The dataset related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website. Among all categories of health-related factors only those critical factors were chosen which are more representative.

The data-set aims to answer the following key questions:

Does various predicting factors which has been chosen initially really affect the Life expectancy?

What are the predicting variables actually affecting the life expectancy?

Should a country having a lower life expectancy value (<65) increase its healthcare expenditure in order to improve its average lifespan?

How does Infant and Adult mortality rates affect life expectancy?

Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise, smoking, drinking alcohol etc.

What is the impact of schooling on the lifespan of humans?

Does Life Expectancy have positive or negative relationship with drinking alcohol?

Do densely populated countries tend to have lower life expectancy?

What is the impact of Immunization coverage on life Expectancy?

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
life = pd.read_csv("C:/Users/sriharsha/Desktop/data science/data sets/life Expectancy Kaggl
life_copy = life.copy()
life
```

Out[2]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepati
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	6
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	6:
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	6,
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	6
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	6
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.000000	6
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.000000	
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.000000	7:
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.000000	71
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.000000	7!
2938 rows × 22 columns									
4									•

In [3]:

```
life.columns
#there are some column names with Extra White space front and back
```

Out[3]:

In [4]:

```
life.columns = life.columns[:].str.strip()
```

```
In [5]:
```

```
life.columns = life.columns.str.lower()
life.columns
```

Out[5]:

In []:

In [6]:

life.status.replace(to_replace=['Developing', 'Developed'],value=[0,1],inplace = True)
#replacing Developing with 0 and Developed with 1 inorder to add them in correlation matrix

In []:		

```
In [ ]:
```

In [7]:

life.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	country	2938 non-null	object
1	year	2938 non-null	int64
2	status	2938 non-null	int64
3	life expectancy	2928 non-null	float64
4	adult mortality	2928 non-null	float64
5	infant deaths	2938 non-null	int64
6	alcohol	2744 non-null	float64
7	percentage expenditure	2938 non-null	float64
8	hepatitis b	2385 non-null	float64
9	measles	2938 non-null	int64
10	bmi	2904 non-null	float64
11	under-five deaths	2938 non-null	int64
12	polio	2919 non-null	float64
13	total expenditure	2712 non-null	float64
14	diphtheria	2919 non-null	float64
15	hiv/aids	2938 non-null	float64
16	gdp	2490 non-null	float64
17	population	2286 non-null	float64
18	thinness 1-19 years	2904 non-null	float64
19	thinness 5-9 years	2904 non-null	float64
20	income composition of resources	2771 non-null	float64
21	schooling	2775 non-null	float64

dtypes: float64(16), int64(5), object(1)

memory usage: 505.1+ KB

In [8]:

life.describe().T

Out[8]:

	count	mean	std	min	25%	50%	
year	2938.0	2.007519e+03	4.613841e+00	2000.00000	2004.000000	2.008000e+03	2.0
status	2938.0	1.742682e-01	3.794045e-01	0.00000	0.000000	0.000000e+00	0.0
life expectancy	2928.0	6.922493e+01	9.523867e+00	36.30000	63.100000	7.210000e+01	7.5
adult mortality	2928.0	1.647964e+02	1.242921e+02	1.00000	74.000000	1.440000e+02	2.2
infant deaths	2938.0	3.030395e+01	1.179265e+02	0.00000	0.000000	3.000000e+00	2.2
alcohol	2744.0	4.602861e+00	4.052413e+00	0.01000	0.877500	3.755000e+00	7.7
percentage expenditure	2938.0	7.382513e+02	1.987915e+03	0.00000	4.685343	6.491291e+01	4.4
hepatitis b	2385.0	8.094046e+01	2.507002e+01	1.00000	77.000000	9.200000e+01	9.7
measles	2938.0	2.419592e+03	1.146727e+04	0.00000	0.000000	1.700000e+01	3.6
bmi	2904.0	3.832125e+01	2.004403e+01	1.00000	19.300000	4.350000e+01	5.6
under-five deaths	2938.0	4.203574e+01	1.604455e+02	0.00000	0.000000	4.000000e+00	2.8
polio	2919.0	8.255019e+01	2.342805e+01	3.00000	78.000000	9.300000e+01	9.7
total expenditure	2712.0	5.938190e+00	2.498320e+00	0.37000	4.260000	5.755000e+00	7.4
diphtheria	2919.0	8.232408e+01	2.371691e+01	2.00000	78.000000	9.300000e+01	9.7
hiv/aids	2938.0	1.742103e+00	5.077785e+00	0.10000	0.100000	1.000000e-01	8.0
gdp	2490.0	7.483158e+03	1.427017e+04	1.68135	463.935626	1.766948e+03	5.9
population	2286.0	1.275338e+07	6.101210e+07	34.00000	195793.250000	1.386542e+06	7.4
thinness 1- 19 years	2904.0	4.839704e+00	4.420195e+00	0.10000	1.600000	3.300000e+00	7.2
thinness 5-9 years	2904.0	4.870317e+00	4.508882e+00	0.10000	1.500000	3.300000e+00	7.2
income composition of resources	2771.0	6.275511e-01	2.109036e-01	0.00000	0.493000	6.770000e-01	7.7
schooling	2775.0	1.199279e+01	3.358920e+00	0.00000	10.100000	1.230000e+01	1.4

In [9]:

