A Rank-Constrained Optimization approach: Application to Factor Analysis

Ramón A. Delgado, Juan C. Agüero, Graham C. Goodwin

School of Electrical Engineering and Computer Science, The University of Newcastle, Australia.

- Handling the Rank Constraints
- Some Existing Representations
- A new representation of rank constraints
- Rank-Constrained Optimisation
- 5 Application to Factor Analysis
- 6 Conclusions

Motivation

why include rank constraints?

- Complexity of a model (e.g rank of a Hankel matrix)
- Low-Rank Decomposition (Principal Components Analysis)
- Recent interest on sparse representations.

Some Difficulties with rank constraints

$$rank \{X\} \le r$$

- Non-differentiable
- Nonlinear
- Combinatorial nature in optimization

Find a differentiable representation for the rank constraints, and hopefully reduce the number of nonlinearities.

Some existing representations By construction

• rank
$$\{X\} \le r \iff X = A \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} B$$
.

• rank $\{X\} \le r \iff X = UV$.

where
$$A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{n \times n}, U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{r \times n}$$
.

Disadvantage

Already assign a structure to *X*.

Some existing representations

Using the Characteristic Polynomial

Consider that $c_i(X)$, for i = 1, ..., n are the coefficients of the characteristic polynomial of X.

- $X \in \mathbb{S}^n_+$, $\operatorname{rank} \{X\} \le r \iff c_{n-r-1}(-X) = 0$.
- $X \in \mathbb{S}^n_+,$ [d'Aspremont 2003] $\operatorname{rank}\{X\} = \min_{v \in \mathbb{R}^n} \sum_{i=1}^n v_i$

s.t.
$$c_i(G)(1 - v_i) = 0$$
, $v_i \ge 0$ for $i = 1, ..., n$.

Disadvantages

- Only valid for $X \in \mathbb{S}^n_+$.
- $c_i(X)$ is, in general, nonlinear.

[Helmersson 2009]

Some existing representations used in optimization Closely related to our representation

I. Markovsky rank $\{X\} \le r \iff \exists R \in \mathbb{R}^{(m-r)\times m}$ such that $RX = 0_{m-r\times m}$ and R is full row rank

 $X \in \mathbb{R}^{m \times n}$, but a rank constraint is now imposed on an auxiliary matrix.

J. Dattorro
$$X \in \mathbb{S}^n_+$$
, rank $\{X\} \leq r \iff \exists W \in \Phi_{n,r} \text{ such that } \operatorname{trace}(WX) = 0$. where $\Phi_{n,r} = \{W \in \mathbb{S}^n, \ 0 \preceq W \preceq I, \operatorname{trace}(W) = n - r\}$

Only valid for $X \in \mathbb{S}_+^n$.

Main result1

Theorem

Let $X \in \mathbb{R}^{m \times n}$ then

$$\operatorname{rank} \{X\} \leq r \iff \exists \ W \in \Phi_{n,r}, \ \textit{such that} \ GX = 0_{m \times n}$$

where

$$\Phi_{n,r} = \{ W \in \mathbb{S}^n, \ 0 \leq W \leq I, \operatorname{trace}(W) = n - r \}$$

¹submitted for publication

Advantages

- Differentiable
- Freedom to impose a desired structure on *X* (e.g. Hankel).
- Generalisation of Dattorro's result
- Avoid some difficulties in Markovsky and d'Aspremont's results.

Disadvantage

We still have a bilinear condition $WX = 0_{m \times n}$.

Rank-Constrained Optimisation

An equivalent representation for rank-constrained optimization problems

$$\mathcal{P}_{rco}: \min_{\theta \in \mathbb{R}^p} f(\theta) \\ \text{s.t. } \theta \in \Omega \\ \text{rank } \{X(\theta)\} \leq r \end{aligned} \equiv \begin{array}{c} \mathcal{P}_{bi}: \min_{\theta \in \mathbb{R}^p} \min_{W \in \mathbb{S}^n} f(\theta) \\ \text{s.t. } \theta \in \Omega \\ X(\theta)W = 0_{m \times n} \\ W \in \Phi_{n,r} \end{array}$$

Rank-Constrained Optimisation

We have developed

- a local optimisation method
- For the case $X(\theta) \in \mathbb{S}^n_+$, a *global optimisation* method.

