Algebraic Geometry : Functor of Points POV

Ken Lee

2020 Winter

Contents

1	Schemes	2
	1.1 Z-Functors	2
	1.2 Closed Subfunctors, Open Covers	
	1.3 The Big and Small Zariski Site	8
	1.4 Schemes	
	1.5 Examples	12
2	Properties of Schemes 2.1 Zariski-Local Properties of Schemes	15
3	Properties of Morphisms	17
	3.1 Permanence	17
	3.2 Zariski-Local Properties of Morphisms of Schemes	17
_		

Goal: Develop all of basic scheme theory without a single mention of locally ringed spaces.

1 Schemes

1.1 \mathbb{Z} -Functors

Definition – \mathbb{Z} -Functor

Define $\mathbb{M} := \mathbb{Z}\mathbf{Alg}^{op}$. The *category of* \mathbb{Z} -*functors* $\mathbb{M}\mathbf{Set}$ is define to be the category of presheaves of sets on \mathbb{M} . For $X \in \mathbb{M}\mathbf{Set}$ and $A^{op} \in \mathbb{M}$, elements of $X(A^{op})$ are called *morphisms from* A^{op} *to* X.

Define $\operatorname{Sp}: \mathbb{M} \to \mathbb{M}$ Set to be the fully faithful Yoneda embedding $A^{op} \mapsto \mathbb{M}(-, A^{op})$. For $A \in \mathbb{Z}$ Alg, $\operatorname{Sp} A$ is called the *spectrum of* A. The *category of affine schemes* is defined to be the essential image of Sp . We will denote it with Aff.

Remark – Intuition of \mathbb{Z} -Functors and Spectrums. In differential geometry, given a morphism of smooth manifolds $\varphi: X \to Y$, one obtains a ring morphism $\varphi^{\flat}: C^{\infty}(Y) \to C^{\infty}(X)$ that is the pullback of global smooth functions. For algebraic geometry, here's how to think about it:

- \mathbb{M} is the category of "test spaces". For smooth manifolds, this is open subsets of \mathbb{R}^n .
- A ring A is the "ring of global functions on A^{op} ".
- A ring morphism $\varphi: A \to B$ is the "pullback of global functions along $\varphi^{op}: B^{op} \to A^{op}$ ".
- An \mathbb{Z} -functor $X \in \mathbb{M}$ Set is something our "test spaces" in \mathbb{M} can "map into". Essentially,

$$"X(A^{op}) = Mor(A^{op}, X)"$$

Then given $\varphi^{op}: B^{op} \to A^{op}$, one should be able to turn "maps" $\alpha: A^{op} \to X$ into $\alpha \circ \varphi^{op}: B^{op} \to X$. This is precisely $X(A^{op}) \to X(B^{op})$ and functoriality simply expresses how pre-composition respects the identity morphisms and composition.

- The spectrum functor Sp realizes a "space" A^{op} in $\mathbb M$ as something our "test spaces" in $\mathbb M$ can map to. Then the intuition of " $X(A^{op}) = \operatorname{Mor}(A^{op}, X)$ " is realised as $X(A^{op}) \cong \mathbb M\mathbf{Set}(\operatorname{Sp} A, X)$. This is Yoneda's lemma.
- Aff formalizes what we mean by "test spaces in M".
- MSet is complete and cocomplete as a category (since Set is), i.e. it's the perfect playground for building more general "spaces" out of affine schemes.

Proposition - Yoneda

The following are true:

- ("Morphisms from A^{op} to $X \longleftrightarrow$ Morphisms from $\operatorname{Sp} A$ to X") For $X \in \mathbb{M}$ Set and $A^{op} \in \mathbb{M}$,

$$\mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) \xrightarrow{\sim} X(A^{op})$$

by $\alpha \mapsto \alpha_{A^{op}}(\mathbb{1}_{A^{op}})$. Furthermore, this is functorial in A^{op} and X.

- (Density of Representables / "The data of X is precisely how test spaces map into it") For $X \in \mathbb{M}\mathbf{Set}$, X is the colimit of the diagram $\mathrm{Sp} \downarrow X \to \mathbb{M}\mathbf{Set}$.

Proof. Straightforward.

Proposition - Affine Line

Let $n \in \mathbb{N}$. Define affine n-space to be $\mathbb{A}^n \in \mathbb{M}$ Set sending $A^{op} \mapsto A^n$. Then

- \mathbb{A}^n is representable by $\mathbb{Z}[T_1,\ldots,T_n]^{op}$. Hence $\mathbb{A}^n \in \mathbf{Aff}$.
- for n = 1, \mathbb{A}^1 is a ring object in $\mathbb{M}\mathbf{Set}$. Hence for $X \in \mathbb{M}\mathbf{Set}$, $\mathcal{O}(X) := \mathbb{M}\mathbf{Set}(X, \mathbb{A}^1) \in \mathbb{Z}\mathbf{Alg}$. This is called the *ring of global functions on* X and gives a functor $\mathcal{O}(\star) : \mathbb{M}\mathbf{Set} \to \mathbb{Z}\mathbf{Alg}^{op}$. We call elements of $\mathcal{O}(X)$ functions on X.

Concretely on morphisms $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$, the corresponding ring morphism $\varphi^{\flat} : \mathcal{O}(X) \to \mathcal{O}(Y)$ is given by $f \mapsto f \circ \varphi$, i.e. pulling back along φ .

- (Spec, Global Function Adjunction)

$$\mathbb{M}\mathbf{Set}(-,\operatorname{Sp}\star)\cong \mathbb{Z}\mathbf{Alg}(\star,\mathcal{O}(-))$$

– (Canonical Choice of Spectrum for Affine Schemes) for $X \in \mathbb{M}$, X is affine if and only if $\mathbb{1}^{\perp}_{\mathcal{O}(X)}: X \to \operatorname{Sp} \mathcal{O}(X)$ is an isomorphism of \mathbb{Z} -functors, where $\mathbb{1}^{\perp}_{\mathcal{O}(X)}$ is the adjunct of $\mathbb{1}_{\mathcal{O}(X)}$ under the previous adjunction.

Proof. (*Spec, Global Function Adjunction*) Follows from this chain of bijections functorial in A and X given by the density of representables:

$$\begin{split} \mathbb{M}\mathbf{Set}(X,\operatorname{Sp} A) &\cong \varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{M}\mathbf{Set}(\operatorname{Sp} B,\operatorname{Sp} A) \cong \varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{Z}\mathbf{Alg}(A,B) \cong \mathbb{Z}\mathbf{Alg}\left(A,\varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} B\right) \\ &\cong \mathbb{Z}\mathbf{Alg}\left(A,\varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{M}\mathbf{Set}(\operatorname{Sp} B,\mathbb{A}^1)\right) \cong \mathbb{Z}\mathbf{Alg}(A,\mathbb{M}\mathbf{Set}(X,\mathbb{A}^1)) = \mathbb{Z}\mathbf{Alg}(A,\mathcal{O}(X)) \end{split}$$

(Affine Schemes) The reverse implication is clear. Let $X \xrightarrow{\sim} \operatorname{Sp} A$ be an isomorphism in $\mathbb{M}\mathbf{Set}$. The adjunction $\mathbb{M}\mathbf{Set}(X,\operatorname{Sp} A) \cong \mathbb{Z}\mathbf{Alg}(A,\mathcal{O}(X)) \cong \mathbb{M}\mathbf{Set}(\operatorname{Sp} \mathcal{O}(X),\operatorname{Sp} A)$ gives the commutative diagram :

where the dashed has the composition of the other two morphisms as an inverse, and hence an isomorphism.

