(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-149395

(43)公開日 平成6年(1994)5月27日

(51)	int(CL.5	
_	A =	r	1 /50

識別記号 庁内整理番号

技術表示箇所

G 0 5 F 1/56 1/618 3 1 0 K 4237-5H 3 1 0 4237-5H

H01L 27/04

M 8427-4M

審査請求 未請求 請求項の数3(全 7 頁)

(21)出顧番号

(22)出願日

特顏平4-302079

平成4年(1992)11月12日

(71)出顯人 000004237

FI

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 岡本 利治

東京都港区芝五丁目7番1号日本電気株式

会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 半導体装置

(57)【要約】

【目的】半導体装置内に組み込むことで、外部電源電圧が5Vであっても、3.3Vであっても、どちらの外部電源電圧を使用しても、高速の動作速度と安定な作動を実現すること。

【構成】電源電圧検出回路Mと降圧回路Kと切り替え回路Lとから構成される。電源電圧検出回路Mで、外部電源電圧の大きさを検出し、出力として切り替え回路Lを制御する信号を送り出す。切り替え回路Lは、外部電源電圧が5Vであった場合、降圧回路Kによって3.3Vに降圧された内部電源電圧を内部回路3に供給するように、また外部電源電圧が3.3Vの場合には、外部電源電圧をそのまま内部回路3に供給するように機能する。

【特許請求の範囲】

【簡求項1】 入力が外部電源端子に接続され、前記外 部電源ペ子から印加された外部電源電圧よりも低い内部 電源電圧に変換して出力する降圧回路と、入力が前配外 部電源端子に接続され、前配外部電源電圧が、設定され た回路しきい値よりも高レベルの場合には出力に論理1 を又は論理0を、低レベルの場合論理0又は論理1を出 力する電源電圧検出回路と、第1の入力端と第2の入力 端と制御端と出力端とを有し、前配第1の入力端に前配 外部電源場子が接続され、前記第2の入力端に前記降圧 10 回路の出力が接続され、前配制御端に前配電源電圧検出 回路の出力が接続され、前配出力端が内部回路の電源線 に接続され、前配制御端に印加された論理値信号によっ て前配出力端に前配降圧回路の出力電圧あるいは前配外 部電源電圧のどちらかが印加されるように機能する切り 替え回路とを備えたことを特徴とする半導体装置。

【請求項2】 電源電圧検出回路は、外部電源電圧の大 きさを判定する判定電圧の値が3.3 Vから5.0 Vの 間に設定されている請求項1に記載の半導体装置。

【請求項3】 電源電圧検出回路は、外部電源電圧の大 20 きさを判定する判定電圧の値が2Vから3Vの間に設定 されている請求項1に記載の半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は半導体装置に関し、特に 外部電源電圧が5Vの場合でも3、3Vあるいは3、0 Vの場合でも高速かつ安定に動作可能なMOSFETを 主な構成要素とする半導体装置に関する。

[0002]

【従来の技術】近年、半導体装置の大容量化、高速化の 要求に応えるため、デパイス素子の微細化、すなわちM OSFETのゲート長の縮小、ゲート酸化膜の薄膜化が 進行している。何えば、現在大容量化が最も進んでいる DRAM(ダイナミック・ランダム・アクセス・メモ リ) においては、ゲート長は、0.5~0.6 μm、ゲ ート酸化膜厚は150A程度まで縮小されている。この ように、MOSFETの微細化が進むと、ホットキャリ ア耐圧、ソースドレイン耐圧は低下する為、電源電圧と して5Vを使用する従来の方式では、半導体装置の信頼 性の確保が困難になる。例えば、参考文献:日経マイク 40 ロデパイス1991年4月号(P. 52~61)、参考 文献:日経エレクトロニクス1991年5月号 (P. 1

【0003】そこで、近年では、半導体装置に使用する 電源電圧を、5 Vから、3.3 Vに下げる方式が考えら れている。電源電圧を下げることで、チャネル領域に加 わる電界の強さが緩和されるため、デパイス素子の劣化 は抑制される。したがって、大容量化を進めても半導体 装置の信頼性は確保できるだろう。

は、半導体装置を設計する側では、自儘にならぬことで もある。半導体装置を搭載する外部装置より提供される 電源電圧は、従来の電源電圧方式による半導体装置との 混載も十分に有り得ることを考慮すると、容易に3、3 Vに切り替わらないだろう。従って、電源電圧が5 Vか ら3.3 Vに移行する過渡期にあっては、どちらの電源 電圧方式でも動作するような工夫を半導体装置自身に付 加する必要がある。

【0005】そこで、外部電源電圧Vcc (ext) を、まず、半導体装置内に備えた降圧回路で受け、内部 電源電圧Vcc(int)=3. 3Vに変換し、それか ら、内部回路に供給する方式が一般的になってきた。外 部電源電圧が5Vであっても、3.3Vであっても、降 圧回路によって内部電源電圧Vcc (int)とし、そ れから内部回路に供給する方式である。例えば、参考文 献:日経マイクロデパイス1990年2月号 (p. 1,1 $5 \sim 122)$.

