```
In [2]: # Kindly use the Jupyter Notebook to run this program.
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Load the built-in Iris dataset from seaborn
        data = sns.load_dataset('iris')
        print("☑ Iris dataset loaded successfully.")
        data.head()
```

Iris dataset loaded successfully.

Out [2]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [4]: # Calculate Pearson correlation coefficient between sepal_length and petal_length correlation = data[['sepal_length', 'petal_length']].corr(method='pearson') print("✓ Pearson Correlation Coefficient:\n") print(correlation)

Pearson Correlation Coefficient:

```
sepal_length petal_length
sepal length
                  1.000000
                                0.871754
petal length
                  0.871754
                                1.000000
```

In [6]: # Compute the covariance matrix covariance = data[['sepal_length', 'petal_length']].cov() print(" Covariance Matrix:\n") print(covariance)

Covariance Matrix:

```
sepal_length petal_length
sepal length
                               1.274315
                 0.685694
petal length
                 1.274315
                               3.116278
```

```
In [8]: # Define x and y columns
         x_col = 'sepal_length'
         y_col = 'petal_length'
         # Create scatter plot
         plt.figure(figsize=(8, 5))
         plt.scatter(data[x_col], data[y_col], color='purple', alpha=0.6)
         plt.xlabel(x_col.capitalize())
         plt.ylabel(y_col.capitalize())
plt.title(f"Scatter Plot of {x_col} vs {y_col}")
         plt.grid(True)
         plt.show()
```

Scatter Plot of sepal_length vs petal_length


```
In [12]: # Select numeric columns (excluding species)
data_numeric = data.select_dtypes(include='number')

# Covariance matrix
cov_matrix = data_numeric.cov()
print("N Covariance Matrix (All Numeric Columns):\n")
print(cov_matrix)

# Correlation matrix
corr_matrix = data_numeric.corr()
print("\n Correlation Matrix (All Numeric Columns):\n")
print(corr_matrix)
```

Covariance Matrix (All Numeric Columns):

```
sepal_length
                            sepal_width petal_length petal_width
sepal length
                               -0.042434
                                              1.274315
                                                            0.516271
                  0.685694
                 -0.042434
                                0.189979
                                              -0.329656
sepal width
                                                           -0.121639
petal length
                  1.274315
                               -0.329656
                                              3.116278
                                                            1.295609
petal_width
                  0.516271
                               -0.121639
                                              1.295609
                                                            0.581006
```

✓ Correlation Matrix (All Numeric Columns):

```
sepal_length
                             sepal_width
                                          petal_length
                                                        petal_width
sepal_length
                  1.000000
                               -0.117570
                                              0.871754
                                                            0.817941
sepal width
                 -0.117570
                               1.000000
                                              -0.428440
                                                           -0.366126
petal length
                  0.871754
                               -0.428440
                                              1.000000
                                                            0.962865
                               -0.366126
petal_width
                  0.817941
                                              0.962865
                                                            1.000000
```

```
In [14]: # Visualize the correlation matrix using a heatmap
    plt.figure(figsize=(8, 5))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
    plt.title("Heatmap of Correlation Matrix")
    plt.show()
```

