Grundlagen der 3D-Grafik mit OpenGl

Dipl.-Inform.(FH) Martin Ongsiek

12.01.2006 - www.das-labor.org

Gliederung

- Einführung
 - Ein wennig Mathematik
 - Dreidimensional malen
 - Objekte miteinander verknüpfen

Gliederung

- Einführung
 - Ein wennig Mathematik
 - Dreidimensional malen
 - Objekte miteinander verknüpfen

Das OpenGI Koordinatensystem

$$P = \begin{pmatrix} p_x \\ p_y \\ p_z \\ p_w \end{pmatrix} \tag{1}$$

- p_w ist üblicherweise 1
- Uniforme Behandlung von geometrischen Transformationen durch eine 4 x 4 Matrix
- komplexe Transformationen k\u00f6nnen durch die Kombination von elementaren Transformationen gebildet werden

$$P = \begin{pmatrix} \rho_X \\ \rho_y \\ \rho_z \\ \rho_w \end{pmatrix} \tag{1}$$

- p_w ist üblicherweise 1
- Uniforme Behandlung von geometrischen Transformationen durch eine 4 x 4 Matrix
- komplexe Transformationen k\u00f6nnen durch die Kombination von elementaren Transformationen gebildet werden

Homogene Koordinaten

$$P = \begin{pmatrix} p_x \\ p_y \\ p_z \\ p_w \end{pmatrix} \tag{1}$$

- p_w ist üblicherweise 1
- Uniforme Behandlung von geometrischen Transformationen durch eine 4 x 4 Matrix
- komplexe Transformationen k\u00f6nnen durch die Kombination von elementaren Transformationen gebildet werden

Homogene Koordinaten

$$P = \begin{pmatrix} p_x \\ p_y \\ p_z \\ p_w \end{pmatrix} \tag{1}$$

- p_w ist üblicherweise 1
- Uniforme Behandlung von geometrischen Transformationen durch eine 4 x 4 Matrix
- komplexe Transformationen k\u00f6nnen durch die Kombination von elementaren Transformationen gebildet werden

glTranslate(t_x , t_y , t_z);

$$\mathbf{T}(t_X, t_Y, t_Z) = \begin{pmatrix} 1 & 0 & 0 & t_X \\ 0 & 1 & 0 & t_Y \\ 0 & 0 & 1 & t_Z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2

Translatieren

glTranslate(t_x , t_y , t_z);

$$\mathbf{T}(t_{x}, t_{y}, t_{z}) = \begin{pmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2

 $glScale(s_x, s_y, s_z);$

$$\mathbf{S}(s_{x}, s_{y}, s_{z}) = \begin{pmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(3)

$$glScale(s_x, s_y, s_z);$$

$$\mathbf{S}(s_x, s_y, s_z) = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(3)

Rotieren

$$\mathbf{RX}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4

$$\mathbf{RY}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (5)

$$\mathbf{RZ}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0\\ \sin(\gamma) & \cos(\gamma) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(6)

Rotieren

$$\mathbf{RX}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4)

$$\mathbf{RY}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (5)

$$\mathbf{RZ}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0\\ \sin(\gamma) & \cos(\gamma) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(6)

Rotieren

$$\mathbf{RX}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4)

$$\mathbf{RY}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (5)

$$\mathbf{RZ}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0\\ \sin(\gamma) & \cos(\gamma) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(6)

$$\mathbf{RX}(\alpha) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(4)

$$\mathbf{RY}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (5)

$$\mathbf{RZ}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(6)

Gliederung

- Einführung
 - Ein wennig Mathematik
 - Dreidimensional malen
 - Objekte miteinander verknüpfen

- In Specifikation 1.1 ca. 150 recht simplen Funktionen
- Arbeitet intern als State-Maschine
- Alle Funktionen fangen mit gl an. Makros mit GL_
- Funktionen mit meheren Datentypen.
- Suffix mit Anzahl und Art der Parameter. Z.B. glVertex3f(), glVertex4d()

