PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		(11) International Publication Number: WO 94/29459	
C12N 15/62, C07K 15/04, A61K 39/295, 39/04	A1	(43) International Publication Date: 22 December 1994 (22.12.94)	
21) International Application Number: PCT/US94/06362		(81) Designated States: CA, JP, European patent (AT, BE, CH, DE DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 6 June 1994 (06.06.9	4)	
(30) Priority Data: 08/073,381 4 June 1993 (04.06.93)	τ	Published With international search report. S Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(71) Applicant: WHITEHEAD INSTITUTE FOR BIOM RESEARCH [US/US]; Nine Cambridge Center, Ca MA 02142 (US).		•	
(72) Inventor: YOUNG, Richard, A.; 5 Sawmill Browninghester, MA 01890 (US).	ok Roa	d.	
(74) Agents: GRANAHAN, Patricia et al.; Hamilton, Brod & Reynolds, Two Militia Drive, Lexington, M (US).			

(54) Title: STRESS PROTEINS AND USES THEREFOR

(57) Abstract

The present invention relates to stress proteins and methods of modulating an individual's immune response. In particular, it relates to the use of such stress proteins in immune therapy and prophylaxis, which results in an induction or enhancement of an individual's immune response and as an immunotherapeutic agent which results in a decrease of an individual's immune response to his or her own cells. The present invention also relates to compositions comprising a stress protein joined to another component, such as a fusion protein in which a stress protein is fused to an antigen.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑŰ	Australia	GE	Georgia	MW	Malewi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	rr	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Beiarus	KE	Konya	RO	Romania
CA	Canada	KG	Куткуятал	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhgan	SK	Slovakia
CM	Cameroon	Ц	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	π	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ŪA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
គ	Finland	ML	Mali	UZ.	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon			***	VILL TARM

-1-

STRESS PROTEINS AND USES THEREFOR

Description

Background of the Invention

Although the function of stress proteins is not entirely clear, it appears that some participate in assembly and structural stabilization of certain cellular and viral proteins, and their presence at high concentrations may have an additional stabilizing effect during exposure to adverse conditions. Neidhardt, F.C.

and R.A. Van Bogelen, <u>In: Escherichia coli and Salmonella typhimurium</u>, Cellular and Molecular Biology, (eds. Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B. Schaechter, M. and Umbarger, H.E. (Am. Soc. Microbiol., Washington, D.C.), pp. 1334-1345 (1987); Pelham, H.R.B.

15 Cell, 46:959-961 (1986); Takano, T. and T. Kakefuda,

Nature, 239:34-37 (1972); Georgopoulos, C. et al., New

Biology, 239:38-41 (1972). Phagocytic host cells produce
a hostile environment of foreign organisms, and the
ability to produce stress proteins has been implicated in

20 the survival of bacterial pathogens within macrophages Christman, M.F. et al., Cell, 41:753-762 (1985).

Mycobacterium (M.) tuberculosis and Mycobacterium (M.) leprae are the etiologic agents of tuberculosis and leprosy, respectively. These diseases afflict 20-30 million people and continue to present a significant global health problem. Joint International Union Against Tuberculosis and World Health Organization Study Group, Tubercle, 63:157-169 (1982); Bloom, B. and T. Godal, Rev. Infect Dis. 5:765-780 (1983). To develop more effective tools for the diagnosis and prevention of these diseases, it is important to understand the immune response to infection by mycobacterial pathogens.

The antibody and T-cell responses to infection or inoculation with killed mycobacteria have been studied in humans and in animals. Human patients with tuberculosis or leprosy produce serum antibodies directed against at 5 least 12 mycobacterial proteins. Some of these proteins are also recognized by well-characterized murine monoclonal antibodies. Mice immunized with mycobacterial lysates produce antibodies that are directed predominantly to six M. tuberculosis and six M. leprae protein antigens. 10 Engers, H.D. <u>Infect. Immun.</u>, <u>48</u>:603-605 (1985); Engers, H.D., <u>Infect. Immun.</u>, <u>51</u>:718-720 (1986). Genes encoding these 12 mycobacterial antigens have been cloned, and recombinant proteins produced from these clones have been used to investigate the human T-lymphocyte response to 15 mycobacterial infection. Husson, R.N. and R.A. Young, Proc. Natl. Acad. Sci., USA, 84:1679-1683 (1987); Young, R.A. et al., Nature, 316:450-452 (1985); Britton, W.J. et al., Leor. Rev., 57, Suppl. 2, 67-75 (1986).

Protection against mycobacterial disease involves 20 cell-mediated immunity. Joint International Union Against Tuberculosis and World Health Organization Study Group, Tubercle, 63:157-169 (1982); Hahn, H. and S.H.E. Kaufman, Rev. Infect. Dis., 3:1221-1250 (1981). T-lymphocytes cloned from patients or from volunteers immunized with 25 killed mycobacteria have been tested for their ability to recognize the recombinant mycobacterial proteins. Lymphocyte-proliferation assays demonstrate that most of the antigens identified with monoclonal antibodies are involved in the T-cell response to mycobacterial infection 30 or vaccination in mice and in humans. Limiting dilution analysis indicates that 20% of the mycobacterial-reactive CD4 T-lymphocytes in mice immunized with M. tuberculosis recognize a single protein, the 65-kDa antigen. Kaufman, S.H.E. et al., Eur J. Immunol., 17:351-357 (1987).

-3-

Summary of the Invention

The present invention relates to stress proteins and methods of modulating an individual's (such as a human, other mammal or other vertebrate) immune response. 5 particular, it relates to the use of such stress proteins in immune therapy or prophylaxis, which results in an induction or enhancement of an individual's immune response and as an immunotherapeutic agent which results in a decrease of an individual's response to his or her 10 own cells. In the embodiment in which an individual's immune response is induced or enhanced, the induced or enhanced response can be a response to antigens, such as those derived from a pathogen or cancer cell, or can be upregulation of the individual's immune status, such as in 15 an immune compromised individual. In immune prophylaxis, stress proteins are administered to prevent or reduce the effects in an individual of a pathogen, which can be any virus, microorganism, parasite or other organism or substance (e.g., a toxin or toxoid) which causes disease 20 or to prevent or reduce the effects in an individual of cancer cells. In preventing or reducing adverse effects of pathogens which contain stress proteins (e.g., bacteria, parasite, fungus) according to the method of the present invention, an individual's immune response to the 25 pathogen's stress protein(s) is induced or enhanced through the administration of a vaccine which includes the pathogen's stress protein(s) or other stress proteins. The stress protein can be administered alone, as a member or component of a conjugate (e.g., joined to another 30 antigen by chemical or recombinant means such as joined to a fusion partner resulting in a fusion protein), or as an adjuvant or carrier molecule to enhance or obtain a desired immune response to an antigen. The present invention also relates to compositions comprising a stress 35 protein joined to another component, such as a fusion

-4-

protein in which a stress protein is fused to an antigen.

Preventing or reducing adverse effects of viral pathogens which do or do not contain stress proteins, as well as preventing or reducing the adverse effects of cancer cells according to the present method, is effected by enhancing an individual's immune surveillance system. Enhancement of immune response can be effected by modulating the immune cells by stimulation with a stress protein (e.g., a bacterial stress protein).

In the embodiment in which an individual's immune response is decreased, such as is used in treating autoimmune diseases, stress proteins known to be involved in the autoimmune response are administered to turn down an individual's immune response by tolerizing the individual to the stress proteins. Alternatively, the immune response to stress protein, which is known to occur in autoimmune disease, is reduced by interfering with the ability of immune cells which respond to stress proteins to do so.

A selected stress protein of the present invention can be administered to an individual, according to the method of the present invention, and result in an immune response which provides protection against subsequent infection by a pathogen (e.g., bacteria, other infectious agents which produce stress proteins) or reduction or prevention of adverse effects of cancer cells.

Alternatively, a selected stress protein can be administered to an individual, generally over time, to induce immune tolerance against the selected stress protein. For example, a selected stress protein can be administered in multiple doses over time in order to induce immune tolerance against an autoimmune disease such as rheumatoid arthritis.

Brief Description of the Drawings

Figure 1 is a graphic representation of the homologies between mycobacterial antigens and known stress proteins. Figure 1A is a representation of sequence

5 similarity between portions of the M. tuberculosis 71-kDa antigen (residues 1-204; TB 71 kDa) and the E. coli DnaK protein (residues 430-639). Figure 1B is a representation of sequence similarity between portions of the M. tuberculosis 65-kDa antigen (residues 1-540; TB 65 kDa)

10 and the E. coli GroEL protein (residues 1-547).

Figure 2 is a comparison of the amino acid sequence of the human P1 protein (573 residues) (SEQ ID NO: 1) and the amino acid sequence of the groEL protein (547 residues) (SEQ ID NO: 2).

15 Figure 3 is a comparison of the amino acid sequence of the human P1 protein (573 residues) (SEQ ID NO: 1), which is a homolog of groEL protein, and the amino acid sequence of the 65 kDa M. leprae protein (540 residues) (SEQ ID NO: 3).

20 Figure 4 is a comparison of the amino acid sequence of the human P1 protein (573 residues) (SEQ ID NO: 1), which is a homolog of the groEL protein, and the amino acid sequence of the 65kDa M. tuberculosis protein (540 residues) (SEQ ID NO: 4).

25 Figure 5 is a schematic representation of selected stress protein fusion vectors which contain a polylinker with multiple cloning sites permitting incorporation of a gene of interest.

Figure 6 is a schematic representation of the stress protein fusion vector, pKS70 containing the T7 RNA polymerase promoter, a polylinker and the mycobacterial tuberculosis hsp70 gene, and the stress protein fusion vector pKS72 containing the HIV p24 gag gene subcloned into the pKS70 vector.

Figure 7 is a graph illustrating the anti-p24 antibody titer in mice injected with the p24-hsp70 fusion protein, p24 alone and hsp70 alone.

Detailed Description of the Invention

Cells respond to a variety of stressful stimuli by increasing the synthesis of specific stress proteins. The most extensively studied cellular response to stressful stimuli is the synthesis of heat shock proteins (hsp) by a cell, induced by a sudden increase in temperature.

Because many of the heat shock proteins are also induced by other stresses, they are frequently called stress proteins. Stress proteins and their relatives appear to help assemble and disassemble protein complexes. In bacteria, the major stress proteins, hsp70 and hsp60,

occur at moderate levels in cells that have not been stressed but accumulate to very high levels in stressed cells. For example, hsp70 and hsp60 normally account for 1-3% of total <u>E. coli</u> protein, but can accumulate to about 25% under stressful conditions. Eukaryotic hsp70 and

20 hsp60 proteins do not accumulate to these extreme levels.

Their levels range from undetectable to moderately abundant, depending on the organism and cell type.

The present invention is based on the observation that stress proteins are among the major antigens

25 available for presentation to T lymphocytes and may be common immune targets in a broad spectrum of infectious diseases. Immune responses to stress proteins are involved in immune surveillance by the body and a variety of different T cell types has been shown to recognize highly conserved stress protein determinants. Several observations, described below, suggest a model of immune surveillance in which self-reactive T cells provide a first line of defense against infection or other invasion by pathogens, which include, but are not limited to,

-7-

viruses, microorganisms, other organisms, substances such as toxins and toxoids, and agents which cause cell transformation, by recognizing and helping to eliminate stressed autologous cells, as well as cells infected with intracellular pathogens. Without wishing to be bound by this model, it is presented as one means by which it is possible to explain why prokaryotic and eukaryotic cells respond to a variety of potentially damaging stimuli, such as elevated temperature, by increasing the synthesis of a family of proteins, referred to as stress proteins, which are among the most highly conserved and abundant proteins found in nature.

Investigation of antigens involved in the immune response to the tuberculosis and leprosy bacilli (M. tuberculosis and M. leprae) initially led to the observation that a variety of stress proteins are among the major targets of the immune response, as is described at greater length below.