【0006】図8は従来技術による降圧回路を使用した 一般的な半導体記憶装置の一部プロック図である。図18 において、半導体装置内部に構成された降圧回路 (K) へ、外部端子1につながる節点CCから外部電源電圧V cc (ext) が入力し、降圧回路(K)で、内部電源 電圧Vcc(int)に変換、出力節点CC 1 に出力 し、内部回路電源線2を介して、このVcc (int) を内部の各回路3 (例えばデコーダ回路5. センスアン プ回路 6、制御回路 7等)に供給する構成である。

【0007】図9は、従来技術による降圧回路の入力節 点CC、及び出力節点CCIに現れる電圧の外部電源電 圧Vcc (ext) 依存性を示した特性図である。出力 節点CCIには降圧された内部電源電圧Vcc(in t) が現れる。従来の降圧回路では、外部電源電圧Vc c (ext) = 5 Vの時にVcc (int) = 3. 3 V がCCIに出力されるようにデバイスパラメータを最適 化してやらなければならない。このため、外部電源電圧 Vcc (ext) = 3. 3 Vで使用する場合、内部電源 電圧Vcc (int) はおよそ3.0 V程度まで低下し てしまう。そのため、特に低電源電圧3.3V使用時に おいて半導体装置に印加した外部電源電圧がそのままの 大きさで降圧回路の出力節点CCIに出力されないとい う欠点があった。

【0008】図10は、外部電源電圧3.3V使用環境 下で半導体装置内の内部回路がスイッチングした場合の 従来の降圧回路の出力節点CCIにおける電圧変化を示 す特性図である。 Κ 2 で示している波形は、内部回路中 の任意の節点における一般的なスイッチングの波形を示 したものである。一般的に内部回路がスイッチングした 際、VccからGNDにむかって貫通電流が流れる。内 部回路にVcc(int)を供給する降圧回路の電流駅 動能力には制限があるために、この時、出力節点CC1 【 $0\,0\,0\,4$ 】しかし、外部電源電圧の選択という問題 50 における電圧 $V\,c\,c\,(\,1\,n\,t\,)$ は、一時的に大きく低下

し、その後、元の設定した電圧に復帰する。使用条件に もよるが、我々の実験では、およそ0.7 V低下が見られ、従来の降圧回路を使用した場合には、使用電源電圧 の変動の許容範囲の目安と見なされている±10%を越 えている。このため、センスアンプ回路6,入力パッフ ァ回路等、電源電圧の変動に対し敏感な内部回路3が誤 動作し易くなる欠点があった。

[0009]

【発明が解決しようとする課題】以上述べてきたように、従来技術による降圧回路Kを有する半導体装置で 10 は、特に外部電源電圧Vcc(ext)=3.3Vによる使用環境下の場合、①降圧回路Kを経て内部回路3へ供給される電源電圧Vcc(int)は低下しているため、半導体装置が高速に動作しない。また②MOSFETの電流駆動能力の制限のために、内部回路3で大きな貫通電流が流れた場合、内部へ供給する電源電圧Vcc(int)が大きくふらつき、半導体装置が不安定な動作を起こし易いという問題点がある。

【0010】従って、従来の降圧回路のみの構成の場合、外部電源電圧が特に3.3 Vの場合、安定かつ高速 20 に動作する半導体装置を提供できない欠点がある。

【0011】本発明の目的は、前記欠点を解決し、高速かつ安定に動作するようにした半導体装置を提供することにある。

[0012]

【課題を解決するための手段】本発明の半導体装置の構 成は、入力が外部電源端子に接続され、前記外部電源端 子から印加された外部電源電圧よりも低い内部電源電圧 に変換して出力する降圧回路と、入力が前配外部電源端 子に接続され、前記外部電源電圧が、設定された回路し きい値よりも高レベルの場合には出力に論理1を又は論 理0を、低レベルの場合論理0又は論理1を出力する電 源電圧検出回路と、第1の入力端と第2の入力端と制御 端と出力端とを有し、前配第1の入力端に前配外部電源 端子が接続され、前記第2の入力端に前記降圧回路の出 力が接続され、前配制御碣に前配電源電圧検出回路の出 力が接続され、前配出力端が内部回路の電源線に接続さ れ、前記制御端に印加された論理値信号によって前配出 力端に前記降圧回路の出力電圧あるいは前記外部電源電 圧のどちらかが印加されるように機能する切り替え回路 とを備えたことを特徴とする。

[0013]

【実施例】図1は、本発明の第1の実施例による内部降 圧回路を示したブロック図であり、一般的な半導体配像 装置に適用した例を一部プロック図で示したものである。

【0014】図1において、本実施例では、降圧回路 K、及び内部回路3(デコーダ回路5,センスアンブ回路6,制御回路7等)は、図8で説明したものと同様な Vcc (ext)≤2|VTP| 機能を持つものであるから、説明を省略する。電源電圧 検出回路Mは、外部電源電圧Vcc(ext)の大きさ を検出して、出力節点M01,M02から、切り替え回 路Lを制御する信号を送りだす機能を持つ。

【0015】図2は、図1中の電源電圧検出回路Mの機能を達成するような回路設計の一例を示した回路図である。図2において、本回路は、基本的には3つのインパータから構成されており、トランジスタQ21、Q22、Q24、Q26は、エンハンスメントp形MOSFET (以下EPMと略す)であり、トランジスタQ25、Q27はエンハンスメントn形MOSFET (以下ENMと略す)である。トランジスタQ23はディブレッションn形MOSFET (以下DNMと略す)である。

【0016】EPMQ21、Q22の基板電位はソース電位と同じにしてあり、ゲート電位はドレイン電位から与える。DNMQ23の基板電位、ゲート電圧はGNDとしておく。この電源電圧検出回路Mは、5Vの外部電源電圧使用時であれば、出力節点M01に"H"を送りだし、出力節点M02は"L"にする。外部電源電圧として3.3Vを使用している場合には、M01に"L"を、M02に"H"を出力するような論理を実現する。

【0017】図3は図1中の切り替え回路しの機能を達 成するような回路設計の一例を示す回路図である。図3 において、EPMQ31, ENMQ32とからなる第1 のトランスファーゲートとEPMQ33, ENMQ34 とからなるトランスファーゲートとを備え、トランジス 夕Q31、Q33は共にEPM、トランジスタQ32、 Q34は共にENMであり、これらのEPMQ31, Q 33, ENMQ32, Q34は、電流駆動能力を充分に 大きくするために、各トランジスタのW/L (ゲート幅 **/ゲート長)は充分に大きく設計される。切り替え回路** Lには、外部電源電圧Vcc (ext)と降圧回路Kに よって降圧された電圧K01、及び電源電圧検出回路M より入力される2つの制御信号が入力している。制御信 号の論理に応じて、Vcc (ext) かK01のどちち が一方を選択して出力節点CCIに出力し、内部回路3 に供給する機能を有する。

