Vienna Ab Initio Package - Crash course

4th Lecture - 20/09/21

Dr. Federico Dattila fdattila@iciq.es

Structure of the course

Day / September	Hours / Madrid time	Location	Topic
•			
Monday 6 th	10:00-12:00	E4 /	Introduction + Handson 1
		Zoom	(molecules; frequencies; molecular dynamics)
Tuesday 7th	12:00-13:00	E4 /	Tutorial Handson 1
•		Zoom	
Wednesday	10:00-12:00	E4 /	Correction exercises 1 + Handson 2 (bulk optimization and
8 th		Zoom	electronic properties) + Instructions for python / bash project
Thursday 9 th	10:00-11:00	E3 /	Tutorial Handson 2
		Zoom	
Friday 10 th / Wednesday 15 th			Python / bash project
T111 cth	10.00 12.00	E4 /	Commention and a series 2 and model and the series 4 Head and 2
Thursday 16 th	10:00-12:00	E4 /	Correction exercises 2 and python / bash project + Handson 3
- 11 a -th	40.00.44.00	Zoom	(surface optimization and electronic properties)
Friday 17 th	10:00-11:00	E4 /	Tutorial Handson 3
		Zoom	
Monday 20 th	10:00-12:00	E4 /	Correction exercises 3 + Handson 4
		Zoom	(magnetic properties and Hubbard correction)
Tuesday 21st	10:00-11:00	E4 /	Tutorial Handson 4
		Zoom	
Wednesday	10:00-11:00	E4 /	Correction exercises 4
22 nd		Zoom	

Materials

- Materials available on OneDrive;
- All lectures and tutorials will be registered and later available on OneDrive;
- Detailed explanation online. The current course gives only an introduction!
- Save the link to the VASP manual online: https://www.vasp.at/wiki/index.php/The_VASP_Manual

Today's class

- 1. Correction of exercises of Handson 3;
- 2. Lecture 4 and instructions for Handson 4.

Based on:

• <u>0_vasp_summary</u> (summary of all the important information)

Further materials:

- 1_accuracy
- 2_pseudoppdatabase
- 3_dft_depth
- 4_magnetism

Related handson session:

(4) Magnetic properties and Hubbard correction

Question:

Define the surface energies for Ni(100) and Ni(111). Which is the most stable crystalline facet between Ni(100) and Ni(111)? Compare with experimental values. Which facet is the most abundant on a Ni nanoparticle?

$$\begin{split} \gamma &= \frac{1}{A} \left\{ \frac{1}{2} \left[E_{\text{unrel}} - n \cdot (E_{\text{bulk}}) \right] + \Delta E_{\text{rel}} \right\} \\ A &= \text{Area} = a_{\text{x}} \times b_{\text{y}} \\ E_{\text{unrel}} &= \text{energy of the first ionic step} \\ &\quad (\textit{grep "energy w" OUTCAR} \mid \textit{head -n 1}) \\ E_{\text{rel}} &= \text{energy of the last ionic step} \\ &\quad (\textit{grep "energy w" OUTCAR} \mid \textit{tail -n 1}) \\ \Delta E_{\text{rel}} &= E_{\text{rel}} - E_{\text{unrel}} \\ E_{\text{bulk}} &= \text{energy of the bulk crystal structure (2_7_fccNi_opt)} \\ n &= \text{number of unit cell in the surface} \end{split}$$

Question:

Define the surface energies for Ni(100) and Ni(111). Which is the most stable crystalline facet between Ni(100) and Ni(111)? Compare with experimental values. Which facet is the most abundant on a Ni nanoparticle?

	n unit cell	<i>a_x</i> / Å	b _v / Å	A / \mathring{A}^2	$E_{ m unrel}$ / ${ m eV}$	$E_{ m rel}$ / ${ m eV}$	$\Delta E_{ m rel}$ / eV	γ / eV Å-2	γ / J m $^{-2}$
Ni(100)	5	1.8	1.8	3.1	-25.6	-25.6	-0.014	0.4	5.6
Ni(111)	5	2.5	2.2	5.4	-25.7	-25.7	-0.001	0.2	3.0
bulk	1					-5.6			

Surf. Sci. 1998, 411, 186-202.

Question:

How much is CO adsorption energy (E_{ads}) on Ni(111)? Compare with experimental values (Thermal desorption spectroscopy)

$$E_{\rm ads} = E_{\rm total} - E_{\rm clean} - E_{\rm CO}$$

Question:

How much is CO adsorption energy (E_{ads}) on Ni(111)? Compare with experimental values (Thermal desorption spectroscopy)

$$E_{\rm ads} = E_{\rm total} - E_{\rm clean} - E_{\rm CO}$$

Total / eV	-40.8
Clean / eV	-25.7
CO / eV	-14.8
Ads / eV	-0.3

TABLE I. Calorimetric heat of adsorption at initial low coverage (q_i) , at final steady state coverage, 1.0×10^{15} /cm² (q_f), the differential entropy of the adsorbate layer at steady state (\bar{S}) , and the desorption preexponential at steady state (v).

