

Product Data

WeatherMaker® Packaged Rooftop Units

20 to 60 Nominal Tons

48/50A020-060
Single-Package Gas Heating/Electric Cooling
Rooftop Units and Electric Cooling
Rooftop Units with Optional Electric Heat with *Comfort*Link Controls and Puron® Refrigerant (R-410A)

© 2020 Carrier Form 48/50A-19PD Rev. A

Features/Benefits

Carrier's 48/50A commercial packaged unit offers design flexibility, quality, reliability, and *Comfort*Link controls.

Carrier's 48/50A Series commercial packaged rooftops offer:

- Non-ozone depleting Puron refrigerant (R-410A)
- Novation[®] heat exchanger technology with microchannel coil
- An easy-to-use, plain English language display on the ComfortLink controls
- Ratings that meet ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 90.1-2016 and IECC (International Energy Conservation Code) IECC-2015 minimum energy efficiency requirements when equipped with the SAV™ (staged air volume) option
- Meets ASHRAE Standard 62
- Constant, staged, or variable air volume
- Communicating controls
- Accurately match building loads with up to 5 steps of capacity
- Variable capacity compressor option

- Humidi-MiZer® adaptive dehumidification option
- Variable frequency drive on all variable air volume and SAV™ units
- Mechanical cooling operation at outdoor ambient temperatures as low as 32°F (-20°F with optional low ambient control)

Design flexibility

Dedicated vertical supply/return units (A2, A3, A6, A7) are ideal for new construction or retrofit to existing installations. The low unit profile is maintained when the unit is installed on the accessory roof curb.

The ducts are attached directly to the roof curb to allow all ductwork to be completed before the unit is positioned.

Dedicated horizontal units (A4, A5, A8, A9) are ideal for replacement or applications such as through-the-wall where sound must be attenuated before the duct penetrates the roof. Ducts connect directly to the unit. Horizontal units may be curb or slab mounted.

The unit cabinet may be provided with optional double wall construction for indoor air quality sensitive applications.

Table of contents

·	_
Features/Benefits	
Model Number Nomenclature	
Ratings and Capacities	8
Physical Data	
Options and Accessories	19
Base Unit Dimensions	
Accessory Dimensions	
Selection Procedure	14
Performance Data	45
Controls	
Application Data	
Typical Wiring Schematics	
Guide Specifications	08

ComfortLink controls

Factory-installed ComfortLink controls provide the capability for freestanding operation or may be linked with a more extensive system. Factoryinstalled and programmed BACnet1 communication capability provides simple integration with the building HVAC system (e.g., terminal devices), an i-Vu® Open Control System, or a BACnet building automation system. The ComfortLink controls also have the capability to communicate with the Carrier Comfort Network® (CCN) system. This communication flexibility allows simple system integration, as well as data collection, trending, monitoring, and alarm displays.

The 48/50A Series may also be configured to communicate via Modbus² or LonWorks³ protocols, if required by the application.

The ComfortLink controls are your link to a world of simple and easy-to-use rooftop units that offer outstanding performance and value. When used with a space temperature sensor, the ComfortLink controls maintain control over the economizer and condenser fans and help optimize the performance of the multiple refrigeration circuits as conditions change, resulting in the following features:

- higher part load efficiency
- better control of temperature and humidity
- superior reliability

Page

- redundant refrigeration systems
- high ambient cooling operation at 115°F
- low ambient cooling operation at 32°F as standard (optional Greenspeed® control for operation down to -20°F)

The ComfortLink scrolling marquee display is very easy to use. Messages are displayed in easy to understand English. No decoding is required. A scrolling readout provides detailed explanations of control information. Only 4, large, easy-to-use buttons are required to maneuver through the entire menu. The readout is designed

BACnet is a registered trademark of ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers).

Modbus is a registered trademark of Schneider Electric.

LonWorks is a registered trademark of Echelon Corporation.

to be visible even in the brightest sunlight. A hand-held Navigator $^{\text{TM}}$ accessory can be used for added service flexibility.

The ComfortLink controls provide unparalleled service diagnostic information. Temperature and pressure can be read from the display with no need for separate gages. Other data, such as compressor cycles, unit run time hours, and current alarms can also be accessed. A history of alarms is also available for viewing.

A service run test can be very helpful when troubleshooting. The user can run test major components to help determine the root cause of a problem. The unit can be run-tested before an installation is complete to support a satisfactory start-up.

To further support reliability, the *Comfort*Link controls prevent reverse compressor rotation.

No laptop computers are required for start-up. Time schedules are built in and the scrolling marquee display provides easy access to set points.

The ComfortLink controller accepts input from a CO_2 sensor and a smoke detector. Both are available as factory-installed options or as field-installed accessories.

The unit-mounted terminal strip allows control of the unit with a standard thermostat. Expensive interface devices are not required.

Environmentally balanced

Making an environmentally responsible decision is possible when using Carrier's Puron® refrigerant (R-410A). Puron refrigerant (R-410A) is an HFC refrigerant that does not contain chlorine that is damaging to the ozone layer. This refrigerant is a safe, efficient, and environmentally balanced refrigerant.

Quality and reliability

Excellent full and part load efficiencies are achieved by using multiple scroll compressors and indoor coils with intertwined dual refrigerant circuits. The compressors are equipped with crankcase heaters and protected by electronic sensors and logic to control minimum on and off times and reverse rotation. The refrigerant circuits are both electrically and mechanically independent, to provide standby capability, should one circuit require service.

Totally enclosed outdoor-fan motors are designed for many years of trouble-free operation.

Positive-locking bearings for the indoor fan reduce vibration of the supply fan assembly and remain locked during the life of the bearing.

Unit capacity control

The units have up to 5 stages of capacity control to match the load requirements of the conditioned space. Unit operation will closely match the load and maintain comfort in the most energy-efficient manner.

Variable capacity scroll compressor

In air conditioning applications, the load may vary significantly, requiring a means to vary the system capacity for optimal performance and control.

The A Series large rooftop units with optional variable capacity scroll compression provide a highly efficient means of capacity control using scroll compressors. The digital compressor technology provides smooth, vibration-free operation by axially unloading the compliant scrolls.

By varying the amount of time that the scrolls are unloaded, the A Series unit is able to precisely match the system capacity to the space load. This feature can reduce energy consumption, provide better dehumidification, reduce compressor cycling, and improve comfort in the space.

Humidi-MiZer® adaptive dehumidification system

Carrier's Humidi-MiZer adaptive dehumidification system is an all-inclusive factory-installed option that can be ordered with WeatherMaker® 48/50A rooftop unit. This system expands the envelope of operation of the A Series rooftop to provide unprecedented flexibility that will meet year-round comfort conditions.

The Humidi-MiZer adaptive dehumidification system has the industry's only dual dehumidification mode setting. The WeatherMaker rooftop, coupled with the Humidi-MiZer adaptive dehumidification system, is capable of modulating between normal design cooling mode, subcooling mode, and hot gas reheat mode.

Normal design cooling mode will operate under the normal sequence of

operation. Subcooling mode will operate to satisfy part load type conditions. Hot Gas Reheat mode will operate when outdoor temperatures diminish and the need for latent capacity is required for sole humidity control. Hot Gas Reheat mode will provide neutral air for maximum dehumidification operation.

The WeatherMaker A Series generation version of Carrier's Humidi-MiZer system includes refrigerant modulating valves that provide variable flow bypass around the condenser. This innovative feature ensures exact control of the supply-air temperature as the unit lowers the evaporator temperature to increase latent capacity.

Additionally, when the space requires dehumidification only, the Humidi-MiZer system can increase hot discharge gas bypass to the Humidi-MiZer coil in order to heat the air to the exact neutral state required—no overcooling or overheating with latent capacity similar to that provided in the full subcooling mode.

Variable frequency drive (VFD)

Variable air volume (VAV) units use state of the art variable frequency drive (VFD) to control duct static pressure for optimum supply fan energy savings.

VAV features include:

- control of cooling and heating (if equipped with heat) in both occupied and unoccupied mode
- support of optional space temperature sensor
- control of modulating economizer to provide free cooling when outdoor conditions are suitable
- support of IAQ (indoor air quality) sensor
- support linkage to ComfortID™ VAV systems

Staged air volume units use the VFD to allow for a configurable high and low fan speed. In this way, during times of part load or low demand, indoor fan motor power consumption can be reduced.

Greenspeed® Intelligence provides low ambient temperature head pressure control that permits operation of the 48/50 A units to $-20 ^{\circ} F$ ($-29 ^{\circ} C$) outdoor ambient temperature. The option offers increased efficiency and low outdoor acoustic performance. It features a quiet AeroAcoustic TM fan system, compressor sound blankets, and VFD driven condenser fan motors.

Features/Benefits (cont)

Factory-installed economizer

An optional integrated economizer permits cooling by using an outdoor air sensor. The economizer uses ultra-low leak blades for tight sealing and a robust drive design for long life.

The economizer operates in conjunction with mechanical cooling, when required, and is factory installed for either vertical or horizontal operation. The factory-supplied and field-installed rain hood/filter assembly is designed to prevent moisture or objects from entering the unit.

Exhaust air relief is available for all units:

- barometric relief (CV [constant volume] or VAV)
- power exhaust
- modulating power exhaust
- · high capacity power exhaust

Field-adjustable set points on modulating power exhaust prevent space pressurization problems. Factory-installed relief options are unit mounted on downflow units. Accessories must be duct mounted for horizontal applications.

Novation® heat exchanger technology

The Novation heat exchanger design with microchannel condenser coil is a robust, cost-effective alternative to traditional coil design for standard applications. Microchannel coils are also sturdier than other coil types, making them easier to clean without causing damage to the coil.

Due to the compact, all-aluminum design, microchannel coils reduce overall unit operating weight. The streamlined microchannel coil also reduces refrigerant charge by up to 40%.

Microchannel coils are not recommended by Carrier for marine, coastal, or industrial environments, unless Carrier-approved coating is applied.

Gas heating units

Integrated gas unit controller (IGC) (gas heating units only)

All ignition components are contained in the compact IGC, which is easily accessible for servicing. The IGC control board, designed and manufactured exclusively for Carrier rooftop units, provides built-in diagnostic capability. An LED (light-emitting diode) simplifies troubleshooting by

providing visual fault notification and system status confirmation.

The IGC also contains an anti-cycle protection for gas heat operation. After 4 continuous cycles on the unit high-temperature limit switch, the gas heat operation is disabled and an error code is issued. This feature greatly improves reliability of the rooftop unit.

The IGC also contains burner control logic for accurate and dependable gas ignition. This LED fault-notification system reduces service person trouble-shooting time and minimizes service costs. The IGC can also increase heating efficiency by controlling evaporator fan on and off delays.

Efficient, dependable operation

Tubular, dimpled gas heat exchangers optimize heat transfer for improved efficiency. The tubular design permits hot gases to make multiple passes across the path of the supply air. The dimpled design creates a turbulent gas flow to increase heating efficiency. The extra thick Alumagard heat exchanger coating provides corrosion resistance to lengthen coil life. An optional stainless steel heat exchanger is also available.

The unsightly appearance of flue stacks is eliminated and the effects of wind on heating operations are diminished by the induced draft combustion system. The inducer fan draws hot combustion gas through the heat exchanger at the optimum rate for the most effective heat transfer. Induced draft heating systems are safer than positive pressure, forced draft heating systems. With the induced draft heating system, the heat exchanger operates under negative pressure, preventing flue gas leakage into the indoor supply air.

During the heating mode, the evaporator-fan relay automatically starts the evaporator fan after the heat exchanger warms up to a suitable temperature. To increase efficiency and comfort, the 30-second fan delay prevents cold air from entering the supply duct system when the conditioned space is calling for heat.

The direct-spark ignition system saves operating expense when compared to pilot ignition systems. No crossover tube is required; therefore, no sooting or pilot-fouling problems can occur.

All 48A standard units are designed for natural gas. An accessory LP (liquid propane) conversion kit is available.

Safety is built in

All 48A units have a flame rectification sensor to quickly sense the burner flame and ignite burners almost immediately. The controls are designed to shut down the unit during any flame outage or circuit failure. The flame sensor reacts quickly to these events. In the event of a shutdown, an error code is issued at the IGC board.

The heating safety controls will shut down the unit if they detect a problem. If excessive temperatures develop, limit switches shut off the gas valve. After 4 continuous short cycles of the high-temperature limit switch, the IGC board locks out the gas heat cycle to prevent any further short cycles. The rollout switch also de-energizes the gas valve in the event of a flame rollout.

Support of fire and smoke control is included with an optional *ComfortLink* controls expansion module (CEM).

Staged gas unit heating

The staged gas control option adds the capability to control the rooftop unit's gas heating system to a specified supply air temperature set point for purposes of tempering a cool mixed-air condition, or for reheat when the mechanical cooling is being used for dehumidification. The gas heating system employs multiple heating sections. Each section is equipped with a two-stage gas valve. The gas valves are sequenced by a factory-installed staged gas controller (SGC), as required, to maintain the user-specified supply air set point. Up to 11 stages of heating control are available, based on quantity and heating capacity sizes of the individual heat exchanger sections provided in the base unit. In addition to providing system control for tempering and reheat operation, the SGC also provides Demand Heating control for the first stage (W1 or low-heat) heating mode. The heating capacity will always go to 100% for second stage (W2 or high-heat) operation.

Tempering supply air is desirable when rooftop units are operating in ventilation mode (economizer only operation) at low outdoor temperatures. At low outdoor temperatures, the mixed-air temperature (combination of return-

from-space temperature and outdoor/ventilation air temperature) may become too low for the comfort of the occupants or for the terminal reheat systems. The tempering function adds incremental steps of heat capacity to raise the temperature of the mixed air up to levels suitable for direct admission into the occupied space or to levels consistent with reheat capabilities of the space terminals.

Installation/serviceability

Dedicated design (vertical or horizontal) requires no alteration time to convert in the field. Single point electrical connections are standard on all units. Elec-

trical service access can be made through roof curb or side of unit.

All units are equipped with the ComfortLink control system as standard. The ComfortLink control system has a fully alphanumeric display and keypad. The display has expandable text messages that eliminate the need to look up coded display information. The unit also supports use of the enhanced multiple line display that can be connected through a phone jack connection at either end of the unit. The standard microprocessor controls replace the need for field-installed anti-short cycle timers. The controls are compatible with either a room sensor or conven-

tional thermostat with no need to install an accessory interface. In addition, no special tools are required to run the unit through its operational steps. The unit can be run-tested before an installation is complete to ensure satisfactory start-up.

Hinged access panels are located for easy access to standard serviceable components for maintenance.

No fasteners need to be removed, which reduces servicing time and helps prevent roof leaks caused by discarded screws. Color-coded wiring permits easy tracing and diagnostics.

Model number nomenclature

48A UNITS

Factory-Installed Options Refer to price pages for 48 - Cooling Unit with Gas Heat available option codes. Configuration A2 - CV/SAV Vertical Packaging/Communication A3 - VAV Vertical 1 - Domestic 3 - Export A4 - CV/SAV Horizontal A5 - VAV Horizontal Domestic with BACnet Communication Option A6 - CV/SAV Vertical with Greenspeed Intelligence C - Export with BACnet Communication Option A7 – VAV Vertical with Greenspeed Intelligence A8 - CV/SAV Horizontal with Greenspeed Intelligence Design Series 4 - A Series - VAV Horizontal with Greenspeed Intelligence **Heat Options** Voltage 1 - 575-3-60 5 - 208/230-3-60 D – Low Gas HeatE – High Gas Heat Low Gas Heat with Humidi-MiZerHigh Gas Heat with Humidi-MiZer 6 - 460 - 3 - 60M – Low Gas Heat Stainless N – High Gas Heat Stainless Al/Cu Cond, Al/Cu Evap
 Al/Cu Cond, Al/Cu Evap with Digital Compressor S – Staged Low Gas Heat Stainless
 T – Staged High Gas Heat Stainless Cu/Cu Cond, Al/Cu Evap with Digital Compressor
 Cu/Cu Cond, Al/Cu Evap - Staged Low Gas Heat Stainless with Humidi-MiZer W - Staged High Gas Heat Stainless with Humidi-MiZer Al/Cu Cond Precoat, Al/Cu Evap with Digital Compressor
 Al/Cu Cond Precoat, Al/Cu Evap E – Al/Cu Cond Precoat, Al/Cu Evap
F – E-coated Al/Cu, Al/Cu Evap
G – MCHX Cond, Al/Cu Evap
H – E-coated MCHX Cond, Al/Cu Evap
J – MCHX Cond with Coil Grilles, Al/Cu Evap
K – E-coated MCHX Cond with Coil Grilles, Al/Cu Evap
K – E-coated Al/Cu Cond, Al/Cu Evap with Digital Compressor
M – MCHX Cond, Al/Cu Evap with Digital Compressor
N – E-coated MCHX Cond, Al/Cu Evap with Digital Compressor
P – MCHX Cond with Coil Grilles, Al/Cu Evap with Digital Compressor **Unit Size - Nominal Tons** 020 - 20**025** – 25 **027** - 27 **030** - 30 **035** - 35 - 40 040 050 - 50060 - 60Digital Compressor

– Al/Cu Cond, Al/Cu Evap with Hot Gas Bypass R – Cu/Cu Cond, Al/Cu Evap with Hot Gas Bypass
S – Al/Cu Cond Precoat, Al/Cu Evap with Hot Gas Bypass
T – E-coated Al/Cu, Al/Cu Evap with Hot Gas Bypass **Control Options** - No Features A - Controls Expansion Module with Phase Monitor f V — MCHX Cond, Al/Cu Evap with Hot Gas Bypass (No Humidimizer) f W — E-coated MCHX Cond, Al/Cu Evap with Hot Gas Bypass B - CO₂ SensorC - Smoke Detector (No Humidimizer) D - CO₂ Sensor and Smoke Detector E - Plugged Filter Indicator and Lube Lines

050 F

MCHX Cond with Coil Grilles, Al/Cu Evap with Hot Gas Bypass

(No Humidimizer)
Y – E-coated MCHX Cond with Coil Grilles, Al/Cu Evap with Hot Gas Bypass (No Humidimizer)
Z – E-coated MCHX Cond with Coil Grilles, Al/Cu Evap with Digital

2 - E-coated Al/Cu Cond, Al/Cu E-Coat Evap

3 - E-coated MCHX Cond, Al/Cu E-Coat Evap

4 - E-coated MCHX Cond with Coil Grilles, Al/Cu E-Coat Evap

E-coated Al/Cu Cond, Al/Cu E-Coat Evap with Digital Compressor
 E-coated MCHX Cond, Al/Cu E-Coat Evap with Digital Compressor

E-coated MCHX Cond with Coil Grilles, Al/Cu E-Coat Evap with

Digital Compressor

Motor Options

No VFD	VFDB	VFD			
A - 5 HP	J - 5 HP	L - 5 HP			
C - 10 HP	1 - 10 HP	N - 10 HP			
D - 15 HP	2 - 15 HP	P - 15 HP			
E - 20 HP	3 - 20 HP	Q - 20 HP			
F - 25 HP	4 - 25 HP	R - 25 HP			
G - 30 HP	5 - 30 HP	S - 30 HP			
H - 40 HP	6 - 40 HP	T - 40 HP			

LEGEND

Aluminum Cu Copper

Phase Monitor

and Phase Monitor

C۷ -Constant Volume

MCHX — Microchannel Heat Exchanger

SAV — Staged Air Volume
VAV — Variable Air Volume
VFDB — Variable Frequency Drive Bypass

 Plugged Filter Indicator, Lube Lines and CO₂ Sensor
 Plugged Filter Indicator, Lube Lines and Smoke Detector H - Plugged Filter Indicator, Lube Lines, CO₂ Sensor and Smoke Detector CO₂ Sensor with Controls Expansion Module and Phase Monitor

- Smoke Detector with Controls Expansion Module and Phase Monitor

N - Plugged Filter Indicator, Lube Lines and CO₂ Sensor with Controls Expansion Module and Phase Monitor

with Controls Expansion Module and Phase Monitor

Plugged Filter Indicator, Lube Lines and Smoke Detector with Controls Expansion Module and Phase Monitor

— Plugged Filter Indicator, Lube Lines, CO₂ Sensor and Smoke Detector

CO₂ Sensor and Smoke Detector with Controls Expansion Module and

Plugged Filter Indicator and Lube Lines with Controls Expansion Module

NOTES:

- VAV and SAV models are equipped with a supply fan motor variable frequency drive (VFD).
- All indoor fan motors meet the minimum efficiency requirements as established by the Energy Independence and Security Act (EISA)

Quality Assurance

ISO 9001:2008-certified processes

50A UNITS

050 F Factory-Installed Options
Refer to price pages for 50 - Cooling Unit available option codes. Configuration A2 – CV/SAV Vertical A3 - VAV Vertical Packaging/Communication A4 - CV/SAV Horizontal Domestic A5 - VAV Horizontal 3 - Export A – Domestic with BACnet Communication Option
 C – Export with BACnet Communication Option A6 - CV/SAV Vertical with Greenspeed Intelligence A7 - VAV Vertical with Greenspeed Intelligence A8 - CV/SAV Horizontal with Greenspeed Intelligence **Design Series** VAV Horizontal with Greenspeed Intelligence 4 - A Series **Heat Options** Voltage No heat
 36/27 kW **1** - 575-3-60 **2** - 380-3-60 D - 54/42 kW **E** - 108/81 kW 6 - 460 - 3 - 60- No heat with Humidi-MiZer G - 36/27 kW with Humidi-MiZer **Coil Options** $\mathbf{H} - 72/54$ kW with Humidi-MiZer $\mathbf{J} - 54/42$ kW with Humidi-MiZer Al/Cu Cond, Al/Cu Evap
 Al/Cu Cond, Al/Cu Evap with Digital Compressor
 Cu/Cu Cond, Al/Cu Evap with Digital Compressor
 Cu/Cu Cond, Al/Cu Evap
 Cu/Cu Cond, Al/Cu Evap K - 108/81 kW with Humidi-MiZer C - Cu/Cu Cond, Al/Cu Evap
D - Al/Cu Cond Precoat, Al/Cu Evap with Digital Compressor
E - Al/Cu Cond Precoat, Al/Cu Evap
F - E-coated Al/Cu, Al/Cu Evap
G - MCHX Cond, Al/Cu Evap
H - E-coated MCHX Cond, Al/Cu Evap
J - MCHX Cond with Coil Grilles, Al/Cu Evap Unit Size - Nominal Tons **020** - 20 **025** - 25 027 - 27 030 - 30 035 - 35 MCHX Cond with Coil Grilles, Al/Cu Evap
 E-coated MCHX Cond with Coil Grilles, Al/Cu Evap
 M — MCHX Cond, Al/Cu Evap with Digital Compressor
 M — MCHX Cond, Al/Cu Evap with Digital Compressor
 P — MCHX Cond with Coil Grilles, Al/Cu Evap with **040** - 40 **050** - 50 **060** - 60 Digital Compressor

Q = Al/Cu Cond, Al/Cu Evap with Hot Gas Bypass

R = Cu/Cu Cond, Al/Cu Evap with Hot Gas Bypass

S = Al/Cu Cond Precoat, Al/Cu Evap with Hot Gas Bypass

T = E-coated Al/Cu, Al/Cu Evap with Hot Gas Bypass Control Options
- No Features A – Controls Expansion Module with Phase Monitor MCHX Cond, Al/Cu Evap with Hot Gas Bypass (No Humidimizer)
 E-coated MCHX Cond, Al/Cu Evap with Hot Gas Bypass B - CO₂ Sensor without Controls Expansion Module Smoke Detector D − CO₂ Sensor and Smoke Detector
 E − Plugged Filter Indicator and Lube Lines (No Humidimizer) MCHX Cond with Coil Grilles, Al/Cu Evap with Hot Gas Bypass (No Humidimizer) E-coated MCHX Cond with Coil Grilles, Al/Cu Evap with Hot Gas Plugged Filter Indicator, Lube Lines and CO₂ Sensor G - Plugged Filter Indicator, Lube Lines and Smoke Detector Bypass (No Humidimizer)

Z - E-coated MCHX Cond with Coil Grilles, Al/Cu Evap with Digital H - Plugged Filter Indicator, Lube Lines, CO2 Sensor and Smoke Detector J - CO₂ Sensor with Controls Expansion Module and Phase Monitor 2 - E-coated MiCrix Cond, Al/Cu E-Coat Evap
3 - E-coated MCHX Cond, Al/Cu E-Coat Evap K - Smoke Detector with Controls Expansion Module and Phase Monitor L - CO₂ Sensor and Smoke Detector with Controls Expansion Module and Phase Monitor 4 - E-coated MCHX Cond with Coil Grilles, Al/Cu E-Coat Evap M – Plugged Filter Indicator and Lube Lines with Controls Expansion Module and Phase Monitor 5 - E-coated Al/Cu Cond, Al/Cu E-Coat Evap with Digital Compressor
 6 - E-coated MCHX Cond, Al/Cu E-Coat Evap with Digital Compressor Plugged Filter Indicator, Lube Lines and CO2 Sensor with Controls E-coated MCHX Cond with Coil Grilles, Al/Cu E-Coat Evap with Expansion Module and Phase Monitor Digital Compressor P - Plugged Filter Indicator, Lube Lines and Smoke Detector with Controls Expansion Module and Phase Monitor Plugged Filter Indicator, Lube Lines, CO₂ Sensor and Smoke Detector with Controls Expansion Module and Phase Monitor **Motor Options** VFD VFD VFDB **J** – 5 HP **1** – 10 HP 5 HP **A** – 5 HP **C** – 10 HP **D** – 15 HP - 10 HP - 15 HP - 20 HP - 25 HP - 30 HP - 40 HP 2 - 15 HP 3 - 20 HP 4 - 25 HP **E** – 20 HP **F** – 25 HP **G** – 30 HP Q R S 5 - 30 HP 6 - 40 HP H - 40 HP

LEGEND

— Aluminum - Copper

Constant Volume

MCHX — Microchannel Heat Exchanger

SAV — Staged Air Volume
VAV — Variable Air Volume
VFDB — Variable Frequency Drive Bypass

NOTES:

- 1. VAV and SAV models are equipped with a supply fan motor variable frequency drive (VFD).
- All indoor fan motors meet the minimum efficiency requirements as established by the Energy Independence and Security Act (EISA) 2007.

Quality Assurance

ISO 9001:2008-certified processes

Ratings and capacities

ELECTRIC RESISTANCE HEATER DATA

UNIT			ER kW		HEATER	% HEAT	DESIGN	RANGE	
50A		Unit V	oltages		STAGES	PER STAGE	D20IGHT HARGE		
JUA	208	230	460	575	OIAGEO	TENOTAGE	Min CFM	Max CFM	
020-035 LO HEAT	27	36	36	36	1	100	6,000	15,000	
020-035 HIGH HEAT	54	72	72	72	2	50/100	6,000	15,000	
040,050 LO HEAT	27	36	36	36	1	100	10,500	20,000	
040,050 HIGH HEAT	54	72	72	72	2	50/100	10,500	20,000	
060 LO HEAT	41	54	54	54	1	100	15,000	27,000	
060 HIGH HEAT	81	108	108	108	2	50/100	15,000	27,000	

NOTE: Due to the open design of the electric heaters, the airside pressure drop is negligible.

COOLING CFM OPERATING RANGE

UNIT	MIN CFM	MAX CFM*
48/50A2,A4,A6,A8020	6,000	10,000
48/50A3,A5,A7,A9020	4,000	10,000
48/50A2,A4,A6,A8025	7,000	12,500
48/50A3,A5,A7,A9025	5,000	12,500
48/50A2,A4,A6,A8027	8,100	13,500
48/50A3,A5,A7,A9027	5,400	13,500
48/50A2,A4,A6,A8030	9,000	15,000
48/50A3,A5,A7,A9030	6,000	15,000
48/50A2,A4,A6,A8035	10,500	17,500
48/50A3,A5,A7,A9035	7,000	17,500
48/50A2,A4,A6,A8040	12,000	20,000
48/50A3,A5,A7,A9040	8,000	20,000
48/50A2,A4,A6,A8050	13,500	20,000
48/50A3,A5,A7,A9050	10,000	20,000
48/50A2,A4,A6,A8060	18,000	27,000
48/50A3,A5,A7,A9060	12,000	27,000

Operation at these levels may be limited by entering evaporator air wet bulb temperatures. See Cooling Capacities tables on pages 46-69 for further details.

GAS HEATING CAPACITIES AND EFFICIENCIES STANDARD UNITS

UNITS	INPL	JT (Btuh)	MAXIMUM	TEMPERATURE	STEADY-STATE	DESIGN	RANGE
48A	Stage 1	Stage 2	OUTPUT (Btuh)	RISE (F)	EFFICIENCY (%)	Min Cfm	Max Cfm*
020-030 LO HEAT	262,500	350,000	283,500	15 to 45	81	5,900	15,000
020-030 HIGH HEAT	394,000	525,000	425,250	35 to 65	81	6,100	11,400
035 LO HEAT	262,500	350,000	283,500	15 to 45	81	5,900	15,000
035 HIGH HEAT	600,000	800,000	648,500	30 to 60	81	10,100	20,200
040,050 LO HEAT	300,000	400,000	324,000	10 to 40	81	7,600	22,500
040,050 HIGH HEAT	600,000	800,000	648,000	30 to 60	81	10,100	20,200
060 LO HEAT	582,000	776,000	628,560	10 to 40	81	11,000	27,000
060 HIGH HEAT	873,000	1,164,000	931,200	30 to 60	80	14,550	27,000

UNITS WITH STAGED GAS OPTION

UNITS	STAGES OF GAS CONTROL	MIN. OUTPUT	MAX. OUTPUT	DESIGN	RANGE
48A	(% of Full Heat Output)	(Btuh)	(Btuh)	Min Cfm	Max Cfm*
020-030 LO HEAT	38, 50, 75, 88, 100	107,730	283,500	5,900	15,000
020-030 HIGH HEAT	25, 33, 50, 67, 75, 83, 100	106,313	425,250	6,100	11,400
035 LO HEAT	38, 50, 75, 88, 100	107,730	283,500	5,900	15,000
035 HIGH HEAT	38, 50, 75, 88, 100	246,240	648,000	10,100	20,200
040,050 LO HEAT	38, 50, 75, 88, 100	123,120	324,000	7,600	22,500
040,050 HIGH HEAT	38, 50, 75, 88, 100	246,240	648,000	10,100	20,200
060 LO HEAT	19, 25, 38, 44, 50, 56, 63, 75, 88, 94, 100	119,426	628,560	11,000	27,000
060 HIGH HEAT	25, 33, 50, 58, 67, 75, 83, 92, 100	232,800	931,200	14,550	27,000

In some cases, maximum cfm may be limited by maximum cooling airflow value.

- 1. Ratings are approved for altitudes to 2000 feet. At altitudes over 2000 ft, rat-
- ings are 4% less for each 1000 ft greater than 2000 ft above sea level. At altitudes up to 2000 ft, the following formula may be used to calculate air temperature rise:

Output capacity 1.10 x air quantity

3. At altitudes above 2000 ft, the following formula may be used:

Output capacity (.24 x specific weight of air x 60) (air quantity)

- On standard gas heat with aluminized heat exchangers, the minimum allowable mixed air entering the heat exchanger during half-rate (first stage) operation is 50°F. There is no minimum limitation for full-rate operation. Total unit design is listed by ETL Testing Laboratories Inc.

CAPACITY CONTROL STAGING OPTIONS

				COMPRESSOR SEQUENCE							
			COOLING	SI	ZE 020-027	UNITS	SI	ZE 030-060	UNITS		
APPLICATION	UNIT	DEMAND SOURCE	CONTROL METHOD	WITHOUT HOT GAS BYPASS	WITH HOT GAS BYPASS	WITH VARIABLE CAPACITY COMPRESSOR	WITHOUT HOT GAS BYPASS	WITH HOT GAS BYPASS	WITH VARIABLE CAPACITY COMPRESSOR		
VAV	48/50A3,A5,	RAT	Multiple Stage EDT	Table A	Table B	Table C	Table D	Table E	Table F		
VAV	A7,A9	SPT	Multiple Stage EDT	Table A	Table B	Table C	Table D	Table E	Table F		
SAV/CV Sensor	48/50A2,A4,	SPT	Multiple Adaptive Demand	Table A	Table B	Table C	Table D	Table E	Table F		
SAV/CV, Mech Thermostat	A6,A8	Y1,Y2	Multiple Adaptive Demand	Table A	Table B	Table C	Table D	Table E	Table F		

LEGEND

CV — Constant Volume
EDT — Evaporator Discharge Temperature
RAT — Return Air Temperature
SAV — Staged Air Volume
SPT — Space Temperature
VAV — Variable Air Volume

CAPACITY CONTROL STAGING OPTIONS TABLE A 48/50A020-027 UNITS VAV AND ADAPTIVE CV/SAV STAGING SEQUENCE WITHOUT HOT GAS BYPASS

STAGE		SEQ	UENCE 1		SEQUENCE 2				
STAGE	0	1	2	3	0	1	2	3	
COMP		Compressor Status Compressor Status							
A1	OFF	ON	OFF	ON	OFF	OFF	ON	ON	
A2	OFF	OFF	ON	ON	OFF	ON	OFF	ON	
B1	OFF	OFF	ON	ON	OFF	OFF	ON	ON	
UNIT		Capac	ity 48/50A			Capac	ity 48/50A		
020	0%	30%	70%	100%	0%	30%	70%	100%	
025	0%	33%	67%	100%	0%	33%	67%	100%	
027	0%	33%	67%	100%	0%	33%	67%	100%	

CAPACITY CONTROL STAGING OPTIONS TABLE B 48/50A020-027 UNIT VAV AND ADAPTIVE CV STAGING SEQUENCE WITH HOT GAS BYPASS

CTACE			SEQUENCE	1		SEQUENCE 2					
STAGE	0	1	2	3	4	0	1	2	3	4	
COMP		C	compressor S	tatus		Compressor Status					
A1	OFF	ON*	ON	OFF	ON	OFF	OFF	OFF	ON	ON	
A2	OFF	OFF	OFF	ON	ON	OFF	ON*	ON	OFF	ON	
B1	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF	ON	ON	
UNIT		•	Capacity 48/5	0A	•		•	Capacity 48/5	0A		
020	0%	10%	30%	70%	100%	0%	10%	30%	70%	100%	
025	0%	17%	33%	67%	100%	0%	17%	33%	67%	100%	
027	0%	17%	33%	67%	100%	0%	17%	33%	67%	100%	

^{*}Hot gas bypass activated.

CAPACITY CONTROL STAGING OPTIONS TABLE C 48/50A020-027 UNITS VAV AND ADAPTIVE CV/SAV STAGING SEQUENCE WITH VARIABLE CAPACITY COMPRESSOR

		STA	AGE			
	0	1	2	3		
COMP		Compres	sor Status			
A1	OFF	OFF	OFF ON			
A2	OFF	OFF	OFF	ON		
B1*	OFF	ON	ON	ON		
UNIT		Capacit	y 48/50A			
020	0%	20% to 40%	50% to 70%	80% to 100%		
025	0%	17% to 33%	50% to 66%	83% to 100%		
027	0%	17% to 33%	50% to 66%	83% to 100%		

 $^{^{\}star}\text{On}$ units with optional digital scroll compressor, compressor B1 modulates from minimum to maximum capacity to provide increased stages.

Ratings and capacities (cont)

CAPACITY CONTROL STAGING OPTIONS TABLE D 48/50A030-060 UNITS VAV AND ADAPTIVE CV/SAV STAGING SEQUENCE WITHOUT HOT GAS BYPASS

STAGE			SEQUENCE	1		SEQUENCE 2				
STAGE	0	1	2	3	4	4 0 1 2 3				
COMP		C	ompressor St	atus		Compressor Status				
A1	OFF	ON	OFF	OFF	ON	OFF	OFF	ON	ON	ON
A2	OFF	OFF	ON	ON	ON	OFF	ON	OFF	ON	ON
B1	OFF	OFF	ON	ON	ON	OFF	OFF	ON	ON	ON
B2	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF	ON
UNIT			Capacity 48/5	0A		Capacity 48/50A				
030	0%	25%	50%	75%	100%	0%	25%	50%	75%	100%
035	0%	20%	50%	80%	100%	0%	20%	50%	70%	100%
040	0%	25%	50%	75%	100%	0%	25%	50%	75%	100%
050	0%	25%	50%	75%	100%	0%	25%	50%	75%	100%
060	0%	25%	50%	75%	100%	0%	25%	50%	75%	100%

CAPACITY CONTROL STAGING OPTIONS TABLE E

48/50A030-060 UNITS VAV AND ADAPTIVE CV/SAV STAGING SEQUENCE WITH HOT GAS BYPASS STAGING SEQUENCE

STAGE			SEQU	JENCE 1					SEQU	JENCE 2		
STAGE	0	1	2	3	4	5	0	1	2	3	4	5
COMP			Compres	ssor Status			Compressor Status					
A1	OFF	ON*	ON	OFF	OFF	ON	OFF	OFF	OFF	ON	ON	ON
A2	OFF	OFF	OFF	ON	ON	ON	OFF	ON*	ON	OFF	ON	ON
B1	OFF	OFF	OFF	ON	ON	ON	OFF	OFF	OFF	ON	ON	ON
B2	OFF	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF	OFF	OFF	ON
UNIT			Capaci	ty 48/50A			Capacity 48/50A					
030	0%	10%	25%	50%	75%	100%	0%	10%	25%	50%	75%	100%
035	0%	7%	20%	50%	80%	100%	0%	7%	20%	50%	70%	100%
040	0%	14%	25%	50%	75%	100%	0%	14%	25%	50%	75%	100%
050	0%	16%	25%	50%	75%	100%	0%	16%	25%	50%	75%	100%
060	0%	18%	25%	50%	75%	100%	0%	18%	25%	50%	75%	100%

^{*}Hot gas bypass activated.

CAPACITY CONTROL STAGING OPTIONS TABLE F 48/50A030-060 UNITS VAV AND ADAPTIVE CV/SAV STAGING SEQUENCE WITH VARIABLE CAPACITY COMPRESSOR

STAGE			SEQUENCE 1					
STAGE	0	1	2	3	4			
COMP	Compressor Status							
A1*	OFF	ON	ON	ON	ON			
A2	OFF	OFF	OFF	ON	ON			
B1	OFF	OFF	ON	ON	ON			
B2	OFF	OFF	OFF	OFF	ON			
UNIT			Capacity 48/50A	•				
030	0%	12.5% to 25%	37.5% to 50%	62.5% to 75%	87.5% to 100%			
035	0%	9.8% to 19.6%	29.4% to 39.4%	59.8% to 69.6%	90.2% to 100%			
040	0%	12.5% to 25%	37.5% to 50%	62.5% to 75%	87.5% to 100%			
050	0%	12.5% to 25%	37.5% to 50%	62.5% to 75%	87.5% to 100%			
060	0%	12.5% to 25%	37.5% to 50%	62.5% to 75%	87.5% to 100%			

^{*}On units with optional digital scroll compressor, compressor A1 modulates from minimum to maximum capacity to provide increased stages.

ALTITUDE COMPENSATION — 48A UNITS

	SIZES	020-035	SIZES	040-060
ELEVATION (ft)	Natural Gas Orifice Drill Bit Size*	Liquid Propane Orifice Drill Bit Size*	Natural Gas Orifice Drill Bit Size*	Liquid Propane Orifice Drill Bit Size*
0-2,000	34	43	31	41
2,001- 3,000	⁷ / ₆₄ "	44	32	3/ ₃₂ "
3,001- 4,000	36	45	33	43
4,001- 5,000	37	45	33	43
5,001- 6,000	38	45	34	44
6,001- 7,000	39	47	36	44
7,001- 8,000	40	47	36	45
8,001- 9,000	41	48	37	45
9,001-10,000	3/ ₃₂ "	48	38	45
10,001-11,000	42	49	39	47
11,001-12,000	43	49	40	5/ ₆₄ "
12,001-13,000	43	50	41	48
13,001-14,000	44	50	3/ ₃₂ "	49

^{*}Orifices available through your local Carrier distributor.

Physical data — 48A units

UNIT 48A	020	025	027	030	
NOMINAL CAPACITY (tons)	20	25	27	30	
BASE UNIT OPERATING WEIGHT (lb)		See Unit Weig	hts Table		
COMPRESSOR Quantity Type (Ckt 1/Ckt 2) Number of Refrigerant Circuits Oil	2 ZP67/1ZP91 2 Precharged	2 ZP91/1ZP91 2 Precharged	2 ZP91/1ZP91 2 Precharged	2ZP72, 2ZP72 2 Precharged	
REFRIGERANT Operating Charge (lb), Ckt 1/Ckt 2 RTPF Coils MCHX Coils MCHX Coils	26.2/18.8 14.9/11.8 22.1/11.8	R-410. 30.2/15.2 16.5/11.0 23.7/11.0	A 32.8/16.5 16.5/11.0 23.7/11.0	30.5/34.3 15.1/15.3 15.1/22.5	
MCHX CONDENSER* Quantity Total Face Area (sq ft)	1 32.9	1 32.9	1 32.9	1 32.9	
RTPF CONDENSER Quantity RowsFins/in. Total Face Area (sq ft)	1 215 33.3	1 315 33.3	1 315 33.3	1 415 33.3	
CONDENSER FAN Nominal Cfm Quantity Diameter (in.) Motor Hp	19,500 2 30 1	19,500 2 30 1	Type 19,500 2 30 1	19,500 2 30 1	
EVAPORATOR COIL Tube Size (in.) Rows Fins/in. Total Face Area (sq ft)	3/ ₈ 3 15 31.7	ross-Hatched Copper Tubes, Aluminum 3/8 4 14 31.7	n Plate Fins with Intertwined Circu 3/ ₈ 4 15 31.7	uits 4 15 31.7	
HUMIDI-MIZER COIL Coil Construction Quantity Face Area (sq ft)	E-Coa 1 14.4	ated Aluminum Novation® Heat Exchan	nger with Microchannel Coil Techr 1 14.4	nology 1 14.4	
EVAPORATOR FAN Quantity Size (in.) Type Drive Nominal Cfm Motor Hp	2 20 X 15 Belt 8,000 5 I 10 I 15	Centrifugal 2 20 X 15 Belt 10,000 5 I 10 I 15	2 20 X 15 Belt 11,000	2 20 X 15 Belt 12,000 10 I 15 I 20	
Motor Fr Motor Frame Size Motor Bearing Type Maximum Allowable Rpm Motor Pulley Pitch Diameter Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.)	184T 215T 254T Ball 1200 4.8 4.4 5.7 11/8 13/8 15/8 12.4 8.6 9.1	184T	215T 254T 256T Ball 1200 4.4 4.9 5.9 1 ³ / ₈ 1 ⁵ / ₈ 1 ⁵ / ₈ 9.4 8.1 8.7	215T 254T 256T Ball 1200 4.4 5.7 5.9 13/ ₈ 15/ ₈ 15/ ₈ 9.0 9.1 8.7	
Nominal Fan Shaft Diameter (in.) Belt Quantity Belt Type Belt Length (in.) Pulley Center Line Distance (in.)	1 2 2 BX56 BX50 5VX530 56 63 16.0- 15.6- 15.0- 18.7 18.4 17.9	115/ ₁₆ 1 2 8X56 5VX570 5VX530 56 57 53 15.6-18.4 15.6-18.4 15.0-17.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	115/ ₁₆ 2 2 2 BX50 5VX530 5VX530 50 53 53 15.6- 15.0- 15.0- 18.4 17.9 17.9	
Factory Speed Setting (rpm) FURNACE SECTION	717 924 1096	773 962 1106	848 1059 1187	856 1096 1187	
Supply Line Pressure Range Rollout Switch Cutout Temp (F)†	225	5.0-in. wg min/13.9 225	5-in. wg max. 225	225	
Burner Orifice Diameter (indrill size) Natural Gas Std Liquid Propane Alt	.111 34 .089 43	.111 34 .089 43	.111 34 .089 43	.111 34 .089 43	
Thermostat Heat Anticipator Setting Stage 1 (amps) Stage 2 (amps)	0.1 0.1	0.1 0.1	0.1 0.1	0.1 0.1	
Gas Input (Btuh) Stage 1 (Low Heat/High Heat) Stage 2	262,500/394,000 350,000/525,000	262,500/394,000 350,000/525,000	262,500/394,000 350,000/525,000	262,500/394,000 350,000/525,000	
(Low Heat/High Heat) Efficiency (Steady State) (%) Temperature Rise Range Manifold Pressure (in. wg)	81 15-45/35-65	81 15-45/35-65	81 15-45/35-65	81 15-45/35-65	
Natural Gas Std Liquid Propane Alt Gas Valve Quantity	3.5 3.5 2	3.5 3.5 2	3.5 3.5 2	3.5 3.5 2	
HIGH-PRESSURE SWITCH (psig) Cutout Reset (Auto.)	650 500	650 500	650 500	650 500	
MIXED-AIR FILTERS Quantity Size (in.) Standard Pleated	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	
OUTDOOR-AIR FILTERS QuantitySize (in.)		816 x 2! 420 x 2!			
POWER EXHAUST Motor, QuantityHp Fan, DiameterWidth (in.)	Direct Drive, Sing	gle-Phase Motors (Factory-Wired for Hig with Backdraft Dampers o 41 11 x 1	gh Speed Operation), Forward-Cu n Each Fan Housing	urved Fan Wheels	
LEGEND	<u> </u>	117.1	-		

LEGEND

AI — Aluminum
Cu — Copper
MCHX — Microchannel Heat Exchanger
RTPF — Round Tube Plate Fin

Sizes 020 to 027: Circuit 1 uses the lower portion of condenser coil, Circuit 2 uses the upper portion. Sizes 030 and 035: Circuit 1 uses the upper portion of condenser coil, Circuit 2 uses the lower portion. Sizes 040 and 050: Circuit 1 uses the left condenser coil, Circuit 2 the right. Size 060: Circuit A uses the two MCHX coils near the bulkhead, Circuit B uses the two MCHX coils near the control box.
 † Rollout switch is manual reset.

Physical data — 48A units (cont)

UNIT 48A		035	040	050	060
NOMINAL CAPACITY (tons)		35	40	50	60
BASE UNIT OPERATING WEIGHT (Ib)			See Unit Weig	hts Table 	
COMPRESSOR Quantity Type (Ckt 1/Ckt 2) Number of Refrigerant Circuits Oil		2 ZP67/2ZP104 2 Precharged	2ZP104/2ZP104 2 Precharged	2ZP122/2ZP122 2 Precharged	2ZP154/2ZP154 2 Precharged
REFRIGERANT Operating Charge (lb), Ckt 1/Ckt 2 RTPF Coils MCHX Coils MCHX Coils		28.7 / 44.0 17.9 / 26.0 17.9 / 31.5	R-410/ 44.0 / 44.0 23.0 / 23.5 23.0 / 30.5	A 56.3 / 57.3 27.0 / 28.0 26.5 / 34.5	78.5 / 82.0 36.3 / 37.8 36.3 / 47.6
MCHX CONDENSER* Quantity Total Face Area (sq ft)		1 32.9	2 65.8	2 65.8	4 105.2
RTPF CONDENSER Quantity RowsFins/in. Total Face Area (sq ft)		1 415 33.3	2 315 66.7	2 415 66.7	2 630 100.0
CONDENSER FAN Nominal Cfm Quantity Diameter (in.)		19,500 2 30	32,000 Propeller - 4 30	Type 35,000 4 30	40,000 430.5(MCHX), 630(RTPF)
Motor Hp EVAPORATOR COIL Tube Size (in.) Rows Fins/in.		1 Cross-Hato 1/ ₂ 6 16	1 hed Copper Tubes, Aluminum 1/2 4 17	Plate Fins with Intertwined Ci	<u> </u>
Total Face Area (sq ft) HUMIDI-MIZER COIL		31.3	31.3	31.3	48.1
Coil Construction Quantity Face Area (sq ft)		E-Coated Alun 1 14.4	1 14.4	ger with Microchannel Coil Te 1 14.4	chnology 1 14.1
EVAPORATOR FAN Quantity Size (in.) Type Drive Nominal Cfm Motor Hp Motor Frame Size		2 20 X 15 Belt 14,000 15 20 25 254T 256T 284T	Centrifugal 2 20 X 15 Belt 16,000 15 20 25 254T 256T 284T	2 20 X 15 Belt 18,000 20 25 30 256T 284T 286T	3 20 X 15 Belt 24,000 25 30 40 284T 286T 324T
Motor Bearing Type Maximum Allowable Rpm Motor Pulley Pitch Diameter (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Nominal Fan Shaft Diameter (in.)		Ball 1300 5.1 5.7 6.2 1 ⁵ / ₈ 1 ⁵ / ₈ 1 ⁷ / ₈ 8.7 8.7 8.7 1 ¹⁵ / ₁₆	Ball 1300 5.3 5.7 7.5 1 ⁵ / ₈ 1 ⁷ / ₈ 9.5 9.5 11.1 1 ¹⁵ / ₁₆	Ball 1300 5.7 6.2 6.7 15/ ₈ 17/ ₈ 17/ ₈ 9.5 9.5 9.5 115/ ₁₆	Ball 1200 5.3 5.9 6.5 1 ⁷ / ₈ 1 ⁷ / ₈ 2 ¹ / ₈ 9.1 9.5 9.5 1 ¹⁵ / ₁₆
Belt Quantity Belt Type Belt Length (in.) Pulley Center Line Distance (in.)		2 2 2 2 5VX500 5VX550 5VX550 50 53 55 15.0-17.9 15.0-17.9 15.0-17.9	2 2 2 2 5VX530 5VX550 59 59 15.0- 17.9 17.9 17.6 976 1050 1182	2 2 2 5VX550 5VX570 5VX570 55 57 57 15.0- 14.6- 14.6- 17.9 17.6 17.6 1050 1142 1234	3 3 5VX550 5VX570 55 57 15.2- 17.5 17.2 17.9 1019 1087 1197
Factory Speed Setting (rpm) FURNACE SECTION Supply Line Pressure Range		1023 1147 1247	5.0-in. wg min/13.5	l l	1019 1007 1197
Rollout Switch Cutout Temp (F)† Burner Orifice Diameter (indrill size) Natural Gas Liquid Propane Thermostat Heat Anticipator Setting	Std Alt	225 .111 34 (low)/.120 31 (high) .089 43	225 .120 31 .096 41	225 .120 31 .096 41	225 .12031 .09641
Stage 1 (amps) Stage 2 (amps) Gas Input (Btuh) Stage 1 (Low Heat/High Heat) Stage 2		0.1 0.1 262,500/600,000 350,000/800,000	0.24 0.13 300,000/600,000	0.1 0.1 300,000/600,000	0.1 0.1 582,000/873,000
(Low Heat/High Heat) Efficiency (Steady State) (%) Temperature Rise Range Manifold Pressure (in. wg) Natural Gas	Std	81 15-45/30-60 3.5	400,000/800,000 81 10-40/30-60 3.5	400,000/800,000 81 10-40/30-60 3.5	776,000/1,164,000 81 10-40/30-60 3.3
Liquid Propane Gas Valve Quantity HIGH-PRESSURE SWITCH (psiq)	Alt	3.5 2	3.5 2	3.5 2	3.3 3
Cutout Reset (Auto.) MIXED-AIR FILTERS		650 500	650 500	650 500	650 500
Quantity Size (in.) Standard Pleated		10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	1620 x 24 x 2 820 x 20 x 4 820 x 24 x 4
OUTDOOR-AIR FILTERS QuantitySize (in.)		816 x 25 x 2 420 x 25 x 2	816 x 25 x 2 420 x 25 x 2	816 x 25 x 2 420 x 25 x 2	1216 x 25 x 2 620 x 25 x 2
POWER EXHAUST Motor, QuantityHp Fan, DiameterWidth (in.)		Direct Drive, Single-Phase 41 11 x 10	e Motors (Factory-Wired for Hig with Backdraft Dampers of 41 11 x 10	gh Speed Operation), Forward- n Each Fan Housing 41 11 x 10	Curved Fan Wheels 61 11 x 10
LEGEND			* Sizes 020 to 027: Circ	cuit 1 uses the lower portion of	condenser coil Circuit 2 uses

LEGEND

AI — Aluminum
Cu — Copper
MCHX — Microchannel Heat Exchanger
RTPF — Round Tube Plate Fin

Sizes 020 to 027: Circuit 1 uses the lower portion of condenser coil, Circuit 2 uses the upper portion. Sizes 030 and 035: Circuit 1 uses the upper portion of condenser coil, Circuit 2 uses the lower portion. Sizes 040 and 050: Circuit 1 uses the left condenser coil, Circuit 2 the right. Size 060: Circuit 4 uses the two MCHX coils near the bulkhead, Circuit B uses the two MCHX coils near the control box. Rollout switch is manual reset.

Physical data — 50A units

UNIT 50A	020	025	027	030
NOMINAL CAPACITY (tons)	20	25	27	30
BASE UNIT OPERATING WEIGHT (Ib)		See Unit Weig	hts Table 	
COMPRESSOR Quantity Type (Ckt 1/Ckt 2) Number of Refrigerant Circuits Oil	2 ZP67/1ZP91 2 Precharged	2 ZP91/1ZP91 2 Precharged	2 ZP91/1 ZP91 2 Precharged	2ZP72, 2ZP72 2 Precharged
REFRIGERANT	1 recharged	R-410		1 recharged
Operating Charge (lb), Ckt 1/Ckt 2 RTPF Coils MCHX Coils MCHX Coils	26.2/18.8 14.9/11.8 22.1/11.8	30.2/15.2 16.5/11.0 23.7/11.0	32.8/16.5 16.5/11.0 23.7/11.0	30.5/34.3 15.1/15.3 15.1/22.5
MCHX CONDENSER* Quantity Total Face Area (sq ft)	1 32.9	1 32.9	1 32.9	1 32.9
RTPF CONDENSER Quantity RowsFins/in. Total Face Area (sq ft)	1 215 33.3	1 1 1 215 315		1 415 33.3
CONDENSER FAN	23.0	Propeller	33.3 Type	
Nominal Cfm Quantity Diameter (in.) Motor Hp	19,500 2 30 1	19,500 2 30 1	19,500 2 30 1	19,500 2 30 1
EVAPORATOR COIL	Cı	iits		
Tube Size (in.) Rows Fins/in. Total Face Area (sq ft)	3/ ₈ 3 15 31.7	3/ ₈ 4 14 31.7	^{3/} ₈ 4 15 31.7	^{3/} 8 4 15 31.7
HUMIDI-MIZER COIL				
Coil Construction Quantity Face Area (sq ft)	E-Coa 1 14.4	ated Aluminum Novation® Heat Exchar 1 14.4	nger with Microchannel Coil Techi 1 14.4	nology 1 14.4
EVAPORATOR FAN		Centrifugal	Туре	
Quantity Size (in.) Type Drive	2 20 X 15 Belt			
Nominal Cfm	8,000	10,000	11,000	12,000
Motor Hp Motor Frame Size	5 10 15 184T 215T 254T	5 10 15 184T 215T 254T	10 15 20 215T 254T 256T	10 15 20 215T 254T 256T
Motor Bearing Type	Ball	Ball	Ball	Ball
Maximum Allowable Rpm Motor Pulley Pitch Diameter	1200 4.8 4.4 5.7	1200 5.2 6.1 5.5	1200	1200 4.4 5.7 5.9
Nominal Motor Shaft Diameter (in.)	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ¹ / ₈ 1 ³ / ₈ 1 ⁵ / ₈	1 ³ / ₈ 1 ⁵ / ₈ 1 ⁵ / ₈	1 ³ / ₈ 1 ⁵ / ₈ 1 ⁵ / ₈
Fan Pulley Pitch Diameter (in.) Nominal Fan Shaft Diameter (in.)	12.4 8.6 9.1 1 ¹⁵ / ₁₆	12.4 11.1 8.7 1 ¹⁵ / ₁₆	9.4 8.1 8.7 1 ¹⁵ / ₁₆	9.0 9.1 8.7 1 ¹⁵ / ₁₆
Belt Quantity	1 2 2	1 1 2	2 2 2	
Belt Type Belt Length (in.)	BX56 BX50 5VX530 56 63 53	BX56 5VX570 5VX530 56 57 53	BX50 5VX500 5VX530 50 53	BX50 5VX530 5VX530 50 53 53
Pulley Center Line Distance (in.)	16.0- 15.6- 15.0-	15.6-18.4 15.6-18.4 15.0-17.9	15.0- 15.0-	15.6- 15.0- 15.0-
Factory Speed Setting (rpm)	18.7 18.4 17.9 717 924 1096	773 962 1106	848 1059 1187	18.4 17.9 17.9 856 1096 1187
HIGH-PRESSURE SWITCH (psig) Cutout Reset (Auto.)	650 500	650 500	650 500	650 500
MIXED-AIR FILTERS Quantity Size (in.) Standard Pleated	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4
OUTDOOR-AIR FILTERS QuantitySize (in.)		816 x 2 420 x 2	5 x 2 5 x 2	
POWER EXHAUST	Direct Drive, Single-Phase Mo	otors (Factory-Wired for High Speed Or	peration), Forward-Curved Fan W	heels with Backdraft Dampers
Motor, QuantityHp Fan, DiameterWidth (in.)		on Each Fan 41 11 x 1		
,				

LEGEND

AI — Aluminum
Cu — Copper
MCHX — Microchannel Heat Exchanger
RTPF — Round Tube Plate Fin

Sizes 020 to 027: Circuit 1 uses the lower portion of condenser coil, Circuit 2 uses the upper portion. Sizes 030 and 035: Circuit 1 uses the upper portion of condenser coil, Circuit 2 uses the lower portion. Sizes 040 and 050: Circuit 1 uses the left condenser coil, Circuit 2 the right. Size 060: Circuit A uses the two MCHX coils near the bulkhead, Circuit B uses the two MCHX coils near the control box. Rollout switch is manual reset.

