Algoritmos e Fundamentos da Teoria de Computação

Lista de Exercícios 05

- 1 Determine a complexidade de tempo das seguintes DTMs. Calcule a fórmula completa da função tc_{M} para cada item.
 - a. DTM padrão que aceita a linguagem $\mathsf{L} = (a \cup b)^* aa(a \cup b)^*$.

b. DTM duas-fitas que aceita a linguagem $L = \{uu \mid u \in \{a, b\}^*\}.$

c. DTM que computa a função de concatenação de *strings* sobre $\{a, b\}$.

d. DTM que computa a função de soma de dois números naturais em notação unária.

- a. O pior caso acontece quando a máquina aceita strings que terminam exatamente com aa (sem sufixo). Nesse caso, se a string de entrada tem tamanho n, a máquina percorre toda a string para aceitá-la, e, portanto, $tc_{\mathsf{M}} = n + 1$.
- b. O pior caso acontece quando a máquina aceita a entrada. Considere que a entrada tem tamanho n, isto é, $length\left(uu\right)=n$. Logo, $length\left(u\right)=n/2$. A quantidade de transições realizada pela máquina é resumida na tabela abaixo.

Passo	No. transições
$q_0 \rightarrow q_1$	1
Loop em q_1 (copia uu na fita 2)	n
$q_1 o q_2$	1
Loop entre q_2 e q_3 (rebobina fita 1)	n
$q_2 o q_4$	1
$Loop \text{ em } q_4 \text{ (compara primeira metade com a segunda)}$	n/2
$q_4 ightarrow q_5$	1

A complexidade de tempo é obtida somando-se as colunas da tabela acima. Logo, $tc_{M} = \frac{5}{2}n + 4$.

- c. O tamanho da entrada em uma máquina de Turing que computa uma função com mais de uma variável é considerado como o tamanho dos argumentos mais os brancos que os separam. A máquina dessa questão realiza a computação da função de concatenação de strings. A entrada tem a forma BuBvB, com tamanho $length\left(u\right) + length\left(v\right) + 1$.
 - Uma computação percorre u e depois desloca cada elemento de v uma posição para a esquerda. Para uma entrada de tamanho n, o pior caso ocorre quando $u=\lambda$ e length(v)=n-1. Uma computação com entrada BBv começa lendo os dois brancos que precedem v. A translação de cada símbolo de v requer três transições. A computação termina com a cabeça retornando para a posição 0 da fita, o que requer length(v)+2=n+1 transições. Assim, a complexidade de tempo é $tc_{\mathsf{M}}=2+3(n-1)+n+1=4n$.

- d. Sejam $x,y\in \mathbb{N}$ em notação unária, então a complexidade da entrada é $length\left(1^{x+1}B1^{y+1}\right)=x+y+3$. Para qualquer entrada válida, a máquina sempre realiza a mesma quantidade de transições, isto é, o pior e melhor caso são iguais. Basta ver que a computação sempre avança até o final da entrada e depois retorna à posição inicial. Então, se x+y+3=n, temos que $tc_{\mathsf{M}}=2n+2$.
- 2 Seja M a DTM ilustrada abaixo. Pede-se:

- a. Faça o trace da computação de M para as entradas λ , $a \in abb$.
- b. Descreva a string de tamanho n para a qual a computação de M requer o número máximo de transições.
- c. Apresente a função tc_{M} .
- a. Trivial. A máquina aceita λ e abb, e rejeita a.
- b. A linguagem aceita pela máquina é L = $\{a^ib^{2i} \mid i \geq 0\}$ e o pior caso da computação ocorre quando a máquina aceita a entrada, cujo tamanho é $length\left(a^ib^{2i}\right)=3i=n$.
- c. A cada passo do loop, a máquina apaga um a e dois b's. Inicialmente, a entrada tem tamanho 3i e portanto M realiza 3i+1 transições caminhando para a direita. Ao retornar caminhando para a esquerda, M volta até a posição que continha um a, fazendo mais 3i transições. No segundo passo do loop, temos que o tamanho da string diminuiu de 3 símbolos, sendo agora 3i-3=3(i-1). O loop termina quando a string for totalmente apagada. Assim, a função de complexidade de tempo para uma entrada de tamanho 3i=n é dada por

$$tc_{\mathsf{M}}(n) = \sum_{k=0}^{i} (6k+1) + 2 = (i+1)(3i+1) + 2 = 3i^2 + 4i + 1 + 2 = \frac{n^2}{3} + \frac{4n}{3} + 3$$
.

