

Ayudantía Repaso I2

25 de octubre de $2\overline{02}4$ Martín Atria, José Thomas Caraball, Caetano Borges

1. Lógica de Predicados

Sea \leq y = símbolos de predicado binario y P un símbolo de predicado unario. Considere la interpretación $\mathcal I$ definida como:

 $\mathcal{I}(\text{dom}) := \mathbb{N}$ $\mathcal{I}(=) := n = m \text{ si y solo si } n \text{ es igual a } m.$ $\mathcal{I}(\leq) := n \leq m \text{ si y solo si } n \text{ es menor o igual que } m.$ $\mathcal{I}(P) := P(n) \text{ si y solo si } n \text{ es primo}$

Escriba la siguiente expresión en lógica de predicados sobre la interpretación \mathcal{I} :

"Para todo par de números primos distintos de 2 y 3, hay un número natural entre ellos que no es primo"

Solución

Considere los siguientes predicados:

- $Entre(x, y, z) := x \le y \le z \land \neg(x = y) \land \neg(y = z) \ (y \text{ está entre } x \neq z).$
- $S(x,y) := x \le y \land \neg(x=y) \land (\neg \exists z.Entre(x,z,y)) \ (y \text{ es sucesor de } x).$
- $0(x) := \forall y.(x < y) (x \text{ es } 0).$
- $1(x) := \exists y.(0(y) \land S(y, x)) \ (x \text{ es } 1).$
- $2(x) := \exists y.(1(y) \land S(y,x)) \ (x \text{ es } 2).$
- $3(x) := \exists y.(2(y) \land S(y,x)) \ (x \text{ es } 3).$
- $PrimoNo2No3(x) := P(x) \land \neg 2(x) \land \neg 3(x)$ (x es un número primo distinto de 2 y 3).

Usando estos predicados, la oración pedida es la siguiente:

 $\forall x \forall y. ((PrimoNo2No3(x) \land PrimoNo2No3(y)) \rightarrow (\exists z. (Entre(x, z, y) \land \neg P(z))))$

2. Teoría de Conjuntos

Sean A y B conjuntos y una función $f:A\to B$. Para todo $X\subseteq A$ definimos el siguiente conjunto:

$$F(X) = \{ b \in B \mid \exists a \in X \text{ tal que } f(a) = b \}$$

Dada $S \subseteq \mathcal{P}(A)$ una colección de subconjuntos de A, demuestre que:

1.
$$F\left(\bigcup_{D\in S}D\right) = \bigcup_{D\in S}F(D)$$

2.
$$F\left(\bigcap_{D\in S}D\right)\subseteq\bigcap_{D\in S}F(D)$$

Solución

- 1. Por definición de igualdad de conjuntos, demostraremos la contención hacia ambos lados:
 - $F\left(\bigcup_{D\in S}D\right)\subseteq\bigcup_{D\in S}F(D)$: Sea $b\in F\left(\bigcup_{D\in S}D\right)$. Por definición, existe $a\in\bigcup_{D\in S}D$ tal que f(a)=b. Como $a\in\bigcup_{D\in S}D$, entonces existe un $D'\in S$ tal que $a\in D'$. Luego, $b\in F(D')$, y consecuentemente $b\in\bigcup_{D\in S}F(D)$. Concluímos

que
$$F\left(\bigcup_{D\in S}D\right)\subseteq\bigcup_{D\in S}F(D)$$
.

- $\bigcup_{D \in S} F(D) \subseteq F\left(\bigcup_{D \in S} D\right)$: Sea $b \in \bigcup_{D \in S} F(D)$. Por definición, existe un $D' \in S$ tal que $b \in F(D')$. Luego, existe $a \in D'$ tal que f(a) = b. Este a también está en $\bigcup_{D \in S} D$, por lo que $b \in F\left(\bigcup_{D \in S} D\right)$. Concluímos que $\bigcup_{D \in S} F(D) \subseteq F\left(\bigcup_{D \in S} D\right)$.
- 2. Sea $b \in F\left(\bigcap_{D \in S} D\right)$. Por definición, existe $a \in \bigcap D \in SD$ tal que f(a) = b. Esto quiere decir que para todo $D \in S$, existe $a \in D$ tal que f(a) = b, lo que es equivalente a decir que para todo $D \in S$ se tiene que $b \in F(D)$. Esto último se puede escribir como $b \in \bigcap_{D \in S} F(D)$. Concluímos que $F\left(\bigcap_{D \in S} D\right) \subseteq \bigcap_{D \in S} F(D)$.

