Electromagnetism Notes from TAU Course with Additional Information Lecturer: Lev Vaidman

Gabriel Domingues

July 4, 2020

Contents

1	Ma	thematical Basics 3			
	1.1	Vector Calculus			
	1.2	Distributions and Integration			
2	Electrostatics 1				
	2.1	Electric Field			
	2.2	Gauß's Law			
	2.3	Dielectric Materials and Dipoles			
3	Electric Systems 2				
	3.1	Work and Energy			
	3.2	Boundary Value Problems			
	3.3	Surface of Materials			
	3.4	Method of Images			
	3.5	Capacitors			
4	Currents and Circuits 3				
	4.1	Current Density			
	4.2	Ohm's Law			

5 Magnetics			36	
	5.1	Magnetic Field	36	
	5.2	Ampère's Law	38	
	5.3	Faraday's Law	40	
	5.4	Inductance	42	
6	Max	xwell's Equations	13	
	6.1	Maxwell's Correction and Waves	43	
	6.2	Special Relativity	44	
		rk is licensed under a Creative Commons ution-NonCommercial-ShareAlike 4.0 In-)	
ternational" license.				

1 Mathematical Basics

1.1 Vector Calculus

Definition 1.1.1 (Scalar and Vector functions). We call a function:

- $\vec{\gamma}: [a,b] \to \mathbb{R}^n$ (a parametrization of) a curve.
- $\phi: \mathbb{R}^n \to \mathbb{R}$ a scalar function.
- $\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$ a vector (-valued) function or vector field.

Definition 1.1.2 (Differentials). We define:

- Derivative: $\vec{\gamma}'(\lambda) = \frac{d\vec{\gamma}}{d\lambda} = \lim_{\delta \to 0} \frac{\vec{\gamma}(\lambda + \delta) \vec{\gamma}(\lambda)}{\delta}$
- Partial Derivative: $\frac{\partial \phi}{\partial x_i} = \lim_{\delta \to 0} \frac{\phi(\vec{r} + \delta \hat{x}_i) \phi(\vec{r})}{\delta}$
- Gradient: $\vec{\nabla}\phi = \sum_{i=1}^{n} \hat{x}_i \frac{\partial \phi}{\partial x_i}$
- Divergence: $\vec{\nabla} \cdot \vec{F} = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}$
- Curl: $\vec{\nabla} \times \vec{F} = \hat{x} \left(\frac{\partial F_z}{\partial y} \frac{\partial F_y}{\partial z} \right) + \hat{y} \left(\frac{\partial F_x}{\partial z} \frac{\partial F_z}{\partial x} \right) + \hat{z} \left(\frac{\partial F_y}{\partial x} \frac{\partial F_x}{\partial y} \right)$
- (Directional Derivative) $\frac{\partial \phi}{\partial \vec{v}} = \lim_{\delta \to 0} \frac{\phi(\vec{r} + \delta \cdot \vec{v}) \phi(\vec{r})}{\delta} = \vec{v} \cdot \vec{\nabla} \phi(\vec{r})$

Lemma 1.1.3. The following relations hold:

•
$$\vec{\nabla} \cdot (\phi \cdot \vec{F}) = (\vec{\nabla}\phi) \cdot \vec{F} + \phi \cdot (\vec{\nabla} \cdot \vec{F})$$

•
$$\vec{\nabla} \times (\phi \cdot \vec{F}) = (\vec{\nabla}\phi) \times \vec{F} + \phi \cdot (\vec{\nabla} \times \vec{F})$$

•
$$\vec{\nabla} \times (\vec{\nabla} \phi) \equiv \vec{0}$$

•
$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$

Remark 1.1.4.
$$\frac{d(\phi \circ \vec{\gamma})}{d\lambda} = \vec{\nabla}\phi(\vec{\gamma}(\lambda)) \cdot \vec{\gamma}'(\lambda)$$

Definition 1.1.5 (Line Integral). Let Γ be a piecewise differentiable curve. Given a vector field \vec{F} , we define the line integral (circulation) along Γ :

$$\int_{\Gamma} \vec{F}(\vec{r}) \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{\gamma}(\lambda)) \cdot \vec{\gamma}'(\lambda) d\lambda$$

for any parametrization $\vec{\gamma}:[a,b]\to\Gamma\subset\mathbb{R}^3$, where γ is piecewise \mathcal{C}^1 . That is, $d\vec{\mathbf{r}}$ is tangent to the curve.

Remark 1.1.6. We denote using \vec{r} to make explicit the dummy variable in the integration.

Theorem 1.1.7 (Gradient).
$$\int_{A\to B} \vec{\nabla} \phi(\vec{r}) \cdot d\vec{r} = \phi(B) - \phi(A)$$

Proof. Let Γ be a curve from A to B and $\vec{\gamma}: [a,b] \to \Gamma \subset \mathbb{R}^n$ with $\vec{\gamma}(a) = A$ and $\vec{\gamma}(b) = B$ By the chain rule: $\int_{\Gamma} \vec{\nabla} \phi(\vec{r}) \cdot d\vec{r} = \int_a^b \vec{\nabla} \phi(\vec{\gamma}(\lambda)) \cdot \vec{\gamma}'(\lambda) d\lambda = \phi(\vec{\gamma}(\lambda)) \Big|_a^b = \phi(B) - \phi(A)$

Definition 1.1.8 (Path Independence). A vector field \vec{F} is path-independent if $\int_{A\to B} \vec{F}(\vec{r}) \cdot d\vec{r}$ only depends on A and B, that is, it is the same for any path Γ from A to B. Equivalently, for any closed curve Γ : $\oint_{\Gamma} \vec{F}(\vec{r}) \cdot d\vec{r} = 0$

Theorem 1.1.9 (Converse of Gradient). A vector field \vec{F} is path-independent iff $\exists \phi : \mathbb{R}^n \to \mathbb{R} : \vec{F} = \vec{\nabla} \phi$

Proof. Take a fixed $\vec{r_0}$, let: $\phi(\vec{r}) = \int_{\vec{r_0} \to \vec{r}} \vec{F}(\vec{r}) d\vec{r}$. Then, for any $v \in \mathbb{R}^n$:

$$\vec{v} \cdot \vec{\nabla} \phi(\vec{r}) = \frac{\partial \phi}{\partial \vec{v}} = \lim_{\delta \to 0} \frac{1}{\delta} \left[\int_{\vec{r}_0 \to \vec{r} + \delta \cdot \vec{v}} \vec{F}(\vec{r}) \cdot d\vec{r} - \int_{\vec{r}_0 \to \vec{r}} \vec{F}(\vec{r}) \cdot d\vec{r} \right]$$

$$= \lim_{\delta \to 0} \frac{1}{\delta} \int_{\vec{r} \to \vec{r} + \delta \cdot \vec{v}} \vec{F}(\vec{r}) \cdot d\vec{r} = \lim_{\delta \to 0} \frac{1}{\delta} \int_{0}^{\delta} \vec{F}(\vec{r} + \lambda \cdot \vec{v}) \cdot \vec{v} \, d\lambda = \vec{F}(\vec{r}) \cdot \vec{v}$$

We chose the linear parametrization of $\vec{r} \to \vec{r} + \delta \cdot \vec{v}$ since \vec{F} is path-independent. The last step is due to the Fundamental Theorem of Calculus. Hence, $\forall v \in \mathbb{R}^n$, $\vec{v} \cdot \vec{\nabla} \phi = \vec{v} \cdot \vec{F}$, so $\vec{F} = \vec{\nabla} \phi$.

Remark 1.1.10. The previous function ϕ is called the potential of \vec{F} .

Definition 1.1.11 (Boundary). We denote $\partial \Sigma$ the boundary (curve) of the (open) surface Σ . For a volume Ω , $\partial \Omega$ is a (closed) surface.

Theorem 1.1.12 (Green). Let Γ be a positively oriented (counterclockwise) curve in \mathbb{R}^2 and Σ a bounded surface s.t. $\partial \Sigma = \Gamma$. Then, for any differentiable \vec{F} :

$$\oint_{\Gamma} \vec{F}(\vec{r}) \cdot d\vec{r} = \iint_{\Sigma} \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) d^2 r$$

Proof. We'll prove only for domains of the form (type III):

$$\Sigma = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b \text{ and } g_1(x) \le y \le g_2(x)\}$$
$$= \{(x, y) \in \mathbb{R}^2 \mid f_1(y) \le x \le f_2(y) \text{ and } \alpha \le y \le \beta\}$$

We calculate $\oint_{\Gamma} F_x(\vec{r}) \, \hat{x} \cdot d\vec{r}$. We split Γ into four curves:

$$\Gamma_{1} = \{(x, g_{1}(x)) \mid a \leq x \leq b\} \Rightarrow \oint_{\Gamma_{1}} F_{x}(\vec{r}) \,\hat{x} \cdot d\vec{r} = \int_{a}^{b} F_{x}(x, g_{1}(x)) \cdot dx$$

$$\Gamma_{2} = \{(a, y) \mid g_{1}(a) \leq y \leq g_{2}(a)\} \Rightarrow \oint_{\Gamma_{2}} F_{x}(\vec{r}) \,\hat{x} \cdot d\vec{r} = 0$$

$$\Gamma_{3} = \{(x, g_{2}(x)) \mid a \leq x \leq b\} \Rightarrow \oint_{\Gamma_{3}} F_{x}(\vec{r}) \,\hat{x} \cdot d\vec{r} = -\int_{a}^{b} F_{x}(x, g_{2}(x)) \cdot dx$$

$$\Gamma_{4} = \{(b, y) \mid g_{1}(b) \leq y \leq g_{2}(b)\} \Rightarrow \oint_{\Gamma_{4}} F_{x}(\vec{r}) \,\hat{x} \cdot d\vec{r} = 0$$

since the curves Γ_2 and Γ_4 are perpendicular to the x-axis. Hence:

$$\oint_{\Gamma} F_x(\vec{r}) \, \hat{x} \cdot d\vec{r} = \int_{a}^{b} \left[F_x(x, g_1(x)) - F_x(x, g_2(x)) \right] dx = - \int_{x=a}^{b} \int_{y=g_1(x)}^{g_2(x)} \frac{\partial F_x}{\partial y} \, dy \, dx$$

A similar calculation holds for $\oint_{\Gamma} F_y(\vec{r}) \, \hat{y} \cdot d\vec{r} = \int_{y=\alpha}^{\beta} \int_{x=f_1(y)}^{f_2(y)} \frac{\partial F_y}{\partial x} \, dx \, dy$. The result follows from linearity.

Definition 1.1.13 (Flux Integral). Let Σ be a surface. Given a vector field \vec{F} , we define the flux/surface integral of \vec{F} over Σ :

$$\Phi[\Sigma] = \iint\limits_{\Sigma} \vec{F}(\vec{r}) \cdot d^2 \vec{r} = \int\limits_{\lambda=a}^{b} \int\limits_{\mu=\alpha}^{\beta} \vec{F} \Big(\vec{\sigma}(\lambda, \mu) \Big) \cdot \left[\frac{\partial \vec{\sigma}}{\partial \lambda} \times \frac{\partial \vec{\sigma}}{\partial \mu} \right] d\lambda \, d\mu$$

for any piecewise C^1 parametrization $\sigma:[a,b]\times[\alpha,\beta]\to\Sigma\subset\mathbb{R}^3$. Further, the orientation (i.e. the choice of the order of λ,μ) is important. That is, $d^2\vec{\mathbb{r}}$ is normal to the surface.

Theorem 1.1.14 (Stokes'). Let Γ be a positively-oriented (counterclockwise) closed curve and Σ a surface such that $\Gamma = \partial \Sigma$. Then, for any continuously differentiable \vec{F} :

$$\oint_{\Gamma} \vec{F}(\vec{r}) \cdot d\vec{r} = \iint_{\Sigma} (\vec{\nabla} \times \vec{F}) \cdot d^2 \vec{r}$$

Proof. Let $\sigma: [a,b] \times [\alpha,\beta] \to \Sigma$. Take $\vec{G} = \left(\vec{F} \cdot \frac{\partial \vec{\sigma}}{\partial \lambda}, \vec{F} \cdot \frac{\partial \vec{\sigma}}{\partial \mu}\right)$. Take the curve $\Delta = \partial([a,b] \times [\alpha,\beta])$, so that $\Gamma = \vec{\sigma}(\Delta)$, we get:

$$\oint_{\Gamma} \vec{F}(\vec{r}) \cdot d\vec{r} = \oint_{\Delta} \vec{G}(\vec{r}) \cdot d\vec{r} = \iint_{[a,b] \times [\alpha,\beta]} \left[\frac{\partial G_{\mu}}{\partial \lambda} - \frac{\partial G_{\lambda}}{\partial \mu} \right] d\lambda \, d\mu$$

by Green's Theorem. By direct calculation, we have:

$$\frac{\partial G_{\mu}}{\partial \lambda} - \frac{\partial G_{\lambda}}{\partial \mu} = (\vec{\nabla} \times \vec{F}) \cdot \left[\frac{\partial \vec{\sigma}}{\partial \lambda} \times \frac{\partial \vec{\sigma}}{\partial \mu} \right]$$

The result follows by the definition of the flux integral.

