

Approved for Public Release Distribution Unlimited

FINAL SUMMARY REPORT
DATA ITEM A009
MONITORING AND PUMPING
TEST PROGRAM
DETROIT ARSENAL
WARREN, MICHIGAN

Contract No. DAAA15-91-D-0008 Task Order No. 3

Prepared for:

UNITED STATES ARMY ENVIRONMENTAL CENTER Aberdeen Proving Ground, Maryland

Prepared by:

ABB ENVIRONMENTAL SERVICES, INC. 39255 Country Club Drive, Suite B-25 Farmington Hills, Michigan 48331

PROJECT NUMBER 7027-01

SEPTEMBER 1993

"Printed on Recycled Paper"

20011102 144

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, D.C. 20503

1.	AGENCY USE ONLY (Leav	ve Blank)	2. REPORT DATE	3	3. REPORT TYP	E AND	DATES COVERED
			September, 1993		Final		
4.	TITLE AND SUBTITLE Final Summary Report - Mo	nitoring and	Pumping Test Program	n, De	troit Arsenal	,	FUNDING NUMBERS C- DAAA15-91-D-0008
6.	AUTHOR(S)					,	TA-Order No. 3
	Greta Reade, Larry Dearborn	n					
7.	PERFORMING ORGANIZA ABB ENVIRONMENTAL S 39255 Country Club Drive, S Farmington Hills, Michigan	SERVICES I Suite B-25		S(ES)]	PERFORMING ORGANIZATION REPORT NUMBER 7027-01
9.		6501 E. 11 Mile Road Building 4480					SPONSORING/MONITORING AGENCY REPORT NUMBER SFIM-AEC-IR-CR 93122
11.	SUPPLEMENTARY NOTES	S					
12a.	. DISTRIBUTION/AVAILAE	BILITY STA	TEMENT			12b.	DISTRIBUTION CODE
	Approved for public release;	distribution	is unlimited				
13.	the Detroit Arsenal in Warren Installation Restoration Divis	s, Inc., has p n, Michigan sion. The re aded a well s	t. This document was perport documents the acti	repar vities	ed under contract to to and results of the gro	he U.S. oundwat	ping test program conducted at Army Environmental Center er monitoring and pumping test the collection and analysis of
14.	SUBJECT TERMS						NUMBER OF PAGES
	Hydrogeologic site characteri	ization; grou	ındwater sampling and a	analy:	sis	3	348
						16. I	PRICE CODE
17.	SECURITY CLASSIFICATION OF REPORT Unclassified	THIS	URITY SSIFICATION OF PAGE assified	19.	SECURITY CLASSIFICATION ABSTRACT Unclassified	OF	20. LIMITATION OF ABSTRACT Unlimited

FINAL SUMMARY REPORT
DATA ITEM A009
MONITORING AND PUMPING TEST PROGRAM
DETROIT ARSENAL
WARREN, MICHIGAÑ

Contract No. DAAA15-91-D-0008 Task Order No. 3

Prepared for:

UNITED STATES ARMY ENVIRONMENTAL CENTER Aberdeen Proving Ground, Maryland

Prepared by:

ABB ENVIRONMENTAL SERVICES, INC. 39255 Country Club Drive, Suite B-25 Farmington Hills, Michigan 48331

PROJECT NUMBER 7027-01

SEPTEMBER 1993

The view, opinions, and/or findings contained in the report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

"Printed on Recycled Paper"

TABLE OF CONTENTS

SECTION	I NO.	TITLE			PAGE NO.
1.0 INTR	ODUCT	ION	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	1-1
2.0 SITE	HISTOR	Υ			2-1
2.1 2.2	ENVIR RESUI	ONMENTAL COM TS OF PREVIOUS	IPLIANCE HIST S INVESTIGATĪ	ORY ONS	
3.0 AQUI	FER HY	DRAULIC TESTIN	NG	• • • • • • • • • • • • • • • • • • • •	3-1
3.1 3.2	CONST	ED-DISCHARGE T	EST	• • • • • • • • • • • •	
3.2	3.2.1	Analysis of the Co	nstant-Discharge	Test at MW003	
	3.2.2	Analysis of the Co	nstant-Discharge	Test at MW017	
3.3	INTER	PRETATION AND	DISCUSSION C	OF CONSTANT	-DISCHARGE TEST 3-6
	3.3.1	Discussion of Resu	ılts of Constant-L	ischarge Test at	MW003 3-6
	3.3.2	Discussion of Resu	ilts of Constant-D	ischarge Test at	MW017 3-8
	3.3.3	Summary of Pumpi	ing Test Analyses		
3.4	GROU!	NDWATER FLOW	DIRECTION	• • • • • • • • • • • • • • • • • • • •	3-8
4.0 GROI	JNDWA'	TER SAMPLING			4-1
4.1	QUALI	TY CONTROL SAI	MPLES		4-1
	4.1.1	Round 1 Quality C	Control Samples.		
	4.1.2	Round 2 Quality C	Control Samples .		4-7
4.2	DISCU	SSION OF GROUN	DWATER RESI	JLTS	4-8
	4.2.1	Organic Compound	ds Detected in 19	93	4-8
	4.2.2	Water Quality Para	ers Detected in 19	993 : 1002	4-9
	4.2.3	Comparison of 199	illetets Detected 3 Groundwater B	esults to Histori	4-9 cal Data 4-9
		4.2.4.1 Organic C	Compounds	Instant	····· 4-10
		4.2.4.2 Inorganic	Parameters	• • • • • • • • • • • • • • • • • • • •	4-10
		4.2.4.3 Water Qua	ality Parameters	• • • • • • • • • • • •	4-12
5.0 SUMM	IARY A	ND CONCLUSIONS	s	• • • • • • • • • • • • • • • • • • • •	5-1
ADDENINI	Y	TTER REPORT: S	TEDDED DISCI	IADCE TEST	
		TTER REPORT: C			rs
		TTER REPORT: P			
APPENDIX	X D - MV	W003 DRAWDOWN	N PLOTS		
		V003 RECOVERY			
		017 DATA PLOTS			
		OUNDWATER SA MMARY OF ANAI			AND ANALYTICAL DATA

LIST OF FIGURES

FIG	URE NO.	TITLE	PAGE NO.
2 1	SITE I OCATIO	ON MAP	2-2
3-1 3-2	OBSERVATIO GROUNDWAT	N WELLS AND PIEZOMETERS TER CONTOUR MAP	
4-1	LOCATIONS O	F WELLS SAMPLED	4-2
		LIST OF TABLES	
<u>TA</u>	BLE NO.	TITLE	PAGE NO.
3-2	GROUNDWAT	F ANALYSES - MW003 RECOVERY DA TER ELEVATIONS - DECEMBER 19, 19	992
4-2	SUMMARY O	TER SAMPLING AND ANALYTICAL P F ANALYTICAL RESULTS FOR GROU LITY CRITERIA F RESULTS FOR QUALITY CONTROI	JNDWATER 4-4 4-5

1.0 INTRODUCTION

This document is the Draft Report for the Monitoring and Pumping Test Program conducted at the Detroit Arsenal in Warren, Michigan. This report was prepared by ABB Environmental Services, Inc., (ABB-ES) to fulfill requirements of Task Order 3 of Contract DAAA15-91-D-0008 between ABB-ES and the U.S. Army Environmental Center (USAEC).¹

Task Order 3 was originally issued on September 26, 1991; the objectives of the task order were to collect the information necessary to estimate the groundwater flow direction, calculate the transmissivity of the glacial till, and determine groundwater quality. The primary work elements of the original task order were to write a Sampling Plan, perform a stepped-drawdown test at MW003 and 72-hour constant-discharge tests at MW003 and MW017, collect and analyze two rounds of groundwater samples, and submit a final report discussing results of the investigation. Task Order 3 was modified on September 10, 1992, to add the installation of four piezometers and on July 26, 1993, to add surveying of the piezometers and to adjust the budget and schedule which were affected by unanticipated field problems.

¹ USAEC was formerly known as USATHAMA (U.S. Army Toxic and Hazardous Materials Agency). USAEC is used throughout this report; however, some items in the appendices refer to USATHAMA.

2.0 SITE HISTORY

The Detroit Arsenal is located near the intersection of I-696 and Van Dyke Avenue in Warren, Michigan (Figure 2-1). The arsenal was established in 1940 as a tank production center and experimental product facility for armed services automotive equipment.

A site map is provided as Figure 2-2. The western portion of the arsenal, that area west of the railroad track bisecting the facility, is operated by the government and used for administration and research. The eastern portion of the facility, east of the railroad tracks, is operated by General Dynamics and was previously operated by Chrysler Corporation. The eastern portion was primarily used for industrial activities including tank assembly, machining, and power generation. The tank assembly operations have been discontinued.

2.1 ENVIRONMENTAL COMPLIANCE HISTORY

In 1980, USAEC conducted an Installation Assessment of the arsenal. Based upon the assessment, the Tank Test Track Area, which had been used in previous years as a landfill, and the Underground Waste Oil/Solvent Storage Tank Area were identified as potential environmental concerns. The locations of these areas are shown on Figure 2-2.

Investigations conducted by the U.S. Army Corps of Engineers in 1984 indicated that soils in the vicinity of the Underground Waste Oil/Solvent Storage Tank Area were contaminated with oils. In 1985, an environmental assessment was conducted of this area and another area by Envirodyne Engineers, Inc., (EEI) for the USAEC. The underground tanks and surrounding soil in the Underground Waste Oil/Solvent Storage Tank Area were removed by the Louisville District Corps of Engineers in 1988.

A quarterly monitoring program was conducted at the arsenal for the USAEC by Dames & Moore in 1990 to evaluate the potential for contaminants to migrate away from the site.

2.2 RESULTS OF PREVIOUS INVESTIGATIONS

During previous investigations at the Detroit Arsenal, eighteen soil borings were drilled to an average depth of 32 feet below ground surface for the installation of monitoring wells (EEI, 1985). (MW015 was abandoned and destroyed in 1991 due to construction activities.) Based upon these borings, the soil stratigraphy appears to be very similar across the facility. Fill material mixed with either brown or grey brown silty clay, or clay was encountered to an average depth of about 6 feet. A grey brown silty clay (with traces of sand) or brown sandy clay, was observed below this depth. This layer was generally encountered to a depth of approximately 15 feet. At some locations, thin fine sand or clayey fine sand seams were noted from 7 feet to 9 feet below ground surface. The natural soils from 6 feet to 15 feet were interpreted as being deposited in a glacial lacustrine setting, and were therefore termed the upper glacial lacustrine deposits.

Grey silty clay with traces of sand and gravel was encountered below the upper glacial lacustrine deposits to the maximum depth of each boring (averaging 32 feet). Occasionally, a sand or clayey sand lens was noted in this layer. These soils were termed the lower glacial lacustrine deposits. Boring logs for two production wells at the facility indicate that sands are present within the lower glacial lacustrine deposits at approximately 100 feet below ground surface. Regionally, glacial deposits extend to depths sometimes greater than 200 feet and overlie sedimentary bedrock.

During drilling, shallow groundwater was encountered at a depth of approximately 10 feet within the upper glacial lacustrine deposits. Contoured water-level measurements indicated that the shallow groundwater flow direction is north-northeasterly.

Bail-down slug tests performed in 16 of the wells indicated an approximate horizontal hydraulic conductivity of $1x10^{-5}$ centimeters per second (cm/sec). A vertical permeability of $2.7x10^{-7}$ cm/sec was calculated based upon laboratory testing. A linear groundwater seepage velocity of $4.5x10^{-4}$ feet per day (0.16 feet per year) was calculated by ABB-ES using the above hydraulic conductivity and an assumed average effective porosity of 0.01.

The lower glacial lacustrine deposits appear to separate the shallow groundwater from the waterbearing sand deposits present at approximately 100 feet below ground surface. Production wells at the facility withdraw water from the deep sand deposits. Groundwater is also present within the bedrock, but the water has very poor quality and is not used for water supplies.

The topography of the site is relatively flat with the total relief variation being less than 10 feet. Bear Creek, located adjacent to the western boundary of the arsenal, is the predominant topographic feature.

Natural drainage flows westward towards Bear Creek, but surface water drainage at the arsenal has been altered by an extensive storm sewer system. As a result, surface water runoff from the arsenal flows untreated through the city of Warren's storm sewer system into Bear Creek (north of 13 Mile and Van Dyke).

An environmental assessment of the Tank Test Track and Underground Waste Oil/Solvent Storage Tank areas was conducted by Envirodyne Engineers, Inc., (EEI) for USAEC in 1985. Oil and grease, solvents (including trichloroethylene, 1,1-dichloroethane, 1,1,1-trichloroethane, 1,2-transdichloroethylene, 1,2-dichloropropane, and 1,1,2-trichloro-1,2-2 trifluoroethane), metals (including chromium, iron, manganese and lead), and sulfate were detected in groundwater samples collected from monitoring wells. The presence of iron, manganese, and sulfate in similar concentrations in both upgradient and downgradient wells indicated that they were not related to activities at the arsenal (EEI, 1985). The potential for contaminants to migrate from the arsenal via surface water drainage through the sewer system was also investigated. Oil and grease, chromium, iron, manganese, hydrocarbons, and trace amounts of solvents were reported to be present in the water in the sewer system (EEI, 1985).

The potential for migration of contaminants off site was considered low because calculated groundwater movement is very slow due to the low hydraulic conductivity of the soil and a regionally low hydraulic gradient. Previous investigations also indicated that the water supply aquifer in the area is well protected by underlying clays (EEI, 1985). Quarterly monitoring of selected monitoring wells and sewers was conducted for one year, and the data indicated that contaminants were not migrating off the site (Dames & Moore, 1990).

3.0 AQUIFER HYDRAULIC TESTING

Aquifer pumping tests were planned to provide the information necessary to quantify the primary hydraulic parameters: hydraulic conductivity (K_h), transmissivity (T), and specific yield/storativity (S). Shallow groundwater at the arsenal was believed to be unconfined; thus the storage coefficient and specific yield would be essentially equal. This information, in turn, would be used to refine existing estimates of groundwater seepage velocities. Existing wells MW003 and MW017 were selected by the USAEC as pumping wells.

Two types of pumping tests were conducted: a short stepped-discharge test at MW003 and longer constant-discharge tests at both MW003 and MW017. The stepped-discharge test was conducted and evaluated first, and the results were used as input into the final design of the longer tests. The details of the stepped-discharge test and the data analysis for that test were reported in a letter to the USAEC on December 6, 1991 (Appendix A).

A description of the constant-discharge tests as conducted is contained in a February 5, 1993, letter to the USAEC (Appendix B) and is not repeated in detail here. The basic principles used to conduct these pumping tests are described in Appendix B of the Sampling and Pumping Test Plan. The stepped-discharge test is summarized below in Section 3.1 while the constant discharge tests are discussed in Section 3.2. An interpretation and discussion of the constant-discharge test results is presented in Section 3.3. ABB-ES' interpretation of groundwater flow patterns and velocity calculations are presented in Section 3.4.

3.1 STEPPED-DISCHARGE TEST

As required by the USAEC task order, a stepped-discharge test was performed at MW003 on November 26, 1992, to provide data for determining an optimal pumping rate for the constant-discharge tests. The selection of the pumping rate for tests run in very low permeability media is critical to achieve the maximum possible hydraulic stress while avoiding excessive dewatering of the pumping well and premature shutdown of the test.

The analysis of the stepped-discharge test resulted in a T value of 1.2 feet²/day and an aquifer hydraulic conductivity (K_h) of 0.062 feet/day or $2x10^{-5}$ cm/sec. This value is twice the geometric mean ($1x10^{-5}$ cm/sec) of the slug tests performed in 1984. Both the slug tests and the stepped-discharge test provided limited information because they were short-term, single-well tests.

Using the results of the stepped-discharge test, a recommended pumping rate for the constant-discharge tests was derived by modeling drawdown versus radial distance for various durations and pumping rates. The recommendation resulting from the analysis of the stepped-discharge test was to install observation piezometers at 10 and 20 feet away from MW003 and MW017 and then to pump at 0.08 gpm.

3.2 CONSTANT-DISCHARGE TESTS

Based on the results of the stepped-discharge test analysis, four new piezometers were installed as follows: PZ001 is 10 feet from MW003, PZ002 is 20 feet from MW003, PZ003 is 10 feet from MW017, and PZ004 is 20 feet from MW017. Each of the piezometers has 20 feet of screen set at approximately the same elevation as the screen of the adjacent test well. Further details are contained in a letter to the USAEC dated February 4, 1993 (Appendix C). These piezometers were installed to increase the chance that fully developed drawdown curves would be obtained within the 72-hour pumping test period. Figure 3-1 shows the layout of observation wells and piezometers at each constant-discharge test location.

Both constant-discharge tests were implemented at a pumping rate of 0.08 gpm. The test at MW003 was terminated on December 21, 1992, after approximately 48 hours of pumping because the field drawdown data plots indicated that stabilized drawdown levels had been reached after approximately 24 hours. The MW017 test, begun on January 9, 1993, had to be stopped prematurely after 5 hours of pumping because drawdown in the pumped well had become excessive at 75 percent of the standing water column. At this point, it became impossible to maintain a steady discharge rate and it was obvious that the well would not yield enough water to produce measurable drawdown at PZ003. Measurable drawdown at PZ003 was necessary to allow an analysis for all the parameters of interest.

To define short-term fluctuations such as those caused by barometric pressure changes and recharge events, water levels were continuously recorded during each test in a background well located beyond the expected influence range of the pumping. A barometric probe was also used to provide the data necessary for computing barometric efficiencies in the event that drawdowns and recoveries were significantly affected by changes in atmospheric pressure.

A9308019/7027-01/AC184 Drawn: DGH Rev: 09/27/93 By: DGH

3.2.1 Analysis of the Constant-Discharge Test at MW003

Because variations in pumping rates at MW003 affected the drawdown curves (Appendix D) but not the recovery curves, the recovery data were analyzed instead of drawdown data.

Recovery data plots for PZ001 and PZ002 (Appendix E), representing approximately one day of monitoring, were analyzed using: (1) the Theis recovery type-curve method, (2) the Hantush-Jacob vertical leakage type-curve method, and (3) the straight-line residual drawdown method.² Subjective fitting of the type curve or a straight line through the data points allowed the determination of T and S, using standard equations. Additionally, a residual drawdown analysis was applied to the recovery data of the pumped well (MW003). Semilog and log-log plots of adjusted recovery versus time for both piezometers were generated for straight-line and type-curve analyses, respectively. The calculations of T and S are also presented in Appendix E. Semilogarithmic plots of recovery data were not used in the calculations.

Table 3-1 summarizes the calculated values of T and S; it also reports K_h values calculated from T values using an aquifer thickness of 23 feet. The table shows a range of T from 5.3 to 18.8 ft²/day, which corresponds to a range of K_h from $8x10^{-5}$ to $3x10^{-4}$ cm/sec. S values range from $1x10^{-4}$ to $5x10^{-2}$.

3.2.2 Analysis of the Constant-Discharge Test at MW017

Because of the short length of the MW017 pumping test, no trend or barometric adjustments were required.

For the MW017 test, the only detectable drawdown and recovery occurred at the pumped well (Appendix F). Water levels measured in PZ003 and PZ004 prior to the start of the test defined a downward trend that correlates well with a downward trend in the background well, MW013.

These methodologies are well documented in the literature (all appear in Lohman, 1972). These methods assume confined, homogeneous, isotropic aquifers with fully penetrating wells and no boundary effects. The Hantush-Jacob method assumes a vertical supply of water, i.e., leaky aquifer conditions.

TABLE 3-1 SUMMARY OF ANALYSES - MW003 RECOVERY DATA DETROIT ARSENAL

REMARKS	liew pedund	before curve departure	assume leaky confined	aquirer late-time data only	before curve departure	assume leaky confined	aquirer ate-time data only
STORATIVITY S (dimensionless)	 	0.0001	0.0003	0.027	0.0012	0.0004	0.054
HYDRAULIC CONDUCTIVITY K (cm/sec)	2.6 x 10-4	1.0 × 10-4	8.1 × 10 – 5	2.9 x 10-4	9.7 x 10-5	1.1 x 10-4	2.8 × 10-4
TRANSMISSIVITY T (feet squared/day)	17.1	8.	5.3	18.8	6.4	7.2	18.1
RADIAL DISTANCE (feet)	0	0	10	10	50	50	50
METHOD OF ANALYSIS	Residual Drawdown	Theis	Hantush-Jacob	Residual Drawdown	Theis	Hantush-Jacob	Residual Drawdown
POINT OF OBSERVED RECOVERY	MW003	PZ001			PZ002		

GEOMETRIC MEAN 1.5 X 10-4

Pumping rate was 0.08 gal/min

Maximum Drawdown (end of pumping)
MW003 = 2.0 feet (approximate, unadjusted for trend or barometer)
PZ001 = 0.89 feet
PZ002 = 0.70 feet

Aquifer Thickness: 23 feet

Because these piezometers appear to respond to general water-level trends in the aquifer, the lack of response during the pumping test is attributed to drawdown not reaching the piezometers during the five-hour test.

Further insight into the hydraulic response to pumping MW017 is provided by a volumetric calculation of water removed (see Appendix F). It shows that nearly all of the water pumped from MW017 came directly from storage in the casing and sandpack surrounding the screen. Therefore, meaningful analysis of the drawdown curve is not possible.

An attempt was made to analyze the recovery curve that extended nearly 6,000 minutes in duration (Appendix F). After approximately 3,000 minutes into recovery, the linear plot of the water-level measurements follows a straight line, implying that the well filled at a constant rate after this time. This behavior is not typical of normal aquifer response and is thought to represent weeping of a calculated 4.1 gal/day (0.003 gpm) into the borehole sandpack/well casing. The residual drawdown method of analysis was applied through the computer code AQTESOLV $_{\rm TM}$, and a T of 0.028 ft²/d resulted from matching the late data that forms a straight line on a semilog plot. Dividing by a saturated aquifer thickness of 23 feet, a $K_{\rm h}$ of 4×10^{-6} cm/sec results . This value is regarded as a coarse approximation because the graphic solution gave an S of 0.77, which is significantly higher than the usual range of S in an unconfined aquifer (Freeze and Cherry, 1979-pg 61).

3.3 INTERPRETATION AND DISCUSSION OF CONSTANT-DISCHARGE TEST RESULTS

Pumping tests in low permeability soils commonly require a long period of time (weeks to months) for hydraulic stress (drawdown) to migrate tens of feet.

3.3.1 Discussion of Results of Constant-Discharge Test at MW003

For the MW003 pumping test, all three methods gave T values that are within a half order of magnitude of each other (see Table 3-1). The geometric mean of the seven analyses is 1.5x10⁻⁴ cm/sec, which is the same value of hydraulic conductivity determined by a slug test in MW003 (EEI, 1985).

Characterization of the aquifer in terms of S is not as straight forward because of the wide range in values (10^{-1} to 10^{-4}). To investigate S, modeling using a 2-D Theis computer code was performed. The objective was to duplicate the maximum drawdowns recorded (adjusted for trend and barometric influences) in the piezometers at the end of two days of pumping MW003 at a rate of 0.08 gpm. The input T was 9.8 ft²/day, derived from an aquifer thickness of 23 feet multiplied by the geometric mean K_h . S was the only input variable between simulation runs. The following table compares measured drawdowns to drawdowns produced by the best-fit model ($S = 4x10^{-4}$).

	PUMPING TEST MEASURED DRAWDOWN (feet)	SIMULATED DRAWDOWN (feet) (Theis Model, Storativity = 4 x 10 ⁻⁴)
MW003	approx. 2.0	1.46
PZ001	0.89	0.88
PZ002	0.70	0.70

Considering that well losses would increase drawdown in the pumped well beyond that simulated, the model results (using an S of 0.0004) closely match measured values. In fact, for thin semiconfined aquifers, a confined S of 10⁻⁴ is typical. Further support for a small S is the moderate to high barometric efficiency (discussed in Appendix F) which is nearly always associated with a small S. The values of S from the residual drawdown analysis (0.05 and 0.03 for PZ001 and PZ002, respectively) are somewhat contradictory, but may provide evidence that the actual steady-state S is in the normal range of unconfined aquifers (i.e., 0.01 to 0.30). A probable explanation for this apparent contradiction is that the aquifer acts more confined during the initial stages of stress than during longer-term stress when unconfined characteristics predominate. This test interpretation implies that the aquifer will exhibit unconfined behavior during lengthy periods of pumping, and the specific yield may be in the range of 0.04.

Flattening of the log-log plots in the latter part of the test suggest that stabilization had been reached. A likely cause is that the clayey aquifer was experiencing leakage inflow (Hantush-Jacob response) into the pumped zone from geologic materials located either above or below. After a period of time that could last weeks or months, vertical leakage induced by the depressed water table may diminish and drawdown increase again.

3.3.2 Discussion of Results of Constant-Discharge Test at MW017

Because well storage effects dominate the rate of recovery in the AQTESOLV analysis of MW017, the resulting K_h estimate (4x10⁻⁷ cm/sec) for the MW017 test is considered approximate. Even so, it compares reasonably well with the original slug test (K_h of 2.9x10⁻⁶, EEI, 1985) considering that the S produced by the AQTESOLV_{TM} program indicates that the curve match is not quite right. The matching problem is probably due to well storage effects. The lack of data from observation wells precludes calculation of S.

This pumping test, combined with geologic data and historical slug testing data, indicates that the tested soils at MW017 have very low permeability.

3.3.3 Summary of Pumping Test Analyses

The average estimated K_h based on the analyses of the constant-discharge test at MW003 is $1.5x10^{-4}$ cm/sec. The corresponding T is $9.8~\rm{ft}^2/\rm{day}$. At MW003, the long-term S is believed to be approximately 0.04.

At MW017, the estimated K_h is $4x10^{-7}$ cm/sec which would correspond to a T of 0.026 ft²/day. The data collected were insufficient to calculate S.

A generalization for the hydraulic parameters across the site is not possible: the results from MW003 and MW017 demonstrate that hydraulic conditions range considerably -- up to three orders of magnitude -- from place to place. However, based on the available geologic information (well logs and slug test values) the T, K_h , and S calculated from the MW003 test data are likely to be representative of the most permeable soils on the site.

3.4 GROUNDWATER FLOW DIRECTION

Groundwater level measurements were recorded from monitoring wells at the Detroit Arsenal on December 19, 1992, prior to the first constant-discharge test (Table 3-2). Groundwater was measured at depths ranging from approximately 0.5 feet to 8.5 feet below the ground surface. As previously

observed during past monitoring events the groundwater elevation is highest in the southeast portion of the site (Figure 3-2); thus, the dominant groundwater flow direction across the site is to the north. ABB-ES' interpretation of the groundwater elevations is that groundwater flows east off the site in the vicinity of MW014.

Although the groundwater elevations observed at wells MW016, MW017, and MW018 could be interpreted as indicating a localized depression in the water table, no pumping, underground drains, or other dewatering mechanism is known to the facility's environmental engineer (B. Zane) that would explain a closed depression. Differences in well construction and/or unknown underground structures may influence the observed water levels in this area. Also, the existing boring logs indicate that the soils in this area are heterogenous in nature, and it is possible that the shallow soils contain perched groundwater. A review of pumping test data and water-level elevations collected at MW017 indicates that this well is very slow to reach equilibrium; therefore, the water levels measured at MW017 may reflect a local disturbance rather than a static condition.

Based on the gradient between MW003 and MW008, the geometric K_h , and using 0.04 to approximate effective porosity, the groundwater flow velocity in this area is approximately 50 feet per year. If the same K_h and effective porosity are used, the groundwater flow velocity between MW004 and MW014 is approximately 10 feet per year. (Calculations are included in Appendix E.)

TABLE 3-2 GROUNDWATER ELEVATIONS DECEMBER 19, 1992 DETROIT ARSENAL

WELL	TOP OF RISER ELEVATION (feet)	DEPTH TO WATER (feet)	GROUNDWATER ELEVATION (feet)
MW 001	627.76	2.96	624.80
MW 002	625.84	4.50	621.34
MW 003	625.70	4.59	621.11
MW 004	627.03	8.80	618.23
MW 005	628.76	5.16	623.60
MW 006	625.97	3.72	622.25
MW 007	627.05	6.61	620.44
MW 008	623.14	5.39	617.75
MW 009	624.76	4.57	620.19
MW 010	624.79	6.38	618.41
MW 011	621.04	5.62	615.42
MW 012	622.31	4.41	617.90
MW 013	621.90	4.41	617.49
MW 014	621.36	7.47	613.89
MW 015 *			
MW 016	622.58	8.07	614.51
MW 017	622.83	11.04	611.79
MW 018	623.39	9.11	614.28

Note: * = This well has been abandoned and is no longer in existence.

4.0 GROUNDWATER SAMPLING

In January and April 1993, seven groundwater samples were collected from the Detroit Arsenal monitoring wells shown on Figure 4-1. The purpose of these sampling events was to assess the current groundwater chemistry at the Detroit Arsenal facility and to compare the data to historical data (EEI, 1985; Dames and Moore,1990). The samples collected in 1993 were analyzed for volatile organic compounds (VOCs), base-neutral/acid extractable compounds (BNAs), dissolved metals, chloride, sulfate, and oil and grease in accordance with USAEC procedures as shown on Table 4-1. In addition, one trip blank (for VOC analysis only) and one rinsate blank were collected and analyzed for quality control purposes.

Various organic compounds, dissolved metals, and water quality parameters were detected in site samples. These results are discussed in Section 4.2 after a brief discussion (Section 4.1) of the quality control samples. A summary of the analytical results from Rounds 1 and 2 is presented in Table 4-2; parameters that exceeded the relevant regulatory standards (Table 4-3) are shaded. Appendix G contains the complete set of analytical results as reported in IRDMIS (Installation Restoration Data Management Information System).

The data were reviewed and validated by the laboratory prior to transmission into USAEC's IRDMIS data base. The USAEC Chemistry Branch determined that the analytical data lots were acceptable for use.

4.1 QUALITY CONTROL SAMPLES

Quality control samples analyzed during this project included rinsate blanks, trip blanks, and laboratory method blanks. Results of these samples are summarized in Table 4-4.

An assessment of the quality control blanks was conducted following the procedure for establishing action levels discussed in USEPA guidelines (USEPA, 1991, 1989). If an analyte was detected in a blank, action levels were set at five times the concentration found in the blank (ten times the concentration for the common contaminants acetone, methylene chloride, toluene and common phthalate esters). Sample concentrations less than the action level are considered undetected.

TABLE 4-1 GROUNDWATER SAMPLING AND ANALYTICAL PROGRAM DETROIT ARSENAL

USAEC Aqueous Method: UM20 UM18 USEPA Aqueous Method: 624 625 ASTM Type II Water 2* 1 Trip Blank 2* 7 Round 1 Groundwater 7 Trip Blank 1 Trip Blank 1 Trip Blank 1 Trip Blank 1 Wells 7 Wells 7	restictions UH02/UH13 608 1	Metals ***	Nitrite TF22 300.0 1 - 1	Sulfate TT10 300.0	Cyanide TF18 335.2	Grease none 413.2	ase Hydrocarbons ne none 1,2 418.1
bod: 624 624 624 625	608	: #	11-22 300.0 -	11110 300.0 1	1F18 335.2 1	none 413.2 1	418.1
pe II Water 2* 1 2* - 3roundwater 7 7 7 3lank 1 1 1 nk 1 1	11 1	I	- 1	1	⊷ 1	1	
K	1 1	i r	. 1	٠ ١	+ i	-	
Groundwater 7 7 7 Blank 1 1 1 nk 1 - - Groundwater 7 7 7	7	r				ł	. 1
7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	r					
Blank 1 1 nk 1 - Groundwater 7 7			7	۲	r	t	t
ık 1 – Droundwater	1				~ •	- •	,
<u> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</u>	ı	. 1	۱ ۱	۱ ۱	-	1	
broundwater				l	I	ı	1
•							
•	7	7	,	٢	t	t	
Rinsate Blank 1	-			\ -	•		7
Trip Blank	· í	٠ ١	4	-	-	-	-
			í	í	1	1	ı

100
7
~
17
7
54.5
i Ng
17
~
· •
ác.
1
44.
350
4.3
-
40.
7
7
4.0
v
릠
Ē
Sa
7
ॖॕ

Notes: A dash (-) indicates no samples were collected.

* - One sample was analyzed for Methylene Chloride only.

** - Methods for Dissolved Metals as follows:

Aqueous: USAEC Methods: Arsenic (SD22), Thallium (SD09), Lead (SD20), Selenium (SD21), Mercury (SB01), all others (SS10). USEPA Methods: Arsenic (206.2), Thallium (279.2), Lead (239.2), Selenium (270.2), Mercury (245.1), all others (200.7).

SUMMARY OF ANALY

		CRL	MW	001	MW00	02	MW004
		μg/L	1/93	4/93	1/93	4/93	1/93
Vol	atile Organic Compounds						
C6H6	Benzene	0.5	_	_	_	_	_
CCL4	Carbon tetrachloride	0.58	_	_	_	_	_
CHCL3	Chloroform	0.5	_	_	-	-	
11DCLE	1,1-Dichloroethane	0.68	_		_	_	
11DCE	1,1-Dichloroethene	0.5	_	_	_		_
12DCE	1,2-Dichloroethene (total)	0.5	_	-	7.0	0.86	
12DCLP		0.5	_	-	_	_	-
111TCE	1,1,1-Trichloroethane	0.5	_		_	-	
TRCLE	Trichloroethene	0.5	-	_	1.7		· -
Base	-Neutral/Acid Extractables						
B2EHP	Bis(2-ethylhexyl)phthalate	4.8	6.4	-	_	-	_
	Metals						
AS	Arsenic	2.54	3.2	_		_	_
SB	Antimony	3 8	_	_	_	_	_
BA	Barium	5	128	94.4	48.1	43.1	44.3
CA	Calcium	500	341,000	278,000	241,000	185,000	232,000 2
FE	Iron	38.8	2,580	1,170	_	111	138
K	Potassium	375	3,200	*	9,650	9,770 G	7 47
MG	Magnesium	500	127,000	105,000	70,200	50.500	55,400
MN	Manganese	2.75	1,300	917	104	19.5	8.97
NA	Sodium	500	126,000 G	83,900 G	55,300 G	37,900 G	129,000 G 1
V	Vanadium	11	18.8	- :	14.3	· –	11.8
ZN	Zinc	21.1	98.6	-	_	-	90.4
Wa	ater Quality Parameters						
CL	Chloride	2,120	300,000	260,000	60,000	36,000	80,000
SO4	Sulfate	10,000	400,000	300,000	350,000	226,000	400,000 34
NIT	Nitrogen, (NO2 + NO3)	10	33.6	21.3	24.8	75.8	36.2
OILGR	Oil and Grease	181	_	_	355		297

Notes: 1. A dash (-) indicates the analyte was analyzed for but not detected.

2. * - The value is below the blank action level and is considered undetected.

3. G - Compound was found in the associated rinsate blank but this value is above the action level.

4. Shaded values exceeded one or more of the water quality criteria presented in Table 4-3.

^{5.} CRL = Certified Reporting Limit.

TABLE 4–2 SUMMARY OF ANALYTICAL RESULTS FOR GROUNDWATER (μg/L) JANUARY AND APRIL 1993 DETROIT ARSENAL

Μ\	W001	MW0	02	MW0	04	MWO	010	MW	014
93	4/93	1/93	4/93	1/93	4/93	1/93	4/93	1/93	4/93
_		_	_	_	_				
_	_	_	_			_	_		-
_	_	_	_	-	_		_	_	-
_	_	_	_		_	_	_	_	_
		_		_	_	_	_	_	_
_	_	7.0	0.86	_	_	1.2	0.78	_	-
-		-	_	_	-	_	_	_	-
	_	_	_		_	_	_	_	-
_	_	1.7	_	-	_	0.62	0.70	_	-
6.4	_	_		_	_	_	_	6.2	_
3.2		•	_			_	_	_	_
	_	_	_	_	- :	_	_		53.
128	94.4	48.1	43.1	44.3	31.1	62.5	53.7	162	13
1,000	278,000	241,000	185,000	232,000	218,000	189,000	145,000	229,000	211,00
,580 3,200	1,170	~	111	138	43.8	-	-	_	46.
3,200	*	9,650	9,770 G	7 47	*	2,840	*	3,460	×
7,000	105,000	70,200	<i>5</i> 0, <i>5</i> 00	55,400	58,300	60,200	44,400	152,000	138.00
,300	917	104	19.5	8.97	3.19	4.98		14	3.9
5,000 (G 83,900 G		37,900 G		114,000 G	282,000 G	193,000 G	309,000 G	312,000
18.8		14.3	-	11.8	-	_	_	15.2	12
98.6	-	-	-	90.4	-	100	-	26.3	-
	,								
,000	260,000	60,000	36,000	80,000	99,000	520,000	310,000	1,000,000	1,000,000
,000	300,000	350,000	226,000	400,000	340,000	145,000	104,000	142,000	135,000
33.6	21.3	24.8	75.8	36.2	33	42.3	55.4	46.7	19
		355	_	297		359		_	

for but not detected.

nd is considered undetected.

nsate blank but this value is above the action level.

ter quality criteria presented in Table 4-3.

LE 4–2 SULTS FOR GROUNDWATER (μg/L) ND APRIL 1993 Γ ARSENAL

MW0	10	MW01	4	MW0	16	MW0	18
1/93	4/93	1/93	4/93	1/93	4/93	1/93	4/93
				0.97	_	_	_
_	_	_	<u>-</u>	0.97	_	0.64	_
<u>-</u>	-	_	_		_	*	*
_	_	_ :		130	69	_	_
_	_	_		1.5	_	_	_
1.2	0.78	_	_		-		
-	-	_	_	8.5	4.2	_	
_	_	_	_	19	5.7	_	
0.62	0.70	_		_	-		-
		6.2		_		7.9	_
_	_	6.2	_	_			
-	-	_		_	_		
_	_	-	53.1	_	_	-	60.7
62.5	53.7	162	133	94.4	73.2	113	113
189,000	145,000	229,000	211,000	207,000	243,000	130,000	150,000
_	_	_	46.3 *	-	85.1 *	5040	- - 220 C
2,840	*	3,460		52.200	·	5,240	6,320 G
60,200	44,400	152,000	138.000	53,300	64,400 1,710	87,400 3.16	103,000
4.98	_	14	3.96	1,750	436,000 G	115,000 G	127,000 G
82,000 G	193,000 G	309,000 G	312,000 G	413,000 G	450,000 0	12.9	13.5
-	-	15.2	12.3	34.2	-	12.9	13.3
100	_	26.3	_	34.2	-	_	_
20,000	310,000		1,000,000	1,000,000	1,200,000	410,000	520,000
145,000	104,000	142,000	135,000	109,000	11,000	172,000	183,000
42.3	55.4	46.7	19	19.3		88	85.2
359	-	_				•••	

TABLE 4-3 WATER QUALITY CRITERIA **DETROIT ARSENAL**

	FEDERAL C	RITERIA	STATE OF MI	CHIGAN ACT	307 CRITERIA
			Type B	Туре В	Type A (1)
	MCLs	SMCLs	Health-Based	Aesthetic	(MDL)
<u>ORGANICS</u>					
Benzene	5 (f)	NA	1.2	NA	1
Bromodichloromethane	100 (t)	NA	0.56	NA	1
Carbon Tetrachloride	5 (f)	NA	0.27	NA	1
Chloroform	100 (t)	NA	5.6	NA	1
Chloromethane	NA (s)	NA	2.7	NA	1
1,1-Dichloroethane	NA	NA	840	NA	1
1,1-Dichloroethene	7 (f)	NA	7	NA	1
1,2-Dichloroethane (total)	5 (f)	NA	0.38	NA	1
1,2-Dichloroethene (total)	70 (f,2)	NA	77 (2)	NA	1
1,2-Dichloropropane	5 (f)	NA	0.52	NA	1
Methylene Chloride	5 (f)	NA	4.6	NA	1
Toluene	1,000 (f)	NA	1,500	790	1
1,1,1-Trichloroethane	200 (f)	NA	200	NA	1
Trichloroethene	5 (f)	NA	2.2	NA	1
Bis(2-ethylhexyl)phthalate	NA	NA	2.5	NA	5
Vinyl Chloride	2 (f)	NA	0.016	NA	1
INORGANICS			ł		
Arsenic	50 (r)	NA	0.02	NA	201
Antimony	6 (f)	NA	2.4 (d)	NA	5
Barium	2,000 (f)	NA	2,400 (d)	NA	200
Cadmium	5 (f)	NA	3.5 (d)	NA	0.2
Chromium *	100 (f)	NA	120 (d)	NA	1
Copper	NA	1,000 (f)	1,300 (d)	1,000	25
Iron	NA	300 (f)	NA	300 (d)	100
Lead	NA	NA	4 (d,o)	NA	3
Manganese	NA	50 (f)	170 (d)	50 (d)	20
Silver	NA	100 (f)	33 (d)	100	0.5
Sodium	NA	NA	150,000	NA	NA
Vanadium	NA	NA	61 (d)	NA	20
Zinc	NA	5,000 (f)	2,300 (d)	5,000 (d)	20
Chloride	NA	250,000 (f)	NA	250,000	NA
Sulfate	NA	250,000 (f)	NA	250,000	NA
Nitrate + Nitrite, as N	10,000 (f)	NA .	1,000 (3)	NA	NA

Notes:
Units are expressed in micrograms per liter (ug/L).
See next page for definition of the criteria types.

* — The federal criterion is for total chromium. The State of Michigan criterion is based on Cr VI, but applies to all chromium data.

(d) — Use local background if higher than criteria and representative of background as defined in Rule 701.

(f) — Final.

(o) — Higher level may be acceptable if soil concentration is less than 400 ppm and groundwater migrating off site will not impact adjacent properties.

(r) — Under review.

(s) — Being studied for possible regulation.

Being studied for possible regulation.
Tentative.

(1) - In cases where Type B criterion is less than Type A criterion. Type A criterion becomes the cleanup level.
 (2) - Criteria based on cis-1,2-dichloroethene.
 (3) - Criteria based on nitrite.
 NA - Not Available.
 - Lowest applicable criterion

No criteria are available for Oil and Grease, Calcium, Potassium, Magnesium, and Total Organic Carbon.

MDNR Act 307 Criteria: "MERA Operational Memorandum #8, Revision 1 – Type B Criteria Rules", MDNR, July 16, 1993. Federal Criteria: "Drinking Water Regulations and Health Advisories," Office of Water, USEPA, May 1993. References:

TABLE 4-3 (continued) TYPES OF GROUNDWATER CRITERIA DETROIT ARSENAL

FEDERAL CRITERIA

- MCL: Maximum Contaminant Level. Maximum permissible level of a contaminant in water which is delivered to any user of a public water system.
- SMCL: Secondary Maximum Contaminant Level. A non-enforceable, recommended maximum concentration of a contaminant. These levels are based on aesthetic qualities rather than on human-health risk.

STATE OF MICHIGAN CRITERIA

The MDNR has established three different cleanup types (Types A, B, and C) for remediating sites of environmental contamination.

- Type A: Cleanup is achieved when either of the following conditions is met:
 - The concentration of the hazardous substances does not exceed background.
 - The concentration of the hazardous substances does not exceed the acceptable method detection limit (MDL).
- Type B: <u>Health Based</u> -- Uses concentrations based on standardized risk assessment guidelines and scenarios.

Aesthetic -- Uses concentrations based on the aesthetic traits (e.g., taste and odor) of each contaminant.

Type C: Concentrations are determined based on a site-specific risk assessment.

TABLE 4–4 SUMMARY OF RESULTS FOR QUALITY CONTROL SAMPLES JANUARY AND APRIL 1993 DETROIT ARSENAL

NDCLM Bromodichloromethane 12CL2 Methylene chloride/Dichloromethane 14CL3 Chloroform 12CL2 Methylene chloride/Dichloromethane 14CL3 Chloroform 14CL3 Chloroform 14CL3 Chloroform	0.68 2.6 6.5 7.570 6.1 5.6	3.4 26 32.5 37.850 61 28
BRDCLM	0.68 2.6 6.5 7.570 6.1 5.6	3.4 26 32.5 37.850 61 28
BRDCLM	0.68 2.6 6.5 7.570 6.1 5.6	3.4 26 32.5 37.850 61 28
CH2CI2 CHCI3 Blank (RBIK-1) NA CH2CI2 CHCI3 Blanks FE CHCI3 CHCI3 CHCI3 CHCI3	2.6 6.5 7.570 6.1 5.6	26 32.5 37,850 61 28
Blank (RBLK-1) NA CH2CL2 CH2CL2 CHCL3 Blanks FE CHCL3 nk (TBLK-1) CHCL3	6.5 7.570 6.1 5.6	32.5 37,850 61 28
Blank (RBLK-1) NA CH2CL2 CHCL3 Blanks FE CHCL3 nk (TBLK-1) CHCL3	7.570 6.1 5.6 5.7	37,850 61 28
Blanks FE CHCL3 CHCL3 CHCL3 Ink (TBLK-1) CHCL3	6.1 5.6 67.3	61 28
Blanks FE CHCL3 Ink (TBLK-1) CHCL3		28
Blanks FE CHCL3 nk (TBLK-1) CHCL3	673	
nk (TBLK-1) CHCL3	C: 5	336.5
nk (TBLK-1) CHCL3	0.78	3.9
CHCL3		
2	4.2	21
	773	3,865
NA Sodium	098	2,800
CHCL3 Chloroform	3.9	19.5
Method Blanks None		

4.1.1 Round 1 Quality Control Samples

Chloroform was detected at a concentration of 0.78 μ g/L in one of the laboratory method blanks associated with the Round 1 organic samples. Bromodichloromethane, chloroform and methylene chloride were found in the trip blank associated with all samples at concentrations of 0.68 μ g/L, 6.5 μ g/L, and 2.6 μ g/L, respectively. Chloroform and methylene chloride were also detected in the rinsate blank at concentrations of 5.6 μ g/L and 6.1 μ g/L, respectively. Bromodichloromethane and methylene chloride were not detected in the site samples. Chloroform was detected in MW018 at a concentration of 0.79 μ g/L. This concentration is below the action level calculated as part of the blank assessment process; its presence is attributed to the contamination found in the associated blanks.

The laboratory method blanks associated with the Round 1 inorganic samples were free from contamination. Sodium was found in the rinsate blank associated with all samples at a concentration of 7,570 μ g/L. Because sample concentrations of sodium ranged from 55,300 to 413,000, it is unlikely that this contamination was from the rinsing procedures. Sodium is common in most public water supplies and is often not completely removed by ion exchange resins used to generate ion-free water.

4.1.2 Round 2 Quality Control Samples

The laboratory method blanks associated with the Round 2 organic samples were free from contamination. Chloroform was detected in the trip and rinsate blanks at concentrations of 4.2 μ g/L and 3.9 μ g/L, respectively. Chloroform was detected in MW018 at a concentration of 0.88 μ g/L. This concentration is below the action level calculated as part of the blank assessment process; and its presence is attributed to the contamination found in the associated field blanks.

The laboratory method blanks associated with the Round 2 inorganic samples were free from contamination. Sodium was found in the rinsate blank associated with all samples at a concentration of 560 μ g/L. Because sample concentrations of sodium ranged from 38,000 to 436,000, it is unlikely that this contamination was from the rinsing procedure. Potassium was also detected in the rinsate blank at a concentration of 773 μ g/L. Potassium was found in the samples at concentrations ranging from 673 μ g/L to 9,770 μ g/L. Only potassium from MW02 (at 9,770 μ g/L) and MW018 (at 6,320

 μ g/L) should be considered site related. The remaining potassium concentrations were below the action levels calculated during the blank assessment process; its presence is attributed to the contamination found in the associated field blank.

4.2 DISCUSSION OF GROUNDWATER RESULTS

In this section, analytical results for samples collected in 1993 are compared to regulatory criteria and to historical data. When appropriate, distribution patterns are also mentioned.

4.2.1 Organic Compounds Detected in 1993

Only eight VOCs were detected in the groundwater at the Detroit Arsenal site. Many of the compounds were detected just above the Certified Reporting Limit (CRL). Most of the compounds which were detected in the January sampling event were found at lower concentrations during the April event.

Of the volatile compounds detected in Rounds 1 and 2, only 1,2-dichloropropane in MW016 exceeded the regulatory criteria (see Tables 4-2 and 4-3). Samples collected from monitoring wells MW001, MW004, and MW014 did not contain any volatile compounds. In MW018, only carbon tetrachloride was detected at a concentration slightly above the CRL (January 1993). Trichloroethene (TRCLE) and 1,2-dichloroethene (12DCE) were detected in monitoring wells MW002 and MW010 at low concentrations. In January 1993, five compounds (benzene, 1,1-dichloroethane, 1,1-dichloroethene, 1,2-dichloropropane, and 1,1,1-trichloroethane) were detected in MW016, but only three of these compounds (1,1-dichloroethane, 1,2-dichloropropane, and 1,1,1-trichloroethane) were detected in April 1993.

Only one BNA compound was detected during Rounds 1 and 2; bis(2-ethylhexyl)phthalate (B2EHP) was detected in MW001, MW014, and MW018 at concentrations exceeding the regulatory criteria during January 1993. Although B2EHP was not detected in any of the quality control blanks, this compound is a common laboratory contaminant. Because this compound was not detected in any well during the April sampling event, the presence of this compound in groundwater is questionable.

4.2.2 Inorganic Parameters Detected in 1993

Eleven elements were detected during the Round 1 and 2 sampling events. Of these eleven elements, only five (arsenic, antimony, iron, manganese, and sodium) were detected in concentrations exceeding the relevant regulatory criteria. Arsenic was detected in MW001 at a concentration of 3.2 μg/L during Round 2. Antimony was found during the Round 2 sampling event in MW014 and MW016 at concentrations of 53.1 μg/L and 60.7 μg/L, respectively. MW001 contained iron which exceeded regulatory aesthetic criteria with concentrations of 2,580 μg/L and 1,170 μg/L during Rounds 1 and 2, respectively. Manganese exceeded water quality criteria during both sampling events in wells MW001 (1,300 μg/L and 917 μg/L) and MW016 (1,750 μg/L and 1,710 μg/L). In MW002, only the Round 1 sample (104 μg/L) exceeded the criteria for manganese. Sodium was above the regulatory criteria in samples collected from MW010, MW014, and MW016 during both Round 1 and Round 2.

4.2.3 Water Quality Parameters Detected in 1993

Of the four water quality parameters analyzed, only chloride and sulfate exceeded water quality criteria. Chloride exceeded the regulatory criteria in ten out of 14 samples collected with concentrations ranging from 260,000 μ g/L to 1,200,000 μ g/L. Only MW002 and MW004 did not contain chloride at concentration levels exceeding the criteria. Sulfate exceeded the criteria in MW001 (400,000 μ g/L and 300,000 μ g/L) and MW004 (400,000 μ g/L and 340,000 μ g/L) during both sampling events. In MW002, only the Round 1 sample exceeded the criteria with a concentration of 350,000 μ g/L.

4.2.4 Comparison of 1993 Groundwater Results to Historical Data

Groundwater results for all monitoring wells sampled during the Round 1 and Round 2 sampling events were compared to historical data collected by EEI and Dames and Moore. For the seven wells sampled in 1993, all analytes which have been detected are summarized in Appendix H. For comparison purposes, each page of this table contains the data for only one monitoring well.

4.2.4.1 Organic Compounds. Based upon historical data, VOCs have been consistently detected in MW002 and MW016. The VOCs consistently detected in MW002 are 1,2-dichloroethene (12DCE) and trichloroethene (TRCLE). Concentrations of these compounds, although variable, have decreased over time. Neither compound exceeded regulatory criteria during the 1993 sampling events. Vinyl chloride was detected in this well in 1990, but was not detected in 1984 or 1993.

The VOCs previously detected in MW016 include benzene (C6H6), 1,1-dichloroethene (11DCE), 1,1-dichloroethane (11DCLE), 1,2-dichloropropane (12DCLP) and 1,1,1-trichloroethane (111TCE). As was observed in MW002, chemical concentrations have generally decreased over time. Two of the five original compounds detected in 1984 (C6H6 and 11DCE) were not detected in April 1993. Only 12DCP was detected above the regulatory groundwater criteria.

In 1993, 12DCE and TRCLE were detected in MW010 but have not been consistently found in historical sampling events. 12DCE was detected at a comparable concentration in January 1990 but neither compound was detected in subsequent 1990 sampling rounds. Both compounds were detected at concentrations just above the CRL and neither compound was above regulatory criteria.

Bis(2-ethylhexyl)phthalate is the only BNA target compound which has been detected in these wells. This compound has been found only sporadically and is considered to be a common laboratory contaminant. As such, it is questionable whether this compound is site related.

The sample collected from MW016 in January 1993 contained four unknown compounds. The sample collected from this well in April 1993 contained three unknowns as well as one tentatively identified compound: 1,1,2-trichloro-1,2,2-trifluoroethane (TCLTFE). TCLTFE has been tentatively identified in all samples collected from this well except for the one collected in January 1993. Correlation among unknown compounds is not possible because assignment of the unknown label can vary from analysis to analysis.

4.2.4.2 Inorganic Parameters. Comparison of inorganic elemental data are somewhat limited because not all parameters that were analyzed for in 1993 have been previously reported. No notable trends were observed.

In MW001, arsenic was detected in January 1993 above regulatory criteria, but was not detected in the April 1993 sample. The January detection was the only detection of arsenic in MW001 in six separate sampling events. Similarly, zinc was detected in several wells only during the January 1993 sampling event. The zinc concentrations detected were well below regulatory criteria.

In April 1993, antimony was detected in MW014 and MW018 at concentrations exceeding water quality criteria. This element had not been analyzed for in samples from these wells prior to 1993. However, because antimony was not detected in January 1993, its presence in these wells may be suspect or may have recently migrated to these wells from another source.

Barium, calcium, and magnesium were detected in every monitoring well during the January 1993 sampling event, but only barium had been analyzed for previously (September 1984). The 1984 reporting limit for barium was 1,000 μ g/L; therefore, it is uncertain whether this element was present at concentrations comparable to the 1993 levels which ranged from 31.1 μ g/L to 162 μ g/L. Concentrations of calcium ranged from 130,000 μ g/L to 341,000 μ g/L, and magnesium concentrations ranged from 44,400 μ g/L to 127,000 μ g/L. None of these elements exceeded regulatory criteria.

Potassium and vanadium were also detected in 1993 but were not analyzed for previously. Potassium was detected in eight out of fourteen samples at concentrations ranging from 747 μ g/L to 9,770 μ g/L. Vanadium was detected in seven out of fourteen samples at concentrations ranging from 11.8 μ g/L to 18.8 μ g/L. Both elements were detected below all regulatory criteria.

Every monitoring well contained sodium in 1993; this element was not analyzed for in previous sampling events. Concentrations of sodium ranged from 37,000 μ g/L to 436,000 μ g/L. MW010, MW014, and MW016 had concentrations of sodium which exceeded the regulatory level of 150,000 μ g/L.

Iron was detected in MW001, MW002, MW004, MW014, and MW016. Only the concentrations detected in samples collected from MW001 exceeded the aesthetic regulatory criterion.

Manganese was detected in 38 of 42 samples collected and was detected in all monitoring wells. The detected concentrations of manganese ranged from $3.16~\mu g/L$ to $3,120~\mu g/L$. Manganese was detected

in all samples collected from MW016 at concentrations ranging from 326 μ g/L to 3,120 μ g/L. All of these samples exceed the Michigan Type B aesthetic criteria of 50 μ g/L.

In MW001, manganese was detected in all samples collected and the concentrations have increased over time. Concentrations of manganese were below 300 μ g/L prior to 1990. After 1990, the concentrations ranged from 658 μ g/L to 1,300 μ g/L. The level of manganese was above the Type B aesthetic criteria in all samples collected from MW001. In addition, the apparent increase of this element in MW001 indicates the possibility of contaminant migration from underground sources at the site. At MW002, manganese was above the Type B aesthetic criteria in January 1993 and below it in April 1993. All 1993 manganese concentrations in MW004, MW010, MW014, and MW018 were below regulatory criteria.

4.2.4.3 Water Quality Parameters. Every monitoring well contained chloride in 1993; this element was not analyzed for in previous sampling events. Concentrations of chloride ranged from $36,000 \mu g/L$ to $1,200,000 \mu g/L$. Chloride exceeded the Michigan Type B aesthetic criteria of $250,000 \mu g/L$ in ten out of 14 samples collected with concentrations ranging from $260,000 \mu g/L$ to $1,200,000 \mu g/L$. Only MW002 and MW004 contained chloride at concentrations which did not exceed the regulatory level.

Sulfate was detected in 40 of 41 samples analyzed with detected concentrations ranging from 11,000 μ g/L to 540,000 μ g/L. The concentrations of sulfate remained consistent with time which indicates that the analyte may not be migrating or it may be a background concentration. Sulfate in MW010, MW014, MW016 and MW018 was consistently found at or below the Michigan Type B aesthetic criteria of 250,000 μ g/L. Concentrations of sulfate in MW001, MW002, and MW004 were consistently detected near or above the criteria.

Oil and grease have never been detected in MW001, MW014, or MW018 but have been detected at MW002, MW004, MW010 and MW016. In general, oil and grease concentrations have been decreasing across the site with time. The highest oil and grease concentration was 94,000 μ g/L at MW016 in July 1988. In January 1993, oil and grease were found only in MW002, MW004, and MW010 at concentrations of 355 μ g/L, 297 μ g/L, and 359 μ g/L, respectively. During the April 1993 sampling event, oil and grease were not detected above the CRL of 181 μ g/L.

With the exception of MW018, nitrate/nitrite concentrations did not appear to vary with time. Concentrations of this parameter at MW018 dropped from 1,240 μ g/L in September 1988 to 85.2 μ g/L in April 1993. Except for the anomalously high concentration of nitrate/nitrite in September 1984, concentrations were similar from well to well and did not exceed regulatory criteria.

5.0 SUMMARY AND CONCLUSIONS

Task Order 3 was originally issued on September 26, 1991; the objectives of the task order were to collect the information necessary to estimate the groundwater flow direction, calculate the transmissivity, and determine groundwater quality in shallow soils. The major field tasks included in this task order were to perform two 72-hour constant_discharge tests and to collect and analyze two rounds of groundwater samples.

Work completed during previous investigations indicated that shallow soils were glacial lacustrine deposits with a low horizontal conductivity ($1x10^{-5}$ cm/sec). Most water levels were found to occur within 10 feet of the ground surface; the groundwater flow direction was identified as north-northeasterly. Various organic compounds, metals, and sulfate were detected in the groundwater, but the potential for migration of contaminants off site was considered to be low because of the low calculated groundwater flow rates.

As required by Task Order 3, ABB-ES conducted two 72-hour constant-discharge tests: one at MW003 and one at MW017. The test at MW003 was run for 24 hours after the drawdown data plots indicated that stabilized drawdown levels had been reached. The test at MW017 was stopped prematurely after five hours of pumping because of excessive drawdown in the pumped well.

The average estimated hydraulic conductivity (K_h) based on the analyses of the constant-discharge test at MW003 is 1.5×10^{-4} cm/sec. The corresponding transmissivity (T) is 9.8 ft²/day. At MW003, the long-term storativity/specific yield (S) is believed to be approximately 0.04. At MW017, the estimated K_h is 4×10^{-7} cm/sec which would correspond to a T of 0.026 ft²/day. The data collected were insufficient to calculate S.

A characterization of the hydraulic parameters for the site using the results from pumping tests at MW003 and MW017 demonstrate that hydraulic conditions range considerably -- up to three orders of magnitude -- from place to place. However, based on the available hydrogeologic information (primarily well logs and slug test values) the T, K_h , and S calculated from the MW003 test data are likely to be representative of the most permeable soils on the site.

As previously observed during past investigations, ABB-ES found the groundwater elevation to be highest in the southeast portion of the site. ABB-ES' interpretation of the groundwater elevations is that the dominant groundwater flow direction across the site is to the north and that the groundwater flows east off the site in the vicinity of MW014. The groundwater flow velocity is estimated to be approximately 50 feet per year between MW003 and MW008 and approximately 10 feet per year between MW004 and MW014.

Two rounds of groundwater samples were collected by ABB-ES: one in January 1993 and one in April 1993. The samples were analyzed for volatile organic compounds (VOCs), base-neutral/acid extractable compounds (BNAs), dissolved metals, chloride, sulfate, and oil and grease. Only eight VOCs were detected in the groundwater at the Detroit Arsenal site. Many of the compounds were detected just above the Certified Reporting Limit. Most of the compounds which were detected in the January sampling event were found at lower concentrations during the April event. Of the volatile compounds detected, only 1,2-dichloropropane (in MW016) exceeded the regulatory criteria. In general, concentrations of organic compounds have decreased since the first sampling event in 1984.

Fourteen inorganic parameters were detected in samples collected by ABB-ES. Of these fourteen parameters, only seven (arsenic, antimony, iron, manganese, sodium, chloride, and sulfate) were detected in concentrations exceeding current regulatory criteria. Arsenic was detected only once while antimony and iron were each detected twice above the current criteria. Manganese and sodium were detected five and six times, respectively, above current criteria. Chloride and sulfate were detected ten and five times, respectively, above current criteria. The concentrations of inorganic parameters have remained relatively constant since the first sampling event in 1984.

REFERENCES

- Dames & Moore, 1990. "Final Report, 1990 Quarterly Monitoring Program, Detroit Arsenal, Warren, Michigan"; prepared for U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), Aberdeen Proving Ground, Maryland; December 1990.
- Envirodyne Engineers, Inc. (EEI), 1985. "Environmental Contamination Survey of the Detroit Arsenal"; prepared for U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), Aberdeen Proving Ground, Maryland; August 1985.
- Freeze, R. A. and J. A. Cherry, 1979. Groundwater; Prentice Hall, Englewood Cliffs, New Jersey.
- Geraghty and Miller, Inc., 1989. Aquifer Test Solver (AQTESOLV), Version 1.1 Documentation, Reston, VA
- Hantush, M. S., and C. E. Jacob, 1960. "Modification of the Theory of Leaky Aquifers"; Journal of Geophysical Research; Vol. 65, No. 11; pp. 3713-3725.
- Heath, R.C. and F.W. Trainer, 1968. <u>Introduction to Groundwater Hydrology</u>; John Wiley and Son, Inc., New York
- Lohman, S.W., 1979. Groundwater Hydraulics; U.S. Geological Survey Professional Paper 708.
- U.S. Environmental Protection Agency (USEPA), 1989. "Risk Assessment Guidance for Superfund, Volume I Human Health Evaluation Manual (Part A)"; Office of Emergency and Remedial Response; USEPA 540/1-89/002; Washington, D.C.; December 1989 (Interim Final).
- U.S. Environmental Protection Agency (USEPA), 1991. "National Functional Guidelines for Organic Data Review"; USEPA Contract Laboratory Program; Revised June 1991 (Draft).

APPENDIX A

LETTER REPORT: STEPPED-DISCHARGE TEST

-

December 6, 1991 7027-02 (2.72B)

Ms. Denise Hancsak
USATHAMA
CETHA-IR-A
Building 4480
Aberdeen Proving Grounds, MD 21010-5401

Subject: Letter Report - Step-Drawdown Test Detroit Arsenal, Warren, Michigan, 11/26/91

REPORT ON MW-003 STEP-DISCHARGE TEST

We have completed our analyses of the step-discharge rate pumping test that was conducted on November 26, 1991, on well MW-003, which is located at the Detroit Arsenal/USATHAMA site. Below is provided a condensed summary of our findings and recommendations.

TEST OBJECTIVES

A step-discharge test was conducted to determine if a constant rate test is feasible in the lacustrine clay deposits at the site given the locations of the existing observation wells with respect to the proposed pumping well (MW-003). Determination of the optimum rate of a multi-day pumping test was also a goal.

METHODOLOGY

The step-discharge test was conducted at four successive discharge rates (Q) of 0.061, 0.154, 0.258 and 0.485 gallons per minute (gpm). The duration of each of the first three tests was 120 minutes. The fourth test could only be run for 70 minutes due to excessive drawdown in the pumping well. The water level in the pumping well was recorded at frequent time intervals throughout the test. Field personnel were fairly successful in maintaining a constant discharge rate throughout each test.

ABB Environmental Services, Inc.

ANALYSIS

The data were analyzed using the Birsoy and Summers (1980) method for determining certain aquifer parameters from step tests. The assumptions governing the application of this model are that the aquifer is confined, homogeneous and has a constant thickness, flow to the well can be expressed by Theis' nonequilibrium formula and drawdown (s) at any time can be determined by the principle of superposition.

The conditions at the site are believed to be unconfined; however, confined aquifer models can be used reliably as long as the drawdown is small compared to the saturated thickness of the aquifer. When the drawdown is great with respect to the saturated thickness, a correction factor must be applied to the observed drawdown measurements prior to analyses. It was necessary to apply this correction to the observed drawdown measurements, and even so, the adjusted drawdowns for the third discharge step may be approximate due to the large drawdown.

The analysis was implemented by plotting the data on semilog graph paper as specific drawdown versus adjusted time. Data for each step should plot on a straight line having a slope of 264/T (where T = transmissivity in gal/day/ft), if certain idealized aquifer conditions exist. When the data do not plot on the same line, it is usually because of:

- o well efficiency head losses;
- o well development is occurring, or;
- o hydrologic boundaries are encountered by drawdown.

TEST RESULTS

Figure 1 is a Birsoy and Summers plot of the first three step tests of well MW-3. The fourth test was not included in the analysis because the well extensively dewatered during the test, thereby precluding accurate analyses of the drawdown data.

Two hydrologic conditions are evident on Figure 1. First, the well appears to be developing throughout the course of the step tests. This is evident by the reduction in specific discharge (s/Q) between the first and second test. The specific discharge of the third test is also less than that of the first test, but greater than that of the second test. Whatever was blocking the well screen during the first test appears to

have been removed during the second test. The plot of the third test is probably the most representative plot with regards to reflecting hydrologic conditions in the surrounding aquifer.

The second condition that is apparent from the plots is that a negative hydrogeologic boundary exists within hydraulic reach of the step tests. The plotted lines in theory should be straight. When the lines curve it is usually the result of a hydrologic boundary. Given the nature of lacustrine deposits, it is possible that some sand lenses that presumably transmit water to the well either pinch out or are areally intermittent.

A transmissivity value of 1.2 $\rm ft^2/day$ was calculated using the latter (steepest) part of the curve plotted from the third step test. Using a saturated thickness of 20 feet, this translates to a hydraulic conductivity ($\rm K_h$) of 0.062 $\rm ft/day$ (2 X 10⁻⁵ cm/sec). This value of hydraulic conductivity is consistent with slug test values derived from the surrounding wells (EEI, 1984).

Projections for Multi-Day Constant Rate Test

Computer simulations were performed using the PT1 program, a pumping test design model (Walton, 1987). The simulations were conducted to evaluate the optimum pumping rate and test duration that would produce measurable drawdown at the closest existing monitoring well (MW-016)--a radial distance (r) of approximately 60 feet-without dewatering the pumping well (MW-017) and within a reasonable duration of pumping.

Various combinations of pumping rates, test durations, and aquifer properties were assumed to assess the impact on the estimated radius of influence. The simulations were conducted assuming water table conditions; the program takes into account aquifer dewatering. Both isotropic and anisotropic conditions were modeled assuming a vertical anisotropy of 1:1 and 10:1, respectively. The hydraulic parameters that were used for the simulations were values that were derived from the boring logs (e.g., saturated thickness = 20 feet) or from the step and slug tests (e.g., hydraulic conductivity = 0.062 ft/day). The duration of the pumping test simulation was varied between three and seven days. Specific yield (S_y)--the storativity parameter for an unconfined aquifer--and discharge rate were the only parameters that were adjusted. Specific yield values of 0.05 and 0.005 were used for the simulations. These values are within the range expected for unconfined to semiconfined silty/sandy clay deposits. The model output can be found in Attachment A. A summary of the results are presented on Table 1.

Discussion

As indicated by Table 1, specific yield is the most sensitive parameter affecting modeled drawdowns. If the actual specific yield is close to 0.05, it is unlikely that pumping at a rate of 0.1 gpm would produce measurable drawdown within seven days at the nearest existing monitoring well (r = 60 feet). Furthermore, an increase in the discharge rate would only result in excessive drawdown in the pumping well. Similarly, if the actual specific yield is close to 0.005, excessive drawdown would occur after 2 days at a rate of 0.1 gpm, before measurable drawdown would be produced in the nearest existing monitoring well.

The most optimistic scenario uses assumptions that are probably unrealistic. It assumes a discharge rate of 0.08 gpm, no horizontal anisotropy, and a specific yield of 0.005. Under this optimistic scenario, drawdown in MW-016 or MW-018 would probably be adequate for interpretation after seven days of pumping at MW-017.

Therefore, assuming that more realistic conditions prevail, even a seven-day pumping test at the maximum possible rate (0.08 gpm) is not likely to cause enough drawdown at the nearest existing observation well so that specific yield can be quantified. Any drawdown that may occur will be so small that "noise" factors, such as barometric and earth tide effects, will likely preclude reliable analysis. Furthermore, for the analysis to be reliable, once drawdown reaches an observation well, the test must be continued until a distinctive curved drawdown plot is achieved. This requirement could add several more days of pumping before a distinctive drawdown curve is achieved in observation wells that are located 60 or more feet from the pumping well. However, the drawdown should be well-developed at a distance of 20 feet after 3 days of pumping, assuming that the aquifer is in the late stage of delayed drainage. Should the aquifer be in the early stage of delayed drainage after three days, it may be necessary to extend the test several days to get a true specific yield value.

CONCLUSIONS AND RECOMMENDATIONS

While transmissivity of the lacustrine deposits has been estimated from slug test results and the step-discharge test, the specific yield has not. Specific yield is equated to effective porosity, an important parameter in predicting the rate of groundwater movement. The primary purpose of a constant-rate pumping test at the Detroit Arsenal would be to quantify specific yield.

Drawdowns predicted by computer simulations varied greatly depending on the specific yield value used in the simulation. Therefore, much uncertainty remains in

the prediction of when measurable drawdown would occur at the nearest monitoring well.

A pumping rate of 0.08 gpm is recommended for a multi-day constant-rate test; a pumping rate of 0.1 gpm may result in dewatering of the pumping well if S_y is closer to 0.005 than to 0.05. Furthermore, to increase the chances of a successful pumping test, we recommend that two piezometers be installed at a distance of 10 and 20 feet from the pumping well. Installation of these piezometers would reduce the duration of the pumping test and greatly increase the chance of collecting data adequate for quantifying specific yield.

Please call me or Hank Andolsek if you have any additional questions.

Sincerely,

ABB ENVIRONMENTAL SERVICES, INC.

Larry Dearborn

Principal Hydrogeologist

cc:

- J. Cuccaro
- G. Reade
- D. Bowser (enclosed)
- P. Parker Commander

U.S. Tank - Automotive Research & Development Command

Attn: AMSTA-XEM (Mr. Printes Parker)

6501 E. 11 Mile Rd.

Warren, MI 48397-5000

TABLE 1 SUMMARY OF PUMPING TEST SIMULATION

				DRAWDOWN	(ft)	
Q(gpm)	t(day)	$s_y K_h/K_v$	r=0.33	r=13 r=	21 r=33	r=53 r=83
0.1	3	0.05 1	12.17	0.74 0.	09 0.01	0.0 0.0
0.1	5	0.05 1	14.06		22 0.03	0.0 0.0
0.1	7	0.05 1	15.54		39 0.08	0.01 0.0
0.1	3	0.05 10	12.39	0.83 0.	11 0.01	0.0 0.0
0.1	5	0.05 10	14.52		27 0.05	0.0 0.0
0.1	7	0.05 10	16.88		48 0.11	0.01 0.0
0.1	2 3	0.005 1 0.005 1	15.29 EXCESSIVE		63 0.19	0.03 0.0
0.1	2 3	0.005 10 0.005 10	16.26 EXCESSIVE		84 0.30	0.06 0.01
0.08	3	0.05 1	8.77	0.60 0.	08 0.01	0.0 0.0
0.08	5	0.05 1	9.75		18 0.03	0.0 0.0
0.08	7	0.05 1	10.53		31 0.06	0.01 0.0
0.08	3	0.05 10	8.90	0.68	0.09 0.01	0.0 0.0
0.08	5	0.05 10	9.97		0.22 0.04	0.0 0.0
0.08	7	0.05 10	10.87		0.39 0.09	0.01 0.0
0.08	3	0.005 1	12.56	2.15 1.	93 0.37	0.09 0.01
0.08	5	0.005 1	14.16		30 0.62	0.19 0.03
0.08	7	0.005 1	15.75		64 0.87	0.33 0.07
0.08	3	0.005 10	13.41	2.55 1.	20 0.56	0.17 0.03
0.08	5	0.005 10	15.47		64 0.88	0.34 0.08
0.08	7	0.005 10	17.70		00 1.17	0.53 0.15

BIRSOY AND SUMMERS PLOT FOR MW-3 STEP-DISCHARGE TEST

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.10	0.00	0.00	0.00	0.00	0.00
5.73	0.16	0.00	0.00	0.00	0.00	0.00
9.09	0.25	0.00	0.00	0.00	0.00	0.00
14.40	0.37	0.00	0.00	0.00	0.00	0.00
22.82	0.56	0.00	0.00	0.00	0.00	0.00
36.17	0.83	0.00	0.00	0.00	0.00	0.00
57.33	1.21	0.00	0.00	0.00	0.00	0.00
90.86	1.70	0.00	0.00	0.00	0.00	0.00
144.00	2.32	0.00	0.00	0.00	0.00	0.00
228.22	3.06	0.00	0.00	0.00	0.00	0.00
361.71	3.90	0.00	0.00	0.00	0.00	. 0.00
573.27	4.79	0.00	0.00	0.00	0.00	0.00
908.58	5.71	0.00	0.00	0.00	0.00	0.00
1440.00	6.61	0.00	0.00	0.00	0.00	0.00
2282.25	7.50	0.00	0.00	0.00	0.00	0.00
3617.12	8.38	0.00	0.00	0.00	0.00	0.00
4320.00	8.77	0.00	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	8.77			
3	0.53	7.27			
4	0.84	5.93			
5	1.33	4.71			
6	2.10	3.59			
7	3.33	2.57			
8	5.28	1.66			
9	8.36	0.89			
10	13.26	0.35			
11	21.01	0.08			
12	33.30	0.01			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

2101.

0.00

0.00

0.00

0.00

0.00

0.00

	`	JEEG-125 +-	• • • • • • • • • • • • • • • • • • • •	•	
TIME(MIN)	0.33	52.78	132.57	333.00	836.46
0.14	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00
3.62	0.10	0.00	0.00	0.00	0.00
5.73	0.16	0.00	0.00	0.00	0.00
9.09	0.25	0.00	0.00	0.00	0.00
14.40	0.37	0.00	0.00	0.00	0.00
22.82	0.56	0.00	0.00	0.00	0.00
36.17	0.83	0.00	0.00	0.00	0.00
57.33	1.21	0.00	0.00	0.00	0.00
90.86	1.70	0.00	0.00	0.00	0.00
144.00	2.32	0.00	0.00	0.00	0.00
228.22	3.06	0.00	0.00	0.00	0.00
361.71	3.90	0.00	0.00	0.00	0.00
573.27	4.80	0.00	0.00	0.00	0.00
908.58	5.73	0.00	0.00	0.00	0.00
1440.00	6.65	0.00	0.00	0.00	0.00
2282.25	7.58	0.00	0.00	0.00	0.00
3617.12	8.50	0.00	0.00	0.00	0.00
4320.00	8.90	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	8.90			
3	0.53	7.38			
4	0.84	6.03			
5	1.33	4.81			
6	2.10	3.68			
7	3.33	2.65		•	
8	5.28	1.73			
9	8.36	0.95			
10	13.26	0.38			
11	21.01	0.09			
12	33.30	0.01			
12	33.30	0.01			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.10	0.00	0.00	0.00	0.00	0.00
5.73	0.16	0.00	0.00	0.00	0.00	0.00
9.09	0.25	0.00	0.00	0.00	0.00	0.00
14.40	0.37	0.00	0.00	0.00	0.00	0.00
22.82	0.56	0.00	0.00	0.00	0.00	0.00
36.17	0.83	0.00	0.00	0.00	0.00	0.00
57.3 3	1.21	0.00	0.00	0.00	0.00	0.00
90.86	1.70	0.00	0.00	0.00	0.00	0.00
144.00	2.32	0.00	0.00	0.00	0.00	0.00
228.22	3.06	0.00	0.00	0.00	0.00	0.00
361.71	3.90	0.00	0.00	0.00	0.00	0.00
573.27	4.79	0.00	0.00	0.00	0.00	0.00
908.58	5.71	0.00	0.00	0.00	0.00	0.00
1440.00	6.61	0.00	0.00	0.00	0.00	0.00
2282.25	7.50	0.00	0.00	0.00	0.00	0.00
3617.12	8.38	0.00	0.00	0.00	0.00	0.00
5732.74	9.25	0.00	0.00	0.00	0.00	0.00
7200.00	9.75	0.00	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 7200.00

. . .

NODE	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
NO					
2	0.33	9.75			
3	0.53	8.11			
4	0.84	6.67			
5	1.33	5.38			
6	2.10	4.20			
7	3.33	3.12			
8	5.28	2.13			
9	8 .3 6	1.28			
10	13.26	0.60			
11	21.01	0.18			
12	33.30	0.03			
13	52.78	0.00			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM =

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
1 2116 (11217)	0.55	52.75	102.07	000.00	333.73	
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.10	0.00	0.00	0.00	0.00	0.00
5.73	0.16	0.00	0.00	0.00	0.00	0.00
9.09	0.25	0.00	0.00	0.00	0.00	0.00
14.40	0.37 .	0.00	0.00	0.00	0.00	0.00
22.82	0.56	0.00	0.00	0.00	0.00	0.00
36.17	0.83	0.00	0.00	0.00	0.00	0.00
57.33	1.21	0.00	0.00	0.00	0.00	0.00
90.86	1.70	0.00	0.00	0.00	0.00	0.00
144.00	2.32	0.00	0.00	0.00	0.00	0.00
228.22	3.06	0.00	0.00	0.00	0.00	0.00
361.71	3.90	0.00	0.00	0.00	0.00	0.00
573.27	4.80	0.00	0.00	0.00	0.00	0.00
908.58	5.73	0.00	0.00	0.00	0.00	0.00
1440.00	6.65	0.00	0.00	0.00	0.00	0.00
2282.25	7.58	0.00	0.00	0.00	0.00	0.00
3617.12	8.50	0.00	0.00	0.00	0.00	0.00
5732.74	9.45	0.00	0.00	0.00	0.00	0.00
7200.00	9.97	0.00	0.00	0.00	0.00	0.00_

TIME AFTER PUMPING STARTED(MIN)= 7200.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	9.97			
3	0.53	8.30			
4	0.84	6.84			
5	1.33	5.54			
6	2.10	4.34			
7	3.33	3.25			
8	5.28	2.26			
9	8.36	1.38			
10	13.26	0.68			
11	21.01	0.22			
12	33.30	0.04			
13	52.78	0.00			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.00
.0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.05	0.00	0.00	0.00		0.00
2.28	0.08	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.00
5.73	0.20	0.00	0.00	0.00	0.00	0.00
9.09	0.31	0.00	0.00	0.00		0.00
14.40	0.47	0.00	0.00	0.00	0.00 0.00	0.00
22.82	0.71	0.00	0.00	0.00		0.00
36.17	1.04	0.00	0.00	0.00	0.00	0.00
57.33	1.51	0.00	0.00	0.00	.0.00	0.00
90.86	2.13	0.00	0.00	0.00	0.00	0.00
144.00	2.92	0.00	0.00	0.00	0.00	0.00
228.22	3.87	0.00	0.00	0.00	0.00	0.00
361.71	4.96	0.00	0.00	0.00	0.00	0.00
573.27	6.16	0.00	0.00	0.00	0.00	0.00
908.58	7.43	0.00	0.00	0.00		0.00
1440.00	8.77	0.00	0.00	0.00	0.00	0.00
2282.25	10.17	0.00	0.00	0.00	0.00	0.00
3617.12	11.69	0.00	0.00	0.00	0.00	0.00
5732.74	13.43	0.00	0.00	0.00	0.00	0.00
9085.79	15.62	0.01	0.00	0.00	0.00	0.00
10800.00	16.88	0.01	0.00	0.00	0.00 0.00	0.00 0.00
						3.00

TIME AFTER PUMPING STARTED(MIN)=10800.00

12

13

33.30

52.78

DISTANCE-DRAWDOWN OR WATER LEVEL VALUES AT END OF PUMPING PERIOD

•			
NODE , NO	RADIUS(FT)	DRAWDOWN OR WATE	ER LEVEL (FT)
. 2	0.33	16.88	
~ 3	0.53	12.62	West Control
4	0.84	10.03	
5	1.33	7.99	
6	2.10	6.25	
7	3.33	4.73	
8	5.28	3.37	
9	8.36	2.18	
.10	13.26	1.19	
11	21.01	0.48	

0.11

0.01

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.05	0.00	0.00	0.00	0.00	0.00
2.28	0.08	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.00
5.73	0.20	0.00	0.00	0.00	0.00	0.00
9.09	0.31	0.00	0.00	0.00	0.00	0.00
14.40	0.47	0.00	0.00	0.00	0.00	0.00
22.82	0.71	0.00	0.00	0.00	0.00	0.00
36.17	1.04	0.00	0.00	0.00	0.00	0.00
57.33	1.51	0.00	0.00	0.00	0.00	0.00
90.86	2.13	0.00	0.00	0.00	0.00	0.00
144.00	2.92	0.00	0.00	0.00	0.00	0.00
228.22	3.87	0.00	0.00	0.00	0.00	0.00
361.71	4.9 5	0.00	0.00	0.00	0.00	0.00
573.27	6.15	0.00	0.00	0.00	0.00	- 0.00
908.58	7.40	0.00	0.00	0.00	0.00	0.00
- 1440.00	8.71	0.00	0.00	0.00	0.00	0.00
2282.25	10.06	0.00	0.00	0.00	0.00	0.00
3617.12	11.49	0.00	0.00	0.00	0.00	0.00
5732.74	13.06	0.00	0.00	0.00	0.00	0.00
9085.79	14.90	0.00	0.00	0.00	0.00	0.00
10800.00	15.94	0.01	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)=10800.00

DISTANCE-DRAWDOWN OR WATER LEVEL VALUES AT END OF PUMPING PERIOD

NODE NO	RADIUS(FT)	DRAWDOWN OR WATER LEVEL (FT)	
2	0.33	15.94	
3	0.53	12.16	
4	0.84	9.68	
5	1.33	7.69	
6	2.10	5 .9 9	
7	3.33	4.49	
8	5.28	3.16	
9	8.36	1.99	
10	13.26	1.04	
11	21.01	0.39	
12	33.30	0.08	
13	52.78	0.01	

z

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.05	0.00	0.00	0.00	0.00	0.00
2.28	0.09	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.00
5.73	0.21	0.00	0.00	0.00	0.00	0.00
9.09	0.33	0.00	0.00	0.00	0.00	0.00
14.40	0.51	0.00	0.00	0.00	0.00	0.00
22.82	0.78	0.00	0.00	0.00	0.00	0.00
36.17	1.18	0.00	0.00	0.00	0.00	0.00
57.33	1.76	0.00	0.00	0.00	0.00	0.00
90.86	2.56	0.00	0.00	0.00	0.00	0.00
144.00	3.63	0.00	0.00	0.00	0.00	0.00
228.22	4.99	0.00	0.00	0.00	0.00	0.00
361.71	6.64	0.00	0.00	0.00	0.00	0.00
573.27	8.54	0.00	0.00	0.00	0.00	0.00
908.58	10.69	0.01	0.00	0.00	0.00	. 0.00
1440.00	13.15	0.02	0.00	0.00	0.00	0.00
2282.25	16.26	0.06	0.00	0.00	0.00	0.00
EXCESSIVE	DRAWDOWN					

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR WA	TER LEVEL (FT)
2	0.33	16.26	
3	0.53	12.55	
4	0.84	10.14	
5	1.33	8.22	
6	2.10	6.58	
7	3.33	5.13	•
8	5.28	3.83	
9	8.36	2.67	
10	13.26	1.65	
11	21.01	0.84	•
12	33.30	0.30	
13	52.78	0.06	
14	83.65	0.01	

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.25	0.01	0.00	0.00	0.00	0.00	0.00
0.57		0.00	0.00	0.00	0.00	0.00_
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.05	0.00	0.00	0.00	~o.oo	0.00
2.28	0.09	0.00	0.00	0.00	0.00	0.00
3.62		0.00	0.00	0.00	0.00	0.00
5.73		0.00	0.00	0.00	0.00	0.00
9.09		0.00	0.00	0.00	0.00	0.00
14.40		0.00	0.00	0.00	0.00	0.00
22.82		0.00	0.00	0.00	0.00	0.00
36.17		0.00	0.00	0.00	0.00	0.00
57.33		0.00	0.00	0.00	0.00	0.00
90.86	2.56	0.00	0.00	0.00	0.00	0.00
144.00		0.00	0.00	0.00	0.00	0.00
228.22		0.00	0.00	0.00	0.00	0.00
361.71	6.58	0.00	0.00	0.00	0.00	0.00
573.27		0.00	0.00	0.00	0.00	0.00
908.58		0.00	0.00	0.00	0.00	- 0.00
1440.00		0.01	0.00	0.00	0.00	0.00
2282.25		0.03	0.00	0.00	0.00	0.00
EXCESSIVE						

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE	RADIUS(FT)	DRAWDOWN OR	WATER LEVEL (FT)
NO		:•	•
2	0.33	15.29	
3	0.53	11.98	5.1
4	0.84	9.68	
5	1.33	7.81	· · ·
6	2.10	6.19	
. 7	3.33	4.76	
8	5.28	3.48	
9	8.36	2.35	
10	13.26	1.38	
11	21.01	0.63	
12	33.30	0.19	
13	52.78	0.03	
14	83.65	0.00	

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.11	0.00	0.00	0.00	0.00	0.00
5.73	0.17	0.00	0.00	0.00	0.00	0.00
9.09	0.26	0.00	0.00	0.00	0.00	0.00
14.40	0.41	0.00	0.00	0.00	0.00	0.00
22.82	0.62	0.00	0.00	0.00	0.00	0.00
36.17	0.94	0.00	0.00	0.00	0.00	0.00
57.3 3	1.40	0.00	0.00	0.00	0.00	0.00
90.86	2.04	0.00	0.00	0.00	0.00	0.00
144.00	2.89	0.00	0.00	0.00	0.00	0.00
228.22	3 .9 5	0.00	0.00	0.00	0.00	0.00
361.71	5.21	0.00	0.00	0.00	0.00	0.00
573.27	6.61	0.00	0.00	0.00	0.00	0.00
908.58	8.09	0.00	0.00	0.00	0.00	. 0.00
1440.00	9.60	0.02	0.00	0.00	0.00	0.00
2282.25	11.12	0.05	0.00	0.00	0.00	0.00
3617.12	12.69	0.12	0.00	0.00	0.00	0.00
5732.74	14.38	0.25	0.00	0.00	0.00	0.00
7200.00	15.47	0.34	0.01	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 7200.00

NODE	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
NO					
2	0.33	15.47			
3	0.53	12.50			
4	0.84	10.40			
5	1.33	8.69			
6	2.10	7.20			
7	3.33	5.88			
8	5.28	4.67			
9	8.36	3.56			
10	13.26	2.55			
11	21.01	1.64			
12	33.30	0.88			
13	52.78	0.34			
14	83.65	0.08			
15	132.57	0.01			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)== 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00_
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.11	0.00	0.00	0.00	0.00	0.00_
5.73	0.17	0.00	0.00	0.00	0.00	0.00
9.09	0.26	0.00	0.00	0.00	0.00	0.00
14.40	0.41	0.00	0.00	0.00	0.00	0.00
22.82	0.62	0.00	0.00	0.00	0.00	0.00_
36.17	0.94	0.00	0.00	0.00	0.00	0.00
57.33	1.40	0.00	0.00	0.00	0.00	0.00
90.86	2.04	0.00	0.00	0.00	0.00	0.00
144.00	2.88	0.00	0.00	0.00	0.00	0.00_
228.22	3.93	0.00	0.00	0.00	0.00	0.00
361.71	5.17	0.00	0.00	0.00	0.00	0.00
573.27	6.52	0.00	0.00	0.00	0.00	0.00
908.58	7.92	0.00	0.00	0.00	0.00	. 0.00_
1440.00	9.30	0.01	0.00	0.00	0.00	0.00
2282.25	10.63	0.02	0.00	0.00	0.00	0.00
3617.12	11.94	0.06	0.00	0.00	0.00	0.00
5732.74	13.32	0.13	0.00	0.00	0.00	0.00_
7200.00	14.16	0.19	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 7200.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	14.16			
3	0.53	11.63			
4	0.84	9.70			
5	1.33	8.08			
6	2.10	6.66			
7	3.33	5.37			
8	5.28	4.20			
9	8.36	3.13			
10	13.26	2.15			
11	21.01	1.30			
12	33.30	0.62			
13	52.78	0.19			
14	83.65	0.03			
15	132.57	0.00			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
-0:91	0.03	0.00	0.00	0.00	0.00	
1.44	0.05	0.00	0.00	0.00	0.00	0.00
2.28	0.08	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.00
5.73	0.20	0.00	0.00	0.00	0.00	0.00
9.09	0.31	0.00	0.00	0.00	0.00	0.00
14.40	0.47	0.00	0.00	0.00	0.00	0.00
22.82	0.71	0.00	0.00	0.00	0.00	0.00
36.17	1.04	0.00	0.00	0.00	0.00	0.00
57.3 3	1.51	0.00	0.00	0.00	0.00	0.00
90.86	2.13	0.00	0.00	0.00	0.00	0.00
144.00	2.92	0.00	0.00	0.00	0.00	0.00
228.22	3.87	0.00	0.00	0.00	0.00	0.00
361.71	4.96	0.00	0.00	0.00	0.00	0.00
573.27	6.16	0.00	0.00	0.00	0.00	0.00
908.58	7.43	0.00	0.00	0.00	0.00	0.00
1440.00	8.77	0.00	0.00	0.00	0.00	0.00
2282.25	10.17	0.00	0.00	0.00	0.00	0.00
3617.12	11.69	0.00	0.00	0.00	0.00	0.00
4320.00	12.39	0.00	0.00	0.00	0.00	0.00
					2.00	5.00

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	12.39			
3	0.53	9.88			•
. 4	0.84	7.87		-	
5 ·	1.33	6.16			
6	2.10	4.66			
7	3.33	3.32			
8	5.28	2.15			
9	8.36	1.17			
10	13.26	0.47			
11	21.01	0.11			
12	33.30	0.01			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.000000-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0 14	0.01	0.00	0.00	0.00	0.00	0.00
0.14		0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02		0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.05	0.00	0.00	0.00	0.00	0.00
2.28	0.08	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.00
5.73	0.20	0.00	0.00	0.00	0.00	0.00
9.09	0.31	0.00	0.00	0.00	0.00	0.00
14.40	0.47	0.00	0.00	0.00	0.00	0.00
22.82	0.71	0.00	0.00	0.00	0.00	0.00
36.17	1.04	0.00		0.00	0.00	0.00
57.33	1.51	0.00	0.00	0.00	0.00	0.00
90.86	2.13	0.00	0.00	0.00	0.00	0.00
144.00	2.92	0.00	0.00		0.00	0.00
228.22	3.87	0.00	0.00	0.00	0.00	0.00
361.71	4.95	0.00	0.00	0.00	0.00	0.00
573.27	6.15	0.00	0.00	0.00		0.00
908.58	7.40	0.00	0.00	0.00	0.00	0.00
1440.00	8.71	0.00	0.00	0.00	0.00	0.00
2282.25	10.06	0.00	0.00	0.00	0.00	0.00
3617.12	11.49	0.00	0.00	0.00	0.00	
4320.00	12.17	0.00	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	12.17			
3	0.53	9.70			
4	0.84	7.73			
5	1.33	6.04			
6	2.10	4.55			
7	3.33	3.22			
8	5.28	2.06			
9	8.36	1.10			
10	13.26	0.42			
11	21.01	0.09			
12	33.30	0.01			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.05	0.00	0.00	0.00	0.00	0.00
2.28	0.08	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.00
5.73	0.20	0.00	0.00	0.00	0.00	0.00
9.09	0.31	0.00	0.00	0.00	0.00	0.00
14.40	0.47	0.00	0.00	0.00	0.00	0.00
22.82	0.71	0.00	0.00	0.00	0.00	0.00
36.17	1.04	0.00	0.00	0.00	0.00	0.00
57.33	1.51	0.00	0.00	0.00	0.00	0.00
90.86	2.13	0.00	0.00	0.00	0.00	0.00
144.00	2.92	0.00	0.00	0.00	0.00	0.00
228.22	3.87	0.00	0.00	0.00	0.00	0.00
361.71	4.95	0.00	0.00	0.00	0.00	0.00
573.27	6.15	0.00	0.00	0.00	0.00	0.00
908.58	7.40	0.00	0.00	0.00	0.00	0.00
1440.00	8.71	0.00	0.00	0.00	0.00	- 0.00
2282.25	10.06	0.00	0.00	0.00	0.00	0.00
3617.12	11.49	0.00	0.00	0.00	0.00	0.00
5732.74	13.06	0.00	0.00	0.00	0.00	0.00
7200.00	14.06	0.00	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 7200.00

NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
2	0.33	14.06			
- 3	0.53	11.04			
4	0.84	8.81		•	
5	1.33	6.96		*	
6	2.10	5.35			
7	3.3 3	3.93			
8	5.28	2.66			
9	8.36	1.58			
10	13.26	0.74			
11	21.01	0.22		,	
12	33.30	0.03			
13	52.78	0.00			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.10

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

						•
.TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.01	0.00	0.00	0.00	0.00	0.0
0.23	0.01	0.00	0.00	0.00	0.00	0.0
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.0
1.44	0.05	0.00	0.00	0.00	0.00	0.0
2.28	0.08	0.00	0.00	0.00	0.00	0.00
3.62	0.13	0.00	0.00	0.00	0.00	0.0
5.73	~, 0.20	0.00	0.00	0.00	0.00	0.0
9.09	0.31	0.00	0.00	0.00	0.00	0.0
14.40	0.47	0.00	0.00	0.00	0.00	0.00
22.82	0.71	0.00	0.00	0.00	-0.00	0.0
36.17	1.04	0.00	0.00	0.00	0.00	0.0
57.33	1.51	0.00	0.00	0.00	0.00	0.0
90.86	2.13	0.00	0.00	0.00	0.00	0.00
144.00	2.92	0.00	0.00	0.00	0.00	0.0
228.22	3.87	0.00	0.00	0.00	0.00	0.0
361.71	4.96	0.00	0.00	0.00	0.00	0-0
573.27	6.16	0.00	0.00	0.00	0.00	0.00
908.58	7.43	0.00	0.00	0.00	0.00	. 0.0
1440.00	8.77	0.00	0.00	0.00	0.00	0.0
2282.25	10.17	0.00	0.00	0.00	0.00	0.0
3617.12	11.69	0.00	0.00	0.00	0.00	0.00
5732.74	13.43	0.00	0.00	0.00	0.00	0.0
7200.00	14.52	0.00	0.00	0.00	0.00	0.0