Further assessment has demonstrated that stress 20 proteins may be common immune targets in a broad spectrum of infectious diseases. Sequence analysis has revealed 70-kDa heat shock protein homologues among major antigens of the protozoan parasites Plasmodium falciparum (Bianco, A.E. et al., Proc. Natl. Acad. Sci., USA, 83:8713-8717 25 (1986)) and Schistosoma mansoni (Hedstrom, R. et al., J. Exp. Med., 165:1430-1435 (1987)) and the malarial parasite Brugia malavi (Selkirk, M.E. et al., J. Cell Biochem., 12D:290 (1988)). Similarly, homologues of GroEL have been found among antigens involved in the immune response to 30 Salmonella typhimurium and Coxiella (Vodkin, M.H. and J.C. Williams, <u>J. Bacteriol</u>, <u>170</u>:1227 (1988)), as well as Bordetella pertussis (Del Giudice, G., et al., J. of Imm., 150: 2025-2032 (1993)). The presence of stress proteins among major immune targets in a variety of human pathogens 35 is support for the idea that the stress response may be a

general component of infection and that stress proteins should be considered among candidates for subunit . vaccines. All organisms respond to heat by inducing synthesis of heat shock proteins (hsp), which are a group 5 of proteins. This response is the most highly conserved genetic system known and has been shown to occur in every organism, including microorganisms, plants and animals, investigated to date. Many of the characteristics of the response are common to all organisms and the hsp are among 10 the most highly conserved proteins known. For example, hsp90 family and hsp70 family proteins are present in widely diverse organisms. The proteins in each family-even in such diverse organisms -- show approximately 50% identity at the amino acid level and at the nonidentical 15 residues, exhibit many similarities. Several of the proteins induced by heat are also induced by a variety of other stresses. The hsps or a closely related/similar protein are present in all organisms at normal temperatures and have been shown to have key functions in 20 normal cell metabolism. Lindquist, S. and E.A. Craig, Ann. Rev. Genet., 22:631-677 (1988). Because the stress response is common to prokaryotes and eukaryotes and stress proteins are among the most highly conserved in sequence, it is reasonable to expect that an antigen from 25 one pathogen could immunize against another pathogen. Exposure to foreign stress proteins early in life might, in fact, induce a degree a immunity to a variety of infectious agents. If so, this could provide an explanation for the observation that, for many pathogens, 30 only a fraction of infected individuals actually acquire clinical disease.

The following is a description of the relationship which has been observed between stress proteins and the immune response to mycobacterial infection; of the observation and supporting information that stress

proteins are immune targets in many infections by pathogens; of the role of stress proteins as immune targets in transformed cells; of recognition of the fact that the immune response to conserved stress protein

5 determinants may play an important role in autoimmune pathology in rheumatoid arthritis, as well as in adjuvant arthritis; and of the role of stress proteins in immune surveillance, as well as a model proposed for immune surveillance in which self-reactive T cells provide a

10 first line of defense against infection and cell transformation.

Mycobacterial Stress Proteins are Targets of the Immune Response

An intriguing relationship between stress proteins
and the immune response to mycobacterial infection has
been observed. A more detailed examination of stress
protein determinants and immune response mechanisms is
essential to understanding the relationship among stress
proteins, infection, and immunity.

In view of the involvement of proteins of M. 20 tuberculosis and M. leprae in humoral and cell-mediated immune responses and to establish the functions of these proteins in the mycobacterial cell, the DNA encoding several of the M. tuberculosis and M. leprae antigens have 25 been sequenced. The results, discussed in Example 1, demonstrate that many of these mycobacterial protein antigens exhibit striking sequence similarity to known stress-induced proteins. Three of the M. leprae and two of the M. tuberculosis protein antigens studied have been 30 shown to exhibit striking sequence similarity to known stress proteins. For reasons discussed in Example 1, it is concluded that two of the M. leprae and two of the M. tuberculosis antigens are homologues of the E. coli DnaK and GroEL proteins.

In mice, immunization with mycobacterial lysates elicits antibody responses to at least six M. tuberculosis protein antigens and a similar number of M. leprae protein antigens. Monoclonal antibodies specific for these 5 proteins have been used to isolate clones from λ gtll DNA expression libraries of M. tuberculosis and M. leprae. The sequence of the DNA clones revealed that mycobacterial hsp70 (alias 70 kDa antigen) and hsp60 (alias 65 kDa antigen, GroEL) were the major targets of the murine 10 antibody response to both M. tuberculosis and M. leprae. Two additional hsp, an 18 kDa member of the small hsp family and a 12 kDa homologue of groES, were found among the M. leprae and M. tuberculosis antigens. Young, D.B., et al., Proc. Natl. Acad. Sci., USA, 85:4267-4270 (1988); 15 Shinnick, T.M., et al., Nuc. Acids Res., 17:1254 (1989). The mycobacterial stress proteins are among the immunodominant targets of both murine antibody and T cell responses. In one study which summarized results obtained from 10 laboratories, a collection of 24 murine monoclonal 20 antibodies recognized 6 M. leprae proteins; 7 of these antibodies are directed against 6 different determinants

in the M. leprae hsp60. Engers, H.D., et al., Infect.

Immun., 48:603-605 (1985); Mehra, V., et al., Proc. Natl.

Acad. Sci., USA, 83:7013-7017 (1986). In a similar study,

3 of 33 monoclonal antibodies raised against M.

tuberculosis recognized the M. tuberculosis hsp60 protein.

Engers, H.D., et al., Infect. Immun., 51:718-720 (1986).

Finally, limiting dilution analysis indicates that 20% of the mycobacterial-reactive CD4+ T lymphocytes in mice

immunized with <u>M. tuberculosis</u> recognize this antigen. Kaufmann, S.H., <u>et al.</u>, <u>Eur. J. Immunol.</u>, <u>17</u>:351-357 (1987).

Although a rigorous quantitative analysis of the human immune response to mycobacterial stress proteins has not yet been reported, mycobacterial stress proteins are

-11-

recognized by human antibodies and T lymphocytes and the evidence suggests that these proteins are among the major targets of the human cell mediated immune response.

Emmrich. F., et al., J. Exp. Med., 163:1024-1029 (1985);

5 Mustafa, A.S., et al., Nature (London). 319:63-66 (1986);

Oftung, F., et al., J. Immunol., 138:927-931 (1987); Lamb, J.R., et al., EMBO J., 6:1245-1249 (1987). T lymphocytes from patients with mycobacterial infection or from volunteers immunized with mycobacteria have been cloned and tested for their ability to recognize the mycobacterial stress proteins. In each of these studies, some fraction of the human T cell clones were shown to recognize one or more of the mycobacterial stress proteins.

15 <u>Stress Proteins are Immune Targets in Infections by Pathogens</u>

The observation that stress proteins are important targets of the immune response to mycobacterial infection and the knowledge that the major stress proteins are 20 conserved and abundant in other organisms suggested that stress proteins are likely to be immune targets in many infections by pathogens. Indeed, that is now clearly the case. Antigens from a wide variety of infectious agents have been identified as members of stress protein 25 families. The major stress protein antigen recognized by antibodies in bacterial infections is hsp60. "Common antigen", an immunodominant protein antigen long known to be shared by most bacterial species, turns out to be hsp60. Shinnick, T.M., et al., Infect. Immun., 56:446 30 (1988); Thole, J.E.R., et al., Microbial Pathogenesis, $\underline{4}$:71-83 (1988). Stress proteins have also been identified as immune targets in most major human parasite infections. Bianco, A.E., et al., Proc. Natl. Acad. Sci. USA, 83:8713 (1986); Nene, V., et al., Mol. Biochem. Parasitol., 21:179

(1986); Ardeshir, F., et al., EMBO J., 6:493 (1987);
Hedstrom, R., et al., J. Exp. Med., 165:1430 (1987);
Selkirk, M.E., et al., J. Cell Biochem., 12D:290 (1988),
Engman, D.M., et al., J. Cell Biochem., 12D: Supplement,
290 (1988); Smith, D.F., et al., J. Cell Biochem., 12D:296
(1988). Antibodies to hsp70 have been identified in the
sera of patients suffering from malaria, trypanosomiasis,
leishmaniasis, schistosomiasis and filariasis. Hsp90 is
also a target of antibodies in trypanosomiasis and a
10 member of the small hsp family is recognized in some
patients with schistosomiasis.

patients with schistosomiasis. Proteins homologous to stress proteins have also been identified in viruses. Recently, a protein encoded by the RNA genome of the Beet Yellows Closterovirus, a plant 15 virus, has been shown to be homologous to hsp70. Agranovsky, A.A., et al., J. Mol. Biol., 217: 603-610 (1991). In addition, stress protein induction occurs in eukaryotic cells following infection by diverse viruses in vitro. Collins, P.L., and Hightower, L.E., J. Virol., 20 <u>44</u>:703-707 (1982); Nevins, J.R., <u>Cell</u>, <u>29</u>:913-939 (1982); Garry, R.F. et al., Virology, 129:391-332 (1988); Khandjian, E.W. and Turler, H., Mol. Cell Biol., 3:1-8 (1983); LaThangue, N.B., et al., EMBO J., 3:267-277 (1984); Jindal, S. and Young, R., <u>J. Viral</u>, <u>66:</u>5357-5362 (1992). CTL that recognize these neo-antigens could limit 25 the spread of virus by killing infected cells, possibly before substantial amounts of mature virus are assembled, and by secreting the lymphokine γ -interferon. Pestka, S., in: Methods Enzymol., Interferons, Part A., Vol. 79 30 Academic Press, New York, pp. 667 (1981). Evidence consistent with this idea is emerging. Koga et al., (1989) have shown that infection of primary murine macrophages with CMV rendered them susceptible as targets for MHC-I restricted CD8* CTL specific for linear epitopes 35 of M. tuberculosis hsp60. Koga, T., et al. (1989).

-13-

Although the epitope recognized by these CTL on infected macrophages was not defined, it is tempting to speculate that a cross-reactivity with self hsp60 epitopes is being observed. Indeed, the same groups showed that a 5 homologous hsp60 is constitutively present in macrophages and is upregulated by γ -interferon stimulation.

Stress Proteins as Immune Targets in Transformed Cells

Stress proteins appear to be produced at high levels in at least some transformed cells. Bensaude, O. and 10 Morange, M., EMBO J., 2: 173-177 (1983). An 86 kDA murine tumor antigen has been found to be homologous to representatives of the hsp90 family in yeast and Drosophila. Ullrich, S.J., Proc. Natl. Acad. Sci., USA, 83: 3121-3125 (1986). Immunization of mice with the 15 purified protein led to inhibition of tumor growth in 95% of experimental animals that had been seeded with cultured tumor cells. All of the protected mice had high titers of anti-hsp90 serum antibody which was able to precipitate murine hsp90 from lysates of heat shocked mouse embryo 20 cells. Again, a role for autoreactive lymphocytes is implied, since T cells capable of recognizing autologous cells stressed by transformation could help eliminate nascent tumor cells.

Stress Proteins and Autoimmune Processes

25

Rheumatoid arthritis is characterized by a chronic proliferative and inflammatory reaction in synovial membranes which is thought to involve autoimmune processes. Rat adjuvant arthritis resembles human rheumatoid arthritis in many respects, and has been used 30 as an experimental animal model for human disease. Pearson, C.M., Arthritis Rheum., 7:80-86 (1964). Adjuvant arthritis can be induced in rats with a single intradermal injection of killed M. tuberculosis in complete Freund's

adjuvant. An autoimmune process involving T lymphocytes appears to be responsible for the generation of the disease. Holoshitz, J., et al., Science, 219:56-58 (1983). T cell lines isolated from the draining lymph nodes of arthritic rats and propagated in vitro by stimulation with M. tuberculosis-pulsed syngeneic antigen presenting cells can cause a transient form of the disease when transferred to irradiated rats. Since care was taken in these experiments to exclude the transfer of contaminating M. tuberculosis, this result strongly suggests that the clinical effects of the disease are a consequence of an autoimmune reaction in which the autoantigen is shared with M. tuberculosis.

