Laboratorium Podstaw Fizyki

Ćwiczenie 81B "Wyznaczanie promienia krzywizny soczewki i długości fali świetlnej za pomocą pierścieni Newtona"

Prowadzący: mgr Karolina Paradowska

Imię i Nazwisko	Marcin Kotas
Nr indeksu	235098
Wydział	Elektroniki
Termin zajęć	24.10.2017, godz. 9.15
Numer grupy ćwiczeniowej	5
Data oddania sprawozdania	31.10.2017

1 Wstęp teoretyczny

Pierścienie Newtona to zjawisko, które powstaje w wyniku interferencji fal światła. Ukazuje się w postaci naprzemiennych okręgów jasnych i ciemnych pól. Takie okręgi po raz pierwszy zauważył Newton (dlatego noszą nazwę pierścieni Newtona), a poprawnie zostały opisane przez Hooke'a w 1664 roku. Charakterystyczny wzór uzyskuje się poprzez położenie płaskowypukłej soczewki (stroną wypukłą w dół) na płaskim szkle. W ten sposób szkła stykają się tylko w samym środku. Wszędzie dookoła jest przerwa między szkłami, która stopniowo zwiększa się z odległością od środka. Na tak ustawioną soczewkę pada z góry światło monochromatyczne, które odbija się zarówno od wypukłej ściany soczewki, jak i od płaskiego szkła pod nią. Jednocześnie przy przechodzeniu między ośrodkami (szkło-powietrze) promienie ulegają załamaniu. Te dwa promienie nakładają się na siebie tworząc zjawisko interferencji. W zależności od przebytej drogi fale będą się wzmacniać lub wygaszać według następujących zasad:

- Wzmocnienie nastąpi w miejscach, gdzie różnica przebytej drogi będzie równa wielokrotności długości fali (grzbiety i dna funkcji będą w tych samych miejscach). W takim wypadku fale będą w tej samej fazie, więc amplitudy się dodadzą. W rezultacie obserwowany obszar będzie jasny. ($\Delta L = n \cdot \lambda$)
- Wygaszenie nastąpi w miejscach, gdzie różnica przebytej drogi będzie równa nieparzystej wielokrotności połowy długości fali (grzbiety jednej fali spotkają się z dnami drugiej fali). W takim wypadku fale będą w przeciwnych fazach (przesunięte o 180°), a więc się wygaszą. W rezultacie obserwowany obszar będzie ciemny. ($\Delta L = (2n+1) \cdot \frac{\lambda}{2}$)

Ponieważ soczewka jest okrągła, w wyniku interferencji powstają charakterystyczne jasne i ciemne prążki wokół środka soczewki. W miarę wzrostu odległości od środka kolejne prążki coraz bardziej się zagęszczają, aż przestają być rozróżnialne. Spowodowane jest co coraz większą przerwą między soczewką, a szklaną płytką. Na samym środku ukazuje się ciemny obszar, ponieważ w chwili odbicia fali od dolnego płaskiego szkła następuje odwrócenie fali, przez co jest przesunięta o 180°. Jeśli użyte zostanie białe światło to powstają kolorowe prążki (fale o różnych długościach są załamywane w różnym stopniu)

Efekt ten jest wykorzystywany w badaniu jakości powierzchni optycznych ze względu na bardzo wysoką dokładność. Rozmiary promieni mogą posłużyć w wyznaczaniu promienia krzywizny analizowanych powierzchni, a zniekształcenie pierścieni określa inne właściwości, jak odstępstwa od regularnego kształtu. W przemyśle zjawisko to jest wykorzystywane przy badaniu jakości szkieł w obiektywach. Możliwe jest również wyznaczenie współczynnika załamania światła cieczy znajdującej się pomiędzy soczewką, a płaskim szkłem.

Celem ćwiczenia było zapoznanie się ze zjawiskiem interferencji światła występującym w klinie optycznym oraz obliczenie promienia krzywizny soczewki na podstawie promieni pierścieni Newtona, korzystając ze wzoru:

$$R = \frac{r^2}{k \cdot \lambda}$$

W tym celu użyta została lampa z filtrem interferencyjnym 600nm, mikroskop z czujnikiem zegarowym, soczewka płasko-wypukła oraz szklana płytka płasko-równoległa. Zostały zmierzone promienie 5 pierścieni, zaczynając od prążka rzędu 7. Aby zwiększyć dokładność pomiarów każdy pomiar został przeprowadzony 10 razy. Zmierzono również grubość każdego prążka, która użyta została przy wyznaczeniu błędu eksperymentatora.

