Group5-CMLS-HW1

Music Genre Classification

{ 10482867 10521088 10539533 10702368 10751919 } @mail.polimi.it

Project Workflow

Based on a subset of 400 audio pieces from GTZAN dataset

- We build Model1: KNN Classifier,
 and Model2: SVC Classifier
- Able to predict unseen audios among Blues, Metal, Hip-hop and Reggae

Preprocessing

Observe the Dataset

- retrieve annotations
- check original dataset
- choose features we want

- have a look at the data
- check the quality

Genre	Rec./Exact Repetition	Unbalance	Version	Mislabelling
Blues	_	only 9 artists	-	-
Hip-hop	6	_	2	4
Metal	_	_	3	13
Reggae	3	30 % from one artist	2	1

Table 1: A Summary of the known errors in the dataset.

The Features

- 34 columns of feature
- 400 audio tracks
- 80 % for training
- 20 % for testing
- rescaling, selection, saving

Two Classifiers: KNN & SVC

- The process to use the classifiers: pick the rightsparameters build the classifiers --> fit with training data set
- We use K-fold (R'=010) Cross Yalidation and 'kernel': 'rbf',

 Grid Search methodoto optimise the parameters for those two classifiers

Results & Conclusions

- Here are two confusion matrix to represent the final testing result, separately for KNN and SVC
- Each row in the matrix is the real genre,
 while each column is the predicted genre
 category classified by the model we build

Normalized confusion matrix 0.053 blues 0.8 - 0.6 0.05 0.1 0.05 metal True label 0.4 0.18 0.091 0.73 0 0.2 0.79 0.11 0.11 0 reggae blues hiphop reggae

Predicted label

Table 3: Final Results

Classifier	Accuracy	F1 Score
KNN	0.8125	0.812
SVC	0.785	0.79

Plot 4. KNN & SVC results of Confusion Matrix

Reference

- [1]Data Sets. GTZAN Genre Collection.url:http://marsyas.info/downloads/datasets.html.
- [2]**LibROSA Documentation.**url:https://librosa.github.io/librosa/.
- [3]**NumPy.**url:https://numpy.org/.
- [4]Pandas documentation.url:https://pandas.pydata.org/pandas-docs/stable/index.html.
- [5]**Scikit-learn.**url:https://scikit-learn.org/stable/.
- [6] Bob L. Sturm. "The GTZAN dataset: Itscontents, its faults, their effects on eval-uation, and its future use".

 In:CoRRabs/1306.1461 (2013). arXiv:1306.1461.url:http://arxiv.org/abs/1306.1461.
- [7] G. Tzanetakis and P. Cook. "Musicalgenre classification of audio signals". In:IEEE Transactions on Speech