BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:

- FIG. 1 illustrates the configuration of a typical WLAN as an example of a wireless network;
 - FIG. 2 illustrates a hierarchy of proactive security keys in the typical WLAN;
 - FIG. 3 illustrates an example of key assignment to each component in the typical WLAN;
- FIG. 4 illustrates assignment of a proactive security key needed for roaming in a conventional WLAN;
- FIGs. 5A and 5B illustrate AP-neighborhood graph generation according to the present invention;
- FIG. 6 illustrates an example of a roaming path in which an STA roams, referred to for describing the present invention;
- FIG. 7 illustrates generation of proactive security keys according to an embodiment of the present invention;
- FIGs. 8A, 8B and 8C illustrate a roaming process according to the embodiment of the present invention;
- FIG. 9 is a diagram illustrating signaling in the roaming process according to the embodiment of the present invention;
- FIGs. 10A to 10E illustrate a roaming process according to another embodiment of the present invention;
 - FIG. 11 illustrates an example of PMKs generated for a particular STA roam pattern;
 - FIG. 12 is a diagram illustrating signaling for initial association in the typical WLAN;
- FIG. 13 is a diagram illustrating signaling before roaming according to the second embodiment of the present invention;
- FIG. 14 is a diagram illustrating signaling after roaming according to the second embodiment of the present invention; and

FIG. 15 is a graph comparing experiment results for a conventional roaming scheme (full authentication) and a roaming scheme of the present invention (re-authentications).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.

Three schemes can be considered to support fast roaming in a WLAN.

First, APs each preserve all necessary proactives ecurity keys for roaming. Each AP reserves memory space for the roaming service, stores all proactives ecurity keys needed for the roaming service in the memory, and retrieves one proactives ecurity key from the memory when necessary. A distinctive shortcoming of this scheme is the requirement of a large-capacity memory.

A second scheme is to provide neighbor APs with necessary proactive security keys for roaming by proactive security caching accomplished by the IAPP protocol. To do so, each AP manages information about its neighbor APs using an AP-neighborhood graph. Also, the AP generates proactive security keys for the neighbor APs using a known proactive security key and provides the generated proactive security keys to the neighbor APs by the proactive security caching.

The third scheme is that a higher-layer server (accounting server) manages neighbor APs for each AP and provides the neighbor APs with <u>proactivesecurity</u> keys necessary for roaming when an STA accesses the AP. To implement this scheme, the higher-layer server is provided to manage the AP-neighborhood graph for each AP. The higher-layer server may be an existing AAA server or a separately procured server. Depending on the amount of information regarding

the managed AP-neighborhood graphs, a plurality of higher-layer servers can be used.

The above-described second and third schemes are implemented as first and second embodiments of the present invention. These embodiments commonly require the AP-neighborhood graph by which neighbor APs are managed for each AP. They differ in that each AP manages its AP-neighborhood graph in the first embodiment, while a higher-layer server manages its AP-neighborhood graph in the second embodiment. In the embodiments of the present invention, the process of providing potential APs with proactive security keys needed for roaming is further included. The AP-neighborhood graph is required in both embodiments since the potential APs are a set of APs to which an STA may move. The AP-neighborhood graph defines connections between an STA and its potential APs, which the STA may be associated with by roaming. Hence, before detailing the embodiments of the present invention, the process of how the AP-neighborhood graph is created will first be described.

1. Generation of AP-Neighborhood Graph

The AP-neighborhood graph required to implement the present invention can be generated based on the locations of APs in a WLAN. Because potential APs are different for each AP, an AP-neighborhood graph is created for each AP. This is done in three methods. One of them is that an administrator manually generates AP-neighborhood graphs for individual APs based on the locations of the APs and registers them. Each time a change is made to the AP layout, the administrator updates the AP-neighborhood graphs. Another method is that initial AP-neighborhood graphs are registered by the administrator and automatically updated each time the AP layout is changed.

