 Werkzeuge Schraubenzieher Nr.2 OUTPUT Messpunkte D-Buchse Pin 25 AUDIO-Erde Pin 12 CHANNEL 1 Pin 13 Pin 22

> Pin 23 Pin 10 AUDIO-Erde OUTPUT CH1 / CH2 XLR-Buchse

AUDIO-Erde Nr.1 Nr.2 A -Leitung

> Nr.3 B -Leitung

CHANNEL 2

Regler Steckkarte "REPRODUCE AMPL." 1.830.465

Potentiometer

(CH1 und CH2) CROSS TALK R54 BASS **R55** R 56 TREBLE R57 LEVEL

3.2.1 Wiedergabe-Pegel

Vorbereitung

Steckkarte "INTERFACE 1" 1.830.480: Potentiometer R24 im Gegenuhrzeigersinn auf Anschlag drehen. (Grund: Lichtschranke wuerde, infolge Eisensuspersionsschicht der Bezugbandkassette, die Annahme der Kassette verweigern).

Einstellung an Kanal CH1 und CH2.

Potentiometer R54, R55, R56, und R57 im Ge-

genuhrzeigersinn auf Anschlag drehen. Voltmeter an OUTPUT CH1, resp.CH2 anschliessen.

Maschine mit Bezugsbandkassette bestuecken. Vorsicht: Der Bandendesensor ist, durch obige Vorbereitungsmassnahme, ausser Betrieb; die Bandpositionierung auf Bandanfang muss manuell (STOP-Taste) erfolgen.

Bezugsband auf Modulationsanfang (Pegeltonteil, 315Hz) vorspulen und im PLAY-Modus starten.

Vorsicht bei Aufnahme/Wiedergabe-Maschine des Typs CAD 3011:

Aufnahmemodus PLAY/REC nicht aktivieren! (Loeschung des Bezugsbandes).

Sicherheitsmassnahme: Oszillator-Print aus Rack ziehen.

Potentiometer R57 LEVEL auf einen Ausgangspegel am Millivoltmeter von 1,55V einstellen (+6dBm / 600 Ohm).

REPRODUCE AMPLIFIER 1.830.465

INTERFACE 1 1.830.480

3.2.2 Wiedergabekopf-Spaltneigung

Einstellung an Stellschraube (1) zu Wiedergabekopf-Taumelplatte。

- Hoehenregler R56 TREBLE in Mitte Einstellbereich drehen.
- Bezugsband im 10kHz-Teil (Bezugspegel-15dB) starten und durch entsprechende Drehung der Stellschraube (1) die Stellung ermitteln, in der das Voltmeter maximalen Ausschlag anzeigt.

Kontrolle auf minimale Phasendifferenz (=Feinkorrektur der Spaltneigung)

- Phasenmessgeraet (oder 2-Kanal-Oszilloskop) an OUTPUT CH1 und CH2 anschliessen.
- Bezugsband im 10kHz-Teil (Bezugspegel-15dB) starten (PLAY): Stellschraube (1) auf minimalste Phasendifferenz zwischen CHl und CH2 justieren.

Stellschräube (1) durch Auftragen von Sicherungslack fixieren•

3.2.3 Wiedergabe-Frequenzgang

Einstellung an Kanal CH1 und CH2

- Voltmeter an OUTPUT CH1, resp_•CH2 anschliessen_•
- Bezugsband im Frequenzgangteil (Bezugspegel -20dB) starten.
- Durch Justierung der Potentiometer R55 BASS Frequenzgang optimieren (60Hz):

30Hz • 60Hz: +/-2dB 60Hz • 315Hz: +/-1dB

 Durch Justierung der Potentiometer R56 TREB-LE Frequenzgang optimieren (10kHz):

315Hz • • 12kHz: +/-1dB 12kHz • • 18kHz: +/-2dB

Nachkontrolle des Wiedergabepegels

- Bezugsband auf Pegeltonteil (Bezugspegel 25Cnwb/m|315Hz) vorspulen, starten (PLAY) und Ausgangspegel auf das Soll von 1,55V = +6dBm/600 Ohm kontrollieren.

Korrektur

Entsprechendes Potentiometer R57 LEVEL bis zum Erreichen des Soll-Ausgangspegels nachfuehren•

Abschlussarbeit:

Bandendesensor nach Kapitel 5.2 "ELEK-TRISCHE EINSTELLUNGEN (LAUFWERK)" justieren.

REPRODUCE AMPLIFIER 1.830.465

3.3 CCDE-WIEDERGABETEIL

Tonfrequenz-Millivoltmeter Messgeraete

Oszilloskop

Hilfsmittel Bezugsbandkassette

Messpunkte Steckkarte

"CODE AMPLIFIER" 1.830.467

TP1(+) TP2(U)
SMPTE CODE - OUTPUT Testpunkte D-Buchse

Pin2(B) Pinl(A)

3.3.1 Kombikopf-Spaltneigung

- Steckkarte CODE AMPLIFIER:
- Voltmeter an TP1(+) und TP2(0) anschliessen. Maschine mit Bezugsband-Kassette bestuecken.
- Bezugsband im 2kHz-Frequenzgangteil starten: An Stellschraube (1) Stellung ermitteln, in der das Voltmeter maximalen Ausschlag anzeigt.
- Stellschraube (1) durch Auftragen von Sicherungslack fixieren.

3.3.2 Code-Lesepegel

Kontrolle 1

Oszilloskop an Testpunkte TP1(+) und TP2(0) anschliessen.

Bezugsband im 2kHz-Frequenzgangteil (-20dB) starten:

Die vom Oszilloskop angezeigte Sinusspannung muss >150mVpp(53mVeff) sein.

Kontrolle 2

- Cszilloskop an CODE OUTPUT (D-Buchse, Pin 1 und 2) anschliessen.
- Bezugsband auf Pegeltonteil (OdB/315Hz) vorspulen und starten (PLAY): Die vom Oszilloskop aufgezeigte Rechteck-
- spannung muss 4Vpp, +/-0,5V betragen. Maschine stoppen und Bezugsband auswerfen. Kontrolle 3

Qualitaetskontrolle einer Code-Aufnahme:

Siehe Kapitel BEDIENUNG

fuer "CAD 3011" Abschnitt 2.2.5

bzw.

fuer "CAD 3010" Abschnitt 2.3.3

3.4.1 Vorausseztungen

- Die Einstellungen des Wiedergabeteils wurden nach Kapitel 3.2 abgeschlossen.
- Der Aufnahme-Vorwahlschalter REC MODE muss in Stellung AUDIO positioniert sein. Korrekte Frequenz des Oszillators

Kapitel 3.4.2

Korrekte Jumperstellung auf Steckkarte REC-AMPLIFIER 1.830.460. Kapitel 3.4.4 .21

3.4.2 Kontrolle der Oszillatorfrequenz

Messgeraet Digitalzaehler

1.288.324 Hilfsmittel Verlaengerungsprint Unbespielte, neuwertige Kassette

"OSCILLATOR" Messpunkte Steckkarte

1.167.712

Testpunkte TP1/TP2

Regler Regelstift Transformator Τ1

Voraussetzung

- Jumperstellung HF BIAS: Position 4
- Steckerstellung HF ERASE:
- Schwarze Litze auf Position 3 stecken.
- Steckkarte "RECORD AMPLIFIER" 1.830.460 Potentiometer R49 BIAS: auf Mitte Regelbereich stellen (vermeidet Verwerfung der Oszillatorfrequenz).

Kontrolle

- Frequenzzaehler an Testpunkte TP1(0.0V) und TP2(150kHz) anschliessen.
- Maschine mit unbespielter Kassette bestuek-
- Maschine im Aufnahmemodus (REC/PLAY) starten.
- Kontrolle: Sollfrequenz = 150kHz+/-3kHz

Korrektur

- Maschine ausschalten.
- Oszillator-Karte aus Rack ziehen, mit Verlaengerungsprint bestuecken und wieder in Rack einschieben.
- Frequenzzaehler an TP1 und TP2 anschliessen.
- Maschine im Aufnahmemodus (REC/PLAY) starten.
- Oszillatorfrequenz an Regelstift Tl auf das Soll abgleichen.

Kontrolle der Sollfrequenz ohne (!) Zwischenschaltung des Verlaengerungsprints• Korrektur nach Bedarf, wie oben beschrieben.

Fixieren der Regelstift-Stellung durch Auftrag von Wachs.

3.4.3 Vormagnetisierung

- INPUT CH1, resp. CH2 mit einer Frequenz von 10kHz und Pegel -30dB speisen.
- Millivoltmeter an OUTPUT CH1, resp. CH2 anschliessen.
- Potentiometer R48 PREADJ. im Gegenuhrzeiger-
- sinn auf Anschlag drehen. Potentiometer R51 LEVEL und R50 TREBLE in Mitte Einstellbereich drehen.
- Jumper JS1 auf Position NORM setzen.
- Potentiometer R49 BIAS im Gegenuhrzeigersinn auf Anschlag drehen.
- Maschine im Aufnahmemodus REC/PLAY starten.
- Potentiometer R49 BIAS 1-a-n-g-s-a-m im Uhrzeigersinn drehen, bis das Millivoltmeter maximalen Ausschlag anzeigt (= Empfindlichkeitsmaximum), - Anzeigewert notieren.
- Potentiometer R49 BIAS im gleichen Drehsinn weiterdrehen, bis die Ausgangsspannung auf eine Differenz (∆U) von 4,5dB zum notierten Maximalwert abgesunken ist. Diese Angabe gilt fuer das verwendete Band BASE CHRCM.

Kontrolle der Oszillatorfrequenz nach Abschnitt 3.4.2.

3.4.4 Ausgangspegel

- Einstellung an Kanal CH1 und CH2.

 Steckkarte RECORD AMPLIFIER 1.830.460:
- Jumper JS1 in Position NORM setzen•
- Potentiometer R51 LEVEL auf Mitte Einstellbereich stellen.
- Tonfrequenz-Generator an INPUT CH1, resp. CH2 anschliessen.
- Millivoltmeter an OUTPUT CH1, resp. CH2 anschliessen
- Maschine mit neuwertiger, unbespielter Kassette bestuecken und im Aufnahmemodus REC / PLAY starten.
- Mit Tonfrequenz-Generator eine Frequenz von 315Hz mit Pegel 1,55V (+6dB) einspeisen.
- Potentiometer R48 PREADJ so einstellen, dass das Voltmeter einen Ausgang von 1,55V (+6dB/ 600 Ohm) anzeigt.

Messaufbau fuer nachfolgende Einstellung belassen.

3.4.5 Aufnahmekopf-Spaltneigung

- Tonfrequenz-Generator auf 10kHz schalten. Pegel um -20dB (0,155V) reduzieren.
- An Stellschraube (1) fuer die Aufnahmekopf-Azimutheinstellung die Stellung ermitteln, in der das Voltmeter maximalen Ausschlag anzeigt.

Kontrolle auf minimale Phasendifferenz (Feinkorrektur der Spaltneigung):

- Phasenmessgeraet (oder 2-Kanal-Oszilloskop) an OUTPUT CH1 und CH2 anschliessen.
- INPUT CH1 und CH2 mit einer Frequenz von 10kHz und Pegel 0,155V speisen.
- Maschine im Aufnahmemodus REC/PLAY starten: Stellschraube (1) auf minimalste Phasendifferenz zwischen CHl und CH2 justieren. Soll: < 35 Grad.

Stellschraube (1) durch Auftragen von Sicherungslack fixieren.

RECORD AMPLIFIER 1.830.460

3.4.6 Frequenzgang

Einstellung an Kanal CH1 und CH2.

- Generatorpegel auf Operationspegel (0,155V) schalten und in INPUT CH1, resp. CH2 einspeisen.
- Millivoltmeter an OUTPUT CH1, resp. CH2 anschliessen.
- Maschine im Aufnahmemodus REC/PLAY starten.
- Mit den Reglern R50 TREBLE (Steckkarte RE-CORD AMPLIFIER) und R55 BASS (Steckkarte RE-PRODUCE AMPLIFIER) Frequenzgang optimieren. Toleranzen: 60Hz.ol2kHz: +/-1dB 30Hz.ol8kHz: +/-2dB

Ausgangspegel nach Abschnitt 3.4.4 kontrollieren und bei Bedarf nachjustieren.

3.4.7 Uebersprech-Kompensation

- Tonfrequenz-Generator an INPUT CH1 anschliessen.
- Millivoltmeter an OUTPUT CH2 anschliessen.
- Maschine mit neuwertiger, unbespielter Kassette bestuecken und im Aufnahmemodus REC / PLAY starten.
- INPUT CH1 mit einer Frequenz von 3kHz und Pegel 1,55V (+6dBm) speisen.
- Potentiometer R54 CRDSS TALK (Steckkarte RE-PRCDUCE AMPLIFIER), Kanal CH1 auf minimales Uebersprechen einstellen: Die minimale Uebersprechdaempfung muss groesser als 45dB sein.

Gleichen Messvorgang, mit vertauschter Messanordnung, an Kanal CH1 ausfuehren.

REPRODUCE AMPLIFIER 1.830.465

3.5 CODE-AUFNAHMETEIL

Messgeraet Oszilloskop

Hilfsmittel Neuwertige, unbespielte Kassette

Messpunkte Steckkarte "CODE AMPLIFIER"

1.830.467

Testpunkte TP1 (Signal)
TP2 (0,0V)

Abstimmung Steckkarte "CODE AMPLIFIER" Jumper JS1

3.5.1 Code Aufnahmepegel

Voraussetzungen
- Die Kombikopf-Spaltneigung muss der optimalen Einstellung nach Kapitel 3.3.1 entsprechen.

- Jumper JS1 auf Position 2 setzen (Mitte).
- Code, auf unbespielte, neuwertige Kassette aufnehmen.

Aufnahmevorgang: Siehe Kapitel 2 "BEDIENUNG" Abschnitt 2.2.4 "Code-Aufnahme".

Fuer nachfolgenden Kontrollvorgang ist eine Zeitcodeaufzeichnung von ca. 30 Sekunden Laenge erforderlich.

Kontrolle 1

- Oszilloskop an TP1(Signal) und TP2(0,0V) anschliessen
- Kassette auf Code-Modulationsanfang positionieren., Maschine im PLAY-Modus starten.
 Grenzpegel: groesser oder gleich 1Vpp kleiner oder gleich 2,5Vpp
 Sollpegel: ca. 1,8Vpp

Korrektur

- Pegel erhoehen: Jumperposition 1 waehlen.
- Pegel reduzieren: Jumperposition 3 waehlen.

Nachkontrolle wie oben beschrieben, unter Verwendung eines unbespielten * Bandteilstueckes.

Kontrolle 2

Nach korrekter Pegeleinstellung:

- SMPTE-Code auf neuwertiges, unbespieltes
 Band aufzeichnen (gesamte Bandlaenge);
 Siehe Kapitel 2 BEDIENUNG, Abschnitt 2.2.4
- Code-Aufnahmetest durchfuehren;
 Siehe Kapitel 2 BEDIENUNG, Abschnitt 2.2.5

* Hinweis

Die Zeitcodeaufzeichnung laesst sich auf der Kassettenmaschine nicht loeschen. Eine Loeschung erfolgt extern der Kassettenmaschine, unter Verwendung einer Entmagnetisierungsdrossel, wobei bemerkt werden muss, dass eine etwaige Audioaufzeichnung ebenfalls geloescht wird.

CS 5	TW)	\Box	F	回

0	חמחי	9 A /	20	11
CA	D301	IU/	JU.	11

SECTION 4/1

MECHANISCHE	LAUFWERK-EINSTELLUNGEN
MECHANISCHE	EMOLMEKK-FIN2 IFFFOROFIL

	UEBERSICHT (Klappseite)	4/
	MONTAGE-/DEMONTAGEANLEITUNG	4/
	Einstellvorschriften Grundaufbau Einstellvorrichtungen Bereitstellung von Werkzeugen	4/ 4/ 4/
4.1	KOPFTRAEGER	4/
4.2	CAD-RACKEINSCHUB	4/
4.2.1 4.2.2	Andruckaggregat Capstanmotor	4/ 4/
4.3	KASSETTENTRAEGER	4/
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7	Schwenktraeger Bandfuehrungsbolzen Umlerkrollenlager Bandspulenadapter Wickelmotor, rechts Wickelmotor, links Caempfungsbolzen	4/1 4/1 4/1 4/1 4/1 4/1
4.4	LAUFWERK	4/1
4.4.1 4.4.2 4.4.3	Kurvenscheiben-Steuerwelle Schwenktraeger-Gestaenge Bandwickel-Bremsgestaenge	4/1 4/1 4/1

SECTION 4/2

STEUERSCHEIBE (OPTOGEBER)

MONTAGE/DEMONTAGEANLEITUNG

Grundlegend fuer einen rationellen Ablauf von Servicearbeiten ist das geziehlte Vorgehen bei der Demontage, resp. Montage von Baugruppen und Bauteilen.

Nebenstehende Grafik zeigt in tabellarischer Form die einzelnen Demontagestadien auf, ueber welche das zu wartende Bauteil unter minimalstem Aufwand fuer Einstellarbeiten zugaenglich wird.

Die Montage erfolgt jeweils in sinngemaess umgekehrter Reihenfolge•

Die Aufgliederung der Demontagestadien im Dezimalsystem entspricht der Kapitelaufteilung nachfolgender Einstellvorschriften.

Einstellvorschriften / Montagehinweise

Bei jedem Eingriff am Geraet, bei dem Teile demontiert oder verstellt werden, muessen die Einstellvorschriften und Montagehinweise nachfolgender Kapitel beachtet werden.

Grundaufbau

Die Positionierung der tragenden Elemente,-Laufwerkchassis, Motortraeger und Schwenktraeger,- wurden im Werk durch Passbohrungen definiert (Laufwerkchassis - Motortraeger) und durch Zylinderstifte fixiert (Laufwerkchassis -Schwenktraeger). VORSICHT:

Es duerfen weder Motortraeger noch Schwenktraegerlagerung verstellt werden! Ein unumgaenglicher Austausch eines dieser Elemente bedingt die Vornahme einer Grundeinstellung, welche nur unter Verwendung einer Montagevorrichtung erfolgen darf.

Einstellvorrichtungen

Die Stellungen aller wichtigen Funktions-Baugruppen mit direktem Einfluss auf die Bandfuehrung sind durch den Einsatz bestehender Einstellvorrichtungen jederzeit praezise reproduzierbar (Beachte nachfolgende Auflistung).

Bereitstellung von Werkzeugen und Hilfsmitteln

Die Bereitstellung der, fuer bestimmte Einstell- und Montageablaeufe erforderlichen Werkzeuge ist aus nebenstehender Tabelle ersichtlich (Rubrik *)•

Beachte Indexziffern 1...27 und deren Erlaeuterung in nachfolgender Aufzaehlung.

1 2 3 4 5 6	Einstellvorrichtungen Laufwerk-Einstelllehre Kopftraegerlehre Laufwerk-Montagevorrichtung Daempfungsbolzen-Lehre Normkassette Distanzklammern Werkzeuge		STI-Bestell-Nr 10.010.001.20 10.010.001.21 10.010.001.22 10.010.001.23 10.010.001.24 10.010.001.25
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Schraubenzieher " " Inbusschluessel " " Ringgabelschluessel " " " Ausstosswerkzeug	Groesse0 Groesse1 Groesse2 Groesse3 SW 1.5mm SW 2 mm SW 2.5mm SW 3 mm SW 5 mm SW 10 mm MOLEX	10.207.002.02 10.207.002.03 10.207.002.04 10.207.002.05 26.06.1015 26.06.1020 26.06.1030 26.06.1050 10.258.001.20 10.258.001.21 10.258.001.21 10.258.001.23 10.258.001.24 10.258.001.26
24 25	Messwerkzeuge Federwaage Fuehlerlehre Lupe Runddraht Hilfsmittel Wachsstift Spezialoel	2kg 0.05-1mm 2.5x 0.5mm	10.249.001.03 10.258.011.01 10.258.006.01

4.1 KOPFTRAEGER

- Vor jedem Entfernen des Kopftraegers vom Schwenktraeger ist das Geraet auszuschalten! (Vermeidung einer Tonkopf-Magnetisierung)
- Tonkoepfe aus Bereichen magnetischer Gleichund wechselfelder fernhalten! (Lautsprecher, Trafos in Betrieb, etc.).

Hinweise

- Praezise Fertigungsmethoden gewaehrleisten die Austauschbarkeit der Tonkoepfe, ohne aufwendige Nachjustierarbeiten (Phasentreue, Bandfuehrung).
- Lediglich der Kopfspiegel ist nach jedem Loesen der Senkschrauben (3) auf korrekte Einstellung zu ueberpruefen (Siehe entsprechendes Kapitel).
- Die Einstellung des Kopfspaltes (Tonkopf-Azimuth) wird im Kapitel 3 "AUDIO-EINSTEL-LUNGEN" behandelt.
- Hoehen- und Kipp-, bzw. Neigungslage der Tonkoepfe wurden im Werk unter Verwendung der Kopftraegerlehre 10.010.001.21 justiert. Die Taumelplatten-Stuetzpunkte (Stellschrauben (6)) duerfen daher nicht verstellt werden (Siehe Kapitel 3, AUDIO-EINSTELLUNGEN).
- Grundlegend fuer einen optimalen Band/Kopf-Kontakt ist die korrekte Einstellung des Schwenktraegers (Kapitel 4.3.1).

Demontage

- 2 Inbusschrauben (9) loesen.
- Kopftraeger, ohne zu verkanten, vom Mehrfachstecker (8) abziehen.

Ton-/Kombikopf demontieren:

- Je 2 Senkschrauben (3) loesen. Anschlusskabel mittels "MOLEX"-Ausstosswerkzeug aus Mehrfachsteckbuchse (8) loesen•

Kopfspiegel (Tangential-Einstellung)

- Kopftraeger demontieren.
- Mit Wachsstift auf Kopfspiegel der Tonkoepfe einen gleichmaessigen, feinen Farbfilm auftragen. Vorsicht Kratzgefahr: Der Wachsstift muss
 - frei von Staub und anderen Verunreinigungen sein.
- Kopftraeger bei ausgeschaltetem Geraet (!) montieren, - Kassette, welche nicht mehr fuer Aufzeichnungen benutzt wird, einlegen,-Maschine im PLAY-Betrieb starten.
- Nach ca. 2 Minuten Laufzeit: Band Vor- oder Rueckspulen und waehrenddessen Maschine ausschalten (Schwenktraeger positioniert in ausgeschwenkter Stellung).
- Maschine ausschalten,-Kopftraeger demontieren.

Kontrolle mit Lupe:

Angestrebt wird eine, beiderseits des Kopfspaltes (11) symmetrische Verteilung der von Wachsbelag blankpolierten (10) Kopfspiegelpartie.

TONKOPF

Korrektur

- Tonkopf-Befestigungsschrauben (3) loesen. Vorsicht: Justierschrauben (4/6) nicht verstellen.!
- Tonkopf um den erforderlichen Korrekturschritt tangential in Kompensationsrichtung drehen, Befestigungsschrauben (3) festziehen.

Ganzen Kontroll-/Einstellvorgang wiederholen, bis eine praezise Kopfspiegel-Spaltverteilung erreicht ist.

 Kopfspiegelflaeche mit Spiritus und weichem Lappen gruendlich von Wachsrueckstaenden reinigen.

Die Ermittlung der Kombikopfspiegel (5)-Einstellung erfolgt mit gleicher, beim Tonkopf angewandter Methode. Beachte Abbildung:
Der Band-Kopfkontakt soll sich, mit einem Abstand von ca. 1mm zur ersten Loeschkopfspalte
(13a), moeglichst ganzflaechig ueber den Kopfspiegel erstrecken, ohne dass das Band ueber
die Einlauf-, resp. Auslauf- Facette (12/15)
gezogen wird.

KOMBIKOPF

4.2 CAD-RACKEINSCHUB

Hinweise

- Vor dem Einschub sind Steckerverbindungen und Zentrierbolzen rack- wie einschubseitig auf Fremdkoerper zu ueberprufen.
- Maschine vorsichtig, ohne Gewaltanwendung einschieben.

4.2.1 Andruck-Aggregat

Demontage

Das Andruckaggregat laesst sich, nach dem Loesen der drei Befestigungsschrauben (4) und dem Auftrennen der Steckerverbindung (1), als Einheit ausbauen.

Achtung

Jedes Loesen der Befestigungsschrauben (4) kann eine Lageveraenderung des Aggregates zur Folge haben und bedingt deshalb jedesmal die Vornahme der beiden nachfolgend beschriebenen Einstellvorgaenge.

Federbolzen-Anschlag

Um waehrend der PLAY-, resp. REC- Betriebsart die, aus dem Federvorspann (6) resultierende Druckkraft der Andruckrolle (8) auf die Capstan-Achse (9) zu gewaehrleisten, muss der Querbolzen (5) 0,5..0,8mm vom Anschlag abheben.

Einstellung

 Kassette einlegen und Maschine im PLAY-Modus starten.

Kontrolle

 Zwischen Querbolzen (5) und Federbolzenanschlag muss sich ein Runddraht von 0,5mm Durchmesser schieben lassen (Maximalspiel: 0,8mm).

Korrektur bei aktiviertem Magneten (PLAY-Betrieb):

Zwei Befestigungsschrauben (2) am Magneten loesen und letzteren, bis zum Erreichen des Sollabstandes, laengs schieben, Schrauben festziehen.

Nachkontrolle

Nach mehrmaligem Betriebsartenwechsel PLAY-STOP-PLAY-STOP-etc., Spiel nachkontrollieren und eventuelle Korrektur nachfuehren.

Andruckkraft der Andruckrolle

Dieser Pruefung muss die korrekte Einstellung des Federbolzenanschlages vorausgehen.

Einstellung

- Kassette einlegen und Maschine im PLAY-Modus starten.
- Federwaage (11) an Andruckrollenachse (Mutter (12) ansetzen und rechtwinklig (!) zum Andruckrollenarm der Andruckkraft des Federvorspannes entgegenwirken.

Kontrolle

Mit 1,1kg +/-0,1kg Zugkraft an der Federwaage muss die Andruckrolle (8) von der Capstan-Achse (9) abheben•

Voraehen:

Unter leichtem Betasten der Andruckrolle, ohne diese merklich abzubremsen, wird der Moment "erspuehrt", in dem die Rollendrehung einstellt. Dies soll, waehrend sukzessivem Erhoehen der Zugkraft, beim Erreichen der 1,1kg-Marke der Federwaage eintreten.

- Messvorgang mehrmals wiederholen.

Korrektur durch entsprechende Veraenderung des Federvorspannes an der Spannmutter (7), zugaenglich rueckseitig des Laufwerkes, unter Verwendung eines 8mm-Ringschluessels.

Axiallage der Andruckrolle

Die genaue Ausrichtung der Andruckrolle (8) auf Mitte Bandlauf wirkt sich direkt auf die Spurtreue des Bandtransportes aus.
Beim Austausch der Rolle (8) (mit Achse (16) als Einheit) ist darauf zu achten, dass der gleiche Satz Distanzscheiben (15) auf die neue Achse uebertragen wird. Die Ausrichtung der Rolle auf Mitte Bandlauf ist dadurch ohne weitere Justierarbeit gewaehrleistet.

Grundeinstellung

Als Einstellmass gilt die Distanz der Umlenkachsen-Anschlagebene (14)* zu Mitte Andruckrolle von 5,47mm, in einer erlaubten Toleranz von +/-0,05mm.

Eine Justierung erfolgt durch Unterlegen von Distanzscheiben (15) entsprechender Staerke** zwischen Andruckrollen-Gewindeschaft und Andruckrollenarm.

- * Ermittelbar durch Anlegen eines Lineals
- (13), bei demontiertem Kassettentraeger. ** 0,1mm (Best.-Nr. 1.062.210-08) 0,2mm (Best.-Nr. 1.062.210-09)

Einbau der Andruckrolle

Der Drehrichtungspfeil an der Rollen-Stirnseite muss der PLAY-Bandlaufrichtung entsprechen.

4.2.2 Capstan-Motor

Demontage

- Mehrfachstecker (1) ausziehen.
- Vier Befestigungsschrauben (2) loesen. Vorsicht beim Ausfahren des Capstan-Motors: Capstan-Achse (3) nicht beschaedigen.!

Montacehinweis

Vor dem Festziehen der Befestigungsschrauben ist der Capstan-Motor in die untere Einbaulage zu ziehen (Kompensation des Spiels zwischen Schraubenschaft und Durchgangsbohrung).

Einstellhinweis

Jedes Loesen der Capstanmotor-Befestigung bedingt das Ueberpruefen folgender Einstellungen:

- Andruckkraft und Federbolzenspiel des Andruckaggregates.
 Siehe Kapitel 4.2.1
- Hoehenposition des Bandfuehrungsbolzens. Siehe Kapitel 4.3.2

Wartung

Reinigung

Die Capstan-Achse (3) darf nur mit einem feuchten Lappen gereinigt werden.

Vorsicht: Es darf keine Reinigungsfluessigkeit in das Achslager (4) eintreten!

Schmierung

Der Capstanmotor ist wartungsfrei.

Um jedoch die Lebensdauer des Achslagers zu erhoehen, ist eine monatliche Schmierung desselben zu empfehlen:

Geraet, resp. Motor so stellen, dass die Capstan-Achse senkrecht gerichtet ist. Ein Tropfen des Spezialoels POP 65 am Achsaustritt (4) anbringen.

4.3 KASSETTENTRAEGER

Demontage

Mehrfachstecker (9) ausziehen (Sicherungsklammer (10) nach links schieben).

Kassettentraeger (1) manuell einfahren•

Kassettentraeger, ohne zu verkanten, entgegen dem Federzug nach aussen ziehen. Lage durch Aufstecken der Distanzklammern (3)

ueber Hubwellen (2) fixieren. Federteller (7) leicht zurueckstossen. Ben-zingring (8) von Wellenstumpf schieben. Federteller (5),(7) und Feder (6) ausfahren.

Kassettentraeger (1) ausfahren.

Die Montage erfolgt in sinngemaess umgekehrter Reihenfolge.

Funktionskontrolle

Nach dem Wiedereinbau des Kassettentraegers ist eine Kontrolle der Hubwelle auf Leichtgaengigkeit durchfuehren. Macht sich, insbesondere im Betriebsbereich ein Widerstand bemerkbar, ist bei geloester Hubwellenfuehrung (4) die Stellung zu ermitteln, in der sich der Kassettentraeger widerstandslos ein- und ausschieben laesst.

Nachfolgend muss der Kassettentraeger, wie im naechsten Abschnitt beschrieben, auf genaue Positionierung zu den Bandfuehrungselementen kontrolliert werden.

