PATENT ABSTRACTS OF JAPAN

2000-147809 (11)Publication number: (43) Date of publication of application: 26.05.2000

(51)Int.CI.

G03G 5/06

(21)Application number: 10-317775

(71)Applicant: RICOH CO LTD

(72)Inventor: KAMIMURA HIROYUKI (22)Date of filing: 09.11.1998 HIRANO YASUO

UMEDA MINORU

(54) PHOTOCONDUCTOR, ORGANIC PIGMENT-DISPERSED LIQUID AND MANUFACTURE OF PHOTOCONDUCTOR BY USING SAME, ELECTROPHOTOGRAPHIC METHOD AND APPARATUS

(57)Abstract: PROBLEM TO BE SOLVED: To provide the electrophotographic photoreceptor high in sensitivity and superior in potential stability and dispersibility of a coating liquid in manufacture and prevented from occurrence of abnormal images in repeated uses by incorporating titanylphthalocyanine and a specified bisazo pigment in a photoconductive layer.

SOLUTION: The photoconductive layer contains the titanylphthalocyanine and the bisazo pigment represented by the formula in which R is an H or halogen atom or an optionally substituted alkyl or such alkoxy group or the like; each of R1 and R2 is a halogen atom or an optionally substituted alkyl or such alkoxy group or the like; each of (p) and (q) is an integer of 0-3; and each of Cp1 and Cp2 is a coupler residue. The titanylphthalocvanine to be used is, preferably, the one having crystal forms having main peaks in Bragg angles 2θ of 9.6° \pm 0.2° , 24.0° \pm 0.2° , and 27.2° \pm 0.2° in the X ray diffraction spectrum using CuK&alpha, characteristic X-ray (1.54 &angst:).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-147809 (P2000-147809A)

(43)公開日 平成12年5月26日(2000.5.26)

(51) Int.Cl.7		識別記号	FΙ	テーマコード(参考)
G 0 3 G	5/06	350	G03G 5/06	350C 2H068
		370		370

審査請求 未請求 請求項の数8 OL (全 14 頁)

(21)出願番号	特顧平10-317775	(71) 出願人	000006747
			株式会社リコー
(22)出顧日	平成10年11月9日(1998.11.9)		東京都大田区中馬込1丁目3番6号
		(72) 発明者	上村 浩之
			東京都大田区中馬込1丁目3番6号 株式
			会社リコー内
		(72)発明者	平野 泰男
			東京都大田区中馬込1丁目3番6号 株式
			会社リコー内
		(74)代理人	100074505
			弁理士 池浦 敏明 (外1名)
		İ	
			最終頁に続く
		1	

(54) 【発明の名称】 光導電体、有機順料分散液およびそれを用いた光導電体の製造方法、電子写真方法、および電子 写真装置

(57)【要約】 (修正有)

【課題】 高感度で、繰り返し使用での電位安定性にす

【解決手段】 チタニルフタロシアニン及び下記一般式 (1)で表されるピスアゾ顔料を主成分とする光導電層 ぐれ、異常画像が生じない電子写真感光体を提供する。 を有する電子写真感光体。

(式中、Rは水素原子、ハロゲン原子、アルキル基、ア ミノ基を、R¹ およびR² は、ハロゲン原子、アルキル およびCp² はカップラー残基を表す。)

基、アルコキシ基、ニトロ基、シアノ基、ヒドロキシル ルコキシ基、ニトロ基、シアノ基、ヒドロキシル基、ア 基、アミノ基を、pおよび q は 0 ~ 3 の整数を、C p 1

【特許請求の範囲】

1 【請求項1】 少なくともチタニルフタロシアニンと下 記一般式(1)で表されるビスアゾ顔料の一種以上とを*

(式中、Rは水素原子、ハロゲン原子、置換ないし無層 換のアルキル基、置換ないし無置換のアルコキシ基、ニ トロ基、シアノ基、ヒドロキシル基、置換ないし無置換 10 に関する。 のアミノ基を表し、R,およびR,は、ハロゲン原子、置 換ないし無置換のアルキル基、置換ないし無置換のアル コキシ基、ニトロ基、シアノ基、ヒドロキシル基、置換 ないし無置換のアミノ基を表し、pおよびqは0~3の 整数を表す。Ср1およびСр2はカップラー残基を表 す.)

【請求項2】 導電性支持体上に少なくともチタニルフ タロシアニンと前記一般式(1)で表されるビスアゾ顔 料の一種以上とを含有してなる感光層を有することを特 徴とする電子写真感光体。

【請求項3】 導電性支持体上に少なくともチタニルフ タロシアニンと前記一般式(1)で表されるピスアゾ顔 料の一種以上とを含有してなる電荷発生層と、電荷輸送 材料を主成分とする電荷輸送層を積層したことを特徴と する電子写真感光体。

【請求項4】 有機溶媒中に少なくともチタニルフタロ シアニンと前記一般式(1)で表されるビスアゾ顔料の 一種以上とを分散してなることを特徴とする有機顔料分 酌海.

【請求項5】 請求項4の分散液を塗布・乾燥する工程 30 を経て作製される請求項1の光導電体の製造方法。

【請求項6】 請求項4の分散液を塗布・乾燥する工程 を経て作製される請求項2又は3の電子写真感光体の製 造方法。

【請求項7】 電子写真感光体に、少なくとも帯電、画 像露光、現像、転写、クリーニング、除電を繰り返し行 う電子写真方法において、該電子写真感光体が請求項2 または3の感光体であることを特徴とする電子写真方 法.

【請求項8】 少なくとも帯電手段、画像露光手段、現 40 像手段、転写手段、クリーニング手段、除電手段および 電子写真感光体を具備してなる電子写真装置であって、 該電子写直感光体が請求項2または3の感光体であると とを特徴とする電子写真装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真感光体な らびにそれを用いた電子写真方法および電子写直装置に 関し、詳しくは、高感度で異常画像が少なく、繰り返し 使用によっても感光体の帯電電位と残留電位の安定性に 50 光源がLEDやLDである電子写真プリンターやデジタ

* 含有してなる層を有することを特徴とする光導電体。 [461]

(1)

優れ、また製造における安定性に優れた電子写直感光体 ならびにそれを用いた電子写真方法および電子写真装置

[0002]

【従来の技術】従来の電子写真感光体、特に有機光導電 体を使用する電子写真有機感光体は、それまでのセレン 膜を真空蒸着法により作製した無機感光体に比べ、コス トが低い、毒性がほとんどない、成膜が容易性であるな どの多くのメリットがあり、現在の電子写真感光体の主 流となりつつある。

