Neural Networks in the Wild

HANDWRITING RECOGNITION

BY JOHN LIU

Motivation

- O US Post Office (700 million pieces of mail per day)
 - O HWAI (Lockheed-Martin 1997)
 - Compare Program Letter Recognition Improvement Program
- O Electronic Health Records (Medical scribble)
- O Banking: check processing
- O Legal: signature verification
- O Education: autograding

OCR is not HWR

Optical Character Recognition	Handwriting Recognition	
Fixed fonts	Free flowing	
No character overlap	Overlapping characters	
Easy alignment id	Flowing alignment	
Fixed aspect ratios	Variable aspect ratios	
Low noise	Can be noisy	

HWR: Online vs Offline

- Online recognition = conversion of text as it is written
 - O Palm PDA, Google Handwrite
 - O Low noise = easier classification
 - Features: stroke pressure, velocity, trajectory
- Offline recognition = image conversion of text
 - Computer-vision based methods to extract glyphs
 - Much more difficult than normal OCR

Offline HWR

- O Preprocessing
 - O Discard irrelevant artifacts and remove noise
 - O Smoothing, thresholding, morphological filtering
- O Segmentation and Extraction
 - Find contours and bounding boxes
 - O Glyph extraction
- Classification
 - Linear and ensemble methods
 - Neural Networks

HWR Examples

Scanned handwritten note

- noisy background
- varying character size
- biased ground truth

License Plate image

- goal: plate ID
- similar problem to HWR
- registration renewal soon

Kernel Smoothing

- O Blurring helps eliminate noise after thresholding
 - Local kernel defines averaging area
 - O Used 8x8 kernel for example images
 - OpenCV: cv2.blur()

Thresholding

- O Thresholding converts to b/w image
 - \bigcirc Colors are inverted so (black, white) = (0,1)
 - Some noise is present, but greatly reduced due to smoothing in previous step
 - OpenCV: cv2.threshold()

Morphological Filtering

- Erosion: eat away at the boundaries of objects
 - Removes white noise and small artifacts
 - OpenCV: cv2.erode() with 4x4 kernel
- O Dilation: increases thickness and white region
 - opposite of erosion
 - O Useful in joining broken parts of an object
 - OpenCV: cv2.dilate() with 2x2 kernel

Opening vs Closing

- O Erosion/Dilation = Opening
 - O Eliminates noise outside objects

- O Dilation/Erosion = Closing
 - Eliminates noise within objects

Contour/Bounding Box

- O Contours = set of all outer contiguous points
 - Approximate contours as a reduced polygon
 - Calculate the bounding rectangle
 - OpenCV: cv2.findContours(), cv2.approxPolyDP(), cv2.boundingRect()

Glyph Extraction

Results from bounding boxes

NIST Special DB 19

- O Contains 814,255 segmented handwritten characters
- O Superset of MNIST that includes alphabetic characters
- O 62 character classes [A-Z], [a-z], [0-9], 128x128 pixels
- We down-sample to 32x32 and use only a subsample of 90,000 characters (train=70,000, test&valid=10,000)

MNIST VS SD19

MNIST (LeCun)	SD19
10 classes	62 classes
Digits	Upper & Lower case + Digits
28x28 pixel	128x128 pixel
60,000 samples	814,255 samples
boring	GROOVY

Classification

- O Goal: correctly classify character with highest:
 - Accuracy
 - F1 = geometric mean of precision & recall
- O Typical Methods
 - O Linear
 - O SVM
 - Ensemble
 - Neural Networks

Logistic Regression

- o a.k.a. Softmax, MaxEnt, logit regression
- We use multinomial LR with classes = 62
- Implemented with scikit-learn

Accuracy score = 59%, avg F1 score = 0.56 (baseline)

SVM - RBF

- We use a Gaussian kernel (a.k.a. Radial Basis Function)
- Implemented with scikit-learn (slow!)

SVC with RBF kernel

Accuracy score = 65%, avg F1 score = 0.61

Random Forest

- C Ensemble estimator that builds a random forest of decision trees and combines their estimations
- O Crowd Intelligence: "the wisdom of Crowds"
- Implemented with scikit-learn (fast!)

