Requested Patent:

JP6086827A

Title:

LUMINAL STENT AND DEVICE FOR INSERTING LUMINAL STENT;

Abstracted Patent:

US5762625;

Publication Date:

1998-06-09;

Inventor(s):

IGAKI KEIJI (JP);

Applicant(s):

KABUSHIKIKAISHA IGAKI IRYO SEK (JP);

Application Number:

US19940232181 19940503;

Priority Number(s):

JP19920239849 19920908; WO1993JP01277 19930908;

IPC Classification:

A61F2/06; A61M29/02;

Equivalents:

WO9405364

ABSTRACT:

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-86827

(43)公開日 平成6年(1994)3月29日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 M 29/02 A 6 1 L 27/00 9052-4C

U 7167-4C

審査請求 未請求 請求項の数6(全 8 頁)

(21)出願番号

特願平4-239849

(71)出願人 591065675

伊垣 敬二

(22)出願日

平成4年(1992)9月8日

滋賀県草津市若草2丁目1番地の21

(72)発明者 伊垣 敬二

滋賀県草津市若草2丁目1の21

(74)代理人 弁理士 小池 晃 (外2名)

(54) 【発明の名称】 脈管ステント及び脈管ステント挿着装置

(57) 【要約】

【目的】 脈管に再狭窄が生じたり脈管内径が縮小した りという危険がないような脈管ステント及び脈管ステン ト挿着装置を提供する。

【構成】 血管等の脈管に挿着してその管の形態を保持するような脈管ステント及び脈管ステント挿着装置が開示される。脈管ステントは、連続する生体吸収性ポリマー繊維製の糸からなり、前配糸が不織不編状態で、例えば蛇行した状態で筒状体、管状体の周面に沿った形状に成形されてなる。また、脈管ステント挿着装置は、前記脈管ステントをカテーテル先端部近傍のパルーン形成部に被せ、生体適合性材料により接着してなる。

1

【特許請求の範囲】

【請求項1】 連続する生体吸収性ポリマー機維製の糸 が不織不虧状態で筒状体または管状体の周面に沿った形 状に成形されてなる脈管ステント。

【請求項2】 連続する生体吸収性ポリマー競雑製の糸 が蛇行した状態で筒状体または管状体の周面に沿った形 状に成形されてなる脈管ステント。

【請求項3】 生体吸収性ポリマーがポリ乳酸、ポリグ リコール酸、ポリグラクチン(ポリグリコール酸-ポリ (トリメチレンカーボネートーグリコリド共重合体)、 ポリグリコール酸又はポリ乳酸とε-カプロラクトン共 重合体より選ばれた少なくとも1種であることを特徴と する請求項1または2記载の脈管ステント。

【請求項4】 カテーテル先端部近傍のパルーン形成部 に請求項1または2記载の脈管ステントを被せてなり、 前記脈管ステントに生体適合性材料を塗布しパルーン形 成部に接着してなる脈管ステント挿着装置。

【讃求項5】 生体適合性材料が生体内分解ポリマー、 水溶性タンパク、フィブリン糊より選ばれた少なくとも 20 着装置である。 1種であることを特徴とする請求項4記载の脈管ステン ト挿着装置。

生体適合性材料がポリ乳酸(PLA)で 【請求項6】 あることを特徴とする請求項4記域の脈管ステント挿着 装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、脈管(血管、リンパ 管、胆管、尿管、食道など) に揮着してその管の形態を 保持するような脈管ステントに関するものであり、その 30 脈管ステントを脈管内に挿着するための脈管ステント挿 着装置に関するものである。

[0002]

【従来の技術】この種の脈管ステントとしては、脈管形 成衛実施部に拡張することにより挿着される、ステンレ ス製等の経線材と緯線材とを交叉させて形成したメッシ ュを筒状・管状体にしたものが知られている。

【0003】しかし、この公知の脈管ステントには、硬 質で脈管にストレスを与え易いため、脈管に再狭窄の原 因となる炎症や過剰肥厚などが生じるという問題のほ 40 か、生体内に異物として半永久的に残るため、本質的に 異物の存在を鋭う生体にとっては好ましくないという問 題がある。

【0004】金属ステントのような半永久的にもしくは 必要以上に永く脈管内に留まる脈管ステントを挿着した 場合には、該ステントが一種の核となることもあり、そ の部位で脈管に再狭窄が生じる可能性が比較的高く、ま た、前記ステントの周囲の脈管に傷がついたときにもそ の脈管内壁の生体細胞が異常に増殖して脈管内径が縮小 したりする危険がある。

[0005]

