ત્રિકોણમિતીય સમીકરણો અને ત્રિકોણના ગુણધર્મો

If equations are trains threading the landscape of numbers, then no train stops at pi.

- Richard Preston

Pure mathematics is in its way, the poetry of logical ideas.

- Albert Einstein

6.1 પ્રાસ્તાવિક

સિમેસ્ટર-1માં અને પ્રકરણ 4, 5 માં આપણે ત્રિકોણમિતીય વિધેયો, તેમના આલેખો અને તેમના ગુણધર્મો જેવા કે શૂન્યોનો ગણ, વિસ્તાર, આવર્તમાન, નિત્યસમોનો અભ્યાસ કર્યો. ત્રિકોણમિતિનો ઉપયોગ જમીન મોજણી કરવામાં થાય છે. આપણે જાણીએ છીએ કે ત્રિકોણમિતિની મદદથી ટેકરીની ઊંચાઈ માપ્યા વગર શોધી શકાય છે. બંગાળના એક જમીન મોજણીદાર અને ભારતીય ગણતજ્ઞ 'રાધાનાથ સિક્દરે' ત્રિકોણમિતીય ગણતરીની મદદથી ઈ.સ. 1852માં સાબિત કર્યું કે માઉન્ટ એવરેસ્ટ એ દુનિયાનું સૌથી ઊંચામાં ઊંચું શિખર છે. ત્રિકોણમિતિનો ઉપયોગ નૌપરિવહન, ઉપગ્રહ તંત્ર રચના, ખગોળશાસ્ત્ર, વિમાન-સંચાલન જેવા ક્ષેત્રોમાં થાય છે.

આ પ્રકરણમાં આપણે ત્રિકોણમિતીય સમીકરણોના ઉકેલની રીતો તથા ત્રિકોણમિતિના ઉપયોગથી ત્રિકોણના ગુણધર્મોનો અભ્યાસ કરીશું.

6.2 ત્રિકોણમિતીય સમીકરણો

જે સમીકરણમાં ત્રિકોણમિતીય વિધેયો આવેલાં હોય તેવા સમીકરણને ત્રિકોણમિતીય સમીકરણ કહે છે. જેમકે, $sin^2x - 4cosx = 1$ એ એક ત્રિકોણમિતીય સમીકરણ છે.

જે ત્રિકોણમિતીય સમીકરણ તેના પ્રદેશની દરેક કિંમત માટે સત્ય બને તેને ત્રિકોણમિતીય નિત્યસમ કહે છે. જેમકે, $cos2\theta = 2cos^2\theta - 1$ એ એક નિત્યસમ છે.

કેટલાંક ત્રિકોણિમિતીય સમીકરણોનું તેના પ્રદેશના ઉપગણની કોઈક કિંમતો માટે સમાધાન થાય છે. આપણે આવા ત્રિકોણિમિતીય સમીકરણોના ઉકેલની રીતો મેળવીશું તથા સમીકરણના એક ઉકેલના ઉપયોગથી તેનો વ્યાપક ઉકેલ કેવી રીતે મેળવી શકાય તે જોઈશું. સમીકરણ $sinx=\frac{1}{2}$ નો ઉકેલ ફક્ત $x=\frac{\pi}{6}$ નથી પરંતુ $x=\frac{5\pi}{6},\ x=2\pi+\frac{\pi}{6},\ x=3\pi-\frac{\pi}{6}$ વગેરે પણ તેના ઉકેલો છે. આમ, આપણે કહી શકીએ કે $sinx=\frac{1}{2}$ નો એક ઉકેલ $x=\frac{\pi}{6}$ છે, પરંતુ તે તેનો વ્યાપક ઉકેલ નથી. કોઈ પણ ત્રિકોણિમિતીય સમીકરણનો વ્યાપક ઉકેલ એટલે તેના શક્ય તમામ ઉકેલોનો ગણ.

અહીં નોંધીએ કે કેટલાંક ત્રિકોણિમતીય સમીકરણોનો ઉકેલ ખાલી ગણ હોય, જેમકે $sinx = \pi$. ત્રિકોણિમતીય વિધેયો આવર્તી હોવાથી, જો ત્રિકોણિમતીય સમીકરણને એક ઉકેલ હોય તો તેને અસંખ્ય ઉકેલો મળી શકે. આવા તમામ ઉકેલોના ગણને તેનો વ્યાપક ઉકેલ કહે છે.

y=sinx નો આલેખ જુઓ. કોઈ પણ સમક્ષિતિજ રેખા $y=k, k\in [-1,1]$ લો. આપણે જોઈ શકીએ છીએ કે રેખા $y=k, k\in [-1,1]$ એ y=sinx ના આલેખને અસંખ્ય બિંદુઓમાં છેદે છે. (આકૃતિ 6.1) આનો મતલબ એ થયો કે કોઈ પણ $a\in [-1,1]$ માટે સમીકરણ sinx=a નો ઉકેલગણ અનંતગણ મળે. ત્રિકોણમિતીય સમીકરણના ઉકેલ માટે આપણને અનન્ય $\alpha\in \mathbb{R}$ ની જરૂર પડે કે જેથી $sin\alpha=a$ થાય. તેના માટે આપણે પ્રદેશને યોગ્ય રીતે મર્યાદિત કરવો પડે. જો આપણે પ્રદેશને $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ અથવા $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ અથવા $\left[\frac{3\pi}{2},\frac{5\pi}{2}\right]$, વગેરે જેવો મર્યાદિત કરીએ તો એવો અનન્ય α મળે કે જેથી $sin\alpha=a$ થાય. આપણે y=sinx માટેનો મર્યાદિત પ્રદેશ $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ સ્વીકારીએ છીએ. આ પ્રદેશમાં કોઈ પણ સમક્ષિતિજ રેખા $y=k, k\in [-1,1]$ એ y=sinx ના આલેખને એક જ બિંદુમાં છેદે છે. (આકૃતિ 6.2).

આવા જ પ્રકારની પરિસ્થિતિ $y=\cos x$ માટે થાય છે. (આકૃતિ 6.3) આપણે $y=\cos x$ માટેનો મર્યાદિત પ્રદેશ $[0,\,\pi]$ સ્વીકારીએ છીએ. (આકૃતિ 6.4)

આપણે નોંધીએ કે કોઈ પણ સમક્ષિતિજ રેખા y=a જયાં $\mid a\mid>1$ એ y=sinx અથવા y=cosx ના આલેખને છેદતી નથી. આમ, sinx=a અથવા cosx=a, $\mid a\mid>1$ ને કોઈ ઉકેલ નથી.

112

જો સમતલમાં આપણે કોઈ પણ સમક્ષિતિજ રેખા દોરીએ તો તે y=tanx ના આલેખને અસંખ્ય બિંદુઓમાં છેદશે. (આકૃતિ 6.5). આનો અર્થ એ થયો કે સમીકરણ tanx=a, $a\in R$ નો ઉકેલગણ અનંતગણ થાય. આપણને અનન્ય α ની જરૂર છે, જ્યાં $tan\alpha=a$ થાય. તેથી આપણે પ્રદેશને યોગ્ય રીતે મર્યાદિત કરવો પડે. આપણે y=tanx માટેનો મર્યાદિત પ્રદેશ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ સ્વીકારીએ છીએ. (આકૃતિ 6.6). આ સંકલ્પનાની વિસ્તૃત ચર્ચા આપણે ધોરણ 12ના પ્રથમ સિમેસ્ટરમાં ત્રિકોણમિતીય પ્રતિવિધેયોના પ્રકરણમાં કરીશું.

આમ, કોઈ પણ $a\in[-1,1]$ માટે અનન્ય $\alpha\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, એવો મળે કે જેથી $a=\sin\alpha$.

કોઈ પણ $a\in[-1,1]$ માટે અનન્ય $\alpha\in[0,\pi]$, એવો મળે કે જેથી $a=\cos\alpha$.

કોઈ પણ $a \in \mathbb{R}$ માટે અનન્ય $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, એવો મળે કે જેથી $a = tan \alpha$.