Kassettenpositionierung durch Kassettentraeger

Waehrend des Betriebs darf das Kassettengehaeuse keinen Einfluss auf die Bandfuehrung ausueben.

Umlenkrollen und Magnetbandwickel wie Wickelspulen muessen durch die Fuehrungselemente der Maschine vom Kassettengehaeuse freigesetzt werden. Von Wichtigkeit ist daher die Positionierung der Kassette zu den Fuehrungselementen durch den Kassettentraeger.

Als Einstellhilfe besteht eine Normkassetten-Attrappe (15) mit den Abmessungen eines Originals mit maximal erlaubten Masstoleranzen.

Einstellung

Voraussetzung: Die Fuehrungselemente Umlenkrollenachsen (12) und Spulenadapter (16) muessen nach den Kapiteln 4.3.3 und 4.3.4 justiert sein.

Maschine einschalten, - Normkassette (15) einlegen und, bevor der Kassettentraeger wieder ausschwenkt, Maschine ausschalten.

Kontrollen

Kassetten-Vertikalfuehrung: Die Einlaufebene (18) muss, mit einer Distanz von 0,1..0,2mm, genau parallel zur Basisflaeche (15) der Normkassette ausgerichtet sein.

Eine Justierung erfolgt an den vier Stellmuttern (20) zur gefederten Einlaufschienen-

Fuehrung.

Kassetten-Laengspositionierung: Die Anschlagklinke (13) muss, in eingeschwenkter Stellung, eine Distanz von 0,1.. 0,2mm zur Normkassette halten. Einstellung durch Schieben der Magnethalterung zum Kassettentraeger (Befestigungsschrauben 17)

4.3.1 Schwenktraeger

Hinweis

Die Positionierung des Schwenktraegers (3) zum Motortraeger wurde beim Aufbau, wie eingangs erwaehnt, anhand einer Montagevorrichtung festgelegt und durch Zylinderstifte zum Laufwerk fixiert.

Vorsicht:

Die Achslagerung des Schwenktraeger-Gelenkes wie die Positionierung des Motortraegers duerfen nicht verstellt werden!

Grundlegend fuer eine praezise Bandabtastung ist die sorgfaeltige Einstellung des unteren Totpunktes der Schwenktraeger-Einsatzbewegung。

Einstellung

- Schwenktraeger in eingeschwenkte Position bringen.
- Einstellvorrichtung (4) anstelle des Kopftraegers montieren.

Kontrolle

Der Schwenktraegerstoessel (7) muss die Druckplatte (6) entlasten. Der Anschlag des Schwenktraegers (Druckplatte 6) muss am Anschlagbolzen aufsetzen.

Sollte diese Voraussetzung nicht erfuellbar sein, ist eine Rolle des entsprechenden Kipphebels zu demontieren bis, am Anschluss an diese Einstellung, die Grundeinstellung des Schwenktraegers nach Kapitel 4,4,2 nachgegefuehrt wird.

- Kontermutter (9) zu Anschlag-Federbolzen loesen.
- Schwenktraeger-Position durch Drehen des Bolzens (10) ermitteln, inder sich die Passhuelsen (5) widerstandslos ueber die Umlenkrollenachsen (2) schieben lassen. Kontrolle des Schwenktraegerstoessels (7) auf Entlastung der Druckplatte (6) wiederholen.
- Kontermutter (9) festziehen und Einstellkontrolle wiederholen (Durch das Festziehen der Kontermutter kann sich die Einstellung leicht veraendern, was durch Gegendrehung des Bolzens (10) zu kompensieren ist).

4.3.2 Bandfuehrungsbolzen

Hoeheneinstellung

Voraussetzung
Die Einstellung des unteren Schwenktraeger-Totpunktes muss nach Kapitel 4.3.1 abgeschlossen

Einstellung

- Schwenktraeger (1) in eingeschwenkte Position bringen (Schwenktraeger am Anschlagbolzen aufsetzend).
- Einstellvorrichtung (2) anstelle des Kopftraegers montieren.

Kontrolle

 Der Ansatz (6) des Drehbolzens (4) bildet die theoretische Bandfuehrung nach. Er muss sich beruehrungslos zwischen die Flanken (5) des Bandfuehrungsbolzens schwenken lassen.

Korrektur durch Drehen des Bandfuehrungsbolzens (7) (Innensechskant 1,5mm).

Positionierung des Fuehrungsbolzens zur Bandlaufebene

Der Traeger (3) des Bandfuehrungsbolzens laesst sich um das Spiel in der Befestigung (8) zum Motortraeger variieren (Spiel Schraubenschaft - Durchgangsbohrung).

Einstellung

Der Traeger ist dermassen zu positionieren, dass das Band waehrend des schnellen Rueck-, resp. Vorspulens leicht ueber die seitlichen Fuehrungsflanken (5) gefuehrt wird (Schonung der Magnetbandkanten). Waehrend der PLAY-Funktion muss das Band jedoch seitlich gefuehrt werden.

4.3.3 Umlenkrollen-Lager

Die genaue Einstellung der Umlenkrollenachsen wirkt mitbestimmend bei der praezisen Bandfuehrung.

Hoeheneinstellung der Achslager

Voraussetzung

Die Einstellung des unteren Schwenktraeger-Totpunktes muss nach Kapitel 4.3.1 abgeschlossen sein.

Einstellung

- Schwenktraeger (8) in eingeschwenkte Position bringen (Schwenktraeger am Anschlagbolzen aufsetzend).
- Achslager (2) einsetzen und gleichmaessig(!) festziehen (Je drei Befestigungsschrauben).
- Einstellvorrichtung (9) anstelle des Kopftraegers montieren.
- Passhuelsen (7) ueber Achsen (3) schieben.

Kontrolle

Die Passhuelsen (7) muessen sich bis auf ein Spiel von 1mm,+/-0,05mm gegen den Anschlag (4) der Vorrichtung einschieben lassen (Kontrolle mit Blattlehre).

Korrektur...

durch Unterlegen des Achslagers mit Distanzscheiben (1). Es stehen Distanzscheiben mit den Staerken 0,1 mm (Best.-Nr.1.830.150-20) und 0,15mm (Best.-Nr.1.830.150-21) zur Verfuegung.

Zur Beachtung

Nach jedem Loesen der Achslagerbefestigung muss die Hoehe der Achslager nach vorangegangenem Abschnitt neu justiert werden.

Funktionskontrolle

Die montierten Rollenachsen (3) muessen sich unter bemerkbarer Ueberwindung von Federvorspann um ca.0,5mm, axial aus dem Lagergehaeuse ziehen lassen (Axialspiel). Beim Loslassen der Achse muss sich diese wieder selbstaendig an den Anschlag im Lagergehaeuse zurueckziehen. (Unregelmaessiges, verkantetes Festziehen des Lagergehaeuses kann diese Funktion beeintraechtigen).

4.3.4 Bandspulen-Adapter

Die axiale Lage der Adapter (3) auf der Wickel-motorachse bestimmt die Ausrichtung der Bandwickel auf die Bandlaufebene. Die Befestigung der Adapter zur Motorachse erfolgt durch Federspannscheiben, deren Lamellen beim Festziehen der Spannschrauben (4) gegen die Achse gestermt werden und so eine kraftschluessige Verbindung erstellen.

Hoeheneinstellung der Mitnehmer

- Schwenktraeger (1) in eingeschwenkte Position bringen (Schwenktraeger am Anschlagbolzen aufsetzend).
- Adapter (3) mit losen Klemmschrauben (4) auf Wickelmotorachse schieben. Einbaulage beachten: Die Nocken (6) des rechten Adapters muessen im Uhrzeigersinn, diejenigen des linken Adapters im Gegenuhrzeigersinn gerichtet sein.
- Einstellvorrichtung (2) anstelle des Kopftraegers montieren.
- Adapter (3) mit Spulen-Anschlagflaeche (5) gegen die Distanzgeber (7) der Einstellvorrichtung ziehen, - Klemmschrauben gleichmaessig (!) festziehen. Wichtig:

Um den optimalen Rundlauf der Adapter zu erreichen, muessen die Spannschrauben (4) wechselweise, mit sukzessive zu erhoehendem Anzugsmoment festgezogen werden.

Kontrolle

Nach dem Festziehen muessen sich die Adapter (3), bei minimalstem Abstand zu den Distanzgebern, widerstandslos von Hand drehen lassen.

4.3.5/6 Wickelmotoren

Der Zugang fuer den Aus-, resp. Einbau des linken Wickelmotors ist nur bei ausgebautem Capstanmotor gegeben. Dies zieht die Ueberpruefung folgender Einstellungen nach sich:

- Andruckaggregat (Federbolzenanschlag, Andruckkraft) Siehe Kapitel 4.2.1 druckkraft).
- Capstanmotor-Position. Siehe Kapitel 4.2.2

Demontage / Montage

- Bandspulen-Adapter demontieren: Je drei Spannschrauben loesen und Adapter von Wickelmotorachse abziehen.
- Motor-Befestigungsschrauben loesen: Je vier Senkschrauben.
- Motor hinter dem Laufwerkchassis ausfahren und Steckerverbindung zu Motorspeisung trennen (in eingebautem Zustand schwer zugaenglich).

Vorsicht: Tachoscheiben nicht beschaedigen!

Die Montage der Wickelmotoren erfolgt in sinngemaess umgekehrter Reihenfolge.

- Steckerverbindung fuer Motorspeisung vor dem Einbau erstellen.
- Motor-Befestigungsschrauben sukzessive, ueber Kreuz festziehen.
- An den Tachoscheiben duerfen keine Kabel streifen.
- Nach dem Aufsetzen der Bandspulen-Adapter ist deren Einstellung nach Kapitel 4.3.4 durchzufuehren.

4.3.7 Daempfungsbolzen

Daempfungsbolzen-Positionierung

Einstellung

- Schwenktraeger in eingeschwenkte Position bringen (Schwenktraeger am Anschlagbolzen aufsetzend).
- Fuehrungsbolzen (10) der Einstellvorrichtung auf Schwenktraeger aufschrauben (Rechtes Gewinde zu Kopftraeger-Befestigung).
- Positionierung des Daempfungsbolzens (2) durch Zugstangen-Laengenveraenderung bestimmen:
 - Die Einstellvorrichtung muss sich, gefuehrt durch Umlenkrollenachse (3) und Fuehrungsbolzen (10) widerstandslos ueber den Ansatz (4) des Daempfungsbolzens schieben lassen.
- Definitive Zugstangenlaenge (5) durch Festziehen der Kontermutter (6) sichern.

Radiale Einstellung des Federelementes

- Einstellvorrichtung (8) demontieren.
- Kopftraeger montieren.
- Maschine im PLAY-Modus starten.

Kontrolle

- Die Umschlingung des Bandes um den Daempfungsbolzen soll auf Mitte Sektor der Federelement-Umfanges verteilt sein.
- Korrektur durch radiales Verdrehen des Daempfungsbolzens (Innensechskant (4), 1,5mm).

Hinweis auf Einbaulage

Das Federelement muss in PLAY-Bandlaufrichtung montiert sein und darf nicht ueber den Umfang der Daempfungsbolzenachse vorstehen.

Demontage

- LOCAL REMOTE- Stecker samt Aufnahmewahl-Schalter REC MODE (CAD 3011) von Frontplatte (5) loesen.
- Verbindungskabel zu Basisprint ausstecken.
- Zwei Mehrfachstecker (Flachkabel) ausziehen. (Verschraubungen loesen).
- Drei Befestigungsschrauben (1) Laufwerk-Chassis (2) - Daempfungselemente (3/4) loesen.

Hinweis

Bei umfangreicheren Reparatur- oder Servicearbeiten am ausgebauten Laufwerk, empfiehlt es sich, anstelle der Daempfungselemente (3/4) die drei Bolzenpaare der Montage-Vorrichtung 10.010.001.22 einzusetzen. Sie ermoeglichen Standfestigkeit und Schonung des Laufwerkes waehrend Eingriffen.

Montacehinweis

Beim Fesrziehen des Laufwerkes ist darauf zu achten, dass die beiden Traeger (3) der Daempfungselemente parallel zueinander ausgerichtet bleiben.

4.4.1 Kurvenscheiben-Steuerwelle

Hinweis

Die Kurvenscheiben-Steuerwelle darf nur als Einheit ausgetauscht werden•

Montacehinweise

- Die Steuerscheibe des Schwenktraeger-Positionsgebers muss eingemittet durch den Optosensor gefuehrt werden (Beachte Axialspiel der Welle).
- Die Klemmschraube der Steuerscheibe ist mit fluessiger Schraubensicherung zu sichern•
- Nach der Montage muss die Steuerwelle im Kupplungsstueck zum Servomotor ein Axialspiel von 0,3..0,5mm aufweisen.

Einstellung

Die Montage der Steuerwelle (Festziehen der Lagerungen) erfolgt unter Beruecksichtigung der, im nachfolgenden Kapitel 4.4.2/3 beschriebenen Einstellung des Kipphebelspiels.

4.4.2/3 Schwenktraegergestaenge Bandwickel-Bremsgestaenge

Die Montage und die damit verbundenen Einstellungen erfolgen beim Schwenktraegergestaenge und beim Bandwickel-Bremsgestaenge unter den gleichen, nachfolgend aufgefuehrten Gesichtspunkten.

Voraussetzungen

- Der Schwenktraeger muss nach Kapitel 4.3.1 justiert sein.
- Die Druckplatte (2) muss am Anschlagbolzen (3) aufsetzen (Schwenktraeger-Einsatzposition).
- Der Stoessel (10) muss die Druckplatte (2) entlasten.
- Die Kipphebelrollen (17) muessen auf die innerste Peripherie der entsprechenden Kurvenscheibe aufgelaufen sein.

Kontrolle

Die Laufrollen muessen ihre zugeordnete Kurvenscheibe (8), resp. den Stoesselansatz (11/12) leicht entlasten, d.h. die Rollen muessen sich widerstandslos von Hand drehen lassen, ohne jedoch nennenswertes Spiel aufzuweisen (Uebermaessiges Spiel zwischen Steuerrolle und Kurvenscheiben-Peripherie kann Teileverschleiss infolge schlagartiger Kraefteuebertragung bewirken).

Einstellung

Um uebermaessiges Spiel zu eliminieren, werden Toleranzen der Durchgangsbohrungen in Kipphebel-(16) und Laufrollen-(14) Achsbefestigungen genutzt. Dabei ist jedoch zu beachten, dass die Laufrollen genau Mitte Kurvenscheiben-Peripherie und Stoesselansatz (11/12) ausgerichtet sind.

Kontrolle

Insbesondere nach dem Festziehen der Jochs (4/7) ist das Gestaenge (9/10) auf Leichtgaengigkeit zu kontrollieren, waehrend der Schwenktraeger (1) manuell hochgezogen wird.

5	ELEKTRISCHE LAUFWERK-EINSTELLUNGEN	
5.1	VORAUS SET ZUNGEN	5/
5 • 2	BANDENDESCHALTER	5/
5.3	BANDZUG	5/
5.3.2 5.3.2 5.3.3 5.3.4		5/6 5/6 5/6
5.4	CAPSTAN SYNCHRONISATION	5/0
5.5	RS 232C PEGELEINSTELLUNG (Serielle Schnittstelle)	5/
5.6	FEHLERANZEIGE (Funktionstests)	5/

5.1 VORAUSSETZUNGEN

Die Laufwerk-Mechanik muss nach Kapitel 5, "MECHANISCHE EINSTELLUNGEN" justiert sein.

- Vorbereitungen / Kontrollen LOCAL CONTROL-Bedienungseinheit (7) anschliessen (Mehrfachsteckbuchse (6) "LOCAL CONTROL").
- Netzspannung (2) einschalten. Kontrolle: Alle Led's an der Netzteil-Frontseite muessen aufleuchten.

Funktionskontrolle Rechte Lichtschranke (4) an Kassettentraeger (Sensor fuer Kassetten-Praesenz) kurzzeitig,

mit Hilfe eines lichtundurchlaessigen Papierstreifens abdecken.

Folge: Der Kassettentraeger (3) faehrt ein, der Capstanmotor startet mit Drehrichtung im Gegenuhr-zeigersinn, - die Wickelmotoren drehen hoch (rechter Motor: Uhrzeigersinn; linker Motor: Gegenuhrzeigersinn), - die Andruckrolle setzt kurzzeitig auf die Capstanachse auf. Sobald sich der rechte Wickelmotor wieder im Stillstand befindet, spaetestens aber nach dem Ablauf einer Zeitspanne von sieben Sekunden, faehrt der Kassettentraeger aus•

5.2 BANDENDSCHALTER

Universal-Messinstrument Messgeraet

Messbereich: ca. 10mV..10V DC

Messpunkte

"INTERFACE 1" Steckkarte

1.830.480

Testpunkte TP1(+) TP2 (GND)

Regler

Potentiometer R24

Die Einstellung erfolgt ohne Kassetten-Bestueckung:

- Messinstrument an Testpunkte TP1(+) und TP2 GND anschliessen.
- Potentiometer R24 im Gegenuhrzeigersinn auf Anschlag drehen.
- Potentiometer R24 im Uhrzeigersinn zurueckdrehen, bis das Messinstrument eine Spannung < 0,1V anzeigt; Potentiometer im gleichen Drehsinn um ca. 20 Grad weiterdrehen.

Funktionskontrolle

- Maschine mit Kassette bestuecken (Kassette mit SMPTE-Zeitcodeaufzeichnung) •
 - Kassette auf Bandanfang vorspulen. Kontrolle: Erreicht der transparente Vorspann des Magnetbandes die Lichtschranke, wird der Band-transport gestoppt, anschliessend im PLAY-Betrieb vorgespult und auf Code-Modulationsanfang positioniert (Display-Anzeige in Echtzeit: 0.00.0).

INTERFACE 1 1.830.480

R 3

R6

5.3 BANDZUG

5.3.1 Bandzug im PLAY- Betrieb

Messgeraet Universal-Messinstrument mit Digitalanzeige (Ri > 10 MOhm)

Messpunkte Basisprint 1.830.448

TP1GND

Steckerleiste TP2(+) TP3(+)

Regler Steckkarte "TAPE TENSION CTRL"
1.830.455

Potentiometer LEFT PLAY RIGHT PLAY

Voraussetzung

 Steckkarte "TAPE TENSION", 1.830.455: Potentiometer R2 bis R7 auf Mitte Einstellbereich stellen.

Die Einstellung erfolgt mit kassettenbestueckter Maschine (Kassette mit SMPTE-Zeitcode-Aufzeichnung).

- Kassette auf Bandmitte (Sektor 3, 7min 40s) positionieren.
- Messinstrument an Testpunkte TP2(+) und TP1 (GND) anschliessen.
- Potentiometer R3 PLAY LEFT auf eine Spannungsanzeige am Messinstrument von 290mV₀ +/-5mV einstellen.
- Messinstrument an Testpunkte TP3(+) und TP1 (GND) anschliessen•
- Potentiometer R6 PLAY RIGHT auf eine Spannungsanzeige am Messinstrument von 290mV, +/-5mV einstellen.
- Messinstrument von Messpunkte trennen.

Kontrolle (in Band-STOP-Position):

- Kopftraeger manuell anheben: Das Band darf keine Bewegungstendenz aufzeigen₀
- Kontrolle bei vorgespulter (Bandanfang) und rueckgespulter (Bandende) Kassette wiederholen.

5.3.2 IDLE - Bandzug

Messgeraet	Universal-Mes	sinstrument	mit Digi-
	talanzeige.	(Ri >	10 MOhm)
Messpunkte	Basisprint	1.830.448	
		TP1 GND	
	Steckerleiste	TP2(+)	TP3(+)
Regler	Steckkarte	"TAPE TENS	ON"
		1.830.455	
	Potentiometer	LEFT IDLE	R4
		RIGHT IDLE	R7

Die Einstellung erfolgt mit kassettenbestueckter Maschine (Kassette mit SMPTE-Zeitcode-Aufzeichnung und Sprache-Modulation).

- Kassette auf Bandmitte positionieren (Sektor 3, 7min 40s).
- Messinstrument an Testpunkte TP2(+) und TP1 (0) anschliessen.
- Ein Anschluss zu Servomotor abziehen (Kassettentraeger-Positionierungsmotor).
- Andruckrollenarm in Ruhestellung manuell festhalten (d.h. Andruckrolle am Aufsetzen auf Capstanachse hindern).
- PLAY-Taste druecken.

TAPE TENSION 1.830.455

CONTROL INTERCONNECTION PCB 1.830.448

TAPE TENSION 1.830.455

CONTROL INTERCONNECTION PCB 1.83C.448

- Potentiometer R4 IDLE LEFT auf eine Spannungsanzeige von 75mV, +/-5mV einstellen.
- Messinstrument an Testpunkte TP3(+) und TP1 GND anschliessen.
- Potentiometer R7 IDLE RIGHT auf eine Spannungsanzeige von 75mV, +/-5mV einstellen.
- Messinstrument von Messpunkten trennen.
- Wenn STOP-Led wieder aufleuchtet: Speisung zu Servomotor wieder erstellen. Sektor-Vorwahl loeschen (Taste CLEAR an LO-
- CAL CONTROL-Einheit).
- PLAY-Taste betaetigen.
- Nach Zeitanzeige an Display: STOP-Taste betaetigen.

Funktionskontrolle

Eingesetzte Kassette auf Bandanfang vorspu-

Kontrolle (visuell) waehrend Betaetigung des Drehknopfes TAPE MOTION CONTROL (Druecken und Drehen):

Der Nachlauf des Magnetbandes muss in beide Laufrichtungen der Drehknopfbewegung folgen. (Drehen im Ührzeigersinn = Wiedergaberich-

In Drehknopf-Ruhestellung darf das Band keine Tendenz zur Bewegung anzeigen.

Kontrolle (audiell) durch Abhoehren der sprachmodulierten Audiospur:

Ermoeglicht die Bedienung von TAPE MOTION-CONTROL das Abspielen in PLAY-Sollgeschwindiakeit?

Kassette bis kurz vor Bandende zurueckspulen. Kontrollen wie oben beschrieben wiederholen.

Bandzug im REWIND- Betrieb

Messgeraet Stopuhr

Regler Steckkarte

"TAPE TENSION"

1.830.455

REWIND LEFT Potentiometer

REWIND RIGHT

Hilfsmittel Kassette mit Spieldauer entsprechend einer Zeitcode-Aufnahme von

15 Minuten (900s).

Voraussetzungen

- Die Einstellungen der Bandzuege PLAY (Abschnitt 5.3.1) und IDLE (Abschnitt 5.3.2) muessen abgeschlossen sein.
- Die Potentiometer R2 REWIND LEFT und R5 RE-WIND RIGHT muessen auf Mitte Einstellbereich positioniert sein.

Messen der Rueckspulzeit t/</

- Stopuhr in Einsatzbereitschaft halten.
- Maschine mit Kassette bestuecken und auf 15 Minuten positionieren.
- Maschine im |<|-Modus, und gleichzeitig Stopuhr starten, - Magnetband beachten.
- Sobald der Transparentvorspann des Bandanfanges links des Kopftraegers erscheint: Zeit stoppen und Anzeigewert notieren.

Messen der Vorspulzeit t[>]

- Band auf Code-Anfang (0.00.0) positionieren.
- Maschine im |>|-Modus, und gleichzeitig Stopuhr starten, - Magnetband beachten.
- Sobald der Transparentnachspann des Bandendes rechts des Kopftraegers erscheint: Zeit stoppen und Anzeigewert notieren.

Kontrolle

Zur Berechnung der Solldauer von |<|- und |>|Umspulzeiten gilt:

t|<| = t|>| = tPLAY/50 Toleranz: +/-2s Fuer die Zeitcodeaufzeichnung von 900 Sekunden betraegt demnach die Solldauer:

t|<| = t|>| = 900s/50 = 18s +/-2s

Korrektur anhand der oben ermittelten Ist-Umspulzeiten, durch entsprechende Justierung an den Potentiometern R2 und R5:

- Fuer t|<|: Drehen von R5 REWIND RIGHT im Uhrzeigersinn bewirkt Verringerung der Umspulzeit im |<|-Modus.
- Fuer t|>|: Drehen von R2 REWIND LEFT im Uhrzeigersinn bewirkt Verringerung der Umspulzeit im |>|-Modus.

5.3.4 Visuelle Kontrolle des Bandlaufes

Neuwertiges Chromband einsetzen und Maschine im PLAY-Betrieb starten.
Lichtreflexe auf Bandflaeche beachten:
Unregelmaessigkeiten der Bandfuehrung, insbeschdere im Bereich der Bandfuehrungselemente, werden auf diese Weise sichtbar.
Korrekturen erfolgen nach entsprechender Einstellvorschrift im Kapitel 4 "MECHANISCHE EINSTELLUNGEN".

5.4 CAPSTAN-SYNCHRONISATION

Messgeraet	Oszilloskop		
Messpunkte	Steckkarte	CAPSTAN	MOTOR CTRL.
		1.830.4	50
	Testpunkte	TP1	(Signal)
		TP2	(Masse)
Regler	Potentiometer	R42	

Einstellung

- Oszilloskop an Testpunkte TP1(Signal) und TP2(Masse) anschliessen.
- Maschine mit Kassette bestuecken und im PLAY-Modus starten.
- Einstellung von Potentiometer R42 so waelen, dass das Oszilloskop ein Rechtecksignal mit horizontal stabilen Flanken aufzeigt.

CAPSTAN MOTOR CTRL. 1.830.450

5.5 RS 232C PEGELEINSTELLUNG (Serielle Schnittstelle)

Messgeraet

Oszilloskop

Hilfsmittel

Terminal mit serieller Schnitt-

stelle RS 232C.

Messpunkte

Steckkarte

"INTERFACE 2"

1.830.485 TP2

TP1

Testpunkte

(Signal)

(Masse)

Regler

R 28 Potentiometer

Vorbereitungen

1) Terminal auf CAD-Schnittstelle einstellen.

Spezifikationen:

2400 Baud Odd Parity Half Duplex

7 Data-,2 Stop Bit

Anschlussbelegung:

siehe Skizze

Die MODEM-Funktion ist der Kassettenmaschine KM zugeordnet.

- 2) CAD-Schnittstelle erstellen. Print "INTERFACE 2" 1.830.485:
 - a) Bruecke MP1 und MP2 auftrennen.
 - b) IC4 (DC-Converter) bestuecken.

 - c) Jumper JS1 auf Stellung "R" setzen.
 d) Adresse der Kassettenmaschine bestimmen: Es stehen Adress-Kombinationen zweier hexa-
 - dezimaler Stellen (SZ1 und SZ2) zur Verfuequnq.

Pegel-Einstellung

- Oszilloskop an Testpunkte TP1(Masse) und TP2(Signal) anschliessen.
- Mittels Terminal einen andauernden Signalcharakter an entsprechend adressierte Kassettenmaschine *) senden.
 - *) siehe Kapitel 2 BEDIENUNG, unter 2.4.4/1 "Befehle an die Kassettenmaschine"
- An Potentiometer R28 ein Pegel von 600mV einstellen.

INTERFACE 2 1.830.485

FEHLERANZEIGE

Beachte Display (6) an LOCAL CONTROL-Einheit:

- El SMPTE-Zeitcodeaufzeichnung defekt. Kontrolle durch Fehlersimulation:
 - Maschine, bestueckt mit Kassette in PLAY-Betrieb setzen (Kassette mit Zeitcode-Aufzeichnung).
 - Kopftraeger(4) manuell anheben (Kontakt von Code-Lesekopf zu Magnetband unterbrechen) •

Am Display erscheint die Fehleranzeige El.

E2 Hermung oder Blockade des Magnetband-Transportes.

Kontrolle durch Fehlersimulation:

- Maschine mit Kassette bestuecken und STOPmodus erstellen.
- Andruckrollenarm (2) manuell in Ruhestellung festhalten, waehrend die PLAY-Taste betaetigt wird.

Als Folge schwenken Kopftraeger (4) und Kassettentraeger (3) aus•

Am Display erscheint die Fehleranzeige E2.

- Kassette auswerfen (EJECT-Taste)•

- E3 In falscher Lage zugefuehrte Kassette. Geraeteseitiges Kontrollorgan fuer diese Pruefung bildet die linke Lichtschranke (1) am Kassettentraeger. Sie registriert, in Verbindung mit der einseitig der Kassette angebrachten Aussparung, deren Bandlaufrichtuna.
 - Kontrolle durch Fehlersimulation: - Kassette mit der Aussparung voran in Kassettentraeger einschieben.

Am Display erscheint die Fehleranzeige E3.

- Kassette auswerfen (EJECT-Taste).

E4 Magnetband gerissen.

Kontrolle durch Fehlersimulation (ohne Kas-

settenbestueckung):

- Rechte Lichtschranke (5) an Kassettentraeger (Sensor fuer Kassettenpraesenz) kurzzeitig, mit Hilfe eines Papierstreifens abdecken. Folge: Der Kassettentraeger schwenkt ein, - die Wickelmotoren beschleunigen kurzzeitig.
- Am Display erscheint die Fehleranzeige E4. Mit dem Stillstand des rechten Wickelmotors schwenkt der Kassettentraeger aus; die Anzeige verbleibt anschliessend noch ca.3s auf E4, bevor sie auf die Programmanzeige Pl wechselt.

