KOMPLEXE ZAHLEN

Mathematische Brückenkurs

Dr. Joseph Rudzinski

Abteilung Theorie der Polymere, Max-Planck-Institut für Polymer Forschung

Wintersemester 2021/22

Die reellen Zahlen enthalten algebraische Zahlen, so zum Beispiel Lösungen $\sqrt{2}$ und $-\sqrt{2}$ der Gleichung

$$x^2 = 2$$

Aber: Nicht jede algebraische Zahl ist eine relle Zahl. So hat zum Beispiel die Gleichung

$$x^2 = -2$$

keine reellen Lösungen.

DR. JOSEPH RUDZINSKI (MPIP)

Definition

Man definiert die imaginäre Einheit i als eine Lösung der Gleichung

$$x^2 = -1$$

Definition

Die komplexen Zahlen © sind die Menge

$$\mathbb{C} = \{ x + iy \mid x, y \in \mathbb{R} \}$$

Analogie mit $\mathbb{Q}[\sqrt{3}]$

Definition

Setzen wir $w = \sqrt{3}$, so ist w eine Lösung der Gleichung

$$w^2 = 3$$

Definition

Der Körper $\mathbb{Q}[\sqrt{3}]$ ist die Menge

$$\mathbb{Q}[\sqrt{3}] = \{a + bw \mid a, b \in \mathbb{Q}\}$$

Addition und Multiplikation von komplexen Zahlen

Sei
$$z_1 = x_1 + iy_1$$
 und $z_2 = x_2 + iy_2$

Definition der Addition und der Multiplikation

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

Beispiel

$$(1+2i) + (3+4i) = 4+6i$$
$$(1+2i) \cdot (3+4i) = 3+6i+4i+8i^2 = 3+10i-8 = -5+10i$$

Quiz

Sei
$$z_1 = 7 + 13i$$
 und $z_2 = 2 - 5i$, $z_1 + z_2 = ?$

- **(A)** 17*i*
- **(B)** 9 + 8i
- (C) 9 + 18i
- **(D)** 5 18i

Quiz - Solution

Sei
$$z_1 = 7 + 13i$$
 und $z_2 = 2 - 5i$, $z_1 + z_2 = ?$

(B)
$$9 + 8i$$

(C)
$$9 + 18i$$

(D)
$$5 - 18i$$

$$= (7 + 13i) + (2 - 5i)$$

$$= 7 + 2 + 13i - 5i = 9 + 8i$$

Quiz

Sei
$$z_1 = 5 + 9i$$
 und $z_2 = 2i$, $z_1 \cdot z_2 = ?$

- (A) 10 + 18i
- **(B)** 10 18i
- (C) -18 + 10i
- (D) 18 + 10i

Quiz - Solution

Sei
$$z_1 = 5 + 9i$$
 und $z_2 = 2i$, $z_1 \cdot z_2 = ?$

(A)
$$10 + 18i$$

(B)
$$10 - 18i$$

(C)
$$-18 + 10i$$

(D)
$$18 + 10i$$

$$z_1 \cdot z_2 = ?$$

$$= (5 + 9i) \cdot (2i) = 10i + 18i^2$$

$$= 10i + 18i^2 = 10i - 18$$

Subtraktion und Division von komplexen Zahlen

Sei
$$z_1 = x_1 + iy_1$$
 und $z_2 = x_2 + iy_2$

Definition der Subtraktion und der Division

$$z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2)$$

$$\frac{z_1}{z_2} = \frac{(x_1 + iy_1)}{(x_2 + iy_2)} = \frac{(x_1 + iy_1) \cdot (x_2 - iy_2)}{(x_2 + iy_2) \cdot (x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(-x_1y_2 + x_2y_1)}{(x_2^2 + iy_1x_2 - iy_1x_2 - i^2y_2^2)}$$

$$= \frac{(x_1x_2 + y_1y_2) + i(-x_1y_2 + x_2y_1)}{x_2^2 + y_2^2} = \frac{(x_1x_2 + y_1y_2)}{x_2^2 + y_2^2} + i\frac{(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

Subtraktion und Division von komplexen Zahlen

Beispiel

$$(1+2i) - (3+4i) = (1-3) + i(2-4) = -2 - 2i$$

$$\frac{1+2i}{3+4i} = \frac{(1+2i)\cdot(3-4i)}{(3+4i)\cdot(3-4i)} = \frac{(3+8)+i(6-4)}{(9+16)} = \frac{11+2i}{25} = \frac{11}{25} + \frac{2}{25}i$$

