# UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERÍA ELÉCTRICA IE-0623 MICROPROCESADORES

## PROYECTO FINAL RADAR 623

REALIZADO POR

STUART LEAL QUESADA B53777

SAN JOSÉ, COSTA RICA 2019

#### Resumen

Aquí va el resumen del trabajo escrito.

## Índice general

| 1. | Resi       | Resumen                                                     |    |  |  |  |  |  |  |  |  |  |  |
|----|------------|-------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|--|
| 2. | Desarrollo |                                                             |    |  |  |  |  |  |  |  |  |  |  |
|    | 2.1.       | Explicación general                                         | 7  |  |  |  |  |  |  |  |  |  |  |
|    | 2.2.       | Subrutina ATD_ISR                                           | 7  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.2.1. Cálculos para interrupción ATD_ISR                   | 7  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.2.2. Configuración de ATD_ISR                             | 7  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.2.3. Vector de interrupción ATD_ISR                       | 8  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.2.4. Diagrama y explicación de la subrutina ATD_ISR       | 8  |  |  |  |  |  |  |  |  |  |  |
|    | 2.3.       | Subrutina TCNT_ISR                                          | 9  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.3.1. Cálculos para interrupción TCNT_ISR                  | 9  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.3.2. Configuración de TCNT_ISR                            | 9  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.3.3. Vector de interrupción TCNT_ISR                      | 9  |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.3.4. Diagrama y explicación de la subrutina TCNT_ISR      | 10 |  |  |  |  |  |  |  |  |  |  |
|    | 2.4.       | Subrutina CALCULAR                                          | 10 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.4.1. Cálculos para interrupción CALCULAR                  | 10 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.4.2. Configuración de CALCULAR                            | 12 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.4.3. Vector de interrupción CALCULAR                      | 12 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.4.4. Diagrama y explicación de la subrutina CALCULAR      | 12 |  |  |  |  |  |  |  |  |  |  |
|    | 2.5.       | Subrutina RTI_ISR                                           | 13 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.5.1. Cálculos para interrupción RTI_ISR                   | 13 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.5.2. Configuración de RTI_ISR                             | 13 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.5.3. Vector de interrupción RTI_ISR                       | 13 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.5.4. Diagrama y explicación de la subrutina RTI_ISR       | 14 |  |  |  |  |  |  |  |  |  |  |
|    | 2.6.       | Subrutina OC4_ISR                                           | 14 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.6.1. Cálculos para interrupción OC4_ISR                   | 14 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.6.2. Configuración de OC4_ISR                             | 14 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.6.3. Vector de interrupción OC4_ISR                       | 15 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.6.4. Diagrama y explicación de la subrutina OC4_ISR       | 15 |  |  |  |  |  |  |  |  |  |  |
|    | 2.7.       | Subrutina MUX_TECLADO                                       | 18 |  |  |  |  |  |  |  |  |  |  |
|    | •          | 2.7.1. Diagrama y explicación de la subrutina MUX_TECLADO   | 18 |  |  |  |  |  |  |  |  |  |  |
|    | 2.8.       | Subrutina TAREA_TECLADO                                     | 19 |  |  |  |  |  |  |  |  |  |  |
|    |            | 2.8.1. Diagrama y explicación de la subrutina TAREA_TECLADO | 19 |  |  |  |  |  |  |  |  |  |  |
|    | 2.9.       | Subrutina FORMAR_ARRAY                                      | 20 |  |  |  |  |  |  |  |  |  |  |
|    | _          |                                                             | 20 |  |  |  |  |  |  |  |  |  |  |
|    | 2.10.      | Subrutina MODO_MEDICION                                     | 22 |  |  |  |  |  |  |  |  |  |  |

