

Clever Codes

2 December 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 8: Clever Codes

- 1. Know the principles and performance characteristics of *arithmetic coding*.
- 2. Judge the use of arithmetic coding in applications.
- **3.** Understand the context of *error-prone communication*.
- **4.** Understand concepts of *error-detecting codes* and *error-correcting codes*.
- **5.** Know and understand *Hamming codes*, in particular (7,4) Hamming code.
- **6.** Reason about the *suitability of a code* for an application.

Outline

8 Clever Codes

- 8.1 Arithmetic Coding
- 8.2 Practical Arithmetic Coding
- 8.3 Error Correcting Codes
- 8.4 Coding Theory
- 8.5 Hamming Codes

- ▶ **Recall:** (binary) character encoding $E : \Sigma \to \{0, 1\}^*$
 - ► <u>Huffman</u> codes *optimal* for any given character frequencies
 - \leadsto encoding all characters with that code minimizes compressed size

- ▶ **Recall:** (binary) character encoding $E : \Sigma \to \{0, 1\}^*$
 - ► Huffman codes *optimal* for any given character frequencies
 - \leadsto encoding all characters with that code *minimizes* compressed size
 - ... *if we assume* that all characters must be encoded individually by a codeword!

- ▶ **Recall:** (binary) character encoding $E : \Sigma \to \{0, 1\}^*$
 - ► Huffman codes *optimal* for any given character frequencies
 - \leadsto encoding all characters with that code minimizes compressed size
 - ... *if we assume* that all characters must be encoded individually by a codeword!
- ▶ Stream codes instead compress entire **sequence** of characters
 - ▶ RLE and LZW are examples of stream codes → can sometimes do better
- ▶ Two indicative examples
 - **1.** "Low entropy bits:" $\Sigma = \{0, 1\}$, highly skewed: $p_0 = 0.99$
 - → entropy $\Re(\frac{1}{100}, \frac{99}{100}) \approx 0.08$ bits per character, Huffman code must use 1 bit per character!
 - "optimal" Huffman code gives 12-fold space increase over entropy!

- ▶ **Recall:** (binary) character encoding $E : \Sigma \to \{0, 1\}^*$
 - ► Huffman codes *optimal* for any given character frequencies
 - → encoding all characters with that code *minimizes* compressed size
 - ... *if we assume* that all characters must be encoded individually by a codeword!
- ▶ Stream codes instead compress entire **sequence** of characters
 - ▶ RLE and LZW are examples of stream codes → can sometimes do better
- ▶ Two indicative examples
 - **1.** "Low entropy bits:" $\Sigma = \{0, 1\}$, highly skewed: $p_0 = 0.99$
 - entropy $\mathcal{H}(\frac{1}{100}, \frac{99}{100}) \approx 0.08$ bits per character, Huffman code must use 1 bit per character!
 - "optimal" Huffman code gives 12-fold space increase over entropy!
 - ► Can certainly do better here (RLE!)
 - **2.** "Trits": $\Sigma = \{0, 1, 2\}$, equally likely
 - \rightarrow entropy $\mathcal{H}(\frac{1}{3},\frac{1}{3},\frac{1}{3})=\lg(3)\approx 1.58$ bits per character, Huffman code uses average of $\frac{1}{3}\cdot 1+\frac{2}{3}\cdot 2=\frac{5}{3}\approx 1.67$
- ► Can we do better?

A Decent Hack: Block Codes

- \blacktriangleright Huffman on trits wastes ≈ 0.0817 bits per character and over $5\,\%$ of space
- ► A simple trick can reduce this substantially!
 - treat 5 trits as one "supercharacter", e.g., 21101
 - \rightarrow 3⁵ = 243 possible combinations
 - \rightarrow encode these using 8 bits (with $2^8 = 256$ possible combinations)
 - entropy $lg(3^5) \approx 7.92$ bits, so less than 0.1% wasted space!