【発明が解決しようとする課題】そこで本発明は、かか る実情に鑑みて提案されたものであり、际管に再狭窄が 生じたり、脈管内径が縮小したりという危険がないよう な脈管ステント及び脈管ステント挿着装置を提供するこ とを目的とする。

2

[0006]

【課題を解決するための手段】本発明は、上述の目的を 達成するために提案されたものである。すなわち、本発 乳酸共重合体)、ポリジオキサノン、ポリグリコネート 10 明は、連続する生体吸収性ポリマー繊維製の糸が不徹不 編状態、例えば蛇行した状態で筒状体または管状体の周 面に沿った形状に成形されてなることを特徴とするもの であり、さらには、カテーテル先端部近傍のパルーン形 成部にかかる脈管ステントを被せてなり、前記脈管ステ ントに生体適合性材料しパルーン形成部に接着してなる ことを特徴とするものである。

> 【0007】本発明は、生体吸収性ポリマー機維製の糸 の筒状・管状体からなる脈管ステント、及び眩ステント をカテーテルのパルーン形成部に被せた原管ステント挿

> 【0008】ここで、生体吸収性ポリマーとしては、ポ リ乳酸(PLA)、ポリグリコール酸(PGA)、ポリ グラクチン(ポリグリコール酸、ポリ乳酸共重合体)、 ポリジオキサノン、ポリグリコネート(トリメチレンカ ーポネート、グリコリド共重合体)、ポリグリコール酸 又はポリ乳酸とεーカプロラクトン共重合体等を用いる ことができる。

> 【0009】また、生体吸収性ポリマーには、種々の材 料(薬剤を含む)を混入することができる。また、その 繊維表面に付着することもできる。

> 【0010】さらに、本発明の脈管ステントは、脈管形 成術実施部にパルーン付きカテーテルを介して挿入し、 パルーンの膨張によって拡張することにより挿着する が、挿着後数週間ないし数カ月間はその形態を保持する ものの、生体吸収性ポリマー戯雑製のために、挿着後数 カ月前後で生体組織に吸収されて消失する。加えて、生 体吸収性ポリマーにX線不透過性材料を混入すると、挿 着後に外部からのX線を照射することによって、脈管ス テントの状態を確認することができる。

[0011]

【作用】本発明は、連続する生体吸収性ポリマー繊維製 の糸を不織不編状態で、例えば蛇行した状態で筒状体あ るいは管状体の周面に沿わせた形状に成形した筒状・管 状の脈管ステントであり、これは、他の布帛形態すなわ ちフェルトのような形の不織布や通常の経糸・緯糸を用 いた織布に比べて、その柔軟性及び形態保持性に優れて おり、この短成脈管ステントはさらに熱処理(ヒートセ ット)を施すことにより、その柔軟性及び形態保持性に ついてなお一層題著な効果を発揮するものである。

【0012】また、前述の脈管ステントは、脈管形成術 50

実施部に例えばバルーン付きカテーテルを介して挿入さ れるが、前記脈管ステントをパルーン形成部に被せた 後、生体吸収性ポリマーの溶液を塗布して当該脈管ステ ントをパルーン形成部に接着しておけば、カテーテルを 脈管内に挿入したときに発生する脈管ステントのズレが 防止される。

[0013]

【実施例】本発明の脈管ステントは、基本的に一本の糸 を織ったり編んだりすることなく筒状体や管状体の周面 に沿って巻き付け、筒状あるいは管状に加工したもので 10 トとしての生体脈管内壁に与えるストレスを極小化でき ある。ただし、筒状体や管状体の周面に沿って巻き付け るといっても、いわゆる巻回状態とするのではなく、図 1 a~gに示すように生体吸収性ポリマー繊維製の糸を 蛇行せしめ、あるいは輪を形成するようにして生体吸収 性ポリマー繊維製の糸の面状体を構成し、これを筒体や 管状体を抱き込むように周面に沿わせて曲面形状とす

【0014】図1は、本発明を適用した脈管ステントの 一例を示すもので、本例では蛇行する生体吸収性ポリマ 一繊維製の糸が管状に成形されている。また、図2は、 本発明を適用した脈管ステントの他の例を示すもので、 ループ状の生体吸収性ポリマー繊維製の糸を同様に管状 に成形してなるものである。