Corollary 1.1.15. \vec{F} is path-independent iff $\vec{\nabla} \times \vec{F} \equiv \vec{0}$.

Theorem 1.1.16 (Gauß/Ostrogradsky). Let Σ be a positively-oriented (outwards) closed surface and Ω a solid such that $\Sigma = \partial \Omega$. Then, for any continuously differentiable \vec{F} :

$$\iint\limits_{\Sigma} \vec{F}(\vec{\mathbf{r}}) \cdot d^2 \vec{\mathbf{r}} = \iiint\limits_{\Omega} (\vec{\nabla} \cdot \vec{F}) \, d^3 \mathbf{r}$$

Proof. Analogous to Green's Theorem.

Theorem 1.1.17 (Green's Identities). For φ, ψ twice continuously differentiable.

1.
$$\iiint_{\Omega} \left(\psi \cdot \nabla^2 \varphi + \vec{\nabla} \psi \cdot \vec{\nabla} \varphi \right) d^3 \mathbf{r} = \oiint_{\partial \Omega} \psi \cdot \vec{\nabla} \varphi \cdot d^2 \vec{\mathbf{r}} = \oiint_{\partial \Omega} \psi \cdot \frac{\partial \varphi}{\partial \hat{\mathbf{n}}} d^2 \mathbf{r}$$

2.
$$\iiint_{\Omega} (\psi \cdot \nabla^{2} \varphi - \varphi \cdot \nabla^{2} \psi) d^{3} \mathbf{r} = \oiint_{\partial \Omega} (\psi \cdot \vec{\nabla} \varphi - \varphi \cdot \vec{\nabla} \psi) \cdot d^{2} \vec{\mathbf{r}}$$
$$= \oiint_{\partial \Omega} (\psi \cdot \frac{\partial \varphi}{\partial \hat{\mathbf{n}}} - \varphi \cdot \frac{\partial \psi}{\partial \hat{\mathbf{n}}}) d^{2} \mathbf{r}$$

Proof. Follows directy from 1.1.16 and 1.1.3.

Lemma 1.1.18 (Kelvin-Helmholtz).

$$\frac{d}{dt} \oint_{\Gamma(t)} \vec{F}(\vec{\mathbf{r}}, t) \cdot d\vec{\mathbf{r}} = \oint_{\Gamma(t)} \left[\frac{\partial \vec{F}}{\partial t} - \dot{\vec{\mathbf{r}}}(t) \times (\vec{\nabla} \times \vec{F}(\vec{\mathbf{r}}, t)) \right] \cdot d\vec{\mathbf{r}}$$

1.2 Distributions and Integration

Definition 1.2.1 (Heaviside). Let $H : \mathbb{R} \to \mathbb{R}$ s.t. $H(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$

Definition 1.2.2 (Test Functions). We define $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ if $\varphi \in C^{\infty}(\mathbb{R}^n)$ and $\{x \in \mathbb{R}^n \mid \varphi(x) \neq 0\}$ is bounded.

Definition 1.2.3 (Dirac Delta). We define $\delta = H'$. This is made rigourous by integration by parts:

$$\forall \varphi \in C_0^{\infty}(\mathbb{R}), \forall R \in \mathbb{R}^+, \int_{-R}^R \varphi(x) \cdot \delta(x) dx = \varphi(0)$$

which, if made use of the definition $\delta = H'$ and applying integration by parts, is a valid result. This concept is reffered to as a **weak derivative**. Further,

we extend:
$$\delta^n(\vec{r} - \vec{a}) = \prod_{i=1}^n \delta(x_i - a_i)$$

Lemma 1.2.4. $\forall \varphi \in C_0^{\infty}(\mathbb{R}), \forall R \in \mathbb{R}^+,$

$$\varphi(0) = H(x) \cdot \varphi(x) \Big|_{-R}^{R} - \int_{-R}^{R} \varphi'(x) \cdot H(x) dx$$

Proof.
$$\int_{-R}^{R} \varphi'(x) \cdot H(x) \, dx = \int_{0}^{R} \varphi'(x) \, dx = \varphi(x) \Big|_{0}^{R} = \varphi(R) - \varphi(0) \qquad \Box$$

Problem 1.2.5.

$$\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = \frac{\delta(r)}{r^2} = 4\pi \,\delta^3(\vec{r})$$

Solution: The first relation is obtained by taking:

$$\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = \vec{\nabla} \cdot \left(\frac{H(r)\,\hat{r}}{r^2}\right) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2 \cdot \frac{H(r)}{r^2}\right) = \frac{H'(r)}{r^2} = \frac{\delta(r)}{r^2}$$

The second relation is taken by switching coordinates on a sphere of radius $R: \forall \varphi \in C_0^{\infty}(\mathbb{R}^3)$,

$$\iint\limits_{\Omega} \int\limits_{r=0}^{R} \varphi(\vec{r}) \cdot \frac{\delta(r)}{r^2} \cdot \overbrace{r^2 \, dr \, d\Omega}^{d^3r} = 4\pi \cdot \varphi(\vec{0}) = \iint\limits_{S^1(R)} \varphi(\vec{r}) \cdot 4\pi \cdot \delta^3(\vec{r}) \, d^3r$$

where Ω is the solid angle.

Definition 1.2.6 (Distributions). The set of all bounded linear functions of $C_0^{\infty}(\mathbb{R}^n)$ is denoted $D(\mathbb{R}^n)$. We identify every element with an improper function f so that if T is a bounded linear function corresponding to f, we get:

 $\forall \varphi \in C_0^{\infty}(\mathbb{R}^n), T(\varphi) = \int_{\mathbb{R}^n} \varphi(\vec{\mathbf{r}}) \cdot f(\vec{\mathbf{r}}) d^n \mathbf{r}$

Remark 1.2.7. The delta function $\delta^n(\vec{r})$ is the unique function so that

$$\forall \varphi \in C_0^{\infty}(\mathbb{R}^n) \,,\, \int_{\mathbb{R}^n} \varphi(\vec{\mathbf{r}}) \cdot \delta^n(\vec{\mathbf{r}}) \, d^n \mathbf{r} = \varphi(\vec{0})$$

Definition 1.2.8 (Indicator Function). For a set $A \subseteq \mathbb{R}^n$, we define the function $\mathbb{1}_A : \mathbb{R}^n \to \mathbb{R}$ s.t.:

$$\mathbb{1}_{A}(\vec{r}) = \begin{cases} 1 & \text{if } \vec{r} \in A \\ 0 & \text{if } \vec{r} \notin A \end{cases}$$

Example 1.2.9 (Heaviside as Indicator). $H = \mathbb{1}_{(0,\infty)}$

Electrostatics 2

2.1Electric Field

Definition 2.1.1 (Electric Force). The force acting on a particle with charge q due to an electric field \vec{E} is $\vec{F}(\vec{r}) = q \vec{E}(\vec{r})$. In that case, q is called a test charge for the field \dot{E} .

Lemma 2.1.2 (Superposition Principle). If there are two distinct fields \vec{E}_1 and \vec{E}_2 for two distinct sources, the total electrical field is $\vec{E}_1 + \vec{E}_2$.

Lemma 2.1.3 (Electric Potential). For a static electric field (charges that induce the field are static),

$$\vec{\nabla} \times \vec{E} \equiv \vec{0}$$

hence $\exists \phi : \mathbb{R}^3 \to \mathbb{R} : \vec{E} = -\vec{\nabla}\phi$. Further, $\mathcal{E}[\partial \Sigma] = \oint_{\partial \Sigma} \vec{E}(\vec{r}) \cdot d\vec{r} = 0$ for any closed curve $\partial \Sigma$ (cf. 1.1.15, 1.1.9).

Theorem 2.1.4 (Coulomb's Law). The electric field due to a point charge Q at the origin is:

$$\vec{E}(\vec{r}) = \frac{Q}{4\pi\epsilon_0 \, r^2} \, \hat{r}$$

more generally, for a charge at \vec{r}_0 , we get: $\vec{E}(\vec{r}) = \frac{Q}{4\pi\epsilon_0 ||\vec{r} - \vec{r}_0||^3} (\vec{r} - \vec{r}_0)$

Corollary 2.1.5. The Coulomb electric potential is: $\phi(\vec{r}) = \frac{Q}{4\pi\epsilon_0 ||\vec{r} - \vec{r}_0||}$

Definition 2.1.6 (Charge Distribution). We define the following quantity: $\rho \in D(\mathbb{R}^3)$ is the distribution of charge in a system. That is:

$$Q[\Omega] = \iiint_{\Omega} \rho(\vec{r}) \, d^3r$$

Example 2.1.7. We have the following charge densities:

- A point charge: $\rho(\vec{r}) = Q \cdot \delta^3(\vec{r} \vec{r_0})$ A system of charges: $\rho(\vec{r}) = \sum_{i=1}^N Q_i \cdot \delta^3(\vec{r} \vec{r_i})$
- A uniformly charged spherical shell: $\rho(\vec{r}) = \sigma \cdot \delta(r R) = \frac{Q}{4\pi R^2} \cdot \delta(r R)$
- A uniformly charged sphere: $\rho(\vec{r}) = \rho_0 \cdot \mathbb{1}_{[0,R]} = \frac{3Q}{4\pi R^3} \cdot \mathbb{1}_{[0,R]}$

Remark 2.1.8. We may have surface or linear charge density, denoted σ or λ respectively, where the charge is found only on a surface or a line. Moreover, ρ would have δ functions to restric the integral to that surface or curve.

Theorem 2.1.9 (Extended Coulomb's Law). The electric field due to a charge distribution ρ on a volume V is:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\vec{r} - \vec{\mathbf{r}}}{\|\vec{r} - \vec{\mathbf{r}}\|^3} \, \rho(\vec{\mathbf{r}}) \, d^3 \mathbf{r}$$

Proof. This follows directly for the superposition of the infinitesimal charge $dQ = \rho(\vec{r}) d^3 r$ in Coulomb field.

Corollary 2.1.10. The Coulomb electric potential due to a charge distribution ρ on a volume V is:

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\rho(\vec{r})}{\|\vec{r} - \vec{r}\|} d^3 \mathbf{r}$$

Usually, it is much simpler to calculate the potential an then get the electric field by $\vec{E} = -\vec{\nabla}\phi$. Further the boundary conditions here are neglected (cf. 3.2.1).

Remark 2.1.11. If the charge is 2-dimensional or 1-dimensional, we can use λ or σ , respectively, directly into a simple or double integral.

Remark 2.1.12. The Coulomb potential given by the previous corollary was defined such that $\lim_{\vec{r}\to\infty}\phi(\vec{r})=0$

Lemma 2.1.13. We have:
$$\phi(\vec{r}) = \phi(\vec{r}_0) - \int_{\vec{r}_0 \to \vec{r}} \vec{E}(\vec{r}) \cdot d\vec{r}$$

Proof. Follows directly from the gradient theorem with $\vec{E} = -\vec{\nabla}\phi$.

Problem 2.1.14 (Uniform Rod).

Calculate the electric field and electric potential due to a rod of length 2c (endpoints at (0,0,c) and (0,0,-c)) and uniform charge density λ .

Solution: By definition, since it is symmetric around z, we integrate using cylindrical coordinates:

$$\phi(\rho, z) = \frac{1}{4\pi\epsilon_0} \int_{z'=-c}^{c} \frac{\lambda}{\sqrt{\rho^2 + (z - z')^2}} dz' = \frac{\lambda}{4\pi\epsilon_0} \operatorname{arcsinh}\left(\frac{z' - z}{\rho}\right) \Big|_{z'=-c}^{c}$$

$$= \frac{\lambda}{4\pi\epsilon_0} \left[\operatorname{arcsinh}\left(\frac{z + c}{\rho}\right) - \operatorname{arcsinh}\left(\frac{z - c}{\rho}\right) \right]$$

$$= \frac{\lambda}{4\pi\epsilon_0} \ln \left[\frac{z + c + \sqrt{(z + c)^2 + \rho^2}}{z - c + \sqrt{(z - c)^2 + \rho^2}} \right]$$

Notice, we require $(\rho, z) \notin \{0\} \times [-c, c] = rod$. For the electric field, we calculate:

$$\vec{E} = -\vec{\nabla}\phi = \frac{\lambda}{4\pi\epsilon_0} \left[\frac{(z+c)\,\hat{\rho} - \rho\,\hat{z}}{\rho\sqrt{(z+c)^2 + \rho^2}} + \frac{-(z-c)\,\hat{\rho} + \rho\,\hat{z}}{\rho\sqrt{(z-c)^2 + \rho^2}} \right]$$

Observe: We could've solved it geometrically by defining $\alpha = \angle OF_1P$ and $\beta = \angle OF_2P$, where $P = (x, y, z), O = (0, 0, 0), F_1 = (0, 0, c), F_2 = (0, 0, -c).$ We get: $\vec{E} = \frac{\lambda}{4\pi\epsilon_0 \rho} \left[(\cos \alpha + \cos \beta) \,\hat{\rho} + (\sin \beta - \sin \alpha) \,\hat{z} \right]$

Problem 2.1.15 (Infinite Line). Calculate the electric field and electric potential due to an infinite line of charge with uniform charge density λ .

