Descriptive Modelling

Rita P. Ribeiro Machine Learning - 2021/2022

Summary

- Descriptive Analytics
- Clustering Methods

Descriptive Analytics

Descriptive Analytics

Goals:

- Describe/summarize or finding structure on what we have observed
 - Data summarization and visualization (e.g. PCA) can be seen as simple forms of descriptive analytics
 - However, most frequently descriptive modeling is associated with clustering

Similarity Measures

- How to measure similarity between objects?
- The notion of similarity is strongly related with the notion of distance between observations
- It can be measured as the ooposite of the distance

Income	Position	Age
2500	manager	35
2750	manager	30
4550	director	50
	2500 2750	2500 manager 2750 manager

Which cases are more similar?

- Similarity measure
 - Numerical measure of how alike two data objects are.
 - · Is higher when objects are more alike.
 - Often falls in the range [0,1]
- · Dissimilarity measure
 - · Numerical measure of how different two data objects are
 - · Lower when objects are more alike
 - Minimum dissimilarity is often 0 Upper limit varies

Proximity refers to a similarity or dissimilarity

- Dissimilarity measure can be expressed by a distance metric
- Distance metrics d have some well-known properties
 - Given any two data points x_i and x_j
 - $d(\mathbf{x}_i, \mathbf{x}_i) \geq 0$
 - $d(x_i, x_j) = 0$ only if $x_i = x_j$
 - $d(\mathbf{x}_i, \mathbf{x}_i) = d(\mathbf{x}_i, \mathbf{x}_i)$
 - d(x_i,x_j) ≤ d(x_i,x_k) + d(x_k,x_j) for any point x_i, x_j and x_k triangle inequality

Euclidean Distance

$$d(x_{i}, x_{j}) = \sqrt{\sum_{a=1}^{n} (x_{i}^{a} - x_{j}^{a})^{2}}$$

where n is the number of attributes and x_i^a and x_j^a are the a^{th} attribute value for the data points x_i and x_j , respectively

Manhattan Distance

$$d(x_i, x_j) = \sum_{a=1}^{n} |x_i^a - x_j^a|$$

where *n* is the number of attributes and x_i^a and x_j^a are the a^{th} attribute value for the data points x_i and x_j , respectively

A Generalization: Minkowski Distance

$$d(x_i, x_j) = \sqrt[p]{\sum_{a=1}^{n} |x_i^a - x_j^a|^p}$$

where if

- p = 1, we have the Manhattan Distance (or L_1 -norm)
- p = 2, we have the Euclidean Distance (or L_2 -norm)
- ...
- $p = \infty$, we have Chebyschev or *supremum* distance (or L_{∞} -norm): it gives the maximum difference between any of the attributes of the data points.

Example of Minkowski Distances: L_1 -norm, L_2 -norm and L_{∞} -norm

point	х	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2 p3	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	р4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

\mathbf{L}_{∞}	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

- More examples of similarity/distance measures
 - · Canberra distance
 - · Jaccard Coefficients
 - · Cosine similarity
- Still, several problems may arise that may distort the notion of distance:
 - · different scales of variables
 - different importance of variables
 - different types of data (e.g. both numeric and categorical variables)

Heterogeneous Distance Functions

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{a=1}^n \delta_a(x_i^a, y_i^a)$$

where

• if a is a categorical variable

$$\delta_a(x_i^a, x_j^a) = \begin{cases} 0 & \text{if } x_i^a == x_j^a \\ 1 & \text{otherwise} \end{cases}$$

if a is a numeric variable

$$\delta_a(x_i^a, x_j^a) = \frac{|x_i^a - x_j^a|}{|max_a - min_a|}$$

General Coefficient of Similarity

$$S(x_i, x_j) = \sum_{a=1}^{n} w_a S(x_i^a, y_i^a) / \sum_{a=1}^{n} w_a$$

s() is a similarity measure, n is the number of attributes, x_i^a and x_j^a are the a^{th} attribute value for the data points x_i and x_j , respectively, and w_a is a value between 0 and 1 corresponding to the weight contribution of the attribute a.

