Why Regression?

EC 607, Set 03

Edward Rubin Spring 2020

Prologue

Schedule

Last time

- The Experimental Ideal
- Fundamentals of R

Today

What's so great about linear regression and OLS?

Read MHE 3.1

Upcoming

Assignment First step of project proposal due April 15th.

Follow up

return()

- 1. function() automatically returns the last evaluated value—regardless of return().
- 2. Hadley Wickham[†] suggests reserving return for "early" returns.

Why?

In our previous discussion, we began moving from simple differences to a regression framework.

Q Why do we[†] care so much about linear regression and OLS?

A As we discussed, regression allows us to control for covariates that *can* assist with (1) causal identification and (2) inference.

There's a deeper reason that we care about *linear* regression and ordinary least squares (OLS): **the conditional expectation function (CEF).**

Why?

Even ignoring causality, we can show important relationships between

- 1. the CEF (the conditional expectation function),
- 2. the population regression function,
- 3. and the sampling distribution of regression estimates.

The CEF

Definition The **conditional expectation function** for a dependent variable Y_i , given a $K \times 1$ vector of covariates X_i , tells us the expected value (population average) of Y_i with X_i held constant.

Written as $E[\mathrm{Y}_i \mid \mathrm{X}_i]$, the CEF is a function of X_i .

Examples

- $E[Income_i \mid Education_i]$
- $E[Wage_i \mid Gender_i]$
- $E[Birth weight_i \mid Air quality_i]$

† We'll generally assume X_i is a random variable, which implies that $E[Y_i \mid X_i]$ is also a random variable.

The CEF

Formally, for continuous Y_i with conditional density $f_y(t|\mathrm{X}_i=x)$,

$$E[\mathrm{Y}_i \mid \mathrm{X}_i = x] = \int t f_y(t | \mathrm{X}_i = x) dt$$

and for discrete Y_i with conditional p.m.f. $\Pr(\mathrm{Y}_i = t | \mathrm{X}_i = x)$,

$$E[\mathrm{Y}_i \mid \mathrm{X}_i = x] = \sum_t t \Pr(\mathrm{Y}_i = t | \mathrm{X}_i = x)$$

Notice We are focusing on the **population**. We want to build our intuition about the parameters that we will eventually estimate.

Graphically...

The conditional distributions of \mathbf{Y}_i for $\mathbf{X}_i = x$ in 8, ..., 22.

The CEF, $E[Y_i \mid X_i]$, connects these conditional distributions' means.

Focusing in on the CEF, $E[\mathbf{Y}_i \mid \mathbf{X}_i]$...

Q How does the CEF relate to/inform regression?

The CEF

As we derive the properties and relationships associated with the CEF, regression, and a host of other estimators, we will frequently rely upon **the Law of Iterated Expectations** (LIE).

$$m{E}[\mathbf{Y}_i] = Eigg(m{E}[\mathbf{Y}_i\mid \mathbf{X}_i]igg)$$

which says that the **unconditional expectation** is equal to the **unconditional average** of the **conditional expectation function**.

A proof of the LIE

First, we need notation...

Let $f_{x,y}(u,t)$ denote the joint density for continuous RVs $(\mathbf{X}_i,\mathbf{Y}_i)$.

Let $f_{y|x}(t \mid \mathbf{X}_i = u)$ denote the conditional distribution of \mathbf{Y}_i given $\mathbf{X}_i = u$.

And let $g_y(t)$ and $g_x(u)$ denote the marginal densities of Y_i and X_i .

A proof of the LIE

$$egin{aligned} E\left(E[\mathbf{Y}_i\mid\mathbf{X}_i]
ight) \ &=\int E[\mathbf{Y}_i\mid\mathbf{X}_i=u]\,g_x(u)du \ &=\int \left[\int t\,f_{y\mid x}(t\mid\mathbf{X}_i=u)\,dt
ight]g_x(u)du \ &=\int t\left[\int f_{y\mid x}(t\mid\mathbf{X}_i=u)\,g_x(u)du\,dt \ &=\int t\left[\int f_{y\mid x}(t\mid\mathbf{X}_i=u)\,g_x(u)du
ight]dt \ &=\int t\left[\int f_{x,y}(u,t)du
ight]dt \ &=\int t\,g_y(t)\,dt \ &=E[\mathbf{Y}_i] \end{aligned}$$

Great. What's the point?

