

Sumário

- 1. O Teorema Fundamental da Proporcionalidade
- 2. Semelhança de Triângulos
- 3. Casos de Semelhança de Triângulos

O Teorema Fundamental da Proporcionalidade

Proposição 1

Proposição 1

As áreas de dois paralelogramos com uma mesma altura são proporcionais às suas bases relativas à esta altura.

Demonstração: Sendo h_1 a altura relativa ao lado \overline{AB} do primeiro paralelogramo e h_2 a altura relativa ao lado \overline{EF} do segundo:

- ▶ Hipótese: $h_1 = h_2$

Demonstração: Proposição 1

► Com efeito,

$$A(ABCD) = (AB) * h$$
 e $A(EFGH) = (EF) * h$.

Portanto,

$$\frac{A(ABCD)}{A(EFGH)} = \frac{(AB) * h}{(EF) * h}$$
$$= \frac{AB}{EF},$$

como queríamos demonstrar.

Proposição 2

Proposição 2

Prove que as áreas de dois triângulos com uma mesma altura são proporcionais às bases relativas a esta altura.

Demonstração: Exercício

Semelhança de Triângulos

Semelhança

▶ De forma grosseira, dizemos que duas figuras são **semelhantes** se uma delas é uma ampliação ou redução da outra, sem mudar sua forma original.

Figura 1: São semelhantes: duas circunferências quaisquer, dois quadrados quaisquer e dois triângulos equiláteros quaisquer.

Semelhança

Definição 1

Dois triângulos são ditos **semelhantes** se for possível estabelecer uma correspondência entre seus vértices de modo que ângulos correspondentes sejam congruentes e lados correspondentes sejam proporcionais.

- $\hat{A} = \hat{D}$
 - \triangleright $\hat{B} = \hat{E}$
 - $ightharpoonup \hat{C} = \hat{F}$

Notação:

$$\triangle ABS \sim \triangle DEF$$

O Teorema Fundamental da Proporcionalidade

Teorema 1

Sejam \triangle ABC um triângulo e $D \in \overline{AB}$, $E \in \overline{AC}$ pontos tais que $\overline{DE} \parallel \overline{BC}$. Então,

$$\frac{AD}{DB} = \frac{AE}{EC}$$

- ► Considere os triângulos *ADE* e *BDE*.
- ► A altura *EH* relativa aos lados *AD* e *DE* é a mesma para os dois triângulos.
- Logo, pela Proposição 2:

$$\frac{\mathcal{A}(\triangle ADE)}{\mathcal{A}(\triangle BDE)} = \frac{AD}{DB}.$$
 (1)

Analogamente:

- ► Considere os triângulos *ADE* e *CDE*.
- A altura DF relativa aos lados AE e CE é a mesma para os dois triângulos.
- Logo, pela Proposição 2:

$$\frac{\mathcal{A}(\triangle ADE)}{\mathcal{A}(\triangle CDE)} = \frac{AE}{EC}.$$
 (2)

▶ Para o triângulo *BDE*, considere o lado *DE* como base:

Sua área é dada por

$$\mathcal{A}(\triangle BDE) = \frac{DE * h''}{2}.$$

Para o triângulo *CDE*, consideramos o mesmo lado \overline{DE} como base:

- ightharpoonup Como $\overline{DE} \parallel \overline{BC}$, os segmentos as alturas dos dois triângulos são congruentes, já que também são paralelas.
- Sua área é dada por

$$\mathcal{A}(\triangle CDE) = \frac{DE * h''}{2}.$$

Portanto,

$$\mathcal{A}(\triangle BDE) = \mathcal{A}(\triangle CDE) \tag{3}$$

► De (1), (2) e (3), concluímos

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Observação: Como

$$\frac{AD}{DB} = \frac{AE}{EC} \Rightarrow \frac{DB}{AD} = \frac{EC}{AE},$$

podemos concluir que

$$1 + \frac{DB}{AD} = 1 + \frac{EC}{AE} \Rightarrow \frac{AD}{AD} + \frac{DB}{AD} = \frac{AE}{AE} + \frac{EC}{AE}.$$

Assim,

$$\frac{\mathit{AD} + \mathit{DB}}{\mathit{AD}} = \frac{\mathit{AE} + \mathit{EC}}{\mathit{AE}} \Rightarrow \frac{\mathit{AB}}{\mathit{AD}} = \frac{\mathit{AC}}{\mathit{AE}}.$$

O Teorema de Tales

Teorema 2

Quando três ou mais retas paralelas são cortadas por duas transversais, os segmentos das transversais, determinados pelas paralelas, são proporcionais.

