Problem Statement:

A machine learning model is to be proposed to predict a house price based on data related to the house i.e. its area_type, availability, location, size, society, total_sqft, bath and balcony

Goals of the Study:

The main objectives of this case study are as follows:

- 1. To apply data preprocessing and preparation techniques in order to obtain clean data (EDA)
- 2. To build machine learning models able to predict house price based on house features
- 3. To analyze and compare models performance in order to choose the best model

Importing Required Libraries for EDA

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

import warnings
   warnings.filterwarnings('ignore')
```

Importing the Data

Out[3]:

```
In [2]: data = pd.read_csv("C:\\Users\\mehak\\Downloads\\Machine learning\\House_Data.csv")
In [3]: # Top 10 records
data.head(10)
```

	area_type	availability	location	size	society	total_sqft	bath	balcony	price
0	Plot Area	Ready To Move	Sarjapur Road	4 Bedroom	NaN	1	4.0	NaN	120.0
1	Built-up Area	Ready To Move	Srirampuram	7 BHK	NaN	5	7.0	3.0	115.0
2	Plot Area	18-Dec	Suragajakkanahalli	3 Bedroom	PrhyaK	11	3.0	2.0	74.0
3	Carpet Area	Ready To Move	Weavers Colony	1 BHK	NaN	15	1.0	0.0	30.0
4	Built-up Area	Ready To Move	Grihalakshmi Layout	5 Bedroom	NaN	24	2.0	2.0	150.0
5	Plot Area	Ready To Move	Mysore Road	1 Bedroom	NaN	45	1.0	0.0	23.0
6	Plot Area	19-Oct	Whitefield	4 Bedroom	NVaree	60	4.0	2.0	218.0
7	Super built-up Area	Ready To Move	Tilak Nagar	1 BHK	NaN	250	2.0	2.0	40.0
8	Plot Area	Ready To	Hennur Road	2 Bedroom	NaN	276	3.0	3.0	23.0

Move

9	Super built-up Area	Ready To Move	Yelahanka New Town	1 BHK	KHatsFl	284	1.0	1.0	8.0
---	------------------------	------------------	--------------------	-------	---------	-----	-----	-----	-----

In [4]: # Last 10 records
 data.tail(10)

Out[4]:

	area_type	availability	location	size	society	total_sqft	bath	balcony	price
13310	Super built-up Area	Ready To Move	Rajapura	2 BHK	NaN	86.72Sq. Meter	2.0	2.0	40.000
13311	Super built-up Area	19-Jul	Sarjapur Road	2 BHK	Sasta S	870 - 1080	2.0	0.0	28.275
13312	Super built-up Area	18-Aug	Magadi Road	2 BHK	Vrenty	884 - 1116	2.0	0.0	46.500
13313	Super built-up Area	18-Oct	Electronic City Phase II	2 BHK	SRhtsa	888 - 1290	2.0	0.0	32.670
13314	Super built-up Area	Ready To Move	Hoskote	2 BHK	Soose P	929 - 1078	2.0	0.0	28.095
13315	Super built-up Area	18-Nov	Thanisandra	2 BHK	Bhe 2ko	934 - 1437	2.0	0.0	58.680
13316	Super built-up Area	18-May	Mysore Road	2 BHK	Brama P	942 - 1117	2.0	0.0	50.855
13317	Super built-up Area	Ready To Move	Hormavu	2 BHK	SKvanin	943 - 1220	2.0	0.0	38.665
13318	Super built-up Area	18-Jun	Mysore Road	2 BHK	Gopia O	980 - 1030	2.0	0.0	35.175
13319	Super built-up Area	20-Dec	Whitefield	2 BHK	Somns T	981 - 1249	2.0	0.0	34.555

Understanding and Pre-Processing of Data

```
In [5]: data.shape
Out[5]: (13320, 9)
```

In [6]: # There are 13320 rows and 9 columns.Let's have a look at all columns and their respecti
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13320 entries, 0 to 13319
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	area_type	13320 non-null	object
1	availability	13320 non-null	object
2	location	13319 non-null	object
3	size	13304 non-null	object
4	society	7818 non-null	object
5	total_sqft	13320 non-null	object
6	bath	13247 non-null	float64
7	balcony	12711 non-null	float64
8	price	13320 non-null	float64

dtypes: float64(3), object(6) memory usage: 936.7+ KB

Null Value Check

Out[14]: area_type

availability location size

total sqft

dtype: int64

bath balcony price