```
#Schooling Column
life.schooling.fillna(value = 12,inplace = True)
#there is no big difference between mean median which tells us that there is very little to
```

In [10]:

```
#life expectancy column
life.iloc[:,3].mean()#69.224
life.iloc[:,3].median()#72.1
life.iloc[:,3].describe()
life['life expectancy'].fillna(method = 'ffill', inplace = True)
#filling the value of previous valid row in the none place
```

In [11]:

```
#adult mortality
life['adult mortality'].describe()
life['adult mortality'].isnull().sum()
life['adult mortality'].fillna(method = 'bfill',inplace =True)#filling the value of previou
```

In [12]:

```
life['total expenditure'].mean()#5.938
life['total expenditure'].median()#5.755
```

Out[12]:

5.755

In [13]:

life['total expenditure'].fillna(value=life['total expenditure'].median(),inplace =True)

In [14]:

```
life.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	country	2938 non-null	object
1	year	2938 non-null	int64
2	status	2938 non-null	int64
3	life expectancy	2938 non-null	float64
4	adult mortality	2938 non-null	float64
5	infant deaths	2938 non-null	int64
6	alcohol	2744 non-null	float64
7	percentage expenditure	2938 non-null	float64
8	hepatitis b	2385 non-null	float64
9	measles	2938 non-null	int64
10	bmi	2904 non-null	float64
11	under-five deaths	2938 non-null	int64
12	polio	2919 non-null	float64
13	total expenditure	2938 non-null	float64
14	diphtheria	2919 non-null	float64
15	hiv/aids	2938 non-null	float64
16	gdp	2490 non-null	float64
17	population	2286 non-null	float64
18	thinness 1-19 years	2904 non-null	float64
19	thinness 5-9 years	2904 non-null	float64
20	income composition of resources	2771 non-null	
21	schooling	2938 non-null	

dtypes: float64(16), int64(5), object(1)

memory usage: 505.1+ KB

In [15]:

```
#mean-4.602, median-3.755, std - 4.05
life.alcohol.describe()
life.alcohol.fillna(method = 'bfill',inplace = True,)
life.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2938 entries, 0 to 2937 Data columns (total 22 columns):

	Calumn	New No.11 Count	Dtyro	
#	Column	Non-Null Count	Dtype	
0	country	2938 non-null	object	
1	year	2938 non-null	int64	
2	status	2938 non-null	int64	
3	life expectancy	2938 non-null	float64	
4	adult mortality	2938 non-null	float64	
5	infant deaths	2938 non-null	int64	
6	alcohol	2938 non-null	float64	
7	percentage expenditure	2938 non-null	float64	
8	hepatitis b	2385 non-null	float64	
9	measles	2938 non-null	int64	
10	bmi	2904 non-null	float64	
11	under-five deaths	2938 non-null	int64	
12	polio	2919 non-null	float64	
13	total expenditure	2938 non-null	float64	
14	diphtheria	2919 non-null	float64	
15	hiv/aids	2938 non-null	float64	
16	gdp	2490 non-null	float64	
17	population	2286 non-null	float64	
18	thinness 1-19 years	2904 non-null	float64	
19	thinness 5-9 years	2904 non-null	float64	
20	income composition of resources	2771 non-null	float64	
21	schooling	2938 non-null	float64	
dtype	es: float64(16), int64(5), object	(1)		

memory usage: 505.1+ KB

In [16]:

```
life['gdp'].fillna(method = 'pad',inplace =True)
# life['population'].fillna(method = 'pad',inplace =True)
```

