Lecture VII: Position-Based Dynamics

Previously: Constraints Calculus

- Constraint: C(p, p', p'') = 0.
- Velocity always tangent: $J\vec{v}=0$
- Constraint force always normal (virtual work):

$$\overrightarrow{F_c} = \sum_i \lambda_i J_{i,.} = J^T \lambda$$

Previously: Sequential Impulses

```
• while (!done) {
          for all constraints c do solve c;
}
```

- Computing the impulse:
 - For old velocity: $J_i v \neq 0$
 - For new velocity: $J_i(v + \Delta v) = 0$.
 - Apply impulse: $P = M\Delta v = J_i^T \lambda_i$, M is mass matrix.
- To compute λ_i

$$J_i(v + M^{-1}J_i^T \lambda_i) = 0$$
$$\lambda_i = \frac{-J_i v}{J_i M^{-1}J_i^T}$$

Previously: Semi-implicit Integration

- Also known as sympletic.
- Velocity integrated forward:

$$v(t + \Delta t) = v(t) + \frac{F}{m} \Delta t$$

Position integrated backwards:

$$x(t + \Delta t) = x(t) + \Delta t v(t + \Delta t)$$

Position-Based Dynamics Principles

Velocity always set to match position change at each iteration:

$$v = {^{\Delta p}}/_{\Delta t}$$

Constraints expressed by positions alone

$$C(p, p', p'') = C(p) = 0$$

- "Classic" version: works on particles.
 - Connection (like rigidity) modeled with constraints.
 - Does not explicitly handle rotations

The Position-Based Game-Engine Loop

Velocity from positions

Position correction

$$\vec{v}(t+\Delta t) = \vec{x}(t+\Delta t) - \vec{x}(t)/\Delta t$$

Resolve Collisions

Position correction

$$(\vec{v}(t + \Delta t))$$

 $(\vec{x}(t + \Delta t))$

Position-Based Dynamics

- Advantages
 - Unconditional stability
 - Modularity and uniformity
- Disadvantages
 - Not physically accurate (but visually OK)
 - Resolves rotation by constraint solving
 - But then uniformly handles non-rigidity.

Constraints Solving

- For body positions $X = x_1, x_2, \dots, x_m$.
- Set of equality constraints $C_i(X) = 0$.
 - lengths, connectivity.
- Set of inequality constraints $C_i(X) \geq 0$.
 - Collision, deformation limits.
- Sequential solution:
 - For each violating $C_i(X)$ in turn, compute ΔX s.t. $C_i(X + \Delta X)$ is valid.

Conservation

Conserving linear momentum:

$$\sum_{i=1}^{m} m_i \Delta x_i = 0$$

- In matrix writing: $M\Delta X = 0$.
 - $M = diag(m_1, m_1, m_1, \cdots, m_n, m_n, m_n).$
- Conserving angular momentum $(r_i \text{ to a fixed origin})$

$$\sum_{i=1}^{m} r_i \times m_i \Delta x_i = 0$$

$$\lambda_i = \frac{-J_i v}{J_i M^{-1} J_i^T}$$

Resolving Constraints

• Linear approximation:

$$C_i(p + \Delta p) \approx C_i(p) + \nabla C_i \cdot \Delta p$$

Closest point: move in the gradient direction.

$$\Delta p = \lambda \nabla C_i$$

• To conserve momenta: Alternative weighting

$$\Delta p = \lambda_i M^{-1} \nabla C_i$$

- Intuitive explanation: exchanging impulses and not velocities.
- For equality constraints:

$$C_{i}(p) + \lambda_{i} \nabla C_{i}^{T} M^{-1} \nabla C_{i} = 0 \Rightarrow$$

$$\lambda_{i} = \frac{-C_{i}(p)}{\nabla C_{i}^{T} M^{-1} \nabla C_{i}}$$

Inequality Constraints

Essentially resolved the same

$$C_i(p + \Delta p) \approx C_i(p) + \nabla C_i \cdot \Delta p \ge 0$$

- Main difference: projection only performed if constrained is violated
 - Example: if collision happened.

Constraint Stiffness

- Scaling each constraint by a scalar $k_i \in [0,1]$.
- Then we use: $\Delta p = \lambda_i k_i M^{-1} \nabla C_i$
- Makes the constraint "less" or "more" important.
 - The solution space is biased towards a solution that is closest to the components of the previous solution that satisfy the important constraints.

Stretch Constraint

- Between two points: $C(x_1, x_2) = |x_1 x_2| d_{12}$.
- Gradient components: $\nabla_1 C = \hat{n}$, $\nabla_2 C = -\hat{n}$, $\hat{n} = \frac{x_1 x_2}{|x_1 x_2|}$
- Resulting movement ($w = m^{-1}$):

$$\Delta x_1 = \frac{-w_1}{w_1 + w_2} C(x_1, x_2) \hat{n}$$

$$\Delta x_2 = \frac{w_2}{w_1 + w_2} C(x_1, x_2) \hat{n}$$

Connectors (Attachment Constraint)

- If two (rigid) objects need to connect at two points x_1, x_2 .
- Add connector constraint $C_i(x_1, x_2) = x_1 x_2$.
 - Usually with the highest stiffness $k_i=1$.
- Extensions: 1D translational constraint along \hat{n} :

$$C_i(x_1, x_2) = (x_1 - x_2)\hat{n} = 0$$

Example (rigid collision)

STEP 0

STEP 1 before constraints

STEP 1 after 1st constraint

Example

Rotation is induced by rigidity!

STEP 1 after all constraints multiple times

STEP 1 (implicit) velocities

Collision Constraint

- In previous iteration: x_i is out of the object.
- After position integration: x_{i+1} is penetrating.
- Penetration normal: \hat{n} (pointing outwards)
- Must make sure: the projected point x_{i+1} is non-penetrating.
- Constraint: $C(x_{i+1}) = (x_{i+1} x_i)\hat{n} \ge 0$.
 - with the highest stiffness $k_i = 1$
- Disadvantage: not re-colliding objects.
 - Artefacts usually negligible.

Specific Collision Constraint: Point through Triangle

• A point orientation vs. triangle normal:

•
$$C_{ptt}(q, x_1, x_2, x_3) = (q - x_1) \cdot \frac{(x_2 - x_1) \times (x_3 - x_1)}{|(x_2 - x_1) \times (x_3 - x_1)|} - h$$

- h thickness of triangle
 - Used for cloth simulation.

Bending Constraint

• Trying to preserve dihedral angle θ_{fg} between triangle f, g as much as possible.

$$C_{bend}(x_1, x_2, x_3, x_4) = acos(\hat{n}_f \cdot \hat{n}_g) - \theta_{fg}$$

• \hat{n}_f : normal to triangle f (resp. g)

$$\hat{n}_f = \frac{(x_2 - x_1) \times (x_3 - x_1)}{|(x_2 - x_1) \times (x_3 - x_1)|}$$

Velocity Damping

• For integrating velocities, before integrating positions.

• $v_i \leftarrow v_i + k_{damp} \Delta v_i$

Forces $\vec{F}(t)$

Integrate velocities and positions

Many schemes exist.