

কিভাবে ক্রিয়া বিক্রিয়া
ঘটিয়ে বিস্ফোরক বানাতে
হয়?

আনসারুল্লাহ বাংলা বুগ
পরিবেশিত

গোলাবারুদ সম্পর্কিত গবেষণাধর্মী বাংলা বই

<http://www.ansarullah.ws/bn/>

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

নিচয়ই সমস্ত প্রশংসা আল্লাহর জন্য। আমরা তারই প্রশংসা করি, তারই নিকট সাহায্য কামনা করি, তারই নিকট ক্ষমা ভিক্ষা করি। আমরা আমাদের হৃদয়ের মন্দ প্রবৃত্তিসমূহ হতে ও আমাদের মন্দ আমলগুলো হতে আল্লাহর নিকট আশ্রয় প্রার্থনা করছি। আল্লাহ যাকে সৎপথ প্রদর্শন করেন, তাকে পথভ্রষ্ট করার কেউ নেই, আর যাকে তিনি বিপথগামী করেন তাতে সৎপথে আনার মত কেউ নেই।

আমি সাক্ষ্য দিচ্ছি যে, আল্লাহ ছাড়া ইবাদতের যোগ্য কেউ নেই, তিনি এক, তার কোন শরিক নেই, আমি আরো সাক্ষ্য দিচ্ছি যে, মুহাম্মাদ (সাঃ) তার বান্দা ও রাসূল। অগনিত দরুদ ও সালাম মুহাম্মাদ (সাঃ) - এর প্রতি, তার পরিবার, সাহাবাগণ এবং কিয়ামত পর্যন্ত যারা তাকে অনুসরণ করবে তাদের সকলের প্রতি। অতপর, আল্লাহ তায়ালা ঘোষণা করেন,

وَقَاتِلُوهُمْ حَتَّىٰ لَا تَكُونَ فِتْنَةٌ وَيَكُونَ الدِّينُ كُلُّهُ لِلَّهِ فَإِنِ اتَّهَوْا فَإِنَّ اللَّهَ بِمَا يَعْمَلُونَ بَصِيرٌ-

“আর তাদের বিরুদ্ধে সশন্ত জিহাদ করতে থাক, যতক্ষণ না ফের্নার অবসান হয় এবং আল্লাহর দ্বীন পূর্ণ প্রতিষ্ঠা হয়। তারপর যদি তারা বিরত হয়ে যায়, তবে আল-হ তাদের কার্যকলাপ লক্ষ্য করেন। (সূরা আনফাল- ৩৯)

يَا أَيُّهَا الَّذِينَ آمَنُوا قاتِلُوا الَّذِينَ يُلُونَكُمْ مِنَ الْكُفَّارِ وَلْيَجُدُوا فِيْكُمْ غِلْظَةً وَاعْلَمُوا أَنَّ اللَّهَ مَعَ الْمُتَّقِينَ-

“হে ইমানদারগণ, তোমাদের নিকটবর্তী কাফেরদের বিরুদ্ধে লড়াই চালিয়ে যাও এবং তারা যেন তোমাদের মধ্যে কঠোরতা অনুভব করে। আর জেনে রেখ আল্লাহ মুভাকীদের সাথে আছেন। (সূরা তাওবা- ১২৩)

وَأَعْدُوا لَهُمْ مَا اسْتَطَعْتُمْ مِنْ قُوَّةٍ وَمِنْ رَبَاطِ الْخَيْلِ ثُرْهِبُونَ بِهِ عَدُوَّ اللَّهِ وَعَدُوَّكُمْ وَآخَرِينَ مِنْ دُونِهِمْ لَا يَعْلَمُونَهُمُ اللَّهُ يَعْلَمُهُمْ وَمَا تُنْفِقُوا مِنْ شَيْءٍ فِي سَبِيلِ اللَّهِ يُوَافِئُ إِلَيْكُمْ وَأَتَتْهُمْ لَا يُظْلَمُونَ-

“আর প্রস্তুত কর তাদের বিরুদ্ধে যুদ্ধের জন্য যা কিছু সংগ্রহ করতে পার নিজের শক্তি সামর্থ্যের মধ্যে থেকে এবং পালিত ঘোড়া থেকে, যেন প্রভাব পড়ে আল-হ তার শক্তদের উপর এবং তোমাদের শক্তদের উপর; আর তাদেরকে ছাড়া অন্যান্যদের উপরও যাদেরকে তোমরা জান না; আল-হ তাদেরকে জানেন। বস্তুত: যা কিছু তোমরা ব্যয় করবে আল-হ রাহে, তা তোমরা পরিপূর্ণভাবে ফিরে পাবে এবং তোমাদের কেন হক অপূর্ণ থাকবে না।” (সূরা আনফাল- ৬০)

وَلَوْ أَرَادُوا الْخُرُوجَ لَا عَدُوًا لَهُ عُدَّةٌ-

“আর যদি আরা যুদ্ধে বের হওয়ার সংকল্প নিত তবে অবশ্যই কিছু সরঞ্জাম প্রস্তুত করত”। (সূরা তাওবা- ৪৬)

إِنَّ رَسُولَ اللَّهِ صَلَّى اللَّهُ عَلَيْهِ وَسَلَّمَ قَالَ: وَ اعْلَمُو أَنَّ الْجَنَّةَ تَحْتَ ظِلَالِ السَّيِّوفِ-

“রাসুলুল্লাহ আলাইহি ওয়া সালাম বলেছেন, জেনে রেখ, জান্নাত তরবারীর ছায়ার নিচে।” (সহীহ বুখারী, ২য় খন্দ-১৪০ পঃঃ)

سُفْتَحُ عَلَيْكُمْ أَرَضُونَ وَيَكْفِيْكُمُ اللَّهُ فَلَا يَعْجِزُ أَحَدُكُمْ أَنْ يَأْهُمُ بِأَسْهُمِهِ-

“আল্লাহ তোমাদের জন্য বহুদেশ বিজয় করিয়ে দিবেন এবং তিনি তোমাদের জন্য যথেষ্ট। অতএব তোমাদের মধ্যে যেন কেহ তীর খেলায় (তথা জিহাদী প্রশিক্ষন নিতে) অপরাগতা প্রকাশ না করে।” (সহীহ মুসলিম)

সুতরাং, একজন মুসলিমের জন্য সশন্ত প্রশিক্ষনের প্রতিমোগিতা করা উচিত, যাতে করে আল্লাহর দুশ্মনদেরকে সহজেই পরাভূত করে আল্লাহর জমিনে আল্লাহর দ্বীন কায়েমে অঙ্গনী ভূমিকা পালন করতে পারে। সাহাবীগণ রাসূল (সাঃ)- এর আদেশ অঙ্গে অঙ্গে পালন করেছিলেন। তাই তাদের নিকট প্রচুর পরিমাণে অন্ত্র না থাকলেও প্রশিক্ষনের কোন কমতি ছিলনা। আল্লাহ সুবহানাল্লাহ ওয়া তায়ালা আমাদেরকে উভয় প্রশিক্ষনের মাধ্যমে তার দ্বীনকে বিজয়ী করার তৌকিক দান করুন। আমিন।

ওয়া সাল- ল- হু আল্লাল্লাহু আলিহী ওয়া আসহাবীহী আজমাঈন।

মূলঃ- এটি একটি বিক্ষেপক বিষয়ক মৌলিক বই। এই বিষয়ে ভালো দক্ষতা অর্জন করতে হলে নিম্নোক্ত বইগুলোও পড়া যেতে পারে। যেমন; “দি কেমিস্ট্রি অব পাউডার এন্ড এক্সপ্লোসিভ (The Chemistry of powder and Explosives)”-এর মূল খন্দ এবং এর আধুনিক খন্দগুলো যা সাত খন্দে প্রকাশিত হয়েছে। স্মরণীয় যে, এই বিষয়ে ভাল করতে হলে অনেক বিষয়ের উপর দক্ষতার প্রয়োজন যেমন :

১. তৎক্ষনিকভাবে প্রস্তুতকৃত বিক্ষেপক পদ্ধতি পদ্ধতি।
২. বিক্ষেপক পদ্ধতি পদ্ধতি।
৩. চার্জের আকৃতি প্রদান পদ্ধতি।
৪. ইলেক্ট্রনিক্স পদ্ধতি পদ্ধতি।
৫. বেতার নিয়ন্ত্রণ পদ্ধতি।

পরিশেষে, একটি বিষয় স্মরণীয় যে শতকরা একভাগ বিক্ষেপক কেবল মুজাহিদদের মাধ্যমে হয়ে থাকে বাকি নিরানবই ভাগ বিক্ষেপক হয়ে থাকে প্রচার মাধ্যমে। উক্ত বিষয়ে পারদর্শী না হয়ে এজাতীয় জিনিস বহন করা যাবে না। মৌলিক জ্ঞান, বাস্তব কৌশল, অন্ত্র প্রশিক্ষন ইত্যাদি প্রাথমিক যোগ্যতা আপনার থাকা উচিত।

সূচীপত্র

বিভিন্ন প্রকার বিস্ফোরক মিশ্রনের তালিকা	৮
প্রাথমিক জ্ঞাতব্য	৯
প্রাথমিক জ্ঞাতব্য বিষয়	৭
উপকরণ এবং প্রতীকসূচী	৮
গবেষণাগারের প্রস্তুতি.....	১০
একটি ভাল গবেষণাগারের বৈশিষ্ট্যবলী	১০
একজন ভালো গবেষকের কর্মীয় বিষয়সমূহ	১০
গবেষণাগারের নিরাপত্তা ব্যবস্থা.....	১১
বিভিন্ন প্রকার কাজের ক্ষেত্রে পূর্ব-প্রস্তুতি.....	১১
কাজের সংরক্ষণ পদ্ধতি.....	১২
গবেষণাগারে দুর্ঘটনা এবং প্রাথমিক চিকিৎসা	১২
বিস্ফোরক সম্পর্কিত আলোচনা.....	১৩
বিস্ফোরক ও বারুদ.....	১৩
বিস্ফোরক মিশ্রনের নীতি	১৩
বারুদের প্রকারভেদ	১৩
বিস্ফোরণের বৈশিষ্ট্য ও প্রভাবসমূহ	১৪
বিভিন্ন প্রকার রাসায়নিক দ্রব্যের প্রস্তুত প্রণালী	১৬
এসিড ও অ্যালকালি-র প্রস্তুত প্রণালী	১৬
সালফিউরিক এসিড, H_2SO_4	১৬
নাইট্রিক এসিড, HNO_3	১৬
অ্যালকালি	১৭
সূচনাকারী পদার্থ (Initiators)-র প্রস্তুত প্রণালী.....	১৮
মারকারী ফালমিনেট, $(CNO)_2Hg$	১৮
লেড নাইট্রেট, $Pb(NO_3)_2$	১৯
লেড অ্যাজাইড, PbN_6	১৯
সিলভার অ্যাজাইড	২১
হেক্সামিন পার অ্যাজাইড, $(C_6H_{12}N_4)_2O_2$	২১
অ্যাসিটোন পার অ্যাজাইড, $(CH_3)_2CO_2$	২২
প্রধান চার্জ (Main Charge).....	২৪
পটসিয়াম ক্লোরেট, $KClO_3$	২৪
সোডিয়াম নাইট্রেট, $NaNO_3$	২৫
ইউরিয়া নাইট্রেট, $(NH_2)_2C(NO_3)_2$	২৫
নাইট্রো-ইউরিয়া.....	২৬
নাইট্রো-বেনজিন, $C_6H_5NO_2$	২৭
প্রিসারিন, $C_3H_5(OH)_5$	২৮
নাইট্রো-গি-সারিন, $C_3H_5(ONO_2)_3$	২৮
নাইট্রো-মিথেন, CH_3NO_2	৩০
টেট্রিল, <i>Tetryl</i>	৩১
আর.ডি.এক্স (RDX) বা <i>Cyclonite</i> , $C_3H_6N_6O_6$	৩১
টি.এন.টি (ট্রাই-নাইট্রো-ট্যুইন), $C_6H_2CH_3(NO_2)_3$	৩৩
ধাক্কা এবং নিষ্কেপক চার্জ (Propellant)	৩৪
নাইট্রো-সেলুলোজ, <i>Nitro-cellulose</i>	৩৪
পাইরো-সেলুলোজ.....	৩৫
গান কটন	৩৬
বিভিন্ন প্রকার বিস্ফোরক মিশ্রন	৩৭

পটাসিয়াম ক্লোরেট ($KClO_3$)-এর মিশ্রন.....	৩৭
অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)-এর মিশ্রন.....	৪৮
ইউরিয়া নাইট্রেট-এর মিশ্রন.....	৪৭
নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$ -এর কতিপয় বিস্ফোরক মিশ্রন.....	৪৮
নাইট্রো-মিথেনের (CH_3NO_2) মিশ্রন.....	৫১
নাইট্রো-সেলুলোজ-এর মিশ্রন.....	৫২
নাইট্রো-বেনজিন ($C_6H_5NO_2$)-এর মিশ্রন.....	৫২
পটাসিয়াম পার ম্যাঙ্গানেট ($KMnO_4$)-এর মিশ্রন.....	৫২
এ্যালুমিনিয়াম পাউডারের মিশ্রন (উচ্চ তাপমাত্রার বিস্ফোরক).....	৫৩
প্রজ্ঞালন মিশ্রন.....	৫৩
কতিপয় বিস্ফোরক পাউডার.....	৫৪
ব- যাক পাউডার.....	৫৪
হোয়াইট পাউডার.....	৫৫
ইয়েলো পাউডার.....	৫৫
বিশেষ কিছু মিশ্রন.....	৫৬
ডেটোনেটর (Detonators).....	৫৮
ডেটোনেটর	৫৮
বুস্টার (BOSTER).....	৫৯
ফিউজ (Fuzes) বা ফাতিল.....	৬০
অঘি-স্কুলিঙ্স ফিউজ/ফাতিল.....	৬০
বিস্ফোরক ফিউজ/ফাতিল.....	৬২
টাইম ডিলে ফিউজ/ফাতিল	৬৩
ক্যাপসুল টাইমার	৬৩
পাইরোটেকনিক (আতশবাজির) ডিলে/কালঙ্কেপন	৬৪
লেড ব্রেক ফিউজ	৬৪
ক্লকওয়ার্ক ইলেক্ট্রিক্যাল ডিলে	৬৭
কলান্জিং সার্কিট	৬৭
সহজ রাসায়নিক ডিলে ফিউজ, ১	৬৯
সহজ রাসায়নিক ফিউজ, ২	৭০
কাপড়ের পিন বা সোন্দার ওয়ার ডিলে	৭১
কেমিক্যাল/মেকানিক্যাল ডিলে ফিউজ	৭১
এসসিআর মডিফায়েড ইলেক্ট্রনিক ক্লক	৭৩
শর্ট ডিলে ইলেক্ট্রনিক সার্কিট	৭৪
লং-রেঞ্জ ইলেক্ট্রনিক টাইমার	৭৬
বিভিন্ন প্রকার বোমা.....	৭৭
ইম্প্যাক্ট বোমা	৭৭
ফ্রাগমেন্টেশন প্রোনেড	৭৮
পাইপ বোমা	৭৯
মেইল বোমা	৮১
লেটার বোমা	৮১
প্যাকেজ বোমা	৮১
ব্যাক প্যাক বোমা	৮২
গাঢ়ি বোমা.....	৮২
সিলিন্ড্রিক্যাল ক্যাভিটি শেপড চার্জ (সিলিন্ডার আকৃতির গহ্বরে চার্জ)	৮২
অগ্নিবোমা	৮৩
পেট্রোল বোমা.....	৮৩
“ড্রানো” + ব্রেক ফ্লুইড ফায়ার বোম	৮৩
মলোটোভ ককটেইল	৮৩
নাপাম বোমা	৮৪
সোডিয়াম বোমা	৮৪

ম্যাগনেসিয়াম বোমা	৮৫
ফসফরাস বোমা	৮৫
<i>BKA</i> বোমা	৮৫
স্মোক বোমা	৮৬
ফ্লাসিং বোমা	৮৬
টাইম ডিলে ফায়ার বোমা	৮৬
পরিশিষ্ট	৮৭

বিভিন্ন প্রকার বিস্ফোরক মিশনের তালিকা

পটাশিয়াম ক্লোরেট ($KClO_3$)-এর মিশনঃ

মিশন - ১: ইয়েলো পাউডার (সালফার এবং অ্যালুমিনিয়াম পাউডার-এর সাথে).....	৩৭
মিশন - ২: হোয়াইট পাউডার (কার্বন এবং সালফার-এর সাথে)	৩৮
মিশন - ৩: নাইট্রো-বেনজিন ($C_6H_5NO_2$)-এর সাথে	৩৮
মিশন - ৪: নাইট্রো-বেনজিন, বেরিয়াম নাইট্রেট, টি. এন. টি, অ্যামোনিয়াম নাইট্রেট, কার্বন-এর সাথে	৩৯
মিশন - ৫: নাইট্রো-বেনজিন, কফি, ম্যাগনেসিয়াম পাউডার-এর সাথে	৩৯
মিশন - ৬: সালফার-এর সাথে	৩৯
মিশন - ৭: ডিজেল বা কেরোসিন বা চিনি-র সাথে	৪০
মিশন - ৮: পটাশিয়াম নাইট্রেট, ম্যাগনেসিয়াম, সালফার, কার্বন ও ইঞ্জিন ওয়েল-এর সাথে.....	৪১
মিশন - ৯: পটাশিয়াম নাইট্রেট, অ্যালুমিনিয়াম পাউডার, চিনি, সালফার, কার্বন ও ইঞ্জিন ওয়েল-এর সাথে	৪১
মিশন - ১০: বেনজিন এবং কাঠের গুড়ের সাথে	৪১
মিশন - ১১: ধি বা ডেসলিনের সাথে.....	৪১
মিশন - ১২: কফি, চিনি, অ্যালুমিনিয়াম পাউডার-এর সাথে.....	৪২
মিশন - ১৩: টি.এন.টি, অ্যালুমিনিয়াম পাউডার, ডেসলিন এবং চিনির সাথে	৪২
মিশন - ১৪: কতিপয় মিশনের পরীক্ষা.....	৪২
মিশন - ১৫: সোডিয়াম ক্লোরেট, অ্যালুমিনিয়াম পাউডার, ইঞ্জিন ওয়েল, চিনি, সালফার এবং কার্বনের সাথে	৪৩
মিশন - ১৬: অ্যামোনিয়াম নাইট্রেট, অ্যালুমিনিয়াম পাউডার, ইঞ্জিন ওয়েল, চিনি, সালফার এবং কার্বনের সাথে	৪৩
মিশন - ১৭: সোডিয়াম নাইট্রেট, অ্যালুমিনিয়াম/ম্যাগনেসিয়াম পাউডার, ইঞ্জিন ওয়েল, চিনি, সালফার এবং কার্বনের সাথে	৪৩
মিশন - ১৮: ইঞ্জিন ওয়েল-এর সাথে	৪৩
মিশন - ১৯: ইঞ্জিন ওয়েল, চিনি-র সাথে	৪৩
মিশন - ২০: সালফার, অ্যালুমিনিয়াম পাউডার, চিনি-সাথে	৪৩
মিশন - ২১: ম্যাগনেসিয়াম পাউডার, অ্যালুমিনিয়াম পাউডার, আয়রণ পাউডার, কার্বন এবং সালফারের সাথে	৪৪

অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)-এর মিশনঃ

মিশন - ১: অ্যালুমিনিয়াম পাউডার এবং সালফার-এর সাথে.....	৪৪
মিশন - ২: ইউরিয়া নাইট্রেট এবং অ্যালুমিনিয়াম পাউডার-এর সাথে	৪৫
মিশন - ৩: অ্যামোনাল (অ্যালুমিনিয়াম পাউডার-এর সাথে)	৪৫
মিশন - ৪: টি.এন.টি এবং অ্যালুমিনিয়াম পাউডার-এর সাথে	৪৫
মিশন - ৫: টি.এন.টি এবং অ্যামোনিয়াম অক্সালেট ($C_2H_8N_2O_4$)-এর সাথে.....	৪৫
মিশন - ৬: টি.এন.টি, কার্বন এবং অ্যালুমিনিয়াম পাউডার-এর সাথে.....	৪৬
মিশন - ৭: নেসক্যাফে (কফি এবং অ্যালুমিনিয়াম পাউডার-এর সাথে).....	৪৬
মিশন - ৮: অ্যানফো (A.N.F.O) (ডিজেলের সাথে).....	৪৬
মিশন - ৯: কাঠের গুড়া বা চিনির সাথে	৪৬
মিশন - ১০: অ্যালুমিনিয়াম পাউডার এবং কার্বনের সাথে	৪৬
মিশন - ১১: টি.এন.টি-এর সাথে.....	৪৬
মিশন - ১২: সাউভ ব্লাস্টার (অ্যালুমিনিয়াম পাউডার এবং কাঠের গুড়ার সাথে).....	৪৬

ইউরিয়া নাইট্রেট ($(NH_2)_2C(NO_3)_2$ -এর মিশনঃ

মিশন - ১: অ্যামোনিয়াম নাইট্রেট এবং অ্যালুমিনিয়াম পাউডার-এর সাথে	৪৭
মিশন - ২: অ্যালুমিনিয়াম পাউডার-এর সাথে.....	৪৭
মিশন - ৩: সালফার এবং অ্যালুমিনিয়াম পাউডার-এর সাথে	৪৭

মিশ্রন - ৪ঁ কফি এবং অ্যালুমিনিয়াম পাউডার-এর সাথে.....	৮৭
নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$-এর মিশ্রণঃ	
মিশ্রন - ১ঁ ডিনামাইট (সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং সোডিয়াম কার্বনেট-এর সাথে).....	৮৮
মিশ্রন - ২ঁ নাইট্রো-সেলুলোজ-এর সাথে	৮৮
মিশ্রন - ৩ঁ নাইট্রো-কাঠের গুড়ার সাথে.....	৮৮
মিশ্রন - ৪ঁ কাঠের গুড়ার সাথে	৮৮
মিশ্রন - ৫ঁ নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে.....	৮৯
মিশ্রন - ৬ঁ সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং অ্যামোনিয়াম অক্সালেট-এর সাথে	৮৯
মিশ্রন - ৭ঁ পটাশিয়াম নাইট্রেট এবং কাঠের গুড়ার সাথে (পরীক্ষিত).....	৮৯
মিশ্রন - ৮ঁ পটাশিয়াম নাইট্রেট, সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং অ্যামোনিয়াম অক্সালেট-এর সাথে	৮৯
মিশ্রন - ৯ঁ পটাশিয়াম নাইট্রেট, নাইট্রো-সেলুলোজ, কাঠের গুড়া এবং অ্যামোনিয়াম অক্সালেট-এর সাথে	৮৯
মিশ্রন - ১০ঁ স্টার্চ এবং নাইট্রো-সেলুলোজ-এর সাথে	৮৯
মিশ্রন - ১১ঁ সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং পটাশিয়াম ক্লোরেট-এর সাথে (পরীক্ষিত)	৮৯
মিশ্রন - ১২ঁ সোডিয়াম নাইট্রেট, কাঠের গুড়া, পটাশিয়াম ক্লোরেট এবং চক-এর সাথে (পরীক্ষিত)	৮৯
মিশ্রন - ১৩ঁ বেরিয়াম নাইট্রেট, কাঠের গুড়া এবং সোডিয়াম কার্বনেট-এর সাথে.....	৫০
মিশ্রন - ১৪ঁ পটাশিয়াম নাইট্রেট, বেরিয়াম নাইট্রেট, কাঠের গুড়া, অ্যামোনিয়াম অক্সালেট এবং ক্যালসিয়াম কার্বনেট-এর সাথে	৫০
মিশ্রন - ১৫ঁ নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে (পরীক্ষিত)	৫০
মিশ্রন - ১৬ঁ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট, কাঠের গুড়া, অ্যামোনিয়াম অক্সালেট এবং সোডিয়াম-ক্লোরেট-এর সাথে (পরীক্ষিত)	৫০
মিশ্রন - ১৭ঁ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট এবং কার্বন-এর সাথে	৫০
মিশ্রন - ১৮ঁ নাইট্রো-সেলুলোজ, পটাশিয়াম নাইট্রেট এবং কাঠের গুড়ার সাথে	৫০
মিশ্রন - ১৯ঁ নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে	৫০
মিশ্রন - ২০ঁ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট এবং পটাশিয়াম নাইট্রেট-এর সাথে	৫০
মিশ্রন - ২১ঁ নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে	৫০
মিশ্রন - ২২ঁ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট এবং কাঠের গুড়ার সাথে.....	৫১
নাইট্রো-মিথেন (CH_3NO_2)-এর মিশ্রণঃ	
মিশ্রন - ১ঁ কাঠের গুড়ার সাথে (পরীক্ষিত)	৫১
মিশ্রন - ২ঁ ইথাইল ডিনামাইট (ডিনামাইটের সাথে)	৫১
মিশ্রন - ৩ঁ আর্যানিলিন-এর সাথে.....	৫১
মিশ্রন - ৪ঁ অ্যামোনিয়াম নাইট্রেট-এর সাথে (পরীক্ষিত)	৫১
মিশ্রন - ৫ঁ অ্যামোনিয়াম হাইড্রোক্লাইড-এর সাথে	৫১
মিশ্রন - ৬ঁ নাইট্রো-সেলুলোজ-এর সাথে (পরীক্ষিত)	৫১
নাইট্রো-সেলুলোজ-এর মিশ্রণঃ	
মিশ্রন - ১ঁ পটাশিয়াম নাইট্রেট এবং সালফারের সাথে.....	৫২
মিশ্রন - ২ঁ নাইট্রো-মিথেন-এর সাথে	৫২
নাইট্রো-বেনজিন ($C_6H_5NO_2$)-এর মিশ্রণঃ	
মিশ্রন - ১ঁ নাইট্রো বেনজিন এবং পটাসিয়াম ক্লোরেট-এর মিশ্রণ	৫২
মিশ্রন - ২ঁ নাইট্রো বেনজিন, পটাশিয়াম ক্লোরেট এবং চিনি-র মিশ্রণ	৫২
মিশ্রন - ৩ঁ নাইট্রো-বেনজিন, পটাশিয়াম ক্লোরেট, চিনি এবং পটাসিয়াম পার ম্যাঙ্কানেট-এর মিশ্রণ.....	৫২
পটাসিয়াম পার ম্যাঙ্কানেট ($KMnO_4$)-এর মিশ্রণঃ	
মিশ্রন - ১ঁ পটাশিয়াম পার ম্যাঙ্কানেট এবং অ্যালুমিনিয়াম পাউডার-এর মিশ্রণ	৫২
মিশ্রন - ২ঁ পটাশিয়াম পার ম্যাঙ্কানেট, অ্যালুমিনিয়াম পাউডার এবং চিনি-র মিশ্রণ	৫৩
অ্যালুমিনিয়াম পাউডার-এর মিশ্রণঃ	
মিশ্রন - ১ঁ অ্যামোনাল (অ্যামোনিয়াম নাইট্রেট-এর সাথে)	৫৩
মিশ্রন - ২ঁ অ্যামোনাইট (অ্যামোনিয়াম নাইট্রেট এবং টি.এন.টি-এর সাথে)	৫৩
মিশ্রন - ৩ঁ থারমিট (অ্যামোনিয়াম নাইট্রেট/বেরিয়াম অক্সাইড, ম্যাগনেসিয়াম পাউডার, ফেরাস অক্সাইড এবং মোটরের তেল-এর সাথে).....	৫৩
প্রজ্ঞালন মিশ্রণঃ	
মিশ্রন - ১ঁ জিংক পাউডার এবং অ্যামোনিয়াম নাইট্রেট-এর মিশ্রণ	৫৩
মিশ্রন - ২ঁ ম্যাগনেসিয়াম পাউডার এবং গ্লিসারিন-এর মিশ্রণ	৫৪
মিশ্রন - ৩ঁ পটাশিয়াম-পার-ম্যাঙ্কানেট এবং সালফিটেরিক এসিড (কয়েক ফোটা)-এর মিশ্রণ	৫৪

মিশন - ৪ঁ প্রজ্ঞলন চার্জ (ক্যালসিয়াম হাইপোক্রোরাইড এবং ব্রেক ফ্লুইড-এর মিশন)	৫৪
ব্ল্যাক পাউডার মিশনঃ	
মিশন - ১ঁ পটাসিয়াম ক্লোরেট, সালফার এবং অ্যালুমিনিয়াম পাউডার-এর মিশন	৫৪
মিশন - ২ঁ পটাশিয়াম নাইট্রেট, কার্বন এবং সালফার-এর মিশন.....	৫৪
মিশন - ৩ঁ পটাসিয়াম ক্লোরেট, সালফার এবং কার্বন-এর মিশন	৫৪
মিশন - ৪ঁ পটাশিয়াম নাইট্রেট, কার্বন, সালফার-এর মিশন (তাপ দিয়ে).....	৫৪
হোয়াইট পাউডার মিশনঃ	
মিশন - ১ঁ পটাসিয়াম ক্লোরেট এবং চিনি-র মিশন	৫৫
মিশন - ২ঁ পটাসিয়াম ক্লোরেট এবং সালফার-এর মিশন.....	৫৫
ইয়েলো পাউডার মিশনঃ	
মিশন - ১ঁ পটাসিয়াম ক্লোরেট, সালফার এবং অ্যালুমিনিয়াম পাউডার-এর মিশন	৫৫
মিশন - ২ঁ পটাসিয়াম ক্লোরেট, সালফার এবং কফি-র মিশন.....	৫৬
বিশেষ কিছু মিশনঃ	
মিশন - ১ঁ সোডিয়াম নাইট্রেট এবং অ্যালুমিনিয়াম পাউডার-এর মিশণ	৫৬
মিশন - ২ঁ লেড নাইট্রেট এবং টি.এন.টি-এর মিশন.....	৫৬
মিশন - ৩ঁ বেরিয়াম নাইট্রেট এবং টি.এন.টি-এর মিশন	৫৬
মিশন - ৪ঁ ব্ল্যাক পাউডার (পটাসিয়াম নাইট্রেট, সালফার এবং কার্বনের মিশন)	৫৬
মিশন - ৫ঁ ব্ল্যাক পাউডার এবং ম্যাগনেসিয়ামের মিশন	৫৬
মিশন - ৬ঁ পটাসিয়াম পার ম্যাঙ্গানেট এবং অ্যালুমিনিয়াম পাউডারের মিশন	৫৬
মিশন - ৭ঁ পটাসিয়াম পার ম্যাঙ্গানেট, চিনি এবং অ্যালুমিনিয়ামের মিশন	৫৬
মিশন - ৮ঁ নাইট্রিক এসিড এবং নাইট্রো-বেনজিন-এর মিশন.....	৫৬
মিশন - ৯ঁ কার্বনেট (কার্বন ট্রো-ক্লোরাইড এবং অ্যালুমিনিয়াম পাউডার-এর মিশন)	৫৭
মিশন - ১০ঁ অ্যাসেট্রোলাইট - A (অ্যালুমিনিয়াম পাউডার, অ্যামোনিয়াম নাইট্রেট এবং হাইড্রোসিল হাইড্রাস-এর মিশন).....	৫৭
মিশন - ১১ঁ অ্যাসেট্রোলাইট - G (অ্যামোনিয়াম নাইট্রেট এবং অ্যানহাইড্রাস হাইড্রোসিল-এর মিশন).....	৫৭
বিশেষ প্রকার ফিউজ/ফাতিল-এর মিশনঃ	
মিশন - ১ঁ পটাসিয়াম ক্লোরেট এবং চিনি-র মিশন	৬০
মিশন - ২ঁ পটাসিয়াম পারমাঙ্গানেট এবং চিনি-র মিশন.....	৬০
মিশন - ৩ঁ পটাসিয়াম নাইট্রেট এবং চিনি-র মিশন.....	৬০
মিশন - ৪ঁ ম্যাচের বারুদ এবং চিনি-র মিশন	৬১
মিশন - ৫ঁ পটাসিয়াম ক্লোরেট, চিনি এবং পানি-র মিশন	৬১
মিশন - ৬ঁ পটাসিয়াম ক্লোরেট, সালফার এবং কার্বন-এর মিশন	৬১
মিশন - ৭ঁ পটাসিয়াম ক্লোরেট, সালফার এবং কার্বন-এর মিশন	৬২
মিশন - ৮ঁ পটাসিয়াম ক্লোরেট, চিনি এবং কার্বন-এর মিশন.....	৬২
মিশন - ৯ঁ পটাসিয়াম ক্লোরেট, চিনি এবং পানি-র মিশন	৬২

প্রাথমিক জ্ঞাতব্য

প্রাথমিক জ্ঞাতব্য বিষয়

বিশুদ্ধ উপকরণের সংজ্ঞা:

একটি বিশুদ্ধ উপকরণে কেবলমাত্র এক প্রকার অণু থাকে। আমাদের তৈরীকৃত উপকরণ অফিসিয়ালী শতকরা ১০০ ভাগ খাঁটি নমুনার সাথে তুলনা করতে হবে। এ উদ্দেশ্যে তুলনা করার জন্য নিম্নের পদ্ধতি অনুসরণ করতে হবে।

১. গলনাংক পরীক্ষা।
২. স্ফুটনাংক পরীক্ষা।
৩. আলোর প্রতিফলন পরীক্ষা।
৪. ইনফ্রারেড রশ্মি পরীক্ষা (বাজারে ইনফ্রারেড রশ্মি বাতি সহজলভ্য)। শুধু মাত্র কঠিন পদার্থের জন্য।

ছাঁকন (Filtration):

বিশেষ ধরনের কাগজের দ্বারা ফিল্টার করা হয় যাহা ফিল্টার পেপার নামে যেকোন কেমিক্যালের দোকানে পাওয়া যায়।

আমরা ফিল্টার পেপার এমন ভাবে তৈরি করি যাতে মাঝখানে ফাঁকা থাকে। যখন আমরা কোন তরল পদার্থ ফিল্টারের জন্য ফাঁকা জায়গায় ঢালি তখন বাতাস উহাকে চাপ দেয় যাহা ফিল্টারে সাহায্য করে। কখনই ফিল্টার পেপার উপচিয়ে তরল ঢালা যাবে না।

নিম্নের উপকরণসমূহ ফিল্টারের জন্য ব্যবহৃত হয়।

১. ফিল্টার পেপার।
২. ফানেল।
৩. আলোড়ন দন্ড।
৪. রিংসহ লোহার স্ট্যান্ড।

উপকরণের বিশুদ্ধিকরণঃ

বিশুদ্ধিকরণ বলতে কোন উপকরণের মধ্যে মিশ্রিত এসিডকে মুক্ত করাকে বুঝায়। আমরা সাধারণ পানি বা ২% সোডিয়াম বাই কার্বনেট দ্রবণ ব্যবহার করতে পারি। এছাড়াও অচুত্ত পরীক্ষার জন্য p^H পেপার ব্যবহার করা যেতে পারে। যখন p^H পেপার গাঢ় সবুজ বা নীল রং দিবে তখন বুঝতে হবে উপকরণটি এসিড মুক্ত। এখন উপকরণটি ছায়া ও শুকনা জায়গায় শুকাতে হবে। যখন পদার্থটি সম্পূর্ণরূপে শুকিয়ে যাবে তখন এটি তুলনামূলক বিশুদ্ধ দ্রবণ হবে। যদি আপনি চান তবে উপকরণটি দ্রুত শুকানোর জন্য একটি ওভেন (Oven) 80°C এর নিচে নির্দিষ্ট করে ব্যবহার করতে পারেন।

বাস্পীভবন/পাতনঃ

বাস্পীভবন/পাতন বলতে তাপ দ্বারা কোন পদার্থকে অন্যান্য ভেজাল দ্রব্য মুক্ত করা বুঝায়। অতঃপর ঘনীভবণ করা হয়। এইভাবে আমরা একটি পদার্থকে উভয় অবস্থায় আলাদা করতে পারি। সমস্ত প্রক্রিয়াটি তাপমাত্রার উপর নির্ভরশীল, যে তাপমাত্রায় ইহা গ্যাসে রূপান্তরিত হয়।

বাস্পীভবন/পাতনকে জানতে আমরা নিচের উদাহরণটি লক্ষ্য করি।

উদাহরণঃ বাস্পীভবন মাধ্যমে আমরা কম মাত্রার কোন নাইট্রিক এসিড (HNO_3) কে বেশী মাত্রার শক্তিশালী এসিডে পরিণত করতে পারি। এই পদ্ধতিতে আমরা পানি শীতলী ঘনভবন ব্যবহার করতে পারি।

একটি হিটারের উপর ফ্লাক্সের মধ্যে কম ঘনমাত্রার নাইট্রিক এসিড রেখে তাপ দিতে থাকি। যখন তাপমাত্রা $70\text{-}75^{\circ}\text{C}$ এ পৌছাবে তখন তরল এসিড গ্যাসে রূপান্তরিত হয়। যখন ইহা পানি কনডেঙ্সারের মধ্যদিয়ে গমন করে তখন কনডেঙ্সারের ভিতরে একটানা ঠান্ডা পানি প্রবাহের কারণে ঐ বাস্প ঠান্ডা হয়ে তরলে পরিণত হয়। কনডেঙ্সারের অপর প্রান্তে রক্ষিত কালো বোতলে আমরা শক্তিশালী নাইট্রিক এসিড (HNO_3) পাই। ইহার ঘনমাত্রা শতকরা ৯৮ ভাগ (HNO_3) হতে পারে।

নোটঃ

১. সকল সংযোগস্থল সিল করতে হবে এবং ছিদ্র বন্ধ করতে ভ্যাসিলন বা প্রিজ ব্যবহার করুন।
২. কম ঘনমাত্রার এসিড দিয়ে কখনই ফানেলের অর্ধেকের বেশী পূর্ণ করা যাবে না।
৩. বিক্রিয়ার গতিহাস করতে কিছু পাথর বা কাঁচের টুকরা ব্যবহার করা যেতে পারে।
৪. থার্মোমিটারের সাহায্যে তাপমাত্রা নিয়ন্ত্রণ করতে হবে।

