```
In [1]: # Importing libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

In [2]: # importing data
df=pd.read_csv('FAO.csv',encoding='latin-1')
df

Out[2]:

	Area Abbreviation	Area Code	Area	Item Code	Item	Element Code	Element	Unit	latitude
0	AFG	2	Afghanistan	2511	Wheat and products	5142	Food	1000 tonnes	33.94
1	AFG	2	Afghanistan	2805	Rice (Milled Equivalent)	5142	Food	1000 tonnes	33.94
2	AFG	2	Afghanistan	2513	Barley and products	5521	Feed	1000 tonnes	33.94
3	AFG	2	Afghanistan	2513	Barley and products	5142	Food	1000 tonnes	33.94
4	AFG	2	Afghanistan	2514	Maize and products	5521	Feed	1000 tonnes	33.94
21472	ZWE	181	Zimbabwe	2948	Milk - Excluding Butter	5142	Food	1000 tonnes	-19.02
21473	ZWE	181	Zimbabwe	2960	Fish, Seafood	5521	Feed	1000 tonnes	-19.02
21474	ZWE	181	Zimbabwe	2960	Fish, Seafood	5142	Food	1000 tonnes	-19.02

		A Abbreviat	rea tion (Area Code	A	Area	Item Code		Item	Element Code	Element	Unit	latitude
	21475	Z	WE	181	Zimba	bwe	2961		Aquatic oducts, Other	5142	Food	1000 tonnes	-19.02
	21476	Z	WE	181	Zimba	bwe	2928	Miscella	aneous	5142	Food	1000 tonnes	-19.02
	21477 r	ows × 63	colun	nns									>
In [3]:	df.hea	ad ()											
Out[3]:	ar mee												
	Abb	Area previation	Area Code		Area	Iter Cod		Item	Elemer Cod	Fieme	nt Unit	latitude	e longitud
	0	AFG	2	Afgha	nistan	251		heat and products	514	2 Foo	od 1000 tonnes	33.94	67.7
	1	AFG	2	: Afgha	anistan	280		Rice (Milled uivalent)	514	2 Foo	od 1000 tonnes	3 3 44	67.7
	2	AFG	2	Afgha	anistan	251		arley and products	552	1 Fee	ed 1000 tonnes		67.7
	3	AFG	2	Afgha	nistan	251		arley and products	514	2 Foo	od 1000 tonnes		67.7
	4	AFG	2	Afgha	nistan	251	1	aize and products	552	1 Fee	ed 1000 tonnes	. 7.7 94	67.7
	5 rows	× 63 colur	nns										
	4												>
	ED/	4											

In [4]: #Plot for annual produce of different countries with quantity versus ye ars

```
In [5]: area_list = list(df['Area'].unique())
    year_list = list(df.iloc[:,10:].columns)

plt.figure(figsize=(24,12))
    for ar in area_list:
        yearly_produce = []
        for yr in year_list:
            yearly_produce.append(df[yr][df['Area'] == ar].sum())
        plt.plot(yearly_produce, label=ar)
    plt.xticks(np.arange(53), tuple(year_list), rotation=60)
    plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=8, mode="ex pand", borderaxespad=0.)
    plt.savefig('p.png')
    plt.show()
```


`. The original name will be removed in a future release. Please update your code. Note that the default `kind` in `factorplot` (`'point'`) has

changed `'strip'` in `catplot`.

warnings.warn(msg)

In [8]: #Food and feed plot for the largest producers(India, USA, China)

```
In [9]: sns.factorplot("Area", data=df[(df['Area'] == "India") | (df['Area'] == "China, mainland") | (df['Area'] == "United States of America")], kind = "count", hue="Element", size=8, aspect=.8)

C:\Users\parveen\anaconda3\lib\site-packages\seaborn\categorical.py:367
2: UserWarning: The `size` parameter has been renamed to `height`; plea se update your code.
    warnings.warn(msg, UserWarning)
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x685fa308b0>


```
yearly_produce.append(df[yr][df['Area']==ar].sum())
new_df_dict[ar] = yearly_produce
new_df = pd.DataFrame(new_df_dict)
new_df.head()
```

Out[10]:

