

C28SOI_IO_EXT_ALLF_CORESUPPLY_EG User's manual

1.0 V / 1.8 V / 3.3 V dedicated supply IO library designed in 28 nm FDSOI technology

Overview

The C28SOI_IO_ALLF_CORESUPPLY_EG library provides ESD core clamp and dedicated core supply cells.

Features

- Uses the standard process option and 28 Å gate oxide.
- Supports CSF and 3V3SF frames.
- Supports single and double rows configuration for an IO ring¹.
- FC (Flip-chip) and CL (Cluster) frames provided.

Applications

 Used as dedicated 1.0V, 1.8V and 3.3V supply cells with ESD protection.

Information Snapshot

Process Options

■ GO1: SVT ■ GO2: 28 Å

Packaging

■ Flip-chip

Table 1: Operating values

Symbol	Parameter Min Typ Max			May	Unit
Cyrribor	Talanete Wiii		י אָף	IVICA	Oill
vdd/ vddcore1v0	Supply voltage for 1.0 V node	*	1.0	1.1	٧
vddcore1v8	Supply voltage for 1.8 V node	,		1.95	V
vddcore3v3	Supply voltage for 3.3 V node	, , , , , , , , , , , , , , , , , ,		3.6	V
vdde	Supply voltage for 1.8 V IO ring	*	1.8	1.95	V
vuue	Supply voltage for 3.3 V IO ring	*	3.3	3.6	V
T _{junction}	Operating junction temperature	- 40	25	125	°C

^{*} As per design Platform specification

For more details about electrical specifications, please refer to Section 3: Electrical Specifications.

^{1 .} Single row configuration is also called as linear configuration.

1. Quick References

The document uses the following convention to indicate logic levels:

L indicates logic low.

H indicates logic high.

X indicates don't care state.

Z indicates high impedance state.

'-' (Hyphen) indicates 'No activity'.

- * suffixed in library name indicates multiple metallization options.
- ** suffixed in cell name indicates multiple packages / configurations.

1.1 Metal Stacking Convention

The metallization option supported by this library can be referred from its product package. The following is the convention that can be used to decode the segment in the library name:

- 7 metal option (5U1X2T8XLB) known as 5002 refers as follows:
 - 5U1X refers to the first 5 levels with 1X pitch (thin) metal.
 - 2T8X refers to 2 levels with 8X (thick) metal in oxide.
 - LB is the Alucap.
- 8 metal option (6U1X2T8XLB) known as 6002 refers as follows:
 - 6U1X refers to the first 6 levels with 1X pitch (thin) metal in ultra-low-K.
 - 2T8X refers to 2 levels with 8X (thick) metal in oxide.
 - LB is the Alucap.
- 10 metal option (6U1X2U2X2T8XLB) known as 6202 refers as follows:
 - 6U1X refers to the first 6 levels with 1x pitch (thin) metal in ultra-low-K.
 - 2U2X refers to the next 2 levels with 2x pitch (thin) metal in ultra-low-K.
 - 2T8X refers to 2 levels with 8x (thick) metal in oxide.
 - LB is the Alucap.

1.2 Reference Documentation

For details on the following topics:

- Power Sequencing Recommendation in IOs
- Specifications and Analysis of Overshoots and Undershoots
- SSN Application Notes
- ESD qualification
- Latch-up qualification
- Maturity information
- RDL recommended rules
 - ST users, refer to the IO Reference catalog
 (http://ccds.st.com/cps/sections/library/io/io_reference_catalog/downloadFile/file/IO_Helpdes
 k Solutions.pdf).
 - Non-ST users, contact Customer Support personnel

1.3 Reference Library

The C28SOI_IO_EXT_ALLF_CORESUPPLY_EG library refers to some cells from 28nm FDSOI libraries listed below. For a correct usage, these libraries are mandatory:

- C28SOI_IO_ALLF_FRAMEKIT_EG
- C28SOI_IO_ALLF_IOSUPPLYKIT_EG

1.4 Acronyms and Abbreviations Used

Table 2: Acronyms and Abbreviation

Acronym/Abbreviation	Description	
B2B	Back-to-Back	
СДМ	Charge Device Model	
DC	Direct Current	
DRM	Design Rule Manual	
ESD	Electrostatic Discharge	
НВМ	Human Body Model	
FC	Flip-chip	
CL	Cluster	
MM	Machine Model	
RMS	Root Mean Square	
SVT	Standard V _T	
2ROWS	Two rows	

2. Functional Specifications

The C28SOI_IO_EXT_ALLF_CORESUPPLY_EG library includes 65 cells.

Table 3: Cell List					
Cell Name	Width x Height (µm)	Cell Description			
Core cells					
ESDCLAMP_1V0_45U_130U_EXT	130 x 45	Core cell including 1.0 V ESD clamp			
ESDCLAMP_1V0_EXT	73 x 79	Core cell including 1.0 V ESD clamp			
ESDCLAMP_1V8_EXT	73 x 79	Core cell including 1.8 V ESD clamp			
ESDCLAMP_3V3_EXT	103 x 78	Core cell including 3.3 V ESD clamp			
CORECELL_B2B_EXT	21.1 x 19.7	Core cell including B2B diodes			
CSF frame, FC view, linear placement					
GNDCORE_EXT_CSF_FC_LIN	20 x 90.8	Dedicated core ground supply cell			
VDDCORE_1V0_GNDCORE_EXT_CSF_FC_LIN	70 x 90.8	Dedicated 1.0V power supply referring to a dedicated ground node			
VDDCORE_1V0_GNDE_EXT_CSF_FC_LIN	70 x 90.8	Dedicated 1.0V power supply referring to gnde ground node			
VDDCORE_1V0_GND_EXT_CSF_FC_LIN	70 x 90.8	Dedicated 1.0V power supply referring to gnd ground node			
VDDCORE_1V8_GNDCORE_EXT_CSF_FC_LIN	70 x 90.8	Dedicated 1.8V power supply referring to a dedicated ground node			
VDDCORE_1V8_GNDE_EXT_CSF_FC_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnde ground node			
VDDCORE_1V8_GND_EXT_CSF_FC_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnd ground node			
VDDCORE_3V3_GNDCORE_EXT_CSF_FC_LIN	100 x 90.8	Dedicated 3.3V power supply referring to a dedicated ground node			
VDDCORE_3V3_GNDE_EXT_CSF_FC_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnde ground node			
VDDCORE_3V3_GND_EXT_CSF_FC_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnd ground node			
CSF frame, FC view, 2rows placement					
GNDCORE_EXT_CSF_FC_INNER	40 x 90.8	Dedicated core ground supply cell			
VDDCORE_1V0_GNDCORE_EXT_CSF_FC_INNER	70 x 90.8	Dedicated 1.0V power supply referring to a dedicated ground node			
VDDCORE_1V0_GNDE_EXT_CSF_FC_INNER	70 x 90.8	Dedicated 1.0V power supply referring to gnde ground node			
VDDCORE_1V0_GND_EXT_CSF_FC_INNER	70 x 90.8	Dedicated 1.0V power supply referring to gnd ground node			