এসিডের ঘনমাত্রাঃ

একটি যন্ত্রের সাহায্যে এসিডের ঘনমাত্রা সহজে নির্ণয় করা যায়। যদি আপনি যন্ত্রটি না পেয়ে থাকেন তবে নিম্নোক্ত পদ্ধতি প্রয়োগ করে এসিডের ঘনমাত্রা নির্ণয় করতে পারেন। এই পদ্ধতিতে যে এসিড পরীক্ষা করা হবে তার ওজন হিসাব করে।

ওজনগুলো :

১. নাইট্রিক এসিড = ১.৫৪
২. সালফিউরিক এসিড = ১.৯৮

পদ্ধতি :

একটি ক্ষেলের / পাত্তার উপর ১০ মিলি এসিড নিন। পাত্তা বা ক্ষেলের ভারসাম্য না আসা পর্যন্ত অপর পাশে ওজন যোগ করতে থাকুন। এই উদাহরণে ওজন হচ্ছে ৮ গ্রাম।

১. $10/৮ = ১.২৫$
২. $১.২৫ * ১০০ = ১২৫$
৩. $১২৫/$ এসিডের ওজন = এসিডের বিশুদ্ধতা ঘনমাত্রা

যদি আপনি নাইট্রিক এসিড পরীক্ষা করেন তবে ইহা হবে = $১২৫/১.৫৪ = ৮১.১৬\%$

যদি আপনি সালফিউরিক এসিড পরীক্ষা করেন তবে ইহা হবে = $১২৫/১.৯৮ = ৬৩.১৩\%$ ।

পৃথকীকরণ ফানেল এবং পাত্র ব্যবহার পদ্ধতিঃ

যেসব তরল মিশ্রণে একটি তরলের সাথে অন্যটি দ্রবীভূত হয়না ঐসব মিশ্রণের তরল পদার্থকে পৃথক করতে এই যন্ত্রটি ব্যবহৃত হয়, যেমন : তেল ও পানি।

পদ্ধতিঃ নাইট্রো-ছিসারিন $C_3H_5(ONO_2)_3$ কে এসিড থেকে আলাদা করা বেশ কঠিন কিন্তু পৃথকীকরণ ফানেল/পাত্র ব্যবহার করে সহজেই এই কাজটি আমরা করতে পারি। এজন্য দ্রবণটিকে একটি পাত্রে রাখি। নাইট্রো-ছিসারিন ফানেলের নিচে চলে যাবে এবং তলায় অবস্থান করবে এবং এসিড উপরে তাসবে। এখন ফানেলের ট্যাপটি চালু করলে নাইট্রো-ছিসারিন বেরিয়ে আসবে এবং সম্পূর্ণরূপে বেরিয়ে আসলে ট্যাপটি বন্ধ করে দেই। প্রাণ্ত দ্রবণকে ২% সোডিয়াম কার্বনেট দ্রবণ দ্বারা বার বার ঘোত করে এই পদ্ধতিতে বিশুদ্ধ নাইট্রো-ছিসারিন পাওয়া যাবে।

কতিপয় সংজ্ঞাঃ

বিষয়	সংজ্ঞা
বিস্ফোরণ বিন্দু	যে তাপমাত্রায় একটি পদার্থ বিস্ফোরিত হয়।
স্ফুটনাংক	যে তাপমাত্রায় একটি তরল পদার্থ গ্যাসে রূপান্তরিত হয়।
গলনাংক	যে তাপমাত্রায় একটি কঠিন পদার্থ তরলে রূপান্তরিত হয়।
প্রজ্জলন বিন্দু	যে তাপমাত্রায় একটি পদার্থ প্রজ্জলিত হয়।
কঠিনাংক	যে তাপমাত্রায় একটি পদার্থ জমাট বাঁধে।
নাইট্রেশন	যখন কোন পদার্থের সাথে নাইট্রিক এসিড মিশ্রিত করা হয়।
অক্সিডেশন	যখন কোন পদার্থের সাথে অক্সিজেনের মিশ্রণ ঘটে।
রিডাকশন	যখন কোন পদার্থ থেকে অক্সিজেন বেরিয়ে যায়।
তুল্য ওজন	যখন দুইটি পদার্থের একই ওজন হয়।
আগেক্ষণ্য ওজন/ ঘনত্ব	পদার্থের আয়তনের সঙ্গে ভরের সম্পর্ক।

উপকরণ এবং প্রতীকসূমহ

	ইাম	প্রতীক	তৎক্ষনিক ক্রয় (প্রস্তুতি প্রয়োজন)
১	অ্যাসিটোন	C_3H_6O	নেইল পালিস উঠাতে ব্যবহার হয়।
২	এ্যালকোহল	C_2H_5OH	

	ইাম	প্রতীক	তাৎক্ষনিক ক্রয় (প্রস্তুতি প্রয়োজন)
৩	এ্যালুমিনিয়াম পাউডার	AL	
৪	অ্যামোনিয়াম হাইড্রোক্সাইড	NH ₂ OH	
৫	অ্যামোনিয়াম নাইট্রেট	NH ₄ NO ₃	ইহা একটি সার।
৬	অ্যামোনিয়াম অক্সালেট	C ₂ H ₈ N ₂ O ₄	
৭	অ্যানিলিন	C ₆ H ₅ NH ₂	
৮	বেরিয়াম নাইট্রেট	BaNO ₃	
৯	বেনজিন	C ₆ H ₆	সুপার পেট্রোল বা এরোপ্লেনের পেট্রোল হিসাবে ব্যবহৃত হয় (১০০%)।
১০	ক্যালসিয়াম অক্সাইড	CaO	
১১	চারকোল (কার্বন)	C	কাঠ পোড়ানোর পর অবশিষ্টাংশ
১২	ডাই মিথাইল অ্যানিলিন	CH ₃ CH(NH ₂) ₂	
১৩	গ্লিসারিন	C ₃ H ₅ (OH) ₃	
১৪	হেক্সামিন	C ₆ H ₁₂ N ₄	
১৫	হাইড্রোজেন পার অক্সাইড	H ₂ O ₂	চুল রং করতে এবং কান পরিষ্কারক হিসেবে ব্যবহার হয়।
১৬	লেড নাইট্রেট	PB(NO ₃) ₂	
১৭	মারকারি	Hg	থার্মোমিটারে ব্যবহার করা হয়।
১৮	নাইট্রো-বেনজিন	C ₆ H ₅ NO ₂	মারিবান ওয়েল নামে বাজারে পাওয়া যায়। যাহা শিশুদের পেটের ক্রিমি নামক হিসাবে ব্যবহৃত হয়।
১৯	ফেনল	C ₆ H ₅ OH	
২০	নাইট্রো সেলুলোজ	C ₆ H ₆ O ₅ (ONO ₂)	
২১	পটসিয়াম ক্লোরেট	KClO ₃	দিয়াশলাইয়ের কার্টিতে পাওয়া যায়।
২২	পটসিয়াম নাইট্রেট	KNO ₃	
২৩	পটসিয়াম পার মাঙ্গানেট	KMnO ₄	
২৪	সিলভার নাইট্রেট	Ag(NO ₃) ₂	
২৫	সোডিয়াম অ্যাজাইড	NaN ₃	
২৬	সোডিয়াম বাই কার্বনেট	NaHCO ₃	বেকিং সোডা।
২৭	সোডিয়াম কার্বনেট	Na ₂ CO ₃	কাপড় কঁচা সোডাতে পাওয়া যায় অথবা সোডা অ্যাশ নামে পাওয়া যায়।
২৮	সোডিয়াম ক্লোরেট	NaClO ₃	
২৯	সোডিয়াম নাইট্রেট	NaNO ₃	লবন এবং এসিড একসঙ্গে মেশালে পাওয়া যায়। যেমন; HNO ₃ এবং NaCl
৩০	সালফার	S	যেকোন ভেষজের দোকানে পাওয়া যায়।
৩১	সালফিউরিক এসিড	H ₂ SO ₄	৫-১০% ব্যাটারীর পানিতে পাওয়া যায়।
৩২	নাইট্রিক এসিড	HNO ₃	

গবেষণাগারের প্রস্তুতি

একটি ভাল গবেষণাগারের বৈশিষ্ট্যাবলী

১. একই সময় সর্বনিম্ন সংখ্যক ছাত্র থাকতে হবে।
২. প্রতিটি ছাত্রের জন্য অবশ্যই ২ বর্গমিটার জায়গা থাকতে হবে।
৩. ছাত্রগণ অবশ্যই শিক্ষকের দৃষ্টির আওতায় থাকতে হবে।
৪. বৈদ্যুতিক এবং গ্যাস সংযোগ অবশ্যই উভয় অবস্থায় থাকতে হবে। সমস্ত অপ্রয়োজনীয় সংযোগ বন্ধ রাখতে হবে।
৫. কাজ করার টেবিল অবশ্যই “ফরমিকা” দ্বারা আবৃত থাকতে হবে। যদি সম্ভব হয় তবে গবেষণাগারের দেওয়াল “ফরমিকা” দ্বারা আবৃত করা ভাল। ফরমিকা অন্য কিছুর সাথে বিক্রিয়া করে না।
৬. কাজের সময় সর্বদা দস্তানা (গ্লাভ্স) এবং প্রতিরোধী চশমা পরতে হবে।
৭. গবেষণাগারের মেঝে সর্বদা শুকনা থাকতে হবে।
৮. রাবার সোলের ক্যানভাস জুতা পরতে হবে।
৯. গবেষণাগারে চুপ থাকতে হবে এবং দৌড়াদৌড়ি করা যাবে না।
১০. উভয় বায়ু চলাচল ব্যবস্থা থাকতে হবে অথবা প্রয়োজনীয় সংখ্যক এগ্জেস্ট ফ্যান থাকতে হবে।
১১. কেমিক্যাল রাখার জায়গা অবশ্যই গবেষণাগার হতে আলাদা এবং নিরাপদ হতে হবে।
১২. উন্নত শিখা চুলার চেয়ে বরং হট প্লেট হিটার ব্যবহার করতে যথাসাধ্য চেষ্টা করুন।
১৩. একটি পরিপূর্ণ ফাস্ট এইচ বক্স (প্রাথমিক চিকিৎসার বক্স) হাতের কাছে রাখতে হবে।
১৪. যদি আপনি ভূমিকম্প সম্ভাব্য এলাকায় থাকেন তবে গবেষণাগারটি অবশ্যই নিচ তলায় হতে হবে এবং বেশ শক্তভাবে তৈরী হতে হবে।
১৫. আপনার জিনিসপত্রগুলি নিম্নোক্ত ভাবে সাজাতে হবে।
উপরের তাকঃ প্লাস্টিকের জিনিসপত্র। মধ্যম তাকঃ কাঁচের জিনিসপত্র। নিচের তাকঃ লোহের জিনিসপত্র।
১৬. গবেষণাগার সর্বদা পরিষ্কার-পরিচ্ছন্ন এবং পরিপাটি রাখতে হবে।
১৭. আপনাকে অবশ্যই গবেষণাগারে পানির সংযোগ এবং এক বালতি বালু রাখতে হবে।
১৮. গবেষণাগারে অবশ্যই ধোয়া এবং আগুন নির্ণয়ক থাকতে হবে।
১৯. গবেষণাগারের জানালা এবং দরজায় বুবি ট্র্যাপ (ফাদ পাতা) থাকতে হবে।
২০. নতুন শিক্ষার্থীকে অবশ্যই কজের ব্যাপারে বিশেষ নির্দেশনাবলী দিতে হবে।
২১. প্রবেশ এবং প্রস্থান অবশ্যই আলাদা দরজা দিয়ে হতে হবে।
২২. আপনার চোখ এবং শরীর পরিষ্কারের জন্য গবেষণাগারে অবশ্যই একটি ঝর্না এবং বেসিন থাকতে হবে।
২৩. আপনার অবশ্যই উন্নত মাসক (মুখোশ) এবং গ্যাস মাসক (মুখোশ) থাকতে হবে।
২৪. ধূমপান, খাওয়া এবং পান করা সম্পূর্ণ নিষিদ্ধ।
২৫. সকল নিরাপত্তা ব্যবস্থা দেওয়ালে প্রদর্শন করতে হবে।

একজন ভালো গবেষকের কর্মীয় বিষয়সমূহ

১. শুধুমাত্র আপনার প্রয়োজনীয় জিনিসটিই নিতে হবে।
২. সহজে পরিষ্কার করা যায় এবং আট-স্টার্ট পোষাক পরতে পরতে পরতে হবে।
৩. আংটি, টাই এবং পশমী কাপড় পরিধান করবেন না।
৪. কাজের সময় সর্বদা দস্তানা (গ্লাভ্স) এবং প্রতিরক্ষা চশমা পরতে হবে। সারা শরীর আবৃত করার গাউন পরা উভয়।
১. যদি রাসায়নিক বিক্রিয়ায় বুদবুদ সৃষ্টি হয় তবে প্রতিরক্ষা চশমা পরতে হবে।
২. নক অবশ্যই পরিষ্কার এবং কাটা থাকতে হবে।
৩. ক্ষত অবশ্যই পানিরোধী প্লাষ্টার দ্বারা ঢাকা থাকতে হবে।
৪. কখনই আপনার হাত দিয়ে চোখ স্পর্শ করা যাবে না।
৫. শিক্ষকের নির্দেশ ব্যতীত কোন কিছু স্পর্শ করা যাবে না।
৬. শুরুর দিকে বেশি পরিমাণ প্রস্তুত করা যাবে না।

৭. শিক্ষানবীয়দের থেকে বিপদজনক বস্তু দূরে রাখতে হবে।
৮. গবেষণাগারের মধ্যে দৌড়ানৌড়ি করা যাবে না।
৯. কাজ করার সময় নিরবতা পালন করতে হবে। কাজের সময় “লা-ইলাহা ইল্লাহু” যিকর করতে হবে। (ইহা মৃত্যুর পূর্বে পড়তে হয়। যদি আপনি কোন ভূল করেন তবে ইহা পড়ার সময় পাওয়া যাবে না।)
১০. মিশ্রণ নিয়ে খেলা করা যাবেনা। ফলাফল সম্পর্কে পূর্ণজ্ঞান ব্যতীত কোন পদার্থকে অপর পদার্থের সংগে মেশানো যাবেনা।
১১. কাজের উপর পরিপূর্ণ মনোযোগ দিতে হবে অথবা এটিই আপনার শেষ কাজ হতে পারে।
১২. খাওয়া বা পান করার কাজে কখনও কোন বিকার বা অন্য যন্ত্রপাতি ব্যবহার করা যাবে না।
১৩. গবেষণাগারের ট্যাপ থেকে পানি পান করা যাবে না।
১৪. ব্যবহার শেষে যন্ত্রপাতি পরিষ্কার করে যথাস্থানে রাখতে হবে।
১৫. মেঝের উপর কোন পদার্থের গুড়া ফেলে রাখা যাবে না।
১৬. সর্বদা গবেষণাগারের কার্যাদির রিপোর্ট শিক্ষককে জানাতে হবে।
১৭. গবেষণাগারে খাওয়া এবং পান করা সম্পূর্ণ নিষিদ্ধ।

গবেষণাগারের নিরাপত্তা ব্যবস্থা

সমস্ত বিস্ফোরকই বিষাক্ত এবং বিপদজনক। এইগুলি অতি দাহ্য এবং উচ্চ শব্দ সৃষ্টিকারক। এগুলো তরল ও কঠিন উভয় আকারের হয়ে থাকে। এ সকল কারণে আমাদের গবেষণাগারে উভয় নিরাপত্তা ব্যবস্থা থাকা প্রয়োজন। একটি ভাল গবেষণাগারের নিরাপত্তা ব্যবস্থাকে প্রধানত দুই ভাগে ভাগ করা যায়ঃ

১. বিস্ফোরকের জন্য নিরাপত্তা ব্যবস্থা

- প্রধান চার্জ এবং ডেটনেটর এক সংসে সংরক্ষণ করা যাবে না।
- অবশ্যই ২% সোডিয়াম কার্বনেট (Na_2CO_3) দ্রবণ সর্বদা হাতের কাছে রাখতে হবে।
- মেঝেতে কোন বিস্ফোরক পদার্থ (ইনসিনেটর) ফেলা যাবে না।

২. বিষের জন্য নিরাপত্তা ব্যবস্থা

- বিষ তৈরীর পূর্বে অবশ্যই কিছু প্রতিমোধক হাতে কাছে প্রস্তুত রাখতে হবে।
- প্রাথমিক চিকিৎসা বাল্বে (Fast Aid Box) ভাল করে গুণাগুণ সম্পর্ক বিষ প্রতিরোধক ইনজেকশন রাখা উচিত।
- বিষাক্ত গ্যাস নিয়ে কাজ করার সময় অবশ্যই একটি গ্যাস মাসক (মুখোশ) পরতে হবে।
- সর্বদা দস্তানা (গ্লাভ্স) এবং প্রতিরক্ষা চশমা পরতে হবে।

বিভিন্ন প্রকার কাজের ক্ষেত্রে পূর্ব-প্রস্তুতি

আগুনের শিখা ব্যবহারঃ

১. লম্বা চুল বা দাঢ়ি নিয়ে আগুনের নিকটবর্তী হওয়া যাবে না।
২. শিখার গ্যাস চালুর পূর্বে দিয়াশলায়ের আগুন জ্বালাতে হবে।
৩. যেসব জায়গা থেকে শিখা দূরে রাখতে হবে -

- কেমিক্যালের স্টোর থেকে। - ওভেন থেকে। - দাহ্য পদার্থ থেকে।

৪. গরম যন্ত্র উঠানোর জন্য কখনো দস্তানা (গ্লাভ্স) ব্যবহার করা যাবে না। সর্বদা উপযুক্ত কাপড় অথবা বহনের যন্ত্রপাতি ব্যবহার করতে হবে।

একটি গ্লাস টিউব বা পাইপ কাঁটাঃ

১. একটি কাটার ব্যবহার করে পাইপের উপর একটি বৃত্ত তৈরী করতে হবে।
২. অতঃপর কাপড় দিয়ে পাইপটি ঢেকে বাহিরের দিকে চাপ দিতে হবে।
৩. একে মুখমন্ডল থেকে দূরে নিয়ে ভাঙ্গুন।

একটি গ্লাস পাইপ বাঁকানোঃ

১. একটি পাইপকে বাঁকানোর জন্য ফিস টেইল ফ্রেম ব্যবহার করতে হবে।
২. ভালোভাবে তাপ দিতে হবে এবং আন্তে আন্তে বাঁকা করতে হবে। লক্ষ্য রাখুন যাতে ফাটল না ধরে।

