

DISTANCING LEARNING PROGRAMME

(Academic Session: 2019 - 2020)

PRE-MEDICAL: LEADER TEST SERIES / JOINT PACKAGE COURSE

TARGET: PRE-MEDICAL 2020

Test Type: MAJOR TEST # 03 Test Pattern: **NEET(UG)**

TEST DATE: 10 - 08 - 2020

ANSWER KEY

_		_	_				_	_	_											
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	2	4	3	4	3	1	4	3	2	3	3	1	2	2	2	3	1	2	4	4
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	4	3	1	1	1	1	1	2	4	3	1	3	4	1	4	4	4	2	4
Que.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	1	3	4	3	2	3	2	3	3	2	1	3	3	3	3	3	1	3	4	3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	2	4	4	4	4	4	1	1	4	3	3	1	2	1	4	2	3	1	2	4
Que.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	4	1	3	4	3	4	4	2	1	2	4	4	3	3	2	2	1	4	4	3
Que.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	3	2	4	4	1	3	1	3	2	4	2	3	2	3	2	4	4	1	2	4
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	3	2	1	2	1	2	2	1	2	1	1	1	4	1	3	3	2	4	2	2
Que.	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	1	3	3	3	1	3	4	1	2	3	2	2	3	2	2	4	1	2	1	2
Que.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	2	2	1	2	2	1	1	3	1	2	4	4	2	2	4	4	1	4	1	1

(HINT - SHEET)

1.
$$\tan \alpha = \frac{b \sin \theta}{a + b \cos \theta}$$

$$\Rightarrow \tan 45^\circ = \frac{2\sin 60^\circ}{a + 2\cos 60^\circ}$$

$$\Rightarrow$$
 a = $\sqrt{3} - 1$

2. Power of combination

$$P = P_1 + P_2 = 20 - 4 = 16D$$

Focal length of combination

$$F = \frac{1}{P} = \frac{1}{16}m = \frac{25}{4}cm$$

$$m_T = \frac{f - v}{f} = \frac{\frac{25}{4} - (-25)}{\frac{25}{4}} = 5$$

3.
$$B_{P} = \frac{\mu_{0}I}{4\pi a} \odot + \frac{\mu_{0}(2I)}{4\pi(2a)} \odot$$

$$B_P = \frac{\mu_0 I}{2\pi a} \odot$$

Point P lies along two segments of wires, magnetic field due that segments is zero.

4.
$$F \propto \frac{1}{R^{5/2}} \Rightarrow F = \frac{GMm}{R^{5/2}} = m\omega^2 R$$

$$\begin{split} \frac{GMm}{R^{5/2}} &= m \bigg(\frac{2\pi}{T}\bigg)^2 \, R \\ T^2 &\propto R^{7/2} \implies T \, \propto \, R^{7/4} \end{split}$$

$$T^2 \propto R^{7/2} \implies T \propto R^{7/4}$$

5.
$$\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}^r\right) = (8)^{\frac{5}{3}} = 32$$

6.
$$h' = H - \frac{4H}{10} = \frac{6H}{10} = \frac{6}{10} \times 10 = 6m$$

7. distance from starting point

$$= \frac{1}{2} \times (4+2) \times 4 - \frac{1}{2} \times (4+2) \times 2$$

$$= 12 - 6 = 6$$
 meter

- 8. Interference, diffraction and polarisation is the powerful evidence in support of wavetheory of light, further do according to options.
- 9. $W = MB(\cos\theta_1 - \cos\theta_2)$ Put $\theta_1 = 0^{\circ}$, $\theta_2 = 90^{\circ}$
- Using C = $n^{1/3}c \Rightarrow c = \frac{C}{n^{1/3}} = \frac{C}{(8)^{1/3}} = \frac{C}{2} = \frac{1}{2}\mu F$ 10.
- Period of PE = $\frac{1}{2}$ period of position 11.

$$\frac{4}{3}\pi(R^3 - r^3)\rho g = \frac{4}{3}\pi R^3 \rho_w g$$
$$9(R^3 - r^3) = R^3$$

$$r^3 = \frac{8R^3}{9}$$

- 13. $\tan \theta = \mu \Rightarrow \mu = \tan 60^{\circ} \Rightarrow \mu = \sqrt{3} = 1.732$
- **14.** Here $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{1/3}$

where $n = \text{Number of half lives} = \frac{1}{3}$

$$\Rightarrow \frac{N}{N_0} = \frac{1}{1.26} \Rightarrow \frac{N_U}{N_{Pb} + N_U} = \frac{1}{1.26}$$