2 Wyniki pomiarów

2.1 Wykonanie pomiarów

Aby zmierzyć promień prążka wykonane zostały pomiary współrzędnej jego lewej oraz prawej krawędzi. Przeprowadzono takie same pomiary dla prążków o rzędach 7-11, przybierając za prążek rzędu 0 ciemny środek obrazu. Każdy pomiar został powtórzony 10 razy, dając w sumie 100 pomiarów. Zostały one przedstawione w tabelach 1-5. Na koniec zmierzono raz grubość każdego z obserwowanych prążków, której połowę przyjęto za błąd eksperymentatora. Grubość \boldsymbol{d} została podana w podpisach tabel.

2.2 Obliczenia

2.2.1 Opracowanie wyników

Dla każdej z wyliczonych współrzędnych została obliczona wartość średnia. Ten, oraz następne przykładowe obliczenia przedstawiają przypadek lewej współrzędnej pierścienia nr 7:

$$\bar{a}_l = \frac{1}{10} \sum_{i=1}^{10} a_{li} = \frac{1}{10} (6, 24 + 6, 23 + \dots + 6, 23 + 6, 22) = \frac{1}{10} \cdot 62, 31 = 6, 231 [mm]$$

Następnie wyliczona została niepewność typu A dla wszystkich współrzędnych:

$$u_A(a_l) = \sqrt{\frac{\sum_{i=1}^{10} (a_{li} - \bar{a}_l)^2}{10(10 - 1)}}$$

$$= \sqrt{\frac{(6, 24 - 6, 231)^2 + (6, 23 - 6, 231)^2 + \dots + (6, 22 - 6, 231)^2}{90}}$$

$$= 0,001795055 \approx 0,0018[mm]$$

Na niepewność standardową typu B składają się niepewność czujnika zegarowego $\Delta_p x$ oraz niepewność eksperymentatora (w tym przypadku równej połowie grubości pierścienia $\Delta_e x = \frac{d}{2}$):

$$u_B(a_l) = \sqrt{\frac{(\Delta_p a_l)^2}{3} + \frac{(\Delta_e a_l)^2}{3}} = \sqrt{\frac{0,01^2}{3} + \frac{0,02^2}{3}}$$
$$= 0,012909944 \approx 0,0129[mm]$$

Finalna niepewność standardowa całkowita wynosi:

$$u(a_l) = \sqrt{u_A^2(a_l) + u_B^2(a_l)} = \sqrt{0,0018^2 + 0,0129^2}$$

= 0,013034143 \approx 0,014[mm]

Średni promień r został obliczony jako średnia z różnic współrzędnych podzielonych przez 2:

$$\bar{r} = \frac{1}{10} \sum_{i=1}^{10} \frac{1}{2} |a_{li} - a_{bi}|$$

$$= \frac{1}{20} (|6, 24 - 3, 04| + |6, 23 - 3, 04| + \dots + |6, 22 - 3, 05|)$$

$$= 1,5915 \approx 1,592[mm]$$

Dokładność promienia jest równa mniejszej dokładności współrzędnych (w tym przypadku obie współrzędne określone są z taką samą dokładnością):

$$u(r) = u(a_l) = u(a_p) = 0,014[mm]$$

2.2.2 Wyznaczanie promienia krzywizny soczewki

Promień krzywizny wyznacza się z wyrażenia $R = \frac{r^2}{k \cdot \lambda}$, przy czym k jest numerem badanego prążka, λ długością fali światła. Promień krzywizny został wyznaczony dla każdego pierścienia, z użyciem uśrednionych wartości promieni pierścieni (Wyniki wszystkich obliczeń przedstawione są w Tabeli 6):

$$R = \frac{r^2}{k \cdot \lambda} = \frac{(1,592 \cdot 10^{-3})^2}{7 \cdot 600 \cdot 10^{-9}} \approx 0,603065[m]$$