The rat and M. tuberculosis antigens recognized by 15 the arthritogenic T cells have been sought for a number of years. A number of different proteins present in synovial membranes have been proposed to be the cross-reactive rat antigen, but were later discounted as procedures for the purification of these proteins improved. van Eden, W., et 20 al., Proc. Natl. Acad. Sci., USA, 82:5117-5120 (1985); Holoshitz, J., et al., Science, 219:56-58 (1983). The M. tuberculosis antigen recognized by the arthritogenic T cells was recently shown to be a 65 kDa protein (van Eden, W., et al., Nature, 331:171 (1988), which has now been 25 shown to be hsp60 (see the Example 1). Using a combination of truncated recombinant 65 kDa proteins and peptides, a nine amino acid epitope of hsp60 has been identified as the minimum stimulatory sequence for arthritogenic T cell clones in proliferation assays. Now 30 that it is clear that some arthritogenic T cells recognize the mycobacterial hsp60, it is quite possible that the rat autoantigen is also hsp60.

The results obtained in the adjuvant arthritis model led investigators to determine whether T lymphocytes from human rheumatoid arthritis patients also recognize

-15-

mycobacterial antigens. These investigators have found not only that patients with rheumatoid arthritis have T cells that recognize M. tuberculosis antigens, but that these T cells have diverse phenotypes. Substantial 5 proliferative responses to mycobacterial extracts are observed with uncloned T cells (predominantly CD4*) from both synovial infiltrates and peripheral blood, although responses are generally greater in synovial infiltrates. Abrahamson, T.G., et al., Scand. J. Immunol., 7:81-90 10 (1978); Holoshitz, J., et al., Lancet ii, 305-306 (1986). Holoshitz et al. found that 4 of 5 T cell clones isolated from human rheumatoid synovia which respond to M. tuberculosis antigens were CD4 CD8 cells with γ/δ T cell receptors. Holoshitz, J., et al., Nature, 339:226-229 15 (1989). This observation is interesting because γ/δ T cells have yet to be assigned a role in immunity. One of the γ/δ clones was tested for its ability to respond to purified mycobacterial hsp60 and was found to be positive in proliferation assays. Due to the conserved nature of 20 stress proteins, these T cells have the potential for autoreactivity. Lamb and coworkers have shown that polyclonal T cells from synovial infiltrates recognize both mycobacterial hsp60 and hsp70. Lamb, J.R., et al., Intl. Immunol., in press (1989). The population of T 25 cells that recognize the mycobacterial stress proteins were shown to respond to E. coli hsp60 and hsp70 and, most interestingly, human hsp70 purified from heat shocked macrophages. Thus, immune responses to conserved stress protein determinants, perhaps initiated by bacterial 30 infection (not necessarily by mycobacteria), may play an important role in autoimmune pathology in rheumatoid arthritis, as well as in adjuvant arthritis.

Stress Proteins and Immune Surveillance

-16-

Stress Proteins and Immune Surveillance

A variety of different T cell types has now been shown to recognize highly conserved stress protein determinants. The ability of cells to respond to stress 5 by increasing the levels of the highly conserved stress proteins; the presence of T cells of diverse phenotypes in healthy individuals that are capable of recognizing self stress protein determinants; and observations that stress responses are induced by pathogenic infections and by cell 10 transformation, all suggest a model of immune surveillance in which self-reactive T cells provide a first line of defense against infection and transformation by recognizing and helping to eliminate stressed autologous cells, as well as cells infected with intracellular 15 pathogens. The pool of lymphocytes that recognize conserved stress protein determinants might be induced during establishment of natural microbial flora on the skin and in the gut, and maintained by frequent stimulation by pathogens, such as bacteria and viruses, as 20 well as other stressful stimuli encountered during a normal lifetime. This model is attractive because it provides a way in which the immune system could exploit the existence of conserved epitopes in stress proteins to respond immediately to antigenically diverse pathogens and 25 cellular changes, producing an initial defense that need not await the development of immunity to novel antigens.

The lymphocytes which recognize conserved stress protein determinants must be capable of discriminating between normal and stressed cells. Since many stress proteins are constitutively expressed in normal cells, although at lower levels than in stressed cells, the potential for autoreactivity is ever-present. Normal cells may escape destruction by expressing only substimulatory levels of stress protein determinants on their surfaces. In addition, stress proteins may only be

processed and presented during stress, and it may be relevant that many stress proteins have altered intracellular locations during stress. Finally, immune regulatory networks may prevent activation of autoreactive T cells under normal conditions. The regulatory constraints required by this system might occasionally break down, perhaps during stress caused by bacterial or viral infections, leading to autoimmune disease. Rheumatoid arthritis may be such a disease.

10 Modulation of Immune Response

The precise relationship between stress proteins and the host immune response to infection is as yet undefined. When cells are subjected to a variety of stresses, they respond by selectively increasing the synthesis of a 15 limited set of stress proteins. Some stress proteins, including the products of DnaK and GroEL, are major constituents of the cell under normal growth conditions and are induced to even higher levels during stress. Lindquist, S., Annu. Rev. Biochem. 55: 1151-1191 (1986); 20 Neidhardt, F.C. and R.A. VanBogelen, In Escherichia coli and Salmonella Typhimurium, Cellular and Molecular Biology, (eds. Neidhardt, F.C., Ingraham, J.L. Low, K.B. Magasanik, B. Schaechter, M. and Umbarger, H.E.) Am. Soc. Microbiol., Washington, D.C., pp. 1134-1345 (1987). 25 has now been demonstrated that stress-related proteins are targets of the immune response. Young, D. et al., Proc. Natl. Acad. Sci. USA, 85:4267-4270 (1988). It is reasonable to expect that immunodominant antigens would be found among such abundant proteins, as has now been shown 30 to be the case.

According to the method of the present invention, it is possible to modulate the immune response in an individual, such as a human, other mammal or other vertebrate, by altering the individual's response to

-18-

stress proteins. In particular, it is possible to enhance or induce an individual's response to a pathogen (e.g., bacteria, virus, parasites, or other organism or agent, such as toxins, toxoids) or to cancer cells or enhance or 5 induce an upregulation of an individual's immune status (such as in an immune compromised individual or HIVinfected individual); and to decrease an individual's autoimmune response, such as occurs in some forms of arthritis. In addition, administration of a stress 10 protein using the method of the present invention provides protection against subsequent infection by a pathogen. As demonstrated herein, stress proteins contain regions of highly conserved amino acid sequences and have been shown to be major immunodominant antigens in bacterial and other 15 infections. Therefore, it is reasonable to expect stress proteins can be used to elicit strong immune responses against a variety of pathogens. The stress protein administered to induce or enhance an immune response to pathogens can be the stress protein of the pathogen against which an immune response is desired or other stress protein, a portion of that protein of sufficient size to stimulate the desired immune response or a protein or amino acid sequence which is the functional equivalent of the stress protein in that it is sufficiently 25 homologous in amino acid sequence to that of the stress protein to be capable of eliciting the desired response (an immune response substantially similar to that which occurs in response to the stress protein) in the individual to whom it is administered. The term 30 "sufficiently homologous in amino acid sequence to that of the stress protein" means that the amino acid sequence of the protein or polypeptide will generally show at least 40% identity with the stress protein amino acid sequence; in some cases, the amino acid sequence of a functional

-19-

equivalent exhibits approximately 50% identity with the amino acid sequence of the stress protein.

Any stress-induced proteins or their functional equivalents can be used by the present invention to

5 enhance or induce an immune response in an individual (e.g. a human, other mammal or vertebrate), against an infection by a pathogen, for immunotherapy against cancer cells, for generally upregulating an individual's immune status and for use in inducing immune tolerance in an individual or animal.

The stress proteins of the present invention can be administered in a variety of ways to modulate the immune response of an individual (e.g., a human, other mammal or other vertebrate). In one embodiment, the stress protein 15 is administered as a vaccine which is comprised of the stress protein or a portion of the stress protein which is of sufficient size to stimulate the desired immune response. In this embodiment, the vaccine can be a "specific vaccine" which contains a specific stress 20 protein of a particular pathogen against which an immune response is desired, such as a bacterial stress protein. In this case, since the pathogen's stress proteins are distinguishable from those of the host, it is possible to induce an immunoprophylactic response specific to the 25 pathogen's stress proteins. Blander, S.J., et al., J. Clin. Invest., 91:717-723 (1993). This can be carried out by administering a vaccine which includes all or a portion (e.g., sufficient amino acid sequence to have the desired stimulatory effect on immune response) of the pathogen's 30 stress protein or of another protein having an amino acid sequence sufficiently similar to that of the stress protein sequence to stimulate the immune response to the pathogen's stress protein. Alternatively, in the case of a pathogen which does not contain stress proteins, (e.g. 35 some viruses) or in the condition of neoplasia, stress

proteins or highly conserved stress protein determinants, such as those shown to be recognized by a variety of T cells, can be administered as a type of "general" vaccine to achieve an upregulation of the immune response.

Administration of such a vaccine will enhance the existing immune surveillance system. For instance, a vaccine which includes a bacterial, or other stress protein can be administered to enhance the immune system which will result in an immune response against a pathogen which does

not contain stress proteins. Alternatively, this type of "general" vaccine can be used to enhance an individual's immune response against cancer or to generally upregulate an individual's immune status, such as in an immune compromised individual (e.g., an individual undergoing

case of this embodiment (specific or general vaccine), the immune response to the stress protein sequence will be increased and effects of the pathogen, disease condition or immune impairment will be reduced (decreased, prevented or eliminated).

In another embodiment, stress proteins can be used to enhance immune surveillance by applying local heat or any other substances or changes in condition which induce the stress response in the individual being treated. (This can also be employed in conjunction with the specific

can also be employed in conjunction with the specific vaccine, described previously, administered to enhance an immune response to a stress protein-containing pathogen or in conjunction with the general vaccine, described above, administered to enhance the immune response against a

pathogen which does not contain its own stress proteins, cancer, or to upregulate the immune status of an individual). For example, it is known that increased levels of stress proteins are produced in many types of cancer cells. Therefore, enhancement of the immune

35 surveillance system, using this embodiment of the present

invention as described, can be used to facilitate destruction and/or to prevent progression or establishment of cancer cells.

The method of the present invention can also be used 5 to modify or modulate an individual's response to his or her own cells (e.g., as in autoimmune diseases). are at least two ways in which the present invention can be used immunotherapeutically. First, stress proteins, such as heat shock proteins (e.g., hsp 70 and hsp60), are 10 known to be involved in autoimmune disease. It is, thus, possible to turn down an individual's immune response, resulting in the individual becoming more tolerant of the protein. Second, because it is known that under some circumstances, one component of the immune response in 15 certain autoimmune diseases can be to stress proteins, it is possible to selectively inhibit or interfere with the ability of immune cells which normally interact with such proteins to do so. This can be done, for example, by administering monoclonal antibodies that bind to specific 20 T cell receptors and delete or disable such cells. Alternatively, rather than knocking out immune cells, the stress response in cells can be turned down by administering a drug capable of reducing a cell's ability to undergo the stress response. For example, a drug 25 targeted to or specific for heat shock transcription factor, which is needed to stimulate heat shock genes, can be administered. The transcription factor is rendered nonfunctional or subfunctional and, as a result, cells' ability to undergo the stress response is also lessened.

In another embodiment of the present invention, the stress protein is administered as a vaccine which is comprised of two moieties: a stress protein and another substance (referred to as an antigen, e.g. protein, peptide, carbohydrate, lipid, organic molecule) against which an immune response is desired. The two moieties are

conjugated or joined to form a single unit. Conjugation can be achieved by chemical means (e.g. through a covalent bond between the stress protein and the second moiety) or, as demonstrated in Example 2, by recombinant techniques.

