

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Т «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работа №2 по курсу «Моделирование» на тему: «Марковские процессы»

Студент	ИУ7-73Б (Группа)	(Подпись, дата)	Лысцев Н. Д. (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Рудаков И. В (И. О. Фамилия)

СОДЕРЖАНИЕ

1	Техническое задание	3
2	Марковский процесс	4
3	Время нахождения системы в каждом из состояний при уста-	
	новившемся режиме работы	5

1 Техническое задание

Написать программу с графическим интерфейсом, которая позволяет определить время пребывания сложной системы в каждом из состояний в установившемся режиме работы.

2 Марковский процесс

Для математического описания функционирования устройств, развивающихся в форме случайного процесса, может быть применен математический аппарат, разработанный в теории вероятностей для марковских случайных процессов. Случайный процесс, протекающий в некоторой системе, называется Марковским, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящем и не зависит от того, когда и каким образом система пришла в это состояние. В реальности таких систем не существует.

В марковском случайном процессе будущее развитие зависит только от настоящего состояния и не зависит от предыстории процесса. Для марковского случайного процесса составляют уравнения Колмогорова, представляющие собой соотношения следующего вида:

$$F(P'(t), P(t), \lambda) = 0, \tag{2.1}$$

где P(t) — вероятность нахождения в состоянии для сложной системы, λ — некоторый набор коэффициентов, показывающий, с какой скоростью система переходит из одного состояния в другое (интенсивность).

3 Время нахождения системы в каждом из состояний при установившемся режиме работы

Время нахождения системы в состоянии S_i при установившемся режиме работы определяется по формуле 3.1:

$$t_i = \frac{P_i}{\sum_{i=1}^n \lambda_{ij} + \sum_{j=1}^n \lambda_{ij}}$$

$$(3.1)$$

где P_i — вероятность нахождения в состоянии S_i при установившемся режиме работы, $\sum_{i=1}^n \lambda_{ij}$ — сумма входящих в состояние S_i интенсивностей, $\sum_{j=1}^n \lambda_{ij}$ — сумма выходящих из состояния S_i интенсивностей.