DSC 214 Topological Data Analysis

Topic 3: Simplicial Homology

Instructor: Zhengchao Wan

Overview

Review of algebraic tools

- (Simplicial) homology groups
 - a way to quantify topological features
- Notations
 - Chains, cycles, and homology groups
- Matrix view
 - Matrix reduction algorithm

Motivating examples

▶ *i*th homology "counts the number of *i* dimensional holes" in a topological space

$$\dim H_0 = 5$$
$$\dim H_1 = 0$$

$$\dim H_0 = 1$$
$$\dim H_1 = 3$$

$$\dim H_0 = 1$$
$$\dim H_1 = 1$$

Motivating examples

▶ *i*th homology "counts the number of *i* dimensional holes" in a topological space

$$\dim H_0 = 1$$

 $\dim H_1 = 2$
 $\dim H_2 = 1$

ith homology has a vector space structure!

Part 0: Review of algebraic tools

Group

- A **group** is a tuple (G, +) where G is a set and $+: G \times G \to G$ is a binary operation
 - Associativity a + (b + c) = (a + b) + c
 - There exist $0 \in G$ such that a + 0 = 0 + a = a
 - For any $a \in G$, there exist $-a \in G$ such that a + (-a) = 0
- If G further satisfies the following property, then we call (G, +) an abelian group
 - Commutativity a + b = b + a

Examples of groups

- \triangleright (\mathbb{Z} , +) is an abelian group
- ightharpoonup (\mathbb{R} , +) is an abelian group
- $(GL_n(\mathbb{R}), \cdot)$ is a non-abelian group
- Rubik's cube group

Ring and Field

- A **ring** is a tuple $(F, +, \times)$ where (F, +) is an abelian group and $\times : F \times F \to F$ is another binary operation such that
 - Associativity $a \times (b \times c) = (a \times b) \times c$
 - There exist 1 in F such that $a \times 1 = a$
 - Distributivity $a \times (b + c) = (a \times b) + (a \times c)$
- $(F, +, \times)$ is called a **field** if
 - For any $a \neq 0$ in F, there exists $a^{-1} \in F$ such that $a \times a^{-1} = 1$
 - $a \times b = b \times a$

Examples of fields

- Rational numbers $(\mathbb{Q}, +, \times)$
- Real numbers $(\mathbb{R}, +, \times)$
- Complex numbers $(\mathbb{C}, +, \times)$
- Finite fields
 - For any prime number p, $\mathbb{Z}_p = \{0,1,...,p-1\}$
 - $+, \times \text{modulo } p$
 - \triangleright (\mathbb{Z}_p , +, \times) is a field

The most important example in this class: \mathbb{Z}_2

 $\mathbb{Z}_2 = \{0,1\}$ is the smallest field

+	0	1
0	0	1
1	1	0

X	0	1
0	0	0
1	0	1

Vector space

- A vector space over a field *F* is a set *V* of vectors with operations
 - ▶ Vector addition $V \times V \rightarrow V \ (v, w) \mapsto v + w$
 - ▶ Scalar multiplication $F \times V \rightarrow V (\lambda, v) \mapsto \lambda v$
- Satisfying
 - (V, +) is an abelian group
 - $\lambda(u+v) = \lambda u + \lambda v \text{ and } (\lambda + \mu)v = \lambda v + \mu v \text{ and } \lambda(\mu v) = (\lambda \mu)v$
 - 1v = v

Examples of vector spaces

- $ightharpoonup \mathbb{R}^d$ is a vector space over \mathbb{R} with operations
 - $(x_1, ..., x_d) + (y_1, ..., y_d) = (x_1 + y_1, ..., x_d + y_d)$
 - $\lambda(x_1, ..., x_d) = (\lambda x_1, ..., \lambda x_d)$

- $\mathbb{Z}_2^d = \{(x_1, ..., x_d) | x_i \in \{0,1\}\}$ is a vector space over \mathbb{Z}_2 with operations
 - $(x_1, ..., x_d) + (y_1, ..., y_d) = (x_1 + y_1, ..., x_d + y_d) \mod 2$
 - $\lambda(x_1, ..., x_d) = (\lambda x_1, ..., \lambda x_d)$