$$\Rightarrow N_{Pb} = 0.26 N_{U} \Rightarrow \frac{N_{Pb}}{N_{U}} = 0.26$$

15.
$$\phi = \frac{\mu_0 I_C}{2\pi} \int_0^b x dx = MI$$

$$M = \frac{\mu_0 C}{2\pi} \ln(b/a)$$

16.
$$\Delta U = \frac{1}{2} \frac{C_1 C_2 (V_2 - V_1)^2}{(C_1 + C_2)}$$

$$= \frac{1}{2} \times \frac{(3 \times 5) \times 10^{-12} \times (500 - 300)^2}{(3 + 5) \times 10^{-6}}$$

$$= \frac{15 \times 10^{-12} \times 4 \times 10^{4}}{2 \times 8 \times 10^{-6}} = 0.0375 \text{ J}$$

17. $n \propto \frac{\sqrt{T}}{r}$

$$200 \propto \sqrt{\frac{T_1}{\ell}} \tag{1}$$

$$300 \propto \sqrt{\frac{T_2}{2\ell}} \tag{2}$$

$$\sqrt{\frac{T_2}{T_1}} = 3$$
 eqn (2) ÷ (1)

$$\frac{T_2}{T_1} = 9:1$$

18. Initially ice will absorb heat to raise it's temperature to 0°C then it's melting takes place If $m_i = \text{Initial mass of ice}$, $m_i' = \text{Mass of ice that}$ melts and $m_w = Initial mass of water$

By Law of mixture Heat gained by ice = Heat lost by water

$$\Rightarrow m_i \times c \times (20) + m_i' \times L = m_W c_W [20]$$

$$\Rightarrow 2 \times 0.5(2) + m_i' \times 80 = 5 \times 1 \times 20 \Rightarrow m_i' = 1 \text{kg}$$
So final mass of water = Initial mass of water + Mass of ice that melts = 5 + 1 = 6 kg.

19. First case:

$$\frac{1}{2}mv^2 = Fs \qquad \dots (1)$$

$$\frac{1}{2}\left(M + \frac{M}{2}\right)v^2 = Fs'$$
(2)

dividing eqn. (2) by eqn. (1), $\frac{s'}{s} = \frac{3}{2}$ or s' = 1.5 s

20.
$$E = \frac{hc}{\lambda} = 2.51 ev$$

D₁ & D₂ has less energy gap.

- 21. Only option (4) is false
- 22. $10I_1 = 15I_2 = 30I_3$

$$I_1 = \frac{3}{2}I_2$$

$$I_3 = \frac{1}{2}I_2$$

$$I_1 + I_2 + I_3 = 1.2$$

 $3I_2 = 1.2$

$$3I_2 = 1.2$$

$$I_2 = 0.4A$$

- **23.** By theory
- 24. $\text{Tv}^{\gamma-1} = \text{constant}$ $\gamma - 1 = .4 \Rightarrow \gamma = 1.4 \text{ diatomic gas}$
- 25. Average angular speed = $\frac{78+0}{2}$ = 39 rev/min As the turn table stops in 30 sec, hence revolutions made by it in this time = $39 \times \frac{1}{2}$ = 19.5

26.
$$24 = u(4) + \frac{1}{2}a(4)^2$$
 ...(1)

$$(24+64) = u(8) + \frac{1}{2}a(8)^2$$
 ...(2)

$$(1) \times 4 - (2), 8 = 8u \implies u = 1 \text{ m/s}$$

27.
$$\alpha = \frac{h_0}{f_0} = \frac{h_0}{100}$$

$$m_e = \frac{h_i}{h_0} = 1 + \frac{D}{f_e}$$

$$\Rightarrow \frac{10}{h_0} = 1 + \frac{24}{20} = \frac{44}{20}$$

$$h_0 = \frac{50}{11} \text{cm}$$

$$\alpha = \frac{h_0}{100} = \frac{50/11}{100} = \frac{1}{22} = 0.0455 \text{ rad}$$

28.
$$F_{m} = BI\ell \sin\theta$$

$$F_{m} = BI\ell_{\perp}$$

$$= 3 \times 5 \times \frac{5}{100} = 0.75 \text{ N}$$

29. $U = \frac{Q^2}{2C}$; in given case C increases so U will decrease

30.
$$\vec{r} = x\hat{i} + y\hat{j}$$

 $\vec{r} = A \cos \omega t \hat{i} + 2A \cos \omega t \hat{j}$

Here,

$$x = A \cos \omega t$$
 —(1)
 $y = 2A \cos \omega t$ —(2)
from eq (1) & (2)

$$y = 2x$$

31. Initial P.E = mgh =
$$0.1 \times 1 \times 4 = 4J$$

Energy loss per 2m on rough surface

=
$$\mu$$
mg s
= $0.1 \times 0.1 \times 10 \times 2 = 0.2$ J

So total No of rounds from B to C and C to B will be 10.

