can have → cheat sneet

12/11/19

Final Exam: Th 12/19/19 BAM-10AM Goessman Lub Add. Rm 51 Final Review: Office his next week M&Tu 4-5PM LGRT 1235H (ourse survey: awlumass.edu/partners/course Evalsurvery/ imal ast Time T:1R2 \ 203 -> R2 \ 203 T(x,y) = x2+42 (x,y) - invesion in circle & center (0,0) & radius I Q=T(P) 10P1-1001=100 T: X -> Il hyperbolic isometry (= hyperbolic reflection in C+ = Enff (Q=T(P) . T preserves angles & sonds circles & lines to circles & lines, ciales & lines through 0 -> lines (X) In particular + T sends semicircle in Il through O to vertical line. Today 'Euclidean geomeony proof of (*) · Semicircle hyperbolic lines give shortest paths · Hyperbolic triangles Tables PODOF of (X): Want to snow T(L) (03) = M

Equivalently, for every point PEL, P≠O, Q(defined)=T(P)
in alagram)=T(P)

Similar trangles? DAP ~ 1001 =

\$	Consequence
	All hyperbolic lines give snortest paths for the
	nyperbolic distances
,	Dk for vertical lines (checked earlier)
	lE instead L is a semicircle, find a hyperboliz isometry.
	that sends L to a vertical line:
•	1. Translate (x,y) + (x+a,y)
	(Honzantal) so T.(L) gives: through O.
	2. Perform inversion Tz (=hyperbolic reflection in C+)
	Now, T(L) gives shortest puth from T(P) to T(B) (vertical,
	=> Lgives snortest path from P to Q. [ine)
	GT preserves lengths of paths (isometry)
-	
	Remarks We have described hyporbolic reflection in unit
	semicircle et. (& also in vertical line - usual Euclidean.
	reflection). Given any hyperbolic line, get description of
	hyperbolic reflection:
	Et Find hyperbolic isometry F
	Sending L to et & then
	Refl = T-10 Reflet 0 T
**********	(same as in R2)
·	what if we want to send 'C+ to L?
	One more (useful) hyperbolic isometry:
	[T(X,4) = (CX,C4) CER, C>0]
	scaling by c, center origin
	hyperbolic isometry?
	(c·x')2+(cy'2 - (cy'2 - (c·x')2 = (x'2+y'2
	y (cy) y
	<u> </u>

Now, isometry sending C+ to L: - scale so same radius, translate. Result Q= ReFILLP) 1091.10 al= R2 Math 132 hyperbolic-AreaT = length = \(\(\D x \)^2 + \(\D y \)^2 Now need to change coordinates to simplify calculation. 1. We can assume I side of T is vertica 2. Reduce to case y=y(x) $A = \iint_{T} \frac{1}{y^2} dx dy = \int_{0}^{1} \left(\int_{y(x)}^{\infty} \frac{1}{y^2} dy \right) dx = \int_{0}^{1} \left[-\frac{1}{y} \right]_{y(x)}^{\infty}$ $= \int_{0}^{b} \frac{1}{y(x)} dx = \int_{a}^{b} \frac{1}{\sqrt{R^2 - x^2}} dx$ Ristadius Tão | argre 0 11-C Area = 9= T- ((T-1)+0+0) In general, get Area = TT-(a+b+c) using reduction described a,b,c= angles of triangles earlier.