

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-269799

(13)公開日 平成11年(1999)10月5日

(51)Int.Cl.⁶

D 21 H 21/22
17/07

識別記号

F 1

D 21 H 21/22
17/07

審査請求 未請求 請求項の数 5 O.L (全 12 頁)

(21)出願番号 特願平11-4130

(22)出願日 平成11年(1999)1月11日

(31)優先権主張番号 特願平10-4877

(32)優先日 平10(1998)1月13日

(33)優先権主張国 日本 (JP)

(71)出願人 000000918

花王株式会社

東京都中央区日本橋茅場町1丁目14番10号

(72)発明者 池田 康司

和歌山県和歌山市姿1334 花王株式会社研究所内

(72)発明者 石橋 洋一

和歌山県和歌山市姿1334 花王株式会社研究所内

(72)発明者 出所 敏章

和歌山県和歌山市姿1334 花王株式会社研究所内

(74)代理人 弁理士 古谷 駿 (外3名)

最終頁に続く

(54)【発明の名称】 紙用嵩高剤

(57)【要約】

【課題】 紙力を損なうことなく、高高いシートが得られる紙用嵩高剤を提供する。

【解決手段】 カチオン性化合物、アミン、アミンの酸塩及び両性化合物から選ばれた少なくとも1種以上の化合物を含有する紙用嵩高剤。

1

【特許請求の範囲】

【請求項1】 カチオン性化合物、アミン、アミンの酸塩及び両性化合物から選ばれた少なくとも1種以上の化合物を含有する紙用高高剤。

【請求項2】 カチオン性化合物が下記一般式(a₁)～(b₁)で示される化合物であることを特徴とする請求項1記載の紙用高高剤。

【化1】

* 【式(a₁)及び(b₁)において、R₁₁及びR₁₃は、互いに同一又は相異なって、それぞれ、炭素数8～24のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、R₁₂、R₁₄及びR₁₆は、互いに同一又は相異なって、それぞれ、炭素数1～8のアルキルもしくはヒドロキシアルキル基、ベンジル基、又は式：-(AO)_n-Z(ここで、AOは炭素数2～4のオキシアルキレン基であり、乙は、水素原子又はアシル基であり、nは1～50の整数である)で表される基であり、R₁₅は、炭素数8～36のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、X⁻は対イオンである。】

【請求項3】 アミン、アミンの酸塩が下記一般式(a₂)～(f₂)で示される化合物であることを特徴とする請求項1記載の紙用高高剤。

【化2】

【式(a₁)～(f₁)において、R₁₁は、炭素数8～36のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、R₁₂及びR₁₄は、互いに同一又は相異なって、それぞれ、水素原子、炭素数1～24のアルキル基又は炭素数2～24のアルケニル基であり、R₁₃、R₁₅は、互いに同一又は異なって、水素原子、炭素数1～3のアルキル基であり、HAは、無機又は有機酸を示し、AOは、炭素数2～4のオキシアルキレン基であり、1及びm

40 【化3】

は、それぞれ、1～3000の整数であるという条件下、0又は半の整数である。nは1～4の数である。】

【請求項4】 両性化合物が下記一般式(a₃)～(j₃)で示される化合物であることを特徴とする請求項1記載の紙用高高剤。

3

(a₃)

4

(b₃)(c₃)(d₃)(e₃)(f₃)(g₃)(h₃)(i₃)(j₃)

(式 (a₃) ~ (j₃)において、R₃₁、R₃₂及びR₃₃は、互いに同一又は相異なって、それぞれ、炭素数1～24のアルキル基又は炭素数2～24のアルケニル基であり、R₃₄は、炭素数8～36のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、Mは、水素原子、アルカリ金属原子、1/2モルのアルカリ土類金属原子又はアンモニウム基であり、Y₁は、式：R₁₁NHCH₂CH₂-（ここで、R₁₁は、炭素数1～36のアルキル基、又は、炭素数2～36のアルケニルもしくはヒドロキシアルキル基である）で表される基であり、Y₂は、水素原子又は式：R₁₂NHCH₂CH₂-（ここで、R₁₂は前記定義の通りである）で表される基であり、Z₁は、-CH₂COOM（ここで、Mは前記定義の通りである）で表される基であり、Z₂は、水素原子又は式：-CH₂COO_M（ここで、Mは前記定義の通りである）で表される基である。】