A Decent Hack: Block Codes

- ▶ Huffman on trits wastes ≈ 0.0817 bits per character and over 5% of space
- ► A simple trick can reduce this substantially!
 - ► treat 5 trits as one "supercharacter", e.g., 21101
 - \rightarrow 3⁵ = 243 possible combinations
 - \rightarrow encode these using 8 bits (with $2^8 = 256$ possible combinations)
 - entropy $lg(3^5) \approx 7.92$ bits, so less than 0.1% wasted space!
- ▶ We can even use a Huffman code for the supercharacters to handle nonuniformity!
- ► For the low-entropy bits, could use 3 bits
 - \rightsquigarrow probabilities:

```
000: 0.97
```

001, **010**, **100**: 0.0098

011, **101**, **110**: 0.000099

111: 0.000001

- \rightsquigarrow with Huffman code, 1.06 bits per superchar of 3 input bits
- → almost factor 3 better; can improve with larger blocks!

Block Codes – A Panacea?

▶ Using supercharacters works well in our examples.

Hmmm ... so why don't we treat the entire source text as one large block? Wouldn't that be even better!?

Block Codes – A Panacea?

▶ Using supercharacters works well in our examples.

Hmmm ... so why don't we treat the entire source text as one large block? Wouldn't that be even better!?

→ We can optimally compress any text, without doing anything intelligent!

Block Codes - A Panacea?

▶ Using supercharacters works well in our examples.

Hmmm ... so why don't we treat the entire source text as one large block? Wouldn't that be even better!?

 \leadsto We can optimally compress any text, without doing anything intelligent!?

Block Codes – A Panacea?

Using supercharacters works well in our examples.

Hmmm . . . so why don't we treat the entire source text as one large block? Wouldn't that be even better!?

- → We can optimally compress any text, without doing anything intelligent!?
- * For general case, need to *communicate* the supercharacter encoding
 - ▶ Blocks of k characters need $\Omega(\sigma^k)$ space for code
 - ► Huffman code has to be part of coded message
 - \leadsto Can only sensibly use block codes for small σ and k

There is no such thing as a free lunch . . .

except in isolated lucky cases

ightharpoonup Also: Block codes still had $\Theta(n)$ wasted space for sequences of n symbols

except in isolated lucky cases

1=10J2

- ▶ Also: Block codes still had $\Theta(n)$ wasted space for sequences of n symbols
- ► Arithmetic Coding:
 - **0.** Maintain $[\ell, \ell + p) \subseteq [0, 1)$; initially $\ell = 0, p = 1$
 - 1. Zoom into subinterval for each character
 - 2. Output dyadic encoding of final interval
- ▶ *Step 1:* "Zoom" for each character (trit) in S[0..n):
 - ▶ Of the current subinterval $[\ell, \ell + p)$, take first, second or last third depending whether S[i] = 0, 1, resp. 2:

$$\ell := \ell + S[i] \cdot \frac{1}{3} \cdot p$$

$$p := p \cdot \frac{1}{3}$$

except in isolated lucky cases

- ▶ Also: Block codes still had $\Theta(n)$ wasted space for sequences of n symbols
- ► Arithmetic Coding:
 - **0.** Maintain $[\ell, \ell + p) \subseteq [0, 1)$; initially $\ell = 0, p = 1$
 - 1. Zoom into subinterval for each character
 - 2. Output dyadic encoding of final interval
- ► *Step 1:* "Zoom" for each character (trit) in S[0..n):
 - ► Of the current subinterval $[\ell, \ell + p)$, take first, second or last third depending whether S[i] = 0, 1, resp. 2: $\ell := \ell + S[i] \cdot \frac{1}{3} \cdot p$ $p := p \cdot \frac{1}{3}$

- ► *Step 2:* Dyadic encoding
 - ► Find smallest m so that $\exists x \in \mathbb{N}_0$ with $\left[\frac{x}{2^m}, \frac{x+1}{2^m}\right] \subseteq [\ell, \ell+p)$
 - ightharpoonup Output x in binary using m bits.

except in isolated lucky cases

- ▶ Also: Block codes still had $\Theta(n)$ wasted space for sequences of n symbols
- ► Arithmetic Coding:
 - **0.** Maintain $[\ell, \ell + p) \subseteq [0, 1)$; initially $\ell = 0, p = 1$
 - 1. Zoom into subinterval for each character
 - 2. Output dyadic encoding of final interval
- ► *Step 1:* "Zoom" for each character (trit) in S[0..n):
 - ► Of the current subinterval $[\ell, \ell + p)$, take first, second or last third depending whether S[i] = 0, 1, resp. 2: $\ell := \ell + S[i] \cdot \frac{1}{3} \cdot p$ $p := p \cdot \frac{1}{3}$