TIME AFTER PUMPING STARTED(MIN)= 7200.00

	•		
NODE NO	RADIUS(FT)	DRAWDOWN OR	WATER LEVEL (FT)
2	0.33	14.52	
, З	0.53	11.35	
4	0.84	9.05	
. 5	1.33	7.17	
6 7	2.10 3.33	5.54 4.10	
8	5.28	2.82	
9	8.36	1.71	
10	13.26	0.83	
11	21.01	0.27	
12	33.30	0.05 0.00	
13	52.78	0.00	

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.10	0.00	0.00	0.00	0.00	0.00
5.73	0.16	0.00	0.00	0.00	0.00	0.00
9.09	0.25	0.00	0.00	0.00	0.00	0.00
14.40	0.37	0.00	0.00	0.00	0.00	0.00
22.82	0.56	0.00	0.00	0.00	0.00	0.00
36.17	0.83	0.00	0.00	0.00	0.00	0.00
57.33	1.21	0.00	0.00	0.00	0.00	0.00
90.86	1.70	0.00	0.00	0.00	0.00	0.00
144.00	2.32	0.00	0.00	0.00	0.00	0.00
228.22	3.06	0.00	0.00	0.00	0.00	0.00
361.71	3.90	0.00	0.00	0.00	0.00	0.00
573.27	4.79	0.00	0.00	0.00	0.00	0.00
908.58	5.71	0.00	0.00	0.00	0.00	0.00
1440.00	6.61	0.00	0.00	0.00	0.00	0.00
2282.25	7.50	0.00	0.00	0.00	0.00	0.00
3617.12	8.38	0.00	0.00	0.00	0.00	0.00
5732.74	9.25	0.00	0.00	0.00	0.00	0.00
9085.79	10.12	0.00	0.00	0.00	0.00	0.00
10800.00	10.53	0.01	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)=10800.00

NODE NO	RADIUS(FT)	DRAWDOWN OR WATER LEVEL (FT)
2	0.33	10.53
3	0.53	8.77
4	0.84	7.26
5	1.33	5.90
6	2.10	4.68
7	3.33	3.55
8	5.28	2.52
9	8.36	1.61
10	13.26	0.84
11	21.01	0.31
12	33.30	0.06
13	52 <i>.7</i> 8	0.01

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-02
WATER TABLE STORATIVITY (DIM)= 0.0500
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
,			0.00	0.00	0.00	0.00
0.23	0.01	0.00			0.00	0.00
0.36	0.01	0.00	0.00	0.00		
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.10	0.00	0.00	0.00	0.00	0.00
5.73	0.16	0.00	0.00	0.00	0.00	0.00
9.09	0.25	0.00	0.00	0.00	0.00	0.09
14.40	0.37	0.00	0.00	0.00	0.00	0.00
22.82	0.56	0.00	0.00	0.00	0.00	0.00
36.17	0.83	0.00	0.00	0.00	0.00	0.00
57.33	1.21	0.00	0.00	0.00	0.00	0.00
90.86	1.70	0.00	0.00	0.00	0.00	0.00
144.00	2.32	0.00	0.00	0.00	0.00	0.00
228.22	3.06	0.00	0.00	0.00	0.00	0.00
361.71	3.90	0.00	0.00	0.00	0.00	0.00
573.27	4.80	0.00	0.00	0.00	0.00	0.00
908.58	5.73	0.00	0.00	0.00	0.00	0.00
1440.00	6.65	0.00	0.00	0.00	0.00	0.00
2282.25	7.58	0.00	0.00	0.00	0.00	0.00
3617.12	8.50	0.00	0.00	0.00	0.00	0.00
5732.74	9.45	0.00	0.00	0.00	0.00	0.00
9085.79	10.43	0.01	0.00	0.00	0.00	0.00
10800.00	10.43	0.01	0.00	0.00	0.00	0.00
						i

TIME AFTER PUMPING STARTED(MIN)=10800.00

NODE	RADIUS(FT)	DRAWDOWN OR	WATER	LEVEL	(FT)
NO					
2	0.33	10.87			
3	0.53	9.06		•	
4	0.84	7.50			
.4 5	1.33	6.13			
6	2.10	4.88			
7	3.33	3.74			
8	5.28	2.70			
9	8.36	1.76			
10	13.26	0.97			
11	21.01	0.39			
12	33.30	0.09			
13	52.78	0.01			

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)== 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.11	0.00	0.00	0.00	0.00	0.00
5.73	0.17	0.00	0.00	0.00	0.00	0.00
9.09	0.26	0.00	0.00	0.00	0.00	0.00
14.40	0.41	0.00	0.00	0.00	0.00	0.00
22.82	0.62	0.00	0.00	0.00	0.00	0.00
36.17	0.94	0.00	0.00	0.00	0.00	0.00
57.33	1.40	0.00	0.00	0.00	0.00	0.00
90.86	2.04	0.00	0.00	0.00	0.00	0.00
144.00	2.88	0.00	0.00	0.00	0.00	0.00
228.22	3.93	0.00	0.00	0.00	0.00	0.00
361.71	5.17	0.00	0.00	0.00	0.00	0.00
573.27	6.52	0.00	0.00	0.00	0.00	0.00
908.58	7.92	0.00	0.00	0.00	0.00	0.00
1440.00	9.30	0.01	0.00	0.00	0.00	0.00
2282.25	10.63	0.02	0.00	0.00	0.00	0.00
3617.12	11.94	0.06	0.00	0.00	0.00	0.00
4320.00	12.56	0.09	0.00	0.00	0.00	0.00

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR WATER LEVEL (FT)
2	0.33	12.56
3	0.53	10.46
4	0.84	8.75
5	1.33	7.26
6	2.10	5.93
7	3.33	4.73
8	5.28	3.62
9	8.36	2.61
10	13.26	1.70
11	21.01	0.93
12	33.30	0.37
13	52.78	0.09
14	83.65	0.01

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

0.33	52.78	132.57	333.00	836.46	2101.0
0.00	0.00	0.00	0.00	0.00	0.0
0.01	0.00	0.00	0.00	0.00	0.00
0.01	0.00	0.00	0.00	0.00	0.0
0.02	0.00	0.00	0.00	0.00	0.0
0.03	0.00	0.00	0.00	0.00	0.0
0.04	0.00	0.00	0.00	0.00	0.00
0.07	0.00	0.00	0.00	0.00	0.0
0.11	0.00	0.00	0.00	0.00	0.0
0.17	0.00	0.00	0.00	0.00	0.0
0.26	0.00	0.00	0.00	0.00	0.00
0.41	0.00	0.00	0.00	0.00	0.0
0.62	0.00	0.00	0.00	0.00	0.0
0.94	0.00	0.00	0.00	0.00	0.0
1.40	0.00	0.00	0.00	0.00	0.00
2.04	0.00	0.00	0.00	0.00	0.0
2.89	0.00	0.00	0.00	0.00	0.0
3.95	0.00	0.00	0.00	0.00	0.0
5.21	0.00	0.00	0.00	0.00	0.00
6.61	0.00	0.00	0.00	0.00	0.0
8.09	0.00	0.00	0.00	0.00	0.0
9.60	0.02	0.00	0.00		0.0
11.12	0.05	0.00	0.00	0.00	0.00
12.69	0.12	0.00	0.00	0.00	. 0.0
13.41	0.17	0.00	0.00	0.00	0.0
	0.00 0.01 0.01 0.02 0.03 0.04 0.07 0.11 0.17 0.26 0.41 0.62 0.94 1.40 2.04 2.89 3.95 5.21 6.61 8.09 9.60 11.12 12.69	0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.07 0.00 0.11 0.00 0.17 0.00 0.17 0.00 0.26 0.00 0.41 0.00 0.62 0.00 0.94 0.00 1.40 0.00 2.04 0.00 2.04 0.00 2.89 0.00 3.95 0.00 5.21 0.00 6.61 0.00 8.09 0.00 9.60 0.02 11.12 0.05 12.69 0.12	0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.07 0.00 0.00 0.11 0.00 0.00 0.17 0.00 0.00 0.26 0.00 0.00 0.41 0.00 0.00 0.41 0.00 0.00 0.94 0.00 0.00 1.40 0.00 0.00 2.04 0.00 0.00 3.95 0.00 0.00 5.21 0.00 0.00 6.61 0.00 0.00 9.60 0.02 0.00 11.12 0.05 0.00 12.69 0.12 0.00	0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.94 0.00 0.00 0.00 1.40 0.00 0.00 0.00 2.04 0.00 0.00 0.00 2.89 0.00 0.00 0.00 3.95 0.00 0.00 0.00 5.21 0.00 0.00 0.00 8.09 0.00 0.00 0.00 9.60 0.02 0.00 0.00 11.12 0.05 0.00 0.00 12.69 0.12	0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 1.40 0.00 0.00 0.00 0.00 2.89 0.00 0.00 0.00 0.00 3.95 0.00 0.00 0.00

TIME AFTER PUMPING STARTED(MIN)= 4320.00

NODE NO	RADIUS(FT)	DRAWDOWN OR WATER LEVEL (FT)
2	0.33	13.41
3	0.53	11.12
4	0.84	9.31
5	1.33	7. 7 6
6	2.10	6.39
7	3.33	5.15
8	5.28	4.02
9	8.36	2.97
10	13.26	2.03
11	21.01	1.20
12	33.30	0.56
13	52.78	0.17
14	83.65	0.03
15	132.57	0.00

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.460
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.11	0.00	0.00	0.00	0.00	0.00
5. <i>7</i> 3	0.17	0.00	0.00	0.00	0.00	0.00
9.09	0.26	0.00	0.00	0.00	0.00	0.00
14.40	0.41	0.00	0.00	0.00	0.00	0.00
22.82	0.62	0.00	0.00	0.00	0.00	0.00
36.17	0.94	0.00	0.00	0.00	0.00	0.00
57.33	1.40	0.00	0.00	0.00	0.00	0.00
90.86	2.04	0.00	0.00	0.00	0.00	0.00
144.00	2.88	0.00	0.00	0.00	0.00	0.00
228.22	3.93	0.00	0.00	0.00	0.00	0.00
361.71	5.17	0.00	0.00	0.00	0.00	0.00
573.27	6.52	0.00	0.00	0.00	0.00	0.00
908.58	7.92	0.00	0.00	0.00	0.00	0.00
1440.00	9.30	0.01	0.00	0.00	0.00	0.00
2282.25	10.63	0.02	0.00	0.00	0.00	0.00
3617.12	11.94	0.06	0.00	0.00	0.00	0.00
5732.74	13.32	0.13	0.00	0.00	0.00	0.00
9085.79	14.92	0.26	0.00	0.00	0.00	0.00
10800.00	15.75	0.33	0.01	0.00	0.00	0.00

)

TIME AFTER PUMPING STARTED(MIN)=10800.00

DISTANCE-DRAWDOWN OR WATER LEVEL VALUES AT END OF PUMPING PERIOD

NODE NO	RADIUS(FT)	DRAWDOWN	OR	WATER	LEVEL	(FT
2	0.33	15.7	'5			
3	0.53	12.6	_			
4	0.84	10.5	0			
5	1.33	8.7	6		•	
6	2.10	7.2	5			
7	3.33	5.9	1			
8	5.28	4.6	9			
9	8.36	3.5	7			
10	13.26	2.5	5			
11	21.01	1.6	4			
12	33.30	0.8	7			
13	52.78	0.3				
14	83.65	0.0	7			
15	132.57	0.0	1			

10

AQUIFER HORIZ. HYDR. COND. (GPD/SQ FT)= 0.46
AQUIFER VERT. HYDR. COND. (GPD/SQ FT)= 0.046
AQUIFER THICKNESS (FT)= 20.00
ARTESIAN AQUIFER STORATIVITY (DIM)= 5.0000D-03
WATER TABLE STORATIVITY (DIM)= 0.0050
PRODUCT. WELL EFFECTIVE RADIUS (FT)= 0.333
TOP OF AQUIFER DEPTH (FT)= 0.00
BASE OF AQUIFER DEPTH (FT)= 20.00
INITIAL WATER LEVEL DEPTH (FT)= 0.00
INFINITE AQUIFER SYSTEM

COMPUTATION RESULTS:

PRODUCTION WELL DISCHARGE RATE (GPM)= 0.08

TIME-DRAWDOWN OR WATER LEVEL VALUES (FT)

SELECTED DISTANCES (FT)

TIME(MIN)	0.33	52.78	132.57	333.00	836.46	2101.09
0.14	0.00	0.00	0.00	0.00	0.00	0.00
0.23	0.01	0.00	0.00	0.00	0.00	0.00
0.36	0.01	0.00	0.00	0.00	0.00	0.00
0.57	0.02	0.00	0.00	0.00	0.00	0.00
0.91	0.03	0.00	0.00	0.00	0.00	0.00
1.44	0.04	0.00	0.00	0.00	0.00	0.00
2.28	0.07	0.00	0.00	0.00	0.00	0.00
3.62	0.11	0.00	0.00	0.00	0.00	0.00
5.73	0.17	0.00	0.00	0.00	0.00	0.00
9.09	0.26	0.00	0.00	0.00	0.00	0.00
14.40	0.41	0.00	0.00	0.00	0.00	0.00
22.82	0.62	0.00	0.00	0.00	0.00	0.00
36.17	0.94	0.00	0.00	0.00	0.00	0.00
57.33	1.40	0.00	0.00	0.00	0.00	0.00
90.86	2.04	0.00	0.00	0.00	0.00	0.00
144.00	2.89	0.00	0.00	0.00	0.00	0.00
228.22	3.95	0.00	0.00	0.00	0.00	0.00
361.71	5.21	0.00	0.00	0.00	0.00	0.00
573.27	6.61	0.00	0.00	0.00	0.00	0.00
908.58	8.09	0.00	0.00	0.00	0.00	0.00
1440.00	9.60	0.02	0.00	0.00	0.00	0.00
2282.25	11.12	0.05	0.00	0.00	0.00	0.00_
3617.12	12.69	0.12	0.00	0.00	0.00	0.00
5732.74	14.38	0.25	0.00	0.00	0.00	0.00
9085.79	16.44	0.43	0.01	0.00	0.00	0.00
10800.00	17.70	0.53	0.02	0.00	0.00	0.00_

TIME AFTER PUMPING STARTED(MIN)=10800.00

DISTANCE-DRAWDOWN OR WATER LEVEL VALUES AT END OF PUMPING PERIOD

RADIUS(FT)	DRAWDOWN OR WATER LEVEL (FT)
0.33	17.70
0.53	13.61
0.84	11.23
1.33	9.38
2.10	7.81
3.33	6.42
5.28	5.17
8.36	4.02
13.26	2.96
21.01	2.00
33.30	1.17
52.78	0.53
83.65	0.15
132.57	0.02
210.11	0.00
	0.33 0.53 0.84 1.33 2.10 3.33 5.28 8.36 13.26 21.01 33.30 52.78 83.65 132.57

12

APPENDIX B

LETTER REPORT: CONSTANT-DISCHARGE TESTS

9302048.WP/CR410 07027-02

February 5, 1993

Mr. James Zeisloft USATHAMA CETHA-IR-A Building 4480 Aberdeen Proving Grounds, MD 21010-5401

Subject:

Constant-Discharge Pumping Tests Detroit Arsenal, Warren, Michigan

Dear Mr. Zeisloft:

ABB Environmental Services, Inc., has completed the constant-discharge groundwater pumping tests at the Detroit Arsenal in Warren, Michigan. Two separate pumping tests were conducted: the first at well MW003 and the second at well MW017. This letter provides a summary of the field methodology.

CONSTANT-DISCHARGE TEST AT MW003

Pressure transducers connected to In-Situ Hermit electronic data loggers were installed in well MW010 and piezometers PZ001 and PZ002 on 16 December 1992 (three days prior to the start of the pumping test). These water level data will be used to assess natural fluctuations in groundwater levels prior to the pumping test. A barometric pressure probe was also installed at well MW010 to provide the data needed to evaluate the effect of barometric pressure changes on the groundwater levels.

The constant-discharge pumping test was initiated on 19 December 1992. Groundwater was extracted from well MW003 at an average rate of 0.08 gallons per minute (gpm) using a Grundfos Rediflo2 submersible pump. Water was collected in a steel drum and then discharged to the sanitary sewer via a nearby manhole. Periodic measurements of the discharge rate were made volumetrically with a graduated cylinder and a stop watch.

During pumping, water levels in piezometers PZ001 and PZ002 were measured and recorded with the previously installed In-Situ Hermit electronic data logger and pressure transducers. Manual measurements were made every few hours with an electronic water level meter to confirm the automatically recorded data. The water level in the pumping well, MW003, was measured with the electronic water level meter at intervals spaced to permit graphing of the data.

Water level and barometric pressure data were also collected at well MW010 using the In-Situ Hermit electronic data logger and pressure transducers installed on 16 December. The data collected at MW010 will be used to assess natural variations in the water levels during the test. Manual water level measurements were collected at MW010 two to four times daily.

ABB Environmental Services of Michigan, Inc.

Mr. James Zeisloft February 5, 1993 Page 2

The pump was shut off on 21 December after approximately 48 hours of pumping. At that time, water levels in the pumping well and adjacent piezometers had been stable for approximately 24 hours. Water level recovery was measured for one day using the instrumentation described above. Also, water levels were measured in the seventeen monitoring wells and four piezometers on 19 December, just prior to initiation of pumping, and on 21 December, just prior to pump shut off.

CONSTANT-DISCHARGE TEST AT MW017

To evaluate natural fluctuations in water levels, pressure transducers connected to In-Situ Hermit electronic data loggers were installed in well MW013 and piezometers PZ003 and PZ004 on 31 December 1992. A barometric pressure probe was also installed at well MW013.

The constant-discharge pumping test was scheduled to start on 4 January 1993; however, the test was delayed because rains were causing groundwater levels to rise at a rate significant enough to interfere with drawdown measurements. On 8 January, water level data from well MW013 and piezometers PZ003 and PZ004 were downloaded from the data loggers. Hydrographs constructed from the data indicated that the water levels had stabilized; therefore, the test was initiated on 9 January.

Groundwater was extracted from well MW017 using a Grundfos Rediflo2 submersible pump. Due to the rapid decline of the water level, the rate fluctuated between 0.07 and 0.09 gpm and had to be adjusted frequently. Water was collected in a pail and then discharged to the sanitary sewer via a nearby manhole. Periodic measurements of the discharge rate were made volumetrically with a graduated cylinder and a stop watch.

During pumping, water levels in piezometers PZ003 and PZ004 were measured and recorded with the previously installed In-Situ Hermit electronic data logger and pressure transducers. Manual measurements were made with an electronic water level meter to confirm the automatically recorded data. The water level in the pumping well, MW017, was measured with an electronic water level meter at intervals spaced to permit graphing of the data. Water level and barometric pressure data were also collected at well MW013 using the In-Situ Hermit electronic data logger and pressure transducers installed on 31 December.

The pump was shut off on 9 January after approximately 5 hours of pumping. At that time, the water level in the pumping well had declined more than 16 feet. Because a water column of less than 5 feet remained in the well, it was difficult to maintain a constant discharge rate.

Prior to pump shut off, the pressure transducer in PZ004 was removed and installed in the pumping well (MW017) to monitor the water level recovery. No drawdown had been observed in either PZ003 or PZ004. Manual measurements of the water levels were made twice daily with an electronic water level meter between 11 January and 15 January, and once a day on 18, 20, and 22 January. On 13 January, the pressure transducers and data logger were removed from MW017 and PZ003. The pressure transducer, barometric probe, and data logger were removed from MW013 on 15 January.

Mr. James Zeisloft February 5, 1993 Page 3

Upon the completion of each test, the submersible pump was decontaminated by pumping deionized water through the pump and tubing. Additionally, the outside casing of the pump, the hose, the pressure transducers and associated cables were rinsed with deionized water. The electronic water level meter was rinsed with deionized water before each water level measurement.

The time-drawdown and recovery data obtained from these tests will be evaluated to estimate the hydraulic characteristics of the aquifer (i.e., the transmissivity, hydraulic conductivity, and specific yield). These data will be used along with the hydraulic gradient to estimate the groundwater seepage rates. Please call me or Larry Dearborn in our Portland Office if you have any questions on the field activities or data evaluation.

Respectfully,

ABB ENVIRONMENTAL SERVICES INC.

Greta Reade

Project Manager

GDR/bkl

RAW DATA
PUMPING TEST AT MW003

·=

MW-3 MANUAL DRAWDOWN MEASUREMENTS TEST BEGAN DECEMBER 19, 1992: 1220 HRS

REAL TIME	ELAPSED TIME (MIN)	DISTANCE TO WL (FT)	DRAWDOWN (FT)	PUMPING RATE (GPM)	COMMENTS
	0.0	4.58	0.00		
	0.5	5.11	0.53		
1221	1.0	5.67	1.09		
	1.5	5.99	1.41		
1222	2.0	6.46	1.88	0.32	2
	2.5	6.89	2.31		
1223	3.0	7.10	2.52		
	3.5	7.24	2.66		
1224	4.0	7.29	2.71		
	4.5	7.28	2.70		
1225	5.0	7.21	2.63	0.13	3
1226	6.0	7.10	2.52		
1227	7.0	6.99	2.41		
1228	8.0	6.87	2.29		
1229	9.0	6.76	2.18		
1230	10.0	6.70	2.12	0.08	
1231	11.0	6.57	1.99		
1232	12.0	6.48	1.90		
1233	13.0	6.44	1.86		
1234	14.0	6.39	1.81		
1235	15.0	6.35	1.77		
1240	20.0	6.23	1.65	0.09	
1245	25.0	6.12	1.54		
1250	30.0	6.06	1.48	0.08	
1255 1300	35.0 40.0	6.01 5.00	1.43		A.D. II 107777
1305	45.0	5.99 5.00	1.41	0.07	ADJUSTED TO 0.08
1310	50.0	5.99 6.00	1.41	0.00	
1315	55.0	6.01	1.42	0.08	
1320	60.0	6.01	1.43	0.00	
1330	70.0	5.99	1.43	0.08	
1340	80.0	5.98	1.41 1.40	0.00	
1350	90.0	6.02	1.44	0.08	AD HISTED TO 6 66
1400	100.0	6.02	1.44	0.07	ADJUSTED TO 0.08
1410	110.0	6.02	1.44	0.07	ADJUSTED TO 0.08
1420	120.0	6.12	1.54	0.07	ADJUSTED 10 0.06
1440	140.0	6.21	1.63	0.08	
1500	160.0	6.26	1.68	0.08	
1520	180.0	6.27	1.69	0.08	
1540	200.0	6.30	1.72	0.08	
				0.00	

MW-3 MANUAL DRAWDOWN MEASUREMENTS TEST BEGAN DECEMBER 19, 1992: 1220 HRS

REAL TIME	ELAPSED TIME (MIN)	DISTANCE TO WL (FT)	DRAWDOWN (FT)	PUMPING RATE (GPM)	COMMENTS
1600	220.0	6.32	1.74	0.08	3
1620	240.0	6.32	1.74	0.08	3
1720	300.0	6. 3 3	1.75	0.08	
1820	360.0	6.37	1.79	0.08	
1920	420.0	6.37	1.79	0.08	
2020	480.0	6.39	1.81	0.08	
2120	540.0	6.41	1.83	0.08	
2220	600.0	6.40	1.82	0.08	
2320	660.0	6.36	1.78	0.08	
0020	720.0	6.38	1.80	0.08	
0120	780.0	6.39	1.81		ADJUSTED TO 0.08
0220	840.0	6.41	1.83	0.08	
0320	900.0	6.46	1.88	0.08	
0420	960.0	6.48	1.90	0.08	
0520	1020.0	6.52	1.94	0.08	
0620	1080.0	6.54	1.96	0.08	
0720	1140.0	6.54	1.96	0.08	3
0920	1260.0	6.57	1.99	0.00	
1120	1380.0	6.61	2.03	0.08	
1320	1500.0	6.52	1.94	0.08	
1520	1620.0	6.50	1.92	0.08	
1720	1740.0	6.50	1.92	0.08 0.08	
1920	1860.0	6.49	1.91	0.08	
2120	1980.0	6.48	1.90	0.08	
0000	2140.0	6.52	1.94 1.92	0.00	
0200	2260.0	6.50 6.49	1.92		
0400	2380.0	6.49 6.48	1.90		
0600	2500.0	6.44	1.86		
0800	2620.0 2800.0	6.42	1.84		
1100	2000.0	0.42	1.04		

MW-3 MANUAL DRAWDOWN MEASUREMENTS RECOVERY BEGAN DECEMBER 21, 1992: 1238 HRS

REAL TIME	ELAPSED TIME (t) (MIN)	TIME SINCE PUMP OFF (t') (MIN)	t/t'	DISTANCE TO WL (x) (FT)	RESIDUAL DRAWDOWN (x-xo)(FT)
1238	2898.00	0.00		6.51	1.92
	2898.50	0.50	5797.00	6.09	1.50
1239	2899.00	1.00	2899.00	5.75	1.16
	2899.25	1.25	2319.40	5.65	1.06
	2899.50	1.50	1933.00	5.63	1.04
	2899.75	1.75	1657.00	5.63	1.04
1240	2900.00	2.00	1450.00	5.63	1.04
1241	2901.00	3.00	967.00	5.63	1.04
1242	2902.00	4.00	725.50	5.62	1.03
1243	2903.00	5.00	580.60	5.59	1.00
1244	2904.00	6.00	484.00	5.57	0.98
1245	2905.00	7.00	415.00	5.56	0.97
1246	2906.00	8.00	363.25	5.54	0.95
1247	2907.00	9.00	323.00	5.51	0.92
1248	2908.00	10.00	290.80	5.50	0.91
1253	2913.00	15.00	194.20	5.41	0.82
1258	2918.00	20.00	145.90	5.34	0.75
1304	2924.00	26.00	112.46	5.28	0.69
1308	2928.00	30.00	97.60	5.25	0.66
1318	2938.00	40.00	73.45	5.18	0.59
1328	2948.00	50.00	58.96	5.12	0.53
1338	2958.00	60.00	49.30	5.07	0.48
1540	3080.00	182.00	16.92	4.90	0.31
0912	4132.00	1234.00	3.35	4.78	0.19

NOTE: Xo = 4.59 FT

RAW DATA
PZ001 AND BAROMETRIC PROBE

Ŧ

20 A	HRMT-20PRN UNIT2, TEST 1 SE1000C	Environmental Logger 12/23 16:23	ن بریکر _{درم در در 10000 Test 0 میلین کارباری در میلین است.}	: Function		Delay made 30 Junu	Step 0 12/16 15:38:56	Elapsed Time INPUT 1			30 14,383	, , , ,		90 14.389		-	180 14.391	210			285 14.381				390 14.381				-	510 14.37
	HRMT-12PRN UNIT1, TEST3 SE1000B	Environmental Logger 12/23 16:40	Unit# 00480 Test# 2 02 001	Level (F) TOC	Reference 4.77 ALCOVE Scale factor 10.02		Step# 0 12/21 12:3/	Elapsed Time Value		0.0033 5.55	5.5.5 00000 0.0000			0.0233 5.55 0.0266 5.55				0.176	0.15 5.55	0.1666 5.55	0.2 5.55 0.2166 5.55	0.2333 5.55	0.2666 5.55		0.3166 5.55					0.9167 5.55
	HRMT-11.PRN UNIT1, TEST2 SE1000B	Environmental Logger 12/23 16:34		INPUT 1: Level (F) TOC $\chi_{\alpha,\lambda'}$	Reference 4.77 O'C. Scale factor 10.02	0.01	_	Elapsed Time Value		•	0.0000 4.77			0.0233 4.77 0.0266 4.77			0.0833 4.77	0.1 4.77		0.1666 4.77	0.2 4.77		0.2666 4.77			0.3533 4.77				0.9167 4.77
	HRMT-10.PRN UNIT1, TEST 1 SE1000B	Environmental Logger 12/23 16:30	Unit# 00480 Test# 0	INPUT 1: Level (F) TOC (2)	Reference 4.77 $00^{-1/4}$ Scale factor 10.02	Olisel O.10	_	Elapsed Time Value			30 4.79 45 4.8		4	105 4.81 120 4.81		165 4.81		210 4.81			300 4.81		360 4.81			420 4.0 438 4.8				525 4.79

VIT 2, TEST 1	14.366	14.357	14.359	14.348	14.35	14.366	14.368	14.357	14.366	14.361	14.366	14.368	14.361	14.346	14.346	14.34	14.346	14.337	14.337	14.337	14.333	14.335	14.337	14.333	14.329	14.329	14.335	14.331	14.331	14.327	14.331	14.331	14.331	14.335	14.335	14.335	14.335	14.337	14.34	14.34	14.342	14.34	14.34	14.335	14.333	14.335	14.335	14.333
HRMT-20.PRN UNIT2, TEST 1 SE1000C	525	540	555	570	585	009	615	930	645	099	922	069	705	720	735	750	765	780	795	810	6.28 0.19	840	833	0/8	883	900	030	945	096	975	066	1005	1020	1035	1050	1065	1080	1095	1110	1125	1140	SSII	1170	1185	1200	1215	1230	1245
, TEST 3	5 55	5 55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.54	5.54	5.54	5.53	5.53	5.52	5.52	5.52	5.51	5.51	C.C.	5.79	5.49	5.48	5.46	5.45	5.43	5.41	5.4	5.39	5.37	5.36	5.35	5.34	5.33	5.32	5.31	5.3	5.29	5.28	5.27	5.27	5.26	5.25
HRMT-12PRN UNIT1, TEST3		1 0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.75	1.8333	1.9167	2	2.5	က	3.5	4	4.5	S	5.5	9	5.3		7.5	∞ પ	C.8	, v	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
1, TEST 2	777	77.4	4.77	4.77	4.77	4.77	4.77	4.78	4.78	4.78	4.78	4.78	4.77	4.78	4.78	4.78	4.79	4.8	4.81	4.82	4.83	4.84	4.85	4.87	4.89	4.89	4.9	4.91	4.97	٠,	5.03	5.05	5.07	5.08	5.1	5.1	5.1	5.11	5.12	5.12	5.12	5.13	5.13	5.14	5.14	5.14	5.15	5.15
HRMT-11.PRN UNIT	1	1 0823	1 1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.75	1.8333	1.9167	2	2.5	æ	3.5	4	4.5	ĸ	5.5	9	6.5	7	7.5	∞ <u>(</u>	8.5	יא ע מ	.χ Ε	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	20
I, TEST 1	7	y	4.79	4.78	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.79	4.78	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.76	4.76	4.77	4.77	4.76	4.76	4.76	4.77	4.76	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.76	4.76	4.76	4.76	4.76	4.76	4.76
HRMT-10.PRN UNIT1, TEST 1	3E1000B	240 555	570	V V	009	615	930	645	099	675	069	705	720	735	750	765	780	795	810	825	840	855	870	885	006	915	930	945	906	066	1005	1020	1035	1050	1065	1080	1095	1110	1125	1140	1155	1170	1185	1200	1215	1230	1245	1260

~
Ġ.
l
ğ
÷
ď
2

IT2, TEST 1	14 448	14.45	14.456	14.456	14.459	14.465	14.469	14.469	14.472	14.476	14.478	14.476	14.476	14.478	14.485	14.485	14.489	14.489	14.491	14.493	14.498	14.5	14.502	14.504	14.506	14.511	14.513	14.517	14.519	14.521	14.524	14.528	14.53	14.53	14.532	14.534	14.539	14.541	14.543	14.543	14.541	14.539	14.534	14.53	14.528	14.524	14.519	14.519	14.517
HRMT-20.PRN UNIT2, TEST 1 SE1000C	1995	2010	2025	2040	2055	2070	2085	2100	2115	2130	2145	2160	2175	2190	2205	2220	2235	2250	2265	2280	2295	2310	2325	2340	2355	2370	2385	2400	2415	2430	2445	2460	2475	2490	2505	2520	2535	2550	2565	2580	2595	2610	2625	2640	2655	2670	2685	2700	2715
																												· <u>=</u>																					
1, TEST 3	4 07	4.97	4.96	4.96	4.96	4.95	4.95	4.95	4.95	4.95	4.95	4.94	4.94	4.94	4.94	4.94	4.94	4.94	4.94	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.93	4.94	4.94	4.94
HRMT-12PRN UNIT1, TEST3	350	350	370	380	390	400	410	420	430	440	450	460	470	480	490	200	510	520	530	540	550	260	570	580	590	009	610	620	630	640	959	099	0.09	089	069	700	710	720	730	740	750	140	770	780	790	800	810	. 820	830
T1, TEST 2	7	4. v	5.4 4.5	5.41	5.41	5.42	5.42	5.42	5.42	5.42	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.43	5.44	5.44	5.45	5.45
HRMT-11.PRN UNIT	350	350	370	380	390	400	410	420	430	440	450	460	470	480	490	200	510	520	530	540	550	260	570	280	590	009	610	620	089	640	059	099	029	089	069	700	710	720	730	740	750		770	780	790	800	810	820	830
r1	70 1	4.00 7.01	4.07	4.87	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.89	4.89	4.89	4.89	4.89	4.89	4.89	4.9	4.9	4.9	4.9	4.91	4.91	4.91	4.91	4.91	4.91	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.91	4.91	4.91	4.9	4.9	4.89	4.89	4.88	4.88	4.87
HRMT-10.PRN UNIT1, TEST 1	010																		2280	2295	2310	2325	2340	2355	2370	2385	2400	2415	2430	2445	2460	2475	2490	2505	2520	2535	2550	2565	2580	2595	2610	2625	2640	2655	2670	2685	2700	2715	2730

T2, TEST 1	14.515	14.513	14.511	14.508	14.506	14.504	14.502	14.5	14.502	14.504	14.5	14.502	14.5	14.502	14.502	14.495	14.493	14.491	14.493	14.485	14.482	14.478	14.469	14.469	14.463	14.459	14.456	14.456	14.452	14.446	14.443	14.437	14.433	14.433	14.428	14.428	14.428	14.43	14.426	14.426	14.417	14.415	14.411	14.407	14.404	14.404	14.4	14.394	14.398
HRMT-20.PRN UNIT2, TEST SE1000C	2730	2745	2760	2775	2790	2805	2820	2835	2850	2865	2880	2895	2910	2925	2940	2955	2970	2985	3000	3015	3030	3045	3060	3075	3090	3105		3135	3150	3165	3180	3195	3210	3225	3240	3255	3270	3285	3300	3315	3330	3345	3360	3375	3390	3405	3420	3435	3450
IT1, TEST 3	4.94	4.94	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.95	4.96	4.96	4.96	4.96	4.97	4.97	4.98	4.98	4.98	4.99	4.99	5.01																				
HRMT-12PRN UNIT1, TEST3 SE1000B	840	850	098	870	880	068	006	910	920	930	940	950	096	970	086	066	1000	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	1220	1240	END																			
[1, TEST 2	5.45	5.46	5.46	5.47	5.47	5.48	5.48	5.48	5.48	5.48	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.5	5.51	5.52	5.53	5.53	5.54	5.55	5.56	5.56	5.57	5.58	5.58	5.58	5.59	5.6	5.59	5.61	5.6	5.61	5.61	5.6	5.6	5.59	5.59	5.58	5.59	5.59	5.59	5.59	5.59	5.6	5.6
HRMT-11.PRN UNIT SE1000B		850	860	870	880	068	006	910	920	930	940	950	096	920	086	066	1000	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	1220	1240	1260	1280	1300	1320	1340	1360	1380	1400	1420	1440	1460	1480	1500	1520	1540	1560	1580	1600	1620	1640
1, TEST 1	4.87	4.87	4.87	4.87	4.88	4.87	4.87	4.88	4.87	4.87	4.87	4.87	4.88	4.85	4.86	4.89	S	S	4.96	4.94	4.92	4.9	4.89	4.89	4.88	4.88	4.87	4.87	4.86	4.86	4.86	4.85	4.85	4.85	4.84	4.84	4.84	4.84	4.84	4.83	4.83	4.83	4.82	4.82	4.82	4.81	4.81	4.81	4.81
HRMT-10PRN UNIT1, TEST 1 SE1000B	2745	2760	2775	2790	2805	2820	2835	2850	2865	2880	2895	2910	2925	2940	2955	2970	2985	3000	3015	3030	3045	3060	3075	3090	3105	3120	3135	3150	3165	3180	3195	3210	3225	3240	3255	3270	3285	3300	3315	3330	3345	3360	3375	3390	3405	3420	3435	3450	3465

HRMT-20.PRN UNIT2, TEST 1 SF1000C	3465 14.402		3495 14.394		3525 14.394					3000 14.378 26.16 14.276									••••		3/80 14.561										3943 14.303														-	4185 14.3/
HRMT-12PRN UNIT1, TEST3 SF1000B																																														
Г1, TEST 2	5.61	5.61	5.61	5.62	5.62	5.63	5.63	5.63	5.63	5.03	5.04	5.64	5.63	5.63	5.63	5.63	5.63	5.63	5.63	5.63	5.64	5.64	5.64	5.64	565	5.65	5.64	5.64	5.64	5.63	5.03	5.03	562	5.62	5.62	5.62	5.62	5.62	5.62	5.61	5.61	5.6	5.61	5.6	5.6	0.0
HRMT-11.PRN UNIT1, TEST 2	1660	1680	1700	1720	1740	1760	1780	1800	1820	1840	1880	1900	1920	1940	1960	1980	2000	2020	2040	2060	2080	2100	2120	2140	2180	2200	2220	2240	2260	2280	0067	2320	0452	2380	2400	2420	2440	2460	2480	2500	2520	2540	2560	2580	2600	797
1, TEST 1	4.81	4.81	4.8	4.81	4.8	4.8	4.8	8.4	4.79	67.4	67.4	4.78	4.77	4.77	4.77	4.77	4.77	4.77	4.77	4.77	//.4	8/.4	4.77	4.77	4.77	4.78	4.78	4.78	4.78	4.78	87.78	4.70	4.78	4.78	4.77	4.77	4.77	4.77	4.77							
HRMT-10.PRN UNIT1, TEST 1 SF1000R	3480	3495	3510	3525	3540	3555	3570	3585	3600	3013	3630	3660	3675	3690	3705	3720	3735	3750	3765	3780	3/95	3810	505	3840	3870	3885	3900	3915	3930	3945	9966	3000	4005	4020	4035	4050	4065	4080	4095	END						

921212&WK1/CR675

29-Dec-92

Γ2, TEST 1	14 374	14.372	14.372	14.372	14.37	14.366	14.366	14.366	14.368	14.366	14.308	14.363	14.361	14.359	14.359	14 348	14.357	14.355	14.357	14.357	14.353	14.333	14.35	14.344	14.342	14.342	14.34	14.34	14.337 14.335	14.329	14.324	14.32	14.318	14.322	14.329	14.329	14.324	14.324	14.327	14.324	14.324	14.322	14.32 14.318	
HRMT-20PRN UNIT2, TEST 1 SELIDIO	4200	4215	4230	4245	4260	4275	4290	4305	4320	4335	4365	4380	4395	4410	4425	4455	4470	4485	4500	4513	4530 4545	C+C+	4575	4590	1) 4605	4620	4635	4630	4663	4695	4710	4725	4740	4755	4785	4800	4815	4830	4845	4860	48/5	4890	4905 4920	
HRMT-12.PRN UNIT1, TEST3 SF1000R																																												
HRMT-11.PRN UNIT1, TEST 2 SE1000B	540									2840 5.55		2880	END																															
HRMT-10.PRN UNIT1, TEST1 ESI000B													1																															

F2, TEST 1	14.32	14 324
HRMT-20.PRN UNIT 2, TEST 1 SF1000C	4935	U\$0V
HRMT-12PRN UNIT1, TEST3 SETOMOR		
HRMT-11.PRN UNIT1, TEST 2 SELOMB	Strood	
HRMT-10PRN UNIT1, TEST1	SETOODB	

IT 2, TEST 1	14.3	5, 5	14.329		14.331	14.333	14.333	14.331	14.329	14.329	14.327	14.324	14.322	14.324	14.329	14.333	14.337		14.346	14.35	14.355	14.359	14.363	14.37	14.372	14.372	14.374	14.374	14.3/0	14.303	14.396	14.4	14.407	14.413	14.42	14.424	14.428	14.428	14.428	14.426	14.428	14.43	14.43	14.435	14.439	14.441	14.446	
HRMT-20.PRN UN	4935	4950	4965	4980	4995	5010	5025	5040	5055	5070	5085	5100	5115	5130	5145	5160	5175	5190	5205	\$220	5235	5250	5265	5280	5295	5310	5325	5340	5333	5385	5400	5415	5430	5445	2460	5475	2490	5205	5520	5535	5550	2565	5580	5595	2610	A)	5640	

PRN UNIT 1, TEST	
MT-10.P	SE1000B

HRMT-11.PRN UNIT1, TEST 2 SE1000B

HRMT-12PRN UNIT1, TI SE1000B

UNIT	
HRMT-20.PRN	SE1000C
FST 3	•

HRMI-20.PRN UNIT 2, TEST 1		14.45	14.45	14.459	14.46	14.46	14.46	14.47	14.47	14.47	
HKMT-20.PKN	SE1000C	2670	5895	\$700	5715	5730	5745	2160	5775	5790	

:=

14.482 14.489 14.489 14.489 14.489 14.489 14.485 14.486 14

HRMT-12PRN UNIT1, TEST3 HRMT-20PRN UNI	SE1000B SE1000C
HRMT-11.PRN UNIT 1, TEST 2	SE1000B
HRMT-10.PRN UNIT 1, TEST 1	SE1000B

2, TEST 1	24446	14.412	14.407	14.404	14.404	14.402	14.398	14 396	14.4	14.398	14.4	14.394	14.369	14.376	14.37	14.37	14.372	4	14.374	14.376	14.376	14.378	14.381	14.387	14.396	14.413	14.420	14.448	14.459	14.465	14.456	14.459	14.45	14.452	14.452	14.452	14.456	14.45	4.	4.	14.435	14.433	14.428	4.	14.424
		6403	6435	6450	6465	6480	6495	5659	6540	6555	6570	6585	6615	6630	6645	0999	0699	6705	6720	6735	6750	6765	0829	9629	6810	6825	0840	6870	6885	0069	6915	0669	6945	0969	57.69	0669	7005	7020	7035	7050	2902	7080	7095	Ξ:	7125

÷

UNIT1, TEST1	
RMT-10.PRN	SE1000B

JNIT 1, TEST 2	
HRMT-11.PRN	SE1000B

TEST 3	
UNIT 1,	
	_
HRMT-12.PRN	CETONO
Ħ	

	2, 1ES1 1	14.422	14.415	14.413	14.411		14.404					14.372	14.366	14.359	14.355	14.348	14.34	14.335	14.333	14.331	14.331	14.331	14.331	14.329	14.329	14.331	14.327	14 322	14.324	14.322	14.322	14.324	14.327	14.335	14.337	14.333	14.337	14.342	14.34	14.344	14.346	14.35	14.357	.36	14.366	14.37
	HKM I - 20.PKN UNI 1 2 SE1000C	7140	7155	7170	7185	7200	7230	7245	7260	7275	7290	7305	7320	7335	7350	7365	7305	7410	7425	7440	7455	7470	7485	7500	7515	7530	7560	7575	7590	7605	7620	7635	7650	7665	7680	7710	7725	7740	7755	7770	7785	7800	7815	m,	7845	000/
)]	-																									÷Ξ																				

HRI	SE1000C
HRMT-12PRN UNIT1, TEST3	SE1000B
HRMT-11.PRN UNIT 1, TEST 2	SE1000B
HRMT-10.PRN UNIT1, TEST1	SE1000B

UNIT 2, TEST 1	14.372	14.376	14.378	14.378	14.381	14.381	14.385	14.387	14.389	14.389	14.391	14.394	14.398	14.402	14.402	14.407	14.411	14.411	14.415	14.417	14.424	14.428	14.43	14.435	14.439	14.441	14.441	
HRMT-20.PRN UNI SE1000C	7875	7890	7905	7920	7935	7950	7965	7980	7995	8010	8025	8040	8055	8070	8085	8100	8115	8130	8145	8160	8175	8190	8205	8220	8235	8250	8265	•
HR																												Ĺ
																												-

RAW DATA
PZ002 AND MW010

SE1000C Environmental Logger 12/28 12:47	Unit# 00001 Test 0	INPUT 2: Level (F) TOC	Reference 6.120 (ぜんしん) Linearity 0.000	Scale factor 19.970 Offset 0.010	SE	Step 0 12/1615:38:56	· Elapsed Time INPUT 2				30 6.145		90 6.164			135 6.164	150 05.104		195 6.164				255 6.164		315 6.157	330 6.151	345 6.151				405 6.151		455 6.151		
SE1000B Environmental Logger 12/28 13:06	Unit# 00480 Test# 2	INPUT 2: Level (F) TOC $_{ m DJ}$ $_{ m CC}{ m L}$	-	Offset - 0.01	Step# 0 12/21 12:37	Elapsed Time Value	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			0.0099	0.0133 5.51				0.0333 5.51			0.1 5.51	0.1166 5.51			0.1666 5.51	0.1633 3.31	0.2333 5.51						0.5333 5.52	0.410/				
SE1000B Environmental Logger 12/28 13:02	Unit# 00480 Test# 1	INPUT 2: Level (F) TOC (1006)	nce		Step# 0 12/19 12:20	Elapsed Time Value			0.0000					0.03 4.54	0.0533 4.54						0.15 4.54	0.1000 4.54							0.3100 4.54						
SE1000B Environmental Logger 12/28 12:58	Unit# 00480 Test# 0	INPUT 2: Level (F) TOC $\rho l O L$	actor 10.02 \chi		Step# 0 12/16 15:38	Elapsed Time Value		30 4.55				90 4.57	120 4.57	150 4.37						240 4.57	255 4.38						5/5 4.50	350 4.30				465 4.56		495 4.56	510 4.56

	K 145	6.138	6.138	6.126	6.126	6.12	6.113	6.12	6.126	6.126	6.126	6.126	6.132	6.126	6.12	6.107	6.101	6.107	6.101	6.101	6.101	6.094	6.094	6.094	6.094	6.082	6.088	6.088	6.088	6.088	6.082	6.088	6.082	6.088	6.003	6.088	6.094	6.094	6.094	6.101	6.101	6.101	6.101	6.101	6.094
SE1000C Environmental Logger	12/28 12:47	510	525	540	555	570	585	009	615	630	045	000	069	705	720	735	750	765	780	795	810	825	840	000	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	006	915	930	945	096	975	066	1005	1020	1050	1065	1080	1095	1110	1125	1140	1155	1170	1185	1200
	5 51	5.51	5.51	5.5	5.5	5.5	5.5	5.49	5.49	5.49	5.49	5.48	5.48	5.46	5.44	5.43	5.42	5.4	5.39	5.38	5.38	5.36	5.35	5.34	5 34	5.33	5.32	5.31	5.29	5.27	5.24	5.23	5.21	5.19	5.16	5.15	5.14	5.12	5.11	5.1	5.09	5.08	5.07	5.06	5.05
SE1000B Environmental Logger	0.51 67/21		1.0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.73	1.9167	6	2.5	8	3.5	4	4.5	w	ic.	o .	C.0	, , , , , , , , , , , , , , , , , , ,	ن ∞	o v	6	9.5	10	12	14	16	18	20	22 6	. : ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	78 28	30	32	34	36	38	40	42	44	46
	4.54	4.54	4.54	4.54	4.54	4.55	4.55	4.55	4.56	4.50	4.50	4.57	4.58	4.61	4.65	4.69	4.73	4.78	4.82	4.85	4.89	26.4	4.97	4.08	•	5.02	5.03	5.04	5.07	5.09	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
SE1000B Environmental Logger 12/28 13-02	0.9167	-	1.0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.000/	1.73 1 8333	1.9167	7	2.5	e	3.5	寸	5.4	1 0	5.5	0 14	6:0	, ₇ ,	90	. 80 . 75	6	5.6	10	12	14	16	18	20	1 2 2	26	28	30	32	34	36	38	40	42	44	46
	4.55	4.55	4.55	4.55	4.54	4.55	4.55	4.55	5.4 5.5	4.55	4.55	4.55	4.54	4.54	4.54	4.54	4.54	4.54	4.53	4.53	4.33	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.53	4.52	4.52
SE1000B Environmental Logger 12/28 12:58	525	540	555	570	585	009	615	630	045	000	069	705	720	735	750	765	780	795	810	825	040	870	885	006	915	930	945	096	975	066	1005	1020	1050	1065	1080	1095	1110	1125	1140	1155	1170	1185	1200	1215	1230

			6 094	6 0 9	6.094	6.094	6.094	6.088	6.094	6.094	6.101	6.107	6.107	6.113	6.12	6.12	6.126	6.132	6.138	6.138	6.145	6.145	6.151	6.157	0.104	6.104	6.176	0.170 6.183	6.189	6.189	6.195	6.202	6.208	6.214	6.22	6.22	6.227	6.227	6.233	0.239	6.246	0.240	0.240	6.252	6.252	6.258	6.265	6.271	1
0000113	Fruironmental I occor	12/28 12:47	1215	1230	1245	1260	1275	1290	1305	1320	1335	1350	1365	1380	1395	1410	1425	1440	1455	14/0	1485	1500	1515	1530	1560	1500		1605	1620	1635	1650	1665	1680	1695	1710	1725	1740	2017	0//1	60/1	1000	1813	0601	1845	1860	1875	1890	1905	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	L		5.04	5.04	5.02	5.02	5.02	5.01	n i		4.99	4.98	4.98	4.97	4.9/	4.90	06.4	4.95	4.93	4 04	4.74	4.93	4:73	4.92	4.92	4.91	4.91	4.91	4.89	4.88	4.87	4.86	4.85	4.84	68.4	70:1	70:4	10:1	8. 4	4 70	4.70	4.70	4.78	4.78	0/:+	//:+	4.7.4	4.76	
SE1000B	Environmental Logger	12/28 13:06	48	50	52	54	26	× (*)	00	79	04	99	7 08	0/ 6	27	+/	2 00 00	80	8 8 8 8 8	9 00	+ v2) &	06	92	94	96	86	100	110	120	130	140	150	160	0/1	190	200	210	220	230	240	250	260	270	2.80	290	3/2	310	
			5.11	5.11	5.11	5.11	5.12	51.5	515	5.12	2.12	5.12	5.13	513	5.13	5.13	5.13	5.14	5.14	5.14	5.14	5.14	5.14	5.15	5.15	5.16	5.16	5.16	5.17	5.19	5.22	5.24	5.20	5.00	5.29	5.3	5.31	5.31	5.32	5.33	5.33	5.33	5.34	5.34	5.34	5.35	5.35	5.35	
SE1000B	Environmental Logger	12/28 13:02	48	50	52	4c	30	S 9	62	3 79	99	89	20	72	74	76	78	80	82	84	86	88	06	92	94	96	86	100	110	120	130	150	160	021	180	190	200	210	220	230	240	250	260	270	280	290	300	310	
		;	4.52	4.32	4.32	4.52	4.52	4.52	4.53	4.53	4.53	4.53	4.53	4.54	4.54	4.54	4.54	4.54	4.55	4.55	4.55	4.56	4.56	4.56	4.57	4.57	4.57	4.58	4:30	00.4	4.59	4.59	4.59	4.59	4.59	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.61	4.61	4.61	4.61	4.61	4.62	
SE1000B	Environmental Logger	85:21 87/21	1245	2021	1290	1305	1320	1335	1350	1365	1380	1395	1410	1425	1440	1455	1470	1485	1500	1515	1530	1545	1560	1575	1590	1605	1020	1650	1665	1680	1695	1710	1725	1740	1755	1770	1785	1800	1815	1830	1845	1860	1875	1890	1905	1920	1935	1950	

		6.277	6.283	6.29	6.29	6.296	6.296	6.296	6.296	6.302	6.309	6.315	6.315	6.321	6.321	6.328	6.328	6.328	6.334	6.34	6.34	6.347	6.353	6.353	6.359	6.365	6.365	6.372	6.378	6.378	6.384	6.391	6.391	6.397	6.403	6.403	6.41	6.41	6.416	6.416	6.416	6.422	6.429	6.429	6.435	6.435	6.429	6.429	6.429
SE1000C	Environmental Logger 12/28 12:47	1935	1950	1965	1980	1995	2010	2025	2040	2055	2070	2085	2100	2115	2130	2145	2160	2175	2190	2205	2220	2235	2250	2265	2280	2295	2310		2340	2355	2370	2385	2400	2415	2430	2445	2460	2475	2490	2505	2520	2535	2550	2565	2580	2595	2610	2625	2640
		4.75	4.74	4.74	4.74	4.73	4.72	4.72	4.72	4.72	4.72	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.7	4.7	4.7	4.7	4.69	4.69	4.69	4.69	4.69	4.69	4.7	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.69	4.7
SE1000B	Environmental Logger	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490	200	510	520	530	540	550	260	570	580	290	009	610	620	630	640	650	099	670	089	069	200	710	720	730	740	750	160	770	780	790
		5.36	5.36	5.37	5.37	5.37	5.37	5.38	5.38	5.38	5.38	5.38	5.39	5.39	5.39	5.39	5.39	5.39	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.39	5.39	5.39	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.38	5.39	5.39	5.39	5.38	5.39	5.39	5.39	5.39
SE1000B	Environmental Logger 12/28 13:02	320	330	340	350	360	370	380	390	400	410	420	430	440	450	460	470	480	490	200	510	520	530	540	550	995	570	580	290	009	610	620	630	640	050	099	049	089	069	700	710	720	730	740	750	760	770	780	790
		4.62	4.62	4.62	4.62	4.62	4.63	4.63	4.63	4.64	4.64	4.64	4.64	4.64	4.64	4.64	4.64	4.65	4.65	4.65	4.65	4.65	4.65	4.66	4.66	4.66	4.66	4.66	4.66	4.67	4.67	4.67	4.67	4.67	4.67	4.68	4.68	4.68	4.68	4.68	4.68	4.68	4.68	4.67	4.67	4.67	4.66	4.66	4.65
SE1000B	Environmental Logger 12/28 12:58	1965	1980	1995	2010	2025	2040	2055	2070	2085	2100	2115	2130	2145	2160	2175	2190	2205	2220	2235	2250	2265	2280	2295	2310	2325	2340	2355	2370	2385	2400	2415	2430	2445	2460	2475	2490	2505	2520	2535	2550	2565	2580	2595	2610	2625	2640	2655	2670

		6 420	6.422	6.422	6.416	6.416	6.41	6.403	6.41	6.403	6.403	6.403	6.397	6.397	6.397	6.397	6.397	6.397	0.391	0.39/	6.397	6 301	6.391	6.391	6.391	6.391	6.384	6.378	6.378	6.378	6.372	6.372	6.372	6.365	6.359	6.359	6.353	6.353	6.353	6.347	6.353	6.353	6.353	6.353	6.347	6.347	6.34
SE1000C	Environmental Logger	5596	2670	2685	2700	2715	2730	2745	2760	2775	2790	2805	2820	2835	2850	2865	2880	2892	0167	5767	2940	2923	2985	3000	3015	3030	3045	3060	3075	3090	3105	3120	3150	3165	3180	3195	3210	3225	3240	3255	3270	3285	3300	3315	3330	3345	3360
		4.7	4.7	4.7	4.7	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.71	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.72	4.73	4.73	4.73	4.74	4.74	4.74	4.73	0														
SE1000B	Environmental Logger 12/28 13:06	800	810	820	830	840	850	860	870	880	890	006	910	920	930	940	950	000	0.00	000	066	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	1220	CINE	ļ													
		5.39	5.4	5.4	5.41	5.41	5.42	5.42	5.43	5.43	5.44	5.44	5.44	5.44	5.45	5.45	5.40	5.46	5.45	5.45	5.45	5.47	5.48	5.49	5.5	5.5	5.51	5.51	5.52	5.53	5.53	15.5	5.55	5.56	5.56	5.55	5.57	5.57	5.58	5.57	5.57	5.56	5.55	5.54	5.54	5.54	5.54
SE1000B	Environmental Logger 12/28 13:02	800	810	820	830	840	850	098	870	880	890	006	910	926	930	940	056	970	080	Ueb	1000	1020	1040	1060	1080	1100	1120	1140	1160	1180	1200	1240	1260	1280	1300	1320	1340	1360	1380	1400	1420	1440	1460	1480	1500	1520	1540
		4.66	4.65	4.64	4.64	4.63	4.63	4.63	4.63	4.64	4.63	4.63	4.04	4.03	4.03	4.03	4.03	4.58	4.66	4.66	4.88	4.79	4.73	4.7	4.68	4.66	4.65	4.65	4.64	4.03	4.03	4.62	4.62	4.61	4.61	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.59	4.59	4.59	4.58	4.58
SE1000B	12/28 12:58	2685	2700	2715	2730	2745	2760	2775	2790	2805	2820	2835	0687	2803	0007	2010	2025	2940	2955	2970	2985	3000	3015	3030	3045	3060	3075	3090	3105	3120	3150	3165	3180	3195	3210	3225	3240	3255	3270	3285	3300	3315	3330	3345	3360	3375	3390

		6.334	6.328	6.328	6.328	6.321	6.321	6.328	6.321	6.315	6.315	6.315	6.315	6.315	6.309	6.309	6.302	6.302	6.29	6.283	6.283	6.283	6.283	6.283	6.283	6.283	6.283	6.283	6.29	67.0	6.20	6.29	6.29	6.296	6.296	6.302	6.302	6.309	6.309	6.309	6.309	6.315	6.315	6.315	6.315	6.315
SE1000C	Environmental Logger 12/28 12:47	3375	3390	3405	3420	3435	3450	3465	3405	3510	3525	3540	3555	3570	3585	3600	3013	3645	0998	3675	3690	3705	3720	3735	3750		3780	3795	3810	3023	3885	3870	3885	3900	3915	3930	3945	3960	3975	3990	4005	4020	4035	4050	4065	4080
SE1000B	Environmental Logger 12/28 13:06																																													
		5.54	5.54	5.54	5.54	5.54	5.55	5.33	5.56	5.56	5.56	5.56	5.56	5.56	5.56	5.56	5.50	5.56	5.56	5.56	5.56	5.56	5.56	5.56	5.57	5.57	5.58	5.58	5.58	5.70	0 8	5.58	5.58	5.57	5.57	5.56	5.56	5.56	5.56	5.55	5.55	5.55	5.55	5.55	5.55	5.55
SE1000B	Environmental Logger 12/28 13:02	1560	1580	1600	1620	1640	1660	1080	1720	1740	1760	1780	1800	1820	1840	1860	1990	1920	1940	1960	1980	2000	2020	2040	2060	2080	2100	2120	2140	2100	2200	2220	2240	2260	2280	2300	2320	2340	2360	2380	2400	2420	2440	2460	2480	2500
		4.57	4.57	4.57	4.57	4.57	4.57	4.50 4.54	4.56	4.56	4.56	4.56	4.55	4.55	4.55	4.55	4.34	4.54	4.54	4.53	4.53	4.53	4.53	4.53	4.54	4.54	4.54	4.54	4.54 4.54	45.4	4 54	4.54	4.54	4.54	4.54	4.54	4.54	4.55	4.54	4.54	4.54	4.54	4.54	4.54	4.54	
SE1000B	Environmental Logger 12/28 12:58	3405	3420	3435	3450	3465	3480	3495	3525	3540	3555	3570	3585	3600	3615	3630	3660	3675	3690	3705	3720	3735	3750	3765	3780	3795	3810	3825	3855	3830	3885	3900	3915	3930	3945	3960	3975	3990	4005	4020	4035	4050	4065	4080	4095	
SE1	Enviro 12/2																																													END

29-Dec-92 9212129.WK1/CR675

		. 215	6.31.5	6.315	6315	6.315	6.315	6.309	6.309	6.309	6.309	6.315	6.315	6.315	6.315	6.321	6.315	0.313	6.321	6.321	6.321	6.321	6.321	6.321	6.315	6.321	6.321	6.328	6.328	6.328	6.328	6.328	6.328	0.528	6.334	6.334	6.334	6.334	6.334	6.328	6.328	6.321	6.321	6.328	6.334	6.334
SE1000C	Environmental Logger	12/28 12:47	4023	4110	4140	4155	4170	4185	4200	4215	4230	4245	4260	4275	4290	4305	4320	4555	4350 4365	4380	4395	4410	4425	4440	4455	11 4470	4485	4515	4530	4545	4560	4575	4590	4003	4620	4650	4665	4680	4695	4710	4725	4740	4755	4770	4785	4800
SE1000B Fnvironmental Lorger	Environmental Logger	12/28 13:08																																												
		5.54	5.54	5.54	5.53	5.53	5.53	5.54	5.54	5.54	5.54	5.54	5.53	5.52	5.52	5.49	5.49	5,49	5.49																											
SE1000B Environmental Logger	12/28 13:02	2520	2540	2560	2580	2600	2620	2640	2660	2680	2700	2720	2,40	09/7	2800	2820	2840	2860	2880	END																										

SE1000B Environmental Logger 12/28 12:58

SE1000C	Environmental Logger	12/28 12:47	4815
SE1000B	Environmental Logger	12/28 13:06	
SE1000B	Environmental Logger	12/28 13:02	
SE1000B	Environmental Logger	12/28 12:58	

6.334 6.334 6.334 6.34 6.34	6.34 6.34 6.34 6.34 6.347 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353 6.353	6.384 6.391 6.397 6.403 6.416 6.416 6.422 6.422 6.429 6.429 6.441 6.441 6.446
SE1000C Environmental Logger 12/28 12:47 4815 4830 4845 4860	4890 4905 4920 4935 4965 4965 4965 4965 5010 5025 5040 5055 5070 5085 5115 5115 5115 5115 5115 5120 5120 512	5235 5250 5265 5280 5295 5310 5325 5340 5355 5370 5385 5400 5415 5445 5445 5445 5445 5445 544

SE1000B	nvironmental Logger	12/28 12:58
SE	Envire	12/2

SE1000B	Environmental Logger	12/28 13:06

SE1000B	SE1000B	SE1000B	SE1000C
Environmental Logger	Environmental Logger	Environmental Logger	Environmental Logge
12/28 12:58	12/28 13:02	12/28 13:06	12/28 12:47
			3509

	6.561	6.561	6.561	6.567		6.567				6.567	6.561	z.	6.555		vi n	6.55	6.65.9	6.555	6.555	6.555	6.548	6.548	6.542	6.542	6.536	6.536	6.536	6.542	6.542		6.542	6.548	7	- :	ç		6.561		6.561	6.555	6.555	6.555	6.548	6.536	6.529	6.517
SE1000C Environmental Logger		6270	6285	6300	6315	6330	6343	6375	6390	6405	6420	6435	6450	6465	6480	0495	6510	6540	6555	6570	6585	0099	6615	0630	6645	0999	6675	0699	6705	6720	6735	6750	6765	6780	56/0	0810	6825	6840	6855	6870	6885	0069	5169	6930	6945	0969

-5.

SE1000B	Environmental Logger	12/28 12:58	

	i i	0.517	0.517	6.517	6.511	6.490	6.485	6.479	6.473	6.46	6.454	6.454	6.454	0.454	6.454	6.454	6.454	6.447	6.447	6.454	6.447	6.435	6.435	6.429	6.422	6.416	6.41	6.41	6.41	411	6.41	6.41	6.41	6.41	6.416	6.416	6.416	6.41	6.416	0.410	6.416	6.422	6.429	6.435	
SE1000C Environmental Logger	12/25 12:4/	6/60	0660	enn/	7020	0502	7065	7080	7095	7110	7125	7140	7155	7185	7200	7215	7230	7245	7260	7275	7290 7305	7320	7335	7350		7380	7395	7410	7425 7440	7455	7470	7485	7500	7515	7530	7545	7560	7575	7590	6007	7635	750	2665	7680	
SE1000B Environmental Logger 12/28 13:06																																													
SE1000B Environmental Logger 12/28 13:02																																													

Environmental Logger 12/28 13:02 SE1000B

6.599 6.605

6.58 6.593 6.618 6.624 6.63

8205 8220 8235 8250 8250

RAW DATA
PUMPING TEST AT MW017

MW-17 MANUAL DRAWDOWN MEASUREMENTS TEST BEGAN JANUARY 9, 1993: 1100 HRS

REAL TIME	ELAPSED TIME (MIN)	DISTANCE TO WL (FT)	DRAWDOWN (FT)	PUMPING RATE (GPM)	COMMENTS
1100	0.0	10.54	0.00		
	0.5	12.21	1.67		
1101	1.0	12.31	1.77		•
1102	2.0	12.41	1.87		_
1103	3.0	12.43	1.89	0.09	9
1104	4.0	12.49	1.95		
1105 1106	5.0 6.0	12.51 12.56	1.97 2.02		
1100	6.5	12.58	2.02 2.04		
1107	7.0	12.62	2.04		
1110	10.0	12.02	2.38		
1110	13.5	13.27	2.73		
1117	17.0	13.30	2.76	0.08	3
1121	21.0	13.64	3.10	0.08	
1125	25.0	14.11	3.57		ADJUSTED TO 0.08
1130	30.0	14.59	4.05		
1135	35.0	15.02	4.48	0.07	7 ADJUSTED TO 0.09
1140	40.0	15.57	5.03		
1145	45.0	16.11	5.57	0.07	7 ADJUSTED TO 0.08
1150	50.0	16.62	6.08		
1155	55.0	16.99	6.45	0.06	6 ADJUSTED TO 0.09
1200	60.0	17.63	7.09	0.08	
1205	65.0	18.19	7.65	0.08	3
1210	70.0	18.67	8.13		
1215	75.0	19.14	8.60	0.07	7 ADJUSTED TO 0.09
1220	80.0	19.33	8.79		
1225	85.0	19.45	8.91	0.09	
1230	90.0	19.64	9.10	0.09	
1235	95.0	19.89	9.35	0.09	
1240 1250	100.0 110.0	20.06 20.35	9.52 9.81	0.08	
1300	120.0	20.33	10.25	0.05	ADJUSTED TO 0.08
1310	130.0	20.79	10.23		S ADJUSTED TO 0.09
1320	140.0	21.70	11.16	0.00	AD0031ED 10 0.09
1325	145.0	21.74	11.20	0.08	}
1330	150.0	21.88	11.34	0.08	
1340	160.0	22.09	11.55		ADJUSTED TO 0.08
1350	170.0	22.28	11.74	0.09	
1353	173.0	NA		0.08	
1410	190.0	23.23	12.69		ADJUSTED TO 0.09

MW-17 MANUAL DRAWDOWN MEASUREMENTS TEST BEGAN JANUARY 9, 1993: 1100 HRS

REAL TIME	ELAPSED TIME (MIN)	DISTANCE TO WL (FT)	DRAWDOWN (FT)	PUMPING RATE (GPM)	COMMENTS
1420	200.0	23.66	13.12	0.0	9
1430	210.0	24.12	13,58	0.	1
1503	243.0	NA		0.0	8
1506	246.0	25.44	14.90	0.0	8
1531	271.0	26.27	15.73		
1550	290.0	NA		0.0	6 ADJUSTED TO 0.11
1559	299.0	NA		0.0	7
1600	300.0	27.24	16.70		
1612	312.0	STOP PUMPII	NG		

^{* -} PUMPING RATE DROPPED OFF TO NOTHING. LOWERED PUMP SLIGHTLY AND ADJUSTED THE PUMPING RATE OVER THE NEXT 10-15 MINUTES.

RAW DATA
PZ003, PZ004, AND MW017

·±

01/14 11:56 Unit# 00480 Test# 0 PZ OO3 daring	Environmental Logger 01/14 11:58 Unit# 00480 Test# 0	proof hoozd	SE1000B Environmental Logger 01/14 11:32 Unit# 00480 Test# 1	P 2003	SE1000B Environmental Logger 01/14 11:49 Unit# 00480 Test# 1	MW017 Pomped
INPUT I: Level (F) TOC pu mping	INPUT 2: Level (F) TOC	pumping	INPUT 1: Level (F) TOC	recovery	INPUT 2: Level (F) TOC	well)
13.93 10.02 0.01	Reference 22.74 Scale factor 10.02 Offset - 0.01		Reference 13.93 Scale factor 10.02 Offset 0.01		Reference 27.68 Scale factor 10.02 Offset – 0.01))
Step# 0 01/09 11:00 Elapsed	Step# 0 01/09 11:00		Step# 0 01/09 16:10		0 01/0	
Time Value	Elapsed Time Value		Elapsed Time Value	. [Elapsed Time Value	
0 9.84	C	9.71	ć	i	! ! ! ! ! ! ! ! !	 - - - -
	0.0033	9.7	0 0000	9.83	0	30.19
	0.0066	9.71	0.0053	9.83	0.0033	30.19
0.0099 9.83	0.009	9.71	0.0099	9.83	0.0068	30.18
0.0155 9.84	0.0133	6.7	0.0133	9.83	0.003	30.18
	0.0166	9.7	0.0166	9.84	0.0166	30.17
	0.02	9.71	0.02	9.83	0.02	30.16
0.0266 9.84	0.0266	9.7	0.0233	9.83	0.0233	30.16
	0.03	9.7	0.0266	9.83	0.0266	30.15
	0.0333	9.71	0.03	9.83	0.03	30.15
0.05 9.83	0.05	7.6	0.05		0.0333	30.14
	0.0666	9.7	0.0666	9.84	0.0666	30.12
	0.0833	9.7	0.0833	9.83	0.0833	30.09
	0.1166	9.7	0.1	9.83	0.1	30.07
	0.1333	9.7	0.1100	9.83	0.1166	30.06
0.15 9.83	0.15	7.6	0.15	9.83	0.1333	30.04
0.1833 0.83	0.1666	7.6	0.1666	9.84	0.1666	30.05
	0.1833	7.6	0.1833	9.83	0.1833	29.99
	0.25	7.6	0.2	9.83	0.2	29.97
	0.2333	0.7	0.2166	9.83	0.2166	29.95
	0.25	9.7	0.2333 0.2533	50.0	0.2333	29.94
	0.2666	7.6	0.250	4.04 A 0	0.25	29.92
	0.2833	7.6	0.2833	0.84	0.2666	29.9
	0.3	2.6	0.3	48.6	0.2833	29.89
0.3100 9.83	0.3166	7.6	0.3166	9.84	0.3	29.88
	0.3333	2.6	0.3333	9.84	0.5100	20.00
0.5	0.4167	2.6	0.4167	9.83	0.4167	29.87 20.86
	0.5	7.6	0.5	9.83	50	29.00 20.86
	2 5833					77.00

	29.88	29.88	29.88	29.88	29.88	29.88	29.87	29.88	29.88	29.87	29.88	29.88	29.87	29.88	29.88	29.87	29.87	29.88	29.87	29.87	29.87	29.86	29.86	29.86	29.86	29.86	29.86	29.86	29.86	29.85	29.85	29.85	29.85	29.84	29.84	29.83	29.82	29.82	29.82	29.81	29.81	29.8	29.8	29.79	29.79	29.78	29.78	29.78	29.77
HRMT-12WK1	0.6667	0.75	0.8333	0.9167	1	1.0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.75	1.8333	1.9167	2	2.5	8	3.5	4	4.5	\$	5.5	9	6.5	7	7.5	∞	8.5	6	5.6	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	9	42
	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.84	9.83	9.83	9.83	9.83	9.83	9.84	9.83	9.84	9.84	9.83	9.84	9.84	9.84	9.83	9.84	9.83	9.83	9.84	9.83	9.84	9.84	9.84	9.84	9.84	9.84	9.84	9.84	9.84	9.84	9.84	9.84	9.84
HRMT-11.WK1	0.6667	0.75	0.8333	0.9167	1	1.0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.75	1.8333	1.9167	2	2.5	8	3.5	4	4.5	'n	5.5	9	6.5	7	7.5	∞	8.5	6	5.6	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	04	42
	9.71	<i>2.</i> 6	9.71	9.71	9.7	6.7	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	9.71	7.6	7.6	7.6	9.71	9.71	9.71	9.71	9.71	9.71	6.4	9.71	9.71	9.71	7.6	9.71	9.71	9.71	6.7	6.7	6.7	6.6	7.6	6.7	6.7	6.7	6.7	6.7	7.6	6.7	7.6	<i>7.</i> 6	9.7	7.6	6.7
HRMT-02WK1	0.6667	0.75	0.8333	0.9167		1.0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.75	1.8333	1.9167	2	2.5	ю	3.5	. 4	4.5	ĸ	5.5	9	6.5	7	7.5	∞	8.5	6	9.5	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
	9.83	9.83	9,83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.84	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.83	9.82	9.83	9.81	9.83	9.82	69:6	8.6	8.6	8.6	8.6	9.79	6.79	8.6	8.6	9.79	8.6	8.6	8.6	62.6	8.6	8.6
HRMT-01.WK1	0.6667	0.75	0.8333	19160		1 0833	1.1667	1.25	1.3333	1.4166	1.5	1.5833	1.6667	1.75	1.8333	1.9167	2	2.5	į m	3.5	4	4.5	. .	5.5	9	6.5	7	7.5	00	8.5	0	5.6	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	4	42

HRMT-01.WK1		HRMT-02.WK1		III WATER			
4	8.6	44	6.7	11.WK!		HRMT-12WK1	
46	6.79	46	0.7	44	78 .6	44	29.76
48	9.8			46	9.84	46	29.76
. 50	8.6	? ⊱	7.7	84 :	9.84	48	29.76
52	8.6	? .		20	9.84	50	29.75
54	8.6	70	/.6	52	9.84	52	20.75
56	67.6	*; **	/.6	54	9.84	54	20.75
58	67.6	ο α	7.6	26	9.84	56	29.74
09	67.6	9 9	/: 6	58	9.84	28	20.74
62	67.6	00	17.6	09	9.84	9	20.72
64	0.70	79	9.7	62	9.84	8	27.73
99	0.70	90	9.7	64	9.84	7 7	20.73
8 %	07.0	99	6.7	99	9.84	* 4	27.67
8	07.0	89	6.7	89	9.84	00	29.72
5, 5	6.0	70	6.7	70	9.84	30 0	29.72
1 7	67.6	72	7.6	72	0.84	2 6	29.71
*	8.6	74	6.6	74	10.0 10.0	72	29.71
9 6	67.6	9/	7.6	76	, O. O.	74	29.71
8/ 8/	9.79	78	9.7	8/ 1/	\$0.5 60.6	92	29.7
08	6.76	80	69.6	8/	40.6	78	29.7
82	9.79	82	9.7	00 83	4.04	80	29.69
84	9.79	84	6.7	79	45.6	82	29.69
86	9.79	98	6.7	\$0 70	9.85	. 84	29.69
88	62.6	800	0.7	0 0	9.84	98	29.69
06	62.6	06	0.7	*	9.84	88	29.68
92	67.6	92	. 0	05	9.84	06	29.68
94	6.79	94		92	9.84	92	29.67
%	67.6	. 8	0.7	42, 9	9.84	94	29.67
86	9.79	86	6,0	8 8	9.84 1.54	96	29.67
100	6.79	001	09 6	88	26. 26. 1	86	29.66
110	67.6	110	6.7	25	28.0 28.0 20.0	100	29.66
120	9.78	120	09'6	011	9.84	110	29.64
130	9.79	130	0.7	071	9.85	120	29.63
140	9.76	140	090	130	9.84	130	29.61
150	9.79	150	0.7	140	9.84	140	29.59
160	62.6	091	0.7	150	9.84	150	29.57
170	8.6	170	7.0	160	9.84	160	29.56
180	8.6	180	9.7	170	9.85	170	29.54
190	8.6	061		180	9.84	180	29.53
200	8.6	200	0.7	190	9.84	190	29.51
210	8.6	210	0.7	200	9.84	200	29.5
220	8.6	220	9.7	210	9.84 5.84	210	29.48
	8.6	230	69.6	077	\$:0	220	29.46
END		END	200	230	9.84	230	29.45
				240	9.85	240	29.44
				250	9.85	250	29.43
				797	9.85	260	29.41
				0/2	9.85	270	29.39
				280	9.85	280	29.38
				067	9.85	290	29.37
				No.	9.83	300	29.35

HRMT-11.WK1	310	330	340	350	360	370	380	986	400	410	430	440	450	460	410	480	490	200	210	520	230	540	550	260	270	280	280 280 280 280 280	900	019	970	08.90 9.90	040	99	029	089	069	200	710	02/	740	750	26 26	0//	062	
HRMT-02.WK1																																													
HRMT-01.WK1																																													

29.34 29.32 29.32 29.31 29.31 29.33 29.24 29.25 29.15 29.10 29.05 29.03 20.03

HRMT-12WK1
310
320
330
330
330
340
350
360
370
400
410
420
440
420
440
420
440
420
430
440
450
460
470
520
520
520
620
620
620
620
620
620
620
630
640
670
710
28
720
28
730
28
730
28
730
28

Ē

25-Jan-93	
1/CD678	CONT

	18.71	17.07	7.07	60.07	28.68	79.97	28.66	78.64	28.63	28.62	28.61	28.6	28.59	28.58	28.57	28.56	28.55	28.53	28.52	28.51	28.5	28.49	28.47	28.45	28.44	28.42	28.41	28.39	28.37	28.36	28.34	28.32	28.31	28.29	28.27	28.25	28.24	28.22	28.2	28.18	71.07	28.15	28.13	28.12	1.97	90.07	28.06	28.05	28.03	28.01
HRMT-12WK1	800	810	830	020	050	000	830	008	870	880	068	006	910	920	930	940	950	096	970	086	066	1000	1015	1030	1045	1060	1075		1105	1120	1135	1150	1165	1180	1195	1210	1225	1240	5551	1286	1300	1316	1330	1330	1340	0001	13/3	1390	1403	1420
,	9.85	9.85	9.85	986	9.85	0.85	0.80	300	9.83	2.83	8.82	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.84	9.84	9.84	9.84	9.83	9.84	9.84	9.82	9.82	9.82	9.82	9.82	9.82	9.82	28.6	9.83	9.83	40.6	9.84 4.84	780	9.84	9.84	9.84	9.84	9.84	9.84	986	9.85	9.85	900	60.6
HRMT-11.WK1		810	820	830	840	850	980	000	0/9	000	060	006	016	920	950	940	950	096	0,00	086	066	1000	1013	1030	1045	1060	1075	0601	COIT	1120	1135	1150	1105	1180	6611	0171	577	1255	0221	1285	1300	1315	1330	1345	1360	1375	1390	1405	1420	
HRMT-02WK1																																																		

	28	27.98	27.97	27.95	27.93	27.92	27.9	27.88	27.86	27.85	27.83	27.82	27.8	27.79	27.72	27.75	27.74	27.72	1.12	27.08	10.17	53.50	27.63	27.6	27.58	27.56	27.55	27.53	27.52	27.5	27.49	27.47	27.45	27.43	27.42	4:/7	21.30	27.35	27.34	27.32	27.3	27.29	27.27	27.25	27.24	27.22	27.21
HRMT-12WK1	1435	1450	1465	1480	1495	1510	1525	1540	1555	1570	1585	1600	1615	1630	1645	1660	1675	1690	1705	07/1	1750	00/1	1780	1795	1810	1825	1840		1870	1885	1900	1915	1930	1945	1960	6/61	1990	2020	2035	2050	2065	2080	2095	2110	2125	2140	2155
	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	986	9.86	9.85	9.85	9.85	9.60	9.00	9.00	9.60	98.5	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.85	Co. V	9.03 8.0	28.6	9.85	9.85	9.85	9.85	9.85	9.85	9.85	9.84	9.84
HRMT-11.WK1	1435	1450	1465	1480	1495	1510	1525	1540	1555	1570	1585	1600	1615	1630	1645	1660	1675	1690	1705	07/1	1750	0071	1780	1795	1810	1825	1840	1855	1870	1885	1900	1915	1930	1945	1960	1973	0661	2020	2035	2050	2065	2080	2095	2110	2125	2140	2155
HRMT-02WK1																																															

HRMT-02.WK1

3
0
ŧ
묾
1
22

5	75.07	26.4	26.39	26.37	26.35	26.34	26.32	26.31	26.29	26.28	26.26	26.25	26.23	26.22	26.2	26.19	26.17	26.16	26.14	26.12	26.11	26.1	26.08	26.06	26.05	26.03	26.02	526	25.99	25.97	25.96	25.94	25.93	25.91	25.9	25.88	25.86	25.85	25.83	25.82	25.8	25.79	25.78	25.76	25.75	25.73	25.72	25.7	25.68	
HRMT-12WK1	CD67	2920	2935	2950	2965	2980	2995	3010	3025	3040	3055	3070	3085	3100	3115	3130	3145	3160	3175	3190	3205	3220	3235	3250	3265	3280	3295	3310	3325	3340	3355	3370	3385	3400	3415	3430	3445	3460	3475	3490	3505	3520	3535	3550	3565	3580	3595	3610	3625	
,	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	9.81	9.81	9.81	9.81	9.81	9.81	9.81	
HRMT-11.WK1	2905	2920	2935	2950	2965	2980	2995	3010	3025	3040	3055	3070	3085	3100	3115	3130	3145	3160	3175	3190	3205	3220	3235	3250	3265	3280	3295	3310	3325	3340	3355	3370	3385	3400	3415	3430	3445	3460	3475	3490	3505	3520	3535	3550	3565	3580	3595	3610	3625	
HRMT-02WK1																																																		

HRMT-02WK1 HRMT	HRMT-11.WK1		HRMT-12 WK1	
	3640	9.81	3640	25.67
	3655	9.81	3655	25.65
	3670	9.81	3670	25.64
	3685	9.81	3685	25.62
	3700	9.81	3700	25.61
	3715	9.81	3715	25.6
	3730	9.81	3730	25.58
	3745	9.81	3745	25.56
	3760	9.81	3760	25.55
	3775	9.81	3775	25.54
	3790	9.81	3790	25.52
	3805	6.79	3805	25.51
	3820	62.6	3820	25.49
	3835	62.6	3835	25.48
	3850	62.6	3850	25.46
	3865	9.79	3865	25.45
	3880	9.79	3880	25.43
	3895	9.79	3895	25.42
	3910	9.79	3910	25.4
	3925	9.79	3925	25.39
	3940	9.79	3940	25.37
	3935	9.79	3955	25.36
	3965	67.6	3970	25.34
	3963	97.6	3985	25.33
	4000	9.79	4000	25.31
	4015	9.79	4015	25.3
	4030	8.6	4030	25.28
	4045	9.79	4045	25.27
	4060	9.79	4060	25.25
	40/5	9.79	4075	25.24
	4090	9.79	4090	25.22
	4105	9.79	4105	25.21
	4120	9.79	4120	25.19
	4155	97.6	4135	25.17
	4150	9.78	4150	25.16
	4103	97.78	4165	25.14
	4180	87.6	4180	25.13
	4210	9.70	4195	25.11
	4004	9.70	4210	25.1
	7740	9.70	4225	25.09
	0474	9.78	4240	25.07
	4233	97.78	4255	25.05
	0/24	97./8	4270	25.04
	4263	67.6	4285	25.03
	4300	9.78	4300	25.01
	4315	9.79	4315	24.99
	4330	9.79	4330	24.98
	4343	9.78	4345	24.97
	4300	9.78	4360	24.95

Ē,
띪
7
Š
4

	24.93	24.92	24.91	24.89	24.88	24.86	24.84	24.83	24.82	24.8	24.79	24.77	24.76	24.74	24.73	24.71	24.7	24.68	24.67	24.65	24.64	24.62	24.61	24.59	24.58	24.56	24.55	24.53	24.52	24.51	24.49	24.48	24.46	24.45	24.43	24.42	24.4	24.39	24.37	24.36	24.34	24.33	24.31	24.3	24.28	24.27	24.25	24.24	24.23
HRMT-12WK1	4375	4390	4405	4420	4435	4450	4465	4480	4495	4510	4525	4540	4555	4570	4585	4600	4615	4630	4645	4660	4675	4690	4705	4720	4735	4750	4765	4780	4795	4810	4825	4840	4855	4870	4885	4900	4915	4930	4945	4960	4975	4990	2002	5020	5035	5050	2065	2080	5095
;	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	87.6	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	9.78	71.6	6.77	71.6	9.77	6.77	6.77	6.77	9.77	6.77	9.77	<i>71.</i> 6	9.77	9.77	6.77	9.76	6.77	9.76
HRMT-11.WK1	4375	4390	4405	4420	4435	4450	4465	4480	4495	4510	4525	4540	4555	4570	4585	4600	4615	4630	4645	4660	4675	4690	4705	4720	4735	4750	4765	4780	4795	4810	4825	4840	4855	4870	4885	4900	4915	4930	4945	4960	4975	4990	2002	5020	5035	5050	5065	2080	5095
HRMT-02WK1																																																	

	24.01	24.21	7:47	24.18	24.17	24.15	24.14	24.12	24.11	24.09	24.08	24.07	24.05	24.04	24.03	24.01	24	23.98	23.97	23.96	23.94	23.93	23.91	23.9	23.89	23.88	23.86	23.85	23.84	23.82	23.81	23.79	23.77	23.76	23.75	23.73	23.72	23.7	23.69	23.67	23.66	23.64	23.63	23.62	23.6	
HRMT-12WK1	6110	5110	5110	5140	5155	0/16	5185	2200	5215	5230	5245	5260	5275	5290	5305	5320	5335	5350	5365	5380	5395	5410	5425	5440	5455	5470	5485	5500	5515		5545	5560	5575	5590	5605	\$620	5635	5650	5995	5680	5695	5710	5725	5740	5755	END
	97.0	9.76	37.0	9.76	2.70	27.0	0.70	C1.6	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.75	9.74	9.74	9.74	9.74	9.74	9.74	9.71	69.6	89.6	19.6	9.65	9.62	9.6	9.6	9.55	9.47	9.41	9.38	9.36	9.39	9.42	9.46	9.48	9.5	9.52	9.54	9.56	9.59	9.61	
HRMT-11.WK1	\$110	5125	\$140	5515	5120	5118	6300	0076	5215	5230	5245	5260	5275	5290	5305	5320	5335	5350	5365	5380	5395	5410	5425	5440	5455	5470	5485	2200	5515	5530	5545	2560	5575	\$590	2603	0796	5035	2650	\$665	2680	\$69\$	5710	5725	5740		END
HRMT-02WK1																																														

RAW DATA

MW013 AND BAROMETRIC PROBE

```
Filename: HRM2-01.wk1/CR675 Filename: HRM2-02.wk1/CR675 SE1000C SE1000C Environmental Logger
Filename: HRM2-11.wk1/CR675
           SE1000C
Environmental Logger
01/19 15:03
                                                                                                                                01/15 16:30
                                                                             01/15 16:11
                                                                                                                        Unit# 00001 Test 0
                                                                     Unit# 00001 Test 0
            Unit# 00001 Test 1
                        INPUT 1 INPUT 2
                                                                  INPUT 1: Function
                                                                                                                      INPUT 2: Level (F) TOC
                        Function Level (F)
Type
                                         25923
                         13001
I.D.
                                                                                                                                                4.190
0.000
19.970
0.010
                                          4.19
                                                                                                                     Reference
Reference
                                              Ö
                                                                                               0.000
                                                                                                                     Linearity
Linearity
Scale factor
                                                                  Linearity
                         15.81
                                                                                             15.810
                                                                                                                     Scale factor
Offset
                                        19.97
                                                                  Scale factor
Offset
                                         0.01
                                                                  Offset
                                                                                                                     Delay mSEC
Delay mSEC
                                                                                             50.000
                              50
                                            50
                                                                 Delay mSEC
                                                                                                                                                50.000
                                                                 Step 0 12/31 18:00:01
                                                                                                                     Step 0 12/31 18:00:01
        Step 0 01/09 11:00:01
Elapsed Time INPUT 1 INPUT 2
                                                                 Elapsed Time INPUT 1
                                                                                                                     Elapsed Time INPUT 2
                                         4.24
4.24
4.24
4.24
4.24
4.24
4.24
                                                                                         14.43
14.437
14.441
14.441
                                                                                                                                              4.196
4.202
4.202
4.202
4.202
                       14.612
14.614
14.612
                                                  MW013
                                                                                                     Barometric
                                                                                                                                                           MW013 -
       0.0033
                                                 during
                                                                                                       Probe -
                                                                                 30
                                                                                                                                                            background
                       14.612
14.612
14.612
14.612
14.612
                                                                               45
60
75
90
105
                                                                                                        background
                                                                                                                                    45
60
75
90
           0.01
                                                   pumping
        0.0133
                                                                                          14.446
                                                                                         14.446
14.448
14.448
14.448
14.448
14.448
                                                     and
                                                                                                                                              4.202
4.202
4.202
4.202
4.202
4.202
       0.0166
0.02
0.0233
                                                  recovery
        0.0266
                                                                                120
           0.03
                       14.612
                                                                                                                                  135
        0.0333
                                                                                                                                  150
                       14.612
                                                                                150
                                                                                                                                               4.202
                       14.612
14.612
14.612
14.61
                                         4.24
4.24
4.24
4.24
4.24
       0.05
0.0666
0.0833
                                                                                                                                              4.202
4.196
4.196
                                                                                                                                  165
180
                                                                               165
                                                                              180
195
210
225
240
255
270
285
300
315
345
345
375
390
                                                                                                                                  195
210
225
240
255
            0.1
                                                                                                                                               4.196
        0.1166
                       14.612
                                                                                                                                              4.202
                      14.612
14.612
14.612
14.612
14.612
14.612
14.612
14.612
       0.1333
0.15
0.1666
0.1833
0.2
                                         4.24
4.24
4.24
4.24
4.24
                                                                                         14.459
                                                                                                                                              4.196
4.196
                                                  Barometric
                                                                                                                                  270
285
                                                                                         14.459
                                                                                                                                              4.196
                                                   Probe during
                                                    pumping
                                                                                                                                  300
      0.2166
0.2333
0.25
0.2666
                                                                                         14.465
14.472
14.472
14.476
                                                                                                                                  315
330
345
360
                                                                                                                                              4.202
                                         4.24
                                                                                                                                              4.208
                                                    recovery
                                         4.24
                                                                                                                                              4.208
                                                                                                                                  375
390
       0.2833
                      14.612
                                         4.24
4.24
4.24
4.24
4.24
4.24
                      14.61
14.612
            0.3
                                                                                                                                              4.208
                                                                                                                                  405
420
435
       0.3166
                                                                               405
                                                                                                                                              4.215
       0.3333
0.4166
                        14.61
14.61
14.61
                                                                              420
435
                                                                                                                                              4.215
                                                                              450
465
480
495
510
                                                                                                                                  450
465
480
495
510
            0.5
                      14.612
14.61
14.61
14.61
       0.5833
       0.6666
0.75
0.8333
                                      14.472
14.474
14.476
                                                                                                                                              4.227
                                                                                                                                 525
540
555
570
585
       0.9166
                        14.61
                      14.612
14.61
14.61
14.612
       1.0833
                                                                              555
                                                                                                                                               4.24
4.24
4.24
       1.1666
1.25
1.3333
                                                                              570
585
600
                                                                                         14.48
14.478
                                                                                                                                 600
615
630
645
660
675
690
      1.3333
1.4166
1.5
1.5833
1.6666
1.75
1.8333
                        14.61
                                                                              615
                        14.61
14.61
14.61
14.61
                                                                              630
645
660
675
690
                                                                                              463
                                                                                                                                              4.246
                        14.61
                                                                                                                                 705
720
735
750
                      14.61
14.61
14.612
                                                                                                                                              4.246
          9166
                                       4.246
                                                                              705
720
735
750
765
780
795
810
           2.5
                                       4.246
                                                                                         14,463
                      14.612
                                                                                                                                 765
780
795
                                                                                                                                             4.253
4.253
4.246
4.246
4.246
                      14.612
14.612
14.614
                                        4.24
                                         4.24
                      14.614
           5.5
                                                                              825
                      14.614
                                                                                                                                 840
           6.5
                      14.614
                                                                              855
                                                                                                                                 855
```