```
In [7]: # Gives % of null values for each column
        round(data.isna().sum()*100/data.shape[0],2)
                    0.00
        area type
Out[7]:
        availability
                       0.00
        location
                        0.01
        size
                        0.12
        society
                      41.31
        total sqft
                       0.00
        bath
                        0.55
        balcony
                        4.57
        price
                         0.00
        dtype: float64
        Dropping columns with excessive Null values
 In [8]: # Since society has 41% null values, we will drop it
        data.drop(columns=['society'],inplace=True)
        Dropping rows with Null values
In [9]: # Dropping rows that have null values for size
        data.dropna(subset=['size'], how='all', inplace=True)
        data.shape
In [10]:
        (13304, 8)
Out[10]:
        Filling of Null Values
In [11]: # Location has 1 null value which we will replace with the mode of location values
        data.location.fillna(data.location.mode()[0],inplace=True)
In [12]: # Null bath values can be replaced with 1. Houses will have atleast one bathroom
        data.bath.fillna(1,inplace=True)
In [13]: # Null balcony values can be replaced with 0
        data.balcony.fillna(0,inplace=True)
In [14]: # All null values are dealt with
        data.isna().sum()
```

Conversion of square feet values

```
# Notice that total sqft is of object data type, change that to float by using conversion
# This function converts all other area units to square feet as well.
def conversion(x) :
   try:
        if 'Perch' in x :
           x = x.replace('Perch','')
            return float(x)*272.3
        elif 'Sq. Meter' in x:
            x = x.replace('Sq. Meter','')
            return float(x) *10.764
        elif 'Sq. Yards' in x:
            x = x.replace('Sq. Yards','')
            return float(x) *9
        elif 'Acres' in x:
           x = x.replace('Acres','')
            return float(x) *43560
        elif 'Cents' in x :
           x = x.replace('Cents','')
            return float(x) *435.56
        elif 'Guntha' in x:
            x = x.replace('Guntha','')
            return float(x) *1089
        elif 'Grounds' in x :
           x = x.replace('Grounds','')
            return float (x) *2400.35
        else:
           return float(x)
    except:
        # Exception occurs in cases where area range is given (for eg 2100-2800)
        list = x.split("-")
        arr = np.array(list ,dtype=float)
        return arr.mean() # In this case mean is returned
data.total sqft = data.total sqft.apply(lambda x : conversion(x))
```

Transforming Size column

```
In [16]: # Also size column can be converted to integer which shows 'bhk' value
    data['bhk']=data['size'].str.split().str.get(0).astype(int)

In [17]: # Now we don't know need size column so drop it
    data.drop(columns=['size'],inplace=True)
```

Correlation Check

```
In [18]: data.corr()
Out[18]: total_sqft bath balcony price bhk
```

```
total_sqft
           1.000000 0.052777 -0.007114 0.048976 0.054270
    bath
           0.052777 1.000000
                               0.079789 0.452434 0.892177
          -0.007114 0.079789
                               1.000000
                                       0.019501 0.067480
 balcony
    price
           0.048976 0.452434
                               0.019501
                                        1.000000 0.398292
     bhk
           0.054270 0.892177
                               0.067480 0.398292 1.000000
```

```
plt.figure(figsize=(10,7))
sns.heatmap(data.corr(), vmax=.8, linewidth=.01, square = True, annot = True, cmap='YlGnBu'
plt.show()
```



```
# We see bath and bhk are highly correlated, so I will drop one of them
In [20]:
         # Here I am dropping bhk column
         data.drop(columns=['bhk'],inplace=True)
```

Distinct Groups in Each Column

2009

87

Carpet Area

Name: area_type, dtype: int64

```
for i in data.columns:
In [21]:
             print(i, "->")
            print(data[i].value counts())
            print()
             print("*"*40)
             print()
         area type ->
                                 8790
         Super built-up Area
         Built-up Area
                                 2418
         Plot Area
```

