Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises Part II Chapters V to VIII

by

Bernard Carrette

Remarks and warnings

You're welcome to use these notes, but they may contain errors, so proceed with caution. If you do find an error, however, I'd be happy to receive bug reports, suggestions, and the like through Github. An overview of the material covered in the book can be found in the separate document "Synge overview.pdf".

Some notation conventions

$$\partial_r \equiv \frac{\partial}{\partial x^r}$$

$$\Gamma_{mn}^r \equiv \begin{Bmatrix} r \\ mn \end{Bmatrix}$$
 Christoffel symbol of the second kind

Contents

5	App	dications to Classical Mechanics	6
	5.1	p153 - Exercise	7
	5.2	p154 - Clarification to 5.226	8
	5.3	p155 - Exercise	9
	5.4	p156 - Clarification	10
	5.5	p156 - Clarification	12
	5.6	p158-159 - Clarification	13
	5.7	p159 - Exercise	14
	5.8	p161 - Clarification	15
	5.9	p161 - Clarification	16
	5.10	p166 - Exercise	17
	5.11	p166 - Exercise	18
	5.12	p168 - Exercise	19
	5.13	p169 - Exercise	24
	5.14	p174 - Exercise	28
	5.15	p174 - Clarification	29
	5.16	p176 - Exercise	30
	5.17	p176 - Exercise (PARTLY SOLVED	31
	5.18	p181 and p182 - Clarification Figures 13., 14. and 15	32
	5.19	p183 - Clarification for 5.561	33
	5.20	p186 - Exercise 1	36
	5.21	p186 - Exercise 2	39
	5.22	p186 - Exercise 3	40
	5.23	p186 - Exercise 4	42
	5.24	p186 - Exercise 5	44
	5.25	p186 - Exercise 6	46
	5.26	p187 - Exercise 7	48
	5.27	p187 - Exercise 8	49
	5.28	p187 - Exercise 9	50
	5.29	p188 - Exercise 10	52
	5.30	p188 - Exercise 11	53
	5.31	p188 - Exercise 12	54
	5.32	p188 - Exercise 13	56
	5.33	p188 - Exercise 14	57
	5.34	p188 - Exercise 15	59

CONTENTS 4

5.35 p188 - Exercise 16	 													 	60
5.36 p189 - Exercise 17	 													 	61
5.37 p189 - Exercise 18	 													 	62
5.38 p189 - Exercise 19	 													 	63
5.39 p189 - Exercise 20	 														65

List of Figures

5.1	Interpretation of the tensor moment M_{12}	10
5.2	Composition of absolute and relative velocities of a chain of rods	25
5.3	Physical components of the gravitational force tensor acting on a mass ${\bf m}$ on a sphere	30
5.4	Map of the configuration space of a rigid body with fixed point	32
5.5	Euler angles	34
5.6	Physical components of the gravitational force tensor acting on a mass ${\bf m}$ on a sphere	42
5.7	Angular velocity vectors in mirrored axis	55

Applications to Classical Mechanics

5.1 p153 - Exercise

If μ^{α} are the contravariant components of a unit vector in a surface S, show that $\mu^{\alpha} f_{\alpha}$ is the physical component of acceleration in the direction tangent to S defined by μ^{α} .

As we are in an Euclidean space we can interpret $a_{mn}\mu^{\alpha}f^{\alpha}$ as $|\mu||f|\cos\theta$ with θ the angle between the two vectors. As $|\mu|=1$ we have

$$a_{mn}\mu^{\alpha}f^{\alpha} = \mu^{\alpha}f_{\alpha} \tag{1}$$

$$= |f|\cos\theta \tag{2}$$

which is the projection of the vector f on the unit vector μ .

•

5.2 p154 - Clarification to 5.226.

5.226.
$$\mathbf{v} \frac{\mathbf{d} \mathbf{v}}{\mathbf{d} \mathbf{s}} = \mathbf{0}, \quad \overline{\kappa} \mathbf{v}^2 = \mathbf{0}$$

Assuming that the particle is not at rest $v \neq 0$, and therefore $\overline{\kappa} = 0$. Since this implies that the curve is a geodesic...

The assertion in bold is a direct consequence

$$2.513. \qquad \frac{\delta \frac{dx^r}{ds}}{\delta s} = 0$$

As in **5.233** we have $\frac{\delta \lambda^{\alpha}}{\delta s} = \frac{\delta \frac{dx^{\alpha}}{ds}}{\delta s} = 0$, the considered curve follows the geodesic curve.

♦

5.3 p155 - Exercise

Show that in relativity the force 4-vector X^r lies along the first normal of the trajectory in space-time. Express the first curvature in terms of the proper mass m of the particle and the magnitude X of X^r .

Let us recall the first Frenet formula 2.705 without forgetting that the metric form is not positive-definite,

$$\frac{\delta \lambda^r}{\delta s} = \kappa \nu^r, \quad \epsilon_{(1)} \nu_n \nu^n = 1$$

As 5.299

$$m\frac{\delta\lambda^r}{\delta s} = X^r$$

it is clear that $X^r = m\kappa \nu^r$ and is collinear with the first normal.

$$X^r = m\kappa \nu^r \tag{1}$$

$$\times a_{mr}X^{m} \Rightarrow \underbrace{a_{mr}X^{m}X^{r}}_{=(X^{1})^{2}+(X^{2})^{2}-(X^{4})^{2}} = m\kappa \underbrace{a_{mr}\nu^{m}\nu^{r}}_{=\epsilon_{(1)}}$$
(2)

$$\Rightarrow \qquad \kappa = \epsilon_{(1)} \frac{\left(X^{1}\right)^{2} + \left(X^{2}\right)^{2} + \left(X^{3}\right)^{2} - \left(X^{4}\right)^{2}}{m}$$

♦

5.4 p156 - Clarification

Interpretation of $\mathbf{5.231}. \qquad \qquad M_{rs} = \epsilon_{rsn} M_n = z_r F_s - z_s F_r$

What do the M_{rs} represent?

Figure 5.1: Interpretation of the tensor moment M_{12}

Let's consider a mass point P on which a force \overrightarrow{F} is acting. The force has components (F_x, F_y, F_z) in the space V_3 (which is by the way not the space V_3 of the considered mass point).

Let's investigate the element M_{12} of the tensor moment.

 $P_1F_2\overrightarrow{e_3}$ is the vector product $\overrightarrow{P_1}\times\overrightarrow{F_2}$ and is as such the torque of the component F_2 of \overrightarrow{F} acting on the mass point situated at P_1 . The origin being fixed, $\overrightarrow{F_2}$ tries to move P_1 , clockwise along the z_3 axis. The same is true for the component $\overrightarrow{F_1}$ acting on the mass point situated at P_2 , and is represented here by the vector $-\overrightarrow{P_2}\times\overrightarrow{F_1}$ ($\overrightarrow{F_1}$ tries to move P_2 , counter clockwise along the z_3 axis). Hence, $P_1F_2-P_2F_1$ is the net force trying to move the point P along the z_3 axis (i.e. in the plane

 \parallel with the $z_3=0$ plane).

5.5 p156 - Clarification

$$5.234. \qquad \frac{dh_r}{dt} = M_r$$

$$h_r = m\epsilon_{rmn} z_m v_n \tag{1}$$

$$\Rightarrow \frac{dh_r}{dt} = m\epsilon_{rmn}\frac{dz_m}{dt}v_n + m\epsilon_{rmn}z_m\frac{dv_n}{dt}$$
 (2)

$$= m \underbrace{\epsilon_{rmn} v_m v_n}_{=0} + \underbrace{\epsilon_{rmn} z_m F_n}_{=M_r}$$
(3)

$$=M_r \tag{4}$$

p158-159 - Clarification 5.6

5.313.
$$\omega_{rs} = -\omega_{sr}$$

From 5.310 and the vector character of v_r and z_r (for transformations which do not change the origin), it follows that ω_{rs} is a Cartesian tensor of second order.

Be

$$v_r = -\omega_{rn} z_n \tag{1}$$

Considering orthogonal transformation in a flat space $z_{m}^{'}=A_{mr}z_{r}+B_{m}$ with $B_{m}=0$ as we consider only transformations which do not change the origin. Differentiation with the parameter t gives

$$v_m' = A_{mr}v_r \tag{2}$$

$$= -\omega_{rn} A_{mr} z_n \tag{3}$$

(4)

But $z_q^{'} = A_{qr}z_r^{} \quad \Rightarrow \quad A_{qn}z_q^{'} = A_{qn}A_{qr}z_r^{} \quad \Rightarrow \quad A_{qn}z_q^{'} = z_n$ Hence

$$v_{m}^{'} = -\omega_{rn}A_{mr}z_{n} \tag{5}$$

$$v'_{m} = -\omega_{rn} A_{mr} z_{n}$$

$$= -\underbrace{\omega_{rn} A_{mr} A_{qn}}_{\stackrel{\text{def}}{=} \omega'_{mq}} z'_{q}$$

$$v'_{m} = -\omega'_{mq} z'_{q}$$

$$(5)$$

$$(6)$$

$$(7)$$

$$v_{m}^{'} = -\omega_{mq}^{'} z_{q}^{'} \tag{7}$$

5.7 p159 - Exercise

Show that if a rigid body rotates about the point $z_r = b_r$ as fixed point, the velocity of a general point of the body is given by

$$v_r = -\omega_{rm} \left(z_m - b_m \right)$$

By **5.302**.:

$$\left(z_m^{(1)} - z_m^{(2)}\right) \left(dz_m^{(1)} - dz_m^{(2)}\right) = 0 \tag{1}$$

At the fixed point we have $z_m^{(2)} = b_m$ and $dz_m^{(2)} = 0$, hence

$$\left(z_m^{(1)} - b_m\right) \left(dz_m^{(1)}\right) = 0$$
(2)

$$\Rightarrow z_m^{(1)} dz_m^{(1)} = b_m dz_m^{(1)} \tag{3}$$

As this is true for any point of the rigid mass, expanding (1) and using (3) we get when dividing by dt

$$\left(z_m^{(2)} - b_m \right) v_m^{(1)} + \left(z_m^{(1)} - b_m \right) v_m^{(2)} = 0$$
 (4)

Taking twice the partial derivative $\frac{\partial^2}{\partial z_p^{(1)}\partial z_q^{(1)}}$ we get

$$\left(z_m^{(2)} - b_m\right) \frac{\partial^2 v_m}{\partial z_n^{(1)} \partial z_n^{(1)}} = 0$$
(5)

As this is true for any arbitrary point in the rigid body we get

$$\frac{\partial^2 v_m}{\partial z_p^{(1)} \partial z_q^{(1)}} = 0 \tag{6}$$

$$\Rightarrow \qquad v_m = K_{mr} z_r + B_m \tag{7}$$

At the fixed point we have

$$K_{mr}b_r + B_m = 0 (8)$$

Plugging this in (7)

$$v_m = K_{mr} \left(z_r - b_m \right) \tag{9}$$

Putting $K_{mr} = -\omega_{mr}$ gives us indeed the asked expression.

٨

p161 - Clarification **5.8**

5.325.
$$\Omega_{np} \sum (mf_n z_p) = \Omega_{np} \sum F_n z_p$$

and hence, since Ω_{np} is arbitrary,

5.326.
$$\sum m (f_n z_p - f_p z_n) = \sum (F_n z_p - F_p z_n)$$

To be complete the following step should be inserted

$$\Omega_{np} \sum (mf_n z_p) = \Omega_{np} \sum F_n z_p \tag{1}$$

As
$$\Omega_{np}$$
 is skew-symmetric:
$$-\Omega_{np} \sum_{np} (mf_p z_n) = -\Omega_{np} \sum_{np} F_p z_n$$
 (2)

As
$$\Omega_{np}$$
 is skew-symmetric:
$$-\Omega_{np} \sum_{p} (mf_p z_n) = -\Omega_{np} \sum_{p} F_p z_n$$
(2)
$$(1)+(2) \qquad \Omega_{np} \sum_{p} m \left(f_n z_p - f_p z_n \right) = \Omega_{np} \sum_{p} \left(F_n z_p - F_p z_n \right)$$
(3)

and hence, since Ω_{np} is arbitrary,

5.326.
$$\sum m (f_n z_p - f_p z_n) = \sum (F_n z_p - F_p z_n)$$

5.9p161 - Clarification

5.329.
$$h_{np} = \sum_{m} m \left(\omega_{nq} z_q z_p - \omega_{pq} z_q z_n \right)$$
$$= J_{npqr} \omega_{rq}$$

where

5.330.
$$J_{npqr} = \sum_{npqr} m \left(\delta_{nr} z_q z_p - \delta_{pr} z_n z_q \right)$$

$$h_{np} = \sum_{m} m \left(\omega_{nq} z_q z_p - \omega_{pq} z_q z_n \right)$$

$$= \sum_{m} m \left(\omega_{rq} \delta_{rn} z_q z_p - \omega_{rq} \delta_{rp} z_q z_n \right)$$

$$= \omega_{rq} \sum_{m} m \left(\delta_{rn} z_q z_p - \delta_{rp} z_q z_n \right)$$

$$(3)$$

$$= \sum m \left(\omega_{rq} \delta_{rn} z_q z_p - \omega_{rq} \delta_{rp} z_q z_n\right) \tag{2}$$

$$=\omega_{rq}\sum m\left(\delta_{rn}z_qz_p-\delta_{rp}z_qz_n\right) \tag{3}$$

$$=J_{npqr}\omega_{rq} \tag{4}$$

5.10 p166 - Exercise

Deduce immediately from 5.420. that the Coriolis force is perpendicular to the velocity.

$$G_{s}^{'}=2m\omega_{sm}^{'}(S^{'},S)v_{m}^{'}(S^{'}) \tag{1}$$

$$\times v_{s}^{'}(S^{'}) \quad : \qquad \qquad G_{s}^{'}v_{s}^{'}(S^{'}) = m\left(\omega_{sm}^{'}(S^{'},S)v_{m}^{'}(S^{'})v_{s}^{'}(S^{'}) + \omega_{ms}^{'}(S^{'},S)v_{m}^{'}(S^{'})v_{s}^{'}(S^{'})\right) \tag{2}$$

$$=0$$
 as $\omega_{ms}^{'}$ is skew-symmetric (3)

•

5.11 p166 - Exercise

Show that if N=3 and $\dot{\omega}_r'(S',S)=0$, then the centrifugal force may be written

5.422.
$$C_{s}^{'} = m\omega_{n}^{'}(S^{'}, S)\omega_{n}^{'}(S^{'}, S)z_{s}^{'} - m\omega_{n}^{'}(S^{'}, S)z_{n}^{'}\omega_{s}^{'}(S^{'}, S)$$

Deduce that C_s' is coplanar with the vectors $\omega_s'(S',S)$ and z_n' and perpendicular to the former.

