Leçon 1 : Sur et sous entraînement

Sur-entraînement et sous-entraînement

Sous-entraînement

Erreur sur le jeu d'entraînement : Élevée

Erreur sur le jeu de test :

Élevée

Entraînement correct

Erreur sur le jeu d'entraînement :

Erreur sur le jeu de test :

Faible

Faible

Surface

Sur-entraînement

Erreur sur le jeu d'entraînement : Nulle

Erreur sur le jeu de test :

Moyenne

Jeu d'entraînement • Jeu de test

Complexité du modèle

Jeu d'entraînement
 Jeu de test

$$\hat{y} = w_0 + w_1 \cdot x_1 + w_2 \cdot x_1^2 + w_3 \cdot x_1^3 + w_4 \cdot x_1^4 + \cdots$$

Pour la classification

Sous-entraînement

Entraînement correct

Sur-entraînement

Leçon 2 : La pénalisation L2

Complexité du modèle

Jeu d'entraînement
 Jeu de test

$$\hat{y} = w_0 + w_1 \cdot x_1 + w_2 \cdot x_1^2 + w_3 \cdot x_1^3 + w_4 \cdot x_1^4 + \cdots$$

Pénalisation des paramètres

Jeu d'entraînement

Jeu de test

$$\hat{y} = w_0 + w_1 \cdot x_1 + w_2 \cdot x_1^2 + w_3 \cdot x_1^3 + w_4 \cdot x_1^4 + \cdots$$

Pénalisation des paramètres

$$\min_{w} J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 + 1000.w_3 + 1000.w_4 + \cdots$$

Minimiser l'erreur de prédiction

Minimiser la valeur des paramètres $w_3, w_4, ...$

Régression Ridge ou pénalisation L2

 Un modèle avec des paramètres plus homogène est moins sujet au sur-entraînement.

Paramètre de régularisation

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

Régularisation

Impact du coefficient de régularisation

$$\lambda \text{ trop petit} \quad J(w) = \frac{1}{2m} \left| \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right|$$

Impact du coefficient de régularisation

$$\lambda \text{ trop grand } J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

Impact du coefficient de régularisation

$$J(w) = \frac{1}{2m} \left| \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right|$$

Leçon 3 : Le drop out

Le drop out

En utilisant le drop-out, vous ne pouvez pas compter sur une seule fonction, vous devez donc répartir les poids.

Leçon 4: La data augmentation

La data augmentation

Leçon 5: L'early stopping

Leçon 6 : Mini batch

Batch vs mini-batch gradient descent

Batch vs mini-batch gradient descent

Batch gradient descent

Le batch est trop grand :

Trop long par itération

Mini-batch gradient descent

Le batch est trop petit :

Perte de la vectorisation

Utilisez une puissance de 2 et assurez-vous que votre mini batch correspond à la mémoire de votre GPU.

Leçon 7: Batch normalisation

Normalisation des données d'entrées

$$x' = \frac{x - \overline{x}}{\sigma}$$

Calculer \bar{x} et σ avec votre ensemble d'entraı̂nement et sauvegardez-les pour les appliquer à l'ensemble de dev et de test.

Modèle dense

Disparition et explosion de gradient

- Lorsque vous construisez un réseau neuronal très profond, votre gradient dans la dernière couche cachée peut être très important ou proche de zéro.
- Il s'agit d'un problème énorme car, avec ce problème, votre modèle ne peut pas apprendre correctement.

Les explosions de gradient

Les explosions de gradients sont faciles à détecter

Courbe d'apprentissage instable

Les gradients peuvent être trop grands et contenir des NaNs. et vous vous retrouvez avec des NaN dans les poids.

Batch normalization

Couche de batch normalisation

Pour chaque couche

$$\mu^l = \frac{1}{m} \sum_{i} z_i^l$$

$$\sigma^{l^2} = \frac{1}{m} \sum_{i} (z_i^l - \mu^l)^2$$

$$Z_{norm}^{l} = \frac{z^{l} - \mu^{l}}{\sqrt{\sigma^{l^{2}} - \varepsilon}}$$

$$\tilde{Z}^l = \gamma Z_{norm}^l + \beta$$

$$X \xrightarrow{(w^{[1]}, b^{[1]})} z^{[1]} \xrightarrow{(\gamma^{[1]}, \beta^{[1]})} \tilde{z}^{[1]} \xrightarrow{g(\tilde{z}^{[1]})} a^{[1]}$$

hidden layer 2

output laver

$$a^{[1]} \xrightarrow{(w^{[2]}, b^{[2]})} z^{[2]} \xrightarrow{(\gamma^{[2]}, \beta^{[2]})} \tilde{z}^{[2]} \xrightarrow{g(\tilde{z}^{[2]})} a^{[2]}$$

$$(w^{[3]}, b^{[3]}) (\gamma^{[3]}, \beta^{[3]}) \sigma(\tilde{z}^{[3]})$$

hidden layer 1

input layer

$$a^{[2]} \xrightarrow{(n-1)^2} z^{[3]} \xrightarrow{\tilde{z}^{[3]}} \tilde{z}^{[3]} \xrightarrow{\tilde{z}^{[3]}} \tilde{y}$$

Leçon 8 : L'entraînement, un processus itératif

Comment créer son premier modèle?

Nombre de couches

Nombre de neurones

Learning rates

Fonctions d'activations

Résultats

•••

Commencer simple

Tester le modèle le plus simple possible

- Complexifier pour chercher le sur-apprentissage
- Appliquer une régularisation pour chercher la complexité idéale

- α
- Nombre de couches
- Nombre de neurones
- Taille du Mini-batch