南昌大学物理实验报告

课程名称:		普通物理实验	(3)
实验名称:	<u></u>	<u> </u>	为浓度
学院:	理学院	专业班级:	物理学 151 班
学生姓名:	黄泽豪	学号:	5502115014
实验地点:	B415	座位号:	11
实验时间:	<u>第十三</u>	周星期四上午九	点四十五开始

【实验目的】

- 1.了解旋光仪的原理、构造及使用
- 2.观察旋光物质的旋光现象
- 3.学会用旋光仪测糖溶液的旋光率和浓度

【实验仪器】

旋光仪、试管、糖溶液

【实验原理】

单色偏振光通过液态旋光物质时,振动面的旋转角度 $\Delta \Phi$ 与旋光物质的性质、液体厚度 L、浓度 C 有关,其关系为

$$\Delta \Phi = \alpha C L \tag{1}$$

式中 $\Delta\Phi$ 为用波长为 λ 的偏振光时测得的旋转角度,称为旋光度,单位为度(°); α 为比例系数,称物质的旋光率,若溶液浓度 C 的单位为 kg/m^3 ,溶液厚度 L 的单位为 m,则 α 的单位为 ° m^3/kg ·m。数值上等于偏振光通过浓度为 1 kg/m^3 ,厚度为 1m 的溶液后,振动面旋转的角度.工业上给出的 α 单位为 ° cm^3/g ·dm。

旋光率 α 标志着溶质的特性,它与波长和温度都有关,并且当溶剂改变时,它 也 随 之 发 生 很 复 杂 的 变 化 . 通 常 给 出 的 某 物 质 的 α 值 , 是 钠 光 ($\lambda = 5.893 \times 10^{-7}$ m)在 20° C 时给出的。

【实验内容及步骤】

- 1.接通电源,开启开关,预热5分钟,待钠光灯发光正常可开始工作.
- 2.转动手轮,在中间明或暗的三分视场时,调节目镜使中间明纹或暗纹边缘清晰.再转动手轮,观察视场亮度变化情况,从中辨别半明半暗位置即零度视场.
- 3.仪器中放入空试管或充满蒸馏水的试管后,调节手轮找到零度视场,从左右两读数视窗分别读数,求二者平均值为一个测量值.转动手轮离开零度视场后再转回来读数,共测两次取平均值.则仪器的真正零点在其平均值 Φ_0 处.
- 4.将装有已知浓度糖溶液的试管放入旋光仪,注意让气泡留在试管中间的凸起部分.转动手轮找到零度视场位置,记下左右视窗中的读数和 Φ_{\pm} 和 Φ_{\pm} 。各测 2 次求其平均值 $\overline{\Phi}$.则糖溶液的偏光旋转角度为 $\Delta\overline{\Phi} = \overline{\Phi} \overline{\Phi}_{0}$.
- 5.将装有未知浓度的糖溶液的试管放入旋光仪,重复步骤 4,测出其偏光旋转角度.
 - 6.测试完毕,关闭开关,切断电源.

【实验注意事项】

- 1.实验前调节对光环, 使视场清晰
- 2.溶液应装满试管,不能有气泡,如有气泡,需将气泡调整至试管凸起处, 以免影响读数
 - 3.注入溶液后,试管两端透光窗应擦净才可装上旋光仪

【数据处理】

	实测Φ/°			$\overline{\Phi}/^{\circ}$	L/m	Φ ₀ /°		
		左	右	左	右	Ψ'	2/111	- 0
空管	0%	0°12'	0°9'	0°12'	0°15'	0°12'	0.1	
C_1	4%	2°42'	2°42'	2°42'	2°42'	2°42'	0.1	2°30'
C_2	8%	5°24'	5°24'	5°24'	5°24'	5°24'	0.1	5°12'
C_3	10%	6°45'	6°45'	6°30'	6°30'	6°37'30''	0.1	6°25'30''
C_4	?	4°3'	4°3'	3°57'	3°57'	4°	0.1	3°48'

由 Origin 线性拟合知,旋光率

$$\begin{cases} \alpha = (0.65714 \pm 0.01546)^{\circ} / \% \cdot dm \approx (0.66 \pm 0.02)^{\circ} / \% \cdot dm \\ u_{r\alpha} = 2.35\% \end{cases}$$

$$u_{rC_{?}} = \frac{u_{C_{?}}}{\overline{C_{?}}} = \left| \frac{\partial \ln \frac{\Delta \Phi}{\alpha L}}{\partial \alpha} \cdot u_{\alpha} \right| = \frac{1}{\alpha} \times u_{\alpha} = 0.03$$

将数据带入得, $\overline{C_2} = 5.95\%$, $u_{C_2} = 0.18$, $C_2 = (5.95 \pm 0.18)\%$

【误差分析】

- 1. 糖溶液浓度的不均匀和变化可能引起误差。比如, 盛装糖溶液时未充分搅拌就装入管中, 多次测量同一试管的旋光度之前没有充分摇匀, 烧杯中的糖溶液浓度随着时间的推移会发生变化。
 - 2. 糖溶液的温度不同或试管中的温度梯度可能引起误差。

【实验结果分析与小结】

要想测出溶液的旋光度,单单靠一片检偏器是很难判断是否消光的。因为检偏器视场的变化很缓慢,而且越接近消光位置,变化的越缓慢,人眼很难分辨什么位置的是消光的,什么位置没有。旋光仪的三分视场非常好的解决了这个问题。它让光线通过起偏器后再通过一个窄窄的石英片,通过石英片的旋光效应,将视场分为明暗不同的三部分。这样,在旋转检偏器时,三分视场的强度会出现两次相同的状态,使人眼容易分辨,方便记录数据。

【原始数据】

	学生姓名: 学号: 5502 11501 专业班级:
	实验类型: □验证 □综合 □设计 □创新 水积 和 期: 实验成绩:
A	語を見かっから > 1/2 + 3 11
0 ts	様本度でん。 o° 12' 2 42' 5° 24' 6° 45' 4° 3' 一 o° 9' 2 42' 5° 24' 6° 45' 4° 3'
R	D/' 0'2' 2'42' 5'24' 6'36' 3'57'
3 to	型/° 0°15′ 2°42′ 5°24′ 6°36′ 3°57′ 型/° 0°15′ 2°42′ 5′24′ 6°36′ 3°57′
	te lo cm
	C 1
	20 (11)
	谈卷分析,
	① 福港越的流度不均匀可能引起误差。
	比如, 盛装糖溶颜时未充分搅拌 就装入营中
	多次测量之前也应充分摇匀。
	(3)推游预的温度不同或管中的温度梯度也可能引起误差