| Ар           | péndices                                                     | 41           |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Bibliografía |                                                              |              |  |  |  |  |  |  |  |
| 3.           | 3.1. Conclusiones                                            | <b>39</b> 39 |  |  |  |  |  |  |  |
| ₹.           | Conclusiones y recomendaciones                               | 20           |  |  |  |  |  |  |  |
|              | 2.24.2. Cálculos para PANT_CTRL                              | 37           |  |  |  |  |  |  |  |
|              | 2.24.1. Configuración para PH                                | 36           |  |  |  |  |  |  |  |
|              | 2.24. VIEJO                                                  | 34<br>36     |  |  |  |  |  |  |  |
|              | 2.23.1. Configuración de MAIN                                | 34<br>34     |  |  |  |  |  |  |  |
|              |                                                              | 34           |  |  |  |  |  |  |  |
|              | 2.22.1. Diagrama y explicación de la subrutina PATRON_LEDS   | 33           |  |  |  |  |  |  |  |
|              | 2.22. Subrutina PATRON_LEDS                                  | 33           |  |  |  |  |  |  |  |
|              | 2.21.1. Diagrama y explicación de la subrutina Cargar_LCD    | 32           |  |  |  |  |  |  |  |
|              | 2.21. Subrutina Cargar_LCD                                   | 32           |  |  |  |  |  |  |  |
|              | 2.20.1. Diagrama y explicación de la subrutina LCD           | 31           |  |  |  |  |  |  |  |
|              | 2.20. Subrutina LCD                                          | 31           |  |  |  |  |  |  |  |
|              | 2.19.1. Diagrama y explicación de la subrutina SEND          | 30           |  |  |  |  |  |  |  |
|              | 2.19. Subrutina SEND                                         | 30           |  |  |  |  |  |  |  |
|              | 2.18.1. Diagrama y explicación de la subrutina DELAY         | 29           |  |  |  |  |  |  |  |
|              | 2.18. Subrutina DELAY                                        | 29           |  |  |  |  |  |  |  |
|              | 2.17.1. Diagrama y explicación de la subrutina BCD_7SEG      | 28           |  |  |  |  |  |  |  |
|              | 2.17. Subrutina BCD_7SEG                                     | 28           |  |  |  |  |  |  |  |
|              | 2.16.1. Diagrama y explicación de la subrutina BIN_BCD       | 27           |  |  |  |  |  |  |  |
|              | 2.16. Subrutina BIN_BCD                                      | 27<br>27     |  |  |  |  |  |  |  |
|              | 2.15.1. Diagrama y explicación de la subrutina CONV_BIN_LCD  | 27<br>27     |  |  |  |  |  |  |  |
|              | 2.14.1. Diagrama y explicación de la subrutina BCD_BIN       | 25           |  |  |  |  |  |  |  |
|              | 2.14. Subrutina BCD_BIN                                      | 25           |  |  |  |  |  |  |  |
|              | 2.13.1. Diagrama y explicación de la subrutina MODO_LIBRE    | 24           |  |  |  |  |  |  |  |
|              | 2.13. Subrutina MODO_LIBRE                                   | 24           |  |  |  |  |  |  |  |
|              | 2.12.1. Diagrama y explicación de la subrutina MODO_CONFIG   | 23           |  |  |  |  |  |  |  |
|              | 2.12. Subrutina MODO_CONFIG                                  | 23           |  |  |  |  |  |  |  |
|              | 2.11.1. Diagrama y explicación de la subrutina PANT_CTRL     | 22           |  |  |  |  |  |  |  |
|              | 2.11. Subrutina PANT_CTRL                                    |              |  |  |  |  |  |  |  |
|              | 2.10.1. Diagrama y explicación de la subrutina MODO_MEDICION | 22           |  |  |  |  |  |  |  |