Physical data — 50A units (cont)

UNIT 50A	035	040	050	060
NOMINAL CAPACITY (tons)	35	40	50	60
BASE UNIT OPERATING WEIGHT (Ib)		See Unit We	eights Table 	
COMPRESSOR Quantity Type (Ckt 1/Ckt 2) Number of Refrigerant Circuits Oil	2 ZP67/2ZP104 2 Precharged	2ZP104/2ZP104 2 Precharged	2ZP122/2ZP122 2 Precharged	2ZP154/2ZP154 2 Precharged
REFRIGERANT Operating Charge (lb), Ckt 1/Ckt 2 RTPF Coils MCHX Coils MCHX Coils	28.7 / 44.0 17.9 / 26.0 17.9 / 31.5	R-4 44.0 / 44.0 23.0 / 23.5 23.0 / 30.5	10A 56.3 / 57.3 27.0 / 28.0 26.5 / 34.5	78.5 / 82.0 36.3 / 37.8 36.3 / 47.6
MCHX CONDENSER* Quantity Total Face Area (sq ft)	1 32.9	2 65.8	2 65.8	4 105.2
RTPF CONDENSER Quantity RowsFins/in Total Face Area (sq ft)	1 415 33.3	2 315 66.7	2 415 66.7	2 630 100.0
CONDENSER FAN Nominal Cfm Quantity Diameter (in.)	19,500 2 30	Propelle 32,000 4 30	er Type 35,000 4 30	40,000 430.5(MCHX),
Motor Hp	1	1	1	630(RTPF)
EVAPORATOR COIL Tube Size (in.) Rows Fins/in. Total Face Area (sq ft)	· ·		um Plate Fins with Intertwined 1/2 6 16 31.3	Circuits 1/2 417 48.1
HUMIDI-MIZER COIL	01.0	01.0	01.0	40.1
Coil Construction Quantity Face Area (sq ft)	E-Coated A 1 14.4	luminum Novation [®] Heat Exch 1 14.4	anger with Microchannel Coil 1 14.4	Technology 1 14.4
EVAPORATOR FAN Quantity Size (in.) Type Drive	2 20 X 15 Belt	Centrifu 2 20 X 15 Belt		3 20 X 15 Belt
Nominal Cfm Motor Hp Motor Frame Size Motor Bearing Type Maximum Allowable Rpm Motor Pulley Pitch Diameter	14,000 15 20 25 254T 256T 284T Ball 1300 5.1 5.7 6.2	16,000 15 20 25 254T 256T 284T Ball 1300 5.3 5.7 7.5	18,000 20 25 30 256T 284T 286T Ball 1300 5.7 6.2 6.7	24,000 25 30 40 284T 286T 324T Ball 1200 5.3 5.9 6.5
Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Nominal Fan Shaft Diameter (in.) Belt Quantity	$\begin{bmatrix} 15/8 & 15/8 & 17/8 \\ 8.7 & 8.7 & 8.7 \\ & & 1^{15}/_{16} \\ 2 & 2 & 2 \end{bmatrix}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15/ ₈ 17/ ₈ 17/ ₈ 9.5 9.5 9.5 9.5 115/ ₁₆ 2 2 2 2	17/ ₈ 17/ ₈ 21/ ₈ 9.1 9.5 9.5 115/ ₁₆ 3 3 3
Belt Type Belt Length (in.) Pulley Center Line Distance (in.)	5VX500 5VX530 5VX550 50 53 55 15.0- 15.0- 15.0- 17.9 17.9 17.9	5VX530 5VX550 5VX590 53 55 59 15.0- 15.0- 14.6- 17.9 17.9 17.6	5VX550 5VX570 5VX570 55 57 57 15.0- 14.6- 14.6- 17.9 17.6 17.6	5VX530 5VX550 5VX570 53 55 57 15.2- 14.7- 14.2- 17.5 17.2 17.0
Factory Speed Setting (rpm)	1025 1147 1247	976 1050 1182	1050 1142 1234	1019 1087 1197
HIGH-PRESSURE SWITCH (psig) Cutout Reset (Auto.)	650 500	650 500	650 500	650 500
MIXED-AIR FILTERS Quantity Size (in.) Standard Pleated	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	10 20 x 24 x 2 5 20 x 20 x 4 5 20 x 24 x 4	1620 x 24 x 2 820 x 20 x 4 820 x 24 x 4
OUTDOOR-AIR FILTERS QuantitySize (in.)	816 x 25 x 2 420 x 25 x 2	816 x 25 x 2 420 x 25 x 2	816 x 25 x 2 420 x 25 x 2	1216 x 25 x 2 620 x 25 x 2
POWER EXHAUST	Direct Drive, Single-Ph	ase Motors (Factory-Wired for with Backdraft Damper	High Speed Operation), Forwards on Each Fan Housing	rd-Curved Fan Wheels
Motor, QuantityHp Fan, DiameterWidth (in.)	41 11 x 10	41 11 x 10	41 11 x 10	61 11 x 10

LEGEND

AI — Aluminum
Cu — Copper
MCHX — Microchannel Heat Exchanger
RTPF — Round Tube Plate Fin

Sizes 020 to 027: Circuit 1 uses the lower portion of condenser coil, Circuit 2 uses the upper portion. Sizes 030 and 035: Circuit 1 uses the upper portion of condenser coil, Circuit 2 uses the lower portion. Sizes 040 and 050: Circuit 1 uses the left condenser coil, Circuit 2 the right. Size 060: Circuit 4 uses the two MCHX coils near the bulkhead, Circuit B uses the two MCHX coils near the control box. Rollout switch is manual reset.

Physical data

48/50A020-060 UNIT WEIGHTS **BASE UNIT WEIGHTS* (lb)**

UNIT	020	025	027	030	035	040	050	060
48A2D,A3D,A6D,A7D	3825	3961	3961	3992	4340	4770	4914	7066
48A2E,A3E,A6E,A7E	3905	4041	4041	4072	4500	4930	5074	7306
48A4D,A5D,A8D,A9D	3865	4001	4001	4032	4380	4810	4954	7106
48A4E,A5E,A8E,A9E	3945	4081	4081	4112	4540	4970	5114	7356
50A2,A3,A6,A7	3625	3761	3761	3792	4025	4455	4599	6826
50A4,A5,A8,A9	3703	3839	3839	3870	4218	4648	4792	7041
		OPTIO	NS/ACCE	ESSORIE:	S (WEIGH	HT ADDE	RS) (lb)	
Barometric Relief	300	300	300	300	300	300	300	450
Non-Modulating Power Exhaust	450	450	450	450	450	450	450	675
Modulating Power Exhaust	500	500	500	500	500	500	500	725
Electric Heat	110	110	110	110	110	110	110	165
Cu Tube/Aluminum Fin Condenser Coil	100	100	100	150	150	187	317	26
Cu Tube/Cu Fin Condenser Coil	263	263	263	370	370	512	751	677
OA Hood Crate/Packaging	45	45	45	45	45	45	45	45
(Less Hoods' Weight)				(Packagi	ng Only)		ā.	
Outdoor Air Hoods/Filters (included with unit)	170	170	170	170	170	170	170	255
Hail Guards	73	73	73	73	73	146	146	219
Roof Curb (14-in.)	365	365	365	365	365	410	410	540
Double Wall	275	275	275	275	275	275	275	375
Humidi-MiZer® Adaptive Dehumidification Option	150	150	150	150	150	180	180	195

CV MOTOR WEIGHTS (lb)

MOTOR HP	UNIT VOLTAGE	PREMIUM EFFICIENCY IFM
	230/460	80
5 HP	380	75
	575	80
	230/460	126
10 HP	380	120
,	575	126
	230/460	217
15 HP	380	155
•	575	217
	230/460	250
20 HP	380	185
,	575	250
	230/460	309
25 HP	380	225
,	575	309
	230/460	303
30 HP	380	283
	575	303
	230/460	551
40 HP	380	601
	575	551

LEGEND

Cu — CV — FIOP — HP — IFM — OA — SAV — VAV — VFD — Copper Constant Volume Factory-Installed Option Horsepower Indoor Fan Motor

Outdoor Air
 Staged Air Volume
 Variable Air Volume
 Variable Frequency Drive

SAVTM/VAV MOTOR WEIGHTS (lb)

MOTOR HP	UNIT VOLTAGE	PREMIUM EFFICIENCY IFM
	230/460	138
5 HP	380	133
	575	149
	230/460	195
10 HP	380	198
	575	195
	230/460	316
15 HP	380	254
	575	319
	230/460	385
20 HP	380	320
	575	357
	230/460	444
25 HP	380	360
	575	454
	230/460	338
30 HP	380	318
	575	342
	230/460	686
40 HP	380	736
	575	686

Outdoor-air hoods and filters included in base unit weights; indoorfan motors are NOT included.

NOTES:

- Base Unit Weight includes OA hoods (economizer or outdoor air damper); does not include an indoor-fan motor. ADD indoor motor, FIOPs and Accessories for TOTAL operating weight.
 VAV Motor Weights include the indoor motor and the VFD, optional VFD bypass, VFD transducer and associated wiring.

Physical data (cont)

CENTER OF GRAVITY AND CORNER WEIGHTS

48/50A2,A4,A6,A8 CONSTANT VOLUME UNITS

LINUT	WEIGHT (III)	CENTER OF GRAVITY (in.)		CORNER WEIGHT (Ib)			
UNIT	WEIGHT (lb)	Α	В	1	2	3	4
50A2,A6020	4500	97.4	44.7	906	937	1348	1310
48A2,A6D020	4590	96.3	44.2	950	962	1346	1333
48A2,A6E020	4670	95.7	43.9	981	979	1352	1358
50A4,A8020	4078	97.5	44.7	820	850	1223	1186
48A4,A8D020	4130	96.3	44.3	853	866	1213	1198
48A4,A8E020	4210	95.8	44.0	883	883	1221	1224
50A2,A6025	4636	98.0	44.5	920	963	1379	1374
48A2,A6D025	4726	96.9	44.0	964	988	1377	1397
48A2,A6E025	4806	96.3	43.7	995	1005	1383	1423
50A4,A8025	4214	98.1	44.5	834	876	1255	1250
48A4,A8D025	4266	97.0	44.1	867	892	1244	1263
48A4,A8E025	4346	96.4	43.8	897	909	1252	1288
50A2,A6027	4674	97.2	44.1	958	963	1379	1374
48A2,A6D027	4764	96.1	43.7	1002	988	1377	1397
48A2,A6E027	4844	95.6	43.4	1033	1005	1383	1423
50A4,A8027	4252	97.2	44.1	872	876	1255	1250
48A4,A8D027	4304	96.1	43.7	905	892	1244	1263
48A4,A8E027	4384	95.6	43.4	935	909	1252	1288
50A2,A6030	4705	95.1	44.4	987	1006	1369	1343
48A2,A6D030	4795	94.0	44.0	1032	1032	1366	1366
48A2,A6E030	4875	93.5	43.7	1063	1049	1372	1392
50A4,A8030	4283	94.9	44.4	901	918	1244	1220
48A4,A8D030	4335	93.8	44.0	935	935	1232	1232
48A4,A8E030	4415	93.3	43.7	966	952	1239	1258
50A2,A6035	4999	95.9	41.5	1107	988	1367	1537
48A2,A6D035	5204	94.8	41.0	1181	1034	1393	1596
48A2,A6E035	5364	94.2	40.7	1235	1067	1417	1645
50A4,A8035	4692	95.8	41.5	1040	928	1282	1442
48A4,A8D035	4744	94.7	41.0	1078	944	1269	1454
48A4,A8E035	4904	94.1	40.7	1131	976	1294	1503
50A2,A6040	5429	121.7	41.4	1245	1110	1444	1629
48A2,A6D040	5634	120.3	41.0	1324	1159	1466	1686
48A2,A6E040	5794	118.8	40.7	1392	1202	1477	1723
50A4,A8040	5122	121.6	41.4	1177	1049	1361	1536
48A4,A8D040	5174	120.0	41.0	1219	1067	1343	1546
48A4,A8E040	5334	118.6	40.7	1284	1108	1357	1584
50A2,A6050	5613	119.3	41.7	1310	1188	1472	1644
48A2,A6D050	5818	117.9	41.3	1390	1237	1491	1700
48A2,A6E050	5978	116.5	41.0	1459	1281	1501	1738
50A4,A8050	5306	119.0	41.7	1243	1127	1387	1550
48A4,A8D050	5358	117.4	41.3	1287	1146	1366	1559
48A4,A8E050	5518	115.9	40.9	1354	1189	1378	1598
50A2,A6060	8176	184.9	43.4	1683	1637	2393	2463
48A2,A6D060	8251	177.5	41.3	1879	1666	2206	2500
48A2,A6E060	8491	170.4	39.2	2126	1718	2067	2580
50A4,A8060	7666	184.7	43.4	1580	1537	2242	2307
48A4,A8D060	7566	177.3	41.3	1727	1531	2019	2290
48A4,A8E060	7816	170.1	39.2	1961	1585	1898	2373

NOTES:
1. Center of gravity

.

The weight distribution and center of gravity information are representative of a standard unit and include the impact of factory-installed options such as electric heat (50A only), economizer, and modulating power exhaust.

CENTER OF GRAVITY AND CORNER WEIGHTS (cont)

48/50A3,A5,A7,A9 VARIABLE AIR VOLUME UNITS

LIMIT	WEIGHT (IF)	CENTER OF GRAVITY (in.)		CORNER WEIGHT (Ib)				
UNIT	WEIGHT (lb)	Α	В	1	2	3	4	
50A3,A7020	4599	98.0	44.9	905	963	1385	1347	
48A3,A7D020	4689	96.8	44.5	949	989	1382	1370	
48A3,A7E020	4769	96.3	44.2	980	1006	1388	1396	
50A5,A9020	4177	98.1	45.0	818	876	1261	1223	
48A5,A9D020	4229	96.9	44.6	852	893	1249	1235	
48A5,A9E020	4309	96.4	44.2	882	910	1257	1261	
50A3,A7025	4735	98.5	44.7	918	989	1416	1411	
48A3,A7D025	4825	97.4	44.3	963	1015	1414	1434	
48A3,A7E025	4905	96.9	44.0	994	1032	1419	1460	
50A5,A9025	4313	98.7	44.8	832	902	1292	1287	
48A5,A9D025	4365	97.5	44.3	866	919	1281	1300	
48A5,A9E025	4445	97.0	44.0	896	936	1288	1325	
50A3,A7027	4801	97.2	44.1	984	989	1416	1411	
48A3,A7D027	4891	96.1	43.7	1029	1015	1414	1434	
48A3,A7E027	4971	95.6	43.4	1060	1032	1419	1460	
50A5,A9027	4379	97.2	44.1	898	902	1292	1287	
48A5,A9D027	4431	96.1	43.7	932	919	1281	1300	
48A5,A9E027	4511	95.6	43.4	962	936	1288	1325	
50A3,A7030	4832	95.2	44.4	1013	1032	1407	1380	
48A3,A7D030	4922	94.1	44.0	1058	1058	1403	1403	
48A3,A7E030	5002	93.6	43.7	1090	1075	1408	1428	
50A5,A9030	4410	95.0	44.4	927	944	1282	1257	
48A5,A9D030	4462	93.9	44.0	962	962	1269	1269	
48A5,A9E030	4542	93.4	43.7	993	979	1276	1295	
50A3,A7035	5134	95.9	41.5	1137	1014	1405	1579	
48A3,A7D035	5339	94.8	41.0	1211	1061	1430	1637	
48A3,A7E035	5499	94.2	40.7	1266	1093	1453	1687	
50A5,A9035	4827	95.8	41.5	1070	954	1320	1484	
48A5,A9D035	4879	94.7	41.0	1108	970	1305	1495	
48A5,A9E035	5039	94.1	40.7	1161	1003	1330	1545	
50A3,A7040	5564	121.8	41.4	1276	1137	1481	1671	
48A3,A7D040	5769	120.3	41.0	1355	1186	1502	1727	
48A3,A7E040	5929	118.8	40.7	1423	1229	1513	1764	
50A5,A9040	5257	121.6	41.4	1207	1076	1398	1577	
48A5,A9D040	5309	120.1	41.0	1250	1094	1379	1587	
48A5,A9E040	5469	118.6	40.7	1316	1136	1393	1625	
50A3,A7050	5744	119.5	41.7	1338	1214	1509	1684	
48A3,A7D050	5949	118.1	41.3	1419	1264	1527	1740	
48A3,A7E050	6109	116.6	41.0	1489	1308	1536	1777	
50A5,A9050	5437	119.1	41.7	1271	1153	1423	1590	
48A5,A9D050	5489	117.5	41.3	1316	1172	1402	1599	
48A5,A9E050	5649	116.1	40.9	1384	1215	1413	1638	
50A3,A7060	8311	184.9	43.4	1710	1663	2433	2504	
48A3,A7D060	8386	177.6	41.3	1909	1693	2243	2541	
48A3,A7E060	8626	170.4	39.2	2159	1745	2100	2622	
50A5,A9060	7801	184.8	43.4	1608	1564	2282	2349	
48A5,A9D060	7701	177.3	41.3	1757	1558	2056	2331	
48A5,A9E060	7951	170.1	39.2	1994	1611	1932	2414	

NOTES:

1. Center of gravity .

2. The weight distribution and center of gravity information are representative of a standard unit and include the impact of factory-installed options such as electric heat (50A only), economizer, and modulating power exhaust.

Physical data (cont)

FIOP AND ACCESSORY CORNER WEIGHT ADJUSTMENTS

UNIT	WEIGHT (lb)	CORNER WEIGHTS (Ib)			
	WEIGHT (ID)	1	2	3	4
48/50A 020-027					
Barometric Relief	300	2	185	111	1
Non Mod. Power Exhaust	450	3	278	167	2
Mod. Power Exhaust	500	4	309	186	2
Electric Heat	110	59	10	6	35
Al/Cu Cond Coil	100	1	1	49	49
Cu/Cu Cond Coil	263	2	2	129	129
Hail Guards	73	0	0	36	36
Humidi-MiZer Coil	150	26	41	51	32
48/50A 030,035					
Barometric Relief	300	2	185	111	1
Non Mod. Power Exhaust	450	3	278	167	2
Mod. Power Exhaust	500	4	309	186	2
Electric Heat	110	59	10	6	35
Al/Cu Cond coil	150	1	1	74	74
Cu/Cu Cond Coil	370	3	3	182	182
Hail Guards	73	0	0	36	36
Humidi-MiZer Coil	150	26	41	51	32
48/50A 040					
Barometric Relief	300	2	211	86	1
Non Mod. Power Exhaust	450	4	317	128	1
Mod. Power Exhaust	500	4	352	143	2
Electric Heat	110	67	12	5	27
Al/Cu Cond Coil	187	2	2	92	92
Cu/Cu Cond Coil	512	5	5	252	252
Hail Guards	146	0	0	73	73
Humidi-MiZer Coil	180	32	50	60	38
48/50A 050			•		
Barometric Relief	300	2	211	86	1
Non Mod. Power Exhaust	450	4	317	128	1
Mod. Power Exhaust	500	4	352	143	2
Electric Heat	110	67	12	5	27
Al/Cu Cond Coil	317	34	34	124	124
Cu/Cu Cond Coil	751	80	80	295	295
Hail Guards	146	0	0	73	73
Humidi-MiZer Coil	180	32	50	60	38
48/50A 060			•		
Barometric Relief	450	4	319	126	1
Non Mod. Power Exhaust	675	6	479	189	2
Mod. Power Exhaust	725	6	514	203	2
Electric Heat	165	101	17	7	40
Al/Cu Cond Coil	26	0	0	13	13
Cu/Cu Cond Coil	677	72	72	266	266
Hail Guards	219	0	0	109	109
Humidi-MiZer Coil	195	37	58	62	39

Options and accessories

	FACTO	RY-INST	ALLED O	PTIONS	FIELD-	INSTALLI	ED ACCES	SORIES
ITEM	A2,A6	A3,A7	A4,A8	A5,A9	A2,A6	A3,A7	A4,A8	A5,A9
GAS HEAT OPTIONS (48A Only)								
Low Gas Heat - Aluminized	Х	Х	Х	Х				
High Gas Heat - Aluminized	Х	Х	Х	Х				
Low Gas Heat - Stainless Steel	Х	X	Х	Х				
High Gas Heat - Stainless Steel	Х	Х	Х	Х				
Staged Gas Heat - Low - Stainless Steel	Х	X	Х	X				
Staged Gas Heat - High - Stainless Steel	X	X	Х	Х				
LP Conversion Kit					Х	Х	Х	Х
ELECTRIC HEAT (50A Only)								
Low Electric Heat	Х	Х	Х	Х				
High Electric Heat	Х	Х	Х	Х				
INDOOR AIR QUALITY								
2-inch Filters	Х	Х	Х	X				
4-inch Filters	Х	Х	Х	Х				
Double Wall in the Airstream	X	X	X	Х				
ECONOMIZER								
Manual Outside Air Self-Closing Damper	Х	Х	Х	X				
Modulating Ultra Low-Leak Economizer	X	Х	Х	Х				
Outdoor or Return Humidity Sensor (Enthalpy)					Х	Х	Х	Х
EXHAUST AIR CONTROL								
Barometric Relief	X	Х			Х	X	X	X
Non-Modulating Power Exhaust	Х				Х	Х	Х	Х
Staged Power Exhaust	Х	Х			Х	X	Х	Χ
Building Pressure Control Board (ECB2)					Х		Х	
Building Pressure Control Sensor					X	Х	Х	Х
CONDENSER AND EVAPORATOR COIL OPTIONS								
Al/Cu Condenser and Evaporator	X	X	X	X				
Al/Cu Pre-Coat Condenser and Al/Cu Evaporator	Х	Х	X	X				
Al/Cu E-Coat Condenser and Al/Cu Evaporator	Х	Х	Х	Х				
Al/Cu E-Coat Condenser and Al/Cu E-Coat Evaporator	Х	Х	Х	Х				
Cu/Cu Condenser and Al/Cu Evaporator	Х	X	X	X				
MCHX Condenser and Al/Cu Evaporator	X	Х	X	X				
E-Coat MCHX Condenser and Al/Cu Evaporator	Х	Х	Х	Х				
E-Coat MCHX Condenser and Al/Cu E-Coat Evaporator	X	Х	X	X				
Hot Gas Bypass - Circuit A (includes ECB2)	Х	Х	Х	Х	.,	.,	.,	.,
Condenser Coil Hail Guard Assembly					X	Х	Х	Х
Galvanized Drain Pan	X	X	X	X				
Stainless Drain Pan	Х	X	X	X				
Low Sound Condenser Fan	Х	Х	X	X				
Humidi-MiZer® Adaptive Dehumidification System	X	Х	Х	Х				
CONTROLS		.,			.,			
Controls Expansion Module (CEM)	X	Х	X	X	Х	Х	Х	Х
BACnet Communications	Х	Х	Х	Х	.,			
System Pilot™ Interface					Х	X	X	Х
Touch Pilot™ Interface					Х	X	X	X
Navigator™ Display		V/		V/	X	X	X	X
Return Air CO ₂ Sensor	Х	Х	Х	Х	X	X	X	X
CO ₂ Space Sensor					X	X	X	X
CO ₂ Aspirator Box Return Air Smoke Detector		· · ·	V		Х	Х	Х	Х
	X	X	X	X	V	V		V
Filter Switch	Х	Х	Х	Х	X	X	X	X
Fan Status Switch (requires CEM)					X	X	X	X
T55 Thermostat	_			-	X	X	X	X
T56 Thermostat				1	X	X	X	X
T59 Sensor					X	X	X	X
Space Temperature Sensor with CO ₂ Override					X	X	X	X
Space Temperature Sensor Setpoint and CO ₂ Override					X	Х	X	Х
Thermostats (Temp System)					X		X	
Thermostats (Debonair®)					X		X	
Thermostats (Slimline)					X		X	
Thermostats (Corporate)					X	.,	X	.,
Modbus Carrier Translator					X	X	X	X
LonWorks Carrier Translator		<u> </u>	<u> </u>		Х	Х	Х	Х

Options and accessories (cont)

ITEM	FACTO	RY-INST	ALLED O	PTIONS	FIELD-	INSTALLE	ED ACCES	SORIES
II CIVI	A2,A6	A3,A7	A4,A8	A5,A9	A2,A6	A3,A7	A4,A8	A5,A9
POWER CIRCUIT								
GFI Convenience Outlet (powered)	Х	Х	Х	Х				
GFI Convenience Outlet (not powered)	Х	Х	Х	Х				
Power Terminal Block	Х	Х	Х	Х				
Non-Fused Disconnect	Х	Х	Х	Х				
INDOOR MOTOR OPTIONS								
Low HP	Х	Х	Х	Х				
Medium HP	Х	Х	Х	Х				
High HP	Х	Х	Х	Х				
Bypass on Indoor Fan Motor VFD		Х		Х				
PACKAGING								
Domestic	Х	Х	Х	Х				
Export	Х	Х	Х	Х				
MISCELLANEOUS OPTIONS								
Variable Capacity Compressor	Х	Х	Х	Х				
14-inch Roof Curb					Х	Х	Х	Х
Full-perimeter Roof Curb					Х	Х	Х	Х
Security Grille (60 Ton Unit Only)	Х	Х	Х	Х				
Low Outdoor Sound	Х	Х	Х	Х				
Low Compressor Sound					Х	Х	Х	Х
Low Ambient Control	Х	Х	Х	Х				

Base unit dimensions 48A2,A3,A6,A7020-035

Base unit dimensions 48A2,A3,A6,A7040,050

Base unit dimensions 48A2,A3,A6,A7060 MCHX

Base unit dimensions 48A2,A3,A6,A7060 RTPF

Base unit dimensions 48A4,A5,A8,A9020-035

Base unit dimensions 48A4,A5,A8,A9040,050

Base unit dimensions 48A4,A5,A8,A9060 MCHX

Base unit dimensions 48A4,A5,A8,A9060 RTPF

Base unit dimensions 48A 060

CENTER OF GRAVITY AND WEIGHTS — 48A060

1. WEIGHTS INCLUDE ECONOMIZER OR OUTDOOR AIR DAMPER. 2. 💠 CENTER OF GRAVITY. 3. FOR MULTIPLE UNIT APPLICATIONS SEE LITERATURE.

7066 (3205) 7306 (3314) 7106 (3223) 7356 (3337) 6826 (3096) 7041 (3194)

48A2D/A3D/A6D/A7D 48A2E/A3E/A6E/A7E 48A4D/A5D/A8D/A9D 48A4E/A5E/A8E/A9E

BASE UNIT WEIGHTS (SEE NOTE 7) LB (Kg)

4. UNIT CLEARANCES:
TOP OF UNITS, NO OVERHANG
TOP OF UNITS, NO OVERHANG
TOP OF UNITS, NO OVERHANG
CUTUBE CONDENSER COIL: 4-0" [1219]
HEAT SIDE: 4-0" [1219]
FILTER ACCESS SIDE: 16-0" [4572]
FILTER ACCESS SIDE: 16-0" [4572]
FILTER ADCESS SIDE: 6-0" [1829] [FOR REMOVAL OF EVAPORATOR COIL.)
ECONOMIZER SIDE: 6-0" [1829] [FOR REMOVAL OF MCHX
CONDENSER COILS)

50A4/A5/A8/A9 50A2/A3/A6/A7

5. FOR SMALLER SERVICE AND OPERATIONAL
 CLEARANCES, CONTACT CARRIER APPLICATION
 ENGINEERING DEPARTMENT.
 6. BOTTOM DUCTS DESIGNED TO BE ATTACHED TO
 ACCESSORY ROOF CURB, IF UNIT IS MOUNTED
 ON DUNNAGE, IT IS RECOMMEINDED THE DUCTS
 MUST BE SUPPORTED BY CROSS BRACES AS
 DONE ON ACCESSORY ROOF CURB
 7. BASE UNIT WEIGHTS IN INCLUDE OUTDOOR AIR HOODS,
 AND FILTERS (INDOOR FAN MOTOR IS NOT INCLUDED)
 ADD INDOOR MOTOR, FIOPS AND ACCESSORIES FOR
 TOTAL OPERATING WEIGHTS.
 8. VAV MOTOR WEIGHTS INCLUDE INDOOR MOTOR, YED,
 7. BOIMENSIONS IN I JARE IN MILLIMETERS, KILOGRAMS,
 OR KILOWATTS.

 10 PRINCIPLE AND ASSOCIATED WIRING.
 9. DIMENSIONS IN I JARE IN MILLIMETERS, KILOGRAMS,
 10 PROPERIOR OF AND ASSOCIATED WIRING.
 10 PROPERIOR OF AND ASSOCIATED WIRING.

RETURN AND SUPPLY DUCTWORK CONNECTION IS
RECOMMENDED FOR COVERING ALL THREE RETURN AND
ALL THREE SUPPLY OPENINGS. THE ENTIRE AREA
AROUND THE DUCT OPENINGS IS AVAILABLE FOR A
1.5" DUCT FLANGE ATTACHMENT.

OPTIONS / ACCESSORIES (SEE NOTE 7) 450 (204) 675 (306) 725 (329) 26 (12) 677 (307) 165 (75) NON MOD. POWER EXHAUST CU TU/CU FIN COND COIL CU TU/AL FIN COND COIL MOD. POWER EXHAUST BAROMETRIC RELIEF **ELECTRIC HEAT**

	OPERATING WEIGHT	CENTER OF GRAVITY	= GRAVITY	SO	NER WE	CORNER WEIGHT (LB)	.B)
-1	08	A P	B ET/IN	+	c	ď	_
1	2		T 1/11N		7	2	+
48A2/A3/A6/A7 (D,M,S) 060	8386	14 - 9 5/8"	3 - 5 1/4"	1909	1693	2243	2541
48A2/A3/A6/A7 (E,N,T) 060	8626	14 - 2 3/8"	3 - 3 1/4"	2159	1745	2100	2622
48A4/A/A6/A7 (D,M,S) 060	8426	14 - 1 5/8"	3 - 9 1/4"	1763	2072	2259	2333
48A4/A/A6/A7 (E,N,T) 060	9298	13 - 7 1/4"	3 - 7 1/4"	2000	2126	2134	2417
50A2/A3/A6/A7 060	8311	15 - 5"	3 - 7 3/8"	1710	1663	2433	2504
	8526	14 - 8 1/2"	3 - 11 1/8"	1613	2078	2484	2351
	OPERATING	CENTER OF GRAVITY	F GRAVITY	8	RNER V	CORNER WEIGHT (kg)	kg)
	N E G E	A	В				i
	KG	MM	MM	1	2	3	4
48A2/A3/A6/A7 (D,M,S) 060	3804	4511	1049	866	768	1017	1153
48A2/A3/A6/A7 (E,N,T) 060	3913	4329	986	979	792	953	1189
48A4/A/A6/A7 (D,M,S) 060	3822	4309	1149	800	940	1024	1058
48A4/A/A6/A7 (E,N,T) 060	3936	4147	1097	907	964	896	1096
50A2/A3/A6/A7 060	3770	4698	1102	776	755	1104	1136
50A4/A/A6/A7 060	3868	4484	1196	732	942	1127	1066

		CV MOTO LB (CV MOTOR WEIGHTS LB (Kg)	VAV MOTOR WEIGH [.] LB (Kg) (see note 8)	VAV MOTOR WEIGHTS LB (Kg) (SEE NOTE 8)
		HIGH EFFC'Y IFM	PREMIUM EFFC'Y IFM	HIGH EFFC'Y IFM	PREMIUM EFFC'Y IFM
25 HP	230/460	240 (109)	309 (140)	375 (170)	444 (201)
(18.65 kW)	575	240 (109)	319 (145)	375 (170)	454 (206)
30 HP	230/460	283 (128)	355 (161)	418 (190)	490 (222)
(22.38 kW)	275	283 (128)	359 (163)	418 (190)	494 (224)
40 HP	230/460	372 (169)	415 (188)	507 (230)	550 (249)
(29.84 kW)	575	372 (169)	410 (186)	507 (230)	545 (247)

Base unit dimensions 50A2,A3,A6,A7020-035

Base unit dimensions 50A2,A3,A6,A7040,050

Base unit dimensions 50A2,A3,A6,A7060 MCHX

Base unit dimensions 50A2,A3,A6,A7060 RTPF

Base unit dimensions 50A4,A5,A8,A9020,035

Base unit dimensions 50A4,A5,A8,A9040, 050

Base unit dimensions 50A4,A5,A8,A9060 MCHX

Base unit dimensions 50A4,A5,A8,A9060 RTPF

Base unit dimensions 50A 060

1127 1104

942 755

732

1102 1196 ৹∫폴

> 4698 4484

3770 3868

UNIT SIZE 50A2/A3/A6/A7 060 50A4/A5/A8/A9 060

CENTER OF GRAVITY AND WEIGHTS — 50A060

- α α

Weights include economizer or outdoor air damper.

• Genter of gravity.

Unit clearances:

Top of units: no overhang
Condenser coll: 4 - 0" [1219]
Heat side: 4" - 0" [1219]
Filter access side: 10 - 0" [3048] (for removal of evaporator coil)

Peraptication of the present of the presence o 9 ۲.

œ.

EE NOTE 5)	090	6826 (3096)	7041 (3194)	(SEE NOTE 5)	450 (204)	675 (306)	725 (329)
BASE UNIT WEIGHTS (SEE NOTE 5) LB (Kg)		50A2/A3/A6/A7	50A4/A5/A8/A9	PTIONS / ACCESSORIES (SEE NOTE 5)	BAROMETRIC RELIEF	ON MOD. POWER EXHAUST	MOD. POWER EXHAUST

12.10	OPERATING	CENTER OF GRAVITY	GRAVITY	CORN	CORNER WEIGHT (LB)	GHT (LE	3)
UNII SIZE	WEIGH	¥	8				
	F18	FT/IN	FT/IN	1	2	3	4
50A2/A3/A6/A7 060	8311	15 - 5"	3 - 7 3/8"	1710	1663	2433	2504
50A4/A5/A8/A9 060	8526	14 - 8 1/2"	14 - 8 1/2" 3 - 11 1/8"	1613	2078	2484	2351
	OPERATING		CENTER OF GRAVITY	COR	CORNER WEIGHT (kg)	IGHT (ka)
UNII SIZE	WE IGH	٧	•				,

Operating weight includes largest indoor fan motor, microchannel heat exchanger, modulating power exhaust (variable air volume units), and variable frequency drive (variable air volume units).

677 (307)

CU TU/CU FIN COND COIL CU TU/AL FIN COND COIL ELECTRIC HEAT

165 (75) 26 (12)

40 HP (29.84 kW)

25 HP (18.65 kW) 30 HP (22.38 kW)

Accessory dimensions

Accessory dimensions (cont)

Accessory dimensions (cont)

NOTES:

- 1. Unless otherwise specified, all dimensions are to outside of part.
 2. Dimensions are in inches.
 3. Unit sizes 020-050 have 2 fan assemblies. Unit size 060 has 3 fan assemblies.
 4. For 48/50A4,A5,A8,A9 units, the accessory power exhaust or barometric relief must be mounted in the field-supplied return ductwork.

HIGH CAPACITY POWER EXHAUST ACCESSORY

NOTE: Dimensions are in inches.

Selection procedure (with example)

I Determine cooling and heat requirements at design conditions.

Given:
Type Application VAV
Required Cooling Capacity (TC)480,000 Btuh
Sensible Heat Capacity (SHC)338,000 Btuh
Required Heating Capacity300,000 Btuh
Design Outdoor Air db Temperature 95°F
Design Outdoor Air wb Temperature 67°F
Climate Type (as per ASHRAE 90.1 Table D) Dry
Indoor-Air Temperature 80°F edb, 67°F ewb
Evaporator Air Quantity
External Static Pressure
Electrical Characteristics (V-Ph-Hz)460-3-60
Unit Type Gas Heating Vertical Discharge

II Select the unit based on required cooling capacity.

Entering Cooling Capacity table at air condenser entering temperature of 95°F. Unit 48A3D040 at 16,000 cfm and 67°F ewb will provide the total capacity of 485,000 Btuh and a SHC of 380,000 Btuh. Calculate SHC correction, if required, using notes under cooling capacity table.

III Select heat capacity of unit to provide design condition requirements.

In the Gas Heating Capacities and Efficiencies table, note that unit 48A3D040 will provide 324,000 Btuh with an input of 400,000 Btuh.

IV Select supply fan to provide design condition requirements.

Tabulated fan performance includes 2-in. throwaway filters, wet evaporator coil, economizer, cabinet losses, and roof curb. Find fan rpm and bhp at 1.4 in. wg and 16,000 cfm on 48A3D040 Fan Performance table for vertical applications. Find that the fan speed is 1063 rpm and the power required is 19.06 bhp. Refer to the Motor Limitations table which shows the 20 hp motor is required.

V Select unit that corresponds to the power source available.

The model number nomenclature shows that a 460-3-60 unit is available.

VI Select the options and accessories.

As per the ASHRAE 90.1 requirements, this unit is located in a dry climate and therefore is required to have an economizer. As this is a dry climate, either differential dry bulb changeover, outdoor air changeover or differential enthalpy should be used. Outside air enthalpy cannot be used.

Select the options and model number using the options summary and model number charts in the price pages.

Note, as an alternative, a computerized selection program, *RTU*Builder, is available for use in selecting and optimizing the unit for your application.

Performance data

Humidi-MiZer® performance data

Carrier's Humidi-MiZer adaptive dehumidification system is an all-inclusive factory-installed option that can be ordered with WeatherMaker $^{\rm R}$ 48/50A rooftop units.

This system expands the envelope of operation of the A Series rooftop to provide unprecedented flexibility that will meet year-round comfort conditions.

The Humidi-MiZer adaptive dehumidification system has the industry's only dual dehumidification mode setting. The WeatherMaker rooftop, coupled with the Humidi-MiZer adaptive dehumidification system, is capable of modulating between normal design cooling mode, subcooling mode, and hot gas reheat mode.

Normal design cooling mode will operate under the normal sequence of operation. Subcooling mode will operate to satisfy part load type conditions. Hot Gas Reheat mode will operate when outdoor temperatures diminish and the need for latent capacity is required for sole humidity control. Hot Gas Reheat mode will provide neutral air for maximum dehumidification operation.

The WeatherMaker A Series next generation version of Carrier's Humidi-MiZer system includes refrigerant modulating valves that provide variable flow bypass around the condenser. This innovative feature ensures exact control of the supply-air temperature as the unit lowers the evaporator temperature to increase latent capacity.

Additionally, when the space requires dehumidification only, the Humidi-MiZer system can increase hot discharge gas bypass to the Humidi-MiZer coil in order to heat the air to the exact neutral state required—no overcooling or overheating with latent capacity similar to that provided in the full subcooling mode.

COOLING CAPACITIES

48/50	A020 (20	TONS)	— ST	ANDA	RD MC	DE															
Tei	mp (F)								Eva	aporat	or Air	Quanti	ty — C	Cfm							
Air E	Entering			4,000					5,000					6,000					7,000		
	denser Edb)									Evapo	rator A	ir — E	wb (F)							
	,	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	268	258	236	214	195	284	272	250	228	208	294	282	260	239	224	302	289	268	246	232
	SHC	109	119	141	161	179	113	128	155	180	201	116	136	168	197	224	121	144	180	213	232
	kW	14.1	14.0	13.8	13.7	13.6	14.3	14.2	14.0	13.8	13.7	14.5	14.3	14.1	13.9	13.8	14.6	14.4	14.1	13.9	13.8
	BF	0.00	0.00	0.09	0.15	0.14	0.00	0.00	0.19	0.16	0.17	0.00	0.27	0.18	0.17	0.24	0.00	0.23	0.19	0.17	0.28
85	TC	261	250	228	207	188	276	264	242	221	200	286	273	252	230	218	293	280	259	238	226
	SHC	106	115	138	158	176	110	125	152	176	194	112	133	164	193	218	118	141	176	210	226
	kW	16.0	16.0	15.8	15.7	15.5	16.2	16.1	15.9	15.8	15.6	16.4	16.2	16.0	15.8	15.8	16.5	16.3	16.1	15.9	15.8
	BF	0.02	0.00	0.21	0.15	0.13	0.00	0.14	0.18	0.15	0.17	0.00	0.24	0.18	0.16	0.26	0.15	0.22	0.18	0.17	0.30
95	TC	253	242	220	200	181	267	254	233	212	198	277	264	242	221	207	283	271	249	228	218
	SHC	102	112	134	154	172	106	122	148	172	198	109	130	161	190	207	115	137	173	206	218
	kW	18.2	18.2	18.0	17.9	17.9	18.4	18.3	18.2	18.0	17.9	18.5	18.4	18.2	18.1	18.0	18.6	18.5	18.3	18.1	18.0
	BF	0.00	0.00	0.18	0.14	0.13	0.00	0.12	0.17	0.15	0.20	0.00	0.22	0.17	0.16	0.25	0.13	0.21	0.18	0.17	0.32
105	TC	244	232	211	191	174	257	244	223	203	187	266	253	232	211	200	272	260	238	218	211
	SHC	97	109	130	150	168	101	118	144	168	187	106	126	156	185	200	112	134	168	201	211
	kW	20.7	20.6	20.6	20.7	20.8	20.8	20.8	20.6	20.6	20.8	20.9	20.8	20.7	20.6	20.7	21.0	20.9	20.7	20.6	20.6
	BF	0.00	0.00	0.17	0.13	0.13	0.00	0.25	0.16	0.14	0.19	0.00	0.20	0.16	0.15	0.28	0.28	0.20	0.17	0.17	0.35
115	TC	234	222	201	182	166	246	233	212	193	180	254	241	220	201	192	260	247	227	207	202
	SHC	93	105	126	146	162	97	114	139	164	180	103	122	152	180	192	108	129	164	195	202
	kW	23.4	23.4	23.6	23.9	24.3	23.5	23.4	23.5	23.7	24.0	23.6	23.5	23.5	23.7	23.8	23.7	23.6	23.5	23.7	23.7
	BF	0.00	0.00	0.15	0.13	0.15	0.00	0.21	0.15	0.14	0.22	0.13	0.19	0.16	0.15	0.31	0.24	0.19	0.17	0.18	0.38
120	TC	228	216	196	178	161	240	227	207	188	175	247	235	215	195	188	253	241	220	201	198
	SHC	91	103	124	143	159	95	112	137	161	175	101	120	150	178	188	106	127	162	192	198
	kW	24.9	25.1	25.4	25.7	26.3	24.9	25.0	25.2	25.5	25.8	25.0	25.0	25.1	25.4	25.6	25.1	25.0	25.1	25.3	25.4
	BF	0.00	0.12	0.14	0.12	0.15	0.00	0.20	0.15	0.14	0.24	0.29	0.18	0.16	0.15	0.32	0.23	0.18	0.17	0.18	0.39

48/50	A020 (20	TONS)	— ST	ANDA	RD M	ODE (c	ont)									
Te	mp (F)						Evapo	rator A	Air Qua	antity -	— Cfm					
	Entering			8,000					9,000					10,000		
Cor	idenser			-			Eva	porato	r Air -	– Ewb	(F)					
(Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	308	295	274	252	243	313	299	278	257	251	317	303	282	262	259
	SHC	126	151	191	228	243	130	158	202	242	251	135	164	212	251	259
	kW	14.7	14.5	14.2	14.0	13.9	14.8	14.5	14.3	14.0	14.0	14.8	14.6	14.3	14.1	14.1
	BF	0.34	0.22	0.19	0.19	0.34	0.28	0.22	0.20	0.21	0.40	0.26	0.23	0.21	0.25	0.44
85	TC	298	286	265	243	236	302	290	269	248	244	306	294	273	253	251
	SHC	123	148	188	224	236	127	155	199	236	244	131	161	209	247	251
	kW	16.6	16.4	16.1	16.0	15.9	16.6	16.4	16.2	16.0	16.0	16.7	16.5	16.2	16.1	16.0
	BF	0.29	0.21	0.19	0.19	0.36	0.26	0.22	0.20	0.22	0.41	0.25	0.22	0.21	0.25	0.46
95	TC	288	276	255	234	228	293	280	259	239	236	296	284	262	245	243
	SHC	120	145	184	219	228	124	151	195	230	236	129	158	205	239	243
	kW	18.7	18.5	18.3	18.2	18.1	18.7	18.6	18.4	18.2	18.2	18.8	18.6	18.4	18.2	18.3
	BF	0.27	0.21	0.18	0.19	0.38	0.25	0.21	0.19	0.23	0.43	0.24	0.22	0.20	0.28	0.47
105	TC	277	265	243	223	220	281	269	248	229	227	284	272	251	235	234
	SHC	116	141	180	213	220	121	148	191	223	227	125	154	201	232	234
	kW	21.1	20.9	20.8	20.6	20.6	21.1	21.0	20.8	20.6	20.6	21.2	21.0	20.8	20.7	20.7
	BF	0.24	0.20	0.18	0.21	0.41	0.23	0.20	0.19	0.25	0.45	0.23	0.21	0.20	0.29	0.49
115	TC	264	252	231	213	211	268	256	235	219	218	271	258	238	225	224
	SHC	113	137	175	206	211	117	144	186	216	218	121	150	197	221	224
	kW	23.7	23.6	23.5	23.6	23.6	23.8	23.7	23.5	23.5	23.6	23.8	23.7	23.5	23.5	23.5
	BF	0.22	0.19	0.18	0.22	0.43	0.22	0.20	0.19	0.26	0.48	0.22	0.21	0.20	0.32	0.52
120	TC	257	245	225	207	206	261	248	229	215	213	263	251	232	219	219
	SHC	110	134	173	202	206	115	141	184	215	213	119	148	194	219	219
	kW	25.1	25.1	25.1	25.2	25.3	25.2	25.1	25.0	25.2	25.2	25.3	25.1	25.0	25.1	25.1
	BF	0.22	0.19	0.18	0.23	0.44	0.22	0.20	0.19	0.29	0.49	0.22	0.21	0.20	0.32	0.53

48/50A	020 (20 T	ONS)	— SUI	BCOOL	LING N	IODE															
Ten	np (F)									porato	or Air (Quanti	ty – S0				1				
Air E	ntering			4,000					5,000					6,000					7,000		
	denser									Evap	orator	Air Ev	vb (F)								
(=	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	265	249	223	204	184	285	269	239	220	199	293	277	251	232	212	303	286	260	236	222
75	SHC	96	109	126	147	166	107	121	140	168	191	109	126	153	186	209	115	134	166	197	222
	kW	14.0	13.8	13.6	13.5	13.4	14.1	14.0	13.7	13.6	13.5	14.2	14.0	13.8	13.7	13.6	14.3	14.1	13.9	13.7	13.6
	BF	0.00	0.02	0.09	0.10	0.10	0.00	0.08	0.11	0.12	0.12	0.03	0.11	0.13	0.14	0.19	0.08	0.14	0.15	0.15	0.25
	TC	249	234	201	193	173	265	250	219	207	187	277	262	240	214	199	286	270	248	226	212
85	SHC	83	96	106	139	157	91	105	123	157	179	97	114	145	170	197	102	122	157	191	212
	kW	15.5	15.4	15.1	15.1	15.0	15.7	15.5	15.2	15.2	15.1	15.8	15.6	15.4	15.2	15.1	15.9	15.7	15.5	15.3	15.3
	BF	0.00	0.03	0.09	0.10	0.10	0.01	0.09	0.12	0.12	0.14	0.05	0.12	0.13	0.14	0.20	0.10	0.14	0.15	0.15	0.26
	TC	235	222	201	177	162	251	237	214	192	177	262	247	223	204	188	270	255	231	210	199
95	SHC	72	87	108	125	148	80	95	121	145	170	86	103	132	163	188	90	110	144	179	199
	kW	17.3	17.2	17.0	16.8	16.7	17.5	17.3	17.1	16.9	16.9	17.6	17.4	17.2	17.0	17.0	17.7	17.5	17.3	17.1	17.0
	BF	0.00	0.05	0.10	0.10	0.10	0.02	0.10	0.12	0.12	0.16	0.07	0.12	0.13	0.14	0.20	0.10	0.14	0.15	0.16	0.28
	TC	221	207	186	167	150	226	220	199	176	163	246	231	209	189	176	214	238	215	196	181
105	SHC	61	75	97	118	138	58	82	109	132	158	72	90	121	151	176	38	97	131	168	181
	kW BF	19.3	19.2	19.0	18.9	18.8	19.3	19.3	19.2	18.9	18.9	19.6	19.4	19.2	19.1	19.0	19.0	19.5	19.3	19.1	19.0
		0.00	0.07	0.10	0.10	0.11	0.03	0.10	0.12	0.12	0.17	0.08	0.12	0.14	0.14	0.22	0.11	0.14	0.15	0.16	0.30
	TC SHC	205	191	170	150	136	219	205	184	165	151	199	215	192	173	157	222	200	198	178	168
115	kW	50	63	84	104	126	55	71	97	124	147	31	78	108	140	157	50	63	119	153	168
	BF	21.6 0.00	21.5 0.08	21.3	21.1 0.10	21.1 0.11	21.7 0.04	21.6 0.11	21.4 0.12	21.3 0.12	21.2 0.18	21.4 0.09	21.7 0.13	21.5 0.14	21.4 0.14	21.2 0.24	21.6 0.12	21.4 0.14	21.5 0.15	21.4 0.16	21.3 0.32
	٠.	0.00	0.00	0.10	0.10	0.11	0.04	0.11	0.12	0.12	0.10	0.03	0.13	0.14	0.14	0.24	0.12	0.14	0.15	0.10	0.32

48/50A	020 (20 T	ONS)	— SUI	3COOI	ING N	ODE	(cont)									
Ten	np (F)						Evapo	rator A	ir Qua	ntity -	- SCFN	Л				
Air E	ntering			8,000	•	•		•	9,000				•	10,000		
Con	denser						E۱	/apora	tor Aiı	Ewb	(F)					
(E	Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	317	299	267	242	235	317	300	273	248	243	322	305	280	258	251
75	SHC	126	147	177	213	235	126	149	188	227	243	130	156	202	246	251
	kW	14.4	14.3	13.9	13.7	13.7	14.4	14.2	14.0	13.8	13.8	14.4	14.3	14.1	13.9	13.8
	BF	0.12	0.16	0.17	0.17	0.32	0.14	0.18	0.18	0.19	0.37	0.17	0.19	0.20	0.21	0.42
	TC	294	277	252	232	222	299	284	260	238	231	307	290	264	238	234
85	SHC	108	129	166	205	222	112	138	180	220	231	120	146	190	225	234
	kW	15.9	15.8	15.5	15.4	15.3	16.0	15.8	15.6	15.5	15.4	16.1	15.9	15.7	15.4	15.4
	BF	0.13	0.16	0.17	0.17	0.33	0.15	0.18	0.18	0.20	0.38	0.17	0.19	0.20	0.24	0.43
	TC	277	262	236	217	209	282	267	241	221	216	287	270	246	226	223
95	SHC	95	118	153	194	209	99	124	165	206	216	104	130	176	214	223
	kW	17.7	17.6	17.3	17.2	17.1	17.8	17.6	17.4	17.2	17.2	17.8	17.7	17.4	17.3	17.2
	BF	0.13	0.16	0.17	0.18	0.34	0.15	0.18	0.18	0.20	0.40	0.17	0.19	0.20	0.25	0.44
	TC	248	224	221	198	195	230	240	225	186	199	256	217	229	213	207
105	SHC	70	84	142	178	195	51	101	153	171	199	77	83	163	203	207
	kW	19.6	19.3	19.3	19.1	19.2	19.3	19.5	19.4	18.9	19.2	19.7	19.2	19.4	19.3	19.2
	BF	0.14	0.16	0.17	0.18	0.36	0.16	0.18	0.18	0.22	0.41	0.18	0.19	0.20	0.26	0.45
	TC	186	182	204	185	178	237	185	208	189	186	205	187	195	195	192
115	SHC	14	46	130	166	178	63	51	140	175	186	31	56	133	187	192
_	kW	21.1	21.1	21.6	21.5	21.4	21.7	21.2	21.6	21.5	21.5	21.3	21.2	21.4	21.5	21.5
	BF	0.14	0.16	0.17	0.20	0.38	0.16	0.18	0.18	0.24	0.43	0.18	0.19	0.19	0.27	0.47

COOLING CAPACITIES (cont)

50A020	(20 TONS) -	— нот G	AS REH	EAT MOI	DE										
							Air Enter	ing Evap	orator –	- Ewb (F)					
	emp (F)			7	5 Dry Bu	lb					7	5 Dry Bu	lb		
	Entering ndenser			62.5 We	et Bulb (5	0% RH)					65.3 We	t Bulb (6	0% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		4,000	5,000	6,000	7,000	8,000	9,000	10,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000
	TC	78	87	94	99	104	107	109	83	93	101	106	111	114	117
40	SHC kW	0	8	16	25	33	41	49	-17	-11	-5	1	6	12	18
	BF	15.8 0.07	15.1 0.09	14.8 0.11	14.5 0.13	14.4 0.14	14.3 0.15	14.2 0.17	16.6 0.05	15.8 0.08	15.4 0.10	15.1 0.12	14.9 0.14	14.8 0.15	14.7 0.17
	TC	72	81	87	92	95	98	100	76	86	92	97	101	104	107
50	SHC	-4	4	12	21	29	36	44	-21	-15	-10	-4	2	7	13
	kW	16.4	15.7	15.3	15.0	14.9	14.8	14.7	17.1	16.3	15.9	15.6	15.4	15.3	15.2
	BF	0.07	0.09	0.11	0.13	0.14	0.15	0.17	0.06	0.08	0.10	0.12	0.14	0.15	0.17
	TC SHC	66	75	81	85	88	91	93	71	80	87	91	94	97	99
60	kW	8 17.0	1 16.2	9 15.8	17 15.5	25 15.4	33 15.3	40 15.2	–24 17.7	-19 16.9	-13 16.4	-7 16.1	-2 15.9	3 15.8	9 15.7
	BF	0.07	0.09	0.11	0.13	0.14	0.15	0.17	0.06	0.09	0.11	0.12	0.14	0.15	0.17
	TC	61	69	75	79	82	85	86	65	74	80	85	88	90	92
70	SHC	-11	-3	5	14	22	29	37	-28	-22	-17	-11	- 5	0	6
	kW BF	17.6	16.8	16.4	16.1	16.0	15.8 0.15	15.8	18.4	17.5	17.0	16.7	16.5	16.3	16.2
	TC	0.07 58	0.09 67	0.11 72	0.13 76	0.14 79	81	0.17 83	0.06 63	0.09 71	0.11 77	0.12 81	0.14 84	0.15 87	0.17 89
75	SHC	–13	-4	4	12	79 20	28	35	-29	-24	-18	–13	-7	-2	4
75	kW	17.9	17.2	16.7	16.5	16.3	16.2	16.1	18.7	17.8	17.3	17.0	16.8	16.7	16.6
	BF	0.07	0.09	0.11	0.13	0.14	0.15	0.17	0.06	0.09	0.11	0.12	0.14	0.15	0.17
	TC	56	64	70	73	76	78	80	60	69	74	78	81	84	85
80	SHC	-14	-6	2	10	18	26	34	-31	-25	-20	-14	-9	-3	2
	kW BF	18.3	17.5	17.1	16.8	16.6	16.5	16.4	19.1	18.2	17.6	17.3	17.1	17.0	16.9
	DF	0.07	0.09	0.11	0.13	0.14	0.15	0.17	0.07	0.09	0.11	0.12	0.14	0.15	0.17

50A020	0 (20 TONS) -	— НОТ С	AS REH	EAT MOI	DE (cont))									
							Air Ente	ing Evap	orator –	- Ewb (F))				
	emp (F)			7	5 Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			68.0 We	et Bulb (7	'0% RH)					70.5 We	et Bulb (8	80% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		4,000	5,000	6,000	7,000	8,000	9,000	10,000	4,000	5,000	6,000	7,000	8,000	9,000	10,000
	TC	87	99	107	113	117	121	123	92	104	112	119	123	127	130
40	SHC	-34	-30	-27	-23	-20	-16	-13	-50	-49	-47	-46	-44	-43	-41
	kW	17.4	16.5	16.0	15.6	15.4	15.3	15.2	18.2	17.1	16.5	16.2	15.9	15.8	15.6
	BF	0.02	0.04	0.08	0.11	0.12	0.14	0.16	0.00	0.00	0.03	0.05	0.09	0.11	0.13
	TC	81	91	98	104	108	111	114	85	96	104	110	114	117	120
50	SHC	-38	-34	-31	-28	-24	-21	-17	-54	-53	-51	-50	-49	-47	-46
	kW BF	17.9	17.0	16.4	16.1	15.9	15.8	15.6	18.7	17.6	17.0	16.6	16.4	16.2	16.1
		0.02	0.06	0.09	0.11	0.13	0.14	0.16	0.00	0.00	0.03	0.06	0.09	0.12	0.14
	TC SHC	75	85	92	96	100	103	105	79	90	96	101	105	108	111
60	kW	-41	-38	-35	-31	-28	-25	-22	-57	-56	-55 17.5	-54	-53	-51	-50
	BF	18.5 0.02	17.5 0.06	17.0 0.09	16.6 0.11	16.4 0.13	16.3 0.15	16.2 0.16	19.3 0.00	18.2 0.01	17.5 0.03	17.2 0.07	16.9 0.10	16.7 0.12	16.6 0.14
	TC	70	79	85	90	93	95	97	74	83	90	95	98	101	103
	SHC	-44	79 –41	–38	-35	-32	–29	97 –25	-60	–59	-58	95 -57	-56	-55	-54
70	kW	19.1	18.1	17.6	17.2	17.0	16.8	16.7	19.9	18.8	-38 18.1	17.7	17.5	17.3	17.2
	BF	0.03	0.07	0.09	0.11	0.13	0.15	0.16	0.00	0.01	0.04	0.08	0.10	0.12	0.14
	TC	67	76	82	86	90	92	94	71	80	87	91	95	97	99
75	SHC	-46	-43	-40	-37	-33	-30	-27	-62	-61	-60	-59	-58	-57	-55
75	kW	19.5	18.4	17.9	17.5	17.3	17.1	17.0	20.2	19.1	18.4	18.1	17.8	17.6	17.5
	BF	0.03	0.07	0.09	0.11	0.13	0.15	0.16	0.00	0.01	0.04	0.08	0.10	0.13	0.14
·	TC	64	73	79	83	86	89	91	68	77	84	88	91	94	96
80	SHC	-48	-44	-41	-38	-35	-32	-28	-64	-62	-61	-61	-60	-58	-57
	kW	19.8	18.8	18.2	17.9	17.6	17.5	17.4	20.6	19.4	18.8	18.4	18.1	17.9	17.8
	BF	0.03	0.07	0.09	0.11	0.13	0.15	0.16	0.00	0.01	0.05	0.08	0.11	0.13	0.15