- 5 If recombinant techniques are used to produce the conjugate, the result is a recombinant fusion protein which includes the stress protein and the antigen in a single molecule. This makes it possible to produce and purify a single recombinant molecule in the vaccine
- 10 production process. In this embodiment, the stress protein can be seen to act as an adjuvant-free carrier, and it stimulates strong humoral and T cell responses to the substance to which the stress protein is fused. The stress protein can be conjugated to any substance against
- which an immune response is desired or to a portion of the substance sufficient to induce an immune response in an individual to whom it is administered. The substance includes but is not limited to proteins, peptides, oligosaccharides, lipids, carbohydrates, organic molecules
- or a combination thereof. Barrios, C. et al., Eur. J. Immun., 22:1365-1372 (1992). Recent evidence demonstrating the effectiveness of such a vaccine indicates that mycobacterial hsp70 proteins when conjugated to other proteins act as adjuvant-free
- 25 carriers. Lussow, A.R., et al., Eur. J. Immun., 21:2297-2302 (1991). The humoral immune response to some peptides conjugated to mycobacterial hsp70 administered without any adjuvant was very similar to the antibody response to the same peptides administered in Freund's complete adjuvant.
- 30 Lussow, A.R., et al., Eur. J. Immun., 21:2297-2302 (1991).
 Barrios, C. et al., Eur. J. Immun., 22:1365-1372 (1992).
 The present invention also relates to compositions comprising a stress protein joined to another component, such as a fusion protein in which a stress protein is

35 fused to an antigen.

-23-

As demonstrated in Example 3, the HIV p24 gag gene was subcloned into the stress protein fusion vector pKS70 (Figure 6), containing the T7 RNA polymerase promoter, a polylinker and the mycobacterial tuberculosis hsp70 gene.

5 The resulting vector pKS72 (Figure 6) was used to produce the p24-hsp70 fusion protein in E. coli. Adjuvant-free, purified p24-hsp70 fusion protein was injected into Balb/c mice and as shown in Figure 7, the anti-p24 antibody titer was 2.7 orders of magnitude higher in mice injected with the p24-hsp70 fusion protein than in mice injected with p24 alone or hsp70 alone. Mice injected with p24 and the adjuvant, alum, also produced an antibody response to p24. Finally, a demonstrable T cell response was seen in mice injected with the p24-hsp70 fusion protein and in mice injected with p24 alone.

In another embodiment of the present invention, the stress protein or a portion of the stress protein which is of sufficient size to stimulate an immune response or an equivalent, is administered as an adjuvant, with another substance (referred to as an antigen) against which an immune response is desired. The stress protein can be used as an adjuvant with any substance or antigen against which an immune response is desired or to a portion of the substance sufficient to induce an immune response in an individual to whom it is administered. The substance includes proteins, peptides, oligosaccharides, lipids, carbohydrates, organic molecules or a combination thereof.

The stress protein, stress protein portion, stress protein functional equivalent and the substance to which the stress protein is fused or conjugated present in the vaccine can be produced or obtained using known techniques. For example, the stress protein or stress protein portion can be obtained (isolated) from a source in which it occurs in nature, can be produced by cloning and expressing a gene encoding the desired stress protein

or stress protein portion or can be synthesized chemically or mechanically.

An effective dosage of the stress proteins of the

present invention as vaccines or adjuvants, to elicit

specific cellular and humoral immunity to stress proteins, or to substances conjugated to the stress proteins, such as proteins or oligosaccharides, is in the range of 0.1 to 1000 ug hsp per injection, depending on the individual to whom the stress protein is being administered. Lussow,

10 A.R., et al., Eur. J. Immun., 21:2297-2302 (1991).

Barrios, C. et al., Eur. J. Immun., 22:1365-1372 (1992).

The appropriate dosage of the stress protein for each individual will be determined by taking into consideration, for example, the particular stress protein

15 being administered, the type of individual to whom the stress protein is being administered, the age and size of the individual, the condition being treated or prevented and the severity of the condition. Those skilled in the

Various delivery systems can be used to administer an effective dose of the vaccine of the present invention.

Methods of introduction include, for example, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural and oral routes. Any other convenient route of administration can be used (infusion of a bolus injection, infusion of multiple injections over time, absorption through epithelial or mucocutaneous linings such as, oral mucosa, rectal and intestinal mucosa) or a series of injections over time.

art will be able to determine using no more than routine

20 experimentation, the appropriate dosage to administer to

an individual.

The present invention is further illustrated by the following exemplification, which is not intended to be limiting in any way.

-25-

EXEMPLIFICATION

EXAMPLE 1 Isolation and Characterization of Mycobacterial Stress Protein Antigens

Recombinant DNA Clones. The isolation and

characterization of M. tuberculosis and M. leprae \(\lambda \text{tll} \)

genomic DNA clones with murine monoclonal antibodies have been described. Husson, R.N. and Young, R.A., Proc. Natl. Acad. Sci., USA 84: 1679-1683 (1987); Young, R.A., et al., Nature (London) 316: 450-452 (1985). DNA was isolated

from these clones and was manipulated by standard procedures. Davis, R.W., Advanced Bacterial Genetics: A Manual for Genetic Engineering (Cold Spring Harbor Lab., Cold Spring Harbor, NY), (1980).

<u>DNA Sequence Analysis.</u> DNA was subcloned into vector M13mp18 or M13mp19 (New England Biolabs), as suggested by the supplier. Dideoxynucleotide chain-termination reactions and gel electrophoresis of the sequenced produced were as described. Davis, R.W., <u>Advanced Bacterial Genetics</u>: A Manual for Genetic Engineering (Cold Spring Harbor Lab., Cold Spring Harbor, NY), (1980). DNA sequences were determined for both strands of DNA. Computer analysis of sequences with UWGCG programs was as described by Devereux, J., <u>et al.</u>, <u>Nucleic Acids Res.</u>, 12: 387-395 (1984).

Immunoblot Analysis. Escherichia coil strain TG1 was transformed with the following plasmids by standard procedures (Maniatis, T., et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Lab., Cold Spring Harbor, NY) (1982), with selection for ampicillin resistance: pND5, a derivative of pBR325 containing the E. coli GroEL genes (Jenkins, A.J., et al., Mol. Gen. Genet., 202: 446-454 (1986); pUC8 (Vic, J., Gene, 19: 259-268 (1982); pUC8 with insert DNA for λgtll clone Y3178 (M.

leprae 65-kDa antigen, Young, R.A., et al., Nature,
(London) 316: 450-452 (1985)) ligated in the EcoRI site.

Overnight cultures of <u>E. coli</u> strains in Luria-Bertani (LB) medium were centrifuged and resuspended in isotonic phosphate-buffered saline at a cell density corresponding to an absorbance of 2 at 600 nm. An equal volume of sample buffer containing 2% (wt/vol) NaDodSo4 was added, and, after heating on a boiling water bath for 2 min, samples were electrophoresed on 12% (wt/vol)

polyacrylamide gels in the presence of NaDodSO4. Blots
 were prepared by electrophoretic transfer of the proteins
 to a nitrocellulose membrane, and binding of monoclonal
 antibodies was assayed with a peroxidase-conjugated
 secondary antibody as described. Young, D.B., et al.,
Infect. Immun., 55: 1421-1425 (1987).

Six M. tuberculosis and six M. leprae proteins have been implicated in the immune response to the mycobacterial pathogens (Table 1). To obtain clues to the normal cellular function of several of these mycobacterial antigens, DNA clones encoding these proteins, isolated by using monoclonal antibodies to probe lambda gtll libraries (Husson, R.N. and Young, R.A., Proc. Natl. Acad. Sci., USA, 84: 1679-1683 (1987); Young, R.A., et al., Nature, (London) 316: 450-452 (1985)) were subjected to sequence analysis. The sequences elucidated have been submitted to the GenBank sequence database.

The Mycobacterial 71-k Da Antigen. The 71-k Da antigen of \underline{M} . tuberculosis is recognized by human T cells during infection (Table 1).

-27-

TABLE 1

MYCOBACTERIAL PROTEIN ANTIGENS

Protein, kDA	Recognized by Human T Cells	Subjected to sequence analysis	Homology with known proteins
M. tuberculosis			
71	+	+	DnaK
65*	+	+	GroEL
38	+	-	-
19	+	+	None
14	+	_	-
12	ND	-	<u>-</u>
			·
M. leprae			
70	ND		DnaK
65	+	+	GroEL
36	+	-	<u>-</u>
28	+	-	
18	+	+	Plant Hsp
12	ND	<u> </u>	-

Mycobacterial protein antigens, their recognition by human T cells, and homology of the deduced mycobacterial protein sequences to known proteins are summarized. ND, not determined; +, yes; -, no

- * Includes data derived from study of the 65-kDA antigens of M. bovis BCG (Bacillus Calmette-Gurein), which is identical to the M. tuberculosis 65-kDA antigen.
 - + A.S. Mustafa, J.R. Lamb, D. Young and R.A. Young, unpublished data.

The insert DNA of lambdagtll clone Y3271 (Husson, R.N., et al., Proc. Natl. Acad. Sci. USA, 84: 1679-1683 (1987), was sequenced to obtain amino acid sequence information for the 71-kDa antigen of M. tuberculosis.

5 This clone produces a beta-galactosidase fusion protein containing the carboxyl-terminal one-third of the 71-kDa antigen exhibiting 40% amino acid sequence identity with the comparable segment of the dnaK gene product from E. coli (Bardwell, J.C., et al., Proc. Natl. Sci., USA, 81:

10 848-852 (1984)), (Fig. 1). Figure 1A shows the extent of sequence similarity between portions of the mycobacterial and the <u>E. coli</u> 70-k Da polypeptides. Sequences transcriptionally downstream from the mycobacterial 71-k Da gene predict a 356-amino acid protein homologous to the

E. coli dnaJ gene product (unpublished data), indicating that the <u>E. coli dnaK-dnaJ</u> operon structure is conserved in <u>M. tuberculosis</u> and consistent with the conclusion that the mycobacterial 71-kDa antigen is a homologue of the <u>E. coli dnaK</u> gene product. The product of the <u>dnaK</u> gene is a member of the 70-kDa heat shock protein family that is

highly conserved among prokaryotes and eukaryotes
(Bardwell, J.C., et al., Proc. Natl. Acad. Sci., USA, 81: 848-852 (1984); Lindquist, S., Annu. Rev. Biochem., 55: 1151-1191 (1986).

The <u>M. leprae</u> 70-k Da antigen cross-reacts with monoclonal antibodies directed to the <u>M. tuberculosis</u> 70-kDa antigen. <u>M. tuberculosis</u> and <u>M. leprae</u> are both members of the 70-k Da heat shock protein family of stress proteins.

The mycobacterial 65-kDa antigen. The 65-kDa antigens of M. tuberculosis and M. leprae are involved in the human T-cell response to mycobacterial infection (Table 1). Genes encoding these proteins have been isolated (Husson, R.N., and Young, R.A., Proc. Natl. Acad. Sci., USA, 84: 1679-1683 (1987); Young, R.A., et al.,

Nature, (London) 316: 450-452 (1985)) and sequenced (Shinnick, T.M., J. Bacteriol., 169: 1080-1088 (1987); Mehram, V., et al., Proc. Natl. Acad. Sci., USA 83: 7013-7017 (1986)), revealing that the amino acid sequences of the 65-kDa antigens of M. tuberculosis (SEQ ID NO: 4) and M. leprae (SEQ ID NO: 3) are 95% identical. These proteins sequences exhibited no significant sequence similarity to proteins in the GenBank database.

Identification of these proteins was based on the
observation that some monoclonal antibodies directed
against the mycobacterial 65-kDa antigens cross-react with
an <u>E. coli</u> protein of 60kDa. <u>E. coli</u> cells transformed
with the plasmid pND5 (Sanger, F., et al., Proc. Natl.
Acad. Sci., USA 74: 5463-5467 (1977), which contains the

E. coli gro E genes, had been shown to accumulate large
amounts of the 60-kDa protein. A comparison of the
mycobacterial 65-kDa protein sequences with those
determined for <u>E. coli groEl</u> (C. Woolford, K. Tilly, C.
Georgopoulous, and R.H., unpublished data) revealed the
extent of the sequence similarity as shown in Figure 1B.

