PROBATOIRE F3 SESSION 2005 **CAMEROUN**

Première Partie : Technologie

- 1. Faire une étude comparative du transistor bipolaire et du transistor MOS (fonctionnement, avantages, inconvénients).
- 2. Citer 5 paramètres permettant de choisir une diode àjonction.
- 3. Donner la différence fondamentale entre un circuit logique combinatoire et circuit séquentiel.
- 4. Donner la signification des abréviations suivantes : TTL ; CMOS ; MOS ; HCMOS.
- 5. Tracer la forme d'onde de sortie du circuit logique "ET" de la figure ci-dessous :

On suppose que l'entrée A est court-circuitée à la masse par inadvertance (A = 0). Tracer la forme d'onde de sortie résultante.

Deuxième Partie : Circuit analogique

Exercice 1:

On considère le montage de la figure2 ci-dessous, dans lequel **D** est une diode idéale.

Figure2

- 1. Pour $\mathbf{R} = 4\Omega$, calculer la tension U et préciser le courant débité par l'électromoteur dans les deux cas suivants :
 - a) i = 3A
 - b) i = 1A
- 2. On donne $\mathbf{i} = 2\mathbf{A}$. déterminer la résistance **R** pour :
 - **a)** U = 10V
 - b) U = 14V

Exercice 2: Courant variable

Une tension ${\bf u}=3,75~\sqrt{2}$. Sin(1000t) est appliquée au dipôle ${\bf AB}$ de la figure ci-dessous

Disponible sur www.emergencetechnocm.com

Les 4 éléments du montage ont pour valeurs : $\mathbf{R_1} = \mathbf{R_2} = 300\Omega$; $\mathbf{L_1} = 0.225 \mathrm{H}$; $\mathbf{C_2} = 2.5 \mathrm{uF}$ Calculer les valeurs numériques complexes des grandeurs suivantes :

- 1. Impédance de la branche $\{R_1, L_1\}$
- 2. Impédance de la branche $\{C_2, R_2\}$
- 3. Intensité du courant i₁
- 4. Intensité du courant i₂
- **5.** Les tensions partielles v_{AD} ; v_{DB} ; v_{AE} ; v_{EB}
- **6.** La tension \mathbf{v}_{DE}

Exercice 3: Transistor bipolaire en régime statique et en régime de commutation.

On considère le montage de la figure4 ci-dessous

Le transistor T est au silicium ($V_{BE}=0.7$) et présente des caractéristiques rectilignes. Les éléments du montage ont des valeurs suivantes :

$$\mathbf{R_E} = 150\Omega$$
; $\mathbf{R_A} = 3k\Omega$; $\mathbf{R_C} = 1.5k\Omega$; $\mathbf{V_{CC}} = 12V$; $\mathbf{I_C} = 4.95\text{mA}$; $\beta = 99$

l – Etude en régime statique

- 1. Calculer les courants I_B et I_E .
- 2. Donner la valeur de la tension V_{BM} .
- 3. Déterminer la valeur de R_B .
- **4.** Calculer la tension V_{CE} .

II – Etude en commutation

Les diodes D_1 et D_2 sont supposées idéales et les tensions V_{CE} et V_{BM} sont telles que :

 $V_{CE} = 3,825 \text{ V et } V_{BM} = 1,5 \text{V}.$

La masse du système est au potentiel 0. Les autres données de la partie I, restent inchangées.

- 1. Analyser le fonctionnement de l'ensemble en complétant les tableaux suivants :
 - Sans action sur S1

e1 (V)	e2 (V)	VBM(V)	VS (V)
0	0		
0	3		
3	0		
3	3		

- Avec action sur S1

Disponible sur www.emergencetechnocm.com

e ₁ (V)	e ₂ (V)	V _{BM} (V)	V _S (V)
0	0		
0	3		
3	0		
3	3		

- 2. Comment peut-on savoir qu'une diode du montage est détruite?
- 3. Le transistor **T** est simplement retiré du montage.

Indiquer les valeurs que prendra la tension de sortie V_S dans les cas suivants :

- **S** est actionné ;
- S n'est pas actionné.

Les entrées e_1 et e_2 ont-elles une influence sur la valeur de V_S ?

4. Donner une application de ce montage.

Exercice 4: Amplificateur opérationnel

L'amplificateur opérationnel de la figure 5 est idéal.

- 1. Identifier le montage de la figure 5.
 - 2. Calculer la valeur du gain $G = \frac{Vs}{Ve}$
- 3. V_e est une tension sinusoïdale d'expression $V_e = 0.7 \sin \left(100\pi + \frac{\pi}{2} \right)$

Donner l'expression de \mathbf{V}_s sous la forme : $V_e = V \sin(100\pi + \psi)$ où \mathbf{V} et ψ sont à déterminer.

4. Tracer dans un même repère les chronogrammes de V_e et V_S ;

Troisième partie : Circuit numérique

Exercice 5

On considère le schéma de principe du multiplexeur à 2 entrées de la figure 6

Le circuit fonctionne de façon suivante :

Disponible sur www.emergencetechnocm.com

- Si l'entrée de contrôle C'est au niveau logique 0, le niveau logique de la sortie S est identique à celui de l'entrée A, et ce peu importe le niveau logique de l'entrée B;
- Si l'entrée de contrôle est au niveau logique 1, le niveau de la sortie est identique à celui de l'entrée **B**, et ce peu importe le niveau logique de l'entrée **A**.

Donner la table de vérité du multiplexeur

Ecrire l'équation de la sortie S

Simplifier si possible, l'équation obtenue

Tracer le logigramme représentant le circuit interne du multiplexeur

Exercice 6: Addition de nombres binaires

On veut réaliser un système effectuant l'addition de 2 nombre binaires $\bf A$ et $\bf B$ de un bit chacun et générant en sa sortie le résultat $\bf S_0$ et la retenue $\bf C_0$.

1. Compléter ci-dessous la table de vérité du système.

Α	В	S	С
0	0		
0	1		
1	0		
<i>L</i> 1	A = 1		TAL

- 2. Ecrire les équations logiques des sorties **S0** et **C0**.
- 3. Tracer le logigramme représentant le circuit interne de cet additionneur.

Le pôle de l'innovation