【0018】図4に、図2に示す電源電圧検出回路Mの 節点CC, MA1, MB1, MC1に現れる電圧の外部 電源電圧Vcc(ext) 依存性を示す。図4でこの動 作を説明する。

【0019】まず、①外部電源電圧Vcc (ext) が 次の(1)式の条件を満たす(a)の期間は、図2のE PMQ21,Q22が非導通のため、節点MA1の電圧 は0V、また節点MB1,節点MC1の電圧はそれぞれ Vcc (ext),0Vとなる。ここで、VTPは、E PMQ21,Q22の関値電圧である。

··· (1)

[0020]

次に、②外部電源電圧Vcc (ext) の上昇にともな い、EPMQ21、Q22が導通するため、節点MA1 の電圧もOVから上昇し、Vcc (ext)が次の (2) 式で表される値になると、EPMQ24とENM Q25とから構成されるインパータが反転する。

【0021】図4中の(b)の期間にあたるこの時の節*

Vcc(ext) = 2 | VTP | + VI

③さらに次の(3)式で表される(c)の期間では、外 部電源電圧Vcc(ext)は充分に高いため、EPM Q21, Q22は導通し、節点MA1の電圧はVcc※10

 $Vcc(ext) \ge 2 |VTP| + VI$

従って、電源電圧検出回路Mにおいては、入力節点CC に印加される外部電源電圧Vcc (ext) の大きさに よって、出力節点M01、M02に5Vであればそれぞ れVcc(ext), 0Vを、3.3Vであればそれぞ れOV、Vcc (ext)を送り出すことが出来る。

【0024】また前配 (2) 式を満たすVcc (ex t) の値をVINTV1とすると、VINTV1の値は 3. 3 V と 5 V との間に設定される。例えば、VTP= -1. 4V, VI=1. 0 Vとなるように設計された場 20 合、VINTV1=3.8Vとなる。更にDNMQ23 は、高抵抗にするために、EPMQ21、Q22に対し て、電流駆動能力が非常に小さくなるように設計され る.

【0025】図5に、切り替え回路Lの出力節点CC!★ Vcc(int) = Vcc(ext)

②Vcc>VINTV1の場合

節点M01=Vcc (ext), M02=0Vとなるた め、切り替え回路L中のEPMQ31とENMQ32と が非導通、EPMQ33とENMQ34とが導通し、出☆30

Vcc (int) = VK01

従って、半導体装置の外部電源電圧Vcc(ext)と して5 Vで使用した場合(図5中の②の領域)、各内部 回路3に供給される内部電源電圧Vcc (1nt)は、 降圧回路Kによって降圧された電圧VK01となる。-方、外部電源電圧として3.3Vを使用した場合(図5 中の②の領域)、外部電源電圧Vcc (ext)が、半 導体装置内の内部回路3にVcc (int) としてその まま供給される。従って、本実施例においては、特に外 部電源電圧が3.3 Vである場合においても内部電源電 圧は、外部電源電圧と等しくなる。このため、従来例の 場合のように、内部回路に供給する電圧が低下せず、半 導体装置の動作速度が遅くなることはない (効果(D)。

【0029】図6に、本実施例を半導体装置内に組み込 み、外部電源電圧として3.3 Vを使用している場合 の、内部回路3をスイッチングさせたとき、内部降圧回 路の出力節点CCIに現れる電圧すなわち内部量流電圧 Vcc(int)の変化を時間依存性で示す。

【0030】本実施例では、3.3Vの外部電源電圧を

*点MA1の電圧は、Vcc (ext) −2 | VTP | で あり、また、節点MB1, MC1の電圧は、それぞれ0 V, Vcc (ext) へとスイッチングする。ここで、 VIは、EPMQ24とENMQ25とから構成される インパータの論理関値である。

[0022]

... (2)

※ (ext) -2 | VTP | になり、節点MB1、MC.1 の電圧はそれぞれVcc(ext)、0Vとなる。

[0023]

... (3)

★に現れる電圧の外部電源電圧Vcc (ext) 依存性を 示す。ここで、V·INTV1は前述したように前記 (2) 式を満たすVcc (ext) の値であるが、これ は電源電圧検出回路Mの作動判定点と見なすことが出来 る電圧値である。

[0026] ①Vcc (ext) ≦VINTV1の場合 電源電圧検出回路Mの出力節点M01=0V. M02= Vcc (ext) となる為、EPMQ31とENMQB 2とが導通、EPMQ33とENMQ34とが非導通に あり、出力節点CCIには、外部より印加された電圧V cc(ext)がそのまま印加され、出力節点CCiの 電圧すなわち内部回路に供給される電圧Vcc;(in t) は次の(3′)式で表される。

[0027]

... (3')

☆力節点CC1には、降圧回路Kの出力電圧VK01が印 加され、出力節点CCiに現れる電圧Vcc (int) は次の(4)式で表される。

[0028]

... (4)

c (int)は、降圧回路Kを経ることなく、電流駆動 能力の大きいトランスファゲゲートを介して外部電源電 圧Vcc(ext)を内部回路3に供給するために、従 来例の場合に比べて、内部回路3をスイッチングさせた 際の、CCiでの内部電源電圧Vcc (int)のふら つきは小さくなるので、電源電圧の変動許容量の目安と される±10% (0.33V) 以内に十分収まる。従っ て内部回路3、特にセンスアンプ回路6,入力パッファ 等、電源電圧の変動に対し、敏感な回路の誤動作は、従 来例よりも起こりにくい(効果②)。