Elapsed Time INPUT 1 INPUT 2	Elapsed Time INPUT 1	Elapsed Time INPUT 2
7 14.614 4.246	870 14.459	870 4.246 885 4.246
7.5 14.614 4.246 8 14.614 4.246	885 14.465 900 14.469 915 14.476	900 4.246
8 5 14.614 4.246	915 14.476 930 14.482	900 4.246 915 4.253 930 4.253 945 4.253
0 5 14 617 4.24	0/5 1/ 404	945 4.253 960 4.253
10 14.617 4.24	960 14.508 975 14.524 990 14.537	975 4.259
14 14.621 4.246 16 14.623 4.246	990 14.537	990 4.259 1005 4.259
16 14.623 4.246 18 14.623 4.246	1005 14.549 1020 14.563 1035 14.567	1020 4.259 1035 4.265
20 14.625 4.246	1050 14,565	1050 4.265
22 14.625 4.24 24 14.625 4.24	1065 14.567 1080 14.567 1095 14.567	1065 4.259 1080 4.259
26 14.623 4.246 28 14.625 4.246	1095 14.567	1095 4.259
24 14.625 4.24 26 14.623 4.246 28 14.625 4.246 30 14.625 4.24 32 14.623 4.246 34 14.623 4.246 36 14.621 4.246	1110 14 567	1110 4.253 1125 4.253 1140 4.253
30 14.625 4.24 32 14.623 4.246 34 14.623 4.246 36 14.621 4.246	1125 14.565 1140 14.563 1155 14.563 1170 14.56	1125 4.253 1140 4.253 1155 4.246 1170 4.24
36 14.621 4.246 38 14.621 4.246	1155 14.565 1170 14.56	1170 4.24
4n 14.619 4.246	1185 14.556 1200 14.554	1185 4.24 1200 4.234 1215 4.234
42 14.617 4.246 44 14.619 4.246	1215 14.549 1230 14.552	1215 4.234
46 14.617 4.246	1230 14.552 1245 14.552	1230 4.227
48 14.617 4.246 50 14.614 4.246	1260 14.552	1260 4.227
57 14 614 4.740	1185 14.556 1200 14.554 1215 14.559 1230 14.552 1245 14.552 1260 14.552 1275 14.552 1290 14.556	1185 4.24 1200 4.234 1215 4.234 1230 4.227 1245 4.227 1260 4.227 1275 4.227 1290 4.227 1305 4.221 1320 4.227 1335 4.227 1335 4.227 1350 4.227 1365 4.227 1365 4.227 1380 4.227 1380 4.227 1380 4.227 1395 4.234 1410 4.234
56 14.614 4.246	1305 14.554 1320 14.549 1335 14.547 1350 14.537	1305 4.221 1320 4.227
58 14.612 4.246 60 14.61 4.246	1335 14.547	1335 4.227
62 14.61 4.24 64 14.61 4.24	1350 14.537 1365 14.526	1365 4.227
64 14.61 4.24 66 14.608 4.24 68 14.606 4.24	1365 14.526 1380 14.515 1395 14.506	1380 4.227 1395 4.234
70 1/ 606 6 74	1410 14.493	1410 4.234
72 14.604 4.24 74 14.601 4.24 76 14.601 4.24	1425 14.485 1440 14.476	1440 4.234
74 14.601 4.24 76 14.601 4.24	1440 14.476 1455 14.467 1470 14.459 1485 14.454 1500 14.45 1515 14.443 1530 14.439 1545 14.433 1560 14.428 1575 14.424 1590 14.424 1605 14.424	1230 4.227 1245 4.227 1260 4.227 1275 4.227 1290 4.227 1305 4.227 1335 4.227 1335 4.227 1350 4.227 1365 4.227 1365 4.227 1380 4.227 1380 4.227 1380 4.227 1380 4.227 1380 4.227 1380 4.227 1385 4.234 1410 4.234 1455 4.234 1455 4.234 1455 4.234 1455 4.234 1455 4.234
78 14.601 4.24 80 14.597 4.24 82 14.597 4.24 84 14.597 4.24	1485 14.454	1485 4.234
80 14.597 4.24 82 14.597 4.24 84 14.597 4.24 86 14.595 4.24	1500 14.45 1515 14.443	1500 4.234 1515 4.234 1530 4.24 1545 4.24 1560 4.24 1575 4.24 1590 4.24 1605 4.24
86 14.595 4.24	1530 14.439	1530 4.24 1545 4.24 1560 4.24 1575 4.24
88 14.597 4.24 90 14.597 4.24	1545 14.433 1560 14.428	1560 4.24
92 14.595 4.24 94 14.595 4.24	1575 14.424 1590 14.424	1590 4.24
94 14.595 4.24 96 14.595 4.234 98 14.595 4.234	1605 14.424 1620 14.422	1590 4.24 1605 4.24 1620 4.246 1635 4.246
100 1/ 504 6/36	1635 14.422	
110 14.591 4. <u>234</u>	1635 14.422 1650 14.42 1665 14.42 1680 14.42 1695 14.42	
120 14.593 4.227 130 14.591 4.221	1680 14.422 1695 14.42	1665 4.246 1680 4.246 1695 4.253
140 14.593 4.221 150 14.593 4.227	1/10 14.41/	1710 4.253
140 14 505 4 227	1725 14.409 1740 14.402	1725 4.246 1740 4.253
170 14.593 4.227 180 14.593 4.234	1755 14.4	1740 4.253 1755 4.253 1770 4.253
170 14.593 4.227 180 14.593 4.234 190 14.597 4.234 200 14.597 4.234 210 14.597 4.234 220 14.597 4.234 230 14.593 4.227 240 14.593 4.227 250 14.593 4.227 250 14.593 4.227 260 14.593 4.227 270 14.588 4.234 270 14.588 4.234 280 14.584 4.234 290 14.582 4.24 300 14.578 4.24	1740 14.402 1755 14.4 1770 14.391 1785 14.387 1800 14.381 1815 14.372	1740 4.253 1755 4.253 1770 4.253 1770 4.253 1785 4.253 1800 4.253 1815 4.253 1830 4.246 1845 4.246 1860 4.246 1875 4.246 1870 4.246 1905 4.246 1920 4.246
210 14.597 4.234	1800 14.381 1815 14.372	1785 4.253 1800 4.253 1815 4.253 1830 4.246
210 14.597 4.234 220 14.597 4.234 230 14.593 4.227	1830 14.363 1845 14.355 1860 14.35 1875 14.346	1830 4.246
240 14.593 4.227 250 14.593 4.227	1830 14.363 1845 14.355 1860 14.35 1875 14.346	1845 4.246 1860 4.246 1875 4.246 1890 4.246
250 14.593 4.227 260 14.593 4.234 270 14.588 4.234 280 14.584 4.234 290 14.582 4.24	1875 14.346 1800 14.342	1875 4-246 1890 4-246
270 14.588 4.234 280 14.584 4.234	1890 14.342 1905 14.34 1920 14.333	1905 4.24
290 14.582 4.24 300 14.578 4.24	1890 14.342 1905 14.34 1920 14.333 1935 14.331 1950 14.331	1935 4.24
310 14.578 4.246	1920 14.3331 1935 14.3331 1950 14.3331 1965 14.329 1980 14.327 1995 14.324 2010 14.32	1905 4.24 1920 4.246 1935 4.246 1950 4.246 1965 4.246 1980 4.246
320 14.571 4.24 330 14.571 4.246	1965 14.329 1980 14.327 1995 14.324 2010 14.32	1980 4.246 1995 4.253
	2010 14.32	1995 4.253 2010 4.253
360 14.567 4.253	2025 14.32 2040 14 <u>.32</u>	2025 4.253 2040 4.253
370 14.563 4.253 380 14.56 4.253	2055 14.322	1950 4.246 1965 4.246 1980 4.246 1995 4.253 2010 4.253 2025 4.253 2040 4.253 2055 4.253 2070 4.253 2085 4.253
340 14.569 4.246 350 14.569 4.246 360 14.567 4.253 370 14.563 4.253 380 14.56 4.253 390 14.558 4.259 400 14.554 4.259 410 14.552 4.265	2070 14.322 2085 14.327 2100 14.329	2085 4.253
410 14.552 4.265	2100 14.329	2100 4.253

Elapsed Time INPUT 1 INPU		
420 14.549 4. 430 14.549 4. 440 14.543 4. 450 14.537 4. 460 14.537 4. 480 14.532 4. 490 14.532 4. 500 14.528 4. 510 14.528 4. 520 14.528 4. 550 14.528 4. 550 14.528 4. 550 14.528 4. 550 14.528 4. 550 14.551 4. 560 14.517 4. 590 14.515 4. 660 14.491 4. 670 14.491 4. 680 14.493 4. 670 14.487 7. 730 14.488 4. 670 14.487 7. 730 14.488 4. 770 14.487 7. 730 14.487 7. 730 14.487 7. 730 14.487 4. 750 14.487 4. 750 14.487 4. 750 14.487 4. 750 14.487 4. 750 14.487 4. 750 14.487 4. 750 14.488 4. 880 14.466 4. 880 14.454 4. 880 14.467 4. 880 14.467 4. 880 14.463 4. 890 14.463 4. 890 14.463 4. 890 14.463 4. 890 14.463 4. 890 14.464 4. 890 14.465 4.	265	2115
1240 14.394 4. 1255 14.391 4. 1270 14.389 4. 1285 14.385 4.	.29	5 3180 4.19 6 3195 4.183 7 3210 4.183 8 3225 4.183 8 3240 4.183 8 3255 4.183 8 3270 4.177 7 3300 4.177 7 3315 4.171 6 3330 4.171

Elapsed Time INPUT 1 INPUT 2 Elapsed Time INPUT 1 Elapsed Time INPUT 2 1375 14.437 4.29 3360 14.478 3360 4.164 1390 14.448 4.29 3375 14.48 3375 4.171 1405 14.452 4.297 3390 14.48 3390 4.171 1420 14.461 4.297 3405 14.478 3405 4.171 1435 14.465 4.297 3420 14.476 3420 4.171 1450 14.472 4.303 3435 14.469 3453 4.171 1480 14.48 4.297 3465 14.467 3465 4.171 1480 14.48 4.297 3465 14.467 3465 4.171 1495 14.487 4.297 3480 14.459 3480 4.164 1510 14.489 4.297 3510 14.459 3480 4.164 1510 14.491 4.29 3525 14.459 3510 4.164 1555 14.487 4.297 3510 14.459 3510 4.164 1555 14.487 4.297 3550 14.459 3510 4.164 1555 14.487 4.29 3525 14.456 3525 4.164 1555 14.487 4.29 3550 14.456 3555 4.164 1560 14.474 4.29 3570 14.488 3555 4.164 1585 14.478 4.29 3570 14.488 3555 4.164 1615 14.472 4.29 3600 14.446 3600 4.164 1630 14.474 4.29 3605 14.448 3585 4.164 1630 14.472 4.29 3600 14.446 3600 4.164 1650 14.472 4.29 3600 14.446 3600 4.164 1650 14.472 4.29 3600 14.441 3630 4.164 1650 14.474 4.29 3660 14.443 3650 4.164 1650 14.474 4.29 3660 14.443 3650 4.164 1650 14.474 4.29 3660 14.443 3650 4.164 1650 14.474 4.29 3660 14.443 3600 4.164 1675 14.474 4.29 3660 14.443 3600 4.164 1690 14.467 4.29 3690 14.443 3600 4.164 1690 14.467 4.29 3690 14.443 3600 4.164 1690 14.467 4.29 3690 14.443 3600 4.164 1690 14.467 4.29 3690 14.443 3600 4.164 1690 14.465 4.297 3750 14.441 3755 4.171 1750 14.456 4.297 3750 14.441 3755 4.171 1750 14.457 4.29 3750 14.441 3755 4.171 1750 14.456 4.297 3750 14.441 3755 4.171 1750 14.457 4.29 3750 14.441 3755 4.171 1750 14.456 4.297 3750 14.441 3755 4.171 1750 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.441 3755 4.171 1751 14.456 4.297 3750 14.443 3795 4.171
1405 14.452 4.297 3405 14.468 3405 4.171 1420 14.461 4.297 3405 14.476 3405 4.171 1435 14.465 4.297 3402 14.476 3405 4.171 1435 14.465 4.297 3402 14.476 3405 4.171 1450 14.472 4.303 3435 14.469 3450 4.171 1465 14.472 4.303 3450 14.469 3450 4.171 1480 14.48 4.297 3465 14.467 3465 4.171 1480 14.48 4.297 3465 14.467 3465 4.171 1495 14.487 4.297 3495 14.459 3480 4.164 1510 14.489 4.297 3495 14.459 3510 4.164 1525 14.489 4.297 3510 14.459 3510 4.164 1525 14.489 4.297 3510 14.459 3510 4.164 1555 14.489 4.299 3525 14.456 3525 4.164 1555 14.487 4.299 3520 14.456 3525 4.164 1570 14.487 4.299 3550 14.448 3570 4.158 1585 14.478 4.299 3585 14.448 3570 4.158 1600 14.474 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3600 14.446 3600 4.164 1640 14.472 4.29 3600 14.446 3600 4.164 1640 14.478 4.29 3600 14.446 3600 4.171 1720 14.459 4.29 3700 14.446 3700 4.171 1720 14.459 4.29 3700 14.446 3700 4.171 1720 14.459 4.29 3700 14.446 3700 4.171 1720 14.459 4.29 3700 14.446 3700 14.446 3700 4.171 1720 14.459 4.29 3700 14.446 3700 14.446 3700 14.446 3700 14
1435 14.465 4.297 3420 14.469 3435 4.171 1450 14.472 4.303 3450 14.469 3450 4.171 1480 14.48 4.297 3465 14.467 3465 4.171 1480 14.48 4.297 3465 14.459 3480 4.164 1510 14.489 4.297 3495 14.454 3495 4.164 1510 14.489 4.297 3510 14.459 3510 4.164 1525 14.489 4.297 3510 14.459 3510 4.164 1540 14.491 4.29 3525 14.456 3525 4.164 1555 14.493 4.29 3550 14.45 3525 4.164 1570 14.487 4.297 3555 14.448 3555 4.164 1570 14.487 4.29 3585 14.448 3570 4.158 1585 14.474 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3600 14.446 3600 4.164 1630 14.472 4.29 3601 14.446 3600 4.164 1645 14.472 4.29 3630 14.441 3630 4.164 1650 14.478 4.29 3630 14.441 3630 4.164 1660 14.478 4.29 3660 14.443 3645 4.164 1675 14.478 4.29 3660 14.443 3660 4.164 1675 14.467 4.29 3660 14.443 3660 4.164 1690 14.467 4.29 3660 14.443 3660 4.164 1690 14.467 4.29 3660 14.443 3690 4.171 1720 14.459 4.29 3690 14.443 3705 4.171
1435 14.465 4.297 3420 14.469 3435 4.171 1450 14.472 4.303 3450 14.469 3450 4.171 1480 14.48 4.297 3465 14.467 3465 4.171 1480 14.48 4.297 3465 14.459 3480 4.164 1510 14.489 4.297 3495 14.454 3495 4.164 1510 14.489 4.297 3510 14.459 3510 4.164 1525 14.489 4.297 3510 14.459 3510 4.164 1540 14.491 4.29 3525 14.456 3525 4.164 1555 14.493 4.29 3550 14.45 3525 4.164 1570 14.487 4.297 3555 14.448 3555 4.164 1570 14.487 4.29 3585 14.448 3570 4.158 1585 14.474 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3600 14.446 3600 4.164 1630 14.472 4.29 3601 14.446 3600 4.164 1645 14.472 4.29 3630 14.441 3630 4.164 1650 14.478 4.29 3630 14.441 3630 4.164 1660 14.478 4.29 3660 14.443 3645 4.164 1675 14.478 4.29 3660 14.443 3660 4.164 1675 14.467 4.29 3660 14.443 3660 4.164 1690 14.467 4.29 3660 14.443 3660 4.164 1690 14.467 4.29 3660 14.443 3690 4.171 1720 14.459 4.29 3690 14.443 3705 4.171
1465 14.472 4.303 3450 14.467 3465 4.171 1480 14.48 4.297 3485 14.459 3480 4.164 1510 14.489 4.297 3510 14.459 3510 4.164 1525 14.489 4.297 3510 14.456 3525 4.164 1540 14.491 4.299 3525 14.456 3525 4.164 1555 14.493 4.299 3525 14.456 3525 4.164 1557 14.493 4.299 3540 14.45 3555 4.164 1570 14.487 4.297 3555 14.448 3570 4.158 1585 14.478 4.299 3570 14.448 3570 4.158 1600 14.474 4.299 3585 14.448 3585 4.164 1615 14.472 4.299 3585 14.448 3585 4.164 1615 14.472 4.299 3615 14.446 3615 4.164 1630 14.472 4.299 3615 14.446 3615 4.164 1645 14.472 4.299 3615 14.446 3615 4.164 1660 14.478 4.299 3615 14.446 3615 4.164 1645 14.472 4.299 3630 14.441 3630 4.164 1645 14.472 4.299 3630 14.441 3630 4.164 1645 14.472 4.299 3630 14.441 3630 4.164 1660 14.478 4.299 3630 14.441 3630 4.164 1660 14.478 4.299 3665 14.443 3660 4.164 1690 14.467 4.299 3690 14.443 3690 4.171 1720 14.459 4.29 3705 14.443 3705 4.171 1720 14.459 4.29 3705 14.4444 3700 14.4444 3700 14.444 370
1495 14.487 4.297 3480 14.454 3495 4.164 1510 14.489 4.297 3595 14.454 3495 4.164 1525 14.489 4.297 3510 4.164<
1525 14.489 4.297 3510 14.456 3525 4.164 1540 14.491 4.29 3525 14.456 3525 4.164 1555 14.493 4.29 3540 14.45 3540 4.164 1570 14.487 4.297 3555 14.448 3570 4.158 1585 14.478 4.29 3570 14.448 3570 4.158 1600 14.474 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3600 14.446 3600 4.164 1630 14.472 4.29 3600 14.446 3615 4.164 1630 14.472 4.29 3600 14.446 3615 4.164 1645 14.472 4.29 3630 14.441 3630 4.164 1660 14.478 4.29 3630 14.441 3630 4.164 1675 14.474 4.29 3660 14.443 3660 4.164 1675 14.474 4.29 3660 14.443 3660 4.164 1670 14.467 4.29 3690 14.441 3675 4.164 1670 14.467 4.29 3690 14.441 3675 4.164 1670 14.467 4.29 3690 14.443 3705 4.171 1720 14.459 4.29 3705 14.443 3705 4.171
1540 14.491 4.29 3525 14.455 3540 4.164 1555 14.493 4.29 3550 14.455 3550 4.164 1570 14.487 4.297 3555 14.448 3570 4.158 1585 14.478 4.29 3585 14.448 3570 4.158 1600 14.474 4.29 3585 14.448 3585 4.164 1615 14.472 4.29 3600 14.446 3600 4.164 1630 14.472 4.29 3600 14.446 3615 4.164 1645 14.472 4.29 3630 14.441 3630 4.164 1660 14.478 4.29 3645 14.443 3645 4.164 1675 14.474 4.29 3660 14.443 3660 4.164 1670 14.467 4.29 3675 14.441 3675 4.164 1690 14.467 4.29 3690 14.443 3690 4.171 1720 14.459 4.29 3690 14.443 3705 4.171
7775 1/ //1 3735 4.177
1735 14.456 4.297 3725 14.441 3735 4.177 1750 14.45 4.297 3750 14.441 3750 4.171
1735 14.456 4.29 3720 14.446 3720 4.171 1735 14.45 4.297 3735 14.441 3735 4.177 1750 14.45 4.297 3750 14.441 3750 4.171 1765 14.45 4.297 3750 14.441 3750 4.177 1780 14.446 4.297 3765 14.441 3765 4.177
1735 14.456 4.297 3725 14.441 3735 4.177 1750 14.45 4.297 3750 14.441 3750 4.171 1765 14.45 4.297 3750 14.441 3765 4.177 1780 14.446 4.297 3765 14.441 3765 4.177 1795 14.45 4.297 3780 14.443 3780 4.177 1810 14.454 4.303 3795 14.448 3795 4.177 1810 14.454 4.303 3810 14.448 3810 4.183 1825 14.454 4.303 3810 14.448 3810 4.183 1840 14.452 4.309 3825 14.45 3825 4.183
1810 14.454 4.303 3795 14.448 3795 4.177 1825 14.454 4.303 3810 14.448 3810 4.183 1840 14.452 4.309 3825 14.45 3825 4.183
1840 14.452 4.309 3825 14.45 1855 14.448 4.309 3845 14.45 3855 4.19 1870 14.448 4.309 3855 14.452 3855 4.19 1885 14.45 4.316 3870 14.452 3870 4.19
1870 14.448 4.309 3855 14.452 3855 4.19 1885 14.45 4.316 3870 14.452 3870 4.19 1900 14.454 4.316 3885 14.456 3885 4.19
1900 14.454 4.516 1915 14.456 4.322 3900 14.459 3900 4.19 1930 14.461 4.328 3915 14.459 3915 4.19
1855 14.448 4.309 3855 14.452 3855 4.19 1870 14.448 4.309 3855 14.452 3870 4.19 1885 14.45 4.316 3870 14.452 3870 4.19 1900 14.454 4.316 3885 14.456 3885 4.19 1915 14.456 4.322 3900 14.459 3900 4.19 1930 14.461 4.328 3915 14.459 3915 4.19 1945 14.463 4.328 3930 14.456 3930 4.19 1946 14.465 4.328 3930 14.456 3945 4.19
1960 14.465 4.328 3940 14.44 3960 4.19
1990 14.469 4.335 3975 14.45 3975 4.19 2005 14.472 4.335 3990 14.452 3990 4.19
2005 14.472 4.335 3990 14.452 3775 4.183 2020 14.476 4.341 4005 14.45 4005 4.183 2035 14.48 4.347 4020 14.446 4020 4.183 2035 14.48 4.347 4020 14.446 4020 4.183
2020 14.476 4.341 4005 14.45 4007 4.163 2035 14.48 4.347 4020 14.446 4030 4.183 2050 14.485 4.347 4035 14.448 4035 4.177 2065 14.487 4.347 4050 14.448 4050 4.177 2080 14.489 4.354 4065 14.443 4065 4.177 2095 14.493 4.36 4080 14.443 4080 4.171 2110 14.489 4.36 4095 14.446 4095 4.171
2065 14.487 4.347 4050 14.448 4050 4.177 2080 14.489 4.354 4065 14.443 4065 4.177 2085 14.489 4.364 4080 14.443 4080 4.171
2125 14.487 4.36 4110 14.443 4110 4.164 2126 14.487 4.36 4125 14.446 4125 4.164 2140 14.487 4.36 4125 14.446 4125 4.164
2155 14.493 4.366 4155 14.443 4155 4.164
0000 4/ /00 / 372 4185 14-446 4103 4:104
//UU 14.470
2230 14.502 4.372 4215 14.45 4215 4.164 2245 14.506 4.379 4230 14.448 4230 4.164 2260 14.506 4.379 4245 14.443 4245 4.164 2260 14.506 4.379 4245 14.443 4260 4.158
2200 14.598 4.372 4200 14.448 4200 4.164 2215 14.50 4.372 4215 14.45 4215 4.164 2245 14.506 4.379 4230 14.448 4230 4.164 2260 14.506 4.379 4245 14.443 4245 4.164 2275 14.508 4.385 4260 14.443 4275 4.158 2290 14.504 4.385 4275 14.443 4275 4.158 2305 14.506 4.379 4290 14.441 4290 4.158 2305 14.508 4.385 4275 14.443 4305 4.158 2320 14.508 4.385 4305 14.443 4305 4.158 2335 14.508 4.385 4305 14.443 4305 4.158 2335 14.508 4.385 4305 14.443 4305 4.158 2335 14.508 4.385 4305 14.443 4305 4.152 2350 14.508 4.391 4335 14.443 4335 4.152 2350 14.508 4.391 4335 14.446 4350 4.152 2365 14.511 4.391 4350 14.446 4350 4.152 2380 14.511 4.398 4365 14.446 4365 4.152 2380 14.511 4.398 4365 14.446 4380 4.145 2425 14.513 4.398 4380 14.446 4380 4.145 2426 14.515 4.404 4410 14.448 4440 4.139 2455 14.515 4.404 4410 14.448
2275 14.508 4.385 4200 14.443 4275 4.158 2290 14.504 4.385 4275 14.443 4290 4.158 2305 14.508 4.385 4305 14.441 4305 4.158 2320 14.508 4.385 4305 14.443 4305 4.158 2335 14.508 4.385 4301 14.443 4320 4.152 2350 14.508 4.391 4335 14.443 4335 4.152 2350 14.508 4.391 4350 14.443 4350 4.152 2365 14.511 4.391 4350 14.446 4350 4.152 2380 14.511 4.398 4365 14.446 4365 4.152 2395 14.513 4.398 4380 14.446 4380 4.145 2410 14.513 4.404 4395 14.446 4395 14.446
2320 14.508 4.385 4305 14.443 4305 4.158 2320 14.508 4.385 4320 14.443 4320 4.152
2320 14.508 4.385 4320 14.443 4320 4.152 2335 14.508 4.385 4335 14.443 4335 4.152 2350 14.508 4.391 4335 14.443 4350 4.152 2365 14.511 4.391 4350 14.446 4365 4.152 2380 14.511 4.398 4365 14.446 4365 4.152 2395 14.513 4.398 4380 14.446 4380 4.145 2425 14.513 4.404 4395 14.446 4395 4.145 2425 14.515 4.404 4410 14.443 4410 4.145 2425 14.515 4.404 4410 14.443 4410 4.145
2365 14.511 4.398 4365 14.446 4365 4.152 2380 14.511 4.398 4380 14.446 4380 4.145
2395 14.513 4.398 4390 14.446 4395 4.145 2410 14.513 4.404 4395 14.446 4395 4.145
2395 14.513 4.596 4395 14.446 4395 4.145 2410 14.513 4.404 4410 14.443 4410 4.145 2425 14.515 4.404 4425 14.446 4425 4.145 2440 14.515 4.404 4425 14.446 4425 4.145
2425 14.515 4.404 4410 14.443 4425 4.145 2440 14.515 4.404 4425 14.446 4425 14.446 4410 14.443 4440 4.139 2455 14.515 4.404 4400 14.448 4440 4.139 2470 14.515 4.41 4470 14.45 4470 4.133 2485 14.513 4.41 4470 14.45
2215 14.5 4.372 4200 14.448 4205 4.164 2230 14.502 4.372 4215 14.448 4230 4.164 2245 14.506 4.379 4245 14.443 4245 4.164 2275 14.508 4.385 4260 14.443 4260 4.158 2290 14.504 4.385 4275 14.443 4290 4.158 2305 14.506 4.379 4290 14.441 4290 4.158 2305 14.508 4.385 4305 14.443 4305 4.158 2320 14.508 4.385 4305 14.443 4305 4.152 2350 14.508 4.385 4305 14.443 4305 4.152 2350 14.508 4.385 4320 14.443 4305 4.152 2350 14.508 4.391 4355 14.443 4350 4.152 2350 14.511 4.391 4350 14.446 4350 4.152 2380 14.511
2500 14.513 4.41 4500 14.448 4500 4.126 2515 14.511 4.41 4515 14.448 4515 4.126 2530 14.508 4.41 4515 14.448 4515 4.126
2515 14.511 4.41 4500 14.448 4500 4.126 2530 14.508 4.41 4515 14.448 4515 4.126 2545 14.508 4.41 4530 14.448 4530 4.12 2546 14.513 4.41 4545 14.45 4545 4.12 2560 14.513 4.41 4545 14.45 4560 4.12
2425 14.515 4.404 4410 14.446 4425 4.145 2450 14.515 4.404 4420 14.448 4454 4455 4.139 2470 14.515 4.41 4455 14.448 4455 4.139 2470 14.513 4.41 4470 14.45 4470 4.133 2500 14.513 4.41 4470 14.45 4485 4.133 2500 14.513 4.41 4470 14.48 455 14.488 4500 4.126 2515 14.511 4.41 4500 14.448 4500 4.126 2530 14.508 4.41 4515 14.448 4515 4.126 2530 14.508 4.41 4515 14.448 4515 4.126 2545 14.508 4.41 4530 14.448 4515 4.126 2560 14.513 4.41 4530 14.448 4515 4.12 2560 14.513 4.41 4545 14.45 4575 4.112 2575 14.517 4.417 4560 14.452 4560 4.12 2575 14.517 4.417 4560 14.452 4560 4.12 2575 14.519 4.417 4575 14.454 4575 4.114 2590 14.519 4.417 4575 14.454 4575 4.114 2590 14.519 4.417 4575 14.455 4590 4.114
2215 14.5 4.372 4200 14.448 4200 4.164 2230 14.502 4.372 4215 14.448 4215 4.164 2245 14.506 4.379 4230 14.448 4245 4.164 2260 14.506 4.379 4245 14.443 4260 4.158 2275 14.508 4.385 4260 14.443 4260 4.158 2305 14.506 4.379 4290 14.441 4290 4.158 2320 14.508 4.385 4305 14.443 4305 4.158 2320 14.508 4.385 4305 14.443 4305 4.158 2335 14.508 4.385 430 14.443 4305 4.152 2335 14.508 4.381 4351 14.443 4335 4.152 2335 14.508 4.391 4350 14.443 4350 4.152 2336 14.511 4.398

Elapsed Time INPUT 1	INPUT 2	Elapsed Time INPUT 1	Elapsed Time INPUT 2
2620 14.526 2635 14.53 2650 14.53 2665 14.532 2680 14.528	4.423 4.429 4.429 4.436 4.436	4605 14.445 4620 14.448 4635 14.452 4650 14.454 4665 14.456	4605 4.108 4620 4.108 4635 4.108 4650 4.101 4665 4.101
2695 14.53 2710 14.532 2725 14.534 2740 14.541	4.436 4.436 4.442 4.442 4.442	4680 14.454 4695 14.454 4710 14.452 4725 14.452 4740 14.452	4680 4.101 4695 4.101 4710 4.095 4725 4.095 4740 4.089
2/85 14.505 2800 14.571 2815 14.573 2830 14.58	4.442 4.448 4.448 4.454 4.448	4760 14.45 4800 14.45 4815 14.45	
2845 14.586 2860 14.591 2875 14.593 2890 14.595	4.454 4.454 4.454 4.461 4.454	4875 14.443 4890 14.435	4043 4.U/ 4840 4.07
2905 14.599 2920 14.601 2935 14.601 2950 14.601 2955 14.599 2980 14.599 2995 14.599	4.454 4.448 4.448 4.448 4.448	4905 14.437 4920 14.435 4935 14.43 4950 14.428 4965 14.428 4965 14.424 4980 14.417	4875 4.063 4890 4.057 4905 4.051 4920 4.044 4935 4.032 4950 4.026 4965 4.013 4980 4.007 4995 3.994
2995 14.597 3010 14.595 3025 14.595 3040 14.595 3055 14.591 3070 14.584	4.442 4.442 4.436 4.436 4.436	4995 14.415 5010 14.411 5025 14.409 5040 14.4 5055 14.4	
3085 14.584 3100 14.584 3115 14.586 3130 14.582	4.429	5070 14.396 5085 14.391 5100 14.389	5010 3.975 5025 3.975 5040 3.962 5055 3.956 5070 3.95 5085 3.937 5100 3.931 5115 3.925 5130 3.918
3145 14.58 3160 14.582 3175 14.58 3190 14.58 3205 14.58 3220 14.575 3235 14.571 3250 14.567	4.429 4.423 4.429 4.429 4.429 4.429 4.436 4.436 4.436	5113 14.363 5130 14.383 5145 14.391 5160 14.387 5175 14.387 5190 14.389 5205 14.389 5205 14.389 5220 14.394 5235 14.396	5070 3.95 5085 3.937 5100 3.931 5115 3.925 5130 3.918 5145 3.899 5160 3.88 5175 3.868 5176 3.862 5205 3.843 5220 3.83 5235 3.843 5250 3.843
3235 14.571 3250 14.567 3265 14.565 3280 14.563 3295 14.563 3310 14.565	4.442 4.442 4.442	5220 14.394 5235 14.396 5250 14.4 5265 14.402 5280 14.404 5295 14.407	5205 3.843 5220 3.83 5235 3.843 5250 3.843 5265 3.843 5280 3.843 5295 3.843 5310 3.83
3310 14.363 3325 14.56 3340 14.558 3355 14.556 3370 14.554 3385 14.554	4.448 4.448 4.454 4.448 4.454 4.461	5310 14.407 5310 14.407 5325 14.411 5340 14.409 5355 14.409 5370 14.407	5265 3.843 5280 3.843 5295 3.83 5310 3.83 5325 3.836 5340 3.843 5355 3.843 5370 3.836 5385 3.83 5400 3.824 5415 3.817 5430 3.811
3400 14.554 3415 14.549 3430 14.549 3445 14.549 3460 14.547	4.461 4.467 4.467 4.467	5385 14.4 5400 14.391 5415 14.389 5430 14.389	5385 3.83 5400 3.824 5415 3.817 5430 3.811 5445 3.805
3475 14.547 3490 14.547 3505 14.545 3520 14.545 3535 14.541 3550 14.537 3565 14.534	4.473 4.473 4.473 4.48 4.473 4.473 4.473	5445 14.387 5460 14.378 5475 14.372 5490 14.37 5505 14.372 5520 14.376 5535 14.376 5550 14.378	5445 3.805 5460 3.799 5475 3.786 5490 3.78 5505 3.773 5520 3.773
3580 14.534 3595 14.534 3610 14.532	4.473 4.473 4.473 4.473 4.473	5490 14.37 5505 14.372 5520 14.376 5535 14.376 5550 14.378 5565 14.378 5580 14.378 5580 14.376 5595 14.381 5610 14.383	5520 3.773 5535 3.767 5550 3.767 5565 3.767 5580 3.767 5580 3.761 5610 3.761
3625 14.532 3640 14.53 3655 14.53 3670 14.526 3685 14.526 3685 14.526	4.473 4.473 4.467 4.467 4.473	5610 14.383 5625 14.383 5640 14.383 5655 14.381 5670 14.383 5685 14.383	5610 3.761 5625 3.761 5640 3.761 5655 3.761 5670 3.761
3700 14.521 3715 14.519 3730 14.515 3745 14.508 3760 14.502 3775 14.502	4.467 4.467 4.467 4.461 4.454	5625 14.383 5640 14.383 5655 14.381 5670 14.383 5685 14.381 5700 14.378 5715 14.376 5730 14.376 5745 14.376 5745 14.376 5760 14.372 5775 14.37 5790 14.366 5805 14.361 5820 14.355 5835 14.35	5505 3.773 5520 3.773 5535 3.767 5550 3.767 5565 3.767 5580 3.767 5580 3.761 5610 3.761 5625 3.761 5640 3.761 5640 3.761 5640 3.761 5670 3.761 5700 3.754 5715 3.754 5715 3.754 5745 3.748 5745 3.748 5760 3.748 5775 3.748 5775 3.742 5790 3.742 5790 3.742
3760 14.502 3775 14.502 3790 14.504 3805 14.504 3820 14.506 3835 14.506 3850 14.513	4.461 4.454 4.454 4.461 4.461	5775 14.37 5790 14.366 5805 14.361 5820 14.355 5835 14.35	5775 3.742 5790 3.742 5805 3.735 5820 3.729 5835 3.723

Elapsed Time INPUT 1	INPUT 2	Elapsed Time INPUT 1	Elapsed Time	
3865 14.515	4.467	5850 14.344 5865 14.34	5850 5845	3.717 3.71 3.704 3.691 3.685 3.679 3.679
3880 14.524 3895 14.524	4.467	5865 14.34 5880 14.333 5895 14.329	5880	3.704
3910 14,521	4.473	5880 14.333 5895 14.329	5895 5010	3.691 3.685
5925 14.511	4.473	5910 14.322 5925 14.32	5865 5880 5895 5910 5925 5940	3.679
3955 14.5	4.473 4.467 4.461	5910 14.322 5925 14.32 5940 14.32 5955 14.316 5970 14.314 5985 14.305	5940 5055	3.679
3970 14,495	4.461 4.467	5970 14.316 ±	5955 5970	3.666
3985 14.495 4000 14.491	4.467 4.46 <u>1</u>	5970 14.314 = 5985 14.309	5985 6000	3.666 3.653 3.647 3.641 3.628 3.628 3.628 3.622 3.635 3.622 3.635 3.635 3.641 3.647
4015 14.493 4030 14.498	4.461 4.467	6000 14.303 6015 14.301	6015	3.647
4045 14.504 4060 14.506	4 467	6030 14.296	6015 6030 6045 6060 6075 6090 6105 6120 6135	3.641 3.635
4045 14.504 4060 14.506 4075 14.508	4.473	6045 14.288 6060 14.292 6075 14.29	6060	3.635
4090 14,508	4.48	6075 14.29 6090 14.294	6075 6090	3.628
4105 14.504 4120 14.5 4135 14.502	4.48 4.48	6090 14.294 6105 14.305	6105	3.616
4135 14.502	4.48	6105 14.305 6120 14.294 6135 14.294 6150 14.292	6120 6135	3.616
4150 14.502	4.48 4.48	6150 14.292	6150 6165 6180 6195	3.622
4165 14.502 4180 14.502	4.48 4.48	6100 14.29 4180 1/ 20	6165 6180	3.635
4195 14.5	4.48 4.48	6195 14.285	6195	3.635
4225 14.502	4 4R	6210 14.29 4225 14.285	6210 6225	3.641
4210 14.5 4225 14.502 4240 14.506 4255 14.511	4.48 4.48	6195 14.285 6210 14.29 6225 14.285 6240 14.288 6255 14.288 6270 14.28	6240	3.647
	4.48	6255 14.285 6270 14.29	6270	3.647
4285 14.519 4300 14.526	4.486 4.486 4.486	6285 14.296 6300 14.307 6315 14.314 6330 14.316 6345 14.331	6285	7 //
4315 14.532	4.486 4.492	6300 14.307 6315 14.314	6315	3.666
4330 14.537 4345 14.534	4.492	6330 14.316	6330 6345	3.672
4360 14.526	4.492 4.486	6345 14.331 6360 14.346	6360	3.698
4270 14.513 4285 14.519 4300 14.526 4315 14.532 4330 14.537 4345 14.534 4360 14.526 4375 14.521 4390 14.524	4.492	6375 14.348	6210 6225 6240 6255 6270 6285 6300 6315 6345 6345 6345 64405 6450 6450 6450 6450 6525 6525 6525 6526 6555 6570 6585 6600	3.666 3.666 3.672 3.691 3.698 3.704 3.717
4405 14.511 4420 14.5	4.486 4.48	6390 14.348 6405 14.35	6405	3.717
4435 14,491	4.48 4.473 4.473	6405 14.35 6420 14.355 6435 14.357	6420 6435	3.717 3.723 3.729 3.735 3.742 3.748 3.754 3.767 3.767 3.773
4450 14.493 4465 14.482	4.473 4.461	6450 14,301	6450	3.729
4480 14.485 4495 14.482	4 441	6465 14.37 6480 14.374	6465 6480	3.735
4480 14.485 4495 14.482 4510 14.482	4.454 4.454	6495 14.374	6495	3.742
4525 14.489	4.454	6510 14.383 6525 14.389	6510 6525	3.748 3.748
4525 14.489 4540 14.487 4555 14.487 4570 14.48	4.454 4.454	6540 14.4	6540	3.754
4570 14.48	4.461	6540 14.4 6555 14.409 6570 14.415 6585 14.415	6570	3.767
4585 14.48	4.454 4.454	6585 14.415	6585 4400	3.773
4615 14.469	4.454 4.448	6600 14.422 6615 14.428	6615	7786
4630 14.463 4645 14.461	4.454	6630 14.435	6630 6645 6660 6675	3.786 3.792 3.799
4660 14.456 4675 14.459	4.448 4.448	6645 14.443 6660 14.45	6660	3.799
4690 14.454	4.454	6675 14,456	6675 6690	3.805 3.811
4705 14.456 4720 14.443	4.454 4.454	6690 14.463 6705 14.463	6705	3.811
4735 14.443	4.454	6720 14.465	6720 6735	3.817 3.817
4750 14.441 4765 14.439	4.454 4.454	6750 14.469	6735 6750	3.817
4780 14.437	4.454	6765 14.478 6780 14.482	6765 6780	3.824
4795 14.435 4810 14.426	4.454	6795 14,485	6780 6795 6810	3.83
4825 14.424	4.448 4.448	6810 14.485 6825 14.487	5023	3.83
4840 14.417 4855 14.417 4870 14.413 4885 14.413 4900 14.411 4915 14.409	4.440	6825 14.487 6840 14.487 6855 14.487	6840 6855	3.83 3.83
4870 14.413 4885 14.413	4.442 4.442	6870 14,485	6870 6885 6900	3.824
4885 14.413 4900 14.411 4915 14.409	4.436	6885 14.482 6900 14.485	6900	3.824
	4.442 4.436 4.429 4.429	6915 14.48/	6915 6930	3.817 3.824 3.83 3.83 3.83 3.83 3.83 3.824 3.824 3.817 3.817
4945 14.404 4960 14.398	4.429 4.423 4.423	6945 14.485	6945 6960	3.817
4975 14.396	4.423	6960 14.487 6975 14.487	6960 6975	3.817 3.817
4990 14.391 5005 14.389	4.417	6990 14.482	6975 6990	3.817 3.811 3.811
5020 14.385	4.417	7005 14.478 7020 14.48	7005 7020	3.811 3.805
5035 14.383 5050 14.374	4.417	7035 14.48	7035	3.805
5065 14. <i>51</i>		7050 14.482 7065 14.482	7050 7065	3.805 3.805
5080 14.366 5095 14.361	4.404 4.404	7080 14.478	7080	3.805
20,2				

Elapsed Time INPUT 1	INPUT 2	Elapsed Time INPUT 1	Elapsed Time	INPUT 2
5110 14.361 5125 14.361 5140 14.357 5155 14.344	4.404 4.404	7095 14.491 7110 14.495 7125 14.495	7095 7110 7125	3.805 3.805
5140 14.357 5155 14.344	4.404 4.391	7140 14.5	7140	3.805 3.811
E170 1/ 7/D	4. 391 4.385	7155 14.502 7170 14.506	7155 7170	3.811 3.817
5200 14.337	4.385 4.385 4.385	7185 14,504	7185 7200	3.817 3.817
5215 14.333 5230 14.329	4.379	7200 14.5 7215 14.5	7200 7215	3.817 3.811
5245 14.329	4.379	7230 14.504 7245 14.504	7230 7245	3.811 3.817
5230 14.329 5245 14.329 5260 14.324 5275 14.32	4.372 4.366	7215 14.5 = 7230 14.504 7245 14.504 7260 14.511	7215 7230 7245 7265 7275 7275 7305 7320	3.817 3.817
5290 14.316 5305 14.311 5320 14.309 5335 14.309	4.366 4.366	7275 14.511 7290 14.508 7305 14.508 7320 14.506	7275 7290	3.824 3.824
5320 14.309 5335 14.309	4.36 4.36	7305 14.508 7320 14.506	7305	3.824
5350 14.32	4.36	7320 14.506	7320 7335	3.824 3.824
5350 14.32 5365 14.303 5380 14.288 5395 14.296	4.36 4.347	7335 14.506 7350 14.502 7365 14.498 7380 14.498	7335 7350 7365 7380	3.824 3.817
5395 14.296	4.347	7380 14.498	7380 7305	3.817
5410 14.292 5425 14.29	4.341 4.341	7395 14.5 7410 14.498	7395 7410	3.817 3.817
5440 14.288 5455 14.277	4.341 4.328	7425 14.498 7440 14.493	7425 7440	3.817 3.817
5470 14.279	4.328	7455 14,493	7455 7470	3.811
5470 14.279 5485 14.277 5500 14.259 5515 14.257	4.328 4.316 4.316	7485 14.495	7485	3.811 3.811
5515 14.257 5530 14.257	4.316	<i>7</i> 500 14,493	7500	3.811 3.811
5545 14.27	4.316 4.316 4.316	7530 14.493	7530	3.811 3.811
EE7E 1/ 323	4.316 4.316	7545 14.498 7560 14.495	7545 7560	3.811 3.811
5590 14.262	4.309 4.309	7575 14.493 7590 14.491	7575 7500	3.805
5590 14.262 5605 14.262 5620 14.257	4.309	7590 14.491 7605 14.489	7605	3.805 3.805
5635 14.253 5650 14.255	4.309 4.309	7605 14.489 7620 14.489 7635 14.489	7620 7635	3.805 3.799
5665 14.253	4.309 4.309	76501 14.6XQ	7650 765	3.799
5590 14.262 5605 14.262 5620 14.257 5635 14.253 5650 14.255 5665 14.253 5680 14.255 5695 14.255	4.309	7680 14.489	7515 7530 7545 7560 7575 7590 7605 7620 7635 7650 7665 7680 7695 7710	3.799 3.799 3.799
	4.316 4.316	7695 14.491 7710 14.493	7695 7710	3.799
5725 14.264 5740 14.266	4.316 4.316 4.322 4.322	7725 14,495	7725 7740	3.799 3.799 3.805
5755 14.268 5770 14.268	4.322	7755 14.495	7740 7755	3.799
5785 14.268 5800 14.268	4.328 4.328 4.328 4.328	7770 14.495 7785 14.493 7800 14.491	7770 7785 7800	3.805 3.805
5815 14.264 5830 14.264	4.328	7800 14.491 7815 14.489	7800 7815	3.805 3.799 3.799
5845 14.264 5860 14.262	4.328	7830 14 .4 87	7830	3.799
5845 14.264 5860 14.262 5875 14.262 5890 14.264	4.328 4.328 4.328 4.328	7845 14.485 7860 14.485	7830 7845 7860 7875	3.799 3.799 3.792 3.792
5890 14.264	4.328 4.322	78 7 5 14.482	7875 7890	3.792
5905 14.266 5920 14.266	4.328	7905 14.485	7905	3.792 3.792 3.792
5935 14.268 5950 14.27	4.328 4.328	7920 14.487 7935 14.489	7920 7935	3.792 3.799
5965 14.272 5980 14.272	4.328	7950 14.487 7965 14.489	7950 7965	3.792 3.799 3.799
5995 14.275	4.328 4.328 4.328 4.335	7980 14.489	7980	3.799
6010 14.277 6025 14.275	4-333	7995 14.491 8010 14.491	7995 8010	3.799 3.799
6025 14.275 6040 14.279 6055 14.283 6070 14.285	4.341 4.347	8025 14.491 8040 14.491	8025 8040	3.799 3.799 3.805
6070 14.285	4.347	8055 14.491	8055	3.805 3.811 3.811 3.811
6085 14.288 6100 14.292 6115 14.296 6130 14.303 6145 14.307	4.347 4.354	8070 14.495 8085 14.498	8070 8085	3.811 3.811
6115 14.296 6130 14.303	4.354 4.36 4.36	8100 14.498 8115 14.5	8100 8115	3.811 3.811
6145 14.307	4.366 4.372	8130 1/ 502	8130	3.811 3.817
6175 14.324	4.379 4.385 4.391 4.398	8145 14.508 8160 14.511 8175 14.511 8190 14.513	8145 8160	3.824 3.83 3.83 3.836
6190 14.329 6205 14.333	4.391 4.398	8175 14.511 8190 14.513	8175 8190	3.83 3.836
6220 14.337	4.41 4.41	8205 14.515 8220 14.515 8235 14.515 8250 14.515	8205 8220	3.836 3.836 3.843 3.843
6220 14.337 6235 14.346 6250 14.348 6265 14.353	4.423	8235 14.515	8235 8250	3.843
	4.423 4.429	X265 16 514	8250 8265	3.843 3.843
6295 14.359 6310 14.361 6325 14.363	4.436 4.442	8280 14.513 8295 14.511 8310 14.508	8280 8295	3.843 3.843
6325 14.363	4.448	8310 14.508	8310	3.843
6340 14.368	4.454	8325 14.506	8325	3.843

Elapsed Time INPUT 1 INPUT 2	Elapsed Time INPUT 1	Elapsed Time INPUT 2
6355 14.372 4.454	8340 14.504 8355 16.5	8340 3.836 8355 3.843 8370 3.836 8385 3.83 8400 3.83 8415 3.836 8430 3.824 8445 3.83 8445 3.83 8460 3.83 8475 3.83 8505 3.836 8555 3.836 8550 3.843 8550 3.843 8565 3.843 8565 3.843 8565 3.843 8565 3.843
6370 14.374 4.461 6385 14.374 4.467	8355 14.5 8370 14.498 8385 14.495	8355 3.843 8370 3.836
6400 14.378 4.467	8400 14.495	8385 3.83 8400 3.83
6400 14.378 4.467 6415 14.381 4.473 6430 14.383 4.473 6445 14.385 4.48	8415 14.493 8430 14.495	8400 3.83 8415 3.836
6445 14.385 4.48 6460 14.387 4.48	8445 14.498	8430 3.824 8445 3.83
6460 14.387 4.48 6475 14.391 4.48 6490 14.394 4.486 6505 14.396 4.492	8460 14.5	8460 3.83 8475 3.83
6475 14.391 4.48 6490 14.394 4.486 6505 14.396 4.492	8/00 1/5	8490 3.83
6520 14.4 4.492	8505 14.498 8520 14.498 8535 14.495 8550 14.493 8565 14.489	8490 3.83 8505 3.83 8520 3.836 8535 3.836 8550 3.836 8565 3.836
6520 14.4 4.492 6535 14.4 4.492 6550 14.402 4.492	8535 14.495	8535 3.836
6565 14.402 4.492	8550 14.493 8565 14.489	8550 3.836 8565 3.836
6580 14.402 4.492 6595 14.402 4.492 6610 14.404 4.492	8580 14.491	8580 3.843
	8595 14.489 8610 14.487	8595 3.843 8610 3.843
6640 14.407 4.499	8625 14.487	8625 3.843
6655 14.409 4.499	8640 14.48 8655 14.476	8640 3.843 8655 3.849 8670 3.849
6685 16 611 6.5UD	8670 14.472	8670 3.849
7700 4/ /47 / EOE	8685 14.469 8700 14.467	8685 3.849 8700 3.849
6715 14.417 4.511 6730 14.422 4.505	8715 14.463	8715 3.849
6730 14.422 4.505 6745 14.42 4.511 6760 14.422 4.511	8730 14.461 8745 14.459	8715 3.849 8730 3.855 8745 3.855 8760 3.855
6760 14.422 4.511 6775 14.422 4.511 6790 14.422 4.511 6805 14.422 4.511	8760 14.456	8760 3.855
6775 14.422 4.511 6790 14.422 4.511	8775 14.454 8790 14.454	8790 3.855
6805 14.422 4.511 6820 14.417 4.505	8790 14.454 8805 14.452	8805 3.855 8820 3.862
6835 14.415 4.505	8820 14.45 8835 14.446	8700 3.849 8715 3.849 8730 3.855 8745 3.855 8775 3.855 8775 3.855 8770 3.855 8805 3.855 8805 3.855 8820 3.862 8835 3.862 8835 3.862 8845 3.862 8850 3.862 8850 3.862
	8850 14.443 8865 14.441	8850 3.862 8865 3.862
6880 14.409 4.505 6895 14.404 4.505	8865 14.441 8880 14.439	8880 3.862
6895 14.404 4.505 6910 14.404 4.505 6925 14.402 4.505	8895 14.435 8910 14.426	8895 3.862 8910 3.868
EUC. A 404 A 1030	8820 14.45 8835 14.446 8850 14.443 8865 14.441 8880 14.439 8895 14.435 8910 14.426 8925 14.42 8940 14.417 8955 14.417 8970 14.417	8880 3.862 8895 3.862 8910 3.868 8925 3.868 8940 3.868 8955 3.868 8970 3.874
6955 14.4 4.505 6970 14.4 4.505 6985 14.402 4.505	8940 14.417 8955 14.417	8940 3.868 8955 3.868
6985 14.402 4.505 7000 14.396 4.505	8955 14.417 8970 14.417 8985 14.417	8970 3.874 8985 3.874
7000 14.396 4.505 7015 14.391 4.505	0000 1/ // 15	8985 3.874 9000 3.874
7015 14.391 4.505 7030 14.385 4.505 7045 14.381 4.505 7060 14.383 4.505	9000 14.415 9015 14.407 9030 14.398 9045 14.385	9005 3.874 9015 3.888 9030 3.874 9045 3.874 9060 3.874 9075 3.874
7045 14.381 4.505 7060 14.383 4.505	9045 14.385	9045 3.874
7075 14.391 4.499 7090 14.402 4.499	91160 14-376	9060 3.874 9075 3.874
7105 14 415 4.499	9075 14.37 9090 14.366	9090 3.874 9105 3.874
7120 14.43 4.499 7135 14.452 4.499	9105 14.361 9120 14.366	9120 3.874
7135 14.452 4.499 7150 14.48 4.499	9135 14.359	0135 3.874
7150 14.48 4.499 7165 14.504 4.492 7180 14.526 4.492	9165 14.355	9165 3.88
7195 14.53 4.486	9180 14.355	9180 3.88 9195 3.88
7210 14.541 4.486 7225 14.547 4.486	9195 14.357 9210 14.357 9225 14.357	9210 3.88
70/0 4/ 550 / /84	9225 14.357 9240 14.361	9225 3.887 9240 3.887 9255 3.887 9270 3.88
7270 1/ 5/ / 4/73	9240 14.361 9255 14.368 9270 14.374 9285 14.385 9300 14.391 9315 14.398	9255 3.887
7285 14.565 4.467 7300 14.569 4.467	9270 14.374 9285 14.385	9285 3.887
7315 14.567 4.467	9300 14.391 9315 14.398	9300 3.88 9315 3.887
7330 14.565 4.461 7345 14.556 4.461	9330 14.402	9330 3.887
7360 14.549 4.461 7375 14.541 4.454	9345 14.404 9360 14.409	9345 3.887 9360 3.887
7390 14.532 4.448	9375 14.411	9375 3.887
7405 14.524 4.448 7420 14.517 4.442	9390 14.413 9405 14.413	9405 3.893
7360 14.549 4.461 7375 14.541 4.454 7390 14.532 4.448 7405 14.524 4.448 7420 14.517 4.442 7435 14.511 4.442 7450 14.506 4.436	9405 14.413 9420 14.417 9435 14.415	9195 3.88 9210 3.88 9225 3.887 9240 3.887 9255 3.887 9270 3.88 9285 3.887 9300 3.88 9315 3.887 9345 3.887 9345 3.887 9345 3.887 9375 3.887 9379 3.887 9379 3.887 9379 3.887 9379 3.887 9379 3.887 9379 3.887
7450 14.506 4.436	9450 14.415	9450 3.893
7480 14.5 4.429	9465 14.415 9480 14.413	9480 3.906
7510 14,495 4,429	9495 14.409	9495 3.906 9510 3.906
7525 14.491 4.423	9510 14.413 9525 14.42	9525 3.906
7555 14.487 4.423	9540 14.422	9540 3.906
7570 14.485 4.423 7585 14.478 4.423	9540 14.422 9555 14.426 9570 14.433	9555 3.906 9570 3.912
בשריד טודידו נטנו		

Elapsed Time INPUT 1	INPUT 2	Elapsed Time INPUT 1	Elapsed Time INPUT 2
7600 14.474 7615 14.472 7630 14.469 7645 14.465 7650 14.465 7670 14.456 7730 14.459 7720 14.456 7735 14.456 7735 14.456 7750 14.456 7765 14.456 7781 14.456 7782 14.454 7810 14.454 7810 14.454 7825 14.454 7830 14.454 7870 14.454 7870 14.454 7870 14.454 7870 14.454 7870 14.454 7870 14.454 7810 14.454 7810 14.454 7810 14.454 7810 14.454 7810 14.454 7810 14.454 7811 14.454 7815 14.458 8020 14.458 8030 14.441 8080 14.441 8080 14.441 8080 14.441 8080 14.441 8080 14.443 8150 14.433 8150 14.433 8210 14.433 8220 14.433 8250 14.433 8260 14.433 8275 14.433 8290 14.433	44.441777711111144444444444444444444444	9585 14,439 9600 14,445 9630 14,445 9645 14,465 9645 14,465 9660 14,465 9675 14,465 9670 14,465 97705 14,465 97705 14,478 97705 14,478 97705 14,478 9770 14,477 97735 14,478 9780 14,476 9780 14,476 9825 14,476 9825 14,476 9825 14,476 9825 14,463 9801 14,467 9825 14,463 9900 14,463 9900 14,463 9900 14,463 9900 14,463 9915 14,461 19930 14,459 9945 14,456 9960 14,456 99775 14,456 99775 14,456 9970 14,446 10020 14,446 10020 14,446 10020 14,446 10020 14,443 10055 14,441 10065 14,441 10065 14,441 10065 14,441 10080 14,433 10125 14,433 10125 14,433 10215 14,433 10215 14,433 10220 14,433 10230 14,433 10245 14,433 10251 14,433 10260 14,433 10275 14,433 10280 14,433 10290 14,433 10290 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10305 14,433 10350 14,433 10365 14,439 10460 14,437 10575 14,411 10770 14,404 10780 14,409 10770 14,400 10785 14,400 10770 14,400 10785 14,400	9585 3.912 9600 3.918 9615 3.918 9630 3.918 9645 3.918 9660 3.925 9675 3.925 9765 3.925 9770 3.925 9770 3.925 9770 3.925 9770 3.925 9770 3.925 9770 3.925 9770 3.925 9780 3.925 9780 3.925 9780 3.925 9810 3.912 9810 3.918 9825 3.912 9840 3.918 9855 3.912 9840 3.918 9855 3.918 9870 3.912 9840 3.918 9850 3.912 9840 3.918 10050 3.912 10020 3.931 10020 3.931 10035 3.912 10025 3.912 10025 3.912 10025 3.912 10025 3.912 10025 3.912 10025 3.912 10025 3.912 10025 3.912 10025 3.918 10050 3.918 10065 3.918 10065 3.918 10065 3.918 10065 3.918 10065 3.918 10065 3.918 10065 3.918 10070 3.955 10070 3.955 10070 3.956 10330 3.956 10330 3.956 10335 3.956 10335 3.956 10335 3.956 10335 3.956 10350 3.956 10350 3.956 10350 3.956 10350 3.994 10560 3.994 10560 3.994 10560 3.994 10575 3.988 10530 3.994 10560 3.994 10575 3.988 10530 3.994 10560 3.994 10575 3.988 10530 3.994 10560 3.994 10575 3.994 10575 3.988 10530 3.994 10575 3.994

Elapsed Time INPUT 1 INPUT 2	Elapsed Time	INPUT 1	Elapsed Time	INPUT 2
	10830 10845	14.402 14.407	10830 10845	4.019 4.026 4.032
	10860 10875	14.402 14.396	10860 10875	4.038
	10890 10905	14.387 14.381	10890 10905	4.038 4.038
	10920 10935	14.385 14.381	10920 10935	4.044 4.051
	10950 10965	14.381 = 14.372	10950 10965	4.057 4.063
	10980 10995	14.374 14.391	10980 10995	4.063 4.07
	11010 11025	14.415 14.446	11010 11025	4.07 4.076
	11040 11055	14.467 14.478	11040 11055	4.082 4.082
	11070 11085	14.489 14.502	11070 11085	4.089 4.095
	11100 11115	14.504 14.508	11100 11115	4.089 4.095
	11130 11145	14.511 14.508	11130 11145	4.095 4.095
	11160 11175	14.506 14.508	11160 11175	4.101 4.095
	11190	14.515 14.515	11190	4.095 4.095
	11205 11220 11235	14.515 14.519	11205 11220 11235 11250	4.089 4.089
	11250	14.519 14.517	11250 11265	4.089 4.089
	11250 11265 11280 11295	14.521 14.526	11265 11280 11295	4.082 4.089
	11310 11325	14.526 14.524	11295 11310 11325	4.082 4.089
	11340 11355	14.526 14.524 14.521 14.519	11325 11340 11355	4.089 4.089
	11370 11385	14.524 14.528	11355 11370 11385	4.095 4.101
	11400 11415	14.528	11400 11415	4.101 4.108
	11430 11445	14.528 14.532 14.528	11430 11445	4.114 4.12 4.12
	11460 11475	14.528 14.521 14.517	11460 11475	4.114
	11490	14.515 14.511	11490 11505 11520 11535	4.12 4.12
	11505 11520 11535	14.508 14.498	11520 11535	4.126 4.126
	11550 11565	14.495 14.493	11550 11565	4.126 4.133
	11580 11595	14.489 14.48	11580 11595	4.133 4.139
	11610 11625	14.478 14.476	11610 11625	4.139 4.139
	11640 11655	14.48 14.482	11640 11655	4.145 4.145
	11670 11685	14.487 14.485	11670 11685	4.145 4.145
	11700 11715	14.482 14.482	11700 11715	4.145 4.152
	11730 11745	14.48 14.476 14.472	11730 11745 11740	4.152 4.152 4.152
	11760 11775 11790	14.469	11760 11775 11700	4.152
	11790 11805 11820	14.461 14.463 14.461	11790 11805 11820	4.152 4.158 4.158
	11835	14.456 14.452	11835 11850	4.158 4.164
	11850 11865 11880	14.443	11865 11880	4.164 4.164
	11895 11910	14.439 14.433 14.433	11895 11910	4.164 4.164
	11925 11940	14.433 14.43 14.426	11925 11940	4.171 4.171 4.171
	11955 11970	14.428 14.426	11955 11970	4.171
	11985	14.426 14.426	11985 12000	4.171 4.171
	12000 12015 12030	14.426 14.424	12015 12030	4.177 4.177
	12045 12060	14.426 14.42	12045 12060	4.183 4.183

| Table | Time | Table | Time | Table | Table

Elapsed Time INPUT 1 INPUT 2

APPENDIX C
LETTER REPORT: PIEZOMETER INSTALLATION

9212048.WP/CR410 7027-01

February 4, 1993

Mr. James Zeisloft USATHAMA CETHA-IR-A Building 4480 Aberdeen Proving Grounds, MD 21010-5401

Subject:

Letter Report - Piezometer Installation

Detroit Arsenal, Warren, Michigan

Dear Mr. Zeisloft:

REPORT ON PIEZOMETER INSTALLATION

On December 8, 1992, four piezometers were installed at the Detroit Arsenal in preparation for two pumping tests which were conducted starting in mid December.

PIEZOMETER LOCATIONS

Two piezometers were installed in the west loop of the tank test track near MW003 and two were installed northwest of the tank manufacturing building near MW017. PZ001 and PZ002 were installed 10 and 20 feet, respectively, north of MW003 and PZ003 and PZ004 were installed 10 and 20 feet, respectively, northwest of MW017.

PIEZOMETER INSTALLATION

The piezometers were installed using a truck-mounted CME-45 drill rig with 4-inch OD solid-stem augers. The augers were advanced to a depth of 30 feet and then pulled from the borehole. The piezometer was then lowered into the borehole. The geology typically consists of soft clays so very little borehole collapse occurred. Soils were characterized using cuttings collected from the auger flights.

The piezometers were constructed with 20 feet of screen in five-foot sections of 2-inch ID, 10 slot, schedule 40, flush-threaded PVC well screen. The riser pipe is 2-inch ID, schedule 40, flush-threaded PVC. The annulus was filled with sand to a depth of 3 or 4 feet above the well screen followed by 2 feet of 1/4-inch bentonite tablets. The remaining annulus was filled with a cement/bentonite grout. PZ001 and PZ002 were finished approximately 2 feet above grade with 2-inch PVC caps and locking standpipe well protectors. PZ003 and PZ004 were finished a few inches below grade with lockable expanding caps and flush-mount well protector manholes.

ABB Environmental Services of Michigan, Inc.

ABB

Mr. James Zeisloft February 4, 1993 Page 2

On December 10, a half foot mortar collar was installed in the above-grade annulus between the riser pipe and the standpipe well protector at PZ001 and PZ002. Drain holes were drilled in the standpipes on December 28, 1992.

Piezometer-specific boring logs and construction diagrams are included in Appendix A.

PIEZOMETER DEVELOPMENT

On December 10, 1992, piezometers PZ001 and PZ002 were developed using a disposable bailer. Forty gallons of groundwater were removed from each piezometer. The pH, conductivity, and temperature of the water were measured prior to development and at each 10-gallon interval during development.

Piezometers PZ003 and PZ004 were developed during four separate events. The development process involved rapidly pulling a bailer up and down in the water column of the piezometer fifteen to twenty times. This motion creates a surging effect which forces water into and out of the screen. The outflow of water helps to break down bridging, and the inflow then moves fine materials toward the screen and into the piezometer. After surging, sediment-laden water was removed by bailing.

On the morning of December 21, 1992, 8 gallons were bailed from PZ003 and 4 gallons were bailed from PZ004 after which each piezometer went dry (i.e., yielded no water). Due to the low yield of very sediment-laden water in PZ004, approximately 3 gallons of ASTM Type II water was introduced into the piezometer and the development process was repeated. Six gallons of water were bailed from PZ004 during this development. The extracted water contained a large amount of silts and fine sands.

On the afternoon of December 21, the piezometers were developed a second time. Water levels in the piezometers had recovered to 25% of static water levels; therefore, approximately 2 gallons of ASTM Type II water was introduced into each piezometer before development. After surging, 3 gallons of water were bailed from PZ003 and 6 gallons of water were bailed from PZ004 after which the piezometers went dry.

On December 22, 1992, the piezometers were developed for a third time. Water levels in the piezometers had recovered to approximately 30% of static water levels. After surging, 2.5 gallons of water were bailed from PZ003 and 2 gallons were bailed from PZ004 after which each piezometer went dry. The water still contained a large amount of silts and fine sands.

The piezometers were developed for a fourth and final time on December 28, 1992. Water levels in the piezometers had recovered to approximately 90% of static water levels. After surging, 6 gallons of water were bailed from PZ003 and 4 gallons were bailed from PZ004 after which each piezometer went dry. The water still contained some silts and fine sands.

Mr. James Zeisloft February 4, 1993 Page 3

SOIL CUTTING AND DEVELOPMENT WATER DISPOSAL

Soil cuttings were placed in three 55-gallon steel drums which were placed in the Materials Handling Area as specified by USATHAMA. On December 10, 1992, one sample was collected from each drum to be analyzed for volatile organic compounds, and one composite sample combining soil from all three drums was collected to be analyzed for total metals, cyanide, and TCLP metals. The soil cuttings will be disposed of by the Detroit Arsenal once the analytical results are reviewed.

Development water was discharged to the installation's sanitary sewer system. If you have any questions, please call me.

Sincerely,

ABB ENVIRONMENTAL SERVICES, INC.

greta la Reade

Greta D. Reade Project Manager

GDR/tay

Attachments

BORING LOGS/CONSTRUCTION DIAGRAMS

PROJ	CT NO.: 7027-02	PROJECT NAME: US	SATHAMA -	Detroit .	Arsenai	BORING/WELL	DESIGNAT	ION: 97-1	BORING/WELL LOCATION:
DRIL		ENGINEERS AND	DRILLIN	G SOLID S		BOREHOLE 4	IN. BO	REHOLE 30 FT.	,922
		DATE COMPLETED: 17/7/92	GROUND	FT	MEASUR POINT	ING		ELL EPTH:2910' FT.	1 - PZ-1
I I	J.	ORILLER: A. M. KI	ELEV.:	HELPER:	B. Kuu			JASON BELL	N mw3
DEPT	1	DESCRIPTION		SAMPLE NO.	SAMPLE TYPE	BLOW COUNTS(N)	P.I. METER	COMMENTS	WELL DATA
			_	_		-	—(ppm)—		+ 45
-	+		•		<u>.</u> .	=			1 35
	Ţ		-			ļ .			+ 1
	+		•		-			[[]	oust
- 0	Saulsau	in Fill - DK	B.~	_	_ <i>-</i>				
	I trace sil	t, contrib	bk.	-		-		heret 15	x - 11 //
	1			-		-		77100	or NU
	1	clay · Olneg.	7]		 			Dent gr	irredat III
	1	traces: 11		-		-	_	Bon	
	tr co	nerele jubble moint-wetu	ovelan	-		-	_	pelle pelle	ا دراود،
	_				•			4	To.
10	- clay -1	Scorn/gra Ture	<i>-</i> -	-			_	<u>-</u>	
	7440	Brown/gry track 1, vm soft, was	-	-		•	•	Sauce	
	<u> </u>		1						011
	day-	gray					_	•	
– 15	+	/	_		- 		_	- 2°ID	
] [Ţ		-			-	-	· PVC Si.	en l'Eli
1	+		1	-		-		· N. Jath	nlet + 1 /3
_ 20	<u> </u>			_				- 1010 sla	jout 1
1	Soul	Clay - DKg	-a.	.			1		1, 3
1	1-2-	او_ر	7	+		-		•	1/1/1
ļ	1 45%	al m-cy ray	off]		1		-		+
_ 25	+ da	no odu		- +				- J ^{s.}	4 - + 2 , -
ıţ	İ		1	<u> </u>				•	1, 2 - 1
1	-		-	.		-	-		
1	1 - 0	3.		†	+	-	•	•	+ 1
<u> </u>	FOR							_	<u> </u>

NOTES: SOILS LOGGED FROM AUGER FLIGHTS

PAGE 1 OF 1

Ken are not regort quality - 5 hould be redore.

12003

BORING/WELL DESIGNATION: ゆとろ BORING/WELL LOCATION: PROJECT NAME: USATHAMA - Detroit Arsenal PROJECT NO .: 7027-02 BOREHOLE DEPTH: DRILLING SOLID STEM METHOD: AUGER BOREHOLE 4 , pz4 DRILLING TESTING ENGINEERS AND CONTRACTOR: CONSULTANTS , pz3 WELL DEPTH: MEASURING POINT ELEV: DATE | [| Z | Z | Z | Z | GROUND STARTED: 12/1/42 FT. ELEV .: onu47 LOGGED BY: JASON BELL . Kussel DRILLER: 140 14 -KIC HELPER: RIG: CME-45 BLOW COUNTS(N) P.I. METER SAMPLE SAMPLE DEPTH (FT.) COMMENTS DESCRIPTION Flish mount Fill-Sandigiand locking expanding coal concrete ribble Bend seal

to table 15

Sandprek

Z"ID will sea

Sh40 flish joint

thimsted Clay-olac brown solt moist-wit trands Clay-gray-DK5127 Some sand soft-mid stiff tragarl - as above but stiffer 20 ZMPIC M ,010 stat well screen thacke Sont. 25 ROTES: SOILS LOGGED FROM AUGER FLIGHTS

PZ004

BORING/WELL LOCATION BORING/WELL DESIGNATION: PE-PROJECT NAME: USATHAMA - Detroit Arsenal PROJECT NO.: 7027-02 PZ-4 BOREHOLE DEPTH: BOREHOLE SIZE: DRILLING SOLID STEM DRILLING TESTING ENGINEERS AND CONTRACTOR: CONSULTANTS FT. METHOD: AUGER , PZ-3 WELL MEASURING GROUND DATE COMPLETED 17/3/92 3*0* FT. DEPTH: · MW-17 DATE STARTED: 12/5/92 POINT ELEV: ELEV .: LOGGED BY: JASON BELL B. Russel HELPER: M.-66 DRILLER: WELL BLOW COUNTS(N) P.I. METER SAMPLE SAMPLE COMMENTS DEPTH (FT.) TYPE NO. DESCRIPTION Plush mond expandes cap locked Fill-grand-coal
asphalt count

Clay-olive brown

very 50ft some sand
in out-wet no ide flish the raid Clay-gray-dlgray
Some sand soft-modst-fil tr grant most moder Scaln 2" IDSU140 AVC Colosiat handed 20 PAGE 1 OF 1 NOTES: SOILS LOGGED FROM AUGER FLIGHTS

APPENDIX D
MW003 DRAWDOWN PLOTS

PZ1WLSRD.GRF/LLD

No Adjustments To Raw Data

PZ1CORDD.GRF/LLD

PZZCORDD.GRF/LLD

BAROMETRIC ADJUSTMENTS

The downloaded water-level data from piezometers PZ001 and PZ002 and the background well, MW010, were processed and unadjusted (raw) data were plotted by computer on linear graphs. The plot of MW010 indicated a need for adjustments to water levels for both general trends and barometric influence (Figure F-1). The interpreted trend line on the figure has a downward slope of 0.072 feet per day. Once this correction was applied to the MW010 plot (Heath and Trainer, 1968), the barometric efficiency of the well was computed from the barometer rise corresponding to the periods 1,300 to 2,600 minutes and 6,700 to 6,900 minutes elapsed time on the plot. The resulting efficiencies were 58 and 52 percent, respectively. Trial-and-error applications of adjustments in this range resulted in the visually best smoothing of the MW010 hydrograph at 60 percent. However, when this barometric efficiency was applied to the hydrographs for PZ001 and PZ002 after trend corrections, it was obviously too large -- indicating greater confinement of groundwater around MW010 than around PZ001 and PZ002. Several efficiencies were tried before an efficiency of 35 percent was determined to best smooth the barometer fluctuations in the plots. The difference in barometric efficiencies between MW010 and the two piezometers may be due to the paved area of the test track north and east of MW010.

The drawdown plot of the pumped well (MW003) exhibits a large anomaly in the first 50 minutes of pumping due to a discharge valve adjustment problem resulting in a relatively high pumping rate in the first 10 minutes. A brief rise in water level occurred 600 to 700 minutes into the test and can be correlated with a period of rain. Another small rise at 1,400 minutes can be attributed to an inadvertent decrease in pumping rate to 0.07 gpm. A larger rise at the end of the test is also due to a decrease in pumping rate. Drawdown plots for the piezometers also clearly show these features. However, because the recovery plots are not significantly affected by variation in pumping rates, they were selected for hydraulic parameter analysis instead of drawdown plots that were significantly affected. Therefore, the drawdown plots were not quantitatively analyzed.

9308015.WP/CR410/7027-01

FIGURE F-1

APPENDIX E
MW003 RECOVERY PLOTS

M3PZ2RCS.GRF/LLD

THEIS METHOD

THETS RECOVERY

CHK. BY

008 NO. 07027-01 DATE 6-76-97

$$T = \frac{Q}{477 \Omega} W(u)$$

$$= \frac{0.08 \text{ gal men}^{-1} (1440 \text{ min day}^{-1})(1)}{477 (0.18 \text{ ft}) (7.48 \text{ gal ft}^{-3})}$$

$$= 6.8 \text{ ft}^2 \text{ day}^{-1}$$

$$S = \frac{47 \pm 4}{\Upsilon^{2}}$$

$$= \frac{4(6.8 + 4^{2} + 3a_{1})(2.4 \text{ min})(1)}{(10 + 4)^{2}(1440 \text{ min day}^{-1})}$$

$$= 4.5 \times 10^{-4}$$

THEIS ANALYSES OF MW-3 PUMPING TEST

 $= 3.1 \times 10^{-4}$

$$T = \frac{Q}{4\pi \Omega} W(u)$$

$$= \frac{0.08 \text{ gal min}^{-1} (1440 \text{ min day}^{-1}) (1)}{4\pi (0.19 \text{ ft}) (7.48 \text{ gal ft}^{-3})}$$

$$= 6.4 \text{ ft}^2 \text{ day}^{-1}$$

$$S = \frac{47 \text{ t} \text{ u}}{x^2}$$

$$= \frac{4(6.4 \text{ ft}^2 \text{ day}^{-1})(7 \text{ min}) (1)}{(20 \text{ ft})^2 (1440 \text{ min day}^{-1})}$$

HANTUSH-JACOB METHOD

PROJECT	DETROIT	- ARSENAL	
PUMPIN	6 TEST	HYDRAULIC	ANALYSIS

COMP. BY	JOB NO. 07027-01
CHK. BY	DATE 7-16-93

MW-3 TEST: Recovery of PZ-1

Using Hantush-Jacob Leaky Aguifer Method

- · water levels collected by transducer/datalogger
- · slight rise of data plot later than 600 minutes may be result of inexactness of barometric and/or trans adjustments extragolated to this location

$$T = \frac{Q(1.0)}{4772}$$

$$= \frac{(0.08 \text{ gal min}^{-1})(1440 \text{ min day}^{-1})}{(12.579(0.17 \text{ ft})(7.48 \text{ gal } \text{ ft}^{-3})}$$

$$= 7.2 \text{ ft}^{2}/\text{day}$$

$$S = \frac{47t}{r^{2}(1.0)}$$

$$= \frac{4(7.2 \text{ ft}^{2} \text{day}^{-1})}{(10 \text{ ft})^{2}} \frac{2}{1440} \frac{2}{1440} \frac{2}{1440}$$

$$= 4.0 \times 10^{-4}$$

PUMPING TEST HYDRAULIC ANALYSIS

COMP. BY	JOB NO. 07027-01
CHK. BY	DATE 7-16-93

MW-3 TEST: Recovery of PZ-Z

Using Hantush-Jacob Leaky Aguifer Method

- · water levels collected by transducer /dataloger
- · Goodners of curve fit (V=0,2) may reflect small errors in barometric or trend adjustments at late time

$$T = \frac{Q}{4\pi A} (1.0)$$

$$= \frac{(0.08 \text{ gal min}^{-1})(1440 \text{ min day}^{-1})}{(12.57)(0.230 \text{ ft})(7.48 \text{ gal ft}^{-3})}$$

$$= 5.3 \text{ ft}^{2}/\text{day}$$

$$S = \frac{47t}{\Upsilon^{2}(1.0)}$$

$$= \frac{4(5.3 + 4^{2} day^{1})(\frac{8.5}{1440} day)}{(20 + 1)^{2}}$$

$$= 3.1 \times 10^{-4}$$

RESIDUAL DRAWDOWN METHOD

PROJECT	DETROIT ARSENAL	
PUMPIN	S TEST HYDRAULIC ANALYSI	2

COMP. BY	JOB NO. 07027-01
CHK. BY	6-25-93

MW-3 TEST: Recovery of Pumped Well
Using Residual Drawdown Method

· manually measured water levels

· plot suggests use of only last 2 dots points

i.e., t/t' = 3.3 and 17

$$T = \frac{35.23 \, Q}{\Delta A \log cycle}$$

$$= \frac{35.23 \, (0.08 \, \text{gal/min})}{0.435 \, \text{ft} - 0.27 \, \text{ft}}$$

$$= 17.1 \, \text{ft}^{2}/\text{day}$$

PROJECT DETROIT ARSENAL	COMP. BY	JOB NO. 07027-61
PUMPING TEST HYDRAULIC ANALYSIS	CHK. BY	DATE 7-16-93

$$T = \frac{35,23 \, Q}{4 \, R \, \log q \, q \, cle}$$

$$= \frac{35,23 \, (0.08 \, eg \, cl/min)}{0.304 \, ft}$$

$$= 18.8 \, ft^2 / \, day$$

= 0.054

$$S = \frac{2.25 \text{ Tto}}{\text{Y}^{2} \left[\frac{t_{d+r}}{t_{d+r}-t_{d}}\right]^{n}} \qquad Eq. \text{ in Ballukraya}$$

$$= \frac{2.25 (18.8)(2.0 \, \text{days})}{(10 \, \text{fH})^{2} \left[\frac{5.41 \, \text{days}}{5.41-2.0 \, \text{days}}\right]} \stackrel{0.89}{0.15}$$

$$= \frac{84.6}{(100)(15.46)}$$

PROJECT DETROIT ARSENAL PUMPING TEST HYDRAULIC ANALYSIS

COMP. BY	JOB NO. 07027-01
CHK. BY	DATE 7-16-93

Using Residual Drawdown Method

- · water levels collected by transducer / data logger
- · straight line fit on plot defined by points less than the = 26

$$T = \frac{35.23 \, Q}{\Delta \, \Omega \, \log \, \gcd }$$

$$= \frac{35.23 \, (0.08 \, \gcd / min)}{0.316 \, ft - 0.160 \, ft}$$

$$= 18.1 \, \frac{12}{day}$$

$$5 = \frac{2.25 \text{ T to}}{\text{r}^2 \left[\frac{t_{d+r}}{t_{d+r} - t_d} \right]^n}$$

$$= \frac{2.25 (18.1 \text{ ft}/\text{d})(2.0 \text{ d})}{(20 \text{ ft})^2 \left[\frac{5.41 \text{ d}}{5.41 - 2.0 \text{ d}} \right]^{0.70}}$$

$$= \frac{81.45}{(400)(7.53)}$$

Р	RO.	JE	C

Calculations of ow Flow Velocity

Gdiiile CHK. BY JOB NO. 7027-01 DATE 8/10/93

$$\bar{v} = \frac{K_{R}}{n} \cdot \frac{\delta h}{\partial l}$$

$$\overline{v}_{MW003-MW008} = \frac{1.5 \times 10^{-4} \text{ cm/sec}}{0.04} = \frac{(621.11'-617.75')}{260'} = 4.8 \times 10^{-5} \text{ cm/sec}$$

$$\frac{1.5 \times 10^{-4} \text{ cm/sec}}{0.04} = \frac{1.5 \times 10^{-4} \text{ cm/sec}}{0.04} = \frac{(618.23' - 613.89')}{1640'} = 9.9 \times 10^{-6} \text{ cm/sec}$$

× 10 ft lyr

≈ 50ftlyr

APPENDIX F
MW017 DATA PLOTS

RECOVERY RESPONSE OF MW-17 (pumped well)

PROJECT		JOB NO.
		07027-01
Detroit Arsenal	CHK. BY	7-13-93

MW-17 Recovery Analysis Using Residuel Drawdown Method plotted residuel drawdown 10 to 130 ft on Y vs. t/t/ 1 to 10 on log X extrapolated very left conved tip of plot residuel drandown per log cycle is AR = 110-10 = 100 ft roughly $T = \frac{2.3 \, \widehat{\varphi}}{4\pi (\Delta 2)}$ 23 (0.08 galmin 1/1440 min day 1) 477 (100 ft) (7.48 gol ff-3) = 0.028 ft 2/day K = = 0.028 ft day = 9.4 × 10 4 ft/day

3,3 × 10 7 cm/sec

Computation of Well Storage Depleted MW-17 Pumping Well (Test Z)

Total Drawdown ~ 16ft

Hole Radini = 81/2" Lian /2 = 0.354 ft w/ sand pack around 15 ft screen.

Worst case: assume full borehole value of 81/2"
stored H2O the full distance of draw down

Volume storage = $\pi r^2 h$ = $\pi (.354)^2 (16)$ = 6.30 ft³ or 47 gal

Ave pumping rate was 0.08 gel/min, 50

Time to pump out stored water:

t = volume = 47 get = 588 min
rate . 08 gal/min

to1 = 312 min

Conclusion: Essentially all pumped water could have been well storage

APPENDIX G
GROUNDWATER SAMPLING: LETTER REPORTS AND ANALYTICAL DATA

Ξ

ROUND 1 LETTER REPORT

9302046.WP/CR410 7027-01

February 5, 1993

Mr. James Zeisloft
USATHAMA
CETHA-IR-A
Building 4480
Aberdeen Proving Grounds. MD 21010-5401

Subject:

Letter Report - Groundwater Sampling, Round 1

Detroit Arsenal, Warren, Michigan

Dear Mr. Zeisloft:

The purpose of this letter is to document round 1 groundwater sampling of seven monitoring wells on the Detroit Arsenal property in Warren, Michigan (Figure 1). This program was conducted by ABB Environmental Services, Inc., (ABB-ES) under the direction of the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA).

Groundwater samples were collected from MW001, MW002, MW004, MW010, MW014, MW016 and MW018; locations are shown on Figure 2. After removal of each well cap, ambient air and air in the mouth of the well were measured with a Draeger pump equipped with a 0.5/a vinyl chloride tube. No organic vapors or vinyl chloride were detected at any well. Prior to groundwater sampling, the static water level was measured from the top of the well casing (Table 1) and the amount of water present in each well was calculated.

With approval from Dennis Bowser, USATHAMA's geologist, a Keck SP-81 submersible pump with teflon tubing was used to purge each well. Wells were purged at a rate of 1.3 gallons per minute until five casing volumes had been removed or the well went dry (Table 2). After purging, the well was allowed to recover overnight. Prior to sampling the following day (MW-14 required two days to recover), water levels were recorded and one casing volume was purged. During well evacuation, groundwater temperature, pH, and specific conductance were measured a minimum of five times.

Groundwater samples to be analyzed for semivolatile compounds, pesticides/PCB's, nitrate/nitrite, sulfate, cyanide, oil and grease, and total recoverable petroleum hydrocarbons were collected with the submersible pump. Groundwater samples for dissolved metals analysis were collected with the submersible pump; at each well a new .45-micron disposable filter was installed in the discharge line. Groundwater samples to be analyzed for volatile organic compounds (VOCs) were collected with a new disposable polyethylene bailer. Sample bottles were triple-rinsed with ASTM Type II water prior to sample collection. After processing, preserving, and labeling, all samples were kept on ice in coolers until delivery to the laboratory via overnight carrier.

One trip blank to be analyzed for VOCs was collected during mobilization. The trip blank consisted of the ASTM Type II water used for decontamination. It was collected and preserved in the same ABB Environmental Services of Michigan, Inc.

Mr. James Zeisloft February 5, 1993 Page 2

manner that field samples were to be handled and then placed on ice in a cooler dedicated to VOC samples. One rinsate blank using ASTM Type II water was collected after purging MW014 and decontaminating the pump.

On the afternoon of January 25, 1993, ABB-ES was informed that access to the test track area would be denied due to classified tests in the area. As a result, access to MW001, MW002, MW004, and MW010 was not available until January 27, 1993.

Groundwater sampling was completed on January 28, 1993.

Sincerely,

ABB ENVIRONMENTAL SERVICES, INC.

Greta D. Reade

Greta D. Reade

Project Manager

GDR/bkl

TABLE 2 SAMPLE DATA DETROIT ARSENAL WARREN, MICHIGAN

	VOLUME PURGED BY PREVIOUS		VOL BY ABB	VOLUME PURGED BY ABB-ES (GALLONS)	LONS)				
	CONSULTANT				00,00,1	TOTAL VOLUME	SAMPLE	SAMPLE	SAMPLE
WELL	(GALLONS) 9/84	1/25/93	1/26/93	1/27/93	1/28/93	PURGED (GALLONS)	DATE	TIME	DESIGNATION
Rinsate	Ϋ́						1/25/93	16:45	RBLK-1
Blank									
<u> </u>	Ž						4 105 100	40.00	7 101
Blank							ce/cz/1	0.01	I BEN-I
ANA/OO4	Q			68	9	66+	4 /28 /03	¥++	***************************************
				3	2	771	05/05/1	2	TO TAKE
MW002	53			66*	24	06	1/28/93	13:45	DAW1*02
MW004	48			*09	23	83	1/28/93	12:15	DAW1*04
MW010	56			*29	31	86	1/28/93	10:00	DAW1*10
MW014	63	53*	*	31		48	1/27/93	10:05	DAW1*14
MW016	27		23*	13		36	1/27/93	11:20	DAW1*16
MW018	38		40*	39		62	1/27/93	13:15	DAW1*18

NOTES:

^{*} Well purged dry on this date. ** Insufficient recovery to sample on this date.

TABLE 1 SUMMARY OF GROUNDWATER ELEVATIONS JANUARY 25,1993

DETROIT ARSENAL WARREN, MICHIGAN

WELL	TOP OF RISER ELEVATION (FEET)	DEPTH TO WATER (FEET)	GROUNDWATER ELEVATION (FEET)
MW001	627.76	3.11	624.65
MW002	625.84	3.54	622.30
MW004	627.03	6.47	620.56
MW010	624.79	4.59	620.20
MW014	621.36	6.51	614.85
MW016	622.58	7.46	615.12
MW018	623.39	8.39	615.00

NOTE: Measurements were taken with a Solinst water level meter.

) 1-25-93

- Collect water level = 3.11 Below TOC

No work done on 1-26-93

3) 1-2793

- purge well from 1511 to 1613 at 1.33 8d./min = 82.46 gallons.

4) 1-28-93

-Collect water level = 2.64 Below TCC

- pure well from 1045 to 1115@ 1338cl/min. ≈ 39.9 gallono.

- collect ground vater sample @ 1140

0002000 30.00 € 1.78 + 34.58 € 1900 morf Legues consider son (3).

6) sampling Procedure

-purgo well we keck pump

- .. Collect all samples with Keck pump except for VOC sample. A 0.45 micron in-line filter was attached to the Keck discharge line for the dissolved metalo sample.
 - pull keck pump out of the well and gently lower disposable bailer down well and collect voc sample.
 - presence all samples in the filter.

	_	GROUNDWATE	R SAMPLE RECORD		Page of
	SITE: DETROIT ARS	ENAL	JOB NO. 7027-	03 DAT	5,2763B SAN93
					See back
'	SAMPLE LOCATION MWOO2	LAB NUM			6 do Kim
		CAS RON	DEX	-	p s q
	WATER LEVEL/WELL DATA		3,1	N	
		P OF WELL WELL D P OF CASING [] 2	ואכא	FT MONITOR	
	[]	——— X 4		AHBIENT POPPINELL HO	AIR PPM
_		[1_			
		P OF WELL WELL MA P OF CASING DY PVO	ATERIAL: PROTECTIVE	monitored with	Ambient all were OVA and Brazer Tul
	[1]	22 []	(TROM GROUND) (liteent by	1-2893
	PURGE DATA 2543 Pu	atal (Bonom Static)		ithe instruemen!	
		ume Depth Level X 0.05 gai	214	PURGE TIME PSTART_1730	START +215 134
	Area of	Area of MW x Sandpack (fi) x Porosity x 26;2 (0.30)	7.48 gal	END 1800	END 1490
₿│	, N J &	- ·			OLUME (GAL.)
	PURGE VOLUME 137 a 6		a <u>50</u> cal	= lde cul	a CAL
	темр, DEG C 9 3 7.4° 7.4° 7.4° 7.4° 7.4° 7.4° 7.4° 7.4°	**	<u>9.3</u>	9.2	9,3
	pH, UNITS 4000 7.40		7.41	-7.42	7,46
	SPECIFIC CONDUCTIVITY, unhos/cm	0 1370	<u>1350 </u>	1340	1369
⁻ -	TPV=(33.7-A),65 + 15	46 - 35.06		to to	•
	EQUIPMENT DOCUMENTATION PURGING SAMPLING	ump and lines. Outside of po	imp was rinsed with the T	pater through	
•	[] [] PERISTALTIC PUMP	EQUIPMENT ID	DECOM LEGIDS 0250	WATER LEVEL EQUI	
	M M SUBHERSIBLE PUMP K		[] ETHYL ALCOHOL [] DEIGNIZED WATER	[] ELECTRIC CON	D. PROBE
•	DISP, & BAILER (PVC/SS/TEFE		[] HNO3/D.I. WATER [] POTABLE WATER	[] KECK INTERFALL MOTHER SOLI	
	[] [] TEFLON/SILICON TUBI	NG ·	1 TSP SOLUTION BY NONE (DISPOSABLE	_	
	[] [] WATERRA M IN-LINE FILTER (ME	TALS)	M HOTM TYPE II WORTH	r)	
	[] PRESS/VAC FILTER []		BALLER RINSED TH		GWELL KLM
	SAMPLES COLLECTED				
	AMALYSIS BOTTLE ID REQUESTED	METHOO NUMBER VOLUME	JAR TYPE	***	PRESERVATIVE/
DE	AWI-KOZ-VP VOC	umzo 2x4	^	FILTERED NO	
DA	Wixoz-ms SVOC	UMIB ZXI		NO	HC1 <z< td=""></z<>
		H13/4H0Z 2X1		<u> </u>	
7 -		5510/50xx/5801 1L	POLY,	YES	(1)10 /2
DAY	VIXORS NITRATE/ NITRITE	TFZZ IL	PLASTIC	NO	HNO3 < Z H2504 < Z
l -	VIXO2-C SULFATE	TTIO IL	PLASTIC	NO	
	NI XOZ-B CYANIDE	TF18 IL	POLY	NO	NaOH >1Z
	1111	PA 413,2 1L	W.M. AMBER	1.40	H2504 <z< td=""></z<>
	117020 T.R.P.H.	PA 418.1 1L	W.M. AMBE	R NO	H2504 < Z
	3707	SIG	NATURE KM. DM. M	I Tom Windbren	
	333.WP WISED 3/90			nction: see ba	nic
		·	ABB ENVIR	CONMENTAL SERVICES	1110

mw-02 NOTES

(1) 1-2543

-collect wooder level reading=3.54 Below TOC

@1-a6-93

- no work dune out this location

- purpe well from 1730 to 1830 (well dry) at 1.338 /min = 66.5 gallons

· 4 1-2893

- Collect water level reading = 6.85' Below TOC

- purse well from 1327 to 1345 of 1.3380/min = 23.94 gallons

- sample well at 1345

(5) Total gallons purged From well = 66.5 + 23.94 = 90.44 gullons

6 Sampling Procedure

- purpe well with Keck Pump

- Collect all samples with Keck pump except for vocsample. A 0.45 micron in-line filter was attached to the Keck pump discharge line for the dissolved metals sample.
- Pull Keek pump from well and gently lower disposable Dailer down well and collect voc sample
- preserve all samples in field.

_	_	GROUNDWATER SAME	LE RECORD	•	Page / of /
SITE: DETROIT	ARSENAL		NO. 7027-	03	25,27+25 TE:JAN93
				•	see back
SAMPLE LOCATION MW	004	LAS NUMBER			
		LAS NORSEX			
WATER LEVEL/WELL			/ ~	17 on 1-25-93	
MEASURED WELL DEPTHFT	TOP OF WELL TOP OF CASING	WELL DIAM.	WATER DEPTH	FT MONITO	DRING:
	[]	1 4 INCH (1 6 INCH	DKAEGER AMBIENT _	AMBIEN POM WELL N	IT AIR
		[]	WELL MOSTH		
HISTORICAL 34 FT	[] TOP OF WELL [] TOP OF CASING	WELL MATERIAL:	PROTECTIVE (nontruct with or	d ambient air were in and Druge Tube.
	[]	[] \$\$	CASING STICK-UPA (FROM GROUND) &	ther instrueme	mts.
PURGE DATA	Total Bottom	Static x 0.65 gal +			1-28-93
PURGE DATA HEIGHT OF WATER 3 M 1-25 COLUMN 27.53 FT	Volume Depth	Level 3 84 ft	1-2793	PURGE TIME	SAMPLE TIME .
COLUMN OX 7: JJ FT	Area of Area of San	Sandpack dpack (ft) x Porosity x 7.48 gal 6.9 (0.30)		END 1710	END / 300
7,43	_	(οπο) _μ. ν	~ `	TAL PURGE	VOLUME (GAL.)
Ande Aornhe 1,3,3	3 <u>5</u> GL		50 al	= 56 CAL 9	2 75 CAL
TEMP, DEG C	7118	8.8	10.4	10.6	0.5
PH, UNITS	7.48	7.25	1.35	-J.AT 8 8	7.36
SPECIFIC CONDUC- TIVITY, umbos/cm	1560	1600	<u>1010</u>	1690	1610
		33.17 casing a sandpa		11 Dryate	
EQUIPMENT DOCUMENT PURGING SAMPLING	1470 44	XXXXXX CANICORN DOTUD ONCE I'U	os. uutonus iras 🔾	9.85 gallons	
[] [] PERISTALTI			FLUIDS USED A need wol	atu.	· · · · · · · · · · · · · · · · · · ·
17 DISP. BUT BALLER (PV	E PUNP(Keck)	[] DE	HYL ALCOHOL IONIZED WATER	[] ELECTRIC CC	ATED
[] [] PVC/SILICON	TUBING	[] PO	03/D.I. WATER TABLE WATER	[] KECK INTERF	ACE PROBE
[] [] AIR LIFT	ICOM TORING	BKI NON	solution ne (Disposable	NUMBER OF FILTE	R PAPERS USED
M IN-LINE FIL	TER (METALS)	—— × B	IM TYPE IT BAILER	記	WITH ASTM 121 40
[] PRESS/VAC F			I WATER PR		NG WELL, KUI)
SAMPLES COLLECTED					
BOTTLE ID REQUESTED	METHOO NUMBER	VOLUME	JAR TYPE	FILTERED	PRESERVATIVE/
AWIXOTUP VOC	UMZO	2×40ml	A. BLASS	NO	HCI <z< td=""></z<>
AWIXOLMS SVOC	Umib	ZXIL	A. GLASS	NO	
WIXO4-EC PEST./T	20B a H13/aH	02 2×1L	A. GLASS	NO	
WIXOUNF DIS, ME	TALS SSIO/SO	(x/s801 1L	POLY.	YES	HN03 < Z
WIX04-S NHRATE/N NIX04-C SULFAI			PLASTIC	NO	H2504 < Z
WIXO4-B CYAN		- <u>- </u>	PLASTIC	NO	
WIXOUD OIL+GRE			POLY	NO	NaOH >12
V17040 T.R.P.H.	ASE EPA 413. EPA 418	-	W.M. AMBER		H2S04 <z< td=""></z<>
1,13,111	0117 118		W.M. AMBE		H2504 < Z
0303.WP		SIGNATURE	Kan D. Mich	Tom Wine	
EVISED 3/90				ONMENTAL SERVICE	

mw -4 NOTES

1-25-93

- Collect water level = 6.47' Below TOC

21-26-93 > no work done at this recording

31-27-93>

- purese well from 1625 to 1710 (well dry) at 1338d/min 259.85gd.

(4) 1-28-933

-collect water level = 7.08 Blow TOC

- purge well from 11.58 101215 at 1.33 gol./min. = 22.61 gollons
- collect ground water sample at 1215
- (5) Total gallons purged from well = 59.85 + 22.61 2 82.46 gallons
- 6) sampling Procedure
 - purse well with keck pump
 - collect all samples with keck pump except for VOC sample. A 0.45 micron Filter (in-line) was attached to the Keck pump discharge line for the dissolved metalo sample.
 - pull Keck pump out of well and gently lower disposable bailer down well and collect voc sample.
 - -preserve all samples in Field.