Remark – *Intuition of Affine n-Space.* For a smooth manifold X, a smooth map $\varphi: X \to \mathbb{R}^n$ is equivalent to the data of n global smooth functions f_1, \ldots, f_n on X, i.e.

$$C^{\infty}\mathbf{Mfd}(X,\mathbb{R}^n) \cong C^{\infty}(X)^n$$

" \mathbb{R}^n is the classifying space of n-tuples of global smooth functions." In the functorial POV of algebraic geometry, we take this as our definition of affine n-space.

Proposition − Categorical Properties of Z-Functors

The following are true:

 (Completeness and Cocompleteness) MSet has all (small) limits and colimits, all computed pointwise.

In particular, a morphism $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ is respectively a mono/epi/isomorphism if and only if for all $A \in \mathbb{M}^{op}$, $\varphi_A : Y(A) \to X(A)$ is injective/surjective/bijective.

- (Base Change) For $K \in \mathbf{CRing}$, define the *category of K-functors* to be the over-category $\mathbb{M}\mathbf{Set}/\operatorname{Sp} K$. In particular, we call $\mathbf{Aff}/\operatorname{Sp} K$ the *category of affine K-schemes*.

Then we have for $\varphi \in \mathbb{M}\mathbf{Set}(\operatorname{Sp} L, \operatorname{Sp} K)$, we have the following adjunction

$$\left(\mathbb{M}\mathbf{Set}/\operatorname{Sp}L\right)\left(-,\operatorname{Sp}L\times_{\operatorname{Sp}K}(\star)\right)\cong\left(\mathbb{M}\mathbf{Set}/\operatorname{Sp}K\right)\left(-,\star\right)$$

Furthermore, this restricts to an adjunction between $\mathbf{Aff}/\operatorname{Sp} L$ and $\mathbf{Aff}/\operatorname{Sp} K$, i.e. the pullback of affine schemes is affine.

Proof. (*Base Change*) The first adjunction is categorical. For the restriction to affine schemes over K and L, note that for any K-algebra A,

$$\operatorname{Sp} L \times_{\operatorname{Sp} K} \operatorname{Sp} A$$
 "=" $\operatorname{Sp} (L \otimes_K A)$

1.2 Closed Subfunctors, Open Covers

Remark. A scheme will be a "space modelled on \mathbb{M} with an open cover by affine schemes". Since every "space" in \mathbb{M} Set is modelled on \mathbb{M} , we first define the notion of open covers for affine schemes, then define it for general $X \in \mathbb{M}$ Set.

We define closed subfunctors of affine schemes first, then define open ones as "complements" of closed.

Definition – Closed Subfunctors of Affine Schemes

Let $X \in \mathbf{Aff}$. For $I \in \mathrm{Ideal}\,\mathcal{O}(X)$, define the vanishing of $I, V(I) \in \mathbf{SubMSet}(X)$, by

$$A\in\mathbb{M}^{op}\mapsto \left\{\varphi\in\mathbf{Aff}(\operatorname{Sp} A,X)\,|\, I\subseteq\ker\varphi^{\flat}\right\}$$

In particular, for I = (f), we write V(f) instead of V((f)). A subfunctor Z of X is called *closed* when there exists $I \in \operatorname{Ideal} \mathcal{O}(X)$ such that Z = V(I).

Proposition - Basic Facts about Closed Subfunctors

Let $X \in \mathbf{Aff}$. Then the following are true :

- (Closed Subfunctors are Affine) For $I \in \operatorname{Ideal} \mathcal{O}(X)$, V(I) is representable by $\mathcal{O}(X)/I$ and $I = \ker (\mathcal{O}(X) \to \mathcal{O}(V(I)))$. Hence for any closed subfunctor Z of X, Z is an affine scheme and Z = V(I(Z)) where $I(Z) := \ker (\mathcal{O}(X) \to \mathcal{O}(Z))$ is called the *ideal of definition of* Z.
- (Ideals, Vanishing Adjunction) For $I,J\in\operatorname{Ideal}\mathcal{O}(X)$, $I\subseteq J$ if and only if $V(J)\subseteq V(I)$.

- (Arbitrary Intersection of Closed) Let \mathcal{X} be a collection of closed subfunctors of X. Then $\bigcap_{Z \in \mathcal{X}} Z = V(\sum_{Z \in \mathcal{X}} I(Z))$.
- (Base Change / "Preimage of Closed are Closed") Let $\varphi \in \mathbf{Aff}(Y,X)$, $I \in \mathrm{Ideal}\,\mathcal{O}(X)$. Let the following be a pullback diagram :

$$\begin{array}{ccc} Y & \stackrel{\varphi}{----} & X \\ \uparrow & & \uparrow \\ \varphi^{-1}V(I) & \longrightarrow & V(I) \end{array}$$

Then $\varphi^{-1}V(I) = V(\mathcal{O}(Y)\varphi^{\flat}I).$

Proposition – Open Subfunctors of Affine Schemes

Let $X \in \mathbf{Aff}$. Then the following are true :

- (Open Subfunctors) For $I \in \text{Ideal } \mathcal{O}(X)$, the following two subfunctors of X are equal :
 - ("Complement of V(I)") Define $X \setminus V(I)$ by setting $(X \setminus V(I))(A)$ to be the set of $\alpha \in \mathbf{Aff}(\operatorname{Sp} A, X)$ such that $\alpha^{-1}V(I) = \operatorname{Sp} 0$, the "empty affine scheme".
 - ("Support of I") Define D(I) by setting D(I)(A) to be the set of $\alpha \in \mathbf{Aff}(\operatorname{Sp} A, X)$ such that $A = A\alpha^{\flat}I$.

A subfunctor U of X is called *open* when there exists $I \in \text{Ideal } \mathcal{O}(X)$ such that $U = D(I) = X \setminus V(I)$.

We will use $\operatorname{Open} X$ to denote the full subcategory of $\operatorname{\mathbf{SubMSet}}(X)$ consisting of open subfunctors of X.

- (Ideal, Open Adjunction) Let $I, J \in \operatorname{Ideal} \mathcal{O}(X)$. Then $D(I) \subseteq D(J)$ if and only if $\sqrt{I} \subseteq \sqrt{J}$. In particular, for $U \in \operatorname{Open} X$, there exists a unique $I_U \in \operatorname{Ideal} \mathcal{O}(X)$ such that $\sqrt{I_U} = I_U$ and $U = D(I_U)$.
- ("Fields given enough points for Opens") For any $Y \in \mathbb{M}$ Set, define Y^{Pts} to the restriction of Y to the full subcategory Pts of \mathbb{M}^{op} consisting of K^{op} where K is a field. We will call Y^{Pts} the *points of* Y.

Then for U, V opens of X, U = V if and only if $U^{\text{Pts}} = V^{\text{Pts}}$.

– For $\mathcal{U} \subseteq \operatorname{Open} X$, define the *open union of* \mathcal{U} to be

$$\bigcup_{U\in\mathcal{U}}^{\circ}U:=X\setminus\bigcap_{U\in\mathcal{U}}V(I_{U})=D\left(\sum_{U\in\mathcal{U}}I_{U}\right)$$

Then for $\mathcal{U} \subseteq \operatorname{Open} X$,

- (Choice) for any $\{J_U\}_{U\in\mathcal{U}}\subseteq\operatorname{Ideal}\mathcal{O}(X)$ where each $U=D(J_U)$, we have $\bigcup_{U\in\mathcal{U}}^{\circ}U=D(\sum_{U\in\mathcal{U}}J_U)$.
- ("Open Cover") TFAE:
 - 1. (Intuitive) $\bigcup_{U \in \mathcal{U}}^{\circ} U = X$.
 - 2. (Partition of Unity) $\mathcal{O}(X) = \sum_{U \in \mathcal{U}} J_U$ where $\{J_U\}_{U \in \mathcal{U}}$ is any collection of ideals of $\mathcal{O}(X)$ such that $U = D(J_U)$ for each U.
 - 3. (Surjective on Points) For all $x : \operatorname{Sp} K \to X$ where K is a field, there exists $U \in \mathcal{U}$ such that x factors through U.