【0031】図7は本発明の第2の実施例を示すプロッ ク図である。図7において、本実施例である内部降圧回 路を半導体装置内に設ける場合の、電源電圧検出回路M について第2の実施例を示したものである。図7におい て、本実施例が第1の実施例における電源電圧検出回路 Mと異なるのは、入力節点CCにつながる初段のインパ ータの構成である。ENMQ31, DNMQ23からな り、ENMQ31のゲート電圧は、ドレインの電位から 使用している場合、前述したように、内部電源電圧Vc 50 与えられている。その他のMOSFETは、前記第1の 実施例と同様の構成であるので、説明を省略する。また 節点MA2の電圧変化は、第1の実施例中のMA1の電

圧変化と同一になるように、ENMQ31のしきい領電

圧が設計されている。

【0032】例えば、ENMQ31のしきい値電圧VT NをVTN=2.8Vに設定してやると、図7の電源電 圧検出回路Mが検出できる電圧VINTV2は、前配第 1の実施例で述べた電源電圧検出回路(図2)における VINTV1と等しくなり、以下第2の実施例の動作 は、節点MA1, MB1, MC1は、それぞれMA2, MB2, MC2に置き換えたのと同一になるので説明を 省略する。

[0033]

【発明の効果】以上述べたように、本発明は、外部電源 電圧の値が例えば5 Vのときは出力節点CC1には降圧 回路の出力電圧VK01が印加され、一方外部電源電圧 の値が例えば3. 3 Vのときには、節点CC1には節点 CCに印加された電圧が切り替え回路によってそのまま 印加されるから、特に低電圧の外部電源Vcc(ex t) = 3. 3 Vを使用している場合において、①従来例 20 のような、内部回路に供給する電圧の低下がないため半 導体装置の動作が遅くなるということはなく、②また特 に電流駆動能力の大きいEPM、ENMからなるトラン スファゲートを介して外部電源電圧を内部回路に供給し た場合には、従来例に比例して、内部回路がスイッチン グレた際に貫通電流が流れることによって起きる内部電 源電圧のふらつきは充分小さくなるため電源電圧の変動 に敏感な回路の誤動作は従来例よりも起こり難くなると いう効果がある。

【0034】以上述べたような効果①、②によって、使 30 K 用する外部電源電圧Vcc(ext)が3.3Vであっ ても5Vであっても安定にかつ高速に動作する半導体装 置を提供できる。

【0035】また、本実施例においては、電源電圧検出 回路として図2, 図7に示す構成を示し、切り替え回路 としては図3に示す構成を示したが、これらの回路構成 に限定されるものではなく、同一機能を持つものであれ ばよい。

【0036】さらに、本実施例では外部電源電圧Vcc (ext) = 3. 3 Vとして説明したが、外部電源電圧 40 Vcc(ext)=3.0Vの場合であっても、あるい

は外部電源電圧Vcc(ext)の値がそれ以下の場合 であってもよい。この時、VIの値は外部電源電圧Vc c (ext)の値に応じて設定されることはもちろんで ある。

【図面の簡単な説明】

【図1】本発明の第1の実施例の半導体装置による内部・ 降圧回路のプロック図である。

【図2】図1中の電源電圧検出回路の一例を示す回路図 である。

【図3】図1中の切り替え回路の一例を示す回路図であ 10

【図4】図1の電源電圧検出回路での入力節点や節点等 に現れる電圧変化のVcc(ext)依存性を示してい る特性図である。

【図5】図1の切り替え回路での出力節点の電圧変化の Vcc (ext) 依存性を示す特性図である。

【図6】図1の内部降圧回路を有する半導体装置におい て、内部回路をスイッチングさせた際の出力節点に現れ る電圧波形の変化の様子を示す特性図である。

【図7】本発明の第2の実施例による内部降圧回路を実 現する電源電圧回路の一例を示す回路図である。

【図8】従来技術による内部降圧回路を示すプロック図 である.

【図9】従来技術による内部降圧回路において、外部電 源電圧依存性を示す特性図である。

【図10】従来技術による内部降圧回路を有した半導体・ 装置の内部回路をスイッチングさせたときの節点におけ る電圧変化の様子を示した特性図である。

【符号の説明】

- 降圧回路
 - M 外部電源電圧検出回路
 - L 切り替え回路

К1 スイッチングの様子を最も良く示す内部回路の 任意の2箇所の節点での電圧波形

K 2 内部回路のスイッチングの様子を示す波形

- 外部電源帽子
- 2 内部回路電源線
- 内部回路
- 5 デコーダ回路
- 6 センスアンプ回路
- 製御同路

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06149395 A

(43) Date of publication of application: 27 , 06 , 94

(51) Int. Ci

G05F 1/58 G05F 1/618 H01L 27/04

(21) Application number: 04302079

(71) Applicant

NEC CORP

(22) Date of filing: 12 , 11 , 92

(72) Inventor:

OKAMOTO TOSHUI

(54) SEMICONDUCTOR DEVICE

(57) Abstract

PURPOSE: To realize a high speed and stable operation even at the time of using any external power supply voltage either of 5V and 3.3V by integrating those power supply voltages in a semiconductor device.

CONSTITUTION: This device is constituted of a power supply voltage detecting circuit M, voltage dropping circuit K, and switching circuit K. The power supply voltage detecting circuit M detects the magnitude of the external power supply voltage, and transmits a signal for controlling the switching circuit L as an output. When the external power supply voltage is 5V, the switching circuit L supplies the internal power supply voltage which is dropped to 3.3V by the voltage dropping circuit K to an internal circuit 3, and when the external power supply voltage is 3.3V, the switching circuit L supplies the external power supply voltage to the inside circuit 3 as it is.

