Retinal Imaging

Medical Image Classification

Data Science In Health

Gérôme Meyer Rebekka von Wartburg Mai 23, 2024

Agenda

- Introduction
- Data
- Preprocessing
- Model Architecture
- Model Performance
- Related Work
- Discussion
- Code Walk Through

https://atlanticeyeinstitute.com/diabetic-eye-issues-5-ways-diabetes-impacts-vision/

https://atlanticeyeinstitute.com/diabetic-eye-issues-5-ways-diabetes-impacts-vision/

Glaucoma

https://atlanticeyeinstitute.com/diabetic-eye-issues-5-ways-diabetes-impacts-vision/

Diabetic Retinopathy

https://atlanticeyein stitute.com/diabetic-eye-issues-5-ways-diabetes-impacts-vision/

Medical Scan Classification Dataset

19

New

Data Card Code (10) Discussion Data

→ from Kaggle (Medical Scan Classification Dataset <u>LINK</u>) Normal: 1074 Files

Cataract: 1038 Files

Glaucoma: 1007 Files

Diabetic Retinopathy: 1098 Files

→ Almost balanced Distribution of the data

Cataract

1098 files

Diabetic Retinopathy

Glaucoma

1007 files

Normal

1074 files

Preprocessing

• Manual visual inspection of the images in each class

Normal Eye

Cataract

Glaucoma

Diabetic Retinopathy

Preprocessing

- **Resizing** to 600 x 600 pixels
- Center Crop to 512 x 512 pixels
- Data Splitting
- 80% (3374 images) training
- 20% (843 images) validation

Model – Architecture

- Adaption of the encoder part of the U-Net architecture with minor changes, such as padding and 2 additional layers
- (see <u>U-Net: Convolutional Networks for Biomedical Image Segmentation</u>)

Model - Performance

- Final balanced accuracy: ~87%
- The F1-Score matches accuracy
- Learning Rate scheduling plays a big role!

Model - Performance

Class wise accuracy

• **Normal Eye:** 91.9%

• Glaucoma: 88.8%

• **Cataract:** 93.1%

• Diabetic Retinopathy: 96.4%

Multi Class

→ ours: 86.9%

Study	Approach	Accuracy
Khan et al. (2019) An Automatic Ocular Disease Detection Scheme from Enhanced Fundus Images Based on Ensembling Deep CNN Networks LINK	CNN	86 %
Glaret et al. (2022) Optimized convolution neural network based multiple eye disease detection LINK	CNN	98.3 %
Gour et al. (2021) Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network LINK	CNN	89.06%

Glaucoma

→ ours: 88.8%

Study	Approach	Accuracy
Raghavendra et al. (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images LINK	CNN	98.13 %
Dias-Pinto et al. (2019) CNNs for automatic glaucoma assessment using fundus images: an extensive validation LINK	CNN (with different ImageNet- trained models)	96.05%
Shoba et al. (2020) Detection of glaucoma disease in fundus images based on morphological operation and finite element method LINK	SVM	94.86%
Septiarini et al. (2018) Automatic Glaucoma Detection Method Applying a Statistical Approach to Fundus Images LINK	KNN	95.24%

Cataract

→ ours: 93.1%

Study	Approach	Accuracy
Zhang et al. (2017) Automatic cataract detection and grading using Deep Convolutional Neural Network LINK	CNN	93.52 %
Ran et al. (2018) Cataract Detection and Grading Based on Combination of Deep Convolutional Neural Network and Random Forests LINK	CNN with Random Forest	90.69 %
Zhou et al. (2020) Automatic Cataract Classification Using Deep Neural Network With Discrete State Transition LINK	Deep NN	94.00%

Diabetic Retinopathy

→ ours: 96.4%

Study	Approach	Accuracy
Mohsin Butt et al. (2019) Multi-channel Convolutions Neural Network Based Diabetic Retinopathy Detection from Fundus Images LINK	CNN	97.08 %
Li et al. (2019) Computer-Assisted Diagnosis for Diabetic Retinopathy Based on Fundus Images Using Deep Convolutional Neural Network LINK	CNN	91.05%
Saleh et al. (2018) Learning ensemble classifiers for diabetic retinopathy assessment LINK	Ensemble Classifiers	72.84%

Glaucoma?

• Our model performs ~10% below State-of-the-art when it comes to Glaucoma predictions. Why?

Correct Predictions **Incorrect Predictions**

Glaucoma?

Normal: 1074 Files

Cataract: 1038 Files

Glaucoma: 1007 Files

Diabetic Retinopathy: 1098 Files

→ Almost balanced Distribution of the data

Class wise accuracy

Normal Eye: 91.9%

Glaucoma: 88.8%

Cataract: 93.1%

Diabetic Retinopathy: 96.4%

Discussion & Future Steps

The images are not uniform (within and across classes). It could be very beneficial if we could transform them in the same format. The center crop helps, but not for all variations, such as images with different aspect ratios

Discussion & Future Steps

- We will test whether down-sampling solves the issue with the poor performance regarding Glaucoma
- Do a 5-fold cross-validation on the dataset

```
super().__init__()
self.classifier = Sequential()
    double_convolution_layer
   MaxPool2d(4),
                              Code Walk-
    double_convolution_lay
                              Through
   MaxPool2d(4),
    double_convolution_la
   MaxPool2d(2),
    double_convolution_lay
   MaxPool2d(2),
    double_convolution_laye
   MaxPool2d(2),
    double convolution laver(
```