The third method is that the AP-neighborhood graph is automatically generated for each AP and automatically updated each time the AP layout is changed. According to this method, however, roaming is carried out by the conventional roaming process until the AP-neighborhood graph is generated. In other words, a procedure for checking connections to each AP is needed. For example, if an STA associated to AP_A attempts to initially roam to AP_B that the STA has never moved to, AP_B performs an IAPP procedure to receive a context corresponding to the

STA from AP_A. AP_A and AP_B then confirm that there is a connection between them for roaming and thus can update their AP-neighborhood graphs. After the updating, the STA can roam from AP_A to AP_B or vice versa without the IAPP procedure.

The physical path and distance between APs are considerations to take into account when constructing an AP-neighborhood graph in any of the above methods. To draw a connection between APs in an AP-neighborhood graph, there must exist a physical connection between the APs without passing through any other AP. Also, the distance between the physically connected APs should not exceed a threshold. As a matter of fact, the STA would perform an initial procedure for establishing a communication with a nearby AP rather than roam to a remote AP.

An example of an AP-neighborhood graph will be shown below.

FIG. 5A illustrates an example of an AP layout in a WLAN to which the present invention is applied and FIG. 5B illustrates an AP-neighborhood graph constructed based on the AP layout.

Referring to FIG. 5A, AP_C is located in a closed space with one entrance. Thus AP_B is the only AP to which an STA can move from AP_C. This implies that roaming only to AP_B is allowed for the STA in AP_C. Meanwhile, an STA in AP_B can move to any of AP_A, AP_D, AP_E and AP_C because corridors (physical connections) run from AP_B to these APs. That is, the STA is free to roam from AP_B to all APs illustrated in FIG. 5A. If the STA is located in AP_A, it can only move to AP_B or AP_E without passing through any other AP. Hence, the STA can roam from AP_A to AP_B or AP_E. AP_E is directly connected to all APs except AP_C, so that an STA in AP_E can roam to any of the APs other than AP_C. Direct roaming for an STA from AP_D is confined to AP_B and AP_E. Roaming from AP_A to AP_D, or from AP_D to AP_A, is not allowed due to a long distance between them. Instead of roaming, the STA reassociates to AP_B before it roams to AP_D or AP_A.

Referring to FIG. 5B, the illustrated AP-neighborhood graph shows all of the connections

among the APs in the WLAN. Yet, the above-described second neighborhood graph generation method is viable as long as each AP has knowledge of potential APs to which it may have connectivity. For example, knowledge of AP_B and AP_E as potential APs is substantially sufficient for AP_A and knowledge of AP_A, AP_C, AP_D and AP_E as potential APs is substantially sufficient for AP_B. On the other hand, in the third neighborhood graph generation method, an accounting server manages an AP-neighborhood graph for each AP.

As mentioned earlier, the AP-neighborhood graph is manually generated by the administrator or automatically generated by the conventional handoff procedure.

In the case where each AP automatically generates an AP-neighborhood graph, upon receipt of a reassignment request message from an STA, the AP determines whether a temporarily stored context corresponding to the STA exists. The AP is a new-AP for the STA. If the context exists, it means that the AP has already created an AP-neighborhood graph containing a prior-AP to which the STA had connectivity. On the contrary, if the context is absent, it means that connectivity to the prior-AP has not yet been defined in the AP-neighborhood graph. The new-AP then receives the context corresponding to the STA from the prior-AP by the conventional IAPP procedure and updates the AP-neighborhood graph so that a connection line is drawn between the new-AP and the prior-AP in the AP-neighborhood graph.

In this manner, the AP-neighborhood graph is generated in the first embodiment of the present invention characterized by management of the AP-neighborhood graph at each AP. Meanwhile, in the second embodiment of the present invention, since a higher-layer server manages an AP-neighborhood graph for each AP, when a new connection is established, a corresponding AP reports the new connection to the higher-layer server so that the AP-neighborhood graph of the AP can be updated with the latest information. It is also possible that if an STA roams to a new-AP, the higher-layer server updates an AP-neighborhood graph for a prior-AP by adding the new-AP to the graph as a neighbor AP of the prior-AP.