CONTENTS

DESCRIPTION			
SURVEY OF POWER SUPPLY COMPONENTS 6/3	DESCRIPTION	SCHEMATIC NO.	SECTION/PAGE
AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER I. 830.445 INPUT HF NOISE FILTER I. 830.443 INPUT HF NOISE FILTER I. 830.444 INPUT HF NOISE FILTER II. 830.444 INPUT HF NOISE FILTER II. 830.444 INPUT HF NOISE FILTER II. 830.444 INPUT HF NOISE FILTER III. 830.444 III. 830.444 III. 830.440 III. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	SURVEY OF POWER SUPPLY COMPONENTS POWER SUPPLY / BLOCK DIAGRAM POWER SUPPLY BASEBOARD TRAFO ASSEMBLY STABILIZER PCB	1.830.370 1.830.360	6/3 6/4 6/5 6/7 6/8
AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO OTTERCONNECTION PCB INPUT HF NOISE FILTER OUTPUT HF NOISE FILTER 1.830.443 7/8 OUTPUT HF NOISE FILTER OUTPUT HF NOISE FILTER 1.830.444 7/8 WIRE HARNESS / HEAD BLOCK ASSEMBLY HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011) HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011) HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010) HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010) HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010) REPRODUCE AMPLIFIER PCB 1.830.465 7/12 RECORD AMPLIFIER PCB 1.830.467 7/16 OSCILLATOR PCB 1.830.468 8/3 CONTROL INTERCONNECTION SIGNAL LIST ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830.448 8/15 WIRE HARNESS / TAPE DECK CONTROL INTERCONNECTION PCB 1.830.448 8/15 WIRE HARNESS / TAPE DECK CONTROL BLIECT CONNECTION PCB 1.830.448 8/17 DRIVER PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.475 BLIECT CONNECTION DET PCB 1.830.475 BLIECT CONNECTION DET PCB 1.830.475 BLIECT CONNECTION DET PCB 1.830.475 BLIECT SOURCE AND SENSOR ASSEMBLIES 1.830.495 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.475 BLIECT SOURCE AND SENSOR ASSEMBLIES 1.830.496 8/25 TACHO OF SPOOLING MOTOR 1.830.496 8/26 INTERRACE 1 PCB 1.830.476 8/27 BLIECT SOURCE SOUR SENSOR ASSEMBLIES 1.830.496 8/28 INTERRACE 1 PCB 1.830.476 8/28 INTERRACE 1 PCB 1.830.476 9/3 BLOCAL CONTROL CONNECTION PCB 1.830.331 9/6 BLOCAL CONTROL CONNECTION PCB 1.830.331 9/6 BLOCAL CONTROL CONNECTION PCB 1.830.390 9/11 INTERRACE 1 PCB 1.830.390 9/11 INTERRACE 1 PCB 1.830.390 9/11 INTERRACE PCB / REMOTE CONTROL 1.830.990 9/11 INTERRACE PCB / REMOTE CONTROL 1.830.990 9/11 INTERRACE PCB / REMOTE CONTROL 1.830.990 9/11			-
AUDIO CONNECTION PCB AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER OUTPUT HF NOISE FILTER UNE HARNESS / HEAD BLOCK ASSEMBLY HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011) HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011) HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011) REPRODUCE AMPLIFIER PCB RECORD AMPLIFIER PCB RECORD AMPLIFIER PCB SURVEY OF TAPE DECK CONTROL COMPONENTS TAPE DECK CONTROL BLOCK DIAGRAM CONTROL INTERCONNECTION SIGNAL LIST ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB COMFONENTS OF CONTROL INTERCONNECTION PCB COMFONENTS OF CONTROL INTERCONNECTION PCB COMFONENTS OF CONTROL INTERCONNECTION PCB LISCOLARD WHE HARNESS / TAPE DECK CONTROL BLECT CONNECTION PCB COMPONENTS OF CONTROL PCB LISCOLARD WHE HARNESS / TAPE DECK CONTROL BLECT CONNECTION PCB COMPONENTS OF CONTROL PCB LISCOLARD CAPSTAN MOTOR CONTROL PCB LISCOLARD CAPSTAN MOTOR CONTROL PCB LISCOLARD CAPSTAN MOTOR CONTROL PCB LIGHT SOURCE AND SENSOR LIGHT SOURCE AND SENSOR END OF TAPE SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR END OF TAPE SENSOR CONTROL END OF TAPE SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR END OF TAPE SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR END OF TAPE SOURCE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR END OF TAPE SENDICE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR END OF TAPE SOURCE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR END OF TAPE SOURCE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR ASSEMBLIES LIGHT SOURCE AND SENSOR PCB			
AUDIO INTERCONNECTION PCB 1.830.445 7/6 INPUT HE NOISE FILTER 1.830.443 7/8 UNTEUT HE NOISE FILTER 1.830.443 7/8 UNTEUT HE NOISE FILTER 1.830.444 7/8 WIRE HARNESS / HEAD BLOCK ASSEMBLY 1.830.190 7/9 HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011) 1.020.340 7/10 HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3011) 1.020.341 7/11 REPRODUCE AMPLIFIER PCB 1.830.466 7/12 RECORD AMPLIFIER PCB 1.830.466 7/12 RECORD AMPLIFIER PCB 1.830.467 7/16 OSCILLATOR PCB 1.830.467 7/16 OSCILLATOR PCB 1.830.467 7/16 UNITED BLOCK CONTROL COMPONENTS 8/3 TAPE DECK CONTROL SIGNAL LIST 8/4 CONTROL INTERCONNECTION SIGNAL LIST 8/4 ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION SIGNAL LIST 8/4 CONTROL INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION PCB 1.830.448 8/15 UNITE HARNESS / TAPE DECK CONTROL WIRE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.448 8/16 EJECT CONNECTION PCB 1.830.448 8/17 DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL DRIVER PCB 1.830.470 8/18 UNE HARNESS / TAPE DECK CONTROL SOME SOME SOME SOME SOME SOME SOME SOME			
NPUT HF NOISE FILTER		1 000 445	
NOTITUTH FENDISE FILTER			
WIRE HARNESS / HEAD BLOCK ASSEMBLY			
HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011)			•
HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010) 1.020.341 7/11 REPRODUCE AMPLIFIER PCB 1.830.465 7/12 RECORD AMPLIFIER PCB 1.830.460 7/14 CODE AMPLIFIER PCB 1.830.467 7/16 OSCILLATOR PCB 1.830.467 7/16 OSCILLATOR PCB 1.167.712 7/18 TAPE DECK CONTROL SURVEY OF TAPE DECK CONTROL COMPONENTS 8/3 CONTROL INTERCONNECTION SIGNAL LIST 8/4 ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830.448 8/15 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/16 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/16 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/16 EJECT CONNECTION PCB 1.830.448 8/16 EJECT CONNECTION PCB 1.830.448 8/16 EJECT CONNECTION PCB 1.830.460 8/17 DRIVER PCB 1.830.450 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/17 DRIVER PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.450 8/25 LIGHT SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 INTERFACE 1 PCB 1.830.450 8/26 INTERFACE 2 PCB 1.830.450 8/26 INTERFACE 2 PCB 1.830.470 8/34 PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE ONNECTORS 1.830.430 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 END OF PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 1.830.330 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 9/16 END OF PERIPHERIE CONNECTORS 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.900 9/16			
REPRODUCE AMPLIFIER PCB RECORD REC			•
RECORD AMPLIFIER PCB 1.830.460 7/14 CODE AMPLIFIER PCB 1.830.467 7/16 OSCILLATOR PCB 1.167.712 7/18 TAPE DECK CONTROL 8 SURVEY OF TAPE DECK CONTROL COMPONENTS 8/3 TAPE DECK CONTROL BLOCK DIAGRAM 8/3 CONTROL INTERCONNECTION SIGNAL LIST 8/4 ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830.448 8/15 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/16 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/15 WIRE HARNESS / TAPE DECK CONTROL 1.830.146 8/17 DRIVER PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/16 EJECT CONNECTION PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.450 8/26 LIGHT SOURCE AND SENSOR 1.830.455 8/22 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.450 8/26 MICROPROCESSOR 1 PCB 1.830.456 8/25 INTERFACE 1 PCB 1.830.456 8/25 INTERFACE 1 PCB 1.830.456 8/25 INTERFACE 2 PCB 1.830.456 8/26 MICROPROCESSOR 1 PCB 1.830.456 8/26 MICROPROCESSOR 2 PCB 1.830.456 8/32 MICROPROCESSOR 2 PCB 1.830.456 8/32 MICROPROCESSOR 2 PCB 1.830.456 8/32 MICROPROCESSOR 2 PCB 1.830.330 9/4 PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 1.830.912 9/3 LOCAL CONTROL CONNECTION PCB 1.830.912 9/8 SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL CONTROL 1.830.900 9/16			•
CODE AMPLIFIER PCB 1.830,467 7/16 OSCILLATOR PCB 1.167.712 7/18 TAPE DECK CONTROL SURVEY OF TAPE DECK CONTROL COMPONENTS 8/3 TAPE DECK CONTROL BLOCK DIAGRAM 8/3 CONTROL INTERCONNECTION SIGNAL LIST 8/4 ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830,448 8/14 CONTROL INTERCONNECTION PCB 1.830,448 8/16 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830,448 8/16 CONTROL INTERCONNECTION PCB 1.830,448 8/16 WIRE HARNESS / TAPE DECK CONTROL 1.830.180 8/16 EJECT CONNECTION PCB 1.830,146 8/17 DRIVER PCB 1.830,470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830,450 8/20 TAPE TENSION CONTROL PCB 1.830,455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830,455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830,425 8/24 LIGHT SOURCE AND SENSOR 1.830,430 8/25 INTERFACE 1 PCB 1.830,476 8/25 INTERFACE 1 PCB 1.830,476 8/25 INTERFACE 1 PCB 1.830,476 8/28 INTERFACE 1 PCB 1.830,476 8/28 INTERFACE 2 PCB 1.830,430 9/4 PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 1.830,330 9/4 LOCAL CONTROL CONNECTION PCB 1.830,331 9/6 LOCAL CONTROL CONNECTION PCB 1.830,900 9/11 INTERFACE PCB / REMOTE CONTROL CPU - 8085 REMOTE CONTROL CNTROL CONT	REPRODUCE AMPLIFIER PCB		
OSCILLATOR PCB 1.167.712 7/18 TAPE DECK CONTROL SURVEY OF TAPE DECK CONTROL COMPONENTS 8/3 SURVEY OF TAPE DECK CONTROL SUCK DIAGRAM 8/3 CONTROL INTERCONNECTION SIGNAL LIST 8/4 ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION PCB 1.830.448 8/16 WIRE HARNESS / TAPE DECK CONTROL 1.830.148 8/16 EJECT CONNECTION PCB 1.830.146 8/17 DRIVER PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.451 8/24 LIGHT SOURCE AND SENSOR 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.415 8/24 LIGHT SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.456 8/25 INTERFACE 1 PCB 1.830.475 8/28 MICROPROCESSOR 1 PCB 1.830.475 8/28 MICROPROCESSOR 1 PCB 1.830.475 8/28 MICROPROCESSOR 1 PCB 1.830.476 8/34 PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 1.830.331 9/6 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL CONTROL CONNECTION PCB 1.830.390 9/11 NTERFACE PCB / REMOTE CONTROL PCB 1.830.900 9/11			
Name	CODE AMPLIFIER PCB		·
SURVEY OF TAPE DECK CONTROL COMPONENTS SURVEY OF TAPE DECK CONTROL COMPONENTS TAPE DECK CONTROL BLOCK DIAGRAM CONTROL INTERCONNECTION SIGNAL LIST ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB INTERCONNECTION PCB COMPONENTS OF CONTROL INTERCONNECTION PCB		1.167.712	
TAPE DECK CONTROL BLOCK DIAGRAM CONTROL INTERCONNECTION SIGNAL LIST ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB INTERCONNECTION P			_
CONTROL INTERCONNECTION SIGNAL LIST ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB COMPONENTS OF CONTROL INTERCONNECTION PCB INTERCONNECTION PCB COMPONENTS OF CONTROL INTERCONNECTION PCB INTERCO			
ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL— INTERCONNECTION PCB 1.830.448 8/5 COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION PCB 1.830.448 8/15 WRE HARNESS / TAPE DECK CONTROL 1.830.180 8/16 EJECT CONNECTION PCB 1.830.180 8/16 EJECT CONNECTION PCB 1.830.146 8/17 DRIVER PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.415 8/24 LIGHT SOURCE AND SENSOR 1.830.425 8/24 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.456 8/25 INTERFACE 1 PCB 1.830.480 8/26 MICROPROCESSOR 1 PCB 1.830.480 8/26 MICROPROCESSOR 1 PCB 1.830.485 8/32 MICROPROCESSOR 2 PCB 1.830.485 8/32 MICROPROCESSOR 2 PCB 1.830.485 8/34 PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE 0.9/3 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 1.830.900 9/11 NITERFACE PCB / REMOTE CONTROL 1.830.900 9/11 NITERFACE PCB / REMOTE CONTROL 1.830.900 9/11 KEYBOARD REMOTE CONTROL 1.830.900 9/14	TAPE DECK CONTROL BLOCK DIAGRAM		
INTERCONNECTION PCB			8/4
COMPONENTS OF CONTROL INTERCONNECTION PCB COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448 8/14 CONTROL INTERCONNECTION PCB 1.830.448 8/15 WIRE HARNESS / TAPE DECK CONTROL 1.830.180 8/16 EJECT CONNECTION PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.455 8/24 LIGHT SOURCE AND SENSOR 1.830.420/425 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.486 MICROPROCESSOR 1 PCB 1.830.486 MICROPROCESSOR 1 PCB 1.830.475 8/28 INTERFACE 1 PCB MICROPROCESSOR 2 PCB MICROPROCESSOR 2 PCB PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB 1.830.330 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.902 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.902 9/16	ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL—		0/5
CONTROL INTERCONNECTION PCB 1.830.448 8/15 WIRE HARNESS / TAPE DECK CONTROL 1.830.180 8/16 EJECT CONNECTION PCB 1.830.180 8/16 EJECT CONNECTION PCB 1.830.146 8/17 DRIVER PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.415 8/24 LIGHT SOURCE AND SENSOR 1.830.415 8/24 END OF TAPE SOURCE AND SENSOR 1.830.420/425 8/24 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.456 8/25 INTERFACE 1 PCB 1.830.456 8/26 MICROPROCESSOR 1 PCB 1.830.475 8/28 INTERFACE 2 PCB 1.830.475 8/28 INTERFACE 2 PCB 1.830.476 8/34 PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE 99/2 SIGNAL LIST OF PERIPHERIE 99/2 SIGNAL LIST OF PERIPHERIE 99/3 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL PCB 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL PCB 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL PCB 1.830.900 9/11 CPU - 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL PCB 1.830.902 9/14	****		
WIRE HARNESS / TAPE DECK CONTROL ### HARNESS / TAPE DECK CONTROL ### BUSINESS / TAPE DECK DIAGRAM ### BUSINESS / TAPE DECK CONTROL ### BUS			
EJECT CONNECTION PCB 1.830.146 8/17 DRIVER PCB 1.830.470 8/18 CAPSTAN MOTOR CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.455 8/24 LIGHT SOURCE AND SENSOR 1.830.425 8/24 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.456 8/25 INTERFACE 1 PCB 1.830.456 8/25 INTERFACE 1 PCB 1.830.456 8/26 MICROPROCESSOR 1 PCB 1.830.475 8/28 INTERFACE 2 PCB 1.830.475 8/28 INTERFACE 2 PCB 1.830.485 8/32 MICROPROCESSOR 2 PCB 1.830.476 8/34 PERIPHERIE 9 SURVEY OF PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 9/3 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 9/8 SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL CONTROL PCB 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL FINANCIAL PCB 1.830.900 9/14 KEYBOARD REMOTE CONTROL PCB 1.830.900 9/14 KEYBOARD REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL PCB 1.830.900 9/16			
DRIVER PCB CAPSTAN MOTOR CONTROL PCB 1.830.450 8/20 TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.415 8/24 LIGHT SOURCE AND SENSOR 1.830.420/425 END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.456 8/25 INTERFACE 1 PCB 1.830.480 8/26 MICROPROCESSOR 1 PCB 1.830.475 8/28 INTERFACE 2 PCB 1.830.475 8/28 MICROPROCESSOR 2 PCB 1.830.476 8/34 PERIPHERIE SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB 1.830.331 LOCAL CONTROL CONNECTION PCB SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL SERIAL REMOTE CONTROL PCB 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.900 9/14 KEYBOARD REMOTE CONTROL			
CAPSTAN MOTOR CONTROL PCB CAPSTAN MOTOR CONTROL PCB TAPE TENSION CONTROL PCB 1.830.455 8/22 HEAD TAPE POSITION DETECTOR PCB 1.830.415 8/24 LIGHT SOURCE AND SENSOR 1.830.420/425 8/24 END OF TAPE SOURCE AND SENSOR ASSEMBLIES TACHO OF SPOOLING MOTOR 1.830.456 MICROPROCESSOR 1 PCB MICROPROCESSOR 1 PCB MICROPROCESSOR 2 PCB MICROPROCESSOR 2 PCB SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL SERIAL REMOTE CONTROL PCB SERIAL REMOTE CONTROL PCB 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL RESOURCE SOURCE 1.830.900 9/16 KEYBOARD REMOTE CONTROL 1.830.900 9/16	EJECT CONNECTION PCB		
TAPE TENSION CONTROL PCB TAPE TENSION CONTROL PCB HEAD TAPE POSITION DETECTOR PCB LIGHT SOURCE AND SENSOR LIGHT SOURCE AND SENSOR 1.830.420/425 END OF TAPE SOURCE AND SENSOR ASSEMBLIES TACHO OF SPOOLING MOTOR 1.830.456 MICROPROCESSOR 1 PCB MICROPROCESSOR 1 PCB INTERFACE 2 PCB MICROPROCESSOR 2 PCB MICROPROCESSOR 2 PCB SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL PCB 1.830.900 9/14 KEYBOARD REMOTE CONTROL PCB 1.830.900 9/14	DRIVER PCB		
HEAD TAPE POSITION DETECTOR PCB LIGHT SOURCE AND SENSOR END OF TAPE SOURCE AND SENSOR ASSEMBLIES TACHO OF SPOOLING MOTOR INTERFACE 1 PCB MICROPROCESSOR 1 PCB INTERFACE 2 PCB MICROPROCESSOR 2 PCB MICROPROCESSOR 2 PCB SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL LOCAL CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL LOU - 8085 REMOTE CONTROL KEYBOARD REMOTE CONTROL 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.900 9/16			
LIGHT SOURCE AND SENSOR LIGHT SOURCE AND SENSOR END OF TAPE SOURCE AND SENSOR ASSEMBLIES TACHO OF SPOOLING MOTOR 1.830.420/425 TACHO OF SPOOLING MOTOR 1.830.456 8/25 TACHO OF SPOOLING MOTOR 1.830.480 8/26 MICROPROCESSOR 1 PCB 1.830.475 8/28 INTERFACE 2 PCB MICROPROCESSOR 2 PCB 1.830.485 8/32 MICROPROCESSOR 2 PCB 1.830.476 8/34 PERIPHERIE SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL KEYBOARD REMOTE CONTROL 1.830.902 9/16			
END OF TAPE SOURCE AND SENSOR ASSEMBLIES TACHO OF SPOOLING MOTOR 1.830.430 8/25 TACHO OF SPOOLING MOTOR 1.830.480 MICROPROCESSOR 1 PCB INTERFACE 2 PCB			
TACHO OF SPOOLING MOTOR INTERFACE 1 PCB INTERFACE 1 PCB INTERFACE 1 PCB INTERFACE 1 PCB INTERFACE 2 PCB INTERFACE PCB 2 PCB INTERFACE PCB 3 PCB INTERFACE PCB 4 REMOTE CONTROL INTERFACE PCB 5 REMOTE CONTROL INTERFACE PCB 6 PCB 6 PCB INTERFACE PCB 7 PCB INTERFACE PC			
INTERFACE 1 PCB MICROPROCESSOR 1 PCB INTERFACE 2 PCB INTERPECE MICROPROCESSOR 2 PCB INTERPECE SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL PCB KEYBOARD REMOTE CONTROL 1.830.902 9/16	END OF TAPE SOURCE AND SENSOR ASSEMBLIES		
MICROPROCESSOR 1 PCB INTERFACE 2 PCB INTERFACE 2 PCB MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 2 PCB MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 2 PCB MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 2 PCB MICROPROCESSOR 1 PCB MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 1 RS30.485 MICROPROCESSOR 1 PCB MICROPROCESSOR 1 RS30.485	TACHO OF SPOOLING MOTOR		
INTERFACE 2 PCB 1.830.485 8/32 MICROPROCESSOR 2 PCB 1.830.476 8/34 PERIPHERIE 9 SURVEY OF PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 9/3 LOCAL CONTROL CONNECTION PCB 1.830.330 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 1.830.912 9/8 SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.904 9/11 CPU — 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906 9/16	INTERFACE 1 PCB		
MICROPROCESSOR 2 PCB MICROPROCESSOR 2 PCB PERIPHERIE SURVEY OF PERIPHERIE SIGNAL LIST OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL KEYBOARD REMOTE CONTROL KEYBOARD REMOTE CONTROL 1.830.906 8/34 9/2 1.830.330 9/4 1.830.331 9/6 1.830.912 9/8 9/11 1.830.900 9/11 1.830.900 9/11 1.830.900 9/14	MICROPROCESSOR 1 PCB		
PERIPHERIE 9/2 SURVEY OF PERIPHERIE 9/2 SIGNAL LIST OF PERIPHERIE CONNECTORS 9/3 LOCAL CONTROL CONNECTION PCB 1.830.330 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 1.830.912 9/8 SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.904 9/11 CPU - 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906 9/16	INTERFACE 2 PCB		
SURVEY OF PERIPHERIE SURVEY OF PERIPHERIE SIGNAL LIST OF PERIPHERIE CONNECTORS LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL KEYBOARD REMOTE CONTROL KEYBOARD REMOTE CONTROL 1.830.902 9/16	MICROPROCESSOR 2 PCB	1.830.476	
SIGNAL LIST OF PERIPHERIE CONNECTORS 9/3 LOCAL CONTROL CONNECTION PCB 1.830.330 9/4 LOCAL CONTROL CONNECTION PCB 1.830.331 9/6 LOCAL KEYBOARD 1.830.912 9/8 SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.904 9/11 CPU - 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906 9/16	PERIPHERIE		
LOCAL CONTROL CONNECTION PCB LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL KEYBOARD REMOTE CONTROL KEYBOARD REMOTE CONTROL 1.830.906 9/4 1.830.330 9/4 1.830.331 9/6 1.830.912 9/8 1.830.900 9/11 1.830.900 9/11 1.830.900 9/14	SURVEY OF PERIPHERIE		
LOCAL CONTROL CONNECTION PCB LOCAL KEYBOARD SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL PCB KEYBOARD REMOTE CONTROL 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906			
LOCAL KEYBOARD 1.830.912 SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM INTERFACE PCB / REMOTE CONTROL CPU — 8085 REMOTE CONTROL PCB KEYBOARD REMOTE CONTROL 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906	LOCAL CONTROL CONNECTION PCB		
SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900 9/11 INTERFACE PCB / REMOTE CONTROL 1.830.904 9/11 CPU — 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906 9/16	LOCAL CONTROL CONNECTION PCB		
INTERFACE PCB / REMOTE CONTROL 1.830.904 9/11 CPU — 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906 9/16	LOCAL KEYBOARD		
CPU - 8085 REMOTE CONTROL PCB 1.830.902 9/14 KEYBOARD REMOTE CONTROL 1.830.906 9/16			
KEYBOARD REMOTE CONTROL 1.830.906 9/16			
KE PROAID HEMOTE CONTINGE	CPU — 8085 REMOTE CONTROL PCB		
	KEYBOARD REMOTE CONTROL		
TACHO OF EDIT 1.830.908 9/18	TACHO OF EDIT	1.830.908	9/18

SURVEY OF POWER SUPPLY COMPONENTS

POWER SUPPLY UNIT 1.830.350 / BLOCK DIAGRAM

POWER SUPPLY UNIT 1.830.350 POWER SUPPLY BASEBOARD 1.830.370

POWER SUPPLY UNIT 1.830.350 POWER SUPPLY BASEBOARD 1.830.370

IND	POS NO	NO	PART NO	VALUE	VALUE SPECIFICATIONS/EQUIVALE			T MFR
	FL1	89 - 0	01.0384	FN 312-3/05	3 <i>A</i>	220 V	Schaffner	
	J 1	54.0	04.0105					
	J 2	54.3	11.2005		2 ×	32 pins		
+	P1	54.0	2.0320					
	P2	54.0	2.0320					
	P3	54.0	2.0335					
	<u>P</u> 4	54.0	02.0335					
	P5	54.0	2.0335					
	P6	54.0	2.0335					
	P7	54.0	2.0335					
	P8	54. c	2.0335					
	P9	54.0	2.0320					
	P 10	54.0	2.0335					
	P11	54.0	2.0320					
-							,	
1								
-								
ND		ГЕ ГЕ	I NAME	1		· · · · · · · · · · · · · · · · · · ·		
a								
3	-			1				
2				1				
0				7				
	22,06.	1.932	C. Metz	1				

POWER SUPPLY UNIT 1.830.350 TRAFO ASSEMBLY 1.830.360

STABILIZER PCB 1.830.355

POWER SUPPLY UNIT 1.830.350

ND	POS NO	PART NO	VALUE	s	PECIFICATION	IS/EQUIVALENT	MFR
	201	59, 31, 2103	0,01 Ju			PE	
7	202	59.31.2103	0,01 1			Pε	
\exists	203	59, 35, 4472	4700 N		40Y	EL	
	2 301	59.31.21c3	0,01 ,u			Pe	
T	302	59.31.2103	0,01 ,4			PE	
	303	59.22.5222	2200 u		25 y	EL	
2	304	59.02.0474	0.47 M	±5%	63V	MPC	
	305	59.34.4100	10 p			CER	
	306	59.31.6104	0.1 1			PE	
	307	59.31.6104	0,1 Ju			PE	
	308	59,36.3100	10 u		167	TA	
	309	59.34.4151	150 p			CER	
	310	59.22.3102	1000 ju		167	EL	
	C 401	59,31.2103	0,01 µ			PE	
1	402	59.31.2103	0,01 .u			PE	
H	403	59.25.5222	2200 u		251	FL	
2	404	59.02.0474	0.47 M	± 5%	63 V	MPC	_
)	+05	59.34.1100	10 p			CER	
\neg	406	59 31 6104	0.1 M			PE	
\vdash	407	59 31 6104	0,1 u			PE	
1	+08	52.5.	-11 751				
	409	59,22 3102	1000 Ju		167	EL	
	C 501	59.31.2103	0.01 u			PE	
- 1	502	59.31.2103	u, 10.0			PF	

	202 2	9,31,2103	S 0	.o1 ,u	PE	
IND	DATE	NAME	1			
4			Pε	POLYESTER		
3			EL	ELECTROLYTIC		
2	15.10.1981	C. Metz	CER	CERAHIC		
1	20.4 84	10				
0	25.2.80	Th				
6	STUDER	Powe	R S	UPPLY	1.830.350.00	PAGE 1 OF 7

ND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	C 503	59, 22, 4472	4700 N	16 V EL	
2	504			±5% 63V MPC	
	505		47 p	CER	
	506	59, 22. 2102		6V EL	
_	D 101	50.04.0105	IN4004	1A 200V	
1	102	50.04.2111	MV5753	LED	IR, Mo
	7 0-1	F- 1 -F-	MD F o O	3A 200V	Мот
	D 201	50.04.050	MD 502	3A 2001	1101
	202	50.04.050	MD E - 0	u v	и
	203	50.04.050	MR 302	и и	
	204	50.04.050	MR 502		IR,Ma
1	205	50.04.2111	MV 5753	LED	111,110
_	D 301	50.04.010		1A 200V	
	302	50.04.010.	5 1N 4004	и н	
	303			ч	
	304	50,04.010	1N4004	и н	
	305	50.04.111	7 Z 12	0,4W	
	306	50.04.012	5 (N 4 4 4 8		
1	307	50.04.012	51N4448		
	308		3 Z 7.5	0,4W	
1	309		MV5753	LED	IR,Ma
_					
	D 401	50.04.010	51N4004	1A 200V	
	402	50.04.010	51N4004	ы	

IND	DATE	NAME			
4			EL ELECTROLYTIC	ΙR	INTERN. RECT.
3			PE POLYESTER	Mon	Monsanto
2	16.10.1981	C Metz	CER CERAHIC	Мот	MOTOROLA
1	20.4.84	Vr			
0	26.2.80	Th			
6	STUDER	Power	R SUPPLY	1,830	, 350, 00 PAGE ? OF ?

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	D 403	50.04.0105	1N4004	1A 200V	
	404	50.04.0105	1N4004	Se to	
	405	50.04.1117		o,4W	
	406	50.04.0125	1N4448		
1	407	50.04.0125	1N4448		
	408	50.04.1103		0,4W	
1	409	50.04.2111		LED	IR, Mon
F	D 501	50.04.0507	MR 502	3A 1ocV	Мот
-	502	50.04.0507	MR 502	u v	
_	503	50.04.0507	MR 502	ų u	
-	504	50.04.0507	MR 502	v .	
	505	50.04.1112		0,4 W	
-	506				
-	507	50.04.1107	Z 3,3	0,4W	
-	508	50.04.0125	17/4448		
	503	50.04.1101	Z3.9	0,4 W	
1	510	50.04.2111		LED	IR. Mor
	F 1	51.01.0117	1 A	S_DW BLDW @ 200240 VAC	
		51. 01. 0120	2 A	20 100 140 VAC	
	'o*	51.01.0111	250 mA	à y	
Г	201	51.01.0120			
	301	51.01.0117	1 4	y w	
	101	51.01.011		. *	
	501	51.01.0123	4 A	н и	
	1 1				

C Meta

STUDER

POWER SUPPLY

IR INTERN. RECT. HON MONSANTO HOT MOTOROLA

1 . 830 . 350 .00 PAGE 4 OF ?

