

## planetmath.org

Math for the people, by the people.

## examples of semigroups

Canonical name ExamplesOfSemigroups
Date of creation 2013-03-22 18:37:16
Last modified on 2013-03-22 18:37:16

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Example
Classification msc 20M99
Synonym group with 0
Defines group with zero

Examples of semigroups are numerous. This entry presents some of the most common examples.

- 1. The set  $\mathbb{Z}$  of integers with multiplication is a semigroup, along with many of its subsets (subsemigroups):
  - (a) The set of non-negative integers
  - (b) The set of positive integers
  - (c)  $n\mathbb{Z}$ , the set of all integral multiples of an integer n
  - (d) For any prime p, the set of  $\{p^i \mid i \geq n\}$ , where n is a non-negative integer
  - (e) The set of all composite integers
- 2.  $\mathbb{Z}_n$ , the set of all integers modulo an integer n, with integer multiplication modulo n. Here, we may find examples of nilpotent and idempotent elements, relative inverses, and eventually periodic elements:
  - (a) If  $n = p^m$ , where p is prime, then every non-zero element containing a factor of p is nilpotent. For example, if n = 16, then  $6^4 = 0$ .
  - (b) If n=2p, where p is an odd prime, then p is a non-trivial idempotent element  $(p^2=p)$ , and since  $2^{p-1} \equiv 1 \pmod{p}$  by Fermat's little theorem, we see that  $a=2^{p-2}$  is a relative inverse of 2, as  $2 \cdot a \cdot 2 = 2$  and  $a \cdot 2 \cdot a = a$
  - (c) If  $n = 2^m p$ , where p is an odd prime, and m > 1, then 2 is eventually periodic. For example, n = 96, then  $2^2 = 4$ ,  $2^3 = 8$ ,  $2^4 = 16$ ,  $2^5 = 32$ ,  $2^6 = 64$ ,  $2^7 = 32$ ,  $2^8 = 64$ , etc...
- 3. The set  $M_n(R)$  of  $n \times n$  square matrices over a ring R, with matrix multiplication, is a semigroup. Unlike the previous two examples,  $M_n(R)$  is not commutative.
- 4. The set E(A) of functions on a set A, with functional composition, is a semigroup.
- 5. Every group is a semigroup, as well as every monoid.
- 6. If R is a ring, then R with the ring multiplication (ignoring addition) is a semigroup (with 0).

- 7. Group with Zero. A semigroup S is called a group with zero if it contains a zero element 0, and  $S \{0\}$  is a subgroup of S. In R in the previous example is a division ring, then R with the ring multiplication is a group with zero. If G is a group, by adjoining G with an extra symbol 0, and extending the domain of group multiplication  $\cdot$  by defining  $0 \cdot a = a \cdot 0 = 0 \cdot 0 := 0$  for all  $a \in G$ , we get a group with zero  $S = G \cup \{0\}$ .
- 8. As mentioned earlier, every monoid is a semigroup. If S is not a monoid, then it can be embedded in one: adjoin a symbol 1 to S, and extend the semigroup multiplication · on S by defining 1 · a = a · 1 = a and 1 · 1 = 1, we get a monoid M = S ∪ {1} with multiplicative identity 1. If S is already a monoid with identity 1, then adjoining 1' to S and repeating the remaining step above gives us a new monoid with identity 1'. However, 1 is no longer an identity, as 1' = 1 · 1'.