【0003】有機感光体は、導電性支持体上に電荷発生 物質、電荷輸送物質および結着樹脂などを含む感光層用 20 塗液を浸漬塗工などで成膜するいわゆる単層感光体や、 導電性支持体上に電荷発生物質を含む塗液を用いて電荷

発生層を形成後、電荷輸送物質を含む塗液を用いて電荷 輸送層を形成する積層感光体がある。積層感光体には、 画質向上や耐久性の向上などの目的で下引き層や 保護 層などが塗工される場合もある。

【0004】ところで、近年、電子写真方式を用いた情 報処理システム機の発展は目覚ましいものがある。 特に 情報をデジタル信号に変換して光によって情報記録を行 う光ブリンターは、そのブリント品質、信頼性において 向上が著しい。このデジタル記録技術はプリンターのみ ならず通常の複写機にも応用され、所謂デジタル複写機 が開発されている。また、従来からあるアナログ複写に このデジタル記録技術を搭載した彼写機は、 種々様々な 情報処理機能が付加されるため今後その需要性が益々高 まっていくと予想される。

【0005】光プリンターの光源としては現在のところ 小型で安価で信頼性の高い半導体レーザー(LD)や発 光ダイオード(LED)が多く使われている。現在よく 使われているLEDの発光波長は660nmであり、L Dの発光波長域は近赤外光領域にある。このため可視光 領域から近赤外光領域に高い感度を有する電子写真感光 体の開発が望まれている。

【0006】電子写真感光体の感光波長域は感光体に使 用される電荷発生物質の感光波長域によってほぼ決まっ てしまう。そのため従来から各種アゾ顔料、多環キノン 系顔料、三方晶形セレン、各種フタロシアニン顔料等多 くの電荷発生物質が開発されている。それらの内、チタ ニルフタロシアニン (TiOPcと略記される) は60 0~800nmの長波長光に対して高感度を示すため、

(3)

ル複写機用の感光体用材料として極めて重要かつ有用で ある。

【0007】機能分離型の電子写真感光体の感光波長領 域は、電荷発生物質によって変わる。800nm付近に 高感度な電荷発生物質としては、無金属フタロシアニ ン、銅フタロシアニン、アルミクロロフタロシアニン、 クロロインジウムフタロシアニン、マグネシウムフタロ シアニン、亜鉛フタロシアニン、チタニルフタロシアニ ン パナジルフタロシアニン等のフタロシアニン化合物 が知られている。特に、長波長に高感度なフタロシアニ 10 ン化合物としては、特開昭58-182639号公報に 示されるで型及び 7型無金属フタロシアニン、同61-109056号公報、同62-134651号公報、同 64-17066号公報や、特開平1-172459号 公報、同2-289658号公報、同3-128973 号公報などに示されるチタニルフタロシアニン、特開平 1-268763号公報、同3-269063号公報な どに示されるパナジルフタロシアニンがある。

【0008】また、レーザーブリンター及び複写機等の 高性能化に伴い、電子写真用感光体には益々の高感度が 20 生が粒子の表面積や粒径等に依存することに起因する。 要求され、上記フタロシアニン化合物を基に種々の改良 が試みられている。例えば、特開昭62-54266号 公報に示されるフタロシアニン化合物、ペリレン化合物 及び正孔輸送物質を結着樹脂中に分散させた感光体。同 63-313165号公報に示されるフタロシアニン化 合物と特定のジスアゾ化合物の混合物を電荷発生層とす る感光体、特開平3-1150号公報に示される特定の ベリレン化合物とチタニルフタロシアニンを電荷発生物 賀とし、特定のジアミン誘導体を電荷輸送物質とする感 光体、同3-37661号公報に示されるチタニルフタ 30 度で、繰り返し使用での電位安定性に優れ、異常画像が ロシアニンと多環キノン化合物を別個又は混合した層を 設けた感光体、同3-157666号公報に示されるチ タニルフタロシアニンと特定のフタロシアニン化合物の 混合物を電荷発生物質とし、特定のヒドラゾン化合物を 電荷輸送物質とする感光体、同3-196049号公報 に示される特定のジスアゾ化合物とチタニルフタロシア ニンを電荷発生物質とし、特定のスチルベン化合物を電 荷輸送物質とする感光体等が開示されている。

【0009】一方、カールソンプロセスおよび類似プロ セスにおいてくり返し使用される電子写真感光体の条件 40 に、少なくともチタニルフタロシアニンと下記一般式 としては、感度、受容電位、電位保持性、電位安定性、 残留電位、分光特性に代表される静電特性が優れている ととが要求される。とりわけ、高感度感光体について は、くり返し使用による帯電性の低下と残留電位の上昇 が、感光体の寿命特性を支配することが多くの感光体で※

*経験的に知られており、チタニルフタロシアニンもこの 例外ではない。従って、チタニルフタロシアニンを用い た感光体の繰り返し使用による安定性は未だ十分とはい えず、その技術の完成が熱望されていた。また、長期間 の使用により原因は明らかではないが、画像上に白抜け や地汚れといった異常画像が発生するという問題があ る。このため、支持体と感光層の間の中間層の材料が制 約されたり、積層した2層の中間層が必要になってい た。更に、製造時の塗工液の分散性が低いと、生産性が 落ちるのみならず、電子写真感光体の静電特性も不安定 になり、また、画像における品質も低下するという問題 があった。

【0010】チタニルフタロシアニンは多種類の結晶形 が存在し、かつ各々の結晶形も有機溶媒と接触すること などにより他の結晶形に変わることが多い。このためチ タニルフタロシアニンを含有する分散液の作製におい て、その作製方法や分散条件等の選択により、分散性だ けでなく作製された電子写真感光体の静電特性にも大き な影響を与える。これは、励起子の解離による電荷の発 一方、破砕や分散の進行により粒子や微細化されるが、 過分散になると逆に粒子の凝集等が起こり、分散性を低 下させることになるため、単に分散時間を増加させるだ けでは、良好な分散状態、さらには要求される静電特性 を得ることは困難である。従って、要求される静電特性 を得るためには、分散方法やその条件の最適化が必要で ある。

[0011]

【発明が解決しようとする課題】本発明の目的は、高感 無く、しかも製造時の塗工液の分散性の優れた電子写真 感光体を提供することにある。本発明の別の目的は、高 感度で、繰り返し使用での電位安定性に優れ、異常画像 の無い安定な電子写真方法を提供することにある。本発 明のさらに別の目的は、高感度で、繰り返し使用での電 位安定性に優れ、異常画像の無い安定な電子写真装置を 提供することにある。

[0012]