【0015】本発明の脈管ステントは、目的の部位まで 脈管ステントを運ぶ際に、種々の蛇行した脈管を通過す ることが、金属ステントや織物ステントに比べ非常に容 易である。即ち、前述のように生体吸収性ポリマー繊維 製の糸にて作製された脈管ステントはどのような蛇行に も追従性(trackability)を有し、また、屈曲部に挿着 することも可能である。なぜなら、不織不編状態で蛇行 30 等により筒状・管状に形成されたものは拡張力が強く、 内空の形状を損ない難いという性質をもっているからで ある。本発明に係る脈管ステントは、約5mmの径に成 形された筒状・管状の脈管ステントを生体内のより細径 の脈管中に挿着するために、熱処理により縮径してヒー トセットされ約2mm以下の径と成されるが、その過程 を図4に示す。

【0016】また、後に詳しく説明するが、このヒート セットされた脈管ステントの脈管内への挿着の概念を図 5に示す。

【0017】また、PGA (ポリグリコール酸) ポリマ 一繊維製の糸を成形した脈管ステントの縮径処理の別の 方法を図6に示す。この図6に示した方法の利点は、耐 熱性樹脂或いは金属等からなるチュープを使用しないの で、そのままカテーテル先端部近傍のパルーン形成部に 挿着することができる点にある。

【0018】生体吸収性ポリマー繊維性の糸を成形した 筒状・管状の脈管ステントは、その直径が約4~5mm のものであって、これを内径が約1~3mm、好ましく

の中に入れてヒートセットするか、もしくは、徐々に入

れながらヒートセットすることによって、径が約2mm に形態セットされた脈管ステントを得ることができる (図4参照)。

【0019】加えて、このヒートセットについては、筒 状・管状体脈管ステントを比較的大径の状態の時点で、 熱処理(ヒートセット)することにより、または、前記 筒状・管状体を縮径してヒートセットしても整形性がよ く、このヒートセットは形態保持性とともに脈管ステン

【0020】なお、生体吸収ポリマー繊維をPLA+P GAとし、その混合比を変えることにより、本発明の脈 管ステントの強度半減期を、もしくは、生体吸収消失期 間を3週間から3か月程度の範囲で自在にコントロール できる。

るという意味がある。

【0021】また、繊維を紡糸する時点でX線不透過剤 を混入することにより、挿着された脈管ステントの状態 をX線によって観察することができ、ヘパリン、ウロキ 20 ナーゼや t-PA等血栓溶解剤や抗血栓剤を混入してお くことも有効である。

【0022】さらに、本発明の脈管ステントは生体吸収 性ポリマー繊維製の糸で形成したものであり、所望の期 間でそれが挿着された部位から消失することを利用し て、前記繊維に抗癌剤や各種治療薬を混入もしくは付着 すればこれら薬剤の患部への集中的投与の手段としても 利用できる。

【0023】加えて、本発明の脈管ステントを構成する 繊維は、その断面形状に変化をもたせることが、脈管ス テントを金属で作成する場合に比べて容易である。つま り、紡糸するときのフィラメントの断面形状を中空や異 形とすることにより、また、モノフィラメント糸または マルチフィラメント糸を用いることができ生体とのなじ みや形態保持性をコントロールできる。

【0024】さらに、合成高分子製の糸ではその繊維表 面にも種々の加工を施すことができる。通常のほぼ円形 断面を有し且つその表面にも特段の加工を施さない糸、 もしくは上記のようないわゆる異形断面を有する糸、あ るいは前記のような加工糸を用いて、例えば、これらの 糸に抗血栓材料や血栓溶解剤等を付着させたり、また、 生体細胞を付着させることによって生体の内皮細胞の増 殖を促進したり、さらに、X線不透過性材料を付着させ たりすることが可能である。

【0025】ところで、脈管の狭窄部を例えば4mmの 径にまで拡張保持したい場合、一気に4mmにまで拡張 せず、即ち、脈管及び生体そのものへの急激なストレス を避けるため、最初約0.8~1.2mm径のパルーン 形成部を有する拡張具により脈管を3mm径にまで拡張 してパルーン付きカテーテルを抜き、再度、最初の場合 は 2 mmの耐熱性樹脂或いは金属などからなるチューブ 50 と同様に脈管ステントを被せないものでパルーン形成の

みを行うことのできるパルーン付きカテーテルを挿入し て、今度は4mm強の脈管径に拡張し、その後パルーン 形成部に本発明に係る脈管ステントを装着した脈管ステ ント挿着装置によって短成脈管ステントを挿着する。

【0026】この脈管拡張形成は必ずしも段階的に行う 必要性はなく、一度で脈管狭窄部を所望の径にまで拡張 してから、脈管ステントの挿着操作を行っても良い。

【0027】また、パルーン付きカテーテルに本発明の 脈管ステントを装着した脈管ステント挿着装置そのもの を用いて、脈管の拡張と同時的に脈管ステントの生体管 10 内への挿着操作を行うこともできる。