	Demair	A0001111	GROUNDWATER SAM			Page \underline{I} of \underline{I}
1	SITE: DETROIT	ARSENAL	JOB	NO. <u>7027-</u>	03 .	ATE:JAN93
	SAMPLE LOCATION MU	J010	LAB KUMBER			
	WATER LEVEL/WELL MEASURED WELL DEPTHF	[] TOP OF WELL	WELL DIAM. [] 2 INCH [] 4 INCH [] 6 INCH [] 1	WELL MODILI	D PPM WELL	177
	HISTORICAL 343 FT	34.3	WELL MATERIAL PVC [] SS (A) []	PROTECTIVE OF CASING STICK-UP (FROM GROUND)	Mee water an Monitored with tubes. No readi	d ambient air were out iFIOI and Days were different of 1-28-93
	PURGE DATA HEIGHT OF WATER 17 FT COLUMN 37 7 FT	Purge = Bottom Volume Depth	Static Water Level x 0.65 gal + Level Sandpack dpack (ft) x Porosity x 1.48 gal	· = 77	PURGE TIME START 1400 END 1450 PTAL PURGE	SAMPLE TIME START 10:00 END 10=0
	PURGE VOLUME	3_ CAL	(0.30) _ft. 3	·	a 66 cal M	7 = 70 as a
	TEMP, DEG C	10.8	84	11.3	115	\$ 10.6 11.2
	PH, UNITS	8.24	7.68	7.13	-7.25 P	7.84 7.66
	SPECIFIC CONDUC- TIVITY, umhos/cm	3410	(<u>1718</u>		3580	2740 3120
	TPV = (34.3 - A), C EQUIPMENT DOCUMEN PURGING SAMPLING	TATION Note: Kerk P	ump was necessed by Pump was also rins		At Clo.50 at 1452 M Type I was the type I was the type I was the type I was	ter through pump
	[] DISP, & BAILER (P [] [] PVC/SILIO [] [] TEFLON/SII [] [] AIR LIFT [] WATERRA M IN-LINE FI	LE PUMP(KECK) VC/SS/TEFLON)(UCCS) ON TUBING LICON TUBING LICON TUBING	[] DE [] HA [] PC [] TS [] FC [] NC	THYL ALCOHOL SIONIZED WATER 103/D.I. WATER 103/D.I. WATER 103/D.I. WATER 103/D.I. WATER 104/D.I. WATER 105/D.I. WATER 106/D.I. WATER 107/D.I. WATER 108/D.I. WATER	Đ	VATED FACE PROBE - I (VST)
	[] PRESS/VAC	FILTER		ER RINSED TH		MATT DETTY KLM
	SAMPLES COLLECTED ANALYSIS	METHOO				
! [BOTTLE ID REQUESTED		VOLUME	JAR TYPE	FILTERED	PRESERVATIVE/ VOLUME PH
- 1	WIXIO-MS SVOC		2×40ml		NO_	HC1 <z< td=""></z<>
	WIXIO-EC PEST./		02 2×1L	A. GLASS	NO NO	
DA DAV	WIXIONF DIS, MINITE/L	ETALS 5510/50X	(x/5801 1L	POLY. PLASTIC	YES	HNO3 <z H2504 <z< td=""></z<></z
1	VIXIO-C SULFA NIXIO-B CYAN		- <u>IL</u> IL	PLASTIC POLY	<u>NO</u>	-
_	NIXIOO OIL+GRE		-	W.M. AMBER	NO	Na OH >1Z
	11 × 10-0 T.R.P.H.		-	W.M. AMBE		H2S04 <z H2S04 <z< td=""></z<></z
	333.WP EVISED 3/90		SIGNATURE	KOOO D MIDD	Tom Wi	nebrennet mik side.
				ABB ENVIR	ONMENTAL SERVICE	S. INC.

NOTES

MW-10

D125-93

-Collect water level reading = 4.59 below TOC

1-2693

- no work was done cut this location

01-27993

- purse with keck pump from 1400 to 1450 @ 1.338 al/min = 66.5 gallono

- will pursed dree.

1) 1-28-93

- collect water level = 6.15' Below TOC

-purago 0937 to 1000 at 1.33 gol/min = 30.59 gollongo

- collect groundwater sample at 1000 hours

3) Total. Sullano purged from well = 66,5 + 30,59 = 97.09 gallono

6) Sampling Procedure

- purge well with Keck pump

- Collect all samples with Keck pump except for VOC sample. A 0.45 micron in-line filter was attached to the discharge line of the keck pump for the dissolved metalo sample
- pull keck pump out of well and gently lower disposable bailer down well and collect VOC sample.
- preserve all samples in the Field.

mw -18

1-26-933 Purse 38 sallono + well went dry

VOTES

D1-25-93

- collect water level = 8.39/ Below TOC

)1-06-93

- Purse well. From 1253 to 1323 at 1.33 80 /min = 39.9 gallons

) 1-27-93 - collect WL reading = 25.92 Bolow TOC

- Purse From 1243 to 1313 at 1.3380 min 2 39 gallono
- Wale-collect ground worter sample at 1315 hours

- wood dry at end of sampling!!

D' Total gallono purged = 39.9 + 39 = 78.9 gallono.

) Sampling Procedure

- puringe well with Kak pump

- collect all samples with Keck pump except VOCs, Note A 0.45 micron Ho-line filter was used attached to the discharge line of Keck pump for the discloved metals sample.
- pull keck pump out of well and sently lower disposable bailer down well and collect VOC sample.
- Preserve all samples in the field.

Notes 1.

- 1) collected Water Level on Mon. 1-25-92
- @ Purged 21 gallono on Tue. 1-25-92, well went dry let well rechange for 15 min, than pursed agallons and well went dry - pursed 23 gallono on 1-26-93

10 TES

"rollected water level = 7.46 Below TOC.

1)1-26-93

- Purse well with Keck pump from 1159, to 1215. 16min @ 1.338d/min = 21.28 xallons and well dry
- -let well recover for 15 min. Than purped a more gallono until well went dry

) 1-27-93

- -coilect water level = 7.72' Below TOC
- Purge well from Hac to 1107 to 1117 set 1.3380/min.
- Purged 13 gullens
- Collected groundwater sample @ 1120

Sampling Procedure

- Purse well with Keck pump exert vocampion

 Collect all samples with Keck pump Note a. 0.45 micron in-line filter was
- attached to discharge line of kell pump for dissolved metals sample.
- Pull keek pump out of well and lower disposable bailer down well and collect VOC sample.
- All samples were preserved in the field.

mw-14

-7/1-27-93

-WL=7.42 below 70C

" - 1"

-Start purging 09:40 mo - purp mile 13390 /min.

sciniple 10:05 Start, done in 1055

ASU;

A >

NOTES Added in Office

1) Initial water level was collected on 1-25-93. Water level was 6.5/8000 TOC

- well was secure on arrival.

-No readings above background were dected with the OUA

- No readings were detected with the Drager tube

-53 gallono were purged on 1-2593, The well went dry at 53 gallono.

No reac the piese work wood monitored with both the OUA and the Drager tube - No readings were detected.

31-26-93/

- collected water level reading = 15.80' Below TOC (Top of Casing)

- A groundwater sample was not collected because the well did not recover

- Collect water fevel reading = 7.42' Below TOC

- Purged well from 0940 to 1005 223 min. at 1338 min 2318 allono. - Collected groundwater sample at 1005 to 1055.

Total Purse Volume: 538il + 318al. = 84 sallows.

5) Sampling Procedure: well was pursed with Keck pump. All samplies were collected with Keck pump. All samplies were collected with a disposable bailer after collected with a disposable bailer after jump.

	RE	3LK-1	OUNDWATER SAME	TE PECAPA	•	Page / of /
	DETROIT	T ARSENAL			72	101107
	SHE: OCHOL	1 //(1000/11.10		10. <u>7027-0</u>	DATE: _	JANYS
Į	.	11000				
	SAMPLE LOCATION	MOKBLK-1	LAB NUMBER			
						
	WATER LEVEL/WEI	LL DATA				
	MEASURED WELL DEPTH	[] TOP OF WELL FT	WELL DIAM.	WATER DEPTH		
İ	HELE 90. 111	[]	[] 2 INCH KOKI 4] ∕4	DKJEGER OF	FID:	Ø PPM
			Î Î 6 INCH 	MELL MODELL	PPMWELL HOUTH	
	HISTORICAL	f Titon or imil		,	ppin	•
Ì		[] TOP OF WELL _FT [] TOP OF CASING	WELL MATERIAL:	PROTECTIVE CASING STICK-UP		-
		[]	[] SS	(FROM GROUND)		
1	PURGE DATA	n Dollom	tic)			
	HEIGHT OF WATER	Denth "Wa	ter x 0.65 gal +		1	PLE TIME
	COLUMN	FT	Sandmark	3		RT_169D BND
		Area of Area of Borehole MW x Sandback	(ft) x Porosity x 1.48 gal (0.30) # 3	= 101	AL PURGE VOLU	ME (GAL.)
	PURGE VOLUME	a CAL a	(3)			
	TEMP, DEG C			- "	GAL 2	GAL
	·					
	PH, UNITS					
	SPECIFIC CONDUCTIVITY, unhos/em	<u> </u>				
-	TPY-		•		_	
I	` 	ENTATION Note: Sample w	us collected from	M Kerk Dumb dis	chare line, and	1 From
i	PURGING SAMPLING	ENTATION Note: Sample W a disposable to EQUIPH	LENT ID HILL DECON	FLUIDS USED	WATER LEVEL EQUIP.US	ED
	[] [] PERISTA	ALTIC PUMP				
	DA SUBHERS 1 DISP, LO BAILER	TIBLE PUMP Keck	[] DEI	ONIZED WATER	[] ELECTRIC COND. PI	1
	[] [] PVC/SIL	ICON TUBING		13/D.I. WATER 'ABLE WATER	[] KECK INTERFACE PI	ROBE
	[] [] TEFLON/	SILICON TUBING .		SOLUTION E (DSPOSABLE)	•	1
	[] [] WATERRA	FILTER (METALS)	KI (35)	IM TYPE BALLER	bites	KS USED
	[] PRESS/V	AC FILTER	-BAILL	R RINSED THR	EE TIMES WITH	ACTM NO
	[] []			II WATER PRIO	,	WELL, NO
		D SAMPLE TIME 1645	- Keck	through pumpand	HIMING POINCE F	CUCCTION STIMOLO
	BOTTLE ID REQUEST		VOLUME	JAR TYPE		PRESERVATIVE/
DI	AWIX UP VOC	C college umzo	2×40ml	A. BLASS		
	AWIX -MS SVO	C UMIB	2×1L	A. GLASS		10/2
•	WIX -EC PEST.				NO -	
•			2XIL	A. GLASS	NO	
	WIX NFTDIS, V	METALS SSIO/SOXX/	SBOILL	POLY.	YES H	1NO3 < Z B
AY.	VIX -C SULF	NITRITE TF22 FATE TT10	16-	PLASTIC		12504 <z <="" td=""></z>
			11	PLASTIC	NO.	
			<u> </u>	POLY	NO K	JaoH >1Z
•	WIX O OIL+GI		11	W.M. AMBER	NO F	12504 <z 1<="" td=""></z>
4	VIX 0 T.R.P.	H. EPA 418.1	14	W.M. AMBER		2504 < Z
	*	* Oksolvan	METERSIGNATURE	Kollu a m	ish I Geology	
	0303.WP	Scimple U	ა α5	STOWN TIPE (FING	TION: Tom Wine	
, K (EVISED 3/90	field fi	Itered with in	-li Ao	MENTAL SERVICES, INC	· · · · · · · · · · · · · · · · · · ·
					,	

-**ROUND 1 ANALYTICAL DATA**

				Maximum: A:	333322	Y: 4707375					
Site		Meth	od					~~ •.			
<u>Type</u>	Site ID	Code		Sample Date	Lab	Depth	Valu	Unit <u>e Meas</u>		Flag Code	Prog.
WELL	MW001	00	OILGR	28-jan-1993						Cour	1108.
			TPHC	28-jan-1993	ES ES	3.1	18		LT		GO
WELL	MW001	SB01	HG	28-jan-1993	ES	3.1 3.1	18		LT		GO
WELL	MW001	SD09	TL	28-jan-1993	ES	3.1	0.24 6.9		LT		GO
WELL	MW001	SD20	PB	28-jan-1993	ES	3.1	1.2		LT		GO
WELL	MW001	SD21	SE	28-jan-1993	ES	3.1	3.0		LT LT		GO
WELL	MW001	SD22	AS	28-jan-1993	ES	3.1	3.0		LI		GO
WELL	MW001	SS10	AG	28-jan-1993	ES	3.1	4.0		LT		GO GO
			AL	28-jan-1993	ES	3.1	14		LT		GO
			BA	28-jan-1993	ES	3.1	128				GO
			BE	28-jan-1993	ES	3.1		UGL	LT		GO
			CA CD	28-jan-1993	ES	3.1	341000	UGL			GO
			CO	28-jan-1993	ES	3.1	4.01		LT		GO
			CR	28-jan-1993	ES	3.1	25		LT		GO
			CU	28-jan-1993 28-jan-1993	ES	3.1	6.02		LT		GO
			FE	28-jan-1993	ES ES	3.1	8.09		LT		GO
			K	28-jan-1993	ES	3.1 3.1	2580				GO
			MG	28-jan-1993	ES	3.1	3200 127000				GO
			MN	28-jan-1993	ES	3.1	1300				GO
			NA	28-jan-1993	ES	3.1	126000				GO
			NI	28-jan-1993	ES	3.1	34.3		LT		GO
			SB	28-jan-1993	ES	3.1	38		LT		GO GO
			V	28-jan-1993	ES	3.1	18.8				GO
WELL	MW001	90004.0	ZN	28-jan-1993	ES	3.1	98.6	UGL			GO
WELL	MW001 MW001	TF18 TF22	CYN NIT	28-jan-1993	ES	3.1	2.5	UGL	LT		GO
WELL	MW001	TT10	CL	28-jan-1993	ES	3.1	33.6	UGL			GO
***************************************		1110	SO4	28-jan-1993 28-jan-1993	ES	3.1	300000	UGL			GO
WELL	MW001	UH 02	PCB016	28-jan-1993 28-jan-1993	ES ES	3.1	400000	UGL			GO
			PCB221	28-jan-1993	ES	3.1 3.1	0.16	UGL	LT	_	GO
			PCB232	28-jan-1993	ES	3.1	0.16	UGL	ND	R.	GO
			PCB242	28-jan-1993	ES	3.1	0.16 0.19	UGL UGL	ND	R	GO
			PCB248	28-jan-1993	ES	3.1	0.19	UGL	ND ND	R R	GO
			PCB254	28-jan-1993	ES	3.1	0.19	UGL	ND	R	GO GO
33757 7	3.4331004		PCB260	28-jan-1993	ES	3.1	0.19	UGL	LT	1	GO
WELL	MW001	UH13	ABHC	28-jan-1993	ES	3.1	0.0385	UGL	LT		GO
WELL	MW001	UH13	ACLDAN	28-jan-1993	ES	3.1	0.075	UGL	ND		GO
			AENSLF	28-jan-1993	ES	3.1	0.023	UGL	LT		GO
			ALDRN BBHC	28-jan-1993	ES	3.1	0.0918	UGL	LT		GO
			BENSLF	28-jan-1993 28-jan-1993	ES	3.1	0.024		LT		GO
			DBHC	28-jan-1993 28-jan-1993	ES	3.1	0.023	UGL	LT		GO
			DLDRN	28-jan-1993	ES ES	3.1	0.0293	UGL	LT		GO
			ENDRN	28-jan-1993	ES	3.1 3.1	0.024	UGL	LT		GO
			ENDRNA	28-jan-1993	ES	3.1	0.0238 0.0285	UGL UGL	LT		GO
			ENDRNK	28-jan-1993	ES	3.1	0.0285	UGL	LT ND		GO
			ESFSO4	28-jan-1993	ES	3.1	0.0786	UGL	LT		GO GO
			GCLDAN	28-jan-1993	ES	3.1	0.075	UGL	ND		GO
			HPCL	28-jan-1993	ES	3.1	0.0423	UGL	LT		GO
			HPCLE	28-jan-1993	ES	3.1	0.0245	UGL	LT		30 30
			ISODR	28-jan-1993	ES	3.1	0.0562	UGL	LT		30 30
			LIN	28-jan-1993	ES	3.1		UGL	LT		GO
			MEXCLR PPDDD	28-jan-1993	ES	3.1		UGL	LT		GO
			PPDDE	28-jan-1993	ES	3.1			LT		GO
			PPDDT	28-jan-1993 28-jan-1993	ES	3.1			LT	(GO
			- + 22 1	20 – Jan ~ 1993	ES	3.1	0.034	UGL	LT	(GO

				Maximum: A. 33	3322	1.4701515				
~ *.		Method	ı					Unit	Mcas	Flag
Site	Site ID	Code	Test Name	Sample Date	Lab	Depth	<u>Value</u>	Meas.	Bool.	Code Prop
Туре	SIC ID	0000							. m	60
			TXPHEN	28-jan-1993	ES	3.1	1.35	UGL	LT	GO GO
WELL	MW001	UM 18	124TCB	28-jan-1993	ES	3.1	1.8	UGL	LT LT	GO
			12DCLB	28-jan-1993	ES	3.1	1.7	UGL	ND	R GO
			12DPH	28-jan-1993	ES	3.1	2	UGL	LT	GO
			13DCLB	28-jan-1993	ES	3.1	1.7 1.7	UGL UGL	LT	GO
			14DCLB	28-jan-1993	ES	3.1	5.2	UGL	LT	GO
			245TCP	28-jan-1993	ES	3.1 3.1	4.2	UGL	LT	GO
			246TCP	28-jan-1993	ES	3.1	2.9	UGL	LT	GO
			24DCLP	28-jan-1993	ES ES	3.1	5.8	UGL	LT	GO
			24DMPN	28-jan-1993	ES	3.1	21	UGL	LT	GO
			24DNP	28-jan-1993		3.1	4.5	UGL	LT	GO
			24DNT	28-jan-1993	ES ES	3.1	0.79	UGL	LT	GO
			26DNT	28-jan-1993	ES	3.1	0.99	UGL	LT	GO
			2CLP	28-jan-1993	ES	3.1	0.5	UGL	LT	GO
			2CNAP	28-jan-1993 28-jan-1993	ES	3.1	1.7	UGL	LT	GO
			2MNAP	28-jan-1993 28-jan-1993	ES	3.1	3.9	UGL	LT	GO
			2MP 2NANIL	28-jan-1993	ES	3.1	4.3	UGL	LT	GO
			2NP	28-jan-1993	ES	3.1	3.7	UGL	LT	GO
			33DCBD	28-jan-1993	ES	3.1	12	UGL	LT	GO
			3NANIL	28-jan-1993	ES	3.1	4.9	UGL	LT	GO
			46DN2C	28-jan-1993	ES	3.1	17	UGL	LT	GO
			4BRPPE	28-jan-1993	ES	3.1	4.2	UGL	LT	GO
			4CANIL	28-jan-1993	ES	3.1	7.3	UGL	LT	GO
			4CL3C	28-jan-1993	ES	3.1	4	UGL	LT	GO
			4CLPPE	28-jan-1993	ES	3.1	5.1	UGL	LT	GO
			4MP	28-jan-1993	ES	3.1	0.52	UGL	LT	GO
			4NANIL	28-jan-1993	ES	3.1	5.2	UGL	LT	GO GO
			4NP	28-jan-1993	ES	3.1	12	UGL	LT	
			ABHC	28-jan-1993	ES	3.1	4	UGL UGL	ND ND	R GO
			ACLDAN	28-jan-1993	ES	3.1	5.1 9.2	UGL	ND	R GO
WELL	MW001	UM18	AENSLF	28-jan-1993	ES	3.1 3.1	4.7	UGL	ND	R GO
			ALDRN	28-jan-1993	ES ES	3.1	1.7	UGL	LT	GO
			ANAPNE	28-jan-1993 28-jan-1993	ES	3.1	0.5	UGL	LT	GO
			ANAPYL	28-jan-1993	ES	3.1	0.5	UGL	LT	GO
			ANTRC	28-jan-1993	ES	3.1	1.5	UGL	LT	GO
			B2CEXM B2CIPE	28-jan-1993	ES	3.1	5.3	UGL	LT	GO
			B2CLEE	28-jan-1993	ES	3.1	1.9	UGL	LT	GO
			B2EHP	28-jan-1993	ES	3.1	6.4	UGL		GO
			BAANTR	28-jan-1993	ES	3.1	1.6	UGL	LT	GO
			BAPYR	28-jan-1993	ES	3.1	4.7	UGL	LT	GO
			BBFANT	28-jan-1993	ES	3.1	5.4		LT	GO
			ВВНС	28-jan-1993	ES	3.1	4	UGL	ND	R GO
			BBZP	28-jan-1993	ES	3.1	3.4	UGL	LT	GO
			BENSLF	28-jan-1993	ES	3.1	9.2	UGL	ND	R GO
			BENZID	28-jan-1993	ES	3.1	10		ND	R GC
			BENZOA	28-jan-1993	ES	3.1	13	UGL	LT	GC GC
			BGHIPY	28-jan-1993	ES	3.1	6.1	UGL	LT	GC
			BKFANT	28-jan-1993	ES	3.1	0.87 0.72	UGL UGL	LT LT	GC
			BZALC	28-jan-1993	ES	3.1 3.1	1.5	UGL	ND	R GC
			CARBAZ	28-jan-1993	ES ES	3.1	2.4	UGL	LT	GC
			CHRY	28-jan-1993 28-jan-1993	ES	3.1	1.6		LT	GC
			CL6BZ	28-jan-1993	ES	3.1	8.6	UGL	LT	GC
			CL6CP CL6ET	28-jan-1993	ES	3.1	1.5	UGL	LT	GC
			DBAHA	28-jan-1993	ES	3.1	6.5	UGL	LT	GC
			DUNIA	20 Juli 2000		•				

				Trianinalii. 72.	333322	1.4/0/3/3					
Site		Meth	od					Unit	Meas	Flag	
Type	Site ID	Code	Test Name	Sample Date	Lab	Depth	Value	Meas.	Bool.		Prog.
			Davio							0040	1105.
			DBHC	28-jan-1993	ES	3.1	4	UGL	ND	R	GO
			DBZFUR	28-jan-1993	ES	3.1	1.7	UGL	LT		GO
			DEP	28-jan-1993	ES	3.1	2	UGL	LT		GO
			DLDRN	28-jan-1993	ES	3.1	4.7	UGL	ND	R	GO
			DMP	28-jan-1993	ES	3.1	1.5	UGL	LT		GO
			DNBP	28-jan-1993	ES	3.1	3.7	UGL	LT		GO
			DNOP	28-jan-1993	ES	3.1	15	UGL	LT		GO
			ENDRN	28-jan-1993	ES	3.1	7.6	UGL	ND	R	GO
			ENDRNA	28-jan-1993	ES	3.1	8	UGL	ND	R	GO
			ENDRNK	28-jan-1993	ES	3.1	8	UGL	ND	R	GO
			ESFSO4	28-jan-1993	ES	3.1	9.2	UGL	ND	R	GO
			FANT	28-jan-1993	ES	3.1	3.3	UGL	LT		GO
			FLRENE	28-jan-1993	ES	3.1	3.7	UGL	LT		GO
			GCLDAN	28-jan-1993	ES	3.1	5.1	UGL	ND	R	GO
			HCBD	28-jan-1993	ES	3.1	3.4	UGL	LT		GO
			HPCL	28-jan-1993	ES	3.1	2	UGL	ND	R	GO
			HPCLE	28-jan-1993	ES	3.1	5	UGL	ND	R	GO
			ICDPYR	28-jan-1993	ES	3.1	8.6	UGL	LT		GO
			ISOPHR LIN	28-jan-1993	ES	3.1	4.8	UGL	LT		GO
			MEXCLR	28-jan-1993	ES	3.1	4	UGL	ND	R	GO
			NAP	28-jan-1993	ES	3.1	5.1	UGL	ND	R	GO
			NB NB	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			NNDMEA	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			NNDNPA	28-jan-1993 28-jan-1993	ES	3.1	. 2	UGL	ND	R	GO
			NNDPA	28-jan-1993 28-jan-1993	ES	3.1	4.4	UGL	LT		GO
WELL	MW001	UM18	PCB016	28-jan-1993	ES ES	3.1	3	UGL	LT		GO
			PCB221	28-jan-1993		3.1	21	UGL	ND	R	GO
			PCB232	28-jan-1993	ES ES	3.1	21	UGL	ND	R	GO
			PCB242	28-jan-1993		3.1	21	UGL	ND	R	GO
			PCB248	28-jan-1993	ES ES	3.1		UGL	ND	R	GO
			PCB254	28-jan-1993	ES	3.1		UGL	ND	R	GO
			PCB260	28-jan-1993	ES	3.1		UGL	ND	R	GO
			PCP	28-jan-1993	ES	3.1 3.1		UGL	ND	R	GO
			PHANTR	28-jan-1993	ES	3.1		UGL	LT		GO
			PHENOL	28-jan-1993	ES	3.1		UGL	LT		GO
			PPDDD	28-jan-1993	ES	3.1		UGL	LT	_	GO
			PPDDE	28-jan-1993	ES	3.1		UGL	ND	R	GO
			PPDDT	28-jan-1993	ES	3.1		UGL	ND	R	GO
			PYR	28-jan-1993	ES	3.1		UGL	ND	R	GO
			TXPHEN	28-jan-1993	ES	3.1	36	UGL	LT	ъ	GO
WELL	MW001	UM20	111TCE	28-jan-1993	ES	3.1		UGL	ND		GO
			112TCE	28-jan-1993	ES	3.1		UGL	LT		GO
			11DCE	28-jan-1993	ES	3.1			LT		GO
			11DCLE	28-jan-1993	ES	3.1			LT LT		GO
			12DCE	28-jan-1993	ES	3.1			LT		GO
			12DCLE	28-jan-1993	ES	3.1					GO GO
			12DCLP	28-jan-1993	ES	3.1			LT LT		GO CO
			2CLEVE	28-jan-1993	ES	3.1			LT LT		GO GO
			ACET	28-jan-1993	ES	3.1			LT LT		GO GO
			ACROLN	28-jan-1993	ES	3.1					GO
			ACRYLO	28-jan-1993	ES	3.1					GO GO
•			BRDCLM	28-jan-1993	ES	3.1			LT		30 30
			C13DCP	28-jan-1993	ES	3.1			LT		30 30
			C2AVE	28-jan-1993	ES	3.1			LT		30 30
			C2H3CL	28-jan-1993	ES	3.1			LT		30 30
			C2H5CL	28-jan-1993	ES	3.1			LT		30 30
				-				- J.	_1	•	J-O

Site		Method				Donat	Value	Unit	Meas	Flag	Prog.
Type	Site ID	Code	Test Name	Sample Date	Lab	<u>Depth</u>	<u>value</u>	Meas.	Bool.	Code	riog.
			C6H6	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			CCL3F	28-jan-1993	ES	3.1	1.4	UGL	LT		GO
			CCL4	28-jan-1993	ES	3.1	0.58	UGL	LT		GO GO
			CH2CL2	28-jan-1993	ES	3.1	2.3 5.8	UGL UGL	LT LT		GO
			CH3BR	28-jan-1993	ES ES	3.1 3.1	3.2	UGL	LT		GO
			CH3CL	28-jan-1993 28-jan-1993	ES	3.1	2.6	UGL	LT		GO
			CHBR3 CHCL3	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			CL2BZ	28-jan-1993	ES	3.1	10	UGL	ND	R	GO
			CLC6H5	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			CS2	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			DBRCLM	28-jan-1993	ES	3.1	0.67	UGL	LT		GO
			ETC6H5	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			MEC6H5	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			MEK	28-jan-1993	ES	3.1	6.4	UGL UGL	LT LT		GO GO
			MIBK	28-jan-1993	ES	3.1 3.1	3 3.6	UGL	LT		GO
			MNBK	28-jan-1993	ES ES	3.1	0.5	UGL	LT		GO
			STYR T13DCP	28 – jan – 1993 28 – jan – 1993	ES	3.1	0.7	UGL	LT		GO
			TCLEA	28-jan-1993	ES	3.1	0.51	UGL	LT		GO
WELL	MW001	UM 20	TCLEE	28-jan-1993	ES	3.1	1.6	UGL	LT		GO
WLLL	112 11 002		TRCLE	28-jan-1993	ES	3.1	0.5	UGL	LT		GO
			XYLEN	28-jan-1993	ES	3.1	0.84	UGL	LT		GO
WELL	MW002	00	OILGR	28-jan-1993	ES	3.5	355	UGL	LT		GO GO
			ТРНС	28-jan-1993	ES	3.5	181 0.243	UGL UGL	LT		GO
WELL	MW002	SB01	HG	28-jan-1993	ES ES	3.5 3.5	6.99	UGL	LT		GO
WELL	MW002	SD09	TL PB	28-jan-1993 28-jan-1993	ES	3.5	1.26	UGL	LT		GO
WELL	MW002	SD20 SD21	SE	28-jan-1993	ES	3.5	3.02	UGL	LT		GO
WELL WELL	MW002 MW002	SD21	AS	28-jan-1993	ES	3.5	2.54	UGL	LT		GO
WELL	MW002	SS10	AG	28-jan-1993	ES	3.5	4.6	UGL	LT		GO
W L L			AL	28-jan-1993	ES	3.5	141	UGL	LT		GO
			BA	28-jan-1993	ES	3.5	48.1	UGL	7 OC		GO
			BE	28-jan-1993	ES	3.5	241000	UGL UGL	LT		GO GO
			CA	28-jan-1993	ES	3.5 3.5	241000 4.01	UGL	LT		GO
			CD	28-jan-1993	ES ES	3.5	25	UGL	LT		GO
			CO CR	28-jan-1993 28-jan-1993	ES	3.5	6.02	UGL	LT		GO
			CU	28-jan-1993	ES	3.5	8.09	UGL	LT		GO
			FE	28-jan-1993	ES	3.5	38.8	UGL	LT		GO
			K	28-jan-1993	ES	3.5	9650	UGL			GO
			MG	28-jan-1993	ES	3.5	70200				GO
			MN	28-jan-1993	ES	3.5	104				GO
			NA	28-jan-1993	ES	3.5	55300	UGL	T TT		GO GO
			NI	28-jan-1993	ES	3.5	34.3 38	UGL UGL	LT LT		GO
			SB	28-jan-1993 28-jan-1993	ES ES	3.5 3.5	14.3	UGL			GO
			V ZN	28-jan-1993 28-jan-1993	ES	3.5	21.1	UGL	LT		GO
MUCI I	M337002	TF 18	CYN	28-jan-1993	ES	3.5	2.5	UGL	LT		GO
WELL WELL	MW002 MW002	TF22	NIT	28-jan-1993	ES	3.5	24.8	UGL			GO
WELL	MW002	TT10	CL	28-jan-1993	ES	3.5	60000	UGL			GO
***************************************			SO4	28-jan-1993	ES	3.5	350000	UGL			GO
WELL	MW002	UH02	PCB016	28-jan-1993	ES	3.5	0.16	UGL	LT	r	GO
			PCB221	28-jan-1993	ES	3.5	0.16	UGL	ND ND	R	GO
			PCB232	28-jan-1993	ES	3.5	0.16	UGL UGL	ND ND	R R	GO GO
			PCB242	28-jan-1993	ES	3.5 3.5	0.19 0.19	UGL	ND	R	GO
			PCB248	28-jan-1993	ES	3.5	0.19	UUL	110		

						. 4707575					
Site		Meth	od					Unit	Meas	Flag	
Type	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	Depth	<u>Value</u>	Meas.			Prog.
			PCB254	28 _ ion _ 1002	De	2.5					
			PCB260	28-jan-1993 28-jan-1993	ES ES	3.5	0.19		ND	R	GO
WELL	MW002	UH13	ABHC	28-jan-1993	ES	3.5 3.5	0.19		LT		GO
WELL	MW002	UH13	ACLDAN	28-jan-1993	ES	3.5	0.0385		LT	-	GO
			AENSLF	28-jan-1993	ES	3.5	0.075		ND	R	GO
			ALDRN	28-jan-1993	ES	3.5	0.023 0.0918		LT		GO
			BBHC	28-jan-1993	ES	3.5	0.0918	UGL UGL	LT LT		GO
			BENSLF	28-jan-1993	ES	3.5	0.024	UGL	LT		GO
			DBHC	28-jan-1993	ES	3.5	0.0293	UGL	LT		GO GO
			DLDRN	28-jan-1993	ES	3.5	0.024	UGL	LT		GO
			ENDRN	28-jan-1993	ES	3.5	0.0238	UGL	LT		GO
			ENDRNA	28-jan-1993	ES	3.5	0.0285	UGL	LT		GO
			ENDRNK	28-jan-1993	ES	3.5	0.0285	UGL	ND	R	GO
			ESFSO4	28-jan-1993	ES	3.5	0.0786	UGL	LT		GO
			GCLDAN	28-jan-1993	ES	3.5	0.075	UGL	ND	R	GO
			HPCL	28-jan-1993	ES	3.5	0.0423	UGL	LT		GO
			HPCLE	28-jan-1993	ES	3.5	0.0245	UGL	LT		GO
			ISODR	28-jan-1993	ES	3.5	0.0562	UGL	LT		GO
			LIN	28-jan-1993	ES	3.5	0.0507	UGL	LT		GO
			MEXCLR	28-jan-1993	ES	3.5	0.057	UGL	LT		GO
			PPDDD	28-jan-1993	ES	3.5	0.0233	UGL	LT		GO
			PPDDE	28-jan-1993	ES	3.5	0.027	UGL	LT		GO
			PPDDT	28-jan-1993	ES	3.5	0.034	UGL	LT		GO
WELL	MW002	UM18	TXPHEN	28-jan-1993	ES	3.5	1.35	UGL	LT		GO
W LOLLIS	W W 002	OM16	124TCB	28-jan-1993	ES	3.5	1.8	UGL	LT		GO
			12DCLB 12DPH	28-jan-1993	ES	3.5	1.7	UGL	LT		GO
			13DCLB	28-jan-1993	ES	3.5	2	UGL	ND	R	GO
			14DCLB	28 – jan – 1993 28 – jan – 1993	ES	3.5	1.7	UGL	LT		GO
			245TCP	28-jan-1993 28-jan-1993	ES ES	3.5	1.7	UGL	LT		GO
			246TCP	28-jan-1993	ES	3.5	5.2	UGL	LT		GO
			24DCLP	28-jan-1993	ES	3.5 3.5	4.2	UGL	LT		GO
			24DMPN	28-jan-1993	ES	3.5	2.9 5.8	UGL	LT		GO
			24DNP	28-jan-1993	ES	3.5	21	UGL	LT		GO
			24DNT	28-jan-1993	ES	3.5	4.5	UGL UGL	LT		GO
			26DNT	28-jan-1993	ES	3.5	0.79	UGL	LT		GO
			2CLP	28-jan-1993	ES	3.5	0.79	UGL	LT LT		GO
			2CNAP	28-jan-1993	ES	3.5	0.5	UGL	LT		GO
			2MNAP	28-jan-1993	ES	3.5		UGL	LT		GO
			2MP	28-jan-1993	ES	3.5		UGL	LT		GO GO
			2NANIL	28-jan-1993	ES	3.5		UGL	LT		GO
			2NP	28-jan-1993	ES	3.5		UGL	LT		GO
			33DCBD	28-jan-1993	ES	3.5		UGL	LT		GO
			3NANIL	28-jan-1993	ES	3.5		UGL	LT		GO
			46DN2C	28-jan-1993	ES	3.5		UGL	LT		GO
			4BRPPE	28-jan-1993	ES	3.5		UGL	LT		GO
			4CANIL	28-jan-1993	ES	3.5		UGL	LT		GO
			4CL3C	28-jan-1993	ES	3.5		UGL	LT		GO
			4CLPPE	28-jan-1993	ES	3.5		UGL	LT		GO
			4MP	28-jan-1993	ES	3.5		UGL	LT		GO
			4NANIL	28-jan-1993	ES	3.5		UGL	LT		GO
			4NP	28-jan-1993	ES	3.5	12	UGL	LT		GO
			ABHC	28-jan-1993	ES	3.5		UGL	ND		GO
WELL	MW002	T 11 # 1 0	ACLDAN	28-jan-1993	ES	3.5		UGL	ND		GO
** 252.65	141 W 002	UM 18	AENSLF	28-jan-1993	ES	3.5	9.2	UGL	ND		GO
			ALDRN	28-jan-1993	ES	3.5	4.7				GO
			ANAPNE	28-jan-1993	ES	3.5	1.7		LT		GO

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

Site		Method						Unit	Mcas	Flag	
Type	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	Value	Meas.	Bool.	Code	Prog.
			ANAPYL	28-jan-1993	ES	3.5	0.5	UGL	LT		GO
			ANTRC	28-jan-1993	ES	3.5	0.5	UGL	LT		GO
			B2CEXM	28-jan-1993	ES	3.5	1.5	UGL	LT		GO
			B2CIPE	28-jan-1993	ES	3.5	5.3	UGL	LT		GO
			B2CLEE	28-jan-1993	ES	3.5	1.9	UGL	LT		GO
			B2EHP	28-jan-1993	ES	3.5	4.8	UGL	LT		GO
			BAANTR	28-jan-1993	ES	3.5	1.6	UGL	LT		GO
			BAPYR	28-jan-1993	ES	3.5	4.7	UGL	LT		GO
			BBFANT	28-jan-1993	ES	3.5	5.4	UGL	LT	_	GO
			BBHC	28-jan-1993	ES	3.5	4	UGL	ND	R	GO
			BBZP	28-jan-1993	ES	3.5	3.4	UGL	LT	_	GO
			BENSLF	28-jan-1993	ES	3.5	9.2	UGL	ND	R	GO
			BENZID	28-jan-1993	ES	3.5	10	UGL	ND	R	GO
			BENZOA	28-jan-1993	ES	3.5	13	UGL	LT		GO
			BGHIPY	28-jan-1993	ES	3.5	6.1	UGL	LT		GO
			BKFANT	28-jan-1993	ES	3.5	0.87	UGL	LT		GO
			BZALC	28-jan-1993	ES	3.5	0.72	UGL	LT	n	GO
			CARBAZ	28-jan-1993	ES	3.5	1.5	UGL	ND	R	GO
			CHRY	28-jan-1993	ES	3.5	2.4	UGL UGL	LT LT		GO GO
			CL6BZ	28-jan-1993	ES	3.5	1.6 8.6	UGL	LT		GO
			CL6CP	28-jan-1993	ES	3.5 3.5	1.5	UGL	LT		GO
			CL6ET	28-jan-1993	ES ES	3.5 3.5	6.5	UGL	LT		GO
			DBAHA	28-jan-1993	ES	3.5	4	UGL	ND	R	GO
			DBHC DBZFUR	28-jan-1993 28-jan-1993	ES	3.5	1.7	UGL	LT		GO
			DEP	28-jan-1993	ES	3.5	2	UGL	LT		GO
			DLDRN	28-jan-1993	ES	3.5	4.7	UGL	ND	R	GO
			DMP	28-jan-1993	ES	3.5	1.5	UGL	LT		GO
			DNBP	28-jan-1993	ES	3.5	3.7	UGL	LT		GO
			DNOP	28-jan-1993	ES	3.5	15	UGL	LT		GO
			ENDRN	28-jan-1993	ES	3.5	7.6	UGL	ND	R	GO
			ENDRNA	28-jan-1993	ES	3.5	8	UGL	ND	R	GO
			ENDRNK	28-jan-1993	ES	3.5	8	UGL	ND	R	GO
			ESFSO4	28-jan-1993	ES	3.5	9.2	UGL	ND	R	GO
			FANT	28-jan-1993	ES	3.5	3.3	UGL	LT		GO
			FLRENE	28-jan-1993	ES	3.5	3.7	UGL	LT	ъ.	GO
			GCLDAN	28-jan-1993	ES	3.5	5.1	UGL	ND	R	GO
			HCBD	28-jan-1993	ES	3.5	3.4	UGL	LT	n	GO
			HPCL	28-jan-1993	ES	3.5	2	UGL	ND	R R	GO GO
			HPCLE	28-jan-1993	ES	3.5	5	UGL UGL	ND LT	K	GO
			ICDPYR	28-jan-1993	ES	3.5 3.5	8.6 4.8		LT		GO
			ISOPHR	28-jan-1993	ES	3.5 3.5		UGL	ND	R	GO
			LIN	28-jan-1993	ES	3.5 3.5	5.1	UGL	ND	R	GO
			MEXCLR	28-jan-1993 28-jan-1993	ES ES	3.5	0.5	UGL	LT		GO
			NAP NB	28-jan-1993	ES	3.5	0.5	UGL	LT		GO
			NNDMEA	28-jan-1993	ES	3.5	2	UGL	ND	R	GO
			NNDNPA	28-jan-1993	ES	3.5	4.4	UGL	LT		GO
			NNDPA NNDPA	28-jan-1993 28-jan-1993	ES	3.5	3	UGL	LT		GO
11/17/T T	MW002	UM 18	PCB016	28-jan-1993	ES	3.5	21	UGL	ND	R	GO
WELL	IVI VV UUZ	OMITO	PCB010 PCB221	28-jan-1993	ES	3.5	21	UGL	ND	R	GO
			PCB232	28-jan-1993	ES	3.5	21	UGL	ND	R	GO
			PCB242	28-jan-1993	ES	3.5	30	UGL	ND	R	GO
			PCB248	28-jan-1993	ES	3.5	30	UGL	ND	R	GO
			PCB254	28-jan-1993	ES	3.5	36	UGL	ND	R	GO
			PCB260	28-jan-1993	ES	3.5	36	UGL	ND	R	GO
			PCP	28-jan-1993	ES	3.5	18	UGL	LT		GO

				Maximum: X:	333322	Y: 4707375	
Site		Meth	od				** *:
Type	Site ID	Code		Sample Date	Lab	Depth	Unit Meas Flag Value Meas. Bool. Code Prog.
			PHANTR	28-jan-1993	ES	2.5	A.C. 1101
			PHENOL	28-jan-1993	ES	3.5	0.5 UGL LT GO
			PPDDD	28-jan-1993	ES	3.5 3.5	9.2 UGL LT GO
			PPDDE	28-jan-1993	ES	3.5	4 UGL ND R GO
			PPDDT	28-jan-1993	ES	3.5	4.7 UGL ND R GO
			PYR	28-jan-1993	ES	3.5 3.5	9.2 UGL ND R GO
			TXPHEN	28-jan-1993	ES	3.5	2.8 UGL LT GO 36 UGL ND R GO
WELL	MW002	UM20		28-jan-1993	ES	3.5	
			112TCE	28-jan-1993	ES	3.5	4.0 77.07
			11DCE	28-jan-1993	ES	3.5	0.5 11.01
			11DCLE	28-jan-1993	ES	3.5	
			12DCE	28-jan-1993	ES	3.5	# ****
			12DCLE	28-jan-1993	ES	3.5	0.0
			12DCLP	28-jan-1993	ES	3.5	0.5 UGL LT GO 0.5 UGL LT GO
			2CLEVE	28-jan-1993	ES	3.5	0.71 UGL LT GO
			ACET	28-jan-1993	ES	3.5	13 UGL LT GO
			ACROLN	28-jan-1993	ES	3.5	100 UGL ND R GO
			ACRYLO	28-jan-1993	ES	3.5	100 UGL ND R GO
			BRDCLM	28-jan-1993	ES	3.5	0.59 UGL LT GO
			C13DCP	28-jan-1993	ES	3.5	0.58 UGL LT GO
			C2AVE	28-jan-1993	ES	3.5	8.3 UGL LT GO
			C2H3CL	28-jan-1993	ES	3.5	2.6 UGL LT GO
			C2H5CL	28-jan-1993	ES	3.5	1.9 UGL LT GO
			C6H6	28-jan-1993	ES	3.5	0.5 UGL LT GO
			CCL3F	28-jan-1993	ES	3.5	1.4 UGL LT GO
			CCL4	28-jan-1993	ES	3.5	0.58 UGL LT GO
			CH2CL2	28-jan-1993	ES	3.5	2.3 UGL LT GO
			CH3BR	28-jan-1993	ES	3.5	5.8 UGL LT GO
			CH3CL	28-jan-1993	ES	3.5	3.2 UGL LT GO
			CHBR3	28-jan-1993	ES	3.5	2.6 UGL LT GO
			CHCL3 CL2BZ	28-jan-1993	ES	3.5	0.5 UGL LT GO
			CLC6H5	28-jan-1993	ES	3.5	10 UGL ND R GO
			CS2	28-jan-1993	ES	3.5	0.5 UGL LT GO
			DBRCLM	28-jan-1993 28-jan-1993	ES	3.5	0.5 UGL LT GO
			ETC6H5	28-jan-1993 28-jan-1993	ES ES	3.5	0.67 UGL LT GO
			MEC6H5	28-jan-1993	ES	3.5 3.5	0.5 UGL LT GO
			MEK	28-jan-1993	ES	3.5	0.5 UGL LT GO
			MIBK	28-jan-1993	ES	3.5	6.4 UGL LT GO 3 UGL LT GO
			MNBK	28-jan-1993	ES	3.5	
			STYR	28-jan-1993	ES	3.5	0.5 1101 100
			T13DCP	28-jan-1993	ES	3.5	
			TCLEA	28-jan-1993	ES	3.5	
WELL	MW002	UM2 0	TCLEE	28-jan-1993	ES	3.5	0.51 UGL LT GO 1.6 UGL LT GO
			TRCLE	28-jan-1993	ES	3.5	1.7 UGL GO
			XYLEN	28-jan-1993	ES	3.5	0.84 UGL LT GO
WELL	MW004	00	OILGR	28-jan-1993	ES	6.5	297 UGL GO
			TPHC	28-jan-1993	ES	6.5	182 UGL LT GO
WELL	MW004	SB01	HG	28-jan-1993	ES	6.5	0.243 UGL LT GO
WELL	MW004	SD09	TL	28-jan-1993	ES	6.5	6.99 UGL LT GO
WELL	MW004	SD20	PB	28-jan-1993	ES	6.5	1.26 UGL LT GO
WELL	MW004	SD21	SE	28-jan-1993	ES	6.5	3.02 UGL LT GO
WELL	MW004	SD22	AS	28-jan-1993	ES	6.5	2.54 UGL LT GO
WELL	MW004	SS 10	AG	28-jan-1993	ES	6.5	4.6 UGL LT GO
			AL	28-jan-1993	ES	6.5	141 UGL LT GO
			BA	28-jan-1993	ES	6.5	44.3 UGL GO
			BE	28-jan-1993	ES	6.5	5 UGL LT GO

				Manian. 11.00		. , , , , , , , , , , , , , , , , , , ,					
Site		Method	1					Unit	Meas	Flag	
Type	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	Depth	<u>Value</u>	Mcas.	Bool.	Code	Prog.
				-0 ! 1000	F.C		232000	UGL			GO
			CA	28-jan-1993	ES	6.5	4.01	UGL	LT		GO
			CD	28-jan-1993	ES	6.5	25	UGL	LT		GO
			CO	28-jan-1993	ES	6.5	6.02	UGL	LT		GO
			CR	28-jan-1993	ES	6.5		UGL	LT		GO
			CU	28-jan-1993	ES	6.5	8.09		LI		GO
			FE	28-jan-1993	ES	6.5	138 747	UGL UGL			GO
			K	28-jan-1993	ES	6.5	55400	UGL			GO
			MG	28-jan-1993	ES	6.5		UGL			GO
			MN	28-jan-1993	ES	6.5	8.97	UGL			GO
			NA	28-jan-1993	ES	6.5	129000		LT		GO
			NI	28-jan-1993	ES	6.5	34.3	UGL UGL	LT		GO
			SB	28-jan-1993	ES	6.5	38		Li		GO
			V	28-jan-1993	ES	6.5	11.8	UGL			GO
			ZN	28-jan-1993	ES	6.5	90.4	UGL	• •		
WELL	MW004	TF 18	CYN	28-jan-1993	ES	6.5	2.5	UGL	LT		GO
WELL	MW004	TF22	NIT	28-jan-1993	ES	6.5	36.2	UGL			GO
WELL	MW004	TT10	CL	28-jan-1993	ES	6.5	88000	UGL			GO
			SO4	28-jan-1993	ES	6.5	400000	UGL			GO
WELL	MW004	UH02	PCB016	28-jan-1993	ES	6.5	0.16	UGL	LT		GO
			PCB221	28-jan-1993	ES	6.5	0.16	UGL	ND	R	GO
			PCB232	28-jan-1993	ES	6.5	0.16	UGL	ND	R	GO
			PCB242	28-jan-1993	ES	6.5	0.19	UGL	ND	R	GO
			PCB248	28-jan-1993	ES	6.5	0.19	UGL	ND	R	GO
			PCB254	28-jan-1993	ES	6.5	0.19	UGL	ND	R	GO
			PCB260	28-jan-1993	ES	6.5	0.19	UGL	LT		GO GO
WELL	MW004	UH13	ABHC	28-jan-1993	ES	6.5	0.0385	UGL	LT	D	
WELL	MW004	UH13	ACLDAN	28-jan-1993	ES	6.5	0.075	UGL	ND	R	GO
			AENSLF	28-jan-1993	ES	6.5	0.023	UGL	LT		GO
			ALDRN	28-jan-1993	ES	6.5	0.0918	UGL	LT		GO
			ввнс	28-jan-1993	ES	6.5	0.024	UGL	LT		GO
			BENSLF	28-jan-1993	ES	6.5	0.023	UGL	LT		GO
			DBHC	28-jan-1993	ES	6.5	0.0293	UGL	LT		GO GO
			DLDRN	28-jan-1993	ES	6.5	0.024	UGL	LT		
			ENDRN	28-jan-1993	ES	6.5	0.0238	UGL	LT		GO
			ENDRNA	28-jan-1993	ES	6.5	0.0285	UGL	LT	R	GO GO
			ENDRNK	28-jan-1993	ES	6.5	0.0285	UGL	ND	K	GO
			ESFSO4	28-jan-1993	ES	6.5	0.0786	UGL	LT	R	
			GCLDAN	28-jan-1993	ES	6.5	0.075	UGL	ND	K	GO GO
			HPCL	28-jan-1993	ES	6.5	0.0423	UGL	LT		GO
			HPCLE	28-jan-1993	ES	6.5	0.0245	UGL	LT LT		GO
			ISODR	28-jan-1993	ES	6.5	0.0562	UGL			GO
			LIN	28-jan-1993	ES	6.5	0.0507	UGL	LT LT		GO
			MEXCLR	28-jan-1993	ES	6.5					GO
			PPDDD	28-jan-1993	ES	6.5	0.0233	UGL	LT LT		GO
			PPDDE	28-jan-1993	ES	6.5	0.027	UGL UGL	LT		GO
			PPDDT	28-jan-1993	ES	6.5	0.034	UGL			GO
			TXPHEN	28-jan-1993	ES	6.5	1.35		LT		GO
WELL	MW004	UM18	124TCB	28-jan-1993	ES	6.5	1.8	UGL	LT		GO
			12DCLB	28-jan-1993	ES	6.5	1.7	UGL	LT	R	GO
			12DPH	28-jan-1993	ES	6.5	2	UGL UGL	ND LT	K	GO
			13DCLB	28-jan-1993	ES	6.5	1.7		LT		GO
			14DCLB	28-jan-1993	ES	6.5	1.7	UGL UGL	LT		GO
			245TCP	28-jan-1993	ES	6.5	5.2 4.2	UGL	LT		GO
			246TCP	28-jan-1993	ES	6.5 6.5	2.9	UGL	LT		GO
			24DCLP	28-jan-1993	ES	6.5 6.5	5.8	UGL	LT		GO
			24DMPN	28-jan-1993	ES	6.5 6.5	21	UGL	LT		GO
			24DNP	28-jan-1993	ES	0)	21	OGL			

				Maximum: X:	333322	Y: 4707375					
Site		Meth	od								
Туре	Site ID	Code		Sample Date	Lab	Depth	Value	Unit <u>Meas.</u>		Flag	
					1210	<u> Берін</u>	VAIU	Meas.	BOOL.	Coa	e Prog.
			24DNT	28-jan-1993	ES	6.5	4.5	UGL	LT		GO
			26DNT	28-jan-1993	ES	6.5	0.79		LT		GO
			2CLP	28-jan-1993	ES	6.5	0.99	UGL	LT		GO
			2CNAP	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			2MNAP	28-jan-1993	ES	6.5	1.7	UGL	LT		GO
			2MP 2NANIL	28-jan-1993	ES	6.5	3.9		LT		GO
			2NAINIL 2NP	28-jan-1993	ES	6.5	4.3		LT		GO
			33DCBD	28-jan-1993 28-jan-1993	ES	6.5	3.7		LT		GO
			3NANIL	28-jan-1993	ES ES	6.5	12		LT		GO
			46DN2C	28-jan-1993	ES	6.5 6.5	4.9		LT		GO
			4BRPPE	28-jan-1993	ES	6.5	17 4.2		LT		GO
			4CANIL	28-jan-1993	ES	6.5	7.3		LT LT		GO
			4CL3C	28-jan-1993	ES	6.5	4		LT		GO GO
			4CLPPE	28-jan-1993	ES	6.5	5.1		LT		GO
			4MP	28-jan-1993	ES	6.5	0.52		LT		GO
			4NANIL	28-jan-1993	ES	6.5	5.2	UGL	LT		GO
			4NP	28-jan-1993	ES	6.5	12	UGL	LT		GO
			ABHC	28-jan-1993	ES	6.5	4	UGL	ND	R	GO
WELL	MW004	IIM 10	ACLDAN	28-jan-1993	ES	6.5	5.1	UGL	ND	R	GO
W LILL	W W 004	UM 18	AENSLF	28-jan-1993	ES	6.5	9.2	UGL	ND	R	GO
			ALDRN ANAPNE	28-jan-1993	ES	6.5	4.7	UGL	ND	R	GO
			ANAPYL	28-jan-1993 28-jan-1993	ES	6.5	1.7	UGL	LT		GO
			ANTRC	28-jan-1993	ES ES	6.5	0.5	UGL	LT		GO
			B2CEXM	28-jan-1993	ES ES	6.5 6.5	0.5	UGL	LT		GO
			B2CIPE	28-jan-1993	ES	6.5	1.5 5.3	UGL	LT		GO
			B2CLEE	28-jan-1993	ES	6.5	1.9	UGL UGL	LT LT		GO
			B2EHP	28-jan-1993	ES	6.5	4.8	UGL	LT		GO
			BAANTR	28-jan-1993	ES	6.5	1.6	UGL	LT		GO GO
			BAPYR	28-jan-1993	ES	6.5	4.7	UGL	LT		GO
			BBFANT	28-jan-1993	ES	6.5	5.4	UGL	LT		GO
			BBHC	28-jan-1993	ES	6.5	4	UGL	ND	R	GO
			BBZP	28-jan-1993	ES	6.5	3.4	UGL	LT		GO
			BENSLF	28-jan-1993	ES	6.5	9.2	UGL	ND	R	GO
			BENZID	28-jan-1993	ES	6.5	10	UGL	ND	R	GO
			BENZOA	28-jan-1993	ES	6.5	13	UGL	LT		GO
			BGHIPY BKFANT	28-jan-1993	ES	6.5	6.1	UGL	LT		GO
			BZALC	28-jan-1993 28-jan-1993	ES ES	6.5	0.87	UGL	LT		GO
			CARBAZ	28-jan-1993	ES ES	6.5 6.5	0.72	UGL	LT	_	GO
			CHRY	28-jan-1993	ES	6.5	1.5 2.4	UGL	ND	R	GO
			CL6BZ	28-jan-1993	ES	6.5	1.6	UGL UGL	LT		GO
			CL6CP	28-jan-1993	ES	6.5	8.6	UGL	LT LT		GO
			CL6ET	28-jan-1993	ES	6.5	1.5	UGL	LT		GO GO
			DBAHA	28-jan-1993	ES	6.5	6.5	UGL	LT		GO
			DBHC	28-jan-1993	ES	6.5	4	UGL	ND	R	GO
			DBZFUR	28-jan-1993	ES	6.5	1.7	UGL	LT	21	GO
			DEP	28-jan-1993	ES	6.5		UGL	LT		GO
			DLDRN	28-jan-1993	ES	6.5		UGL	ND	R	GO
			DMP	28-jan-1993	ES	6.5		UGL	LT		GO
			DNBP	28-jan-1993	ES	6.5		UGL	LT		GO
			DNOP	28-jan-1993	ES	6.5		UGL	LT		GO
			ENDRN ENDRNA	28-jan-1993	ES	6.5			ND	R	GO
			ENDRNK	28-jan-1993	ES	6.5			ND	R	GO
			ESFSO4	28-jan-1993 28-jan-1993	ES	6.5			ND		GO
			LUI DUT	20 - Jan - 1993	ES	6.5	9.2	UGL	ND	R	GO

				17144111141111							
Site		Method	i					Unit	Meas	Flag	
Туре	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	<u>Value</u>	Meas.	Bool.	Code	Prog.
1112	<u> </u>			<u> </u>							
			FANT	28-jan-1993	ES	6.5	3.3	UGL	LT		GO
			FLRENE	28-jan-1993	ES	6.5	3.7	UGL	LT	-	GO
			GCLDAN	28-jan-1993	ES	6.5	5.1	UGL	ND	R	GO
			HCBD	28-jan-1993	ES	6.5	3.4	UGL	LT	n	GO
			HPCL	28-jan-1993	ES	6.5	2	UGL	ND	R R	GO GO
			HPCLE	28-jan-1993	ES	6.5	5	UGL	ND LT	K	GO
			ICDPYR	28-jan-1993	ES	6.5	8.6 4.8	UGL UGL	LT		GO
			ISOPHR	28-jan-1993	ES	6.5	4.0	UGL	ND	R	GO
			LIN	28-jan-1993	ES	6.5 6.5	5.1	UGL	ND	R	GO
			MEXCLR	28-jan-1993	ES ES	6.5	0.5	UGL	LT	•	GO
			NAP	28-jan-1993		6.5	0.5	UGL	LT		GO
			NB	28-jan-1993	ES ES	6.5	2	UGL	ND	R	GO
			NNDMEA	28-jan-1993	ES	6.5	4.4	UGL	LT		GO
			NNDNPA	28-jan-1993	ES	6.5	3	UGL	LT		GO
		*** ***	NNDPA	28-jan-1993	ES	6.5	21	UGL	ND	R	GO
WELL	MW004	UM18	PCB016	28-jan-1993	ES	6.5	21	UGL	ND	R	GO
			PCB221	28-jan-1993	ES	6.5	21	UGL	ND	R	GO
			PCB232	28-jan-1993	ES	6.5	30	UGL	ND	R	GO
			PCB242 PCB248	28-jan-1993 28-jan-1993	ES	6.5	30	UGL	ND	R	GO
			PCB254 PCB254	28-jan-1993	ES	6.5	36	UGL	ND	R	GO
			PCB2.54 PCB260	28-jan-1993	ES	6.5	36	UGL	ND	R	GO
			PCP	28-jan-1993	ES	6.5	18	UGL	LT		GO
			PHANTR	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			PHENOL	28-jan-1993	ES	6.5	9.2	UGL	LT		GO
	-		PPDDD	28-jan-1993	ES	6.5	4	UGL	ND	R	GO
			PPDDE	28-jan-1993	ES	6.5	4.7	UGL	ND	R	GO
			PPDDT	28-jan-1993	ES	6.5	9.2	UGL	ND	R	GO
			PYR	28-jan-1993	ES	6.5	2.8	UGL	LT		GO
			TXPHEN	28-jan-1993	ES	6.5	36	UGL	ND	R	GO
WELL	MW004	UM 20	111TŒ	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			112TCE	28-jan-1993	ES	6.5	1.2	UGL	LT		GO
			11DCE	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			11DCLE	28-jan-1993	ES	6.5	0.68	UGL	LT		GO
			12DCE	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			12DCLE	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			12DCLP	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			2CLEVE	28-jan-1993	ES	6.5	0.71	UGL	LT		GO
			ACET	28-jan-1993	ES	6.5	13	UGL	LT	n	GO
			ACROLN	28-jan-1993	ES	6.5	100	UGL	ND	R	GO
			ACRYLO	28-jan-1993	ES	6.5	100	UGL	ND	R	GO
			BRDCLM	28-jan-1993	ES	6.5	0.59	UGL	LT		GO
			C13DCP	28-jan-1993	ES	6.5	0.58	UGL	LT		GO
			C2AVE	28-jan-1993	ES	6.5	8.3	UGL	LT		GO GO
			C2H3CL	28-jan-1993	ES	6.5	2.6 1.9	UGL UGL	LT LT		GO
			C2H5CL	28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			C6H6	28-jan-1993	ES	6.5	1.4	UGL	LT		GO
			CCL3F	28-jan-1993	ES ES	6.5 6.5	0.58	UGL	LT		GO
			CCL4	28-jan-1993	ES	6.5	2.3	UGL	LT		GO
			CH2CL2	28-jan-1993 28-jan-1993	ES	6.5	5.8	UGL	LT		GO
			CH3BR	28-jan-1993 28-jan-1993	ES	6.5	3.2	UGL	LT		GO
			CH3CL	28-jan-1993 28-jan-1993	ES	6.5	2.6	UGL	LT		GO
			CHBR3	28-jan-1993 28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			CHCL3 CL2BZ	28-jan-1993 28-jan-1993	ES	6.5	10	UGL	ND	R	GO
				28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			CLC6H5	28-jan-1993 28-jan-1993	ES	6.5	0.5	UGL	LT		GO
			CS2	20-jan-1993	س	U	0.0				

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

						2					
Site		Metho	d					Unit	Meas	Flag	
Type	Site ID	Code	Test Name	Sample Date	Lab	Depth	Value	Meas.	Bool.	Code Prog.	
											-
			DBRCLM	28-jan-1993	ES	6.5	0.67	UGL	LT	GO	
			ETC6H5	28-jan-1993	ES	6.5	0.5	UGL	LT	GO	
			MEC6H5	28-jan-1993	ES	6.5	0.5	UGL	LT	GO	
			MEK	28-jan-1993	ES	6.5	6.4	UGL	LT	GO	
			MIBK	28-jan-1993	ES	6.5	3	UGL	LT	GO	
			MNBK	28-jan-1993	ES	6.5	3.6	UGL	LT	GO	
			STYR	28-jan-1993	ES	6.5	0.5	UGL	LT	GO	
			T13DCP	28-jan-1993	ES	6.5	0.7	UGL	LT	GO	
			TCLEA	28-jan-1993	ES	6.5	0.51	UGL	LT	GO	
WELL	MW004	UM2 0	TCLEE	28-jan-1993	ES	6.5	1.6	UGL	LT	GO	
_			TRCLE	28-jan-1993	ES	6.5	0.5	UGL	LT	GO	
			XYLEN	28-jan-1993	ES	6.5	0.84	UGL	LT	GO	
WELL	MW010	00	OILGR	28-jan-1993	ES	4.6	359	UGL		GO	
			TPHC	28-jan-1993	ES	4.6	182	UGL	LT	GO	
WELL	MW 010	SB 01	HG	28-jan-1993	ES	4.6	0.243	UGL	LT	GO	
WELL	MW 010	SD09	TL	28-jan-1993	ES	4.6	6.99	UGL	LT	GO	
WELL	MW 010	SD2 0	PB	28-jan-1993	ES	4.6	1.26	UGL	LT	GO	
WELL	MW010	SD21	SE	28-jan-1993	ES	4.6	3.02	UGL	LT	GO	
WELL	MW010	SD22	AS	28-jan-1993	ES	4.6	2.54	UGL	LT	GO	
WELL	MW010	SS1 0	AG	28-jan-1993	ES	4.6	4.6	UGL	LT	GO	
			AL	28-jan-1993	ES	4.6	141	UGL	LT	GO	
			BA	28-jan-1993	ES	4.6	62.5	UGL		GO	
			BE	28-jan-1993	ES	4.6	5	UGL	LT	GO	
			CA	28-jan-1993	ES	4.6	189000	UGL		GO	
			CD	28-jan-1993	ES	4.6	4.01	UGL	LT	GO	
			co	28-jan-1993	ES	4.6	25	UGL	LT	GO	
			CR	28-jan-1993	ES	4.6	6.02	UGL	LT	GO	
			CU	28-jan-1993	ES	4.6	8.09	UGL	LT	GO	
			FE	28-jan-1993	ES	4.6	38.8	UGL	LT	GO	
			K	28-jan-1993	ES	4.6	2840	UGL		GO	
			MG	28-jan-1993	ES	4.6	60200	UGL		GO	
			MN	28-jan-1993	ES	4.6	4.98	UGL		GO	
			NA	28-jan-1993	ES	4.6	282000	UGL		GO	
			NI	28-jan-1993	ES	4.6	34.3	UGL	LT	GO	
			SB	28-jan-1993	ES	4.6	38	UGL	LT	GO	
			V	28-jan-1993	ES	4.6	11	UGL	LT	GO	
			ZN	28-jan-1993	ES	4.6	100	UGL		GO	
WELL	MW 010	TF 18	CYN	28-jan-1993	ES	4.6	2.5	UGL	LT	GO	
WELL	MW010	TF22	NIT	28-jan-1993	ES	4.6	42.3	UGL		GO	
WELL	MW010	TT 10	CL	28-jan-1993	ES	4.6	520000	UGL		GO	
			SO4	28-jan-1993	ES	4.6	145000	UGL		GO	
WELL	MW 010	UH 02	PCB016	28-jan-1993	ES	4.6	0.16	UGL	LT	GO	
			PCB221	28-jan-1993	ES	4.6	0.16	UGL	ND	R GO	
			PCB232	28-jan-1993	ES	4.6	0.16	UGL	ND	R GO	
			PCB242	28-jan-1993	ES	4.6		UGL	ND	R GO	
			PCB248	28-jan-1993	ES	4.6	0.19	UGL	ND	R GO	
			PCB254	28-jan-1993	ES	4.6	0.19	UGL	ND	R GO	
			PCB260	28-jan-1993	ES	4.6		UGL	LT	GO	
WELL	MW 010	UH13	ABHC	28-jan-1993	ES	4.6		UGL	LT	GO	
WELL	MW010	UH13	ACLDAN	28-jan-1993	ES	4.6		UGL	ND	R GO	
			AENSLF	28-jan-1993	ES	4.6		UGL	LT	GO	
			ALDRN	28-jan-1993	ES	4.6		UGL	LT	GO	
			BBHC	28-jan-1993	ES	4.6		UGL	LT	GO	
			BENSLF	28-jan-1993	ES	4.6		UGL	LT	GO	
			DBHC	28-jan-1993	ES	4.6		UGL	LT	GO	
			DLDRN	28-jan-1993	ES	4.6		UGL	LT	GO	
			ENDRN	28-jan-1993	ES	4.6		UGL	LT	GO	

Site		Method						Unit	Meas	Flag	
Турс	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	Value	Meas.	Bool.	Code	Prog.
			ENDRNA	28-jan-1993	ES	4.6	0.0285	UGL	LT		GO
			ENDRNK	28-jan-1993	ES	4.6	0.0285	UGL	ND	R	GO
			ESFSO4	28-jan-1993	ES	4.6	0.0786	UGL	LT		GO
			GCLDAN	28-jan-1993	ES	4.6	0.075	UGL	ND	R	GO
			HPCL	28-jan-1993	ES	4.6	0.0423	UGL	LT		GO
			HPCLE	28-jan-1993	ES	4.6	0.0245	UGL	LT		GO
			ISODR	28-jan-1993	ES	4.6	0.0562	UGL	LT		GO
			LIN	28-jan-1993	ES	4.6	0.0507	UGL	LT		GO
			MEXCLR	28-jan-1993	ES	4.6	0.057	UGL	LT		GO
			PPDDD	28-jan-1993	ES	4.6	0.0233	UGL	LT		GO
			PPDDE	28-jan-1993	ES	4.6	0.027	UGL	LT		GO
			PPDDT	28-jan-1993	ES	4.6	0.034	UGL	LT		GO
			TXPHEN	28-jan-1993	ES	4.6	1.35	UGL	LT		GO
WELL	MW010	UM18	124TCB	28-jan-1993	ES	4.6	1.8	UGL	LT		GO
WELL	141 44 020	0	12DCLB	28-jan-1993	ES	4.6	1.7	UGL	LT		GO
			12DPH	28-jan-1993	ES	4.6	2	UGL	ND	R	GO
			13DCLB	28-jan-1993	ES	4.6	1.7	UGL	LT		GO
			14DCLB	28-jan-1993	ES	4.6	1.7	UGL	LT		GO
			245TCP	28-jan-1993	ES	4.6	5.2	UGL	LT		GO
			246TCP	28-jan-1993	ES	4.6	4.2	UGL	LT		GO
			24DCLP	28-jan-1993	ES	4.6	2.9	UGL	LT		GO
			24DMPN	28-jan-1993	ES	4.6	5.8	UGL	LT		GO
			24DNP	28-jan-1993	ES	4.6	21	UGL	LT		GO
			24DNT	28-jan-1993	ES	4.6	4.5	UGL	LT		GO
			26DNT	28-jan-1993	ES	4.6	0.79	UGL	LT		GO
			2CLP	28-jan-1993	ES	4.6	0.99	UGL	LT		GO
			2CNAP	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			2MNAP	28-jan-1993	ES	4.6	1.7	UGL	LT		GO
			2MP	28-jan-1993	ES	4.6	3.9	UGL	LT		GO
			2NANIL	28-jan-1993	ES	4.6	4.3	UGL	LT		GO
			2NP	28-jan-1993	ES	4.6	3.7	UGL	LT		GO
			33DCBD	28-jan-1993	ES	4.6	12	UGL	LT		GO
			3NANIL	28-jan-1993	ES	4.6	4.9	UGL	LT		GO
			46DN2C	28-jan-1993	ES	4.6	17	UGL	LT		GO
			4BRPPE	28-jan-1993	ES	4.6	4.2	UGL	LT		GO
			4CANIL	28-jan-1993	ES	4.6	7.3	UGL	LT		GO
			4CL3C	28-jan-1993	ES	4.6	4	UGL	LT		GO
			4CLPPE	28-jan-1993	ES	4.6	5.1	UGL	LT LT		GO GO
			4MP	28-jan-1993	ES	4.6	0.52	UGL UGL	LT		GO
			4NANIL	28-jan-1993	ES	4.6	5.2 12	UGL	LT		GO
			4NP	28-jan-1993	ES	4.6 4.6	4	UGL	ND	R	GO
			ABHC	28-jan-1993	ES	4.6	5.1	UGL	ND	R	GO
		*****	ACLDAN	28-jan-1993	ES ES	4.6	9.2	UGL	ND	R	GO
WELL	MW010	UM 18	AENSLF	28-jan-1993	ES	4.6	4.7	UGL	ND	R	GO
			ALDRN	28 – jan – 1993	ES	4.6	1.7	UGL	LT		GO
			ANAPNE	28-jan-1993 28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			ANAPYL	• -	ES	4.6	0.5	UGL	LT		GO
			ANTRC B2CEXM	28-jan-1993 28-jan-1993	ES	4.6	1.5	UGL	LT		GO
			B2CIPE	28-jan-1993 28-jan-1993	ES	4.6	5.3	UGL	LT		GO
			B2CLEE	28-jan-1993	ES	4.6	1.9	UGL	LT		GO
			B2EHP	28-jan-1993	ES	4.6	4.8	UGL	LT		GO
			BAANTR	28-jan-1993	ES	4.6	1.6	UGL	LT		GO
			BAPYR	28-jan-1993	ES	4.6	4.7	UGL	LT		GO
			BBFANT	28-jan-1993	ES	4.6	5.4	UGL	LT		GO
			BBHC	28-jan-1993	ES	4.6	4	UGL	ND	R	GO
			BBZP	28-jan-1993	ES	4.6	3.4	UGL	LT		GO
				-							

Site		Method						Unit	Mcas	Flag	
Турс	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	Depth	Value		Bool.		Prog.
			BENSLF	28-jan-1993	ES	4.6	9.2	UGL	ND	R	GO
			BENZID	28-jan-1993	ES	4.6	10	UGL	ND	R	GO
			BENZOA	28-jan-1993	ES	4.6	13	UGL	LT		GO
			BGHIPY	28-jan-1993	ES	4.6	6.1	UGL	LT		GO
			BKFANT	28-jan-1993	ES	4.6	0.87	UGL	LT		GO
			BZALC	28-jan-1993	ES	4.6	0.72	UGL	LT		GO
			CARBAZ	28-jan-1993	ES	4.6	1.5	UGL	ND	R	GO
			CHRY	28-jan-1993	ES	4.6	2.4	UGL	LT		GO
			CL6BZ	28-jan-1993	ES	4.6	1.6	UGL	LT		GO
			CL6CP CL6ET	28-jan-1993	ES ES	4.6	8.6	UGL	LT		GO
			DBAHA	28-jan-1993 28-jan-1993	ES	4.6 4.6	1.5 6.5	UGL UGL	LT		GO
			DBHC	28-jan-1993	ES	4.6	4	UGL	LT ND	R	GO GO
			DBZFUR	28-jan-1993	ES	4.6	1.7	UGL	LT	K	GO
			DEP	28-jan-1993	ES	4.6	2	UGL	LT		GO
			DLDRN	28-jan-1993	ES	4.6	4.7	UGL	ND	R	GO
			DMP	28-jan-1993	ES	4.6	1.5	UGL	LT		GO
			DNBP	28-jan-1993	ES	4.6	3.7	UGL	LT		GO
			DNOP	28-jan-1993	ES	4.6	15	UGL	LT		GO
			ENDRN	28-jan-1993	ES	4.6	7.6	UGL	ND	R	GO
			ENDRNA	28-jan-1993	ES	4.6	8	UGL	ND	R	GO
			ENDRNK	28-jan-1993	ES	4.6	8	UGL	ND	R	GO
			ESFSO4	28-jan-1993	ES	4.6	9.2	UGL	ND	R	GO
			FANT	28-jan-1993	ES	4.6	3.3	UGL	LT		GO
			FLRENE GCLDAN	28-jan-1993	ES	4.6	3.7	UGL	LT	ъ.	GO
			HCBD	28-jan-1993 28-jan-1993	ES ES	4.6 4.6	5.1 3.4	UGL UGL	ND	R	GO
			HPCL	28-jan-1993	ES	4.6	2	UGL	LT ND	R	GO GO
			HPCLE	28-jan-1993	ES	4.6	5	UGL	ND	R	GO
			ICDPYR	28-jan-1993	ES	4.6	8.6	UGL	LT		GO
			ISOPHR	28-jan-1993	ES	4.6	4.8	UGL	LT		GO
			LIN	28-jan-1993	ES	4.6	4	UGL	ND	R	GO
			MEXCLR	28-jan-1993	ES	4.6	5.1	UGL	ND	R	GO
			NAP	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			NB	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			NNDMEA	28-jan-1993	ES	4.6	2	UGL	ND	R	GO
			NNDNPA	28-jan-1993	ES	4.6	4.4	UGL	LT		GO
MARKET I	N431/010	111410	NNDPA	28-jan-1993	ES	4.6	3	UGL	LT		GO
WELL	MW010	UM18	PCB016	28-jan-1993	ES	4.6	21	UGL	ND	R	GO
			PCB221 PCB232	28-jan-1993 28-jan-1993	ES ES	4.6 4.6	21	UGL	ND	R	GO
			PCB242	28-jan-1993	ES	4.6	21 30	UGL UGL	ND	R	GO
			PCB248	28-jan-1993	ES	4.6	30	UGL	ND ND	R R	GO GO
			PCB254	28-jan-1993	ES	4.6	36	UGL	ND	R	GO
			PCB260	28-jan-1993	ES	4.6	36	UGL	ND	R	GO
			PCP	28-jan-1993	ES	4.6	18	UGL	LT	• • •	GO
			PHANTR	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			PHENOL	28-jan-1993	ES	4.6	9.2	UGL	LT		GO
			PPDDD	28-jan-1993	ES	4.6	4	UGL	ND	R	GO
			PPDDE	28-jan-1993	ES	4.6	4.7	UGL	ND	R	GO
			PPDDT	28-jan-1993	ES	4.6	9.2	UGL	ND	R	GO
			PYR	28-jan-1993	ES	4.6	2.8	UGL	LT		GO
337E7 I	MANDO	111400	TXPHEN	28-jan-1993	ES	4.6	36	UGL	ND	R	GO
WELL	MW010	UM2 0	111TCE	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			112TCE	28-jan-1993	ES	4.6	1.2	UGL	LT		GO
			11DCE	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			11DCLE	28-jan-1993	ES	4.6	0.68	UGL	LT		GO

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

				Maximum. 72.33	3322 1	1.4707575					
Site		Method	1					Unit	Meas	Flag	_
Турс	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	<u>Value</u>	Meas.	Bool.	Code	Prog.
			12DCE	28-jan-1993	ES	4.6	1.2	UGL			GO
			12DCLE	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			12DCLP	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			2CLEVE	28-jan-1993	ES	4.6	0.71	UGL	LT		GO
			ACET	28-jan-1993	ES	4.6	13	UGL	LT		GO
			ACROLN	28-jan-1993	ES	4.6	100	UGL	ND	R	GO
			ACRYLO	28-jan-1993	ES	4.6	100	UGL	ND	R	GO
			BRDCLM	28-jan-1993	ES	4.6	0.59	UGL	LT		GO
			C13DCP	28-jan-1993	ES	4.6	0.58	UGL	LT		GO
			C2AVE	28-jan-1993	ES	4.6	8.3	UGL	LT		GO
				28-jan-1993	ES	4.6	2.6	UGL	LT		GO
			C2H3CL			4.6	1.9	UGL	LT		GO
			C2H5CL	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			C6H6	28-jan-1993	ES		1.4	UGL	LT		GO
			CCL3F	28-jan-1993	ES	4.6	0.58	UGL	LT		GO
			CCL4	28-jan-1993	ES	4.6		UGL	LT		GO
			CH2CL2	28-jan-1993	ES	4.6	2.3				GO
			CH3BR	28-jan-1993	ES	4.6	5.8	UGL	LT		
			CH3CL	28-jan-1993	ES	4.6	3.2	UGL	LT		GO
			CHBR3	28-jan-1993	ES	4.6	2.6	UGL	LT		GO
			CHCL3	28-jan-1993	ES	4.6	0.5	UGL	LT	n	GO
			CL2BZ	28-jan-1993	ES	4.6	10	UGL	ND	R	GO
			CLC6H5	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			CS2	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			DBRCLM	28-jan-1993	ES	4.6	0.67	UGL	LT		GO
			ETC6H5	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			MEC6H5	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			MEK	28-jan-1993	ES	4.6	6.4	UGL	LT		GO
			MIBK	28-jan-1993	ES	4.6	3	UGL	LT		GO
			MNBK	28-jan-1993	ES	4.6	3.6	UGL	LT		GO
			STYR	28-jan-1993	ES	4.6	0.5	UGL	LT		GO
			T13DCP	28-jan-1993	ES	4.6	0.7	UGL	LT		GO
			TCLEA	28-jan-1993	ES	4.6	0.51	UGL	LT		GO
WELL	MW010	UM2 0	TCLEE	28-jan-1993	ES	4.6	1.6	UGL	LT		GO
			TRCLE	28-jan-1993	ES	4.6	0.62	UGL			GO
			XYLEN	28-jan-1993	ES	4.6	0.84	UGL	LT		GO
WELL	MW014	00	OILGR	27-jan-1993	ES	6.5	195	UGL	LT		GO
			TPHC	27-jan-1993	ES	6.5	195	UGL	LT		GO
WELL	MW014	SB01	HG	27-jan-1993	ES	6.5	0.243	UGL	LT		GO
WELL	MW014	SD09	TL	27-jan-1993	ES	6.5	6.99	UGL	LT		GO
WELL	MW014	SD20	PB	27-jan-1993	ES	6.5	1.26	UGL	LT		GO
WELL	MW014	SD21	SE	27-jan-1993	ES	6.5	3.02	UGL	LT		GO
WELL	MW014	SD22	AS	27-jan-1993	ES	6.5	2.54	UGL	LT		GO
WELL	MW014	SS1 0	AG	27-jan-1993	ES	6.5	4.6	UGL	LT		GO
WELL			AL	27-jan-1993	ES	6.5	141	UGL	LT		GO
			BA	27-jan-1993	ES	6.5	162	UGL			GO
			BE	27-jan-1993	ES	6.5	5	UGL	LT		GO
			CA	27-jan-1993	ES	6.5	229000	UGL			GO
			CD	27-jan-1993	ES	6.5	4.01	UGL	LT		GO
			co	27-jan-1993	ES	6.5	25	UGL	LT		GO
			CR	27-jan-1993	ES	6.5	6.02	UGL	LT		GO
			CU	27-jan-1993	ES	6.5	8.09	UGL	LT		GO
			FE	27-jan-1993	ES	6.5	38.8	UGL	LT		GO
			K	27-jan-1993	ES	6.5	3460	UGL			GO
			MG	27-jan-1993	ES	6.5	152000	UGL			GO
			MN	27-jan-1993	ES	6.5	14	UGL			GO
			NA	27-jan-1993	ES	6.5	309000	UGL			GO
			NI	27-jan-1993	ES	6.5	34.3	UGL	LT		GO
			747	Li jun 1773	~~	212	2				

				Maximum: X:3	33322	Y: 4707375					
Site Type	Site ID	Metho Code	d <u>Test Name</u>	Sample Date	<u>Lab</u>	<u>Depth</u>	Value	Unit <u>Meas.</u>	Meas Bool.	Flag Code	Prog.
			SB	27-jan-1993	ES	6.5	38	UGL	LT		GO
			V	27-jan-1993	ES	6.5	15.2	UGL			GO
			ZN	27-jan-1993	ES	6.5	26.3	UGL			GO
WELL	MW014	TF 18	CYN	27-jan-1993	ES	6.5	2.5	UGL	LT		GO
WELL	MW014	TF2 2	NIT	27-jan-1993	ES	6.5	46.7	UGL			GO
WELL	MW014	TT 10	CL	27-jan-1993	ES	6.5	1000000	UGL			GO
			SO4	27-jan-1993	ES	6.5	142000	UGL			GO
WELL	MW014	UH02	PCB016	27-jan-1993	ES	6.5	0.16	UGL	LT		GO
			PCB221	27-jan-1993	ES	6.5	0.16	UGL	ND	R	GO
			PCB232	27-jan-1993	ES	6.5	0.16	UGL	ND	R	GO
			PCB242	27-jan-1993	ES	6.5	0.19	UGL	ND	R	GO
			PCB248	27-jan-1993	ES	6.5	0.19	UGL	ND	R	GO
			PCB254 PCB260	27-jan-1993	ES ES	6.5 6.5	0.19	UGL UGL	ND	R	GO
WELL	MW014	UH13	ABHC	27-jan-1993 27-jan-1993	ES	6.5	0.19 0.0385	UGL	LT LT		GO
WELL	MW014	UH13	ACLDAN	27-jan-1993 27-jan-1993	ES	6.5	0.0363	UGL	ND	R	GO GO
***		0	AENSLF	27-jan-1993	ES	6.5	0.073	UGL	LT	K	GO
			ALDRN	27-jan-1993	ES	6.5	0.0918	UGL	LT		GO
			ввнс	27-jan-1993	ES	6.5	0.024	UGL	LT		GO
			BENSLF	27-jan-1993	ES	6.5	0.023	UGL	LT		GO
			DBHC	27-jan-1993	ES	6.5	0.0293	UGL	LT		GO
			DLDRN	27-jan-1993	ES	6.5	0.024	UGL	LT		GO
			ENDRN	27-jan-1993	ES	6.5	0.0238	UGL	LT		GO
			ENDRNA	27-jan-1993	ES	6.5	0.0285	UGL	LT		GO
			ENDRNK	27-jan-1993	ES	6.5	0.0285	UGL	ND	R	GO
			ESFSO4	27-jan-1993	ES	6.5	0.0786	UGL	LT		GO
			GCLDAN	27-jan-1993	ES	6.5	0.075	UGL	ND	R	GO
			HPCL	27-jan-1993	ES	6.5	0.0423	UGL	LT		GO
			HPCLE	27-jan-1993	ES	6.5	0.0245	UGL	LT		GO
			ISODR LIN	27-jan-1993	ES	6.5	0.0562	UGL	LT		GO
			MEXCLR	27-jan-1993 27-jan-1993	ES ES	6.5 6.5	0.0507 0.057	UGL UGL	LT		GO
			PPDDD	27-jan-1993	ES	6.5	0.037	UGL	LT LT		GO
			PPDDE	27-jan-1993	ES	6.5	0.0233	UGL	LT		GO GO
			PPDDT	27-jan-1993	ES	6.5	0.034	UGL	LT		GO
			TXPHEN	27-jan-1993	ES	6.5	1.35	UGL	LT		GO
WELL	MW014	UM 18	124TCB	27-jan-1993	ES	6.5	1.8	UGL	LT		GO
			12DCLB	27-jan-1993	ES	6.5	1.7	UGL	LT		GO
			12DPH	27-jan-1993	ES	6.5	2	UGL	ND	R	GO
			13DCLB	27-jan-1993	ES	6.5	1.7	UGL	LT		GO
			14DCLB	27-jan-1993	ES	6.5	1.7	UGL	LT		GO
			245TCP	27-jan-1993	ES	6.5		UGL	LT		GO
			246TCP	27-jan-1993	ES	6.5	4.2	UGL	LT		GO
			24DCLP	27-jan-1993	ES	6.5	2.9	UGL	LT		GO
			24DMPN	27-jan-1993	ES	6.5	5.8	UGL	LT		GO
			24DNP	27-jan-1993	ES	6.5	21	UGL	LT		GO
			24DNT	27-jan-1993	ES	6.5	4.5	UGL	LT		GO
			26DNT 2CLP	27-jan-1993 27-jan-1993	ES ES	6.5 6.5	0.79 0.99	UGL UGL	LT		GO
			2CNAP	27-jan-1993 27-jan-1993	ES	6.5		UGL	LT LT		GO
			2MNAP	27-jan-1993	ES	6.5		UGL	LT		GO GO
			2MP	27-jan-1993	ES	6.5	3.9	UGL	LT		GO
			2NANIL	27-jan-1993	ES	6.5		UGL	LT		GO
			2NP	27-jan-1993	ES	6.5		UGL	LT		GO
			33DCBD	27-jan-1993	ES	6.5		UGL	LT		GO
			3NANIL	27-jan-1993	ES	6.5		UGL	LT		GO
			46DN2C	27-jan-1993	ES	6.5		UGL	LT		GO

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

				Maximum: X:33	3322 1	1:4/0/3/3					
Site Type	Site ID	Method Code	Test Name	Sample Date	Lab	<u>Depth</u>	Value	Unit <u>Meas.</u>	Meas Bool.	Flag Code	Prog.
			472 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	07 : 1002	TEC	6.5	4.2	UGL	LT		GO
			4BRPPE	27-jan-1993	ES ES	6.5	7.3	UGL	LT		GO
			4CANIL	27-jan-1993 27-jan-1993	ES	6.5	4	UGL	LT		GO
			4CL3C	27-jan-1993 27-jan-1993	ES	6.5	5.1	UGL	LT		GO
			4CLPPE	27-jan-1993	ES	6.5	0.52	UGL	LT		GO
			4MP 4NANIL	27-jan-1993	ES	6.5	5.2	UGL	LT		GO
			4NP	27 - jan - 1993	ES	6.5	12	UGL	LT		GO
			ABHC	27-jan-1993	ES	6.5	4	UGL	ND	R	GO
			ACLDAN	27-jan-1993	ES	6.5	5.1	UGL	ND	R	GO
WELL	MW014	UM18	AENSLF	27-jan-1993	ES	6.5	9.2	UGL	ND	R	GO
WELL	141 44 014	OMIC	ALDRN	27-jan-1993	ES	6.5	4.7	UGL	ND	R	GO
			ANAPNE	27-jan-1993	ES	6.5	1.7	UGL	LT		GO
			ANAPYL	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			ANTRC	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			B2CEXM	27-jan-1993	ES	6.5	1.5	UGL	LT		GO
			B2CIPE	27-jan-1993	ES	6.5	5.3	UGL	LT		GO
			B2CLEE	27-jan-1993	ES	6.5	1.9	UGL	LT		GO
			B2EHP	27-jan-1993	ES	6.5	6.2	UGL			GO
			BAANTR	27-jan-1993	ES	6.5	1.6	UGL	LT		GO
			BAPYR	27-jan-1993	ES	6.5	4.7	UGL	LT		GO
			BBFANT	27-jan-1993	ES	6.5	5.4	UGL	LT	D	GO
			BBHC	27-jan-1993	ES	6.5	4	UGL	ND	R	GO GO
			BBZP	27-jan-1993	ES	6.5	3.4	UGL	LT	R	GO
			BENSLF	27-jan-1993	ES	6.5	9.2	UGL UGL	ND ND	R	GO
			BENZID	27-jan-1993	ES	6.5 6.5	10 13	UGL	LT		GO
			BENZOA	27-jan-1993	ES ES	6.5	6.1	UGL	LT		GO
			BGHIPY	27-jan-1993	ES	6.5	0.87	UGL	LT		GO
			BKFANT	27-jan-1993 27-jan-1993	ES	6.5	0.72	UGL	LT		GO
			BZALC CARBAZ	27-jan-1993	ES	6.5	1.5	UGL	ND	R	GO
			CHRY	27-jan-1993	ES	6.5	2.4	UGL	LT		GO
			CL6BZ	27-jan-1993	ES	6.5	1.6	UGL	LT		GO
			CL6CP	27-jan-1993	ES	6.5	8.6	UGL	LT		GO
			CL6ET	27-jan-1993	ES	6.5	1.5	UGL	LT		GO
			DBAHA	27-jan-1993	ES	6.5	6.5	UGL	LT		GO
			DBHC	27-jan-1993	ES	6.5	4	UGL	ND	R	GO
			DBZFUR	27-jan-1993	ES	6.5	1.7	UGL	LT		GO
			DEP	27-jan-1993	ES	6.5	2	UGL	LT		GO
			DLDRN	27-jan-1993	ES	6.5	4.7	UGL	ND	R	GO
			DMP	27-jan-1993	ES	6.5	1.5	UGL	LT		GO
			DNBP	27-jan-1993	ES	6.5	3.7	UGL	LT		GO
			DNOP	27-jan-1993	ES	6.5	15	UGL	LT	n	GO
			ENDRN	27-jan-1993	ES	6.5	7.6	UGL	ND	R	GO
			ENDRNA	27-jan-1993	ES	6.5	8	UGL	ND ND	R R	GO GO
			ENDRNK	27-jan-1993	ES	6.5	8	UGL UGL	ND	R	GO
			ESFSO4	27-jan-1993	ES	6.5	9.2 3.3	UGL	LT	K	GO
			FANT	27-jan-1993	ES ES	6.5 6.5	3.3	UGL	LT		GO
			FLRENE GCLDAN	27-jan-1993 27-jan-1993	ES	6.5	5.1	UGL	ND	R	GO
			HCBD	27-jan-1993 27-jan-1993	ES	6.5	3.4	UGL	LT	•	GO
			HPCL	27-jan-1993	ES	6.5	2	UGL	ND	R	GO
			HPCLE	27-jan-1993	ES	6.5	5	UGL	ND	R	GO
			ICDPYR	27-jan-1993	ES	6.5	8.6	UGL	LT		GO
			ISOPHR	27-jan-1993	ES	6.5	4.8	UGL	LT		GO
			LIN	27-jan-1993	ES	6.5	4	UGL	ND	R	GO
			MEXCLR	27-jan-1993	ES	6.5	5.1	UGL	ND	R	GO
			NAP	27-jan-1993	ES	6.5	0.5	UGL	LT		GO

				Maximum: A: 33	3322 1	1:4/0/3/3					
Site Type	Site ID	Method Code	i <u>Test Name</u>	Sample Date	<u>Lab</u>	<u>Depth</u>	<u>Value</u>	Unit <u>Meas.</u>	Meas Bool.	Flag Code	Prog.
			NB	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			NNDMEA	27-jan-1993 27-jan-1993	ES	6.5	2	UGL	ND	R	GO
			NNDNPA	27-jan-1993 27-jan-1993	ES	6.5	4.4	UGL	LT	K	GO
			NNDPA	27-jan-1993	ES	6.5	3	UGL	LT		GO
WELL	MW014	UM18	PCB016	27-jan-1993 27-jan-1993	ES	6.5	21	UGL	ND	R	GO
WELL	MWUI4	OWITO	PCB221	27-jan-1993 27-jan-1993	ES	6.5	21	UGL	ND	R	GO
			PCB232	27-jan-1993	ES	6.5	21	UGL	ND	R	GO
			PCB242	27-jan-1993	ES	6.5	30	UGL	ND	R	GO
			PCB248	27-jan-1993	ES	6.5	30	UGL	ND	R	GO
			PCB254	27-jan-1993	ES	6.5	36	UGL	ND	R	GO
			PCB260	27-jan-1993	ES	6.5	36	UGL	ND	R	GO
•			PCP	27-jan-1993	ES	6.5	. 18	UGL	LT		GO
			PHANTR	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			PHENOL	27-jan-1993	ES	6.5	9.2	UGL	LT		GO
			PPDDD	27-jan-1993	ES	6.5	4	UGL	ND	R	GO
			PPDDE	27-jan-1993	ES	6.5	4.7	UGL	ND	R	GO
			PPDDT	27-jan-1993	ES	6.5	9.2	UGL	ND	R	GO
			PYR	27-jan-1993	ES	6.5	2.8	UGL	LT		GO
			TXPHEN	27-jan-1993	ES	6.5	36	UGL	ND	R	GO
WELL	MW014	UM2 0	111TCE	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			112TCE	27-jan-1993	ES	6.5	1.2	UGL	LT		GO
			11DCE	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			11DCLE	27-jan-1993	ES	6.5	0.68	UGL	LT		GO
			12DCE	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			12DCLE	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			12DCLP	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			2CLEVE	27-jan-1993	ES	6.5	0.71	UGL	LT		GO
			ACET	27-jan-1993	ES	6.5	13	UGL	LT		GO
			ACROLN	27-jan-1993	ES	6.5	100	UGL	ND	R	GO
			ACRYLO	27-jan-1993	ES	6.5	100	UGL	ND	R	GO
			BRDCLM	27-jan-1993	ES	6.5	0.59	UGL	LT		GO
			C13DCP	27-jan-1993	ES	6.5	0.58	UGL	LT		GO
			C2AVE	27-jan-1993	ES	6.5	8.3	UGL	LT		GO
			C2H3CL	27-jan-1993	ES	6.5	2.6	UGL	LT		GO
			C2H5CL	27-jan-1993	ES	6.5	1.9	UGL	LT		GO
			C6H6	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			CCL3F	27-jan-1993	ES	6.5	1.4	UGL	LT		GO
			CCL4	27-jan-1993	ES	6.5	0.58	UGL	LT		GO
			CH2CL2	27-jan-1993	ES	6.5	2.3	UGL	LT		GO
			CH3BR CH3CL	27-jan-1993	ES ES	6.5 6.5	5.8 3.2	UGL UGL	LT LT		GO GO
			CHBR3	27-jan-1993 27-jan-1993	ES	6.5	2.6	UGL	LT		GO
			CHCL3	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			CL2BZ	27-jan-1993	ES	6.5	10	UGL	ND	R	GO
			CLC6H5	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			CS2	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			DBRCLM	27-jan-1993	ES	6.5	0.67	UGL	LT		GO
			ETC6H5	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			MEC6H5	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			MEK	27-jan-1993	ES	6.5	6.4	UGL	LT		GO
			MIBK	27-jan-1993	ES	6.5	3	UGL	LT		GO
			MNBK	27-jan-1993	ES	6.5	3.6	UGL	LT		GO
			STYR	27-jan-1993	ES	6.5	0.5	UGL	LT		GO
			T13DCP	27-jan-1993	ES	6.5	0.7	UGL	LT		GO
			TCLEA	27-jan-1993	ES	6.5	0.51	UGL	LT		GO
WELL	MW014	UM2 0	TCLEE	27-jan-1993	ES	6.5	1.6	UGL	LT		GO
			TRCLE	27-jan-1993	ES	6.5	0.5	UGL	LT		GO

