Problem 4 Suppose that $B_n, n \ge 1$ is a countable partition of Ω and define $\mathcal{B} = \sigma(B_n, n \ge 1)$. Show a function $X: \Omega \mapsto (-\infty, \infty]$ is \mathcal{B} -meaning iff X is the form

$$X = \sum_{i=1}^{\infty} c_i 1_{B_i},$$

for constants $\{c_i\}$. (What is \mathcal{B} ?)

Proof.

- (a) Assume $X = \sum_{i=1}^{\infty} c_i 1_{B_i}$. Note the range of X is $\{c_i : i \in \mathbb{N}\}$. $\forall i \in \mathbb{N}, X^{-1}(c_i) = B_i \in \sigma(B_n, n \ge 1).$ So X is \mathcal{B} -measurable.
- (b) Assume X is \mathcal{B} -measurable. We claim $C = \{ \bigsqcup_{i \in I} B_i : I \subset \mathbb{N} \} = \mathcal{B} = \sigma(B_n, n \ge 1).$ First we show \mathcal{C} is a σ -algebra.
 - (a) $\Omega = \bigsqcup_{\mathbb{N}} B_i \in \mathcal{C}$.
 - (b) $\forall I \subset \mathbb{N}, \left(\bigsqcup_{i \in I} B_i\right)^c = \bigsqcup_{i \in N \setminus I} B_i \in \mathcal{C} \text{ since } \Omega = \bigsqcup_{i \in \mathbb{N}} B_i.$
 - (c) $\forall \{I_i\} \subset \mathbb{N}, I_i \cap I_j = \emptyset, \bigsqcup_{j \in I_i} B_j \in \mathcal{C}.$ Then $\bigsqcup_{i=1}^{\infty} \bigsqcup_{j \in I_i} B_j = \bigsqcup_{j \in \sqcup I_i} B_j \in \mathcal{C}.$

Then we can find that $\mathcal{C} \subset \mathcal{B}$ and $\{B_n, n \geq 1\} \subset \mathcal{C}$.

So $\mathcal{B} = \sigma(B_n, n \geq 1) \subset \mathcal{C}$.

Thus, $\mathcal{B} = \mathcal{C} = \{ \bigsqcup_{i \in I} B_i : I \subset \mathbb{N} \}.$

Next, $\forall i \in \mathbb{N}$, let $b_i \in B_i \subset \Omega$, suppose $X(b_i) = c_i \in \mathbb{R}$. Then $X_i^{-1}(c_i) \in \mathcal{B}$ since $c_i = [c_i, c_i] \subset \mathcal{B}(\mathbb{R})$ and X is \mathcal{B} -measurable. So $X_i^{-1}(c_i) = \bigsqcup_{i \in I_i} B_j$, where $I_i \subset \mathbb{N}$. Then $B_i \in \bigsqcup_{i \in I_i} B_j$ since $b_i \in B_i$ and $X(b_i) = c_i$. Namely $B_i \subset X_i^{-1}(c_i)$.

Thus, we have $X(b) = c_i, \forall b \in B_i$.

As a result, we can write X as $X = \sum_{i=1}^{\infty} c_i 1_{B_i}$.