This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Problem Image Mailbox.

UK Patent Application (19) GB (11) 2 160 619 A

(43) Application published 24 Dec 1985

- (21) Application No 8514510
- (22) Date of filing 7 Jun 1985
- (30) Priority data
 - (31) 622591 622809 622801
- (32) 20 Jun 1984 (33) US 20 Jun 1984
- 20 Jun 1984
- United Technologies Corporation (USA-Delaware), 1 Financial Plaza, Hartford, Connecticut 06101, United States of America
- (72) Inventors Francis E Byrnes Donald L Ferris Edward S Hibyan William L Noehren Peter C Ogle Eric G Olsen
- (74) Agent and/or Address for Service McNeight & Lawrence, Regent House, Heaton Lane, Stockport SK4 1BS

- (51) INT CL4 F16D-3756
- (52) Domestic classification F2U 562 B7W HCH F2S 703 706 708 CF U1S 1840 B7W F2S F2U

- (56) Documents cited GB 0492517 GB 1565172 GB 0919351 GB 0891676 WO 7900033 GB 1508381
- (58) Field of search F2U F2S

(54) Elastomeric high torque constant velocity joint

(57) A part spherical laminated elastomeric bearing has a noncircular latitudinal cross-section to accommodate high torque loads in elastomer bending rather than in shear. The spherical profile of the bearing accommodates tilt primarily in shear. Both inwardly and outwardly extending lobes, or splines, are disclosed. The spherical, lobed bearing is useful for a constant velocity joint especially in a helicopter gimbal rotor system.

FIG. 1

FIG. 1

F/G. 2

::

F1G.12

Electronic high torque constant velocity joint

Technical Field

This invention relates to a high torque, constant velocity joint employing elastomeric bearing technology.

Background

5

10

Constant velocity (homokinetic) joints accommodate angular misalignment (tilt) between the axes of a rotating drive and load 15 without pulsations in the load such as are inherent in a Hooke (or Cardan) joint. In other words, there is constant positional correspondence between the drive and the load. One type of constant velocity joint that can handle 20 high torque loads uses grooved inner and outer spherical metallic races with ball bearings riding therebetween. These joints are complex and expensive.

Elastomeric bearings, comprising bondedtogether, alternate layers of elastomer and shims, provide numerous advantages over conventional (metallic) bearings. "Since these bearings accommodate motion by simple flexing of their elastomer laminates, there are no rolling or sliding elements as in more conventional bearings. No lubrication or servicing of any kind is required. Seals, boots, or dust covers are not needed and there is no friction or wear. The result is a bearing system which provides extremely long life, and which requires no maintenance of any kind. In addition, a simple visual inspection of the bearing's surface at periodic intervals is sufficient

to determine the bearing's condition."

40 (American Helicopter Society Journal, January 1981, p.34; The Sikorsky Elastomeric Rotor, R. Rybicki).

Typical materials for an elastomeric bearing include rubber compounds, such as 85% 45 natural rubber and 15% polybutadiene for the elastomer and stainless steel for the shims.

An example of a constant velocity joint using elastomeric bearing techniques is disclosed in U.S. Patent No. 4,208,889 (Peterson, 1980), entitled CONSTANT VELOCITY, TORSIONALLY RIGID, FLEXIBLE COUPLING. That example suffers from complexity, requiring a plurality of connecting members and at least as many separate elastomeric bearings.

Another elastomeric constant velocity joint is disclosed in U.S. Patent No. 3,524,332 (Callies, 1968), entitled ELASTOMER COUPLING. Therein the drive is through an annular elastomer element. The ability of such a coupling to transmit torque is limited not only by the separation of the elastomer element.

by the separation of the elastomer element from its associated hub, but more fundamentally, by the low shear modulus of the elastomer since this example reacts torque in

65 shear.

Disclosure of The Invention

Therefore it is an object of this invention to provide a constant velocity joint which is capable of transmitting large torques while accommodating angular misalignment between a drive and a load, and that benefits from elastomeric bearing technology.

According to the invention, a nearly spheri-75 cal elastomeric bearing has an inner shell, an outer shell, and bonded-together, alternate layers of elastomer and nonresilient shims interposed at increasing radii therebetween. The bearing is rotatable about a longitudinal

80 axis and has two axial ends. Axial deviations from true sphericity (lobes) give the bearing a noncircular latitudinal (transverse) cross-section, particularly at an equatorial plane which is normal to the axis and midway between the

85 ends. The lobes cause applied torque to be reacted by elastomer bending (tension and compression normal to each layer) rather than by in-plane shear. The tensile stresses produced by elastomer bending are reduced by

90 bearing precompression. On the other hand, the profile of the bearing is nearly spherical so that the bearing is very compliant in tilt via elastomer shear. Both ends of the bearing are truncated (open)—one for attachment of a

95 rotatable drive member to the inner shell, and the other for polar symmetry, which is necessary for homokineticity. A rotatable load member is attached to the outer race of the bearing so that the bearing of this invention 100 functions as a flexible joint.

The joint of this invention is useful in the context of a gimbal-like rotor system wherein it drives torque from the rotorshaft to the blades as well as accommodating blade flapp-105 ing.

Other objects, features, advantages, and applications of the invention will become apparent in light of the following description of several embodiments and the accompanying 110 drawings.

Brief Description of The Drawings

Fig. 1 is a perspective view of an embodiment of the bearing of this invention;

115 Fig. 2 is a transverse cross-sectional view of the bearing of Fig. 1 through Its equatorial plane with a hydrostatic pressure pattern superimposed thereon;

Fig. 3 is a transversé cross-sectional view of

120 a bearing of the prior art;
Fig. 4 is a transverse cross-sectional view of a model bearing segment, in unloaded (4a) and torsionally loaded (4b) states, which highlight certain principles involved in the bearing

125 of Figs. 1 and 2;
Fig. 5 is a transverse cross-sectional view of an alternate embodiment of the bearing of this invention through its equatorial plane with a hydrostatic pressure pattern superimposed

130 thereon;

AND A SAME SECTION OF THE PROPERTY OF THE PROP

5

Fig. 6 is a transverse cross-sectional view of a model bearing segment, in unloaded (6a) and torsionally loaded (6b) states, relating to the embodiment of Fig. 5.