Solution: We can calculate \vec{E} directly:

$$\vec{E}(\rho) = \frac{1}{4\pi\epsilon_0} \int_{z'=-\infty}^{\infty} \frac{\lambda \cdot \rho \,\hat{\rho}}{\left(\rho^2 + (z')^2\right)^{\frac{3}{2}}} dz' = \frac{\lambda \cdot \rho \,\hat{\rho}}{4\pi\epsilon_0} \left. \frac{z'}{\rho^2 \sqrt{\rho^2 + (z')^2}} \right|_{z'=-\infty}^{\infty}$$

$$= \frac{\lambda \,\hat{\rho}}{4\pi\epsilon_0 \,\rho} \lim_{R \to \infty} \frac{\operatorname{sgn} z'}{\sqrt{1 + \left(\frac{\rho}{z'}\right)^2}} \right|_{z'=-R}^{R} = \frac{\lambda}{2\pi\epsilon_0 \,\rho} \,\hat{\rho}$$

For ϕ , we apply:

$$\phi(\rho) = \phi(\rho_0) - \int_{\rho_0}^{\rho} \frac{\lambda}{2\pi\epsilon_0 \, \rho'} \, \hat{\rho'} \cdot \hat{\rho'} \, d\rho' = \phi(\rho_0) + \frac{\lambda}{2\pi\epsilon_0} \left[\ln \rho_0 - \ln \rho \right]$$

Set
$$\rho_0 = 1$$
 and $\phi(\rho_0) = 0$, we get: $\phi(\rho) = -\frac{\lambda}{2\pi\epsilon_0} \ln \rho$

Problem 2.1.16 (Uniform Ring). Calculate the electric potential due to a ring of charge (in the xy-plane) of radius R with uniform charge density λ .

Solution: We first calculate the potential, since it is symmetric about rotations around z, we integrate using cylindrical coordinates: We have $\|\vec{r} - \vec{r}\| = \sqrt{(\rho - R\cos\varphi)^2 + (R\sin\varphi)^2 + z^2}$

$$\phi(\rho, z) = \frac{\lambda R}{4\pi\epsilon_0} \int_{\varphi=0}^{2\pi} \frac{d\varphi}{\sqrt{R^2 - 2\rho R \cos \varphi + \rho^2 + z^2}} = \{By \ parity \}$$

$$= \frac{\lambda R}{2\pi\epsilon_0} \int_{\varphi=0}^{\pi} \frac{d\varphi}{\sqrt{R^2 - 2\rho R \cos \varphi + \rho^2 + z^2}} = \left\{ \begin{array}{l} \theta = \frac{\pi - \varphi}{2} \\ -2 \ d\theta = d\varphi \end{array} \right\}$$

$$= \frac{\lambda R}{\pi\epsilon_0} \int_{\varphi=0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{R^2 - 2\rho R (2\sin^2\theta - 1) + \rho^2 + z^2}}$$

$$= \left\{ \begin{array}{l} \ell = \sqrt{(\rho + R)^2 + z^2} \\ k = \frac{\sqrt{4\rho R}}{\ell} \end{array} \right\} = \frac{\lambda R}{\pi\epsilon_0} \int_{\varphi=0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2\theta}}$$

$$\Rightarrow \phi(\rho, z) = \frac{\lambda R}{\pi\epsilon_0} \sqrt{(\rho + R)^2 + z^2} \cdot K \left(\sqrt{\frac{4\rho R}{(\rho + R)^2 + z^2}} \right)$$

where K is the complete elliptic integral of first kind. We see, it is barely possible to find a closed formula for ϕ , and even more so for \vec{E} . We can, however, calculate the value for $\rho=0$, quite simply: $\phi(\rho=0,z)=\frac{\lambda\,R}{2\epsilon_0\,\sqrt{R^2+z^2}}$

2.2 Gauß's Law

Theorem 2.2.1 (Differential Form of Gauß's Law). The electric field due to a charge distribution ρ obeys:

$$\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\epsilon_0}$$

Proof. A first observation is to notice the Coulomb electric field obeys the relation: $\vec{\nabla} \cdot \vec{E}_{\text{Coulomb}}(\vec{r}) = \frac{Q}{\epsilon_0} \delta^3(\vec{r} - \vec{r}_0)$. For the general charge distribution, we calculate:

$$\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \vec{\nabla} \cdot \left(\frac{\vec{r} - \vec{r}}{\|\vec{r} - \vec{r}\|^3}\right) \rho(\vec{r}) d^3 \mathbf{r}$$
$$= \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} 4\pi \, \delta^3(\vec{r} - \vec{r}) \rho(\vec{r}) d^3 \mathbf{r} = \frac{1}{\epsilon_0} \rho(\vec{r})$$

by definition of delta.

Theorem 2.2.2 (Integral Form of Gauß's Law). For any solid Ω , the electric field due to a charge distribution ρ obeys:

$$\Phi_E[\partial\Omega] = \iint_{\partial\Omega} \vec{E}(\vec{r}) \cdot d^2 \vec{r} = \frac{Q[\Omega]}{\epsilon_0}$$

Proof. By the differential form of Gauß's Law and Divergence Theorem:

$$\iint\limits_{\partial\Omega} \vec{E}(\vec{\mathbf{r}}) \cdot d^2\vec{\mathbf{r}} = \iiint\limits_{\Omega} \vec{\nabla} \cdot \vec{E}(\vec{\mathbf{r}}) \, d^3\mathbf{r} = \iiint\limits_{\Omega} \frac{1}{\epsilon_0} \rho(\vec{\mathbf{r}}) \, d^3\mathbf{r} = \frac{Q[\Omega]}{\epsilon_0}$$

Definition 2.2.3 (Equipotential Surface). \mathcal{L} is an level curve of ϕ if

$$\exists \phi_0 \in \mathbb{R} : \mathcal{L} = \{ \vec{r} \in \mathbb{R}^n \mid \phi(\vec{r}) = \phi_0 \}$$

Theorem 2.2.4 (Gradient Orthogonality). $\forall \vec{r} \in \mathcal{L}$, $\vec{E}(\vec{r})$ is normal to \mathcal{L} .

Proof. Let Γ be a curve in \mathcal{L} and γ a parametrization. Then, by definition,

$$\vec{\nabla}\phi(\vec{\gamma}(\lambda))\cdot\vec{\gamma}'(\lambda) = \frac{d(\phi\circ\vec{\gamma})}{d\lambda} = 0$$

Therefore, $\vec{E} = -\vec{\nabla}\phi$ is perpendicular to any tangent vector, and hence the tangent plane, so, it is perpendicular to the surface.

Problem 2.2.5 (Spherical Shell). Calculate the electric field of a spherical shell of radius R with uniform surface charge density σ .

Solution: By symmetry and Gauß's with Ω a (solid) sphere of radius r:

1.
$$(r > R) : E(r) \cdot 4\pi r^2 = \frac{Q[\Omega]}{\epsilon_0} = \frac{\sigma \cdot \pi R^2}{\epsilon_0} \Rightarrow E(r) = \frac{Q}{4\pi\epsilon_0 r^2} = \frac{\sigma}{\epsilon_0} \cdot \frac{R^2}{r^2}$$

2.
$$(r < R) : E(r) \cdot 4\pi r^2 = 0 \Rightarrow E(r) = 0$$

Hence:
$$\vec{E}(\vec{r}) = \begin{cases} 0 & \text{if } ||\vec{r}|| < R \\ \frac{\sigma}{\epsilon_0} \cdot \frac{R^2}{||\vec{r}||^2} \hat{r} & \text{otherwise} \end{cases}$$

Since we picked an equipotential surface, the surface integral became a double integral. Further, due to symmetry, the electric field was constant in the equipotential surface.

Problem 2.2.6 (Solid Sphere). Calculate the electric field of a solid sphere of radius R with uniform charge density ρ .

Solution: By symmetry and Gauß's with Ω a (solid) sphere of radius r:

1.
$$(r > R) : E(r) \cdot 4\pi r^2 = \frac{Q[\Omega]}{\epsilon_0} = \frac{\rho \cdot 4\pi R^3/3}{\epsilon_0} \Rightarrow E(r) = \frac{\rho}{3\epsilon_0} \cdot \frac{R^3}{r^2}$$

2.
$$(r < R) : E(r) \cdot 4\pi r^2 = \frac{4\pi r^3}{3} \rho \Rightarrow E(r) = \frac{\rho}{3\epsilon_0} r$$

Hence:
$$\vec{E}(\vec{r}) = \begin{cases} \frac{\rho}{3\epsilon_0} \vec{r} & \text{if } ||\vec{r}|| < R \\ \frac{\rho}{3\epsilon_0} \cdot \frac{R^3}{||\vec{r}||^3} \vec{r} & \text{otherwise} \end{cases}$$

Problem 2.2.7 (Infinite Cylindrical Shell). Calculate the electric field of an infinite cylindrical shell with uniform surface charge density σ .

Solution: By symmetry and Gauß's with Ω a (solid) cylinder of radius ρ and height H:

1.
$$(\rho > R) : E(\rho) \cdot 2\pi \, \rho \cdot H = \frac{Q[\Omega]}{\epsilon_0} = \frac{\sigma \cdot 2\pi R \cdot H}{\epsilon_0} \Rightarrow E(\rho) = \frac{\sigma}{\epsilon_0} \cdot \frac{R}{\rho}$$

2.
$$(\rho < R) : E(\rho) \cdot 2\pi \rho \cdot H = 0 \Rightarrow E(\rho) = 0$$

$$Hence: \vec{E}(\vec{r}) = \begin{cases} 0 & \text{if } \rho < R \\ \frac{\sigma}{\epsilon_0} \cdot \frac{R}{\rho} \hat{\rho} & \text{otherwise} \end{cases} \text{ where } \rho = \|\vec{r} - (\vec{r} \cdot \hat{z}) \hat{z}\| = \|\vec{r} \times \hat{z}\|$$

Notice, by symmetry, the field is in the $\hat{\rho}$ direction. Therefore, the top and bottom circle of our cylinder $\partial\Omega$ don't contribute to the flux integral, since \vec{E} is parallel to those two surfaces.

Problem 2.2.8 (Infinite Plane). Calculate the electric field of an infinite plane with uniform surface charge density σ .

Solution: By symmetry in the xy-plane and Gauß's with Ω a (solid) cylinder of radius R and height z centered at the plane: $E(z) \cdot 2\pi R^2 = \frac{\sigma \cdot \pi R^2}{\epsilon_0} \Rightarrow$

$$E(z) = \frac{\sigma}{2\epsilon_0} \Rightarrow \vec{E}(\vec{r}) = \frac{\sigma}{2\epsilon_0} \cdot \operatorname{sgn} z \,\hat{z}$$

Notice, by symmetry, the field is in the \hat{z} direction. Therefore, only the top and bottom circle of our cylinder $\partial\Omega$ contribute to the flux integral, since \vec{E} is parallel to the lateral surface. Further, by changing $z\mapsto -z$, we should get $\vec{E}\mapsto -\vec{E}$, hence the sgn z.

