Simulación de Distribuciones Estocásticas en Python

Héctor Guillermo Madera Ontivros

2025

Resumen

Este documento describe una colección de herramientas desarrolladas en Python para simular distribuciones de probabilidad, utilizando diversos generadores de números pseudoaleatorios:

- numpy.random
- Generador Congruencial Lineal (GRL 20)
- Registro de Desplazamiento de Retroalimentación Lineal (LFSR) de 4 bits

Cada bloque contiene scripts, un menú de selección (main.py), y documentación técnica.

Distribuciones Implementadas

Distribución	numpy.random	GRL 20	LFSR4
Bernoulli	✓	√	✓
Binomial	✓	✓	√
Geométrica	\checkmark	✓	✓
Binomial Negativa	\checkmark	✓	×
Poisson	\checkmark	✓	✓
Uniforme Discreta	\checkmark	✓	✓
Uniforme Continua	\checkmark	✓	✓
Exponencial	\checkmark	✓	✓
Normal (Polar)	\checkmark	✓	✓
Normal Acotada	\checkmark	✓	✓
Chi-cuadrada	\checkmark	✓	×
Cauchy	✓	✓	✓

Distribución de Cauchy

Definición

La variable aleatoria X tiene distribución de Cauchy con parámetros x_0 y γ si:

$$X = x_0 + \gamma \cdot \tan (\pi (U - 0.5)), \quad U \sim \text{Uniforme}(0, 1)$$

Propiedades

- No tiene esperanza ni varianza definida.
- Muy sensible a valores extremos (colas pesadas).

Generación

• Usando numpy:

```
u = np.random.uniform(0, 1, n)

x = x0 + gamma * np.tan(np.pi * (u - 0.5))
```

• Usando GRL 20:

```
x = x0 + gamma * math.tan(math.pi * (grl.random() - 0.5))
```

• Usando LFSR4:

```
x = x0 + gamma * math.tan(math.pi * (lfsr.step() - 0.5))
```

Uso

En Visual Studio Code

```
python main.py
```

En Google Colab

```
with zipfile.ZipFile("archivo.zip", "r") as zip_ref:
    zip_ref.extractall("simulaciones")
%cd simulaciones
!python main.py
```

${f Autor}$

Héctor Guillermo Madera Ontivros

Simulación Estocástica – 2025

Licencia

Uso libre con fines educativos. Se permite la modificación o redistribución con atribución.