Name: _____

Due Date: Thursday, April 16

Exercise 1 Consider the function $f(x) = \frac{1}{1+2x} - \frac{1-x}{1+x}$, with x > 0.

- (a) For what values of x do you expect cancellation of significant digits? Explain.
- (b) Rewrite the expression for computing f(x) so that it avoids cancellation for those values of x identified in part (a).

Exercise 2 Suppose f(x) is continuous on [a, b], and $f(x) \in [a, b]$ for any $x \in [a, b]$. Show that f has at least one fixed point on [a, b].

Exercise 3 Consider the following non-linear equation: $f(x) = x^2 - 0.7x = 0$ on [0.5, 1]

- (a) Show that f(x) has exactly one root on [0.5, 1] without solving the equation.
- (b) Consider the bisection algorithm starting with the interval [0.5, 1], i.e. consider $[a_1, b_1] = [0.5, 1]$ and $p_1 = 0.75$. Find the minimum number of iterations required to approximate the solution with an absolute error of less than 10^{-5} .
- (c) (Programming) Now program a bisection algorithm to verify this. In particular, create three figures.
 - In the first figure, plot the values $|p p_n|$ on the y-axis, and the iteration number in the x-axis.
 - In the second figure, plot $|p_n p_{n-1}|$ in the y-axis and the iteration number in the x-axis.
 - In the third figure, plot the values for $|f(p_n)|$ on the y-axis and the iteration number in the x-axis.

Do your experiments coincide with 3b)?

Exercise 4 Repeat Exercise 3 for the function $f(x) = \sqrt{x} - \cos x$ in the interval [0, 1].