total distance travelled=
$$20 \times 3 - 1$$

= $60 - 1 = 59$

Let acceleration in I^{st} case is a_1 and that in second case is a_2

Now,
$$\frac{1}{2}a_1t^2 = \frac{1}{2}a_2(2t)^2 \implies a_2 = \frac{a_1}{4}$$
(i)

Clearly
$$a_1 = \frac{\mathsf{mgsin}\,\theta}{\mathsf{m}} = g \, \sin\theta$$
(ii)

and
$$a_2 = \frac{\text{mgsin}\theta - \mu \text{mgcos}\theta}{\text{m}} = g \sin\theta - \mu g$$

 $\cos\theta$

.....(iii)

From (i), (ii) and (iii),

we get $\mu = 0.75$.

33. Due to 10.2 eV photon one photon of energy 10.2 eV will be detected.

Due to 15 eV photon the election will come out of the atom with enery (15-13.6) = 1.4 eV.

34.
$$t = 2 \sec$$

$$I = \frac{5}{5}(1 - e^{-\frac{t}{\tau}})$$

$$= 1 (1 - e^{-1})$$

35. Maximum potential difference

$$= 19 \frac{\text{kV}}{\text{mm}} \times 0.01 \text{ mm} = 0.19 \text{ kV} = 190 \text{ V}$$

36.
$$n^1 = \left(\frac{v + v_s}{v - v_s}\right) = 600 \left(\frac{360}{300}\right) = 720 \text{ Hz}$$

37.
$$F = T\ell$$

= 0.075 × 30 × 10⁻²
= 2.25 × 10⁻² N

38. For a banked road,

$$N \cos \theta = mg$$

$$N \sin \theta = \frac{mv^2}{R}$$

or
$$\tan \theta = \frac{v^2}{Rg}$$

$$Y = (A + B).\overline{AB}$$

The given output equation can also be written as

 $Y = (A + B) \cdot (\overline{A} + \overline{B})$ (De morgan's theorem) = $A\overline{A} + A\overline{B} + B\overline{A} + B\overline{B} = 0 + A\overline{B} + \overline{A}B + 0 = \overline{A}B + A\overline{B}$ This is the expression for XOR gate.

$$V = 10V$$

$$\cos \phi = \frac{8}{10} = \frac{4}{5}$$

I leads V by φ

41.
$$V_a - 6 - 5 + 3 - 6 = V_b$$

 $V_a - V_b = 14 \text{ V}$

42.
$$\frac{V}{4L_1} = 3\frac{V}{2L_2}$$

$$\frac{L_1}{L_2} = \frac{1}{6}$$

43.
$$\frac{dQ}{dt} = \frac{KA}{l}d\theta = \frac{0.01 \times 1}{0.05} \times 30 = 6\text{J/sec}$$

Heat transferred in on day (86400 sec)

$$\theta = 6 \times 86400 = 518400 \text{ J}$$

Now Q = mL
$$\Rightarrow m = \frac{Q}{L} = \frac{518400}{334 \times 10^3}$$

$$= 1.552 \ kg = 1552g.$$

44. $I_z = 2I$

where,
$$I = \frac{MR^2}{4}$$

According to theorem of parallel axes, required moment of inertia about axis TT' is

$$I_{TT'} = I_z + MR^2$$

= 2I + MR² = 2I + 4I = 6I

45. Emitter is connected with both input and output so it is common emitter amplifier circuit.

46.
$$3\text{Mg}(\text{OH})_2 + 2\text{H}_3\text{PO}_4 \longrightarrow \text{Mg}_3(\text{PO}_4)_2 + 3\text{H}_2\text{O}$$

$$\frac{3 \times 58.3}{2 \times 98} = \frac{100}{\text{W}}, \text{ } \therefore \text{ W} = 112 \text{ g}$$

51.
$$\Delta T = \frac{1000 \times K_f \times w}{M_w \times W} \Rightarrow 10 = \frac{1000 \times 1.86 \times 25}{62 \times W}$$

 $(W_{glycol}$ remains constant on cooling; only water freezes)

$$\therefore$$
 W = 75 g

$$\therefore$$
 Ice separated = $100 - 75 = 25 \text{ g}$

52. The de Broglie wavelength is

$$\lambda = \frac{h}{mv} = \frac{(6.626 \times 10^{-34} \text{J s})}{(0.200 \text{ kg})\{5m/(60 \times 60 \text{ s})\}} = 2.4 \times 10^{-30} m$$

