CS529 Fundamentals of Game Development

Lecture 6

Antoine Abi Chakra Karim Fikani

Questions?

- Static Collision
 - Point/Circle
 - Circle/Circle
 - Point/Rectangle
 - Rectangle/Rectangle
- Review of Vector Algebra and Geometry
- Normal Line Equation
- Animated Point to Line Classification

Overview

- Reflection
- Animated Circle to Line Segment

Position of Ball After Collision (1/8)

Assuming elastic collision

Position of Ball After Collision (2/8)

Position of Ball After Collision (3/8)

Position of Ball After Collision (4/8)

Position of Ball After Collision (5/8)

Position of Ball After Collision (6/8)

Position of Ball After Collision (7/8)

$$\vec{r} = \vec{m} - \vec{s}$$

$$\Rightarrow \vec{r} = \vec{i} - 2\vec{s}$$

$$\Rightarrow \vec{r} = \vec{i} - 2(\vec{i} \bullet \hat{n})\hat{n}$$

$$B'_e = B_i + \vec{r}$$

$$\Rightarrow B'_{e} = B_{i} + \vec{i} - 2(\vec{i} \bullet \hat{n})\hat{n}$$

Position of Ball After Collision (8/8)

$$\vec{r} = \vec{m} - \vec{s}$$

$$\Rightarrow \vec{r} = \vec{i} - 2\vec{s}$$

$$\Rightarrow \vec{r} = \vec{i} - 2(\vec{i} \bullet \hat{n})\hat{n}$$

$$\hat{v} = \frac{\vec{r}}{\|\vec{r}\|}$$

© DigiPen Institute of 13/01/10 Technology 2010

Overview

- Reflection
- Animated Circle to Line Segment

Modeling Pinball as Circle

- Pinball modeled by a circle with center and radius r
- Located at center point B_s at top of frame
- Moving in direction given by normalized vector \vec{v} and speed k units

$$B(t) = B_s + k\hat{v}t, t \in [0,1]$$

• Velocity per <u>frame</u> $\vec{v} = B_s B_e$ $\Rightarrow B(t) = B_s + \vec{v}t, t \in [0,1]$

Pinball-Wall Intersection (1/3)

Pinball-Wall Intersection (2/3)

Pinball-Wall Intersection (3/3)

Pinball is inside at t_s and outside at t_e

$$t_i = \frac{\hat{n} \bullet P_0 - \hat{n} \bullet B_s + D}{\hat{n} \bullet \vec{v}}$$

where $t_i \in [0,1]$

$$B_{i} = B_{s} + \vec{v} \left(\frac{\hat{n} \bullet P_{0} - \hat{n} \bullet B_{s} + D}{\hat{n} \bullet \vec{v}} \right)$$

Note: D = -r when B_s is inside D = r when B_s is outside

Test for Non-Collision (1/4)

$$(\hat{n} \bullet B_s - \hat{n} \bullet P_0 < -r) \& \& (\hat{n} \bullet B_e - \hat{n} \bullet P_0 < -r)$$

Test for Non-Collision (2/4)

$$(\hat{n} \bullet B_s - \hat{n} \bullet P_0 > r) \& \& (\hat{n} \bullet B_e - \hat{n} \bullet P_0 > r)$$

Test for Non-Collision (3/4)

$$(B_{i}-P_{1}) \bullet (P_{0}-P_{1}) < 0$$

$$[B_{s},t_{s}] \qquad [B_{e},t_{e}]$$

$$[B_{i},t_{i}] \qquad \stackrel{\vec{n}}{\sim} \qquad \stackrel{\vec{n}}{\sim}$$

Ball collides with infinite extension of wall... not finite wall!

Test for Non-Collision(4/4)

$$(B_{i}-P_{0}) \bullet (P_{1}-P_{0}) < 0$$

$$[B_{s},t_{s}] \qquad [B_{e},t_{e}]$$

$$[B_{i},t_{i}]$$

Ball collides with infinite extension of wall... not finite wall!

But! We have a Problem

The intersection point B_i is not on the line, but the ball collides with the wall.

Steps

- Check for trivial rejection
 - B_s , B_e inside or both outside
 - Going from inside to outside and the collision type of the line segment is outside, and vice versa.
- Calculate the point and time of intersection
 - Check if the time is between t_s and t_e
- Check if the point of intersection is on the line segment