COPYRIGHT: (C)1994,JPO&Japio

- (19) Japan Patent Office (JP)
- (12) Publication of Unexamined Patent Application (A)
- (11) Unexamined Patent Application (Kokai) No.

H06-149395

(43) Disclosure Date:

May 27, 1994

(51)	Int. Cl. ⁷ :	Identification Symbols	JPO File No.	FI	Tech. Indic.
	G 05 F 1/56	310 K	4237-5H		
	-1/618	310	4237-5H		
	H01L 27/04	M	8427-4M	,	•
Requ	est for Examin	ation: Not yet made			
Numl	ber of Claims:	1			
(Tota	l Pages: 9 [in o	riginal])			

- (21) Application No.: (1994) H04-302079
- (22) Filing Date: November 12, 1992
- (71) Applicant: 000004237

NEC

Shiba 5-7-1

Minato-ku, Tokyo

(72) Inventor: Toshiharu Okamoto

c/o NEC Shiba 5-7-1

Minato-ku, Tokyo

- (74) Agent: Naoki Kyomoto, Patent Attorney (and two others)
- (54) [Title of the Invention] Semiconductor Device
- (57) [Summary]

[Object]

To realize a high speed and stable operation even when using any external power supply voltage either of 5 V and 3.3 V by integrating those power supply voltages in a semiconductor device.

[Construction]

This device comprises a power supply voltage detecting circuit M, a voltage step-down circuit K, and a switching circuit L. The external power supply voltage detecting circuit M detects the magnitude of the external power supply voltage, and transmits a signal for controlling the switching circuit L as an output. The switching circuit L functions so as to supply internal power supply voltage which is stepped down to 3.3 V by the step-down circuit K to internal circuits 3 when the external power supply voltage is 5 V, and to supply external power supply voltage unchanged to the internal circuits 3 when the external power supply voltage is 5 V.

[Claims]

[Claim 1]

A semiconductor device characterized by having an input connected to an external power supply terminal, and a step-down circuit for converting an external power supply voltage applied from the external power supply terminal to a lower internal power supply voltage and outputting an input connected to an external power supply terminal, and a power supply voltage detecting circuit for outputting a logic 1 or a logic 0 if the external power supply voltage is higher than the established circuit threshold value, and a logic 0 or a logic 1 if the established circuit threshold value is a low level; and a switching circuit having a first input terminal; a second input terminal, control terminals, and an output terminal; the external power supply terminal connected to the first input terminal, the output of the step-down circuit connected to the second input terminal, the outputs of the power supply voltage detecting circuit connected to the control terminals, and the output terminal connected to the power supply line of the internal circuits; and a function for applying either the output voltage of the step-down circuit or the external power supply voltage to the output terminal according to the logic value signal applied to the control terminal.

[Claim 2]

A semiconductor device according to Claim 1 wherein the value of the decision voltage for determining the magnitude of the external power supply voltage is set between 3.3 V and 5.0 V for the power supply voltage detecting circuit.

[Claim 3]

A semiconductor device according in Claim 1 wherein the value of the decision voltage for determining the magnitude of the external power supply voltage is set between 2V and 3V for the power supply voltage detecting circuit.

[Detailed Description of the Invention]

[0001]

[Technological Field of the Invention]

The present invention relates to a semiconductor device, and in particular, to a semiconductor device wherein the principal component is a MOSFET capable of operating stably and at a high speed even when the external power supply voltage is 5 V, 3.3 V or 3.0 V.

[0002]

[Prior Art]

In recent years, the miniaturization of device elements, that is, the reduction in size of MOSFET gate length and the greater thinness of gate oxide film has continued to progress. For example, currently in DRAM (Dynamic Random Access Memory) with the greatest storage capacity, the gate length has been reduced to 0.5 to 0.6 µm, and the gate oxide thickness has been reduced to about 150 A. Thus, as the miniaturization of MOSFET progresses, assuring semiconductor device reliability becomes more difficult with conventional methods using 5 V as a power supply voltage because the hot carrier voltage tolerance and the source drain voltage tolerance drops. See reference materials Nikkei Microdevices, April, 1991 (P. 52 to 61), and Nikkei Electronics, May, 1991 (P. 143), for example.

[0003]

Thus, in recent years, a method has been devised whereby the power supply voltage used in semiconductor devices is reduced from 5 V to 3.3 V. By reducing the power supply voltage, deterioration of the device components is held in check because the strength of the electric field applied to the channel region is eased. Therefore, the reliability of semiconductor devices can likely be assured even with the increase of storage capacity.

[0004]

However, the problem of selecting an external power supply voltage cannot always be adequately resolved from the perspective of semiconductor device design. A power supply voltage provided by an external device configured with a semiconductor device is likely not easily switched to 3.3 V considering that it is sufficiently possible to configure in combination with conventional power supply voltage methods. Therefore, it is necessary to add a function to the semiconductor device itself to allow operation with either power supply voltage method when the power supply voltage moves from 5 V to 3.3 V.

[0005]

A method has become common whereby the external power supply voltage Vcc (ext) is first received by a step-down circuit internally provided to the semiconductor device, then converted to the internal power supply voltage Vcc (int) = 3.3 V, and finally supplied to the internal circuit. This is a method whereby the external power supply voltage, whether 5 V or 3.3 V, is set to the internal power supply voltage Vcc (int) by the step-down circuit, and then supplied to the internal circuit. See reference material *Nikkei Microdevices*, February, 1990 (P. 115 to 122).

