Shusen Wang

Hash Function

A hash function h(k) is a function that maps the key k to a fixed range.

- For example, $h(k) = k \mod 11$ maps integer keys to the range $\{0, 1, 2, \dots, 10\}$.
- $h(20) = 20 \mod 11 = 9$.

Hash Function

A hash function h(k) is a function that maps the key k to a fixed range.

- Hash function can map strings to integers.
- For example, $h("ABC") = (65 + 66 + 67) \mod 53 = 39$.

Hash Function

A hash function h(k) is a function that maps the key k to a fixed range.

- Hash function can map strings to integers.
- For example, $h("ABC") = (65 + 66 + 67) \mod 53 = 39$.

```
int h(char key[], int length) {
    sum = 0;
    for (i=0; i<length; i++)
        sum += key[i];
    return sum % 53;
    // divisor should be a prime
}</pre>
```

```
ASCII('A') = 65
ASCII('B') = 66
...
ASCII('Z') = 90
```

	Key (name)	Value (phone)
0		
1	Willian	5013892745
2	John	2012636901
3		
4	Cindy	9732502971
5	James	5512636588
6		

This is called a key-value pair.

	Key (name)	Value (phone)
0		
1	Willian	5013892745
2	John	2012636901
3		
4	Cindy	9732502971
5	James	5512636588
6		

• Keys must be unique.

	Key (name)	Value (phone)
0		
1	Willian	5013892745
2	John	2012636901
3		
4	Cindy	9732502971
5	James	5512636588
6		

• Values may not be unique.

		Key (name)	Value (phone)
	0		
	1	Willian	5013892745
Indices	2	John	2012636901
	3		
	4	Cindy	9732502971
	5	James	5512636588
	6		

	Key (name)	Value (phone)
0		
1	Willian	5013892745
2	John	2012636901
3		
4	Cindy	9732502971
5	James	5512636588
6		

- The hash table has *n* rows.
- Hash function h maps keys to indices in $\{0, 1, 2, \dots, n-1\}$.
- E.g., h("James") = 5.

	Key (name)	Value (phone)
0		
1	Willian	5013892745
2	John	2012636901
3		
4	Cindy	9732502971
5	James	5512636588
6		

- Given a key-value pair (k, v).
- Compute i = h(k).
- Insert (k, v) to the i-th row.

	Key (name)	Value (phone)
0		
1	Willian	5013892745
2	John	2012636901
3		
4	Cindy	9732502971
5	James	5512636588
6		

Search

- Given a key k.
- Compute i = h(k).
- Go to the *i*-th row to find the key and value.

- If $k_1 = k_2$, then $h(k_1) = h(k_2)$.
- However, $h(k_1) = h(k_2)$ does not guarantee $k_1 = k_2$.

- If $k_1 = k_2$, then $h(k_1) = h(k_2)$.
- However, $h(k_1) = h(k_2)$ does not guarantee $k_1 = k_2$.
- Example:
 - $h(k) = k \mod 11$.
 - $k_1 = 25$ and $k_2 = 3$.
 - $h(k_1) = h(k_2) = 3$ Hash collision!

- If $k_1 = k_2$, then $h(k_1) = h(k_2)$.
- However, $h(k_1) = h(k_2)$ does not guarantee $k_1 = k_2$.
- Example:
 - $h(k) = k \mod 11$.
 - $k_1 = 25$ and $k_2 = 3$.
 - $h(k_1) = h(k_2) = 3$ Hash collision!

Hash collision: $k_1 \neq k_2$, but $h(k_1) = h(k_2)$.

Key	Value

- Keys are integers; values are strings.
- $h(k) = (k^2 + 3) \mod 10$.
- We are inserting key-values pairs to the table.

	Key	Value
0		
1		
2 3 4	3	James
3		
5		
5 6 7		
7		
8		
9		

- To insert (3, "James").
- $h(3) = (3^2 + 3) \mod 10 = 2$. Insert (3, "James") to the 2nd row.

	Key	Value
0		
1 2		
2	3	James
3		
4		
5		
6		
7	32	Mary
8		
9		

- To insert (32, "Mary").
- $h(32) = (32^2 + 3) \mod 10 = 7$.
- Insert (32, "Mary") to the 7th row.

	Key	Value
0		
1		
2	3	James
2 3 4		
4	1	Michael
5 6		
6		
7	32	Mary
8		
9		

- To insert (1, "Michael").
- $h(1) = (1^2 + 3) \mod 10 = 4$.
- Insert (1, "Michael") to the 4th row.

