Ejercicios 43-53

Arruti, Sergio

- **Ej 43.** Sea $\{\pi_i:A\to A_i\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C} . Las siguientes condiciones son equivalentes
 - a) $A y \{\pi_i : A \to A_i\}_{i=1}^n$ son un producto para $\{A_i\}_{i=1}^n$ en \mathscr{C} ;
 - b) $\exists \{\mu_i : A_i \to A\}_{i=1}^n \text{ en } \mathscr{C} \text{ tal que } \sum_{i=1}^n \mu_i \pi_i = 1_A \text{ y, } \forall i, j \in [1, n],$ $\pi_i \mu_j = \delta_{i,j}^A.$

Demostración. Se tiene el siguiente resultado

Proposición (1.9.2). Sea $\{\mu_i : A_i \to A\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C} . Las siguientes condiciones son equivalentes

- a) $A y \{\mu_i : A_i \to A\}_{i=1}^n$ son un coproducto para $\{A_i\}_{i=1}^n$ en \mathscr{C} ;
- b) $\exists \{\pi_i : A \to A_i\}_{i=1}^n$ en $\mathscr C$ tal que $\sum_{i=1}^n \mu_i \pi_i = 1_A$ y, $\forall i, j \in [1, n]$, $\pi_i \mu_j = \delta_{i,j}^A$.

Así, considerando que

$$\begin{split} \left(\delta_{i,j}^A\right)^{op} &= \left\{ \begin{array}{ll} 0^{op}, & i \neq j \\ 1_{A_i}{}^{op}, & i = j \end{array} \right. \\ &= \left\{ \begin{array}{ll} 0, & i \neq j \\ 1_{A_i}, & i = j \end{array} \right. \\ &= \delta_{i,j}^A \end{split}$$

y pasando a la categoría opuesta, se tiene:

Proposición (1.9.2°). Sea $\{\mu_i^{op}: A_i \to A\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C}^{op} . Las siguientes condiciones son equivalentes

- a) $A y \{\mu_i^{op} : A_i \to A\}_{i=1}^n$ son un coproducto para $\{A_i\}_{i=1}^n$ en \mathscr{C}^{op} ;
- b) $\exists \{\pi_i^{op}: A \to A_i\}_{i=1}^n \text{ en } \mathscr{C}^{op} \text{ tal que } \sum_{i=1}^n \mu_i^{op} \pi_i^{op} = 1_A \text{ y, } \forall i, j \in [1, n],$ $\pi_i^{op} \mu_i^{op} = \delta_{i,j}^A.$

Lo cual, sabiendo que la noción dual de coproducto es producto, nos da el siguiente resultado dual

Proposición (1.9.2*). Sea $\{\mu_i : A \to A_i\}_{i=1}^n$ una familia de morfismos en una categoría semiaditiva \mathscr{C}^{op} . Las siguientes condiciones son equivalentes

a)
$$A y \{\mu_i : A \to A_i\}_{i=1}^n$$
 son un producto para $\{A_i\}_{i=1}^n$ en \mathscr{C} ;

b)
$$\exists \{\pi_i : A_i \to A\}_{i=1}^n$$
 en \mathscr{C} tal que $\sum_{i=1}^n \pi_i \mu_i = 1_A$ y, $\forall i, j \in [1, n]$, $\mu_j \pi_i = \delta_{i,j}^A$.

Podemos reescribir la proposición anterior intercambiando μ por π y viceversa, con lo cual por el principio de dualidad se tiene lo deseado.

Ej 44. Sean $\mathscr C$ una categoría semiaditiva, $A=\coprod_{i=1}^n A_i$ y $B=\coprod_{i=1}^n B_i$ en $\mathscr C$. Si la aplicación + está dada por

$$\begin{split} +: Mat_{m \times n}\left(A, B\right) \times Mat_{m \times n}\left(A, B\right) & \to Mat_{m \times n(A, B)} \\ & (\alpha, \beta) \mapsto \gamma, \\ & \left[\gamma\right]_{i,j} := \left[\alpha\right]_{i,j} + \left[\beta\right]_{i,j}, \quad \forall \ i, j \in [1, n] \end{split}$$

con + al lado derecho de la igualdad anterior siendo la operación suma en $Hom_{\mathscr{C}}(A_j, B_i)$, entonces $(Mat_{m \times n}(A, B), +)$ es un monoide abeliano.