【請求項5】 さらに下記(A)～(C)で示される非イオン界面活性剤の1種以上を含有することを特徴とする。

る請求項1～4の何れか1項記載の紙用高湿剤。

(A) : 下記一般式(A)で表される化合物

〔式中、Rは炭素数6～22の直鎖又は分岐のアルキル基もしくはアルケニル基又は炭素数4～20のアルキル基を有するアルキルアリール基を示し、Eはエチレン基、Pはプロピレン基を示し、m、nは平均付加モル数であり、mは0≤m≤20の範囲の数であり、nは0≤n≤50の数である。なお、EOとPO付加形式はブロック又はランダムいずれでもよく、またいずれが先でもよい。〕

40 (B) : 下記一般式(B)で表される化合物

〔式中、R、E、P、m、nは式(A)と同じであり、R_nはH又はアルキル基、アルケニル基、アルキルアリール基を示す。〕

(C) : 下記(1)～(3)から選ばれる非イオン界面活性剤

50 (1) 油脂系非イオン界面活性剤

- (2) 糖アルコール系非イオン界面活性剤
(3) 糖系非イオン界面活性剤

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、バルブ原料を抄紙して得られたシートの嵩高を、紙力を損なうことなく向上させることのできる紙用嵩高剤に関する。

【0002】

【従来の技術及び発明が解決しようとする課題】近年高品质、例えば印刷適性やボリューム感に優れた紙が求められるようになっている。この印刷適性やボリューム感は紙の嵩高と密接に関係があり従来より種々の嵩高向上方法が試みられてきた。例えば架橋バルブを用いたり(特開平4-185792号など)、合成繊維との混抄による方法(特開平3-269199号など)である。またバルブ繊維間に無機物等の充填物を満たしたり(特開平3-124895号など)、空隙をもたらすなどの方法(特開平5-230798号など)もある。一方、機械的な面からの改良では、カレンダー処理をソフトにする等のカレンダー処理に改善を施した方法(特開平4-370298号)も報告されてきている。

【0003】しかしながら、架橋バルブや合成繊維等の使用はバルブのリサイクルを不可能にしてしまうし、バルブ繊維間に上記のように単に充填物を満たすことや、空隙をもたらすことでは著しく紙力が損なわれる。また機械的な処理においては限界があり、未だ満足のいくものが得られていないのが現状である。

【0004】また、抄紙時に嵩高剤を添加して紙に嵩高さを付与する方法も知られており、そのような嵩高剤として脂肪酸ポリアミドポリアミン型のものが市販されているが、この化合物では紙力の低下が見られ、満足のゆく性能は得られていない。

【0005】

【課題を解決するための手段】本発明者等は上記の問題点に鑑み銳意検討した結果、特定のカチオン性化合物、アミン、アミンの酸塩及び両性化合物から選ばれた少なくとも1種以上の化合物、又はさらにこれら化合物に特定の非イオン界面活性剤の1種以上の化合物を抄紙工程においてバルブ原料、例えばバルブスラリーに配合することで抄紙して得られたシートの紙力を損なうことなく嵩高を向上できることを見出し、本発明を開発するに至った。

【0006】すなわち本発明は、カチオン性化合物、アミン、アミンの酸塩及び両性化合物から選ばれた少なくとも1種以上の化合物を含有する紙用嵩高剤を提供するものである。

