

第四章

常微分方程的数值解法

Numerical Solutions to Ordinary Differential Equations

概述

Chapter 4 Initial -value problems for ODE

Ø一阶常微分方程初值问题:

Problem
$$I: \hat{1} \frac{dy}{dx} = f(x,y)$$
 求函数 $y=y(x)$ 满足: $y'(x) = f(x,y(x))$

Ø f(x,y)在 $D=\{(x,y)|a \le x \le b, -\infty \le y \le \infty\}$ 上连续,且满足

Lipschitz**条件**: $\exists L, \forall y_1, y_2, \text{ s.t. } |f(x,y_1)-f(x,y_2)| \le L|y_1-y_2|$

则初值问题Problem I有唯一解。

②实际工程技术、生产、科研上会出现大量的微分方程问题 很难得到其解析解,有的甚至无法用解析表达式来表示, 因此只能依赖于数值方法去获得微分方程的数值解。

公HUST

•

Chapter 4 Initial -value problems for ODE

Ø 微分方程的数值解法:

- p不求y=y(x)的精确表达式,而求离散点x₀,x₁,...x_n处的函数值
- p设Problem I的解y(x)的存在区间是[a,b],初始点 $x_0=a$,取 [a,b]内的一系列节点 x_0 , x_1 ,..., x_n 。 $a=x_0 < x_1 < ... < x_n = b$,一般采用等距步长。

- p用数值方法,求得y(x)在每个节点 x_k 的值 $y(x_k)$ 的近似值,用 y_k 表示,即 $y_k \approx y(x_k)$,
- p这样y₀, y₁,...,y_n称为微分方程的数值解。
- p**求**y(x)——>**求**y₀, y₁,...,y_n

配HUST

Chapter 4 Initial -value problems for ODE

Ø@方法:采用步进式和递推法

将[a,b]n等分, $a = x_0 < x_1 < ... < x_n = b$, 步长 $h = \frac{b-a}{n}$, $x_k = a + kh$

$$\begin{cases} y_0 = y(x_0) \\ y_{n+1} = g(h, x_{n_i} y_{n_i} y_{n-1}, y_{n-2}, ..., y_{n-m}) \end{cases}$$

Ø 计算过程:

$$y_0 \rightarrow y_1 \rightarrow y_2 \rightarrow \cdots \rightarrow y_{n-m} \rightarrow y_{n-m+1} \rightarrow \cdots \rightarrow y_n \rightarrow y_{n+1} \rightarrow \cdots$$

- ☑ 怎样建立递推公式?
 - **ü** Taylor公式
 - ü数值积分法

WHUST

4.1 欧拉公式

Chapter 4 Initial -value problems for ODE

$$y'(x_n) \approx \frac{y(x_{n+1})-y(x_n)}{h}$$
 $h=x_{n+1}-x_n$

$$\therefore f(x_{n}, y(x_{n})) \approx \frac{y(x_{n+1}) - y(x_{n})}{h}.$$

$$\therefore y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

$$\begin{cases} y(x_0) = y_0 \\ y_{n+1} = y_n + hf(x_n, y_n) \end{cases} n = 0, 1, 2, \dots$$

S HUST

几何意义

Chapter 4 Initial -value problems for ODE

- 1. y(x)过点P₀(x₀,y₀)且 在任意点(x,y)的切线 斜率为f(x,y),
- 2. y(x)在点P₀(x₀,y₀)的 切线方程为:

$$y=y_0+f(x_0,y_0)(x-x_0)$$

在切线上取点 $P_1(x_1,y_1)$

$$\mathbf{y}_1 = \mathbf{y}_0 + \mathbf{h}\mathbf{f}(\mathbf{x}_0, \mathbf{y}_0)$$

y₁正是Euler 公式所求。

- 3. 类似2,过 P_1 以 $f(x_1,y_1)$ 为斜率作直线,近似平行于y(x)在 x_1 的 切线,在其上取点 $P_2(x_2,y_2)$,依此类推...
- 4.折线P₀ P₁ P₂ ...P_n...作为曲线y(x)的近似 ——欧拉折线法