Table 3: Cell List		
Cell Name	Width x Height (µm)	Cell Description
VDDCORE_1V8_GNDCORE_EXT_CSF_FC_INNER	70 x 90.8	Dedicated 1.8V power supply referring to a dedicated ground node
VDDCORE_1V8_GNDE_EXT_CSF_FC_INNER	70 x 90.8	Dedicated 1.8V power supply referring to gnde ground node
VDDCORE_1V8_GND_EXT_CSF_FC_INNER	70 x 90.8	Dedicated 1.8V power supply referring to gnd ground node
VDDCORE_3V3_GNDCORE_EXT_CSF_FC_INNER	100 x 90.8	Dedicated 3.3V power supply referring to a dedicated ground node
VDDCORE_3V3_GNDE_EXT_CSF_FC_INNER	100 x 90.8	Dedicated 3.3V power supply referring to gnde ground node
VDDCORE_3V3_GND_EXT_CSF_FC_INNER	100 x 90.8	Dedicated 3.3V power supply referring to gnd ground node
CSF frame, CL view, cluster placement		
GNDCORE_EXT_CSF_CL_LIN	20 x 106.3	Dedicated core ground supply cell
VDDCORE_1V0_GNDCORE_EXT_CSF_CL_LIN	70 x 106.3	Dedicated 1.0V power supply referring to a dedicated ground node
VDDCORE_1V0_GNDE_EXT_CSF_CL_LIN	70 x 106.3	Dedicated 1.0V power supply referring to gnde ground node
VDDCORE_1V0_GND_EXT_CSF_CL_LIN	70 x 106.3	Dedicated 1.0V power supply referring to gnd ground node
VDDCORE_1V8_GNDCORE_EXT_CSF_CL_LIN	70 x 106.3	Dedicated 1.8V power supply referring to a dedicated ground node
VDDCORE_1V8_GNDE_EXT_CSF_CL_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnde ground node
VDDCORE_1V8_GND_EXT_CSF_CL_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnd ground node
VDDCORE_3V3_GNDCORE_EXT_CSF_CL_LIN	100 x 106.3	Dedicated 3.3V power supply referring to a dedicated ground node
VDDCORE_3V3_GNDE_EXT_CSF_CL_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnde ground node
VDDCORE_3V3_GND_EXT_CSF_CL_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnd ground node
3V3SF frame, FC view, linear placement		
GNDCORE_EXT_3V3SF_FC_LIN	20 x 90.8	Dedicated core ground supply cell
VDDCORE_1V0_GNDCORE_EXT_3V3SF_FC_LIN	70 x 90.8	Dedicated 1.0V power supply referring to a dedicated ground node
VDDCORE_1V0_GNDE_EXT_3V3SF_FC_LIN	70 x 90.8	Dedicated 1.0V power supply referring to gnde ground node
VDDCORE_1V0_GND_EXT_3V3SF_FC_LIN	70 x 90.8	Dedicated 1.0V power supply referring to gnd ground node
VDDCORE_1V8_GNDCORE_EXT_3V3SF_FC_LIN	70 x 90.8	Dedicated 1.8V power supply referring to a dedicated ground node
VDDCORE_1V8_GNDE_EXT_3V3SF_FC_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnde ground node

Table 3: Cell List						
Cell Name	Width x Height (µm)	Cell Description				
VDDCORE_1V8_GND_EXT_3V3SF_FC_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnd ground node				
VDDCORE_3V3_GNDCORE_EXT_3V3SF_FC_LIN	100 x 90.8	Dedicated 3.3V power supply referring to a dedicated ground node				
VDDCORE_3V3_GNDE_EXT_3V3SF_FC_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnde ground node				
VDDCORE_3V3_GND_EXT_3V3SF_FC_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnd ground node				
3V3SF frame, FC view, 2rows placement						
GNDCORE_EXT_3V3SF_FC_INNER	20 x 90.8	Dedicated core ground supply cell				
VDDCORE_1V0_GNDCORE_EXT_3V3SF_FC_INNER	70 x 90.8	Dedicated 1.0V power supply referring to a dedicated ground node				
VDDCORE_1V0_GNDE_EXT_3V3SF_FC_INNER	70 x 90.8	Dedicated 1.0V power supply referring to gnde ground node				
VDDCORE_1V0_GND_EXT_3V3SF_FC_INNER	70 x 90.8	Dedicated 1.0V power supply referring to gnd ground node				
VDDCORE_1V8_GNDCORE_EXT_3V3SF_FC_INNER	70 x 90.8	Dedicated 1.8V power supply referring to a dedicated ground node				
VDDCORE_1V8_GNDE_EXT_3V3SF_FC_INNER	70 x 90.8	Dedicated 1.8V power supply referring to gnde ground node				
VDDCORE_1V8_GND_EXT_3V3SF_FC_INNER	70 x 90.8	Dedicated 1.8V power supply referring to gnd ground node				
VDDCORE_3V3_GNDCORE_EXT_3V3SF_FC_INNER	100 x 90.8	Dedicated 3.3V power supply referring to a dedicated ground node				
VDDCORE_3V3_GNDE_EXT_3V3SF_FC_INNER	100 x 90.8	Dedicated 3.3V power supply referring to gnde ground node				
VDDCORE_3V3_GND_EXT_3V3SF_FC_INNER	100 x 90.8	Dedicated 3.3V power supply referring to gnd ground node				
3V3SF frame, CL view, cluster placement						
GNDCORE_EXT_3V3SF_CL_LIN	20 x 106.3	Dedicated core ground supply cell				
VDDCORE_1V0_GNDCORE_EXT_3V3SF_CL_LIN	70 x 106.3	Dedicated 1.0V power supply referring to a dedicated ground node				
VDDCORE_1V0_GNDE_EXT_3V3SF_CL_LIN	70 x 106.3	Dedicated 1.0V power supply referring to gnde ground node				
VDDCORE_1V0_GND_EXT_3V3SF_CL_LIN	70 x 106.3	Dedicated 1.0V power supply referring to gnd ground node				
VDDCORE_1V8_GNDCORE_EXT_3V3SF_CL_LIN	70 x 106.3	Dedicated 1.8V power supply referring to a dedicated ground node				
VDDCORE_1V8_GNDE_EXT_3V3SF_CL_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnde ground node				
VDDCORE_1V8_GND_EXT_3V3SF_ CL_LIN	70 x 90.8	Dedicated 1.8V power supply referring to gnd ground node				
VDDCORE_3V3_GNDCORE_EXT_3V3SF_CL_LIN	100 x 106.3	Dedicated 3.3V power supply referring to a dedicated ground node				

Table 3: Cell List		
Cell Name	Width x Height (µm)	Cell Description
VDDCORE_3V3_GNDE_EXT_3V3SF_ CL_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnde ground node
VDDCORE_3V3_GND_EXT_3V3SF_ CL_LIN	100 x 90.8	Dedicated 3.3V power supply referring to gnd ground node

The ALLCELLS cells are not considered part of the Deliverable. These cells are specifically for QA check and hence subject to change, without prior notice.