આપણે sine, cosine અને tangent વિધેયોનાં શૂન્યોનો ગણ જાણીએ છીએ. આનો ખરેખર અર્થ એવો થાય છે કે આપણે ત્રિકોણમિતીય સમીકરણો $sin\theta=0$, $cos\theta=0$, $tan\theta=0$ ના વ્યાપક ઉકેલથી જ્ઞાત છીએ.

$$sin\theta = 0 \Leftrightarrow \theta = k\pi,$$
 $k \in \mathbb{Z}$
 $cos\theta = 0 \Leftrightarrow \theta = (2k + 1)\frac{\pi}{2}, k \in \mathbb{Z}$
 $tan\theta = 0 \Leftrightarrow \theta = k\pi,$ $k \in \mathbb{Z}$

હવે, આપણે વ્યાપક સ્વરૂપમાં $sin\theta=a, -1\leq a\leq 1, cos\theta=a, -1\leq a\leq 1$ અને $tan\theta=a, a\in \mathbb{R}$ ના ઉકેલ મેળવીએ.

6.3 (i) $sin\theta = a$ નો વ્યાપક ઉકેલ જ્યાં −1 ≤ a ≤ 1

અહીં, $-1 \le a \le 1$, માટે અનન્ય $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, એવો મળે કે જેથી $a = sin\alpha$. હવે, $sin\theta = a = sin\alpha$

$$\therefore \sin\theta - \sin\alpha = 0 \iff 2\cos\frac{\theta + \alpha}{2}\sin\frac{\theta - \alpha}{2} = 0$$

$$\iff cos \frac{\theta + \alpha}{2} = 0 \text{ and } sin \frac{\theta - \alpha}{2} = 0$$

$$\Leftrightarrow \frac{\theta + \alpha}{2} = (2n + 1)\frac{\pi}{2} \text{ equ} \frac{\theta - \alpha}{2} = n\pi, n \in \mathbb{Z}$$

$$\Leftrightarrow$$
 $\theta = (2n+1)\pi - \alpha$ અથવા $\theta = 2n\pi + \alpha$, $n \in \mathbb{Z}$

$$\Leftrightarrow$$
 $\theta=(2n+1)\pi+(-1)^{2n+1}\alpha$ અથવા $\theta=2n\pi+(-1)^{2n}\alpha,\,n\in\mathbb{Z}$

 \therefore સમીકરણનો વ્યાપક ઉકેલ $\theta=k\pi+(-1)^k\alpha,\ k\in Z$ છે.

(2n+1) અથવા 2nની જગ્યાએ k લખી શકાય કારણ કે કોઈ પણ પૂર્ણાંક 2n+1 અથવા 2n સ્વરૂપમાં હોય છે, $n\in \mathbb{Z}$

આમ,
$$sin\theta = sin\alpha \iff \theta = k\pi + (-1)^k\alpha, k \in \mathbb{Z}$$

114

તેથી, $sin\theta=a, -1 \le a \le 1$ નો વ્યાપક ઉકેલગણ $\{k\pi+(-1)^k\alpha\mid k\in \mathbb{Z}\}$ છે, જ્યાં $\alpha\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ અને $sin\theta=a=sin\alpha$.

(આપણે એવો કોઈ પણ $\alpha \in \mathbb{R}$ લઈ શકીએ જયાં $a = \sin \alpha$ થાય. ઉકેલગણ બદલાતો નથી. પરંતુ ઉકેલગણની એકરૂપતા માટે આપણે $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ લઈએ છીએ.)

(ii) $\cos \theta = a$ નો વ્યાપક ઉકેલ જ્યાં $-1 \le a \le 1$:

અહીં, $-1 \leq a \leq 1$ માટે અનન્ય $\alpha \in [0,\pi]$ એવો મળે કે જેથી $a = cos \alpha$.

હવે, $cos\theta = a = cos\alpha$

 \therefore સમીકરણનો વ્યાપક ઉકેલ $\theta=2k\pi\pm\alpha$, $k\in\mathbb{Z}$ છે.

આમ, $\cos\theta = \cos\alpha \iff \theta = 2k\pi \pm \alpha, k \in \mathbb{Z}$

આથી, $cos\theta=a,-1\leq a\leq 1$ નો વ્યાપક ઉકેલગણ $\{2k\pi\pm\alpha\mid k\in\mathbf{Z}\}$ છે, જ્યાં

 $\alpha \in [0, \pi]$ અને $\cos \theta = a = \cos \alpha$.

(iii) $tan\theta = a$ નો વ્યાપક ઉકેલ જ્યાં $a \in \mathbb{R}$:

અહીં, $a\in\mathbb{R}$ માટે અનન્ય $\alpha\in\left(-\frac{\pi}{2},\,\frac{\pi}{2}\right)$ એવો મળે કે જેથી $a=tan\alpha$ થાય.

હવે, $tan\theta = a = tan\alpha$

$$\therefore \tan\theta - \tan\alpha = 0 \iff \frac{\sin\theta}{\cos\theta} - \frac{\sin\alpha}{\cos\alpha} = 0$$

$$\iff \frac{\sin\theta\cos\alpha - \cos\theta\sin\alpha}{\cos\theta\cos\alpha} = 0$$

$$\iff \frac{\sin(\theta - \alpha)}{\cos\theta\cos\alpha} = 0$$

$$\iff \sin(\theta - \alpha) = 0$$

$$\iff \theta - \alpha = k\pi, k \in \mathbb{Z}$$

$$\iff \theta = k\pi + \alpha, k \in \mathbb{Z}$$

આમ, $tan\theta = tan\alpha \iff \theta = k\pi + \alpha, k \in \mathbb{Z}$

આથી, $tan\theta=a, a\in\mathbb{R}$ નો ઉકેલગણ $\{k\pi+\alpha\mid k\in\mathbb{Z}\}$ છે, જ્યાં $\alpha\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ અને $tan\theta=a=tan\alpha$.

શબ્દ 'ઉકેલ'નો અર્થ આપણે એવો કરીશું કે આપેલ સમીકરણનો ઉકેલગણ.

ઉદાહરણ 1 : ઉકેલો : (1) $2\sin 2\theta - 1 = 0$ (2) $\sin^2 \theta - \sin \theta - 2 = 0$

 $634:(1)\ 2\sin 2\theta - 1 = 0$

$$\therefore \quad \sin 2\theta = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$$

 $sin\theta = sin\alpha$ નો વ્યાપક ઉકેલ $k\pi + (-1)^k\alpha$, $k \in \mathbb{Z}$ છે.

$$\therefore 2\theta = k\pi + (-1)^k \frac{\pi}{6}, k \in \mathbb{Z}$$

$$\therefore \quad \theta = \frac{k\pi}{2} + (-1)^k \frac{\pi}{12}, \ k \in \mathbb{Z}$$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\left\{\frac{k\pi}{2} + (-1)^k \frac{\pi}{12} \mid k \in Z\right\}$ છે.

(2)
$$\sin^2\theta - \sin\theta - 2 = 0$$

$$\therefore (\sin\theta + 1)(\sin\theta - 2) = 0$$

$$\therefore$$
 $sin\theta = -1$ અથવા $sin\theta = 2$

પરંતુ
$$sin\theta = 2$$
 શક્ય નથી. (કેમ?)

આમ,
$$sin\theta = -1 = sin\left(-\frac{\pi}{2}\right)$$

$$\therefore \quad \theta = k\pi + (-1)^k \left(-\frac{\pi}{2}\right), \ k \in \ \mathbb{Z}$$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\left\{k\pi+(-1)^{k+1}\,rac{\pi}{2}\,\,\middle|\,\,k\in Z\right\}$ છે.

