Let  $X_1, X_2, ..., X_n$  be a random sample from the normal distribution with mean  $\mu$  and known variance  $\sigma^2$ .

Consider testing the simple versus simple hypotheses

$$H_0: \mu = 3$$

$$H_1: \mu = 5$$

$$H_0: \mu = 3$$
  $H_1: \mu = 5$ 

#### Definition/Notation:

Let  $\alpha$  = P(Type I Error) = P(Reject H<sub>0</sub> when it's true) = P(Reject H<sub>0</sub> when  $\mu$  = 3)

 $\alpha$  is called the level of significance of the test.

It is also sometimes referred to as the size of the test.

$$H_0: \mu = 3$$

$$H_1: \mu = 5$$

#### Step One:

Choose an estimator for  $\mu$ .

### Step Two:

Give the "form" of the test.

 $H_0: \mu = 3$ 

The form of the test:

 $H_1: \mu = 5$ 

- We are looking for evidence that H<sub>1</sub> is true.
- The  $N(3, \sigma^2)$  distribution takes on values from  $-\infty$  to  $\infty$ .
- $\overline{X} \sim N(\mu, \sigma^2/n) \Rightarrow \overline{X}$  also takes on values from  $-\infty$  to  $\infty$ .

The form of the test:

$$H_0: \mu = 3$$
 $H_1: \mu = 5$ 

- It is entirely possible that X is very large even if the mean of its distribution is 3.
- However, if  $\overline{X}$  is very large, it will start to seem more likely that  $\mu$  is larger than 3.
- Eventually, a population mean of 5 will seem more likely than a population mean of 3.

 $H_0: \mu = 3$ 

$$H_1: \mu = 5$$

#### Step One:

Choose an estimator for  $\mu$ .

#### Step Two:

Give the "form" of the test.

Reject  $H_0$ , in favor of  $H_1$ , if X > c for some c to be determined.

$$H_0: \mu = 3$$
 $H_1: \mu = 5$ 

$$H_1: \mu = 5$$

### Step Three:

Find C.

Reject  $H_0$ , in favor of  $H_1$ , if  $\overline{X} > c$ .

If c is too large, we are making it difficult to reject H<sub>0</sub>.

We are more likely to fail to reject when it should be rejected.

Type II Error

$$H_0: \mu = 3$$

$$H_1: \mu = 5$$

### Step Three:

Find C.

Reject  $H_0$ , in favor of  $H_1$ , if  $\overline{X} > c$ .

 If c is too small, we are making it to easy to reject H<sub>0</sub>.

We are more likely reject when it should not be rejected.

Type I Error

$$H_0: \mu = 3$$

$$H_1: \mu = 5$$

### Step Three:

Find C.

Reject  $H_0$ , in favor of  $H_1$ , if  $\overline{X} > c$ .

This is where  $\alpha$  comes in.

$$\alpha = P(Type I Error)$$

$$= P(\overline{X} > c \text{ when } \mu = 3)$$

$$H_0: \mu = 3$$

$$H_1: \mu = 5$$

### Step Four:

Give a conclusion!

**Example:**  $X_1, X_2, ..., X_{10} \stackrel{\text{iid}}{\sim} N(\mu, 4)$ 

Find a hypothesis test for

$$H_0: \mu = 5$$
 vs  $H_1: \mu = 3$ 

Use level of significance  $\alpha = 0.05$ .

Find a "test of size 0.05".

 $H_0: \mu = 5$ 

 $H_1: \mu = 3$ 

#### Step One:

Choose an estimator for  $\mu$ .

#### Step Two:

Give the "form" of the test.

Reject  $H_0$ , in favor of  $H_1$ , if  $\overline{X} < c$  for some c to be determined.

 $H_0: \mu = 5$ 

 $H_1: \mu = 3$ 

### Step Three:

Find c.

0.05 = P(Type I Error)

 $= P(Reject H_0 when true)$ 

 $= P(\overline{X} < c \text{ when } \mu = 5)$ 

$$= P\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} < \frac{c - 5}{2/\sqrt{10}} \text{ when } \mu = 5\right)$$

 $H_0: \mu = 5$ 

 $H_1: \mu = 3$ 

#### Step Three:

Find c. 
$$0.05 = P\left(Z < \frac{c - 5}{2/\sqrt{10}}\right)$$



 $H_0: \mu = 5$ 

 $H_1: \mu = 3$ 

### Step Three:

Find C.

$$0.05 = P\left(Z < \frac{c - 5}{2/\sqrt{10}}\right)$$

$$\Rightarrow \frac{c-5}{2/\sqrt{10}} = -1.645$$

$$\Rightarrow$$
 c = 3.9596

 $H_0: \mu = 5$ 

 $H_1: \mu = 3$ 

### Step Four:

Give a conclusion.

Reject H<sub>0</sub>, in favor of H<sub>1</sub>, if

