Machine Learning:

Machine learning is a field of artificial intelligence that teaches computers to learn from data without being explicitly programmed.

Types of Machine learning:

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Semi-Supervised Learning
- 4. Reinforcement Learning

Supervised Learning:

In supervised learning, the algorithm learns from labeled data, meaning each training example has an input and a known correct output (label). The model makes predictions and adjusts based on the accuracy of those predictions.

Types of Supervised Learning Tasks:

Task Type	Output Type	Example
Regression	Continuous Value	Predicting house prices, stock value
Classification	Discrete Class Label	Spam detection

Unsupervised Learning:

Unsupervised learning deals with unlabeled data; the model explores data structure or patterns without predefined labels.

Main applications: Clustering, dimensionality reduction, anomaly detection.

Clustering: Grouping customers

Linear Regression Model:

Linear Regression is a supervised learning algorithm used to predict a continuous output variable based on one or more input features. It models the relationship between the input variables (X) and the output variable (y) using a straight line.

Cost Function:

It calculates the difference between predicted values and actual values from the dataset.

@ Goal: Minimize the cost function to improve model accuracy.

model:
$$f_{w,b}(x) = wx + b$$
parameters:
$$w, b$$
cost function:
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$
goal:
$$\min_{w,b} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

goal of linear regression: $\underset{w}{\text{minimize }} J(w)$ general case: $\underset{w,b}{\text{minimize }} J(w,b)$

Gradient Descent:

Gradient Descent is an optimization algorithm used to minimize the cost function (or loss function) in machine learning models, typically through iterative updates to model parameters.

repeat until convergence {

learning rate

$$\underline{w} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$
 $\underline{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$
 $\underline{derivative}$
 $w = w - \alpha \frac{\partial}{\partial w} J(w)$
 $\underline{min}_{w} J(w)$

Gradient descent for linear regression

Learning Rate:

The learning rate, often denoted by α (alpha), is a hyperparameter that determines the size of the steps taken during gradient descent when updating model parameters.

$$w = w - \frac{d}{dw} J(w)$$

If α is too <u>small</u>... Gradient descent may be slow.

If α is too large...

Gradient descent may:

- Overshoot, never reach minimum

Can reach local minimum with fixed learning rate

Near a local minimum,

- Derivative becomes smaller
- Update steps become smaller