The LIE and the CEF

Theorem The CEF decomposition property (3.1.1)

The LIE allows us to **decompose random variables** into two pieces

$$\mathbf{Y}_i = E[\mathbf{Y}_i \mid \mathbf{X}_i] + \varepsilon_i$$

- 1. the conditional expectation function
- 2. a residual with special powers[†]
 - i. $arepsilon_i$ is mean independent of X_i , i.e., $E[arepsilon_i \mid \mathrm{X}_i] = 0$.
 - ii. ε_i is uncorrelated with any function of X_i .

Important It might not seem like much, but these results are **huge** for building intuition, theory, and application. Put a \rightleftharpoons here!

The LIE and the CEF

Proof The CEF decomposition property (properties i. and ii. of ε_i)

Mean independence, $E[\varepsilon_i \mid \mathbf{X}_i] = 0$

$$E[\varepsilon_i \mid \mathbf{X}_i]$$

$$\mathbf{E} = E igg(\mathbf{Y}_i - oldsymbol{E} [\mathbf{Y}_i \mid \mathbf{X}_i] igg| \mathbf{X}_i igg)$$

$$oxed{E[\mathbf{Y}_i \mid \mathbf{X}_i] - Eigg(oldsymbol{E}[\mathbf{Y}_i \mid \mathbf{X}_i] igg| \mathbf{X}_iigg)}$$

$$= E[Y_i \mid X_i] - E[Y_i \mid X_i]$$

$$= 0$$

Zero correlation btn. ε_i and $h(\mathbf{X}_i)$

$$E[h(\mathbf{X}_i)\boldsymbol{\varepsilon_i}]$$

$$= Eigg(E[h(\mathrm{X}_i)arepsilon_i\mid \mathrm{X}_i]igg)$$

$$E = Eigg(h(\mathrm{X}_i) \, E[arepsilon_i \mid \mathrm{X}_i] igg)$$

$$=E[h(\mathrm{X}_i) imes 0]$$

$$= 0$$

The LIE and the CEF

The CEF decomposition property

says that we can decompose any random variable $(e.g., Y_i)$ into

- 1. a part that is explained by X_i (i.e., the CEF $E[Y_i \mid X_i]$),
- 2. a part that is orthogonal to[†] any function of X_i (i.e., ε_i).

Why the CEF?

The CEF also presents an intuitive summary of the relationship between Y_i and X_i , since we are often use means to characterize random variables.

But (of course) there are more reasons to use the CEF...

The LIE and the CEF

Theorem The CEF prediction property (3.1.2)

Let $m(X_i)$ be any function of X_i . The CEF solves

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{X}_i] = rg \min_{m(\mathbf{X}_i)} \ Eig[(\mathbf{Y}_i - m(\mathbf{X}_i))^2 ig] \end{aligned}$$

In other words, the **CEF** is the minimum mean-squared error (MMSE) predictor of Y_i given X_i .

Notice

- 1. We haven't restricted m to any class of functions—it can be nonlinear.
- 2. We're talking about prediction (specifically predicting Y_i).

Proof The CEF prediction property

$$\begin{split} &\left(\mathbf{Y}_{i}-m(\mathbf{X}_{i})\right)^{2} \\ &=\left(\left\{\mathbf{Y}_{i}-E[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]\right\}+\left\{E[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]-m(\mathbf{X}_{i})\right\}\right)^{2} \\ &=\left(\mathbf{Y}_{i}-E[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]\right)^{2} \\ &+2\left(E[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]-m(\mathbf{X}_{i})\right)\times\left(\mathbf{Y}_{i}-E[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]\right) \\ &+\left(E[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]-m(\mathbf{X}_{i})\right)^{2} \end{split} \tag{a}$$

Recall: We want to choose the $m(X_i)$ that minimizes (1) in expectation.

