PLP - 31 TOPIC 31—FUNCTIONS

Demirbaş & Rechnitzer

ESCAPE FROM FORMULAE

A FUNCTION IS NOT A FORMULA

We are used to thinking of functions as formulas or (perhaps) algorithms

- Give me an input number x
- ullet I do some arithmetic on x or use look-up tables
- ullet I return to you a numerical result y

Can define functions on other objects (not just numbers):

- Input day of the week (in English)
- Return the first letter

But must be well defined

- Any legal input must have an output
- One input value gives only one output value

FUNCTION AS A LOOK-UP TABLE

We can summarise the previous function as

$$\Big\{(\mathsf{Sunday},S),(\mathsf{Monday},M),(\mathsf{Tuesday},T),(\mathsf{Wednesday},W),\\ (\mathsf{Thursday},T),(\mathsf{Friday},F),(\mathsf{Saturday},S)\Big\}$$

More generally a function f

- ullet takes inputs from set A and gives outputs in set B
- ullet can be written as a subset of $f\subseteq A imes B$ a type of relation

Not every subset of A imes B is a function — must be $\emph{well defined}$

ullet Every input from A must have an output in B

$$orall a \in A, \exists b \in B ext{ s.t. } (a,b) \in f$$

• Exactly one output for a given input

$$(a,b_1)\in f\wedge (a,b_2)\in f\implies b_1=b_2$$

A DEFINITION

DEFINITION:

Let A, B be non-empty sets

A function from A to B is a non-empty subset $f\subseteq A imes B$ so that

- ullet for every $a\in A$, there exists a $b\in B$ so that $(a,b)\in f$
- ullet if $(a,b)\in f$ and $(a,c)\in f$ then b=c

The domain of f is A, and the codomain is B

If $(a,b)\in f$ we write f(a)=b and say that b is the image of a

Finally, the range of f is

$$\mathrm{rng} f = \{b \in B ext{ s.t. } \exists a \in A ext{ s.t. } f(a) = b\}$$

Note that the range is a subset of the codomain

AN EXAMPLE AND A NON-EXAMPLE

Consider the sets

$$egin{aligned} f &= \{(x,y) \in \mathbb{Z} imes \mathbb{Z} \ : \ 3x + 2y = 0\} \ g &= \{(x,y) \in \mathbb{Z} imes \mathbb{Z} \ : \ 3x + y = 0\} \, . \end{aligned}$$

The set f is not a function

- it is not defined on all of its domain \mathbb{Z}
- ullet when x=1 there is no $y\in\mathbb{Z}$ so that 3x+2y=0

The set g is a function

- ullet for every $x\in\mathbb{Z}$, pick $y=-3x\in\mathbb{Z}$, then $(x,y)\in g$
- ullet if $(x,y)\in g$ and $(x,z)\in g$ then

$$3x+y=0$$
 and $3x+z=0$

so y = z as required.