2.1 Lateral pins

As all CSF / 3V3SF dedicated IO supply cells share the same set of data lateral pins, these pins are described only one time in the table below .

Table 4: Track pins description

Pin	Туре	Voltage Level (V)	Description			
CSF FRAME						
ASRCN<0:6>	Input/Output	0 or vdde	ASRCN <0:6> signal nodes			
ASRCP<0:6>	Input/Output	0 or vdde	ASRCP <0:6> signal nodes			
REFIOA	Input/Output	Vref	REFIOA reference node			
REFIOB	Input/Output	Vref	REFIOB reference node			
	3V3SF	FRAME				
ASRCN3V3<4:0>	Input/Output	0 or vdde	ASRCN3V3 <4:0> signal nodes			
ASRCP3V3<4:0>	Input/Output	0 or vdde	ASRCP3V3 <4:0> signal nodes			
REFAPBIAS3V3	Input/Output	Vref	REFAPBIAS3V3 reference node			
REFBAMPL3V3	Input/Output	Vref	REFBAMPL3V3 reference node			
REFCAMPH3V3	Input/Output	Vref	REFCAMPH3V3 reference node			
REFDNBIAS3V3	Input/Output	Vref	REFDNBIAS3V3 reference node			
REFE3V3	Input/Output	Vref	REFE3V3 reference node			
REFL3V3	Input/Output	Vref	REFL3V3 reference node			
REFH3V3	Input/Output	Vref	REFH3V3 reference node			

2.2 GNDCORE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.2.1 Functional Diagram

2.2.2 Interface Description

Table 5: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pin						
gndcore	Input / Output	0	Dedicated ground node, pad side				
		Track and core pins					
gndcore	Input / Output	0	Dedicated ground node, only core side				
vdde	Input / Output	vdde	IO power node (1.8 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.2.3 Cell Information

Table 6: Cell information

Symbol	Doromotor	Condition	Value			l lmi4	
Symbol	Parameter	Condition	Min	Тур	Max	Unit	
	Lookaga aurrant	Fast Process, Max voltage, 25 °C (vdde node)	-	-	< 150	5 Λ	
I _{leakage} Leakage current	Fast Process, Max voltage, 125 °C (vdde node)	-	-	< 150	pА		
	DC current Pad To Core [1]	110 °C (gndcore node)	-	-	81		
	DC current Pad To Core	125 °C (gndcore node)	-	-	29	m Λ	
I _{DC}	DC current Pad To Core [2]	110 °C (gndcore node)	-	-	38	mA	
		125 °C (gndcore node)	-	-	22		
	RMS current Pad To Core [1]	100 °C (gndcore node)	-	-	139	m A	
I _{RMS}	RMS current Pad To Core [2]	100 °C (gndcore node)	-	-	103	mA	

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.2.4 Functional Description

These cells are dedicated core ground CSF supplies with a core pin provided in metal top (IB).

2.3 GNDCORE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.3.1 Functional Diagram

2.3.2 Interface Description

Table 7: Pin description

Pin	Туре	Voltage Level (V)	Description			
Pad pin						
gndcore	Input / Output	0	Dedicated ground node, pad side			
		Track and core pins				
gndcore	Input / Output	0	Dedicated ground node, only core side			
vdde	Input / Output	vdde	IO power node (3.3 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.3.3 Cell Information

Table 8: Cell information

Symbol	Poromotor	Condition	Value			l lmi4	
Symbol	Parameter	Condition	Min	Тур	Max	Unit	
I _{leakage} Leakage current	Fast Process, Max voltage, 25 °C (vdde node)	-	-	< 150	5Λ		
	Fast Process, Max voltage, 125 °C (vdde node)	-	-	< 150	pА		
	DC current Pad To Core [1]	110 °C (gndcore node)	-	-	81		
		125 °C (gndcore node)	-	-	29	mA	
I _{DC}		110 °C (gndcore node)	-	-	38	MA	
DC current Pad To C	DC current Pad To Core ^[2]	125 °C (gndcore node)	-	-	22		
	RMS current Pad To Core [1]	100 °C (gndcore node)	-	-	139	m ∧	
I _{RMS}	RMS current Pad To Core [2]	100 °C (gndcore node)	-	-	103	- mA	

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.3.4 Functional description

These cells are dedicated core ground 3V3SF supplies with a core pin provided in metal top (IB).

2.4 VDDCORE_1V0_GNDCORE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.4.1 Functional Diagram

2.4.2 Interface Description

Table 9: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, pad side				
gndcore	Input / Output	0	Dedicated ground node, pad side				
	Track and core pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, only core side				
gndcore	Input / Output	0	Dedicated ground node, only core side				
vdde	Input / Output	vdde	IO power node (1.8 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.4.3 Cell Information

Table 10: Cell information

O la al	D	O		Value		11-2
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	_{kage} Leakage current –	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	64	nA
Ileakage		Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μА
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v0 and gndcore nodes)	-	-	81	
		125 °C (vddcore1v0 and gndcore nodes)	-	-	29	A
IDC		110 °C (vddcore1v0 and gndcore nodes)	-	-	38	- mA
		125 °C (vddcore1v0 and gndcore nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C (vddcore1v0 and gndcore nodes)	-	-	139	m A
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore1v0 and gndcore nodes)	-	ı	103	mA mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.4.4 Functional Description

These cells represent a dedicated 1.0V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.5 VDDCORE_1V0_GNDE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.5.1 Functional Diagram

2.5.2 Interface Description

Table 11: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, pad side				
gnde	Input / Output	0	IO ground node, pad side				
	Track and core pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, only core side				
vdde	Input / Output	vdde	IO power node (1.8 V), only track side				
gnde	Input / Output	0	IO ground node				
gnd	Input / Output	0	Core and substrate ground node				

2.5.3 Cell Information

Table 12: Cell information

0	D	O-maliti-		Value		11-16
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	I _{leakage} Leakage current	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	64	nA
lleakage		Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v0 and gnde nodes)	-	-	81	
		125 °C (vddcore1v0 and gnde nodes)	-	-	29	A
IDC		110 °C (vddcore1v0 and gnde nodes)	-	-	38	mA
		125 °C (vddcore1v0 and gnde nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v0 and gnde nodes)	-	-	139	m 1
	RMS current Pad To Core [2]	100 °C (vddcore1v0 and gnde nodes)	-	-	103	mA mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.5.4 Functional Description

These cells represent a dedicated 1.0V CSF power supply referring to gnde ground node. Core pins are provided in metal top (IB).