【課題を解決するための手段】本発明によれば、第一 (1) で表されるビスアゾ顔料の一種以上とを含有して なる層を有することを特徴とする光導電体が提供され

[{£2]

(式中、Rは水素原子、ハロゲン原子、置換ないし無置 50 換のアルキル基、置換ないし無置換のアルコキシ基、ニ

トロ基、シアノ基、ヒドロキシル基、置後ないし無置換のアミン基を表し、R、およびR、は、ハロケン原子、 検ないし無置換のアルキル紙、置換ないし無置換のアル コキシ基、ニトロ基、シアノ基、ヒドロキシル基、置換 ないし無置換のアミノ基を表し、Pおよび はいつ3の 整数を表す。Cp,およびCp,はカップラー残基を表 す。)

[0013] 第二K、溥儒性支持体上に少なくともチタ エルフタロンアニンと前記一般式(1)で表されるピス アゾ顔料の一種以上とを含有してなる感光層を有する 10 写真方法が提供される。 とを特徴とする第子写真感光体が提供される。 (0019] 第八K、少

[0014] 第三に、導電性支持体上に少なくともチタ ニルフタロシアニンと前記一般式(1)で表されるビス アゾ顔料の一種以上とを含有してなる電荷発生層と、電 商輸送材料を主成分とする電荷輸送層を積層したことを 特徴とする電子写真感光体が提供される。

【0015】第四に、有機治媒中に少なくともチタニル フタロシアニンと前記一般式(1)で表されるビスアゾ 顔料の一種以上とを分散してなることを特徴とする有機 顔料分散液が進供される。

【0016】第五に、上記第四の分散液を塗布・乾燥す※

* る工程を経て作製される上記第一の光導電体の製造方法 が提供される。

【0017】第六に、上記第四の分散液を塗布・乾燥する工程を経て作製される上記第二又は第三の電子写真感 光体の製造方法が提供される。

【0018】第七に、電子写真感光体に、少なくとも帯電、画像露光、現像、転写、クリーニング、除電を繰り返し行う電子写真方法において、該電子写真感光体が上記第二または第二の感光体であることを特徴とする電子で無されば提供される。

(0010) 第八に、少なくとも帯電手段、側像郷光手段、現像手段、転写手段、カリーニング手段、除電手段 および電子写真際光体を具備してなる電子写真装置であって、該電子写真感光体が上記第二または第三の感光体 であることを特徴とする電子写真装置が提供される。 [0020]

[発明の実施の形態]以下、本発明をさらに詳細に説明 する。本発明で用いられる、チタニルフタロシアニン顔

する。本発明で用いられる、ナタニルフタロンチーン原料(TiOPc)の基本構造は次の一般式(2)で表さ 20 れる。

現の分散液を塗布・乾燥す* (代3) Xi) N (X2)_n (X3) (X4)_k

(式中、 X_1 、 X_2 、 X_3 、 X_4 は各々独立に各種ハロゲン原子を表し、n、m、1、kは各々独立的に0~4の数字を表す)

【0021】TiOPeには種々の結晶形が知られており、特別官59-49544号公4場合 9、特別官59-49544号公4場合24 閉官62-67094号公4、特別昭63-366号公 4、特別昭63-116158号公4、特別昭63-3 6068号公4、特別昭63-17068号公4等に 各々結晶形の数なるTiOPeが研示されている。

[0022]本染明に使用されるチタニルフタロアシア ニンは、公知の結晶形 (無定型も含む)ものすべてが使 用できるが、とりわけ、Cu-Ka特性氷線 (波長1. 54 A)を用いたX線回折スペクトルにおいて、(i) ブラッグ角20の主要ピークが少なくとも9.6°± 0.2°、24.0°±0.2° および27.2°± ×

※ 0. 2° にある結晶形を有するもの、(ii) ブラッグ角 26の主要ビーグが少なくとも7.5°±0.2°、2 5.3°±0.2° および28.6°±0.2°にある 結晶形を有するもの、(iii) ブラッグ角26の主要ビークが少なくとも9.3°±0.2°、13.1°±0.2° は3526.2°±0.2°にある結晶形を有するものが好ましく使用される。

【0023】目的とした結晶形(無定型も含む)を得る 方法は、合成過程において公知の方法による方法、洗浄 40 ・精製過程で結晶を変える方法、特別に結晶変換工程を 設ける方法が挙げられ、どの方法によってもかまわな

、。 【0024】本発明で使用される一般式(1)のビスア ソ顔料は、 【化4】

$$\begin{array}{c|c}
p_1 - N - N & N - N - Q_2 \\
(R_1) & 1 & (R_2)_p
\end{array}$$

(式中、Rは水素原子、ハロゲン原子、置換ないし無置 換のアルキル基、置換ないし無置換のアルコキシ基、ニ トロ基、シアノ基、ヒドロキシル基、置換ないし無置換 のアミノ基を表し、R,およびR,は、ハロゲン原子、置 換ないし無置換のアルキル基、置換ないし無置換のアル コキシ基、ニトロ基、シアノ基、ヒドロキシル基、置換 ないし無置換のアミノ基を表し、pおよびgは、0~3 の整数を表す。Cp,およびCp,はカップラー残基を表 す。) であり、ととでのCp., Cp.としては、下記式 $(k\ 1)\sim (k\ 1\ 1)$ で表されるカプラー残基が挙げら 10 キル基、置換ないし無置換のアリール基、置換ないし無 れる。

[0025]

[{£5]

(R,およびR,は、水素原子、置換ないし無置換のアル 20 キル基、置換ないし無置換のアリール基、置換ないし無 置換のヘテロ環基を表し、R1、R2はそれらに結合する 窓素原子とともに環を形成してもよい。R.はハロゲン 原子、置換ないし無置換のアルキル基、置換ないし無置 換のアルコキシ基、ニトロ基、シアノ基、ヒドロキシル 基、置換ないし無置換のアミノ基を表し、nは0~5の 整数を表す。)

[0026]

[{{16}}]

(R.およびR、は、水素原子、置換ないし無置換のアル キル基 置換ないし無置換のアラルキル基 置換ないし 無置換のアリール基、置換ないし無置換のスチリル基、 置換ないし無置換のヘテロ環基を表し、R,、R,はそれ ろに結合する炭素原子とともに環を形成してもよい。R 40 。はハロゲン原子、置換ないし無置換のアルキル基、置 換ないし無置換のアルコキシ基、ニトロ基、シアノ基、 ヒドロキシル基、置換ないし無置換のアミノ基を表し、 nは0~5の整数を表す。) [0027]

[467]