The 60-kDa Gro EL protein is a major stress protein in E. coli. Lindquist, S., Annual. Rev. Biochem., 55: 1151-1191 (1986); Nature, 333: 330-334 (1988). There is some evidence that the mycobacterial 65-kDa proteins accumulate in response to stress: Mycobacterium bovis BCG (bacillus Calmette-Guerin) cultures grown in zinc-deficient medium are substantially enriched in this protein (De Bruyn, J., et al., Infect. Immun. 55: 245-252 (1987)). This infers that the 65-kDa proteins of M. tuberculosis and M. leprae are homologues of the E. coli Gro EL protein.

Other Mycobacterial Antigens. T lymphocytes that respond to the M. tuberculosis 19-kDa antigen and the M. leprae 18-kDa antigen have been observed in humans with tuberculosis and leprosy, respectively (Table 1). DNA

encoding these antigens was sequenced from the λgtll
clones Y3148 (Husson, R.N. and Young, R.A., Proc. Natl.
Acad. Sci., USA 84: 1679-1683 (1987); and Y3179 (Young,
R.A., et al., Nature, (London) 316: 450-452 (1985)),
s respectively. The M. tuberculosis 19-kDa protein sequence
predicted from the DNA exhibited no significant sequence
similarity to proteins in the GenBank database.

However, the <u>M. leprae</u> 18-kDa protein sequence was similar to the soybean 17-kDa protein heat shock protein, a protein representation of a major class of plant heat shock proteins (Schoffl, F. and Van Bogelen, R.A., <u>In</u>: <u>Escherichia coli and Salmonella typhimurium</u>, Cellular and Molecular Biology, Am. Soc. Microbiol., Washington, D.C. (1987).

15 EXAMPLE 2 Construction of Stress Protein-Fusion Vaccines for Use as Adjuvant-Free Carriers in Immunizations

Recombinant Fusion Vectors. A series of stress protein fusion vectors for use in E. coli were constructed and are shown in Figure 5. These vectors contain the T7 RNA polymerase promoter fused to the M. bovis BCG hsp70 gene or the M. bovis BCG hsp60 gene. The vectors also contain a polylinker with multiple cloning sites, permitting incorporation of a gene of interest so that the antigen encoded by that gene is expressed as a fusion protein with the stress protein. A subset of these vectors permit incorporation of the foreign gene with a coding sequence for a C-terminal 6-Histidine "tag" for ease of fusion protein purification. Thus far, recombinant clones have been generated that produce hsp70 proteins fused to HIV gag and HIV pol proteins.

-31-

Purification of stress protein fusions. Two strategies have been developed to purify the recombinant fusion proteins. The T7 system usually produces such large amounts of protein that it forms inclusion bodies, permitting purification by centrifugation. The preliminary results indicate that an hsp70-HIV gag fusion protein accounts for about 20% of total E. coli protein in the T7 system. If necessary, other fusion proteins can be purified via the 6-Histidine "tag".

10 EXAMPLE 3 ADJUVANT-FREE CARRIER EFFECT OF HSP70 IN VIVO

The stress protein fusion vector pKS70 (figure 6), containing the T7 RNA polymerase promoter, a polylinker and the mycobacterial tuberculosis hsp70 gene, was constructed. The HIV p24 gag gene was subcloned into pKS70 using the Ndel and BamHI sites and the resulting pKS72 vector (Figure 6) was used to produce the p24-hsp70 fusion protein in E. coli. The fusion protein was purified as inclusion bodies and further purified using ATP-agarose chromatography and MonoQ ion exchange chromatography.

The p24-hsp70 protein in phosphate buffered saline (PBS), in the absence of an adjuvant, was injected intraperitoneally into Balb/c mice. As controls, the p24 protein alone in PBS or the hsp70 protein alone in PBS was injected into different groups of mice. Three weeks later, the mice were boosted and finally, three weeks after the boost, the mice were bled. The anti-p24 antibody titer was then determined by ELISA. Mice injected with 25 pmoles of p24-hsp70 had antibody levels 2.7 orders of magnitude higher than mice injected with p24 alone or hsp70 alone (Figure 7). Results of experiments in which mice were injected with p24 and the adjuvant, alum, also showed that there was an antibody response to p24. In addition, mice injected with the p24-hsp70 fusion

-32-

protein and mice injected with p24 alone produced a demonstrable T cell response.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.

-33-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) Applicants: Whitehead Institute for Biomedical Research and Medical Research Council
 - (ii) TITLE OF INVENTION: Stress Proteins and Uses Therefore
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Hamilton, Brook, Smith & Reynolds, P.C.
 - (B) STREET: 2 Militia Drive
 - (C) CITY: Lexington
 - (D) STATE: MA
 - (E) COUNTRY: USA
 - (F) ZIP: 02173
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/073,381
 - (B) FILING DATE: 04 June 1993

- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Granahan, Patricia
 - (B) REGISTRATION NUMBER: 32,227
 - (C) REFERENCE/DOCKET NUMBER: WHI88-08AFA2
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (617) 861-6240
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 575 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Leu Arg Leu Pro Thr Val Phe Arg Gln Met Arg Pro Val Ser Arg

1 5 10 15

Val Leu Ala Pro His Leu Thr Arg Ala Tyr Ala Lys Asp Val Lys Phe 20 25 30

Gly Ala Asp Ala Arg Ala Leu Met Leu Gln Gly Val Asp Leu Leu Ala 35 40 45

Asp Ala Val Ala Val Thr Met Gly Pro Lys Gly Arg Thr Val Ile Ile 50 55 60

Glu Gln Ser Trp Gly Ser Pro Lys Val Thr Lys Asp Gly Val Thr Val 65 70 75 80

-35-

Ala	Lys	Ser	Ile	Asp 85	Leu	Lys	Asp	Lys	Tyr 90	Lys	Asn	Ile	Gly	Ala 95	Ly
Leu	Val	Gln	Asp 100	Val	Ala	Asn	Asn	Thr 105	Asn	Glu	Glu	Ala	Gly 110	qzA	Gl
Thr	Thr	Thr 115	Ala	Thr	Val	Leu	Ala 120	Arg	Ser	Ile	Ala	Lys 125	Glu	Gly	Pho
Glu	Lys 130	Ile	Ser	Lys	Gly	Ala 135	Asn	Pro	Val	Glu	Ile 140	Arg	Arg	Gly	Va:
Met 145	Leu	Ala	Val	Asp	Ala 150	Val	Ile	Ala	Glu	Leu 155	Lys	Lys	Gln	Ser	Ly:
Pro	Val	Thr	Thr	Pro 165	Glu	Glu	Ile	Ala	Gln 170	Val	Ala	Thr	Ile	Ser 175	Ala
Asn	Gly	Asp	Lys 180	Glu	Ile	Gly	Asn	Ile 185	Ile	Ser	Asp	Ala	Met 190	Lys	Lys
Val	Gly	Arg 195	Lys	Gly	Val	Ile	Thr 200	Val	Lys	Asp	Gly	Lys 205	Thr	Leu	Ası
Asp	Glu 210	Leu	Glu	Ile	Ile	Glu 215	Gly	Met	Lys	Phe	Asp 220	Arg	Gly	Tyr	Ile
Ser 225	Pro	Tyr	Phe	Ile	Asn 230	Thr	Ser	Lys	Gly	Gln 235	Lys	Cys	Glu	Phe	Glr 240
Asp	Ala	Tyr	Val	Leu 245	Leu	Ser	Glu	Lys	Lys 250	Ile	Ser	Ser	Ile	Gln 255	Ser
Ile	Val	Pro	Ala 260	Leu	Glu	Ile	Ala	Asn 265	Ala	His	Arg	Lys	Pro 270	Leu	Val
Ile	Ile	Ala 275	Glu	Asp	Val	Asp	Gly 280	Glu	Ala	Leu	Ser	Thr 285	Leu	Val	Let
Asn	Arg 290	Leu	Lys	Val	Gly	Leu 295	Gln	Val	Val	Ala	Val 300	Lys	Ala	Pro	Gly

Phe 305	Gly	Asp	Asn	Arg	Lys 310	Asn	Gln	Leu	Lys	Asp 315	Met	Ala	Ile	Ala	Thr 320
Gly	Gly	Ala	Val	Phe 325	Gly	Glu	Glu	Gly	Leu 330	Thr	Leu	Asn	Leu	Glu 335	Asp
Val	Gln	Pro	His 340	Asp	Leu	Gly	Lys	Val 345	Gly	Glu	Val	Ile	Val 350	Thr	Lys
Asp	Asp	Ala 355	Met	Leu	Leu	Lys	Gly 360	Lys	Gly	Asp	Lys	Ala 365	Gln	Ile	G1u
Lys	Arg 370	Ile	Gln	Glu	Ile	Ile 375	Glu	Gln	Leu	Asp	Val 380	Thr	Thr	Ser	Glu
Tyr 385	Glu	Lys	Glu	Lys	Leu 390	Asn	Glu	Arg	Leu	Ala 395	Lys	Leu	Ser	Asp	Gly 400
Val	Ala	Val	Leu	Lys 405	Val	Gly	Gly	Thr	Ser 410	Asp	Val	Glu	Val	Asn 415	Glu
Lys	Lys	Asp	Arg 420	Val	Thr	Asp	Ala	Leu 425	Asn	Ala	Thr	Arg	Ala 430	Ala	Val
Glu	Glu	Gly 435	Ile	Val	Leu	Gly	Gly 440	Gly	Cys	Ala	Leu	Leu 445	Arg	Cys	Ile
Pro	Ala 450	Leu	Asp	Ser	Leu	Thr 455	Pro	Ala	Asn	Glu	Asp 460	Gln	Lys	Ile	Gly
Ile 465	Glu	Ile	Ile	Lys	Arg 470	Thr	Leu	Lys	Ile	Pro 475	Ala	Met	Thr	Ile	Ala 480
Lys	Asn	Ala	Gly	Val 485	Glu	Gly	Ser	Leu	Ile 490		Glu	Lys	Ile	Met 495	Gli
			500					505			Gly		510		
Met	Val	Glu 515	_	Gly	Ile	Ile	Asp 520		Thr	Lys	Val	Val 525	Arg	Thr	Ala

-37-

Leu Leu Asp Ala Ala Gly Val Ala Ser Leu Leu Thr Thr Ala Glu Val
530 535 540

Val Val Thr Glu Ile Pro Lys Glu Glu Lys Asp Pro Gly Met Gly Ala 545 550 555 560

Met Gly Gly Met Gly Gly Xaa Xaa Gly Met Gly Gly Met Phe 565 570 575

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Xaa Met Ala Xaa Xaa Xaa Xaa Xaa Xaa Ala Lys Asp Val Lys Phe 20 25 30

