THE CENTRAL DOGMA & DNA

HW1 Part 1

Working with Numbers

variable x:	3
variable y:	-2
x+y=	1
x-y=	5
y-x=	-5
x*y=	-6
x/y=	-1.5
y/x=	-0.6666667

Working with Strings

- "Gluing" Strings:
 - If A=Hi and B=There, A+B=HiThere
- Functions are case-sensitive:
 - If A=Hi and c=H, occur(c,A)=1
 - If A=Hi and c=h, occur(c,A)=0

HW1 Part 2

Hamming Distance

One definition: Given two strings of equal length, how many characters are different?

Richard Hamming (1950)

PEAR KIWI

Another definition: Given two strings of equal length, how many single-character substitutions are required to convert one string to the other?

Alignment: shift the top string to the left or right. A character matched with nothing has a distance of 0. At least one character must overlap.

Lab Leftovers

Running Python

- On the Macs in ETC: python3.4 instead of python3
- On Windows: py or email Anna for other instructions

Lab Section Sizes

- Monday 1:10-3pm: 16
- Tuesday 3:10-5pm: 7

Benefits of Tuesday Lab

- Fewer people = more help / get a head start on HWs
- Second round of lab = Anna's better prepared

Topic 1: How do Cells "Read" the Genome?

 3.72×10^{13} cells = 37,200,000,000,000 = 37.2 **trillion** cells

Each **cell** has the same genome with 3 **billion** bases = 3,000,000,000

DNA makes RNA makes protein. (paraphrased from Watson, 1965)

(DNA or RNA) translation (RNA -> Protein) Ribosome

http://all-len-all.com/wp-content/uploads/2015/04/Watson-Crick.jpg http://sandwalk.blogspot.com/2007/01/central-dogma-of-molecular-biology.html http://www.junkdna.com/fig6/, wikipedia

The Doctrine of the Triad.

The Central Dogma: "Once information has got into a protein it can't get out again". Information here means the sequence of the amino acid residues, or other sequences related to it.

That is, we may be able to have

where the arrows show the transfer of information.

Fig. 1. Nascence of the "Central Dogma of Molecular Biology"; the original concept diagram by Francis Crick in 1956. (Unpublished but acknowledged by Crick in 1958)

DNA Strands are Complementary & Antiparallel

Figure 4-3 & 4-4, Alberts et. al., Molecular Biology of the Cell (eReserves)

DNA Organization

Even more condensed chromatin

Chromosome

DNA Organization

"Sky spectral karyotype" by Courtesy: National Human Genome Research Institute - Found on :National Human Genome Research (USA)This image was copied from wikipedia:en.. Licensed under Public Domain via Commons - https://commons.wikimedia.org/wiki/File:Sky spectral karyotype.png#/media/File:Sky spectral karyotype.png

Mistakes in DNA Organization

Figure 2.26b The Biology of Cancer (© Garland Science 2014)

Philadelphia chromosome: translocation occurs in ~95% of chronic myleogenous leukemia (CML) patients. (Biology of Cancer, 2nd Ed, Weinburg)

Lots of Mistakes in DNA Organization

Figure 1.11c The Biology of Cancer (© Garland Science 2014)

Human pancreatic cancer cell. (Biology of Cancer, 2nd Ed., Weinberg)

Class Demographics

Year	Number
First Year	4
Sophomore	7
Junior	6
Senior	5

Major	Number
biochem	6
bio	6
bio-CS	1
chem	2
alt-bio	1
bio-psych	1
math-cs	2
psych	1
undecided	1
econ	1

Upcoming Schedule