Demonstração:

- ► **Hipótese:** $\overline{AM} \parallel \overline{BN} \parallel \overline{CP}$ s e t são transversais às paralelas.
- ► Tese: $\frac{AB}{BC} = \frac{MN}{NP}$

4

▶ No $\triangle MAC$, \overline{BQ} é paralelo à \overline{AM} .

▶ Pelo Teorema Fundamental da Proporcionalidade,

$$\frac{AB}{BC} = \frac{MQ}{QC}.$$

(4)

▶ No $\triangle MCP$, \overline{NQ} é paralelo à \overline{CP} .

Novamente, pelo Teorema Fundamental da Proporcionalidade,

$$\frac{MN}{NP} = \frac{MQ}{OC}. (5)$$

► De (4) e (5), obtemos

$$\frac{\textit{MN}}{\textit{NP}} = \frac{\textit{MQ}}{\textit{QC}} = \frac{\textit{AB}}{\textit{BC}} \Rightarrow \frac{\textit{MN}}{\textit{NP}} = \frac{\textit{AB}}{\textit{BC}},$$

como queríamos demonstrar.

O Teorema da Bissetriz Interna

Exercício 1

Prove o Teorema da Bissetriz Interna: a bissetriz de um ângulo interno de um triângulo divide o lado oposto em segmentos proporcionais aos dois outros lados.

Dica: Pelo ponto B, trace um segmento \overline{CP} paralelo à bissetriz \overline{AS} , com $P \in \overrightarrow{CA}$. Use o Teorema Fundamental da Proporcionalidade.

Casos de Semelhança de Triângulos

1° Caso: AA

Teorema 3

Se dois triângulos têm dois pares de ângulos respectivamente congruentes, então os triângulos são semelhantes.

Demonstração:

- ► Hipótese: $\hat{B} = \hat{E} e \hat{C} = \hat{F}$
- ► Tese:
 - $\hat{A} = \hat{D}$

- Seja E' um ponto sobre \overline{AB} tal que AE' = DE.
- Neste ponto, trace um segmento paralelo ao lado \overline{BC} , que encontra o lado \overline{AC} no ponto F'.

► Como são correspondentes, obtemos:

$$A\hat{E}'F' = \hat{B}$$
 e $A\hat{F}'E' = \hat{C}$. (6)

► Como AE' = DE, os triângulos AE'F' e DEF são congruentes (LAA).

Assim, $\hat{A} = \hat{D}$ e

$$AE' = DE \quad e \quad AF' = DF.$$
 (7)

Pelo Teorema Fundamental da Proporcionalidade, obtemos

$$\frac{E'B}{AE'} = \frac{F'C}{AF'} \Rightarrow \frac{AE' + E'B}{AE'} = \frac{AF' + F'C}{AF'}$$
(8)

► De (7) e (8), concluímos que

$$\frac{AB}{DE} = \frac{AC}{DF}$$

- Resta-nos mostrar que $\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$.
 - Repita esse raciocínio, considerando agora um ponto D' sobre \overline{CA} tal que CD' = FD. (Exercício)

2º Caso: I Al

Teorema 4

Se dois triânqulos têm um par de ânqulos respectivamente congruentes e os lados que os formam proporcionais, então os triângulos são semelhantes.

Demonstração:

► Hipótese:

$$\hat{A} = \hat{D}$$

$$\frac{AB}{DE} = \frac{AC}{DF}$$
Tese:
$$\hat{B} = \hat{E}$$

$$\triangleright \hat{B} = \hat{B}$$

$$ightharpoonup \hat{C} = \hat{F}$$

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

- Seja E' um ponto sobre \overline{AB} tal que AE' = DE.
- Neste ponto, trace um segmento paralelo ao lado \overline{BC} , que encontra o lado \overline{AC} no ponto F'.

