普通物理学实验 II 电子实验报告

指导教师:_			张利	
	班	级:		_
	姓	名:		_
	学	号:		_

浙江大学物理实验教学中心

实验日期: __2024__ 年__11__ 月__27__ 日 __星期__三__

目录

1	实验	综述		3
2	实验	内容		4
	2.1	实验数	据	4
		2.1.1	声速与波长的测量	4
		2.1.2	LED 光源波长的测量	4
		2.1.3	实验数据汇总	7
	2.2	实验结	:果与误差分析	7
		2.2.1	声速与波长的测量	7
		2.2.2	LED 光源波长的测量	7
3	实验	:拓展		8
	3.1	声光效	:应的基本原理	8
	3.2	利用超	是一光栅测量液体浓度的方法设计	8
		3.2.1	测量浓度的基本原理	8
		3.2.2	系统框图设计	8
		3.2.3	实验测量方法解释	8
4	参考	· 文献		9

1 实验综述

压电陶瓷片(PZT)在高频交变电场下产生超声波,导致液体中形成周期性的密度分布和折射率变化。在有限液槽中通过稳定驻波条件观察超声场的层次结构,平行光通过超声光栅时产生明暗条纹,条纹间距为声波波长的一半。本实验旨在研究超声场对光的衍射影响及超声光栅的性质。

对于光栅,可列出等式:

$$d\sin\theta = k\lambda\tag{1}$$

而在本实验中, 光栅常数 d 就是声波波长 λ_s , 所以有:

$$\lambda_s sin\theta = k\lambda_{\#} \tag{2}$$

实际上 θ 很小, 因此有:

$$sin\phi_k = \frac{l_k}{f} \tag{3}$$

其中为 l_k 衍射零级光谱线至第 k 级光谱线的距离,f 为 L2 透镜的焦距,所以超声波的波长:

$$\lambda_s = \frac{k\lambda_{\mathcal{H}}}{l_k} f \tag{4}$$

超声波在液体中的传播速度为:

$$v = \lambda_s \nu \tag{5}$$

我们在实验中使用 ΔL 来表示 $\frac{l_k}{k}$ 本实验共有两个部分:

- 第一部分: 使用纳灯作为光源,测量出液体中的声速与波长 λ_s ,并通过声速与频率的关系计算出声波的频率。
- 采用 λ_s 为已知量,测量出各色 LED 光源 (红、橙、黄、绿、青、蓝、紫) 的波长。

2 实验内容

2.1 实验数据

2.1.1 声速与波长的测量

表 1: 声速与波长的测量数据, $\lambda_{\mathbb{H}}=589.3nm, \nu=10.28MHz, f=157mm$

K	2	1	0	-1	-2
条纹位置 (mm)	18.967	18.380	17.752	17.154	16.529
L_k	1.215	0.628	0	0.598	1.223

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{6} \sum_{k=0}^{k=2} [(L_k - L_{k-1}) + (L_k - L_{k-2})/2]$$
(6)

通过计算得到 $\Delta L = 0.6075mm$

因此 λ_s 可由公式 (4) 计算得到:

$$\lambda_s = \frac{\lambda_{\mathcal{H}}}{\Delta L} f = 152.3 \mu m \tag{7}$$

通过公式 (5) 可计算得到声速:

$$v = \lambda_s \nu = 1566 m/s \tag{8}$$

相对误差 $E = \frac{|v_{\text{理论}} - v|}{v_{\text{理论}}} \times 100\% = 5.811\%$

2.1.2 LED 光源波长的测量

绿光:

表 2: LED 绿光测量

K	2	1	0	-1	-2
条纹位置 (mm)	11.365	11.905	12.399	12.940	13.459
L_k	1.034	0.494	0	0.541	1.060

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{6} \sum_{k=0}^{k=2} [(L_k - L_{k-1}) + (L_k - L_{k-2})/2]$$
(9)

通过计算得到 $\Delta L = 0.5233mm$

因此绿光波长可由公式 (4) 计算得到:

$$\lambda_{\rm s}=\frac{\Delta L \lambda_s}{f}=507.6nm$$

橙光:

表 3: LED 橙光测量

K	3	2	1	0	-1	-2	-3
条纹位置 (mm)	10.380	11.011	11.669	12.211	12.910	13.530	14.139
L_k	1.831	1.200	0.542	0	0.699	1.319	1.928

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{12} \sum_{k=0}^{k=3} [(L_k - L_{k-1}) + (L_k - L_{k-2})/2 + (L_k - L_{k-3})/3]$$
 (10)

通过计算得到 $\Delta L = 0.6301mm$

因此橙光波长可由公式 (4) 计算得到:

$$\lambda_{\frac{R}{2}} = \frac{\Delta L \lambda_s}{f} = 611.2nm$$

紫光:

表 4: LED 紫光测量

K	2	1	0	-1	-2
条纹位置 (mm)	11.471	11.913	12.393	12.842	13.322
L_k	0.922	0.480	0	0.449	0.929

