جلسه هفتم

شمارش

اصل جمع: اگر کار W1 به n1 طریق و کار W2 به n2 طریق انجام شود، کار «W1 یا W2» به n2+ n1 طریق قابل انجام است.

 $A_1 \cap A_2 = \emptyset \rightarrow |A_1 \cup A_2| = |A_1| + |A_2|$

اصل ضرب: اگر کار W1 به n1 طریق و پس از انجام آن، نتیجه هر چه باشد کار w2 به n2 طریق قابل انجام باشد، کار <u>W1W2</u> (یعنی انجام W1 و سپس انجام W2) به n1xn2 طریق قابل انجام است.

اصل تناظر $f: A \to B$): اگر A مجموعه ای متناهی و $f: A \to B$ تابعی ۱-۱ و پوشا باشد، آن گاه:

|A| = |B|

n مثال m: چند تابع f از یک مجموعه m عضوی مانند m عضوی مانند m عضوی m عضوی m عضوی مانند m وجود دارد؟

ياسخ: nm.

مثال ۲: در مثال قبل، اگر f، ۱-۱ باشد، پاسخ چیست؟

پاسخ:

 $n(n-1)(n-2)...(n-m+1) = (n)_m = n^m$

 $P: D \subseteq [m]$ با دامنهی D وجود دارد؛ به طوری که D = [n] با دامنه

پاسخ: ^m(n + 1)

مثال ۴: تعداد زیرمجموعههای مجموعهی n عضوی چند تاست؟ (با اصل تناظر ۱-۱)

پاسخ: 2ⁿ.

ا تایی P از P تایی مرتب) با مؤلفههای P نسبت می دهیم، به طوری که:

$$i \in P \leftrightarrow x_i = 1$$

 $i \notin P \leftrightarrow x_i = 0$

جلسه هفتم

P از P ازیرمجموعههای P از P در تناظر P با زیرمجموعههای P در تناظر P با زیرمجموعههای P از P از P در تناظر P با زیرمجموعههای P از P در تناظر P با زیرمجموعههای P از P در تناظر P با زیرمجموعههای P در تناظر P در تناظر

مثال ۵: تعداد رابطههای R از [m] به [n] چند است؟

 2^{nm} : پاسخ: هر زیرمجموعه از [m] imes [n] پاسخ

مثال 9: اگر n > 0، با ارائهی یک تناظر ۱-۱ از فرد-زیرمجموعههای [n] به زوج-زیرمجموعههای [n]، ثابت کنید تعداد هر یک از دستههای مذکور 2^{n-1} است.

مثال \mathbf{v} : چند رشته بیت (bit string) دودویی (0,1) به طول \mathbf{v} وجود دارد که شامل دو \mathbf{t} متوالی نباشد؟

مثال ۸: مجموعه ی $i \neq j$ تعداد اعضای $A \in [n]^2$ معال $A \subseteq [n]^2$ معال $A \in [n]^2$ معال $A \in [n]^2$ معال $A \in [n]^2$ معال $A \subseteq [n]^2$

مثال ۹: الف) مجموعه ی مکرر $A = \{m_1 x_1, ..., m_n x_n\}$ دارای چند زیرمجموعه ی مکرر است؟

پاسخ: هر زیرمجموعه ی مکرر از مجموعه ی مکرر خود به صورت $\{m_1x_1,\dots,m_nx_n\}$ است که $0 \leq a_i \leq m_i$ با شرط $0 \leq a_i \leq m_i$ است که $0 \leq a_i \leq m_i$ با شرط $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ است که $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر است با: $0 \leq a_i \leq m_i$ استفاده از اصل ضرب برابر استفاده الستفاد الستفاد

ب) چند تا از زیرمجموعههای مکرر در نظر گرفته شده در قسمت الف، دارای محملی با اندازه ی K هستند؟

پاسخ:

$$C_{n,k}(m_1, ..., m_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} m_{i_1} m_{i_2} \dots m_{i_k}$$

مثال ۱۰: فرض کنید A مجموعهی m تاییهای مرتب (X1, ..., Xn) با مؤلفههای صحیح صادق در نامعادلهی

$$1 \le x_1 < x_2 < \dots < x_m \le n$$

و S مجموعه ی mزیرمجموعه های [n] باشد، آیا میتوان یک تناظر ۱-۱ بین S و A تعریف کرد؟

جلسه هفتم

پاسخ:

$$(x_1, ..., m_n) = \{x_1, ..., x_m\}$$

 $m = 2, n = 4:$

$$(1,2) \leftrightarrow \{1,2\}$$

$$(1,3) \leftrightarrow \{1,3\}$$

$$(1,4) \leftrightarrow \{1,4\}$$

$$(3,2) \leftrightarrow \{3,2\}$$

$$(4,2) \leftrightarrow \{4,2\}$$

$$(3,4) \leftrightarrow \{3,4\}$$

مثال ۱۱: با استفاده از مثال قبل، دنبالههای اکیدا صعودی $\mathbf{x}_i \in [n]$ را که $\mathbf{x}_i \in [n]$ و شامل دو عدد متوالی نیستند، به دست آورید.

پاسخ: با شرایط مسئله، $x_1 < x_{i+1} - x_i$ میتوان دنبالهی $x_1 < x_2 < \cdots < x_m \leq n$ میتوان دنبالهی $x_1 < x_{i+1} - x_i$ میتوان دنبالهی $x_1 < x_2 < \cdots < x_m - x_i$ قرار داد. در نتیجه، بنابر مثال ۱۰، جواب این مسئله برابر دنبالهی $x_1 < x_2 < x_2 < \cdots < x_m - x_i < \cdots < x_m - x_i$ است با: $x_1 < x_2 < x_2 < \cdots < x_m > x_i$ میتوان دنباله برابر مثال ۱۰، جواب این مسئله برابر داد. در نتیجه، بنابر مثال ۱۰، جواب این مسئله برابر است با: $x_1 < x_2 < x_1 < x_2 < \cdots < x_m > x_i$

مثال ۱۲:یک m حضو از اعضای مجموعه فوق، مشروط بر آن $\{x_1, \dots, x_m\}$ عبارت است از انتخاب m عضو از اعضای مجموعه فوق، مشروط بر آن که ترتیب انتخاب مهم نباشد و تکرار جایز باشد.

می توان هر \mathbf{m} -ترکیب باتکرار از نوع فوق را به عنوان یک زیرمجموعه ی مکرر مجموعه ی مکرر از نوع فوق را به عنوان یک $\{a_1+\cdots+a_n=m\}$ در نظر گرفت که $\{a_1x_1,\ldots,a_mx_m\}$

با در نظر گرفتن مثالهای قبلی، در مورد تعداد m-ترکیبهای باتکرار مورد بحث، چه می توانید بگویید؟

 $1 \leq x_1 \leq x_2 \leq \cdots < x_n \leq n \equiv x_1 < x_2 + 1 < \cdots < x_n + m - 1 \leq n + m - 1$. خرموعه دانست. (n + m - 1) عداد (n + m - 1)