Terrific Thesis Title

Toller Thesis Titel

Master thesis by Amazing Author Date of submission: January 4, 2024

1. Review: Super Supervisor

Darmstadt

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Amazing Author, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB der TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und anderer in der Arbeit genannter Quellen keine fremden Hilfsmittel benutzt. Die von mir bei der Anfertigung dieser wissenschaftlichen Arbeit wörtlich oder inhaltlich benutzte Literatur und alle anderen Quellen habe ich im Text deutlich gekennzeichnet und gesondert aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 4. Januar 2024

A. Author

Abstract

Abstract

Contents

1.	Introduction	2
2.	Background 2.1. Classes of Anomaly detection	
3.	Related Work	5
4.	Method	6
5.	Experimental Setup	7
6.	Experimental Results	8
7.	Conclusion and Future work	9
Α.	Appendix	11

Figures and Tables

ist of Figures	
1.1. I am a caption	4
ist of Tables	
4.1. Table Caption	(

Abbreviations, Symbols and Operators

List of Abbreviations

Notation	Description
DDPG	Deep Deterministic Policy Gradient
DQN	Deep Q Network
ML	Machine Learning
PPO	Proximal Policy Optimization
RL	Reinforcement Learning
SAC	Soft Actor Critic
TRPO	Trust Region Policy Optimization

List of Symbols

Notation	Description	
A	continuous action space	
S	continuous state space	

 $\mathcal{H}(\cdot)$ entropy

 $\pi(a|s_t)$ Policy

1. Introduction

This is a citation: [1]

This is a figure:

Figure 1.1.: I am a caption

2. Background

This is an algorithm

2.1. Classes of Anomaly detection

- there are different kinds of approaches to IAD look at tree picture
- First important distinction is between supervised and unsupervised -> we focus on unsupervised -> list problems with supervised approaches and thus advantages of unsupervised ones
- briefly touch on other IAD settings like few shot, along with references
- among unsupervised approaches, there are two more fundamental distinctions -> reconstruction based vs representation/feature embedding based -> explain difference with lots of references
- for reconstruction based touch on 2-3 base categories like GANs etc and link fundamental papers for GANs etc for representation based important to explain memory bank, teacher student, and distribution map explain normalizing flow somehow somewhere in there
- maybe say which algos we chose and what we covered with that

2.2. Our own Dataset

- repeat motivation why we added additional data in mytec style - say that we went with loco mytec flair(maybe give reasons) - say that we came up with a set of structural

and logical anomalies for each category - list categories(flat connector, angle and special construct)

- 3 sub sections for the three categories
- flat connector link the exact one we used (or examples of some) give structural anomalies
- give logical anomalies for both briefly touch on how we produced them show image examples for each
- repeat same for other categories
- also when describing angle: touch on how there is a special case with multi perspective detection

2.3. metrics

- show metrics from survey papers explain which metrics we used and where the other ones are used explain also why we used the ones we used, and what disadvantages of other ones where
- touch on paul bergmann paper for sPRO score, say how it is better than pixel auroc and normal pro score, also explain saturation thresholds
- some math formula for calculating the important metrics

3. Related Work

4. Method

This is an table:

\overline{m}	$\Re\{\underline{\mathfrak{X}}(m)\}$	$-\Im\{\underline{\mathfrak{X}}(m)\}$	$\mathfrak{X}(m)$	$\frac{\mathfrak{X}(m)}{23}$	A_m	$\varphi(m) / \circ$	φ_m / $^{\circ}$
1	16.128	8.872	16.128	1.402	1.373	-146.6	-137.6
2	3.442	-2.509	3.442	0.299	0.343	133.2	152.4
3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
4	0.993	-0.429	0.993	0.086	0.08	25.6	90
5	1.29	0.099	1.29	0.112	0.097	-175.6	-114.7
6	0.483	-0.183	0.483	0.042	0.063	22.3	122.5
7	0.766	-0.475	0.766	0.067	0.039	141.6	-122
8	0.624	0.365	0.624	0.054	0.04	-35.7	90
9	0.641	-0.466	0.641	0.056	0.045	133.3	-106.3
10	0.45	0.421	0.45	0.039	0.034	-69.4	110.9
11	0.598	-0.597	0.598	0.052	0.025	92.3	-109.3

Table 4.1.: Table Caption

5. Experimental Setup

6. Experimental Results

7. Conclusion and Future work

Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances in Neural Information Processing Systems* (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

A. Appendix

Appendix here