We say U covers X when any (and thus all) of the above are true.

- (Base Change / "Preimage of Opens are Open") Let $\varphi \in \mathbf{Aff}(Y,X)$, $I \in \mathrm{Ideal}\,\mathcal{O}(X)$. Let the following be a pullback diagram :

$$Y \xrightarrow{\varphi} X$$

$$\uparrow \qquad \uparrow$$

$$\varphi^{-1}D(I) \longrightarrow D(I)$$

Then $\varphi^{-1}D(I)=D(\varphi^{\flat}I)$. Hence the pullback of opens along morphisms of affine schemes remain open.

– (Fiber Product) Let $X, X_1 \in \mathbf{Aff}/Y$ where $Y \in \mathbf{Aff}$. Let I, I_1 be ideals of $\mathcal{O}(X)$, $\mathcal{O}(X_1)$ respectively. Then we have the pullback diagram :

$$D(I) \longrightarrow Y$$

$$\uparrow \qquad \qquad \uparrow$$

$$D(I \otimes_{\mathcal{O}(Y)} I_1) \longrightarrow D(I_1)$$

In particular, $X = X_1 = Y$ implies the intersection of two opens of X is an open of X.

Proof.

(Open Subfunctors) $A \otimes_{\mathcal{O}(X)} \mathcal{O}(X)/I = A/A\alpha^{\flat}I$.

(*Ideal, Open Adjunction*) The reverse is straightforward. For forward implication, it suffices that $I \subseteq \sqrt{J}$. Suppose we have $f \in I \setminus \sqrt{J}$, in particular $\mathcal{O}(X) \neq 0$. Consider $\iota : \operatorname{Sp}(\mathcal{O}(X)/J)_f \to X$. Then $\iota \in D(I) \setminus D(J)$ since $(\mathcal{O}(X)/J)_f$ a non-zero ring by assumption. This is a contradiction.

(Fields give enough points for opens) Forwards is clear. Let U=D(I), V=D(J). For reverse, suppose $D(I)\neq D(J)$. WLOG let $\alpha\in D(I)(A)\setminus D(J)(A)$. We're looking for a "point" $\operatorname{Sp} K\to D(I)$ that doesn't lift to D(J). Well, since $A\alpha^{\flat}J\subsetneq A$, by Zorn's lemma there exists a map $\operatorname{ev}_x:A\to K$ where K is a field and

 $J \subseteq \ker \operatorname{ev}_x$. Then $\alpha \circ x \in D(I)(K) \setminus D(J)(K)$ as desired.

(Choice) Straightforward by checking on points. (Open Cover, Base Change, Fiber product) Straightforward.

Definition - Open Subfunctors, Open Covers

Let $X \in \mathbb{M}\mathbf{Set}$. For $U \in \mathbf{SubMSet}(X)$, U is called *open* when for all $\alpha : \operatorname{Sp} A \to X$, the pullback $\alpha^{-1}U$ of U along α is an open of $\operatorname{Sp} A$.

$$\begin{array}{ccc}
\operatorname{Sp} A & \stackrel{\alpha}{\longrightarrow} & X \\
\uparrow & & \uparrow \\
\alpha^{-1} U & \longrightarrow & U
\end{array}$$

We will use $\operatorname{Open} X$ to denote the full subcategory of $\operatorname{\mathbf{SubMSet}}(X)$ consisting of opens. When X is affine, this agrees with our specialized notion for affine schemes.

Proposition - Basic Facts about Open Subfunctors

The following are true:

- ("Extensionality") Let $U, V \in \text{Open } X$. Then U = V if and only if $U^{\text{Pts}} = V^{\text{Pts}}$.
- (Composition) Let $V \in \text{Open } U, U \in \text{Open } X, X \in \mathbb{M}\mathbf{Set}$. Then $V \in \text{Open } X$.
- (Base Change/"Preimage of Opens are Opens") Let $X \in \mathbb{M}\mathbf{Set}$, $U \in \mathrm{Open}\,X$ and $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$. Then the pullback $\varphi^{-1}U$ of U along φ is an open of Y.

$$\begin{array}{ccc} Y & \stackrel{\varphi}{\longrightarrow} X \\ \uparrow & & \uparrow \\ \varphi^{-1}U & \longrightarrow U \end{array}$$

- (Fiber Product) Let U, U_1 be opens of $X, X_1 \in \mathbb{M}$ Set respectively. Then for any $X \to S, X_1 \to S$, the fiber product $U \times_S U_1$ is an open of $X \times_S X_1$. In particular, for $X = X_1 = S$, this proves the intersection of two opens of X is again an open of X.
- ("Open Cover") Let $\mathcal{U} \subseteq \operatorname{Open} X$. TFAE:
 - ("Looks like Open Cover when Tested") For all $(A, \alpha) \in \operatorname{Sp} \downarrow X$, $\overset{\circ}{\bigcup}_{U \in \mathcal{U}} \alpha^{-1}U = \operatorname{Sp} A$.
 - ("Surjective on Points") For all $x:\operatorname{Sp} K\to X$ where K is a field, there exists $U\in\mathcal{U}$ such that x factors through U.

We say U covers X when any (and thus all) of the above are true.

- (Base Change of Open Cover) Let $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ and $\mathcal{U} \subseteq \mathrm{Open}\,X$ cover X. Then $\varphi^{-1}U := \{\varphi^{-1}U\}_{U \in \mathcal{U}}$ covers Y.

Proof. (Extensionality) U = V if and only if for all $\alpha : \operatorname{Sp} A \to X$, $\alpha^{-1}U = \operatorname{Sp} A$ if and only if $\alpha^{-1}V = \operatorname{Sp} A$. This reduces to the affine global case.

1.3 The Big and Small Zariski Site

Proposition - Big Zariski Site on MSet

For $X \in \mathbb{M}\mathbf{Set}$ and $\mathcal{U} \subseteq \mathbb{M}\mathbf{Set}/X$ a collection of morphisms into X, define $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ when " \mathcal{U} is isomorphic to an open cover", meaning there exists $\{U_i\}_{i \in \mathcal{U}} \subseteq \mathrm{Open}\,X$ such that $\{U_i\}_{i \in \mathcal{U}}$ is a cover of X and for all $i \in \mathcal{U}$, $(i:s(i) \to X) \cong (U_i \to X)$ in $\mathbb{M}\mathbf{Set}/X$. Then the above defines a Grothendieck pretopology of $\mathbb{M}\mathbf{Set}$. Specifically:

- (Isomorphisms are Covers) For $X \in \mathbb{M}\mathbf{Set}$ and $\varphi \in \mathbb{M}\mathbf{Set}(U,X)$, φ iso implies $\{\varphi\} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$.
- (Pullback of Covers) For all $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ and $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$, $\varphi^{-1}\mathcal{U} := \{Y \times_X s(i) \to Y\}_{i \in \mathcal{U}} \in \mathrm{Cov}_{\mathrm{Zar}}(Y)$.
- (Composite of Covers) Let $X \in \mathbb{M}\mathbf{Set}$, $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$ and for each $i \in \mathcal{U}$, let $\mathcal{U}_i \in \mathrm{Cov}_{\mathbf{Zar}}(s(i))$. Then $\{s(j_i) \to s(i) \to X \mid i \in \mathcal{U}, j_i \in \mathcal{U}_i\} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$.