48/50	A025 (25	TONS)	— ST	ANDA	RD MC	DE															
Te	mp (F)								Eva	aporat	or Air	Quanti	ity — C	Cfm							
Air E	Entering			5,000					6,250					7,500					8,750		
	ndenser		-							Evapo	rator A	\ir — E	wb (F)						-	
(Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	318	305	281	260	239	335	320	296	274	253	347	331	307	284	268	354	339	315	292	280
	SHC	128	142	173	201	226	133	154	190	224	251	138	165	205	242	268	145	175	220	264	280
	kW	18.7	18.4	17.9	17.6	17.2	19.0	18.7	18.2	17.8	17.4	19.3	18.9	18.4	18.0	17.7	19.4	19.1	18.6	18.1	17.9
	BF	0.00	0.00	0.18	0.13	0.11	0.00	0.11	0.16	0.13	0.16	0.00	0.22	0.17	0.15	0.24	0.13	0.21	0.17	0.16	0.32
85	TC	308	295	274	253	232	324	309	287	266	248	334	319	297	275	261	341	327	305	283	273
	SHC	124	139	170	197	222	127	151	186	220	248	135	161	202	242	261	141	170	216	260	273
	kW	20.8	20.5	20.1	19.8	19.5	21.1	20.8	20.3	20.0	19.6	21.3	21.0	20.5	20.1	19.9	21.5	21.2	20.7	20.3	20.1
	BF	0.00	0.00	0.17	0.12	0.12	0.00	0.10	0.16	0.13	0.18	0.00	0.21	0.16	0.15	0.26	0.11	0.20	0.17	0.16	0.33
95	TC	298	286	265	244	224	312	300	278	257	241	321	309	288	266	254	328	316	295	273	265
	SHC	119	136	166	193	217	124	147	182	216	241	131	157	198	236	254	137	166	212	255	265
	kW	23.1	22.8	22.5	22.3	22.0	23.4	23.1	22.8	22.5	22.2	23.6	23.4	23.0	22.6	22.4	23.8	23.5	23.1	22.7	22.6
	BF	0.00	0.00	0.15	0.12	0.12	0.00	0.24	0.15	0.13	0.20	0.13	0.20	0.16	0.15	0.28	0.26	0.19	0.17	0.17	0.35
105	TC	289	277	256	235	214	302	290	268	247	231	311	298	277	255	245	318	304	283	262	257
	SHC	116	133	162	188	208	121	144	178	211	228	128	153	193	231	245	134	163	208	249	257
	kW	25.7	25.6	25.3	25.1	24.9	26.0	25.9	25.6	25.3	25.0	26.2	26.0	25.8	25.5	25.3	26.4	26.2	25.9	25.5	25.4
	BF	0.00	0.00	0.14	0.11	0.12	0.00	0.21	0.15	0.13	0.22	0.11	0.18	0.15	0.15	0.30	0.24	0.18	0.17	0.17	0.37
115	TC	278	266	245	224	207	289	278	256	236	223	298	285	264	243	236	305	290	270	250	247
	SHC	111	128	157	183	203	117	139	173	205	223	124	149	188	225	236	130	158	203	242	247
	kW	28.7	28.6	28.5	28.6	28.3	29.0	28.9	28.7	28.7	28.5	29.2	29.1	28.9	28.7	28.5	29.4	29.1	28.9	28.7	28.6
	BF	0.00	0.09	0.13	0.11	0.16	0.00	0.19	0.14	0.13	0.24	0.26	0.17	0.15	0.15	0.33	0.22	0.17	0.16	0.18	0.40

48/50	A025 (25	TONS)	— S1	ANDA	RD M	ODE (c	ont)									
Te	mp (F)						Evapo	rator A	Air Qua	antity -	— Cfm					
Air E	Entering			10,000					11,250					12,500		
	ndenser Edb)					1		•	r Air -				1		1	1
		75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	361	346	321	297	291	367	351	326	303	300	372	355	330	309	307
	SHC	152	184	234	281	291	158	192	248	295	300	163	201	261	305	307
	kW	19.6	19.2	18.7	18.2	18.1	19.7	19.3	18.8	18.4	18.3	19.8	19.4	18.9	18.5	18.4
	BF	0.28	0.20	0.18	0.19	0.38	0.25	0.21	0.19	0.21	0.43	0.25	0.22	0.20	0.26	0.48
85	TC	348	332	310	288	283	353	337	315	294	291	357	341	318	299	299
	SHC	148	179	230	275	283	153	188	244	288	291	159	197	257	296	299
	kW	21.6	21.3	20.8	20.4	20.3	21.8	21.4	20.9	20.5	20.4	21.8	21.5	21.0	20.6	20.6
	BF	0.25	0.20	0.18	0.19	0.40	0.24	0.21	0.19	0.23	0.45	0.24	0.21	0.20	0.26	0.49
95	TC	335	321	300	278	275	340	325	304	284	283	343	330	308	290	290
	SHC	144	175	226	270	275	150	184	240	281	283	155	192	253	290	290
	kW	23.9	23.6	23.2	22.8	22.7	24.0	23.7	23.3	22.9	22.9	24.1	23.8	23.4	23.0	23.0
	BF	0.24	0.19	0.18	0.19	0.41	0.23	0.19	0.19	0.24	0.46	0.23	0.21	0.20	0.29	0.50
105	TC	323	310	288	268	266	328	314	292	275	274	331	318	296	280	280
	SHC	140	172	222	260	266	146	180	235	268	274	151	188	248	280	280
	kW	26.6	26.3	26.0	25.5	25.5	26.7	26.4	26.0	25.6	25.7	26.8	26.5	26.1	25.8	25.8
	BF	0.22	0.18	0.18	0.22	0.43	0.22	0.20	0.19	0.27	0.48	0.22	0.21	0.20	0.31	0.52
115	TC	309	297	275	256	255	313	300	278	263	263	317	303	281	269	269
	SHC	136	167	217	254	255	142	175	230	261	263	147	184	243	269	269
	kW	29.6	29.4	29.0	28.7	28.7	29.7	29.4	29.1	28.8	28.8	29.8	29.5	29.1	28.9	28.9
	BF	0.21	0.19	0.18	0.23	0.46	0.21	0.20	0.19	0.30	0.50	0.21	0.21	0.20	0.34	0.54

COOLING CAPACITIES (cont)

48/50A	025 (25 T	ONS)	— SUI	BCOO	LING N	IODE															
Ten	ıp (F)									porato	r Air (Quanti	ty – S0								
Air Eı	ntering			5,000					6,250					7,500					8,750		
	denser		-			-	-	-	-	Evap	orator	Air Ev	vb (F)	-	-	-			-	-	
(=	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	331	298	284	253	233	338	321	292	276	251	359	334	317	290	267	367	358	316	288	271
75	SHC	118	121	162	183	212	115	136	170	213	242	130	147	198	236	267	134	170	202	246	271
	kW	18.0	17.2	17.2	16.5	16.4	17.9	17.6	17.1	17.0	16.6	18.2	17.8	17.7	17.3	17.0	18.2	18.4	17.5	17.0	16.8
	BF	0.00	0.01	0.05	0.06	0.07	0.00	0.05	0.08	0.08	0.10	0.02	0.08	0.09	0.10	0.16	0.06	0.10	0.11	0.12	0.24
	TC	314	294	265	231	222	330	314	283	261	229	332	315	288	274	252	356	337	305	272	260
85	SHC	105	120	145	163	203	111	134	163	200	220	107	132	173	223	252	128	154	195	233	260
	kW	19.9	19.4	18.8	18.2	18.4	20.1	19.9	19.1	18.9	18.1	19.9	19.6	19.2	19.2	18.8	20.7	20.3	19.5	18.9	18.6
	BF	0.00	0.02	0.06	0.06	0.07	0.00	0.05	0.08	0.08	0.12	0.03	0.08	0.09	0.10	0.18	0.07	0.10	0.11	0.12	0.26
	TC	285	281	255	232	208	312	297	265	248	226	325	309	271	258	239	336	318	280	256	254
95	SHC	79	110	138	166	190	98	120	149	189	218	105	129	159	211	239	112	139	174	219	254
	kW BF	21.5	21.7	21.2	20.8	20.3	22.4	22.0	21.2	21.1	20.8	22.6	22.2	21.3	21.2	20.9	22.9	22.4	21.4	21.0	21.2
		0.00	0.02	0.06	0.06	0.07	0.01	0.06	0.08	0.08	0.13	0.04	0.08	0.09	0.10	0.19	0.07	0.10	0.11	0.12	0.27
	TC	267	264	229	217	196	294	279	253	231	212	293	278	254	228	222	309	293	267	235	236
105	SHC	66	97	115	153	180	83	106	140	176	205	76	102	145	183	222	93	120	166	201	236
	kW BF	23.9	24.1	23.1	23.1	22.8	24.8	24.5	23.9	23.4	23.2	24.4	24.1	23.6	23.1	23.4	25.1	24.6	24.0	23.2	23.7
		0.00	0.02	0.06	0.06	0.07	0.01	0.06	0.08	0.08	0.15	0.04	0.08	0.09	0.12	0.22	0.09	0.12	0.13	0.15	0.30
	TC SHC	253	245	221	189	170	259	252	223	201	184	268	255	244	211	196	276	262	239	218	220
115	kW	58	83	112	129	155	55	85	114	149	178	60	86	140	169	196	64	93	141	187	220
	BF	26.6 0.00	26.9 0.04	26.4 0.07	25.2 0.08	24.7 0.11	26.7 0.02	26.7 0.08	25.9 0.10	25.5 0.10	25.1 0.18	26.9 0.06	26.6 0.10	26.7 0.12	25.7 0.12	25.3 0.24	27.1 0.10	26.8 0.12	26.3 0.13	25.8 0.15	26.3 0.32
	<i>D</i> 1	0.00	0.04	0.07	0.08	U.II	0.02	0.08	0.10	0.10	0.18	0.06	0.10	0.12	0.12	0.24	0.10	0.12	0.13	0.15	0.32

48/50A	025 (25 T	ONS)	— SUI	30001	ING N	ODE	(cont)									
Ton	np (F)					ı	Evapo	rator A	ir Qua	ntity -	- SCFI	Л				
	ntering			10,000)				11,250)				12,500		
	denser						E۱	/apora	tor Aiı	r Ewb ((F)					
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	371	353	336	306	295	378	372	342	313	306	383	365	348	309	316
75	SHC	136	166	229	276	295	142	189	244	294	306	148	184	258	299	316
	kW	18.4	18.1	18.0	17.6	17.4	18.4	18.6	18.1	17.7	17.6	18.6	18.3	18.2	17.4	17.7
	BF	0.09	0.12	0.13	0.14	0.31	0.12	0.14	0.14	0.16	0.37	0.14	0.15	0.16	0.20	0.42
	TC	349	332	305	279	269	355	338	311	285	289	374	343	316	303	288
85	SHC	119	151	203	252	269	125	159	217	268	289	144	168	230	294	288
	kW BF	20.2	19.9	19.5	19.0	18.8	20.3	20.1	19.6	19.1	19.4	21.0	20.1	19.7	19.7	19.2
		0.10	0.12	0.13	0.14	0.33	0.12	0.14	0.14	0.17	0.38	0.14	0.15	0.15	0.22	0.43
	TC	327	312	286	262	254	333	317	291	268	263	352	333	304	274	271
95	SHC kW	103	135	188	237	254	108	143	202	252	263	128	163	223	265	271
	BF	22.2	22.0	21.6	21.1	20.9	22.5	22.2	21.7	21.2	21.1	23.1	22.7	22.0	21.3	21.3
		0.10	0.12	0.13	0.15	0.34	0.12	0.14	0.14	0.19	0.39	0.14	0.15	0.15	0.23	0.44
	TC SHC	315	290	263	254	246	323	307	269	260	254	325	296	273	253	251
105	kW	98	119	169	231	246	106	139	182	244	254	109	132	195	244	251
	BF	25.2 0.12	24.4	23.8 0.15	24.0 0.18	23.8 0.36	25.5 0.14	25.1 0.16	23.9	24.1 0.23	24.0 0.42	25.5 0.16	24.5 0.18	24.0 0.18	23.6 0.26	23.5
	TC		0.14						0.17							0.46
	SHC	281	281	257	237	230	286	285	249	230	238	290	289	266	235	233
115	kW	69 27.2	114 27.5	167 27.0	214 26.7	230 26.5	73 27.4	121 27.6	167 26.5	215 26.1	238 26.6	77 27.4	129 27.7	192 27.2	227 26.2	233 26.1
	BF	0.12	0.14	0.15	0.20	0.38	0.15	0.16	0.17	0.24	0.43	0.17	0.18	0.18	0.27	0.47

50A02	5 (25 TONS)	— нот с	AS REH	EAT MOI	DE										
							Air Enter	ing Evar	orator –	- Ewb (F)					
	emp (F) Enterina				5 Dry Bu							5 Dry Bu			
	ndenser			62.5 We	et Bulb (5	50% RH)					65.3 We	et Bulb (6	60% RH)		
	(Edb)							ring Eva	porator -	- SCFM					
		5,000	6,250	7,500	8,750	10,000	11,250	12,500	5,000	6,250	7,500	8,750	10,000	11,250	12,500
	TC	75	84	92	97	101	105	107	79	90	98	104	108	112	115
40	SHC	-13	-3	7	18	29	39	50	-35	-28	-21	-14	-6	1	9
	kW BF	18.5	17.6	17.0	16.7	16.4	16.2	16.1	19.4	18.4	17.8	17.4	17.1	16.9	16.7
	TC	0.04	0.06	0.08	0.09	0.11	0.12	0.13	0.03	0.05	0.07	0.09	0.10	0.12	0.13
	SHC	69 -17	78 –7	85 3	90 14	94 25	96 35	99 45	73 –39	83 –32	90 –26	95 –18	99 –11	103 -4	105 4
50	kW	19.0	18.1	17.5	17.1	16.9	16.7	16.5	20.0	-32 18.9	18.3	17.8	17.5	17.3	17.1
	BF	0.04	0.06	0.08	0.09	0.11	0.12	0.13	0.03	0.06	0.07	0.09	0.11	0.12	0.13
	TC	63	72	78	82	85	88	90	67	76	83	87	91	94	96
60	SHC	-20	-10	0	10	20	31	41	-43	-36	-30	-23	-15	-8	0
	kW	19.5	18.6	18.0	17.6	17.4	17.2	17.0	20.5	19.4	18.8	18.3	18.0	17.8	17.6
	BF	0.04	0.06	0.08	0.09	0.11	0.12	0.13	0.04	0.06	0.07	0.09	0.11	0.12	0.13
	TC SHC	58	66	72	76	79	81	82	61	70	76	80	83	86	88
70	kW	-24 20.2	-14 19.2	-4 18.6	6 18.2	17 17.9	27 17.7	37 17.6	-46 21.1	-40 20.0	-33 19.3	-26 18.9	-19 18.6	-12 18.3	-4 18.2
	BF	0.04	0.06	0.08	0.09	0.11	0.12	0.13	0.04	0.06	0.07	0.09	0.10	0.12	0.13
	TC	55	63	69	73	76	78	79	58	67	73	77	80	82	84
75	SHC	-26	-16	-6	5	15	25	35	-48	-42	-35	-28	-21	-14	-6
	kW	20.5	19.5	18.9	18.5	18.2	18.0	17.8	21.5	20.3	19.6	19.2	18.9	18.6	18.4
	BF	0.04	0.06	0.08	0.09	0.11	0.12	0.13	0.04	0.06	0.07	0.09	0.10	0.12	0.13
	TC	52	60	66	70	72	74	76	56	64	70	74	77	79	81
80	SHC kW	-27	-18	-8 10.0	3	13	24	34	-49	-43	-37	-30	-23	-15	-8 10.7
	BF	20.8 0.05	19.8 0.06	19.2 0.08	18.8 0.09	18.5 0.10	18.3 0.12	18.1 0.13	21.8 0.04	20.7 0.06	20.0 0.07	19.5 0.09	19.2 0.10	18.9 0.12	18.7 0.13
		0.03	0.00	0.00	0.03	0.10	0.12	0.13	0.04	0.00	0.07	0.03	0.10	0.12	0.10

50A02	5 (25 TONS) -	— нот с	AS REH	EAT MOI	DE (cont))									
							Air Enter	ing Evap	orator –	- Ewb (F)				
	emp (F)			7:	5 Dry Bu	lb					7:	5 Dry Bu	ılb		
	Entering ndenser			68.0 We	t Bulb (7	70% RH)					70.5 We	et Bulb (8	80% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		5,000	6,250	7,500	8,750	10,000	11,250	12,500	5,000	6,250	7,500	8,750	10,000	11,250	12,500
	TC	83	95	104	110	115	118	121	88	100	109	116	121	124	128
40	SHC	- 57	-53	-49	-46	-41	-37	-33	-78	– 77	-76	-75	-74	-73	-71
	kW	20.5	19.3	18.6	18.1	17.7	17.5	17.3	21.6	20.2	19.3	18.8	18.4	18.1	17.9
	BF	0.02	0.03	0.06	0.08	0.10	0.12	0.13	0.00	0.00	0.02	0.04	0.07	0.09	0.12
	TC	77	88	95	101	105	109	111	80	92	100	106	111	115	118
50	SHC kW	-61	-57	-54	-50	-46	-42	-37	-82	-81	-81	-80	-79	-77	-76
	BF	21.0	19.8	19.0	18.5	18.2	17.9	17.8	22.1	20.7	19.8	19.2	18.9	18.6	18.3
	TC	0.02	0.04	0.06	0.08	0.10	0.12	0.13	0.00	0.00	0.02	0.05	0.07	0.10	0.12
	SHC	71 –64	80 –61	87	93 -54	97 –50	100 –46	102 –41	74 –86	85	92	98 –84	102 -83	105 –81	108
60	kW	21.6	20.3	-58 19.6	-54 19.0	-50 18.7	-46 18.4	18.2	-86 22.7	-85 21.2	-85 20.3	-84 19.7	-83 19.3	19.0	-80 18.8
	BF	0.02	0.04	0.06	0.08	0.10	0.12	0.13	0.00	0.00	0.02	0.05	0.08	0.10	0.12
	TC	65	74	80	85	89	91	94	68	78	85	90	94	97	99
70	SHC	-68	-65	-62	-58	-54	-50	-45	- 89	-89	-88	-88	-87	-85	-84
70	kW	22.2	20.9	20.1	19.6	19.2	19.0	18.8	23.3	21.8	20.9	20.3	19.9	19.6	19.3
	BF	0.02	0.04	0.06	0.08	0.10	0.12	0.13	0.00	0.00	0.03	0.06	0.08	0.10	0.12
	TC	62	71	77	82	85	88	90	65	75	81	86	90	93	95
75	SHC	-70	-67	-63	-60	-56	-52	-4 7	- 91	-90	-90	-90	-89	-87	-86
	kW	22.5	21.2	20.4	19.9	19.5	19.3	19.0	23.6	22.1	21.2	20.6	20.2	19.9	19.6
	BF	0.02	0.04	0.07	0.08	0.10	0.12	0.13	0.00	0.01	0.03	0.06	0.08	0.10	0.12
	TC	59	68	74	78	81	84	86	62	72	78	82	86	89	91
80	SHC	-71	-68	-65	-62	-58	-54	-49	-92	-92	-92	-91	-91	-89	-88
	kW BF	22.8	21.5	20.7	20.2	19.8	19.6	19.4	23.9	22.4	21.5	20.9	20.5	20.2	19.9
	DF	0.02	0.04	0.07	0.08	0.10	0.12	0.13	0.00	0.01	0.03	0.06	0.08	0.10	0.12

COOLING CAPACITIES (cont)

48/50	A027 (27	TONS)	— ST	ANDA	RD MC	DE															
	mp (F)								Eva	aporat	or Air	Quanti	ity — C	Cfm							
	Entering			5,500					6,875					8,250					9,625		
	ndenser									Evapo	rator A	\ir — E	wb (F)							
	Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC SHC kW BF	339 138 19.0 0.00	339 324 297 273 251 356 340 312 288 268 368 351 323 298 138 154 186 215 242 145 168 204 240 265 153 180 222 263 19.0 18.7 18.3 17.9 17.6 19.4 19.0 18.5 18.1 17.8 19.6 19.3 18.7 18.3 0.00 0.00 0.15 0.11 0.11 0.00 0.07 0.14 0.12 0.19 0.11 0.19 0.15 0.13													283 283 18.1 0.26	377 161 19.8 0.27	359 190 19.4 0.18	331 238 18.9 0.16	305 284 18.5 0.15	296 296 18.3 0.34
85	TC SHC kW BF	329 134 21.1 0.00	313 151 20.8 0.09	289 182 20.4 0.13	265 211 20.1 0.11	243 237 19.8 0.11	344 141 21.5 0.00	329 164 21.2 0.21	303 201 20.7 0.14	279 236 20.4 0.12	262 262 20.1 0.20	355 149 21.7 0.09	339 175 21.4 0.18	313 218 20.9 0.14	289 262 20.5 0.14	276 276 20.3 0.28	364 156 21.9 0.24	346 186 21.5 0.17	321 234 21.1 0.15	295 279 20.6 0.16	288 288 20.5 0.36
95	TC SHC kW BF	319 130 23.5 0.00	305 148 23.3 0.08	280 178 23.0 0.13	256 207 22.7 0.10	235 230 22.4 0.13	333 137 23.8 0.13	319 160 23.6 0.19	293 196 23.3 0.13	270 234 23.0 0.12	254 254 22.6 0.22	344 145 24.1 0.08	328 172 23.8 0.17	303 214 23.4 0.14	278 254 23.1 0.13	268 268 22.9 0.30	352 153 24.3 0.23	335 182 24.0 0.17	309 230 23.6 0.15	285 273 23.1 0.16	280 280 23.1 0.37
105	TC SHC kW BF	309 125 26.3 0.00	294 144 26.1 0.07	269 173 25.9 0.12	246 202 25.7 0.10	228 226 25.4 0.16	322 133 26.6 0.10	307 156 26.4 0.17	282 192 26.2 0.13	258 226 25.9 0.12	244 244 25.7 0.24	332 142 26.9 0.25	316 168 26.7 0.16	290 209 26.3 0.14	266 248 26.0 0.14	258 258 25.8 0.33	339 149 27.0 0.20	323 178 26.8 0.16	297 225 26.4 0.15	274 264 26.0 0.18	270 270 26.0 0.40
115	TC SHC kW BF	296 120 29.3 0.00	281 139 29.3 0.20	257 168 29.4 0.12	235 196 29.5 0.10	220 218 29.3 0.19	309 129 29.7 0.08	293 151 29.6 0.15	269 186 29.5 0.12	246 221 29.5 0.12	235 235 29.4 0.27	317 137 30.0 0.21	302 162 29.8 0.15	277 203 29.6 0.13	254 242 29.5 0.14	249 249 29.4 0.35	324 144 30.2 0.19	308 172 29.9 0.16	282 219 29.7 0.15	262 254 29.4 0.20	259 259 29.4 0.42

48/50	A027 (27	TONS)	STANDARD MODE (cont) Evaporator Air Quantity — Cfm 11,000 12,375 13,750 Evaporator Air — Ewb (F)													
Te	mp (F)					Ì	Evapo	rator A	Air Qua	antity -	— Cfm					
Air E	Entering			11,000										13,750		
	ndenser Edb)							•							1	
		75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC SHC kW BF	384 168 19.9 0.23	4 365 337 311 307 389 371 342 319 316 394 375 346 324 324 8 201 254 301 307 174 210 269 309 316 181 219 284 324 324 9 19.6 19.0 18.6 18.5 20.0 19.7 19.1 18.7 18.7 20.1 19.8 19.2 18.8 1 3 0.18 0.17 0.18 0.40 0.22 0.19 0.18 0.24 0.45 0.22 0.20 0.19 0.27 0													
85	TC SHC kW BF	370 163 22.0 0.22	353 196 21.7 0.18	326 250 21.2 0.17	302 294 20.8 0.19	299 299 20.7 0.41	375 170 22.1 0.21	358 206 21.8 0.19	331 265 21.3 0.18	309 301 20.9 0.26	307 307 20.8 0.46	380 176 22.2 0.21	362 215 21.9 0.20	334 279 21.3 0.19	315 315 21.0 0.29	315 315 21.0 0.51
95	TC SHC kW BF	358 160 24.4 0.21	342 192 24.1 0.18	315 245 23.7 0.16	292 284 23.3 0.22	290 290 23.2 0.43	363 166 24.5 0.20	346 202 24.2 0.19	319 260 23.8 0.18	299 295 23.4 0.27	298 298 23.4 0.48	368 173 24.7 0.21	350 211 24.3 0.19	322 275 23.8 0.19	306 306 23.5 0.31	305 305 23.5 0.52
105	TC SHC kW BF	345 155 27.2 0.20	328 188 26.9 0.17	301 240 26.5 0.16	281 275 26.1 0.24	280 280 26.1 0.45	350 162 27.4 0.20	332 197 27.1 0.18	305 255 26.6 0.18	288 285 26.2 0.28	288 288 26.3 0.50	353 168 27.5 0.20	336 206 27.1 0.20	308 269 26.6 0.19	295 295 26.4 0.35	295 295 26.4 0.54
115	TC SHC kW BF	329 151 30.4 0.19	312 183 30.0 0.16	287 235 29.7 0.16	268 268 29.5 0.23	268 268 29.5 0.47	333 157 30.6 0.19	316 192 30.2 0.18	290 250 29.7 0.17	276 276 29.5 0.31	276 276 29.5 0.52	336 163 30.7 0.19	320 201 30.3 0.19	293 263 29.8 0.19	283 283 29.6 0.37	282 282 29.6 0.56

	027 (27 T	ONS)	— SUI	BCOO	LING N	ODE			Fva	porato	r Δir (Quanti	tv – S0	:FM							
	np (F) ntering			5,400					6,750	porate	71 All V	, autilia	.,	8,100					9,450		
Cond	denser			-,					-,	Evap	orator	Air Ev	vb (F)	-,					-,		
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	329	312	279	257	232	343	320	292	265	251	363	343	313	284	263	360	343	312	286	271
75	SHC	117	135	159	190	215	121	138	172	206	245	137	159	198	236	263	131	159	204	251	271
	kW	17.7	17.5	16.8	16.6	16.3	17.8	17.5	17.0	16.6	16.7	18.4	18.0	17.4	16.9	16.6	18.2	17.8	17.5	17.0	16.7
	BF	0.00	0.03	0.08	0.09	0.09	0.01	0.08	0.10	0.11	0.15	0.06	0.11	0.12	0.13	0.22	0.10	0.13	0.14	0.15	0.30
	TC	311	295	267	234	211	329	310	284	258	227	342	324	295	269	242	339	322	305	278	255
85	SHC	103	122	150	169	196	112	132	168	202	222	120	144	184	225	242	114	143	200	246	255
	kW	19.6	19.4	18.9	18.2	17.8	20.0	19.6	19.3	18.8	18.0	20.2	19.9	19.3	18.9	18.3	20.0	19.7	19.5	19.1	18.5
	BF	0.00	0.04	0.08	0.09	0.10	0.02	0.08	0.10	0.11	0.17	0.06	0.11	0.12	0.13	0.23	0.10	0.13	0.14	0.15	0.31
	TC	283	267	242	219	197	309	292	266	233	213	316	293	267	243	237	329	309	284	260	251
95	SHC	78	97	127	156	184	96	117	153	180	208	98	117	160	201	237	109	134	184	230	251
	kW BF	21.4	21.1	20.6	20.2	19.8	22.1	21.7	21.2	20.5	20.1	22.1	21.6	21.1	20.7	20.8	22.5	22.0	21.5	21.1	21.1
		0.00	0.05	0.08	0.08	0.09	0.02	0.08	0.10	0.11	0.18	0.07	0.11	0.12	0.13	0.25	0.11	0.14	0.14	0.16	0.33
	TC	275	260	229	204	192	278	263	247	217	208	294	282	258	236	222	299	289	265	241	233
105	SHC	74	93	116	144	179	69	92	137	166	204	81	110	154	197	222	84	118	168	215	233
	kW BF	24.2	23.8	23.0	22.5	22.5	24.0	23.7	23.5	22.8	22.8	24.4	24.2	23.8	23.3	23.1	24.5	24.3	23.9	23.4	23.3
		0.00	0.05	0.08	0.08	0.12	0.03	0.09	0.10	0.11	0.19	0.08	0.11	0.12	0.13	0.26	0.11	0.14	0.14	0.16	0.34
	TC SHC	245	241	217	196	169	267	251	230	200	192	276	253	230	209	196	283	267	245	216	216
115	kW	48	78	108	139	157	63	84	124	152	189	67	85	130	172	196	72	101	152	189	216
	BF	26.4 0.00	26.4 0.05	25.9 0.08	25.5 0.08	24.7 0.13	27.0 0.03	26.6 0.09	26.1 0.10	25.4 0.11	25.4 0.20	27.2 0.08	26.5 0.11	26.0 0.12	25.6 0.14	25.3 0.28	27.3	27.0 0.14	26.4 0.14	25.7 0.19	25.9 0.36
	٠,	0.00	0.05	0.00	0.00	0.13	0.03	0.09	0.10	0.11	0.20	0.00	0.11	0.12	0.14	0.20	0.11	0.14	0.14	0.19	0.36

48/50A	027 (27 T	ONS)	— SUI	30001	ING N	ODE	(cont)									
Ten	np (F)					ı	Evapo	rator A	ir Qua	ntity -	- SCFI	Л				
	ntering			10,800)				12,150)				13,500		
	denser						E۱	/apora	tor Aiı	r Ewb ((F)					
(E	idb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	368	351	332	302	284	375	359	338	311	302	393	374	343	315	303
75	SHC	137	169	232	278	284	144	181	246	298	302	163	199	260	309	303
	kW	18.2	18.0	17.8	17.3	16.9	18.4	18.0	17.9	17.5	17.2	18.9	18.5	18.0	17.5	17.2
	BF	0.13	0.15	0.16	0.18	0.36	0.15	0.17	0.18	0.20	0.42	0.17	0.19	0.19	0.25	0.46
	TC	346	329	302	284	276	351	340	317	288	288	356	340	312	288	286
85	SHC	120	152	205	263	276	126	167	229	275	288	131	170	233	283	286
	kW BF	20.1	19.8	19.4	19.2	19.1	20.2	20.0	19.7	19.1	19.3	20.2	20.0	19.5	19.1	19.1
		0.13	0.16	0.16	0.18	0.38	0.15	0.17	0.18	0.23	0.43	0.18	0.19	0.19	0.27	0.47
	TC	328	317	290	267	250	342	324	295	264	269	345	329	300	270	278
95	SHC	107	144	198	247	250	121	155	211	252	269	125	164	225	265	278
	kW BF	22.2	22.1	21.7	21.3	20.8	22.8	22.3	21.7	21.1	21.3	22.7	22.4	21.8	21.2	21.5
		0.13	0.16	0.16	0.20	0.39	0.16	0.17	0.18	0.24	0.44	0.18	0.19	0.19	0.28	0.49
	TC	310	295	262	240	244	306	301	274	255	242	310	295	271	257	250
105	SHC kW	94	127	174	221	244	90	137	194	244	242	95	135	201	255	250
	BF	24.8	24.5	23.7	23.3	23.5	24.6	24.6	24.0	23.7	23.3	24.7	24.4	23.9	23.7	23.5
		0.14	0.16	0.16	0.22	0.40	0.16	0.17	0.18	0.26	0.45	0.18	0.19	0.19	0.29	0.50
	TC SHC	288	273	242	222	226	295	277	253	237	234	296	281	257	241	241
115	kW	77	110	158	204	226	84	117	178	228	234	86	126	191	241	241
	BF	27.4 0.14	27.1 0.16	26.3 0.16	25.8 0.23	26.1 0.42	27.7 0.16	27.1 0.17	26.6 0.18	26.3 0.27	26.3 0.47	27.6 0.18	27.3 0.19	26.7 0.20	26.4 0.30	26.4 0.51
	٥.	U. 14	0.10	0.10	∪.∠3	0.42	0.10	U.17	U.10	0.27	0.47	0.10	0.19	0.20	U.3U	0.51

COOLING CAPACITIES (cont)

50A027	7 (27 TONS)	— нот G	AS REH	EAT MOI	DE										
							Air Enter	ing Evap	orator –	- Ewb (F))				
	emp (F)			7:	5 Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			62.5 We	et Bulb (5	0% RH)					65.3 We	et Bulb (6	60% RH)		
	(Edb)			5.		5.	Air Ente	ring Eva	porator -	- SCFM		5.		5.	
		5,400	6,750	8,100	9,450	10,800	12,150	13,500	5,400	6,750	8,100	9,450	10,800	12,150	13,500
	TC	73	84	91	97	101	104	106	77	89	97	103	107	110	113
40	SHC	-18	-6	7	18	29	41	51	-42	-33	-25	-16	-9	-1	8
	kW BF	18.8	17.7	17.0	16.7	16.4	16.3	16.1	19.9	18.6	17.8	17.4	17.1	16.9	16.7
		0.05	0.07	0.08	0.10	0.11	0.13	0.14	0.04	0.06	0.08	0.10	0.11	0.13	0.14
	TC SHC	67	77	84	89	92	95	97	71	82	89	94	98	101	104
50	kW	-22 19.3	-9 18.2	2 17.5	14 17.2	25 16.9	36 16.7	47 16.6	-46 20.4	–37 19.1	-29 18.3	-21 17.9	-13 17.6	-5 17.3	3 17.2
	BF	0.05	0.07	0.08	0.10	0.11	0.13	0.14	0.04	0.06	0.08	0.10	0.11	0.13	0.14
	TC	62	72	78	82	85	87	89	66	76	82	87	90	93	95
60	SHC	-25	-13	-1	10	21	32	43	-49	-41	-33	-25	-17	-9	-1
•	kW	19.9	18.7	18.0	17.7	17.4	17.2	17.1	20.9	19.6	18.8	18.4	18.1	17.8	17.7
	BF	0.05	0.07	0.08	0.10	0.11	0.13	0.14	0.04	0.06	0.08	0.10	0.11	0.13	0.14
	TC	57	66	71	75	78	80	81	60	69	75	79	82	85	87
70	SHC kW	-28	-16	- 5	6	17	28	39	-53	-44	-36	-28	-21	-13	-5
	BF	20.5 0.05	19.3 0.07	18.6 0.08	18.2 0.10	18.0 0.11	17.8 0.13	17.6 0.14	21.6 0.04	20.2 0.06	19.4 0.08	18.9 0.10	18.6 0.11	18.4 0.13	18.2 0.14
	TC	54	63	69	72	75	77	79	57	67	73	77	79	82	83
75	SHC	-30	-18	- 6	5	16	27	37	-54	-46	-38	-30	-22	-15	_7
75	kW	20.9	19.6	18.9	18.5	18.3	18.1	17.9	21.9	20.5	19.7	19.2	18.9	18.7	18.5
	BF	0.05	0.07	0.08	0.10	0.11	0.13	0.14	0.04	0.06	0.08	0.10	0.11	0.13	0.14
	TC	52	61	66	70	72	74	76	55	64	70	74	77	79	80
80	SHC	-31	-19	-8	3	14	25	36	- 55	-4 7	-39	-31	-24	-16	-8
	kW BF	21.2	20.0	19.3	18.9	18.6	18.4	18.2	22.2	20.8	20.0	19.6	19.2	19.0	18.8
	DF	0.05	0.07	0.08	0.10	0.11	0.13	0.14	0.04	0.06	0.08	0.10	0.11	0.13	0.14

50A027	7 (27 TONS) -	— нот с	AS REH	EAT MOI	DE (cont))									
					, ,		Air Enter	ing Evap	orator –	- Ewb (F)				
	emp (F)			7:	5 Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			68.0 We	t Bulb (7	'0% RH)					70.5 We	et Bulb (8	80% RH)		
	(Edb)						Air Ente	ring Eva	porator -	— SCFM					
		5,400	6,750	8,100	9,450	10,800	12,150	13,500	5,400	6,750	8,100	9,450	10,800	12,150	13,500
	TC	81	94	103	109	113	117	120	85	99	108	114	119	123	126
40	SHC	-66	-61	-56	-51	-46	-41	-36	-89	-87	-85	-83	-81	-79	-77
	kW BF	21.0	19.5	18.7	18.1	17.8	17.5	17.3	22.2	20.5	19.5	18.9	18.5	18.2	17.9
		0.02	0.04	0.07	0.09	0.11	0.12	0.14	0.00	0.01	0.03	0.06	0.08	0.11	0.13
	TC SHC	75	86	94	100	104	108	110	78	91	99	105	110	113	116
50	kW	-70 21.6	-65 20.0	-60 19.1	-55 18.6	-50 18.2	-45 18.0	-40 17.8	-93 22.7	-91 21.0	-89 20.0	-87 19.4	-86 18.9	-83 18.6	-81 18.4
	BF	0.02	0.05	0.07	0.09	0.11	0.12	0.14	0.00	0.01	0.03	0.06	0.09	0.11	0.13
	TC	69	79	87	92	96	99	101	72	84	92	97	101	105	107
60	SHC	-73	-69	-64	-59	-54	-49	-44	-97	-95	-93	-91	-89	-87	-85
00	kW	22.1	20.6	19.7	19.1	18.7	18.5	18.3	23.3	21.5	20.5	19.9	19.4	19.1	18.9
	BF	0.02	0.05	0.07	0.09	0.11	0.13	0.14	0.00	0.01	0.03	0.07	0.09	0.11	0.13
	TC	63	73	79	84	88	91	93	66	77	84	90	94	97	99
70	SHC	-76	-72	-67	-63	-58	-53	-48	-99	-98	-97	-95	-93	-91	-89
	kW BF	22.7	21.1	20.2	19.7	19.3	19.0	18.8	23.9	22.1	21.1	20.4	20.0	19.7	19.4
		0.02	0.05	0.07	0.09	0.11	0.13	0.14	0.00	0.01	0.04	0.07	0.09	0.11	0.13
	TC SHC	60 -78	70 –73	77	81 –64	84 –60	87 -55	89 –50	63 -101	74 –100	80 –98	85 -97	89 -95	92 -93	94 –91
75	kW	-78 23.0	-/3 21.4	-69 20.5	-64 20.0	19.6	-55 19.3	-50 19.1	24.2	22.4	-98 21.4	20.7	-95 20.3	20.0	19.7
	BF	0.02	0.05	0.07	0.09	0.11	0.13	0.14	0.00	0.01	0.04	0.07	0.09	0.11	0.13
	TC	58	68	74	78	81	83	85	60	71	78	82	86	88	91
80	SHC	-80	-75	- 70	-66	-61	-56	- 52	-103	-101	-100	-98	–97	-95	-93
30	kW	23.4	21.8	20.9	20.3	19.9	19.6	19.4	24.6	22.8	21.7	21.0	20.6	20.3	20.0
	BF	0.02	0.05	0.07	0.09	0.11	0.13	0.14	0.00	0.01	0.04	0.07	0.09	0.12	0.13

48/50	A030 (30	TONS)	— ST	ANDA	RD MC	DE															
Te	mp (F)								Eva	aporat	or Air	Quant	ity — C	Cfm							
Air E	Entering			6,000					7,500					9,000					10,500)	
Cor	ndenser				_		_			Evapo	rator A	ir — E	wb (F)	_	_					
(Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	370	354	325	298	272	389	371	342	314	293	401	384	354	325	309	411	392	362	334	323
	SHC	151	169	203	234	263	157	184	224	262	287	167	196	243	288	309	176	208	261	311	323
	kW	20.2	19.9	19.5	19.2	18.8	20.6	20.3	19.8	19.4	18.9	20.9	20.6	20.1	19.6	19.3	21.1	20.7	20.2	19.8	19.5
	BF	0.00	0.00	0.12	0.10	0.10	0.00	0.19	0.12	0.11	0.20	0.13	0.16	0.13	0.12	0.26	0.22	0.16	0.14	0.14	0.34
85	TC	362	345	316	288	263	379	361	332	303	276	391	373	343	314	300	400	381	351	322	315
	SHC	147	166	199	230	257	154	180	219	257	276	164	193	238	282	300	172	204	256	305	315
	kW	22.8	22.5	22.1	21.8	21.4	23.2	22.9	22.5	22.1	21.6	23.5	23.2	22.7	22.3	22.0	23.7	23.4	22.9	22.4	22.2
	BF	0.00	0.00	0.12	0.09	0.10	0.00	0.17	0.12	0.11	0.13	0.26	0.16	0.13	0.12	0.28	0.21	0.16	0.14	0.14	0.35
95	TC	351	334	305	278	255	367	349	320	292	274	379	360	330	302	291	387	368	338	310	305
	SHC	143	162	194	225	250	151	176	214	252	274	160	188	233	277	291	168	200	251	298	305
	kW	25.7	25.5	25.1	25.1	24.7	26.1	25.9	25.5	25.3	25.0	26.4	26.2	25.8	25.4	25.1	26.7	26.3	25.9	25.4	25.3
	BF	0.00	0.10	0.11	0.09	0.12	0.00	0.16	0.12	0.10	0.21	0.23	0.15	0.13	0.12	0.30	0.19	0.15	0.14	0.15	0.37
105	TC	339	322	293	267	247	353	336	307	280	265	364	346	317	290	281	372	353	324	297	294
	SHC	138	157	189	219	242	147	171	209	246	265	155	183	228	271	281	163	195	246	291	294
	kW	29.0	28.9	29.0	29.3	28.7	29.3	29.3	29.3	29.4	29.1	29.8	29.5	29.4	29.3	29.0	30.1	29.6	29.5	29.2	29.1
	BF	0.00	0.20	0.11	0.09	0.15	0.13	0.15	0.11	0.10	0.24	0.20	0.14	0.12	0.12	0.33	0.18	0.14	0.14	0.16	0.40
115	TC	326	309	281	256	237	339	322	294	268	256	349	331	303	277	271	356	338	309	286	283
	SHC	132	153	184	214	235	142	166	204	241	256	150	178	222	264	271	158	190	240	280	283
	kW	32.8	33.1	33.8	34.3	34.3	33.3	33.4	33.8	34.2	34.0	33.8	33.5	33.8	34.0	33.8	34.1	34.0	33.8	33.5	33.7
	BF	0.00	0.16	0.10	0.08	0.16	0.24	0.13	0.11	0.10	0.26	0.18	0.13	0.12	0.13	0.35	0.17	0.14	0.13	0.19	0.42

48/50	A030 (30	TONS)	NS) — STANDARD MODE (cont) Evaporator Air Quantity — Cfm 12,000 13,500 15,000 Evaporator Air — Ewb (F)													
Te	mp (F)						Evapo	rator A	Air Qua	antity -	— Cfm					
Air E	Entering			12,000	1				13,500	1				15,000		
	ndenser Edb)		1			1		•					1		1	
	,	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	419	399	369	340	336	426	406	374	347	346	430	411	379	356	354
	SHC	183	219	278	330	336	191	229	294	343	346	198	240	310	351	354
	kW	21.3	20.9	20.4	19.9	19.7	21.4	21.0	20.5	19.9	19.9	21.5	21.1	20.6	20.1	20.1
	BF	0.20	0.16	0.15	0.17	0.40	0.20	0.18	0.16	0.22	0.45	0.20	0.18	0.17	0.28	0.49
85	TC	408	388	357	329	326	414	394	362	338	336	418	398	366	344	345
	SHC	180	215	273	322	326	187	226	290	331	336	194	236	305	337	345
	kW	23.9	23.5	23.0	22.5	22.4	24.0	23.7	23.1	22.6	22.6	24.1	23.8	23.2	22.7	22.8
	BF	0.19	0.16	0.15	0.19	0.41	0.19	0.17	0.16	0.26	0.46	0.19	0.18	0.17	0.28	0.50
95	TC	394	375	344	318	316	399	380	348	328	326	403	384	352	334	334
	SHC	175	211	268	312	316	182	221	284	320	326	189	231	300	334	334
	kW	26.9	26.6	26.0	25.4	25.5	27.0	26.7	26.1	25.6	25.6	27.2	26.8	26.2	25.8	25.8
	BF	0.18	0.16	0.15	0.21	0.43	0.18	0.17	0.16	0.28	0.48	0.19	0.18	0.17	0.31	0.52
105	TC	378	359	329	307	305	383	364	334	314	314	387	367	337	322	322
	SHC	170	205	262	301	305	177	215	278	314	314	184	225	294	322	322
	kW	30.3	30.0	29.6	29.0	29.2	30.5	30.1	29.6	29.3	29.3	30.7	30.2	29.7	29.4	29.3
	BF	0.17	0.16	0.15	0.24	0.45	0.18	0.17	0.16	0.28	0.50	0.18	0.18	0.17	0.34	0.54
115	TC	361	343	314	295	293	366	347	318	302	302	369	351	321	310	309
	SHC	165	200	257	290	293	172	210	272	302	302	179	220	288	310	309
	kW	34.4	34.2	33.9	33.4	33.6	34.7	34.3	33.9	33.6	33.6	34.9	34.4	33.9	33.7	33.7
	BF	0.17	0.16	0.15	0.26	0.47	0.17	0.17	0.16	0.31	0.52	0.18	0.18	0.18	0.36	0.56

COOLING CAPACITIES (cont)

48/50A	030 (30 T	ONS)	— SUE	3COO	LING N	IODE					4 ! (\							
	np (F) ntering			6,000					7,500	porato	r Air (Juanti	ty – S0	9,000					10,500)	
Cond	denser									Evap	orator	Air Ev	vb (F)								
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	347	329	302	276	248	360	342	314	292	265	373	355	329	304	285	387	367	337	313	298
75	SHC	126	146	178	208	234	132	155	193	235	260	140	167	215	260	285	152	181	231	282	298
. •	kW	19.8	19.4	18.9	18.5	18.1	20.1	19.7	19.2	18.8	18.3	20.3	20.0	19.4	19.0	18.7	20.6	20.2	19.6	19.1	18.9
	BF	0.00	0.05	0.09	0.10	0.11	0.02	0.09	0.11	0.12	0.17	0.08	0.12	0.14	0.14	0.25	0.12	0.15	0.16	0.17	0.33
	TC	326	309	285	262	239	345	322	301	277	251	354	337	311	287	271	365	347	318	295	285
85	SHC	109	130	164	197	226	121	139	183	223	247	126	153	200	246	271	135	165	215	267	285
	kW	22.0	21.6	21.2	20.8	20.5	22.3	21.9	21.4	21.0	20.6	22.5	22.2	21.6	21.2	21.0	22.7	22.4	21.8	21.3	21.2
	BF	0.00	0.05	0.09	0.09	0.11	0.03	0.10	0.11	0.12	0.18	0.08	0.12	0.14	0.14	0.27	0.12	0.15	0.16	0.17	0.34
	TC	309	294	267	243	224	325	308	282	259	242	335	319	293	270	252	343	327	300	276	269
95	SHC	97	118	149	182	214	105	129	168	209	239	112	140	186	232	252	119	150	202	251	269
	kW	24.6	24.2	23.8	23.4	23.1	24.9	24.5	24.0	23.6	23.4	25.1	24.7	24.2	23.8	23.5	25.3	24.9	24.3	23.9	23.8
	BF	0.00	0.06	0.09	0.09	0.11	0.04	0.10	0.11	0.12	0.19	0.09	0.13	0.14	0.14	0.28	0.12	0.15	0.16	0.17	0.35
	TC	295	257	236	228	210	305	278	264	242	227	315	295	274	252	241	323	307	284	259	253
105	SHC	87	86	122	170	201	90	103	155	195	225	97	121	172	219	241	104	135	191	239	253
	kW BF	27.6	26.9	26.5	26.4	26.3	27.8	27.3	27.0	26.6	26.4	28.0	27.6	27.2	26.8	26.6	28.2	27.8	27.3	26.9	26.8
		0.00	0.06	0.09	0.09	0.13	0.04	0.10	0.11	0.12	0.21	0.09	0.13	0.14	0.15	0.29	0.13	0.15	0.16	0.17	0.37
	TC	271	254	233	212	196	274	268	246	223	207	293	279	256	233	224	287	286	262	241	235
115	SHC	69	88	124	157	187	66	99	141	180	207	81	111	159	203	224	73	120	174	220	235
	kW BF	30.9	30.6	30.3	30.0	29.9	31.0	30.8	30.4	30.1	29.9	31.4	31.0	30.5	30.2	30.1	31.2	31.1	30.6	30.2	30.2
	BF	0.01	0.07	0.09	0.09	0.15	0.05	0.10	0.11	0.12	0.21	0.10	0.13	0.14	0.15	0.31	0.13	0.15	0.16	0.20	0.38

48/50A	030 (30 T	ONS)	— SUI	3000	LING N	/ODE	(cont)									
Ton	mp (F) Evaporator Air Quantity – SCFM															
				12,000)				13,500)				15,000		
Cond	denser						E۱	/apora	tor Aiı	r Ewb	(F)					
(=	idb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	395	375	346	320	313	396	381	348	321	322	401	387	355	328	326
75	SHC	159	192	248	301	313	160	202	260	311	322	166	211	277	324	326
	kW BF	20.8	20.4	19.8	19.3	19.1	20.8	20.5	19.8	19.3	19.3	20.9	20.6	19.9	19.4	19.4
		0.14	0.17	0.18	0.20	0.39	0.17	0.19	0.19	0.24	0.45	0.19	0.21	0.21	0.28	0.49
	TC	369	352	324	298	296	378	357	330	309	306	379	362	334	315	312
85	SHC	139	174	231	284	296	149	183	246	300	306	151	192	261	314	312
	kW BF	22.9	22.5	21.9	21.4	21.4	23.0	22.6	22.0	21.6	21.5	23.1	22.7	22.1	21.7	21.6
		0.15	0.17	0.18	0.19	0.40	0.17	0.19	0.19	0.25	0.45	0.19	0.21	0.21	0.28	0.50
	TC	350	333	307	285	280	354	338	311	289	286	359	342	315	294	296
95	SHC kW	125	159	218	270	280	130	169	233	280	286	137	178	247	294	296
	BF	25.4	25.0	24.5	24.0	24.0	25.5	25.1	24.6	24.1	24.1	25.6	25.2	24.6	24.2	24.2
		0.15	0.17	0.18	0.21	0.41	0.17	0.19	0.19	0.26	0.46	0.19	0.21	0.21	0.29	0.51
	TC SHC	331	315	273	266	260	337	301	294	274	271	341	321	296	278	277
105	kW	112	147	189	252	260	119	137	221	267	271	124	162	233	278	277
	BF	28.4	28.0	27.2	27.0	26.9	28.5	27.8	27.5	27.1	27.1	28.6	28.1	27.5	27.2	27.2
		0.15	0.17	0.18	0.23	0.43	0.17	0.19	0.19	0.27	0.48	0.19	0.21	0.21	0.31	0.52
	TC SHC	307	291	268	248	243	311	295	271	254	251	313	299	274	258	258
115	kW	94 31.7	129	190	235	243	99	138	203	248	251	104	147	217	258	258
	BF	0.15	31.3	30.7 0.17	30.3 0.24	30.3	31.8 0.18	31.4 0.19	30.8 0.19	30.4 0.28	30.4 0.49	31.9 0.20	31.4 0.21	30.8 0.21	30.5 0.32	30.5 0.53
		0.15	0.17	0.17	0.24	0.44	0.10	0.19	0.19	0.20	0.49	0.20	U.Z I	U.Z I	0.32	0.55

50A030	(30 TONS)	— нот с	AS REH	EAT MOI	DE										
							Air Enter	ing Evap	orator –	- Ewb (F					
	emp (F)			7	5 Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			62.5 We	et Bulb (5	0% RH)					65.3 We	et Bulb (6	60% RH)		
	(Edb)		-	-	-	-	Air Ente	ring Eva	porator -	- SCFM			-	-	
		6,000	7,500	9,000	10,500	12,000	13,500	15,000	6,000	7,500	9,000	10,500	12,000	13,500	15,000
	TC	138	148	154	159	164	167	169	145	155	162	168	172	176	179
40	SHC	35	48	61	73	86	99	111	10	19	28	38	47	56	66
	kW	17.0	16.7	16.6	16.5	16.5	16.5	16.5	17.8	17.4	17.3	17.2	17.1	17.1	17.1
	BF	0.07	0.09	0.11	0.12	0.14	0.16	0.17	0.06	0.08	0.10	0.12	0.14	0.16	0.17
	TC SHC	133	142	149	153	157	159	161	139	149	156	161	165	168	170
50	kW	31 17.9	44 17.5	57 17.4	70 17.3	83 17.3	95 17.3	107 17.3	7 18.7	16 18.2	25 18.1	34 18.0	43 17.9	52 17.9	62 17.9
	BF	0.07	0.09	0.11	0.12	0.14	0.16	0.17	0.06	0.08	0.10	0.12	0.14	0.16	0.17
	TC	127	136	142	147	150	153	155	133	143	150	154	158	161	163
60	SHC	28	41	54	67	79	92	104	3	12	21	30	40	49	58
00	kW	18.8	18.5	18.3	18.2	18.2	18.2	18.1	19.6	19.2	19.0	18.8	18.8	18.7	18.7
	BF	0.07	0.09	0.11	0.12	0.14	0.16	0.17	0.06	0.08	0.10	0.12	0.14	0.16	0.17
	TC	120	129	135	140	143	145	147	127	136	143	147	151	153	155
70	SHC	24	37	50	63	75	88	100	0	9	18	27	36	45	54
	kW BF	19.9	19.5	19.3	19.2	19.2	19.1	19.1	20.7	20.2	20.0	19.8	19.8	19.7	19.7
	TC	0.07	0.09	0.11	0.12	0.14	0.16	0.17	0.06	0.08	0.10	0.12	0.14	0.16	0.17
	SHC	117 22	126 35	132 48	136 61	139 74	142 86	143 98	124 –2	133 7	139 16	143 25	147 34	149 43	151 52
75	kW	20.5	20.1	19.9	19.8	19.7	19.7	96 19.7	21.3	20.8	20.5	20.4	20.3	20.2	20.2
	BF	0.07	0.09	0.11	0.12	0.14	0.16	0.17	0.06	0.08	0.10	0.12	0.14	0.16	0.17
	TC	114	123	128	133	136	138	139	120	129	135	140	143	145	147
80	SHC	20	33	46	59	72	84	96	-4	5	14	23	32	41	51
30	kW	21.1	20.7	20.5	20.4	20.3	20.3	20.2	21.9	21.4	21.1	21.0	20.9	20.8	20.8
	BF	0.07	0.09	0.11	0.12	0.14	0.16	0.17	0.06	0.08	0.10	0.12	0.14	0.16	0.17

50A030	(30 TONS)	— нот с	AS REH	EAT MO	DE (cont))									
	, ,						Air Enter	ing Evap	orator –	- Ewb (F)				
Te	emp (F)			7	5 Dry Bu	lb					7	5 Dry Bu	lb		
Air	Entering ndenser			68.0 We	et Bulb (7	'0% RH)					70.5 We	et Bulb (8	0% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		6,000	7,500	9,000	10,500	12,000	13,500	15,000	6,000	7,500	9,000	10,500	12,000	13,500	15,000
	TC	151	162	170	176	181	185	188	158	170	178	184	189	193	196
40	SHC	-14	-9	-3	2	8	14	20	-38	-35	-33	-31	-28	-25	-22
	kW	18.6	18.2	18.0	17.8	17.8	17.7	17.7	19.5	19.0	18.7	18.5	18.4	18.3	18.3
	BF	0.02	0.06	0.09	0.12	0.14	0.16	0.17	0.00	0.00	0.04	0.08	0.11	0.14	0.16
	TC	146	156	163	169	173	176	179	152	163	171	176	181	184	187
50	SHC kW	-17	-12	-7	-1	4	10	16	-41	-39	-37	-34	-32	-29	-26
	BF	19.5	19.0	18.7	18.6	18.5	18.5	18.4	20.4	19.8	19.4	19.3	19.2	19.1	19.0
		0.02	0.06	0.09	0.12	0.14	0.16	0.17	0.00	0.00	0.05	0.09	0.11	0.14	0.16
	TC SHC	140	150	157	162	166	169	171	146	156	164	169	173	176	179
60	kW	-21 20.4	-16 19.9	-10 19.6	-5 19.5	1 19.4	7 19.3	13 19.3	-44 21.3	-42 20.7	-40 20.3	-38 20.1	-35 20.0	-33 19.9	-30 19.9
	BF	0.03	0.07	0.09	0.12	0.14	0.16	0.17	0.00	0.00	0.05	0.09	0.12	0.14	0.16
-	TC	133	143	150	155	158	161	163	139	150	157	162	166	169	171
70	SHC	-24	-19	-14	- 8	-3	3	9	-48	-45	-44	-41	-39	-36	-33
70	kW	21.5	20.9	20.6	20.5	20.4	20.3	20.2	22.3	21.7	21.3	21.1	21.0	20.9	20.8
	BF	0.03	0.07	0.09	0.12	0.14	0.16	0.17	0.00	0.01	0.06	0.09	0.12	0.14	0.16
	TC	130	140	146	151	154	157	159	136	146	153	158	162	165	167
75	SHC	-26	-21	-16	-10	-5	1	7	-49	-47	-45	-43	-41	-38	-35
	kW	22.1	21.5	21.2	21.0	20.9	20.8	20.8	22.9	22.2	21.9	21.6	21.5	21.4	21.4
	BF	0.04	0.07	0.09	0.12	0.14	0.16	0.17	0.00	0.01	0.06	0.09	0.12	0.14	0.16
	TC	127	136	142	147	150	153	155	132	142	149	154	158	161	163
80	SHC	-28	-23	-18	-12	-6	-1	5	- 51	-49	-47	-45	-43	-40	-37
	kW	22.7	22.1	21.8	21.6	21.5	21.4	21.4	23.5	22.8	22.4	22.2	22.1	22.0	21.9
	BF	0.04	0.07	0.10	0.12	0.14	0.16	0.17	0.00	0.02	0.06	0.09	0.12	0.14	0.16

COOLING CAPACITIES (cont)

48/50	A035 (35	TONS)	— ST	ANDA	RD MC	DE															
	mp (F)	,							Eva	aporat	or Air	Quanti	ity — (Cfm							
	Entering			7,000					8,750					10,500					12,250)	
	ndenser									Evapo	rator A	\ir — E	wb (F)							
(Edb)	75	2 423 394 366 338 459 440 410 383 363 471 452 421 395 383 479 460 430 403 399 3 206 250 291 329 189 222 275 327 363 199 237 299 359 383 208 252 323 389 399														57				
75	TC SHC kW BF	442 423 394 366 338 459 440 410 383 363 471 452 44 179 206 250 291 329 189 222 275 327 363 199 237 25 24.8 24.3 23.6 23.2 23.1 25.3 24.7 24.0 23.4 23.2 25.6 25.1 24 0.00 0.00 0.01 0.02 0.00 0.01 0.01 0.10 0.01																	399 399 23.7 0.29		
85	TC SHC kW BF	428 174 27.8 0.00	412 201 27.3 0.00	384 245 26.9 0.01	354 285 26.7 0.01	326 322 27.0 0.02	444 184 28.2 0.00	426 217 27.7 0.00	399 270 27.1 0.01	372 321 26.8 0.01	352 352 26.7 0.13	455 193 28.5 0.01	437 231 28.0 0.01	410 294 27.3 0.01	384 354 26.9 0.03	374 374 26.8 0.23	463 203 28.8 0.02	444 246 28.2 0.02	417 318 27.5 0.02	393 384 27.0 0.05	389 389 26.9 0.31
95	TC SHC kW BF	417 170 31.3 0.00	400 197 31.1 0.00	371 239 30.8 0.01	341 279 31.3 0.01	312 312 32.9 0.03	432 179 31.6 0.00	415 212 31.2 0.00	387 265 30.9 0.01	358 314 30.8 0.01	341 341 31.2 0.16	441 188 31.9 0.01	424 227 31.4 0.01	397 289 31.0 0.02	370 348 30.8 0.03	362 362 30.7 0.25	447 197 32.1 0.02	431 241 31.6 0.02	405 313 31.0 0.02	380 376 30.8 0.05	378 378 30.8 0.33
105	TC SHC kW BF	403 165 35.5 0.00	385 191 35.4 0.00	356 232 36.0 0.01	325 271 37.7 0.01	308 308 39.3 0.12	417 174 35.7 0.00	400 207 35.5 0.01	372 258 35.5 0.01	343 307 36.5 0.02	328 328 37.4 0.19	427 184 35.9 0.01	410 222 35.5 0.01	381 283 35.3 0.02	355 340 35.8 0.03	349 349 36.1 0.28	433 193 36.0 0.02	417 236 35.6 0.02	389 307 35.3 0.02	365 365 35.5 0.07	365 365 35.5 0.35
115	TC SHC kW BF	380 156 39.4 0.00	364 182 39.7 0.00	337 224 40.9 0.01	_ _ _	_ _ _	391 165 39.5 0.00	376 198 39.5 0.01	351 250 40.1 0.01	=	_ _ _	398 174 39.5 0.01	384 213 39.4 0.01	360 274 39.8 0.02	335 330 40.9 0.04	332 332 41.1 0.31	403 183 39.6 0.01	389 227 39.4 0.02	366 298 39.6 0.02	347 347 40.2 0.12	347 347 40.2 0.39

48/50	A035 (35	TONS)	_ S1	ANDA	RD M	ODE (c	ont)										
	mp (F)		Evaporator Air Quantity — Cfm 14,000 15,750 17,500														
	Entering			14,000)				15,750					17,500			
	ndenser		_				Eva	porato	or Air -	– Ewb	(F)		_				
	Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	
75	TC SHC kW BF	485 217 26.0 0.02	466 266 25.5 0.02	436 347 24.7 0.03	412 411 24.0 0.09	411 411 24.0 0.36	490 226 26.1 0.03	471 281 25.6 0.03	442 369 24.8 0.04	422 422 24.3 0.17	422 422 24.3 0.42	_ _ _	475 295 25.7 0.04	446 391 24.9 0.05	432 432 24.5 0.23	432 432 24.5 0.46	
85	TC SHC kW BF	469 212 29.0 0.02	451 261 28.4 0.02	422 341 27.6 0.03	402 402 27.1 0.11	401 401 27.1 0.38		455 275 28.6 0.03	426 363 27.7 0.04	411 411 27.3 0.19	411 411 27.3 0.43	_ _ _	459 290 28.7 0.04	431 384 27.8 0.05	419 419 27.5 0.26	419 419 27.5 0.48	
95	TC SHC kW BF	_ _ _	436 256 31.7 0.02	410 336 31.1 0.03	391 391 30.9 0.13	390 390 30.9 0.39		439 270 31.8 0.03	414 358 31.2 0.04	401 401 31.0 0.21	400 400 31.0 0.45		443 284 31.9 0.04	418 379 31.3 0.06	409 409 31.1 0.27	408 408 31.1 0.49	
105	TC SHC kW BF	_ _ _	421 251 35.7 0.03	394 330 35.3 0.03	377 377 35.3 0.16	377 377 35.3 0.42		425 265 35.7 0.03	399 352 35.3 0.04	387 387 35.2 0.24	386 386 35.2 0.47	_ _ _	428 279 35.8 0.04	403 373 35.3 0.06	395 395 35.3 0.30	395 395 35.3 0.51	
115	TC SHC kW BF	_ _ _	393 242 39.4 0.02	371 321 39.4 0.03	358 358 39.7 0.21	358 358 39.7 0.45		396 256 39.5 0.03	375 342 39.4 0.05	367 367 39.5 0.28	367 367 39.5 0.49	_ _ _	399 270 39.5 0.04	378 362 39.3 0.07	374 374 39.4 0.34	374 374 39.4 0.54	

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input
RH — Relative Humidity
SCFM — Standard Cubic Feet per Minute
SHC — Sensible Heat Capacity (1000 Btuh)
TC — Total Capacity (1000 Btuh) Gross
VAV — Variable Air Volume

Boldface — VAV Units Only

NOTES:

Direct interpolation is permissible. Do not extrapolate. The following formulas may be used:

 t_{ldb} = t_{edb} - sensible capacity (Btuh)

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

 $h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{1}$

Where: $h_{\text{ewb}} = \text{Enthalpy}$ of air entering evaporator coil. 3. The SHC is based on 80°F edb temperature of air entering evapora-

Below 80°F edb, subtract (corr factor x cfm) from SHC. Above 80°F edb, add (corr factor x cfm) to SHC.