[0006]

FH 008665

Fig. 8 is a partial block diagram of a common semiconductor memory device using a step-down circuit according to prior art. In Fig. 8, an external power supply voltage Vcc (ext) is input from the node CC connected to an external terminal 1 to the step-down circuit (K) configured inside the semiconductor device, converted to the internal power supply voltage Vcc (int), output to the output node CCi, and the Vcc (int) is supplied to the internal circuits 3 (decoder circuit 5, sense amplifier circuit 6, control circuit 7, and the like) by way of the internal circuit power supply line 2.

[0007]

Fig. 9 is a characteristics graph showing the external power supply voltage Vcc (ext) appearing at the output node CCi and the input node CC of the step-down circuit according to prior art. Stepped-down internal power supply voltage Vcc (int) appears at output CCi. In a conventional step-down circuit, the device parameters must be optimized so that Vcc (int) = 3.3 V is outputted at CCi when the external power supply voltage Vcc (ext) = 5 V. Thus, when an external power supply voltage Vcc = 3.3 V is used, the internal power supply voltage Vcc (int) drops to about 3.0 V. Because of this, when using a lower power supply voltage of 3.3 V there was a drawback whereby the external power supply voltage applied to the semiconductor device was not outputted to the output node CCi of the step-down circuit at the same magnitude.

[8000]

Fig. 10 is a characteristics graph showing the voltage change at the output node CCi of a conventional step-down circuit when the internal circuit of the semiconductor device switches under conditions of an external power supply voltage of 3.3 V. The wave form showing at K2 shows a common switching wave form at any node in an internal circuit. Generally, when an internal circuit switches, a through-current flows from Vcc toward GND. Because there is a limit to the current-driving capability of the step-down circuit for supplying Vcc (int) to the internal circuit, the voltage Vcc (int) at the output node CCi at this time generally drops sharply, and returns thereafter to the originally set voltage.

Depending on the usage conditions, a drop of about 0.7 V was observed in our experiments, and when a conventional step-down circuit was used the drop exceeded $\pm 10\%$, which is viewed as the standard of tolerance of variation of the used power supply voltage. This leads to a drawback whereby sensitive internal circuits 3 such as sense amplifier circuit 6 and input buffer circuits may malfunction due to power supply voltage fluctuations.

[0009]

[Problems overcome by the invention]

As noted above, when using an external power supply voltage Vcc (ext) = 3.3 V in particular in a semiconductor device having a step-down circuit K according prior art, the semiconductor device does not operate at high speed because 1) the power supply voltage Vcc (int) supplied to the internal circuits 3 by way of step-down circuit K is low. And 2), because of the limit of MOSFET current-driving capability, the power supply voltage Vcc (int) supplied to the interior varies greatly when a large through-current flows in the internal circuits 3, and the semiconductor device easily becomes unstable.

[0010]

Therefore, a configuration with only a conventional step-down circuit has a drawback whereby a semiconductor device can be provided which operates stably and at high speed when an external power supply voltage of 3.3 V is used in particular.

[0011]

The purpose of the present invention is to resolve the above-mentioned problems and to provide a semiconductor device capable of operating stably and at a high speed.

[0012]

The structure of the semiconductor device of the present invention is characterized by having an input connected to an external power supply terminal and a step-down circuit for converting an external power supply voltage applied from the external power supply terminal to a lower internal power supply voltage and outputting; an input connected to an external power supply terminal and a power supply voltage detecting circuit for outputting a logic 1 or a logic 0 if the external power supply voltage is higher than the established circuit threshold value, and a logic 0 or a logic 1 if the established circuit threshold value is a low level; and a switching circuit a switching circuit having a first input terminal; a second input terminal, control terminals, and an output terminal; the external power supply terminal connected to the first input terminal, the output of the step-down circuit connected to the second input terminal, the output of the power supply voltage detecting circuit connected to the control terminals, and the output terminal connected to the power supply line of the internal circuits; and a function for applying either the output voltage of the step-down circuit or the external power supply voltage to the output terminal according to the logic value signal applied to the control terminal.

[0013]

[Working Examples]

Fig. 1 is a block diagram showing an internal step-down circuit according to the semiconductor device in the first working example of the present invention, and shows a partial block diagram of an example using a common semiconductor memory device.

[0014]

In Fig. 1, the step-down circuit K and the internal circuits 3 (decoder circuit 5, sense amplifier circuit 6, control circuit 7, and the like) in the present working example have the same functions as those described by Fig. 8, and a description is omitted. The power supply voltage detecting circuit M detects the magnitude of the external power supply voltage Vcc (ext) and sends a signal for controlling the switching circuit 8 from output nodes M01 and M02.

[0015]

Fig. 2 is a circuit diagram showing one example of a circuit design which achieves the functions of the power supply voltage detecting circuit M in Fig. 1. In Fig. 2, the present circuit comprises basically three inverters, and transistors Q21, Q22, Q24, and Q26 are enhancement PMOSFET (hereinafter abbreviated as EPM), and transistors Q25, and Q27 are enhancement NMOSFET (hereinafter abbreviated as ENM). Transistor Q23 is a depletion NMOSFET (hereinafter abbreviated as DNM).

[0016]

The substrate electric potential of EPM Q21 and Q22 are set as the same electric potential as the source potential, and the gate electric potential is determined by the drain electric potential. The substrate electric potential of DNM Q23 and the gate voltage is set to GND. This power supply voltage detecting circuit M sends an "H" to the output node M01 and the output node M02 is set to "L" if an external power supply voltage of 5 V is used. When using 3.3 V as the external power supply voltage, logic is realized such that "L" is outputted to M01 and "H" is outputted to M02.