Como são correspondentes, temos que

$$A\hat{E}'F' = \hat{B} \tag{9}$$

$$A\hat{F}'E' = \hat{C} \tag{10}$$

► Assim, os triângulos AE'F' e ABC possuem dois pares de ângulos respectivamente congruentes e, pelo 1º caso (AA), esses triângulos são semelhantes.

4

Por hipótese, temos que

$$\frac{AB}{DE} = \frac{AC}{DF} \tag{11}$$

e acabamos de mostrar que

$$\frac{AB}{AE'} = \frac{AC}{AF'}. (12)$$

▶ De (11) e (12), concluímos que

$$\frac{DE}{DF} = \frac{AB}{AC} = \frac{AE'}{AF'} \Rightarrow \frac{DE}{DF} = \frac{AE'}{AF'}.$$

ightharpoonup Como DE = AE', segue que

$$\frac{DE}{DF} = \frac{AE'}{AF'} \Rightarrow \frac{AE'}{DF} = \frac{AE'}{AF'} \Rightarrow DF = AF'. \tag{13}$$

▶ Portanto, os triângulos *AE'F'* e *DEF* são congruentes (LAL).

Usando a congruência acima, mostramos que

$$\hat{A} = \hat{D}$$

$$\hat{B} = \hat{F}$$

$$\hat{C} = \hat{F}$$
.

▶ Além disso, como $\triangle AE'F' \sim \triangle ABC$ e $\triangle AE'F' = \triangle DEF$, tem-se:

$$\begin{split} \frac{AB}{DE} &= \frac{AB}{AE'} = \frac{AC}{AF'} = \frac{AC}{DF} \\ \frac{AC}{DF} &= \frac{AC}{AF'} = \frac{BC}{E'F'} = \frac{BC}{EF}, \end{split}$$

de onde segue que

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}.$$
 (17)

▶ De (14)–(17), concluímos que $\triangle ABC \sim \triangle DEF$.

3° Caso: LLL

Teorema 5

Se os lados correspondentes de dois triângulos são proporcionais, então os triângulos são semelhantes.

Demonstração:

► Hipótese:

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

► Tese:

$$ightharpoonup \hat{A} = \hat{D}$$

$$\triangleright$$
 $\hat{B} = \hat{E}$

$$\hat{C} = \hat{F}$$

- Seja E' um ponto sobre \overline{AB} tal que AE' = DE.
- Neste ponto, trace um segmento paralelo ao lado \overline{BC} , que encontra o lado \overline{AC} no ponto F'.

Como são correspondentes, temos que

$$A\hat{E}'F' = \hat{B} \tag{18}$$

$$A\hat{F}'E' = \hat{C}.\tag{19}$$

- Assim, os triângulos AE'F' e ABC possuem dois pares de ângulos respectivamente congruentes e, pelo 1° caso (AA), esses triângulos são semelhantes.
- Assim,

$$\frac{AB}{AE'} = \frac{AC}{AF'} = \frac{BC}{E'F'}.$$
 (20)

ightharpoonup Como AE' = DE, de (20) temos

$$\frac{AC}{DF} = \frac{AB}{DE} = \frac{AB}{AE'} = \frac{AC}{AF'}$$

$$\Rightarrow \frac{AC}{DF} = \frac{AC}{AF'}$$

$$\Rightarrow DF = AF'$$

e

$$\frac{BC}{EF} = \frac{AB}{DE} = \frac{AB}{AE'} = \frac{BC}{E'F'}$$

$$\Rightarrow \frac{BC}{EF} = \frac{BC}{E'F'}$$

$$\Rightarrow EF = E'F'.$$

- ightharpoonup Com isso, $\triangle DEF = \triangle AE'F'$ (LLL).
- Pela congruência acima, usando os ângulos opostos à lados congruentes, obtemos que
 - $ightharpoonup \hat{A} = \hat{D};$

 - $\hat{B} = A\hat{E}'F' = \hat{E};$ $\hat{C} = A\hat{F}'E' = \hat{F}:$

de onde segue que, junto à hipótese de que $\frac{AB}{DF} = \frac{AC}{DF} = \frac{BC}{FF}$, $\triangle ABC \sim \triangle DEF$.

Referencias I