```
********
availability ->
Ready To Move 10581
18-Dec 307
18-May
18-Apr
18-Aug
               295
               271
             200
15-Aug
15-Jun
15-Dec
                 1
16-Nov
                 1
17-Jan
                 1
Name: availability, Length: 80, dtype: int64
********
location ->
Whitefield
                   540
Sarjapur Road
Electronic City
                  397
                 302
273
Kanakpura Road
Thanisandra
                  234
Kamdhenu Nagar 1
Jagajyothi layout 1
1Channasandra 1
Chowdeshwari Layout
arudi
Name: location, Length: 1304, dtype: int64
*********
total sqft ->
1200.0 843
1100.0 221
1500.0 204
2400.0 195
600.0 180
       . . .
2008.0 1
2015.0 1
2019.0
         1
2023.0
1081.5
Name: total sqft, Length: 2033, dtype: int64
********
bath ->
2.0 6908
3.0
     3286
4.0 1226
1.0 845
5.0 524
6.0 273
7.0 102
8.0 64
9.0 43
10.0 13
       7
3
12.0
11.0
13.0
        3
```

2

1

16.0 18.0

```
15.0
     1
40.0
       1
14.0
       1
27.0
Name: bath, dtype: int64
********
balcony ->
2.0 5113
1.0 4897
   1672
3.0
0.0 1622
Name: balcony, dtype: int64
*********
price ->
     310
75.000
65.000 302
55.000 275
60.000 270
45.000 240
      . . .
56.900
       1
64.150
77.930
        1
45.980
       1
34.555
        1
Name: price, Length: 1985, dtype: int64
*********
```

Transforming location Column

```
In [22]: data.location.nunique() # 1304 unique values
Out[22]:
        #location column is a categorical column , this needs to be converted to numerical column
         #When we convert to numerical column we will get too many columns using One hot encoder
         #All those locations which have really less count, mark it to Others in order to limit t
In [24]: location_count= data['location'].value counts()
        location count less 20= location count[location count<=20]</pre>
         location count less 20
        HBR Layout
Out[24]:
        Poorna Pragna Layout 20
                               20
        Sanjay nagar
        Yelachenahalli
                               20
        HRBR Layout
                                19
        Kamdhenu Nagar
                                1
        Jagajyothi layout
        1Channasandra
                                 1
        Chowdeshwari Layout
        arudi
        Name: location, Length: 1160, dtype: int64
In [25]: # So if the area is having less than or equal to 20 houses I will mark them as "Others"
```

```
data.location.value counts() # 145 unique values left out of 1304
In [26]:
        Others
                               4296
Out[26]:
        Whitefield
                               540
                               397
        Sarjapur Road
        Electronic City
                               302
        Kanakpura Road
                                273
                               . . .
        Domlur
                                22
        Ulsoor
                                21
                                21
        Hoskote
        Binny Pete
                                 21
        Basaveshwara Nagar
                                21
        Name: location, Length: 145, dtype: int64
```

data['location']=data['location'].apply(lambda x:'Others' if x in location count less 20

Dropping Insignificant Columns

```
In [27]: data.drop(columns=['availability', 'balcony'], inplace=True)
```

Numerical Columns

```
In [28]: # Statistical information for numerical columns
   data.describe()
```

ut[28]:		total_sqft	bath	price
	count	1.330400e+04	13304.000000	13304.000000
	mean	1.911220e+03	2.685358	112.582035
	std	1.728808e+04	1.343139	148.988398
	min	1.000000e+00	1.000000	8.000000
	25%	1.100000e+03	2.000000	50.000000
	50%	1.276000e+03	2.000000	72.000000
	75%	1.680000e+03	3.000000	120.000000

max 1.306800e+06

Categorical Columns

40.000000

3600.000000

UNIVARIATE ANALYSIS

Majority of the houses are in super built-up area and very few are in carpet area

```
In [31]: plt.figure(figsize=(15,6))
    sns.countplot(data['bath'])
    plt.show()
```


More than 50% houses have 2 baths and as the no. of baths keep on increasing the count of houses fall drastically.

```
In [32]: # Outlier Analysis for 'total square feet' column

plt.figure(figsize=(15,6))
sns.boxplot(data['total_sqft']) # A lot of outliers present
plt.show()
```



```
In [33]: # Data is highly skewed
    sns.displot(data['total_sqft'], kind='kde')
    plt.show()
```



```
In [34]: # To remove right skewness
data['total_sqft'] = np.log(data['total_sqft'])
```

```
In [35]: # After log transformation
    sns.displot(data['total_sqft'], kind='kde')
    plt.show()
```