Fig. 7 is a cross-sectional view of a constant velocity joint using the bearing of this invention.

10 Fig. 8 is an isometric view of the bearing of Fig. 1 incorporating modifications;

Fig. 9 is a partial transverse cross-sectional view of the bearing of Fig. 2 incorporating modifications;

Fig. 10 is a partial transverse cross-sectional view of the bearing of Fig. 2 incorporating modifications;

Fig. 11 is a perspective, partial cutaway view of a helicopter gimbal-type rotor system 20 employing the bearing of this invention; and Fig. 12 is an axial (vertical) section of the bearing shown in Fig. 11.

Best Mode For Carrying Out The Invention 25 TORSIONAL STIFFNESS

In Fig. 1 is shown an embodiment of the elastomeric bearing 10 of this invention comprising an inner shell 12, an outer shell 14, and alternate layers of an elastcmer 16 and 30 nonresilient shims 18 interposed therebetween at increasing radii. The number of layers is not limited to the number shown and could even be a single layer of elastomer with no shims. The overall shape of the bearing is nearly spherical, having a longitudinal axis of rotation 20. The bearing 10 is open at at least one end for connecting a rotatable drive or

load to the inner race 12. As shown, the bearing 10 is open at both ends for polar 40 symmetry, thereby defining an upper edge 22 and a lower edge 24. An axial height is defined between the edges 22 and 24. The bearing 10 is not a true sphere due to longitudinal lobes or eccentricities 25 distributed 45 about its azimuth.

As used herein, the term "azimuth" generally refers to a position about the circumference of the bearing or an angle thereto, on a plane normal to the axis 20. However, since 50 the bearing is not truely spherical, the use of the term "circumference" would be inopposite.

The lobes 25 result from the noncircular transverse cross-section of the bearing—best viewed in Fig. 2, which is a cross-section of the bearing 10 on an equatorial plane which is normal to the axis and midway between the ends. As described hereinafter, the transverse cross-section of the elastomer layers 16 is 60 especially important to the bearing's ability to transmit high torque loads and result essentially from the transverse contours of the interior (elastomer-facing) surfaces of the inner shell 12 and the outer shell 14.

65 The transverse contour of the interior sur-

face of the inner shell 12 is defined by a radius (R1) from each of four arc segment generating points 26-29 which are equally offset from the axis 20 and symmetrically 70 distributed (every ninety degrees, azimuthally) thereabout. The radius (R1) is greater than the distance from the inner shell 12 to the axis 20. Therefore, the transverse contour of the interior surface of the inner shell 12 is four intersecting nonconcentric arc-segments 30-33, the intersections of which are four outwardly-extending lobes 34-37 which are symmetrically distributed about the azimuth of the bearing. Similarly, the transverse contour of 80 the interior surface of the outer shell 14 is defined by a radius (R2), which is greater than the radius (R1) by the combined thicknesses, of the elastomer 16 and shims 18, from the points 26-29. Four outwardly-ex-85 tending lobes 38-41 are thereby defined in register (azimuthally) with the lobes 34-37 of the inner shell 12, respectively. The transverse contours of the exterior (facing away from the elastomer 16) surfaces of the 90 shells 12 and 14 are not particularly germane to an understanding of the invention and may be adapted to couple to a drive and a load, respectively, in any suitable manner, such as

95 Fig. 7.

The cross-section of a particular elastomer layer or shim would be defined by an appropriate radius, having a magnitude larger than (R1) and less than (R2), from the points 26-100 29 and a thickness.

that described hereinafter with reference to

As mentioned hereinbefore, the torquehandling capability of the bearing derives from the transverse cross-sections of the elastomer layers 16 and is best understood by 105 reference to two models.

The first model is a spherical or cylindrical radial bearing of the prior art, either of which has a circular transverse cross-section as shown in Fig. 3. Therein a layer 44 of elas-10 tomer is disposed between an inner shell 46 and an outer shell 48. When torque is applied to the inner shell 46 in a clockwise direction, as indicated by an arrow 50, resistance of the outer shell 48 due to a load will cause the 115 elastomer to shear, in-plane. Since the shear modulus for elastomers is very small, the torque-carrying capability of a spherical or cylindrical radial bearing is very limited.

The second model is a bearing having a 120 square transverse cross-section and a center 52, as shown in Figs. 4a and 4b. A layer of elastomer 54 is disposed between an inner shell 56 and an outer shell 58. Fig. 4a represents the bearing in an unloaded state. 125 When torque is applied to the inner shell 56, about the center 52 in a clockwise direction, as indicated by an arrow 60, and the outer shell 58 resists, the inner shell 56 is displaced slightly in the torquewise direction—i.e., 130 clockwise as shown in Fig. 4b. The applied

torque and consequent shift of the inner shell 56 causes the elastomer in a region 64, which is torquewise "after" a corner 66, to be placed in compression. The compressive reactive forces are normal to the surface of the elastomer layer 54, as indicated by a vector 68. Since the reaction vector 68 "misses" the center 52, a moment is generated in a direction counter to the applied 10 torque.

In another region 70, which is torquewise "before" a corner 72, the elastomer is strained in tension. The tensile reactive forces of the elastomer 54 are normal to the surface, as indicated by the vector 74. Since the reaction vector 74 "misses" the center 52, a moment is generated in a direction counter to the applied torque. The reactive forces discussed relative to regions 64 and 70 are 20 typical for the entire perimeter of the bearing and give the bearing torsional stiffness.