【0007】ここで、紙用嵩高剤とは、同量のバルブ原料を抄紙してシートを得た際に、その坪量が同じでも紙

厚を増すことができる(よりシートをバルキーにできる)剤をいう。

【0008】

【発明の実施の形態】本発明に用いられるカチオン性化合物としては、下記一般式(a₁)～(b₁)で示される化合物が挙げられる。

【0009】

【化4】

【0010】(式(a₁)及び(b₁)において、R₁₁及びR₁₂は、互いに同一又は相異なって、それぞれ、炭素数8～24のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、R₁₃、R₁₄及びR₁₅は、互いに同一又は相異なって、それぞれ、炭素数1～8のアルキルもしくはヒドロキシアルキル基、ベンジル基、又は式：-

20 (AO)_n-Z(ここで、AOは炭素数2～4のオキシアルキレン基であり、Zは、水素原子又はアシル基であり、nは1～50の整数である)で表される基であり、R₁₆は、炭素数8～36のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、X⁻は対イオンである。)式(a₁)において、R₁₁及びR₁₂は互いに同一又は相異なって、それぞれ、炭素数10～22のアルキル、アルケニル基が好ましく、R₁₃、R₁₄は互いに同一又は相異なって、それぞれ、水素原子、炭素数1～3のアルキル基が好ましく、X⁻は対イオンで水酸基イオン、ハライドイオン、モノアルキル(C₁～C₆)硫酸エステルイオン、無機又は有機酸から誘導された陰イオン等が挙げられ、好ましくはハライドイオン、特にC₁⁻である。

【0011】また、式(b₁)において、R₁₃、R₁₄及びR₁₅は、互いに同一又は相異なって、それぞれ、炭素数1～3のアルキル、ベンジル基が好ましく、R₁₆は、炭素数10～22のアルキル基が好ましく、対イオンX⁻は式(a₁)と同じであり、ハライドイオン、特にC₁⁻が好ましい。

【0012】本発明に用いられるアミン、アミンの酸塩としては、下記一般式(a₂)～(f₂)で示される化合物が挙げられる。なお、本発明のアミンの酸塩はイオン化したものも含む。

【0013】

【化5】

【0014】〔式(a₂)～(f₂)〕において、R₂₁は、炭素数8～36のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、R₂₂及びR₂₃は、互いに同一又は相異なって、それぞれ、水素原子、炭素数1～24のアルキル基又は炭素数2～24のアルケニル基であり、R₂₄、R₂₅は、互いに同一又は異なって、水素原子、炭素数1～3のアルキル基であり、HAは、無機又は有機酸を示し、AOは、炭素数2～4のオキシアルキレン基であり、l及びmは、それぞれ、l+mが1～3000の整数であるという条件下、l又はl+mの整数である。nは1～4の数である。】

式(a₂)～(f₂)において、R₂₁は、炭素数10～22の

アルキル基が好ましく、R₂₂及びR₂₃は、互いに同一又は相異なって、それぞれ、水素原子、炭素数1～22のアルキル基が好ましく、またアミンの酸塩におけるHAのうち、Aはハロゲン、炭素数2～5のカルボキシレートが好ましく、特に好ましくは炭素数2～3のカルボキシレートである。アミン、アミンの酸塩としては、式(a₂)、(b₂)の化合物が好ましい。

【0015】本発明に用いられる両性化合物としては、下記一般式(a₁)～(j₁)で示される化合物が挙げられる。

【0016】

【化6】

9

(a₃)(b₃)(c₂)(d₃)(e₂)(f₃)(g₂)(h₃)(i₃)(j₃)

〔0017〕〔式(a₃)～(j₃)において、R₃₁、R₃₂及びR₃₃は、互いに同一又は相異なって、それぞれ、炭素数1～24のアルキル基又は炭素数2～24のアルケニル基であり、R₃₄は、炭素数8～36のアルキル、アルケニル又はβ-ヒドロキシアルキル基であり、Mは、水素原子、アルカリ金属原子、1/2モルのアルカリ土類金属原子又はアンモニウム基であり、Y₁は、式：R₃₁-NH-CH₂-CH₂-（ここで、R₃₁は、炭素数1～36のアルキル基、又は、炭素数2～36のアルケニルもしくはヒドロキシアルキル基である）で表される基であり、Y₂は、水素原子又は式：R₃₂-NH-CH₂-CH₂-（ここで、R₃₂は前記定義の通りである）で表される基であり、Z₁は、-CH₂COOM（ここで、Mは前記定義の通りである）で表される基であり、Z₂は、水素原子又は式：-CH₂COOM（ここで、Mは前記定義の通りである）で表される基である。〕