	Afghanistan	Albania	Algeria	Angola	Antigua and Barbuda	Argentina	Armenia	Australia	Austria	Azeri
0	9481.0	1706.0	7488.0	4834.0	92.0	43402.0	0.0	25795.0	22542.0	
1	9414.0	1749.0	7235.0	4775.0	94.0	40784.0	0.0	27618.0	22627.0	
2	9194.0	1767.0	6861.0	5240.0	105.0	40219.0	0.0	28902.0	23637.0	
3	10170.0	1889.0	7255.0	5286.0	95.0	41638.0	0.0	29107.0	24099.0	
4	10473.0	1884.0	7509.0	5527.0	84.0	44936.0	0.0	28961.0	22664.0	

5 rows × 174 columns

In [11]: new_df = pd.DataFrame.transpose(new_df)
 new_df.columns = year_list
 new_df.head()

Out[11]:

	Y1961	Y1962	Y1963	Y1964	Y1965	Y1966	Y1967	Y1968	Y1969	Y1970
Afghanistan	9481.0	9414.0	9194.0	10170.0	10473.0	10169.0	11289.0	11508.0	11815.0	10454.0
Albania	1706.0	1749.0	1767.0	1889.0	1884.0	1995.0	2046.0	2169.0	2230.0	2395.0
Algeria	7488.0	7235.0	6861.0	7255.0	7509.0	7536.0	7986.0	8839.0	9003.0	9355.0
Angola	4834.0	4775.0	5240.0	5286.0	5527.0	5677.0	5833.0	5685.0	6219.0	6460.0
Antigua and Barbuda	92.0	94.0	105.0	95.0	84.0	73.0	64.0	59.0	68.0	77.0

5 rows × 53 columns

```
mean produce = []
In [12]:
          for i in range(174):
               mean produce.append(new df.iloc[i,:].values.mean())
          new df['Mean Produce'] = mean produce
          new df['Rank'] = new df['Mean Produce'].rank(ascending=False)
          new df.head()
Out[12]:
                                                   Y1965
                                                                  Y1967
                       Y1961 Y1962 Y1963
                                           Y1964
                                                           Y1966
                                                                          Y1968
                                                                                 Y1969
                                                                                         Y1970
                                                  10473.0 10169.0 11289.0
                                          10170.0
           Afghanistan 9481.0 9414.0 9194.0
                                                                         11508.0
                                                                                11815.0
                                                                                       10454.0
               Albania 1706.0 1749.0 1767.0
                                           1889.0
                                                   1884.0
                                                           1995.0
                                                                  2046.0
                                                                                 2230.0
                                                                                         2395.0
                                                                         2169.0
               Algeria 7488.0 7235.0 6861.0
                                           7255.0
                                                   7509.0
                                                           7536.0
                                                                  7986.0
                                                                         8839.0
                                                                                 9003.0
                                                                                         9355.0
                     4834.0 4775.0 5240.0
                                           5286.0
                                                   5527.0
                                                           5677.0
                                                                  5833.0
               Angola
                                                                         5685.0
                                                                                 6219.0
                                                                                         6460.0
           Antigua and
                        92.0
                               94.0
                                                                    64.0
                                                                           59.0
                                                                                   68.0
                                    105.0
                                             95.0
                                                     84.0
                                                            73.0
                                                                                          77.0
              Barbuda
          5 rows × 55 columns
          item list = list(df['Item'].unique())
          item df = pd.DataFrame()
          item df['Item Name'] = item list
          for yr in year list:
               item produce = []
               for it in item list:
                   item produce.append(df[yr][df['Item']==it].sum())
               item df[yr] = item produce
In [14]: item df.head()
```

