Examen de Teoría de Percepción - Primer Parcial

ETSINF, Universitat Politécnica de Valéncia, Abril de 2021

Apellidos:			Nombre:	
Profesor:	\square Jorge Civera	\square Carlos Martínez		

1. (0.5 puntos) Calcula el espacio en memoria de las siguientes representaciones:

Problemas (2 puntos, 90 minutos, con apuntes)

- a) Representación global directa de una imagen a 256 niveles de gris con resolución 1280 × 256 píxeles (0.1 puntos)
- b) Representación local de una imagen de 512 × 1024 píxeles, usando ventanas de 13 × 11 píxeles y una rejilla de desplazamiento horizontal de 1 y vertical de 2 sobre una imagen de 512 niveles de gris, usando representación directa de cada ventana (0.2 puntos)
- c) Señal de audio de 3 canales de 5 minutos de duración, muestreada a 44KHz y 16 bits (0.1 puntos)
- d) Colección de 500 documentos de 1000 palabras máximo cada uno, con un vocabulario de 50000 palabras, representado por term frequency de 1-grama (0.1 puntos)
- 2. (0.8 puntos) Se tiene el siguiente conjunto de datos vectoriales de 4 dimensiones ($\mathbf{x} \in \mathbb{R}^4$) con sus correspondientes etiquetas de clase:

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6
1	-1	2	1	3	0
-1	1	-3	2	2	-1
-1	3	3	1	1	-1
-2	0	0	-1	1	2
A	В	A	В	A	В

Se pide:

- a) Calcular una matriz de proyección a dos dimensiones (\mathbb{R}^2) mediante PCA, indicando todos los pasos necesarios ($\mathbf{0.5~puntos}$)
- b) Aplicar dicha proyección sobre los datos dados y discernir si se consigue una separación lineal. Si no se consiguiera, indicar una proyección que sí que los haría linealmente separables en \mathbb{R}^2 (0.3 puntos)
- 3. (0.7 puntos) Se tiene el siguiente conjunto de datos, cuya representación gráfica se ve en la parte derecha:

n	1	2	3	4	5	6	7	8	9
x_{n1} x_{n2} c_n	4	5	2	5	2	4	1	1	3
x_{n2}	2	4	1	1	5	3	5	1	2
c_n	3	2	3	1	1	2	1	3	2

Se pide:

- a) Aplica el algoritmo de Wilson con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor índice (**0.4 puntos**)
- b) Una vez aplicado el algoritmo de Wilson, aplica el algoritmo de Hart con 1-NN en distancia Euclídea, con recorrido por índices ascendentes. En caso de empate por distancia, desempata clasificando por el prototipo de menor índice (0.3 puntos)