Basis and Dimension

- Let *V* be a vector space over *F*
- A finite subset $W = \{w_1, ..., w_n\} \subset V$ is linearly independent if
 - $\lambda_1 w_1 + \dots + \lambda_n w_n = 0 \text{ iff } \lambda_1 = \dots = \lambda_n = 0$
- W is **spanning** if for any $v \in V$, there exist $\lambda_1, ..., \lambda_n \in F$ such that
 - $\lambda_1 w_1 + \dots + \lambda_n w_n = v$
- ▶ *W* is a **basis** for *V* if it is linearly independent and spanning. We call *n* the dimension of *V*, denoted by dim *V*

Quotient is a way of identifying/collapsing points

Quotient topological space

Quotient

- Let V be a vector space and $W \subset V$ be a linear subspace.
- ▶ An equivalence relation \sim on V:
 - $v \sim u \text{ iff } v u \in W$
 - Equivalence class $[v] = \{u \in V | v u \in W\}$
 - ▶ Think of information along directions in *W* as **redundant**
- ▶ The quotient of *V* by *W* is the set $V/W = \{[v] | v \in V\}$ with
 - Vector addition [v] + [u] := [v + u]
 - Scalar multiplication $\lambda[v] := [\lambda v]$

Quotient

- Let V be a vector space and $W \subset V$ be a linear subspace.
- \blacktriangleright dim $V/W = \dim V \dim W$

• Examples: $\mathbb{R}^3/\mathbb{R} \cong \mathbb{R}^2$, $\mathbb{R}^3/\mathbb{R}^2 \cong \mathbb{R}$

Part 1: Simplicial Homology

- \blacktriangleright Given a simplicial complex K, a p-chain is
 - A formal sum of *p*-simplices $c = \sum c_i \sigma_i$
 - ightharpoonup Coefficients c_i come from a ring
 - In what follows, we use \mathbb{Z}_2 coefficients
 - ▶ i.e, $c_i \in \{0, 1\}$, equipped with *modulo-2* addition
 - thus a *p*-chain is just a **subset** of *p*-simplices!

- Given a simplicial complex K, a p-chain is
 - A formal sum of *p*-simplices $c = \sum c_i \sigma_i$
 - ▶ Under \mathbb{Z}_2 -coefficients: a collection of *p*-simplices
- ▶ p-th *chain group* of *K*
 - $C_p(K)$: collection of p-chains with operation +

$$ho$$
 $c=\sum c_i\sigma_i$, and $c'=\sum {c'}_i\sigma_i$, then

$$c + c' = \sum c_i \sigma_i + \sum c'_i \sigma_i = \sum \left[\left(c_i + c'_i \right) \bmod 2 \right] \sigma_i$$

- Given a simplicial complex K, a p-chain is
 - A formal sum of *p*-simplices $c = \sum c_i \sigma_i$
 - ▶ Under \mathbb{Z}_2 -coefficients: a collection of *p*-simplices
- ▶ p-th *chain group* of *K*
 - $C_p(K)$: collection of *p*-chains with operation +

$$ho c = \sum c_i \sigma_i$$
, and $c' = \sum c'_i \sigma_i$, then

$$c + c' = \sum c_i \sigma_i + \sum c'_i \sigma_i = \sum [(c_i + c'_i) \mod 2] \sigma_i$$

- ▶ Remark: when coefficients comes from \mathbb{Z}_2 , the chain group $C_p(K)$ is a vector space with basis $\{p \text{simplices } \sigma \in K\}$
 - \rightarrow dim $C_p(K) = n_p$ (i.e., # p-simplices)

- Given a simplicial complex K, a p-chain is
 - A formal sum of *p*-simplices $c = \sum c_i \sigma_i$
 - ▶ Under \mathbb{Z}_2 -coefficients: a collection of *p*-simplices
- ▶ p-th chain group of K
 - $C_p(K)$: collection of p-chains with operation +

$$ho$$
 $c=\sum c_i\sigma_i$, and $c'=\sum {c'}_i\sigma_i$, then

$$c + c' = \sum c_i \sigma_i + \sum c'_i \sigma_i = \sum [(c_i + c'_i) \mod 2] \sigma_i$$