2.6 VDDCORE_1V0_GND_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.6.1 Functional Diagram

2.6.2 Interface Description

Table 13: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, pad side			
gnd	Input / Output	0	Core and substrate ground node, pad side			
	Track and core pins					
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (1.8 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.6.3 Cell Information

Table 14: Cell information

0	D	O-maliti-		Value		11-16
Symbol	abol Parameter Condition		Min	Тур	Max	Unit
	I _{leakage} Leakage current –	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	64	nA
lleakage		Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μА
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v0 and gnd nodes)	-	-	81	
		125 °C (vddcore1v0 and gnd nodes)	-	-	29	A
IDC		110 °C (vddcore1v0 and gnd nodes)	-	-	38	mA
		125 °C (vddcore1v0 and gnd nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v0 and gnd nodes)	-	-	139	
	RMS current Pad To Core [2]	100 °C (vddcore1v0 and gnd nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.6.4 Functional Description

These cells represent a dedicated 1.0V CSF power supply referring to gnd ground node. Core pins are provided in metal top (IB).

2.7 VDDCORE_1V0_GNDCORE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.7.1 Functional Diagram

2.7.2 Interface Description

Table 15: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, pad side				
gndcore	Input / Output	0	Dedicated ground node, pad side				
	Track and core pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, only core side				
gndcore	Input / Output	0	Dedicated ground node, only core side				
vdde	Input / Output	vdde	IO power node (3.3 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.7.3 Cell Information

Table 16: Cell information

0	Parameter.	O-maliti-		Value		11-5
Symbol	Parameter	meter Condition		Тур	Max	Unit
	akage Leakage current –	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	64	nA
Ileakage		Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v0 and gndcore nodes)	-	-	81	
		125 °C (vddcore1v0 and gndcore nodes)	-	-	29	mA
I _{DC}		110 °C (vddcore1v0 and gndcore nodes)	-	-	38	MA
DC		125 °C (vddcore1v0 and gndcore nodes)	-	-	22	
I _{RMS} -	RMS current Pad To Core [1]	100 °C (vddcore1v0 and gndcore nodes)	-	-	139	m A
	RMS current Pad To Core [2]	100 °C (vddcore1v0 and gndcore nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.7.4 Functional Description

These cells represent a dedicated 1.0V 3V3SF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.8 VDDCORE_1V0_GNDE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.8.1 Functional Diagram

2.8.2 Interface Description

Table 17: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, pad side				
gnde	Input / Output	0	IO ground node, pad side				
	Track and core pins						
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, only core side				
vdde	Input / Output	vdde	IO power node (3.3 V), only track side				
gnde	Input / Output	0	IO ground node				
gnd	Input / Output	0	Core and substrate ground node				

2.8.3 Cell Information

Table 18: Cell information

O h l	Souther Southern		Value			1124
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Looko no gurrant	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	64	nA
lleakage	eakage Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μΑ
	20 12 17 0 [1]	110 °C (vddcore1v0 and gnde nodes)	-	-	81	
	DC current Pad To Core [1]	125 °C (vddcore1v0 and gnde nodes)	-	-	29	m 1
I _{DC}	DC current Pad To Core [2]	110 °C (vddcore1v0 and gnde nodes)	-	-	38	mA
		125 °C (vddcore1v0 and gnde nodes)	-	-	22	1
	RMS current Pad To Core [1]	100 °C (vddcore1v0 and gnde nodes)	-	-	139	m 1
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore1v0 and gnde nodes)			103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.8.4 Functional Description

These cells represent a dedicated 1.0V 3V3SF power supply referring to gnde ground node. Core pins are provided in metal top (IB).

2.9 VDDCORE_1V0_GND_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.9.1 Functional Diagram

2.9.2 Interface Description

Table 19: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, pad side			
gnd	Input / Output	0	Core and substrate ground node, pad side			
	Track and core pins					
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (3.3 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.9.3 Cell Information

Table 20: Cell information

0	D	O-maliti-		Value		11-26
Symbol	ool Parameter Condition		Min	Тур	Max	Unit
	I _{leakage} Leakage current -	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	1	64	nA
lleakage		Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v0 and gnd nodes)	-	-	81	
		125 °C (vddcore1v0 and gnd nodes)	-	-	29	
I _{DC}		110 °C (vddcore1v0 and gnd nodes)	-	-	38	mA
		125 °C (vddcore1v0 and gnd nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v0 and gnd nodes)	-	-	139	m 1
	RMS current Pad To Core [2]	100 °C (vddcore1v0 and gnd nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell.

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.9.4 Functional Description

These cells represent a dedicated 1.0V 3V3SF power supply referring to gnd ground node. Core pins are provided in metal top (IB).

2.10 VDDCORE_1V8_GNDCORE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.10.1 Functional Diagram

2.10.2 Interface Description

Table 21: Pin description

Pin	Туре	Voltage Level (V)	Description			
Pad pins						
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, pad side			
gndcore	Input / Output	0	Dedicated ground node, pad side			
	Track and core pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, only core side			
gndcore	Input / Output	0	Dedicated ground node, only core side			
vdde	Input / Output	vdde	IO power node (1.8 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.10.3 Cell Information

Table 22: Cell information

0	Bt	O-maliti-		Value		11-26
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Looko ao gurrant	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	-	-	495	nA
lleakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v8 and gndcore nodes)	-	-	81	
		125 °C (vddcore1v8 and gndcore nodes)	-	-	29	m A
I _{DC}		110 °C (vddcore1v8 and gndcore nodes)	-	-	38	mA
		125 °C (vddcore1v8 and gndcore nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v8 and gndcore nodes)	-	-	139	A
	RMS current Pad To Core [2]	100 °C (vddcore1v8 and gndcore nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.10.4 Functional Description

These cells represent a dedicated 1.8V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.11 VDDCORE_1V8_GNDE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.11.1 Functional Diagram

2.11.2 Interface Description

Table 23: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, pad side			
gnde	Input / Output	0	IO ground node, pad side			
	Track and core pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (1.8 V), only track side			
gnde	Input / Output	0	IO ground node			
gnd	Input / Output	0	Core and substrate ground node			

2.11.3 Cell Information

Table 24: Cell information

Ol	D	O		Value		I India
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookowa gurrant	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	-	-	495	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v8 and gnde nodes)	-	-	81	
		125 °C (vddcore1v8 and gnde nodes)	-	-	29	A
I _{DC}		110 °C (vddcore1v8 and gnde nodes)	-	-	38	mA
		125 °C (vddcore1v8 and gnde nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C (vddcore1v8 and gnde nodes)	-	-	139	mA
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore1v8 and gnde nodes)	-	-	103	IIIA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.11.4 Functional Description

These cells represent a dedicated 1.8V CSF power supply referring to IO ground node. Core pins are provided in metal top (IB).