3. Relaciones

3.1. Relaciones de orden

Dados un conjunto A y una relación \lesssim sobre A, diremos que el par (A, \lesssim) es un preorden si \lesssim es una relación refleja y transitiva.

Denotramos por $\mathcal{P}(\mathbb{N})^{\infty}$ el conjunto de todos los subconjuntos finitos de \mathbb{N} . Definimos la relación $\leadsto \subseteq \mathcal{P}(\mathbb{N})^{\infty} \times \mathcal{P}(\mathbb{N})^{\infty}$ como

$$A \leadsto B \Leftrightarrow inf(A) \leq inf(B) \land sup(A) \leq sup(B)$$

donde $inf(\cdot)$ y $sup(\cdot)$ son el ínfimo y el supremo de un conjunto respectivamente.

- 1. Demuestre que $(\mathcal{P}(\mathbb{N})^{\not\infty}, \leadsto)$ es un preorden.
- 2. Demuestre que $(\mathcal{P}(\mathbb{N})^{\not\infty}, \leadsto)$ no es un orden parcial.
- 3. Encuentre un conjunto $S \subseteq \mathcal{P}(\mathbb{N})^{\infty}$ tal que (S, \leadsto) es un orden parcial. Debe demostrar su resultado.

Solución

1. PD: \rightsquigarrow es refleja y transitiva en $\mathcal{P}(\mathbb{N})$.

I.- Sea $A \in \mathcal{P}(\mathbb{N})$. Como A es finito entonces $\exists n_1 \in \mathbb{N}$ tal que $\sup(A) = n_1$. De la misma manera $\exists n_2 \in \mathbb{N}$ tal que $\inf(A) = n_2$. Por lo tanto podemos decir que $\sup(A) = \sup(A) \wedge \inf(A) = \inf(A) \Longrightarrow A \rightsquigarrow A$. Luego, \rightsquigarrow es refleja.

II.- Sea $A, B, C \in \mathcal{P}(\mathbb{N})$. Tales que $A \leadsto B \ y \ B \leadsto C$. Entonces

$$\sup(A) \le \sup(B) \land \inf(A) \le \inf(B) \quad \sup(B) \le \sup(C) \land \inf(B) \le \inf(C)$$

Por la transitividad de " \leq ", $\sup(A) \leq \sup(C) \wedge \inf(A) \leq \inf(C) \Longrightarrow A \leadsto C$. Se concluye que \leadsto es transitiva.

Por (I) y (II) implica que $(\mathcal{P}(\mathbb{N}), \leadsto)$ es un pre orden.

2. Sean $A = \{1, 2, 3\}$ y $B = \{1, 3\}$. Claramente se tiene que

$$\inf(A) = \inf(B) = 1 \land \sup(A) = \sup(B) = 3$$

Por lo tanto $A \rightsquigarrow B$ y $B \rightsquigarrow A$. Sin embargo, $A \neq B$ ya que $2 \notin B$. Por axioma de extensión podemos asegurar que A es distinto a B. Por lo tanto, no es antisimétrica.

3. Sea $S = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$. Como ya se demostró en (1) \leadsto es refleja y transitiva.

PD: \rightsquigarrow es antisimétrica en S. Para que se cumpla $A \rightsquigarrow B y B \rightsquigarrow A$ necesariamente $\sup(A) = \sup(B) \land \inf(A) = \inf(B)$ por la antisimetría de \leq . Ahora, supongamos que existen $A, B \in \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$ tales que $A \rightsquigarrow B$ y $B \rightsquigarrow A$ pero $A \neq B$. Luego, $\sup(A) = \sup(B) \land \inf(A) = \inf(B)$. Pero los únicos

casos en que pasa eso son:

$$A = B = \{1\}$$

$$A=B=\{2\}\star$$

$$A = B = \{1, 2\}$$

Por lo tanto, \leadsto es necesariamente antisemétrica, por lo tanto un orden parcial sobre S.

 \star Un argumento de conteo es válido para demostrar que no hay más combinaciones sobre S que cumplen $A \leadsto B$ y $B \leadsto A$.