The noncircular transverse contour of the bearing, and consequent noncircular transverse cross-section for the elastomer. 25 causes the elastomer to bend (compression and tension normal to the elastomer layer) rather than to shear (in-plane) in response to applied torque. Compression is readily reacted by an elastomer, such as 85% natural rubber. 30 and 15% polybutadiene, which has a compressive modulus on the order of hundreds of thousands of pounds per square inch. Tension, on the other hand, is reacted by the tensile strength of the elastomer which is 35 comparatively low, even though in fatigue it is as much as six times the shear modulus. Tension can be reduced to within acceptable limits by bearing precompression, techniques for which are well known in the manufacture 40 of rod end bearings. Elastomer bending rather than shearing, provides the bearing with torsional stiffness so that torque may be transmitted. The mechanics of this model with its one layer of elastomer 54 are applicable to

tomer layers 16. Returning to Fig. 2, torque is applied to the inner shell 12 about the axis 20 in a clockwise direction, as indicated by the arrow 50 76, and is resisted by the outer shell 14. The noncircular transverse contour of the bearing causes the elastomer layers 16 to bend. Therefore, in a region 78 that is torquewise "after" a lobe, such as the lobe 34(38), 55 compressive reactive forces are exerted by the elastomer 16 as indicated by the vectors 80-84 according to a distributed hydrostatic pressure pattern under a dashed line 85. Since pressure is normal to the surface, the vectors 60 80-84 are focused at the origin 26 of the arc segment 30, thereby "missing" the axis 20 and creating a moment counter to the applied torque. Similarly, in a region 86 that is tor-

quewise "before" a lobe, such as the lobe

65 39, tensile reactive forces are exerted by the

45 the bearing of Fig. 2 with its several elas-

elastomer 16 as indicated by the vectors 8892 according to a distributed hydrostatic pressure pattern under a dashed line 93. Again,
since pressure is normal to the surface, the
70 vectors 88-92 are all focused away from the
point 26, thereby "missing" the axis 20 and
creating a moment counter to the applied
torque. At a point 94 on the arc segment 30,
which is midway between the lobe 34(38)
75 and the lobe 35(39), there is a transition from
compression to tension where the reactive
forces of tension and compression as

described with reference to the arc segment 30 is similar for the arc segments 31, 32 and 33. Thus there is a transition from compression to tension at each lobe and midway therebetween where the reactive forces are ZERO. Between the points of ZERO reactive force, the reactive forces increase in a text-book-calculable manner that can be verified by finite element codes, such as TEXGAP or NASTRAN, which adequately represent the behavior of the elastomer. The pressure pat-

90 terns shown are simply illustrative and it is desirable to design a bearing for gradual gradients within the existing allowables for stiffness, thickness, etc. Although the sum of the reactive forces around the azimuth of the bearing is ZERO, the misfocusing ("missing")

95 bearing is ZERO, the misfocusing ("missing" the axis 20) of the reactive forces causes a nonZERO moment which can be calculated by integrating the reactive forces and the distances by which they "miss" the axis 20 over 100 the azimuth of the bearing.

It should be understood that the bearing is not perfectly stiff and that some "winding up" (rotation of the inner shell 12 relative to the outer shell 14 about the axis 20) will 105 occur before equilibrium is reached. Because of "wind-up", the elastomer layers 16 are subject to shear, especially at the arc midpoints (e.g., 94) and at the lobes. However, since "wind-up" is limited, shear is limited 110 and is well within acceptable limits. As mentioned before, with respect to the bearing of Fig. 4, the torsional stiffness of the bearing of Fig. 2 derives from its noncircular transverse contour which causes applied torque to be 115 reacted primarily in compression and tension (normal forces) rather than in shear (in-plane force), and tension is controlled by precom-

force), and tension is controlled by precompression. In fact, it is desirable that the precompression is of larger magnitude than the reactive tension so that there is net compression.

As another example of torsional stiffness.

consider a bearing having inwardly-extending lobes, a transverse cross-section of which is shown in Fig. 5. For descriptive simplicity, a single elastomer layer 100 is shown disposed between an inner shell 102 and an outer shell 104, although several layers of elastomer separated by nonresilient shims is more typical.

faces of the inner shell 102 and outer shell 104 are generated by radii (R3) and (R4) from four points 106-109 equally offset from, but symmetrically distributed about the bearing 5 axis 110. The radius (R3) is less than the distance from the inner shell 102 to the axis 110, and the radius (R4) is greater than the radius (R3) by the thickness of the elastomer 100. This results in a transverse cross-section 10 characterized by four inwardly extending lobes 112-115 between which are four arc segments 116-119.

A model is used to visualize the reaction stresses resulting from applied torque. In Fig. 6 is shown a segment of a bearing having a stylized inwardly-extending lobe 120. A layer of elastomer 122 is disposed between an inner shell 124 and an outer shell 126. Fig. 6a represents the bearing in an unloaded 20 state. In response to torque applied in the clockwise direction, as indicated by an arrow 128 in Fig. 6b, the inner shell 124 shifts in the torquewise direction, thereby causing the elastomer to bend so that it is in compression 25 in a region 129 which is torquewise "before" the lobe 120 and in tension in a region 130 which is torquewise "after" the lobe 120.

Applying the concepts of the model (of Fig. 6) to the bearing of Fig. 5, it is observed that 30 torque applied to the inner shell 102 in a clockwise direction, as indicated by an arrow 132, is reacted in compression in a region 134 which is torquewise "before" the lobe 113 and in tension in a region 136 which is 35 torquewise "after" the lobe 112. The reactive forces exerted by the elastomer 100 are ZERO at the lobes and midway therebetween and there is a limited amount of shear all around. The distribution of forces, as described with 40 respect to the area 116 between the lobes 112 and 113, is exemplary of the distribution about the entire azimuth of the bearing. Much as in the example of the outwardly-extending lobe embodiment discussed hereinbefore, the 45 reactive forces of compression and tension exerted by the elastomer 100 are normal to the surface, as indicated by the vectors 138-147, and therefore "miss" the bearing centerpoint 110 so that a moment is generated 50 which is counter to the applied torque. Likewise, precompression acting normal to the surface reduces tension to within functional

It should be understood that the number of lobes is not limited to FOUR, and that any design incorporating the nearly-spherical, axially-lobed concept would be useful for transmitting torque. However, at least three lobes are required to preserve polar symmetry for homokineticity. Furthermore, it should be understood that the arc segment-generated lobes of Figs. 2 and 5 are not intended as restricting, but rather as illustrative of the teachings of this invention. A bearing have a polygonal transverse cross-section, such as

illustrated in Figs. 4 and 6, would result in "splines" rather than lobes, but as is evident from the discussions relating thereto, would also benefit from the teachings contained 70 herein.