- (a) is irrelevant, *i.e.*, it does not depend upon $m(X_i)$.
- (b) equals zero in expectation: $E[h(\mathbf{X}_i) imes arepsilon_i] = 0$.
- (c) is minimized by $m(\mathbf{X}_i) = E[\mathbf{Y}_i \mid \mathbf{X}_i]$, i.e., when $m(\mathbf{X}_i)$ is the CEF.

The LIE and the CEF

:. the CEF is the function that minimizes the mean-squared error (MSE)

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{X}_i] &= rg \min_{m(\mathbf{X}_i)} \ Eig[(\mathbf{Y}_i - m(\mathbf{X}_i))^2 ig] \end{aligned}$$

The LIE and the CEF

One final property of the CEF (very similar to the decomposition property)

Theorem The ANOVA theorem (3.1.3)

$$Var(Y_i) = Var(E[Y_i \mid X_i]) + E[Var(Y_i \mid X_i)]$$

which says that we can decompose the variance in \mathbf{Y}_i into

- 1. the variance in the CEF
- 2. the variance of the residual

Example Decomposing wage variation into (1) variation explained by workers' characteristics and (2) unexplained (residual) variation

The proof centers on the independence from the decomposition property of the CEF.

We now understand the CEF a bit better. But how does the CEF actually relate to regression?

The CEF and regression

We've discussed how the CEF summarizes empirical relationships.

Previously we discussed how regression provides simple empirical insights.

Let's link these two concepts.

The CEF and regression

Population least-squares regression

We will focus on β , the vector (a $K \times 1$ matrix) of population, least-squares regression coefficients, *i.e.*,

$$eta = rg \min_{b} \, E \Big[ig(\mathrm{Y}_i - \mathrm{X}_i' b ig)^2 \Big]$$

where b and X_i are also $K \times 1$, and Y_i is a scalar.

Taking the first-order condition gives

$$Eig[\mathrm{X}_i ig(\mathrm{Y}_i - \mathrm{X}_i'big)ig] = 0$$

The CEF and regression

From the first-order condition

$$Eig[\mathrm{X}_i ig(\mathrm{Y}_i - \mathrm{X}_i' big)ig] = 0$$

we can solve for b. We've defined the optimum as β . Thus,

$$eta = E\left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

Note The first-order conditions tell us that our least-squares population regression residuals $\left(e_i=\mathrm{Y}_i-\mathrm{X}_i'\beta\right)$ are uncorrelated with X_i .

Anatomy

Our "new" result: $eta = E\left[\mathbf{X}_i \mathbf{X}_i'
ight]^{-1} E[\mathbf{X}_i \mathbf{Y}_i]$

In **simple linear regression** (an intercept and one regressor x_i),

$$eta_1 = rac{ ext{Cov}(ext{Y}_i,\, x_i)}{ ext{Var}(x_i)} \qquad eta_0 = E[ext{Y}_i] - eta_1\, E[x_i]$$

For **multivariate regression**, the coefficient on the k^th regressor x_{ki} is

$$eta_k = rac{ ext{Cov}(ext{Y}_i,\, ilde{x}_{ki})}{ ext{Var}(ilde{x}_{ki})}$$

where \tilde{x}_{ki} is the residual from a regression of x_{ki} on all other covariates.

Anatomy

This alternative formulation of least-squares coefficients is quite powerful.

$$eta_k = rac{ ext{Cov}(ext{Y}_i,\, ilde{x}_{ki})}{ ext{Var}(ilde{x}_{ki})}$$

Why? This expression illustrates how each coefficient in a least-squares regression represents the bivariate slope coefficient after controlling for the other covariates.

