Modeling morphological epenthesis

Andrija Petrović Department of Linguistics, Stony Brook University

andrija.petrovic@stonybrook.edu

University of Arizona DSP Linguistics Colloquium, Feb 18 2021

Classical epenthesis

• Spanish

```
/stop/ > [estop]
```

• Northwestern Catalan (Artés 2013)

 $/l\#ma_{s}/$ > [əlmár] 'the sea' (f.)

• Northwestern Catalan (Artés 2013)

```
/l\#ma_f/ > [əlmár] 'the sea' (f.)

/l\#a_fb_fe/ > [lar\beta_fe] 'the tree' (m.)
```

• Northwestern Catalan (Artés 2013)

```
/l\#ma_f/ > [əlmár] 'the sea' (f.)

/l\#a_fb_fe/ > [lar\beta_fe] 'the tree' (m.)

/l\#pa_fe/ > [lopá_fe] 'the father' (m.)
```

• Valencian hypocoristics (Artés 2014)

Name	Central Catalan	Valencian		
Agustina	Tina	Tina		
Francisco	Cisco	Cisco		
Isabel	Bel	Bela		
Miquel	Quel	Quelo		
Manel	Nel	Nelo		
Rosario	Sari	Sari		

• Brazilian Portuguese (Bachrach & Wagner 2007)

/korea/ > [koreja] 'Korea'

• Brazilian Portuguese (Bachrach & Wagner 2007)

```
/korea/ > [koreja] 'Korea'

sofá + inho > sofazinho 'little sofa'

café + al > cafezal 'coffee grove'
```

• Spanish diminutives (Crowhurst 1992, Norrmann-Vigil 2012)

```
gatito
gato
                  bacalaíto
bacalao
                  cablecito
                                     madre
                                                        madrecita
cable
sofá
                  sofacito
                                     comadre
                                                        comadrita
                  camioncito
camión
lápiz
                  lapicito
                  pececito
pez
```

- Classical epenthesis: motivated by phonology
- Non-canonical epenthesis: morphologically influenced

Inserted Elements	classical	non-canonical	
	epenthesis	epenthesis	
semantic <u>function</u>	-	-	
presence is phonologically	+	+	
motivated			
distribution is influenced	-	+	
by morphology			
quality is influenced by	-	+	
morphology			

• morphological processes are regular (Karttunen et al. 1992), most often subregular (Chandlee 2017)

• morphological processes are regular (Karttunen et al. 1992), most often subregular (Chandlee 2017)

• A function is regular provided the memory required for the computation is bounded by a constant, regardless of the size of the input.

(Heinz 2018)

• Regular relations can be specified using (ordered sets of) *rewrite rules* (SPE-style)

In phonology and morphology:

- non-regular patterns are unattested (e.g. 'majority rule' in Bakovic 2000)
- human subjects fail to learn non-regular patterns in artificial grammar learning experiments (e.g. Finley 2008)

• The Chomsky hierarchy

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

- Syntax is context-free 😊
- DM is a tree-based theory, but can be formalized over strings (Ermolaeva & Edmiston 2018)
 - yield function flattens trees, retaining necessary boundary symbols
- In terms of computational power, W&P morphology is equivalent to a collection of regular relations (Karttunen 2003)

Proposed model

- Boolean Monadic Recursive Schemes (BMRS)
 - incorporates the observation that morphology is regular (Karttunen et al. 1992, Chandlee 2017)
 - unlike FSTs, captures linguistically significant generalizations we can use representations that are common in linguistics (Chandlee & Jardine 2020)
 - phonological, morphosyntactic features
 - Pāṇini's Principle (= Elsewhere condition) has no obvious finite-state implementation (Karttunen 2003), whereas it is directly captured with BMRS's 'if...then...else' syntax

- primitives:
 - boolean values \top and \bot
 - monadic predicates P(t) take a single argument t, and return \top or \bot

- primitives:
 - boolean values \top and \bot
 - monadic predicates P(t) take a single argument t, and return T or \bot

 $I = \{a(t), ..., z(t), [hyp](t), \bowtie(t), \bowtie(t), +(t)...\}$

	1	2	3	4	5	6	• • •
	×	t	е	1	е	+	• • •
e(x)	1	Т	Т		Т	上	
$\rtimes(x)$	Т	\perp			Т	Т	
1(p(x))	上				Т		
1(s(s(x)))		Т			Т	Т	

• Northwestern Catalan:

• Valencian:

```
(agus) tina[f] + [hyp] \rightarrow tina   (isa) bel[f] + [hyp] \rightarrow bela
a_o(x) = if +(x) then
              if [hyp](s(x)) then
                      if [f] (p(x)) then NOTa(p(p(x))) else \perp
               else ⊥
       else a(x)
out(x) = if \#(x) then \bot else
```

if feat(x) then \perp else \top

• Valencian:

```
(ma) nel[m] + [hyp] \rightarrow nelo
\circ_{\circ}(x) = \text{if } +(x) \text{ then}
                  if [hyp](s(x)) then
                          if [m] (p(x)) then NOTo(p(p(x))) else \bot
                  else ⊥
         else \circ(x)
out(x) = if \#(x) then \bot else
            if feat(x) then \perp else \top
```

• Brazilian Portuguese:

```
sofa+inho[dim] \rightarrow sofazinho

[dim](x) = if seg(x) then [dim](s(x)) else \bot

z_o(x) = if + (x) then

if [dim](s(x)) then

if V(s(x)) then V(p(x)) else \bot

else \bot

else \bot
```

• Spanish:

```
#sofa#+ito[dim] → sofasito
                                                         #pes#+ito[dim] → pesesito
s_{o}(x) = if +(x) then
                   if \circ(p(p(x))) then \perp else
                   if a(p(p(x))) then \perp else if C-n, r(p(p(x))) then \perp else \perp
          else s(x)
e_{\circ}(x) = \text{if } \#(x) \text{ then MONO}(p(x))
out(x) = if TERM(x) then \perp else
            if feat(x) then \bot else
            if symb(x) then \perp else \top
```

Conclusions

- Assuming morphological epenthesis enables us to express the generalizations explicitly and overtly
- A means to avoid stipulating listed allomorphy
- BMRSs can directly capture morphological and phonological generalizations, retaining the computationally restrictive nature of such processes
- Intuitive (? ②), easily implementable, extendable to a wider range of phenomena
- We can account for the data in a very direct and parsimonious way

Team Epenthesis

Mark Aronoff

Ji Yea Kim

Veronica Miatto

Sedigheh Moradi

Thank you!

References

- Artés, E. (2013). Morphological Epenthesis in Romance: A Case for Lexical Conservatism. Poster presented at the 39th Incontro di Grammatica Generativa
- Artés, E. (2014, March). Valencian hypocoristics: when morphology meets phonology. In *Proceedings of the Annual Meetings on Phonology* (Vol. 1, No. 1).
- Bachrach, A., & Wagner, M. (2007). Syntactically driven cyclicity vs. output-output correspondence: the case of adjunction in diminutive morphology. *U. Penn Working Papers in Linguistics*, 10(1).
- Bakovic, E. (2000). *Harmony, dominance and control* (Doctoral dissertation).
- Chandlee, J. (2017). Computational locality in morphological maps. *Morphology*, 27:599–641.
- Chandlee, J., & Jardine, A. (2020). Recursive schemes for phonological analysis. *Unpublished ms., Haverford College and Rutgers University. Available at* http://adamjardine.net/files/chandleejardineBMRSms.pdf
- Crowhurst, M. J. (1992). Diminutives and augmentatives in Mexican Spanish: a prosodic analysis. *Phonology*, 9(2), 221-253.
- Ermolaeva, M., & Edmiston, D. (2018). Distributed morphology as a regular relation. *Proceedings of the Society for Computation in Linguistics*, *I*(1), 178-181.
- Finley, S. (2008). Formal and cognitive restrictions on vowel harmony (Doctoral dissertation).
- Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman, L. and Plank, F., editors, *Phonological Typology*, Phonetics and Phonology, chapter 5, pages 126–195. De Gruyter Mouton.
- Karttunen, L. (2003). Computing with realizational morphology. In *International Conference on Intelligent Text Processing and Computational Linguistics* (pp. 203-214). Springer, Berlin, Heidelberg.
- Karttunen, L., Kaplan, R. M., & Zaenen, A. (1992). Two-level morphology with composition. In COLING 1992 Volume 1: The 15th International Conference on Computational Linguistics.
- Norrmann-Vigil, I. (2012). Accounting for variation of diminutive formation in Porteño Spanish. *Mester*, 41(1).
- Repetti, L., Moradi, S. & Aronoff, M. (2018). *Epenthesis and Morphology in Romance*. Presented at LSRL 48, York University, Toronto.