1 Metalle mit Ingo

1.1 Eigenschaften metallischer Elemente

Physikalische Eigenschaften

- Leitfähigkeit
 - elektrischen
 - thermische
- Metallischer Glanz
- Duktilität (Formbarkeit)
- Nicht Lichtdurchlässig

Chemische Eigenschaften

- niedrige Elektronegativität
- bildet bevorzugt Kationen
- Meist basische Hydroxide!?
 - niedrige Oxidationsstufe: JA Beispiel: $Cr(OH)_2 + H_2O \longrightarrow Cr^{2+} + 2OH^- + H_2O$
 - − hohe Oxidationsstufe: NEIN Beispiel: $Cr(OH)_6$ (gibt's nicht) wird zu $CrO_2(OH)_2$ − > H_2CrO_4 $H_2CrO_4 + 2H_2O \longrightarrow CrO_4^{2-} + 2H_3O^+$

1.2 Elektrisches Verhalten

1.2.1 Betrachtung des spezifischen Widerstands

• Metalle: 10^{-4} bis $10^{-6}\Omega \cdot \text{cm}^{-1}$

• Halbleiter: 10^1 bis $10^4 \Omega \cdot \text{cm}^{-1}$

• Isolator: $> 10^{10} \Omega \cdot \text{cm}^{-1}$

1.2.2 Betrachtung der thermischen Verhaltens der Leitfähigkeit

Siehe Folie

1.3 Definition des metallischen Zustands

Phänomenologisch: schwierig, da makroskopische Eigenschaften wie Glanz, Duktilität verändert werden können.

Temperaturabhängigkeit der elektrischen Leitfähigkeit: schwierig, da andere Stoffklassen ähnliche Eigenschaften aufweisen.

1.4 Die chemische Bindung in Metallen

1.4.1 Ketelaar-Diagramm

Man stelle sich ein Dreieck vor mit den Eckenbeschriftungen ionische Bindung NaCl, kovalente Bindung Cl₂ und metallisch Na

1.4.2 Das Elektronengasmodell

- Die Metallatome geben eine gewisse Zahl an Valenzelektronen ab, es verbleiben positiv geladene Atomrümpfe
- Die Elektronen sind zwischen den Atomrümpfen frei beweglich, ähnlich eines Gases
 > Elektronengas (versagt bei der Beschreibung der Wärmekapazität von Metallen)

1.4.3 Das Bändermodell

- Elektronen können nur bestimmte Energien aufweisen
 - > Orbitale (hier Atomorbitale)
- Beim Übergang von Ein- zu Mehratomsystemen
 - -> Übergang von Atom- zu Molekülorbitalen

Li₃: + + + =
$$\sigma_b$$

+ - + = σ_{ab}
+ | + = σ_{nb}

- Beim Übergang von Mehr- zu Vielatomsystemen
 - ->Übergang von Molekülorbital zu (Orbital-) Bändern
 - > Valenzband: mit Valenzelektronen besetzt, höchster besetzte Zustand: HOMO
 - -> Leitungsband: frei, niedrigste unbesetzte Zustand: LUMO

Fermikante = Ort zwischen Besetzt und Unbesetzt

1.5 Strukturen der Metalle

Übersicht:

- kubisch-innenzentriert
- hexagonal dichteste Packung
- kubisch dichteste Packung
- eigener Strukturtyp
- unbekannt

1.5.1 Die kubisch-innenzentrierte Kugelpackung

(bcc = body-centered cubis), W(olfram)-Typ

 $\underline{\text{C}}$ oordination $\underline{\text{N}}$ umber = 8 + 6 Koordinationspolyeder = Rhombododecaeder Raumerfüllung = 68% Siehe Folie für näheres.

1.5.2 Die dichtesten Packungen

Hexagonal-dichteste Kugelpackung (hcp = hexagonal close packed), M(a)g(nesium)-Typ

CN=12Koordinationspolyeder = Antikuboktaeder Raumerfüllung = 74%

Kubisch-dichteste Kugelpackung (ccp=cubic close packed), Cu(pfer)-Typ

CN = 12Koorinationspolyeder = Kuboktaeder

Varianten der dichtesten Kugelpackungen

hc-Typ

hhc-Typ

Kommen vor und nach einer Schicht dieselbe Schicht, so ist diese hexagonal umgeben. (Kurz: h)

Sind die Schichten vor und nach der betrachteten Schicht nicht gleich, so ist die betrachtete Schicht kubisch umgeben. (Kurz: c)

Siehe Folie.