Pomiar promienia krzywizny soczewki jest pomiarem pośrednim, więc jego niepewność jest niepewnością złożoną:

$$u_c(R) = \sqrt{\left(\frac{\partial R}{\partial r}\right)^2 \cdot u^2(r) + \left(\frac{\partial R}{\partial \lambda}\right)^2 \cdot u^2(\lambda)}$$

$$= \sqrt{\left(\frac{2r}{k \cdot \lambda}\right)^2 \cdot u^2(r) + \left(-\frac{r^2}{k \cdot \lambda^2}\right)^2 \cdot u^2(\lambda)}$$

$$= \sqrt{\frac{\left(\frac{2 \cdot 1,592 \cdot 10^{-3}}{7 \cdot 600 \cdot 10^{-9}}\right)^2 \cdot (0,014 \cdot 10^{-3})^2}{7 \cdot 600 \cdot 10^{-9}}} \approx 0,012093[m]$$

$$+ \left(-\frac{(1,592 \cdot 10^{-3})^2}{7 \cdot (600 \cdot 10^{-9})^2}\right)^2 \cdot (5,7735 \cdot 10^{-9})^2}$$

Na koniec należy wyliczyć średni promień krzywizny soczewki w sposób analogiczny do liczenia średniej wartości współrzędnej:

$$\bar{R} = 0,6041[m]$$

Niepewność wartości średniej została wyznaczona poprzez obliczenie wartości odchylenia standardowego średniej:

$$u(R) = \sqrt{\frac{\sum_{i=1}^{5} (R_i - \bar{R})^2}{5 - 1}} = 0,001033893 \approx 0,0011[m]$$

Promień krzywizny soczewki można również otrzymać korzystając z regresji liniowej (Wykres 1). Otrzymany w ten sposób promień wynosi:

$$R = 0.6061[m]$$

Aby wyznaczyć niepewność szukanego w ten sposób promienia krzywizny w programie Excel, należy skorzystać z funkcji REGLINP. Otrzymana niepewność wynosi:

$$u(R) = 0.003186879 \approx 0.0032[m]$$

2.3 Tabele i wykresy

Tablica 1: Wyniki pomiarów dla k = 7 $\label{eq:def} d = 0.04 \ mm$

Tablica 3: Wyniki pomiarów dla k = 9 $\label{eq:def} d = 0{,}03~mm$

	a_l	a_p	r	
Lp.	$\times 10^{-3}[m]$	$\times 10^{-3} [m]$	$\times 10^{-3} [m]$	
1	6,24	3,04	1,60	
2	6,23	3,04	1,60	
3	6,24	3,05	1,60	
4	6,23	3,05	1,59	
5	6,23	3,05	1,59	
6	6,23	3,05	1,59	
7	6,23	3,06	1,59	
8	6,23	3,04	1,60	
9	$6,\!23$	3,05	1,59	
10	6,22	3,05	1,59	
$\Delta_p x$	0,01	0,01		
\bar{x}	6,231	3,048	1,592	
$u_A(x)$	0,0018	0,002		
$u_B(x)$	0,0129	0,0129		
u(x)	0,013034	0,013064		
$\approx u(x)$	0,014	0,014	0,014	

	a_l	a_p	r	
Lp.	$\times 10^{-3}[m]$	$\times 10^{-3} [m]$	$\times 10^{-3}[m]$	
1	6,46	2,83	1,82	
2	6,44	2,84	1,80	
3	6,46	2,84	1,81	
4	6,44	2,84	1,80	
5	6,44	2,84	1,80	
6	6,45	2,84	1,81	
7	6,44	2,82	1,81	
8	6,45	2,83	1,81	
9	6,44	2,83	1,81	
10	6,44	2,83	1,81	
$\Delta_p x$	0,01	0,01		
\bar{x}	6,446	2,834	1,806	
$u_A(x)$	0,0027	0,0022		
$u_B(x)$	0,0104	0,0104		
u(x)	0,010745	0,010641		
$\approx u(x)$	0,011	0,011	0,011	

Tablica 2: Wyniki pomiarów dla k = 8 $\label{eq:def} \mathrm{d} = 0.04~\mathrm{mm}$

Tablica 4: Wyniki pomiarów dla k = 10 d = 0,04 mm

	a_l	a_p	r	
Lp.	$\times 10^{-3} [m]$	$\times 10^{-3} [m]$	$\times 10^{-3} [m]$	
1	6,34	2,93	1,71	
2	6,34	2,94	1,70	
3	6,34	2,93	1,71	
4	6,35	2,94	1,71	
5	6,34	2,93	1,71	
6	6,34	2,94	1,70	
7	6,35	2,93	1,71	
8	6,34	2,93	1,71	
9	6,34	2,93	1,71	
10	6,34	2,93	1,71	
$\Delta_p x$	0,01	0,01		
\bar{x}	6,342	2,933	1,705	
$u_A(x)$	0,0013	0,0015		
$u_B(x)$	0,0129	0,0129		
u(x)	0,012979	0,013		
$\approx u(x)$	0,013	0,013	0,013	