- Similarity measures, also have some well knonw properties
 - Given any two data points x_i and x_j
 - $s(x_i, x_j) = 1$, only if $x_i = x_j$
 - $s(x_i, x_j) = s(x_j, x_i)$

Clustering

Clustering

Goals:

- Obtain the "natural" grouping of a set of data i.e. find some structure on the data set
 - The key issue on clustering is the notion of similarity
 - Observations on the same group are supposed to share some properties, i.e. being similar
 - Most methods use the information on the distances among observations in a data set to decide on the natural groupings of the cases
- Provide some abstraction of the found groups (e.g. a representation of their main features; a prototype for each group; etc.), gain novel insights of data

Clustering: Some Applications

- Biology
 - describe spatial and temporal communities of organisms
 - · group genes or proteins that have similar functionality
- · Business and Marketing
 - describe different market segments from a set of potetential clients
 - group stocks with similar price fluctuations
- Web Mining
 - · find groups of related documents for information retrieval
 - · find communities in social networks
 - build recommender systems

•

Clustering: Main Types of Methods

- Partitional: divide the observations in k partitions according to some criterion
- Hierarchical: generate a hierarchy of groups, from 1 to n groups, where n is the number of lines in the data set
 - Agglomerative: generate a hierarchy from bottom to top (from n to 1 group)
 - Divisive: create a hierarchy in a top down way (from 1 to n groups)

Clustering Partitional Methods

Goal: Partition the given set of data into k groups by either minimizing or maximizing a pre-specified criterion

- · Some key issues:
 - · The user needs to select the number of groups
 - The number of possible divisions of n cases into k groups can grow fast!

$$N(n,k) = \frac{1}{k!} \sum_{i=1}^{k} (-1)^{k-i} \binom{k}{i} i^n$$

e.g. for n = 100 and k = 5, $N(100,5) \approx 6.6 \cdot 10^{67}$

Some important properties

- Cluster compactness
 - · how similar are cases within the same cluster
- Cluster separation
 - how far is the cluster from the other clusters
- The goal is to minimize intra-cluster distance and maximize inter-cluster distances.
- A clustering solution assigns all the objects to a cluster
 - · hard clustering: an object belongs to a single cluster
 - fuzzy clustering: each object has a probability associated to belong to each cluster

Consider the cluster $C_k = \{x_1, x_2, \dots, x_{n_k}\}$, the centroid of C_k is given by

$$\bar{\mathbf{x}}^{(k)} = \frac{1}{n_k} \sum_{\mathbf{x}_i \in C_k} \mathbf{x}_i$$

the centroid of C_k can also be the median of its data objects, i.e. $\tilde{\mathbf{x}}^{(k)}$

Goal: obtain a set of clusters C that minimize

$$h(C) = \sum_{j=1}^{k} \sum_{x_i \in C_j} d(x_i, \bar{x}^{(j)})$$

(Some) Criteria for numeric data

- Sum of Squared Errors (SSE): $d(x_i, \bar{x}^{(j)}) = (x_i \bar{x}^{(j)})^2$
- L_1 measure: $d(x_i, \bar{x}^{(j)}) = |x_i \tilde{x}^{(j)}|$

Clustering Partitional Methods: k-Means

It is a partition-based method that obtains k groups of a data set

k-means algorithm

- Initialize the centers of the k groups to a set of randomly chosen observations
- Repeat
 - Allocate each observation to the group whose center is nearest
 - Re-calculate the center of each group
- Until the groups are stable, i.e. there is no significant decrease or there is an increase on the minimize criterion h(C)

Clustering Partitional Methods: k-Means (cont.)

Some observations:

- It uses the squared Euclidean distance as criterion
- · Maximizes inter-cluster dissimilarity

Advantages:

- · Fast algorithm that scales well
- Stochastic approach that frequently works well. It tends to identify local minima.

Disadvantages:

- · It does not ensure an optimal clustering
- We may obtain different solutions with different starting points
- The initial guess of *k* for the number of clusters, maybe away from the real optimal value of *k*.

Clustering Validation

How to validate/evaluate/compare the results obtained by some clustering method?

- Is the found group structure random?
- What is the "correct" number of groups?
- How to evaluate the result of a clustering algorithm when we do not have information on the number of groups in the data set?
- How to compare the results obtained by different methods when outside information on the number of groups exists?
- How to compare alternative solutions (e.g. obtained using different clustering algorithms)?

Clustering Validation: Types of Evaluation Measures

- Supervised compare the obtained clustering (grouping) with the external information that we have available
- Unsupervised try to measure the quality of the clustering without any information on the "ideal" structure of the data
 - Cohesion coefficients determine how compacts/cohesive are the members of a group
 - Separation coefficients determine how different are the members of different groups

Clustering Validation: Silhouette Coefficient

Silhouette Coefficient (unsupervised measure)

- Popular coefficient that incorporates both the notions of cohesion and separation
- For each object x_i:
 - obtain the average distance to all objects in the same group (a_i)
 - to any other group to which x_i does not belong, calculate the average distance to the members of these other groups; obtain the minimum value of these distances (b_i)
 - The silhouette coefficient, s_i is equal to

$$s_i = \frac{b_i - a_i}{max(a_i, b_i)}$$

The coefficient takes values between −1 and 1.

