

# CHICAGO CRIMES

MACHINE LEARNING



# MACHINE LEARNING BEAT



DivyaVishnumurthy



Ramesh Kalagnanam



KevinKao



FrancesDoyle



HarshvardhanSuresh



Joe Strawinski

# **AGENDA**

- What are we doing
- Chicago crime dataset
- Machine learning workflow
- Infrastructure walk through
- Summary of outcomes
- Crime Plots

#### WHAT ARE WE DOING

# **Solution statement goals:**

- Define scope (including Data Source)
- Define target performance
- Define context for usage
- Define how solution will be created

#### **Solution statement:**

Use the machine learning workflow to process and transform the Chicago crime dataset to create a prediction model. This model must predict if a crime will result in an arrest with 70% or greater accuracy.

#### CHICAGO CRIME DATASET

- Data is extracted from the Chicago
   Police Department's Citizen Law
   Enforcement Analysis and Reporting
   system
- Reported crime between 2001 and present (less the most recent seven days)
- As of 10/27/19, 6.9 million records
- https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzpq8t2/data

#### **Database Features:**

#### **Self-Explanatory columns:**

- Case Number
- Date
- Location Description
- Arrest?
- Domestic?
- District
- Ward
- Community Area
- X Coordinate
- Y Coordinate

- Year
- Updated On
- Latitude
- Longitude
- Location

#### **Column definitions:**

- Block partially redacted address
- IUCR Illinois Uniform Crime Reporting code
- Primary Type description of IUCR
- Description secondary description of IUCR
- Beat smallest police geographic area
- FBI Code FBI crime classification

# CHICAGO CRIME DATASET



#### Primary Type Crime Occurrence: Arrest Percentage



# CHICAGO CRIME DATASET

#### Ward Crime Occurrence: Arrest Percentage



#### Community Area Crime Occurrence: Arrest Percentage







PREPARING THE DATA

- Dropped null values
- Convert categorical data into numeric values
- Eliminated outliers
- Dropped columns
- Converted time to cyclical data







SELECTING AN ALGORITHM

- Naïve Bayes
- Random Forest
- Decision Tree
- Logistic Regression



## RANDOM FOREST

Features: IUCR, Time of Occurrence, Location (modified Latitude/Longitude)

|              | Predicted "No"    | Predicted "Yes" |           |
|--------------|-------------------|-----------------|-----------|
| Actual "No"  | TN =<br>1,279,397 | FP = 90,149     | 1,369,546 |
| Actual "Yes" | FN =<br>183,435   | TP = 332,810    | 516,245   |
|              | 1,462,832         | 422,959         | 1,885,791 |

| Precision                                                                                                  | Accuracy                                                                                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| When it predicts "Yes",<br>how often is it correct?<br>TP/(TP + FP) =<br>332,810/422,959 = 78.7<br>percent | Overall, how often is the classifier correct? (TP + TN)/total = (332,810+1,279,397)/1,88 5,791= 85.5 percent |

- Tested with 500 new records
- 425 out of 500 ("Predicted" True = Actual True)
- Accuracy = 425/500 = 85 percent

#### LOGISTIC REGRESSION

Features: IUCR, Time of Occurrence, Location (modified Latitude/Longitude)

|              | Predicted "No"    | Predicted "Yes" |           |
|--------------|-------------------|-----------------|-----------|
| Actual "No"  | TN =<br>1,006,257 | FP =<br>363,289 | 1,369,546 |
| Actual "Yes" | FN =<br>206,925   | TP = 309,320    | 516,245   |
|              | 1,213,182         | 672,609         | 1,885,791 |

| Precision                                                                                                  | Accuracy                                                                                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| When it predicts "Yes",<br>how often is it correct?<br>TP/(TP + FP) =<br>309,320/672,609 = 45.9<br>percent | Overall, how often is the classifier correct? (TP + TN)/total = (309,320+1,006,257)/1,88 5,791= 69.7 percent |

- Tested with 500 new records
- 332 out of 500 ("Predicted" True = Actual True)
- Accuracy = 332/500 = 66.4 percent

### LOGISTIC REGRESSION

Features: Crime type, Domestic crime(Y/N), District, Ward, Community Areas, Beat

|              | Predicted "No" | Predicted "Yes"   |        |
|--------------|----------------|-------------------|--------|
| Actual "No"  | TN = 50,984    | FP = 1,305        | 52,289 |
| Actual "Yes" | FN = 7,167     | <b>TP = 5,949</b> | 13,116 |
|              | 58,151         | 7,254             | 65,405 |

| Precision                                                                                         | Accuracy                                                                                           |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| When it predicts "Yes",<br>how often is it correct?<br>TP/(TP + FP) = 5,949/7,254<br>= 82 percent | Overall, how often is the classifier correct? (TP + TN)/total = (5,949+50,984)/65,405 = 87 percent |

- Tested with 203,786 new records
- 176,662 out of 203,786 ("Predicted" True = Actual True)
- Accuracy = 176,662/203,786 = 86.7 percent

# NAÏVE BAYES

### Features: IUCR, Community Area, Police Beats, Hour, Month

|              | Predicted "No" | Predicted "Yes" |         |
|--------------|----------------|-----------------|---------|
| Actual "No"  | TN = 236,478   | FP =<br>14,428  | 250,906 |
| Actual "Yes" | FN =<br>59,046 | TP =<br>4,621   | 63,667  |
|              | 295,524        | 19,049          | 314,573 |

| Precision                                                                                     | Accuracy                                                                                              |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| When it predicts "Yes", how often is it correct?  TP/(TP + FP) = 4,621/19,049  = 24.3 percent | Overall, how often is the classifier correct? (TP + TN)/total = (236,478+4,621)/314,573= 76.6 percent |

- Tested with 500 new records
- 373 out of 500 ("Predicted" True = Actual True)
- Accuracy = 373/500 = 74.6 percent

## RANDOM FOREST

# Features: IUCR, Community Area, Police Beats, Hour, Month

|              | Predicted "No" | Predicted "Yes" |         |
|--------------|----------------|-----------------|---------|
| Actual "No"  | TN = 237,048   | FP =<br>13,858  | 250,906 |
| Actual "Yes" | FN =<br>30,034 | TP =<br>33,633  | 63,667  |
|              | 267,082        | 47,491          | 314,573 |

| Precision                                                                                      | Accuracy                                                                                             |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| When it predicts "Yes", how often is it correct?  TP/(TP + FP) =  33,633/47,491 = 70.8 percent | Overall, how often is the classifier correct? (TP + TN)/total = (33,633+237,048)/314,573= 86 percent |

- Tested with 500 Records
- 437 out of 500 ("Predicted" True = Actual True)
- Accuracy = 437/500 = 87.4 percent

#### EFFICIENCY METRICS OF CHICAGO PD



The goal was to determine the efficiency of a police beat based on the crime type, police district and ward.



A beat is the smallest police geographic area with a dedicated police car. Three to five beats make up a police sector, and three sectors make up a police district.



Chicago police hold a monthly regular policing strategy meeting for the public to provide safety feedback based on the recent crime events.



The intent is to use these metrics to determine the most effective police district based on the crime type. Data will be used to re-assign resources to improve arrest rates.

#### EFFICIENCY METRICS OF CHICAGO PD

 With features- Crime type, Ward, Police District and Police Beat, the model works with an accuracy of 87%



- The lag between event and arrest is unknown.
- This missing data would help calculating efficiency better.





# ALGORITHM WITH BEST OUTCOMES

Random Forest 87%

Logistic Regression 87%

Naïve Bayes 74%

Decision Tree 87%



# DEMO





# THANK YOU