ઉદાહરણ 2 : ઉકેલો : (1)
$$2\cos 5\theta + \sqrt{3} = 0$$
 (2) $2\cos^2\theta + \sqrt{3}\cos\theta = 0$

$$634:(1)\ 2\cos 5\theta + \sqrt{3} = 0$$

$$\therefore \cos 5\theta = -\frac{\sqrt{3}}{2} = \cos\left(\pi - \frac{\pi}{6}\right) = \cos\left(\frac{5\pi}{6}\right) \qquad \left(\frac{5\pi}{6} \in [0, \pi]\right)$$

 $cos\theta = cos\alpha$ નો વ્યાપક ઉકેલ $\theta = 2k\pi \pm \alpha$, $k \in \mathbb{Z}$ છે.

$$\therefore$$
 50 = 2 $k\pi \pm \frac{5\pi}{6}$, $k \in \mathbb{Z}$

$$\therefore \quad \theta = \frac{2k\pi}{5} \pm \frac{\pi}{6}, k \in \mathbb{Z}$$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\left\{\frac{2k\pi}{5}\pm\frac{\pi}{6}\mid k\in Z\right\}$ છે.

$$(2) \quad 2\cos^2\theta - \sqrt{3}\cos\theta = 0$$

$$\therefore \cos\theta(2\cos\theta-\sqrt{3})=0$$

$$\cos \theta = 0$$
 અથવા $\cos \theta = \frac{\sqrt{3}}{2} = \cos(\frac{\pi}{6})$

$$\theta=(2k+1)\frac{\pi}{2},\,k\in\,Z$$
 અથવા $\theta=2k\pi\,\pm\,\frac{\pi}{6},\,k\in\,Z$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\left\{(2k+1)\frac{\pi}{2}\;\middle|\;k\in Z\right\}\;\cup\;\left\{2k\pi\pm\frac{\pi}{6}\;\middle|\;k\in Z\right\}$ છે.

ઉદાહરણ 3 : ઉકેલો : (1)
$$sin5x - sin3x - sinx = 0$$
 (2) $cosx + cos2x + cos3x = 0$

$$\mathbf{634:} (1) \sin 5x - \sin 3x - \sin x = 0$$

$$\therefore$$
 2cos4x sinx - sinx = 0

$$\therefore sinx(2cos4x - 1) = 0$$

∴
$$sinx = 0$$
 અથવા $cos4x = \frac{1}{2} = cos(\frac{\pi}{3})$

$$\therefore$$
 $x = k\pi, k \in \mathbb{Z}$ અથવા $4x = 2k\pi \pm \frac{\pi}{3}, k \in \mathbb{Z}$

$$\therefore$$
 $x = k\pi$, $k \in \mathbb{Z}$ અથવા $x = \frac{k\pi}{2} \pm \frac{\pi}{12}$, $k \in \mathbb{Z}$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\{k\pi \mid k\in Z\} \, \cup \, \left\{rac{k\pi}{2} \, \pm rac{\pi}{12} \, \middle| \, k\in Z
ight\}$ છે.

$$(2) \quad \cos x + \cos 2x + \cos 3x = 0$$

$$\therefore \cos 3x + \cos x + \cos 2x = 0$$

$$\therefore 2\cos 2x \cos x + \cos 2x = 0$$

$$\therefore \cos 2x (2\cos x + 1) = 0$$

$$\cos 2x = 0$$
 અથવા $\cos x = -\frac{1}{2} = \cos \frac{2\pi}{3}$ $\left(\frac{2\pi}{3} \in [0, \pi]\right)$

$$\therefore$$
 $2x=(2k+1)\frac{\pi}{2},\ k\in \mathbb{Z}$ અથવા $x=2k\pi\pm\frac{2\pi}{3},\ k\in\mathbb{Z}$

$$\therefore$$
 $x=(2k+1)\frac{\pi}{4},\ k\in \mathbb{Z}$ અથવા $x=2k\pi\pm\frac{2\pi}{3},\ k\in\mathbb{Z}$

આપેલ સમીકરણનો ઉકેલગણ $\left\{(2k+1)\frac{\pi}{4} \mid k \in Z\right\} \cup \left\{2k\pi \pm \frac{2\pi}{3} \mid k \in Z\right\}$ છે.

ઉદાહરણ 4 : ઉકેલો : (1)
$$tan^2\theta + (1-\sqrt{3})tan\theta - \sqrt{3} = 0$$

(2)
$$tan\theta + tan4\theta + tan7\theta = tan\theta tan4\theta tan7\theta$$

634: (1)
$$tan^2\theta + (1 - \sqrt{3})tan\theta - \sqrt{3} = 0$$

$$\therefore \tan^2\theta + \tan\theta - \sqrt{3}\tan\theta - \sqrt{3} = 0$$

$$\therefore \tan\theta(\tan\theta+1)-\sqrt{3}(\tan\theta+1)=0$$

$$\therefore (\tan\theta + 1)(\tan\theta - \sqrt{3}) = 0$$

$$\therefore$$
 $tan\theta = -1$ અથવા $tan\theta = \sqrt{3}$

$$\therefore$$
 $tan\theta = tan\left(-\frac{\pi}{4}\right)$ અથવા $tan\theta = tan\frac{\pi}{3}$

$$\theta = k\pi - \frac{\pi}{4}, k \in \mathbb{Z}$$
 અથવા $\theta = k\pi + \frac{\pi}{3}, k \in \mathbb{Z}$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\left\{k\pi-\frac{\pi}{4}\;\middle|\;k\in Z\right\}\,\cup\,\left\{k\pi+\frac{\pi}{3}\;\middle|\;k\in Z\right\}$ છે.

(2)
$$tan\theta + tan4\theta + tan7\theta = tan\theta tan4\theta tan7\theta$$

$$\therefore \tan\theta + \tan\theta = -\tan\theta + \tan\theta \tan\theta$$

$$\therefore \tan\theta + \tan 4\theta = -\tan 7\theta (1 - \tan\theta \tan 4\theta)$$

પ્રથમ આપણે $1 - tan\theta tan 4\theta \neq 0$ સાબિત કરીએ.

જો
$$1 - tan\theta \ tan4\theta = 0 \ di \ (i)$$
 પરથી $tan\theta + tan4\theta = 0 \ di$ વાથી,
$$tan\theta \ tan4\theta = 1 \ del{tan4\theta} + tan4\theta = -tan\theta$$

∴
$$tan^2\theta = -1$$
, જે R માં શક્ય નથી.

હવે, (i) પરથી
$$\frac{tan\theta + tan4\theta}{1 - tan\theta tan4\theta} = -tan7\theta$$

$$\therefore tan(\theta + 4\theta) = -tan 7\theta$$

$$\therefore$$
 $tan 5\theta = tan(-7\theta)$

$$\therefore$$
 5 $\theta = k\pi - 7\theta, k \in Z$

$$\theta = \frac{k\pi}{12}, k \in \mathbb{Z}$$

વળી, $tan\theta$, $tan4\theta$, $tan7\theta$ વ્યાખ્યાયિત થવા જોઈએ.

$$\therefore \quad \theta \neq (2m+1)\frac{\pi}{2}, \, 4\theta \neq (2m+1)\frac{\pi}{2}, \, 7\theta \neq (2m+1)\frac{\pi}{2}, \, \, m \in \, \mathbb{Z}$$

$$\therefore \quad \theta = \frac{k\pi}{12}, \ k \in \ Z \ \text{di} \ k \neq 6, \ 18, \ 30,...$$

$$4\theta = \frac{k\pi}{3} \neq (2m+1)\frac{\pi}{2}, \ k \in \mathbb{Z} - \{6, 18,...\}$$

$$7\theta = \frac{7k\pi}{12} \neq (2m+1)\frac{\pi}{2}, \ k \in \mathbb{Z} - \{6, 18,...\}$$

 $\therefore k \neq 6, 18,...$

$$k \neq 12n + 6, n \in \mathbb{Z}$$

$$\therefore$$
 આપેલ સમીકરણનો ઉકેલગણ $\left\{\frac{k\pi}{12} \mid k \in \mathbb{Z} \text{ જયાં } k \neq 12n+6\right\}, \quad n \in \mathbb{Z}$

