Inferring players' values from their actions

Xiang Yan

Harvard University

Nov 21, 2019

Content

- Example of inferring values in a 2x2 game
- Equilibrium-based players assumptions
- No-regret players assumption
- Quantal regret players assumption
- Application to ad auctions

Based on:

Stationary Concepts for Experimental 2x2-Games by Selten and Chmura

Econometrics for Learning Agents by Nekipelov et, al.

A "quantal regret" method for structural econometrics in repeated games by Nisan and Noti

- How to infer x and y if we know how the game is played?
 - No dominant strategy

• e.g.
$$p_U = 0.11$$
, $q_L = 0.68$

- Assume Nash Equilibrium:
 - $q_L = 10/(x+1)$
 - $x \approx 13.7$

Down

• NE:

$$p_U = \frac{\mathrm{d_D}}{d_U + d_D},$$

$$q_L = \frac{c_R}{c_L + c_R}$$

$a_{\scriptscriptstyle L} + c_{\scriptscriptstyle L}$	a_{R}
$b_{_U}$	$b_{_U} + d_{_U}$
a_{L}	$a_R + c_R$
$b_{\scriptscriptstyle D} + d_{\scriptscriptstyle D}$	$b_{_D}$

U: upD: downL: leftR: right

Player 1's payoff in the upper-left corner Player 2's payoff in the lower-right corner

$$a_{L}, a_{R}, b_{U}, b_{D} \ge 0$$

 $c_{L}, c_{R}, d_{U}, d_{D} \ge 0$

- In practice, NE is hard for players to compute
 - In the experiments, players are informed with their payoff after each play and their opponents' actions and total payoffs after 200 repeats.

- Quantal Response Equilibrium
- For player 1 (row)
 - $E_U(q_L)$, $E_D(q_L)$: expected payoff against q_L

•
$$p_U = \frac{e^{\lambda E_U(q_L)}}{e^{\lambda E_U(q_L)} + e^{\lambda E_D(q_L)}}$$

Similarly

•
$$q_L = \frac{e^{\lambda E_L(p_U)}}{e^{\lambda E_L(p_U)} + e^{\lambda E_R(p_U)}}$$

• Solve the equation and fit λ through data

- Action-sampling Equilibrium
- Player 1: n samples where L played k times
 - Choose his best response according to samples

•
$$\alpha_U(k) = 1$$
 if $\frac{k}{n} > \frac{c_R}{c_L + c_R}$; $\frac{1}{2}$ if " = "; 0 else

•
$$p_U = \sum_{k=0}^{n} {n \choose k} q_L^k (1 - q_L)^{n-k} \alpha_U(k)$$

• Player 2: n samples where U played m times

•
$$\alpha_L(m) = 1 \text{ if } \frac{m}{n} > \frac{d_U}{d_U + d_D}; \frac{1}{2} \text{ if "} = "; 0 \text{ else}$$

•
$$q_L = \sum_{m=0}^{n} {n \choose m} p_U^{n-m} (1 - p_U)^m \alpha_L(m)$$

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

 \boldsymbol{U}

- Payoff-sampling Equilibrium
- Player 1: n samples in total, L played k_U (k_D) times when he plays U (D)
 - Payoff in samples:

•
$$H_U = k_U(a_L + c_L) + (n - k_U)a_R$$

•
$$H_D = k_D a_L + (n - k_D)(a_R + c_R)$$

- Play the one with higher payoff
 - $\beta(k_U, k_D) = 1 \text{ if } H_U > H_D; \frac{1}{2} \text{ if "} = "; 0 \text{ else}$

•
$$p_U = \sum_{k_U=0}^n \sum_{k_D=0}^n \binom{n}{k_U} \binom{n}{k_D} q_L^{k_U+k_D} (1-q_L)^{2n-k_U-k_D} \beta(k_U, k_D)$$

• Similar for player 2

U

 \boldsymbol{D}

- Impulse Balance Equilibrium
- Security level: the maxmin payoff
 - $s_1 = \max[\min(a_L + c_L, a_R), \min(a_L, a_R + c_R)]$
 - $s_2 = \max[\min(b_U, b_D + d_D), \min(b_U + d_U, b_D)]$
 - Second lowest payoff
- Transform the payoff matrix
 - Idea: a loss is twice weighted than a gain
 - Reduce the surplus payoff over s_i by a factor $\frac{1}{2}$

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

 \boldsymbol{U}

D

- Impulse Balance Equilibrium
- Security level: the maxmin payoff
- Transform the payoff matrix
- Impulse balance equations:
 - $p_U q_R c_R^* = p_D q_L c_L^*$
 - $p_U q_L d_U^* = p_D q_R d_D^*$
- Then

•
$$p_U = \frac{q_L c_L^*}{q_L c_L^* + (1 - q_L) c_R^*}$$
, $q_L = \frac{(1 - p_U) d_D^*}{p_U d_U^* + (1 - p_U) d_D^*}$
• $p_U = \frac{\sqrt{c}}{\sqrt{c} + \sqrt{d}}$, $q_L = \frac{1}{1 + \sqrt{cd}}$, $c = \frac{c_L^*}{c_R^*}$, $d = \frac{d_U^*}{d_D^*}$

