HW11 (CSCI-C241)

Lillie Donato

16 April 2024

1. Claim: For any graph G, if every pair of vertices in G has one and only one path between them, then G is a tree.

(1)

(5)

Choose a graph G and assume every pair of vertices in G has a single path between them

Proof.

	()
Since every pair of vertices in G has a single path between them, then we can conclude	(2)
that every pair is connected	
Since every pair of vertices in G is connected, we can conclude G is connected	(3)
Suppose towards a contradiction that G is not a tree	(4)
Since G is not a tree and G is connected, we can conclude G has a cycle	(5)
Since G has a cycle, we can conclude that there is some path	(6)
$P = (V, a_1, a_2, \dots, a_{n-1}, a_n, W, b_1, b_2, \dots, b_{n-1}, b_n, V)$ for some pair of vertices $(V, a_1, a_2, \dots, a_{n-1}, a_n, W, b_1, b_2, \dots, b_{n-1}, b_n, V)$	W),
where all vertices in the path $(a_1, a_2, \ldots, a_{n-1}, a_n)$ are different from the vertices	
in the path $(b_1, b_2, \dots, b_{n-1}, b_n)$	(7)
Therefore, there are two distinct paths from V to W which contradicts our	(8)
assumption that every pair of vertices has one and only one path between them	(9)
Under the assumption that G is not a tree, we proved an impossibility of there being	(10)
2 distinct paths from one vertex to another, so G must be a tree	(11)
2. Claim: For any tree t , if you remove one edge from the tree, the resulting graph will not be conn Define : $nd(t) = the number of nodes in t$	ected.
Proof. (induction on $nd(t)$) (Base Step, $nd(t) = 2$):	
Since $nd(t) = 2$, there are two nodes in some tree t, meaning there is some edge E that connects	(1)
2 nodes V and W	(2)
If E is removed from t , then V and W are no longer connected, meaning t is no longer connected	
(Inductive Step): Assume for some tree with k nodes, if one edge is removed, then the resulting graph will no long connected	ger be
Let $t = \text{ some tree with } k \text{ nodes}$	(1)
Let $t_1 = t$ with some node n added to it, connected by some edge e, meaning it has $n + 1$ nodes	(2)
If e is removed, n is no longer connected to any other node in t_1 , meaning t_1 is not connected	(3)
If any other edge in t_1 is removed, it must be an edge in t , meaning by our Induction Hypothesi	` ′

3. Question Three

 t_1 will no longer be connected

(a)
$$ed(T) = \begin{cases} 0 & \text{if } T = []\\ ed(T_1) + ed(T_2) + 2 & \text{if } T = [T_1, T_2] \text{ for FBT's } T_1 \text{ and } T_2 \end{cases}$$

(b) Claim: For full every binary tree t, nd(t) = ed(t) + 1

Proof.

(Base Step: t = [])

$$nd(t) = 1 (1)$$

$$= 0 + 1$$
 (Because a tree with a single node has no children and no edges) (2)

$$= \operatorname{ed}(t) + 1 \tag{3}$$

(4)

(Inductive Step):

Assume for some FBT's T_1 and T_2 , $nd(T_1) = ed(T_1) + 1$ and $nd(T_2) = ed(T_2) + 1$

Let
$$T = [T_1, T_2]$$
 (1)

By the recursive definition of nd and ed, we know $nd(T) = nd(T_1) + nd(T_2) + 1$ and (2)

$$ed(T) = ed(T_1) + ed(T_2) + 2 \tag{3}$$

$$nd(T) = nd(T_1) + nd(T_2) + 1 = ed(T_1) + 1 + ed(T_2) + 1 + 1$$
 (By the IH) (4)

$$ed(T_1) + 1 + ed(T_2) + 1 + 1 = ed(T_1) + ed(T_2) + 2 + 1 = ed(T) + 1$$
(5)

- (c) log_2n
- (d) 2^d
- (e) $log_c n$
- (f) c^d
- (g) Claim: Prove c^d

Define: dp(t) = the depth of t

Proof. (induction on dp(t))

(Base Step, dp(t) = 0)

 $c^0 = 1$ (If the depth of a tree is 0, then it must have a single node, its only leaf) (1)

(Inductive Step):

Assume for some tree t with at most c children and a depth k, the largest possible number of leaves are c^k

Since t has at most c^k leaves, a tree with a depth of k+1 and at most c children, (1)

would have c children for every leaf, a total of $c^k \cdot c$ leaves (2)

 $c^k \cdot c = c^{k+1} \tag{3}$