- ► Step 2: Dyadic encoding
 - Find smallest m so that $\exists x \in \mathbb{N}_0$ with $\left(\frac{x}{2^m}, \frac{x+1}{2^m}\right) \subseteq [\ell, \ell+p)$
 - ightharpoonup Output x in binary using m bits.
- \rightarrow Encode *n* trits in $n \lg(3) + 2$ bits(!) without cheating

- $ightharpoonup S[0..n) = 21101 \quad (n = 5)$
- ► **Step 1:** Zoom into subintervals

Iteration	ℓ	р	Interval (rounded)	
0	0	1	[0.00000, 1.00000)	\
1	$\frac{2}{3}$	$\frac{1}{3}$	[0.66667, 1.00000)	
2	<u>7</u>	$\frac{1}{9}$	[0.77778, 0.88889)	⊢ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
3	<u>22</u> 27	$\frac{1}{27}$	[0.81482, 0.85185)	H
4	<u>66</u> 81	$\frac{1}{81}$	[0.81482, 0.82716)	H 50
5	$\frac{199}{243}$	$\frac{1}{243}$	[0.81893, 0.82305)	ا ا

- $ightharpoonup S[0..n) = 21101 \quad (n = 5)$
- ► **Step 1:** Zoom into subintervals

Iteration	ℓ	p	Interval (rounded)	
0	0	1	[0.00000, 1.00000)	
1	$\frac{2}{3}$	$\frac{1}{3}$	[0.66667, 1.00000)	⊢
2	$\frac{7}{9}$	$\frac{1}{9}$	[0.77778, 0.88889)	⊢
3	<u>22</u> 27	$\frac{1}{27}$	[0.81482, 0.85185)	Н
4	<u>66</u> 81	$\frac{1}{81}$	[0.81482, 0.82716)	Н
5	$\frac{199}{243}$	$\frac{1}{243}$	[0.81893, 0.82305)	

- ► Step 2: Dyadic encoding for interval $[\ell, \ell + p) = \left[\frac{199}{243}, \frac{200}{243}\right]$ $2^{-\omega} \le \rho$
 - ► Must have $\underline{m \ge \lg(1/p)} > 7$

- $ightharpoonup S[0..n) = 21101 \quad (n = 5)$
- ► **Step 1:** Zoom into subintervals

Iteration	ℓ	р	Interval (rounded)	
0	0	1	[0.00000, 1.00000)	
1	$\frac{2}{3}$	$\frac{1}{3}$	[0.66667, 1.00000)	
2	$\frac{7}{9}$	$\frac{1}{9}$	[0.77778, 0.88889)	\vdash
3	<u>22</u> 27	$\frac{1}{27}$	[0.81482, 0.85185)	Н
4	<u>66</u> 81	$\frac{1}{81}$	[0.81482, 0.82716)	Н
5	$\frac{199}{243}$	$\frac{1}{243}$	[0.81893, 0.82305)	

- ► **Step 2:** Dyadic encoding for interval $[\ell, \ell + p) = \left[\frac{199}{243}, \frac{200}{243}\right)$.
 - ► Must have $m \ge \lg(1/p) > 7$
 - ► m = 8: smallest $x/2^m \ge \frac{199}{243}$ is x = 210, but $[210/256, \frac{211/256}{2}] \approx [0.82031, 0.82422]$ \checkmark $[\ell, \ell + p)$

- \triangleright S[0..n) = 21101 (n = 5)
- ► **Step 1:** Zoom into subintervals

Iteration	ℓ	p	Interval (rounded)	
0	0	1	[0.00000, 1.00000)	
1	$\frac{2}{3}$	$\frac{1}{3}$	[0.66667, 1.00000)	⊢
2	$\frac{7}{9}$	$\frac{1}{9}$	[0.77778, 0.88889)	⊢
3	<u>22</u> 27	$\frac{1}{27}$	[0.81482, 0.85185)	Н
4	<u>66</u> 81	$\frac{1}{81}$	[0.81482, 0.82716)	Н
5	$\frac{199}{243}$	$\frac{1}{243}$	[0.81893, 0.82305)	