Gly Asn Asp Ala Arg Val Lys Met Leu Arg Gly Val Asn Val Leu Ala 35 40 45

Asp Ala Val Lys Val Thr Leu Gly Pro Lys Gly Arg Asn Val Val Leu 50 55 60

Asp Lys Ser Phe Gly Ala Pro Thr Ile Thr Lys Asp Gly Val Ser Val 65 70 75 80

Ala Arg Glu Ile Glu Pro Glu Asp Lys Phe Glu Asn Met Gly Ala Gln 85 90 95

-38-

Met	Val	Lys	Glu 100	Val	Ala	Ser	Lys	Ala 105	Asn	Asp	Ala	Ala	Gly 110	Asp	Gly
Thr	Thr	Thr 115	Ala	Thr	Val	Leu	Ala 120	Gln	Ala	Ile	Ile	Thr 125	Glu	Gly	Lev
Lys	Ala 130	Val	Ala	Ala	Gly	Met 135	Asn	Pro	Met	Asp	Leu 140	Lys	Arg	Gly	Ile
Asp 145	Lys	Ala	Val	Thr	Ala 150	Ala	Val	Glu	Glu	Leu 155	Lys	Ala	Leu	Ser	Va]
Pro	Cys	Ser	Asp	Ser 165	Lys	Ala	Ile	Ala	Gln 170	Val	Gly	Thr	Ile	Ser 175	Ala
Asn	Ser	Asp	Glu 180	Thr	Val	Gly	Lys	Leu 185	Ile	Ala	Glu	Ala	Met 190	Asp	Lys
Val	Gly	Lys 195	Glu	Gly	Val	Ile	Thr 200	Val	Glu	Asp	Gly	Thr 205	Gly	Leu	Glr
Asp	Glu 210	Leu	Asp	Val	Val	Glu 215	Gly	Met	Gln	Phe	Asp 220	Arg	Gly	Tyr	Leu
Ser 225	Pro	Tyr	Phe	Ile	Asn 230	Lys	Pro	Glu	Thr	Gly 235	Ala	Val	Glu	Leu	Glu 240
Ser	Pro	Phe	Ile	Leu 245	Leu	Ala	Asp	Lys	Lys 250	Ile	Ser	Asn	Ile	Arg 255	Glu
Met	Leu	Pro	Val 260	Leu	Glu	Ala	Val	Ala 265	Lys	Ala	Gly	Lys	Pro 270	Leu	Lev
Ile	Ile	Ala 275	Glu	Asp	Val	Glu	Gly 280	Glu	Ala	Leu	Ala	Thr 285	Ala	Val	Val
Asn	Thr 290	Ile	Arg	Gly	Ile	Val 295	Lys •	Val	Ala	Ala	Val	Lys	Ala	Pro	Gly

Phe 305	Gly	Asp	Arg	Arg	Lys 310	Ala	Met	Leu	Gln	Asp 315	İle	Ala	Thr	Leu	Th:
Gly	Gly	Thr	Val	Ile 325	Ser	Glu	Glu	Xaa	Ile 330	Gly	Met	Glu	Leu	Glu 335	Lys
Ala	Thr	Leu	Glu 340	Asp	Leu	Gly	Gln	Ala 345	Lys	Arg	Val	Val	Ile 350	Asn	Lys
Asp	Thr	Thr 355	Thr	Ile	Ile	Asp	Gly 360	Val	Gly	Glu	Glu	Ala 365	Ala	Ile	Glr
Gly	Arg 370	Val	Ala	Gln	Ile	Arg 375	Gln	Gln	Ile	Glu	Glu 380	Ala	Thr	Ser	Asp
Tyr 385	Asp	Arg	Glu	Lys	Leu 390	Gln	Glu	Arg	Val	Ala 395	Lys	Leu	Ala	Gly	Gly 400
Val	Ala	Val	Ile	Lys 405	Val	Gly	Ala	Ala	Thr 410	Glu	Val	Glu	Met	Lys 415	Glu
Lys	Lys	Ala	Arg 420	Val	Glu	Asp	Ala	Leu 425	His	Ala	Thr	Arg	Ala 430	Ala	Val
Glu	Glu	Gly 435	Val	Val	Ala	Gly	Gly 440	Gly	Val	Ala	Leu	Ile 445	Arg	Val	Ala
Ser	Lys 450	Leu	Ala	Asp	Leu	Arg 455	Gly	Gln	Asn	Glu	Asp 460	Gln	Asn	Val	Val
Ser 465	Ser	Ser	Leu	Xaa	Arg 470	Ala	Met	Glu	Ala	Pro 475	Leu	Arg	Gln	Ile	Val 480
Leu	Asn	Cys	Gly	Glu 485	Glu	Pro	Ser	Val	Val 490	Ala	Asn	Thr	Val	Lys 495	Gly
Gly	Asp	Gly	Asn 500	Tyr	Gly	Tyr	Asn	Ala 505	Ala	Thr	Glu	Glu	Tyr 510	Gly	Asn

Met Ile Asp Met Gly Ile Leu Asp Pro Thr Lys Val Thr Arg Ser Ala 515 520 525

Leu Gln Tyr Ala Ala Ser Val Ala Gly Leu Met Ile Thr Thr Glu Cys
530 535 540

Met Val Thr Asp Leu Pro Lys Asn Asp Xaa Ala Ala Asp Leu Gly Ala 545 550 555 560

Ala Gly Gly Met Gly Gly Met Gly Gly Met Met Xaa 565 570 575

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 573 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Lys Thr Ile Ala Tyr 20 25 30

Asp Glu Glu Ala Arg Arg Gly Leu Glu Arg Gly Leu Asn Ser Leu Ala 35 40 45

Asp Ala Val Lys Val Thr Leu Gly Pro Lys Gly Arg Asn Val Val Leu 50 55 60

Glu Lys Lys Trp Gly Ala Pro Thr Ile Thr Asn Asp Gly Val Ser Ile
65 70 75 80

_	4	1	-
---	---	---	---

Ala	Lys	Glu	Ile	Glu 85	Leu	Glu	Asp	Pro	Tyr 90	Glu	Lys	Ile	Gly	Ala 95	Glu
Leu	Val	Lys	Glu 100	Val	Ala	Lys	Lys	Thr 105	Asp	Asp	Val	Ala	Gly 110	Asp	Gly
Thr	Thr	Thr 115	Ala	Thr	Val	Leu	Ala 120	Gln	Ala	Leu	Val	Lys 125	Glu	Gly	Leu
Arg	Asn 130	Val	Ala	Ala	Gly	Ala 135	Asn	Pro	Leu	Gly	Leu 140	Lys	Arg	Gly	Ile
Glu 145	Lys	Ala	Val	Asp	Lys 150	Val	Thr	Glu	Thr	Leu 155	Leu	Lys	Asp	Ala	Lys
Glu	Val	Glu	Thr	Lys 165	Glu	Gln	Ile	Ala	Ala 170	Thr	Ala	Ala	Ile	Ser 175	Ala
Xaa	Gly	Asp	Gln 180	Ser	Ile	Gly	Asp	Leu 185	Ile	Ala	Glu	Ala	Met 190	Asp	Lys
Val	Gly	Asn 195	Glu	Gly	Val	Ile	Thr 200	Val	Glu	Glu	Ser	Asn 205	Thr	Phe	Gly
Leu	Gln 210	Leu	Glu	Leu	Thr	Glu 215		Met	Arg	Phe	Asp 220	Lys	Gly	Tyr	Ile
Ser 225	Gly	Tyr	Phe	Val	Thr 230		Ala	Glu	Arg	Gln 235	Glu	Ala	Val	Leu	Glu 240
Glu	Pro	Tyr	Ile	Leu 245		Val	. Ser	Ser	Lys 250		Ser	Thr	Val	Lys 255	Asj
Leu	Leu	Pro	Leu 260		Glu	. Lys	val	11e 265		Ala	. Gly	Lys	Ser 270		Lei
Ile	Ile	Ala 275		Asp	val	. Gl u	Gly 280		Ala	Leu	Ser	Thr 285		Val	Va.
Asn	. Lys 290		. Arg	Gly	Thr	Phe 295		Ser	val	. Ala	Val		. Ala	Pro	G1

Phe	Gly	Asp	Arg	Arg	Lys	Ala	Met	Leu	Gln	Asp	Met	Ala	Ile	Leu	Thr
305					310					315					320

- Gly Ala Gln Val Ile Ser Glu Glu Xaa Val Gly Leu Thr Leu Glu Asn 325 330 335
- Thr Asp Leu Ser Leu Leu Gly Lys Ala Arg Lys Val Val Met Thr Lys 340 345 350
- Asp Glu Thr Thr Ile Val Glu Gly Ala Gly Asp Thr Asp Ala Ile Ala 355 360 365
- Gly Arg Val Ala Gln Ile Arg Thr Glu Ile Glu Asn Ser Asp Ser Asp 370 375 380
- Tyr Asp Arg Glu Lys Leu Gln Glu Arg Leu Ala Lys Leu Ala Gly Gly
 385 390 395 400
- Val Ala Val Ile Lys Ala Gly Ala Ala Thr Glu Val Glu Leu Lys Glu
 405 410 415
- Arg Lys His Arg Ile Glu Asp Ala Val Arg Asn Ala Lys Ala Ala Val
 420 425 430
- Glu Glu Gly Ile Val Ala Gly Gly Gly Val Thr Leu Leu Gln Ala Ala 435 440 445
- Pro Ala Leu Asp Lys Leu Lys Leu Thr Gly Asp Glu Ala Thr Xaa Gly 450 455 460
- Ala Asn Ile Val Lys Val Ala Leu Glu Ala Pro Leu Lys Gln Ile Ala 465 470 475 480
- Phe Asn Ser Gly Met Glu Pro Gly Val Val Ala Glu Lys Val Arg Asn 485 490 495
- Leu Ser Val Gly His Gly Leu Asn Ala Ala Thr Gly Glu Tyr Glu Asp 500 505 510
- Leu Leu Lys Ala Gly Val Ala Asp Pro Val Lys Val Thr Arg Ser Ala 515 520 525

WO 94/29459

-43-

Leu Gln Asn Ala Ala Ser Ile Ala Gly Leu Phe Thr Thr Xaa Glu Ala 530 535 540

Val Val Ala Asp Lys Pro Glu Lys Thr Ala Ala Pro Ala Ser Asp Pro 545 550 555 560

Thr Gly Gly Met Gly Gly Xaa Met Asp Xaa Xaa Xaa Phe 565 570

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 573 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Lys Thr Ile Ala Tyr 20 25 30

Asp Glu Glu Ala Arg Arg Gly Leu Glu Arg Gly Leu Asn Ala Leu Ala 35 40 45

Asp Ala Val Lys Val Thr Leu Gly Pro Lys Gly Arg Asn Val Val Leu 50 55 60

Glu Lys Lys Trp Gly Ala Pro Thr Ile Thr Asn Asp Gly Val Ser Ile 65 70 75 80

Ala Lys Glu Ile Glu Leu Glu Asp Pro Tyr Glu Lys Ile Gly Ala Glu 85 90 95

Leu	Val	Lys	Glu 100	Val	Ala	Lys	Lys	Thr 105	Asp	Asp	Val	Ala	Gly 110	Asp	Gly
Thr	Thr	Thr 115	Ala	Thr	Val	Leu	Ala 120	Gln	Ala	Leu	Arg	Lys 125	Glu	Gly	Leu
Arg	Asn 130	Val	Ala	Ala	Gly	Ala 135	Asn	Pro	Leu	Gly	Leu 140	Lys	Arg	Gly	Ile
Glu 145	Lys	Ala	Val	Glu	Lys 150	Val	Thr	Glu	Thr	Leu 155	Leu	Lys	Gly	Ala	Lys 160
Glu	Val	Glu	Thr	Lys 165	Glu	Gln	Ile	Ala	Ala 170	Thr	Ala	Ala	Ile	Ser 175	Ala
Xaa	Gly	Asp	Gln 180	Ser	Ile	Gly	Asp	Leu 185	Ile	Ala	Glu	Ala	Met 190	Asp	Lys
Val	Gly	Asn 195	Glu	Gly	Val	Ile	Thr 200	Val	Glu	Glu	Ser	Asn 205	Thr	Phe	Gly
Leu	Gln 210	Leu	Glu	Leu	Thr	Glu 215	Gly	Met	Arg	Phe	Asp 220	Lys	Gly	Tyr	Ile
Ser 225	Gly	Tyr	Phe	Val	Thr 230	Asp	Pro	Glu	Arg	Gln 235	Glu	Ala	Val		Glu 240

