

This course was developed as a part of the VLIR-UOS Cross-Cutting project s:

•Statistics: 2011-2016, 2017.

•Statistics: 2017.

Statistics for development: 2018-2020.

The >eR-Biostat initiative Making R based education materials in statistics accessible for all

An introduction to R: Short Version (2017)

Part 1: a quick start

Developed by

Dan Lin (Hasselt University) and Ziv Shkedy (Hasselt University)

LAST UPDATE: 15/10/2017

ER-BioStat

Overview

A (very) quick start:

- Sampling from a normal distribution.
- Working with data: the cars data.
- Two sample t-test.
- Basic plots.

A (very) quick Start

...the first step...

The R environment

- Open R.
- · Open a new script window.

Open a script window

The script & the output

Example: a normal distribution

The normal distribution: location

Density function of a normal distribution

$$X \sim N(\mu, \sigma^2)$$

The normal distribution: variability

Density function of a normal distribution

function(data)

A procedure that was programed in R that uses data to produce output.

Calculate the sample variance.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

Random sample from a normal distribution in R

Draw a random sample of size 100 from a normal distribution with mean – and variance 1

In R

rnorm(sample size, mean, standard deviation)

$$X \sim N(0,1)$$
rnorm(100,0,1)

A function in R that draw a sample from $N(\mu,\sigma^2)$

The script & the output

The random sample

Random sample from a normal distribution in R

Draw a random sample of size 100 from a normal distribution with mean 0 and variance 1

$$X \sim N(\mu, \sigma^2) \Rightarrow X \sim N(0,1)$$

> rnorm(100,0,1)

```
[1] -0.173911348 -0.463196096 -1.084838332
                                             2.373958677 -1.685884982
 [6] -1.952672126 -0.055601310 -0.241913096 -0.999586206
                                                          0.308335895
     0.556993818
                 2.337451275
                                0.778734465 -0.501354458
                                                          0.004525392
[16] -1.468709822 0.109901143
                                0.109103689
                                             0.662434110 -0.177097648
[21] -1.442033566 0.615239368
                                0.254080126
                                             1.152977602 -0.089559002
                  0.300405204 -0.190196930 -0.244365328
     0.065022482
                                                          0.886735849
[31] -0.667671228 -1.009209277
                                0.388362272 -0.041883373
                                                          0.750480061
[36] -2.103109677 -1.515839684
                               -0.477250540 -0.344581482
                                                          0.072570862
[41] -0.364485234 -0.920898769
                                1.148778190
                                            1.092225688 -0.832389361
[46] -1.914844153 -0.384265110
                                                          0.226817654
                                0.528078353
                                             1.319149374
[51] -0.605867376 -0.658048328
                                0.086126314
                                             0.711404951
                                                          1.190303122
     2.499314086
                 2.201924724
                                0.591527333 -0.733622099 -0.656031690
                  0.864421699
                                0.813854743 -0.628803589
[61] -0.194759316
                                                          0.362077258
     0.312250497
                  1.451227963
                                1.107136623
                                             0.680487861
                                                          1.585879056
[71] -0.249983835 -1.436293634 -0.470710524 -2.330088808
                                                          0.265551343
                                             0.826973063 -0.592073631
[76] -0.847238216 -1.199413581 -1.866542460
[81] -1.751735134 0.077115620 -0.306869702
                                             0.120083596 -0.303521155
[86] -0.644268518
                  0.295067198
                                2.004409939
                                             0.310290927
                                                          0.221898330
[91] -1.450606907 -1.264043444 -0.257282348
                                             0.078120141 -0.902925645
      0.499980835 -0.596173525 -1.085097601 -0.773094391
                                                          0.693319162
```

100 observations

Creating an R object

> x<-rnorm(100,0,1)

An R object contains the results

Print the R object

Summary statistics

```
> mean(x)
[1] 0.02149641 Sample mean
> var(x)
[1] 1.061159 Sample variance
```

A **function in R** that calculate the **mean**:

```
mean(my sample)
```

A **function in R** that calculate the variance:

```
var(my sample)
```

Histogram of the sample

> hist(x)

A function in R that
produces a histogram

Histogram of the sample

Histogram of the sample

```
> x<-rnorm(10000,0,1)</pre>
> mean(x)
[1] -0.01259969
> var(x)
[1] 0.9871957
> hist(x,nclass=50)
```

A function in R that produces a histogram

Controlling the graphical output

> par(mfrow=c(2,2))

Split the graphical window to a panel with 2 rows and 2 columns.

In general:

> par(mfrow=c(n,m))

Number of rows

Number of columns

The normal distribution: location

$$X \sim N(\mu, \sigma^2)$$

The normal distribution: variability

$$X \sim N(\mu, \sigma^2)$$

- > x1<-rnorm(10000,0,1)
 > x2<-rnorm(10000,0,2)
 > par(mfrow=c(2,1))
 > hist(x1,nclass=50,xlim=c(-6,6))
- > hist(x2,nclass=100,xlim=c(-6,6))

Example: working with data

The cars Data set in R

- 1. Write **cars** in the script window.
- 2. Submit

> cars

speed	dist	
4	2	
4	10	
7	4	
7	22	
8	16	
9	10	
•		
24	93	
24	120	
25	85	
	4 4 7 7 8 9 • • • • 24 24	4 10 7 4 7 22 8 16 9 10 24 93 24 120

- > help(cars)
- >

Speed and Stopping Distances of Cars Description

The data give the speed of cars and the distances taken to stop. Note that the data were recorded in the 1920s.

```
[,1] speed numeric Speed (mph)[,2] dist numeric Stopping distance (ft)
```

The cars Data set in R: the \$ sign

```
> speed
Error: object 'speed' not found
> 
> cars$speed
[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15
[26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25
>
```

cars\$speed: the variable speed in the object cars

The cars Data set in R: creating a new object

> cars[,1]

[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 25

> x=cars[,1]

> print(x)

[1] 4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 [26] 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 25

>

Basic plot and descriptive statistics

- What is the average speed of the cars?
- What is the variance of the cars' speed?
- What is the min. (max.) speed?
- What is the association between speed and stopping distance?