- ► **Step 2:** Dyadic encoding for interval $[\ell, \ell + p) = \left[\frac{199}{243}, \frac{200}{243}\right]$
 - ► Must have $m \ge \lg(1/p) > 7$

 - ► m = 8: smallest $x/2^m \ge \frac{199}{243}$ is x = 210, but $[210/256, 211/256) \approx [0.82031, 0.82422)$ \checkmark $[\ell, \ell + p)$ ► m = 9: smallest $x/2^m \ge \frac{199}{243}$ is x = 420 and $[420/512, 421/512) \approx [0.82031, 0.82227) \subset [\ell, \ell + p)$

- \triangleright S[0..n) = 21101 (n = 5)
- ► **Step 1:** Zoom into subintervals

Iteration	ℓ	p	Interval (rounded)	
0	0	1	[0.00000, 1.00000)	
1	$\frac{2}{3}$	$\frac{1}{3}$	[0.66667, 1.00000)	⊢
2	$\frac{7}{9}$	$\frac{1}{9}$	[0.77778, 0.88889)	⊢
3	<u>22</u> 27	$\frac{1}{27}$	[0.81482, 0.85185)	Н
4	<u>66</u> 81	$\frac{1}{81}$	[0.81482, 0.82716)	Н
5	$\frac{199}{243}$	$\frac{1}{243}$	[0.81893, 0.82305)	

- ► **Step 2:** Dyadic encoding for interval $[\ell, \ell + p) = \left[\frac{199}{243}, \frac{200}{243}\right]$
 - ► Must have $m \ge \lg(1/p) > 7$

 - ► m = 8: smallest $x/2^m \ge \frac{199}{243}$ is x = 210, but $[210/256, 211/256) \approx [0.82031, 0.82422)$ \checkmark $[\ell, \ell + p)$ ► m = 9: smallest $x/2^m \ge \frac{199}{243}$ is x = 420 and $[420/512, 421/512) \approx [0.82031, 0.82227) \subset [\ell, \ell + p)$
 - \rightarrow Output x = 420 in binary with m = 9 digits: 110100100

Versatility of Arithmetic Coding – Adaptive Model

Context (sequence thus far)	Probability of next symbol			
	P(a) = 0.425	P(b) = 0.425	$P(\Box) = 0.15$	
b	P(a b) = 0.28	P(b b) = 0.57	$P(\Box \mathbf{b}) = 0.15$	
bb	P(a bb) = 0.21	P(b bb) = 0.64	$P(\Box \mathrm{bb}){=}0.15$	
bbb	P(a bbb) = 0.17	P(b bbb) = 0.68	$P(\Box \mathtt{bbb}){=}0.15$	
bbba	P(a bbba) = 0.28	P(b bbba) = 0.57	$P(\Box \text{bbba}) = 0.15$	

adapted from Figure 6.4 of MacKay: Information Theory, Inference, and Learning Algorithms 2003

Arithmetic Coding – General framework

- ▶ Note: Arithmetic coder *doesn't care* if probabilities or even σ change all the time!
 - ► As long as encoder and decoder know from context what they are!

Arithmetic Coding – General framework

- Note: Arithmetic coder *doesn't care* if probabilities or even σ change all the time!
 - ▶ As long as encoder and decoder know from context what they are!

General stochastic sequence:

Sequence of random variables X_0, X_1, X_2, \dots such that

- **1.** $X_i \in [0..U_i) \cup \{\$\}$ (We use \$ to signal "end of text")
- **2.** $\mathbb{P}[X_i = j] = P_{ij}$
- 3. both U_i and P_{ij} are random variables as they *depend* on X_0, \ldots, X_{i-1} , but conditioned on X_0, \ldots, X_{i-1} , they are fixed and known: $P_{ij} = P_{ij}(Y_0, \ldots, Y_{i-1}) \mathbb{P}[Y_i = i \mid Y_0, \ldots, Y_{i-1}]$

$$P_{ij} = P_{ij}(X_0, ..., X_{i-1}) = \mathbb{P}[X_i = j \mid X_0, ..., X_{i-1}]$$

 $U_i = U_i(X_0, ..., X_{i-1}) = \max\{j : P_{ij}(X_0, ..., X_{i-1}) > 0\}$

Arithmetic Coding – General framework

- Note: Arithmetic coder *doesn't care* if probabilities or even σ change all the time!
 - ► As long as encoder and decoder know from context what they are!