Leu Leu Pro Leu Leu Glu Lys Val Ile Gly Ala Gly Lys Pro Leu Leu 260 265 270

Asp Pro Tyr Ile Leu Leu Val Ser Ser Lys Val Ser Thr Val Lys Asp

250

245

Ile Ile Ala Glu Asp Val Glu Gly Glu Ala Leu Ser Thr Leu Val Val 275 280 285

Asn Lys Ile Arg Gly Thr Phe Lys Ser Val Ala Val Lys Ala Pro Gly 290 295 300

Phe 305	Gly	Asp	Arg	Arg	110 110	Ala	Met	Leu	Gln	Asp 315	Met	Ala	Ile	Leu	Thr 320
Gly	Gly	Gln	Val	Ile 325	Ser	Glu	Glu	Xaa	Val 330	Gly	Leu	Thr		Glu -335	Ásn
Ala	Asp	Leu	Ser 340	Leu	Leu	Gly	Lys	Ala 345	Arg	Lys	Val	Val	Val 350	Thr	Lys
Asp	Glu	Thr 355	Thr	Ile	Val	Glu	Gly 360	Ala	Gly	Asp	Thr	Asp 365	Ala	Ile	Ala
Gly	Arg 370	Val	Ala	Gln	Ile	Arg 375	Gln	Glu	Ile	Glu	Asn 380	Ser	Asp	Ser	Asp
Tyr 385	Asp	Arg	Glu	Lys	Leu 390	Gln	Glu	Arg	Leu	Ala 395	Lys	Leu	Ala	Gly	Gly 400
Val	Ala	Val	Ile	Lys 405	Ala	Gly	Ala	Ala	Thr 410	·Glu	Val	Glu	Leu	Lys 415	Glu
Arg	Lys	His	Arg 420	Ile	Glu	Asp	Ala	Val 425	Arg	Asn	Ala	Lys	Ala 430	Ala	Val
Glu	Glu	Gly 435	Ile	Val	Ala	Gly	Gly 440	Gly	Val	Thr	Leu	Leu 445	Gln	Ala	Ala
Pro	Thr 450	Leu	Asp	Glu	Leu	Lys 455	Xaa	Leu	Glu	Gly	Asp 460	Glu	Ala	Thr	Gly
Ala 465	Asn	Ile	Val	Lys	Val 470	Ala	Leu	Glu	Ala	Pro 475	Leu	Lys	Gln	Ile	Ala 480
Phe	Asn	Ser	Gly	Leu 485	Glu	Pro	Gly	Val	Val 490	Ala	Glu	Lys	Val	Arg 495	Asn
Leu	Pro	Ala	Gly 500	His	Gly	Leu	Asn	Ala 505	Gln	Thr	Gly	Val	Tyr 510	Glu	Asp

Leu Leu Ala Ala Gly Val Ala Asp Pro Val Lys Val Thr Arg Ser Ala 515 520 525

Leu Gln Asn Ala Ala Ser Ile Ala Gly Leu Phe Leu Thr Thr Glu Ala 530 535 540

Val Val Ala Asp Lys Pro Glu Lys Glu Lys Ala Ser Val Pro Gly Xaa 545 550 550 560

Xaa Xaa Xaa Gly Gly Asp Met Gly Gly Met Asp Phe 565 570

-47-

<u>CLAIMS</u>

- A fusion protein comprising a stress protein fused to a protein against which an immune response is desired.
- 5 2. The fusion protein of Claim 1 wherein the stress protein is a heat shock protein and the protein is a human immunodeficiency viral protein.
- The fusion protein of Claim 2 wherein the heat shock protein is hsp70 and the human immunodeficiency viral
 protein is p24 protein.
- 4. A vaccine comprising all or a portion of a stress protein which induces an immune response in an individual to whom it is administered or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein to be capable of inducing an immune response in an individual to whom it is administered.
- 5. A vaccine of Claim 4 in which the stress protein is a mycobacterial stress protein or a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the mycobacterial stress protein to induce an immune response in the individual to whom it is administered.
- 25 6. A vaccine for use in enhancing in an individual the immune response to a pathogen, comprising all or a portion of a stress protein of the pathogen against which the enhanced response is desired.

5

- 7. A vaccine of Claim 6 in which the stress protein is selected from the group consisting of: mycobacterial stress proteins, bacterial stress proteins, fungal stress proteins, viral stress proteins and parasitic stress proteins.
- 8. A composition comprising all or a portion of a selected stress protein, for use in producing or enhancing an immune response in an individual, wherein the stress protein is in sufficient quantity to elicit the desired immune response.
- 9. A composition comprising a stress protein for use in immunizing an individual against a subsequent infection by a pathogen, wherein the stress protein is in sufficient quantity to produce an immune response to the stress protein.
 - 10. The composition of Claim 9 wherein the stress protein is a stress protein of the pathogen.
- 11. A composition comprising all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein for use in inducing in an individual immune tolerance against a protein, under conditions appropriate for induction of the desired tolerance.
- 25 12. A composition of Claim 11, wherein the protein is a protein associated with rheumatoid arthritis.
 - 13. A vaccine for use in inducing an immune response in an individual comprising all or a portion of a stress protein or all or a portion of a protein having an

-49-

amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein conjugated to a substance to which an immune response is desired or to a portion of the substance sufficient to induce an immune response in an individual.

14. A vaccine of Claim 13 in which the stress protein is a mycobacterial stress protein or a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the mycobacterial stress protein to induce an immune response in an individual to whom it is administered.

10

- 15. A vaccine of Claim 13 in which the substance against which an immune response is desired is selected from the group consisting of: proteins, peptides, oligosaccharides, lipids, carbohydrates, organic molecules and a combination thereof.
- 16. A vaccine for use in inducing an immune response in an individual comprising a recombinant fusion protein which includes all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein fused to a substance against which an immune response is desired or to a portion of the substance sufficient to induce an immune response in an individual.
 - 17. A vaccine of Claim 16 in which the stress protein is a mycobacterial stress protein or a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the mycobacterial stress protein to induce an immune response in an individual to whom it is administered.

-50-

18. A vaccine of Claim 17 in which the protein is the HIV gag or pol protein.

19. A composition for use as an agent to induce immune tolerance, comprising a stress protein conjugated to a substance to which an immune response is desired.

5

10

- 20. A vaccine for use in enhancing in an individual an immune response, comprising all or a portion of a stress protein conjugated to a substance to which an immune response is desired or to a portion of the substance sufficient to enhance an immune response in the individual.
- 21. A vaccine of Claim 20 in which the stress protein is selected from the group consisting of: mycobacterial stress proteins, bacterial stress proteins, fungal stress proteins, viral stress proteins and parasitic stress proteins.
- 22. A composition comprising a stress protein for use in producing or enhancing an immune response in an individual, wherein the stress protein is in sufficient quantity to elicit the desired immune response, and the stress protein is conjugated to a substance against which an immune response is desired or to a portion of the substance sufficient to produce or enhance an immune response in the individual.
 - 23. A composition comprising a stress protein for use in immunizing an individual against a subsequent infection by a pathogen, wherein the stress protein is in sufficient quantity to produce an immune response sufficient to protect the individual against

-51-

subsequent infection by the pathogen, and the stress protein is conjugated to a substance against which an immune response is desired or to a portion of the substance sufficient to produce an immune response in the individual.

24. A vaccine for use in inducing an immune response in an individual comprising all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein and a substance against which an immune response is desired or to a portion of the substance sufficient to induce an immune response in an individual.

- 25. A vaccine of Claim 24 in which the stress protein is a mycobacterial stress protein or a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the mycobacterial stress protein to induce an immune response in an individual to whom it is administered.
- 20 26. A vaccine of Claim 24 in which the substance against which an immune response is desired is selected from the group consisting of: proteins, peptides, oligosaccharides, lipids, carbohydrates, organic molecules and any combination thereof.
- 25 27. A composition for use as an agent to induce immune tolerance, comprising a stress protein and a substance to which an immune response is desired.
- 28. A vaccine for use in enhancing in an individual an immune response, comprising all or a portion of a stress protein and either a substance to which an

WO 94/29459

30

immune response is desired or a portion of the substance sufficient to enhance an immune response in the individual.

- 29. A vaccine of Claim 28 in which the stress protein is selected from the group consisting of: mycobacterial stress proteins, bacterial stress proteins, fungal stress proteins, viral stress proteins and parasitic stress proteins.
- 30. A composition comprising a stress protein and a substance against which an immune response is desired or a portion of the substance sufficient to produce or enhance an immune response in an individual for use in producing or enhancing an immune response in an individual, wherein the stress protein is in sufficient quantity to elicit the desired immune response.
- 31. A composition comprising a stress protein and a substance against which an immune response is desired or to a portion of the substance sufficient to produce or enhance an immune response in the individual for use in immunizing an individual against a subsequent infection by a pathogen, wherein the stress protein is in sufficient quantity to produce an immune response sufficient to protect the individual against subsequent infection by the pathogen.
 - 32. A composition for use as an agent to induce an immune response in an individual to whom it is administered, comprising all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid

sequence of the stress protein to be capable of inducing an immune response in an individual to whom it is administered.

- 33. A composition for use as an agent to induce an immune response in an individual to whom it is administered, comprising all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein conjugated to a substance against which an immune response is desired or to a portion of the substance sufficient to induce an immune response in the individual.
- 34. A composition for use as an agent to induce an immune response in an individual to whom it is administered, comprising a recombinant fusion protein which includes a) all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein and b) a substance against which an immune response is desired or a portion of the substance sufficient to induce an immune response in the individual.
 - 35. A composition for use as an agent to induce immune tolerance, comprising a stress protein.
- 25 36. A composition for use in treating an autoimmune disease, comprising all or a portion of a stress protein or all or a portion of a protein having an amino acid sequence sufficiently homologous to the amino acid sequence of the stress protein to induce immune tolerance in an individual to whom it is administered.

-54-

37. A composition of Claim 36 for treating rheumatoid arthritis.

	н.	10	20	30	40	50	09	70
HUMP1 GROEL	MLRL	PTVFROMRI	PVSRVLAPHLT:	RAYAKDVKFG	SADARALMLQG ::: ::: NDARVKMLRG	VDLLADAVAN : ::::	PTVFROMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWGS : :::::::::::::::::::::::::::::::::::	IEQSWGS :: LDKSFGA
	7.1	80	06	100	110	120	130	140
HUMP1 GROEL	PKVT:	KDGVTVAK:	SIDLKDKYKNI : :::	GAKLVQDVAN:::::::	NTNEEAGDGT: ::::	TTATVLARSI::::::::::::::::::::::::::::::::::::	KDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEI ::::::::::::::::::::::::::::::::::::	GANPVEI: :: GANPMDE
	141	150	160	170	180	190	. 200	210
HUMP1	RRGVI	MLAVDAVIA	ELKKQSKPVT:	TPEEIAQVAT	ISANGDKEIG	NIISDAMKKV : :: ::	MLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE	, GKTLNDE : :::
GROEL	KRGI	DKAVTAAVE	ELKALSVPCS	DSKAIAQVGT	ISANSDETVG	KLIAEAMDKV	KRGIDKAVTAAVEELKALSVPCSDSKAIAQVGTISANSDETVGKLIAEAMDKVGKEGVITVEDGTGLQDE	GTGLQDE
HUMP1	211 LEIIE	220 CGMKFDRGY	230 11SPXFINTSKC	240 SQKCEFQDAY	250 VLLSEKKISS	260 IQSIVPALEI	220 230 240 250 260 270 280 , , , , , , , , , , , , ; ; ; ; ; ; ;	280 IAEDVDG
GROEL	LDVVI	EGMQFDRGY	LSPYFINKPE1	FGAVELESPF	ILLADKKISN	TREMLPVLEA	LDVVEGMQFDRGYLSPYFINKPETGAVELESPFILLADKKISNIREMLPVLEAVAKAGKPLLIIAEDVEG	LAEDVEG
	281	290	300	310	320	330	.340	350
HUMP1 GROEL	EALS1 :::: EALA1	FLVENREKV : : : :AVVNTIRG	GLQVVAVKAPC : ::::: IVKVAAVKAPG	SFGDNRKNOLI	KDMAIATGGAV : ::: :	FGEEGLTLN::	EALSTLVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIV :::::::::::::::::::::::::::::::::::	CVGEVIV : AKRVVI
	351	360	370	380	390	400	410	420
HUMP1	TKDDA	MLLKGKGD	KAQIEKRIQEI	IEQLDVTTSE	YEKEKLNERL	AKLSDGVAVI	TKDDAMLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR	NEKKDR
GROEL	:: NKDTT	: : TIIDGVGE!	EAAIQGRVAQI	: :: RQQIEEATSD	: ::: :: YDREKLQERV	AKLAGGVAV	ii ii: ii: ii: ii: ii: ii: ii: ii: ii:	KEKKAR