〔式(a₁)～(j₁)においてR₁₁、R₁₂及びR₁₃は、互いに同一又は相異なって、それぞれ、炭素数1～22のア

ルキル基、特にはR₁₁は炭素数10～20のアルキル基、R₁₂、R₁₃は炭素数1～3のアルキル基が好ましく、R₁₄は炭素数10～22のアルキル基が好ましい。また、両性化合物としては、式(a₁)、(b₁)の化合物が好ましい。

〔0018〕本発明の紙用嵩高剤は、さらに特定の非イオン界面活性剤を含有することが好ましい。前記式(a₁)～(b₁)、(a₂)～(e₂)、(a₃)～(h₃)で示される化合物の1種以上と特定の非イオン界面活性剤の1種以上とを併用することにより、本発明の効果を高めることができる。本発明で用いる非イオン界面活性剤としては下記(A)～(C)が挙げられる。

〔0019〕(A)：下記一般式(A)で表される化合物

〔式中、Rは炭素数6～22の直鎖又は分岐のアルキル基もしくはアルケニル基又は炭素数4～20のアルキル基を有するアルキルアリール基を示し、Eはエチレン基、P

はプロピレン基を示し、 m 、 n は平均付加モル数であり、 m は $0 \leq m \leq 20$ の範囲の数であり、 n は $0 \leq n \leq 50$ の数である。なお、EOとPO付加形式はブロック又はランダムいずれでもよく、またいずれが先でもよい。】

式(A)で表される化合物は、C₆～C₂₂高級アルコールやアルキルフェノール等にエチレンオキサイド(EO)、プロピレンオキサイド(PO)等のアルキレンオキサイドを付加したものであるが、本発明では、特にエチレンオキサイドの平均付加モル数 m が $0 \leq m \leq 20$ の範囲にあるものが使用される。平均付加モル数 m は好ましくは $0 \leq m \leq 10$ 、さらに好ましくは $0 \leq m \leq 5$ の範囲である。 m が20を超えると紙に対する嵩高付加効果が低下する。また、プロピレンオキサイド(PO)の平均付加モル数 n は $0 \leq n \leq 50$ 、好ましくは $0 \leq n \leq 20$ である。 n が50を超えて性能の低下は少ないが、経済的に不利である。

【0020】また、式(A)中のRとしては、炭素数8～18の直鎖又は分岐のアルキル基又はアルケニル基が好ましい。式(A)中のRがアルキル基もしくはアルケニル基の場合、炭素数が6～22の範囲にないと、またアルキルアリール基の場合は炭素数4～20のアルキル基を有するアルキルアリール基でないと、紙に対する嵩高付加効果が低下する。

【0021】また、式(A)中のE及びPはそれぞれ炭素数2、3の直鎖又は分岐のアルキレン基を示し、具体的にはエチレン、プロピレンが挙げられる。式(A)中の(EO)、(PO)基がポリオキシエチレンとポリオキシプロピレンの混合形態の場合、C₂H₆O基とC₃H₈O基の付加形態はランダムでもブロックでもよい。その場合、好ましくはポリオキシプロピレン基(C₃H₈O基)を全平均付加モル数中の50モル%以上、特に好ましくは70モル%以上含むものが良い。なお、R基に結合するアルキレンオキサイド基はEO、POいずれが先であってもよい。

【0022】(B)：下記一般式(B)で表される化合物

[式中、R、E、P、 m 、 n は式(A)と同じであり、R₁はH又はアルキル基、アルケニル基、アルキルアリール基を示す。]

式(B)中のR、E、P、 m 、 n の好ましいものは式(A)のものと同じである。また、式(B)中のR₁のうち、アルキル基、アルケニル基としては炭素数1～4のものが挙げられ、アルキルアリール基としては炭素数1～4のアルキル基を有するフェニル基などが挙げられる。

