第四章作业

范潇 2254298

2024年10月6日

题目 1. (4.1.1) 判断下列映射是否是线性变换:

- 1. 设 V 是 Descartes 平面, φ 把平面上任一向量伸长 n 倍 (n 是固定的自然数)。
- 2. 设 V 是 Descartes 平面, φ 把平面上任一向量逆时针旋转 60°, 但其长度保持不变。
- 3. 设 V 是 [0,1] 区间上所有连续函数组成的实线性空间, φ 是 V 上的变换,对于任意的 $f(x) \in V$,定义

$$\varphi(f(x)) = \int_0^x f(t) \, dt;$$

4. 设 V 是 Descartes 平面, φ 为 V 上的变换:

$$\varphi(x,y) = (2x^2, y), \quad (x,y) \in V;$$

5. 设 V 是 Descartes 平面, (a,b) 是平面上固定的一点, φ 是 V 上的变换:

$$\varphi(x,y) = (x+a, y+b);$$

解答.

- 1. 是,相当于 $(x,y) \mapsto (nx,ny)$
- 2. 是
- 3. 是
- 4. 不是,因为 $\varphi(1,0) + \varphi(-1,0) = (4,0) \neq \varphi(0,0) = (0,0)$
- 5. 若 (a,b) = (0,0),则显然是线性变换,否则,因为 $2\varphi(-a,-b) = (0,0) \neq \varphi(-2a,-2b) = (-a,-b)$,不是线性变换。

题目 2. (4.1.4) 设 V 是由几乎处处为零的无穷实数数列 $(a_0, a_1, a_2, \ldots, a_n, \ldots)$,其中只有有限多个 a_i 不 为零,组成的实向量空间, $\mathbb{R}[x]$ 是所有实系数多项式组成的实向量空间,定义 φ 如下:

$$\varphi(a_0, a_1, a_2, \dots, a_n, \dots) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

范潇 2254298 - - - - 2 -

其中 $a_n \neq 0$,而 $a_s = 0, s > n$,求证: φ 是线性同构。

解答. 显然 $V, \mathbb{R}[x]$ 是线性空间。

记数列 $\alpha \in V$ 的第 i 项为 $\alpha[i]$,多项式 f 的第 i 项系数为 f[i],则 $\forall \alpha_1, \alpha_2 \in V, \forall t_1, t_2 \in \mathbb{R}$ 。 $\forall i, \varphi(t_1\alpha_1 + t_2\alpha_2)[i] = (t_1\alpha_1 + t_2\alpha_2)[i] = t_1\alpha_1[i] + t_2\alpha_2[i] = \varphi(t_1\alpha_1)[i] + \varphi(t_2\alpha_2)[i]$,即

$$\varphi(t_1\alpha_1 + t_2\alpha_2) = t_1\alpha_1 + t_2\alpha_2$$

所以 φ 是线性同构。

题目 3. (4.2.1) 设 V 是实系数多项式全体构成的实线性空间,定义 V 上的变换 D,S 如下:

$$D(f(x)) = \frac{d}{dx}f(x), \quad S(f(x)) = \int_0^x f(t) dt.$$

证明: D,S 均为 V 上的线性变换且 $DS = I_V$,但 $SD \neq I_V$ 。

解答. 由求导和积分的线性性可知,变换 D,S 都是 V 上的线性变换。因为

$$DS(f(x)) = \frac{d}{dx} \int_0^x f(x) dx = f(x), \forall f \in V$$

而

$$SD(1) = \int_0^x \frac{d}{dx} 1 dx = 0 \neq 1$$

所以 $DS = I_V$,但 $SD \neq I_V$ 。

题目 4. (4.2.5) 设 φ 是 n 维线性空间 V 上的线性变换,证明: φ 是可逆变换的充分必要条件是 φ 将 V 的基变为基。

解答. 任取 V 的一组基 $\alpha_1, \dots, \alpha_n, \forall \alpha \in V, \exists$ 唯一一组 $k_1, \dots, k_n, s.t. \sum_i k_i \alpha_i = \alpha$:

$$\varphi$$
是可逆变换
$$\Leftrightarrow \varphi$$
是一一对应
$$\Leftrightarrow \forall \alpha \in V, \exists \mathbf{e} - \mathbf{e} = \mathbf$$