## Índice de figuras

| 2.1.  | Diagrama | de flujos pa | ra ATD_ISR         |          |     | <br> | <br> | <br> | <br> |       | 8  |
|-------|----------|--------------|--------------------|----------|-----|------|------|------|------|-------|----|
| 2.2.  | Diagrama | de flujos pa | ra TCNT_ISR        |          |     | <br> | <br> | <br> | <br> |       | 10 |
| 2.3.  |          |              | a CALCULAR         |          |     |      |      |      |      |       | 12 |
| 2.4.  |          |              | ra RTI_ISR         |          |     |      |      |      |      |       | 14 |
| 2.5.  |          |              | ra OC4_ISR. Prime  |          |     |      |      |      |      |       | 16 |
| 2.6.  | Diagrama | de flujos pa | a OC4_ISR. Segur   | nda par  | te  | <br> | <br> | <br> | <br> |       | 17 |
| 2.7.  | Diagrama | de flujos pa | ra OC4_ISR. Tercei | ra parte | e . | <br> | <br> | <br> | <br> |       | 18 |
| 2.8.  | Diagrama | de flujos pa | a MUX_TECLADO      |          |     | <br> | <br> | <br> | <br> |       | 19 |
|       |          |              | a TAREA_TECLAD     |          |     |      |      |      |      |       | 20 |
| 2.10. | Diagrama | de flujos pa | a FORMAR_ARRA      | Y        |     | <br> | <br> | <br> | <br> |       | 21 |
| 2.11. | Diagrama | de flujos pa | a MODO_MEDICI      | ON       |     | <br> | <br> | <br> | <br> | <br>• | 22 |
| 2.12. | Diagrama | de flujos pa | ra PANT_CTRL       |          |     | <br> | <br> | <br> | <br> |       | 23 |
| 2.13. | Diagrama | de flujos pa | a MODO_CONFIG      | i        |     | <br> | <br> | <br> | <br> | <br>• | 24 |
| 2.14. | Diagrama | de flujos pa | a MODO_LIBRE.      |          |     | <br> | <br> | <br> | <br> | <br>• | 25 |
| 2.15. | Diagrama | de flujos pa | ra BCD_BIN         |          |     | <br> | <br> | <br> | <br> |       | 26 |
| 2.16. | Diagrama | de flujos pa | a CONV_BIN_LCD     |          |     | <br> | <br> | <br> | <br> | <br>• | 27 |
| 2.17. | Diagrama | de flujos pa | ra BIN_BCD         |          |     | <br> | <br> | <br> | <br> |       | 28 |
| 2.18. | Diagrama | de flujos pa | ra BCD_7SEG        |          |     | <br> | <br> | <br> | <br> | <br>• | 29 |
| 2.19. | Diagrama | de flujos pa | ra DELAY           |          |     | <br> | <br> | <br> | <br> | <br>• | 30 |
| 2.20. | Diagrama | de flujos pa | a SEND             |          |     | <br> | <br> | <br> | <br> | <br>• | 31 |
| 2.21. | Diagrama | de flujos pa | ra LCD             |          |     | <br> | <br> | <br> | <br> | <br>• | 32 |
| 2.22. | Diagrama | de flujos pa | ra Cargar_LCD      |          |     | <br> | <br> | <br> | <br> |       | 33 |
| 2.23. | Diagrama | de flujos pa | a PATRON_LEDS.     |          |     | <br> | <br> | <br> | <br> | <br>• | 34 |
|       |          |              | ra MAIN. Primera   |          |     |      |      |      |      |       | 35 |
| 2.25. | Diagrama | de flujos pa | ra MAIN. Segunda   | parte.   |     | <br> | <br> | <br> | <br> |       | 36 |

## Índice de tablas

## 1 Resumen

La introducción va aquí.

#### 2 Desarrollo

#### 2.1. Explicación general

#### 2.2. Subrutina ATD\_ISR

#### 2.2.1. Cálculos para interrupción ATD\_ISR

En lo que respecta a esta interrupción, debemos realizar los cálculos para encontrar el valor de Presescalador que vamos a utilizar. La fórmula que relaciona la frecuencia con el valor del preescalador es la siguiente:

$$frs = rac{BUS\_CLK}{2 \cdot (PRS + 1)}$$
 (2.1)

Para este caso, queremos la frecuencia más baja posible para este periférico, por tanto sería utilizar el valor más alto de PRS posible. Lo cuál corresponde a:

$$PRS = 31 = \$1F$$
 (2.2)

#### 2.2.2. Configuración de ATD\_ISR

Para el primer registro de control ATD0CTL2, queremos habilitar el módulo de conversiones con el bit ADPU=1, queremos habilitar la opción de AFFC, para que se borra la bandera de interrupción cuando se leen los registros de datos y también, habilitar las interrupciones con el bit ASCIE=1. Esto significa que:

$$ATD0CTL2 = \$C2$$

Para el siguiente registro de control ATDOCTL3, queremos 6 conversiones, y además FIFO=0. Entonces tenemos que:

$$ATD0CTL3 = \$30$$

En ATD0CTL4, vamos a querer configurar 4 periodos de reloj para el muestreo, y además SRE8=1 para tener conversiones a 8 bits. Además, vamos a querer el valor del preescalador en 31. Esto significa que:

$$ATD0CTL4 = \$BF$$

Finalmente, tenemos que activar la justificación a la derecha, y las conversiones hacerlas sin signo (DJM=1 y DSGN=0). Además queremos configurar SCAN=MULT=0 para que se muestree sólo la entrada definida, 6 veces y se guarden los valores de ADR0 hasta ADR5. Y finalmente, queremos seleccionar la entrada 7 con los bits CC, CB y CA. Entonces:

$$ATD0CTL5 = \$87$$

#### 2.2.3. Vector de interrupción ATD\_ISR

Finalmente, el vector de interrupción para ATD se encuentra en la dirección \$3E52.