```
In [36]: def remove_total_sqft_outliers(data):
    data_out = pd.DataFrame()
    for i,j in data.groupby(by=['location', 'area_type']):
        m = np.mean(j['total_sqft'])
        sd = np.std(j['total_sqft'])
        final_data = j[((j['total_sqft']) > (m-sd)) & ((j['total_sqft']) <= (m+sd))]
        data_out = pd.concat([data_out, final_data], ignore_index=True)
    return data_out

data = remove_total_sqft_outliers(data)</pre>
```

```
In [37]: # After removing outliers

plt.figure(figsize=(15,6))
sns.boxplot(data['total_sqft'])
plt.show()
```



```
Out[38]: (9855, 5)
         # Outlier Analysis for 'bath' column
In [39]:
         plt.figure(figsize=(15,5))
         sns.boxplot(data['bath'])
         plt.show()
                    2.5
                                 5.0
                                                          10.0
                                                                                   15.0
                                                                                               17.5
                                                       bath
         # To remove outliers
In [40]:
         data = data[(data['bath'] < 10)]</pre>
In [41]: # After removing outliers
         plt.figure(figsize=(15,6))
         sns.boxplot(data['bath'])
         plt.show()
                                                       5
bath
             i
         data.shape
                       # 9835 rows left
In [42]:
         (9835, 5)
Out[42]:
         # Outlier Analysis for 'price' column
In [43]:
         plt.figure(figsize=(15,5))  # Lots of outliers present
         sns.boxplot(data['price'])
         plt.show()
```



```
In [44]: # Data is highly skewed
sns.displot(data['price'], kind='kde')
plt.show()
```



```
In [45]: # To remove right skewness
data['price'] = np.log(data['price'])
```

```
In [46]: sns.displot(data['price'], kind='kde')
plt.show()
```



```
In [47]: plt.figure(figsize=(15,5))  # Still lots of outliers present
    sns.boxplot(data['price'])
    plt.show()
```



```
In [48]: def remove_prices_outliers(data):
    data_out = pd.DataFrame()
    for i,j in data.groupby(by=['location', 'area_type']):
        m = np.mean(j['price'])
        sd = np.std(j['price']) > (m-sd)) & ((j['price']) <= (m+sd))]
        data_out = pd.concat([data_out, final_data], ignore_index=True)
        return data_out

data = remove_prices_outliers(data)</pre>
```

```
In [49]: # After removing outliers

plt.figure(figsize=(15,6))
    sns.boxplot(data['price'])
    plt.show()
```



```
In [50]: data.shape # After removing outliers 6674 rows left out of 13,320
Out[50]: (6674, 5)
```

BIVARIATE ANALYSIS

```
In [51]: plt.figure(figsize=(15,8))
    sns.stripplot(x=data['bath'], y=data['price'], hue=data['bath'])
    plt.show()
```


As the number of bathroom increases, price range goes up.

```
In [52]: plt.figure(figsize=(15,8))
    sns.stripplot(data=data,y='price',x='area_type')
    plt.show()
```


Price range is lower for built up areas and highest for plot areas.

With increase in total square feet area, price is also increasing.

Clean Data

In [54]:	data					
Out[54]:		area_type	location	total_sqft	bath	price
	0	Plot Area	1st Phase JP Nagar	7.090077	7.0	5.480639
	1	Super built-up Area	1st Phase JP Nagar	7.239933	2.0	4.605170
	2	Super built-up Area	1st Phase JP Nagar	7.371489	3.0	4.875197

3	Super built-up Area	1st Phase JP Nagar	7.536364	3.0	5.117994
4	Super built-up Area	1st Phase JP Nagar	7.612831	3.0	5.056246
•••					
6669	Super built-up Area	Yeshwanthpur	7.434257	3.0	4.682131
6670	Super built-up Area	Yeshwanthpur	7.446001	3.0	4.700480
6671	Super built-up Area	Yeshwanthpur	7.522941	3.0	4.605170
6672	Super built-up Area	Yeshwanthpur	7.575585	4.0	4.867534
6673	Super built-up Area	Yeshwanthpur	7.152660	2.0	4.562419

6674 rows × 5 columns