2. First Embodiment

An AP generates PMKs for neighbor APs managed in its AP-neighborhood graph and transmits the PMKs to the neighbor APs using a proactive security caching technique accomplished by the IAPP protocol. When an STA roams to one of the neighbor APs, a security system operates based on the PMK provided to the neighbor AP, thereby enabling fast roaming.

The proactive security caching technique refers to a scheme in which each AP recognizes potential APs that it may get connectivity to by its AP-neighborhood graph, generates PMKs for the potential APs, and transmits the PMKs to the neighbor APs. Therefore, re-authentication latency involved in the roaming process is minimized. The proactive security caching technique is based on a locality of mobility principle. In this environment, an STA association pattern is the sequence of APs that the STA becomes associated with in a given interval of time.

The first embodiment of the present invention will be detailed with reference to the attached drawings. It is assumed herein that each AP manages its own AP-neighborhood graph.

FIG. 6 is a view conceptually illustrating a roaming process by the <u>proactivesecurity</u> caching technique according to the present invention. The roaming process presupposes that an STA moves from AP A to AP B.

Referring to FIG. 6, the STA transmits an association request to AP_A in step 1. AP_A authenticates the STA in a general initial authentication procedure and acquires a proactivesecurity key. The STA already knows an MK used for security between the STA and an AAA server (not shown) and receives a PMK from the AAA server. AP_A receives the PMK from the AAA server. Both the STA and the AP_A then acquire a PTK and an RK (Roam Key). A random number (RN) is needed to generate the RK and a 4-way handshake is carried out using the PMK to generate the PTK. The RN is generated during the 4-way handshake. Obviously, the RN may be generated in any other way. After the authentication, AP_A transmits a response for the association request to the STA. Thus, the STA communicates with AP_A.

Meanwhile, AP_A generates a PMK for a neighbor AP, AP_B, managed by its AP-

neighborhood graph. Let the PMK for the neighbor AP be PMK_{next}. PMK_{next} is generated using the RK, the current PMK, PMK_{curr}, the MAC address of the STA, STA_{mac}, and the MAC address of a new-AP, next AP_{mac} by a PRF (Pseudo-Random Function), expressed as

$$PMK_{next} = PRF(RK, PMK_{curr}, STA_{mac}, _{next}AP_{mac})$$
....(1)

where STA_{mac} is known to AP_A during communication and next AP_{mac} is information that AP A receives by the IAPP protocol or from the AAA server.

In step 2, AP_A transmits PMK_{next} to AP_B. While one AP is assumed as a potential AP in the case illustrated in FIG. 6, if a plurality of potential APs exist, AP_A transmits PMKs, PMK_{next} calculated for the respective potential APs to each of them. AP_B stores PMK_{next} in a cache. As the STA moves to AP_B in the shown path, the STA requests a reassociation to AP_B in step 3. To maintain an on-going communication service in response to the reassociation request, a security system must be established between AP_B and the STA. That is, a PTK must be gained for security between AP_B and the STA. The PTK is derived from a PMK, namely PMK_{next}. Hence, AP_B sets PMK_{next} as the PMK by which AP_B can communicate with the STA. Meanwhile, the STA can gain PMK_{next} in various ways. For example, AP_A or AP_B provides the STA with PMK_{next}. Or the STA can directly generate PMK_{next} from next AP_{mac} received from AP A or AP B.

As AP_B and the STA acquire the same PMK, the PTK can be created in the conventional method, so that a normal security system can be established between them. Consequently, the latency involved with the conventional pre-authentication is reduced, thereby enabling fast roaming and achieving implementation speedups. In the mean time, AP_B generates PMK_{next} using an RK achieved together with the PTK and transmits PMK_{next} to its neighbor APs, in preparation for roaming of the STA to any of the neighbor APs.