3.2. Relaciones de equivalencia

Sea A un conjunto, y $S,T\subseteq A\times A$ ambas relaciones de equivalencia sobre A. Demuestre que:

 $S \circ T = T \circ S \Leftrightarrow S \circ T$ es una relación de equivalencia

Solución

 (\Rightarrow) Suponiendo $S\circ T=T\circ S,$ debemos demostrar que $S\circ T$ sea una relación de equivalencia

Refleja

Dado que S y T son reflejas $\forall a \in A(a, a) \in S \land (a, a) \in T$

Luego por la definición de $S \circ T$, $\forall a \in A$, $(a, a) \in S \circ T$, por lo que es refleja.

Simétrica

Sea $(a,b) \in S \circ T$, como $S \circ T = T \circ S$, $(a,b) \in S \circ T$. por lo tanto:

$$\exists z \in A(a,z) \in T \land (z,b) \in S$$

que puede ser reescrito como

$$\exists z \in A(z,b) \in S \land (a,z) \in T$$

y luego, dado que las relaciones S y T son simétricas, tenemos que $(b,z) \in S \land (z,a) \in T$ y así $(b,a) \in S \circ T$

Transitiva

Sea $(a, b), (b, c) \in S \circ T$ entonces:

$$\exists z_1 \in A(a, z_1) \in S \land (z_1, b) \in T$$

$$\exists z_1 \in A(b, z_2) \in S \land (z_2, c) \in T$$

Y dado que $(z_1, z_2) \in T \circ S$ ya que $(z_1, b) \in T \wedge (b, z_2) \in S$, por lo tanto como $S \circ T = T \circ S$ ocurre que:

$$(z_1, z_2) \in S \circ T$$

$$\exists z_3 \in A(z_1, z_3) \in S \land (z_3, z_2) \in T$$

$$(a, z_3) \in S \land (z_3, c) \in T$$

como S y T son transitivas

$$(a, z_3) \in S \land (z_3, c) \in T$$

y entonces $(a,c) \in S \circ T$

Por lo tanto, $S \circ T$ es una relación de equivalencia

(⇐) Suponiendo que $S \circ T$ es una relación de equivalencia, para demostrar que $S \circ T = T \circ S$ se busca probar que $S \circ T \subseteq T \circ S$ y $S \circ T \supseteq T \circ S$.

(1) En primer lugar, sea $(a,b) \in S \circ T$, por la simetría de $S \circ T$ se tiene que también $(b,a) \in S \circ T$. Luego, por la definición de composición se cumple que

$$\exists z \in A(z,b) \in S \land (z,a) \in T$$

Ahora dada la simetría de S y T se tiene que

$$\exists z \in A.(z,b) \in S \land (a,z) \in T$$

Además por definición de composición dado que $\exists z \in A(a,z) \in T \land (z,b) \in S$ entonces $(b,a) \in T \circ S$. Así queda demostrado que $S \circ T \subseteq T \circ S$

(2) De manera análoga, sea $(a,b) \in T \circ S$, por definición de composición se tiene que

$$\exists z \in A. (a,z) \in T \land (z,b) \in S$$

Luego por simetría de S y T también se cumple que

$$\exists z \in A(z,a) \in T \land (b,z) \in S$$

Finalmente dado que $\exists z \in A(b,z) \in S \land (z,a) \in T$ se tiene que $(b,a) \in S \circ T$ y por simetría de $S \circ T$ también $(a,b) \in S \circ T$. Así queda demostrado que $T \circ S \subseteq S \circ T$.

Queda demostrado que $S \circ T \subseteq T \circ S$ y $S \circ T \supseteq T \circ S$, se ha probado que $S \circ T = T \circ S$ dado que $S \circ T$ es una relación de equivalencia.

4. Cardinalidad

4.1. Numerabilidad

Demuestre que el conjunto de todos los strings ASCII (finitos) que sólo tienen caracteres a y b, y tales que no contienen el substring abb es un conjunto numerable.