Anatomy

In fact, we can re-write our coefficients to further emphasize this point

$$eta_k = rac{ ext{Cov}ig(\widetilde{ ext{Y}}_i,\, ilde{x}_{ki}ig)}{ ext{Var}(ilde{x}_{ki})}$$

 $\widetilde{\mathbf{Y}}_i$ denotes the residual from regressing \mathbf{Y}_i on all regressors except x_{ki} .

Graphical example

 eta_1 gives the relationship between y and x_1 after controlling for x_2

Now that we've refreshed/deepened our regression knowledge, let's connect regression and the CEF.

Regression and the CEF

Angrist and Pischke make the case that

... you should be interested in regression parameters if you are interested in the CEF. (MHE, p.36)

Q What is the reasoning/connection?

A We'll cover three reasons.

- 1. If the CEF is linear, then the population regression line is the CEF.
- 2. The function $X_i'\beta$ is the min. MSE *linear* predictor of Y_i given X_i .
- 3. The function $\mathbf{X}_i'\beta$ gives the min. MSE linear approximation to the CEF.

Regression and the CEF

Theorem The linear CEF theorem (3.1.4)

If the CEF is linear, then the population regression is the CEF.

Proof Let the CEF equal some linear function, i.e., $E[Y_i \mid X_i] = X_i'\beta^*$.

From the CEF decomposition property, we know $E[\mathrm{X}_i arepsilon_i] = 0.$

$$\implies E[\mathbf{X}_i (\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i])] = 0$$

$$\implies E\left[\mathrm{X}_{i}\left(\mathrm{Y}_{i}-\mathrm{X}_{i}^{\prime}eta^{\star}
ight)
ight]=0$$

$$\implies E[X_iY_i] - E[X_iX_i'\beta^{\star}] = 0$$

$$\implies \beta^{\star} = E\left[\mathbf{X}_i\mathbf{X}_i'\right]^{-1}E[\mathbf{X}_i\mathbf{Y}_i] = \beta$$
, our population regression coefficients.

Regression and the CEF

Theorem The linear CEF theorem (3.1.4)

If the CEF is linear, then the population regression is the CEF.

Linearity can be a strong assumption. When might we expect linearity?

- 1. Situations in which (Y_i, X_i) follows a multivariate normal distribution. **Concern** Might be limited—especially when Y_i or X_i are not continuous.
- 2. Saturated regression models **Example** A model with two binary indicators and their interaction.

Regression and the CEF

Theorem The best linear predictor theorem (3.1.5)

The function $X_i'\beta$ the best linear predictor of Y_i given X_i (minimizes MSE).

Proof We defined β as the vector that minimizes MSE, *i.e.*,

$$eta = rg \min_{b} \, E \Big[ig(\mathrm{Y}_i - \mathrm{X}_i' b ig)^2 \Big]$$

so $\mathbf{X}_i'eta$ is literally defined as the minimum MSE linear predictor of \mathbf{Y}_i .

- The population-regression function $(X_i'\beta)$ is the best (min. MSE) linear predictor of Y_i given X_i .
- The CEF $(E[Y_i | X_i])$ is the best predictor (min. MSE) of Y_i given X_i across all classes of functions.

Regression and the CEF

Q If $X'_i\beta$ is **the best linear predictor** of Y_i given X_i , then why is there so much interest machine learning for prediction (opposed to regression)?

A A few reasons

- 1. Relax linearity
- 2. Model selection
 - \circ choosing \mathbf{X}_i is not always obvious
 - overfitting is bad
- 3. It's fancy/shiny and new
- 4. Some ML methods boil down to regression
- 5. Others?

Counter Q Why are we (still) using regression?

Regression and the CEF

Theorem The regression CEF theorem (3.1.6)

The population regression function $\mathbf{X}_i'\boldsymbol{\beta}$ provides the minimum MSE linear approximation to the CEF $E[\mathbf{Y}_i \mid \mathbf{X}_i]$, i.e.,

$$eta = rg \min_b \, Eigg\{igg(E[\mathrm{Y}_i \mid \mathrm{X}_i] - \mathrm{X}_i'bigg)^2igg\}$$

Put simply Regression gives us the best linear approximation to the CEF.