t[14]:		Item_Name	Y1961	Y1962	Y1963	Y1964	Y1965	Y1966	Y1967	Y1968
	0	Wheat and products	138829.0	144643.0	147325.0	156273.0	168822.0	169832.0	171469.0	179530.0
	1	Rice (Milled Equivalent)	122700.0	131842.0	139507.0	148304.0	150056.0	155583.0	158587.0	164614.0
	2	Barley and products	46180.0	48915.0	51642.0	54184.0	54945.0	55463.0	56424.0	60455.0
	3	Maize and products	168039.0	168305.0	172905.0	175468.0	190304.0	200860.0	213050.0	215613.0
	4	Millet and products	19075.0	19019.0	19740.0	20353.0	18377.0	20860.0	22997.0	21785.0
	5 rc	ows × 54 col	umns							
	4									
[15]:	foi		nge(115) .append(item_df	.iloc[i,	1:].val	ues.sum())		
	ite	r i in rai	nge(115) .append(m'] = su	item_df m_col					ng= False	2)
[15]:	ite	r i in rai sum_col em_df[' <mark>Su</mark> em_df['Pro	nge(115) .append(m'] = su	item_df m_col					ng= False Y1967	
	ite	r i in rai sum_col em_df['Sur em_df['Pro	nge(115) .append(n'] = su oduction d()	item_df m_col _Rank']	= item_	df['Sum	'].rank(ascendi		Y1968
	ite	r i in rai sum_col em_df['Sum em_df['Pro em_df.head Item_Name Wheat and	nge(115) .append(n'] = su oduction d() Y1961	item_df im_col i_Rank']	= item_ Y1963	df['Sum	'].rank(Y1965	ascendi Y1966	Y1967	Y1968
	ite	r i in rai sum_col em_df['Sur em_df['Pro em_df.head Item_Name Wheat and products Rice (Milled	nge(115) .append(n'] = su oduction d() Y1961 138829.0	item_df im_col i_Rank'] Y1962	<pre>= item_ Y1963 147325.0</pre>	Y1964 156273.0	Y1965 168822.0	Y1966 169832.0	Y1967 171469.0	Y1968 179530.0
	ite	r i in rai sum_col em_df['Sur em_df['Pro em_df.head Item_Name Wheat and products Rice (Milled Equivalent) Barley and	nge(115) .append(n'] = su oduction d() Y1961 138829.0 122700.0	item_df im_col i_Rank'] Y1962 144643.0 131842.0	<pre>Y1963 147325.0 139507.0</pre>	Y1964 156273.0 148304.0	Y1965 168822.0 150056.0	Y1966 169832.0 155583.0	Y1967 171469.0 158587.0	Y1968 179530.0 164614.0 60455.0 215613.0


```
In [18]: | item df['Item Name'][item df['Production Rank'] < 11.0].sort values()</pre>
Out[18]: 56
               Cereals - Excluding Beer
         65
                Fruits - Excluding Wine
                     Maize and products
         3
                Milk - Excluding Butter
         53
                  Potatoes and products
         6
               Rice (Milled Equivalent)
         1
         57
                          Starchy Roots
         64
                             Vegetables
                      Vegetables, Other
         27
                     Wheat and products
         Name: Item Name, dtype: object
In [19]: sns.factorplot("Item", data=df[(df['Item']=='Wheat and products') | (df
         ['Item']=='Rice (Milled Equivalent)') | (df['Item']=='Maize and product
         s') | (df['Item']=='Potatoes and products') | (df['Item']=='Vegetables,
          Other') | (df['Item']=='Milk - Excluding Butter') | (df['Item']=='Cere
         als - Excluding Beer') | (df['Item']=='Starchy Roots') | (df['Item']==
         'Vegetables') | (df['Item']=='Fruits - Excluding Wine')], kind="count",
          hue="Element", size=20, aspect=.8)
         plt.show()
         C:\Users\parveen\anaconda3\lib\site-packages\seaborn\categorical.py:366
         6: UserWarning: The `factorplot` function has been renamed to `catplot
         `. The original name will be removed in a future release. Please update
         your code. Note that the default `kind` in `factorplot` (`'point'`) has
         changed `'strip'` in `catplot`.
           warnings.warn(msg)
         C:\Users\parveen\anaconda3\lib\site-packages\seaborn\categorical.py:367
         2: UserWarning: The `size` parameter has been renamed to `height`; plea
         se update your code.
           warnings.warn(msg, UserWarning)
```



```
ax2.set(xlabel='Y1968', ylabel='Y1963')
ax3.set(xlabel='Y1968', ylabel='Y1986')
ax4.set(xlabel='Y1968', ylabel='Y2013')
sns.jointplot(x="Y1968", y="Y1961", data=df, kind="reg", ax=ax1)
sns.jointplot(x="Y1968", y="Y1963", data=df, kind="reg", ax=ax2)
sns.jointplot(x="Y1968", y="Y1986", data=df, kind="reg", ax=ax3)
sns.jointplot(x="Y1968", y="Y2013", data=df, kind="reg", ax=ax4)
plt.close(2)
plt.close(3)
plt.close(4)
plt.close(5)
```


