LABORATORIUM I EMNENE

TFY4155/FY1003 ELEKTRISITET OG MAGNETISME

for studenter ved studieprogrammene

MTFYMA/MLREAL/BFY/BKJ

NTNU

Våren 2022

Forord

Dette heftet inneholder tekster til laboratoriekurset til emnene TFY4155/FY1003 Elektrisitet og magnetisme.

Denne versjonen markerer restrukturing som følge av den nye XFys ferdighetstreng programmet. Laboppgavene ble fornyet for å muliggjøre mer egenstendig eksperimentering, sette fokus på dokumentasjon med labjournal og introdusere mer feilanalyse.

Christoph Brüne

25. november 2019

Innhold

1	SIK	KERH	IET I LABORATORIET	1
	1.1	Det ele	ektriske utstyret	1
	1.2	Oppko	pling av elektriske kretser	2
	1.3	Innflyt	telse av elektriske strømmer på kroppen	3
	1.4	Virkni	ng av statisk magnetfelt	5
	1.5	Sunn f	fornuft i omgang med elektrisk utstyr	6
2	STA	TISK	MAGNETFELT	9
	2.1	Teoret	isk bakgrunn	9
		2.1.1	Biot-Savarts lov	9
	2.2	Beregr	ningsoppgaver	11
		2.2.1	Beregning og dokumentasjon	11
		2.2.2	Kort spole	11
		2.2.3	Helmholtzspoler	12
		2.2.4	Anti-Helmholtzspoler	14
		2.2.5	Solenoide	15
		2.2.6	Dataanalyse i Python	17
		2.2.7	Halleffektprobe	18
		2.2.8	Magnetiske strøfelt	20
		2.2.9	Magnetfeltfritt rom	21
	2.3	Eksper	${f rimentelt}$	21
		2.3.1	Apparatur	21
		2.3.2	Kaliberering av Hallprobe	22
		2.3.3	Magnetiske strøfelt	22
		2.3.4	Statistisk feil i målinger	23
		2.3.5	Magnetfelt i kort spole	23
		2.3.6	Magnetfelt i Helmholtzspole	24
		2.3.7	Magnetfelt i Anti-Helmholtzspole	25
		2.3.8	Magnetfelt i solenoide	25
		2.3.9	Magnetfelt i kort spole - ekstraoppgave	25
		2.3.10	Generell diskusjon	26
		2.3.11	Avslutning	26
3	LOI	RENT	ZKRAFTEN	27
			isk bakgrunn	27

iv INNHOLD

	3.2	Beregi	ningsoppgaver	27
		3.2.1	Lorentzkraften	27
		3.2.2	Ladninger i E-felt	28
		3.2.3	Ladninger i B-felt	29
		3.2.4	Bestemmelse av e/m (Thomsoneksperimentet)	3 0
		3.2.5	Spenningsdeler	30
	3.3	Ekspe	$\mathbf{rimentelt}$	31
		3.3.1	Apparatur	31
		3.3.2	Oppkopling av spenninger til elektronkanonen	3
		3.3.3	Avbøyning i E-felt	36
		3.3.4	Avbøyning i B-felt	37
		3.3.5	Thomsoneksperimentet: måling av e/m	37
		3.3.6	Avslutning	88
4	KR	AFT I	PÅ STRØMFØRENDE LEDER 3	9
	4.1			39
		4.1.1		39
		4.1.2		10
	4.2	Forhå		1
	4.3			11
		4.3.1	Apparatur	11
		4.3.2	Kraft sfa. strømmen	12
		4.3.3	Kraft sfa. lengden	14
		4.3.4	Kraft sfa. vinkelen	14
		4.3.5	Generell diskusjon	15
		436	Avslutning	15

Kapittel 1

SIKKERHET I LABORATORIET

Eksperimentene i dette laboratoriekurset er sikre og medfører ingen fare dersom fornuftige og opplagte forholdsregler følges og studentene følger sikkerhetsinstruksjonene som gis nedenfor. Det eksisterer alltid en potensiell fare for elektrisk støt eller brann overalt hvor det finnes vegguttak, stikkontakter, kabling eller tilkoblinger, som finnes i alle laboratorier og hjem. Formålet med dette kapitlet er å gi deg generell informasjon som skal forberede deg til å utføre laboratorieforsøk uten å sette deg selv eller andre i unødvendig fare, og å beskrive prosedyren som skal følges dersom du eller noen andre i nærheten befinner seg i en nødsituasjon.

1.1 Det elektriske utstyret

Som det fremgår av Ohms lov, V = RI, og loven om effektutvikling i en motstand, $P = VI = RI^2$, vil det alltid være et spenningsfall V over en strømførende leder med strøm I og motstand R, og det vil også alltid utvikles varme i lederen (forutsatt at R > 0).

For å sikre forbrukeren mot strømstøt, koples ytterkappen til alt utstyr som har ledende ytterkappe permanent til jord. Dette gjøres gjennom jordingskontakten i støpselen. Dersom det oppstår feil som medfører at tilførselsspenningen til utstyret kommer i kontakt med den ledende ytterkappen, vil sikkerhetsjordingen sørge for at spenningen koples til jord og ikke legges på ytterkappen, med de farer dette innebærer. Strømmen vil altså kortsluttes til jord og normalt vil sikringen gå og strømmen brytes.¹

For å unngå at personsikkerheten skal være avhengig av strømsikringene, utstyres elektriske energinett ofte med en såkalt *nullstrømbryter*. Nullstrømbryteren kan oppdage jordlekkasjestrømmer som er mye mindre en kursens sikringsverdi. Dette gjør bryteren ved å

¹Det er i den forbindelse viktig at sikkerhetsjordledningen er dimensjonert slik at den tåler strømmen i hovedtilførselsledningen, dvs. den må minst ha samme tverrsnitt som hovedtilførselsledningen.

sammenligne strømmen i de to ledningene til en kurs, dvs. strømmen inn til en forbruker med strømmen i retur fra forbrukeren. Tap av strøm hos forbrukeren tolkes som lekkasjestrøm til jord. Hvis nullstrømbryteren oppdager en forskjell mellom fasestrømmene som er større enn en bestemt forhåndsinnstilt verdi (f.eks. 30 mA), så brytes strømmen.

En tredje metode for å sikre forbrukeren mot strømstøt er dobbelt isolering av utstyr (utstyr i klasse II, merket med en dobbeltfirkant: \square). Dobbeltisolert utstyr må ikke forsøkes jordes da det vil redusere berøringssikkerheten.

Erfaring har vist at de aller fleste av feilene i elektriske anlegg er jordingsfeil. Vettug omgang med jord og korrekt jording av elektrisk utstyr er en forutsetning for trygg bruk av elektrisk energi og for at elektrisk utstyr virker korrekt. Plugg aldri elektrisk utstyr som krever jordet støpsel i en ikke-jordet stikkontakt.

1.2 Oppkopling av elektriske kretser

Ifølge Elektrisitetstilsynets forskrifter må alle vekselspenninger over 25 V effektivverdi og alle rippelfrie likespenninger over 60 V være forskriftsmessig isolert. Når du kopler opp kretser i laboratoriet, må du påse at disse forskrifter blir fulgt.

Du må også passe på at ledningtverrsnittet til de ledninger du bruker er tilstrekkelig stort for at ledningene ikke blir opphetet. Selv om motstanden i elektriske ledninger er liten, vil ikke verdien alltid være neglisjerbar. For tvinnede kobberledninger som brukes til faste installasjoner i hus (med 230 V) sier forskriftene at en ledning med tverrsnitt $2,5\,\mathrm{mm^2}$ maksimalt kan føre en strøm på $16\,\mathrm{A}$. Som en tommelfingerregel i laboratoriet kan vi anta at $5\,\mathrm{A/mm^2}$ ved spenninger under $300\,\mathrm{V}$ vil være trygt. De fleksible lissene vi bruker for oppkoplinger har alle tverrsnitt som er større enn $1\,\mathrm{mm^2}$. Strømmer opp til $5\,\mathrm{A}$ vil derfor ikke by på noe problem for disse lissene. Et annet forhold du må passe på er å velge stort nok tverrsnitt på ledningene dine slik at spenningsfallet over ledningene ikke gir bidrag til målefeil.

Vær forsiktig med å sende strøm gjennom kveiler/tromler med elektrisk ledning. Grense-kravene beskrevet over gjelder ledninger i friluft med naturlig luftavkjøling. Dersom ledningen kveiles tett sammen, vil varmeutviklingen føre til betydelig større temperaturøkning som kan føre til at isolasjonen kan smelte.

Når du bruker elektrisk koplingsmateriell er det viktig at du forsikrer deg om at alt materiell er i orden. Se etter skader på ledninger og spesielt kontakter. Det er også viktig at du behandler koplingsmateriellet slik at det ikke oppstår skader på det. Pass på å plassere ledningene under bruk slik at det ikke er fare for at de blir hektet fast i bevegelige deler eller kommer i klemme slik at isolasjonen skades. Ledningene bør også ligge fritt slik at de får tilstrekkelig avkjøling. Når ledningsmateriellet ikke er i bruk skal det ikke tvinnes opp da kraftig opptvinning kan skade isolasjonen og tilkoplingen mellom leder og kontakt.

1.3 Innflytelse av elektriske strømmer på kroppen

Faren ved elektriske støt er forbundet med størrelsen på den strømmen som går gjennom kroppen og hvilken strømbane den følger. Hvor stor spenning kroppen tåler vil avhenge av den totale motstanden i strømkretsen hvor kroppen inngår. Figur 1.1 viser menneskekroppen som en del av en strømkrets.

Figur 1.1: Menneskekroppen som del av en strømkrets, hvor $R_{\rm j}$ er isolasjonsmotstanden mellom kroppen og jord, $R_{\rm h}$ er overgangsmotstanden i huden, $R_{\rm k}$ er kroppens indre motstand, $R_{\rm i}$ er indre motstand i spenningskilden som driver strømmen i kretsen og $R_{\rm v}$ er isolasjonsmotstanden mellom spenningskildens spenningsterminal og kroppen.

Strømgjennomgang kan skade kroppen, enten ved at den skader kroppsvevet ved oppvarming, eller ved at strømmen forstyrrer de elektriske signalene i nervesystemet. Oppvarmingen er gitt av strømmen I og motstanden R i vevet som varmes opp. En vedvarende strøm gjennom vevet over tid vil tilføre en stadig større varmeenergi og risiko for skade. Forstyrrelse av de elektriske signalene i nervesystemet kan bl.a. føre til hjerteflimmer og lammelser. Spesielt er vekselstrøm i frekvensområdet 15 til 60 Hz farlig for nervesystemet. Vår nettforsyning på 50 Hz er derfor i den farlige kategorien. Når frekvensen på vekselstrømmen øker, vil innflytelsen på nervesystemet avta, og for frekvenser over $10\,\mathrm{kHz}$ er innflytelsen tilnærmet borte. Oppvarmingseffekten er imidlertid fremdeles til stede.

Strømbaner gjennom hjerte- og lungeregionen er spesielt farlige pga. de vitale organene som der finnes. Nyrene er også spesielt følsomme for strømskader.