(R,およびR,は、水素原子、置換ないし無置換のアル 置換のヘテロ環基を表し、R1、R2は、それらに結合す る窒素原子とともに環を形成してもよい。R」はハロゲ ン原子、置換ないし無置換のアルキル基、置換ないし無 置換のアルコキシ基、ニトロ基、シアノ基、ヒドロキシ ル基、置換ないし無置換のアミノ基を表し、またR,は 環を形成してもよい。nは0~4の整数を表す。) [0028]

[4k8] (K4)

(R,およびR,は、水素原子、置換ないし無置換のアル キル基、置換ないし無置換のアラルキル基、置換ないし 無置換のアリール基、置換ないし無置換のスチリル基、 30 置換ないし無置換のヘテロ環基を表し、R, R,は、そ れらに結合する炭素原子とともに環を形成してもよい。 R,はハロゲン原子、置換ないし無置換のアルキル基、 置換ないし無置換のアルコキシ基、ニトロ基、シアノ 基 ヒドロキシル基 潜機ないし無置機のアミノ基を表 し、またR,は環を形成してもよい。nは0~4の整数 を表す。)

[0029]

(R,およびR,は、水素原子、置換ないし無置換のアル キル基、置換ないし無置換のアリール基、置換ないし無 置換のヘテロ環基を表し、R,、R,は、それらに結合す 50 る窒素原子とともに環を形成してもよい。R.はハロゲ

ン原子、置換ないし無置換のアルキル基、置換ないし無 置換のアルコキシ基、ニトロ基、シアノ基、ヒドロキシ ル基、置換ないし無置換のアミノ基を表し、nは0~6 の整数を表す。)

[0030]

[{£10]

(R,およびR,は、水栗原子、置換ないし無置換のアルキル基、置換ないし無置換のアリール基、置換ないし無置換のアウール基、置換ないし無置換のペテロ環基を表し、R,、R,は、それらに結合する業原子とともに環を形成してもよい。 X は複素環またはその置換体を表す。)

(R.は置換ないし無置換のアルキル基、カルバモイル 基、カルボキシル基、またはそのエステルを表し、Ar 1は炭化水素環基またはその置換体を表す。) [0032]

[4:12]

(K8)

(R.およびR.は、ハログン原子、置換ないし無置換の アルキル基、置換ないし無置換のアルコキシ基、ニトロ 基、シアノ基、ヒドロキシル基、置換ないし無置換のア ミノ基を表し、mは0~5の整数を表し、nは0~4の 整数を表す。)

* (R,は置換ないし無置換の炭化水素基を表す。) 【0033】

[化13]

10 (Yは芳香族炭化水素の2価の基、または窒素原子を環 内に含むヘテロ環の2価の基を表す。)

[0034]

[{£14]

20 (R, およびR,は、ハロゲン原子、置換ないし無置換の アルキル基、置換ないし無置換のアルコキン基、ニトロ 基、シアノ基、 とドロキンル基、 置換ないし無置換のア ミノ基を表し、 mおよびnは0~5の整数を表す。) [0035]

10000.

化151

送材料を主成分とする単層感光層 3 3 が設けられている。図2 および図3 は本発明に用いられる有機光端電路の別の構成例を示す前面図であり、電荷発生材料を主成分とする電荷輸送階を主成分とす。電荷輸送相移を主成分とする電荷輸送層 3 7 とが、頂雷された構成をとっている。かかる構成の有機光端を溜倒は、このままの伏蛇で電子写具用有機感光体として用いることができるほか、郷電性支持体3 1 と対して対向電極(図示せず)を設けて、光

(K11)

センサー、光電池等に用いることもできる。

【0037】導電性支持体31としては、体積抵抗10 1°Ω·cm以下の導電性を示すもの、例えば、アルミニ ウム、ニッケル、クロム、ニクロム、銅、金、銀、白金 などの金属、酸化スズ、酸化インジウムなどの金属酸化 物を、蒸着またはスパッタリングにより、フィルム状も しくは円筒状のプラスチックや紙に被覆したもの、ある いは、アルミニウム、アルミニウム合金、ニッケル、ス テンレスなどの板およびそれらを押し出し、引き抜きな どの工法で素管化後、切削、超仕上げ、研摩などの表面 10 して、一般式(1)のアゾ顔料が0.01~100重量 処理した管などを使用することができる。また、特開昭 52-36016号公報に開示されたエンドレスニッケ ルベルト、エンドレスステンレスベルトも導電性支持体 31として用いることができる。

【0038】との他、上記支持体上に導電性粉体を適当 な結着樹脂に分散して塗工したものも、本発明の導電性 支持体31として用いることができる。この導電性粉体 としては、カーボンブラック、アセチレンブラック、ま たアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、 銀などの金属粉、あるいは導電性酸化スズ、1TOなど 20 が広く使用できるが、特にイソプロパノール、アセト の金属酸化物粉体などがあげられる。ととで、同時に用 いられる結着樹脂には、ポリスチレン、スチレン-アク リロニトリル共重合体、スチレンーブタジェン共重合 体 スチレン-無水マレイン酸共重合体、ポリエステ ル、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合 体、ポリ酢酸ピニル、ポリ塩化ビニリデン、ポリアリレ ート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セ ルロース樹脂。エチルセルロース樹脂。ポリビニルブチ ラール、ポリビニルホルマール、ポリビニルトルエン、 ポリーN-ビニルカルバゾール、アクリル樹脂、シリコ 30 ーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹 脂、フェノール樹脂、アルキッド樹脂などの熱可塑性樹 脂、熱硬化性樹脂または光硬化性樹脂があげられる。こ のような導電性層は、これらの導電性粉体と結着樹脂を 適当な溶剤、例えば、テトラヒドロフラン、ジクロロメ タン、メチルエチルケトン、トルエンなどに分散して徐 布することにより設けることができる。

【0039】さらに、適当な円筒基体上にポリ塩化ビニ ル、ポリプロピレン、ポリエステル、ポリスチレン、ポ リ塩化ビニリデン、ボリエチレン、塩化ゴム、テフロン 40 などの素材に前記導電性粉体を含有させた熱収縮チュー ブによって導電性層を設けてなるものも、本発明の導電 性支持体31として良好に用いることができる。 【0040】次に感光層について説明する。感光層は単 層でも積層でもよいが、説明の都合上、先ず電荷発生層

35と電荷輸送層37で構成される場合から述べる。 【0041】電荷発生層35は、電荷発生材料として上 述したTiOPcと一般式(1)のアゾ顔料を主成分と する層である。電荷発生層35は、前記電荷発生材料を 必要に応じてバインダー樹脂とともに適当な溶剤中に分 50 い。その理由としては分散手段ないしその使用条件によ

