6.842 Randomness and Computation

April 6, 2022

Lectures on Learning Theory

Lecturer: Ronitt Rubinfield Scribe: Yuchong Pan

1 PAC Learning

The model of learning from random, uniform examples is as follows: Given the example oracle Ex(f) of a function f, pick m i.i.d. random variables x_1, \ldots, x_m uniformly (or from some distribution \mathcal{D} , which might not be known to the learner in general), and call Ex(f) to obtain m random labeled examples $(x_1, f(x_1)), \ldots, (x_m, f(x_m))$; after seeing these examples, the learner outputs a hypothesis h of the function f.

Should we require h = f? This is probably too much to ask. However, we can at least require $\operatorname{dist}(h, f) := \mathbb{P}_{x \sim \mathcal{D}}(h(x) \neq f(x)) \leq \varepsilon$, where $\operatorname{dist}(h, f)$ is also called $\operatorname{error}_{\mathcal{D}}(h)$ with respect to f.

Definition 1. A uniform distribution learning algorithm for a concept class C is an algorithm A that, given $\varepsilon > 0$, $\delta > 0$ and access to $\operatorname{Ex}(f)$ for $f \in C$, outputs a function h such that with probability at least $1 - \delta$, error(h) with respect to f is at most ε . This is called probably approximately correct (PAC) learning.

We are interested in the following parameters:

- m, the sample complexity;
- ε , the accuracy parameter;
- δ , the *confidence* parameter;
- the running time, which we hope to be poly(log(domain size), $1/\varepsilon$, $1/\delta$);
- the description of h, which at least should be compact (i.e., $O(\log |\mathcal{C}|)$) and efficient to evaluate; it require $h \in \mathcal{C}$, then this is called proper learning.

Note that the uniform case is a special case of the PAC model. The more general PAC model is given $\text{Ex}_{\mathcal{D}}(f)$ and bounds $\text{error}_{\mathcal{D}}(h)$ with respect to f.

2 Learning Conjunctions

Let \mathcal{C} be the class of conjunctions (i.e., 1-term DNF) over $\{0,1\}^n$. We cannot hope for 0-error from a sub-exponential number of random samples; to see this, note that it is hard to distinguish $f(x) = x_1 \cdots x_n$ and f(x) = F. Algorithm 1 gives a polynomial time sampling algorithm for conjunction learning, where "?" indicates a parameter to be determined.

For x_i in the conjunction, it must be set in the same way in each positive example, so $i \in V$. For x_i not in the conjunction,

$$\mathbb{P}[i \in V] = \mathbb{P}[x_i \text{ is set is the same way in each of the } k \text{ positive examples}] = \frac{1}{2^{k-1}}.$$

By the union bound,

$$\mathbb{P}\left[\text{any }x_i \text{ not in the conjunction survives}\right] \leq \frac{n}{2^{k-1}} \leq \delta,$$

```
1 draw poly(1/\varepsilon) samples

2 estimate \mathbb{P}[f(x)=1] to additive error at most \pm \varepsilon/4 and confidence at least 1-\delta/2

3 if estimate is less than \varepsilon/2 then

4 return h(x)=0

5 (estimate is at least \varepsilon/2; see a new positive example every O(1/\varepsilon) samples)

6 collect? more positive examples

7 V \leftarrow set of indices of variables that are set in the same way in each positive example

8 return h(x) = \bigwedge_{i \in V} x_i^{b_i}, where each b_i indicates if x_i is complemented or not
```

Algorithm 1: A polynomial time sampling algorithm for conjunction learning.

if we pick $k = \log(n/\delta)$. Therefore, if we need $\Omega(\log(n/\delta))$ positive examples, or $\Omega((1/\varepsilon)\log(n/\delta))$ total examples to rule out every x_i not in the conjunction.

3 Occam's Razor

In a high level, Occam's Razor claims the following:

- If we ignore the running time, then learning is easy (with a polynomial number of samples).
- The shortest explanation is the best.

To see the first claim, we consider the brute-force algorithm in Algorithm 2.

```
1 draw M = (1/\varepsilon)(\ln |\mathcal{C}| + \ln |1/\delta|)
2 search over all h \in \mathcal{C} until find one consistent with the samples
3 return h
```

Algorithm 2: A brute-force learning algorithm that demonstrates Occam's Razor.