即 φ 是可逆变换的充分必要条件是 φ 将 V 的基变为基。

题目 5. (4.3.1) 设 V 是实数域上次数小于 4 的一元多项式全体组成的线性空间, φ 为多项式的求导运算。 $\{1,x,x^2,x^3\}$ 是 V 的基,试求 φ 在这组基下的表示矩阵。

解答. 表示矩阵为:

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

题目 6. (4.3.3) 设 V 是 Descartes 平面,求绕原点转动 θ 角的旋转在基 $\{(1,0),(0,1)\}$ 下的表示矩阵。

范潇 2254298 - 3 -

解答. 表示矩阵为:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

题目 7. (4.3.5) 设 V,U 是域 \mathbb{K} 上的线性空间,维数分别为 n 与 m,求证: $\mathcal{L}(V,U)$ 是 nm 维线性空间。 **解答.** 因为 $\mathcal{L}(V,U)$ 与 $M_{m\times n}(\mathbb{K})$ 同构,而显然 $\dim M_{m\times n}(\mathbb{K}) = nm$,所以 $\dim \mathcal{L}(V,U) = nm$,即 \mathcal{V},\mathcal{U} 是 nm 维空间。

题目 8. (4.3.12) 设 φ 是线性空间 $V \to U$ 的线性映射, $\{e_1, e_2, \dots, e_n\}$ 及 $\{f_1, f_2, \dots, f_n\}$ 是 V 的两组基, $\{e'_1, e'_2, \dots, e'_m\}$ 及 $\{f'_1, f'_2, \dots, f'_m\}$ 是 U 的两组基。设在 $\{e_1, e_2, \dots, e_n\}$ 及 $\{e'_1, e'_2, \dots, e'_m\}$ 下, φ 的表示矩阵为 A,在 $\{f_1, f_2, \dots, f_n\}$ 及 $\{f'_1, f'_2, \dots, f'_m\}$ 下, φ 的表示矩阵为 B,,又 $\{e_1, e_2, \dots, e_n\}$ 到 $\{f_1, f_2, \dots, f_n\}$ 的过渡矩阵为 P, $\{e'_1, e'_2, \dots, e'_m\}$ 到 $\{f'_1, f'_2, \dots, f'_m\}$ 的过渡矩阵为 Q,试证:

$$B = Q^{-1}AP.$$

解答. $\forall \alpha \in V$,记 α 在 $\{e_1, e_2, \dots, e_n\}$ 和 $\{f_1, f_2, \dots, f_n\}$ 下的坐标向量分别为 ξ_e, ξ_f ,记 $\varphi(\alpha)$ 在 $\{e'_1, e'_2, \dots, e'_m\}$ 和 $\{f'_1, f'_2, \dots, f'_m\}$ 下的坐标向量分别为 ζ_e, ζ_f 由题意得:

$$\zeta_e = A\xi_e$$

$$\zeta_f = B\xi_f$$

$$\xi_e = P\xi_f$$

$$\zeta_e = Q\zeta_f$$

从而有:

$$\zeta_e = AP\xi_f$$
$$\zeta_e = QB\xi_f$$

即

$$QB\xi_e = AP\xi_e$$

由于 ζ_e 的任意性, 有

$$QB = AP$$

又因为 Q 为过渡矩阵, 所以

$$B = Q^{-1}AP$$

题目 9. (4.4.1) 设 φ 是实四维空间 V 上的线性变换, φ 在 V 的一组基 $\{e_1, e_2, e_3, e_4\}$ 下的表示矩阵为:

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
-1 & 2 & 1 & 3 \\
1 & 2 & 5 & 5 \\
2 & -2 & 1 & -2
\end{pmatrix}$$