TILTWISE STIFFNESS

Thus far, the description of the invention has focused on the transverse cross-section of 75 the bearing. For maximum torque-carrying capability, the transverse cross-section of the bearing at any position along the longitudinal axis would be constant—resulting, for instance, in a nearly cylindrical, splined or lobed 80 bearing. However, this would be undesirable for a constant velocity joint that must accommodate axial angular misalignment (tilt) between a drive and a load. Consider, for example, the coupling disclosed in U.S. Pa-85 tent No. 2,363,469 (Goldschmidt, 1943). entitled FLEXIBLE COUPLING, FLEXIBLE MOUNTING, AND THE LIKE which, as shown in Fig. 4 therein, is essentially a lobed cylindrical bearing. The purpose of that coupling is 90 for the torsional stiffness of the coupling to increase pro; ressively with rotation of one member within another. However, such a configuration is especially noncompliant in tilt. By contrast, it is desirable that the constant velo-95 city joint of this invention be especially compliant in tilt.

Although the bearing of this invention is applicable to rotating loads, tilt is discussed in a "static" sense. As discussed hereinafter, tilt 100 is essentially accommodated in elastomer shear, which is virtually unaffected by tension and compression.

It is known that a true spherical bearing will provide maximum compliance in tilt. How-105 ever, the lobed transverse cross-section required for torsional stiffness precludes that shape. Nevertheless, it is desirable to "buildup" the bearing axially so that it is as nearly spherical as possible. Generally, this is 110 achieved by reducing the transverse crosssection of the bearing toward its ends according to a spherical function to give the bearing a nearly spherical profile. There are several ways to achieve this result. One way to 115 achieve a nearly spherical profile is to rotate each equatorial arc-segment, such as the arcsegments 30-33 of Fig. 2, about its associated arc-segment generating point, such as the points 26-29 of Fig. 2. This provides an 120 axial contour that has essentially four centers on the equatorial plane.

For a true sphere, the axial contour has only one center. A bearing tilting about that center is very compliant. By contrast, the axial contour of the bearing of this invention has at least two distinct centers, one for each arcsegment and none of which coincide with the bearing center, about which the bearing tilts. (The bearing center can be defined as the intersection of the axis 20 and the equatorial

plane.) Therefore, the bearing of this invention is somewhat stiffer than a true sphere.

Another way to achieve the nearly spherical profile is to define cross-sections for each normal plane to the axis, reducing the crosssection according to a spherical function in proportion to the distance between the particular plane and the equatorial plane -or, in other words, reducing the cross-section to-10 wards the ends. This is readily achieved by choosing arcsegment generating points for each normal plane that correspond azimuthally to the arc-segment generating points on the equatorial plane, but that are successively 15 closer to the axis, and choosing correspondingly smaller radii to generate the arc-segments. The offset of these points from the axis may even be reduced to ZERO at a truncated end, or edge, rather than at the "virtual" end of 20 the bearing. By generating each transverse cross-section individually, rather than rotating each equatorial arc-segment about its equatorial arcsegment generating point, the centers of axial contour are more vaguely defined and 25 less coincident with the bearing center, thus making the bearing somewhat stiffer in tilt.

In any of the above examples for profiling the bearing so that it is nearly spherical, the torsional stiffness of the bearing is concen30 trated at the equator—for it is there that the lobes are larger, the amount of elastomer greater, and the moment arm longer—and diminishes toward the ends. Thus the choice of profiling technique may be based on considerations such as a desired ratio of torquewise to tiltwise stiffness, rather than strictly dictated by maximizing or minimizing either, respectively. It should be understood that the profiling techniques discussed herein 40 are applicable to either the inwardlylobed or outwardly-lobed bearing.

CONSTANT VELOCITY JOINT

In Fig. 7 is shown a constant velocity joint 45 150 employing the bearing of this invention, similar to the bearing 10 of Fig. 1. In other words, alternate layers of elastomer 152 and shims 154 are interposed between an inner race 156 and an outer race 158. The inner 50 race 156 has a flange 157 for attachment in a suitable manner to a rotatable drive member 160, which rotates about a drive axis 162 and the outer race 158 has a flange 159 for attachment in a suitable manner to a rotatable 55 load member 164 which rotates about a load axis 166. The drive axis 162 is coincident with a nominal joint axis which would correspond to the bearing axis 20 of the bearing 10. The joint 150 accommodates an angular 60 misalignment between the load axis 166 and the drive axis 162 by elastomer shear. It should be understood that the drive and load are simply illustrative, and may be interchanged.

TAILORING TILTWISE STIFFNESS

Consider the case of a nearly spherical, lobed bearing, such as is illustrated in Fig. 1. It is readily apparent that the profile will vary somewhat depending upon the azimuth from which the bearing is viewed. In other words, the axial cross-section through a pair of lobes will be slightly greater than through the interlobal (arc segment) area. A larger axial cross-75 section translates into a slightly greater moment and slightly more elastomer resisting tilt. Therefore, the tiltwise stiffness of the bearing at the lobes is slightly greater than therebetween. Another way to analyze the azimu-80 thal variation in tiltwise stiffness is to observe the behavior of the elastomer at ninety degrees to the tilt-where it is essentially twisted. For tilt through an arc segment between lobes, the twist at ninety degrees is 85 reacted in elastomer shear at an arc segment. For tilt through a lobe, the twist at ninety degrees is reacted at another lobe in both shear and bending. As discussed with respect to torque, the elastomer is stiffer in bending 90 than in shear. For certain applications, it is desirable to tailor the tiltwise stiffness of the

bearing so that it is uniform for any azimuth.