- In Specifikation 1.1 ca. 150 recht simplen Funktionen
- Arbeitet intern als State-Maschine
- Alle Funktionen fangen mit gl an. Makros mit GL_
- Funktionen mit meheren Datentypen
- Suffix mit Anzahl und Art der Parameter. Z.B. glVertex3f(), glVertex4d()

- In Specifikation 1.1 ca. 150 recht simplen Funktionen
- Arbeitet intern als State-Maschine
- Alle Funktionen fangen mit gl an. Makros mit GL_
- Funktionen mit meheren Datentypen.
- Suffix mit Anzahl und Art der Parameter. Z.B. glVertex3f(), glVertex4d()

- In Specifikation 1.1 ca. 150 recht simplen Funktionen
- Arbeitet intern als State-Maschine
- Alle Funktionen fangen mit gl an. Makros mit GL_
- Funktionen mit meheren Datentypen.
- Suffix mit Anzahl und Art der Parameter. Z.B. glVertex3f(), glVertex4d()

- In Specifikation 1.1 ca. 150 recht simplen Funktionen
- Arbeitet intern als State-Maschine
- Alle Funktionen fangen mit gl an. Makros mit GL
- Funktionen mit meheren Datentypen.
- Suffix mit Anzahl und Art der Parameter. Z.B. glVertex3f(), glVertex4d()

Prinzip

```
Man schreibt Punktkoordinaten glVertex*(x, y, z); glBegin(GL_POINTS); ... hier hinein glEnd(GL_POINTS);
```

Prinzip

```
Man schreibt Punktkoordinaten glVertex*(x, y, z); glBegin(GL_POINTS); ... hier hinein glEnd(GL_POINTS); um Punkte zu malen.
```

Prinzip

```
Man schreibt Punktkoordinaten glVertex*(x, y, z); glBegin(GL_POINTS); ... hier hinein glEnd(GL_POINTS); um Punkte zu malen.
```

Mehr als nur Punkte malen

Punkte müssen gegen der Uhrzeigersinn, also in mathematische positiver Richtung definiert werden, damit OpenGl weiß, welche Seite oben ist und daher sichtbar sind

Oben und Unten?

Punkte müssen gegen der Uhrzeigersinn, also in mathematische positiver Richtung definiert werden, damit OpenGl weiß, welche Seite oben ist und daher sichtbar sind.

Problem bei Polygonen mit mehr als 3 Ecken

- Alle Punkte müssen auf einer Ebene liegen.
- Nur stumpfe Winkeln bei Polygonen mit mehr als 4 Ecken.

Problem bei Polygonen mit mehr als 3 Ecken

- Alle Punkte müssen auf einer Ebene liegen.
- Nur stumpfe Winkeln bei Polygonen mit mehr als 4 Ecken.

Einfärben

Mit glColor4f(c_R , c_G , c_B , c_A); setz man die aktuelle Farbe.

- Farbwerte sind im Bereich 0 < c < 1 definiert
- Farbwert gilt bis zum erneuten setzen

Mit glColor4f(c_R , c_G , c_B , c_A); setz man die aktuelle Farbe.

- Farbwerte sind im Bereich $0 \le c \le 1$ definiert
- Farbwert gilt bis zum erneuten setzen

Einfärben

Mit glColor4f(c_R , c_G , c_B , c_A); setz man die aktuelle Farbe.

- Farbwerte sind im Bereich $0 \le c \le 1$ definiert
- Farbwert gilt bis zum erneuten setzen

Einführung

Gliederung

- Einführung
 - Ein wennig Mathematik

 - Objekte miteinander verknüpfen

Pivotpunkt

 Der Pivotpunkt dient als Ausgangspunkt für Transformationen.

Matrix Stack

- glPushMatrix()
- glPopMatrix();

Benötigt man, wenn an einem Objekt mehrere Teilobjekte hängen.

Einführung

Matrix Stack

- glPushMatrix()
- glPopMatrix();

Benötigt man, wenn an einem Objekt mehrere Teilobjekte hängen.

Matrix Stack

- glPushMatrix()
- glPopMatrix();

Benötigt man, wenn an einem Objekt mehrere Teilobjekte hängen.

Ende

Vielen Dank für euer Aufmerksamkeit. Stellt euer Fragen!