

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington

jmschreiber91

@jmschrei

@jmschreiber91

The structure of the genome is biologically important

3D structure influences:

- Gene expression
- Replication timing
- Other processes?

Hi-C counts proximal pairs of DNA loci via cross-linking and sequencing

Hi-C yields contact maps comprised of counts of pairwise contacts

These maps typically have five columns

chr1	fragmentMid1	chr2	fragmentMid2	contactCount
chr17	41400500	chr17	41463500	330
chr17	41382500	chr17	41463500	171
chr17	41401500	chr17	41463500	143
chr17	41381500	chr17	41463500	137
chr14	106103500	chr14	106198500	91
chr16	25066500	chr16	25137500	106
chr10	27180500	chr10	27644500	65
chr17	43651500	chr17	44566500	54
chr19	53361500	chr19	53446500	96
chr3	195346500	chr3	195453500	79
chr19	23562500	chr19	23982500	48
chr19	15785500	chr19	15888500	69
chr17	41400500	chr17	41561500	63
chr6	29884500	chr6	29970500	86
chr1	31192500	chr1	31252500	68
chr1	46503500	chr1	46645500	58
chr15	75323500	chr15	75497500	54
chr17	41382500	chr17	41440500	64
chr6	37019500	chr6	37140500	55
chr17	41400500	chr17	41466500	61
chr19	21272500	chr19	21334500	56
chr1	121334500	chr1	121485500	52
chr19	10692500	chr19	10755500	60
chr14	22855500	chr14	22941500	53
chr1	46500500	chr1	46645500	47

3D models of the genome can be built from Hi-C contact maps (yeast genome shown)

Duan et al, 2010

Statistical significance can be assigned to the contacts in a Hi-C contact map with Fit-Hi-C

Ay et al, 2014

Genome-wide Hi-C contact map and mid-range contacts

Statistical significance can be assigned to the contacts in a Hi-C contact map with Fit-Hi-C

Ay et al, 2014

Statistical significance can be assigned to the contacts in a Hi-C contact map with Fit-Hi-C

After processing these maps now have 7 columns

chr1	fragmentMid1	chr2	fragmentMid2	contac	ctCount	p-value q-value	
chr17	41400500	chr17	41463500	330	0.0	0.0	
chr17	41382500	chr17	41463500	171	3.1538	5322826e-318	3.74721601131e-309
chr17	41401500	chr17	41463500	143	2.0633	4574749e - 243	1.63436103126e-234
chr17	41381500	chr17	41463500	137	8.4484	3137138e-243	5.01895538791e-234
chr14	106103500	chr14	106198500	91	2.4514	5662377e-202	1.16506848566e-193
chr16	25066500	chr16	25137500	106	7.9100	4715473e-180	3.13274516421e-171
chr10	27180500	chr10	27644500	65	5.3199	8093699e-141	1.80596480415e-132
chr17	43651500	chr17	44566500	54	1.9608	4610385e-130	5.82439430775e-122
chr19	53361500	chr19	53446500	96	5.2762	1204289e-130	1.39308295213e-121
chr3	195346500	chr3	195453500	79	8.0044	2265288e-117	1.90207334047e-108
chr19	23562500	chr19	23982500	48	7.1041	7401876e-114	1.53468112603e-105
chr19	15785500	chr19	15888500	69	1.0168	757619e-109	2.0136495797e-101
chr17	41400500	chr17	41561500	63	2.7594	6691286e-106	5.04404653862e-98
chr6	29884500	chr6	29970500	86	4.5206	5523647e-98	7.67309539777e-90
chr1	31192500	chr1	31252500	68	2.1325	3810283e-94	3.37833557675e-86
chr1	46503500	chr1	46645500	58	2.8431	3465789e-93	4.22254895095e-85
chr15	75323500	chr15	75497500	54	2.4278	542551e-89	3.3936803759e-81
chr17	41382500	chr17	41440500	64	1.0872	6104061e-86	1.35980762344e-78
chr6	37019500	chr6	37140500	55	2.9238	7510113e-84	3.47397003001e-76
chr17	41400500	chr17	41466500	61	9.9851	0422997e-84	1.12987540236e-75
chr19	21272500	chr19	21334500	56	2.6593	4221052e-83	2.87242562426e-75
chr1	121334500	chr1	121485500	52	1.6191	432774e-82	1.67284110401e-74
chr19	10692500	chr19	10755500	60	3.8889	6551421e-81	3.85052632118e-73
chr14	22855500	chr14	22941500	53	2.7849	7787752e-74	2.64715265765e-66
chr1	46500500	chr1	46645500	47	5.0658	7900171e-72	4.62997568924e-64
chr1	46501500	chr1	46645500	47	6.6222	7676568e-72	5.82828538832e-64
chr12	108957500	chr12	109011500	56	8.0435	693286e-72	6.82634171027e-64