Fra strømkretsen i figur 1.1 ser vi at strømmen gjennom kroppen er gitt ved

$$I = \frac{V}{R_{\rm i} + 2R_{\rm h} + R_{\rm k} + R_{\rm i} + R_{\rm v}}.$$
 (1-1)

Når det blir referert til spenningen på et forsyningsnett menes vanligvis effektivverdien av spenningen, definert som

$$V_{\text{eff}} = \sqrt{\langle V(t)^2 \rangle} = \sqrt{\frac{1}{T} \int_0^T V_0^2 \sin^2\left(\frac{2\pi t}{T}\right) dt} = \frac{V_0}{\sqrt{2}}.$$
 (1-2)

Det betyr at for et 230 volts anlegg er toppspenningen (amplituden) $V_0 = \sqrt{2} \times 230 \text{ V} = 325 \text{ V}.$

Sikkerhetstiltak mot strøm går ut på å redusere verdien på strømmen gjennom kroppen til ufarlige verdier. Dette kan for en gitt spenning V gjøres ved å sørge for at summen av motstandene under brøkstreken er tilstrekkelig stor:

- $R_{\rm v}$ Vanlig elektrisk isolasjon av elektrisk utstyr går ut på å gjøre $R_{\rm v}$ tilstrekkelig stor.
- $R_{\rm k}$ Kroppens indre motstand $R_{\rm k}$ er konstant og av størrelsesorden 500 Ω . Legg merke til at grensen for påbudt isolasjon av vekselspenning på 25 V effektiv spenning tilsvarer 50 mA når vi antar at motstanden i strømkretsen kun består av kroppens indre motstand, dvs. verste tilfelle.
- $R_{\rm h}$ Overgangsmotstanden $R_{\rm h}$ i huden kan variere fra $0\,\Omega$ ved fuktig hud til langt over $10\,000\,\Omega$ ved tørr hud. $R_{\rm h}$ avtar også med økende spenning og den varierer også med frekvensen slik at den er lavest i frekvensområdet rundt 50 Hz. Dette medvirker til å gjøre vekselspenning farligere enn likespenning. Et annet forhold som gjør vekselspenning farligere enn likespenning er at størrelsen på spenningen det refereres til når vekselspenning omtales er effektivspenningen. Toppspenningen er imidlertid $\sqrt{2}\times$ høyere, som beskrevet i likning (1-2).
- R_j Dersom kroppen ikke er i kontakt med jord, vil R_j være stor. Hvorfor dør ikke fuglene når de sitter på kraftledninger (se figur 1.2)? Svar på dette spørsmålet ved å modifisere figur 1.1. Se nå på figur 1.3, og svar så på spørsmålet stilt der.

Figur 1.2: En fugl som sitter på en kraftlinje.

Figur 1.3: Hva skjer når den slås på?

I tillegg til ovenstående er det viktig å være klar over at høyfrekvent elektromagnetisk stråling i MHz–GHz-området (mikrobølger–radar) kan være farlig for kroppen ved at det elektriske vekselfeltet fører til oppvarming av kroppsvevet, samme effekt som gir oppvarming i en mikrobølgeovn. Slik høyfrekvent oppvarming er ekstra farlig fordi den ofte foregår uten at normale smertefunksjoner trer i kraft. Personer bør skjermes hvis effekt per flateenhet mot kroppen er $> 0.01 \, \mathrm{W/cm^2}$.

 $\begin{array}{cccc} Exposure \ characteristics & Magnetic \ flux \ density \\ Occupational^b & & & \\ Exposure \ of \ head \ and \ trunk & 2\ T \\ Exposure \ of \ limbs^c & 8\ T \\ General \ public^d & & \\ Exposure \ of \ any \ part \ of \ the \ body & 400\ mT \\ \end{array}$

Tabell 1.1: Limits of exposure^a to static magnetic fields

1.4 Virkning av statisk magnetfelt

Den internasjonale kommisjon for beskyttelse mot ikke-ioniserende stråling (ICNIRP) gir i sine retningslinjer anbefalte grenseverdier for eksponering for elektromagnetiske felt (se tabell 1.1). I Norge er det i strålevernforskriften gitt bestemmelser om at ICNIRPs retningslinjer skal følges, og at all eksponering skal holdes så lavt som praktisk mulig. For statisk magnetfelt er anbefalt grense 2 T for arbeidstakere og 400 mT for generell befolkning. Personer med pacemaker, ferromagnetiske implantater eller implanterte elektroniske komponenter bør ikke utsettes for magnetfelt over $0.5\,\mathrm{mT}$. I eksperimentet der Helmholtzspolene brukes vil den magnetiske flukstettheten B i umiddelbar nærhet av spolene ha en verdi som så vidt overstiger $0.5\,\mathrm{mT}$ for $I=1\,\mathrm{A}$ og $R=0.07\,\mathrm{m}$, hvor I er strømmen som flyter i spolene og R er den gjennomsnittlige radien til spolene. Men feltet avtar raskt utenfor spolene; størrelsen av B i et punkt vinkelrett på spolen i avstand 0,15 m (eller større) fra spolens sentrum er mindre enn 50 µT. Dersom en strømstyrke på 0.5 A brukes, vil feltet overalt være lavere enn anbefalt grense for personer med implantater. En student med et implantat som er følsomt for magnetfelt bør informere ansvarspersonen, som vil sørge for at denne studenten har en partner som ikke har implantat og at partneren gjør målingene.

^a ICNIRP recommends that these limits should be viewed operationally as spatial peak exposure limits.

^b For specific work applications, exposure up to 8 T can be justified, if the environment is controlled and appropriate work practices are implemented to control movement-induced effects.

 $^{^{\}rm c}$ Not enough information is available on which to base exposure limits beyond $8\,{\rm T}.$

 $^{^{\}rm d}$ Because of potential indirect adverse effects, ICNIRP recognizes that practical policies need to be implemented to prevent inadvertent harmful exposure of persons with implanted electronic medical devices and implants containing ferromagnetic material, and dangers from flying objects, which can lead to much lower restriction levels such as $0.5\,\rm mT.$

²http://www.icnirp.de/documents/emfgdl.pdf [Health Physics 96 (2009) 504-519.]

1.5 Sunn fornuft i omgang med elektrisk utstyr

I tillegg til de vanlige risikoene i forbindelse med elektrisitet, har noen laboratorier høyspenningsutstyr³ som utgjør en enda større potensiell fare. Studenter bør være ekstra forsiktige med slikt utstyr, og bør lære seg hvordan de kan frakoble strømkilden i en nødssituasjon. Her er noen regler som må følges når man arbeider med og i nærheten av elektrisitet.

- 1. Ikke arbeid med elektrisitet dersom dine hender, føtter, eller andre deler av kroppen er våte, eller hvis du står på et vått gulv.
- 2. Inspiser elektrisk utstyr (med strømmen avslått og stikkontakten trukket ut) for ødelagte ledninger og skadede tilkoblinger. Hvis noe slikt oppdages, ikke bruk utstyret. Meld så i fra til ansvarshavende slik at utstyret kan repareres.
- 3. Forsøk aldri å reparere elektrisk utstyr selv—dette må gjøres av kvalifisert personell.
- 4. Dersom du blir utsatt for selv et mildt støt fra noe utstyr, lever det umiddelbart inn til reparasjon.
- 5. Ikke bruk eller lagre ekstremt brannfarlige væsker i nærheten av elektrisk utstyr. Noen stoffer, slik som eter, kan antennes av gnist fra elektrisk utstyr.
- 6. Bruk alltid jordede stikkontakter i jordede vegguttak. Forsøk aldri å sette en jordet stikkontakt inn i et ujordet vegguttak.
- 7. Skjøteledninger bør ikke brukes i stedet for permanent kabling; de bør kun brukes midlertidig og de bør ikke trekkes under dører, på tvers av ganger, gjennom vinduer eller hull i vegger, rundt rør eller i nærheten av vasker.
- 8. Ikke overbelast kretser ved å bruke grenuttak på ett vanlig uttak.
- 9. Ikke fjern eller endre på sikkerhetstiltak på høyspenningsutstyr. Husk at de er der for å beskytte deg.
- 10. Vær sikker på at strømmen er slått av under tilkobling eller når endringer på kretsen foretas.
- 11. Vær sikker på at alt utstyr er satt med riktige innstillinger iht. målingen som skal utføres før kretsen gjøres strømførende.
- 12. Vær sikker på at komponentene som brukes er av en gradering som kan motstå pålagt strøm og spenning.
- 13. Erstatt ødelagte sikringer med nye av riktig type og med korrekte spesifikasjoner.
- 14. Hvis du tror noen har vært utsatt for et kraftig elektrisk sjokk:

³For vår hensikt vil det være nok å betrakte enhver spenning høyere enn 50 V som høyspenning.

- ikke fjern den skadede fra den elektriske kilden før strømmen har blitt slått av.
- hvis du ikke får slått av strømmen, bruk noe isolerende slik som et tørt tau, klut eller kosthåndtak for å dra personen bort fra strømmen.
- sjekk om det er kontakt.
- sjekk om det er pust.
- sikre frie luftveier.
- når skadde ikke puster eller ved hjertestans, ring 113 AMK-sentralen.
- gi hjerte-/lungeredning (HLR) 30 kompresjoner og 2 innblåsninger. Fortsett til helsepersonell kommer.
- puster den skadde selv, legges personen i stabilt sideleie.
- let etter brannskader og kjøl ned brannsår med vann og behandle dem som tredjegradsforbrenning.
- alle skadde skal ha tilsyn etter at førstehjelp er gitt. Ikke forlat bevisstløse personer. Bevisste personer skal snakkes med. Personskader skal behandles videre av medisinsk personell.
- personer som sendes til Legevakten i drosje/privatbil skal følges helt fram og inn. Ta med evt. HMS-datablad!
- alle ulykker/tilløp til ulykker er å betrakte som avvik i forhold til normal drift, og skal meldes på avviksskjema.

I forsøket med Coulombs lov, gir høyspenningskanonen som brukes for å lade opp kulene $25\,\mathrm{kV}$ når den aktiveres. Strømmen er imidlertid begrenset til $75\,\mu\mathrm{A}$. Slike strømmer har vanligvis ingen fysiologisk virkning på kroppen, men likevel: Behandle kanonen som om den var livsfarlig.

Kapittel 2

STATISK MAGNETFELT

Mål

Du skal i denne laboratorieoppgaven

- utvikle dine ferdigheter i å dokumentere laboratoriearbeid med labjournalen
- sette opp og gjenomføre fysikkaliske målinger
- gjenomføre grunnlegende feilanalyse
- lære å måle magnetfelt med Halleffekt-gaussmeter,
- studere magnetfeltet rundt en kort spole, Helmholtzspole og solenoide,
- bruke Python eller Excel regneark til å sammenlikne beregnede og målte resultater.

2.1 Teoretisk bakgrunn

Her presenteres Biot-Savarts lov. Noe teori presenteres i teksten for beregningsoppgavene i avsnitt 2.2. Forøvrig vises til lærebok og forelesningene i elektromagnetisme.

2.1.1 Biot-Savarts lov

Elektriske felt genereres rundt enhver elektrisk ladning mens magnetiske felt genereres rundt elektriske ladninger som beveger seg. I 1820 utførte Jean-Baptiste Biot og Félix Savart eksperimenter med magnetfelt rundt strømførende ledere og satte opp følgende uttrykk for magnetfeltetbidraget d \vec{B} i et punkt P i rommet fra strømmen I i et ledningselement d \vec{s} ,

 $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{s} \times \hat{\mathbf{r}}}{r^2},\tag{2-1}$

hvor \vec{r} er posisjonsvektoren til punktet P målt fra strømelementet $I d\vec{s}$, $\hat{\mathbf{r}} = \vec{r}/r$ er enhetsvektor langs \vec{r} og μ_0 er magnetisk permeabilitet i tomt rom. Legg merke til r^{-2} -avhengigheten, den samme som for den elektriske feltstyrken i Coulombs lov. Superposisjonsprinsippet gjelder for magnetfelt, og følgelig kan den totale feltstyrken \vec{B} i punktet P fra hele lederen finnes ved å integrere hele over lederens lengde s:

$$\vec{B}(\vec{r}) = \frac{\mu_0 I}{4\pi} \int_s \frac{\mathrm{d}\vec{s} \times \hat{\mathbf{r}}}{r^2}.$$
 (2-2)

I eksperimentet skal du undersøke magnetfeltet langs aksen til sirkulære spoler. Den enkleste sirkulære spolen som du kan lage består i en enkel trådslynge som vist i figur 2.1.

Figur 2.1: Magnetfeltet på aksen til en sirkulær trådslynge.