2.3 Dielectric Materials and Dipoles

Definition 2.3.1 (Dipole Moment). The dipole moment \vec{p} due to a charge distribution ρ on a volume V is defined as:

$$\vec{p} = \iiint_{\mathcal{V}} \vec{\mathbf{r}} \cdot \rho(\vec{\mathbf{r}}) d^3 \mathbf{r}$$

Theorem 2.3.2 (Multipole Expansion). Let $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$, the Legendre Polynomials, and $\cos \theta = \frac{\vec{r} \cdot \vec{r}}{\|\vec{r}\| \|\vec{r}\|}$. Then,

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \frac{1}{\|\vec{r}\|^{n+1}} \iiint_{\mathcal{V}} \|\vec{r}\|^n \cdot P_n(\cos\theta) \, \rho(\vec{r}) \, d^3\mathbf{r}$$

Proof. The Legendre Polynomials satisfy: $\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x) t^n$, where the right hand side converges for $x, t \in [-1, 1]$. Using Coulomb's Potential (cf. 2.1.10) and supposing $\frac{\|\vec{r}\|}{\|\vec{r}\|} < 1$

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\rho(\vec{r})}{\|\vec{r} - \vec{r}\|} d^3 \mathbf{r} = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\rho(\vec{r})}{\sqrt{\|\vec{r}\|^2 - 2\|\vec{r}\| \|\vec{r}\| \cos \theta + \|\vec{r}\|^2}} d^3 \mathbf{r}$$

$$= \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\rho(\vec{r})}{\sqrt{1 - 2\cos \theta \frac{\|\vec{r}\|}{\|\vec{r}\|} + \left(\frac{\|\vec{r}\|}{\|\vec{r}\|}\right)^2}} d^3 \mathbf{r}$$

$$= \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \sum_{n=0}^{\infty} \left(\frac{\|\vec{r}\|}{\|\vec{r}\|}\right)^n \cdot P_n(\cos \theta) \cdot \rho(\vec{r}) d^3 \mathbf{r}$$

Since the power series converges, we may exchange the series and integral. \Box Corollary 2.3.3 (Dipole Approximation).

$$\phi(\vec{r}) = \frac{Q}{4\pi\epsilon_0 ||\vec{r}||} + \frac{\vec{p} \cdot \vec{r}}{4\pi\epsilon_0 ||\vec{r}||^3} + \mathcal{O}\left(\frac{1}{||\vec{r}||^3}\right)$$

Proof. Follows from 2.3.2, by using $P_0(x) \equiv 1$ and $P_1(x) = x$. Also, we calculate: $\vec{p} \cdot \vec{r} = \iiint_{\mathcal{V}} \vec{r} \cdot \vec{r} \cdot \rho(\vec{r}) d^3 \mathbf{r} = ||\vec{r}|| \iiint_{\mathcal{V}} ||\vec{r}|| \cos \theta \cdot \rho(\vec{r}) d^3 \mathbf{r}$.

Lemma 2.3.4 (Electric Field of Dipole).

$$\phi_{dipole}(\vec{r}) = \frac{\vec{p} \cdot \hat{r}}{4\pi\epsilon_0 ||\vec{r}||^2} \qquad \vec{E}_{dipole}(\vec{r}) = \frac{3(\vec{p} \cdot \hat{r})\,\hat{r} - \vec{p}}{4\pi\epsilon_0 ||\vec{r}||^3}$$

Proof.

$$\vec{E}_{\text{dipole}}(\vec{r}) = -\vec{\nabla}\phi_{\text{dipole}}(\vec{r}) = -\frac{1}{4\pi\epsilon_0} \vec{\nabla} \left(\frac{p_x x + p_y y + p_z z}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right)$$

$$= -\frac{1}{4\pi\epsilon_0} \sum_{i=1}^{3} \left(\frac{p_{x_i}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} - \frac{3}{2} \cdot \frac{2x_i (p_x x + p_y y + p_z z)}{(x^2 + y^2 + z^2)^{\frac{5}{2}}} \right) \hat{x}_i$$

$$= -\frac{1}{4\pi\epsilon_0} \left[\frac{\vec{p}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} - \frac{3(p_x x + p_y y + p_z z) \vec{r}}{(x^2 + y^2 + z^2)^{\frac{5}{2}}} \right]$$

Remark 2.3.5. In a simplified case, $\vec{p} = q \cdot \vec{d}$.

Lemma 2.3.6. The force acting on a dipole \vec{p} due to electric field \vec{E} is: $\vec{F} = (\vec{p} \cdot \nabla) \vec{E}$.

Proof. By direct calculation:

$$\vec{F}(\vec{r}) = \lim_{d \to 0} q \left[\vec{E}(\vec{r} + d\,\hat{n}) - \vec{E}(\vec{r}) \right] = p \lim_{d \to 0} \frac{\vec{E}(\vec{r} + d\,\hat{n}) - \vec{E}(\vec{r})}{d} = p\hat{n} \cdot \nabla \vec{E}(\vec{r})$$

Definition 2.3.7 (Free and Bound Charges). The bound charges in a material \mathcal{M} cannot be removed e.g. by grounding it. The free charges are the remaining ones, i.e.: $\rho = \rho_f + \rho_b$.

Lemma 2.3.8. Let \vec{P} denote the polarization density of a material \mathcal{M} :

(i)
$$\rho_b = -\vec{\nabla} \cdot \vec{P}$$

(ii)
$$\sigma_b = \vec{P}|_{\partial \mathcal{M}} \cdot \hat{n}$$

Proof. By 2.3.4, we integrate in \mathcal{M} : $\phi_{\text{dipole}}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{M}} \frac{(\vec{r} - \vec{r}) \cdot \vec{P}(\vec{r})}{\|\vec{r} - \vec{r}\|^3} d^3\vec{r} = \frac{1}{4\pi\epsilon_0} \oiint_{\partial\mathcal{M}} \frac{\vec{P}(\vec{r})}{\|\vec{r} - \vec{r}\|} \cdot d^2\vec{r} - \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{M}} \frac{\vec{\nabla} \cdot \vec{P}(\vec{r})}{\|\vec{r} - \vec{r}\|} d^3\vec{r}$, it follows by definition of volume and surface charge.

Corollary 2.3.9. $\vec{D} = \epsilon_0 \cdot \vec{E} + \vec{P}$ obeys the Gauß Law with respect to the free charges:

 $\vec{\nabla} \cdot \vec{D} = \rho_f$ $\iint_{\partial \Omega} \vec{D}(\vec{r}) \cdot d^2 \vec{r} = Q_f[\Omega]$

Definition 2.3.10 (Relative Permeability). In a linear material \mathcal{M} , the polarization density is parallel to the electric field. We get $\vec{D}(\vec{r}) = \epsilon(\vec{r}) \cdot \vec{E}(\vec{r})$, where ϵ is called the permeability, sometimes we write $\epsilon(\vec{r}) = \kappa(\vec{r}) \cdot \epsilon_0$.

Remark 2.3.11. $\vec{E}(\vec{r}) = \frac{1}{\kappa(\vec{r})} \cdot \vec{E}_{vacc}(\vec{r})$, where \vec{E}_{vacc} is the electric field calculated in vaccum. And $\rho = \epsilon_0 \vec{\nabla} \cdot \vec{E}$ and $\rho_f = \epsilon_0 \vec{\nabla} \cdot \vec{E}_{vacc}$.

3 Electric Systems

3.1 Work and Energy

Definition 3.1.1 (Potential Energy). Define $U(\vec{r}) = q \phi(\vec{r})$ the potential energy of a test charge due to the charge configuration on ϕ . For $\phi(\vec{r_0}) = 0$:

$$U(\vec{r}) = \int_{\vec{r}_0 \to \vec{r}} \vec{F}(\vec{r}) \cdot d\vec{r} = q \int_{\vec{r}_0 \to \vec{r}} \vec{E}(\vec{r}) \cdot d\vec{r} = q \phi(\vec{r})$$

Definition 3.1.2. The energy stored in a system of particles is:

$$U = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{Q_i Q_j}{\|\vec{r}_i - \vec{r}_j\|} = \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ i \neq j}}^{N} \frac{Q_i Q_j}{4\pi\epsilon_0 \|\vec{r}_i - \vec{r}_j\|} = \frac{1}{2} \sum_{i=1}^{N} Q_i \phi_i(\vec{r}_i)$$

where $\phi_i(\vec{r_i}) = \lim_{\vec{r} \to \vec{r_i}} \left[\phi(\vec{r}) - \frac{Q_i}{\|\vec{r} - \vec{r_i}\|} \right]$ is the potential for all charged appart from Q_i . For a continuous charge distribution ρ on a volume \mathcal{V} , we have:

$$U = \frac{1}{2} \iiint_{\mathcal{V}} \rho(\vec{\mathbf{r}}) \, \phi(\vec{\mathbf{r}}) \, d^3 \mathbf{r}$$

Problem 3.1.3. Calculate the energy stored in a spherical shell of radius R with charge distribution σ .

Solution:

$$U = \frac{1}{2} \iint_{\Omega=0}^{4\pi} \sigma \frac{q}{4\pi\epsilon_0 R} R^2 d\Omega = \frac{1}{2} \cdot \frac{q}{4\pi\epsilon_0 R} \sigma 4\pi R^2 = \frac{q^2}{8\pi\epsilon_0 R}$$

where Ω is the solid angle.

Lemma 3.1.4. For a continuous charge distribution ρ on a volume \mathcal{V} with $\phi \Big|_{\partial \mathcal{V}} \equiv 0$ or $\frac{\partial \phi}{\partial \hat{n}} \Big|_{\partial \mathcal{V}} \equiv 0$:

$$U = \frac{1}{2} \epsilon_0 \iiint_{\mathcal{V}} \|\vec{E}(\vec{\mathbf{r}})\|^2 d^3 \mathbf{r}$$

Proof. By Gauß's theorem (cf. 1.1.16), $\iiint_{\mathcal{V}} \vec{\nabla} \cdot (\phi \cdot \vec{E}) \, d^3 \mathbf{r} = \oiint_{\partial \mathcal{V}} \phi \cdot \vec{E} \cdot d^2 \vec{\mathbf{r}} = 0$ since either $\phi \big|_{\partial \mathcal{V}} \equiv 0$ or $\frac{\partial \phi}{\partial \hat{n}} \big|_{\partial \mathcal{V}} \equiv 0$. Hence, if we integrate $\vec{\nabla} \cdot (\phi \cdot \vec{E}) = \phi \cdot (\vec{\nabla} \cdot \vec{E}) + (\vec{\nabla} \phi) \cdot \vec{E} = \frac{1}{\epsilon_0} \rho \phi - \|\vec{E}\|^2$, by Gauß's law (cf. 2.2.1), $\rho = \epsilon_0 \vec{\nabla} \cdot \vec{E}$, we get the result.

Problem 3.1.5. Calculate the energy stored in a solid sphere of radius R with charge distribution ρ .

Solution:

$$U = \frac{1}{2} \epsilon_0 \iint_{\Omega=0}^{4\pi} \int_{r=0}^{R} \left(\frac{\rho r}{3\epsilon_0} \right)^2 r^2 dr d\Omega = \frac{2\pi \rho^2}{9\epsilon_0} \cdot \frac{R^5}{5} = \frac{q^2}{40\pi\epsilon_0 R}$$

where Ω is the solid angle.

Remark 3.1.6 (Material Correction). For a continuous charge distribution ρ on a material \mathcal{M} with $\phi\big|_{\partial\mathcal{M}} \equiv 0$ or $\frac{\partial\phi}{\partial\hat{n}}\Big|_{\partial\mathcal{M}} \equiv 0$:

$$U = \frac{1}{2} \iiint_{\mathcal{M}} \epsilon(\vec{\mathbf{r}}) \cdot ||\vec{E}(\vec{\mathbf{r}})||^2 d^3 \mathbf{r}$$

3.2 Boundary Value Problems

Definition 3.2.1 (Poisson Equation). Given $\vec{\nabla} \cdot \vec{E} = \rho/\epsilon_0$ and $\vec{E} = -\vec{\nabla}\phi$, we get:

 $\nabla^2 \phi = -\frac{\rho}{\epsilon_0}$

The equation is given in a region V. There are two opitions of what can be given in ∂V :

Dirichlet Boundary Conditions: $\phi|_{\partial \mathcal{V}} = f$

Neumann Boundary Conditions: $\frac{\partial \phi}{\partial \hat{n}}\Big|_{\partial \mathcal{V}} = f$

Moreover, the equation $\nabla^2 \phi = 0$ is called the Laplace Equation.

Theorem 3.2.2 (Uniqueness Theorem). The solution to Poisson's equation is unique in V given either Dirichlet or the Neumann Boundary Conditions (up to a constant).

Proof. Let ϕ_1 and ϕ_2 be two solutions and $\psi = \phi_1 - \phi_2$. By linearity, we have: $\nabla^2 \psi = 0$ and either $\psi|_{\partial \mathcal{V}} \equiv 0$ or $\frac{\partial \psi}{\partial \hat{n}}|_{\partial \mathcal{V}} \equiv 0$. By 1.1.17 $\varphi = \psi$:

$$\iiint_{\mathcal{V}} \|\vec{\nabla}\psi\|^2 d^3\mathbf{r} = \oiint_{\partial \mathcal{V}} \psi \cdot \frac{\partial \psi}{\partial \hat{\mathbf{n}}} d^2\mathbf{r} - \iiint_{\mathcal{V}} \psi \cdot \nabla^2 \psi d^3\mathbf{r} = 0$$

Then, $\forall \vec{r} \in \mathcal{V}$, $\|\vec{\nabla}\psi\|^2 = 0$. Solving $\vec{\nabla}\psi \equiv \vec{0}$, then $\psi = \text{const.}$, then, $\forall \vec{r} \in \mathcal{V}$, $\phi_1(\vec{r}) = \phi_2(\vec{r}) + \text{const.}$ which is exactly what we seeked to prove. Also, if the Dirichlet conditions applies, the constant vanishes.

Problem 3.2.3. Calculate the potential in the region between two concentric sphere of radius a and 2a and potential 0 and V, respectively, and charge density $\rho = \rho_0$ inside.