We will use $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ to denote the site $\mathbb{M}\mathbf{Set}$ endowed with the topology generated by the above pretopology. We will call $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ the *big Zariski site*. $\mathcal{X} \in \mathbf{Cov}_{\mathbf{Zar}}(X)$ are called *Zariski covers of* X.

Proof. Only slightly non-trivial part is pullback of covers. Use opens and covers preserved under base change. \Box

Remark – Intuition of Sheaves on $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$. For $X \in \mathbb{M}\mathbf{Set}$, if X is to be a "space" then for any other $Y \in \mathbb{M}\mathbf{Set}$ and open cover \mathcal{U} of Y, the data of a morphism $Y \to X$ should be the same as a collection of morphisms $(U \to X)_{U \in \mathcal{U}}$ that agree on pairwise intersection. This is precisely what it means for $\mathbb{M}\mathbf{Set}(-,X)$ to be a sheaf on the site $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$.

Remark. The following is a smaller site $\mathbf{Aff}_{\mathrm{Zar}}$ on affine schemes, where open covers consists only of basic opens. Since basic opens generate opens for affine schemes and affine schemes generate $\mathbb{M}\mathbf{Set}$ with compatible notion of opens, sheaves on $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$ will be the same as sheaves of $\mathbf{Aff}_{\mathrm{Zar}}$. This gives an easier check for when $X \in \mathbb{M}\mathbf{Set}$ is a sheaf on $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$.

Proposition – Small Zariski Site on Aff

For $X \in \mathbf{Aff}$ and $\mathcal{U} \subseteq \mathbf{Aff}/X$, $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ when " \mathcal{U} is isomorphic to a cover of X by basic opens", meaning there exists a cover $\{X_{f_\iota}\}_{\iota \in \mathcal{U}}$ where for all $\iota \in \mathcal{U}$, $(s(\iota) \to X) \cong (D(f_\iota) \to X)$ in \mathbf{Aff}/X . Then the above defines a Grothendieck pretopology on \mathbf{Aff} , specifically:

- (Isomorphisms are Covers) For all $X \in \mathbf{Aff}$ and $\iota \in \mathbf{Aff}(U,X)$, ι isomorphism implies $\{\iota\} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$.
- (Pullback of Covers) For all $\varphi \in \mathbf{Aff}(Y,X)$ and $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$, $\varphi^{-1}\mathcal{U} := \{Y \times_X s(\iota) \to Y \,|\, \iota \in \mathcal{U}\} \in \mathrm{Cov}_{\mathbf{Zar}}(Y)$.

(Composite of Covers) Let $\mathcal{U} \in \text{Cov}_{\text{Zar}}(X)$ and for each $i \in \mathcal{U}$, let $\mathcal{U}_i \in \text{Cov}_{\text{Zar}}(s(i))$. Then $\{s(j_i) \to s(i) \to X \mid i \in \mathcal{U}, j_i \in \mathcal{U}_i\} \in \text{Cov}_{\text{Zar}}(X)$.

We will use $\mathbf{Aff}_{\mathrm{Zar}}$ to denote the site \mathbf{Aff} with the topology given by the above pretopology. We will call $\mathbf{Aff}_{\mathrm{Zar}}$ the *small Zariski site*. $\mathcal{X} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ will be called *basic Zariski covers of* X. ^a

This is non-standard terminology, but helps avoid confusion between the topology on \mathbf{Aff} just defined and the induced

Proof. UP of tensor products and localization.

Proposition – Sheaves on Big and Small Zariski Site are the Same Let $X \in \mathbb{M}\mathbf{Set}$. Then $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$ if and only if $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}})$.

Proof. Forward implication follows since the covers in \mathbf{Aff}_{Zar} are covers in \mathbf{MSet}_{Zar} .

Now let $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbf{Aff}_{\mathbf{Zar}})$. Let $U \in \mathbb{M}\mathbf{Set}$ and $\mathcal{U} \in \mathbf{Cov}_{\mathbf{Zar}}(U)$. Then for $(A,\alpha) \in \mathbf{Sp} \downarrow U$, the pullback $\alpha^{-1}\mathcal{U}$ of \mathcal{U} is a cover of Sp A in the big Zariski site. The chain of isomorphisms to be justified is:

$$\begin{split} \mathbb{M}\mathbf{Set}(U,X) &\overset{(1)}{\cong} \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A,X) \overset{(2)}{\cong} \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \varprojlim_{V,W \in \mathcal{U}} \mathbb{M}\mathbf{Set}(\alpha^{-1}V \cap \alpha^{-1}W,X) \\ &\overset{(3)}{\cong} \varprojlim_{V,W \in \mathcal{U}} \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \mathbb{M}\mathbf{Set}(\alpha^{-1}V \cap \alpha^{-1}W,X) \overset{(4)}{\cong} \varprojlim_{V,W \in \mathcal{U}} \mathbb{M}\mathbf{Set}(V \cap W,X) \end{split}$$

- (1) Density of representables. (3) Limits commute with limits.
- (4) We know $\alpha^{-1}(V \cap W) = \alpha^{-1}V \cap \alpha^{-1}W$, so it suffices to prove the following.

Lemma. For
$$U \in \mathbb{M}\mathbf{Set}$$
 and $Z \in \mathbf{SubMSet}(U)$ *, we have* $Z = \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \alpha^{-1} Z$

Proof. The forgetful functor $\mathrm{Sp}\downarrow Z\to \mathrm{Sp}\downarrow U$ is a "section" of the pullback functor $\mathrm{Sp}\downarrow U\to \mathrm{Sp}\downarrow Z$, meaning for $(A, \alpha) \in \operatorname{Sp} \downarrow Z$, the following is a pullback diagram :

$$Z \longrightarrow U$$

$$\alpha \uparrow \qquad \uparrow$$

$$\operatorname{Sp} A \stackrel{\mathbb{1}}{\longrightarrow} \operatorname{Sp} A$$

This implies pulling the diagram $\mathrm{Sp} \downarrow U$ back to $\mathrm{Sp} \downarrow Z$ only introduces duplicate objects with identity morphisms in between them. Hence $\varprojlim_{(A,\alpha)\in \operatorname{Sp}\downarrow U} \alpha^{-1}Z = \varprojlim_{(A_1,\alpha_1)\in \operatorname{Sp}\downarrow Z} \operatorname{Sp} A = Z$ by the density of representables.

(2) We need to show that MSet(-, X) is a sheaf for **Aff** with covers from the big Zariski site $MSet_{Zar}$. The key is that basic opens cover opens for affine schemes.

Let $A \in \mathbb{M}^{op}$ and \mathcal{U} be a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of $\operatorname{Sp} A$. For each $i \in \mathcal{U}$, let $I_i \in \operatorname{Ideal} A$ with $i = D(I_i)$. Let $I := \bigsqcup_{i \in \mathcal{U}} I_i$. Then since $\{D(f)\}_{f \in I_i}$ is a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of i for every $i \in \mathcal{U}$, $\{D(f)\}_{f \in I}$ is also a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ cover of $\operatorname{Sp} A$. We then have the commutative diagram :

$$\begin{split} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) & \longrightarrow \varprojlim_{i,j \in \mathcal{U}} \mathbb{M}\mathbf{Set}(i \cap j, X) \\ & \downarrow^{\mathbb{I}} & \downarrow^{\sim} \\ \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) & \stackrel{\sim}{\longrightarrow} \varprojlim_{f,g \in I} \mathbb{M}\mathbf{Set}(D(f) \cap D(g), X) \end{split}$$

where the horizontal isomorphism to due to $\mathbb{M}\mathbf{Set}(-,X)$ being a sheaf on $\mathbf{Aff}_{\mathbf{Zar}}$.