#### 2.2.4. Diagrama y explicación de la subrutina ATD\_ISR

Descripción

**Explicación** 

Diagrama



Figura 2.1: Diagrama de flujos para ATD\_ISR.

#### 2.3. Subrutina TCNT\_ISR

#### 2.3.1. Cálculos para interrupción TCNT\_ISR

Para esta interrupción, lo que debemos de calcular es el tiempo que toma entre una interrupción y otra. Esto se puede calcular con la siguiente fórmula 2.3.

**NOTA:** Se usa un Preescalador de 8, puesto que la subrutina  $OC4\_ISR$  utiliza este Preescalador la el módulo de TIMERS.

$$T_{TOI} = \frac{2^{16} \cdot 8}{24MHz} = \frac{1024}{46875} seg \tag{2.3}$$

#### 2.3.2. Configuración de TCNT\_ISR

Para esta interrupción, la configuración del módulo de reloj se detallará para la subrutina de  $OC4\ ISR$ .

La configuración propia de la interrupción por rebase, se hace escribiendo un 1 en el bit 7 del registro TSCR2.

Para deshabilitar la interrupción, se escribe un o en el mismo bit 7 de ese registro.

#### 2.3.3. Vector de interrupción TCNT\_ISR

El vector de interrupción para esta subrutina se encuentra en la dirección \$3E5E.

#### 2.3.4. Diagrama y explicación de la subrutina TCNT\_ISR

Descripción

**Explicación** 

Diagrama



Figura 2.2: Diagrama de flujos para TCNT\_ISR.

#### 2.4. Subrutina CALCULAR

#### 2.4.1. Cálculos para interrupción CALCULAR

Para realizar el cálculo de la velocidad, usamos la siguiente fórmula:

$$VELOC = \frac{40m}{n_{ticks}} \cdot \frac{tick}{seg} \cdot \frac{seg}{hora} \cdot \frac{km}{metro}$$
 (2.4)

Desarrollando lo anterior, tenemos que:

$$VELOC = \frac{40}{n_{ticks}} \cdot \frac{46875}{1024} \cdot \frac{3600}{1} \cdot \frac{1}{1000}$$
$$= \frac{25}{n_{ticks}} \cdot \frac{16875}{64}$$
$$= \frac{421875}{n_{ticks} \cdot 64}$$

Entonces, la estrategia para realizar el cálculo de velocidad, será:

- Realizar la multiplicación de  $n_{ticks} \cdot 64$  y guardarlo en X.
- Cargar en D #200, luego en Y #16785. Multiplicación queda en Y : D.
- Dividir Y : D entre X, y guardar el resultado en VELOC.

**NOTA:** Hay que verificar que el resultado no sea más grande que 255 (es posible si n es muy pequeño, como por ejemplo n=1 significa que resultado=6591, lo cuál no es una velocidad con sentido. En caso de ser mayor a 255, guardar el máximo valor posible en VELOC (255).

#### 2.4.2. Configuración de CALCULAR

#### 2.4.3. Vector de interrupción CALCULAR

#### 2.4.4. Diagrama y explicación de la subrutina CALCULAR

Descripción

**Explicación** 

Diagrama



Figura 2.3: Diagrama de flujos para CALCULAR.

#### 2.5. Subrutina RTI ISR

#### 2.5.1. Cálculos para interrupción RTI\_ISR

Para esta subrutina, queremos que se ejecute cada 1ms. Entonces, tenemos la siguiente fórmula:

$$T_{RTI} = \frac{(N+1) \cdot 2^{M+9}}{OSC \ CLK}$$
 (2.5)

Haciendo un poco de retrospección,  $OSC_CLK$  tiene un valor de 8MHz, por lo que en el numerador necesitamos un número muy cercano a este valor.

Recordando que  $2^{13} = 8192 \approx 8 \cdot 10^3$ , entonces tendríamos que:

$$T_{RTI} = \frac{(0+1) \cdot 2^{4+9}}{8 \cdot 10^6} = 1,024ms$$

Entonces, con N=1 y M=4 logramos nuestro objetivo.