Variable Query Chemical Report

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

Site		Method						Unit	Meas	Flag	
Турс	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	<u>Value</u>	Meas.	Bool.	Code	Prog.
3.1E-	<u> </u>	•							* ***		-
			XYLEN	27-jan-1993	ES	6.5	0.84	UGL	LT		GO
WELL	MW016	00	OILGR	27-jan-1993	ES	7.5	188	UGL	LT		GO GO
			ТРНС	27-jan-1993	ES	7.5	188	UGL	LT LT		GO
WELL	MW016	SB01	HG	27-jan-1993	ES	7.5	0.243	UGL UGL	LT		GO
WELL	MW016	SD09	TL	27-jan-1993	ES	7.5	6.99 1.26	UGL	LT		GO
WELL	MW016	SD20	PB	27-jan-1993	ES	7.5 7.5	3.02	UGL	LT		GO
WELL	MW016	SD21	SE	27-jan-1993	ES ES	7.5 7.5	2.54	UGL	LT		GO
WELL	MW016	SD22	AS	27-jan-1993	ES	7.5 7.5	4.6	UGL	LT		GO
WELL	MW016	SS 10	AG	27-jan-1993 27-jan-1993	ES	7.5 7.5	141	UGL	LT		GO
			AL BA	27-jan-1993	ES	7.5	94.4	UGL			GO
			BE	27-jan-1993	ES	7.5	5	UGL	LT		GO
			CA CA	27-jan-1993	ES	7.5	207000	UGL			GO
			CD	27-jan-1993	ES	7.5	4.01	UGL	LT		GO
			CO	27-jan-1993	ES	7.5	25	UGL	LT		GO
			CR	27 - jan - 1993	ES	7.5	6.02	UGL	LT		GO
			CU	27-jan-1993	ES	7.5	8.09	UGL	LT		GO
			FE	27-jan-1993	ES	7.5	38.8	UGL	LT		GO
			K	27-jan-1993	ES	7.5	375	UGL	LT		GO
			MG	27-jan-1993	ES	7.5	53300	UGL			GO
			MN	27-jan-1993	ES	7.5	1750	UGL			GO
			NA	27-jan-1993	ES	7.5	413000	UGL			GO
			NI	27-jan-1993	ES	7.5	34.3	UGL	LT		GO
			SB	27-jan-1993	ES	7.5	38	UGL	LT		GO
			v	27-jan-1993	ES	7.5	11	UGL	LT		GO
			ZN	27-jan-1993	ES	7.5	34.2	UGL			GO
WELL	MW016	TF18	CYN	27-jan-1993	ES	7.5	2.5	UGL	LT		GO
WELL	MW016	TF22	NIT	27-jan-1993	ES	7.5	19.3	UGL			GO
WELL	MW016	TT1 0	CL	27-jan-1993	ES	7.5	1000000	UGL			GO
			SO4	27-jan-1993	ES	7.5	109000	UGL			GO
WELL	MW016	UH 02	PCB016	27-jan-1993	ES	7.5	0.16	UGL	LT	_	GO
			PCB221	27-jan-1993	ES	7.5	0.16	UGL	ND	R	GO
			PCB232	27-jan-1993	ES	7.5	0.16	UGL	ND	R	GO
			PCB242	27-jan-1993	ES	7.5	0.19	UGL	ND	R	GO
			PCB248	27-jan-1993	ES	7.5	0.19	UGL	ND	R	GO
			PCB254	27-jan-1993	ES	7.5	0.19	UGL	ND	R	GO
			PCB260	27-jan-1993	ES	7.5	0.19	UGL	LT		GO
WELL	MW016	UH13	ABHC	27-jan-1993	ES	7.5	0.0385	UGL UGL	LT ND	R	GO GO
WELL	MW016	UH13	ACLDAN	27-jan-1993	ES	7.5	0.075 0.023	UGL	LT	K	GO
			AENSLF	27-jan-1993	ES	7.5	0.023	UGL	LT		GO
			ALDRN	27-jan-1993	ES	7.5	0.024	UGL	LT		GO
			BBHC	27-jan-1993	ES	7.5 7.5	0.024	UGL	LT		GO
			BENSLF	27-jan-1993	ES		0.023	UGL	LT		GO
			DBHC	27-jan-1993	ES ES	7.5 7.5	0.0293	UGL	LT		GO
			DLDRN	27-jan-1993	ES	7.5 7.5	0.0238	UGL	LT		GO
			ENDRN	27-jan-1993	ES	7.5 7.5	0.0235	UGL	LT		GO
			ENDRNA	27-jan-1993	ES	7.5	0.0285	UGL	ND	R	GO
			ENDRNK	27-jan-1993	ES	7.5	0.0786	UGL	LT	•	GO
			ESFSO4 GCLDAN	27-jan-1993 27-jan-1993	ES	7.5 7.5	0.075	UGL	ND	R	GO
			HPCL	27-jan-1993 27-jan-1993	ES	7.5	0.0423	UGL	LT		GO
			HPCLE	27-jan-1993	ES	7.5	0.0245	UGL	LT		GO
			ISODR	27-jan-1993	ES	7.5	0.0562	UGL	LT		GO
			LIN	27-jan-1993	ES	7.5	0.0507	UGL	LT		GO
			MEXCLR	27-jan-1993	ES	7.5	0.057	UGL	LT		GO
			PPDDD	27-jan-1993	ES	7.5	0.0233	UGL	LT		GO
			PPDDE	27-jan-1993	ES	7.5	0.027	UGL	LT		GO
				•							

				Maximum. A. 33	3344 1	1.4/0/3/3					
Site Type	Site ID	Method Code	l <u>Test Name</u>	Sample Date	<u>Lab</u>	<u>Depth</u>	<u>Value</u>	Unit <u>Meas.</u>	Meas Bool.	Flag Code	Prog.
							0.004	***	• •		-
			PPDDT	27-jan-1993	ES	7.5	0.034	UGL	LT		GO
		*****	TXPHEN	27-jan-1993	ES	7.5	1.35	UGL	LT		GO
WELL	MW016	UM 18	124TCB	27-jan-1993	ES	7.5	1.8	UGL	LT		GO
			12DCLB	27-jan-1993	ES	7.5	1.7	UGL	LT	D	GO
			12DPH	27-jan-1993	ES	7.5	2	UGL	ND	R	GO
			13DCLB	27-jan-1993	ES	7.5	1.7	UGL	LT		GO
			14DCLB	27-jan-1993	ES	7.5	1.7	UGL	LT		GO
			245TCP	27-jan-1993	ES	7.5	5.2	UGL	LT		GO
			246TCP	27-jan-1993	ES	7.5	4.2	UGL	LT		GO
			24DCLP	27-jan-1993	ES	7.5	2.9	UGL	LT		GO
			24DMPN	27-jan-1993	ES	7.5	5.8	UGL	LT		GO
			24DNP	27-jan-1993	ES	7.5	21	UGL	LT		GO
			24DNT	27-jan-1993	ES	7.5	4.5	UGL	LT		GO
			26DNT	27-jan-1993	ES	7.5	0.79	UGL	LT		GO
			2CLP	27-jan-1993	ES	7.5 7.5	0.99	UGL UGL	LT LT		GO
			2CNAP	27-jan-1993	ES		0.5	UGL	LT		GO
			2MNAP	27-jan-1993	ES	7.5 7.5	1.7 3.9	UGL	LT		GO
			2MP	27-jan-1993	ES ES	7.5 7.5	4.3	UGL	LT		GO GO
			2NANIL	27-jan-1993	ES	7.5 7.5	3.7	UGL	LT		GO
			2NP	27-jan-1993 27-jan-1993	ES	7.5 7.5	12	UGL	LT		GO
			33DCBD	•	ES	7.5 7.5	4.9	UGL	LT		GO
			3NANIL 46DN2C	27-jan-1993 27-jan-1993	ES	7.5	17	UGL	LT		GO
			4BRPPE	27-jan-1993 27-jan-1993	ES	7.5	4.2	UGL	LT		GO
			4CANIL	27-jan-1993	ES	7.5	7.3	UGL	LT		GO
			4CL3C	27-jan-1993	ES	7.5	4	UGL	LT		GO
			4CLPPE	27-jan-1993	ES	7.5	5.1	UGL	LT		GO
			4MP	27-jan-1993	ES	7.5	0.52	UGL	LT		GO
			4NANIL	27-jan-1993	ES	7.5	5.2	UGL	LT		GO
			4NP	27-jan-1993	ES	7.5	12	UGL	LT		GO
			ABHC	27-jan-1993	ES	7.5	4	UGL	ND	R	GO
			ACLDAN	27-jan-1993	ES	7.5	5.1	UGL	ND	R	GO
WELL	MW016	UM18	AENSLF	27-jan-1993	ES	7.5	9.2	UGL	ND	R	GO
***************************************			ALDRN	27-jan-1993	ES	7.5	4.7	UGL	ND	R	GO
			ANAPNE	27-jan-1993	ES	7.5	1.7	UGL	LT		GO
			ANAPYL	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			ANTRC	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			B2CEXM	27-jan-1993	ES	7.5	1.5	UGL	LT		GO
			B2CIPE	27-jan-1993	ES	7.5	5.3	UGL	LT		GO
			B2CLEE	27-jan-1993	ES	7.5	1.9	UGL	LT		GO
			B2EHP	27-jan-1993	ES	7.5	4.8	UGL	LT		GO
			BAANTR	27-jan-1993	ES	7.5	1.6	UGL	LT		GO
			BAPYR	27-jan-1993	ES	7.5	4.7	UGL	LT		GO
			BBFANT	27-jan-1993	ES	7.5	5.4	UGL	LT		GO
			BBHC	27-jan-1993	ES	7.5	4	UGL	ND	R	GO
			BBZP	27-jan-1993	ES	7.5	3.4	UGL	LT		GO
			BENSLF	27-jan-1993	ES	7.5	9.2	UGL	ND	R	GO
			BENZID	27-jan-1993	ES	7.5	10	UGL	ND	R	GO
			BENZOA	27-jan-1993	ES	7.5	13	UGL	LT		GO
			BGHIPY	27-jan-1993	ES	7.5	6.1	UGL	LT		GO
			BKFANT	27-jan-1993	ES	7.5	0.87	UGL	LT		GO
			BZALC	27-jan-1993	ES	7.5	0.72	UGL	LT	_	GO
			CARBAZ	27-jan-1993	ES	7.5	1.5	UGL	ND	R	GO
			CHRY	27-jan-1993	ES	7.5	2.4	UGL	LT		GO
			CL6BZ	27-jan-1993	ES	7.5	1.6	UGL	LT		GO
			CL6CP	27-jan-1993	ES	7.5	8.6	UGL	LT		GO
			CL6ET	27-jan-1993	ES	7.5	1.5	UGL	LT		GO

Variable Query Chemical Report

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

Maximum: X: 333322 Y: 4707375

Site Type	Site ID	Method Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	Value	Unit Meas.	Meas Bool.	Flag Code	Prog.
			DDAIIA	27-jan-1993	ES	7.5	6.5	UGL	LT		GO
			DBAHA DBHC	27-jan-1993 27-jan-1993	ES	7.5	4	UGL	ND	R	GO
			DBTC	27-jan-1993	ES	7.5	1.7	UGL	LT		GO
			DEP	27-jan-1993	ES	7.5	2	UGL	LT		GO
			DLDRN	27-jan-1993	ES	7.5	4.7	UGL	ND	R	GO
			DMP	27-jan-1993	ES	7.5	1.5	UGL	LT		GO
			DNBP	27-jan-1993	ES	7.5	3.7	UGL	LT		GO
			DNOP	27-jan-1993	ES	7.5	15	UGL	LT		GO
			ENDRN	27-jan-1993	ES	7.5	7.6	UGL	ND	R	GO
			ENDRNA	27-jan-1993	ES	7.5	8	UGL	ND	R	GO
			ENDRNK	27-jan-1993	ES	7.5	8	UGL	ND	R	GO
			ESFSO4	27-jan-1993	ES	7.5	9.2	UGL	ND	R	GO
			FANT	27-jan-1993	ES	7.5	3.3	UGL	LT		GO
			FLRENE	27-jan-1993	ES	7.5	3.7	UGL	LT		GO
			GCLDAN	27-jan-1993	ES	7.5	5.1	UGL	ND	R	GO
			HCBD	27-jan-1993	ES	7.5	3.4	UGL	LT		GO
			HPCL	27-jan-1993	ES	7.5	2	UGL	ND	R	GO
			HPCLE	27-jan-1993	ES	7.5	5	UGL	ND	R	GO
			ICDPYR	27-jan-1993	ES	7.5	8.6	UGL	LT		GO
			ISOPHR	27-jan-1993	ES	7.5	4.8	UGL	LT	-	GO
			LIN	27-jan-1993	ES	7.5	4	UGL	ND	R	GO
			MEXCLR	27-jan-1993	ES	7.5	5.1	UGL	ND	R	GO GO
			NAP	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			NB	27-jan-1993	ES	7.5	0.5	UGL	LT	D	GO
			NNDMEA	27-jan-1993	ES	7.5	2	UGL	ND	R	GO
			NNDNPA	27-jan-1993	ES	7.5	4.4	UGL	LT LT		GO
			NNDPA	27-jan-1993	ES	7.5	3	UGL		R	GO
WELL	MW016	UM 18	PCB016	27-jan-1993	ES	7.5	21	UGL UGL	ND ND	R	GO
			PCB221	27-jan-1993	ES	7.5	21 21	UGL	ND	R	GO
			PCB232	27-jan-1993	ES	7.5	30	UGL	ND	R	GO
			PCB242	27-jan-1993	ES	7.5	30	UGL	ND	R	GO
			PCB248	27-jan-1993	ES ES	7.5 7.5	36	UGL	ND	R	GO
			PCB254	27-jan-1993	ES	7.5 7.5	36	UGL	ND	R	GO
			PCB260	27-jan-1993	ES	7.5	18	UGL	LT		GO
			PCP	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			PHANTR	27-jan-1993 27-jan-1993	ES	7.5	9.2	UGL	LT		GO
			PHENOL	27-jan-1993	ES	7.5	4	UGL	ND	R	GO
			PPDDD PPDDE	27-jan-1993	ES	7.5	4.7	UGL	ND	R	GO
			PPDDT	27-jan-1993	ES	7.5	9.2	UGL	ND	R	GO
			PYR	27-jan-1993	ES	7.5	2.8	UGL	LT		GO
			TXPHEN	27-jan-1993	ES	7.5	36	UGL	ND	R	GO
			UNK530	27-jan-1993	ES	7.5	10	UGL		S	GO
			UNK558	27-jan-1993	ES	7.5	50	UGL		S	GO
			UNK561	27-jan-1993	ES	7.5	10	UGL		S	GO
WELL	MW016	UM20	111TCE	27-jan-1993	ES	7.5	19	UGL			GO
WELL			112TCE	27-jan-1993	ES	7.5	1.2	UGL	LT		GO
			11DCE	27-jan-1993	ES	7.5	1.5	UGL			GO
			11DCLE	27-jan-1993	ES	7.5	130	UGL			GO
			12DCE	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			12DCLE	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			12DCLP	27-jan-1993	ES	7.5	8.5	UGL	* ~		GO
			2CLEVE	27-jan-1993	ES	7.5	0.71	UGL	LT		GO
			ACET	27-jan-1993	ES	7.5	13	UGL	LT	*	GO
			ACROLN	27-jan-1993	ES	7.5	100		ND	R	GO
			ACRYLO	27-jan-1993	ES	7.5	100	UGL	ND	R	GO
			BRDCLM	27-jan-1993	ES	7.5	0.59	UGL	LT		GO

				Maximum. 21.55	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.4707575					
Site		Method	I					Unit	Meas	Flag	
<u>Type</u>	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	Depth	<u>Value</u>	Meas.	Bool.	Code	Prog.
			C12DCD	27 in 1002	EC	75	0.50	LICI	T Tr		CO
			C13DCP	27-jan-1993	ES	7.5 7.5	0.58 8.3	UGL UGL	LT LT		GO
			C2AVE	27-jan-1993	ES						GO
			C2H3CL	27-jan-1993	ES	7.5	2.6	UGL	LT		GO
			C2H5CL	27-jan-1993	ES	7.5	1.9	UGL	LT		GO
			C6H6	27-jan-1993	ES	7.5	0.97	UGL	t m		GO
			CCL3F CCL4	27-jan-1993	ES ES	7.5 7.5	1.4 0.58	UGL UGL	LT		GO
			CH2CL2	27-jan-1993 27-jan-1993	ES	7.5 7.5	2.3	UGL	LT LT		GO
			CH3BR	27-jan-1993 27-jan-1993	ES	7.5 7.5	5.8	UGL	LT		GO GO
			CH3CL	27-jan-1993 27-jan-1993	ES	7.5 7.5	3.2	UGL	LT		GO
			CHBR3	27-jan-1993	ES	7.5	2.6	UGL	LT		GO
			CHCL3	27-jan-1993	ES	7.5 7.5	0.5	UGL	LT		GO
			CL2BZ	27-jan-1993	ES	7.5	10	UGL	ND	R	GO
			CLC6H5	27-jan-1993	ES	7.5	0.5	UGL	LT	10	GO
			CS2	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			DBRCLM	27-jan-1993	ES	7.5	0.67	UGL	LT		GO
			ETC6H5	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			MEC6H5	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			MEK	27-jan-1993	ES	7.5	6.4	UGL	LT		GO
			MIBK	27-jan-1993	ES	7.5	3	UGL	LT		GO
			MNBK	27-jan-1993	ES	7.5	3.6	UGL	LT		GO
WELL	MW016	UM20	STYR	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			T13DCP	27-jan-1993	ES	7.5	0.7	UGL	LT		GO
			TCLEA	27-jan-1993	ES	7.5	0.51	UGL	LT		GO
			TCLEE	27-jan-1993	ES	7.5	1.6	UGL	LT		GO
			TRCLE	27-jan-1993	ES	7.5	0.5	UGL	LT		GO
			UNK034	27-jan-1993	ES	7.5	20	UGL		S	GO
			XYLEN	27-jan-1993	ES	7.5	0.84	UGL	LT		GO
WELL	MW018	00	OILGR	27-jan-1993	ES	8.4	182	UGL	LT		GO
			TPHC	27-jan-1993	ES	8.4	182	UGL	LT		GO
WELL	MW018	SB01	HG	27-jan-1993	ES	8.4	0.243	UGL	LT		GO
WELL	MW018	SD09	TL	27-jan-1993	ES	8.4	6.99	UGL	LT		GO
WELL	MW018	SD20	PB	27-jan-1993	ES	8.4	1.26	UGL	LT		GO
WELL	MW018	SD21	SE	27-jan-1993	ES	8.4	3.02	UGL	LT		GO
WELL	MW018	SD22	AS	27-jan-1993	ES	8.4	2.54	UGL	LT		GO
WELL	MW018	SS 10	AG	27-jan-1993	ES	8.4	4.6	UGL	LT		GO
			AL	27-jan-1993	ES	8.4	141	UGL	LT		GO
			BA	27-jan-1993	ES	8.4	113	UGL			GO
			BE	27-jan-1993	ES	8.4	5	UGL	LT		GO
			CA	27-jan-1993	ES	8.4	130000	UGL			GO
			CD	27-jan-1993	ES	8.4	4.01	UGL	LT		GO
			CO	27-jan-1993	ES	8.4	25	UGL	LT		GO
			CR	27-jan-1993	ES	8.4	6.02	UGL	LT		GO
			CU	27-jan-1993	ES	8.4	8.09	UGL	LT		GO
			FE	27-jan-1993	ES	8.4	38.8	UGL	LT		GO
			K	27-jan-1993	ES	8.4	5240	UGL			GO
			MG	27-jan-1993	ES	8.4	87400	UGL			GO
			MN	27-jan-1993	ES	8.4	3.16	UGL			GO
			NA NI	27-jan-1993 27-jan-1993	ES ES	8.4 8.4	115000 34.3	UGL UGL	LT		GO
			SB	27-jan-1993 27-jan-1993	ES	8.4	34.3	UGL	LT		GO GO
			V	27-jan-1993 27-jan-1993	ES	8.4	12.9	UGL	LI		GO
			ZN	27-jan-1993 27-jan-1993	ES	8.4	21.1	UGL	LT		GO
WELL	MW018	TF 18	CYN	27-jan-1993 27-jan-1993	ES	8.4	2.5	UGL	LT		GO
WELL	MW018	TF22	NIT	27-jan-1993 27-jan-1993	ES	8.4	88	UGL			GO
WELL	MW018	TT10	CL	27-jan-1993	ES	8.4	410000	UGL			GO
44 E-E-E-	1/1 1/ 010	1110	SO4	27-jan-1993 27-jan-1993	ES	8.4	172000	UGL			GO
			204	2, jun 1993		5.4	1/2000	UUL			50

Variable Query Chemical Report

Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93

Minimum: X: 331500 Y: 4706000

				Maximum. 71.55	,						
Site		Method	l					Unit	Mcas	Flag	_
Турс	Site ID	Code	Test Name	Sample Date	<u>Lab</u>	<u>Depth</u>	<u>Value</u>	Meas.	<u>Bool.</u>	Code	Prog.
	> 4371010	111100	PCB016	27-jan-1993	ES	8.4	0.16	UGL	LT		GO
WELL	MW018	UH02	PCB010 PCB221	27-jan-1993	ES	8.4	0.16	UGL	ND	R	GO
				27-jan-1993	ES	8.4	0.16	UGL	ND	R	GO
			PCB232	27-jan-1993	ES	8.4	0.19	UGL	ND	R	GO
			PCB242	27-jan-1993	ES	8.4	0.19	UGL	ND	R	GO
		* * * * * * * * * * * * * * * * * * * *	PCB248 PCB254	27-jan-1993	ES	8.4	0.19	UGL	ND	R	GO
WELL	MW018	UH02	PCB254 PCB260	27-jan-1993	ES	8.4	0.19	UGL	LT		GO
		717712	ABHC	27-jan-1993	ES	8.4	0.0385	UGL	LT		GO
WELL	MW018	UH13		27-jan-1993	ES	8.4	0.075	UGL	ND	R	GO
			ACLDAN	27-jan-1993	ES	8.4	0.023	UGL	LT		GO
			AENSLF	27-jan-1993	ES	8.4	0.0918	UGL	LT		GO
			ALDRN	27-jan-1993	ES	8.4	0.024	UGL	LT		GO
			BBHC DENCLE	27-jan-1993	ES	8.4	0.023	UGL	LT		GO
			BENSLF	27-jan-1993 27-jan-1993	ES	8.4	0.0293	UGL	LT		GO
			DBHC	7	ES	8.4	0.024	UGL	LT		GO
			DLDRN	27-jan-1993	ES	8.4	0.0238	UGL	LT		GO
			ENDRN	27-jan-1993	ES	8.4	0.0285	UGL	LT		GO
			ENDRNA	27-jan-1993		8.4	0.0285	UGL	ND	R	GO
			ENDRNK	27-jan-1993	ES	8.4	0.0786	UGL	LT		GO
			ESFSO4	27-jan-1993	ES	8.4	0.075	UGL	ND	R	GO
			GCLDAN	27-jan-1993	ES	8.4	0.0423	UGL	LT	•	GO
			HPCL	27-jan-1993	ES	8.4	0.0425	UGL	LT		GO
			HPCLE	27-jan-1993	ES ES	8.4	0.0562	UGL	LT		GO
			ISODR	27-jan-1993	ES	8.4	0.0502	UGL	LT		GO
			LIN	27-jan-1993	ES	8.4	0.057	UGL	LT		GO
			MEXCLR	27-jan-1993	ES	8.4	0.0233	UGL	LT		GO
			PPDDD	27-jan-1993 27-jan-1993	ES	8.4	0.027	UGL	LT		GO
			PPDDE	27-jan-1993 27-jan-1993	ES	8.4	0.034		LT		GO
			PPDDT TXPHEN	27-jan-1993 27-jan-1993	ES	8.4	1.35	UGL	LT		GO
	N #337010	UM18	124TCB	27-jan-1993	ES	8.4	1.8	UGL	LT		GO
WELL	MW018	UM16	12DCLB	27-jan-1993	ES	8.4	1.7	UGL	LT		GO
			12DCLB 12DPH	27-jan-1993	ES	8.4	2	UGL	ND	R	GO
			13DCLB	27-jan-1993	ES	8.4	1.7	·UGL	LT		GO
			14DCLB	27-jan-1993	ES	8.4	1.7	UGL	LT		GO
			245TCP	27-jan-1993	ES	8.4	5.2	UGL	LT		GO
			246TCP	27-jan-1993	ES	8.4	4.2	UGL	LT		GO
			24DCLP	27-jan-1993	ES	8.4	2.9	UGL	LT		GO
			24DMPN	27-jan-1993	ES	8.4	5.8	UGL	LT		GO
			24DNP	27-jan-1993	ES	8.4	21	UGL	LT		GO
			24DNT	27-jan-1993	ES	8.4	4.5	UGL	LT		GO
			26DNT	27-jan-1993	ES	8.4	0.79	UGL	LT		GO
			2CLP	27-jan-1993	ES	8.4	0.99	UGL	LT		GO
			2CNAP	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			2MNAP	27-jan-1993	ES	8.4	1.7	UGL	LT		GO
			2MP	27-jan-1993	ES	8.4	3.9	UGL	LT		GO
			2NANIL	27-jan-1993	ES	8.4	4.3	UGL	LT		GO
			2NP	27-jan-1993	ES	8.4	3.7	UGL	LT		GO
			33DCBD	27-jan-1993	ES	8.4	12	UGL	LT		GO
			3NANIL	27-jan-1993	ES	8.4	4.9	UGL	LT		GO
			46DN2C	27-jan-1993	ES	8.4	17	UGL	LT		GO
			4BRPPE	27-jan-1993	ES	8.4	4.2	UGL	LT		GO
			4CANIL	27-jan-1993	ES	8.4	7.3	UGL	LT		GO
			4CL3C	27-jan-1993	ES	8.4	4	UGL	LT		GO
			4CLPPE	27-jan-1993	ES	8.4	5.1	UGL	LT		GO
			4MP	27-jan-1993	ES	8.4	0.52		LT		GO
WELL	MW018	UM 18	4NANIL	27-jan-1993	ES	8.4	5.2	UGL	LT		GO
,,			4NP	27-jan-1993	ES	8.4	12	UGL	LT		GO

Variable Query Chemical Report
Installation: Detroit Arsenal, MI (DA)
Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93
Minimum: X: 331500 Y: 4706000

Site	G". TD	Meth						Unit	Meas	Flag	
Type	Site ID	Code	Test Name	Sample Date	Lab	<u>Depth</u>	<u>Value</u>	Meas.	Bool.		Prog.
			АВНС	27-jan-1993	ES	21			•••		
			ACLDAN	27-jan-1993	ES	8.4 8.4	4	UGL	ND	R	GO
			AENSLF	27-jan-1993	ES	8.4	5.1 9.2	UGL	ND	R	GO
			ALDRN	27-jan-1993	ES	8.4	4.7	UGL UGL	ND	R	GO
			ANAPNE	27-jan-1993	ES	8.4	1.7	UGL	ND	R	GO
			ANAPYL	27-jan-1993	ES	8.4	0.5	UGL	LT LT		GO
			ANTRC	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			B2CEXM	27-jan-1993	ES	8.4	1.5	UGL	LT		GO GO
			B2CIPE	27-jan-1993	ES	8.4	5.3	UGL	LT		GO
			B2CLEE	27-jan-1993	ES	8.4	1.9	UGL	LT		GO
			B2EHP	27-jan-1993	ES	8.4	7.9	UGL			GO
			BAANTR	27-jan-1993	ES	8.4	1.6	UGL	LT		GO
			BAPYR	27-jan-1993	ES	8.4	4.7	UGL	LT		GO
			BBFANT	27-jan-1993	ES	8.4	5.4	UGL	LT		GO
			BBHC	27-jan-1993	ES	8.4	4	UGL	ND	R	GO
			BBZP	27-jan-1993	ES	8.4	3.4	UGL	LT		GO
			BENSLF	27-jan-1993	ES	8.4	9.2	UGL	ND	R	GO
			BENZID	27-jan-1993	ES	8.4	10	UGL	ND	R	GO
			BENZOA	27-jan-1993	ES	8.4	13	UGL	LT		GO
			BGHIPY	27-jan-1993	ES	8.4	6.1	UGL	LT		GO
			BKFANT BZALC	27-jan-1993	ES	8.4	0.87	UGL	LT		GO
			CARBAZ	27-jan-1993	ES	8.4	0.72	UGL	LT		GO
			CHRY	27-jan-1993 27-jan-1993	ES	8.4	1.5	UGL	ND	R	GO
			CL6BZ	27-jan-1993 27-jan-1993	ES	8.4	2.4	UGL	LT		GO
			CL6CP	27-jan-1993 27-jan-1993	ES ES	8.4	1.6	UGL	LT		GO
			CL6ET	27-jan-1993	ES	8.4 8.4	8.6	UGL	LT		GO
			DBAHA	27-jan-1993	ES	8.4	1.5	UGL	LT		GO
			DBHC	27-jan-1993	ES	8.4	6.5 4	UGL UGL	LT	т.	GO
			DBZFUR	27-jan-1993	ES	8.4	1.7	UGL	ND	R	GO
			DEP	27-jan-1993	ES	8.4	2	UGL	LT LT		GO
			DLDRN	27-jan-1993	ES	8.4		UGL	ND	R	GO
			DMP	27-jan-1993	ES	8.4		UGL	LT	K	GO
			DNBP	27-jan-1993	ES	8.4	3.7	UGL	LT		GO GO
			DNOP	27-jan-1993	ES	8.4		UGL	LT		GO
			ENDRN	27-jan-1993	ES	8.4		UGL	ND	R	GO
			ENDRNA	27-jan-1993	ES	8.4		UGL	ND	R	GO
			ENDRNK	27-jan-1993	ES	8.4		UGL	ND	R	GO
			ESFSO4	27-jan-1993	ES	8.4		UGL	ND	R	GO
			FANT	27-jan-1993	ES	8.4		UGL	LT		GO
			FLRENE	27-jan-1993	ES	8.4	3.7	UGL	LT		GO
			GCLDAN	27-jan-1993	ES	8.4	5.1	UGL	ND	R	GO
			HCBD	27-jan-1993	ES	8.4	3.4	UGL	LT		GO
			HPCL	27-jan-1993	ES	8.4	2	UGL	ND	R	GO
			HPCLE	27-jan-1993	ES	8.4	5	UGL	ND		GO
			ICDPYR	27-jan-1993	ES	8.4	8.6	UGL	LT		GO
			ISOPHR	27-jan-1993	ES	8.4	4.8	UGL	LT		GO
			LIN MEXCLR	27-jan-1993	ES	8.4		UGL	ND		GO
			NAP	27-jan-1993	ES	8.4			ND	R	GO
WELL	MW018	UM 18	NAP NB	27-jan-1993	ES	8.4		UGL	LT		GO
		~.W110	NNDMEA	27-jan-1993	ES	8.4			LT		GO
			NNDNPA	27-jan-1993	ES	8.4			ND		GO
			NNDPA	27-jan-1993 27-jan-1993	ES	8.4			LT		GO
			PCB016	27-jan-1993 27-jan-1993	ES ES	8.4			LT		GO
			PCB221	27-jan-1993 27-jan-1993	ES	8.4					GO
			PCB232	27-jan-1993 27-jan-1993	ES	8.4					GO
				21 - Jan - 1993	ES	8.4	21 U	JGL	ND	R	GO

Variable Query Chemical Report Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-jan-93 to 01-mar-93
Minimum: X: 331500 Y: 4706000

Site		Method						Unit	Meas	Flag	Dene
Type	Site ID	Code	Test Name	Sample Date	Lab	<u>Depth</u>	Value	Meas.	Bool.	Code	Prog.
			PCB242	27-jan-1993	ES	8.4	30	UGL	ND	R	GO
			PCB248	27-jan-1993	ES	8.4	30	UGL	ND	R	GO
			PCB254	27-jan-1993	ES	8.4	36	UGL	ND	R	GO
			PCB260	27-jan-1993	ES	8.4	36	UGL	ND	R	GO
			PCP	27-jan-1993	ES	8.4	18	UGL	LT		GO
			PHANTR	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			PHENOL	27-jan-1993	ES	8.4	9.2	UGL	LT		GO
			PPDDD	27-jan-1993	ES	8.4	4	UGL	ND	R	GO
			PPDDE	27-jan-1993	ES	8.4	4.7	UGL	ND	R	GO
			PPDDT	27-jan-1993	ES	8.4	9.2	UGL	ND	R	GO
				27-jan-1993	ES	8.4	2.8	UGL	LT		GO
			PYR	• • • • • • • • • • • • • • • • • • • •	ES	8.4	36	UGL	ND	R	GO
		*****	TXPHEN	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
WELL	MW018	UM 20	111TCE	27-jan-1993	ES	8.4	1.2	UGL	LT		GO
			112TCE	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			11DCE	27-jan-1993	ES	8.4	0.68	UGL	LT		GO
			11DCLE	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			12DCE	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			12DCLE	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			12DCLP	27-jan-1993	ES	8.4	0.71	UGL	LT		GO
			2CLEVE	27-jan-1993	ES	8.4	13	UGL	LT		GO
			ACET	27-jan-1993	ES	8.4	100	UGL	ND	R	GO
			ACROLN	27-jan-1993	ES	8.4	100	UGL	ND	R	GO
			ACRYLO	27-jan-1993	ES	8.4	0.59	UGL	LT		GO
			BRDCLM	27-jan-1993	ES	8.4	0.58	UGL	LT		GO
			C13DCP	27-jan-1993	ES	8.4	8.3	UGL	LT		GO
			C2AVE	27-jan-1993	ES	8.4	2.6	UGL	LT		GO
			C2H3CL	27-jan-1993	ES	8.4	1.9	UGL	LT		GO
			C2H5CL	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			C6H6	27-jan-1993	ES	8.4	1.4	UGL	LT		GO
			CCL3F	27-jan-1993	ES	8.4	0.64	UGL			GO
			CCL4	27-jan-1993	ES	8.4	2.3	UGL	LT		GO
			CH2CL2	27-jan-1993	ES	8.4	5.8	UGL	LT		GO
			CH3BR	27-jan-1993	ES	8.4	3.2	UGL	LT		GO
			CH3CL	27-jan-1993	ES	8.4	2.6	UGL	LT		GO
			CHBR3	27-jan-1993	ES	8.4	0.79	UGL	٠.		GO
			CHCL3	27-jan-1993	ES	8.4	10	UGL	ND	R	GO
			CL2BZ	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			CLC6H5	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			CS2	27-jan-1993	ES	8.4	0.67	UGL	LT		GO
			DBRCLM	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			ETC6H5	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			MEC6H5	27-jan-1993	ES	8.4	6.4	UGL	LT		GO
			MEK	27-jan-1993	ES	8.4	3	UGL	LT		GO
		T T3 400	MIBK	27-jan-1993	ES	8.4 8.4	3.6	UGL	LT		GO
WELL	MW018	UM 20	MNBK	27-jan-1993	ES	8.4	10	UGL		S	GO
			OMCTSX	27-jan-1993	ES	8.4 8.4	0.5	UGL	LT	5	GO
			STYR	27-jan-1993	ES ES	8.4 8.4	0.7	UGL	LT		GO
			T13DCP	27-jan-1993		8.4 8.4	0.7	UGL	LT		GO
			TCLEA	27-jan-1993	ES ES	8.4	1.6	UGL	LT		GO
			TCLEE	27-jan-1993	ES	8.4	0.5	UGL	LT		GO
			TRCLE	27-jan-1993	ES	8.4	0.84	UGL	LT		GO
			XYLEN	27-jan-1993	دمه	0.4	0.04				

^{**} End of Report - 1363 Records Found **

ROUND 2 LETTER REPORT

9305049.WP/CR410 7027-01

May 12, 1993

Mr. James Zeisloft USATHAMA CETHA-IR-A Building 4480 Aberdeen Proving Grounds, MD 21010-5401

Subject:

Letter Report - Groundwater Sampling, Round 2,

Detroit Arsenal, Warren, Michigan

Dear Mr. Zeisloft:

The purpose of this letter is to document round 2 groundwater sampling of seven monitoring wells on the Detroit Arsenal property in Warren, Michigan (Figure 1). This program was conducted by ABB Environmental Services, Inc., (ABB-ES) under the direction of the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA).

Groundwater samples were collected from MW001, MW002, MW004, MW010, MW014, MW016 and MW018; locations are shown on Figure 2. After removal of each well cap, ambient air and air in the mouth of the well were measured with a Draeger pump equipped with a 0.5/a vinyl chloride tube. No organic vapors or vinyl chloride were detected at any well. Prior to groundwater sampling, the static water level was measured from the top of the well casing (Table 1) and the amount of water present in each well was calculated.

A Keck SP-81 submersible pump with teflon tubing was used to purge each well. Wells were purged at a rate of approximately 1.3 gallons per minute until five casing volumes had been removed or the well went dry (Table 2). Except for MW001, each well was allowed to recover overnight after purging. Due to access difficulties at MW001, Dennis Bowser approved purging the well dry and allowing it to recharge sufficiently to permit sampling on the same day. Prior to sampling the rest of the wells on the day following purging (MW014 and MW010 required two days to recover), water levels were recorded and a minimum of one casing volume was purged. During well evacuation, groundwater temperature, pH, and specific conductance were measured a minimum of five times.

Groundwater samples to be analyzed for semivolatile compounds, pesticides/PCB's, nitrate/nitrite, sulfate, cyanide, oil and grease, and total recoverable petroleum hydrocarbons were collected with the submersible pump. Groundwater samples for dissolved metals analysis were also collected with the submersible pump; at each well a new .45-micron disposable filter was installed in the discharge line before these sample containers were filled. Groundwater samples to be analyzed for volatile organic compounds (VOCs) were collected with a new disposable polyethylene bailer. Sample bottles were triple-rinsed with ASTM Type II water followed by a triple rinse with well water prior to sample collection. After processing, preserving, and labeling, all samples were kept on ice in coolers until delivery to the laboratory via overnight carrier.

ABB Environmental Services of Michigan, Inc.

Mr. James Zeisloft May 12, 1993 Page 2

One trip blank to be analyzed for VOCs was collected during mobilization. The trip blank consisted of the ASTM Type II water used for decontamination. It was collected and preserved in the same manner that field samples were to be handled and then placed on ice in a cooler dedicated to VOC samples. One rinsate blank using ASTM Type II water was collected after decontaminating the pump and prior to purging MW014. Copies of the groundwater sampling records are attached.

Groundwater sampling was completed on April 28, 1993.

Sincerely,

ABB ENVIRONMENTAL SERVICES, INC.

Greta D. Reade Project Manager

greta D. Reade

GDR/tay

- ABB ENVIRONMENTAL SERVICES, INC.

TABLE 1 SUMMARY OF GROUNDWATER ELEVATIONS APRIL 26, 1993

DETROIT ARSENAL WARREN, MICHIGAN

WELL	TOP OF RISER ELEVATION (FEET)	DEPTH TO WATER (FEET)	GROUNDWATER ELEVATION (FEET)
MW001	627.76	3.38	624.38
MW002	625.84	3.74	622.10
MW004	627.03	8.00	619.03
MW010	624.79	5.58	619.21
MW014	621.36	7.08	614.28
MW016	622.58	7.49	615.09
MW018	623.39	7.62	615.77

NOTE: Measurements were taken with a Solinst water level meter.

TABLE 2
GROUNDWATER SAMPLING DATA – ROUND 2
DETROIT ARSENAL
WARREN, MICHIGAN

	-									
SAMPLE	DESIGNATION	RBLK-1	TBLK-1	DAW2*1	DAW2*2	DAW2*3	DAW2*4	DAW2*5	DAW2*6	DAW2*7
SAMPLE	TIME	14.30	00:60	14:50	11:30	15:30	14:40	13:15	16:10	17:20
SAMPLE	DATE	4/26/93	4/26/93	4/27/93	4/28/93	4/28/93	4/28/93	4/28/93	4/27/93	4/27/93
TOTAL VOLUME	PURGED (GALLONS)	NA	NA	120	70	70	80	87	30	75
000	4/28/93	Y Y	¥ Z	0	10	10	15	30	0	0
102100	4/21/93	Ϋ́	A A	120*	*09	*09	*	* *	9	30*
4 106 100	4/20/93	Y Y	A A	0	0	0	65*	57*	20*	45*
(ROUND 1)	(GALLONS) 1/93	NA	NA	122	06	83	86	84	36	79
CONSULTANT	(מעררסווס) אפל	N	NA	80	53	48	56	93	27	38
II W	4	Rinsate Blank	Trip Blank	MW001	MW002	MW004	MW010	MW014	MW016	MW018
	CONSULTANT (ROUND 1) TOTAL VOLUME SAMPLE SAMPLE	(ROUND 1) TOTAL VOLUME SAMPLE SAMPLE 4 (GALLONS) 1/93 4/27/93 4/28/93 PURGED (GALLONS) DATE TIME DE	CONSULTANT (ROUND 1) 4/26/93 4/27/93 4/28/93 PURGED (GALLONS) SAMPLE SAMPLE (GALLONS) 9/84 (GALLONS) 1/93 4/26/93 4/28/93 PURGED (GALLONS) DATE TIME NA NA NA NA 4/26/93 14.30	CONSULTANT (ROUND 1) 4/26/93 4/27/93 4/28/93 PURGED (GALLONS) SAMPLE SAMPLE (GALLONS) 9/84 (GALLONS) 1/93 4/26/93 4/28/93 4/28/93 PURGED (GALLONS) DATE TIME NA NA NA NA 4/26/93 14.30 NA NA NA NA 4/26/93 09:00	CONSULTANT (ROUND 1) 4/26/93 4/27/93 4/28/93 PURGED (GALLONS) SAMPLE SAMPLE (GALLONS) 9/84 (GALLONS) 1/93 4/26/93 4/22/93 4/26/93 14.30 NA NA NA NA NA 4/26/93 14.30 NA NA NA NA 4/26/93 09:00 80 122 0 120* 0 120 4/27/93 14:50	CONSULTANT (ROUND 1) TOTAL VOLUME SAMPLE SAMPLE SAMPLE SAMPLE (GALLONS) 9/84 (GALLONS) 1/93 4/26/93 4/26/93 4/26/93 14.30 TIME NA NA NA NA NA 4/26/93 14.30 NA NA NA NA 4/26/93 09:00 80 1122 0 120* 0 4/26/93 14:50 53 90 0 60* 10 70 4/28/93 11:30	CONSULTANT (ROUND 1) TOTAL VOLUME SAMPLE SAMPLE (GALLONS) 9/84 (GALLONS) 1/93 4/26/93 4/26/93 4/26/93 TIME NA NA NA NA NA 14.30 NA NA NA NA 4/26/93 14.30 80 122 0 120* 0 4/26/93 14:50 53 90 0 60* 10 70 4/28/93 11:30 48 83 0 60* 10 70 4/28/93 15:30	CONSULTANT (ROUND 1) 4/26/93 4/27/93 4/27/93 PURGED (GALLONS) SAMPLE SAMPLE (GALLONS) 9/84 (GALLONS) 1/93 4/26/93 4/27/93 4/22/93 PURGED (GALLONS) DATE TIME NA NA NA NA NA 14.26/93 14.30 NA NA NA NA NA 4/26/93 14.30 80 1122 0 120* 0 120* 0 120* 53 90 0 60* 10 70 4/28/93 11:30 48 83 0 60* 10 70 4/28/93 15:30 56 98 65* ** 15 80 4/28/93 14:40	CONSULTANT (ROUND 1) 4/26/93 4/28/93 4/28/93 PURGED (GALLONS) SAMPLE SAMPLE NA NA NA NA NA 4/26/93 14.30 NA NA NA NA 4/26/93 14.30 BO 122 0 120* 0 4/26/93 14.50 53 90 0 60* 10 70 4/28/93 11:30 48 83 0 60* 10 70 4/28/93 14:40 56 98 65* ** 15 80 4/28/93 13:15 93 84 57* ** 30 87 4/28/93 13:15	CONSULTANT (ROUND 1) 4/26/93 4/27/93 4/28/93 PURGED (GALLONS) SAMPLE SAMPLE SAMPLE TIME NA NA NA NA NA 4/26/93 14.30 14.30 NA NA NA NA 4/26/93 14.30 14.30 80 122 0 120* 0 120 0 4/26/93 14.50 53 90 0 60* 10 70 4/26/93 11.30 56 98 65* ** 16 70 4/28/93 14.40 93 84 57* ** 30 87 4/28/93 16.10 27 36 20* 10 0 30 4/28/93 16.10

NOTES:

NA = Not applicable.

* Well purged dry on this date.

** Insufficient recovery to sample on this date.

. 45 micron filter

. Well dry at 57 gallons

90303.UP REVISED 3/90

SIGNATURE Kelly 2 Me

SIGNATURE/FUNCTION: GEOLOSIST

ABB ENVIRONMENTAL SERVICES, INC. -

	DETROTT	ARSENAL (USATHAMA)	SAGELLE SAGELLE	7027-03 (TKB) DATE:	4.28-93
SITE:	DETROZI	, , , , , , , , , , , , , , , , , , ,	JUS MU.			wed

<u>'</u>	WPLE LCCATION	mw	-014	LAB WUMBER	DAW 2 *5		
	WATER LEVEL/ MEASURED WELL DEPTH	FT	TA SEE PAG 1 TCP OF WELL 1 TCP OF CASING 1	WELL DIAM. C 1 2 INCH C 1 6 INCH C 1 6 INCH C 1 6 INCH	WATER DEPTH 7.0	AMBIEN WELL M	EZING: FID OVA IT AIR PPM COUTH PPM
	HISTORICAL 33.8	6 FT (I TOP OF WELL I TOP OF CASING	VELL MATERIAL DELL MATERIAL TO SS TO I	PROTECTIVE CASING STICK-UP (FROM GROWND) FT	DRASGER TUL WBII Mouth Ambient Air	
	PURGE DATA HEIGHT OF WATER COLUMN Gee proge !	FT (1 .16 GAL/FT (2 IN 1 .65 GAL/FT (4 IN 1 1.5 GAL/FT (6 IN 1 GAL/FT (YOLLHES (± CALLCHS TO 3E PURGED	PURGE TIME START 1235 ENO 1315	SAMPLE TIME START 1315 ENO 1350
	PURGE VOLUME	a	10 EAL	2 <u>20</u> CIL	2 <u>30</u> cal	3 CAL	a CAL
	TEMP, DEG C		11.1	11.4	<u> 11. 3</u>		,
	באואט, אק	_	7.3	7. a	7.2		
	SPECIFIC CONDUC-	<u>á</u>	2000	1960	1975		
	TIVITY, umics/cm		TOTAL PU	REE = 8	7		
•	C I C I SUI C I C I BA C I C I PV C I C I TE C I C I AII C I C I UA' C I IN-	NG RISTALTIC F EMERSISLE F ILER (PVE/S C/SILICEN T FLON/SILICE R LIFT TERRA	ESU TOP TOP STATETION DISPOSO USING N TUSING R(METAL)	[] 	ETHYL ALCHOL DEICHIZED WATER HNO3/D.I. WATER POTABLE WATER TSP SCLUTICH NCHE PSTYN TYPE IL WA	4TER .45	END. PROSE VATED FACE PROSE
	SAMPLES COLL	ECTED	COKTAK				PRESERVATIVE
		ECTESTED	NUMBER	VOLUME	JAR TYPE	FILTERED	HNO3-5
) A	<u> </u>	iss Merals			POLY	<u> Yes</u>	HCL 42
DA.	W2*5-VP \	10C	umao	<u>a x40m1</u>	A-GLASS/VI	10 NO	TICL
)Ą	wa * 5 - HS S	5 ADC	<u>umia</u>	2×1L	A-GLASS		
)A		est. IPCE		- · · · · · · · · · · · · · · · · · · ·	A-GLASS	<u> </u>	H ₂ 50442
•		LTRATE/NI			PLASTIC PLASTIC	NO	
_		ULFATE			POLY	NO	NaOH >12
		YANID L + GREA			W.M. Amber		H2504 42
		R.P.It.	EPA 418. 1	14	W.M. Amber		142504 42
	90303.wp 90303.wp			JTAKDIZ	SIGHATURE	FUNCTION: Kelly	

GROUNDWATER SAMPLE RECORD JCB NO. 7027-03 (TKB) DATE: 4-26-93 SITE: Detroit Arsenal -Round a USATHAMA Mon. MPLE LOCATION MW-016 LAB NUMBER _DAW2 *6 WATER LEVEL/WELL DATA FID WATER DEPTH 7.49 FT TCP OF WELL HONITCRING: OUP HEASURED WELL DIAM. WELL DEPTH 17.38 FT E] Z INCH ₩ 4 ІЯСЯ AIR THEIBHA [] [1 6 INCH WELL HOUTH Ø 0,5/0 Monitoring - Draeger Tube HISTORICAL DO TOP OF WELL WELL MATERIAL: PROTECTIVE WELL DEPTH 17.8' [] TOP OF CASING > PVC CASING STICK-UP Well Mouth _ [] \$5 (FROM GROWND) Ambient Air [] PURGE DATA PURGE TIME SAMPLE TIME [] .16 GAL/FT (2 IN) 3**2**.14 х <u>5</u> саятна START 1625 65 CAL/FT (4 IX) GALLONS TO SE START (1 1.5 GAL/FT (6 IN) ENO 1645 VOLUMES PURGED EHD ___ GAL/FT (___ (אז_ ع 5 مد 2 15 CH a d cul 2 10 CL 320 al PURGE VOLUME 10.2 11.5 10.4 10.7 TEMP, DEG C 7.04 PH, UNITS 1670 1700 SPECIFIC CONDUClight. Brown TIVITY, umos/cm Lt. Brown. QUIPMENT DOCUMENTATION GING SAMPLING EQUIPMENT ID DECEN FLUIDS USED WATER LEVEL EQUIP.USED M SUBMERSIBLE PUMP, DISPOSIBLE

[1 BATT = 3 [] ELECTRIC COND. PROBE [] ETHYL ALCOHOL T I [] DEICHIZED WATER [] FLCAT ACTIVATED Keck [] BAILER (PVE/SS/TEFLON) [] KECK INTERFACE PROBE [] HNO3/D.I. WATER [] VOC [] [] PVC/SILICON TUBING [] POTABLE WATER M OTHER SOLINST [] [] TEFLON/SILICON TUBING [] TSP SCLUTION NUMBER OF FILTER PAPERS USED <u></u> [] NONE [] AIR LIFT 0.1 MASIM TYPE II WATER [] WATERRA M IN-LINE FILTER (Mercels) [] PRESS/VAC FILTER [] (1

NOTES: water clear at beginning of purge

SIGNATURE Kelly 2 Med EDLOGIS, SIGNATURE/FUNCTION:

E: DETROIT ARSEN	USATHAMA)		TKB) DATE:	4-27-93
SE: DETRIOLITING		108 NO. 700.700		7ue
AMPLE LOCATION	CERNIK BLJ	DAW2*6		
WATER LEVEL/WELL DATA S HEASURED (I TOP WELL DEPTHFT (I TOP	OF WELL VELL OIN	3 3 3	AMBIENT A VELL MOUT OR ALGER TUBE	MAS SI MAS E
HISTORICAL 17.8' FT C I TCP	OF CASING DA PYC	PROTECTIVE	Well Mouth Ambient Air	6
HEIGHT OF WATER [1 .45	GAL/FT (2 IX) : GAL/FT (4 IN)	THE = CALLENS TO BE S	URGZ TIME S TART <u>(600</u> S END/ <u>600</u>	AMPLE TIME TART /6/07 END /630
PURCE VOLUME a 5 c	al 2 10 cal	s or s	&	ع دید
TEMP, DEG C	<u> 11.2</u>		,	
рн, цитт 7. В	7.5	-	·	
SPECIFIC CONDUCTIVITY, umas/cm		L Purze Volume	 _ = 30 gal	<u>.</u>
QUIPMENT DOCUMENTATION		DECCIX FLUIDS USED	WATER LEVEL EQUIP	
C I C I PERISTALTIC PUMP C I & SUBHERSIBLE PUMP C I & BAILER (PVG/SS/TET/4 C I C I PVC/SILICON TUBING C I C I TEFLON/SILICON TUBIN C I C I AIR LIFT C I C I WATERRA C I IN-LINE FILTER (MET	KECK WE DIS POSO DIE - VCC S	[I ETHYL ALCOHOL [I DEICHIZED WATER [] HN03/0.I. WATER [I POTABLE WATER [I TSP SCLUTICH [I NCHE [] HCHE	[] ELECTRIC COND [] FLOAT ACTIVAT [] XECK INTERFACE DO OTHER SCLOON NUMBER OF FILTER 1 0-45 A	ed probe LNST Papers used where
SAMPLES COLLECTED				
ANALYSIS	HETHOO HUMBER VOLUME	JAR TYPE	FILTERED	PRESERVATIVE/ VOLUME PH
	IC/SDXX/SBQ IL	POLY	<u>Yes</u>	14NO3 - 2
DAW 2 * 6 - VP YOC	umao ax401	nl A-GLASS/Vial	NO	HCL La
DAWA 46 - HS 5 VOC	umia 2x1L		<u> </u>	
	1413/4HO2 2x/L	A-GLASS	NO	
AWRY 6 -5 NITRATE/NITRITE	TFQQ IL	PLASTIC	NO	H250442
AW3*6-C SULFATE	TTIO IL	PLASTIC	<u>~0</u>	
AWAX 6-B CYANIDE	TF 18 1L	POLY	<u>~0</u>	Na0H 7/2
	PA 413.2 IL	W.M. Amber	<u></u>	H <u>a</u> 504 42
¥6-0 T.R.P.H. E	FPA 418.1 1L	w.M. Amber	NO	142504 42
	etc	WITTER V. 10. 2 M.	il Gede	745E

90303.WP REVISED 3/90

- ABB ENVIRONMENTAL SERVICES, INC. -

SIGNATURE/FUNCTION:

GROUNDWATER	SAMPIE	RECORD
OTTO OTTO PART FOR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

SITE: Detroit Arsenal - Rouno a JOS NO. 7027-03 (TKB) DATE: 4-26-93 USATHAMA

HPLE LOCATION MW-018

LAB NUMBER DAWA *7

WATER LEVEL/W	TTT. DATA				5-0
HEASURED WELL DEPTH 33.3			жск жск жск	AHBIE	ICRING: OUR ENT AIR O.5/c.
HISTORICAL BELL OEPTH 33.6	DR TCP OF WELL		(FROM GROWND)	ता लगा	Mouth Draeger
PURGE DATA HEIGHT OF WATER TOLUMN 25.72	[] .16 GAL/FT \$\frac{1}{2} .55 GAL/FT FT [] 1.5 GAL/FT [] GAL/I	(4 IN) x 5 c (6 IN) vo	83.59 ASING = GALLONS TO BE LUNES PUXGED	PURGE TIME START /700 END 1735	SAMPLE TIME START END
PURGE VOLUHE	3 <u>5</u> GL	3 10 CYL	a 15 GAL	20 ar	a 45 CAL
EMP, DEG C	12.7°	12.6	11.5	11.7	13:1
H, UNITS	<u>7.28</u>	<u>7.25</u>	7.30	-7.26	7.63
PECIFIC COMBUC-	clear	(lear	1180 1180	1200 1+ brown	1220 v.turbid Brown
OLISMENT DOCK					
[] [] PVC/ [] [] [] TEFL [] [] AIR	STALTIC PLMP ERSIBLE PLMP DSPCEDDE ER (PVE/SE/TERLEN) SILICON TUBING ON/SILICON TUBING LIFT	Keck Voc:	[] ETHYL ALCHOL [] OEICHIZED WATER [] HNG3/D.I. WATER [] POTABLE WATER [] TSP SCLUTION [] NCNE ASTM TYPE I	VATER LEVEL E (I ELECTRIC (I FLOAT ACT (I KECK INTE 6/4 OTHER 50) NUMBER CE_FIL I WATER	CCNO. PROBE IVATED RFACE PROBE

NOTES:

[]

[]

[] PRESS/VAC FILTER

Water V. turbid - Brown at \$5 gallow

SIGNATURE Kella Men / E. SIGNATURE/FUNCTION:

DAWZ + 7 -NF DAW 2 # 7 -VP DAW2 7 - 45 DAWZ * 7 -EC PEST. /PCB ⊋504 4∂ NO PLASTIC NITRATE/NITRITE i 🗀 DAW2 * 7 -5 TFQQ NΟ PLASTIC TTIO 16 SULFATE DAWZ*7-C NaOH 712 TF 18 70LY \wedge / \cap 1 _ DAWAX 7-B CYANIDE EPA 413.2 $\mathcal{N}\mathcal{O}$ W.M. Amber OIL + GREASE 14 EPA 418. *l L* W.M. Amber

SICHATURE

90303.UP REVISED 3/90

GEDL. SIGNATURE/FUNCTION:

[]

[]

,					
:611	DHIJAKKS DH	EQUIPMENT ID	DECOX FLUIDS USED	WATER LEVEL EQUIP.USED	
	[] PERISTALTIC PUMP DISPOSED SUBMERSIBLE PUMP DISPOSED SUBMERSIBLE PUMP DISPOSED SUBMERSIBLE (PVC/SS/CEFLON) [] BAILER (PVC/SS/CEFLON) [] PVC/SILICON TUBING [] TEFLON/SILICON TUBING [] AIR LIFT [] WATERRA [M] IN-LINE FILTER (Metch) [] PRESS/VAC FILTER	·	[I ETHYL ALCHOL [I OEIONIZED WATER [] HNO3/D.I. WATER [] POTABLE WATER [I TSP SCLUTION [] HONE PASTM TYPE II	(] ELECTRIC COND. PROBE (] FLOAT ACTIVATED (] KECK INTERFACE PROBE () OTHER SOLINST NUMBER OF FILTER PAPERS USED	

NOTES: Water clear at beginning of purge water silty at 50 gallons - brown

> SIGNATURE KADOS SIGNATURE/FUNCTION:

