Table of Contents

Parameter optimisation

Parameter optimisation

```
lorenz! (generic function with 1 method)
```

```
    begin
        using DifferentialEquations, Flux, DiffEqFlux, Plots
    function lorenz!(du, u, p, t)
        x, y, z = u
        α, β, ρ = p
        du[1] = dx = α*y - α*x
        du[2] = dy = x*(ρ-z) -y
        du[3] = dz = x*y - β*z
        end
        end
    end
```

```
u0 = Float64[1.0, 1.0, 1.0]
• u0 = [1.0, 1.0, 1.0]
```

```
0.0:0.1:10.0
```

```
begin
tspan = (0.0, 10.0)
tsteps = 0.0:0.1:10.0
end
```

```
p = Float64[10.0, 2.66667, 28.0]
    p = [10, 8/3, 28]
```

	timestamp	value1	value2	value3
1	0.0	1.0	1.0	1.0
2	0.0372378	1.148	1.83331	1.03124
3	0.0618418	1.3902	2.48107	1.08143
4	0.103775	2.07305	3.95208	1.27958

	timestamp	value1	value2	value3	
5	0.146359	3.20537	6.18654	1.79939	
6	0.19905	5.49456	10.4709	3.587	
7	0.251097	9.06276	16.4154	8.46477	
8	0.306398	13.8872	21.3667	20.3403	
Q	0.363248	16.46	15,5197	36.7049	

```
begin
prob = ODEProblem(lorenz!, u0, tspan, p)
sol = solve(prob, Tsit5())
end
```

Float64[1.0, 1.03124, 1.08143, 1.27958, 1.79939, 3.587, 8.46477, 20.3403, 36.7049,

• sol[3,:]


```
begin
plot(sol)
```

end


```
plot(sol[1,:], sol[2,:], sol[3,:], linewidth = 2, label = "truth", legend = true)
```

• Enter cell code...

loss_rd (generic function with 1 method)

```
begin
    params = Flux.params(p)

function predict_rd() # Our 1-layer "neural network"
    solve(prob,Tsit5(),p=p,saveat=0.1)[1,:] # override with new parameters
end

loss_rd() = sum(abs2,x-1 for x in predict_rd()) # loss function
end
```

InterruptException:

```
begin
data = Iterators.repeated((), 100)
opt = ADAM(0.1)
Flux.train!(loss_rd, params, data, opt)
end
```


plot(solve(remake(prob,p=p),Tsit5(),saveat=0.1),ylim=(0,6))

	timestamp	value1	value2	value3
54	1 2.0775	0.000896601	0.0341199	411.713
5.	2.09501	0.00398003	0.0146233	424.665
50	2.11208	0.00346929	-0.0140014	437.695
5	2.12754	0.000618749	-0.0278579	449.826
	timestamp	value1	value2	value3
5	2.10002	-0.00010001	0.00000310	4/0.004
6	2.17659	-0.00129291	0.0208206	490.618
6	2.1922	0.00129083	0.0201954	504.36
6	2.2075	0.00253962	0.00417206	518.192
6	3 2.22342	0.00161113	-0.0140126	533.002
6	1 2.23784	-0.000356968	-0.0186565	546.78
6	2.25336	-0.00188756	-0.00800282	562.003
6	2.26851	-0.00164618	0.00810934	577.267
6	7 2.28207	-0.000248799	0.0156317	591.285
		0 00407700	0 0400740	607 207

• plot(new_sol[1,:])

Float64[7.48035, -1.76945, 15.0526]

• р

• plot(new_sol[1,:], new_sol[2,:], new_sol[3,:], linewidth = 2, label = "truth", legend = true)