DM1 - Dimensions et unités

Exercice 1 – Applications numériques

- 1. Longueur (m), temps (s), masse (kg), température (K), vitesse (m \cdot s⁻¹), volume (m³), énergie (J), puissance (W).
- 2. $532 \text{ nm} = 5.32 \times 10^{-1} \text{ } \mu\text{m} = 5.32 \times 10^{-7} \text{ m};$ $1.45 \text{ GW} = 1.45 \times 10^9 \text{ W};$ $0.125 \text{ L} = 1.25 \times 10^2 \text{ mL} = 1.25 \times 10^{-4} \text{ m}^3.$
- **3.** On a

1 année-lumière = 365,25 j × 24 h × 60 min × 60 s × $c \approx 9,47 \times 10^{12}$ km

- . On en déduit que la nébuleuse à tête de cheval est située à $5.91 \times 10^{14}\,\mathrm{km}$ de la Terre.
- 4. La vitesse de la fusée est voisine de :

$$v_{\text{fusée}} = 5.6 \times v \approx 1.9 \times 10^3 \,\text{m} \cdot \text{s}^{-1} = 6.8 \times 10^3 \,\text{km} \cdot \text{h}^{-1}.$$

5. On a

$$F_{\rm G} = G \frac{M_{\rm T} M_{\odot}}{d^2}.$$

A.N. : $F_G \approx 3.52 \times 10^{22} \,\text{N}$.

Exercice 2 - Périmètre, surface et volume

1. Le périmètre ${\mathcal P}$ du cercle et l'aire ${\mathcal A}$ du cercle sont donnés par

$$\mathcal{P} = 2\pi r$$
 et $\mathcal{A} = \pi r^2$.

2. La surface $\mathcal S$ d'une sphère et le volume $\mathcal V$ d'une boule sont donnés par

$$\boxed{\mathcal{S} = 4\pi r^2}$$
 et $\boxed{\mathcal{V} = \frac{4}{3}\pi r^3}$.

3. La surface totale \mathcal{S} et le volume \mathcal{V} du cylindre sont donnés par

$$S = 2\pi r h + 2\pi r^2$$
 et $V = \pi r^2 h$.

Exercice 3 - Analyse dimensionnelle

1. On a

$$[m] = \mathcal{M}, \quad [g] = \mathcal{L} \cdot \mathcal{T}^{-2}, \quad [h] = \mathcal{L} \quad \text{et} \quad [v] = \mathcal{L} \cdot \mathcal{T}^{-1}.$$

On cherche α , β et γ tels que

$$v = km^{\alpha}q^{\beta}h^{\gamma},$$

où $k \in \mathbb{R}$ est une constante adimensionnée.

L'équation aux dimensions s'écrit

$$[km^{\alpha}g^{\beta}h^{\gamma}] = L \cdot T^{-1}, \quad \text{d'où } (\dots) \quad \alpha = 0 \quad \text{et} \quad \beta = \gamma = \frac{1}{2}.$$

On en déduit

$$v = k\sqrt{gh}.$$

On montrera que, dans ce cas, $k = \sqrt{2}$ d'où $v = \sqrt{2gh}$.

2. L'expression de la force de rappel permet de déterminer la dimension de la constante de raideur du ressort. On trouve

$$[k] = M \cdot T^{-2}.$$

En appliquant le même raisonnement que précédemment, on trouve

$$f = a\sqrt{\frac{k}{m}},$$

où $a \in \mathbb{R}$ est une constante adimensionnée.

De même, on montrera que $a = \frac{1}{2\pi}$, d'où $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$.

3. L'unité de la constante gravitationnelle G donnée dans l'Ex. 1 permet de déduire sa dimension. On a

$$[G] = L^3 \cdot M^{-1} \cdot T^{-2}.$$

De même que précédemment, on trouve

$$R_S = k \frac{GM}{c^2},$$

où $k \in \mathbb{R}$ est une constante adimensionnée.

Le calcul complet donne k=2.