- $C_0(K), C_1(K), ...C_n(K), ...$
 - Boundary operators to connect them!

$$\partial \{a, b, c\} = \{a, b\} + \{a, c\} + \{b, c\}$$

- p-th boundary operator (a linear map) $\partial_p : C_p \to C_{p-1}$
 - For a simplex $\sigma = \{v_0, ..., v_p\}$

$$\partial_{p}(\sigma) = \sum_{i=0}^{p} \{v_{0}, ..., \hat{v}_{i}, ..., v_{p}\}$$

- $c = \sum c_i \sigma_i \quad \Rightarrow \quad \partial_p(c) = \sum c_i \partial_p(\sigma_i)$

- p-th boundary operator (a linear map) $\partial_p : C_p \to C_{p-1}$
 - For a simplex $\sigma = \{v_0, ..., v_p\}$

$$\partial_p(\sigma) = \sum_{i=0}^p \{v_0, ..., \hat{v}_i, ..., v_p\}$$

- $c = \sum c_i \sigma_i \quad \Rightarrow \quad \partial_p(c) = \sum c_i \partial_p(\sigma_i)$
- Chain complex:
 - a sequence of vector spaces connected by linear maps

$$\cdots \xrightarrow{\partial_{p+2}} \mathbf{C}_{p+1} \xrightarrow{\partial_{p+1}} \mathbf{C}_p \xrightarrow{\partial_p} \mathbf{C}_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$

$$\partial \{a, b, c\} = \{a, b\} + \{a, c\} + \{b, c\}$$

$$\partial \{a, b, c\} = \{a, b\} + \{a, c\} + \{b, c\}$$

$$\partial \partial \{a, b, c\} = \partial (\{a, b\} + \{a, c\} + \{b, c\}) = 2a + 2b + 2c = 0$$

- p-th boundary operator (a linear map) $\partial_p : C_p \to C_{p-1}$
 - For a simplex $\sigma = \{v_0, ..., v_p\}$

$$\partial_p(\sigma) = \sum_{i=0}^p \{v_0, ..., \hat{v}_i, ..., v_p\}$$

- $c = \sum c_i \sigma_i \quad \Rightarrow \quad \partial_p(c) = \sum c_i \partial_p(\sigma_i)$
- Chain complex:
 - a sequence of vector spaces connected by linear maps

$$\cdots \xrightarrow{\partial_{p+2}} \mathbf{C}_{p+1} \xrightarrow{\partial_{p+1}} \mathbf{C}_p \xrightarrow{\partial_p} \mathbf{C}_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$

- p-th boundary operator (a linear map) $\partial_p : C_p \to C_{p-1}$
 - For a simplex $\sigma = \{v_0, ..., v_p\}$

$$\partial_{p}(\sigma) = \sum_{i=0}^{p} \{v_{0}, ..., \hat{v}_{i}, ..., v_{p}\}$$

$$\partial_{p}(\sigma) = \text{set}$$

$$c = \sum_{i=0}^{p} c_{i}\sigma_{i} \Rightarrow \text{Theorem (Fundamental Boundary Property):}$$

$$\partial_{p} \circ \partial_{p+1} = 0$$

- Chain complex:
 - a sequence of vector spaces connected by linear maps

$$\cdots \xrightarrow{\partial_{p+2}} C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \xrightarrow{\partial_{p-1}} \cdots$$

$$\partial \{a, b, c\} = \{a, b\} + \{a, c\} + \{b, c\}$$

$$\partial \{a, b, c\} = \{a, b\} + \{a, c\} + \{b, c\}$$

$$\partial \partial \{a, b, c\} = \partial (\{a, b\} + \{a, c\} + \{b, c\}) = 2a + 2b + 2c = 0$$

$$\partial \{a, b, c\} = \{a, b\} + \{a, c\} + \{b, c\}$$

$$\partial \partial \{a, b, c\} = \partial (\{a, b\} + \{a, c\} + \{b, c\}) = 2a + 2b + 2c = 0$$