2.12 VDDCORE_1V8_GND_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.12.1 Functional Diagram

2.12.2 Interface Description

Table 25: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, pad side			
gnd	Input / Output	0	Core and substrate ground node, pad side			
	Track and core pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (1.8 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.12.3 Cell Information

Table 26: Cell information

Ob1	Down-ston.	O-maliti-		Value		11-26
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookowa gurrant	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	-	-	495	nA
lleakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ
	DC current Pad To Core [1]	110 °C (vddcore1v8 and gnd nodes)	-	-	81	
,		125 °C(vddcore1v8 and gnd nodes)	-	-	29	m A
I _{DC}		110 °C(vddcore1v8 and gnd nodes)	-	-	38	mA
	DC current Pad To Core [2]	125 °C(vddcore1v8 and gnd nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C(vddcore1v8 and gnd nodes)	-	-	139	mA
I _{RMS}	RMS current Pad To Core [2]	100 °C(vddcore1v8 and gnd nodes)	-	-	103	IIIA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.12.4 Functional Description

These cells represent a dedicated 1.8V CSF power supply referring to common core ground node. Core pins are provided in metal top (IB).

2.13 VDDCORE_1V8_GNDCORE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.13.1 Functional Diagram

2.13.2 Interface Description

Table 27: Pin Description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, pad side				
gndcore	Input / Output	0	Dedicated ground node, pad side				
	Track and core pins						
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, only core side				
gndcore	Input / Output	0	Dedicated ground node, only core side				
vdde	Input / Output	vdde	IO power node (3.3 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.13.3 Cell Information

Table 28: Cell information

0	Parameter.	0		Value		11-26
Symbol	Parameter	Condition	Min	Min Typ Max		Unit
	Looke go gurrant	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	-	-	495	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ
	DC current Pad To Core [1]	110 °C (vddcore1v8 and gndcore nodes)	-	-	81	
		125 °C (vddcore1v8 and gndcore nodes)	-	-	29	mA
I _{DC}		110 °C (vddcore1v8 and gndcore nodes)	-	-	38	mA
DC curre	DC current Pad To Core [2]	125 °C (vddcore1v8 and gndcore nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v8 and gndcore nodes)	-	-	139	mA
	RMS current Pad To Core [2]	100 °C (vddcore1v8 and gndcore nodes)	-	-	103	IIIA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.13.4 Functional Description

These cells represent a dedicated 1.8V 3V3SF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.14 VDDCORE_1V8_GNDE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.14.1 Functional Diagram

2.14.2 Interface Description

Table 29: Pin Description

Pin	Туре	Voltage Level (V)	Description			
Pad pins						
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, pad side			
gnde	Input / Output	0	IO ground node, pad side			
	Track and core pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (3.3 V), only track side			
gnde	Input / Output	0	IO ground node			
gnd	Input / Output	0	Core and substrate ground node			

2.14.3 Cell Information

Table 30: Cell information

Ohl	Bt	O-maliti-		Value		11-26
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	I _{leakage} Leakage current	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	,	-	495	nA
Ileakage		Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v8 and gnde nodes)	-	-	81	
		125 °C (vddcore1v8 and gnde nodes)	-	-	29	m A
I _{DC}		110 °C (vddcore1v8 and gnde nodes)	-	-	38	mA
DC		125 °C (vddcore1v8 and gnde nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v8 and gnde nodes)	-	-	139	A
	RMS current Pad To Core [2]	100 °C (vddcore1v8 and gnde nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.14.4 Functional Description

These cells represent a dedicated 1.8V 3V3SF power supply referring to the IO ground node. Core pins are provided in metal top (IB).

2.15 VDDCORE_1V8_GND_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.15.1 Functional Diagram

2.15.2 Interface Description

Table 31: Pin Description

	•						
Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, pad side				
gnd	Input / Output	0	Core and substrate ground node, pad side				
		Track and core pins					
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node, only core side				
vdde	Input / Output	vdde	IO power node (3.3 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.15.3 Cell Information

Table 32: Cell information

O b l	D	O 1515		Value		11-16
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookaga gurrant	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	-	-	495	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ
	DC current Pad To Core [1] DC current Pad To Core [2]	110 °C (vddcore1v8 and gnd nodes)	-	-	81	
		125 °C (vddcore1v8 and gnd nodes)	-	-	29	A
I _{DC}		110 °C (vddcore1v8 and gnd nodes)	-	-	38	mA
		125 °C (vddcore1v8 and gnd nodes)	-	-	22	
I _{RMS}	RMS current Pad To Core [1]	100 °C (vddcore1v8 and gnd nodes)	-	-	139	m A
	RMS current Pad To Core [2]	100 °C (vddcore1v8 and gnd nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.15.4 Functional Description

These cells represent a dedicated 1.8V 3V3SF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.16 VDDCORE_3V3_GNDCORE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.16.1 Functional Diagram

2.16.2 Interface Description

Table 33: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, pad side				
gndcore	Input / Output	0	Dedicated ground node, pad side				
	Track and core pins						
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, only core side				
gndcore	Input / Output	0	Dedicated ground node, only core side				
vdde	Input / Output	vdde	IO power node (1.8 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.16.3 Cell Information

Table 34: Cell information

0	Parameter.	O-malitions		Value		11-16
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookaga gurrant	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	-	-	281	nA
lleakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	2.5	μΑ
	DC current Pad To Core [1]	110 °C (vddcore3v3 and gndcore nodes)	-	-	81	
		125 °C (vddcore3v3 and gndcore nodes)	-	-	29	A
IDC	DC current Pad To Core [2]	110 °C (vddcore3v3 and gndcore nodes)	-	-	38	mA
		DC current Pad To Core (2) 125 °C (vddcore3v3 and gndcore nodes)		-	-	22
	RMS current Pad To Core [1]	100 °C (vddcore3v3 and gndcore nodes)	-	-	167	A
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore3v3 and gndcore nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.16.4 Functional Description

These cells represent a dedicated 3.3V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.17 VDDCORE_3V3_GNDE_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.17.1 Functional Diagram

2.17.2 Interface Description

Table 35: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, pad side			
gnde	Input / Output	0	IO ground node, pad side			
	Track and core pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (1.8 V), only track side			
gnde	Input / Output	0	IO ground node			
gnd	Input / Output	0	Core and substrate ground node			