12 散し、これを導電性支持体上に塗布し、乾燥することに より形成される。

【0042】本発明に使用されるTiOPcの結晶形 は、公知の結晶形 (無定形を含む) すべてを用いること ができかつ有用であるが、必ずしもそれに限定されるも のではない。また、一般式(1)のアゾ顔料は、基本的 に無定形を示す傾向にあるが、 必ずしもそれに限定され るものではない。本発明に使用されるTiOPcと一般 式(1)のアゾ顔料の比は、TiOPcが1重量部に対 部であり、好ましくは0.1~90重量部である。これ らの顔料の混合方法は、TiOPcと一般式(1)のア ゾ顔料とを最初から同時に次に記す溶媒に分散しても良 いし、あるいは、まずTiOPcを分散したところへ一 般式(1)のアゾ顔料を添加して混合してもよいし、ま た、この順番は逆でもよい。さらに、TiOPcと一般 式(1)のアゾ顔料を各々別々に分散したものをあとで 混ぜ合わせてもよい。 【0043】分散媒としての非水溶媒には、公知のもの

ン、メチルエチルケトン、シクロヘキサノン、テトラヒ ドロフラン、ジオキサン、エチルセルソルブ、酢酸エチ ル、酢酸メチル、ジクロロメタン、ジクロロエタン、モ ノクロロベンゼン、シクロヘキサン、トルエン、キシレ ン、リグロイン等が好ましく使用できる。これらの溶媒 は、単独でまたは混合して用いられる。これらの溶媒は 最初から混合して使用してよいし、また溶媒を用いてT i OPcおよび/または一般式(1)のアゾ顔料を分散 した後に希釈溶媒を混合してもよい。

【0044】また、適宜使用してもよいバインダー樹脂 としては、ポリアミド、ポリウレタン、ポリエステル、 エポキシ樹脂、ポリケトン、ポリカーボネート、シリコ ーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリ ピニルホルマール、ポリビニルケトン、ポリスチレン、 ポリアクリルアミドなどが挙げられ用いられる。

【0045】バインダ樹脂と顔料との比率(重量割合) は、0/3~3/1が好ましく、より好ましくは0/2 ~2/1である。バインダー樹脂は、分散前に添加して もよいし、あるいは、TiOPcと一般式(1) および /またはアゾ顔料と溶媒のみで分散した後に添加しても よい。また、分散の途中で添加することも可能である。 【0046】湿式分散時のメディアの材質としては、ジ ルコニア、ガラス、アルミナ、非酸化物、金属などが挙 げられ用いられる。湿式分散によって分散液を得るため の分散手段としては、ボールミル、アトライター、サン ドミル、振動ミル、円盤振動ミル、ペイントシエーカ ジェットミルなどの公知の方法が挙げられ用いられ る。ただし、目的とする分散液の作製条件は、各分散条 件により異なるため、画一的に定義することはできな

13 り粉砕力、分散力、錬磨力等の比率が異なるためと考え ることができるし、また、使用する溶媒種によっても分 散条件が異なることが挙げられる。塗布液のの塗工法と しては、浸漬塗工法、スプレーコート、ビートコート、

ノズルコート、スピナーコート、リングコート等の方法 を用いることができる。 【0047】電荷発生層35には FEROTiOPcと

一般式(1)のアゾ顔料の他に、その他の電荷発生材料 を併用するととも可能であり、その代表として、アゾ系 顔料、ペリレン系顔料、ペリノン系顔料、キナクリドン 10 系顔料、キノン系縮合多環化合物、スクアリック酸系染 料、他のフタロシアニン系顔料、ナフタロシアニン系顔 料、アズレニウム塩系染料等が挙げられ用いられる。電

荷発生層35の膜厚は、0.01~5μm程度が適当で あり、好ましくは0、1~2μmである。 【0048】電荷輸送層37は、電荷輸送物質および結

着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発 生層上に途布、乾燥することにより形成できる。また、 必要により可塑剤。レベリング剤、酸化防止剤等を添加

することもできる。 【0049】電荷輸送物質には、正孔輸送物質と電子輸 送物質とがある。電荷輸送物質としては、例えばクロル アニル、プロムアニル、テトラシアノエチレン、テトラ

シアノキノジメタン、2.4.7-トリニトロー9-フル オレノン、2,4,5,7ーテトラニトローターフルオレ ノン、2.4.5.7-テトラニトロキサントン、2.4. 8-トリニトロチオキサントン、2.6.8-トリニトロ -4H-インデノ[1, 2-b] チオフェン-4-オ

ン、1,3,7-トリニトロジベンゾチオフェン-5,5 - ジオキサイド、ベンゾキノン誘導体等の電子受容性物 30 を結着樹脂中に分散した感光体が使用できる。単層感光 質が挙げられる。

【0050】正孔輸送物質としては、ポリーNービニル カルバゾールおよびその誘導体、ポリーィーガルバゾリ ルエチルグルタメートおよびその誘導体 ピレンーホル ムアルデヒド縮合物およびその誘導体、ポリビニルピレ ン、ポリビニルフェナントレン、ポリシラン、オキサゾ ール誘導体、オキサジアゾール誘導体、イミダゾール誘 導体、モノアリールアミン誘導体、ジアリールアミン誘 導体、トリアリールアミン誘導体、スチルベン誘導体、 α-フェニルスチルベン誘導体、ベンジジン誘導体、ジ 40 5で挙げた結着樹脂を混合して用いてもよい。もちろ アリールメタン誘導体、トリアリールメタン誘導体、9 - スチリルアントラセン誘導体、ピラゾリン誘導体、ジ ビニルベンゼン誘導体、ヒドラジン誘導体、インデン誘 漢体、ブタジエン誘導体、ヒレン誘導体等、ビススチル ベン誘導体 エナミン誘導体等その他公知の材料が挙げ られる。これらの電荷輸送物質は単独、または2種以上

【0051】結着樹脂としてはポリスチレン、スチレン - アクリロニトリル共電合体、スチレン- ブタジエン共

混合して用いられる。

テル、ボリ塩化ビニル、塩化ビニルー酢酸ビニル共重合 体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレー ト、フェノキシ樹脂、ポリカーボネート、酢酸セルロー ス樹脂、エチルセルロース樹脂、ポリビニルブチラー ル、ボリビニルホルマール、ボリビニルトルエン、ボリ - N - ピニルカルバゾール、アクリル樹脂、シリコーン 樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フ ェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬 化性樹脂が挙げられる。