STUDE		SUPPLY	1.830.350.00 PAG	E 3 OF T
SIUDE	H FUWER	SUPPLI	1.000.000.00	
ID POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
IC 301	50.05.0119	μΑ 723 C		F, N
401	50.05.0119	и А 723 C		
P 1	54.04.0104	3 n	MAINS - PLUG	
2	54,11.2004		EDGE CONNECTOR	
				_
000	50.99.0106	T 2800 D	TRIAC 8A	RCA
Q 301 302	50.03.0458	DD 706	PNP	NS.M
303	50.03.0497	BC 550	NPN	1100
303	30,03,0431	BC 330	14111	
0 / 0/	50.99.0106	T 2800 D	TRIAC 8A	RCA
Q 401 402	50.03.0458	RD 796	PNP	NS, F
402	30.03.0430	130	1 /01	110,1
Q 5o1	50,99.0106	T 2800 N	TRIAC 8A	RCA
502	50.03.0481	MJ 2955	PNP	Мот
503	50.03.0495	BD 135-16	NPN	SIE
	50.03.0497		NPN	
505	50.03.0496		JND	
1 R 101	57 11 4562	2 5,6 k		
102	57 11 4682			
103	57 11 4682			
	EB 55 51-5		4 W Ww	,
1 R 201	57 56 5152 57 11 4472	1,5 k		-
NDI DATE		1 3/ N		
4			F FAIRCHILD	
3			NS NAT. SEHIC.	
2 16.101			RCA RCA	
1 20.4.	81 Vo-		HOT HOTOROLA	
0 25.2.	80 Th		SIE SIEHENS	

IND POS NO	PART NO	VALUE	SPEC	IFICATION	NS/EQUIVALENT	MFR
R 301	57,56.5688	0,68		4W	WW	
302	57.11.4471	470				
303	57, 11, 4220	22				
304	57. 11.4102	1 k				
305	57, 11, 4181	180				
306	57.11.4229	2,2 1,8				
307	57.11.4189	1,8				
308	57.11.4332	3,3 k				
309	57.11.4100	10				
310	57. 11. 4332	3,3 k				
311	57, 11,4820	82	je.			
312	57.11.4680	68				
313	57,39,1002	10 k			MŦ	
314	57.39.5111	5,11 k			ΗF	
315	57.11,4392	3,9 k				
316	58.01.7102	1 k	TRIM			
317	57.41.4562	5,6 k				
318	57.11.4100	10				
319	57,11,4482	1,8 k				
R 1-01	57.56.5688	0,68		4 W	WW	
402	57.11.4471	470				
403	57.11.4220	. 22				
404	57, 11, 4102	1 1				
405	57, 11 , 4181	180				
706	57, 11, 4229	2,2				
+07	57.11.4189	1,8				
÷08	57.11.4332	3,3 1				
r06	57,11,4100	10	J			
IND DAT	E NAME					
4 ,			E MONND			
3		HF ME	TAL FILM			
@ 16.10.1						
① 20.4. ○ 25.2	81 Vr .80 Th					

ND	POS NO [1	PART NO	VALUE	- 1	SPECIF	CATION	S/EQUIVALENT	MFI
	R 410	57	, 11, 4820	82					
	4/1	57	.39.1002	10	k	1%		MF	
\neg	412	57	, 39, 5111	5,11	k	1%		ΜŦ	
	413	57	.39. 1002	10	k	1%		MF	
	414	57	. 39. 5111	5,11	k	1%		MF	
	415	57	. 11. 4182	1,8	k				
-	416	57	. 11 . 4100	10					
	R 5o1	57	.56,5188	0,18		4	W	WW	-
\dashv	502		. 11 . 4181						
2	503		.11,4270						
Ť	504		.11.4102	1	k				
	505		. 11 . 4680						
	506		,56.5188			4	W	WW	
	507	57	11.4332	3,3	k				
	508	57		680					
	509		.11.4391	390					
	510		.11 .4181						
	511	57	.11.4122	-1.2	k				
0	512		. 01.7501			TRIM			
	513	57	. 11.4272	2,7	k				
	514	57	', 11 , 4561	560					
	S 1	55	. 03 . 0401			Mains Swit	ГСН		
		55	. 03.0410			FIXING RI	NG		
		55	. 03. 0416	>		BUTTON RI	ED		
	2	53	1.03.0128	3		VOLTAGE S			
		1.16	9.113.04	-		INSULATIO	N - VO	t. Sel	
IND	DA.	ΓE	NAME						
4						L FILM			
3				WW W	'IRE	MOUND			
_	16.10.1	981	c. Metz						
1	20,1		Vr						
0	26.2	.80	Th						

POWER SUPPLY

STUDER

POWER SUPPLY

STUDER

830,350,00 PAGE 5 OF 7

1.830.350.00 PAGE 6 OF T

POS NO		PART NO	VALUE	S	PECIFI	ICATION	S/EQUIVALI	ENT		MFR
T 1	1.83	30.365. 8 1		MAINS -	TRA	NSFO	RMER			
	53	3 03 0106		Fuse	Ногі	DER M	'AINS			
		3 03 0118		Fuse	HOL1	DER 1	PCB			
	1.01	0.088.49		PCB	Scr					
		5.100.05 5.100.06		ų įs			Insulat Permal			
	1 . 83	30.355.00		STABI	LIZE	R P	CB			
DA.	re	NAME		l						
	1981	C Metz								
20.4	.81	1/0-								
26.7	.20									
26.7 STUC	.80	T, Power	SUPPLY	,		1.83	0.350.	. 00	PAGE 7	_

CONTENTS

POWER SUPPLY BASEBOARD TRAFO ASSEMBLY STABILIZER PCB AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER	.830.350 .830.370 .830.360 .830.355	6 6/3 6/4 6/5 6/7 6/8 7 7/3 7/5
POWER SUPPLY / BLOCK DIAGRAM POWER SUPPLY BASEBOARD TRAFO ASSEMBLY STABILIZER PCB AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER	1.830.370 1.830.360	6/4 6/5 6/7 6/8 7 7/3
POWER SUPPLY BASEBOARD TRAFO ASSEMBLY STABILIZER PCB AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER	1.830.370 1.830.360	6/5 6/7 6/8 7 7/3
TRAFO ASSEMBLY STABILIZER PCB AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER	.830.360	6/7 6/8 7 7/3
TRAFO ASSEMBLY STABILIZER PCB 11 AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER		6/8 7 7/3
STABILIZER PCB AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER	.830.355	7 7/3
AUDIO SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER		7/3
SURVEY OF AUDIO COMPONENTS AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER		7/3
AUDIO BLOCK DIAGRAM AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER		
AUDIO CONNECTIONS AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER 1		
AUDIO INTERCONNECTION PCB INPUT HF NOISE FILTER		7/5
INPUT HF NOISE FILTER 1	.830.445	7/6
	1.830,443	7/8
	830.444	7/8
	1.830.190	7/9
	1.020.340	7/10
		7/10
	I.020.341 I.830.465	7/11
	I 830.460	7/14
	1.830.467	7/16
	1 167 712	7/18 8
TAPE DECK CONTROL		_
SURVEY OF TAPE DECK CONTROL COMPONENTS		8/3
TAPE DECK CONTROL BLOCK DIAGRAM		8/3
CONTROL INTERCONNECTION SIGNAL LIST		8/4
ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL —		0./5
	1.830.448	8/5
	1.830.448	8/14
	1.830.448	8/15
	1.830.180	8/16
	1.830.146	8/17
5.11.1 52	1.830.470	8/18
	1.830.450	8/20
.,	1.830.455	8/22
	1.830.415	8/24
	1.830.420/425	8/24
	1.830.430	8/25
	1.830.456	8/25
	1.830.480	8/26
	1.830.475	8/28
	1.830.485	8/32
	1.830.476	8/34
PERIPHERIE		9
SURVEY OF PERIPHERIE		9/2
SIGNAL LIST OF PERIPHERIE CONNECTORS		9/3
	1.830.330	9/4
LOCAL CONTROL CONNECTION PCB	1.830.331	9/6
LOCAL KEYBOARD	1.830.912	9/8
SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM	1.830.900	9/11
INTERFACE PCB / REMOTE CONTROL	1.830.904	9/11
CPU – 8085 REMOTE CONTROL PCB	1.830.902	9/14
KEYBOARD REMOTE CONTROL	1.830.906	9/16

SURVEY OF AUDIO COMPONENTS

INPUT HF NOISE FILTER 1.830.443

OUTPUT HF NOISE

AUDIO INTERCONNECTION PCB 1.830.445

HEAD BLOCK ASSEMBLY -1.020.340 (CAD 3011) 1.020.341 (CAD 3010)

INPUT/OUTPUT CH1/CH2
INPUT CH1/CH2
OUTPUT CH1/CH2

OSCILLATOR PCB 1.167.712-00

CODE AMPLIFIER PCB 1.830.467-00

RECORD AMPLIFIER PCB 1.830.460-00

REPRODUCE AMPLIFIER PCB 1.830.465-00

AUDIO CONNECTIONS

CH2

= EARTH = LINEA = LINE B

AUDIO

INPUT

NC = NO CONNECT

1	=	SMPTE CODE LINEA
2	=	SMPTE CODE Line B
3	Ξ	NC
4	=	NC
5	=	EARTH
		NC
		INPUT CHI LINEA
8	=	INPUT CHI LINEB

3 = NC	16 = NC
4 = NC	17 = INPUT CH2 LINE A
5 = EARTH	18 = INPUT CH2 LINE B
6 = NC	19 = NC
7 = INPUT CHI LINEA	20 = EARTH
8 = INPUT CHI LINEB	21 = NC
9 = NC	22 = OUTPUT CH2 LINEA
10 = EARTH	23 = OUTPUT CH2 LINE &
11 = NC	24 = NC
12 = OUTPUT CHI LINEA	25 = EARTH
13 = OUTPUT CHI LINE B	

14 = NC

15 = NC

AUDIO INTERCONNECTION PCB 1.830.445

CONNECTIONS

J 2	REPRODUCE AMPLIFIER, CHANNEL	1 1.830.465
J 5	REPRODUCE AMPLIFIER, CHANNEL	2 1.830.465
J 8	RECORD AMPLIFIER, CHANNEL 1	1.830.460
J 11	RECORD AMPLIFIER, CHANNEL 2	1.830.460
J 14	RECORD-PLAYBACK CODE AMPLIFIE	ER 1.830.467
J 18	OSCILLATOR	1.167.712
	,	
P 1	LINE OUTPUT, CHANNEL 1	1.830.444
P 3	PLAYBACK HEAD, CHANNEL 1	1.830.190
P 4	LINE OUTPUT, CHANNEL 2	1.830.444
P 6	PLAYBACK HEAD, CHANNEL 2	1.830.190
P 7	LINE INPUT, CHANNEL 1	1.830.443
P 9	RECORD HEAD, CHANNEL 1	1.830.190
P 10	LINE INPUT, CHANNEL 2	1.830.443
P 12	RECORD HEAD, CHANNEL 2	1.830.190
P 15	CODE HEAD	1.830.190
P 16	SMPTE CODE LINE (gry)	1.830.440-93
P 17	SMPTE CODE LINE (gry)	1.830.440-93
P 19	AUDIO CONTROL INTERCONNECTION	N 1.830.192
P 20	SUPPLY VOLTAGE OV (grn)	1.830.440-93
P 21	SUPPLY VOLTAGE -12V (blu)	1.830.440-93
P 22	SUPPLY VOLTAGE +12V (red)	1.830.440-93
P 23	CHASSIS (yel)	1.830.190

NDI	POS NO		PART NO	VALUE	SPE	CIFICATIONS/EQU	JIVALENT	MFR
	C1		1.1104	.14	±20%	100 V	MPETP	
	CZ	59.3	1.1104	.14				
	C3	59.1	1.6681	680 P	± 5%	400 V	PC	
	C4	59.1	1.6681	680 P				
	C5	59.3	1.1104	.14	± 20%	100 V	MPETA	L
	C6	59.1	1.6681	680 P	± 5%	400V	AC	
	C7	59.1	1.6681	680P				ļ
	C8	59 - 3	1.1104	.10	± 20%	100 V	MPETA	
	J 2	54.0	1.0360		Connecto	2 * 16		
-	J5		1.0360					
-	J.8		1.0360					
	341		1.0360					
	J 14		1.0360					
	J-18		1.0360					
			1.0021		Jumper	2 × . 63		
	JS2	54.0	1.0021					
	PI	54 0	1.0020		Co	mector 4 p	ins	
_	P3	+	1.0020			5 BI		
_	P4		1.0020			4.00		
-	P6	-	1.0020			5 ps	io S	
_	P7	54.0	1.0020			4.	siv	
	Pg	54.0	01.0020			6 pm	н≤	
	P10	54.0	01.0020			4		
	P12	54.0	1.0020			6 p	145	
	P13	54.0	1.0020	2 × 8 pms	Connac	ter		
	P15	54.0	1.0020		Cou	wester 3 pm	.1S	
IND	D/	TE	NAME					
4								
3								
2								
1			·	-				
0	25.41	. 1980	e mete Aucle later				445- Ĉ€ PAGE	

ID POS NO	PART NO	VALUE		SPECIFICATIONS/EQUIV	ALENT	MFR
P16	54.02.0320					
P17	54.02.0320					
P19	54.01.0020	2×8 pius	Coun	ector		
P20	54.02.0335					
P21	54.02.0335					
P22	54.02.0335					
P23	54.02.0320					
Q1	50.03.0451	BD 139	801	1.5A	NPN SI	
Q2	50.03.0451	BD 139				
Q3	50.03.0340	BC 337	45 V	500 m A		
RI	57.11.4479	4.7	±2%	0207	MF	_
1	ļ					
						_
R4	57.11.4102	14	±2%	0207	MF	
R5	57.11.4102	1 K				<u> </u>
	57.11.4103	10 K				
	57.11.3162	1.6 K	±1%			
R8	57.11.4223	22 K	±2%			
R9	57.11.3162	1.6 K	±1%			
Rin	57.11.4100	10	#2%			
	57.11.3162	1.6K	= 1%	0207	MF	-
	57.11.3162	1.64	<u> </u>			-
R 14	57.11.4100	10	=2%			-
1						
R 16	57.11.4160	10	\$ 2 %	0207	MF	

IND	DATE	NAME				
4						
3						
2						
1		1				
0	25.11.1980	O C. Metz				
	STUDER	Pudia - 51	can a cartions	D 230	1.830,445-00	PAGE 2 OF 3
-	SIUDER	7,515710 .7 151	EE 272.02,712.00	. ,,,,,,,	7.0004	TAGE = 01
		PART NO	VALUE		FICATIONS/EQUIVALENT	
	POS NO					
	POS NO 7P1 54.	PART NO				MER
	POS NO	PART NO 02.0320				

	POS NO	PARTNO	VALUE	
	TP1	54.02.0320		
7	TP2	54.02.0320		
		54.02.0320		
		54.02.0320		
		54.02.0320		
	TP6	54.02.0320		
•				
-				
-				
-				
_				
-				
-	-			
-				
_				
_				
_	-			
_	-		-	
	-			
-			-	
				1
-	-		+	T T
	1			

	1 1						
IND	DATE	NAME					
4							
3							
2							
1							
	25.11.1980						
6	STUDER	A. S. 1.5	resometic	.15 N. 630	1.830.	445.00	PAGE 3 OF 3

INPUT HF NOISE FILTER 1.830.443

OUTPUT HF NOISE FILTER 1.830.444

IND			PART NO	VALUE		SPECIFICA	TIONS/EQUIVALENT		MFR
	C1	59.3	32.0221	220 P	±20%	500	V	CER	
	C2	59.3	32 - 0221	220 P					
			1.0115		Wideb	and H	F choke		
	L2	62 . 6	01.0115				*		
	PI	29.2	21.6002						
	P2	29.2	21.6002						
						-			
П								-	
7									
-				†					
\exists									
-									
\dashv				+					-
-									
-									
-									
-				 					
_									
_					-				-
_				-	-				ļ
									-
				<u> </u>	L				L
ND	DA	TE	NAME	1					
4				4					
3									
0				_					
①									
Ō	13.01	1981	c mete						
6	STUC		Input HFn	nise Fifte	~	1 /	1.830.443-0	DAGE .	10F /

POS NO		VALUE	SI	PECIFICATIONS/EQUIV	ALENT	MFR
C1	59.32.0221	220 P	± 20%	500 V	CER	
	59.32.0221	220 P				
L1	62.01.0115		Widebo	and HF choice		
12	62.01.0115					
	29.21.6002					
<u>P</u> 2	29.21.6002					
						-
						<u> </u>
DA	TE NAME					
		_				
		_				
		_				
14.01	1981 C Mets DER Cutput					
STUE	DER Output	HF noise	=.Cter	1.830.44	4-00 PAGE	/ OF /

WIRE HARNESS / HEAD BLOCK ASSEMBLY 1.830.190

Kabelliste Litzenliste		von —> nach					
Pos.	Farbe	Stecker	Punkt	Punkt	Stecker		
KL 1	Schirm		14	3 2 1	J 15	=	54.01.0453
KL 1 <	Sw bl Schirm		2 3 -	2 3	J 3	=	54.01.0455
KL 1 <	SW bl Schirm		5 6 -	2 3	} ј6	8	54.01.0455
LL 6 LL 6 LL 3	ws ws bl	P 24 <	11 10 24	2 3	} Ј9	=	54.01.0456
LL 1 LL 2 LL 2	rt or or		25 13 12	1 2]		54.04.0450
LL 5 LL 4	gr vi		22 23	3 4	Ј Ј 12	=	54.01. 0456
LL 7 LL 7 LL 8	gb gb	J 2	8 20 3	} @	•		

HEAD BLOCK ASSEMBLY (RECORD / REPRODUCE CAD 3011) 1.020.340

	lage der Anschlüsse	Farbe	Kontakt-Nr. an Stecker 54.02.0442
	oben .	gn	2
Wiedergabekopf	CH1	or	3
1.116.831-00	untan	gn	5
	unten CH2	or	6
		gn	24
Aufnahmekopf	oben CH1	or	25
1.116.830-00	unten	gn	22
	CH2	or	23
	Code	gn	14
	20012	or	15
Kombikopf	oben cua	9n	40
1.116.832-00	Oben CH1	or	44
	unten	gn	12
	CH2	or	13
Buchse 54.02.0454			8
ohne Litze			20

HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010) 1.020.341

	lage der Anschlüsse	Farbe	Kontakt-Nr. an Stecker 54.02.0442	
		gn	2	
Wiedergabekopf	oben (H1	or	3	
1 116 831 - 00		gn	5	
1,110.00	unten CH2	or	6	
				l
				l
	Code	gn	14	1
	2001	or	45	
Kombikopf	ahan	gn	10	
1, 116, 832-00	oben CH1	or	44	
1.1.0.00	unten	gn	12	l
	CH2	or	13	
Buchse 54.02.0454		_	8	1
ohne Litze			20	J

REPRODUCE AMPLIFIER PCB 1.830.465

IDI	POS NO I	PART NO	VALUE	SPECIFICAT	IONS/EQUIVALEN	IT	MFR
1	CI	59.25.3102	1000 U	-16% +50%	16 V	EL	
1	C2	59.11.4472	4.7 N	± 20%	160 V	PETP	
1	C3	59.11.6561	560 P	± 5%	400 V	PC	
1	C4	59.34.4221	220 P		63V	CER	
1	C5	59.34.4101	100 P				
T	C6	59.11.6821	820P		\$00 V	PC	
7	C7	59.25.3102	1000 U	- 10% + 50%	16 V	EL	
	C8	59.22.3221	220 U		10 V		
	C9	59.22.3221	220 U				
	C10	59.34.0479	4.7 P	± 5%	63 V	CER	
	C11	59.26.2100	10 U	± 20%	16 V	SAL	
	C12	59.26.2100	10 U				
	C 13	59.25.3102	1000 U	- 10% + 50%	16 V	EL	
	C14	59.11.3103	10 N	±5%	160 V	PC	
	C 15	59.26.5159	1.5 U	± 20%	25 V	5AL	
	C 16	59.11.6561	560 P	± 5%	400 V	AC.	
	C 17	59.11.6332	3.3N				
	C 18	59.32.3103	10 N	-20% +100%	40 V	CER	
	C 19	59.26.0470	47 U	± 20%	6.3V	SAL	
	C 20	59.22.5101	100 U	-10% + 50%	25 ∨	EL	
-	C21	59.26.2339	3.34	± 20%	16 V	SAL	
	C 22	59.22.5101	100 U	- 10% + 50%	25 √	EL	
	C23	59.22.5101	100 U				
	C 24	59.26.0470	47 U	± 20%	6.3V	SAL	
	C 25	59.34.4331	330 P	± 5%	63∀	CER	
	C 26	59.32.3103	10 N	-20% +100%	40 V	CER	
	C 27	59.32.3103	10 N				
	C 28	59.02.2154	.150	± 5%	100 V	MAC	
	C 29	59.34.0229	2.2 0	P10	v 63∨	CER	
_	C 30	59.22.5101	100 U	-10% +50%	25 V	EL	
IND	DA.	TE NAME	1				
4							
3							
2							
ð							
ñ	28.12.	1980 C. Mete					

NDI	POS NO	PART NO	VALUE	SPECIFICAT	IONS/EQUIVALE	NT	MFR
		59.11.6332	3.3 ∧	± 5%	400 V	PC	
		59.11.4472		± 2.5%	160 V		
		59.11.3103	10 N	± 5%			
		59.26.5229	2.2 U	± 20%	25 V	SAL	
	21	50.04.0125	1 N 4448	75	V 100 mA	S/	
	D2	50.04.0125	1N4448				
	D3	50.04.0125	1 N 4448	j.			
			-	j.			
	IC1	50.05.0243	NE 5534 N	OP. AME	?		
	IC2	50.05.0244	NE 5534 AN				
	IC3	50.05.0243	NE 5534 N				
	-						
_							
-							
-	41	1.022.177 -	00 2 mit	Filter coil			
	4.2	1. 922.177.					
_						,	
	01	54.01.0374		Connector	2 * 16		
-	, .	0,10					
-							
-	61	50.03.0496	30560C	100 m A	45 1	PNP	
_	G2	50.03.0482				NPN	
-	03	50.03.0496				PNP	
<u></u>			, 102 000 0				
(4)		TE NAME					
3							
2							
16	-						
0	1						
1	0.0 10	1.1980 C MEE	1				

ND	POS NO	PART NO	VALUE	SPECIFICATION	ONS/EQUIVALE	NT	MF
	G4	50.03.0315	BC 160-16	100 m A	40 V	PNP	
	Q5	58-03-0316	BC 140-16			NPN	
	01	57.11.4473	47 K	±2% 02	207	MF	
-		57.11.4393	39 %	- 2/2			
-		57.11.4331	390				
-	F4	57.11.4102	116				
		57.11.4222	2.2 K				
-		57.11.4472	4.7K				
-		57.11.4479	4.7				
-		57.11.4479	4.7				
=	R9	57.11.4103	10 K				
		57.11.4822	8.2 K				
		57.11.4103	10 K				
_		57.11.4152	1 K				
	R 13	57.11.4471	470				
_		57.11.4470	47				
		57.11.4103	10 K				
_	H 15		100				
	12 17	57.11.4272	2.7K				
	R 18	57.11.4394	390 K				
	R 19	57.11.4822	8.2 K				
	R20	57.11.4479	4.7				
	R21	57.11.4479	4.7				
	R 22	57.11.4822	9.2 K				
	R24	57.11.4391	390				
	R25	57.11.4181	180				_
	1226	57.11.4479	4.7				L
IND	D/	ATE NAME					
4	-						
3							
2			4				
1			_				
0	08.1	2 1980 C Metz	CE AMPLIE		330,465		

NDI POS NO	PART NO	VALUE	SPEC	CIFICATIONS/EQU	IIVALENT	MFR
R 27	57.11.4101	100	± 2%	0207	MF	
R28	57.39.9092	90.9 K	± 1%			
R29	57.11.3203	20 K				
R30	57.11.3622	6.2 K				
R31	57.11.4103	10 K	±2			
R32	57.11.4102	1K				
R33	57.11.4101	100				
R34	57.11.4103	10 K				
R35	57.39.3012	30.1 K	±1%			1
R36	57.11.4105	1M	±2%			
R37	57.11.4105	11				
R38	57.11.4223	22 K				
R39	57.11.4333	33 K				
R40	57.11.4105	1M				
R41	57.11.4153	15 K				
R42	57.11.4105	117				
R43	57.11.4332	3.3K				
R 44	57.11.4105	11				
R45	57.11.4122	1.2 K				
R46	57.11.4221	220				
R47	57.11.4682	6.8 K				
R48	57.11.4103	10 K				-
R49	57.11.4821	820				
R50	57.11.4102	1K				
R51	57.11.4222	2.2 K				
R52	57.11.4103	10 K				
R53	57.11.4223	22 K				
R54	58.01.6502	5 K	± 20%	.5W	PMG	_
R55	56.01.6502	5 K				
R 56	53.01.6502	5 K				
IND DA	ATE NAME	1				
4						
3		_				
2						
①						
0 08.12	.1980 C Mete				465-00 PAGE	

ND	POS NO		PART NO	VALUE		FICATIONS/EQUIVAL		MFR
	R57	58.0	1.6502	5 K	±20%	.5W	PMG	
1000								
	T1	1.02	2.351-00					
-								
-								
					1			
-								-
-								<u> </u>
		-			-			
					-			
_								
					 			-
		-						
					ļ			
								-
_								
IND	DA	TE	NAME	1				
4								
3								
2								
② ①								
	22 /2	1027	C. Me.ā					
۲	1 2 =	1000	25000200	C DMALL	1-0 0830	1.850,46	5-00 000	5055
9	STUE	DER	- VEDECINE	5 7179275	757 TOUL	12.530.20	PAGE	_ UF U

RECORD AMPLIFIER PCB 1.830.460

ND	POS NO	PART NO	VALUE	SPECIFICATIO	NS/EQUIVALENT	- 1	MFF
		59.11.6332	3.3N	± 5%	4001	RC	
1	COZ		820 p				
\neg	C03	59.32.3103	10N	-20% +100%	401	CER	
\neg	C 04		474	-10% +50%	25 V	EL	
		59.11.4472	4.7N	±2.5%	160 V	PC	
	C06		1.0N	± 10 %	400 0	Ker.	
	C07		3,3 U	±20%	16 V	SAL	
	C08		47 U	-10% + 50%	25V	EL	
	C09	59. 32.2471	470P	± 10%	501	CER	
T	C10	59.26.0470	47 U	±20%	6.3 V	SAL	
	CH	59. 22. 5470	474	-10% + 50%	25 V	EL	
	C 12	59. 31. 1104	.14	±20 %	100 V 1		
	C13	59.11.6222	2.2N	± 5%	400 V	PC	
	C14	59. 26. 0470	474	± 20%	6.3 V	SAL	
	C15	59.26.0470	47 CI				
	C16	59. 11. 6151	150P	±5%	400 V	Æ	
	C17	59. 12. 4183	18 N		250 V M	IPETP	
	C 18	59. 32.3103	10 N	-20% + 100%	401	CER	
	C19	59. 11. 4472	4.7N	±2.5%	160V	PC	
	C 20	59. 11. 6102	1 N	± 5 %	400 V		
	C21	59.32.3103	10 N	-20% + 100%	40 V	CER	
		59.34. 4221	220 P	±5% N750	63 V		
	C23	59.22.5470	47 U	-10% +50%	25V	EL	
	C24		10 N	-20% + 100%	40 V	CER	
	C25		10 N	± 5%	160 V	R	
	C26		150 P		400 V		
	C27	59. 11. 3103	10N		160 V		
	C 28		.22 U	±5%	~ 100V M	PETP	
	C29	59.26.0470	474	±20 %	6.3 V	SAL	

IND	DATE	NAME	1		
4					
3					
2					
1	23.9.81	UÁ			
0	26.11.1979	C. Mets			
	TUDER		Record Austilier A830	1.830.460-00	PAGE 1 OF 4

IDI POS N	O PART NO	VALUE	s	PECIFIC	ATIONS/EQU	IVALENT		MFR
201	50.04.0125	1N4448	100	m A	75 V		si	
202		1 N 4448						
203		1N4935		1A	200 V	250	KHZ	
2004		1114448	100	ou A	75 V			
205		1N4448						
206	50.04.0125	1 N 4448						
20	50.04.0125	1N4448						
Do	8 50.04.0125	1N4448						
īco	1 50.05.0243	NE6534N	OP	AMP				
-	2 50.05.0243	NE 5534N						
	50.05.0243	NE 5534N						
J51	54.01.0021		Jum	ner 2	2×.63			
201	62.02.1822	8.2 M	5%					
P1	54.01.0374	2 * 16	Conne					
201	50.03.0496	BC560B	45.V				PNP SI	
202	50.03.0434	BFR 18	55 V	500	m A		NPN	
903	50.03.0434	BFR 18						
204	50.03.0329	W/P 146					PD-FET	
205	50.03.0434	BFR 18	55 V	50	omA		NPN	
200	50.03.0340	BC 357	45V					
Q 07	50.03.0340	BC 337						
R 01	57. 11. 4103	10 K	±2 %		0207		MF	
ROZ	57. 11. 4330	33						
ROS	57.11.4472	4.7K						
R 04	57. 11. 4103	10 K						
20	57.11.4472	4.74						

IND	DATE	IVAIVIE				
4						
3						
2						
1	23.9.81	dā.				
이	26.11.1979	C. Meiz				
=	TUDER		Record	Amplifier A830	1.830.460-0	PAGE 2 OF 4

IND	POS NO	PART NO	VALUE	SPE	CIFICATIONS/EQUIVAL	ENT	MFR
	R 06	57. 11. 4105	1.0M	±2%	0207	MF	
	R 07	57. 11. 4472	4.7K				
	R 08	57. 11.4330	33				
	R09	57.11.4330	33				
	R10	57. 11. 4479	4.7				
	RH	57. 11. 4103	10 K				
	R 12	57. 11. 4103	10 K				
		57. 11. 4471	470				
	R 14	57. 11. 4472	4.7K				
	R15	57. 11. 4104	100 K				
	R 16	57. 11. 4562	5.6 U				
	R17	57. 11. 4222	2.24				
	R 18	57. 11. 4105	1.0M				
	R 19	57. 11. 4470	47				
	R20	57.11.4152	1.5 K				
	R21	57.11.4473	47 U				
	R 22	57. 11. 4473	47 K				
	R23	57. 11. 4122	1,2 4				
	R24	57. 11. 4681	680				
	R25	57.11.4391	390				
	R26	57.11.4104	100 4				
	R27	57. 11. 4105	1.0M		g-0.000		
	R28	57.11.4153	15 K				
	R29	57. 11.4101	100				
	R30	57. 11. 4332	3.3 K				
	R31	57. 11. 4221	220				
	R32	57. 11. 4471	470				
	R33	57. 11. 4152	1.54			-0	
	R34	57.11.4472	4.74				
	R35	57.11.4123	12 U				

DI POS NO	PART	NO	VALUE	SPEC	IFICATIONS/EQUIVA	LENT	MFR
R36	57.11. 4	332	3.3 K	= 2%	0207	MF	
237	57. 11.		1.0M				
	57. 11. 4		15 K				
R39	57. 11.	1220	22				
R40	57. 11.	4822	8.2 K				
R41	57.11.	4224	220 K				
R42	57. 11.	4102	1.0 K				
R43			470				
R 44	57.11.		100 K				
R45		4331	330				
R46	57. 11.	4151	150				
R47	57. 11.	4181	180				
R48			5.0 K	± 20%	.5W	PMG	
R49	58.01.		5.0 U				
R50	58.01.						
R51	58.01.	650Z	5.04				
R52	57.11.	4471	470	±2%	0207	MF	_
R53	57.11.	4472	4.7K				
T01	1.022.141	.00		HF- Tr	afo		
Toz	1.022.30	2.00		Live Tre	fo 1:1		L