Quiz

Sei
$$z_1 = 6 + 8i$$
 und $z_2 = 2i$, $\frac{z_1}{z_2} = ?$

- **(A)** 10
- **(B)** 3 + 4i
- (C) 4 3i
- **(D)** 4 + 3i

Quiz - Solution

Sei
$$z_1 = 6 + 8i$$
 und $z_2 = 2i$, $\frac{z_1}{z_2} = ?$

(B)
$$3 + 4i$$

(C)
$$4 - 3i$$

(D)
$$4 + 3i$$

$$\frac{z_1}{z_2} = ?$$

$$= \frac{(6+8i)\cdot(-2i)}{2i\cdot(-2i)} = \frac{-12i-16i^2}{-4i^2}$$

$$= \frac{16 - 12i}{4} = \frac{16}{4} - \frac{12}{4}i$$

$$= 4 - 3i$$

Der Körper der komplexen Zahlen

- Mit dieser Addition und Multiplikation bilden die komplexen Zahlen einen Körper.
- Dieser Körper ist algebraisch abgeschlossen, d.h. die Nullstellen eines jeden Polynoms liegen in dem Körper.
- Der Körper ist allerdings nicht angeordnet.
- Das Vollständigkeitsaxiom gilt.

Nullstellen eines Polynoms

Es seien $c_n, c_{n-1}, \ldots c_1, c_0 \in \mathbb{C}$. Wir betrachten die Gleichung

$$c_n z^n + c_{n-1} z^{n-1} + \dots + c_1 z + c_0 = 0$$

Diese Gleichung hat für die unbekannte Variable z in $\mathbb C$ genau n Lösungen, wobei Vielfachheiten mitgezählt werden.

Anders ausgedrückt: Ein Polynom n-ten Grades hat in $\mathbb C$ genau n Nullstellen, wobei Vielfachheiten mitgezählt werden.

Vielfachheiten

Beispiel

Betrachte das Polynom: $(z-4)(z-5)^2$.

Die Nullstelle z = 4 hat die Vielfachtheit 1, die Nullstelle 5 hat die Vielfachtheit 2.

Das Polynom hat den Grad 3, es sollte also drei Nullstellen haben. Eine einfache Nullstelle und eine doppelte Nullstelle ergibt.

Nullstellen eines Polynoms

Beispiel

Wir betrachten die quadratische Gleichung

$$2z^2 - 8z + 26 = 0$$

Die Diskriminante ist: $D = b^2 - 4ac = -144$

$$z_{+/-} = \frac{1}{4} \left(8 \pm \sqrt{-144} \right) = \frac{1}{4} \left(8 \pm \sqrt{(-1) \cdot (12)^2} \right)$$
$$= \frac{1}{4} \left(8 \pm 12i \right) = 2 \pm 3i$$

Real- und Imaginärteil

Definition

Sei z = x + iy eine komplexe Zahl.

Man bezeichnet x als Realteil und y als Imaginärteil.

$$Re(z) = x$$
, $Im(z) = y$

Beispiel

$$Re(3 + 5i) = 3$$

$$Im(3 + 5i) = 5$$

Konjugation

Definition

Die zu z = x + iy konjugiert komplexe Zahl ist

$$z^* = x - iy$$

Beispiel

$$(3+5i)^* = 3-5i$$

Rechnenregeln

$$(z^*)^* = z$$

$$(z_1 + z_2)^* = z_1^* + z_2^*$$

$$(z_1 - z_2)^* = z_1^* - z_2^*$$

$$(z_1 \cdot z_2)^* = z_1^* \cdot z_2^*$$

$$\left(\frac{z_1}{z_2}\right)^* = \frac{z_1^*}{z_2^*}$$

$$\operatorname{Re}(z) = \frac{1}{2}(z + z^*), \quad \operatorname{Im}(z) = \frac{1}{2}(z - z^*)$$

Betrag einer komplexen Zahlen

Sei z = x + iy eine komplexe Zahl. Es ist

$$z \cdot z^* = (x + iy) \cdot (x - iy) = x^2 + y^2$$

Definition

Als Betrag der komplexen Zahl bezeichnet man

$$|z| = \sqrt{zz^*} = \sqrt{x^2 + y^2}$$

Beispiel

$$|3 + 5i| = \sqrt{(3 + 5i)(3 - 5i)} = \sqrt{9 + 25} = \sqrt{34}$$

Die komplexe Zahlenebene

Eine komplexe Zahl z = x + iy wird durch ein Paar (x, y) zweier reeler

Zahlen beschrieben.

Die reellen Zahlen sind genau die Zahlen, für die Im(z) = 0 gilt.

Die komplexe Zahlenebene

Polardarstellung einer komplexen Zahl:

$$z = |z| \cdot (\cos \varphi + i \sin \varphi)$$

 φ nennt man das Argument oder die Phase der komplexen Zahl.