SHUST

欧拉法(续)

-value problems for ODE

@用向后差商近似代替微商:

$$y'(x_{n+1}) \approx y[x_n, x_{n+1}] = \frac{y(x_{n+1}) - y(x_n)}{h} \quad h = x_{n+1} - x_n$$

$$\frac{1}{1} y' = f(x, y)$$

$$\therefore f(x_{n+1}, y(x_{n+1})) \approx \frac{y(x_{n+1}) - y(x_n)}{n} \Rightarrow y(x_{n+1}) \approx y(x_n) + hf(x_{n+1}, y(x_{n+1}))$$

$$\therefore \mathbf{y}_{n+1} = \mathbf{y}_n + \mathbf{hf}(\mathbf{x}_{n+1}, \mathbf{y}_{n+1})$$
 ——隐式欧拉公式

$$\begin{cases} y(x_0) = y_0 \\ y_{n+1} = y_n + hf(x_{n+1}, y_{n+1}) \end{cases} n = 0, 1, 2, \dots$$

注:用隐式欧拉法,每一步都需解方程

(或先解出火,,,1的显式表达式),但其稳定性好。

FHUST

欧拉法(续)

Chapter 4 Initial -value problems for ODE

$$\begin{array}{l}
 \dot{1} \ y' = f(x,y) \\
 \dot{1} \ y(x_0) = y_0
 \end{array}$$

@用中心差商近似代替微商:

$$y'(x_n) \approx y[x_{n-1}, x_{n+1}] = \frac{y(x_{n+1}) - y(x_{n-1})}{2h} \quad \Rightarrow f(x_n, y(x_n)) \approx \frac{y(x_{n+1}) - y(x_{n-1})}{2h}$$

$$\begin{cases} y(x_0) = y_0 \\ y_{n+1} = y_{n+1} + 2hf(x_n, y_n) \end{cases} n = 0, 1, 2, \dots$$
 — 二步欧拉法

注:计算时,先用欧拉法求出y₁,以后再用二步欧拉法计算。

THUST

欧拉法(续)

Chapter 4 Initial -value problems for ODE

公式

单步否 显式否

截断误差y(x_{n+1})-y_{n+1}

$$y_{n+1} = y_n + hf(x_n, y_n)$$

单步 显式

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

单步 隐式

$$y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$$

二步 显式

SHUST

局部截断误差

Chapter 4 Initial -value problems for ODE

定义1 假设yn=y(Xn),即第n步计算是精确的前提下,称 Rn+1=y(Xn+1)-yn+1为欧拉法的局部截断误差.

注:无yn=y(Xn)前提下,称Rn+1为整体截断误差。

定义2 若某算法的局部截断误差为O(hp+1),称该算法有p阶精度.

定义3 假设yn=y(Xn), y_{n-1}=y(X_{n-1}),称Rn+1=y(Xn+1)-yn+1为 二步欧拉法的局部截断误差。

定理 欧拉法的精度是一阶。

SHUST

•

局部截断误差

Chapter 4 Initial -value problems for ODE

定理 欧拉法的精度是一阶。

分析:证明其局部截断误差为O(h²),可通过Taylor展开式分析。

证明: Euler 公式为 $y_{n+1} = y_n + hf(x_n, y_n)$

 $$$\phi_{y_n=y(x_n)}$, $$\overline{\mathbf{FiE}}: y(x_{n+1})-y_{n+1}=O(h^2)$$

 $Q y_{n+1} = y_n + hf(x_n, y_n) = y(x_n) + hf(x_n, y(x_n)) \triangleq y'(x) = f(x, y(x))$

$$= y(x_n) + hy'(x_n)$$

 $\mathbf{Q} \ y(x_{n+1}) = y(x_n + h) = = y(x_n) + hy'(x_n) + \frac{y''(x)}{2!}h^2, x \in (x_n, x_{n+1})$