By **5.420**. with $\dot{\omega}_r^{'}(S^{'},S)=0$ and using **5.316**. $(\omega_{rs}^{'}=\epsilon_{rsn}\omega_n^{'})$

$$C_{s}^{'} = m\omega_{sm}^{'}(S^{'}, S)\omega_{nm}^{'}(S^{'}, S)z_{n}^{'} \tag{1}$$

$$= m\epsilon_{smk}\omega_{k}'(S',S)\epsilon_{nmp}\omega_{n}'(S',S)z_{n}'$$
(2)

$$= m\epsilon_{msk}\epsilon_{mnp}\omega_{k}'(S',S)\omega_{p}'(S',S)z_{n}'$$
(3)

$$= m \left(\delta_{sn}\delta_{kp} - \delta_{sp}\delta_{kn}\right) \omega_{k}^{'}(S^{'}, S)\omega_{p}^{'}(S^{'}, S)z_{n}^{'}$$

$$\tag{4}$$

$$= m\delta_{sn}\delta_{kp}\omega_{k}^{'}(S^{'}, S)\omega_{p}^{'}(S^{'}, S)z_{n}^{'} - m\delta_{sp}\delta_{kn}\omega_{k}^{'}(S^{'}, S)\omega_{p}^{'}(S^{'}, S)z_{n}^{'}$$
(5)

$$= m\omega'_{p}(S', S)\omega'_{p}(S', S)z'_{s} - m\omega'_{n}(S', S)\omega'_{s}(S', S)z'_{n}$$
(6)

To deduce that C_s' is coplanar with the vectors $\omega_s'(S',S)$ and z_n' we calculate the mixed triple product

$$P = \epsilon_{spr} C_s' \omega_p' (S', S) z_r' \tag{7}$$

$$= m \underbrace{\epsilon_{spr} \omega_n'(S^{'}, S) \omega_n'(S^{'}, S) z_s^{'} \omega_p'(S^{'}, S) z_r^{'}}_{=0} - \underbrace{m \epsilon_{spr} \omega_n'(S^{'}, S) \omega_s^{'}(S^{'}, S) z_n^{'} \omega_p^{'}(S^{'}, S) z_r^{'}}_{=0}$$
(8)

$$=0$$

Both terms vanish: the first by the presence of the terms $\epsilon_{spr}z_s^{'}z_r^{'}$ which cancel each other and for the second by the terms $\epsilon_{spr}\omega_s^{'}(S^{'},S)\omega_p^{'}(S^{'},S)$. As P=0, the three vectors are coplanar. We now calculate the inner product $C_s^{'}\omega_s^{'}(S^{'},S)$

$$P = m\omega'_{n}(S', S)\omega'_{n}(S', S)z'_{s}\omega'_{s}(S', S) - \underbrace{m\omega'_{n}(S', S)\omega'_{s}(S', S)z'_{n}\omega'_{s}(S', S)}_{\Leftrightarrow m\omega'_{n}(S', S)\omega'_{n}(S', S)z'_{s}\omega'_{s}(S', S)}$$
(10)

$$=0 (11)$$

♦

p168 - Exercise 5.12

Taking N=3, show that **5.424** may be reduced to the usual Euler equations:

$$I_{11} \frac{d\omega'_{1}(S', S)}{dt} - \left(I_{22} - I'_{33}\right)\omega_{2}(S', S)\omega'_{3}(S', S) = M'_{1}$$

and two similar equations.

We first begin with an approach which leads to nothing. I probably made a reasoning error. I give here the whole calculation as this was interesting and alo to, later, find my mistake. After this buggy solution, I will give a second version, which works. 5.424:

$$M_{ab}^{'} = J_{abrq}^{'} \frac{d\omega_{rq}^{'}(S^{'}, S)}{dt} + J_{cdrq}^{'}(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}) \omega_{rq}^{'}(S^{'}, S)\omega_{uv}^{'}(S^{'}, S) =$$
(1)

$$\times \epsilon_{sab}: \quad 2M_{s}^{'} = \epsilon_{sab}J_{abrq}^{'}\frac{d\omega_{rq}^{'}(S^{'},S)}{dt} + \epsilon_{sab}J_{cdrq}^{'}\left(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}\right)\omega_{rq}^{'}(S^{'},S)\omega_{uv}^{'}(S^{'},S) \quad (2)$$

Using $\omega'_{rq}(S', S) = \epsilon_{rqt}\omega'_{t}(S', S)$ and $I_{st} = \frac{1}{2}J'_{abra}\epsilon_{abs}\epsilon_{rqt}$

$$2M_{s}^{'} = 2I_{st}\frac{d\omega_{t}^{'}(S^{'},S)}{dt} + \epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J_{cdrq}^{'}\left(\delta_{ac}\delta_{du}\delta_{bv} + \delta_{bd}\delta_{cu}\delta_{av}\right)\omega_{i}^{'}(S^{'},S)\omega_{j}^{'}(S^{'},S)$$

$$(3)$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{t}(S',S)}{dt} \\ + \left(\epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J'_{cdrq}\delta_{ac}\delta_{du}\delta_{bv} + \epsilon_{sab}\epsilon_{rqi}\epsilon_{uvj}J'_{cdrq}\delta_{bd}\delta_{cu}\delta_{av}\right)\omega'_{i}(S',S)\omega'_{j}(S',S) \end{cases}$$

$$(4)$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{t}(S',S)}{dt} \\ + \left(\epsilon_{scb}\epsilon_{rqi}\epsilon_{dbj}J'_{cdrq} + \epsilon_{sad}\epsilon_{rqi}\epsilon_{caj}J'_{cdrq}\right)\omega'_{i}(S',S)\omega'_{j}(S',S) \end{cases}$$

$$(5)$$

$$= \begin{cases} 2I_{st} \frac{d\omega_t(S,S)}{dt} \\ + (\epsilon_{bcs}\epsilon_{bdj}) \epsilon_{rqi} J'_{cdrq} \omega'_i(S',S) \omega'_j(S',S) \end{cases}$$

$$(6)$$

$$= \begin{cases} 2I_{st} \frac{d\omega'_{i}(S',S)}{dt} \\ +\epsilon_{rqi} J'_{ccrq} \omega'_{i}(S',S) \omega'_{s}(S',S) \\ -\epsilon_{rqi} J'_{jsrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\ +\epsilon_{rqi} J'_{sjrq} \omega'_{i}(S',S) \omega'_{j}(S',S) \\ -\epsilon_{rqi} J'_{ccrq} \omega'_{i}(S',S) \omega'_{s}(S',S) \end{cases}$$

$$(8)$$

giving

$$2M_{s}^{'} = \begin{cases} 2I_{st} \frac{d\omega_{t}^{'}(S^{'}, S)}{dt} \\ +\epsilon_{rqi} J_{sjrq}^{'} \omega_{i}^{'}(S^{'}, S) \omega_{j}^{'}(S^{'}, S) \\ -\epsilon_{rqi} J_{jsrq}^{'} \omega_{i}^{'}(S^{'}, S) \omega_{j}^{'}(S^{'}, S) \end{cases}$$
(9)

For s = 1:

	$+\epsilon_{rqi}J_{1jrq}\omega_{i}\omega_{j}$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1112}\omega_3\omega_1+J_{1212}\omega_3\omega_2+J_{1312}\omega_3\omega_3$	$-J_{1112}\omega_3\omega_1 - J_{2112}\omega_3\omega_2 - J_{3112}\omega_3\omega_3$
ϵ_{132}	$-J_{1113}\omega_2\omega_1 - J_{1213}\omega_2\omega_2 - J_{1313}\omega_2\omega_3$	$+J_{1113}\omega_2\omega_1+J_{2113}\omega_2\omega_2+J_{3113}\omega_2\omega_3$
ϵ_{213}	$-J_{1121}\omega_3\omega_1 - J_{1221}\omega_3\omega_2 - J_{1321}\omega_3\omega_3$	$+J_{1121}\omega_3\omega_1+J_{2121}\omega_3\omega_2+J_{3121}\omega_3\omega_3$
ϵ_{231}	$+J_{1123}\omega_1\omega_1+J_{1223}\omega_1\omega_2+J_{1323}\omega_1\omega_3$	$-J_{1123}\omega_1\omega_1 - J_{2123}\omega_1\omega_2 - J_{3123}\omega_1\omega_3$
ϵ_{321}	$-J_{1132}\omega_1\omega_1 - J_{1232}\omega_1\omega_2 - J_{1332}\omega_1\omega_3$	$+J_{1132}\omega_1\omega_1+J_{2132}\omega_1\omega_2+J_{3132}\omega_1\omega_3$
ϵ_{312}	$+J_{1131}\omega_2\omega_1+J_{1231}\omega_2\omega_2+J_{1331}\omega_2\omega_3$	$-J_{1131}\omega_2\omega_1 - J_{2131}\omega_2\omega_2 - J_{3131}\omega_2\omega_3$

Taking into account that $J_{abcd}=0$ for $a\neq c \wedge b\neq d$

	$+\epsilon_{rqi}J_{1jrq}\omega_i\omega_j$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1112}\omega_{3}\omega_{1}+J_{1212}\omega_{3}\omega_{2}+J_{1312}\omega_{3}\omega_{3}$	$-J_{1+12}\omega_{3}\widetilde{\omega_{1}}$
ϵ_{132}	$-J_{1113}\omega_{2}\omega_{1} - J_{1213}\omega_{2}\omega_{2} - J_{1313}\omega_{2}\omega_{3}$	$+J_{1+13}\omega_{2}\overline{\omega_{1}}$
ϵ_{213}	$-J_{1+21}\omega_3\overline{\omega_1}$	$+ \underline{J_{1121}} \underline{\omega_3} \underline{\omega_1} + J_{2121} \underline{\omega_3} \underline{\omega_2} + J_{3121} \underline{\omega_3} \underline{\omega_3}$
ϵ_{231}	$+J_{1323}\omega_1\omega_3$	$-J_{2123}\omega_1\omega_2$
ϵ_{321}	$-J_{1232}\omega_1\omega_2$	$+J_{3132}\omega_1\omega_3$
ϵ_{312}	$+J_{1+31}\omega_2\omega_1$	$-J_{1481}\omega_{2}\omega_{1} - J_{2131}\omega_{2}\omega_{2} - J_{3131}\omega_{2}\omega_{3}$

Opposite sign terms vanish, giving

	$+\epsilon_{rqi}J_{1jrq}\omega_{i}\omega_{j}$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1212}\omega_3\omega_2+J_{1312}\omega_3\omega_3$	
ϵ_{132}	$-J_{1213}\omega_2\omega_2 - J_{1313}\omega_2\omega_3$	
ϵ_{213}		$+J_{2121}\omega_3\omega_2+J_{3121}\omega_3\omega_3$
ϵ_{231}	$+J_{1323}\omega_1\omega_3$	$-J_{2123}\omega_1\omega_2$
ϵ_{321}	$-J_{1232}\omega_1\omega_2$	$+J_{3132}\omega_1\omega_3$
ϵ_{312}		$-J_{2131}\omega_2\omega_2 - J_{3131}\omega_2\omega_3$

Considering $J_{abcd} = -J_{badc}$

	$+\epsilon_{rqi}J_{1jrq}\omega_i\omega_j$	$-\epsilon_{rqi}J_{j1rq}\omega_{i}\omega_{j}$
ϵ_{123}	$+J_{1212}\omega_3\omega_2+J_{1312}\omega_3\omega_3$	
ϵ_{132}	$-J_{1213}\omega_2\omega_2-J_{1313}\omega_2\omega_3$	
ϵ_{213}		$+J_{2121}\omega_3\omega_2+J_{3121}\omega_3\omega_3$
ϵ_{231}	$+J_{1323}\omega_1\omega_3$	$-J_{2123}\omega_1\omega_2$
ϵ_{321}	$-J_{1232}\omega_1\omega_2$	$+J_{3132}\omega_1\omega_3$
ϵ_{312}		$-J_{2\bar{1}\bar{3}\bar{1}}\omega_2\omega_2-J_{3\bar{1}\bar{3}\bar{1}}\omega_2\omega_3$

?? We get

$$m_{s}^{'} = I_{st} \frac{d\omega_{t}^{'}(S^{'}, S)}{dt}$$

?????

