1. (9 points) Check if the regular expression (0*|01)(1*0|1)* is equivalent to (0|1).

An alternative solution is to build the DFA for (0|1) and show that it is not equivalent to the DFA of the other expression.

2. (8 points) Write the definition of a context-free grammar that generates the language $L = \{ 0^m \ 1^n \ 0^{n-m} \mid m \ge 0 \ , \ n > m \}$

Let
$$n-m=k$$
 (as $m \ge 0$ and $n > m$, $k > 0$)
$$\Rightarrow L = do^m t^{m+k} o^k \mid m \ge 0, k > 0$$

$$o^m t^{m+k} o^k = o^m t^{m+k} o^k$$

$$S \rightarrow AB$$
 $A \rightarrow OA1 \mid E$
 $B \rightarrow 1BO \mid 10$

3. (9 points) Build the SLR parsing table for the following grammar whose set of terminal symbols is $\{x, (,)\}$ and whose start symbol is S

$$S \rightarrow (L) \mid X$$
 (1,2)
 $L \rightarrow XL \mid S$ (3,4)

Tell if this grammar is SLR or not and tell if this grammar is LR(0) or not. Motivate your answers.

	×	()	\$	S	
O	52	53		acc	1	
1234	57	5 3	v2 55	V2	G	4
45678	57	<i>5</i> 3	r1 r4 r2 r3	r1 r2	6	8

The given grammor is SLR because the SLR passing Dole has no wonflect
However it is not LR(0) because the LR(0) persone table would have shift/reduce conflicts in order.

4. (6 points) Explain why it is not possible to obtain a deterministic bottom-up parser for an ambiguous grammar.

If a grammar is ambiguous, an input string may have more than one parse tree. For that reason, a bottom-up parser for that grammar does not have a unique way to build the parse tree for any input string, which produces conflicts in the parsing table and makes the parser nondeterministic. Only if we choose a priori which of the alternative parse trees is the right one and we exclude the others (conflict resolution) the parsing process can be made deterministic.