Introduction to NGS data

Principles of genotype and SNP calling and estimation of allele frequencies

Matteo Fumagalli

22nd August 2017

Presentation outline

- 1 Introduction
- 2 Genotype likelihoods
- 3 Genotype calling
- 4 SNP calling
- 6 Imputation

Sanger sequencing

aka first/former generation sequencing

Next Generation Sequencing

- A. Extracted gDNA
- B. gDNA is fragmented into a library of small segments that are each sequenced in parallel.
- C. Individual sequence reads are reassembled by aligning to a reference genome
- D. The whole-genome sequence is derived from the consensus of aligned reads.

From genomes to variants

Genome (FASTA)

TCTGGGGAGTTTGGACCCCGGCACATGGTCAGCTCCATCGTGGGGCACCTGAAATTCCAGGCTCCCTCAG

Reads (FASTQ)

Mapped Reads (mpileup, BAM)

seg1					
seql	273	T	23	,,	
seq1	274	T	23		
seq1	275	A	23		
seq1	276	G	22	7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
seq1	277	T	22	,C.,,,G. +7<;<<<<<&<=<<:;<<&<	
segl	278	G	23	,^k. \\$38*<<;<7<<7<=<<<;<<<<	
seq1	279	C	23		

Variants (VCF)

##filef	ormat=VC	Fv4.1							
##fileD	ate=2014	10930							
##sourc	e=23andn	e2vcf.pl h	ttps://gith	ib.com/arm	ogantrobo	t/23and	ine2vcf		
##refer	ence=fil	e://23andme	e v3 ha19 re	ef.txt.gz	-				
##FORMA	T= <id=gt< td=""><td>.Number=1.</td><td>Type=String</td><td>Descripti</td><td>ion="Genot</td><td>vpe"></td><td></td><td></td><td></td></id=gt<>	.Number=1.	Type=String	Descripti	ion="Genot	vpe">			
#CHROM	POS	ID R	EF ALT	QUAL	FILTER	INFO	FORMAT	GENO!	TYP
chr1	82154	гs4477212	a					GT	
/0									
chr1	752566	rs3094315	g	A				GT	
/1									
chr1	752721	rs3131972	A	G				GT	
/1									
chr1	798959	rs1124077	7 g					GT	
/0									
chr1	800007	rs6681049	T	C				GT	
/1									

Forget about

Statistical inference

Statistical inference

Statistical inference

Statistical inference

Likelihood approach:

- All the information on the parameter is in the likelihood function (we use all the data!).
- · More data leads to less bias and less variance.
- Suitable for hypothesis testing.

The data

is a nucleotide/base/allele with a certain quality score

Genotype likelihoods

Likelihood

$$P(D|G = \{A_1, A_2, ..., A_n\})$$

with
 $A_i \in \{A, C, G, T\}$ and n being the ploidy

How many genotypes likelihoods do we need to calculate for each each individual at each site?

Genotype likelihoods

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

- $L_{A_j,i} = P(D|A_G = A_j)$
- $A_i \in \{A, C, G, T\}$
- R is the depth (nr. of reads)
- *N* is the ploidy (nr. of chromosomes)

Example:

AAAG with all quality scores equal to 20 (in phred score)

$$P(D|G = AC) = ?$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j,i}}{N}$$

AAAG & Q=20

$$P(D|G = \{A, C\}) = ...$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{i=1}^N \frac{L_{A_i, i}}{N}$$

AAAG & Q=20

$$N = 2$$
; $i = 1$; $A_1 = A$; $A_2 = C$

$$P(D|G = \{A, C\}) = (\frac{L_{A,1}}{2} + \frac{L_{C,1}}{2}) \times ...$$

What are $L_{A,1}$ and $L_{C,1}$?

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^{K} \sum_{j=1}^{N} \frac{L_{A_j, i}}{N}$$

AAAG & Q=20

$$L_{C,1} = \frac{\epsilon}{3}$$

$$L_{A,1} = 1 - \epsilon$$

$$P(D|G = \{A, C\}) = (\frac{1-\epsilon}{2} + \frac{\epsilon}{6}) \times ...$$

Likelihood function

$$P(D|G = \{A_1, A_2, ..., A_N\}) = \prod_{i=1}^R \sum_{j=1}^N \frac{L_{A_j, i}}{N}$$

AAAG & Q=20

$$L_{C,1} = \frac{\epsilon}{3}$$

$$L_{A,1} = 1 - \epsilon$$

$$P(D|G = \{A, C\}) = (\frac{1-\epsilon}{2} + \frac{\epsilon}{6}) \times \frac{\epsilon}{3} \times \frac{\epsilon}{3} \times \frac{\epsilon}{3}$$

What is ϵ ?