2.17.3 Cell Information

Table 36: Cell information

Ol. al	D	O-maliti-		Value		1.1-24
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookaga gurrant	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	-	-	281	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	2.5	μΑ
	DC current Pad To Core [1]	110 °C (vddcore3v3 and gnde nodes)	-	-	110	
		125 °C (vddcore3v3 and gnde nodes)	-	-	40	A
I _{DC}		110 °C (vddcore3v3 and gnde nodes)	-	-	38	mA
	DC current Pad To Core [2]	125 °C (vddcore3v3 and gnde nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C (vddcore3v3 and gnde nodes)	-	-	167	A
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore3v3 and gnde nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.17.4 Functional Description

These cells represent a dedicated 3.3V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.18 VDDCORE_3V3_GND_EXT_CSF_FC_LIN/FC_INNER/CL_LIN

2.18.1 Functional Diagram

2.18.2 Interface Description

Table 37: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore3v3	Input / Output vddcore3v3		Dedicated power node, pad side			
gnd	Input / Output	0	Core and substrate ground node, pad side			
	Track and core pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (1.8 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.18.3 Cell Information

Table 38: Cell information

0	Parameter.	0		Value		I India
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Looke go gurrant	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	-	-	281	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	2.5	μΑ
	DC current Pad To Core [1]	110 °C (vddcore3v3 and gnd nodes)	-	-	110	
		125 °C (vddcore3v3 and gnd nodes)	-	-	40	mA
IDC	DC current Pad To Core [2]	110 °C (vddcore3v3 and gnd nodes)	-	-	38	mA
		125 °C (vddcore3v3 and gnd nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C (vddcore3v3 and gnd nodes)	-	-	167	mA
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore3v3 and gnd nodes)	-	-	103	IIIA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.18.4 Functional Description

These cells represent a dedicated 3.3V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.19 VDDCORE_3V3_GNDCORE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.19.1 Functional Diagram

2.19.2 Interface Description

Table 39: Pin description

Pin	Туре	Voltage Level (V)	Description				
	Pad pins						
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, pad side				
gndcore	Input / Output	0	Dedicated ground node, pad side				
	Track and core pins						
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, only core side				
gndcore	Input / Output	0	Dedicated ground node, only core side				
vdde	Input / Output	vdde	IO power node (3.3 V), only track side				
gnde	Input / Output	0	IO ground node, only track side				
gnd	Input / Output	0	Core and substrate ground node				

2.19.3 Cell Information

Table 40: Cell information

0	Parameter.	O-maliti-		Value		11-26
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookaga gurrant	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	,	ı	281	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	2.5	μΑ
	DC current Pad To Core [1]	110 °C (vddcore3v3 and gndcore nodes)	-	-	110	
		125 °C (vddcore3v3 and gndcore nodes)	-	-	40	m 1
I _{DC}		110 °C (vddcore3v3 and gndcore nodes)	-	-	38	mA
DC current Pad To Core	DC current Pad 10 Core	125 °C (vddcore3v3 and gndcore nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C (vddcore3v3 and gndcore nodes)	-	-	167	mA
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore3v3 and gndcore nodes)		-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.19.4 Functional Description

These cells represent a dedicated 3.3V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.20 VDDCORE_3V3_GNDE_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.20.1 Functional Diagram

2.20.2 Interface Description

Table 41: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, pad side			
gnde	Input / Output	0	IO ground node, pad side			
	Track and core pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (3.3 V), only track side			
gnde	Input / Output	0	IO ground node			
gnd	Input / Output	0	Core and substrate ground node			

2.20.3 Cell Information

Table 42: Cell information

0	D	O-maliti-		Value		11-16
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookaga gurrant	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	-	1	281	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	2.5	μΑ
	DC current Pad To Core [1]	110 °C (vddcore3v3 and gnde nodes)	-	-	110	
		125 °C (vddcore3v3 and gnde nodes)	-	-	40	mA
I _{DC}		110 °C (vddcore3v3 and gnde nodes)	-	-	38	mA
DC	DC current Pad To Core [2]	125 °C (vddcore3v3 and gnde nodes)	-	-	22	
	RMS current Pad To Core [1]	100 °C (vddcore3v3 and gnde nodes)	-	-	167	A
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore3v3 and gnde nodes)	-	-	103	mA

^[1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.

^[2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.20.4 Functional Description

These cells represent a dedicated 3.3V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.21 VDDCORE_3V3_GND_EXT_3V3SF_FC_LIN/FC_INNER/CL_LIN

2.21.1 Functional Diagram

2.21.2 Interface Description

Table 43: Pin description

Pin	Туре	Voltage Level (V)	Description			
	Pad pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, pad side			
gnd	Input / Output	0	Core and substrate ground node, pad side			
	Track and core pins					
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node, only core side			
vdde	Input / Output	vdde	IO power node (3.3 V), only track side			
gnde	Input / Output	0	IO ground node, only track side			
gnd	Input / Output	0	Core and substrate ground node			

2.21.3 Cell Information

Table 44: Cell information

O la al	D	O-maliti-		Value		11-16
Symbol	Parameter	Condition	Min	Тур	Max	Unit
	Lookowa gurrant	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	-	-	281	nA
Ileakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	3.5	μΑ
	DC current Pad To Core [1]	110 °C (vddcore3v3 and gnd nodes)	-	-	110	
		125 °C (vddcore3v3 and gnd nodes)	-	-	40	A
I _{DC}		110 °C (vddcore3v3 and gnd nodes)	-	-	38	mA
DC current F	DC current Pad To Core [2]	125 °C (vddcore3v3 and gnd nodes)	-	-	22	
	RMS current Pad To Core ^[1]	100 °C (vddcore3v3 and gnd nodes)	-	-	167	A
I _{RMS}	RMS current Pad To Core [2]	100 °C (vddcore3v3 and gnd nodes)	-	-	103	mA

- [1] Taking into account only RMS/DC current capability of the IO cell without RDL and BUMP constraints.
- [2] Considering minimum RDL width to BUMP, that is, same width as the LB width in IO cell

DC and RMS current information do not take into account RDL constraints which are dependent upon chip design, except for case [2].

DC/RMS current values of RDL should be checked accordingly at chip level.

2.21.4 Functional Description

These cells represent a dedicated 3.3V CSF power supply referring to a dedicated ground node. Core pins are provided in metal top (IB).

2.22 ESDCLAMP_1V0_45U_130U_EXT

2.22.1 Functional Diagram

2.22.2 Interface Description

Table 45: Pin description

Pin	Туре	Voltage Level (V)	Description
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node
gndcore	Input / Output	0	Dedicated ground node
gndguard	Input / Output	0	Core and substrate ground node

2.22.3 Cell Information

Table 46: Cell information

Completed	Downwater	Conditions		Value		l lm!t
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{leakage} Leakage (Lockogo ourrent	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	68	nA
	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11.7	μΑ

2.22.4 Functional Description

The cell is a core block that protects devices plugged between vddcore1v0 and gndcore. Pins are provided in metal 5.