		ENTE	RING A	R DRY-	BULB 1	TEMP (F)							
DE	79	78	77	76	75	under 75							
ВГ	81	82	83	84	85	over 85							
81 82 83 84 85 over 85													
.05	1.04	2.07	3.11	4.14	4.18	l la a farmanda							
.10	.98	1.96	2.94	3.92	4.91	shown below.							
.20	.87	1.74	2.62	3.49	4.36	SHOWIT DEIOW.							

Interpolation is permissible.

Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

4. Cooling capacities are gross and do not include deduction for indoor fan motor heat.

48/50A	035 (35 T	ONS)	— SUI	BCOO	LING N	ODE															
Tem	np (F)						•		Eva	porato	r Air (Quanti	ty – S0	CFM							
Air Eı	ntering			7,000					8,750					10,500					12,250		
	denser			-	-			-		Evap	orator	Air Ev	vb (F)						-		
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	413	378	346	305	268	417	409	369	329	286	450	404	385	346	318	460	433	389	360	345
75	SHC	132	145	188	220	249	125	171	216	259	282	153	166	242	294	318	161	199	260	327	345
	kW	23.6	23.0	22.8	22.3	22.0	23.7	23.5	23.0	22.6	21.7	24.1	23.4	23.2	22.7	22.2	24.3	23.9	23.2	22.9	22.8
	BF	0.00	0.00	0.02	0.02	0.03	0.00	0.02	0.02	0.03	0.09	0.02	0.03	0.03	0.04	0.18	0.04	0.04	0.04	0.06	0.27
	TC	373	356	316	277	240	397	353	337	288	257	393	386	351	314	291	402	377	343	327	304
85	SHC	96	126	161	194	224	109	119	187	221	254	101	152	212	265	291	107	146	217	297	304
	kW	25.9	25.8	25.3	25.0	24.7	26.3	25.6	25.5	24.7	24.2	26.3	26.1	25.7	25.2	24.9	26.5	26.0	25.5	25.4	24.9
	BF	0.00	0.01	0.02	0.02	0.03	0.00	0.02	0.02	0.03	0.10	0.02	0.03	0.03	0.04	0.19	0.04	0.04	0.04	0.07	0.28
	TC	347	324	285	246	200	344	320	303	267	222	355	329	297	280	263	361	337	303	292	272
95	SHC	75	98	134	167	184	61	90	158	203	220	67	100	162	235	263	72	112	181	265	272
	kW BF	29.0	28.7	28.2	27.9	26.8	28.9	28.5	28.4	28.0	27.2	29.1	28.6	28.2	28.1	28.0	29.3	28.8	28.2	28.2	27.8
		0.00	0.01	0.02	0.02	0.05	0.01	0.02	0.02	0.03	0.11	0.02	0.03	0.03	0.05	0.21	0.04	0.04	0.04	0.07	0.29
	TC	306	281	253	214	182	307	278	269	234	206	314	313	249	247	231	319	296	284	259	250
105	SHC	38	60	106	139	168	30	53	129	174	206	31	89	119	206	231	35	75	167	233	250
	kW BF	32.1	31.7	31.6	31.3	31.2	32.1	31.5	31.7	31.4	31.2	32.3	32.3	31.1	31.5	31.4	32.4	31.9	31.8	31.6	31.5
		0.00	0.01	0.02	0.02	0.07	0.01	0.02	0.02	0.03	0.13	0.02	0.03	0.03	0.05	0.23	0.04	0.04	0.04	0.09	0.31
	TC SHC	281	249	221	173	143	291	242	226	201	165	272	251	219	213	172	275	253	247	223	204
115	kW	20	34	79	102	130	19	23	91	146	165	<u>-4</u>	33	95	175	172	-3	39	136	199	204
	BF	36.5 0.00	35.7 0.01	35.7 0.02	34.8 0.02	34.6 0.09	36.5 0.01	35.3 0.02	35.2 0.02	35.5 0.03	34.6	36.0 0.02	35.4 0.03	34.9 0.03	35.5 0.06	34.4 0.24	36.1 0.04	35.5 0.04	35.5 0.04	35.4	34.9 0.32
	טר	0.00	0.01	0.02	0.02	0.09	0.01	0.02	0.02	0.03	0.15	0.02	0.03	0.03	0.06	0.24	0.04	0.04	0.04	0.11	0.32

48/50A	035 (35 T	ONS)	— SUI	30001	LING N	IODE	(cont)									
Ten	np (F)				ir Qua	ntity -	SCFN	Л								
	ntering			14,000)				15,750)				17,500)	<u>.</u>
	denser						Εv	apora	tor Aiı	· Ewb ((F)					
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	452	443	399	372	365	460	434	410	383	381	465	438	414	384	394
75	SHC	154	214	284	356	365	163	213	311	379	381	171	225	330	384	394
	kW	24.2	24.0	23.4	23.1	23.0	24.4	24.0	23.5	23.2	23.2	24.5	24.1	23.6	23.1	23.4
	BF	0.05	0.05	0.05	0.10	0.34	0.06	0.06	0.07	0.14	0.39	0.08	0.07	0.08	0.20	0.44
	TC	409	384	351	338	333	415	391	371	349	337	420	394	378	350	358
85	SHC	115	159	240	323	333	123	175	276	345	337	131	185	299	350	358
	kW	26.6	26.2	25.7	25.5	25.5	26.8	26.3	25.9	25.7	25.4	26.9	26.4	26.1	25.6	25.9
	BF	0.05	0.05	0.05	0.11	0.35	0.06	0.06	0.07	0.15	0.40	0.08	0.07	0.08	0.21	0.45
	TC	367	342	299	304	299	371	347	313	304	303	374	351	318	316	323
95	SHC	78	122	193	290	299	84	135	221	301	303	91	147	242	316	323
	kW	29.4	28.9	28.1	28.4	28.3	29.5	29.0	28.4	28.3	28.2	29.6	29.1	28.5	28.4	28.6
	BF	0.05	0.05	0.05	0.12	0.36	0.06	0.06	0.07	0.17	0.41	0.08	0.07	0.08	0.22	0.46
	TC	320	299	291	260	254	325	302	268	278	275	328	305	262	287	281
105	SHC	37	85	189	247	254	44	95	182	276	275	50	107	191	287	281
	kW	32.5	32.0	31.9	31.4	31.3	32.7	32.0	31.4	31.8	31.7	32.8	32.1	31.3	31.9	31.7
	BF	0.05	0.05	0.06	0.13	0.37	0.07	0.06	0.07	0.18	0.42	0.08	0.07	0.08	0.24	0.47
	TC	277	256	227	234	229	279	257	268	238	240	278	256	270	243	249
115	SHC	0	48	130	222	229	4	57	188	238	240	7	64	205	243	249
	kW	36.2	35.5	34.9	35.5	35.5	36.4	35.6	36.1	35.5	35.5	36.5	35.6	36.0	35.4	35.6
	BF	0.05	0.05	0.06	0.15	0.38	0.07	0.06	0.07	0.19	0.44	0.08	0.07	0.09	0.26	0.48

COOLING CAPACITIES (cont)

50A035	(35 TONS)	— НОТ С	AS REH	EAT MOI	DE										
							Air Enter	ing Evap	orator –	- Ewb (F)				
	emp (F)				5 Dry Bu						7	Dry Bu	lb		
	Entering ndenser			62.5 We	et Bulb (5	0% RH)					65.3 We	t Bulb (6	0% RH)		
	(Edb)			5.			Air Ente	ring Eva	porator -	- SCFM					
		Air Entering Evaporator — SCFM 7,000 8,750 10,500 12,250 14,000 15,750 17,500 7,000 8,750 10,500 12,250 162 170 176 180 184 186 189 173 182 188 193 46 61 77 94 111 128 144 18 27 37 48													17,500
	TC	162	170	176	180	184	186	189	173		188	193	197	200	202
40	SHC	46	61	77	94	111	128	144	18	27	37	48	60	71	83
	kW BF	23.4	23.0	22.8	22.7	22.6	22.5	22.4	24.6	24.2	23.9	23.7	23.6	23.5	23.4
-		0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.00	0.01	0.01	0.02	0.03	0.04	0.05
	TC SHC	143 31	151 45	156	160 78	163 95	165	167 128	155	163 12	169 22	173 32	177	179	181 67
50	kW	24.1	45 23.8	61 23.6	78 23.4	23.3	111 23.2	23.2	3 25.4	24.9	24.7	32 24.5	44 24.3	55 24.3	24.2
	BF	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.00	0.01	0.01	0.02	0.03	0.04	0.05
	TC	125	132	137	140	142	144	146	137	144	150	153	156	158	160
60	SHC	15	29	45	62	78	95	111	-12	-4	6	16	28	39	51
	kW	24.9	24.6	24.4	24.2	24.1	24.1	24.0	26.2	25.8	25.5	25.3	25.2	25.1	25.0
	BF	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.00	0.01	0.01	0.02	0.03	0.04	0.05
	TC SHC	108	114	118	121	123	125	126	118	125	129	132	135	137	139
70	kW	-1	14	29	46	62	79	95	-27	-20	-10	0	11	23	35
	BF	24.8 0.01	25.5 0.01	25.3 0.01	25.1 0.02	25.0 0.03	25.0 0.04	24.9 0.05	27.2 0.00	26.7 0.01	26.4 0.01	26.2 0.02	26.1 0.03	26.0 0.04	25.9 0.05
	TC	99	105	108	111	113	114	116	109	115	119	122	125	127	128
75	SHC	_7	6	21	38	54	71	87	–35	-27	-18	-8	4	15	27
75	kW	26.4	26.0	25.8	25.6	25.5	25.4	25.4	27.7	27.2	26.9	26.7	26.6	26.5	26.4
	BF	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.00	0.01	0.01	0.02	0.03	0.04	0.05
	TC	90	96	99	101	103	104	106	100	106	110	112	115	117	118
80	SHC	-15	-1	14	30	46	63	78	-43	-35	-26	-16	-4	7	19
	kW BF	26.9	26.5	26.3	26.2	26.0	26.0	25.9	28.2	27.7	27.4	27.2	27.1	27.0	26.9
	DF	0.00	0.01	0.01	0.02	0.03	0.04	0.05	0.00	0.01	0.01	0.02	0.03	0.04	0.05

50A03	5 (35 TONS) -	— нот с	AS REH	EAT MOI	DE (cont))									
	<u>, , , , , , , , , , , , , , , , , , , </u>				<u> </u>		Air Enter	ing Evap	orator –	- Ewb (F)				
	emp (F)			7.	5 Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			68.0 We	t Bulb (7	'0% RH)					70.5 We	t Bulb (8	80% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		7,000	8,750	10,500	12,250	14,000	15,750	17,500	7,000	8,750	10,500	12,250	14,000	15,750	17,500
	TC	184	193	200	205	209	212	215	193	204	211	215	220	222	223
40	SHC	-10	-8	-4	1	7	13	19	-39	-42	-44	-44	-42	-40	-38
	kW	26.2	25.6	25.4	25.2	25.2	25.1	25.2	28.1	27.7	27.5	27.6	27.8	28.1	28.6
	BF	0.00	0.01	0.02	0.03	0.04	0.06	0.07	0.00	0.00	0.01	0.03	0.05	0.07	0.09
	TC	165	175	181	185	189	192	195	175	184	191	196	201	203	204
50	SHC	-25	-23	-20	-15	-9	-3	4	-54	-58	-60	-59	-58	-56	-54
	kW BF	26.9	26.4	26.1	26.0	25.9	25.9	25.9	28.8	28.4	28.2	28.3	28.5	28.8	29.2
-		0.00	0.01	0.02	0.03	0.04	0.05	0.07	0.00	0.00	0.01	0.03	0.05	0.07	0.09
	TC SHC	147	155	161	165	169	172	175	157	165	172	177	181	183	184
60	kW	-41 07.0	-39 27.0	-35	-31	-25	-19	-12	-69	-73	-75	-75	-73	-72	-70
	BF	27.8 0.00	27.2 0.01	26.9 0.02	26.8 0.03	26.7 0.04	26.7 0.05	26.7 0.07	29.7 0.00	29.2 0.00	29.0 0.01	29.1 0.03	29.3 0.05	29.6 0.07	30.0
	TC														0.09
	SHC	129 –56	136 –55	141 –51	145 –46	149 –41	152 -35	154 –28	138 –84	146 –89	152 –90	157 –90	160 –89	162 -88	162 -86
70	kW	-56 28.7	-55 28.2	27.8	-46 27.7	27.6	-35 27.6	-28 27.7	-64 30.6	30.1	29.9	30.0	30.2	30.5	30.9
	BF	0.00	0.01	0.02	0.03	0.04	0.05	0.07	0.00	0.00	0.01	0.03	0.05	0.07	0.09
	TC	119	126	131	135	139	141	143	129	137	142	147	150	151	152
75	SHC	-64	-62	– 59	-54	–49	-43	-36	-92	-96	-98	-98	-97	-96	-94
75	kW	29.2	28.7	28.3	28.2	28.1	28.1	28.1	31.1	30.6	30.4	30.5	30.7	31.0	31.3
	BF	0.00	0.01	0.02	0.03	0.04	0.05	0.07	0.00	0.00	0.01	0.03	0.05	0.07	0.09
	TC	110	117	122	125	128	131	133	119	127	133	137	139	141	141
80	SHC	-71	-70	-67	-62	-57	-51	-44	-99	-104	-106	-106	-105	-104	-102
	kW	29.7	29.2	28.9	28.7	28.6	28.6	28.7	31.6	31.1	30.9	31.0	31.2	31.5	31.8
	BF	0.00	0.01	0.02	0.03	0.04	0.05	0.07	0.00	0.00	0.01	0.03	0.05	0.07	0.09

48/50	A040 (40 ⁻	TONS)	— ST	ANDA	RD MC	DE															
Te	mp (F)								Eva	aporat	or Air (Quanti	ity — C)fm							
Air E	ntering			8,000					10,000)				12,000					14,000		
	denser								.	Evapo	rator A	ir — E	wb (F)							
	Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	517	495	459	423	388	542	518	482	445	415	558	533	498	461	439	570	546	509	473	460
	SHC	206	235	284	330	371	216	253	313	370	408	228	270	341	408	439	239	287	368	441	460
	kW	25.9	25.5	25.0	24.7	24.3	26.3	25.9	25.4	25.0	24.5	26.6	26.2	25.6	25.2	24.8	26.8	26.4	25.8	25.3	25.1
	BF	0.00	0.00	0.06	0.04	0.05	0.00	0.10	0.06	0.05	0.13	0.15	0.08	0.06	0.06	0.20	0.11	0.08	0.07	0.08	0.29
85	TC	503	481	446	410	376	525	504	467	431	405	541	519	483	447	427	552	531	494	458	448
	SHC	199	230	278	325	364	210	248	307	363	397	222	265	335	400	427	233	282	362	434	448
	kW	29.2	28.8	28.5	28.0	27.7	29.6	29.3	28.8	28.4	27.9	29.9	29.5	29.0	28.6	28.3	30.1	29.7	29.2	28.7	28.5
	BF	0.00	0.13	0.06	0.03	0.05	0.00	0.09	0.06	0.05	0.16	0.13	0.08	0.06	0.06	0.23	0.10	0.08	0.07	0.08	0.31
95	TC	489	467	431	395	363	510	488	452	416	390	525	503	466	429	414	536	514	477	442	434
	SHC	193	224	272	317	356	205	242	301	356	390	217	260	328	392	414	228	276	355	425	434
	kW	33.0	32.6	32.3	32.0	31.7	33.4	33.1	32.6	32.3	31.8	33.7	33.4	32.9	32.5	32.1	33.9	33.5	33.0	32.6	32.4
	BF	0.00	0.10	0.05	0.04	0.06	0.10	0.08	0.05	0.05	0.15	0.11	0.08	0.06	0.06	0.25	0.10	0.08	0.07	0.09	0.33
105	TC	473	451	414	381	350	492	470	434	399	378	506	484	447	412	401	516	493	457	423	419
	SHC	187	218	264	311	346	200	236	293	348	378	211	253	321	384	401	221	269	347	414	419
	kW	37.2	36.8	36.8	36.2	36.5	37.6	37.4	37.0	37.0	36.6	37.9	37.6	37.2	37.1	36.7	38.1	37.8	37.4	37.0	36.8
	BF	0.00	0.08	0.05	0.03	0.07	0.15	0.08	0.05	0.05	0.18	0.10	0.07	0.06	0.07	0.27	0.09	0.08	0.07	0.10	0.35
115	TC	453	432	397	364	337	471	450	415	381	364	483	462	427	394	386	492	472	436	405	403
	SHC	180	211	257	302	332	193	228	286	340	364	204	245	313	375	386	214	262	339	402	403
	kW	42.0	41.4	42.2	42.1	41.8	42.5	42.4	42.4	42.5	42.2	42.6	42.6	42.5	42.5	42.2	42.8	42.8	42.7	42.3	42.2
	BF	0.00	0.07	0.05	0.03	0.11	0.12	0.07	0.05	0.05	0.21	0.09	0.07	0.06	0.07	0.30	0.08	0.07	0.06	0.11	0.37
120	TC	442	422	389	354	330	460	440	405	372	356	473	451	417	384	378	481	460	425	395	395
	SHC	177	207	255	297	327	189	225	281	336	356	200	241	309	369	378	211	258	335	395	395
	kW	44.6	44.8	44.1	45.8	45.1	45.2	45.3	45.3	45.2	45.2	45.5	45.4	45.4	45.4	45.2	45.6	45.6	45.6	45.2	45.2
	BF	0.00	0.07	0.03	0.04	0.12	0.11	0.07	0.05	0.04	0.23	0.09	0.07	0.06	0.07	0.32	0.08	0.07	0.06	0.12	0.39

48/50	/50A040 (40 TONS) — STANDARD MODE (cont) Evaporator Air Quantity — Cfm															
Te	mp (F)		Evaporator Air Quantity — Cfm													
Air E	Entering			16,000					18,000					20,000		
	idenser		Evaporator Air — Ewb (F)													
	Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	579	555	519	483	477	587	563	526	491	491	593	569	532	504	503
	SHC	249	304	394	470	477	259	320	419	491	491	269	335	443	499	503
	kW	26.9	26.5	25.9	25.4	25.3	27.1	26.6	26.1	25.5	25.5	27.2	26.7	26.1	25.7	25.7
	BF	0.10	0.09	0.07	0.11	0.35	0.11	0.09	0.08	0.15	0.41	0.11	0.10	0.09	0.23	0.45
85	TC	560	539	503	468	464	568	546	510	479	478	574	552	515	491	489
	SHC	243	298	388	461	464	253	314	412	476	478	263	330	437	486	489
	kW	30.2	29.9	29.3	28.8	28.7	30.4	30.0	29.4	28.9	28.9	30.5	30.1	29.5	29.1	29.1
	BF	0.10	0.09	0.07	0.12	0.37	0.11	0.09	0.09	0.18	0.42	0.11	0.09	0.09	0.25	0.47
95	TC	543	522	485	451	450	551	528	492	465	463	556	534	497	477	475
	SHC	238	292	380	449	450	248	308	405	458	463	258	324	427	465	475
	kW	34.0	33.7	33.2	32.6	32.6	34.1	33.8	33.3	32.8	32.8	34.2	33.9	33.4	32.9	32.9
	BF	0.09	0.08	0.08	0.13	0.39	0.10	0.09	0.08	0.22	0.44	0.11	0.09	0.09	0.29	0.48
105	TC	523	501	464	435	434	529	507	471	450	447	534	512	475	459	458
	SHC	232	285	373	432	434	241	301	397	440	447	251	317	420	454	458
	kW	38.2	38.0	37.5	36.9	37.0	38.4	38.1	37.6	37.0	37.1	38.5	38.2	37.7	37.2	37.3
	BF	0.09	0.08	0.07	0.16	0.41	0.10	0.09	0.08	0.25	0.46	0.10	0.09	0.10	0.30	0.50
115	TC	500	479	443	420	417	505	484	449	434	429	510	489	453	440	439
	SHC	224	278	365	412	417	234	294	389	434	429	244	309	411	440	439
	kW	43.1	42.9	42.7	42.0	42.2	43.2	43.0	42.8	42.3	42.3	43.3	43.1	42.8	42.4	42.4
	BF	0.09	0.08	0.07	0.21	0.43	0.10	0.09	0.09	0.31	0.48	0.10	0.09	0.10	0.32	0.52
120	TC	488	467	432	412	408	493	473	437	425	420	497	477	442	430	430
	SHC	220	274	361	404	408	230	290	384	425	420	240	306	406	430	430
	kW	45.9	45.7	45.5	44.4	45.2	46.0	45.8	45.7	45.2	45.2	46.1	45.9	45.6	45.2	45.2
	BF	0.09	0.08	0.07	0.23	0.45	0.10	0.09	0.09	0.33	0.49	0.10	0.09	0.10	0.33	0.53

COOLING CAPACITIES (cont)

48/50A	040 (40 T	ONS)	— SUI	BCOO	LING N	IODE															
	np (F) ntering			8,000					Eva 10,000	porato	or Air (Juanti		ЭНИ 12,000)				14,000)	
Cond	denser										orator	Air Ev		,					,		
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	501	473	429	379	352	528	499	455	403	374	549	519	474	420	387	562	534	488	446	408
75	SHC	189	214	253	281	327	202	231	281	319	368	214	249	307	352	387	224	265	331	395	408
	kW	26.5	26.1	25.7	24.9	25.0	26.8	26.4	25.9	25.2	25.1	27.1	26.7	26.2	25.4	25.0	27.3	26.9	26.3	26.0	25.3
	BF	0.00	0.07	0.09	0.09	0.10	0.07	0.10	0.11	0.11	0.14	0.10	0.12	0.12	0.13	0.22	0.12	0.13	0.14	0.15	0.30
	TC	478	444	410	369	330	497	477	422	382	344	523	492	440	397	363	527	498	462	424	383
85	SHC	172	190	239	276	309	177	215	253	302	338	195	229	279	334	363	196	236	311	378	383
	kW	29.4	28.9	28.9	28.4	27.9	29.5	29.4	28.6	28.2	27.9	30.0	29.6	28.9	28.4	28.1	30.1	29.7	29.2	29.1	28.2
	BF	0.00	0.07	0.09	0.09	0.11	0.07	0.10	0.11	0.11	0.16	0.10	0.12	0.12	0.13	0.24	0.12	0.13	0.14	0.16	0.32
	TC	442	416	375	348	310	476	451	398	358	332	484	457	426	386	344	506	480	437	395	363
95	SHC	142	168	209	259	292	164	196	235	284	326	164	201	271	328	344	184	226	293	354	363
	kW	32.6	32.3	31.9	31.9	31.6	33.1	32.9	32.1	31.7	31.7	33.1	32.8	32.6	32.3	31.7	33.5	33.2	32.7	32.3	31.8
-	BF	0.02	0.07	0.09	0.09	0.11	0.08	0.10	0.11	0.11	0.18	0.11	0.12	0.12	0.13	0.25	0.13	0.13	0.14	0.16	0.33
	TC	415	402	363	314	288	438	413	384	347	316	464	439	400	361	325	467	449	410	374	342
105	SHC	122	160	203	231	275	133	165	227	278	311	153	190	252	309	325	153	202	274	338	342
	kW BF	36.6	36.7	36.4	35.9	35.9	36.8	36.6	36.5	36.4	36.2	37.2	37.0	36.7	36.4	36.0	37.2	37.1	36.8	36.5	36.1
		0.03	0.08	0.09	0.09	0.11	0.08	0.10	0.11	0.11	0.19	0.11	0.12	0.12	0.14	0.27	0.13	0.13	0.14	0.16	0.34
	TC	388	376	339	304	273	410	394	356	311	295	433	410	371	324	303	445	421	383	334	330
115	SHC	103	141	184	226	260	113	154	207	247	291	130	169	231	277	303	140	183	254	303	330
	kW BF	41.2	41.5	41.4	41.4	41.5	41.4	41.5	41.4	40.9	41.3	41.8	41.6	41.4	41.0	40.9	41.9	41.7	41.6	41.0	41.4
	DF	0.03	0.08	0.09	0.09	0.13	0.08	0.10	0.10	0.11	0.21	0.11	0.12	0.12	0.14	0.29	0.13	0.13	0.14	0.17	0.36

48/50A	040 (40 T	ONS)	— SUI	3COOI	LING N	/IODE	(cont)									
Ten	np (F)						Evapo	rator A	ir Qua	ntity -	- SCFN	Л				
	ntering			16,000)				18,000					20,000		
	denser						E۱	/apora	tor Aiı	Ewb	(F)					
(E	idb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	568	537	490	445	416	583	553	509	465	452	591	554	516	469	464
75	SHC	228	272	345	410	416	243	293	377	445	452	252	300	400	465	464
	kW	27.4	26.9	26.3	25.7	25.4	27.6	27.2	26.6	26.1	25.9	27.7	27.2	26.8	26.0	26.0
	BF	0.14	0.15	0.15	0.18	0.37	0.15	0.16	0.17	0.21	0.42	0.17	0.18	0.18	0.24	0.47
	TC	539	509	463	421	405	553	519	469	439	433	561	531	478	46	444
85	SHC	206	251	325	391	405	222	266	345	422	433	231	285	368	45	444
	kW	30.2	29.8	29.2	28.7	28.5	30.5	29.9	29.2	29.2	29.1	30.6	30.1	29.4	29.2	29.2
	BF	0.14	0.15	0.15	0.18	0.38	0.16	0.16	0.17	0.22	0.43	0.17	0.18	0.18	0.25	0.48
	TC	515	489	448	409	394	517	488	455	404	409	525	495	449	424	425
95	SHC	192	239	317	384	394	194	244	338	394	409	204	257	347	423	425
	kW	33.6	33.3	32.9	32.6	32.4	33.7	33.2	32.9	32.2	32.5	33.8	33.3	32.7	32.7	32.9
	BF	0.14	0.15	0.15	0.19	0.39	0.16	0.16	0.17	0.22	0.44	0.17	0.18	0.18	0.26	0.49
	TC	484	460	420	369	359	488	464	426	384	385	491	471	431	399	396
105	SHC	169	218	297	351	359	175	229	318	374	385	179	243	337	399	396
	kW BF	37.5	37.2	36.9	36.2	36.1	37.5	37.2	37.0	36.4	36.6	37.5	37.3	37.0	36.8	36.7
		0.14	0.15	0.15	0.19	0.41	0.16	0.16	0.17	0.24	0.46	0.17	0.18	0.18	0.28	0.50
	TC	445	429	390	357	335	458	435	397	365	355	464	432	401	375	366
115	SHC	139	195	275	339	335	153	208	296	356	355	161	212	314	375	366
	kW	41.8	41.8	41.6	41.5	40.9	42.0	41.8	41.6	41.5	41.4	42.1	41.7	41.7	41.6	41.4
	BF	0.14	0.15	0.15	0.21	0.42	0.16	0.16	0.17	0.26	0.47	0.17	0.18	0.19	0.29	0.51

50A040	(40 TONS)	— нот G	AS REH	EAT MOI	DE										
							Air Entei	ing Evap	orator –	– Ewb (F)					
	emp (F)			7:	5 Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			62.5 We	et Bulb (5	0% RH)					65.3 We	t Bulb (6	60% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		8,000	10,000	12,000	12,000	14,000	16,000	18,000	20,000						
40	TC	243	259	269	277	283	288	291	259	275	286	294	300	305	308
	SHC	100	118	136	153	171	188	205	73	85	97	110	122	135	148
	kW	23.4	23.3	23.3	23.3	23.3	23.3	23.3	24.4	24.2	24.1	24.0	24.0	24.0	24.0
	BF	0.06	0.08	0.10	0.11	0.13	0.15	0.16	0.05	0.07	0.10	0.11	0.13	0.15	0.16
50	TC	224	239	249	256	262	266	270	240	255	265	273	278	283	286
	SHC	84	101	119	137	154	172	189	57	69	81	93	106	119	131
	kW	24.3	24.2	24.2	24.2	24.2	24.2	24.2	25.3	25.1	25.0	24.9	24.9	24.9	24.9
	BF	0.06	0.08	0.10	0.11	0.13	0.14	0.16	0.05	0.07	0.09	0.11	0.13	0.15	0.16
60	TC	204	217	227	234	239	243	247	219	233	243	250	256	260	263
	SHC	67	84	102	120	137	155	172	40	52	64	76	89	102	115
	kW	25.4	25.2	25.2	25.1	25.1	25.1	25.1	26.4	26.1	26.0	25.9	25.9	25.8	25.8
	BF	0.06	0.08	0.09	0.11	0.13	0.14	0.16	0.05	0.07	0.09	0.11	0.13	0.15	0.16
70	TC	184	196	205	211	216	220	223	198	211	220	227	232	235	238
	SHC	51	67	85	102	120	137	154	23	34	47	59	72	84	97
	kW	26.5	26.4	26.3	26.2	26.2	26.2	26.2	27.5	27.2	27.1	27.0	27.0	26.9	26.9
	BF	0.06	0.08	0.09	0.11	0.13	0.14	0.16	0.05	0.07	0.09	0.11	0.13	0.14	0.16
75	TC	175	186	194	200	204	208	211	188	200	209	215	220	223	226
	SHC	42	59	76	94	111	128	145	15	26	38	50	63	76	88
	kW	27.2	27.0	26.9	26.9	26.8	26.8	26.8	28.2	27.9	27.7	27.6	27.6	27.5	27.5
	BF	0.06	0.08	0.09	0.11	0.13	0.14	0.16	0.05	0.07	0.09	0.11	0.13	0.14	0.16
80	TC	165	176	183	188	193	196	199	178	189	197	203	208	211	214
	SHC	34	51	68	85	102	120	136	6	17	29	42	54	67	80
	kW	27.9	27.7	27.6	27.5	27.5	27.5	27.5	28.8	28.5	28.4	28.3	28.2	28.2	28.1
	BF	0.06	0.08	0.09	0.11	0.13	0.14	0.16	0.05	0.07	0.09	0.11	0.13	0.14	0.16

50A04	0 (40 TONS)	— нот с	AS REH	EAT MOI	DE (cont))									
-							Air Entei	ring Evap	orator –	- Ewb (F)					
	emp (F)			7	Dry Bu	lb					7:	5 Dry Bu	lb		
	Entering ndenser			68.0 We	t Bulb (7	'0% RH)					70.5 We	et Bulb (8	80% RH)		
	(Edb)						Air Ente	ring Eva	porator -	— SCFM					
		8,000	10,000	12,000	14,000	16,000	18,000	20,000	8,000	10,000	12,000	14,000	16,000	18,000	20,000
40	TC	275	291	302	310	316	321	325	290	305	316	324	331	335	339
	SHC	47	53	60	68	76	84	92	20	23	26	29	33	37	42
	kW	25.5	25.1	25.0	24.9	24.8	24.8	24.7	26.5	26.1	25.8	25.7	25.6	25.5	25.4
	BF	0.02	0.05	0.08	0.10	0.13	0.14	0.16	0.00	0.00	0.02	0.06	0.09	0.11	0.13
50	TC	255	271	281	289	295	299	303	270	286	296	304	310	315	318
	SHC	30	37	44	51	59	67	76	5	7	10	13	17	21	26
	kW	26.4	26.0	25.8	25.7	25.6	25.6	25.5	27.4	26.9	26.7	26.5	26.4	26.3	26.2
	BF	0.02	0.05	0.08	0.10	0.12	0.14	0.16	0.00	0.00	0.02	0.06	0.09	0.11	0.13
60	TC	235	249	259	266	272	276	279	249	264	274	281	287	291	294
	SHC	14	20	27	34	42	51	59	-12	-10	-7	-4	0	4	9
	kW	27.4	27.0	26.8	26.7	26.6	26.5	26.5	28.4	27.9	27.6	27.4	27.3	27.2	27.2
	BF	0.02	0.05	0.08	0.10	0.12	0.14	0.16	0.00	0.00	0.03	0.06	0.09	0.11	0.13
70	TC	213	227	236	243	248	252	255	227	241	251	257	263	267	270
	SHC	-4	3	10	17	25	33	42	-29	-27	-24	-21	-17	-13	-9
	kW	28.5	28.1	27.9	27.8	27.7	27.6	27.6	29.6	29.0	28.7	28.5	28.4	28.3	28.2
	BF	0.02	0.05	0.08	0.10	0.12	0.14	0.16	0.00	0.00	0.03	0.06	0.09	0.11	0.13
75	TC	202	215	224	231	235	239	242	216	230	239	245	250	254	257
	SHC	-12	-6	1	8	16	25	33	-38	-36	-33	-30	-26	-22	-17
	kW	29.2	28.8	28.5	28.4	28.3	28.2	28.2	30.2	29.7	29.3	29.1	29.0	28.9	28.8
	BF	0.02	0.05	0.08	0.10	0.12	0.14	0.16	0.00	0.00	0.03	0.06	0.09	0.11	0.13
80	TC	191	203	212	218	223	226	229	205	218	227	233	238	241	244
	SHC	-21	-15	-8	0	8	16	24	-46	-45	-42	-39	-35	-31	-26
	kW	29.8	29.4	29.2	29.0	28.9	28.9	28.8	30.9	30.3	30.0	29.8	29.7	29.6	29.5
	BF	0.02	0.05	0.08	0.10	0.12	0.14	0.16	0.00	0.00	0.03	0.06	0.09	0.11	0.13

COOLING CAPACITIES (cont)

48/50A	050 (50 TON	IS) — ST	ANDARI) MODE												
T	emp (F)						Ev	aporator	Air Qua	ntity — C	fm					
Air	Entering			10,000					12,500					15,000		
	ndenser (Edb)							Evapora	tor Air —	- Ewb (F)						
	(Eab)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	636	602	545	495	450	669	633	575	525	489	692	658	602	550	523
75	SHC	255	287	340	391	438	271	314	379	443	482	289	338	418	493	523
. •	kW	31.3	30.7	29.9	29.2	28.5	31.8	31.2	30.3	29.6	29.0	32.2	31.6	30.8	30.1	29.6
	BF	0.00	0.07	0.06	0.04	0.05	0.00	0.10	0.06	0.05	0.16	0.18	0.09	0.06	0.06	0.23
	TC	611	574	524	476	432	639	605	553	504	471	662	628	576	525	503
85	SHC	237	270	322	371	413	253	293	357	417	450	266	312	387	456	481
00	kW	34.6	33.9	33.3	32.8	32.2	35.0	34.5	33.8	33.2	32.6	35.4	34.9	34.2	33.6	33.1
	BF	0.00	0.17	0.06	0.04	0.06	0.00	0.09	0.05	0.05	0.17	0.15	0.08	0.06	0.06	0.25
	TC	584	553	502	454	411	613	581	530	480	450	633	601	549	499	482
95	SHC	227	261	315	365	408	246	287	354	416	450	263	311	390	463	482
33	kW	38.4	38.0	37.5	37.4	36.8	38.9	38.5	38.1	37.9	37.2	39.3	38.9	38.5	38.1	37.6
	BF	0.00	0.13	0.05	0.04	0.07	0.08	0.08	0.05	0.05	0.18	0.13	0.08	0.06	0.06	0.28
	TC	559	527	477	429	393	585	553	502	453	429	603	572	519	471	459
105	SHC	213	248	301	351	387	233	274	339	401	429	249	297	375	447	459
103	kW	43.0	42.9	42.9	43.5	42.4	43.8	43.5	43.5	43.8	43.0	44.1	43.9	43.9	43.7	43.2
	BF	0.00	0.10	0.05	0.04	0.11	0.20	0.08	0.05	0.05	0.21	0.12	0.07	0.06	0.07	0.30
	TC	529	498	449	402	368	554	523	472	425	406	572	540	489	442	435
115	SHC	201	234	286	335	367	219	259	324	385	406	235	283	360	428	435
113	kW	49.0	49.3	50.0	51.1	50.1	49.8	49.9	50.6	51.2	50.4	50.2	50.3	51.0	50.8	50.4
	BF	0.00	0.09	0.04	0.04	0.13	0.15	0.07	0.05	0.05	0.24	0.11	0.07	0.05	0.08	0.33
	TC	514	484	435	386	357	538	507	457	409	393	555	524	472	427	421
120	SHC	194	227	278	326	357	212	252	316	376	393	228	275	351	418	421
120	kW	52.5	53.0	54.3	55.3	54.6	53.3	53.7	54.7	55.5	54.2	53.8	54.1	55.3	54.7	54.1
	BF	0.00	0.08	0.04	0.04	0.15	0.13	0.07	0.05	0.05	0.26	0.10	0.07	0.05	0.08	0.35

48/50A0	50 (50 TONS)	— STA	NDARD I	MODE (c	ont)								
48/50A050 (50 TONS) — STANDARD MODE (cont) Temp (F) Evaporator Air Quantity — Cfm Air Entering 17,500 20,000													
				17,500					20,000				
	ndenser				Eva	porator A	ir — Ew	b (F)					
	(Edb)	75	72	67	62	57	75	72	67	62	57		
	TC	709	674	618	566	550	740	685	629	577	573		
75	SHC	305	361	453	537	550	326	383	486	570	573		
	kW	32.4	31.9	31.0	30.3	30.0	32.6	32.1	31.2	30.4	30.3		
	BF	0.13	0.08	0.06	0.08	0.31	0.12	0.08	0.07	0.12	0.37		
	TC	678	645	591	540	529	691	656	600	552	550		
85	SHC	276	328	413	488	499	284	341	435	504	510		
00	kW	35.7	35.3	34.4	33.7	33.5	35.9	35.4	34.6	33.8	33.8		
	BF	0.12	0.08	0.06	0.09	0.33	0.11	0.08	0.07	0.15	0.39		
	TC	648	616	563	512	506	658	625	572	530	527		
95	SHC	278	334	425	501	506	292	355	457	522	527		
00	kW	39.6	39.2	38.8	37.9	37.9	39.8	39.3	38.9	38.0	38.1		
	BF	0.11	0.08	0.06	0.10	0.35	0.10	0.08	0.07	0.18	0.41		
	TC	617	585	532	487	483	628	595	542	506	503		
105	SHC	264	320	409	481	483	279	341	442	499	503		
	kW	44.4	44.2	44.3	43.2	43.4	44.6	44.4	44.5	43.3	43.5		
	BF	0.10	0.07	0.06	0.12	0.37	0.10	0.08	0.07	0.20	0.43		
	TC	584	553	500	463	458	594	562	508	476	474		
115	SHC	250	305	394	451	458	265	327	425	476	474		
	kW	50.6	50.7	51.4	50.1	50.4	50.8	50.9	51.7	50.4	50.2		
	BF	0.10	0.07	0.06	0.17	0.40	0.09	0.07	0.07	0.22	0.46		
	TC	567	535	482	447	444	577	545	492	465	462		
120	SHC	243	297	385	440	444	257	319	417	459	462		
	kW	54.1	54.4	55.3	53.6	54.3	54.3	54.7	56.0	53.8	54.2		
	BF	0.09	0.07	0.06	0.18	0.41	0.09	0.07	0.07	0.25	0.47		

48/50A	050 (50 T	ONS)	— SUI	BCOO	LING N	/IODE															
Ten	np (F)								Eva	porato	r Air (Quanti	ty – S0	CFM							
Air E	ntering			10,000)				12,500)				15,000)				17,500)	
	denser									Evap	orator	Air Ev	vb (F)								
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	601	568	523	479	438	624	596	547	507	471	643	608	567	521	494	651	604	582	542	524
75	SHC	218	251	311	367	418	229	274	342	416	468	241	287	377	455	494	247	289	410	501	524
. •	kW	31.4	30.8	30.1	29.5	28.9	31.9	31.4	30.5	29.9	29.4	32.5	31.8	30.9	30.1	29.7	32.6	31.7	31.2	30.4	30.1
	BF	0.00	0.02	0.03	0.03	0.05	0.01	0.04	0.04	0.05	0.12	0.04	0.05	0.06	0.07	0.21	0.06	0.07	0.07	0.09	0.30
	TC	567	541	498	455	417	596	570	522	481	449	620	586	540	495	472	610	599	554	510	496
85	SHC	192	230	291	348	399	209	254	324	396	446	429	272	356	434	472	428	426	414	474	496
0.5	kW	34.6	34.2	33.5	32.8	32.3	35.2	34.7	33.9	33.2	32.8	35.8	35.0	34.2	33.4	33.1	35.6	35.5	34.5	33.7	33.4
	BF	0.00	0.02	0.03	0.03	0.06	0.02	0.04	0.04	0.05	0.14	0.04	0.05	0.06	0.07	0.23	0.06	0.07	0.07	0.10	0.31
	TC	540	513	469	428	395	565	497	495	454	426	565	555	512	470	452	591	568	524	482	477
95	SHC	172	209	268	326	380	185	189	304	375	426	180	250	336	415	452	205	269	367	451	477
33	kW	38.6	38.1	37.3	36.7	36.4	39.1	38.0	37.8	37.1	36.7	39.2	38.9	38.1	37.3	37.0	39.7	39.0	38.3	37.6	37.5
	BF	0.00	0.02	0.03	0.03	0.07	0.02	0.04	0.04	0.05	0.14	0.05	0.05	0.06	0.07	0.24	0.06	0.07	0.07	0.10	0.32
	TC	512	484	444	405	378	533	506	465	424	400	548	523	482	440	423	524	535	494	455	445
105	SHC	153	189	250	309	364	163	207	281	352	400	174	227	315	392	423	149	246	346	430	445
103	kW	43.2	42.7	42.1	41.6	41.5	43.6	43.0	42.4	41.8	41.5	43.9	43.3	42.6	42.0	41.7	43.6	43.6	42.8	42.2	42.0
	BF	0.00	0.02	0.03	0.03	0.08	0.02	0.04	0.04	0.05	0.16	0.05	0.05	0.06	0.08	0.26	0.07	0.07	0.07	0.11	0.34
	TC	477	454	421	385	350	500	474	432	398	377	515	489	450	413	401	533	502	459	427	421
115	SHC	127	167	236	296	337	139	184	257	332	377	150	203	292	372	401	168	223	320	404	421
113	kW	48.5	48.1	47.8	47.5	47.2	48.9	48.4	47.8	47.5	47.3	49.2	48.7	48.0	47.6	47.4	49.5	48.9	48.1	47.7	47.6
	BF	0.00	0.02	0.03	0.04	0.10	0.03	0.04	0.04	0.05	0.18	0.05	0.05	0.06	0.08	0.28	0.07	0.07	0.07	0.13	0.35

48/50A	050 (50 T	ONS)	— SUI	BCOO	LING N	IODE	(cont)									
Ten	np (F)						Evapo	rator A	ir Qua	ntity -	- SCFI	/				
Air E	ntering			20,000)				22,500)				25,000		
							E۱	/apora	tor Aiı	r Ewb	(F)					
(=	iab)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	657	628	564	549	544	666	640	592	561	559	671	646	604	575	574
75	SHC	255	320	412	530	544	267	343	460	557	559	276	360	493	575	574
	kW	32.7	32.2	31.0	30.6	30.5	32.9	32.4	31.5	30.8	30.7	33.0	32.5	31.8	31.0	31.0
	BF	0.08	0.08	0.08	0.13	0.36	0.10	0.10	0.10	0.18	0.42	0.11	0.11	0.11	0.23	0.46
	TC	613	586	527	523	517	641	614	573	536	532	630	620	568	553	552
85	SHC	428	422	409	407	406	437	430	418	409	409	433	430	416	553	552
-	kW	35.7	35.2	34.1	33.9	33.8	36.4	35.8	34.8	34.1	34.1	36.1	35.8	34.7	34.4	34.4
	BF	0.08	0.08	0.08	0.13	0.37	0.10	0.10	0.10	0.19	0.43	0.11	0.11	0.12	0.25	0.47
	TC	608	579	534	499	494	615	588	535	508	506	599	598	549	520	524
95	SHC	224	289	397	486	494	236	309	419	505	506	222	329	454	520	524
50	kW	39.9	39.3	38.5	37.8	37.7	40.0	39.5	38.5	38.0	38.0	39.9	39.7	38.8	38.2	38.2
	BF	0.08	0.08	0.09	0.15	0.39	0.10	0.10	0.10	0.20	0.44	0.11	0.11	0.12	0.26	0.48
	TC	568	517	501	473	462	579	553	509	478	476	562	548	516	494	494
105	SHC	194	237	374	461	462	210	284	402	478	476	198	292	430	494	494
.00	kW	44.3	43.3	42.9	42.4	42.2	44.5	43.9	43.0	42.5	42.5	44.3	43.9	43.2	42.7	42.7
	BF	0.08	0.08	0.09	0.16	0.40	0.10	0.10	0.10	0.21	0.45	0.11	0.11	0.12	0.28	0.49
	TC	496	481	469	443	439	514	490	476	452	452	533	506	482	461	462
115	SHC	134	211	350	432	439	155	204	378	452	452	179	231	404	461	462
	kW	49.0	48.5	48.2	47.8	47.7	49.3	48.7	48.3	47.9	47.9	49.5	48.9	48.4	48.0	48.1
Condense (Edb) 75	BF	0.08	0.08	0.09	0.18	0.41	0.10	0.10	0.11	0.23	0.46	0.11	0.11	0.13	0.29	0.51

COOLING CAPACITIES (cont)

50A050	(50 TONS)	— нот G	AS REH	EAT MOI	DE										
_							Air Enter	ing Evap	orator –	- Ewb (F)				
	mp (F)			7	5 Dry Bu	lb					7	5 Dry Bu	lb		
	Entering ndenser			62.5 We	t Bulb (5	0% RH)					65.3 We	t Bulb (6	60% RH)		
	(Edb)						Air Ente	ring Eva	porator -	— SCFM					
	,	10,000	12,500	15,000	17,500	20,000	22,500	25,000	10,000	12,500	15,000	17,500	20,000	22,500	25,000
	TC	192	208	218	225	230	234	238	203	219	230	238	243	247	251
40	SHC	40	67	93	118	142	166	188	-1	18	37	55	74	93	112
-10	kW	37.0	36.0	35.5	35.2	35.0	34.9	34.8	38.5	37.3	36.7	36.3	36.1	35.9	35.8
	BF	0.02	0.03	0.04	0.06	0.07	0.09	0.11	0.02	0.03	0.04	0.05	0.07	0.08	0.09
	TC	197	213	223	231	236	240	243	209	226	237	244	250	254	258
50	SHC	43	70	96	121	145	169	191	2	21	40	59	78	97	115
30	kW	36.1	35.1	34.6	34.3	34.1	34.0	33.9	37.6	36.4	35.8	35.4	35.2	35.0	34.9
	BF	0.02	0.03	0.04	0.06	0.07	0.09	0.11	0.02	0.03	0.04	0.05	0.07	0.08	0.09
	TC	203	219	229	237	242	246	250	214	231	242	250	255	260	263
60	SHC	47	73	99	124	149	173	195	5	24	43	62	80	99	118
00	kW	35.3	34.3	33.8	33.5	33.3	33.2	33.2	36.8	35.6	35.0	34.7	34.4	34.3	34.1
	BF	0.02	0.03	0.04	0.06	0.07	0.09	0.11	0.02	0.03	0.04	0.05	0.07	0.08	0.09
	TC	212	228	239	246	252	256	259	222	240	251	259	265	270	273
70	SHC	52	78	104	129	154	178	200	10	29	48	67	86	105	124
70	kW	33.8	32.9	32.4	32.1	32.0	31.9	31.8	35.3	34.2	33.6	33.3	33.1	32.9	32.8
	BF	0.02	0.03	0.04	0.05	0.07	0.08	0.10	0.02	0.03	0.04	0.05	0.06	0.08	0.09
	TC	219	235	246	254	260	265	269	230	247	259	268	275	281	285
75	SHC	57	83	109	134	159	183	206	15	34	53	72	91	110	129
,,	kW	32.6	31.7	31.2	31.0	30.8	30.8	30.7	34.1	33.0	32.5	32.2	32.0	31.8	31.7
	BF	0.02	0.03	0.04	0.05	0.07	0.08	0.10	0.02	0.03	0.04	0.05	0.06	0.08	0.09
	TC	225	243	255	264	271	276	280	236	256	269	279	286	292	297
80	SHC	61	87	114	140	165	189	212	19	39	58	78	97	116	135
00	kW	31.5	30.7	30.3	30.0	29.9	29.8	29.8	33.0	32.0	31.5	31.2	31.0	30.9	30.8
	BF	0.02	0.03	0.04	0.05	0.07	0.08	0.10	0.02	0.03	0.04	0.05	0.06	0.08	0.09

50A050	0 (50 TONS)	— нот G	AS REH	EAT MOI	DE (cont)										
							Air Enter	ing Evap	orator –	- Ewb (F					
	emp (F)				5 Dry Bu							5 Dry Bu			
	Entering ndenser			68.0 We	t Bulb (7	'0% RH)					70.5 We	t Bulb (8	80% RH)		
	(Edb)						Air Ente	ring Eva	porator -	— SCFM					
	(1 1)	10,000	12,500	15,000	17,500	20,000	22,500	25,000	10,000	12,500	15,000	17,500	20,000	22,500	25,000
	TC	213	231	242	250	256	260	264	223	241	253	262	268	273	277
40	SHC	-42	-30	-18	-6	6	18	31	-81	-76	-71	-65	-59	-52	-45
	kW	40.0	38.6	37.9	37.4	37.1	36.9	36.8	41.6	40.0	39.1	38.6	38.2	38.0	37.8
	BF	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.00	0.01	0.03	0.05	0.07	0.08	0.10
	TC	219	237	248	257	263	267	271	229	248	260	268	275	280	284
50	SHC	-39	-27	-15	-3	9	22	34	-78	-73	-68	-62	-56	-49	-42
	kW	39.1	37.8	37.0	36.6	36.3	36.1	36.0	40.7	39.1	38.3	37.8	37.4	37.1	36.9
	BF	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.00	0.01	0.03	0.05	0.07	0.08	0.10
	TC	224	242	254	262	268	273	277	234	253	265	274	281	286	290
60	SHC	-36	-24	-12	0	12	24	37	- 75	-70	-65	-59	-53	-46	-40
00	kW	38.3	37.0	36.3	35.8	35.5	35.3	35.2	39.9	38.3	37.5	37.0	36.6	36.4	36.2
	BF	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.00	0.01	0.03	0.05	0.07	0.08	0.10
	TC	233	251	263	272	278	283	287	243	262	275	284	291	296	300
70	SHC	-31	-19	- 7	5	17	29	42	-70	-65	-60	-54	-48	-41	-35
	kW	36.8	35.5	34.9	34.5	34.2	34.0	33.9	38.4	36.9	36.1	35.6	35.3	35.0	34.9
	BF	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.00	0.01	0.03	0.05	0.07	0.08	0.10
	TC	241	259	273	282	290	295	300	251	271	285	296	303	309	314
75	SHC	-26	-15	-2	10	23	35	48	-66	-60	-55	-49	-42	-35	-28
	kW	35.6	34.4	33.8	33.4	33.1	32.9	32.8	37.3	35.8	35.0	34.5	34.2	34.0	33.8
	BF	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.00	0.01	0.03	0.05	0.07	0.08	0.10
	TC	249	269	283	294	301	307	312	260	282	297	307	316	322	327
80	SHC	-22	-9	3	16	29	41	54	-61	- 55	-49	-43	-36	-29	-22
00	kW	34.6	33.4	32.8	32.4	32.2	32.0	31.9	36.3	34.8	34.1	33.6	33.3	33.1	32.9
	BF	0.01	0.03	0.04	0.05	0.07	0.08	0.09	0.00	0.01	0.03	0.05	0.07	0.08	0.10

48/50A	.060 (60 TON	IS) — ST	ANDARI) MODE												
Т,	emp (F)						Eva	porator	Air Qua	ntity —	Cfm					
Air	Entering			12,000					15,000					18,000		
	ndenser		_	_	_	_		Evapora	tor Air –	- Ewb (F)		_			
	(Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	738	705	653	603	554	773	736	684	633	592	796	759	706	655	622
	SHC	293	334	406	474	533	305	361	447	530	578	324	386	486	582	622
	kW	40.0	39.2	38.1	37.1	36.3	40.7	39.9	38.7	37.7	36.9	41.2	40.4	39.2	38.2	37.5
	BF	0.00	0.00	0.10	0.08	0.08	0.00	0.15	0.10	0.09	0.19	0.23	0.13	0.11	0.10	0.25
85	TC	716	686	635	585	537	748	715	664	615	579	768	737	685	635	607
	SHC	284	327	398	465	522	298	353	439	521	562	315	378	478	572	607
	kW	44.4	43.7	42.7	41.7	40.9	45.1	44.4	43.3	42.3	41.5	45.6	44.9	43.7	42.7	42.1
	BF	0.00	0.12	0.10	0.07	0.09	0.00	0.14	0.10	0.09	0.22	0.20	0.12	0.11	0.10	0.27
95	TC	695	666	615	566	519	725	694	643	593	557	745	713	662	613	590
	SHC	276	320	389	456	510	292	346	430	511	557	308	370	469	561	590
	kW	49.5	48.8	47.8	46.9	46.1	50.2	49.5	48.4	47.5	46.8	50.7	50.0	48.8	47.9	47.4
	BF	0.00	0.19	0.09	0.07	0.10	0.00	0.13	0.09	0.09	0.20	0.18	0.12	0.10	0.10	0.29
105	TC	673	643	593	545	502	699	669	619	570	539	718	687	638	587	570
	SHC	264	311	380	446	493	283	337	420	500	539	300	361	460	549	570
	kW	55.3	54.6	53.7	52.8	51.8	55.9	55.3	54.2	53.3	52.6	56.4	55.7	54.7	53.7	53.3
	BF	0.00	0.15	0.09	0.07	0.13	0.24	0.12	0.09	0.08	0.22	0.16	0.12	0.10	0.11	0.31
115	TC	647	617	567	521	484	670	641	592	544	519	687	657	609	561	549
	SHC	255	301	369	434	474	274	327	410	488	519	290	350	448	536	549
	kW	61.7	61.1	60.3	60.0	59.2	62.3	61.7	60.9	60.4	59.9	62.8	62.2	61.3	60.6	60.2
	BF	0.00	0.13	0.08	0.07	0.17	0.18	0.11	0.09	0.08	0.25	0.14	0.11	0.10	0.11	0.34
120	TC	632	603	554	508	471	654	626	578	531	509	670	641	594	547	538
	SHC	251	296	364	428	461	269	322	404	482	509	285	345	443	528	538
	kW	65.2	64.8	64.3	64.1	63.3	65.8	65.5	64.9	64.5	64.0	66.4	65.8	65.2	64.7	64.4
	BF	0.00	0.12	0.08	0.07	0.17	0.17	0.10	0.09	0.09	0.27	0.13	0.11	0.10	0.12	0.35