Genotype	Likelihood (log10)		
AA	-2.49		
AC	-3.38		
AG	-1.22		
AT	-3.38		
CC	-9.91		
CG	-7.74		
СТ	-9.91		
GG	-7.44		
GT	-7.74		
TT	-9.91		

AAAG &
$$\epsilon = 0.01$$

Genotype calling

Genotype	Likelihood (log10)		
AA	-2.49		
AC	-3.38		
AG	-1.22		
AT	-3.38		
CC	-9.91		
CG	-7.74		
CT	-9.91		
GG	-7.44		
GT	-7.74		
TT	-9.91		

AAAG & $\epsilon = 0.01$

What is the genotype here?

Genotype calling

Genotype	Likelihood (log10)		
AA	-2.49		
AC	-3.38		
AG	-1.22		
AT	-3.38		
CC	-9.91		
CG	-7.74		
CT	-9.91		
GG	-7.44		
GT	-7.74		
TT	-9.91		

AAAG & $\epsilon = 0.01$ What is the genotype? AG.

Maximum Likelihood

The simplest genotype caller: choose the genotype with the highest likelihood.

Major and minor alleles

Likelihood function

$$\log P(D|G=A) = \sum_{i=1}^R \log L_{A_j,i}$$

AAAG & $\epsilon = 0.01$

Allele	Likelihood
Α	-2.49
C	-3.38
G	-1.22
Т	-3.38

We can reduce the genotype space to 3 entries (from 10).

Genotype calling

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood		
AA	-5.73		
AG	-2.80		
GG	-17.12		

Examples varying qualities and reads...

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t = 1 meaning that the most likely genotype is 10 times more likely than the second most likely one Pros and cons?

- Yes:
- No:

Genotype likelihood ratio

$$\log_{10} \frac{L_{G(1)}}{L_{G(2)}} > t$$

i.e. t=1 meaning that the most likely genotype is 10 times more likely than the second most likely one

Pros and cons?

- Yes: genotype are called with higher confidence
- No: more missing data

Statistical thinking

Figure: Nessie, the Loch Ness Monster. True or fake?

Statistical thinking

- $T = \{0, 1\}$, whether I tell you I saw Nessie or not.
- $N = \{0, 1\}$, whether Nessie exists (I saw it) or not.

Questions

- What are p(T = 1|N = 1) and p(T = 1|N = 0)?
- What is a Maximum Likelihood Estimate of N?

Statistical thinking

Our inference on N is driven solely by our observations, given by our likelihood function.

Figure: The eye: a "likelihood" organ.

Statistical thinking

In real life we take many decisions based not only on what we observe but also on some believes of ours.

Figure: The brain: a "non-likelihood" organ.

Bayesian thinking

- with "eyes only" our intuition is that $p(N|T) \approx p(T|N)$
- with "the brain" our intuition is that $p(N|T) \approx p(T|N)p(N)$

Our "belief" expresses the probability p(N) unconditional of the data.

Question

How can we define p(N)?

Bayesian thinking

The "belief" function p(N) is called **prior probability** and the joint product of the likelihood p(T|N) and the prior is proportional to the **posterior probability** p(N|T).

The use of posterior probabilities for inferences is called Bayesian statistics.

Statistical inference

If D is the data and θ is your unknown parameter, then

- the frequentist conditions on parameters and integrates over the data, $p(D|\theta)$,
- the Bayesian conditions on the data and integrates over the parameters, $p(\theta|D)$.

Statistical inference

Bayesian vs. Likelihoodist

- we derive "proper" probability distributions of our parameters rather than deriving a point estimate;
- a probability is assigned to a hypothesis rather than a hypothesis is tested;
- we can "accept" the null hypothesis rather than "fail to reject" it;
- parsimony imposed in model choice rather than correcting for multiple tests.

Bayesian inference

Bayesian concepts

Bayes' Theorem

$$p(\vec{\theta}|\vec{y}) = \frac{f(\vec{y}|\vec{\theta})\pi(\vec{\theta})}{m(\vec{y})} = \frac{f(\vec{y}|\vec{\theta})\pi(\vec{\theta})}{\int f(\vec{y}|\vec{\theta})d\vec{\theta}}$$
(1)

- $\vec{\theta}$ is not a fixed parameter but a random quantity with prior distribution $\pi(\vec{\theta})$
- $p(\vec{\theta}|\vec{y})$ is the posterior probability distribution of $\vec{\theta}$
- $\int p(\vec{\theta}|\vec{y})d\vec{\theta} = 1$

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73		
AG	-2.80		
GG	-17.12		

AAAG & $\epsilon = 0.01$ & A,G alleles

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	1/3	0.05
AG	-2.80	1/3	0.95
GG	-17.12	1/3	0

Only call genotypes if the largest probability is above a certain threshold (e.g. 0.95).

