Module 2:

Module: 2 MOSFET Power Amplifiers 4 hours

 Power Amplifiers, Power Transistors, Classes of Amplifiers, Class A Power Amplifiers, Class B, Class AB Push-Pull Complementary Output Stages.

Design

Class A design

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{DS} = 20 - (28 \times 10^{-3})(120) = 16.64V = 17V$$

$$V_{DS}(\text{sat}) = V_{GS} - V_{TN}$$

$$I_D = K_n (V_{GS} - V_{TN})^2$$

To obtain the maximum symmetrical swing under the conditions specified, we want the *Q-point midway between* $V_{DS} = 0.4$ and $V_{DS} = 17$

 $V_{DS}(\text{sat}) = V_{DD} - K_n R_D V_{DS}^2(\text{sat})$

$$I_D = 0.028 = 28mA$$

$$K_n = 1A/V^2$$

$$V_{DD} = 20V$$

$$R_D = 120\Omega$$

$$V_{DS(sat)} = V_{DD} - K_n R_D V_{DS}^2(sat)$$

$$V_{DS(sat)} = 20 - 1(120)V_{DS}^2$$

$$V_{DS(sat)} + 1(120)V_{DS}^2 - 20 = 0$$

solving:

$$V_{DS(sat)} = 0.404$$

$$\begin{split} V_{DSQ} &= \frac{V_{DS} + V_{DS(sat)}}{2} = \frac{17 + 0.4}{2} = 8.702 \\ v_P &= V_{DS} - V_{DSQ} = 17 - 8.702 = 8.3 \sin \omega t \\ P_L &= \frac{1}{2} \frac{(Vp)^2}{R_D} = \frac{1}{2} \frac{(8.3)^2}{120k} = 0.28mW \\ P_s &= V_{DD} I_{DQ} \\ I_{DQ} &= \frac{V_{DD} - V_{DSQ}}{R_D} = \frac{20 - 8.702}{120k} = 0.09415mA \\ P_s &= V_{DD} I_{DQ} = 20 \times 0.09415mA = 1.88mW \\ \eta &= \frac{P_L}{P_S} = \frac{0.28mW}{1.88mW} \times 100 = 14\% \end{split}$$

Class B operation (Ideal)

- Complementary pair of electronic devices (NMOS and PMOS)
- Device A: NMOS ; Device B: PMOS
- Output is at drain (v_0) Note: Source is connected together
- Case 1: $v_I = 0$: Both devices are OFF:

Zero bias currents: $v_0 = 0$

Class B operation (Ideal)

- Complementary pair of electronic devices (NMOS and PMOS)
- Device A: NMOS ; Device B: PMOS
- Output is at drain (v_0) Note: Source is connected together

 v_O

- Case 1: $v_I = 0$: Both devices are OFF: Zero bias currents: $v_0 = 0$
- Case 2: $v_I > 0$: Device A is ON Device B is OFF

Current supplied from V^+ to load R_L through A

 $V^* = 10 \text{ V}$

Class B operation (Ideal)

Complementary pair of electronic devices (NMOS and PMOS)

• Device A: NMOS ; Device B: PMOS

• Output is at drain (v_0) Note: Source is connected togethe

• Case 1: $v_I = 0$: Both devices are OFF: Zero bias currents: $v_0 = 0$

• Case 2: $v_I > 0$: Device A is ON Device B is OFF

Current supplied from V^+ to load R_L through A

• Case 3: $v_I < 0$: Device B is ON Device A is OFF

Current supplied from V^- to load R_L through (Sinking current from load: Output negative

Slope = 1

Class B operation (Practical) – Threshold Cross over distortion _{V*=10} v

• Crossover distortion can be virtually eliminated by biasing both PMOS and NMOS with a small quiescent drain current when v_I is zero. The crossover distortion effect can also be minimized with an op-amp used in a feedback configuration.