System	q_i (kJ/mol)	q_f (kJ/mol)	\bar{S} (J/K/mol)	$v (s^{-1})$
CO/Ni(111)	130	95	71	3×10^{14}
CO/Ni(100)	123	99	. 58	1×10^{15}
CO/Ni(110)	133	101	50	3×10^{15}

J. Chem. Phys. 1993, 99, 2202.

ΔG / eV	low coverage	steady state
Ni(111)	-1.4	-1.0
Ni(100)	-1.3	-1.0
Ni(110)	-1.4	-1.1

Question:

How much is CO adsorption energy (E_{ads}) on Ni(111)? Compare with experimental values (Thermal desorption spectroscopy)

$$E_{\rm ads} = E_{\rm total} - E_{\rm clean} - E_{\rm CO}$$

Total / eV —40.8 Clean / eV —25.7 CO / eV —14.8 Ads / eV —0.3 TABLE I. Calorimetric heat of adsorption at initial low coverage (q_i) , at final steady state coverage, 1.0×10^{15} /cm² (q_f) , the differential entropy of the adsorbate layer at steady state (\bar{S}) , and the desorption preexponential at steady state (v).

System	q_i (kJ/mol)	q_f (kJ/mol)	\bar{S} (J/K/mol)	$v (s^{-1})$
CO/Ni(111)	130	95	71	3×10^{14}
CO/Ni(100)	123	99	. 58	1×10^{15}
CO/Ni(110)	133	101	50	3×10^{15}

J. Chem. Phys. 1993, 99, 2202.

ΔG / eV	low coverage	steady state
Ni(111)	-1.4	-1.0
Ni(100)	-1.3	-1.0
Ni(110)	-1.4	-1.1

Why does DFT underestimate the experimental value?

Question:

List Ni-CO vibrational frequencies and compare with experimental values.

Question:

List Ni-CO vibrational frequencies and compare with experimental values.

49.7 meV (401 cm⁻¹) for Ni–CO stretch, Exp 59.5 meV

264.0 meV (2129 cm⁻¹) for CO stretch,

 $40.5 \text{ meV} (327 \text{ cm}^{-1}) \text{ for NiCO bend.}$

Surf. Sci. 1982, 115, 553-568.

Handson 4 – copy the exercises (<u>supercomputer</u>)

- Enter the virtual machine (password: guest1\$) or AnyDesk;
- Open a terminal: Ctrl + Alt + t
- Enter teklahome (from ICIQ workstation): ssh tekla2.iciq.es
- From outside ICIQ: enable Betelgeuse tunnel and then enter teklahome ssh -p2004 -X yourusername @betelgeuse.iciq.es ssh tekla2.iciq.es
- Make a directory handson and a subdirectory 4
 mkdir handson; mkdir handson/4
- Copy the exercises from my teklahome to yours
 cp -r /home/fdattila/00-vasp-course/handson4/* ~/handson/4
- Enter the folder and check to have successfully copied the files cd handson/4; Is –It; cd ../..

Handson 4 – check the exercises

Check the VASP input (<u>supercomputer</u> / <u>locally</u>)

- Enter each simulation and check INCAR / KPOINTS cd handson/4; cd simulation-folder; vi INCAR; cd ...; cd .../...
- Use the <u>VASP manual</u> to understand properly all the tag of the INCAR.

Handson 4 – submit simulation (supercomputer)

- Create a bin directory and copy the rungen file Only for Maryam! mkdir /home/yourusername/bin; cp –r /home/fdattila/bin/rungen ~/bin/.
- Check the file with the <u>vi</u> editor. Change all the fdattila to <u>yourusername</u> through the editor vi ~/bin/rungen;
- Alternatively, replace all the fdattila in rungen with yourusername automatically sed i "s/fdattila/yourusername/g" ~/bin/rungen
- Enter the handson/4 folder and create a run.sh file in each simulation to be run (e.g. 4_1_Ni) cd handson/4/simulation-folder; ~/bin/rungen name-of-sim 4 4 5.3.5; sed –i "s/vasp_std/vasp/g" run.sh; cd ../../..
- Enter the handson folder, check that you have INCAR, KPOINTS, POTCAR, POSCAR and run.sh, submit the simulation.
 cd handson/4/simulation-folder; qsub run.sh; cd ../../..
- **Tip**: consider iterating the creation of run.sh file and the submission of each simulation with the for command. E.g. *cd handson/4*; *for i in 4_**; *do cd \$i*; *action-to-be-performed*; *cd ..*; *done*; *cd ../..*

Handson 4 – check the VASP output (locally)

- Only if you access through virtual machine. Run the commands tunnel1 and tunnel2 in 2 terminals tunnel1 yourusername (terminal 1) tunnel2 yourusername (terminal 2)
- Open a new terminal and enter the teklahome folder cd ~/teklahome
- Enter a simulation and check the structure through the p4v utility cd handson/4; cd simulation-folder; p4v vasprun.xml; cd ..; cd ../..