Magnetfeltet på aksen til slyngen vil ha en komponent i akseretningen x og en komponent normalt på denne. Ifølge Biot-Savarts lov vil normalkomponenten nulles ut ved bidrag (integrasjon) over hele sløyfa idet symmetrien for systemet gir lik styrke i alle retninger. For x-komponenten får vi ved å sette inn $r^2 = x^2 + \xi^2$ og bruke $\sin \alpha = \xi/r$,

$$dB_{x} = \frac{\mu_{0}I}{4\pi} \frac{ds}{x^{2} + \xi^{2}} \sin \alpha$$

$$= \frac{\mu_{0}I}{4\pi} \frac{\xi d\theta}{x^{2} + \xi^{2}} \frac{\xi}{\sqrt{x^{2} + \xi^{2}}},$$
(2-3)

der θ er integrasjonsvinkelen rundt sløyfesirkelen. Integrert over sløyfa med $\int d\theta = 2\pi$ gir dette resultatet

$$B_x = \frac{\mu_0 I}{4\pi} \frac{2\pi \xi^2}{\left(x^2 + \xi^2\right)^{3/2}} = \frac{\mu_0 I}{2\xi} \left(1 + \frac{x^2}{\xi^2}\right)^{-3/2}.$$
 (2-4)

For x=0 (midt i sløyfa) blir $B_x=\mu_0I/2\xi$ og for $x\gg\xi$ (langt borte fra sløyfa) blir $B_x=\mu_0I\xi^2/2x^3$.

2.2 Beregningsoppgaver

2.2.1 Beregning og dokumentasjon

For å gjennomføre beregninger og for å lage tabeller/diagrammer kan du fritt velge mellom egnede programmer (for eksempel Python, Matlab, Origin, Excel eller lignende). Data og resultatene må dokumenteres i labjournalen (for eksempel med å lime inn utskrifter av tabellene og diagrammene i labjournalen eller ved å skrive inn resultater). Programkoden og originalfilene som blir brukt til beregning skal være tilgjengelig i tilfelle av spørsmål. Programkoden kan limes inn i labjournalen.

2.2.2 Kort spole

Magnetfeltet fra en kort spole med N viklinger kan langt fra spolen (i forhold til spolens utstrekning) ses på som summen av magnetfeltet fra N strømsløyfer gitt i likning (2-4). Magnetfeltet på aksen i avstand x fra midlere sentrum av spolen blir da ifølge likning (2-4) gitt ved

$$B(x) = \frac{N\mu_0 I}{2R} \left(1 + \frac{x^2}{R^2} \right)^{-3/2},\tag{2-5}$$

hvor R er gjennomsnittsradius for strømsløyfene.

Anta at du har en kort spole med N=330 viklinger og gjennomsnittsradius $\langle R \rangle = 70$ mm med en konstant strøm I=1,00 A gjennom viklingene.

1A. Lag en tabell over magnetflukstettheten B(x) på aksen til spolen i området $-20\,\mathrm{cm} < x < 20\,\mathrm{cm}$.

Et forslag til tabell er vist i figur 2.2. Konstanter skrives inn i rader under overskriften. Deretter følger tabellverdier der hver kolonne må ha en beskrivende tekst.

1B. Framstill resultatet i et kurvediagram.

Diskuter beregning av magnetfeltet til en kort spole når spolens utstrekning tas med i beregningen.

Programmet eller regnearket i Excel kan også brukes for beregning av forventede magnetfeltstyrker som følge av Biot-Savarts (2-4) lov og påfølgende sammenligning med eksperimentelt målte magnetfeltstyrker i avsnitt 2.3.

1C. Inkluder en kolonne for målt verdi av B og en kolonne for avvik mellom målt og beregnet verdi gitt i %, og forbered også til å vise avviket grafisk. (Et forslag er gitt i tabellen i figur 2.2.)

Ta en kontrollregning for hånd av en av de beregnede B. Sjekk utregnet differanse ved å sette inn den håndregnede verdien.

Tabell 1. Beregnede og målte verdier av magnetfeltet B på aksentil en kort spole s.f.a. avstanden x fra spolens midtplan

Magnetisk permeabilitet for tomt rom, μ ₀	1,26E-06 H/m
Antall viklinger, N	330 #
Spolestrøm, I	1,00 A
Gjennomsnitts spoleradius, R	0,07 m

Posisjon		B eregnet	Målt	Differanse
på målestav	x	B 1	B 2	B 2-B 1
(cm)	(m)	$(gauss = 10^4 T)$	(gauss)	(%)
24,5	-0,25	0,581		-100,0
29,5	-0,20	1,068		-100,0
34,5	-0,15	2,241		-100,0
39,5	-0,10	5,588		-100,0
44,5	-0,05	15,965		-100,0
47,5	-0,02	26,339		-100,0
48,5	-0,01	28,745		-100,0
49,5	0,00	29,629		-100,0

Figur 2.2: Utdrag fra en Excel-tabell for magnetfelt på aksen til tynn spole.

En nøtt for de som har god tid:

Den virkelige spolen du skal bruke i oppgaven har 22 viklinger i 15 lag med en effektiv tråddiameter lik 0,93 mm, viklet med indre diameter lik 126 mm og ytre diameter lik 154 mm.

- 2. Hvordan tror du at det virkelige magnetfeltet i nærheten av spolen vil avvike fra det magnetfeltet som beregnes fra likning (2-5)? ¹
- 3. Hvis du skulle ta hensyn til spolens utstrekning under beregningene av feltet hvordan ville du da gå fram? 2

2.2.3 Helmholtzspoler

Såkalte Helmholtzspoler består av to identiske, korte seriekoplede spoler satt opp parallelt på den samme aksen i en avstand a som vist i figur 2.3. Det aksiale magnetfeltet på aksen er gitt av likning (2-5) for hver spole. Ifølge superposisjonsprinsippet finner vi det totale feltet i avstand x fra midtplanet mellom spolene til å bli lik

$$B_x(x) = \frac{N\mu_0 I}{2R} \left[\left(1 + \frac{(x - a/2)^2}{R^2} \right)^{-3/2} + \left(1 + \frac{(x + a/2)^2}{R^2} \right)^{-3/2} \right].$$
 (2-6)

¹TIPS: Se på utstrekningen av spolen som feil i x og anslå tilsvarende feil ΔB i B(x).

²TIPS: Del spolen inn i f.eks. tre spoler med 110 viklinger hver og beregn feltet fra hver av spolene og superponer virkningen. Det beste du kan gjøre er å behandle hver vikling for seg, og i praksis betyr det integrasjon over hver vikling.

Her er spolenes gjennomsnittsradius lik R, strømmen gjennom spolene lik I og vi har neglisjert utstrekningen av spolene.

Hvis du deriverer likning (2-6) mhp. x finner du at ved x = 0 er $dB/dx = d^2B/dx^2 = d^3B/dx^3 = 0$ når a = R. Dette betyr at når a = R har du en geometri som gir deg et spesielt godt homogent magnetfelt i området mellom spolene. Slike Helmholtzspoler anvendes for å sette opp homogene magnetfelt i mange situasjoner.

Figur 2.3: Helmholtzspoler består av to tynne spoler i en gitt avstand a mellom spolene.

Anta at du har Helmholtzspoler med N=330 viklinger på hver spole, $R=70\,\mathrm{mm}$ og sender en konstant strøm $I=1,00\,\mathrm{A}$ gjennom viklingene.

4A. Lag en tabell over magnetflukstettheten B(x) på aksen til Helmholtzspolen i området $-20 \, \mathrm{cm} < x < 20 \, \mathrm{cm}$ for hver av de tre forskjellige verdiene a = R/2, R og 2R.

Et forslag til tabell er vist i figur 2.4.

Tabell 2. Målte og beregnede verdier av magnetfeltet B på aksen til en Helmoltzspole s.f.a. avstanden x fra spolens midtplan

Magnetisk permeabilitet for tomt rom,	1,26E-06 H/m
Antall viklinger, N	330 #
Spolestrøm, I	1,00 A
Gjennomsnitts spoleradius, R	0,07 m
Avstand mellom spolene, a	a=2R, R eller R/2

Posisjon		a=2R	a=R	a=R/2	a=2R	a=2R	a=R	a=R	a=R/2	a=R/2
på		Beregnet	Beregnet	Beregnet	Målt	Differanse	Målt	Differanse	Målt	Differanse
målestav	X	B1	B1	B1	B2	B2-B1	B2	B2-B1	B2	B2-B1
(cm)	(m)	gauss	gauss	$auss = 10^{-4}$	gauss	(%)	gauss	(%)	gauss	(%)
30	-0,20	3,626	2,454	2,213		-100,0		-100,0		-100,0
35	-0,15	9,286	5,478	4,719		-100,0		-100,0		-100,0
40	-0,10	24,643	14,549	11,996		-100,0		-100,0		-100,0
43	-0,07	32,279	26,258	22,393		-100,0		-100,0		-100,0
45	-0,05	30,129	35,312	33,160		-100,0		-100,0		-100,0
47	-0,03	24,981	41,063	45,054		-100,0		-100,0		-100,0
48	-0,02	22,821	42,105	49,866		-100,0		-100,0		-100,0
49	-0,01	21,429	42,382	53,017		-100,0		-100,0		-100,0
50	0,00	20,951	42,402	54,108		-100,0		-100,0		-100,0

Figur 2.4: Utdrag fra tabell for magnetfelt på aksen til Helmholtzspoler.

4B. Framstill resultatet i et kurvediagram

Regnearket skal også brukes for beregning av forventede magnetfeltstyrker som følge av

Biot-Savarts lov (2-4) og påfølgende sammenligning med eksperimentelt målte magnet-feltstyrker i avsnitt 2.3.

4C. Inkluder en kolonne for målt verdi av B og en kolonne for avvik mellom målt og beregnet verdi gitt i % for a=2R. Gjenta dette for de to andre verdiene av a. Forbered til å vise avviket grafisk. (Et forslag er gitt i tabellen i figur 2.4.)

Ta en kontrollregning for hånd av en av de beregnede B. Sjekk utregnet differanse ved å sette inn noen tenkte måleverdier.

2.2.4 Anti-Helmholtzspoler

Anti-Helmholtzspoler består av to identiske, korte seriekoplede spoler satt opp parallelt på den samme aksen i en avstand a som vist i figur 2.5, med ulik retning på magnetfeltet. Hvordan finner du feltet i denne konfigurasjonen?

Figur 2.5: Anti-Helmholtzspoler består av to tynne spoler i en gitt avstand a mellom spolene.

5A. Lag en tabell over magnetflukstettheten B(x) på aksen til Anti-Helmholtzspolen i området $-20 \, \mathrm{cm} < x < 20 \, \mathrm{cm}$ for hver av de tre forskjellige avstandene a = R/2, R og 2R.

5B. Fremstill resultatet i et kurvediagram.

Regnearket skal også brukes for beregning av forventede magnetfeltstyrker som følge av Biot-Savarts lov (2-4) og påfølgende sammenligning med eksperimentelt målte magnetfeltstyrker i avsnitt 2.3.

5C. Inkluder en kolonne for målte verdier av B og en kolonne for avvik mellom målte og beregnede verdier gitt i % for a=2R. Gjenta dette for de to andre verdiene av a. Forbered regnearket til å vise avviket grafisk. (Et forslag er gitt i tabellen i figur 2.4.)

Foreta en kontrollregning for hånd av en av de beregnede B. Sjekk utregnet differanse ved å sette inn det håndregnede verdien.

2.2.5 Solenoide

Magnetfeltet ved et punkt P på aksen til en solenoide kan finnes fra Biot-Savarts lov, og resultatet er $N_{Ho}I$

 $B = \frac{N\mu_0 I}{2\ell} (\cos \theta_1 - \cos \theta_2), \tag{2-7}$

hvor ℓ er lengden av solenoiden og vinklene θ_1 og θ_2 er definert i figur 2.6 eller analytisk:

$$\cos \theta_1 = \frac{z}{\sqrt{z^2 + R^2}}, \qquad \cos \theta_2 = -\frac{\ell - z}{\sqrt{(\ell - z)^2 + R^2}},$$
 (2-8)

der R= indre radius av solenoiden og z er akseavstand fra venstre ende av solenoiden til punktet. Inni solenoiden er $\theta_1 \in \langle 0, \pi/2 \rangle$ og $\theta_2 \in \langle \pi/2, \pi \rangle$. Formelen gjelder også utenfor solenoiden.