ઉદાહરણ 5 : ઉકેલો : (1)
$$4sin\theta = cosec\theta$$
 (2) $sec\theta + tan\theta = 2 - \sqrt{3}$

$$634:(1) 4sin\theta = cosec\theta$$

$$\therefore 4\sin\theta = \frac{1}{\sin\theta}$$

$$\therefore 4sin^2\theta = 1$$

$$\therefore \quad \sin\theta = \pm \frac{1}{2}$$

$$\therefore$$
 $sin\theta = sin\left(\frac{\pi}{6}\right)$ અથવા $sin\theta = sin\left(-\frac{\pi}{6}\right)$

$$\theta = k\pi + (-1)^k \frac{\pi}{6}, k \in \mathbb{Z}$$
 અથવા $\theta = k\pi + (-1)^k \left(-\frac{\pi}{6}\right), k \in \mathbb{Z}$

$$\therefore \quad \theta = k\pi + (-1)^k \frac{\pi}{6}, \ k \in \mathbb{Z} \quad \text{we all} \quad \theta = k\pi + (-1)^{k+1} \frac{\pi}{6}, \ k \in \mathbb{Z}$$

$$\therefore \quad \theta = k\pi \pm \frac{\pi}{6}, \, k \in \mathbb{Z}$$

 \therefore આપેલ સમીકરણનો ઉકેલગણ $\left\{k\pi \pm \frac{\pi}{6} \mid k \in Z\right\}$ છે.

(2)
$$sec\theta + tan\theta = 2 - \sqrt{3}$$

હવે,
$$sec^2\theta - tan^2\theta = 1$$
,

$$\therefore \sec\theta - \tan\theta = \frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = 2 + \sqrt{3}$$

$$\therefore \sec\theta - \tan\theta = 2 + \sqrt{3}$$

(i) અને (ii) ને ઉકેલતાં, $sec\theta=2$ અને $tan\theta=-\sqrt{3}$

અહીં નોંધીએ કે ઉપરનાં સમીકરણો ત્રિકોણમિતીય સમીકરણોની સંહતિ છે.

હવે, $cos\theta=\frac{1}{2}>0$ અને $tan\theta=-\sqrt{3}<0$. આથી, $P(\theta)$ ચોથા ચરણમાં છે.

$$\therefore \cos\theta = \cos\left(-\frac{\pi}{3}\right) \approx \tan\theta = \tan\left(-\frac{\pi}{3}\right)$$

$$\therefore \quad \theta = 2k\pi - \frac{\pi}{3}, \ k \in \mathbb{Z}$$

(P(θ) ચોથા ચરણમાં છે.)

 \therefore આપેલ સમીકરણનો ઉકેલગણ $\left\{2k\pi-\frac{\pi}{3}\;\middle|\;k\in Z\right\}$ છે.

$6.4 \ acosx + bsinx = c, a, b, c \in \mathbb{R}$ અને $a^2 + b^2 \neq 0$ નો વ્યાપક ઉકેલગણ

કોઈ પણ વાસ્તવિક સંખ્યાઓ $a, b \in \mathbb{R}$ માટે આપણને r > 0 અને $\alpha \in [0, 2\pi)$ એવાં મળે કે જેથી $a = rcos \alpha$ અને $b = rsin \alpha$ થાય.

$$\therefore a^2 + b^2 = r^2 \cos^2 \alpha + r^2 \sin^2 \alpha = r^2$$

$$\therefore \quad r = \sqrt{a^2 + b^2} \tag{r > 0}$$

હવે, acosx + bsinx = c

 \therefore $rcos\alpha cosx + rsin\alpha sinx = c$

$$\therefore rcos(x - \alpha) = c$$

$$\therefore \cos(x-\alpha) = \frac{c}{r}$$

અહીં આપેલ સમીકરણ એટલે કે સમીકરણ (i)નો ઉકેલ હોવાની આવશ્યક અને પર્યાપ્ત શરત

$$\left| \frac{c}{r} \right| \le 1 \iff c^2 \le r^2$$

$$\iff c^2 \le a^2 + b^2 \ \vartheta.$$

જો $cos(x-\alpha)=cos\beta$, જ્યાં $cos\beta=\frac{c}{r}$, $\beta\in[0,\pi]$, હોય તો સમીકરણ (i)નો વ્યાપક ઉકેલ $x-\alpha=2k\pi\pm\beta$, $k\in\mathbb{Z}$; જ્યાં $\alpha\in[0,2\pi)$ તથા $a=rcos\alpha$, $b=rsin\alpha$.

આમ, જો $c^2 \le a^2 + b^2$ તો $a\cos x + b\sin x = c$ નો વ્યાપક ઉકેલ

 $x=2k\pi+\alpha\pm\beta,\ k\in\mathbb{Z}$, જયાં $\alpha\in[0,\,2\pi)$ તથા $a=rcos\alpha,\ b=rsin\alpha$ અને $cos\beta=\frac{c}{r},$ $\beta\in[0,\,\pi],\ r=\sqrt{a^2+b^2}$.

જો $c^2>a^2+b^2$ હોય, તો આપેલ સમીકરણને ઉકેલ ન મળે એટલે કે ઉકેલગણ \emptyset થાય.

ઉદાહરણ 6 : ઉકેલો : $\sqrt{3}\cos x + \sin x = \sqrt{2}$

ઉકેલ : રીત 1 : અહીં, $a = \sqrt{3}$, b = 1, $c = \sqrt{2}$.

$$\therefore r^2 = a^2 + b^2 = 3 + 1 = 4.$$

આથી, r=2. અહીં, $c^2 < a^2 + b^2$ હોવાથી આપેલ સમીકરણને ઉકેલ મળે.

 $a=rcos \alpha$ અને $b=rsin \alpha$ પરથી $cos \alpha=rac{\sqrt{3}}{2}$ અને $sin \alpha=rac{1}{2}$. આથી, $\alpha=rac{\pi}{6}$.

હવે,
$$\cos \beta = \frac{c}{r} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

$$\therefore \beta = \frac{\pi}{4}$$

$$\therefore$$
 માંગેલ ઉકેલગણ $\{2k\pi + \alpha \pm \beta \mid k \in Z\}$

$$= \left\{ 2k\pi + \frac{\pi}{6} \pm \frac{\pi}{4} \mid k \in Z \right\}$$

$$2: \sqrt{3}\cos x + \sin x = \sqrt{2}$$

$$\therefore \quad \frac{\sqrt{3}}{2}cosx + \frac{1}{2}sinx = \frac{1}{\sqrt{2}}$$

(r = 2 વડે ભાગતાં)

$$\therefore \cos\left(x-\frac{\pi}{6}\right)=\frac{1}{\sqrt{2}}=\cos\left(\frac{\pi}{4}\right)$$

$$\therefore x - \frac{\pi}{6} = 2k\pi \pm \frac{\pi}{4}, k \in \mathbb{Z}$$

$$\therefore$$
 માંગેલ ઉકેલગણ $\left\{2k\pi + \frac{\pi}{6} \pm \frac{\pi}{4} \mid k \in Z\right\}$
$$= \left\{2k\pi + \frac{5\pi}{12} \mid k \in Z\right\} \cup \left\{2k\pi - \frac{\pi}{12} \mid k \in Z\right\}$$

ઉદાહરણ 7 : ઉકેલો : $3\cos\theta + 4\sin\theta = 6$.

ઉકેલ: અહીં,
$$a = 3$$
, $b = 4$, $c = 6$.

$$r^2 = a^2 + b^2 = 25$$
. $c^2 = 36$. All, $c^2 > a^2 + b^2$.