- as $\omega t = 2\pi f t = 2\pi \cdot \frac{1}{\tau} \cdot t$ Based on t, ωt will be the respective angle
- At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF
- At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON
- Output of class B amplifier: $v_0 = V_P \sin \omega t$ with V_P (maximum possible output is V_{DD})

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:
- $0 \le \omega t \le \pi : v_i \ge 0$: NMOS ON

Sinusoidal Drain current: $i_{Dn} = \frac{v_0}{R_L} = \frac{v_P}{R_L} \sin \omega t$

$$V_{DSn} = V_{DD} - v_o = V_{DD} - V_P \sin \omega t$$

At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:
- $0 \le \omega t \le \pi : v_i \ge 0$: NMOS ON

Sinusoidal Drain current: $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$

$$V_{DSn} = V_{DD} - v_o = V_{DD} - V_P \sin \omega t$$

Instantaneous value of power dissipation in NMOS Q_n :

$$P_{Qn(inst)} = V_{DSn}i_{Dn}$$

$$P_{Qn(inst)} =$$

At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:
- $0 \le \omega t \le \pi : v_i \ge 0$: NMOS ON

Sinusoidal Drain current: $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$

$$V_{DSn} = V_{DD} - v_o = V_{DD} - V_P \sin \omega t$$

Instantaneous value of power dissipation in NMOS Q_n :

$$P_{Qn(inst)} = V_{DSn}i_{Dn}$$

$$P_{Qn(inst)} = (V_{DD} - V_P \sin \omega t) \frac{V_P}{R_L} \sin \omega t = \frac{V_{DD}V_P}{R_L} \sin \omega t - \frac{V_P^2}{R_L} \sin^2 \omega t$$

• $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF : $P_{On(inst)} = 0$

At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:
- At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \leq \omega t \leq 2\pi$: $v_i \leq 0$; NMOS is OFF; PMOS is ON

•
$$\mathbf{0} \le \omega t \le \pi$$
 : $v_i \ge \mathbf{0}$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_{P}}{R_{L}}\sin\omega t - \frac{V_{P}^{2}}{R_{L}}\sin^{2}\omega t \quad ; P_{Qn(inst)} = 0 \quad (\pi \leq \omega t \leq 2\pi)$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} P_{Qn(inst)} d(\omega t) + \frac{1}{2\pi} \int_{\pi}^{2\pi} P_{Qn(inst)} d(\omega t)$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} P_{Qn(inst)} d(\omega t) + \frac{1}{2\pi} \int_{\pi}^{2\pi} P_{Qn(inst)} d(\omega t)$$

$$= \frac{1}{2\pi} \int_0^{\pi} P_{Qn(inst)} d(\omega t) + \frac{1}{2\pi} \int_{\pi}^{2\pi} P_{Qn(inst)} d(\omega t)$$

$$V_{DD}$$
 V_{Qn}
 V_{Qp}
 V_{DD}
 Q_{Qp}
 V_{DD}
 Q_{Qp}
 V_{DD}

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:
- At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \leq \omega t \leq 2\pi$: $v_i \leq 0$; NMOS is OFF; PMOS is ON

•
$$0 \le \omega t \le \pi$$
 : $v_i \ge 0$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L}\sin\omega t - \frac{V_P^2}{R_L}\sin^2\omega t \; ; P_{Qn(inst)} = 0 \; (\pi \le \omega t \le 2\pi)$$

$$\text{Average power } P_{Qn} = \frac{1}{2\pi} \int_0^{2\pi} P_{Qn(inst)} \; d(\omega t)$$

$$\operatorname{Power} P_{Qn} = \frac{1}{2\pi} \int_{0}^{2\pi} P_{Qn(inst)} d(\omega t)$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} P_{Qn(inst)} d(\omega t) + \frac{1}{2\pi} \int_{\pi}^{2\pi} P_{Qn(inst)} d(\omega t)$$

$$= \frac{1}{2\pi} \int_{0}^{\pi} P_{Qn(inst)} d(\omega t) + \frac{1}{2\pi} \int_{\pi}^{2\pi} P_{Qn(inst)} d(\omega t)$$

$$= \frac{1}{2\pi} \int_0^{\pi} \left(\frac{V_{DD}V_P}{R_L} \sin \omega t - \frac{V_P^2}{R_L} \sin^2 \omega t \right) d(\omega t)$$

$$= \frac{1}{2\pi} \left[\frac{V_{DD}V_P}{R_L} \int_0^{\pi} \sin \omega t \, d(\omega t) - \frac{V_P^2}{R_L} \int_0^{\pi} (\sin^2 \omega t) d(\omega t) \right]$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

At
$$0 \le \omega t \le \pi$$
: $v_i \ge 0$; NMOS is ON; PMOS is OFF
At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

•
$$\mathbf{0} \le \omega t \le \pi$$
 : $v_i \ge \mathbf{0}$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L}\sin\omega t - \frac{V_P^2}{R_L}\sin^2\omega t \quad ; P_{Qn(inst)} = 0 \ (\pi \le \omega t \le 2\pi)$$

$$\operatorname{Avg} P_{Qn} = \frac{1}{2\pi} \left[\frac{V_{DD}V_P}{R_L} \int_0^{\pi} \sin \omega t \, d(\omega t) - \frac{V_P^2}{R_L} \int_0^{\pi} (\sin^2 \omega t) d(\omega t) \right]$$

