

NeuralNets 1

with Neural Nets
MODALG SoSe18

News & Motivation

Hochschule Düsseldorf University of Applied Sciences Fachbereich Medien Faculty of Media

Robot teaches itself how to dress people

Topics:

- Repetition Classification & Regression
- Learning Rate
- Perceptron & Training
- Multilayer Perceptron

Machine Learning

Supervised Learning

Reinforcement Learning Unsupervised Learning

Classification

Regression

Clustering

Supervised Learning

Classification

Discrete: $y \in N$

Regression Continous: $y \in R$

#Rooms/1	Area/m²	Price/\$
4	70	1.000
3	65	800
2	40	400

#Rooms/1	Area/m ²	Price/\$
4	70	1.000
3	65	800
2	40	400
	•••	

Feature 3

#Rooms/1	Area/m ²	Price/\$
4	70	1.000
3	65	800
2	40	400
	•••	•••

Example 1

#Rooms/1	Area/m²	Price/\$
4	70	1.000
3	65	800
2	40	400

Example 2

#Rooms/1	Area/m ²	Price/\$
4	70	1.000
3	65	800
2	40	400

Example 3

#Rooms/1	Area/m²	Price/\$
4	70	1.000
3	65	800
2	40	400

Linear Regression

Linear Regression

Slope of the line depends on weights θ_0 , θ_1

Gradient Descent

Gradient Descent

Gradient Descent

Learning Rate

Start with random θ_0 , θ_1 repeat until convergence{

$$\theta_0 \coloneqq \theta_0 - \alpha * \frac{\partial E(\theta_0, \theta_1)}{\partial \theta_0}$$

$$\theta_1 \coloneqq \theta_1 - \alpha * \frac{\partial E(\theta_0, \theta_1)}{\partial \theta_1}$$

repeat until convergence{

$$\theta_1 \coloneqq \theta_1 - \alpha * \frac{\partial E(\theta_1)}{\partial \theta_1}$$

 α : Learning Rate

$$\alpha = 1$$

$$\alpha = 0.5$$

$$\alpha = 4$$

- Choose good learning rate α by testing
- **e.g.** $\alpha = i, i \in \{0.01, 0.03, 0.09, 0.1, 0.3, 0.9, 1, 3, 9\}$

Towards Neural Nets

- Binary Classification
- Element of Neural Net
- Weighted Sum
- Activation Function
- Decision Boundary

Elements of Perceptron

- Activation Function y = a(z)
- Weighted Sum $z = \theta x$

Weighted Sum:

Weighted Sum $z = \theta x$

•
$$z = \theta x = \theta_n * x_n + \theta_{n-1} * x_{n-1} + \dots + \theta_1 * x_1 + \theta_0 * x_0$$

- θ : Weigths
- *x*: Data
- $-x_0 = 1$

Weighted Sum

- $z = \theta x$
- θ : Weigths
- *x*: Data
- $x_0 = 1$

Weighted Sum

- $z = \theta x$
- θ : Weigths
- *x*: Data
- $x_0 = 1$

Weighted Sum

- $z = \theta x$
- θ : Weigths
- *x*: Data
- $x_0 = 1$

Activation Function y = a(z)

Binary Threshold Unit:
$$a(z) = \begin{cases} 0, z < 0 \\ 1, z \ge 0 \end{cases}$$

0.5

Linear Classifier

Binary Classification

Binary Classification

Binary Classification


```
Training:
Initialize weights randomly
do{
         error=false
         d=0
         foreach x in trainingsset{
                   \hat{y}=Prediction(x), \hat{y} \in \{0,1\}
                   d = y - \hat{y}, y \in \{0, 1\}
                   if(d == 1) \theta = \theta + x
                   elif (d == -1) \theta = \theta - x
                   error = error | d \neq 0
} while(error)
```


$\boldsymbol{x_1}$	$\boldsymbol{x_2}$	y
0.1	0	0
0.6	1	1
0	1	1

Visualization of data

Append x_0

$\boldsymbol{x_0}$	$\boldsymbol{x_1}$	$\boldsymbol{x_2}$	y
1	0.1	0	0
1	0.6	1	1
1	0	1	1