According to one scheme for tailoring the tiltwise stiffness of the bearing, the height of 95 the bearing, and consequently its overall axial cross-section, is reduced locally, at azimuths where the tiltwise stiffness otherwise would be greater. This is illustrated in Fig. 8 which shows a bearing 170 having four outward-100 lyextending lobes 172. The bearing 170 is essentially the same as the bearing 10 of Fig. 1, except that its upper and lower edges 174 and 176 have been contoured so that the height of the bearing varies according to azi-105 muth. The uncontoured ends 22 and 24 of the bearing 10 of Fig. 1 are indicated by dashed lines. At the lobes 172 the height of the bearing is reduced, and it is maximum therebetween. Since the upper and lower 110 edges 174 and 176 contribute little to the torsional stiffness of the bearing 170, the adverse effect of contouring on the torquecarrying ability of the bearing 170 is not profound and, if needs be, can readily be 115 accommodated by overall bearing sizing, as discussed hereinafter. The precise contour required for a constant tiltwise stiffness at all azimuths is textbook calculable and verifiable

according to finite element codes as discussed 120 hereinafter. It should be understood that uniform tiltwise stiffness can be achieved by contouring only one of the ends (edges), but that contouring both preserves polar symmetry.

125 Another technique for tailoring tiltwise stiffness of the bearing of this invention is to vary the durometer of the elastomer locally, according to azimuth, so that lower durometer (softer) elastomer is used in areas that other-130 wise (with uniform durometer elastomer)

65

would be stiffer. Consider, in Fig. 9, a partial transverse cross-section of a bearing 180 which is essentially similar to the bearing of Fig. 2. The elastomer 182 at a lobe 184 is 5 softer, and hence more compliant, than the interlobal elastomer 186. Bearing construction techniques are known wherein approximately eighty percent of the elastomer is inserted into the bearing as a solid sheet (calendar), and 10 the remainder is injected as a liquid, thereafter to cure. These techniques are welladapted for implementing this technique for tailoring tiltwise stiffness. A reduction of durometer at the lobes will impact torsional stiff-15 ness as well as tiltwise stiffness. However, Fig. 2 illustrates that the reactive forces of compression and tension, which account for the torsional stiffness of the bearing, are minimum at the lobes. Therefore, the impact upon 20 torsional stiffness of using lesser durometer elastomer at the lobes is minimized and, as in the previous example, can be accounted for by initial bearing sizing considerations.

A variation to the technique of locally vary-25 ing the durometer of the elastomer is to provide a region of higher durometer (stiffer) elastomer at the ends in other words, a band around the circumference—and varying the extent, or height, of the band locally to offset 30 bearing stiffness variations. The higher durometer edges would also reduce elastomer bulging.

Yet another technique for tailoring tilt is to vary the thickness of individual elastomer 35 layers locally, at certain azimuths-making the elastomer thinner at azimuths where the bearing otherwise would be stiffer, such as at the lobes. Consider Fig. 10, a partial transverse cross-section of a bearing 190 40 which is essentially similar to the bearing of Fig. 2. The elastomer 192 at a lobe 194 is thinner, and hence more compliant, than the

a dashed line 197 that indicates the contour 45 for uniform elastomer thickness. The thickness of a particular elastomer layer is determined by the space between the shims (or, in the case of the outermost elastomer layers, by the space between a shim and the bearing race).

interlobal elastomer 196. This is indicated by

50 Therefore, to reduce the local thickness of an elastomer layer, the local thickness of the adjacent shim(s) is increased. This is readily implemented when composite technology is applied to the manufacture of the shims, as 55 discussed hereinafter. Increasing the shim

thickness at a lobe will also have the effect of strengthening the shim locally, which is expedient in light of the pressure gradient at the lobes. Depending upon the application, one or

60 more elastomer layers need to be reduced in thickness locally to make the tiltwise stiffness uniform at all azimuths. It should be understood that varying the thickness of a shim will alter its transverse contour and, hence, the

65 focusing of the reactive forces of tension and

compression as discussed with reference to Fig. 2, and will affect torsional stiffness according to that mechanism as well as from reduced layer thickness. However, the lobes 70 per se contribute little to the torsional stiffness. of the bearing since the reactive forces of compression and tension are minimum thereat. Nevertheless, these effects may be accounted for in initial sizing considerations. 75

GIMBAL-LIKE ROTOR SYSTEM

Thus far, the description of the invention has focused on the torquewise and tiltwise stiffnesses of the nearly-spherical, lobed bear-80 ing of this invention. Those characteristics, in addition to the homokineticity of the bearing, make it useful for certain applications, especially in light of the teachings relative to tailoring tilt, whereby the tiltwise stiffness can be made uniform for all azimuths so as not to introduce vibrations in a rotational load coupled to the bearing.

Consider a helicopter gimbal rotor system wherein a portion of rotor flapping is accom-90 modated by tilting a rotor hub relative to a rotor shaft, rather than through individual, articulated flap hinges for each blade. As discussed previously, a Hooke joint can accommodate both high torque and tilt, but 95 introduces cyclic pulsations in the load which, in the context of a helicopter, would be extremely undesirable not only from a viewpoint of passenger-comfort but, more fundamentally, from a control viewpoint. Therefore, it is 100 known to provide a rotor system with a gimbal bearing, such as a ball joint, to accommodate flapping, and separate means, such as a torque-rigid boot to supply driving torque to the rotor. Examples of these systems are dis-105 cussed in U.S. Patent No. 4,323,332 (Fradenburgh, 1982), entitled HINGELESS HELI-COPTER ROTOR WITH ELASTLC GIMBAL HUB. By contrast, the nearly-spherical, axiallylobed bearing of this invention offers the

110 possibility for accommodating torque and tilt (flap) in a single compact component, thereby reducing size, parts count, and complexity, while providing the benefits of elastomeric bearings. The helicopter rotor system of Fig. 11 com-115

prises four blades 200 attached via a hub 202 to a rotorshaft 204. It should be understood that the number of blades is not limited to FOUR. A blade 200 is attached at its root

120 (inboard) end to a torque tube 206 which is essentially a hollow, torsionally stiff sleeve that is flattened at its blade-attaching (outboard) end to mate with the blade 200. The other (inboard) end of the torque tube 206 is

125 adapted to connect, via a bearing 208, to the hub 202 at a flange 210. The bearing 208 is any suitable bearing, such as a radial elastomeric bearing or a conventional (metallic) spherical bearing (as shown) that allows for rotation

130 of the torque tube 206 about a blade pitch

(longitudinal) axis. As will become evident, it is not necessary for the torque tube 206 or the bearing 208 to accommodate blade centrifugal loads.