বিপদজনক পদার্থের ব্যবহারঃ

উদাহরণস্বরূপঃ সোডিয়াম। ইহা একটি অতি দাহ্য পদার্থ।

১. সর্বদা ইহা কেরোসিন তৈলের মধ্যে ডুবিয়ে রাখতে হবে।
২. খালি হাতে স্পর্শ করা যাবে না। সর্বদা দস্তানা ব্যবহার করতে হবে।
৩. যদি কিছু পদার্থ মেঝেতে পড়ে যায় তবে সঙ্গে সঙ্গে কেরোসিন তৈল দিয়ে ডেকে দিতে হবে।
৪. ভাঙা বা কাটার জন্য এ কাজের জন্য নির্দিষ্ট কাটার ব্যবহার করতে হবে।
৫. ওয়াশ বেসিনে নিয়ে কখনও তাপ দেওয়া যাবে না।
৬. সর্বদা ইহা কেরোসিন তৈলের মধ্যে রেখে কাটতে হবে।
৭. স্পর্শ করার পূর্বে হাত সম্পূর্ণভাবে শুকাতে হবে।
৮. ইহা কখনও এসিডের পাশে রাখা যাবে না। করণ ইহা এসিডের সাথে বিক্রিয়ায় হাইড্রোজেন উৎপন্ন করে বিস্ফোরণ ঘটাতে পারে।

কাজের সংরক্ষণ পদ্ধতি

১. নোট বই অবশ্যই শক্ত কভারের হতে হবে।
২. আপনার সকল পরীক্ষা বিস্তারিত ভাবে লিখতে হবে।
৩. কখনও আলগা পাতা ব্যবহার করবেন না।
৪. কখনও আপনার স্মৃতিশক্তির উপর নির্ভর করবেন না।
৫. আপনার পরীক্ষার বিস্তারিত লিখে রাখুন।
৬. ভূল লিখা সম্পূর্ণভাবে মুছে ফেলবেন না। ভূল লিখা বরাবর দুটি আড়াআড়ি দাগ দিয়ে কেটে দিন যাতে কি ভূল হয়েছিল তা পরবর্তীতে বোঝা যায়।
৭. আপনার নোট বই অবশ্যই পরিক্ষার এবং সুশৃংখল হতে হবে।
৮. আপনাকে অবশ্যই পরীক্ষার তারিখ, ফলাফল, লক্ষ্য এবং আপনার পর্যবেক্ষণ লিখতে হবে।

গবেষণারে দুর্ঘটনা এবং প্রাথমিক চিকিৎসা

রসায়ন পরীক্ষাগারে ব্যবহৃত রাসায়নিক পদার্থের প্রায় প্রত্যেকটি বিষাক্ত, ক্ষয়কারক ও বিপদজনক। তাই তাদের ব্যবহার কালে সম্ভাব্য বিপদ সম্বন্ধে নিম্নোক্তিতে সচেতনতা এবং দুর্ঘটনার জন্য প্রাথমিক চিকিৎসা জ্ঞান থাকা প্রত্যেক শিক্ষার্থীর প্রয়োজনঃ

১. কোন রাসায়নিক বস্তু সম্বন্ধে না জেনে তাতে অ্যথবা হাত লাগানো, কোন বস্তু মুখে লাগানো এবং কাটা হাতে ল্যাবরেটরিতে কাজ করা বিপদজনক।
২. গায়ে এসিড বা ক্ষার পড়লে সাথে সাথে প্রচুর পানি দিয়ে ধূয়ে ফেলতে হয়। তারপরও জ্বালা করলে পানি মুছে বার্নল মলম লাগাতে হয়। গায়ে ক্ষার পড়লে প্রথমেই প্রচুর পানি দিয়ে ধূয়ে পরে প্রয়োজনে বরিক এসিড দ্রবন দিয়ে ঐ স্থান ধূয়ে ফেলতে হবে।
৩. চোখে এসিড বা ক্ষার পড়লে সঙ্গে সঙ্গে প্রচুর পানি দিয়ে চোখে পড়া এসিড ও ক্ষার ধূয়ে ফেলতে হয়। চক্ষু খুব নরম জায়গা, তাই না বুঝে কোন কিছু দেওয়া অনুচিত। এজন্য সঙ্গে সঙ্গে চক্ষু বিশেষজ্ঞের নিকট পরামর্শ নিতে হবে।
৪. শরীরের কোন স্থান আগুনে পুড়ে গেলে পোড়া অংশে পানি দেওয়া উচিত নয়। পানি দিলে ঐ স্থানে বিপদজনক ফোক্ষা পড়ে। পোড়া স্থানে কয়েক ফোটা স্পিরিট বা ইথাইল এলকোহল দিলে জ্বালা কমবে। পরে বার্নল মলম ব্যবহার করতে হয়।
৫. ব্রোমিন দ্বারা হাত পুড়লে ঐ স্থানে প্লিসারিন লাগাতে হয়। পরে প্লিসারিন মুছে ফেলে ক্ষত স্থানে বার্নল মলম লাগাতে হয়।
৬. কাঁচে কেটে গেলে ক্ষতস্থানে যদি কাঁচ টুকরা থাকে, তবে তা প্রথমে বের করে নিতে হবে। পরে ইথাইল এলকোহল দিয়ে ক্ষত স্থান ধূয়ে ডাক্তার-এর পরামর্শ নেওয়া উচিত।
৭. বিষাক্ত গ্যাসে আক্রান্ত হলে শ্বাসরোধক গ্যাস যেমনঃ HCl, Cl₂, SO₂, Br₂ বাল্প ইত্যাদি দিয়ে শ্বাসযন্ত্র আক্রান্ত হলে মুক্ত বায়ুতে শ্বাস-প্রশ্বাসের ব্যবস্থা করতে হয়। প্রয়োজনে আক্রান্ত ব্যক্তিকে লঘু অ্যামোনিয়া দ্রবনে শ্বাস নিতে দেওয়া উচিত। অথবা সোডিয়াম বাই কার্বোনেট (NaHCO₃) দ্রবন দিয়ে গড়গড়া করতে দিলে গলদেশের আক্রান্ত স্থান বিষাক্ত গ্যাস মুক্ত হয়ে যাবে।
৮. গায়ের কাপড়ে আগুন লাগলে কখনও দৌড়ানো উচিত নয়। এতে অধিক বাতাস পেয়ে আগুন অধিক জ্বলে উঠে। তাড়াতাড়ি মেঝেতে গড়গড়ি দিয়ে আগুন নিভাবে হবে। সম্বল হলে কম্বল বা কম দাহ্য ছালা দিয়ে আগুন নিভাবে হবে।
৯. ডেক্সে আগুন লাগলে আশেপাশের বুনসেন বার্নারের গ্যাস সাপ্লাই বন্ধ করতে হয়। পরে নিম্নরূপে আগুন নেভাবে হয়ঃ
 - ফ্লাক্সে অথবা বিকারের কোন তরল পদার্থে আগুন ধরে গেলে ঐ পাত্রের মুখের ঢাকনায় ভিজা কম্বল বা পুরু ভিজা কাপড় দেওয়া উচিত।
 - কাঠের যে কোন জিনিসে আগুন লাগলে বালি ছিটিয়ে তা নিভাবে হয়।

নোটঃ যে কোন বিপদ বা দুর্ঘটনায় চিৎকার দিয়ে জানিয়ে সহকর্মীর ও শিক্ষকের সাহায্য চাইতে হয়। প্রত্যেক আক্রান্ত ব্যক্তির যথাশীঘ্র ডাক্তার-এর পরামর্শ নেওয়া আবশ্যিক।

বিস্ফোরক সম্পর্কিত আলোচনা

বিস্ফোরক ও বার্ণন্দ

বিস্ফোরক কতিপয় বস্তুর সংমিশ্রণ বা সংযোজনের নাম, যাহা লিকুইড বা সলিড উভয় আকারের হতে পারে। যাহা বহিরাগত শক্তি (চাপ, তাপ, ঘর্ষন, বিদ্যুৎ, ডেটোনেট পাউডার) দ্বারা বিশাল আকারে গ্যাসে রূপান্তরিত হয়। যার ফলে প্রচন্ড তাপ ও চাপ দ্রুত গতিতে সকল দিকে সমান ভাবে ও নির্দিষ্ট পরিমাণে সৃষ্টি হয়।

বিস্ফোরক সলিড আকারে, লিকুইড আকারে, গ্যাসীয় আকারে বা প্রবাহমান আকারে হয়ে থাকে। কতিপয় বারংদ খুব দ্রুত গ্যাসে রূপান্তরিত হয় আবার কিছু ধীরে গ্যাসে রূপান্তরিত হয়। কিছু বারংদ এমন রয়েছে, যাহারা অত্যন্ত স্পর্শকাতর। চাপ, তাপ, ঘর্ষন বা বিদ্যুৎ পেলে বাতাসের সাথে বিক্রিয়া করে বিস্ফোরিত হয়। আবার কতিপয় বারংদ এমন রয়েছে, চাপের মুখে থেকে স্পর্শকাতর ও বাতাসে বিক্রিয়াকারী উৎসাহবর্ধক বারংদের সাহায্যে বিস্ফোরিত হয়। বাতাসের সাথে বিক্রিয়াকারী স্পর্শকাতর বারংদকে ডেটোনেটের মূল উপাদান হিসেবে গণ্য করা হয়।

আবার কতিপয় বারংদ এমন আছে যে, বাতাসের সাথে বিক্রিয়াকারী স্পর্শকাতর বারংদের শক্তিতে বিস্ফোরিত হয়ে ধ্বংশ কার্য চালায়। ইহাকে ডেটোনেটের নিচের অংশে ব্যবহার করা হয়। এছাড়া কিছু বারংদ মধ্যম শক্তি নিয়ে এবং কিছু বারংদ হালকা শক্তি নিয়ে বিস্ফোরিত হয়। এই তিনি প্রকার বারংদকে চার্জ হিসেবে ব্যবহার করা হয়।

বারংদ ঐ রাসায়নিক সংমিশ্রণ অথবা সংযোজনকে বলা হয়, যাহা বহিরাগত উৎসাহবর্ধক শক্তি দ্বারা প্রভাবিত হয়ে বিশাল আকারে গ্যাসে রূপান্তরিত হয় এবং সাথে সাথে প্রচন্ড তাপ, অত্যন্ত ক্ষিপ্তা এবং চতুর্দিকে সমান ভাবে নির্দিষ্ট পরিমাণ কঠিন চাপ সৃষ্টি হয়। যার ফলে ধ্বংশযজ্ঞ সাধিত হয়।

বিস্ফোরক মিশ্রনের নীতি

একটি ভাল বিস্ফোরক মিশ্রনে অবশ্যই দুইটি প্রধান উপকরণ থাকবে। প্রথমটি অবশ্যই অক্সিজেন সমৃদ্ধ হবে এবং দ্বিতীয়টির দ্রুত বিক্রিয়া করার ক্ষমতা থাকতে হবে যাতে ইহা সহজেই পরিবর্তীত হয়ে ইহার আয়তন বৃদ্ধি করতে পারে। এজন্য ইহাকে আমরা বিস্ফোরক বলে থাকি।

ভালো অক্সিজেন উৎপাদকঃ

১. পটাশিয়াম ক্লোরেট ($KClO_3$)
২. পটাশিয়াম নাইট্রেট (KNO_3)
৩. অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)
৪. পটাশিয়াম পার ম্যাঙ্গানেট ($KMnO_4$)
৫. সোডিয়াম ক্লোরেট ($NaClO_3$)

অক্সিজেনের সাথে ভাল বিক্রিয়কঃ

১. এ্যুলুমিনিয়াম (AL) পাউডার।
২. ম্যাগনেশিয়াম (Mg) পাউডার।
৩. কার্বন (C) এবং সালফারের (S) মিশ্রন।
৪. কার্বন (C) এবং চিনির মিশ্রন।
৫. কার্বন (C) এবং কাঠের মিশ্রন।
৬. আটা এবং স্টার্চের মিশ্রন।

বারংদের প্রকারভেদ

প্রস্তুত প্রাণী অনুসারে বারংদ নিম্নোক্ত প্রকারের হতে পারে। যথা -

১. রাসায়নিক সংযোজন বা অবিভাজ্য বারংদঃ

কতিপয় রাসায়নিক বস্তু একসাথে মিলিত হয়ে পারস্পরিক বিক্রিয়ার মাধ্যমে সম্পূর্ণ নতুন একটি বস্তুতে রূপান্তরিত হয়। একই সাথে বিশেষ কতক গুনাবলীর সৃষ্টি হয় এবং পূর্বের সকল রূপ, গুনাবলী বিলীন হয়ে যায়।

লিকুইড সংযোজনের উদাহরণঃ- নাইট্রো-ছিসারিন।

সালফিউরিক এসিড (H_2SO_4) + নাইট্রিক এসিড (HNO_3) + ছিসারিন ($CH_2OH_5(CH)_3$) = নাইট্রো-ছিসারিন।

সলিড সংযোজনের উদাহরণঃ- নাইট্রিক এসিড + হেক্সামিন = আর.ডি.এক্স (RDX)

২. রাসায়নিক সংমিশ্রণ বা বিভাজ্য বারংদঃ

কতিপয় রাসায়নিক বস্তু একসাথে মিলিত হয়ে একটি মিশ্রনে পরিণত হয়। তবে তাদের পূর্বের গুনাবলী বজায় থাকে।

লিকুইড সংমিশ্রনের উদাহরণঃ- তরল সংমিশ্রন ক্লোরোফর্মের মাঝে নাইট্রো-ছিসারিন।

সলিড সংমিশ্রনের উদাহরণঃ- Al পাউডার + অ্যামোনিয়াম নাইট্রেট (NH_4NO_3) = AMONAL চার্জ (অ্যামোনাল)। এবং মোবিল + নাইট্রো-সেলুলোজ = C_4 ।

প্রকৃতির দিক থেকেঃ বারংদ চার প্রকার। যথা -

১. কঠিন। যেমন- TNT, RDX, TNN, TNF।
২. খামীর (অর্ধতরল)। যেমন- C_1 , C_2 , C_3 , C_4 ইত্যাদি।
৩. প্রবাহীত (তরল)। যেমন- নাইট্রো-ছিসারিন, নাইট্রো-মিথেন ইত্যাদি।
৪. গ্যাস। যেমন- মিথেন গ্যাস, হাইড্রোজেন গ্যাস, অক্সিজেন গ্যাস ইত্যাদি।

ব্যবহারের দিক থেকেঃ বারংদ দুই প্রকার। যথা -

১. উৎসাহ বর্ধক শক্তি সম্পন্ন। যেমন- লেড এজাইড (Lead Azide), মারকারি ফালমিনেট (Mercury Fulminate), হেক্সামিন-পার-অক্সাইড (Hexamine peroxide), সিলভার এজাইড (Silver Azide), ইত্যাদি।
২. ধ্বংশকারী শক্তি সম্পন্ন। যেমন- আর.ডি.এক্স (RDX), টি.এন.টি (TNT), এ্যামোনাল (Ammonal) ইত্যাদি। ধ্বংশকারী শক্তি সম্পন্ন বারংদ তিনি প্রকার। যথাঃ
 - কঠিন ক্রিয়াশীলঃ RDX, TNN, TNF, PETN, ইত্যাদি।
 - মধ্যম ক্রিয়াশীলঃ TNN, C_4 , C_3 , ইত্যাদি।
 - হালকা ক্রিয়াশীলঃ ব্ল্যাক পাউডার, হোয়াইট পাউডার, ইয়েলো পাউডার ইত্যাদি।

মেকানিক্যাল (চাপ, তাপ) দিক থেকেঃ বারংদ দুই প্রকার। যথা -

১. বাতাসের সাথে বিক্রিয়াকারী বারংদঃ যেমন- উৎসাহবর্ধক বারংদ সমূহ।
২. চাপের সাথে বিক্রিয়াকারী বারংদঃ যেমন- অবশিষ্ট সমস্ত বারংদ।

ভয়াবহতার দিক থেকেঃ বারংদ দুই প্রকার। যথা -

১. সেনসেটিভ বা স্পর্শকাতরঃ যেমন- বাতাসের সাথে বিক্রিয়াকারী বারংদ সমূহ, নাইট্রো-ছিসারিন, নাইট্রো-মিথেন ইত্যাদি।
স্পর্শকাতর বারংদ আবার দুই প্রকারঃ
 - বেশী স্পর্শকাতর, যেমন- লেড এজাইড, মারকারি ফালমিনেট, এ্যাসিটোন-পার-অক্সাইড, হেক্সামিন-পার-অক্সাইড, সিলভার এজাইড, নাইট্রো-মিথেন, নাইট্রো-ছিসারিন ইত্যাদি।
 - কম স্পর্শকাতর, যেমন- KCLO_3 , ইয়েলো পাউডার, হোয়াইট পাউডার, আন বয়েল ব্ল্যাক পাউডার ইত্যাদি।
২. নন-সেনসেটিভ বা অস্পর্শকাতরঃ যেমন- RDX, TNN, TNT, TNF, C_4 , C_3 ইত্যাদি।

বিষ্ফেরিত হওয়ার দিক থেকেঃ বারংদ দুই প্রকার। যথা -

১. হাই-এক্সপ্লোসিভ (Hi Explosive)
 - প্রতি সেকেন্ডে হাজার মিটার গতি বা ততোধিক গতিতে যারা বিষ্ফেরিত হয় তাদেরকে হাই এক্সপ্লোসিভ বলে।
 - যারা খুব দ্রুত গ্যাসে রূপান্তরিত হয় তাদেকেও হাই এক্সপ্লোসিভ বলে। যেমনঃ RDX, নাইট্রো-ছিসারিন, PETN, TNF, TNT, C_4 , C_3 , C_2 , C_1 , PE₃A, PE₂PE, WBOX, এ্যামোনাল, বাতাসের সাথে বিক্রিয়াকারী বারংদ সমূহ ইত্যাদি।
২. লো-এক্সপ্লোসিভ (Low Explosive) যেমন- ব্ল্যাক পাউডার, ইয়েলো পাউডার, হোয়াইট পাউডার, ইত্যাদি।