:
$$y(x_{n+1})-y_{n+1} = \frac{y''(x)}{2}h^2 = O(h^2)$$

M HUST

二步法的局部截断误差 y_{n+1}=y_{n-1}+2hf(x_n,y_n) Chapter 4 Initial value problems for ODE

定理 隐式欧拉法的精度是一阶,二步欧拉法的精度是二阶。

证明: 对二步欧拉法进行证明,考虑其局部截断误差,

$$\Rightarrow y_n = y(x_n), y_{n-1} = y(x_{n-1}),$$

$$y_{n+1} = y_{n-1} + 2hf(x_n, y_n) = y(x_{n-1}) + 2hf(x_n, y(x_n)) = y(x_{n-1}) + 2hy'(x_n)$$

$$\mathbf{Q} \ y(\mathbf{x}_{n+1}) = y(\mathbf{x}_n + \mathbf{h}) = = y(\mathbf{x}_n) + hy'(\mathbf{x}_n) + \frac{h^2}{2!}y''(\mathbf{x}_n) + \frac{y'''(\mathbf{x})}{3!}h^3, \mathbf{x} \in (\mathbf{x}_n, \mathbf{x}_{n+1})$$

$$y(x_{n-1})=y(x_n-h)=y(x_n)-hy'(x_n)+\frac{(-h)^2}{2!}y''(x_n)+\frac{y'''(h)}{3!}(-h)^3, h \in (x_{n-1},x_n)$$

将上两式左右两端同时相减:

$$\therefore y(x_{n+1}) - y(x_{n+1}) = 2hy'(x_n) + \frac{y''(x) + y''(h)}{3!}h^3 \qquad \therefore y(x_{n+1}) - y_{n+1} = O(h^3)$$

:二步欧拉法的局部截断误差为O(h³),其精度是二阶。

公HUST

•

Chapter 4 Initial -value problems for ODE

例: 求 $\frac{1}{1} \frac{dy}{dx} = y - \frac{2x}{y}$, x = 0.1, 0.2, L , 1.0 的近似值。

解: **这儿** $f(x,y) = y - \frac{2x}{y}$, $x_0 = 0, y_0 = 1, h = 0.1$

由欧拉公式 $y_{n+1} = y_n + hf(x_n, y_n)$, $y_0 = 1$ 得:

$$y_1 = y_0 + hf(x_0, y_0) = 1 + 0.1 (1 - \frac{0}{1}) = 1.1$$

$$y_2 = y_1 + hf(x_1, y_1) = 1.1 + 0.1 \cdot (1.1 - \frac{2 \cdot 0.1}{1.1}) = 1.191818$$

$$y_3 = y_2 + hf(x_2, y_2) = 1.277438$$

又其精确解为 $y = \sqrt{2x+1}$

整体误差 $e_{k+1} = y(x_{k+1}) - y_{k+1}$, 下面对其加以分析

A HUST

Chapter 4 Initial -value problems for ODE

$x_k \phi$	y , 0	$y(x_k)$ ϕ	e _k •
0.1 ₽	1.1 ₽	1.0954451 #	0.0045548 -
0.2 ↔	1.191818#	1.183216 #	0.0086022 =
0.3 +	1.2774379 -	1.2649111 #	0.012527
0.4 ₽	1.3582127 -	1.3416408	0.016572 -
0.5 ₽	1.4351330 -	1.4142136 @	0.0209194 -
0.6 +	1.5089664	1.4831397 -	0.0257267 #
0.7 ₽	1.5803384 #	1.5491933 #	0.0311906 #
0.8 +	1.6497836 #	1.6124519 #	0.037332 #
0.9 +	1.7177795 -	1.6722301	0.044594 #
1.0 ↔	1.7847710 0	1.7320508 🛭	0.0527201