Initialize weights randomly

foreach *x* in trainingsset{

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

Initialize weights randomly foreach x in trainingsset{

 \hat{y} =Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$z = \theta_2 * x_2 + \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$z = \theta_2 * x_2 + \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$x_{2}\theta_{2} + x_{1}\theta_{1} + x_{0}\theta_{0} = 0$$

$$x_{2} = \frac{-(x_{1}\theta_{1} + x_{0}\theta_{0})}{\theta_{2}}$$

$$x_{2} = \frac{-(1x_{1} - 0.5)}{-1}$$

$$x_{2} = x_{1} - 0.5$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$\theta_0 = -0.5, \theta_1 = 1, \theta_2 = -1,$$

 $\hat{y} = 0, d = 0$

$\boldsymbol{x_0}$	x_1	$\boldsymbol{x_2}$	y
1	0.1	0	0
1	0.6	1	1
1	0	1	1

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

$$if(d == 1) \theta = \theta + x$$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif
$$(d == -1) \theta = \theta - x$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$z = \theta_2 * x_2 + \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

	x_0	x_1	$\boldsymbol{x_2}$	y
(1) -0.5	1	0.1	0	0
$ \begin{array}{c c} \hline 0.6 \\ \hline \end{array} $ $ \begin{array}{c c} \hline \end{array} $	1	0.6	1	1
$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	1	0	1	1

$$z = \theta_2 * x_2 + \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$\theta_0 = -0.5$$
, $\theta_1 = 1$, $\theta_2 = -1$

$$x_{2}\theta_{2} + x_{1}\theta_{1} + x_{0}\theta_{0} = 0$$

$$x_{2} = \frac{-(x_{1}\theta_{1} + x_{0}\theta_{0})}{\theta_{2}}$$

$$x_{2} = \frac{-(1x_{1} - 0.5)}{-1}$$

$$x_{2} = x_{1} - 0.5$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\theta_0 = -0.5, \theta_1 = 1, \theta_2 = -1,$$

 $\hat{y} = 0, d = 1$

x_0	x_1	$\boldsymbol{x_2}$	y
1	0.1	0	0
1	0.6	1	1
1	0	1	1

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

$$if(d == 1) \theta = \theta + x$$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

if
$$(d==1)$$
 $\theta = \theta + x$

$$\theta = \begin{pmatrix} -0.5 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0.6 \\ 1 \end{pmatrix}$$

$$\theta = \begin{pmatrix} 0.5 \\ 1.6 \\ 0 \end{pmatrix}$$

$$\theta_0 = -0.5, \theta_1 = 1, \theta_2 = -1,$$
 $\hat{y} = 0, d = 1$

	$\boldsymbol{x_0}$	$\boldsymbol{x_1}$	$\boldsymbol{x_2}$	y
	1	0.1	0	0
-	1	0.6	1	1
	1	0	1	1

$$x_2\theta_2 + x_1\theta_1 + x_0\theta_0 = 0$$

$$1.6x_1 + 0.5 = 0$$

$$x_1 = -\frac{0.5}{1.6} = -0.3125$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$
if($d == 1$) $\theta = \theta + x$
elif ($d == -1$) $\theta = \theta - x$

$$z = \theta_2 * x_2 + \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$z = \theta_2 * x_2 + \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$\theta_0 = 0.5$	$\theta_1 =$	$1.6, \theta_2$	=0,
$\hat{y} = 1$, $\frac{d}{d}$	= 1		

$\boldsymbol{x_0}$	x_1	$\boldsymbol{x_2}$	y
1	0.1	0	0
1	0.6	1	1
1	0	1	1

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

$$if(d == 1) \theta = \theta + x$$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif
$$(d == -1) \theta = \theta - x$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$z = \theta_1 * x_1 + \theta_0 * x_0$$

$$z = \theta_1 * x_1 + \theta_0 * x_0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0,$$
 $\hat{y} = 1, d = -1$

x_0	x_1	$\boldsymbol{x_2}$	y
1	0.1	0	0
1	0.6	1	1
1	0	1	1

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

$$if(d == 1) \theta = \theta + x$$

elif (
$$d==-1$$
) $\theta=\theta-x$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif
$$(d == -1) \theta = \theta - x$$