Let
$$\theta = \omega t \int_0^{\pi} \sin \theta \, d(\theta) = -\cos \theta \Big|_0^{\pi} =$$

$$\int_0^{\pi} \sin^2 \theta \ d(\theta) =$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

At
$$0 \le \omega t \le \pi$$
: $v_i \ge 0$; NMOS is ON; PMOS is OFF
At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

•
$$\mathbf{0} \le \omega t \le \pi$$
 : $v_i \ge \mathbf{0}$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L}\sin\omega t - \frac{V_P^2}{R_L}\sin^2\omega t \; ; P_{Qn(inst)} = 0 \; (\pi \le \omega t \le 2\pi)$$

$$\operatorname{Avg} P_{Qn} = \frac{1}{2\pi} \left[\frac{V_{DD}V_P}{R_L} \int_0^{\pi} \sin \omega t \, d(\omega t) - \frac{V_P^2}{R_L} \int_0^{\pi} (\sin^2 \omega t) d(\omega t) \right] \qquad \qquad v_i \leftarrow$$

Let
$$\theta = \omega t$$
 $\int_0^{\pi} \sin \theta \ d(\theta) = -\cos \theta \Big|_0^{\pi} = -[\cos(\pi) - \cos 0] = -(-1 - 1) = 2$

$$\int_0^{\pi} \sin^2 \theta \, d(\theta) = \int_0^{\pi} \frac{1 - \cos(2\theta)}{2} \, d(\theta) = \frac{1}{2} \int_0^{\pi} d(\theta) - \frac{1}{2} \int_0^{\pi} \cos(2\theta) \, d(\theta)$$
$$= \frac{1}{2} \cdot (\theta) \Big|_0^{\pi} - \frac{1}{2} \cdot \frac{\sin 2\theta}{2} \Big|_0^{\pi} = \frac{\pi}{2} - \frac{1}{4} (\sin(2\pi) - \sin 0) = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:
- At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF By NMOS Qn: At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON
- $\mathbf{0} \le \omega t \le \pi$: $v_i \ge \mathbf{0}$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L} \sin \omega t - \frac{V_P^2}{R_L} \sin^2 \omega t \quad ; P_{Qn(inst)} = 0 \quad (\pi \le \omega t \le 2\pi)$$

$$\text{Avg } P_{Qn} = \frac{1}{2\pi} \left[\frac{V_{DD}V_P}{R_L} \int_0^{\pi} \sin \omega t \, d(\omega t) - \frac{V_P^2}{R_L} \int_0^{\pi} (\sin^2 \omega t) d(\omega t) \right]$$

$$= \frac{1}{2\pi} \left[\frac{V_{DD}V_P}{R_L} (2) - \frac{V_P^2}{R_L} (\frac{\pi}{2}) \right]$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

At
$$0 \le \omega t \le \pi$$
: $v_i \ge 0$; NMOS is ON; PMOS is OFF
At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

•
$$0 \le \omega t \le \pi$$
: $v_i \ge 0$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$\begin{split} P_{Qn(inst)} &= \frac{V_{DD}V_{P}}{R_{L}} \sin \omega t - \frac{V_{P}^{2}}{R_{L}} \sin^{2} \omega t \; ; P_{Qn(inst)} = 0 \; (\pi \leq \omega t \leq 2\pi) \\ \text{Avg } P_{Qn} &= \frac{1}{2\pi} \left[\frac{V_{DD}V_{P}}{R_{L}} \int_{0}^{\pi} \sin \omega t \; d(\omega t) - \frac{V_{P}^{2}}{R_{L}} \int_{0}^{\pi} (\sin^{2} \omega t) d(\omega t) \right] \\ &= \frac{1}{2\pi} \left[\frac{V_{DD}V_{P}}{R_{L}} (2) - \frac{V_{P}^{2}}{R_{L}} \left(\frac{\pi}{2} \right) \right] \\ &= \frac{V_{DD}V_{P}}{R_{L}\pi} - \frac{V_{P}^{2}}{4R_{L}} \end{split}$$

At max power:
$$\frac{\partial P_{Qn}}{\partial V_P}\Big|_{P \ max} = 0$$

Example: If y has maxima,
At
$$\frac{\partial y}{\partial x}|_{y max} = 0$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t \; ; \quad V_{DSn} = V_{DD} - V_P \sin \omega t$