Accuracy score = 69%, avg F1 score = 0.66

Extra Trees

a.k.a. Extremely Randomized Trees, similar to Random Forest except splits are also randomized

Accuracy score = 73%, avg F1 score = 0.71

Neural Networks

- O HWR inherently a computer vision problem, apt for neural networks given recent advances
- O Inputs: image reshaped as a binary vector
- Outputs: one-hot representation = 62 bit vector
- O Question: How do you actually go about building a (deep) neural network model?

Middle Layer

WARNING: don't try this in Excel

Theano

- O Python library that implements Tensor objects that leverage GPUs for calculation
 - O Plays well with numpy.ndarray datatypes
 - Transparent use of GPU (float32) = 140X faster
 - O Dynamic C code generation
- O Installation is not fun:
 - O Update GPU driver
 - O Install CUDA 6.5 + Toolkit
 - Install CUDAMat

Pylearn2

- O Python machine learning library toolbox built upon Theano (GPU speed)
- O Provides flexibility to build customized neural network models with full access to hyper-params (nodes per layer, learning rate, etc...)
- O Uses pickle for file I/O
- O Two methods to implement models:
 - O YAML
 - o ipython notebook

Pylearn2 Code Structure

- Dataset specification
 - O Uses DenseDesignMatrix class
- Model configuration
 - Carlo LR, Kmeans, Softmax, RectLinear, Autoencoder, RBM, DBM, Cuda-convnet, more...
- Training Algorithm choice
 - O SGD, BGD, Dropout, Corruption
- O Training execution
 - Train class
- Prediction and results

#1 Feedforward NN

O Hidden layer = sigmoid, Output layer = softmax

Input = 1024 (=32x32) bit vector

S

Prediction= 62 bit vector (one-hot rep)

Hyperparams

- O Hidden layer = 400 neurons
- Output layer = 62 neurons
- Random initialization (symmetry breaking)
- O SGD algorithm (mini-batch stochastic gradient descent)
 - Fixed learning rate = 0.05
 - O Batch size = 100
- O Termination = after 100 epochs

#1 pylearn2 code

```
h0 = mlp.Sigmoid(layer name="h0",dim=400, sparse init=20)
y0 = mlp.Softmax(n classes=62, layer name="y0", sparse init=20)
layers = [h0, y0]
nn = mlp.MLP(layers,nvis=1024)
algo = sgd.SGD(learning rate=0.05,batch size=100,monitoring dataset=valid,
               termination criterion=EpochCounter(100))
algo.setup(nn,train)
save best = best params.MonitorBasedSaveBest(channel name="y0 misclass",
                                              save path='best params.pkl')
while True:
    algo.train(dataset=train)
    nn.monitor.report_epoch()
    nn.monitor()
    save best.on monitor(nn,train,algo)
    if not algo.continue learning(nn):
        break
```

#1 Running in ipython

Epochs seen: 100

Batches seen: 70000

Examples seen: 7000000

learning_rate: 0.0500000119209

objective: 0.623726010323

y0_col_norms_max: 11.5188903809

y0_col_norms_mean: 6.90935611725

y0_col_norms_min: 4.80359125137

y0_max_max_class: 0.996758043766

y0_mean_max_class: 0.759563267231

y0_min_max_class: 0.221193775535

y0_misclass: 0.173800006509

y0_nll: 0.623726010323

y0_row_norms_max: 6.41655635834

y0_row_norms_mean: 2.55642676353

y0_row_norms_min: 0.48346811533

Accuracy = 83%

Problem: Overfitting

- O It's easy to overfit using neural networks
 - How many neurons per layer? 400? 800?
- Methods to deal with it include:
 - O L1, L2, ElasticNet regularization
 - Early stopping
 - Model averaging
 - O DROPOUT

Remedy: Dropout

- O Dropout invented by G. Hinton to address overfitting
 - Automatically provides ensemble boosting