বিষ্ফেরণের বৈশিষ্ট্য ও প্রভাবসমূহ

যেকোন বিষ্ফেরনের সাধারণত চারটি বৈশিষ্ট্য পরিলক্ষিত হয়ঃ

১. প্রতিফলিত হওয়া।
২. থাম্ব আকৃতিতে বিষ্ফেরনের মুখ সৃষ্টি হওয়া।

৩. ধাক্কা খেয়ে একমুখি হওয়া।
৪. স্থিমিত হয়ে যাওয়া।

সংজ্ঞা থেকে স্পষ্ট যে কোন ধরনের বিক্ষেপণের ফলে চার ধরনের প্রভাব সৃষ্টি হয়ঃ

১. চাপঃ বিশাল আকারে গ্যাসের সৃষ্টি হবার ফলে ব্যাপক পরিমান চাপ সৃষ্টি হয়।
উদাহরণঃ এক মিটার পরিমাণ একটি চার্জ ১০ হাজার থেকে ১৫ হাজার মিটার পর্যন্ত বিস্তারিত (এক্সপোজ) হয়। সে সময় গ্যাসের চাপ থাকে এক সেন্টিমিটার এলাকায় ১৫৮.৫০ টন। চার্জ যত বড় হবে চাপও তত বড় হবে। চাপ দুই প্রকারঃ
 - ইতিবাচক চাপঃ লক্ষ বস্তুর দিকে অগ্রসরমান যে চাপ।
 - নেতিবাচক চাপঃ লক্ষ বস্তুতে টকর খেয়ে যা ফিরে আসে।
২. তাপঃ গ্যাস উৎপন্ন হওয়ার ফলে যেমন চাপ সৃষ্টি হয় তেমনি প্রচল তাপও সৃষ্টি হয়। সেই তাপে লক্ষ্যবস্তু পুড়ে গলে ছারখার হয়ে যায়।
৩. ধ্বংসঃ গ্যাস উৎপন্ন হবার ফলে যেরকম তাপ চাপ সৃষ্টি হয় তেমনি লক্ষ্যবস্তুতে ধ্বংস নেমে আসে। পানিতে বা মাটিতে দাফন করলে এই প্রভাবটি বেশী লক্ষ্য করা যায়। তিন মিটার মাটির গর্তে ৩২ কেজি চার্জ দাফন করে দেখা গেছে সেই বিক্ষেপণের স্থান থেকে নয় মিটার দূরের একটি কালভার্ট ভেঙ্গে টুকরা টুকরা হয়ে গেছে। পার্শ্ববর্তী বিস্তারে তার প্রভাবে কাঁচগুলো চুরমার হয়ে গেছে। পক্ষান্তরে একই পরিমান চার্জ মাটির উপরে রেখে দেখা গেছে কিছুই হয়নি।
৪. অগ্নিস্ফুলিঙ্গ/স্প্লিন্টারঃ বিক্ষেপণক দ্রব্য যে আবরণে আবদ্ধ করা হয় উহা বিক্ষেপণের পর অগ্নিস্ফুলিঙ্গ বা স্প্লিন্টার আকারে ছিটকে বের হয়। এই খোলস বা আবরণ যত বেশী মোটা হবে স্প্লিন্টার তত বেশী হবে। যার দ্বারা প্রাণীর মৃত্যু বা ক্ষতি হতে পারে, তবে ধ্বংস কর হবে। কারণ ঐ আবরণটিকে ফাটাতে নির্দিষ্ট পরিমান শক্তি ব্যয় হয়ে যায়। পক্ষান্তরে আবরণ যত হালকা হবে শক্তিশালী বারুদ তার শক্তি ততই বাড়িয়ে তুলবে। আর এই জন্যই দেখা যায় হ্যান্ড-গ্রেনেডের মধ্যে যে লোহার আবরণ ব্যবহার করা হয় তা থাকে বেশ মোটা কিন্তু তার গায়ে দাগ/খাঁজ কাটা থাকে। যাতে করে ঐ আবরণ স্প্লিন্টার আকারে ছুটে যায় এবং গুলির মত কাজ করে। তবে এই আবরণ বিভিন্ন প্রকারের বারুদের জন্য বিভিন্ন রকম হওয়া বাস্তুলীয়।

বিভিন্ন প্রকার রাসায়নিক দ্রব্যের প্রস্তুত প্রণালী

বিভিন্ন পদ্ধতিতে প্রস্তুতকৃত বিস্ফোরক দ্রব্যগুলি দ্রুত ব্যবহার করতে হবে এবং সর্তকতামূলক ব্যবস্থা ব্যবহৃত কখনও ৭২ ঘন্টার বেশী সংরক্ষণ করা যাবে না।

এসিড ও অ্যালকালি-র প্রস্তুত প্রণালী

সালফিউরিক এসিড, H_2SO_4

প্রস্তুত প্রণালীঃ

সালফিউরিক এসিড পেতে হলে প্রথমতঃ গাড়ীর ব্যটারীর পানি সংগ্রহ করতে হবে। অতঃপর ইহা একটি বিকারে নিয়ে একটি উভচ্ছ প্লেট হিটারে নিয়ে তাপ দিতে হবে। যদি উভচ্ছ প্লেট হিটার পাওয়া না যায় তবে রুটি বানানো তাওয়া ব্যবহার করা যেতে পারে। যতক্ষণ ইহা মূল অংশের $\frac{1}{3}$ এ না পৌঁছায় ($\frac{2}{3}$ বাস্পায়িত হয়ে যাবে) এবং তৈল রংয়ের না হয় ততক্ষণ ইহা তাপ দিতে হবে। ইহাই হবে ৯৮% বিশুদ্ধ সালফিউরিক এসিড।

বিক্রিয়াঃ

সালফিউরিক এসিডের (H_2SO_4) বিশুদ্ধকরণ পরীক্ষাঃ

১. পটাশিয়াম ক্লোরেট এবং চিনি $1:1$ অনুপাতে মেশাতে হবে।
২. মিশ্রণে ১ ফোঁটা এসিড যোগ করতে হবে।
৩. উভ মিশ্রণ একটি সুন্দর অগ্নিশিখা দেবে।

নোটঃ এই মিশ্রণ টাইমার বোমাতে ব্যবহার করা হয়।

নাইট্রিক এসিড, HNO_3

সালফিউরিক এসিড থেকে নাইট্রিক এসিড প্রস্তুতিঃ

উপাদানঃ

ইম	অনুপাত
অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)	১
সালফিউরিক এসিড (H_2SO_4)	২

প্রথমে অ্যামোনিয়াম নাইট্রেট নিন। যা একটি সার এবং বাজারে সহজে পাওয়া যায়। আর্দ্ধ সার হলে একটি বালুর পাত্রে রেখে তাপ দিতে হবে। কিছু সময় পর ইহা সম্পূর্ণ শুক্ষ হয়ে যাবে।

অ্যামোনিয়াম নাইট্রেটকে যেকোন নাইট্রেট দিয়ে স্থলাভিষিক্ত করা যায়। যেমন- সোডিয়াম নাইট্রেট বা পটাসিয়াম নাইট্রেট।

প্রস্তুত প্রণালীঃ

১. প্রথমে অ্যামোনিয়াম নাইট্রেটকে গুড়া করে একটি ফ্রোরেস্প ফ্লাক্সে রাখতে হবে।
২. এখন ফ্লাক্সে সালফিউরিক এসিড ঢালতে হবে।
৩. নিরাপত্তার জন্য কিছু পাথর বা কাঁচের টুকরা ফ্লাক্সে রাখতে হবে। এতে বিক্রিয়ার গতি কিছুটা হ্রাস পাবে।
৪. চিত্র অনুযায়ী যন্ত্রগুলো সাজিয়ে তাপ দিতে হবে। ফলে কিছু সময় পর ফ্লাক্সের মধ্যে তরলটি ফুটতে থাকবে।
৫. বাদামী রংয়ের গ্যাস হিসাবে নাইট্রিক এসিড উৎপন্ন হবে।
৬. যখন বাদামী গ্যাস কনডেসারের মধ্য দিয়ে যাবে তখন পানির গতি বাড়িয়ে দিতে হবে।
৭. কনডেসারের অপর প্রান্তে একটি রঙিন বোতলে নাইট্রিক এসিড ফোঁটায় ফোঁটায় জমা হবে।

৮. বরফ এবং পানির সাহায্যে বোতল ঠান্ডা করতে হবে।
৯. যখন সাদা বাল্প নির্গত হবে তখন বুঝাতে হবে বিক্রিয়া সম্পন্ন হয়েছে।
১০. আমরা মিশ্রণ থেকে $1/3$ ভাগ নাইট্রিক এসিড পাব।

রাসায়নিক বিক্রিয়াঃ

নোটঃ

১. মিশ্রণের স্ফুন্দর ৭০-৭৫° সে.।
২. ভ্যাসলিনের সাহায্যে ছিদ্র বন্ধ করতে হবে। কারণ ইহা খুবই বিপদ জনক।
৩. একটি কালো রংয়ের বোতলে ঠান্ডা জায়গায় নাইট্রিক এসিড সংরক্ষণ করতে হবে।

অ্যালকালি

অ্যালকালি এমন এক দ্রবণকে বলা হয় যা এসিডের মধ্যে ঢেলে দিলে সাথে সাথে এসিডের সকল ক্ষমতা, শক্তি ধ্বংস হয়ে যায়। তাই যেই সব কাজে এসিডের ব্যবহার হয় সে সকল কাজের আগে অ্যালকালি বানিয়ে নেওয়া আবশ্যিক। অ্যালকালি তৈরী না করে এসিড নাড়া চাড়ার কাজ করা চৰম বোকামী। কেননা এসিড যদি শরীরের কোন অংশে লেগে যায় তাহলে ঐ স্থানটি বালসে যেতে থাকে। এবং প্রচন্ড জ্বালা পোড়া করে। যদি কোন সময় শরীরে এসিড লেগে যায় তাহলে অ্যালকালি দ্রবণ দিয়ে ঐ স্থানটি ধূয়ে নিয়ে প্রচুর পরিমাণে পানি দিয়ে ধূয়ে নিতে হবে। যদি চোখে মুখে লাগে তাহলে শুধু পানি দিয়ে অনেক বার ধূয়ে নিতে হবে। অ্যালকালি তৈরী করার পর তা $12/24$ ঘন্টা পর্যন্ত ভাল থাকে। তারপর নতুন করে বানিয়ে নিতে হবে।

প্রস্তুত প্রণালীঃ

নিম্নোক্ত উপায়ে কাপড় কাচার সোডা দিয়ে অ্যালকালি প্রস্তুত করা যায়।

ফর্মুলাঃ

কাপড় কাচা সোডা ($\text{NaCO}_3 \cdot 10\text{H}_2\text{O}$)		পানি
প্রথম পদ্ধতি	৬০ গ্রাম	১০০০ মিলি
দ্বিতীয় পদ্ধতি	২০ গ্রাম	১০০০ মিলি

সূচনাকারী পদাৰ্থ (Initiators)-ৰ প্ৰস্তুত প্ৰণালী

মারকারী ফালমিনেট, (CNO)₂Hg

বৈশিষ্ট্য বা ধৰ্মাবলীঃ

১. ইহার বিভিন্ন রং রয়েছে; ধূসুর, হালকা বাদামী, সাদা। ধূসুর রংয়েৱাটি তুলনামূলকভাৱে বেশি শক্তিশালী।
২. আপেক্ষিক ঘনত্ব ৪.৮২ (সিমেন্টেৰ চেয়ে ৩ গুণ বেশী যেখানে সিমেন্টেৰ শক্তি হচ্ছে ১.৩)।
৩. ইহা চাপ, আঘাত, ধাক্কা এবং তাপ (১৭০° সে.) স্পৰ্শকাতৰ।
৪. ইহা স্থিৰ চাৰ্জ (বড়ি চাৰ্জ)-এৰ শক্তি এবং তাপেও স্পৰ্শকাতৰ।
৫. ইহা ১৭০° সে. তাপমাত্ৰায় বিস্ফোৱিত হয়।
৬. ইহা অৰ্দ্ধতাৰ কাৰণে নষ্ট হয়ে যেতে পাৰে। যেমন- ১৫% অৰ্দ্ধতায় ইহা বিস্ফোৱণ ব্যতীত পুড়ে যেতে পাৰে। ২৫% অৰ্দ্ধতায় ইহা পুড়বেও না বিস্ফোৱিত হবে না।
৭. ইহা পানিতে দ্রুবণীয় নয়, সেজন্য ইহা বিষ হিসাবে ব্যবহাৰ উপযোগী নয়।

অন্যান্য ধাতুৰ সঙ্গে বিক্ৰিয়াঃ

১. অৰ্দ্ধতা ব্যতীত ইহা কপার ধাতুৰ সঙ্গে বিক্ৰিয়া কৰে না। এজন্য ডেটনেটৰে কপারেৰ ক্যাপসূল ব্যবহৃত হয়।
২. ইহা অ্যালুমিনিয়াম ব্যতীত অন্য অধিকাংশ ধাতুৰ সঙ্গে বিক্ৰিয়া কৰে না।
৩. অ্যালুমিনিয়ামেৰ সাথে বিক্ৰিয়া কৰে ইহা অবিস্ফোৱৰ পদাৰ্থ তৈৰি কৰে।
৪. ইহা ১৫-২৫° সে. তাপমাত্ৰায় এবং শুক্র জায়গায় সংৰক্ষণ কৰতে হবে।

ৱাসায়নিক বিক্ৰিয়াঃ

১. $2\text{Hg} + 6\text{HNO}_3 \rightarrow 2\text{Hg}(\text{NO}_3)_2 + 3\text{H}_2\text{O} + \text{NO}_2 + \text{NO}$
২. $\text{C}_2\text{H}_5\text{OH} + 3\text{HNO}_3 \rightarrow [\text{C}=\text{N-OH}] + 2\text{HNO}_2 + 3\text{H}_2\text{O} + \text{CO}_2$
৩. $2[\text{C}=\text{N-OH}] + \text{HgNO}_3 \rightarrow [\text{C}=\text{NO}]_2 \text{Hg} + 2\text{HNO}_3$

মারকারী ফালমিনেট তৈৰিৰ জন্য মিশণেৰ অনুপাতঃ

মারকারী (Hg)	নাইট্ৰিক এসিড (৬৫% ঘন) (HNO ₃)	ইথানল (১০০% ঘন) (C ₂ H ₅ OH)
১.৫ গ্ৰাম	১১ মিলি	১৩ মিলি

প্ৰস্তুত প্ৰণালীঃ

১. একটি বিকাৰ (বিকাৰ-১) নিয়ে ইহাতে ১১ মিলি নাইট্ৰিক এসিড ঢালতে হবে।
২. ১.৫ গ্ৰাম মারকারী এসিডেৰ সহিত মেশাতে হবে এবং মারকারী সম্পূৰ্ণ গলে না যাওয়া পৰ্যন্ত অপেক্ষা কৰতে হবে। সেখানে বাদামী ধোয়া দেখা যাবে। ইহা বিপদজনক এবং এতে ফুসফুসে ক্যাপারেৰ সভাবনা থাকে। মিশণেৰ রং এখন সবুজ বৰ্ণেৰ হবে।
৩. অপৰ একটি বিকাৰে (বিকাৰ-২) ১৩ মিলি অ্যালকোহল নিতে হবে।
৪. বিকাৰ -১ এৰ তাপমাত্ৰা ৫৫° সে. এ উন্নীত কৰতে হবে।
৫. অনুৱপভা৬ে বিকাৰ-২ এৰ তাপমাত্ৰা ৩৫° সে. এ উন্নীত কৰতে হবে।
৬. যখন উভয় বিকাৰেৰ তাপমাত্ৰা নিৰ্দিষ্ট বিন্দুতে পৌঁছাবে তখন বিকাৰ-২ এৰ সঙ্গে বিকাৰ-১ মেশাতে হবে। (এক্ষেত্ৰে ২ এবং ৩ নং বিক্ৰিয়া সংঘটিত হবে।)
৭. বিক্ৰিয়াৰ সময় সাদা ধোয়া সৃষ্টি হবে যা অতিমাত্ৰায় দাহ্য। সুতৰাং কোন আগুনেৰ উৎস থেকে দূৰে রাখতে হবে।
৮. যদি বিক্ৰিয়া দ্রুত হয় তবে কয়েক ফেঁটা অ্যালকোহল দ্রবণে যোগ কৰতে হবে। ইহা বিক্ৰিয়াৰ গতিকে হ্ৰাস কৰবে। বিক্ৰিয়ায় তাপ উৎপন্ন হবে এবং এই তাপমাত্ৰা ৭০-৭৫° সে. এৰ উপৰে উঠতে দেওয়া উচিত নয়। কাৰণ তাহলে হলুদ ধোয়া আকাৰে নাইট্ৰিক এসিড এবং সাদা ধোয়া আকাৰে অ্যালকোহল বাস্পায়িত হয়ে যাবে। যদি মিশণেৰ তাপমাত্ৰা ৮০° সে. এৰ উপৰে উঠে তবে ইহা খুবই বিপদজনক হবে।
৯. যখন বিক্ৰিয়া সম্পন্ন হবে তখন বিকাৰে মারকারী ফালমিনেটেৰ ধূসুৰ কেলাস পাওয়া যাবে।
১০. বিকাৰে কিছু পানি নিয়ে ঝঁকাতে হবে। ইহাতে ধূসুৰ কেলাসগুলো পৱিষ্ঠার হয়ে যাবে।
১১. অতঃপৰ দ্রবণটি ফিল্টাৰ কৰতে হবে। যখন পানি অপসাৱিত হয়ে যাবে তখন ফিল্টাৰ পেপাৱেৰ উপৰ উহার সহিত কিছু অ্যালকোহল যোগ কৰলে মারকারী ফালমিনেট আৱণ পৱিষ্ঠাৰ হয়ে যাবে।
১২. ছায়াযুক্ত খোলা স্থানে শুকাতে হবে।

১৩. ঠান্ডা এবং শুক্র স্থানে ১৫-২০° সে. তাপমাত্রায় সংরক্ষণ করতে হবে।

চিত্রঃ মারকারী ফালমিনেট প্রস্তুতি

নোটঃ

- বিকার-২ এর সঙ্গে বিকার-১ যোগ করার সময় অবশ্যই ইহার তাপমাত্রা যথাক্রমে ৩৫° সে. এবং ৫৫° সে. হতে হবে। ১°-২° সে. তাপমাত্রা বাড়িয়ে নেয়া উভয় তাহলে মিশ্রণ করার সময় যথাযথ তাপমাত্রা পাওয়া যাবে।
- যদি মিশ্রণে ক্রিয়া শুরু না হয় তবে সাদা ধোঁয়া না দেখা পর্যন্ত তাপমাত্রা বাড়াতে হবে।
- যদি সেখানে আগুন জলে ওঠে তবে চিত্ত নেই। একটি ওয়াচ গ্লাস দিয়ে বিকারটিকে ঢেকে দিতে হবে।
- অনেক সেল বা বুলেটে অন্যান্য ফালমিনেট ডেটনেট বা ক্যাপসুল হিসাবে ব্যবহৃত হয়। যেমন- সিলভার ফালমিনেট, ...।

পরীক্ষার ফলাফলঃ (পরীক্ষাসমূহে তাপ দেওয়ার কাজে উন্মুক্ত শিখা ব্যবহার না করে বরং উভয় প্লেট ব্যবহার করা হয়েছে।)

পরীক্ষা-১ঃ

আমরা ৬৫% বিশুদ্ধ নাইট্রিক এসিড ব্যবহার করেছি। যদি বিশুদ্ধতা খুব বেশি হয় তবে তা বিপদজনক এবং সংরক্ষণ করাও কঠিন কেননা এটি সহজেই বিক্রিয়া করে এবং মারাত্মকভাবে পোড়ায়। মারকারী পানির সঙ্গে সংরক্ষণ করা ছিল। পানি দ্রবনের উপর ভেসে ছিল এবং তা মারকারীর বিকিরণ থেকে আমাদেরকে রক্ষা করতে ব্যবহৃত হয়েছিল।

আমরা ১.৫ গ্রাম মারকারী ওজন করে তাতে হট প্লেট হিটার ব্যবহার করে মৃদু তাপ দিলাম যাতে যদি কোন পানি থাকে তা যেন বাস্পীভূত হয়। আমরা মারকারীকে ১১ মিলি নাইট্রিক এসিডের মধ্যে রাখলাম। মারকারী দ্রবীভূত হল না কেননা তাতে পানি উপস্থিত ছিল। পানি মুক্ত করতে আমরা দ্রবণটিতে মৃদু তাপ দিলাম। যখন পানি বাস্পীভূত হয়ে গেল তখন মারকারী বিক্রিয়া শুরু করলো এবং নাইট্রিক এসিডে দ্রবীভূত হতে লাগলো।