Let's try another approach. Start with **5.332**.: $\frac{d}{dt}(I_{st}\omega_t) = M_s$

$$\frac{d}{dt}\left(I_{st}(S',S)\omega_{t}(S',S)\right) = M_{s}(S',S) \tag{10}$$

Cf. **5.408**.

$$\omega_{u}'(S',S) = A_{ug}\omega_{g}(S',S) \tag{11}$$

$$\times A_{ut} \quad \to \qquad \qquad A_{ut}\omega_{u}'(S',S) = A_{ut}A_{uq}\omega_{q}(S',S) \tag{12}$$

$$=\omega_{t}(S',S) \tag{13}$$

$$\omega_t(S', S) = A_{ut}\omega_u'(S', S) \tag{14}$$

$$(10) \quad \Rightarrow \qquad \qquad M_s(S^{'}, S) = \frac{d}{dt} \left(I_{st}(S^{'}, S) A_{ut} \omega_u^{'}(S^{'}, S) \right) \tag{15}$$

$$\times A_{ps} \quad \Rightarrow M_{p}^{'}(S^{'}, S) = A_{ps} \frac{d}{dt} \left(I_{st}(S^{'}, S) A_{ut} \omega_{u}^{'}(S^{'}, S) \right) \tag{16}$$

$$I_{st}(S', S) = A_{as} A_{bt} I'_{ab}(S', S)$$
(17)

(16)
$$\Rightarrow$$
 $M'_{p}(S', S) = A_{ps} \frac{d}{dt} \left(A_{as} A_{bt} I'_{ab}(S', S) A_{ut} \omega'_{u}(S', S) \right)$ (18)

$$= A_{ps} \frac{d}{dt} \left(A_{as} I'_{ak}(S', S) \omega'_{k}(S', S) \right)$$

$$\tag{19}$$

As we transformed $I_{st}(S', S)$ to a coordinate system fixed to the body we have that the elements of $I'_{ab}(S', S)$ are constants.

Hence,

$$M'_{p}(S', S) = I'_{ak}S', S)A_{ps}\frac{d}{dt}\left(A_{as}\omega'_{k}(S', S)\right)$$
 (20)

$$=I_{ak}^{'}(S^{'},S)A_{ps}\left(\dot{A}_{as}\omega_{k}^{'}(S^{'},S)+A_{as}\dot{\omega}_{k}^{'}(S^{'},S)\right) \tag{21}$$

$$=I_{ak}^{'}(S^{'},S)A_{ps}A_{as}\dot{\omega}_{k}^{'}(S^{'},S)+I_{ak}^{'}(S^{'},S)A_{ps}\dot{A}_{as}\omega_{k}^{'}(S^{'},S) \eqno(22)$$

$$=I_{pk}^{'}(S^{'},S)\dot{\omega}_{k}^{'}(S^{'},S)+I_{ak}^{'}(S^{'},S)A_{ps}\dot{A}_{as}\omega_{k}^{'}(S^{'},S) \tag{23}$$

$$\mathbf{5.408.} \quad \Rightarrow \qquad \qquad A_{ps} \dot{A}_{as} = \omega_{ap}^{'}(S^{'}, S) \tag{24}$$

(23)
$$\Rightarrow$$
 $M'_{p}(S', S) = I'_{pk}(S', S)\dot{\omega}'_{k}(S', S) + I'_{ak}(S', S)\omega'_{ap}(S', S)\omega'_{k}(S', S)$ (25)

Let's now calculate the last expression for p=1

$$M_{1}'(S',S) = I_{1k}'(S',S)\dot{\omega}_{k}'(S',S) + I_{ak}'(S',S)\omega_{a1}'(S',S)\omega_{k}'(S',S)$$
(26)

As we want an arbitrary, fixed to the body of course, coordinate system, it is possible to chose one so that the $I'_{kj}(S',S) = 0$ for $k \neq j$ i.e. $I'_{kj}(S',S)$ is diagonal. This is possible because $I'_{kj}(S',S)$ is symmetric (the finite-dimensional spectral theorem says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix).

We get, noticing that $\omega_{ab}^{'}(S^{'},S)$ is skew-symmetric and hence $\omega_{11}^{'}(S^{'},S)=0$:

$$M_{1}^{'}(S^{'},S) = I_{11}^{'}(S^{'},S)\dot{\omega}_{1}^{'}(S^{'},S) + I_{22}^{'}(S^{'},S)\omega_{21}^{'}(S^{'},S)\omega_{2}^{'}(S^{'},S) + I_{33}^{'}(S^{'},S)\omega_{31}^{'}(S^{'},S)\omega_{3}^{'}(S^{'},S)$$
(27)

Using **5.317**: $\omega_{21}^{'}(S^{'},S) = -\omega_{3}^{'}(S^{'},S)$ and $\omega_{31}^{'}(S^{'},S) = \omega_{2}^{'}(S^{'},S)$ we get the asked expression

$$M_{1}'(S',S) = I_{11}'(S',S)\dot{\omega}_{1}'(S',S) - \left(I_{22}'(S',S) - I_{33}'(S',S)\right)\omega_{2}'(S',S)\omega_{3}'(S',S)$$
(28)

•

5.13 p169 - Exercise

Assign convenient generalized coordinates for the three systems (a), (b), and (c) mentioned at the beginning of this section, and calculate the kinematical metric form in each case

(a) a particle on a surface (N=2)

No need here for fancy general coordinates: the V_2 coordinate system in the plane is the metric form of choice. Indeed $|v|^2 = a_{mn}v_mv_n$ and for a V_2

$$ds^{2} = \left(a_{11} \left(v^{1}\right)^{2} + 2a_{12}v^{1}v^{2} + a_{22} \left(v^{2}\right)^{2}\right) dt^{2}$$

and if the space is Euclidean and the plane smooth, we can choose an orthogonal system where a_{12} will vanish.

(b) a rigid body which can turn about a fixed point, as in the preceding section (N=3) For a rigid body we can choose a coordinate system $S^{'}$ fixed to the body to describe the geometry of the rigid body. The kinetic energy referenced to a 'non-moving' (abuse of language) coordinate system S is

$$T = \frac{1}{2} \sum \rho v_n^{'}(S) v_n^{'}(S) \qquad \text{(summation over all masses in the rigid body)}$$
 (1)

We know by **5.409**: $v_n^{'}(S) = v_n^{'}(S^{'}) + \omega_{mn}^{'}(S^{'}, S)z_m^{'}$. As the $v_n^{'}(S^{'})$ are fixed, we have $v_n^{'}(S^{'}) = 0$ giving

$$T = \frac{1}{2} \sum \rho z'_{m} z'_{k} \omega'_{mn}(S', S) \omega'_{kn}(S', S)$$
 (2)

Note in (2) that we bring $\omega'_{mn}(S',S)$ out of the summation as this expression is the same for all masses in the body.

$$\omega_{mn}(S', S) = \epsilon_{mnt}\omega_t'(S', S) \tag{3}$$

$$\Rightarrow T = \frac{1}{2} \sum \rho \epsilon_{mnt} \epsilon_{kns} z'_{m} z'_{k} \omega'_{t}(S', S) \omega'_{s}(S', S)$$

$$\tag{4}$$

$$= \frac{1}{2} \sum \rho \left(\delta_{mk} \delta_{ts} - \delta_{ms} \delta_{kt} \right) z'_{m} z'_{k} \omega'_{t} (S', S) \omega'_{s} (S', S)$$
 (5)

$$=\frac{1}{2}\sum \rho \left(z_{m}^{'}z_{m}^{'}\omega_{t}^{'}(S^{'},S)\omega_{t}^{'}(S^{'},S)-z_{s}^{'}z_{t}^{'}\omega_{t}^{'}(S^{'},S)\omega_{s}^{'}(S^{'},S)\right) \tag{6}$$

$$= \frac{1}{2} \sum \rho \left(\delta_{st} z_{m}^{'} z_{m}^{'} \omega_{s}^{'}(S^{'}, S) \omega_{t}^{'}(S^{'}, S) - z_{s}^{'} z_{t}^{'} \omega_{t}^{'}(S^{'}, S) \omega_{s}^{'}(S^{'}, S) \right)$$
(7)

$$= \frac{1}{2} \sum \rho \left(\delta_{st} z_{m}^{'} z_{m}^{'} - z_{s}^{'} z_{t}^{'} \right) \omega_{s}^{'}(S^{'}, S) \omega_{t}^{'}(S^{'}, S)$$
 (8)

By **5.335**. we have $I_{st} = \delta_{st} \sum \rho z_m z_m - \sum \rho z_s z_t$ and so (8) can be written as

$$T = \frac{1}{2} I_{st} \omega_s'(S', S) \omega_t'(S', S)$$
(9)

So we can choose the three angles $\Omega_s'(S',S)$ with $(\omega_s'(S',S) = \frac{d\Omega_s'(S',S)}{dt})$ as generalized coordinates and define

$$ds^{2} = I_{st}d\Omega'_{s}(S', S)d\Omega'_{t}(S', S)$$

with

$$a_{mn} = I_{mn}$$

having constants as elements. Some check on consistency of the metric tensor defined by (14):

Positive definite? : Yes, as T is positive by construction.

Symmetric?: Yes, as $a_{mn} = I_{km}$ and I_{km} is symmetric.

(c) a chain of six rods smoothly hinged together, with one end fixed and all moving on a smooth plane (N=6)

To simplify the notation we will assume that the mass m_k of each rod (with length L_k) is concentrated at it's endpoint.

First we note that the velocity of a rod is composed of two vectors, one (labelled as $\overline{\nu}_k$) generated by its own rotation relative to the previous rod and the other (labelled as $\overline{\nu}_{k-1}$) generated by the velocity of the endpoint of the rod to which it is attached (see.fig. 5.2).

Figure 5.2: Composition of absolute and relative velocities of a chain of rods

If we take Cartesian coordinates it is easy to see that rod (1) will have components

$$\left(L_1\dot{\theta}_1\cos\theta,L_1\dot{\theta}_1\sin\theta_1\right)$$

rod(2)

$$\left(L_1\dot{\theta}_1\cos\theta_1 + L_2\dot{\theta}_2\cos\theta_2, L_1\dot{\theta}_1\sin\theta_1 + L_2\dot{\theta}_2\sin\theta_2\right)$$

:

rod (k)

$$\left(\sum_{i=1}^{k} L_i \dot{\theta}_i \cos \theta_i, \sum_{i=1}^{k} L_i \dot{\theta}_i \sin \theta_i\right)$$

and so

$$\left(v^{(k)}\right)^2 = \left(\sum_{i=1}^k L_i \dot{\theta}_i \cos \theta_i\right)^2 + \left(\sum_{i=1}^k L_i \dot{\theta}_i \sin \theta_i\right)^2$$
 (10)

$$= \sum_{i=1}^{k} \left(L_i \dot{\theta}_i \right)^2 + 2 \sum_{i=1}^{k} \sum_{j=1}^{k-i} \left(L_i L_{i+j} \dot{\theta}_i \dot{\theta}_{i+j} \cos \left(\theta_i - \theta_{i+j} \right) \right)$$
(11)

So the kinetic energy of one rod and the total kinetic energy of the system are

$$T^{(k)} = \frac{1}{2} m_k \left[\sum_{i=1}^k \left(L_i \dot{\theta}_i \right)^2 + 2 \sum_{i=1}^k \sum_{j=1}^{k-i} \left(L_i L_{i+j} \dot{\theta}_i \dot{\theta}_{i+j} \cos \left(\theta_i - \theta_{i+j} \right) \right) \right]$$
(12)

$$T = \sum_{k=1}^{N} T^{(k)} \tag{13}$$

For N=6 we get

rod	$T^{(k)}$	
1	$rac{1}{2}m_1\left[\left(L_1\dot{ heta}_1 ight)^2 ight]$	
2	$\frac{1}{2}m_2\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right)\right]$	
3	$\frac{1}{2}m_3\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + \left(L_3\dot{\theta}_3\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right) + 2L_1L_3\dot{\theta}_1\dot{\theta}_3\cos\left(\theta_1 - \theta_3\right) + \dots\right]$	
4	$\frac{1}{2}m_4\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + \left(L_3\dot{\theta}_3\right)^2 + \left(L_4\dot{\theta}_4\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right) + 2L_1L_3\dot{\theta}_1\dot{\theta}_3\cos\left(\theta_1 - \theta_2\right)\right]$	$(\theta_3)+\dots$
5	$\frac{1}{2}m_5\left[\left(L_1\dot{\theta}_1\right)^2 + \left(L_2\dot{\theta}_2\right)^2 + \left(L_3\dot{\theta}_3\right)^2 + \left(L_4\dot{\theta}_4\right)^2 + \left(L_5\dot{\theta}_5\right)^2 + 2L_1L_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right) + \dots\right]$	
6	$\frac{1}{2}m_{6}\left[\left(L_{1}\dot{\theta}_{1}\right)^{2}+\left(L_{2}\dot{\theta}_{2}\right)^{2}+\left(L_{3}\dot{\theta}_{3}\right)^{2}+\left(L_{4}\dot{\theta}_{4}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2}+\left(L_{6}\dot{\theta}_{6}\right)^{2}+2L_{1}L_{2}\dot{\theta}_{1}\dot{\theta}_{2}\cos\left(\theta_{1}-\theta_{2}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2}+2L_{1}L_{2}\dot{\theta}_{1}\dot{\theta}_{2}\cos\left(\theta_{1}-\theta_{2}\right)^{2}+\left(L_{5}\dot{\theta}_{5}\right)^{2$	+]