【0052】電荷輸送物質の量は結着樹脂100重量部 に対し、20~300重量部、好ましくは40~150 重量部が適当である。また、電荷輸送層の膜厚は5~1 00 mm程度とすることが好ましい。ここで用いられる 溶剤としては、テトラヒドロフラン、ジオキサン、トル エン、ジクロロメタン、モノクロロベンゼン、ジクロロ エタン、シクロヘキサノン、メチルエチルケトン、アセ トンなどが用いられる。

【0053】本発明において電荷輸送層37中に可塑剤 やレベリング剤を添加してもよい。 可塑剤としては、ジ 20 ブチルフタレート、ジオクチルフタレートなど一般の樹 脂の可塑剤として使用されているものがそのまま使用で き、その使用量は、結着樹脂に対して0~30重量%程 度が適当である、レベリング剤としては、ジメチルシリ コーンオイル、メチルフェニルシリコーンオイルなどの シリコーンオイル類や、側鎖にパーフルオロアルキル基 を有するポリマーあるいはオリゴマーが使用され、その 使用量は結着樹脂に対して0~1重量%が適当である。 【0054】次に感光層が単層構成33の場合について 述べる。 上述したTiOPcと一般式(1)のアゾ顔料 層は、電荷発生物質、電荷輸送物質および結着樹脂を適 当な溶剤に上述の方法により分散し、これを塗布、乾燥 することによって形成できる。さらに、この感光層には 上述した電荷輸送材料を添加した機能分離タイプとして も良く、良好に使用できる。また、必要により、可塑剤 やレベリング剤、酸化防止剤等を添加することもでき

【0055】結着樹脂としては、先に電荷輸送層37で 挙げた結着樹脂をそのまま用いるほかに、電荷発生層3 ん、先に挙げた高分子電荷輸送物質も良好に使用でき る。結着樹脂100重量部に対する、電荷発生物質の量 は5~40重量部が好ましく、電荷輸送物質の量は0~ 190 軍量部が好ましくさらに好ましくは50~150 重量部である。単層感光層は、電荷発生物質、結着樹脂 を必要ならば電荷輸送物質とともにテトラヒドロフラ ン、ジオキサン、ジクロロエタン、シクロヘキサン等の 溶媒を用いて分散機等で分散した塗工液を、浸漬塗工法 やスプレーコート、ビードコートなどで塗工して形成で 重合体、スチレン-無水マレイン酸共重合体、ボリエス 50 きる。単層感光層の膿厚は5~100μm程度が適当で ある。

【0056】本発明の電子写真感光体には、導電性支持 体31と感光層との間に下引き層を設けることができ る。下引き層は一般には樹脂を主成分とするが、これら の樹脂はその上に感光層を溶剤で塗布することを考える と、一般の有機溶剤に対して耐溶剤性の高い樹脂である ことが望ましい。このような樹脂としては、ポリビニル アルコール、カゼイン、ポリアクリル酸ナトリウム等の 水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロ ン等のアルコール可溶性樹脂、ボリウレタン、メラミン 10 らびに電子写真装置を詳しく説明する。 樹脂、フェノール樹脂、アルキッド-メラミン樹脂、エ ポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等 が挙げられる。また、下引き層にはモアレ防止、残留電 位の低減等のために酸化チタン、シリカ、アルミナ、酸 化ジルコニウム、酸化スズ、酸化インジウム等で例示で きる金属酸化物の微粉末顔料を加えてもよい。 【0057】 これらの下引き層は前述の感光層の如く適 当な溶媒、塗工法を用いて形成することができる。更に 本発明の下引き層として、シランカップリング剤、チタ こともできる。この他、本発明の下引き層には、A1, O,を陽極酸化にて設けたものや、ポリバラキシリレン (パリレン)等の有機物やSiO₂, SnO₂, Ti Oz, ITO, CeOz等の無機物を真空薄膜作成法にて 設けたものも良好に使用できる。このほかにも公知のも のを用いることができる。下引き層の膜厚は0~5μm

が適当である。 【0058】本発明の電子写真感光体には、感光層保護 の目的で、保護層が感光層の上に設けられることもあ S樹脂、オレフィン・ビニルモノマー共重合体、塩素化 ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセ タール、ポリアミド、ポリアミドイミド、ポリアクリレ ート、ポリアリルスルホン、ポリブチレン、ポリブチレ ンテレフタレート、ポリカーボネート、ポリエーテルス ルホン、ポリエチレン、ポリエチレンテレフタレート、 ポリイミド、アクリル樹脂、ポリメチルペンテン、ポリ プロピレン、ポリフェニレンオキシド、ポリスルホン、 ポリスチレン、AS樹脂、ブタジエン-スチレン共重合 ン、エボキシ樹脂等の樹脂が挙げられる。保護層にはそ の他、耐摩耗性を向上する目的でポリテトラフルオロエ チレンのような弗素樹脂、シリコーン樹脂、及びこれら の樹脂に酸化チタン、酸化錫、チタン酸カリウム等の無 機材料を分散したもの等を添加することができる。保護 層の形成法としては通常の塗布法が採用される、なお保 護層の厚さは $0.1 \sim 10 \mu m$ 程度が適当である。ま た、以上のほかに真空薄膜作成法にて形成したa-C. a-SiCなど公知の材料を保護層として用いることが できる.

【0059】本発明においては感光層と保護層との間に 中間層を設けることも可能である。中間層には、一般に バインダー樹脂を主成分として用いる。これら樹脂とし ては、ポリアミド、アルコール可溶性ナイロン、水溶性 ポリピニルプチラール、ポリビニルブチラール、ポリビ ニルアルコールなどが挙げられる。中間層の形成法とし ては、前述のごとく通常の塗布法が採用される。なお、 中間層の厚さは 0.05~2 µm程度が適当である。 【0060】次に図面を用いて本発明の電子写真方法な

【0061】図4は、本発明の電子写真プロセスおよび 電子写真装置を説明するための概略図であり、下記する ような変形例も本発明の範疇に属するものである。 【0062】図4において、この電子写真装置は、ドラ ム状の感光体1の上面に近接し、かつ円周に沿って反時 計方向に、除電震光部2、帯電チャージャ3、イレーサ 4、画像露光部5、現像ユニット6、転写前チャージャ 7、転写チャージャ10、分離チャージャ11、分離爪 12、クリーニング前チャージャ13、ファーブラシ1 ンカップリング剤、クロムカップリング剤等を使用する 20 4、クリーニングブレード15を順次付設してなる。さ らに転写紙9を感光体1と転写チャージャ10および分 離チャージャ11との間に送り込むためのレジストロー ラ8を付設している。感光体1はドラム状の導電性支持 体とその上面に密着した感光層からなり、反時計方向に 回転する。 【0063】上記の電子写真装置を使用した電子写直方