Figur 2.6: Solenoide. Vinkelen θ brukes ved utledning av magnetfeltet langs aksen, se teksten.

Vi spanderer et bevis for likning (2-7): Vi har i likning (2-4) funnet magnetfelt på aksen i avstand x fra en enkeltsløyfe. I en solenoide har vi mange sløyfer tett i tett, vi definerer strøm per lengdeenhet som $IN/\ell = In$, der n er antall viklinger per lengde. Flukstetthet i et punkt P på aksen får da et bidrag fra den tynne strømsløyfa d $I = In \, dx$ i posisjon x, og ifølge første del av likning (2-4) er flukstettheten lik

$$dB = \frac{\mu_0 dI}{4\pi} \frac{2\pi R^2}{(x^2 + R^2)^{3/2}} = \frac{\mu_0 In}{2} \frac{R^2}{(R^2 + x^2)^{3/2}} dx.$$
 (2-9)

Med θ som vinkelen i punktet P mellom solenoideaksen og periferien ved posisjon x (figur 2.6) ser vi at tan $\theta = R/x$, og derivasjon av $x = R/\tan\theta$ gir

$$dx = R \frac{-1}{\tan^2 \theta} \frac{1}{\cos^2 \theta} d\theta = -R \frac{1}{\sin^2 \theta} d\theta.$$
 (2-10)

Vi merker oss at

$$\sin^3 \theta = \frac{R^3}{(R^2 + x^2)^{3/2}},\tag{2-11}$$

slik at

$$dx = -R \frac{1}{\sin^3 \theta} \sin \theta \, d\theta = -R \frac{(R^2 + x^2)^{3/2}}{R^3} \sin \theta \, d\theta$$
 (2-12)

og ved substitusjonen $\tan \theta = R/x$ i likning (2-9) og innsetting av grenser θ_2 (høyre ende, lavest x) til θ_1 (venstre ende, høyest x), vil vi få

$$B(x) = -\frac{\mu_0 In}{2} \int_{\theta_2}^{\theta_1} \sin\theta \, d\theta = \frac{\mu_0 In}{2} (\cos\theta_1 - \cos\theta_2), \qquad (2-13)$$

som skulle vises.

5. Hva er uttrykket for magnetfeltet langt inne i solenoiden, og hva er det ved enden av solenoiden?

TIPS: Hva er θ_1 og θ_2 ved disse posisjonene?

Anta at du har en solenoide med N=397 viklinger, $\ell=420\,\mathrm{mm},\,R=50\,\mathrm{mm}$ og strøm $I=1,00\,\mathrm{A}.$

6A. Lag en tabell over magnetflukstettheten B(z) på aksen til solenoiden i området $-10\,\mathrm{cm} < z < 50\,\mathrm{cm}$ der z = 0 ved venstre kant av solenoiden.

Et forslag til tabell er vist i figur 2.7.

Tabell 3. Målte og beregnede verdier av magnetfeltet B på aksen til en solenoide s.f.a. avstanden z fra ene ende

Magnetisk per	1,26E-06 H/m					
Antall viklinge	397 #					
Spolestrøm, I	Spolestrøm, I				A	
Indre radius i s	Indre radius i solenoiden, R				m	
Lengde, 1				0,42 1	m	
Posisjon						
på målestav				Beregnet	Målt	Differanse
	z	cos θ1	cos θ2	B1	B2	B2-B1
(cm)	(m)			gauss	gauss	(%)
60	-0,10	-0,894	-0,995	0,600		-100,0
55	-0,05	-0,707	-0,994	1,707		-100,0
53	-0,03	-0,514	-0,994	2,848		-100,0
52	-0,02	-0,371	-0,994	3,696		-100,0
51	-0,01	-0,196	-0,993	4,736		-100,0
50	0,00	0,000	-0,993	5,899		-100,0
49	0,01	0,196	-0,993	7,062		-100,0

Figur 2.7: Utdrag fra tabell for magnetfelt på aksen til Helmholtzspoler.

6B. Framstill resultatet i et kurvediagram

Regnearket skal også brukes for beregning av forventede magnetfeltstyrker som følge av Biot-Savarts lov (2-4) og påfølgende sammenligning med eksperimentelt målte magnetfeltstyrker i avsnitt 2.3.

6C. Inkluder en kolonne for målt verdi av B og en kolonne for avvik mellom målt og beregnet verdi gitt i %. (Et forslag er gitt i tabellen i figur 2.7.)

2.2.6 Dataanalyse i Python

De foregående oppgavene kan for eksempel gjøres i Python. Det er hensiktsmessig å lagre dataene i tekstfiler. Her bruker vi kommaseparerte filer som vist under.

```
# Posisjon (m), B-felt (Gauss) 0.245,0.0 0.295,0.623 ...
```

Her representerer første kolonne $Posisjon\ på\ målestav$, og den andre kolonnen representerer $Målt\ B2$ i figur 2.2. De resterende kolonnene kan man beregne i Python. For å lese inn dataene lager vi følgende kode:

```
# -*- coding: utf-8 -*-
import numpy as np

def main():
    filnavn = 'kort_spole.csv'
    data = np.loadtxt(filnavn, delimiter=',')
    xe = data[:, 0]
    Be = data[:, 1]

if (__name__ == '__main__'):
    main()
```

I main-funksjonen leses tekstfilen *kort_spole.csv*. Posisjonsdataene, som ligger i første kolonne, legges i variabelen **xe** og dataene for det målte magnetfeltet lagres i variabelen **Be**.

Det neste vi må gjøre er å implementere en funksjon som beregner magnetfeltet i henhold til ligning (2-5). Dette kan vi gjøre slik:

```
def B_felt_kort_spole(x):
    prefaktor = N*mu_0*I0/(2*R)
    return prefaktor*(1.0 + (x/R)**2)**(-1.5)
```

For å plotte resultatet for det beregnede feltet legger vi til noen linjer i main-funksjonen. Vi må også definere noen parametre som brukes i utregningen. Hele programmet blir da seende slik ut:

```
# -*- coding: utf-8 -*-
import numpy as np
from matplotlib import pyplot as plt
```

```
# [] antall viklinger
N = 330
IO = 1.0
                       # [A] strøm
mu_0 = 4.0*np.pi*1e-7 # [H/m] permeabilitet i tomt rom
R = 0.07
                       # [m] radius
x0 = 0.400
                        # [m] sentrum av spolen
def B_felt_kort_spole(x):
    prefaktor = N*mu_0*I0/(2*R)
    return prefaktor*(1.0 + (x/R)**2)**(-1.5)
def main():
    filnavn = 'kort_spole.csv'
    data = np.loadtxt(filnavn, delimiter=',')
    xe = data[:, 0] - x0  # posisjon, sentrert rundt x0
    Be = data[:, 1] # måledata
    # Beregn B-feltet
    xb = np.linspace(xe[0], xe[-1], 100) # flere datapunkter
Bb = B_felt_kort_spole(xb)*1e4 # beregnet B-felt (
                                            # beregnet B-felt (Gauss)
    # Plot resultatene
    plt.plot(xb, Bb, label='Beregnet')
    plt.plot(xe, Be, '.', label='Måledata')
    plt.xlabel('Avstand fra senter av spolen (m)')
    plt.ylabel('Magnetfelt (Gauss)')
    plt.legend()
    plt.show()
if (__name__ == '__main__'):
    main()
```

Man kan nå lage flere funksjoner for å plotte resultatene for en Helmholtzspole og en solenoide. Husk at det ofte lønner seg å dele programmet opp i mindre funksjoner. Det gjør at koden blir lettere å lese, men også at man kan gjenbruke mye av koden til andre formål. Man kan finne mer eksempler om plotting her: https://nbviewer.jupyter.org/urls/www.numfys.net/media/notebooks/basic_plotting.ipynb.

2.2.7 Halleffektprobe

Når elektroner beveger seg med hastighet \vec{v} i en halvleder som befinner seg i et magnetfelt \vec{B} som vist i figur 2.8, vil elektronene bøye av til den ene siden. Avbøyningen er gitt ved Lorentzkraften $\vec{F} = q(\vec{v} \times \vec{B})$, der q = -e for elektroner.

Lorentzkraften virker normalt på strømretningen og normalt på B og avbøyningen på

Figur 2.8: Halleffekt i en halvlederprobe. Strøm I påtrykkes mellom de to minste endevegger.

grunn av denne fører til at elektronkonsentrasjonen blir sterkere mot den ene veggen av halvlederen. Det bygger seg altså opp et elektrisk felt \vec{E} i lederen med samme retning som Lorentzkraften, og dette feltet gir en tilleggskraft $\vec{F} = q\vec{E}$ på elektronene. Det vil raskt oppstå en likevekt der elektrostatisk kraft og Lorentzkraft er like store slik at

$$\vec{F} = q\vec{E} + q(\vec{v} \times \vec{B}) = \vec{0} \quad \Rightarrow \quad \vec{E} = -\vec{v} \times \vec{B}.$$
 (2-14)

Farten v til elektronene gjennom halvlederen er bestemt av strømmen ved uttrykket I = nqvA, hvor n er tettheten av elektroner og A = bd er tverrsnittet i lederetningen. Dette gir

$$v = \frac{I}{A} \frac{1}{nq} = \frac{I}{bd} R_{\rm H},\tag{2-15}$$

der vi har definert Hallkonstanten $R_{\rm H} = 1/nq$.

Med b lik bredden på proben vil spenningen $V_{\rm H}=Eb$ dannes over sideveggene. Hvis vi ser bort fra fortegn og bruker at $\vec{\boldsymbol{v}}\perp\vec{\boldsymbol{B}}$ får vi følgende uttrykk for Hallspenningen $V_{\rm H}$:

$$V_{\rm H} = Eb = vBb = \frac{R_{\rm H}I}{d}B, \qquad (2-16)$$

der altså d er tykkelsen av Hallproben som magnetfeltet B virker over. Hallkonstanten $R_{\rm H}$ og d er konstanter for en gitt probe og strømmen I holdes konstant. Den magnetiske flukstettheten B normalt på proben vil da være proporsjonal med Hallspenningen $V_{\rm H}$ som måles med et voltmeter.

Figur 2.9: Probegeometrier: (1) Aksial probe, (2) transversal probe.

Halleffekten anvendes bl.a. i gaussmetre for måling av magnetfelt. Et Halleffekt-gaussmeter vil essensielt bestå av en strømkilde som gir en konstant strøm I gjennom en probe,

og et voltmeter. Proben plasseres i magnetfeltet som skal måles. Gjennom en kalibreringsprosess kan sammenhengen mellom målt Hallspenning og magnetfelt etableres og utlesningsenheten for spenning graderes direkte i $T = Wb/m^2$ eller gauss = 10^{-4} T.

I praksis er utstrekningen til en Hallprobe av størrelsesorden noen mm². To forskjellige probegeometrier er vanlige: transversale prober og aksiale prober, som vist i figur 2.9.

Typisk verdi for elektrontettheten i en dopet halvleder er $n=10^{20}\,\mathrm{elektroner/m^3}$. Til sammenlikning har kobber $n=10^{28}\,\mathrm{elektroner/m^3}$. I våre gaussmetre er $I=20\,\mathrm{mA}$ og $d=1,0\,\mathrm{mm}$. Anta at magnetfeltet varierer fra 1 til 100 gauss.

7A. Hvilket måleområde må gaussmeterets voltmeter ha for å måle i dette magnetfelt-området? (Anta at $n=10^{20}\,\mathrm{elektroner/m^3}$.)

7B. Hvorfor tror du at halvledere blir brukt i magnetfeltprober? Begrunn hvorfor f.eks. kobber ikke vil være et egnet materiale.

7C. Begrunn også hvorfor en isolator ikke vil være et egnet materiale i en magnetfeltprobe.

