COMP 3311: Database Management Systems

Lecture 13 Exercises Indexing: B+-tree

Exercise 1: For the B+-tree below with order 2 and fan out 4, show the tree that would result after *successively* applying the following operations in order.

i. insert 3 1 ii. insert 8

COMP 3311: Database Management Systems

Lecture 13 Exercises Indexing: B+-tree

Exercise 2: For the B+-tree below with order 2 and fan out 4, show the tree that would result after *successively* applying the following operations in order.

i. delete 5 ii. delete 3 iii delete 11

Name: _		<u> </u>	Student#:	 Date:	
	F 11 (C) (DDINIT)	O: (F: L (DDINT)			

COMP 3311: Database Management Systems

Lecture 13 Exercises Indexing: B+-tree

Exercise 3: For the B+-tree below with order 2 and fan out 4, show the tree that would result after *successively* applying the following operations in order. Add nodes to or cross out nodes in the empty B+-tree below as necessary.

i. insert 45 ii. insert 35 iii. insert 40 iv. delete 59

Name:	Family/C	iven (PRINT)			/First (PRINT)		tudent#:				Date	:	
	railliy/G	, ,	OMP 3		, ,		lanag	emen	t Syst	tems			
							Exercise B+-tree	es					
Exercise 4: Using the template below, construct a B+-tree for the following set of search-key values using bulk loading, which creates leaf nodes from left to right. Assume that each node can hold 4 pointers (i.e., 3 values) and that each leaf node is loaded with the minimum number of values.													
	2	3	5	7	11	17	19	23	29	31			