 Which method/s of representation of numbers occupies a large amount of memory than others? a) Sign-magnitude b) 1's complement c) 2's complement d) 1's & 2's compliment
 2. Which representation is most efficient to perform arithmetic operations on the numbers? a) Sign-magnitude b) 1's complement c) 2'S complement d) None of the mentioned
 3. Which method of representation has two representations for '0'? a) Sign-magnitude b) 1's complement c) 2's complement d) None of the mentioned
4. When we perform subtraction on -7 and 1 the answer in 2's complement form is
a) 1010 b) 1110 c) 0110 d) 1000 View Answer 5. When we perform subtraction on -7 and -5 the answer in 2's complement form is
a) 11110 b) 1110 c) 1010 d) 0010
6. When we subtract -3 from 2 , the answer in 2's complement form is a) 0001 b) 1101 c) 0101 d) 1001
7. The processor keeps track of the results of its operations using flags called a) Conditional code flags b) Test output flags c) Type flags d) None of the mentioned
8. The register used to store the flags is called asa) Flag register

b) Status register c) Test register d) Log register
9. The Flag 'V' is set to 1 indicates that a) The operation is valid b) The operation is validated c) The operation has resulted in an overflow d) None of the mentioned
10. In some pipelined systems, a different instruction is used to add to numbers which can affect the flags upon execution. That instruction is a) AddSetCC b) AddCC c) Add++ d) SumSetCC
11. The most efficient method followed by computers to multiply two unsigned numbers is
a) Booth algorithm b) Bit pair recording of multipliers c) Restoring algorithm d) Non restoring algorithm
12. For the addition of large integers, most of the systems make use of a) Fast adders b) Full adders c) Carry look-ahead adders d) None of the mentioned
13. In a normal n-bit adder, to find out if an overflow as occurred we make use ofa) And gateb) Nand gatec) Nor gated) Xor gate
14. In the implementation of a Multiplier circuit in the system we make use ofa) Counterb) Flip flopc) Shift registerd) Push down stack
15. When 1101 is used to divide 100010010 the remainder is a) 101 b) 11 c) 0 d) 1