48/50A	060 (60 TON	S) — ST	ANDARI	D MODE	(cont)											
T	emp (F)						Eva	porator	Air Qua	ntity — (Cfm					
	Entering			21,000					24,000					27,000		
	ndenser						E	vapora	tor Air –	- Ewb (F)					
	(Edb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
75	TC	813	776	722	671	651	826	789	735	683	674	837	800	745	695	693
	SHC	340	409	523	627	651	355	432	560	665	674	369	454	594	689	693
	kW	41.6	40.7	39.5	38.5	38.1	41.9	41.0	39.8	38.7	38.5	42.2	41.3	40.1	39.0	38.9
	BF	0.18	0.13	0.11	0.12	0.33	0.16	0.14	0.12	0.16	0.39	0.16	0.14	0.13	0.21	0.44
85	TC	784	752	700	650	634	796	764	713	662	656	806	774	723	678	675
	SHC	331	401	515	617	634	346	423	552	648	656	361	446	587	665	675
	kW	46.0	45.2	44.1	43.0	42.7	46.3	45.5	44.3	43.2	43.1	46.5	45.8	44.6	43.6	43.5
	BF	0.16	0.13	0.11	0.13	0.35	0.15	0.14	0.12	0.18	0.41	0.15	0.14	0.13	0.25	0.46
95	TC	759	728	678	627	616	770	739	689	640	638	780	748	698	659	656
	SHC	323	393	507	604	616	338	415	543	630	638	353	437	577	644	656
	kW	51.1	50.4	49.2	48.2	47.9	51.4	50.6	49.5	48.4	48.3	51.6	50.9	49.7	48.8	48.7
	BF	0.15	0.13	0.11	0.14	0.36	0.15	0.13	0.12	0.20	0.42	0.15	0.14	0.13	0.27	0.47
105	TC	731	701	651	602	596	742	711	662	620	616	750	720	670	637	634
	SHC	315	384	497	589	596	330	406	533	608	616	344	428	566	622	634
	kW	56.8	56.1	55.0	54.0	53.8	57.1	56.4	55.3	54.2	54.2	57.3	56.6	55.5	54.6	54.6
	BF	0.14	0.12	0.11	0.15	0.39	0.14	0.13	0.12	0.23	0.44	0.14	0.14	0.13	0.30	0.49
115	TC	699	670	622	576	573	709	679	631	596	592	716	687	639	612	609
	SHC	305	373	485	568	573	320	396	521	583	592	334	418	555	596	609
	kW	63.2	62.5	61.5	60.6	60.6	63.5	62.7	61.8	60.8	60.8	63.6	62.9	62.0	61.1	61.1
	BF	0.13	0.12	0.11	0.17	0.41	0.13	0.13	0.12	0.26	0.47	0.14	0.14	0.13	0.33	0.51
120	TC	682	653	607	564	561	691	662	616	584	580	698	670	623	600	595
	SHC	300	368	480	555	561	315	390	515	570	580	329	412	549	584	595
	kW	66.7	66.1	65.4	64.4	64.6	67.0	66.3	65.7	64.7	64.8	67.1	66.5	65.8	65.0	65.4
	BF	0.13	0.12	0.11	0.19	0.42	0.13	0.13	0.12	0.28	0.48	0.13	0.13	0.13	0.35	0.52

COOLING CAPACITIES (cont)

48/50A	060 (60 T	ONS)	— SUI	BCOO	LING N	/IODE															
Ten	np (F)								Eva	porato	r Air (Quanti	ty – S0	CFM							
	ntering			12,000)				15,000)				18,000)				21,000)	
	denser			_	_					Evap	orator	Air Ev	vb (F)		_			_			
(E	db)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	708	671	616	563	513	742	706	649	596	549	767	732	675	620	583	787	751	693	639	613
75	SHC	253	294	361	425	483	271	320	400	481	542	288	346	441	531	583	303	368	477	578	613
	kW	39.7	39.0	38.0	37.1	36.2	40.4	39.7	38.6	37.7	36.9	40.8	40.2	39.1	38.0	37.4	41.2	40.5	39.4	38.4	38.0
	BF	0.00	0.03	0.06	0.07	0.08	0.01	0.07	0.08	0.09	0.15	0.05	0.09	0.10	0.11	0.23	0.08	0.11	0.12	0.14	0.31
	TC	676	642	588	539	492	709	675	620	568	525	730	697	643	590	556	748	714	660	607	585
85	SHC	229	272	340	406	466	247	297	379	459	519	260	320	416	508	556	275	341	452	552	585
	kW	43.8	43.1	42.1	41.2	40.4	44.4	43.7	42.7	41.7	41.0	44.9	44.2	43.1	42.1	41.5	45.2	44.5	43.5	42.4	42.0
	BF	0.00	0.04	0.06	0.07	0.09	0.02	0.07	0.08	0.09	0.16	0.06	0.09	0.10	0.11	0.24	0.09	0.11	0.12	0.14	0.32
	TC	643	608	559	511	464	674	641	589	539	500	695	663	610	560	531	711	679	626	576	556
95	SHC	205	245	317	384	445	220	271	356	437	494	235	294	392	485	531	249	316	427	528	556
	kW	48.4	47.7	46.7	45.8	45.0	49.0	48.3	47.3	46.3	45.6	49.5	48.8	47.7	46.7	46.2	49.8	49.1	48.0	47.0	46.6
	BF	0.00	0.04	0.06	0.07	0.08	0.02	0.07	0.08	0.09	0.17	0.06	0.09	0.10	0.11	0.26	0.09	0.11	0.12	0.14	0.33
	TC	609	574	528	481	439	636	606	556	508	473	654	625	575	527	501	671	640	590	543	526
105	SHC	179	220	294	362	420	193	245	331	413	469	205	267	366	459	501	219	288	401	501	526
	kW	53.6	52.8	51.9	51.0	50.2	54.2	53.5	52.5	51.5	50.8	54.6	54.0	52.9	51.9	51.4	55.0	54.3	53.2	52.2	51.9
	BF	0.00	0.04	0.06	0.07	0.10	0.03	0.07	0.08	0.09	0.18	0.07	0.09	0.10	0.11	0.27	0.09	0.11	0.11	0.15	0.35
	TC	571	538	494	450	413	594	566	519	474	443	614	585	538	492	470	628	599	551	506	494
115	SHC	153	193	268	338	395	162	217	304	387	443	177	238	339	433	470	189	259	373	472	494
	kW BF	59.4	58.7	57.8	56.9	56.1	59.9	59.3	58.3	57.4	56.7	60.4	59.7	58.7	57.7	57.3	60.7	60.0	59.0	58.0	57.8
	ВF	0.01	0.05	0.06	0.07	0.12	0.04	0.07	0.08	0.09	0.19	0.07	0.09	0.10	0.12	0.29	0.09	0.11	0.11	0.15	0.36

48/50A	.060 (60 T	ONS)	— SUI	всооі	LING N	/IODE	(cont)									
Ten	np (F)						Evapo	rator A	ir Qua	entity -	- SCFI	/				
	ntering			24,000)				27,000)				30,000		
	denser						E۱	/apora	tor Ai	r Ewb	(F)					
(E	idb)	75	72	67	62	57	75	72	67	62	57	75	72	67	62	57
	TC	804	768	708	654	637	814	779	720	665	657	825	789	729	678	674
75	SHC	320	392	512	618	637	332	413	546	652	657	346	434	578	678	674
	kW	41.5	40.9	39.7	38.7	38.4	41.8	41.1	39.9	38.9	38.8	42.0	41.3	40.1	39.2	39.1
	BF	0.11	0.13	0.13	0.17	0.38	0.12	0.14	0.15	0.20	0.43	0.14	0.16	0.16	0.24	0.47
	TC	761	729	674	621	607	772	740	684	634	627	783	749	693	647	646
85	SHC	289	364	487	591	607	302	385	520	621	627	317	406	552	647	646
	kW	45.5	44.8	43.7	42.7	42.5	45.7	45.1	43.9	43.0	42.8	46.0	45.3	44.1	43.2	43.2
	BF	0.11	0.13	0.13	0.17	0.39	0.13	0.14	0.15	0.21	0.44	0.14	0.16	0.16	0.26	0.48
	TC	722	691	639	589	578	734	702	647	599	597	742	709	656	612	613
95	SHC	260	337	461	565	578	275	358	492	588	597	287	377	524	612	613
	kW BF	50.1	49.4	48.3	47.3	47.1	50.3	49.6	48.5	47.5	47.4	50.5	49.8	48.6	47.7	47.8
		0.11	0.13	0.13	0.17	0.40	0.13	0.14	0.15	0.23	0.45	0.14	0.15	0.16	0.27	0.49
	TC	682	651	601	556	547	692	661	608	569	565	700	669	618	582	580
105	SHC	232	308	434	533	547	245	328	464	559	565	258	349	496	582	580
	kW BF	55.3	54.5	53.4	52.5	52.3	55.5	54.8	53.6	52.7	52.7	55.7	54.9	53.8	53.0	53.0
		0.11	0.12	0.13	0.19	0.41	0.13	0.14	0.15	0.24	0.46	0.14	0.15	0.16	0.29	0.50
	TC	639	610	562	521	514	647	618	570	535	531	655	625	575	546	545
115	SHC kW	202	279	406	501	514	214	299	437	527	531	226	318	464	546	545
	BF	61.0	60.3	59.2	58.3	58.2	61.2	60.5	59.4	58.6	58.5	61.4	60.7	59.5	58.8	58.8
	DF	0.11	0.12	0.13	0.21	0.42	0.13	0.14	0.15	0.25	0.47	0.14	0.15	0.17	0.30	0.51

50A060	0 (60 TONS)	— нот с	AS REH	EAT MOI	DE										
							Air Enter	ing Evap	orator –	- Ewb (F))				
	emp (F)			7	5 Dry Bu	lb					7	5 Dry Bu	lb		
	Entering ndenser			62.5 We	et Bulb (5	50% RH)					65.3 We	et Bulb (6	60% RH)		
	(Edb)						Air Ente	ring Eva	porator -	- SCFM					
		12,000	15,000	18,000	21,000	24,000	27,000	30,000	12,000	15,000	18,000	21,000	24,000	27,000	30,000
	TC	298	322	339	352	362	369	375	314	339	357	370	380	388	395
40	SHC	80	111	141	171	201	230	258	30	52	74	97	119	141	163
	kW	36.2	36.0	36.0	36.1	36.1	36.2	36.3	37.8	37.5	37.4	37.4	37.4	37.5	37.5
	BF	0.04	0.06	0.07	0.08	0.09	0.11	0.12	0.03	0.05	0.07	0.08	0.09	0.10	0.12
	TC	287	308	324	336	345	351	357	301	325	341	353	363	370	376
50	SHC kW	74	104	134	164	194	223	250	24	46	68	90	112	134	156
	BF	37.7	37.5	37.4	37.4	37.5	37.5	37.6	39.3	38.9	38.8	38.8	38.8	38.8	38.8
-		0.04	0.06	0.07	0.08	0.09	0.11	0.12	0.04	0.05	0.07	0.08	0.09	0.10	0.12
	TC SHC	277	297	311	320	328	335	340	291	311	326	337	346	352	358
60	kW	70 39.4	99 39.1	128 39.0	157 39.0	187 39.0	216 39.0	243 39.1	19 40.9	40 40.5	61 40.3	83 40.3	105 40.3	127 40.3	149 40.3
	BF	0.04	0.06	0.07	0.08	0.09	0.11	0.12	0.04	0.05	0.07	0.08	0.09	0.10	0.11
	TC	267	287	299	309	316	321	325	280	300	314	324	331	336	341
70	SHC	65	94	123	153	182	210	237	15	35	56	78	100	121	143
	kW	41.2	40.9	40.8	40.7	40.7	40.7	40.8	42.7	42.3	42.1	42.0	42.0	42.0	42.0
	BF	0.04	0.06	0.07	0.08	0.09	0.11	0.12	0.04	0.05	0.07	0.08	0.09	0.10	0.11
	TC	262	281	294	303	309	314	319	275	295	308	317	324	330	334
75	SHC	62	92	121	150	180	207	234	12	33	54	75	97	119	141
	kW BF	42.2	41.9	41.7	41.7	41.7	41.7	41.7	43.7	43.3	43.1	43.0	43.0	42.9	42.9
		0.04	0.06	0.07	0.08	0.09	0.11	0.13	0.04	0.05	0.07	0.08	0.09	0.10	0.11
	TC SHC	257	275	288	296	303	308	312	270	289	302	311	318	323	327
80	kW	60 43.3	89 42.9	118 42.8	148 42.7	177 42.7	205 42.7	232 42.7	10 44.8	30 44.3	51 44.1	73 44.0	95 44.0	116 44.0	138 43.9
	BF	0.04	42.9 0.06	42.8 0.07	0.08	0.09	42.7 0.11	0.13	0.04	0.05	0.07	0.08	0.09	0.10	0.11
		0.07	0.00	0.07	0.00	0.00	0.11	0.10	0.04	0.00	0.07	0.00	0.00	0.10	0.11

50A060	(60 TONS)	— нот с	AS REH	EAT MOI	DE (cont))									
-							Air Enter	ing Evap	orator –	- Ewb (F)				
Te	emp (F)			7:	5 Dry Bu	lb					7:	5 Dry Bu	lb		
Air Co	Entering ndenser			68.0 We	t Bulb (7	'0% RH)					70.5 We	t Bulb (8	0% RH)		
	(Edb)						Air Ente	ring Eva	porator -	— SCFM					
		12,000	15,000	18,000	21,000	24,000	27,000	30,000	12,000	15,000	18,000	21,000	24,000	27,000	30,000
	TC	330	357	375	389	400	408	414	345	373	393	407	418	426	433
40	SHC	-19	- 5	10	24	39	54	69	-65	-58	-51	-43	-35	-27	-18
	kW	39.4	39.0	38.8	38.8	38.8	38.7	38.8	41.0	40.4	40.2	40.0	40.0	39.9	39.9
	BF	0.02	0.04	0.06	0.07	0.09	0.10	0.11	0.00	0.01	0.03	0.05	0.07	0.09	0.10
	TC	316	341	359	372	381	389	395	331	358	376	389	399	407	413
50	SHC	-25	-11	3	18	32	48	63	-72	-64	- 57	-50	-42	-33	-25
	kW	40.9	40.4	40.2	40.1	40.1	40.1	40.1	42.5	41.8	41.5	41.4	41.3	41.2	41.2
-	BF	0.02	0.04	0.06	0.07	0.09	0.10	0.11	0.00	0.01	0.03	0.05	0.07	0.09	0.10
	TC	304	326	342	354	363	370	376	318	342	358	371	380	387	393
60	SHC kW	-30	-17	-3	11	26	41	56	–77	-71	-64	-56	-48	-40	-31
	BF	42.5	42.0	41.7	41.6	41.6	41.5	41.5	44.1	43.4	43.1	42.9	42.8	42.7	42.6
		0.02	0.04	0.06	0.07	0.09	0.10	0.11	0.00	0.01	0.03	0.05	0.07	0.09	0.10
	TC SHC	294	315	329	339	347	353	357	307	329	343	354	363	369	374
70	kW	-35	-22	-9 40.5	5	20	35	49	-82 45.0	-75 45.0	-69	-62	-54	-46	-37
	BF	44.3 0.02	43.8 0.04	43.5 0.06	43.3 0.07	43.3 0.09	43.2 0.10	43.2 0.11	45.9 0.00	45.2 0.01	44.8 0.03	44.6 0.05	44.5 0.07	44.4 0.09	44.3 0.10
-	TC	288	309	323	332	340	346	350	301	323	337	348	356	362	367
	SHC	_37	-24	-11	332 3	18	346	47	-84	-78	–71	-64	-56	-48	-40
75	kW	45.3	44.7	44.5	44.3	44.2	44.2	44.1	46.9	46.1	45.7	45.5	45.4	45.3	45.3
	BF	0.02	0.04	0.06	0.07	0.09	0.10	0.11	0.00	0.01	0.03	0.05	0.07	0.09	0.10
	TC	283	303	316	326	333	339	343	295	316	330	341	348	355	360
80	SHC	-39	-27	-13	1	15	30	44	-86	-80	- 74	-67	-59	-50	-42
30	kW	46.4	45.8	45.5	45.3	45.2	45.2	45.1	47.9	47.2	46.8	46.6	46.4	46.3	46.3
	BF	0.02	0.04	0.06	0.07	0.09	0.10	0.11	0.00	0.01	0.03	0.05	0.07	0.09	0.10

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS

48A2,A3,A6	1	(,					Availa	ble Exte	ernal St	atic Pre	ssure (n. wg)							
Airflow (Cfm)	0	.2	0	.4	0	.6	0.	.8	1.	.0	1.	2	1.	4	1.	.6	1.	8	2.	.0
(01111)	Rpm	Bhp																		
4,000 5,000 6,000 7,000	328 369 415 463	0.62 0.97 1.43 2.01	406 439 477 519	0.84 1.19 1.65 2.25	472 500 533 570	1.07 1.43 1.90 2.50	529 554 584 618	1.30 1.69 2.17 2.78	580 604 631 662	1.54 1.95 2.45 3.06	626 650 676 704	1.78 2.21 2.73 3.36	668 692 717 744	2.02 2.48 3.01 3.65	708 731 756 782	2.27 2.74 3.30 3.96	745 769 793 818	2.51 3.01 3.59 4.27	780 804 828 852	2.76 3.28 3.88 4.58
7,500 8,000 9,000 10,000	488 513 564 616	2.36 2.74 3.61 4.64	541 564 612 661	2.60 2.98 3.87 4.91	590 611 655 701	2.86 3.24 4.13 5.18	636 655 696 739	3.13 3.52 4.42 5.47	679 697 735 776	3.42 3.81 4.71 5.77	720 737 772 811	3.72 4.11 5.02 6.08	759 775 808 845	4.02 4.42 5.33 6.40	796 811 843 878	4.33 4.74 5.65 6.72	832 846 876 909	4.65 5.06 5.98 7.06	866 879 909 940	4.96 5.38 6.32 7.40

							_	Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)		_		_			
Airflow (Cfm)	2.	2	2	.4	2.	.6	2.	8	3.	0	3.	2	3.	4	3	.6	3.	8	4.	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4,000	814	3.01	845	3.26	876	3.51	905	3.76	934	4.02	961	4.28	987	4.54	1013	4.80	1038	5.06	1062	5.32
5,000	837	3.55	869	3.82	900	4.10	929	4.37	958	4.64	985	4.92	1012	5.20	1038	5.48	1063	5.76	1087	6.04
6,000	861	4.17	893	4.46	923	4.76	953	5.05	981	5.35	1009	5.65	1036	5.94	1062	6.24	1087	6.54	1111	6.84
7,000	885	4.89	917	5.20	947	5.51	977	5.83	1005	6.14	1033	6.46	1059	6.78	1085	7.09	1110	7.41	1135	7.73
7,500	898	5.28	930	5.61	960	5.93	989	6.25	1017	6.58	1045	6.90	1071	7.23	1097	7.56	1122	7.88	1147	8.21
8,000	912	5.71	943	6.04	973	6.37	1002	6.70	1030	7.04	1057	7.37	1083	7.71	1109	8.04	1134	8.38	1159	8.72
9,000	940	6.66	970	7.00	999	7.35	1028	7.69	1055	8.04	1082	8.39	1109	8.75	1134	9.10	1159	9.45	1183	9.81
10,000	971	7.75	1000	8.10	1028	8.46	1056	8.82	1083	9.18	1109	9.54	1135	9.91	1160	10.28	1185	10.65	_	I —

								Availa	ble Ext	ernal St	atic Pre	ssure (i	in. wg)							
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	374	0.98	443	1.20	503	1.45	558	1.70	607	1.96	653	2.23	695	2.49	734	2.76	771	3.03	806	3.30
6,000	421	1.45	482	1.68	538	1.93	589	2.20	636	2.47	680	2.75	721	3.04	759	3.33	796	3.62	831	3.91
7,000	471	2.04	526	2.28	576	2.54	623	2.81	668	3.10	710	3.39	749	3.69	787	4.00	823	4.31	857	4.62
8,000	522	2.78	572	3.03	619	3.29	662	3.57	704	3.86	743	4.16	781	4.47	817	4.79	851	5.11	885	5.44
9,000	574	3.66	621	3.92	664	4.19	704	4.47	743	4.77	780	5.08	815	5.40	850	5.72	883	6.05	915	6.39
10,000	628	4.71	671	4.97	711	5.25	748	5.54	784	5.84	819	6.15	853	6.47	885	6.81	917	7.14	948	7.49
11,000	682	5.91	722	6.19	759	6.48	795	6.77	828	7.08	861	7.40	893	7.72	924	8.06	954	8.40	983	8.75
12,000	736	7.30	774	7.59	809	7.88	842	8.18	874	8.49	905	8.82	935	9.15	965	9.48	993	9.83	1021	10.19
13,000	791	8.86	827	9.16	860	9.46	891	9.78	922	10.09	951	10.42	979	10.75	1007	11.10	1034	11.45	1061	11.80
14,000	846	10.61	880	10.93	912	11.24	941	11.56	970	11.88	998	12.21	1025	12.56	1052	12.90	1078	13.26	1103	13.62
15,000	902	12.56	934	12.89	964	13.21	992	13.54	1020	13.87	1046	14.21	1072	14.55	1098	14.91	1122	15.26	1147	15.63

	í –																			
Airflow								Availa	DIE EXT	ernal St	atic Pre	ssure (I	n. wg)							
(Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3.	2	3.	4	3.	.6	3.	8	4	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	839	3.57	871	3.84	902	4.11	931	4.39	960	4.66	987	4.94	1014	5.22	1039	5.50	1064	5.78	1089	6.06
6,000	864	4.20	896	4.49	926	4.79	956	5.08	984	5.38	1012	5.68	1038	5.97	1064	6.27	1089	6.57	1114	6.87
7,000	890	4.93	921	5.24	951	5.55	980	5.87	1009	6.18	1036	6.50	1063	6.82	1088	7.14	1114	7.45	1138	7.77
8,000	917	5.76	948	6.09	977	6.42	1006	6.76	1034	7.09	1061	7.43	1088	7.76	1113	8.10	1138	8.43	1163	8.77
9,000	946	6.73	976	7.07	1005	7.42	1033	7.76	1061	8.11	1088	8.46	1114	8.82	1139	9.17	1164	9.52	1188	9.88
10,000	978	7.84	1007	8.19	1035	8.55	1063	8.91	1089	9.27	1116	9.63	1141	10.00	1166	10.37	1191	10.74	_	_
11,000	1012	9.10	1040	9.47	1067	9.83	1094	10.20	1120	10.57	1145	10.95	1170	11.33	1195	11.71	_	_	_	_
12,000	1048	10.54	1075	10.91	1102	11.28	1127	11.66	1152	12.04	1177	12.42	_	_	_	_	_	_	_	_
13,000	1087	12.17	1113	12.54	1138	12.91	1163	13.30	1187	13.68	_	_	_	_	_	_	_	_	_	_
14,000	1128	13.98	1153	14.36	1177	14.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_
15,000	1171	16.00	1194	16.38	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower

NOTES

2. Conversion — Bhp to watts:

Watts = Bhp x 746

Motor efficiency

Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

48A2,A3,A6,	A7 035	(35 TOI	NS)																	
AIDELOW							AVA	AILABLE	EXTE	RNAL S	TATIC	PRESSU	JRE (in	. wg)						
AIRFLOW (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1	.6	1	.8	2	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	534	2.46	584	2.80	630	3.13	674	3.48	716	3.82	756	4.16	793	4.50	829	4.83	863	5.17	896	5.49
8,000	590	3.27	635	3.63	677	3.99	718	4.35	757	4.72	794	5.08	830	5.45	864	5.81	897	6.18	929	6.54
9,000	646	4.23	687	4.62	726	5.00	764	5.38	800	5.76	835	6.15	869	6.54	902	6.93	934	7.31	964	7.70
10,000	704	5.35	742	5.77	778	6.17	812	6.57	846	6.97	879	7.38	911	7.78	942	8.19	972	8.60	1002	9.01
10,500	733	5.97	769	6.40	804	6.82	837	7.23	870	7.64	902	8.05	933	8.46	963	8.88	992	9.30	1021	9.72
11,000	762	6.63	797	7.08	830	7.51	863	7.93	894	8.35	925	8.77	955	9.19	984	9.62	1013	10.04	1041	10.47
12,000	820	8.09	853	8.56	884	9.01	915	9.46	944	9.90	973	10.34	1001	10.78	1029	11.22	1056	11.66	1083	12.10
13,000	879	9.72	909	10.22	939	10.70	968	11.17	996	11.63	1023	12.09	1050	12.55	1076	13.01	1102	13.46	1127	13.92
14,000	938	11.54	967	12.07	995	12.58	1022	13.07	1048	13.55	1074	14.03	1099	14.51	1124	14.98	1149	15.46	1173	15.93
15,000	997	13.56	1024	14.11	1051	14.64	1076	15.16	1102	15.67	1126	16.17	1150	16.66	1174	17.16	1197	17.65	1220	18.14
16,000	1056	15.78	1082	16.35	1107	16.91	1132	17.45	1156	17.98	1179	18.50	1202	19.02	1225	19.53	1247	20.04	1269	20.55
17,000	1116	18.20	1140	18.80	1164	19.38	1188	19.95	1210	20.50	1233	21.05	1255	21.58	1276	22.11	1298	22.64	l —	_
17,500	1145	19.49	1170	20.10	1193	20.70	1216	21.28	1238	21.84	1260	22.40	1282	22.94	l —	_	<u> </u>	_	l —	_

48A2,A3,A6,	A7 035	(35 TON	IS) (cor	nt)																
AIDELOW			•		•		AVA	ILABLE	EXTE	RNAL S	TATIC I	PRESSU	JRE (in.	wg)			•		•	•
AIRFLOW (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3	.4	3	.6	3	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	927	5.81	956	6.13	985	6.45	1012	6.76	1039	7.06	1065	7.37	1090	7.67	1114	7.97	1138	8.26	1161	8.56
8,000	960	6.89	989	7.25	1018	7.60	1045	7.94	1072	8.29	1098	8.63	1122	8.96	1147	9.29	1170	9.62	1193	9.95
9,000	994	8.09	1023	8.47	1051	8.85	1078	9.23	1104	9.61	1130	9.98	1155	10.35	1179	10.71	1203	11.08	1226	11.44
10,000	1030	9.42	1058	9.82	1085	10.23	1112	10.64	1138	11.04	1163	11.44	1188	11.84	1212	12.24	1235	12.64	1258	13.03
10,500	1049	10.14	1077	10.56	1103	10.97	1129	11.39	1155	11.81	1180	12.23	1204	12.64	1228	13.05	1251	13.46	1274	13.87
11,000	1069	10.90	1095	11.33	1122	11.76	1147	12.18	1173	12.61	1197	13.04	1221	13.47	1245	13.89	1268	14.31	1291	14.73
12,000	1109	12.55	1135	13.00	1160	13.44	1185	13.89	1209	14.34	1233	14.79	1256	15.24	1279	15.69	_	_	_	_
13,000	1152	14.38	1176	14.84	1200	15.31	1224	15.77	1248	16.24	1271	16.70	1293	17.17	_	_	_	_	_	_
14,000	1196	16.41	1220	16.88	1243	17.36	1266	17.84	1288	18.32	_	_	_	_	_	_	_	_	_	_
15,000	1243	18.63	1265	19.12	1287	19.61	l —	_	l —	_	_	_	_	_	_	_	_	_	_	_
16,000	1290	21.06	_	_	l —	_	l —	_	l —	_	_	_	l —	_	_	_	_	_	l —	_
17,000	_	_	_	_	l —	_	l —	_	l —	_	_	_	_	_	_	_	_	_	_	_
17,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

								Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)							
Airflow (Cfm)	0.	.2	0.	.4	0.	.6	0	.8	1.	.0	1.	.2	1.	4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	502	2.90	550	3.30	596	3.71	639	4.12	680	4.54	720	4.97	759	5.40	796	5.85	832	6.31	867	6.77
9,000	552	3.81	595	4.24	637	4.67	677	5.11	715	5.55	752	6.00	788	6.45	823	6.92	857	7.39	890	7.87
10,000	602	4.89	642	5.34	680	5.80	717	6.26	752	6.73	787	7.20	821	7.67	854	8.16	886	8.64	917	9.14
11,000	653	6.15	689	6.62	725	7.11	759	7.59	792	8.08	825	8.58	856	9.07	887	9.57	918	10.08	947	10.59
12,000	704	7.60	738	8.09	771	8.60	803	9.11	834	9.63	865	10.14	895	10.66	924	11.18	952	11.71	980	12.24
13,000	756	9.24	788	9.76	818	10.29	848	10.83	878	11.36	906	11.90	935	12.44	962	12.99	989	13.53	1016	14.08
14,000	808	11.10	838	11.64	867	12.19	895	12.74	922	13.30	950	13.87	976	14.43	1002	15.00	1028	15.57	1053	16.14
15,000	861	13.18	888	13.74	915	14.31	942	14.88	968	15.46	994	16.05	1019	16.63	1044	17.22	1068	17.81	1093	18.40
16,000	914	15.49	940	16.06	965	16.65	990	17.24	1015	17.85	1039	18.45	1063	19.06	1087	19.67	1110	20.28	1133	20.89
17,000	967	18.03	991	18.62	1015	19.23	1039	19.85	1062	20.47	1086	21.09	1109	21.72	1131	22.35	1153	22.98	1175	23.61
18,000	1020	20.82	1043	21.43	1066	22.06	1088	22.69	1111	23.33	1133	23.97	1155	24.62	1176	25.27	1197	25.92	1219	26.58
19,000	1073	23.87	1095	24.50	1117	25.14	1138	25.79	1159	26.44	1180	27.11	1201	27.77	1222	28.45	1242	29.12	_	l —
20,000	1127	27.18	1147	27.82	1168	28.48	1188	29.15	_	_	_	_	_	_	_	_	_	_	_	—

48A2,A3,A6	6,A7040	(40 TOI	NS) (coi	nt)																
								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3.	.2	3.	4	3.	.6	3	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	901	7.24	933	7.72	965	8.20	995	8.69	1024	9.19	1053	9.69	1081	10.19	1108	10.70	1134	11.21	1159	11.73
9,000	923	8.35	954	8.85	985	9.35	1014	9.86	1043	10.37	1072	10.89	1099	11.41	1126	11.94	1152	12.47	1177	13.00
10,000	948	9.64	978	10.15	1007	10.66	1036	11.19	1064	11.71	1092	12.25	1119	12.78	1145	13.33	1171	13.88	1196	14.43
11,000	976	11.11	1005	11.63	1033	12.16	1061	12.70	1088	13.24	1114	13.79	1140	14.34	1166	14.90	1191	15.46	1216	16.03
12,000	1008	12.77	1035	13.31	1062	13.86	1088	14.41	1114	14.97	1139	15.53	1164	16.09	1189	16.67	1213	17.24	1237	17.83
13,000	1042	14.64	1068	15.19	1093	15.76	1118	16.32	1143	16.89	1167	17.47	1191	18.05	1215	18.64	1238	19.23	1262	19.82
14,000	1078	16.71	1103	17.28	1127	17.86	1151	18.45	1174	19.03	1198	19.63	1221	20.22	1244	20.82	1266	21.43	1288	22.04
15,000	1116	19.00	1140	19.59	1163	20.19	1186	20.79	1208	21.40	1230	22.00	1253	22.62	1274	23.23	1296	23.85	_	_
16,000	1156	21.51	1178	22.12	1200	22.74	1222	23.36	1244	23.98	1265	24.61	1286	25.24	_	_	_	_	_	_
17,000	1197	24.25	1218	24.89	1240	25.52	1261	26.17	1281	26.81	_	—	_	_	_	_	_	_	_	_
18,000	1239	27.24	1260	27.89	1280	28.55	_	_	_	_	_	—	_	_	_	_	_	_	—	l —
19,000	_	-	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	—	l —
20,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —	—

LEGEND

 ${\bf Bhp} - {\bf Brake\ Horsepower}$

2. Conversion — Bhp to watts:

Bhp x 746 Watts = Motor efficiency

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

48A2,A3,A6	48A2,A3,A6,A7050 (50 TONS)																			
	Available External Static Pressure (in. wg)																			
Airflow (Cfm)	0.2		0.4		0.6		0.8		1.0		1.2		1.4		1.6		1.8		2.	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	611	5.00	651	5.45	689	5.91	725	6.37	761	6.84	795	7.31	829	7.79	861	8.27	893	8.76	925	9.26
11,000	662	6.27	699	6.75	734	7.23	768	7.72	801	8.21	833	8.71	865	9.20	895	9.71	925	10.21	955	10.73
12,000	714	7.74	748	8.24	780	8.75	812	9.26	843	9.77	873	10.29	903	10.81	932	11.33	960	11.86	988	12.39
13,000	766	9.41	798	9.93	828	10.46	858	11.00	887	11.54	916	12.08	944	12.62	971	13.16	998	13.71	1024	14.26
14,000	819	11.29	848	11.84	877	12.39	905	12.95	932	13.51	959	14.07	986	14.63	1012	15.20	1037	15.77	1062	16.34
15,000	872	13.40	899	13.96	926	14.54	953	15.11	979	15.70	1004	16.28	1029	16.87	1054	17.46	1078	18.05	1102	18.64
16,000	925	15.74	951	16.32	976	16.91	1001	17.51	1026	18.12	1050	18.72	1074	19.33	1097	19.94	1121	20.55	1143	21.17
17,000	979	18.32	1003	18.92	1027	19.53	1051	20.15	1074	20.77	1097	21.40	1120	22.03	1142	22.66	1164	23.29	1186	23.93
18,000	1032	21.15	1055	21.77	1078	22.40	1100	23.04	1123	23.68	1145	24.33	1166	24.98	1188	25.63	1209	26.28	1230	26.93
19,000	1086	24.24	1108	24.88	1129	25.52	1151	26.18	1172	26.84	1193	27.51	1214	28.18	1234	28.85	1255	29.52	1275	30.19
20,000	1140	27.60	1161	28.25	1181	28.92	1202	29.59	1222	30.27	1242	30.95	1262	31.64	1281	32.33	_	_	_	

48A2,A3,A6	48A2,A3,A6,A7050 (50 TONS) (cont)																			
	Available External Static Pressure (in. wg)																			
Airflow (Cfm)	2.2		2.4		2.6		2.8		3.0		3.2		3.4		3.6		3.8		4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	955	9.76	985	10.27	1014	10.79	1043	11.31	1071	11.84	1098	12.37	1125	12.91	1151	13.46	1177	14.01	1202	14.56
11,000	984	11.25	1012	11.77	1040	12.30	1068	12.84	1095	13.38	1121	13.93	1147	14.49	1172	15.05	1197	15.61	1222	16.18
12,000	1016	12.93	1043	13.47	1069	14.02	1095	14.57	1121	15.13	1147	15.69	1172	16.26	1196	16.83	1220	17.41	1244	18.00
13,000	1050	14.82	1076	15.38	1101	15.94	1126	16.51	1151	17.08	1175	17.66	1199	18.24	1223	18.83	1246	19.42	1269	20.02
14,000	1087	16.92	1111	17.49	1136	18.07	1159	18.66	1183	19.25	1206	19.84	1229	20.44	1252	21.04	1274	21.64	1296	22.25
15,000	1126	19.23	1149	19.83	1172	20.43	1195	21.03	1217	21.64	1239	22.25	1261	22.86	1283	23.48	_	_	_	_
16,000	1166	21.78	1188	22.40	1210	23.01	1232	23.64	1253	24.26	1275	24.89	1296	25.52	_	_	_	_	_	_
17,000	1208	24.56	1229	25.20	1250	25.84	1271	26.48	1291	27.12	_	_	l —	_	_	l —	_	l —	_	_
18,000	1250	27.59	1271	28.25	1291	28.91	_	—	_	—	_	_	_	_	_	—	_	—	_	_
19,000	1294	30.87	_	_	_	_	_	_	_	—	_	_	_	_	_	—	_	—	_	_
20,000	_	_	_	_	_	_	_	l —	_	l —	_	_	_	_	_	—	_	—	_	-

48A2,A3,A6,A7060 (60 TONS)																				
	Available External Static Pressure (in. wg)																			
Airflow (Cfm)	0.2		0.4		0.6		0.8		1.0		1.2		1.4		1.6		1.8		2	.0
	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	476	4.33	534	5.04	585	5.78	632	6.56	674	7.39	714	8.24	751	9.12	786	10.02	819	10.93	851	11.85
14,000	536	6.19	588	6.96	636	7.74	680	8.56	720	9.41	758	10.30	793	11.21	827	12.15	859	13.11	890	14.08
15,000	566	7.28	617	8.09	662	8.90	704	9.73	744	10.59	781	11.50	816	12.42	849	13.38	881	14.36	911	15.35
16,000	597	8.48	645	9.34	689	10.17	730	11.02	768	11.90	804	12.82	839	13.76	871	14.73	902	15.72	932	16.73
17,000	628	9.80	674	10.71	717	11.58	756	12.45	793	13.34	829	14.27	862	15.23	894	16.21	925	17.21	954	18.24
18,000	659	11.25	704	12.21	745	13.11	783	14.00	819	14.91	853	15.85	886	16.82	918	17.82	948	18.84	977	19.88
19,000	691	12.82	734	13.84	773	14.77	810	15.69	845	16.62	879	17.58	911	18.56	942	19.57	971	20.60	1000	21.65
20,000	723	14.53	764	15.60	802	16.57	838	17.52	872	18.47	905	19.44	936	20.44	966	21.45	995	22.50	1023	23.57
21,000	755	16.37	794	17.49	831	18.51	866	19.49	899	20.47	931	21.46	961	22.47	991	23.50	1019	24.55	1047	25.63
22,000	787	18.35	825	19.53	861	20.59	894	21.60	927	22.61	958	23.62	987	24.64	1016	25.69	1044	26.76	1071	27.84
23,000	819	20.48	856	21.71	890	22.81	923	23.87	954	24.90	985	25.93	1014	26.97	1042	28.03	1069	29.11	1096	30.21
24,000	851	22.75	887	24.04	920	25.19	952	26.28	983	27.34	1012	28.40	1041	29.46	1068	30.54	1095	31.63	1121	32.74
25,000	883	25.17	918	26.52	951	27.72	982	28.84	1011	29.94	1040	31.02	1068	32.11	1095	33.21	1121	34.31	1147	35.44
26,000	916	27.76	950	29.15	981	30.40	1011	31.57	1040	32.70	1068	33.81	1095	34.92	1122	36.04	1147	37.16	1172	38.30
27,000	948	30.49	981	31.95	1012	33.24	1041	34.46	1070	35.62	1097	36.76	1123	37.90	1149	39.04	1174	40.18	1199	41.34

48A2,A3,A6,A7060 (60 TONS) (cont)																				
	Available External Static Pressure (in. wg)																			
Airflow (Cfm)	2.2		2.4		2.6		2.8		3.0		3.2		3.4		3.6		3.8		4	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	881	12.78	911	13.72	939	14.67	967	15.62	993	16.58	1019	17.54	1045	18.51	1069	19.48	1093	20.45	1117	21.43
14,000	920	15.06	948	16.06	976	17.07	1003	18.08	1029	19.11	1054	20.13	1079	21.17	1103	22.21	1126	23.26	1149	24.31
15,000	940	16.36	968	17.38	996	18.41	1022	19.45	1048	20.50	1073	21.56	1097	22.63	1121	23.70	1144	24.78	1167	25.86
16,000	961	17.76	989	18.80	1016	19.86	1042	20.92	1067	22.00	1092	23.08	1116	24.17	1140	25.28	1162	26.38	1185	27.49
17,000	983	19.28	1010	20.34	1036	21.42	1062	22.51	1087	23.60	1112	24.71	1135	25.83	1159	26.95	1181	28.09	l —	_
18,000	1005	20.94	1032	22.01	1058	23.11	1083	24.21	1108	25.33	1132	26.46	1156	27.60	1178	28.74	l —	l —	l —	_
19,000	1027	22.72	1054	23.81	1080	24.92	1105	26.04	1129	27.18	1153	28.33	1176	29.48	1199	30.65	l —	_	l —	_
20,000	1050	24.65	1076	25.76	1102	26.88	1126	28.01	1151	29.17	1174	30.33	1197	31.50	_	_	l —	l —	l —	_
21,000	1073	26.73	1099	27.84	1124	28.97	1149	30.13	1173	31.29	1196	32.47	_	_	_	_	l —	l —	l —	_
22,000	1097	28.95	1123	30.08	1147	31.22	1172	32.39	1195	33.56	_	_	_	_	_	_	_	_	_	_
23,000	1122	31.33	1147	32.47	1171	33.63	1195	34.80	_	_	_	_	_	_	_	_	_	_	_	_
24,000	1146	33.87	1171	35.02	1195	36.19	_	_	_	_	_	_	_	_	_	_	l —	l —	l —	_
25,000	1171	36.58	1196	37.74	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	l —	_
26,000	1197	39.46	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
27,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

Bhp x 746 Watts = Motor efficiency

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

								Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)							
Airflow (Cfm)	0	.2	0	.4	0	.6	0.	.8	1.	.0	1.	.2	1.	.4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4,000	311	0.54	390	0.71	457	0.88	515	1.05	567	1.21	613	1.38	656	1.55	696	1.71	733	1.88	768	2.04
5,000	347	0.84	417	1.02	480	1.21	536	1.40	587	1.59	633	1.78	676	1.97	716	2.16	753	2.34	788	2.52
6,000	387	1.25	450	1.43	507	1.63	560	1.84	609	2.05	654	2.26	696	2.47	735	2.68	773	2.88	808	3.09
7,000	430	1.77	488	1.96	540	2.17	588	2.38	634	2.61	677	2.83	718	3.06	756	3.29	793	3.51	828	3.74
7,500	452	2.07	507	2.27	557	2.48	604	2.70	648	2.93	690	3.16	730	3.40	768	3.63	804	3.87	839	4.10
8,000	474	2.41	528	2.61	576	2.82	620	3.04	663	3.28	704	3.52	743	3.76	780	4.00	816	4.24	850	4.48
9,000	519	3.19	570	3.39	614	3.60	656	3.83	696	4.07	734	4.32	771	4.57	806	4.82	840	5.08	873	5.34
10 000	565	410	613	1 21	655	153	604	176	731	5 00	767	5 26	802	5 5 1	835	5 78	868	6 04	ann	6 21

							_	Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)						_	
Airflow (Cfm)	2.	2	2.	.4	2.	.6	2.	.8	3.	0	3.	2	3.	4	3.	6	3.	8	4	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4,000	802	2.21	833	2.38	864	2.55	893	2.71	921	2.88	949	3.06	975	3.23	1001	3.40	1026	3.58	1050	3.75
5,000	822	2.71	854	2.89	885	3.08	914	3.26	943	3.45	970	3.64	997	3.82	1023	4.01	1048	4.20	1072	4.39
6,000	842	3.29	874	3.50	905	3.70	934	3.90	963	4.10	991	4.31	1017	4.51	1043	4.71	1069	4.91	1093	5.12
7,000	862	3.96	894	4.19	924	4.41	954	4.63	983	4.85	1010	5.07	1037	5.29	1063	5.51	1089	5.72	1113	5.94
7,500	872	4.33	904	4.56	934	4.79	964	5.02	993	5.25	1020	5.48	1047	5.71	1073	5.94	1099	6.16	1123	6.39
8,000	883	4.73	914	4.97	945	5.21	974	5.45	1003	5.68	1030	5.92	1057	6.16	1083	6.39	1108	6.63	1133	6.87
9,000	905	5.60	936	5.85	966	6.11	995	6.37	1023	6.62	1051	6.88	1077	7.13	1103	7.38	1129	7.64	1153	7.89
10,000	931	6.58	961	6.85	990	7.13	1018	7.40	1046	7.67	1073	7.94	1099	8.21	1124	8.48	1149	8.75	1174	9.02

50A2,A3,A6	,A7 025	5-030 (2	5 THRU	30 TON	IS)															
								Availa	ble Ext	ernal St	atic Pre	ssure (in. wg)							
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1.	.6	1	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	352	0.85	422	1.03	484	1.22	540	1.42	590	1.61	636	1.79	678	1.98	718	2.17	755	2.35	791	2.54
6,000	394	1.26	456	1.45	513	1.65	565	1.86	613	2.07	658	2.28	700	2.49	739	2.70	776	2.90	811	3.11
7,000	438	1.79	495	1.98	546	2.19	594	2.41	640	2.64	682	2.86	723	3.09	761	3.32	798	3.54	833	3.77
8,000	483	2.44	536	2.64	583	2.85	628	3.08	670	3.32	710	3.55	749	3.80	786	4.04	821	4.28	855	4.52
9,000	530	3.23	579	3.43	623	3.65	664	3.88	704	4.12	741	4.37	778	4.62	813	4.88	847	5.13	880	5.39
10,000	577	4.15	624	4.36	665	4.58	703	4.82	740	5.06	776	5.32	810	5.58	843	5.84	876	6.11	907	6.38
11,000	625	5.22	669	5.44	708	5.67	744	5.91	779	6.16	813	6.41	845	6.68	877	6.95	907	7.22	937	7.50
12,000	674	6.45	715	6.67	753	6.90	787	7.15	820	7.40	851	7.67	882	7.93	912	8.21	941	8.49	970	8.78
13,000	722	7.85	762	8.07	798	8.30	831	8.55	862	8.81	892	9.08	921	9.35	950	9.63	977	9.92	1005	10.21
14,000	771	9.41	810	9.64	844	9.88	875	10.13	905	10.39	934	10.66	962	10.94	989	11.22	1015	11.51	1041	11.81
15,000	821	11.15	857	11.38	890	11.62	921	11.88	949	12.14	977	12.42	1004	12.70	1030	12.99	1055	13.28	1080	13.58

50A2,A3,A	6,A7 02	5-030 (2	5 IHRU	30 TON	15) (cor	it)														
								Availa	ble Exte	ernal St	atic Pre	ssure (in. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3.	.4	3	.6	3.	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	824	2.72	856	2.91	887	3.09	916	3.28	945	3.46	972	3.65	999	3.83	1024	4.02	1049	4.21	1074	4.40
6,000	845	3.31	877	3.52	908	3.72	937	3.92	966	4.12	993	4.32	1020	4.53	1046	4.73	1071	4.93	1096	5.14
7,000	866	3.99	898	4.21	928	4.43	958	4.66	986	4.88	1014	5.10	1041	5.31	1067	5.53	1092	5.75	1116	5.97
8,000	888	4.77	919	5.01	950	5.25	979	5.49	1007	5.72	1035	5.96	1061	6.20	1087	6.43	1113	6.67	1137	6.90
9,000	912	5.65	942	5.90	972	6.16	1001	6.42	1029	6.67	1056	6.93	1083	7.18	1108	7.43	1134	7.69	1158	7.94
10,000	938	6.65	968	6.92	997	7.19	1025	7.46	1052	7.73	1079	8.00	1105	8.27	1130	8.54	1155	8.81	1180	9.08
11,000	967	7.78	995	8.07	1023	8.35	1051	8.63	1077	8.92	1103	9.20	1129	9.49	1154	9.77	1178	10.06	_	_
12,000	998	9.07	1025	9.35	1052	9.65	1078	9.94	1104	10.24	1130	10.54	1154	10.83	1179	11.13	_	_	_	_
13,000	1031	10.50	1058	10.80	1083	11.10	1109	11.40	1133	11.71	1158	12.01	1182	12.32	_	_	_	_	_	_
14,000	1067	12.10	1092	12.41	1117	12.71	1141	13.02	1165	13.33	1188	13.65	_	_	_	_	_	_	_	_
15,000	1104	13.88	1128	14.19	1152	14.50	1175	14.81	1198	15.13	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

Performance data (cont)

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

50A2,A3,A6,	,A7035	(35 TON	IS)																	
			ā.		ā.		AV/	AILABLE	EXTE	RNAL S	TATIC I	PRESSU	JRE (in	. wg)			ā.		ā.	
AIRFLOW (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1	.6	1	.8	2	2.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	503	1.96	553	2.22	601	2.47	646	2.72	689	2.97	730	3.22	768	3.46	804	3.70	839	3.94	872	4.17
8,000	553	2.62	599	2.89	643	3.16	684	3.43	724	3.70	763	3.97	799	4.23	834	4.50	868	4.76	901	5.02
9,000	605	3.39	647	3.68	687	3.97	726	4.26	763	4.55	798	4.83	833	5.12	867	5.40	899	5.68	930	5.96
10,000	657	4.29	696	4.61	733	4.91	769	5.22	803	5.52	837	5.82	870	6.12	901	6.42	932	6.72	962	7.02
10,500	684	4.80	721	5.12	757	5.43	791	5.75	825	6.06	857	6.37	889	6.68	920	6.98	950	7.29	979	7.60
11,000	710	5.33	747	5.66	781	5.99	814	6.31	847	6.63	878	6.95	909	7.26	939	7.58	968	7.89	997	8.21
12,000	764	6.52	798	6.86	830	7.21	861	7.54	891	7.88	921	8.21	950	8.54	978	8.87	1006	9.20	1033	9.53
13,000	818	7.85	849	8.21	880	8.57	909	8.92	938	9.27	966	9.62	993	9.97	1020	10.31	1046	10.66	1072	11.00
14,000	872	9.33	901	9.71	930	10.09	958	10.45	985	10.82	1012	11.19	1037	11.55	1063	11.91	1088	12.27	1113	12.63
15,000	926	10.98	954	11.37	981	11.76	1008	12.15	1033	12.53	1059	12.91	1083	13.28	1108	13.66	1131	14.03	1155	14.40
16,000	980	12.79	1007	13.20	1033	13.60	1058	14.00	1082	14.40	1106	14.79	1130	15.18	1153	15.57	1176	15.96	1199	16.35
17,000	1035	14.77	1060	15.19	1085	15.61	1109	16.03	1132	16.44	1155	16.84	1178	17.25	1200	17.65	1222	18.05	1243	18.46
17,500	1062	15.83	1087	16.25	1111	16.68	1134	17.10	1157	17.52	1180	17.94	1202	18.35	1224	18.76	1245	19.17	1266	19.58

50A2,A3,A6,	A7035	(35 TON	S) (con	ıt)																
AIRFLOW	<u> </u>	•	_	4	_	^				RNAL S			_ `	<u> </u>	_	^	_	•		
(Cfm)		.2	2	.4	2	.6	2	.8	3	.0	3	.2	3	.4	3	.6	3	.8	4	1.0
	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	903	4.40	933	4.62	962	4.84	990	5.06	1017	5.27	1043	5.48	1068	5.69	1092	5.89	1116	6.09	1139	6.28
8,000	932	5.27	962	5.52	991	5.77	1019	6.02	1045	6.26	1071	6.50	1097	6.73	1121	6.96	1145	7.19	1168	7.42
9,000	961	6.24	990	6.52	1019	6.79	1047	7.06	1073	7.33	1099	7.59	1125	7.85	1149	8.11	1173	8.37	1196	8.62
10,000	992	7.32	1020	7.62	1048	7.91	1075	8.20	1102	8.49	1127	8.78	1152	9.07	1177	9.35	1201	9.63	1224	9.91
10,500	1008	7.90	1036	8.21	1063	8.51	1090	8.82	1116	9.12	1142	9.41	1166	9.71	1191	10.01	1214	10.30	1238	10.59
11,000	1025	8.52	1052	8.84	1079	9.15	1105	9.46	1131	9.77	1156	10.08	1181	10.39	1205	10.69	1228	10.99	1252	11.29
12,000	1060	9.86	1086	10.19	1112	10.52	1137	10.85	1162	11.17	1187	11.50	1211	11.82	1234	12.15	1257	12.47	1280	12.79
13,000	1097	11.35	1122	11.69	1147	12.03	1171	12.37	1195	12.72	1219	13.06	1242	13.40	1265	13.74	1287	14.08	_	_
14,000	1137	12.98	1161	13.34	1184	13.69	1208	14.05	1231	14.41	1253	14.76	1276	15.12	1298	15.47	_	_	_	_
15,000	1178	14.77	1201	15.15	1223	15.51	1246	15.88	1268	16.25	1289	16.62	_	_	_	_	_	_	l —	_
16,000	1221	16.73	1243	17.11	1264	17.50	1286	17.88	_	_	_	_	l —	_	_	_	_	_	l —	_
17,000	1265	18.85	1286	19.25	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —	_
17,500	1287	19.98	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

50A2,A3,A6	6, A 7040	(40 TO	NS)																	
			-				-	Availa	ble Ext	ernal St	atic Pre	ssure (i	in. wg)						-	
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1.	.2	1.	.4	1.	.6	1.	.8	2	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	475	2.69	523	3.08	569	3.47	612	3.86	653	4.26	692	4.66	730	5.07	767	5.49	802	5.92	836	6.36
9,000	521	3.53	565	3.94	606	4.36	646	4.78	684	5.20	721	5.63	757	6.06	791	6.49	825	6.94	857	7.39
10,000	568	4.52	608	4.96	646	5.40	683	5.84	719	6.29	753	6.74	787	7.20	819	7.65	851	8.11	882	8.58
11,000	615	5.68	652	6.14	687	6.60	722	7.07	755	7.55	788	8.02	819	8.50	850	8.97	880	9.46	909	9.94
12,000	663	7.01	697	7.49	730	7.98	762	8.47	794	8.97	824	9.47	854	9.96	883	10.47	912	10.97	939	11.48
13,000	712	8.53	743	9.03	774	9.54	804	10.05	834	10.57	862	11.09	891	11.61	918	12.13	945	12.66	972	13.19
14,000	760	10.24	790	10.76	819	11.29	847	11.82	875	12.36	902	12.90	929	13.45	955	13.99	981	14.54	1006	15.09
15,000	809	12.15	837	12.69	864	13.24	891	13.79	917	14.35	943	14.91	968	15.48	993	16.04	1018	16.62	1042	17.18
16,000	859	14.27	885	14.83	910	15.40	936	15.97	960	16.55	985	17.13	1009	17.71	1033	18.30	1056	18.89	1079	19.48
17,000	908	16.61	933	17.19	957	17.77	981	18.36	1004	18.96	1028	19.56	1051	20.16	1073	20.77	1096	21.38	1118	21.99
18,000	958	19.18	981	19.77	1004	20.37	1027	20.98	1049	21.60	1071	22.22	1093	22.84	1115	23.46	1136	24.09	1157	24.72
19,000	1007	21.98	1030	22.59	1052	23.21	1073	23.84	1095	24.47	1116	25.10	1137	25.74	1157	26.39	1178	27.04	1198	27.68
20,000	1057	25.02	1079	25.65	1099	26.29	1120	26.93	1140	27.58	1161	28.23	1181	28.89	_	_	_	_	_	

50A2,A3,A6	,A7040	(40 TOI	NS) (co	nt)																
A								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)				-		-	
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3.	4	3	.6	3	.8	4	.0
(5)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	870	6.81	902	7.26	933	7.73	964	8.20	993	8.67	1022	9.16	1050	9.65	1077	10.14	1104	10.64	1129	11.15
9,000	889	7.85	920	8.31	950	8.79	979	9.27	1008	9.75	1036	10.25	1064	10.75	1090	11.26	1117	11.77	1142	12.29
10,000	912	9.05	941	9.53	970	10.02	998	10.51	1026	11.00	1053	11.51	1080	12.02	1106	12.54	1131	13.06	1157	13.59
11,000	938	10.43	966	10.92	993	11.42	1020	11.93	1047	12.44	1073	12.95	1099	13.47	1124	14.00	1149	14.53	1173	15.07
12,000	967	11.98	993	12.49	1020	13.01	1046	13.53	1071	14.05	1096	14.58	1121	15.11	1145	15.65	1169	16.19	1192	16.74
13,000	998	13.72	1023	14.25	1049	14.78	1073	15.32	1098	15.86	1121	16.40	1145	16.95	1168	17.50	1191	18.06	1214	18.62
14,000	1031	15.64	1055	16.19	1079	16.75	1103	17.30	1126	17.86	1149	18.42	1172	18.98	1195	19.55	1217	20.12	1239	20.69
15,000	1066	17.76	1089	18.33	1112	18.90	1135	19.48	1157	20.06	1179	20.63	1201	21.21	1223	21.80	1244	22.38	1265	22.97
16,000	1102	20.08	1124	20.67	1147	21.26	1168	21.86	1190	22.46	1211	23.06	1232	23.66	1253	24.26	1274	24.86	1294	25.46
17,000	1140	22.61	1161	23.22	1182	23.84	1203	24.45	1224	25.07	1245	25.69	1265	26.31	1285	26.93	_	_	_	_
18,000	1178	25.36	1199	25.99	1219	26.63	1240	27.26	1260	27.90	1279	28.54	1299	29.18	_	l —	_	_	_	_
19,000	1218	28.34	1238	28.99	_	_	_	l —	_	_	_	l —	_	_	_	_	_	_	_	_
20,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