Giving for T

$$\begin{cases} (m_1 + m_2 + m_3 + m_4 + m_5 + m_6) \left(L_1 \dot{\theta}_1 \right)^2 \\ + (m_2 + m_3 + m_4 + m_5 + m_6) \left(L_2 \dot{\theta}_2 \right)^2 \\ + (m_3 + m_4 + m_5 + m_6) \left(L_3 \dot{\theta}_3 \right)^2 \\ + (m_4 + m_5 + m_6) \left(L_4 \dot{\theta}_4 \right)^2 \\ + (m_5 + m_6) \left(L_5 \dot{\theta}_5 \right)^2 \\ + (m_6) \left(L_6 \dot{\theta}_6 \right)^2 \\ + 2 \left(m_2 + m_3 + m_4 + m_5 + m_6 \right) L_1 L_2 \dot{\theta}_1 \dot{\theta}_2 \cos \left(\theta_1 - \theta_2 \right) \\ + 2 \left(m_3 + m_4 + m_5 + m_6 \right) L_1 L_3 \dot{\theta}_1 \dot{\theta}_3 \cos \left(\theta_1 - \theta_3 \right) \\ + 2 \left(m_3 + m_4 + m_5 + m_6 \right) L_2 L_3 \dot{\theta}_2 \dot{\theta}_3 \cos \left(\theta_2 - \theta_3 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_2 L_4 \dot{\theta}_2 \dot{\theta}_4 \cos \left(\theta_1 - \theta_4 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_2 L_4 \dot{\theta}_2 \dot{\theta}_4 \cos \left(\theta_2 - \theta_4 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_3 L_4 \dot{\theta}_3 \dot{\theta}_4 \cos \left(\theta_3 - \theta_4 \right) \\ + 2 \left(m_4 + m_5 + m_6 \right) L_3 L_5 \dot{\theta}_3 \dot{\theta}_5 \cos \left(\theta_3 - \theta_5 \right) \\ + 2 \left(m_5 + m_6 \right) L_4 L_5 \dot{\theta}_4 \dot{\theta}_5 \cos \left(\theta_4 - \theta_5 \right) \\ + 2 \left(m_5 + m_6 \right) L_4 L_5 \dot{\theta}_4 \dot{\theta}_5 \cos \left(\theta_4 - \theta_5 \right) \\ + 2 \left(m_6 \right) L_2 L_6 \dot{\theta}_2 \dot{\theta}_6 \cos \left(\theta_2 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_3 L_6 \dot{\theta}_3 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_4 L_6 \dot{\theta}_4 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_4 - \theta_6 \right) \\ + 2 \left(m_6 \right) L_5 L_6 \dot{\theta}_5 \dot{\theta}_6 \cos \left(\theta_5 - \theta_6 \right) \end{aligned}$$

We define as general coordinates the angles θ^i and express ds^2 as

$$ds^2 = 2Tdt^2$$

and see that ds^2 is of the required form

$$ds^2 = a_{mn}d\theta^m d\theta^n$$

The metric tensor a_{mn} contains elements depending on the θ_k chosen as general coordinates of the system and is a good candidate as metric tensor. Some check on consistency of the metric tensor defined by (8):

Positive definite?: Yes, as T is positive by definition

Symmetric?: Yes, as the non-diagonal term a_{ij} contains $\cos(\theta_i - \theta_j) = \cos(\theta_j - \theta_i)$

Number of elements: the metric tensor a_{mn} for N=6 should contain 6 diagonal elements and $\frac{6\times 6-6}{2}=15$ independent non-diagonal elements. Checking (8), one can find that the numbers yield.

♦

5.14 p174 - Exercise

Establish the general result

$$v\frac{dv}{ds} = X_r \lambda^r, \quad \kappa v^2 = X_r \nu^r$$

Deduce that, if no forces at on the system, the trajectory is a geodesic in configuration space and the magnitude of the velocity is constant.

In configuration space $f_r = X_r$. Hence by **5**, **515**

$$X^r = v\frac{dv}{ds}\lambda^r + \kappa v^2 \nu^r \tag{1}$$

$$\Rightarrow X^r \lambda_r = X_r \lambda^r = v \frac{dv}{ds} \quad \text{as } \lambda^r \perp \nu^r$$
 (2)

and
$$X^r \nu_r = X_r \nu^r = \kappa v^2$$
 as $\lambda^r \perp \nu^r$ (3)

(4)

The trajectory is a geodesic if $\kappa = 0$ which is the case as $X_r = 0$ and

$$v\frac{dv}{ds} = 0 \Rightarrow \frac{dv}{ds} = 0 \Rightarrow v = C^t$$

5.15 p174 - Clarification

It is easy to see that the lines of force are the orthogonal trajectories of the equipotential surface $V=C^t$

Consider a curve given by $x^{r} = x^{r}(u)$.

Along that line we have $V=V\left(x^{r}\left(u\right)\right)$. Take u=s as parameter and let's impose that $V\left(s\right)=C^{t}$. We have $\frac{dV}{ds}=\frac{\partial V}{\partial x^{r}}\frac{dx^{r}}{ds}=\frac{\partial V}{\partial x^{r}}\lambda^{r}=0$ with $\lambda^{r}=\frac{dx^{r}}{ds}$ the tangent vector along that curve. But $X_{r}=\frac{\partial V}{\partial x^{r}}$.

So, $X_r\lambda^r=0$ and as X_r is collinear with dx^r (the infinitesimal line element of the line of force) we have $dx_n\lambda^n=a_{mn}dx^m\lambda^n=0$ proving the perpendicularity of both curves.

•

5.16 p176 - Exercise

For a spherical pendulum, show that the lines of force are geodesics on the sphere on which the particle is constrained to move. What does the theorem stated above tell us in this case?

For the spherical pendulum we have the following situation

Figure 5.3: Physical components of the gravitational force tensor acting on a mass m on a sphere

From the figure it is clear that the only component of the gravitational force acting on the mass is restricted along the $\bar{1}_{\theta}$ vector which, with varying θ lays along a great circle of the sphere which is a geodesic. Hnce the lines of force are great circle on the sphere.

For the theorem stated this means that as a mass is launched along a great circle, it will stay on this great circle.

•

5.17 p176 - Exercise (PARTLY SOLVED

A system starts from rest at a configuration O. Prove that the trajectory at O is tangent to the line of force through O, and that the first curvature of the trajectory is one-third of the first curvature of the line of force.

From 5.533 we have

$$v\frac{dv}{ds} = X_r \lambda^r, \quad \kappa v^2 = X_r \nu^r \tag{1}$$

From the second expression we have as v=0 at O that $X_r\nu^r=0$, meaning that X_r is perpendicular to ν^r . Also by **5.516**

$$f^r = \frac{dv}{dt}\lambda^r + \kappa v^2 \nu^r \tag{2}$$

we know that the acceleration lies in the elementary two-space containing the tangent and the first normal to the trajectory implying by the previous result that X_r and λ^r are collinear. Note that from (1) we can not conclude (because v=0) from the first expression that $X_r\lambda^r=0$. Indeed, $v\frac{dv}{ds}$ is a derived expression form of $\frac{dv}{dt}$. As $\frac{dv}{dt}$ is not necessarily 0 (otherwise the system would for ever stay on the configuration at O meaning that ds=0, making the expression $v\frac{dv}{ds}$ meaningless.)

SECOND PART?

♦

5.18 p181 and p182 - Clarification Figures 13., 14. and 15.

There are several ways to perform a map of the configuration space of a rigid body with fixed point.

Figure 5.4: Map of the configuration space of a rigid body with fixed point.

Consider figure 5.2(a). We can stretch like an accordion the cuboid along the ϕ axis and bent it so that the planes $\phi = 0$ and $\phi = 2\pi$ join. We get (b), a torus with square sections. The dimension ϕ is dealt with as a point $P(\theta, \phi, \psi)$ in the configuration space returns to the same point when varying ϕ to $\phi + 2k\pi$.

We can apply the same procedure of stretching and bending for the ψ dimension so that the planes $\Psi = 0$ and $\Psi = 2\pi$ join. We get (c), a torus-like object.

The only dimension left is θ which our multi-dimensional crippled mind can't find a way to reshape this pseudo-torus so that when varying θ we can come back to the same point as started.

٠

5.19 p183 - Clarification for 5.561

The kinetic energy is

5.561.
$$T = \frac{1}{2}I(\dot{\theta}^2 + \dot{\phi}^2 + \dot{\psi}^2 + 2\dot{\phi}\dot{\psi}\cos\theta)$$

We first determine the general form of the kinetic energy for a rigid body rotating around a fixed point. From 5,310 we have

$$v_r = -\omega_{rm} z_m = -\epsilon_{rst} \omega_s z_t \tag{1}$$

$$T = \frac{1}{2} \sum m v_r v_r \tag{2}$$

$$\Rightarrow T = \frac{1}{2} \sum m \epsilon_{rst} \omega_s z_t \epsilon_{ruv} \omega_u z_v \tag{3}$$

$$= \frac{1}{2} \sum_{n} m \left(\delta_{su} \delta_{tv} \omega_s \omega_u z_t z_v - \delta_{sv} \delta_{tu} \omega_s \omega_u z_t z_v \right)$$
 (4)

For the case N=3 we get from (4):

$$T = \frac{1}{2} \sum_{m} m \left[\omega_1^2 \left(z_2^2 + z_3^2 \right) + \omega_2^2 \left(z_1^2 + z_3^2 \right) + \omega_3^2 \left(z_1^2 + z_2^2 \right) - 2\omega_1 \omega_2 z_1 z_2 - 2\omega_1 \omega_3 z_1 z_3 - 2\omega_2 \omega_3 z_2 z_3 \right]$$
(5)

Using the result from 5.336 this can be written as

$$T = \frac{1}{2} \left[I_{11}\omega_1^2 + I_{22}\omega_2^2 + I_{33}\omega_3^2 + 2I_{12}\omega_1\omega_2 + 2I_{13}\omega_1\omega_3 + 2I_{23}\omega_2\omega_3 \right]$$
 (6)

Considering that the matrix I_{ij} is symmetric, one can always find an appropriate basis so that the matrix becomes diagonal. Hence (6) can be simplified to

$$T = \frac{1}{2} \left[I_{11} \omega_1^2 + I_{22} \omega_2^2 + I_{33} \omega_3^2 \right] \tag{7}$$

Of course the ω_i in (7) are not the Euler angles and we have to express the ω_i as functions of the Euler angles.

Figure 5.5: Euler angles

Consider the Euler angles as in figure 5.5. The resulting angular velocity of the rigid body can be expressed as

$$\overline{\omega} = \dot{\psi}\overline{z} + \dot{\theta}\overline{N} + \dot{\phi}\overline{z}_1 \tag{8}$$

The projection of $\overline{\omega}$ on the basis $\overline{x}_1, \overline{y}_1, \overline{z}_1$ (which we choose fixed to the rigid body) will then coincide with the ω_i .

We determine the components of \overline{z} , \overline{N} , \overline{z}_1 with \overline{x}_1 , \overline{y}_1 , \overline{z}_1 as basis.

We have

$$\begin{cases}
\overline{N} = \cos \phi \, \overline{y}_1 + \sin \phi \, \overline{x}_1 \\
\overline{z} = \cos \theta \, \overline{z}_1 - \sin \theta \, \overline{x}_0 \\
\overline{x}_0 = \cos \phi \, \overline{x}_1 - \sin \phi \, \overline{y}_1
\end{cases}$$

$$\begin{cases}
\overline{N} = \cos \phi \, \overline{y}_1 + \sin \phi \, \overline{x}_1 \\
\overline{z} = \cos \theta \, \overline{z}_1 - \sin \theta \, \cos \phi \, \overline{x}_1 + \sin \theta \, \sin \phi \, \overline{y}_1
\end{cases}$$
(10)

$$\Rightarrow \begin{cases} \overline{N} = \cos \phi \ \overline{y}_1 + \sin \phi \ \overline{x}_1 \\ \overline{z} = \cos \theta \ \overline{z}_1 - \sin \theta \ \cos \phi \ \overline{x}_1 + \sin \theta \ \sin \phi \ \overline{y}_1 \end{cases}$$
(10)

Hence,

$$\overline{\omega} = \dot{\psi}\cos\theta \ \overline{z}_1 - \dot{\psi}\sin\theta \ \cos\phi \ \overline{x}_1 + \dot{\psi}\sin\theta \ \sin\phi \ \overline{y}_1 + \dot{\theta}\cos\phi \ \overline{y}_1 + \dot{\theta}\sin\phi \ \overline{x}_1 + \dot{\phi}\overline{z}_1$$
 (11)

giving

$$\begin{cases}
\omega_1 = \dot{\theta} \sin \phi - \dot{\psi} \sin \theta \cos \phi \\
\omega_2 = \dot{\psi} \sin \theta \sin \phi + \dot{\theta} \cos \phi \\
\omega_3 = \dot{\psi} \cos \theta + \dot{\phi}
\end{cases} (12)$$

In the case considered $I_{11}=I_{22}=I_{33}=I$. Plugging (12) in (7) gives indeed

$$T = \frac{1}{2}I\left(\dot{\theta}^2 + \dot{\phi}^2 + \dot{\psi}^2 + 2\dot{\phi}\dot{\psi}\cos\theta\right)$$

♦

5.20 p186 - Exercise 1

If a vector at the point with coordinates (1,1,1) in Euclidean 3-space has components (3,-1,2), find the contravariant, covariant and physical components in spherical polar coordinates.

The tensor T_n to consider is (3, -1, 2) - (1, 1, 1) = (2, -2, 1).

