

Statistical Data Generation Using Sample Data

Eötvös Loránd University
Faculty of Informatics
Department of Information Systems
Budapest, Hungary

<u>Bálint Fazekas</u> Attila Kiss <u>bfazekas@inf.elte.hu</u> kissae@ujs.sk

Motivations

- Pragmatic and truthful database generation
- Using small sample to work with
- Type and value independent data generation
- Dimension independent
- Data augmentation
- Relatively simple & relatively effective methods
- Legal use of truthful information

Numerical representation

- Vectorisation of data
- Not intuitive nor a straightforward task
- Needs heuristic approach based on our desire to observe the given dataset
- Our choice: length based representation of strings

Data set processing

- All data must be represented numerically, in all dimensions
- Statistical analysis and clusterisation can be done on the dataset.

Eötvös Loránd Tudományegyetem

Clustering methods

Clustering methods: K-Means

- Spacio-temporal method
- Non-deterministic!
- Pros:
 - Can identify clusters in any dimensions
 - Does not lose data during clusterisation
 - Fast

Clustering methods: K-Means

• Cons:

- Does not give good
 results in case of concave
 cluster shapes
- Outliers can have a great impact on the identified clusters

Evaluation of K-Means

- Efficient
- Only works intuitively if the datasets have discrete "blobs" of data
- Assumes that the given dataset is spacially distinguishable
- Conclusion: it is not a good clustering method when it is used all by itself

Clustering methods: DBSCAN

- "Density-based spatial clustering of applications with noise"
- Considers the distances between individual points, rather than observing the dataset as a whole.
- "More intuitive", therefore the result is more truthful
- Identifies outliers in the dataset.

Clustering methods: DBSCAN

Cons:

- When observing the clusters, we can obtain only one centroid
- Identified <u>concave</u> clusters results in a shifted centroid
- O(n²) very slow
- Conclusion: the method is adequate for single clustering, but not for the purpose of data generation.

Hybrid combination

- Due to the time complexity of the DBSCAN algorithm, it should be run the minimum number of times on the entire dataset.
- The result is good clusterization, which is bad for data regeneration.
- Run the K-Means algorithm on each of the clusters created by the DBSCAN algorithm.

Hybrid algorithm

- Exploits the positive characteristics of K-Means and DBSCAN.
- Avoids the weaknesses of both algorithms.

 Creates a number of clusters that can be analyzed statistically and correctly for the purpose of data augmentation / regeneration.

Statistical analysis

- Finding the multidimensional means (centroids) of all resulting clusters
- Finding the standard deviations of all dimensions of a cluster.
- Generating data by with multivariate normal distribution methods.
- Augmentation: Recreate each cluster with same number of data, multiplied by a factor of m.

Results

System: Ubuntu 17.10

Processor: Intel i7-4710HQ @ 2.50 GHz

Results

System: Ubuntu 17.10

Processor: Intel i7-4710HQ @ 2.50 GHz

Results

System: Ubuntu 17.10

Processor: Intel i7-4710HQ @ 2.50 GHz

Speed

Accuracy

Dim.	Number	Largest difference in distributions of a corresponding cluster
	of	in every dimensions
	clusters	
2	11	2.375773, 2.740710
		2.185325, 2.278970
3	12	32.206703, 40.238171, 37.005211
		32.355637, 31.006762, 34.254261
5	11	50.881187, 53.762848, 61.116722, 67.602982, 57.316814
		52.398487, 50.678226, 47.839535, 53.783073, 50.094315
9	8	57.362629, 62.505939, 59.682968, 55.935524, 61.643772,
		70.316696, 63.057480, 65.735901, 61.742653
		60.590473, 58.573429, 53.545685, 57.154350, 57.458927,
		58.119232, 55.449238, 59.794643, 55.689960
12	13	$\boxed{66.344612,\ 53.064713,\ 56.163540,\ 55.857380,\ 67.622047,\ 63.862854,\ 61.600574,}$
		62.900955, 62.944111, 66.601341, 62.751911, 63.505623
		70.387451, 61.990356 , 68.966225 , 65.002014 , 66.271294 , 65.187050 , 68.951828 ,
		65.793198, 61.893456, 64.270515, 63.222546, 69.350632

Improvements

- The DBSCAN algorithm requires user input, a distance threshold. The automation of this is not straightforward. D' ≈ avg(distances measured from 10%-25% of the data)
- Different methods of handling string data.
- GP/GPU and Threading usages as possible speedup processes for the K-Means algorithm.
- Regeneration should be done in a constricted space, rather than an n-dimensional box.
- Image data: regenerate only meta-data, witch possible noise image.

Acknowledgements

This project was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).