50A2,A3,A	6,A7050	(50 TO	NS)																	
							-	Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)		-		-		-	
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1.	.6	1	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	577	4.62	617	5.06	655	5.50	692	5.95	727	6.40	761	6.85	794	7.30	827	7.76	858	8.22	889	8.69
11,000	625	5.80	661	6.26	697	6.73	731	7.20	764	7.67	796	8.14	827	8.62	858	9.10	888	9.58	917	10.07
12,000	673	7.15	707	7.63	740	8.12	772	8.62	803	9.11	833	9.61	863	10.11	891	10.61	920	11.12	947	11.62
13,000	722	8.69	753	9.19	784	9.70	814	10.22	843	10.74	872	11.26	900	11.78	927	12.31	954	12.83	980	13.36
14,000	771	10.43	800	10.95	829	11.48	857	12.01	885	12.55	912	13.10	938	13.64	964	14.19	990	14.74	1015	15.29
15,000	821	12.37	848	12.91	875	13.46	901	14.01	928	14.57	953	15.14	978	15.70	1003	16.27	1028	16.84	1052	17.41
16,000	870	14.52	896	15.08	922	15.65	947	16.22	971	16.80	996	17.39	1020	17.97	1043	18.56	1066	19.15	1089	19.75
17,000	920	16.89	945	17.48	969	18.06	993	18.65	1016	19.25	1039	19.86	1062	20.46	1084	21.07	1107	21.68	1129	22.30
18,000	971	19.50	994	20.10	1017	20.71	1039	21.32	1061	21.93	1083	22.55	1105	23.18	1126	23.80	1148	24.44	1169	25.07
19,000	1021	22.35	1043	22.96	1065	23.59	1086	24.21	1107	24.85	1128	25.49	1149	26.13	1170	26.78	1190	27.42	1210	28.08
20 000	1071	25 43	1092	26.07	1113	26 71	1133	27.36	1154	28 01	1174	28 66	1194	29.33	1213	29 99	1233	30.65	1252	31 33

50A2,A3,A6	,A7050	(50 TOI	NS) (co	nt)																
								Availa	ble Exte	ernal Sta	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3.	.4	3	.6	3	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	919	9.17	948	9.64	977	10.13	1005	10.62	1032	11.12	1059	11.63	1086	12.14	1112	12.66	1137	13.18	1162	13.71
11,000	945	10.56	973	11.05	1001	11.55	1027	12.06	1054	12.57	1080	13.09	1105	13.61	1130	14.14	1155	14.67	1179	15.21
12,000	975	12.13	1001	12.64	1027	13.16	1053	13.68	1078	14.21	1103	14.74	1128	15.27	1152	15.81	1176	16.35	1199	16.90
13,000	1006	13.89	1032	14.42	1057	14.96	1081	15.49	1105	16.03	1129	16.58	1153	17.12	1176	17.68	1199	18.23	1221	18.80
14,000	1040	15.84	1064	16.39	1088	16.94	1112	17.50	1135	18.06	1158	18.62	1180	19.18	1203	19.75	1225	20.32	1246	20.90
15,000	1075	17.99	1098	18.56	1121	19.13	1144	19.71	1166	20.29	1188	20.86	1210	21.45	1231	22.03	1253	22.62	1274	23.21
16,000	1112	20.34	1134	20.93	1156	21.53	1178	22.12	1199	22.72	1221	23.32	1241	23.92	1262	24.52	1283	25.13	_	_
17,000	1150	22.91	1172	23.52	1193	24.14	1214	24.76	1234	25.37	1255	25.99	1275	26.61	1295	27.23	_	_	_	_
18,000	1190	25.70	1210	26.34	1230	26.97	1250	27.61	1270	28.25	1290	28.89	_	_	_	_	_	_	_	_
19,000	1230	28.73	1250	29.38	1269	30.04	1289	30.70	_	_	_	l —	_	_	_	_	_	_	_	_
20,000	1271	31.99	1290	32.67	_	_	_	l —	_	_	_	l —	_	_	_	_	_	_	_	—

50A2,A3,A6	5,A7060	(60 TOI	NS)																	
			_				-	Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)		-		-		_	
Airflow (Cfm)	0.	.2	0	.4	0.	.6	0	.8	1	.0	1.	.2	1.	.4	1.	.6	1.	.8	2	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	450	4.02	509	4.71	560	5.41	605	6.12	647	6.86	686	7.62	723	8.40	757	9.21	790	10.04	821	10.89
14,000	505	5.74	558	6.49	606	7.24	649	8.01	689	8.79	727	9.59	762	10.40	795	11.24	827	12.09	857	12.96
15,000	533	6.75	584	7.53	630	8.32	672	9.11	711	9.91	748	10.73	782	11.56	815	12.41	846	13.28	876	14.17
16,000	561	7.88	610	8.68	655	9.50	696	10.32	734	11.14	770	11.98	803	12.84	836	13.71	866	14.59	896	15.49
17,000	590	9.12	637	9.95	680	10.79	720	11.64	757	12.49	792	13.35	825	14.23	857	15.12	887	16.02	916	16.94
18,000	619	10.48	664	11.33	706	12.20	744	13.07	781	13.96	815	14.84	847	15.74	878	16.65	908	17.57	937	18.50
19,000	648	11.96	692	12.84	732	13.74	769	14.64	805	15.54	838	16.45	870	17.37	900	18.30	930	19.24	958	20.19
20,000	678	13.57	719	14.47	758	15.40	795	16.32	829	17.25	862	18.19	893	19.13	923	20.08	952	21.04	979	22.01
21,000	707	15.30	748	16.24	785	17.19	821	18.14	854	19.09	886	20.05	917	21.02	946	22.00	974	22.98	1001	23.97
22,000	737	17.18	776	18.14	812	19.11	847	20.09	879	21.07	911	22.06	940	23.05	969	24.04	997	25.05	1024	26.06
23,000	767	19.20	804	20.18	840	21.17	873	22.17	905	23.18	935	24.19	965	25.21	993	26.23	1020	27.25	1046	28.28
24,000	797	21.35	833	22.36	867	23.38	900	24.40	931	25.43	961	26.47	989	27.51	1017	28.55	1044	29.60	1070	30.65
25,000	827	23.66	862	24.68	895	25.72	927	26.78	957	27.83	986	28.89	1014	29.95	1041	31.02	1068	32.09	1093	33.17
26,000	857	26.11	891	27.16	923	28.23	954	29.30	984	30.38	1012	31.46	1040	32.55	1066	33.64	1092	34.73	1117	35.83
27,000	888	28.72	920	29.79	952	30.88	982	31.97	1011	33.08	1038	34.19	1065	35.29	1091	36.40	1117	37.52	1141	38.64

50A2,A3,A6	,A7060	(60 TOI	NS) (coi	nt)																
								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)				-		_	
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3.	4	3	.6	3	.8	4	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	851	11.75	880	12.63	907	13.53	934	14.45	960	15.38	985	16.32	1010	17.28	1033	18.24	1057	19.22	1079	20.22
14,000	886	13.85	915	14.76	942	15.68	968	16.62	993	17.57	1018	18.54	1042	19.52	1066	20.51	1088	21.52	1111	22.53
15,000	905	15.07	933	15.99	960	16.92	986	17.87	1011	18.83	1035	19.81	1059	20.81	1082	21.81	1105	22.82	1127	23.85
16,000	924	16.41	952	17.34	978	18.28	1004	19.25	1029	20.22	1053	21.21	1077	22.21	1100	23.22	1122	24.25	1144	25.29
17,000	944	17.86	971	18.81	997	19.77	1023	20.74	1047	21.73	1071	22.73	1095	23.74	1117	24.76	1140	25.80	1161	26.85
18,000	964	19.45	991	20.41	1017	21.38	1042	22.36	1066	23.36	1090	24.37	1113	25.40	1136	26.43	1158	27.48	1179	28.54
19,000	985	21.15	1011	22.13	1037	23.12	1061	24.11	1085	25.13	1109	26.15	1132	27.19	1154	28.24	1176	29.29	1197	30.36
20,000	1006	22.99	1032	23.98	1057	24.99	1081	26.00	1105	27.03	1128	28.06	1151	29.11	1173	30.17	1195	31.24	l —	_
21,000	1028	24.97	1053	25.97	1078	26.99	1102	28.02	1126	29.06	1148	30.11	1171	31.17	1193	32.25	_	_	_	_
22,000	1050	27.08	1075	28.10	1099	29.14	1123	30.18	1146	31.24	1169	32.30	1191	33.38	_	_	_	_	<u> </u>	_
23,000	1072	29.32	1097	30.37	1121	31.42	1144	32.48	1167	33.55	1190	34.64	_	_	_	_	_	_	_	_
24,000	1095	31.71	1119	32.78	1143	33.85	1166	34.93	1189	36.02	_	<u> </u>	_	_	_	_	_	_	l —	_
25,000	1118	34.25	1142	35.33	1165	36.42	1188	37.52	_	_	_	l —	_	_	_	_	_	_	<u> </u>	_
26,000	1141	36.93	1165	38.04	1188	39.15	_	_	_	_	_	l —	_	_	_	_	_	_	<u> </u>	_
27,000	1165	39.76	1188	40.89	_	_	_	_	_	_	_	—	_	_	_	_	_	_	<u> </u>	—

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

Performance data (cont)

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS

48A4,A5,A8	3,A9 020	(20 TO	NS)																	
								Availa	ble Exte	ernal St	atic Pre	ssure (in. wg)							
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1.	.2	1	.4	1.	.6	1.	.8	2.	.0
(01111)	Rpm	Bhp																		
4,000	339	0.71	414	0.97	478	1.25	534	1.54	585	1.84	631	2.14	674	2.44	714	2.75	751	3.06	787	3.37
5,000	384	1.10	452	1.37	510	1.66	563	1.96	611	2.28	656	2.60	698	2.93	738	3.27	775	3.60	811	3.94
6,000	433	1.61	494	1.89	548	2.19	597	2.51	643	2.84	686	3.18	726	3.52	764	3.88	800	4.23	835	4.60
7,000 7,500	484 511	2.27 2.66	540 563	2.56 2.95	590 612	2.87 3.26	636 656	3.19 3.59	679 698	3.53 3.94	719 737	3.88 4.29	757 775	4.24 4.66	794 810	4.61 5.03	829 845	4.98 5.41	863 877	5.36 5.79
8,000	538	3.09	588	3.38	634	3.70	678	4.03	718	4.38	756	4.74	793	5.11	827	5.49	861	5.87	893	6.26
9,000	593	4.07	639	4.37	682	4.69	722	5.03	760	5.39	796	5.76	831	6.13	864	6.52	896	6.91	927	7.32
10,000	649	5.23	691	5.54	731	5.87	769	6.21	805	6.58	839	6.95	872	7.34	904	7.73	934	8.13	964	8.54

								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2.	.2	2.	.4	2.	.6	2	.8	3	.0	3.	.2	3.	4	3.	.6	3.	8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4,000	820	3.68	852	3.99	883	4.30	912	4.62	940	4.93	967	5.25	993	5.57	1019	5.89	1043	6.21	1067	6.53
5,000	844	4.28	877	4.63	907	4.97	937	5.31	966	5.66	993	6.01	1020	6.35	1046	6.70	1071	7.05	1095	7.40
6,000	869	4.96	901	5.33	931	5.70	961	6.07	990	6.44	1017	6.81	1044	7.19	1070	7.57	1096	7.94	1121	8.32
7,000	895	5.74	926	6.13	956	6.52	986	6.91	1014	7.30	1042	7.70	1068	8.10	1094	8.50	1120	8.90	1145	9.30
7,500	909	6.18	940	6.57	970	6.97	999	7.37	1027	7.78	1054	8.18	1081	8.59	1107	9.00	1132	9.41	1157	9.82
8,000	925	6.66	955	7.06	984	7.46	1013	7.87	1040	8.28	1067	8.69	1094	9.11	1119	9.53	1144	9.95	1169	10.37
9,000	957	7.72	986	8.13	1015	8.55	1042	8.97	1069	9.39	1096	9.82	1121	10.25	1146	10.69	1171	11.12	1195	11.56
10,000	993	8.96	1021	9.38	1048	9.80	1075	10.23	1101	10.67	1126	11.11	1151	11.55	1176	12.00	1200	12.45	_	l —

48A4,A5,A8	B,A9 025	-030 (2	5 THRU	30 TON	IS)															
			-		-			Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)		-		-		-	
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1.	.0	1	.2	1	.4	1	.6	1.	.8	2	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	389	1.11	456	1.38	514	1.68	566	1.98	614	2.30	659	2.62	701	2.95	740	3.29	777	3.62	813	3.96
6,000	439	1.64	499	1.92	553	2.22	602	2.54	647	2.87	689	3.21	730	3.56	768	3.91	804	4.27	838	4.63
7,000	492	2.31	546	2.60	596	2.91	641	3.24	684	3.58	724	3.93	762	4.29	798	4.66	833	5.03	867	5.41
8,000	546	3.14	596	3.43	642	3.75	684	4.09	724	4.44	762	4.80	798	5.17	833	5.55	866	5.93	898	6.32
9,000	602	4.13	647	4.43	690	4.76	730	5.10	768	5.46	803	5.83	838	6.21	871	6.60	903	7.00	933	7.40
10,000	659	5.31	701	5.62	740	5.95	777	6.30	813	6.67	847	7.04	880	7.43	911	7.83	942	8.23	971	8.64
11,000	717	6.67	755	6.99	792	7.33	827	7.68	860	8.06	893	8.44	924	8.83	954	9.24	983	9.65	1011	10.07
12,000	775	8.23	811	8.56	845	8.90	878	9.27	909	9.64	940	10.03	970	10.43	999	10.84	1026	11.26	1054	11.69
13,000	834	9.99	867	10.33	899	10.68	930	11.05	960	11.44	989	11.83	1017	12.24	1045	12.65	1072	13.08	1098	13.51
14,000	893	11.97	924	12.32	954	12.68	983	13.06	1012	13.44	1039	13.85	1066	14.26	1093	14.68	1118	15.11	1143	15.54
15,000	953	14.17	982	14.53	1010	14.90	1037	15.28	1064	15.68	1091	16.08	1116	16.50	1142	16.93	1166	17.36	1190	17.80

								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3.	.0	3.	.2	3.	4	3.	.6	3.	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	846	4.31	879	4.65	909	4.99	939	5.34	968	5.68	995	6.03	1022	6.38	1048	6.73	1073	7.08	1097	7.43
6,000	872	5.00	903	5.36	934	5.73	964	6.10	992	6.48	1020	6.85	1047	7.22	1073	7.60	1098	7.98	1123	8.36
7,000	899	5.79	930	6.18	960	6.57	989	6.96	1018	7.36	1045	7.75	1072	8.15	1098	8.55	1123	8.95	1148	9.35
8,000	930	6.72	960	7.12	989	7.53	1017	7.94	1045	8.35	1072	8.76	1098	9.18	1124	9.60	1148	10.02	1173	10.44
9,000	963	7.80	992	8.22	1020	8.63	1048	9.06	1075	9.48	1101	9.91	1126	10.34	1151	10.78	1176	11.21	1200	11.65
10,000	1000	9.06	1028	9.48	1055	9.91	1081	10.34	1107	10.77	1133	11.22	1157	11.66	1182	12.11	_	_	_	_
11,000	1039	10.49	1066	10.92	1092	11.36	1117	11.80	1142	12.24	1167	12.69	1191	13.15	_	_	_	_	_	_
12,000	1080	12.12	1106	12.56	1131	13.00	1156	13.45	1180	13.90	_	_	_	_	_	_	_	_	_	_
13,000	1123	13.95	1148	14.39	1172	14.84	1196	15.30	_	_	_	_	_	_	_	_	_	_	_	_
14,000	1168	15.99	1192	16.44	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
15,000	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

48A4,A5,A8,	A9 035	(35 TOI	NS)																	
AIDELOW							AVA	AILABLE	EXTE	RNAL S	TATIC	PRESSU	JRE (in	. wg)						
AIRFLOW (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1	.6	1	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	553	2.59	602	2.92	648	3.26	691	3.61	732	3.95	770	4.29	807	4.63	842	4.96	875	5.29	907	5.62
8,000	612	3.45	656	3.81	698	4.17	738	4.53	776	4.90	812	5.27	847	5.63	881	6.00	913	6.36	944	6.72
9,000	672	4.47	712	4.86	750	5.24	787	5.62	823	6.01	857	6.39	890	6.78	922	7.17	953	7.56	983	7.95
10,000	733	5.67	769	6.08	805	6.48	839	6.88	872	7.28	904	7.69	935	8.10	966	8.51	995	8.92	1024	9.33
10,500	763	6.33	798	6.75	832	7.17	865	7.58	897	7.99	929	8.40	959	8.82	989	9.24	1017	9.66	1046	10.08
11,000	794	7.04	828	7.47	861	7.90	892	8.32	923	8.74	954	9.16	983	9.59	1012	10.01	1040	10.44	1067	10.87
12,000	855	8.60	887	9.06	918	9.51	948	9.95	977	10.39	1005	10.83	1033	11.27	1060	11.71	1087	12.16	1113	12.60
13,000	917	10.36	947	10.84	976	11.31	1004	11.77	1031	12.23	1058	12.69	1084	13.14	1110	13.60	1135	14.06	1160	14.52
14,000	980	12.32	1008	12.82	1035	13.31	1061	13.79	1087	14.27	1112	14.75	1137	15.22	1161	15.70	1185	16.17	1209	16.65
15,000	1042	14.49	1069	15.01	1094	15.52	1119	16.03	1143	16.53	1167	17.02	1191	17.51	1214	18.01	1237	18.50	1260	18.99
16,000	1105	16.88	1130	17.42	1154	17.96	1178	18.48	1201	19.00	1224	19.51	1246	20.02	1268	20.53	1290	21.04	_	_
17,000	1168	19.49	1191	20.06	1214	20.61	1237	21.16	1259	21.69	1281	22.23	—	_	_	_	_	_	<u> </u>	_
17,500	1200	20.88	1222	21.46	1245	22.03	1267	22.58	1288	23.13	_	_	_	_	_	_	_		_	_

48A4,A5,A8,	A9 035	(35 TON	NS) (coi	nt)																
AIDEL OW					_		AV/	AILABLE	EXTE	RNAL S	TATIC	PRESSU	JRE (in.	wg)			Ξ.		_	
AIRFLOW (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3	.4	3	.6	3	.8	4	l.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	937	5.94	967	6.26	995	6.57	1022	6.87	1048	7.18	1073	7.48	1098	7.78	1122	8.07	1145	8.36	1168	8.66
8,000	974	7.08	1003	7.43	1031	7.77	1058	8.12	1084	8.46	1109	8.79	1134	9.13	1158	9.46	1181	9.78	1204	10.11
9,000	1012	8.33	1041	8.72	1068	9.10	1094	9.47	1120	9.85	1145	10.22	1169	10.58	1193	10.95	1216	11.31	1239	11.66
10,000	1052	9.74	1080	10.15	1106	10.55	1132	10.96	1157	11.36	1182	11.76	1206	12.16	1229	12.55	1252	12.95	1275	13.34
10,500	1073	10.50	1100	10.92	1126	11.34	1151	11.75	1176	12.17	1201	12.59	1224	13.00	1248	13.41	1271	13.82	1293	14.22
11,000	1094	11.30	1120	11.73	1146	12.16	1171	12.59	1196	13.02	1220	13.45	1243	13.87	1266	14.30	1289	14.72	_	_
12,000	1138	13.05	1163	13.50	1188	13.95	1212	14.40	1236	14.84	1259	15.30	1282	15.74	_	_	_	_	_	_
13,000	1184	14.99	1208	15.45	1232	15.92	1255	16.39	1278	16.85	_	_	_	_	_	_	_	_	_	_
14,000	1232	17.13	1255	17.61	1278	18.09	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_
15,000	1282	19.48	_	_	l —	_	_	_	l —	_	_	_	—	_	_	_	_	_	_	_
16,000	_	_	_	_	l —	_	_	_	l —	_	_	_	—	_	_	_	_	_	_	_
17,000	_	_	_	_	l —	_	l —	_	l —	_	_	_	l —	_	_	_	_	_	<u> </u>	_
17,500	_	_	_	_	l —	_	l —	_	l —	_	_	_	—	_	_	_	_	_	_	_

								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	0.	.2	0	.4	0	.6	0.	.8	1.	.0	1.	2	1.	4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	526	3.10	573	3.50	617	3.91	660	4.33	700	4.75	740	5.18	778	5.62	814	6.07	850	6.53	884	7.00
9,000	579	4.08	621	4.51	662	4.95	701	5.39	738	5.83	775	6.28	810	6.74	845	7.21	878	7.69	911	8.17
10,000	633	5.24	671	5.70	709	6.16	744	6.62	779	7.09	813	7.57	846	8.05	879	8.53	910	9.03	941	9.53
11,000	687	6.59	723	7.07	757	7.56	790	8.05	823	8.54	854	9.04	885	9.54	916	10.05	945	10.56	974	11.08
12,000	742	8.15	775	8.65	807	9.17	838	9.68	868	10.20	898	10.72	927	11.24	955	11.77	983	12.30	1011	12.84
13,000	797	9.92	827	10.45	857	10.98	887	11.52	915	12.07	943	12.61	970	13.15	997	13.70	1024	14.25	1050	14.81
14,000	852	11.92	881	12.47	909	13.03	936	13.59	963	14.15	990	14.72	1016	15.29	1041	15.86	1066	16.43	1091	17.01
15,000	908	14.15	935	14.72	961	15.31	987	15.89	1013	16.48	1038	17.06	1062	17.65	1086	18.25	1110	18.84	1134	19.44
16,000	964	16.63	989	17.23	1014	17.83	1039	18.43	1063	19.04	1086	19.65	1110	20.26	1133	20.88	1156	21.49	1178	22.11
17,000	1021	19.37	1044	19.98	1068	20.60	1091	21.23	1114	21.86	1136	22.49	1158	23.12	1180	23.76	1202	24.39	1223	25.03
18,000	1077	22.37	1099	23.01	1122	23.64	1144	24.29	1165	24.94	1187	25.59	1208	26.25	1229	26.90	1250	27.56	1270	28.22
19,000	1133	25.65	1155	26.30	1176	26.96	1197	27.62	1217	28.29	1238	28.96	_	_	_	_	_	_	_	_
20,000	1190	29.21	_	_	_	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	l —

48A4,A5,A8	3,A9 040	(40 TO	NS) (co	nt)																
								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)				-			
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3.	2	3.	.4	3.	.6	3.	8	4.	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	917	7.48	949	7.96	980	8.44	1010	8.94	1039	9.43	1067	9.93	1094	10.44	1121	10.95	1147	11.46	1172	11.98
9,000	942	8.66	973	9.16	1003	9.66	1033	10.17	1061	10.69	1089	11.21	1116	11.73	1142	12.26	1168	12.80	1193	13.33
10,000	971	10.03	1001	10.55	1030	11.06	1058	11.59	1086	12.12	1113	12.66	1139	13.20	1165	13.75	1190	14.30	1215	14.86
11,000	1003	11.60	1031	12.13	1059	12.67	1086	13.21	1112	13.75	1139	14.31	1164	14.86	1189	15.43	1214	15.99	1238	16.56
12,000	1038	13.38	1065	13.92	1091	14.47	1117	15.03	1142	15.59	1167	16.16	1192	16.73	1216	17.31	1240	17.89	1264	18.48
13,000	1075	15.37	1101	15.93	1126	16.50	1150	17.07	1175	17.65	1199	18.23	1222	18.82	1246	19.41	1269	20.00	1291	20.61
14,000	1115	17.59	1139	18.17	1163	18.75	1186	19.34	1210	19.94	1232	20.53	1255	21.14	1277	21.74	1300	22.35	_	_
15,000	1157	20.04	1180	20.64	1202	21.24	1225	21.85	1247	22.46	1269	23.07	1290	23.69	_	_	_	_	_	_
16,000	1200	22.73	1222	23.35	1243	23.97	1265	24.60	1286	25.23	_	_	_	_	_	_	_	_	_	_
17,000	1245	25.67	1266	26.32	1286	26.96	_	l —	_	l —	_	_	_	_	_	_	_	_	_	_
18,000	1290	28.88	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
19,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

Performance data (cont)

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

48A4,A5,A	8,A9 050	(50 TO	NS)																	
								Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)				_			
Airflow (Cfm)	0	.2	0	.4	0	.6	0.	.8	1	.0	1	.2	1.	.4	1	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	642	5.35	680	5.80	717	6.27	753	6.73	787	7.20	821	7.68	854	8.16	886	8.65	917	9.14	948	9.65
11,000	696	6.72	732	7.20	766	7.69	799	8.18	831	8.67	863	9.17	893	9.68	923	10.18	953	10.70	982	11.21
12,000	751	8.29	784	8.80	816	9.32	847	9.83	877	10.35	906	10.87	935	11.40	964	11.92	991	12.46	1019	12.99
13,000	807	10.09	837	10.62	867	11.16	896	11.70	924	12.24	952	12.78	979	13.33	1006	13.88	1032	14.43	1058	14.99
14,000	863	12.12	891	12.67	919	13.23	946	13.79	973	14.36	999	14.92	1025	15.49	1050	16.06	1075	16.64	1100	17.21
15,000	919	14.38	946	14.96	972	15.54	997	16.12	1023	16.71	1047	17.30	1072	17.89	1096	18.48	1120	19.08	1143	19.68
16,000	975	16.90	1000	17.49	1025	18.09	1049	18.70	1073	19.31	1097	19.92	1120	20.53	1143	21.15	1165	21.76	1188	22.38
17,000	1032	19.67	1056	20.29	1079	20.91	1102	21.54	1125	22.17	1147	22.80	1169	23.44	1191	24.07	1213	24.71	1234	25.35
18,000	1089	22.71	1111	23.35	1134	23.99	1155	24.64	1177	25.29	1198	25.95	1219	26.60	1240	27.26	1261	27.92	1281	28.58
19,000	1146	26.04	1167	26.69	1188	27.35	1209	28.02	1230	28.69	1250	29.37	1270	30.04	1290	30.72	l —	_	_	_
20,000	1203	29.65	1224	30.32	1244	31.00	1263	31.69	1283	32.38	_	_			_	_	_	_		

48A4,A5,A8	3,A9 050	(50 TO	NS) (co	nt)																
								Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3.	.2	3.	.4	3.	.6	3.	8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	978	10.15	1008	10.67	1036	11.19	1064	11.72	1092	12.25	1119	12.79	1145	13.33	1171	13.88	1196	14.43	1221	14.99
11,000	1010	11.74	1038	12.27	1066	12.81	1093	13.35	1119	13.90	1145	14.45	1171	15.01	1196	15.57	1220	16.14	1245	16.72
12,000	1046	13.53	1072	14.08	1098	14.63	1124	15.19	1149	15.76	1174	16.32	1199	16.90	1223	17.48	1247	18.06	1270	18.65
13,000	1084	15.55	1109	16.11	1134	16.68	1158	17.26	1182	17.84	1206	18.42	1230	19.01	1253	19.60	1276	20.20	1299	20.80
14,000	1124	17.79	1148	18.38	1171	18.97	1195	19.55	1218	20.15	1241	20.75	1263	21.35	1285	21.96	_	_	_	_
15,000	1166	20.27	1189	20.88	1211	21.49	1234	22.09	1256	22.71	1277	23.32	1299	23.94	_	l —	_	_	_	_
16,000	1210	23.00	1231	23.62	1253	24.25	1274	24.88	1295	25.51	_	_	_	_	_	_	_	_	_	_
17,000	1255	25.99	1276	26.63	1296	27.27	_	_	_	_	_	_	l —	_	_	l —	_	_	_	_
18,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_
19,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_
20,000	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_	l —	_	_	_	_

								Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)							
Airflow (Cfm)	0.	.2	0.	.4	0.	6	0.	.8	1	.0	1.	.2	1.	4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	516	4.81	569	5.54	617	6.30	660	7.10	701	7.93	739	8.79	774	9.68	808	10.59	841	11.52	872	12.46
14,000	584	6.90	632	7.69	676	8.50	716	9.33	754	10.20	790	11.10	824	12.02	857	12.97	888	13.94	917	14.92
15,000	619	8.13	664	8.96	706	9.79	745	10.65	782	11.53	817	12.44	850	13.38	882	14.35	912	15.33	941	16.34
16,000	654	9.49	697	10.36	737	11.22	775	12.10	811	13.00	845	13.93	877	14.88	908	15.86	938	16.86	966	17.88
17,000	689	10.99	730	11.90	769	12.79	806	13.69	840	14.61	873	15.56	904	16.53	935	17.52	964	18.54	992	19.58
18,000	725	12.64	764	13.58	801	14.51	837	15.43	870	16.38	902	17.34	933	18.32	962	19.33	990	20.36	1018	21.41
19,000	760	14.43	798	15.41	834	16.37	868	17.32	900	18.29	932	19.27	961	20.27	990	21.29	1018	22.34	1045	23.40
20,000	796	16.37	833	17.39	867	18.39	900	19.37	931	20.36	962	21.36	991	22.38	1019	23.42	1046	24.48	1072	25.56
21,000	832	18.47	867	19.54	901	20.56	932	21.57	963	22.59	992	23.61	1020	24.65	1048	25.71	1074	26.78	1100	27.87
22,000	869	20.74	902	21.84	934	22.90	965	23.94	995	24.98	1023	26.03	1051	27.09	1077	28.17	1103	29.26	1129	30.36
23,000	905	23.17	937	24.31	968	25.40	998	26.48	1027	27.55	1055	28.62	1081	29.70	1107	30.79	1133	31.90	1157	33.02
24,000	942	25.78	973	26.95	1003	28.08	1032	29.18	1059	30.28	1086	31.38	1113	32.48	1138	33.59	1163	34.72	1187	35.86
25,000	978	28.56	1008	29.77	1037	30.93	1065	32.07	1092	33.20	1119	34.32	1144	35.44	1169	36.58	1193	37.72	_	_
26,000	1015	31.52	1044	32.76	1072	33.96	1099	35.13	1125	36.29	1151	37.44	1176	38.59	_	_	_	_	_	_
27,000	1052	34.66	1080	35.94	1107	37.18	1133	38.38	1159	39.57	1184	40.75	_	_	_	_	_	_	_	_

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	7 (00 10	NS) (co	111,																
A !!								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2.	.8	3	.0	3.	.2	3.	4	3.	.6	3	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	901	13.42	930	14.38	958	15.36	985	16.34	1011	17.33	1036	18.33	1061	19.33	1085	20.34	1108	21.35	1131	22.36
14,000	946	15.92	974	16.94	1001	17.97	1027	19.01	1052	20.06	1077	21.12	1101	22.18	1125	23.25	1148	24.33	1170	25.42
15,000	970	17.36	997	18.40	1024	19.45	1049	20.51	1074	21.58	1099	22.67	1122	23.76	1146	24.86	1168	25.97	1191	27.08
16,000	994	18.93	1021	19.98	1047	21.05	1072	22.14	1097	23.23	1121	24.34	1144	25.45	1167	26.58	1190	27.71	_	<u> </u>
17,000	1019	20.63	1045	21.70	1071	22.79	1096	23.89	1120	25.01	1144	26.13	1167	27.27	1190	28.42	_	_	_	l —
18,000	1045	22.48	1070	23.57	1096	24.67	1120	25.79	1144	26.93	1167	28.07	1190	29.23	_	_	_	_	_	l —
19,000	1071	24.49	1096	25.59	1121	26.71	1145	27.84	1169	28.99	1192	30.16	_	_	_	_	_	_	_	<u> </u>
20,000	1098	26.66	1123	27.77	1147	28.90	1171	30.05	1194	31.21	_	_	_	_	_	_	_	_	_	_
21,000	1125	28.99	1150	30.12	1173	31.26	1197	32.42	_	_	_	_	_	_	_	_	_	_	_	l —
22,000	1153	31.49	1177	32.63	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
23,000	1181	34.16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
24,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
25,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
26,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
27,000	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

								Availa	ble Exte	ernal St	atic Pre	ssure (i	in. wg)							
Airflow (Cfm)	0	.2	0	.4	0.	.6	0.	.8	1.	.0	1.	.2	1.	.4	1.	.6	1.	.8	2.	.0
(0)	Rpm	0.2														Bhp				
4,000	322	0.62	399	0.82	464	1.04	521	1.26	572	1.48	619	1.71	662	1.93	702	2.16	739	2.38	774	2.61
5,000	361	0.95	431	1.17	491	1.41	545	1.65	594	1.89	640	2.14	682	2.39	722	2.64	759	2.89	795	3.14
6,000	405	1.41	467	1.64	524	1.88	574	2.14	621	2.40	664	2.67	705	2.93	744	3.20	780	3.47	816	3.75
7,000	451	2.00	508	2.22	559	2.48	607	2.75	651	3.02	693	3.30	732	3.58	769	3.87	804	4.16	839	4.45
7.500	475	2.34	529	2.57	579	2.82	625	3.10	668	3.38	708	3.66	746	3.96	783	4.25	818	4.55	851	4.84
8,000	500	2.72	551	2.95	598	3.21	643	3.48	685	3.77	724	4.06	762	4.36	797	4.66	832	4.96	864	5.27
9,000	550	3.60	596	3.83	640	4.09	682	4.36	721	4.66	759	4.96	795	5.27	829	5.58	862	5.90	893	6.22
10,000	601	4.63	644	4.86	684	5.12	723	5.40	760	5.70	796	6.01	830	6.33	863	6.65	894	6.98	925	7.31

								Availa	ble Exte	rnal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2.	2	2	.4	2.	6	2.	.8	3.	0	3.	2	3.	4	3.	.6	3.	.8	4	.0
(Cilli)	Rpm	pm Bhp Rpm													Bhp					
4,000	808	2.84	840	3.06	870	3.29	900	3.52	928	3.75	955	3.98	981	4.21	1007	4.44	1031	4.67	1055	4.91
5,000	829	3.39	861	3.64	892	3.89	922	4.14	950	4.40	978	4.65	1005	4.90	1031	5.16	1056	5.41	1080	5.67
6,000	849	4.02	881	4.29	912	4.57	942	4.84	971	5.12	999	5.39	1026	5.67	1052	5.94	1077	6.22	1102	6.49
7,000	871	4.74	903	5.03	933	5.33	963	5.62	991	5.92	1019	6.21	1046	6.51	1072	6.80	1098	7.10	1123	7.40
7,500	883	5.14	915	5.44	945	5.75	974	6.05	1002	6.35	1030	6.66	1057	6.96	1083	7.27	1108	7.58	1133	7.88
8,000	896	5.58	927	5.89	957	6.20	985	6.51	1014	6.82	1041	7.13	1067	7.45	1093	7.76	1118	8.08	1143	8.39
9,000	924	6.54	954	6.86	983	7.19	1011	7.51	1038	7.84	1064	8.17	1090	8.50	1116	8.83	1141	9.16	1165	9.49
10,000	954	7.64	983	7.98	1011	8.31	1038	8.65	1065	8.99	1091	9.34	1116	9.68	1141	10.02	1165	10.37	1189	10.72

								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	0.	.2	0.	.4	0	.6	0	.8	1	.0	1.	2	1.	4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	366	0.97	435	1.19	495	1.42	548	1.67	597	1.91	642	2.16	685	2.41	724	2.65	762	2.90	797	3.16
6,000	411	1.43	473	1.66	529	1.91	579	2.16	625	2.43	668	2.69	709	2.96	747	3.23	784	3.50	819	3.77
7,000	459	2.02	515	2.25	566	2.51	613	2.78	657	3.06	698	3.34	737	3.62	774	3.91	809	4.20	843	4.49
8,000	508	2.76	559	2.99	606	3.25	650	3.53	691	3.82	731	4.11	768	4.41	803	4.71	837	5.01	870	5.32
9,000	560	3.64	605	3.88	649	4.14	690	4.42	729	4.72	766	5.02	802	5.33	835	5.64	868	5.96	900	6.28
10,000	612	4.68	654	4.92	694	5.19	732	5.47	769	5.77	804	6.09	838	6.40	870	6.73	902	7.06	932	7.39
11,000	665	5.89	703	6.14	740	6.41	776	6.69	811	7.00	844	7.31	876	7.64	907	7.97	937	8.31	967	8.65
12,000	718	7.28	754	7.53	788	7.80	822	8.09	854	8.39	886	8.71	916	9.04	946	9.38	975	9.72	1003	10.07
13,000	772	8.85	806	9.11	838	9.38	869	9.67	899	9.98	929	10.30	958	10.63	987	10.97	1014	11.32	1041	11.68
14,000	826	10.61	858	10.87	888	11.15	917	11.44	946	11.75	974	12.07	1002	12.41	1029	12.75	1055	13.10	1081	13.46
15,000	881	12.57	910	12.84	939	13.12	967	13.41	994	13.72	1021	14.05	1047	14.38	1073	14.73	1098	15.08	1123	15.45

50A4,A5,A8	B,A9 025	-030 (2	5 THRU	30 TON	IS) (con	ıt)														
			-					Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)						-	
Airflow (Cfm)	2	.2	2	.4	2	.6	2.	.8	3	.0	3	.2	3.	4	3	.6	3.	.8	4	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
5,000	831	3.41	863	3.66	894	3.91	924	4.16	952	4.41	980	4.67	1007	4.92	1032	5.17	1057	5.43	1082	5.68
6,000	852	4.05	884	4.32	915	4.59	945	4.87	974	5.14	1001	5.42	1028	5.69	1054	5.97	1080	6.24	1105	6.52
7,000	875	4.78	907	5.07	937	5.37	967	5.66	995	5.95	1023	6.25	1049	6.55	1076	6.84	1101	7.14	1126	7.44
8,000	901	5.63	932	5.94	961	6.25	990	6.56	1018	6.87	1045	7.18	1072	7.50	1097	7.81	1123	8.13	1147	8.44
9,000	930	6.60	960	6.93	988	7.25	1016	7.58	1043	7.91	1070	8.23	1096	8.57	1121	8.90	1146	9.23	1170	9.56
10,000	961	7.72	990	8.06	1018	8.40	1045	8.74	1071	9.08	1097	9.42	1122	9.76	1147	10.11	1171	10.46	1194	10.80
11,000	995	8.99	1022	9.34	1049	9.69	1075	10.04	1101	10.39	1126	10.75	1151	11.11	1175	11.47	1198	11.82	_	_
12,000	1030	10.43	1057	10.78	1083	11.14	1108	11.51	1133	11.87	1157	12.24	1181	12.61	_	l —	_	_	_	_
13,000	1068	12.04	1093	12.40	1119	12.77	1143	13.14	1167	13.52	1191	13.89	_	_	_	<u> </u>	_	_	_	_
14,000	1107	13.83	1131	14.20	1156	14.58	1179	14.96	_	l —	_	l —	_	_	_	l —	_	_	_	_
15,000	1147	15.82	1171	16.19	1194	16.58		_		_		_		_		_	_	_		

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

Performance data (cont)

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

50A4,A5,A8,	A9 035	(35 TOI	NS)																	
			_				AVA	AILABLE	EXTE	RNAL S	TATIC	PRESSU	JRE (in	. wg)	_		_		_	
AIRFLOW (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1	.2	1	.4	1	.6	1	.8	2	2.0
(5)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	522	2.06	573	2.32	620	2.57	664	2.82	705	3.06	744	3.30	780	3.54	815	3.78	849	4.01	881	4.24
8,000	576	2.75	622	3.03	665	3.30	706	3.57	745	3.84	782	4.10	817	4.36	850	4.62	883	4.87	914	5.12
9,000	630	3.57	672	3.86	712	4.16	750	4.45	787	4.74	822	5.02	855	5.30	888	5.58	919	5.86	949	6.13
10,000	686	4.52	724	4.84	761	5.15	797	5.46	831	5.77	864	6.07	896	6.37	927	6.67	957	6.97	986	7.26
10,500	714	5.05	750	5.38	786	5.70	821	6.02	854	6.34	886	6.65	917	6.96	947	7.27	977	7.57	1005	7.87
11,000	742	5.62	777	5.95	811	6.28	845	6.61	877	6.94	909	7.26	939	7.58	968	7.90	997	8.21	1025	8.52
12,000	799	6.88	831	7.22	863	7.57	894	7.91	925	8.25	954	8.60	983	8.93	1011	9.27	1039	9.60	1065	9.93
13,000	856	8.29	886	8.65	916	9.01	945	9.37	974	9.72	1002	10.08	1029	10.44	1056	10.79	1082	11.14	1108	11.49
14,000	914	9.87	942	10.24	969	10.61	997	10.98	1024	11.36	1050	11.73	1076	12.10	1102	12.47	1127	12.84	1152	13.20
15,000	971	11.62	998	12.00	1024	12.39	1050	12.77	1075	13.16	1100	13.54	1125	13.93	1149	14.31	1173	14.70	1197	15.08
16,000	1029	13.55	1054	13.94	1079	14.34	1103	14.74	1127	15.13	1151	15.53	1174	15.93	1198	16.33	1220	16.73	1243	17.12
17,000	1088	15.66	1111	16.07	1134	16.47	1157	16.88	1180	17.29	1203	17.70	1225	18.11	1247	18.53	1269	18.93	1290	19.34
17,500	1117	16.79	1140	17.20	1162	17.61	1184	18.02	1207	18.44	1229	18.86	1250	19.27	1272	19.69	1293	20.11	_	

							AVA	ILABLE	EXTE	RNAL S	TATIC I	PRESSU	JRE (in.	wg)						
AIRFLOW (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3.	.4	3	.6	3	.8	4	.0
(Ollin)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
7,000	912	4.46	942	4.68	970	4.90	998	5.12	1025	5.33	1051	5.54	1076	5.75	1101	5.96	1124	6.16	1148	6.36
8,000	944	5.37	973	5.62	1001	5.86	1029	6.11	1055	6.35	1081	6.58	1106	6.82	1130	7.05	1154	7.28	1177	7.51
9,000	978	6.40	1006	6.67	1034	6.93	1060	7.20	1086	7.46	1112	7.72	1136	7.98	1160	8.23	1184	8.49	1207	8.74
10,000	1014	7.55	1041	7.84	1068	8.12	1094	8.41	1119	8.69	1144	8.97	1168	9.25	1192	9.52	1215	9.80	1238	10.07
10,500	1033	8.17	1059	8.47	1086	8.77	1111	9.06	1136	9.35	1161	9.64	1184	9.93	1208	10.22	1231	10.50	1253	10.79
11,000	1052	8.83	1078	9.14	1104	9.44	1129	9.75	1154	10.05	1178	10.35	1201	10.64	1224	10.94	1247	11.23	1269	11.53
12,000	1091	10.26	1117	10.58	1142	10.90	1166	11.23	1190	11.54	1213	11.86	1236	12.18	1259	12.49	1281	12.80	_	i —
13,000	1133	11.83	1157	12.17	1181	12.51	1205	12.85	1228	13.19	1251	13.52	1273	13.86	1295	14.19	_	_	_	i —
14,000	1176	13.56	1199	13.92	1222	14.28	1245	14.63	1268	14.99	1290	15.34	_	_	_	_	_	_	_	I —
15,000	1220	15.45	1243	15.83	1265	16.20	1287	16.58	_	_	_	_	_	_	_	_	_	_	_	I —
16,000	1265	17.52	1287	17.91	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	i —
17,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	I —
17,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —

								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	0.	.2	0	.4	0.	.6	0.	.8	1	.0	1.	.2	1.	4	1.	.6	1.	.8	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	499	2.88	546	3.27	590	3.66	632	4.06	672	4.46	711	4.87	748	5.28	784	5.70	819	6.14	853	6.58
9,000	548	3.78	591	4.20	631	4.62	670	5.04	708	5.47	744	5.90	778	6.33	812	6.77	845	7.22	877	7.67
10,000	599	4.86	637	5.30	675	5.74	711	6.19	746	6.64	779	7.09	812	7.55	844	8.01	875	8.47	905	8.94
11,000	649	6.11	685	6.57	720	7.04	753	7.51	786	7.99	817	8.47	848	8.94	878	9.43	907	9.91	936	10.40
12,000	701	7.54	734	8.03	766	8.52	797	9.02	828	9.52	857	10.02	886	10.52	915	11.03	943	11.53	970	12.04
13,000	753	9.18	783	9.69	813	10.21	842	10.72	871	11.25	899	11.77	927	12.30	953	12.82	980	13.35	1006	13.88
14,000	805	11.03	833	11.56	861	12.09	889	12.63	916	13.18	942	13.73	968	14.27	994	14.82	1019	15.37	1044	15.92
15,000	857	13.09	884	13.64	910	14.20	936	14.76	962	15.32	987	15.89	1011	16.46	1036	17.03	1060	17.61	1083	18.18
16,000	910	15.38	935	15.95	960	16.53	984	17.11	1008	17.69	1032	18.28	1056	18.87	1079	19.47	1101	20.06	1124	20.66
17,000	963	17.91	986	18.50	1010	19.09	1033	19.69	1056	20.30	1078	20.91	1101	21.52	1123	22.13	1145	22.75	1166	23.36
18,000	1016	20.68	1038	21.29	1060	21.90	1082	22.52	1104	23.15	1126	23.77	1147	24.41	1168	25.04	1189	25.67	1209	26.31
19,000	1069	23.71	1090	24.33	1111	24.96	1132	25.60	1153	26.25	1173	26.89	1194	27.54	1214	28.19	1234	28.85	_	_
20,000	1122	26.99	1142	27.64	1162	28.29	1182	28.95	_	_	_	_	_	_	_	_	_	_	_	_

50A4,A5,A8	3, A 9 040	(40 TO	NS) (co	nt)																
			-		-			Availa	ble Exte	ernal St	atic Pre	ssure (in. wg)				-			
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3	.2	3	.4	3	.6	3	.8	4	.0
(5)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
8,000	885	7.03	917	7.48	948	7.95	978	8.42	1007	8.90	1036	9.39	1063	9.88	1090	10.38	1116	10.88	1142	11.39
9,000	908	8.13	939	8.60	968	9.08	997	9.56	1026	10.05	1053	10.55	1080	11.05	1107	11.56	1133	12.08	1158	12.60
10,000	934	9.42	963	9.90	992	10.39	1020	10.89	1047	11.39	1073	11.89	1100	12.41	1125	12.93	1151	13.45	1175	13.99
11,000	964	10.89	992	11.39	1019	11.89	1045	12.40	1071	12.91	1097	13.43	1122	13.96	1147	14.49	1171	15.02	1195	15.56
12,000	996	12.55	1023	13.07	1048	13.59	1074	14.11	1099	14.64	1123	15.17	1147	15.71	1171	16.25	1195	16.80	1218	17.35
13,000	1031	14.41	1056	14.95	1081	15.48	1105	16.03	1129	16.57	1152	17.12	1175	17.67	1198	18.22	1221	18.78	1243	19.35
14,000	1068	16.48	1092	17.03	1115	17.59	1138	18.15	1161	18.71	1184	19.27	1206	19.84	1228	20.41	1250	20.99	1271	21.56
15,000	1106	18.75	1129	19.33	1151	19.91	1174	20.48	1196	21.07	1217	21.65	1239	22.23	1260	22.82	1280	23.41	_	_
16,000	1146	21.25	1168	21.85	1189	22.45	1211	23.04	1232	23.64	1253	24.25	1273	24.85	1293	25.45	_	_	_	_
17,000	1187	23.98	1208	24.60	1229	25.21	1249	25.83	1270	26.46	1289	27.07	_	_	_	_	_	_	_	_
18,000	1230	26.95	1250	27.58	1269	28.22	1289	28.86	_	_	_	_	_	_	_	_	_	_	_	_
19,000	—	_	_	_	_	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	_
20,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

50A4,A5,A8	3,A9 050	(50 TO	NS)																	
			-				-	Availa	ble Exte	ernal St	atic Pre	ssure (n. wg)							
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0	1.	.2	1.	.4	1	.6	1.	8.	2	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	608	4.96	646	5.40	683	5.85	719	6.30	754	6.75	787	7.20	819	7.66	851	8.12	882	8.58	912	9.06
11,000	659	6.23	694	6.69	728	7.16	762	7.64	794	8.11	825	8.59	856	9.07	886	9.55	915	10.04	943	10.53
12,000	710	7.68	743	8.17	775	8.67	806	9.17	836	9.67	866	10.17	895	10.67	923	11.17	950	11.68	978	12.19
13,000	763	9.35	793	9.86	823	10.37	852	10.89	880	11.42	908	11.94	935	12.47	962	12.99	988	13.52	1014	14.05
14,000	815	11.22	843	11.75	871	12.29	899	12.83	925	13.38	952	13.92	978	14.47	1003	15.02	1028	15.57	1052	16.12
15,000	868	13.31	895	13.86	921	14.42	946	14.98	972	15.55	997	16.12	1021	16.69	1045	17.26	1069	17.83	1092	18.41
16,000	921	15.64	946	16.21	971	16.78	995	17.37	1019	17.96	1043	18.54	1066	19.14	1089	19.73	1111	20.32	1134	20.92
17,000	974	18.20	998	18.79	1021	19.39	1044	19.99	1067	20.60	1089	21.21	1112	21.82	1134	22.43	1155	23.05	1176	23.66
18,000	1028	21.01	1050	21.62	1072	22.24	1094	22.86	1116	23.49	1137	24.12	1158	24.75	1179	25.38	1200	26.02	1220	26.65
19,000	1081	24.08	1103	24.71	1124	25.35	1145	25.99	1165	26.63	1185	27.28	1206	27.93	1226	28.58	1245	29.24	1265	29.90
20,000	1135	27.42	1155	28.06	1175	28.72	1195	29.38	1215	30.04	1234	30.71	1254	31.38	1273	32.05	1292	32.72	_	_

		`	, ,	-				Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2.	.8	3	.0	3.	.2	3.	4	3.	.6	3.	.8	4	.0
(OIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
10,000	941	9.53	970	10.02	998	10.51	1026	11.00	1053	11.51	1080	12.01	1106	12.53	1131	13.05	1156	13.58	1181	14.11
11,000	971	11.02	999	11.52	1026	12.02	1052	12.53	1078	13.05	1103	13.57	1128	14.09	1153	14.63	1177	15.16	1201	15.71
12,000	1004	12.70	1030	13.22	1056	13.74	1081	14.26	1106	14.79	1130	15.33	1154	15.86	1178	16.41	1201	16.96	1224	17.51
13,000	1039	14.59	1064	15.12	1088	15.66	1113	16.20	1136	16.74	1160	17.29	1183	17.85	1206	18.40	1228	18.96	1250	19.53
14,000	1076	16.68	1100	17.23	1123	17.79	1147	18.35	1169	18.91	1192	19.48	1214	20.04	1236	20.62	1257	21.19	1279	21.77
15,000	1115	18.98	1138	19.56	1160	20.14	1182	20.72	1204	21.30	1226	21.88	1247	22.47	1268	23.05	1289	23.65	_	_
16,000	1156	21.52	1178	22.11	1199	22.71	1220	23.31	1241	23.91	1262	24.51	1282	25.12	_	_	_	_	_	_
17,000	1198	24.28	1218	24.90	1239	25.52	1259	26.14	1279	26.76	1299	27.38	_	_	_	_	_	_	_	_
18,000	1240	27.29	1260	27.93	1280	28.57	1300	29.21	_	_	_	_	_	_	_	_	_	_	_	_
19,000	1284	30.55	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

50A4,A5,A8	3,A9 060	(60 TO	NS)																	
			-		-		-	Availa	ble Ext	ernal St	atic Pre	ssure (i	in. wg)		_		-		-	
Airflow (Cfm)	0	.2	0	.4	0.	.6	0	.8	1	.0	1	.2	1	.4	1	.6	1.	.8	2	.0
(0)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	490	4.48	543	5.17	591	5.88	634	6.61	674	7.37	711	8.14	746	8.94	779	9.76	811	10.60	841	11.45
14,000	554	6.41	602	7.17	645	7.94	686	8.72	723	9.51	759	10.33	792	11.16	824	12.01	855	12.88	884	13.76
15,000	586	7.56	632	8.34	674	9.14	713	9.94	749	10.77	784	11.60	816	12.45	848	13.32	878	14.21	906	15.11
16,000	619	8.83	663	9.64	703	10.46	741	11.30	776	12.14	810	13.00	841	13.87	872	14.76	901	15.66	929	16.58
17,000	652	10.23	694	11.07	733	11.92	769	12.78	803	13.65	836	14.53	867	15.42	897	16.33	926	17.25	953	18.19
18,000	685	11.76	725	12.63	763	13.51	798	14.39	831	15.29	863	16.20	893	17.11	922	18.04	950	18.98	978	19.93
19,000	719	13.44	757	14.33	793	15.23	827	16.14	860	17.07	890	18.00	920	18.94	949	19.88	976	20.84	1003	21.81
20,000	753	15.26	789	16.18	824	17.10	857	18.04	888	18.99	918	19.94	947	20.90	975	21.87	1002	22.85	1028	23.84
21,000	787	17.23	822	18.17	855	19.12	887	20.08	918	21.05	947	22.03	975	23.02	1002	24.01	1029	25.01	1054	26.02
22,000	821	19.35	855	20.32	887	21.29	918	22.28	947	23.28	976	24.28	1003	25.28	1030	26.30	1056	27.32	1081	28.35
23,000	855	21.63	888	22.62	919	23.62	949	24.63	977	25.65	1005	26.68	1032	27.71	1058	28.75	1083	29.79	1108	30.85
24,000	889	24.07	921	25.08	951	26.11	980	27.14	1008	28.19	1035	29.24	1061	30.29	1086	31.35	1111	32.42	1135	33.49
25,000	924	26.67	954	27.71	983	28.76	1011	29.82	1038	30.89	1065	31.96	1090	33.04	1115	34.12	1139	35.21	1163	36.31
26,000	958	29.45	987	30.51	1016	31.59	1043	32.67	1069	33.76	1095	34.85	1120	35.95	1144	37.06	1168	38.17	1191	39.29
27,000	993	32.40	1021	33.49	1048	34.58	1075	35.69	1101	36.80	1126	37.92	1150	39.04	1174	40.17	1197	41.30	_	_

								Availa	ble Exte	ernal St	atic Pre	ssure (i	n. wg)							
Airflow (Cfm)	2	.2	2	.4	2	.6	2	.8	3	.0	3.	.2	3.	4	3	.6	3	.8	4	.0
(01111)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
12,000	870	12.33	898	13.22	925	14.13	951	15.06	977	16.00	1002	16.96	1026	17.92	1049	18.90	1072	19.89	1094	20.89
14,000	912	14.67	939	15.59	965	16.52	991	17.47	1016	18.44	1040	19.42	1063	20.41	1086	21.41	1109	22.43	1131	23.46
15,000	934	16.02	961	16.96	987	17.90	1012	18.87	1036	19.84	1060	20.83	1083	21.84	1106	22.85	1128	23.88	1150	24.92
16,000	957	17.51	983	18.46	1008	19.42	1033	20.39	1057	21.38	1081	22.39	1104	23.40	1126	24.43	1148	25.47	1170	26.52
17,000	980	19.13	1006	20.10	1031	21.07	1055	22.06	1079	23.06	1102	24.07	1125	25.10	1147	26.14	1169	27.19	1190	28.26
18,000	1004	20.89	1029	21.87	1054	22.86	1078	23.86	1101	24.88	1124	25.91	1147	26.94	1169	28.00	1190	29.06	_	_
19,000	1028	22.80	1053	23.79	1078	24.80	1101	25.81	1124	26.84	1147	27.89	1169	28.94	1190	30.00	_	l —	_	l —
20,000	1053	24.85	1078	25.86	1102	26.88	1125	27.91	1148	28.96	1170	30.01	1192	31.08	_	l —	_	l —	_	_
21,000	1079	27.04	1103	28.07	1126	29.11	1149	30.16	1172	31.22	1194	32.30	_	_	_	l —	_	l —	_	l —
22,000	1105	29.39	1129	30.44	1152	31.50	1174	32.57	1196	33.65	_	_	_	_	_	l —	_	l —	_	_
23,000	1131	31.90	1155	32.97	1177	34.05	1199	35.13	_	_	_	_	_	_	_	—	_	_	_	_
24,000	1158	34.57	1181	35.66	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	<u> </u>	_	l —
25,000	1186	37.41	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	l —
26,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	l —
27,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	l —	_	_

LEGEND

Bhp — Brake Horsepower

2. Conversion — Bhp to watts:

NOTES:
1. Fan performance is based on wet coils, economizer, roof curb, cabinet losses, and clean 2-in. filters.

Performance data (cont)

FAN PERFORMANCE — STANDARD AND MODULATING POWER EXHAUST

48/50A020-0	48/50A020-050 (20 to 50 Tons)							
Airflow	208 V			230	230, 460, 575 V			
(Cfm)	ESP	Bhp	Watts	ESP	Bhp	Watts		
7,700	0.60	3.69	4140	0.73	3.98	4460		
7,900	0.56	3.74	4190	0.69	4.02	4510		
8,100	0.51	3.78	4240	0.65	4.07	4560		
8,500	0.41	3.83	4290	0.56	4.12	4620		
8,900	0.31	3.93	4410	0.47	4.23	4740		
9,300	0.20	4.07	4560	0.37	4.37	4900		
9,700	0.11	4.17	4670	0.30	4.47	5010		
10,100	0.04	4.25	4770	0.23	4.56	5110		
10,500	l —	_	_	0.17	4.66	5220		
10,900	l —	_	_	0.12	4.75	5330		
11,300	_	_	_	0.07	4.80	5380		
11,700	l —	_	_	0.04	4.83	5420		

48/50A060 (6	48/50A060 (60 Tons)							
Airflow	208 V			230, 460, 575 V				
(Cfm)	ESP	Bhp	Watts	ESP	Bhp	Watts		
11,550 11,850 12,150 12,750 13,350 13,950	0.60 0.56 0.51 0.41 0.31 0.20	5.54 5.61 5.67 5.74 5.90 6.10	6210 6285 6360 6435 6615 6840	0.73 0.69 0.65 0.56 0.47 0.37	5.97 6.03 6.10 6.18 6.34 6.56	6690 6765 6840 6930 7110 7350		
14,550 15,150 15,750 16,350 16,950 17,550	0.11 0.04 — — — —	6.25 6.38 — — — —	7005 7155 — — — — —	0.30 0.23 0.17 0.12 0.07 0.04	6.70 6.84 6.98 7.13 7.20 7.25	7515 7665 7830 7995 8070 8130		

LEGEND

Bhp — Brake Horsepower
ESP — External Static Pressure (in. wg)
Watts — Input Watts to Motor

LEGEND

Bhp — Brake Horsepower
ESP — External Static Pressure (in. wg)
Watts — Input Watts to Motor

HIGH CAPACITY POWER EXHAUST ACCESSORY

THOI CH ACIT I OWER EMPROOF ACCESSORY								
PART NO.	VOLTAGE	CFM PEF	REFORMANCE	TOTAL	NOISE (dB)			
PART NO.	VOLTAGE	1/4 in.	3/8 in.	1/2 in.	5/8 in.	AMPS	at 1 foot	at 10 foot
Single Module								
CRPWREXH071A00	230V/3PH					12.8		
CRPWREXH072A00	460V/3PH	9,817	9,631	9,591	8,964	6.4	88	77
CRPWREXH073A00	575V/3PH					4.8		
	Two Module							
CRPWREXH074A00	230V/3PH		19,262			25.6	88	77
CRPWREXH075A00	460V/3PH	19,634		19,182	17,928	12.8		
CRPWREXH076A00	575V/3PH					9.6		
			Three Module)				
CRPWREXH077A00	230V/3PH					38.4		
CRPWREXH078A00	460V/3PH	29,451	28,893	28,773	26,892	19.2	88	77
CRPWREXH079A00	575V/3PH					14.4		

HUMIDI-MIZER® SYSTEM COMPONENT PRESSURE DROPS (in. wg) SIZE 020-035 UNITS

COMPONENT		AIRFLOW (cfm)							
COMPONENT	4,000	6,000	8,000	10,000	12,000	14,000			
HUMIDI-MIZER	0.012	0.022	0.035	0.050	0.068	0.089			

HUMIDI-MIZER SYSTEM COMPONENT PRESSURE DROPS (in. wg) **SIZE 040,050 UNITS**

COMPONENT	AIRFLOW (cfm)						
COMPONENT	8,000	10,000	12,000	14,000	16,000	18,000	20,000
HUMIDI-MIZER	0.035	0.050	0.068	0.089	0.112	0.137	0.165

HUMIDI-MIZER SYSTEM COMPONENT PRESSURE DROPS (in. wg) **SIZE 060 UNITS**

COMPONENT				AIRFLOW (cfm)	l		
COMPONENT	12,000	14,000	16,000	18,000	20,000	22,000	24,000
HUMIDI-MIZER	0.002	0.004	0.010	0.023	0.044	0.077	0.125

SUPPLY MOTOR LIMITATIONS

	PREMIUM-EFFICIENCY MOTORS									
Noi	minal	Maxi	mum	Maximu	m Amps	Maximum				
Bhp	BkW	Bhp	BkW	230 v	460 v	Efficiency				
5	3.73	5.9	4.40	15.8	7.9	89.5				
10	7.40	10.2	7.61	30.0	_	91.7				
10	7.46	11.8	8.80	_	15.0	91.7				
15	11.19	15.3	11.41	46.0	_	93.0				
15	11.19	18.0	13.43		22.0	93.0				
20	14.92	22.4	16.71	59.0	_	93.6				
20	14.92	23.4	17.46	_	28.7	93.6				
0.5	10.05	28.9	21.56	73.0	_	93.6				
25	18.65	29.4	21.93	_	36.3	93.6				
20	22.38	35.6	26.56	82.6	_	93.6				
30 2	22.38	34.7	25.89	_	41.7	93.6				
40	29.84	42.0	31.33	110.0	55.0	94.5				

LEGEND

- Brake Horsepower BkW Brake Kilowatts

NOTES:

with confidence. Using the fan motors up to the horsepower ratings shown in the Motor Limitations table will not result in nuisance trip-

ping or premature motor failures. Unit warranty will not be affected. All motors comply with Energy Policy Act (EPACT) Standards effective October 24, 1997.