58. For spontaneous process

$$\Delta G = \Delta H - T \Delta S$$
 (should be negative)

$$-40.2 \times 10^3 + T \times 10.2 < 0$$

$$T < \frac{40.2 \times 1000}{40.2}$$

$$T < 727^{\circ}C$$

63.
$$Zn + NaOH(aq) \longrightarrow Na_{2}[Zn(OH)_{4}]$$

64. a.
$$HgCl^{\oplus} + Cl^{\ominus} \Longrightarrow HgCl_2$$
 ... K_1

b.
$$HgCl_2 + Cl^{\Theta} \longrightarrow HgCl_3^{\Theta}$$
 ... K_2

The eq. constant (k) for the reaction,

$$2\text{HgCl}_2 \Longrightarrow \text{HgCl}^{\oplus} + \text{HgCl}_3^{\Theta}$$

Can be obtained by reversing equation (a) and adding to equation (b).

$$K = \frac{1}{K_1} \times K_2 = \frac{K_2}{K_1} = \frac{8.9}{3 \times 10^6} \approx 3 \times 10^{-6}$$

- **70.** Let a g NH $_3$ is dissolved in 105 mL H $_2$ O or 105 g H $_2$ O
 - \therefore % by mass of NH₃ in solution = $\frac{a}{105 + a} = \frac{30}{100}$
 - \therefore a = 45 g
 - \therefore Weight of solution = 105 + 45 = 150 g
- **76.** $r^+ + r^- = \sqrt{3} \times \frac{a}{2}$ $\therefore a = \frac{2}{\sqrt{3}} \times 338 = 390.3 \text{ pm}$

77.
$$(d)_1 = d$$

 $(d)_2 = 0.75 d$

$$P_1 = 1$$
 atm; $T_1 = 27^{\circ}C = 300 \text{ K}$

$$P_2 = 1$$
 atm; $T_2 = ?$

$$\left(\frac{d_1}{d_2}\right) = \frac{P_1 \times T_2}{T_1 \times P_2} \text{ or } \frac{T_2}{T_1}$$

$$\therefore T_2 = \frac{d_1}{d_2} \times T_1 = \frac{d}{0.75d} \times 300 = 400K$$

82.
$$H-O-S-O-O-S-O-H \longrightarrow H_2SO_5 + \underbrace{H_2SO_4}$$

83.
$$N_2(g) + 2O_2(g) \longrightarrow 2NO_2(g); \Delta H = -X \text{ kJ ...}(i)$$

 $2NO(g) + O_2(g) \longrightarrow 2NO_2(g); \Delta H = -Y \text{ kJ ...}(ii)$
Subtracting equation (ii) from equation (i), we get $N_2(g) + O_2(g) \longrightarrow 2NO(g); \Delta H = Y - X$
or $\Delta_f H^{\Theta}(NO) = \frac{Y - X}{2} \text{ kJ mol}^{-1}$

89.
$$PbSO_4(s) \rightleftharpoons Pb^{+2}(aq) + SO_4^{2-}(aq) (K_{sp}) ...(i)$$

 $HSO_4^{\Theta}(s) \rightleftharpoons H^{\oplus}(aq) + SO_4^{2-}(aq) (K_a) ...(ii)$
Subtracting equation (ii) from (i), then

$$PbSO_4 + H^{\oplus}(aq) \Longrightarrow Pb^{2+}(aq) + HSO_4^{\Theta}(aq) (K_{eq})$$

$$K_{eq} = \frac{K_{sp}}{K_{o}} = \frac{1.8 \times 10^{-8}}{1 \times 10^{-2}} = 1.8 \times 10^{-6}$$

- **91.** NCERT (XI) Pg. # 18
- **106.** NCERT- Pg# 281, para-18.1.32
- **109.** NCERT (XIIth) Pg. # 265
- 123. NCERT (XII) Pg. # 137
- **125.** NCERT-Eng, Pg. # 50
- **131.** NCERT (XII) Pg.#182,183(E), 198,199(H)
- 134. NCERT (XII) Pg. # 140
- 135. NCERT (XI) Pg. # 102, 103
- **139.** NCERT Pg# 107, 111, Para-6.5
- 143. NCERT (XI) Pg. # 38, Para 3.4
- 147. NCERT XII Pg. # 29, 31
- **152.** NCERT (XII) Pg. # 34
- 153. NCERT (XII) Pg. # 60
- **156.** NCERT Pg. # 57
- **158.** NCERT XIth Pg # 91 & 92
- **159.** NCERT (XI) Pg. # 38
- **161.** NCERT-Eng, Pg. # 57
- **162.** NCERT (XII) Pg. # 139
- **164.** Module No. 5, Pg # 90
- **165.** NCERT Pg. # 53
- 172. NCERT (XII) Pg.#125