It remains to justify the vertical isomorphism. To do this, we apply the same argument as we're trying to do now, but on $i \cap j$. It's easy to see that $\{D(f) \cap D(g)\}_{f \in I_i, g \in I_j}$ covers $i \cap j$, so we get

$$\begin{split} \mathbb{M}\mathbf{Set}(i \cap j, X) &\cong \varprojlim_{(A_{1}, \alpha_{1}) \in \operatorname{Sp} \downarrow (i \cap j)} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A_{1}, X) \cong \varprojlim_{(A_{1}, \alpha_{1}) \in \operatorname{Sp} \downarrow (i \cap j)} \varprojlim_{f \in I_{i}, g \in I_{j}} \mathbb{M}\mathbf{Set}(D(\alpha_{1}^{\flat}(f)) \cap D(\alpha_{1}^{\flat}(g)), X) \\ &\cong \varprojlim_{f \in I_{i}, g \in I_{j}} \varprojlim_{(A_{1}, \alpha_{1}) \in \operatorname{Sp} \downarrow U} \mathbb{M}\mathbf{Set}(\alpha_{1}^{-1}(D(f) \cap D(g)), X) \stackrel{(4)}{\cong} \varprojlim_{f \in I_{i}, g \in I_{j}} \mathbb{M}\mathbf{Set}(D(f) \cap D(g), X) \end{split}$$

where (4) is as before.

- Let $X \in \mathbb{M}\mathbf{Set}$. Then X is called a *scheme* when we have :

 ("Is a Space") $X \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathbf{Zar}})$, equivalently $\mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathbf{Zar}})$.

 (Open cover by Affine schemes) there exists $\mathcal{U} \subseteq \mathrm{Open}\,X$ such that \mathcal{U} covers X and every $U \in \mathcal{U}$ is affine.

denote the full subcategory of schemes in $\mathbb{M}\mathbf{Set}$.

Remark – *Intuition of Definition of Schemes.* In the same way that smooth manifolds are spaces modeled on \mathbb{R}^n that is locally \mathbb{R}^n , schemes are spaces modeled on \mathbb{M} that is "locally \mathbb{M} ". In particular, objects of \mathbb{M} ought to be schemes.

Proposition – Affine Schemes are Schemes Let $X \in \mathbf{Aff}$. Then $X \in \mathbf{Sch}$.

Proof. X is an affine open cover of itself, so it suffices to check the sheaf condition. Since $\mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$ $\mathbf{Sh}(\mathbf{Aff}_{\mathbf{Zar}})$, it suffices to check that for $(A, \alpha) \in \mathrm{Sp} \downarrow X$, \mathcal{U} a $\mathbf{Aff}_{\mathbf{Zar}}$ -cover of $\mathrm{Sp}\,A$, we have

$$\mathbb{M}\mathbf{Set}(\operatorname{Sp} A,X) \xrightarrow{\sim} \varprojlim_{U,V \in \mathcal{U}} \mathbb{M}\mathbf{Set}(U \cap V,X)$$

Since $X = \operatorname{Sp} \mathcal{O}(X)$ and $\operatorname{Sp} : \mathbb{M}^{op} \to \mathbb{M}\mathbf{Set}$ is fully faithful, this is equivalent to

$$\mathbb{Z}\mathbf{Alg}(\mathcal{O}(X),\mathcal{O}(\operatorname{Sp} A)) \xrightarrow{\sim} \mathbb{Z}\mathbf{Alg}(\mathcal{O}(X), \varprojlim_{U,V \in \mathcal{U}} \mathcal{O}(U \cap V))$$

It thus suffices to show that

$$A = \mathcal{O}(\operatorname{Sp} A) \xrightarrow{\sim} \varprojlim_{U \mid V \in \mathcal{U}} \mathcal{O}(U \cap V)$$

where the isomorphism is from the restriction maps $\mathcal{O}(\operatorname{Sp} A) \to \mathcal{O}(U \cap V)$.

Let $(f_V \in \mathcal{O}(V))_{V \in \mathcal{U}}$ that agrees on pairwise intersections. Suppose for a moment, for any finite subcover $\mathcal{U}_0 \subseteq \mathcal{U}$, we have a unique $f_{\mathcal{U}_0} \in A$ that agree with f_V on $V \in \mathcal{U}_0$. WLOG $\mathcal{U} = \{D(f)\}_{f \in I}$ for some $I \subseteq A$. Then \mathcal{U} covers $\operatorname{Sp} A$ implies D(I) covers $\operatorname{Sp} A$, which implies AI = A, which gives a *finite* subset $I_0 \subseteq I$ where $AI_0 = A$. Hence, we do have a finite subcover \mathcal{U}_0 and such $f_{\mathcal{U}_0}$. Furthermore, for any $V \in \mathcal{U}$, $f_{\mathcal{U}_0} = f_{\mathcal{U}_0 \cup \{V\}}$ by uniqueness of $f_{\mathcal{U}_0}$ on \mathcal{U}_0 so

$$\downarrow^V f_{\mathcal{U}_0} = \downarrow^V f_{\mathcal{U}_0 \cup \{V\}} = f_V$$

So $f_{\mathcal{U}_0}$ actually agrees with f_V on all $V \in \mathcal{U}$. Furthermore, it is unique, again by uniqueness on \mathcal{U}_0 . Thus, it suffices to do the case of \mathcal{U} finite.

The naive idea is this: if each $f_V = g_V/h_V$ with $V = D(h_V)$, then "agreeing on intersections" should mean $g_V h_W = g_W h_V \in \mathcal{O}(U) = A$. We can then use a partition of unity $1 = \sum_{V \in \mathcal{U}} \lambda_V h_V$ to patch:

$$f_V = \frac{g_V}{h_V} = \frac{\sum_{W \in \mathcal{U}} \lambda_W g_V h_W}{h_V} = \frac{\sum_{W \in \mathcal{U}} \lambda_W g_W h_V}{h_V} = \frac{\sum_{W \in \mathcal{U}} \lambda_W g_W}{1}$$

So $f:=\sum_{W\in\mathcal{U}}\lambda_Wg_W\in A=\mathcal{O}_{\operatorname{Spec} A}(U)$ is the guy we want. This is even unique since if we have another such f_1 , then $f/1=f_1/1\in\mathcal{O}(V)\cong A_{h_V}$ implies the existence of $N_V\in\mathbb{N}$ such that $(f-f_1)h_V^{N_V}=0$. By finiteness of \mathcal{U} , we can pick a single $N\in\mathbb{N}$ with $(f-f_1)h_V^N=0$ for all $V\in\mathcal{U}$. Then using another partition of unity $1=\sum_{V\in\mathcal{U}}\mu_Vh_V^N$, we have

$$f - f_1 = \sum_{V \in \mathcal{U}} \mu_V (f - f_1) h_V^N = 0$$

It thus suffices to write for all $V \in \mathcal{U}$, $f_V = g_V/h_V$ such that for all $W \in \mathcal{U}$, $g_V h_W = g_W h_V$.