从表中看出误差在逐步增加、积累

$$\Re_{0} = y(x_9) + hf(x_9, y(x_9)) = 1.7330815$$

局部截断误差 $y(x_{10}) - y_{00} = 0.00103$ 而误差是 $y(x_{10}) - y_{10} = 0.05272$

AT HUST

Chapter 4 Initial -value problems for ODE

 $\frac{\partial}{\partial x} \frac{dy}{dx} = f(x, y)$ $\ddot{i} y (x_0) = y_0$

求: y(x) ⇒ 数值解 y₀, y₁,...,y_n

公式

单步否 显式否 局部截断误差y(x_{n+1})-y_{n+1}

 $y_{n+1} = y_n + hf(x_n, y_n)$

单步 显式

 $O(h^2)$

y_{n+1}=y_n+hf(x_{n+1},y_{n+1}) 单步

隐式

 $O(h^2)$

 $y_{n+1} = y_{n-1} + 2hf(x_n, y_n)$ 二步 显式

 $O(h^3)$

定义1 假设yn=y(Xn),即第n步计算是精确的前提下,称

Rn+1=y(Xn+1)-yn+1为欧拉法的局部截断误差.

定义2 若某算法的局部截断误差为O(hp+1),称该算法有p阶精度.

SHUST

数值积分法

Chapter 4 Initial -value problems for ODE

$$\therefore \int_{x_n}^{x_{n+1}} y'(x) dx = \int_{x_n}^{x_{n+1}} f(x,y) dx \Rightarrow y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x,y(x)) dx$$

对右端的定积分用数值积分公式求近似值:

(1)用左矩形数值积分公式:

$$\int_{x_n}^{x_{n+1}} f(x,y(x)) dx \approx (x_{n+1} - x_n) f(x_n,y(x_n))$$

$$\therefore y(x_{n+1}) - y(x_n) \approx hf(x_n,y(x_n))$$

$$\Rightarrow y(x_{n+1}) \approx y(x_n) + hf(x_n,y(x_n))$$

$$\Rightarrow y_{n+1} = y_n + hf(x_n, y_n)$$

HUST

数值积分法

Chapter 4 Initial -value problems for ODE

$$\therefore \int_{x_n}^{x_{n+1}} y'(x) dx = \int_{x_n}^{x_{n+1}} f(x,y) dx \Rightarrow y(x_{n+1}) - y(x_n) = \int_{x_n}^{x_{n+1}} f(x,y(x)) dx$$

(2) 用梯形公式:

$$\int_{x_n}^{x_{n+1}} f(x,y(x)) dx \approx \frac{(x_{n+1} - x_n)}{2} [f(x_n,y(x_n)) + f(x_{n+1},y(x_{n+1}))]$$

$$\therefore y(x_{n+1})-y(x_n) \approx \frac{h}{2}[f(x_n,y(x_n))+f(x_{n+1},y(x_{n+1}))]$$

$$\therefore y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
 ——梯形公式

- \$ 梯形公式:将显示欧拉公式,隐式欧拉公式平均可得
- \$ 梯形公式是隐式、单步公式,其精度为二阶

SHUST

梯形公式的精度

Chapter 4 Initial -value problems for ODE

定理: 梯形公式 $y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$ 的精度是2阶的.