The bilinear constraint can be imposed in several ways:

$$X(\theta) \in \mathbb{R}^{m \times n}$$
 $||X(\theta)W|| = 0 \iff X(\theta)W = 0_{m \times n}$
$$X(\theta) \in \mathbb{S}^n_{+} \qquad \operatorname{trace}(X(\theta)W) = 0 \iff X(\theta)W = 0_{n \times n}$$

Factor Analysis

Consider a measured output $y_k \in \mathbb{R}^N$, factors $f_k \in \mathbb{R}^r$, idiosyncratic noise $v_k \in \mathbb{R}^N$, and a model:

$$y_k = Af_k + v_k \tag{1}$$

where $A \in \mathbb{R}^{N \times n}$ is a tall matrix.

$$f_k \sim \mathcal{N}(0, \Phi)$$
 (2)

$$v_k \sim \mathcal{N}(0, \Psi)$$
 (3)

Then, $y_k \sim \mathcal{N}(0, \Sigma)$, where Σ is given by

$$\Sigma = A\Phi A^{\top} + \Psi$$

Sparse Noise Covariance

- Existing approaches require Ψ diagonal.
 - $\Psi = \sigma^2 I$, then there is a closed-form solution, e.g. PCA.
 - \blacktriangleright Ψ diagonal, e.g. Maximum Likelihood (EM algorithm).
- Considering the advances on sparse representations. We propose to assume that Ψ is sparse.

$$\begin{array}{ll} \mathcal{P}_{rcofa}: & \min_{\Psi \in \mathbb{S}^N} \ \|\Psi\|_1 \\ & \text{subject to} \ \ \mathrm{rank} \ \{\Sigma - \Psi\} \leq r \\ & \Psi \succeq 0 \\ & \Sigma - \Psi \succeq 0 \end{array}$$

Numerical Example Local Optimization method

Consider r=3 factors, N=20 measured outputs and T=100 Samples, $\Psi_{ij}=(0.7)^{|i-j|}$. and the performance index

$$d(P_m) = 1 - \frac{\operatorname{trace}(AP_mA^\top)}{\operatorname{trace}(AA^\top)}$$

Method	$d(\cdot)$	Total Time [s]
PCA	0.1992	0.0136
RCO	0.1002	274.6732
EM	0.1330	0.0198

Table: Mean value over $N_{mc} = 100$ Monte Carlo simulations of $d(\cdot)$.

Conclusions

- We have developed a new representation of rank constraints.
 - Second-order differentiable.
 - Avoid several nonlinearities, excepting a bilinear constraint.
- We have developed two optimization algorithms.
 - Local Optimisation.
 - Global optimisation.
- We have applied the method:
 - Factor Analysis with Correlated Errors.
 - Sparse Control (tomorrow FrA04.2).

Thanks for your attention! Any questions?

Global Optimization Example

Consider r = 1 factor, N = 3 measured outputs and T = 100 Samples.

	$d(\cdot)$	$\ \widehat{\Psi}\ _1$	time [s]
RCO	0.066	4.46	23.83
RCO-G	0.066	<u>4.46</u>	310.19

	$d(\cdot)$	$\ vec(\widehat{\Psi})\ _1$	time [s]
RCO	0.165	11.12	43.20
RCO-G	0.218	<u>9.17</u>	1768.31

Solving the Optimisation Problem

Proposed method

Solve \mathcal{P}_{bi} iteratively.

In each iteration, solves a feasibility problem that deals with the bilinear constraint.

Given the estimate $\theta^m \in \Omega$, at iteration m

$$egin{array}{ll} \min_{ heta \in \mathbb{R}^p} \min_{W \in \mathbb{S}^n} & \|X(heta)W\| \ & ext{subject to} & f(heta) \leq f(heta^m) - \eta_m \ & heta \in \Omega \ & W \in \Phi_{n,r} \end{array}$$

Branch and Bound

ℓ_1 -norm

- Computationally efficient.
- Unintuitive to chose the sparse parameters
- Poor handling of group-constraints

ℓ_0 -norm

- Computationally more expensive.
- ℓ_0 -norm constraints have a clear interpretation.
- Can handle Group constraints.

ℓ_0 -norm equivalence

$$egin{aligned} \mathcal{P}_{\ell_0}: & \min_{ heta \in \mathbb{R}^p} \ f(heta) \ & ext{s.t.} \ \ heta \in \Omega \ & \| heta\|_0 \leq r \end{aligned}$$

$$\mathcal{P}_{eq}: \min_{ heta \in \mathbb{R}^p} \min_{w \in \mathbb{R}^p} f(heta)$$

s.t.
$$\theta \in \Omega$$

$$\theta \circ w = \mathbf{0}$$

$$0 \le w \le 1$$

$$\mathbf{1}^{\top} w = p - r$$

Delgado, Agüero & Goodwin 2014 (IFAC 2014).

Delgado, Agüero & Goodwin submitted to Automatica.

Concave Minimisation

Concave minimization may lead to a combinatorial problem. (e.g. matrix-rank function is quasi-concave on the Positive Semidefinite Cone, thus leads to Concave-minimisation and "reverse-convex" constraints)