We say that a function h is bad if error(h) with respect to f is at least ε . For a bad function h,

 $\mathbb{P}[h \text{ is consistent with the samples}] \leq (1 - \varepsilon)^{M}.$

By the union bound,

 $\mathbb{P}[\text{any bad function } h \text{ is consistent with the samples}] \leq |\mathcal{C}|(1-\varepsilon)^M = |\mathcal{C}|(1-\varepsilon)^{\frac{1}{\varepsilon}\left(\ln|\mathcal{C}| + \ln\left|\frac{1}{\delta}\right|\right)} = \delta.$

Hence, it is unlikely to output a bad hypothesis h. For example, for conjunction learning, this analysis requires $O((1/\varepsilon)(n+1/\delta))$ samples, where Algorithm 1 has a better sample complexity. On the other hand, if we have a *qood* hypothesis h,

(i) we can predict values of f on new random inputs according to distribution \mathcal{D} , since

$$\mathbb{P}_{x \sim \mathcal{D}}[f(x) = h(x)] \ge 1 - \delta;$$

(ii) we can compress the description of samples $(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_m, f(x_m))$ from the naïve description which takes $m(\log |D| + \log |R|)$ bits, where D and R are the domain and the range of f, respectively, to the form " x_1, \ldots, x_m plus the description of h" which requires $m \log |D| + \log |\mathcal{C}|$ bits only.

4 Learning via Fourier Representations

In this section, we study learning algorithms that are based on estimating the Fourier representation of a function f.

4.1 Approximating One Fourier Coefficient

Lemma 2. For any $S \subset [n]$, one can approximate $\hat{f}(S)$ to within additive error γ (i.e., $|output - \hat{f}(S)| \leq \gamma$) with probability at least $1 - \delta$ in $O(1/\gamma^2 \log 1/\delta)$ samples.

Proof. Recall that $\hat{f}(S) = 2 \mathbb{P}_{x \in \{0,1\}^n}[f(x) \neq \chi_S(x)] - 1$. Hence, we can approximate $\hat{f}(S)$ by estimating $\mathbb{P}_{x \in \{0,1\}^n}[f(x) \neq \chi_S(x)]$ and applying the Chernoff bound.

We examine the Fourier representations of some important examples:

(i) Let $T = \{i_1, \dots, i_k\} \subset [n]$ be such that |T| = k. Let $\overline{\mathsf{AND}} : \{\pm 1\}^n \to \{\pm 1\}$ be defined by

$$\overline{\mathsf{AND}}(x) = \left\{ \begin{array}{ll} 1, & \text{if } x_i = -1 \text{ for all } i \in T, \\ -1, & \text{otherwise.} \end{array} \right.$$

Let $f: \{\pm 1\}^n \to \{0,1\}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x_i = -1 \text{ for all } i \in T, \\ 0, & \text{otherwise,} \end{cases}$$
$$= \frac{1 - x_{i_1}}{2} \cdot \frac{1 - x_{i_2}}{2} \cdot \cdot \cdot \frac{1 - x_{i_k}}{2}$$
$$= \frac{1}{2^k} \sum_{S \subset T} (-1)^{|S|} \chi_S(x).$$

Note that all Fourier coefficients $\hat{f}(S)$ for $S \not\subset T$ are 0. Then

$$\overline{\mathsf{AND}}(x) = 2f(x) - 1 = -1 + \frac{2}{2^k} + \sum_{\substack{S \subset T \\ S \neq \emptyset}} \frac{(-1)^{|S|}}{2^k} \chi_S(x).$$

(ii) **Decision trees.** Consider a decision tree T, e.g., Figure 1. For each leaf ℓ of T, let V_{ℓ} denote the set of indices of variables visited on the path from the root to leaf ℓ , and let $f_{\ell}: \{\pm 1\}^n \to \{0,1\}$ be defined by

$$f_{\ell}(x) = \prod_{i \in V_{\ell}} \frac{1 \pm x_i}{2}$$
 ("±" denotes a left turn or a right turn)
$$= \frac{1}{2^{|V_{\ell}|}} \sum_{S \subset V_{\ell}} (-1)^{\# \text{ left turns taken in } S} \chi_{S}.$$

Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be defined by

$$f(x) = \sum_{\ell: \text{ leaf of } T} f_{\ell}(x) \operatorname{val}(\ell).$$

Note that for each $x \in \{\pm 1\}^n$, exactly one of the values $f_{\ell}(x)$ is 1 for leaves ℓ of T, and all others are 0.

Figure 1: A decision tree.

4.2 Fourier Concentration

Definition 3. For all $\varepsilon \in (0,1)$ and $n \in \mathbb{N}$, we say that a function $f: \{\pm 1\}^n \to \mathbb{R}$ has $\alpha(\varepsilon, n)$ Fourier concentration (f.c.) if

$$\sum_{\substack{S \subset [n]\\|S| > \alpha(\varepsilon, n)}} \hat{f}(S)^2 \le \varepsilon.$$

For a Boolean function $f:\{\pm 1\}^n \to \{\pm 1\}$, Parseval's identity gives $\sum_{S\subset [n]} \hat{f}(S)^2=1$, so having $\alpha(\varepsilon,n)$ -Fourier concentration implies that

$$\sum_{\substack{S \subset [n] \\ |S| \le \alpha(\varepsilon, n)}} \ge 1 - \varepsilon.$$

Following are two examples of functions that have $\alpha(\varepsilon, n)$ -Fourier concentration.