General stochastic sequence:

Sequence of random variables X_0, X_1, X_2, \dots such that

- **1.** $X_i \in [0..U_i) \cup \{\$\}$ (We use \$ to signal "end of text")
- **2.** $\mathbb{P}[X_i = j] = P_{ij}$
- 3. both U_i and P_{ij} are random variables as they *depend* on X_0, \ldots, X_{i-1} , but conditioned on X_0, \ldots, X_{i-1} , they are fixed and known: $P_{ij} = P_{ij}(X_0, \ldots, X_{i-1}) = \mathbb{P}[X_i = j \mid X_0, \ldots, X_{i-1}]$ $U_i = U_i(X_0, \ldots, X_{i-1}) = \max\{j : P_{ij}(X_0, \ldots, X_{i-1}) > 0\}$
- ► Can model arbitrary dependencies on previous outcomes
- Assume here that random process is known by both encoder and decoder (<u>fixed coding</u>) otherwise extra space needed to encode model!

Arithmetic Coding – Encoding

```
<sup>1</sup> procedure arithmeticEncode(X_0, \ldots, X_n):
        // Assume model U_i and P_{ij} are fixed.
        // Assume X_i \in [0..U_i) for i < n and X_n = $
        // Step 1: Interval zooming
      \ell := 0; \ p := 1
      for i := 0, ..., n-1 do
             q := \sum_{i=0}^{\infty} P_{ij}; \qquad q = P_{i,0} + P_{i,1} + \cdots + P_{i,K_{i-1}}
              \ell := \ell + q \cdot p; \quad p := p \cdot P_{i,X_i}
 8
         end for
         q := 1 - P_{n,\$} // encode $ as last character
10
         \ell := \ell + q \cdot p; \quad p := p \cdot P_{n,\$}
11
        // Step 2: Dyadic encoding
12
        m := \lceil \lg(1/p) \rceil - 1
13
        do
14
              m := m + 1; \quad x := \lceil \ell \cdot 2^m \rceil
15
         while (x + 1)/2^m > \ell + p
16
         return x in binary using m bits
17
```

Arithmetic Coding – Decoding

```
procedure arithmeticDecode(C[0..m)):
                                                                                   Example: adaptive model
       // Assume model U_i and P_{ij} are fixed.
                                                                                     on [= (0.5)
       //C[0..m) bit string produced by arithmeticEncode
      x = \sum_{i=0}^{m-1} C[i] \cdot 2^{m-1-i} // final interval [x/2^m, (x+1)/2^m)
                                                                                        P[S[:]=a| S[o..i)]
       \ell := 0; p := 1; i := 0
                                                                                              1 SEO .. i) ] + 1
       while true
            c := 0; q := 0 // Decode next character c
7
            while \ell + q \cdot p < x/2^m // Iterate through characters until final interval
                if c == U_i + 1 // reached $
                                                                                                (x 21)
                     X[i] := $
10
                     return X[0..i]
11
                else
12
                     q := q + P_{i,c}; c := c + 1
13
            end while
14
           c := c - 1; q := q - P_{i,c} // we overshot by 1
15
           X[i] := c
16
           \ell := \ell + q \cdot p; \quad p := p \cdot P_{i,c}
17
           i := i + 1
18
       end for
19
```

8.2 Practical Arithmetic Coding

Arithmetic Coding – Numerics

- ► As implemented above, *p* usually gets smaller by a constant factor with *each character*
 - \rightarrow *p* gets exponentially small in n!
 - ▶ ℓ does not get smaller in absolute terms, but we need it to ever higher accuracy
- \rightarrow requires $\Omega(n)$ bit precision and exact arithmetic!

