## Analysis of Algorithms I Assignment II Report

Bayram Barış Sarı 150130123 Date:08/11/2017 In this assignment, we were supposed to implement quick sort and use it for given data set for different cases. I used pseudo code from lecture slides and this what I wrote:

```
int partition(Residence *R, int first, int last){
    Residence temp:
   Residence pivot = R[last];
   int i = first-1;
   for(int j=first; j<last; j++){</pre>
       if(R[j].population< pivot.population ||</pre>
(R[j].population==pivot.population && R[j].geo id<pivot.geo id)){
           //swapping A[i] and A[j]
           temp = R[i];
           R[i] = R[j];
           R[i] = temp;
    //swapping A[i+1] and A[last]
    temp = R[i+1];
   R[i+1] = R[last];
   R[last] = temp;
    return i+1;
void guickSort(Residence *R,int first index, int last index){
   if (first index < last index){</pre>
       int q = partition(R, first index, last index);
       quickSort(R, first_index, q-1);
quickSort(R, q+1, last_index);
```

For finding the asymptotic upper bound on the running time for Quicksort, we should consider worst case for it. **Worst-case is splitting arrays every time to 0:n-1 sized subarrays.** So, we can calculate upper bound with this recursive equation:

```
T(n) = T(0) + T(n-1) + O(n) O(n) absorbs T(0) = 1. So equation becomes to T(n) = T(n-1) + O(n) T(n-1) = T(n-2) + O(n-1) T(n-2) = T(n-3) + O(n-2) . . . T(2) = T(1) + O(2)
```

When we sum all of these equations, it returns to the equation below:

$$T(n) = T(1) + \sum_{i=2}^{n} O(i) = O(n*(n+1)/2-1) = O(n^2)$$

As a result, asymptotic upper bound on the running time for Quicksort is O(n<sup>2</sup>).

## **Testing**

We're asked to test our code for different size of arrays and calculate average running times. The table which contains measured running times is:

| N=10                        | N=100                   | N=1000                  | N=10000    | N=100000           | N=500000           | N=1000000         |
|-----------------------------|-------------------------|-------------------------|------------|--------------------|--------------------|-------------------|
| 5e-06 s                     | 3.5e-05 s               | 0.000551 s              | 0.008749 s | 0.11142 s          | 0.62968 s          | 1.34036 s         |
| 5e-06 s                     | 6e-05 s                 | 0.000627 s              | 0.008448 s | 0.110808 s         | 0.616328 s         | 1.27995 s         |
| 4e-06 s                     | 5.4e-05 s               | 0.000548 s              | 0.00897 s  | 0.107126 s         | 0.643067 s         | 1.34887 s         |
| 4e-06 s                     | 4e-05 s                 | 0.000656 s              | 0.012251 s | 0.112127 s         | 0.649626 s         | 1.32986 s         |
| 5e-06 s                     | 4.5e-05 s               | 0.00054 s               | 0.009335 s | 0.111306 s         | 0.623603 s         | 1.30351 s         |
| 7e-06 s                     | 5e-05 s                 | 0.000696 s              | 0.009195 s | 0.106286 s         | 0.631918 s         | 1.39136 s         |
| 6e-06 s                     | 4.1e-05 s               | 0.00068 s               | 0.008689 s | 0.10962 s          | 0.635592 s         | 1.38084 s         |
| 4e-06 s                     | 4.7e-05 s               | 0.00065 s               | 0.008188 s | 0.110874 s         | 0.630514 s         | 1.46867 s         |
| 3e-06 s                     | 4.6e-05 s               | 0.000642 s              | 0.008875 s | 0.108794 s         | 0.616693 s         | 1.3269 s          |
| 5e-06 s                     | 3.9e-05 s               | 0.000627 s              | 0.008241 s | 0.105706 s         | 0.656643 s         | 1.27093 s         |
| <u>4,8*10<sup>-6</sup>s</u> | 4,57*10 <sup>-5</sup> s | <u>6,217*</u>           | 0,0090941  | <u>0,1094067 s</u> | <u>0,6333664 s</u> | <u>1,344125 s</u> |
|                             |                         | <u>10<sup>-4</sup>s</u> | <u>s</u>   |                    |                    |                   |

Note: For taking different array groups, I skipped lines arbitrarily from the beginning and then parsed N lines. After that, I sorted the data and measured running time during the Quicksort process. When we translate these measured values to a graph, it looks like below:



Pay attention that, average running time is always beneath of worst case  $O(n^2)$ . When we look at closer to Average running time:



For the second part of testing, I created new data sets for simulating worst-case for Quicksort. **Every time, partition split 0:n-1 size of subarrays.** Here is the measured running time for this case:

| N=10                      | N=100                    | N=1000             | N=10000            | N=100000           | N=500 K | N=1 M |
|---------------------------|--------------------------|--------------------|--------------------|--------------------|---------|-------|
| 6e-06 s                   | 5.1e-05 s                | 0.005256 s         | 0.463531 s         | 63.2568 s          |         |       |
| 6e-06 s                   | 6e-05 s                  | 0.00818 s          | 0.385319 s         | 100.464 s          |         |       |
| 7e-06 s                   | 6.6e-05 s                | 0.001477 s         | 0.980894 s         | 292.312 s          |         |       |
| 8e-06 s                   | 4.7e-05 s                | 0.008431 s         | 2.95864 s          | 290.773 s          |         |       |
| 10e-06 s                  | 10.3e-05 s               | 0.035456 s         | 2.9792 s           | 221.948 s          |         |       |
| 9e-06 s                   | 62.5e-05 s               | 0.036195 s         | 2.27637 s          | 258.004 s          |         |       |
| 12e-06 s                  | 39.5e-05 s               | 0.024403 s         | 2.69917 s          | 137.782 s          |         |       |
| 6e-06 s                   | 25.5e-05 s               | 0.02909 s          | 1.18646 s          | 185.237 s          |         |       |
| 7e-06 s                   | 34.3e-05 s               | 0.01241 s          | 1.81208 s          | 198.188 s          |         |       |
| 9e-06 s                   | 15.9e-05 s               | 0.020548 s         | 0.590088 s         | 281.859 s          |         |       |
| <u>8*10<sup>-6</sup>s</u> | 21.04*10 <sup>-5</sup> s | <u>0,0157043 s</u> | <u>1,7031752 s</u> | <u>202,98238 s</u> |         |       |

I couldn't find any results for 500K and 1M for the worst-case because I faced with the error of segmentation fault. I tried 2 times for 500K and once for 1M, but after 4-5 hours, program stopped executing. That's why last 2 columns of the table aren't filled.

The graph below is plotted according to the obtained data:



Although the runtime for inputs of 10-100-1000 is only about 10 times higher, execution time for sorting rises almost 1000 times for 10K and 100K inputs. **For handling worst-case situation, we should select random pivot rather than first or last element**. It's called randomized Quicksort and it gives better result than normal Quicksort algorithm.

## **Stability**

Quicksort is not a stable sort algorithm. We can prove that by illustrating how it works for sorting 10 inputs.

I used this data for showing that Quicksort is not stable;

```
0,5,9,male,99927,8600000US99927
24,5,9,male,62356,8600000US62356
1,21,21,male,786,8600000US00786
24,40,44,male,62355,8600000US62355
1,0,0,female,906,8600000US00906
0,25,29,female,99927,8600000US99927
24,30,34,male,62355,8600000US62355
2,60,61,female,12738,8600000US12738
2,22,24,male,12738,8600000US12738
24,40,44,female,62358,8600000US62358
3,70,74,female,49863,8600000US49863
```

I printed the array in each iteration and this is the result: Note: This table doesn't have gender and geo\_id values.

Note-2: The last element, 3,70,74,49863, is selected as a pivot.

| 4 04 04 700    | 4 04 04 700    | 4 04 04 700    | 4 04 04 700    | 4 04 04 700    | 4 04 04 700    |
|----------------|----------------|----------------|----------------|----------------|----------------|
| 1,21,21,786    | 1,21,21,786    | 1,21,21,786    | 1,21,21,786    | 1,21,21,786    | 1,21,21,786    |
| 24,5,9,62356   | 1,0,0,906      | 1,0,0,906      | 1,0,0,906      | 1,0,0,906      | 1,0,0,906      |
| 24,40,44,62355 | 24,40,44,62355 | 0,25,29,99927  | 0,25,29,99927  | 0,25,29,99927  | 0,25,29,99927  |
| 1,0,0,906      | 24,5,9,62356   | 24,5,9,62356   | 2,60,61,12738  | 2,60,61,12738  | 2,60,61,12738  |
| 0,25,29,99927  | 0,25,29,99927  | 24,40,44,62355 | 24,40,44,62355 | 2,22,24,12738  | 2,22,24,12738  |
| 24,30,34,62355 | 24,30,34,62355 | 24,30,34,62355 | 24,30,34,62355 | 24,30,34,62355 | 3,70,74,49863  |
| 2,60,61,12738  | 2,60,61,12738  | 2,60,61,12738  | 24,5,9,62356   | 24,5,9,62356   | 24,5,9,62356   |
| 2,22,24,12738  | 2,22,24,12738  | 2,22,24,12738  | 2,22,24,12738  | 24,40,44,62355 | 24,40,44,62355 |
| 24,40,44,62358 | 24,40,44,62358 | 24,40,44,62358 | 24,40,44,62358 | 24,40,44,62358 | 24,40,44,62358 |
| 3,70,74,49863  | 3,70,74,49863  | 3,70,74,49863  | 3,70,74,49863  | 3,70,74,49863  | 24,30,34,62355 |

The result of residences with equal number of population, 24, proves the Quicksort isn't stable. Because after the sort, they are rearranged in each other.