સ્વાધ્યાય 6.1

નીચેનાં સમીકરણો ઉકેલો :

1.
$$2\cos 2\theta + \sqrt{2} = 0$$

3.
$$2\cos\theta + \sec\theta = 3$$

5.
$$\sqrt{2} \cos c 3\theta - 2 = 0$$

7.
$$2\sin\theta + \csc\theta = 3$$

9.
$$sin7\theta = sin\theta + sin3\theta$$

11.
$$tan 2\theta - \sqrt{3} = 0$$

13.
$$tan^2\theta - (\sqrt{3} + 1)tan\theta + \sqrt{3} = 0$$
 14. $cos\theta + sin\theta = 1$

15.
$$\sqrt{3}\sin\theta - \cos\theta = \sqrt{2}$$

17.
$$3 - \cot^2 5\theta = 0$$

19.
$$\sqrt{2} + \sec 4\theta = 0$$

2.
$$2\cos^2\theta + \sqrt{3}\cos\theta = 0$$

4.
$$4\sin^2\theta - 8\cos\theta + 1 = 0$$

6.
$$2\sin^2\theta - \sin\theta = 0$$

8.
$$sin 2\theta + cos\theta = 0$$

10.
$$\cos^2\theta - \cos\theta = 0$$

12.
$$\sqrt{3}\cot\theta - \cot^2\theta = 0$$

14.
$$\cos\theta + \sin\theta = 1$$

16.
$$2\cos\theta + \sin\theta = 3$$

18.
$$cosec^2 2\theta - 2 = 0$$

20.
$$tan 3\theta + cot\theta = 0$$

*

6.5 ત્રિકોણના ગુણધર્મો

ત્રિકોણમિતિ શબ્દનો મૂળભૂત અર્થ ત્રિકોણના ઘટકોનું માપકરણ સૂચવે છે. દરેક ત્રિકોણને ત્રણ બાજુઓ અને ત્રણ ખૂણાઓ હોય છે. ત્રિકોણની બાજુઓ અને ખૂણાઓના માપ વચ્ચે નિશ્ચિત સંબંધ હોય છે. આ વિભાગમાં આપણે આ ઘટકો વચ્ચેના ચોક્કસ સંબંધો મેળવીશું.

ΔABC માટે સામાન્ય રીતે નીચેના સંકેતો પ્રચલિત છે :

$$m\angle BAC = A$$
, $m\angle ABC = B$, $m\angle BCA = C$

$$A + B + C = \pi$$

(ખુશાઓનાં માપ A, B, C રેડિયન માપમાં લઈશું.)

$$AB = c$$
, $BC = a$, $CA = b$

ત્રિકોણના પરિવૃત્તની ત્રિજ્યાનું માપ એટલે કે પરિત્રિજ્યા = R

આકૃતિ 6.7

sine सूत्र :

ΔABC માં,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

અહીં $\frac{a}{\sin A} = 2R$ સાબિત કરીશું. બાકીના બે તે જ પ્રમાણે મેળવી શકાય.

A સંબંધી ત્રણ વિકલ્પ છે:

(1)
$$0 < A < \frac{\pi}{2}$$
 (2) $A = \frac{\pi}{2}$ (3) $\frac{\pi}{2} < A < \pi$

વિકલ્પ 1 : $0 < A < \frac{\pi}{2}$

ધારો કે ΔABC નું પરિકેન્દ્ર O છે. \overrightarrow{BO} પરિવૃત્તને D માં છેદે છે. અહીં BD = 2OB = 2R અને D = m∠BDC = m∠CAB = A (એક જ વૃત્તખંડના ખૂશા) (i)

 \triangle BCD \forall i, m∠BCD = $\frac{\pi}{2}$

(અર્ધવર્તુળમાં અંતર્ગત ખૂણો કાટખૂણો હોય છે.)

$$\therefore \quad \sin D = \frac{BC}{BD} = \frac{a}{2R}$$

$$\therefore \quad sinA = \frac{a}{2R}$$

((i) દ્વારા)

$$\therefore \quad \frac{a}{\sin A} = 2R$$

વિકલ્પ $2:\Delta ABC$ કાટકોણ ત્રિકોણ છે અને $A=\frac{\pi}{2}$

$$\therefore$$
 BC = 2R.

હવે,
$$a = BC = 2R = 2Rsin\frac{\pi}{2} = 2RsinA$$

$$\therefore \frac{a}{\sin A} = 2R$$

વિકલ્પ $3:\frac{\pi}{2}< A<\pi$

∠BAC એ ગુરુકોણ હોવાથી શિરોબિંદુ લઘુચાપ BC પર છે. હવે, ગુરુચાપ BC પર બિંદુ A' લો.

$$m\angle BA'C = (\pi - A) < \frac{\pi}{2}$$
 $\left(\frac{\pi}{2} < A < \pi\right)$

$$BC = a = 2RsinA' = 2Rsin(\pi - A) = 2RsinA$$

$$\therefore \quad \frac{a}{\sin A} = 2R$$

આમ, દરેક વિકલ્પમાં $\frac{a}{\sin A} = 2R$ મળે છે.

આકૃતિ 6.8

આકૃતિ 6.9

આકૃતિ 6.10

આ જ રીતે, $\frac{b}{\sin R} = 2R$ અને $\frac{c}{\sin C} = 2R$ મેળવી શકાય.

$$\therefore \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

cosine સૂત્ર :

ΔABC માં.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
, $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ અને $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

આપણે,
$$cosA = \frac{b^2 + c^2 - a^2}{2bc}$$
 સાબિત કરીશું.

આકૃતિ 6.11 માં દર્શાવ્યા પ્રમાણે ΔABC માં A ને ઊગમબિંદુ તથા AB ને X-અક્ષની ધન દિશામાં લઈએ. અહીં, AB = c હોવાથી B ના યામ (c, 0) થાય. હવે, AC = b અને $m\angle CAB = A$ હોવાથી, C ના યામ (bcosA, bsinA) થશે.

હવે,
$$a = BC$$

$$\therefore a^2 = BC^2$$

$$= (b\cos A - c)^2 + (b\sin A - 0)^2$$

$$= b^2\cos^2 A - 2bc \cos A + c^2 + b^2\sin^2 A$$

$$= b^2(\cos^2 A + \sin^2 A) - 2bc \cos A + c^2$$

$$\therefore 2bc \cos A = b^2 + c^2 - a^2$$

$$\therefore cosA = \frac{b^2 + c^2 - a^2}{2bc}$$

તે જ રીતે,
$$cos$$
B = $\frac{c^2 + a^2 - b^2}{2ca}$ અને cos C = $\frac{a^2 + b^2 - c^2}{2ab}$

 $\overrightarrow{\mathbf{dit}}:(1)$ $\Delta \mathbf{ABC}$ માં $\angle \mathbf{A}$ કાટકોણ હોય અથવા ગુરૂકોણ હોય તો પણ ઉપરનું પરિણામ સત્ય જ છે.

(2) ત્રિકોશની ત્રણ બાજુનાં માપ આપ્યાં હોય તો cosine સ્ત્રથી ત્રણ ખૂણાનાં માપ અનન્ય રીતે નક્કી થઈ શકે. ત્રિકોણની ત્રણ બાજુઓ જ્ઞાત હોય તો તેના ખૂણાનાં માપ અન્ય રીતે નક્કી થઈ શકે. તે જ રીતે, બે બાજુઓ અને અંતર્ગત ખૂશો આપ્યો હોય તો પણ આ સૂત્ર પ્રમાણે ત્રીજી બાજુ અનન્ય મળે.

એક અગત્યનું સૂત્ર :

sine અને cosine સૂત્રોની મદદથી આપણે અહીં એક અગત્યનું પરિણામ મેળવીશું :

प्रक्षेप सूत्र :

122

$$a = bcosC + ccosB$$
, $b = ccosA + acosC$, $c = acosB + bcosA$

આપણે, a = bcosC + ccosB સાબિત કરીશું.

આપણે cosine સૂત્રની મદદથી સાબિતી આપીશું. (sine સૂત્રની મદદથી સાબિતી આપવાનો પ્રયત્ન કરો.)

$$C(bcosA, bsinA)$$

$$C(bcosA, bsinA)$$

$$A (0,0) \qquad c \qquad B(c,0) \qquad X$$

$$\text{Suife 6.11}$$

$$bcosC + ccosB = b\frac{a^2 + b^2 - c^2}{2ab} + c\frac{c^2 + a^2 - b^2}{2ca}$$
$$= \frac{a^2 + b^2 - c^2}{2a} + \frac{c^2 + a^2 - b^2}{2a}$$
$$= \frac{a^2 + b^2 - c^2 + c^2 + a^2 - b^2}{2a} = \frac{2a^2}{2a} = a$$

આમ, a = bcosC + ccosB

તે જ રીતે અન્ય બે પ્રક્ષેપ સૂત્રો મેળવી શકાય.