2.2.8 Magnetiske strøfelt

I laboratoriet er det magnetiske strøfelt som danner en bakgrunn som kan forstyrre magnetfeltmålinger. Strøfeltene har tre hovedkilder:

- jordmagnetfeltet,
- magnetfelt fra magnetiske materialer i bygningskonstruksjoner og inventar,
- induserte magnetfelt fra bl.a. 230 V nettledninger.

Jordmagnetfeltet, som er konstant og av størrelsesorden 1 gauss, antas å stamme fra konveksjonsstrømmer av elektriske ladninger i jordas flytende kjerne. Anta at det midt i jordas indre ligger en strømsløyfe vinkelrett på jordas rotasjonsakse. La strømsløyfas radius være $R = R_{\rm j}/4$, hvor $R_{\rm j} = 6371\,\rm km$ er jordradien. Aksialkomponenten til magnetfeltet i posisjon x på aksen til en slik strømsløyfe er gitt ved likning (2-4).

8. Hvor stor må strømmen i sløyfa være for at magnetfeltet på jordoverflata ved polen $(x = R_i)$ skal være lik 1 gauss?

Bidrag til strømagnetfeltet fra bygningen og inventaret vil avhenge av bygnings- og konstruksjonsmaterialene som er brukt. Dere skal vurdere bidragene til dette i laboratoriet gjennom egne målinger.

Bidrag til strøfeltet fra strømmene i ikke-skjerma ledninger kan estimeres ved å beregne feltet satt opp av en lang rett leder som fører strømmen I. Asimutalkomponenten av magnetfeltet i en avstand r fra en lang leder kan finnes fra³ Biot-Savarts lov (2-2)

$$B_{\theta}(r) = \frac{\mu_0 I}{2\pi r}.\tag{2-17}$$

³Utledning f.eks. i [1], Kap. 23.5.

9. Hvor stor er den magnetiske flukstetthet i en avstand $5\,\mathrm{cm}$ fra en lang $230\,\mathrm{V}$ nettledning pga. en strøm $1\,\mathrm{A}$ i denne ledningen?

2.2.9 Magnetfeltfritt rom

Det permanente magnetfeltet på jordoverflata fører til problemer med nulling av gaussmetre. Magnetfelt kan imidlertid skjermes ved å bruke materialer med høy permeabilitet. Rent jern kan brukes. Det finnes også spesielle legeringer som har enda høyere permeabilitet μ og dermed skjermer enda bedre. Et eksempel er mymetall⁴. Gaussmetre nulles vanligvis ved å stikke gaussmeterproben inn i et kammer som skjermer den fra jordmagnetfeltet under nullingen.

2.3 Eksperimentelt

2.3.1 Apparatur

Eksperimentet bruker PASCOs system for datalogging (Capstone) med grensesnitt og sensorer for magnetfelt og posisjon. Følgende instrumenter inngår i oppstillingen:

- Grensesnitt. PASCO 550 Universal Interface.
- Magnetfelt sensor. PASCO Magnetic Field Sensor CI-6520A.

Måleområde: 0,01 G–100 kG.

Oppløsing: 50 mG. Accuracy: 10% of reading

- Nullfeltkammer. PASCO Zero Gauss Chamber EM-8652.
- Posisjonssensor. PASCO Rotary Motion Sensor PS-2120A.

Oppløsning: 0,09°.

Radier på de tre trinsene: 10 mm, 29 mm, 48 mm.

• Korte spoler. 330 viklinger, 22 viklinger/lag × 15 lag

Indre diameter 126 mm, ytre diameter 154 mm.

Tråd: lakkisolert kobber, diameter 0,75 mm, maksimum spolestrøm: 1,0 A.

- Solenoide. 368 viklinger, lengde ~ 400 mm, indre diameter 100 mm. Tråd: lakkisolert kobber, diameter 1,0 mm, maksimum solenoidestrøm 1,0 A.
- Multimeter. Escort Mod. EDM 168A, eller tilsvarende.
- Diverse utstyr: Metermål, skrujern.

 $^{^4}$ Mymetall er en legering av 77 % nikkel, 15 % jern pluss noe kobber og molybden. Navnet har det fått pga. svært høy verdi for magnetisk permeabilitet, μ .

• Kraftforsyning. Mascot Type 719. Område: 0-30 V, 30 mA-2 A.

Dette er en kombinert strømstyrt/spenningstyrt kraftforsyning. Dvs. den kan forsyne en konstant strøm eller en konstant spenning, opp til en viss maksimal belastning. Boksen har to justeringsknapper, en for spenning merket " $0 \rightarrow 30 \,\mathrm{V}$ " og en for strøm merket " $30 \,\mathrm{mA} \rightarrow 2 \,\mathrm{A}$ ".

Strømstyrt kraftforsyning (strømkilde) har vi dersom spenningsjusteringen stilles til maksimalt. Strømmen reguleres med strømjusteringsknappen.

Spenningstyrt kraftforsyning (spenningskilde) har vi dersom strømjusteringen stilles til maksimalt. Spenningen reguleres med spenningjusteringsknappen.

Dersom boksen brukes strømstyrt vil den maksimale strømmen 2 A kunne gis til en ekvivalent utgangsmotstand på maksimalt $R=U/I=30\,\mathrm{V}/2\,\mathrm{A}=15\,\Omega$. Boksen har også en knapp merket rangesom kan begrense maksimal spenning til 15 V istedenfor standard 30 V. Dersom 15 V velges vil maksimal utgangsmotstand være $R=U/I=15\,\mathrm{V}/2,0\,\mathrm{A}=7,5\,\Omega$. Ved høyere utgangsmotstand vil utgangsspenningen holdes på maksimal verdi og strømmen bli lavere.

Tilsvarende maksimalregulering er det ved spenningsstyrt kraftforsyning. 30 V maksimalspenning kan gis ned til en motstand på $R = U/I = 30 \text{ V}/2,0 \text{ A} = 15 \Omega$. Ved lavere motstand vil forsyningen ikke kunne gi nok strøm slik at spenningen vil falle.

2.3.2 Kaliberering av Hallprobe

Det er vanskelig å produsere Hallprober med nøyaktig like Hallkonstanter. Hallspenningen som oppstår ved et gitt magnetfelt og strøm vil derfor kunne variere litt fra probe til probe. For å kunne bruke flere prober til samme gaussmeter har ofte hver probe tilordnet et kalibreringsnummer som brukes for å justere forsterkningen til gaussmeterets voltmeter slik at meteret viser riktig magnetfelt. PASCOs sensorer er justert og en kaliberering trengs normalt ikke. Før bruk må sensoren nullstilles.

Nullstillingsprosedyre:

- Sett områdeknappen på sensoren i stilling 1x og axial.
- Før proben inn i nullfeltkammeret og trykk på nulljusteringsknappen.

MERK: Når du skifter måleområde må du foreta ny nullstilling!

Enheter og fortegn for Hallproben:

- Meteret viser den magnetiske flukstettheten, B, i den enhet du velger i Capstone.
- Gaussmeteret viser **positivt** fortegn når feltlinjene har retning **inn** av den sylindriske tuppen på proben.

2.3.3 Magnetiske strøfelt

Oppgave:

Undersøk de magnetiske strøfeltene i laboratoriet og svar på følgende spørsmål:

23

- Hvordan stemmer den målte retningen av jordmagnetismen med antatt retning for vår breddegrad?⁵
- Sammenlikn resultatene med resultater fra de andre gruppene. Er det variasjon av den målte jordmagnetismen innenfor laboratoriet?
- Vil magnetfeltet fra jernet i laboratoriebordene kunne forstyrre målingene?

2.3.4 Statistisk feil i målinger

Avlesing av magnetfeltstyrker fra Hallproben vil gi et noe varierende resultat. Dette kan du bruke til å finne den statistiske feilen.

Oppgave:

Undersøk statistisk feil i målinger:

- Koble inn sensorene i PASCOs grensesnitt og grensesnittet til datamaskinen. Start Capstone og gjør klar til datasampling.
- Nullstill og sample data i 10 s. Marker data og foreta en statistisk analyse med innebygd funksjonalitet i Capstone. Hva blir dataenes standardavvik? Hvilke standardavvik får du om du sampler i 1 s og 100 s? Hvor mange samples bør du bruke?
- Bruk standardavviket som feil i dine data fra Hallproben.

2.3.5 Magnetfelt i kort spole

Oppgave:

Kartlegg magnetfeltet på aksen til en kort spole sfa. avstanden fra spolen.

For å måle magnetfeltet kan du enten holde spolen fast og flytte Hallproben eller du kan sette Hallproben fast og flytte spolen. Hvilken av disse er best å bruke? Motivere!

Framgangsmåte:

- Monter rotasjonssensoren på stativet.
- Kople sensorene inn i grensesnittet og grensesnittet i datamaskinen. Start Capstone og gjør klar til datasampling.
- Monter en kort spole på den bevegelige vogna.
- Juster magnetfeltssensorens posisjon slik at den ligger på spoleaksen. Bruk vater.

⁵Den magnetiske nordpolen ligger i nærheten av den geografiske sydpolen. Magnetiske feltlinjer er lukkede kurver og har retning fra magnetisk nordpol til sydpol ytre sett og fra sydpol til nordpol inni magneten.

- Kople opp spolekretsen som vist i figur 2.10.
 VIKTIG: Kraftforsyningen skal være avslått under oppkoplingen. Velg strømmåling både på kraftforsyningen og multimeteret. Bruk 10A-inngangen på multimeteret.
 Be labveilederen om å godkjenne oppkoplingen.
- Nullstill magnetfeldsensoren. (Det er sikrest å bryte spolestrømkretsen under nullingen.)

Figur 2.10: Spolekrets. Mascot kraftforsyning, multimeter og spolen er vist. Merk deg vikleretningen for spolen, spolen er sett mot siden med koplingsbøssingene.

• Mål magnetfeltet B(x) langs aksen av spolen sfa. avstanden x fra spolens midtplan Husk: maksimal spolestrøm er 1,0 A; Kontroller at du ikke har en drift i målingen.

Analyser resultatene og sammenligner målt og beregnet verdi. Skriv ut tabell og graf og lim inn i journalen.

2.3.6 Magnetfelt i Helmholtzspole

Oppgave:

Kartlegge magnetfeltet på aksen mellom to korte spoler sfa. avstanden fra spolens midtplan og avstanden mellom spolene.

Framgangsmåte:

- \bullet Monter på den bevegelige vogna to korte spoler i en avstand a=R fra midtplan til midtplan .
- Mål magnetfeltet B(x) langs spoleaksen som funksjon av avstanden x fra midtplanet mellom spolene med f.eks. $I = 1,00\,\mathrm{A}$ og legg resultatene etter hvert inn i regnearktabellen for Helmholtzspolen. Mål et stykke utenfor enden av spolen.
- Gjenta målingen med spoleavstander a=2R og a=R/2.
- Analyser resultatene og sammenligner målt og beregnet verdi. Skriv ut tabell og graf og lim inn i journalen.

Figur 2.11: Oppkopling av Helmholtzspoler. For å få spolene nærme hverandre nok må du montere spolene slik at koplingsbøssingene peker utover for begge spoler. Pass på at strømretningene i hver spole er den samme.

2.3.7 Magnetfelt i Anti-Helmholtzspole

Oppgave:

Gjør samme eksperiment som over for Anti-Helmholtzspoler.

2.3.8 Magnetfelt i solenoide

Oppgave:

Kartlegg magnetfeltet på aksen til en solenoide.

Framgangsmåte:

- Monter solenoiden på den bevegelige vogna og kople opp kretsen.
- Mål magnetfeltet B(x) langs aksen på solenoiden som funksjon av avstanden x fra solenoidens endeplan og legg resultatene inn i regnearktabellen etter hvert.
- Analyser resultatene og sammenligner målt og beregnet verdi. Skriv ut tabell og graf og lim inn i journalen.