```
In [17]:
```

```
life.population = life.population/1000
life.population.describe()#std is more so we cannot take mean or median
```

Out[17]:

```
count
         2.286000e+03
         1.275338e+04
mean
         6.101210e+04
std
min
         3.400000e-02
25%
         1.957933e+02
50%
         1.386542e+03
75%
         7.420359e+03
         1.293859e+06
max
```

Name: population, dtype: float64

In []:

```
T [40]
```

```
In [18]:
```

```
life.drop(labels = 'thinness 5-9 years',axis = 1,inplace = True)
```

In [19]:

```
life.drop(labels = 'under-five deaths',axis = 1,inplace = True)
```

In [20]:

```
# life.bmi.fillna(method = 'bfill',inplace = True)
#
```

In [21]:

```
life['income composition of resources'].mean()#0.627
life['income composition of resources'].median()#0.677
life['income composition of resources'].fillna(method='pad',inplace = True)
#filling the value of previous valid row in the none place
```

```
In [22]:
life['hepatitis b'].describe()
Out[22]:
count
         2385.000000
           80.940461
mean
           25.070016
std
            1.000000
min
25%
           77.000000
50%
           92.000000
           97.000000
75%
           99.000000
max
Name: hepatitis b, dtype: float64
In [23]:
life['hepatitis b'].fillna(method ='pad',inplace = True)
In [24]:
life['polio'].fillna(method ='pad',inplace = True)
In [25]:
life['bmi'].fillna(method ='pad',inplace = True)
In [26]:
life['diphtheria'].fillna(method ='pad',inplace = True)
In [27]:
life['thinness 1-19 years'].fillna(method ='pad',inplace = True)
In [28]:
life.isnull().sum().sum()
Out[28]:
652
In [29]:
life.dropna(inplace = True)
```

In [30]:

```
#Shows How every Column is related to the Target Variable
life_rel = life.corr()
life.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2286 entries, 0 to 2937
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	country	2286 non-null	object
1	year	2286 non-null	int64
2	status	2286 non-null	int64
3	life expectancy	2286 non-null	float64
4	adult mortality	2286 non-null	float64
5	infant deaths	2286 non-null	int64
6	alcohol	2286 non-null	float64
7	percentage expenditure	2286 non-null	float64
8	hepatitis b	2286 non-null	float64
9	measles	2286 non-null	int64
10	bmi	2286 non-null	float64
11	polio	2286 non-null	float64
12	total expenditure	2286 non-null	float64
13	diphtheria	2286 non-null	float64
14	hiv/aids	2286 non-null	float64
15	gdp	2286 non-null	float64
16	population	2286 non-null	float64
17	thinness 1-19 years	2286 non-null	float64
18	income composition of resources	2286 non-null	float64
19	schooling	2286 non-null	float64
		4 - 3	

dtypes: float64(15), int64(4), object(1)

memory usage: 375.0+ KB

In [31]:

```
plt.figure(figsize = (22,12) )
sns.heatmap(data = life_rel,annot = True)
```

Out[31]:

<AxesSubplot:>

In [32]:

#Under Five deaths and infant mortality rate are highly correlated with (100%) so we can dr #similarly THinnes 1-19 and thinness 5-9 are also highly correlated(0.94%) and both are equ

Linear Regression

```
In [40]:
from sklearn.linear_model import LinearRegression
```

```
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
```

```
In [34]:
```

```
lr = LinearRegression()
```

```
In [56]:
```

```
In [57]:
```

```
train_x,test_x,train_y,test_y = train_test_split(x,y)
```

```
In [58]:
```

```
lr.fit(train_x,train_y)
```

Out[58]:

LinearRegression()

```
In [59]:
```

```
y_pred = lr.predict(test_x)
```

```
In [60]:
```

```
lracc = r2_score(test_y,y_pred)
lracc*100
```

Out[60]:

84.96711755812419

DecisionTreeRegressor

```
In [61]:
```

```
from sklearn.tree import DecisionTreeRegressor
dtr = DecisionTreeRegressor(random_state=1)
```

In [62]:

```
dtr.fit(train_x,train_y)
```

Out[62]:

DecisionTreeRegressor(random_state=1)

In [64]:

```
y_p = dtr.predict(test_x)
```

In [65]:

```
dtr_acc = r2_score(test_y,y_p)
dtr_acc*100
```

Out[65]:

93.22427435483061