Clustering Validation: Silhouette Coefficient (cont.)

Example: iris data set silhouette coefficients s_i with k = 3 clusters

- Large s_i (almost 1) means that they are very well clustered.
- Small s_i (around 0) means that they lie between two clusters.
- Negative s_i means that they are probably placed in the wrong cluster.
- The closer average silhouette to 1, the better.

Clustering Validation: Best Number of Clusters

How to select the right *k* for k-means?

- An inappropriate choice of k can result in a clustering with poor performance.
- What happens if we select a k that is too high? What if the k is too low?
- Ideally, you should have some a priori knowledge on the real structure of the data.
- If no a priori value is known start with $\sqrt{n/2}$ as a rule of thumb, where n is the number of attributes.

Clustering Validation: Best Number of Clusters (cont.)

For several possible number of clusters *k*:

 Calculate the average silhouette coefficient value and choose the k that yields to the highest value

Clustering Validation: Best Number of Clusters (cont.)

(Elbow method) For several possible number of clusters *k*:

 Calculate the within-cluster SSE, also called distortion, and choose the k so that adding another cluster doesn't yield to a much smaller SSE.

Other, more sophisticated methods exist (e.g. intracluster to intercluster distance ratio)

Other Clustering Partitional Methods

PAM (Partitioning Around Medoids)

- It searches for the *k* representative objects (the medoids) among the cases in the given data set.
- As with k-means each observation is allocated to the nearest medoid.
- Is more robust to the presence of outliers because it uses original objects as centroids instead of averages that may be subject to the effects of outliers.
- Moreover, it uses a more robust measure of the clustering quality:
 L₁ norm, which is based on absolute error instead of the squared error used in k-means,

CLARA (Clustering Large Applications)

- The PAM algorithm has several advantages in terms of robustness when compared to k-means.
- However, these advantages come at the price of aditional computational complexity that may be too much for very large data sets
- · CLARA tries to solve these efficiency problems
 - It does that by using sampling, i.e. working on parts of the data set instead of the full data set

CLARA Algorithm

- Repeat n times the following:
 - Draw a random sample of size m
 - Apply PAM to this random sample to obtain k centroids
 - · Allocate the full set of observations to one of these centroids
 - · Calculate sum of dissimilarities of the resulting clustering (as in PAM)
- Return as result the clustering of the n repetitions that got lowest sum of dissimilarities

These "k-means like" methods have problems when:

 clusters are of different sizes, densities and with non-globular shape

· data contains outliers/noise

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- The density of a single observation is estimated by the number of observations that are within a certain radius (a parameter of the method)
- Based on this idea observations are classified as:
 - core points: if the number of observations within its radius are above a certain threshold
 - border points: if the number of observations within their radius does not reach the threshold but they are within the radius of a core point
 - noise points: they do not have enough observations within their radius, nor are they sufficiently close to any core point

DBSCAN: Core, Border and Noise Points

Other Clustering Partitional Methods (cont.)

- DBSCAN Algorithm
 - · Classify each observation in one of the three possible alternatives
 - Eliminate the noise points from the formation of the groups
 - All core points that are within a certain distance of each other are allocated to the same group
 - Each border point is allocated to the group of the nearest core point
- Note that this method does not require the user to specify the number of groups.
- But, you need to specify the radius (ε) and the minimum number of points (MinPts)

Other Clustering Partitional Methods (cont.)

DBSCAN

- · Advantages:
 - Can handle clusters with different shapes and sizes
 - · Resistant to noise
- · Disadvantages:
 - Varying densities
 - High-dimensional data

Hierarchical Clustering

Goal:

- Obtain a hierarchy of groups, where each level represents a
 possible solution with x groups. It is up to the user to select the
 solution he wants.
- A dendogram can be used for visualization

Hierarchical Clustering (cont.)

- Agglomerative Methods bottom-up
 - Start with as many groups as there are cases
 - On each upper level a pair of groups is merged into a single group
 - The chosen pair is formed by the groups that are more similar
- Divisive Methods top-down (much less used)
 - Start with a single group
 - On each level select a group to be split in two
 - The selected group is the one with smallest uniformity

Hierarchical Clustering (cont.)