The Jacobian matrix for the transformation $z^n \to x^k$, evaluated at the point (1,1,1) is

$$J_{(1,1,1)} = \begin{pmatrix} \frac{x}{r} & \frac{y}{r} & \frac{z}{r} \\ \frac{xz}{r^2\sqrt{x^2 + y^2}} & \frac{yz}{r^2\sqrt{x^2 + y^2}} & \frac{-(x^2 + y^2)}{r^2\sqrt{x^2 + y^2}} \\ \frac{-y}{x^2 + y^2} & \frac{x}{x^2 + y^2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{\sqrt{2}}{3} \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'^n} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{\sqrt{2}}{3} \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{\sqrt{2}}{3} \\ -\frac{\sqrt{2}}{3} \end{pmatrix}$$

$$(4)$$

We have the metric tensor evaluated at (1, 1, 1)

$$a_{mn} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 (5)

$$\Rightarrow \begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'_n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{\sqrt{2}}{3} \\ -2 \end{pmatrix}$$
 (6)

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{2} \\ -4 \end{pmatrix} \tag{7}$$

And the physical components

$$\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'_{ph.}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{2} \\ -4 \end{pmatrix}$$
(8)

$$= \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{\frac{2}{3}} \\ -2\sqrt{2} \end{pmatrix} \tag{9}$$

Another way to find the physical components is to project orthogonally the tensor on the unit vectors of a local Cartesian coordinate system, oriented along the unit vectors \overline{e}_r , \overline{e}_θ , \overline{e}_ϕ corresponding to the vector P(1,1,1) with modulus $|P|=\sqrt{3}$. We have for the tensor $T_n(2,-2,1)$ with modulus $|T_n|=3$ as component along \overline{e}_r :

$$|T_n|\cos\alpha = |T_n|\frac{\langle T_n, P\rangle}{|T_n||P|} \tag{10}$$

$$=|T_n|\frac{2-2+1}{|T_n||P|}\tag{11}$$

$$=\frac{1}{\sqrt{3}}\tag{12}$$

For the component along \bar{e}_{θ} we first have to determine the vector \bar{e}_{θ} . As first equation we have the

orthogonality condition with \overline{e}_r and putting $\overline{e}_\theta = (a, b, c)$, get $\langle \overline{e}_r, \overline{e}_\theta \rangle = a + b + c = 0$. As \overline{e}_θ lies in the plane (1,1,0) - (0,0,0) - (0,0,1) we can put a = b and get $\overline{e}_{\theta} = \frac{1}{\sqrt{6}}(1,1,-2)$ and get for the tensor $T_n(2,-2,1)$ as component along \overline{e}_{θ} :

$$|T_n|\cos\beta = |T_n| \frac{\langle T_n, \overline{e}_\theta \rangle}{|T_n|}$$

$$= |T_n| \frac{2 - 2 - 2}{|T_n| \sqrt{6}}$$
(13)

$$=|T_n|\frac{2-2-2}{|T_n|\sqrt{6}}\tag{14}$$

$$= -\frac{\sqrt{2}}{\sqrt{3}}\tag{15}$$

For the component along \overline{e}_{ϕ} we first have to determine the vector \overline{e}_{ϕ} . As first equation we have the orthogonality condition with the pair \overline{e}_r , \overline{e}_θ and get $\overline{e}_\phi = \overline{e}_r \times \overline{e}_\theta = \frac{1}{\sqrt{3}\sqrt{6}} (-3,3,0) = \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$. For the tensor $T_n(2, -2, 1)$ as component along \overline{e}_{ϕ} :

$$|T_n|\cos\gamma = |T_n|\frac{\langle T_n, \overline{e}_\phi\rangle}{|T_n|}$$
 (16)

$$= |T_n| \frac{-2 - 2}{|T_n| \sqrt{2}}$$

$$= -\frac{4}{\sqrt{2}}$$
(17)

$$= -\frac{4}{\sqrt{2}} \tag{18}$$

$$= -2\sqrt{2} \tag{19}$$

giving

$$\begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix}_{T'_{ph.}} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\sqrt{\frac{2}{3}} \\ -2\sqrt{2} \end{pmatrix}$$
(20)

as in (9).

5.21 p186 - Exercise 2

In cylindrical coordinates (r, ϕ, z) in Euclidean 3-space, a vector field is such that the vector at each point points along the parametric line of ϕ , in the sense of ϕ increasing, and its magnitude is kr, where k is a constant. Find the contravariant, covariant and physical components of this vector field.

We can work backwards, with the physical components as starting point. Indeed, at a point $P(r, \phi, z)$ the tensor of this vector field will have (0, kr, 0) as physical components in the cylindrical coordinates (r, ϕ, z) system.

We have the metric tensor

$$a_{mn} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1}$$

Giving

$$\begin{cases}
X_1 = h_1 X_1^{phys.} = 0 \\
X_2 = h_2 X_2^{phys.} = kr^2 \\
X_3 = h_3 X_3^{phys.} = 0
\end{cases}$$
(2)

and

$$\begin{cases}
X^{1} = \frac{X_{1}^{phys.}}{h_{1}} = 0 \\
X^{2} = \frac{X_{2}^{phys.}}{h_{2}} = k \\
X^{3} = \frac{X_{3}^{phys.}}{h_{3}} = 0
\end{cases}$$
(3)

♦

5.22 p186 - Exercise 3

Find the physical components of velocity and acceleration along the parametric lines of cylindrical coordinates in terms of the and their derivatives with respect to time.

We have the metric tensor

$$a_{mn} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1}$$

and the contravariant velocities

$$\begin{cases}
v^{1} = \frac{dr}{dt} \\
v^{2} = \frac{d\phi}{dt} \\
v^{3} = \frac{dz}{dt}
\end{cases}$$
(2)

giving by $v_K^{phys.} = h_K v^K$

$$\begin{cases}
v_r = \frac{dr}{dt} \\
v_\phi = r\frac{d\phi}{dt} \\
v_z = \frac{dz}{dt}
\end{cases}$$
(3)

For the acceleration using $f^r = \frac{\delta v^r}{\delta t}$ and the Christoffel symbols being

$$\begin{cases} \Gamma^m_{nk} = 0 & \forall \quad (nk) \neq (r, \theta), (\theta, \theta) \\ \\ \Gamma^\theta_{r\theta} = \frac{1}{r} & \text{and} \quad \Gamma^r_{\theta\theta} = -r \end{cases}$$
 (4)

we have

$$\begin{cases} f^{1} = \frac{dv^{1}}{dt} - r \underbrace{v^{2} \frac{dx^{2}}{dt}}_{=(v^{2})^{2}} \\ f^{2} = \frac{dv^{2}}{dt} + \underbrace{\frac{1}{r} v^{1} \frac{dx^{2}}{dt} + \frac{1}{r} v^{2} \frac{dx^{2} 1}{dt}}_{=\frac{2}{r} v^{1} v^{2}} \end{cases}$$

$$f^{3} = \frac{dv^{3}}{dt}$$

$$(5)$$

giving by $f_K^{phys.} = h_K f^K$

$$\begin{cases}
f_r = \frac{dv^1}{dt} - r(v^2)^2 \\
f_{phi} = r\frac{dv^2}{dt} + r\frac{2}{r}v^1v^2 \\
f_z = \frac{dv^3}{dt}
\end{cases} (6)$$

$$\begin{cases}
f_r = \frac{dv^1}{dt} - r \left(v^2\right)^2 \\
f_{phi} = r \frac{dv^2}{dt} + r \frac{2}{r} v^1 v^2 \\
f_z = \frac{dv^3}{dt}
\end{cases}$$

$$\begin{cases}
f_r = \frac{d^2 r}{dt^2} - r \left(\frac{d\phi}{dt}\right)^2 \\
f_{phi} = r \frac{d^2 \phi}{dt^2} + 2 \frac{dr}{dt} \frac{d\phi}{dt}
\end{cases}$$

$$\Rightarrow \begin{cases}
f_z = \frac{d^2 z}{dt^2}
\end{cases}$$
(6)

5.23 p186 - Exercise 4

A particle moves on a sphere under the action of gravity. Find the contravariant an covaraiant components of the force, using colatitude and azimuth, and write down the equation of motion.

We determine first the physical components of the force.

Figure 5.6: Physical components of the gravitational force tensor acting on a mass m on a sphere

We note first that the unit vector $\overline{1}_{\phi}$ is perpendicular to the place formed by the vectors $\overline{1}_{\theta}$, \overline{F} and s the force has no components projected on this vector. The vector \overline{F} is parallel with the axis of reference of the sphere with radius R and so the physical components become

$$\begin{cases} F_{\phi}^{phys} = 0 \\ F_{\theta}^{phys} = mg\sin\theta \end{cases}$$

$$\begin{cases} F_{\phi} = 0 & F_{\phi} = 0 \\ F^{\theta} = \frac{1}{R}mg\sin\theta & F_{\theta} = Rmg\sin\theta \end{cases}$$

$$(1)$$

We use equation 5.212.

$$\begin{cases}
\frac{d}{dt} \frac{\partial T}{\partial \dot{x}^s} - \frac{\partial T}{\partial x^s} = F_s \\
T = \frac{1}{2} m a_{pq} \dot{x}^p \dot{x}^q, \ \dot{x}^s = \frac{dx^s}{dt}
\end{cases}$$
(3)

with for our case

$$T = \frac{1}{2}mR^2 \left(\dot{\theta}^2 + \sin^2\theta \ \dot{\phi}^2\right) \tag{4}$$

and get the set of equation of motion (the second column gives the dimensional analysis as a check for consistency)

$$\begin{cases} \frac{\ddot{\theta}}{\dot{\phi}} = -2\cot\theta \ \dot{\theta} & : \quad \frac{[T]^{-2}}{[T]^{-1}} \cong [T]^{-1} \\ \ddot{\theta} - \left(\dot{\phi}\right)^2 \sin\theta \cos\theta = \frac{g}{R}\sin\theta & : \quad [T]^{-2} + \left([T]^{-1}\right)^2 \cong \frac{[L][T]^{-2}}{[L]} \end{cases}$$
(5)

Let's check the special case when $\dot{\phi} = 0$.

The first equation can be rewritten and gives of course $\phi = C$ while the second equation becomes

$$\ddot{\theta} = \frac{g}{R}\sin\theta$$

which is similar to the equation of the simple gravity pendulum.

♦

5.24p186 - Exercise 5

Consider the motion of a particle on a smooth torus under no forces except normal reaction. The geometrical line element may be written

$$ds^2 = (a - b\cos\theta)^2 d\phi^2 + b^2 d\theta^2$$

where ϕ is an azimuthal angle and θ an angular displacement from the equatorial plane. Show that the path of a particle satisfies the following two differential equations in which his a constant

(a)
$$(a - b\cos\theta)^2 \frac{d\phi}{ds} = h$$
(b)
$$b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2$$

We use equation 5.212. and 5.212.

$$\begin{cases}
\frac{d}{dt} \frac{\partial T}{\partial \dot{x}^s} - \frac{\partial T}{\partial x^s} = F_s \\
T = \frac{1}{2} m a_{pq} \dot{x}^p \dot{x}^q, \ \dot{x}^s = \frac{dx^s}{dt}
\end{cases} \tag{1}$$

with for our case

$$T = \frac{1}{2}m\left(b^2\dot{\theta}^2 + (a - b\cos\theta)^2 \dot{\phi}^2\right)$$
 (2)

$$\begin{cases} \frac{\partial T}{\partial \dot{\phi}} = m \left(a - b \cos \theta \right)^2 \dot{\phi} & \frac{\partial T}{\partial \phi} = 0 \\ \frac{\partial T}{\partial \dot{\theta}} = m b^2 \dot{\theta} & \frac{\partial T}{\partial \theta} = m b \left(a - b \cos \theta \right) \dot{\phi}^2 \sin \theta \end{cases}$$
(3)

giving

$$\begin{cases}
(a - b\cos\theta)^2 \ddot{\phi} + 2b(a - b\cos\theta) \dot{\theta}\dot{\phi}\sin\theta = 0 \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = 0
\end{cases}$$

$$(4)$$

$$\Rightarrow \begin{cases}
(a - b\cos\theta) \ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = 0
\end{cases}$$

$$(5)$$

$$\Rightarrow \begin{cases} (a - b\cos\theta)\ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\ b^2\ddot{\theta} - b(a - b\cos\theta)\dot{\phi}^2\sin\theta = 0 \end{cases}$$
 (5)

In the first equation, put $y \equiv \dot{\phi}$ giving for the first equation:

$$\frac{dy}{y} = -2b \frac{\sin\theta d\theta}{(a - b\cos\theta)} \tag{6}$$

$$\Leftrightarrow \frac{dy}{y} = -2\frac{d(a - b\cos\theta)}{(a - b\cos\theta)}$$

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C$$

$$\Rightarrow \dot{\phi} = C(a - b\cos\theta)^{-2}$$
(8)

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C \tag{8}$$

$$\Rightarrow \qquad \dot{\phi} = C \left(a - b \cos \theta \right)^{-2} \tag{9}$$

Note that $\dot{\phi}$ is a time derivative. But as we are on a geodesic, **5.226**. stands and so v is constant as $\frac{dv}{ds} = 0$. Using $v = \frac{ds}{dt}$, (9) can be written as

$$(a - b\cos\theta)^2 \frac{d\phi}{dt} = C \tag{10}$$

$$\Leftrightarrow \qquad (a - b\cos\theta)^2 \frac{d\phi}{ds} \underbrace{\frac{ds}{dt}}_{=v} = C \tag{11}$$

$$\Leftrightarrow \qquad (a - b\cos\theta)^2 \frac{d\phi}{ds} = h \quad \text{with } h = \frac{C}{v}$$

$$\Leftrightarrow \qquad (a - b\cos\theta)^2 \frac{d\phi}{ds} = h \quad \text{with } h = \frac{C}{v}$$
 (12)

Next, we don't use the second equation in (5) but the line element equation instead

$$ds^{2} = (a - b\cos\theta)^{2} d\phi^{2} + b^{2}d\theta^{2}$$
(13)

$$\Rightarrow \qquad \left(\frac{ds}{d\phi}\right)^2 = \left(a - b\cos\theta\right)^2 + b^2\left(\frac{d\theta}{d\phi}\right)^2 \tag{14}$$

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{ds}\right)^{-2} - (a - b\cos\theta)^2 \tag{15}$$

$$\Rightarrow \qquad \left(\frac{ds}{d\phi}\right)^2 = (a - b\cos\theta)^2 + b^2 \left(\frac{d\theta}{d\phi}\right)^2$$

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{ds}\right)^{-2} - (a - b\cos\theta)^2$$

$$(15)$$

$$(12) : \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2$$

$$(16)$$

5.25 p186 - Exercise 6

Consider the motion of a particle under gravity on the smooth torus of the previous problem, the equatorial plane of the torus being horizontal. Taking the mass of the particle to unity, so that $V = bg \sin \theta$, show that the path of the paticle satisfies the following two differential equations.