2.23 ESDCLAMP_1V0_EXT

2.23.1 Functional Diagram

2.23.2 Interface Description

Table 47: Pin description

Pin	Туре	Voltage Level (V)	Description
vddcore1v0	Input / Output	vddcore1v0	Dedicated power node
gndcore	Input / Output	0	Dedicated ground node
gndguard	Input / Output	0	Core and substrate ground node

2.23.3 Cell Information

Table 48: Cell information

Completel	Downwater	Conditions		Value		l lait
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Lackage compact	Fast Process, Max voltage, 25 °C (vddcore1v0 node)	-	-	64	nA
lleakage	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v0 node)	-	-	11	μΑ

2.23.4 Functional Description

The cell is a core block that protects devices plugged between vddcore1v0 and gndcore. Pins are provided in metal 5.

2.24 ESDCLAMP_1V8_EXT

2.24.1 Functional Diagram

2.24.2 Interface Description

Table 49: Pin description

Pin	Туре	Voltage Level (V)	Description
vddcore1v8	Input / Output	vddcore1v8	Dedicated power node
gndcore	Input / Output	0	Dedicated ground node
gndguard	Input / Output	0	Core and substrate ground node

2.24.3 Cell Information

Table 50: Cell information

Combal	Dorometer	Conditions		Value		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{leakage} Lea	Lookaga ayyyant	Fast Process, Max voltage, 25 °C (vddcore1v8 node)	-	-	495	nA
	Leakage current	Fast Process, Max voltage, 125 °C (vddcore1v8 node)	-	-	3.8	μΑ

2.24.4 Functional Description

The cell is a core block that protects devices plugged between vddcore1v8 and gndcore. Pins are provided in metal 5.

2.25 ESDCLAMP_3V3_EXT

2.25.1 Functional Diagram

2.25.2 Interface Description

Table 51: Pin description

Pin	Туре	Voltage Level (V)	Description
vddcore3v3	Input / Output	vddcore3v3	Dedicated power node
gndcore	Input / Output	0	Dedicated ground node
gndguard	Input / Output	0	Core and substrate ground node

2.25.3 Cell Information

Table 52: Cell information

Combal	Symbol Dozomstov Condition		Value			l locit
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{leakage} Leakage current	Looke as assessed	Fast Process, Max voltage, 25 °C (vddcore3v3 node)	-	-	281	nA
	Fast Process, Max voltage, 125 °C (vddcore3v3 node)	-	-	2.5	μΑ	

2.25.4 Functional Description

The cell is a core block that protects devices plugged between vddcore3v3 and gndcore. Pins are provided in metal 5.

2.26 CORECELL_B2B_EXT

2.26.1 Functional Diagram

Figure 26 : Block diagram

2.26.2 Interface Description

Table 53: Pin Description

Pin	Туре	Voltage Level (V)	Description
VPLUSE	Input/Output	vdde	IO power node
VMINUS	Input/Output	0	Core and substrate ground node
VMINUS2	Input/Output	0	Core and substrate ground node
substrateground	Input/Output	0	Substrate ground node

2.26.3 Cell Information

Table 54: Cell information

Combal	Symbol Parameter Condition		Value			l lade
Symbol	raiainetei	Conditions	Min	Тур	Max	Unit
I _{leakage} Leakage current	Lookogo gurrant	Fast Process, Max voltage, 25 °C	-	-	< 150	n 1
	Leakage current	Fast Process, Max voltage, 125 °C	-	-	< 150	pА

2.26.4 Functional Description

This cell is intended to be placed in core area. It includes B2B diodes between 2 grounds VMINUS/VMINUS2 dedicated to ensure ESD continuity between these two ground nodes. Power and ground pins are available in M5.

3. Electrical Specifications

3.1 ESD and Latch-up Characteristics

Table 55: ESD and Latch-up Characteristics

Symbol	Parameter	Condition	Target	Unit
		Human Body Model (HBM) ^[1]	2000	V
V_{ESD}	Electrostatic discharge	Machine Model (MM) [1]	100	V
	voltage	Charge Device Model (CDM) except 1V0 dedicated supply and 1V0 Core Clamps [1]	500V JEDEC	V
		1V0 dedicated supply and 1V0 Core Clamps ^[1]	250 V JEDEC	V
	Injection current	Maximum operating junction	100	mA
latch-up	Over-voltage stress	temperature 125 °C ^[2]	1.5* vdde	V

^[1] ESD qualification: According to electrostatic discharge sensitivity measurement

^[2] Latch-up qualification: According to latch-up sensitivity measurement.

The level of CDM current seen at a given pre-charge voltage varies significantly with the chip size and package type. For instance, larger dies/packages generates higher CDM current.

However, this package size dependence has been considered during IO qualification, so that the above CDM commitment remains valid for any die/package size (even for large die/package sizes of hundreds of mm²).

3.2 ESD Clamps Power-up Sensitivity

For correct power-up sequence without parasitic clamp switch-on, it is necessary to limit the power rise time as per next table.

Power Ramp-Up should be equal or slower than 0.5V/us.

4. Usage Guidelines

4.1 Design Requirements

Libraries given by the table below are required to be used with this library.

Table 56: Mandatory Libraries

Library Name	Description
C28SOI_IO_EXT_CSF_BASIC_EG*	Contains supply, corner and place and route cells needed for a CSF IO ring construction
C28SOI_IO_EXT_3V3SF_BASIC_EG*	Contains supply, corner and place and route cells needed for a 3V3SF IO ring construction

Only supply cells from other BASICs libraries must be used with dedicated supplies to build an IO ring. The following table lists the mandatory cells required.

Table 57: Mandatory Cells

Cell Name	Mandatory Nodes	Cell Type
VDDE_*	vdde/ vdde1v8 / vdde3v3	Supply cell
GNDE_*	gnde	Supply cell
GND_EXT_CSF* GND_EXT_3V3SF_	gnd	Supply cell

4.2 Physical implementation

4.2.1 General placement rules

Cells to be used within an IO ring section in this library have their origin at (0, 0) and the 'pr boundary' abutted to the origin axes. The strategy to build the IO pad ring or the IO cluster is to abut laterally 'pr boundary' layers.

The rails of the IO pad ring should not be modified. Only the appropriate filler cut cells supplied within the library should be used. Non-compliance of this constraint disengages the responsibility of the IO supplier and prevents final implementation for full solution / services and support that could be provided for this deliverable.

To guaranty the good functionality of core clamp cells, connection have to be done through ALL available vddcore* and gndcore* pins and the entire M5 pin have to be covered by the metal used to make connection.