AIR QUANTITY LIMITS (48A)

UNIT 48A	MINIMUM HEATING AIRFLOW CFM (Low Heat)	MINIMUM HEATING AIRFLOW CFM (High Heat)	MINIMUM COOLING AIRFLOW (VAV) CFM	MINIMUM COOLING AIRFLOW CFM (CV)	MAXIMUM AIRFLOW CFM
020	5,900	6,100	4,000	6,000	10,000
025	5,900	6,100	5,000	7,500	12,500
027	5,900	6,100	5,400	8,100	13,500
030	5,900	6,100	6,000	9,000	15,000
035	5,900	10,100	7,000	10,500	17,500
040	7,600	10,100	8,000	12,000	20,000
050	7,600	10,100	10,000	13,500	20,000
060	11,000	14,700	12,000	18,000	27,000

LEGEND

_ Constant Volume C۷ _ Variable Air Volume

AIR QUANTITY LIMITS (50A)

LINIT	COO	LING	ELECTRIC HEAT		
UNIT	Min CFM	Max CFM*	Min CFM	Max CFM	
50A2,A4,A6,A8020	6,000	10,000			
50A3,A5,A7,A9020	4,000	10,000			
50A2,A4,A6,A8025	7,500	12,500			
50A3,A5,A7,A9025	5,000	12,500	6,000		
50A2,A4,A6,A8027	8,100	13,500		15,000	
50A3,A5,A7,A9027	5,400	13,500		19,000	
50A2,A4,A6,A8030	9,000	15,000			
50A3,A5,A7,A9030	6,000	15,000			
50A2,A4,A6,A8035	10,500	17,500			
50A3,A5,A7,A9035	7,000	17,500			
50A2,A4,A6,A8040	12,000	20,000			
50A3,A5,A7,A9040	8,000	20,000	10,500	20,000	
50A2,A4,A6,A8050	13,500	20,000	10,500	20,000	
50A3,A5,A7,A9050	10,000	20,000			
50A2,A4,A6,A8060	18,000	27,000	15,000	27,000	
50A3,A5,A7,A9060	12,000	27,000	10,000	27,000	

^{*}Operation at these levels may be limited by entering evaporator air wet bulb temperatures.

with confidence. Using the fan motors up to the horsepower ratings shown in the Motor Limitations table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected. All motors comply with Energy Policy Act (EPACT) Standards effective October 24, 1997.

Extensive motor and electrical testing on the Carrier units has ensured that the full horsepower range of the motor can be utilized

^{1.} Extensive motor and electrical testing on the Carrier units has ensured that the full horsepower range of the motor can be utilized

Controls

Control components

The 48/50A Series rooftops use the ComfortLink control system that has been developed for use in Carrier Commercial equipment. The control system monitors all operating conditions in the rooftop unit, as well as controlling the compressors, economizers, fans, heat, and other devices. It also has the capability of communicating with the Carrier Comfort Network® devices using the CCN protocol and other popular protocols including BACnet, MODBUS, LonWorks, etc.

The system uses a microprocessor and a series of boards, each with inputs and outputs. A local network communications bus (LEN) ties all the boards together into a system and enables the boards to communicate.

For the 48/50A Series, the control consists of the following key components:

Main base board (MBB)

The MBB is the center of the *Comfort*Link control system. It contains the major portion of the operating software and controls the operation of the unit. The MBB continuously monitors inputs and outputs as well as data from the LEN and CCN communications channels. The MBB also controls 11 output relays. A complete list of the MBB and system I/O are contained in the table on page 85. The board is located in the main control box.

Economizer control board (ECB1)

The ECB1 controls the economizer actuator. The ECB1 controls the economizer motor using a digital communications signal that also provides operation and diagnostic data on the economizer motor. The ECB1 also controls the operation of the power exhaust motors and provides up to 6 stages of digitally sequenced power exhaust. Exhaust sequencing can be based on either the economizer motor position or the building pressure. On the A Series unit, the ECB1 board is located in an auxiliary box located at the end of the unit near the economizer motor. The board also contains a second LEN port that can be used with the handheld Navigator™ display.

Supply and building pressure control board (ECB2 or RXB)

The board, which is the same hardware as the ECB1, is used to control the supply fan inverter on the VAV units. It sends a 4 to 20 mA signal to the inverter based on a supply duct pressure sensor connected to the board. The board also accepts a signal from another pressure sensor that monitors building pressure and controls the operation of the optional modulating power exhaust system.

On units equipped with the variable capacity compressor and/or Humidi-MiZer system, this board is called the RXB. The RXB performs the same functions as the ECB2 and has additional inputs and outputs to control the variable capacity compressor as well as the Humidi-MiZer adaptive

dehumidification system. The ECB2/RXB is located in the auxiliary control box.

Staged gas heat board (SCB)

When the optional staged gas heat is used, the SCB board will be installed and will control the operation of the gas valves. It also provides additional sensors for monitoring the supply air temperature. This board is located in the gas heat section of the unit.

Integrated gas controller (IGC)

One IGC is provided with each bank of gas heat exchangers. It controls the direct spark ignition system and monitors the rollout switch, limit switches, and induced-draft motor Hall Effect sensor. It is equipped with an LED for diagnostics.

Controls expansion module (CEM)

The optional expansion module is used to provide inputs for demand limiting, remote set point, and other optional inputs. It is located in the main control box.

Compressor protection Cycle-LOC™ board (CS)

This board monitors the status of the compressor by sensing the current flow to the compressors; it then provides digital status signal to the MBB.

Expansion valve control board (EXV)

The optional EXV board controls both the condenser and bypass modulation valves of the humidimizer. This board also receives inputs to sense the evaporative discharge temperature if the unit has the humidimizer option. This board is located in the auxiliary control box.

Scrolling marquee display

This device is the keypad interface used to access the control information, read sensor values, test the unit, and monitor alarm status. The marquee display is a 4-key, 4-character, 16segment LED (light-emitting diode) display. The display is very easy to operate using 4 buttons and a group of 11 LEDs that indicate the following menu structures:

- Run Status
- Service Test
- Temperatures
- Pressures
- Set Points Inputs
- Outputs
- Configuration
- Timeclock
- Operating Modes
- Alarms

Through the display, inputs and outputs can be checked for their value or status. Because the unit is equipped with suction pressure transducers and discharge saturation temperature sensors, it can also display pressures typically obtained from gages. The control includes a full alarm history which can be accessed from the display. Through the display, a built-in test routine can be used at start-up commission and during maintenance inspections to help diagnose operational problems with the unit.

MAIN BASE BOARD (MBB) INPUTS AND OUTPUTS

POINT NAME	POINT DESCRIPTION	I/O POINT NAME	PLUG AND PIN REFERENCE	SIGNAL PIN(S)	PORT STATE
INPUTS					
GASFAN	YAC Indoor Fan relay (fan request from YAC)	DI1	J6, 3-4	4	0 = 24vac, 1= 0vac
FSD	Fire Shutdown switch input	DI2	J6, 5-6	6	0 = 24vac, 1= 0vac
G	Thermostat 'G' input/Remote Occupied	DI3	J7, 1-2	2	0 = 24vac, 1= 0vac
W2	Thermostat 'W2' input	DI4	J7, 3-4	4	0 = 24vac, 1= 0vac
W1	Thermostat 'W1' input	DI5	J7, 5-6	6	0 = 24vac, 1= 0vac
Y2	Thermostat 'Y2' input	DI6	J7, 7-8	8	0 = 24vac, 1= 0vac
Y1	Thermostat 'Y1' input	DI7	J7, 9-10	10	0 = 24vac, 1= 0vac
CSB_A1	Compressor A1 current sensor	DIG1	J9, 10-12	10=5v, 11=Vin, 12=GND	0 = 5vdc, 1 = 0vdc
CSB_A2	Compressor A2 current sensor	DIG2	J9, 7-9	7=5v, 8=Vin, 9=GND	0 = 5vdc, 1 = 0vdc
CSB_B1	Compressor B1 current sensor	DIG3	J9, 4-6	4=5v, 5=Vin, 6 =GND	0 = 5vdc, 1 = 0vdc
CSB_B2	Compressor B2 current sensor	DIG4	J9, 1-3	1=5v, 2=Vin, 3=GND	0 = 5vdc, 1 = 0vdc
DP_A/SCTA	Circuit A saturated condensing pressure/temp	AN1	J8, 21-23	21=5v, 22=Vin, 23=GND (thermistor 21-22)	(0-5vdc, thermistor, ohms)
DP_B/SCTB	Circuit B saturated condensing pressure/temp	AN2	J8, 24-26	24=5v, 25=Vin, 26=GND (thermistor 24-25)	(0-5vdc, thermistor, ohms)
SP_A/SSTA	Circuit A saturated suction pressure/temp	AN3	J8, 15-17	15=5v, 16=Vin, 17=GND (thermistor 15-16)	(0-5vdc, thermistor, ohms)
SP_B/SSTB	Circuit B saturated suction pressure/temp	AN4	J8, 18-20	18=5v, 19=Vin, 20=GND (thermistor 18-20)	(0-5vdc, thermistor, ohms)
RAT	Return air temperature	AN5	J8, 9-10	9	(thermistor, ohms)
SA_TEMP	Supply air temperature	AN6	J8, 11-12	11	(thermistor, ohms)
OAT	Outdoor air temperature	AN7	J8, 13-14	13	(thermistor, ohms)
SPT	Space temperature (T55/56)	AN8	J8, 1-2	1	(thermistor, ohms)
SPTO	Space temperature offset (T56)	AN9	J8, 3-4	3	(thermistor, ohms)
IAQ/IAQMINOV	IAQ analog input	AN10	J8, 5-6	5	(thermistor, ohms)
FLTS	Filter Status	AN11	J8, 7-8	7	(thermistor, ohms)
OUTPUTS					
CMPB2	Compressor B2	RLY 1	J10, 20-21	20 = RLY1A (=RLY2A), 21 = RLY1B	1 = Closes RLY1A/RLY1B
CMPB1	Compressor B1	RLY 2	J10, 22-23	22 = RLY2A (=RLY1A), 23 = RLY2B	1 = Closes RLY2A/RLY2B
CMPA2	Compressor A2	RLY 3	J10, 24-25	24 = RLY3A (=RLY4A), 25 = RLY3B	1 = Closes RLY3A/RLY3B
CMPA1	Compressor A1	RLY 4	J10, 26-27	26 = RLY4A (=RLY3A), 27 = RLY4B	1 = Closes RLY4A/RLY4B
CONDFANB	Condenser fan B	RLY 5	J10, 10-11	10 = RLY5A (=RLY6A), 11 = RLY5B	1 = Closes RLY5A/RLY5B
CONDFANA	Condenser fan A	RLY 6	J10, 12-13	12 = RLY6A (=RLY5A), 13 = RLY6B	1 = Closes RLY6A/RLY6B
HS2	Heat stage 2	RLY7	J10, 14-16	14 = 15 = RLY7A, 16 = RLY7B	1 = Closes RLY7A/RLY7B
HS1	Heat stage 1	RLY 8	J10, 17-19	17 = 18 = RLY8A, 19 = RLY8B	1 = Closes RLY8A/RLY8B
HIR	Heat interlock relay	RLY 9	J10, 4-6	4 = 5 = RLY9A, 6 = RLY9B	1 = Closes RLY9A/RLY9B
SF	Supply fan	RLY 10	J10, 7-9	7 = 8 = RLY10A, 9 = RLY10B	1 = Closes RLY10A/RLY10B
ALRM	Alarm output relay	RLY 11	J10, 1-3	1 = 2 = RLY11A, 3 = RLY11B	1 = Closes RLY11A/RLY11B

LEGEND

IAQ — Indoor-Air Quality YAC — Gas Heat Unit

CONTROLS EXPANSION MODULE (CEM) INPUTS

,							
POINT NAME	POINT DESCRIPTION	I/O POINT NAME	PLUG AND PIN REFERENCE	SIGNAL PIN(S)	PORT STATE		
INPUTS							
SFS	Supply Fan Status switch	DI 1	J7, 1-2	2	0 = 24vac, 1= 0vac		
DMD_SW1	Demand Limit - SW1	DI 2	J7, 3-4	4	0 = 24vac, 1= 0vac		
DMD_SW2/DHDISCIN	Demand Limit - SW2 / Dehumidification Switch Input	DI 3	J7, 5-6	6	0 = 24vac, 1= 0vac		
PRES	Pressurization	DI 4	J7, 7-8	8	0 = 24vac, 1= 0vac		
EVAC	Evacuation	DI 5	J7, 9-10	10	0 = 24vac, 1= 0vac		
PURG	Purge	DI 6	J7, 11-12	12	0 = 24vac, 1= 0vac		
IAQIN	Indoor Air Quality Switch	DI 7	J7, 13-14	14	0 = 24vac, 1= 0vac		
		AN7	J6, 1-3	2 (1 = loop power)	(0-20mA input)		
DMDLMTMA	4-20mA Demand Limit	AN8	J6, 4-6	5 (4 = loop power)	(0-20mA input)		
EDTRESMA	4-20mA Evaporator Discharge SP Reset	AN9	J6, 7-9	8 (7 = loop power)	(0-20mA input)		
OAQ	Outside Air CO ₂ Sensor	AN10	J6, 10-12	11 (10 = loop power)	(0-20mA input)		
SPRESET	SP Reset milliamps	AN10	J6, 10-12	11 (10 = loop power)	(0-20mA input)		
CEM_10K1/CEM_4201	CEM AN1 10k temp J5,1-2/CEM AN1 4-20 ma J5,1-2	AN1	J5, 1-2	1	(thermistor, ohms)		
CEM_10K2/CEM_4202	CEM AN2 10k temp J5,3-4/CEM AN2 4-20 ma J5,3-4	AN2	J5, 3-4	3	(thermistor, ohms)		
CEM_10K3/CEM_4203	CEM AN3 10k temp J5,5-6/CEM AN3 4-20 ma J5,5-6	AN3	J5, 5-6	5	(thermistor, ohms)		
CEM_10K4/CEM_4204	CEM AN4 10k temp J5,7-8/CEM AN4 4-20 ma J5,7-8	AN4	J5, 7-8	7	(thermistor, ohms)		
		AN5	J5, 9-10	9	(thermistor, ohms)		
		AN6	J5. 11-12	11	(thermistor, ohms)		

Controls (cont)

ECONOMIZER CONTROL BOARD (ECB1) INPUTS AND OUTPUTS

POINT NAME	POINT DESCRIPTION	I/O POINT NAME	PLUG AND PIN REFERENCE	SIGNAL PIN(S)	PORT STATE
INPUTS					
RMTIN	Remote occupancy	DI1	J4, 1-2	2	24VAC = 1, 0VAC = 0
ECONENBL, ECOORIDE	Economizer enable	DI2	J4, 3-4	4	24VAC = 1, 0VAC = 0
RARH	Return air relative humidity	AN1	J5, 1-3	1=24VDC, 2=0-20mA in, 3=GND	0-20mA
OARH	Outdoor air relative humidity	AN2	J5, 4-6	4=24VDC, 5=0-20mA in, 6=GND	0-20mA
OUTPUTS					
ECB1_AO1	ECB1, analog output 1	AO1	J9, 1-2	1=0-20mA, 2=GND	0-20mA OUT
ECONOCMD	Economizer actuator (digital control)	PP/MP	J7, 1-3	1=PP/MP Data, 2=24VAC, 3=GND	Belimo PP/MP Protocol
PE_A	Power Exhaust stage A	RLY1	J8, 1-3	1 = 2 = RLY1A, 3 = RLY1B	1 = Closes RLY1A/RLY1B
PE_B	Power Exhaust stage B	RLY 2	J8, 4-6	4 =5 = RLY2A, 6 = RLY2B	1 = Closes RLY2A/RLY2B
PE_C	Power Exhaust stage C	RLY 3	J8, 7-9	7 = 8 = RLY3A, 9 = RLY3B	1 = Closes RLY3A/RLY3B
ECON_PWR	Economizer Power	RLY 6	J8, 16-18	16 = 17 = RLY6A, 18 = RLY6B	1 = Closes RLY6A/RLY6B

RXB CONTROL BOARD (ECB2) INPUTS AND OUTPUTS

POINT NAME	POINT DESCRIPTION	I/O POINT NAME	PLUG AND PIN REFERENCE	SIGNAL PIN(S)	PORT STATE
INPUTS					
		DI1	J4, 1-2	2=Vin, 1=24VAC	24VAC = 1, 0VAC = 0
		DI2	J4, 3-4	4=Vin, 3=24vac	24VAC = 1, 0VAC = 0
		DI3	J4, 5-6	6=Vin, 5=24vac	
		DI4	J4, 7-8	8=Vin, 7=24vac	
		DI5	J4, 9-10	10=Vin, 9=24vac	
		DI6	J4, 11-12	12=Vin, 11=24vac	
BP	Building static pressure	AN1	J5, 1-3	1=24VDC, 2=0-20mA in, 3=GND	0-20mA
SP	Supply Duct static pressure	AN2	J5, 4-6	4=24VDC, 5=0-20mA in, 6=GND	0-20mA
CCT	Air Temp Lvg Evap Coil	AN3	J6, 1-2	1=Vin, 2=GND	(thermistor, ohms)
DSDT	DS Discharge Temperature	AN4	J6, 3-4	3=Vin, 4=GND	(thermistor, ohms)
		AN5	J6, 5-6	5=Vin, 6=GND	(thermistor, ohms)
		AN6	J6, 7-8	7=Vin, 8=GND	(thermistor, ohms)
OUTPUTS					
SFAN_VFD	Supply Fan Inverter speed	AO1	J9, 1-2	1=0-20mA, 2=GND	0-20mA OUT
CMPDSCAP	Digital Scroll Solenoid	PP/MP	J7, 1-3	1=PP/MP Data, 2=24VAC, 3=GND	Belimo PP/MP Protocol
		RLY1	J8, 1-3	1 = 2 = RLY1A, 3 = RLY1B	1 = Closes RLY1A / RLY1B
		RLY2	J8, 4-6	4 = 5 = RLY2A, 6 = RLY2B	1 = Closes RLY2A / RLY2B
HUM3WVAL	Humidimizer 3 Way Valve	RLY3	J8, 7-9	7 = 8 = RLY3A, 9 = RLY3B	1 = Closes RLY3A / RLY3B
		RLY4	J8, 10-12	10 = 11 = RLY4A, 12 = RLY4B	1 = Closes RLY4A / RLY4B
		RLY5	J8, 13-15	13 = 14 = RLY5A, 15 = RLY5B	1 = Closes RLY5A / RLY5B
MLV	Minimum load valve	RLY 6	J8, 16-18	16 = 17 = RLY6A, 18 = RLY6B	1 = Closes RLY6A / RLY6B

NOTE: RXB is required for Digital Scroll or Humidi-MiZer option.

STAGED GAS HEAT BOARD (SCB) INPUTS AND OUTPUTS

POINT NAME	POINT DESCRIPTION	I/O POINT NAME	PLUG AND PIN REFERENCE	SIGNAL PIN(S)	PORT STATE
INPUTS					
		AN1	J5, 1-3	1=5v, 2=Vin, 3=GND (thermistor 1-2)	(0-5VDC, thermistor, ohms)
		AN2	J5, 4-6	4=5v, 5=Vin, 6=GND (thermistor 4-5)	(0-5VDC, thermistor, ohms)
LAT1SGAS	Leaving air temperature 1	AN3	J5, 7-9	7=5v, 8=Vin, 9=GND (thermistor 7-8)	(0-5VDC, thermistor, ohms)
LAT2SGAS	Leaving air temperature 2	AN4	J5, 10-12	10=5v, 11=Vin, 12=GND (thermistor 10-11)	(0-5VDC, thermistor, ohms)
LAT3SGAS	Leaving air temperature 3	AN5	J5, 13-15	13=5v, 14=Vin, 15=GND (thermistor 13-14)	(0-5VDC, thermistor, ohms)
		AN6	J6, 1-3	1=5v, 2=Vin, 3=GND (thermistor 1-2)	(0-5VDC, thermistor, ohms)
		AN7	J6, 4-6	4=5v, 5=Vin, 6=GND (thermistor 4-5)	(0-5VDC, thermistor, ohms)
		AN8	J6, 7-9	7=5v, 8=Vin, 9=GND (thermistor 7-8)	(0-5VDC, thermistor, ohms)
		AN9	J7, 1-2	1	(thermistor, ohms)
		AN10	J7, 3-4	3	(thermistor, ohms)
OUTPUTS					
		AO1	J8, 1-2	1=0-20mA, 2=GND	0-20mA OUT
		AO2	J8, 3-4	3=0-20mA, 4=GND	0-20mA OUT
HS3	Heat Stage 3	RLY1	J9, 1-3	1 = 2 = RLY1A, 3 = RLY1B	1 = Closes RLY1A/RLY1B
HS4	Heat Stage 4	RLY 2	J9, 4-6	4 =5 = RLY2A, 6 = RLY2B	1 = Closes RLY2A/RLY2B
HS5	Heat Stage 5	RLY 3	J9, 7-9	7 = 8 = RLY3A, 9 = RLY3B	1 = Closes RLY3A/RLY3B
HS6	Heat Stage 6	RLY 4	J9, 10-12	10 = 11 = RLY4A, 12 = RLY4B	1 = Closes RLY4A/RLY4B
		RLY 5	J9, 13-15	13 = 14 = RLY5A, 15 = RLY5B	1 = Closes RLY5A/RLY5B

Controls (cont)

HUMIDI-MIZER CONTROL BOARD (EXV) INPUTS AND OUTPUTS

POINT NAME	POINT DESCRIPTION	I/O POINT NAME	PLUG AND PIN REFERENCE	SIGNAL PIN(S)	PORT STATE
INPUTS					
ССТ	Air Temp Lvg Evap Coil	AN1	J5, 5-6	5=Vin, 6=GND	(Thermistor, ohms)
		AN2	J5, 7-8	7=Vin,8 =GND	(Thermistor, ohms)
		AN3	J5, 9-10	9=Vin, 10=GND	(Thermistor, ohms)
		AN4	J5, 11-12	11=Vin, 12=GND	(Thermistor, ohms)
		AN5	J5, 1-2	1=Vin, 2=GND	0-20mA INPUT
		AN6	J5, 3-4	3=Vin, 4=GND	0-20mA INPUT
OUTPUTS					
COND_EXV	Condenser EXV Position	OUTA			
		Coil1A	J6,1	1	HI Z when P5.7 and P5.6 = 0 +12 vdc when P5.7 = 1 and P5.6 = 0 0 vdc when P5.7 = 0 and P5.6 = 1 PROHIBITED when P5.7 = 1 and P5.6 = 1
		Coil2A	J6,2	2	HI Z when P5.5 and P5.4 = 0 +12 vdc when P5.5 = 1 and P5.4 = 0 0 vdc when P5.5 = 0 and P5.4 = 1 PROHIBITED when P5.5 = 1 and P5.4 = 1
		12VDC	J6, 3	3	Power Output
		Coil3A	J6,4	4	HI Z when P5.3 and P5.2 = 0 +12 vdc when P5.3 = 1 and P5.2 = 0 0 vdc when P5.3 = 0 and P5.2 = 1 PROHIBITED when P5.3 = 1 and P5.2 = 1
		Coil4A	J6,5	5	HI Z when P5.1 and P5.0 = 0 +12 vdc when P5.1 = 1 and P5.0 = 0 0 vdc when P5.1 = 0 and P5.0 = 1 PROHIBITED when P5.1 = 1 and P5.0 = 1
COND_EXV	Bypass EXV Position	OUTB			
		Coil1B	J7,1	1	HI Z when P8.7 and P8.6 = 0 +12 vdc when P8.7 = 1 and P8.6 = 0 0 vdc when P8.7 = 0 and P8.6 = 1 PROHIBITED when P8.7 = 1 and P8.6 = 1
		Coil2B	J7,2	2	HI Z when P8.5 and P8.4 = 0 +12 vdc when P8.5 = 1 and P8.4 = 0 PROHIBITED when P8.5 = 1 and P8.4 = 1
		12VDC	J7,3	3	Power Output
		Coil3B	J7,4	4	HI Z when P8.3 and P8.2 = 0 +12 vdc when P8.3 = 1 and P8.2 = 0 0 vdc when P8.3 = 0 and P8.2 = 1 PROHIBITED when P8.3 = 1 and P8.2 = 1
		Coil4B	J7,5	5	HI Z when P8.1 and P8.0 = 0 +12 vdc when P8.1 = 1 and P8.0 = 0 0 vdc when P8.1 = 0 and P8.0 = 1 PROHIBITED when P8.1 = 1 and P8.0 = 1

INPUT/OUTPUT CHANNEL DESIGNATIONS — FIELD CONNECTION TERMINAL STRIPS

	INPUT/OU	TPUT CHANNEL DESIGNATIONS — FIELD CONNECT	ION TERMINAL STRIPS
TERMINAL BOARD	TERMINAL NO.	DESCRIPTION	ТҮРЕ
TB-1 - POWER	CONNECTION	OR DISCONNECT (in Main Control Box)	
	11	L1 power supply	208-230/460/575/380/-3-60
TB1	12	L2 power supply	208-230/460/575/380/-3-60
	13	L3 power supply	208-230/460/575/380/-3-60
	D (in Main Con		
TB2	1	Neutral Power	
TB-3 - CCN CC	MMUNICATION	NS (HY84HA096) (in Main Control Box)	
	1	LEN +	5 VDC, logic
	2	LEN C	5 VDC, logic
	3	LEN -	5 VDC, logic
TB3	<u>4</u> 5	24 VAC CCN +	24 VAC
	6	CCN C	5 VDC, logic 5 VDC, logic
	7	CCN -	5 VDC, logic
	8	Grd	ground
TD 4 THEROI	<u> </u>	CCTIONS (HY84HA090) (in Main Control Box)	ground
16-4 - IREKU		Thermostat R	24 VAC Power
	2	Thermostat Y1	24 VAC Power 24 VAC Input
	3	Thermostat Y2	24 VAC Input
	4	Thermostat W1	24 VAC Input
TB4	5	Thermostat W2	24 VAC Input
	6	Thermostat G	24 VAC Input
	7	Thermostat C	24 VAC Common
	8	Thermostat X (Alarm Contact)	24 VAC Output
TB-5 - FIFLD C	ONNECTIONS	(HY84HA101) (in Main Control Box)	'
150 11225	1	VAV Heater Interlock Relay, Ground	Dry Contact, Max 1 Amp
	2	VAV Heater Interlock Relay, 24 VAC	Dry Contact, Max 1 Amp
	3	T55/T56 10 K Thermistor	Thermistor Input
	4	T55/T56 10 K Thermistor	Thermistor Input
	5	T56 Set Point Adjustment (100,000 ohm)	Thermistor Input
	6	Indoor Air IAQ Remote Sensor/Remote Pot/Remote 4-20 mA	4-20 mA, ext. powered w/res or 0-5 VDC, +
	7	Indoor Air IAQ Remote Sensor/Remote Pot/Remote 4-20 mA	4-20 mA, ext. powered w/res or 0-5 VDC, -
TB5	8	Smoke Detector Remote Alarm	external contacts
	9	Smoke Detector Remote Alarm	external contacts
	10	Fire Shutdown	24 VAC Power
	11 12	Fire Shutdown Fire Control*	24 VAC Input 24 VAC Power
	13	Fire Pressurization*	24 VAC Power
	14	Fire Evacuation*	24 VAC Input
	15	Fire Smoke Purge*	24 VAC Input
	16	Not Used	
TB-6 - FIELD C		(HY84HA101) (in Main Control Box)	
TO O TILLED	1	Remote Occupied/Economizer Enable 24 VAC	24 VAC Power
	2	Remote Economizer Contact	24 VAC Input
	3	Remote Occupied Contact	24 VAC Input
	4	Demand Limit Contacts Common*	24 VAC Power
	5	Demand Limit SW1*	24 VAC Input
	6	Demand Limit SW2 / Dehumidification Switch*	24 VAC Input
	7	Demand Limit 4-20 mA*	externally powered 4-20 mA
TB6	8	Demand Limit 4-20 mA*	externally powered 4-20 mA
100	9	Remote Supply Air Setpoint 4-20 mA*	externally powered 4-20 mA
	10	Remote Supply Air Setpoint 4-20 mA*	externally powered 4-20 mA
	11	Outdoor Air IAQ 4-20 mA*	externally powered 4-20 mA
	12	Outdoor Air IAQ 4-20 mA*	externally powered 4-20 mA
	13	IAQ Remote Switch*	24 VAC Power
	14	IAQ Remote Switch*	24 VAC Input
	15	Supply Fan Status Switch*	24 VAC Input
	16	Supply Fan Status Switch*	24 VAC Input
1B-7 - ELECTE		ER BLOCK (in Electric Heat section)	000 000/400/575/000/ 0 00 400 0 50
TD7	1	L1 Power Supply	208-230/460/575/380/-3-60, 400-3-50
TB7	2	L2 Power Supply	208-230/460/575/380/-3-60, 400-3-50
	3	L3 Power Supply	208-230/460/575/380/-3-60, 400-3-50

^{*} Requires optional Controls Expansion Module (CEM).

Controls (cont)

Cooling control options

When mechanical cooling is required, the A Series *Comfort*Link controls have the capability to control the staging of the compressors in several different ways:

- 3 compressor stages on 020-027 units.
- 4 compressor stages on 030-060 units.
- Optional variable capacity scroll compressor.
- Optional minimum load hot gas bypass valve (MLV)

The control also integrates the use of an economizer with the use of mechanical cooling to allow for the greatest use of free cooling. When both mechanical cooling and the economizer are being used, the control will use the economizer to provide better temperature control and limit the cycling of the compressors. The control also ensures safety limits are not exceeded and the compressors are reliably operated.

The A Series *Comfort*Link controls offer two basic control approaches to mechanical cooling:

- constant volume/staged air volume
- VAV

Both approaches utilize multiple stages of cooling. In addition, the A Series *Comfort*Link controls offer the ability to run multiple stages of cooling in constant volume/staged air volume operation by controlling the unit to either a low or high cool supply air set point based on either a space temperature sensor or 2-stage thermostat input.

CON	ITROL TYPE	COOLING CONTROL		
Unit	Application	Demand Source	METHOD	
A3,A5,A7,A9	VAV	RAT or SPT	VAV Supply Air Temperature (SAT) Control	
A2,A4,A6,A8	CV/SAV	SPT or T-STAT	Multiple Adaptive Demand	

Control type

The control type determines the selection of the type of cooling control as well as the technique for selecting a cooling mode. The control types are:

VAV-RAT and VAV-SPT

Both of these configurations refer to standard VAV operation. If the control is occupied, the supply fan is run continuously and return-air temperature will be used in the determination of the cooling mode. VAV-SPT differs from VAV-RAT only in that during the unoccupied period, space temperature will be used instead of return-air temperature to start the fan for ten minutes before the return-air temperature is allowed to call out any mode.

CV/SAV TSTAT-Multiple Stage

This configuration will force the control to monitor the thermostat inputs (Y1,Y2) to make a determination of mode. Unlike traditional 2-stage thermostat control, the unit is allowed to use multiple stages of cooling control and perform VAV-style capacity control.

CV/SAV SPT-Multiple Stage

This configuration will force the control to monitor a space temperature sensor to make a determination of mode. The unit is allowed to use multiple stages of cooling control and perform VAV-style capacity control.

Cooling control method

Two different cooling control methods are used to step through the available stages of capacity. Depending on the unit size, cooling control method, and presence of an MLV, this may range from 2 up to 5 stages of capacity control. These methods are:

VAV Supply Air Temperature (SAT) Control

The capacity of the economizer and compressors are controlled based on the evaporator air discharge temperature and supply air temperature set point. This control method uses an adaptive PID (proportional, integral, derivative) algorithm (referred to as SumZ) to calculate the estimated change in supply-air temperature before engaging or disengaging the next stage of cooling. The algorithm compensates for varying conditions, including changing flow rates across the evaporator coil, to provide better overall control of compressor staging.

Multiple Adaptive Demand

This control method will base the capacity of the economizer and compressors on the evaporator air discharge temperature and one of two supply air temperature set points. The control will be able to call out a LOW COOL or a HIGH COOL mode and maintain a low or high cool supply air set point. The unit will either use the input from a conventional thermostat to turn the Y1, Y2 signals into a high and low demand signal, or with a space temperature sensor use a differential from set point to determine the mode. Once the mode has been established, the control uses the same algorithm as with VAV control.

Integrated economizer

For each of the above modes of operation, all mechanical cooling will first be delayed while the unit attempts to use the economizer for free cooling. Once the economizer is at full capacity, the control will then supplement the free cooling with as much mechanical cooling as required. To prevent any rapid changes in cooling, the control will also use the economizer to trim the cooling supplied.

Heating control options

When heating is required, the A Series units can be provided with 2-stage electric heat, 2-stage gas heat, or multiple-stage gas heat. Depending on unit size and heating capacity, the multiple-stage option may have between 5 and 11 stages of heating capacity control. The A Series ComfortLink controls have the capability to control the heating capacity based on input from a 2-stage mechanical thermostat, a space temperature sensor, or on VAV units by the return air temperature sensor. With CV/SAV units the heating mode (off, low or high) will be enabled based on W1 and W2 thermostat inputs, or when using a space temperature sensor the differential from heating set point will be used. Heating with VAV units will be enabled based on the return-air temperature or the space temperature, but once enabled, control will be based on the return-air temperature. Variable air volume terminals will be commanded open to the heating cfm through linkage or the heat interlock relay.

The A Series *Comfort*Link controls will use one of the following control methods:

Two-stage control

The unit will operate in LOW HEAT or HIGH HEAT mode as determined by the demand inputs. In the LOW HEAT mode if the temperature sensed by the evaporator discharge temperature sensor is below 50°F, the unit will automatically go into a HIGH HEAT mode.

Multiple-stage control

When the unit is in a LOW HEAT mode, the algorithm calculates the desired heat capacity based on set point and supply-air temperature. The staged gas control logic will stage the heating capacity to match the calculated demand. When the unit is in a HIGH HEAT mode, all stages of heat will be activated. Staged gas heat can also be used in a TEMPERING mode.

Tempering control

When a unit is equipped with multiple staged gas heat, tempering allows the unit to provide a neutral supply air temperature in winter climates. This mode is enabled during a VENTILATION, LOW COOL, or HIGH COOL mode when the economizer dampers are at their minimum ventilation position and the mixed-air temperature is below the supply air set point. Tempering can also be used during a preoccupancy purge to prevent low temperature air from being delivered to the space.

Economizer and IAQ options

The controls have been designed to support the requirements of indoor air quality control through the use of outside air. Units can be equipped either with an adjustable, self-closing outdoor air damper or with a fully modulating economizer with ultra-low leak dampers. The economizer can be configured for a full modulation mode or 3-position mode of operation. The control includes logic for a minimum ventilation position and different set points for occupied and unoccupied minimum position set points. This control also has logic built in to calibrate the economizer position to the actual percentage of outside air introduced. During periods when the compressors are not being used, the control will use the RAT, SAT and OAT to calibrate the economizer. This will allow for setting the outside air actual percentage, not just the percent damper position.

The use of the economizer will depend on the mode of change selected. This control integrates the changeover directly into the control. Five types of changeover are available:

- Outdoor air dry bulb
- Differential dry bulb
- Outdoor air enthalpy
- Differential enthalpy
- Outdoor air dew point

The units are provided with an outdoor air and return air temperature sensor so the first two changeover methods are available as standard. To use the enthalpy changeover options, the control supports the addition of highly reliable electronic humidity or enthalpy sensors. The humidity sensor input is then used with the dry bulb sensors to calculate the enthalpy. For outdoor enthalpy changeover the control also has the ASHRAE 90.1 A, B, C, D economizer changeover curves built into the software.

Building pressure control — When operating with outside air economizers, large amounts of air can be introduced into the building and a means must be provided for building pressure relief. The 48/50A Series control supports the following three types of building pressure control:

- Relief Dampers Can be used on low return duct static applications
- Non-Modulating Two-Stage Power Exhaust The unit can be equipped with multiple power exhaust fans—4 on sizes 020-050 and 6 on size 060. The software controls the power exhaust stages based on the economizer position (percent open).
- Modulating Power Exhaust Both the VAV and CV/SAV units can be equipped with power exhaust fans that are controlled by a building pressure sensor that is connected to the *Comfort*Link controller. The fans are in groups which allow for 4 stages on sizes 020-050 and 6 stages on size 060.
- High Capacity Power Exhaust (field-installed) Both the VAV and CV/SAV units can be equipped with the field-installed high capacity power exhaust. These motors are modulated via VFDs which are controlled by a building pressure sensor that is connected to the ComfortLink controller. The VFDs provide full modulation and precise building pressure control.

The units are capable of using either 2-in. or optional 4-in. pleated filters and can have an optional filter pressure drop switch to warn of dirty filter conditions.

The indoor air quality (IAQ) function provides a demandbased control for ventilation air quantity, by providing a modulating outside air damper position that is proportional to the space CO₂ level. The ventilation damper position is varied between a minimum ventilation level (based on internal sources of contaminants and CO₂ levels other than the effect of people) and the maximum design ventilation level (determined at maximum populated status in the building). During a less-than-fully populated space period, the CO₂ level will be lower than that at full-load design condition and will require less ventilation air. Reduced quantities of ventilation air will result in reduced operating costs. Space CO₂ levels are monitored and compared to user-configured set points. Accessory CO₂ sensor for space (or return duct mounting) is required. The IAQ routine can be enhanced by also installing a sensor for outdoor air (CEM required).

During the occupied period, in the absence of a demand for cooling using outside air, if CO_2 levels are below the set point for the minimum ventilation level, the outside-air damper will open to the minimum ventilation level damper position set point. The minimum damper position will be maintained as long as the CO_2 level remains below the set point.

When the space CO_2 level exceeds set point for the minimum ventilation level condition, the $Comfort\mathrm{Link}$ controls will begin to open the outside air damper position to admit more ventilation air and remove the additional contaminants. As the space CO_2 level approaches the set point for maximum design ventilation level condition, the outside air damper position will reach the maximum ventilation level damper position set point limit. Damper position will be modulated in a directly proportional relationship between

Controls (cont)

these two CO_2 set point limits and their corresponding damper position limits.

In most applications a fixed reference value can be set for the outdoor air quality level, but the control also supports (with optional CEM) the addition of an outdoor air quality sensor that will be compared to the indoor or return IAQ sensor. If an OAQ (outdoor air quality) sensor is connected, the demand set point levels will be adjusted automatically as the outdoor $\rm CO_2$ levels vary. Also, if the outdoor $\rm CO_2$ level exceeds a user-configured maximum limit value, then outside air damper position will be limited to the minimum ventilation damper set point value. The control can also receive these signals through the CCN system.

The IAQ and OAQ measurement levels are displayed by the *Comfort*Link scrolling marquee in parts per million (ppm).

Fire and smoke controls interface

The unit can be equipped with an optional return air smoke detector. The smoke detector is wired to stop the unit and send a message to a remote alarm system if a fault condition is detected. If the controls expansion module (CEM) is added, the control will support smoke control modes including evacuation, smoke purge, and pressurization.

Demand limiting

The control supports demand limiting using one or two fixed capacity limits initiated by discrete input switches or a variable capacity limit function based on an analog input signal. On CCN systems this can be done through the network, or for non-CCN network jobs this can be done by adding the controls expansion module.

Diagnostics

The ComfortLink controls have fully integrated all controls and sensors into a common control system. The control monitors these inputs as well as many of the routines to provide advanced diagnostics and prognostics. These include adaptive logic to allow the unit to continue to operate in a reduced output mode and automatic resets where applicable. The last 10 alarms and alerts are stored in memory and can be accessed through the display. The alarms can also be monitored through the Carrier Comfort Network[®] connection or building automation system. The unit also supports the use of the hand-held Navigator™ display which can be plugged in at the main control box and auxiliary control box at the opposite end of the unit.

Some of the diagnostics that are included are:

- Monitoring of all sensors
- Suction pressure transducers to provide compressor protection and coil freeze protection
- Monitoring of the economizer actuator via digital communication
- Monitoring of compressor status using compressor protection boards
- Adaptive logic for low supply-air temperatures
- Compressor lockout at low ambient conditions
- Storage of compressor run hours and starts
- Low refrigerant charge protection
- Compressor reverse rotation protection

Control interface

The ComfortLink controller can interface with the i-Vu® Open Control System, a BACnet building automation system, or Carrier Comfort Network® devices. This will allow for the use of all system control programs. These include:

- Network Service Tool
- System Pilot™ device
- Touch Pilot™ device
- i-Vu® Open Control System software
- ComfortView™ software
- CCN Web software
- ComfortID™ system

Contact Carrier Controls Marketing for more information.

The control can also provide interface with other energy management systems with the addition of either the BAC-net communication option, the MODBUS Carrier translator, or the LonWorks Carrier translator.

Several contact connection points have been provided in the main control box for interface to external controls and for easy third party control. These are summarized in the Interface Connections table on page 93. External controls use the following interface points:

- Start/Stop (On/Off) Start/Stop is accomplished with a contact closure between terminals 1 and 3 on TB6.
- Remote Economizer Enable Enabling and disabling
 of the economizer can be done by connecting a contact
 closure to terminals 1 and 2 on TB6. The economizer
 can be configured for a switch closure changeover for
 3-position operation.
- VAV Heating Interlock Interface with non-linkage terminals can be done through TB5 terminal 1 and 2.
- Remote IAQ Inputs External IAQ demand inputs can be connected through terminals 6 and 7 on TB5.
- Smoke Detectors Alarm Output Remote detector alarm outputs can be connected through terminals 8 and 9 on TB5.
- Fire Shutdown A remote fire shutdown signal can be connected to 10 and 11 on TB5. The software can be configured to shut the unit down on an open or closed signal.
- Fire Pressurization For a remote control of pressurization a contact closer can be connected to terminals 12 and 13 on TB5. In this mode the economizer damper will be fully opened and the supply fan turned on to pressurize the space.
- Fire Evacuation For this mode a remote contact closure can be connected to terminal 12 and 14 on TB5.
 For remote evacuation of a space the outside-air dampers will be opened and the power exhaust fans turned on to evacuate the space of smoke.
- Fire Purge For this mode external contacts can be connected to terminals 12 and 15 on TB5. In this mode the supply fan and return fans will be turned on with the economizer at a full open position.
- Demand Limiting For demand limiting the controls expansion module (CEM) must be used. Connections are provided on TB6 for switch input demand limiting and for 4 to 20 mA demand limit signals.

- Dehumidification A discrete input is available on TB6 to initiate the Dehumidification mode. This input is shared with one of the demand limiting inputs and requires the controls expansion module.
- Remote Supply Air Set Point A remote supply air temperature set point can be supported when the controls expansion module is used. It can be connected to terminals 9 and 10 on TB6.
- Outdoor Air IAQ Signal If an external outdoor air signal is being used then it can be connected to terminals 11 and 12 on TB6.
- IAQ Switch Input If an external control will be controlling IAQ then it can be connected as a contact closure through terminals 13 and 14 on TB6.

Carrier can also support electronic interface to other systems using the following;

- MODBUS Carrier translator (read/write, provides CCN to MODBUS remote terminal unit [RTU] protocol conversion)
- LonWorks Carrier translator (read/write, provides CCN to LON FT-10A ANSI/EIA-709.1 protocol conversion)

Constant volume/staged volume applications

The 48/50A2,A4,A6,A8 units are designed to operate in CV/SAVTM applications. The units are shipped as operable, stand-alone units using either a standard (mechanical or electronic) 2-stage heat or 2-stage cool thermostat, or with an electronic room temperature sensor and a time-clock to establish unit start and stop times.

With a standard thermostat (programmable is optional), heating and cooling operation is set by space temperature.

With a space sensor and field-supplied timeclock, the machine will operate at default values unless they are changed using appropriate input devices. The space sensor monitors space temperature and may be equipped with a timed override feature, which allows unit operation during unoccupied periods. The space sensors may be used in multiples of 4 or 9 to achieve space temperature averaging. The use of a space sensor also allows the unit to be turned on and off from a remote signal or it can be programmed to use the time of day scheduling that is built into the control.

Supply air can be supplied at a constant volume, or at staged air volumes corresponding to two configurable speeds.

Features with thermostat control of unit

- Two-stage heating (if installed)
- Multiple stage gas heating if unit is equipped with the staged gas heat option
- Two-stage demand with fully proportional economizers and integrated compressor capacity
- Adaptive multiple stage cooling which can provide up to 5 stages of capacity
- Control of unit using Y1, Y2, W1, W2, and G thermostat or T55 or T56 space sensors
- Outdoor-air temperature/supply-air temperature monitoring with logic to lock the compressors out at low ambient temperatures down to 0°F
- Control of modulating economizer for free cooling

- Control to maximize the use of outside air cooling to reduce part load operating costs
- Control of the power exhaust fans based on configurable damper positions or directly from the optional building pressure sensor
- Compressor time guard override (power up and minimum on and off timers)
- Support of IAQ sensor

INTERFACE CONNECTIONS

TB-3	— c	CCN COMMUNICATIONS (HY84HA096)
TB3		LEN +
	2	LEN C
	3	LEN –
		24 VAC
	5	CCN+
	6	
	7	
	8	
TB-4	— Т	HERMOSTAT CONNECTIONS (HY84HA090)
TB4	1	Thermostat R
	2	Thermostat Y1
	3	Thermostat Y2
	4	
	5	Thermostat W2
	6	Thermostat G
	7	Thermostat C
	8	Thermostat X
TB-5	F	TELD CONNECTIONS (HY84HA101)
TB5		VAV Heater Interlock Relay, Ground
	2	VAV Heater Interlock Relay, 24 VAC
	3	T55/T56 10K Thermistor
	4	T55/T56 10K Thermistor
	5	T56 Set Point Adjustment (100,000 ohm)
	6	Indoor Air IAQ Remote Sensor/Remote Pot/Remote 4-20 mA
	7	Indoor Air IAQ Remote Sensor/Remote Pot/Remote 4-20 mA
	8	Smoke Detector Remote Alarm
	9	Smoke Detector Remote Alarm
	10	Fire Shutdown
	11	Fire Shutdown
	12	Fire Control Common*
	13	Fire Pressurization*
	14	Fire Evacuation*
	15	Fire Smoke Purge*
	16	Not Used
TB-6	— F	IELD CONNECTIONS (HY84HA101)
TB6	1	Remote Occupied/Economizer Enable 24 VAC
	2	Remote Occupied Contact
	3	Remote Economizer Contact
	4	Demand Limit Contacts Common*
	5	Demand Limit Switch 1*
	6	Demand Limit Switch 2/Dehumidify Switch*
	7	Demand Limit 4-20 mA*
	8	Demand Limit 4-20 mA*
	9	Remote Supply Air Set Point 4-20 mA*
	10	Remote Supply Air Set Point 4-20 mA*
	11	Outdoor Air IAQ 4-20 mA*
	12	Outdoor Air IAQ 4-20 mA*
	13	IAQ Remote Switch Common*
	14	IAQ Remote Switch*
	15	Supply Fan Status Switch*
	16	Supply Fan Status Switch*

^{*} Optional controls expansion module (CEM) is required.

Controls (cont)

Features with sensor control of unit

There are 2 sensor options available:

- T55 sensor will monitor room temperature and provide unoccupied override capability (1 to 4 hours).
- T56 sensor will monitor room temperature, provide unoccupied override capability (1 to 4 hours), and provide a temperature offset of 5°F maximum.

Standard features are:

- Support of remote occupied/unoccupied input to start and stop the unit
- Two-stage economizer demand with fully proportional economizers and integrated compressor capacity
- Variable capacity control with variable capacity compressor option
- Cooling capacity with adaptive control, with up to 5 stages of mechanical refrigeration capacity
- Occupied or unoccupied set point
- Enable heating (if installed) or cooling during unoccupied periods as required to maintain space temperature within the unoccupied set points
- Adjustment of space temperature set points of \pm 5°F when using a T56 sensor
- Support of IAQ sensor
- 365-day timeclock with backup (supports minute, hour, and day of week, date, month, and year access). The timeclock includes the following features:
 - Daylight savings time function
 - Occupancy control with 8 periods for unit operation
 - Holiday table containing up to 18 holiday schedules
 - Ability to initiate timed override from T55 or T56 sensors (for a timed period of 1 to 4 hours)
 - Temperature-compensated start to calculate early start times before occupancy
 - For units connected into a CCN network, the timeclock can be integrated into the overall building energy management system and be updated remotely
- For units connected to the CCN network the user can also display all the unit information including I/O values Maintenance, Configuration, Service, and Set Point data tables

Variable air volume (VAV) applications

The 48/50A3,A5,A7,A9 units are designed to operate in VAV applications. As standard they include a supply fan inverter (VFD) to control the supply fan speed and duct pressure. They are designed to control the leaving-air temperature in cooling to a configurable set point. The changes in mode of operation from Heating to Vent to Cooling mode can be controlled either from the return air temperature sensor or from an accessory space temperature sensor. Some of the features for VAV units in a stand-alone application are:

- The units are shipped as operable, stand-alone units with the addition of a field-supplied timeclock to establish unit start and stop times or they can use ComfortLink time of day scheduling routine
- Provides cooling and heating control (if equipped with heat) in both occupied and unoccupied modes
- Supports an optional space temperature sensor for mode control and supply air temperature reset

- If space sensor is equipped with an override feature, the sensor will allow operation during the unoccupied period for a fixed length of time
- Base unit control supports a heat interlock relay (field supplied) to signal the VAV terminal devices to fully open during heating operation
- Control board diagnostics
- · Control of modulating economizer for free cooling
- Control to maximize the use of outside air cooling to reduce part load operating costs
- Support of remote occupied/unoccupied input to start
- Controls the operation of the supply fan inverter to maintain a configurable supply duct static pressure set point. Inverter is configured and controlled directly by ComfortLink controls
- Support of IAQ sensor
- Support a field test for field check out
- Support linkage to ComfortID™ systems
- Cooling capacity control of up to 5 stages plus economizer
- Control of heat to maintain return-air temperature
- Control of heat interlock relay
- Compressor time delays to prevent rapid cycling of compressors
- Automatic lead-lag control of compressors to reduce the number of compressor cycles
- With the addition of a remote start/stop switch, heating or cooling is enabled during unoccupied periods as required to maintain space temperature to within unoccupied set points
- With the addition of the controls expansion board, the ComfortLink controls will also support demand limiting and remote set point control

When the unit is connected to a CCN (Carrier Comfort Network®) system, additional features can be used:

- Interface of the unit clock with the CCN network clock and allow for remote configuration of the schedules
- CCN demand limit participation
- Interface with ComfortID™ control systems through linkage

Sequence of operation

Cooling, constant volume (CV)/staged air volume (SAV $^{\text{TM}}$) units

On power up, the initialization software will determine the unit configuration and also initialize any controls loops and input/output devices. All alarms and configurations are saved in memory and maintained during power outages. All alarms will be maintained in memory and must be cleared through the display.

On SAV units equipped with a supply fan VFD, the fan is controlled at discrete speeds based on the operation mode of the unit.

Fan will operate in Low speed when:

- Cooling capacity is less than 50%
- In ventilation mode
- Heating is less than 75% capacity

Fan will operate in High speed when:

- Cooling capacity is greater than 50%
- Heating capacity is greater than 75% capacity

Constant volume/staged air volume conventional thermostat control

If the unit is equipped with a conventional thermostat with Y1, Y2, W1, W2, and G connections, then the control will perform the following sequence.

When G is closed the indoor fan will turn on. G must be closed for heating or cooling to occur.

If Y1 is closed, then the control will first check the ability to use the economizer. If the economizer can be used, the control will modulate the damper open to maintain the low load economizer leaving air temperature set point.

If Y2 closes, then the control will lower the leaving air temperature set point to the configured set point. If the economizer cannot satisfy the load, then compressors will be sequenced on to maintain either the low or high load temperature set points. If the economizer cannot be used or the enable control disables the economizer, then the control will sequence the compressors based on the Y1 and Y2 signals.

If two-stage control has been selected, then the control will map the compressors to the Y1 and Y2 inputs as defined in the loading sequence.

If Adaptive mode has been selected, then the control will add and remove compressor stages to maintain the low and high demand leaving air set points. If Y1 is closed, at least one compressor stage will be turned on.

Heating — If W1 closes, then it will indicate that the units should be in the Heating mode. The economizer will be closed to the minimum position, and if the unit is equipped with gas or electric heat then the first stage of heat will be energized. If W2 closes, then the control will turn on the second stage of heat. If the unit is equipped with a staged gas heat control option, then the W1 signal will be used to control the gas heat to the configurable low heat load leaving air temperature set point. When W2 is energized, the unit will fire all stages of heat capacity. If the unit is equipped with gas heat, then the IGC board will control the operation of the gas heat. See the 48 Series Gas Heat units section for the IGC board sequence of operation.

Constant volume/staged air volume space temperature sensor control

If the space temperature operation has been selected using a T55, T56, or T59 sensor, then the following logic will be used to control the operation of the unit. If a space temperature is used, then a wire jumper must be added between R, W1, and W2. If a remote occupancy control method has been selected, then the input must first be closed for the unit to go into Heat, Vent or Cooling mode.

If the internal timeclock is used, the control module determines the occupancy state based on the system time schedules.

If Temperature Compensated Start is active, the unit will be controlled as in the occupied mode and will start a time as determined by prior operation to have the space at set point by the occupied time.

If the unit has been configured for a preoccupancy purge, then the control will start the unit in Vent mode prior to the occupancy time to vent the space. If an IAQ sensor is being

used and the low IAQ set point is satisfied, then the occupancy purge mode will be terminated. The set points for heat and cooling are configurable through the display. If a T56 sensor is being used, then the set point can be shifted by as much as 5 degrees.

Cooling — If the space temperature goes above the cooling set point, then the unit will go into Cooling mode. If the economizer can be used, the control will first try to control to the leaving air temperature set point. The set point will depend on the space temperature. If the temperature is above the low demand set point, then the low economizer load discharge air temperature set point will be used. If the temperature is above the high load space temperature set point, then the high load leaving air temperature set point will be used. If the economizer cannot satisfy the load, then compressors will be sequenced on to maintain either the low or high load temperature set points.

If the economizer cannot be used or the enable control disables the economizer, then the control will sequence the compressors based on the low and high load space temperature variables. If two-stage control has been selected, then the control will map the compressors to the low and high loads as defined in the loading sequence. If Adaptive mode has been selected, then the control will add and remove compressor stages to maintain the high and low demand leaving air set points.

Heating — If the space temperature goes below the heating space temperature set points, then it will indicate that the units should be in the Heating mode. The economizer will be closed to the minimum position and if the unit is equipped with gas or electric heat then the first stage of heat will be energized. If the space temperature goes below the high load space temperature set point, then the control will turn on the second stage of heat. If the unit is equipped with a staged gas heat control option, then the low load demand signal will turn on heating stages to maintain the leaving air temperature set point. A high demand signal will energize all stages of heat.

Unoccupied Mode — If the unit is configured for unoccupied free cooling, mechanical cooling, or heating, and the temperature goes beyond the unoccupied configuration set points, then the control will turn on free cooling, mechanical cooling, or heat as needed to get within the unoccupied set points. When in this mode, the economizer dampers will be maintained fully closed or to the minimum unoccupied ventilation set point.

Variable air volume control

On power up, the initialization software will determine the unit configuration and also initialize any controls loops and input/output devices. All alarms and configurations are saved in memory and maintained during power outages. All alarms will be maintained in memory and must be cleared through the display.

The unit will first determine the mode of operation. If the unit has been configured for space temperature demand, then the control will determine, based on the configurable set points, if the unit should be in heat mode, vent mode, or cooling mode. If the unit is configured for return air temperature control, then it will start the fan and monitor the

Controls (cont)

return air temperature vs. the configurable set point to determine if the unit should be in cooling, vent, or heating mode.

If the control is connected to a ComfortID™ system, the room terminals are equipped with microprocessor controls that give commands to the base module. If linkage is active, the control module will replace local *Comfort*Link set points and occupancy data with linkage-supplied data.

