FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Opavia - Linka na výrobu sušenek Oreo

Obsah

1	Úvod	2			
	1.1 Zdroje	2			
	1.2 Cîle studie	2			
2	Rozbor tématu a použitých technologií	2			
	2.1 Analýza současného výrobního procesu	2			
	2.2 Návrh změn	2			
	2.1 Analýza současného výrobního procesu	2			
3	Koncept modelu Architektura simulačního modelu				
4					
5	Simulační experiment a jeho průběh				
	5.1 Postup experimentování	4			
	5.1 Postup experimentování	5			
6	Závěr	6			

1 Úvod

Tato studie se zaměřuje na analýzu a optimalizaci výrobního procesu v potravinářském výrobním podniku[1], konkrétně v továrně Opavia[2] na sušenky Oreo. Tato továrna je klíčovým výrobním zařízením specializujícím se na výrobu rozmanitého sortimentu sušenek s důrazem na kvalitu a autentičnost.

1.1 Zdroje

Využili jsme znalosti z brigádnické práce v továrně Opavia na lince sušenkách Oreo společně s informacemi od ostatních zaměstnanců.

1.2 Cíle studie

Cílem této studie je analyzovat a optimalizovat výrobní proces linky na sušenky Oreo s ohledem na efektivitu v případě poruchy strojů. Konkrétně se zaměříme na stanovení ideálního počtu zaměstnanců, kteří budou připraveni převzít práci stroje v případě poruchy a minimalizovat tak dobu, po kterou je výrobní linka mimo provoz.

2 Rozbor tématu a použitých technologií

2.1 Analýza současného výrobního procesu

Před započetím navrhovaných změn jsme provedli detailní analýzu současného výrobního procesu továrny na sušenky Oreo. Využili jsme znalosti z brigádnické práce a získané informace od ostatních zaměstnanců. Identifikovali jsme klíčové fáze výroby, časová zpoždění a oblasti, kde lze dosáhnout lepší efektivity.

2.2 Návrh změn

Na základě analýzy jsme navrhli koknrétní změny v procesu s cílem zlepšít efektivitu a kvalitu výroby. Diskutovali jsme o možných úpravách výrobní linky a distribuce práce mezi zaměstnanci.

2.3 Technologie a Jazyky

Pro implementaci jsme zvolili programovací jazyk C/C++. Pro simulaci jsme použili knihovnu Simlib [3], která nám zjednodušila implementaci. Technická dokumentaca byla napsána v IATFXu

3 Koncept modelu

Pro vyjádření konceptuálního modelu využijeme grafických prostředků. Na obrázku 1 je zobrazeno schéma systému, které vizualizuje klíčové části výrobního procesu linky na sušenky Oreo. Toto schéma identifikuje fáze výroby, propojení mezi jednotlivými částmi a klíčové proměnné ovlivňující proces.

Obrázek 1: Petriho síť

Tento obrázek znázorňuje model Petriho sítě, který zobrazuje proces výroby sušenek oreo.

4 Architektura simulačního modelu

Použité třídy:

• Třída susenky

Tato třída modeluje sérii kroků při výrobě sušenek, simulující přípravu surovin, míchání těsta, formování těsta, pečení a chlazení. Každá instance třídy *susenky* reprezentuje jednu várku sušenek.

• Třída krem

Tato třída modeluje sérii kroků při výrobě krému, simulující přípravu surovin, míchání krému a odležení krému. Každá instance třídy krem reprezentuje jednu várku krému.

• Třída sestaveni

Třída představuje simulaci sestavování sušenek s krémem. Ve smyčce je prováděna kontrola, zda je k dispozici alespoň jedna várka sušenek a alespoň jedna várka krému. Při splnění podmínky jsou aktivovány nové instance tříd susenky a krem pro simulaci další várky.