【0023】(C)：下記(1)～(3)から選ばれる非イオン界面活性剤

(1) 油脂系非イオン界面活性剤

(2) 糖アルコール系非イオン界面活性剤

(3) 糖系非イオン界面活性剤。

【0024】(1) 油脂系非イオン界面活性剤

油脂系非イオン界面活性剤(1)としては、例えば特開平4-352891号公報に記載されるような油脂又は該油脂を予めグリセリンと反応させた生成物と、1価～14価のアルコールとの混合物に、アルキレンオキサイド(AO)を付加したものが挙げられる。好ましくは油脂と多価アルコールの混合物にAOを付加したものである。ここで、AOとしては、エチレンオキサイド(EO)及び／又はプロピレンオキサイド(PO)であり、EOとPOの両方を用いる場合はランダム付加でもブロック付加でも何れでも良い。また、各々の平均付加モル数は、EOは0～200モルが好ましく、10～100モルがより好ましい。POは0～150モルが好ましく、2～100モルがより好ましい。

【0025】このタイプの非イオン界面活性剤に用いられる油脂としては、陸産動物油、水産動物油及びこれらの硬化油、半硬化油、更にはこれら油脂の精製工程で得られる回収油等が挙げられる。好ましくはヤシ油、牛脂、魚油、アマニ油、菜種油、ヒマシ油が挙げられる。また、これらの油脂とグリセリンを予め反応させる場合の割合は、油脂／グリセリン=1/0.05～1/1が好ましい。

【0026】また、このタイプの非イオン界面活性剤に用いられる1～14価のアルコールのうち、1価アルコールとしては、炭素数1～24の直鎖又は分岐の飽和又は不飽和のアルコール、環状アルコールが挙げられ、炭素数4～12の直鎖又は分岐の飽和アルコールが好ましい。2

30 価アルコールとしては、炭素数2～32の α 、 ω -グリコール、1、2-ジオール、対称 α -グリコール、環状1、2-ジオールが挙げられ、炭素数2～6の α 、 ω -グリコールが好ましい。3価以上のアルコールとしては、グリセリン、ジグリセリン、ソルビトール、スタキオースなどの炭素数3～24までのいずれかよりなるものを挙げることができる。アルコールとしては、特に炭素数2～6の2～6価のアルコールが好ましい。

【0027】(2) 糖アルコール系非イオン界面活性剤

糖アルコール系非イオン界面活性剤(2)としては、糖アルコールのAO付加物、糖アルコールAO付加物の脂肪酸エステル、糖アルコールの脂肪酸エステルが挙げられる。ここで、多価アルコール型の非イオン界面活性剤を構成する糖アルコールとは、炭素数3～6の单糖類のアルデヒド基、ケトン基を還元して得られるアルコールであり、具体的には、グリセリン、エリトリット、アラビット、ソルビット、マンニット等が挙げられる。特に炭素数6のものが好ましい。糖アルコールのAO付加物の脂肪酸エステルを構成する脂肪酸は、炭素数1～24、好ましくは炭素数12～18までの飽和脂肪酸、不飽和脂肪酸どちらでもよく、更にはオレイン酸が好ましい。ま

た、糖アルコールのエステル置換度は0から全ての-OHが置換されたものまでのどれでもよいが、1～3が好ましい。なお、AOの種類や平均付加モル数は(1)と同様である。

[0028] (3) 糖系非イオン界面活性剤

糖系の非イオン界面活性剤(3)としては、糖のAO付加物、糖のAO付加物の脂肪酸エステル、糖脂肪酸エステルが挙げられる。糖としては、上記糖アルコールで述べたような单糖類の他、ショ糖などの多糖類を用いることができ、グルコース、ショ糖が好ましい。なお、AOの種類や平均付加モル数は(1)と同様である。糖系の非イオン界面活性剤(3)としては、特に糖のAO付加物が好ましく、中でもグルコースにPOを平均で1～10モル付加したものが好ましい。