	a_l	a_p	r		
Lp.	$\times 10^{-3} [m]$	$\times 10^{-3} [m]$	$\times 10^{-3} [m]$		
1	6,56	2,73	1,92		
2	6,54	2,74	1,90		
3	6,53	2,74	1,90		
4	6,54	2,73	1,91		
5	6,54	2,75	1,90		
6	6,53	2,73	1,90		
7	6,54	2,73	1,91		
8	6,54	2,73	1,91		
9	6,54	2,74	1,90		
10	6,54	2,73	1,91		
$\Delta_p x$	0,01	0,01			
\bar{x}	6,540	2,735	1,903		
$u_A(x)$	0,0026	0,0022			
$u_B(x)$	0,0129	0,0129			
u(x)	0,013166	0,013102			
$\approx u(x)$	0,014	0,014	0,014		

Tablica 5: Wyniki pomiarów dla k = 11 $\label{eq:def} d = 0{,}03~mm$

	a_l	a_p	r	
Lp.	$\times 10^{-3} [m]$	$\times 10^{-3} [m]$	$\times 10^{-3}[m]$	
1	6,65	2,64	2,01	
2	6,65	2,65	2,00	
3	6,63	2,64	2,00	
4	6,64	2,64	2,00	
5	6,64	2,64	2,00	
6	6,64	$2,\!65$	2,00	
7	6,63	2,64	2,00	
8	6,64	2,64	2,00	
9	6,64	2,64	2,00	
10	6,63	2,64	2,00	
$\Delta_p x$	0,01	0,01		
\bar{x}	6,639	2,642	1,999	
$u_A(x)$	0,0023	0,0013		
$u_B(x)$	0,0104	0,0104		
u(x)	0,010667	0,010493		
$\approx u(x)$	0,011	0,011	0,011	

Tablica 6: Wyznaczenie promienia krzywizny R

	λ	$u(\lambda)$	k	r	u(r)	R	$u_c(R)$	\bar{R}	u(R)	$\approx u(R)$
Lp.	$\begin{array}{c c} \times 10^{-9} \\ [m] \end{array}$	$\begin{array}{c} \times 10^{-9} \\ [m] \end{array}$		$\begin{array}{c c} \times 10^{-3} \\ \hline [m] \end{array}$	$\begin{array}{c c} \times 10^{-3} \\ \hline [m] \end{array}$	[m]	[m]	[m]	[m]	[m]
1			7	1,592	0,014	0,603	0,013			
2			8	1,705	0,013	0,605	0,011			
3	600	5,7735	9	1,81	0,011	0,6040	0,0094	0,6041	0,001034	0,0011
4			10	1,903	0,014	0,603	0,011			
5			11	2,00	0,011	0,6052	0,0089			

Wykres 1: Promień krzywizny soczewki - regresja liniowa

3 Ostateczne wyniki

Ostateczne wyniki wraz z zaokrągleniami:

Promień pierścienia rzędu 7: $(1,592\pm0,014)\times10^{-3}m$

Promień pierścienia rzędu 8: $(1,705\pm0,013)\times10^{-3}m$

Promień pierścienia rzędu 9: $(1,806\pm0,011)\times10^{-3}m$

Promień pierścienia rzędu 10: $(1,903\pm0,014)\times10^{-3}m$

Promień pierścienia rzędu 11: $(1,999 \pm 0,011) \times 10^{-3}m$

Promień R wyznaczony algebraicznie: $(0,6041 \pm 0,0011)m$

Promień R wyznaczony graficznie: $(0,6061 \pm 0,0032)m$

4 Dyskusja i wnioski

W doświadczeniu zmierzone zostały promienie pięciu pierścieni Newtona, co pozwoliło wyznaczyć promień krzywizny obserwowanej soczewki. Promień krzywizny został wyznaczony z bardzo dużą dokładnością - niepewność stanowi zaledwie 0,2% wyniku w przypadku metody uśredniania oraz nieco więcej w przypadku linearyzacji - 0,5%. Wynika to ze specyfiki doświadczenia - odległości badane są pod mikroskopem, a światło padające na układ było monochromatyczne, dając wyraźne jasne i ciemne prążki.

5 Literatura

- [1] "A Modern Course in University Physics: Optics, Thermal Physics, Modern Physics", Fuxiang Han, str 91-96 (źródło: Google Książki)
- [2] https://www.ncbi.nlm.nih.gov/pubmed/9829108