2.3.9 Magnetfelt i kort spole - ekstraoppgave

Oppgave:

Kartlegg magnetfeltet parallelt en kort spole (y-aksen) sfa. avstanden fra spolen.

Her monteres spolen slik at magnetfeltsensoren passerer parallelt med spolen. Hvordan varierer feltet? (Obs: feltets retning.) Forklar hvorfor kurven ser ut som den gjør.

2.3.10 Generell diskusjon

- Gjenomfør feilanalyse av resultatene og diskuter mulige systematiske avvik
- Diskuter avvik mellom måleresultater og modelleringen du har lagt i beregningsdelen. Hvor er forskjellene størst? Hva er grunnen?
- Diskuter mulige anvendelser av de fysiske effekter som er tatt opp til observasjon i eksperimentet.

2.3.11 Avslutning

Slå av alle apparater, trekk ut alle ledninger og forlat plassen i minst like god orden som du fant den.

Kapittel 3

LORENTZKRAFTEN

Mål

Du skal i denne laboratorieoppgaven

- dokumentere eksperiment i labjournalen
- foreta feilanalyse av eksperimentet.
- bruke numeriske metoder for å modellere eksperimentet
- studere krefter på elektroner i homogene og konstante elektriske og magnetiske felt,
- bestemme forholdet e/m mellom elektronets ladning e og masse m (Thomsoneksperimentet),

3.1 Teoretisk bakgrunn

Teorien presenteres i samband med presentasjonen av beregningsoppgavene nedenfor. Det vises også til lærebok og forelesningene i elektromagnetisme.

3.2 Beregningsoppgaver

3.2.1 Lorentzkraften

Kraften fra elektriske og magnetiske felt på ladde partikler kalles gjerne Lorentzkraften. Kraften på en ladd partikkel med ladning q som beveger seg med hastighet \vec{v} i et elektrostatisk felt \vec{E} og et magnetostatisk felt \vec{B} er gitt ved

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}. \tag{3-1}$$

For å lage en hurtig elektronstråle brukes alltid elektriske felt for å akselerere elektronene. Uttrykket for Lorentzkraften viser imidlertid at både elektriske og magnetiske felt gir kraftvirkning på ladde partikler.

1. Forklar ut i fra uttrykket for Lorentzkraften hvorfor magnetiske felt (i motsetning til elektriske felt) ikke kan gi en ladd partikkel økt kinetisk energi.

3.2.2 Ladninger i *E*-felt

Et homogent elektrisk felt settes lettest opp mellom to parallelle plateleektroder. Denne geometrien gir et elektrisk felt $E=U_{\rm a}/\ell$ hvor $U_{\rm a}$ er spenningen mellom platene og ℓ avstanden mellom dem. En ladd partikkel med ladning q og masse m blir under passasje mellom platene akselerert med en akselerasjon

$$a = \frac{qE}{m} = \frac{qU_{\rm a}}{m\ell}. (3-2)$$

Dette anvendes i kilder for ladde partikkelstråler.

Figur 3.1 viser hvordan en elektronstrålekilde kan lages. Et wolfram-filament varmes opp ved at elektrisk strøm passerer gjennom det. Når det er rødglødende sender det ut elektroner fra overflata. Filamentet plasseres like bak en plateelektrode med hull i. Spenning legges mellom filamentet og plateelektroden. Elektronene blir akselerert mot plateelektroden og de elektronene som passerer hullet går ut i en stråle på andre siden av plata. En annen måte å lage elektroner i elektronkilder er å bruke en oksidkatode som blir varmet opp indirekte av et filament. Denne konstruksjonen gir bedre feltforhold under akselerasjonen, og det er denne utgaven som er vist i figur 3.1.

Figur 3.1: Prinsippskisse for elektronstrålekilde. (1) Vekselspenning (5-10 V) til (2) glødefilament varmer opp (3) oksidbelegget. Akselerasjonsspenning mellom filamentet og (4) anoden akselerer elektronene.

Anta at et elektron blir akselerert fra stillstand til en spenning på 30 V i et statisk elektrisk felt.

2. Hva blir hastigheten til elektronet etter akselerasjonen?

I partikkelakseleratorfysikk brukes energienheten elektronvolt", forkortet eV. En partikkel ladd med en elementærladning får energien 1 eV når den akselereres gjennom et spenningsfall på 1 V.

3A. Hvor mange joule tilsvarer 1 eV?

3B. Hva blir energien til et elektron som akselereres til en spenning på $30\,\mathrm{V}$ uttrykt i enheten eV ?

En elektronstråle fra en elektronkilde med null potensial blir akselerert til et potensial U_a vil kunne avbøyes i et transversalt elektrisk felt $E = U_d/d$ over en avstand L som vist i figur 3.2. Avbøyningsvinkelen α er gitt av

$$\tan \alpha = \frac{1}{2} \frac{U_{\rm d}}{U_{\rm a}} \frac{L}{d}.$$
 (3-3)

Figur 3.2: Avbøyning av elektronstråle i et elektrisk felt. Tallverdier i figuren brukes i oppgaven.

Likning (3-3) beskriver de fysiske lover som danner grunnlaget for oscilloskopet, som er et instrument for måling av elektrisk spenning. Spenningen som skal måles legges mellom de transversale avbøyningsplatene og avbøyningen av elektronstrålen observert på en fosforescerende skjerm er et mål for spenningen.

Anta elektronene blir akselerert av et 2 kV akselerasjonspotensial og de øvrige parametre er som vist i figur 3.2.

4. Hvor stor avbøyning Δy får strålen på skjermen hvis avbøyningsspenningen er $20\,\mathrm{V}$?

3.2.3 Ladninger i B-felt

Når et elektron beveger seg i et rom fritt for elektrisk felt men med et magnetisk felt B virker Lorentzkraften til enhver tid normalt på baneretningen (så sant ikke banen er parallell med magnetfeltet). La oss anta elektronet skytes inn i B-feltet med hastighet vinkelrett på feltet, Lorentzkraften blir da $F_{\rm B} = evB$ og utgjør sentripetalkraften. Elektronbanen blir en sirkel med radius r med sentripetalakselerasjon $a_{\rm s} = v^2/r = F_{\rm B}/m$.

Farten v kan bestemmes fra den kinetiske energien til elektronet gitt av $\frac{1}{2}mv^2 = eU_a$. Ved å sette sammen disse likningene får vi følgende uttrykk for radien

$$r = \frac{1}{B} \sqrt{\frac{2U_{\rm a}}{e/m}}. (3-4)$$

5. Sett opp i et kurvediagram kurveskarer over r sfa. B i området 0 < B < 15 gauss for $U_a = 20$, 40 og 60 V. Bruk for eksempel Python eller Matlab.

3.2.4 Bestemmelse av e/m (Thomsoneksperimentet)

I 1897 oppdaget Thomson ekstremt lette, negativt ladde partikler – som senere viste seg å være elektroner. Samme år brukte han avbøyning i statiske elektriske og magnetiske felt til å finne forholdet mellom deres ladning og masse. Uttrykket (3-4) kan omskrives til

 $\frac{e}{m} = \frac{2U_{\rm a}}{B^2 r^2}.\tag{3-5}$

Forholdet e/m kan altså bestemmes ved å måle radius r i elektronbanen i et magnetfelt B vinkelrett på banen for elektroner akselerert over en spenning U_a .

Du skal gjenta Thomsons eksperiment i laboratoriet. Størrelsen på apparaturen begrenser diameteren på største elektronbane til ca. 8 cm.

6. Bruk kurveskaren som du satt opp i oppgaven ovenfor til å anslå gunstig magnetfelt B for tre ulike akselerasjonsspenninger $U_{\rm a}=20,\,40\,$ og $60\,{\rm V}.$

Ved omskrivning av (3-5) får du
$$m = \frac{qB^2r^2}{2U_2}, \tag{3-6}$$

som viser at massen m til en ladd partikkel med kjent ladning q som har vært akselerert til et kjent potensial $U_{\rm a}$ kan bestemmes ved å måle magnetisk flukstetthet B og baneradius r for partikkelen i et magnetisk felt. Dette er ideen bak det magnetostatiske massespektrometeret som er et av de viktigste instrumentene for bestemmelse av atomære og molekylære partikkelmasser. Thomson la med sitt arbeid grunnlaget for denne teknikken.

3.2.5 Spenningsdeler

Den såkalte spenningsdeleren er blant de mest alminnelige elektriske oppkoplinger. Du skal anvende den i eksperimentet. I sin enkleste form ser spenningsdeleren ut som i figur 3.3A.

Gjennom koplingen kan spenningen V_{inn} reduseres til V_{ut} . For å finne størrelsen på V_{ut} sfa. V_{inn} kan du se på strømmen I gjennom motstandene R_1 og R_2 som ifølge Ohms lov er lik

 $I = \frac{V_{\text{inn}}}{R_1 + R_2}. (3-7)$

31

Figur 3.3: Spenningsdeler. (A) Med faste motstander. (B) Med variabel motstand med midttapping (skyvemotstand/potensiometer). (C) Med potensiometer og last $R_{\rm L}$.

Bruk Ohms lov igjen på R_2 :

$$V_{\rm ut} = IR_2 = \frac{R_2}{R_1 + R_2} V_{\rm inn}.$$
 (3-8)

Spenningsdeleren kan gjøres variabel ved å erstatte R_1 og R_2 med en motstand med variabel midttapping (skyvemotstand) som vist på figur 3.3B. Sammen med en fast spenningskilde gir dette en mulighet til å lage en billig variabel spenningskilde.

Spenningsdeleren har imidlertid en ulempe.

7. Kan du finne hvilken ulempe?

TIPS: Hva skjer med $V_{\rm ut}$ når du begynner å trekke strøm fra utgangen (midttappingen)? Se figur 3.3C. Resultantmotstanden over parallellkoplingen av R_2 og $R_{\rm L}$ betegnes $R_2||R_{\rm L}$ og er lik $(R_2R_{\rm L})/(R_2+R_{\rm L})$.

3.3 Eksperimentelt

3.3.1 Apparatur

- Elektronstrålerør. Leybold Hereaus 555 571.
- Kraftforsyning for elektronakselerasjonen og fokuseringselektrode. Leybold Didactics 521 651 Tube power supply 0...500 V.
- Kraftforsyning for Helmholtzspoler. Mascot, type 719. Brukes som strømkilde. Område: 0-15 V, 30 mA-2 A.
- Multimeter for spolestrøm. Escort EDM168A, 3 sifre, eller tilsvarende.
- Multimeter for akselerasjonsspenning. Escort EDM168A, 3 sifre, eller tilsvarende.
- Koplingsboks B med spenningsdeler.
- En mengde **ledninger** av ulik lengde.

Figur 3.4: Leybold apparat med elektronkanonen innen glasskolbe (1), Helmholtzspoler (2), holder (3), og radiusmåler (4).

Figur 3.5: Prinsippskisse. Elektronkanonen (K), avbøyning av elektronstrålen mellom avbøyningsplater (P). Magnetfelt er markert med kryss \times *inn* i papirplanet og elektronstrålen er vist uten (a) og med B-felt (b).

Apparaturen er vist skjematisk i figurene 3.4 og 3.5. Elektronkanonen (K) sender ut elektroner som kan avbøyes i et statisk elektrisk felt mellom de parallelle avbøyningsplatene (P) og/eller i et statisk magnetfelt fra Helmholtzspolene. Glasskolben rundt elektronkanonen er fylt med tynn hydrogengass til et trykk på omtrent 10^{-5} atmosfærer 1 Pa. Støt mellom elektronene og gassen vil eksitere elektronene i gassmolekylene som så deeksiterer og sender ut lys (samme fenomen som ved nordlys). Sporet etter elektronene blir da synlig som en blågrønn stripe.

Studer elektronkanonen gjennom glasskolben. Studer også den demonterte kanonen fra et gammelt rør som er utlagt i laboratoriet.