范潇 2254298 - 4 -

求 φ 的核空间与像空间(用基的线性组合来表示)。

解答. 题中矩阵经过初等行变换后可得:

$$\begin{pmatrix}
1 & 0 & 2 & 1 \\
0 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以像空间为 $k_1(e_1 - e_2 + e_3 + 2e_4) + k_2(2e_2 + 2e_3 - 2e_4), k_1, k_2 \in \mathbb{R}$ 。 核空间为 $k_1(-4e_1 - 3e_2 + 2e_3) + k_2(-e_1 - 2e_2 + e_4), k_1, k_2 \in \mathbb{R}$ 。

题目 10. (4.4.5) 设 $V = M_n(\mathbb{K})$,若 $A \in V$,令 $\varphi(A) = \operatorname{tr} A$,求证: $\varphi \in V \to \mathbb{K}$ 的线性映射,并求 $\dim \ker \varphi$ 以及 $\ker \varphi$ 的一组基。

解答. $\forall A, B \in V, l \forall t_1, t_2 \in \mathbb{K}$, 有

$$\varphi(t_1A + t_2B) = \sum_i (t_1A + t_2B)(i, i)$$

$$= \sum_i (t_1A(i, i) + t_2B(i, i))$$

$$= \sum_i t_1A(i, i) + \sum_i t_2B(i, i)$$

$$= t_1\sum_i A(i, i) + t_2\sum_i B(i, i)$$

$$= t_1\varphi(A) + t_2\varphi(B)$$

所以 φ 是 $V \to \mathbb{K}$ 的线性映射。记 E_{ij} 为只有 (i,j) 元为 1,其余都为 0 的 n 阶矩阵。下面证明 E_{ij} $i=1,\cdots,n,j=1,\cdots,n,i\neq j$ 和 $E_{ii}-E_{nn},i=1,\cdots,n-1$ 构成 $ker\varphi$ 的一组基。显然它们都属于 $ker\varphi$,且 线性无关。

 $\forall A \in ker \varphi$, 因为 trA = 0, 所以 $\sum_i A(i,i) = 0$, 即 $A(n,n) = -\sum_{i \neq n} A(i,i)$ 。 从而有:

$$A = \sum_{i \neq j} A(i,j)E_{i,j} + \sum_{i} A(i,i)E_{ii}$$

$$= \sum_{i \neq j} A(i,j)E_{i,j} + \sum_{i \neq n} A(i,i)E_{ii} - \sum_{i \neq n} A(i,i)E_{nn}$$

$$= \sum_{i \neq j} A(i,j)E_{i,j} + \sum_{i \neq n} A(i,i)(E_{ii} - E_{nn})$$

从而 E_{ij} , $i=1,\cdots,n, j=1,\cdots,n, i\neq j$ 和 $E_{ii}-E_{nn}$, $i=1,\cdots,n-1$ 构成 $ker\varphi$ 的一组基。因此 $\dim ker\varphi=n^2-1$ 。

题目 11. (4.4.6) 设 U 是有限维线性空间 V 的子空间, φ 是 V 上线性变换, 求证:

- (1) $\dim U \dim \ker \varphi \leq \dim \varphi(U) \leq \dim U$;
- (2) $\dim \varphi^{-1}(U) \leq \dim U + \dim \ker \varphi_{\circ}$

解答.

1. 因为 $\forall n > \dim U, \forall k_i \in \mathbb{K}, \alpha_i \in V, i = 1, \dots, n : \sum_{i=1}^n k_i \alpha_i = 0$,即 $\sum_{i=1}^n k_i \varphi(\alpha_i) = 0$,所以 $\dim \varphi(U) \leq \dim U_\circ$

因为 $\dim U = \dim Im\varphi|_U + \dim \ker \varphi|_U = \dim \varphi(U) + \dim \ker \varphi|_U \leq \dim \varphi(U) + \dim \ker \varphi$,从而 $\dim U - \dim \ker \varphi \leq \dim \varphi(U)_\circ$

2.

