

## **Habib University**

# **Electrical Engineering Department Dhanani School of Science & Engineering**

| Course             | EE – 211 – Basic Electronics |
|--------------------|------------------------------|
| Semester           | Fall 2022                    |
| Section            | Section L2                   |
| Exam               | Quiz – 3a                    |
| Instructor         | Dr. Ahmad Usman              |
| <b>Total Marks</b> | 10                           |

### <u>Question -1</u> (Points: 1.5 + 5 + 1.5 + 2)

Consider an npn transistor-based amplifier circuit, biased in common emitter configuration, and having the following parameters:  $V_{CC} = 2.5 \text{ V}$ ,  $I_S = 3 \text{x} 10^{-16} \text{ A}$ ,  $R_C = 100$ ,  $V_{BE} = 800 \text{ mV}$ ,  $\beta = 100$ . The amplifier is having a microphone attached at the input (i.e., base terminal) and the amplified output is observed at the collector terminal.

- a) Draw the circuit diagram of the amplifier circuit clearly representing each of the important components.
- b) Calculate  $I_C$ ,  $I_B$ ,  $I_E$ ,  $V_{CE}$ ,  $g_m$ , and  $r_{\pi}$ .
- c) Draw the equivalent small-signal model of the transistor. Assume no-early effect.
- d) Assuming a 2 mV of input signal at the microphone, calculate the amplified signal voltage at the output.

#### \*Bonus: (Points: 3)

Does the input signal qualifies as a small-signal? Calculate the voltage swing at the output with respect to the Q-point of the circuit. Does the transistor remain in forward active region of operation or not? Use your calculations to justify your answer.







(d) 
$$\Delta v_{c} = g_{m} \Delta V_{BE}$$

$$\Delta V_{BE} = v_{in} = 2mV$$

$$\Delta v_{c}^{2} = 0.266 \times 2m = 0.532 \text{ m A}$$

 $\Delta V_{\text{out}} = (\Delta i_e) R_c = 53.2 \text{ mV}$ The voltage amplified by a factor of 26.6.

BONUS

The input signal is less than 1% of the Vcc. It qualifies as a small-signal.

$$V_{in} \rightarrow 2mV \qquad \qquad \Delta V_i = 2mV$$

$$V_{out} \rightarrow \Delta V_{out} = 0.532V$$

VCE, Q = 1,8082 V VCE (max) = 2.3402 V VCE (min) = 1.2762 V

FOR  $V_{CE}(max)$   $V_{BE} = 0.8V \quad (Forward Bias)$   $V_{CB} = 1.5V \quad (Reverse Bias)$ 

VB B POLE Z

FOR VCE (min)

 $V_{BE} = 0.8V$  (Forward Bias)  $V_{CB} = 0.4762V$  (Reverse Bias)

-> The tranistor remains in forward active region and behaves as an amplifier.



# **Habib University**

# **Electrical Engineering Department**

### **Dhanani School of Science & Engineering**

| Course             | EE – 211 – Basic Electronics |                                         |
|--------------------|------------------------------|-----------------------------------------|
| Semester           | Fall 2022                    | 0                                       |
| Section            | Section L2                   | - 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| Exam               | Quiz – 3b                    | ¥                                       |
| Instructor         | Dr. Ahmad Usman              | - 4-                                    |
| <b>Total Marks</b> | 10                           | V 9                                     |

### <u>Question -1</u> (Points: 1.5 + 5 + 1.5 + 2)

Consider an npn transistor-based amplifier circuit, biased in common emitter configuration, and having the following parameters:  $V_{CC} = 2.5 \text{ V}$ ,  $I_S = 3 \text{x} 10^{-16} \text{ A}$ ,  $R_C = 75$ ,  $V_{BE} = 700 \text{ mV}$ ,  $\beta = 150$ . The amplifier is having a microphone attached at the input (i.e., base terminal) and the amplified output is observed at the collector terminal.

- a) Draw the circuit diagram of the amplifier circuit clearly representing each of the important components.
- b) Calculate  $I_C$ ,  $I_B$ ,  $I_E$ ,  $V_{CE}$ ,  $g_m$ , and  $r_{\pi}$ .
- c) Draw the equivalent small-signal model of the transistor. Assume no-early effect.
- d) Assuming a 2 mV of input signal at the microphone, calculate the amplified signal voltage at the output.

### \*Bonus: (Points: 3)

Does the input signal qualifies as a small-signal? Calculate the voltage swing at the output with respect to the Q-point of the circuit. Does the transistor remain in forward active region of operation or not? Use your calculations to justify your answer.



$$\begin{split} I_{c} &= 0.1478 \text{ m A} \\ I_{B} &= I_{c}/\beta = P.985 \text{ m A} \\ I_{E} &= I_{c} + I_{B} = 1.48718 \text{ m A} \\ V_{CE} &= V_{CC} - I_{c}R_{c} = 2.4884 \text{ V} \\ J_{m} &= \frac{I_{c}}{V_{T}} = 0.00568 \Omega^{-1} \end{split}$$

$$h_{K} = \frac{B_{gm}}{g_{m}} = 26.387 \text{K}\Omega$$



(d) 
$$\Delta i_c = g_m \Delta V_{BE}$$
  
 $= (0.0568) (2m)$   
 $\Delta i_c = 0.1136 \text{ m A}$   
 $\Delta V_{out} = (\Delta i_c) R_c$   
 $= 8.52 \text{ m V}$ 

The voltage is amplified by a factor of 4.26

# BONUS

- The input is less than 1% of the Vec. It qualifies as a small signal



$$V_{BE} = 700 \text{ mV}$$
 (Forward Bias)

The transistor remains in forward active region and behaves as an amplifier amplifier.