- (a) $P_1(u,v) := \{S \in {[k] \choose 2} | \exists$ ein bunter u-v Pfad, welcher genau mit den Farben aus S gefärbt ist $\}$ d.h alle pfade der länge 1 die genau 2 farben aus [k] benutzen. $P_1(u,v) = \{\{\lambda(u),\lambda(v)\} | v \in N(u) \land \lambda(u) \neq \lambda(v)\}$ wobei:
 - $\lambda(x) \in [k]$ der Farbe von der Knoten x ist
 - \bullet N(x) die Nachbarschaft der Knoten x ist
- (b) $P_i(u,v) = \bigcup_{x \in N(v)} \{R \cup \{\lambda(v)\} | R \in P_{i-1}(u,x) \land \lambda(v) \notin R\}$

Wobei R ein Menge von Farben ist für ein bunten Pfad der Länge |R|-1 Als Algorithmus machen wir folgendes:

- for all $x \in N(v)$ do
- for all $R \in P_{i-1}(u, x)$ mit $\lambda(v) \notin \mathbb{R}$ do
- $P_i(u,v) \leftarrow P_i(u,v) \cup \{R \cup \{\lambda(v)\}\}$

Wir berechnen ausgehend von der Menge $P_1(u, v)$ sukzessive in i-1 Runden die Mengen $P_2(u, v)$ bis zu den Menge $P_i(u, v)$ berechnen $(u, v \in V \text{ und } u \neq v)$.

- (c) Die Zeit den wir brauchen um die P_i 's aus den P_{i-1} 's zu berechnen ist:
 - $\mathcal{O}(deg(v) \cdot |P_{i-1}(u,v)| \cdot i) = \mathcal{O}(\binom{k}{i} \cdot i \cdot m)$
 - $(\mathcal{O}(deg(v)) \in \mathcal{O}(m), P_{i-1}(u,v) \subseteq {[k] \choose i} \to |P_{i-1}(u,v)| \le {k \choose i})$ Um $P_i(u,v)$ für alle u,v in V $u \neq v$ zu berechnen: $\mathcal{O}({[k] \choose i} \cdot i \cdot m \cdot n)$ (m die Anzahl Kanten, n die Anzahl Knoten)
- (d) Es gibt einen bunten Kreis der Länge k falls die Menge $P_{k-1}(u,v)$ und $P_1(u,v)$ nicht leer sind, da wir einen kreis der Länge k aus der vereinigung zwei elementen dieser Mengen bauen können.
- (e) Um $P_{k-1}(u,v)$ zu berechnen müssen wir k-1 erweiterungen der Pfad $P_1(u,v)$ machen:

$$\Rightarrow \mathcal{O}\big(\sum_{i=1}^{k-1} \binom{k}{i} \cdot i \cdot m \cdot n\big) = \mathcal{O}(2^k \cdot k \cdot m \cdot n)$$