$$\dim \varphi^{-1}(U) = \dim \operatorname{Im} \varphi|_{\varphi^{-1}(U)} + \dim \ker \varphi|_{\varphi^{-1}(U)} \leq \dim U + \dim \ker \varphi$$

题目 12. (4.4.7) 利用上题,证明关于两个 n 阶方阵 A 与 B 之积秩的 Sylvester (西尔维斯特) 不等式:

$$r(A) + r(B) - n \le r(AB) \le \min\{r(A), r(B)\}\$$

解答. 不等式右侧显然成立, 下面证明不等式左侧。

设 V 是 n 维欧氏空间,记 $A=(a_1,\cdots,a_n), B=(b_1,\cdots,b_n), U=L(b_1,\cdots,b_n), \varphi:\alpha\to A\alpha$ 。则 $\dim U-\dim\ker\varphi=r(B)-(n-r(A))=r(A)+r(B)-n\leq\dim\varphi(U)=r(AB)$

题目 13. (4.5.1) 在实四维空间 V 中,设线性变换 φ 在基 $\{e_1, e_2, e_3, e_4\}$ 下的表示矩阵为:

$$\begin{pmatrix}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -2 \\
2 & -1 & 0 & 1 \\
2 & -1 & -1 & 2
\end{pmatrix}$$

求证:由向量 $e_1 + 2e_2$ 及 $e_2 + e_3 + 2e_4$ 生成的子空间 U 是 φ 的不变子空间。

解答. $\varphi(e_1+2e_2)=e_1+2e_2\in U, \varphi(e_2+e_3+2e_4)=e_2+e_3+2e_4\in U$ 。从而 U 是 φ 的不变子空间。

题目 14. (4.5.2) 设 φ , ψ 都是线性空间 V 上的线性变换且 $\varphi\psi = \psi\varphi$, 求证: $\operatorname{Im} \varphi$ 及 $\ker \varphi$ 都是 ψ 不变子空间。

解答. $\forall \alpha \in Im\varphi, \exists \beta s.t. \varphi(\beta) = \alpha$, 所以 $\psi(\alpha) = \psi \phi(\alpha) = \phi \psi(\alpha) \in Im\phi$, 即 $Im\varphi$ 是 ψ 不变子空间。

 $\forall \alpha \in \ker \varphi, \varphi(\alpha) = 0$,从而 $\psi \varphi(\alpha) = \varphi \psi(\alpha) = \psi(0) = 0$,即 $\psi(\alpha) \in \ker \varphi$,因此 $\ker \varphi$ 也是 ψ 不变子空间。

题目 15. (4.5.3) 设 φ 是 n 维线性空间 V 上的自同构,若 W 是 φ 不变子空间,求证: W 也是 φ^{-1} 不变子空间。

解答. 取 W 的一组基 $\{e_1, \dots, e_n\}$,由于 φ 是自同构,且 W 是 φ 的不变子空间,所以 $\{\varphi(e_1), \dots, \varphi(e_n)\}$ 线性无关,且仍为 W 的一组基。 $\forall \alpha \in W, \exists k_i, i = 1, \dots, n, s.t. \sum_i k_i \varphi(e_i) = \alpha$,从而 $\varphi^{-1}(\alpha) = \sum_i k_i e_i \in W$,即 W 也是 φ^{-1} 不变子空间。

题目 16. (4.5.6) 设 φ 是 n 维线性空间 V 上的线性变换, φ 在 V 的一组基下的表示矩阵为对角矩阵且 主对角线上的元素互不相同,求所有一维的 φ 不变子空间并确定它们的个数。

解答. 以题中提到的一组基中的每个基作为基的一维子空间都是 φ 不变子空间, 共 n 个。

题目 17. (**总复习.1**) 设 V 是实数域上次数不超过 n 的多项式全体组成的线性空间,D 是求导变换,求证:

范潇 2254298 - 6 -

- 1. $D \neq V$ 上的线性变换, 并求 D 在基 $\{1, x, x^2, \dots, x^n\}$ 下的表示矩阵;
- 2. 对任意的 $1 \le r \le n+1$, *D* 的 *r* 维不变子空间必是由 $\{1, x, ..., x^{r-1}\}$ 生成的子空间;
- 3. Im $D \cap \ker D \neq 0_{\circ}$

解答.