Variation der Kristallstruktur der Metalle. (Abhängig von Druck und Temperatur)

Fe: α (bcc) $\longrightarrow \gamma$ (ccp) $\longrightarrow \delta$ (bcc) Erster Schritt bei ca. 900°, zweiter schritt bei ca. 1400°

Na: bcc \longrightarrow ccp \longrightarrow \longrightarrow transparente Modifikation, kein Metall mehr Dabei läuft der erste Schritt bei 656 Pa ab und der letzte bei > 100 GPa

1.5.3 Aufgefüllte dichteste Packungen

• Oktaederlücken

hcp-Abfolge: A c B (A,B = Schichten, c = Lücken) N(Oktaederlücken) = N(Packungsteilchen) ccp Abfolge: A c B a C b A (A,B,C = Schichten, a,b,c = Lücken)

• Tetraederlücken

hcp:Abfolge: A β α B α β A β (A,B = Schichten, α , β = Lücken) N(Tetraederlücken) = 2N(Packungsteilchen)Tetraederlücken ccp:Abfolge: A β c α B γ a β C α b γ A (A,B,C = Schichten, α , β , γ = Tetraederlücken, a, b, c = Oktaederlücken)

1.6 Die Elemente der ersten und elften Periode (-H&Rg)

- 1. Gruppe Alkalimetalle
- 11. Gruppe Münzmetalle

1.6.1 Vorkommen

Alkalimetalle:

- kationisch in salzartifen Verbindungen NaCl Halit, KCl -Sylvin
- kationisch eingelagert in Alumosilicaten (LiAlSi₂O₆)

Münzmetalle:

Kupfer: hauptsächlich sulfidisch: Cu_2S , $CuFeS_2$, ...

auch: gediegen (elementar)

Silber: hauptsächlich gediegen

auch: sulfidisch

Gold: hauptsächlich gediegen

selten: Goldtelluride

1.6.2 Herstellung

Alkalimetalle:

Li und Na: Schmelzflusselektrolyse aus Salz(-mischungen)

K: Reduktion mit metallischem Na

Rb und Cs: Reduktion mit metallischem Ca und anschließender Destillation

Münzmetalle:

Cu: Rösten der sulfideischen Kupfererze

Rösten:
$$6 \text{ CuFeS}_2 + 13 \text{ O}_2 \longrightarrow 3 \text{ Cu}_2\text{S} + 2 \text{ Fe}_3\text{O}_4 + 9 \text{ SO}_2$$

Schlacke: $2 \text{ Fe}_3\text{O}_4 + 2 \text{ CO} + 3 \text{ SiO}_2 \longrightarrow 3 \text{ Fe}_2\text{SiO}_4 + 2 \text{ CO}_2$

→(Abtrennug des Eisenanteils)

$$2 \operatorname{Cu}_2 S + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Cu}_2 O + 2 \operatorname{SO}_2$$

$$\begin{array}{c|c} R\"{o}streaktion & R\"{o}streduktion \\ 2\,Cu_2O + Cu_2S \longrightarrow 6\,Cu + SO_2 \uparrow & Cu_2O + CO \longrightarrow 2\,Cu + CO_2 \uparrow \\ Reinigung des Rohkupfers durch elektrolytische Kupferaffinition \\ \end{array}$$

Ag und Au: Reinigung der gediegenen Metalle

- * Recycling aus Anodenschlamm (Reinigung des Rohkupfers)
- * Amalgamierung vom Gold, Goldwäsche
- * Cyanidlaugerei

$$\begin{array}{l} Ag_2S + 4 \, NaCN \longrightarrow 2 \, Na[Ag(CN)_2] + Na_2S \\ 2 \, Ag + H_2O + \frac{1}{2} \, O_2 + 4 \, NaCN \longrightarrow 2 \, Na[Ag(CN)_2] + 2 \, NaOH \end{array}$$

$$\begin{split} & \text{Ag}^{+} + 2 \, \text{CN}^{-} \longrightarrow [\text{Ag}(\text{CN})_{2}]^{-} \, K_{K} \approx 10^{21} \frac{\text{mol}^{2}}{\text{l}^{2}} \\ & K_{K} = \frac{[[\text{Ag}(\text{CN})_{2}]^{-}]}{[\text{Ag}^{+}] \cdot [\text{CN}^{-}]^{2}} \to [\text{Ag}^{+}] = \frac{[[\text{Ag}(\text{CN})_{2}]^{-}]}{K_{K} \cdot [\text{CN}^{-}]^{2}} \\ & E = E^{o}_{(\text{Ag}/\text{Ag}^{+})} + \frac{RT}{zF} \ln([\text{Ag}^{+}]) \end{split}$$

Rückgewinnung des Silbers

$$2 \operatorname{Na}[\operatorname{Ag}(\operatorname{CN})_2] + \operatorname{Zn} \longrightarrow 2 \operatorname{Ag} + \operatorname{Na}_2[\operatorname{Zn}(\operatorname{CN})_4]$$

1.6.3 Verbindungen

Halogenide:

– Alkalimetallhalogenide: A = Li bis Cs \rightarrow AX \leftarrow X = F bis I

NaCl-Struktur: ccp mit allen Oktaederlücken gefüllt

CsCl-Struktur: kubisch-primitiver Aufbau der Packungsteilchen, Lückensitzer

im Zentrum des Würfels

Münzmetalle:

Cu(II)-Halogenide \rightarrow schwache Oxidationsmittel

$$CuCl_2 + Cu \longrightarrow CuCl \xrightarrow{\operatorname{mehr} \operatorname{Cl}^-} CuCl_{2/3/4}{}^{1/2/3 -}$$

$$CuCl_2 + Fe^{2+} \longrightarrow CuCl + Fe^{3+} + Cl^{-}$$

$$CuI_2 \longrightarrow CuI + \tfrac{1}{2}\,I_2$$

$$Cu^{2+} + 2CN^{-} \longrightarrow CuCN + \frac{1}{2}(CN)_{2}$$

Oxidation organischer Verbindungen \rightarrow Fehling-Probe

$$Ag^+ + Halogenide \rightarrow AgF, AgCl, AgBr, AgI$$

1.6.4 Sauerstoff-Verbindungen

$$4 \operatorname{Li} + \operatorname{O}_2 \longrightarrow 2 \operatorname{Li}_2 \operatorname{O}$$

$$6 \operatorname{Li} + \operatorname{N}_2 \longrightarrow 2 \operatorname{Li}_3 \operatorname{N}$$

$$2\,\mathrm{Na} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{NaO} \xrightarrow{\mathrm{besser}} \mathrm{Na}_2\mathrm{O}_2$$
 - natrium
peroxid $(\mathrm{O_2}^{-2})$

$$A + O_2 \longrightarrow AO_2 \text{ mit } A = K, Rb, Cs$$

Der Name des AO₂ lautet: "Alkalimetallsuperoxid" \rightarrow O₂

Umsetzung mit mehr O_2 :

$$A_4O_6 \to 1 \times O_2^{-2} + 2 \times O_2^{-1}$$

Umsetzung mit Metallüberschuss \rightarrow Alkalimetallsuboxide

Münzmetalle

Cu₂O rot; CuO schwarz

$$Ag_2O$$
, AgO aber $Ag^IAg^{II}O_2$

1.6.5 Hydroxide

- Alkalimetallhydroxide
 - stark basisch
 - ziehen CO₂ aus der Luft
- Herstellung durch Elektrolyse aus NaCl-Lösung
 - Chloralkalielektrolyse

$$2 \operatorname{NaCl} + 2 \operatorname{H}_2\operatorname{O} \xrightarrow{\operatorname{Strom}} 2 \operatorname{Na}^+ + 2 \operatorname{OH}^- + \operatorname{Cl}_2 + \operatorname{H}_2$$

Probleme: Cl_2 disproportioniert in Lauge

$$H_2 + Cl_2 \longrightarrow Chlorknallgas$$

- Münzmetallhydroxide
 - $Cu(OH)_2$
 - $Au(OH)_3$

$$2 A + 2 H_2 O \longrightarrow A^+ + OH^- + H_2$$

1.6.6 Alkalimetall-Elektrode und Alkalide

$$A \longrightarrow A^{+} + e^{-}$$

$$\hookrightarrow +3-4 NH_{3} \longrightarrow [e(NH_{3})_{3-4}]^{-}$$

auch möglich:

$$A + \frac{Kronenether}{Cruntant} \longrightarrow [A(Kronenether)]^{+} + e^{-} \xrightarrow{+A} [A(Kronenether)]^{+} + A^{-}$$

1.6.7 Stickstoffverbindungen

- \rightarrow Nitride N³⁻
- \rightarrow Imide NH²⁻ (vgl. O²⁻)
- \rightarrow Amide NH₂⁻ (vgl. OH⁻ H⁻)
- \rightarrow Ammoniak NH₃ (vgl. H₂O HF)
- \rightarrow Ammonium NH_4^+ (vgl. $H_3O^+H_2F^+ \rightarrow CH_4$)
- \rightarrow Azide $\mathrm{N_3}^-$ (isoelektronisch zu $\mathrm{N_2O\,CO_2\,NO_2}^+)$

1.7 Oxidationsstufen der Münzmetalle

1.7.1 Allgemeines

 \hookrightarrow Siehe Folie

Wiederholung der Kristallfeldtheorie

 \hookrightarrow Siehe Folie

1.7.2 Verbindungen von Cu und Ag in hohen Oxidationsstufen

$$CuF_3$$
, $K_3[CuF_6]$, $4 Ba_2Cu_3O_{7-x}$ (Supraleiter)
 $K[AgF_4]$, $Cs_2[AgF_4]$

1.8 Die Chemie der Golds

1.8.1 Relativistische Effekte

Kontraktion von 6s und 6p; Expansion von 5d

- $r(Au) \approx r(Ag) \rightarrow \text{h\"o}$ here dichte
- höhere Elektronenaffinität \rightarrow Au⁻ aber kein Ag⁻
- ullet aurophile Wechselwirkungen ightarrow Au-Bindungen in der Gasphase

8

 \bullet Farbigkeit \rightarrow elektronische Übergäng eim sichtbaren Bereich

1.8.2 Goldverbindungen

Oxidation von Gold durch Königswasser

$$HNO_3 + 3 HCl \longrightarrow NO_4 + 2 H_2O + 2 Cl$$

Cl· ist das naszierende Chlor

$$Au + 3Cl \cdot + Cl^{-} \longrightarrow [AuCl_{4}]^{-}$$
 (Tetrachloridoaurat)

• $\mathrm{Au^{2+}}\ 5\mathrm{d^9}\text{-System} \to \mathrm{Au_2}^{4+}$