BNPlib: A Nonparametric C++ Library (part 3)

Bruno Guindani Elena Zazzetti

February 19th, 2020

https://github.com/poliprojects/BNPlib

Model

DP and DPM models

Having observed the iid sample $\{y_i\}_i$, $i = 1, \ldots, n$:

• Dirichlet process model (discrete):

$$y_i|G \stackrel{\mathsf{iid}}{\sim} G$$

$$G \sim DP(MG_0)$$

Dirichlet process mixture (DPM) model (continuous):

$$y_i|G \stackrel{\text{iid}}{\sim} f_G(\cdot) = \int_{\Theta} f(\cdot|\boldsymbol{\vartheta}) G(d\boldsymbol{\vartheta})$$

 $G \sim DP(MG_0)$

Equivalent formulations (1)

• (DPM) is equivalent to:

$$\begin{aligned} y_i | \boldsymbol{\vartheta}_i &\overset{\mathsf{ind}}{\sim} f(\cdot | \boldsymbol{\vartheta}_i), \quad i = 1, \dots, n \\ \boldsymbol{\vartheta}_i | G &\overset{\mathsf{iid}}{\sim} G, \quad i = 1, \dots, n \\ G &\sim DP(MG_0) \end{aligned}$$

• State $\forall i$: ϑ_i latent variables (discrete)

Equivalent formulations (2)

• (DPM) is also equivalent to:

$$y_i|c_i, \boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_k \overset{\text{ind}}{\sim} f(\cdot|\boldsymbol{\phi}_{c_i}), \quad i = 1, \dots, n$$

$$c_i|\mathbf{p} \overset{\text{iid}}{\sim} \sum_{j=1}^K p_j \delta_j(\cdot), \quad i = 1, \dots, n$$

$$\boldsymbol{\phi}_c \overset{\text{iid}}{\sim} G_0, \quad c = 1, \dots, k$$

$$\mathbf{p} \sim \text{Dir}(M/K, \dots, M/K)$$

$$K \to +\infty$$

- State $\forall i$: c_i allocations to clusters
- ullet State $orall i\colon \phi_{c_i}$ unique values for each cluster
- ullet Only the finitely many ϕ_c used are kept track of

Case study

(DPM) with a Normal Normal-InverseGamma (NNIG) hierarchy:

$$\begin{split} y_i|\boldsymbol{\vartheta}_i &\overset{\mathsf{ind}}{\sim} f(\cdot|\boldsymbol{\vartheta}_i), \quad i=1,\dots,n \\ \boldsymbol{\vartheta}_i|G &\overset{\mathsf{iid}}{\sim} G, \quad i=1,\dots,n \\ G &\sim DP(MG_0) \\ f(y|\boldsymbol{\vartheta}) &= N(y|\mu,\sigma^2) \\ G_0(\boldsymbol{\vartheta}|\mu_0,\lambda_0,\alpha_0,\beta_0) &= N\left(\mu|\mu_0,\frac{\sigma^2}{\lambda_0}\right) \times \mathsf{Inv-Gamma}(\sigma^2|\alpha_0,\beta_0) \end{split}$$

- Latent variables: $\vartheta = (\mu, \sigma)$
- State $\forall i$: c_i , $oldsymbol{\phi}_{c_i}$

Algorithms

General structure

```
template <template <class> class Hierarchy,
         class Hypers, class Mixture> class Algorithm
         void step(){
             sample_allocations();
             sample_unique_values();
         }
         void run(){
             initialize();
             unsigned int iter = 0;
             while(iter < maxiter){</pre>
                  step();
                  if(iter >= burnin){
                      save_iteration(iter);
                  iter++;
```

Auxiliary classes

- Specific common interface
- ullet Mixture ightarrow SimpleMixture
- ullet Hypers o HypersFixedNNIG
- ullet Hierarchy<Hypers> o HierarchyNNIG<Hypers>