3.3.2 Oppkopling av spenninger til elektronkanonen

Figurene 3.6 og 3.7 viser skjematisk de elektriske oppkoplinger for elektronkanonen. Notera den gemensamma jordningpunkten (utgång 2 på Leybold Power supply)

- a: anodespenning,
- b: jordingspunkt,
- c: glødespenning til katoden,
- d: Wehneltsylinder,
- e: avbøyningsspenning (øvre og nedre),
- f: punkt for måling anodespenning,
- g: strømtilførsel Helmholtzspoler.

Figur 3.6: Elektrisk tilkoplingskjema på apparaturens sidekant.

Figur 3.7: Koplingsskjema for elektronkanonen. Kraftforsyning Leybold, multimeter for måling av anodespenning.

Det finnes flere alternative måter å kople opp elektronkanonen, men det er viktigt att koble rett. Det er imidlertid ikke vanskelig å ødelegge et par sikringer om du kopler feil, så spør veileder dersom du er i tvil.

Kople opp glødekretsen i henhold til figur 3.7.

Merknader og tips:

- Du skall koble till uttak 4 på aggregatet. Vilken du bruker er utan betydelse men en jordas via kontakterna b och c₁ i figur 3.6.
- Aggregatet skal være avslått under oppkopling.
- Be labveilederen om å godkjenne oppkoplingen.
- Slå på aggregatet og juster glødspenningen til "6" (V) og observer at tråden gløder. Dette forutsetter at takbelysningen er slått av og bordbelysningen dempet. Observer at glødspenningen kan senkes til 5 V under eksperimentene.
- Slå aggregatet av igjen.

For å trekke ut en elektronstråle fra katoden må elektronene akselereres som forklart ovenfor i teoridelen. Dette gjøres ved å legge en akselerasjonsspenning mellom katoden og anoden.

Kople til akselerasjonsspenningen i henhold til figur 3.7.

Merknader og tips:

- Pass på at kraftforsyningen er slått av, og at justeringsknappene for strøm og spenning er skrudd helt ned når du kopler sammen.
- Koble Leybold utgang 3 til "a" och utgang 2 till b".
- Foreløpig avbøyningspotensial $U_d = 0$, derfor koples de to avbøyningsplatene (e₁ och e₂) sammen och eventuellt jordas eller kopplas till anoden, for å forhindre att laddning byggs opp på dem.
- For å unngå målefeil pga. spenningsfall over seriemotstanden kan du kople voltmeteret direkte til anoden i steden for f'. Bruk måleområde 1000 V likespenning. Kontroller verdien på Leybold aggregatet. Hur stort målefeil får du og vad bestemmer størrelsen på feilen?
- Seriemotstandene montert internt i apparaturen er satt inn av sikkerhetsmessige grunner for å unngå for stor strøm i kretsen i tilfelle intern kortslutning (f.eks. en gassutladning).

Nå er det klart til å skru på alle spenninger og se at elektronstrålen vises:

- Be labveilederen om å godkjenne oppkoplingen.
- Slå spenningen for glødingen på.
- Sjekk at filamentet starter å gløde.

- Øk akselerasjonsspenningen sakte inntil du (ved 20–30 V eller noe høyere hvis øynene ikke har vent seg til mørket) ser sporet etter elektronstrålen i hydrogengassen som en blåfiolett stripe ut av elektronkanonen.
- Observer hvordan strålen forandrer seg når du forandrer akselerasjonsspenningen.
- Hvorfor når ikke strålen glassveggen ved lav akselerasjon? Ved høyere spenninger vil, ganske brått, strålen møte veggen, senk da spenningen noe. Dette skjer ved ulike spenninger ved de ulike oppsett, følg godt med rundt 100 V, og evt. oppover til ca. 150 V.
- MERK: Hvis anoden begynner å gløde må du slå apparaturen av og la den avkjøle seg. Bruk aldri høyere akselerasjonsspenning enn nødvendig for å unngå gløding.

Lag en skisse av strålegangen for forskjellige akselerasjonsspenninger.

Prosedyre for å slå av apparaturen:

- Slå glødespenningen av.
- Reduser akselerasjonsspenningen til null og slå kraftforsyningen av.

MERK: Det er ikke farlig å ha på akselerasjonsspenning og magnetfelt uten å ha på glødespenning, men det er ikke bra å ha på glødespenning uten akselerasjonsspenning. Slå derfor alltid av glødespenningen når du har korte og lengre pauser.

I en elektronstråle har alle partiklene samme fortegn på ladningen. Strålen vil derfor ha en tendens til å divergere pga. intern Coulombkraft. Hvis fokuseringsringen (Wehneltsylinderen) foran katoden legges svakt negativt, vil dette virke fokuserende på strålen.

Kople til Wehneltsylinderen i henhold til figur 3.7. Utgång 1 till "W". Merknader og tips:

- Sjekk at kraftforsyningen er slått av og at justeringsknappene for strøm og spenning er skrudd helt ned før du kobler den til.
- Etter du har koblet til Wehneltsylinderen og slått på kraftforsyningen. Juster spenningen på fokuseringselektroden (Wehneltsylinderen) hvis du synes at strålen er dårlig fokusert. Bruk maksimalt 10 V.

3.3.3 Avbøyning i *E*-felt

Oppgave:

Du skal studere avbøyningen av en elektronstråle i et elektrostatisk felt.

I oppstillingen til nå har du lagt begge avbøyningsplatene på samme spenning, nemlig anodespenningen U_a . For å få avbøyning legges den ene plata på noe lavere spenning. I praksis gjør vi dette ved å ta spenningsdeling fra anodespenningen. Prinsippet for spenningsdeling er vist i figur 3.3. Her må du gjøre forandringer i oppkoplingen. Anodespenningen (3) skal nå kobles med koblingsboks enligt skjemaet i figur 3.8 viser forandringer du må gjøre fra oppkopling i figur 3.7 der avbøyningspotensialet var null. Koblingen mellan e_1 och e_2 tas bort.

Spenningsdeleren består av et presisjonspotensiometer (Helipot) og er montert på koplingsboks B. Akselerasjonsspenningen $U_{\rm a}$ koples over potensiometeret. Fra midttappingen tar vi ut en spenning som varierer med stillingen til potensiometerknappen, som trenger 10 omdreininger for å skrus fra topp til bunn. Avbøyningsspenningen tas ut mellom topputtaket (som altså er på potensial $U_{\rm a}$) og midtuttaket på potensial $xU_{\rm a}$, der x kan variere fra 0 til 100 %. Det betyr at den ene avbøyningsplata ligger på anodespenningen $U_{\rm a}$ og den andre på $xU_{\rm a}$. Avbøyningsspenningen blir da

$$U_{\rm d} = U_{\rm a} - xU_{\rm a} = (1 - x)U_{\rm a}. (3-9)$$

Hvis du kopler feil og tar ut spenningsdeling til jordpotensialet vil elektronstrålen bremses kraftig og lett forsvinne. Hvilken plate som skal ha lavere potensial finner du ut ved å tenke, eller ved å prøve og feile.

Kople til avbøyningspotensialet ifølge figur 3.8.

Figur 3.8: Kretsdiagram for inkopling av spenningsdeler.

Merknader og tips:

- Innstill potensiometeret på $100\,\%$ slik at midttappingen har samme potensial som anodespenningen.
- Slå på glødingen, fokuseringsspenning og akselerasjon som beskrevet tidligere.

• Varier avbøyningen ved å skru på potensiometerknappen.

Forklar det du observerer ut i fra uttrykket for Lorentzkraften i likning (3-1).

Skisser strålen for forskjellige avbøyningsspenninger, f.eks. $U_{\rm d}$ lik $\frac{1}{2}U_{\rm a}$ og $\frac{4}{5}U_{\rm a}$.

3.3.4 Avbøyning i B-felt

Oppgave:

Du skal studere avbøyningen av en elektronstråle i et statisk magnetfelt.

Kople oppstillinga i henhold til figur 3.7. Merk at oppkoplingen av spenningsdeleren i forrige steg ikke er nødvendig for forsøkene som skal utføres her

Kople strømkretsen til magnetene med Mascot aggregatet i (g) .

Merknader og tips:

- Sjekk at kraftforsyningen for Helmholtzspolene er avslått og at kontrollknappene for strøm og spenning er skrudd helt ned.
- Innstill kraftforsyningen til strømkilde (METER: A og reguleringsknappen for spenning opp 1/2 omdreining) og sett RANGE til 15 V.
- Bruk multimeteret (6) for strømmåling
- Skru opp strømmen til ca. 1 A, og sjekk at strømkretsen virker. MERK: Spolene tåler maks. 2 A. Skru deretter strømmen ned igjen.
- Slå på elektronstrålen som beskrevet tidligere.
- Juster akselerasjonsspenningen til ca: 100 V og magnetstrømmen til 0,75 A.

Gi en forklaring på det som skjer forankret i uttrykket for Lorentzkraften.

Be labveilederen om å hjelpe deg å vri elektronstrålerøret i opplagringen inntil strålen beskriver en heliksformet bane.

Skisser strålen og forklar grunnen til den heliksformede banen.

3.3.5 Thomsoneksperimentet: måling av e/m

Oppgave:

Du skal bestemme forholdet e/m mellom elektronets ladning og masse fra likning (3-5) ved å måle akselerasjonsspenningen $U_{\rm a}$, radien r i elektronbanen og magnetfeltet B.

Magnetfeltet er forhåndskalibrert mot strømmen i spolene. Resultatet er gitt i en kalibreringskurve vedlagt apparaturen og som et empirisk uttrykk for magnetfeltet som funksjon av målt spolestrøm funnet fra kalibreringskurven. Alternativt kan dette uttryck brukas:

$$B = \mu_0 \cdot (\frac{4}{5})^{3/2} \cdot \frac{n}{R} \cdot I \tag{3-10}$$

R: Spolenes radie, n: antal varv = 130 per spole.

Merknader og tips:

- Rett opp røret slik at strålen blir en sirkel og ikke en heliks.
- Innstill multimeteret for spenningsmåling i området 0-1000 V likespenning.
- Be labveilederen om å vise deg hvordan du måler elektronbanens diameter ved hjelp parallakse-speilet bak elektronstrålerøret og en linjal.
- Det er mulig å fotografere elektronbanen og analysere i TRACKER for å få banens diameter. Observer at man må ha en skala (linjal) i bilden då.

Analyse og diskusjon av Thomsoneksperimentet

- Bestem e/m for elektronet ut i fra dine målinger av U_a , r, I og kalibreringskurven eller formeln for B(I).
- Gjenta dersom du har tid bestemmelsen for et annet sett av verdier for U_a og I.
- Anslå feilene i de målte størrelser og finn målfeilen i e/m. Hvilke feilkilder dominerer?
- Sammenlign den målte verdi av e/m med tabellverdi.
- Hvordan er overenstemmelsen mellom måleresultatene fra ulike verdier av U_a og I og feilestimatet ditt?
- Diskuter mulige anvendelser av de fysiske effekter som er tatt opp til observasjon i eksperimentet.

3.3.6 Avslutning

Slå av alle apparater, trekk ut og rydd opp i alle ledninger. Forlat plassen i minst like god orden som du fant den.

Kapittel 4

KRAFT PÅ STRØMFØRENDE LEDER

Mål

Du skal i denne laboratorieoppgaven

- utvikle dine ferdigheter i å dokumentere laboratoriearbeid med labjournalen
- studere kraften mellom en strømførende leder og et konstant magnetfelt,
- få erfaring med framstilling av resultater fra presisjonsmålinger,
- utføre databehandling av måleresultatene vha. regresjonsanalyse i Python (minste kvadraters metode).