法においては、感光体1は、反時計方向に回転して、帯

電チャージャ3で負(または正)に帯電され、画像露光

部5から露光によって、静電潜像を感光体1上に形成す る。保護層に使用される材料としてはABS樹脂、AC 30 る。転写手段には、一般に上記の帯電器が使用できる が、図に示されるように転写チャージャと分離チャージ *を併用したものが効果的である。 【0064】また、画像露光部5、除電ランプ2等の光 源には、蛍光灯、タングステンランプ、ハロゲンラン プ、水銀灯、ナトリウム灯、発光ダイオード(LE D)、半導体レーザー(LD)、エレクトロルミネッセ ンス(EL)などの発光物全般を用いることができる。 そして、所望の波長域の光のみを照射するために、シャ ープカットフィルター、バンドパスフィルター、近赤外 体、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデ 40 カットフィルター、ダイクロイックフィルター。干渉フ ィルター、色温度変換フィルターなどの各種フィルター を用いることもできる。かかる光源等は、図4に示され る工程の他に光昭射を併用した転写工程、除電工程 ク リーニング工程、あるいは前露光などの工程を設けると とにより、感光体に光が照射される。

> 【0065】現像ユニット6において、感光体1上にト ナーを付着させて静電潜像を現像し、転写前チャージャ 7によって、トナー像の帯電状態を調整した後、転写チ ャージャ10により転写紙9にトナー像を転写し分離チ 50 ャージャ11によって感光体1と転写紙9との静電的付

(10)

着状態を解消し、分離爪12によって転写紙9を感光体 1から分離する。転写紙9の分離後、クリーニング前チ ャージャ13、ファーブラシ14およびクリーニングブ レード15により感光体1表面を清掃する。このクリー ニングは、クリーニングブレード15だけで残存するト ナーを除去することにより行うこともできる。

17

【0066】電子写真感光体に正(負)帯電を施し、画 像縲光を行なうと、感光体表面上には正(負)の静電潜 像が形成される。これを負(正)極性のトナー(検電後 粒子) で現像すれば、ボジ画像が得られるし、また正 (負) 極性のトナーで現像すれば、ネガ画像が得られ

る。かかる現像手段には、公知の方法が適用されるし、 また、除電手段にも公知の方法が用いられる。

【0067】この例においては導電性支持体はドラム状 のものとして示されるが、シート状、エンドレスベルト 状のものを使用することができる。クリーニング前チャ ージャとしては、コントロン、スコロトロン、固体帯電 器(ソリッド・ステート・チャージャー)、帯電ローラ などをはじめとする公知の帯電手段を用いることができ 常上記の帯電手段を使用することができるが、図5に示 すように転写チャージャと分離チャージャを一体化した 帯電器は効率的で好ましい。クリーニング部材には、ブ レードファーブラシ、マグファーブラシなどをはじめと する公知のものを使用することができる。

【0068】図5は、本発明の電子写真プロセスの別の 例を説明する概略図を示す。この例において、ベルト状 の感光体21は、TiOPc感光層を有しており、駆動 ローラ22aまたは22bにより駆動され、帯電チャー ジャ23による帯電、像露光源24による画像露光、現 30 クスガラス性ボールミルボットに部分安定化ジルコニウ 像(図示せず)、転写チャージャ25による転写、クリ ーニング前露光部26によるクリーニング前露光、クリ ーニングプラシ27によるクリーニング、除電光源28 による除電からなる一連の作像が繰り返し行われる。な お、この場合クリーニング前露光部の露光は、感光体2*

* 1の導電性支持体側より行われる。勿論との場合、導電 性支持体は透光性である。

【0069】以上の図示した電子写真プロセスは、本発 明における実施形態を例示するものであって、もちろん 他の実施形態も可能である。例えば、図5において支持 体側よりクリーニング前露光を行っているが、これは感 光層側から行ってもよいし、また、画像露光、除電露光 の昭射を支持体側から行ってもよい。

【0070】一方、光照射工程は、画像露光、クリーニ 10 ング前露光、除電露光が図示されているが、他に転写前 露光、画像露光のブレ露光、およびその他公知の光照射 工程を設けて、感光体に光照射を行なうこともできる。 【0071】以上に示すような画像形成手段は、複写装 置、ファクシミリ、プリンター内に固定して組み込まれ ていてもよいが、プロセスカートリッジの形でそれら装 層内に組み込まれてもよい。プロセスカートリッジと は、感光体を内蔵し、他に帯電手段、露光手段、現像手 段、転写手段、クリーニング手段、除電手段を含んだ1 つの装置(部品)である。プロセスカートリッジの形状 る。また転写チャージャおよび分離チャージャには、通 20 等は多く挙げられるが、一般的な例として、図7に示す ものが挙げられる。図6に示されるプロセスカートリッ ジは、感光体16の周辺に配置された帯電チャージャ1 7、クリーニングプラシ18、画像露光部19、現像ロ ーラ20等からなるコンパクトな構造を有する。 [0072]

> 【実施例】以下、本発明を実施例を挙げて説明するが、 本発明はこれら実施例により制約を受けるものではな い。なお、部はすべて重量部である。

【0073】(実施例1)内容積1リットルのパイレッ ムポールを充填し、次に示す各素材を投入後、常温で6 0時間転動分散し、分散液を得た。

TiOPc顔料粉末 下記構造式(一般式(1)のもの)のアゾ顔料:1部

ボリビニルブチラール 2-ブタノン

【0074】(比較例1)実施例1で用いたものと同じ ボールミルボットに、次に示す各素材を投入後、常温で※

TiOPc顔料粉末 ポリビニルブチラール 2-ブタノン

【0075】(実施例2)実施例1で用いたものと同じ ボールミルボットに、次に示す各素材を投入後、常温で 50 TiOPc顔料粉末

: 1.5部 :200部 ※20時間転動分散し分散液を得た。

> : 2部 : 1.5部 :200部

20時間転動分散し分散液を得た。

: 2部

下記構造式 (一般式 (1) のもの) のアゾ顔料: 2部 * * 【化17】

ポリビニルブチラール

: 1部

テトラヒドロフラン :200部

[0076] (比較例2) 実施例1で用いたものと同じ ※20時間転動分散し、分散液を得た。

ボールミルボットに、次に示す各素材を投入後、常温で※10

実施例2で用いた一般式(1)のアゾ顔料 :2部

ポリピニルブチラール : 0.5部

テトラヒドロフラン :200部

【0077】(実施例3)実施例1で用いたものと同じ ★5時間転動分散した。

ボールミルポットに、次に示す各素材を投入後、常温で★

TiOP c 顔料粉末 : 3 部 ポリビニルブチラール : 1 部

テトラヒドロフラン :100部

次いで、下記の素材を投入し、さらに | 2 時間分散を行 ☆ 下記構造式 (一般式 (1) のもの) のアゾ顔料: 1部 い、目的の分散液を得た。 ☆20 【化18】