Solución

Sea S el conjunto de las strings ASCII finitas que sólo tienen caracteres a y b y no tienen el substring abb. Consideremos $f: S \to \mathbb{N}$ tal que

$$f(s_1s_2s_3...) = d_1d_2d_3...$$

donde d_i está dado por

$$d_i = \begin{cases} 1 & \text{si } s_i = a \\ 2 & \text{si } s_i = b \end{cases}$$

Esta función es inyectiva. Para demostrar que es inyectiva hay que demostrar que $(f(s) = f(r)) \rightarrow (s = r)$. Se deja como ejercicio

Consideremos la función $g: \mathbb{N} \to S$ tal que

$$g(x) = a \cdot x$$

donde la multiplicación de un caracter a por un número x denota "repetir el número a x veces". Esta función es inyectiva. La demostración de inyectividad se deja como ejercicio.

Como existen funciones inyectivas de \mathbb{N} a S y vice versa, por teorema de Schroeder-Bernstein podemos concluir que existe una función biyectiva entre estos dos conjuntos, y por ende son equinumerosos, con lo que concluímos que S es numerable.

4.2. No numerabilidad

Sea $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ es inyectiva}\}$. Demuestre que el conjunto \mathcal{F} es no numerable.

Solución

Se demostrará por diagonalización. Supongamos que \mathcal{F} es numerable.

Entonces existe una forma de listar los elementos de \mathcal{F} . Digamos, sin pérdida de generalidad, que ese orden es:

$$f_0, f_1, f_2, \dots$$

con $f_i: \mathbb{N} \to \mathbb{N}$ inyectiva para $i \geq 0$.

Consideremos la siguiente tabla:

	0	1	2	3	
f_0	$f_0(0)$	$f_0(1)$			
f_1	$f_1(0)$	$f_1(1)$	$f_1(2)$	* (/	
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_2(3)$	
÷					٠

Buscamos una función $g \in \mathcal{F}$ tal que $\forall i (g \neq f_i)$.

Una opción podría ser tomar $g(i) = f_i(i) + 1$. Esto efectivamente haría que g sea diferente de toda f_i . Sin embargo, necesitamos que $g \in \mathcal{F}$, y todas las funciones de \mathcal{F} son inyectivas. Con esa definición de g, si se da que $f_0(0) = 0$ y $f_1(1) = 0$, se tendrá que g(0) = g(1) = 1, con lo que g no será inyectiva, por lo que no es correcta.

Necesitamos que $x \neq y \rightarrow g(x) \neq g(y)$ (contrapositivo de inyección). Una forma de conseguir una función inyectiva, como podrán recordar de una ayudantía pasada, es con una función estrictamente creciente. Una forma de hacer que g sea estrictamente creciente con la diagonal de la tabla es tomar la suma del valor de g anterior y sumarle 1 para cumplir con el crecimiento. Además, debemos sumar $f_i(i)$ para que g(i) se necesariamente sea diferente de $f_i(i)$, y consecuentemente, de la diagonal completa. La definición propuesta es entonces:

$$g(i) = \begin{cases} 1 + f_i(i) &, i = 0\\ g(i-1) + 1 + f_i(i) &, i \neq 0 \end{cases}$$

Demostraremos que es creciente (y con ello que es inyectiva). Sean $i, j \in \mathbb{N}$ tales que i < j, aplicaremos inducción sobre la diferencia entre i y j:

BI: Con j - i = 1, se tiene que $g(j) = g(j - 1) + 1 + f_j(j) = g(i) + 1 + f_j(j) > g(i)$, ya que $f_j(j) \in \mathbb{N}$ y por lo tanto es ≥ 0 .

HI: Supongamos que si j - i = n entonces g(i) < g(j).

TI: PD: $j - i = n + 1 \Rightarrow g(i) < g(j)$.

Se tiene que $g(j) = g(j-1) + 1 + f_j(j)$. Como j-i=n+1, se tiene que j-1-i=n. Luego, por HI, g(j-1) > g(i). Como $1+f_j(j) > 0$, tenemos que $g(j-1)+1+f_j(j) > g(i)$, con lo que g(j) > g(i), que es lo que queríamos demostrar.

Queda demostrado que g es creciente. Como es creciente, es inyectiva (demostración formal de esto en la ayudantía 8), y es claro que $g : \mathbb{N} \to \mathbb{N}$, por lo que $g \in \mathcal{F}$.

Sin embargo, $g(i) > f_i(i)$ para todo $i \ge 0$, por lo que es diferente a todas las funciones listadas en la tabla. Con ello, llegamos a una contradicción. Concluímos entonces que \mathcal{F} no puede ser numerable.