Solution: By symmetry, the potential only depends on r. Hence, the laplacian becomes $\nabla^2 \phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right) = -\frac{\rho_0}{\epsilon_0}$. By direct integration, we get: $r^2 \frac{\partial \phi}{\partial r} = A - \frac{\rho_0}{\epsilon_0} \cdot \frac{r^3}{3} \Rightarrow \phi(r) = B - \frac{A}{r} - \frac{\rho_0}{\epsilon_0} \cdot \frac{r^2}{6}$. By substituting, we

get: $A = 2aV + \frac{\rho_0}{\epsilon_0} a^3$, $B = 2V + \frac{\rho_0}{\epsilon_0} \cdot \frac{7a^2}{6}$, hence the potential is given by: $\phi(r) = 2V \left(1 - \frac{a}{r}\right) + \frac{\rho_0 a^2}{6\epsilon_0} \left(7 - \frac{6a}{r} - \frac{r^2}{a^2}\right)$ for $a \le r \le 2a$, which solves the Poisson equation with Dirichlet conditions.

Theorem 3.2.4 (Mean Value Property). Let ψ be a solution of Laplace equation on $\mathcal{V} \subseteq \mathbb{R}^3$. Then: $\forall \vec{r} \in \mathcal{V}$,

$$\psi(\vec{r}) = \frac{1}{4\pi R^2} \oiint_{\partial B_R(\vec{r})} \psi(\vec{\mathbf{r}}) \, d^2 \mathbf{r} = \frac{3}{4\pi R^3} \iiint_{B_R(\vec{r})} \psi(\vec{\mathbf{r}}) \, d^3 \mathbf{r}$$

that is, the value at \vec{r} is the average value over any sphere or spherical surface centered at \vec{r} .

Proof. Let Ω be the solid angle, define:

$$\gamma(R) = \frac{1}{4\pi R^2} \iint_{\partial B_R(\vec{r})} \psi(\overrightarrow{\vec{r}}) \underbrace{\vec{r}^{+R\,\hat{n}}}_{\vec{r}} \underbrace{\vec{d}^2 \mathbf{r}} = \frac{1}{4\pi} \iint_{\Omega=0}^{4\pi} \psi(\vec{r} + R\,\hat{n}) d\Omega$$

Deriving wrt R:

$$\gamma'(R) = \frac{1}{4\pi} \iint_{\Omega=0}^{4\pi} \frac{\partial \psi}{\partial \hat{n}} \left(\vec{r} + R \, \hat{n} \right) d\Omega \underset{\text{Gauß}}{=} \frac{1}{4\pi R^2} \int_{r=0}^{R} \iint_{\Omega=0}^{4\pi} \nabla^2 \psi \left(\vec{r} + R \, \hat{n} \right) R^2 \, dr \, d\Omega = 0$$

since ψ is a solution of Laplace equation. Hence, $\gamma(R) = \text{const.}$, therefore:

$$\gamma(R) = \lim_{R \to 0} \gamma(R) = \frac{1}{4\pi} \iint_{\Omega = 0}^{4\pi} \lim_{R \to 0} \psi(\vec{r} + R\,\hat{n}) \, d\Omega = \frac{1}{4\pi} \iint_{\Omega = 0}^{4\pi} \psi(\vec{r} + \vec{0}) \, d\Omega = \psi(\vec{r})$$

Now, for the volume result, we employ the following formula:

$$\iiint_{B_R(\vec{r})} \psi(\vec{r}) d^3 \mathbf{r} = \int_{r=0}^R \left(\oiint_{\partial B_r(\vec{r})} \psi(\vec{r}) d^2 \mathbf{r} \right) dr = \int_{r=0}^R 4\pi r^2 \cdot \psi(\vec{r}) dr = \frac{4\pi R^3}{3} \cdot \psi(\vec{r})$$

Corollary 3.2.5 (Maximum Principle). Let ψ be a solution of Laplace equation on $\mathcal{V} \subseteq \mathbb{R}^3$. Then, ψ has no local maxima or minima on the interior of \mathcal{V} . Hence, the extreme values must occur at the boundary $\partial \mathcal{V}$.

<i>Proof.</i> By definition, if there is a local extremum, we may enclose the point
by a sufficiently small sphere such that the centre has a bigger value then any
point on/inside the sphere. But, by 3.2.4 the value should be the average of
the sphere. Contradiction.
Remark 3.2.6. Another proof for uniqueness (cf. 3.2.2) on Dirichlet condition is given by:
<i>Proof.</i> For two solutions ϕ_1 and ϕ_2 , let $\psi = \phi_1 - \phi_2$. By linearity, $\nabla^2 \psi = 0$
and $\psi _{\partial \mathcal{V}} \equiv 0$, then $\psi \equiv 0$, since any non-zero value in \mathcal{V} would contradict
3.2.5. Therefore, $\phi_1 = \phi_2$.

3.3 Surface of Materials

Lemma 3.3.1 (Interface). In the boundary surface of a solid V:

$$\vec{E}_{above} - \vec{E}_{below} = \frac{\sigma}{\epsilon_0} \hat{n}$$

- Proof. 1. Take a small area A around \vec{r} . By 2.2.2 on a small box V around A: $\Phi_E[\partial V] = \vec{E}_{above} \cdot (A \, \hat{n}) + \vec{E}_{below} \cdot (-A \, \hat{n}) = \frac{Q}{\epsilon_0} = \frac{\sigma A}{\epsilon_0}$. Hence, $(\vec{E}_{above} \vec{E}_{below}) \cdot \hat{n} = \frac{\sigma}{\epsilon_0}$.
 - 2. Take a small curve Γ around \vec{r} . By 2.1.3 on a small area Σ around Γ : $\oint_{\Gamma} \vec{E}(\vec{r}) \cdot d\vec{r} = \vec{E}_{above} \cdot (\ell \, \hat{t}) + \vec{E}_{below} \cdot (-\ell \, \hat{t}) = 0 \text{ for any tangent vector}$ \hat{t} . Hence, $(\vec{E}_{above} \vec{E}_{below}) \cdot \hat{t} = 0$. Therefore, $\vec{E}_{above} \vec{E}_{below} = \frac{\sigma}{60} \, \hat{n}$.

Corollary 3.3.2.
$$(\phi_{above} - \phi_{below})|_{\partial \mathcal{V}} = 0$$
 and $\sigma = -\epsilon_0 \frac{\partial}{\partial \hat{n}}|_{\partial \mathcal{V}} (\phi_{above} - \phi_{below})$

Proof. By 2.1.3 and 3.3.1, there second equation follows. Further, by taking at straight line curve from below to above, $\phi_a - \phi_b = -\int_{b \to a} \vec{E}(\vec{r}) \cdot d\vec{r}$ which goes to 0 as the path tends toward the boundary.

Lemma 3.3.3 (Interface of Materials). In the boundary surface of a solid \mathcal{V} : $\vec{D}_{above} - \vec{D}_{below} = \sigma_f \, \hat{n}$, in a linear medium, $\epsilon_{above} \cdot \vec{E}_{above} - \epsilon_{below} \cdot \vec{E}_{below} = \sigma_f \, \hat{n}$

Definition 3.3.4 (Conductors). A conductor, heretofore denoted Π is an object which charges can move freely. Ideally, we would have an unlimited supply of free charges.

Theorem 3.3.5. In a conductor, Π :

- 1. $E|_{\Pi} \equiv \vec{0}$
- 2. $\rho|_{\Pi} = 0$ and the charges are in $\partial \Pi$
- 3. Π is an equipotential (cf. 2.2.3), hence, $\vec{E} \perp \partial \Pi$
- *Proof.* 1. Consedering the conductor consists of coupled charges (i.e. atoms), if there is a non-zero \vec{E} at a point, then the charges would move. Supposing electrostatics, the charges cannot move, hence the filed must vanish inside a conductor on the electrostatical regime.

2. By 2.2.1,
$$\rho|_{\Pi} = \epsilon_0 (\vec{\nabla} \cdot \vec{E})|_{\Pi} = 0$$
.

3. By 2.1.13,
$$\phi_a - \phi_b = -\int_{b \to a} \vec{E}(\vec{r}) \cdot d\vec{r} = 0$$
, and the rest is 2.2.4.

Corollary 3.3.6. $\sigma = \epsilon_0 \, \hat{n} \cdot \vec{E} \big|_{\partial \Pi} = -\epsilon_0 \, \frac{\partial \phi}{\partial \hat{n}} \Big|_{\partial \Pi}$

Lemma 3.3.7 (Cavity). If a conductor Π has a cavity inside (denoted Π_c), that is, it is not simply connected (cf. Calculus II), then, in Π_c :

$$Q[\partial \Pi_c] = -Q[\Pi_c]$$

that is, the induced charged on the surface of the cavity is exactly opposite to the charge inside the cavity.

Proof. Direct application of 2.2.2 with Π_c and 3.3.5.

Theorem 3.3.8 (Faraday Cage). If $Q[\Pi_c] = 0$, then $\vec{E}|_{\Pi_c} \equiv \vec{0}$

Proof. Observe \vec{E} must be continuous inside Π_c since $\vec{\nabla} \cdot \vec{E}$ exists (cf. 2.2.1). Then, there is a loop Γ (part inside the conductor, part in the cavity) so that $\mathcal{E}[\partial \Sigma] > 0$. However, this contradicts 2.1.3. Therefore, $\vec{E}\big|_{\Pi_c} \equiv \vec{0}$.

3.4Method of Images

Definition 3.4.1. An image charge is a charged distribution on $\mathbb{R}^3 \setminus \mathcal{V}$ so that the Poisson Eq. (cf. 3.2.1) satisfies the boundary condition. By the uniqueness theorem (cf. 3.2.2), since we did not change $\rho|_{\mathcal{N}}$, and it satisfies Dirichlet boundary conditions, the solution is valid and unique.

Problem 3.4.2. A point charge of charge q is placed at (0,0,a) and in the plane z=0, there is a grounded $(\phi=0)$ infinite conducting sheet. Find the potential everywhere above the sheet (z > 0). What is the induced surface charge density on the sheet?

Solution: Place a charge -q at (0,0,-a). By Coulomb:

$$\phi(x,y,z) = \frac{q}{4\pi\epsilon_0 \sqrt{x^2 + y^2 + (z-a)^2}} - \frac{q}{4\pi\epsilon_0 \sqrt{x^2 + y^2 + (z+a)^2}}$$

So, $\phi\big|_{z=0} = 0$. Hence this expression gives us the potential for z > 0. Now, by 3.3.6, $\sigma = -\epsilon_0 \frac{\partial \phi}{\partial z}\Big|_{z=0} = -\frac{qa}{2\pi (x^2 + y^2 + a^2)^{\frac{3}{2}}}$

by 3.3.6,
$$\sigma = -\epsilon_0 \frac{\partial \phi}{\partial z}\Big|_{z=0} = -\frac{qa}{2\pi (x^2 + y^2 + a^2)^{\frac{3}{2}}}$$

Problem 3.4.3. A point charge of charge q is placed at (0,0,a) (with a>R) and there is a grounded $(\phi = 0)$ infinite conducting sphere (r = R). Find the potential everywhere outside the sphere (r > R). What is the induced surface charge density on the sphere?

Solution: Place a charge q' at (0,0,a') with a' < R. By Coulomb:

$$\phi(x,y,z) = \frac{q}{4\pi\epsilon_0\sqrt{x^2 + y^2 + (z-a)^2}} + \frac{q'}{4\pi\epsilon_0\sqrt{x^2 + y^2 + (z-a')^2}}$$

Setting $\phi(0,0,R) = 0$ and $\phi(0,0,-R) = 0$, we get: $a' = \frac{R^2}{a}$ and $q' = -\frac{R}{a}q$.

$$\phi(x,y,z) = \frac{q}{4\pi\epsilon_0 \sqrt{x^2 + y^2 + (z-a)^2}} - \frac{R q}{4\pi\epsilon_0 \sqrt{a^2(x^2 + y^2) + (a z - R^2)^2}}$$

So,
$$\phi\big|_{r=R}=0$$
. Hence this expression gives us the potential for $r>R$. Now, by 3.3.6, $\sigma=-\epsilon_0\frac{\partial\phi}{\partial r}\Big|_{r=R}=\frac{q\,z}{4\pi\,(R^2+a^2-2a\,z)^{\frac{3}{2}}}\,\left(1-\frac{a^2}{R^2}\right)$ or, in spherical

coordinates,
$$\sigma(\theta) = \frac{q R \cos \theta}{4\pi \left((a - R \cos \theta)^2 + R^2 \sin^2 \theta \right)^{\frac{3}{2}}} \left(1 - \frac{a^2}{R^2} \right)$$

3.5 Capacitors

Definition 3.5.1. A capacitor C is a system of two conductors Π_A and Π_B in a vacuum. When charged with +Q and -Q, respectively, with potential difference V, we define the capacitance as:

$$C = \frac{Q}{V} = \frac{Q}{\phi_A - \phi_B}$$

Remark 3.5.2. A more correct definition is: $C = \frac{Q_f}{V}$.