- p-cycle: a p-chain whose boundary is 0
- p-th cycle group $Z_p(K) = \ker(\partial_p)$
- $igwedge Z_p$ is a subgroup of C_p , denoted by $Z_p \subseteq C_p$

- Cycles:
 - p-cycle: a p-chain whose boundary is 0
 - p-th cycle group $Z_p(K) = \ker(\partial_p)$

$$Z_1(K) = \langle \{a, b\} + \{b, c\} + \{a, c\} \rangle$$

 $\dim Z_1(K) = 1$

- Cycles:
 - p-cycle: a p-chain whose boundary is 0
 - $p\text{-th cycle group } Z_p(K) = \ker(\partial_p)$

$$Z_1(K) = \langle \{a, b\} + \{b, c\} + \{a, c\}, \{c, d\} + \{d, e\} + \{c, e\} \rangle$$

$$\dim Z_1(K) = 2$$

- Cycles:
 - p-cycle: a p-chain whose boundary is 0
 - p-th cycle group $Z_p(K) = \ker(\partial_p)$

$$Z_1(K) = \langle \{a, b\} + \{b, c\} + \{a, c\}, \{a, b\} + \{b, d\} + \{c, d\} + \{a, c\} \rangle$$

$$\dim Z_1(K) = 2$$

$$(\{a,b\} + \{b,c\} + \{a,c\}) - (\{a,b\} + \{b,d\} + \{c,d\} + \{a,c\}) = \{b,c\} + \{b,d\} + \{c,d\}$$

$$\partial_2\{b,c,d\} = \{b,c\} + \{b,d\} + \{c,d\}$$

Cycles:

- p-cycle: a p-chain whose boundary is 0
- p-th cycle group $Z_p(K) = \ker(\partial_p)$

Boundary cycles:

- p-boundary: a p-cycle which is the boundary of some (p + 1)-chain
- p-th boundary group $B_p(K) = \operatorname{Im}(\partial_{p+1})$

Cycles:

- p-cycle: a p-chain whose boundary is 0
- p-th cycle group $Z_p(K) = \ker(\partial_p)$

Boundary cycles:

- p-boundary: a p-cycle which is the boundary of some (p+1)-chain
- p-th boundary group $B_p(K) = \operatorname{Im}(\partial_{p+1})$
- $\qquad \qquad \quad \boldsymbol{\partial_p} \circ \boldsymbol{\partial_{p+1}} = 0 \Rightarrow \boldsymbol{B_p} \subseteq \boldsymbol{Z_p} \subseteq \boldsymbol{C_P}$

Under \mathbb{Z}_2 coefficients, $B_p, \ Z_p, \ C_p$ are all vector spaces.

- Cycles:
 - p-cycle: a p-chain whose boundary is 0
 - p-th cycle group $Z_p(K) = \ker(\partial_p)$
- Boundary cycles:
 - p-boundary: the boundary of some (p + 1)-chain
 - p-th boundary group $B_p(K) = \operatorname{Im}(\partial_{p+1})$

- Cycles:
 - p-cycle: a p-chain whose boundary is 0
 - p-th cycle group $Z_p(K) = \ker(\partial_p)$
- Boundary cycles:
 - p-boundary: the boundary of some (p + 1)-chain
 - p-th boundary group $B_p(K) = \operatorname{Im}(\partial_{p+1})$

$$(\{a,b\} + \{b,c\} + \{a,c\}) - (\{a,b\} + \{b,d\} + \{c,d\} + \{a,c\}) = \{b,c\} + \{b,d\} + \{c,d\} + \{c,d\} + \{b,c\} + \{b,c\} + \{b,c\} + \{b,d\} + \{c,d\} + \{a,c\} +$$

Homology groups

- $p\text{-th cycle group }Z_p(K)=\ker(\partial_p)$
- $p\text{-th boundary group } B_p(K) = \operatorname{Im}(\partial_{p+1})$
- ▶ *p*-th *homology group*
 - $H_p(K) = Z_p/B_p$
 - $ightharpoonup c_1$ is homologous to c_2 if
 - $c_1 + c_2 \in B_p$, i.e, $c_1 + c_2$ is a boundary cycle
 - $h = [c] \in H_p$:
 - the family *p*-cycles homologous to *c*
 - called a *homology class*
 - A cycle is null-homologuous if it is a boundary, and we also say its homology class is trivial.