#### 2.5.2. Configuración de RTI\_ISR

La configuración para este periferico es bastante sencilla en realidad. Básicamente, lo primero es configurar el tiempo de  $T_{RTI}$  con los valores calculados anteriormente. Esto sería:

$$RTICTL = $40$$

Lo segundo, habilitar el puerto de RTI. Esto último se hace con la siguiente configuración:

$$CRGINT = $80$$

#### 2.5.3. Vector de interrupción RTI\_ISR

El vector de interrupción se encuentra en la dirección \$3E70 para el Debug12.

#### 2.5.4. Diagrama y explicación de la subrutina RTI\_ISR

Descripción

Explicación

Diagrama



Figura 2.4: Diagrama de flujos para RTI\_ISR.

#### 2.6. Subrutina OC4\_ISR

#### 2.6.1. Cálculos para interrupción OC4\_ISR

Tenemos que usar un Preescalador de 8 para la interrpución por overflow de  $TCNT\_ISR$ . Entonces, haciendo los cálculos para la cantidad de TICKS que tenemos que contar, para que  $OC4\_ISR$  se ejecute con una frecuencia de 50kHz serían los siguiente:

$$TCS = \frac{20\mu s \cdot 24MHz}{PRS} \tag{2.6}$$

Esto significa entonces que, usando PRS = 8, encontramos que:

$$TCS = 60$$

Cada interrupción entonces, debemos cargar TC4 con TCNT + 60.

**NOTA:** Para realizar cuentas de 1ms por ejemplo, debemos contar hasta 50.

Cuentas de 100ms (Para llamar a  $CONV\_BIN\_BCD$  y  $BCD\_7SEG$ ) se realizan contando hasta 5000.

Cuentas de 200ms (Para llamar a  $PATRON\_LEDS$  y  $ATD0\_CTL5$ ) se realizan contando hasta 10000.

#### 2.6.2. Configuración de OC4\_ISR

Para el primer registro de configuración TSCR1, queremos habilitar el módulo de Timers (bit TEN) y además, queremos habilitar la bandera de TFFCA.

Esto quiere decir que, la bandera de C4F se va a borrar cuando se escriba un dato en TC4, y además, la bandera de TOF se va a borrar cuando se lea el registro de TCNT.

Entonces, para este primer registro, tenemos que:

$$TSCR1 = \$90$$

Luego tenemos el segundo registro de control, TSCR2, en donda vamos a configurar el preescalador con el valor de 8. Esto significa guardar un 3 en los bits de PRS. Por lo tanto, tenemos que:

$$TSCR2 = \$03$$

**NOTA**: Para habilitar o deshabilitar las interrupciones por rebase, la configuración se hace por este mismo registro, en el bit 7 del registro. Sin embargo no están habilitadas por defecto. Sólo se habilitan cuando se está en el modo medición.

Siguiendo con la configuración, para Output Compare, tenemos que habilitar la opción de output compare para el canal 4, en el registro de TIOS. Entonces, tenemos que:

$$TIOS = \$10$$

Y además, tenemos que habilitar la interrupción para cuando la bandera de C4F se levanta. Esto se hace en el registro de configuración llamado TIE, en donde tenemos entonces que:

$$TIE = $10$$

#### 2.6.3. Vector de interrupción OC4\_ISR

El vector de interrupción para  $OC4\_ISR$  se encuentra en la dirección \$3E66.

#### 2.6.4. Diagrama y explicación de la subrutina OC4\_ISR

Descripción

**Explicación** 

#### Diagrama



Figura 2.5: Diagrama de flujos para OC4\_ISR. Primera parte



Figura 2.6: Diagrama de flujos para OC4\_ISR. Segunda parte



Figura 2.7: Diagrama de flujos para OC4\_ISR. Tercera parte

#### 2.7. Subrutina MUX\_TECLADO

## 2.7.1. Diagrama y explicación de la subrutina MUX\_TECLADO

#### Descripción

#### Diagrama



Figura 2.8: Diagrama de flujos para MUX\_TECLADO.

#### 2.8. Subrutina TAREA\_TECLADO

#### 2.8.1. Diagrama y explicación de la subrutina TAREA\_TECLADO

#### Descripción

#### Diagrama



Figura 2.9: Diagrama de flujos para TAREA\_TECLADO.

#### 2.9. Subrutina FORMAR\_ARRAY

### 2.9.1. Diagrama y explicación de la subrutina FORMAR\_ARRAY

#### Descripción

#### Diagrama



Figura 2.10: Diagrama de flujos para FORMAR\_ARRAY.