পরীক্ষা-২ঃ

আমরা ৫০% ঘন নাইট্রিক এসিড ব্যবহার করেছিলাম। মারকারী তেমন ভালোভাবে বিক্রিয়া করলো না। বিক্রিয়ার জন্য আমরা অনবরত তাপ দিতে লাগলাম যা কিনা যখনই তাপ সরিয়ে নেয়া হয় তখনই থেমে যায়। এমনকি খুবই অল্প পরিমাণ মারকারী ফালমিনেট কেলাস তৈরী হলো (০.৩ গ্রাম হতে পারে) যা আমরা শুকাতে দেই। ৬৫% এর কম গাঢ় নাইট্রিক এসিড ব্যবহার করলে এরকমই ফলাফল পাওয়া যাবে।

লেড নাইট্রেট, $Pb(NO_3)_2$

প্রস্তুত প্রণালীঃ

একটি পরিস্কার বিকারে ছেট ছেট করে লেড বা সিসার খন্ড নেই, এবার উক্ত সিসার টুকরোগুলোর উপরে নাইট্রিক এসিড ঢেলে সিসার খন্ডগুলো ডুবিয়ে দেই। তারপর উক্ত বিকারটিকে চুলার উপর উঠাই এবং গরম করতে থাকি যতক্ষণ পর্যন্ত না সমস্ত নাইট্রিক এসিড উড়ে শেষ না হয়। গরম করতে করতে যখন সমস্ত নাইট্রিক এসিড উড়ে শেষ হয়ে যাবে তখনই আপনি বিকারের তলায় লেড নাইট্রেটের দানা দেখতে পাবেন। চুলা থেকে নামিয়ে কাঞ্চিত লেড নাইট্রেট- এর দানাগুলিকে রোদে শুকিয়ে প্লাস্টিকের কোটায় সংরক্ষণ করতে হবে।

লেড অ্যাজাইড, PbN_6

বৈশিষ্ট্য/গুণাঙ্গনঃ

- ইহা সাদা কেলাস (ক্রিস্টাল) পদার্থ। ইহার আপেক্ষিক ঘনত্ব ৪.৮।
- ইহা ফালমিনেটের চেয়ে কম স্পর্শকাতর। কিন্তু ডেটনেটের ইহা খুবই শক্তিশালী।
- ইহা খুবই চাপ স্পর্শকাতর। মধ্যম ধরনের বা তার চেয়ে বেশী চাপ বা তাপ দিলে ইহা বিফ্ফারিত হয়।
- ইহা খুব দ্রুত কপারের সাথে বিক্রিয়া করে কপার অ্যাজাইড উৎপন্ন করে।
- এই কপার অ্যাজাইড একটি অস্থায়ী পদার্থ। কারণ ইহা খুবই স্পর্শকাতর এবং নিজে নিজেই বিফ্ফারিত হতে পারে।
- কপার অ্যাজাইড এত বেশী স্পর্শকাতর যে ইহা পানির নিচেও বিফ্ফারিত হতে পারে।
- ইহার ডেটনেটের ক্যাপ অ্যালুমিনিয়াম, প্লাস্টিক বা নাইলন-এর পাইপ ব্যবহার করে তৈরী করা উচিত। কারণ ইহাদের মধ্যে কোন বিক্রিয়া ঘটে না।

৮. বিশুদ্ধ পানির মধ্যে ইহার দানাগুলো অক্ষত অবস্থায় থাকে বা গলে যায় না। এবং অ্যাসিটোন-এর মধ্যে লেড অ্যাজাইড ছেড়ে দিলে ইহা গলে যায়।
৯. ইহা আদৃতা দ্বারা কখনোও প্রভাবিত হয় না।
১০. অ্যালুমিনিয়াম বা জিংক পাত্রে সংরক্ষণ করতে হবে।
১১. আলোতে উন্মুক্ত রাখলে ধূসর হলুদ বর্ণের স্তর তৈরি করে। এই স্তর সমস্ত অ্যাজাইডকে আলো থেকে রক্ষা করে। শুকানোর পর আলো থেকে দূরে সংরক্ষণ করাই উত্তম।
১২. প্রথম রৌদ্রে অ্যাজাইড বিস্ফোরিত হয়।
১৩. ইহার বিস্ফোরিত বিন্দু 380° সে.।
১৪. সর্বোচ্চ বিস্ফোরণ গতি 5300 মিটার/ সে.।

সতর্কতাঃ

যে ডেটেনেটে-এর ভিতরে লেড অ্যাজাইড আছে তাকে হাতের মুঠিতে অনেকক্ষণ চেপে রাখবেন না। গ্রীষ্মকালে এমন পকেটে রাখবেন না যেখানে বাতাস চুক্তে পারে না বা গরম হয়ে যাওয়ার সম্ভাবনা থাকে। যে কোটায় ইহাকে রাখবেন সে কোটার মুখের প্যাচে যেন অ্যাজাইড-এর দানা না লেগে থাকে। কারণ লেগে থাকলে মুখ লাগানোর সময় বিস্ফোরণ ঘটতে পারে। লেড অ্যাজাইড বানানোর পর তা ঠিক হয়েছে কিনা তা পরীক্ষা করার জন্য 2 মিমি এর বেশী পুড়াবেন না।

প্রথম ফর্মুলাঃ

উপাদান/ উপকরণঃ

পদ্ধতি	প্রথম বিকার		দ্বিতীয় বিকার	
	সোডিয়াম অ্যাজাইড (NaN_3)	ডিস্টিল ওয়াটার	লেড নাইট্রেট ($\text{Pb}(\text{NO}_3)_2$)	ডিস্টিল ওয়াটার
প্রথম পদ্ধতি	৪ গ্রাম	৯৬ মিলি	৭ গ্রাম	৯৩ মিলি
দ্বিতীয় পদ্ধতি	৪ গ্রাম	৯৭ মিলি	৭ গ্রাম	৯৪ মিলি
তৃতীয় পদ্ধতি	৪ গ্রাম	১০০ মিলি	৬ গ্রাম	১০০ মিলি
চতুর্থ পদ্ধতি	৪ গ্রাম	৮০ মিলি	৬ গ্রাম	৬০ মিলি

সোডিয়াম অ্যাজাইড বাজারে সহজেই পাওয়া যায়। ইহা মহিলাদের গর্ভবতী পরীক্ষার জন্য ব্যবহৃত হয়। ইহা একটি শক্তিশালী বিষ। সাইন্টিফিক স্টোর থেকে লেড নাইট্রেট সংগ্রহ করা যায় কিংবা লেডের সাথে নাইট্রিক এসিড যোগ করেও ইহা তৈরি করা যায়।

প্রস্তুত প্রণালীঃ (প্রথম পদ্ধতি অনুসারে)

১. একটি বিকারে (বিকার-১) ৯৬ মিলি পানি নিয়ে ইহাতে ৪ গ্রাম সোডিয়াম অ্যাজাইড যোগ করতে হবে।
২. অপর একটি বিকারে (বিকার-২) ৯৩ মিলি পানি নিয়ে ইহাতে ৭ গ্রাম লেড নাইট্রেট যোগ করতে হবে।
(বিন্দুঃ উভয় উপাদানই পানিতে ভালভাবে মিশাতে হবে)।
৩. বিকার-১ এর দ্রবণ বিকার-২ এ আস্তে আস্তে ঢালতে হবে এবং একটি নাড়ানী দড় দিয়ে নাড়তে হবে।
৪. বিকার-২ সাদা কেলাসের গঠন দেখা যাবে। ইহাই লেড অ্যাজাইড।
৫. কেলাস গুলো ফিল্টার করে ছায়াতে শুকাতে হবে।
৬. শুকানো হয়ে গেলে পরীক্ষার জন্য 2 মিলিমিটারের কম পুড়িয়ে দেখতে হবে শব্দ হয় কিনা। শব্দ হলে বুঝতে হবে লেড অ্যাজাইড প্রস্তুতি সঠিক হয়েছে।
৭. ছায়া যুক্ত স্থানে প্লাস্টিকের কোটায় সংরক্ষণ করতে হবে।

চিত্রঃ লেড অ্যাজাইড প্রস্তুতি

বিশ্বঃ সোডিয়াম অ্যাজাইড এক গ্রাম পরিমাণ যদি কোন মানুষকে খাইয়ে দেওয়া যায় তাহলে সে মানুষ ৬/১২ ঘন্টার মধ্যে মৃত্যুবরণ করবে এবং তার শরীর বরফ হয়ে যাবে। অতএব আমরা বুঝতে পারছি যে, সোডিয়াম এ্যাজাইড একটি বিষাক্ত পদার্থ। এক্ষেত্রে লক্ষ্য রাখতে হবে যাতে নাড়চাঢ়া এবং মিঞ্চিং করার সময় ছিটকে চোখে বা মুখের মধ্যে প্রবেশ না করে।

দ্বিতীয় ফর্মুলাঃ এই ফর্মুলাটি পরীক্ষিত নয়।

এই পদ্ধতিতে লেড অ্যাসিটেটের সাহায্যে লেড অ্যাজাইড তৈরি করা হয়। বাণিজ্যিক প্লাষ্টিক তৈরিতে লেড অ্যাসিটেট ব্যবহৃত হয়।

লেড অ্যাজাইড তৈরি করতে নিম্নোক্ত উপকরণ প্রয়োজন :

সোডিয়াম অ্যাজাইড (NaN_3)	লেড অ্যাসিটেট ($(\text{CH}_3\text{COO})_2\text{Pb}$)	সোডিয়াম কার্বনেট (Na_2CO_3)	পানি
২ গ্রাম	১ গ্রাম	০.৩ গ্রাম	২০ মিলি

প্রস্তুত প্রণালী :

- একটি (বিকার-১) ২০ মিলি পানি নিয়ে ইহাতে ১ গ্রাম লেড অ্যাসিটেট এবং ০.৩ গ্রাম সোডিয়াম কার্বনেট যোগ করে ভালভাবে মিশাতে হবে।
- অপর একটি বিকারে (বিকার-২) ২০ মিলি পানি নিয়ে ইহাতে ২ গ্রাম সোডিয়াম অ্যাজাইড যোগ করে ভালভাবে মিশাতে হবে।
- বিকার-১ কে বিকার-২ এর সঙ্গে মিশাতে হবে ফলে কেলাস পদার্থ উৎপন্ন হবে।
- ফিল্টার করে ছায়াতে শুকাতে হবে। খেয়াল রাখতে হবে ইহা যেন সম্পূর্ণরূপে না শুকায়।
- কেলাসের সঙ্গে ডেক্সট্রিন বা পলিভিনাইল অ্যালকোহল যোগ করতে হবে। ইহা দ্রবণে ১০% হওয়া উচিত।

বিশ্বঃ যদি কেলাস পদার্থগুলি সম্পূর্ণ শুকিয়ে যায় তবে বিস্ফোরণ ঘটতে পারে।

সিলভার অ্যাজাইড

প্রস্তুত প্রণালী লেড অ্যাজাইড (পদ্ধতি-১)-এর অনুরূপ। শুধুমাত্র লেড-এর পরিবর্তে সিলভার ব্যবহার করতে হবে।

হেক্সামিন পার অক্সাইড, $(\text{C}_6\text{H}_{12}\text{N}_4)_2\text{O}_2$

হেক্সামিন পার অক্সাইড যেকোন কেমিষ্টের নিকট সহজে পাওয়া যায়। ইহা ঔষধ তৈরিতে ব্যবহৃত হয়।

ভৌত গুণাবলী:

- ইহা সাদা কেলাস পদার্থ, ইহার আপেক্ষিক ঘনত্ব ১.৭।
- ইহা পানিতে দ্রবণীয় নয়।
- ইহা 80° সে. এর বেশি তাপমাত্রা বাস্পায়িত হয়।
- ইহা 200° সে. তাপমাত্রায় বিস্ফোরিত হয়।
- বিস্ফোরণের গতি ৪১০০ মিটার/ সে.।
- ইহা ফালমিনেটের চেয়ে বেশী শক্তিশালী।
- এটি দিয়ে আমরা ডেটনেটের তৈরি করতে পারি।

বিশ্বঃ স্বাভাবিক তাপমাত্রায় ইহা ঠাণ্ডা, শুক্র জায়গায় এবং কালো কাচের পাত্রে সংরক্ষণ করতে হবে।

উপকরণঃ

উপাদান	১ম পদ্ধতি	২য় পদ্ধতি
৩০% ঘনমাত্রার হেক্সামিন ($\text{C}_6\text{H}_{12}\text{N}_4$)	৪০ গ্রাম	১৪ গ্রাম
হাইড্রোজেন পার অক্সাইড (H_2O_2)	১৫০ মিলি	৪৫ মিলি
৬৫% ঘনমাত্রার নাইট্রিক এসিড	৩০ মিলি	--
সাইট্রিক এসিড	--	২১ মিলি

বিশ্বঃ ১ম পদ্ধতিতে প্রস্তুতকৃত হেক্সামিন পার অক্সাইড এক সংগ্রহের মধ্যে ব্যবহার করতে হবে।

২য় পদ্ধতিতে প্রস্তুতকৃত হেক্সামিন পার অক্সাইড তিন মাসের মধ্যে ব্যবহার করতে হবে।

প্রস্তুত প্রণালী (১ম পদ্ধতি):

- একটি বিকারে ১৫০ মিলি হাইড্রোজেন পার অক্সাইড নিতে হবে।
- অল্প অল্প করে ৪০ গ্রাম হেক্সামিন যোগ করতে হবে এবং নাড়তে হবে। তাপমাত্রা অবশ্যই 25° সে. এর নিচে রাখুন।
- হাইড্রোজেন পার অক্সাইড-এ হেক্সামিন যোগ করার পর এক ঘন্টা ধরে অনবরত নাড়তে হবে।

৮. এক ঘন্টা পর ফেঁটায় ফেঁটায় ৩০ মিলি নাইট্রিক এসিড যোগ করতে হবে। অনবরত নাড়তে হবে এবং দ্রবণের তাপমাত্রা 30° সে. এর নিচে রাখতে হবে।
৯. এসিড মেশানোর পর ৫-৭ মিনিট নাড়তে হবে।
১০. কেলাস তৈরির জন্য মিশ্রণটি ২ ঘন্টা রেখে দিতে হবে।
১১. সমস্ত মিশ্রণটি পাউডার আকার (ক্ষুদ্র কেলাস) হয়ে যাবে।
১২. অবশ্যে ফিল্টার করে সূর্যালোকে শুকাতে হবে।
১৩. স্বাভাবিক তাপমাত্রায় আলো প্রতিরোধক পাত্রে সংরক্ষণ করতে হবে। তুলনামূলক ভাবে প্লাষ্টিক পাত্র ভাল।

ফলাফলঃ পরীক্ষা-১

খুবই অল্প এবং বাজে মানের হেক্সামিন পার অক্সাইড তৈরী হয়েছিল। কারণ হচ্ছে যে হাইড্রোজেন পার অক্সাইড ব্যবহৃত হয়েছিল তা ছিল খুবই পুরানো (২ বছরের পুরানো হতে পারে)। হাইড্রোজেন পার অক্সাইড-এর শক্তি সময়ের সঙ্গে কমতে থাকে। যেহেতু এই বোমার জন্য হাইড্রোজেন পার অক্সাইড-এর ঘনত্ব 30% হওয়া বাস্তবীয় ছিল কিন্তু পুরাতন হওয়া তা ছিল না। এটিই কারণ।

প্রস্তুত প্রণালী (২য় পদ্ধতি):

১. হেক্সামিন গুড়া করতে হবে।
২. একটি বিকারে হাইড্রোজেন পার অক্সাইড নিতে হবে।
৩. আন্তে আন্তে হেক্সামিন যোগ করতে হবে এবং নাড়তে হবে। মিশ্রণের তাপমাত্রা 25° সে. এর নিচে রাখতে হবে।
৪. দ্রবণটি একটি বরফ পাত্রে রাখতে হবে যাতে দ্রবণের তাপমাত্রা 5° সে. এর নিচে থাকে।
৫. ধীরে ধীরে ২১ মিলি সাইট্রিক এসিড যোগ করতে হবে এবং মিশ্রণের তাপমাত্রা 30° সে. এর নিচে রাখতে হবে।
৬. দ্রবণটি বরফ পাত্রে ১১-২৪ ঘন্টা রেখে দিতে হবে।
৭. পানি অথবা সোডিয়াম বাই কার্বনেটের সাহায্যে পরিষ্কার করতে হবে।
৮. PH পেপারের সাহায্যে দ্রবণের এসিডিটি পরীক্ষা করতে হবে। ইহাতে কখনও এসিড থাকা উচিত নয়। কারণ এসিড কোন বিস্ফোরককে দীর্ঘদিন সংরক্ষণ করতে দেয় না।

চিত্রঃ হেক্সামিন পার অক্সাইড প্রস্তুতি (দ্বিতীয় পদ্ধতি)।

অ্যাসিটোন পার অক্সাইড, $(\text{CH}_3)_2\text{CO}_2$

এটির প্রস্তুতি সহজলভ্য কিন্তু তা মোটামুটি ব্যবহার যোগ্য নয়। এটি 86° সে. তাপমাত্রায় বিস্ফোরিত হয় এবং ২-৫ গ্রাম তৈরীতে ৪০ ঘন্টা সময় লাগে।

ভৌত গুণাবলী :

১. ইহা একটি প্রাইমার কর্ড হিসাবেও ব্যবহার করা যায় যদিও এটি ডেটনেটেরে ব্যবহৃত হয়।
২. ইহা একটি সাদা কেলাস পদার্থ যাহা ঘর্ষণ, চাপ, তাপ এবং সামান্য H_2SO_4 এর ছিটায় বিস্ফোরিত হয়।
৩. ইহা পানিতে দ্রবীভূত হয় না।
৪. ইহা স্বাভাবিক তাপমাত্রায় বাস্পায়িত হয়ে গ্যাসে পরিণত হয়।
৫. সুতরাং সংরক্ষণের জন্য ইহা পানির নিচে রাখতে হবে।
৬. ইহার ঘনত্ব 1.18 এবং বিস্ফোরণ গতিবেগ 5300 মিটার/ সে.।
৭. ইহা আঘাতের প্রতি লেড অ্যাজাইডের চেয়ে বেশী স্পর্শকাতর।

৮. ইহা পেট্রোল, টলুইন, ক্লোরোফর্ম এবং এসিটনে দ্রবণীয়।

উপকরণঃ

বাজারে তিনি ধরনের হাইড্রোজেন পার অক্সাইড পাওয়া যায়। বিভিন্ন ধরনের ঘনমাত্রা বিভিন্ন অনুপাতে ব্যবহৃত হয়। যেমন-

ঘনমাত্রা (%)	মিশ্রণের অনুপাত		
	এ্যাসিটোন	H ₂ O ₂ (%)	মিলি এসিড
৩০%	৩০ মিলি	৫০ মিলি	H ₂ SO ₄ = ২.৫ মিলি
১০-১৫%	১০%	১০%	HCl/ যেকোন = ১ মিলি
সাধারণ	১০%	১০%	H ₂ SO ₄ / যেকোন = ৩ মিলি
১০-১৫%	১০%	৩০%	HCl = ২-৫ মিলি

পদ্ধতি :

- এ্যাসিটোন (CH₃)₂CO₂
- হাইড্রোজেন পার অক্সাইড H₂O₂ (৩০% ঘনমাত্রা)
- সালফিউরিক এসিড (H₂SO₄)