Under \mathbb{Z}_2 coefficients, C_p , $B_p,\ Z_p,\ H_p$ are all vector spaces.

Homology

$$Z_1(K) = \langle \{a, b\} + \{b, c\} + \{a, c\}, \{a, b\} + \{b, d\} + \{c, d\} + \{a, c\} \rangle$$

$$B_1(K) = \langle \{b, c\} + \{b, d\} + \{c, d\} \rangle$$

$$H_1(K) = \langle [\{a,b\} + \{b,c\} + \{a,c\}] \rangle$$

$$\dim H_1(K) = 1$$

Torus example

Torus example

Homology is homotopy invariant

- ▶ If *X* and *Y* are homotopy equivalent, then
- $H_n(X) \cong H_n(Y)$

- Hence one can define the homology groups of a manifold through any triangulation
 - **Examples:**
 - a point
 - a circle
 - a sphere

Examples

- $H_0(K) \cong \mathbb{Z}_2^k$ where k is the number of connected components
- $H_n(\mathbb{S}^n) = \mathbb{Z}_2 \text{ and } H_m(\mathbb{S}^n) = 0 \text{ for } m \neq 0, n$

Betti numbers

- Betti number: $\beta_p(K) = \dim H_p(K)$
- ▶ Theorem:
- **Examples:**

Betti numbers

- Betti number: $\beta_p(K) = \dim H_p(K)$
- ▶ Theorem:
- **Examples:**

$$\beta_0(K) = ? \quad \beta_1(K) = ?$$

Betti numbers are homotopy invariants

Fact:

- Two homotopy equivalent topological spaces have isomorphic homology groups and thus same Betti numbers.
- Sometimes in practice, one only cares about Betti numbers instead of explicit structures (bases) of homology groups

Another definition for Euler characteristic

Another definition for Euler characteristic

▶ Given a Simplicial complex *K*

Recall its Euler characteristic
$$\chi(K) = \sum_{p=0}^{\infty} (-1)^p n_p(K)$$

Another definition for Euler characteristic

- ▶ Given a Simplicial complex *K*
 - Recall its Euler characteristic $\chi(K) = \sum_{p=0}^{\infty} (-1)^p n_p(K)$
 - Theorem (Euler-Poincaré formula)
 - ightharpoonup Given a simplicial complexes K, one has that

$$\chi(K) = \sum_{i=0}^{\infty} (-1)^i \beta_i(K)$$

Part 2:

Matrix view and computation

Calculation of Homology

Boundary Matrix

$$K^{p} = \left\{\alpha_{1}, ..., \alpha_{n_{p}}\right\}, K^{p-1} = \left\{\tau_{1}, ..., \tau_{n_{p-1}}\right\}$$

- $igwedge K^p$ forms a basis for p-th chain group C_p
- - $A_p[i][j] = 1 \text{ iff } \tau_i \subseteq \sigma_j$
 - representing $\partial_p: C_p \to C_{p-1}$ w.r.t. basis $\{\alpha_1, \ldots, \alpha_{n_p}\}$ and $\{\tau_1, \ldots, \tau_{n_{p-1}}\}$

Boundary Matrix

$$K^p = \{\alpha_1, ..., \alpha_{n_p}\}, K^{p-1} = \{\tau_1, ..., \tau_{n_{p-1}}\}$$

- $igwedge K^p$ forms a basis for p-th chain group C_p
- - $A_p[i][j] = 1 \text{ iff } \tau_i \subseteq \sigma_j$
 - representing $\partial_p: C_p \to C_{p-1}$ w.r.t. basis $\{\alpha_1, ..., \alpha_{n_p}\}$ and $\{\tau_1, ..., \tau_{n_{p-1}}\}$