Record Auguster 8030 1.830.460-00 PAGE 3 OF 4

Record Amplifier ABSO 1.830.460-00 PAGE 4 OF 4

23 9.81

STUDER

STUDER

CODE AMPLIFIER PCB 1.830.467

INDI POS NO	PART NO	VALUE	SPEC	CIFICATIONS/EQUIVALE	VT	MFR
CL	59.06.0474	0.471	± 10%.	100V	PETP	
C 2	59.06.0474	0.47U				
C3	59.22.5470	47 U	- 10% + 50	%	EL	
C4	59.02 2154	0.15 U	15%	100 V	MPC	
C5	59.06.0104	0.1 U	± 10%	100 V	PETP	
C6	59.11.6221	220 P	± 5%	400 V	AC_	
C 7	59.04.7391	3 90 P		63 V	PP	
C 9	59.26.2339	3.3 U	±20 %;	16 V	SAL	
C 10		3.3 №	± 5%	400 V	PC	
C 11		390 P	in	63V	PP	
C 12		10 U	± 20%	16 V	SAL	
C 13		56 P	±5%	631 N750	CER	
C 14	59.99.0205	68 N	- 20% +80	100 V		
C 15	59.11.6222	2.2 N	±5%	400 V	AC.	
C 16	59.11.6151	150P				
C 17	59.99.0205	68 N	-20% +8	30% 100V	CER	
C-18	59.26.2100	10 11	± 20%	16 V	SAL	
C 19	59.26.2100	10 U				
C 20	59.02.2104	.1U.	± 5%	100 V	MPC	l
C21	59.11.6151	15CP		400V	PC	
C 22	59.26.2100	10 u	±20%	16 V	SAL	
C23	59.89.0205	68 N	- 20% +	80% 1001	CER	
	. !	-				-
22	50.04.0125	1N4448	0.19	<i>75</i> ∨	S/	
23	50.04.0125	1N4448				
24	50.04.0125	1N 4448				
25	50.04.0125	.1 N 4448				-
IND D	ATE NAME	L				
4						
3						
2						

1.830.467-00 PAGE 1 OF 4

1.830.467-00 PAGE 2 OF 4

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFF
	DLQ 1	50.99.0111	MCT6	2 x Optocoupler	
	DLQ2	50.99.0111	MCT 6		
	IC 1	50.06.0132	5N 74 LS 132 N	4x Schmittrigger NAND	
		50.05.0283	1m393N	Dual low power comparator	
		50.05.0245		Dual OPAMP	
	IC4	50.05.0244	NE 5534 AN	OPAMP	
	JS1	54.01.0021		Jumper	
	K1	56.02.1001	1× U	24 V 2000 & Read Relais	+
	7.7		0.0.77	± 5% Inductor	
	11	62.02.1822	8.2 m H	± 3% Inductor	+-
-		1.022.177.0			+
	L 4	62.02.1822	8.2 mH		
	P1	54.01.0374		Connector 2 * 16	
	G L	50.03.0340	BC 337	45 V 500 mA NPN	
	Q2	50.03.0340	BC 337		
	Q3	50.03.0351	BC 32∓	PNP	
	Q4	50.03.0340	BC 337	NPN	
	Q5	50.03.0351	BC 32₹	PNP	
	Q6	50.03.0340	<i>ರಿ</i> ದ ಶರ್ನ	NPN	
	Q7	50.03.0340	BC 337	NPN	-
IND	DA.	TE I NAME			

STUDER CODE AMPLIFIER A 830

O 29.10.1980 C. Metz

STUDER CODE AMPLIFIER A830

ND	POS NO	PART NO	VALUE	SPE	CIFICATIONS/EQUIV	ALENT	MFR
	RI	57.11.4222	2.2 K	±2%	0207	MF	
	R2	57.11.4222	2.2 K				
	R4	57.11.4102	1 K				
	R5	57.11.4681	680				
	R6	57.11.4471	470				
	RŦ	57.11.4470	47				
	RB	57.11.4681	680				
	R9	57.11.4181	180				
	R10	57.11.4470	47				
	R11	57-11.4102	1K				
-	R12	57.11.4105	1M				
	R13	57.11.4103	10 K				
	R14	57.11.4102	1 K				
_	R 15	57.11.4472	4.7K				
	R16	57.11.4224	220K				T
	R 17	57.11.4102	1K				
	R18	57.11.4103	10K				
	R19	57.11.4472	4.7K				I
	R20	57.11.4561	560				
	R21	57.11.4472	4.7 K				
	R22	57.11.4105	11				
	R23	57.11.4333	33 K				
	R24	57.11.4102	1K				
	R 25	57.11.4331	330				
	R26	57.11.4102	1K				
_	R27	57.11.4122	1.2 K				
	R28	57.11.4104	100k				
		57.11.4154	150K				
		57.11.3204	200K				
ND	DA'	TE NAME	1				
4							
<u>~</u>							
<u>_</u>			1				

STUDER CODE AMPLIFIER A 830 1.830.467-00 PAGE 3 OF 4

POS NO	PART NO	VALUE		IFICATIONS/EQUIV	ALENT	MFF
R31	57.11.4331	330	± 2%	0207	MF	
R32	57.11.4103	10K				
	57.11.4103	10 K				
						-
	1.022.408			ner 1:1		
TP1			Test pois	nt		
TP2						_
TP3	54.02.0520					
						-
						_
		-				
		-				_
		1				-
DA	TE NAME					
		_				
		_				
		4				
22.10.						•
STU	DER CODE AL	APLIFIER I	9.830	1.830.4	57-00 PAG	E → OF-

CODE AMPLIFIER PCB 1.830.467

SIGNALS AT TEST POINTS OF CODE AMPLIFIER BOARD 1.830.467-00

TP3: TP2

SIGNAL AT PINS 1 AND 2 OF AUDIO CONNECTOR

SMPTE OUTPUT

OSCILLATOR PCB 1.167.712

C1 59.99.0515 6.8 nF 5%, 100V, Pc, 80V/us C2 59.99.0515 6.8 nF 5%, 100V, Pc, 80V/us C2 59.25.6476 47 uF -10%, 35V, E1 C4 55.11.6102 1 nF 5%, 63V, Pc C5 59.28.0100 10 uF 35V, E1 C6 59.31.1104 0.1 uF Mpc	
C2 59.99.0515 6.8 nF 5% 100V, Pc, 80V/us C2 59.25.6470 47 uF -10%, 35V, E1 C4 59.11.6102 1 nF 5%, 63V, Pc C5 59.28.0100 10 uF 35V, E1	
C2 59.25.6476 47 UF -10% 35V E1 C4 59.11.6102 1 nF 5% 63V, Pc C5 59.28.8100 10 UF 35V E1	
C4 59.11.6102 1 nF 5%, 63V, Pc C5 59.28.0100 10 uF 35V, E1	
C5 59.28.0100 10 uF 35V, E1	
C7 59.22.8100 10 uF 35V, E1	
CB 59.22.9109 1 uF E1	
D1 50.04.0125 1N4448 1N4148,1N914	
D2 50.04.0125 1N4448 1N4148.1N914	
D3 50.04.0125 1N4448 1N4148+1N914	
L1 62.02.2122 1.2 mH 5%, Rdc=max 6 Ohm, Idc=min 140mA, D=10m	n TDK
	SS,Mot
02 50-03-0434 BFR18 2N2895, Uch0=85V,Ic=800mA, npn S	SS, Mot
03 50-03-0436 BC237B BC107B+BC317B+ 5C108B+ Ucb=30V npn Sie+	4ot•Ph
04 50-03-0436 BC237B BC107B,BC317B,BC108B, Ucb=30V npn Sie,	1ot,Ph
25 50.03.0515 8C307B RC1778.BC251B.BC1788, Ucb=30V pnp Sie,	
06 50-03-0434 BER18 2N2895, Ucb0=85V,Ic=800m4 npn 5	SS, Mot
07 50.03.0515 BC307B BC177B, BC251P, BC178E, Ucb=30V pnp Sie,	10t Ph
R1 57.11.4153 15 kOhm 5%	
R2 57.11.4153 15 kChm 5%	
93 57.11.4181 180 Chm 5%	
P••••4 57•11•4192 1 kOhm 10%	
R5 57.11.4102 1 kGhm	
R6 57.11.4472 4.7 kOhm	
P7 57.11.4393 39 kOhm 10%	
R 6 57.11.4332 3.3 k@hm	
R9 57.11.4222 2.2 kChm 10%	
R10 57.11.4332 3.3 kChm 10%	
211 57.11.4192 1 kChm	
P12 57.11.4222 2.2 kChm 10%	
R13 57-11-4229 2-2 Ohm 5%	
R14 57.11.4472 4.7 kChm	
STUCER 87/08/18 FIA DSCILLATOR 1.167.712.00 PAG	E 1

DESCRIPTION	SCHEMATIC NO.	SECTION/PAC
POWER SUPPLY UNIT		6
SURVEY OF POWER SUPPLY COMPONENTS		6/3
POWER SUPPLY / BLOCK DIAGRAM	1.830.350	6/4
POWER SUPPLY BASEBOARD	1.830.370	6/5
TRAFO ASSEMBLY	1.830.360	6/7
STABILIZER PCB	1.830.355	6/8
AUDIO		7
SURVEY OF AUDIO COMPONENTS		7/3
AUDIO BLOCK DIAGRAM		7/5
AUDIO CONNECTIONS		7/5
	1.830.445	7/6
AUDIO INTERCONNECTION PCB	1.830.443	7/8
INPUT HE NOISE FILTER	1.830.444	7/8
OUTPUT HE NOISE FILTER		7/8 7/9
WIRE HARNESS / HEAD BLOCK ASSEMBLY	1.830.190	
HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011)	1.020.340	7/10
HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010)	1.020.341	7/11
REPRODUCE AMPLIFIER PCB	1.830.465	7/12
RECORD AMPLIFIER PCB	1.830.460	7/14
CODE AMPLIFIER PCB	1.830.467	7/16
OSCILLATOR PCB	1.167.712	7/18
TAPE DECK CONTROL		8
SURVEY OF TAPE DECK CONTROL COMPONENTS		8/3
TAPE DECK CONTROL BLOCK DIAGRAM		8/3
CONTROL INTERCONNECTION SIGNAL LIST		8/4
ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL —		
INTERCONNECTION PCB	1.830.448	8/5
COMPONENTS OF CONTROL INTERCONNECTION PCB	1 830.448	8/14
CONTROL INTERCONNECTION PCB	1.830.448	8/15
WIRE HARNESS / TAPE DECK CONTROL	1.830.180	8/16
EJECT CONNECTION PCB	1.830.146	8/17
DRIVER PCB	1.830.470	8/18
CAPSTAN MOTOR CONTROL PCB	1,830,450	8/20
TAPE TENSION CONTROL PCB	1.830.455	8/22
HEAD TAPE POSITION DETECTOR PCB	1,830.415	8/24
LIGHT SOURCE AND SENSOR	1.830.420/425	8/24
END OF TAPE SOURCE AND SENSOR ASSEMBLIES	1.830.430	8/25
TACHO OF SPOOLING MOTOR	1,830,456	8/25
INTERFACE 1 PCB	1.830.480	8/26
	1.830.475	8/28
MICROPROCESSOR 1 PCB		8/32
INTERFACE 2 PCB	1.830.485	8/34
MICROPROCESSOR 2 PCB	1.830.476	9
PERIPHERIE		
SURVEY OF PERIPHERIE		9/2
SIGNAL LIST OF PERIPHERIE CONNECTORS		9/3
LOCAL CONTROL CONNECTION PCB	1.830.330	9/4
LOCAL CONTROL CONNECTION PCB	1.830.331	9/6
LOCAL KEYBOARD	1.830.912	9/8
SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM	1.830.900	9/11
INTERFACE PCB / REMOTE CONTROL	1.830.904	9/11
CPU - 8085 REMOTE CONTROL PCB	1.830.902	9/14
		9/16

CAD 3010/3011

CONNECTION SIGNAL LIST			
AUDIO CONVECTIONS DC = DELTACONNECTOR DRIVER CAPSTAN CAPSTAN TAPE TENSION TINT, A DINT, 2 AP 2 RES.	CONNECTOR CONNECTOR	CONNECTOR CONNECTOR	AUDIO CONNECTIONS DC = DELTA CONNECTOR DRIVER CAPSTAN TAPE TENSION ZINT, A MP A INT, 2 RES.
# SIGNAL PAPS J1 J2 J3 J4 J5 J6 J7 J8	# SIGNAL 14 75 76 77 78 # SIGNAL	16 17 18 P11 # SIGNAL	PA PSc 11 12 13 14 25 16 77 18
1 0.0V (12) 2 C22	43 EDIT (DATA) IN A2 A31 B4 CLK TO REMOT	76 77 78 P11 # SIGNAL E A9 AM 121 +5,0 V	6 32 32 6 32 6 32 6 32 6 32 6 32 6 32 6
2 MUTING CODE 14 C6	44 EXT. INT (PIO) A3 C22 85 WE	[C9 A10] [122] O, O V (S)	4 11 121616161
3 MUTING AUDIO 11 AAS	44 EXT. INT (PIO) A3 C22 85 WE 45 CASS - L A4 C4 86 D8 46 STOP AS C5 A22 87 CLK - 2 47 PLAY A6 C6 C2A 88 D7	AAS C3A 125 + 12, OV	16 16 216 216
4 CODE INPUT 1 8 AZ9		CAS A9	
5 CODE OUTPUT 10 C22	47 DIAY A6 C6 C21 88 D7	C13 C30 124 - 12.0 V	14 14 612
6 REC MODE / 12 ASO	47 PLAY A6 C6 C21 88 D7 48 REC A7 C7 A30 89 D5	A17 C28 125 + 24 V	1º3/02 20 20 A 20 C 14
6 REC MODE / 12 A30 7 9,5 cm/s /3 21 C28	49 REW A8 C8 C19 90 D6	C17 C29 126 0,0 V (24)	19
7 9,5 cm/s 13 21 C28 8 COH, RECORD 16 A22	49 REW A8 C8 C19 90 D6 50 FF R9 C9 C18 91 CLK-3	A18 A8 127 100 V ~	30
	## STOP #\$ C\$ M22 ## CLK - 2 ## PLAY ## A6 C6 C2A ## 89 D5 ## REC ## C7 A30 ## 90 D6 ## REW ## C8 CA9 ## 90 D6 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## D5 ## CLK - 3 ## CLK - 3 ## D5 ## CLK - 3 ## D5 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 3 ## CLK - 2 ## D5 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 3 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 2 ## CLK - 2 ## CLK - 2 ## CLK - 3 ## CLK - 2 ## CLK - 3 ## CLK	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24
	52 CASS - R AM CM 93 D3	C31 C26	
10 PRESS - SOL 2/4 25	53 EXT. INT (SMI) A17 C17 94 D2	A21 C2C	
11 © Counter P15	SEXT, INT (SMT) MAY CAR STORE OF TO A	C22 C24	
12 EJ - SOL OUT 4/5 26	54 CLK - O A23 C24 96 CODE 3	A23 A7	
13 + Counter P14	54 CLK - 0	C23 C8	
14 DC - MOT UP 6 6 27	55 CLK - 2 A25 C26 97 DECADE 5	A24 A6	+ + + + + + + + + + + + + + + + + + + +
15 DC - HOT DOWN 53 28	98 CODE 2 56 EDIT (CLK) C2 C30 99 DECADE 4	C24 C7	
16 C - MOT -O BAT 31		129 45	+
47 C - MOT - 1	57 KEYR ENARLE C3 C9 100 CODE A	AZTAS	
18 C - HOT -2 10/18 25	58 EDIT (DATA) OUT C4 A4 101 DECADE 3 59 TRANSP. C5 A5 402 CODE O	C25 C6	+
19 HR - P 95 28	59 TRANSP. C5 A5 402 CODE O	A26 A4	+
20 MR - N 12/19 26	60 SENS. A1 C6 A6 205 DECADE 2 61 SENS. A0 C7 A7 104 DECADE 1	C26 C5	1 4000 - 100000 111
21 HL-P 46 22	61 SENS. AO C7 A7 10V DECADE 1	C27 C4	
22 ML - N 24 20 24	62 CLEAR C8 A8 AM		
23 CAPS 21 21 41 3	62 CLEAR		
24 CAPS 22 24/25 2	64 T3 C10 A10 A10		
25 CAPS 12 23 12 4	165 T 4 CM AM CAD 1605 0.0 V	A1 2	
26 CAPS 11 25/23 1	66 TITLE ENABLE C12 C10 106 0,0 V 67 S. COM CLK C13 C23 107 + 5.0 V	CA A	
27 DC - UP 30 A30	67 S. COM CLK C13 C23 101 + 5,0V	A2 4	
28 DC - DOWN 34 A3A	68 S.COM FNABLE C17 C11 108 +5,0 V	C2 3	
29 EJ - 50L 29 A29	103 N. C.	A3 6	
30 C - PRESS 24 A24	69 CLK - 1 C23 C25 10 N.C.	C3 5	
31 - 6,8 V (OK-E) 22 A21	70 D1 C24 A24 M1 ID 2	A4 8	
32 CAP - LETT 27 A27	71 D2 C25 A25 122 ID O	C4 7	
33 CAP - RIGHT 28 A28	72 D 3 C26 A26 143 DAO	A5 10	
34 PLAY - L 2 C18	75 D 4 C27 A27 44 ID 3	C5 9	
35 IDLE -L 3 A18	74 D 5 C28 A28 45 ID A	A6 12	
36 PLAY - R 4 A 26	75 D6 C 29 A 29 446 DA 2	A6 12 C6 M	
37 IDLE -R 5 C21	76 D7 C30 A30 UP LOCAL/REMOT	E A7 A28 14	
38 REW-L 6 A19	77 D 8 C 3 A A 3 A 4 B DA A	C7 13	
39 REW-R 7 C20	78 P. COM, pP1-pP2 C27 124 119 WE	A8 16	
40 TH - L 21 A20		C8 15	
	80 M C29 A26		
	79 N C28 A25 20 N.C. 80 N C29 A26 81 N C30 A27		
42 TH-L-128 31 A13	82 S. COM DATA C3A A3A		
	83 RESET A12 1, CA A27 A,CAS		

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
1	0.0V of ±12V AUDIO	0.0 V	all	P20 on Audio Intercon. board
2	MUTING CODE	Н	REW FF	
3	MUTING AUDIO	>+10V	REW FF	Ground on pin C22 of Interf 1
4	CODE INPUT1	250 250 500 500 L	REC.CO DE	
5	CODE OUTPUT	250 250 500 500 L	PLAY REC AUDIO	
	RECORD MODE	0.0	AUDIO	
6	CODE INPUT 2	250 250 500 500 L	REC.CODE	
7	TAPE SPEED 3.75 ips (9.5 cm/s)	L	all without EJECT	
8	RECORD COMMAND	0 V	REC	Ground on pin C22 of Interf 1
9	TAPE SPEED 7.5 Lps (19 cm/s)	o V		Not utilized On CAD 3010 3011
10	OUTPUT TO PRESSURE ROLLER SOLENOID	< +1 V	PLAY REC	
11	NEGATIVE INPUT CONNECTION OF TIME COUNTER	< +1V	PLAY REC	
12	OUTPUT TO EJECT SOLENOID	< +1V	EJECT	
13	POSITIVE INPUT CONNECTION OF TIME COUNTER	+24 V ÷ +30 V	PLAY REC	
14	CONNECTION OF D.C. MOTOR WHEN HEADS MOVE UP OR CASSETTE CARRIER GO OUT	ues measured with ground on	EJECT	<u> </u>

Without another specification, all values measured with ground on pin TP1

H = hight logic level

L = low logic level

				
#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
15	CONNECTION OF D.C. MOTOR WHEN HEADS MOVE DOWN OR CASSETTE CARRIER GO IN	+24V:+30V <+10V	REW FF. CASS. IN	
16	CONTROLED SUPPLY OF CAPSTAN MOTOR		oll without EJECT	
17	SUPPLY OF CAPSTAN MOTOR WHEN IT TURN IN REVERSE WAY (CLOCK WISE)		Utilised short time for tape positioning	Ground on pin 24 of Capstandi.
18	SUPPLY OF CAPSTAN MOTOR WHEN IT TURN IN NORMAL WAY (COUNTERCLOCK WISE)	<+2V	all without EJECT	Ground on pin 24 of 1 Capstan ctr.
19	POSITIVE CONNECTION OF SPOOLING MOTOR RIGHT	about +4V -15V ÷ +24V	STOP on begin T2 PLAY, REC REW, FF	
20	NEGATIVE CONNECTION OF SPOOLING MOTOR RIGHT	<+0.5V	all	·
21	NEGATIVE CONNECTION OF SPOOLING MOTOR LEFT	about +4V -15V ÷ +24V	STOP ON begin T2 PLAY, REC REW, FF	
22	POSITIVE CONNECTION OF SPOOLING MOTOR LEFT	<+0.5V	all	
23	GROUND CONNECTION OF CAPSTAN MOTOR TACHO	0.0	all	
24	SIGNAL FROM CAPSTAN MOTORTACHO	0.100 Vp ÷ 0.400 Vp	all without EJECT	
25	SIGNAL FROM CAPSTAN MOTOR TACHO	0.100 Vpp ÷ 0.400 Vpp	all without EJECT	
26	GROUND CONNECTION OF CAPSTAN MOTOR TACHO	O. O V	all	
27	COMMAND TODE. MOTOR FOR HEADS UP OR CASSETTE CARRIER OUT	<+ 0.5 V	REW EJECT	
28	COMMAND TO D.C. MOTOR FOR HEADS DOWN OR CASSETTE CARRIER IN	+24V÷+30V -=262.6 -= M5 m5	REW FF CASS. IN	
29	COMMAND TO EJECT SOLENOID	<+0.5V	EJECT	

Without another specification, all values measured with ground on pin TP1

H = hight logic level

L = low logic level

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
30	COMMAND TO PRESSURE ROLLER SOLENOID	<+0.5V	PLAY REC	1
31	NEGATIVE TENSION FOR TRIACS COMMAND	about -0.74 about -14	all	Ground of pin 24 of Capstan
32	COMMAND TO TRIAC FOR CAPSTAN MOTOR NORMAL WAY (COUNTERCLOCK WISE)	about-0.3V	all without short time tape posi- Lioning	Ground on pin 2 of capsta ctr. boar
33	COMMAND TO TRIAC FOR CAPSTAN MOTOR REVERSE WAY (CLOCK WISE)	about -0.3V	Utilised short time	Ground on pin 2 of capsta ctr. boar
34	PLAY COMMAND TO SPOOLING MOTOR LEFT	L	PLAY REC STOP	
35	IDLE COMMAND TO SPOOLING MOTOR LEFT	L	REW	
36	PLAY COMMAND TO SPOOLING MOTOR RIGHT	L	PLAY REC STOP	
37	IDLE COMMAND TO SPOOLING MOTOR RIGHT	L	FF	
<i>38</i>	REWIND COMMAND TO SPOOLING MOTOR LEFT	L	FF	
39	REWIND COMMAND TO SPOOLING MOTOR RIGHT	L	REW	
40	SIGNAL FROM LEFT SPOOLING MOTOR TACHO	H Tvariable: L 400ns+600ns in FF about 25ms in PLAY	PLAY REC REW FF	
41	SIGNAL FROM RIGHT SPOOLING MOTOR TACHO	H Tvariable: 400m\$:600ms in FF about 25 ms in Pf	PLAY REC	
42	LEFT SPOOLING MOTOR ONE TURN CLOCK	Tvariable 30m5:60m5 in FF about 2.75 in PLAN	PLAY REC REW FF	
43	SIGNAL FROM EDIT (DATA) ASSEMBLIES	Local EDIT Remote EDIT	STOP (EDIT)	
44	EXTERN INTERRUPT P. 10	in REW, FF, EJECT in EDIT H T= 80mS + 120mS	STOP (EDIT)	

01.10.81

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
45	SIGNAL FROM LEFT CASSETTE SENSOR ASSEMBLIES	۷	all	If the ,, cassette, is correct inserted
46	COMMAND FROM STOP KEY	L	STOP	
47	COMMAND FROM PLAY KEY	L	PLAY	
48	COMMAND FROM RECORD KEY	L	REC	
49	COMMAND FROM REWIND KEY	L	REW	
50	COMMAND FROM FAST FORWARD KEY	L	FF	
51	COMMAND FROM EJECT KEY	L	<i>E</i> J <i>E</i> CT	
52	SIGNAL FROM RIGHT CASSETTE SENSOR ASSEMBLIES	Н	all	If the casselle points correct inserted
53	EXTERN INTERRUPT SMI	H T1 and T2 variable: T1 < 44ms;12m5 in PLAY 400,05; 200,15 in FF T2 < 22 m5;9 m5 in PLAY 500,06; 250,05 in FF	PLAY REC REW FF	
54	CLOCK TO LEDS REGISTER	H Tabout 200 µS in FF		Signal appear once to Keydepressed
55	CLOCK TO CAPSTAN ANDDRIVER REGISTER	H in: PLAY EJECT H in: REX	all	
56	SIGNAL FROM EDIT CCLOCK) ASSEMBLIES	Local EDIT Remote EDIT	STOP (EDIT)	
57	KEYBOARD ENABLE	Hin: STOP REW FF EJECT A labout 80 ms	all	
58	OUTPUT OF EDIT DATA	TH	STOP (EDIT)	
59	SIGNAL FROM END OF TAPE TRANSPARENT DETECTOR	۷	all	Signal appear at both ends of tape or when is no tape in the delector
50 51 52 53 54 55 56 57 58	COMMAND FROM FAST FORWARD KEY COMMAND FROM EJECT KEY SIGNAL FROM RIGHT CASSETTE SENSOR ASSEMBLIES EXTERN INTERRUPT SMI CLOCK TO LEDS REGISTER CLOCK TO CAPSTAN ANDDRIVER REGISTER SIGNAL FROM EDIT CCLOCK) ASSEMBLIES KEYBOARD ENABLE OUTPUT OF EDITDATA SIGNAL FROM END OF TAPE TRANSPARENT DETECTOR	H Total EDIT Remote EDIT ATI AND TO Variable: To Local EDIT OSVAPPOSVAP To Labout L To PLAY ADDIT L TO PLAY FF H in: STOP AREW FF To Labout L TO PLAY THE PLAY TO PLAY	FF EJECT all PLAY RECY FF all STOP (EDIT) all STOP (EDIT)	Signal appear once it keydepl

Without another specification, all values measured with ground on pin TP1

H = hight logic level

L = low logic level

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
60	SIGNAL FROM HEADS POSITION DETECTOR (DOWN)	<u></u>	PLAY REC STOP	
61	SIGNAL FROM HEADS POSITION DETECTOR (UP)	_	REW FF EJECT	
62	COMMAND FROM	L	T1	
63	COMMAND FROM T2 KEY	L	T2	
64	COMMAND FROM T3 KEY	۷	73	
65	COMMAND FROM T4 KEY	L	T4	
66	TITLE ENABLE	Hin: REW IN PLAY FF EJECT A BOWS L	all	
67	SERIAL COMMUNICATION CLOCK	Н	all	
68	SERIAL COMMUNICATION ENABLE	Н	all	
69	CLOCK TO TAPE TENSION REGISTER	PLAY command in: REW, FF EJECT H T1 = 100 5: 80 mS T2 = 100 mS : 80 mS	all	
70	D1 INPUT TO LS 273	pulsed logic level		
71	D2 INPUT TO 15273	pulsed logic level		
72	D3 INPUT TO LS 273	pulsed logic Level		
73	D4 INPUT TO LS 273	pulsed logic level		
74	DS INPUT TO LS 273	pulsed logic level		

#	NAME		VE LE			FUNCTION	NOTE
	141811	SHAF	SHAPE OF SIGNAL			I DIVETION	1,401
75	DG INPUT TO 15273	pu	Ised L	ogic Le	vel		
76	D7 INPUT TO LS 273	pu	Ised La	pgie les	rel	-	
77	D8 INPUT TO LS273	ри	Ised L	ogic Lev	rel		
	PARALLEL COMMUNICATION MP1 - MP2	#81	#80	# 79	# 78		
		Н	Н	Н	Н	ANSWER	Appear short time after every
		Н	Н	Н	L	EJECT	COMPANY VIS
		Н	Н	7	Н	EDIT (FF)	
		Н	Н	L	L	CODE	
		H	7	Н	Н	PLAY OF REC	
		Н	7	Н	7	FF	
		Н	7	7	H	STOP	
		H	4	4	4	REW	
		7	H	H	H	CLEAR	
		4	Н	H	1	T2	
		7	Н	1	H	T3	
		4	Н	1	7	T4	
		7	4	Н	Н	EDIT (REW)	
		7	7	Н	7	LOCKED	Display E2
		7	7	1	Н	WRONG CASSETTE POSITION	Display E3
		1	4	1	1	TAPE TEARED	Display E4
82	SERIAL COMMUNICATION DATA		about	— H - L		REC. CODE CASS. CARRIER OUT	
83	RESET	Power supply turned on	2.5m5 swilch	INVERT PLAY POWER SUPPLY TURN ON			
84	CLOCK TO REMOTE CONTROL		about abou	it 27ms	H	REW FF	

Without another specification, all values measured with ground on pin TP1

H = hight logic level

L = low Logic level

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
85	WE:	pulsed Logic level		
86	ව ර	pulsed logic level		
87	CLOCK 2	L in PLAY, REC Pulse train in REW, FF	PLAY REC REW FF	
88	D7	pulsed logic level		
89	D5	pulsed logic level		
90	D6	pulsed Logic level		
91	CLOCK 3	pulsed logic level		
92	D4	pulsed logic level		
93	D3	pulsed logic level		
94	D2	pulsed logic level		v
95	21	pulsed logic level		
96	CODE 3	pulsed logic level		
97	DECADE 5	pulsed logic level		
98	CODE 2	pulsed logic level		
99	DECADE4	pulsed logic level		
11.11	4 11 - 10 to 11 11 11	upe imposited with around on	Nin TP	1

Without another specification, all values measured with ground on pin TP1

H = hight logic level

L = Low Logic level

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
100	CODE 1	pulsed logic level		
101	DECADE 3	pulsed logie level		
102	CODEO	pulsed logic level		
103	DECADE 2	pulsed logic level		
104	DECADE 1	pulsed logic level		
105	0.0 V (5V)	0. 0 V	all	
106	0.0V (5V)	0.0V	all	
107	+5V SUPPLY TO DISPLAY	+ 5.0V	all	
108	+ 5V SUPPLY TO DISPLAY	+ 5.0V	all	
109				
110				
111	ID2	pulsed logic level		
112	IDO	pulsed logic level		
113	DA0	pulsed logic level		
114	ID3	pulsed logic level	TO	