Well, for each $V \in \mathcal{U}$, let $h_V \in A$ with $V = D(h_V)$. Then $f_V = g_V/h_V^{n_V}$. Since $D(h_V) = D(h_V^{n_V})$, WLOG $f_V = g_V/h_V$ with $V = D(h_V)$ Now, since f_V and f_W agree on $V \cap W = D(h_V h_W)$, we have $g_V h_W/h_V h_W = \downarrow^{V \cap W} g_V/h_V = \downarrow^{V \cap W} g_W/h_V = g_W h_V/h_V h_W$ and so the existence of $n(V, W) \in \mathbb{N}$ such that

$$(g_V h_W - g_W h_V)(h_V h_W)^{n(V,W)} = 0$$

Smashing it again with *finiteness of* \mathcal{U} , we can choose a single $N \in \mathbb{N}$ such that

$$(g_V h_W - g_W h_V)(h_V h_W)^N = 0$$

for all $V,W\in\mathcal{U}$. Then, since $g_V/h_V=g_Vh_V^N/h_V^{N+1}$ and $D(h_V)=D(h_V^{N+1})$, we can WLOG $f_V=g_V/h_V$ with $V=D(h_V)$ and

$$g_V h_W - g_W h_V = 0$$

as desired, finishing the proof.

Proposition - Opens Subschemes

Let $X \in \mathbf{Sch}$, $U \in \mathrm{Open}\,X$. Then $U \in \mathbf{Sch}$. We call U an open subscheme of X.

Proof. (Sheaf)

Lemma (*Opens of Sheaves are Sheaves*). Let $U \in \operatorname{Open} X$ where $X \in \operatorname{\mathbf{Sh}}(\mathbb{M}\mathbf{Set}_{\operatorname{Zar}})$. Then $U \in \operatorname{\mathbf{Sh}}(\mathbb{M}\mathbf{Set}_{\operatorname{Zar}})$.

Proof. Given $Y \in \mathbb{M}$ Set, a compatible system $(\varphi_i)_{Y_i \in \mathcal{Y}}$ of morphisms from an open cover \mathcal{Y} of Y to U glues uniquely to a morphism $\varphi: Y \to X$. Factoring φ through U is equivalent to $\varphi^{-1}U = Y$, which is true from $\varphi^{-1}U$ "containing" the cover \mathcal{Y} , and so is single open covering Y, and hence is equal to Y by extensionality of opens.

(Affine Open Cover) Let $\mathcal{U} \subseteq \operatorname{Open} X$, \mathcal{U} consists of affine opens and covers X. Since opens and covers are preserved under base change, $\{U \cap V\}_{V \in \mathcal{U}}$ is an open cover of U. For each $V \in \mathcal{U}$, $U \cap V$ is also an open of V. By affineness of V, $U \cap V$ has a cover by basic opens V_f of V. The V_f are open in $U \cap V$ by base change and hence open in U by composition. This gives an affine open cover of $U \cap V$, and hence an affine open cover of U by taking the composite of these covers.

Proposition – Fiber Product of Schemes

Let $X, Y, S \in \mathbf{Sch}$ and $\varphi \in \mathbf{Sch}(X, S)$, $\psi \in \mathbf{Sch}(Y, S)$. Then the fiber product $X \times_S Y$ in $\mathbb{M}\mathbf{Set}$ is a scheme and is the fiber product of X, Y over S in \mathbf{Sch} .

1.5 Examples

Counter Example (Surjective on Points implies Surjective). Consider $\operatorname{Sp} \mathbb{F}_2 \to \operatorname{Sp} \mathbb{F}_2[dT]$ where $dT^2 := 0$. $(\operatorname{Sp} \mathbb{F}_2)^{\operatorname{Pts}} \cong (\operatorname{Sp} \mathbb{F}_2[dT])^{\operatorname{Pts}}$ but $(\operatorname{Sp} \mathbb{F}_2[dT])(\mathbb{F}_2[dT])$ bijects with \mathbb{F}_2 whilst $(\operatorname{Sp} \mathbb{F}_2)(\mathbb{F}_2[dT])$ is singleton.

Example (Local Rings).

Example (Affine Line with Two Origins). Define X by the following pushout diagram in $\mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}})$.

$$\mathbb{G}^{\times} \longrightarrow \mathbb{A}^{1}$$

$$\downarrow^{\iota_{b}}$$

$$\mathbb{A}^{1} \xrightarrow{\iota_{a}} X$$

In other words, X is obtained by "gluing two affine lines along \mathbb{G}^{\times} ". We prove that the two morphisms $\mathbb{A}^1 \to X$ form an open cover of X and hence X is a scheme.

 $(\iota_a, \iota_b : \mathbb{A}^1 \to X \text{ monomorphism in } \mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}}))$ First note that since $\mathbb{M}\mathbf{Set}$ and $\mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}})$ are both have fiber products and sheafification is the free functor adjoint to the forgetful functor, monomorphisms in $\mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}})$ are the same as monomorphisms in $\mathbb{M}\mathbf{Set}$. We shall make no distinct between the two from now on.

Let X^{psh} denote the pushout of $\mathbb{A}^1 \leftarrow \mathbb{G}^{\times} \to \mathbb{A}^1$ in $\mathbb{M}\mathbf{Set}$ so that X is the sheafification of X^{psh} with respect to the Zariski topology on \mathbf{Aff} . Specifically, we have

$$X^{psh}(A) = A \sqcup_{A^{\times}} A = \{(i, f) \mid i \in \{a, b\}, f \in A\} / (i, f) \sim (j, g) := f = g \in A^{\times}$$

We will use (a, -), (b, -) to denote the two obvious "inclusions" $\mathbb{A}^1 \to X^{psh}$. A remark: by considering $A = \mathbb{F}^2_2$, one can show that X^{psh} is not a Zariski sheaf, which is why we must take the pushout in $\mathbf{Sh}(\mathbf{Aff}_{Zar})$.

The morphism ι_a is the composition $\mathbb{A}^1 \to X^{psh} \to X$ where the second morphism comes from sheafification and the first morphism is (a,-), which is clearly mono. It thus suffices that $X^{psh} \to X$ is mono. Sheafification has the property that if X^{psh} is a separated presheaf, then this map is mono. So it suffices that X^{psh} is a separated presheaf, which means for all $\alpha, \alpha_1 \in \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X^{psh})$ and basic Zariski covers $\mathcal U$ of $\operatorname{Sp} A$, α and α_1 agreeing on every open in $\mathcal U$ implies $\alpha = \alpha_1$.

Let the morphisms α, α correspond to $(i, f), (i_1, f_1) \in X^{psh}(A)$. If $i = i_1$, then f, f_1 are just morphisms $\operatorname{Sp} A \to \mathbb{A}^1$ that agree on the basic Zariski cover \mathcal{U} . Since $\mathbb{A}^1 \in \operatorname{\mathbf{Sh}}(\operatorname{\mathbf{Aff}}_{\operatorname{Zar}})$, we obtain $f = f_1$ and hence $\alpha = \alpha_1$. Now let $i \neq i_1$, WLOG i = a and $i_1 = b$. It follows that f, f_1 are morphisms from $\operatorname{Sp} A \to \mathbb{G}^\times$ that agree on \mathcal{U} . Since $\mathbb{G}^\times \in \operatorname{\mathbf{Sh}}(\operatorname{\mathbf{Aff}}_{\operatorname{Zar}})$ as well, $f = f_1 \in A^\times$ and so $\alpha = \alpha_1$.

(The images of $\iota_a, \iota_b : \mathbb{A}^1 \to X$ are open in X) Let U_a be the presheaf theoretic image of $\iota_a : \mathbb{A}^1 \to X$. We show U_a is an open of X. The argument for ι_b is analogous.