(i) Any function $f: \{\pm 1\}^n \to \mathbb{R}$ that depends on at most k variables has

$$\sum_{\substack{S \subset [n]\\|S| > k}} \hat{f}(S)^2 = 0.$$

(ii) Let f be the $\overline{\mathsf{AND}}$ function on $T \subset [n]$. We claim that f has $\log(4/\varepsilon)$ -Fourier concentration. Note $\hat{f}(S) = 0$ for all $S \subset [n]$ with |S| > |T|. If $|T| \le \log(4/\varepsilon)$, then we are done by definition. If $|T| > \log(4/\varepsilon)$, then

$$\hat{f}(\emptyset)^2 = (1 - 2 \mathbb{P}[f(x) \neq \chi_{\emptyset}(x)])^2 = \left(1 - 2 \cdot \frac{1}{2^{|T|}}\right)^2 > 1 - \varepsilon.$$

Therefore, f has 0-Fourier concentration.

```
1 take m = O((n^d/\tau)\log(n^d/\delta)) samples
```

- 2 foreach $S \subset [n]$ such that $|S| \leq d$ do
- $C_S \leftarrow \text{estimate of } \hat{f}(S)$
- 4 let $h: \{\pm 1\}^n \to \mathbb{R}$ be defined by $h(x) = \sum_{S \subset [n]: |S| \le d} C_S \chi_S(x)$
- ${f 5}$ return sign ${f \circ}h$ as hypothesis

Algorithm 3: The low degree algorithm given degree d, accuracy τ and confidence δ .

4.3 The Low Degree Algorithm

The low degree algorithm, given in Algorithm 3, approximates a Boolean function with d-Fourier concentration, where $d = \alpha(\varepsilon, n)$.

Proposition 4. If f has d-Fourier concentration with $d = \alpha(\varepsilon, n)$, then $\mathbb{E}_{x \in \{0,1\}^n}[(f(x) - h(x))^2] \le \varepsilon + \tau$ with probability at least $1 - \delta$.

Proof. First, we claim that each low degree Fourier Coefficient is well approximated, i.e., with probability at least $1 - \delta$, we have $|C_S - \hat{f}(S)| \le \gamma$ for all $S \subset [n]$ with $|S| \le d$, where $\gamma = \sqrt{\tau/n^d}$. This can be proved using the Chernoff bound and the union bound.

Second, we show that if all low degree Fourier coefficients are well approximated, then h has a low ℓ_2 -error. Suppose $|C_S - \hat{f}(S)| \leq \gamma$ for all $S \subset [n]$ such that $|S| \leq d$. Let $g : \{\pm 1\}^n \to \mathbb{R}$ be defined by

$$g(x) = f(x) - h(x).$$

By the linearity of the Fourier transform, for all $S \subset [n]$,

$$\hat{g}(S) = \hat{f}(S) - \hat{h}(S).$$

For all $S \subset [n]$ with |S| > d, we have $\hat{h}(S) = 0$, so $\hat{g}(S) = \hat{f}(S)$. For all $S \subset [n]$ with $|S| \leq d$, we have $|\hat{g}(S)| \leq \gamma$, so $\hat{g}(S)^2 \leq \gamma^2$. Therefore,

$$\mathbb{E}_{x \in \{\pm 1\}^n} \left[(f(x) - h(x))^2 \right] = \mathbb{E} \left[g(x)^2 \right] = \sum_{S \subset [n]} \hat{g}(S)^2 \qquad \text{(Parseval's identity)}$$

$$= \sum_{\substack{S \subset [n] \\ |S| \le d}} \hat{g}(S)^2 + \sum_{\substack{S \subset [n] \\ |S| > d}} \hat{g}(S)^2$$

$$\leq \sum_{\substack{S \subset [n] \\ |S| \le d}} \gamma^2 + \sum_{\substack{S \subset [n] \\ |S| > d}} \hat{f}(S)^2$$

$$\leq \binom{n}{d} \cdot \gamma^2 + \varepsilon \qquad \text{(by Fourier concentration)}$$

$$< \tau + \varepsilon.$$

This completes the proof.

Proposition 5. Let $f: \{\pm 1\}^n \to \{\pm 1\}$. Let $h: \{\pm 1\}^n \to \mathbb{R}$. Then

$$\underset{x \in \{\pm 1\}^n}{\mathbb{P}} [f(x) \neq \operatorname{sign}(h(x))] \leq \underset{x \in \{\pm 1\}^n}{\mathbb{E}} \left[(f(x) - h(x))^2 \right]$$