Boundary matrix

Boundary matrix

Given a p-chain
$$c = \sum_{i=1}^{n_p} c_i \alpha_i$$

• Under basis K^p , vector representation of c is

$$\overrightarrow{c} = \begin{bmatrix} c_1, c_2, \dots, c_{n_p} \end{bmatrix}^T$$

▶ Boundary $\partial_p c$ is a (p-1)-chain with vector representation $A_p \overrightarrow{c}$ w.r.t basis K^{p-1}

Boundary matrix

Given a p-chain
$$c = \sum_{i=1}^{n_p} c_i \alpha_i$$

• Under basis K^p , vector representation of c is

$$\overrightarrow{c} = \begin{bmatrix} c_1, c_2, \dots, c_{n_p} \end{bmatrix}^T$$

▶ Boundary $\partial_p c$ is a (p-1)-chain with vector representation $\overrightarrow{A_n c}$ w.r.t

basis
$$K^{p-1}$$

basis
$$K^{p-1}$$

$$A_{p}\vec{c} = \begin{bmatrix} a_{1}^{1} & a_{1}^{2} & \dots & a_{1}^{n_{p}} \\ a_{2}^{1} & a_{2}^{2} & \dots & a_{2}^{n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n_{p-1}}^{1} & a_{n_{p-1}}^{2} & \dots & a_{n_{p-1}}^{n_{p}} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n_{p}} \end{bmatrix}$$

Observations

To compute the cycle space $Z_p=\ker\partial_p$, we simply need to solve the equation $A_pc=0$ and find a basis for the kernel

The boundary space $B_p = \text{Im} \partial_{p+1}$ is the space generated by columns of A_{p+1} . We need to find a basis for these columns

• We can do both on A_p through matrix reduction

Matrix reduction

- Turn A_p into the **column reduced** form
 - Each non-zero column has a unique lowID: index of lowest 1-entry
 - Only through adding columns and switching columns
- Read of bases of $B_{p-1} = \text{Im}\partial_p$ and $Z_p = \ker \partial_p$

$$egin{bmatrix} * & * & * & 0 \ * & 1 & * & 0 \ 1 & 0 & * & 0 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

Column reduced form

 $lowId[i] \neq lowId[j]$

	e1	e2	e 3	e4	e5
v1	1	1	0	0	0
v2	1	0	0	1	1
v3	0	1	1	0	1
v4	0	0	1	1	0

	e1	e2	e3	e4+e3	e5
v1	1	1	0	0	0
v2	1	0	0	1	1
v3	0	1	1	1	1
v4	0	0	1	0	0

Right-reduction algorithm

- Starting with boundary matrix $M = A_p$
 - For the *i*-th column corresponding to p-simplex σ_i ,
 - ▶ associate a *p*-chain Γ_i initialized to σ_i
 - ▶ AddColumn(*j*, *i*): add column j to column i

Algorithm 1 Right-Reduction(M)

```
for i = 2 to n_p do

while \exists j < i \text{ s.t. } lowId[j] = lowId[i] do

AddColumn(j, i);

end while

end for

Return(M)
```


	e1	e2	e 3	e4	e5
v1	1	1	0	0	0
v2	1	0	0	1	1
v3	0	1	1	0	1
v4	0	0	1	1	0

	e1	e2	e 3	e4+e3	e5
v1	1	1	0	0	0
v2	1	0	0	1	1
v3	0	1	1	1	1
v4	0	0	1	0	0

	e1	e2	e 3	e4+e3+e2	e5
v1	1	1	0	1	0
v2	1	0	0	1	1
v3	0	1	1	0	1
v4	0	0	1	0	0

	e1	e2	e 3	e4+e3+e2 +e1	e 5
v1	1	1	0	0	0
v2	1	0	0	0	1
v3	0	1	1	0	1
v4	0	0	1	0	0

	e1	e2	e 3	e4+e3+e2 +e1	e5+e2
v1	1	1	0	0	1
v2	1	0	0	0	1
v3	0	1	1	0	0
v4	0	0	1	0	0

	e1	e2	e 3	e4+e3+e2 +e1	e5+e2+e1
v1	1	1	0	0	0
v2	1	0	0	0	0
v3	0	1	1	0	0
v4	0	0	1	0	0

	e1	e2	e3	e4+e3+e2 +e1	e5+e2+e1
v1	1	1	0	0	0
v2	1	0	0	0	0
v3	0	1	1	0	0
v4	0	0	1	0	0

