		universal es una p	roposición de la forma:
	Para todo $x, P(x)$	Simbología:	$\forall x, P(x)$
Defi	inición . Una cuantificación	existencial es una	proposición de la forma:
	Existe x tal que, $P(x)$	Simbología:	$\exists x, P(x)$
prop			gla de inferencia que a partir de la verdad de una nite inferir la verdad sobre un individuo
E	Vamos a aceptar como pseu	ıdo-definición de c	onjunto la siguiente:
	una colección o agrupacio	ón de objetos a los	que llamamos elementos del conjunto
Defi	inición. Sean A y B dos con	ijuntos. Decimos q $\forall x \in A \rightarrow x \in A$	ue A es un <i>subconjunto</i> de B si la proposición: B
Usaı	mos la simbología $A \subseteq B$ pa	ara indicar que A es	s un subconjunto de B.
Defi cum	-	ajuntos. Decimos q $A \subseteq B \ y \ A \neq B$	ue A es un subconjunto propio de B si se
Usaı	mos la simbología $A \subset B$ pa		s un subconjunto propio de <i>B</i> .
	inición . El <i>conjunto vacío</i> e liante la simbología Ø o { }		ual no tiene elementos. Este lo representamos
Proj	piedad. El conjunto vacío e	es subconjunto de c	cualquier conjunto.
conj es ve	A un conjunto cualquiera. I		$A \leftrightarrow \forall x \in \emptyset \rightarrow x \in A$. Luego, por definición del oda proposición condicional cuya hipótesis sea falsa

			$A \subseteq B$	$y B \subseteq A$			
Usa	mos la simbología $A =$	B para indic	ar que A	l y B son	iguales.		
Prop	piedades de la contenc	rión					
Pro	oiedad. Todo conjunto	es un subco	njunto c	le sí misn	10.		
Prue	phar						
	A un conjunto cualqui	era. Por defii	nición, A	$1 \subseteq A \leftrightarrow $	$\forall x, (x \in A -$	$\rightarrow x \in A$). Ter	nemos ahora dos caso
		.,		, 1	1		
	Caso $x \notin A$: la implication son ambas falsas.	cación $x \in A$	$\rightarrow x \in A$	l es verda	idera, ya qu	ie tanto la hip	ootesis como la tesis
	En general, no será n	ecesario «demo	strar» las	implicacio	nes cuando l	a hipótesis sea f	alsa, ya
	que la implicación siemp						
		i i i 1	–		1		4400ia 0000 10 400ia
	Caso $x \in A$: la implication son ambas verdadera		$\rightarrow x \in A$	es verda	ucia, ya qu	ie tanto la nip	ocesis como la tesis
∴ A	$\subseteq A$						
Pro	oiedad. La contención	es transitiva	, es dec	$\operatorname{ir}, A \subseteq B$	$y B \subseteq C \rightarrow$	$A \subseteq C$.	
Defi	nición. El silogismo h	<i>ipotético</i> es 1	ına regl	a de infer	encia que p	permite concl	uir lo siguiente:
		$q \rightarrow q$	Î l				
			$\rightarrow r$				
D	7						
Pru	A, By C conjuntos. S	uponemos A	$\subseteq B \vee I$	$B \subseteq C$, es	decir. las i	nplicaciones	
Sear	, , , , , , , , , , , , , , , , , , , ,				$B \to x \in C$	1	
Sea							
	verdaderas.						
son		tético $x \in A$	$\rightarrow x \in C$	' -			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$	1.			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$	·			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$	'			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$	'			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$	'- -			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$	'-			
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$				
son	go, por silogismo hipo	tético $x \in A$	$\rightarrow x \in C$				