Descriptive statistics

```
> mean(cars$speed)
                                                > head(cars)
[1] 15.4
                                                  speed dist
                          The variable speed
                                                       4
> max(cars$speed)
                          in the dataset cars
                                                2
                                                       4
                                                            10
[1] 25
                                                3
                                                            22
> min(cars$speed)
                                                5
                                                       8
                                                            16
[1] 4
                                                       9
                                                            10
```

attach(data)

> attach(cars)

Tells R to work with the dataset cars.

> mean(speed)
[1] 15.4
> max(speed)
[1] 25
> min(speed)
[1] 4

We can work with the variables by using thier names.

> detach(cars)

Stop using the dataset cars.

Descriptive statistics

Correlation between the variables speed and stopping distance.

function(data)

A procedure that was programed in R that uses data to produce output.

> var(cars\$speed)
[1] 27.95918

Calculate the variance.


```
> print(cars)
   speed dist
       4
         10
3
        22
     23 54
45
46
      24
         70
47
         92
      24
48
         93
     24
49
     24
         120
50
      25
          85
```

- Can be used for
 - Data analysis: descriptive statistics, testing, modeling, etc.
 - Data manipulation: selection of cases, variables...
 - Data management: reading and writing datasets into/from R.
 - Visualization: plots for the data.
 - **–**

Discussion

- R Objects: data frame.
- R functions.
- \$.

Practical session

- The airquality is a dataset available in R.
- How many variables there are in the data?
- Define an R object which contain the information about the wind speed.
- Calculate the mean, and variance for the wind speed.

Working with R function: Two-sample t-test

The sleep data in R

> help(sleep)

Data which show the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients.

extra	numeric	increase in hours of sleep
group	factor	drug given
ID	factor	patient ID

> sleep				
	extra	group	ID	
1	0.7	1	1	
2	-1.6	1	2	
3	-0.2	1	3	
4	-1.2	1	4	
5	-0.1	1	5	
		•		
14	0.1	2	4	
15	-0.1	2	5	
16	4.4	2	6	
17	5.5	2	7	
18	1.6	2	8	
19	4.6	2	9	
20	3.4	2	10	

Two samples t-test

- > extra=sleep\$extra
- > group=sleep\$group
- > boxplot(split(extra,group))

The aim of the analysis:

Test for a difference between the two soporific drugs

Two samples t-test

```
> t.test(extra~group,var.equal=TRUE)
         Two Sample t-test
data: extra by group
t = -1.8608, df = 18, p-value = 0.07919
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -3.363874 0.203874
                                     H_0: \mu_1 = \mu_2
H_1: \mu_1 \neq \mu_2
sample estimates:
mean in group 1 mean in group 2
            0.75
                              2.33
```

Two samples t-test

> t.test(extra~group,var.equal=TRUE)

R object for the output

```
> t.obj=t.test(extra~group,var.equal=TRUE)
> summary(t.obj)
             Length Class
                            Mode
statistic
                            numeric
                     -none-
parameter
                     -none- numeric
p.value
                            numeric
                     - none -
                                            t.obj:
conf.int
                     -none- numeric
estimate
                     -none- numeric
                                            R object contains the
null.value
                     -none- numeric
                                            output of the analysis
alternative
                     -none- character
method
                     -none- character
data.name
                     -none- character
```

R object for the output

```
> print(t.obj)
        Two Sample t-test
data: extra by group
t = -1.8608, df = 18, p-value = 0.07919
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
 -3.363874 0.203874
sample estimates:
mean in group 1 mean in group 2
           0.75
                           2.33
```

Objects in the "output"

Discussion

- R Objects: output of the analysis.
- R functions: t.test
- \$.

Practical session

- The ToothGrowth is a dataset available in R.
- Use help(ToothGrowth) for more details.
- The response variable is the Tooth length.
- Test if the Supplement type has an effect on the tooth length.

```
t.test(response ~ group, data = ...)
```

Basic plots

The faithful data in R

> help(faithful)

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA.

> Faithful

	eruptions	waiting
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55
7	4.700	88
8	3.600	85
9	1.950	51

The faithful data in R

```
> faithful$eruption
  [1] 3.600 1.800 3.333 2.283 4.533 2.883 4.700 3.600 1.950
4.350 1.833 3.917 ,..., .4.750 4.117 2.150 4.417 1.817 4.467
> mean(faithful$eruption)
[1] 3.487783
aithful$eruption
> mean(x)
[1] 3.487783
> median(x)
[1] 4
> range(x)
[1] 1.6 5.1
> min(x)
[1] 1.6
> max(x)
[1] 5.1
```

Basic plot

> hist(faithful\$waiting)

Basic plot

```
>hist(faithful$eruptions,
  main="eruptions time",
  col=2)
```



```
>hist(faithful$eruptions,
  main="eruptions time",
  col=3,
  xlab="time of eruptions")
```


Basic plot

- > mfrow=c(1,2))
- > hist(faithful\$eruptions,main="eruptions time",col=2)
- > hist(faithful\$waiting,main="waiting
 time",col=3,xlab="waiting time")

Practical session

- Use the ToothGrowth data.
- Produce an histogram for the tooth length with the following structure.