পদ্ধতি:

এখানে আমরা ৩০% ঘনমাত্রার হাইড্রোজেন পার অক্সাইড ব্যবহার করে এ্যাসিটোন পার অক্সাইড তৈরী করব।

চিত্রঃ এ্যাসিটোন পার অক্সাইড পদ্ধতি

- একটি বিকারে ৫০ মিলি H₂O₂ এর সাথে ৩০ মিলি এ্যাসিটোন যোগ করে ধীরে ধীরে অনবরত নাড়তে হবে।
- মিশ্রণটি একটি বরফ পাত্রে নিয়ে তাপমাত্রা ৫° সে. এ নামাতে হবে। এরপর ফোটায় ফোটায় ২.৫ মিলি সালফিউরিক এসিড যোগ করতে হবে। মিশ্রণের তাপমাত্রা ৫°-১০° সে. এর মধ্যে নিয়ন্ত্রণ করতে হবে।
- যখন সমস্ত এসিড যোগ করা শেষ হয়ে যাবে তখন বরফ পাত্রের বাইরে নিয়ে ৫-৭ মিনিট মিশ্রণটি নাড়তে হবে।
- অতপর মিশ্রণটি একটি ফিজে ৮-২৪ ঘন্টা সংরক্ষণ করতে হবে।
- যখন মিশ্রণটি পরিপূর্ণ কেলাসিত হয়ে যাবে তখন ফিল্টার করতে হবে। অবশ্যে প্রথমে পানি এবং পরে ২% সোডিয়াম কার্বনেটের সাহায্যে ধোত করতে হবে।

সতর্কতাঃ

- পদার্থটি খুব ভালভাবে ধোত করতে হবে। কারণ ইহা এসিডের প্রতি খুব স্পর্শকাতর।
- পদ্ধতির সময় তাপ এবং শিখা থেকে দুরে রাখতে হবে।
- ইহা ৩০°-৩৫° সে. তাপমাত্রায় শুক্র এবং ঠান্ডা জায়গায় সংরক্ষণ করতে হবে।
- ইহা ৮৬° সে. তাপমাত্রায় বিক্ষেপিত হয়।

বিশেষ সতর্কতাঃ

পদ্ধতির সময় মিশ্রণের তাপমাত্রা যদি ৬০° সে. এ উঠে যায় তখন সঙ্গে সঙ্গে সমস্ত মিশ্রণটি পানিতে ঢেলে দিতে হবে।

প্রধান চার্জ (Main Charge)

পটাশিয়াম ক্লোরেট, $KClO_3$

প্রথম পদ্ধতি:

পটাশিয়াম ক্লোরেট বিস্ফোরক উপাদান হিসেবে খুবই গুরুত্বপূর্ণ। এটি বিস্ফোরক মিশ্রনকে জারিত করতে ব্যবহৃত হয়। আমরা একটি ম্যাচের বাক্সে থেকে ইহা পেতে পারি। সাধারণত একটি বাক্স থেকে এক গ্রাম পটাশিয়াম ক্লোরেট পাওয়া যায়।

প্রস্তুত প্রণালী:

১. একটি বড় পাত্র নিয়ে উহার অর্ধেক পরিমাণ পানি দ্বারা ভর্তি করে ৫০টি বাক্সের কাঠি ইহাতে ঢুবাতে হবে।
২. ম্যাচের কাঠিগুলোর মাথা দ্রবীভূত না হওয়া পর্যন্ত ফোটাতে হবে।
৩. অতঃপর কাঠিগুলি আলাদা করে ফেলতে হবে।
৪. একটি ফিল্টার পেপারের সাহায্যে দ্রবণটি ছেকে অপদ্রব্য অপসারণ করতে হবে। পটাশিয়াম ক্লোরেট পানিতে ভালো ভাবে দ্রবীভূত হয় তাই পানির সঙ্গে ইহা পাত্রে জমা হবে।
৫. উক্ত দ্রবণটি আধাশক্ত বা কাঁদার মত না হওয়া পর্যন্ত তাপ দিতে হবে।
৬. একটি কাঁচের উপর কাঁদাগুলো ছড়িয়ে দিয়ে সূর্যালোকে শুকাতে হবে। এটাই হবে পটাশিয়াম ক্লোরেট। ম্যাচের কাঠির মাথা হিসেবে এটি লালচে বা বাদামী হবে। বিশুল্প পটাশিয়াম ক্লোরেটের রং সাদা হয়।
৭. ইহা শুকিয়ে গেলে গুড়া করতে হবে এবং একটি চালুনী দিয়ে চেলে পাউডার তৈরী করতে হবে। ইহা একটি কঠের বেলুনি দিয়ে কাঠের পাত্রে গুড়া করতে হবে। গুড়া করার সময় কখনও ইহা আঘাত করা যাবে না।
৮. ঠাণ্ডা জায়গায় সংরক্ষণ করতে হবে।

দ্বিতীয় পদ্ধতি:

মূলনীতিঃ পটাশিয়াম ক্লোরাইড (KCl)-কে পটাশিয়াম ক্লোরেট ($KClO_3$)-এ পরিবর্তন

বৈশিষ্ট্যাবলীঃ (১) এটি সাদা কেলাস।

(২) এটি আর্দ্ধতায় তেমন প্রভাবিত হয় না।

প্রস্তুত প্রণালী:

১. একটি পাত্রে $1/2$ কাপ পটাশিয়াম ক্লোরাইড (KCl) এবং 3 লিটার পানি নিই।
২. দুই চামচ সালফিউরিক এসিড (H_2SO_4) এতে যোগ করে ভালোভাবে নাড়ুন।
৩. দুইটি কাঠের টুকরা তৈরী করুন (5 সেমি * 0.3 সেমি * 3 সেমি)।
৪. দুইটি লেড-এর দড় কাঠের টুকরা দুইটির সাথে বাধুন এবং বৈদ্যুতিক টার্মিনালের সাথে সংযোগ করুন।

নোটঃ নিশ্চিত হোন যাতে কোন বৈদ্যুতিক লিকেজ না থাকে।

৫. এখন 12 ভোল্টের ব্যাটারির ট্রান্সফরমেরটি অন করুন। (যদি গাড়ির 12 ভোল্টের ব্যাটারী ব্যবহার করেন তবে গাড়িটি প্রতি 1 বা 2 ঘন্ট পরপর স্টার্ট দিতে হবে।)
৬. এখন কাজ করার জন্য যন্ত্রটিকে 24 - 36 ঘন্টা রেখে দিন এবং পানি শুকিয়ে গেলে আবার পূর্ণ করে দিন।
৭. 24 - 36 ঘন্টা পরে দ্রবণটি নিয়ে ফিল্টার করুন।
৮. শুকানোর আগ পর্যন্ত প্রাপ্ত দ্রবণটিকে ফুটান।
৯. লবনকে সংগ্রহ করুন, এটিই হচ্ছে পটাশিয়াম ক্লোরেট, $KClO_3$

চিত্রঃ পটাশিয়াম ক্লোরাইডকে পটাশিয়াম ক্লোরেট-এ পরিবর্তন

সাধারণ সমীকরণঃ

বিদ্যুৎ প্রবাহ

বিশেষ নেটওয়ার্ক এই পদ্ধতিতে সকল প্রকার ক্লোরাইড ক্লোরেটে পরিবর্তিত হতে পারে।

বিশেষ এই পদ্ধতিটি কাজ করছেন। ভুলটা কোথায় খুজে বের করা দরকার।

সোডিয়াম নাইট্রেট, NaNO_3

উপাদানঃ

ইাম	পরিমাণ
সোডিয়াম ক্লোরাইড/লবণ (NaCl)	৫৮.৫ গ্রাম
নাইট্রিক এসিড (HNO_3)	৬৩ গ্রাম

সোডিয়াম ক্লোরাইড/লবণ দুই ধরণের রয়েছেঃ

১. খাওয়ার লবণ।
২. বিশুদ্ধ লবণ।

বিশুদ্ধ লবণ তুলনামূলকভাবে ভালো এবং কেমিক্যাল হিসাবে পাওয়া যায়।

প্রস্তুত প্রণালীঃ

১. অল্প পরিমাণ পানির মধ্যে সোডিয়াম ক্লোরাইড/লবণ সম্পূর্ণ গলিয়ে নিতে হবে।
২. লবণের দ্রবণে সবুজ নাইট্রিক এসিড ঢালতে হবে।
৩. একটি গরম বাথে নিয়ে মিশ্রণটিকে তাপ দিতে হবে। নাইট্রিক এসিডের সাদা বাষ্প দেখা যাবে। যখন সমস্ত পানি এবং এসিড বাষ্পায়িত হয়ে যাবে তখন পাত্রের তলায় হলুদ কেলাস পাওয়া যাবে।
৪. ব্যবহারের জন্য কেলাসগুলো একটি ফ্যান ব্যবহার করে ভালো ভাবে শুকাতে হবে।

নেটওয়ার্ক এটা ভালো হবে যদি উক্ত কেলাসকে পানি অথবা সোডিয়াম কার্বনেট দিয়ে শোধন করে ফিল্টার করা হয়।

ইউরিয়া নাইট্রেট, $(\text{NH}_2)_2\text{C}(\text{NO}_3)_2$

প্রথম পদ্ধতিঃ

বৈশিষ্ট্য / ধর্মাবলীঃ

১. ইহা একটি সাদা কেলাস পদার্থ, পানিতে দ্রবণীয় এবং ইহা সিঙ্গ অবস্থায় ইহা বিস্ফোরিত হয় না।
২. ইহা একাকী কিংবা মিশ্রণে বিস্ফোরিত হতে পারে। তবে মিশ্রণে ব্যবহার করা ভালো।

উপাদানঃ

ইউরিয়া (সার)	নাইট্রিক এসিড (HNO_3)	পানি
১০০ গ্রাম	১৩৫ মিলি	১৫০ মিলি
৫০০ গ্রাম	৩০০ মিলি	৫০০ মিলি

প্রস্তুত প্রণালীঃ

১. ১৫০ মিলি পানির মধ্যে ১০০ গ্রাম ইউরিয়া ভালোভাবে দ্রবীভূত করতে হবে।
২. সম্পূর্ণরূপে দ্রবীভূত হওয়ার পর ১৩৫ মিলি নাইট্রিক এসিড ধীরে ধীরে দ্রবণে যোগ করে দ্রবণটি অনবরত নাড়তে হবে।
৩. আপনি দেখবেন খুব তাড়াতাড়ি সাদা কেলাস গঠন করেছে। (ইউরিয়া নাইট্রেট)।
৪. আরও দুই মিনিট নাড়ুন।
৫. ঠাণ্ডা এবং পরিপূর্ণরূপে কেলাসিত না হওয়া পর্যন্ত মিশ্রণটিকে দুই ঘন্টার জন্য রেখে দিতে হবে।
৬. মিশ্রণটি ফিল্টার করে কেলাসগুলোকে বাতাসে শুকাতে হবে।
৭. ভালোভাবে গুড়া করে চালুনী দিয়ে চালতে হবে এবং প্রধান চার্জ হিসাবে ব্যবহারের জন্য সংরক্ষণ করতে হবে।

পরীক্ষাঃ তারিখঃ- ০৭-১২-১৯৫

উদ্দেশ্যঃ ৫০ গ্রাম ইউরিয়া নাইট্রেট তৈরী করা।

উপাদানের নাম	পরিমাণ
ইউরিয়া	৫০ গ্রাম
পানি	৭৫ মিলি
নাইট্রিক এসিড (HNO_3)	৬৭.৫ মিলি

প্রস্তুত প্রণালীঃ

১. ইউরিয়া পানিতে যোগ করা হয়েছিল। সম্পূর্ণরূপে দ্রবীভূত না হওয়া পর্যন্ত নাড়তে হয়েছিল এবং ১৫ মিনিট সময় লেগেছিল। দ্রবনটি কঠিনভবন তাপমাত্রায় ছিল (ইউরিয়ার কারণে তাপমাত্রা ছিল ৫° সে.)। দ্রবনের রং ছিল হালকা সাদাটে।
২. খুবই ধীরে ধীরে মিশ্রনে নাইট্রিক এসিড যোগ করেছিলাম এবং অনবরত নেড়েছিলাম। মিশ্রন শেষে ২-৩ মিনিট নেড়েছিলাম। দ্রবনটি উৎক্ষ হয়েছিল ($35-40^{\circ}$ সে.)। মিশ্রনটি বিশুद্ধ সাদা রং ধারণ করেছিল। গঠন ছিল ক্রিমের মতো। মিশ্রনটি সময়ের সাথে ঠান্ডা হয়েছিল।
৩. মিশ্রনটিকে পূর্ণরূপে কেলাসিত করার জন্য দুই ঘন্টা রেখে দিয়েছিলাম। কেলাসগুলি দ্রবনের নিচে জমেছিল।
৪. দ্রবনটি ফিল্টার করে প্রাপ্ত কেলাসগুলি শুকাতে দিয়েছিলাম

ফলাফলঃ ভালো কাজ করেছে।

দ্বিতীয় পদ্ধতিঃ সহজ পদ্ধতি

১. ১০ কাপ মানুষের মূএকে ইহার শতকরা ১০ (১০%) ভাগ (১ কাপ) না হওয়া পর্যন্ত তাপ দিতে হবে।
২. দ্রবণটি ফিল্টার করতে হবে।
৩. ১/৩ কাপ নাইট্রিক এসিড যোগ করে মিশ্রণটি পূর্ণরূপে কেলাসিত না হওয়া পর্যন্ত ২ ঘন্টা রেখে দিতে হবে।
৪. পুনরায় ফিল্টার করে বাতাসে শুকাতে হবে।
৫. এটাই হবে আমাদের ইউরিয়া নাইট্রেট।

নাইট্রো-ইউরিয়া

নাইট্রো-ইউরিয়া তৈরী করতে ইউরিয়া নাইট্রেট ব্যবহৃত হয়। ইহা ইউরিয়া নাইট্রেটের চেয়ে বেশী শক্তিশালী। ইহা নাইট্রো-ফ্লিসারিন এবং নাইট্রো-বেনজিনের ন্যায় শক্তিশালী।

বৈশিষ্ট্য/ ধর্মাবলীঃ

১. ইহা সাদা কেলাস পদার্থ পানিতে দ্রবনীয়।
২. গলনাং $146-150^{\circ}$ সে।
৩. ইহা অনেক বছর ধরে সংরক্ষণ করা যেতে পারে।
৪. ইহা বায়ুনিরোধী কাঁচ পাত্রে সংরক্ষণ করতে হবে।
৫. যখন ইহাতে কোন ক্ষার যোগ করা হয় তখন ইহা বিযোজিত হয়ে পানি, অ্যামোনিয়া, নাইট্রিক অক্সাইড. বাইরাইট এবং সিরথিক এসিড উৎপন্ন করে।
৬. ইহা দুই টি.এন.টির সমান শক্তিশালী।

উপাদানঃ

শুক ইউরিয়া নাইট্রেট	সালফিউরিক এসিড (H_2SO_4)	পানি
২০ গ্রাম	৩০ গ্রাম	১০০ মিলি

প্রস্তুত প্রণালীঃ

১. ২০ গ্রাম ইউরিয়া নাইট্রেটকে ৩০ গ্রাম সালফিউরিক এসিডের মধ্যে খুব ভালভাবে মিশাতে হবে এবং মিশ্রণের তাপমাত্রা 0° সে. এর নিচে রাখতে হবে। ইহা দুধের মত দ্রবণে পরিণত হবে।
২. ১০০ মিলি ঠান্ডা পানি যোগ করতে হবে। অতঃপর মিশ্রণটা ইউঘার্ট (দধীর মত) এর মত হবে।
৩. ফিল্টার করে ধোত ব্যাতিরেকে কিছু সময়ের জন্য রৌদ্রে রাখতে হবে।
৪. একে পরিপূর্ণরূপে শুকানো যাবেন। পেস্টের মতো হলে (অর্দ্ধতা থাকবে) তখন মিশ্রনটি একটি বিকারে রাখতে হবে।

৫. অনবরত নাড়তে থেকে এতে কিছু ফুটস্ট ইথাইল অ্যালকোহল (C_2H_5OH) যোগ করতে হবে। নাইট্রো-ইউরিয়া ফুটস্ট ইথাইল অ্যালকোহলে দ্রবীভূত করতে হবে।
৬. একটি বরফ পাত্রে রেখে ইহা ঠাণ্ডা করতে হবে। ইহা সাদা কেলাস গঠন করবে। ইহাই আমাদের বিশুদ্ধ নাইট্রো-ইউরিয়া।
৭. ইহাকে ইথাইল অ্যালকোহল এর সাহায্যে ফিল্টার এবং ধোত করতে হবে।
৮. রৌদ্রে শুকাতে হবে।
৯. ইহা খুব শক্তিশালী বিস্ফোরক।

নাইট্রো-বেনজিন, $C_6H_5NO_2$

প্রথম পদ্ধতিঃ

উপাদানঃ ল্যাবরেটরীতে নাইট্রো-বেনজিন প্রস্তুত করতে নিচের উপাদানগুলো প্রয়োজন।

সালফিউরিক এসিড (H_2SO_4)	নাইট্রিক এসিড (HNO_3)	বেনজিন (C_6H_6)
৫০ মিলি	৫০ মিলি	২০ মিলি

প্রস্তুত প্রণালীঃ

১. দুইটি এসিড মিশ্রন করার জন্য বরফ পাত্র প্রস্তুত করতে হবে।
২. একটি বিকারে ৫০ মিলি নাইট্রিক এসিড নিয়ে তা বরফ পাত্রে রাখুন।
৩. একটু একটু করে ৫০ মিলি সালফিউরিক এসিড নাইট্রিক এসিডে যোগ করতে হবে। তাপমাত্রা 25°C সে. এর নিচে রাখতে হবে। তাপমাত্রা বেড়ে গেলে বিপদ্জনক ঘো঱া দেখা যাবে।
৪. মিশ্রণ শেষ হলে বিকারটিকে বরফ পাত্র থেকে সরিয়ে তাপমাত্রা 50°C সে. পর্যন্ত বাড়াতে হবে।
৫. উক্ত মিশ্রনে ২০ মিলি বেনজিন যোগ করুন। লক্ষ্য রাখুন মিশ্রনের সময় তাপমাত্রা যেন 50°C সে. থাকে। (বিশুদ্ধ বেনজিন ৬ পরমানু বিশিষ্ট পেট্রোল যেখানে সাধারণ পেট্রোল ৮ পরমানু বিশিষ্ট হয়।)
৬. মিশ্রনটির উপরে নাইট্রো-বেনজিনের একটি স্তর দেখা যাবে।
৭. একটি সরু সিলিন্ডারে মিশ্রনটিকে রেখে একটি ড্রপারের সাহায্যে নাইট্রো-বেনজিন পৃথক করতে হবে।