(a)
$$(E - V) (a - b\cos\theta)^2 \frac{d\phi}{ds} = h$$
(b)
$$b^2 \left(\frac{d\theta}{d\phi}\right)^2 = (E - V) \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2$$

where E is the total energy, h is a constant and $d\sigma$ is the action line element.

The line of reasoning is quite the same as problem (5). We use equation 5.212. and 5.212.

$$\begin{cases}
\frac{d}{dt} \frac{\partial T}{\partial \dot{x}^s} - \frac{\partial T}{\partial x^s} = F_s \\
T = \frac{1}{2} m a_{pq} \dot{x}^p \dot{x}^q, \ \dot{x}^s = \frac{dx^s}{dt}
\end{cases} \tag{1}$$

with for our case

$$T = \frac{1}{2}m\left(b^2\dot{\theta}^2 + (a - b\cos\theta)^2 \dot{\phi}^2\right)$$
 (2)

$$\begin{cases}
\frac{\partial T}{\partial \dot{\phi}} = m \left(a - b \cos \theta \right)^2 \dot{\phi} & \frac{\partial T}{\partial \phi} = 0 \\
\frac{\partial T}{\partial \dot{\theta}} = m b^2 \dot{\theta} & \frac{\partial T}{\partial \theta} = m b \left(a - b \cos \theta \right) \dot{\phi}^2 \sin \theta
\end{cases} \tag{3}$$

giving (as $F_{\phi} = -\partial_{\phi}V = 0$ and $F_{\theta} = -\partial_{\theta}V = -bg\cos\theta$)

$$\begin{cases}
(a - b\cos\theta)^2 \ddot{\phi} + 2b(a - b\cos\theta) \dot{\theta}\dot{\phi}\sin\theta = 0 \\
b^2 \ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = -bg\cos\theta
\end{cases}$$
(4)

$$\begin{cases}
(a - b\cos\theta)^2 \ddot{\phi} + 2b(a - b\cos\theta) \dot{\theta}\dot{\phi}\sin\theta = 0 \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = -bg\cos\theta
\end{cases}$$

$$\begin{cases}
(a - b\cos\theta) \ddot{\phi} = -2b\dot{\theta}\dot{\phi}\sin\theta \\
b^2\ddot{\theta} - b(a - b\cos\theta) \dot{\phi}^2 \sin\theta = -bg\cos\theta
\end{cases}$$
(5)

In the first equation, put $y \equiv \dot{\phi}$ giving for the first equation:

$$\frac{dy}{y} = -2b \frac{\sin\theta d\theta}{(a - b\cos\theta)} \tag{6}$$

$$\Leftrightarrow \frac{dy}{y} = -2\frac{d(a - b\cos\theta)}{(a - b\cos\theta)} \tag{7}$$

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C \tag{8}$$

$$\Rightarrow \log y = -2\log(a - b\cos\theta) + \log C$$

$$\Rightarrow \dot{\phi} = C(a - b\cos\theta)^{-2}$$
(9)

Note that $\dot{\phi}$ is a time derivative. Using $\frac{ds}{dt} = v = \sqrt{2T} = \sqrt{2}\sqrt{E-V}$, (9) can be written as

$$(a - b\cos\theta)^2 \frac{d\phi}{dt} = C \tag{10}$$

$$\Leftrightarrow (a - b\cos\theta)^{2} \frac{d\phi}{d\sigma} \underbrace{\frac{d\sigma}{ds}}_{=\sqrt{E-V}} \underbrace{\frac{ds}{dt}}_{=\sqrt{2}\sqrt{E-V}} = C$$

$$\Leftrightarrow (E - V) (a - b\cos\theta)^{2} \frac{d\phi}{d\sigma} = h$$
(11)

$$\Leftrightarrow \qquad (E - V) \left(a - b \cos \theta \right)^2 \frac{d\phi}{d\sigma} = h \tag{12}$$

with $h = \frac{C}{\sqrt{2}}$.

Next, we don't use the second equation in (5) but the line element equation instead

$$ds^2 = (a - b\cos\theta)^2 d\phi^2 + b^2 d\theta^2 \tag{13}$$

$$\Rightarrow \qquad \left(\frac{ds}{d\phi}\right)^2 = \left(a - b\cos\theta\right)^2 + b^2\left(\frac{d\theta}{d\phi}\right)^2 \tag{14}$$

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{ds}\right)^{-2} - (a - b\cos\theta)^2 \tag{15}$$

$$\Leftrightarrow b^2 \left(\frac{d\theta}{d\phi}\right)^2 = \left(\frac{d\phi}{d\sigma}\right)^{-2} \left(\frac{d\sigma}{ds}\right)^{-2} - (a - b\cos\theta)^2 \tag{16}$$

(12) :
$$b^{2} \left(\frac{d\theta}{d\phi}\right)^{2} = (E - V)^{2} \frac{1}{(E - V)} \frac{(a - b\cos\theta)^{4}}{h^{2}} - (a - b\cos\theta)^{2}$$
 (17)

$$\Rightarrow \qquad b^2 \left(\frac{d\theta}{d\phi}\right)^2 = (E - V) \frac{(a - b\cos\theta)^4}{h^2} - (a - b\cos\theta)^2 \tag{18}$$

5.26 p187 - Exercise 7

A dynamical system consists of a thin straight smooth tube which can rotate in a horizontal plan about one end O, together with a bead B inside the tube connected to O by a spring. Taking as coordinates r = OB and $\theta =$ angle of rotation of the tube about O, the potential energy V is a function of r only. Show that in configuration space, all the lines of force are geodesics for the kinematical line element.

Well understanding the question is of course paramount:

- The tube mentioned plays only a functional role to hold the spring "stiff" along the line *OB* as its mass can be neglected. It will play no further role in the dynamics of the system.
- Nothing is said that the system contains any force that keeps the angular velocity at a constant speed ω .

That being clarified, one can expect that the system will behave as a harmonic oscillator along the line OB and that ,given an initial rotational momentum, the angular momentum will be a constant during the trajectory of the bead. This means that the bead will oscillate along OB but as the angular momentum is a constant and given $m\omega r^2 = C(m = \text{mass of the bead})$, the instant radial speed will vary.

The only conservative force acting on the bead will be that of the spring and will be $V = \frac{1}{2}k(r - r_0)^2$, r_0 being the point along OB where the spring is not stretched. The generalized forces are $F_r = -k(r - r_0)$ and $F_\theta = 0$ meaning the lines of force are straight lines pointing to the origin O.

About the geodesics. Clearly the instantaneous velocity of the bead is $\overrightarrow{v} = \dot{r} \overrightarrow{1}_r + \dot{\theta} r \overrightarrow{1}_{\theta}$ giving as kinetic energy $T = \frac{1}{2} \left(\dot{r}^2 + \dot{\theta}^2 r^2 \right)$ giving as kinematic line element

$$ds^2 = 2Tdt = dr^2 + r^2d\theta^2$$

Referring to 3.101, the configuration space is flat and the geodesics are straight lines. As the line forces are straight lines towards the origin O, these line of force are also geodesics in the configuration space equipped with the kinematical line element.

p187 - Exercise 8 5.27

Show that if a line of force is a geodesic for the kinematical line element, it is also a geodesic for the action line element.

From 5.516 and 5.529 we have

$$X^r = v\frac{dv}{ds}\lambda^r + \kappa v^2 \nu^r \tag{1}$$

As the line of force is a geodesic, we can start with a velocity tangent to the line of force, ensuring that the trajectory of the dynamical system will lie on the geodesic line of force (see page 175) and thus $\kappa = 0$ for the trajectory. Hence,

$$X^r = v \frac{dv}{ds} \lambda^r \tag{2}$$

expressing now the function of the action line element $d\sigma = \sqrt{E - V} ds$ we have

$$X^r = v \frac{dv}{ds} \lambda^r \tag{3}$$

$$= v \frac{dv}{ds} \frac{dx^r}{d\sigma} \frac{d\sigma}{ds}$$

$$= v \frac{dv}{ds} \frac{dx^r}{d\sigma} \sqrt{E - V}$$

$$(5)$$

$$= v \frac{dv}{ds} \frac{dx^r}{d\sigma} \sqrt{E - V} \tag{5}$$

$$= \sqrt{E - V} v \frac{dv}{ds} \lambda^{\prime r} \tag{6}$$

As stated page 177, this dynamical system will describe in configuration space a geodesic for the action metric, meaning that $\lambda^{'r}$ is tangent to this geodesic and that X^r , being collinear with $\lambda^{'r}$ (with the factor $\sqrt{E-V}v\frac{dv}{ds}$), is also tangent to this geodesic. Hence, this line of force is also a geodesic for the action line element.

5.28 p187 - Exercise 9

Using the methods of Chapter II and 5.532, show that the trajectories of a dynamical system with kinetic energy T and potential energy V satisfy the variational equation

$$\delta \int_{t_1}^{t_2} (T - V) dt = 0$$

Let's start with a function L defined by

$$dL = (T - V)du (1)$$

(2)

As in figure 2 page 38 we will make L a function of two parameters, u and v, the latter defining a family of curves between the begin point u_1 and the endpoint u_2 .

$$L = L(u, v) \tag{3}$$

with

$$(T - V)(u_1, v) = (T - V)_1 \quad (T - V)(u_2, v) = (T - V)_2 \quad \forall v \tag{4}$$

We will try to minimize (with respect to v) the following functional

$$L == \int_{u_1}^{u_2} (T - V)(u, v) du \tag{5}$$

It's derivative with respect to v

$$\frac{dL}{dv} = \int_{u_1}^{u_2} \frac{\partial (T - V)(u, v)}{\partial v} du \tag{6}$$

We express (T-V)(u,v) as a function of the generalized coordinates x^r and their derivatives. Then,

$$\frac{\partial (T-V)(u,v)}{\partial v} = \frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \frac{\partial \dot{x^r}}{\partial v} + \frac{\partial (T-V)(u,v)}{\partial x^r} \frac{\partial x^r}{\partial v}$$
(7)

where $\dot{x^r} = \frac{\partial x^r}{\partial u}$.

We have

$$\frac{\partial \dot{x}^r}{\partial v} = \frac{\partial}{\partial v} \frac{\partial x^r}{\partial u} = \frac{\partial}{\partial u} \frac{\partial x^r}{\partial v}$$
 (8)

So,

$$\frac{\partial (T - V)(u, v)}{\partial v} = \frac{\partial (T - V)(u, v)}{\partial \dot{x}^r} \frac{\partial}{\partial u} \frac{\partial x^r}{\partial v} + \frac{\partial (T - V)(u, v)}{\partial x^r} \frac{\partial x^r}{\partial v}$$
(9)

Consider the expression

$$\int_{u_1}^{u_2} d(AB) = \int_{u_1}^{u_2} Ad(B) + \int_{u_1}^{u_2} Bd(A)$$
 (10)

$$\Rightarrow \int_{u_1}^{u_2} Ad(B) = \int_{u_1}^{u_2} d(AB) - \int_{u_1}^{u_2} Bd(A)$$
 (11)

Put $B = \frac{\partial x^r}{\partial v}$ and $A = \frac{\partial (T-V)(u,v)}{\partial x^r}$ and putting this inside (9) and (6):

$$\frac{dL}{dv} = \int_{u_1}^{u_2} d\left(\frac{\partial (T - V)(u, v)}{\partial \dot{x}^r} \frac{\partial x^r}{\partial v}\right) - \int_{u_1}^{u_2} \frac{\partial x^r}{\partial v} d\left(\frac{\partial (T - V)(u, v)}{\partial \dot{x}^r}\right) + \int_{u_1}^{u_2} \frac{\partial (T - V)(u, v)}{\partial x^r} \frac{\partial x^r}{\partial v} du$$
(12)

$$= \left. \frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \frac{\partial x^r}{\partial v} \right|_{u_1}^{u_2} - \left[\int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \right) - \frac{\partial (T-V)(u,v)}{\partial x^r} \right) \frac{\partial x^r}{\partial v} du \right]$$
(13)

We express now the results in term of infinitesimals. A change in "length" δL when we pas from a curve v to a curve v+dv is

$$\delta L = \frac{dL}{dv} \delta v \tag{14}$$

$$= \frac{\partial (T-V)(u,v)}{\partial \dot{x}^r} \frac{\partial x^r}{\partial v} \delta v \bigg|_{u_1}^{u_2} - \int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T-V)(u,v)}{\partial \dot{x}^r} \right) - \frac{\partial (T-V)(u,v)}{\partial x^r} \right) \frac{\partial x^r}{\partial v} \delta v du \quad (15)$$

$$= \frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \delta x^r \bigg|_{u_1}^{u_2} - \int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T-V)(u,v)}{\partial \dot{x^r}} \right) - \frac{\partial (T-V)(u,v)}{\partial x^r} \right) \delta x^r du \tag{16}$$

The first term vanish as at the endpoints the δx^r are zero and hence we get

$$\delta L = -\int_{u_1}^{u_2} \left(\frac{\partial}{\partial u} \left(\frac{\partial (T - V)(u, v)}{\partial \dot{x}^r} \right) - \frac{\partial (T - V)(u, v)}{\partial x^r} \right) \delta x^r du \tag{17}$$

As the δx^r are arbitrary, we must have for $\delta L = 0$

$$\frac{\partial}{\partial u} \left(\frac{\partial (T - V)(u)}{\partial \dot{x}^r} \right) - \frac{\partial (T - V)(u)}{\partial x^r} = 0$$
 (18)

This is the same equation as **5.532** which describe the motion of a system with a conservative force.

♦

5.29 p188 - Exercise 10

Using the definition **5.5335** for I_{rs} , prove that if X_r is any non-zero vector, then $I_{rs}X_rX_s \ge 0$, and that the equality occurs only if all particles of the system are distributed on a single line.

