Lesson 18: Bernoulli Differential Equations

ODE 1 - Prof. Adi Ditkowski

1 Definition and Recognition

Definition 1 (Bernoulli Equation). A Bernoulli differential equation has the form:

$$\frac{dy}{dx} + p(x)y = q(x)y^n$$

where p(x) and q(x) are continuous functions and $n \neq 0, 1$.

Why $n \neq 0, 1$?

- If n=0: y'+p(x)y=q(x) is already linear If n=1: y'+p(x)y=q(x)y gives y'=y(q(x)-p(x)), which is separable
- \bullet For all other n: The equation is genuinely nonlinear and requires the Bernoulli transformation

2 The Bernoulli Transformation

The Power Substitution Method:

- 1. Given: $\frac{dy}{dx} + p(x)y = q(x)y^n$ with $n \neq 0, 1$
- 2. Substitute: $v = y^{1-n}$
- 3. Then: $y = v^{\frac{1}{1-n}}$ and $\frac{dy}{dx} = \frac{1}{1-n}v^{\frac{n}{1-n}} \cdot \frac{dv}{dx}$
- 4. Alternatively: $\frac{dv}{dx} = (1-n)y^{-n} \cdot \frac{dy}{dx}$
- 5. The transformed equation becomes:

$$\frac{dv}{dx} + (1-n)p(x)v = (1-n)q(x)$$

1

6. This is linear in v! Solve using integrating factor method

7. Back-substitute: $y = v^{\frac{1}{1-n}}$

Critical Algebraic Steps: Starting from $v = y^{1-n}$:

$$\frac{dv}{dx} = (1 - n)y^{-n}\frac{dy}{dx} \tag{1}$$

$$\frac{dy}{dx} = \frac{y^n}{1 - n} \frac{dv}{dx} \tag{2}$$

(3)

Substituting into the original equation and multiplying by $(1-n)y^{-n}$ gives the linear form.

3 Detailed Derivation

Theorem 1 (Bernoulli to Linear Transformation). The substitution $v = y^{1-n}$ transforms the Bernoulli equation into a linear equation.

Proof:

Given:
$$y' + p(x)y = q(x)y^n$$
 (4)

$$Let: v = y^{1-n} \tag{5}$$

Then:
$$\frac{dv}{dx} = (1-n)y^{-n}\frac{dy}{dx}$$
 (6)

So:
$$\frac{dy}{dx} = \frac{y^n}{1-n} \frac{dv}{dx}$$
 (7)

Substitute:
$$\frac{y^n}{1-n}\frac{dv}{dx} + p(x)y = q(x)y^n$$
 (8)

Multiply by
$$\frac{1-n}{y^n} : \frac{dv}{dx} + (1-n)p(x)y^{1-n} = (1-n)q(x)$$
 (9)

Since
$$v = y^{1-n} : \frac{dv}{dx} + (1-n)p(x)v = (1-n)q(x)$$
 \Box (10)

4 Standard Examples

Example 1 (Basic Bernoulli). Solve: $y' + \frac{2y}{x} = x^2y^3$ Solution:

1. Identify:
$$p(x) = \frac{2}{x}$$
, $q(x) = x^2$, $n = 3$

2. Substitute:
$$v = y^{1-3} = y^{-2}$$

3. Transform:
$$\frac{dv}{dx} + (1-3)\frac{2v}{x} = (1-3)x^2$$

4. Simplify:
$$\frac{dv}{dx} - \frac{4v}{x} = -2x^2$$

5. Integrating factor: $\mu = e^{\int 4/x \, dx} = x^4$

6. Multiply: $x^4 \frac{dv}{dx} - 4x^3 v = -2x^6$

7. Integrate: $x^4v = -\frac{2x^7}{7} + C$

8. Solve for $v: v = -\frac{2x^3}{7} + \frac{C}{x^4}$

9. Back-substitute: $y^{-2} = -\frac{2x^3}{7} + \frac{C}{x^4}$

10. Final: $y = \pm \left(-\frac{2x^3}{7} + \frac{C}{x^4}\right)^{-1/2}$

Example 2 (Logistic Equation). Solve: $\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$ where r, K > 0 Solution:

1. Expand: $\frac{dP}{dt} = rP - \frac{r}{K}P^2$

2. Rearrange: $\frac{dP}{dt} - rP = -\frac{r}{K}P^2$ (Bernoulli with n = 2)

3. Substitute: $v = P^{1-2} = P^{-1} = \frac{1}{P}$

4. Transform: $\frac{dv}{dt} + rv = \frac{r}{K}$

5. Solve linear equation: $v = \frac{1}{K} + Ce^{-rt}$

6. Back-substitute: $P = \frac{1}{v} = \frac{K}{1 + CKe^{-rt}}$

7. With initial condition $P(0) = P_0$: $P(t) = \frac{K}{1 + \left(\frac{K - P_0}{P_0}\right)e^{-rt}}$

5 Special Cases and Variations

Common Values of n and Their Applications:

n	Application	Substitution
2	Logistic growth, Riccati connection	$v = y^{-1}$
3	Certain chemical reactions	$v = y^{-2}$
1/2	Fluid dynamics, heat transfer	$v = y^{1/2}$
-1	Inverse relationships	$v = y^2$
-2	Gravitational problems	$v = y^3$

Prof. Ditkowski's Exam Patterns:

- \bullet Often disguises Bernoulli equations practice recognition
- Likes fractional powers: n = 1/2, 3/2, -1/2
- $\bullet\,$ May combine with initial conditions

- Tests the connection to logistic growth
- Sometimes asks for qualitative behavior without full solution
- Partial credit for correct substitution identification

6 Recognition Flowchart

The key steps for recognizing and solving Bernoulli equations:

- 1. Check if the equation has form $y' + p(x)y = q(x)y^n$
- 2. If n = 0: Linear equation, use integrating factor
- 3. If n = 1: Separable equation
- 4. Otherwise: Apply Bernoulli substitution $v = y^{1-n}$

7 Solution Quality Check

Verification Steps:

- 1. Check that your transformed equation is truly linear
- 2. Verify the integrating factor calculation
- 3. Ensure back-substitution is algebraically correct
- 4. Test with initial conditions if given
- 5. Check for lost solutions when y = 0