[0017]

Fig. 3 is a circuit diagram showing an example of a circuit design which achieves the function of the switching circuit L in Fig. 1. In Fig. 3, a first transistor gate comprising EPM Q31 and ENM Q32, and a transistor gate comprising EPM Q33 and ENM Q34 are provided, both transistors Q31 and Q33 are EPM and both transistors Q32 and Q34 are ENM, and the W/L (gate width/ gate length) of each transistor are designed with sufficient size so that these EPM Q31 and Q33, and ENM Q32 and Q34 are provided with sufficiently large current-driving capacity. The external power supply voltage Vcc (ext), the voltage K01 stepped down by step-down circuit K, and the two control signals inputted from the power supply voltage detecting circuit M provide input to the

switching circuit L. Either one of Vcc (ext) or K01 is selected according to the logic of the control signal, and then outputted to node CCi to supply to the internal circuits 3.

[0018]

Fig. 4 shows the external power supply voltage Vcc (ext) dependency of the voltage appearing at the nodes CC, MA1, MB1, and MC1 of the power supply voltage detecting circuit M shown in Fig. 2. This action will be described using Fig. 4.

[0019]

First, during the time frame (a) wherein the external power supply voltage Vcc (ext) satisfies the conditions of the following Formula (1), the voltage of node MA1 is 0 V and voltages of node MB1 and node MC1 are Vcc (ext) and 0 V respectively because EPM Q21 and Q22 in Fig. 2 are OFF. Here, VTP is the threshold voltage of the EPM Q21 and Q22.

[0020]

(1)
$$Vcc$$
 (ext) ≤ 2 $|VTP|$

Second, the voltage of node MA1 rises from 0 V because EPM Q21 and Q22 are QN in association with the rise in external power supply voltage Vcc (ext), and when Vcc (ext) reaches the value expressed by Formula (2), the inverter comprising EPM Q24 and ENM Q25 inverts.

[0021]

The voltage at node MA1 during the period (b) in Fig. 4 is Vcc (ext) -2 [VTP], and the voltages at nodes MB1 and MC1 are switching to 0 V and Vcc (ext) respectively. VI is the logic threshold value of the inverter comprising EPM Q24 and Q25.

[0022]

$$(2) Vcc (ext) = 2 |VTP| + VI$$

Third, because the external power supply voltage Vcc (ext) during the period (c) expressed in the following Formula (3) is sufficiently high, EPM Q21 and Q22 are ON and the voltage of node MA1 is Vcc (ext) -2 |VTP|, and the voltages of nodes MB1 and MC 1 are Vcc (ext) and 0 V respectively.

[0023]

(3) $Vcc (ext) \ge 2 |VTP| + VI$

It is therefore possible to send Vcc (ext) and 0 V to the output nodes M01 and M02 respectively if 5 V, and 0 V and Vcc (ext) respectively if 3.3 V according to the magnitude of the external power supply voltage Vcc (ext) applied to the input node CC in the power supply voltage detecting circuit.

[0024]

Furthermore, if the value of Vcc (ext) satisfying the above-mentioned Formula (2) is set to V_{INTVI} , the value of V_{INTVI} is set between 3.3 V and 5 V. For example, if designed such that VTP = -1.4 V and VI = 1.0 V, then V_{INTVI} = 3.8 V. Moreover, current-driving capability of the EPM Q21 and Q22 is designed to be very small in order to set DNM Q23 to a high resistance.

[0025]

Fig. 5 shows the external power supply voltage Vcc (ext) dependency of the voltage appearing at output node CCi of the switching circuit L. Here, V_{INTVI} is the value of Vcc (ext), as noted above, satisfying the above-mentioned Formula (2), however, this is the voltage value which can be regarded as the operating decision point of the power supply voltage detecting circuit M.

[0026]

In the case Vcc (ext) $\leq V_{INTVI}$, because the output node M01 = 0 V and M02 = Vcc (ext) of the power supply voltage detecting circuit M, EPM Q31 and ENM Q32 are ON, EPM Q33 and ENM Q34 are OFF, the voltage Vcc (ext) externally applied is applied as is to output node CCi, and the voltage of the output node CCi, that is, the voltage Vcc (int) supplied to the internal circuits is expressed in the following Formula (3').

[0027]

(3')
$$Vcc$$
 (int) = Vcc (ext)

In the case $Vcc > V_{INTV1}$, because M02 = 0 V, EPM Q31 and ENM Q32 in the switching circuit L are OFF, and EPM Q33 and ENM Q34 are ON, the output voltage V_{K01} of the step-down circuit K is applied to output node CCi, and the voltage Vcc (int) appearing at the output node CCi is expressed in the following Formula (4).

[0028]

(4)
$$Vcc (int) = V_{K01}$$

Therefore, in the case that 5 V is used as the external power supply voltage Vcc (ext) of a semiconductor device (Region ② in Fig. 5), the internal power supply voltage Vcc (int) supplied to various internal circuits 3 is voltage V_{K01} stepped down by step-down

circuit K. On the other hand, in the case that 3.3 V is used as the external power supply voltage (Region ② is Fig. 5), the external power supply voltage Vcc (ext) is supplied as is as Vcc (int) to the internal circuits 3 in the semiconductor device. Thus, in the present working example even in the case that the external power supply voltage in particular is 3.3 V, the internal power supply voltage is equivalent to the external power supply voltage. Because of this, the voltage supplied to the internal circuits does not drop and the operating speed of the semiconductor device is not slowed as in conventional examples (Effect ①).

[0029]

Fig. 6 shows the time dependency of the variation of the voltage appearing at output node CCi of the internal step-down circuit, that is, the internal power supply voltage Vcc (int) when the internal circuits integrated into the semiconductor device of the present working example are switched when using 3.3 V as the external power supply voltage.

[0030]

In the present working example, in the case an external power supply voltage of 3.3 V is used, because the external power supply voltage Vcc (ext) is supplied to the internal circuits 3 by way of a transfer gate having a large current-driving capability, and the internal power supply voltage Vcc (int) does not pass through the step-down circuit K as noted above, variation of power supply voltage is adequately held within the standard tolerance (±10% or 0.3.3 V) compared to conventional examples because the instability of the internal power supply voltage Vcc (int) at CCi is reduced, which occurs when switching the internal circuits 3. Thus, malfunction of sensitive circuits in internal circuits 3, particularly sense amplifier circuit 5, input buffers, and the like due to variation of power supply voltage occurs less easily than conventional examples (Effect ②).