•
$$0 \le \omega t \le \pi$$
 : $v_i \ge 0$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L} \sin \omega t - \frac{V_P^2}{R_L} \sin^2 \omega t \quad ; P_{Qn(inst)} = 0 \quad (\pi \le \omega t \le 2\pi)$$

$$\text{Avg } P_{Qn} = \frac{V_{DD}V_P}{R_L\pi} - \frac{V_P^2}{4R_L} \qquad \text{Note: } \frac{\partial P_{Qn}}{\partial V_P} = \frac{V_{DD}}{R_L\pi} - \frac{2V_P}{4R_L}$$

$$\text{At max power: } \frac{\partial P_{Qn}}{\partial V_P} = 0 \qquad \text{Example: If y ha}$$

At max power:
$$\frac{\partial P_{Qn}}{\partial V_P}\Big|_{P,max} = 0$$

$$\frac{V_{DD}}{R_L \pi} - \frac{2V_P}{4R_L} = 0 \quad \text{On rearranging: } V_P = \frac{2V_{DD}}{\pi} \qquad \text{Example: If y has maxima,}$$

$$\text{At } \frac{\partial y}{\partial x}|_{y \text{ max}} = 0$$

Max power: when
$$V_P = \frac{2V_{DD}}{\pi}$$

$$P_{Qn(max)} =$$

At
$$\frac{\partial y}{\partial x}|_{y max} = 0$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF

• Consider only NMOS Qn:
•
$$\mathbf{Consider \ only \ NMOS \ Qn:}$$

• $\mathbf{O} \le \omega t \le \pi : v_i \ge 0$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L} \sin \omega t - \frac{V_P^2}{R_L} \sin^2 \omega t \; ; P_{Qn(inst)} = 0 \; (\pi \le \omega t \le 2\pi)$$

$$\text{Avg } P_{Qn} = \frac{V_{DD}V_P}{R_L\pi} - \frac{V_P^2}{4R_L} \qquad \text{Note: } \frac{\partial P_{Qn}}{\partial V_P} = \frac{V_{DD}}{R_L\pi} - \frac{2V_P}{4R_L}$$

$$\text{At max power: } \frac{\partial P_{Qn}}{\partial V_P} \Big|_{P \; max} = 0$$

$$V_{DD} = \frac{2V_P}{R_L\pi} = \frac{2V_{DD}}{R_L\pi} = 0$$
Example: If y

At max power:
$$\frac{\partial P_{Qn}}{\partial V_P}\Big|_{P max} = 0$$

At max power:
$$\frac{\partial P_{Qn}}{\partial V_P}\Big|_{P \ max} = 0$$

 $\frac{V_{DD}}{R_L \pi} - \frac{2V_P}{4R_L} = 0$ On rearranging: $V_P = \frac{2V_{DD}}{\pi}$ Example: If y has maxima, At $\frac{\partial y}{\partial x}|_{y \ max} = 0$

$$At \frac{\partial y}{\partial x}|_{y \, max} = 0$$

Max power: when
$$V_P = \frac{2V_{DD}}{\pi}$$

$$P_{Qn(max)} = \frac{V_{DD}V_P}{R_L\pi} - \frac{V_P^2}{4R_L} = \frac{V_{DD}}{\pi R_L} \cdot \frac{2V_{DD}}{\pi} - \frac{1}{4R_L} \left(\frac{2V_{DD}}{\pi}\right)^2 = \frac{V_{DD}^2}{\pi^2 R_L}$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

At
$$0 \le \omega t \le \pi$$
: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON

•
$$0 \le \omega t \le \pi : v_i \ge 0$$
: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} - V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L}\sin\omega t - \frac{V_P^2}{R_L}\sin^2\omega t \; ; P_{Qn(inst)} = 0 \; (\pi \le \omega t \le 2\pi)$$

Avg
$$P_{Qn}=\frac{V_{DD}V_P}{R_L\pi}-\frac{V_P^2}{4R_L}$$
; Max power: when $V_P=\frac{2V_{DD}}{\pi}$: $P_{Qn(max)}=\frac{V_{DD}^2}{\pi^2R_L}$

Average current:
$$i_{Dn(avg)} = \frac{1}{2\pi} \left[\int_0^{\pi} \frac{V_P}{R_L} \sin \omega t \, d(\omega t) + \int_{\pi}^{2\pi} (0) d(\omega t) \right]$$

$$=\frac{1}{2\pi}.\frac{V_P}{R_L}(2)=\frac{V_P}{\pi R_L}$$

$$\int_0^{\pi} \sin \theta \, d(\theta) = -\cos \theta \Big|_0^{\pi}$$
$$= -[\cos(\pi) - \cos 0] = -(-1 - 1)$$
$$= 2$$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

