- 1. 已知复数 z 满足 $\frac{\sqrt{3}+\mathrm{i}}{z}=\mathrm{i},\,\mathrm{i}$ 为虚数单位, 则 z=______.
- 2. 若双曲线方程为 $x^2 \frac{y^2}{16} = 1$, 则该双曲线的渐近线方程为______.
- 3. 在 $(1+2x)^6$ 的二项展开式中, x^5 项的系数为______.
- 4. $\lim_{n \to \infty} \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} = \underline{\qquad}.$
- 5. 若关于 x,y 的方程组 $\begin{cases} x+my-1=0,\\ (m,n\in\mathbf{R}) \text{ 有无穷多组解}, 则 \ mn \ \mathbf{0}$ 的值为______.
- 6. 某学生在上学的路上要经过 2 个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯概率都是 $\frac{1}{3}$,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.
- 7. 若等差数列 $\{x_n\}$ 的公差 3, 则 $x_1, x_2, x_3, \dots, x_9$ 的方差为______.
- 8. 三棱锥 P-ABC 中, 底面 ABC 是锐角三角形, PC 垂直平面 ABC, 若其三视图中主视图和左视图如图所示, 则棱 PB 的长为______.

- 9. 设变量 x、y 满足条件 $\begin{cases} x \ge 1, \\ x y + 2 \le 0, & \text{则 } z = -2x + y \text{ 的取值范围为} \\ x + y 7 \le 0, \end{cases}$
- 10. 如图所示在 $\triangle ABC$ 中, BC 边上的中垂线分别交 BC、AC 于点 D、E, 若 $\overrightarrow{AE} \cdot \overrightarrow{BC} = 6$, $|\overrightarrow{AB}| = 2$, 则 $|\overrightarrow{AC}| =$ ______.

11. 设 $y = f^{-1}(x)$ 是函数 $f(x) = \frac{x}{2} + \frac{\pi}{8} \sin x + \frac{\pi}{8}, x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ 的反函数, 则函数 $y = f(x) + f^{-1}(x)$ 的最小值等于______.

- 12. 函数 $f(x)=x, g(x)=x^2-x+2$. 若存在 $x_1, x_2, \cdots, x_n \in [0, \frac{9}{2}]$, 使得 $f(x_1)+f(x_2)+\ldots+f(x_{n-1})+g(x_n)=1$ $g(x_1) + g(x_2) + ... + g(x_{n-1}) + f(x_n)$, 则 n 的最大值为_
- 13. 下列函数中既是奇函数, 又在区间 $(0, +\infty)$ 上单调递减的函数为 ().

- C. $y = -x^3$ D. $y = x + \frac{1}{x}$
- 14. 参数方程 $\begin{cases} x=3t^2+4,\\ &(t\ \textbf{为参数},\ \textbf{且}.\ 0\leq t\leq 3)\ \textbf{所表示的曲线为}\ (&). \end{cases}$
 - A. 直线

C. 线段

- 15. 将函数 $y=\sin(2x-\frac{\pi}{3})$ 图像上的点 $P(\frac{\pi}{4},t)$ 向左平移 s(s>0) 个单位长度得到点 P', 若 P' 位于函数 $y = \sin 2x$ 的图像上,则(
 - A. $t = \frac{1}{2}$, s 的最小值为 $\frac{\pi}{6}$

C. $t=\frac{1}{2}$, s 的最小值为 $\frac{\pi}{3}$

B. $t = \frac{\sqrt{3}}{2}$, s 的最小值为 $\frac{\pi}{6}$ D. $t = \frac{\sqrt{3}}{2}$, s 的最小值为 $\frac{\pi}{3}$

16. 已知以下三个陈述句:

p: 存在 $a \in \mathbb{R}$ 且 $a \neq 0$, 对任意的 $x \in \mathbb{R}$, 均有 $f(2^{x+a}) < f(2^x) + f(a)$ 恒成立;

 q_1 : 函数 y = f(x) 是定义域为 R 的减函数, 且对任意的 $x \in \mathbf{R}$, 都有 f(x) > 0;

 q_2 : 函数 y = f(x) 是定义域为 R 的增函数, 存在 $x_0 < 0$, 使得 $f(x_0) = 0$;

用这三个陈述句组成两个命题, 命题 S: "若 q_1 , 则 p"; 命题 T: "若 q_2 , 则 p". 关于 S, T 以下说法正确的是 ().