For 500 V CDM target, 1V0 dedicated supply and 1V0 Core Clamps provided by this library must be used by pair

4.2.2 Dedicated supply usage

Dedicated supply cells are available in 1V0, 1V8 and 3V3 voltage range. These cells are embedding an ESD clamp between the dedicated supply and its relative ground.3 possible relative grounds are possible: gndcore separated ground, gnde IO ground, gnd common core ground

Next table describes the cells usage correspondence:

Macro supply voltage level	Devices to protect	Macro ground	Cell to use
1V0	GO1/GO2 devices	Dedicated ground	VDDCORE_1V0_GNDCORE_**
1V0	GO1/GO2 devices	Shared IO ground	VDDCORE_1V0_GNDE_**
1V0	GO1/GO2 devices	Shared core ground	VDDCORE_1V0_GND_**
1V8	GO2 devices	Dedicated ground	VDDCORE_1V8_GNDCORE_**
1V8	GO2 devices	Shared IO ground	VDDCORE_1V8_GNDE_**
1V8	GO2 devices	Shared core ground	VDDCORE_1V8_GND_**
3V3	Cascaded GO2 devices	Dedicated ground	VDDCORE_3V3_GNDCORE_**
3V3	Cascaded GO2 devices	Shared IO ground	VDDCORE_3V3_GNDE_**
3V3	Cascaded GO2 devices	Shared core ground	VDDCORE_3V3_GND_**

VDDCORE_1V0_** dedicated supply cannot be used to protect GO1 devices connected to IO signal as highlighted in the figure below

When dedicated supply cells are used, It is necessary to supply all nodes having a pad connection.

One 1V0 dedicated supply support 250V CDM. For 500 V CDM dedicated supplies should be placed by pair or on parallel with an 1V0 Core Clamp. For such usage, please refer to the section 'Example of 1V0 clamp usage by pair'

For dedicated supplies or ESD Core Clamp cells placement rules please refer to 'Place and route requirements' section

4.2.3 CORE CLAMP usage

Core clamp provided by C28SOI_IO_EXT_ALLF_CORESUPPLY_EG library can be used to protect macro against ESD phenomena. These core clamps should be connected to the power BUMP and to the macro to protect.

ESDCLAMP_3V3_** protects cascaded GO2 devices.

ESDCLAMP_1V8_** protects single GO2 devices.

Only ESDCLAMP_1V0_** clamp can be used to protect GO1 devices as well as GO2 devices

ESDCLAMP_1V0_EXT core clamp can be used to protect GO1 devices except those connected to a digital IO signal as highlighted in the figure below.

One 1V0 core clamp support 250V CDM. For 500 V CDM 1V0 Core Clamp should be placed by pair or on parallel with a 1V0 dedicated supply. For such usage, please refer to the section 'Example of 1V0 clamp usage by pair'

For dedicated supplies or ESD Core Clamp cells placement rules please refer to 'Place and route requirements' section

4.2.4 Example of 1V0 clamp usage by pair

In this section we give some example of 1V0 core clamp or dedicated supplies usage by pair for a 500V CDM.

Case 1: Two Core clamp on parallel

Case 2: Core clamp on parallel with a dedicated supply cell

For more information about clamp usage by pair or for specific configuration not listed above, please ask support through helpdesk

For dedicated supplies or ESD core clamp cells placement rules please refer to 'Place and route requirements' section

4.2.5 Place and Route Requirements

A resistance constraint has to be respected when dedicated supplies or ESD core clamp cells are used. Figures below give more details about this constraint for different deployment cases.

Figure 40 : Generic ESD core clamp placement case 1V0 / 1V8 / 3V3 **CORE CLAMP** Macro **R2 BUMP BUMP** vddcore gndcore For resistance value 'X', please refer to 'ESD_Strategy_overview_for_CMOS' doc available under http://ccds.st.com/cps/sections/key- domains/esd/guideline-documents When we have a star routing, there are no resistance constraints for R1 and Note: Star routing can be used also to connect GNDCORE BUMP.

For more information about clamp usage and for specific configuration not listed above, please ask support through helpdesk

When dedicated supply cells are used, It is necessary to supply all nodes having a pad connection.

4.2.6 CORECELL_B2B_EXT usage

The CORECELL_B2B_EXT cell ensures ground continuity through two B2B diodes. The figure below gives an example of this cell usage.

Figure 41: CORECELL_B2B_EXT usage example VMINUS2 Tydd 13 **VPLUSE** gnd_2 vdd 2 ST IO ring section gnd_2 T-Jud-1 vdd_2 gnd_2 vdd_2 gnd_2 VMINUS1 CORECELL B2B EXT substrateground **Ground Domain 2 Ground Domain 1** SXCUT drawing The substrate ground node must be connected to the reference ground node of the ground domain where it is placed. It is recommended to connect VPLUSE to the highest power node available.

5. Contact Information

ST users, login to HELPDESK. (http://col2.cro.st.com/helpdesk) for submitting queries or support requests.

Non-ST users, contact Customer Support personnel.

Appendix A: Cell Naming Convention

Table 58: Naming Convention for Core Supply Cells

Segment Name	Description			
Cell type	Refers to the functionality of cell. It can have any of the following values: - GNDCORE (dedicated ground). - VDDCORE_1V0 (dedicated supply 1.0 V). - VDDCORE_1V8 (dedicated supply 1.8 V). - VDDCORE_3V3 (dedicated supply 3.3 V).			
1 st suffix	Refers to the cell offer. It can have either of the following values: - <none> - EXT: extended CDM specification offer</none>			
2 nd suffix	Refers to the functionality of cell. It can have any of the following values: - CSF: refers to compatible standard frame. - 3V3SF: refers to 3.3 V standard frame.			
3 rd suffix	Refers to the layout view of cell. It can have any of the following values: - FC: represents flip-chip configuration. - CL: represents cluster configuration.			
4 th suffix	Refers to the layout view of cell. It can have any of the following values: – LIN: represents single row configuration.			

Table 59: Example Segments in Name of GNDCORE_EXT_CSF_FC_LIN Cell

Segment Name	Segment Value	Description			
Cell type	GNDCORE	Dedicated ground supply.			
1 st suffix	EXT	Extended CDM specification			
2 nd suffix	CSF	Uses compatible standard frame.			
3 rd suffix	FC	Uses flip-chip configuration.			
4 th suffix	LIN	Uses single row configuration.			

Appendix B: Document Revision History

Table 60: Document Revision History

Date	Document Version	Comments	
-January-2016	1.3	 Reference Library added Table 2 "Acronyms and Abbreviations" added ESDCLAMP_1V0_45U_130U_EXT added Aligned to ESD and Latch-up guideline 	
03-July-2015	1.2	 "Pin description" tables improved "Cell Information" tables updated	
07-Oct-2014	1.1	Track pins description addedTypo fixed	
24-Sept-2014	1.0	First release	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com