		\boldsymbol{L}		R	
	0		$c_{\scriptscriptstyle R}^*$		
$oldsymbol{U}$					
		d	* U		0
	$c_{\scriptscriptstyle L}^*$		0		
D					
		($d^*_{\scriptscriptstyle D}$

• Infer one element of the payoff matrix through repeatedly playing samples

• Performance:

- 1. Impulse balance equilibrium
- 2. Payoff-sampling equilibrium
- 3. Action-sampling equilibrium
- 4. Quantal response equilibrium
- 5. Nash equilibrium

- Other equilibrium is still hard to compute.
- What if players are using no-regret learning?

$$regret_{i}(\theta, \vec{a}) = \frac{1}{T}(max_{a'_{i} \in A_{i}} \sum_{t=1}^{T} u_{i}(a'_{i}, a^{t}_{-i}, \theta) - \sum_{t=1}^{T} u_{i}(a^{t}_{i}, a^{t}_{-i}, \theta)).$$

• An algorithm is a no-regret learning if the regret goes to 0 as T increase to infinity.

- $x \approx 13$ for the lowest regret
- Recall NE leads to 13.7

Quantal Regret Model

- The prior of θ (i.e. x) is uniform distribution $p(\theta)$
- It is updated according to the regret:

$$\hat{\theta} = Z^{-1} \cdot \sum_{\theta} p(\theta) \cdot e^{-\lambda \cdot \sum_{i} regret_{i}(\theta, \vec{a})} \cdot \theta,$$

where

$$Z = \sum_{\theta} p(\theta) \cdot e^{-\lambda \cdot \sum_{i} regret_{i}(\theta, \vec{a})}$$

- λ : parameter reflecting how players relying on no-regret learning
 - If $\lambda = \infty$, it is equivalent to min-regret
- Performs better than equilibrium-based model and min-regret

Application to Auctions

• For given bidding $\boldsymbol{b}^t = (b_i^t, \boldsymbol{b}_{-i}^t), t = 1, ..., T, (v, \epsilon)$ is no-regret pair if

$$\forall b' \in \mathbb{R}_{+} : v \cdot \frac{1}{T} \sum_{t=1}^{T} \left(P_{i}^{t}(b', \mathbf{b}_{-i}^{t}) - P_{i}^{t}(\mathbf{b}^{t}) \right) \leq \frac{1}{T} \sum_{t=1}^{T} \left(C_{i}^{t}(b', \mathbf{b}_{-i}^{t}) - C_{i}^{t}(\mathbf{b}^{t}) \right) + \epsilon$$

where $P(\cdot)$ is winning probability, $C(\cdot)$ is the payment function

• Define deviation function:

$$\Delta P(b') = \frac{1}{T} \sum_{t=1}^{T} \left(P_i^t(b', \mathbf{b}_{-i}^t) - P_i^t(\mathbf{b}^t) \right) \qquad \qquad \Delta C(b') = \frac{1}{T} \sum_{t=1}^{T} \left(C_i^t(b', \mathbf{b}_{-i}^t) - C_i^t(\mathbf{b}^t) \right)$$

• Rationalizable Set $\mathcal{NR} = \{(v, \epsilon) | \forall b' \in \mathbb{R}_+ : v \cdot \Delta P(b') \leq \Delta C(b') + \epsilon \}$

Application to Auctions

With some assumptions

ASSUMPTION 1. The support of bids is a compact set $B = [0, \overline{b}]$. For each bidvector $\mathbf{b_{-i}^t}$ the functions $P_i^t(\cdot, \mathbf{b_{-i}^t})$ and $C_i^t(\cdot, \mathbf{b_{-i}^t})$ are continous, monotone increasing and bounded on B.

Assumption 2. For each b_1 and $b_2 > 0$ the incremental cost per click function

$$ICC(b_2, b_1) = rac{\Delta C(b_2) - \Delta C(b_1)}{\Delta P(b_2) - \Delta P(b_1)}$$

is continuous in b_1 for each $b_2 \neq b_1$ and it is continuous in b_2 for each $b_1 \neq b_2$. Moreover for any $b_4 > b_3 > b_2 > b_1$ on $B: ICC(b_4, b_3) > ICC(b_2, b_1)$.

ASSUMPTION 3.

- (i) The rationalizable values per click are non-negative: $v \geq 0$.
- (ii) There exists a global upper bound $\bar{\epsilon}$ for the error of all players.

Application to Auctions

• With some assumptions, the Hausdorf distance between the estimated $\widehat{\mathcal{NR}_B}$ and the real \mathcal{NR}_B satisfies

$$d_H(\widehat{\mathcal{N}R}_B, \mathcal{N}R_B) \le O((N^{-1}\log N)^{\gamma/(2\gamma+1)}), \quad \gamma = k + \alpha.$$

where *N* is the number of samples. (B stands for bounded)

- It requires an estimation for $\Delta C(\Delta P^{-1}(\cdot))$ from data, which is easy.
- In stead of estimating v through $(v, \epsilon) \in \mathcal{NR}$ with smallest ϵ , do

$$\hat{v}_i = (\sum_j v_i^j \cdot e^{-\lambda \epsilon_i^j}) / (\sum_j e^{-\lambda \epsilon_i^j})$$

Thank You