90303.UP REVISED 3/90

ABB ENVIRONMENTAL SERVICES, INC. -

SITE: DETROIT ARSENAL (USATHAMA) JCS NO. 7027-03 (TKB) DATE: 4-28-93

KOUNU &	•	•			WED
WHELE LOCATION ML	W-010	LAB NUMBER _D	AWa *4	·····	
WATER LEVEL/WELL HEASURED WELL OSPIHF	DATA SEE PAGE (ITCP OF WELL T (ITCP OF CASING (I	WELL DIAM. (1 2 INCH (1 4 INCH (1 6 INCH (1 1	WATER DEPTH	AHBIEHT . WELL HOL	APS STA
HISTORICAL 34.3 F	[] TCP OF WELL [] TCP OF CASING	FELL MATERIAL: PYC I I SS I I	PROTECTIVE -UP	RAEGER TUBE Well Mouth _ Ambient Air _	<u></u>
PURGE DATA HEIGHT OF WATER COLUMN See progr 1	(NI S) TR/JAD 61. [] (NI 6) FT (4 IN) (NI 6) FT (AL/FT (6 IN) (NI 6) FT (JAL/FT (6 IN)	X CASTAG	PU GALLONS TO BE ST CADRON	IRGZ TINE TART 1420 ENO 1435	SAMPLE TIME START 1440 END 505
_	a <u>10</u> GAL a	<u>15</u> ac	a CAL a	cu.	a CIL
TEHP, DEG C	10.9	11.0			
י. פאן עאן דק.	7.3	<u>7.) </u>			
SPECIFIC CONDUCTIVITY, umes/cm	2790 3 TOTAL PURG	310 E= 80 8a	Q		·
STIPMENT DOCUMENT SAMPLING		PHENT ID DECCH	רניונסג עצפס	WATER LEVEL EQUI	P.USƏ
C1 C1 PERISTAL SUBMERSI C1 H BAILER C C1 C1 PVC/SILI C1 E1 TEFLEN/S C1 C1 AIR LIFT	SLE PUMP KE PVE/SS/TEFICH) DIS POSOB CEN TUBING ILICON TUBING FILTER (METALS)	CK (ID (E-VCCs (IH (IP (IT (IW	THYL ALCOHOL EICHIZED WATER HOS/O.I. WATER OTABLE WATER SP SCLUTICH CHE STM TYPE I WAT	[] ELECTRIC CONIC [] FUGAT ACTIVA [] KECK INTERFA DO OTHER SOLD NUMBER OF FILTER O.45.	TED CE PROSE ZNST PAPERS USED 1
(1 (1					
SAMPLES COLLECTED AMALYSI BOTTLE ID REGUEST	С ОКТЭК СЕ КЭВК ИК СЕ	VOLUME	JAR TYPE	FILTERED	PRESERVATIVE/ VOLUME PH HNO2-2
AWZ+4-NF DISS.Me			POLY	<u>Yes</u>	HCL 42
AMS*4-VP YOC	<u>umao</u>	2 x40ml	A-GLASS/Vial	<u> </u>	
A <u>wa * 4 - H</u> s <u>5 voc</u>	<u>um18</u>	2x1L	A-GLASS	<u> </u>	
AW2*4-EC PEST./		2×1L iL	PLASTIC	NO	H250440
1662+4-5 NITRAN 1662+4-C SULF		16	PLASTIC	NO	
Awax 4-B CYAN		11	POLY	NO	NOOH 7/2
~~~ 4-0 OIL+6		14	W.M. Amber	NO	Ha504 46

2RUTAKD12

*4-0 T.R.P.H. EPA 418.1 1L W.M. Amber

90303.42 09\E E321V3R SIGNATURE/FUNCTION: Kall J. Mock 660L. ABB ENVIRONMENTAL SERVICES, INC.

JCB NO. 7027-03 (TKB) DATE: TV4-27-93

SITE:	Detroit	Hrsena
	USATHA	AMA .

HPLE LOCATION MW-001

LAB NUMBER DAWQ */

DATA  Of top of well  ( ) top of casing  ( )	VELL DIAM. E 1 X INCH H 1 X X H 1 X I X	WATER DEPTH 3.	AHB [E]	CRING: OUR HT AIR 9 PPM HOUTH 9 PPM
DO TOP OF WELL [ ] TOP OF CASING [ ]	WELL MATERIAL:	CASING STICK-UP	<b>W</b> थ।	0.5/a sring - Draege-Tuba Mouth
65 CAL/FT (4 I	(K) 5 CASTNG (K) (K) (K) (K)	99.13  GALLONS TO SE PURGED	PURGE TIME START 1120 END 1845	SAMPLE TIME START
10.0°	30 CLL		9.9	= 100 cal
	<u>2180</u>	990 Brown,	1910 Brown Turbid	6.33 1960 Brown, turkid
TATION		FLUIDS USED	WATER LEVEL ES	
CLTER (Mercule)	C	ICHIZED WATER C3/D.I. WATER TABLE WATER P SOLUTION NE	( ) FLOAT ACTI ( ) XECK INTER () OTHER SOL	VATED FACE PROBE -エルジT
	TOP OF WELL  [ ] TOP OF WELL  [ ] TOP OF WELL  [ ] TOP OF WELL  [ ] TOP OF CASING  [ ] .45 CAL/FT (2 )  [ ] 1.5 CAL/FT (6 )  [ ] .57 CAL/FT (6 )  [ ] .60 CAL  [ ] .60 CAL  [ ] .72  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [ ] .73  [	TOP OF WELL  [ ] TOP OF CASING  [ ] Z INCH  [ ] 4 INCH  [ ] 6 INCH  [ ] 6 INCH  [ ] 1 6 INCH  [ ] 1 6 INCH  [ ] 1 16 GAL/FT (2 IN)  [ ] 1.5 GAL/FT (4 IN) 1983  [ ] 1.5 GAL/FT (6 IN)  [ ] GAL/FT ( IN)  2 /O GAL  2 /O GAL  3 /O GAL  3 /O GAL  3 /O GAL  4 /O GAL  3 /O GAL  4 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  6 /O GAL  7 /O GAL  7 /O GAL  7 /O GAL  7 /O GAL  7 /O GAL  8 /O GAL  7 /O GAL  7 /O GAL  8 /O GAL  7 /O GAL  7 /O GAL  8 /O GAL  7 /O GAL  7 /O GAL  8 /O GAL  7 /O GAL  7 /O GAL  8 /O GAL  7 /O GAL  7 /O GAL  8 /O GAL  7 /O GAL  8 /O GAL  8 /O GAL  7 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O GAL  8 /O	TOP OF WELL  (1) TOP OF CASING  (1) WELL MATERIAL:  (1) TOP OF WELL  (1) TOP OF WELL  (1) TOP OF WELL  (1) TOP OF CASING  (1) WELL MATERIAL:  (1) TOP OF WELL  (1) TOP OF CASING  (1) SS (FROM GROUND)  (1) SS (FROM GROUND)  (1) SS (FROM GROUND)  (1) SAL/FT (4 IN) 1934 S CASING  (1) LOS GAL/FT (6 IN)  (1) GAL/FT (6 IN)  (2) CASING  (1) LOS GAL/FT (6 IN)  (2) CASING  (3) CASING  (4) CASING  (4) CASING  (5) CASING  (6) CASING  (7) CASING  (7) CASING  (1) LOS GAL/FT (6 IN)  (2) CASING  (3) CASING  (4) CASING  (4) CASING  (5) CASING  (6) CASING  (7) CASING  (7) CASING  (8) CASING  (1) CASING  (1) CASING  (1) CASING  (2) CASING  (3) CASING  (4) CASING  (4) CASING  (5) CASING  (6) CASING  (7) CASING  (7) CASING  (8) CASING  (8) CASING  (9) CASING  (1) CASING  (2) CASING  (3) CASING  (4) CASING  (4) CASING  (5) CASING  (6) CASING  (7) CASING  (	TOP OF WELL  (1 TOP OF CASING  (1 2 INCH  (1 TOP OF CASING  (1 2 INCH  (1 TOP OF WELL  (1 TOP OF WELL  (1 TOP OF CASING  (2 TOP OF CASING  (3 TOP OF CASING  (4 TOP OF CASING  (4 TOP OF CASING  (5 TOP OF CASING  (6 TOP OF CASING  (6 TOP OF CASING  (6 TOP OF CASING  (6 TOP OF CASING  (7 TOP OF CASING  (7 TOP OF CASING  (8 TOP OF CASING  (8 TOP OF CASING  (9 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (2 TOP OF CASING  (3 TOP OF CASING  (2 TOP OF CASING  (3 TOP OF CASING  (3 TOP OF CASING  (4 TOP OF CASING  (5 TOP OF CASING  (5 TOP OF CASING  (6 TOP OF CASING  (7 TOP OF CASING  (7 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (2 TOP OF CASING  (3 TOP OF CASING  (4 TOP OF CASING  (5 TOP OF CASING  (5 TOP OF CASING  (6 TOP OF CASING  (7 TOP OF CASING  (7 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING  (1 TOP OF CASING

Water brown & silty at beginning

well dry at 100 gallono, let re well rechange and sample

Location access problems - mud fland carried Keck to well w/ Batters

> SIGNATURE Kell A Me SIGNATURE/FUNCTION:

90303.UP REVISED 3/90

ABB ENVIRONMENTAL SERVICES, INC.

THE LOCATION MW-001	LAB NUMBER DA	wa*1		
WATER LIVEL/WELL DATA SEE PAGE _	VELL DIAM.  [ ] Z INCH  [ ] Z INCH  [ ] 4 INCH  [ ] 6 INCH  [ ]	WATER DEPTH	FT HONITO  AMBIEN WELL H  DRAEGER TUE	CUTH PPH
HISTORICAL 34.2 FT (1 TOP OF WELL USELL DEPTH 34.2 FT (1 TOP OF CASING	WELL MATERIAL:  PYC  I I SS  I I	PROTECTIVE		
PURGE DATA [ ] .16 GAL/FT (2 IN)  HEIGHT OF WATER [ ] .65 GAL/FT (4 IN)  COLUMNFT [ ] 1.5 GAL/FT (6 IN)  GRE POLICE	VOLUMES	CALLONS TO BE PUNCED	ENO <u>773 O</u>	START 1450 *
PURGE VOLUME 3 10 GAL 3 21	2 cs.	Pursez	a cxr	a &L
TEMP, DEG C 10.4 10				
рн, илита (6.8)	5		-	
SPECIFIC CONDUC- 1920 194				
TIVITY, umas/cm Pursed 20 K	44		led	
QUIPMENT DOCUMENTATION  RGING SAMPLING EQUIPMENT  C1 C1 PERISTALTIC PUMP  C1 C1 SUBMERSIBLE PUMP  C1 C1 EAILER (AVG/95/TEFLOW) DIS POSQ DIE —  C1 C1 PVC/SILICON TUBING  C1 C1 AIR LIFT  C1 C1 WATERRA  C1 C1 PRESS/VAC FILTER  C1 C1  C1	( ] ET ( ] OE ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC ( ) OC (	FLUIDS USED  HYL ALCEHOL ICHIZED WATER 03/0.1. WATER TABLE WATER P SCLUTION NE TYPE IL WA	NUMBER OF FILTE	CND. PRCBE VATED FACE PRCBE
SAMPLES COLLECTED ANALYSIS METHOD			FILTERED	PRESERVATIVE/
BOTTLE ID REQUESTED NUMBER	VOLUME	POLY	Yes	HN0=- 2
DAWZ*1-NF Diss Metals SSIC/SDXX/SBQ	1L 2-1401	A-GLASS/VIO		HCL 42
	2 x 11		NO	
<u> </u>	2x1L	A-GLASS A-GLASS.	NO	
VIII 23	2x1L iL	PLASTIC	NO	H2504 42
DAWA* 1 - S NITRATE/NITRITE TFAA  DAWA* 1 - C SULFATE TTIO	14	PLASTIC	NO	
DAWAXI-C SUZPATE TF18	14	POLY	NO	NOOH 712
24 1-0 OIL+ GREASE EPA 413.2	14	W.M. Amber	NO	Ha504 42
*1-0 T.R.P.H. EPA 418.1	14	W.M. Amber	NO	142504 -2
	2RUTAKD12			
90303.WP REVISED 3/90			TUNCTION: Kaly 2.	

SITE: Detroit Arsenal -ROUND 2 JOS NO. 7007-03 (TKB) DATE: 4-27-93 USATHAMA

HPLE LOCATION MW-004

LAB HUMBER DAW 2 *3

WATER LEVEL/WELL HEASURED WELL DEPTH 33 F	. Data			<b>.о′</b> FT нои г	FIO TCRING: OUR
WELL DEPINP		G []2 _ 5√14 _ (]6	INCH		MAG Ø HAT HE
		[]_			0.5/~
HISTORICAL 34 FT	TCP OF WELL		ATERIAL: PROTECTIVE /C CASING STICK-UP		tering - Draeger Tut 1 Mouth _ &
WELL OUT IN COLUMN	[]	្តី ពីនៅ ព	(FROM GROWND)		ornthic B
PURGE DATA	[ ] .16 GAL/FT (2	2 (K) <u>:</u>	P1 25	PURGE TIME	SAMPLE TIME
HEIGHT OF WATER COLUMN 25 FT	65 GAL/FT (4 1 1.5 GAL/FT (6	(кіх) х <u>5</u>	Al.25 CASING = GALLONS TO BE POLUMES PURGED	START 0850	START
LUCCON	[ ] GAL/FT		deales Loveen		
PURGE VOLUME	a 10 ext	. 230 CIL	2 40 CAL	3 50 CHL	= 60 cal
TEHP, DEG C	9.6	8.4	<u>9.2</u>	10.1	10.8
PH, UNITS	(o.94	6.76	6.74	-6.71	6.75
SPECIFIC CCHOUC-	NR .	1460	1470	1520	1240
TIVITY, umas/cm	clear	clear	slighty turbid It. brown	turbid brown	turbid
'QUIPMENT DOCUMEN	TATION				well dry
GING SAMPLING		EGUIPHENT ID	DECCH FLUIDS USED	WATER LEVEL S	cutr.usa
[ ] [ ] PERISTALI	TIC PUMP DISPOSEDIE		[ ] ETHYL ALCOHOL	[ ] ELECTRIC	
M SUBHERSIE [ ] ( ] SAILER (F	SLE PURP DET	VOC:	[ ] DEIGNIZED WATER [ ] HNG3/D.I. WATER	[ ] FLCAT ACT	
· [] [] PVC/SILIO		4007	[ ] POTABLE WATER	MOTHER 50	
[] [] TEFLON/SI	LICCH TUBING		[ ] TSP SCLUTICH	` `	
CI CI AIR LIFT			[ ] NCHE	NUMBER OF FIL	TER PAPERS USED
[] [] WATERRA	· (2/20-00)		MASTM TYPE II	WATER	
IN-LINE F	ittes (Wewys)				
( ) FRE33/ FAC	116167				

NOTES: Water clear at beginning of purge

SIGNATURE Kelly 2 Mak ...

(1

SITE: DETROIT ARSENAL (USATHAMA) JCS NO. 7027-03 (TKB) DATE: 4-28-93

wed.

- ABB ENVIRONMENTAL SERVICES, INC.

ROUND &

90303.42

06/E G251A38

WALE LOCATION MW-004

LAB NUMBER DAWZ \$3

MATER LEVEL/MELL	JATA DEE PAGE	WELL DIAM.	WATER DEPTH	FT HONITO	RING: FID
HEASURED  VELL DEPTHFT	בובל סר בבבב פאוצגם	C 1 2 INCH			
	[]	154 4 ENCH E 1 6 ENCH		WELL X	T AIR by ppm
		[]		DRAEGER TUE	3E 0.5/a
HISTORICAL 34 FT	[ ] TCP OF WELL	WELL MATERIAË: "₩ PVC	בוניץ זדה הנוזהים	Wall Mouth	<u> </u>
REST DESIGN OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF		[] \$2	(FROM GROWND)	Ambient Air	$-\varphi$
		[]	FT		
PURGE DATA	( KI 2) TR/JAD 21. [ ] ( KI 4) TR/JAD 22. [ ]			PURGE TINE	SAMPLE TIME
HEIGHT OF WATER COLUMNFT	[ ] .45 GAL/FT (4 IN)	X CASING :	= GALLCHS TO 3E C3DRU9	EN0 1525	END / 600
Ger prop 1	[ ] GAL/FT (				
Bee plage.					a &L
PURGE YOU'SE		<del></del>	ar	s car	<u> </u>
TEMP, DES C	10.9	<u> 10.7                                    </u>			·
מדואט, אם	7.1	· 8		-	
•	1320 1	295			
TIVITY, umos/cm		<u> </u>	7000	2 .	•
	707	4L PURGE	= 70 gall	-	
ODIENEMI DOCUMENT	ATION		הבענסג מצבס	WATER LEVEL EG	שוף.עוב
DRIJAMES DRIDE				[ ] ELECTRIC C	
[] [] PERISTALTI	C PUMP KEC	£ 1.00	THYL ALCOHOL SETAN GEZHOLE	E I FLOAT ACTI	CETAV
[ ]	<del>cissitetlen</del> ) Dispa <u>sabi</u>	ALL SOCK	HO3/D.I. WATER	[] KECK INTER  DO OTHER SO	FACE PROSE LINST
. (1 (1 PVC/SILICO (1 (1 TEFLON/SIL	N TUBING .	r 1 TS	SP SCLUTICH		ER PAPERS USED
( ] ( ] AIR LIFT ( ] VATERRA		0K [ ] 2A D≪	EXE STM TYPE I W		45 micron
( TIN-LINE FT	LIER (METALS)			_	1-line
[ ] PRESS/VAC [ ]					
SAMPLES COLLECTED					
ANALYSIS BOTTLE IO REQUESTED	HETHCO HUMBER	VOLUHE	JAR TYPE	FILTERED	PRESERVATIVE/ VOLUME PH
DAWA#3-NF DISS. Meto			POLY	Yes	HNO3-5
	umao	2 x40ml	A-GLASS/VI	al NO	HCL 42
DAWA#3-VP VOC	umia	2x1L	A-GLASS	NO	
0AWa *- 3 - H5 5 VOC		2 X I L	A-GLASS	NO	
PAW2#3-EC PEST./P		iL	PLASTIC	NO	H250442
AWA+3-5 NITRATE		16	PLASTIC	NO	
Awa*3-C <u>SULFA</u>		14	POLY	NO	NoOH 712
<u>AW3×3-B CYANZ</u> AW3×3-O OIL+6R	-0.14	<u> </u>	w.m. Amber		H2504 42
*3-0 T.R.P.H.		14	w.m. Amber		172504 42
, 1.1.1.11		SIGHATURE			
מחזחז עם		31402.00	SSUTAKD12	FUNCTION: K.OO.	2 Mich /GEN

SIGNATURE Kelly 2 mich / GEOL
SIGNATURE/FUNCTION:

90303.up 09\E G321V3R

- ABB ENVIRONMENTAL SERVICES, INC. -

JCS NO. 7027-03 (TKB) DATE: 4-28-93 SITE: DETROIT ARSENAL (USATHAMA)

LAB NUMBER _ DAWRED HAPLE LOCATION MW-002 WATER LEVEL/WELL DATA SEE PAGE 1 FID HENTTERING: OVA WATER DEPTH [ ] TOP OF WELL YELL DIAM. HEASURED [ ] TCP OF CASING [ ] Z INCH WELL DEPTH _ RIA TKEIBHA 154 4 INCH [] WELL MOUTH KOKI & I ) DRAEGER TUBE 0.5/a PROTECTIVE WELL MATERIAL: HISTORICAL 33-7 FT [ ] TCP OF WELL Well Mouth -[ ] TOP OF CASING M SAC CASING STICK-UP (FROM GROWND) **22** [] Ambient Air [ ] [] PURGE TIME SAMPLE TIME FURGE DATA [ ] .16 GAL/FT (Z IN) START_113C START 1120 E DT EKOLLAD = DKIEAS _ [ ] .65 GAL/FT (4 IN) HEIGHT OF WATER END 1/30 END ALS [ ] 1.5 GAL/FT (6 IN) VOLUMES PURGED [ ] ____ GAL/FT (____[N) 15ec page 2 10 cm 3 ___ CXL 3 ___ CAL a 5 CAL 2 ___ CAL PURGE YOULKE 9.7 TEMP, DEG C 7. 26a CH. UNITS - בעסעכם בוקובפקצ TIVITY, umics/cm = 83 800. QUIPMENT DOCUMENTATION WATER LEVEL EQUIP.USED DECCH FLUIDS USED EQUIPMENT ID RGING SAMPLING [ ] ELECTRIC COND. PROSE [ I ETHYL ALCOHOL [ ] PERISTALTIC PUMP 7 1 SUBHERSTBLE PUMP

SO BAILER (PVG/SE/TETLEN) DISPOSABLE - VCC S

[ ] PVC/SILICEN TUBING [ ] FLOAT ACTIVATED [ ] DEICHIZED WATER [] [ ] KECK INTERFACE PROSE [ ] HNO3/D.I. WATER ſI M OTHER SOLINST [ ] POTABLE WATER [ ] נן זכף בכנעדוכא [ ] TEFLON/SILICEN TUBING [ ] NUMBER OF FILTER PAPERS USED SKOK [] [ ] AIR LIFT (1 M ASTM TYPE I WATER [ ] WATERRA [ ] M IN-LINE FILTER (METALS) [ ] PRESS/VAC FILTER [] (1 SAMPLES COLLECTED PRESERVATIVE/ METHOD ZIZYJAKA VOLUHE FILTERED JAR TYPE RECLESTED NUMBER VOLUME BOTTLE 10 HN026 3 Yes POLY 5SIC/SDXX/SBC 11 Diss Metals DAWZ+2-NF A-GLASS/VIOI No 2 ×40ml umao AN- EREMAD VOC N٥ 2x1L A-GLASS umi8 DAWA + 2 - HS 5 YOC NO A-GLASS UH13/UH02 2 x I L DAWZ #2-EC PEST. /PCB ±504 4∂ NO PLASTIC i 🗀 TF22 DANG 4 & -5 NITRATE/NITRITE _ NO TT10 11 PLASTIC SULFATE J- &×EWAQ NaOH 7/2 14 70LY  $\wedge / \cap$ TF 18 CYANIDE DAWAXQ -B H2504 42 EPA 413.2 NO14 W.M. Amber OIL + GREASE EPA 418. I 1 _ T.R.P.H. W.M. Amber BRUTAKDIZ

90303.UP 09\E G321V3R SIGNATURE/FUNCTION: KM - ABS ENVIRCHMENTAL SERVICES, INC. - **ROUND 2 ANALYTICAL DATA** 

<b>a</b> *.								TI:4	Mann.	T/les	
Site <u>Type</u>	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	Value	Meas.	Meas Bool.	Flag Codes	Prog.
WELL	MW001	00	OILGR	27-apr-1993	ES	3.38	170	UGL	LT		GO
			TPHC	27-apr-1993	ES	3.38	170	UGL	LT		GO
WELL	MW001	SB01	HG	27-apr-1993	ES	3.38	0.243	UGL	LT		GO
WELL	MW001	SD09	TL	27-apr-1993	ES	3.38	6.99	UGL	LT		GO
WELL	MW001	SD20	PB	27-apr-1993	ES	3.38	1.26	UGL	LT		GO
WELL	MW001	SD21	SE	27-apr-1993	ES	3.38	3.02	UGL	LT		GO
WELL	MW001	SD22	AS	27-apr-1993	ES	3.38	2.54	UGL	LT		GO
WELL	MW001	SS10	AG	27-apr-1993	ES	3.38	4.6	UGL	LT		GO
			AL	27-apr-1993	ES	3.38	141	UGL	LT		GO
			BA	27-apr-1993	ES	3.38	94.4	UGL	1 m		GO
			BE	27-apr-1993	ES ES	3.38 3.38	5 278000	UGL UGL	LT		GO GO
			CA CD	27-apr-1993 27-apr-1993	ES	3.38	4.01	UGL	LT		GO
			CO	27-apr-1993	ES	3.38	25	UGL	LT		GO
			CR	27-apr-1993	ES	3.38	6.02	UGL	LT		GO
			CU	27-apr-1993	ES	3.38	8.09	UGL	LT		GO
			FE	27-apr-1993	ES	3.38	1170	UGL			GO
			K	27-apr-1993	ES	3.38	2550	UGL			GO
			MG	27-apr-1993	ES	3.38	105000	UGL			GO
			MN	27-apr-1993	ES	3.38	917	UGL			GO
			NA	27-apr-1993	ES	3.38	83900	UGL			GO
			NI	27-apr-1993	ES	3.38	34.3	UGL	LT		GO
			SB	27-apr-1993	ES	3.38	38	UGL	LT		GO
			V	27-apr-1993	ES	3.38	11	UGL	LT		GO
			ZN	27-apr-1993	ES	3.38	21.1	UGL	LT		GO
WELL	MW001	TF18	CYN	27-apr-1993	ES	3.38	2.5	UGL	LT		GO
WELL	MW001	TF22	NIT	27-apr-1993	ES	3.38	21.3	UGL			GO
WELL	MW001	TT10	CL	27-apr-1993	ES ES	3.38 3.38	260000 300000	UGL UGL			GO GO
332727.1	<b>NATURO</b> 01	111100	SO4 PCB016	27-apr-1993	ES	3.38	0.16	UGL	LT		GO
WELL	MW001	UH02	PCB010 PCB221	27-apr-1993 27-apr-1993	ES	3.38	0.16	UGL	ND	R	GO
			PCB232	27-apr-1993	ES	3.38	0.16	UGL	ND	R	GO
			PCB242	27-apr-1993	ES	3.38	0.19	UGL	ND	R	GO
			PCB248	27-apr-1993	ES	3.38	0.19	UGL	ND	R	GO
			PCB254	27-apr-1993	ES	3.38	0.19	UGL	ND	R	GO
			PCB260	27-apr-1993	ES	3.38	0.19	UGL	LT		GO
WELL	MW001	UH13	ABHC	27-apr-1993	ES	3.38	0.0385	UGL	LT		GO
WELL	MW001	UH13	ACLDAN	27-apr-1993	ES	3.38	0.075	UGL	ND	R	GO
			AENSLF	27-apr-1993	ES	3.38	0.023	UGL	LT		GO
			ALDRN	27-apr-1993	ES	3.38	0.0918	UGL	LT		GO
			BBHC	27-apr-1993	ES	3.38		UGL	LT		GO
			BENSLF	27-apr-1993	ES	3.38		UGL	LT		GO
			DBHC	27-apr-1993	ES	3.38	0.0293 0.024	UGL UGL	LT LT		GO GO
			DLDRN ENDRN	27-apr-1993 27-apr-1993	ES ES	3.38 3.38	0.024	UGL	LT		GO
			ENDRNA	27-apr-1993	ES	3.38	0.0285	UGL	LT		GO
			ENDRNK	27-apr-1993	ES	3.38	0.0285	UGL	ND	R	GO
			ESFSO4	27-apr-1993	ES	3.38	0.0786	UGL	LT		GO
			GCLDAN	27-apr-1993	ES	3.38	0.075	UGL	ND	R	GO
			HPCL	27-apr-1993	ES	3.38	0.0423	UGL	LT		GO
			HPCLE	27-apr-1993	ES	3.38	0.0245	UGL	LT		GO
			ISODR	27-apr-1993	ES	3.38	0.0562	UGL	LT		GO
			LIN	27-apr-1993	ES	3.38	0.0507	UGL	LT		GO
			MEXCLR	27-apr-1993	ES	3.38	0.057	UGL	LT		GO
			PPDDD	27-apr-1993	ES	3.38	0.0233	UGL	LT		GO
			PPDDE	27-apr-1993	ES	3.38	0.027	UGL	LT		GO

Site									Meas	Flag	
Турс	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Deptl	<u>Value</u>	Meas.	Bool.	Codes	Prog.
			PPDDT	27-apr-1993	ES	3.38	0.034	UGL	LT		GO
			TXPHEN	27-apr-1993	ES	3.38	1.35	UGL	LT		GO
WELL	MW001	<b>UM</b> 18	124TCB	27-apr-1993	ES	3.38	1.8	UGL	LT		GO
WELL	112 11 002		12DCLB	27-apr-1993	ES	3.38	1.7	UGL	LT		GO
			12DPH	27-apr-1993	ES	3.38	2	UGL	ND	R	GO
			13DCLB	27-apr-1993	ES	3.38	1.7	UGL	LT		GO
			14DCLB	27-apr-1993	ES	3.38	1.7	UGL	LT		GO
			245TCP	27-apr-1993	ES	3.38	5.2	UGL	LT		GO
			246TCP	27-apr-1993	ES	3.38	4.2	UGL	LT		GO
			24DCLP	27-apr-1993	ES	3.38	2.9	UGL	LT		GO
			24DMPN	27-apr-1993	ES	3.38	5.8	UGL	LT		GO
			24DNP	27-apr-1993	ES	3.38	21	UGL	LT		GO
			24DNT	27-apr-1993	ES	3.38	4.5	UGL	LT		GO
				27-apr-1993	ES	3.38	0.79	UGL	LT		GO
			26DNT 2CLP	27-apr-1993	ES	3.38	0.99	UGL	LT		GO
				27-apr-1993	ES	3.38	0.5	UGL	LT		GO
			2CNAP 2MNAP	27-apr - 1993	ES	3.38	1.7	UGL	LT		GO
			2MP	27-apr-1993	ES	3.38	3.9	UGL	LT		GO
			2NANIL	27-apr-1993	ES	3.38	4.3	UGL	LT		GO
			2NP	27-apr-1993	ES	3.38	3.7	UGL	LT		GO
			33DCBD	27-apr-1993	ES	3.38	12	UGL	LT		GO
			3NANIL	27-apr-1993	ES	3.38	4.9	UGL	LT		GO
			46DN2C	27-apr-1993	ES	3.38	17	UGL	LT		GO
			4BRPPE	27-apr-1993	ES	3.38	4.2	UGL	LT		GO
			4CANIL	27-apr-1993	ES	3.38	7.3	UGL	LT		GO
			4CL3C	27-apr-1993	ES	3.38	4	UGL	LT		GO
			4CLPPE	27-apr-1993	ES	3.38	5.1	UGL	LT		GO
			4MP	27-apr-1993	ES	3.38	0.52	UGL	LT		GO
			4NANIL	27-apr-1993	ES	3.38	5.2	UGL	LT		GO
			4NP	27-apr-1993	ES	3.38	12	UGL	LT		GO
			ABHC	27-apr-1993	ES	3.38	4	UGL	ND	R	GO
			ACLDAN	27-apr-1993	ES	3.38	5.1	UGL	ND	R	GO
32777 T	MW001	UM18	AENSLF	27-apr-1993	ES	3.38	9.2	UGL	ND	R	GO
WELL	IVI W 001	CWIIO	ALDRN	27-apr-1993	ES	3.38	4.7	UGL	ND	R	GO
			ANAPNE	27-apr-1993	ES	3.38	1.7	UGL	LT		GO
			ANAPYL	27-apr-1993	ES	3.38	0.5	UGL	LT		GO
			ANTRC	27-apr-1993	ES	3.38	0.5	UGL	LT		GO
			B2CEXM	27-apr-1993	ES	3.38	1.5	UGL	LT		GO
			B2CIPE	27-apr-1993	ES	3.38	5.3	UGL	LT		GO
			B2CLEE	27-apr-1993	ES	3.38	1.9	UGL	LT		GO
			B2EHP	27-apr-1993	ES	3.38	4.8	UGL	LT		GO
			BAANTR	27-apr-1993	ES	3.38	1.6	UGL	LT		GO
			BAPYR	27-apr-1993	ES	3.38	4.7	UGL	LT		GO
			BBFANT	27-apr-1993	ES	3.38	5.4	UGL	LT	-	GO
			BBHC	27-apr-1993	ES	3.38	4	UGL	ND	R	GO
			BBZP	27-apr-1993	ES	3.38	3.4	UGL	LT	~	GO
			BENSLF	27-apr-1993	ES	3.38	9.2	UGL	ND	R	GO
			BENZID	27-apr-1993	ES	3.38	10	UGL	ND	R	GO
			BENZOA	27-apr-1993	ES	3.38	13	UGL	LT		GO
			<b>BGHIPY</b>	27-apr-1993	ES	3.38	6.1	UGL	LT		GO
			BKFANT	27-apr-1993	ES	3.38	0.87	UGL	LT		GO
			BZALC	27-apr-1993	ES	3.38	0.72	UGL	LT	*	GO
			CARBAZ	27-apr-1993	ES	3.38	0.5	UGL	ND	R	GO
			CHRY	27-apr-1993	ES	3.38	2.4	UGL	LT		GO
			CL6BZ	27-apr-1993	ES	3.38	1.6	UGL	LT		GO
			CL6CP	27-apr-1993	ES	3.38	8.6	UGL	LT		GO

Site	C'4 - TD	Mashad	Test Name	Samala Data	Tab	Denti	Value		Meas	Flag	Drog
Type	Site ID	<u>Method</u>	Test Name	Sample Date	<u>Lab</u>	Deptl	vaiuc	Meas.	BUUI.	Codes	Prog.
			CL6ET	27-apr-1993	ES	3.38	1.5	UGL	LT		GO
			DBAHA	27-apr-1993	ES	3.38	6.5	UGL	LT		GO
			DBHC	27-apr-1993	ES	3.38	4	UGL	ND	R	GO
			DBZFUR	27-apr-1993	ES	3.38	1.7	UGL	LT		GO
			DEP	27-apr-1993	ES	3.38	2	UGL	LT		GO
			DLDRN	27-apr-1993	ES	3.38	4.7	UGL	ND	R	GO
			DMP	27-apr-1993	ES	3.38	1.5	UGL	LT		GO
			DNBP	27-apr-1993	ES	3.38	3.7	UGL	LT		GO
			DNOP	27-apr-1993	ES ES	3.38 3.38	15 7.6	UGL UGL	LT ND	R	GO GO
			ENDRN ENDRNA	27-apr-1993 27-apr-1993	ES	3.38	7.0	UGL	ND	R	GO
			ENDRNK	27-apr-1993	ES	3.38	8	UGL	ND	R	GO
			ESFSO4	27-apr-1993	ES	3.38	9.2	UGL	ND	R	GO
			FANT	27-apr-1993	ES	3.38	3.3	UGL	LT		GO
			FLRENE	27-apr-1993	ES	3.38	3.7	UGL	LT		GO
			GCLDAN	27-apr-1993	ES	3.38	5.1	UGL	ND	R	GO
			HCBD	27-apr-1993	ES	3.38	3.4	UGL	LT		GO
			HPCL	27-apr-1993	ES	3.38	2	UGL	ND	R	GO
			HPCLE	27-apr-1993	ES	3.38	5	UGL	ND	R	GO
			ICDPYR	27-apr-1993	ES	3.38	8.6	UGL	LT		GO
			ISOPHR	27-apr-1993	ES	3.38	4.8	UGL	LT	n	GO
			LIN	27-apr-1993	ES	3.38	4	UGL	ND ND	R R	GO
			MEXCLR	27-apr-1993 27-apr-1993	ES ES	3.38 3.38	5.1 0.5	UGL UGL	LT	K	GO GO
			NAP NB	27-apr-1993 27-apr-1993	ES	3.38	0.5	UGL	LT		GO
			NNDMEA	27-apr-1993	ES	3.38	2	UGL	ND	R	GO
			NNDNPA	27-apr-1993	ES	3.38	4.4	UGL	LT		GO
			NNDPA	27-apr-1993	ES	3.38	3	UGL	LT		GO
WELL	MW001	UM18	PCB016	27-apr-1993	ES	3.38	21	UGL	ND	R	GO
			PCB221	27-apr-1993	ES	3.38	21	UGL	ND	R	GO
			PCB232	27-apr-1993	ES	3.38	21	UGL	ND	R	GO
			PCB242	27-apr-1993	ES	3.38	30	UGL	ND	R	GO
			PCB248	27-apr-1993	ES	3.38	30	UGL	ND	R	GO
			PCB254	27-apr-1993	ES	3.38	36	UGL	ND	R	GO
			PCB260	27-apr-1993	ES	3.38	36	UGL	ND	R	GO
			PCP	27-apr-1993	ES	3.38	18	UGL UGL	LT		GO
			PHANTR	27-apr-1993	ES	3.38 3.38	0.5 9.2	UGL	LT LT		GO GO
			PHENOL PPDDD	27-apr-1993 27-apr-1993	ES ES	3.38	4	UGL	ND	R	GO
			PPDDE	27-apr-1993	ES	3.38	4.7	UGL	ND	R	GO
			PPDDT	27-apr-1993	ES	3.38	9.2	UGL	ND	R	GO
			PYR	27-apr-1993	ES	3.38	2.8	UGL	LT		GO
			TXPHEN	27-apr-1993	ES	3.38	36	UGL	ND	R	GO
WELL	MW001	<b>UM2</b> 0	111TCE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			112TCE	27-apr-1993	ES	0	1.2	UGL	LT		GO
			11DCE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			11DCLE	27-apr-1993	ES	0	0.68	UGL	LT		GO
			12DCE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			12DCLE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			12DCLP	27-apr-1993	ES	0	0.5 0.71	UGL UGL	LT LT		GO GO
			2CLEVE	27-apr-1993	ES ES	0 0	13	UGL	LT		GO
			ACET ACROLN	27-apr-1993 27-apr-1993	ES	0	100	UGL	ND	R	GO
			ACRYLO	27-apr-1993 27-apr-1993	ES	0	100	UGL	ND	R	GO
			BRDCLM	27-apr-1993	ES	0	0.59	UGL	LT		GO
			C13DCP	27-apr-1993	ES	0	0.58	UGL	LT		GO
				•							

Site Type	Site ID	<u>Method</u>	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	Value	Unit Meas.	Meas Bool.	Flag Codes	Prog.
			C2AVE	27-apr-1993	ES	0	8.3	UGL	LT		GO
			C2H3CL	27-apr-1993	ES	0	2.6	UGL	LT		GO
			C2H5CL	27-apr-1993	ES	0	1.9	UGL	LT		GO
			C6H6	27-apr-1993	ES	0	0.5	UGL	LT		GO
			CCL3F	27-apr-1993	ES	0	1.4	UGL	LT		GO
			CCL4	27-apr-1993	ES	0	0.58	UGL	LT		GO
			CH2CL2	27-apr-1993	ES	0	2.3	UGL	LT		GO
			CH3BR	27-apr-1993	ES	0	5.8	UGL	LT		GO
			CH3CL	27-apr-1993	ES	0	3.2	UGL	LT		GO GO
			CHBR3	27-apr-1993	ES	0	2.6	UGL UGL	LT LT		GO
			CHCL3	27-apr-1993	ES	0	0.5 10	UGL	ND	R	GO
			CL2BZ	27-apr-1993	ES	0 0	0.5	UGL	LT		GO
			CLC6H5	27-apr-1993	ES ES	0	0.5	UGL	LT		GO
			CS2	27-apr-1993 27-apr-1993	ES	0	0.67	UGL	LT		GO
			DBRCLM ETC6H5	27-apr 1993	ES	ő	0.5	UGL	LT		GO
			MEC6H5	27-apr-1993	ES	ő	0.5	UGL	LT		GO
			MEK	27-apr-1993	ES	0	6.4	UGL	LT		GO
			MIBK	27-apr-1993	ES	0	3	UGL	LT		GO
			MNBK	27-apr-1993	ES	0	3.6	UGL	LT		GO
			STYR	27-apr-1993	ES	0	0.5	UGL	LT		GO
			T13DCP	27-apr-1993	ES	0	0.7	UGL	LT		GO
			TCLEA	27-apr-1993	ES	0	0.51	UGL	LT		GO
WELL	MW001	UM20	TCLEE	27-apr-1993	ES	0	1.6	UGL	LT		GO GO
			TRCLE	27-apr-1993	ES	0	0.5	UGL UGL	LT LT		GO
			XYLEN	27-apr-1993	ES	0 3.74	0.84 170	UGL	LT		GO
WELL	MW002	00	OILGR	28-apr-1993 28-apr-1993	ES ES	3.74	170	UGL	LT		GO
	3 57T 7000	CD01	TPHC	28-apr-1993	ES	3.74	0.243	UGL	LT		GO
WELL	MW002	SB01 SD09	HG TL	28-apr-1993	ES	3.74	6.99	UGL	LT		GO
WELL WELL	MW002 MW002	SD20	PB	28-apr-1993	ES	3.74	1.26	UGL	LT		GO
WELL	MW002	SD20	SE	28-apr-1993	ES	3.74	3.02	UGL	LT		GO
WELL	MW002	SD22	AS	28-apr-1993	ES	3.74	2.54	UGL	LT		GO
WELL	MW002	SS10	AG	28-apr-1993	ES	3.74	4.6	UGL	LT		GO
***************************************			AL	28-apr-1993	ES	3.74	141	UGL	LT		GO
			BA	28-apr-1993	ES	3.74	43.1	UGL			GO
			BE	28-apr-1993	ES	3.74		UGL	LT		GO
			CA	28-apr-1993	ES	3.74	185000	UGL	TT		GO GO
			CD	28-apr-1993	ES	3.74	4.01	UGL UGL	LT LT		GO
			CO	28-apr-1993	ES	3.74 3.74	25 6.02	UGL	LT		GO
			CR	28-apr-1993 28-apr-1993	ES ES	3.74	8.09	UGL	LT		GO
			CU FE	28-apr-1993	ES	3.74	111	UGL			GO
			re K	28-apr-1993	ES	3.74	9770	UGL			GO
			MG	28-apr-1993	ES	3.74	50500	UGL			GO
			MN	28-apr-1993	ES	3.74	19.5	UGL			GO
			NA	28-apr-1993	ES	3.74	37900	UGL			GO
			NI	28-apr-1993	ES	3.74	34.3	UGL	LT		GO
			SB	28-apr-1993	ES	3.74	38	UGL	LT		GO
			v	28-apr-1993	ES	3.74	11	UGL	LT		GO
			ZN	28-apr-1993	ES	3.74	21.1	UGL	LT LT		GO GO
WELL	MW002	TF18	CYN	28-apr-1993	ES	3.74 3.74	2.5 75.8	UGL UGL	ГI		GO
WELL	MW002	TF22	NIT	28-apr-1993	ES	3.74 3.74	36000	UGL			GO
WELL	MW002	<b>TT</b> 10	CL SO4	28-apr-1993 28-apr-1993	ES ES	3.74 3.74	226000	UGL			GO
*******	3.4337000	TILLOO	SO4 PCB016	28-apr-1993 28-apr-1993	ES	3.74	0.16	UGL	LT		GO
WELL	<b>MW</b> 002	UH02	LCDOIG	20 apr 1773	ســـ	2	5.10				

## Variable Query Chemical Report Installation: Detroit Arsenal, MI (DA)

Media File Code: CGW Sampling Date Range: 01-mar-93 to 01-jun-93

Minimum: X: 331500 Y: 4706000

Maximum: X: 333322 Y: 4707375

Site								Unit	Mcas	Flag	
Туре	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	<u>Value</u>	Meas.		Codes	Prog.
			PCB221	28-apr-1993	ES	3.74	0.16	UGL	ND	R	GO
			PCB232	28-apr-1993	ES	3.74	0.16	UGL	ND	R	GO
			PCB242	28-apr-1993	ES	3.74	0.19	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	3.74	0.19	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	3.74	0.19	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	3.74	0.19	UGL	LT		GO
WELL	MW002	UH13	ABHC	28-apr-1993	ES	3.74	0.0385	UGL	LT		GO
WELL	MW002	UH13	ACLDAN	28-apr-1993	ES	3.74	0.075	UGL	ND	R	GO
			AENSLF	28-apr-1993	ES	3.74	0.023	UGL	LT		GO
			ALDRN	28-apr-1993	ES	3.74	0.0918	UGL	LT		GO
			BBHC	28-apr-1993	ES	3.74	0.024	UGL	LT		GO
			BENSLF	28-apr-1993	ES	3.74	0.023	UGL	LT		GO
			DBHC	28-apr-1993	ES	3.74	0.0293	UGL	LT		GO
			DLDRN	28-apr-1993	ES	3.74	0.024	UGL	LT		GO
			ENDRN	28-apr-1993	ES	3.74	0.0238	UGL	LT		GO
			ENDRNA	28-apr-1993	ES	3.74	0.0285	UGL	LT		GO
			ENDRNK	28-apr-1993	ES	3.74	0.0285	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	3.74	0.0786	UGL	LT		GO
			GCLDAN	28-apr-1993	ES	3.74	0.075	UGL	ND	R	GO
			HPCL	28-apr-1993	ES	3.74	0.0423	UGL	LT		GO
			HPCLE	28-apr-1993	ES	3.74	0.0245	UGL	LT		GO
			ISODR	28-apr-1993	ES	3.74	0.0562	UGL	LT		GO
			LIN	28-apr-1993	ES	3.74	0.0507	UGL	LT		GO
			MEXCLR	28-apr-1993	ES	3.74	0.057	UGL	LT		GO
			PPDDD	28-apr-1993	ES	3.74	0.0233	UGL	LT		GO
			PPDDE	28-apr-1993	ES	3.74	0.027	UGL	LT		GO
			PPDDT	28-apr-1993	ES	3.74	0.034	UGL	LT		GO
			TXPHEN	28-apr-1993	ES	3.74	1.35	UGL	LT		GO
WELL	MW002	<b>UM</b> 18	124TCB	28-apr-1993	ES	3.74	1.8 1.7	UGL UGL	LT LT		GO
			12DCLB	28-apr-1993	ES	3.74	2	UGL	ND	R	GO GO
			12DPH	28-apr-1993	ES ES	3.74 3.74	1.7	UGL	LT	K	GO
			13DCLB	28-apr-1993	ES	3.74	1.7	UGL	LT		GO
			14DCLB 245TCP	28-apr-1993	ES	3.74	5.2	UGL	LT		GO
			246TCP	28-apr-1993 28-apr-1993	ES	3.74	4.2	UGL	LT		GO
			24DCLP	28-apr-1993	ES	3.74	2.9	UGL	LT		GO
			24DMPN	28-apr-1993	ES	3.74	5.8	UGL	LT		GO
			24DNP	28-apr-1993	ES	3.74	21	UGL	LT		GO
			24DNT	28-apr-1993	ES	3.74	4.5	UGL	LT		GO
	•		26DNT	28-apr-1993	ES	3.74	0.79	UGL	LT		GO
			2CLP	28-apr-1993	ES	3.74		UGL	LT		GO
			2CNAP	28-apr-1993	ES	3.74		UGL			GO
			2MNAP	28-apr-1993	ES	3.74	1.7	UGL	LT		GO
			2MP	28-apr-1993	ES	3.74	3.9	UGL	LT		GO
			2NANIL	28-apr-1993	ES	3.74	4.3	UGL	LT		GO
			2NP	28-apr-1993	ES	3.74	3.7	UGL	LT		GO
			33DCBD	28-apr-1993	ES	3.74	12	UGL	LT		GO
			3NANIL	28-apr-1993	ES	3.74	4.9	UGL	LT		GO
			46DN2C	28-apr-1993	ES	3.74	17	UGL	LT		GO
			4BRPPE	28-apr-1993	ES	3.74	4.2	UGL	LT		GO
			4CANIL	28-apr-1993	ES	3.74	7.3	UGL	LT		GO
			4CL3C	28-apr-1993	ES	3.74	4	UGL	LT		GO
			4CLPPE	28-apr-1993	ES	3.74	5.1	UGL	LT		GO
			4MP	28-apr-1993	ES	3.74	0.52	UGL	LT		GO
			4NANIL	28-apr-1993	ES ES	3.74 3.74	5.2 12	UGL UGL	LT LT		GO GO
			4NP	28-apr-1993	ES	3.14	12	UGL	LI		30

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Deptl	Value	Unit <u>Meas.</u>	Mcas Bool.	Flag <u>Codes</u>	Prog.
TIPU	<u> </u>								NTD	ъ	<b>CO</b>
			ABHC	28-apr-1993	ES	3.74	4	UGL UGL	ND ND	R R	GO GO
			ACLDAN	28-apr-1993	ES	3.74	5.1 9.2	UGL	ND	R	GO
WELL	MW002	UM18	AENSLF	28-apr-1993	ES	3.74	9.2 4.7	UGL	ND	R	GO
			ALDRN	28-apr-1993	ES	3.74	1.7	UGL	LT	1	GO
			ANAPNE	28-apr-1993	ES	3.74	0.5	UGL	LT		GO
			ANAPYL	28-apr-1993	ES	3.74	0.5	UGL	LT		GO
			ANTRC	28-apr-1993	ES	3.74	1.5	UGL	LT		GO
			B2CEXM	28-apr-1993	ES	3.74 3.74	5.3	UGL	LT		GO
			B2CIPE	28-apr-1993	ES	3.74	1.9	UGL	LT		GO
			B2CLEE	28-apr-1993	ES	3.74 3.74	4.8	UGL	LT		GO
			B2EHP	28-apr-1993	ES ES	3.74	1.6	UGL	LT		GO
			BAANTR	28-apr-1993	ES	3.74	4.7	UGL	LT		GO
			BAPYR	28-apr-1993	ES	3.74	5.4	UGL	LT		GO
			BBFANT	28-apr-1993	ES	3.74	4	UGL	ND	R	GO
			BBHC	28-apr-1993 28-apr-1993	ES	3.74	3.4	UGL	LT		GO
			BBZP		ES	3.74	9.2	UGL	ND	R	GO
			BENSLF	28-apr-1993 28-apr-1993	ES	3.74	10		ND	R	GO
			BENZID BENZOA	28-apr-1993	ES	3.74	13	UGL	LT		GO
			BGHIPY	28-apr-1993	ES	3.74	6.1	UGL	LT		GO
			BKFANT	28-apr-1993	ES	3.74	0.87		LT		GO
			BZALC	28-apr-1993	ES	3.74	0.72	UGL	LT		GO
			CARBAZ	28-apr-1993	ES	3.74	0.5	UGL	ND	R	GO
			CHRY	28-apr-1993	ES	3.74	2.4	UGL	LT		GO
			CL6BZ	28-apr-1993	ES	3.74	1.6	UGL	LT		GO
			CL6CP	28-apr-1993	ES	3.74	8.6	UGL	LT		GO
			CL6ET	28-apr-1993	ES	3.74	1.5	UGL	LT		GO
			DBAHA	28-apr-1993	ES	3.74	6.5	UGL	LT		GO
			DBHC	28-apr-1993	ES	3.74	4	UGL	ND	R	GO
			DBZFUR	28-apr-1993	ES	3.74	1.7	UGL	LT		GO
			DEP	28-apr-1993	ES	3.74	2	UGL	LT		GO
			DLDRN	28-apr-1993	ES	3.74	4.7		ND	R	GO
			DMP	28-apr-1993	ES	3.74	1.5	UGL	LT		GO
			DNBP	28-apr-1993	ES	3.74	3.7	UGL	LT		GO
			DNOP	28-apr-1993	ES	3.74	15	UGL	LT	_	GO
			ENDRN	28-apr-1993	ES	3.74	7.6	UGL	ND	R	GO
			ENDRNA	28-apr-1993	ES	3.74	8	UGL	ND	R	GO
			ENDRNK	28-apr-1993	ES	3.74	8	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	3.74	9.2	UGL	ND	R	GO
			FANT	28-apr-1993	ES	3.74	3.3	UGL	LT		GO GO
			FLRENE	28-apr-1993	ES	3.74	3.7		LT	n	
			GCLDAN	28-apr-1993	ES	3.74	5.1	UGL	ND	R	GO GO
			HCBD	28-apr-1993	ES	3.74	3.4		LT ND	R	GO
			HPCL	28-apr-1993	ES	3.74	2 5	UGL	ND	R	GO
			HPCLE	28-apr-1993	ES	3.74	8.6		LT	K	GO
			ICDPYR	28-apr-1993	ES	3.74 3.74	4.8		LT		GO
			ISOPHR	28-apr-1993	ES ES	3.74 3.74	4.6		ND	R	GO
			LIN	28-apr-1993	ES	3.74	5.1	UGL	ND	R	GO
			MEXCLR	28-apr-1993	ES	3.74	0.5		LT		GO
			NAP NB	28-apr-1993 28-apr-1993	ES	3.74	0.5		LT		GO
			NB NNDMEA	28-apr-1993	ES	3.74	2		ND	R	GO
			NNDMEA NNDNPA	28-apr-1993	ES	3.74	4.4		LT		GO
			NNDPA NNDPA	28-apr-1993	ES	3.74	3		LT		GO
******	NASS/000	113#10	PCB016	28-apr-1993	ES	3.74	21		ND	R	GO
WELL	MW002	UM18	PCB010 PCB221	28-apr-1993	ES	3.74	21		ND	R	GO
			LODELL	20 ap. 2000							

Site	Site ID	Method	Test Name	Sample Date	Lab	Depti	Value	Unit Meas.	Meas	Flag Codes	Prog
Туре	Site ID	Method	Test Name	Dampie Date	Lau	Бери	_ value	MCas.	<u>B001.</u>	Coucs	Prog.
			PCB232	28-apr-1993	ES	3.74	21	UGL	ND	R	GO
			PCB242	28-apr-1993	ES	3.74	30	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	3.74	30	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	3.74	36	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	3.74	36	UGL	ND	R	GO
			PCP	28-apr-1993	ES	3.74	18	UGL	LT		GO
			PHANTR	28-apr-1993	ES	3.74	0.5	UGL	LT		GO
			PHENOL	28-apr-1993	ES	3.74	9.2	UGL	LT	<b>T</b>	GO
			PPDDD	28-apr-1993	ES	3.74	4	UGL	ND	R	GO
			PPDDE	28-apr-1993	ES	3.74	4.7	UGL	ND	R	GO
			PPDDT	28-apr-1993	ES ES	3.74 3.74	9.2	UGL	ND	R	GO
			PYR TXPHEN	28-apr-1993 28-apr-1993	ES	3.74	2.8 36	UGL UGL	LT ND	R	GO GO
WELL	MW002	<b>UM</b> 20	111TCE	28-apr-1993	ES	0	0.5	UGL	LT	K	GO
WELL	141 44 002	ONIZO	112TCE	28-apr-1993	ES	Ö	1.2	UGL	LT		GO
			11DCE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			11DCLE	28-apr-1993	ES	Ö	0.68	UGL	LT		GO
			12DCE	28-apr-1993	ES	Ô	0.86	UGL	2.		GO
			12DCLE	28-apr-1993	ES	Ö	0.5	UGL	LT		GO
			12DCLP	28-apr-1993	ES	0	0.5	UGL	LT		GO
			2CLEVE	28-apr-1993	ES	0	0.71	UGL	LT		GO
			ACET	28-apr-1993	ES	0	13	UGL	LT		GO
			ACROLN	28-apr-1993	ES	0	100	UGL	ND	R	GO
			ACRYLO	28-apr-1993	ES	0	100	UGL	ND	R	GO
			BRDCLM	28-apr-1993	ES	0	0.59	UGL	LT		GO
			C13DCP	28-apr-1993	ES	0	0.58	UGL	LT		GO
			C2AVE	28-apr-1993	ES	0	8.3	UGL	LT		GO
			C2H3CL	28-apr-1993	ES	0	2.6	UGL	LT		GO
			C2H5CL	28-apr-1993	ES	0	1.9	UGL	LT		GO
			C6H6	28-apr-1993	ES	0	0.5	UGL	LT		GO
			CCL3F	28-apr-1993	ES	0	1.4	UGL	LT		GO
			CCL4	28-apr-1993	ES	0	0.58	UGL	LT		GO
			CH2CL2	28-apr-1993	ES	0	2.3	UGL	LT		GO
			CH3BR	28-apr-1993	ES	0	5.8	UGL	LT		GO
			CH3CL	28-apr-1993	ES	0	3.2	UGL	LT		GO
			CHBR3	28-apr-1993	ES	0	2.6	UGL	LT		GO
			CHCL3	28-apr-1993	ES	0	0.5	UGL	LT	n	GO
			CL2BZ	28-apr-1993	ES ES	0 0	10 0.5	UGL UGL	ND LT	R	GO GO
			CLC6H5 CS2	28-apr-1993	ES	0	0.5	UGL	LT		GO
			DBRCLM	28-apr-1993 28-apr-1993	ES	0		UGL			GO
			ETC6H5	28-apr-1993	ES	0		UGL	LT		GO
			MEC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			MEK	28-apr-1993	ES	0	6.4	UGL	LT		GO
			MIBK	28-apr-1993	ES	0	3	UGL	LT		GO
			MNBK	28-apr-1993	ES	0	3.6	UGL	LT		GO
			STYR	28-apr-1993	ES	0	0.5	UGL	LT		GO
			T13DCP	28-apr-1993	ES	0	0.7	UGL	LT		GO
			TCLEA	28-apr-1993	ES	0	0.51	UGL	LT		GO
WELL	MW002	<b>UM2</b> 0	TCLEE	28-apr-1993	ES	0	1.6	UGL	LT		GO
			TRCLE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			XYLEN	28-apr-1993	ES	0	0.84	UGL	LT		GO
WELL	MW004	00	OILGR	28-apr-1993	ES	8	168	UGL	LT		GO
			TPHC	28-apr-1993	ES	8	168	UGL	LT		GO
WELL	MW004	SB01	HG	28-apr-1993	ES	8	0.243	UGL	LT		GO
WELL	MW004	SD09	TL	28-apr-1993	ES	8	6.99	UGL	LT		GO

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Depti	Value	Unit <u>Meas.</u>	Meas Bool.	Flag Codes	Prog.
<i>≥J.</i> P≃				1003	Ec	o	1.26	UGL	LT		GO
WELL	MW004	SD20	PB	28-apr-1993	ES ES	8 8	3.02	UGL	LT		GO
WELL	MW004	SD21	SE	28-apr-1993	ES	8	2.54	UGL	LT		GO
WELL	MW004	SD22	AS	28-apr-1993	ES	8	4.6	UGL	LT		GO
WELL	MW004	SS10	AG	28-apr-1993	ES	8	141	UGL	LT		GO
			AL	28-apr-1993	ES	8	31.1	UGL	2.		GO
			BA	28-apr-1993	ES	8	5	UGL	LT		GO
			BE	28-apr-1993	ES	8	218000	UGL	2.		GO
			CA	28-apr-1993 28-apr-1993	ES	8	4.01	UGL	LT		GO
			CD	28-apr-1993	ES	8	25	UGL	LT		GO
			CO		ES	8	6.02	UGL	LT		GO
			CR	28-apr-1993 28-apr-1993	ES	8	8.09	UGL	LT		GO
			CU	28-apr-1993	ES	8	43.8	UGL			GO
			FE	28-apr-1993	ES	8	1420	UGL			GO
			K MG	28-apr-1993	ES	8	58300	UGL			GO
			MN	28-apr-1993	ES	8	3.19	UGL			GO
			NA	28-apr-1993	ES	8	114000	UGL			GO
			NI NI	28-apr-1993	ES	8	34.3	UGL	LT		GO
			SB	28-apr-1993	ES	8	38	UGL	LT		GO
			V	28-apr-1993	ES	8	11	UGL	LT		GO
			ZN	28-apr-1993	ES	8	21.1	UGL	LT		GO
WELL	MW004	TF18	CYN	28-apr-1993	ES	8	2.5	UGL	LT		GO
WELL	MW004	TF22	NIT	28-apr-1993	ES	8	33	UGL			GO
WELL	MW004	TT10	CL	28-apr-1993	ES	8	99000	UGL			GO
W LILL	141 44 004	1110	SO4	28-apr-1993	ES	8	340000	UGL			GO
WELL	MW004	UH02	PCB016	28-apr-1993	ES	8	0.16	UGL	LT		GO
W LLL	111 11 00 1		PCB221	28-apr-1993	ES	8	0.16	UGL	ND	R	GO
			PCB232	28-apr-1993	ES	8	0.16	UGL	ND	R	GO
			PCB242	28-apr-1993	ES	8	0.19	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	8	0.19	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	8	0.19	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	8	0.19	UGL	LT		GO
WELL	MW004	UH13	ABHC	28-apr-1993	ES	8	0.0385	UGL	LT	_	GO
WELL	MW004	UH13	ACLDAN	28-apr-1993	ES	8	0.075	UGL	ND	R	GO
			AENSLF	28-apr-1993	ES	8	0.023	UGL	LT		GO
			ALDRN	28-apr-1993	ES	8	0.0918	UGL	LT		GO
			BBHC	28-apr-1993	ES	8	0.024	UGL	LT		GO
			BENSLF	28-apr-1993	ES	8	0.023	UGL	LT		GO
			DBHC	28-apr-1993	ES	8	0.0293	UGL	LT LT		GO GO
			DLDRN	28-apr-1993	ES	8 8	0.024 0.0238	UGL UGL	LT		GO
			ENDRN	28-apr-1993	ES	8	0.0238	UGL	LT		GO
			ENDRNA	28-apr-1993	ES ES	8	0.0285	UGL	ND	R	GO
			ENDRNK ESFSO4	28-apr-1993 28-apr-1993	ES	8	0.0786	UGL	LT		GO
			GCLDAN	28-apr-1993	ES	8	0.075	UGL	ND	R	GO
			HPCL	28-apr-1993	ES	8	0.0423	UGL	LT		GO
			HPCLE	28-apr-1993	ES	8	0.0245	UGL	LT		GO
			ISODR	28-apr-1993	ES	8	0.0562	UGL	LT		GO
			LIN	28-apr-1993	ES	8	0.0507	UGL	LT		GO
			MEXCLR	28-apr-1993	ES	8	0.057	UGL	LT		GO
			PPDDD	28-apr-1993	ES	8	0.0233	UGL	LT		GO
			PPDDE	28-apr-1993	ES	8	0.027	UGL	LT		GO
			PPDDT	28-apr-1993	ES	8	0.034	UGL	LT		GO
			TXPHEN	28-apr-1993	ES	8	1.35	UGL	LT		GO
WELL	<b>MW</b> 004	UM18	124TCB	28-apr-1993	ES	8	1.8	UGL	LT		GO
***************************************	2,2 50 !		12DCLB	28-apr-1993	ES	8	1.7	UGL	LT		GO

10:10:09 28-jun-1993

Variable Query Chemical Report
Installation: Detroit Arsenal, MI (DA)
Media File Code: CGW Sampling Date Range: 01-mar-93 to 01-jun-93
Minimum: X: 331500 Y: 4706000

Cia								Mait	Meas	Flag	
Site <u>Type</u>	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	Value	Meas.		Codes	Prog.
			12DPH	28-apr-1993	ES	8	2	UGL	ND	R	GO
			13DCLB	28-apr-1993	ES	8	1.7	UGL	LT		GO
			14DCLB	28-apr-1993	ES	8	1.7	UGL	LT		GO
			245TCP	28-apr-1993	ES	8	5.2	UGL	LT		GO
			246TCP	28-apr-1993	ES	8	4.2	UGL	LT		GO
			24DCLP	28-apr-1993	ES	8	2.9	UGL	LT		GO
			24DMPN	28-apr-1993	ES	8	5.8	UGL	LT		GO
			24DNP	28-apr-1993	ES	8	21	UGL	LT		GO
			24DNT	28-apr-1993	ES	8	4.5	UGL	LT		GO
			26DNT	28-apr-1993	ES	8	0.79	UGL	LT		GO
			2CLP	28-apr-1993	ES	8	0.99	UGL	LT		GO
			2CNAP	28-apr-1993	ES	8	0.5	UGL	LT		GO
			2MNAP	28-apr-1993	ES	8	1.7	UGL	LT		GO
			2MP	28-apr-1993	ES	8	3.9	UGL	LT		GO
			2NANIL	28-apr-1993	ES	8	4.3	UGL	LT		GO
			2NP	28-apr-1993	ES ES	8 8	3.7 12	UGL UGL	LT LT		GO GO
			33DCBD 3NANIL	28-apr-1993 28-apr-1993	ES	8	4.9	UGL	LT		GO
			46DN2C	28-apr-1993	ES	8	17	UGL	LT		GO
			4BRPPE	28-apr-1993	ES	8	4.2	UGL	LT		GO
			4CANIL	28-apr-1993	ES	8	7.3	UGL	LT		GO
			4CL3C	28-apr-1993	ES	8	4	UGL	LT		GO
			4CLPPE	28-apr-1993	ES	8	5.1	UGL	LT		GO
			4MP	28-apr-1993	ES	8	0.52	UGL	LT		GO
			4NANIL	28-apr-1993	ES	8	5.2	UGL	LT		GO
			4NP	28-apr-1993	ES	8	12	UGL	LT		GO
			ABHC	28-apr-1993	ES	8	4	UGL	ND	R	GO
			ACLDAN	28-apr-1993	ES	8	5.1	UGL	ND	R	GO
WELL	MW004	UM18	AENSLF	28-apr-1993	ES	8	9.2	UGL	ND	R	GO
			ALDRN	28-apr-1993	ES	8	4.7	UGL	ND	R	GO
			ANAPNE	28-apr-1993	ES	8	1.7	UGL	LT		GO
			ANAPYL	28-apr-1993	ES	8	0.5	UGL	LT		GO
			ANTRC	28-apr-1993	ES	8	0.5	UGL	LT		GO
			B2CEXM	28-apr-1993	ES	8 8	1.5 5.3	UGL UGL	LT LT		GO GO
			B2CIPE	28-apr-1993	ES ES	8	1.9	UGL	LT		GO
			B2CLEE B2EHP	28-apr-1993 28-apr-1993	ES	8	4.8	UGL	LT		GO
			BAANTR	28-apr-1993	ES	8	1.6	UGL	LT		GO
			BAPYR	28-apr-1993	ES	8	4.7	UGL	LT		GO
			BBFANT	28-apr-1993	ES	8	5.4	UGL	LT		GO
			ВВНС	28-apr-1993	ES	8	4	UGL	ND	R	GO
			BBZP	28-apr-1993	ES	8	3.4	UGL	LT		GO
			BENSLF	28-apr-1993	ES	8	9.2	UGL	ND	R	GO
			BENZID	28-apr-1993	ES	8	10	UGL	ND	R	GO
			BENZOA	28-apr-1993	ES	8	13	UGL	LT		GO
			BGHIPY	28-apr-1993	ES	8	6.1	UGL	LT		GO
			BKFANT	28-apr-1993	ES	8	0.87	UGL	LT		GO
			BZALC	28-apr-1993	ES	8	0.72	UGL	LT	_	GO
			CARBAZ	28-apr-1993	ES	8	0.5	UGL	ND	R	GO
			CHRY	28-apr-1993	ES	8	2.4	UGL	LT		GO
			CL6BZ	28-apr-1993	ES	8	1.6	UGL	LT		GO
			CL6CP	28-apr-1993	ES ES	8 8	8.6 1.5	UGL UGL	LT LT		GO GO
			CL6ET DBAHA	28-apr-1993 28-apr-1993	ES ES	8	6.5	UGL	LT		GO
			DBHC	28-apr-1993	ES	8	4	UGL	ND	R	GO
			DBTEUR	28-apr-1993	ES	8	1.7	UGL			GO
				p. ****		-	2.17				

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Deptl	Value		Meas Bool.	Flag Codes	Prog.
			DEP	28-apr-1993	ES	8	2	UGL	LT		GO
			DLDRN	28-apr-1993	ES	8	4.7	UGL	ND	R	GO
			DMP	28-apr-1993	ES	8	1.5	UGL	LT		GO
			DNBP	28-apr-1993	ES	8	3.7	UGL	LT		GO
			DNOP	28-apr-1993	ES	8	15	UGL	LT		GO
			ENDRN	28-apr-1993	ES	8	7.6	UGL	ND	R	GO
			ENDRNA	28-apr-1993	ES	8	8	UGL	ND	R	GO
			ENDRNK	28-apr-1993	ES	8	8	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	8	9.2	UGL	ND	R	GO
			FANT	28-apr-1993	ES	8	3.3	UGL	LT		GO
			FLRENE	28-apr-1993	ES	8	3.7	UGL	LT	_	GO
			GCLDAN	28-apr-1993	ES	8	5.1	UGL	ND	R	GO
			HCBD	28-apr-1993	ES	8	3.4	UGL	LT	_	GO
			HPCL	28-apr-1993	ES	8	2	UGL	ND	R	GO
			HPCLE	28-apr-1993	ES	8	5	UGL	ND	R	GO
			ICDPYR	28-apr-1993	ES	8	8.6	UGL	LT		GO
			ISOPHR	28-apr-1993	ES	8	4.8	UGL	LT	n	GO
			LIN	28-apr-1993	ES	8	4	UGL	ND	R R	GO
			MEXCLR	28-apr-1993	ES	8	5.1	UGL	ND	K	GO GO
			NAP	28-apr-1993	ES	8	0.5	UGL UGL	LT LT		GO
			NB	28-apr-1993	ES	8	0.5	UGL	ND	R	GO
			NNDMEA	28-apr-1993	ES	8 8	4.4	UGL	LT		GO
			NNDNPA	28-apr-1993	ES ES	8	3	UGL	LT		GO
		*****	NNDPA PCD016	28-apr-1993	ES	8	21	UGL	ND	R	GO
WELL	MW004	<b>UM</b> 18	PCB016	28-apr-1993	ES	8	21	UGL	ND	R	GO
			PCB221 PCB232	28-apr-1993 28-apr-1993	ES	8	21	UGL	ND	R	GO
			PCB232 PCB242	28-apr-1993	ES	8	30	UGL	ND	R	GO
			PCB242 PCB248	28-apr-1993	ES	8	30	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	8	36	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	8	36	UGL	ND	R	GO
			PCP	28-apr-1993	ES	8	18	UGL	LT		GO
			PHANTR	28-apr-1993	ES	8	0.5	UGL	LT		GO
			PHENOL	28-apr-1993	ES	8	9.2	UGL	LT		GO
			PPDDD	28-apr-1993	ES	8	4	UGL	ND	R	GO
			PPDDE	28-apr-1993	ES	8	4.7	UGL	ND	R	GO
			PPDDT	28-apr-1993	ES	8	9.2	UGL	ND	R	GO
			PYR	28-apr-1993	ES	8	2.8	UGL	LT		GO
			TXPHEN	28-apr-1993	ES	8	36	UGL	ND	R	GO
WELL	MW004	<b>UM</b> 20	111TCE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			112TCE	28-apr-1993	ES	0	1.2	UGL	LT		GO GO
			11DCE	28-apr-1993	ES	0	0.5	UGL UGL	LT LT		GO
			11DCLE	28-apr-1993	ES	0	0.68 0.5	UGL	LT		GO
			12DCE	28-apr-1993	ES ES	0 0	0.5	UGL	LT		GO
			12DCLE	28-apr-1993 28-apr-1993	ES	0	0.5	UGL	LT		GO
			12DCLP 2CLEVE	28-apr-1993	ES	ő	0.71	UGL	LT		GO
			ACET	28-apr-1993	ES	ő	13	UGL	LT		GO
			ACROLN	28-apr-1993	ES	0	100	UGL	ND	R	GO
			ACRYLO	28-apr-1993	ES	0	100	UGL	ND	R	GO
			BRDCLM	28-apr-1993	ES	0	0.59	UGL	LT		GO
			C13DCP	28-apr-1993	ES	0	0.58	UGL	LT		GO
			C2AVE	28-apr-1993	ES	0	8.3	UGL	LT		GO
			C2H3CL	28-apr-1993	ES	0	2.6	UGL	LT		GO
			C2H5CL	28-apr-1993	ES	0	1.9	UGL	LT		GO
			C6H6	28-apr-1993	ES	0	0.5	UGL	LT		GO

10:10:09

Variable Query Chemical Report
Installation: Detroit Arsenal, MI (DA)
Media File Code: CGW Sampling Date Range: 01-mar-93 to 01-jun-93
Minimum: X: 331500 Y: 4706000

										****	
Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Depti	Value	Meas.	Meas Bool.	Flag <u>Codes</u>	Prog.
			CCL3F	28-apr-1993	ES	0	1.4	UGL	LT		GO
			CCL4	28-apr-1993	ES	Õ	0.58	UGL	LT		GO
			CH2CL2	28-apr-1993	ES	Ö	2.3	UGL	LT		GO
			CH3BR	28-apr-1993	ES	Ö	5.8	UGL	LT		GO
			CH3CL	28-apr-1993	ES	Ö	3.2	UGL	LT		GO
			CHBR3	28-apr-1993	ES	Ō	2.6	UGL	LT		GO
			CHCL3	28-apr-1993	ES	0	0.5	UGL	LT		GO
			CL2BZ	28-apr-1993	ES	0	10	UGL	ND	R	GO
			CLC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			CS2	28-apr-1993	ES	0	0.5	UGL	LT		GO
			DBRCLM	28-apr-1993	ES	0	0.67	UGL	LT		GO
			ETC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			MEC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			MEK	28-apr-1993	ES	0	6.4	UGL	LT		GO
			MIBK	28-apr-1993	ES	0	3	UGL	LT		GO
			MNBK	28-apr-1993	ES	0	3.6	UGL	LT		GO
			STYR	28-apr-1993	ES	0	0.5	UGL	LT		GO
			T13DCP	28-apr-1993	ES	0	0.7	UGL	LT		GO
			TCLEA	28-apr-1993	ES	0	0.51	UGL	LT		GO
WELL	MW004	<b>UM2</b> 0	TCLEE	28-apr-1993	ES	0	1.6	UGL	LT		GO
			TRCLE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			XYLEN	28-apr-1993	ES	0	0.84	UGL	LT		GO
WELL	MW010	00	OILGR	28-apr-1993	ES	5.58	168	UGL	LT		GO
			TPHC	28-apr-1993	ES	5.58	168	UGL	LT		GO
WELL	MW010	SB01	HG	28-apr-1993	ES	5.58	0.243	UGL	LT		GO
WELL	MW010	SD09	TL	28-apr-1993	ES	5.58	6.99	UGL	LT		GO
WELL	MW010	SD20	PB	28-apr-1993	ES	5.58	1.26	UGL	LT		GO
WELL	MW010	SD21	SE	28-apr-1993	ES	5.58	3.02	UGL	LT		GO
WELL	MW010	SD22	AS	28-apr-1993	ES	5.58	2.54	UGL	LT		GO
WELL	MW010	SS10	AG	28-apr-1993	ES	5.58	4.6	UGL	LT		GO
			AL	28-apr-1993	ES	5.58	141	UGL	LT		GO
			BA	28-apr-1993	ES	5.58	53.7	UGL	<b>.</b>		GO
			BE	28-apr-1993	ES	5.58	5	UGL	LT		GO
			CA	28-apr-1993	ES	5.58 5.50	145000	UGL	T TT		GO
			CD	28-apr-1993	ES	5.58	4.01	UGL UGL	LT		GO
			CO	28-apr-1993	ES	5.58	25		LT		GO
			CR	28-apr-1993	ES	5.58	6.02	UGL UGL	LT		GO
			CU	28-apr-1993	ES	5.58	8.09 38.8	UGL	LT LT		GO GO
			FE	28-apr-1993	ES ES	5.58 5.58	3340	UGL	LI		GO
			K	28-apr-1993	ES	5.58	44400	UGL			GO
			MG MN	28-apr-1993 28-apr-1993	ES	5.58	2.75	UGL	LT		GO
			NA	28-apr-1993	ES	5.58	193000	UGL	Li		GO
			NI NI	28-apr-1993	ES	5.58	34.3	UGL	LT		GO
			SB	28-apr-1993	ES	5.58	38	UGL	LT		GO
			V	28-apr-1993	ES	5.58	11	UGL	LT		GO
			ZN	28-apr-1993	ES	5.58	21.1	UGL	LT		GO
WELL	<b>MW0</b> 10	TF18	CYN	28-apr-1993	ES	5.58	2.5	UGL	LT		GO
WELL	MW010	TF22	NIT	28-apr-1993	ES	5.58	55.4	UGL			GO
WELL	MW010	TT10	CL	28-apr-1993	ES	5.58	310000	UGL		-	GO
***************************************	211 11 010	1110	SO4	28-apr-1993	ES	5.58	104000	UGL			GO
WELL	MW010	UH02	PCB016	28-apr-1993	ES	5.58	0.16	UGL	LT		GO
***	11111010		PCB221	28-apr-1993	ES	5.58	0.16	UGL	ND	R	GO
			PCB232	28-apr-1993	ES	5.58	0.16	UGL	ND	R	GO
			PCB242	28-apr-1993	ES	5.58	0.19	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	5.58	0.19		ND	R	GO
				•							

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	<u>Depti</u>	Value	Unit <u>Meas.</u>	Meas Bool.	Flag Codes	Prog.
			PCB254	28-apr-1993	ES	5.58	0.19	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	5.58	0.19	UGL	LT		GO
WELL	MW010	UH13	ABHC	28-apr-1993	ES	5.58	0.0385	UGL	LT		GO
WELL	MW010	UH13	ACLDAN	28-apr-1993	ES	5.58	0.075	UGL	ND	R	GO
WELL	141 44 010	01115	AENSLF	28-apr-1993	ES	<b>5.5</b> 8	0.023	UGL	LT		GO
			ALDRN	28-apr-1993	ES	5.58	0.0918	UGL	LT		GO
			BBHC	28-apr-1993	ES	5.58	0.024	UGL	LT		GO
			BENSLF	28-apr-1993	ES	5.58	0.023	UGL	LT		GO
			DBHC	28-apr-1993	ES	5.58	0.0293	UGL	LT		GO
			DLDRN	28-apr-1993	ES	5.58	0.024	UGL	LT		GO
			ENDRN	28-apr-1993	ES	5.58	0.0238	UGL	LT		GO
			ENDRNA	28-apr-1993	ES	5.58	0.0285	UGL	LT		GO
			ENDRNK	28-apr-1993	ES	5.58	0.0285	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	5.58	0.0786	UGL	LT	_	GO
			GCLDAN	28-apr-1993	ES	5.58	0.075	UGL	ND	R	GO
			HPCL	28-apr-1993	ES	5.58	0.0423	UGL	LT		GO
			HPCLE	28-apr-1993	ES	5.58	0.0245	UGL	LT		GO
			ISODR	28-apr-1993	ES	5.58	0.0562	UGL	LT		GO
			LIN	28-apr-1993	ES	5.58	0.0507	UGL	LT		GO GO
			MEXCLR	28-apr-1993	ES	5.58	0.057	UGL	LT		GO
			PPDDD	28-apr-1993	ES	5.58	0.0233	UGL	LT		GO
			PPDDE	28-apr-1993	ES	5.58	0.027	UGL UGL	LT LT		GO
			PPDDT	28-apr-1993	ES	5.58	0.034	UGL	LT		GO
			TXPHEN	28-apr-1993	ES	5.58 5.58	1.35 1.8	UGL	LT		GO
WELL	MW010	<b>UM</b> 18	124TCB	28-apr-1993	ES	5.58 5.58	1.7	UGL	LT		GO
			12DCLB	28-apr-1993	ES	5.58	2	UGL	ND	R	GO
			12DPH	28-apr-1993	ES	5.58	1.7	UGL	LT	^	GO
			13DCLB	28-apr-1993	ES ES	5.58	1.7	UGL	LT		GO
			14DCLB	28-apr-1993	ES	5.58	5.2	UGL	LT		GO
			245TCP	28-apr-1993 28-apr-1993	ES	5.58	4.2	UGL	LT		GO
			246TCP	28-apr-1993	ES	5.58	2.9	UGL	LT		GO
			24DCLP	28-apr-1993	ES	5.58	5.8	UGL	LT		GO
			24DMPN 24DNP	28-apr-1993	ES	5.58	21	UGL	LT		GO
			24DNT	28-apr-1993	ES	5.58	4.5	UGL	LT		GO
			26DNT	28-apr-1993	ES	5.58	0.79	UGL	LT		GO
			2CLP	28-apr-1993	ES	5.58	0.99	UGL	LT		GO
			2CNAP	28-apr-1993	ES	5.58	0.5	UGL	LT		GO
			2MNAP	28-apr-1993	ES	5.58	1.7	UGL	LT		GO
			2MP	28-apr-1993	ES	5.58	3.9	UGL	LT		GO
			2NANIL	28-apr-1993	ES	5.58	4.3	UGL	LT		GO
			2NP	28-apr-1993	ES	5.58	3.7	UGL	LT		GO
			33DCBD	28-apr-1993	ES	5.58	12	UGL	LT		GO
			3NANIL	28-apr-1993	ES	5.58	4.9	UGL	LT		GO
			46DN2C	28-apr-1993	ES	5.58	17	UGL	LT		GO
			4BRPPE	28-apr-1993	ES	5.58	4.2	UGL	LT		GO
			4CANIL	28-apr-1993	ES	5.58	7.3	UGL	LT		GO
			4CL3C	28-apr-1993	ES	5.58	4	UGL	LT		GO GO
			4CLPPE	28-apr-1993	ES	5.58	5.1	UGL	LT		GO
			4MP	28-apr-1993	ES	5.58	0.52	UGL UGL	LT		GO
			4NANIL	28-apr-1993	ES	5.58 5.59	5.2		LT		GO
			4NP	28-apr-1993	ES	5.58	12	UGL UGL	LT ND	R	GO
			ABHC	28-apr-1993	ES	5.58 5.58	4 5.1	UGL	ND	R	GO
		*****	ACLDAN	28-apr-1993	ES ES	5.58 5.58	9.2	UGL	ND	R	GO
WELL	<b>MW0</b> 10	UM18	AENSLF ALDRN	28-apr-1993 28-apr-1993	ES	5.58	4.7		ND	R	GO

28-jun-1993 10:10:09

at.								<b>.</b> .		***	
Site	Site ID	Method	Test Name	Sample Date	Lab	Deptl	Value	Unit Meas.		Flag Codes	Prog.
Туре	Site ID	Method	TOST IVEIDO	Dampie Date	LAU	Depti	- V AILLE	MCas.	<u>Door.</u>	Coucs	HOg.
			ANAPNE	28-apr-1993	ES	5.58	1.7	UGL	LT		GO
			ANAPYL	28-apr-1993	ES	5.58	0.5	UGL	LT		GO
			ANTRC	28-apr-1993	ES	5.58	0.5	UGL	LT		GO
			B2CEXM	28-apr-1993	ES	5.58	1.5	UGL	LT		GO
			B2CIPE	28-apr-1993	ES	5.58	5.3	UGL	LT		GO
			B2CLEE	28-apr-1993	ES	<b>5.5</b> 8	1.9	UGL	LT		GO
			B2EHP	28-apr-1993	ES	5.58	4.8	UGL	LT		GO
			BAANTR	28-apr-1993	ES	5.58	1.6	UGL	LT		GO
			BAPYR	28-apr-1993	ES	5.58	4.7	UGL	LT		GO
			BBFANT	28-apr-1993	ES	5.58	5.4	UGL	LT	_	GO
			BBHC	28-apr-1993	ES	5.58	4	UGL	ND	R	GO
			BBZP	28-apr-1993	ES	5.58	3.4	UGL	LT	n	GO
			BENSLF	28-apr-1993	ES	5.58	9.2	UGL	ND	R	GO
			BENZID	28-apr-1993	ES ES	5.58 5.58	10 13	UGL UGL	ND LT	R	GO GO
			BENZOA	28-apr-1993	ES	5.58	6.1	UGL	LT		
			BGHIPY BKFANT	28-apr-1993 28-apr-1993	ES	5.58	0.87	UGL	LT		GO GO
			BZALC	28-apr-1993	ES	5.58	0.72	UGL	LT		GO
			CARBAZ	28-apr-1993	ES	5.58	0.72	UGL	ND	R	GO
			CHRY	28-apr-1993	ES	5.58	2.4	UGL	LT		GO
			CL6BZ	28-apr-1993	ES	5.58	1.6	UGL	LT		GO
			CL6CP	28-apr-1993	ES	5.58	8.6	UGL	LT		GO
			CL6ET	28-apr-1993	ES	5.58	1.5	UGL	LT		GO
			DBAHA	28-apr-1993	ES	5.58	6.5	UGL	LT		GO
			DBHC	28-apr-1993	ES	5.58	4	UGL	ND	R	GO
			DBZFUR	28-apr-1993	ES	5.58	1.7	UGL	LT		GO
			DEP	28-apr-1993	ES	5.58	2	UGL	LT		GO
			DLDRN	28-apr-1993	ES	5.58	4.7	UGL	ND	R	GO
			DMP	28-apr-1993	ES	5.58	1.5	UGL	LT		GO
			DNBP	28-apr-1993	ES	5.58	3.7	UGL	LT		GO
			DNOP	28-apr-1993	ES	5.58	15	UGL	LT		GO
			ENDRN	28-apr-1993	ES	5.58	7.6	UGL	ND	R	GO
			ENDRNA	28-apr-1993	ES	5.58	8	UGL	ND	R	GO
			ENDRNK	28-apr-1993	ES	5.58	8	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	5.58	9.2	UGL	ND	R	GO
			FANT	28-apr-1993	ES	5.58	3.3	UGL	LT		GO
			FLRENE	28-apr-1993	ES	5.58	3.7	UGL	LT	_	GO
			GCLDAN	28-apr-1993	ES	5.58	5.1	UGL	ND	R	GO
			HCBD	28-apr-1993	ES	5.58	3.4	UGL	LT		GO
			HPCL	28-apr-1993	ES	5.58	2 5	UGL	ND	R	GO
			HPCLE	28-apr-1993	ES	5.58 5.58		UGL	ND	R	GO
			ICDPYR ISOPHR	28-apr-1993 28-apr-1993	ES ES	5.58 5.58	8.6 4.8	UGL UGL	LT LT		GO
			LIN	28-apr-1993	ES	5.58	4.6	UGL	ND	R	GO GO
			MEXCLR	28-apr-1993	ES	5.58	5.1	UGL	ND	R	GO
			NAP	28-apr-1993	ES	5.58	0.5	UGL	LT		GO
			NB	28-apr-1993	ES	5.58	0.5	UGL	LT		GO
			NNDMEA	28-apr-1993	ES	5.58	2	UGL	ND	R	GO
			NNDNPA	28-apr-1993	ES	5.58	4.4	UGL	LT		GO
			NNDPA	28-apr-1993	ES	5.58	3	UGL	LT		GO
WELL	MW010	UM18	PCB016	28-apr-1993	ES	5.58	21	UGL	ND	R	GO
			PCB221	28-apr-1993	ES	5.58	21	UGL	ND	R	GO
			PCB232	28-apr-1993	ES	5.58	21	UGL	ND	R	GO
			PCB242	28-apr-1993	ES	5.58	30	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	5.58	30	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	5.58	36	UGL	ND	R	GO

Site				6 1 P-4-	71	Donth	Value		Meas	Flag Codes	Prog.
Type	Site ID	Method	Test Name	Sample Date	Lab	Depth	V aluc	MICas.	<u>11001.</u>	Codos	1100
			PCB260	28-apr-1993	ES	5.58	36		ND	R	GO
			PCP	28-apr-1993	ES	5.58	18		LT		GO
			PHANTR	28-apr-1993	ES	5.58	0.5	UGL	LT		GO
			PHENOL	28-apr-1993	ES	5.58	9.2		LT	ъ.	GO
			PPDDD	28-apr-1993	ES	5.58	4		ND	R	GO
			PPDDE	28-apr-1993	ES	5.58	4.7	UGL	ND	R	GO
			PPDDT	28-apr-1993	ES	5.58	9.2		ND	R	GO
			PYR	28-apr-1993	ES	5.58	2.8		LT	n	GO GO
			TXPHEN	28-apr-1993	ES	5.58	36		ND	R	GO
WELL	MW010	<b>UM2</b> 0	111TCE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			112TCE	28-apr-1993	ES	0	1.2		LT		GO
			11DCE	28-apr-1993	ES	0	0.5		LT		GO
			11DCLE	28-apr-1993	ES	0	0.68		LT		GO
			12DCE	28-apr-1993	ES	0	0.78		LT		GO
			12DCLE	28-apr-1993	ES	0	0.5		LT		GO
			12DCLP	28-apr-1993	ES	0	0.5		LT		GO
			2CLEVE	28-apr-1993	ES	0	0.71 13		LT		GO
			ACET	28-apr-1993	ES	0 0	100		ND	R	GO
			ACROLN	28-apr-1993	ES ES	0	100		ND	R	GO
			ACRYLO	28-apr-1993	ES	0	0.59		LT		GO
			BRDCLM	28-apr-1993	ES	ő	0.58		LT		GO -
			C13DCP	28-apr-1993 28-apr-1993	ES	ő	8.3		LT		GO
			C2AVE C2H3CL	28-apr-1993	ES	0	2.6		LT		GO
			C2H5CL	28-apr-1993	ES	0	1.9	UGL	LT		GO
			C6H6	28-apr-1993	ES	0	0.5	UGL	LT		GO
			CCL3F	28-apr-1993	ES	0	1.4	UGL	LT		GO
			CCL4	28-apr-1993	ES	0	0.58	UGL	LT		GO
			CH2CL2	28-apr-1993	ES	0	2.3	UGL	LT		GO
			CH3BR	28-apr-1993	ES	0	5.8	UGL	LT		GO
			CH3CL	28-apr-1993	ES	0	3.2		LT		GO
			CHBR3	28-apr-1993	ES	0	2.6		LT		GO
			CHCL3	28-apr-1993	ES	0	0.5		LT	_	GO
			CL2BZ	28-apr-1993	ES	0	10		ND	R	GO
			CLC6H5	28-apr-1993	ES	0	0.5		LT		GO
			CS2	28-apr-1993	ES	0	0.5		LT		GO
			DBRCLM	28-apr-1993	ES	0	0.67		LT		GO
			ETC6H5	28-apr-1993	ES	0	0.5		LT		GO
			MEC6H5	28-apr-1993	ES	0	0.5				GO GO
			MEK	28-apr-1993	ES	0	6.4		LT LT		GO
			MIBK	28-apr-1993	ES	0	3.6				GO
			MNBK	28-apr-1993	ES	0 0	0.5				GO
			STYR	28-apr-1993	ES ES	0	0.7				GO
			T13DCP	28-apr-1993 28-apr-1993	ES	0	0.51				GO
	* *****	*****	TCLEA	28-apr-1993	ES	Ö	1.6				GO
WELL	MW010	<b>UM2</b> 0	TCLEE	28-apr-1993	ES	ő	0.7				GO
			TRCLE	28-apr - 1993	ES	0	0.84				GO
****** *	3.633701.4	00	XYLEN OILGR	28-apr-1993	ES	7.08	168				GO
WELL	MW014	UU	TPHC	28-apr-1993	ES	7.08	168				GO
337777 T	N/33/01/	SB01	HG	28-apr-1993	ES	7.08	0.243				GO
WELL	MW014	SD09	TL	28-apr-1993	ES	7.08	6.99				GO
WELL	MW014 MW014	SD09 SD20	PB	28-apr-1993	ES	7.08	1.26		LT		GO
WELL WELL	MW014 MW014	SD20 SD21	SE	28-apr-1993	ES	7.08	3.02	UGL			GO
WELL	MW014	SD21	AS	28-apr-1993	ES	7.08	2.54				GO
WELL	MW014 MW014	SS10	AG	28-apr-1993	ES	7.08	4.6	UGL	LT		GO
AA TOTO	147 44 014	5570	• • •	4							

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Depti	_Value	Unit Meas.	Meas Bool.	Flag Codes	Prog.
			AL	28-apr-1993	ES	7.08	141	UGL	LT		GO
			BA	28-apr-1993	ES	7.08	133	UGL			GO
			BE	28-apr-1993	ES	7.08	5	UGL	LT		GO
			CA	28-apr-1993	ES	7.08	211000	UGL			GO
			CD	28-apr-1993	ES	7.08	4.01	UGL	LT		GO
			CO	28-apr-1993	ES	7.08	25	UGL	LT		GO
			CR CU	28-apr-1993 28-apr-1993	ES ES	7.08 7.08	6.02	UGL	LT		GO
			FE	28-apr-1993 28-apr-1993	ES	7.08	8.09 46.3	UGL UGL	LT		GO GO
			K	28-apr-1993	ES	7.08	3810	UGL			GO
			MG	28-apr-1993	ES	7.08	138000	UGL			GO
			MN	28-apr-1993	ES	7.08	3.96	UGL			GO
			NA	28-apr-1993	ES	7.08	312000	UGL			GO
			NI	28-apr-1993	ES	7.08	34.3	UGL	LT		GO
			SB	28-apr-1993	ES	7.08	53.1	UGL			GO
			V	28-apr-1993	ES	7.08	12.3	UGL			GO
			ZN	28-apr-1993	ES	7.08	21.1	UGL	LT		GO
WELL	MW014	TF18	CYN	28-apr-1993	ES	7.08	2.5	UGL	LT		GO
WELL	MW014	TF22	NIT	28-apr-1993	ES	7.08	1000000	UGL			GO
WELL	<b>MW</b> 014	TT10	CL SO4	28-apr-1993 28-apr-1993	ES ES	7.08 7.08	1000000 135000	UGL UGL			GO GO
WELL	MW014	UH02	PCB016	28-apr-1993	ES	7.08	0.16	UGL	LT		GO
WELL	141 44 014	Olioz	PCB221	28-apr-1993	ES	7.08	0.16	UGL	ND	R	GO
			PCB232	28-apr-1993	ES	7.08	0.16	UGL	ND	R	GO
			PCB242	28-apr-1993	ES	7.08	0.19	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	7.08	0.19	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	7.08	0.19	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	7.08	0.19	UGL	LT		GO
WELL	MW014	UH13	ABHC	28-apr-1993	ES	7.08	0.0385	UGL	LT		GO
WELL	MW014	UH13	ACLDAN	28-apr-1993	ES	7.08	0.075	UGL	ND	R	GO
			AENSLF	28-apr-1993	ES	7.08	0.023	UGL	LT		GO
			ALDRN	28-apr-1993	ES	7.08	0.0918	UGL	LT		GO
			BBHC BENSLF	28-apr-1993	ES ES	7.08 7.08	0.024 0.023	UGL UGL	LT LT		GO
			DBHC	28-apr-1993 28-apr-1993	ES	7.08	0.023	UGL	LT		GO GO
			DLDRN	28-apr-1993	ES	7.08	0.024	UGL	LT		GO
			ENDRN	28-apr-1993	ES	7.08	0.0238	UGL	LT		GO
			<b>ENDRNA</b>	28-apr-1993	ES	7.08	0.0285	UGL	LT		GO
			ENDRNK	28-apr-1993	ES	7.08	0.0285	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	7.08	0.0786	UGL	LT		GO
			GCLDAN	28-apr-1993	ES	7.08	0.075	UGL	ND	R	GO
			HPCL	28-apr-1993	ES	7.08	0.0423	UGL	LT		GO
			HPCLE	28-apr-1993	ES	7.08	0.0245	UGL	LT		GO
			ISODR	28-apr-1993	ES	7.08	0.0562	UGL	LT		GO
			LIN MEXCLR	28-apr-1993 28-apr-1993	ES ES	7.08 7.08	0.0507 0.057	UGL UGL	LT LT		GO GO
			PPDDD	28-apr-1993	ES	7.08	0.037	UGL	LT		GO
			PPDDE	28-apr-1993	ES	7.08	0.0233	UGL	LT		GO
			PPDDT	28-apr-1993	ES	7.08	0.034	UGL	LT		GO
			TXPHEN	28-apr-1993	ES	7.08	1.35	UGL	LT		GO
WELL	MW014	UM18	124TCB	28-apr-1993	ES	7.08	1.8	UGL	LT		GO
			12DCLB	28-apr-1993	ES	7.08	1.7	UGL	LT		GO
			12DPH	28-apr-1993	ES	7.08	2	UGL	ND	R	GO
			13DCLB	28-apr-1993	ES	7.08	1.7	UGL	LT		GO
			14DCLB	28-apr-1993	ES	7.08	1.7	UGL	LT		GO
			245TCP	28-apr-1993	ES	7.08	5.2	UGL	LT		GO

Site				a de Data	T -L	Donti	Value	Unit <u>Meas.</u>		Flag Codes	Prog.
Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Depth	Value	Mous.	110011		===0
			246TCP	28-apr-1993	ES	7.08	4.2	UGL	LT		GO
			24DCLP	28-apr-1993	ES	7.08	2.9	UGL	LT		GO
			24DMPN	28-apr-1993	ES	7.08	5.8	UGL	LT		GO
			24DNP	28-apr-1993	ES	7.08	21	UGL	LT		GO
			24DNT	28-apr-1993	ES	7.08	4.5	UGL	LT		GO GO
			26DNT	28-apr-1993	ES	7.08	0.79	UGL	LT		GO
			2CLP	28-apr-1993	ES	7.08	0.99	UGL UGL	LT LT		GO
			2CNAP	28-apr-1993	ES	7.08	0.5 1.7	UGL	LT		GO
			2MNAP	28-apr-1993	ES	7.08	3.9	UGL	LT		GO
			2MP	28-apr-1993	ES	7.08	4.3	UGL	LT		GO
			2NANIL	28-apr-1993	ES	7.08 7.08	3.7	UGL	LT		GO
			2NP	28-apr-1993	ES ES	7.08	12	UGL	LT		GO
			33DCBD	28-apr-1993	ES	7.08	4.9	UGL	LT		GO
			3NANIL	28-apr-1993 28-apr-1993	ES	7.08	17	UGL	LT		GO
			46DN2C	28-apr-1993	ES	7.08	4.2	UGL	LT		GO
			4BRPPE	28-apr-1993	ES	7.08	7.3	UGL	LT		GO
			4CANIL 4CL3C	28-apr-1993	ES	7.08	4	UGL	LT		GO
			4CLPPE	28-apr-1993	ES	7.08	5.1	UGL	LT		GO
			4MP	28-apr-1993	ES	7.08	0.52	UGL	LT		GO
			4NANIL	28-apr-1993	ES	7.08	5.2		LT		GO
			4NP	28-apr-1993	ES	7.08	12		LT		GO
			ABHC	28-apr-1993	ES	7.08	4	UGL	ND	R	GO
			ACLDAN	28-apr-1993	ES	7.08	5.1	UGL	ND	R	GO
WELL	MW014	UM18	AENSLF	28-apr-1993	ES	7.08	9.2		ND	R	GO GO
WELL			ALDRN	28-apr-1993	ES	7.08	4.7	UGL	ND	R	GO
			ANAPNE	28-apr-1993	ES	7.08	1.7		LT LT		GO
			ANAPYL	28-apr-1993	ES	7.08	0.5 0.5		LT		GO
			ANTRC	28-apr-1993	ES	7.08	1.5		LT		GO
			B2CEXM	28-apr-1993	ES	7.08 7.08	5.3		LT		GO
			B2CIPE	28-apr-1993	ES	7.08 7.08	1.9		LT		GO
			B2CLEE	28-apr-1993	ES ES	7.08	4.8		LT		GO
			B2EHP	28-apr-1993	ES	7.08	1.6		LT		GO
			BAANTR	28-apr-1993 28-apr-1993	ES	7.08	4.7		LT		GO
			BAPYR	28-apr-1993	ES	7.08	5.4	UGL	LT		GO
			BBFANT BBHC	28-apr-1993	ES	7.08	4	UGL	ND	R	GO
			BBZP	28-apr-1993	ES	7.08	3.4	UGL	LT		GO
			BENSLF	28-apr-1993	ES	7.08	9.2		ND	R	GO
			BENZID	28-apr-1993	ES	7.08	10		ND	R	GO
			BENZOA	28-apr-1993	ES	7.08	13		LT		GO GO
			<b>BGHIPY</b>	28-apr-1993	ES	7.08	6.1		LT LT		GO
			BKFANT	28-apr-1993	ES	7.08	0.87 0.72		LT		GO
			BZALC	28-apr-1993	ES	7.08	0.72		ND	R	GO
			CARBAZ	28-apr-1993	ES	7.08 7.08	2.4		LT		GO
			CHRY	28-apr-1993	ES ES	7.08	1.6		LT		GO
			CL6BZ	28-apr-1993	ES	7.08	8.6		LT		GO
			CL6CP	28-apr-1993	ES	7.08	1.5		LT		GO
			CL6ET	28-apr-1993 28-apr-1993	ES	7.08	6.5		LT		GO
			DBAHA DBHC	28-apr-1993	ES	7.08	4		ND	R	GO
			DBAC	28-apr-1993	ES	7.08	1.7		LT		GO
			DEP	28-apr-1993	ES	7.08	2		LT		GO
			DLDRN	28-apr-1993	ES	7.08	4.7			R	GO
			DMP	28-apr-1993	ES	7.08	1.5				GO
			DNBP	28-apr-1993	ES	7.08	3.1	UGL	LT		GO
				-							

									•		
Site Type	Site ID	Method	Test Name	Sample Date	Lab	Deptl	_Value	Unit Meas.	Meas Bool.	Flag Codes	Prog.
			DNOP	28-apr-1993	ES	7.08	15	UGL	LT		GO
			ENDRN	28-apr-1993	ES	7.08	7.6	UGL	ND	R	GO
			ENDRNA	28-apr-1993	ES	7.08	8	UGL	ND	R	GO
			ENDRNK	28-apr-1993	ES	7.08	8	UGL	ND	R	GO
			ESFSO4	28-apr-1993	ES	7.08	9.2	UGL	ND	R	GO
			FANT	28-apr-1993	ES	7.08	3.3	UGL	LT		GO
			FLRENE	28-apr-1993	ES	7.08	3.7	UGL	LT		GO
			GCLDAN	28-apr-1993	ES	7.08	5.1	UGL	ND	R	GO
			HCBD	28-apr-1993	ES	7.08	3.4		LT		GO
			HPCL	28-apr-1993	ES	7.08	2	UGL	ND	R	GO
			HPCLE	28-apr-1993	ES	7.08	5	UGL	ND	R	GO
			ICDPYR	28-apr-1993	ES	7.08	8.6	UGL	LT		GO
			ISOPHR	28-apr-1993	ES	7.08	4.8	UGL	LT	_	GO
			LIN	28-apr-1993	ES	7.08	4	UGL	ND	R	GO
			MEXCLR	28-apr-1993	ES	7.08	5.1	UGL	ND	R	GO
			NAP	28-apr-1993	ES	7.08	0.5	UGL	LT		GO
			NB	28-apr-1993	ES	7.08	0.5	UGL	LT	n	GO
			NNDMEA	28-apr-1993	ES	7.08	2	UGL UGL	ND LT	R	GO GO
			NNDNPA	28-apr-1993	ES ES	7.08 7.08	4.4	UGL	LT		GO
******	N #332/01 4	713.610	NNDPA	28-apr-1993	ES	7.08 7.08	21	UGL	ND	R	GO
WELL	MW014	UM18	PCB016	28-apr-1993	ES	7.08	21	UGL	ND	R	GO
			PCB221 PCB232	28-apr-1993	ES	7.08	21	UGL	ND	R	GO
			PCB232 PCB242	28-apr-1993 28-apr-1993	ES	7.08	30	UGL	ND	R	GO
			PCB248	28-apr-1993	ES	7.08	30	UGL	ND	R	GO
			PCB254	28-apr-1993	ES	7.08	36	UGL	ND	R	GO
			PCB260	28-apr-1993	ES	7.08	36	UGL	ND	R	GO
			PCP	28-apr-1993	ES	7.08	18	UGL	LT		GO
			PHANTR	28-apr-1993	ES	7.08	0.5	UGL	LT		GO
			PHENOL	28-apr-1993	ES	7.08	9.2	UGL	LT		GO
			PPDDD	28-apr-1993	ES	7.08	4	UGL	ND	R	GO
			PPDDE	28-apr-1993	ES	7.08	4.7	UGL	ND	R	GO
			PPDDT	28-apr-1993	ES	7.08	9.2	UGL	ND	R	GO
			PYR	28-apr-1993	ES	7.08	2.8	UGL	LT		GO
			TXPHEN	28-apr-1993	ES	7.08	36	UGL	ND	R	GO
WELL	MW014	<b>UM</b> 20	111TCE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			112TCE	28-apr-1993	ES	0	1.2	UGL	LT		GO
			11DCE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			11DCLE	28-apr-1993	ES	0	0.68	UGL	LT		GO
			12DCE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			12DCLE	28-apr-1993	ES	0		UGL	LT		GO
			12DCLP	28-apr-1993	ES	0		UGL	LT		GO
			2CLEVE	28-apr-1993	ES	0	0.71	UGL UGL	LT		GO
			ACET	28-apr-1993	ES	0	13		LT	D	GO GO
			ACROLN	28-apr-1993	ES	0	100 100	UGL UGL	ND ND	R R	GO
			ACRYLO	28-apr-1993 28-apr-1993	ES ES	0 0	0.59	UGL	LT	K	GO
			BRDCLM C13DCP	•	ES	0	0.58	UGL	LT		GO
			C2AVE	28-apr-1993 28-apr-1993	ES	0	8.3	UGL	LT		GO
			C2AVE C2H3CL	28-apr-1993	ES	0	2.6	UGL	LT		GO
			C2H5CL	28-apr-1993	ES	0	1.9	UGL	LT		GO
			C6H6	28-apr-1993	ES	Ö	0.5	UGL	LT		GO
			CCL3F	28-apr-1993	ES	Ö	1.4	UGL	LT		GO
			CCL4	28-apr-1993	ES	Ö	0.58	UGL	LT		GO
			CH2CL2	28-apr-1993	ES	0	2.3	UGL	LT		GO
			CH3BR	28-apr-1993	ES	0	5.8		LT		GO
				•							

Site						D41	W-loo		Meas	Flag	Drog
Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Depth	<u>value</u>	Meas.	<u>B001.</u>	Codes	Prog.
			CH3CL	28-apr-1993	ES	0	3.2	UGL	LT		GO
			CHBR3	28-apr-1993	ES	0	2.6	UGL	LT		GO
			CHCL3	28-apr-1993	ES	0	0.5	UGL	LT		GO
			CL2BZ	28-apr-1993	ES	0	10	UGL	ND	R	GO
			CLC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			CS2	28-apr-1993	ES	0	0.5	UGL	LT		GO
			DBRCLM	28-apr-1993	ES	0	0.67	UGL	LT		GO
			ETC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			MEC6H5	28-apr-1993	ES	0	0.5	UGL	LT		GO
			MEK	28-apr-1993	ES	0	6.4	UGL	LT		GO
			MIBK	28-apr-1993	ES	0	3	UGL	LT		GO
			MNBK	28-apr-1993	ES	0	3.6	UGL	LT		GO
			STYR	28-apr-1993	ES	0	0.5	UGL	LT		GO
			T13DCP	28-apr-1993	ES	0	0.7	UGL	LT		GO
			TCLEA	28-apr-1993	ES	0	0.51	UGL	LT		GO
WELL	MW014	<b>UM2</b> 0	TCLEE	28-apr-1993	ES	0	1.6	UGL	LT		GO
			TRCLE	28-apr-1993	ES	0	0.5	UGL	LT		GO
			XYLEN	28-apr-1993	ES	0	0.84	UGL	LT		GO GO
WELL	<b>MW</b> 016	00	OILGR	27-apr-1993	ES	7.49	168	UGL UGL	LT LT		GO
			TPHC	27-apr-1993	ES	7.49	168 0.243	UGL	LT		GO
WELL	MW016	SB01	HG	27-apr-1993	ES ES	7.49 7.49	6.99	UGL	LT		GO
WELL	MW016	SD09	TL	27-apr-1993	ES	7.49	1.26	UGL	LT		GO
WELL	MW016	SD20	PB	27-apr-1993 27-apr-1993	ES	7.49	3.02	UGL	LT		GO
WELL	MW016	SD21	SE AS	27-apr 1993 27-apr-1993	ES	7.49	2.54	UGL	LT		GO
WELL	MW016	SD22 SS10	AG AG	27-apr-1993	ES	7.49	4.6	UGL	LT		GO
WELL	<b>MW</b> 016	3310	AL	27-apr-1993	ES	7.49	141	UGL	LT		GO
			BA	27-apr-1993	ES	7.49	73.2	UGL			GO
			BE	27-apr-1993	ES	7.49	5	UGL	LT		GO
			CA	27-apr-1993	ES	7.49	243000	UGL			GO
			CD	27-apr-1993	ES	7.49	4.01	UGL	LT		GO
			CO	27-apr-1993	ES	7.49	25	UGL	LT		GO
			CR	27-apr-1993	ES	7.49	6.02	UGL	LT		GO
			CU	27-apr-1993	ES	7.49	8.09	UGL	LT		GO
			FE	27-apr-1993	ES	7.49	85.1	UGL			GO
			K	27-apr-1993	ES	7.49	673	UGL			GO
			MG	27-apr-1993	ES	7.49	64400	UGL			GO
			MN	27-apr-1993	ES	7.49	1710	UGL			GO
			NA	27-apr-1993	ES	7.49	436000	UGL	r m		GO GO
			NI	27-apr-1993	ES	7.49	34.3	UGL	LT LT		GO
			SB	27-apr-1993	ES	7.49	38 11	UGL UGL	LT		GO
			V	27-apr-1993	ES	7.49	21.1	UGL	LT		GO
			ZN	27-apr-1993	ES	7.49 7.49	2.5	UGL	LT		GO
WELL	MW016	TF18	CYN	27-apr-1993	ES ES	7.49	10	UGL	LT		GO
WELL	MW016	TF22	NIT	27-apr-1993	ES	7.49	1200000	UGL			GO
WELL	MW016	<b>TT</b> 10	CL	27-apr-1993 27-apr-1993	ES	7.49	111000	UGL			GO
	3 633101 C	UH02	SO4 PCB016	27-apr 1993	ES	7.49	0.16	UGL	LT		GO
WELL	MW016	UH02	PCB221	27-apr-1993	ES	7.49	0.16	UGL	ND	R	GO
			PCB232	27-apr-1993	ES	7.49	0.16	UGL	ND	R	GO
			PCB242	27-apr-1993	ES	7.49	0.19	UGL	ND	R	GO