	Key	Value
0		
1		
2	3	James
3		
4	1	Michael
5 6		
6		
7	32	Mary
8		
9		

- To insert (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row.

Collision!

Solutions

- Separate chaining: One row can store multiple key-value pairs (using a linked list).
- Linear probing: Use the next vacant row.
- Quadratic probing: Jump to some vacant row.

Separate Chaining

Key	Value	
3	James	
1	Michael	
32	Mary	
	3	3 James 1 Michael

- To insert (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row.

Collision!

	Key	Value	• To insert (2, "Larry").
0			_
1			• $h(2) = (2^2 + 3) \mod 10 = 7$.
2	3	James	• Insert (2, "Larry") to the 7 th
3			
4	1	Michael	
5			
6			
7	32	Mary	<pre>⟨2, Larry)</pre>
8			
9			

	1/	Malma	
	Key	Value	• To inser
0			
1			• $h(8) =$
			• Insert (
2	3	James	/ // //
3			
4	1	Michael	Collision!
5			
6			
7	32	Mary	<pre>√x (2, Larry)</pre>
8			
9			

- To insert (8, "Bill").
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row.

	Key	Value	• To insert (8, "Bill").
0			• $h(8) = (8^2 + 3) \mod 10 = 7$.
1			
2	3	James	• Insert (8, "Bill") to the 7 th row.
3			
4	1	Michael	
5			
6			
7	32	Mary	<pre></pre>
8			
9			

Search

Search

	Key	Value	• To search $\frac{\text{key}}{\text{key}} = 2$.
0			
1			• $h(2) = (2^2 + 3) \mod 10 = 7$.
2	3	James	• Search $\frac{\text{key}}{\text{ey}} = 2$ in the 7 th row.
3			Go to the linked list to search $key = 2$.
4	1	Michael	
5			Found!
6			
7	32	Mary	<pre></pre>
8			
9			

Linear Probing

Key	Value
3	James
1	Michael
32	Mary
6	Cindy
	3 1 32

- To insert (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row.

Collision!

	Key	Value
)		
L		
2	3	James
3		
1	1	Michael
5		
ŝ		
7	32	Mary
3		
9	6	Cindy

- **To insert** (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row. (Fail.)
- Try the 8th row (which is empty.)

	Key	Value
C		
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy

- To insert (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row. (Fail.)
- Try the 8th row (which is empty.)
- Insert (2, "Larry") to the 8th row.

	Key	Value
)		
2	3	James
3		
1	1	Michael
5		
ĵ		
7	32	Mary
3	2	Larry
)	6	Cindy

- To insert (8, "Bill").
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row.

Collision!

Key	Value
3	James
1	Michael
32	Mary
2	Larry
6	Cindy
	3 1 32 2

- To insert (8, "Bill").
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Try the 8th row.

	Key	Value
С		
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy

- To insert (8, "Bill").
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Try the 8th row. (Fail.)
- Try the 9th row.

	Key	Value
0		
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To insert (8, "Bill").
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Try the 8th row. (Fail.)
- Try the 9th row. (Fail.)
- Try the 0th row (which is empty.)

8	Bill
3	James
1	Michael
32	Mary
2	Larry
6	Cindy
	1 32 2

- To insert (8, "Bill").
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Try the 8th row. (Fail.)
- Try the 9th row. (Fail.)
- Try the 0th row (which is empty.)
- Insert (8, "Bill") to the Oth row.

	Key	Value
)	8	Bill
L		
2	3	James
3		
1	1	Michael
5		
ŝ		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7^{th} row.

	Key	Value
C	8	Bill
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)

	Key	Value
С	8	Bill
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Look for key = 8 in the 8^{th} row. (Not found.)

	Key	Value
0	8	Bill
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Look for key = 8 in the 8^{th} row. (Not found.)
- Look for key = 8 in the 9^{th} row. (Not found.)

	Key	Value
0	8	Bill
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Look for key = 8 in the 8^{th} row. (Not found.)
- Look for key = 8 in the 9^{th} row. (Not found.)
- Look for key = 8 in the 0^{th} row. (Found!)

	Key	Value
С	8	Bill
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 4.
- $h(4) = (4^2 + 3) \mod 10 = 9$.
- Look for key = 4 in the 9^{th} row.

	Key	Value
)	8	Bill
L		
2	3	James
3		
1	1	Michael
5		
S S		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 4.
- $h(4) = (4^2 + 3) \mod 10 = 9$.
- Look for key = 4 in the 9th row. (Not found.)