We need to show that for all $(A, \alpha) \in \operatorname{Sp} \downarrow X$, $\alpha^{-1}U := \operatorname{Sp} A \times_X U$ is open in $\operatorname{Sp} A$. Let $(A, \alpha) \in \operatorname{Sp} \downarrow X$. It is another property of sheafification that there now exists a basic Zariski cover $\mathcal V$ of $\operatorname{Sp} A$ together with morphisms $\alpha_i : V_i \to X^{psh}$ for every $V_i \in \mathcal V$ that are the "restriction of α ", in the sense that the following diagram commutes :

$$\begin{array}{ccc}
\operatorname{Sp} A & \xrightarrow{\alpha} & X \\
\uparrow & & \uparrow \\
V_i & \xrightarrow{\alpha_i} & X^{psh}
\end{array}$$

It should suffice to prove that for all $V_i \in \mathcal{V}$, $V_i \cap \alpha^{-1}U_a \in \operatorname{Open} \operatorname{Sp} A$, since \mathcal{V} is an open cover of $\operatorname{Sp} A$ and "a subset is open if and only if it is open when restricted to an open cover". We prove this lemma.

Lemma. Let $V \in \mathbb{M}\mathbf{Set}$, \mathcal{V} a Zariski cover of V, $U \in \mathbf{SubMSet}(V)$ such that $U \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$ and for all $V_i \in \mathcal{V}$, $V_i \cap U \in \mathrm{Open}\,V$. Then $U \in \mathrm{Open}\,V$.

Proof. By definition of subfunctors being open, it suffices to do the case of $V \in \mathbf{Aff}$. For $V_i \in \mathcal{V}$, let $V_i \cap U = D(I_i)$ where $I_i \subseteq \mathcal{O}(V)$. The claim is that $U = D(\bigcup_{V_i \in \mathcal{V}} I_i)$. Well, for $A \in \mathbb{M}^{op}$ and $\alpha \in V(A)$, $\alpha \in U(A)$ if and only if $\alpha : \operatorname{Sp} A \to V$ factors through U. Since $\{D(I_i)\}_{V_i \in \mathcal{V}} \subseteq \operatorname{Open} V$, $\{\alpha^{-1}D(I_i)\}_{V_i \in \mathcal{V}} \subseteq \operatorname{Open} \operatorname{Sp} A$. Then $\alpha : \operatorname{Sp} A \to V$ factoring through U implies $\{\alpha^{-1}D(I_i)\}_{V_i \in \mathcal{V}}$ forms a Zariski cover of $\operatorname{Sp} A$. Conversely, if $\{\alpha^{-1}D(I_i)\}_{V_i \in \mathcal{V}}$ forms a Zariski cover of $\operatorname{Sp} A$, then $U \in \operatorname{Sh}(\mathbb{M}\operatorname{Set}_{\operatorname{Zar}})$ implies $\alpha : \operatorname{Sp} A \to V$ factors through U by uniquely gluing $\alpha^{-1}(V_i \cap U) \to U$ together. Now $\{\alpha^{-1}D(I_i)\}_{V_i \in \mathcal{V}} = \{D(\alpha I_i)\}_{V_i \in \mathcal{V}}$ forms a Zariski cover of $\operatorname{Sp} A$ if and only if $A = A \bigcup_{V_i \in \mathcal{V}} \alpha I_i$, i.e. $\alpha \in D(\bigcup_{V_i} I_i)$.

Now, since $\mathbb{A}^1 \cong U_a$ in $\mathbb{M}\mathbf{Set}$, the fact that the three $\operatorname{Sp} A, X, \mathbb{A}^1$ are Zariski sheaves implies we indeed have $\alpha^{-1}U_a$ as a subfunctor of $\operatorname{Sp} A$ with $\alpha^{-1}U_a \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\operatorname{Zar}})$. So it does suffice that for all $V_i \in \mathcal{V}$, $V_i \cap \alpha^{-1}U_a$ is open in $\operatorname{Sp} A$. Note that again, pullbacks in $\mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\operatorname{Zar}})$ and $\mathbb{M}\mathbf{Set}$ coincide, so we make no distinction between the two.

Let $V_i \in \mathcal{V}$. The intersection $V_i \cap \alpha^{-1}U_a$ is equal to the pullback $\alpha_i^{-1} \left(\uparrow_{X^{psh}}^X\right)^{-1} U_a$. We have $\left(\uparrow_{X^{psh}}^X\right)^{-1} U_a$ as the presheaf-theoretic image of (a,-), which we will denote with (a,\mathbb{A}^1) . Suppose α_i corresponds to $(a,f) \in X^{psh}(\mathcal{O}(V_i))$. Then we that following pullback diagram,

$$V_{i} \xrightarrow{\alpha_{i}} X^{psh}$$

$$\downarrow^{V_{i}} \qquad \uparrow^{(a,-)}$$

$$V_{i} \xrightarrow{f} \mathbb{A}^{1}$$

i.e. $\alpha_i^{-1}(a, \mathbb{A}^1) = V_i$, which is open. In the other case that α_i corresponds to $(b, f) \in X^{psh}(\mathcal{O}(V_i))$, it is easily checked from the definition of X^{psh} that $\alpha_i^{-1}(a, \mathbb{A}^1) = (\operatorname{Sp} A)_f$, which is again open.

 $(U_a, U_b \text{ cover } X)$ Let $x : \operatorname{Sp} K \to X$ be a point of X. Again, it is a property of sheafification that we obtain a basic Zariski cover K of $\operatorname{Sp} K$ with morphisms $\kappa_i : K_i \to X^{psh}$ for each $K_i \in K$ such that

$$\begin{array}{ccc}
\operatorname{Sp} K & \xrightarrow{x} & X \\
\uparrow & & \uparrow \\
K_i & \xrightarrow{\kappa_i} & X^{psh}
\end{array}$$

But $\operatorname{Sp} K$ is local, so $K_i = \operatorname{Sp} K$ for some $K_i \in \mathcal{K}$. In other words, we reduced the problem to showing $(a, \mathbb{A}^1), (b, \mathbb{A}^1)$ cover X^{psh} . This is clear.

2 Properties of Schemes

2.1 Zariski-Local Properties of Schemes

Definition – Zariski-Local Properties

Let $P : \mathbf{Sch} \to \mathbf{Prop}$ be a predicate on schemes. Then P is called Zariski-local when for all $X \in \mathbf{Sch}$ and Zariski covers \mathcal{X} of X, P(X) is true if and only if for all $X_i \in \mathcal{X}$, $P(X_i)$ is true.

Definition – Affine-Local Properties

Let $P : \mathbf{Aff} \to \mathbf{Prop}$ be a predicate on affine schemes. Then P is called *affine-local* when for all $X \in \mathbf{Aff}$ and basic Zariski covers \mathcal{X} of X, P(X) is true if and only if for all $X_i \in \mathcal{U}$, $P(X_i)$ is true.

Proposition - Affine-Locality

Let $P : \mathbf{Aff} \to \mathbf{Prop}$ be affine-local. Define the predicate locally $P : \mathbf{Sch} \to \mathbf{Prop}$ by setting X is locally P when there exists an affine Zariski-cover \mathcal{X} of X such that all $X_i \in \mathcal{X}$ satisfy P.

Then TFAE:

- 1. *X* is locally *P*
- 2. All opens U of X are locally P.
- 3. All affine opens U of X satisfy P.
- 4. There exists a Zariski cover \mathcal{X} of X where all $X_i \in \mathcal{X}$ are locally P.

In particular, "locally P" is a Zariski-local property of schemes.

Proof.

