C343: Physical Chemistry Lab II

1 March 2021

2. Simulated Vibrational, Rovibrational and Rotational Raman Spectra

In this lab, we generate a simulated rovibrational and rotational Raman spectrum of a few diatomic molecules using spreadsheet or a computer program. We use the rigid-rotor and harmonic oscillator approximations in generating the spectra. In addition, we also simulate the vibrational spectrum of protonated water dimer using ab initio methods.

- 1. (a) Using spreadsheet or by writing a computer program, generate the simulated rovibrational ($v=0 \rightarrow v=1$) spectrum of ¹H³⁵Cl molecule.
 - (b) There are two stable isotopes of chlorine: 35Cl (75.77%) and 37Cl (24.23%). Considering both the isotopes, generate the simulated rovibrational ($v = 0 \rightarrow v = 1$) spectrum of HCl molecule.
- 2. Using spreadsheet or by writing a computer program, generate the simulated the pure rotational Raman spectrum of N_2 .
- 3. (a) Using HF/6-31G** level of theory find the different conformers of $(H_3O)^+H_2O$ complex (protonated water dimer). What molecular point groups do these conformers belong to? Compute the binding energy with respect to the monomers H_3O^+ and H_2O .
 - (b) Compare the geometrical and vibrational properties of the protonated dimer and water monomer. How do they change when you go from HF/6-31G** to B3LYP/6-31G** level of theory. Assign the below given infrared multiphoton dissociation (IRMPD) vibrational spectra of protonated water.

Reference: Science 299, 1375 (2003).

Figure 1: IRMPD spectra of (A) ${\rm H}_5{\rm O}_2^+$ and (B) ${\rm D}_5{\rm O}_2^+$ in the spectral range from 620 to 1900 cm⁻¹. Bands are labeled with lowercase letters. The shown traces are composite spectra, and the data was smoothed. The spectra were measured by monitoring the formation of ${\rm H}_3{\rm O}^+({\rm D}_3{\rm O}^+)$ as a function of FELIX wavelength.

Table 1. Experimental vibrational frequencies [in wave numbers (cm^{-1})] for $H_5O_2^+$ and $D_5O_2^+$ and isotope effects determined from IRMPD spectra. The position of each band maximum is underlined.

$\mathrm{H_5O_2}^+$ band	Frequency	$\mathrm{D_5O_2}^+$ band	Frequency	H-D shift
a	788			
b	888, <u>921,</u> 947, 975	b'	697	1.32
С	<u>1043</u> , 1071, 1100, 1145, 1195	c′	795	1.31
d	1252, <u>1317</u> , 1390, ∼1460	ď′	960	1.37
e	1687, <u>1741</u> , ∼1850	e'	<u>1296</u>	1.34