Clustering

```
In [23]:
           new df.head()
Out[23]:
                         Y1961
                                Y1962 Y1963
                                                Y1964
                                                         Y1965
                                                                  Y1966
                                                                          Y1967
                                                                                  Y1968
                                                                                           Y1969
                                                                                                   Y1970
             Afghanistan 9481.0 9414.0 9194.0
                                               10170.0
                                                        10473.0
                                                                10169.0
                                                                         11289.0
                                                                                 11508.0
                                                                                         11815.0
                                                                                                  10454.0
                        1706.0 1749.0 1767.0
                                                1889.0
                                                         1884.0
                                                                  1995.0
                                                                          2046.0
                                                                                  2169.0
                                                                                          2230.0
                                                                                                   2395.0
                 Albania
                        7488.0 7235.0
                                       6861.0
                                                7255.0
                                                         7509.0
                                                                  7536.0
                                                                          7986.0
                                                                                  8839.0
                                                                                          9003.0
                                                                                                   9355.0
                 Algeria
                                                5286.0
                 Angola
                        4834.0 4775.0 5240.0
                                                         5527.0
                                                                 5677.0
                                                                          5833.0
                                                                                  5685.0
                                                                                          6219.0
                                                                                                   6460.0
             Antigua and
                           92.0
                                  94.0
                                                                   73.0
                                                                                                     77.0
                                         105.0
                                                  95.0
                                                           84.0
                                                                            64.0
                                                                                    59.0
                                                                                            68.0
                Barbuda
           5 rows × 55 columns
           X=new df.iloc[:,:-2].values
In [24]:
           X=pd.\overline{DataFrame}(X)
           X=X.apply(pd.to_numeric,axis=0)
           X.columns=year list
            Χ
Out[24]:
```

```
Y1961
               Y1962
                        Y1963
                                Y1964
                                        Y1965
                                                 Y1966
                                                         Y1967
                                                                  Y1968
                                                                          Y1969
                                                                                  Y1970 ...
     9481.0
               9414.0
                       9194.0
                              10170.0
                                       10473.0 10169.0 11289.0
                                                                11508.0
                                                                         11815.0
   0
                                                                                 10454.0 ...
       1706.0
               1749.0
                       1767.0
                                1889.0
                                        1884.0
                                                 1995.0
                                                         2046.0
                                                                 2169.0
                                                                          2230.0
                                                                                  2395.0 ...
   1
      7488.0
               7235.0
                       6861.0
                                7255.0
                                        7509.0
                                                7536.0
                                                         7986.0
                                                                 8839.0
                                                                          9003.0
                                                                                  9355.0 ...
   3
       4834.0
               4775.0
                        5240.0
                                5286.0
                                        5527.0
                                                 5677.0
                                                         5833.0
                                                                 5685.0
                                                                          6219.0
                                                                                  6460.0
         92.0
                         105.0
                                  95.0
                                                   73.0
                                                           64.0
                                                                   59.0
                                                                            68.0
                                                                                    77.0 ...
                 94.0
                                          84.0
 169
       9523.0
               9369.0
                       9788.0
                               10539.0
                                       10641.0
                                               10772.0
                                                        11126.0
                                                                12014.0
                                                                        12537.0
                                                                                 13503.0 ...
      23856.0
              25220.0
                      26053.0
                               26377.0
                                       26961.0 27355.0 27745.0
                                                                28698.0
                                                                         29565.0
                                                                                 30841.0
                                3224.0
       2982.0
               3038.0
                       3147.0
                                        3328.0
                                                3358.0
                                                         3420.0
                                                                 3411.0
                                                                          3386.0
                                                                                  3348.0 ...
 171
 172
       2976.0
               3057.0
                        3069.0
                                3121.0
                                        3236.0
                                                 3523.0
                                                         3688.0
                                                                 3791.0
                                                                          3904.0
                                                                                  4006.0 ...
 173
       3260.0
               3503.0
                       3479.0
                                3738.0
                                        3940.0
                                                3991.0
                                                         4202.0
                                                                 4443.0
                                                                          4486.0
                                                                                  4714.0 ...
174 rows × 53 columns
from sklearn.cluster import KMeans
wcss = []
for i in range(1,11):
     kmeans = KMeans(n clusters=i,init='k-means++',max iter=300,n init=1
0,random state=0)
     kmeans.fit(X)
     wcss.append(kmeans.inertia )
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```

In [25]:


```
In [26]: kmeans = KMeans(n_clusters=4,init='k-means++',max_iter=300,n_init=10,ra
ndom_state=0)
y_kmeans = kmeans.fit_predict(X)
X=X.values
```

```
In [27]: plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0,1],s=100,c='green',lab
el='Others')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1,1],s=100,c='red',label
='Highest Producers')
plt.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s
=200,c='blue',label='Centroids')
plt.title('Clusters of countries by Productivity')
plt.legend()
plt.show()
```