 $(1\Rightarrow 2)$ Let $U\in \operatorname{Open} X$. Let $\mathcal X$ be an affine Zariski cover of X where all $X_i\in \mathcal X$ satisfy P. For each X_i , $X_i\cap U$ is an open of X_i and hence admits a Zariski covering $\mathcal U_i$ by basic opens of X_i . Since $P(X_i)$ is true, for every $U_{i,j}\in \mathcal U_i$, $P(U_{i,j})$ is true as well. Then note that $U_{i,j}$ are affine since X_i is and also open in U so the composite $\mathcal U:=\bigcup_{X_i\in \mathcal X}\mathcal U_i$ gives an Zariski cover of U consisting of affines satisfying P.

 $(2 \Rightarrow 3)$ Let $U \in \text{Open } X$ be affine. We have an affine Zariski cover \mathcal{U} of U consisting of opens satisfying P. Since P is affine-local, it suffices to find a Zariski cover of each $U_i \in \mathcal{U}$ by opens that are basic in *both* U and U_i . Well, we can certainly find a Zarisk cover \mathcal{U}_i of U_i by basic opens of U. Then $\mathcal{U}_i \cup \{U\}$ is a basic Zariski cover of U, so its pullback is a basic Zariski cover of U_i . But its pullback is just \mathcal{U}_i so \mathcal{U}_i works.

 $(3 \Rightarrow 4)$ By X being a scheme. $(4 \Rightarrow 1)$ Composites of open covers.

Proposition – Examples of Affine-Local Properties

The following predicates on ${\bf Aff}$ are affine-local :

1. For $X \in \mathbf{Aff}$, say X is *Noetherian* when $\mathcal{O}(X)$ is Noetherian.

2. For $X \in \mathbf{Aff}$, say X is *reduced* when $\mathcal{O}(X)$ has no nilpotent elements.

Definition - Globally

Let P be a affine-local property of affine schemes and $X \in \mathbf{Sch}$. We say X is *globally* P^a when X is locally P and X is quasi-compact.

 $[^]a$ This is non-standard terminology. A lot of affine-local properties are extended to schemes by quasi-compact + locally P. In this case, it is standard terminology to say simply say "X is P". However, this clashes with properties of schemes not coming from affine-local properties. The addition of the adverb "globally" is an attempt to highlight the fact that the property P is affine-local.

3 Properties of Morphisms

3.1 Permanence

Definition – Permanence

Let $P: Mor(Sch) \to Prop$ be a predicate on morphisms of schemes. Then we say :

- *P* is *stable under composition* when for all $X \to Y \to Z$ in Sch, $P(X \to Y)$ and $P(Y \to Z)$ implies $P(X \to Z)$.
- *P* is *stable under base change* when for all pullback diagrams

$$\begin{array}{c} X \longrightarrow S \\ \uparrow \qquad \qquad \uparrow \\ X \times_S Y \longrightarrow Y \end{array}$$

 $P(X \to S)$ implies $P(X \times_S Y \to Y)$.

– P is *stable under fiber product* when for all pullback diagrams as the above, $P(X \to S)$ and $P(Y \to S)$ implies $P(X \times_S Y \to S)$.

3.2 Zariski-Local Properties of Morphisms of Schemes

Definition - Zariski-Local on Target, on Source

Let $P:\operatorname{Mor}(\operatorname{\mathbf{Sch}})\to\operatorname{\mathbf{Prop}}$ be a predicate on morphisms of schemes. Then we say :

- P is Zariski-local on target when for all $\varphi \in \mathbf{Sch}(X,Y)$ and Zariski covers $\mathcal Y$ of Y, $P(\varphi:X \to Y)$ is true if and only if for all $Y_i \in \mathcal Y$, $P(\varphi^{-1}Y_i \to Y_i)$ is true.
- P is Zariski-local on source when for all $\varphi \in \mathbf{Sch}(X,Y)$ and Zariski covers \mathcal{X} of X, $P(\varphi : X \to Y)$ is true if and only if for all $X_i \in \mathcal{X}$, $P(X_i \to X \to Y)$ is true.

Definition – Affine-Local Properties of Morphisms

Let $P: Mor(\mathbf{Aff}) \to \mathbf{Prop}$ be a predicate on morphisms of affine schemes. Then we say :

- P is affine-local on target when for all $\varphi \in \mathbf{Aff}(X,Y)$ and basic Zariski covers \mathcal{Y} of Y, $P(\varphi:X\to Y)$ is true if and only if for all $Y_i\in\mathcal{Y}$, $P(\varphi^{-1}Y_i\to Y_i)$ is true.
- P is affine-local on source when for all $\varphi \in \mathbf{Aff}(X,Y)$ and basic Zariski covers \mathcal{X} of X, $P(\varphi:X\to Y)$ is true if and only if for all $X_i\in\mathcal{X}$, $P(X_i\to X\to Y)$ is true.
- -P is affine-local when the following three things are true:
 - (Half of Affine-Local on Target) For $\varphi \in \mathbf{Aff}(X,Y)$ and $f \in \mathcal{O}(Y)$, $P(\varphi : X \to Y)$ implies $P(\varphi^{-1}Y_f \to Y_f)$.
 - (Half of Affine-Local on Source) For $\varphi \in \mathbf{Aff}(X,Y)$ and basic Zariski cover \mathcal{X} of X, if $P(X_i \to X \to Y)$ for every $X_i \in \mathcal{X}$, then $P(X \to Y)$.

- ("Zig-Zag") For $\varphi \in \mathbf{Aff}(X,Y)$, $f \in \mathcal{O}(X)$ and $g \in \mathcal{O}(Y)$,

$$P(X \to Y_q)$$
 implies $P(X_f \to Y)$.

Remark – Frustration with Affine-Local Properties. It is true for properties of morphisms of affine schemes P that P affine-local implies P affine-local on target and source. I was hoping for this to be an equivalence, however the "zig-zag" seems to contain the extra information that $P(\operatorname{Sp} B \to (\operatorname{Sp} A)_f)$ implies $P(\operatorname{Sp} B \to \operatorname{Sp} A)$.

Proposition – Affine-Locality for Morphisms

Let $P: \operatorname{Mor}(\mathbf{Aff}) \to \mathbf{Prop}$ be an affine local property of morphisms of affine schemes. For $\varphi \in \mathbf{Sch}(X,Y)$, we say φ is *locally* P when there exists a Zariski cover \mathcal{X} of X such that for each $X_i \in \mathcal{X}$, there exists an affine open Y_i of Y with $X_i \subseteq \varphi^{-1}Y_i$ and $P(X_i \to Y_i)$ true. Then for any $\varphi \in \mathbf{Sch}(X,Y)$, TFAE:

- 1. φ is locally P.
- 2. For all opens U, V of X, Y respectively with $U \subseteq \varphi^{-1}V$, $U \to V$ is locally P.
- 3. For all affine opens U, V of X, Y respectively with $U \subseteq \varphi^{-1}V$, $P(U \to V)$.
- 4. There exists an affine Zariski cover \mathcal{Y} of Y and for each $Y_i \in \mathcal{Y}$ an affine Zariski cover \mathcal{X}_i of $\varphi^{-1}Y_i$ such that for all $X_{ij} \in \mathcal{X}_i$, $P(X_{ij} \to Y_i)$.
- 5. There exists a Zariski cover \mathcal{Y} of Y and for each $Y_i \in \mathcal{Y}$ a Zariski cover \mathcal{X}_i of $\varphi^{-1}Y_i$ such that for all $X_{ij} \in \mathcal{X}_i$, $X_{ij} \to Y_i$ is locally P.