```
In [55]: data.shape
Out[55]: (6674, 5)
```

In [56]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6674 entries, 0 to 6673
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	area_type	6674 non-null	object
1	location	6674 non-null	object
2	total_sqft	6674 non-null	float64
3	bath	6674 non-null	float64
4	price	6674 non-null	float64
_		0) 1 1 (0)	

dtypes: float64(3), object(2)
memory usage: 260.8+ KB

In [57]: data.describe(include='all')

Out[57]:

	area_type	location	total_sqft	bath	price
count	6674	6674	6674.000000	6674.000000	6674.000000
unique	4	145	NaN	NaN	NaN
top	Super built-up Area	Others	NaN	NaN	NaN
freq	4527	2386	NaN	NaN	NaN
mean	NaN	NaN	7.186386	2.536410	4.303345
std	NaN	NaN	0.244725	1.016104	0.485201
min	NaN	NaN	5.942799	1.000000	2.327278
25%	NaN	NaN	7.047517	2.000000	3.984530
50%	NaN	NaN	7.138867	2.000000	4.219508
75%	NaN	NaN	7.313220	3.000000	4.543295
max	NaN	NaN	8.699515	9.000000	6.620073

Predictive Modelling

```
In [58]:
           x=data.drop(columns=['price'])
           y=data['price']
In [59]:
           # Independent Variables (Features)
In [60]:
Out[60]:
                          area_type
                                              location total_sqft bath
                           Plot Area
                                     1st Phase JP Nagar
                                                        7.090077
                                                                    7.0
                                    1st Phase JP Nagar
               1 Super built-up Area
                                                        7.239933
                                                                    2.0
              2 Super built-up Area
                                    1st Phase JP Nagar
                                                        7.371489
                                                                    3.0
              3 Super built-up Area 1st Phase JP Nagar
                                                        7.536364
                                                                    3.0
              4 Super built-up Area 1st Phase JP Nagar
                                                        7.612831
                                                                    3.0
                                                        7.434257
           6669
                 Super built-up Area
                                         Yeshwanthpur
                                                                    3.0
                                                                    3.0
                 Super built-up Area
                                         Yeshwanthpur
                                                        7.446001
                  Super built-up Area
                                         Yeshwanthpur
                                                        7.522941
                                                                    3.0
                 Super built-up Area
                                         Yeshwanthpur
                                                                    4.0
                                                        7.575585
           6673 Super built-up Area
                                         Yeshwanthpur
                                                        7.152660
                                                                    2.0
          6674 rows × 4 columns
In [61]:
           # Dependent Variable (Target Column)
```

```
5.480639
Out[61]:
                 4.605170
                 4.875197
         3
                5.117994
                 5.056246
        6669
               4.682131
         6670
              4.700480
         6671
                4.605170
                 4.867534
         6672
        6673
                4.562419
        Name: price, Length: 6674, dtype: float64
```

Linear Regression

```
In [62]: from sklearn.model_selection import train_test_split
    from sklearn.compose import make_column_transformer
    from sklearn.preprocessing import MinMaxScaler,StandardScaler,OneHotEncoder
    from sklearn.linear_model import LinearRegression,Lasso,Ridge
    from sklearn.pipeline import make_pipeline
    from sklearn.metrics import r2_score
```

```
In [63]: x_train,x_test,y_train,y_test = train_test_split(x,y, test_size=0.3,random_state=22)
```

```
In [64]: | print(x_train.shape)
         print(x test.shape)
         (4671, 4)
         (2003, 4)
In [65]: # one hot encoding
         col trans = make column transformer((OneHotEncoder(sparse=False), ['location', 'area type
                                              remainder='passthrough')
         scaled = StandardScaler()
In [66]:
In [67]: lr=LinearRegression(normalize=True)
         pipe = make pipeline(col trans, scaled, lr)
In [68]:
In [69]: pipe.fit(x_train,y train)
         Pipeline(steps=[('columntransformer',
Out[69]:
                          ColumnTransformer (remainder='passthrough',
                                             transformers=[('onehotencoder',
                                                            OneHotEncoder(sparse=False),
                                                             ['location', 'area type'])])),
                          ('standardscaler', StandardScaler()),
                          ('linearregression', LinearRegression(normalize=True))])
In [70]: y predicted = pipe.predict(x test)
In [71]: # R2 value
         r2 score (y test,y predicted)
         0.8101442283301818
Out[71]:
In [72]: # Adjusted R-squared
         1 - (1-pipe.score(x, y))*(len(y)-1)/(len(y)-x.shape[1]-1)
         0.8074694874094117
Out[72]:
```

Evaluation Matrices for the Model

```
In [73]: from sklearn.metrics import mean_squared_error as MSE

accuracy0 = pipe.score(x_test,y_test)
print("Testing Accuracy:",accuracy0)
print()

print("Training Accuracy:",pipe.score(x_train,y_train))
print()