ઉદાહરણ 8 : △ABC માટે સાબિત કરો કે,

(1)
$$a(sinB - sinC) + b(sinC - sinA) + c(sinA - sinB) = 0$$

(2)
$$a sin \frac{A}{2} sin \left(\frac{B-C}{2} \right) + b sin \frac{B}{2} sin \left(\frac{C-A}{2} \right) + c sin \frac{C}{2} sin \left(\frac{A-B}{2} \right) = 0$$

634: (1) SLAL. =
$$a(sinB - sinC) + b(sinC - sinA) + c(sinA - sinB)$$

= $a(\frac{b}{2R} - \frac{c}{2R}) + b(\frac{c}{2R} - \frac{a}{2R}) + c(\frac{a}{2R} - \frac{b}{2R})$
= $\frac{a(b-c) + b(c-a) + c(a-b)}{2R} = 0 = \%$. ALL.

(2)
$$asin \frac{A}{2} sin \left(\frac{B-C}{2}\right) = asin \left(\frac{\pi - (B+C)}{2}\right) sin \left(\frac{B-C}{2}\right)$$

$$= acos \left(\frac{B+C}{2}\right) sin \left(\frac{B-C}{2}\right)$$

$$= \frac{a}{2} (sinB - sinC)$$

$$= \frac{a}{2} \left(\frac{b}{2R} - \frac{c}{2R}\right) = \frac{1}{4R} (ab - ac)$$
(i)

તે જ રીતે,
$$bsin \frac{B}{2} sin \left(\frac{C-A}{2}\right) = \frac{1}{4R}(bc-ab)$$
 (ii)

$$csin\frac{C}{2}sin\left(\frac{A-B}{2}\right) = \frac{1}{4R}(ac-bc)$$
 (iii)

(i), (ii) અને (iii) નો સરવાળો કરતાં,

$$\begin{aligned} \text{3l.GL.} &= a sin \, \frac{\mathbf{A}}{2} \, sin \! \left(\frac{\mathbf{B} - \mathbf{C}}{2} \right) \, + \, b sin \, \frac{\mathbf{B}}{2} \, sin \! \left(\frac{\mathbf{C} - \mathbf{A}}{2} \right) \, + \, c sin \, \frac{\mathbf{C}}{2} \, sin \left(\frac{\mathbf{A} - \mathbf{B}}{2} \right) \\ &= \frac{1}{4\mathbf{R}} (ab - ac + bc - ab + ac - bc) = 0 = \text{S.GL.} \end{aligned}$$

ઉદાહરણ 9 : ∆ABC માટે સાબિત કરો :

(1)
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

(2)
$$\frac{\tan C}{\tan A} = \frac{b^2 + c^2 - a^2}{a^2 + b^2 - c^2}$$

(i)

G}4 :

(1) sl. 41.
$$= \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$

$$= \frac{b^2 + c^2 - a^2}{2bc} \times \frac{1}{a} + \frac{c^2 + a^2 - b^2}{2ca} \times \frac{1}{b} + \frac{a^2 + b^2 - c^2}{2ab} \times \frac{1}{c} \text{ (cosine 2.3)}$$

$$= \frac{b^2 + c^2 - a^2 + c^2 + a^2 - b^2 + a^2 + b^2 - c^2}{2abc} = \frac{a^2 + b^2 + c^2}{2abc} = \text{9.61}.$$

આમ,
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

(2) Sl. Gl. =
$$\frac{\tan C}{\tan A} = \frac{\sin C \cos A}{\cos C \sin A}$$

$$= \frac{\frac{c}{2R} \left(\frac{b^2 + c^2 - a^2}{2bc} \right)}{\frac{a}{2R} \left(\frac{a^2 + b^2 - c^2}{2ab} \right)} = \frac{b^2 + c^2 - a^2}{a^2 + b^2 - c^2} = \%.61.$$

ઉદાહરણ 10 : ΔABC માટે સાબિત કરો :

(a + b)cosC + (b + c)cosA + (c + a)cosB = a + b + c
GEQ: SLOGI. = (a + b)cosC + (b + c)cosA + (c + a)cosB
=
$$a \cos C + b \cos C + b \cos A + c \cos A + c \cos B + a \cos B$$

= $b \cos C + c \cos B + c \cos A + a \cos C + a \cos B + b \cos A$
= $a + b + c = \%$.GL.

स्वाध्याय 6.2

ΔABC માટે સાબિત કરો : (1 થી 9)

1.
$$asin(B - C) + bsin(C - A) + csin(A - B) = 0$$

2.
$$a^2(\cos^2 B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B) = 0$$

3.
$$\frac{a^2 sin(B-C)}{sin A} + \frac{b^2 sin(C-A)}{sin B} + \frac{c^2 sin(A-B)}{sin C} = 0$$

4.
$$a^3 sin(B - C) + b^3 sin(C - A) + c^3 sin(A - B) = 0$$

5.
$$asin(\frac{A}{2}+C) = (b+c)sin(\frac{A}{2})$$

6.
$$acos\left(\frac{B-C}{2}\right) = (b+c)sin\frac{A}{2}$$

7.
$$sin\left(\frac{A-B}{2}\right) = \frac{a-b}{c} cos \frac{C}{2}$$

8.
$$tan(\frac{A}{2}+B) = \frac{c+b}{c-b} tan \frac{A}{2}$$

9.
$$\frac{1 + \cos A \cos (B - C)}{1 + \cos C \cos (A - B)} = \frac{b^2 + c^2}{b^2 + a^2}$$

10. સાબિત કરો : $sin^2A + sin^2B = sin^2C \Rightarrow \Delta ABC$ કાટકોણ છે જ્યાં C કાટખૂણો છે.

- 11. સાબિત કરો : $(a^2 + b^2)$ sin $(A B) = (a^2 b^2)$ sin $(A + B) \Rightarrow \Delta ABC$ સમિદ્ધિભૂજ અથવા કાટકોણ છે.
- 12. સાબિત કરો : $(b^2 c^2)cotA + (c^2 a^2)cotB + (a^2 b^2)cotC = 0$
- **13.** સાબિત કરો : $\left(\frac{b^2-c^2}{a^2}\right) sin 2A + \left(\frac{c^2-a^2}{b^2}\right) sin 2B + \left(\frac{a^2-b^2}{c^2}\right) sin 2C = 0$
- **14.** સાબિત કરો : $2\left(a\sin^2\frac{C}{2} + c\sin^2\frac{A}{2}\right) = c + a b$
- **15.** સાબિત કરો : $4\left(bc\cos^2\frac{A}{2} + ca\cos^2\frac{B}{2} + ab\cos^2\frac{C}{2}\right) = (a+b+c)^2$
- 16. બતાવો કે 3, 5, 7 માપની બાજુઓવાળો ત્રિકોશ ગુરૂકોશ ત્રિકોશ છે અને ગુરૂકોશનું માપ શોધો.
- 17. જો કોઈ ત્રિકોણના ખૂણાઓનાં માપ 1:2:3 ગુણોત્તરમાં હોય તો તેમની સામેની બાજુઓના માપનો ગુણોત્તર શોધો.
- 18. જો ΔABC ના ખૂણાઓનાં માપ A, B, C સમાંતર શ્રેણીમાં હોય તથા $b:c=\sqrt{3}:\sqrt{2}$ તો A શોધો.
- 19. જો ΔABC માં $\frac{\sin A}{\sin C} = \frac{\sin (A-B)}{\sin (B-C)}$, હોય તો સાબિત કરો કે a^2 , b^2 , c^2 સમાંતર શ્રેણીમાં હોય.
- **20.** \triangle ABC માં a = 2b અને $|A B| = \frac{\pi}{3}$ તો C શોધો.