#### 2.10. Subrutina MODO\_MEDICION

#### 2.10.1. Diagrama y explicación de la subrutina MODO\_MEDICION

#### Descripción

fasdf

#### **Explicación**

Diagrama



Figura 2.11: Diagrama de flujos para MODO\_MEDICION.

#### 2.11. Subrutina PANT\_CTRL

#### 2.11.1. Diagrama y explicación de la subrutina PANT\_CTRL

#### Descripción

#### Diagrama



Figura 2.12: Diagrama de flujos para PANT\_CTRL.

#### 2.12. Subrutina MODO\_CONFIG

## 2.12.1. Diagrama y explicación de la subrutina MODO\_CONFIG

#### Descripción

#### Diagrama



Figura 2.13: Diagrama de flujos para MODO\_CONFIG.

#### 2.13. Subrutina MODO\_LIBRE

#### 2.13.1. Diagrama y explicación de la subrutina MODO\_LIBRE

#### Descripción

#### Diagrama



Figura 2.14: Diagrama de flujos para MODO\_LIBRE.

#### 2.14. Subrutina BCD\_BIN

#### 2.14.1. Diagrama y explicación de la subrutina BCD\_BIN

#### Descripción

#### Diagrama



Figura 2.15: Diagrama de flujos para BCD\_BIN.

#### 2.15. Subrutina CONV\_BIN\_LCD

#### 2.15.1. Diagrama y explicación de la subrutina CONV\_BIN\_LCD

#### Descripción

fasdf

#### **Explicación**

Diagrama



Figura 2.16: Diagrama de flujos para CONV\_BIN\_LCD.

#### 2.16. Subrutina BIN\_BCD

#### 2.16.1. Diagrama y explicación de la subrutina BIN\_BCD

#### Descripción

#### Diagrama



Figura 2.17: Diagrama de flujos para BIN\_BCD.

#### 2.17. Subrutina BCD\_7SEG

#### 2.17.1. Diagrama y explicación de la subrutina BCD\_7SEG

#### Descripción

#### Diagrama



Figura 2.18: Diagrama de flujos para BCD\_7SEG.

#### 2.18. Subrutina DELAY

#### 2.18.1. Diagrama y explicación de la subrutina DELAY

#### Descripción

#### Diagrama



Figura 2.19: Diagrama de flujos para DELAY.

#### 2.19. Subrutina SEND

#### 2.19.1. Diagrama y explicación de la subrutina SEND

#### Descripción

#### Diagrama



Figura 2.20: Diagrama de flujos para SEND.

#### 2.20. Subrutina LCD

#### 2.20.1. Diagrama y explicación de la subrutina LCD

#### Descripción

#### Diagrama



Figura 2.21: Diagrama de flujos para LCD.

#### 2.21. Subrutina Cargar\_LCD

#### 2.21.1. Diagrama y explicación de la subrutina Cargar\_LCD

#### Descripción

#### Diagrama



Figura 2.22: Diagrama de flujos para Cargar\_LCD.

#### 2.22. Subrutina PATRON\_LEDS

#### 2.22.1. Diagrama y explicación de la subrutina PATRON\_LEDS

#### Descripción

#### Diagrama



Figura 2.23: Diagrama de flujos para PATRON\_LEDS.

#### 2.23. Rutina MAIN

#### 2.23.1. Configuración de MAIN

#### 2.23.2. Diagrama y explicación de la rutina MAIN

#### Descripción

#### Diagrama



Figura 2.24: Diagrama de flujos para MAIN. Primera parte.



Figura 2.25: Diagrama de flujos para MAIN. Segunda parte.

#### 2.24. VIEJO

#### 2.24.1. Configuración para PH

Para hablitar todos los pines del puerto H como entradas, utilizamos el registro DDRH, escribiendo cero en todos los bits:

$$DDRH = \$00$$

Para habilitar las interrupciones para PH3 y PH0, utilizamos el registro PIEH:

$$PIEH = \$09 \tag{2.7}$$

Para definir la activación con flanco decreciente, se pone en cero los bits 3 y o del registro *PPSH*:

$$PPSH = \$F6$$

Finalmente, para borrar todas las banderas de interrupción, en caso de que haya alguna en cola:

$$PIFH = \$FF$$

#### 2.24.2. Cálculos para PANT\_CTRL

Lo primero, para lograr que  $TICK\_DIS$  llegue a cero en dos segundos, entonces tenemos que cargar:

$$TICK\_DIS = 2seg \cdot \frac{46875}{1024} = 91,55 \approx 92$$

Ahora, en general, dado una velocidad VELOC, la cantidad de ticks que debemos cargar en contar para que el carro haya avanzado una distancia en metros DISTANCIA, se calcula de la siguiente manera:

$$TICKS = \frac{DISTANCIA}{VELOC} \cdot \frac{1km}{1000m} \cdot \frac{3600s}{1h} \cdot \frac{46875}{1024}$$
 (2.8)