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{6} \sum_{k=0}^{k=2} [(L_k - L_{k-1}) + (L_k - L_{k-2})/2]$$
(11)

通过计算得到 $\Delta L = 0.4602mm$

因此紫光波长可由公式 (4) 计算得到:

$$\lambda_{\frac{s}{K}} = \frac{\Delta L \lambda_s}{f} = 446.4nm$$

红光:

表 5: LED 红光测量

K	3	2	1	0	-1	-2	-3
条纹位置 (mm)	10.250	10.949	11.603	12.262	12.930	13.630	14.287
L_k	2.012	1.313	0.659	0	0.668	1.368	2.025

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{12} \sum_{k=0}^{k=3} \left[(L_k - L_{k-1}) + (L_k - L_{k-2})/2 + (L_k - L_{k-3})/3 \right]$$
 (12)

通过计算得到 $\Delta L = 0.6884mm$

因此红光波长可由公式 (4) 计算得到:

$$\lambda_{\text{ML}} = \frac{\Delta L \lambda_s}{f} = 667.8nm$$

黄光:

表 6: LED 黄光测量

K	2	1	0	-1	-2
条纹位置 (mm)	11.165	11.739	12.390	13.022	13.649
L_k	1.225	0.651	0	0.632	1.259

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{6} \sum_{k=0}^{k=2} [(L_k - L_{k-1}) + (L_k - L_{k-2})/2]$$
(13)

通过计算得到 $\Delta L = 0.6234mm$

因此黄光波长可由公式 (4) 计算得到:

$$\lambda_{\Breve{\#}} = \frac{\Delta L \lambda_s}{f} = 604.8 nm$$

蓝光:

表 7: LED 蓝光测量

K	3	2	1	0	-1	-2	-3
条纹位置 (mm)	10.970	11.469	11.910	12.407	12.906	13.411	13.892
L_k	1.437	0.938	0.497	0	0.499	1.004	1.485

 ΔL 可由以下的式子计算:

$$\Delta L = \frac{1}{12} \sum_{k=0}^{k=3} \left[(L_k - L_{k-1}) + (L_k - L_{k-2})/2 + (L_k - L_{k-3})/3 \right]$$
 (14)

通过计算得到 $\Delta L = 0.4857mm$

因此蓝光波长可由公式(4)计算得到:

$$\lambda_{\stackrel{...}{\underline{m}}} = \frac{\Delta L \lambda_s}{f} = 471.2nm$$

2.1.3 实验数据汇总

1. 超声波波长: 152.3µm

2. 声速: 1566m/s

3. 相对误差: 5.811%

表 8: LED 光源波长

颜色	红光	橙光	黄光	绿光	蓝光	紫光
波长 (nm)	667.8	611.2	604.8	507.6	471.2	446.4

2.2 实验结果与误差分析

2.2.1 声速与波长的测量

实验中计算得到的声速与理论值存在一定偏差,但相对误差在5%左右,可以接受。本实验中的误差主要来自于:

- 信号源频率的显示值与实际值的偏差
- 透镜焦距的实际值与理论值的偏差
- 条纹位置使用卡尺读数,存在偶然误差
- 光斑有一定宽度,可能导致读数不准确

2.2.2 LED 光源波长的测量

在测得的数据中,除黄光相对于理论值偏大外,其他颜色的波长均在理论范围内。 说明本实验的测量结果还是比较准确的。本实验中的误差主要来自于:

- 条纹位置使用卡尺读数,存在偶然误差
- 光斑有一定宽度,可能导致读数不准确
- 使用的超声波长为上一个实验计算值,存在传递误差
- 透镜焦距的实际值与理论值的偏差

3 实验拓展

3.1 声光效应的基本原理

声光效应是指声波与光波在介质中相互作用时产生的现象。当介质中含有声波时, 声波引起介质的折射率发生周期性变化,形成了所谓疏密波,亦即光栅。入射光与光栅相互作用,产生衍射,形成衍射光斑。

3.2 利用超声光栅测量液体浓度的方法设计

3.2.1 测量浓度的基本原理

我设计的方法基于声波在不同浓度液体中的传播速度变化。当液体浓度变化时,介质的声速和密度发生变化,导致声波在液体中的传播的波长与周期等发生变化。因此,形成的光栅的光栅常数也会发生变化,从而影响衍射光斑的位置。通过测量衍射光斑的位置,可以计算出液体的浓度。

3.2.2 系统框图设计

3.2.3 实验测量方法解释

实验中,首先使用先前使用过的压电陶瓷产生稳定的超声波,放入待测液体样品。液体中的超声波形成光栅,入射光通过光栅发生衍射。检测器接收衍射光,根据 ΔL 的

大小,结合已知的浓度- ΔL 关系曲线,计算出液体的浓度。

因此,本方法还需要取一系列已知浓度的液体,测量出 ΔL 与浓度的关系曲线。

4 参考文献

本实验无参考文献。