- dim $B_0 = 3$, dim $Z_1 = 2$, etc —> One can determine Betti numbers
 - $\beta_p = \dim Z_p \dim B_p$
- Bases for B_0 and Z_1

Properties

▶ Theorem:

- Procedure Right-Reduction(M) terminates in $O(n_p n_{p-1}^2)$ time
- ightharpoonup The output matrix M is in column reduced form
- The set of non-zero columns in M form a basis for B_{p-1}
- The set $\{\Gamma_i \mid col_M[i] = 0\}$ form a basis for Z_p

Properties

▶ Theorem:

- Procedure Right-Reduction(M) terminates in $O(n_p n_{p-1}^2)$ time
- The output matrix *M* is in column reduced form
- The set of non-zero columns in M form a basis for B_{p-1}
- The set $\{\Gamma_i \mid col_M[i] = 0\}$ form a basis for Z_p

This is not the only reduction algorithm!! Any elimination via row/column additions to convert a matrix into a reduced form works!

	e1	e2	e3	e4+e3+e2 +e1	e5+e2+e1
v1	1	1	0	0	0
v2	1	0	0	0	0
v3	0	1	1	0	0
v4	0	0	1	0	0

- dim $B_0 = 3$, dim $Z_1 = 2$, etc —> One can determine Betti numbers
- Bases for B_0 and Z_1
- Can we obtain a basis for H_1 ?

Computing a basis for homology

- Left part is already column reduced
- Apply Right Reduction to the above matrix to obtain basis of H_p

	e5+e2+e1	e4+e3+e2+e1	e5+e2+e1
E1	1	1	1
E2	1	1	1
E3	0	1	0
E4	0	1	0
E5	1	0	1

	e5+e2+e1	e4+e3+e2+e1	0
E1	1	1	0
E2	1	1	0
E3	0	1	0
E4	0	1	0
E5	1	0	0

Part 3: Functoriality of Homology

Simplicial map

- Intuitively, analogous to continuous maps between topological spaces
- ightharpoonup Given simplicial complexes K and L
 - ▶ a function $f: V(K) \rightarrow V(L)$ is called a simplicial map if
 - for any $\sigma=\{p_0,\ldots,p_d\}\in\Sigma(K),\ f(\sigma)=\Big\{f\big(p_0\big),\ \ldots,\ f\big(p_d\big)\Big\}$ spans a simplex in L, i.e., $f(\sigma)\in\Sigma(L)$.
 - A simplicial map is also denoted $f: K \to L$

Functoriality of Simplicial Homology

- Let $K = (V, \Sigma)$ and $K' = (V', \Sigma')$ and let $f : V \to V'$ be a simplicial map. Then,
 - finduces a linear map on homology groups: $f_p: H_p(K) \to H_p(K')$
 - If there exist $K'' = (V'', \Sigma'')$ and another simplicial map $g: V' \to V''$, then

$$(g \circ f)_p = g_p \circ f_p$$

$$\bigvee \xrightarrow{f} \bigvee \xrightarrow{g} \bigvee''$$

$$H_{p}(K) \xrightarrow{f_{p}} H_{p}(K') \xrightarrow{g_{p}} H_{p}(K'')$$

$$(g_{0}f)_{p} = g_{p} \circ f_{p}$$

Construction of f_p

- ▶ Define $\bar{f}_p : C_p(K) \to C_p(K')$
 - $\bar{f}_p(\sigma) = \begin{cases} f(\sigma) & \text{if } f(\sigma) \text{ is } p \text{dimensional} \\ 0 & \text{otherwise} \end{cases}$
 - ▶ Define $f_p: H_p(K) \to H_p(K')$

Mind picture of functoriality

FIN