Without another specification, all values measured with ground on pin TP1

#	NAME	ACTIVE LEVEL AND SHAPE OF SIGNAL	FUNCTION	NOTE
115	ID1	pulsed logic level		
116	DA2	pulsed logic level		
117	LOCAL/REMOTE EDIT SELECTION	Н	REMOTE CONTROL	
118	DA1	pulsed logic level		
119	WE	pulsed logic level		
120				
121	LOGIC SUPPLY +5.0V	+ 5.0V	all	
122	0.07 (57)	0.07	all	
123	SUPPLY +12V	+ 12.0 V	all	
124	SUPPLY - 12 V	- 12.0V	all	
125	SPOOLINGMOTORS AND D.C. MOTOR SUPPLY +24 Y	+24 V ÷+30V	all	
126	0.0V (24V)	0.0V	all	
127	CAPSTAN MOTOR A.C. SUPPLY 100V	90V ÷ 110V	all	Ground on pin 24 of capata cit. board
128	CAPSTAN MOTOR A.C. SUPPLY 100 V	0.0 V	all	Ground on pinzy of capstan ort. board

COMPONENTS OF CONTROL INTERCONNECTION PCB 1.830.448

J 1	DRIVER		1.830.470
J 2	CAPSTAN MOTOR CONTROL	1.830.450	
J 3	TAPE TENSION CONTROL		1.830.455
J 4	INTERFACE 1		1.830.480
J 5	MICROPROCESSOR 1		1.830.475
J , 6	INTERFACE 2		1.830.485
J 7	MICROPROCESSOR 2		1.830.476
je -			
P 1	AUDIO CONTROL INTERCONNEC	CTION	1.830.192
P 2	SUPPLY VOLTAGE OV \sim	(blk)	1.830.440-93
P 3	SUPPLY VOLTAGE 100V \sim	(blk)	1.830.440-93
P 4	FLATT CABLE DRIVER		1.830.198
P 5	C 10.000 AF (red)	(red)	1.830.440-93
P 6	С 10.000 дF (red)	(red)	1.830.440—93
P 7	SUPPLY VOLTAGE 0V (+5V)	(yel)	1.830.440-93
P 8	SUPPLY VOLTAGE 0V (24V)	(wht)	1.830.440-93
P 9	SUPPLY VOLTAGE +24V	(brn)	1.830.440-93
P 10	SUPPLY VOLTAGE 0V (+5V)	(yel)	1.830.440-93
P 11	FLATT CABLE DISPLAY		1.830.204
P 12	SUPPLY VOLTAGE 0V (+5V)	(yel)	1.830.440-93
P 13	SUPPLY VOLTAGE +5V	(org)	1.830.440-93
P 14	COUNTER (+)		
P 15	COUNTER (-)		
TP 1	O VOLT		
TP 2	SPOOLING MOTOR LEFT (CURRE	NT THR	U 1 <u>ດ</u>)
TP 3	SPOOLING MOTOR RIGHT (CURR	ENT TH	RU 1ഹ)

IND	POS NO		PART NO	VALUE	SPECIFICATIONS/EQUIVALENT
	71	54.0	01.0360		Councefor 2116
	72	54.0	01.0360		
	73	54.0	1.0360		
	J4	54.0	1.0377		Connector 3x16
	75	54.0	01.0377		
	76	54.0	01.0377		
	J}	54.0	1.0377		
	21	54.0	1.0020	2 ×8 pins	Connector
	P2	54.0	2.0320		<i>A</i>
	23	521.1	02.0320		
	アリ	54.0	1.0675		Connector 2×13
	35	54.0	2.0320		
	P6	54.0	02.0320		
	77	34.0	2.0320		
	7.8	54.0	2.0335		·
			2 0335		
	710	54.0	02.0320		
		54.6	01.0020	2×8 pin1	Connector
Ш	_		02.0335		
Ш			02.0355		
	P14		2.0471		
			2.0471		
	-		2.0320		
_			2.0471		
\mathcal{O}	TP3	54.0	02.0471		
IND	DAT	E	NAME		
4					
3					
2					
	11.09.		c. Mele		
	1. 2.	21	14		
9	TUD	ER	Control	Connec	from 1,830, 448,00 PAGE 1

WIRE HARNESS / TAPE DECK CONTROL 1.830.180

EJECT CONNECTION PCB 1.830.146

DRIVER PCB 1.830.470

IND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFF
C1	59.31.1104	.10	±20% 100V MPETP.	
C2	59. 25. 5221	220 U	-10% +50% 40 V EL.	
<i>C</i> 3	59.22.2221	220 U	6.3∨	
D1	50.04.0122	1N4001	1A 50V Si	-
702	50.04.0122	11/4001		-
D3	50.04.0122	1 N 4001		
D4	50. 04. 0125	1N4448	100 m A 75 V	
D5	50, 04, 0125	1N4448		
26	50. 04. 0122	1N4001	1A 50 V	
D7	50. 04. 0122	1N4001		
Do	50.04.0122	1N4001		
29	50. 04. 0125	1N4448	100 m A 75 V	
210	50. 04. 0125	1N 4448		
211	50. 04.0122	1N4C01	19 50V	
D12	50. 04.0122	1N4001		
-	***************************************			
G !	50.03.0457	BD7°5	8 A 45 V NAV	
€ 2	50.03.0451	BD 139-10	1.5A 80V	
Q 3	50.03.0457	2D 795	8 A 45V	
Q+	E0.03.0351	BC 327-25	500 m A 45V PNP	
25	50.03.0457	82 795	8A 45V NAN	
Q6	50.03.0451	BD 139-10	1.5 A 30V	
Q7	50.03.0457	BD 795	8A 45V	
Q3	50.03.0351	BC 327-25	Ercan 45V PNP	
Q 9	50.03.035/	BC 327-25		
0.6	50.03.0460	2 ~6387	5A 80V NPN POUL-DARL	
Q ?*	50.03.0351	BC 327-25	500 m A 45V PNP	
2/2	50.03.0460	2 N 6387	5A 80 V NPN Pon Dark	
IND DA		<u> </u>		_
4)				
3				
2				
D				
0 /14 /2	1095 - ASA	7		

1830.470. - 00 PAGE 1 OF 2

DRIVER

A830

ND	POS NO	PART N	0	VALUE	SPE	CIFICATIONS/EQUIVAL	ENT	MF
	R.I	57.11.40	102	1K	±2%	0207	MF	
	R2	57. 13. 44	7.9	4.7		0414		
	R3	57.11.41	'03	10 K		0207		
	R4	57.11.44	.72	4.7 K				
	R5	57.56.42	22/	220	15%	400	Wire	
	R6	57.11.41	23	10 X	±2%	0207	MF	
	K7	57. H. 410	23	10 K				
	R8	57.11.410	2	1 K				
	R\$	57.13.44	79	4.7		0414		
	R10	57.13.4	79	4.7				
	R 11	57.11.410	3.	10 K		0207		
	12/12	57, H. 44	72	4.7K				
	R13	57.56.42	21	220	± 5%	4 W	Wire	
	R14	57. 11.41	3	10 X	±2%	0207	MF	
	R15	57. 11. 41	03	10 K				
	R16	57.11.44	72	4.7 K				
	R17	57.11.44	72	4.7 K				
	RIE	57. 11. 44	72	4.7 K				
	R19	57. 11. 44	72	4.7 K				
	14.50	ET. 11.44	72	4.7K				
	R21	57. 11. 44	72	4.7 K				
4	R22	57. 13. 44	79	4.7		0414		
+	Pi	54.01.0.	374					
4								
1								
+					-			
1								
ND 4)	DAT	E N	AME					
-								
3								
2								
1								
	J. 02.	. 1930 I.M	r E					

STUDER

DRIVER PCB 1.830.470

CAD 3010/3011

SECTION 8/20

CAPSTAN MOTOR CONTROL PCB 1.830.450

ND	POS NO		PART NO	VALUE	SI	PECIFICATION	NS/EQUIVAL	ENT	MFR
	C1	59.	11.6222	2.2 N	± 5%		400 V	R	
	C2	59-1	2.4473	47 N	± 5%		250 V	MPETP	
	C3	59.3	2. 1471	470P	± 10%		400 V	ŒR	
	C4	59.3	1. 1104	0.111	±20%		100 V	MPETP	
	C5	59.3	1. 1104	0.10					
Т	C6	59.9	9. 0205	68 n	+ 50%	-20%	€3V	CER	
	CT	59.3	1. 1104	0.10	± 20%		100 V	MPETP	
	C8	59.2	26. 2689	6.8 U	±20%		16 V	SAL	
	C9	59.2	5. 4221	220 U	+ 50%	-10%	25V	EL.	
	C10	59.2	26. <i>5159</i>	1.5 U	± 20%		25V		
	C 11	59. 2	25. 4221	220 U	+50%	- 10%	25V	EL	
	C12	59. 9	99.0450	0.471	± 10%		150 V A	PMZ 2015	
	C13	59.2	6. 2100	10 U	± 20%		16 V	SAL	
	C14	59.2	6. 2100	10 U					
	C15	59.2	5. 3470	47 U	+50%	- 10%	16 V	EL	
	C16	59.95	9. 0205	68 N	+80% -	-20%	63V	CER	
	C17	59.9.	9.0205	68 N					
	C18	59.5	19.0205	68 N					
	C 19	59.5	9.0205	68 N					
	C20	59. 2	6.2100	10 U	± 20%		16 V	SAL	
_	C21	59.2	6. 2100	10 U					
	D1	50.0	4. 0105	1N4004			400 V	1A Si	
	D2	50.0	4.0105	1 N4004					
	D3	70.0	1. 0223	BY 159 /400			250 V	800mA si	
	D4	50.0	4.0105	1N4004			400 V	1A 5i	
	D5	50.0	4. 1102	BZX6VO	± 5%	400 m W	6.8V	Z	
	ĪC1	50.0	5.0245	RC 4558P			z	wal OR AMP.	
	Ic2	50.0	5.0157	TDA 1000	Phase a	nd Frequen	еу Сотраг	ator	
	IC3	50.0	5.0245	RC 4558P			Z	wof CRAMP	
_	IC4	50.0	5.0245	RC 4558 P					
ND	I DA	TF.	NAME	1					

	16 4 30.03	.0243	RC 9330F		
IND	DATE	NAME			
4					
3					
2					
1					
0	44.01.1980	c. Metz			
9	STUDER	CAPSTENI	MOTOR CONTROL A 830	1.830.450-00	PAGE 1 OF 3

ND POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
Q1	50.03.0436	BC 237B	100 m A 45 V Si NPN	
Q2	50.05.0255	J411	Dual N-Channel J-Fat	
Q3	50. 03. 0465	4115	5A 300 V 100W Power NPN	
Q4	50.99.0119	2N6073B	4A 400 V Triac	
Q5	50.99.0119	2 N6073 B		
RI	57.11.4122	1.2 K	±2% 0207 MF	
R2	57.11.4394	390 K		
R3	57.11.4103	10 K		
R4	57.11.4334	330 K		
R5	57.11.4102	1 K		
R6	57. 11. 4103	10K		
RT	57.11.4332	3.3 K		
RB	57.11.4273	27 K		
R9	57.11.4273	27 K		
R10	57. 11. 4273	27 K		
R 11				
R 12	57. 11. 4472	4.7K		
R13	57. 11. 4472	4.7K		
R 14	57. 11. 4473	47K		
R 15	57.11.4102	1 K		
R 16	57. 11.4152	1.5K		
R17	57.11.4391	390		
R18	57.11.4103	10 K		
	57.11.4105	1M		
R20	57.11.4124	120K		
R21	57.11.4123	12 K		_
R22	57.11.4105	1M		
R23	57.11.4105	1M		L

IND	DATE	NAME		
4				
3				
2				
1				
	14.01.1980	C. Metz		
s	TUDER	CARSTEN	MOTOR CONTROL AB	30 1.830.450 -00 page 2 of 3

ND POS NO	PART NO	VALUE		PECIFICATION	NS/EQUIVAL		MFF
R24	57.11.4105	1M	± 2 %	0207		MF '	
R25	57.11.4105	11					
R26	57.11.4103	10K					
R27	57.11.4154	150K					
R28	57. 11. 4124	120K					
R29	57.11.4472	4.7K					
R30	57.11.4124	120 K					
R31	57.11.4472	4.7K					
R32	57.11.4122	1.2 K					_
R33	57.11.4101	100					
1234	57.11.4184	180 K					
R35	57.11.4562	5.6 K					
R36	57.56,5220	22	±10%	41	X/	Dr.	
R37	57.11.4473	47 K	± 2%	02	207	MF	
R38	57.11.4473	47 K					
R39	57.11.4103	10 K					
R40	57.56.5473	4.7	± 10%	41	X/	Dr.	ļ
R41	67.11.4182	1.8 K				CSCH	<u> </u>
R42	56.01.7103	10 K	± 10%	.25W	Carmet	PMG	
							<u> </u>
							<u> </u>
Y1	39.01.0370	TDX - TA	1.638	40 MHz	± 200pp1	4 300 ST	_
			ļ				
	54.01.0374			ector 2	× 16		<u> </u>
TO!	54.52.0320		7es	t point			
TP2	54.02.0320						<u> </u>
							<u> </u>
							 —
							_

DATE	NAME				
14.01.1980	C Metz				
STUDER	C 9.85T/AM	יניובש לשישי	ROL 7830	1.830.450 - 20	page 3 of 3

TAPE TENSION CONTROL PCB 1.830.455

П			
	Ы	OUT OF C	TRL
.455		REWIND	
1.830.455		PLAY	LEFT
		IDLE	
R			
N CT			
ENSIC		REWIND)
TAPE TENSION CTRL		PLAY	RIGHT
TA		IDLE	
1	Ц		

INDI	POS NO	PART NO	VALUE	SPECIFIC	ATIONS/EQUIVALE	TV TV	MFR
	CI	59. 26. 2100	10 U	±20%	16 V	SAL	
	C2	59.26.2100	10 U	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	C3	59.34.1150	15 P	± 5% 6	3V NPO	CER	
7	C4	59.34. 4150	15 P				
	C5	59.99.0205	68N	+80% -20%	100 V		
	C6	59.31.6104	.10	±10%	1001	MPETP	
-	C7	59.02.0474	.47U	± 5%	63 V	MAC	
	C8	59.99.0205	68 N	+80% -20%	100 V	CER	
	C9	59.26.2100	10 U	± 20%	16 V	5AL	
	C 10	59.99.0205	68 N	+80% -20%	100 V	CER	
	C 11	59.31. 6473	47N	± 10%	100 V	MPETP	
	C 12	59.26.2100	10 11	± 20%	16 V	SAL	
	C13	59.99.0205	68 N	+80% -20%	% 100 V	CER	
	C 14	59.31.6473	47N	± 10%	100 V	MPETP	
	C 15	59.26.2100	10 U	± 20%	16 V	5AL	
	C16	59.26.2100	104				
	C17	59.99.0205	68 N	+80% -20	% 100 V	CER	
	C 18	59.25.5221	220 U	+50% -10	% 40 V	EL	
	C 19	59.25.3470	47 U		16 V		
_	C 20	59.31.6104	-14	± 10%	100 V	MPETP	
	(21	59,99,0205	68 N	+80% -20)% 100V	CER	
_	D1	50, 04, 0105	1114004	1.	A 400 V	5/	
	22	50.04.0105	1N4004				
	23	50.04.1106	Z 2.7	±5% 2.7 V	400 m W	Z	
-	24	50. 04. 0125	1N4448		OmA 75 V	5/	
-	25	50.04.0125	1 N 4448				
	26	50.04.1106	Z 2.7	±5% 2.7	V 400 m W	Z	
-	27	50.04.0105	1 N 4004		A 400 V	5/	

1.830.455 - 00 PAGE 1 OF 5

21.02.80 C. Mete

STUDER TAPE TENSION CONTROL

ND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	වර	50.04.0105	1N4004	1A 400 V 51	
-					
	DL1	50.04.2107	555-2007	5V Red	
	IC 1	50.99.0123	MC 1408 L8	8- Bit DAC CMOS	
	Ic2	1.025.024.80	R0248-0	EPROM	
	IC3	1.025.024.80	RC248-0	**	
	IC4	50.99.0123	MC 1408 LB	8-Bit DAC CMOS	
	ĪC5	50.06.0273	5N74LS 273N	86it Reg. with clear	
	IC6	50.06.0393	3N74L5393N	Dual 4 bit counter	
	<i>1</i> c7	50.06.0393	5N74LS 393N		
	īce	50. 06. 0014	5N 74LS14N	Hex Inverter Schmittigger	
	IC9	50.05.0245	RC 4558 P	Dual Op. Amp.	
	IC10	50. 05. 0245	RC 4558 P		
	PI	54.01.0374		Connector 2 x 16	
	Q1	50.03.0340	BC 337	s; NPN	
	Q2	50. 03. 0351	BC 327	PNP	
	Q3	50. 03. 0351	BC 327		
	Q4	50. 03. 0351	BC327		
	Q5	50. 03. 0351	BC 327		
	Q6	50.03.0351	BC 327		
	QT	50. 03. 0351	BC 327		
	Qô	50.03.0340	BC 337	NPN	
	Qŝ	50.03.0458	CD 796	VCE: 45V; Ic= 8A Power	
IND	DA	TE NAME	1		
4					
3			_		
2			_		
1			4		
0	21.02	2.50 C. Metz			OF

IND	POS NO	PART NO	VALUE	SPECIF	ICATIONS/EQU	IVALENT		MFR
	Q10	50.03.0458	BD 796	Vce = 45V	Ic = 8A	Power	PNP	
	Q 11	50.03.0458	BD 796					
	Q12	50.03.0458	BD 796					
	Q 13	50.03.0340	BC 337			5/	NPN	
	R1	57.11.4271	270	±2%	0207		MF	
	R2	58.01.6501	500	± 20 %	.5W	PM	1G	
	R3	58.01.6502	5 K					
	R4	58.01.6503	50K	± 10%	. 25 W			
	R5	58.01.6501	500	± 20%	.5W			
	R6	58, 01, 6502	5 K					
	RT	58. 01.6503	50K	± 10%	.25 u	/		
	R8	57.11.4102	1 K	± 2 %	0207		MF	
	R9	57. 11. 4222	2.2 K					
	R10	57. 11. 4222	2.2 K					
	R11	57. 11. 4222	2.2 K					
	R12	57. 11. 4222	2.2 K					
	R13	57. 11. 4222	2.2 K					
	R14	57. 11. 4222	2.2 K					
	R15	57. 11.4222	2.2 K					
	R16	57. 11.4222	2.2 K					
	R17	57. 11.4222	2.2 K					
	R 18	57. 11. 4222	2.2 K					
	R 19	57. 11. 4222	2.2 K					
	R20	57. 11. 4222	2.2 K					
	R21	57. 11. 4102	1 K					_
	R22	31.7	10 K					
	R23	57.11.4102	1K					

IND	DATE	NAME	1				
4							
3							
2							
0							
0	21.02.80	C. Metz					
5	TUDER	TAPE TEN	VSION CONTROL	430	1.830.455-00	page ♂	of 5

R24 R25 R26 R27	57.11.4103 57.11.4103	10 K	±2%			
R26			I Z /0	0207	MF	
		10 K				
R27	57.11.4103	10 K				
	57.11.4102	1 K				
R28	57.11.4562	5.6 K				
R 29	57.11.4104	100 K				
R30	57.11. 4223	22 K				
R31	57.11.4103	10K				
R32	57. 11.4104	100 K				
R33	57.11.4109	1				
R34	57.11.4102	1K				
R35	57. 11. 4103	10 K				
R36	57.11.4104	100 K				
R37	57.11.4562	5.6 K				
R38	57.11.4102	1 K				
R39	57.11.4104	100 K				
R40	57. 11. 4222	2.2 K				
R41	57. 11. 4102	11				
R42	57.11.4109	1				
R43	57.13.4479	4.7		0414		
R44	57. 13. 4479	4.7				
R45	57.11.4102	1K		0207		
R46	57.11.4101	100				
R47	57. 11. 4101	100				
R48	57. 11. 4102	1K				
R49	57.11.4222	2.2 K				
R50	57. 11. 4222	2.2 K				
R51	57. 13. 4479	4.7		0414		
R52	57. 13. 4479	4.7				
253	57. 11. 4222	2.2 K		02 07		
DA	TE NAME	İ				
	R31 R32 R33 R34 R35 R36 R37 R38 R40 R41 R42 R43 R44 R45 R46 R47 R47 R48 R49 R50 R51 R52 R52 R52	R31 57.11.4103 R32 67.11.4103 R32 67.11.4104 R33 57.11.4109 R34 57.11.4102 R35 57.11.4104 R37 57.11.4104 R37 57.11.4104 R37 57.11.4104 R37 57.11.4104 R37 57.11.4104 R40 57.11.4102 R42 57.11.4102 R42 57.11.4103 R43 57.13.4479 R44 57.13.4479 R45 57.11.4101 R47 57.11.4101 R48 57.11.4102 R49 57.11.4102 R50 57.11.4102 R50 57.11.4102 R51 57.13.4479 R52 57.13.4479	R31 57.11.4103 10K R32 57.11.4103 10K R332 57.11.4104 100K R333 57.11.4109 1 R34 57.11.4105 10K R35 57.11.4105 10K R36 57.11.4104 100K R37 57.11.4104 100K R37 57.11.4104 100K R38 57.11.4104 10K R38 57.11.4104 10K R39 57.11.4104 10K R40 57.11.4104 10K R41 57.11.4102 1K R42 57.11.4102 1K R42 57.11.4102 1K R43 57.13.4479 4.7 R44 57.13.4470 100 R47 57.11.4101 100 R47 57.11.4101 100 R48 57.11.4102 1K R49 57.11.4101 100 R49 57.11.4102 1K R49 57.11.4101 100 R48 57.11.4102 1K R49 57.11.4101 100 R48 57.11.4102 1K R49 57.11.4101 100 R48 57.11.4222 2.2 K R50 57.11.4407 4.7	R51 57.11.4103 40K R32 67.11.4104 100 K R33 57.11.4109 1 R34 57.11.4102 1K R35 57.11.4103 10K R36 57.11.4103 10K R37 57.11.4103 10K R38 57.11.4102 1 K R38 57.11.4102 1 K R39 57.11.4102 1 K R40 57.11.422 2.2 K R41 57.11.4109 1 R42 57.11.4109 1 R43 57.13.4479 4.7 R44 57.11.4101 100 R47 57.11.4101 100 R47 57.11.4102 1 K R48 57.11.4101 100 R49 57.11.4102 1 K R49 R50 57.11.4102 2.2 K R51 57.13.4479 4.7 R52 57.13.4479 4.7	R31 57. 11.4103 10K R32 67. 11.4104 100K R33 57. 11.4109 1 R34 57. 11.4102 1K R35 57. 11.4104 100K R36 57. 11.4104 100K R37 57. 11.4104 100K R37 57. 11.4104 100K R38 57. 11.4102 1K R39 57. 11.4102 1K R39 57. 11.4102 1K R40 57. 11.4102 1K R41 57. 11.4102 1K R42 57. 11.4109 1 R43 57. 13.4479 4.7 R44 57. 13.4479 4.7 R46 57. 11.4102 1K R47 57. 11.4102 1K R48 57. 11.4101 100 R47 57. 11.4101 100 R48 57. 11.4102 1K R49 57. 11.4102 1K R50 57. 13.4179 4.7 R50 57. 13.4179 4.7	R51 57. 11. 4103 10K R32 67. 11. 4104 100 K R33 57. 11. 4109 1 R53 57. 11. 4103 10K R35 57. 11. 4103 10K R36 57. 11. 4104 100 K R37 57. 11. 4104 100 K R37 57. 11. 4102 1 K R38 57. 11. 4102 1 K R39 57. 11. 4102 1 K R39 57. 11. 4102 1 K R40 57. 11. 422 2.2 K R41 57. 13. 4479 4.7 R44 57. 13. 4479 4.7 R46 57. 11. 4102 1 K R47 57. 11. 4102 1 K R48 57. 11. 4101 100 R47 57. 11. 4102 1 K R48 57. 11. 4102 1 K R49 57. 11. 4222 2.2 K R50 57. 11. 4222 2.2 K R51 57. 13. 4479 4.7 R52 57. 13. 4479 4.7 R53 57. 11. 4222 2.2 K R53 57. 11. 4222 2.2 K R55 57. 13. 4479 4.7

D POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT			
R54	57.11.4102	1K	±2%	0207	MF	
	2-2-2-1					
1						
					-	
-						
-						
+			-			
-			-			
		-	+			_
			+			_
-		+	-			-
			-			

TARE TENSION CONTROL 4830.455-00 PAGE 4 OF 5

STUDER

	1 1						
IND	DATE	NAME					
4							
3							
2							
1							
0	24.02.80	C. Metz					
9	STUDER	TAPE TE	ENSION CO	ONTROL	1.830.455-00	PAGE 5	OF 5

CAD 3010/3011

SECTION 8/24

HEAD TAPE POSITION DETECTOR PCB 1.830.415

LIGHT SOURCE 1.830.420

		CONN	ECTOR 1
		2	1
ſ	EJECT-POS	1	1
	PLAY+STOP-POS	0	1
	REW-POS	1	0

LIGHT SENSOR 1.830.425

END OF TAPE SOURCE AND SENSOR ASSEMBLIES 1.830.430

DL 1 50.04.2126 OP 140 SLA QP1 50.04.2127 OP 550 SLA

TACHO OF SPOOLING MOTOR 1.830.456

4	POS NO		ART NO	VALUE				
	C1	59.2	6.2339	3.3 U	±20%	16 V	SAL	
1								
1	DLQ1	50.	04.2124	TIL 147	SOURCE A	VD SENSOR ASS	SEMBLIES	
-								
-	R1	57 1	1. 4102	1 K	± 2%	0207	MF	
	R2		1. 4121	120				
	72	37.7	7. 772.					
	P1	64.0	1.0227	/	CIS Course	ctor 3 pins		
_	PI	34.0	7.0227	-	0.0 00000	2,0,		
	-							
_								-
					-			
_		-						-
_								
_								-
								-
_								
	1							
-		1						
-								
-	+	-						
_	1							
				+				+
	-			 	-			-
	-			-				+
_		1			.1			ــــــــــــــــــــــــــــــــــــــ
INI		TE	NAME					
4				-				
3				_				
2								
1								
C	21./2	.1979	C. ECLI					
_	STU		TACHO OF	SAMILAG	MOTOR	1.830,456	-00 PAGE	1 of 1
		الاعر	3010 05	U1 U1/114U	9880			

INTERFACE 1 PCB 1.830.480

NDI	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	CI	59.25.3470	474	-10% +50% 16V EL.	
	C2	59.99.0205	68N	-20% +80% 63V CER	
	C3	59.32.3103	10 N	+100% 40V	
7	C4	59.32.3103	10N		
	c5	59.99.0205	68N	+80% 63V	
	C6	59.32.3103	10 N	+ 100% 401	
	CF	59.99.0205.	68 N	+80% 63V	
	CB	59.99.0205	60 N		
	C9	59.31.1224	0.22 U	±20% 100 V MPETP	
_					
				p+	
	TC1	50.05.0127	SN 7406 N	6 x Driver	
_		50.06.0273	SN 74/5273N	Octal D-Flip Flop with clear	
		50.06.0273	SN74LS278N		
		50.05.0142	SN 7405 N	Hexinverter, open collector.	
_	īc5	50.06.0244	5N74LS244J	Octal buffer/driver 3- State	
	IC6	50.06.0244	SN7415 244J		
_	īc7	50.99.0111	ILD 74	2 x opto couppler	
	IC8	50.99.0111	ILD74		
	IC9	50.05.0142	SN7405N	Hexinverter, open collector	
_		50.06.0273	5N74LS 273N	Octal D-Flip Flop with clear	
_	Te 11	50.05.0142	SN7405N	Hexinverter, open collector	
_	TC 12	50.06.0132	SN 7415132N	4 x Schmittiger NAND	
_	IC 13	50.06.0000	SN 7415 00 N	4 × NAND	
_	TC 14	50.06.0132	SN 7415132N	4 x Schwittriger NAND	
_	IC 15	50.06.0004	SN741504N	6 × Inverter	
	IC 16		LM393P	Dunt low power comparator	
_		50.05.0283	LM 393 P		
	2-11				
_	01	50.03.0340	BC 337-25	45 V 500 mA NAN SI	
NE	D D4	TE NAME	1		
(4)					
<u></u>			7		
(2)			7		
(1			1		
č	5.02	80 Ch Enli	7		

NDI	POS NO I	P	ART NO	VALUE	SP	ECIFICATIONS/EQU	JIVALENT	MFF
	R1	57.11	.4221	720	± 5 %	0,25 W	CSCH	_
	R Z	57.11	.4111	220				
	R3	57.11	.4721	220				
	R 4	57.1.	1.4123	12 K				-
	85	57.1	1.4223	22 K				-
	R 6	57.11	.4223	22 K				-
	R7	57.11	1.4124	120 K				
	R 3	57.4	1.4152	1,5 K				
	R9	57.1.	1.4101	100				+-
	R10	57.1	1.4101	100				+-
	R 11	57.4	1.4103	10 K				-
	RAZ	57.4	1.4152	1,5 K				+
	R13	57.1	1.4124	120 K				-
	R14	57.1	1.4103	10 K				
	R15	57.1	1.4224	220 K				-
	RAG	53.4	1.4152	1,5 K				
	1217	74.7	14103	10 K				+
	218	57.4	1.4103	10K				-
	810	5 3. 4.	1.4101 -	100				
	Rio	5 %, 4	14101	100				+
	Ry	9.3.4	1.4151	150				+
	211	< 2, d	1.4223	22 K				-
	R13	654	1.4332	3.3 K				+
	RIG	58.0	1.7102	1 K	±10%		PMG	_
	1512	77,4	1. 2 2 2 4	22 o x	±5%		CSCH	-
	R 26	52.4	1.4152	1,5 K				
	R 2 7	57. /	1.4221	22C				-
								_