• Třída kontrolaKvality

Třída představuje simulaci procesu kontroly kvality výrobku. Smyčka provádí kontrolu, zda je k dispozici alespoň jedna sestavená várka. Po dokončení kontroly sníží počet várek sestavených sušenek a zvýší počet provedených kontrol kvality.

• Třída baleni

Tato třída modeluje proces balení sušenek v nekonečné smyčce, dokud jsou k dispozici provedené kontroly kvality. Po provedení balení je počet kontrol snížen a počet úspěšně zabalených sušenek zvýšen.

• Třída baleniDoKrabice

Tato třída představuje simulaci procesu balení sušenek. Pokud je stroj na balení sušenek mimo provoz, bude várka přesunuta na zaměstnance, v opačném případě zabaluje krabice stroj.

• Třída zamestnanciBali

Tato třída modeluje jednotlivého zaměstnance kteří zabalují krabici. Je to pomocná třída pro třídu *zamestnanciLinka*, která když zaměstnanci mají co zabalovat a zároveň je stroj v poruše, aktivuje novou instanci třídy *zamestnanciBali*

• Třída oprava

Třída slouží pro opravení stroje, který je porušen, která po daném čase nastaví proměnnou jeVPoruse na false, a další krabice bude moct zabalovat stroj.

• Třída porucha

Třída slouží pro označení stroje za porušený. Pokud je porušen, nastaví proměnnou je VPoruse na true, a další krabice budou muset zabalovat zaměstnanci.

5 Simulační experiment a jeho průběh

Cílem experimentu je stanovení ideálního počtu zaměstnanců, kteří budou připraveni převzít práci stroje v případě poruchy a minimalizovat tak dobu, po kterou je výrobní linka mimo provoz.

5.1 Postup experimentování

Experimentování bude probíhat systematickým a organizovaným postupem s cílem nalézt ideální počet zaměstnanců pro rychlý a efektivní zásah v případě poruchy. Následující postup experimentování bude využíván stanovením počátečního bodu. Začneme s jedním zaměstnancem připraveným převzít práci stroje v případě poruchy. Tato situace bude sloužit jako referenční bod pro porovnání. Postupně zvyšujeme počet zaměstnanců na postu až hodnoty kde nebude zbývat zabalit ani jedna krabice.

Počet zaměstnanců	Zabalil stroj(palet)	Zabalil zaměstnanec(palet)	chybí zabalit(krabic)
1	617	76	30545
2	617	153	22859
3	601	230	16778
4	601	307	9095
5	615	377	623
6	606	392	0

Testování počtu zaměstnanců pro 100 000 minut

5.2 Závěr experimentů

Byl testován počet zaměstnanců v závislosti na počtu krabic, který chybí zabalit. Experimentovali jsme do doby než byla hodnota rovna nule a bylo tím dosaženo našeho cíle. Cíl byl dosažen právě na počtu 6 zaměstnanců.

6 Závěr

Studie zaměřená na optimalizaci výrobního procesu továrny Opavia v Opavě poskytla důležité poznatky ohledně ideálního počtu zaměstnanců, kteří jsou schopni efektivně převzít úlohu stroje v případě jeho poruchy. Analýza současného stavu a konceptuální model ukázaly, že optimální počet zaměstnanců pro tuto úlohu je 6.

Celkově lze konstatovat, že navržený model zaměstnanců, kteří přebírají úlohu stroje v případě jeho poruchy, přináší nejen zvýšení efektivity výrobního procesu, ale také zajištění stabilitu a kontinuity produkce, což představuje klíčový krok k udržení továrny Opavia v dnešním dynamickém potravinářském průmyslu.

Reference

[1] Hrubý, M.: Zadání projektu 2023/2024. Online, 2023.
 URL http://perchta.fit.vutbr.cz:8000/vyuka-ims/56

[2] Opavia: Opavia. Online, 2023. URL https://www.opavia.info/cz/

[3] Peringer, P.: Simlib. online, 2023.
URL https://www.fit.vutbr.cz/~peringer/SIMLIB/