Analysis of Lowest Risk Aircraft

With emphasis on Engine Type and Purpose of Flight

Investing in Aircraft

The Problem

- How do we expand our line of business within the bounds of our risk tolerance?
- How do we determine which industries or aircraft are safest?
- Do we have enough data to inform a market entry strategy?

Investing in Aircraft

The Solution

- Employ Data Science to extract actionable findings from our dataset
- Data sanitization to focus our analysis on prescient data
- Value imputation from external research to extract more samples
- Correlate and Normalize elements in data to derive Risk

Elements of Analysis

& Relevant Variables

- Focus analysis on actionable variables
 - General Trends in Safety (fatalities over the years)
- Focus on Common Aircraft Features
 - Business Domain (Purpose of Flight)
 - Physical Characteristics (Engine Type)

Methodology

Analysis Ontology & Assumptions

- Focus on Airplanes specifically to make more concrete recommendations
- · Conduct research to impute missing valuers and augment extant elements to increase data usability
- Employ descriptive statistics to visualize and understand data
- Remove samples that:
 - Contain too many unique values
 - Contain too many missing values (that cannot be reasonably imputed)
 - Sample values are too few in number (relative to the other feature values)

Methodology

Feature Engineering & Calculating Risk

- There are many ways to assess risk
- The most intuitive factors to risk are:
 - Fatal, serious, minor injuries
 - Total Uninjured
- Using these I constructed a normalized ratio against a particular feature, specifically:
 - Engine Type
 - Purpose of Flight

Findings

Safety over the years

- Total Fatal Injuries in Airplane flights are rising:
 - Any investments should be researched thoroughly
 - We should not invest broadly in aircraft
 - Instead we have to consider
 Aircraft investments in a
 more scoped context

Findings

Feature specific analysis

- Purpose of Flight (Industry) with fewest Fatal Injuries to Total Injurious flights:
 - Banner Tow
 - Instructional
 - Aerial Application (Agricultural)
- Engine Type with fewest Fatal Injuries to Total Injurious flights:
 - Turbo Fan
 - Reciprocating

Problem Solution

& How Recommendations were determined

- Solve for the least risky aircraft investments by prioritizing fatality rates
- Use Feature engineering to organize, assess, and visualize candidate investments
- Consider macro and micro features in the dataset to determine:
 - General trends in the industry over the years
 - Specific feature analysis eg. Engine Type to make concrete recommendations

Recommendations

& Conclusions

- Data shows that fatal injuries have actually increased over the years:
 - Do not recommend broad investment in aircraft
- Invest in the following industries to minimize risk:
 - Banner Towing
 - Instructional
 - Aerial Application (Agricultural)
- Invest in manufacturers or industries using Turbo Fan based engine architectures

Considerations

& confidence, limitations and enhancements

- There are many ways to assess risk so another metric could have been used
 - Further analysis would be required to determined which metric is more statistically relevant
- The dataset includes considerable amounts of irregularities and missing values and required considerable assumptions to coerce which may have produced further irregularities in the findings.
- Enhacements to this analysis could made if more time were spent on:
 - More data sanitization
 - More data
 - More external research to impute missing values

Questions and Answers

& Thank you