Can we predict statistical significance directly?

Why bother trying to predict significance?

 Hi-C experiments are expensive, we can save money and time by predicting from cheaper data.

 An accurate model can reveal the genetic basis of 3D architecture.

Traditionally one would build a model with informative features

Nucleotide sequence is certainly relevant

DNasel sensitivity can provide cell-type specific information

Neural networks are good models when raw, structured, data is plentiful

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Data is prepared by bit encoding it

Rambutan is a convolutional neural network that predicts statistically significance directly

Rambutan performs well at cross-chromosomal predictions in GM12878

We only have 1kb resolution data for GM12878

	GM12878	K562	IMR90	HUVEC	HMEC	NHEK
5kb Res.	•••	••		•••		
1kb Res.						

Solution: Train in GM12878, make predictions in other cell types at 1 kb resolution, and then convert to 5 kb resolution

Rambutan performs well at all genomic distances

Rambutan performs well across cell types at 5kb resolution

Rambutan performs well across cell types at 5kb resolution

Insulation score is a measurement of local connectivity

Crane et al Nature 2015

Rambutan predictions can recreate insulation score

Insulation score correlates with histone modifications that regulate genomic activity

Insulation score is connected to replication timing

Rambutan predictions link synchronously replicating regions

Rambutan shows similar enrichment of contacts by functional element as Hi-C data

Genome structure predictions for 53 cell types cluster by cellular function

Code and paper figures available on GitHub

jmschrei committed on GitHub [MR	G] Documentation and usability improvements to `fit` (#7)	Latest commit 0fa2aef 4 days ago
docs	FIX installation doc	5 days ago
rambutan rambutan	[MRG] Documentation and usability improvements to 'fit' (#7)	4 days ago
tests tests	[MRG] Unit tests (#6)	4 days ago
travis.yml	[MRG] Unit tests (#6)	4 days ago
Biological_Validation.ipynb	ENH documentation, final model, figures	6 months ago
LICENSE	Initial commit	2 years ago
README.md	Update README.md	4 days ago
dev-requirements.txt	[MRG] Documentation and usability improvements to 'fit' (#7)	4 days ago
rambutan-0025.params	ENH documentation, final model, figures	6 months ago
rambutan-symbol.json	ENH documentation, final model, figures	6 months ago
setup.py	[MRG] Documentation and usability improvements to `fit` (#7)	4 days ago

README.md

Rambutan

build passing docs latest

Rambutan is a deep convolutional neural network which predicts 3D chromatin architecture using only nucleotide sequence and DNasel sensitivity. Specifically it predicts whether a pair of 1kb loci engage in a statistically significant contact with

Documentation and API reference on ReadTheDocs

Home

Installation

Frequently Asked Questions

Rambutan

API Reference

Data Generators

Utilities

Docs » Home

C Edit on GitHub

Home

Rambutan is a package for the prediction of the 3D structure of human cell types. It focuses on the prediction of Hi-C contact maps, but rather than trying to predict the number of contacts that a pair of loci engage in, it instead predicts whether the contact is statistically significant with respect to their genomic distance. This genomic distance effect is extremely important as pairs of loci that are close together are very likely to be in contact simply due to physics as opposed to biological importance, whereas long-range contacts are typically enriched for important biological interactions. The predictions are made using a convolutional neural network that takes in pucleotide sequence and DNasel sensitivity from two loci spanning 1000 nucleotides. The goal is

Acknowledgements

Bill Noble Jeffrey Bilmes