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

if(d==-1)
$$\theta = \theta - x$$

$$\theta = \begin{pmatrix} 0.5 \\ 1.6 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0.1 \\ 0 \end{pmatrix}$$

$$\theta = \begin{pmatrix} -0.5 \\ 1.5 \\ 0 \end{pmatrix}$$

$$\theta_0 = 0.5, \theta_1 = 1.6, \theta_2 = 0,$$
 $\hat{y} = 0, d = -1$

	$\boldsymbol{x_0}$	x_1	$\boldsymbol{x_2}$	y
→	1	0.1	0	0
	1	0.6	1	1
	1	0	1	1

$$x_2\theta_2 + x_1\theta_1 + x_0\theta_0 = 0$$

$$1.5x_1 - 0.5 = 0$$

$$x_1 = \frac{0.5}{1.5} = \frac{1}{3}$$

Two iterations later...

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

if(d==1)
$$\theta = \theta + x$$

$$\theta = \begin{pmatrix} 0.5 \\ 1.5 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\theta = \begin{pmatrix} 1.5 \\ 1.5 \\ 1 \end{pmatrix}$$

$$\theta_0 = -0.5, \theta_1 = 1.5, \theta_2 = 0,$$

 $\hat{y} = 0, d = 1$

x_0	x_1	$\boldsymbol{x_2}$	y
1	0.1	0	0
1	0.6	1	1
1	0	1	1

$$x_{2}\theta_{2} + x_{1}\theta_{1} + x_{0}\theta_{0} = 0$$

$$x_{2} = \frac{-(x_{1}\theta_{1} + x_{0}\theta_{0})}{\theta_{2}}$$

$$x_{2} = \frac{-(1.5x_{1} + 1.5)}{1}$$

$$x_{2} = -1.5(x_{1} + 1)$$

One iteration later...

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0, 1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d==-1$$
) $\theta=\theta-x$

if
$$(d==-1)$$
 $\theta = \theta - x$

$$\theta = \begin{pmatrix} 1.5 \\ 1.5 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0.1 \\ 0 \end{pmatrix}$$

$$\theta = \begin{pmatrix} 0.5 \\ 1.4 \\ 1 \end{pmatrix}$$

$$\theta_0 = 1.5, \theta_1 = 1.5, \theta_2 = 1,$$
 $\hat{y} = 1, d = -1$

	x_0	x_1	$\boldsymbol{x_2}$	y
→	1	0.1	0	0
	1	0.6	1	1
	1	0	1	1

$$x_{2}\theta_{2} + x_{1}\theta_{1} + x_{0}\theta_{0} = 0$$

$$x_{2} = \frac{-(x_{1}\theta_{1} + x_{0}\theta_{0})}{\theta_{2}}$$

$$x_{2} = \frac{-(1.4x_{1} + 0.5)}{1}$$

$$x_{2} = -1.4(x_{1} + 0.357)$$

Two iterations later...

$$\hat{y}$$
=Prediction(x), $\hat{y} \in \{0,1\}$

$$d = y - \hat{y}, y \in \{0,1\}$$

if(
$$d == 1$$
) $\theta = \theta + x$

elif (
$$d == -1$$
) $\theta = \theta - x$

if
$$(d==-1)$$
 $\theta = \theta - x$

$$\theta = \begin{pmatrix} 0.5 \\ 1.4 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0.1 \\ 0 \end{pmatrix}$$

$$\theta = \begin{pmatrix} -0.5 \\ 1.3 \\ 1 \end{pmatrix}$$

$$\theta_0 = 0.5, \theta_1 = 1.4, \theta_2 = 1,$$
 $\hat{y} = 1, d = -1$

	x_0	x_1	$\boldsymbol{x_2}$	y
-	1	0.1	0	0
	1	0.6	1	1
	1	0	1	1

$$x_{2}\theta_{2} + x_{1}\theta_{1} + x_{0}\theta_{0} = 0$$

$$x_{2} = \frac{-(x_{1}\theta_{1} + x_{0}\theta_{0})}{\theta_{2}}$$

$$x_{2} = \frac{-(1.3x_{1} - 0.5)}{1}$$

$$x_{2} = -1.3(x_{1} - 0.385)$$

Training Finished!