4.1 Teoretisk bakgrunn

4.1.1 Kraft på en leder

Et elektron med ladning q=-e som beveger seg med en hastighet \vec{v} i en leder som er plassert i et magnetfelt \vec{B} vil bli påvirket av en kraft ifølge Lorentzkraften

$$\vec{F} = q\vec{v} \times \vec{B}. \tag{4-1}$$

Den totale kraften på en strømførende leder i et magnetfelt blir den resulterende kraften på alle elektronene i lederen: $\vec{F} = q(\vec{v}_d \times \vec{B})nA\ell, \tag{4-2}$

hvor ℓ er lengden av lederen, A er tverrsnittsarealet, n er elektrontettheten og følgelig blir $nA\ell$ lik totalt antall elektroner i lederen. Hastigheten $\vec{\boldsymbol{v}}_d$ må forstås som gjennomsnittshastigheten (drifthastigheten) til elektronene. Den elektriske strømmen i en leder er definert som

$$I = nqv_d A, (4-3)$$

og følgelig vil kraften kunne uttrykkes

$$\vec{F} = I\vec{\ell} \times \vec{B},\tag{4-4}$$

hvor $\vec{\ell}$ må oppfattes som en vektor med retning langs lederen i strømretningen. Skrevet ut på skalar form blir likningen $F = I\ell B \sin \theta, \tag{4-5}$

hvor θ er vinkelen mellom magnetfeltet og positiv strømretning i lederen. Når lederretningen er vinkelrett på magnetfeltretningen er $\theta = \pi/2$, og likning (4-5) forenkles til

 $F = I\ell B. (4-6)$

Kraften på en strømførende leder i et magnetfelt kan måles med oppstillingen i figur 4.1. Magneten hviler på vekta, mens den strømførende lederen er fastmontert uavhengig av

Figur 4.1: Prinsippskisse for oppstilling for måling av kraft på en strømførende leder. Øverst vises oppsettet sett ifra siden, og nederst vises oppsettet sett ovenfra.

vekta. Kraftvirkning mellom lederen og magneten vil bli registrert som utslag på vekta. Vekta er imidlertid kalibrert og gradert til å måle masse M i gram idet en viss verdi for tyngdeakselerasjon g er antatt. Sammenhengen mellom kraft og masse er som kjent gitt av

$$F = Mg, (4-7)$$

slik at fra likning (4-5) vil vi få uttrykk for vektas utslag:

$$M = \frac{I\ell B}{g}\sin\theta. \tag{4-8}$$

4.1.2 Kraft sfa. vinkelen

Du erstatter lederen med en spole som vist i figur 4.2 hvor vinkelen mellom spoleaksen og magnetfeltretningen er variabel. Spolen har N=10 rektangulære viklinger med

sidelengder 11 mm og kun den nedre delen av spolen ligger i magnetfeltet slik at kraften bare virker på den nedre horisontale del av viklingene, dvs. total lengde 110 mm. Vinkelen mellom strømretningen og magnetfeltet er θ og inngår i likningen for beregning av kraften.

Figur 4.2: Dreibar spole plassert i magnetbrønnen, sett ovenfra. Kun den nedre delen av spolen ligger i magnetfeltet og de vertikale lederne (markert med \times og \cdot på figuren) er påvirket av krefter i horisontal retning og som innbyrdes nuller hverandre ut.

4.2 Forhåndsoppgaver

Gjør deg kjent med scriptet for lineær kurvetilpasning som ligger på Blackboard (Jupyter notebook). Det blir utdelt to eksempler på datasett som kan brukes til å teste.

4.3 Eksperimentelt

4.3.1 Apparatur

Følgende instrumenter inngår i oppstillingen:

- Elektromagnetisk vekt. Mettler Mod. PM480. Område: 0-400 g. Presisjon: ±1 mg, eller Mettler Mod. PB-SDR/FACT. Område 0-60 g ± 1 mg/70-310 g ± 8 mg.
- Stativ for strømbaner. Pasco SF-8607.
- Faste strømbaner og magnetbrønn med variabelt magnetfelt fra 125 G til 750 G i trinn på 125 G. Fabrikat og type: Pasco SF-8607. Max 5A
- Roterbar spole med 10 rektangulære viklinger horisontal, dimensjon 11×23 mm, med tilhørende magnetbrønn med magnetfelt lik ca 250 G. Max 5A. Fabrikat og type: Pasco SF-8608.

- Kraftforsyning. Fredriksen Mod. 364000. Område: 0-24 V 0-10 A. Brukes som strømkilde.
- Multimeter. Keithley 175A eller GW instek GDM-8246.
- Gaussmeter. Magnetic Instruments RFL, Mod. 912.

Måleområde: $0.01 \,\mathrm{G} - 100 \,\mathrm{kG}$.

Presisjon: \pm (0.4 % av avlesning + 0.1 % av område + 1 i siste siffer).

Transversal probe.

• Skyvelære.

Vekta er et presisjonsinstrument som du må behandle med forsiktighet. Pass spesielt på å unngå støt mot veiepannen under montering og demontering av oppstillingen. Vekta bygger på en elektromagnetisk veiemetode etter kompensasjonsprinsippet slik at veiepannen ikke forandrer stilling under veiingen. Dette er viktig for målingene våre.

Lederne som brukes i eksperimentene er bygget opp som moderne elektroniske kretskort med smale strømbaner av kobber som er dampet på glassfiberarmerte polyesterplater. For å forhindre oksidering av kobberoverflata er den dekket med tinn. Totalt inneholder instrumentoppstillingen seks faste strømbaner av forskjellig lengde, hvor fire er enkle og to er doble.

Som magnetfeltkilde brukes en magnetbrønn bygget opp av seks like permanentmagneter. Feltet i brønnen kan varieres ved å fjerne magnetene en etter en.

For å undersøke kraften sfa. vinkelen mellom feltretning og strømretning brukes i siste eksperiment en roterbar spole med egen magnetbrønn.

4.3.2 Kraft sfa. strømmen

Oppgave:

Undersøk hvordan kraften mellom en tynn strømførende leder og et magnetfelt med retning vinkelrett på lederen avhenger av strømmen i lederen.

Forslag til framgangsmåte:

- Velg en av strømbanene og mål lengden ℓ og bredden t av strømbanen med skyvelære. (Pass på at du ikke skader strømbanen med skyvelæret.) Definer foreløpig strømbanens lengde som ytre dimensjon i lengderetningen. Seinere får du anledning til å revurdere denne definisjonen.
- Klargjør kraftforsyningen: Sjekk at den er slått av og strøm og spenning er sett til 0.
- bruk multimeteret for måling av strømen
- Kople opp strømkretsen som vist i figur 4.1. .
- Sjekk nivelleringen av vekta (libelle bak, juster føtter) og slå deretter vekta på.

- Still magnetbrønnen midt på vekta med den perforerte sylinderen mellom magnetbrønnen og vekta. (Den perforerte sylinderen er satt inn for å øke avstanden mellom magnetbrønnen og vekta for å unngå at magnetfeltet fra magnetbrønnen forstyrrer vekta.)
- Juster posisjonen til lederen i forhold til magnetbrønnen slik at den ligger midt i magnetfeltet.
- Nullstill vekta. MERK: For å være helt sikker på at det ikke går strøm i kretsen under nullstillingen bør du bryte strømkretsen ved å trekke ut en av kontaktene mens du nullstiller.

Målingen can nå startes. Kraftforsyningen skal være strømstyrt, men kraftforsyningen kan levere opp til 10 A mens *strømbanen tåler maksimalt 5 A*. Det er ditt ansvar å passe på at strømbanen ikke blir overbelastet! Følg med på strømmåleren!

målingen skal gir svar på det følgende:

- Hva er sammenheng mellom vekta M = F/g sfa. strømmen I i området 0-5 A? Dokumenter måleresultatene i labjournalen og i en datafil.
- Hva skjer når du bytter polaritet på strømbanen? Får du et forventet resultat?
- Hva skjer når du snur magneten? Får du et forventet resultat?
- Vis i en skisse strømretninger og kraftretninger og identifiser magnetpolene.
- Mål tilslutt magnetfeltet B i magnetbrønnen med gaussmeteret.

Analyse/diskusjon:

- Tilpass måledata til $M^* = a_0 + a_1 I$. Finn besterette linje gjennom målepunktene vha. lineær regresjon og bestem stigningstallet a_1 og usikkerheten Δa_1 .
- Beregn forventet stigningstall a'_1 for M(I) ved å bruke målte verdier for ℓ og B og likning (4-8). Finn også usikkerheten $\Delta a'_1$.
- Er verdien av a'_1 lik stigningstallet a_1 fra den eksperimentelle kurven innenfor usikkerheten? Hvis ikke, kan du forklare avviket?
- Plot avviket mellom målte verdier og verdier fra lineær regresjon for kraften som funksjon av strøm. Ser det ut som det er en lineær sammenheng mellom kraften og strømstyrken? (Tips: Se på hvordan målepunktene er fordelt rundt regresjonslinjen.) Dersom du antar at det er en lineær sammenheng, samsvarer størrelsen på avvikene med målenøyaktigheten til vekten?
- Kan du, når du tar hensyn til resultatene fra feilanalysen, påstå at du har verifisert likning (4-8)?
- Skriv ut kurvediagram og grafer og lim inn i journalen sammen med kommentarer.

4.3.3 Kraft sfa. lengden

Oppgave:

Undersøk hvordan kraften på en tynn leder i et magnetfelt med retning vinkelrett på lederen avhenger av lengden av lederen.

- Oppsett og måling av kraften skjer som i oppgave ovenfør.
 VIKTIG: Reduser strømmen i kretsen til null hver gang du skifter leder.
- Mål lengden og bredden av hver strømbane så nøyaktig som mulig. Bruk ytre dimensjon for lengden. Legg merke til at to av strømbanene er doble.
- Dokumenter resultatene i labjournalen og i en datafil etterhvert som du måler.

Analyse/diskusjon:

- Tilpass måledata til $M^* = b_0 + b_1 \ell$. Finn besterette linje gjennom målepunktene vha. lineær regresjon og bestem stigningstallet b_1 og usikkerheten Δb_1 .
- Beregn forventet stigningstall b'_1 for $M(\ell)$ ved å bruke målte verdier for I og B og likning (4-8). Finn også usikkerheten $\Delta b'_1$.
- Ligger verdien av b'_1 innenfor usikkerheten $b_1 \pm \Delta b_1$ fra den eksperimentelle kurve? Hvis ikke, kan du forklare avviket?
- Ut fra dine resultater her, eventuelt revider definisjonen din av lederens lengde.
- Kan du, når du tar hensyn til resultatene fra feilanalysen, påstå at du har verifisert likning (4-8)?
- Skriv ut kurvediagram og grafer og lim inn i journalen sammen med kommentarer.

4.3.4 Kraft sfa. vinkelen

Oppgave:

Undersøk hvordan kraften på en tynn strømførende leder avhenger av vinkelen mellom lederen og magnetfeltet.

Framgangsmåte:

- Plasser den dreibare spolen på stativet og bruk den tilhørende magnetbrønnen.
- Mål vekta M sfa. vinkelen θ mellom spolen og magnetfeltet ved fast strøm (f.eks. 2 A).
- Dokumenter resultatene i labjournalen og i en datafil etterhvert som du måler.
- Lag en regresjonskurve på formen $M^* = c_0 + c_1 \sin \theta$ for resultatene dine. Legg merke til av vi kan bruke lineær-regresjon for å tilpasse en sinus dersom vi bruker $\sin \theta$ som x-verdier.
- Gjennomfør samme analyse / diskusjon som for tidligere målinger.

45

4.3.5 Generell diskusjon

- Diskuter målenøyaktigheten i eksperimentet og dens innflytelse på mulighetene for sammenlikning med teorien.
- Diskuter den mest riktige måten å angi lengden av lederen i oppgave 4.3.3. Har du mulighet til å beregne en effektiv lengde ut fra eksperimentelle data?

4.3.6 Avslutning

• Slå av alle apparater, trekk ut alle ledninger og forlat plassen i minst like god orden som du fant den.

Bibliografi

- [1] E. Lillestøl, A. Hunderi og J.R. Lien, 2001 Generell fysikk for universiteter og høgskoler. Bind 2: varmelære og elektrisitetslære, Universitetsforlaget.
- [2] G.L. Squires, 1985, Practical Physics, Cambridge University Press, Cambridge.
- [3] N.C. Barford, 1985, Experimental Measurements: Precision, Error and Truth (2nd edn), Wiley, Chichester.