2-ブタノン

:100部

【0078】(実施例4)実施例1で用いたものと同じ ボールミルポットに、次に示す各素材を投入後、常温で 5時間転動分散した。

◆下記構造式 (一般式 (1) のもの) のアゾ顔料: 1.5 部

TiOPc顔料粉末

[{£19}

ポリビニルブチラール

: 1部

テトラヒドロフラン : 150部

次いで、下記の素材を投入し、さらに12時間分散を行 * い、目的の分散液を得た。 40

*ボールミルポットに、次に示す各素材を投入後、常温で40 10時間転動分散し分散液を得た。

TiOPc顏料粉末 : 2部

下記構造式 (一般式 (1) のもの) のアゾ顔料: 1. 3

エチルセルソルブ :50部

部

【0079】(実施例5)実施例1で用いたものと同じ* 【化20】

21 これと同時に、実施例1で用いたものと同じボールミル ポットに、次に示す各素材を投入後、常温で10時間転米

TiOPc颜料粉末

エチルセルソルブ 次に、これらの分散物を混合し、さらに10時間分散し 分散液を得た。

【0080】以上のように作製した実施例1~5および 比較例1~2の各分散液を、内径5mm、長さ30cm のガラス管に入れ二日間放置した。その時生じた上滑部 分の長さ (分散液が透明になった長さ)を測定した。次 10 層が良好であるため、望ましい光導電性特性が得られ に、作製した実施例1~5、比較例1~2の各分散液を もちい、アルミ蒸着したポリエチレンテレフタレートフ ィルム上に、ブレード塗工法で乾燥膜厚約0.3 μmの チタニルフタロシアニンおよび/または一般式(1)で※

* 動分散し分散液を得た。

: 2部 :150部

※表されるピスアゾ顔料を分散した有機光導電層を形成し た。このときの途瞱の状態を目視にて判定した。

22

【0081】以上の各測定結果を表1に示す。表1の結 果から明らかなように、本発明の有機顔料分散液を用い て作製された光導電体あるいは電子写真感光体は光導電

[0082] 【表1】

	分散液放置試験の上	ブレード塗工による	
	澄みの長さ (mm)	塗膜の外観	
実施例 1	0	良好	
比較例 1	22	塗工ムラによる塗膜の濃淡発生	
実施例 2	0	良好	
比較例 2	37	はじきによる膜欠陥発生	
実施例 3	0	良好	
実施例 4	1	良好	
室施領5	1	良好	

40

【0083】次に、アルミニウムシリンダー上に下記組 成の下引き層途工液、上記の実施例1~5 および比較例 1~2の顔料分散液、および下記組成の電荷輸送塗工液 を、順欠塗布・乾燥し、乾燥膜厚が各々3.5 µmの下★

★引き層、0.2μmの電荷発生層、24μmの電荷輸送 層を設け、積層感光体を作製した。これらを、上記の実 施例1~5および比較例1~2の感光体と称することに する。

> 15部 3部 3部 150部 10部

(下引き層塗工液)
二酸化チタン粉末
ポリピニルプチラール
エポキシ樹脂
2-ブタノン
(電荷輸送層塗工液)
ポリカーボネート
下記構造式の電荷輸送物質

【化21】

塩化メチレン

【0084】以上の各感光体を特開昭60-10016 7号公報に開示されている評価装置で次のような測定を 行なった。コロナ放電電圧-5.7 [kV]で帯電20 秒後の電位V[mV]、暗減衰20秒後の電位V o [V]、強度6 [1x]の白色光により電位Voを1/ 5に減衰させるのに必要な露光量E1/1, [1x·s]を 50 い、その時の印刷画像を評価した。

おり部

測定した。電位保持率を次のように定義する。 電位保持率=Vo/Vm

また、上記の各電子写真感光体を図4に示す電子写真プ ロセスに装着し(ただし、画像露光光源を680nmに 発行を持つLDとした)、連続して一万枚の印刷を行

23

【0085】以上の結果を表2に示す。表2の結果から明らかなように、本発明の電子写真感光体は多数の印刷

*【0086】 【表2】

でも良質の画像品質を維持するものである。

感光体	新料分飲被	感光体の特性評価		10000 牧印刷後の荷賀評価
		Vo/Vm	E1/5 [lx·s]	
実施例1	実施例1	0.78	0.35	良好
比較例1	比較例1	0.61	0.60	地汚れと黒ボチ発生
実施例 2	実施例 2	0.77	0.38	良好
比較例 2	比較例2	0.82	L.04	面像濃度低下の発生
实施例 3	実施例3	0.75	0.33	良好
実施例 4	実施例 4	0.78	0.38	良好
宝铁部5	室体例5	0.76	0.35	64年

[0087]

【発明の効果】本発明によれば、チタニルフタロシアニンと特定の仕学構造を有するアソ顔料からなる混合分散 (医療を作製することで、分散安定かつ塗工安定性に優れた 光導電性面料の分散液を作製することができる。また、本発明によれば、チタニルフタロシアニンと特定の化学構造を有するアソ顔料からなる高速皮な光薄電圏を形成 はいっています。更に本発明によれば、チタニルフタ 20 限、ロシアニンと特定の化学構造を有するアソ顔料からなる光端電配を有する光導電配を行る光端電を有するアソ顔料からなる光端電配を有する光端電像を有するアソ顔料からなる光端電配を有する光端電を有するアソ顔料からなる、光端電配を有する光端電像を有するアソ顔料からなる、光端電像を有するアソ顔料からなる、光端電影を目が表現しませない。 「限、高品質の日下デンスチムが歴代される。

【図面の簡単な説明】

※【図1】本発明で用いられる電子写真感光体の模式断面図。

【図2】本発明で用いられる別の電子写真感光体の模式 断面図。

【図3】本発明で用いられる更に別の電子写真感光体の 模式断面図。

【図4】本発明の電子写真装置を説明するための概略 図。

【図5】本発明の電子写真装置を説明するための概略

【図6】本発明の代表的な電子写真装置を説明するための概略図。

【図5】

フロントページの続き

(72)発明者 梅田 実 東京都大田区中馬込1丁目3番6号 株式

会社リコー内

Fターム(参考) 2H068 M19 M21 M34 M35 M37 BA39 BA45 EA12