By 5.335

$$I_{rs} = \delta_{rs} \sum mz_q z_q - \sum mz_r z_s \tag{1}$$

Multiplying by X_rX_s :

$$I_{rs}X_rX_s = \underbrace{X_rX_s\delta_{rs}}_{=X_rX_r} \sum mz_qz_q - \sum m \underbrace{z_rX_r}_{=|z|_{(m)}|X|\cos\theta_m = |z|_{(m)}|X|\cos\theta_m}$$
(2)

with θ_m the angle between the vector X_r and the position vector z_m of a particle.

$$I_{rs}X_{r}X_{s} = |X|^{2} \sum_{m} m |z|_{(m)}^{2} - |X|^{2} \sum_{m} m |z|_{(m)}^{2} \cos^{2} \theta_{m}$$
(3)

$$= |X|^2 \sum_{m} m |z|_{(m)}^2 \left(1 - \cos^2 \theta_m\right) \tag{4}$$

As we have $(1 - \cos^2 \theta_m) \in [0, 1]$ it is clear that $I_{rs}X_rX_s \ge 0$ and that it only will be zero when $\theta_m = 0 \quad \forall m$ which means that all position vectors are collinear wit X_r and are on a line.

5.30 p188 - Exercise 11

Let $Oz_1z_2z_3$ and $O'z_1'z_2'z_3'$ be two sets of Cartesian axes parallel to one another. Consider a mass distribution and let $I_{rs}, I_{rs}^{'}$ be its moment of inertia tensors calculated for these two axes in accordance with **5.335**. Writing $I_{rs}^{'} = I_{rs} + K_{rs}$, evaluate K_{rs} .

By **5.335**

$$I_{rs} = \delta_{rs} \sum mz_q z_q - \sum mz_r z_s \tag{1}$$

As the axes of both coordinate systems are parallel, we can write

$$z_{q}^{'} = z_{q} + b_{q} \tag{2}$$

which gives for (1):

$$I'_{rs} = \delta_{rs} \sum_{rs} m(z_q + b_q)(z_q + b_q) - \sum_{rs} m(z_r + b_r)(z_s + b_s)$$
 (3)

$$= \begin{cases}
\delta_{rs} \sum mz_q z_q - \sum mz_r z_s \\
+\delta_{rs} \sum mb_q z_q - \sum mb_r z_s \\
+\delta_{rs} \sum mb_q z_q - \sum mb_s z_r \\
+\delta_{rs} \sum mb_q b_q - \sum mb_r b_s
\end{cases}$$

$$= \begin{cases}
I_{rs} \\
+\delta_{rs} \sum mb_q z_q - \sum mb_r z_s \\
+\delta_{rs} \sum mb_q z_q - \sum mb_s z_r \\
+\delta_{rs} \sum mb_q b_q - \sum mb_r b_s
\end{cases}$$
(5)

$$= \begin{cases} I_{rs} \\ +\delta_{rs} \sum mb_q z_q - \sum mb_r z_s \\ +\delta_{rs} \sum mb_q z_q - \sum mb_s z_r \\ +\delta_{rs} \sum mb_q b_q - \sum mb_r b_s \end{cases}$$

$$(5)$$

(6)

The last term $\delta_{rs} \sum mb_qb_q - \sum mb_rb_s$ can be interpreted as a moment of inertia tensor for a single virtual mass $M = \sum m$ situated at the point b_q seen from the axes $Oz_1z_2z_3$. Let's denote it with $I_{rs} = \sum m \left(\delta_{rs} b_q b_q - b_r b_s \right).$

The other two terms can also be seen as a rigid body of particles distributed in a plane perpendicular to one of the axis i.e. all particles are transported perpendicularity to a plane. We note that $\delta_{rs} \sum mb_q z_q - \sum mb_r z_s = \delta_{rs} \sum mb_q z_q - \sum mb_s z_r$. This follows immediately from the symmetric character of $I'_{rs}, I_{rs}, \tilde{I}_{rs}$.

Denoting $\overline{I}_{rs} = \delta_{rs} \sum mb_q z_q - \sum mb_r z_s + \delta_{rs} \sum mb_q z_q - \sum mb_s z_r$ giving

$$K_{rs} = I_{rs} + \overline{I}_{rs} + \tilde{I}_{rs}$$

5.31 p188 - Exercise 12

A rigid body is turning about a fixed point. Referred to right-handed axes $Oz_1z_2z_3$, its angular velocity tensor has components

$$\omega_{23} = 1$$
, $\omega_{31} = 2$, $\omega_{12} = 3$

If we refer the same motion to the axis $O^{'}z_{1}^{'}z_{2}^{'}z_{3}^{'}$, such that the axis $O^{'}z_{1}^{'}$ is $Oz_{1}^{'}$ reversed, while $z_{2}z_{3}$ coincide with $O^{'}z_{2}^{'}z_{3}^{'}$, what are the $\omega_{rs}^{'}$ and $\omega_{rs}^{'}$?

We use the following identities

$$\begin{cases}
5.312 & \omega_{rm} = -\omega_{mr} \\
5.316 & \omega_{rs} = \epsilon_{rsn}\omega_{n} \\
5.317 & \omega_{1} = \omega_{23} & \omega_{2} = \omega_{31} & \omega_{3} = \omega_{12}
\end{cases} \tag{1}$$

The angular velocity tensor is

$$\Omega = \begin{pmatrix} 0 & 3 & -2 \\ -3 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$
(2)

giving by 5.317

$$\omega_1 = \omega_{23} \quad \omega_2 = \omega_{31} \quad \omega_3 = \omega_{12} \tag{3}$$

From pure geometrical consideration we can conclude that

$$\omega_{1}^{'} = -\omega_{1} \quad \omega_{2}^{'} = \omega_{2} \quad \omega_{3}^{'} = \omega_{3} \tag{4}$$

Figure 5.7: Angular velocity vectors in mirrored axis

Indeed, the ω_i can be considered as vectors, objects independent from the chosen coordinate system. Reversing the direction of the first axis, will for the observer looking along the positive direction, look as if the ω_1 is reversed. We now use $\omega_{rs} = \epsilon_{rsn}\omega_n$ but here we have to be careful with ϵ_{rsn} when using the equation in the transformed coordinate system.

with ϵ_{rsn} when using the equation in the transformed coordinate system. Looking at **4.312** $\epsilon_{stu}^{'}=\epsilon_{mnr}\frac{\partial z_m}{\partial z_s'}\frac{\partial z_n}{\partial z_t'}\frac{\partial z_r}{\partial z_u'}$ and noting that $\frac{\partial z_1}{\partial z_1'}=-1$ and 1 or 0 for the others, we have $\epsilon_{stu}^{'}=-\epsilon_{mnr}$. Now with **5.316** we get

$$\omega_{rs}^{'} = -\epsilon_{rsn}\omega_{n}^{'} \tag{5}$$

giving

$$\omega_{12}^{'} = -\omega_{12} \quad \omega_{13}^{'} = -\omega_{13} \quad \omega_{23}^{'} = \omega_{23}$$
 (6)

Giving

$$\Omega' = \begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} \tag{7}$$

5.32 p188 - Exercise 13

Consider three rigid bodies, S, S', S", turning about a common point. If all angular velocities are referred to common axes, show that the angular velocity tensors of S" relative to S is the sum of the angular velocity tensors of S' relative to S and of S" relative to S'.

Consider the following three transformation from one axes system to another

$$\begin{cases} z_{r}^{'} = A_{rm}z_{m} & z_{r} = A_{mr}z_{m}^{'} & A_{mp}A_{mq} = \delta_{pq} & A_{pm}A_{qm} = \delta_{pq} \\ z_{r}^{"} = B_{rm}z_{m}^{'} & z_{r}^{'} = B_{mr}z_{m}^{"} & B_{mp}B_{mq} = \delta_{pq} & B_{pm}B_{qm} = \delta_{pq} \\ z_{r}^{"} = C_{rm}z_{m} & z_{r} = C_{mr}z_{m}^{"} & C_{mp}C_{mq} = \delta_{pq} & C_{pm}C_{qm} = \delta_{pq} \end{cases}$$

$$(1)$$

We then have,

$$\begin{cases}
\omega'_{pq}\left(S',S\right) = -A_{pm}A_{qm}^{\cdot} \\
\omega_{pq}^{"}\left(S'',S'\right) = -B_{pm}B_{qm}^{\cdot} \\
\omega_{pq}^{"}\left(S'',S\right) = -C_{pm}C_{qm}^{\cdot}
\end{cases} \tag{2}$$

From (1) we see that

$$C_{rq} = B_{rm} A_{mq} \tag{3}$$

And thus

$$\omega_{pq}^{"}\left(S^{"},S\right) = -B_{pk}A_{km}(B_{qn}\dot{A}_{nm})\tag{4}$$

$$\Rightarrow \underbrace{-A_{km}A_{nm}}_{=\omega'_{kn}(S',S)}B_{pk}B_{qn} - \underbrace{A_{km}A_{nm}}_{=\delta_{kn}}B_{pk}B_{qn}$$

$$(5)$$

$$\omega_{pq}^{"}(S",S) = -B_{pk}A_{km}(B_{qn}A_{nm}) \tag{4}$$

$$\Rightarrow \qquad = \underbrace{-A_{km}A_{nm}}_{=\omega'_{kn}}B_{pk}B_{qn} - \underbrace{A_{km}A_{nm}}_{=\delta_{kn}}B_{pk}B_{qn}$$

$$\Rightarrow \qquad = \omega'_{kn}(S',S) \qquad = \delta_{kn}$$

$$\Rightarrow \qquad = \omega'_{kn}(S',S)B_{pk}B_{qn} - \underbrace{B_{pn}B_{qn}}_{=-\omega_{pq}^{"}(S",S')}$$
(6)

The fist term of the right side expression is a bilinear map of the tensor $\omega_{kn}^{'}\left(S^{'},S\right)$ from the reference axis S' to S". Hence we get

$$\omega_{pq}^{"}(S^{"},S) = \omega_{pq}^{"}(S^{"},S') + \omega_{pq}^{"}(S',S)$$
 (7)

5.33 p188 - Exercise 14

A freely moving particle is observed from a platform which rotates with angular velocity $\omega_r = n\delta_{r3}$, where n is constant, relative to a Newtonian frame S in which z_r are rectangular Cartesians. Use **5.421** to find the equations of motion relative to S' in terms of coordinates z'_r in S', such that the axis of z'_3 coincides permanently with the axis of z_3 .

 ${f 5.421}$ gives (where the equation is expressed in term of the $z_r^{'}$

$$\begin{cases}
 mf_s = F'_s + C'_s + G'_s \\
 C'_s = m \left[\dot{\omega}'_{sn} \left(S', S \right) + \omega'_{sm} \left(S', S \right) \omega'_{nm} \left(S', S \right) \right] z'_n \\
 C'_s = 2m\omega'_{sm} v'_m \left(S' \right)
\end{cases}$$
(1)

We note the particle is free, so $F'_s = 0$ and the angular velocity is a constant, so $\dot{\omega}'_{sn}\left(S',S\right) = 0$, and the equation simplify to

$$\begin{cases}
f'_{s} = K'_{s} + J'_{s} \\
K'_{s} = \left[\omega'_{sm}\left(S', S\right)\omega'_{nm}\left(S', S\right)\right]z'_{n} \\
J'_{s} = 2\omega'_{sm}v'_{m}\left(S'\right)
\end{cases} (2)$$

As $\omega_s = n\delta_{s3}$ and by the requirement that the that the axis of z_3' coincides permanently with the axis of z_3 , it is not hard to see that

$$\begin{cases}
\omega_{12}\left(S',S\right) = n \\
\omega'_{12}\left(S',S\right) = n \\
\omega_{12}\left(S,S'\right) = -n \\
\omega'_{12}\left(S,S'\right) = -n
\end{cases}$$
(3)

while all other elements vanish.

We get

$$\begin{cases} K_{1}^{'} = \omega_{12}^{'} \left(S^{'}, S\right) \omega_{12}^{'} \left(S^{'}, S\right) z_{1}^{'} = n^{2} z_{1}^{'} \\ K_{1}^{'} = \omega_{21}^{'} \left(S^{'}, S\right) \omega_{21}^{'} \left(S^{'}, S\right) z_{1}^{'} = n^{2} z_{1}^{'} \\ K_{3}^{'} = 0 \end{cases}$$

$$(4)$$

$$\begin{cases} J_{1}' = 2\omega'_{12}\left(S', S\right)v'_{2}\left(S'\right) = 2nv'_{2}\left(S'\right) \\ J_{2}' = 2\omega'_{21}\left(S', S\right)v'_{1}\left(S'\right) = -2nv'_{1}\left(S'\right) \\ J_{3}' = 0 \end{cases}$$
(5)

and get as equations of motion

$$\begin{cases}
f_{1}^{'} = n^{2}z_{1}^{'} + 2nv_{2}^{'} \left(S^{'}\right) \\
f_{2}^{'} = n^{2}z_{1}^{'} - 2nv_{1}^{'} \left(S^{'}\right) \\
f_{3}^{'} = 0
\end{cases} (6)$$

5.34 p188 - Exercise 15

If the tensor I_{st} is defined by **5.335** for N dimensions, and J_{nprq} is defined by **5.330**, establish the following relations:

$$J_{nprq} = (N-1)^{-1} I_{ss} \left(\delta_{nr} \delta_{pq} - \delta_{nq} \delta_{pr} \right) - \delta_{nr} I_{pq} + \delta_{pr} I_{nq}$$
$$J_{nppq} = I_{ss}$$
$$I_{nq} = (N-1)^{-1} \left(J_{nprq} - \delta_{nq} J_{nprq} \right)$$

5.421 and 5.421:

$$\begin{cases}
I_{st} = \delta_{st} \sum mz_q z_q - \sum mz_s z_t \\
J_{nprq} = \sum m \left(\delta_{nr} z_p z_q - \delta_{pr} z_n z_q \right)
\end{cases}$$
(1)

The first equation can be expressed as $\sum mz_pz_q = \delta_{pq}\sum mz_kz_k - I_{pq}$ and $\sum mz_nz_q = \delta_{st}\sum mz_kz_k - I_{nq}$

giving

$$J_{nprq} = \delta_{nr}\delta_{pq} \sum mz_k z_k - \delta_{nr}I_{pq} - \delta_{pr}\delta_{st} \sum mz_k z_k + \delta_{pr}I_{nq}$$

$$= \sum mz_k z_k \left(\delta_{nr}\delta_{pq} - \delta_{nr}I_{pq}\right) - \delta_{nr}I_{pq} + \delta_{pr}I_{nq}$$
(2)
(3)

Now, consider the expressions

$$\begin{cases}
I_{11} = \sum mz_qz_q - \sum mz_1z_1 \\
I_{11} = \sum mz_qz_q - \sum mz_1z_1 \\
\vdots \\
I_{NN} = \sum mz_qz_q - \sum mz_Nz_N
\end{cases}$$
(4)

Summin up these N expressions we have

$$I_{ss} = N\left(\sum mz_qz_q\right) - \sum mz_qz_q \tag{5}$$

$$= (N-1)\sum mz_qz_q \tag{6}$$

$$\Rightarrow \sum mz_q z_q = I_{ss} \left(N - 1 \right)^{-1} \tag{7}$$

Plugging this in (3) we get

$$J_{nprq} = I_{ss} \left(N - 1 \right)^{-1} \left(\delta_{nr} \delta_{pq} - \delta_{nr} I_{pq} \right) - \delta_{nr} I_{pq} + \delta_{pr} I_{nq}$$
(8)

5.35 p188 - Exercise 16

The motion of a dynamical system is represented by a curve in configuration-space. Using the kinematical line element, express the curvature as a function of its total energy E, and deduce that as E tends to infinity, the trajectorry tends to become a geodesic . Illustrate by considering a particle moving under gravity on a smooth sphere.