Ahora, particularmente, para calcular  $TICK\_EN$ , la DISTANCIA = 60m. Entonces tendríamos lo siguiente:

$$TICK\_EN = \frac{100m \cdot 1km \cdot 3600 \cdot 46875}{VELOC \cdot 1000m \cdot 1h \cdot 1024}$$
$$= \frac{16479,4921875}{VELOC}$$
$$\approx \frac{16480}{VELOC}$$

Por otro lado, para calcular  $TICK\_DIS$ , simplemente es el doble de  $TICK\_EN$ . Es decir:

$$TICK\_DIS = \frac{32958,984375}{VELOC}$$
 
$$\approx \frac{32959}{VELOC}$$

## **3 Conclusiones y recomendaciones**

- 3.1. Conclusiones
- 3.2. Recomendaciones

## Bibliografía

- [1] Osorio M. (2011). *Los robots basados en una arquitectura deliberativa y la toma de decisiones*. México: Revista saberes compartidos.
- [2] Urdiales C. & Bandera A. & Sandoval S. (2014). *Historia y tendencias actuales de la robótica*. España: Editorial Universidad de Málaga.
- [3] Batle, J.A & Barjau A. (2008). *Holonomy in mobile robots*. España: Universidad de Catalunya, Barcelona.
- [4] Oliveira, H. P., Sousa, A. J., Moreira, A. P., & Costa, P. J. (2009). Modelado de robots omnidireccionales de 3 y 4 ruedas. Contemporary Robotics: Challenges and Solutions.
- [5] Carton Geek. (2016). Robot Omnidireccional. [online] Cartongeek.blogspot.com. Available at: http://cartongeek.blogspot.com/2016/02/robot-omnidireccional.html [Accessed 20 May 2017].
- [6] Muñoz V. & Gil-Gómez G. & García A. *Modelado cinemático y dinámico de un robot móvil omni-direccional*. Málaga: Universidad de Málaga.
- [7] Barrero L. & Villegas A. & Gómez D. *Robot transportador y distribuidor de objetos según su peso*. Redes ingeniería. Volumen 5.
- [8] Martínez S. & Provecto Comportamien-Sisto R. de Grado: Control Computación. Facultad to de Robots *Omnidireccionales.* Instituto de Ingeniería Universidad la República Montevideo. Available de at: https://www.fing.edu.uy/inco/grupos/mina/pGrado/easyrobots/doc/SOA.pdf[Accessed 05 June 2017]
- [9] García D.(2012) *Modelado y Simulacion de un Robot Autónomo Omnidireccional*. Universidad Auntónoma de Querétaro.
- [10] Barrero L. & Villegas A. & Gómez D. (2014) Robot Transportador Omnidireccional . AMDM 2014.
- [11] Ramos E. & Morales R. & Silva R. (2010) *Modelado, simulación y construcción de un robot móvil de ruedas tipo diferencial*. México: CIDETEC.
- [12] Rojas R. (2005) Omnidirectional Control. Alemania: Freie Universitat Berlin.
- [13] Suárez A. & Sánchez A. *Plataforma Móvil omnidireccional de cuatro llantas suecas (Mecanum) en configuración AB*. México: Universdad Autónoma de México.
- [14] V. F. Muñoz Martínez, *Modelado cinemático y dinámico de un robot móvil omnidireccional*. Instituto Andaluz de Automática Avanzada y Robótica.

- [15] Autonomy Lab of Simon Fraser University, *Moving or Sensing, Time and Energy*. Vancouver, Canada.
- [16] Cornwell J. Mecánica Vectorial para Ingenieros DINÁMICA Novena Edición.
- [17] Williams, R., Carter, B., Gallina, P., & Rosati, G. (2002). *Dynamic Model With Slip for Wheeled Omnidirectional Robots*. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 3, JUNE 2002.