Demostración. Sean $\alpha, \beta, \gamma \in Mat_{m \times n}(A, B)$. Dado que \mathscr{C} es semiaditiva se tiene que $\forall (r,t) \in [1,m] \times [1,n] \ Hom_{\mathscr{C}}(A_t, B_r)$ tiene estructura de monoide abeliano, en patícular su operación es asociativa. Así

$$\begin{split} [(\alpha+\beta)+\gamma]_{r,t} &= [\alpha+\beta]_{r,t} + [\gamma]_{r,t} \\ &= \left([\alpha]_{r,t} + [\beta]_{r,t} \right) + [\gamma]_{r,t} \\ &= [\alpha]_{r,t} + \left([\beta]_{r,t} + [\gamma]_{r,t} \right) \\ &= [\alpha+(\beta+\gamma)]_{r,t}; \qquad \forall \, (r,t) \in [1,m] \times [1,n] \\ \Longrightarrow &+ \text{en } Mat_{m \times n} \, (A,B) \text{ es asociativa.} \end{split}$$

En forma análoga a lo anterior, empleando ahora que la operación en cada $Hom_{\mathscr{C}}(A_t, B_r)$ es conmutativa, se verifica que + en $Mat_{m\times n}(A, B)$ también lo es y que, si $(r,t)\in [1,m]\times [1,n]$ e_{A_t,B_r} es el neutro en $Hom_{\mathscr{C}}(A_t,B_r)$ y E la matriz en $Mat_{m\times n}(A,B)$ dada por $[E]_{r,t}=e_{A_t,B_r}$, entonces E es el neutro de + en $Mat_{m\times n}(A,B)$.

Ej 45.

Ej 46.

Ej 47. Sean $\mathscr C$ una categoría preaditiva, $A\in\mathscr C$ y $\theta\in End_{\mathscr C}(A)$. Si θ es idempotente, entonces $1_A-\theta$ también lo es.

Demostración. Se tiene que $\theta^2 = \theta$ y, como $\mathscr C$ es preaditiva, la composición de morfismos en $\mathscr C$ es bilineal con respecto a + en $End_{\mathscr C}(A)$. Así

$$(1_A - \theta)^2 = (1_A - \theta)(1_A - \theta) = 1_A^2 - 1_A \theta - \theta 1_A + \theta^2$$

= $1_A - \theta - \theta + \theta$
= $1_A - \theta$.

 \mathbf{Ej} 48. Sea $\mathscr C$ una categoría, entonces:

- a) \mathscr{C} es abeliana si y sólo si \mathscr{C}^{op} es abeliana.
- b) Supongamos que $\mathscr C$ es abeliana y sean $\alpha:A\to B,\beta:C\to B$ en $\mathscr C$. Si α , o β , es epi, entonces λ el morfismo asociado a la matriz $(\alpha\ \beta)$ es epi.

Demostración. a Se tiene del Teorema 1.10.1 d) que una categoría es abeliana si y sólo si satisface las siguientes dos condiciones

- C1) \mathscr{C} es normal y conormal,
- C2) \mathscr{C} tiene pull-backs y push-outs.

Dado que C1) y C2) son condiciones autoduales, pues (normal)*=conormal y (pull-back)*=push-out, entonces una categoría $\mathscr C$ las satisface si y sólo si $\mathscr C^{op}$ las satisface.

b) Sean $\{\pi_1, \pi_2\}$ las proyecciones naturales y $\{\mu_1, \mu_2\}$ las inclusiones naturales del biproducto $A \coprod C$. Entonces $\lambda = \alpha \pi_1 + \beta \pi_2 \in Hom_{\mathscr{C}}(A \coprod C, B)$. Supongamos que $f, g \in Hom_{\mathscr{C}}(B, D)$ son tales que $f\lambda = g\lambda$. Así

$$f(\alpha \pi_1 + \beta \pi_2) = g(\alpha \pi_1 + \beta \pi_2),$$

$$\implies f(\alpha \pi_1 + \beta \pi_2) \mu_1 = f(\alpha \pi_1 + \beta \pi_2) \mu_1$$

$$\implies f(\alpha (\pi_1 \mu_1) + \beta (\pi_2 \mu_1)) = g(\alpha (\pi_1 \mu_1) + \beta (\pi_2 \mu_1))$$

$$\implies f(\alpha (1_A) + \beta 0) = g(\alpha 1_A + \beta 0)$$

$$\implies f\alpha = g\alpha.$$

De lo anterior se sigue que f=g si α es epi. La prueba es análoga, componiendo por μ_2 a derecha, si suponemos que β es epi.