Binary Classification with Perceptron

Need linearly seperable dataset

Assume a more complex problem

Multilayer Perceptron (MLP)

Two Processes:

- Forward Propagation (Prediction)
- Backward Propagation (Weight Tuning)

Two Processes:

- Forward Propagation (Prediction)
- Backward Propagation (Weight Tuning)

Forward Propagation

- Compute multiple weighted sums z_i
- Activate them to get $a_i(z_i)$
- Remember from Perceptron: $z = \theta x$

$z_{to} = \theta_{from,to} x_{from}$ e.g. $z_1 = \theta_{0,1} x_0$

In Short (without z)

- Input
- Output

Layer

Output Neuron

Output Neuron

Add More Layer!

Input Layer

Hidden Layer

Output Layer

Output Layer:

- Multiclass
 Classification
- Each neuron could be interpreted as class probability

- Object Recognition
- Assume 4 classes
- L-Layer (L is the last layer)

- Object Recognition
- Assume 4 classes
- L-Layer (L is the last layer)

• Softmax:
$$a = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}}$$

Use Softmax for the last Layer

Hidden Layer Activation Functions a(z):

- Linear Neuron: a(z) = z
- Binary Threshold Unit: $a(z) = \begin{cases} 0, z < 0 \\ 1, z \ge 0 \end{cases}$
- Rectified Linear (ReLu): $a(z) = \begin{cases} 0, z < 0 \\ z, z \ge 0 \end{cases}$
- Sigmoid: $a(z) = \frac{1}{1+e^{-z}}$
- Tanh: $a(z) = \tanh(z)$

Linear Neuron: a(z) = z

Rectified Linear (ReLu):
$$a(z) = \begin{cases} 0, z < 0 \\ z, z \ge 0 \end{cases}$$

• Sigmoid:
$$a(z) = \frac{1}{1 + e^{-z}}$$

• Tanh: $a(z) = \tanh(z)$

Two Processes:

- Forward Propagation (Prediction)
- Backward Propagation (Weight Tuning)

Two Processes:

- Forward Propagation (Prediction)
- Backward Propagation (Weight Tuning)

Training of MLP:

- Use Gradient-Based Algorithm: Backpropagation
- Similar to Gradient Descent
- Weight-Update is more complex

- Assume, we get some Output \hat{y} from MLP
- Compute function $E = \frac{1}{2m} \sum_{t=1}^{m} (\hat{y}_t y_t)^2$ Want to $\min_{\Theta_{i,j}^{(l)}} E(\Theta_{i,j}^{(l)})$ so calculate $\frac{\partial E(\Theta_{i,j}^{(l)})}{\partial \Theta_{i,j}^{(l)}}$
- Use $\frac{\partial E(\Theta_{i,j}^{(l)})}{\partial \Theta_{i,j}^{(l)}}$ to update weights with learning rate

•
$$\Theta_{i,j}^{(l)} := \Theta_{i,j}^{(l)} - \alpha \frac{\partial E(\Theta_{i,j}^{(l)})}{\partial \Theta_{i,j}^{(l)}}$$

$$\hat{y} = \theta_1 x_1 + \theta_0 x_0$$

0.6 0.5 0.4 0.3

Hands-On Session

3 Scripts:

- estimator.py: Script that trains a DNNClassifier
- load_data.py: Utility functions to load data
- predict.py: Real world prediction with unlabeled data

Your task:

- Fill in the gaps which are highlighted with TODO
- Use internet and documentation

- Pull code & slides from repository
 - https://github.com/mati3230/modalg181
- Download dataset from Nextcloud
 - iris_flower and Magic_Gamma_Telescope
 - https://nextcloud.mirevi.medien.hsduesseldorf.de/index.php/s/kPXwJiac7vTQVeu