[0031]

Fig. 7 is a block diagram showing the second working example of the present invention. In Fig. 7, a second working example of the power supply voltage detecting circuit M is shown when an internal step-down circuit in the present working example is disposed inside the semiconductor device. The configuration of the first stage converter connecting to the input node CC in the present working example differs from the power supply voltage detecting circuit in the first working example. The gate voltage of ENM Q31 is determined by the drain potential comprising ENM Q31 and DNM Q23. The other MOSFET are configured in the same manner as the above-mentioned first working example, and a description has been omitted. The threshold voltage of ENM Q31 is designed so that the voltage change of the node MA2 is the same as the voltage change of MA1 in the first working example.

[0032]

For example, when setting the threshold voltage VTN of ENM Q31 to VTN = 2.8 V, the voltage V_{INTV2} that the power supply voltage detecting circuit M of Fig. 7 is capable of detecting is equivalent to V_{INTV1} in the power supply voltage detecting circuit (Fig. 2) described in the above-mentioned first working example, and a description has been omitted because the action of the second working example below would be the same were the nodes MA1, MB1, and MC1 to respectively replace MA2, MB2, and MC2.

[0033]

[Efficacy of the Invention]

As described above, the present invention has beneficial effects in that \odot the operation of the semiconductor device is not slowed because the voltage supplied to the internal circuits does not drop as in conventional examples when using a low voltage external power supply Vcc (ext) = 3.3 V in particular, because the output voltage V_{K01} of the stepdown circuit is applied to the node CCi when the value of the external power supply voltage is 5 V, for example, and the voltage applied to the node CC is applied as is to the node CCi by the switching circuit when the value of the external power supply voltage is 3.3 V; and \odot the malfunction of circuits which are sensitive to variation of power supply voltage occurs less easily than in conventional examples because the internal power supply voltage fluctuation caused by the flow of through-current when internal circuits are switched is sufficiently small when external power supply voltage is supplied to the internal circuits by way of a transfer gate in particular, comprising EPM and ENM having a large current-driving capability.

[0034]

Due to the effects ① and ② described above, a semiconductor device can be provided which operates stably and at a high speed even if the used external power supply voltage Vcc (ext) is 3.3 V or 5 V.

[0035]

In the present working example, configurations of the power supply voltage detecting circuit are shown in Figs. 2 and 7, and a configuration of the switching circuit is shown in Fig. 3, however, these circuit configurations are not limiting, and any circuit having the same function may be used.

[0036]

The present working example was described using external power supply voltage Vcc (ext) = 3.3 V, but the external power supply voltage may be Vcc (ext) = 3.0 V, or the value of the external power supply voltage Vcc (ext) may be lower. Naturally, the value of VI must be set in accordance with the value of the external power supply voltage Vcc (ext).

[Brief Description of the Figures]

Figure 1 is a block diagram of an internal step-down circuit according to the semiconductor device in the first working example of the present invention.

Figure 2 is a circuit diagram showing one example of the power supply voltage detecting circuit in Fig. 1.

Figure 3 is a circuit diagram showing one example of the switching circuit in Fig. 1.

Figure 4 is a characteristics graph showing the Vcc (ext) dependency of the voltage change which appears at the input nodes and nodes, and the like in the power supply voltage detecting circuit of Fig. 1.

Figure 5 is a characteristics graph showing the Vcc (ext) dependency of the voltage change of the output nodes of the switching circuit of Fig. 1.

Figure 6 is a characteristics graph showing the voltage wave form changing conditions which appears at the output nodes when the internal circuit is switched in a semiconductor device having an internal step-down circuit of Fig. 1.

Figure 7 is a circuit diagram showing one example of the power supply voltage circuit for realizing an internal step-down circuit according to the second working example of the present invention.

Figure 8 is a block diagram showing an internal step-down circuit according to prior art.

Figure 9 is a characteristics graph showing the external power supply voltage dependency in an internal step-down circuit according to prior art.

Figure 10 is a characteristics graph showing the voltage changing conditions at nodes when switching occurs in the internal circuits of a semiconductor device having an internal step-down circuit according to prior art.

[Key]

K Step-down circuit

M External power supply detecting circuit

L Switching circuit

K1 Voltage wave forms at any two nodes of the internal circuit which most optimally shows the switching conditions.

K2 Voltage wave forms showing the switching conditions of the internal circuit.

- 1 External power supply terminal
- 2 Internal circuit power supply line.
- 3 Internal circuit
- 5 Decoder circuit
- 6 Sense amplifier circuit
- 7 Control circuit

[Figure 1]

TOP BOX

Top Left Connection: First input terminal

Bottom Left Connection: Second input terminal

Right Connection: Output

Bottom Connections: Control Terminals

SECOND BOX FROM TOP

Left Connection: Input Right Connection: Output

THIRD BOX FROM TOP

Left Connection: Input
Right Connections: Outputs

REMAINDER OF DIAGRAM AS NOTED IN THE KEY

[Figure 4]

Y-AXIS: Output Voltage (V)

X-AXIS: Power Supply Voltage (V)

[Figure 5]

Y-AXIS: Output Voltage (V)

X-AXIS: Power Supply Voltage (V)

[Figure 6]

Y-AXIS: Output Voltage (V) X-AXIS: Time

[Figure 9]

Y-AXIS: Voltage (V)

X-AXIS: External Power Supply Voltage (V) Vcc (ext)

[Figure 10]

Y-AXIS: Output Voltage (V)

X-AXIS: Time