Листок 6

Тема 6 (2.2). Группа автоморфизмов. Норма и след

Упражнения и задачи

- 1. Докажите, что
 - ullet для $a \in \mathbb{Z}$ $a^l 1|a^m 1 \Leftrightarrow l|m$
 - $\mathbb{F}_q[x] \ x^l 1|x^m 1 \Leftrightarrow l|m|$
- 2. Завершите доказательсво теоремы о цикличности $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$: покажите, что $|\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)| \leqslant n$.
- 3. Докажите, что характеристический многочлен $g_{\alpha}(x)$ и определитель $\det A_{\alpha}$ не зависят от выбора базиса расширения L/K.
- 4. Докажите следующие свойства нормы и следа:
 - (a) $N_{L/K}(a) = a^n$, $Tr_{L/K}(a) = na$, $a \in K$;
 - (b) $N_{L/K}(\alpha\beta) = N_{L/K}(\alpha) N_{L/K}(\beta), \ \alpha, \beta \in L;$
 - (c) $N_{L/K}(a\alpha) = a^n N_{L/K}(\alpha)$, $Tr_{L/K}(a\alpha) = a Tr_{L/K}(\alpha)$, $a \in K$, $\alpha \in L$.
- 5. Пусть L/K расширение, $\alpha \in L$, $g_{\alpha}(x)$ характеристический многочлен α , M/K расширение, в котором $g_{\alpha}(x)$ полностью раскладывается на линейные множители: $g_{\alpha}(x) = (x \alpha_1) \dots (x \alpha_n)$. Докажите, что:

$$N_{L/K}(\alpha) = \alpha_1 \dots \alpha_n, \ Tr_{L/K}(\alpha) = \alpha_1 + \dots + \alpha_n.$$

- 6. Пусть L/K, M/L конечные расширения, $\gamma \in M$. Докажите, что $\mathrm{N}_{M/K}(\gamma) = \mathrm{N}_{L/K}(\mathrm{N}_{M/L}(\gamma))$, $\mathrm{Tr}_{M/K}(\gamma) = \mathrm{Tr}_{L/K}(\mathrm{Tr}_{M/L}(\gamma))$.
- 7. Пусть $(\alpha_1, \dots, \alpha_n), (\beta_1, \dots, \beta_n)$ два базиса расширения L/K. Докажите, что $\Delta(\alpha_1, \dots, \alpha_n) = \gamma^2 \Delta(\beta_1, \dots, \beta_n)$ для некоторого $\gamma \in K^*$.
- 8. Пусть $q=p^n$. Докажите, что $\forall a\in \mathbb{F}_p$ уравнение $\mathrm{N}_{\mathbb{F}_q/\mathbb{F}_p}(x)=a$ в \mathbb{F}_q имеет $(p^n-1)/(p-1)$ решений, а также что для каждого $b\in \mathbb{F}_p$ уравнение $\mathrm{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(x)=b$ имеет p^{n-1} решений.
- 9. Пусть $\mathbb{F}_{q^m}/\mathbb{F}_q$ расширение конечных полей, $\alpha \in \mathbb{F}_{\mathbb{N}^{\geqslant}}$. Докажите, что сопряженные элементы $\alpha, \alpha^q, \alpha^{q^2}, \dots \alpha^{q^{m-1}}$ имеют один и тот же порядок в мультипликативной группе $\mathbb{F}_{q^m}^*$.
- 10. Пусть $\mathbb{F}_{q^m}/\mathbb{F}_q$ расширение. Докажите, что $\forall c \in \mathbb{F}_q$

$$\sum_{j=0}^{m-1} x^{q^j} - c = \prod_{\alpha \in \mathbb{F}_{q^m}, \operatorname{Tr}(\alpha) = c} (x - \alpha).$$

11. Пусть $\mathbb{F}_{q^m}/\mathbb{F}_q$ — расширение, L — линейный оператор на \mathbb{F}_{q^m} как на векторном пространстве над \mathbb{F}_q . Докажите, что $\exists ! \alpha_0, \dots, \alpha_{m-1} \in \mathbb{F}_{q^m}$: оператор L имеет вид $L(\beta) = \alpha_0 \beta + \alpha_1 \beta^q + \dots + \alpha_{m-1} \beta^{q^{m-1}}$.

1

12. Докажите, что число базисов $\mathbb{F}_{q^m}/\mathbb{F}_q$ равно $(q^m-1)(q^m-q)\dots(q^m-q^{m-1})$.

13. Пусть $\mathbb{F}_{q^m}/\mathbb{F}_q$ — расширение, $\alpha\in\mathbb{F}_{q^m}.$ Докажите, что

$$\Delta(1,\alpha,\ldots,\alpha^{m-1}) = \prod_{0 \leqslant i < j \leqslant m-1} (\alpha^{q^i} - \alpha^{q^j})^2.$$

14. Пусть $\mathbb{F}_{q^m}/\mathbb{F}_q$ — расширение, $\alpha \in \mathbb{F}_{q^m}$. Докажите, что $\Delta(1,\alpha,\ldots,\alpha^{m-1})$ совпадает с дискриминантом характеристического многочлена $g_{\alpha}(x)$.

SageMath

- Исследуйте основные функции SageMath связанные с автоморфизмами и расширениями конечных полей:
 - Группа автоморфизмов поля: End();
 - Автоморфизм Фробениуса: frobenius_endomorphism();
 - Базисы расширений конечных полей;
 - Характеристический многочлен charpoly();
 - Норма, след, дискриминант.

Темы для самостоятельного изучения

• Нормальный базис и теорема о нормальном базисе, [LN].