## 57.44.4124 A20 K ## 57.44.401 A00 ## 57.44.402 A20 K ## 57.44.402 A20 K ## 57.44.403 A0 K ## 57.44.404 A00 ## 57.44.400 A00 #	STU	DER	INTERFA	ACE 1	A830	1.330,480.00	PAGE 2 OF 3
R7 57.44.4124 AZOK R3 57.44.4152 A,5 K R9 57.44.4101 400 R40 57.44.4101 400 R41 57.44.4103 A0K R42 57.44.4152 A,5 K R43 57.44.4124 A20 K R44 57.44.4124 A20 K R45 57.44.4124 A20 K R46 57.44.413 A0 K R47 57.44.413 A0 K R48 57.44.403 A0 K R48 57.44.400 A00 R79 57.44.401 A00 R70 57.44.401 A00 R71 57.44.401 A50 R72 57.44.401 A50							
R7 57.44.4124 AZOK R3 57.44.4452 A,5 K R9 57.44.4401 AOO R40 57.44.4401 AOO R41 57.44.4401 AOO R42 57.44.4403 AOK R43 57.44.424 AZOK R44 57.44.424 AZOK R45 57.44.424 AZOK R46 57.44.424 AZOK R47 57.44.424 AZOK R46 57.44.424 AZOK R47 57.44.403 AOK R48 57.44.403 AOK R48 57.44.404 AOO R70 57.44.4051 ASO R11 57.44.4051 ASO R11 57.44.4351 ASO R11 57.44.4332 3.3K R12 57.44.4332 3.3K R13 57.44.4223 22 K R15 57.44.4224 220 K R27 57.44.4224 220 K R27 57.44.4224 220 C ND DATE NAME IND DATE NAME	1			1			
R7 57.44.412 4 470 K R8 57.41.4452 4,5 K R9 57.41.4401 400 R10 57.41.4401 400 R41 57.41.4403 A0 K R42 57.41.442 4 420 K R43 57.41.442 4 420 K R44 57.41.42 4 220 K R45 57.41.42 0 3 A0 K R45 57.41.42 0 40 A0 A0 K R45 57.41.42 1 420 K R46 57.41.42 1 420 K R47 57.41.42 1 420 K R48 57.41.42 2 4 220 K R41 57.41.42 1 420 K R42 57.41.42 1 420 K R43 57.41.42 1 420 K R44 57.41.42 1 420 K R45 57.41.42 1 420 K R47 57.41.42 1 400 K R48 57.41.44 1 1 400 K R49 57.41.44 1 1 400 K R10 77.41.44 1 1 400 K R11 57.41.42 2 3 22 K R12 58.07.770 2 4 K R15 77.41.22 4 220 X R15 77.41.22 4 220 X R17 57.41.42 1 220 K R27 57.41.42 2 1 220 K R27 57.41.4	2						
R7 57.44.412 4 470 K R8 57.41.4401 400 R10 57.41.4401 400 R11 57.41.4401 400 R12 57.41.4401 400 R13 57.41.4403 40K R14 57.41.44152 470 K R14 57.41.44152 470 K R14 57.41.44152 470 K R14 57.41.4214 470 K R14 57.41.4015 40 K R15 57.41.4010 40 K R18 57.41.4010 400 R10 57.41.4011 400 R11 57.41.4011 400 R11 57.41.4011 450 R11 57.41.4011 450 R11 57.41.4011 450 R11 57.41.4011 450 R12 57.41.4011 450 R13 57.41.4011 450 R14 57.41.4011 450 R15 57.41.4011 450 R16 57.41.4011 450 R17 57.41.4011 450 R17 57.41.4011 450 R18 57.41.4011 450 R19 57.41.4011 450 R10 58.01.7102 470 470 470 470 470 470 470 470 470 470	3						
R7 57444424 470 K R8 57444401 400 R10 57444401 400 R10 57444401 400 R11 57444403 A0K R12 57444403 A0K R13 57444403 A0K R14 57444424 420 K R14 57444424 420 K R15 57444224 220 K R16 5744403 A0K R17 5744401 A0K R17 5744401 A0K R18 5744401 A0K R19 5744401 A0K R19 5744401 A0K R19 5744401 A0K R10 5744401 A0K R10 5744401 ANK R11 5744401 ANK R12 5744423 A2K R12 5744423 A2K R13 5744423 A2K R13 5744452 A2K R15 5744422 A2K R16 5804.7402 AK R17 5744422 A2K R17 5744422 A2K R18 5804.7402 AK R19 5804.7402 AK R19 5804.7402 AK R10 5804.7402 AK	4)						
R7 57444124 470 K R8 57444401 400 R10 57444401 400 R10 57444401 400 R11 5744401 400 R12 5744401 400 R13 5744401 400 R14 5744401 400 R15 5744401 400 R16 5744401 400 R17 5744401 400 R19 5744401 400 R10 5744401 400 R11 574401 400 R12 5800.7402 4K 20% R13 5744422 320 K R14 5800.7402 4K 20% R15 574422 420 K R15 574422 475 475 6666	ID DA	ATE	NAME				
R7 57,44,4424 420 K R3 57,44,4401 400 R40 57,44,4401 400 R40 57,44,4401 400 R41 57,44,4403 400 K R41 57,44,4424 420 K R43 57,44,424 420 K R44 57,44,424 420 K R45 57,44,424 420 K R45 57,44,424 420 K R46 57,44,435 4,5 K R47 57,44,403 40 K R48 57,44,403 40 K R49 57,44,403 40 K R49 57,44,404 400 R10 57,44,404 400 R10 57,44,405 450 R11 57,44,405 450 R11 57,44,407 400 R12 57,44,407 400 R13 57,44,407 400 R10 57,44,407 400 R11 57,44,407 450 R11 57,44,407 450 R12 57,44							
R7 57,44,4424 420 K R3 57,44,4401 400 R40 57,44,4401 400 R40 57,44,4401 400 R41 57,44,4403 400 K R41 57,44,4424 420 K R43 57,44,424 420 K R44 57,44,424 420 K R45 57,44,424 420 K R45 57,44,424 420 K R46 57,44,435 4,5 K R47 57,44,403 40 K R48 57,44,403 40 K R49 57,44,403 40 K R49 57,44,404 400 R10 57,44,404 400 R10 57,44,405 450 R11 57,44,405 450 R11 57,44,407 400 R12 57,44,407 400 R13 57,44,407 400 R10 57,44,407 400 R11 57,44,407 450 R11 57,44,407 450 R12 57,44	+						
R7 57.44.4424 A20 K R8 57.44.4401 A00 R40 57.44.4401 A00 R40 57.44.4401 A00 R41 57.44.4403 A0 K R41 57.44.4424 A20 K R43 57.44.4424 A20 K R44 57.44.4424 A20 K R45 57.44.4424 A20 K R46 57.44.4424 A20 K R47 57.44.4433 A0 K R46 57.44.4433 A0 K R47 57.44.4403 A0 K R48 57.44.4403 A0 K R49 57.44.4404 A00 R10 57.44.4451 A50 R11 57.44.4332 3.3K R12 57.44.4332 3.3K R13 57.44.4332 3.3K R14 58.0f.7402 4K ±10% R15 57.44.452 4.5K	R 2 7	3 + 2	4.4227	+220	-		
R7 57.44.4424 A20 K R8 57.44.4401 A00 R10 57.44.4401 A00 R40 57.44.4401 A00 R41 57.44.4403 A0 K R41 57.44.4424 A20 K R43 57.44.4424 A20 K R44 57.44.4424 A20 K R45 57.44.4424 A20 K R46 57.44.4452 A5 K R46 57.44.4452 A5 K R47 57.44.4403 A0 K R48 57.44.4403 A0 K R49 57.44.4401 A00 R10 57.44.4401 A00 R11 57.44.4223 A2 K R11 57.44.4332 3.3K R12 58.0f.7402 4K ±40% R13 57.44.3224 A20 K R15 77.44.224 A20 K A20 K	-				-		
R 7 57.44.4424 A20 K R 8 57.44.4401 A00 R 10 57.44.4401 A00 R 10 57.44.4401 A00 R 11 57.44.4403 A0K R 12 57.44.4452 A2 K R 13 57.44.4424 A2 O K R 14 57.44.4424 A2 O K R 15 57.44.4424 A2 O K R 16 57.44.4424 A2 O K R 16 57.44.4432 A0 K R 16 57.44.4432 A0 K R 17 57.44.4403 A0 K R 18 57.44.4404 A0 O R 19 57.44.4404 A0 O R 10 57.44.4451 A5 O R 11 57.44.4451 A5 O R 11 57.44.4332 3.3 K R 10 58.01.7402 4 K ±10% R 10 58.01.7402 4 K ±10%	+	-			1 2 70 -		30.00
R 7 57.44.4424 A20 K R 8 57.44.4401 A00 R 10 57.44.4401 A00 R 10 57.44.4401 A00 R 11 57.44.4401 A0K R 12 57.44.4402 A2K R 13 57.44.4424 A2K R 14 57.44.4224 A2K R 15 57.44.4224 A2K R 16 57.44.4224 A2K R 17 77.44.403 AK R 18 57.44.403 AK R 18 57.44.404 AO R 10 57.44.404 AO R 10 57.44.404 AO R 10 57.44.405 AS R 11 57.44.405 AS R 11 57.44.4223 AS R 11 57.44.4233 AS							
R 7 57.44.4424 AZOK R 8 57.44.4452 AJSK R 9 57.44.4404 AOO R 10 57.44.4404 AOO R 11 57.44.4403 AOK R 12 57.44.4424 AZOK R 13 57.44.4424 AZOK R 14 57.44.4424 AZOK R 14 57.44.4425 AZOK R 14 57.44.4424 AZOK R 14 57.44.4425 AZOK R 14 57.44.4433 AOK R 14 57.44.4403 AOK R 15 57.44.4404 AOO R 10 57.44.4404 AOO R 10 57.44.4454 ASO R 11 57.44.4223 ASO R 11 57.44.4223 ASO		+			+ "		enc
R7 57.44.4424 A20 K R3 57.44.4452 A,5 K R9 57.44.4404 A00 R10 57.44.4404 A00 R40 57.44.4403 A0K R41 57.44.4403 A0K R43 57.44.4424 A20 K R44 57.44.4424 A20 K R45 57.44.4423 A0 K R45 57.44.4452 A5 K R47 73.44.4452 A5 K R47 73.44.4403 A0 K R48 57.44.4403 A0 K R49 57.44.4404 A00 R10 73.44.4404 A00 R10 73.44.4451 A50	-				+		
R 7 57.44.4424 A20 K R 8 57.44.4452 A,5 K R 9 57.44.4401 A00 R 10 57.44.4401 A00 R 11 57.44.4403 A0 K R 12 57.44.4403 A0 K R 13 57.44.4424 A20 K R 14 57.44.4424 A20 K R 15 57.44.4224 A20 K R 16 57.44.4433 A0 K R 17 57.44.4433 A0 K R 18 57.44.4433 A0 K R 19 57.44.4434 A0 C	R)'	+					
R7 57.44.4424 A20 K R3 57.44.4452 A,5 K R9 57.44.4401 A00 R10 57.44.4401 A00 R40 57.44.4401 A00 R41 57.44.4452 A,5 K R43 57.44.4424 A20 K R44 57.44.4424 A20 K R45 57.44.4424 A20 K R45 57.44.4433 A0 K R46 57.44.4434 A5 K R47 57.44.443 A0 K R48 57.44.443 A0 K R48 57.44.443 A0 K R49 57.44.443 A0 K R49 57.44.443 A0 K R40 57.44.440 A0 O	RTO						
R7 57.44.4424 AZOK R8 57.44.4452 AJSK R0 57.44.4404 A00 R10 57.44.4404 A00 R41 57.44.4403 AOK R42 57.44.4424 AZOK R43 57.44.4424 AZOK R44 57.44.4424 AZOK R44 57.44.4424 AZOK R45 57.44.4424 AZOK R46 57.44.4424 AZOK R47 57.44.44403 AOK	810	2.9" 1	1.4101				
R\$ 57.41.4124 A20K R\$ 57.41.4152 A,5K R9 57.41.4101 A00 R10 57.41.4103 A0K R41 57.41.4103 A0K R41 57.41.4102 A20K R44 57.41.4103 A0K R43 57.41.4104 A20K R44 57.41.4103 A0K R45 57.41.4103 A0K R45 57.41.4103 A0K	R18	57.4	1.6103	10 K			
R7 57.44.4124 A20K R8 57.44.4452 A,5K R9 57.44.4401 A00 R10 57.44.4401 A00 R44 57.44.4403 A0K R41 57.44.4424 A20K R44 57.44.4424 A20K R45 57.44.4224 A20K	18117	74, 4	14103	10 K			
R7 57.44.4424 A20K R8 57.44.4452 A,5K R9 57.44.4401 A00 R10 57.44.4401 A00 R41 57.44.4401 A0K R42 57.44.4452 A,5K R43 57.44.4424 A20K R44 57.44.443 A0K	R16	53.4	1.4152	1,5K			
R7 57.44.4424 AZOK R8 57.44.4452 A,5 K R9 57.44.4404 AOO R10 57.44.4404 AOO R40 57.44.4403 AOK R41 57.44.4452 A,5 K R43 57.44.4124 AZOK	R15	57.1	1.4224	220 K			
R7 57.44.4424 AZOK R8 52.44.4452 AZOK R0 52.44.4401 A00 R10 52.44.4401 A00 R14 52.44.4403 AOK R12 52.44.4452 AZOK	R14	57.1	1.4103	10 K			
R + 5 + 11 + 12 + 12 0 K R 3 5 + 11 + 14 5 2 1, 5 K R 9 5 + 11 + 14 0 1 100 R 10 5 + 11 + 14 0 1 100 R 11 5 + 11 + 14 0 3 10 K	R13	57.1	1.4124	120 K			
R7 57.44.424 A20 K R3 57.44.452 4,5 K R9 57.44.401 400 R10 57.44.401 400	R12	57.4	1.4152	1,5 K			
R + 5 + 1 1 4 1 2 4 1 1 2 0 K R 3 5 + 1 1 4 1 5 2 1 5 K R 9 5 + 1 1 4 1 0 1 1 0 0	RAI	57.4	1.4103	10 K			
R7 57.11.4124 170K R8 57.11.4152 1,5K	R 10	57.1	1.4101	100			
R7 57.11.4124 120K	RS						
	_			1,5 K			
1 R 6 5 + 11.4 Z 2 3 22 K				120 K			
RS 5+.11.4223 22 K	R 6			22 K			

ID POS	NO	PART N	o	VALUE		CATIONS/EQUIVALENT	MFR
P	1 :	54.01.03	565		Connector	2×32 Pins	
		54.01.00				2 × 13 pins	
		54.01.00					
-	-						
TF	21	54.02.03	520		Test point		
TP	2 :	54.02.03	520				
+	-						
+	-						
-	_						
					-		
_					-		
4-	_				-		
-	-						
-							
	-						
_							
_							
					-		
4	DAT	E N	AME				
3							
2							
①							
0 5	.02	30 ch.	Eali:				

MICROPROCESSOR 1 PCB 1.830.475

MICROPROCESSOR 1 PCB 1.830.475

ND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	C1	59.34.1150	15 P	±5% 631 NPO CER	
	C2	59.34.1150	15 P		
	C3	59.26.1330	33 U	±20% 10V SAL	
	C4	59.99.0205	68N	+80%-20% 63V CER	
	C5	59.99.0205	68 N		
	C6	59.99.0205	63 N		
	C7	59.99.0205	68 N		
	CB	59.99.0205	63N	-	
	C9	59.99.0205	68N		
	CA	59.99.0205	68N		
	CH	59.99.0205	68N		
	C12	59.30.4101	100 U	+50% -20% 16V TA	
	C13	59.30.4101	100 U		
	C14	59.26.1330	33 U	±20%: 10V 5AL	
	C15	59.32.4102	1N	50V CER	
	C16	59.99.0205	68 N	+80%-20% G3V	
	C17	59.32.3103	10 N	+100% -20% 40V	
	C16	59.26.1330	33 U	±20% 10V SAL	
	C19	59.30.4101	100 U	+50%-20% 16V TA	
	C20	59.30.4101	100 U		
	C 21	59.32.4102	1N	± 20% 50 V CER	
	C 22	59.99.0205	68N	+80% -20% 63V	
	C23	59.26.1330	33 U	±20% 10V SAL	
	C24	59.99.0205	62N	+80% -20% 63V CER	
	D1	50.04.0508	1114935	200 V 1A SI	
	D 2	50.04.0508	1114935		
	IC1	50.05.0282	3871	FE Microprocessor PIO	
	Ic2	50.05.0281	3853	SMI	
	IC3	50.05.0280	3850	CPU	
	IC4	50.06.0155	7415 155	Dual 2-Line-to-4-Line Decoder	

	DATE						
(4)	DATE	NAME					
_							
3							
2							
1							
0	27.11.1980	C. Metz					
9	STUDER	MICROPROL	ESSOR 1	A83D	1.830.47	5-00	PAGE 1 OF 3

ND	POS NO		PAF	RT NO		VALUE	SP	ECIFICATIONS/EQUIVA	LENT		MF
	IC5	1.0	25.	507	- 10	R5071	EPROM	<i>-</i>			
	166	1.02	5.	507	-20	. R 5072	E \$204				
	IC7						not us	ed			
								,			
	IC10	50.	05	.027	9	5G 3524 N	Switch	ing regulator			
	ICH	50.	05	. 027	9	54 3524 N		V - V			
	IC12	50.	06.	000	0	741500	Quad ,	NAND			Т
	11	1.0.	22.	191	-00	600 mH	Power.	- Inductor			
	12	62.	01.	012	9	0.1 MH	Inducto	Sr.			Т
	13	61.	99.	012	4		Ferrite,	pearl			Т
	14	61.					,				-
	15	1.0.	22.	191	-00	600 pH	Power -	Inductor			
	16	62.	01.	012	9	0.1 p. H	Inducto	7			
	17	61.	99.	012	24		Ferrite	pearl			
	18	61.	99.	012	24						_
	PI	54	01.	036	55	2 × 32	Conneci	tor			
											Т
								1			U-Reads
	Q1	50.0	03.	054	0	BC 337	45 V	500 m A	N	PN SI	
	22	50.	03.	045	1	BD 139	80 V	1.5 A			_
1	Q3	50.	03.	035	1	BC 327	45V	500 mA	ρ,	NP	_
1	24	50.	03	045	12	BD 140	80 V	1.5A			
٦											_
٦											
٦	RI										
ND	DAT	E	1	NAM					•		
4											_
3											
2			1								
D											
╗	27.11.1	980	c	Meta							

ND POS	IO PART NO	VALUE	SPEC	CIFICATIONS/EQUIVAL	ENT	MFR
R2	57.11.4102	1K	± 2%	0207	MF	
R3	57.11.4183	18 K				
R4		47 K				
R5	57.11.4101	100				
RG	0,	330				
RŦ		4.7K				
RB	57.11.4472	4.7K				
R9	57.11.4472	4.7 K				
RIC	57.11.4222	2.2 K				
RH	57.11.4102	14				
RI	2 57.11.4331	330				
RE	57.11.4562	5.64				
RI	4 57.11.4333	33 K				
RIS	57.11.4101	100				
RIG	57.11.4473	47 K				
RZ 1	57.85.3103	10 K	Resistor v	petwork		
51	55.03.0122	1 * 17	Pulse vey	,		
Y1	69.01.0379	2 MHz	Crystol	<i>(</i>		
1	03.07.0373	271118	Clyspi			
+						
+						
IDI D	ATE I NAME	ļ	L			

IND	DATE	I NAME		L		
(4)	DATE	MANIE				
-						
3						- 1
2						
1						
0	27.11 1980	C. Meta				j
9	TUDER	MICROPROC	ESSCR 1	A 830	1.830.475-00	PAGE 5 OF 3

INTERFACE 2 PCB 1.830.485

S1,S2 : ADDRESS SWITCH R28 : TRANSMIT. LEVEL

P2 : KAMOS

P3 : REMOTE CONTROL 351 : REMOTE BUS

ND	POS NO	PART NO	VALUE	SPE	CIFICATIONS	EQUIVALEN		MFR
	CI	59.26.2339	3.3 U	±20%		16 V	SAL	
	C2	59.26.2339	3.3U					
	C 3	59 - 32 . 1330	33 P	± 10%		400 V	CER	
	C4	59.99.0205	68 N	+80%	- 20%	63 Y	CER	
	C5	59.99.0205	68 N		*	4		
	<i>C</i> 6	53.26.2100	100	±20%		16 V	SAL	
	C7	59.34.1150	15 P	± 5%		63 V	CER	
	C8	59.34.1150	15P					
	Cg	59.99.0205	68 N	+80%	-20%	63V_		
	C10	59.99.0205	68 N					
	C11	59.99.0205	68 N					
	C12	59.25.3470	47 U	+ 100%	10%	16 V	EL	
	C13	59.99.0205	68 N	+ 80%	-20%	63 V	CER	
	C14	59.99.0205	68 N					
	C15	59.99.0205	68 N					
	D1	50.04.0125	1N4448	75 V				
	32	50.04.0125	1N4448					
	D 3	50.04.0125	1N4448					
	D4	50.04.0125	IN4448					
	25	50.04.1101	Z 3.9 V	400 ml	V 5%			
	26	50.04.0512	1N5818	30 V	1A S	hoftky		
	D7	50.04.0512	1 N 5818					
-	28	50.04.0512	1 N 5818					
	29	50.04.0512	1 N 5818					
								_
								_
								_
								-
								L

D	DATE	NAME		
)				
9				
9				
)			5	
5	19.05 1980	A. Plüss		
•	STUDER	INTER	FACE 2	1.830.485-00 PAGE / OF 5

ND	POS NO	P	PART NO	VALUE		SPECIFICAT	IONS/EQ	UIVALENT	Г	MFR
*	DL 1	50.0	4.2107	555 - 2007	5٧			red		
	DL2	50,0	4.2107	555 - 2007	5٧			red	l	
	DL 3	50,00	22107	555- 2007	5v			ted		
	DLQ1	50.9.	9.0111	ILD - 74						
	DLQ2	50.9:	9.0111	ILD -74						
	DLQ3	50.9	9.0111	ILD -74						
						s/				
_										
										-
	IC1	1.025	.018 - 11	YST 78024		NP 3				
			6.0273	18 243		S ,D,				
	IC3		6.0273	LE 273		8, 7,				
	IC 4		20137	V4 12-12	DC CON	VERTER	(not	mount	led)	
			5.0283	TH 363		Dua				
	IC6		5.0283	Frt 35.8		220				-
	IC7	50.C	5.0283	그년 2만3		Jua.				ļ
										-
	<u> </u>									
	K1	5 6.C	4.0141		24V	40				-
_			- 051.0	20.000					NPI	+
	Q1		3.0340	EC 337				Si Si	PHP	-
	0.2		3,035.1	CC 327					7117	
	Q3	-	3.035.1	30 327						
	3 :		3,335.1	30, 327						
INI		TE	NAME							
4	1									

	Ø ∃	50.0	03,035./	30, 327			
ND	DATI	E	NAME	1			
4							
3							
2							
1							
0	40, 5, 8	٥	E 12				
9	STUD	ER	INTERFA	ca 2 A	830	1,930.435.20	PAGE 2 OF
	,						

ND	POS NO	PART NO	VALUE	SPECI	FICATIONS/EQUIVALEM	NT I	MFR
	Q5	50.03.0340	BC 337		S/	NPN	
	Q6	50.03.0340	BC 337				
	Q7	50.03.0340	BC 337				
	Q8	50.03.0340	BC 337				
_	Q9	50,03.0340	BC 337				
	R1	57.11.4332	3.3 K	± 2%	0207	MF	
-	R2	57.11.4562	5.6K				
	R3	57.11.4103	10 K				
	R4	57.11.4103	10 K				
-	R5	57.11.4823	82 K				
	R6	57.11.4102	1 K				
	R7	57.11.4102	1 K				
	R8	57.11.4103	10 K				
	Rg	57.11.4102	1 K			1000	
	R10	57.11.4103	10 K				
	R11	57.11.4223	22 K				
	R12	57.11.4823	82 K				
	R13	57.11.4124	120 K				-
		57.11.4124	120 K				
		57.11.4271	270				
	· · · -		10 K				
		57.11.4473	47K				
		57.11.4124	120 K				
		57.11.4823	82 K				
L .		57.11.4223	22 K				
		57.11.4222	2.2 K				
		57. 11.4271	270				
	R 23	57.11.4271	270				

IND	DATE	NAME			
4					
3					
2					
1					
0	19.05.1980	A. Plass			
5	STUDER	INTER	FACE 2	1.830.485-00	PAGE 3 OF 5

NDI	POS NO	P	PART NO	VALUE	SPECIF	ICATIONS/EQUIVALE	NT	MFR
٦			1.4472	4.7K	±2%	0207	MF	
	R25	57.1.	1.4102	1 K				
	R26	57.1.	1.4222	2.2 K				
	R27	57.1	1.4822	8.2 K				
	R28	58.0	1.7103	10 K	± 10 %	.25W	PMG	- No.
	R30		1.4222	2.2 K	± 2 %	0207	MF	
			1.4153	15 K				-
			1.4153	15 K				
	R33	57.1	1. 4103	10 K	-			
	R34	57.1	1.4822	8.2 K				
	R35	57.1	1.4102	1K				
			1.4102	1 K				
			11.4153	15 K				
			11.4472	4.7K				
	R39	57.1	1.4181	180				
								_
	R41	57. 1	11.4103	10 K				
-	R43	57.1	1.4104	100 K				
								-
	R45	57 1	1.4104	100 K				
								1
	Y	23.	01.0550	4 MHz		Qu	arte	
								-
	121	54.	01.0365		Connecto		2 H)+C	
	P2.	54.	01.0675			2 × 13	3 pins	
	P3	54.	01.0675					<u></u>
INE	D/	ATE	NAME					
4								
3								
2)			,				
$\overline{}$								

STUDER

INTERMINE 2

1. 930 485.00 PAGE 4 OF 5

D POS NO	PA	RT NO	VALUE		ATIONS/EQUIVALENT	MFF
J51	54.01.	0021		Zummer		
TP1	54.02.	0350		Fact co	ector	
TP2	54.02.	0330				
C2 1	55,01.	0164		5 W1364	32-630	
585	55,04	0164				
1						
	-					
+						
+						
+	-					
-						
-	-					
-						
-	-					
+	+					
	+					
_						
_	-					
	ATE	NAME				
4						
3						
③ ②						
0						
	E -4	٠,				
	DER	7. 755 F			4,930 195,50	PAGE 5 OF

MICROPROCESSOR 2 PCB 1.830.476

1...10 = WIRING INSTEAD OF SZ1

MICROPROCESSOR 2 PCB 1.830.476

ND	POS NO	PART NO	VALUE	SPECIFICA	TIONS/EQUIVAL	ENT	MFF
	C1	59.34.1150	15 P	±5% 63	V NPO	CER	
	C2	59.34.1150	15 P				
	C3	59.26.1330	33 U	±20% 10V		SAL	
	C4	59.99.0205	68 N	+80% -20%	63 V	CER	
	C5	59.99.0205	68N				
	C6	59.99.0205	68N				
	C7	59.99.0205	68 N				
	Св	59.99.0205	68 N				
	C9	59.99.0205	68 N				
	C10	59.99.0205	68 N				
	CH	59.99.0205	68 Nr				
	C12	59.30.4101	100 U	+50% -20%	16 V	TA.	
	C13	59.30.4101	100 U				
	C14	59.26.1330	33 U	±20%	10 V	SAL	
	C15	59.32.4102	1N		500	CER	
	C16	59.99.0205	68 N	+80%-20%	63V		
	C17	59.32.3103	10 N	+100% -20%	40 V		
	C23	59.26.1330	33 U	±20%	10 V	SAL	
	C 24	59.99.0205	68 N	+ 80% -20%	63 V	CER	
_	D1	50.04.0508	1N 4935	200 V	11)	SI	
	TCI	50.05.0282	3871	F8 Micropro	cessor PI	ro -	
-		50.05.0281	3853		5/		
_		50.05.0280	3850		CF	20	
				Dust 2- Line -	to-4-Line	Decoler	
1		1.025.508-11					
	166	1.025.508-21					
	102	2.720 300 27					
		50.05.0278	2112 A	256 * 46+ .	States RI	9M	

IND	DATE	NAME			
4					
3					
2					
1	14.7.82	dā			
	29.11.1980	C. Metz			
€	TUDER	MICROPROCESSOR	2 A830	1.830.476-00	PAGE 10F 3

DI POS NO	PART NO	VALUE		FICATIONS/EQU	IVALENT		MFI
IC9	50.05.0278	2112 A	256 × 4	bit Static	RAM		
TC10	50.05.0279	593524N	Switching	regulator			
IC12	50.06.0000	74 1500	Quad 1	NAND			
-							
11	1.022.191-00	600 as H	Power - lo	duetor			
12	62.01.0129	0.1 p.H	Inductor				
43	61.99.0124		Ferrite pe	arl			
L4	61.99.0124						
			,				
P1	54.01.0365	2 * 32	Connector				
	50.03.0340	BC 337	45 V	500 mA	NPN	<u>S</u> /	
Q2	50.03.0451	BD 139	80 V	1.5 A			
R2	57.11.4102	1 K	=2%	0207		ME	
23	57.11.4183	18 K	- 25 %	0207			
	57.11.4473	47 K					-
	57.11.4101	100					
	57.11.4331	330					
R7	57.11.4472	4.7 K					
RB	57.11.4472	4.7 K			,		
	57.11.4472	4.7 K					
R10	57.11.4222	2.2 K					
ļ							
RZd	57.85.3103	10 K	Resistor	network			

ND POS NO		PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
51	55.0	3.0122	1 * A	Pulse Key	
				/	
Y1	89.6	01.0379	2 MHz	Crystal	
				/	
					_
			1		
			1		
-					
					_
				<u> </u>	
-			ļ		
					_
-			ļ		
					
			-		
				<u> </u>	
ND DA	TE	NAME			
9			-		
ু		I h	-		
2 111 7	D 2	16	-		
U. 4.1	86	CA,	4		

1.830.476-00 PAGE 3 OF 3

STUDER MICROPROCESSOR 2 A830

	R8	57	11.4472	4.7 K				
	R9	57.	11.4472	4.7 K				
	R10	57.	11.4222	2.2 K				
	RZŹ	57.8	85.3103	10 K	Resistor	network		
IND	DA	TE	NAME	i				
(A) (B) (B)								
⊚				1				
0								
1	14.7	.82	da	1 .				
0	29.11	1980	C. Mete					
9	STUD	ER	MICROPRO	OCESSOR.	2 A330	1.830.476-00	PAGE	2 o f3