In the embodiment of the present invention, the proactive security caching technique is adopted to provide a proactive security key used to preserve security between an STA and at least

one predicted new-AP to which the STA becomes associated. Apart from the roaming process, the <u>proactivesecurity</u> caching involves the transfer of the <u>proactivesecurity</u> key from a prior-AP to potential new-APs. To implement the <u>proactivesecurity</u> caching technique, potential new-APs for each AP must be predicted. This has been detailed in relation to the AP-neighborhood graph.

FIG. 7 illustrates a proactive security key generation procedure according to the first embodiment of the present invention.

Referring to FIG. 7, the AAA server generates PMK_{curr} for an AP, AP_{curr} that the STA initially attempts to access and transmits PMK_{curr} to AP_{curr} . AP_{curr} acquires a PTK and an RK from PMK_{curr} . The RK is determined using a PRF expressed as

$$RK = PRF(PMK, "Roam Key", AP_{nonce}, STA_{nonce})$$

$$\dots (2)$$

where AP_{nonce} is a random number set by AP_{curr}, STA_{nonce} is a random number set by the STA, and "Roam Key" is the RN generated during the 4-way handshake.

After the RK is gained by Eq. (2), a PMK for a neighbor AP, PMK_{next} is computed by Eq. (1) and transmitted to AP_{next} by the proactivesecurity caching technique. In the presence of a plurality of neighbor APs, as many PMKs, PMK_{next} as the number of the neighbor APs are generated.

The provisioning of the fast roaming service with a reduced reassociation latency owing to the proactive security caching technique will be described in detail with reference to FIGs. 8A, 8B and 8C. It is to be appreciated that the following description is under the assumption that the STA is initially connected to AP_A, and AP_B and AP_E are neighbor APs to AP_A.

FIG. 8A illustrates acquisition of necessary proactive security keys in AP_A and the STA when the STA initially attempts to access AP_A. The proactive security keys the STA acquires are MK, PMK_{curr}, PTK_{curr} and RK, while the proactive security keys AP_A acquires are PMK_{curr},

PTK_{curr} and RK. The procedure for acquiring the proactive security keys has been described earlier and thus its description is not provided here.

FIG. 8B illustrates the generation of PMKs for neighbor APs using the proactive security keys in AP_A and the transfer of them from AP_A to the neighbor APs by the proactive security caching technique. In this example the neighbor APs to AP_A are AP_B and AP_E. PMK_{next} for AP B (PMK(AP_B)_{next}) is determined by

$$PMK(AP_B)_{next} = PRF(RK, PMK_{curr}, STA_{mac}, AP_B_{mac})$$
....(3)

and PMK_{next} for AP E (PMK(AP E)_{next}) is determined by

$$PMK(AP_E)_{next} = PRF(RK, PMK_{curr}, STA_{mac}, AP_E_{mac})$$
.....(4)

For roaming that may occur later, the STA must have knowledge of PMK_{next} corresponding to the neighbor APs. In accordance with the first embodiment of the present invention, the STA gains PMK_{next} corresponding to the neighbor APs in two ways, AP_A directly provides the STA with PMK_{next} delivered to the neighbor APs; and AP_A provides the STA with MAC addresses needed to calculate PMK_{next} for the neighbor APs. In the latter case, the STA computes PMK_{next} for the respective neighbor APs by Eq. (3) and Eq. (4).

FIG. 8C illustrates AP_B's resumption of a communication service that AP_A provided, using PMK_{next} after the STA moves from AP_A to AP_B. AP_B translates PMK_{next} received from AP_A into its PMK. If the STA attempts to access AP_B, AP_B derives a PTK from the PMK. Similarly, the STA acquires the PTK using already known PMK_{next}. Thus, the STA resumes the communication service with AP_B, which was provided in AP_A. Meanwhile, AP_B acquires the PTK and an RK simultaneously. Using the RK, AP_B generates PMKs for its neighbor APs managed by its AP-neighborhood graph. AP_B transmits the PMKs to the neighbor APs by the proactive security caching technique.

