Disciplina: Introdução aos Sistemas Lógicos (TW)

Professor: Marcos Augusto Menezes Vieira

Data: 03/12/2023

Trabalho Prático 2 - Introdução aos Sistemas Lógicos

1. Introdução

A proposta deste trabalho prático é desenvolver um circuito que resolva o problema da necessidade de um cronômetro a ser utilizado para auxiliar a artista Ariana Grande no intervalo entre suas músicas. Na prática, o objetivo é desenvolver um contador de 0 a 9 em verilog, utilizando os conceitos estudados de máquinas de estados finitas.

Esta documentação apresenta as seguintes informações:

- 1. Introdução
- 2. Decisões de implementação
- 3. Máquinas de estado utilizadas como referência para a implementação do código
- 4. Testes e visualização
 - 4.1 Visualização das formas de onda do caso de teste
- 5. Conclusões
- 6. Bibliografia

2. Decisões de Implementação

A partir da leitura do enunciado e das dúvidas no fórum da página da disciplina no Moodle foi decidido por implementar o circuito utilizando que 1 clock corresponde ao período de 1 segundo (0,5s em 1 e 0,5s em zero) e que não há especificação para o estado inicial do cronômetro antes do primeiro reset para o uso da cantora, implementando então opção sem especificar (com X até o reset) e especificando o início com um reset prévio antes dos testes em si.

Para isso, no código de testes foi adicionado o comando "#1" antes ddos testes para que após o primeiro reset (extra - inicial) a simulação aguarde 1 unidade de tempo antes de começar a computar a contagem, permitindo assim uma melhor visualização desde a primeira saída. Para equilíbrio do tempo da especificação foi reduzida uma unidade de tempo do período inicial também (de #50 para #49). A parte do código que realiza tais funções está exemplificada na Figura 1 abaixo.

Disciplina: Introdução aos Sistemas Lógicos (TW)

Professor: Marcos Augusto Menezes Vieira

Data: 03/12/2023


```
always begin //Inicializando o clock de 1 segundo
13
             #5 clk = ~clk; //a cada 0.5 seg
14
15
16
        initial begin // Inicializações
    $dumpfile("dump.vcd");
17
18
19
             $dumpvars;
20
21
22
23
             reset = 1; //para começar do zero antes dos testes, e não ficar um valor X indeterminado
             reset = 0;
24
25
26
27
             #49;// Liga o contador por 5 segundos
             reset = 1; //Aciona o reset por 1 segundo
$display("reset = 1");
28
29
30
             #10;
             reset = 0:
             #120 //deixa o contador por 12 segundos
31
32
             $finish; // Finaliza a simulação
```

Figura 1 - Código adicionando o reset no início

3. Máquinas de estado utilizadas como referência para a implementação do código

Uma parte fundamental da implementação do circuito foi o entendimento de suas transições de estados e, para isso, foi realizado o desenho do diagrama apresentado na imagem 2 abaixo, que conta de 0 a 9 de forma cíclica quando o reset está desacionado e caso o reset seja acionado, vai para 0000.

Figura 2 - Diagrama de estados

Também foi usado como referência a implementação de circuitos contadores em hardware, como a implementação em um exemplo retirado da internet e

Disciplina: Introdução aos Sistemas Lógicos (TW)

Professor: Marcos Augusto Menezes Vieira

Data: 03/12/2023

adicionado abaixo na figura 3. Foi interpretado pelo enunciado que por não precisar do modelo estrutural esta parte não precisava ser propriamente implementada para a entrega do trabalho.

Figura 3 - Exemplo de circuito contador. Título original: "The <u>circuit diagram</u> for a 4-bit <u>TTL</u> counter, a type of state machine". Wikipedia

4. Testes e visualização

O caso de teste da especificação foi:

- 1. O contador é acionado durante 5 segundos,
- 2. Em sequência, o reset é acionado,
- 3. Por fim, o contador fica ligado pelos próximos 12 segundos."

e para isso foi utilizado como referência o código do testbench de semáforo apresentado na Figura 3 da especificação.

Além disso, foi acrescentado comandos de display dos estados atuais, para acompanhamento do funcionamento do circuito também pela saída de texto em tela, conforme exemplificado na Figura 4 abaixo.

Disciplina: Introdução aos Sistemas Lógicos (TW)

Professor: Marcos Augusto Menezes Vieira

Data: 03/12/2023


```
VCD info: dumpfile dump.vcd opened for output.
ZERO
UM
DOIS
TRES
reset = 1
QUATRO
ZERO
UM
DOIS
TRÊS
QUATRO
CINCO
SEIS
SETE
OITO
NOVE
ZERO
UM
DOIS
```

Figura 4 - Saída em texto no Log do teste do circuito

4.1 Visualização das formas de onda do caso de teste

Complementando a saída em texto, a visualização das formas de onda do caso de teste estão dispostas abaixo nas Figuras 5 e 6, apresentando tanto a versão com início definido em zero pelo reset como sem a definição do estado inicial prévio

Figura 5 - Forma de onda do caso de teste utilizando o reset para que o contador se inicie em zero

Figura 6 - forma de onda sem utilizar o reset ao início do teste

Disciplina: Introdução aos Sistemas Lógicos (TW)

Professor: Marcos Augusto Menezes Vieira

Data: 03/12/2023


```
initial begin // Inicializações

$dumpfile("dump.vcd");

$dumpvars;

clk = 1;

//reset = 1; //para começar do zero antes dos testes, e não ficar um valor X indeterminado

//#1;

reset = 0;

//TESTES

#50;// Liga o contador por 5 segundos
```

Figura 7 - Exemplificação da parte do código que foi removida, em comparação com a Figura 1

5. Conclusão

A partir desta atividade prática para a resolução do problema que resolva o problema da necessidade de um cronômetro com saída de 4 bits e aprimorar meus conhecimentos em todas as etapas da implementação do circuito, aprimorando e praticando a linguagem Verilog.

Além disso, foi um ótimo exerício de revsíao juntamente com o aprendizado do novo conteudo apresentado pela disciplina de Introdução aos Sistemas Lógicos e durante sua modelagem e execução pude perceber minhas maiores dificuldades: uso de blocos "always" e de atribuições de valores no arquivo de design. O código implementado na plataforma também está disponível no link https://edaplayground.com/x/NNai.

6. Referências

Slides virtuais da disciplina de Introdução aos Sistemas Lógicos. Disponibilizado via moodle. Departamento de Ciência da Computação. Universidade Federal de Minas Gerais. Belo Horizonte.

Examples. EDA Playground. Disponível em https://edaplayground.com/x/adiQ. Acesso em 30 de outubro de 2023.

Criar um Diagrama de Estados. Creately. Disponível em https://creately.com/pt/lp/software-de-diagrama-de-estados/>. Acesso em 28 de novembro de 2023

Finite-state machine. Wikipedia, Disponível em https://en.wikipedia.org/wiki/Finite-state_machine>. Acesso em 28 de novembro de 2023