分析:证明其局部截断误差为O(h³);用二元函数的Taylor公式。

证:令y_n=y(x_n),由Talor公式有

$$f(x_{n+1},y_{n+1})\!=\!f(x_{n+1},y(x_{n+1})\!+\!\big(y_{n+1}-\!y(x_{n+1})\!\big)$$

=
$$f(x_{n+1},y(x_{n+1}))+f_y(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))$$
, **η介于** y_{n+1} **与** $y(x_{n+1})$ 之间

$$=y'(x_{n+1})+f_{v}(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))$$

$$=y'(x_n)+hy''(x_n)+O(h^2)+f_y(x_{n+1},\eta)(y_{n+1}-y(x_{n+1}))$$

=
$$f(x_{n'}y_n)+hy''(x_n)+f_y(x_{n+1'}\eta)(y_{n+1}-y(x_{n+1}))+O(h^2)$$

$$\nabla y(x_{n+1}) = y(x_n + h) = y(x_n) + hy'(x_n) + h^2y''(x_n) /2 + O(h^3)$$

$$=y_n+hf(x_n,y_n)+h^2y''(x_n)/2+O(h^3)$$

 $= y_n + hf(x_n, y_n)/2 + h[f(x_n, y_n) + hy''(x_n)]/2 + O(h^3)$

Chapter 4 Initial value problems for ODE
$$f(x_{n+1},y_{n+1}) = f(x_n,y_n) + hy''(x_n) + f_y(x_{n+1},\eta)(y_{n+1}-y(x_{n+1})) + O(h^2)$$

$$y(x_{n+1}) = y_n + hf(x_n,y_n)/2 + h[f(x_n,y_n) + hy''(x_n)]/2 + O(h^3)$$

$$= y_n + hf(x_n,y_n)/2 + h[f(x_{n+1},y_{n+1})]/2$$

$$- f_y(x_{n+1},\eta)(y_{n+1}-y(x_{n+1})) + O(h^2)]/2 + O(h^3)$$

$$= y_n + h[f(x_n,y_n) + f(x_{n+1},y_{n+1})]/2$$

$$+ hf_y(x_{n+1},\eta)(y(x_{n+1}) - y_{n+1})/2 + O(h^3)$$
从而y(x_{n+1}) = y_{n+1} + hf_y(x_{n+1},\eta)[y(x_{n+1})-y_{n+1}]/2 + O(h^3)
$$\therefore y(x_{n+1}) - y_{n+1} = hf_y(x_{n+1},\eta)[y(x_{n+1})-y_{n+1}]/2 + O(h^3)$$

$$\therefore y(x_{n+1}) - y_{n+1} = O(h^3)/[1 - hf_y(x_{n+1},\eta)/2] = O(h^3)$$

$$\therefore # \mathbb{K} 公式的截断误差为O(h^3) , 其精度是2阶。$$

梯形公式的应用

Chapter 4 Initial -value problems for ODE

例4.1 用梯形公式求初值问题的 $\frac{dy}{dx} = y$, y(0) = 1.

解: 取h=0.01, x₀=0, y₀=y(0)=1. 则 y(0.01)≈y₁

f(x,y)=y, **由梯形公式**,

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})] = y_n + \frac{h}{2} [y_n + y_{n+1}] \Rightarrow y_1 = y_0 + \frac{h}{2} [y_0 + y_1]$$

$$y_1 = \frac{1 + \frac{h}{2}}{1 - \frac{h}{2}} y_0$$
 基于幂级数理论 $y_1 = (1 + \frac{h}{2})(1 + \frac{h}{2} + \frac{h^2}{4} + ...) y_0$

$$\approx (1 + \frac{h}{2})^2 + \frac{h^2}{4} = 1.01005$$

解析解
$$y=e^x$$
 $y(0.01)=e^{0.01}=1+0.01+\frac{0.01^2}{2!}+\frac{0.01^3}{3!}+...$ $\approx 1+0.01+\frac{0.01^2}{2!}=1.01005$

S HUST

欧拉	公式的比较 Chapter 4 Initial -value problems for ODE		
欧拉法	最简单,精度低		
隐式欧拉法	稳定性好		
二步欧拉法	显式, 但需要两步初值, 且第2个初值只能由 其它方法给出,可能对后面的递推精度有影响		
梯形公式法	精度有所提高,但为隐式,需迭代求解,计算量大		
	HW: p.116 #3, # 证明隐式欧拉法的精度为一阶		
HUST			