Integer Programming ISE 418

Lecture 28

Dr. Ted Ralphs

Reading for This Lecture

- Nemhauser and Wolsey Sections III.3.1-III.3.3, II.1.1
- Wolsey Chapter 3
- CCZ Chapter 4

Combinatorial Algorithms for Integer Programming

• Some integer programs can be solved using so-called *combinatorial* algorithms, which do not rely on polyhedral theory.

- For example, there are various combinatorial algorithms for solving minimum cost network flow problem and special cases.
 - Shortest Path Problem
 - Maximum Flow Problem
 - Matching Problem
- Another related example is the Minimum Cut Problem.
- Algorithms for these problems are covered in more detail in a network flows course.

The Maximum Spanning Tree Problem

- Consider an undirected graph G = (N, E) with cost vector $c \in \mathbb{Z}^E$.
- The *Maximum Spanning Tree Problem* is to find a spanning tree of maximum total cost.
- Such a spanning tree can be found using a greedy algorithm.
- Greedy Algorithm
 - 1. Order the edges in nonincreasing weight order, so that $c_1 \geq c_2 \geq \cdots \geq c_m$ where c_t is the cost of edge e_t .
 - 2. Start with the graph $G_0 = (V_0, E_0)$ consisting of a single node.
 - 3. At step k, if the graph $G_{k-1} \cup \{e_k\}$ contains no cycle, then set $G_k \leftarrow G_{k-1} \cup \{e_k\}$. Otherwise, set $G_k \leftarrow G_{k-1}$.
- Note that we can stop whenever the number of nodes reaches n-1.
- This algorithm is guaranteed to give the optimal solution for this problem.
- Does the greedy algorithm work for other problems?

Submodular Functions

Definition 1. A set function $f: 2^N \to \mathbb{R}$ is submodular if

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$
 for all $A, B \subseteq N$.

Definition 2. A set function f is nondecreasing if

$$f(A) \leq f(B)$$
 for all A, B with $A \subset B \subseteq N$.

Proposition 1. A set function f is nondecreasing and submodular if and only if

$$f(A) \le f(B) + \sum_{j \in A \setminus B} \left[f(B \cup \{j\}) - f(B) \right].$$

Submodular Polyhedra

• We now consider a *submodular polyhedron* defined by

$$\mathcal{P}(f) = \{ x \in \mathbb{R}^n_+ \mid \sum_{j \in S} x_j \le f(S) \text{ for } S \subseteq N \}.$$

 We are interested in solving the associated submodular optimization problem

$$\max\{cx : x \in \mathcal{P}(f)\}$$

- Consider the following greedy algorithm.
 - Order the variables so that $c_1 \geq c_2 \geq \cdots \geq c_r > 0 \geq c_{r+1} \geq \cdots \geq c_n$.
 - Set $x_i = f(S^i) f(S^{i-1})$ for $i = 1, \ldots, r$ and $x_j = 0$ for j > r, where $S^i = \{1, \ldots, i\}$ for $i = 1, \ldots, r$ and $S^0 = \emptyset$.

The Greedy Algorithm and Matroids

- Surprisingly, the greedy algorithm solves all submodular optimization problems!
- ullet Furthermore, when f is integer-valued, the greedy algorithm provides an integral solution.
- This follows from the fact the associated submodular polyhedron is TDI.
- In the special case when $f(S \cup \{j\}) f(S) \in \{0,1\}$, we call f a submodular rank function.

Definition 3. Given a submodular rank function r, a set $A \subseteq N$ is independent if r(A) = |A|. The pair (N, \mathcal{F}) , where \mathcal{F} is the set of independent sets is called a matroid.

Properties of Matroids

- Given a matroid (N, \mathcal{F}) .
 - 1. If A is an independent set and $B \subseteq A$, then B is an independent set.
 - 2. If A and B are independent sets with |A| > |B|, then there exists some $j \in A \setminus B$ such that $A \cup \{j\}$ is independent.
 - 3. Every maximal independent set has the same cardinality.
- Pairs (N, \mathcal{F}) with property 1 are *independence systems*.
- In fact, properties 1 and 2 are equivalent to our original definition and properties 2 and 3 are equivalent.
- The system defining the associated submodular polyhedron is TDI.
- Optimizing over the associated submodular polyhedron solves the maximum weight independent set problem.
- An independence system is a matroid if and only if the greedy algorithm solves the maximum weight independent set problems for every cost function.

Common Matroids

Matric Matroids

- Ground set is the set of columns/rows of a matrix.
- Independent sets are the sets of linearly independent rows/columns.

Graphic Matroid

- The ground set is the set of edges of a graph.
- Independent sets are the sets of edges of the graph that do not form a cycle.

Partition Matroid

- Ground set is the union of m finite disjoint sets E_i for $i = 1, \ldots, r$.
- Independent sets are sets formed by taking at most one element from each set E_i .