Ej 49.

Ej 50.

Ej 51. Sean $\mathscr A$ una categoría aditiva y $A \in \mathscr A$ tal que $1_A = 0_{A,A}$. Entonces A es un objeto cero en $\mathscr A$.

Demostración. Como $\mathscr A$ es aditiva, en partícular es una $\mathbb Z$ -categoría, con lo cual por la Observación 1,9,1(2) todo objeto inicial en $\mathscr A$ es un objeto cero en $\mathscr A$. Así pues basta con verificar que bajo estas condiciones A es un objeto inicial en $\mathscr A$.

Sea $X \in \mathcal{A}$ y $f \in Hom_{\mathscr{A}}(A, X)$. Como \mathscr{A} tiene objeto cero, por ser aditiva, entonces existe un (único) morfismo cero $0_{A,X} \in Hom_{\mathscr{A}}(A, X)$. Además

$$\begin{split} f &= f 1_A = f 0_{A,A} = 0_{A,X}, \\ &\implies Hom_{\mathscr{A}}\left(A,X\right) = \left\{0_{A,X}\right\}. \end{split}$$

Ej 52. Sean \mathscr{A},\mathscr{B} categorías aditivas, $X=\coprod_{i=1}^n X_i, Y=\coprod_{j=1}^m Y_i$ en \mathscr{A}, F un funtor que preserva coproductos finitos, $\alpha\in Mat_{m\times n}(X,Y)$ y $\overline{\alpha}$ el morfismo en $Hom_{\mathscr{A}}(X,Y)$ asociado a α . Entonces la matriz asociada al morfismo $F(\overline{\alpha}), \varphi_{FY,FX}(F(\overline{\alpha}))\in Mat_{m\times n}(FX,FY)$, está dada por

$$\left[\varphi_{FY,FX}\left(F\left(\overline{\alpha}\right)\right)\right]_{i,j} = F\left(\left[\alpha\right]_{i,j}\right), \qquad \forall \ i,j$$

 $\begin{array}{l} \textit{Demostración.} \ \ \text{Dado que} \ \mathscr{A} \ \text{es abeliana}, X \ y \ Y \ \text{son biproductos en} \ \mathscr{A}, \ \text{al} \ \text{igual que} \ FX \ y \ FY \ \text{lo son en} \ \mathscr{B} \ \text{por ser esta} \ \text{última abeliana} \ y \ \text{ser} \ F \ \text{un} \ \text{funtor que preserva coproductos finitos.} \ \text{Más aún, si} \ \left\{\mu_i^X_{\ i}\right\}_{i=1}^n, \left\{\mu_i^Y_{\ i}\right\}_{i=1}^m, \left\{\mu_i^Y_{\ i}\right\}_{i=1}^m, \left\{\pi_i^X_{\ i}\right\}_{i=1}^n, \left\{\pi_i^X_{\ i}\right\}_{i=1}^n, \left\{F\left(\mu_i^X\right)_i\right\}_{i=1}^n, \left\{F\left(\mu_i^X\right)_i\right\}_{i=1}^n, \left\{F\left(\pi_i^X\right)_i\right\}_{i=1}^n, \left\{F\left(\pi_i^X\right)_i$

rales de FX y FY. Así

$$\begin{split} \left[\varphi_{FY,FX}\left(F\left(\overline{\alpha}\right)\right)\right]_{i,j} &= F\left(\pi_{i}^{Y}\right) F\left(\overline{\alpha}\right) F\left(\mu_{j}^{X}\right) \\ &= F\left(\pi_{i}^{Y} \overline{\alpha} \mu_{j}^{X}\right) \\ &= F\left(\pi_{i}^{Y} \left(\sum_{r,t} \mu_{t}^{Y} \left[\alpha\right]_{i,j} \pi_{r}^{X}\right) \mu_{j}^{X}\right) \\ &= F\left(\sum_{r,t} \left(\left(\pi_{i}^{Y} \mu_{t}^{Y}\right) \left[\alpha\right]_{i,j} \left(\pi_{r}^{X} \mu_{j}^{X}\right)\right)\right) \\ &= F\left(\sum_{r,t} \delta_{i,t}^{Y} \left[\alpha\right]_{i,j} \delta_{r,j}^{X}\right) \\ &= F\left(1_{Y_{i}} \left[\alpha\right]_{i,j} 1_{X_{j}}\right) \\ &= F\left(\left[\alpha\right]_{i,j}\right). \end{split}$$

Ej 53.