Neal8

- ullet Has a vector of m aux_unique_values
- initialize()
- sample_allocations(): for all observations $i=1,\ldots,n$
 - compute card[c] = $n_{-i,c}$ for all clusters $c=1,\ldots,k$
 - lacktriangle if c_i is a singleton, move ϕ_{c_i} to aux_unique_values[0]
 - draw all (other) aux_unique_values iid from G_0
 - draw a new value c for c_i according to:

$$\mathbb{P}(c_i=c|\boldsymbol{c}_{-i},y_i,\boldsymbol{\phi}_1,\dots,\boldsymbol{\phi}_h) \propto \begin{cases} \frac{n_{-i,c}}{n-1+M}f(y_i|\boldsymbol{\phi}_c), & \text{for } 1 \leq c \leq k^-\\ \frac{M/m}{n-1+M}f(y_i|\boldsymbol{\phi}_c), & \text{for } k^-+1 < c \leq h \end{cases}$$

with k^- unique values excluding c_i and $h = k^- + m$

- update card and allocations (4 cases)
- sample_unique_values(): for all clusters $c=1,\ldots,k$
 - build curr_data that contains all observations in cluster c
 - draw ϕ_c from its posterior distribution given curr_data

Neal2

- For conjugate models only, e.g. (DPM)+(NNIG)
- initialize()
- sample_allocations(): for all observations $i=1,\ldots,n$
 - compute card[c] = $n_{-i,c}$ for all clusters $c=1,\ldots,k$
 - draw a new value c for c_i according to:

If
$$c=c_j$$
 for some j : $\mathbb{P}(c_i=c|\mathbf{c}_{-i},y_i,\phi) \propto \frac{n_{-i,c}}{n-1+M}f(y_i|\phi_c)$
$$\mathbb{P}(c_i\neq c_j \text{ for all } j|\mathbf{c}_{-i},y_i,\phi) \propto \frac{M}{n-1+M}\int_{\Theta}f(y_i|\boldsymbol{\vartheta})\,G_0(\mathrm{d}\boldsymbol{\vartheta})$$

- lacktriangle if the latter, draw a new $oldsymbol{\phi}_c$ from its posterior given y_i
- update card and allocations (4 cases)
- sample_unique_values(): for all clusters $c=1,\ldots,k$
 - build curr_data that contains all observations in cluster c
 - draw ϕ_c from its posterior distribution given curr_data

- (ロ) (個) (重) (重) (重) のQで

Applications

Cluster estimation

unsigned int cluster_estimate();

$$\hat{k} = \underset{k}{\operatorname{arg \, min}} \left\| D^{(k)} - \bar{D} \right\|_F^2 = \underset{k}{\operatorname{arg \, min}} \sum_{i,j} \left(D_{ij}^{(k)} - \bar{D}_{ij} \right)^2$$

- ullet $D^{(k)}$: dissimilarity matrix at iteration k
- $\bar{D} = \frac{1}{K} \sum_k D^{(k)}$: mean over K iterations

Guindani, Zazzetti (PoliMi)

Density estimation

void eval_density(const std::vector<double> grid);

$$\hat{f}^{(k)}(x) = \sum_{j} \frac{n_{j}^{(k)}}{M+n} f\left(x|\phi_{j}^{(k)}\right) + \frac{M}{M+n} m(x)$$

$$\hat{m}(x) = \frac{1}{m} \sum_{h=0}^{m-1} f\left(x|\phi_{h}\right)$$

$$\Longrightarrow \hat{f}(x) = \frac{1}{K} \sum_{j} \hat{f}^{(k)}(x)$$

Guindani, Zazzetti (PoliMi)

Results

Oscillations

Iterations 100,200,...,15000

Total mass

17 / 22

Auxiliary parameters

Density components

Clustering

Neal2 vs Neal8

Bibliography

- 🦫 Muller, Quintana, Bayesian Nonparametric Data Analysis
- Neal (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models
- 医 Ishwaran, James (2001), Gibbs Sampling Methods for Stick-Breaking Priors
- Murphy (2007), Conjugate Bayesian analysis of the Gaussian distribution
- Protocol Buffers: https: //developers.google.com/protocol-buffers/docs/cpptutorial
- Stan: http://mc-stan.org/math
- Eigen: https://eigen.tuxfamily.org/dox
- GitHub codes of Mario Beraha and Riccardo Corradin for similar projects
- Course material for Bayesian Statistics: https://beep.metid.polimi.it/web/2019-20-bayesian-statistics-alessandra-guglielmi-/