3 Seja M a DTM ilustrada abaixo. Pede-se:

- a. Faça o trace da computação de M para as entradas abc, aab e cab.
- b. Descreva a string de tamanho n para a qual a computação de M requer o número máximo de transições.
- c. Apresente a função tc_{M} .
- a. Trivial. A máquina rejeita abc e aab, e aceita cab.
- b. A linguagem aceita por M é regular e pode ser descrita como L = $(a \cup c)^*ca^*b(a \cup b \cup c)^*$. Ao contrário dos exercícios anteriores, o pior caso acontece quando M *rejeita* entradas da forma a^*b . Nesse caso, se *length* $(a^*b) = n$, a máquina varre a *string* completa duas vezes.
- c. Dado a explicação do item anterior, temos que $tc_{M}(n) = 2n + 1$.
- **4** Seja a linguagem $L = \{a^i b^i \mid 0 \le i \le 50\} \cup \{u \mid length(u) > 100\}$ definida sobre o alfabeto $\Sigma = \{a, b\}$.
 - a. Projete uma DTM padrão M que aceita L. (Apresente M como um algoritmo.)
 - b. Apresente a função tc_{M} .
 - c. Qual é a melhor notação assintótica que descreve o crescimento de $tc_{\rm M}$?
- a. A computação de uma TM padrão que aceita a linguagem pedida começa utilizando 100 estados para verificar o tamanho da entrada. Se a máquina não encontrar um branco após 100 transições, a computação termina e aceita a entrada.

Se a TM ler um branco antes de percorrer 100 símbolos da entrada, a computação

- 1. move a cabeça da fita para a posição 0, e
- 2. executa uma máquina que aceita $\{a^ib^i \mid i > 0\}$.
- b. O passo 2 do algoritmo da TM pode ser realizado em (n+2)(n+1)/2 transições para uma *string* de entrada de tamanho n. Assim, o número máximo de transições que a TM realiza é dado por

$$tc_{\mathsf{M}}(n) = \left\{ \begin{array}{ll} 2n+2+(n+2)(n+1)/2 & \text{se } n \leq 100 \\ 101 & \text{caso contrário.} \end{array} \right.$$

- c. A complexidade assintótica da computação é constante, pois o número de transições de M é constante quando n tende ao infinito. Assim, $tc_{\mathsf{M}}(n) \in O(1)$.
- 5 Seja M a NTM ilustrada abaixo. Pede-se:

- a. Apresente os traces para as computações de M para a entrada aa.
- b. Descreva a computação de M para entrada a^n que requer o número máximo de transições.
- c. Apresente a função tc_{M} .
- a. As computações de M para a entrada aa são listadas abaixo.

- b. O desempenho de pior caso para a entrada a^n ocorre quando a máquina lê os primeiros n-1 a's no estado q_1 e depois passa para q_2 , andando para a esquerda até ler o primeiro a, e finalmente, anda para a direita em q_3 até a computação terminar.
- c. Para n > 0, a função de complexidade de tempo de M é $tc_{\mathsf{M}}(n) = 3n 1$.
- **6** A DTM M apresentada abaixo aceita a linguagem $L = \{uXu^R \mid u \in \{a,b\}^+\}$, aonde u^R é o **reverso** da *string u*. Determine a complexidade **assintótica** de tempo da máquina M, justificando adequadamente a sua resposta. (Obs.: Não é necessário determinar a fórmula completa da função tc_M , somente o seu comportamento assintótico.)

O pior caso da computação da máquina ocorre quando M aceita a entrada, e, nesse caso, sabemos que a string é da forma $w=uXu^R$. Seja $length(u)=length(u^R)=m$. Então, length(w)=n=2m+1. É fácil perceber que a maior parte da computação de M ocorre no loop que faz um "zig-zag" sobre a entrada. Baseado em todos os exemplos e exercícios vistos na disciplina, podemos de imediato afirmar que a complexidade do loop é quadrática em relação ao tamanho da entrada. (As demais partes da máquina contribuem somente um fator linear na complexidade.)

Fazendo uma análise mais detalhada do loop, é possível determinar que o número de transições feitas em cada passo cresce segundo a sequência $6, 10, 14, \ldots$, com o passo k realizando 2(2k+1) transições. Dado que o loop leva m passos, temos que a sua complexidade é dada por

$$\sum_{k=1}^{m} 2(2k+1) = 2m^2 + 4m \in O(m^2).$$

Como $m=\frac{n-1}{2}$, temos que $O(m^2)=O(\frac{(n-1)^2}{4})\in O(n^2)$, e assim vemos que a complexidade é quadrática em relação ao tamanho da entrada, como esperado.

7 Considere a NTM M abaixo cujo alfabeto de entrada é $\Sigma = \{a, b\}$. Qual é a linguagem aceita por M? Determine a fórmula **completa** da função tc_{M} .

A linguagem aceita por M é L = $a(a \cup b)^*$. A complexidade de tempo de uma NTM é definida sobre o ramo mais longo da árvore de computações. Como há uma sequência de escolhas de M que sempre percorre a entrada toda, o pior caso de M é linear em relação ao tamanho da entrada, e temos que $tc_{\rm M}(n)=n+1$.