Some proximity measures for the merging/splitting step

single link

$$d(C_1, C_2) = \min_{\mathbf{x}_i \in C_1, \mathbf{x}_j \in C_2} d(\mathbf{x}_i, \mathbf{x}_j)$$

complete link

$$d(C_1, C_2) = \max_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)$$

average link

$$d(C_1,C_2) = \frac{1}{n_1 n_2} \sum_{\mathbf{x}_i \in C_1, \mathbf{x}_i \in C_2} d(\mathbf{x}_i,\mathbf{x}_j)$$

Other methods also exist (e.g. distance between the centroids, Ward's method that uses SSE).

Algorithm

- · Compute the proximity matrix
- · Let each data point be a cluster
- Repeat
 - · Merge the two closest clusters
 - · Update the proximity matrix
- Until only a single cluster remains

Example: Consider the following distance matrix

	Α	В	С	D	E	F
Α	0					
В	4	0				
С	25	21	0			
D	24	20	1	0		
E	9	5	16	15	0	
F	7	3	18	17	2	0

Distance Matrix - Stage 0

Use Agglomerative Hierarchical Clustering to obtain the single-link dendogram.

Example: Agglomerative Hierarchical Clustering, single-link method.

	Α	В	С	D	E	F
A	0					
В	4	0				
С	25	21	0			
D	24	20	1	0		
E	9	5	16	15	0	
F	7	3	18	17	2	0

Distance Matrix - Stage 0

	Α	В	CD	E	F
Α	0				
В	4	0			
CD	24	20	0		
E	9	5	15	0	
F	7	3	17	2	0

Distance Matrix - Stage 1

	Α	BEF	CD
Α	0		
BEF	4	0	
CD	24	15	0

Distance Matrix - Stage 3

	A	В	CD	EF
Α	0			
В	4	0		
CD	24	20	0	
EF	7	3	15	0

Distance Matrix - Stage 2

	ABEF	CD
ABEF	0	
CD	15	0

Distance Matrix - Stage 4

Example: Agglomerative Hierarchical Clustering, single-link method.

Different proximity measures yield to different types of clusters.

- single-link
 - · can handle non-elliptical shapes
 - · uses a local merge citerion
 - distant parts of the cluster and the clusters' overall structure are not taken into account

Different proximity measures yield to different types of clusters.

- · complete-link
 - · biased towards globular clusters
 - uses a non-local merge citerion
 - chooses the pair of clusters whose merge has the smallest diameter
 - the similarity of two clusters is the similarity of their most dissimilar members
 - · sensitive to noise/outliers
- average-link
 - it is a compromise between single and complete link

Hierarchical Clustering: Divisive Methods

Algorithm

- Compute the proximity matrix
- Start with a single cluster that contains all data points
- Repeat
 - choose the cluster with the largest diameter, i.e. largest dissimilarity between any two of its points
 - select the data point with largest average dissimilarity to the other members in that cluster
 - re-allocate the data points to either the cluster of this selected point or the "old" cluster (represented by its center), depending on which one is nearest
- · Until each data point constitutes a cluster

Clustering Methods: Wrap-up

Overall, we can compare clustering methods w.r.t

- Algorithm:
 - · complexity and scalability
 - similarity measures that can be employed
 - · robustness to noise
 - · it is able to find clusters on sub-spaces
 - · different runs lead to different results
 - · it is incremental

Clustering Methods: Wrap-up (cont.)

Data:

- it is able to handle different types of data (continuous, categorical, binary)?
- is there dependency on the order of data points?

· Domain:

- · does the algorithm finds the number of clusters, or needs it as input?
- · how many parameters are necessary?
- · what is the required domain knowledge for that?

Results:

- · shape of clusters that is able to find
- · interpretability

References

References

Aggarwal, Charu C. 2015. Data Mining, the Texbook. Springer.

Gama, João, André Carlos Ponce de Leon Ferreira de Carvalho, Katti Faceli, Ana Carolina Lorena, and Márcia Oliveira. 2015. *Extração de Conhecimento de Dados: Data Mining -3rd Edition*. Edições Sílabo.

Gandomi, Amir, and Murtaza Haider. 2015. "Beyond the Hype: Big Data Concepts, Methods, and Analytics." *International Journal of Information Management* 35 (2): 137–44. doi:https://doi.org/10.1016/j.ijinfomgt.2014.10.007.

Han, Jiawei, Micheline Kamber, and Jian Pei. 2011. *Data Mining: Concepts and Techniques*. 3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

"R Project." 2021. https://www.r-project.org/.

Tan, Pang-Ning, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. 2018. *Introduction to Data Mining*. 2nd ed. Pearson.