

YDLIDAR X3 数据手册

目录

1	产品概述	 1
1.1	产品特性	 1
1.2	应用场景	 1
1.3	安装及尺寸	 2
2	规格参数	 2
2.1	性能参数	 2
2.2	电气参数	 3
2.3	接口定义	3
2.4	接口电气	3
2.5	数据通信	4
2.6	电机控制	 4
2.7	光学特性	5
2.8	极坐标系定义	6
2.9	其他参数	6
3	修订	7

1 产品概述

YDLIDAR X3 激光雷达是深圳玩智商科技有限公司(EAI)研发的一款 360 度二维测距产品(以下简称: X3)。本产品基于三角测距原理,并配以相关光学、电学、算法设计,实现高频高精度的距离测量,在测距的同时,机械结构 360 度旋转,不断获取角度信息,从而实现了 360 度扫描测距,输出扫描环境的点云数据。

1.1 产品特性

- ▶ 360 度全方位扫描测距
- ▶ 测距误差小,测距稳定性好,精度高
- ▶ 测距范围广
- ▶ 抗环境光干扰能力强
- ▶ 功耗低,体积小,性能稳定,寿命长
- ▶ 激光功率满足 Class I 级别的激光器安全标准
- ▶ 电机转速可调

1.2 应用场景

- ▶ 机器人导航及避障
- ▶ 机器人 ROS 教学、研究
- ▶ 区域安防
- ▶ 环境扫描及 3D 重建
- > 家用服务机器人/扫地机器人的导航及避障

1.3 安装及尺寸

图 1 YDLIDAR X3 机械尺寸 (单位: MM)

2 规格参数

2.1 性能参数

表 1 YDLIDAR X3 性能参数

项目	最小值	典型值	最大值	单位	备注
测距频率	/	4000	/	Hz	每秒测距 3000 次
扫描频率	5	8	10	Hz	/
测距范围		0.12	/	m	10%反射率物体
侧距阻围	/	8	/	m	80%反射率物体
扫描角度	/	0-360	/	Deg	/
绝对误差	/	2	/	cm	测距≤1m
相对误差	/	1%	3.5%@6m; 5%@8m	/	/
角度分辨率	0.6 (5Hz)	0.96 (8Hz)	1.2 (10Hz)	Deg	/
俯仰角	0.25	1	1.75	Deg	/

- 注1: 为工厂FQC标准值,80%反射率材质物体。
- 注 2: 相对误差(均值)表征雷达测量的准确度,相对误差(均值)=(平均测量距离-实际距离)/实际距离*100%,样本数量: 100pcs。
- 注 3: 激光雷达是精密设备,在使用过程中需要注意防护,在高低温或者强烈振动的使用场景中,相对误差的参数指标会相对更大一些,有可能会超过典型值。

2.2 电气参数

表 2 YDLIDAR X3 电气参数

项目	最小值	典型值	最大值	单位	备注
供电电压	4.8	5	5. 2	V	过高会损坏设备,过低影响性能甚至无法测距
供电电流	1000	/	/	mA	给雷达供电的电源需要满 足的驱动能力
工作电流	/	350	500	mA	系统工作, 电机旋转

2.3 接口定义

X3 对外提供了 PHD1. 25_4P 母座接口,该接口有系统供电、数据通信和电机控制的功能接口。

图 2 YDLIDAR X3 物理接口

2.4 接口电气

表 3 YDLIDAR X3 接口定义说明

管脚	类型	描述	默认值	范围	备注
VCC	供电	供电电压正极	5V	4. 8V-5. 2V	/
Tx	输出	系统串口输出	/	/	数据流: 雷达→外设
GND	供电	供电电压负极	OV	OV	/
M_CTR	输入	电机转速控制端	/	0V-3.3V	PWM 调速

图 3 YDLIDAR X3 物理接口原理图

2.5 数据通信

X3 采用 3.3V 电平的串口(UART)采用进行单工通信,用户可通过产品上的物理接口,连接外部系统和本产品,并按照系统的通信协议进行通讯来实时获取扫描的点云数据、其通信参数如下表:

项目	最小值	典型值	最大值	单位	备注
波特率	1	153600	/	bps	8 位数据位,1 位停止 位,无校验
信号高电平	2. 4	3.3	3. 5	V	/
信号低电平	0	-0	0.6	V	/

表 4 YDLIDAR X3 串口规格

2.6 电机控制

X3 电机驱动器自带调速功能,外设可通过接口中的 M_CTR 管脚输入控制信号来对 X3 的电机进行转速控制。可通过输入 PWM 信号调速, PWM 占空比越大,电机转速越高。

项目	功能描述	备注
恒低电平	雷达进入待机状态,电机停止工作	待机
输入 PWM 信号	雷达进入工作状态,扫描频率由输入信号控制	PWM(10KHz/3.3Vpp)
恒高电平	雷达进入工作状态,扫描频率重置为默认值	默认值为 6±0.2Hz
悬空	雷达进入工作状态,扫描频率重置为默认值	默认值为6±0.2Hz

表 5 YDLIDAR X3 M-CTR 接口功能描述

其中,对M CTR的PWM信号有如下要求:

表 6 YDLIDAR X3 电机 PWM 信号规格

项目	最小值	典型值	最大值	单位	备注
PWM 频率	/	10	/	KHz	PWM 为方波信号

PWM 信号占空比和扫描频率的对应关系,会随雷达个体、供电不同及环境存在差异,下 图对应关系仅作设置参考:

图 4 YDLIDAR X3 PWM 信号占空比和扫描频率关系图(仅供参考)

2.7 光学特性

X3 采用的红外点状脉冲式激光器,可以确保人类及宠物的安全性。产品已测试通过 FDA Class I 级别的激光安全标准,符合 21 CFR 1040.10 和 1040.11,与2019年5月8日第56号激光公告所述的 IEC 60825-1 Ed.3 标准相符的部分除外。

在系统工作时,激光器和光学镜头来完成激光信号的发射和接收,以此实现高频测距。 为确保系统测距的性能,请确保 X3 的激光器和光学镜头保持洁净。激光器光学参数如下:

表 7 YDLIDAR X3 激光器光学参数

项目	最小值	典型值	最大值	单位	备注
激光器波长	775	793	800	nm	红外波段
激光器功率	/	1	3	mW	平均出光功率
等级认证	Class I IEC60825-1				

注: 自行调整或改装本产品可能会导致危险的辐射暴露。

2.8 极坐标系定义

为了方便二次开发,X3 内部定义了极坐标系。系统极坐标以 X3 的旋转核心的中心为极点,规定角度顺时针为正,零位角位于 X3 电机的正前方,由于个体差异,存在+/-3° 的偏差。

2.9 其他参数

表 8 YDLIDAR X3 其他参数

项目	最小值	典型值	最大值	单位	备注
工作温度	0	20	40	$^{\circ}$	无凝露
存储温度	-10	20	60	$^{\circ}$	包装条件
光照环境	0	2000	40000	Lux	仅供参考
重量	/	135	/	g	裸机重量

3 修订

日期	版本	修订内容
2023-03-22	1.0	初撰