Arithmetic Coding – Numerics

- ► As implemented above, *p* usually gets smaller by a constant factor with *each character*
 - \rightarrow *p* gets exponentially small in *n*!
 - ▶ ℓ does not get smaller in absolute terms, but we need it to ever higher accuracy
- \rightsquigarrow requires $\Omega(n)$ bit precision and exact arithmetic!
- ► With a clever trick, this can be avoided!
 - ▶ If $[\ell, \ell + p) \subseteq [0, \frac{1}{2})$, we know:
 - ► Our final x with $\left[\frac{x}{2^m}, \frac{x+1}{2^m}\right) \subseteq [\ell, \ell+p)$ must start with a 0-bit!
 - Output a 0 and renormalize interval: $\ell := 2\ell; \ p := 2p$

Arithmetic Coding – Numerics

- ► As implemented above, *p* usually gets smaller by a constant factor with *each character*
 - \rightarrow p gets exponentially small in n!
 - ▶ ℓ does not get smaller in absolute terms, but we need it to ever higher accuracy
- \rightsquigarrow requires $\Omega(n)$ bit precision and exact arithmetic!
- ▶ With a clever trick, this can be avoided!
 - ▶ If $[\ell, \ell + p) \subseteq [0, \frac{1}{2})$, we know:
 - ► Our final x with $\left[\frac{x}{2^m}, \frac{x+1}{2^m}\right] \subseteq [\ell, \ell+p)$ must start with a 0-bit!
 - Output a 0 and renormalize interval: $\ell := 2\ell$; p := 2p
 - ▶ If $[\ell, \ell + p) \subseteq [\frac{1}{2}, 1)$, similarly:
 - Output 1 and renormalize: $\ell := \ell = \frac{1}{2}$

$$\ell := \ell - \frac{1}{2}$$

$$\ell := 2\ell; \ p := 2p$$

Arithmetic Coding – Renormalization

Does this guarantee ℓ and p stay in a reasonable range?

Arithmetic Coding – Renormalization

Does this guarantee ℓ and p stay in a reasonable range?

► No! Consider (uniform) trits in {0, 1, 2} again and encode 11111111111111111...

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

$$p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-n} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2} + \dots = \sum_{i=1}^n 3^{-n} + \dots = \sum_{i$$

Arithmetic Coding – Renormalization

Does this guarantee ℓ and p stay in a reasonable range?

► No! Consider (uniform) trits in {0, 1, 2} again and encode 1111111111111111...

$$\Rightarrow p = \left(\frac{1}{3}\right)^n, \quad \ell = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots = \sum_{i=1}^n 3^{-i} = \frac{1}{2} - \frac{3^{-n}}{2}$$

 $\rightarrow \ell < \frac{1}{2}$ and $\ell + p > \frac{1}{2} \rightarrow \text{next bit unknown as of yet}$

But: If $[\ell, \ell + p) \subseteq [\frac{1}{4}, \frac{3}{4})$, next **two** bits are either 01 or 10

- ► Remember an "outstanding opposite bit" (increment counter)
- ► Renormalize:

$$\ell := \ell - \frac{1}{4}$$

$$\ell := 2\ell; \ p := 2p$$

- \rightsquigarrow ℓ and p remain in range of P_{ij}
- \rightarrow round P_{ij} to integer multiple of 2^{-F} \rightarrow fixed-precision arithmetic

Fixed Precision Arithmetic Encode

Detailed code from Moffat, Neal, Witten, Arithmetic Coding Revisited, ACM Trans. Inf. Sys. 1998

Note: $\underline{L \text{ is our } \ell}$, R is our p, $b \le w$ is #bits for variables

```
arithmetic\_encode(l,h,t)
```

/* Arithmetically encode the range [l/t, h/t) using low-precision arithmetic. The state variables R and L are modified to reflect the new range, and then renormalized to restore the initial and final invariants $2^{b-2} < R \le 2^{b-1}$, $0 \le L < 2^b - 2^{b-2}$, and $L + R \le 2^b$ */

- (1) Set $r \leftarrow R$ div t
- (2) Set $L \leftarrow L + r$ times l
- (3) If h < t then set $R \leftarrow r$ times (h l) else

set
$$R \leftarrow R - r$$
 times l

(4) While $R \leq 2^{b-2}$ do

Use Algorithm Encoder Renormalization (Figure 7) to renormalize R, adjust L, and output one bit