*

પ્રકીર્ણ ઉદાહરણો :

ઉદાહરણ 11 : ઉકેલો : $sin3\alpha = 4sin\alpha sin(x + \alpha) sin(x - \alpha)$, જ્યાં, $\alpha \neq k\pi$, $k \in \mathbb{Z}$

6કેલ : $sin3\alpha = 4sin\alpha sin(x + \alpha) sin(x - \alpha)$, જ્યાં, $\alpha \neq k\pi$, $k \in \mathbb{Z}$

- $\therefore \sin 3\alpha = 4\sin\alpha \left(\sin^2 x \sin^2\alpha\right)$
- $\therefore 3\sin\alpha 4\sin^3\alpha = 4\sin\alpha\sin^2x 4\sin^3\alpha$
- $\therefore 3\sin\alpha = 4\sin\alpha \sin^2 x$
- $\therefore \sin^2 x = \frac{3}{4} \qquad (\alpha \neq k\pi, \sin\alpha \neq 0)$
- $\therefore \quad sinx = \pm \frac{\sqrt{3}}{2} = sin\left(\pm \frac{\pi}{3}\right)$
- \therefore $x=k\pi+(-1)^k\frac{\pi}{3},\ k\in \mathbb{Z}$ અથવા $x=k\pi+(-1)^k\left(-\frac{\pi}{3}\right),\ k\in \mathbb{Z}$
- $\therefore x = k\pi \pm \frac{\pi}{3}, k \in Z$

આમ, માંગેલ ઉકેલગણ $\left\{k\pi\pm\frac{\pi}{3}\mid k\in Z\right\}$ છે.

ઉદાહરણ 12 : ઉકેલો : $tan(\frac{\pi}{4} + \theta) + tan(\frac{\pi}{4} - \theta) = 4$

$$\mathbf{G34:} \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) = 4$$

$$\therefore \frac{1+\tan\theta}{1-\tan\theta} + \frac{1-\tan\theta}{1+\tan\theta} = 4$$

$$\therefore \frac{(1+tan\theta)^2+(1-tan\theta)^2}{(1-tan\theta)(1+tan\theta)}=4$$

$$\therefore \frac{2+2tan^2\theta}{1-tan^2\theta}=4$$

$$\therefore 1 + tan^2\theta = 2 - 2tan^2\theta$$

$$\therefore 3tan^2\theta = 1$$

$$\therefore \tan^2\theta = \frac{1}{3}$$

$$\therefore \tan\theta = \pm \frac{1}{\sqrt{3}} = \tan(\pm \frac{\pi}{6})$$

$$\therefore \quad \theta = k\pi \pm \frac{\pi}{6}, \ k \in Z$$

આમ, માંગેલ ઉકેલગણ $\left\{k\pi\pm\frac{\pi}{6}\;\middle|\;k\in\mathit{Z}\right\}$ છે.

ઉદાહરણ 13 : જો $\frac{sin A}{4} = \frac{sin B}{5} = \frac{sin C}{6}$, તો સાબિત કરો કે $\frac{cos A}{12} = \frac{cos B}{9} = \frac{cos C}{2}$ અને તે પરથી

cosA + cosB + cosC ની કિંમત શોધો.

ઉકેલ : અહીં,
$$\frac{\sin A}{4} = \frac{\sin B}{5} = \frac{\sin C}{6}$$

$$\therefore \quad \frac{\frac{a}{2R}}{4} = \frac{\frac{b}{2R}}{5} = \frac{\frac{c}{2R}}{6}$$

$$\therefore \quad \frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k \text{ (ધારો } \text{ક}), \text{ wii } k > 0$$

$$a = 4k, b = 5k, c = 6k$$

હવે,
$$cosA = \frac{b^2 + c^2 - a^2}{2bc}$$
$$= \frac{25k^2 + 36k^2 - 16k^2}{2 \cdot 5k \cdot 6k} = \frac{45k^2}{60k^2} = \frac{3}{4}$$

$$\therefore \quad \frac{\cos A}{12} = \frac{1}{16}$$

તે જ રીતે
$$\frac{\cos B}{9} = \frac{1}{16}$$
 અને $\frac{\cos C}{2} = \frac{1}{16}$

$$\text{WIH, } \frac{\cos A}{12} = \frac{\cos B}{9} = \frac{\cos C}{2}.$$

$$\text{qul}, \cos A + \cos B + \cos C = \frac{12}{16} + \frac{9}{16} + \frac{2}{16} = \frac{23}{16}.$$

સ્વાધ્યાય 6

ઉકેલો : (1 થી 10)

$$1. \quad 2(sec^2\theta + sin^2\theta) = 5$$

$$2. \quad 2 - \cos x = 2\tan \frac{x}{2}$$

3.
$$4\sin\theta \sin 2\theta \sin 4\theta = \sin 3\theta$$

4.
$$sin^2\theta - cos\theta = \frac{1}{4}$$

5.
$$\sqrt{3}\tan 3\theta + \sqrt{3}\tan 2\theta + \tan 3\theta \tan 2\theta = 1$$

$$6. \quad cosecx = 1 + cotx$$

7.
$$sin^8x + cos^8x = \frac{17}{32}$$

- 8. $tan\theta + tan(\theta + \frac{\pi}{3}) + tan(\theta + \frac{2\pi}{3}) = 3$
- $9. \quad \sin x 3\sin 2x + \sin 3x = \cos x 3\cos 2x + \cos 3x$
- 10. $2\sin^2\theta + \sqrt{3}\cos\theta + 1 = 0$

ΔABC માં સાબિત કરો : (11 થી 14)

- 11. $a\cos A + b\cos B + c\cos C = 4R\sin A \sin B \sin C = \frac{abc}{2R^2}$
- **12.** $a(\cos C \cos B) = 2(b c)\cos^2 \frac{A}{2}$
- 13. $a^3 cos(B C) + b^3 cos(C A) + c^3 cos(A B) = 3abc$
- 14. જો $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$, તો સાબિત કરો કે $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$
- 15. sine સૂત્રની મદદથી cosine સૂત્ર મેળવો.
- **16.** સાબિત કરો : $(a-b)^2 \cos^2 \frac{C}{2} + (a+b)^2 \sin^2 \frac{C}{2} = c^2$
- **17.** સાબિત કરો : $abc(cotA + cotB + cotC) = R(a^2 + b^2 + c^2)$
- 18. જો કોઈ ત્રિકોશની બાજુઓનાં માપ 4, 5 અને 6 હોય, તો સાબિત કરો કે ત્રિકોશના સૌથી મોટા માપવાળા ખૂશાનું માપ સૌથી નાના માપવાળા ખૂશાના માપ કરતાં બમશું છે.
- 19. જો ત્રિકોશની બાજુઓનાં માપ $m,\ n,\ \sqrt{m^2+mn+n^2}$ હોય, તો ત્રિકોશના સૌથી મોટા માપવાળા ખૂશાનું માપ $\frac{2\pi}{3}$ છે.
- **20.** જો ત્રિકોશની બે બાજુઓનાં માપ સમીકરશ $x^2-2\sqrt{3}x+2=0$ નાં બીજ હોય અને તે બે બાજુઓ વચ્ચેના ખૂશાનું માપ $\frac{\pi}{3}$ હોય, તો ત્રિકોશની પરિમિતિ $2\sqrt{3}+\sqrt{6}$ છે તેમ બતાવો.
- 21. નીચે આપેલું દરેક વિધાન સાચું બને તે રીતે આપેલા વિકલ્પો (a), (b), (c) અથવા (d) માંથી યોગ્ય વિકલ્પ પસંદ કરીને ____ માં લખો :