Although the case illustrated in FIGs. 8A, 8B and 8C has been detailed on the assumption that the STA roams from AP_A to AP_B, the STA can roam from AP_B to AP_A in the same procedure.

FIG. 9 is a diagram illustrating signaling between the STA and the APs in the roaming process according to the first embodiment of the present invention. Let AP_A be a prior-AP and AP_B be a new-AP. Since the STA accesses AP_A and after roaming, the STA operates with AP_B in the conventional manner, the following description is focused on the signaling for the roaming process.

Referring to FIG. 9, the STA and AP_A derive a PTK and an RK from a PMK received from the AAA server (not shown) in step 901 so that they are capable of communicating with each other. AP_A derives PMKs, PMK_{next} for its neighbor APs in step 903 and transmits the PMKs to its neighbor APs in steps 905 to 907. Thus the neighbor Aps now have the PMKs which will be used for security when the STA moves to them.

As the STA roams to AP_B, the STA and AP_B derive a PTK and an RK from PMK_{next} in step 909, so that STA and AP_B establish a security system that allows a communication service from AP_A to be resumed in AP_B. AP_B generates PMKs, PMK_{next} for its neighbor APs in step 911 and transmits the PMKs to its neighbor APs in steps 913 to 915.

In accordance with the first embodiment of the present invention, the need for accessing the AAA server for pre-authentication needed to provide a roaming service for the STA is eliminated, thereby reducing time required for roaming. This implies that fast roaming is enabled.

3. Second Embodiment

Ψ.

Higher-layer servers manage neighbor APs for individual APs by their AP-neighborhood graphs. When necessary, the servers generate PMKs for APs neighboring to a particular AP and transmits them to the neighbor APs. Thus when an STA roams to one of the neighbor APs, a

security system operates using the already known PMK, thereby providing fast roaming.

The second embodiment of the present invention presupposes that the AP-neighborhood graphs are managed by a novel higher-layer server, an accounting server. The accounting server may be incorporated in an existing AAA server or implemented as a separate server. Also, a plurality of accounting servers can be adopted according to the amount of information regarding the managed AP-neighborhood graphs. It is to be appreciated that the following description is made in the context of an accounting server implemented independently of an existing AAA server and this AAA server free of the accounting function is called an authentication server (AS).

With reference to FIGs. 10A to 10E, fast roaming through proactive security key distribution from the higher-layer servers will be described in detail on the assumption that the STA initially accesses AP_A, and AP_B and AP_E are neighboring to AP_A.

Referring to FIG. 10A, as the STA initially attempts to associate to AP_A, AP_A and the STA each acquire their necessary proactivesecurity keys. An MK, a PMK and a PTK are proactivesecurity keys for the STA, while the PMK and the PTK are proactivesecurity keys for AP_A. How the keys are acquired has been detailed earlier and thus its description is not provided here. The acquisition of the proactivesecurity keys is equivalent to establishment of a security system that allows communication between the STA and AP_A.

Referring to FIG. 10B, AP_A notifies the accounting server of the initiation of a communication service with the STA, for example by an Accounting-Request message. Thus the accounting server executes an accounting function for the STA and announces the initiation of the communication service between the STA and AP_A to the neighbor APs.

Referring to FIG. 10C, the accounting server searches for the neighbor APs using an AP-neighborhood graph that the accounting server manages for AP_A, and notifies by a Notify-Request message the neighbor APs, AP_B and AP_E, that the STA has associated to AP_A. The

Notify-Request message includes the MAC address of the STA, STA-mac-Addr. Upon receipt of the Notify-Request message, AP_B and AP_E consider that the STA is likely to move from AP A to them.