Theorem 3.5.3 (Second Uniqueness). In a volume V, $\vec{E}(\vec{r})$ is unique in V given the charge density ρ between the conductors inside V and the total charge in each conductor. That is, let $V = V' \sqcup \left(\bigsqcup_i \Pi_i \right)$, the solution to this system is unique:

$$\iint_{\partial \Pi_i} \vec{E}(\vec{r}) \cdot d^2 \vec{r} = \frac{1}{\epsilon_0} Q_i \qquad (\vec{\nabla} \cdot \vec{E}) \big|_{\mathcal{V}'} = \frac{1}{\epsilon_0} \rho$$

Proof. Let \vec{E}_1 and \vec{E}_2 be two electric fields that solve the system. Define $\vec{E} = \vec{E}_2 - \vec{E}_1$, by linearity, the system becomes: $\iint_{\partial \Pi_i} \vec{E}(\vec{r}) \cdot d^2 \vec{r} = 0$ and $(\vec{\nabla} \cdot \vec{E})|_{\mathcal{V}'} = 0$. Moreover, $\partial \mathcal{V}' = \bigsqcup_i \partial \Pi_i$ and $\phi|_{\partial \mathcal{V}'} \equiv 0$. By 3.3.5, $\phi|_{\Pi_i} \equiv \phi_i$ (const.), then:

$$\iiint_{\mathcal{V}'} \vec{\nabla} \cdot (\phi \cdot \vec{E})(\vec{\mathbf{r}}) d^3 \mathbf{r} = \oiint_{\partial \mathcal{V}'} \phi(\vec{\mathbf{r}}) \cdot \vec{E}(\vec{\mathbf{r}}) \cdot d^2 \vec{\mathbf{r}} = \sum_i \phi_i \cdot \oiint_{\partial \Pi_i} \vec{E}(\vec{\mathbf{r}}) \cdot d^2 \vec{\mathbf{r}} = 0$$

$$= \iiint_{\mathcal{V}'} \left[(\vec{\nabla} \cdot \vec{E})(\vec{\mathbf{r}}) \cdot \phi(\vec{\mathbf{r}}) - ||\vec{E}(\vec{\mathbf{r}})||^2 \right] d^3 \mathbf{r} = -\iiint_{\mathcal{V}'} ||\vec{E}(\vec{\mathbf{r}})||^2 d^3 \mathbf{r}$$

Hence,
$$\forall \vec{r} \in \mathcal{V}$$
, $\vec{E}(\vec{r}) = \vec{0}$, that is, $\vec{E}_1 \equiv \vec{E}_2$.

Corollary 3.5.4. The distribution of charge on the surface of the conductor does not matter for the electric field.

Theorem 3.5.5. The capacitance of a capacitor C (cf. 3.5.1) only depends on the geometry of the conductors. That is, there is a linear dependency between Q and V.

Proof. Since they are in a vacuum, $\rho = 0$. Taking Q_i on the capacitor, we get the electrical field $\vec{E_i}$. Then, dividing by Q_i and using 3.5.3,

$$\frac{1}{Q_1}\vec{E}_1 = \frac{1}{Q_2}\vec{E}_2 \Rightarrow \frac{1}{Q_1}\phi_1 = \frac{1}{Q_2}\phi_2 \Rightarrow C_1 = C_2$$

so, the capacitance does not change by changing the charge.

Problem 3.5.6. Calculate the capacitance of two concentric spherical shells with radii a < b.

Solution: We get a charge of Q (we're not assuming sign) in the inner shell. By spherical symmetry: $\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r} \Rightarrow$

$$\phi(b) = \phi(a) - \int_{r=a}^{b} \frac{Q}{4\pi\epsilon_0 r^2} dr = \phi(a) - \frac{Q}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right) \Rightarrow C = \frac{4\pi\epsilon_0}{\frac{1}{a} - \frac{1}{b}}$$

Lemma 3.5.7 (Associating Capacitors). Let C_1 and C_2 be two capacitors, and combining them in parallel and series, respectively, will give the following equivalent capacitance:

$$C_{\parallel} = C_1 + C_2 \qquad C_1 \qquad C_2 \qquad C_* = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

Proof. By definition:

• Parallel:
$$C_{\parallel} = \frac{Q}{\phi_A - \phi_B} = \frac{Q_1 + Q_2}{\phi_A - \phi_B} = C_1 + C_2$$

• Parallel:
$$C_{\parallel} = \frac{1}{\phi_A - \phi_B} = \frac{1}{\phi_A - \phi_B} = C_1 + C_2$$

• Series: $C_* = \frac{Q}{\phi_A - \phi_B} = \frac{Q}{\phi_A - \phi_C + \phi_C - \phi_B} = \frac{Q}{\frac{Q}{C_2} + \frac{Q}{C_1}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$

Hence, we can associate capacitors by these formulas

Lemma 3.5.8 (Capacitor Energy). For a capacitor, the energy stored inside is: $U = \frac{Q^2}{2C}$

Proof. By 3.1.2,
$$U = \frac{1}{2} \iiint_{\mathcal{V}} \rho(\vec{r}) \cdot \frac{Q}{C} d^3 r = \frac{Q^2}{2C}$$
.

Corollary 3.5.9. The capacitance is given by (cf. 3.1.4):

$$\frac{1}{C} = \iiint_{\mathcal{V}} \epsilon(\vec{\mathbf{r}}) \left[\frac{\|\vec{E}(\vec{\mathbf{r}})\|}{Q} \right]^2 d^3 \mathbf{r}$$

Problem 3.5.10. Calculate the capacitance of two concentric spherical shells with radii a < b.

Solution: We get a charge of Q (we're not assuming sign) in the inner shell. By spherical symmetry: $\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r} \Rightarrow$

$$\frac{1}{C} = \iint_{\Omega=0}^{4\pi} \int_{r=a}^{b} \epsilon_0 \frac{1}{16\pi^2 \epsilon_0^2 r^4} r^2 dr d\Omega = \frac{1}{4\pi\epsilon_0} \int_{r=a}^{b} \frac{dr}{r^2} = \frac{1}{4\pi\epsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$$

where Ω is the solid angle.

4 Currents and Circuits

4.1 Current Density

Definition 4.1.1 (Currents). Define \vec{J} as the current density, is defined as:

$$\vec{J}(\vec{r},t) = \rho(\vec{r},t) \cdot \vec{v}_{drift}(\vec{r},t)$$

where $\rho(\vec{r},t)$ is the charge density (which now depends on time) and $\vec{v}_{drift}(\vec{r},t)$ is the average drift velocity of the particles. Moreover, we can rewrite the density $\rho(\vec{r},t) = e \, n(\vec{r},t)$, where e is the electron's charge and n is the number of electrons per volume.

Define the current through a surface Σ as:

$$\mathcal{I}[\Sigma] = \iint_{\Sigma} \vec{J}(ec{\mathbf{r}}) \cdot d^2 ec{\mathbf{r}}$$

Remark 4.1.2. We may have surface or linear current density, denoted \vec{K} or \vec{I} respectively, where the charge is found only on a surface or a line.

Theorem 4.1.3 (Continuity). (Local) Conservation of Charge is equivalent to the following formula:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} \equiv 0$$

Proof. Take a closed surface $\partial\Omega$, then by Local Conservation of Charge, the current though the surface is exactly minus the change in charge. That is,

$$\iiint_{\Omega} \vec{\nabla} \cdot \vec{J}(\vec{\mathbf{r}},t) \, d^3 \mathbf{r} = \oiint_{\partial \Omega} \vec{J}(\vec{\mathbf{r}},t) \cdot d^2 \vec{\mathbf{r}} = \mathcal{I}[\partial \Omega] = -\frac{\partial Q[\Omega]}{\partial t} = -\iiint_{\Omega} \frac{\partial \rho}{\partial t} \, d^3 \mathbf{r}$$

since this is valid for all volumes Ω , the integrands should equal.

Definition 4.1.4 (Steady Current). A current is **steady** if:

$$\frac{\partial \rho}{\partial t} \equiv 0$$
 and $\frac{\partial \vec{J}}{\partial t} \equiv \vec{0}$

That is, the charges move individually and constant drift, but the charge density does not change. A direct consequence is $\vec{\nabla} \cdot \vec{J} \equiv 0$.

Lemma 4.1.5. In the regime 4.1.4, the electric static equations (2.1.3, 2.2.1, 2.2.2) are still valid, hence so are every uniqueness theorem.

Lemma 4.1.6. The power dissipated by a current is:

$$P = \iiint_{\mathcal{V}} \vec{E}(\vec{\mathbf{r}}) \cdot \vec{J}(\vec{\mathbf{r}}) \, d^3 \mathbf{r}$$

Proof. $dw = \vec{f} \cdot d\vec{r} = \rho(\vec{E} + \vec{r}' \times \vec{B}) \cdot \vec{r}' dt = \vec{E} \cdot (\rho \cdot \vec{v}) dt \Rightarrow P = \iiint_{\mathcal{V}} \vec{E} \cdot \vec{J} d^3 \vec{r} \quad \Box$

4.2 Ohm's Law

Theorem 4.2.1 (Ohm's Law). In a linear material, there is a scalar function $\varrho : \mathcal{V} \subseteq \mathbb{R}^3 \to \mathbb{R}$, called the resistivity, such that:

$$\vec{E}(\vec{r}) = \varrho(\vec{r}) \cdot \vec{J}(\vec{r})$$

Definition 4.2.2. A resistor \mathcal{R} is a system consiting of a linear material between two conductors A and B. When passing with steady current \mathcal{I} through each conductor, with potential difference $V = \phi_A - \phi_B$, we define resistance as:

 $R = \frac{V}{\mathcal{T}}$

Lemma 4.2.3. The resistance of a resistor \mathcal{R} (cf. 4.2.2) only depends on the resistivity of the material and geometry of both the conductors and material. That is, there is a linear dependency between V and \mathcal{I} .

Proof. Since the currents are steady, $\vec{\nabla} \cdot \vec{J} \equiv 0$. Looking at the formula for resistence and capacitance:

$$\frac{1}{C} = \frac{\int \vec{E}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}}}{\oiint \epsilon(\vec{\mathbf{r}}) \cdot \vec{E}(\vec{\mathbf{r}}) \cdot d^2\vec{\mathbf{r}}} \qquad R = \frac{\int \vec{E}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}}}{\oiint \frac{1}{\rho(\vec{\mathbf{r}})} \cdot \vec{E}(\vec{\mathbf{r}}) \cdot d^2\vec{\mathbf{r}}}$$

Hence, all properties follow by analogy $R \leftrightarrow \frac{1}{C}$ by $\frac{1}{\rho} \leftrightarrow \epsilon$.

Problem 4.2.4. Calculate the resistence of two concentric spherical shells with radii a < b with uniform resistivity ρ in between.

Solution: We get a current of \mathcal{I} (we're not assuming sign) goint out the inner shell. By spherical symmetry: $\vec{J} = \frac{\mathcal{I}}{4\pi r^2} \hat{r} \Rightarrow$

$$\phi(b) = \phi(a) - \int_{r=a}^{b} \frac{\varrho \mathcal{I}}{4\pi r^2} dr = \phi(a) - \frac{\varrho \mathcal{I}}{4\pi} \left(\frac{1}{a} - \frac{1}{b} \right) \Rightarrow R = \frac{\varrho}{4\pi} \left(\frac{1}{a} - \frac{1}{b} \right)$$

This is exactly the same result we got for capacitors, by applying the analogy.

Remark 4.2.5. The resistor has a (maybe non-trivial) capacitance, which makes it a RC circuit.

Theorem 4.2.6 (Kirchoff Laws). For any given circuit:

- Current: The sum of currents going into a node is equal to the sum going out. Equivalently, the algebraic sum of currents in a node is zero.
- Voltage: The directed sum of voltage differences in a loop is zero.

Lemma 4.2.7 (Associating Resistors). Let \mathcal{R}_1 and \mathcal{R}_2 be two resistors, and combining them in parallel and series, respectively, will give the following equivalent resistance:

$$R_{\parallel} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \qquad R_1 \geqslant R_2 \qquad R_* = R_1 + R_2$$

$$R_1 \Rightarrow R_2 \Rightarrow R_1 \Rightarrow R_2 \Rightarrow R_2 \Rightarrow R_3 \Rightarrow R_4 \Rightarrow R_4 \Rightarrow R_5 \Rightarrow R_5 \Rightarrow R_6 \Rightarrow R_8 \Rightarrow R_$$

Proof. By definition:

• Parallel:
$$R_{\parallel} = \frac{\phi_A - \phi_B}{I} = \frac{\phi_A - \phi_B}{I_1 + I_2} = \frac{\phi_A - \phi_B}{\frac{\phi_A - \phi_B}{R_1} + \frac{\phi_A - \phi_B}{R_2}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

• Series: $R_* = \frac{\phi_A - \phi_B}{I} = \frac{\phi_A - \phi_C + \phi_C - \phi_B}{I} = \frac{R_2 I + R_1 I}{I} = R_1 + R_2$

Hence, we can associate resistors by these formulas.