【0028】ところで、本発明に係る脈管ステントを生 体脈管の狭窄部に挿着する装置についてその詳細を説明 すると、図5に示すように、カテーテル2の先端部近傍 には、該カテーテル内の中空部から8~10気圧の液圧 をもって注入されるX線造影剤等の液体もしくは気体に よって所望径のバルーンを形成できる領域が存在する。 このパルーン形成部3の長さは約20mm前後であり、 この部分に前記ヒートセットされた直径が約2mmの脉 管ステント11を被せる。

【0029】ここで、前記パルーン形成部3の長さや脈 管ステント11の径は、対象とする脈管の種類或いはそ の脈管の特異性に応じて、その形状を任意に設定するこ とができる。なお、カテーテルの先始部には、該カテー テルを生体の脈管内に挿入するときに先導ガイドとなる ガイドワイヤが取り付けられている場合がある。

【0030】また、脈管ステントの挿着については、カ テーテルのパルーン形成部の長さ方向咯中央部には、バ ルーン形成のために注入される流体がカテーテル中空部 から流出して、パルーン形成用蒋膜との間に充満される ために必要となる連通小孔が設けられており、該小孔を 介して8~10気圧の流体圧によりパルーンが拡張形成 され、その状態が30~60秒間、場合によってはより 長時間にわたり維持される。このとき、パルーンの拡張 力によりステントが一種の塑性変形を生じてその拡張さ れた形態を保持することになるが、このときポリマー自 体の分子レベルでの変化が生じるか、または、管状に成 形された糸の形状が、径方向に拡張するという変化によ り、そのままその形状を保持することになる。

【0031】次いで、図5には、本発明の脈管ステント 40 を生体脈管内に挿着する過程を示しており、同図示の如 くパルーンを拡張形成した後、これに続いてパルーンの 収縮操作を行うことによりカテーテル2全体を脈管ステ ントから引き抜くことができるものである。

【0032】また、図7には本発明の脈管ステント挿着 装置の別の例を示しており、この場合には、シース5に よって脈管ステント11が被せられたパルーン付きカテ ーテルを覆い、この状態で生体脈管内に挿入する。次い で、シース5を少し引き抜いた状態でパルーンを拡張維 持した後、バルーンを収縮させてカテーテル2とともに 50 バルーン形成部に脈管ステントを被せて、該ステントを

シース5を引き抜いて脈管ステントを生体脈管内に残置

【0033】なお、パルーン形成用の薄膜はポリエチレ ンテレフタレートやポリエチレン等の各種合成高分子材 料製のフィルムで作成することができる。

【0034】ここで、本発明の脉管ステントは、図8に 示すように、脈管の屈曲部にもその形状に応じて整合性 をもって挿着され得るものであって、その様子は特に図 8Bに明瞭に示されている。図8Cは、例えば、経線材 と緯線材とを交叉させて形成したメッシュを筒状・管状 体にした金属ステントや、織物で形成されたステントを 脈管の屈曲部に挿着した状態を示しており、このような ステントでは、脈管の屈曲部においてステントが折れ曲 がっており、当該部位の脈管の形態を正常に維持できな くなっている。また、本発明の脈管ステントは脈管に分 **岐箇所があっても、追従性に優れているから脈管の狭窄** 部位へ容易に到達できることは既に述べた通りである。

【0035】なお、図8Aは生体脈管の一形態を示すも のであって、例えば矢印aで示すような部位が本発明の 20 脈管ステントの挿着対象となる場合を想定して示したも のである。

【0036】本発明に係る生体吸収性ポリマー繊維製の 糸で形成しヒートセットされた脈管ステントは、本発明 に係る脈管ステント挿着装置によって、どのような太さ の脈管にも対応できる。例えば、パルーン拡張時にその 径が約4mm強となるものに脈管ステントを装着したと すると、パルーンの拡張度合いをコントロールすること で、2.5mmの脈管部位に脈管ステントを挿着するこ ともでき、また、3mmや4mmの脈管部位にも同様に 脈管ステントを挿着することができる。即ち、図9に示 すどの部位にも同一のパルーン付きカテーテルによって 脈管ステントを挿着することができる。これは、パルー ンを拡張した太さにおいて、脈管ステントの内径が保持 されるからである。

【0037】また、本発明の脈管ステントが分解して生 体に吸収されてのち、致力月後、脈管の再狭窄が起きれ ば、再び脈管ステントを同一部位に挿着することが可能 であり、これは、生体分解吸収性ポリマーを用いている からである。