Prevents neurons from co-adapting

#2 NN w/Dropout

O 2 Softplus hidden layers, Softmax output layer

Input = 1024 (=32x32) bit vector

S

Prediction= 62 bit vector (one-hot rep)

Softplus $f(x) = log(1+e^x)$

#2 pylearn2 code

```
# SoftPlus with Dropout
h0 = mlp.Softplus(layer name='h0', dim=800, sparse init=40)
h1 = mlp.Softplus(layer name='h1', dim=800, sparse init=40)
y0 = mlp.Softmax(layer name='y0', n classes=62, irange=0)
layers = [h0, h1, y0]
model = mlp.MLP(layers, nvis=1024)
monitoring = dict(valid=valid)
termination = MonitorBased(channel name="valid y0 misclass", N=10)
extensions = [best params.MonitorBasedSaveBest(channel name="valid y0 misclass",
save path="train best.pkl")]
algorithm = sgd.SGD(0.1, batch size=100, cost=Dropout(),
                    monitoring dataset = monitoring,
                    termination criterion = termination)
print 'Running training'
train job = Train(train, model, algorithm, extensions=extensions,
                  save path="train.pkl", save freq=1)
train job.main loop()
```

Termination Condition = stop if no improvement after N=10 epochs

#2 running in ipython

Epochs seen: 93

Batches seen: 65100

Examples seen: 6510000

learning_rate: 0.100000023842

total_seconds_last_epoch: 10.1289653778

training_seconds_this_epoch: 6.20919704437

valid_objective: 1.4562972784

valid_y0_col_norms_max: 5.99511814117

valid_y0_col_norms_mean: 2.90585327148

valid_y0_col_norms_min: 2.15357899666

valid_y0_max_max_class: 0.967477440834

valid_y0_mean_max_class: 0.583315730095

valid_y0_min_max_class: 0.12644392252

valid_y0_misclass: 0.253300011158

valid_y0_nll: 0.946564733982

valid_y0_row_norms_max: 2.06650829315

valid_y0_row_norms_mean: 0.773801326752

valid_y0_row_norms_min: 0.347277522087

Accuracy = 76%

Problem: SGD speed

- SGD learning tends to be slow when curvature differs among features
- Errors change trajectory of gradient, but always perpendicular to feature surface

Remedy: Momentum

Errors change velocity of gradient, not gradient itself

- O Start with small momentum to dampen oscillations
- Fully implemented in Pylearn2
- Other methods (conjugate gradient, Hessian-free)

#3 NN W/Momentum

Rectified Linear hidden layer, Softmax output layer

Input = 1024 (=32x32) bit vector

S

Prediction= 62 bit vector (one-hot rep)

Hidden = 400 neurons Initial Momentum = 0.5 Final Momentum = 0.99

Rectified Linear f(x) = max(x,0)

#3 pylearn2 code

```
# Rectified Linear with Momentum
from pylearn2.training algorithms import sgd, learning rule
h0 = mlp.RectifiedLinear(layer name='h0', dim=400, sparse init=40)
y0 = mlp.Softmax(layer name='y0', n classes=62, irange=0)
layers = [h0, y0]
model = mlp.MLP(layers, nvis=1024)
# momentum
initial momentum = 0.5
final momentum = 0.99
start = 1
saturate = 50
momentum rule = learning rule.Momentum(initial momentum)
monitoring = dict(valid=valid)
termination = MonitorBased(channel name="valid y0 misclass", N=10)
extensions = [best params.MonitorBasedSaveBest(channel name="valid y0 misclass",
                                               save path="rect best.pkl"),
              learning rule.MomentumAdjustor(final momentum, start, saturate)]
algorithm = sgd.SGD(0.1, batch size=100, cost=Dropout(), learning rule=momentum rule,
                    monitoring dataset = monitoring, termination criterion = termination)
print 'Running training'
train job = Train(train, model, algorithm, extensions=extensions,
                  save path="rect.pkl", save freq=5)
train job.main loop()
```

