predicting drug-target binding affinity with graph neural networks

Presented by: Youssef Ezz Eldeen Ezzat

Directed By: Francesc Seratosa

Contents

- Introduction
- Paper
- Data representation
- Model
- Results

Introduction

- A virus encodes one or more proteases which are enzymes that spur the formation of new protein products, thus play crucial roles in virus replication
- proteases are important targets for the design and development of potent antiviral agents or drugs

Introduction

Binding affinity is the strength of the binding interaction between a single molecule (e.g., a virus protein) to its ligand or binding partner (e.g., a drug)

featurizing drug molecule

- In order to perform machine learning on molecules, we need to transform them into feature vectors that can be used as inputs to models
 - SMILES notation
 - Molecular graph

SMILES notation

- "Simplified Molecular-Input Line-Entry System"
- popular method for specifying molecules with text strings.
- by humans and computers
 - Methane: "C"
 - Ethanol: "CCO"
 - Benzene: "clccccl"
 - Glucose: "OC[C@@H]1OC@HC@@HC@H[C@H]1O"

molecular graph

- A molecular graph describes the set of atoms in a molecule and how they are bonded together
- G = (V,E), where V is the set of N nodes and E is the set of edges represented as an adjacency matrix A

An example of converting a benzene molecule into a molecular graph. Note that atoms are converted into nodes and chemical bonds into edges.

Previous Work

- collaborative filtering (2017): the SimBoost model uses the affinity similarities among drugs and among targets to build new features.
- DeepDTA model (2018): uses 1D representations and layers of 1D convolutions (with pooling) to capture predictive patterns within the data
- WideDTA model (2019):extension of DeepDTA in which the sequences of the drugs and proteins are first summarized as higher-order features

GraphDTA paper overview

- a new neural network architecture capable of directly modeling drugs as molecular graphs
- outperforms previous deep learning models.
- directly modeling drugs as molecular graphs

binding affinity measures

- The kinase dissociation constant(Kd)
 - measures the equilibrium between the ligand(drug)-protein complex and the dissociated components

$$PL \xrightarrow{K_d} P + L \qquad K_d = \frac{[P][L]}{[PL]}$$

- Where [P] is the free protein concentration
- [L] is the free ligand concentration
- [PL] is the protein-ligand complex

binding affinity measures

- The kinase Inhibition Constant(Ki)
 - represents the affinity of the drug molecule for its target receptor, specifically in the context of competitive inhibition.

binding affinity measures

- inhibitory concentration 50% (IC50)
 - the concentration at which the inhibitor causes a 50% inhibition of enzymatic activity
 - less precise than Ki or Kd
 - A lower IC50 value indicates a higher affinity of the drug for the receptor

$$0.5 = \frac{K_{\rm m} + [S]}{K_{\rm m} \left(1 + \frac{\rm IC_{50}}{K_{\rm i}}\right) + [S]} \qquad \rm IC_{50} = K_{\rm i} \left(1 + \frac{[S]}{K_{\rm m}}\right)$$

• [S] is the concentration of the natural substrate that competes with the inhibitor for binding to the target.

Bioactivity values found from ChEMBL for the imatinib-SRC pair

Drug	Type	Value	Units	Target
IMATINIB	Ki	31000	nM	SRC
IMATINIB	Kd	10000	nM	SRC
IMATINIB	IC50	100000	nM	SRC

- Benchmark dataset davis
- Benchmark dataset kiba
- In house dataset URV

- Benchmark dataset davis
 - Kd values in the Davis dataset were transformed into logspace (pKd) as: $pkd = -log_{10}(^{Kd}/_{1e9})$
 - ranging from 5.0 to 10.8

- Benchmark dataset davis
 - contains the binding affinities for all pairs of 68 drugs and 442 targets, total of 30056 interactions
 - 69% of which have affinity values of 10000 nM (pKd=5) indicating weak or no interaction.

- Benchmark dataset kiba
 - Kinase Inhibitor Bioactivity Data Set
 - binding affinity might be measured by Kd, Ki or IC50
 - integrates the information from IC50, Ki, and Kd measurements into a single bioactivity score

$$\text{KIBA} = \begin{cases} K_{\text{i}} \text{ adj} & \text{if IC}_{50} \text{ and } K_{\text{i}} \\ & \text{are present} \end{cases}$$

$$KIBA = \begin{cases} K_{\text{d}} \text{ adj} & \text{if IC}_{50} \text{ and } K_{\text{d}} \\ & \text{are present} \end{cases}$$

$$(K_{\text{i}} \text{ adj} + K_{\text{d}} \text{ adj})/2 \text{ if IC}_{50}, K_{\text{i}}, \text{ and } K_{\text{d}} \\ & \text{are present} \end{cases}$$

- Benchmark dataset kiba
 - measured as KIBA scores and ranging from 0.0 to 17.2
 - Total of most interactions between 10 and 15

train and test GCN-based model with davis dataset

optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	20036	
validation size	5010	
validation percentage	20.0 %	
MSE	0.25293395	

real affinity vs predicted affinity for model GCNNet on database davis

train and test GATGCN-based model with davis

optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	20036	
validation size	5010	
validation percentage	20.0 %	
MSE	0.27028632	
IM⊃E	0.27028032	

real affinity vs predicted affinity for model GAT_GCN on database davis

train and test GAT-based model with davis dataset

optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	20036	
validation size	5010	
validation percentage	20.0 %	
MSE	0.2513844	

train and test GinConv-based model with davis

8		
optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	20036	
validation size	5010	
validation percentage	20.0 %	
MSE	0.23514226	

real affinity vs predicted affinity for model GINConvNet on database davis

train and test GCN-based model with kiba dataset

ADAM	
0.0005	
1000	
512	
78836	
19709	
20.0 %	
0.2024536	

train and test GATGCN-based model with kiba

	AG .	
optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	78836	
validation size	19709	
validation percentage	20.0 %	
MSE	0.15026996	

train and test GAT-based model with kiba dataset

optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	78836	
validation size	19709	
validation percentage	20.0 %	
MSE	0.19964518	

train and test GINCONV-based model with kiba

4		
optimizer	ADAM	
learning rate	0.0005	
epochs	1000	
train batch size	512	
train size	78836	
validation size	19709	
validation percentage	20.0 %	
MSE	0.1673416	

real affinity vs predicted affinity for model GINConvNet on database kiba

Summary of paper results

model	dataset	MSE in paper	MSE obtained
GCN-based	davis	0.254	0.25
GATGCN-based	davis	0.245	0.27
GAT-based	davis	0.232	0.25
GINCONV-based	davis	0.229	0.24
GCN-based	kiba	0.179	0.2
GATGCN-based	kiba	0.147	0.15
GAT-based	kiba	0.139	0.2
GINCONV-based	kiba	0.139	0.17