FIGURE 2

FIGURE 2 (continued)

	421	4	430	440	450	460	470	480	490
HUMP1	2	TDALNATE	TANEEGIV	/LGGGCALLI	RCIPALDSLT	PANEDOKI(SIELIKRTL	KIPAMTIA	VTDALNATRAAVEEGIVLGGGCALLRCI PALDSLTPANEDQKIGIEI I KRTLKI PAMTIAKNAGVEGSLI
GROEL		EDALHATE	MAVEEGVV	AGGGVALIF	: :VASKLADLR	GONEDONV	: VSSSL-RAM	: IEAPLRQIVI	: ::::::::::::::::::::::::::::::::::::
	491	200	0.	510	520	530	540	550	260
HUMP1	VE	SKIMQSSS	SEVGYDAMA	GDFVNMVER	GIIDPTKVV	RTALLDAAC	SVASLLTTA	EVVVTEIP	VEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA
GROEL		HVKGGDG	: : NYGYNAAT	EEYGNMIDM	GILDPTKVT	: :: :: RSALQYAAS	SVAGLMITT	ECMUTDLP	ANTVKGGDGNYGYNAATEEYGNMIDMGILDPTKVTRSALQYAASVAGLMITTECMVTDLPKND-AADLGA
	561	570	٥.		,				
HUMP1	MG	MGGMGGGMGGGMF	MGGGMF		•				
GROEL	AG	AGGMGGMGGMM-	-WGGMM-						
Total 276	score	. = 4667 ities o	, 5 breaut of 54	ks 5 possibl	Total score - 4667, 5 breaks 276 identities out of 545 possible matches between residues	between	residues		
25 random Alignment		runs score =	65.34 SD		Standard deviation -	ation -	18.94	Mean = 3429.48	1429.48

35 22 1 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1		~ `	10	20	30	40	50	09	70
2011 14 14 14 14 14 14 14 14 14 14 14 14 1	HUMP1 ML65K	MLRL : M	PTVFRQMRI	VSRVLAPHL:	FRAYAKDVKFG :: AKTIAYD	ADARALMLQO	SVDLLADAVA:::::::::::::::::::::::::::::::	VTMGPKGRTVI :: :::::	IEGSWG:
281 21 14 281 281 1351 145 115 115 115 115 115 115 115 115 1		71,	80	06	100	110	120	130	140
141 RRGVP 1: 211 211 LEITE 281 281 EALST :::: EALST 351	HUMP1 ML65K	PKVT : : PTITI	KDGVTVAKS::::	IDLKDKYKNI : : : : :IELEDPYEKI	GAKLVQDVAN	NTNEEAGDG1 : :::: KTDDVAGDG1	TTATVLARS: ::::::: TTATVLAQAI	IAKEGFEKISK ::: :VKEGLRNVAA	GANPVE
R KRGIE 211 211 1 LEITE 1 LELTE 281 281 EALST EALST 351 TKDDAN		141	150	160	170	180	190	. 200	210
212 283 11 11 11 11 11 11 11 11 11 11 11 11 11	UMP1 L65K	RRGVI :: KRGII	MLAVDAVIA :::: EKAVDKVTE	ELKKQSKPVT : : : TLLKDAKEVE	TPEEIAQVAT : : : : TKEQIAATAA	ISANGDKEIG	NIISDAMKKU : :: :: DLIAEAMDKU	GRKGVITVKDO GNEGVITVEE	GKTLNDE : SNTFGLQ
351		211	220	230	240	250	260	270	280
3 2 8	MP1.	LEITE	SGMKFDRGY	ISPYFINTSK:::::	GOKCEFODAYY : :	JLLSEKKISS	IQSIVPALEI	ANAHRKPLVI	IAEDVDG
y y		281	790	002	310	100000000000000000000000000000000000000	VADELFLLER	VIQAGKSLLI	IAEDVEG
S E	2				7	0 *	000	340	350
351 360 370 380 390 400 HUMP1 TKDDAMLLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVG	ML65K	EALST EALST EALST	LVLNKIRGT LVVNKIRGT	SEQUIANTES SERSIVANKAPO	FFGDNRKNOLK ::::::::::::::::::::::::::::::::::::	DMAIATGGAV :::::: DMAILTGAQV	VFGEEGLTEN: : : : : : : : : : : : : : : : : : :	LEDVQPHDLGK::: LENTDLSLLGK	CVGEVIV
		351	360	370	380	390	400	410	420
	MP.1	TKDDA	MLLKGKGDK	AQIEKRIQEI	IEOLDVTTSE	, YEKEKLNERL	AKLSDGVAVI	, KWGGGGG	,
M. A. G. B. C.	נט		****						NEARDR

FIGURE 3

	421	430	440	_	450	460	470	480	490
HUMP1	VTDALN	ATRAAVI	, EEGIVLGG	GCALLRO	, CIPALDSLT	PANEDOKT	, GTETTKR#!	VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDOKIGIETIKBTIKIBBMTTARNAGVEGETT	
ML65K	:: IEDAVRI	::: NAKAAVI	AAVEEGIVAGGGVTLLQAAPALDKL	GVTLLO	AAPALDKLK	LTGDEAT	GANIVKVAI	: ::::::::::::::::::::::::::::::::::::	SVEGSEL SMEPGVV
	491	500	510		520	530	540	550	560
HUMP1	VEKIMQ:	SSSEVG	YDAMAGDE	VNMVEKC	IIDPTKVV.	RTALLDAA(GVASLLTT	IMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTETPKFFKNPGMGA	ADMOMOS
ML65K	:: Aekvrni	гзусны	NAATGEY	; EDLLKAG	GVADPVKVTRSALQNAASIAGLFTT-EAVVA	RSALQNAA	SIAGLETT-	SEKVRNLSVGHGLNAATGEYEDLLKAGVADPVKVTRSALQNAASIAGLFTT-EAVVADKPEKTAAPASDP	: APASDP
	561	570							
HUMP1	MGGMGGGMGGGMF	SMGGGMF	•						
ML65K	TGGMGG-MDF	: -MDF							
Total 255	score = Identiti	552, 7 i out o	4552, 7 breaks es out of 540 pc	ssible	matches	between	residues		
25 random Alignment	25 random runs Alignment score	- 47	47.73 SD	Stand	Standard deviation	tion =	23.86	Mean = 3413.16	.16

FIGURE 3 (continued)

Mean = 3413.16

	п,	10	20	30	40	20	09	70
HUMP1 TB65K	MLRLP:	PTVFROMB	PVSRVLAPHL	TVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWGS :::::::::::::::::::::::::::::::::::	ADARALMLQG :: EEARRGLERG	VDLLADAVAV :::::: LNALADAVKV	.YAKDVKFGADARALMLQGVDLLADAVAVTMGPKGRTVIIEQSWGS :: ::::::::::::::::::::::::::::::::::	IEQSWGS : :: LEKKWGA
	71	80	06	100	110	120	130	140
HUMP1 TB65K	PKVTK : : PTITN	KDGVTVAK	SIDLKDKYKNI : : : : EIELEDPYEKI	PKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLARSIAKEGFEKISKGANPVEI : ::: ::: ::: ::: :: ::::::::::::::::	NTNEEAGDGT:::::	TTATVLARSI :::::: TTATVLAQAL	AKEGFEKISKO ::: RKEGLRNVAAO	GANPVEI::::
	141	150	160	170	180	190	200	210
HUMP1 TB65K	RRGVI :: KRGIE	1LAVDAVI ::: :KAVEKVT	AELKKQSKPV1 : : : ETLLKGAKEVE	RRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDKEIGNIISDAMKKVGRKGVITVKDGKTLNDE :: :: :: :: :: :: :: :: :: :: :: :: ::	ISANGDKEIGI ::::::: ISA-GDQSIGI	VIISDAMKKV : :: OLIAEAMDKV	GRKGVITVKDC : :::: GNEGVITVEES	SKTLNDE : SNTFGLQ
	211	220	230	240	250	260	270	280
HUMP1 TB65K	LEIIE :: : LELTE	GMKFDRG::::::	YISPYFINTSK ::: :: YISGYFVTDPE	LEIIEGMKFDRGYISPYFINTSKGQKCEFQDAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDG :: :: :: :: :: :: :: :: :: :: :: :: ::	TLLSEKKISS) ::::::	QSIVPALEL ::: KDLLPLLEK	ANAHRKPLVII :::::: VIGAGKPLLII	TAEDVDG
	281	290	300	310	320	330	340	350
HUMP1 TB65K	EALSTI ::::: EALSTI	LVLNRLKV ::: LVVNKIRC	VGLQVVAVKAP ::::: STFKSVAVKAP	EALSTLVLNRLKVGLQVVAVKAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIV :::::::::::::::::::::::::::::::::::	DMAIATGGAV :::::::: DMAILTGGQV	FGEEGLTLNI :: : : ISEE-VGLTI	LEDVQPHDLGK	VGEVIV
	351	360	370	380	390	400	410	420
HUMP1	TKDDAM	MLLKGKGD	KAQIEKRIQE	ILLKGKGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR	YEKEKLNERL	AKLSDGVAVL	KVGGTSDVEV	NEKKDR
TB65K	TKDET	::: rivegagd	: TDAIAGRVAQI	::: TKDETTIVEGAGDTDAIAGRVAQIRQEIENSDSDYDREKLQERLAKLAGGVAVIKAGAATEVELKERKHR	Ydrekloerl	::: AKLAGGVAVI	KAGAATEVEL	: : : Kerkhr

SUBSTITUTE SHEET (RULE 26)

	T 7 #		۵. د د د د د د د د د د د د د د د د د د د	0440	450	460	470	480	490
HUMP1		VTDALNATI	RAAVEEGI	VLGGGCALL	RCIPALDSE	TPANEDOKI	, GIELIKRTE.	VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDOKIGIEIIKRTLKIPAMTIAKNAGVEGSLI	, trans
TB65K		:: I EDAVRNAF	AAVEEGI	:: .: VAGGGVTLL	OAAPTLDELI	K-LEGDEAT	GANIVKVAL	: : : : : : : : : : : : : : : : : : :	GLEPGVV
	491		200	510	520	530	540	550	260
HUMP1		2	SEVGYDAM	AGDFVNMVE	KGIIDPTKV	, JRTALLDAA	GVASLLTTA	OSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLTTAEVVVTEIPKEEKDPGMGA	, KDPGMGA
TB65K		: Aekvrnlpa	GHGLNAQ	: TGVYEDLLA	AGVADPVKV1	FRSALQNAA	: :: : : : : : : : : : : : : : : : : :	** * * * * * * * * * * * * * * * * * *	: : KASVPG-
	561	270	0.						
HUMP1		MGGMGGGMGGGMF	GGMF						
TB65K	1	GGDMGGMDF	GMDF						
Total score = 257 identitie	scor	e m 4560 tities o	4560, 5 breaks es out of 540	aks 10 possib.	4560, 5 breaks es out of 540 possible matches between residues	between	residues		
25 random runs Alignment score	ndom	runs score	49.36 SD		Standard deviation =	ation -	23.23	Mean = 3413.16	1

FIGURE 4 (continued)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

information on patent family members

Inv onal Application No PCT/US 94/06362

Patent document cited in search report	Publication date	Patent memb		Publication date
WO-A-8912455	28-12-89	EP-A-	0419569	03-04-91
WO-A-9317712	16-09-93	NONE		
WO-A-9403208	17-02-94	AU-B-	4790093	03-03-94
WO-A-9015873	27-12-90	AU-A- CA-A- EP-A- JP-T-	5848090 2063414 0478664 4506297	08-01-91 20-12-90 08-04-92 05-11-92

THIS PAGE BLANK (USPTO)