			PCB248	27-apr-1993	ES	7.49	0.19	UGL	ND	R	GO
			PCB254	27-apr-1993	ES	7.49	0.19	UGL	ND	R	GO
			PCB260	27-apr-1993	ES	7.49	0.19	UGL	LT		GO
WELL	MW016	UH13	ABHC	27-apr-1993	ES	7.49	0.0385	UGL	LT		GO
WELL	MW016	UH13	ACLDAN	27-apr-1993	ES	7.49	0.075	UGL	ND	R	GO

# Variable Query Chemical Report

Site Type	Site ID	<u>Method</u>	Test Name	Sample Date	Lab	Deptl	_Value	Unit <u>Meas.</u>	Meas Bool.	Flag Codes	Prog.
			AENSLF	27-apr-1993	ES	7.49	0.023	UGL	LT		GO
			ALDRN	27-apr-1993	ES	7.49	0.0918	UGL	LT		GO
			BBHC	27-apr-1993	ES	7.49	0.024	UGL	LT		GO
			BENSLF	27-apr-1993	ES	7.49	0.023	UGL	LT		GO
			DBHC	27-apr-1993	ES	7.49	0.0293	UGL	LT		GO
			DLDRN	27-apr-1993	ES	7.49	0.024	UGL	LT		GO
			ENDRN	27-apr-1993	ES	7.49	0.0238	UGL	LT		GO
			ENDRNA	27-apr-1993	ES	7.49	0.0285	UGL	LT		GO
			ENDRNK	27-apr-1993	ES	7.49	0.0285	UGL	ND	R	GO
			ESFSO4	27-apr-1993	ES	7.49	0.0786	UGL	LT		GO
			GCLDAN	27-apr-1993	ES	7.49	0.075	UGL	ND	R	GO
			HPCL	27-apr-1993	ES	7.49	0.0423	UGL	LT		GO
			HPCLE	27-apr-1993	ES	7.49	0.0245	UGL	LT		GO
			ISODR	27-apr-1993	ES	7.49	0.0562	UGL	LT		GO
			LIN	27-apr-1993	ES	7.49 7.40	0.0507 0.057	UGL UGL	LT LT		GO GO
			MEXCLR	27-apr-1993	ES ES	7.49 7.49	0.0233	UGL	LT		GO
			PPDDD PPDDE	27-apr-1993	ES	7.49 7.49	0.0233	UGL	LT		GO
			PPDDT	27-apr-1993 27-apr-1993	ES	7.49	0.027	UGL	LT		GO
			TXPHEN	27-apr-1993	ES	7.49	1.35	UGL	LT		GO
WELL	MW016	UM18	124TCB	27-apr-1993	ES	7.49	1.8	UGL	LT		GO
WELL	MIWOIO	CWIO	12DCLB	27-apr-1993	ES	7.49	1.7	UGL	LT		GO
			12DPH	27-apr-1993	ES	7.49	2	UGL	ND	R	GO
			13DCLB	27-apr-1993	ES	7.49	1.7	UGL	LT		GO
			14DCLB	27-apr-1993	ES	7.49	1.7	UGL	LT		GO
			245TCP	27-apr-1993	ES	7.49	5.2	UGL	LT		GO
			246TCP	27-apr-1993	ES	7.49	4.2	UGL	LT		GO
			24DCLP	27-apr-1993	ES	7.49	2.9	UGL	LT		GO
			24DMPN	27-apr-1993	ES	7.49	5.8	UGL	LT		GO
			24DNP	27-apr-1993	ES	7.49	21	UGL	LT		GO
			24DNT	27-apr-1993	ES	7.49	4.5	UGL	LT		GO
			26DNT	27-apr-1993	ES	7.49	0.79	UGL	LT		GO
			2CLP	27-apr-1993	ES	7.49	0.99	UGL	LT		GO
			2CNAP	27-apr-1993	ES	7.49	0.5	UGL	LT		GO
			2MNAP	27-apr-1993	ES	7.49	1.7	UGL	LT		GO
			2MP	27-apr-1993	ES	7.49	3.9	UGL UGL	LT LT		GO
			2NANIL	27-apr-1993	ES ES	7.49 7.49	4.3 3.7	UGL	LT		GO GO
			2NP 33DCBD	27-apr-1993	ES	7.49 7.49	12	UGL	LT		GO
			3NANIL	27-apr-1993 27-apr-1993	ES	7.49	4.9	UGL	LT		GO
			46DN2C	27-apr-1993	ES	7.49		UGL	LT		GO
			4BRPPE	27-apr-1993	ES	7.49	4.2		LT		GO
			4CANIL	27-apr-1993	ES	7.49	7.3	UGL	LT		GO
			4CL3C	27-apr-1993	ES	7.49	4	UGL	LT		GO
			4CLPPE	27-apr-1993	ES	7.49	5.1	UGL	LT		GO
			4MP	27-apr-1993	ES	7.49	0.52	UGL	LT		GO
			4NANIL	27-apr-1993	ES	7.49	5.2	UGL	LT		GO
			4NP	27-apr-1993	ES	7.49	12	UGL	LT		GO
			ABHC	27-apr-1993	ES	7.49	4	UGL	ND	R	GO
			ACLDAN	27-apr-1993	ES	7.49	5.1	UGL	ND	R	GO
WELL	MW016	<b>UM</b> 18	AENSLF	27-apr-1993	ES	7.49	9.2	UGL	ND	R	GO
			ALDRN	27-apr-1993	ES	7.49	4.7	UGL	ND	R	GO
			ANAPNE	27-apr-1993	ES	7.49	1.7	UGL	LT		GO
			ANAPYL	27-apr-1993	ES	7.49	0.5	UGL	LT		GO
			ANTRC	27-apr-1993	ES	7.49	0.5	UGL	LT		GO
			B2CEXM	27-apr-1993	ES	7.49	1.5	UGL	LT		GO

## Variable Query Chemical Report

Site Typc	Site ID	<u>Method</u>	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>		Unit Meas.	Meas Bool.	Flag <u>Codes</u>	Prog.
			B2CIPE	27-apr-1993	ES	7.49	5.3	UGL	LT		GO
			B2CLEE	27-apr-1993	ES	7.49	1.9	UGL	LT		GO
			B2EHP	27-apr-1993	ES	7.49	4.8	UGL	LT		GO
			BAANTR	27-apr-1993	ES	7.49	1.6	UGL	LT		GO
			BAPYR	27-apr-1993	ES	7.49	4.7	UGL	LT		GO
			BBFANT	27-apr-1993	ES	7.49	5.4	UGL	LT		GO
			ВВНС	27-apr-1993	ES	7.49	4	UGL	ND	R	GO
			BBZP	27-apr-1993	ES	7.49	3.4	UGL	LT		GO
			BENSLF	27-apr-1993	ES	7.49	9.2	UGL	ND	R	GO
			BENZID	27-apr-1993	ES	7.49	10	UGL	ND	R	GO
			BENZOA	27-apr-1993	ES	7.49	13	UGL	LT		GO
			<b>BGHIPY</b>	27-apr-1993	ES	7.49	6.1	UGL	LT		GO
			BKFANT	27-apr-1993	ES	7.49	0.87	UGL	LT		GO
			BZALC	27-apr-1993	ES	7.49	0.72	UGL	LT	_	GO
			CARBAZ	27-apr-1993	ES	7.49	0.5	UGL	ND	R	GO
			CHRY	27-apr-1993	ES	7.49	2.4	UGL	LT		GO
			CL6BZ	27-apr-1993	ES	7.49	1.6	UGL	LT		GO
			CL6CP	27-apr-1993	ES	7.49	8.6	UGL	LT		GO
			CL6ET	27-apr-1993	ES	7.49	1.5	UGL	LT		GO
			DBAHA	27-apr-1993	ES	7.49	6.5	UGL	LT	n	GO
			DBHC	27-apr-1993	ES	7.49	4	UGL	ND	R	GO GO
			DBZFUR	27-apr-1993	ES	7.49	1.7	UGL	LT		GO
			DEP	27-apr-1993	ES	7.49	2	UGL	LT	R	GO
			DLDRN	27-apr-1993	ES	7.49	4.7 1.5	UGL UGL	ND LT	K	GO
			DMP	27-apr-1993	ES	7.49	3.7	UGL	LT		GO
			DNBP	27-apr-1993	ES	7.49 7.40	3.7 15	UGL	LT		GO
			DNOP	27-apr-1993	ES	7.49 7.40	7.6	UGL	ND	R	GO
			ENDRN	27-apr-1993	ES	7.49 7.40	7.0	UGL	ND	R	GO
			ENDRNA	27-apr-1993	ES ES	7.49 7.49	8	UGL	ND	R	GO
			ENDRNK	27-apr-1993	ES	7.49	9.2	UGL	ND	R	GO
			ESFSO4	27-apr-1993	ES	7.49	3.3	UGL	LT		GO
			FANT	27-apr-1993	ES	7.49	3.7	UGL	LT		GO
			FLRENE	27-apr-1993	ES	7.49	5.1	UGL	ND	R	GO
			GCLDAN	27-apr-1993 27-apr-1993	ES	7.49	3.4	UGL	LT		GO
			HCBD HPCL	27-apr 1993 27-apr-1993	ES	7.49	2	UGL	ND	R	GO
			HPCLE	27-apr-1993	ES	7.49	5	UGL	ND	R	GO
			ICDPYR	27-apr-1993	ES	7.49	8.6	UGL	LT		GO
			ISOPHR	27-apr-1993	ES	7.49	4.8	UGL	LT		GO
			LIN	27-apr-1993	ES	7.49	4	UGL	ND	R	GO
			MEXCLR	27-apr-1993	ES	7.49	5.1	UGL	ND	R	GO
			NAP	27-apr-1993	ES	7.49	0.5	UGL	LT		GO
			NB	27-apr-1993	ES	7.49	0.5	UGL	LT		GO
			NNDMEA	27-apr-1993	ES	7.49	2	UGL	ND	R	GO
			NNDNPA	27-apr-1993	ES	7.49	4.4		LT		GO
			NNDPA	27-apr-1993	ES	7.49	3		LT		GO
WELL	MW016	UM18	PCB016	27-apr-1993	ES	7.49	21	UGL	ND	R	GO
			PCB221	27-apr-1993	ES	7.49	21		ND	R	GO
			PCB232	27-apr-1993	ES	7.49	21	UGL	ND	R	GO
			PCB242	27-apr-1993	ES	7.49	30		ND	R	GO GO
			PCB248	27-apr-1993	ES	7.49	30		ND ND	R	GO
			PCB254	27-apr-1993	ES	7.49 7.40	36 36		ND ND	R R	GO
			PCB260	27-apr-1993	ES	7.49 7.40	36 18		LT	К	GO
			PCP	27-apr-1993	ES	7.49	0.5				GO
			PHANTR	27-apr-1993	ES	7.49 7.40	9.2				GO
			PHENOL	27-apr-1993	ES	7.49	9.2	UGL			50

10:10:09

<b>6</b> 1.								¥7-!4	34	W1	
Site <u>Type</u>	Site ID	Method	Test Name	Sample Date	Lab	Deptl	Value	Meas.	Meas Bool.	Flag Codes	Prog.
			PPDDD	27-apr-1993	ES	7.49	4	UGL	ND	R	GO
			PPDDE	27-apr-1993	ES	7.49	4.7	UGL	ND	R	GO
			PPDDT	27-apr-1993	ES	7.49	9.2	UGL	ND	R	GO
			PYR	27-apr-1993	ES	7.49	2.8	UGL	LT		GO
			TXPHEN	27-apr-1993	ES	7.49	36	UGL	ND	R	GO
			UNK539 -	27-apr-1993	ES	7.49	9	UGL		S	GO
			UNK565	27-apr-1993	ES	7.49	90	UGL		S	GO
			UNK 568	27-apr-1993	ES	7.49	10	UGL		S	GO
WELL	MW016	UM20	111TCE	27-apr-1993	ES	0	5.6	UGL		_	GO
			112TCE	27-apr-1993	ES	0	1.2	UGL	LT		GO
			11DCE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			11DCLE	27-apr-1993	ES	0	69	UGL			GO
			12DCE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			12DCLE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			12DCLP	27-apr-1993	ES	0	4.2	UGL			GO
			2CLEVE	27-apr-1993	ES	0	0.71	UGL	LT		GO
			ACET	27-apr-1993	ES	0	13	UGL	LT		GO
			ACROLN	27-apr-1993	ES	0	100	UGL	ND	R	GO
			ACRYLO	27-apr-1993	ES	0	100	UGL	ND	R	GO
			BRDCLM	27-apr-1993	ES	0	0.59	UGL	LT		GO
			C13DCP	27-apr-1993	ES	0	0.58	UGL	LT		GO
			C2AVE	27-apr-1993	ES	0	8.3	UGL	LT		GO
			C2H3CL	27-apr-1993	ES	0	2.6	UGL	LT		GO
			C2H5CL	27-apr-1993	ES	0	1.9	UGL	LT		GO
			C6H6	27-apr-1993	ES	0	0.5	UGL	LT		GO
			CCL3F	27-apr-1993	ES	0	1.4	UGL	LT		GO
			CCL4	27-apr-1993	ES	0	0.58	UGL	LT		GO
			CH2CL2	27-apr-1993	ES	0	2.3	UGL	LT		GO
			CH3BR	27-apr-1993	ES	0	5.8	UGL	LT		GO
			CH3CL	27-apr-1993	ES	0	3.2	UGL	LT		GO
			CHBR3	27-apr-1993	ES	0	2.6	UGL	LT		GO
			CHCL3	27-apr-1993	ES	0	0.5	UGL	LT		GO
			CL2BZ	27-apr-1993	ES	0	10	UGL	ND	R	GO
			CLC6H5	27-apr-1993	ES	0	0.5	UGL	LT		GO
			CS2	27-apr-1993	ES	0	0.5	UGL	LT		GO
			DBRCLM	27-apr-1993	ES	0	0.67	UGL	LT		GO
			ETC6H5	27-apr-1993	ES	0	0.5	UGL	LT		GO
			MEC6H5	27-apr-1993	ES	0	0.5	UGL	LT		GO
			MEK	27-apr-1993	ES	0	6.4	UGL	LT		GO
			MIBK	27-apr-1993	ES	0	3	UGL	LT		GO
******	> #17104 <	TTN 400	MNBK	27-apr-1993	ES	0	3.6		LT		GO
WELL	MW016	<b>UM2</b> 0	STYR	27-apr-1993	ES	0	0.5	UGL	LT		GO
			T13DCP	27-apr-1993	ES	0	0.7	UGL UGL	LT		GO
			TCLEA	27-apr-1993	ES	0	0.51	UGL	LT LT		GO GO
			TCLEE TCLTFE	27-apr-1993	ES ES	0 0	1.6 20	UGL	LI	S	GO
			TRCLE	27-apr-1993	ES	0	0.5	UGL	LT	S	GO
			XYLEN	27-apr-1993	ES	0	0.84	UGL	LT		GO
WELL	MW018	00	OILGR	27-apr-1993 27-apr-1993	ES	7.62	170	UGL	LT		GO
WELL	MWOIS	00	TPHC	27-apr-1993	ES	7.62	170	UGL	LT		GO
WELL	MW018	SB01	HG	27-apr-1993 27-apr-1993	ES	7.62	0.243	UGL	LT		GO
WELL	MW018	SD09	TL	27-apr-1993	ES	7.62	6.99	UGL	LT		GO
WELL	MW018	SD20	PB	27-apr-1993	ES	7.62	1.26	UGL	LT		GO
WELL	MW018	SD20	SE	27-apr-1993	ES	7.62	3.02	UGL	LT		GO
WELL	MW018	SD21	AS	27-apr-1993	ES	7.62	2.54	UGL	LT		GO
WELL	MW018	SS10	AG	27-apr-1993	ES	7.62	4.6	UGL	LT		GO
***		2020		2F. ****							

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	Value	Unit <u>Meas.</u>		Flag Codes	Prog.
			AT	27_apr_1003	ES	7.62	141	UGL	LT		GO
			AL	27-apr-1993 27-apr-1993	ES	7.62	113	UGL			GO
			BA BE	27-apr-1993	ES	7.62	5	UGL	LT		GO
			CA	27-apr-1993	ES	7.62	150000	UGL			GO
			CD	27-apr-1993	ES	7.62	4.01	UGL	LT		GO
			CO	27-apr-1993	ES	7.62	25	UGL	LT		GO
			CR	27-apr-1993	ES	7.62	6.02	UGL	LT		GO
			CU	27-apr-1993	ES	7.62	8.09	UGL	LT		GO
			FE	27-apr-1993	ES	7.62	38.8	UGL	LT		GO
			K	27-apr-1993	ES	7.62	6320				GO
			MG	27-apr-1993	ES	7.62	103000				GO
			MN	27-apr-1993	ES	7.62	2.75	UGL	LT		GO
			NA	27-apr-1993	ES	7.62	127000	UGL			GO
			NI NI	27-apr-1993	ES	7.62	34.3	UGL	LT		GO
			SB	27-apr-1993	ES	7.62	60.7				GO
			V	27-apr-1993	ES	7.62	13.5	UGL			GO
			ZN	27-apr-1993	ES	7.62	21.1	UGL	LT		GO
ANALY Y	MW018	TF18	CYN	27-apr-1993	ES	7.62	2.5	UGL	LT		GO
WELL	MW018	TF22	NIT	27-apr-1993	ES	7.62	85.2	UGL			GO
WELL WELL	MW018	TT10	CL	27-apr-1993	ES	7.62	520000	UGL			GO
WELL	MACIO	1110	SO4	27-apr-1993	ES	7.62	183000	UGL			GO
WELL	MW018	UH02	PCB016	27-apr-1993	ES	7.62	0.16	UGL	LT		GO
***************************************	141 44 626	01101	PCB221	27-apr-1993	ES	7.62	0.16		ND	R	GO
			PCB232	27-apr-1993	ES	7.62	0.16		ND	R	GO
			PCB242	27-apr-1993	ES	7.62	0.19	UGL	ND	R	GO
			PCB248	27-apr-1993	ES	7.62	0.19	UGL	ND	R	GO
WELL	MW018	UH02	PCB254	27-apr-1993	ES	7.62	0.19		ND	R	GO
			PCB260	27-apr-1993	ES	7.62	0.19		LT		GO
WELL	MW018	UH13	ABHC	27-apr-1993	ES	7.62	0.0385	UGL	LT		GO
			ACLDAN	27-apr-1993	ES	7.62	0.075		ND	R	GO
			AENSLF	27-apr-1993	ES	7.62	0.023	UGL	LT		GO
			ALDRN	27-apr-1993	ES	7.62	0.0918	UGL	LT		GO
			BBHC	27-apr-1993	ES	7.62	0.024		LT		GO
			BENSLF	27-apr-1993	ES	7.62	0.023	UGL	LT		GO
			DBHC	27-apr-1993	ES	7.62	0.0293	UGL	LT		GO
			DLDRN	27-apr-1993	ES	7.62	0.024		LT		GO
			ENDRN	27-apr-1993	ES	7.62	0.0238	UGL	LT		GO GO
			ENDRNA	27-apr-1993	ES	7.62	0.0285	UGL	LT	R	GO
			ENDRNK	27-apr-1993	ES	7.62	0.0285	UGL UGL	ND LT	K	GO
			ESFSO4	27-apr-1993	ES	7.62	0.0786 0.075		ND	R	GO
			GCLDAN	27-apr-1993	ES	7.62	0.0423		LT	K	GO
			HPCL	27-apr-1993	ES	7.62	0.0423		LT		GO
			HPCLE	27-apr-1993	ES	7.62	0.0562		LT		GO
			ISODR	27-apr-1993	ES	7.62 7.62	0.0502		LT		GO
			LIN	27-apr-1993	ES ES	7.62	0.057		LT		GO
			MEXCLR	27-apr-1993		7.62	0.0233		LT		GO
			PPDDD	27-apr-1993	ES ES	7.62	0.0233		LT		GO
			PPDDE	27-apr-1993	ES	7.62	0.034		LT		GO
			PPDDT	27-apr-1993	ES	7.62	1.35		LT		GO
	* *****	¥ 13 #40	TXPHEN	27-apr-1993	ES ES	7.62	1.8		LT		GO
WELL	MW018	<b>UM</b> 18	124TCB	27-apr-1993	ES	7.62 7.62	1.7		LT		GO
			12DCLB	27-apr-1993	ES	7.62	2		ND	R	GO
			12DPH	27-apr-1993	ES	7.62	1.7		LT		GO
			13DCLB	27-apr-1993 27-apr-1993	ES	7.62	1.7		LT		GO
			14DCLB 245TCP	27-apr-1993	ES	7.62	5.2		LT		GO
			243 ICF	21 apr 1773							

28-jun-1993 10:10:09

Ela.								TT:+	Mass	Elea	
Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	Depti	Value	Meas.	Meas Bool.	Flag Codes	Prog.
			246TCP	27-apr-1993	ES	7.62	4.2	UGL	LT		GO
			24DCLP	27-apr-1993	ES	7.62	2.9	UGL	LT		GO
			24DMPN	27-apr-1993	ES	7.62	5.8	UGL	LT		GO
			24DNP	27-apr-1993	ES	7.62	21	UGL	LT		GO
			24DNT	27-apr-1993	ES	7.62	4.5	UGL	LT		GO
			26DNT	27-apr-1993	ES	7.62	0.79	UGL	LT		GO
			2CLP	27-apr-1993	ES	7.62	0.99	UGL	LT		GO
			2CNAP	27-apr-1993	ES	7.62	0.5	UGL	LT		GO
			2MNAP	27-apr-1993	ES	7.62	1.7	UGL	LT		GO
			2MP	27-apr-1993	ES	7.62	3.9	UGL	LT		GO
			2NANIL	27-apr-1993	ES	7.62	4.3	UGL	LT		GO
			2NP	27-apr-1993	ES	7.62	3.7	UGL	LT		GO
			33DCBD	27-apr-1993	ES	7.62	12	UGL	LT		GO
			3NANIL	27-apr-1993	ES ES	7.62 7.62	4.9 17	UGL UGL	LT LT		GO GO
			46DN2C 4BRPPE	27-apr-1993 27-apr-1993	ES	7.62	4.2	UGL	LT		GO
			4CANIL	27-apr-1993	ES	7.62	7.3	UGL	LT		GO
			4CL3C	27-apr-1993	ES	7.62	4	UGL	LT		GO
			4CLPPE	27-apr-1993	ES	7.62	5.1	UGL	LT		GO
			4MP	27-apr-1993	ES	7.62	0.52	UGL	LT		GO
WELL	MW018	<b>UM</b> 18	4NANIL	27-apr-1993	ES	7.62	5.2	UGL	LT		GO
	212 11 020		4NP	27-apr-1993	ES	7.62	12	UGL	LT		GO
			ABHC	27-apr-1993	ES	7.62	4	UGL	ND	R	GO
			ACLDAN	27-apr-1993	ES	7.62	5.1	UGL	ND	R	GO
			AENSLF	27-apr-1993	ES	7.62	9.2	UGL	ND	. R	GO
			ALDRN	27-apr-1993	ES	7.62	4.7	UGL	ND	R	GO
			ANAPNE	27-apr-1993	ES	7.62	1.7	UGL	LT		GO
			ANAPYL	27-apr-1993	ES	7.62	0.5	UGL	LT		GO
			ANTRC	27-apr-1993	ES	7.62	0.5	UGL	LT		GO
			B2CEXM	27-apr-1993	ES	7.62	1.5	UGL	LT		GO
			B2CIPE	27-apr-1993	ES	7.62	5.3	UGL	LT		GO
			B2CLEE	27-apr-1993	ES	7.62	1.9	UGL	LT		GO
			B2EHP	27-apr-1993	ES	7.62	4.8	UGL UGL	LT		GO
			BAANTR BAPYR	27-apr-1993 27-apr-1993	ES ES	7.62 7.62	1.6 4.7	UGL	LT LT		GO GO
			BBFANT	27-apr-1993	ES	7.62	5.4	UGL	LT		GO
			BBHC	27-apr-1993	ES	7.62	4	UGL	ND	R	GO
			BBZP	27-apr-1993	ES	7.62	3.4	UGL	LT		GO
			BENSLF	27-apr-1993	ES	7.62	9.2	UGL	ND	R	GO
			BENZID	27-apr-1993	ES	7.62	10	UGL	ND	R	GO
			BENZOA	27-apr-1993	ES	7.62	13	UGL	LT		GO
			<b>BGHIPY</b>	27-apr-1993	ES	7.62	6.1	UGL	LT		GO
			BKFANT	27-apr-1993	ES	7.62	0.87	UGL	LT		GO
			BZALC	27-apr-1993	ES	7.62	0.72	UGL	LT		GO
			CARBAZ	27-apr-1993	ES	7.62	0.5	UGL	ND	R	GO
			CHRY	27-apr-1993	ES	7.62	2.4	UGL	LT		GO
			CL6BZ	27-apr-1993	ES	7.62	1.6	UGL	LT		GO
			CL6CP	27-apr-1993	ES	7.62	8.6	UGL	LT		GO
			CL6ET	27-apr-1993	ES	7.62	1.5	UGL UGL	LT		GO
			DBAHA	27-apr-1993	ES	7.62 7.62	6.5		LT	ъ	GO GO
			DBHC DBZFUR	27-apr-1993 27-apr-1993	ES ES	7.62 7.62	4 1.7	UGL UGL	ND LT	R	GO
			DEP	27-apr-1993 27-apr-1993	ES	7.62	2	UGL	LT		GO
			DLDRN	27-apr-1993	ES	7.62	4.7	UGL	ND	R	GO
			DMP	27-apr-1993	ES	7.62	1.5	UGL	LT		GO
			DNBP	27-apr-1993	ES	7.62	3.7		LT		GO
				•							

10:10:09

Variable Query Chemical Report
Installation: Detroit Arsenal, MI (DA)
Media File Code: CGW Sampling Date Range: 01-mar-93 to 01-jun-93
Minimum: X: 331500 Y: 4706000

Site Type	Site ID	<u>Method</u>	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	_ Value	Unit Meas.	Meas Bool.	Flag Codes	Prog.
			DATOR	07 1002	ES	7.62	15	UGL	LT		GO
			DNOP	27-apr-1993	ES ES	7.62 7.62	7.6	UGL	ND	R	GO
			ENDRN	27-apr-1993	ES	7.62	8	UGL	ND	R	GO
			ENDRNA	27-apr-1993	ES	7.62	8	UGL	ND	R	GO
			ENDRNK	27-apr-1993 27-apr-1993	ES	7.62	9.2	UGL	ND	R	GO
			ESFSO4	27-apr-1993	ES	7.62	3.3	UGL	LT		GO
			FANT FLRENE	27-apr-1993	ES	7.62	3.7	UGL	LT		GO
			GCLDAN	27-apr-1993	ES	7.62	5.1	UGL	ND	R	GO
			HCBD	27-apr-1993	ES	7.62	3.4	UGL	LT		GO
			HPCL	27-apr-1993	ES	7.62	2	UGL	ND	R	GO
			HPCLE	27-apr-1993	ES	7.62	5	UGL	ND	R	GO
			ICDPYR	27-apr-1993	ES	7.62	8.6	UGL	LT		GO
			ISOPHR	27-apr-1993	ES	7.62	4.8	UGL	LT		GO
			LIN	27-apr-1993	ES	7.62	4	UGL	ND	R	GO
			MEXCLR	27-apr-1993	ES	7.62	5.1	UGL	ND	R	GO
			NAP	27-apr-1993	ES	7.62	0.5	UGL	LT		GO
	3 6331040	UM18	NB	27-apr-1993	ES	7.62	0.5	UGL	LT		GO
WELL	MW018	UMIO	NNDMEA	27-apr-1993	ES	7.62	2	UGL	ND	R	GO
			NNDNPA	27-apr-1993	ES	7.62	4.4	UGL	LT		GO
			NNDPA	27-apr-1993	ES	7.62	3	UGL	LT		GO
			PCB016	27-apr-1993	ES	7.62	21	UGL	ND	R	GO
			PCB221	27-apr-1993	ES	7.62	21	UGL	ND	R	GO
			PCB232	27-apr-1993	ES	7.62	21	UGL	ND	R	GO
			PCB242	27-apr-1993	ES	7.62	30	UGL	ND	R	GO
			PCB248	27-apr-1993	ES	7.62	30	UGL	ND	R	GO
			PCB254	27-apr-1993	ES	7.62	36	UGL	ND	R	GO
			PCB260	27-apr-1993	ES	7.62	36	UGL	ND	R	GO
			PCP	27-apr-1993	ES	7.62	18	UGL	LT		GO
			PHANTR	27-apr-1993	ES	7.62	0.5	UGL	LT		GO
			PHENOL	27-apr-1993	ES	7.62	9.2	UGL	LT	n	GO
			PPDDD	27-apr-1993	ES	7.62	4	UGL	ND	R	GO
			PPDDE	27-apr-1993	ES	7.62	4.7	UGL	ND	R	GO
			PPDDT	27-apr-1993	ES	7.62	9.2	UGL	ND	R	GO
			PYR	27-apr-1993	ES	7.62	2.8	UGL	LT	n	GO
			TXPHEN	27-apr-1993	ES	7.62	36	UGL	ND	R	GO GO
WELL	MW018	<b>UM2</b> 0	111TCE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			112TCE	27-apr-1993	ES	0	1.2	UGL	LT		GO
			11DCE	27-apr-1993	ES	0	0.5	UGL UGL	LT LT		GO
			11DCLE	27-apr-1993	ES	0	0.68		LT		GO
			12DCE	27-apr-1993	ES	0	0.5 0.5				GO
			12DCLE	27-apr-1993	ES	0	0.5		LT		GO
			12DCLP	27-apr-1993	ES	0	0.71		LT		GO
			2CLEVE	27-apr-1993	ES	0 0	13		LT		GO
			ACET	27-apr-1993	ES ES	0	100		ND	R	GO
			ACROLN	27-apr-1993	ES	0	100		ND	R	GO
			ACRYLO	27-apr-1993	ES	0	0.59		LT		GO
			BRDCLM	27-apr-1993 27-apr-1993	ES	0	0.58		LT		GO
			C13DCP	27-apr-1993	ES	0	8.3		LT		GO
			C2AVE	27-apr-1993	ES	0	2.6		LT		GO
			C2H3CL C2H5CL	27-apr-1993 27-apr-1993	ES	ő	1.9		LT		GO
			C6H6	27-apr-1993	ES	0	0.5		LT		GO
			CCL3F	27-apr-1993	ES	0	1.4				GO
			CCL3F CCL4	27-apr-1993	ES	0	0.58				GO
			CH2CL2	27-apr-1993	ES	0	2.3		LT		GO
			CH3BR	27-apr-1993	ES	0	5.8	UGL	LT		GO
				•							

Site Type	Site ID	Method	Test Name	Sample Date	<u>Lab</u>	<u>Deptl</u>	Value		Meas Bool.	Flag Codes	Prog.
			CH3CL	27-apr-1993	ES	0	3.2	UGL	LT		GO
			CHBR3	27-apr-1993	ES	0	2.6	UGL	LT		GO
			CHCL3	27-apr-1993	ES	0	0.88	UGL			GO
			CL2BZ	27-apr-1993	ES	0	10	UGL	ND	R	GO
			CLC6H5	27-apr-1993	ES	0	0.5	UGL	LT		GO
			CS2	27-apr-1993	ES	0	0.5	UGL	LT		GO
			DBRCLM	27-apr-1993	ES	0	0.67	UGL	LT		GO
			ETC6H5	27-apr-1993	ES	0	0.5	UGL	LT		GO
			MEC6H5	27-apr-1993	ES	0	0.5	UGL	LT		GO
			MEK	27-apr-1993	ES	0	6.4	UGL	LT		GO
			MIBK	27-apr-1993	ES	0	3	UGL	LT		GO
WELL	MW018	<b>UM</b> 20	MNBK	27-apr-1993	ES	0	3.6	UGL	LT		GO
			STYR	27-apr-1993	ES	0	0.5	UGL	LT		GO
			T13DCP	27-apr-1993	ES	0	0.7	UGL	LT		GO
			TCLEA	27-apr-1993	ES	0	0.51	UGL	LT		GO
			TCLEE	27-apr-1993	ES	0	1.6	UGL	LT		GO
			TRCLE	27-apr-1993	ES	0	0.5	UGL	LT		GO
			XYLEN	27-apr-1993	ES	0	0.84	UGL	LT		GO

Ξ.

CHEMICAL QUALITY CONTROL REPORT

<u>Lab</u>	<u>Lot</u>	F Samp No	Test <u>Name</u>	Method Type	Q C <u>Spike</u>	Code	Analysis Date	Meas. Bool	<u>Value</u>	Unit <u>Meas</u>	Flags C	Data Jualifiers	<u>Prog</u>
ES	BYR		NIT	М	0	TF22	19-feb-1993	LT	10	UGL			
	J		NIT	S	20	TF22	19 – feb – 1993		19	UGL			
			NIT	S	150	TF22	19-feb-1993		156	UGL			
			NIT	S	150	TF22	19-feb-1993		165	UGL			
		MW018 MW018	NIT NIT	N	150	TF22	19-feb-1993		150 160	UGL UGL			GO GO
		RBLK-1	NIT	N R	150 0	TF22 TF22	19-feb-1993 19-feb-1993	LT	100	UGL			GO
ES	BYXA		NIT	М	Ö	TF22	14-may-1993	LT	10	UGL			
			NIT	S	20	TF22	14-may-1993		20.3	UGL			
			NIT	S	150	TF22	14-may-1993		149	UGL			
		DDIV 4	NIT	S	150	TF22	14-may-1993		152	UGL			00
ES	CAJ	RBLK-1	NIT CYN	R M	0	TF22 TF18	14-may-1993 08-feb-1993	LT LT	10 2.5	UGL UGL			GO
LO	0/10		CYN	S	9.2	TF18	08-feb-1993	LI	8.61	UGL			
			CYN	Š	22.9	TF18	08 - feb - 1993		23.2	UGL			
			CYN	S	22.9	TF18	08-feb-1993		23.7	UGL			
		MW001	CYN	N	22.9	TF18	08-feb-1993		23.4	UGL			GO
	0404	RBLK-1	CYN	R	0	TF18	08-feb-1993	LT	2.5	UGL			GO
ES	CAOA		CYN CYN	M S	0 9.2	TF18 TF18	07-may-1993 07-may-1993	LT	2.5 9.34	UGL UGL			
			CYN	S	22.9	TF18	07-may-1993		23.4	UGL			
			CYN	S	22.9	TF18	07-may-1993		23.6	UGL			
		MW-018	CYN	N	28.7	TF18	07-may-1993		29.4	UGL			GO
		RBLK-1	CYN	R	0	TF18	07-may-1993	LT	2.5	UGL			GO
ES	CBZ		AS	M	0	SD22	23 – feb – 1993	LT	2.54	UGL			
			AS AS	S S	5 75	SD22 SD22	23-feb-1993 23-feb-1993		5.4 73.7	UGL UGL			
			AS	S	75 75	SD22	23-feb - 1993		75.7 75.4	UGL			
		RBLK-1	AS	R	0	SD22	23-feb-1993	LT	2.54	UGL		*	GO
ES	CCV		TL	M	0	SD09	23-feb-1993	LT	6.99	UGL			
			TL	S	10	SD09	23-feb-1993		10.8	UGL			
			TL	S	20	SD09	23-feb-1993		20.5	UGL			
		RBLK-1	TL TL	S R	20 0	SD09 SD09	23 – feb – 1993 24 – feb – 1993	LT	21.5 6.99	UGL			GO
ES	CDV	NDCK-1	HG	M	0	SB01	08-feb-1993	LT	0.243	UGL			uo
			HG	S	0.5	SB01	08-feb-1993		0.525	UGL			
			HG	S	2.5	SB01	08-feb-1993		2.65	UGL			
		DDLK 4	HG	S	2.5	SB01	08-feb-1993		2.69	UGL			GO
ES	CEP	RBLK-1	HG CL10BP	R S	0 1.3	SB01 UH02	08 – feb – 1993 08 – feb – 1993	LT	0.243 0.92	UGL	т		GO
	OLI		CL10BP	S	1.3	UH02	08 – feb – 1993		0.95	UGL	Ť		
			PCB016	М	0	UH02	08-feb-1993	LT	0.16	UGL			
			PCB016	s	3.75	UH02	08-feb-1993		2.3	UGL			
			PCB221	М	0	UH02	08 - feb - 1993	ND	0.16	UGL	R		
ES	CEP		PCB232 PCB242	M M	0 0	UH02 UH02	08-feb-1993 08-feb-1993	ND ND	0.16 0.19	UGL UGL	R R		
			PCB248	M	ŏ	UH02	08-feb-1993	ND	0.19	UGL	R		
			PCB254	M	ō	UH02	08-feb-1993	ND	0.19	UGL	R		
			PCB260	M	0	UH02	08-feb-1993	LT	0.19	UGL			
			PCB260	S	3.75	UH02	08-feb-1993		2.7	UGL	_		
		MW001 MW002	CL10BP CL10BP	N N	1.3	UH02	08-feb-1993 08-feb-1993		0.85 0.77	UGL UGL	T T		GO GO
		MW004	CL10BP	N N	1.3 1.3	UH02 UH02	08-feb-1993		0.77	UGL	Ť		GO
		MW010	CL10BP	N	1.3	UH02	08-feb-1993		0.95	UGL	Ť		GO
		MW014	CL10BP	N	1.3	UH02	08-feb-1993		0.49	UGL	T		GO
		MW016	CL10BP	N	1.3	UH02	08-feb-1993		0.97	UGL	T		GO
		MW018	CL10BP	N N	1.3	UH02	08 - feb - 1993		0.86	UGL	T T		GO GO
		RBLK-1 RBLK-1	CL10BP PCB016	N R	1.3 0	UH02 UH02	08 – feb – 1993 08 – feb – 1993	LT	0.77 0.16	UGL UGL	т		GO
		RBLK-1	PCB221	R	Ö	UH02	08 – feb – 1993	ND	0.16	UGL	R		GO
		RBLK-1	PCB232	R	0	UH02	08-feb-1993	ND	0.16	UGL	R		GO
		RBLK-1	PCB242	R	0	UH02	08 - feb - 1993	ND	0.19	UGL	R		GO
		RBLK-1	PCB248	R	0	UH02	08 – feb – 1993	ND	0.19	UGL	R		GO GO
		RBLK-1 RBLK-1	PCB254 PCB260	R R	0 0	UH02 UH02	08 – feb – 1993 08 – feb – 1993	ND LT	0.19 0.19	UGL UGL	R		GO
ES	CKS		124TCB	M	Ö	UM18	01 – feb – 1993	LT	1.8	UGL			
	**		12DCLB	M	Ö	UM18	01 -feb - 1993	LT	1.7	UGL			
			12DPH	М	0	UM18	01-feb-1993	ND	2	UGL	R		

												, D-4-	
			Test	Method	Q C		Analysis Data	Meas. Bool	Value	Unit Meas	Flags	Data Qualifiers	Prog
Lab	Lot	F Samp No	Name	Type	<u>Spike</u>	Code	Analysis Date	<u> </u>	Value	111022	<u> p</u> _		
			13DCLB	М	0	UM18	01 - feb - 1993	LT	1.7	UGL			
			14DCLB	M	0	UM18	01 - feb - 1993	LT	1.7	UGL			
			245TCP	М	0	UM18	01 - feb - 1993	LT	5.2	UGL			
			246TBP	S	100	UM18	01 – feb – 1993		66	UGL			
			246TCP	М	0	UM18	01 - feb - 1993	LT	4.2 2.9	UGL UGL			
			24DCLP	М	0	UM18	01 - feb - 1993	LT LT	5.8	UGL			
			24DMPN	M	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT	21	UGL			
			24DNP	M	0	UM18	01 – feb – 1993	LT	4.5	UGL			
			24DNT	M M	0	UM18	01 -feb - 1993	LT	0.79	UGL			
			26DNT 2CLP	M	0	UM18	01 -feb -1993	LT	0.99	UGL			
			2CNAP	M	ŏ	UM18	01 -feb -1993	LT	0.5	UGL			
			2FBP	S	50	UM18	01 - feb - 1993		38	UGL			
			2FP	Š	100	UM18	01 -feb - 1993		58	UGL			
			2MNAP	M	0	UM18	01 -feb - 1993	LT	1.7	UGL			
			2MP	M	0	UM18	01 - feb - 1993	LT	3.9	UGL			
			2NANIL	M	0	UM18	01 -feb - 1993	LT	4.3	UGL			
			2NP	М	0	UM18	01 - feb - 1993	LT	3.7	UGL			
			33DCBD	М	0	UM18	01 -feb - 1993	LT	12	UGL			
			3NANIL	М	0	UM18	01 - feb - 1993	LT	4.9	UGL			
			46DN2C	M	0	UM18	01 -feb - 1993	LT LT	17 4.2	UGL UGL			
			4BRPPE	M	0	UM18	01 – feb – 1993 01 – feb – 1993	LT	7.3	UGL			
			4CANIL	M	0	UM18	01 – feb – 1993 01 – feb – 1993	LT	4	UGL			
			4CL3C	M	0	UM18 UM18	01 – feb – 1993	LT	5.1	UGL			
			4CLPPE	M	0	UM18	01 -feb - 1993	LT	0.52	UGL			
	01/0		4MP	M M	0	UM18	01 -feb - 1993	LT	5.2	UGL			
ES	CKS		4NANIL 4NP	M	ŏ	UM18	01 -feb - 1993	LT	12	UGL			
			ABHC	M	Ö	UM18	01 - feb - 1993	ND	4	UGL	R		
			ACLDAN	M	0	UM18	01 - feb - 1993	ND	5.1	UGL	R		
			AENSLF	M	0	UM18	01 feb 1993	ND	9.2	UGL	R		
			ALDRN	M	0	UM18	01 - feb - 1993	ND	4.7	UGL	R		
			ANAPNE	M	0	UM18	01 -feb - 1993	LT	1.7	UGL			
			ANAPYL	М	0	UM18	01 – feb – 1993	LT	0.5	UGL UGL			
			ANTRO	М	0	UM18	01 – feb – 1993	LT LT	0.5 1.5	UGL			
			B2CEXM	M	0	UM18	01 – feb – 1993 01 – feb – 1993	LT	5.3	UGL			
			B2CIPE	M	0	UM18 UM18	01 - feb - 1993	LT	1.9	UGL			
			B2CLEE	M M	ő	UM18	01 -feb -1993	LT	4.8	UGL			
			B2EHP BAANTR	M	Ö	UM18	01 -feb - 1993	LT	1.6	UGL			
			BAPYR	M	ō	UM18	01 - feb - 1993	LT	4.7	UGL			
			BBFANT	М	0	UM18	01 - feb - 1993	LT	5.4	UGL	_		
			ввнс	М	0	UM18	01 -feb - 1993	ND	4	UGL	R		
			BBZP	М	0	UM18	01 - feb - 1993	LT	3.4	UGL			
			BENSLF	М	0	UM18	01 – feb – 1993	ND	9.2	UGL	R R		
			BENZID	М	0	UM18	01 - feb - 1993	ND LT	10 13	UGL UGL	11		
			BENZOA	М	0	UM18	01 – feb – 1993 01 – feb – 1993	LT	6.1	UGL			
			BGHIPY	M	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT	0.87	UGL			
			BKFANT	M M	0	UM18	01 - feb - 1993	LT	0.72	UGL			
			BZALC CARBAZ	M	ŏ	UM18	01 -feb - 1993	ND	0.5	UGL	R		
			CHRY	M	ō	UM18	01-feb-1993	LT	2.4	UGL			
			CL6BZ	M	0	UM18	01 - feb - 1993	LT	1.6	UGL			
			CL6CP	М	0	UM18	01 -feb - 1993	LT	8.6	UGL			
			CL6ET	М	0	UM18	01 - feb - 1993	LT	1.5	UGL			
			DBAHA	М	0	UM18	01 - feb - 1993	LT	6.5	UGL	R		
			DBHC	M	0	UM18	01 - feb - 1993	ND LT	4 1.7	UGL	11		
			DBZFUR	M	0	UM18	01 – feb – 1993 01 – feb – 1993	LT	1.7	UGL			
			DEP	M	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND	4.7	UGL	R		
			DLDRN DMP	M M	0	UM18	01 -feb -1993	LT	1.5	UGL			
			DNBP	M	ŏ	UM18	01 -feb -1993	LT	3.7	UGL			
			DNOP	M	0	UM18	01 -feb - 1993	LT	15	UGL	_		
			ENDRN	М	0	UM18	01 -feb - 1993	ND	7.6	UGL	R		
			ENDRNA	M	0	UM18	01 -feb -1993	ND	8	UGL	R R		
			ENDRNK	M	0	UM18	01 -feb - 1993	ND	8	UGL	R		
			ESFSO4	M	0	UM18	01 – feb – 1993 01 – feb – 1993	ND LT	9.2 3.3	UGL	• • •		
			FANT	М	0	UM18	01 160 1990		5.5				

Lab	Lot	F Samp No	Test Name	Method Type	Q C Spike	Code	Analysis Date	Meas. Bool	Value	Unit <u>Meas</u>	Flags	Data Qualifiers	Prog
			FLDENE		0	UM18	01 – feb – 1993	LT	3.7	UGL			
			FLRENE GCLDAN	M M	0	UM18	01 - feb - 1993	ND	5.1	UGL	R		
			HCBD	М	Ō	UM18	01-feb-1993	LT	3.4	UGL			
			HPCL	М	0	UM18	01 -feb - 1993	ND	2	UGL	R		
			HPCLE	М	0	UM18	01 - feb - 1993	ND	5	UGL	R		
			ICDPYR	М	0	UM18	01 - feb - 1993	LT LT	8.6 4.8	UGL UGL			
			ISOPHR	M	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND	4.6	UGL	R		
			LIN MEXCLR	M M	0	UM18	01 – feb – 1993	ND	5.1	UGL	R		
ES	CKS		NAP	M	Ö	UM18	01 - feb - 1993	LT	0.5	UGL			
			NB	M	0	UM18	01 - feb - 1993	LT	0.5	UGL			
			NBD5	S	50	UM18	01 -feb - 1993		36	UGL	_		
			NNDMEA	М	0	UM18	01 – feb – 1993	ND	2 4.4	UGL UGL	R		
			NNDNPA	M	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT LT	3	UGL			
			NNDPA PCB016	M M	0	UM18	01 -feb - 1993	ND	21	UGL	R		
			PCB221	M	0	UM18	01 -feb - 1993	ND	21	UGL	R		
			PCB232	М	Ō	UM18	01 -feb - 1993	ND	21	UGL	R		
			PCB242	М	0	UM18	01 -feb -1993	ND	30	UGL	R		
			PCB248	М	0	UM18	01 -feb -1993	ND	30	UGL	R		
			PCB254	М	0	UM18	01 – feb – 1993	ND	36	UGL UGL	R R		
			PCB260	M	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND LT	36 18	UGL	n		
			PCP PHANTR	M M	0	UM18	01 - feb - 1993	LT	0.5	UGL			
			PHEND6	S	100	UM18	01 - feb - 1993		41	UGL			
			PHENOL	M	0	UM18	01 -feb -1993	LT	9.2	UGL			
			PPDDD	М	0	UM18	01 - feb - 1993	ND	4	UGL	R		
			PPDDE	М	0	UM18	01 - feb - 1993	ND	4.7	UGL	R		
			PPDDT	М	0	UM18	01 -feb - 1993	ND LT	9.2 2.8	UGL UGL	R		
			PYR	M S	0 50	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LI	2.0 51	UGL			
			TRPD14 TXPHEN	M	0	UM18	01 - feb - 1993	ND	36	UGL	R		
		RBLK-1	124TCB	R	ō	UM18	01 - feb - 1993	LT	1.8	UGL			GO
		RBLK-1	12DCLB	R	0	UM18	01 - feb - 1993	LT	1.7	UGL			GO
		RBLK-1	12DPH	R	0	UM18	01 - feb - 1993	ND	2	UGL	R		GO
		RBLK-1	13DCLB	R	0	UM18	01 -feb -1993	LT	1.7	UGL			GO GO
		RBLK-1	14DCLB	R	0	UM18	01 - feb - 1993	LT LT	1.7 5.2	UGL UGL			GO
		RBLK-1	245TCP	R N	0 100	UM18 UM18	01 feb 1993 01 feb 1993	LI	48	UGL			GO
		RBLK-1 RBLK-1	246TBP 246TCP	R	0	UM18	01 - feb - 1993	LT	4.2	UGL			GO
		RBLK-1	24DCLP	R	Ö	UM18	01 -feb - 1993	LT	2.9	UGL			GO
		RBLK-1	24DMPN	R	0	UM18	01 - feb - 1993	LT	5.8	UGL			GO
		RBLK-1	24DNP	R	0	UM18	01 - feb - 1993	LT	21	UGL			GO GO
		RBLK-1	24DNT	R	0	UM18	01 -feb - 1993	LT	4.5 0.79	UGL UGL			GO
		RBLK-1	26DNT	R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT LT	0.79	UGL			GO
		RBLK-1 RBLK-1	2CLP 2CNAP	R R	0	UM18	01 – feb – 1993	LT	0.5	UGL			GO
		RBLK-1	2FBP	N N	50	UM18	01 -feb - 1993		36	UGL			GO
		RBLK-1	2FP	N	100	UM18	01 -feb - 1993		75	UGL			GO
		RBLK-1	2MNAP	R	0	UM18	01 - feb - 1993	LT	1.7	UGL			GO
		RBLK-1	2MP	R	0	UM18	01 - feb - 1993	LT	3.9	UGL			GO GO
		RBLK-1	2NANIL	R	0	UM18	01 – feb – 1993 01 – feb – 1993	LT LT	4.3 3.7	UGL UGL			GO
		RBLK-1	2NP 33DCBD	R R	0 0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT	12	UGL			GO
		RBLK-1 RBLK-1	3NANIL	R	Ö	UM18	01 -feb - 1993	LT	4.9	UGL			GO
		RBLK-1	46DN2C	R	Ō	UM18	01 -feb - 1993	LT	17	UGL			GO
		RBLK-1	4BRPPE	R	0	UM18	01 -feb -1993	LT	4.2	UGL			GO
		RBLK-1	4CANIL	R	0	UM18	01 -feb 1993	LT	7.3	UGL			GO GO
		RBLK-1	4CL3C	R	0	UM18	01 – feb – 1993	LT LT	4 5.1	UGL UGL			GO
	OVC	RBLK-1	4CLPPE	R R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT	0.52	UGL			GO
ES	CKS	RBLK-1 RBLK-1	4MP 4NANIL	R R	0	UM18	01 - feb - 1993	LT	5.2	UGL			GO
		RBLK-1	4NP	R	Ö	UM18	01 -feb - 1993	LT	12	UGL			GO
		RBLK-1	ABHC	R	0	UM18	01 - feb - 1993	ND	4	UGL	R		GO
		RBLK-1	ACLDAN	R	0	UM18	01 feb 1993	ND	5.1	UGL	R		GO GO
		RBLK-1	AENSLF	R	0	UM18	01 - feb - 1993	ND ND	9.2 4.7	UGL UGL	R R		GO
		RBLK-1	ALDRN	R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND LT	1.7	UGL	n		GO
		RBLK-1	ANAPNE	R	U	CIVITO	A1 160 1990		•••				

			•									Data	
Lab	Lot	F Samp No	Test Na <u>me</u>	Method <u>Type</u>	Q C Spike	Code	Analysis Date	Meas. Bool	Value	Unit <u>Meas</u>	Flags	Qualifiers	Prog
<u>Lab</u>	<u>Lot</u>	r samp ivo	Name						0.5	UGL			GO
		RBLK-1	ANAPYL	R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT LT	0.5 0.5	UGL			GO
		RBLK-1	ANTRO	R R	0	UM18	01 – feb – 1993	LT	1.5	UGL			GO
		RBLK-1	B2CEXM B2CIPE	R	Ö	UM18	01 -feb - 1993	LT	5.3	UGL			GO
		RBLK-1 RBLK-1	B2CLEE	R	ő	UM18	01 - feb - 1993	LT	1.9	UGL			GO
		RBLK-1	B2EHP	R	Ō	UM18	01 - feb - 1993	LT	4.8	UGL			GO
		RBLK-1	BAANTR	R	0	UM18	01 - feb - 1993	LT	1.6	UGL			GO
		RBLK-1	BAPYR	R	0	UM18	01 − <del>[e</del> b −1993	LT	4.7	UGL			GO GO
		RBLK-1	BBFANT	R	0	UM18	01 -feb - 1993	LT	5.4	UGL UGL	R		GO
		RBLK-1	ввнс	R	0	UM18	01 - feb - 1993	ND LT	4 3.4	UGL	п		GO
		RBLK-1	BBZP	R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND	9.2	UGL	R		GO
		RBLK-1	BENSLF	R	0 0	UM18	01 – feb – 1993 01 – feb – 1993	ND	10	UGL	R		GO
		RBLK-1	BENZID BENZOA	R R	Ö	UM18	01 -feb - 1993	LT	13	UGL			GO
		RBLK-1 RBLK-1	BENZOA	R	Ö	UM18	01 -feb - 1993	LT	6.1	UGL			GO
		RBLK-1	BKFANT	Ř	ō	UM18	01 -feb - 1993	LT	0.87	UGL			GO
		RBLK-1	BZALC	R	0	UM18	01 - feb - 1993	LT	0.72	UGL	_		GO
		RBLK-1	CARBAZ	R	0	UM18	01 -feb -1993	ND	1.5	UGL	R		GO
		RBLK-1	CHRY	R	0	UM18	01 -feb -1993	LT	2.4	UGL			GO GO
		RBLK-1	CL6BZ	R	0	UM18	01 -feb -1993	LT . ~	1.6	UGL UGL			GO
		RBLK-1	CL6CP	R	0	UM18	01 - feb - 1993	LT LT	8.6 1.5	UGL			GO
		RBLK-1	CL6ET	R	0	UM18	01 - feb - 1993	LT	6.5	UGL			GO
		RBLK-1	DBAHA	R	0 0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND	4	UGL	R		GO
		RBLK-1	DBHC DBZFUR	R R	0	UM18	01 - feb - 1993	LT	1.7	UGL			GO
		RBLK-1 RBLK-1	DEP	R	ŏ	UM18	01 -feb - 1993	LT	2	UGL			GO
		RBLK-1	DLDRN	R	0	UM18	01 - feb - 1993	ND	4.7	UGL	R		GO
		RBLK-1	DMP	R	0	UM18	01 -feb -1993	LT	1.5	UGL			GO GO
		RBLK-1	DNBP	R	0	UM18	01 - feb - 1993	LT	3.7	UGL UGL			GO
		RBLK-1	DNOP	R	0	UM18	01 -feb -1993	LT ND	15 7.6	UGL	R		GO
		RBLK-1	ENDRN	R	0 0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND	8	UGL	R		GO
		RBLK-1	ENDRNA	R R	0	UM18	01 -feb -1993	ND	8	UGL	R		GO
		RBLK-1 RBLK-1	ENDRNK ESFSO4	R	ŏ	UM18	01 -feb - 1993	ND	9.2	UGL	R		GO
		RBLK-1	FANT	R	0	UM18	01 -feb - 1993	LT	3.3	UGL			GO
		RBLK-1	FLRENE	R	0	UM18	01 - feb - 1993	LT	3.7	UGL	_		GO GO
		RBLK-1	GCLDAN	R	0	UM18	01 -feb -1993	ND	5.1	UGL UGL	R		GO
		RBLK-1	HCBD	R	0	UM18	01 - feb - 1993	LT ND	3.4 2	UGL	R		GO
		RBLK-1	HPCL	R	0	UM18	01 – feb – 1993 01 – feb – 1993	ND	5	UGL	R		GO
		RBLK-1	HPCLE	R	0	UM18 UM18	01 – feb – 1993	LT	8.6	UGL			GO
		RBLK-1	ICDPYR ISOPHR	R R	0	UM18	01 -feb -1993	LT	4.8	UGL			GO
		RBLK-1 RBLK-1	LIN	R	ō	UM18	01 -feb - 1993	ND	4	UGL	R		GO
ES	CKS	RBLK-1	MEXCLR	R	0	UM18	01 - feb - 1993	ND	5.1	UGL	R		GO
	0710	RBLK-1	NAP	R	0	UM18	01 -feb - 1993	LT	0.5	UGL			GO GO
		RBLK-1	NB	R	0	UM18	01 - feb - 1993	LT	0.5	UGL			GO
		RBLK-1	NBD5	N	50	UM18	01 -feb - 1993	ND	33 2	UGL UGL	R		GO
		RBLK-1	NNDMEA	R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	LT	4.4	UGL	• • •		GO
		RBLK-1	NNDNPA NNDPA	R R	0	UM18	01 - feb - 1993	LT	3	UGL			GO
		RBLK-1 RBLK-1	PCB016	R	ō	UM18	01 -feb - 1993	ND	21	UGL	R		GO
		RBLK-1	PCB221	R	0	UM18	01 - feb - 1993	ND	21	UGL	R		GO GO
		RBLK-1	PCB232	R	0	UM18	01 - feb - 1993	ND	21 30	UGL UGL	R R		GO
		RBLK-1	PCB242	R	0	UM18 UM18	01 - feb - 1993 01 - feb - 1993	ND ND	30	UGL	R		GO
		RBLK-1	PCB248 PCB254	R R	0	UM18	01 -feb - 1993	ND	36	UGL	R		GO
		RBLK-1 RBLK-1	PCB254	R	Ö	UM18	01-feb-1993	ND	36	UGL	R		GO
		RBLK-1	PCP	R	0	UM18	01 - feb - 1993	LT	18	UGL			GO
		RBLK-1	PHANTR	R	0	UM18	01 -feb - 1993	LT	0.5	UGL			GO GO
		RBLK-1	PHEND6	N	100	UM18	01 -feb - 1993		72	UGL			GO
		RBLK-1	PHENOL	R	0	UM18	01 - feb - 1993	LT ND	9.2 4	UGL UGL	R		GO
		RBLK-1	PPDDD	R	0	UM18	01 – feb – 1993 01 – feb – 1993	ND ND	4.7	UGL	R		GO
		RBLK-1	PPDDE	R	0	UM18 UM18	01 – feb – 1993 01 – feb – 1993	ND	9.2	UGL	R		GO
		RBLK-1	PPDDT PYR	R R	0	UM18	01 - feb - 1993	LT	2.8	UGL.			GO
		RBLK-1 RBLK-1	TRPD14	N N	50	UM18	01 -feb - 1993		51	UGL			GO
		RBLK-1	TXPHEN	R	0	UM18	01 -feb - 1993	ND	36	UGL	R		GO
ES	СКТ		124TCB	M	0	UM18	10-feb-1993	LT	1.8	UGL			

			Test	Method	Q (	C		Meas.		Unit		Data	
<u>Lab</u>	Lot	F Samp No	Name	Туре	Spike	Code	Analysis Date	Bool	<u>Value</u>	Meas	Flags	Qualifiers	Prog
			12DCLB	М	0	UM18	10-feb-1993	LT	1.7	UGL			
			12DPH	М	0	UM18	10-feb-1993	ND	2	UGL	R		
			13DCLB	M	0	UM18	10-feb-1993	LT	1.7	UGL			
			14DCLB	М	0	UM18	10-feb-1993	LT	1.7	UGL			
			245TCP	M	0	UM18	10-feb-1993	LT	5.2	UGL			
			246TBP	S	100	UM18	10-feb-1993		67	UGL			
		•	246TCP	M	0	UM18	10-feb-1993	LT	4.2	UGL			
			24DCLP	M	0	UM18	10 <del>- feb - 1</del> 993	LT	2.9	UGL			
			24DMPN 24DNP	M M	0	UM18 UM18	10 – feb – 1993 10 – feb – 1993	LT LT	5.8 21	UGL UGL			
			24DNT	M	Ö	UM18	10-feb - 1993	LT	4.5	UGL			
			26DNT	M	Ö	UM18	10 feb - 1993	ĹŤ	0.79	UGL			
			2CLP	M	Ō	UM18	10-feb-1993	LT	0.99	UGL			
			2CNAP	М	0	UM18	10-feb-1993	LT	0.5	UGL			
			2FBP	s	50	UM18	10-feb-1993		36	UGL			
			2FP	S	100	UM18	10-feb-1993		66	UGL			
			2MNAP	M	0	UM18	10-feb - 1993	LT	1.7	UGL			
			2MP	М	0	UM18	10-feb-1993	LT	3.9	UGL			
			2NANIL	M	0	UM18	10-feb-1993	LT	4.3	UGL			
			2NP	M	0	UM18	10-feb-1993	LT	3.7	UGL			
			33DCBD 3NANIL	M M	0 0	UM18 UM18	10-feb-1993 10-feb-1993	LT LT	12	UGL UGL			
			46DN2C	M	0	UM18	10-feb - 1993	LT	4.9 17	UGL			
			4BRPPE	M	Ö	UM18	10 feb 1993	LT	4.2	UGL			
			4CANIL	М	ō	UM18	10-feb-1993	LT	7.3	UGL			
ES	CKT		4CL3C	М	Ō	UM18	10-feb-1993	LT	4	UGL			
			4CLPPE	М	0	UM18	10-feb-1993	LT	5.1	UGL			
			4MP	М	0	UM18	10-feb-1993	LT	0.52	UGL			
			4NANIL	М	0	UM18	10-feb-1993	LT	5.2	UGL			
			4NP	M	0	UM18	10-feb-1993	LT	12	UGL			
			ABHC	M	0	UM18	10-feb-1993	ND	_ 4	UGL	R		
			ACLDAN	M	0	UM18	10-feb-1993	ND	5.1	UGL	R		
			AENSLF	M	0	UM18	10 – feb – 1993	ND	9.2	UGL	R		
			ALDRN ANAPNE	M M	0	UM18 UM18	10-feb-1993 10-feb-1993	ND LT	4.7 1.7	UGL UGL	R		
			ANAPYL	M	0	UM18	10-feb - 1993	LT	0.5	UGL			
			ANTRO	M	Ö	UM18	10 feb - 1993	LT	0.5	UGL			
			B2CEXM	M	Ō	UM18	10-feb-1993	LT	1.5	UGL			
			B2C!PE	M	0	UM18	10-feb-1993	LT	5.3	UGL			
			<b>B2CLEE</b>	. <b>M</b>	0	UM18	10-feb-1993	LT	1.9	UGL			
			B2EHP	M	0	UM18	10-feb-1993	LT	4.8	UGL			
			BAANTR	М	0	UM18	10-feb-1993	LT	1.6	UGL			
			BAPYR	M	0	UM18	10-feb-1993	LT	4.7	UGL			
			BBFANT	M M	0	UM18	10 - feb - 1993	LT	5.4	UGL	_		
			BBHC BBZP	M	0	UM18 UM18	10-feb-1993 10-feb-1993	ND LT	4 3.4	UGL	R		
			BENSLF	M	ŏ	UM18	10-feb-1993	ND	9.2	UGL	R		
			BENZID	M	ŏ	UM18	10-feb - 1993	ND	10	UGL	R		
			BENZOA	М	0	UM18	10-feb-1993	LT	13	UGL			
			<b>BGHIPY</b>	M	0	UM18	10-feb-1993	LT	6.1	UGL			
			BKFANT	М	0	UM18	10-feb-1993	LT	0.87	UGL			
			BZALC	М	0	UM18	10-feb-1993	LT	0.72	UGL			
			CARBAZ	M	0	UM18	10-feb-1993	ND	0.5	UGL	R		
			CHRY	M	0	UM18	10-feb-1993	LT	2.4	UGL			
			CL6BZ	M	0	UM18	10-feb - 1993	LT	1.6	UGL			
			CL6CP CL6ET	M M	0	UM18 UM18	10-feb-1993 10-feb-1993	LT LT	8.6 1.5	UGL UGL			
			DBAHA	M	0	UM18	10-feb - 1993 10-feb - 1993	LT	1.5 6.5	UGL			
			DBHC	M	Ö	UM18	10 -feb - 1993	ND	4	UGL	R		
			DBZFUR	М	Ö	UM18	10-feb-1993	LT	1.7	UGL	,-		
			DEP	M	0	UM18	10-feb-1993	LT	2	UGL			
			DLDRN	М	0	UM18	10-feb-1993	ND	4.7	UGL	R		
			DMP	M	0	UM18	10-feb-1993	LT	1.5	UGL			
			DNBP	M	0	UM18	10-feb-1993	LT	3.7	UGL			
			DNOP ENDRN	M M	0	UM18	10-feb-1993	LT	15 7.6	UGL	n		
			ENDRN ENDRNA	M M	0	UM18 UM18	10-feb - 1993	ND	7.6	UGL	R		
			ENDRNK	M	0	UM18	10-feb-1993 10-feb-1993	ND ND	8 8	UGL UGL	R R		
					-	· <del>-</del>			•				

				84-66-4	0.0			Meas.		Unit		Data	
Lab	<u>Lot</u>	F Samp No	Test Name	Method Type	Q C Spike	Code	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
			ESFSO4	М	0	UM18	10-feb-1993	ND	9.2	UGL	R		
			FANT	M	0	UM18	10-feb-1993	LT	3.3	UGL			
			FLRENE	M	0	UM18	10-feb-1993	LT	3.7	UGL	R		
			GCLDAN	M	0	UM18	10 – feb – 1993 10 – feb – 1993	ND LT	5.1 3.4	UGL UGL	n		
			HCBD HPCL	M M	0 0	UM18 UM18	10-feb - 1993	ND	2	UGL	R		
			HPCLE	M	0	UM18	10-feb-1993	ND	5	UGL	R		
			ICDPYR	M	0	UM18	10-feb-1993	LT	8.6	UGL			
ES	CKT		ISOPHR	M	0	UM18	10-feb-1993	LT	4.8	UGL	R		
			LIN	M	0	UM18	10feb 1993 10feb 1993	ND ND	4 5.1	UGL UGL	R		
			MEXCLR NAP	M M	0 0	UM18 UM18	10-feb - 1993	LT	0.5	UGL	• • •		
			NB	M	Ō	UM18	10-feb-1993	LT	0.5	UGL			
			NBD5	S	50	UM18	10-feb-1993		41	UGL	_		
			NNDMEA	М	0	UM18	10-feb-1993	ND	2	UGL UGL	R		
			NNDNPA	М	0	UM18	10-feb-1993	LT LT	4.4 3	UGL			
			NNDPA	M M	0	UM18 UM18	10-feb-1993 10-feb-1993	ND	21	UGL	R		
			PCB016 PCB221	M	0	UM18	10-feb-1993	ND	21	UGL	R		
			PCB232	M	0	UM18	10-feb-1993	ND	21	UGL	R		
			PCB242	М	0	UM18	10-feb-1993	ND	30	UGL	R		
			PCB248	M	0	UM18	10 – feb – 1993	ND ND	30 36	UGL UGL	R R		
			PCB254 PCB260	M M	0 0	UM18 UM18	10 – feb – 1993 10 – feb – 1993	ND	36	UGL	R		
			PCP	M	0	UM18	10-feb-1993	LT	18	UGL			
			PHANTR	М	0	UM18	10-feb-1993	LT	0.5	UGL			
			PHEND6	S	100	UM18	10-feb-1993		49 9.2	UGL UGL			
			PHENOL	M	0	UM18 UM18	10-feb-1993 10-feb-1993	LT ND	4	UGL	R		
			PPDDD PPDDE	M M	0	UM18	10 feb 1993	ND	4.7	UGL	R		
			PPDDT	М	0	UM18	10-feb-1993	ND	9.2	UGL	R		
			PYR	M	0	UM18	10-feb-1993	LT	2.8 54	UGL UGL			
			TRPD14	S	50 0	UM18 UM18	10 – feb – 1993 10 – feb – 1993	ND	36	UGL	R		
		MW001	TXPHEN 246TBP	M N	100	UM18	10-feb - 1993		71	UGL			GO
		MW001	2FBP	N	50	UM18	10-feb-1993		45	UGL			GO
		MW001	2FP	N	100	UM18	10-feb-1993		99	UGL UGL			GO GO
		MW001	NBD5	N	50	UM18 UM18	10-feb - 1993 10-feb - 1993		45 120	UGL			GO
		MW001 MW001	PHEND6 TRPD14	N N	100 50	UM18	10-feb-1993		64	UGL			GO
		MW002	246TBP	N	100	UM18	10-feb-1993		71	UGL			GO
		MW002	2FBP	N	50	UM18	10-feb-1993		44	UGL			GO GO
		MW002	2FP	N	100	UM18	10-feb-1993		110 44	UGL UGL			GO
		MW002	NBD5 PHEND6	N N	50 100	UM18 UM18	10-feb-1993 10-feb-1993		110	UGL			GO
		MW002 MW002	TRPD14	N	50	UM18	10-feb-1993		59	UGL			GO
		MW004	246TBP	N	100	UM18	10-feb-1993		63	UGL			GO GO
		MW004	2FBP	N	50	UM18	10-feb-1993 10-feb-1993		44 91	UGL UGL			GO
		MW004 MW004	2FP NBD5	N N	100 50	UM18 UM18	10-feb - 1993		41	UGL			GO
		MW004	PHEND6	N	100	UM18	10-feb-1993		94	UGL			GO
		MW004	TRPD14	N	50	UM18	10-feb-1993		56	UGL			GO GO
		MW010	246TBP	N	100	UM18	10-feb-1993 10-feb-1993		75 43	UGL UGL			GO
		MW010 MW010	2FBP 2FP	N N	50 100	UM18 UM18	10-feb-1993		100	UGL			GO
		MW010	NBD5	N	50	UM18	10-feb-1993		44	UGL			GO
		MW010	PHEND6	N	100	UM18	10-feb-1993		110	UGL UGL			GO GO
		MW010	TRPD14	N N	50 100	UM18 UM18	10-feb-1993 10-feb-1993		60 61	UGL			GO
ES	скт	MW014 MW014	24 <b>6</b> TBP 2FBP	N N	50	UM18	10-feb - 1993		45	UGL			GO
23	OA	MW014	2FP	N	100	UM18	10-feb-1993		99	UGL.			GO GO
		MW014	NBD5	N	50	UM18	10-feb - 1993		45 100	UGL UGL			GO
		MW014	PHEND6	N N	100 50	UM18 UM18	10-feb-1993 10-feb-1993		60	UGL			GO
		MW014 MW016	TRPD14 246TBP	N N	100	UM18	10-feb - 1993		19	UGL			GO
		MW016	2FBP	N	50	UM18	10-feb-1993		45	UGL			GO
		MW016	2FP	N	100	UM18	10-feb-1993	LT	17 45	UGL UGL			GO GO
		MW016	NBD5	N	50	UM18	10-feb - 1993		45	JUL			

			Test	Method	Q C	; [.]		Meas.		Unit		Data	
Lab	Lot	F Samp No	<u>Name</u>	Type	<u>Spike</u>	Code	Analysis Date	Bool	Value	Meas	Flags C		Prog
		MW016	PHEND6	N	100	UM18	10-feb-1993	LT	36	UGL			GO
		MW016	TRPD14	N	50	UM18	10-feb-1993		59	UGL			GO
		MW018	246TBP	N	100	UM18	10-feb-1993		57	UGL			GO
		MW018 MW018	2FBP 2FP	N N	50 100	UM18 UM18	10-feb-1993 10-feb-1993		35 120	UGL UGL			GO GO
		MW018	NBD5	N	50	UM18	10 -feb - 1993		20	UGL.			GO
		MW018	PHEND6	N	100	UM18	10-feb-1993		100	UGL			GO
F0	0140	MW018	TRPD14	N	50	UM18	10-feb - 1993		74	UGL			GO
ES	CMC		111TCE 112TCE	M M	0 0	UM20 UM20	02-dec-1992	17	1.8	UGL			
			11DCE	M	Ô	UM20	02-dec-1992 02-dec-1992	LT LT	1.2 0.5	UGL UGL			
			11DCLE	M	0	UM20	02-dec-1992	LT	0.68	UGL			
			12DCD4	S	50	UM20	02-dec-1992		48	UGL			
			12DCE	M	0	UM20	02-dec-1992	LT	0.5	UGL			
			12DCLE 12DCLP	M M	0	UM20 UM20	02-dec-1992 02-dec-1992	LT LT	0.5 0.5	UGL UGL			
			2CLEVE	M	Ö	UM20	02 - dec - 1992	LT	0.71	UGL			
			4BFB	S	50	UM20	02-dec-1992		51	UGL			
			ACET	M	0	UM20	02 - dec - 1992	LT	13	UGL	_		
			ACROLN ACRYLO	M M	0 0	UM20 UM20	02-dec-1992 02-dec-1992	ND ND	100 100	UGL UGL	R R		
			BRDCLM	M	Ö	UM20	02-dec-1992	LT	0.59	UGL	n		
			C13DCP	M	0	UM20	02-dec-1992	LT	0.58	UGL			
			C2AVE	M	0	UM20	02-dec-1992	LT	8.3	UGL			
			C2H3CL C2H5CL	M M	0	UM20 UM20	02-dec-1992 02-dec-1992	LT LT	2.6 1.9	UGL UGL			
			C6H6	M	Ö	UM20	02-dec-1992 02-dec-1992	LT	0.5	UGL			
			CCL3F	M	0	UM20	02-dec-1992	LT	1.4	UGL			
			CCL4	M	0	UM20	02-dec-1992	LT	0.58	UGL			
			CH2CL2 CH3BR	M M	0 0	UM20 UM20	02-dec-1992 02-dec-1992	LT LT	2.3 5.8	UGL UGL			
			CH3CL	M	Ô	UM20	02-dec-1992	LT	3.2	UGL			
			CHBR3	M	0	UM20	02-dec-1992	LT	2.6	UGL			
			CHCL3	М	0	UM20	02-dec-1992		0.83	UGL	_		
			CL2BZ CLC6H5	M M	0	UM20 UM20	02-dec-1992 02-dec-1992	ND LT	10 0.5	UGL UGL	R		
			CS2	M	Ö	UM20	02-dec-1992 02-dec-1992	LT	0.5	UGL			
			DBRCLM	M	0	UM20	02-dec-1992	LT	0.67	UGL			
			ETC6H5	М	0	UM20	02-dec-1992	LT	0.5	UGL			
			MEC6D8 MEC6H5	S M	50 0	UM20 UM20	02-dec-1992	ΙT	49	UGL			
ES	СМС		MEK	M	0	UM20	02-dec-1992 02-dec-1992	LT LT	0.5 6.4	UGL UGL			
			MIBK	М	0	UM20	02-dec-1992	LT	3	UGL			
			MNBK	М	0	UM20	02-dec-1992	LT	3.6	UGL			
			STYR T13DCP	M M	0	UM20 UM20	02-dec-1992 02-dec-1992	LT LT	0.5 0.7	UGL UGL			
			TCLEA	M	Ö	UM20	02-dec-1992	LT	0.7	UGL			
			TCLEE	М	0	UM20	02-dec-1992	LT	1.6	UGL			
			TRCLE	М	0	UM20	02-dec-1992	LT	0.5	UGL			
		DAWA*3	XYLEN 12DCD4	M N	0 50	UM20 UM20	02-dec-1992 02-dec-1992	LT	0.84 56	UGL			GO
		DAWA*3	4BFB	N	50	UM20	02-dec-1992		45	UGL			GO
		DAWA*3	MEC6D8	N	50	UM20	02-dec-1992		47	UGL			GO
		DAWA*4	111TCE	T <del>T</del>	0	UM20	02-dec-1992	LT	0.5	UGL			GO
		DAWA*4 DAWA*4	112TCE 11DCE	T T	0	UM20 UM20	02-dec-1992 02-dec-1992	LT LT	1.2 0.5	UGL UGL			GO GO
		DAWA*4	11DCLE	Ť	0	UM20	02-dec-1992	LT	0.68	UGL			GO
		DAWA*4	12DCD4	N	50	UM20	02-dec-1992		56	UGL			GO
		DAWA*4	12DCE	T	0	UM20	02-dec-1992	LT	0.5	UGL			GO
		DAWA*4 DAWA*4	12DCLE 12DCLP	T T	0	UM20 UM20	02-dec-1992 02-dec-1992	LT LT	0.5 0.5	UGL UGL			GO GO
		DAWA*4	2CLEVE	Ť	ŏ	UM20	02-dec-1992 02-dec-1992	LT	0.5	UGL			GO
		DAWA*4	4BFB	N	50	UM20	02-dec-1992		47	UGL			GO
		DAWA*4	ACET	T	0	UM20	02-dec-1992	LT	13	UGL	n		GO
		DAWA*4 DAWA*4	ACROLN ACRYLO	T T	0	UM20 UM20	02-dec-1992 02-dec-1992	ND ND	100 100	UGL UGL	R R		GO GO
		DAWA*4	BRDCLM	Т	ō	UM20	02 - dec - 1992	LT	0.59	UGL	••		GO
		DAWA*4	C13DCP	Т	0	UM20	02-dec-1992	LT	0.58	UGL			GO

								Meas.		Unit		Data	
Lab	Lot	F Samp No	Test Name	Method <u>Type</u>	Q C Spike	Code	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
		DAWA*4	C2AVE	т	0	UM20	02-dec-1992	LT	8.3	UGL			GO
		DAWA*4	C2H3CL	T	0	UM20	02-dec-1992	LT	2.6	UGL			GO GO
		DAWA*4	C2H5CL	T	0	UM20	02-dec-1992	LT	1.9	UGL			GO
		DAWA*4	C6H6	Т	0	UM20	02-dec-1992	LT	0.5 1.4	UGL UGL			GO
		DAWA*4	CCL3F	Ţ	0	UM20	02-dec-1992	LT LT	0.58	UGL			GO
		DAWA*4	CCL4	T	0	UM20 UM20	02-dec-1992 02-dec-1992	LT	2.3	UGL			GO
		DAWA*4	CH2CL2	T T	0 0	UM20	02-dec-1992 02-dec-1992	LT	5.8	UGL			GO
		DAWA*4	CH3BR CH3CL	÷	0	UM20	02 -dec - 1992	LT	3.2	UGL			GO
		DAWA*4 DAWA*4	CHBR3	Ť	ŏ	UM20	02-dec-1992	LT	2.6	UGL			GO
		DAWA*4	CHCL3	Ť	ō	UM20	02-dec-1992	LT	0.5	UGL			GO
		DAWA*4	CL2BZ	Т	0	UM20	02-dec-1992	ND	10	UGL	R		GO
		DAWA*4	CLC6H5	T	0	UM20	02-dec-1992	LT	0.5	UGL			GO GO
		DAWA*4	CS2	T	0	UM20	02-dec-1992	LT	0.5	UGL			GO
		DAWA*4	DBRCLM	Т	0	UM20	02-dec-1992	LT	0.67	UGL			GO
		DAWA*4	ETC6H5	T	0	UM20	02-dec-1992	LT	0.5 47	UGL			GO
		DAWA*4	MEC6D8	N	50	UM20	02-dec-1992 02-dec-1992	LT	0.5	UGL			GO
		DAWA*4	MEC6H5	T <del>T</del>	0	UM20 UM20	02-dec-1992	LT	6.4	UGL			GO
		DAWA*4	MEK	T T	0 0	UM20	02-dec-1992	LT	3	UGL			GO
		DAWA*4 DAWA*4	MIBK MNBK	Ť	o	UM20	02-dec-1992	LT	3.6	UGL			GO
		DAWA*4	STYR	Ť	ō	UM20	02-dec-1992	LT	0.5	UGL			GO
		DAWA*4	T13DCP	Ť	Ō	UM20	02-dec-1992	LT	0.7	UGL			GO
		DAWA*4	TCLEA	T	0	UM20	02-dec-1992	LT	0.51	UGL			GO GO
ES	CMC	DAWA*4	TCLEE	T	0	UM20	02-dec-1992	LT	1.6	UGL			GO
		DAWA*4	TRCLE	Т	0	UM20	02-dec-1992	LT LT	0.5 0.84	UGL UGL			GO
		DAWA*4	XYLEN	T	0	UM20	02-dec-1992 15-dec-1992	LT	0.5	UGL			_
ES	CMF		111TCE	М	0 0	UM20 UM20	15-dec-1992	LT	1.2	UGL			
			112TCE 11DCE	M M	0	UM20	15-dec-1992	LT	0.5	UGL			
			11DCLE	M	ō	UM20	15-dec-1992	LT	0.68	UGL			
			12DCD4	S	50	UM20	15-dec-1992		48	UGL			
			12DCE	M	0	UM20	15-dec-1992	LT	0.5	UGL			
			12DCLE	М	0	UM20	15-dec-1992	LT	0.5	UGL			
			12DCLP	М	0	UM20	15-dec-1992	LT LT	0.5 0.71	UGL UGL			
			2CLEVE	М	0	UM20	15-dec-1992	LI	49	UGL			
			4BFB	S	50 0	UM20 UM20	15-dec-1992 15-dec-1992	LT	13	UGL			
			ACET	M M	0	UM20	15-dec-1992	ND	100	UGL	R		
			ACROLN ACRYLO	M	0	UM20	15-dec-1992	ND	100	UGL	R		
			BRDCLM	M	Ö	UM20	15-dec-1992	LT	0.59	UGL			
			C13DCP	M	0	UM20	15-dec-1992	LT	0.58	UGL			
			C2AVE	М	0	UM20	15-dec-1992	LT	8.3	UGL			
			C2H3CL	М	0	UM20	15-dec-1992	LT	2.6	UGL			
			C2H5CL	M	0	UM20	15-dec-1992	LT LT	1.9 0.5	UGL UGL			
			C6H6	М	0	UM20	15-dec-1992 15-dec-1992	LT	1.4	UGL			
			CCL3F	M M	0	UM20 UM20	15-dec-1992	LT	0.58	UGL			
			CCL4 CH2CL2	M	ŏ	UM20	15-dec-1992	LT	2.3	UGL			
			CH3BR	M	ō	UM20	15-dec-1992	LT	5.8	UGL			
			CH3CL	M	0	UM20	15-dec-1992	LT	3.2	UGL			
			CHBR3	M	0	UM20	15-dec-1992	LT	2.6	UGL			
			CHCL3	М	0	UM20	15-dec-1992	LT ND	0.5 10	UGL UGL	R		
			CL2BZ	M	0	UM20	15-dec-1992 15-dec-1992	LT	0.5	UGL	••		
			CLC6H5	M	0	UM20 UM20	15-dec-1992	LT	0.5	UGL			
			CS2 DBRCLM	M M	0	UM20	15-dec-1992	LT	0.67	UGL			
			ETC6H5	M	Ö	UM20	15-dec-1992	LT	0.5	UGL			
			MEC6D8	s	50	UM20	15-dec-1992		49	UGL			
			MEC6H5	M	0	UM20	15-dec-1992	LT	0.5	UGL			
			MEK	М	0	UM20	15-dec-1992	LT	6.4 3	UGL UGL			
			MIBK	М	0	UM20	15-dec-1992 15-dec-1992	LT LT	3.6	UGL			
			MNBK	M	0	UM20 UM20	15-dec-1992 15-dec-1992	LT	0.5	UGL			
			STYR T13DCP	M M	0	UM20	15-dec-1992	LT	0.7	UGL			
			TCLEA	M	ŏ	UM20	15-dec-1992	LT	0.51	UGL			
			TCLEE	М	ō	UM20	15-dec-1992	LT	1.6	UGL			
			TRCLE	M	0	UM20	15-dec-1992	LT	0.5	UGL			

			Test	Method	Q C	:		Meas.		Unit		Data	
Lab	<u>Lot</u>	F Samp No	<u>Name</u>	<u>Type</u>	<u>Spike</u>	Code	Analysis Date	<u>Bool</u>	<u>Vaiue</u>	Meas	Flags	Qualifiers	Prog
			XYLEN	М	0	UM20	15-dec-1992	LT	0.84	UGL			
		DAWA*5	111TCE	Т	0	UM20	15-dec-1992	LT	0.5	UGL.			GO
		DAWA*5	112TCE	T	0	UM20	15-dec-1992	LT	1.2	UGL			GO
		DAWA*5	11DCE	Ţ	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5	11DCLE	T	0	UM20	15-dec-1992	LT	0.68	UGL			GO
ES	CMF	DAWA*5	12DCD4	N T	50	UM20	15-dec-1992		56	UGL			GO
ES	CIVIE	DAWA*5 DAWA*5	12DCE 12DCLE	T T	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5	12DCLP	Ť	0	UM20 UM20	15-dec-1992 15-dec-1992	LT LT	0.5 0.5	UGL UGL			GO GO
		DAWA*5	2CLEVE	Ť	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5	4BFB	Ň	50	UM20	15-dec-1992		44	UGL			GO
		DAWA*5	ACET	Ť	0	UM20	15-dec-1992	LT	13	UGL			GO
		DAWA*5	ACROLN	Т	0	UM20	15-dec-1992	ND	100	UGL	R		GO
		DAWA*5	ACRYLO	T	0	UM20	15-dec-1992	ND	100	UGL	R		GO
		DAWA*5	BRDCLM	Т	0	UM20	15-dec-1992	LT	0.59	UGL			GO
		DAWA*5	C13DCP	T	0	UM20	15-dec-1992	LT	0.58	UGL			GO
		DAWA*5	C2AVE	T -	0	UM20	15-dec-1992	LT	8.3	UGL			GO
		DAWA*5	C2H3CL	T	0	UM20	15-dec-1992	LT	2.6	UGL			GO
		DAWA*5 DAWA*5	C2H5CL C6H6	T T	0 0	UM20 UM20	15-dec-1992	LT	1.9	UGL			GO
		DAWA*5	CCL3F	T	0	UM20	15-dec-1992 15-dec-1992	LT LT	0.5 1.4	UGL UGL			GO GO
		DAWA*5	CCL4	Ť	Ö	UM20	15-dec-1992	LT	0.58	UGL			GO
		DAWA*5	CH2CL2	Ť	ŏ	UM20	15-dec-1992	LT	2.3	UGL			GO
		DAWA*5	CH3BR	T	ō	UM20	15-dec-1992	LT	5.8	UGL			GO
		DAWA*5	CH3CL	Т	0	UM20	15-dec-1992	LT	3.2	UGL			GO
		DAWA*5	CHBR3	Т	0	UM20	15-dec-1992	LT	2.6	UGL			GO
		DAWA*5	CHCL3	T	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5	CL2BZ	Ţ	0	UM20	15-dec-1992	ND	10	UGL	R		GO
		DAWA*5	CLC6H5	T	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5 DAWA*5	CS2 DBRCLM	T T	0 0	UM20 UM20	15-dec-1992	LT LT	0.5	UGL UGL			GO GO
		DAWA*5	ETC6H5	Ť	Ö	UM20	15-dec-1992 15-dec-1992	LT	0.67 0.5	UGL			GO
		DAWA*5	MEC6D8	Ň	50	UM20	15-dec-1992		45	UGL			GO
		DAWA*5	MEC6H5	Ť	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5	MEK	T	0	UM20	15-dec-1992	LT	6.4	UGL			GO
		DAWA*5	MIBK	T	0	UM20	15-dec-1992	LT	3	UGL			GO
		DAWA*5	MNBK	Т	0	UM20	15-dec-1992	LT	3.6	UGL			GO
		DAWA*5	STYR	T	0	UM20	15-dec-1992	LT	0.5	UGL			GO
		DAWA*5	T13DCP	T ~	0	UM20	15-dec-1992	LT	0.7	UGL			GO
		DAWA*5 DAWA*5	TCLEA TCLEE	T T	0	UM20	15-dec-1992	LT	0.51	UGL			GO GO
		DAWA*5	TRCLE	÷	0	UM20 UM20	15-dec-1992 15-dec-1992	LT LT	1.6 0.5	UGL UGL			GO
		DAWA*5	XYLEN	Ť	0	UM20	15-dec-1992	LT	0.84	UGL			GO
ES	сом		SE	M	ō	SD21	24-feb-1993	LT	3.02	UGL			
			SE	s	5	SD21	24-feb-1993		5.1	UGL			
			SE	S	75	SD21	24-feb-1993		81.4	UGL			
			SE	S	75	SD21	24-feb-1993		81.6	UGL			
	01/1	RBLK-1	SE	R	0	SD21	24 - feb - 1993	LT	3.02	UGL			GO
ES	CXI		ABHC	M	0	UH13	09 – feb – 1993	LT	0.039	UGL	_		
			ACLDAN AENSLF	M M	0	UH13 UH13	09-feb-1993 09-feb-1993	ND LT	0.075 0.023	UGL UGL	R		
			AENSLF	S	0.5	UH13	09-feb-1993	LI	0.023	UGL			
			ALDRN	M	0	UH13	09 - feb - 1993	LT	0.092	UGL			
			ALDRN	S	0.5	UH13	09-feb-1993		0.193	UGL			
			ввнс	М	0	UH13	09-feb-1993	LT	0.024	UGL			
ES	CXI		BENSLF	М	0	UH13	09-feb-1993	LT	0.023	UGL			
			BENSLF	S	0.5	UH13	09-feb-1993		0.422	UGL			
			CL10BP	S	1.25	UH13	09-feb-1993		0.83	UGL	T		
			CL10BP	S	1.25	UH13	09-feb-1993		1	UGL	T T		
			CL4XYL CL4XYL	s s	1.25 1.25	UH13 UH13	09-feb-1993 09-feb-1993		0.447 0.535	UGL UGL	T T		
			DBHC	M	0	UH13	09-feb - 1993	LT	0.029	UGL	•		
			DLDRN	 М	ŏ	UH13	09-feb-1993	LT	0.024	UGL			
			DLDRN	S	0.5	UH13	09 - feb - 1993		0.423	UGL			
			ENDRN	M	0	UH13	09-feb-1993	LT	0.024	UGL			
			ENDRN	S	0.5	UH13	09-feb-1993		0.46	UGL			
			ENDRNA	M	0	UH13	09-feb-1993	LT	0.029	UGL	_		
			ENDRNK	М	0	UH13	09-feb-1993	ND	0.029	UGL	R		

			Test	Method	Q C			Meas.		Unit		Data	_
<u>Lab</u>	Lot	F Samp No	Name	Type	Spike	Code	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
			ESFSO4	М	0	UH13	09-feb-1993	LT	0.079	UGL			
			GCLDAN	M	0	UH13	09-feb-1993	ND	0.075	UGL UGL	R		
			HPCL	M	0	UH13 UH13	09 – feb – 1993 09 – feb – 1993	LT	0.042 0.269	UGL			
			HPCL HPCLE	S M	0.5 0	UH13	09-feb-1993	LT	0.025	UGL			
			ISODR	 М	ō	UH13	09-feb-1993	LT	0.056	UGL			
			ISODR	S	1	UH13	09-feb-1993		0.466	UGL			
			LIN	M	0	UH13	09 - feb - 1993	LT	0.051 0.354	UGL UGL			
			LIN	S	0.5 0	UH13 UH13	09 – feb – 1993 09 – feb – 1993	LT	0.057	UGL			
			MEXCLR MEXCLR	M S	1	UH13	09 - feb - 1993		0.969	UGL			
			PPDDD	M	o O	UH13	09-feb-1993	LT	0.023	UGL			
			PPDDE	M	0	UH13	09-feb-1993	LT	0.027	UGL			
			PPDDT	M	0	UH13	09 – feb – 1993	LT	0.034 0.443	UGL UGL			
			PPDDT	S	0.5 0	UH13 UH13	09 – feb – 1993 09 – feb – 1993	LT	1.35	UGL			
		1414/004	TXPHEN CL10BP	M N	1.25	UH13	09 -feb - 1993		1	UGL	Т		GO
		MW001 MW001	CL4XYL	N	1.25	UH13	09-feb-1993		0.744	UGL	Т		GO
		MW002	CL10BP	N	1.25	UH13	09-feb-1993		1.1	UGL	T		GO GO
		MW002	CL4XYL	N	1.25	UH13	09 – feb – 1993		0.716	UGL UGL	T T		GO
		MW004	CL10BP	N	1.25	UH13	09-feb-1993 09-feb-1993		0.82 0.736	UGL	÷		GO
		MW004	CL4XYL CL10BP	N N	1.25 1.25	UH13 UH13	09 – feb – 1993		1.3	UGL	Т		GO
		MW010 MW010	CL4XYL	N	1.25	UH13	09-feb-1993		0.818	UGL	Т		GO
		MW014	CL10BP	N	1.25	UH13	09-feb-1993		0.6	UGL	T		GO GO
		MW014	CL4XYL	N	1.25	UH13	09 - feb - 1993		0.617 1.5	UGL UGL	T T		GO
		MW016	CL10BP	N N	1.25 1.25	UH13 UH13	09-feb-1993 09-feb-1993		0.729	UGL	Ť		GO
		MW016 MW018	CL4XYL CL10BP	N	1.25	UH13	09 - feb - 1993		1	UGL	Т		GO
		MW018	CL4XYL	N	1.25	UH13	09-feb-1993		0.713	UGL	Т		GO
		RBLK-1	ABHC	R	0	UH13	09 – feb – 1993	LT	0.039	UGL	R		GO GO
		RBLK-1	ACLDAN	R	0	UH13	09-feb-1993 09-feb-1993	ND LT	0.075 0.023	UGL UGL	п		GO
		RBLK-1	AENSLF	R R	0	UH13 UH13	09 - feb - 1993	LT	0.092	UGL			GO
		RBLK-1 RBLK-1	ALDRN BBHC	R	ŏ	UH13	09-feb-1993	LT	0.024	UGL			GO
		RBLK-1	BENSLF	R	0	UH13	09-feb-1993	LT	0.023	UGL	_		GO GO
		RBLK-1	CL10BP	N	1.25	UH13	09 – feb – 1993		0.98	UGL UGL	T T		GO
		RBLK-1	CL4XYL	N	1.25	UH13	09 – feb – 1993 09 – feb – 1993	LT	0.789 0.029	UGL	ı		GO
ES	CXI	RBLK-1	DBHC	R R	0	UH13 UH13	09-feb-1993	LT	0.024	UGL			GO
		RBLK-1 RBLK-1	DLDRN ENDRN	R	ő	UH13	09-feb-1993	LT	0.024	UGL			GO
		RBLK-1	ENDRNA	R	0	UH13	09-feb-1993	LT	0.029	UGL	_		GO GO
		RBLK-1	ENDRNK	R	0	UH13	09 – feb – 1993	ND	0.029	UGL UGL	R		GO
		RBLK-1	ESFSO4	R	0	UH13 UH13	09-feb-1993 09-feb-1993	LT ND	0.079 0.075	UGL	R		GO
		RBLK-1 RBLK-1	GCLDAN HPCL	R R	0	UH13	09-feb-1993	LT	0.042	UGL			GO
		RBLK-1	HPCLE	R	ő	UH13	09-feb-1993	LT	0.025	UGL			GO
		RBLK-1	ISODR	R	0	UH13	09-feb-1993	LT	0.056	UGL			GO GO
		RBLK-1	LIN	R	0	UH13	09 – feb – 1993 09 – feb – 1993	LT LT	0.051 0.057	UGL UGL			GO
		RBLK-1	MEXCLR PPDDD	R R	0	UH13 UH13	09-feb-1993	LT	0.023	UGL			GO
		RBLK-1 RBLK-1	PPDDE	R	ō	UH13	09-feb-1993	LT	0.027	UGL			GO
		RBLK-1	PPDDT	R	0	UH13	09-feb-1993	LT	0.034	UGL			GO GO
		RBLK-1	TXPHEN	R	0	UH13 SS10	09 – feb – 1993 17 – feb – 1993	LT LT	1.35 4.6	UGL UGL			
ES	DBG		AG AL	M M	0	SS10	17 – feb – 1993	ĽT	141	UGL			
			BA	M	ō	SS10	17-feb-1993	LT	5	UGL			
			ВА	S	10	SS10	17-feb-1993		11	UGL			
			BA	S	3750	SS10	17-feb-1993 17-feb-1993		3720 7390	UGL UGL			
			BA BA	S S	7500 7500	SS10 SS10	17-feb-1993		7440	UGL			
			BE	M	0	SS10	17 - feb - 1993	LT	5	UGL			
			CA	M	0	SS10	17-feb-1993	LT	500	UGL			
			CA	s	1000	SS10	17-feb-1993		1120 7870	UGL UGL			
			CA	S S	7500 15000	SS10 SS10	17 – feb – 1993 17 – feb – 1993		15700	UGL			
			CA CA	S	15000	SS10	17-feb - 1993		15800	UGL			
			CD	М	0	SS10	17-feb-1993	LT	4.01	UGL			

Lab	Lot	F Samp No	Test Name	Method Type	Q C Spike	 Code	Analysis Date	Meas. Bool	Value	Unit Meas	Floge	Data Qualifiers	Prog
								<u>555.</u>	<u>vaioo</u>	moas	i iaga	Quanners	1109
			CD	S	15	SS10	17-feb-1993		16.2	UGL			
			CD CD	s s	2000 4000	SS10 SS10	17 - feb - 1993		1970	UGL			
			CD	S	4000	SS10	17-feb-1993 17-feb-1993		3910 3930	UGL UGL			
			co	М	0	SS10	17 - feb 1993	LT	25	UGL			
			CO	S	50	SS10	17-feb-1993		50.5	UGL			
			CO	S	20000	SS10	17-feb-1993		19400	UGL			
			co	S	40000	SS10	17- <b>fe</b> b-1993		38600	UGL			
			CO	S	40000	SS10	17-feb-1993		38600	UGL			
			CR	M	0	SS10	17-feb-1993	LT	6.02	UGL			
			CR CR	s s	10 2000	SS10 SS10	17-feb-1993 17-feb-1993		9.67 1950	UGL UGL			
			CR	Š	4000	SS10	17 -feb - 1993		3870	UGL			
			CR	s	4000	SS10	17-feb-1993		3890	UGL			
			CU	М	0	SS10	17-feb-1993	LT	8.09	UGL			
			CU	S	20	SS10	17-feb-1993		22.6	UGL			
			CΩ	S	4000	SS10	17-feb-1993		3900	UGL			
			cu cu	S S	8000	SS10	17 - feb - 1993		7770	UGL,			
			FE	M	8000 0	SS10 SS10	17-feb-1993 17-feb-1993		7820 67.3	UGL UGL			
ES	DBG		ĸ	M	Ö	SS10	17-feb - 1993	LT	375	UGL			
			MG	M	ō	SS10	17 – feb – 1993	ĹŤ	500	UGL			
			MG	S	1000	SS10	17-feb-1993		966	UGL			
			MG	S	7500	SS10	17-feb-1993		7570	UGL			
			MG	S	15000	SS10	17-feb-1993		15100	UGL			
			MG	S	15000	SS10	17 – feb – 1993		15100	UGL			
			MN MN	M S	0 10	SS10 SS10	17-feb - 1993	LT	2.75	UGL			
			MN	S	750	SS10	17-feb-1993 17-feb-1993		11.3 737	UGL UGL			
			MN	Š	1500	SS10	17 -feb -1993		1470	UGL			
			MN	S	1500	SS10	17-feb-1993		1470	UGL			
			NA	М	0	SS10	17-feb-1993	LT	500	UGL			
			NA	S	1000	SS10	17-feb - 1993		1070	UGL			
			NA NA	S	20000	SS10	17-feb - 1993		20000	UGL			
			NA NA	s s	40000 40000	SS10 SS10	17-feb - 1993 17-feb - 1993		39700 39800	UGL			
			NI	M	0	SS10	17 – feb – 1993 17 – feb – 1993	LT	34.3	UGL			
			NI	s	50	SS10	17-feb-1993		50.3	UGL			
			NI	s	6000	SS10	17-feb-1993		5850	UGL			
			NI	S	12000	SS10	17-feb-1993		11600	UGL			
			NI	S	12000	SS10	17-feb-1993		11600	UGL			
			PB SB	M M	0 0	SS10 SS10	17-feb-1993 17-feb-1993	LT	18.6	UGL	W		
			SE	M	Ō	SS10	17 – feb – 1993 17 – feb – 1993	LT LT	38 71.1	UGL UGL	w		
			V	M	0	SS10	17-feb-1993	LT	11	UGL			
			ZN	М	0	SS10	17-feb-1993	LT	21.1	UGL			
			ZN	S	40	SS10	17-feb-1993		41.2	UGL			
			ZN	S	7500	SS10	17-feb-1993		7220	UGL			
			ZN ZN	s s	15000 15000	SS10 SS10	17-feb-1993 17-feb-1993		14300 14400	UGL			
		RBLK-1	AG	R	0	SS10	17 - feb - 1993 17 - feb - 1993	LT	4.6	UGL UGL			GO
		RBLK-1	AL	R	ō	SS10	17-feb-1993	LT	141	UGL			GO
		RBLK-1	ВА	R	0	SS10	17-feb-1993	LT	5	UGL			GO
		RBLK-1	BE	R	0	SS10	17-feb-1993	LT	5	UGL			GO
		RBLK-1	CA	R	0	SS10	17-feb-1993	LT	500	UGL			GO
		RBLK-1	CD	R	0	SS10	17-feb - 1993	LT	4.01	UGL			GO
		RBLK-1 RBLK-1	CO CR	R R	0 0	SS10 SS10	17-feb-1993 17-feb-1993	LT LT	25 6.02	UGL UGL			GO GO
		RBLK-1	CU	R	0	SS10	17 – feb – 1993 17 – feb – 1993	L1 LT	8.02 8.09	UGL			GO
		RBLK-1	FE	R	Ö	SS10	17 -feb - 1993	LT	38.8	UGL			GO
		RBLK-1	К	R	0	SS10	17-feb-1993	LT	375	UGL			GO
		RBLK-1	MG	R	0	SS10	17-feb-1993	LT	500	UGL			GO
		RBLK-1	MN	R	0	SS10	17-feb-1993	LT	2.75	UGL			GO
		RBLK-1 RBLK-1	NA NI	R	0	SS10	17-feb - 1993	17	7570	UGL			GO
		RBLK-1	SB	R R	0 0	SS10 SS10	17-feb-1993 17-feb-1993	LT LT	34.3 38	UGL UGL			GO GO
		RBLK-1	V	R	0	SS10	17-feb-1993	LT	11	UGL			GO
		RBLK-1	ZN	R	Ö	SS10	17-feb-1993	LT	21.1	UGL			GO

			Tool	Method	Q C			Meas.		Unit		Data	
<u>Lab</u>	Lot	F Samp No	Test Name	Туре	Spike	Code	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
ES	DBUA		AG	М	0	SS10	13-may-1993	LT	4.6	UGL			
	<b>55</b> 07.		AL	М	0	SS10	13-may-1993	LT	141	UGL			
ES	DBUA		ВА	М	0	SS10	13-may-1993	LT	5	UGL			
			BA	s	10	SS10	13-may-1993		9.48	UGL			
			BA	S	3750	SS10	13-may-1993		3600	UGL			
			BA	S	7500	SS10	13-may-1993		7310	UGL			
			BA	S	7500	SS10	13-may-1993		7310	UGL			
			BE	М	0	SS10	13-may-1993	LT	5 500	UGL UGL			
			CA	M	0	SS10	13-may-1993	LT	999	UGL			
			CA	S	1000	SS10 SS10	13-may-1993 13-may-1993		7350	UGL			
			CA CA	S S	7500 15000	SS10	13-may-1993		14700	UGL			
			CA	S	15000	SS10	13-may-1993		14800	UGL			
			CD	М	0	SS10	13-may-1993	LT	4.01	UGL			
			CD	s	15	SS10	13-may-1993		15.1	UGL			
			CD	S	2000	SS10	13-may-1993		2010	UGL			
			CD	S	4000	SS10	13-may-1993		3980	UGL			
			CD	s	4000	SS10	13-may-1993		4010	UGL			
			co	М	0	SS10	13-may-1993	LT	25	UGL			
			co	S	50	SS10	13-may-1993		48.2	UGL			
			CO	s	20000	\$S10	13-may-1993		19300	UGL			
			co	S	40000	SS10	13-may-1993		38500	UGL			
			co	S	40000	SS10	13-may-1993		38700	UGL			
			CR	M	0	SS10	13-may-1993	LT	6.02	UGL			
			CR	S	10	SS10	13-may-1993		9.47 1940	UGL UGL			
			CR	S	2000	SS10	13-may-1993		3890	UGL			
			CR	S	4000	SS10	13-may-1993 13-may-1993		3890	UGL			
			CR	S	4000 0	SS10 SS10	13-may-1993	LT	8.09	UGL			
			cu cu	M S	20	SS10	13-may-1993		20	UGL			
			CU	s	4000	SS10	13-may-1993		3890	UGL			
			CU	Š	8000	SS10	13-may-1993		7850	UGL			
			CU	s	8000	SS10	13-may-1993		7860	UGL			
			FE	М	0	SS10	13-may-1993	LT	38.8	UGL			
			K	М	0	SS10	13-may-1993	LT	375	UGL			
			MG	М	0	SS10	13-may-1993	LT	500	UGL			
			MG	s	1000	SS10	13-may-1993		964 7330	UGL UGL			
			MG	S	7500	SS10	13-may-1993		14700	UGL			
			MG	S	15000	SS10 SS10	13-may-1993 13-may-1993		14700	UGL			
			MG	S M	15000 0	SS10	13-may-1993	LT	2.75	UGL			
			MN MN	S	10	SS10	13-may-1993		11	UGL			
			MN	s	750	SS10	13-may-1993		724	UGL			
			MN	Š	1500	SS10	13-may-1993		1450	UGL			
			MN	s	1500	SS10	13-may-1993		1460	UGL			
			NA	М	0	SS10	13-may-1993	LT	500	UGL			
			NA	s	1000	SS10	13-may-1993		1110	UGL			
			NA	S	20000	SS10	13-may-1993		19700	UGL			
			NA	S	40000	SS10	13-may-1993		39700	UGL UGL			
			NA	S	40000	SS10	13-may-1993	. +	40000	UGL			
			NI	М	0	SS10	13-may-1993	LT	34.3 49.7	UGL			
			NI	S	50 6000	SS10 SS10	13-may-1993 13-may-1993		5770	UGL			
			NI	S	6000 12000	SS10	13-may-1993		11600	UGL			
ES	DBUA		NI NI	s s	12000	SS10	13-may-1993		11600	UGL			
			SB	М	0	SS10	13-may-1993	LT	38	UGL			
			V	M	Ö	SS10	13-may-1993	LT	11	UGL			
			ZN	M	0	SS10	13-may-1993	LT	21.1	UGL			
			ZN	s	40	SS10	13-may-1993		37.7	UGL			
			ZN	s	7500	SS10	13-may-1993		7320	UGL			
			ZN	S	15000	SS10	13-may-1993		14500	UGL UGL			
			ZN	S	15000	SS10	13-may-1993		14600 46.5	UGL			GO
		MW-018	AG	N N	50 50	SS10 SS10	13-may-1993 13-may-1993		49.4	UGL			GO
		MW-018	AG AL	N N	2000	SS10	13-may-1993		1890	UGL			GO
		MW-018 MW-018	AL	N	2000	SS10	13-may-1993		1920	UGL			GO
		MW-018	BA	N	2000	SS10	13-may-1993		1670	UGL			GO
		MW-018	BA	N	2000	SS10	13-may-1993		1690	UGL			GO

			Test	Method	Q (			Meas.		Unit		Data	
<u>Lab</u>	Lot	F Samp No	Name	Type	<u>Spike</u>	Code	Analysis Date	<u>Bool</u>	Value	Meas	Flags	Qualifiers	Prog
		MW-018	BE	N	50	SS10	13-may-1993		52.9	UGL			GO
		MW-018	BE	N	50	SS10	13-may-1993		52.9	UGL			GO
		MW-018	CA	N	10000	SS10	13-may-1993		4270	UGL			GO
		MW-018	CA	N	10000	SS10	13-may-1993		6690	UGL			GO
		MW-018	CD	N	50	SS10	13-may-1993		47	UGL			GO
		MW-018	CD	N	50	SS10	13-may-1993		50.7	UGL			GO
		MW-018	CO	N	500	SS10	13-may-1993		509	UGL			GO
		MW-018	co	N	500	SS10	13 - may - 1993		510	UGL			GO
		MW-018	CR	N	200	SS10	13-may-1993		175	UGL			GO
		MW-018	CR	N	200	SS10	13-may-1993		177	UGL			GO
		MW-018	cu	N	250	SS10	13-may-1993		236	UGL			GO
		MW-018	CU	N	250	SS10	13-may-1993		236	UGL			GO
		MW-018	FE	N	1000	SS10	13-may-1993		963	UGL			GO
		MW-018	FE	N	1000	SS10	13-may-1993		980	UGL			GO
		MW-018	K	N	10000	SS10	13-may-1993		10600	UGL			GO
		MW-018	K	N	10000	SS10	13-may-1993		11000	UGL			GO
		MW-018	MG	N	10000	SS10	13-may-1993		8250	UGL			GO
		MW-018	MG	N	10000	SS10	13-may-1993		9550	UGL			GO
		MW-018	MN	N	500	SS10	13-may-1993		461	UGL			GO
		MW-018	MN	N	500	SS10	13-may-1993		462	UGL			GO
		MW-018	NA	N	10000	SS10	13-may-1993		7430	UGL			GO
		MW-018	NA	N	10000	SS10	13-may-1993		9190	UGL			GO
		MW-018	NI	N	500	SS10	13-may-1993		508	UGL			GO
		MW-018	NI	N	500	SS10	13-may-1993		516	UGL			GO
		MW-018	SB	N	500	SS10	13-may-1993		509	UGL			GO
		MW-018	SB	N	500	SS10	13-may-1993		528	UGL			GO
		MW-018	V	N	500	SS10	13-may-1993		471	UGL			GO
		MW-018	V	N	500	SS10	13-may-1993		472	UGL			GO
		MW-018	ZN	N	500	SS10	13-may-1993		477	UGL			GO
		MW-018	ZN	N	500	SS10	13-may-1993		479	UGL			GO
		RBLK-1	AG	R	0	SS10	13-may-1993	LŤ	4.6	UGL			GO
		RBLK-1	AL	R	0	SS10	13-may-1993	LT	141	UGL			GO
		RBLK-1	BA	R	0	SS10	13-may-1993	LT	5	UGL			GO
		RBLK-1	BE	R	0	SS10	13-may-1993	LT	5	UGL			GO
		RBLK-1	CA	R	0	SS10	13-may-1993	LT	500	UGL			GO
		RBLK-1	CD	R	0	SS10	13-may-1993	LT	4.01	UGL			GO
ES	DBUA	RBLK-1	co	R	0	SS10	13-may-1993	LT	25	UGL			GO
		RBLK-1	CR	R	0	SS10	13-may-1993	LT	6.02	UGL			GO
		RBLK-1	CU	R	0	SS10	13-may-1993	LT	8.09	UGL			GO
		RBLK-1	FE	R	0	SS10	13-may-1993	LT	38.8	UGL			GO
		RBLK-1	K	R	0	SS10	13-may-1993		773	UGL			GO
		RBLK-1	MG	R	0	SS10	13-may-1993	LT	500	UGL			GO
		RBLK-1	MN	R	0	SS10	13-may-1993	LT	2.75	UGL			GO
		RBLK-1	NA	R	0	SS10	13-may-1993		560	UGL			GO
		RBLK-1	NI	R	0	SS10	13-may-1993	LT	34.3	UGL			GO
		RBLK-1	SB	R	0	SS10	13-may-1993	LT	38	UGL			GO
		RBLK-1	V	R	0	SS10	13-may-1993	LT	11	UGL			GO
		RBLK-1	ZN	R	0	\$\$10	13-may-1993	LT	21.1	UGL			GO
ES	DCG		PB	M	0	SD20	25-feb-1993	LT	1.26	UGL			
			PB	S	10	SD20	25-feb-1993		10	UGL			
			PB	S	80	SD20	25-feb-1993		81.4	UGL			
			PB	S	80	SD20	25-feb-1993		83.6	UGL			
		RBLK-1	PB	R	0	SD20	25-feb-1993	LT	1.26	UGL			GO
ES	DCUA		PB	М	0	SD20	07-may-1993	LT	1.26	UGL			
			PB	s	10	SD20	07-may-1993		9.2	UGL			
			PB	S	80	SD20	07 - may - 1993		81.2	UGL			
			PB	s	80	SD20	07-may-1993		84	UGL			