A control rod 212 is responsive to pilot and/or automatic flight system commands via actuators and a swash plate (neither are shown). The rod 212 is connected via a pitch link (horn) 213 to the inboard end of the torque tube 206 so that linear rod motion is translated into rotary blade pitch changing motion which is imparted, via the torque tube 206, to the blade 200.

A longitudinal spar 214 is attached at its inboard end to the hub 202 at the flange 210. At its other (outboard) end the spar 214 is attached in a suitable manner to the blade 200, at or near the point where the blade 200 is joined to the torque tube 206. The

20 materials and configuration for the spar 214 are selected to be torsionally compliant so as to accommodate blade pitch changes, and to be relatively stiff when bending in response to blade flapping and even stiffer in response to

25 lead/lag motions. The spar 214 may comprise an I-beam formed of composite materials which complies with these design paramaters. Blade centrifugal forces are reacted along the length of the spar 214 rather than in the 30 torque tube 206.

As mentioned hereinbefore, it is a fundamental principle of gimbal rotor systems that the hub accommodates at least a portion of the overall rotor flapping. Therefore, the hub 35 202 is pivotally attached for flapping to the rotor shaft 204, in the following manner, making the rotor system of this invention a "gimbal-like" rotor.

The hub 202 is essentially a bearing (joint)
40 that is similar to the bearing 10 of Fig. 1. In
other words, the hub 202 comprises an inner
shell 216 (compare 12), an outer shell 218
(compare 14), and alternate layers of elastomer 220 (compare 16) and non-resilient
45 shims 222 (compare 18) interposed at increasing radii therebetween. The number of
layers is not limited to the number shown.

The torque handling ability of the hub 202 derives from longitudinal lobes 223 that affect 50 the transverse cross-section of the elastomer layers, which has been discussed in detail hereinbefore. The main difference between the hub 202 and the bearing 10 (of Fig. 1) is in the exterior (facing away from the elas-

55 tomer) faces of the shells (races). It should be understood that the outer shell 218 distributes the driving torque to all blades 200 essentially equally, regardless of whether the lobes are located at the blades or inbetween.

60 It is not even necessary that the number of blades equal the number of lobes, or viceversa.

The exterior surface of the inner shell 216 is provided with a flange, such as a flat 65 annular flange 224, that is suited for attach-

ment, such as by bolting, to a mating surface on the rotorshaft 204 to receive driving torque therefrom. The inner shell 216 is coaxial with the rotor shaft 204.

70 The exterior surface of the outer shell 218 is provided with the flanges 210 for attachment of the spar 214 and the torque tube 206. Since blade centrifugal forces for all four blades 206 are transmitted along the respective spars 214, the blade centrifugal forces are reacted entirely by the outer shell 218. Therefore, the outer shell must be sized accordingly, especially in thickness. In the case of a composite (nonmetallic) outer race 218, 80 fiber orientation can be used advantageously.

Thus, in the rotor system, torque and flapping are accommodated by a single bearing (joint). Lead/lag motions are accommodated (damped) by bearing windup, as discussed bereinbefore. It should be understood that flapping is shared between the hub 202 and the spar 214 for instance, 70% and 30% respectively. The rotor system shown and described is simply illustrative of an application for the joint of this invention and many other rotor configurations would benefit from the use of the joint. "Flap" in the context of a rotor system is the equivalent of "tilt" as discussed hereinbefore.

Insofar as particular lobe geometries are concerned, either inwardly or outwardly extending lobes are well suited to the use of the bearing of this invention in a helicopter gimbal-like rotor system. Design particulars will depend largely upon individual applications. For instance, the ratio of torquewise stiffness to tiltwise stiffness can be established, as well as edgewise natural frequencies.

105 ACCOMMODATING AXIAL LOAD

The previous discussions regarding torsional stiffness, tiltwise stiffness, homokineticity, and centrifugal loads are all very relevant to the incorporation of the bearing of this invention 110 in a helicopter gimbal-like rotor system. However, unlike many other systems involving the coupling of a drive to a load, in a rotor system there is an additional requirement that the bearing be able to accommodate an axial load 115 such as the lift generated by the rotor.

Generally, the load-carrying ability of an elastomeric bearing is related to the cross-section and orientation of the elastomer layers relative to the load. For instance, a rod end 120 bearing, which is essentially a spherical bearing truncated at two opposite ends, is subjected to radial loads that are reacted in elastomer compression on one side of the bearing and in elastomer tension on the opposite side. As discussed hereinbefore, elastomer tension is reduced by precompression. By contrast, in the case of the bearing of this invention, the end where an axial load could

most effectively be reacted (i.e., in elastomer 130 compression) is truncated. One approach to

reacting an axial load would be to not truncate the bearing on the end in compression—leaving only the opposite end (in tension) truncated to accommodate attachment to the inner race (shell). In the rotor system of Fig. 11 this would mean not truncating the rotorshaft-end of the bearing, but that is clearly not possible.

A first order solution to the problem of accommodating axial load is to truncate as little as possible on the end of the bearing that would otherwise react an axial load in elastomer compression. However, there is an inherent limit to this approach imposed by the 15 size of the drive and the range of tilt.

In the case where both ends of the bearing are truncated, there is no elastomer where it would be most useful. An ancillary problem to the diminished ability of such a bearing to 20 accommodate an axial load is that the load will cause an axial distortion of the bearina-in other words, successive layers will be increasingly displaced (offset) axially in response to the axial load-and a consequent 25 stiffening of the bearing in tilt. It should be understood that axial loads can be in one of two opposite directions, either tending to push together or to pull apart the drive and load members. The latter, which exert a separ-30 ating force, are discussed, but the teachings are equally applicable, in an opposite sense. to the former.