- At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON
- $0 \le \omega t \le \pi$: $v_i \ge 0$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} V_P \sin \omega t$
- $P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L}\sin\omega t \frac{V_P^2}{R_L}\sin^2\omega t \; ; P_{Qn(inst)} = 0 \; (\pi \le \omega t \le 2\pi)$
- Avg $P_{Qn} = \frac{V_{DD}V_P}{R_L\pi} \frac{V_P^2}{4R_L}$; Max power: when $V_P = \frac{2V_{DD}}{\pi}$: $P_{Qn(max)} = \frac{V_{DD}^2}{\pi^2 R_L}$
- Average current: $i_{Dn(avg)} = \frac{V_P}{\pi R_L}$

Consider only PMOS Qp: $\pi \le \omega t \le 2\pi$: $v_i \le 0$: PMOS ON (through $-V_{DD}$)

$$P_{Qp(max)} = \frac{V_{DD}^2}{\pi^2 R_L}$$
 and avg current through Q_p : $i_{Dp(avg)} = \frac{V_P}{\pi R_L}$

- $v_O = V_P \sin \omega t$
- Consider only NMOS Qn:

- At $0 \le \omega t \le \pi$: $v_i \ge 0$; NMOS is ON; PMOS is OFF At $\pi \le \omega t \le 2\pi$: $v_i \le 0$; NMOS is OFF; PMOS is ON
- $0 \le \omega t \le \pi : v_i \ge 0$: NMOS ON $i_{Dn} = \frac{v_0}{R_L} = \frac{V_P}{R_L} \sin \omega t$; $V_{DSn} = V_{DD} V_P \sin \omega t$

$$P_{Qn(inst)} = \frac{V_{DD}V_P}{R_L}\sin\omega t - \frac{V_P^2}{R_L}\sin^2\omega t \; ; P_{Qn(inst)} = 0 \; (\pi \le \omega t \le 2\pi)$$

Avg
$$P_{Qn} = \frac{V_{DD}V_P}{R_L\pi} - \frac{V_P^2}{4R_L}$$
; Max power: when $V_P = \frac{2V_{DD}}{\pi}$: $P_{Qn(max)} = \frac{V_{DD}^2}{\pi^2 R_L}$

Average current: $i_{Dn(avg)} = \frac{V_P}{\pi R_L}$

Consider only PMOS Qp: $\pi \le \omega t \le 2\pi$: $v_i \le 0$: PMOS ON (through $-V_{DD}$)

$$P_{Qp(max)} = \frac{V_{DD}^2}{\pi^2 R_L}$$
 and avg current through Q_p : $i_{Dp(avg)} = \frac{V_P}{\pi R_L}$

Average power supplied by 2 sources: $P_S = 2V_{DD} \left(\frac{V_P}{\pi R_L}\right)$ (Voltage x current)

Average power delivered to load: $P_L = \frac{1}{2} \frac{V_P^2}{R_L}$

Average power supplied by 2 sources: $P_S = 2V_{DD} \left(\frac{V_P}{\pi R_L} \right)$ (Voltage x current)

Average power delivered to load: $P_L = \frac{1}{2} \frac{V_P^2}{R_L}$

Power conversion efficiency: $\eta = \frac{P_L}{P_S}$

$$\eta = \frac{1}{2} \frac{V_P^2}{R_L} \cdot \frac{1}{2V_{DD} \left(\frac{V_P}{R_L}\right)} = \frac{\pi}{4} \cdot \frac{V_P}{V_{DD}}$$

Max power conversion efficiency: Ideally when $V_P = V_{DD}$

$$\eta_{max} = \frac{\pi}{4} \cdot \frac{V_P}{V_{DD}} = \frac{\pi}{4} = \frac{3.1416}{4} \times 100\% = 78.5\%$$
 and $P_{Lmax} = \frac{1}{2} \cdot \frac{V_{DD}^2}{R_L}$

But, we know that $V_P = \frac{2V_{DD}}{\pi}$ is the maximum possible value:

$$\eta_{max} = \frac{\pi}{4} \cdot \frac{V_P}{V_{DD}} = \frac{\pi}{4} \frac{2V_{DD}}{\pi V_{DD}} \times 100\% = 50\%$$