Lemma 4.2.8 (RC Circuit). We consider two cases:

$$C \xrightarrow{Q} Q = Q_0 e^{-\frac{t}{RC}}$$

$$R \xrightarrow{Q} Q = C\mathcal{E}\left(1 - e^{-\frac{t}{RC}}\right) \xrightarrow{\mathcal{E}} \mathcal{E}$$

Proof. For each case:

1.
$$R(-Q') = V = \frac{Q}{C} \Rightarrow Q = Q_0 e^{-\frac{t}{RC}}$$

2.
$$\mathcal{E} = RQ' + \frac{Q}{C} \Rightarrow Q = C\mathcal{E}\left(1 - e^{-\frac{t}{RC}}\right)$$

Lemma 4.2.9 (Resistance Power). For a resistor, the power dissipated is: $P = RI^2$

Proof. By definition,
$$U=qV\Rightarrow P=\frac{dU}{dt}=V\frac{dq}{dt}=VI=RI^2$$
 by Ohm's Law.

Corollary 4.2.10. The resistance is given by (cf. 4.1.6):

$$R = \iiint_{\mathcal{V}} \varrho(\vec{\mathbf{r}}) \left[\frac{\|\vec{J}(\vec{\mathbf{r}})\|}{I} \right]^2 d^3 \mathbf{r}$$

5 Magnetics

5.1 Magnetic Field

Definition 5.1.1 (Lorentz Force). The force acting on a test charge q in electric field \vec{E} and magnetic field \vec{B} is:

$$\vec{F}(t, \vec{r}, \vec{v}) = q \left[\vec{E}(t, \vec{r}) + \vec{v} \times \vec{B}(t, \vec{r}) \right]$$

Corollary 5.1.2 (Cyclotronic Motion). Let $\vec{\omega}_B = -\frac{q}{m} \vec{B}$ and $\vec{a}_E = \frac{q}{m} \vec{E}$, then a particle with charge q moving with $\vec{r}(t)$ satisfies the ODE:

$$\ddot{\vec{r}}(t) = \vec{a}_E(t, \vec{r}) + \vec{\omega}_B(t, \vec{r}) \times \dot{\vec{r}}(t)$$

where only the electromagnetic forces are present.

Lemma 5.1.3 (Superposition Principle). If there are two distinct fields \vec{B}_1 and \vec{B}_2 for two distinct sources, the total magnetic field is $\vec{B}_1 + \vec{B}_2$.

Theorem 5.1.4 (Gauß's Law of Magnetism). For a static magnetic field (currents that induce the field are steady),

$$\vec{\nabla} \cdot \vec{B} \equiv \vec{0}$$

hence $\exists \vec{A} : \mathbb{R}^3 \to \mathbb{R}^3 : \vec{B} = \vec{\nabla} \times \vec{A}$. Further, $\Phi_B[\partial\Omega] = \oiint_{\partial\Omega} \vec{B}(\vec{r}) \cdot d^2\vec{r} = 0$ for any closed surface $\partial\Omega$ (cf. 1.1.16).

Theorem 5.1.5 (Biot-Savart Law). The magnetic field due to a steady current \vec{J} on a volume \mathcal{V} is:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}} \vec{J}(\vec{r}) \times \frac{\vec{r} - \vec{r}}{\|\vec{r} - \vec{r}\|^3} d^3 \mathbf{r}$$

where $\mu_0 = \frac{1}{c^2 \epsilon_0}$ (c is the speed of light).

Corollary 5.1.6. The vector potential \vec{A} due to a steady current \vec{J} on a volume \mathcal{V} is: $\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}} \frac{\vec{J}(\vec{r})}{\|\vec{r} - \vec{r}\|} d^3 \mathbf{r}$

Problem 5.1.7 (Uniform Ring).

Calculate the magnetic field due to a ring of charge (in the xy-plane) of radius R with steady current I going counterclockwise, at the z-axis.

Solution: Since it is symmetric about rotations around z, we integrate using cylindrical coordinates: We have $\|\vec{r} - \vec{\mathbf{r}}\| = \sqrt{R^2 + z^2}$:

$$\vec{B}(\rho) = \frac{\mu_0 I}{4\pi} \int_{\varphi=0}^{2\pi} \frac{\hat{\varphi} \times (z\,\hat{z} - R\,\hat{\rho}) R\,d\varphi}{(R^2 + z^2)^{\frac{3}{2}}} = \frac{\mu_0 I\,R}{4\pi} \int_{\varphi=0}^{2\pi} \frac{(z\,\hat{\rho} + R\,\hat{z})\,d\varphi}{(R^2 + z^2)^{\frac{3}{2}}}$$
$$= \frac{\mu_0 I\,R}{4\pi} \int_{\varphi=0}^{2\pi} \frac{R\,\hat{z}\,d\varphi}{(R^2 + z^2)^{\frac{3}{2}}} = \frac{\mu_0 I\,R^2}{2(R^2 + z^2)^{\frac{3}{2}}}\,\hat{z}$$

Lemma 5.1.8 (Magnetic Dipole Moment). Define $\vec{\mu} = \frac{1}{2} \iiint_{\mathcal{V}} \vec{\mathbf{r}} \times \vec{J}(\vec{\mathbf{r}}) d^3 \mathbf{r}$ we get the dipole approximation of the vector potential: $\vec{A}_{dipole}(\vec{r}) = \frac{\mu_0 \vec{\mu} \times \vec{r}}{4\pi \|\vec{r}\|^3}$

Proof. Similar to the proof of electric dipole, with the added expression there are no magnetic monopole. \Box

Corollary 5.1.9.
$$\vec{B}_{dipole}(\vec{r}) = \frac{\mu_0 \left[3(\vec{\mu} \cdot \hat{r}) \, \hat{r} - \vec{\mu} \right]}{4\pi \, ||\vec{r}||^3}$$

Remark 5.1.10. In a simplified case, $\vec{\mu} = \mathcal{I} \cdot \vec{S}$.

Lemma 5.1.11. The torque on a current loop due to a (locally constant) magnetic field \vec{B} is: $\vec{\tau} = \vec{\mu} \times \vec{B}$.

Proof. By direct calculation:

$$\vec{\tau} = \oint \vec{r} \times (\mathcal{I} \, d\vec{r} \times \vec{B}) = \mathcal{I} \oint \left[(\vec{r} \cdot \vec{B}) \, d\vec{r} - \vec{B} (\vec{r} \cdot d\vec{r}) \right]$$

$$= \mathcal{I} \oint (\vec{r} \cdot \vec{B}) \, d\vec{r} - \vec{B} \mathcal{I} \oint \vec{r} \cdot d\vec{r} = \mathcal{I} \oint (\vec{r} \cdot \vec{B}) \, d\vec{r}$$

$$\vec{\mu} \times \vec{B} = \frac{1}{2} \oint (\vec{r} \times \mathcal{I} \, d\vec{r}) \times \vec{B} = \frac{1}{2} \mathcal{I} \oint \left[(\vec{r} \cdot \vec{B}) \, d\vec{r} - \vec{r} (\vec{B} \cdot d\vec{r}) \right]$$

$$\Rightarrow \vec{\tau} - \vec{\mu} \times \vec{B} = \frac{1}{2} \mathcal{I} \oint \left[(\vec{r} \cdot \vec{B}) \, d\vec{r} + \vec{r} (\vec{B} \cdot d\vec{r}) \right]$$

$$= \frac{1}{2} \mathcal{I} \sum_{j,k} \hat{x}_k \oint \left[r_j \, B_j \, dx_k + r_k \, B_j \, dx_j \right] = \frac{1}{2} \mathcal{I} \sum_{j,k} B_j \hat{x}_k \oint r_j \, dx_k + r_k \, dx_j$$

which is zero taking Stokes.

5.2 Ampère's Law

Theorem 5.2.1 (Differential Form of Ampère's Law). The magnetic field due to a steady current \vec{J} obeys:

$$\vec{\nabla} \times \vec{B}(\vec{r}) = \mu_0 \, \vec{J}(\vec{r})$$

Proof. We calculate using 5.1.5 and 5.1.6:

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla}(\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$

$$\nabla^2 \vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}} \vec{J}(\vec{r}) \left(-4\pi \delta^3(\vec{r} - \vec{r}) \right) d^3 \mathbf{r} = -\mu_0 \vec{J}(\vec{r})$$

$$\vec{\nabla} \cdot \vec{A} = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}} \vec{J}(\vec{r}) \cdot \frac{\vec{r} - \vec{r}}{\|\vec{r} - \vec{r}\|^3} d^3 \mathbf{r}$$

$$= -\frac{\mu_0}{4\pi} \oiint_{\partial \mathcal{V}} \frac{\vec{J}(\vec{r})}{\|\vec{r} - \vec{r}\|} \cdot d^2 \vec{r} \text{ due to } \vec{\nabla} \cdot \vec{J} \equiv 0$$

$$= 0 \text{ since } \mathcal{V} \text{ encloses all the current}$$

Hence $\vec{\nabla} \times \vec{B} = -\nabla^2 \vec{A} = \mu_0 \vec{J}$.

Remark 5.2.2. Taking the divergence of both sides, $\vec{0} \equiv \vec{\nabla} \cdot (\vec{\nabla} \times \vec{B}) = \mu_0 \vec{\nabla} \cdot \vec{J} \Rightarrow \vec{\nabla} \cdot \vec{J} \equiv \vec{0}$.

Corollary 5.2.3 (Coloumb Gauge). The vector potential is given by the PDE: $\nabla^2 \vec{A}(\vec{r}) = -\mu_0 \vec{J}(\vec{r})$ and $\vec{\nabla} \cdot \vec{A}(\vec{r}) = 0$

Theorem 5.2.4 (Integral Form of Ampère's Law). For any surface Σ , the magnetic field due to a steady current \vec{J} obeys:

$$\oint_{\partial \Sigma} \vec{B}(\vec{r}) \cdot d\vec{r} = \mu_0 \, \mathcal{I}[\Sigma]$$

Proof. By the differential form of Ampère's Law and Stokes' Theorem:

$$\oint_{\partial\Sigma} \vec{B}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}} = \iint_{\Sigma} (\vec{\nabla} \times \vec{B}(\vec{\mathbf{r}})) \cdot d^2 \vec{\mathbf{r}} = \iint_{\Sigma} \mu_0 \vec{J}(\vec{\mathbf{r}}) \cdot d^2 \vec{\mathbf{r}} = \mu_0 \mathcal{I}[\Sigma]$$

The result follows. \Box

Problem 5.2.5 (Infinite Wire). Calculate the magnetic field due to an infinite wire with steady current I.

Solution: By symmetry and Ampère's with Σ a flat disk of radius ρ :

$$2\pi\rho B_{\varphi} = \mu_0 I \Rightarrow \vec{B}(\rho) = \frac{\mu_0 I}{2\pi\rho} \hat{\varphi}$$

Problem 5.2.6 (Solenoid). Calculate the magnetic field due to an infinite solenoid (radius R) with steady current I and turn density n.

Solution: By symmetry and Ampère's with Σ a rectangle on the $\varphi = const.$ half-plane of sides ρ and L with one side in the z-axis:

- 1. $\rho > R : L \cdot (B_z B_{z0}) = -\mu_0 n \cdot L \cdot I \Rightarrow B_z = const.$, for $\lim_{\rho \to \infty} B_z = 0$, we need $B_z = 0$.
- 2. $\rho < R : L \cdot (B_z B_{z0}) = 0 \Rightarrow B_z = B_{z0} = \mu_0 \, n \, I \, \hat{z}.$

Hence:
$$\vec{B}(\vec{r}) = \begin{cases} \mu_0 \, n \, I \, \hat{z} & \text{if } \rho < R \\ \vec{0} & \text{otherwise} \end{cases}$$

Lemma 5.2.7 (Interface). In the boundary surface of a solid V:

$$\vec{B}_{above} - \vec{B}_{below} = \mu_0 \vec{K} \times \hat{n}$$

- *Proof.* 1. Take a small area A around \vec{r} . By 5.1.4 on a small box V around A: $\Phi_B[\partial V] = \vec{B}_{above} \cdot (A \,\hat{n}) + \vec{B}_{below} \cdot (-A \,\hat{n}) = 0$. Hence, $(\vec{B}_{above} \vec{B}_{below}) \cdot \hat{n} = 0$.
 - 2. Take a small curve Γ around \vec{r} . By 5.2.4 on a small area Σ around Γ : $\oint_{\Gamma} \vec{B}(\vec{r}) \cdot d\vec{r} = \vec{B}_{\text{above}} \cdot (\ell \, \hat{t}) + \vec{B}_{\text{below}} \cdot (-\ell \, \hat{t}) = \mu K \cdot \ell \text{ for the vector } \hat{t}$ tangent to the surface but perpendicular to \vec{K} , that is: $\hat{t} = \hat{n} \times \hat{K}$. Hence, $\hat{n} \times (\vec{B}_{\text{above}} \vec{B}_{\text{below}}) = \mu_0 \vec{K}$.