MSE_score = MSE(y_test,y_predicted)
print("Mean Squared Error:",MSE_score.mean())
print()

import math
print("Root Mean Squared Error:",math.sqrt(MSE_score.mean()))
print()

from sklearn.metrics import mean_absolute_error
```

```
print("Mean Absolute Error:", mean absolute error(y test, y predicted))
         print()
        Testing Accuracy: 0.8101442283301818
        Training Accuracy: 0.8064618757621531
        Mean Squared Error: 0.04523465350207817
        Root Mean Squared Error: 0.21268439882153597
        Mean Absolute Error: 0.1630027651419351
In [74]: col = ['Training Accuracy', 'Testing Accuracy' , 'MSE score', 'RMSE score', 'MAE score', 'R
        model log report1 = pd.DataFrame(
                             'Training Accuracy': [round(pipe.score(x train, y train),2)],
                             'Testing Accuracy' : [round(pipe.score(x test, y test),2)],
                             'MSE score': [round(MSE(y test, y predicted), 2)],
                             'RMSE score' : [round(math.sqrt(MSE score.mean()),2)],
                             'MAE score': [round(mean absolute error(y test, y predicted),2)],
                             'R square' : [round(r2_score (y_test,y_predicted),2)],
                             'Adjusted R square' : [round(1 - (1-pipe.score(x, y))*(len(y)-1)/(le
                             },
                             columns=col,index=['Linear Regression'])
```

Lasso Regression

```
In [76]: from sklearn.linear model import Lasso
In [77]: lassoreg=Lasso(alpha=0.001, normalize=True)
         pipe1 = make pipeline(col trans, scaled, lassoreg)
         pipe1.fit(x train, y train)
         y predicted = pipe1.predict(x test)
         print("R2 value :", r2 score (y test, y predicted))
         print("Adjusted R2:",1 - (1-pipe1.score(x, y))*(len(y)-1)/(len(y)-x.shape[1]-1))
         print()
         accuracy1 = pipe1.score(x test,y test)
         MSE score1 = MSE(y test, y predicted)
         print("Training Accuracy :",pipel.score(x train,y train))
         print()
         print("Testing Accuracy :",accuracy1)
         print()
         print("Mean Squared Error :", MSE score1.mean())
         print("Root Mean Squared Error :", math.sqrt(MSE score1.mean()))
         print()
         print("Mean Absolute Error :", mean absolute error(y test, y predicted))
         R2 value : 0.5910492191582313
```

Adjusted R2: 0.5821138377685939

Ridge Regression

Training Accuracy: 0.80685232558839

Testing Accuracy: 0.8108034737272101

Mean Squared Error: 0.04507758302249711

Root Mean Squared Error : 0.21231482054368486

```
In [80]: from sklearn.linear model import Ridge
         ridgereg=Ridge(alpha=0.001, normalize=True)
         pipe2 = make pipeline(col trans, scaled, ridgereg)
         pipe2.fit(x_train,y_train)
         y predicted = pipe2.predict(x test)
         print("R2 value :", r2 score (y test, y predicted))
         print("Adjusted R2 : ", 1 - (1-pipe2.score(x, y))*(len(y)-1)/(len(y)-x.shape[1]-1))
         print()
         accuracy1 = pipe2.score(x test,y test)
         MSE score1 = MSE(y test, y predicted)
         print("Training Accuracy :",pipe2.score(x train,y train))
         print()
         print("Testing Accuracy :",accuracy1)
         print("Mean Squared Error :", MSE score1.mean())
         print()
         print("Root Mean Squared Error :", math.sqrt(MSE score1.mean()))
         print()
         print("Mean Absolute Error :", mean absolute error(y test, y predicted))
         R2 value: 0.8108034737272101
         Adjusted R2: 0.807941944361105
```

Mean Absolute Error : 0.16278511440575158

Comparison of models

```
In [83]: model_comp = pd.DataFrame(columns=col)
model_comp = pd.concat((model_log_report1, model_log_report2, model_log_report3))
```

In [84]: model_comp

Out[84]:

•		Training Accuracy	Testing Accuracy	MSE score	RMSE score	MAE score	R square	Adjusted R square
	Linear Regression	0.81	0.81	0.05	0.21	0.16	0.81	0.81
	Lasso Regression	0.58	0.59	0.10	0.31	0.24	0.59	0.58
	Ridge Regression	0.81	0.81	0.05	0.21	0.16	0.81	0.81