Referring to FIG. 10D, the AS provides the neighbor APs (AP_B shown as a representative) with PMKs by which they can communication with the STA if and when it roams to them. Specifically, AP_B transmits to the AS an Access-Request message including STA-mac-Addr received from the accounting server, and the AS generates a PMK, PMK_B for AP_B by

$$PMK_B = PRF(MK, PMK_A, STA_{mac}, AP_B_{mac})$$
.....(5)

where PMK_A is a PMK assigned to AP_A, and STA_{mac} and AP_B_{mac} are the respective MAC addresses of the STA and AP_B.

The AS transmits to AP_B an Access-Accept message including PMK_B. By receiving the Access-Accept message, AP_B acquires the PMK to use for security between the STA and AP_B when the STA moves to AP_B. While FIG. 10D illustrates an operation between AP_B and the AS, the same thing is also applicable to AP_E.

Referring to FIG. 10E, a roaming service is provided to the STA as the STA moves to AP_B. When the STA attempts to access AP_B, AP_B reports the access attempt to the accounting server. The accounting server then updates an AP-neighborhood graph for AP_B. Meanwhile, the STA acquires the PMK, PMK_B required to establish a security system with AP_B by

$$PMK_{B} = PRF(MK, PMK_{A}, STA_{mac}, AP_B_{mac})$$
....(6)

where PMK_A is a PMK assigned to AP_A, and STA_{mac} and AP_B_{mac} are the MAC addresses of the STA and AP_B. The STA already has the knowledge of PMK_A and STA_{mac}, while it cannot

know AP_B_{mac} without aid from an external device. Therefore, the STA receives AP_B_{mac} from AP_A, or from AP_B after it moves to AP_B. Alternatively, the STA may receive PMK_B from AP_B, instead of generating PMK_B directly. This is possible on the assumption that AP_B has PMK_B, which has been described earlier.

Once AP_B and the STA know PMK_B, they can acquire a PTK from PMK_B in a known manner. Thus, the method of deriving the PTK from PMK_B will not be described here.

In the above-described procedure, the STA and AP_B share the same PTK. This implies that a security system has been established between the STA and AP_B. Therefore, a communication service provided from AP_A can be resumed between the AP_N and the STA.

FIG. 11 illustrates an example of PMK generation when the STA roams in a pattern of AP_A, AP_B, and AP_C or AP_D in this order.

Referring to FIG. 11, as the STA initially associates to AP_A, PMK₀ is generated in a first generation stage. In a second generation stage, the AS generates PMK_B for AP_B from PMK₀ in preparation for roaming of the STA to AP_B. As the STA roams to AP_B, the AS generates PMK_C for AP_C from PMK_B in preparation for roaming of the STA to AP_C in a third generation stage. In a fourth generation stage, the AS generates PMK_D for AP_D from PMK_B and PMK_B for AP_B from PMK_C in preparation for roaming of the STA to AP_D or AP_B. In a fifth generation stage, the AS generates PMK_B for AP_B and PMK_E for AP_E from PMK_D in preparation for roaming of the STA from AP_D to AP_B or AP_E.

Sequential generation of a PMK for the next AP from a PMK for the previous PMK and generation of PMKS for next PMKs from the same previous PMK have been described. Only normal transfer of the PMKs from an AP to the neighbor APs has been considered in the above description. Nonetheless, erroneous PMK transfer causes no security problems because a neighbor AP can acquire a PMK in the conventional roaming process when it fails to acquire the PMK due to the erroneous PMK transfer.

FIG. 13 is a diagram illustrating signaling before the STA roams according to the second embodiment of the present invention. In FIG. 13, an AP that the STA initially associates with is called a first AP, and potential APs to which the STA may move are called first and second neighbor APs, respectively.

*

Referring to FIG. 13, an initial association procedure is carried out among the STA, the first AP and the AS, as illustrated in FIG. 12 for acquisition of proactivesecurity keys needed for the initial association. In step 1301 the first AP notifies the accounting server of the start of a communication service with the STA by an Accounting-Request message including Acct-Multi-Session-ID and PMK-Generation. Upon receipt of the Accounting-Request message, the accounting server determines whether an AP-neighborhood graph is managed for the first AP and transmits an Accounting-Response message to the first AP in step 1303. At the same time, the accounting server confirms that the first and second neighbor APs exist for the first AP by the AP-neighborhood graph.