Therefore,
$$\vec{B}_{\text{above}} - \vec{B}_{\text{below}} = \mu_0 \vec{K} \times \hat{n}$$
.

5.3 Faraday's Law

Theorem 5.3.1 (Faraday-Maxwell Differential Law). The electric and magnetic fields resultant of the same source obey:

$$\vec{\nabla} \times \vec{E}(\vec{r}, t) = -\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}$$

Theorem 5.3.2 (Faraday-Maxwell Integral Law). For any surface Σ , the electric and magnetic fields resultant of the same source obey:

$$\oint_{\partial \Sigma} \vec{E}(\vec{\mathbf{r}}, t) \cdot d\vec{\mathbf{r}} = -\iint_{\Sigma} \frac{\partial \vec{B}(\vec{\mathbf{r}}, t)}{\partial t} \cdot d^2 \vec{\mathbf{r}}$$

Proof. By the differential form of Maxwell-Faraday's Law and Stokes' Theorem:

$$\oint_{\partial\Sigma} \vec{E}(\vec{\mathbf{r}},t) \cdot d\vec{\mathbf{r}} = \iint_{\Sigma} \left[\vec{\nabla} \times \vec{E}(\vec{\mathbf{r}},t) \right] \cdot d^2 \vec{\mathbf{r}} = -\iint_{\Sigma} \frac{\partial \vec{B}(\vec{\mathbf{r}},t)}{\partial t} \cdot d^2 \vec{\mathbf{r}}$$

The result follows.

Corollary 5.3.3. Substituing the vector potential:

$$\vec{\nabla} \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t} \right) \equiv \vec{0} \Rightarrow \vec{E} + \frac{\partial \vec{A}}{\partial t} = -\vec{\nabla}\phi$$

Moreover, ϕ is exactly the electric potential, as before. Hence, it obeys: $\nabla^2 \phi = -\frac{\rho}{\epsilon_0}$ if we require $\vec{\nabla} \cdot \vec{A} \equiv 0$.

Definition 5.3.4 (EMF). The electromotive force (emf) around a curve $\Gamma(t)$ (which may depend on time) is defined as:

$$\mathcal{E}[\Gamma(t)] = \oint_{\Gamma(t)} \vec{f}(\vec{r}, t) \cdot d\vec{r} = \oint_{\Gamma(t)} \left[\vec{E}(\vec{r}, t) + \dot{\vec{r}}(t) \times \vec{B}(\vec{r}, t) \right] \cdot d\vec{r}$$

where $\vec{F}(\vec{r},t) = q \vec{f}(\vec{r},t)$, that is, \vec{f} is the force density.

Theorem 5.3.5 (Faraday's Flux Rule). For any surface $\Sigma(t)$ (that may change with time), the magnetic field due to an arbitrary current \vec{J} obeys:

$$\mathcal{E}[\partial \Sigma(t)] = -\frac{d\Phi_B[\Sigma(t)]}{dt} = -\frac{d}{dt} \iint_{\Sigma(t)} \vec{B}(\vec{\mathbf{r}}, t) \cdot d^2 \vec{\mathbf{r}}$$

Proof. By 1.1.18 and the potential formulation of \vec{E} , then:

$$\begin{split} -\frac{d\Phi_{B}[\Sigma(t)]}{dt} &= -\frac{d}{dt} \iint_{\Sigma(t)} \vec{B}(\vec{\mathbf{r}},t) \cdot d^{2}\vec{\mathbf{r}} = -\frac{d}{dt} \oint_{\partial \Sigma(t)} \vec{A}(\vec{\mathbf{r}},t) \cdot d\vec{\mathbf{r}} \\ &= -\oint_{\partial \Sigma(t)} \left[\frac{\partial \vec{A}(\vec{\mathbf{r}},t)}{\partial t} - \dot{\vec{\mathbf{r}}} \times (\vec{\nabla} \times \vec{A}(\vec{\mathbf{r}},t)) \right] \cdot d\vec{\mathbf{r}} \\ &= \oint_{\partial \Sigma(t)} \left[\vec{E}(\vec{\mathbf{r}},t) + \vec{\nabla}\phi(\vec{\mathbf{r}},t) + \dot{\vec{\mathbf{r}}} \times (\vec{\nabla} \times \vec{A}(\vec{\mathbf{r}},t)) \right] \cdot d\vec{\mathbf{r}} \\ &= \oint_{\partial \Sigma(t)} \left[\vec{E}(\vec{\mathbf{r}},t) + \dot{\vec{\mathbf{r}}}(t) \times \vec{B}(\vec{\mathbf{r}},t) \right] \cdot d\vec{\mathbf{r}} = \mathcal{E}[\partial \Sigma(t)] \end{split}$$

As required. \Box

Corollary 5.3.6 (Lenz's Law). The induced current (Eddy current) on a resistive material will generate an opposing magnetic field, so as to reduce the change in flux.

Definition 5.3.7 (Magnetic Energy).

$$U = \frac{1}{2\mu_0} \iiint_{\mathcal{V}} \|\vec{B}(\vec{\mathbf{r}})\|^2 d^3 \mathbf{r}$$

Proof. This energy comes exactly from induction:

$$\begin{split} U &= \frac{1}{2} \iiint_{\mathcal{V}} \vec{A}(\vec{\mathbf{r}}) \cdot \vec{J}(\vec{\mathbf{r}}) \, d^3 \mathbf{r} = \frac{1}{2\mu_0} \iiint_{\mathcal{V}} \vec{A}(\vec{\mathbf{r}}) \cdot \vec{\nabla} \times \vec{B}(\vec{\mathbf{r}}) \, d^3 \mathbf{r} \\ &= \frac{1}{2\mu_0} \iiint_{\mathcal{V}} \|\vec{B}(\vec{\mathbf{r}})\|^2 \, d^3 \mathbf{r} - \frac{1}{2\mu_0} \oiint_{\partial \mathcal{V}} \vec{A}(\vec{\mathbf{r}}) \times \vec{B}(\vec{\mathbf{r}}) \cdot d^2 \vec{\mathbf{r}} \end{split}$$

And the surface term is zero by enforcing a boundary condition $\vec{A}|_{\partial\mathcal{V}} \equiv \vec{0}$.

5.4 Inductance

Definition 5.4.1 (Mutual Inductance). Given n current loops $\Gamma_i = \partial \Sigma_i$ with current I_i passing through, we define: $M_{i,j} = \frac{\Phi_{i,j}}{I_i}$, where

$$\Phi_{i,j} = \Phi_{B_j}[\Sigma_i] = \iint_{\Sigma_i} \vec{B}_j(\vec{\mathbf{r}}) \cdot d^2 \vec{\mathbf{r}} = \oint_{\Gamma_i} \vec{A}_j(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}}$$

Lemma 5.4.2 (Neumann Formula). The mutual inductances depend only on the geometry of the two current loops and:

$$M_{i,j} = \frac{\mu_0}{4\pi} \oint_{\Gamma_i} \oint_{\Gamma_j} \frac{d\vec{\mathbf{r}}_i \cdot d\vec{\mathbf{r}}_j}{\|\vec{\mathbf{r}}_i - \vec{\mathbf{r}}_j\|}$$

Proof. By 5.1.6 on a loop: $\vec{A}_j(\vec{r}) = \frac{\mu_0}{4\pi} \oint_{\Gamma_j} \frac{I_j \ d\vec{r}}{\|\vec{r} - \vec{r}\|}$. Hence, it follows since I_j

does not depend on position, we can plug it into $M_{i,j} I_j = \Phi_{i,j} = \oint_{\Gamma_i} \vec{A}_j(\vec{r}) \cdot d\vec{r}$ and divide through.

Corollary 5.4.3. $M_{i,j} = M_{j,i}$

Definition 5.4.4 (Self Inductance). *Define:* $L_i = \frac{\Phi_{i,i}}{I_i}$, hence, we get:

$$\mathcal{E}_i = -L_i \frac{dI_i}{dt}$$

Moreover, can take $L_i = \lim_{\Gamma_j \to \Gamma_i} M_{i,j}$

Lemma 5.4.5 (Inductor Energy). For a inductor, the energy stored inside is:

$$U = \frac{LI^2}{2}$$

Proof. By 4.1.6,
$$U = \int V I dt = \int L \frac{dI}{dt} I dt = \frac{L I^2}{2}$$
.

Corollary 5.4.6. The Inductance is given by (cf. 5.3.7):

$$L = \iiint_{\mathcal{V}} \frac{1}{\mu_0} \left[\frac{\|\vec{B}(\vec{\mathbf{r}})\|}{I} \right]^2 d^3 \mathbf{r}$$

6 Maxwell's Equations

6.1 Maxwell's Correction and Waves

Remark 6.1.1. So, far, our equations are:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

However, the last equation cannot be correct, in general, since taking divergence of both sides would give $\vec{\nabla} \cdot \vec{J} = \frac{1}{\mu_0} \vec{\nabla} \cdot (\vec{\nabla} \times \vec{B}) = 0$

Theorem 6.1.2 (Ampère Law with Maxwell Correction).

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Proof. Say $\nabla \times \vec{B} = \mu_0(\vec{J} + \vec{J}_D)$ for some \vec{J}_d (called the displacement current). Taking the divergence and the curl:

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{B}) = 0 = \mu_0 (\vec{\nabla} \cdot \vec{J} + \vec{\nabla} \cdot \vec{J}_d) \Rightarrow \vec{\nabla} \cdot \vec{J}_d = -\vec{\nabla} \cdot \vec{J} = \frac{\partial \rho}{\partial t}$$

and a solution to that, using Gauß's Law is: $J_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$.

Lemma 6.1.3 (Inhomogeneous Wave Equation). Let $\Box^2 = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ and $\vec{\nabla} \cdot \vec{A} + \frac{1}{c} \frac{\partial \phi}{\partial t} \equiv 0$ (Lorentz Condition), then the Maxwell Equations become:

$$\Box^2 \phi = -\frac{\rho}{\epsilon_0} \qquad \Box^2 \vec{A} = -\mu_0 \vec{J}$$

 ${\it Proof.}$ Direct application of Maxwell's Equations.

Corollary 6.1.4 (E&M Waves). In a charge-free region ($\rho = 0$ and $\vec{J} = \vec{0}$), the electromagnetic fields obey: $\Box^2 \vec{E} = \Box^2 \vec{B} = \vec{0}$.

Lemma 6.1.5. In a charge-free region, let ψ be a solution to the wave equation. Then,

$$\vec{E}(\vec{r},t) = \vec{E}_0 \cdot \psi(\hat{k} \cdot \vec{r} - ct) \Rightarrow \vec{B}(\vec{r},t) = \frac{\hat{k} \times \vec{E}_0}{c} \cdot \psi(\hat{k} \cdot \vec{r} - ct)$$

Proof. Follows from Faraday's Law.

6.2 Special Relativity

Theorem 6.2.1 (Lorentz Transformation of Fields). The transformation of electromagnetic fields from a frame S to S' moving at velocity \vec{v} .

$$ec{E}'_{\parallel} = ec{E}_{\parallel}$$
 $ec{B}'_{\parallel} = ec{B}_{\parallel}$ $ec{E}'_{\perp} = \gamma \left(ec{E}_{\perp} + ec{v} imes ec{B}
ight)$ $ec{B}'_{\perp} = \gamma \left(ec{B}_{\perp} - rac{1}{c^2} ec{v} imes ec{E}
ight)$

Proof. Let $A_0 = \phi/c$, then, we define: $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, the result follows by applying a Lorentz boost to this tensor. Another derivation would be using the Lorentz force (cf. 5.1.1) with the boost in velocities and forces.

Corollary 6.2.2. Magnetic field is a Lorentz transformation of Electric Field. If $\vec{B} = \vec{0}$:

$$\vec{B}' = -\frac{\gamma}{c^2} \vec{v} \times \vec{E} = -\frac{1}{c^2} \vec{v} \times \vec{E}'$$

Theorem 6.2.3 (Jeffimenko's Equation). A solution to Maxwell's Equations is:

$$\phi(\vec{r},t) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\rho(\vec{\mathbf{r}},t_r)}{\|\vec{r}-\vec{\mathbf{r}}\|} \, d^3\vec{\mathbf{r}} \qquad \vec{A}(\vec{r},t) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}} \frac{\vec{J}(\vec{\mathbf{r}},t_r)}{\|\vec{r}-\vec{\mathbf{r}}\|} \, d^3\vec{\mathbf{r}}$$

where $t_r = t - \frac{\|\vec{r} - \vec{\mathbf{r}}\|}{c}$ is the retarded time.

Proof. The derivation of this solution envolves taking Fourier transformation to find a Green's function. Outside the scope. \Box