In Fig. 12 is shown a partial axial crosssection of a bearing which accommodates a
35 separating axial load without stiffening in tilt.
The bearing is comparable to the hub bearing
in the gimbal-like rotor system of Fig. 11
except that Fig. 11 does not disclose the
following feature, and six elastomer layers are
40 shown, rather than only two. The separating
axial load is the equivalent of rotor lift and is
indicated by a force applied to the outer race
218, in the upward direction as indicated by
an arrow 224, that is resisted by the inner

Without the feature, the centers of axial contour for each elastomer layer would be coplanar—on the equatorial plane—for maximum tiltwise compliance.

With the feature the bearing is manufac-50 tured with each successive layer 220 of elastomer, and hence each successive shim 222, offset increasingly away from the load at increasing radii. In other words, the most 55 inward elastomer layer has its centers of axial contour disposed on the equatorial plane 226. The next outward elastomer layer is of increased radius, as discussed hereinbefore, and has its centers of axial contour disposed on a 60 plane 228 which is offset from the reference plane in a direction away from the applied. separating axial load. Each succeeding elastomer layer is disposed so that its centers of axial contour are on a plane which is offset 65 from the reference plane in a direction away

from the applied, separating axial load. One result of this configuration is that the elastomer is thicker at the end of the bearing which is away from the load and reacts the load in compression.

When separating axial load (LIFT) is applied to the bearing, the outer race 218, and each successive elastomer layer yield in the direction of the load, thereby bringing together the centers of axial contour. Ideally, the offset is perfectly matched to the load so that the centers of axial contour all coincide on the equatorial plane 226 under load, and tiltwise

stiffness is thereby minimized. However, with varying loads, such as are inherent in a helicopter rotor certain design compromises may be necessary. But these are all accommodated in the initial sizing of the bearing.

Since the centers of axial contour coincide
less without an axial load, the bearing is
stiffer without a load and softer with a load.
This is ideal for a helicopter. For instance,
when the helicopter is parked or taxiing, the
rotor is stiff in tilt so that wind gusts do not
cause excessive tilt angles. For in-flight maneuvering, the rotor is more compliant in flap.

The essential characteristic of this feature is that the elastomer layers are progressively offset axially in a direction away from an 95 anticipated axial load so that the load causes the layers to be less offset. The offset causes more elastomer to be placed in compression to accommodate the load. It should be understood that this feature is independent of the 100 lobes—in other words, the feature would be useful in the context of a spherical bearing that does not have axial lobes and which, consequently could not handle high torque loads.

105 It should be understood that the basic invention relates to a nearly spherical lobed bearing that accommodates torque and tilt and that acts as a constant velocity joint. The function of the bearing is improved for certain applications by making the tiltwise stiffners uniform at all azimuths and enhancing the axial load carrying capability of the bearing. For instance, the improvements are useful, but not absolutely essential, in the context of applying the bearing, or joint, to a gimbal-like rotor system. There are many applications for the basic bearing, sans the improvements.

MANUFACTURING TEEHNIQUES

120 As mentioned hereinbefore, several alternating layers of elastomer and non-resilient shims are disposed between the races. Generally, these materials and the methods by which they are assembled together with the races

125 are well known. For instance, rubber compounds are well suited for the elastomer and they may be injected at high pressures into the bearing during manufacture to effect precompression. It is also known to vary durometer from layer-to-layer to maximize fatigue

life. It is evident that for certain bearing geometries, it will be necessary to split the shims during manufacture so that they may be inserted into the bearing. Splitting the shims and staggering the gaps are well known—for instance, in the art of rod end bearings. Also, the shims must be thick enough to maintain their dimensions during high compression molding.

10 In the general case, the shims will be of uniform thickness and their shape will correspond to the contour of the races. However, in applications where it is desirable to reduce the elastomer thickness in an area, it is desirable.

15 able to vary the shim thickness. In these cases, a composite layup, such as graphite/epoxy, is well suited for the shim, especially in conjunction with computerized design and manufacture facilities.

20 It should be understood that the shims are exposed to the reactive forces of tension and compression (i.e., bending—as discussed hereinbefore). Bending moments create high hoop stresses and are of concern in shim

25 design. For instance, in U. S. Patent No. 4,142,833 (Rybicki, 1979), entitled ELAS-TOMERIC BEARING FOR HELICOPTER ROTOR, the laminate geometry is designed to reduce laminate bending. By contrast, the geometry of the bearing of this invention is

specifically intended to cause laminate bending. This simply means that the shims must be designed accordingly.

In the initial sizing of bearings for design trade-off studies, the analytical techniques involve simple methods based upon conventional strength of material approaches. Average pressures and strains are calculated using handbook formulas and average elastomer

40 criteria for shape factor and modulus. Empirical formulas, based on gross assumptions of bearing construction, are available to establish initial overall size. Bearing stiffness can be calculated, using handbook techniques, to de-

45 termine compatibility with the specific application. After the bearing's external envelope is defined in this manner, specific details of the laminate package can then be defined. Shim thickness and elastomer laminate thickness

50 and modulus can be selected on the basis of balanced elastomer strains and/or stiffness, and by shim bending stresses. Simplified geometry and idealized loading assumptions are required at this stage of the analysis for

55 purposes of design iteration. Bearing loads and/or motions must be applied individually and added vectorially or stresses must be superposed to establish a basic understanding of the combined (shim) or elastomer stresses.

60 "This methodology does not account for the nonlinear stress-strain behavior of the elastomer, nor for the non-linearities involved in the analysis of any large strain problem. In addition, many bearings under load have non-65 axisymmetric geometries and non-axisymme-

tric loadings. Finite element techniques are required to obtain a better understanding of this three-dimensional highly non-linear analytic problem. Computer codes have been de-

70 veloped, based on programs like TEXGAP (and NASTRAN) which are capable of handling some of the problems involved in this analysis. They contain elements which are formulated to reflect the incompressible beha-

75 vior of elastomers (Poisson's ratios near .5). The entire bearing can also be modeled. A more accurate definition of the stress/strain within the bearing can be obtained under various combinations of loading. Local and

80 edge effects can be more accurately evaluated. The bearing design can be refined to obtain a better balance of elastomer strains across the bearing and to minimize shim stresses," (American Helicopter Society Jour-

85 nal, January 1981, p. 37; The Sikorsky Elastomeric Rotor, R. Rybicki) Although the invention has been shown and described with regard to particular embodiments, it should be understood that various changes and addi-

90 tions could be made therein and thereto without departing from the spirit and scope of the invention.