(1)
$$\frac{\tan 3x - \tan 2x}{1 + \tan 3x \tan 2x} = 1 નો ઉકેલગણ છે.$$

(a) Ø

- (b) $\left\{\frac{\pi}{4}\right\}$
- (c) $\left\{k\pi + \frac{\pi}{4} \mid k \in Z\right\}$
- (d) $\left\{2k\pi + \frac{\pi}{4} \mid k \in Z\right\}$
- (2) સમીકરણ $\sec^2(a+2)x + a^2 1 = 0$ નું $-\pi < x < \pi$ માં સમાધાન કરતી ક્રમયુક્ત જોડ (a, x) ની સંખ્યા છે.
 - (a) 2
- (b) 1
- (c) 3
- (d) અનંત
- (3) સમીકરણ $sin^{50}x cos^{50}x = 1$ નો વ્યાપક ઉકેલ છે.
 - (a) $2k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$

(b) $2k\pi + \frac{\pi}{3}, k \in Z$

(c) $k\pi + \frac{\pi}{3}$, $k \in \mathbb{Z}$

- (d) $k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$
- (4) સમીકરણ $3\sin^2 x 7\sin x + 2 = 0$ ના અંતરાલ $[0, 5\pi]$ માં ઉકેલોની સંખ્યા છે.
 - (a) 0
- (b) 5
- (c) 6
- (d) 10

(5)	સમીકરણ $\cos^7 x + \sin^4 x = 1$ ના અંતરાલ $(-\pi, \pi)$ માં વાસ્તવિક ઉકેલો છે.				
	(a) $0, \frac{\pi}{3}, -\frac{\pi}{3}$	(b) $0, \frac{\pi}{4}, -\frac{\pi}{4}$	(c) $0, \frac{\pi}{2}, -\frac{\pi}{2}$	(d) $\frac{\pi}{2}$, $\frac{\pi}{3}$, $\frac{\pi}{4}$	
(6)	$2y=1$ અને $y=sinx, -2\pi < x \leq 2\pi$ ના આલેખોના છેદબિંદુઓની સંખ્યા				
	(a) 2	(b) 4	(c) 3	(d) 1	
(7)	$sin\theta + cos\theta = 2 + \frac{1}{2}$	ો ઉકેલગણ છે.			
	(a) $k\pi$, $k \in Z$		(b) $2k\pi + \frac{\pi}{2}$, $k \in \mathbb{Z}$	Z	
	(c) Ø		(d) $(2k+1)\frac{\pi}{2}, k \in$	Z	
(8)	$cos2\theta = cos^2\theta - sin^2\theta$ નો ઉકેલગણ છે.				
	(a) R		(b) $k\pi$, $k \in \mathbb{Z}$		
	(c) Ø		(d) $(2k+1)\frac{\pi}{2}, k \in Z$		
(9)	Δ ABC માં જો $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ અને $a = 2$ તો Δ ABC નું ક્ષેત્રફળ છે.				
	(a) 1	(b) 2	(c) $\frac{\sqrt{3}}{2}$	(d) √3	
(10)	Δ ABC માં $a=5,\ b=7$ અને sin A $=\frac{3}{4}$ તો આવા ત્રિકોણો શક્ય બને.				
	(a) 1	(b) 0	(c) 2	(d) અનંત	
(11)	ΔABC ની પરિમિતિ તેના ખૂણાઓની $sine$ કિંમતના મધ્યકથી 6 ગણી છે. જો બાજુ $a=1$ હોય $A=$ છે.				
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) π	
(12)	ΔABC માં જો $a=2b$ અને $A=3B$ તો $A=$ છે.				
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{4}$	
(13)	જો ΔABC માટે A,B,C સમાંતર શ્રેશીમાં હોય તથા તેમની સામેની બાજુઓનાં માપ a,b,c સમગુણોત્તર શ્રેશીમાં હોય તો a^2,b^2,c^2				
	(a) સમગુણોત્તર શ્રેણીમાં હોય. (c) $\frac{1}{a^2}$, $\frac{1}{b^2}$, $\frac{1}{c^2}$ સમાંતર શ્રેણીમાં હોય.		(b) સમાંતર શ્રેણીમાં હોય.		
			(d) કોઈ સંબંધ ન હોય.		
(14)	$\triangle ABC$ $\forall i A = \frac{\pi}{4}$,	$C = \frac{\pi}{3}, \text{ dù } a + c\sqrt{2}$	=		
	(a) b	(b) $\sqrt{3}b$	(c) $\sqrt{2}b$	(d) 2b	
(15)	Δ ABC માં 2 $acsin\frac{1}{2}$	(A - B + C) =			
	(a) $a^2 + b^2 - c^2$	(b) $c^2 + a^2 - b^2$	(c) $b^2 - c^2 + a^2$	(d) $c^2 - a^2 - b^2$	

સારાંશ

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓનો અભ્યાસ કર્યો :

1.
$$sin\theta = 0 \Leftrightarrow \theta = k\pi, k \in \mathbb{Z}$$

2.
$$\cos\theta = 0 \Leftrightarrow \theta = (2k+1)\frac{\pi}{2} \ k \in \mathbb{Z}$$

3.
$$tan\theta = 0 \Leftrightarrow \theta = k\pi, k \in \mathbb{Z}$$

4.
$$sin\theta=a, -1 \le a \le 1$$
 નો ઉકેલગણ $\{k\pi+(-1)^k\alpha\mid k\in Z\}$, જ્યાં $\alpha\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ અને $sin\theta=a=sin\alpha$.

5.
$$cos\theta=a, -1 \le a \le 1$$
 નો ઉકેલગણ $\{2k\pi\pm\alpha\mid k\in Z\},$ જ્યાં $\alpha\in[0,\pi]$ અને $cos\theta=a=cos\alpha.$

6.
$$tan\theta=a,\ a\in\mathbb{R}$$
 નો ઉકેલગણ $\{k\pi+\alpha\mid k\in\mathbb{Z}\},$ જ્યાં $\alpha\in\left(-\frac{\pi}{2},\,\frac{\pi}{2}\right)$ અને $tan\theta=a=tan\alpha.$

7. જો
$$c^2 \le a^2 + b^2$$
, તો $a cos x + b sin x = c$ નો ઉકેલ $x = 2k\pi + \alpha \pm \beta$, $k \in \mathbb{Z}$, જ્યાં $\alpha \in [0, 2\pi)$ તથા $a = r cos \alpha$ અને $b = r sin \alpha$, $cos \beta = \frac{c}{r}$, $\beta \in [0, \pi]$, $r = \sqrt{a^2 + b^2}$ જો $c^2 > a^2 + b^2$, તો સમીકરણનો ઉકેલગણ \emptyset છે.

8. sine
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

$$cosA = \frac{b^2 + c^2 - a^2}{2bc}, cosB = \frac{c^2 + a^2 - b^2}{2ca}$$
 અને $cosC = \frac{a^2 + b^2 - c^2}{2ab}$

$$a = bcosC + ccosB$$
, $b = ccosA + acosC$, $c = acosB + bcosA$

Aryabhata gave an accurate approximation for π . He wrote in the Aryabhatiya the following: Add four to one hundred, multiply by eight and then add sixty-two thousand. The result is approximately the circumference of a circle of diameter twenty thousand. By this rule the relation of the circumference to diameter is given.

This gives $\pi = \frac{62832}{20000} = 3.1416$ which is a surprisingly accurate value. In fact $\pi = 3.14159265$ correct to 8 places.

He gave a table of *sines* calculating the approximate values at intervals of $90^{\circ}/24 = 3^{\circ} 45'$. In order to do this he used a formula for sin(n+1)x - sin nx in terms of sin nx and sin(n-1)x. He also introduced the versine (versin = 1 - cosine) into trigonometry.

Aryabhata gives the radius of the planetary orbits in terms of the radius of the Earth/Sun orbit as essentially their periods of rotation around the Sun. He believes that the Moon and planets shine by reflected sunlight. Incredibly he believes that the orbits of the planets are ellipses. He correctly explains the causes of eclipses of the Sun and the Moon. The Indian belief up to that time was that eclipses were caused by a demon called Rahu. His value for the length of the year at 365 days 6 hours 12 minutes 30 seconds is an overestimate since the true value is less than 365 days 6 hours.