Exercise session on the numerical solution of linear systems

November 16, 2020

Exercise 1

Build a matrix \mathbf{A} of dimension 200×200 that has all elements equal to 5 on the main diagonal and all elements equal to -1 on the first and second subdiagonal and superdiagonal (use the command diag).

- (a) Write a script to check that the matrix is diagonally dominant by rows.
- (b) Write a script to check that the matrix is symmetric and positive definite.
- (c) Compute the vector $\mathbf{b} = \mathbf{A}\mathbf{x}_{ex}$, where $\mathbf{x}_{ex} = [1, 1, \dots, 1, 1]^T$, $\mathbf{x}_{ex} \in \mathbf{R}^{200}$.
- (d) Solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ using by the LU factorization method. Check that pivoting is not performed.
- (e) Compute the absolute and relative error of the computed solution with respect to \mathbf{x}_{ex} in the l^2 and l^{∞} norm.

Exercise 2

Consider the $n \times n$ matrix $\alpha \mathbf{I} + \mathbf{H}_n$, where \mathbf{H}_n the Hilbert matrix of dimension n, build using the command hilb. For the case $\alpha = 1$, n = 20, check if the matrix is diagonally dominant by rows and if the matrix is symmetric and positive definite; then

- (a) compute the vector $\mathbf{b} = \mathbf{A}\mathbf{x}_{ex}$, where $\mathbf{x}_{ex} = [-1, 1, \dots, 1, -1]^T$, $\mathbf{x}_{ex} \in \mathbf{R}^{20}$;
- (b) solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ using by the LU factorization method;
- (c) compute the absolute and relative error of the computed solution with respect to \mathbf{x}_{ex} in the l^2 and l^{∞} norm. Repeat the exercise for the case $\alpha = 10^{-8}$.

Exercise 3

Using the command vander, build the 10×10 Vandermonde matrix associated to the vector $\mathbf{v} = [0.0001, 2, 3, 4, 5, 6, 7, 8, 9, 10]^T$. Compute the vector $\mathbf{b} = \mathbf{A}\mathbf{x}_{ex}$, where $\mathbf{x}_{ex} = [10, 9, \dots, 2, 1]^T$, $\mathbf{x}_{ex} \in \mathbf{R}^{10}$.

- (a) Solve the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ using the LU factorization method; check if pivoting has been performed;
- (b) compute the absolute and relative error of the computed solution with respect to \mathbf{x}_{ex} in the l^2 and l^{∞} norm.