The accounting server transmits a Notify-Request message to the first neighbor AP in step 1305 and to the second neighbor AP in step 1307. The Notify-Request message indicates the association of the STA to the first AP. This message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation. By receiving the Notify-Request message, the first and second neighbor APs consider that the STA may move from the first AP to them. The first neighbor AP transmits a Notify-Response Message to the accounting server in step 1309 and the second neighbor AP transmits another Notify-Response Message to the accounting server in step 1311.

The first and second neighbor APs transmit to the AS an Access-Request message including Acct-Session-ID, Acct-Multi-Session-ID and PMK-Generation in steps 1313 and 1317, respectively.

Upon receipt of the Access-Request message from the first neighbor AP, the AS

generates a PMK for the first neighbor AP. In step 1315, the AS transmits to the first neighbor AP an Access-Accept message including the generated PMK. The Access-Accept message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the first neighbor AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the first neighbor AP.

Υ.

Upon receipt of the Access-Request message from the second neighbor AP, the AS generates a PMK for the second neighbor AP and transmits to the second neighbor AP an Access-Accept message including the generated PMK in step 1319. The Access-Accept message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the second neighbor AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the second neighbor AP.

Meanwhile, the STA and the first AP perform typical operations needed for a communication service between them, such as acquisition of a PTK by 4-way handshake. When the communication service is available, the STA and the first AP transmit/receive communication service data.

FIG. 14 is a diagram illustrating signaling after the STA roams according to the second embodiment of the present invention. In FIG. 14, the STA moves from the first AP to the first neighbor AP and the first AP and the second neighbor AP are neighbor APs to the first neighbor AP.

Referring to FIG. 14, after the STA moves to the first neighbor AP, it attempts to reassociate to the first neighbor AP by transmitting a Probe Request message to the first neighbor AP in step 1401. In step 1403, the first neighbor AP transmits to the STA a Probe Response message in response to the Probe Request message. The STA transmits a Reassociation Request RSN IE to the first neighbor AP in step 1409 and the first neighbor AP transmits a Reassociation

Response RSN IE to the STA in step 1411.

3.

Meanwhile, the first neighbor AP transmits an Accounting-Request message to the accounting server to report the reassociation of the STA to the first neighbor AP in step 1413. The Accounting-Request message contains information about Acct-Multi-Session-ID and PMK-Generation. Upon receipt of the Accounting-Request message, the accounting server updates the AP-neighborhood graph corresponding to the first neighbor AP. The accounting server transmits an Accounting-Response message to the first neighbor AP in step 1415. At this time, the accounting server confirms by the AP-neighborhood graph that the first AP and the second neighbor AP are neighboring to the first neighbor AP.

The accounting server transmits a Notify-Request message to the first AP in step 1417 and to the second neighbor AP in step 1419. The Notify-Request message indicates the association of the STA to the first neighbor AP. This message delivers information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation. By receiving the Notify-Request message, the first AP and the second neighbor AP consider that the STA may move from the first neighbor AP to them. The first AP transmits a Notify-Response Message to the accounting server in step 1421 and the second neighbor AP transmits another Notify-Response Message to the accounting server in step 1423.

Upon receipt of the Notify-Request message, the first AP transmits an Access-Request message to the AS in step 1425. The Access-Request message contains information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation.

Upon receipt of the Notify-Request message from the first AP, the AS generates a PMK for the first AP, for example, referring to the information included in the Access-Request message. The AS then transmits an Access-Accept message to the first AP in step 1427. The Access-Accept message contains information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the first AP acquires the PMK for a security system which allows secure communication with the STA after

the STA moves to the first AP.

•

Upon receipt of the Notify-Request message, the second neighbor AP transmits an Access-Request message to the AS in step 1429. The Access-Request message contains information about Acct-Session-ID, Acct-Multi-Session-ID, and PMK-Generation.