[0029] 上記(A)～(C)のような非イオン界面活性剤を併用する場合、その比率は、カチオン性化合物、アミン、アミンの酸塩、両性化合物(イ)と、非イオン界面活性剤(ロ)の重量比で、(イ)/(ロ)=100/0～1/99、好ましくは100/0～10/90である。

[0030] なお、(イ)と(ロ)の添加は、(イ)と(ロ)を混合してから添加しても、別々に添加してもよい。

[0031] 本発明の嵩高剤を適用できるバルブ原料としては、機械バルブ、化学バルブなどのヴァーチンバルブから、各種古紙バルブに至るものまで広くバルブ一般に適用できるものである。また、本発明の嵩高剤の添加場所としては抄紙工程であれば特に限定するものではないが、例えば、工場ではレファイナー、マシンチェスト、ヘッドボックスで添加するなど均一にバルブ原料にブレンドできる場所が望ましい。なお、本発明の嵩高剤はバルブ原料に添加後、そのまま抄紙され紙上に残存する。本発明の紙用嵩高剤の添加量は、バルブに対して0.01～10重量%、好ましくは0.1～5重量%である。

[0032] 本発明の紙用嵩高剤を用いて得られたバルブシートは、無添加品に比べて緊度(測定方法は、後述の実施例記載の方法による)が5%以上、好ましくは7%以上低く、JIS P 8716により測定された引き裂き強度が無添加品の90%以上、好ましくは95%以上であることがより好ましい。

[0033]

【実施例】以下に実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、例中の部及び%は特記しない限り重量基準である。

[0034] 実施例1～42及び比較例1

【バルブ原料】バルブ原料としては下記に示される古紙バルブ及びヴァーチンバルブを用いた。

【古紙バルブ】古紙バルブは市中回収された原料古紙(新聞紙/チラシ-70/30%)に温水及び水酸化ナトリウム(対原料)1%、珪酸ソーダ(対原料)3%、30%
50

過酸化水素水(対原料)3%、脱墨剤として、牛脂/グリセリン(1:1)EO70モルPO10モルブロック付加物(平均付加モル数)0.3%(対原料)を加え、離解後プロテーション処理、水洗、濃度調整を行い得た1%の脱墨バルブ(DIP)スラリーを用いた。このときのDIPのフリーネスは220mlであった。

【ヴァーチンバルブ】ヴァーチンバルブはLBKP(広葉樹晒バルブ)を、室温下叩解機にて離解、叩解して1%のLBKPスラリーとしたものを用いた。この時のLBKPのフリーネスは420mlであった。

[0035] 【嵩高剤】表1～5に示すカチオン性化合物、アミン、アミンの酸塩及び両性化合物、もしくはこれらと表6に示す非イオン界面活性剤とを、後述の表7、8のように用いた。

[0036]

[表1]

化合物No.		一般式(a ₁)中の構造				
		R ₁₁	R ₁₂	R ₁₃	R ₁₄	X ⁻
カチオン性化合物	A-1	C1B	C18	C1	C1	Cl ⁻
	A-2	C12	C14	C1	C1	Cl ⁻
	a-1	C2	C2	C1	C1	Cl ⁻
	a-2	C4	C4	C1	C1	Br ⁻

[0037]

[表2]

化合物No.		一般式(b ₁)中の構造				
		R ₁₃	R ₁₄	R ₁₅	R ₁₆	X ⁻
カチオン性化合物	B-1	C1	C1	C1	C12	Cl ⁻
	B-2	C1	C1	C1	C16	Br ⁻
	B-3	C1	C1	C1	C18	Cl ⁻
	B-4	ベンジル	C1	C1	C12	Cl ⁻
	b-1	C1	C1	C1	C2	Cl ⁻
	b-2	C1	C1	C1	C4	Br ⁻

[0038]

[表3]

