Лабораторная работа 13

Задание для самостоятельного выполнения

Оразгелдиев Язгелди

Содержание

1	Задание	5
2	Выполнение лабораторной работы	6
3	Выводы	16

Список иллюстраций

2.1	Схема модели для выполнения домашнего задания
2.2	Сеть для выполнения домашнего задания
2.3	Дерево достижимости
2.4	Готовая модель задачи в CPNTools
2.5	Задание декларации
2.6	Запуск нашей модели
2.7	Лерево лостижимости

Список таблиц

1 Задание

- Используя теоретические методы анализа сетей Петри, проведите анализ сети, изображённой на рис. 13.2 (с помощью построения дерева достижимости).
 Определите, является ли сеть безопасной, ограниченной, сохраняющей, имеются ли тупики.
- 2. Промоделируйте сеть Петри (см. рис. 13.2) с помощью CPNTools.
- 3. Вычислите пространство состояний. Сформируйте отчёт о пространстве состояний и проанализируйте его. Постройте граф пространства состояний.

2 Выполнение лабораторной работы

Заявка (команды программы, операнды) поступает в оперативную память (ОП), затем передается на прибор (центральный процессор, ЦП) для обработки. После этого заявка может равновероятно обратиться к оперативной памяти или к одному из двух внешних запоминающих устройств (В1 и В2). Прежде чем записать информацию на внешний накопитель, необходимо вторично обратиться к центральному процессору, определяющему состояние накопителя и выдающему необходимую управляющую информацию. Накопители (В1 и В2) могут работать в 3-х режимах: 1) В1 — занят, В2 — свободен; 2) В2 — свободен, В1 — занят; 3) В1 — занят, В2 — занят.

Рис. 2.1: Схема модели для выполнения домашнего задания

Описание модели

Сеть Петри моделируемой системы представлена на рис. 13.2. Множество позиций: P1- состояние оперативной памяти (свободна / занята); P2- состояние внешнего запоминающего устройства B1 (свободно / занято); P3- состояние

внешнего запоминающего устройства B2 (свободно / занято); P4 — работа на ОП и B1 закончена; P5 — работа на ОП и B2 закончена; P6 — работа на ОП, B1 и B2 закончена; Множество переходов:

 $T1- \Pi$ работает только с RAM и B1; T2- обрабатываются данные из RAM и с B1 переходят на устройство вывода; Т3 — CPU работает только с RAM и B2; T4 — обрабатываются данные из RAM и с B2 переходят на устройство вывода; Т5 — СРИ работает только с RAM и с B1, B2; Т6 — обрабатываются данные из RAM, B1, B2 и переходят на устройство вывода. Функционирование сети Петри можно расматривать как срабатывание переходов, в ходе которого происходит перемещение маркеров по позициям: - работа CPU с RAM и B1 отображается запуском перехода Т1 (удаление маркеров из Р1, Р2 и появление в Р1, Р4), что влечет за собой срабатывание перехода T2, т.е. передачу данных с RAM и B1 на устройство вывода; - работа CPU с RAM и B2 отображается запуском перехода Т3 (удаление маркеров из P1 и P3 и появление в P1 и P5), что влечет за собой срабатывание перехода Т4, т.е. передачу данных с RAM и B2 на устройство вывода; – работа СРИ с RAM, B1 и B2 отображается запуском перехода Т5 (удаление маркеров из P4 и Р5 и появление в Р6), далее срабатывание перехода Т6, и данные из RAM, В1 и В2 передаются на устройство вывода; – состояние устройств восстанавливается при срабатывании: RAM — переходов T1 или T2; B1 — переходов T2 или T6; B2 переходов Т4 или Т6.

Рис. 2.2: Сеть для выполнения домашнего задания

Анализ сети Петри Построим дерево достижимости

Рис. 2.3: Дерево достижимости

Промоделирую сеть Петри с помощью CPNTools. Создаем новую сеть, добавляем 6 позиций и 6 блоков переходов, затем их нужно соединить, и еще задать параметры и начальные значения. В итоге получаем готовую модель

Рис. 2.4: Готовая модель задачи в CPNTools

Еще зададим нужные декларации

```
▼ Declarations
▼ memory
▼ colset RAM = unit with mem;
▼ colset B1 = unit with storage1;
▼ colset B2 = unit with storage2;
▼ colset B1xB2 = product B1*B2;
▼ var ram:RAM;
▼ var b1:B1;
▼ var b2:B2;
▶ Standard declarations
▶ Monitors
petri-net
```

Рис. 2.5: Задание декларации

Запустив модель, посмотрим как она работает

Рис. 2.6: Запуск нашей модели

Пространство состояний.

Изучим пространство состояний, их всего 5

Рис. 2.7: Дерево достижимости

Вычислим пространство состояний. Это мы делаем по схеме как в прошлых лабораторных работах. ВХодим в пространство состояние, вычисляем пространство состояний к листу, и формируем отчёт. Сохраняем его и открываем

В итоге из отчёта выясняем что:

- есть 5 состояний и 10 переходов между ними, strongly connected components (SCC) graph содержит 1 вершину и 0 переходов
- Указаны границы значений для каждого элемента: состояние Р1 всегда заполнено 1 элементом, а остальные содержат максимум один элемент, минимум ноль
- Указаны границы в виде мультимножеств
- Маркировка Home для всех состояний, так как в любую позиицию мы можем попасть из любой другой маркировки

- Маркировка dead равна None, т.к. нет состояний из которых перехода быть не может
- в конце указано что бесконечно часто могут происходить переходы Т1 Т2 Т3 Т4, но необязательно, также Т5 нужно для того чтобы система не попадала в тупик, а Т6 происходит всегда, если доступно.

CPN Tools state space report for:

/home/openmodelica/cpnl13.cpn

Report generated: Sat May 3 03:39:06 2025

Statistics

State Space

Nodes: 5

Arcs: 10

Secs: 0

Status: Full

Scc Graph

Nodes: 1

Arcs: 0

Secs: 0

Boundedness Properties

Best Integer Bounds

	Upper	Lower
petri'P1 1	1	1
petri'P2 1	1	0
petri'P3 1	1	0
petri'P4 1	1	0
petri'P5 1	1	0
petri'P6 1	1	Θ

Best Upper Multi-set Bounds

petri'P1	1	1`memory
petri'P2	1	1`storage1
petri'P3	1	1`storage2
petri'P4	1	1`storage1
petri'P5	1	1`storage2
petri'P6	1	1`(storage1,storage2)

Best Lower Multi-set Bounds

petri'P1	1	1`memory
petri'P2	1	empty
petri'P3	1	empty
petri'P4	1	empty
petri'P5	1	empty
petri'P6	1	empty

Home Properties

Home Markings

petri'T5 1

petri'T6 1

Liveness Properties			
Dead Markings			
None			
Dead Transition Instances			
None			
Live Transition Instances			
All			
Fairness Properties			
petri'T1 1	No Fairness		
petri'T2 1	No Fairness		
petri'T3 1	No Fairness		
petri'T4 1	No Fairness		

Just

Fair

3 Выводы

В ходе лабораторной работы мы выполнили задание для самостоятельного выполнения, провели анализ Сети Петри, построили сеть в CPNTools, построили граф состояний и провели его анализ