定理 1.21 $R \geq S$ が A から B への関係であれば,次の式が成り立つ。

- (1) $(R \cup S)^c = R^c \cup S^c$
- (2) $(R \cap S)^c = R^c \cap S^c$
- (3) $(A \times B)^c = B \times A$
- (4) $(\sim R)^c = \sim (R^c)$, $= (R^c) = (R^$
- (5) $(R-S)^c = R^c S^c$

【証明】

(1):
$$(R \cup S)^c = \{ \langle x, y \rangle | \langle y, x \rangle \in R \cup S \}$$

 $= \{ \langle x, y \rangle | \langle y, x \rangle \in R \text{ \exists t-lid } \langle y, x \rangle \in S \}$
 $= \{ \langle x, y \rangle | \langle x, y \rangle \in R^c \text{ \exists t-lid } \langle x, y \rangle \in S^c \}$
 $= R^c \cup S^c$

(2):
$$(R \cap S)^c = \{ \langle x, y \rangle | \langle y, x \rangle \in R \cap S \}$$

= $\{ \langle x, y \rangle | \langle y, x \rangle \in R, \langle y, x \rangle \in S \}$
= $\{ \langle x, y \rangle | \langle x, y \rangle \in R^c, \langle x, y \rangle \in S^c \}$
= $\{ \langle x, y \rangle | \langle x, y \rangle \in R^c, \langle x, y \rangle \in S^c \}$

(3):
$$(A \times B)^c = \{\langle x, y \rangle | \langle y, x \rangle \in A \times B\} = \{\langle x, y \rangle | \langle x, y \rangle \in B \times A\} = B \times A$$

(4):
$$(\sim R)^c = \{ \langle x, y \rangle | \langle y, x \rangle \in \sim R \}$$

 $= \{ \langle x, y \rangle | \langle y, x \rangle \notin R \}$
 $= \{ \langle x, y \rangle | \langle x, y \rangle \notin R^c \}$
 $= \{ \langle x, y \rangle | \langle x, y \rangle \in \sim (R^c) \}$
 $= \sim (R^c)$

(5):
$$(R-S)^c = (R \cap \sim S)^c = R^c \cap (\sim S)^c = R^c \cap \sim (S^c) = R^c - S^c$$