If temperature compensated start is active, then advance pre-cool or heat of the space is enabled. If the unit is configured to use a pre-purge cycle, then the *ComfortLink* controls will start the unit in Vent mode based on a pre-start time interval. If an IAQ sensor is being used and the low IAQ control point is satisfied, then the mode will be terminated.

Cooling — If Cooling mode is required, then the controlling set point will be the leaving air temperature set point. If an economizer is present and the changeover control allows the economizer to be used, then it will first attempt to control the leaving-air temperature using free cooling. If this cannot satisfy the load, then additional compressor stages will be turned on to maintain the leaving-air temperature. When both compressors and economizers are being used, the control will use the economizer dampers to maintain better control of the leaving air and to help prevent high compressor cycling. If the economizer cannot be used, then it will be set to the minimum vent position. When using compressors, the leaving-air temperature will sequence to compressors on and off using a PID control loop.

If the unit is equipped with an optional hot gas bypass valve, the control will use the hot gas as an additional stage of capacity. When the first stage of cooling is required the control will turn on a circuit "A" compressor and the hot gas bypass valve. When additional cooling is called for it will turn off the hot gas bypass valve. The valve will also be used for additional freeze protection of the coils when low evaporator refrigerant temperatures are detected using the suction pressure transducers.

When operating in cooling mode, the control will also monitor the supply duct pressure and send a 4 to 20 mA signal to the factory-supplied inverter to control the speed of the fan and the delivered cfm. If on a linkage system, the control will also support static pressure reset based on the needs of the zones.

Heating — If the unit has been enabled for occupied heat and the space temperature sensor (SPT), return air temperature sensor (RAT), or linkage demand calls for heat, the control will energize the electric heat or gas heat (if present) to warm the space. In this mode the control will energize the heat interlock relay which will signal the terminals to open to the heating position. Note that for the linkage systems the interlock relay connection is not required. Once the Heat mode is enabled, the heat capacity will be controlled by the return air temperature set point. Heating will continue until the return temperature set point is satisfied. If the unit is configured for morning warm-up and the heating demand is below the set point during the first 10 minutes of operation, the control will energize full heating capacity until the return air temperature set point is satisfied.

If the space temperature sensor (SPT), return air temperature sensor (RAT), or linkage demand requires that the unit be in heating, then the control will energize the electric heat or gas heat (if present) to warm the space. In this mode the control will energize the heat interlock relay which should be connected to the terminals to indicate that they should open to the heating position. The interlock relay connection is not required for the linkage systems. Heating will continue until the mode selection sensor is satisfied.

Dehumidification mode

A Dehumidification mode can be initiated by either a discrete input on TB6 or by a direct measurement of humidity levels with an optional space or return air humidity sensor. When the Dehumidification mode is active, the evaporator coil leaving air temperature will be controlled to the Dehumidify Cool set point, which is typically colder than the normal cool mode leaving air set points.

In this mode, comfort condition set points, which are based on dry bulb temperature, will be overridden. If a source of reheat is available, then the leaving-air temperature can be raised to a more desirable temperature. Available methods of reheat are internal gas heat if the unit is equipped with the staged gas heating option or an external heat source that can be controlled by an auxiliary alarm relay switch.

Humidi-MiZer® operation

The design of the Humidi-MiZer adaptive dehumidification system allows for two humidity control modes of operation of the rooftop unit, utilizing a common subcooling/reheat dehumidification coil located downstream of the standard evaporator coil.

This unique and innovative design provides the capability for the rooftop unit to operate in both a subcooling mode and a hot gas reheat mode for maximum system flexibility. The Humidi-MiZer package is factory installed and will operate whenever there is a dehumidification requirement.

The Humidi-MiZer system is initiated based on input from a factory-installed return air humidity sensor to the large rooftop unit controller. Additionally, the unit controller may receive an input from a field-installed space humidity sensor, a discrete input from a mechanical humidistat, or input from a third-party controller.

A unit equipped with a Humidi-MiZer system can operate in the following modes:

Conventional Cooling mode

Conventional operation of the A series large rooftop unit allows the unit to cycle up to six compressors to maintain comfort conditions, with expanded cycling operation offered by the optional digital compressor. This mode is the conventional DX (direct expansion) cooling method used on Carrier's standard large rooftops and provides equivalent capacity to a non-Humid-MiZer equipped unit. It is used when there is a call for cooling only, such as at design AHRI (Air-Conditioning, Heating, and Refrigeration Institute) cooling conditions of 95°F ambient and 80°F/67°F db/wb entering air conditions. The SHR (sensible heat ratio) for equipment in this scenario is typically 0.7 or higher.

Subcooling mode

This modulating mode will operate to satisfy part load type conditions when there is a space call for cooling and dehumidification. Although the temperature (sensible) may have dropped and decreased the sensible load in the space, the outdoor and/or space humidity levels may have risen.

A typical scenario might be when the outside air is 85°F and 70 to 80% relative humidity (RH). Desired SHR for equipment in this scenario is typically 0.4 to 0.7. Carrier's A Series Humidi-MiZer adaptive dehumidification system will increase subcooling entering the evaporator and cycle on enough compressors to meet the latent load requirement, while simultaneously adjusting refrigerant flow to the Humidi-MiZer coil to reheat the air to the required supply air set point. This will allow the unit to provide variable SHR to meet space requirements.

Conversely, a standard unit might overcool the space or stage down to meet set point, sacrificing latent capacity control. The Humidi-MiZer unit will initiate subcooling mode when the space temperature and humidity are both above the temperature and humidity set points, and attempt to meet both requirements. Once the humidity requirement is met, the unit can continue to operate in normal cooling mode to meet any remaining sensible capacity load. Alternatively, if the sensible load is met and humidity levels remain high, the unit can switch to Hot Gas Reheat mode to provide neutral, dehumidified air.

Hot Gas Reheat mode

This modulating mode is used when dehumidification is required without a need for cooling, such as when the outside air is at a neutral temperature (70 to $75^{\circ}F$) but high humidity exists. This situation requires the equipment to operate at a SHR of 0.0 to 0.2.

With no cooling requirement and a call for dehumidification, the A Series Humidi-MiZer adaptive dehumidification system will cycle on enough compressors to meet the latent load requirement, while simultaneously modulating refrigerant flow to the Humidi-MiZer® coil to reheat the air to the desired neutral air set point.

The A-Series Humid-MiZer system controls allow for the discharge air to be reheated either to the return-air temperature minus a configurable offset or to a configurable Reheat set point (default 70°F). The Hot Gas Reheat mode will be initiated when only the humidity is above the humidity set point, without a demand for cooling.

Mode control

The essential difference between the Subcooling mode and the Hot Gas Reheat mode is in the supply air set point. In Subcooling mode, the supply air set point is the temperature required to provide cooling to the space. In Reheat mode, the supply air set point is the temperature required to provide neutral air to the space. In both cases, the unit will decrease the evaporator discharge temperature to meet the latent load and reheat the air to the required cooling or reheat set point (i.e., 50, 60, 70° F, etc.).

48 series gas heat units

The gas heat units incorporate 2 (3 on size 060) separate systems to provide gas heat. Each system incorporates its own induced-draft motor, integrated gas control (IGC)

board, 2-stage gas valve, manifold, and safeties. For 2-stage heat control, the systems are operated in parallel. For example, when there is a call for first stage heat, both induced-draft motors operate, both gas valves are energized, and both IGC boards initiate spark.

With the staged gas control, the systems are operated independently to allow for a greater range of capacity control. All of the gas heating control is performed through the IGC boards (located in the heating section). The MBB module board serves only to initiate and terminate heating operation and monitor the status of the requirements for indoor fan operation.

The fan will be controlled directly by the MBB board. The base module board is powered by 24 vac. When the thermostat or room sensor calls for heating, the MBB board will close heating relays and send power to W on each of the IGC boards.

An LED on the IGC board will be on during normal operation. A check is made to ensure that the rollout switches and limit switches are closed and the induced-draft motors are not running. After the induced-draft motors are energized and speed is proven with the Hall Effect sensor on the motor, the ignition activation period begins. The burners will ignite within 5 seconds.

When ignition occurs, the IGC board will continue to monitor the condition of the rollout and limit switches, the Hall Effect sensor, and the flame sensor. If the unit is controlled through a room thermostat set for fan auto, 45 seconds after ignition occurs the indoor-fan motor will be energized and the outdoor-air dampers will open to their minimum position.

If the overtemperature limit opens prior to the start of the indoor fan blower, on the next attempt the 45-second delay will be shortened to 5 seconds less than the time from initiation of heat to when the limit tripped. Gas will not be interrupted to the burners and heating will continue. Once modified, the fan on delay will not change back to 45 seconds unless power is reset to the control.

If the unit is controlled through a room sensor, the indoor fan will be operating in the occupied mode and the outdoor-air dampers will be in the minimum position. If the unit is controlled with a room sensor in the unoccupied mode, the indoor fan will be energized through the IGC board with a 45-second delay and the outside-air dampers will move to the minimum unoccupied set point.

When additional heat is required, the second stage MBB output relay closes and initiates power to the second stage of all main gas valves in all sections. When the demand is satisfied, MBB heat output relays will open and the gas valves close, interrupting the flow of gas to the main burners. If the call for stage 1 heat lasts less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is configured for intermittent fan, the indoor-fan motor will continue to operate for an additional 45 seconds, then stop, and the outdoor-air dampers will close. If the overtemperature limit opens after the indoor motor is stopped within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan off delay will not change back to 45 seconds unless power is reset to the control.

Application data

Ductwork — Secure vertical discharge ductwork to roof curb. Interior installation may proceed before unit is set in place on roof. For horizontal discharge applications, attach ductwork to unit, or field-supplied flanges can be attached to horizontal discharge openings and all ductwork attached to flanges. Units equipped with electric heat require a 90-degree elbow below the unit supply duct connection.

Thru-the-curb service connections — Roof curb connections allow field power wires and control wires to enter through the roof curb opening.

Thermostat (CV only) — Use of a thermistor-type room sensor is recommended on all CCN installations. A thermistor-type room sensor or a 2-stage heating/cooling thermostat may be used for all other units.

Heating-to-cooling changeover — All units are automatic changeover from heating to cooling when automatic changeover thermostat and subbase or a thermistor-type room sensor are used.

Airflow — Units are draw-thru on cooling and blow-thru on heating.

Maximum airflow — To minimize the possibility of condensate blow-off from evaporator, airflow through units should not exceed values shown in Cooling Cfm Operating Range table and Cooling Capacities tables.

Minimum airflow — The minimum airflow for cooling is 300 cfm/ton for constant volume units and 200 cfm/ton for VAV (variable air volume) units. Performance at 200 cfm/ton is limited to unloaded operation and may be additionally limited by entering-air temperatures or Humidi-MiZer operation. Refer to Gas Heating Capacities and Efficiencies table on page 8 for minimum airflow cfm for heating.

Minimum ambient cooling operation temperature — All units are equipped with factory economizers to allow free

cooling at any outdoor ambient. If mechanical cooling is required, the units are designed to operate at outdoor temperatures down to $32^{\circ}F$. Greenspeed[®] control units can operate at outdoor temperatures down to $-20^{\circ}F$.

Carrier recommends the installation of field-fabricated wind baffles on all vertically oriented condenser coil surfaces when operating in environments with prevailing winds of more than 5 mph and where temperatures drop below $32^{\circ}F$.

Maximum operating outdoor-air temperature — The maximum operating outdoor-air temperature is 115°F. Some models will operate up to 125°F depending on model and operating conditions.

High altitude (gas heat units only) — A change to the gas orifice may be required at high altitudes. Refer to Altitude Compensation table on page 10.

Minimum temperature — Minimum allowable temperature of mixed air entering the heat exchanger during half rate (first stage) operation is 50°F. There is no minimum mixture temperature during full-rate operation. Comfort conditioning may be compromised at temperatures below 50°F. Below 50°F entering-air temperature (EAT) both stages of heat are engaged.

Internal unit design — Due to Carrier's internal unit design (draw-thru over the motor), air path, and specially designed motors, the full horsepower listed in the Physical Data table and Motor Limitations table can be used with extreme confidence. Using Carrier motors with the values listed in the Physical Data and Motor Limitations tables will not result in nuisance tripping or premature motor failure. The unit warranty will not be affected.

Electric heat — A field-supplied 90-degree elbow must be installed in the supply ductwork below the unit discharge.

Application data (cont)

Acoustical considerations

In order to minimize sound transmitted to the space, please conform to the following recommendations:

Location

- Avoid locating the unit above sound-sensitive areas. Instead, locate the unit above restrooms, storage areas, corridors, or other noise-tolerant areas.
- Avoid mounting the unit in the middle of large roof expanses between vertical supports. This will minimize the phenomenon known as roof bounce.
- Install the units close to vertical roof supports (columns or load bearing walls).
- Locate the units at least 25 feet away from critical areas. If this is not possible, the ductwork and ceiling structure should be acoustically treated.
- Consider the use of vibration isolators or an acoustic curb.

Ductwork

- Use flexible connectors between the unit and the supply and return ducts.
- Supply and return air main trunk ducts should be located over hallways and/or public areas.
- Provide trailing edge turning vanes in ductwork elbows and tees to reduce air turbulence.
- Make the ductwork as stiff as possible.
- Use round duct wherever possible because it is less noisy.

- Seal all penetrations around ductwork entering the space.
- Make sure that ceiling and wall contractors do not attach hangers or supports to ductwork.
- Provide as smooth and gradual transition as possible when connecting the rooftop unit discharge to the supply duct.
- If a ceiling plenum return is used, provide a return elbow or tee to eliminate line-of-sight noise to the space. Face the entrance of the return duct away from other adjacent units.

Acoustic insulation

- Provide acoustic interior lining for first 20 feet of supply and return duct or until the first elbow is encountered.
 The elbow prevents line-of-sight transmission in the supply and return ducts.
- Install a double layer of 2-in. low density quilted fiberglass acoustical pad with a ¹/₈-in. barium-loaded vinyl facing on top of the roof deck before building insulation and roofing installation occur. Place the material inside the curb and for 4 to 8 ft beyond the unit perimeter, dependent upon unit size (larger units require a wider apron outside the curb). Openings in the pad should only be large enough for the supply and return ducts. An alternate approach is to use two layers of gypsum board with staggered seams in addition to the acoustical pad.

Application data (cont)

Typical wiring schematics

Typical wiring schematics (cont)

Typical wiring schematics (cont)

Typical wiring schematics (cont)

LEGEND FOR TYPICAL WIRING SCHEMATICS

LEGEND

Α	_	Circuit A	IDM	_	Induced-Draft Motor	THE	RMOST	AT MARKINGS
AUX	_	Auxiliary Contact	IFC	_	Indoor-Fan Contactor	BM	_	Blower Motor
BP	_	Building Pressure Transducer	IFCB	_	Indoor-Fan Circuit Breaker	С	_	Common
С	_	Compressor Contactor	IFM	_	Indoor-Fan Motor	СМ	_	Inducer Motor
CAP	_	Capacitor	IGC	_	Integrated Gas Control Board	CS	_	Centrifugal Switch
СВ	_	Circuit Breaker	IΡ	_	Internal Compressor Protector	G	_	Fan
CCB	_	Control Circuit Breaker	LEN	_	Local Equipment Network	IFO	_	Indoor Fan On
CCH	_	Crankcase Heater	LS	_	Limit Switch	L1	_	Line 1
CCN	_	Carrier Comfort Network®		_	Main Base Board	R	_	Thermostat Power
CCT	_	Cooling Coil Thermistor		_	Main Gas Valve	RT	_	Power Supply
CEM	_	Controls Expansion Module	OARH		Outdoor Air Relative Humidity	SS	_	Speed Sensor
CMR	_	Compressor Modulation Relay		_	Outdoor Air Temperature Sensor	W1	_	Thermostat Heat Stage 1
COMP	_	Compressor	OFC	_	Outdoor-Fan Contactor	W2	_	Thermostat Heat Stage 2
CS	_	Compressor Current Sensor Board		_	Outdoor-Fan Motor	Х	_	Alarm Output
DP	_	Discharge Pressure Transducer	OL	_	Overload	Y1	_	Thermostat Cooling Stage 1
DPT	_	Discharge Pressure Transducer	PEC	_	Power Exhaust Contactor	Y2	_	Thermostat Cooling Stage 2
DTT	_	Digital Scroll Discharge Temperature		_	Power Exhaust Motor	/	\overline{x}	Terminal (Marked)
		Thermistor	PL	_	Plug	<	^/	reminal (Marked)
DUS	_	Digital Unloader Solenoid	PLP	_	Phase Loss Protection		\sim	Terminal (Unmarked)
ECB-1		Economizer Control Board	PTC	_	Positive Temperature Coefficient		0	reminar (Omnarked)
ECB-2	_	VAV Control Board	RARH		Return Air Relative Humidity			Tamain at Diagla
EDT	_	Evaporator Discharge Temperature		_	Return Air Temperature Sensor		X	Terminal Block
EXV	_	Expansion Valve Control Board	RS	_	Rollout Switch		_	0 "
FIOP	_	Factory-Installed Option		_	Rooftop Control Board			Splice
FS	_	Flame Sensor	SCB	_	Staged Gas Heat Control Board			Factory Wiring
FU	_	Fuse	SDU	_	Scrolling Marquee Display	_		, 0
GND	_	Ground	SPT	_	Suction Pressure Transducer			Field Wiring
HGBP		Hot Gas Bypass	T-55	_	Room Temperature Sensor			To indicate common potential
HMV	_	Humidi-MiZer Valve		_	Room Temperature Sensor with Set Point Terminal Block			only, not to represent wiring.
HPS	_	High-Pressure Switch	TRANS		Transformer			,,g.
HR HS	_	Heat Relay		<u> </u>	Universal Protocol Converter			
	_	Hall Effect Induced Draft Motor Switch		=	Variable Air Volume			
HVS IAQ	_	Humidi-MiZer Valve Solenoid	VAV	_	Variable Frequency Drive			
IAQ	_	Indoor Air Quality	V PD	_	variable i requericy Drive			

Guide specifications — 48/50A2,A4,A6,A8

Packaged Rooftop Cooling Unit and Packaged Rooftop Cooling Unit with Gas Heat — Constant Volume or Staged Air Volume Application

HVAC Guide Specifications — Section 48/50A2,A4,A6,A8

Size Range: **20 to 60 Tons, Nominal (Cooling)**Carrier Model Number: **48A2, 48A4, 48A6, 48A8, 50A2, 50A4, 50A6, 50A8**

Part 1 — General

1.01 SYSTEM DESCRIPTION

Outdoor roof curb or slab mounted, electronically controlled heating and cooling unit utilizing hermetic scroll compressors with crankcase heaters for cooling duty and with optional gas heat or electric heat. Units shall discharge supply and return air vertically or horizontally as shown on contract drawings. EER (Energy Efficiency Ratio) shall meet requirements of ASHRAE (American Society of Heating, Refrigeration and Air-Conditioning Engineers) Standard 90.1-2013.

1.02 QUALITY ASSURANCE

- A. Unit shall be rated in accordance with AHRI (Air-Conditioning, Heating, and Refrigeration Institute) Standard 340/360, latest edition.
- B. Unit shall be designed to conform to ANSI (American National Standards Institute)/ASHRAE 15, ASHRAE 62, and UL (Underwriters Laboratories) Standard 1995.
- C. Unit shall be listed by ETL and ETL, Canada as a total package.
- D. The 48A2,A4,A6,A8 units shall be designed to conform with ANSI Standard Z21.47 (U.S.A.) / CSA (Canadian Standards Association) Standard 2.3 (Canada), Gas-Fired Central Furnaces.
- E. Roof curb shall be designed to NRCA (National Roofing Contractors Association) criteria per Bulletin B-1986.
- F. Insulation and adhesive shall meet NFPA (National Fire Protection Association) 90A requirements for flame spread and smoke generation.
- G. The management system governing the manufacture of this product is ISO (International Organization for Standardization) 9001:2008 certified.

1.03 DELIVERY, STORAGE AND HANDLING

Unit shall be stored and handled per manufacturer's recommendations. All exposed coils shall have protective shipping covers.

Part 2 — Products

2.01 EQUIPMENT

A. General:

Factory-assembled, single-piece heating and cooling unit. Contained within the unit enclosure shall be all factory wiring, piping, refrigerant charge (R-410A), operating oil charge, dual refrigerant circuits, microprocessor based control system and associated

hardware, and all special features required prior to field start-up.

B. Unit Cabinet:

- 1. Constructed of galvanized steel, bonderized and precoated with a baked enamel finish.
 - a. Top cover shall be 18-gage sheet metal with 0.75-in. thick, 1.5-lb density, fiber-glass insulation.
 - Access panels and doors shall be 20-gage sheet metal with 0.5-in. thick, 1.5-lb density, fiberglass insulation.
 - c. Corner and center posts shall be 16-gage galvanized steel.
 - d. Basepans in the heating and return air sections shall be 16-gage galvanized steel.
 - e. Basepans in the condenser section shall be 16-gage galvanized steel.
 - Compressor rail shall be 12-gage galvanized steel.
 - g. Condensate pan shall be 16-gage aluminized steel.
 - h. Air baffles shall be 18-gage galvanized steel with 0.5-in. thick, 1.5-lb density, fiberglass insulation.
 - i. Base rail shall be 14-gage galvanized steel.
 - Fan deck (indoor and outdoor section) shall be 16-gage galvanized steel.
- 2. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM (American Society for Testing and Materials) B117 (scribed specimen).
- 3. Sides shall have person-sized insulated hinged access doors for easy access to the control box and other areas requiring servicing. Each door shall seal against a rubber gasket to help prevent air and water leakage and be equipped to permit ease and safety during servicing.
- 4. Interior cabinet surfaces shall be sheet metal lined or insulated with flexible fire-retardant material, coated on the air side.
- 5. Unit shall have a factory-installed sloped condensate drain connection made from an aluminized steel or optional stainless steel.
- 6. Equipped with lifting lugs to facilitate overhead rigging.
- 7. Filters shall be accessible through a hinged access panel without requiring any special tools.

C. Fans:

- 1. Indoor Evaporator Fans:
 - a. Double-width/double-inlet, centrifugal, belt driven, forward-curved type with single outlet discharge.
 - b. Fan shaft bearings shall be of the pillowblock type with positive locking collar and lubrication provisions.

- c. Statically and dynamically balanced.
- d. Evaporator fan shaft bearings shall have a life of 200,000 hours at design operating conditions in accordance with ANSI B3.15.
- Solid fan shaft construction for size 020-050 units and two-piece solid fan shaft construction on the size 060 unit.

2. Condenser Fans:

- a. Fans shall be direct-driven propeller type only, with corrosion-resistant blades riveted to corrosion resistant steel supports for all size 020-050 units and the size 060 unit with optional condenser coil. Size 060 units with the microchannel condenser coil shall have a direct driven, 9-blade airfoil cross section, reinforced polymer construction, and shrouded-axial type fans with inherent corrosion resistance.
- Fans discharge air vertically upward and are protected by PVC coated steel wire safety quards.
- c. Statically and dynamically balanced.
- 3. Fan Drive for SAV™ (Staged Air Volume) Units: Staged air volume units shall be equipped with variable frequency drive (VFD) inverter. The VFD shall control motor speed to user-configurable speeds. High speed shall be a percentage of 60 Hz, and shall be user configurable. The range of adjustment for high speed shall be between 50 and 100% of 60 Hz. Low speed shall be a percentage of 60 Hz, and shall be user configurable. The range of adjustment for low speed shall be between 33 and 67% of 60 Hz. The control shall allow user-configurable fan speeds for cooling and heating modes. The VFD shall be factory-mounted, wired, and tested. The variable speed drive shall include the following features.
 - a. Full digital control with direct control from the unit *Comfort*Link controls.
 - Insulated gate bi-polar transistors (IGBT) used to produce the output pulse width modulated (PWM) waveform, allowing for quiet motor operation.
 - c. Inverters capable of operation at a frequency of 8 kHz so no acoustic noise shall be produced by the motor.
 - d. Critical frequency avoidance.
 - e. Self diagnostics.
 - On-board storage of unit manufacturer's customer user settings, retrievable from the keypad.
 - g. RS485 communications capability.
 - h. Electronic thermal overload protection.
 - i. 5% swinging chokes for harmonic reduction and improved power factor.

- All printed circuit boards shall be conformal coated.
- k. Shall, through ABB, qualify for a 24-month warranty from date of commissioning or 30 months from date of sale, whichever comes first.

D. Compressors:

- 1. Fully hermetic, scroll type compressors with overload protection and short cycle protection with minimum on and off timers.
- 2. Factory rubber-in-shear mounted for vibration isolation.
- 3. Reverse rotation protection capability.
- 4. Crankcase heaters shall only be activated during compressor off mode.

E. Coils:

- Standard evaporator coil shall have aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
- Standard condenser coil shall be microchannel design. The coil shall have a series of flat tubes containing a series of multiple, parallel flow microchannels layered between the refrigerant manifolds. Microchannel coils shall consist of a two-pass arrangement. Coil construction shall consist of aluminum alloys for the fins, tubes, and manifolds.
- 3. Coils shall be leak tested at 150 psig and pressure tested at 650 psig.
- 4. Optional condenser coil shall have aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
- 5. Optional pre-coated aluminum-fin coils shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- 6. Copper-fin coils shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan. All copper construction shall provide protection in moderate coastal environments.
- 7. E-coated coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss 60 deg of 65 to 90% per

Guide specifications — 48/50A2,A4,A6,A8 (cont)

ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and crosshatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in./lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 6000 hours salt spray per ASTM B117-90. Coil construction shall be aluminum fins mechanically bonded to copper tubes.

F. Gas Heating Section (48 Series Only):

- 1. Induced-draft combustion type with energy-saving direct spark ignition systems and redundant main gas valves.
- The heat exchanger shall be of the tubular section type constructed of a minimum of 20-gage steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance. Optional stainless steel heat exchangers shall be available.
- 3. Burners shall be of the in-shot type constructed of aluminum coated steel.
- All gas piping shall enter the unit cabinet at a single location.
- 5. Induced Draft Fans:
 - a. Direct-driven, single inlet, forward-curved centrifugal type.
 - b. Statically and dynamically balanced.
 - c. Made from steel with a corrosion-resistant finish.
- High-corrosion areas such as flue gas collection and exhaust areas shall be lined with corrosion resistant material.

G. Refrigerant Components:

Unit shall be equipped with dual refrigerant circuits, each containing:

- 1. Solid core filter drier.
- 2. Thermostatic expansion valve.
- 3. Fusible plug.

H. Filter Section:

Standard filter section shall be supplied with 2-in. thick disposable fiberglass filters.

- I. Controls and Safeties:
 - 1. Unit ComfortLink Controls:
 - a. Scrolling marquee display.
 - b. CCN (Carrier Comfort Network®) capable.
 - c. Unit control with standard suction pressure and condensing pressure transducers.
 - d. Shall provide a minimum 5°F temperature difference between cooling and heating set points to meet ASHRAE 90.1 energy standard.

- e. Shall provide and display a current alarm list and an alarm history list.
- f. Automatic compressor lead/lag control.
- g. Service run test capability.
- h. Shall accept input from a CO₂ sensor (both indoor and outdoor).
- Configurable alarm light shall be provided which activates when certain types of alarms occur.
- Compressor minimum run time (3 minutes) and minimum off time (3 minutes) are provided.
- k. Service diagnostic mode.
- Optional integrated economizer control or two-position self-closing adjustable outside air damper.
- m. Minimum of 3 capacity stages of mechanical capacity control (excluding hot gas bypass) controlled by the following method:

A control algorithm to maintain either highcool or low-cool supply air temperature set point. Cooling mode (off, low, or high) to be determined from space temperature sensor or standard 2-stage mechanical thermostat input.

- n. Optional minimum load valve for additional capacity stage.
- o. Unit shall be complete with self-contained low voltage control circuit.
- Control of evaporator leaving air temperature through compressor and economizer control.

2. Safeties:

- a. Unit shall incorporate a solid-state compressor lockout which provides optional reset capability at the space thermostat should any of the following safety devices trip and shut off compressor:
 - 1.) Compressor lockout protection provided for either internal or external overload.
 - 2.) Low-pressure protection.
 - 3.) Freeze protection (evaporator coil).
 - 4.) High-pressure protection (high pressure switch or internal).
 - 5.) Compressor reverse rotation protection.
 - 6.) Loss-of-charge protection.
 - 7.) Welded contactor protection.
- Supply-air sensor shall be located in the unit and should be used for economizer control and compressor stage control.
- c. Induced draft heating section (48 Series) shall be provided with the following minimum protections:
 - 1.) High-temperature limit switch.
 - 2.) Induced-draft motor speed sensor.
 - 3.) Flame rollout switch.
 - 4.) Flame proving controls.

5.) Redundant gas valve.

J. Operating Characteristics:

- Unit shall be capable of starting and running at 115°F ambient outdoor temperature per maximum load criteria of AHRI Standard 340/360.
- Unit with standard controls will operate in cooling down to an outdoor ambient temperature of 32°F.
- 3. Unit shall be provided with fan time delay to help prevent cold air delivery.

K. Electrical Requirements:

All unit power wiring shall enter unit cabinet at a single location.

L. Motors:

- Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have either internal line break thermal and current overload protection or external current overload modules with compressor temperature sensors.
- All condenser-fan motors shall be totally enclosed 3-phase type with permanently lubricated ball bearings, class F insulation and internal, automatic-reset thermal overload protection or manual reset calibrated circuit breakers.
- All indoor fan and power exhaust motors 5 hp and larger shall meet the minimum efficiency requirements as established by the Energy Independence and Security Act (EISA) of 2007.

M. Special Features:

Certain features are not applicable when the features designated * are specified. For assistance in amending the specifications, contact your local Carrier Sales Office

1. Variable Capacity Compressor:

A variable capacity compressor shall be available for constant volume, staged air volume, and variable air volume configurations. The *ComfortL*ink control system shall be capable of unloading this compressor in an infinite number of steps from 100% of compressor capacity down to 50% of compressor capacity.

2. Humidi-MiZer® Adaptive Dehumidification:

The Humidi-MiZer dehumidification system shall be factory installed with an e-coated reheat coil and shall provide greater dehumidification of the occupied space by using two modes of dehumidification instead of the normal design cooling mode of the unit:

- a. Subcooling mode shall further subcool the hot liquid refrigerant leaving the condenser coil when both temperature and humidity in the space are not satisfied.
- b. Hot gas reheat mode shall mix a portion of the hot gas from the discharge of the compressor with the hot liquid refrigerant leaving the condenser coil to create a two-phase

- heat transfer in the system, resulting in a neutral leaving-air temperature.
- c. The system shall be equipped with modulating control valves to provide precise leaving-air temperature control. On-off, cycling type control shall not be acceptable.

3. Integrated Ultra Low Leak Economizer:

- Economizer shall meet the requirements of ASHRAE 90.1 (latest revision) and California Energy Commission Title 24.
- Economizer shall be furnished and installed complete with recirculated air dampers, outdoor air dampers, and controls.
- c. All dampers shall be ultra-low leakage type with blade and edge seals. Dampers shall be 1A certified and exhibit a maximum leakage rate of 3 cfm per square foot of area at 1 in. wg pressure differential when tested per AMCA (Air Movement and Control Association) Std 511.
- d. Dampers shall continue to operate as intended after 100,000 cycles when tested in accordance with Section 8, UL (Underwriters Laboratories) standard 555S.
- e. Actuator shall have a spring return feature which closes the outdoor air dampers upon a power interruption or unit shutdown. Actuators shall be of the communicating type and capable of internal diagnostics.
- Economizer shall be capable of introducing up to 100% outdoor air for ventilation or free cooling.
- g. Economizer outdoor air hoods shall be constructed of pre-painted steel.

4. Barometric Relief Damper Package:

- Package shall include damper, seals, hardware, and hoods to relieve excess internal pressure.
- b. Damper shall close due to gravity upon unit shutdown.

5. Power Exhaust:

Package shall include a multiple exhaust fan (centrifugal style) fan, 1 Hp 208-230, 460 v direct-drive motor, and damper for vertical flow units with economizer to control overpressurization of building. Control shall be through *ComfortL*ink controls based on damper position or through an optional building pressure sensor. On size 020-050 units, 4 stages of control shall be available. On size 060 units, 6 stages of control shall be available.

6. Thermostats and Subbases:

To provide staged heating and cooling in addition to automatic (or manual) changeover and fan control.

Guide specifications — 48/50A2,A4,A6,A8 (cont)

7. Electronic Programmable Thermostat:

Capable of using deluxe full-featured electronic thermostat.

Liquefied Propane Conversion Kit (48 Series):
 Kit shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane gas.

9. Convenience Outlet:

Shall be factory installed and internally mounted with an externally accessible 115-v, 15 amp. GFI (Ground Fault Interrupter), female receptacle with hinged cover. A step-down transformer and overload protection shall be included so no additional wiring is necessary unless the field-wired outlet has been requested. When applied with a unit-mounted disconnect, the outlet shall be wired to the load side of the disconnect so the outlet will shut off with the disconnect.

10. Non-Fused Disconnect Switch:

Shall be factory installed, internally mounted, and UL approved. Non-fused switch shall provide unit power shutoff. Shall be accessible from outside the unit and shall provide power-off lockout capability.

11. Electric Heater (50 Series Units Only):

Electric resistance heaters shall be factory installed, nichrome element type, open wire coils with 0.29 in. inside diameter, insulated with ceramic bushings, and shall include operating and safety controls. Coil ends are staked and welded to terminal screw slots.

12. Hail Guard, Condenser Coil Grille:

Shall protect the condenser coil from hail, flying debris, and damage by large objects without increasing unit clearances.

13. CO₂ Sensor:

The CO_2 sensor shall have the ability to monitor CO_2 levels and relay information to the controller. The controller will use CO_2 level information to modulate the economizer and provide demand controlled ventilation. The sensor shall be available as a field-installed or factory-installed return air sensor or a remote space sensor.

14. Return Air Smoke Detector:

The smoke detector shall send input to the controller to shut down the unit in case smoke is detected. The smoke detector shall be factory installed in the return air section or shall be available as a field-installed accessory.

15. Filter Status:

The filter status switch shall be a pressure differential switch and will indicate a dirty filter. The switch shall be available as field or factory installed.

16. Humidity Sensor:

A humidity sensor will allow for outside air enthalpy changeover control using the standard outside air dry bulb sensor and the accessory humidity sensor. When both an outside and return air humidity sensor are used, differential enthalpy changeover can be supported.

17. Two-Position Damper:

A two-position damper shall admit up to 25% outdoor air during fan operation and shall close when the fan is off. The damper position shall be mechanically adjustable.

18. 4-Inch Filters:

Optional filter section shall be supplied with 4-in. thick MERV (Minimum Efficiency Reporting Value) 7 pleated fiberglass filters.

19. Control Expansion Module (CEM):

Shall provide the following additional optional features:

- a. Remote set point
- b. Demand limit control
- c. Remote economizer position
- d. Fire and smoke control override control
- e. Remote sensor monitoring
- f. Fan status switch monitoring

20. Staged Gas Heat (48A2,A4 only):

The control shall have the option for control of the gas heat to a discharge air temperature by sequencing on the gas cells to provide up to 11 stages of capacity. The control shall be integrated directly into the main unit controls and shall include leaving air temperature sensors to ensure that high temperatures do not occur during the operation of the staged gas heat.

21. Navigator™ Display Module:

The Navigator display module shall be a portable hand-held display module with a minimum of 4 lines and 20 characters per line, of clear English, Spanish, Portuguese, or French language. Display menus shall provide clear language descriptions of all menu items, operating modes, configuration points, and alarm diagnostics. Reference to factory codes shall not be accepted. An industrial grade coiled extension cord shall allow the display module to be moved around the chiller. Magnets shall hold the display module to any sheet metal panel to allow hands-free operation. Display module shall have NEMA (National Electrical Manufacturers Association) 4x housing suitable for use in outdoor environments. Display shall have back light and contrast adjustment for easy viewing in bright sunlight or night conditions. The display module shall have raised surface buttons with positive tactile response.

22. BACnet¹ Communication Option:

Shall provide factory-installed communication capability with a BACnet MS/TP network. Allows integration with i-Vu $^{\circledR}$ Open Control System or a BACnet Building Automation System.

23. Modbus² Protocol Translator:

A controller-based accessory module shall provide CCN to MODBUS Remote Terminal Unit (RTU) protocol conversion.

24. LonWorks³ Protocol Translator:

A controller-based accessory module shall provide CCN to LON FT-10A ANSI/EIA-709.1 protocol conversion.

25. Full Perimeter Roof Curbs (Horizontal and Vertical):

Shall be formed of 14-gage galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.

26. Security Grille (48/50A060 Unit with MCHX [microchannel heat exchanger] Only):

Factory-installed grille shall limit access to compressor and condenser coil area to authorized personnel only.

27. Double Wall Option:

Unit cabinet shall have double wall construction featuring flexible fire retardant fiberglass insulation sandwiched between pre-painted exterior panels and galvanized steel inner panels.

28. Low Outdoor Sound Accessory:

Field-installed accessory, consisting of compressor sound blankets which are used to mitigate the level of outdoor sound. Available in both single and tandem arrangements.

29. Low Outdoor Sound Condenser Fans:

Low sound condenser fan system shall be provided to reduce outdoor sound levels.

- 30. Low Ambient Greenspeed® Control Option;
 - a. This factory-installed option shall regulate outdoor fan motor speeds in response to the saturated condensing temperature of the refrigeration circuits and local ambient conditions.
 - b. The control shall be capable of operating the rooftop unit with outdoor temperature at $-20^{\circ}F$.
 - c. Fans shall be direct-driven shrouded-axial propeller type fans only, with 9-blade Aero-Acoustic™ airfoil cross section, reinforced polymer construction blades bolted to corrosion resistant steel supports for all size 020-050 units and the size 060 unit with optional condenser coil.
 - Fans discharge air vertically upward and are protected by PVC coated steel wire safety guards.
 - e. Fans are statically and dynamically balanced.
 - f. The condenser fan motors will be VFD driven.
 - g. Compressor blankets will be applied to mitigate the level of outdoor sound on all refrigerant compressors. They shall be weather resistant are applied in both single and tandem arrangements.
 - h. Unit efficiency is maximized by monitoring the refrigerant system and ambient conditions and controlling condenser fan performance.

31. Phase Loss Protection:

If the phases of the electric supply are out of sequence, or if one phase is missing, the contacts will never close. If a phase is lost while the phase monitor is energized, the contacts will open immediately and will remain open until the error is corrected.

BACnet is a registered trademark of ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers).

^{2.} Modbus is a registered trademark of Schneider Electric.

^{3.} LonWorks is a registered trademark of Echelon Corporation.

Guide specifications — 48/50A3,A5,A7,A9

Packaged Rooftop Cooling Unit and Packaged Rooftop Cooling Unit with Gas Heat — Variable Air Volume Application

HVAC Guide Specifications — Section 48/50A3,A5,A7,A9

Size Range: **20 to 60 Tons, Nominal (Cooling)**Carrier Model Number: **48A3, 48A5, 48A7, 48A9, 50A3, 50A5, 50A7, 50A9**

Part 1 — General

1.01 SYSTEM DESCRIPTION

Outdoor roof curb or slab mounted, electronically controlled heating and cooling unit utilizing hermetic scroll compressors with crankcase heaters for cooling duty and gas heat or electric heat. Units shall discharge supply and return air vertically or horizontally as shown on contract drawings. EERs (Energy Efficiency Ratios) shall meet requirements of ASHRAE (American Society of Heating, Refrigeration, and Air-Conditioning Engineers) Standard 90.1-2013.

1.02 QUALITY ASSURANCE

- A. Unit shall be rated in accordance with AHRI (Air-Conditioning, Heating, and Refrigeration Institute) Standard 340/360, latest edition.
- B. Unit shall be designed to conform to ANSI/ASHRAE 15 (latest edition), ASHRAE 62, and UL (Underwriters Laboratories) Standard 1995.
- C. Unit shall be listed by ETL and ETL, Canada as a total package.
- D. The 48A3,A5,A7,A9 units shall be designed to conform with ANSI (American National Standards Institute) Standard Z21.47 (U.S.A.) / CSA (Canadian Standards Association) Standard 2.3, Gas-Fired Central Furnaces.
- E. Roof curb shall be designed to NRCA (National Roofing Contractors Association) criteria per Bulletin B-1986.
- F. Insulation and adhesive shall meet NFPA (National Fire Protection Association) 90A requirements for flame spread and smoke generation.
- G. The management system governing the manufacture of this product is ISO (International Organization for Standardization) 9001:2008 certified.
- 1.03 DELIVERY, STORAGE AND HANDLING

Unit shall be stored and handled per manufacturer's recommendations.

Part 2 — Products

2.01 EQUIPMENT

A. General:

Factory-assembled, single-piece heating and cooling unit. Contained within the unit enclosure shall be all factory wiring, piping, refrigerant charge (R-410A), operating oil charge, dual refrigerant circuits, microprocessor-based control system and associated

hardware, and all special features required prior to field start-up.

B. Unit Cabinet:

- 1. Constructed of galvanized steel, bonderized and precoated with a baked enamel finish.
 - a. Top cover shall be 18-gage sheet metal with 0.75-in. thick, 1.5-lb density, fiberglass insulation.
 - b. Access panels and doors shall be 20-gage sheet metal with 0.5-in. thick, 1.5-lb density, fiberglass insulation.
 - c. Corner and center posts shall be 16-gage galvanized steel.
 - d. Basepans in the heating and return air sections shall be 16-gage galvanized steel.
 - e. Basepans in the condenser section shall be 16-gage galvanized steel.
 - f. Compressor rail shall be 12-gage galvanized steel.
 - g. Condensate pan shall be 16-gage aluminized steel.
 - h. Air baffles shall be 18-gage galvanized steel with 0.5-in. thick, 1.5-lb density, fiberglass insulation.
 - i. Base rail shall be 14-gage galvanized steel.
 - Fan deck (indoor and outdoor section) shall be 16-gage galvanized steel.
- 2. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM (American Society for Testing and Materials) B117 (scribed specimen).
- 3. Sides shall have person-sized insulated hinged access doors for easy access to the control box and other areas requiring servicing. Each door shall seal against a rubber gasket to help prevent air and water leakage and be equipped to permit ease and safety during servicing.
- 4. Interior cabinet surfaces shall be sheet metal lined or insulated with flexible fire-retardant material, coated on the air side.
- 5. Unit shall have a factory-installed sloped condensate drain connection made from an aluminized steel or optional stainless steel.
- 6. Equipped with lifting lugs to facilitate overhead rigging.
- 7. Filters shall be accessible through a hinged access panel without requiring any special tools.

C. Fans:

- 1. Indoor Evaporator Fans:
 - a. Double-width/double-inlet, centrifugal, belt driven, forward-curved type with single outlet discharge.
 - b. Fan shaft bearings shall be of the pillowblock type with positive locking collar and lubrication provisions.

- c. Statically and dynamically balanced.
- d. Evaporator fan shaft bearings shall have a life of 200,000 hours at design operating conditions in accordance with ANSI B3.15.
- e. Solid fan shaft construction for size 020-050 units and two-piece solid fan shaft construction on the size 060 unit.

2. Condenser Fans:

- a. Fans shall be direct-driven propeller type only, with corrosion-resistant blades riveted to corrosion-resistant steel supports for all size 020-050 units and the size 060 unit with optional condenser coil. Size 060 units with the microchannel condenser coil shall have a direct driven, 9-blade airfoil cross section, reinforced polymer construction, and shrouded-axial type fans with inherent corrosion resistance.
- Fans discharge air vertically upward and are protected by PVC coated steel wire safety quards.
- c. Statically and dynamically balanced.

3. Supply Fan Drive:

Unit shall be equipped with variable frequency drive (VFD) inverter. The VFD shall be installed inside the unit cabinet and shall be factory mounted, wired, and tested. The VFD shall control motor speed to maintain set point static pressure at the sensor tube location of the supply duct pressure transducer (transducer is factory provided and installed; sensor tube must be field routed). The control system may be field-adjusted to maintain supply duct static pressure set points from 0 in. wg to 3.5 in. wg.

The variable frequency drive shall include the following features:

- a. Full digital control with direct control from the unit *Comfort*Link controls.
- Insulated Gate Bi-Polar Transistors (IGBT) used to produce the output pulse width modulated (PWM) waveform, allowing for quiet motor operation.
- c. Inverters capable of operation at a frequency of 8 kHz, so no acoustic noise shall be produced by the motor.
- d. Self diagnostics.
- e. Personal lockout code for additional security.
- f. Critical frequency avoidance.
- g. RS485 capability standard.
- h. Electronic thermal overload protection.
- i. 5% swinging chokes for harmonic reduction and improved power factor.
- All printed circuit boards shall be conformal coated.
- k. Shall, through ABB, qualify for a 24-month warranty from date of commissioning or

30 months from date of sale, whichever comes first.

D. Compressors:

- 1. Fully hermetic, scroll type compressors with overload protection and short cycle protection with minimum on and off timers.
- 2. Factory rubber-in-shear mounted for vibration isolation.
- 3. Reverse rotation protection capability.
- 4. Crankcase heaters shall only be activated during compressor off mode.

E. Coils:

- Standard evaporator coil shall have aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
- Standard condenser coil shall be microchannel design. The coil shall have a series of flat tubes containing a series of multiple, parallel flow microchannels layered between the refrigerant manifolds. Microchannel coils shall consist of a two-pass arrangement. Coil construction shall consist of aluminum alloys for the fins, tubes, and manifolds.
- 3. Coils shall be leak tested at 150 psig and pressure tested at 650 psig.
- 4. Optional condenser coil shall have aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
- 5. Optional pre-coated aluminum-fin coils shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- 6. Copper-fin coils shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan. All copper construction shall provide protection in moderate coastal environments.
- 7. E-coated coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss—60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM

Guide specifications — 48/50A3,A5,A7,A9 (cont)

D3359-93. Impact resistance shall be up to 160 in./lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 6000 hours salt spray per ASTM B117-90. Coil construction shall be aluminum fins mechanically bonded to copper tubes.

F. Gas Heating Section (48 Series Only):

- 1. Induced-draft combustion type with energy-saving direct spark ignition systems and redundant main gas valves.
- The heat exchanger shall be of the tubular section type constructed of a minimum of 20-gage steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance. Optional stainless steel heat exchangers shall be available.
- 3. Burners shall be of the in-shot type constructed of aluminum coated steel.
- 4. All gas piping shall enter the unit cabinet at a single location.
- 5. Induced Draft Fans:
 - a. Direct-driven, single inlet, forward-curved centrifugal type.
 - b. Statically and dynamically balanced.
 - c. Made from steel with a corrosion-resistant finish.
- 6. High-corrosion areas such as flue gas collection and exhaust areas shall be lined with corrosion resistant material.

G. Refrigerant Components:

Unit shall be equipped with dual refrigerant circuits each containing:

- 1. Solid core filter drier.
- 2. Thermostatic expansion valve.
- 3. Fusible plug.

H. Filter Section:

Standard filter section shall be supplied with 2-in. thick disposable fiberglass filters.

I. Controls and Safeties:

- 1. Unit ComfortLink Controls:
 - a. Scrolling marquee display.
 - b. CCN (Carrier Comfort Network®) capable.
 - c. Unit control with standard suction pressure and condensing pressure transducers.
 - d. Shall provide a 5°F temperature difference between cooling and heating set points to meet ASHRAE 90.1, energy standard.
 - e. Shall provide and display a current alarm list and an alarm history list.
 - f. Automatic compressor redundancy.

- g. Service run test capability.
- Shall accept input from a CO₂ sensor (both indoor and outdoor).
- Configurable alarm light shall be provided which activates when certain types of alarms occur.
- Compressor minimum run time (3 minutes) and minimum off time (3 minutes) are provided.
- k. Service diagnostic mode.
- Optional integrated economizer control or two-position self-closing adjustable outsideair damper.
- m. Minimum of 3 capacity stages of mechanical capacity control (excluding hot gas bypass) controlled with logic to maintain supply air temperature set point.
- n. Optional minimum load valve for additional capacity stage.
- Unit shall be complete with self-contained low voltage control circuit.

2. Safeties:

- a. Unit shall incorporate a solid-state compressor lockout which provides optional reset capability at the space thermostat should any of the following safety devices trip and shut off compressor:
 - 1.) Compressor lockout protection provided for either internal or external overload.
 - 2.) Low-pressure protection.
 - 3.) Freeze protection (evaporator coil).
 - 4.) High-pressure protection (high pressure switch or internal).
 - 5.) Compressor reverse rotation protection.
 - 6.) Loss of charge protection.
 - 7.) Welded contactor protection.
- Supply-air sensor shall be located in the unit and should be used for economizer control and compressor stage control.
- c. Induced draft heating section (48 Series) shall be provided with the following minimum protections:
 - 1.) High-temperature limit switch.
 - 2.) Induced-draft motor speed sensor.
 - 3.) Flame rollout switch.
 - 4.) Flame proving controls.
 - 5.) Redundant gas valve.

J. Operating Characteristics:

- 1. Unit shall be capable of starting and running at 115°F ambient outdoor temperature per maximum load criteria of AHRI Standard 340/360.
- 2. Unit with standard controls will operate in cooling down to an outdoor ambient temperature of 32°F.
- 3. Unit shall be provided with fan time delay to prevent cold air delivery.

K. Electrical Requirements:

All unit power wiring shall enter unit cabinet at a single location.

L. Motors:

- Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have either internal line break thermal and current overload protection or external current overload modules with compressor temperature sensors.
- 2. All condenser-fan motors shall be totally enclosed 3-phase type with permanently lubricated ball bearings, class F insulation and internal, automatic-reset thermal overload protection or manual reset calibrated circuit breakers.
- All indoor fan and power exhaust motors 5 hp and larger shall meet the minimum efficiency requirements as established by the Energy Independence and Security Act (EISA) of 2007.

M. Special Features:

Certain features are not applicable when the features designated * are specified. For assistance in amending the specifications, contact your local Carrier Sales Office.

1. Variable Capacity Compressor:

A variable capacity compressor shall be available for constant volume, staged air volume, and variable air volume configurations. The *ComfortL*ink control system shall be capable of unloading this compressor in an infinite number of steps from 100% of compressor capacity down to 50% of compressor capacity.

2. Humidi-MiZer® Adaptive Dehumidification:

The Humidi-MiZer dehumidification system shall be factory installed with an e-coated reheat coil and shall provide greater dehumidification of the occupied space by using two modes of dehumidification instead of the normal design cooling mode of the unit:

- a. Subcooling mode shall further subcool the hot liquid refrigerant leaving the condenser coil when both temperature and humidity in the space are not satisfied.
- b. Hot gas reheat mode shall mix a portion of the hot gas from the discharge of the compressor with the hot liquid refrigerant leaving the condenser coil to create a two-phase heat transfer in the system, resulting in a neutral leaving-air temperature.
- c. The system shall be equipped with modulating control valves to provide precise leaving air temperature control. On-off, cycling type control shall not be acceptable.

3. Ultra Low Leak Economizer:

Dry bulb, differential dry bulb temperature, optional enthalpy, or optional differential enthalpy controlled integrated type consisting

of dampers, actuator, and linkages in conjunction with control system to provide primary cooling using outdoor air, conditions permitting, supplemented with mechanical cooling when necessary.

- a. Economizer shall meet the requirements of the California Energy Commission Title 24 economizer requirements.
- b. Dampers shall be a gear-driven ultra low leakage type with blade and edge seals. Dampers shall exhibit a maximum leakage rate of 3 cfm per square foot of area at 1 in. wg pressure differential when tested in accordance with AMCA (Air Movement and Control Association) Standard 500.

4. Barometric Relief Damper Package:

- Package shall include damper, seals, hardware, and hoods to relieve excess internal pressure.
- b. Damper shall close due to gravity upon unit shutdown.

5. Power Exhaust:

Package shall include a multiple exhaust fan (centrifugal style) fan, 1 Hp 208-230, 460 v direct-drive motor, and damper for vertical flow units with economizer to control over-pressurization of building. Control shall be through *Comfort*Link controls based on optional building pressure sensor. On size 020-050 units, 4 stages of control shall be available. On size 060 units, 6 stages of control shall be available.

 Liquefied Propane Conversion Kit (48 Series):
 Kit shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane gas.

7. Convenience Outlet:

Shall be factory installed and internally mounted with an externally accessible 115-v, 15 amp GFI (ground fault interrupter), female receptacle with hinged cover. A step-down transformer and overload protection shall be included so no additional wiring is necessary unless the field-wired outlet has been requested. When applied with a unit-mounted disconnect, the outlet shall be wired to the load side of the disconnect so the outlet will shut off with the disconnect.

8. Non-Fused Disconnect Switch:

Shall be factory installed, internally mounted, and UL approved. Non-fused switch shall provide unit power shutoff. Shall be accessible from outside the unit and shall provide power off lockout capability.

9. Electric Heater (50 Series Units Only):

Electric resistance heaters shall be factoryinstalled, nichrome element type, open wire coils with 0.29 in. inside diameter, insulated with ceramic bushings, and include operating

Guide specifications — 48/50A3,A5,A7,A9 (cont)

and safety controls. Coil ends are staked and welded to terminal screw slots.

10. Hail Guard, Condenser Coil Grille:

Shall protect the condenser coil from hail, flying debris, and damage by large objects without increasing unit clearances.

11. CO₂ Sensor:

The CO_2 sensor shall have the ability to monitor CO_2 levels and relay information to the controller. The controller will use CO_2 level information to modulate the economizer and provide demand controlled ventilation. The sensor shall be available as a field-installed or factory-installed return air sensor or a remote space sensor.

12. Return Air Smoke Detector:

The smoke detector shall send input to the controller to shut down the unit in case smoke is detected. The smoke detector shall be factory installed in the return air section or shall be available as a field-installed accessory.

13. Filter Status:

The filter status switch shall be a pressure differential switch and will indicate a dirty filter. The switch shall be available as field or factory installed.

14. Humidity Sensor:

A humidity sensor will allow for outside air enthalpy changeover control using the standard outside air dry bulb sensor and the accessory humidity sensor. When both an outside and return air humidity sensor are used, differential enthalpy changeover can be supported.

15. Two-Position Damper:

A two-position damper shall admit up to 25% outdoor air during fan operation and shall close when the fan is off. The damper position shall be mechanically adjustable.

16. 4-Inch Filters:

Optional filter section shall be supplied with 4-in. thick MERV (Minimum Efficiency Reporting Value) 7 pleated fiberglass filters.

17. Control Expansion Module (CEM):

Shall provide the following additional optional features:

- a. Remote set point.
- b. Demand limit control.
- c. Remote economizer position.
- d. Fire and smoke control override control.
- e. Remote sensor monitoring.
- f. Fan status switch monitoring.

18. Bypass for Supply Fan VFD (Variable Frequency Drive):

Units may be equipped with an optional manual bypass switch which allows the supply fan VFD to be electrically bypassed.

19. BACnet¹ Communication Option:

Shall provide factory-installed communication capability with a BACnet MS/TP network. Allows integration with i-Vu® Open Control System or a BACnet Building Automation System.

20. Modbus² Protocol Translator:

A controller-based module shall provide CCN to MODBUS Remote Terminal Unit (RTU) protocol conversion.

21. LonWorks³ Protocol Translator:

A controller-based module shall provide CCN to LON FT-10A ANSI/EIA-709.1 protocol conversion.

22. Navigator™ Display Module:

The Navigator display module shall be a portable hand-held display module with a minimum of 4 lines and 20 characters per line, of clear English, Spanish, Portuguese, or French language. Display menus shall provide clear language descriptions of all menu items, operating modes, configuration points and alarm diagnostics. Reference to factory codes shall not be accepted. An industrial grade coiled extension cord shall allow the display module to be moved around the chiller. Magnets shall hold the display module to any sheet metal panel to allow hands-free operation. Display module shall have NEMA (National Electrical Manufacturers Association) 4x housing suitable for use in outdoor environments. Display shall have back light and contrast adjustment for easy viewing in bright sunlight or night conditions. The display module shall have raised surface buttons with positive tactile response.

23. Staged Gas Heat (48A3,A5 only):

The control shall have the option for control of the gas heat to a discharge air temperature by sequencing on the gas cells to provide up to 11 stages of capacity. The control shall be integrated directly into the main unit controls and shall include leaving air temperature sensors to ensure that high temperatures do not occur during the operation of the staged gas heat.

BACnet is a registered trademark of ASHRAE (American Society of Heating, Refrigerating, and Air-Conditioning Engineers).

^{2.} Modbus is a registered trademark of Schneider Electric.

^{3.} LonWorks is a registered trademark of Echelon Corporation.

24. Full Perimeter Roof Curbs (Horizontal and Vertical):

Shall be formed of 14-gage galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.

25. Security Grille (48/50A060 Unit with MCHX [microchannel heat exchanger] Only):

Factory-installed grille shall limit access to compressor and condenser coil area to authorized personnel only.

26. Double Wall Option:

Unit cabinet shall have double wall construction featuring flexible fire retardant fiberglass insulation sandwiched between pre-painted exterior panels and galvanized steel inner panels.

27. Low Outdoor Sound Accessory:

Field-installed accessory, consisting of compressor sound blankets which are used to mitigate the level of outdoor sound. Available in both single and tandem arrangements.

28. Low Outdoor Sound Condenser Fans:

Low sound condenser fan system shall be provided to reduce outdoor sound levels.

- 29. Low Ambient Greenspeed® Control Option;
 - a. This factory-installed option shall regulate outdoor fan motor speeds in response to the saturated condensing temperature of the refrigeration circuits and local ambient conditions.

- b. The control shall be capable of operating the rooftop unit with outdoor temperature at -20°F.
- c. Fans shall be direct-driven shrouded-axial propeller type fans only, with 9-blade Aero-Acoustic™ airfoil cross section, reinforced polymer construction blades bolted to corrosion resistant steel supports for all size 020-050 units and the size 060 unit with optional condenser coil.
- Fans discharge air vertically upward and are protected by PVC coated steel wire safety guards.
- e. Fans are statically and dynamically balanced.
- f. The condenser fan motors will be VFD driven.
- g. Compressor blankets will be applied to mitigate the level of outdoor sound on all refrigerant compressors. They shall be weather resistant are applied in both single and tandem arrangements.
- h. Unit efficiency is maximized by monitoring the refrigerant system and ambient conditions and controlling condenser fan performance.

30. Phase Loss Protection:

If the phases of the electric supply are out of sequence, or if one phase is missing, the contacts will never close. If a phase is lost while the phase monitor is energized, the contacts will open immediately and will remain open until the error is corrected.