Umrechnung: Normalform in Polarform

$$|z| = \sqrt{x^2 + y^2}$$

$$\varphi = \frac{\pi}{2}, \text{ für } x = 0, y > 0$$

$$\tan \varphi = \frac{y}{x}$$
, für $x \neq 0$

$$\varphi = \frac{3\pi}{2}$$
, für $x = 0, y < 0$

Die Auflösung der Gleichung $\tan \varphi = y/x$ nach φ ergibt

$$\varphi = \arctan \frac{y}{x}$$
, für $x > 0, y \ge 0$

$$\varphi = 2\pi + \arctan \frac{y}{x},$$

$$f\ddot{\mathbf{u}}\mathbf{r} \ x > 0, y < 0$$

$$\varphi = \pi + \arctan \frac{y}{x}$$
, für $x < 0$

<u>Umrechnung: Normalform in Polarform</u>

$$x = |z| \cos \varphi$$

$$y = |z| \sin \varphi$$

Multiplikation und Division in Polarform

In der Normalform hatten wir:

$$z_1 \cdot z_2 = (x_1 + iy_1) \cdot (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

$$\frac{z_1}{z_2} = \frac{(x_1x_2 + y_1y_2)}{x_2^2 + y_2^2} + i\frac{(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

In der Polarform sind Multiplikation und Division besonders einfach:

$$z_{1} \cdot z_{2} = |z_{1}| |z_{2}| \left[\cos(\varphi_{1} + \varphi_{2}) + i\sin(\varphi_{1} + \varphi_{2}) \right]$$

$$\frac{z_{1}}{z_{2}} = \frac{|z_{1}|}{|z_{2}|} \left[\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2}) \right]$$

Die Formel von Moivre

Aus

$$z_1 \cdot z_2 = |z_1| |z_2| [\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)]$$

folgt insbesondere

$$z^{n} = |z|^{n} \left[\cos(n\varphi) + i \sin(n\varphi) \right]$$

Dieser Gleichung wird auch als Formel von Moivre bezeichnet.

Die Formel von Euler

Polardarstellung einer komplexen Zahl:

$$z = |z| \cdot (\cos \varphi + i \sin \varphi)$$

Wir werden später komplexwertige Funktionen kennenlernen. Im Vorgriff soll allerdings hier schon die Formel von Euler erwähnt werden

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

Diese Formel werden wir später mit Hilfe der Reihendarstellung der Funktionen exp, sin, und cos relativ einfach beweisen können. Somit

$$z = |z| \cdot e^{i\varphi}$$

<u>Multiplikation und Division mit der Formel von Euler</u>

Es sei $|z_1|e^{i\varphi_1}$ und $|z_2|e^{i\varphi_2}$. Dann ist

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| e^{i(\varphi_1 + \varphi_2)}$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\varphi_1 - \varphi_2)}$$

Quiz

$$i^9 = ?$$

- (A) -i
- **(B)** *i*
- **(C)** 9*i*
- **(D)** 9 + i

Quiz - Solution

(A)
$$-i$$

(D)
$$9 + i$$

$$i^{9} = i \cdot i$$

$$= i^{2} \cdot i^{2} \cdot i^{2} \cdot i^{2} \cdot i$$

$$= (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot i$$

$$= (-1)^{4} \cdot i$$

$$= i$$

Betrag und Argument von i

Wir schreiben i in Polarform: Es ist

$$|i| = \sqrt{i \cdot i^*} = \sqrt{i \cdot (-i)} = \sqrt{1} = 1$$

Da $i = 0 + 1 \cdot i$ und somit x = 0 und y = 1 gilt

$$\varphi = \frac{\pi}{2}$$

Somit

$$i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

$$0$$

Potenzen von i

Sei $n \in \mathbb{Z}$. Mit Formel von Moivre haben wir

$$i^n = \cos\left(\frac{n\pi}{2}\right) + i\sin\left(\frac{n\pi}{2}\right)$$

Insbesondere:

$$i^{-4} = 1$$

$$i^{-3} = i$$

$$i^{-3} = i$$
 $i^{-2} = -1$ $i^{-1} = -i$

$$i^{-1} = -$$

$$i^0 = 1$$

$$i^1 = i$$

$$i^2 = -1$$

$$i^3 = -i$$

$$i^4 = 1$$

$$i^5 = i$$

$$i^6 = -1$$

$$i^7 = -i$$

Quiz

$$\sqrt{i} = ?$$

(C)
$$\frac{1}{\sqrt{2}}(1+i)$$

(D)
$$-1+i$$

Quiz

(B) 1

(C)
$$\frac{1}{\sqrt{2}}(1+i)$$

$$\sqrt{i} = i^{\frac{1}{2}} = \cos\left(\frac{1\pi}{2\cdot 2}\right) + i\sin\left(\frac{1\pi}{2\cdot 2}\right)$$

$$= \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)$$

$$= \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} (1+i)$$