化合物No.	一般式(a_2)又は(b_2)中の構造				
	R ₂₁	R ₂₂	R ₂₃	HA	
アミン及びアミンの酸塩	C-1	C12	H	H	-
	C-2	C18	H	H	-
	C-3	C16/C18 =3/7	C16/C18 =3/7	H	-
	C-4	C18	C1	C1	-
	c-1	C4	H	H	-
	c-2	C6	H	H	-
	c-3	C2	C2	H	-
	c-4	C4	C1	C1	-
	C-5	C16/C18 =3/7	H	H	CH ₃ COOH
	c-5	C4	H	H	CH ₃ COOH

[0039]

[表4]

化合物No.	一般式(a_3)中の構造			
	R ₃₁	R ₃₂	R ₃₃	
両性化合物	D-1	C12	C1	C1
	d-1	C4	C1	C1

[0040]

[表5]

化合物No.	一般式(b_3)中の構造		
	R ₃₁	R ₃₂	R ₃₃
両性化合物	D-2	C12	C1
	D-3	C18	C1
	d-2	C6	C1

[0041]

[表6]

No.	非イオン界面活性剤			(1)/(2)/(3) 重量比
	(1)	(2)	(3)	
1	C12アルコール			100/0/0
2	C12/C14アルコール=5/5 PO=5			100/0/0
3	牛脂脂肪酸、PO=5			100/0/0
4	ラウリン酸メチル EO2, PO3ブロック			100/0/0
5	ヤシ油/グリセリン-1/1 EO2, PO10ブロック			100/0/0
6	ソルビタンモノオレート EO20			100/0/0
7	ドバノール23 EO2, PO4ランダム	ソルビタンモノオレート EO10		15/25/70
8	C12アルコール	ソルビタンモノオレート EO15	硬化ヒマシ油 EO25	80/15/5
9	C16アルコール、FO=10			100/0/0
10	ヒマシ油脂肪酸 EO5, PO15ランダム			100/0/0
11	C12/C14/C16アルコール =6/2/2, PO=10	C12アルコール EO=5	魚油/ソルビトール =1/1, PO=15	75/15/10
12	牛脂/グリセリン=1/0.3 EO10, PO10ブロック			100/0/0
13	ソルビタンモノラウレート, EO15			100/0/0
14	C12/C14/C16アルコール =60/30/10, PO20	ラウリン酸 EO5, PO25		90/10/0
15	C12/C14アルコール=70/30			100/0/0
16	ラウリン酸/ステアリン酸 =50/50, PO=18			100/0/0
17	ドバノール23, PO=2	ラウリン酸/ミリスチン酸/ バルミチン酸=70/20/ 10, EO10, PO20	ソルビタントリオレート EO8	70/15/15

【0042】(注) 表中、C_nは炭素数nのアルキル基を意味する。また、表6中、油脂と多価アルコールの比はモル比であり、その他は重量比である。EOはエチレンオキサイド、POはプロピレンオキサイドであり、これに続く数字は平均付加モル数である。また、「ドバノール23」は三菱化学製のアルコールである。

【0043】〔抄紙方法〕1%のバルブスラリーを抄紙後のシートの坪量が60g/m²になるように、上記のバルブを量り取ってからpHを硫酸バンドで4.5に調整した。それから表7、8に示す種々の高高剤を対バルブ3%添加し、角型タッピ抄紙機にて80メッシュワイヤーで抄紙しシートを得た。抄紙後のシートは、3.5kg/cm²で2分間プレス機にてプレスし、鏡面ドライヤーを用い、105°Cで1分間乾燥した。乾燥されたシートは20°C、湿度65%の条件で1日間調湿してから紙の高高性として紙の堅度、紙力性能として引き裂き強度を測定した。その結果を表7、8に示す。測定値は10回の平均値である。

