MTH 331 — Homework
$$\#2$$

Joe White

September 17, 2025

Exercise 2: Implication is not associative

We can compare the statements

$$P \Rightarrow (Q \Rightarrow R)$$
 and $(P \Rightarrow Q) \Rightarrow R$,

and also relate them to $(P \wedge Q) \Rightarrow R$.

Full truth tables with intermediate columns

P	Q	R	$Q \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow R$
T	Т	$\mid T \mid$	Т	T	Т	T
T	$\mid T \mid$	$\mid F \mid$	F	F	T	F
T	F	$\mid T \mid$	T	T	F	${ m T}$
T	F	$\mid F \mid$	T	T	F	F
F	Т	$\mid T \mid$	T	T	Т	${ m T}$
F	$\mid T \mid$	$\mid F \mid$	F	T	T	${ m F}$
F	F	$\mid T \mid$	T	Γ	T	${ m T}$
F	F	$\mid F \mid$	Т	Γ	Т	\mathbf{F}

The last two columns differ on several rows, so

$$P \Rightarrow (Q \Rightarrow R)$$
 is not logically equivalent to $(P \Rightarrow Q) \Rightarrow R$.

Equivalence with $(P \wedge Q) \Rightarrow R$ by a truth table

P	Q	R	$P \Rightarrow (Q \Rightarrow R)$	$(P \land Q) \Rightarrow R$
T	Τ	T	Т	T
$\mid T \mid$	Τ	F	F	F
Γ	F	\mathbf{T}	Т	T
$\mid T \mid$	F	F	T	T
F	Τ	Т	Т	m T
F	Τ	F	T	T
F	F	Т	Т	m T
F	F	F	Т	T

The two columns match in every row, so

$$P\Rightarrow (Q\Rightarrow R)$$
 is logically equivalent to $(P\wedge Q)\Rightarrow R.$

Why the equivalence is natural

 $P \Rightarrow (Q \Rightarrow R)$ says: if P holds, then the inner implication $Q \Rightarrow R$ must hold. The inner implication fails only when Q is true and R is false. So the whole statement fails only in the case P and Q are both true and R is false. That is exactly when $(P \land Q) \Rightarrow R$ fails. This is why they are equivalent.

Is
$$P \Rightarrow (Q \Rightarrow R)$$
 equivalent to $Q \Rightarrow (P \Rightarrow R)$?

Yes. From above, $P \Rightarrow (Q \Rightarrow R)$ is equivalent to $(P \land Q) \Rightarrow R$. By the same reasoning with P and Q swapped, $Q \Rightarrow (P \Rightarrow R)$ is also equivalent to $(P \land Q) \Rightarrow R$. Since both are equivalent to the same statement, they are equivalent to each other.

Implication only form of $(P \land Q \land R) \Rightarrow S$

Use the identity $A \wedge B \equiv \neg (A \Rightarrow \neg B)$. Applying it twice,

$$(P \land Q \land R) \Rightarrow S \equiv (P \Rightarrow \neg(Q \Rightarrow \neg R)) \Rightarrow S,$$

which uses only \Rightarrow and \neg . It is correct because $Q \land R$ is true exactly when $Q \Rightarrow \neg R$ is false.

Exercise 3: The statement $((P \Rightarrow \neg P) \Rightarrow P) \Rightarrow P$ is a tautology

Let

$$S = ((P \Rightarrow \neg P) \Rightarrow P) \Rightarrow P.$$

Truth table

Since S depends only on P, there are only two cases to check.

P	$P \Rightarrow \neg P$	$(P \Rightarrow \neg P) \Rightarrow P$	S
T	F	T	Τ
F	T	${ m F}$	Τ

In both rows S is true, so the whole statement is a tautology.

Step-by-step equivalences

We can also show S is a tautology by simplifying it with standard equivalences.

$$S = ((P \Rightarrow \neg P) \Rightarrow P) \Rightarrow P$$

$$\equiv \neg ((P \Rightarrow \neg P) \Rightarrow P) \lor P$$

$$\equiv ((P \Rightarrow \neg P) \land \neg P) \lor P$$

$$\equiv ((\neg P \lor \neg P) \land \neg P) \lor P$$

$$\equiv (\neg P \land \neg P) \lor P$$

$$\equiv (\neg P \land \neg P) \lor P$$

$$\equiv P \Rightarrow P.$$
rewrite outer implication negate inner implication rewrite $P \Rightarrow \neg P$ idempotence of \lor

Since $P \Rightarrow P$ is always true, S is a tautology.

Explanation in words

Work from the inside out. The statement $P \Rightarrow \neg P$ is true only when P is false, so it is equivalent to $\neg P$. That makes the middle piece $(P \Rightarrow \neg P) \Rightarrow P$ say "if $\neg P$ then P," which is just another way of saying P. Finally S becomes $P \Rightarrow P$, which is always true. This matches the everything above and confirms that S is a tautology.