PULSAR YILDIZI TAHMINI

YÜKSEK ZAMANLI ÇÖZÜNÜRLÜK EVREN ANKETİ SIRASINDA TOPLANAN PULSAR ADAYLARI

PULSAR YILDIZI

 Resimde gördüğünüz çift yönlü oluşan bu ışınlar yıldızın dönüş periyoduna göre belirli zaman aralıklarında dünyadan görüntülenir. Bunu bir kalp atışı gibi belirli zaman dilimleri arasında gözlemleyebildiğimiz için *pulsar* (atarca, kalp atışı) şeklinde tabir ederiz.

VERİ SETİ ÖZELLİKLERİ

- Her aday 8 sürekli değişken ve tek bir sınıf değişkenle tanımlanmaktadır. İlk dört, entegre darbe profilinden (katlanmış profil) elde edilen basit istatistiklerdir.
- Bu, hem zaman hem de frekansta ortalama alınan sinyalin boyuna çözülmüş bir versiyonunu tanımlayan sürekli değişkenler dizisidir. Kalan dört değişken de benzer şekilde DM-SNR eğrisinden elde edilir.

ÖZELLİKLER

- Mean of the integrated profile -> Entegre profilin ortalaması
- Standard deviation of the integrated profile -> Entegre profilin standart sapması
- Excess kurtosis of the integrated profile -> Entegre profilin aşırı kurtozu
- Skewness of the integrated profile -> Entegre profilin eğriliği
- Mean of the DM-SNR curve -> DM-SNR eğrisinin ortalaması
- Standard deviation of the DM-SNR curve -> DM-SNR eğrisinin standart sapması
- Excess kurtosis of the DM-SNR curve -> DM-SNR eğrisinde aşırı kurtoz
- Skewness of the DM-SNR curve -> DM-SNR eğrisinin eğriliği
- Class -> Sınıf

- HTRU2 (High-Time Resolution Universe Survey), Yüksek Zamanlı Çözünürlük Evren Anketi sırasında toplanan bir pulsar adayı örneğini tanımlayan bir veri setidir.
- Burada paylaşılan veri RFI / gürültü kaynaklı 16.259 sahte örnek ve 1.639 gerçek pulsar örneği içermektedir. Bu örneklerin hepsi insan açıklayıcıları tarafından kontrol edilmiştir.


```
from matplotlib import pyplot as plt
import kutuphane
from sklearn.feature_selection import SelectKBest, f_classif
import warnings
warnings.filterwarnings("ignore")

#1- Veriteri yükte
giris, cikis, kisi_bilgisi = kutuphane.dosya_oku('data/pulsar_stars.csv')
```

file_data - DataFrame

Index	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile
2265	147.102	50.3247	-0.797783	0.147756
4548	190.422	59.1064	-1.51716	1.49758
7230	126.672	57.2577	0.270677	-0.450089
7136	123.422	55.8986	0.0654339	-0.434411
7231	97	53.1676	0.382614	-0.22131
13247	147.188	49.779	-0.317052	-0.140388
14009	123.953	50.8	-0.0356568	-0.280413
14051	120.32	45.4512	0.0784613	-0.183457
13949	139.227	44.2437	-0.109923	0.2113
7202	119.492	60.0187	0.0328644	-0.7858
7213	98.8125	46.7966	0.242821	0.090769
7192	138.094	54.324	-0.276244	-0.251374
13884	135.086	44.7306	-0.144066	0.161804
13323	134.273	47.7735	0.0254388	0.0674085
7086	121.344	54.4387	-0.0172034	-0.427128
7159	151.352	45.5739	-0.297532	-0.0174605
7128	118.195	49.6074	0.114142	-0.189097
12021	116,961	58.2431	0.166084	-0.557173

```
file_data = pd.read_csv('data/pulsar_stars.csv')
group_ids=file_data.iloc[:,0]
raw_data=file_data.iloc[:,1:-1]
result_data=file_data.iloc[:,-1]

min_max_scaler = MinMaxScaler()
X = min_max_scaler.fit_transform(raw_data)
chi_vals, p_vals = chi2(X,result_data)

n=100
max_val = np.argsort(chi_vals)[::-1][:n]
```


ÇIKIŞ DEĞERLERİ

E cikis - Series

Index	target_class
2218	0
2219	1
2220	0
2221	0
2222	0
2223	1
2224	0
2225	0
2226	0
2227	0
2228	1
2229	0
2230	1
2231	0
2232	1

```
#Özellik Seçimi
dogruluk_chi = []

#Chi-square
for k in range(10,50,5):
    ozellikler = kutuphane.chi2_ozellik_cikar(giris,cikis,k)
    azaltilmis_olcekli_giris = olcekli_giris[:,ozellikler]
    dogruluk,f1skor = kutuphane.basari_hesaplaCV(azaltilmis_olcekli_giris, cikis, kisi_bilgisi,9)
    dogruluk_chi.append(dogruluk)
    print("k="+str(k) + " acc="+str(dogruluk))
```

dogruluk	float64	1	0.9783234348271631
f1skor	float64	1	0.8372357821673877

```
_ 🗆
                                                    X - NumPy array
@author: Win7
                                                                0
                                                                                          2
                                                                                                                   4
7 import pandas as pd
import numpy as np
                                                             0.417687
                                                                          0.165043
                                                                                       0.0156272
                                                                                                   0.0133822
                                                                                                                0.113681
from sklearn.preprocessing import MinMaxScaler
from sklearn. feature selection import chi2
                                                             0.460908
                                                                          0.235415
                                                                                                                0.0725243
                                                                                       0.0182678
                                                                                                   0.00655997
                                                             0.196868
                                                                           0.221138
                                                                                       0.0406769
                                                                                                    0.01303
                                                                                                                0.139188
 file_data = pd.read_csv('data/pulsar_stars.csv')
 group_ids=file_data.iloc[:,0]
                                                             0.437884
                                                                           0.18175
                                                                                       0.0165344
                                                                                                   0.0153678
                                                                                                                0.131583
raw_data=file_data.iloc[:,1:-1]
 result data=file data.iloc[:,-1]
                                                             0.214847
                                                                           0.249044
                                                                                       0.0417117
                                                                                                   0.00432711
                                                                                                                0.0396845
                                                             0.296271
                                                                           0.24211
                                                                                       0.0315996
                                                                                                   0.00637639
                                                                                                                0.0694734
min_max_scaler = MinMaxScaler()
X = min_max_scaler.fit_transform(raw_data)
                                                              0.3242
                                                                           0.191792
                                                                                       0.0240325
                                                                                                   0.00352163
                                                                                                                0.0184869
chi_vals, p_vals = chi2(X,result_data)
                                                             0.203657
                                                                           0.17271
                                                                                       0.0312107
                                                                                                   0.00451443
                                                                                                                0.0678647
```


Index	Mean of the integrated profile		
0	140.562		
1	102.508		
2	103.016		
3	136.75		
4	88.7266		
5	93.5703		
6	119.484		
7	130.383		
8	107.25		
9	107.258		
10	142.078		
11	133.258		
12	134.961		