A. 只有命题 S 是真命题

B. 只有命题 T 是真命题

C. 两个命题 S,T 都是真命题

- D. 两个命题 S,T 都不是真命题
- 17. 如图, S 是圆锥的顶点, O 是底面圆的圆心, AB、CD 是底面圆的两条直径, 且 $AB \perp CD$, SO = 4, OB = 2, P 为 SB 的中点.

- (1) 求圆锥的体积;
- (2) 求异面直线 SA 与 PD 所成角的大小 (结果用反三角函数值表示).
- 18. 已知函数 $f(x) = \cos x(\sin x + \cos x) \frac{1}{2}$.
 - (1) 若 $0<\alpha<\frac{\pi}{2}$, 且 $\sin\alpha=\frac{\sqrt{2}}{2}$, 求 $f(\alpha)$ 的值;
 - (2) 求函数 f(x) 的最小正周期, 及函数 f(x) 在 $[0,\frac{\pi}{2}]$ 上的递减区间

- 19. 新冠肺炎疫情造成医用防护服紧缺, 某地政府决定为防护服生产企业 A 公司扩大生产提供 $x(x \in [0,10])$ (万元) 的专项补贴, 并以每套 80 元的价格收购其生产的全部防护服. A 公司在收到政府 x(万元) 补贴后, 防护服产量将增加到 $t = k \cdot (6 \frac{12}{x+4})(万套)$, 其中 k 为工厂工人的复工率 $(k \in [0.5,1])$. A 公司生产 t 万件防护服还需投入成本 20 + 8x + 50t(万元).
 - (1) 将 A 公司生产防护服的利润 y(万元) 表示为补贴 x(万元) 的函数 (利润不包含政府补贴);
 - (2) 若对任意的 $x \in [0, 10]$ (万元), A 公司都不会产生亏损, 求复工率 k 的取值范围.
- 20. 已知抛物线 $y^2 = 4x$ 的焦点为 F, 直线 l 交抛物线于不同的 $A \setminus B$ 两点.
 - (1) 若直线 l 的方程为 y = x 1, 求线段 AB 的长;
 - (2) 若直线 l 经过点 P(-1,0), 点 A 关于 x 轴的对称点为 A', 求证: A'、F、B 三点共线;
 - (3) 若直线 l 经过点 M(8,-4), 抛物线上是否存在定点 N, 使得以线段 AB 为直径的圆恒过点 N? 若存在, 求出点 N 的坐标, 若不存在, 请说明理由.
- 21. 无穷数列 $\{a_n\}(n\in \mathbf{N}^*)$,若存在正整数 t,使得该数列由 t 个互不相同的实数组成,且对于任意的正整数 n, $a_{n+1},a_{n+2},\cdots,a_{n+t}$ 中至少有一个等于 a_n ,则称数列 $\{a_n\}$ 具有性质 T,集合 $P=\{p|p=a_n,\ n\in \mathbf{N}^*\}$.
 - (1) 若 $a_n = (-1)^n$, $n \in \mathbb{N}^*$, 判断数列 $\{a_n\}$ 是否具有性质 T;
 - (2) 数列 $\{a_n\}$ 具有性质 T, 且 $a_1=1$, $a_4=3$, $a_8=2$, $P=\{1,2,3\}$, 求 a_{11} 与 a_{14} 的值;
 - (3) 数列 $\{a_n\}$ 具有性质 T, 记集合 $B = \{m|a_m = a_1, m \in \mathbb{N}^*\}$, 将集合 B 中的所有元素按从小到大的顺序排列, 得到数列 $\{i_n\}$, 记 $b_n = i_{n+1} i_n$, $n \in \mathbb{N}^*$. 证明: 若数列 $\{b_n\}$ 具有性质 T, 则数列 $\{b_n\}$ 是常数列.