1. 由于求导的线性性, 可知 $D \in V$ 上的线性变换, 所求表示矩阵为:

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

- 2. 若 U 为 r 维不变子空间 $(1 \le r \le n+1)$,则 $0 \in U$,对于任意非零多项式 $f \in U$,若它的次数大于 0,则在多次求导变换后,将得到一个零次多项式,又因为 U 是 D 不变子空间,所以 $1 \in D$ 。类似的可以证明 x, \dots, x^{r-1} 都在 U 中,而 $\{1, x, \dots, x^{r-1}\}$ 线性无关,构成 U 的一组基,从而 U 是 $\{1, x, \dots, x^{r-1}\}$ 生成的子空间。
- 3. $1 \in \text{Im}D \cap \ker D$

题目 18. (**总复习.2**) 设 V 是数域 \mathbb{K} 上的向量空间, φ 是 V 上线性变换,若 φ 在基 $\{e_1, e_2, \dots, e_n\}$ 下的表示矩阵为

$$\begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

求证:

- 1. V 中包含 e_1 的 φ -不变子空间只有 V 自身;
- 2. V 任一非零 φ -不变子空间必包含 e_n ;
- 3. V 不能分解为两个非平凡 φ -不变子空间的直和。

解答.

1. 有表示矩阵可知, $\varphi^k(e_1) = e_{k+1}, k = 0, \dots, n-1,$ 若 U 维包含 e_1 的不变子空间,则 $\{e_1, \dots, e_n\} \in U$,为 U 的一组基,从而 U = V,即 V 中包含 e_1 的 φ -不变子空间只有 V 自身。

范潇 2254298 - - - 7 -

2. 若 U 为 V 的一个非零 φ 不变子空间,任取其中的一个非零向量 $\alpha = \sum_i k_i e_i, \exists i, s.t. \forall j < i, k_j = 0, k_i \neq 0$,则 $\varphi^{n-i}(\alpha) = k_i e_n$,从而 $\varphi^{n-i}(\frac{1}{k_i}\alpha) = e_n \in U$,即 V 任一非零 φ -不变子空间必包含 e_n 。

3. 因为 V 任一非零 φ -不变子空间必包含 e_n ,所以 V 不能分解为两个非平凡 φ -不变子空间的直和。

题目 19. (**总复习.4**) 设 φ 是线性空间 V 上的线性变换,若它在 V 的任一组基下的表示矩阵都相同,求证: φ 是纯量变换,即存在常数 k,使得 $\varphi(a) = ka$ 对一切 $a \in V$ 都成立。

解答. 只需证明 φ 的表示矩阵 A = kI, 其中 k 为常数即可。

由于 φ 在 V 的任一组基下的表示矩阵不变,所以对于任何非异阵 X,有

$$A = X^{-1}AX$$

取 $X = P_{ij}, i \neq j, i, j = 1, \dots, n$,可得 A(i, i) = A(j, j)。取 $X = P_i(-1), i = 1, \dots, n$,可得 A(i, j) = -A(i, j),因此 A = kI,其中 k 为常数。

题目 20. (**总复习.18**) 设 $V = M_n(\mathbb{K})$, A, B 是两个 n 阶矩阵, 定义 V 上的变换:

$$\varphi(X) = AXB$$
,

求证: φ 是 V 上的线性变换, φ 是线性同构的充分必要条件是 A, B 都是非奇异矩阵。

解答. 由矩阵乘法满足分配律易知 φ 是 V 上的线性变换。

充分性:

若 A,B 都是非奇异矩阵, $\forall Y \in V$, $\varphi(A^{-1}VB^{-1}) = Y$,若 $\varphi(X_1) = \varphi(X_2)$,则 $A^{-1}\varphi(X_1)B^{-1} = A^{-1}\varphi(X_2)B^{-1}$,即 $X_1 = X_2$,从而 φ 为双射,因此 φ 为线性同构。