Upon receipt of the Notify-Request message from the second neighbor AP, the AS generates a PMK for the second neighbor AP, for example, referring to the information included in the Access-Request message. The AS then transmits an Access-Accept message to the second neighbor AP in step 1431. The Access-Accept message contains information about Acct-Session-ID, Acct-Multi-Session-ID, PMK-Generation, PMK and Timeout. By receiving the Access-Accept message, the second neighbor AP acquires the PMK for a security system which allows secure communication with the STA after the STA moves to the second neighbor AP.

Meanwhile, the STA and the first neighbor AP perform typical operations needed for a communication service between them, such as acquisition of a PTK by 4-way handshake. When the communication service is available, the STA and the first neighbor AP transmit/receive communication service data.

It can be further contemplated as other embodiments that the step of determining whether to apply the inventive roaming technique between an STA and APs is further performed in addition to the procedures according to the first and second embodiments of the present invention. For example, the STA notifies whether it supports fast roaming by one of reserved bits in the RSN IE of a Reassociation-Request message. The AP notifies whether it supports fast roaming by the same bit of a Reassociation-Response message. A PMK acquired for the STA can be provided by the bit.

FIG. 15 is a graph illustrating the results of an experiment that compares the conventional roaming scheme (full authentication) with the inventive roaming scheme (re-authentications). As noted from FIG. 15, latency of about 800ms was observed in the full authentication, whereas the

latency was reduced to 50ms on an average in the re-authentications. Thus the conclusion is drawn that the inventive roaming scheme supports fast roaming.

As described above, the present invention offers a simplified roaming process and so reduces roaming time, resulting in communication implementation speedup between an STA and a new-AP in a WLAN. Also, service quality is stably ensured and fast roaming is enabled.

While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

REMARKS

Claims 1-15 are pending in the application. It is gratefully acknowledged that Claims 4, 5, 7, 8, 10, 11 and 15 have been objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form to include all of the limitations of the base claim and any intervening claims. The Examiner has rejected Claims 1-3, 6, 9 and 12-14 under 35 U.S.C. §102(e) as being anticipated by Lee et al. (U.S. Publication 2005/0117524).

The specification, abstract and claims have been amended to replace "proactive" with "security" as set forth herein. The change clarifies the terminology used herein. No new matter has been added. A clean version of the specification is attached hereto as required.

Regarding the rejection of Claims 1-3, 6, 9 and 12-14 under §102(e), the Examiner states that Lee et al. anticipates all of the elements of the claims. It is respectfully submitted that the inventive entity of the present application and Lee et al. are in fact the same. It is therefore respectfully submitted that since Lee et al. is the same inventive entity as the present application and not "by another", Lee et al. cannot be used as art under §102(e).

Based on at least the foregoing, withdrawal of the rejections of Claims 1-3, 6, 9 and 12-14 under §102(e) is respectfully requested.

Independent Claims 1, 6, 9 and 12 are believed to be in condition for allowance. Without conceding the patentability per se of dependent Claims 2-5, 7, 8, 10, 11 and 13-15, these are likewise believed to be allowable by virtue of their dependence on their respective amended independent claims. Accordingly, reconsideration and withdrawal of the rejections of dependent Claims 2-5, 7, 8, 10, 11 and 13-15 is respectfully requested.

Accordingly, all of the claims pending in the Application, namely, Claims 1-15, are believed to be in condition for allowance. Should the Examiner believe that a telephone conference or personal interview would facilitate resolution of any remaining matters, the

Examiner may contact Applicant's attorney at the number given below.

Respectfully submitted,

Paul J. Warrell Reg. No. 33,494

Attorney for Applicant

DILWORTH & BARRESE 333 Earle Ovington Blvd. Uniondale, New York 11553

Tel: (516) 228-8484 Fax: (516) 228-8516

PJF/MJM/dr