Fixed Precision Renormalize

```
In arithmetic_encode()
     /* Reestablish the invariant on R, namely that 2^{b-2} < R \le 2^{b-1}. Each doubling
     of R corresponds to the output of one bit, either of known value, or of value
     opposite to the value of the next bit actually output */
(4) While R < 2^{b-2} do
         If L+R < 2^{b-1} then
               bit_plus_follow(0)
         else if 2^{b-1} < L then
               bit_plus_follow(1)
              Set L \leftarrow L - 2^{b-1}
         else
               Set bits_outstanding \leftarrow bits_outstanding + 1 and L \leftarrow L - 2^{b-2}
          Set L \leftarrow 2L and R \leftarrow 2R
bit_plus_follow(x)
     /* Write the bit x (value 0 or 1) to the output bit stream, plus any outstanding
     following bits, which are known to be of opposite polarity */
(1) write\_one\_bit(x).
(2) While bits\_outstanding > 0 do
          write\_one\_bit(1-x)
          Set bits\_outstanding \leftarrow bits\_outstanding - 1
```

Fixed Precision Arithmetic Decode

Functions decode_target and arithmetic_decode to be called alternatingly.

$decode_target(t)$

/* Returns an integer target, $0 \le target < t$ that is guaranteed to lie in the range [l,h) that was used at the corresponding call to $arithmetic_encode()$ */

- (1) Set $r \leftarrow R$ div t
- (2) Return $(\min\{t-1, D \text{ div } r\})$

$$arithmetic_decode(l,h,t)$$

/* Adjusts the decoder's state variables \underline{R} and \underline{D} to reflect the changes made in the encoder during the corresponding call to $arithmetic_encode()$. Note that, compared with Algorithm CACM CODER (Figure 6), the transformation D = V - L is used. It is also assumed that r has been set by a prior call to $decode_target()$ */

- (1) Set $D \leftarrow D r$ times l
- (2) If h < t then set $R \leftarrow r$ times (h l) else

set
$$R \leftarrow R - r$$
 times l

(3) While $R \le 2^{b-2}$ do Set $R \leftarrow 2R$ and $D \leftarrow 2D + read_one_bit()$

Arithmetic Coding Discussion

- Subtle code (→ libraries!)
- Typically slower to encode/decode than Huffman codes
- Encoded bits can be produced/consumed in bursts
- Extremely versatile w. r. t. random process
- 🖒 Almost optimal space usage / compression
- Widely used (instead of Huffman) in JPEG, zip variants, ...

8.3 Error Correcting Codes

- ▶ most forms of communication are "noisy"
 - ▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

- ▶ most forms of communication are "noisy"
 - humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ► How do humans cope with that?
 - ▶ slow down and/or speak up
 - ask to repeat if necessary

- ▶ most forms of communication are "noisy"
 - ▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ► How do humans cope with that?
 - ▶ slow down and/or speak up
 - ask to repeat if necessary

▶ But how is it possible (for us) to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo **redundancy** bilt itno it!

- ▶ most forms of communication are "noisy"
 - ▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ► How do humans cope with that?
 - ▶ slow down and/or speak up
 - ask to repeat if necessary

▶ But how is it possible (for us) to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

- → We can
- **1. detect errors** "This sentence has aao pi dgsdho gioasghds."
- correct (some) errors "Tiny errs ar corrrected automaticly."(sometimes too eagerly as in the Chinese Whispers / Telephone)

Noisy Channels

- ► computers: copper cables & electromagnetic interference
- ► transmit a binary string
- ▶ but occasionally bits can "flip"
- → want a robust code

Noisy Channels

- ► computers: copper cables & electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
- → want a robust code

- ► We can aim at
 - **1. error detection** → can request a re-transmit
 - **2. error correction** → avoid re-transmit for common types of errors

Noisy Channels

- computers: copper cables & electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
- → want a robust code

- ▶ We can aim at
 - **1. error detection** → can request a re-transmit
 - **2. error correction** → avoid re-transmit for common types of errors
- ▶ This will require *redundancy*: sending *more* bits than plain message
 - → goal: robust code with lowest redundancy that's the opposite of compression!

Clicker Question

What do you think, how many extra bits do we need to **detect** a **single bit error** in a message of 100 bits?

→ sli.do/cs566

Clicker Question

What do you think, how many extra bits do we need to <u>correct</u> a <u>single bit error</u> in a message of 100 bits?

→ sli.do/cs566