AAAG & $\epsilon=0.01$ & A,G alleles & **A** is the reference allele P(AA)>P(AG)>P(GG)

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.80	0.22
AG	-2.80	0.15	0.78
GG	-17.12	0.05	0

The reference allele is just one of the possible alleles, often chosen arbitrarily: why give it so much weight?

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from a reference panel P(AA) = ?; P(AG) = ?; P(GG) = ?

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73		
AG	-2.80		
GG	-17.12		

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.7 from a reference panel P(AA) = ?; P(AG) = ?; P(GG) = ?

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.06
AG	-2.80	0.42	0.94
GG	-17.12	0.09	0

If the assumption of HWE can be reasonably met.

Imperial College London

Empirical Bayesian inference

AAAG & $\epsilon = 0.01$ & A,G alleles & f(A) = 0.6 from the data itself

$$P(AA) = ?; P(AG) = ?; P(GG) = ?$$

Genotype	Likelihood (log)	Prior	Posterior
AA	-5.73	0.49	0.04
AG	-2.80	0.42	0.96
GG	-17.12	0.09	0

- if the assumption of HWE can be reasonably met
- if you have enough samples to have a robust estimate of the allele frequencies

How can we estimate allele frequencies?

SNP calling procedures

Alignment-based caller

We completely rely on how reads have been mapped

Figure from Erik Garrison

SNP calling procedures

- · Assembly-based caller (as in GATK)
- Local re-alignment around putative variants; better resolution for INDELs detection.
- Haplotype-based caller (as in freebayes)

Figure from Erik Garrison

Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4

What is the simplest estimator of allele frequencies?

SNP calling 4

Assuming 2 alleles (A,G) with true allele frequency of 0.50

Sample	True genotype	Reads allele A	Read allele G
1	AA	7	0
2	AA	25	1
3	AG	5	3
4	AG	4	4
5	GG	0	2
6	GG	0	4
Total		41	14

$$\hat{f} = \frac{\sum_{i=1}^{N} n_{A,i}}{\sum_{i=1}^{N} (n_{A,i} + n_{G,i})}$$

 $\hat{f} = 0.75$

What is wrong with this estimator?

Assuming 2 alleles (A,G) with true allele frequency of 0.50

True genotype	Reads allele A	Read allele G
AA	7	0
AA	25	1
AG	5	3
AG	4	4
GG	0	2
GG	0	4
	41	14
	AA AA AG AG GG	AA 25 AG 5 AG 4 GG 0

$$\hat{n_A} = \sum_{i=1}^{N} (1 - \epsilon) n_{A,i} + \epsilon n_{G,i} - \epsilon n_{A,i} - (1 - \epsilon) n_{G,i}$$

$$\hat{f} = 0.77$$

SNP calling 4

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g) P(G = g|f)$$

Maximum Likelihood estimator

$$P(D|f) = \prod_{i=1}^{N} \sum_{g \in \{0,1,2\}} P(D|G = g) P(G = g|f)$$

P(D|G=g) is the genotype likelihood and P(G=g|f) is given by HWE (for instance).

In our previous example, $\hat{f}=0.46$ which is much closer to the true value than previous estimators.

SNP calling

Challenges

- If high levels of missing data, then genotypes can be lost.
- Rare variants are hard to detect.
- Trade off between false positive and false negative rates.

How to call SNPs?

- If at least one heterozygous genotype has been called.
- If the estimated allele frequency is above a certain threshold.

SNP calling

Call a SNP if

$$\hat{f} \geq t$$

where t can be the minimum sample allele frequency detectable (e.g. t=1/2N with N diploids).

Likelihood Ratio Test

A Likelihood Ratio Test (LRT) compares the goodness of fit between the null and the alternative model:

- Null model: f = 0
- Alternative model: $f \neq 0$

$$T = -2\log\frac{L(f=0)}{L(f=\hat{f}_{MLE})}$$

where T is χ^2 distributed with 1 degree of freedom.

Imperial College London

54

Haplotype imputation

Imputation

Haplotype imputation

Imputation 55

Haplotype imputation

haplotype frequencies

new data

· Data with known and unknown genotypes

first haplotype

$$p(? = T) = \frac{0.56}{0.56 + 0.03} = 0.95$$

 $p(? = A) = \frac{0.03}{0.56 + 0.03} = 0.05$

second haplotype

$$p(? = T) = \frac{0.21}{0.21 + 0.2} = 0.51$$

 $p(? = A) = \frac{0.2}{0.21 + 0.2} = 0.49$

Anders Albrechtsen

Haplotype imputation

Imputation 57

Imperial College London

Practical

Imperial College London

Thank you for your attention