必要性:

若 φ 是线性同构,则 $\exists X, s.t. AXB = I$,从而 $r(A) \geq n, r(B) \geq n$,即 A, B 都是非奇异矩阵。

题目 21. (**总复习.20**) 设 U,W 是 n 维线性空间 V 的子空间且 $\dim U + \dim W = \dim V$,求证:存在 V 上的线性变换 φ ,使得 $\ker \varphi = U$, $\operatorname{Im} \varphi = W$ 。

解答. 由于 $\dim U + \dim W = \dim V$,所以 U + W 为直和。取 U 的一组基 $e_1, \cdots, e_{\dim U}$,取 W 的一组基 $f_1, \cdots, f_{\dim W}$,则 $e_1, \cdots, e_{\dim U}, f_1, \cdots, f_{\dim W}$ 是 V 的一组基。定义 $\varphi : \sum_i k_i e_i + \sum_i t_i j_i \to \sum_i t_i j_i$,则 $\ker \varphi = U, \operatorname{Im} \varphi = W$ 。

题目 22. (总复习.34) 设 $\varphi, \varphi_1, ..., \varphi_m \ (m \ge 2)$ 是 n 维线性空间 V 上的线性变换且适合条件:

$$\varphi^2 = \varphi, \quad \varphi = \varphi_1 + \dots + \varphi_m, \quad r(\varphi) = r(\varphi_1) + \dots + r(\varphi_m).$$

求证: $\varphi_i \varphi_i = 0 \ (i \neq j), \ \varphi_i^2 = \varphi_i, \ i = 1, \dots, m_o$

解答. 因为

$$r(\varphi) = r(\varphi_1) + \cdots + r(\varphi_m)$$

所以

$$\dim \varphi(V) = \sum_{i} \dim \varphi_i(V)$$

因此 $\sum_{i} \varphi(V) = \varphi(V)$ 是直和,且 $\varphi_i(V) \cap \varphi_i(V) = 0, i \neq j$,从而 $\varphi_i \varphi_i = 0 (i \neq j)$ 。

范潇 2254298 - 8 -

因此有

$$\varphi^2 = \varphi = \sum_i \varphi_i^2$$

又因为 $\varphi_i^2(V) \subseteq \varphi_i(V)$,所以 $\varphi_i^2(V) \cap \varphi_j^2(V) = 0, i \neq j$,即 $\varphi = \sum_i \varphi_i^2$ 也是直和。由于对于直和,分解方式唯一, $\forall \alpha \in V$, $\varphi(\alpha) = \sum_i \varphi_i(\alpha) = \sum_i \varphi^2(\alpha)$,因为 $\varphi_i^2(V) \subseteq \varphi(V)$,所以 $\varphi_i^2(\alpha) = \varphi_i(\alpha)$,由于 α 的任意性,所以有 $\varphi_i^2 = \varphi_i, i = 1, \cdots, m$

题目 23. (总复习.35) 设 $A \in n$ 阶方阵, 求证: $r(A^n) = r(A^{n+1}) = r(A^{n+2}) = \cdots$

解答. 若 A 为非奇异阵,则 $r(A^i) = n, i = 1, \dots$ 。若 A 为奇异阵,则:

$$n > r(A) \ge r(A^2) \ge \cdots \ge r(A^{n+1})$$

由于 $r(A^{n+1}) \geq 0$,所以其中至少有一个等号成立,不妨设 $r(A^i) = r(A^{i+1}), 1 \leq i \leq n$ 。则线性方程组 $A^i X = 0$ 的解空间 V_1 与线性方程组 $A^{i+1} X = 0$ 的解空间 V_2 维度相同,又因为 $V_1 \subseteq V_2$,所以 $V_1 = V_2$ 。从而 $A^j A^i X = 0, A^j A^{i+1} X = 0, j = 0, \cdots$ 的解空间的维度相同,从而 $r(A^n) = r(A^{n+1}) = \cdots$ 。