	Key	Value
0	8	Bill
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To search key = 4.
- $h(4) = (4^2 + 3) \mod 10 = 9$.
- Look for key = 4 in the 9^{th} row. (Not found.)
- Look for key = 4 in the 0^{th} row. (Not found.)

	Key	Value
)	8	Bill
L		
2	3	James
3		
1	1	Michael
5		
ŝ		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 4.
- $h(4) = (4^2 + 3) \mod 10 = 9$.
- Look for key = 4 in the 9^{th} row. (Not found.)
- Look for key = 4 in the 0^{th} row. (Not found.)
- Look for key = 4 in the 1st row. (Not found.)

	Key	Value
)	8	Bill
L		
2	3	James
3		
1	1	Michael
5		
ŝ		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 4.
- $h(4) = (4^2 + 3) \mod 10 = 9$.
- Look for key = 4 in the 9^{th} row. (Not found.)
- Look for key = 4 in the 0^{th} row. (Not found.)
- Look for key = 4 in the 1st row. (Not found.)

key = 4 is not in the table!

Quadratic Probing

Quadratic Probing

- If h(k) causes a collision, then look for an empty row.
- For $i = 1, 2, 3, \dots$, try the rows

$$(h(k) + i^2)$$
 mod TableSize.

• Place the key-value pair in the first vacant cell.

Key	Value
3	James
1	Michael
32	Mary
6	Cindy
	3 1 32

- To insert (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row.

Collision!

	Key	Value
C		
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3		
9	6	Cindy

- To insert (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row. (Fail.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Try the 8th row.

	Key	Value
0		
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy
		.

- **To insert** (2, "Larry").
- $h(2) = (2^2 + 3) \mod 10 = 7$.
- Insert (2, "Larry") to the 7th row. (Fail.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Try the 8th row.

	Key	Value
)		
-		
2	3	James
3		
Į	1	Michael
5		
)		
7	32	Mary
}	2	Larry
)	6	Cindy

- To insert (8, "Bill").
- $h(8) = (2^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row.

Collision!

Key	Value
3	James
1	Michael
32	Mary
2	Larry
6	Cindy
	3 1 32 2

- To insert (8, "Bill").
- $h(8) = (2^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Try the 8th row.

Collision!

	Key	Value
0		
1		
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To insert (8, "Bill").
- $h(8) = (2^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Try the 8th row.
- Quadratic probing: $(7 + 2^2) \mod 10 = 1$.
- Try the 1st row.

	Key	Value
0		
1	8	Bill
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To insert (8, "Bill").
- $h(8) = (2^2 + 3) \mod 10 = 7$.
- Insert (8, "Bill") to the 7th row. (Fail.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Try the 8th row.
- Quadratic probing: $(7 + 2^2) \mod 10 = 1$.
- Try the 1st row.

• To search key = 8.

	Key	Value
0		
1	8	Bill
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

	Key	Value
)		
L	8	Bill
2	3	James
3		
1	1	Michael
5		
ĵ		
7	32	Mary
3	2	Larry
)	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)

	Key	Value
С		
1	8	Bill
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy
3 4 5 6 7 8	32	Mary Larry

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Look for key = 8 in the 8^{th} row.

	Key	Value
C		
1	8	Bill
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
3	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Look for key = 8 in the 8^{th} row. (Not found.)

	Key	Value
0		
1	8	Bill
2	3	James
3		
4	1	Michael
5		
6		
7	32	Mary
8	2	Larry
9	6	Cindy

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Look for key = 8 in the 8^{th} row. (Not found.)
- Quadratic probing: $(7 + 2^2) \mod 10 = 1$.
- Look for key = 8 in the 1st row.

8	
8	
	Bill
3	James
1	Michael
32	Mary
2	Larry
6	Cindy
	3 1 32 2

- To search key = 8.
- $h(8) = (8^2 + 3) \mod 10 = 7$.
- Look for key = 8 in the 7th row. (Not found.)
- Quadratic probing: $(7 + 1^2) \mod 10 = 8$.
- Look for key = 8 in the 8^{th} row. (Not found.)
- Quadratic probing: $(7 + 2^2) \mod 10 = 1$.
- Look for key = 8 in the 1st row.

Questions

Value Key 8 Bill 0 3 James 3 Michael 32 Mary 5 6 2 Larry 6 8 Cindy 9 10

Insertion

• Hash function:

$$h(k) = (k^2 + 2) \mod 11.$$

- Q1: Where to insert (12, Chelsea) if linear probing is used?
- Q2: Where to insert (12, Chelsea) if quadratic probing is used?

Thank You!