【0038】以上のように、本発明の脈管ステントによ れば、脈管の炎症や過剰肥厚等が生じず、従って再狭窄 が防止されるという有用な効果が奏される。また、この 脈管ステントは、ほぼ致カ月経つと生体組織に吸収され て消失するので、生体にとっても好適である。

【0039】さらに、この脈管ステントによれば、生体 吸収性ポリマー繊維や糸にX線不透過剤を付与すると、 外部からのX線の照射によってその挿着状態を容易に確 認することができる。

【0040】また、本発明のパルーン付きカテーテルの

7

脈管内の所望箇所に容易に挿着することが可能であると いう効果がある。

【0041】ところで、本発明の脈管ステントをパルーン付きカテーテルのパルーン形成部に被せて脈管内の所望箇所に挿着する場合、脈管内壁とステントとの接触等によって脈管ステントの装着位置にズレが生ずることが予想される。例えば、脈管ステントの位置がズレてパルーン形成部から外れると、適正な拡張状態にすることが困難になる。

【0042】そこで、パルーン形成部に脈管ステントを 10 適である。 被せた後、生体適合性材料を整布し、いわば糊付けして 脈管ステントをパルーン成形部に固定しておくことが好 ましい。接着剤または糊として使用できるものは、生体 適合性材料であり、ポリ乳酸(PLA)等の生体内分解 性ポリマーやゼラチン等の水溶性タンパク、フィブリン 糊等が挙げられる。 【図1】2

【0043】例えば、PLAを溶媒中に溶質として溶かし、これをステントに塗布・乾燥すれば、フィルム状になって残り、接着剤としての役割を果たす。ただし、この方法はPLAステントには用いることができず(ステ 20ントが溶けてしまうため。)、PLAステントには他の生体適合性材料を用いる必要がある。なお、接着剤である生体適合性材料は、ステントの周囲全体に塗布してもよいし、生体吸収性ポリマー繊維の糸が重なり合っている部分にのみ塗布するようにしてもよい。

【0044】実験1

硫酸パリウムを混入したポリ乳酸繊維製の糸を蛇行させ これを管状体の周面に沿わせて成形した脈管ステントを 実験動物の冠動脈にパルーン付きカテーテルを用い径4 mm、長さ20mmの形態として複数本を挿着した後、 X線照射を介して観察したところ、約3~6ヵ月までは ほぼその形態を保持していた。また、約6~12ヵ月で 生体組織に吸収されて消失した。この間実質上血管内膜 の炎症や過剰肥厚等の異常は認められなかった。

【0045】実験2

硫酸パリウムを混入したポリグリコール酸繊維製の糸に ループを形成せしめて面状体となしこれを管状体の周面 に沿わせて成形した脈管ステントを実験動物の大腿動脈 に径4mm、長さ20mmの形態で複数本挿着した後、 X線照射によって観察したところ、約2~3週間その形 40 態を保持しており、また、約2~3ヵ月で生体に吸収さ

れた。

【0046】なお、この間、血管内膜の炎症、過剰肥厚 等は認められなかった。

[0047]

【発明の効果】以上の説明からも明らかなように、本発明の脈管ステントは、脈管の炎症や過剰肥厚等を生じさせることがなく、従って再狭窄の発生を防止することができる。また、この脈管ステントは、ほぼ数カ月経つと生体組織に吸収されて消失するので、生体にとっても好適である。

【0048】また、本発明の脈管ステント挿着装置においては、脈管ステントが生体適合性材料によってパルーン形成部に固定されているので、脈管ステントの脈管内への挿着を確実に行うことができる。

【図面の簡単な説明】

【図1】不織不編状態の生体吸収性ポリマー繊維の糸の 形態例を示す模式図である。

【図2】本発明を適用した脈管ステントの一例を示す概略側面図である。

「図3】本発明を適用した脈管ステントの他の例を示す 概略側面図である。

【図4】縮径脈管ステントを得る過程を示す図である。

【図5】脈管ステントを脈管内に挿着する時の概念図である。

【図6】PGA繊維製の糸で編成した脈管ステントの縮 径処理の別法を示す図である。

【図7】編成脈管ステント挿着装置の他の例を示す図である。

【図8】脈管と脈管ステントの挿着形態とを概略的に示30 すものであって、Aは代表的な脈管の形態、Bは脈管ステントの挿着状態、さらにCは従来の脈管ステントを挿着したときの悪い状態を比較例として示した図である。

【図9】脈管ステントが種々の脈管部位に挿着され得る ことを示す図である。

【符号の説明】

1, 11・・・脈管ステント

2・・・カテーテル

3・・・パルーン形成部

5・・・シース

0 6・・・パルーン

[図2]

HMMH

【図3】

【図5】