5.421 and **5.421**:

$$\begin{cases}
I_{st} = \delta_{st} \sum mz_q z_q - \sum mz_s z_t \\
J_{nprq} = \sum m \left(\delta_{nr} z_p z_q - \delta_{pr} z_n z_q\right)
\end{cases}$$
(1)

5.36 p189 - Exercise 17

A particle moves on a smooth sphere under action of gravity. Using he action line element, calculate the Gaussian curvature of configuration-space as a function of total energy E and height z above the centre of the sphere. Show that if the total energy is not sufficient to raise the particle to the top of the sphere, but only to a level z=h, then the Gaussian curvature tends to infinity as z approaches h from below.

5.421 and 5.421:

$$\begin{cases}
I_{st} = \delta_{st} \sum mz_q z_q - \sum mz_s z_t \\
J_{nprq} = \sum m \left(\delta_{nr} z_p z_q - \delta_{pr} z_n z_q\right)
\end{cases}$$
(1)

p189 - Exercise 18 5.37

Show that the equations of motion of a rigid body with a fixed point may be written in either of the forms

(b)
$$\dot{h}_{r}^{'} - K_{rmn}^{'} h_{m}^{'} h_{n}^{'} = M_{rs}^{'},$$

where h'_r are the components on z'-axes (moving with the body) of angular moment as given in ${f 5.338}$ and $K^{'}_{rmn}$ is a certain moment of inertia tensor. Evaluate the components $K^{'}_{rmn}$ in terms of the moments and products of inertia.

5.421 and **5.421**:

$$\begin{cases}
I_{st} = \delta_{st} \sum mz_q z_q - \sum mz_s z_t \\
J_{nprq} = \sum m \left(\delta_{nr} z_p z_q - \delta_{pr} z_n z_q\right)
\end{cases}$$
(1)

5.38 p189 - Exercise 19

A rigid body turns about a fixed point O in a flat space of N dimensions, prove that if N is odd, there exists at any instant a line OP of particles instantaneously at rest, but that, if N is even, no point other than O is, in general, instantaneously at rest. Show that if N=4, there are are points oher than O instantaneously at rest if, and only if,

$$\omega_{23}\omega_{14} + \omega_{31}\omega_{24} + \omega_{12}\omega_{34} = 0$$

Suppose N is odd. Let's define the following vector

$$\omega_{i_1} = \epsilon_{i_1 i_2 \dots i_N} \prod_{k=1}^{\frac{N-1}{2}} \omega_{i_{2k} i_{2k+1}} \tag{1}$$

and a line

$$z_{i_1} = \theta \omega_{i_1} \quad (\theta \in \mathbb{R}) \tag{2}$$

First we note that ω_{i_1} (and hence z_{i_1}) is not a null-vector:

Let's consider in (1) the terms consisting of the permutation of the sequence of pairs

$$\{(i_2,i_3),(i_4,i_5),(i_6,i_7),\ldots,(i_{N-1},i_N)\}$$

This sequence contains $\frac{N-1}{2}$ pairs and so can be arranged in $\frac{N-1}{2}$! ways. As for each pair we have two valid possibilities e.g. (i_2, i_3) and (i_3, i_2) and as a sequence contains $\frac{N-1}{2}$ pairs, we will have for a given order of pairs $2^{\frac{N-1}{2}}$ possibilities. So in (1) there will be $2^{\frac{N-1}{2}}\frac{N-1}{2}!$ terms consisting of the permutation of the sequence of pairs $\{(i_2, i_3), (i_4, i_5), (i_6, i_7), \dots, (i_{N-1}, i_N)\}.$

Without loss of generality, suppose that $\epsilon_{i_1 i_2 \dots i_N}$ is positive and also all $\omega_{i_{2k} i_{2k+1}}$ are positive. Let's first consider a permutation of two pairs in the sequence $\{(i_2, i_3), (i_4, i_5), (i_6, i_7), \dots, (i_{N-1}, i_N)\}$. Obviously, this does not change the product of the $\omega_{i_{2k}i_{2k+1}}$. Also $\epsilon_{i_1i_2...i_N}$ will hold it's initial sign as the considered permutation needs two permutation of indices.

Next consider a permutation in one of the pairs of the sequence. Obviously $\epsilon_{i_1i_2...i_N}$ will change sign but also the picked $\omega_{i_{2k}i_{2k+1}}$ (skew-symmetric).

Conclusion, all $2^{\frac{N-1}{2}} \frac{N-1}{2}!$ terms can be reduced to the sum of $2^{\frac{N-1}{2}} \frac{N-1}{2}!$ of a same quantity and the ω_{i_1} will not trivially be zero.

Let's consider now 5.310

$$v_p = -\omega_{pi_1} z_{i_1} \tag{3}$$

$$v_{p} = -\omega_{pi_{1}} z_{i_{1}}$$
(2):
$$v_{p} = -\theta \epsilon_{i_{1}i_{2}...i_{N}} \omega_{pi_{1}} \prod_{k=1}^{\frac{N-1}{2}} \omega_{i_{2k}i_{2k+1}}$$
(4)

On the right side, for having a non-zero term, we need that $p \neq i_1$ (ω_{st} skew-symmetric). This leaves us with only N-1 possible choices in the indices but as $\epsilon_{i_1i_2...i_N}$ needs N mutual different indices it is obvious that each term in (4) will have a $\epsilon_{i_1 i_2 \dots i_N} = 0$

Conclusion, all v_p are zero and hence the defined line in (2) is an instantaneous line of rotation.

What about N is even?

Obviously we can't construct a vector the way we did for the odd case.

5.39 p189 - Exercise 20

The equations 5.329 do not determine J_{nprq} uniquely. Why? As an alternative to 5.330, we can require J_{npqr} to be skew-symmetric in the last two suffixes. Show that this defines J_{nprq} uniquely as follows:

$$J_{nprq} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$$

Prove that J_{nprq} , as defined here, has the same symmetries as the covariant curvature tensor (cf. 3.115, 3.116) and that, for N=3, we have

$$I_{st} = \frac{1}{2} \epsilon_{snp} \epsilon_{trq} J_{nprq}, \quad J_{nprq} = \frac{1}{2} \epsilon_{snp} \epsilon_{trq} I_{st}$$

The equations 5.329, $h_{np} = J_{nprq}\omega_{rq}$ do not determine J_{nprq} uniquely because ω_{rq} is skew symmetric, so all elements at the positions $J_{np(rr)}$ can be chosen arbitrarily and still comply with the equation.

Consider now the expression

$$J_{nprq}^{'} = \frac{1}{2} \left(J_{nprq} - J_{npqr}^{'} \right) \tag{1}$$

$$\Rightarrow \qquad h'_{np} = J'_{nprq}\omega_{rq} \tag{2}$$

$$=\frac{1}{2}\left(J_{nprq}\omega_{rq}-J_{npqr}\omega_{rq}\right)\tag{3}$$

$$=\frac{1}{2}\left(J_{nprq}\omega_{rq}+J_{npqr}\omega_{qr}\right)\tag{4}$$

$$= \frac{1}{2} \left(J_{nprq} \omega_{rq} + J_{nprq} \omega_{rq} \right) \tag{5}$$

$$=h_{np} \tag{6}$$

So this expression $J_{nprq} = \frac{1}{2} \sum m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$ still describes the dynamical system and we note that this expression is skew-symmetric in the two last suffixes:

$$J_{np(rr)} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_r + \delta_{pr} z_n z_r - \delta_{nr} z_p z_r - \delta_{pr} z_n z_r \right) = 0$$
 (7)

$$J_{npqr} = \frac{1}{2} \sum_{r} m \left(\delta_{nq} z_p z_r + \delta_{pr} z_n z_q - \delta_{nr} z_p z_q - \delta_{pq} z_n z_r \right)$$
 (8)

$$= -\frac{1}{2} \sum_{n} m \left(-\delta_{nq} z_p z_r - \delta_{pr} z_n z_q + \delta_{nr} z_p z_q + \delta_{pq} z_n z_r \right)$$

$$\tag{9}$$

$$=-J_{nprq} \tag{10}$$

Symmetries to prove:

$$\begin{cases}
J_{nprq} = -J_{pnrq}, & J_{nprq} = -J_{npqr}, & J_{nprq} = J_{rqnp} \\
J_{nprq} + J_{nrqp} + J_{nqpr} = 0
\end{cases}$$
(11)

The second identity of (11) is already proven as J_{nprq} is skew-symmetric in the last two suffixes.

For the rest:

$$J_{nprq} = \frac{1}{2} \sum_{r} m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$$

$$\tag{12}$$

$$= -\frac{1}{2} \sum_{n} m \left(-\delta_{nr} z_p z_q - \delta_{pq} z_n z_r + \delta_{nq} z_p z_r + \delta_{pr} z_n z_q \right)$$

$$\tag{13}$$

$$=J_{pnrq} \tag{14}$$

and

$$J_{nprq} = \frac{1}{2} \sum_{n} m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right)$$

$$\tag{15}$$

$$J_{rqnp} = \frac{1}{2} \sum_{n} m \left(\delta_{rn} z_q z_p + \delta_{qp} z_r z_n - \delta_{rp} z_q z_n - \delta_{qn} z_r z_p \right)$$
(16)

$$=J_{pnrq} \tag{17}$$

and

$$J_{nprq} + J_{nrqp} + J_{nqpr} = \begin{cases} +\frac{1}{2} \sum m \left(\delta_{nr} z_p z_q + \delta_{pq} z_n z_r - \delta_{nq} z_p z_r - \delta_{pr} z_n z_q \right) \\ +\frac{1}{2} \sum m \left(\delta_{nq} z_p z_r + \delta_{rp} z_n z_q - \delta_{np} z_q z_r - \delta_{rq} z_n z_p \right) \\ +\frac{1}{2} \sum m \left(\delta_{np} z_r z_q + \delta_{qr} z_n z_p - \delta_{nr} z_q z_p - \delta_{qp} z_n z_r \right) \end{cases} = 0$$
 (18)

For the last part: From **5.33**, $(J_{nprq}^{'})$ being a not necessarily skew-symmetric tensor)

$$I_{st} = \frac{1}{2} J'_{nprq} \epsilon_{rqt} \epsilon_{snp} \tag{19}$$

or

$$I_{st} = \frac{1}{2} J'_{npqr} \epsilon_{qrt} \epsilon_{snp} \tag{20}$$

$$= -\frac{1}{2}J'_{npqr}\epsilon_{rqt}\epsilon_{snp} \tag{21}$$

Adding (19) and (21) gives

$$2I_{st} = \underbrace{\frac{1}{2} \left(J'_{npqr} - J'_{npqr} \right)}_{=J_{npqr}} \epsilon_{rqt} \epsilon_{snp}$$
 (22)

$$\Rightarrow I_{st} = \frac{1}{2} J_{npqr} \epsilon_{rqt} \epsilon_{snp} \tag{23}$$

And

$$I_{st}\epsilon_{trq}\epsilon_{snp} = \frac{1}{2}J'_{kjuv}\underbrace{\epsilon_{tuv}\epsilon_{trq}}_{=\delta_{ur}\delta_{vq} - \delta_{uq}\delta_{vr}} \underbrace{\epsilon_{skj}\epsilon_{snp}}_{\delta_{jp} - \delta_{kp}\delta_{jn}}$$

$$(24)$$

$$= -\frac{1}{2}J'_{npqr}\epsilon_{rqt}\epsilon_{snp} \tag{25}$$

expending the right product we get

$$I_{st}\epsilon_{trq}\epsilon_{snp} = \frac{1}{2}\left(J_{nprq} + J_{pnqr} - J_{npqr} - J_{pnrq}\right)$$
(26)

And considering the symmetries described previously we get

$$I_{st}\epsilon_{trq}\epsilon_{snp} = \frac{1}{2}4J_{nprq} \tag{27}$$

$$=2J_{nprq} \tag{28}$$

$$= 2J_{nprq}$$

$$\Rightarrow J_{nprq} = \frac{1}{2}I_{st}\epsilon_{trq}\epsilon_{snp}$$
(28)