		MW-018	PB	N	40	SD20	07-may-1993		37.9	UGL			GO
		MW-018	PB	N	40	SD20	07-may-1993		38.7	UGL			GO
		RBLK-1	PB	R	0	SD20	07-may-1993	LT	1.26	UGL			GO
ES	DDC		111TCE	M	0	UM20	01 -feb - 1993	LT	0.5	UGL			
			112TCE	M	0	UM20	01-feb-1993	LT	1.2	UGL			
			11DCE	М	0	UM20	01-feb-1993	LT	0.5	UGL			
			11DCLE	M	0	UM20	01 -feb - 1993	LT	0.68	UGL			
			12DCD4	S	50	UM20	01 - feb - 1993		47	UGL			
			12DCE	М	0	UM20	01 -feb -1993	LT	0.5	UGL			
			12DCLE	М	0	UM20	01 - feb - 1993	LT	0.5	UGL			
			12DCLP	М	0	UM20	01 - feb - 1993	LT	0.5	UGL			

			Test	Method	Q C			Meas.		Unit		Data	_
Lab	Lot	F Samp No	Name	Type	<u>Spike</u>	Code	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
			2CLEVE	М	0	UM20	01 feb 1993	LT	0.71	UGL			
			4BFB	S	50	UM20	01 - feb - 1993		50	UGL			
			ACET	M	0	UM20	01 - feb - 1993	LT	13 100	UGL UGL	R		
			ACROLN	M	0	UM20 UM20	01 – feb – 1993 01 – feb – 1993	ND ND	100	UGL	R		
			ACRYLO	M M	0 0	UM20	01 – feb – 1993	LT	0.59	UGL			
			BRDCLM C13DCP	M	ŏ	UM20	01 -feb - 1993	LT	0.58	UGL			
			C2AVE	M	Ō	UM20	01 - feb - 1993	LT	8.3	UGL			
			C2H3CL	M	0	UM20	01 - feb - 1993	LT	2.6	UGL			
			C2H5CL	M	0	UM20	01 – feb – 1993	LT	1.9	UGL			
			C6H6	M	0	UM20	01 – feb – 1993 01 – feb – 1993	LT LT	0.5 1.4	UGL UGL			
			CCL3F	M	0	UM20 UM20	01 – feb – 1993 01 – feb – 1993	LT	0.58	UGL			
			CCL4 CH2CL2	M M	0	UM20	01 -feb - 1993	LT	2.3	UGL			
			CH3BR	M	ō	UM20	01 -feb - 1993	LT	5.8	UGL			
			CH3CL	M	0	UM20	01 -feb - 1993	LT	3.2	UGL			
ES	DDC		CHBR3	М	0	UM20	01 -feb - 1993	LT	2.6	UGL			
			CHCL3	М	0	UM20	01 -feb - 1993	ND	0.78	UGL UGL	R		
			CL2BZ	M	0	UM20	01 – feb – 1993 01 – feb – 1993	ND LT	10 0.5	UGL	**		
			CLC6H5 CS2	M M	0	UM20 UM20	01 - feb - 1993	LT	0.5	UGL			
			DBRCLM	M	ŏ	UM20	01 - feb - 1993	LT	0.67	UGL			
			ETC6H5	M	ō	UM20	01-feb-1993	LT	0.5	UGL			
			MEC6D8	S	50	UM20	01 -feb - 1993		49	UGL			
			MEC6H5	M	0	UM20	01 feb 1993	LT	0.5	UGL UGL			
			MEK	М	0	UM20	01 – feb – 1993	LT LT	6.4 3	UGL			
			MIBK	M	0 0	UM20 UM20	01 – feb – 1993 01 – feb – 1993	LT	3.6	UGL			
			MNBK STYR	M M	0	UM20	01 -feb - 1993	LT	0.5	UGL			
			T13DCP	M	ō	UM20	01 -feb -1993	LT	0.7	UGL			
			TCLEA	M	0	UM20	01 -feb -1993	LT	0.51	UGL			
			TCLEE	М	0	UM20	01 – feb – 1993	LT	1.6	UGL UGL			
			TRCLE	M	0	UM20	01 – feb – 1993 01 – feb – 1993	LT LT	0.5 0.84	UGL			
			XYLEN	M	0 50	UM20 UM20	01 – feb – 1993	L.	54	UGL			GO
		MW002 MW002	12DCD4 4BFB	N N	50	UM20	01 -feb - 1993		44	UGL			GO
		MW002	MEC6D8	N	50	UM20	01 - feb - 1993		45	UGL			GO
		MW004	12DCD4	N	50	UM20	01 - feb - 1993		56	UGL			GO GO
		MW004	4BFB	N	50	UM20	01 – feb – 1993		43 43	UGL UGL			GO
		MW004	MEC6D8	N	50 50	UM20 UM20	01feb 1993 01feb 1993		57	UGL			GO
		MW010 MW010	12DCD4 4BFB	N N	50 50	UM20	01 -feb - 1993		45	UGL			GO
		MW010	MEC6D8	N	50	UM20	01 - feb - 1993		46	UGL			GO
		MW014	12DCD4	N	50	UM20	01 -feb - 1993		56	UGL			GO GO
		MW014	4BFB	N	50	UM20	01 – feb – 1993		45 44	UGL UGL			GO
		MW014	MEC6D8	N	50 50	UM20	01 – feb – 1993 01 – feb – 1993		56	UGL			GO
		MW016	12DCD4 4BFB	N N	50 50	UM20 UM20	01 -feb - 1993		44	UGL			GO
		MW016 MW016	MEC6D8	N	50	UM20	01 - feb - 1993		45	UGL			GO
		MW018	12DCD4	N	50	UM20	01 - feb - 1993		57	UGL			GO GO
		MW018	4BFB	N	50	UM20	01 - feb - 1993		44 45	UGL UGL			GO
		MW018	MEC6D8	N	50	UM20	01 – feb – 1993 02 – feb – 1993	LT	0.5	UGL			•
ES	DDE		111TCE	. М . М	0	UM20 UM20	02 - feb - 1993	LT	1.2	UGL			
			112TCE 11DCE	M	ŏ	UM20	02 -feb - 1993	LT	0.5	UGL			
			11DCLE	M	ō	UM20	02-feb-1993	LT	0.68	UGL			
			12DCD4	S	50	UM20	02-feb-1993		47	UGL			
			12DCE	М	0	UM20	02 - feb - 1993	LT	0.5 0.5	UGL UGL			
			12DCLE	М	0	UM20	02 feb 1993 02 feb 1993	LT LT	0.5	UGL			
			12DCLP 2CLEVE	M M	0	UM20 UM20	02-feb - 1993	LT	0.71	UGL			
			4BFB	S	50	UM20	02 -feb - 1993		50	UGL			
			ACET	M	0	UM20	02-feb-1993	LT	13	UGL	В		
			ACROLN	М	0	UM20	02 - feb - 1993	ND	100 100	UGL UGL	R R		
			ACRYLO	M	0 0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	ND LT	0.59	UGL			
ES	DDE		BRDCLM C13DCP	M M	0	UM20	02-feb-1993	LT	0.58	UGL			
E9	DUE		C2AVE	M	Ö	UM20	02 -feb - 1993	LT	8.3	UGL			

Lab	Lot	F Samp No	Test <u>Name</u>	Method <u>Type</u>	Q C Spike	Code	Analysis Date	Meas. <u>Bool</u>	<u>Value</u>	Unit Meas	Flags	Data Qualifiers	<u>Prog</u>
			C2H3CL	М	0	UM20	02 - feb - 1993	LT	2.6	UGL			
			C2H5CL	M	Ö	UM20	02 -feb - 1993	LT	1.9	UGL			
			C6H6	М	0	UM20	02-feb-1993	LT	0.5	UGL			
			CCL3F	М	0	UM20	02-feb-1993	LT	1.4	UGL			
			CCL4	М	0	UM20	02 - feb - 1993	LT	0.58	UGL			
			CH2CL2	M	0	UM20	02 feb 1993	LT	2.3	UGL			
			CH3BR CH3CL	M M	0 0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	LT LT	5.8 3.2	UGL UGL			
			CHBR3	M	0	UM20	02 – feb – 1993	LT	2.6	UGL			
			CHCL3	M	ō	UM20	02 -feb - 1993	LT	0.5	UGL			
			CL2BZ	М	0	UM20	02 - feb - 1993	ND	10	UGL	R		
			CLC6H5	M	0	UM20	02-feb-1993	LT	0.5	UGL			
			CS2	M	0	UM20	02 - feb - 1993	LT	0.5	UGL			
			DBRCLM	М	0	UM20	02 - feb - 1993	LT	0.67	UGL			
			ETC6H5 MEC6D8	M S	0 50	UM20 UM20	02 – feb – 1993 02 – feb – 1993	LT	0.5 49	UGL UGL			
			MEC6H5	М	0	UM20	02 - feb - 1993	LT	0.5	UGL			
			MEK	M	ō	UM20	02 -feb -1993	LT	6.4	UGL			
			MIBK	M	0	UM20	02-feb-1993	LT	3	UGL			
			MNBK	М	0	UM20	02-feb-1993	LT	3.6	UGL			
			STYR	М	0	UM20	02-feb-1993	LT	0.5	UGL			
			T13DCP	M	0	UM20	02-feb-1993	LT	0.7	UGL			
			TCLEA	M	0	UM20	02 - feb - 1993	LT	0.51	UGL			
			TCLEE TRCLE	M M	0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	LT LT	1.6 0.5	UGL UGL			
			XYLEN	M	ŏ	UM20	02 - feb - 1993	LT	0.84	UGL			
		MW001	12DCD4	N	50	UM20	02 - feb - 1993		54	UGL			GO
		MW001	4BFB	N	50	UM20	02-feb-1993		46	UGL			GO
		MW001	MEC6D8	N	50	UM20	02-feb-1993		47	UGL			GO
		RBLK-1	111TCE	R	0	UM20	02 - feb - 1993	LT	0.5	UGL			GO
		RBLK-1	112TCE	R	0	UM20	02 – feb – 1993	LT	1.2	UGL			GO
		RBLK-1	11DCE 11DCLE	R R	0	UM20 UM20	02 - feb - 1993	LT LT	0.5 0.68	UGL UGL			GO GO
		RBLK-1 RBLK-1	12DCD4	N	50	UM20	02 – feb – 1993 02 – feb – 1993	LI	53	UGL			GO
		RBLK-1	12DCE	R	0	UM20	02 - feb - 1993	LT	0.5	UGL			GO
		RBLK-1	12DCLE	R	o	UM20	02-feb-1993	LT	0.5	UGL			GO
		RBLK-1	12DCLP	R	0	UM20	02-feb-1993	LT	0.5	UGL			GO
		RBLK-1	2CLEVE	R	0	UM20	02-feb-1993	LT	0.71	UGL			GO
		RBLK-1	4BFB	N	50	UM20	02 – feb – 1993		46	UGL			GO
		RBLK-1 RBLK-1	ACET	R	0	UM20	02 – feb – 1993	LT	13	UGL	ъ		GO GO
		RBLK-1	ACROLN ACRYLO	R R	0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	ND ND	100 100	UGL UGL	R R		GO
		RBLK-1	BRDCLM	r R	Ö	UM20	02 - feb - 1993	LT	0.59	UGL			GO
		RBLK-1	C13DCP	R	Ō	UM20	02 - feb - 1993	LT	0.58	UGL			GO
		RBLK-1	C2AVE	R	0	UM20	02-feb-1993	LT	8.3	UGL			GO
		RBLK-1	C2H3CL	R	0	UM20	02-feb-1993	LT	2.6	UGL			GO
		RBLK-1	C2H5CL	R	0	UM20	02 - feb - 1993	LT	1.9	UGL			GO
		RBLK-1	C6H6	R	0	UM20	02 - feb - 1993	LT	0.5	UGL			GO GO
ES	DDE	RBLK-1 RBLK-1	CCL3F CCL4	R R	0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	LT LT	1.4 0.58	UGL UGL			GO
		RBLK-1	CH2CL2	R	Ö	UM20	02 - feb - 1993	٠.	6.1	UGL			GO
		RBLK-1	CH3BR	R R	ŏ	UM20	02 -feb - 1993	LT	5.8	UGL			GO
		RBLK-1	CH3CL	R	0	UM20	02-feb-1993	LT	3.2	UGL			GO
		RBLK-1	CHBR3	R	0	UM20	02 - feb - 1993	LT	2.6	UGL			GO
		RBLK-1	CHCL3	R	0	UM20	02 - feb - 1993		5.6	UGL	_		GO
		RBLK-1	CL2BZ	R	0	UM20	02 - feb - 1993	ND	10	UGL	R		GO
		RBLK-1 RBLK-1	CLC6H5 CS2	R R	0 0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	LT LT	0.5 0.5	UGL UGL			GO GO
		RBLK-1	DBRCLM	R	0	UM20	02 - feb - 1993 02 - feb - 1993	LT	0.67	UGL			GO
		RBLK-1	ETC6H5	R	Ö	UM20	02 -feb - 1993	LT	0.5	UGL			GO
		RBLK-1	MEC6D8	N	50	UM20	02-feb-1993		46	UGL			GO
		RBLK-1	MEC6H5	R	0	UM20	02-feb-1993	LT	0.5	UGL			GO
		RBLK-1	MEK	R	0	UM20	02 -feb -1993	LT	6.4	UGL			GO
		RBLK-1	MIBK	R	0	UM20	02 - feb - 1993	LT	3	UGL			GO
		RBLK-1 RBLK-1	MNBK STYR	R R	0 0	UM20 UM20	02 – feb – 1993 02 – feb – 1993	LT LT	3.6 0.5	UGL UGL			GO GO
		RBLK-1	T13DCP	R	0	UM20	02 - feb - 1993	LT	0.7	UGL			GO
		RBLK-1	TCLEA	R	ō	UM20	02 -feb -1993	LT	0.51	UGL			GO

				Test	Method	Q (	3		Meas.		Unit		Data	
RBILK-1   TITCLE   R	Lab	Lot	F Samp No					Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
			RBLK-1	TCLEE	R	0	UM20	02-feb-1993						
			RBLK-1	TRCLE	R									
			RBLK-1	XYLEN										
TRILK-1														
RBIK-1   TOLEE   R									٠.					
RBLK-1									LT		UGL			GO
RBLK-1											UGL			
TBIK-1									LT	0.84	UGL			
TBIK1 112TCE T 0 UM20 02-6b-1993 LT 1.2 UGL GO TBIK1 11DCE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCD4 N 50 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCLE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCLE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCLE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCLE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 12DCLE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 4BFB N T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 4GRV.O T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 6GRON T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 6GRON T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 6GRON T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 6GRON T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 C13DCP T 0 UM20 02-6b-1993 LT 0.7 UGL GO TBIK1 C24SCL T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C24SCL T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C24SCL T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C4HSCL T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C6HS T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C6HS T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C6HS T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C6HS T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 C6HS T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 CHBR T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 TOLE T 0 UM20 02-6b-1993 LT 0.5 UGL GO TBIK1 TOLE T 0 UM20 02-6b-1993 LT							UM20	02-feb-1993	LT	0.5	UGL			
TBLK-1   110CLE						0	UM20	02 -feb - 1993	LT	1.2				
TBLK-1					T	0	UM20	02-feb-1993						
TBI.K1   1200E					Т	0	UM20	02-feb-1993	LT					
			TBLK-1	12DCD4	N	50	UM20	02 - feb - 1993						
TBIK-1   12DCLP   T			TBLK-1	12DCE	Т	0								
TBIK-1   12UCLP   T			TBLK-1	12DCLE										
TBLK-1			TBLK-1	12DCLP										
TBILK-1			TBLK-1						Li					
TBLK-1   ACPIL   T									1.7					
TBLK-1   ACRYLO   T												R		
TBLK-1														GO
TBILK-1														GO
TBILK-1									LT	0.58	UGL			
TBLK-1								02-feb-1993	LT	8.3				
TBLK-1						0	UM20	02-feb-1993						
TBLK-1			TBLK-1	C2H5CL										
TBLK-1			TBLK-1											
TBLK-1														
TBILK-1									ь.					GO
TBILK-1									LT					GO
TBIK-1											UGL			
TBLK-1									LT	2.6	UGL			
FBLK-1						0	UM20	02-feb-1993		6.5				
FBLK-1						0	UM20	02 - feb - 1993				R		
TBLK-1				CLC6H5	Т	0								
FBLK-1			TBLK-1	CS2										
TBLK-1	ES	DDE												
TBLK-1 MEC6H5 T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 MEK T 0 UM20 02-feb-1993 LT 3.6 UGL GO TBLK-1 MBK T 0 UM20 02-feb-1993 LT 3.6 UGL GO TBLK-1 MBK T 0 UM20 02-feb-1993 LT 3.6 UGL GO TBLK-1 MNBK T 0 UM20 02-feb-1993 LT 3.6 UGL GO TBLK-1 TBLK-1 T13DCP T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 T13DCP T 0 UM20 02-feb-1993 LT 0.7 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.7 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TT10 12-feb-1993 24900 UGL  RBLK-1 CL N 25000 TT10 12-feb-1993 24900 UGL  RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 20000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 20000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO									Li					
TBLK-1									ΙT					
TBLK-1   MIBK   T														GO
TBLK-1 MNBK T 0 UM20 02-feb-1993 LT 3.6 UGL GO TBLK-1 STYR T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 T13DCP T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 T13DCP T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TCLEE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO CC S 4000 TT10 12-feb-1993 LT 2120 UGL CC S 25000 TT10 12-feb-1993 24900 UGL CC S 25000 TT10 12-feb-1993 25000 UGL SO4 M 0 TT10 12-feb-1993 17500 UGL SO4 S 25000 TT10 12-feb-1993 17500 UGL SO4 S 25000 TT10 12-feb-1993 24900 UGL SO4 S 25000 TT10 12-feb-1993 26000 UGL SO4 S 25000 TT10 12-feb-1993 26000 UGL SO4 S 25000 TT10 12-feb-1993 26000 UGL SO4 S 25000 TT10 12-feb-1993 LT 2120 UGL SO4 S 25000 TT10 12-feb-1993 LT 2120 UGL SO4 S 25000 TT10 12-feb-1993 LT 2120 UGL SO4 S 25000 UGL GO SO4 S 25000 TT10 12-feb-1993 LT 2120 UGL SO4 S 25000 UGL GO SO4 S 25000 TT10 12-feb-1993 LT 2120 UGL SO4 S 25000 UGL GO SO4 S 25000 TT10 12-feb-1993 LT 2120 UGL SO4 S 25000 UGL GO SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL SO5 TT10 12-feb-1993 LT 2120 UGL											UGL			GO
TBLK-1						_				3.6	UGL			
TBLK-1 T13DCP T 0 UM20 02-feb-1993 LT 0.7 UGL GO TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.51 UGL GO TBLK-1 TCLEE T 0 UM20 02-feb-1993 LT 1.6 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 0.84 UGL GO TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 0.84 UGL GO TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 2120 UGL CL S 25000 TT10 12-feb-1993 24900 UGL CL S 25000 TT10 12-feb-1993 25000 UGL SO4 M 0 TT10 12-feb-1993 17500 UGL SO4 S 25000 TT10 12-feb-1993 17500 UGL SO4 S 25000 TT10 12-feb-1993 24900 UGL SO4 S 25000 UGL GO RBLK-1 CL R O TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 25000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 25000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 25000 TT10 12-feb-1993 LT 10000 UGL									LT	0.5				
TBLK-1 TCLEA T 0 UM20 02-feb-1993 LT 0.51 UGL GO TBLK-1 TCLEE T 0 UM20 02-feb-1993 LT 1.6 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 0.84 UGL GO TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 0.84 UGL GO  ES DEE						0	UM20	02-feb-1993						
TBLK-1 TRCLE T 0 UM20 02-feb-1993 LT 0.5 UGL GO TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 0.84 UGL TBLK-1 XYLEN T 0 UM20 02-feb-1993 LT 0.84 UGL CL S 4000 TT10 12-feb-1993 LT 2120 UGL CL S 25000 TT10 12-feb-1993 24900 UGL CL S 25000 TT10 12-feb-1993 LT 10000 UGL SO4 M 0 TT10 12-feb-1993 LT 10000 UGL SO4 S 20000 TT10 12-feb-1993 LT 10000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 21000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 21000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 21000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 21000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 20000 UGL						0								
TBLK-1 TRCLE I 0 0 0 2-feb - 1993 LT 0.84 UGL GO  TBLK-1 XYLEN T 0 UM20 02-feb - 1993 LT 2120 UGL  CL M 0 TT10 12-feb - 1993 LT 2120 UGL  CL S 25000 TT10 12-feb - 1993 24900 UGL  CL S 25000 TT10 12-feb - 1993 LT 10000 UGL  SO4 M 0 TT10 12-feb - 1993 LT 10000 UGL  SO4 S 250000 TT10 12-feb - 1993 17500 UGL  SO4 S 250000 TT10 12-feb - 1993 249000 UGL  SO4 S 250000 TT10 12-feb - 1993 249000 UGL  SO4 S 250000 TT10 12-feb - 1993 249000 UGL  RBLK-1 CL N 25000 TT10 12-feb - 1993 29000 UGL  RBLK-1 CL N 25000 TT10 12-feb - 1993 29000 UGL  RBLK-1 CL N 25000 TT10 12-feb - 1993 29000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 29000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 260000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 260000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 260000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 260000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2100 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2100 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2100 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2100 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2100 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb - 1993 LT 2100 UGL  GO			TBLK-1											
ES DEE  CL M 0 TT10 12-feb-1993 LT 2120 UGL  CL S 25000 TT10 12-feb-1993 24900 UGL  CL S 25000 TT10 12-feb-1993 25000 UGL  CL S 25000 TT10 12-feb-1993 17500 UGL  SO4 M 0 TT10 12-feb-1993 17500 UGL  SO4 S 250000 TT10 12-feb-1993 24900 UGL  SO4 S 250000 TT10 12-feb-1993 UT 10000 UGL  SO4 S 250000 TT10 12-feb-1993 249000 UGL  SO4 S 250000 TT10 12-feb-1993 249000 UGL  RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL  RBLK-1 SO4 N 25000 TT10 12-feb-1993 260000 UGL  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL														
CL S 25000 TT10 12-feb-1993 24900 UGL CL S 25000 TT10 12-feb-1993 25000 UGL CL S 25000 TT10 12-feb-1993 25000 UGL SO4 M 0 TT10 12-feb-1993 LT 10000 UGL SO4 S 20000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL R 0 TT10 12-feb-1993 29000 UGL RBLK-1 SO4 N 25000 TT10 12-feb-1993 20000 UGL RBLK-1 SO4 N 25000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL RGC RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL RGC RGC RGC RGC RGC RGC RGC RGC RGC RGC			TBLK-1											
CL S 25000 TT10 12-feb-1993 25000 UGL  CL S 25000 TT10 12-feb-1993 25000 UGL  SO4 M 0 TT10 12-feb-1993 LT 10000 UGL  SO4 S 20000 TT10 12-feb-1993 249000 UGL  SO4 S 250000 TT10 12-feb-1993 249000 UGL  SO4 S 250000 TT10 12-feb-1993 249000 UGL  SO4 S 250000 TT10 12-feb-1993 249000 UGL  RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL  RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL  GO  RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL  GO  RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL  GO	ES	DEE												
CL S 25000 TT10 12-feb-1993 25000 UGL SO4 M 0 TT10 12-feb-1993 LT 10000 UGL SO4 S 20000 TT10 12-feb-1993 17500 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO										24900	UGL			
SO4 M 0 TT10 12-feb-1993 LT 10000 UGL SO4 S 20000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL RGO								12-feb-1993						
SO4 S 20000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL SO4 S 250000 TT10 12-feb-1993 249000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 LT 2120 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 260000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL RGC									LT					
SO4 S 250000 TT10 12-feb-1993 249000 UGL GO  RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO  RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO  RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO  RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO  RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO														
RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO														
RBLK-1 CL N 25000 TT10 12-feb-1993 29000 UGL GO RBLK-1 CL R 0 TT10 12-feb-1993 LT 2120 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO														GO
RBLK-1 CL N 25000 TT10 12-feb-1993 LT 2120 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO														
RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO									LT					
RBLK-1 SO4 N 250000 TT10 12-feb-1993 260000 UGL GO RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO														
RBLK-1 SO4 R 0 TT10 12-feb-1993 LT 10000 UGL GO											UGL			
								12-feb-1993						GO
	ES	DEKA				0	TT10	12-may-1993	LT	2120	UGL			

			Test	Method	Q	C		Meas.		Unit		Data	
Lab	<u>Lot</u>	F Samp No	Name	Type	Spike	Code	Analysis Date	Bool	<u>Value</u>	Meas	Flags		Prog
			CL	s	4000	TT10	12-may-1993		3640	UGL			
			CL	S	25000	TT10	12-may-1993		24700	UGL			
			CL SO4	S M	25000	TT10	12-may-1993		24800	UGL			
			SO4	S	0 20000	TT10 TT10	12-may-1993 12-may-1993	LT	10000 17400	UGL UGL			
			SO4	s	250000	TT10	12-may-1993		250000	UGL			
			SO4	S	250000	TT10	12-may-1993		250000	UGL			
		RBLK-1	CL	N	25000	TT10	12-may-1993		26000	UGL			GO
		RBLK-1	CL	N	25000	TT10	12-may-1993		26000	UGL			GO
		RBLK-1 RBLK-1	CL SO4	R N	0 250000	TT10	12-may-1993	LT	2120	UGL			GO
		RBLK-1	SO4	N	250000	TT10 TT10	12-may-1993 12-may-1993		240000 240000	UGL UGL			GO GO
		RBLK-1	SO4	R	0	TT10	12-may-1993	LT	10000	UGL			GO
ES	DFH		OILGR	M	0	00	10-feb - 1993	LT	171	UGL			
			OILGR	S	4280	00	10-feb-1993		3650	UGL			
			OILGR	S	4280	00	10-feb-1993		3650	UGL			
			TPHC TPHC	M S	0 4280	00 00	10-feb-1993 10-feb-1993	LT	171	UGL			
			TPHC	S	4280	00	10-feb - 1993		3650 3650	UGL UGL			
		RBLK-1	OILGR	N	4280	00	10 -feb - 1993		3830	UGL			GO
ES	DFH	RBLK-1	OILGR	R	0	00	10-feb-1993	LT	181	UGL			GO
		RBLK-1	TPHC	N	4280	00	10-feb-1993		3650	UGL			GO
ES	DGSA	RBLK-1	TPHC AS	R M	0 0	00 SD22	10-feb-1993	LT	181	UGL			GO
	Баол		AS	S	5	SD22	10-may-1993 10-may-1993	LT	2.54 6.4	UGL UGL		1	
			AS	S	75	SD22	10-may-1993		79.1	UGL		i	
			AS	S	75	SD22	10-may-1993		79.6	UGL		i	
		MW-018	AS	N	37.5	SD22	10-may-1993		42	UGL		1	GO
		MW-018 RBLK-1	AS AS	N R	37.5	SD22	10-may-1993		43.7	UGL		ł	GO
ES	DKPA	HPLK-1	124TCB	M	0 0	SD22 UM18	10-may-1993 07-may-1993	LT LT	2.54 1.8	UGL UGL		ı	GO
			12DCLB	M	Ö	UM18	07-may-1993	LT	1.7	UGL			
			12DPH	M	0	UM18	07-may-1993	ND	2	UGL	R		
			13DCLB	М	0	UM18	07-may-1993	LT	1.7	UGL			
			14DCLB	M	0	UM18	07-may-1993	LT	1.7	UGL			
			245TCP 246TBP	M S	0 100	UM18 UM18	07-may-1993	LT	5.2 97	UGL UGL			
			246TCP	M	0	UM18	07-may-1993 07-may-1993	LT	4.2	UGL			
			24DCLP	М	0	UM18	07-may-1993	LT	2.9	UGL			
			24DMPN	М	0	UM18	07-may-1993	LT	5.8	UGL			
			24DNP 24DNT	M M	0	UM18	07-may-1993	LT	21	UGL			
			26DNT	M	0	UM18 UM18	07-may-1993 07-may-1993	LT LT	4.5 0.79	UGL UGL			
			2CLP	M	Ö	UM18	07-may-1993	LT	0.79	UGL			
			2CNAP	М	0	UM18	07-may-1993	LT	0.5	UGL			
			2FBP	S	50	UM18	07-may-1993		37	UGL			
			2FP 2MNAP	S M	100 0	UM18	07-may-1993	1.7	82	UGL			
			2MP	M	0	UM18 UM18	07-may-1993 07-may-1993	L.T L.T	1.7 3.9	UGL UGL			
			2NANIL	M	ŏ	UM18	07-may-1993	LT	4.3	UGL			
			2NP	M	0	UM18	07-may-1993	LT	3.7	UGL			
			33DCBD	M	0	UM18	07-may-1993	LT	12	UGL			
			3NANIL 46DN2C	M M	0	UM18 UM18	07-may-1993	LT	4.9	UGL			
			4BRPPE	M	Ö	UM18	07-may-1993 07-may-1993	LT LT	17 4.2	UGL UGL			
			4CANIL	M	Ō	UM18	07-may-1993	LT	7.3	UGL			
			4CL3C	M	0	UM18	07-may-1993	LT	4	UGL			
			4CLPPE 4MP	M	0	UM18	07-may-1993	LT	5.1	UGL			
			4NANIL	M M	0 0	UM18 UM18	07-may-1993 07-may-1993	LT LT	0.52 5.2	UGL UGL			
			4NP	M	Ö	UM18	07-may-1993 07-may-1993	LT	5.2 12	UGL			
			ABHC	М	0	UM18	07-may-1993	ND	4	UGL	R		
			ACLDAN	M	0	UM18	07-may-1993	ND	5.1	UGL	R		
			AENSLF ALDRN	M M	0	UM18	07-may-1993	ND	9.2	UGL	R		
			ANAPNE	M	0	UM18 UM18	07-may-1993 07-may-1993	ND LT	4.7 1.7	UGL UGL	R		
			ANAPYL	М	Ö	UM18	07-may-1993	LT	0.5	UGL			
			ANTRC	М	0	UM18	07-may-1993	LT	0.5	UGL			

			<b>~ .</b>	94-45-4	Q C			Meas.		Unit		Data	
Lab	<u>Lot</u>	F Samp No	Test <u>Name</u>	Method Type	Spike	Code	Analysis Date	Bool	<u>Value</u>	Meas	Flags	Qualifiers	Prog
			B2CEXM	М	0	UM18	07-may-1993	LT	1.5	UGL			
ES	DKPA		<b>B2CIPE</b>	M	0	UM18	07-may-1993	LT	5.3	UGL			
			B2CLEE	М	0	UM18	07 – may – 1993	LT	1.9	UGL			
			B2EHP	M	0	UM18	07-may-1993	LT	4.8	UGL			
			BAANTR	M	0	UM18	07-may-1993	LT	1.6	UGL			
			BAPYR	M	0	UM18	07-may-1993	LT	4.7 5.4	UGL UGL			
			BBFANT	М	0	UM18	07-may-1993	LT ND	4	UGL	R		
			BBHC	M	0	UM18	07-may-1993 07-may-1993	LT	3.4	UGL			
			BBZP	M	0 0	UM18 UM18	07-may-1993	ND	9.2	UGL	R		
			BENSLF	M M	0	UM18	07 - may - 1993	ND	10	UGL	R		
			BENZID BENZOA	M	Ŏ	UM18	07-may-1993	LT	13	UGL			
			BGHIPY	 М	ō	UM18	07-may-1993	LT	6.1	UGL			
			BKFANT	M	Ō	UM18	07-may-1993	LT	0.87	UGL			
			BZALC	М	0	UM18	07-may-1993	LT	0.72	UGL			
			CARBAZ	M	0	UM18	07-may-1993	ND	0.5	UGL	R		
			CHRY	M	0	UM18	07-may-1993	LT	2.4	UGL			
			CL6BZ	М	0	UM18	07-may-1993	LT	1.6	UGL			
			CL6CP	M	0	UM18	07-may-1993	LT	8.6	UGL			
			CL6ET	М	0	UM18	07-may-1993	LT	1.5	UGL			
			DBAHA	M	0	UM18	07-may-1993	LT ND	6.5 4	UGL UGL	R		
			DBHC	M	0	UM18	07-may-1993	LT	1.7	UGL	11		
			DBZFUR	M	0 0	UM18 UM18	07-may-1993 07-may-1993	LT	2	UGL			
			DEP	M M	0	UM18	07-may-1993	ND	4.7	UGL	R		
			DLDRN DMP	M	0	UM18	07 - may - 1993	LT	1.5	UGL			
			DNBP	M	Ŏ	UM18	07-may-1993	LT	3.7	UGL			
			DNOP	 М	ō	UM18	07-may-1993	LT	15	UGL			
			ENDRN	M	0	UM18	07-may-1993	ND	7.6	UGL	R		
			ENDRNA	М	0	UM18	07-may-1993	ND	8	UGL	R		
			ENDRNK	M	0	UM18	07-may-1993	ND	8	UGL	R		
			ESFSO4	M	0	UM18	07-may-1993	ND	9.2	UGL	R		
			FANT	M	0	UM18	07-may-1993	LT	3.3	UGL			
			FLRENE	M	0	UM18	07-may-1993	LT	3.7	UGL	R		
			GCLDAN	М	0	UM18	07 - may - 1993	ND LT	5.1 3.4	UGL UGL	n		
			HCBD	M	0	UM18	07 - may - 1993	ND	2	UGL	R		
			HPCL	M	0 0	UM18 UM18	07-may-1993 07-may-1993	ND	5	UGL	R		
			HPCLE ICDPYR	M M	0	UM18	07-may-1993	LT	8.6	UGL			
			ISOPHR	M	Ö	UM18	07-may-1993	LT	4.8	UGL			
			LIN	M	ō	UM18	07-may-1993	ND	4	UGL	R		
			MEXCLR	M	0	UM18	07-may-1993	ND	5.1	UGL	R		
			NAP	M	0	UM18	07 - may - 1993	LT	0.5	UGL			
			NB	M	0	UM18	07-may-1993	LT	0.5	UGL			
			NBD5	S	50	UM18	07-may-1993	ND	44	UGL	R		
			NNDMEA	M	0	UM18	07-may-1993	ND	2 4.4	UGL UGL	n		
			NNDNPA	M	0	UM18	07-may-1993 07-may-1993	LT LT	3	UGL			
			NNDPA PCR016	M M	0 0	UM18 UM18	07-may-1993	ND	21	UGL	R		
			PCB016 PCB221	M	0	UM18	07-may-1993	ND	21	UGL	R		
			PCB232	M	ŏ	UM18	07-may-1993	ND	21	UGL	R		
			PCB242	M	Ö	UM18	07-may-1993	ND	30	UGL	R		
ES	DKPA		PCB248	М	0	UM18	07-may-1993	ND	30	UGL	R		
			PCB254	M	0	UM18	07-may-1993	ND	36	UGL	R		
			PCB260	М	0	UM18	07-may-1993	ND	36	UGL	R		
			PCP	М	0	UM18	07-may-1993	LT	18	UGL			
			PHANTR	M	0	UM18	07 - may - 1993	LT	0.5 60	UGL UGL			
			PHEND6	S	100	UM18	07-may-1993 07-may-1993	LT	9.2	UGL			
			PHENOL	M	0	UM18 UM18	07-may-1993 07-may-1993	ND	4	UGL	R		
			PPDDD	M M	0	UM18	07-may-1993	ND	4.7	UGL	R		
			PPDDE PPDDT	M	0	UM18	07-may-1993	ND	9.2	UGL	R		
			PYR	M	0	UM18	07-may-1993	LT	2.8	UGL			
			TRPD14	s	50	UM18	07-may-1993		50	UGL	_		
			TXPHEN	M	0	UM18	07-may-1993	ND	36	UGL	R		
			UNK532	S	5	UM18	07-may-1993		2	UGL	S		GO
		MW-001	246TBP	N	100	UM18	07 - may - 1993		41 37	UGL UGL			GO
		MW-001	2FBP	N	50	UM18	07-may-1993		0,				

			Test	Method	Q	c		Meas.		Unit		Data	
<u>Lab</u>	<u>Lot</u>	F Samp No	Name	Туре	<u>Spike</u>	Code	Analysis Date	Bool	<u>Vaiue</u>	Meas	Flags	Qualifiers	Prog
		MW-001	2FP	N	100	UM18	07-may-1993		64	UGL			GO
		MW-001	NBD5	N	50	UM18	07-may-1993		50	UGL			GO
		MW-001	PHEND6	N	100	UM18	07-may-1993	LT	36	UGL			GO
		MW-001	TRPD14	N	50	UM18	07-may-1993		44	UGL			GO
		MW-002	246TBP	N	100	UM18	07-may-1993		68	UGL			GO
		MW-002	2FBP	N	50	UM18	07-may-1993		37	UGL			GO
		MW-002	2FP	N	100	UM18	07-may-1993		110	UGL			GO
		MW-002	NBD5	N	50	UM18	07 — <u>m</u> ay — 1993		49	UGL			GO
		MW-002 MW-002	PHEND6	N	100	UM18	07-may-1993		110	UGL			GO
		MW-004	TRPD14	N	50	UM18	07-may-1993		58	UGL			GO
		MW-004	246TBP 2FBP	N N	100 50	UM18	07-may-1993		78	UGL			GO
		MW-004	2FP	N	100	UM18 UM18	07-may-1993 07-may-1993		35	UGL			GO
		MW-004	NBD5	N	50	UM18	07-may-1993		120 45	UGL UGL			GO GO
		MW-004	PHEND6	N	100	UM18	07-may-1993		120	UGL			GO
		MW-004	TRPD14	N	50	UM18	07-may-1993		47	UGL			GO
		MW-014	246TBP	N	100	UM18	07-may-1993		79	UGL			GO
		MW-014	2FBP	N	50	UM18	07-may-1993		40	UGL			GO
		MW-014	2FP	N	100	UM18	07-may-1993		120	UGL			GO
		MW-014	NBD5	N	50	UM18	07-may-1993		52	UGL			GO
		MW-014	PHEND6	N	100	UM18	07-may-1993		120	UGL			GO
		MW-014	TRPD14	N	50	UM18	07-may-1993		51	UGL			GO
		MW-016	246TBP	N	100	UM18	07-may-1993	LT	13	UGL			GO
		MW-016	2FBP	N	50	UM18	07-may-1993		36	UGL			GO
		MW-016	2FP	N	100	UM18	07-may-1993	LT	17	UGL			GO
		MW-016	NBD5	N	50	UM18	07-may-1993		45	UGL			GO
		MW-016 MW-016	PHEND6	N	100	UM18	07-may-1993	LT	36	UGL			GO
		MW-018	TRPD14 246TBP	N N	50 100	UM18	07-may-1993		54	UGL			GO
		MW-018	2FBP	N	100 50	UM18 UM18	07-may-1993		75 38	UGL			GO
		MW-018	2FP	N	100	UM18	07-may-1993 07-may-1993		110	UGL UGL			GO
		MW-018	NBD5	N	50	UM18	07-may-1993		52	UGL			GO GO
		MW-018	PHEND6	N	100	UM18	07-may-1993		110	UGL			GO
		MW-018	TRPD14	N	50	UM18	07-may-1993		48	UGL			GO
		MW-10	246TBP	N	100	UM18	07-may-1993		60	UGL			GO
ES	DKPA	MW-10	2FBP	N	50	UM18	07-may-1993		39	UGL			GO
		MW-10	2FP	N	100	UM18	07-may-1993		120	UGL			GO
		MW-10	NBD5	N	50	UM18	07-may-1993		49	UGL			GO
		MW-10	PHEND6	N	100	UM18	07-may-1993		120	UGL			GO
		MW-10	TRPD14	N	50	UM18	07-may-1993		56	UGL			GO
		RBLK-1	124TCB	R	0	UM18	07-may-1993	LT	1.8	UGL			GO
		RBLK-1	12DCLB	R	0	UM18	07-may-1993	LT	1.7	UGL			GO
		RBLK-1	12DPH	R	0	UM18	07-may-1993	ND	2	UGL	R		GO
		RBLK-1 RBLK-1	13DCLB	R	0	UM18	07-may-1993	LT	1.7	UGL			GO
		RBLK-1	14DCLB 245TCP	R R	0	UM18 UM18	07-may-1993	LT	1.7	UGL			GO
		RBLK-1	246TBP	N			07-may-1993	LT	5.2	UGL			GO
		RBLK-1	246TCP	R	100 0	UM18 UM18	07-may-1993 07-may-1993	LT	72 4.2	UGL UGL			GO GO
		RBLK-1	24DCLP	Ŕ	Ö	UM18	07-may-1993	LT	2.9	UGL			GO
		RBLK-1	24DMPN	R	ō	UM18	07-may-1993	LT	5.8	UGL			GO
		RBLK-1	24DNP	R	0	UM18	07-may-1993	LT	21	UGL			GO
		RBLK-1	24DNT	R	0	UM18	07-may-1993	LT	4.5	UGL			GO
		RBLK-1	26DNT	R	0	UM18	07-may-1993	LT	0.79	UGL			GO
		RBLK-1	2CLP	R	0	UM18	07-may-1993	LT	0.99	UGL			GO
		RBLK-1	2CNAP	R	0	UM18	07-may-1993	LT	0.5	UGL			GO
		RBLK-1	2FBP	N	50	UM18	07-may-1993		36	UGL			GO
		RBLK-1	2FP	N	100	UM18	07-may-1993		110	UGL			GO
		RBLK-1 RBLK-1	2MNAP	R	0	UM18	07-may-1993	LT	1.7	UGL			GO
		RBLK-1	2MP 2NANIL	R R	0	UM18 UM18	07-may-1993	LT	3.9	UGL			GO
		RBLK-1	2NP	R	0	UM18	07-may-1993 07-may-1993	LT LT	4.3 3.7	UGL UGL			GO
		RBLK-1	33DCBD	R	0	UM18	07-may-1993 07-may-1993	LT	3.7 12	UGL			GO GO
		RBLK-1	SNANIL	R	Ö	UM18	07-may-1993	LT	4.9	UGL			GO
		RBLK-1	46DN2C	R	Ö	UM18	07-may-1993	LT	17	UGL			GO
		RBLK-1	48RPPE	R	Ō	UM18	07-may-1993	LT	4.2	UGL			GO
		RBLK-1	4CANIL	R	0	UM18	07-may-1993	LT	7.3	UGL			GO
		RBLK-1	4CL3C	R	0	UM18	07-may-1993	LT	4	UGL			GO
		RBLK-1	4CLPPE	R	0	UM18	07-may-1993	LT	5.1	UGL			GO

								Meas.		Unit		Data	
Lab	Lot	F Samp No	Test <u>Name</u>	Method Type	Q C Spike	<u>Code</u>	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
			4MP	R	0	UM18	07-may-1993	LT	0.52	UGL			GO
		RBLK-1 RBLK-1	4NANIL	R	ō	UM18	07-may-1993	LT	5.2	UGL			GO
		RBLK-1	4NP	R	Ō	UM18	07-may-1993	LT	12	UGL			GO
		RBLK-1	ABHC	R	Ō	UM18	07-may-1993	ND	4	UGL	R		GO
		RBLK-1	ACLDAN	R	ō	UM18	07-may-1993	ND	5.1	UGL	R		GO
		RBLK-1	AENSLF	R	0	UM18	07-may-1993	ND	9.2	UGL	R		GO
		RBLK-1	ALDRN	R	0	UM18	07-may-1993	ND	4.7	UGL	R		GO
		RBLK-1	ANAPNE	R	0	UM18	07-may-1993	LT	1.7	UGL			GO
		RBLK-1	ANAPYL	R	0	UM18	07-may-1993	LT	0.5	UGL			GO
		RBLK-1	ANTRO	R	0	UM18	07-may-1993	LT	0.5	UGL			GO GO
		RBLK-1	B2CEXM	R	0	UM18	07 – may – 1993	LT	1.5	UGL			GO
		RBLK-1	<b>B2CIPE</b>	R	0	UM18	07-may-1993	LT	5.3	UGL			GO
		RBLK-1	<b>B2CLEE</b>	R	0	UM18	07-may-1993	LT	1.9	UGL			GO
		RBLK-1	B2EHP	R	0	UM18	07 – may – 1993	LT	4.8	UGL			GO
		RBLK-1	BAANTR	R	0	UM18	07-may-1993	LT	1.6	UGL			GO
		RBLK-1	BAPYR	R	0	UM18	07-may-1993	LT	4.7	UGL			GO
		RBLK-1	BBFANT	R	0	UM18	07-may-1993	LT	5.4	UGL	_		GO
		RBLK-1	ввнс	R	0	UM18	07-may-1993	ND	4	UGL	R		GO
ES	DKPA	RBLK-1	BBZP	R	0	UM18	07-may-1993	LT	3.4	UGL	_		GO
LO	Ditti /t	RBLK-1	BENSLF	R	0	UM18	07-may-1993	ND	9.2	UGL	R		GO
		RBLK-1	BENZID	R	0	UM18	07 - may - 1993	ND	10	UGL	R		GO
		RBLK-1	BENZOA	R	0	UM18	07 - may - 1993	LT	13	UGL			GO
		RBLK-1	<b>BGHIPY</b>	R	0	UM18	07-may-1993	LT	6.1	UGL			GO
		RBLK-1	BKFANT	R	0	UM18	07-may-1993	LT	0.87	UGL			GO
		RBLK-1	BZALC	R	0	UM18	07 – may – 1993	LT	0.72	UGL	ь		GO
		RBLK-1	CARBAZ	R	0	UM18	07-may-1993	ND	0.5	UGL	R		GO
		RBLK-1	CHRY	R	0	UM18	07-may-1993	LT	2.4	UGL			GO
		RBLK-1	CL6BZ	R	0	UM18	07-may-1993	LT	1.6	UGL			GO
		RBLK-1	CL6CP	R	0	UM18	07-may-1993	LT	8.6	UGL UGL			GO
		RBLK-1	CL6ET	R	0	UM18	07-may-1993	LT	1.5	UGL			GO
		RBLK-1	DBAHA	R	0	UM18	07-may-1993	LT	6.5 4	UGL	R		GO
		RBLK-1	DBHC	R	0	UM18	07-may-1993	ND	1.7	UGL	•••		GO
		RBLK-1	DBZFUR	R	0	UM18	07-may-1993	LT LT	2	UGL			GO
		RBLK-1	DEP	R	0	UM18	07-may-1993		4.7	UGL	R		GO
		RBLK-1	DLDRN	R	0	UM18	07-may-1993	ND LT	1.5	UGL	•••		GO
		RBLK-1	DMP	R	0	UM18	07-may-1993	LT	3.7	UGL			GO
		RBLK-1	DNBP	R	0	UM18	07-may-1993	LT	15	UGL			GO
		RBLK-1	DNOP	R	0	UM18	07-may-1993	ND	7.6	UGL	R		GO
		RBLK-1	ENDRN	R	0	UM18	07-may-1993	ND	8	UGL	R		GO
		RBLK-1	ENDRNA	R	0	UM18	07-may-1993 07-may-1993	ND	8	UGL	R		GO
		RBLK-1	ENDRNK	R	0	UM18 UM18	07-may-1993	ND	9.2	UGL	R		GO
		RBLK-1	ESFSO4	R	0	UM18	07-may-1993	LT	3.3	UGL			GO
		RBLK-1	FANT	R	0	UM18	07-may-1993	LT	3.7	UGL			GO
		RBLK-1	FLRENE	R	0	UM18	07-may-1993	ND	5.1	UGL	R		GO
		RBLK-1	GCLDAN	R	Ö	UM18	07-may-1993	LT	3.4	UGL			GO
		RBLK-1	HCBD HPCL	R R	Ö	UM18	07-may-1993	ND	2	UGL	R		GO
		RBLK-1	HPCLE	R	Ö	UM18	07-may-1993	ND	5	UGL	R		GO
		RBLK-1	ICDPYR	R	Ö	UM18	07-may-1993	LT	8.6	UGL			GO
		RBLK-1 RBLK-1	ISOPHR	R	ō	UM18	07-may-1993	LT	4.8	UGL			GO
		RBLK-1	LIN	R	Ō	UM18	07-may-1993	ND	4	UGL	R		GO
		RBLK-1	MEXCLR	R	Ō	UM18	07-may-1993	ND	5.1	UGL	R		GO
		RBLK-1	NAP	R	0	UM18	07-may-1993	LT	0.5	UGL			GO GO
		RBLK-1	NB	R	0	UM18	07-may-1993	LT	0.5	UGL			GO
		RBLK-1	NBD5	N	50	UM18	07-may-1993		49	UGL	_		GO
		RBLK-1	NNDMEA	R	0	UM18	07-may-1993	ND	2	UGL	R		GO
		RBLK-1	NNDNPA	R	0	UM18	07-may-1993	LŤ	4.4	UGL			GO
		RBLK-1	NNDPA	R	0	UM18	07-may-1993	LT	3	UGL	_		GO
		RBLK-1	PCB016	R	0	UM18	07 – may – 1993	ND	21	UGL	R		GO
		RBLK-1	PCB221	R	0	UM18	07-may-1993	ND	21	UGL	R		GO
		RBLK-1	PCB232	R	0	UM18	07-may-1993	ND	21	UGL	R		GO
		RBLK-1	PCB242	R	0	UM18	07-may-1993	ND	30	UGL	R		GO
		RBLK-1	PCB248	R	0	UM18	07-may-1993	ND	30	UGL	R		GO
		RBLK-1	PCB254	R	0	UM18	07-may-1993	ND	36	UGL	R R		GO
		RBLK-1	PCB260	R	0	UM18	07-may-1993	ND	36	UGL UGL	п		GO
		RBLK-1	PCP	R	0	UM18	07-may-1993	LT	18 0.5	UGL			GO
		RBLK-1	PHANTR	R	0	UM18	07-may-1993	LT	100	UGL			GO
		RBLK-1	PHEND6	N	100	UM18	07-may-1993		100				

			Test	Method	Q C			Meas.		Unit		Data	
Lab	Lot	F Samp No	Name	Type	<u>Spike</u>	Code	Analysis Date	<u>Bool</u>	<u>Value</u>	Meas	Flags	Qualifiers	Prog
		RBLK-1	PHENOL	R	0	UM18	07-may-1993	LT	9.2	UGL			GO
ES	DKPA	RBLK-1	PPDDD	R	0	UM18	07-may-1993	ND	4	UGL	R		GO
		RBLK-1	PPDDE	R	0	UM18	07-may-1993	ND	4.7	UGL	R		GO
		RBLK-1	PPDDT	R	0	UM18	07-may-1993	ND	9.2	UGL	R		GO
		RBLK-1 RBLK-1	PYR TRPD14	R N	0 50	UM18 UM18	07-may-1993	LT	2.8	UGL UGL			GO
		RBLK-1	TXPHEN	R	0	UM18	07 - may - 1993 07 - may - 1993	ND	47 36	UGL	R		GO GO
ES	DNHA		TL	M	Ō	SD09	06-may-1993	LT	6.99	UGL	••		
			TL	S	10	SD09	06-may-1993		10.7	UGL			
			TL	S	20	SD09	06-may-1993		21.5	UGL			
		1414/ 040	TL T	S	20	SD09	06-may-1993		21.6	UGL			
		MW-018 MW-018	TL TL	N N	10 10	SD09 SD09	06-may-1993	LT	6.99	UGL			GO
		RBLK-1	TL	R	0	SD09	06-may-1993 06-may-1993	LT LT	6.99 6.99	UGL UGL			GO GO
ES	DOMA		HG	M	Ö	SB01	13-may-1993	LT	0.243	UGL			40
			HG	s	0.5	SB01	13-may-1993		0.519	UGL			
			HG	S	2.5	SB01	13-may-1993		2.47	UGL			
			HG	S	2.5	SB01	13-may-1993		2.7	UGL			
		MW-002 MW-002	HG HG	N N	4 4	SB01 SB01	13-may-1993		3.36	UGL			GO
		RBLK-1	HG	R	0	SB01	13-may-1993 13-may-1993	LT	3.75 0.243	UGL UGL			GO GO
ES	DPEA	MDER 1	CL10BP	s	1.25	UH02	03-may-1993		0.98	UGL	Т		uo
			CL10BP	S	1.25	UH02	04-may-1993		1.1	UGL	T		
			PCB016	М	0	UH02	03-may-1993	LT	0.16	UGL			
			PCB016	S	3.75	UH02	04-may-1993		3.2	UGL	_		
			PCB221 PCB232	M M	0	UH02 UH02	03-may-1993	ND	0.16	UGL	R		
			PCB232	M	Ö	UH02	03-may-1993 03-may-1993	ND ND	0.16 0.19	UGL UGL	R R		
			PCB248	M	Ö	UH02	03-may-1993	ND	0.19	UGL	R		
			PCB254	М	0	UH02	03-may-1993	ND	0.19	UGL	R		
			PCB260	М	0	UH02	03-may-1993	LT	0.19	UGL			
		DDI K	PCB260	S	3.75	UH02	04-may-1993		3.3	UGL	_		
		RBLK-1	CL10BP	N R	1.25 0	UH02	04-may-1993		0.96	UGL	Т		GO
		RBLK-1 RBLK-1	PCB016 PCB221	R	0	UH02 UH02	04-may-1993 04-may-1993	LT ND	0.16 0.16	UGL UGL	R		GO GO
		RBLK-1	PCB232	R	ŏ	UH02	04-may-1993	ND	0.16	UGL	R		GO
		RBLK-1	PCB242	R	0	UH02	04-may-1993	ND	0.19	UGL	R		GO
		RBLK-1	PCB248	R	0	UH02	04-may-1993	ND	0.19	UGL	R		GO
		RBLK-1	PCB254	R	0	UH02	04-may-1993	ND	0.19	UGL	R		GO
ES	DPFA	RBLK-1	PCB260 CL10BP	R S	0 1.25	UH02 UH02	04-may-1993	LT	0.19	UGL	т		GO
23	חות		CL10BP	S	1.25	UH02	06-may-1993 06-may-1993		1.1 1.2	UGL UGL	÷		
			PCB016	M	0	UH02	06-may-1993	LT	0.16	UGL	•		
			PCB016	s	3.75	UH02	06-may-1993		3.3	UGL			
			PCB221	М	0	UH02	06-may-1993	ND	0.16	UGL	R		
			PCB232	M	0	UH02	06-may-1993	ND	0.16	UGL	R		
			PCB242 PCB248	M M	0	UH02 UH02	06-may-1993 06-may-1993	ND ND	0.19 0.19	UGL UGL	R R		
ES	DPFA		PCB254	M	ŏ	UH02	06-may-1993	ND	0.19	UGL	R		
			PCB260	М	0	UH02	06-may-1993	LT	0.19	UGL			
			PCB260	S	3.75	UH02	06-may-1993		3.4	UGL			
		MW-001	CL10BP	N	1.25	UH02	06-may-1993		1.2	UGL	T		GO
		MW-002 MW-004	CL10BP CL10BP	N N	1.25 1.25	UH02 UH02	06-may-1993		1.1 1.2	UGL UGL	T T		GO GO
		MW-014	CL10BP	N	1.25	UH02	06-may-1993 06-may-1993		1.1	UGL	Ť		GO
		MW-016	CL10BP	N	1.25	UH02	06-may-1993		0.89	UGL	Ť		GO
		MW-018	CL10BP	N	1.25	UH02	06-may-1993		1	UGL	T		GO
		MW-10	CL10BP	N	1.25	UH02	06-may-1993		1.1	UGL	Т		GO
ES	DWHA		ABHC	M M	0	UH13 UH13	05-may-1993	LT	0.039	UGL	В		
			ACLDAN AENSLF	M	0	UH13	05-may-1993 05-may-1993	ND LT	0.075 0.023	UGL UGL	R		
			AENSLF	S	0.5	UH13	05-may-1993	LI	0.023	UGL	Х		
			ALDRN	М	0	UH13	05-may-1993	LT	0.092	UGL			
			ALDRN	s ·	0.5	UH13	05-may-1993		0.533	UGL			
			BBHC	M	0	UH13	05-may-1993	LT	0.024	UGL			
			BENSLF BENSLF	M S	0 0.5	UH13 UH13	05-may-1993 05-may-1993	LT	0.023 0.637	UGL UGL	х		
			CL10BP	S	1.25	UH13	05-may-1993		1.3	UGL	Ť		
							•			-			

			Test	Method	Q C			Meas.		Unit		Data	
Lab	Lot	F Samp No	Name	Туре	Spike	Code	Analysis Date	Bool	<u>Value</u>	Meas	Flags	Qualifiers	Prog
			CL10BP	s	1.25	UH13	05-may-1993		1.6	UGL	T		
			CL4XYL	S	1.25	UH13	05-may-1993		1.04	UGL	T T		
			CL4XYL	S	1.25	UH13	05-may-1993	1.7	1.29 0.029	UGL	ı		
			DBHC	M	0	UH13 UH13	05-may-1993 05-may-1993	LT LT	0.024	UGL			
			DLDRN	M S	0 0.5	UH13	05-may-1993		0.606	UGL	Х		
			DLDRN ENDRN	M	0.5	UH13	05-may-1993	LT	0.024	UGL			
			ENDRN	S	0.5	UH13	05-may-1993		0.663	UGL	Х		
			ENDRNA	M	0	UH13	05-may-1993	LT	0.029	UGL	_		
			ENDRNK	M	0	UH13	05-may-1993	ND	0.029	UGL	R		
			ESFSO4	M	0	UH13	05-may-1993	LT	0.079 0.075	UGL UGL	R		
			GCLDAN	M	0	UH13	05-may-1993 05-may-1993	ND LT	0.073	UGL			
			HPCL	M S	0 0.5	UH13 UH13	05-may-1993		0.554	UGL			
			HPCL HPCLE	M	0.5	UH13	05-may-1993	LT	0.025	UGL			
			ISODR	M	ŏ	UH13	05-may-1993	LT	0.056	UGL			
			ISODR	S	1	UH13	05-may-1993		1.02	UGL			
			LIN	M	0	UH13	05-may-1993	LT	0.051	UGL			
			LIN	S	0.5	UH13	05-may-1993		0.411 0.057	UGL UGL			
			MEXCLR	M	0	UH13	05-may-1993	LT	1.26	UGL	x		
			MEXCLR	S	1 0	UH13 UH13	05-may-1993 05-may-1993	LT	0.023	UGL			
			PPDDD PPDDE	M M	0	UH13	05 - may - 1993	LT	0.027	UGL			
			PPDDT	M	ŏ	UH13	05-may-1993	LT	0.034	UGL			
			PPDDT	S	0.5	UH13	05-may-1993		0.537	UGL			
			TXPHEN	М	0	UH13	05-may-1993	LT	1.35	UGL			GO
		RBLK-1	ABHC	R	0	UH13	05-may-1993	LT ND	0.039 0.075	UGL UGL	R		GO
		RBLK-1	ACLDAN	R	0	UH13 UH13	05-may-1993 05-may-1993	LT	0.023	UGL			GO
		RBLK-1	AENSLF	R R	0 0	UH13	05-may-1993	LT	0.092	UGL.			GO
ES	DWHA	RBLK-1 RBLK-1	ALDRN BBHC	R	ŏ	UH13	05-may-1993	LT	0.024	UGL			GO
	DWIIA	RBLK-1	BENSLF	R	0	UH13	05-may-1993	LT	0.023	UGL	_		GO
		RBLK-1	CL10BP	N	1.25	UH13	05-may-1993		2	UGL	T T		GO GO
		RBLK-1	CL4XYL	N	1.25	UH13	05-may-1993	LT	1.27 0.029	UGL			GO
		RBLK-1	DBHC	R	0	UH13 UH13	05-may-1993 05-may-1993	LT	0.029	UGL			GO
		RBLK-1	DLDRN	R	0 0	UH13	05-may-1993	LT	0.024	UGL			GO
		RBLK-1 RBLK-1	ENDRN ENDRNA	R R	0	UH13	05-may-1993	LT	0.029	UGL			GO
		RBLK-1	ENDRNK	R	Ō	UH13	05-may-1993	ND	0.029	UGL	R		GO
		RBLK-1	ESFSO4	R	0	UH13	05-may-1993	LT	0.079	UGL	-		GO GO
		RBLK-1	GCLDAN	R	0	UH13	05-may-1993	ND	0.075	UGL UGL	R		GO
		RBLK-1	HPCL	R	0	UH13	05-may-1993	LT LT	0.042 0.025	UGL			GO
		RBLK-1	HPCLE	R	0	UH13 UH13	05-may-1993 05-may-1993	LT	0.056	UGL			GO
		RBLK-1	ISODR	R R	0	UH13	05-may-1993	ĹŤ	0.051	UGL			GO
		RBLK-1 RBLK-1	LIN MEXCLR	R	ŏ	UH13	05-may-1993	LT	0.057	UGL			GO
		RBLK-1	PPDDD	R	0	UH13	05-may-1993	LT	0.023	UGL			GO GO
		RBLK-1	PPDDE	R	0	UH13	05-may-1993	LT	0.027	UGL			GO
		RBLK-1	PPDDT	R	0	UH13	05-may-1993 05-may-1993	LT LT	0.034 1.35	UGL			GO
		RBLK-1	TXPHEN	R	0	UH13 UH13	13-may-1993	LT	0.039	UGL			
ES	DWIA		ABHC ACLDAN	M M	0	UH13	13-may-1993	ND	0.075	UGL	R		
			AENSLF	 М	ō	UH13	13-may-1993	LT	0.023	UGL			
			AENSLF	S	0.5	UH13	13-may-1993		0.428	UGL			
			ALDRN	M	0	UH13	13-may-1993	LT	0.092 0.38	UGL UGL			
			ALDRN	S	0.5	UH13	13-may-1993	LT	0.024	UGL			
			BBHC	M M	0	UH13 UH13	13-may-1993 13-may-1993	LT	0.023	UGL			
			BENSLF BENSLF	M S	0.5	UH13	13-may-1993	_ ·	0.487	UGL			
			CL10BP	S	1.25	UH13	13-may-1993		1.2	UGL	Ţ		
			CL10BP	s	1.25	UH13	13-may-1993		1.4	UGL	T		
			CL4XYL	S	1.25	UH13	13-may-1993		0.946	UGL	T T		
			CL4XYL	S	1.25	UH13	13-may-1993	LT	0.983 0.029	UGL	'		
			DBHC	M	0	UH13	13-may-1993 13-may-1993	LT	0.029	UGL			
			DLDRN DLDRN	M S	0 0.5	UH13 UH13	13-may-1993		0.461	UGL			
			ENDRN	M	0.5	UH13	13-may-1993	LT	0.024	UGL			
			ENDRN	S	0.5	UH13	13-may-1993		0.454	UGL			

			Test	Method	Q (	C		Meas.		Unit		Data	
Lab	<u>Lot</u>	F Samp No	Name	Type	Spike	Code	<b>Analysis Date</b>	Bool	<u>Value</u>	Meas	Flags	Qualifiers	Prog
			ENDRNA	M	0	UH13	13-may-1993	LT	0.029	UGL			
			ENDRNK	M	0	UH13	13-may-1993	ND	0.029	UGL	R		
			ESFSO4	M	0	UH13	13-may-1993	LT	0.079	UGL			
			GCLDAN	M	0	UH13	13-may-1993	ND	0.075	UGL	R		
			HPCL HPCL	M S	0	UH13	13-may-1993	LT	0.042	UGL			
			HPCLE	M	0.5 0	UH13 UH13	13-may-1993 13-may-1993	LT	0.394 0.025	UGL UGL			
			ISODR	M	Ö	UH13	13-may-1993	LT	0.056	UGL			
			ISODR	S	1	UH13	13-may-1993		0.736	UGL			
			LIN	M	0	UH13	13-may-1993	LT	0.051	UGL			
			LIN	S	0.5	UH13	13-may-1993		0.279	UGL			
	DIAMA		MEXCLR	М	0	UH13	13-may-1993	LT	0.057	UGL			
ES	DWIA		MEXCLR PPDDD	S M	1	UH13	13-may-1993		1.02	UGL			
			PPDDE	M	0 0	UH13 UH13	13-may-1993 13-may-1993	LT LT	0.023 0.027	UGL UGL			
			PPDDT	М	0	UH13	13-may-1993	LT	0.027	UGL			
			PPDDT	S	0.5	UH13	13-may-1993		0.393	UGL			
			TXPHEN	M	0	UH13	13-may-1993	LT	1.35	UGL			
		MW-001	CL10BP	N	1.25	UH13	13-may-1993		0.92	UGL	Т		GO
		MW-001	CL4XYL	N	1.25	UH13	13-may-1993		0.856	UGL	Т		GO
		MW-002	CL10BP	N	1.25	UH13	13-may-1993		0.99	UGL	Ţ		GO
		MW-002 MW-004	CL4XYL CL10BP	N N	1.25 1.25	UH13	13-may-1993		0.99	UGL	T		GO
		MW-004	CL4XYL	N	1.25	UH13 UH13	13-may-1993 13-may-1993		0.91 0.872	UGL UGL	T T		GO GO
		MW-014	CL10BP	N	1.25	UH13	13-may-1993		1.2	UGL	Ť		GO
		MW-014	CL4XYL	N	1.25	UH13	13-may-1993		1.06	UGL	Ť		GO
		MW-016	CL10BP	N	1.25	UH13	13-may-1993		1.4	UGL	Т		GO
		MW-016	CL4XYL	N	1.25	UH13	13-may-1993		1.02	UGL	Т		GO
		MW-018	CL10BP	N	1.25	UH13	13-may-1993		1.1	UGL	T.		GO
		MW-018	CL4XYL	N	1.25	UH13	13-may-1993		0.952	UGL	T		GO
		MW-10 MW-10	CL10BP CL4XYL	N N	1.25 1.25	UH13 UH13	13-may-1993 13-may-1993		1.6 1.12	UGL UGL	T T		GO GO
ES	DYIA	18114 10	111TCE	M	0	UM20	03-may-1993	LT	0.5	UGL	•		do
			112TCE	M	ŏ	UM20	03-may-1993	LT	1.2	UGL			
			11DCE	M	0	UM20	03-may-1993	LT	0.5	UGL			
			11DCLE	М	0	UM20	03-may-1993	LT	0.68	UGL			
			12DCD4	S	50	UM20	03-may-1993		48	UGL			
			12DCE 12DCLE	M M	0	UM20	03-may-1993	LT	0.5	UGL			
			12DCLP	M	0	UM20 UM20	03-may-1993 03-may-1993	LT LT	0.5 0.5	UGL UGL			
			2CLEVE	M	Ō	UM20	03-may-1993	LT	0.71	UGL			
			4BFB	S	50	UM20	03-may-1993		50	UGL			
			ACET	М	0	UM20	03-may-1993	LT	13	UGL			
			ACROLN	М	0	UM20	03-may-1993	ND	100	UGL	R		
			ACRYLO	М	0	UM20	03-may-1993	ND	100	UGL	R		
			BRDCLM C13DCP	M M	0	UM20	03-may-1993	LT	0.59	UGL			
			C2AVE	M	0 0	UM20 UM20	03-may-1993 03-may-1993	LT LT	0.58 8.3	UGL UGL			
			C2H3CL	M	ŏ	UM20	03-may-1993	LT	2.6	UGL			
			C2H5CL	M	0	UM20	03-may-1993	LT	1.9	UGL			
			C6H6	М	0	UM20	03-may-1993	LT	0.5	UGL			
			CCL3F	M	0	UM20	03-may-1993	LT	1.4	UGL			
			CCL4 CH2CL2	M	0	UM20	03-may-1993	LT	0.58	UGL			
			CH2CL2	M M	0	UM20 UM20	03-may-1993 03-may-1993	LT LT	2.3 5.8	UGL UGL			
			CH3CL	M	ō	UM20	03-may-1993	LT	3.2	UGL			
			CHBR3	М	0	UM20	03-may-1993	LT	2.6	UGL			
			CHCL3	М	0	UM20	03-may-1993	LT	0.5	UGL			
			CL2BZ	М	0	UM20	03-may-1993	ND	10	UGL	R		
			CLC6H5	M	0	UM20	03-may-1993	LT	0.5	UGL			
			CS2	M M	0	UM20	03-may-1993	LT	0.5	UGL			
ES	DYIA		DBRCLM ETC6H5	M M	0	UM20 UM20	03-may-1993 03-may-1993	LT LT	0.67 0.5	UGL UGL			
			MEC6D8	S	50	UM20	03-may-1993 03-may-1993	-1	49	UGL			
			MEC6H5	М	0	UM20	03-may-1993	LT	0.5	UGL			
			MEK	M	0	UM20	03-may-1993	LT	6.4	UGL			
			MIBK	M	0	UM20	03-may-1993	LT	3	UGL			
			MNBK	M	0	UM20	03-may-1993	LT	3.6	UGL			

					-			Meas.		Unit		Data	
Lab	Lot	F Samp No	Test <u>Name</u>	Method Type	Q C Spike	;	Analysis Date	Bool	Value	Meas	Flags	Qualifiers	Prog
			STYR	М	0	UM20	03-may-1993	LT	0.5	UGL			
			T13DCP	М	0	UM20	03-may-1993	LT	0.7	UGL			
			TCLEA	М	0	UM20	03 - may - 1993	LT	0.51	UGL			
			TCLEE	M	0	UM20	03-may-1993	LT	1.6	UGL			
			TRCLE	M	0	UM20	03-may-1993	LT	0.5	UGL			
			XYLEN	М	0	UM20	03-may-1993	LT	0.84	UGL			GO
		MW-001	12DCD4	N	50	UM20	03-may-1993		54	UGL UGL			GO
		MW-001	4BFB	N	50	UM20	03-may-1993		45 46	UGL			GO
		MW-001	MEC6D8	N	50	UM20	03-may-1993		54	UGL			GO
		MW-002	12DCD4	N	50 50	UM20 UM20	03-may-1993 03-may-1993		45	UGL			GO
		MW-002	4BFB	N N	50 50	UM20	03-may-1993		47	UGL			GO
		MW-002	MEC6D8 12DCD4	N	50	UM20	03-may-1993		56	UGL			GO
		MW-004 MW-004	4BFB	N	50	UM20	03-may-1993		46	UGL			GO
		MW-004	MEC6D8	N	50	UM20	03-may-1993		47	UGL			GO
		MW-014	12DCD4	N	50	UM20	03-may-1993		54	UGL			GO
		MW-014	4BFB	N	50	UM20	03-may-1993		44	UGL			GO
		MW-014	MEC6D8	N	50	UM20	03-may-1993		45	UGL			GO
		MW-016	12DCD4	N	50	UM20	03-may-1993		57	UGL.			GO GO
		MW-016	4BFB	N	50	UM20	03 – may – 1993		45	UGL			GO
		MW-016	MEC6D8	N	50	UM20	03-may-1993		47	UGL			GO
		MW-018	12DCD4	N	50	UM20	03-may-1993		57	UGL			GO
		MW-018	4BFB	N	50	UM20	03-may-1993		45 47	UGL UGL			GO
		MW-018	MEC6D8	N	50	UM20	03-may-1993		47 54	UGL			GO
		MW-10	12DCD4	N	50	UM20	03-may-1993 03-may-1993		44	UGL			GO
		MW-10	4BFB	N	50 50	UM20 UM20	03-may-1993		44	UGL			GO
		MW-10	MEC6D8	N	50 0	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	111TCE	R R	0	UM20	03-may-1993	LT	1.2	UGL			GO
		RBLK-1	112TCE 11DCE	R	Ö	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1 RBLK-1	11DCLE	R	Ö	UM20	03-may-1993	LT	0.68	UGL			GO
		RBLK-1	12DCD4	N.	50	UM20	03-may-1993		56	UGL			GO
		RBLK-1	12DCE	R	0	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	12DCLE	R	0	UM20	03-may-1993	LT	0.5	UGL			GO GO
		RBLK-1	12DCLP	R	0	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	2CLEVE	R	0	UM20	03-may-1993	LT	0.71	UGL			GO
		RBLK-1	4BFB	N	50	UM20	03-may-1993	LT	43 13	UGL UGL			GO
		RBLK-1	ACET	R	0	UM20	03-may-1993	LT ND	100	UGL	R		GO
		RBLK-1	ACROLN	R	0 0	UM20 UM20	03-may-1993 03-may-1993	ND	100	UGL	R		GO
		RBLK-1	ACRYLO	R R	0	UM20	03-may-1993	LT	0.59	UGL			GO
		RBLK-1	BRDCLM C13DCP	R	0	UM20	03-may-1993	LT	0.58	UGL			GO
		RBLK-1 RBLK-1	C2AVE	R	Ö	UM20	03-may-1993	LT	8.3	UGL			GO
		RBLK-1	C2H3CL	R	Ō	UM20	03-may-1993	LT	2.6	UGL			GO
		RBLK-1	C2H5CL	R	0	UM20	03-may-1993	LT	1.9	UGL			GO GO
ES	DYIA	RBLK-1	C6H6	R	0	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	CCL3F	R	0	UM20	03-may-1993	LT	1.4	UGL			GO
		RBLK-1	CCL4	R	0	UM20	03-may-1993	LT	0.58	UGL UGL			GO
		RBLK-1	CH2CL2	R	0	UM20	03-may-1993	LT LT	2.3 5.8	UGL			GO
		RBLK-1	CH3BR	R	0	UM20	03-may-1993 03-may-1993	LT	3.2	UGL			GO
		RBLK-1	CH3CL	R	0	UM20 UM20	03-may-1993	LT	2.6	UGL			GO
		RBLK-1	CHBR3	R R	0	UM20	03-may-1993		3.9	UGL			GO
		RBLK-1 RBLK-1	CHCL3 CL2BZ	R	Ö	UM20	03-may-1993	ND	10	UGL	R		GO
		RBLK-1	CLC6H5	R	Ō	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	CS2	R	0	UM20	03-may-1993	LT	0.5	UGL			GO GO
		RBLK-1	DBRCLM	R	0	UM20	03-may-1993	LT	0.67	UGL			GO
		RBLK-1	ETC6H5	R	0	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	MEC6D8	N	50	UM20	03-may-1993		44 0.5	UGL UGL			GO
		RBLK-1	MEC6H5	R	0	UM20	03-may-1993	LT LT	6.4	UGL			GO
		RBLK-1	MEK	R	0	UM20	03-may-1993	LT	3	UGL			GO
		RBLK-1	MIBK	R	0	UM20 UM20	03-may-1993 03-may-1993	LT	3.6	UGL			GO
		RBLK-1	MNBK	R	0 0	UM20	03-may-1993	LT	0.5	UGL			GO
		RBLK-1	STYR	R	0	UM20	03-may-1993	LT	0.7	UGL			GO
		RBLK-1	T13DCP	R R	0	UM20	03-may-1993	LT	0.51	UGL			GO
		RBLK-1	TCLEA TCLEE	R	0	UM20	03-may-1993	LT	1.6	UGL			GO
		RBLK-1 RBLK-1	TRCLE	R	0	UM20	03-may-1993	LT	0.5	UGL			GO
		UDFV-1	HOLL		•		,						

			Test	Method	Q (	c		Meas.		Unit		Data	
Lab	<u>Lot</u>	F Samp No	Name	Туре	<u>Spike</u>	Code	Analysis Date	Bool	<u>Value</u>	Meas	Flags	Qualifiers	Prog
		RBLK-1	XYLEN	R	0	UM20	03-may-1993	LT	0.84	UGL			GO
		TBLK-1	111TCE	T	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	112TCE	Ť	Ō	UM20	03-may-1993	LT	1.2	UGL			GO
		TBLK-1	11DCE	Ť	ō	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	11DCLE	Ť	ŏ	UM20	03-may-1993	LT	0.68	UGL			GO
		TBLK-1	12DCD4	N	50	UM20	03-may-1993		54	UGL			GO
		TBLK-1	12DCE	T	0	UM20	•	LT	0.5	UGL			GO
				Ť			03-may-1993						GO
		TBLK-1	12DCLE		0	UM20	03-may-1993	LT	0.5	UGL			
		TBLK-1	12DCLP	Ţ	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	2CLEVE	T	0	UM20	03-may-1993	LT	0.71	UGL			GO
		TBLK-1	4BFB	N	50	UM20	03-may-1993		45	UGL			GO
		TBLK-1	ACET	T	0	UM20	03-may-1993	LT	13	UGL			GO
		TBLK-1	ACROLN	Т	0	UM20	03-may-1993	ND	100	UGL	R		GO
		TBLK-1	ACRYLO	Т	0	UM20	03-may-1993	ND	100	UGL	R		GO
		TBLK-1	BRDCLM	Т	0	UM20	03-may-1993	LT	0.59	UGL			GO
		TBLK-1	C13DCP	T	0	UM20	03-may-1993	LT	0.58	UGL			GO
		TBLK-1	C2AVE	T	0	UM20	03-may-1993	LT	8.3	UGL			GO
		TBLK-1	C2H3CL	Т	0	UM20	03-may-1993	LT	2.6	UGL			GO
		TBLK-1	C2H5CL	Т	0	UM20	03-may-1993	LT	1.9	UGL			GO
		TBLK-1	C6H6	Ť	Ō	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	CCL3F	Ť	Ö	UM20	03-may-1993	LT	1.4	UGL			GO
		TBLK-1	CCL4	Ť	Ö	UM20	03-may-1993	LT	0.58	UGL			GO
		TBLK-1	CH2CL2	Ť	Ö	UM20	03-may-1993	LT	2.3	UGL			GO
		TBLK-1	CH3BR	Ť	Ö	UM20	03-may-1993	LT	5.8	UGL			GO
		TBLK-1	CH3CL	Ť	Ö	UM20	03-may-1993	LT	3.2	UGL			GO
				Ť			•	LT	2.6	UGL			GO
		TBLK-1	CHBR3		0	UM20	03-may-1993	Li					GO
		TBLK-1	CHCL3	T T	0	UM20	03-may-1993		4.2	UGL	_		
		TBLK-1	CL2BZ	T -	0	UM20	03-may-1993	ND	10	UGL	R		GO
ES	DYIA	TBLK-1	CLC6H5	<u>T</u>	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	CS2	Т	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	DBRCLM	Т	0	UM20	03-may-1993	LT	0.67	UGL			GO
		TBLK-1	ETC6H5	Т	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	MEC6D8	N	50	UM20	03-may-1993		47	UGL			GO
		TBLK-1	MEC6H5	Т	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	MEK	T	0	UM20	03-may-1993	LT	6.4	UGL			GO
		TBLK-1	MIBK	T	0	UM20	03-may-1993	LT	3	UGL			GO
		TBLK-1	MNBK	Т	0	UM20	03-may-1993	LT	3.6	UGL			GO
		TBLK-1	STYR	Ţ	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	T13DCP	T	Ó	UM20	03-may-1993	LT	0.7	UGL			GO
		TBLK-1	TCLEA	T	Õ	UM20	03-may-1993	LT	0.51	UGL			GO
		TBLK-1	TCLEE	Ť	Ō	UM20	03-may-1993	LT	1.6	UGL			GO
		TBLK-1	TRCLE	Ť	0	UM20	03-may-1993	LT	0.5	UGL			GO
		TBLK-1	XYLEN	Ť	0	UM20	03-may-1993	LT	0.84	UGL			GO
ES	EFBA	IDEK-I	SE	м	0	SD21	•	LT	3.02	UGL			
LJ	LIDA		SE	S	5		07-may-1993		4.8	UGL			
			SE	S		SD21	07-may-1993			UGL			
					75	SD21	07-may-1993		77.5				
		1004 040	SE	S	75	SD21	07-may-1993		78.4	UGL			00
		MW-018	SE	N	37.5	SD21	07-may-1993		34.8	UGL			GO
		MW-018	SE	N	37.5	SD21	07-may-1993		35.5	UGL			GO
		RBLK-1	SE	R	0	SD21	07 – may – 1993	LT	3.02	UGL			GO
ES	EOFA		OILGR	М	0	00	18-may-1993	LT	168	UGL			
			OILGR	S	4200	00	18-may-1993		4020	UGL			
			OILGR	S	4200	00	18-may-1993		4150	UGL			
			TPHC	М	0	00	18-may-1993	LT	168	UGL			
			TPHC	S	4200	00	18-may-1993		3660	UGL			
			TPHC	S	4200	00	18-may-1993		4020	UGL			
		RBLK-1	OILGR	N	4200	00	18-may-1993		3990	UGL			GO
		RBLK-1	OILGR	R	0	00	18-may-1993	LT	168	UGL			GO
		RBLK-1	TPHC	N.	4200	00	18-may-1993		3890	UGL			GO
		RBLK-1	TPHC	R	0	00	18-may-1993	LT	168	UGL			GO
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		••	Ū	50	.5 may 1886	1	,				

APPENDIX H
SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER

# SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER – MW001 DETROIT ARSENAL

		70/0	00/1	00/0	00/0	1,00	00/3	00/2	1/03	4/03
Volatil	Volatile Organic Compounds	<b>+</b> 0/ <b>c</b>	1/00	2/00	00/2	1/20	00/10	277	200	67/4
СНЗС	Chloromethane	1	NA	Ν	NA	NA	5.25	i	I	ı
Base-N	Base – Neutral/Acid Extractables									
вгенр	Bis(2-ethylhexyl)phthalate	ĺ	NA	NA	NA	NA	6.91	i	6.4	ı
	Metals									
SA.	Arsenic	ł	Y'N	A'N	1	Ϋ́Z	1	1	3.2	1
BA	Barium	ı	Ϋ́	NA	NA A	Ϋ́Ν	NA	AN	128	94.4
CA	Calcium	ΑN	Ϋ́	AN	A'A	NA	AN	A'N	341,000	278,000
FE	Iron	ΥN	35	ı	1	6,700	NA	Y.	2,580	1,170
PB	Lead	1	I	1	ı	1.74	2.39	2.49	ı	ı
×	Potassium	AN	AN	A'A	AN	NA V	NA	NA	3,200	*
MG	Magnesium	Y V	N A	N A	NA	N.	AN	A'A	127,000	105,000
MN	Manganese	100	252	100	197	1,240	1,010	658	1,300	917
NA A	Sodium	A'N	A'N	NA	Ϋ́N	AZ A	NA	NA	126,000 G	83,900 G
>	Vanadium	Y.	AN	NA	NA	ΥZ	Ϋ́	NA	18.8	ı
ZN	Zinc	I	Y.	Y.	NA VA	Y Z	ı	I	98.6	1
Wate	Water Onality Parameters									
G.	Chloride	Z Z	AN	NA	NA	AN	Ϋ́	VA	300,000	260,000
SO4	Sulfate	143,000	210,000	110,000	140,000	330,000	267,000	212,000	400,000	300,000
LIN	Nitrogen, (NO2 + NO3)	1	Ϋ́	Ϋ́	AN	ΥV	11	21	33.6	21.3
OILGR	Oil and Grease	t	Y Y	NA VA	Y Y	Y Y	I	I	ŀ	1
Tentati	Tentative v Identified Commonnes									
2CHEIL	2-Cyclohexen-ol	NA V	AN	NA AN	Z	AN	-	NA	AN	ΥN
CAPLCT	Caprofactam	NA	NA	NA	NA	NA	2	40	AN	AN
UNK536	Unknown 536	NA	NA	NA	NA	NA	9	NA	NA	NA

Notes:

Units are expressed in micrograms per liter (µg/L).
 G - Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * - The value is below the blank action level and is considered undetected.
 NA - Not analyzed.

## 18-Aug-93

## SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER - MW002 **DETROIT ARSENAL**

	10/0	7/99	88/0	88/0	1/00	4/00	7/00	1/03	4/03
Volatile Organic Compounds	7/04	00//	2/00	00/2	02/1	0010	25/1	C / IT	
C6H6 Benzene	ı	NA	NA AN	NA	٧×	99:0	ı	ı	ı
12DCE 1,2-Dichloroethene	80	7.5	5.5	5.5	38.9	99	ı	7.0	98.0
TRCLE Trichloroethene	20	16	33	28	4.48	8.57	6.29	1.7	ı
C2H3CL Vinyl Chloride	i	NA	Y'A	NA	N A	40.5	10.1	1	ı
Base - Neutral/Acid Extractables									
	1	ı	ı	,	I	ı	ı	1	I
Metals									
BA Barium	ı	ΥZ	ΝΑ	NA	NA	Y V V	N A	48.1	43.1
CA Calcium	NA	ΝΑ	ΝΑ	NA	NA	NA	AN	241,000	185,000
FE Iron	NA	ΝΑ	Ϋ́	Ϋ́Z	NA	ΝA	ΥN	I	111
PB Lead	NA AN	V.	NA AN	٧X	NA AN	1.74	2.28	ı	1
K Potassium	NA	Ϋ́	ΝΑ	A'N	Ϋ́	Y Y	Ν	9,650	9,770 G
m	NA	Ϋ́Z	Z V	Y V	Y.	ΝA	Y Y	70,200	50,500
MN Manganese	100	ΥN	Ϋ́	ΝΑ	NA A	76.2	ı	104	19.5
AG Silver	2	Ϋ́	ΥN	NA A	V.	I	I	ı	l
NA Sodium	AN	Y Y	Y.	NA	A'A	A'N	Ν	55,300 G	37,900 G
v Vanadium	NA	Y V	ΝΑ	AN	N A	Y Y	Y Y	14.3	ı
ZN Zinc	!	Y Y	Y Y	Ϋ́	NA	1	1	I	ı
Water Quality Parameters									
CL Chloride	NA AN	AN	NA	NA	NA	ΥN	Ϋ́	000'09	36,000
SO4 Sulfate	204,000	NA	NA A	NA	ΝΑ	400,000	340,000	350,000	226,000
NIT Nitrogen, (NO2 + NO3)	1	NA	NA	NA	NA	1	14	24.8	75.8
OILGR Oil and Grease	10,000	4,900	7,000	008'9	186	ı	1	355	1
TOC Total Organic Carbon	NA	NA	12,000	8,000	NA	NA	NA	NA	NA
Tentatively Identified Compounds	<b>20</b>								
CAPLCT Caprofactam		NA A	NA	NA	ΑN	4	70	NA	NA
C12DCE Cis-1,2-Dichloroethene	NA	Ϋ́	A'N	NA A	ΝΑ	ΝΑ	40	NA	NA VA
12TCE 1,1,2-Trichloroethane	AN AN	Y.	A'N	NA	ΑN	1	NA	NA	NA
UNK516 Unknown 516	NA	NA	NA	NA	NA	m	NA	AN	NA
UNK575 Unknown 575	NA	NA	NA	NA	NA	1	NA	NA	NA

Notes:

Units are expressed in micrograms per liter (µg/L).
 G - Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * - The value is below the blank action level and is considered undetected.
 NA - Not analyzed.

## SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER - MW004 **DETROIT ARSENAL**

		P8/6	7/88	0/88	0/88	1/00	00/5	00/2	1 /03	4/02
Vola	Volatile Organic Compounds		201	2007	00/2	06/1	06/6	06//	1/93	4/93
		I	ı	Ī	I	ı	i	1	ı	ı
Base-	Base - Neutral/Acid Extractables									
		ŧ	ı	ŀ	i	ı	i	1	1	ı
	Metals									
BA	Barium	1	NA	NA	NA	Y'A	ΝΑ	NA	44.3	31.1
CD	Cadmium	4.4	AN	Ϋ́	NA	ΥZ	ı	1	ı	ı
Ϋ́	Calcium	AN	AN	Ϋ́Z	NA	AN	NA	Ϋ́	232,000	218,000
CG	Copper	10	NA	AN	NA	ΥN	1	i	1	ı
臣	Iron	AN	53.9	I	ı	i	NA AN	NA	138	43.8
PB	Lead	ı	ı	ı	ı	5.64	1	1	ı	1
×	Potassium	Y.	NA	NA	NA A	NA V	AN	NA	747	*
MG	Magnesium	AN	NA	NA	ΝΑ	A'N	NA V	NA	55,400	58,300
MN	Manganese	300	107	4.03	58.7	84.4	15.3	ı	8.97	3.19
HG	Mercury	ı	Ϋ́	NA	NA	ΥN	ı	0.284	Į	1
AG	Silver	2	NA	AN	ΝΑ	A A	1	I	ı	ı
Ϋ́Z	Sodium	AN	NA A	Ϋ́Z	NA	ΥN	Y.	NA	129,000 G	114,000 G
>	Vanadium	ΑN	NA	NA	Ϋ́	ΝA	NA	AN	11.8	1
ZZ	Zinc	ı	ı	ı	ı	ı	1	I	90.4	ı
Wa	Water Quality Parameters									
ದ	Chloride	NA	NA A	NA	NA	NA AN	AN	AZ	80.000	000.66
SO4	Sulfate	AN	370,000	1	310,000	460,000	540,000	530,000	400,000	340,000
EZ	Nitrogen, (NO2 + NO3)	1	NA	NA	NA	Ϋ́	14.1	20.8	36.2	33
OILGR		19000	NA	ł	1	309	373	196	297	1
TOC	Total Organic Carbon	ΝΑ	I	ı	2400	NA	NA	NA	NA A	NA
Tenta	Tentatively Identified Compounds									
2CHE1	2CHE1L 2-Cyclohexen-ol	NA	NA	NA	NA	AZ AZ	-	AN	Y.	Y.
CAPLC	CAPLCT Caprofactam	NA	NA	Z	AN	Z	Z	20	Z	Ϋ́

Notes:

Units are expressed in micrograms per liter (μgL).
 G - Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * - The value is below the blank action level and is considered undetected.
 NA - Not analyzed.

## 18-Aug-93

## SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER - MW010 **DETROIT ARSENAL**

		9/84	7/88	88/6	88/6	1/90	2/90	2//90	1/93	4/93
Volatil	Volatile Organic Compounds								:	
12DCE	1,2-Dichloroethane (total)	I	I	1	1	1.13	ı	1	1.2	0.78
TRCLE	Trichloroethene	1	ı	1	t	Ī	ı	ı	0.62	0.70
Base-1	Base Neutral/Acid Extractables									
ВЗЕНР	Bis(2-ethylhexyl)phthalate	1	NA	NA	NA	NA	5.45	ı	I	l
	Metals									
BA	Barium	ı	NA	A'A	NA	ΝΑ	NA	NA	62.5	53.7
CD	Cadmium	8.9	NA	A'N	ΝΑ	ΝΑ	NA	1	ı	1
CA	Calcium	NA	NA VA	AN	Y Y	NA AN	NA A	NA	189,000	145,000
CR CR	Chromium	20	Ϋ́	NA	N A	Ϋ́Ζ	Y'A	ı	1	i
CG	Copper	9	NA	AN	Ϋ́	ΥZ	Ϋ́Z	1	ı	1
PB	Lead	NA	NA	NA	NA	Ϋ́	3.8	3.69	ı	ı
×	Potassium	NA AN	NA	NA	ΥN	Ϋ́Z	A'N	Ϋ́	2,840	*
MG	Magnesium	NA	A'N	NA	AN	AN	Y Y	Ϋ́	60,200	44,400
MN	Manganese	300	A'N	NA	NA	A'N	4.28	30.2	4.98	ı
AG	Silver	4	NA	NA	NA A	ΝΑ	Y Y	1	t	ı
NA A	Sodium	NA AN	NA	NA	NA	AN	NA	AN	282,000 G	193,000 G
NZ	Zinc	I	NA	NA	A'N	NA	Y V	1	100	1
Wate	Water Quality Parameters									
ರ	Chloride	NA	NA	NA	NA	NA	NA	N A	520,000	310,000
SO4	Sulfate	ΥN	NA	NA AN	NA	NA	251,000	237,000	145,000	104,000
LIN	Nitrogen, (NO2 + NO3)	1	NA	Z A	ΝΑ	NA	32.8	23.3	42.3	55.4
OILGR	Oil and Grease	14,000	7,100	1	ł	186	700	1,820	359	ı
TOC	Total Organic Carbon	ΝΑ	ND	9,200	009,6	NA	NA	NA VA	V.	AN
Tentati	Tentatively Identified Compounds									
CAPLCT	Caprofactam	ΑΝ	NA	A'A	NA	NA AN	NA	40	AN	NA
UNK516	1	NA	NA	NA	NA	NA	2	NA	NA	NA

Notes:

Units are expressed in micrograms per liter (μgL).
 G - Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * - The value is below the blank action level and is considered undetected.
 NA - Not analyzed.

## SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER - MW014 **DETROIT ARSENAL**

		9/84	7/88	88/6	1/90	2/90	2/90	1/93	4/93
Volatile	Volatile Organic Compounds								
CH2CL2	Methylene Chloride	7.0	NA	AN	A'N	NA AN	NA	6.1	ı
MEC6H5	Toluene	6.0	NA	NA	NA	NA	NA	I	1
Base-Ne	Base-Neutral/Acid Extractables								
взенр	Bis(2-ethylhexyl)phthalate	l	NA	NA	NA	NA	NA A	6.2	I
	Metals								
SB	Antimony	AN	NA	NA	NA	NA	A'N	1	53.1
ВА	Barium	1	NA	NA	NA	NA	AN	162	133
CD	Cadmium	6.7	ΝΑ	NA	NA	AN	AN	ı	I
CA	Calcium	A'A	NA AN	NA VA	Ϋ́	NA	NA	229,000	211,000
FE	Iron	NA	NA VA	ΝΑ	ΝΑ	NA	Ϋ́	i	46.3
PB	Lead	26.6	Ϋ́Z	A'N	NA AN	NA	Ϋ́	ı	ı
×	Potassium	AN	NA AN	Y'N	ΝΑ	NA	NA	3,460	ı
MG	Magnesium	AN	NA	NA AN	Ϋ́	NA	Ϋ́	152,000	138,000
Z. ZW	Manganese	400	NA AN	Ϋ́	V.	NA	Ϋ́Z	14.0	3.96
AG	Silver	ĸ	N A	NA AN	NA	NA	Ϋ́N	ı	ı
٧z	Sodium	NA	NA AN	NA	NA	ΝΑ	NA	309,000 G	312,000 G
>	Vanadium	NA	Ϋ́	NA AN	NA A	NA	ΝΑ	15.2	12.3
ZN	Zinc	I	NA	Y Y	NA	NA	NA	26.3	ı
Water	Water Quality Parameters								
CL	Chloride	ı	ΑN	NA	NA AN	Ϋ́Α	NA	1,000,000	1,000,000
SO4	Sulfate	77,800	NA AN	NA	NA	ΝA	ΝΑ	142,000	135,000
LIN	Nitrogen, (NO2 + NO3)	ı	NA	NA	N A	Ϋ́Α	Ϋ́Α	46.7	19
OILGR	Oil and Grease	I	Ϋ́	Ϋ́	Ϋ́	NA A	NA	i	1
Tentative	Tentatively Identified Compounds								
UNK007	Unknown 007	30	NA	NA	N A	Z A	NA	t	1

Notes:

Units are expressed in micrograms per liter (μg/L).
 G – Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * - The value is below the blank action level and is considered undetected.
 NA – Not analyzed.

# SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER – MW016 DETROIT ARSENAL

								007	
		9/84	1/88	88/6	1/90	06/5	06//	1/93	4/95
Volatile	Volatile Organic Compounds		į	į	į	,		t	
C6H6	Benzene	4.0	AN	ΑN	NA NA	1.09	ı	0.97	ı
11DCE	1,1 - Dichloroethene	8.0	NA VA	ΝA	NA	2.45	1.23	1.5	ı
11DCLE	1,1-Dichloroethane	100	372	370	140	173	153	130	69
12DCLP	1.2 - Dichloropropane	20	18	21	6.19	10.8	9.8	8.5	4.2
111TCE	1,1,1-Trichloroethane	400	128	110	31	36.6	24.8	19	5.7
Base-N	Base - Neutral/Acid Extractables								
		ı	I	ı	I	ı	ı	1	1
	Metals								
BA	Barium	AN	NA	A'A	NA	NA	Y.	94.4	73.2
CD	Cadmium	14.5	ΝA	NA	Y V	1	1	i	ı
CA	Calcium	NA	NA	NA	Y.	Υ V	Ϋ́	207,000	243,000
CR CR	Chromium	7	ı	1	ı	t	ı	1	ı
CC	Copper	9	ΝΑ	ΝA	ΝA		ı	1	ļ
FE	Iron	AN	21.3	NA V	Y V	NA A	ΥN	ı	85.1
PB	Lead	Y V	1	I	ı	7.59	3.14	1	I
MG	Magnesium	₹ Z	Ϋ́	Y.	Ϋ́	AN	N A	53,300	64,000
ZX	Manganese	200	3,120	2,000	1,270	1,120	326	1,750	1,710
Y Z	Sodium	Y Y	YZ	Y	Y Y	Y Y	Y V	413,000 G	436,000 G
ZN	Zinc	ı	Y V	Y V	Y'A	ſ	1	34.2	ı
Wate	Water Ouality Parameters								
C C	Chloride	A'A	ΝA	AN	ΥN	Ϋ́	Ν	1,000,000	1,200,000
SO4	Sulfate	60,000	120,000	100,000	145,000	128,000	142,000	109,000	11,000
EZ	Nitrogen, (NO2 + NO3)	1	Y Y	Y Y	ΥN	31.6	32.8	19.3	ı
OILGR	Oil and Grease	5,000	94,000	1	247	266	1	1	1
TOC	Total Organic Carbon	YZ V	ΩN	6,900	V.	Y Y	Y Y	Y Y	Ϋ́Z
Tentativ	Tentatively Identified Compounds								
CAPICT	Caprofactam	Ϋ́Z	Ϋ́Z	Ϋ́N	Ϋ́	0.9	40	AN	Ϋ́
2CHE1L	2-Cyclohexen-ol	AN	AN	Ϋ́	AN	1.0	NA.	NA	NA
TCLIFE	1,1,2-Trichloro-1,2,2-								
	Trifluoroethane	100	110	43	16	20	30	NA	70
UNK034	Unknown 034	NA	YZ:	Y Z	Y.	Y'A	ΨZ:	50	Y S
UNKS16	Unknown 516	AN :	AN :	¥Z :	Y Z	<b>-</b> 1 ;	YZ:	YA YA	Y S
UNK530	Unknown 530	Y Z	V Z	⊄ <b>×</b> Z Z	Υ <b>Υ</b>	A S	Y Z	0 4 10	K
17017520	Unkilowii 550	Z Z	(	( <	(	2 2	C Z	C V	0
11NK547	Unknown 539	C V	C Z	Ç Z	Z Z	(	( v	Z Z	NA
UNK558	Unknown 558	ZZ	Z Z	Z Z	Z	Ž	N Y	50	NA V
UNK561	Unknown 561	AN	NA	NA	NA	ΝA	NA	10	NA
UNKS63	Unknown 563	NA AN	NA	NA NA	NA	2	NA	NA	NA
UNKS64	Unknown 564	AN AN	NA VA	Y Y	NA	ΥN	4	Y.	NA
UNKS65	Unknown 565	NA	Ϋ́	Y Y	Y Y	Y Y	Y.	NA	06
UNKS67	Unknown 567	YZ :	Y ?	Y'S	YZ:	6 ;	YZ:	Y :	YY,
UNK568	Unknown 568	Y.	Ψ.	Y.	ΑZ;	AZ	YZ;	Y.	01;
UNK597	Unknown 597	Y :	Y X	Y X	Y Z	7 7	Ϋ́ Z	Y Z	Y Z
UNKSy8	Unknown 398	INA	NA	INA	NA	r	INA	INA	INA

 Units are expressed in micrograms per liter (μgL).
 G – Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * – The value is below the blank action level and is considered undetected.
 NA – Not analyzed. Notes:

# SUMMARY OF ANALYTICAL RESULTS IN GROUNDWATER - MW018 DETROIT ARSENAL

		9/84	7/88	88/6	1/90	2/90	2/90	1/93	4/93
Volatile	Volatile Organic Compounds								
CCL4	Carbon Tetrachloride	NA	NA	NA	NA	NA	NA A	0.64	ı
Basc – N	Base-Neutral/Acid Extractables								
взенр	Bis(2-ethylhexyl)phthalate	NA	NA	NA	NA	NA V	N A	7.9	ı
	Metals								
SB	Antimony	Ϋ́	NA	Ϋ́	NA AN	NA AN	NA	ı	60.7
BA	Barium	1	NA	N A	ΝΑ	NA	NA	113	113
CA	Calcium	Y'A	ΝΑ	Y'A	A'A	NA	Ϋ́Z	130,000	150,000
CR	Chromium III	10	ΝΑ	ΝΑ	Y.	NA	ΝΑ	1	ı
CRHEX	Chromium VI	10	ΝΑ	NA A	A'N	NA AN	Ϋ́Х	NA	NA
CC	Copper	7	A'A	A'N	Ϋ́	N A	ΝΑ		ı
×	Potassium	NA	ΥN	NA	A'N	AN	Ϋ́Α		6,320 G
MG	Magnesium	NA	NA	Y.	A'N	AN	ΝΑ		103,000
M.N.	Manganese	100	ΑN	Ϋ́	N A	A A	ΝΑ	3.16	I
AG	Silver		ΥN	NA A	ΥN	Ϋ́	ΝA		ı
Y.	Sodium	VA	ΝΑ	NA	A A	NA	ΝΑ	115,000 G	127,000 G
>	Vanadium	ΝΑ	Ϋ́Α	NA A	NA	NA	ΝA	12.9	13.5
ZN	Zinc	N A	NA	Ϋ́	NA A	NA	NA	ı	1
Water	Water Ouality Parameters								
ರ	Chloride	ı	AN	NA	AN	N A	NA	410,000	520,000
SO4	Sulfate	216,000	NA A	Y'N	Y.	ΝΑ	Ϋ́Α	172,000	183,000
LIN	Nitrogen, (NO2 + NO3)	1,240	NA	Y Y	NA	NA	NA	88	85.2
Tentative	Tentatively Identified Compounds								
OMCTSX UNK007	Octamethylcyclotetrasilane Unknown 007	NA 01	4 4 2 2	Z Z	Y Z	A Z	A Z	0 N	A Z
				1717	177	Q.	Ç	Ç.	Y.

Notes:

Units are expressed in micrograms per liter (µgL).
 G - Compound was found in the associated rinsate blank but this value is above the action level.
 A dash (-) indicates the analyte was analyzed for but not detected.
 * - The value is below the blank action level and is considered undetected.
 NA - Not analyzed.