Proof First, recall that, in expectation, eta is the b that minimizes $\left(\mathrm{Y}_i - \mathrm{X}_i' b \right)^2$

$$\begin{aligned} &\left(\mathbf{Y}_{i}-\mathbf{X}_{i}^{\prime}b\right)^{2}\\ &=\left(\left\{\mathbf{Y}_{i}-\boldsymbol{E}[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]\right\}+\left\{\boldsymbol{E}[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]-\mathbf{X}_{i}^{\prime}b\right\}\right)^{2}\\ &=\left(\mathbf{Y}_{i}-\boldsymbol{E}[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]\right)^{2}\\ &+\left(\boldsymbol{E}[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]-\mathbf{X}_{i}^{\prime}b\right)^{2}\\ &+2\left(\mathbf{Y}_{i}-\boldsymbol{E}[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]\right)\left(\boldsymbol{E}[\mathbf{Y}_{i}\mid\mathbf{X}_{i}]-\mathbf{X}_{i}^{\prime}b\right)\end{aligned} \tag{b}$$

We want to minimize (b), and we know β minimizes (1).

- (a) is irrelevant, i.e., it does not depend upon b.
- (c) can be written as $2\varepsilon_i h(X_i)$, which equals zero in expectation.

 \therefore (In expectation) If $b = \beta$ minimizes (1), then $b = \beta$ minimizes (b).

Regression and the CEF

Let's review our new(-ish) regression results

- 1. When the CEF is linear, the regression function *is* the CEF. **Too small** Very specific circumstances—or big assumptions.
- 2. Regression gives us the best *linear* predictor of Y_i (given X_i)

 Off point We're often interested in β —not \widehat{Y}_i .
- 3. Regression provides the best *linear* approximation of the CEF. **Just right?** (Depends on your goals)

Regression and the CEF

Motivation (3) tends to be the most compelling.

Even when the CEF is not linear, regression recovers the best linear approximation to the CEF.

The statement that regression approximates the CEF lines up with our view of empirical work as an effort to describe the essential features of statistical relationships without necessarily trying to pin them down exactly. (MHE, p.39, emphasis added)

Let's dig into this linear-approximate to the CEF a little more...

Returning to our **CEF**

Adding the population regression function

Regression and the CEF

As the previous figure suggests, one way to think about least-squares regression is **estimating a weighted regression on the CEF** rather than the individual observations.

TLDR Use $E[Y_i \mid X_i]$ as the outcome, rather than Y_i , and properly weight.

Suppose \mathbf{X}_i is discrete with pmf $g_x(u)$

$$Eigg[ig(rac{E[\mathrm{Y}_i\mid \mathrm{X}_i]-\mathrm{X}_i'big)^2igg] = \sum_uig(E[\mathrm{Y}_i\mid \mathrm{X}_i=u]-u'big)^2g_x(u)$$

i.e., β can be expressed as weighted-least squares regression of $E[Y_i \mid X_i = u]$ on u (the values of X_i) weighted by $g_x(u)$.

Regression and the CEF

We can also use LIE here

$$egin{aligned} eta \ &= E\left[X_i X_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i] \ &= E\left[X_i X_i'
ight]^{-1} E[\mathrm{X}_i E(\mathrm{Y}_i \mid \mathrm{X}_i)] \end{aligned}$$

Pro Useful for aggregated data when microdata are sensitive/big.

Con You **will not** get the same standard errors.

Table of contents

Admin

- 1. Schedule
- 2. return

Regression

- 1. Why?
- 2. The CEF
 - Definition
 - Graphically
 - Law of iterated expectations
 - Decomposition
 - Prediction
- 3. Population least squares
- 4. Anatomy
- 5. Regression-CEF theorem
- 6. WLS