MICROPROCESSOR 2 PCB (DC / DC CONVERTER) 1.830.476

SECTION 8/37

CONTENTS

DESCRIPTION	SCHEMATIC NO.	SECTION/PAGE
POWER SUPPLY UNIT		6
SURVEY OF POWER SUPPLY COMPONENTS		6/3
POWER SUPPLY / BLOCK DIAGRAM	1.830.350	6/4
POWER SUPPLY BASEBOARD	1.830.370	6/5
TRAFO ASSEMBLY	1.830.360	6/7
STABILIZER PCB	1.830.355	6/8
AUDIO	, , , , , , , , , , , , , , , , , , , ,	7
		7/3
SURVEY OF AUDIO COMPONENTS		7/5
AUDIO BLOCK DIAGRAM		7/5
AUDIO CONNECTIONS	1.830.445	7/6
AUDIO INTERCONNECTION PCB	1.830.443	7/8
INPUT HF NOISE FILTER		7/8
OUTPUT HF NOISE FILTER	1.830.444	7/8 7/9
WIRE HARNESS / HEAD BLOCK ASSEMBLY	1.830.190	7/9 7/10
HEAD BLOCK ASSEMBLY (RECORD/REPRODUCE CAD 3011)	1.020.340	
HEAD BLOCK ASSEMBLY (REPRODUCE CAD 3010)	1.020.341	7/11
REPRODUCE AMPLIFIER PCB	1.830.465	7/12
RECORD AMPLIFIER PCB	1.830.460	7/14
CODE AMPLIFIER PCB	1.830.467	7/16
OSCILLATOR PCB	1.167.712	7/18
TAPE DECK CONTROL		8
SURVEY OF TAPE DECK CONTROL COMPONENTS		8/3
TAPE DECK CONTROL BLOCK DIAGRAM		8/3
CONTROL INTERCONNECTION SIGNAL LIST		8/4
ACTIVE LEVELS AND SHAPES OF SIGNAL ON CONTROL —		
INTERCONNECTION PCB	1.830.448	8/5
COMPONENTS OF CONTROL INTERCONNECTION PCB	1.830.448	8/14
CONTROL INTERCONNECTION PCB	1.830.448	8/15
WIRE HARNESS / TAPE DECK CONTROL	1.830.180	8/16
EJECT CONNECTION PCB	1.830.146	8/17
DRIVER PCB	1.830.470	8/18
CAPSTAN MOTOR CONTROL PCB	1.830.450	8/20
TAPE TENSION CONTROL PCB	1.830.455	8/22
HEAD TAPE POSITION DETECTOR PCB	1.830.415	8/24
LIGHT SOURCE AND SENSOR	1.830.420/425	8/24
END OF TAPE SOURCE AND SENSOR ASSEMBLIES	1.830.430	8/25
TACHO OF SPOOLING MOTOR	1.830.456	8/25
INTERFACE 1 PCB	1.830.480	8/26
MICROPROCESSOR 1 PCB	1.830.475	8/28
INTERFACE 2 PCB	1.830.485	8/32
MICROPROCESSOR 2 PCB	1.830.476	8/34
PERIPHERIE		9
SURVEY OF PERIPHERIE		9/2
SIGNAL LIST OF PERIPHERIE CONNECTORS		9/3
LOCAL CONTROL CONNECTION PCB	1.830.330	9/4
	1.830.331	9/6
LOCAL CONTROL CONNECTION PCB	1.830.912	9/8
LOCAL KEYBOARD	1.830.900	9/11
SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM		9/11
INTERFACE PCB / REMOTE CONTROL	1,830,904	9/14
CPU - 8085 REMOTE CONTROL PCB	1,830.902	
KEYBOARD REMOTE CONTROL	1.830.906	9/16
TACHO OF EDIT	1,830,908	9/18

SURVEY OF PERIPHERIE

CONNECTOR
REMOTE CONTROL
CONNECTOR
CAMOS BUS

KEYBOARD REMOTE CONTROL 1.830.906

INTERFACE REMOTE CONTROL 1.830.904

LOCAL KEYBOARD 1.830.912

LOCAL CONTROL

SIGNAL LIST OF PERIPHERIE CONNECTORS

LOCAL CONTROL CONNECTOR

21 = FF1 = PLAY11 = EJECT 12 = LA-T4 22 = LA-FF 2 = LA-PLAY 23 = REW 13 = T4 3 = STOP 4 = 1A-570P 24 = LA - REC 14 = +5.0 V25= CLEAR 15 = IDO 5 = REC 26 = EDIT (CLK) 6 = EDIT (DATA) 16 = ID3 17 = REMOTE/LOCAL 7 = 0.00 27 = S-REC-M 8 = 0.0V 18 = DA2 28 = T2 29 = LA -T2 19 = DA1 9 = 0.0V 30 = T3 20 = LA - REW 10 = LA-EJECT

REMOTE CONTROL CONNECTOR

NC = NO CONNECT

31 = LA - 73

32 = +5.0 V

33 = ID2

34 = DA0

35 = ID1

36 = WE

37 = +5.0V

19 = - 12 V 7 = SIGNAL GROUND 13 = EDIT CLK 20 = NC 1 = NC 14 = NC 21 = NC 2 = TRANSMITTED DATA8 = NC 22 = NC 3 = RECEIVED DATA 9 = +12 V 15 = NC 10 = + 12 V 16 = NC 23 = NC 4 = NC 17 = NC 24 = NC 11 = NC 5 = REW. CLK 25 = EDIT DATA 18 = -12 V 6 = NC 12 = NC

CAMOS - BUS CONNECTOR

19 = -12 V20 = NC 7 = NC B = NC 1 = NC 21 = NC 14 = NC 2 = TRANSMITTED DATA 8 = NC 15 = NC 22 = NC 3 = RECEIVED DATA 9 = +12V 23 = NC 10 = +12V 16 = NC 4 = NC 24 = NC 17 = NC 11 = NC 5 = NC 25 = NC 18 = -12V 6 = NC 12 = NC

	ND POS NO		PART NO	VALUE	SPECIF	FICATION	IS/EQUIVALENT		MFR
P2 54.01.0020 P3 54.01.0020 P4 54.02.0471 P5 54.02.0471 P6 54.02.0471 P8 54.02.0471 S1 55.01.0108 D DATE NAME	21	54.0	01.0632		Connec	600	37 pins		
P3 54070020 P4 54020471 P5 54020471 P6 54020471 P8 54020471 S1 55010108 Switch 2xU D DATE NAME	PI	54,0	7.0675		Connec	to+	2 × 13		
D DATE NAME	PΣ	54,0	1,0020		connec	101	8 × 5		
PS 54.02.0474 P6 54.02.0474 P8 54.02.0474 S1 E5.01.0768 Switch 2xU D DATE NAME	Þβ	54.0	1,0020						
P6 54020471 P8 54020471 S1 E5010108 Switch 2xU D DATE NAME	P 4	540	2.0471		Connect	tion P	in		
P 2 54,02,0474 P8 54,02,0474 S 1 55,01,0408 Switch 2 x U D DATE NAME D DATE NAME	P 5	54.0	2.0471						
P8 54020471 S 1 55010108 Switch 2 x U D DATE NAME D DATE NAME	P6	54.0	20471						
D DATE NAME	PZ	5 4.0	02.0471						
D DATE NAME	P8	5 4.0	02.0471						
D DATE NAME	51	55,0	1.0108		Switc)	2 2	٠ U		
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1	1								
1) 13-10-kg 2 22 1/1				 					
1) 13-10-kg 2 22 1/1	-								
1) 13-10-kg 2 22 1/1	-			-					
1) 13-10-kg 2 22 1/1				-					
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1	4			<u> </u>					
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1									
1) 13-10-kg 2 22 1/1	1			1					
1) 13-10-kg 2 22 1/1	IDI DAT	E	NAME	<u> </u>				1	
)) /3-10-80 = =================================	4		NAME	 					
13-10-80 = C2 1/1	<u></u>			1					
13-10-80 = C2 1/1	ها			+					
13-10-80 252 1				1					
	D			4					
STUDER Local Connections 1,830,330,00 PAGE 1 OF 1) 1 3 - 10	-60	5 CQ						
	STUD	ER	6000	Connectio	ns	1,83	00,08 E,0	PAGE 1	OF 1

LOCAL KEYBOARD 1.830.912

	POS NO	PART NO	VALUE		PECIFICATION	NS/EQUIVALENT	1	MFR
IND		50.07.000-			Sau Dr			11
-	IC 1					Display		
	DA1	23.01.012		7 50	عرسحدده	37 .44		
	DAZ							
-		23.01.0123						
-	DAG	73.04.012						
\vdash		73.01.012		D.	I LED			
-		50.04.211		Kec	LED			
-		50.04.211						
-		50.04.211						
-		50.04.211						
-	DL 5							
_	D16	50.04.211-						
_	D17	50.04.211-						
_		50.04.211						
		50.04.211-						
	DL 40	50.04.211						
	C1	59, 26, 5 159	3 1,5 NF	521	/ SAL			
	c 2	59, 26, 2100	0 10 NF		/ SAL			
	RA	57.11.410	3 10k	0,2	50W 5	% CSCH		
	R2	57.11.410	3 10K					
	R3	57.11.410	3 104					
	124	52,11.410	3 10k					
	RS	57.11.410	3 10K					
	R6	57.11.410	3 10K					
	RZ	57.11.410	3 10K					
	R8	57.11.410	3 10K					
	RS	57.11.410	3 10k					
		57.11.410	3 10k					
	R 11	52.11.422	1 220					
	RYZ	57.11.422	1 220					
IIND	I DA		1					
(4)								
(3)								
2								
100								
Ĭŏ	10-0	-80 Oschnie	, 					
1	1	DER Loco?			DI 1 8	30.912-00	Janes -	1052
	2) IJ (U)[L	USIN 1000?	1150 20 COLE			30,3,2.00	1 AGE	JF 4

IND	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
	R13	57.11.4221	550		
	R14	57.11.4221	220		
	R45	57.11.4221	220		
		57.11.4221	220		
	R17	57.11.4221	220		
	R 18	57.11.4221	550		
	1219	57.11.4221	550		
	RSO	57.11.4221	220		
		57.11.4820	82		
	RZZ	57.11.4820	82		
- "	51	55.03.0260		HOR effect switch (pulse)	
	25	55.03.0260			
	5.2	55.03.0760			
	54	55.03.0260			
	S 5	55.03.0260			
	56	55,03.0260			
	57	55.03.0260			
		55.03.0260			
	20	55.03.0260			
	510	55.03.0260			
	P1	54.01.0676		Connector 2×20	
	` 11	54.01.0304		Connector 1x4 CIS	
_	312	54 01.0304			
IND	I DA	TE NAME	1		
4					
3					
2]		
1			1		
Ō	10.0	-80 oschmid	1		
(=	2520.00	DER Local K	e. Loca	PL 1.830.912-00 PAGE 3	OE `

SERIAL REMOTE CONTROL UNIT / BLOCK DIAGRAM 1.830.900

IDI POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIV	ALENT M
Q 1	50,03,0351	BC 327		PNP
Q 2	50,030351	BC 327		PNP
93	50030351	BC 327		PIVP
Q 4	50,03,0351	BC 327		PNP
a 5	50,03,0487	BDY 50		NPN
06	50.03.0455	BD 578		PNP
Q 7	50,03,0436	B < 237		NPN
01	50,04,0125	11/4448	100 m A	75 V
D2	50.04.0125	1N 4448	100 mA	75V
DB	50,04.0725	11 4448	100mA	75 V
D4	50,04,0125	1N 4448	100 m.A.	75V
D5	50,04,0509	MR 857	3 A	100V
06	50.04.1101	23,9	5 m A	3,51
DZ	50.04. 7114	210	5 m A	10 V
₽8	50,04,0507	MR 502	3 A	500 h
DS	50.04.0125	11 4448	100m1	75 V
		NCT (TTL
IC 1	50,99,0111	MCT 6		112
Ic 5	50.05.0283	LM 393		
IC 3	50.99.0111	MCT 6		
Ic4	50,05,0283	LM 393		
Ic 5	50,99,0-111	MCT 6		
IC 6	50,05,0 136	SN 7401		
IC 7	50890111	MCT6		
1<8	50.05.0283	LM 383		
IC 9	50.05.0283	LM 393		
IC 10		VA 12-12	D.C Converter	
IC 11	50.05.0279	SG 3524		TTL
NDI DA	TE NAME	<u> </u>		
4				
3				
2		1		
	9.1981 C. Metz	-		

ND	POS NO	PART NO	VALUE	1	SPECIFICATIONS/E	QUIVALENT	MFR
	R1	57.11.4103	10K	5%	0,25W	CSCH	
	Rz	57.11.4822	8,2K	11	"	a	
	R3	57.11.4103	10K	,	"	/•	
	R4	57.11.4822	8,2K	"	//	,	
	R5	57.11.4103	104	11	"	/	
	R6	57.11.4271	270	1	"	//	
	RZ	57.11.4271	270	//	"	//	
A							
_	R++	57.11.4101	100	//	//	//	
	R12	57.11.4152	7,5K	"	//	//	
	R+3	57.11.4102	14	3	*	"	
	R14	57.11.4124	120K	- 5	,		
	R 15	57.11.4822	8,2K		"	.9	
	R16	57.11.4101	100			"	
	R17	57.71,4124	120K	./-	*	7	
	R18	57.11.4152	7,5%	"	"	"	
	R+9	57.11.4103	10 K	11	11	//	
	R20	57.11.4822	8,ZK	//	//	"	
_	R21	57. 11. 4103	10 K	11	"	"	
	R22	57.11.4822	8,2K	"	"	<i>20</i>	
	Res	57. 11. 4102	11	"	"	"	
_	R24	57.11.4103	10K	3	. "	11	
		57.71.4822	8,2K	.5	"	"	
	R26		270	"	3		
-	R27	57.11.4271	270	,		"	
1							
							-

STUDER Interface Remote Control 1.830.804-00 PAGE 2 OF5

STUDER Interface Remote Control 1.830.804-00 PAGE 1 OF 5

INTERFACE PCB / REMOTE CONTROL 1.830.904

NDI POS NO	PART NO	VALUE	SF	ECIFICATIONS/EQUIV	ALENT	MFR
1 831	57.11.42	71 270	5%	0,25W	CSCH	
1) R32	57.11.42	71 270	1	"		
R 33	57.17.410	3 10K	1	//	/	
1) R34	57.11.410	3 10K	//	//	11	
1) R35	57.17.410	3 10K	1	11	"	
R36	57.11.410	3 10K	1	1/	"	
137	57.71.42	71 270	11	//	//	
R38	57.11.42	22 2,2K	"	"	"	
1) R39	57.11.410	4 100K	1		"	_
1) R40	57.11.456	3 56K	"	// .	"	
1) 841	57.11.418	3 188	//	1	,	
1) R42	57.11.410.	3 10K	//	11		
1) R43	57.71.433	2 3,3K	"	11	"	
R44	57.11.410	3 10K	4	7	. 17	
R#5	57.11.422		"			
R46	57.11.410.	2 1K	"	"	11	
Ruz	57. 11.456.	3 56K	"	7/	*	
R48	58.01.710	3 10K	10%	71	MG	
R49	57.11.422	3 22K	5%	. "	CSCH	
Rso	57.11.482	3 82K	>	,	**	
R51	57.11.412	4 120K	//	"	20	
7 R52	57. 71.41	103 10K	E	11	.5"	_
1) R53	57. 11. 41	03 10K		7		
RS4	57: 17.47	02 1K	2.5	P	7	
R55	57. 1144	72 4,74	2%	//	MF	
R56	57.11.41	02 1/4 .	5%		CSCH	
R57	57.11.41	02 1K		<i>J</i> !	4	
R58	57.11.48	29 8,2-52	1			1
R59	57.11.41	82 7.8K		9	22	
R60	57.11.41	03 10K			**	
IND D	ATE NA	ME				
4						
3						
2						

STUDER Interface Remote Control 1,830,904-00 PAGE 3 OF 5

IINDI	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT M
	R 61	52114103	104	5% 0,25W CSCH
П	R62	57.11 4472	2,74	2% M.E
	R 63	57.714472	4,74	
	R64	57.114472	4,74	
	R65	57.11.4472	4, FK	5% CSCH
П	R66	57, 11, 4703	10 K	
	R 67	57, 41, 4277	2.20	
	R68	57. 71.4103	tok	
	R69	57. 11. 4222	2,2 K	
	R 70	57. 44. 4403	10 K	
1				
$\overline{}$	R 72	58.01.7501	500	10 % MG
	R 73	57. 47. 4270	27.12	5 % CSCH
	C 1	59.26 2700	10 UF	± 20% 16V SAL
	c 2	59,34, 2330	33 ₽₽	± 5%. 63V CER
	८ ≥	59, 99,0205	68 nF	+80%-20% GEV CER
	C 4	59.32.0101	100pF	+ 20% 400V CER
	c 5	59.32.2332	3, 3 mF	± 10% CER
	C 6	59.31.1104	100 nF	± 20% MPETP
	c >	59,99,0205	68 nF	+ 80 -20% 637 CER
	C 8	<i>\$9.99</i> ,0205	68 nF	+ 80 - 20% 63V CER
	< 9s	59,25,6471	470UF	- 10% +50% 63V EL
	C 70	59.22,4101	100 UF	-10% +15% 16V EL
	c 11	59.22.4101	700 UF	-10% +15% 16V EL
	C 12	59,99,0205	68 nF	+ 80% - 20% 63V CER
	C 13	59,22,4161	100 UF	-10% +15% 16V EL
	C 14	59.99.0205	68 65	+ 80% - 50% REV CEB
L	C 15	58.99.0205	68hF	+80% -20% GV CER
	c 16	59.99.0205	68 WF	+80% - 20% 13V 68k
IND	DA	TE NAME		
4		,		
3				
2				
1	30.09	1981 C. Metz		
0	10-10	3-80 3.50 1		

ND	POS NO	PART NO	VALUE		TIONS/EQUIVA	LENT	MFR
_	C 17	59,99,0205	68 LF	+80% -20		< ER	
	c 18	\$ 2,99,020\$	68 nF	+80% -20	% 63 V	CER	
	(19	59,26,2400	10 UE	20%	16 V	SAL	
	C 20	59.26.2100	10 UF	= 50%	16 V	SAL	
	11	1.022.191.00		Chocke	C0:F		
	L 2	1.022.316					
	L 3	1.022.202					
	24	62,01,0129	0,104	25 %			
_	F 1	51.01.6120	2A	Fuse 59a	w 69cm		
-	TPA	54,02,0320		Pih			
	TP2	54,02.0320		n			
	D 1	54,04,0020		Connector	2×8		
	Pl	54,01,0020					
	PB	54.01.0675		connector	5×43	_	
_							
_	-						
F							
IND	DA	TE NAME					
4							
3							
2							
(1)	300	9.1981 C. Metz					
ŏ	10.1	0.80 = .50_7					
Ť,		DER Inter 9a	- D- /	c 1.0	182-90/	-00	PAGE 5 OF

INTERFACE PCB / REMOTE CONTROL 1.830.904

STUDER

794 77 796 27 797 798 27 798 27 799 2	Microproc iri-State nverter o oecod. es Counter	TTL " TTL MOS TTL TTL TTL TTL CER CER CER		
96 23 373 D 51 D 155 2 176-4 1 1740015 N 390 D 140015 N 170 ± 170	n u 2 - Latche 1sart 2 - to 4 line RAM MAND- Gate 1AND- Gate 480 - 202 453	Decod. Decod. S Counter S 634 634 637 637	TTL MOS TTL TTL TTL TTL CER CER	
96 23 373 D 51 D 155 2 176-4 1 1740015 N 390 D 140015 N 170 ± 170	n u 2 - Latche 1sart 2 - to 4 line RAM MAND- Gate 1AND- Gate 480 - 202 453	Decod. Decod. S Counter S 634 634 637 637	TTL MOS TTL TTL TTL TTL CER CER	
373	o - Lalche Isart 2 to 4 line RAMI CAMD - Gate Decade IAND - Gate \$60 - 202	Decod. 25 Counter 25 634 634 637	TTL MIOS TTL TTL TTL CER CER	
551	15 art 2 104 line RAM WAND- Gate Decade ANNO- Gate \$\$50 - 202 \$\$53 - 206	Decod. 25 Counter 25 634 634 637	TTL MOS TTL TTL TTL CER CER	
155 2 2178-4 , , , , , , , , , , , , , , , , , , ,	2 to 4 line RAM VAND- Gate Decade VAND- Gate VAND- Gate +80 - 202 +53	634 634 634	MOS TTL TTL TTL CER CER	
1178-4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RAM NAMO- Gate Decade IAND- Gate \$80 - 202 \$53	634 634 634	MOS TTL TTL TTL CER CER	
390 L 390 L 2400LS M	NAND- Gate Pecade (VAND- Gate 180 - 202 158	634 634 634	TTL TTL CER CER	
390 L 290015 N n + p ± T T T T T T T T T T T T T	Decade (IAND-Gate)	634 634 634	TTL TTL CER CER	
7400LS N.	1AND - Gate - 80 - 202 - 58 - 20 %	63V 63V 4	CER CEP	
n + + + + + + + + + + + + + + + + + + +	+ 80 - 202 + 53 + - 20 %	63V 63V 9 53V	CEP	
P ± P	±53 	63V 53Y	CEP	
P ± P	±53 	63V 53Y	CEP	
P ± P	±53 	63V 53Y	CEP	
72 Mh2	4 - C2 - 20 %	337		
72 Mh2	32-20%	537	CEN	
PEMHS		**		
72 Mh2		Quar		
		Quara		
		CUSPS	_	
			f	
	Connecse+	2 × 8		
1 9	Connector	5 × 30		
	Comper			
	2 mate (aunia Cantral	emote Control 1530200	emote Control 1930.202000 PAG

NDI	POS NO	PART NO	VALUE	SPECIFICA	TIONS/EQUIVALENT	MFR
		57.11.4102	-JK	0.25 W	CSCH	
	Rz	57.11.4471	470-52	"	"	
+	712	37.77. 777	7.022	SEPTEMBER 1 ST. L.		
+						
4						
4						
			_			
7						
-						
-						
-						
_						-
_						
				/		
_						
_						
-						
_			_			
				-		
_				-		
				-		-
_						
NE	(D/	ATE NAME	1			
4						
3						
2			-			

STUDER 194 - 20 65 Remote Control 1.830.902-00 PAGE 2 OF 2

KEYBOARD REMOTE CONTROL 1.830.906

TC 4	IDI	POS NO	PA	RT NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
DA 2 73.01.01 2 5082.7784 DA 3 73.01.01 2 5082.7784 DA 4 73.01.01 2 5082.7784 DA 4 73.01.01 2 5082.7784 DA 5 72.01.01 2 5082.7784 DA 6 73.01.01 2 5082.7784 DA 7 70.04.2444 MY 5758 DA 8 50.04.2444 MY 5758 DA 8 50.04.2444 MY 5758 DA 10 50.04.2444 DA 10 50.04.244 DA 10 50.04.2444 DA 10 50.04.244 DA		Ic 1	50.07	0001	ICM 7218c	Display Driver	
DAS 73,01,012 5082-7734 DAS 73,01,012 5082-7731 DAS 73,01,012 5082-7731 DES 73,01,012 5082-7731 DES 73,01,012 5082-7731 DES 73,01,014 5092-7732 DES 50,04,2444 50 573 DES 73,01,013 50,04,2444 50 573 DES 73,01,013 50,04,2444 50 573 DES 73,01,013 50,04,2444 50 5092 RES 74,01,03 5092 RES 75,01,01,03 5092 RES 75,01,01,01 5092 RES 75,01,01 5092 RES 75,01 5092	7			5082-7731	7 seaments Dispray		
DAB		DA 2	73.01	0122	5082-7734		
215 23,01012	-				5682-7731		
214 50.04.2444 MV 5755 D12 50.04.2444 MV 5755 D13 50.04.2444 MV 5753 D14 50.04.2444 MV 5753 D15 50.04.2444 MV 5753 D15 50.04.2444 MV 5753 C4 59.26.2456 45 p.p. C4 59.26.2460 40 p.p. C2 59.26.2460 40 p.p. C4 57.44403 40 p.p. C5 57.44403 40 p.p. C6 57.44403 40 p.p. C7 57.4403 40 p.p. C8 57.4403 40 p.p. C8 57.4403 40 p.p. C9 57.4403 40 p.p. C9 57.4403 40 p.p. C9 57.4408 82 C9 57.4428 82 C9 57.0206 82 C9 55.0206 60 C9 55.03.026 60	_	DA4	73,01	0122	5082 - 7731		
D12 50.04.2444		285	23.01	0435	5025-2354		
D13 50.04.2144 NV 5753 D14 50.04.2144 NV 5753 D15 50.04.2144 NV 5753 C4 50.26.5150 1,5 pf C4 50.26.5150 1,5 pf C2 50.26.2100 10 pf 16 V 5AL C2 50.26.2100 10 pf 16 V 5AL C3 57.44.403 10 pf C4 57.44.4103 10 pf C5 57.44.4103 10 pf C5 57.44.4103 10 pf C6 57.44.4103 10 pf C7 57.44.4103 10 pf C8 57.44.4103 10 pf		211			MV 5753	Real LED	
D14 50.04.2444 MV 5753 D15 50.04.2444 MV 5753 C4 59.24.5459 4.5 F 25 V 5AL C2 59.24.2400 40 F 46 V 5AL R2 57.44403 406 R3 57.44.403 406 R4 52.44.3403 406 R5 57.44.403 406 R5 57.44.403 406 R5 57.44.403 406 R5 57.44.403 406 R7 57.44.403 406 R7 57.44.403 406 R8 57.44.403 406 R1 57.44.820 82 R2 57.44.820 82 R2 55.84.820		DIZ	50.04	2111	MY 5753		
015 50.04.2444 MY 5753 C4 50.24.5459 1,5 pr 35 V SAL C2 50.24.7400 40 pr 16 V SAL R4 57.44.40 3 40 k R3 57.44.40 3 40 k R4 52.44.540 3 40 k R5 52.44.540 3 40 k R6 52.74.540 3 40 k R7 57.44.60 3 40 k R8 57.44.60 3 40 k R8 57.44.60 3 40 k R9 57.44.60 3 50 k R9 57.44.60 3 50 k R9 57.44.60 3 50 k R9 57.44.60 6 82 k R9 57.44.60 6 82 k R9 57.44.60 6 82 k R9 57.60.006 6		D13	50.04	2111	MV 5753		
DIS 50.04.2444 MY 5753 C4 50.26.5459 1,5 pr C2 50.26.7400 40 pr 46 V SAL 74 57.44403 40 k R3 57.44.403 40 k R4 52.44.403 40 k R5 52.44.403 40 k R6 52.44.403 40 k R7 52.44.403 40 k R8 52.44.403 50 k R8 52.44.403 40 k R8 52.44.403		D14	50.04	.2111	MV 5753		
2 5 526 2100 10 PF 16 V SAL 2 5 7 11 410 8 10 PF		DLS	50.04	2111	MV 5₹53		
74 57.41.41 03 40 k R2 57.41.41 03 40 k R3 57.41.41 03 40 k R4 57.41.41 03 40 k R5 57.41.41 03 40 k R6 57.41.41 03 40 k R7 57.41.41 03 40 k R8 57.41.41 03 4 R8		C 1	59.26	5159	1,5 +5	25 V SAL .	
84 58.44.4408 40 k C, 25 W 5% CSCH 82 58.44.4103 40 k A0 k		c 2	59.26	2100	10 PF	16 V SAL	
R3 52,44,1103 406 R4 52,44,4103 406 R6 52,44,4103 406 R7 52,44,4103 406 R8 52,44,4103 406 R8 52,44,4103 406 R8 52,44,4103 406 R9 52,44,4103 406 R1 52,44,4103 406 R21 52,44,4103 406 R21 52,44,4103 406 R21 52,44,4103 82 R22 52,44,4103 82 R22 52,44,4103 82 R32 52,44,4103 82 R32 52,44,4103 82 R33 55,03,0360 R4 55,03,0360 R4 55,03,0360			57.11	4103	10 k	c, 25 W 5% CSCH	
R- 52.11.4103 tot R5 57.11.4103 tok R6 57.11.4103 tok R7 57.11.4103 tok R8 57.11.4103 tok R8 57.11.4103 tok R8 57.11.4103 tok R9 57.11.4103 tok R10 57.11.4103 tok R10 57.11.4103 tok R21 57.11.4103 tok R21 57.11.4103 tok R21 57.11.4100 R2 R22 57.11.4100 R2 R22 57.11.4100 R2 R23 57.11.4100 R2 R24 55.03.0360		5.5	57.11	4103	10k		
R5 SR.77.4403 408 R6 SR.77.4403 408 R8 SR.77.4403 408 R9 SR.77.4403 408 R10 SR.77.4403 408 R21 SR.74.403 408 R22 SR.74.4820 82 R22 SR.74.4820 82 SR SR SR.74.7820 82 SR S		123	57.11	14103	10k		
R 5 57.11/2103 40k R 6 57.11/2103 40k R 7 57.11/2103 40k R 8 57.11/2103 40k R 8 57.11/2103 40k R 8 57.11/2103 40k R 9 57.11/2103		Ru	52.11	4403	10h		
R6 \$2,74,440\$ 40k					10k		
88 52.71.4403 40V 79 52.71.4403 40K 710 52.71.4703 40K R21 57.41.4820 82 R22 52.41.4820 82 54 55.03.0260 52 55.03.0260 53 55.03.0260 54 55.03.0260					10k		
\$8 \$2.77.1403 46V \$8 \$2.77.1403 46K \$70 \$7.41,4703 76K \$21 \$2.41,4820 82 \$2 \$2.47,4820 82 \$4 \$5.03,0260 Me?? e??ce5 \$mic_ (mi?ce) } \$2 \$5.03,0260 \$3 \$5.03,0260 \$4 \$5.03,0260		및 구			1ok	5.	
79 57.4.403 40k 710 57.4.403 40k R21 57.4.4820 82 R22 52.4.4820 82 54 55.03.0260 F3 55.03.0260 F3 55.03.0260 F3 55.03.0260		28			10 V		
7/0 57.14.1670					10k		
R21 S7.44.8820 S2 R22 S2.44.8820 S2 S4 S5.03.0260 MaTO 200.000 Switch (miles) S2 S5.03.0260 MaTO 200.000 S3 S5.03.0260 S4 S5.03.0260		310			76 X		
R22 53,44,482 0 82					8.3		
54 55,03,026					82		
5 3 55,03,026 0 5 4 5 5,03,026 0						HOLD ROSSER SMITS (DISCS)	
5 3 55.03.026 0 5 4 55.03.026 0		5.2	55,03,0260				
54 55,03,0260	Г		55.03	3.0360			
	Г		55.03	3,0260			
		\$5,03,0260		-			
INDI DATE NAME	IIND						
	3						

NDI F	POS NO	PART NO	VALUE	SPECIFICATIONS/EQUIVALENT	MFR
_	P1	54010676		Connector 2x20	
		54.01.0304		connector 1 x 4 CIS	
一,	112	54.01.0304		A STATE OF THE SECOND	
	172	07.07.1007			
+					
4					
					-
					+
\dashv					
\dashv					
\dashv					
4					_
					-
					-
H					
\dashv			-		
					+
\vdash					
H					
			-		-
					+-
-					
H			1		
_					

STUDER Keyboard Remote Control

1,930,205,00 PAGE 1 OF 2

- 11	ND	DATE	NAME			
Ī	4					
	3					
[2					
	①					
- [0 -1-	-3-50	= ==			
	ST	UDER	Keyboard	Remote Control	4.920,906,00	PAGE 2 OF 2

TACHO OF EDIT 1.830.908