What is claimed is:

95 CLAIMS

 An elastomeric bearing comprising an inner shell, an outer shell, and alternate layers of elastomer and shims interposed therebetween, characterized in that:

100 ' the bearing is nearly spherical; the bearing is rotatable about a longitudinal axis:

the bearing has two axial ends; the bearing is truncated at at least one end 105 to accommodate attachment of a rotatable

member to the inner shell; and the elastomer layers have a noncircular latitudinal cross-section on a plane that is normal to the axis, resulting in axial lobes.

110 2. A flexible drive comprising the bearing of claim 1, characterized in that:

the rotatable member associated with the inner shell has a drive axis associated therewith that is coaxial with the bearing axis;

115 a rotatable member associated with the outer shell has a load axis associated therewith; and

the bearing accommodates angular axial misalignments between the drive axis and the 120 load axis.

 A constant velocity joint comprising the bearing of claim 1, characterized in that: both ends of the bearing are truncated; the bearing has at least three lobes; the

125 rotatable member associated with the inner shell has a drive axis associated therewith that is coaxial with the bearing axis;

a rotatable member associated with the outer shell has a load axis associated there-

130 with; and

the bearing accommodates angular axial misalignments between the drive axis and the load axis.

4. A bearing according to claim 1, characterized in that:

the noncircular latitudinal cross-section on the plane is intersecting, non-concentric arcsegments that are defined by a radius from at least two points on the plane that are symmet-10 rically offset from the axis, wherein each arcsegment is associated with one of the at least two points.

- A bearing according to claim 4, characterized in that the radius is greater than the
 distance between the elastomer layer and the axis.
 - 6. A bearing according to claim 4 characterized in that the radius is less than the distance between the elastomer layer and the axis.
- 20 7. A bearing according to claim 4, characterized in that:

an equatorial plane is normal to the axis and midway between the ends;

the at least two points are on the equatorial 25 plane; and

the profile of the bearing is defined by rotational projections of each arc-segment about its associated point, thereby defining a major bearing cross-dimension of the equato-30 rial plane.

8. A bearing according to claim 4, characterized in that:

an equatorial plane is normal to the axis and midway between the ends;

- 35 the at least two points are on the equatorial plane; and transverse cross-sections for other normal planes are defined by other radii from at least two other points that are symmetrically offset from the axis, wherein for each
- 40 other plane the offset of the at least two other points and the associated radius diminishes toward ZERO-according to a spherical function in proportion to the distance between the other normal plane and the equatorial plane,
- 45 thereby defining a major bearing cross-dimension at the equatorial plane.
- 9. A bearing according to claim 1, wherein a characteristic of the elastomer is altered locally so that there is less resistance to tilt at 50 azimuths where the bearing otherwise would be stiffer, so that the tiltwise stiffness can be made uniform for all azimuths.
- 10. A bearing according to claim 9, wherein the characteristic is an axial height
 55 associated with the elastomer and the height of the elastomer is reduced locally, at azimuths where the bearing otherwise would be tiltwise stiffer.
- 11. A bearing according to claim 8, 60 wherein the characteristic is a thickness associated with the elastomer and the thickness of the elastomer is reduced locally, at azimuths where the bearing otherwise would be tiltwise stiffer.
 - 12. A bearing according to claim 8,

wherein the characteristic is the durometer of the elastomer and the durometer of the elastomer is reduced locally, at azimuths where the bearing otherwise would be tiltwise stiffer.

13. A bearing according to claim 1, wherein the centers of axial contour for the layers are progressively, from layer-to-layer, offset axially in a direction away from an axial load in the unloaded state so that the load
 75 causes the centers of axial contour for the

layers to be less offset. 14. In a spherical elastomeric bearing constant velocity joint having an inner shell, an outer shell, and alternate layers of elastomer 80 and shims interposed therebetween, that is rotatable about a longitudinal axis, that has two axial ends, and that is truncated at at least one end to accommodate attachment of a rotatable member to the inner shell, wherein 85 the elastomer layers have noncircular latitudinal cross-section on a plane that is normal to the axis, the improvement wherein the centers of axial contour for the layers are progressively, from layer-to-layer, offset axially in a 90 direction away from an axial load in the unloaded state so that the load causes the centers of axial contour for the layers to be

15. A shim for the bearing of claim 1,95 characterized by a noncircular cross-section on a plane that is normal to the axis.

16. A rotor system for a helicopter having a rotorshaft and blades attached via a hub thereto, characterized in that:

100 the hub comprises an inner shell, an outer shell, and alternate layers of elastomer and shims interposed therebetween;

the hub is rotatable about a longitudinal axis that is coaxial with the rotorshaft axis;

105 the hub is truncated at at least one end to accommodate attachment of the inner shell to the rotorshaft;

the blades are attached to the outer shell; and

- 110 the elastomer layers have a noncircular latitudinal cross-section on a plane that is normal to the hub axis to accommodate torque from the rotorshaft to the blades and are nearly spherical to accommodate blade flapping.
- 115 17. A rotor system according to claim 16, characterized in that:

the root end of each blade is attached via a torsionally compliant spar to the outer shell; and

- 120 a torque tube surrounds each spar and is attached at one end to the root of the corresponding blade and at the other end is rotatingly attached to the hub and said torque tube is adapted to couple pitch change inputs to 125 the blade.
 - 18. A rotor system according to claim 16, characterized in that the spar is an I-beam.

Printed in the United Kingdom for Her Majesty's Stationery Office, Dd 8818935, 1985, 4235, Published at The Patent Office, 25 Soutnampton Buildings, London, WC2A 1AY, from which copies may be obtained.