#3 running in ipython

Epochs seen: 27

Batches seen: 18900

Examples seen: 1890000

learning_rate: 0.100000023842 momentum: 0.760000526905

total_seconds_last_epoch: 4.66804122925 training_seconds_this_epoch: 2.96171355247

valid_objective: 1.42965459824

valid_y0_col_norms_max: 4.5757818222 valid_y0_col_norms_mean: 3.47835850716

valid_y0_col_norms_min: 2.6680624485

valid_y0_max_max_class: 0.962530076504

valid_y0_mean_max_class: 0.555216372013

valid_y0_min_max_class: 0.12590457499

valid_y0_misclass: 0.249799996614

valid_y0_nll: 0.971761405468

valid_y0_row_norms_max: 2.2137401104 valid_y0_row_norms_mean: 1.3540699482 valid_y0_row_norms_min: 0.666570603848 Accuracy = 76%

Autoencoders

- O Learns efficient codings (dimensionality reduction)
 - Continuous Linear units = similar to PCA (+rotation)
 - O Nonlinear units = manifold learning

Autoencoders are deterministic (not good at predicting)

Denoising Autoencoders

O Corrupt input with noise (randomly set to 0), then force hidden layer to predict input

source: neuraltip

#4 Stacked DAE

O Autoencoders for hidden layers 1 & 2, softmax output layer

Unsupervised Training for Autoencoder Hidden Layers

Supervised
Training to
fine-tune
Stacked DAE

• Pre-train Hidden Layers 1 & 2 sequentially, stack a softmax output layer on top and fine tune

#4 training layer 1

O Pre-train Layer 1, save weights

Epochs seen: 10 Batches seen: 7000

Examples seen: 700000

learning_rate: 0.0010000000475

objective: 9.47059440613

total_seconds_last_epoch: 5.54894971848 training seconds this epoch: 3.88439941406

#4 training layer 2

O Pre-train layer 2, using outputs of layer 1 as inputs

Epochs seen: 10 Batches seen: 7000

Examples seen: 700000

learning_rate: 0.0010000000475

objective: 2.91170930862

total_seconds_last_epoch: 4.94157600403 training seconds this epoch: 3.63193702698

#4 Fine-tuning

O SGD with momentum for 50 Epochs

```
# stacking and supervised fine-tuning
dae1 = serial.load("dae layer1.pkl")
dae2 = serial.load("dae layer2.pkl")
h1 = mlp.PretrainedLayer(layer name='h1',layer content=dael)
h2 = mlp.PretrainedLayer(layer name='h2',layer content=dae2)
y0 = mlp.Softmax(layer name='y0', n classes=62, irange=0.005, max col norm=1.9365)
layers = [h1, h2, y0]
monitoring = dict(valid=valid)
callback = sqd.ExponentialDecay(decay factor=1.00004,min lr=0.000001)
extensions = [best params.MonitorBasedSaveBest(channel name="valid y0 misclass",
                                               save path="dae best.pkl"),
              learning rule.MomentumAdjustor(final momentum=0.7, start=1, saturate=250)]
model = mlp.MLP(layers, batch size=100, nvis=1024)
algorithm = sgd.SGD(learning rate=0.05, init momentum=0.5, batch size=100,
                    update callbacks=callback,
                    monitoring dataset=monitoring, termination criterion=EpochCounter(50))
print 'Running training'
train job = Train(train, model, algorithm, extensions=extensions, save path="dae.pkl", save freq=1)
train job.main loop()
```

Classification Results

Model	Accuracy
Logistic Regression	59%
SVM w/RBF	65%
Random Forest	69%
Extremely Random Forest	73%
2-layer Sigmoid	83%
3-layer Softplus w/dropout	76%
2-layer RectLin w/momentum	76%
Stacked DAE w/momentum	89%

Tools

- OpenCV computer vision library
- O Scikit-image image processing library
- O Scikit-learn ML on python
- O Theano fast tensor math library
- O Pylearn2 neural networks on python
- O Nolearn deep learning on python
- O DL4J deep learning on Java
- O Torch7 ML on LUA
- MLlib ML on Spark

LAST WORDS

I LIKE CHINESE FOOD

- STACKED DAE