【0044】<評価項目・方法>

・高高性（堅度）

30 調湿されたシートの坪量(g/m²)と厚み(mm)を測定し、計算値より堅度(g/cm²)を求めた。

計算式：高高性（堅度）=(坪量)/(厚み)×0.001
堅度は絶対値が小さいほど高く、また堅度の0.02の差是有意差として十分に認識されるものである。

・紙力（引き裂き強度）

調湿されたシートをJIS P 8116（紙及び板紙の引き裂き強さ試験方法）に基づいて測定した。

計算式：引き裂き強度=A/S×16

A：目盛りの読み

40 S：引き裂き枚数

引き裂き強度は絶対値が大きいほど紙力が強く、また引き裂き強度の20gfの差は有意差として十分に認識されるものである。

【0045】

【表7】

実 施 例	かずわん性化合 物、アミン、アシ の酸塩、両性 化合物(1)	併用非イ オン界面 活性剤 No.(2)	(1)/(2) 重量比	吉紙パルプ		LBKP	
				緊度 (g/cm ³)	引き裂き 強度 (gf)	紧度 (g/cm ³)	引き裂き 強度 (gf)
1	B-1	併用せず	-	0.330	420	0.377	480
2	B-2	↑	-	0.328	420	0.376	480
3	B-3	1	-	0.325	415	0.374	475
4	B-4	↑	-	0.330	415	0.378	480
5	A-1	↑	-	0.325	420	0.375	475
6	A-2	↑	-	0.330	420	0.377	480
7	C-1	↑	-	0.342	430	0.385	485
8	C-2	↑	-	0.340	430	0.383	485
9	C-3	↑	-	0.338	425	0.383	480
10	C-4	↑	-	0.335	420	0.379	480
11	C-5	↑	-	0.332	420	0.377	480
12	D-1	↑	-	0.331	415	0.377	475
13	D-2	↑	-	0.331	415	0.377	475
14	D-3	↑	-	0.328	420	0.375	475
(15)	B-1	1	20/80	0.313	410	0.348	470
16	B-3	2	30/70	0.308	400	0.342	460
17	B-3	3	50/50	0.309	405	0.344	455
18	B-3	4	65/15	0.312	410	0.348	480
19	B-3	5	80/10	0.314	410	0.349	485
20	A-1	6	85/15	0.309	400	0.345	480
21	B-1	7	30/70	0.310	405	0.345	455
22	B-3	8	20/80	0.308	400	0.341	460
23	C-2	9	65/25	0.324	410	0.360	470
24	C-3	10	80/20	0.323	415	0.358	470
25	C-4	11	10/90	0.317	415	0.355	465
26	C-5	12	70/30	0.321	410	0.357	465
27	C-5	13	55/45	0.322	415	0.357	470
28	C-5	14	20/80	0.319	415	0.358	465
29	D-1	15	15/85	0.314	410	0.348	460
30	D-3	16	80/20	0.312	405	0.345	480
31	D-3	17	35/65	0.308	400	0.342	455

[0046]

【表8】

実 施 例	カチオン性化合 物、アシン、アシン の酸塩、両性 化合物	非イオン 界面活性 剤併用No	古紙パルプ		LBKP	
			堅 度 (g/cm ³)	引き裂き 強度 (gf)	堅 度 (g/cm ³)	引き裂き 強度 (gf)
32	b-1	併用せず	0.366	440	0.405	495
33	b-2	†	0.365	440	0.402	485
34	a-1	†	0.365	435	0.404	490
35	a-2	†	0.366	430	0.405	490
36	c-1	†	0.367	435	0.404	495
37	c-2	†	0.368	430	0.407	480
38	c-3	†	0.365	425	0.404	480
39	c-4	†	0.365	435	0.403	485
40	c-5	†	0.366	430	0.405	490
41	d-1	†	0.364	440	0.404	495
42	d-2	†	0.363	430	0.406	490
対照例(高高剤なし)			0.375	430	0.414	490
比較例1			0.330	280	0.379	345

【0047】(注) 比較例1は、市販品高高剤「バイボ
リュームPリキッド」(脂肪酸ポリアミドポリアミン *
型、バイエル社製)を用いた。

フロントページの続き

(72)発明者 ▲高▼橋 広通
和歌山県和歌山市湊1334 花王株式会社研
究所内