চিত্রঃ নাইট্রো-বেনজিন ($C_6H_5NO_2$) প্রস্তুতি (প্রথম পদ্ধতি)।

দ্বিতীয় পদ্ধতিঃ এটি তুলনামূলক নতুন এবং উন্নত পদ্ধতি

এ পদ্ধতিতে বেনজিনকে একটি এসিড মিশ্রণের সহিত মেশাতে হবে।

বেনজিন	এসিড মিশ্রণ
২৩ গ্রাম	৬৫ গ্রাম

এসিড মিশ্রণঃ

H_2SO_4	HNO_3	পাতিত পানি
৫৮%	২৪%	১৪%

প্রস্তুত প্রণালীঃ

১. ৬৫ গ্রাম এসিড মিশ্রণ নিয়ে ইহার তাপমাত্রা 25°C এর নিচে রাখতে হবে।
২. ২৩ গ্রাম বেনজিন নিয়ে ইহা ফেটায় ফেটায় এসিড মিশ্রণে ঢালতে হবে এবং অনবরত নাড়তে হবে। মিশ্রণের তাপমাত্রা বাড়তে দিন কিন্তু তা যাতে কোন ক্রমেই 70°C এর উপরে না উঠে সে দিকে খেয়াল রাখতে হবে।

৩. সমস্ত বেনজিন এসিড মিশ্রণে ঢালা শেষ হয়ে গেলে মিশ্রণটি কিছু সময় নাড়তে হবে এবং শেষে একটি ড্রপার বা সিরিজে-এর সাহায্যে আলাদা করতে হবে।
৪. কিছু ভেজাল মিশ্রিত এটাই আমাদের নাইট্রো-বেনজিন।

চিত্রঃ নাইট্রো-বেনজিনের ($C_6H_5NO_2$) প্রস্তুতি (দ্বিতীয় পদ্ধতি)।

বিশেষধনঃ

উপরোক্ত উপায়ে প্রাপ্ত নাইট্রো-বেনজিনে কিছু এসিড ভেজাল হিসাবে থাকে।

১. মিশ্রনে ৩% - ৩.৫% সোডিয়াম হাইড্রোক্সাইড (NaOH) যোগ করতে হবে এবং অনবরত নাড়তে হবে।
২. p^H পেপার দ্বারা পরীক্ষা করতে হবে। যখন p^H পেপারের বর্ণ সবুজ হবে তখন ড্রপারের সাহায্যে ইহা আলাদা করতে হবে।
৩. এটাই হবে আমাদের বিশুদ্ধ নাইট্রো-বেনজিন। আমাদের পরীক্ষানুসারে, ইহা খুব ভালো এবং শক্তিশালী এবং আগেরটার চেয়েও উন্নত।

গি-সারিন, $C_3H_5(OH)_3$

প্রস্তুত প্রণালীঃ

১. $55^{\circ}C$ তাপমাত্রায় রান্নার তেল বা ঘি-কে উন্নত করে উহার সহিত ঘন সোডিয়াম হাইড্রোক্সাইড (NaOH) অথবা ঘন পটাসিয়াম হাইড্রোক্সাইড (KOH) যোগ করে ট্রিসারিন প্রস্তুত করা যায়।
২. মিশ্রণটি দুইটি স্তরে আলাদা না হওয়া পর্যন্ত ইহা নাড়তে হবে।
৩. তরলটি ফেনা উৎপন্ন করে এবং তা তরলের উপর ভাসতে থাকে। ভাসতে থাকা ফেনা সাবান তৈরীতে ব্যবহৃত হয়। প্রাপ্ত তরলটি হচ্ছে ট্রিসারিন ($C_3H_5(OH)_3$)।

নোট :- তেল সম্পূর্ণভাবে সাবান তৈরী না করা পর্যন্ত NaOH বা KOH যোগ করতে হবে।

নাইট্রো-গি-সারিন, $C_3H_5(ONO_2)_3$

এটি সাধারণত বেশ শক্তিশালী এবং তুলনামূলকভাবে সূচনাকারী এবং সক্রিয়কারী পদার্থের চেয়ে কম স্পর্শকাতর। নাইট্রো-ট্রিসারিন এবং উহার মিশ্রণকে ডিনামাইট বলে।

ধর্মাবলী / বৈশিষ্ট্যঃ

১. বাণিজ্যিক ভাবে উৎপাদিত নাইট্রো-ট্রিসারিন হালকা বাদামী এবং তৈলাক্ত ক্রিম রংয়ের হয়ে থাকে। কিন্তু যখন ইহা বিশুদ্ধ হয় তখন বর্ণহীন থাকে।
২. সাধারণত ইহা $11^{\circ}-13^{\circ}C$ তাপমাত্রায় জমাট বাঁধে।
৩. ইহা পানিতে দ্রবণীয় নয় কিন্তু অ্যালকোহল (C_2H_5OH), ট্রুলুইন, ক্লোরফর্ম, নাইট্রো-বেনজিনে এবং অলিভ তৈলে দ্রবীভূত হয়।
৪. উক্ত দ্রবনের মধ্যে পানি যোগ করে ইহা পুনরায় ফিরে পাওয়া যায়।
৫. ইহার আপেক্ষিক গুরুত্ব / ঘনত্ব 1.6 ।
৬. সালফিউরিক এসিড যোগ করলে ইহা বিয়োজিত হয়।
৭. অন্যান্য পদার্থের জন্য ইহা একটি ভাল দ্রাবক।
৮. ইহা $180^{\circ}C$ তাপমাত্রায় বিস্ফোরিত হয়।
৯. ইহা উচ্চ চাপে বিস্ফোরিত হয়।
১০. আলো এবং রশ্মির প্রভাবে ইহা বিয়োজিত হয়।
১১. $75^{\circ}C$ তাপমাত্রায় ইহা বিয়োজিত হয়।

১২. ইহা আঘাতের প্রতি স্পর্শকাতর। ইহা কোন বুলেটের আঘাত, কোন যন্ত্রের সুস্থ কিনারার ঘর্ষণে অথবা কোন চিনামাটির পাত্রের কিনারার ঘর্ষণে বিস্ফোরিত হতে পারে।

১৩. ইহার বিস্ফোরণের হার তরল অবস্থায় $1000 - 8000$ মিটার/সে. এবং কঠিন অবস্থায় 8000 মিটার/সে.।

১৪. সংরক্ষণের ইহা পানির নিচে 1g নাইট্রো-গ্লিসারিন এবং পানি অনুপাতে রাখতে হবে। সেখানে ৩ ভাগ পানির মধ্যে ১ ভাগ নাইট্রো-গ্লিসারিন।

১৫. ইহা একটি মারাত্মক বিষ, রক্তচাপের উপর প্রভাব ফেলে। ইহার ফলে মাথা ব্যথা, মাথা ধরা, বমি বমি ভাব এবং পায়ে সমস্যা দেখা দেয়। আক্রান্ত রোগীকে অবশ্যই উন্মুক্ত বাতাসে রাখতে হবে এবং সোডিয়াম বেনজোনেট ইনজেকশনের সাথে ক্যাফেইন ইনজেকশন দিতে হবে অথবা রোগীকে অ্যাফেটামাইন পান করতে দিতে হবে।

১৬. যারা ইহা নিয়ে ঘন ঘন কাজ করে তারা এর বিষাক্ততায় আক্রান্ত হতে পারে।

১৭. বিশুদ্ধ নাইট্রো-গ্লিসারিন এবং ঠাণ্ডা পরিবেশে সংরক্ষণ ডিনামাইটকে দীর্ঘায়ু করে। একে কখনোই গরম আবহাওয়ায় সংরক্ষণ করা যাবে না কেননা তা বিপদ্জনক। ঘরের তাপমাত্রা 20°C এটি সংরক্ষণের জন্য উত্তম।

১৮. সদ্য প্রস্তুতকৃত নাইট্রো-গ্লিসারিন তুলনামূলকভাবে বেশী শক্তিশালী।

১৯. কোন বিস্ফোরক তৈরী করতে আমরা ইহা সংগ্রহ করতে পারি অথবা ব্যক্তিগতভাবে তৈরী করতে পারি।

উপাদানঃ

উপকরণ	পরিমাণ
গ্লিসারিন $\text{C}_3\text{H}_5(\text{OH})_3$	৫ মিলি
নাইট্রিক এসিড (HNO_3) গাঢ় ৬৫-৮৫% ৮৫% সবচেয়ে ভাল।	১৫ মিলি
সালফিউরিক এসিড (H_2SO_4)	২২.৫ মিলি
পানি	২৫০ মিলি

প্রস্তুত প্রণালীঃ

- একটি বিকারে ১৫ মিলি HNO_3 নিয়ে ইহা একটি বরফ পাত্রে রাখতে হবে। তাপমাত্রা 5°C এ নামিয়ে আনতে হবে।
- ইহার মধ্যে ২২.৫ মিলি H_2SO_4 ধীরে ধীরে যোগ করতে হবে এবং অন্বরত নাড়তে হবে। মিশ্রণের তাপমাত্রা 25°C এর নিচে রাখতে হবে।
- আন্তে আন্তে মিশ্রণের তাপমাত্রা 12°C এ আনতে হবে।
- এখন মিশ্রণে ধীরে ধীরে গ্লিসারিন যোগ করতে হবে এবং নাড়তে হবে। এমতাবস্থায় মিশ্রণের তাপমাত্রা $10-20^{\circ}\text{C}$ এর মধ্যে সবচেয়ে ভাল। তাপমাত্রা 30°C এ আসলে ইহা বিপদ্জনক হইবে।

নোট :- কখনও তাপমাত্রা $50-60^{\circ}\text{C}$ এ উঠে যায় তাহলে সঙ্গে সঙ্গে তা বরফ মিশ্রণে ঢেলে দিতে হবে।

- দ্রবণটি $10-15$ মিনিট নাড়তে হবে।
- অতঃপর সমগ্র মিশ্রণটি ২৫০ মিলি ঠাণ্ডা পানি ভর্তি করে বিকারে ঢালতে হবে। বিপরীতভাবে করা যাবে না।
- বিকারের তলদেশের অংশটি হলো নাইট্রো-গ্লিসারিন।
- অতিরিক্ত পানি অপসারণ করতে হবে।
- এমতাবস্থায় অধিক এসিড যুক্ত নাইট্রো-গ্লিসারিন নিরাপদ নয় এবং অধিক কর্যকারী নয়। সুতরাং ইহা বিশোধন করতে 2% সোডিয়াম কার্বনেট দ্রবণ যোগ করতে হবে যতক্ষণ না pH পেপারের বর্ণ নীল বা সবুজ হয়। যখন দ্রবণে আর এসিড থাকবে না তখন সোডিয়াম কার্বনেট যোগ করলে দ্রবণটি হিস্টিস্ করবে না।
- মোটামুটি ৫ মিলি নাইট্রো-গ্লিসারিন পাবেন।
- যদি চান তবে ইহা ১৫ মিলি পানির মধ্যে সংরক্ষণ করতে পারেন।

চিত্র ৪: নাইট্রো-গ্লিসারিন প্রস্তুত প্রণালী

নোট :- যদি ইহা আপনার বিস্ফোরণ করার পরিকল্পনা না থাকে তবে অবশ্যই ইহা একটি নিষ্পত্তি অবস্থায় রাখতে হবে। যেমন ৪ ডিনামাইট।

নাইট্রো-মিথেন, CH_3NO_2

ইহা নাইট্রো-গ্লিসারিনের ($\text{C}_3\text{H}_5(\text{ONO}_2)_3$) মত বিস্ফোরিত হয়, আমরা ইহা হতে বোমা তৈরী করতে পারি। ইহা দেওয়ালের ফাটলে ব্যবহার করা যায়। ইহা তরল অবস্থায়ও ব্যবহৃত হয়।

ধর্মাবলী / বৈশিষ্ট্যাবলীঃ

১. ইহা নাইট্রো-গ্লিসারিনের মত একটি তরল পদার্থ। ইহা নাইট্রো-গ্লিসারিনের মতো একই পদ্ধতিতে ব্যবহৃত হয়। ইহা সাধারণত যেকোন জায়গায় ঢালা যায় (তবে ব্যতিক্রম হচ্ছে কাঁচ, কেননা কাচের কিনারায় যথেষ্ট ঘর্ষণ উৎপন্ন করে যার ফলে বিস্ফোরণ হতে পারে) এবং একটি ডেটনেটোরের সাহায্যে বিস্ফোরিত করা যায়। যেমনং দেয়ালের ফাটল।
২. ইহা খুবই শক্তিশালী বিস্ফোরক।
৩. যখন অন্যান্য পদার্থের সঙ্গে মেশানো হয় তখন অত্যন্ত সর্তকতা অবলম্বন করতে হবে।
৪. ইহার রং দেখে বিশুদ্ধতা নির্ণয় করা যায়। তুলনামূলক বেশী বিশুদ্ধতায় বেশী শক্তিশালী বিস্ফোরণ ঘটে।
৫. ইহা দেওয়ালের ফাঁকে, লোহ পাতে কিংবা কঠিনত দেওয়ালে ঢেলে দিয়ে সহজেই বিস্ফোরণ ঘটানো যায়।
৬. ইহা শক্তি ১.২ TNT প্রমাণিত।
৭. ইহার বিস্ফোরণ গতি প্রতি সেকেন্ডে ৬২০০ মিটার / সেকেন্ড।
৮. একে একটি আদর্শ ডেটনেটোরের সাহায্যে বিস্ফোরিত করা যেতে পারে। যেমন ৪ অ্যাজাইড, পার অক্সাইড, RDX।
৯. ইহা স্বাভাবিক তাপমাত্রায় বাস্পায়ীত হয়। এজন্য ইহা পানির নিচে তরল অবস্থায় সংরক্ষণ করতে হয়।

উপাদানঃ

মিথানল (CH_3OH)	নাইট্রিক এসিড (HNO_3)	সালফিউরিক এসিড (H_2SO_4)	ঠাণ্ডা বরফ পানি
১৩.৫ মিলি	১৬.৫ মিলি	২৪ মিলি	২০০ মিলি

চিত্রঃ নাইট্রো-মিথেন প্রস্তুতি

প্রস্তুত প্রণালীঃ

১. একটি বিকারে ১৬.৫ মিলি নাইট্রিক এসিড নিই।
২. তাপমাত্রা 25°C এর নিচে রেখে উক্ত বিকারে ২৪ মিলি সালফিউরিক এসিড যোগ করি।
৩. একটি ড্রপারের সাহায্যে উক্ত এসিড মিশ্রণে ১৩.৫ মিলি মিথানল পর পর যোগ করি এবং মিশ্রণের তাপমাত্রা $5-10^{\circ}\text{C}$ এর মধ্যে রাখি। (যদি তাপমাত্রা 35°C পর্যন্ত বেড়ে যায় তবে বিকারটি একটি বরফপূর্ণ পাত্রে রাখতে হবে।)
৪. সবটুকু মিথানল যোগ করার পর মিশ্রণটি একটি বরফ পাত্রে রেখে ১ মিনিট নাড়তে থাকি।
৫. এইবার মিশ্রণটি ২০০ মিলি পানির মধ্যে ঢালি।
৬. বিকারের তলদেশে একটি স্বচ্ছ বর্ণহীন স্তর তৈরী হবে। যাহা একটি রেখা দ্বারা পৃথক থাকবে এবং তা পরিষ্কার ভাবে দেখা যাবে।
৭. পানির স্তরটি বাদ দিয়ে প্রাপ্ত তরলকে পানি দ্বারা ভাল করে ধোত করতে হবে।

বিশেষ সর্তকতাঃ মিথানল এসিডে ঢালার সময় মিশ্রণটি ঢেকে রাখতে হবে এবং তা সব সময় একটি ওয়াচ গ্লাস দ্বারা ঢেকে রাখুন।

নাইট্রো-মিথেন তৈরীর ক্ষেত্রে কিছু গুরুত্বপূর্ণ নোটঃ

শেষ বস্তি মেশানো শেষ হলে মিশ্রণটিকে ১ মিনিটের জন্য একটি আইস বাথে রেখে নাড়ুন। একে কখনোই তাপ দিবেন না। (যদি কেউ এ কাজটি করেন তবে এটি গরম হয়ে বিস্ফোরিত হবে এবং এটি যদি মেরোতে পড়ে তাহলেও একই ঘটনা ঘটবে। অতএব, যখনই এটি গরম হতে শুরু করবে তখনই একে ঠাণ্ডা স্থানে নিয়ে ঠাণ্ডা করুন। একে সর্তকতার সাথে নাড়াচাড়া করুন যাতে ধাক্কা বা আঘাত না লাগে।)

এটি একটি মারাত্মক বিষ। একে স্পর্শ করবেন না। যে যন্ত্রপাতি দিয়ে কাজ করবেন তা না ধুয়ে হাত দিয়ে ধরবেন না। এটি তৃকের সাথে বিক্রিয়া করে এবং আক্রান্ত ব্যক্তি ৩৬ ঘন্টার মধ্যে মারা যাবে।

টেটিরিল, Tetryl

বৈশিষ্ট্য/ধর্মাবলীঃ

১. ইহা কমলা রংয়ের কেলাস পদার্থ।
২. ইহার আপেক্ষিক ঘনত্ব ১.৭।
৩. ইহা পানিতে দ্রবণীয় নয়।
৪. গরম অবস্থায় ইহা সালফিউরিক এসিড (H_2SO_4), বেনজিন (C_6H_6) এবং এসিটোনে (C_3H_6O) দ্রবণীয়।
৫. ইহা কখনও নষ্ট করতে হলে ইহার সহিত ১০% সোডিয়াম সালফেটের (Na_2SO_4) দ্রবণ যোগ করলে ইহার শক্তি নষ্ট হয়ে যাবে।
৬. ইহা একটি শক্তিশালী বিষ এবং ইহার গ্যাসও বিষাক্ত।

উপাদানঃ

ডাই-মিথাইল অ্যানিলিন	সালফিউরিক এসিড	নাইট্রিক এসিড
$(CH_3CH(NH_2)_2)$	(H_2SO_4)	(HNO_3)
২ গ্রাম	২৪ গ্রাম	১৬ গ্রাম

প্রস্তুত প্রণালীঃ

১. ২৫° সে. তাপমাত্রায় ১৪ গ্রাম সালফিউরিক এসিডের মধ্যে ২ গ্রাম ডাই-মিথাইল অ্যানিলিন যোগ করতে হবে।
২. এখন অপর একটি বিকারে ৮০% গাঢ় ১৬ গ্রাম নাইট্রিক এসিড নিয়ে উহার তাপমাত্রা ৫৫°-৬০° সে. এ উন্নীত করি।
৩. এখন সালফিউরিক এসিডের মিশ্রণটি অল্প অল্প করে নাইট্রিক এসিডে যোগ করে অনবরত নাড়তে থাকি এবং মিশ্রনের তাপমাত্রা ৬৫°-৭০° সে. এর মধ্যে রাখি।
৪. সমগ্র মিশ্রণটি যোগ করা শেষ হলে কিছু সময় ধরে উত্তমরূপে নাড়তে হবে। অতপর রুম তাপমাত্রায় ঠাণ্ডা করি। এমতাবস্থায় লাল রংয়ের কেলাস তৈরী হবে। প্রাপ্ত কেলাস অবশ্যই ফিল্টার করে গরম পানিতে পরিষ্কার করতে হবে। অবশেষে ২% সোডিয়াম বাই কার্বনেট ($NaHCO_3$) দ্রবণ যোগ করে দ্রবণটি প্রশামিত করতে হবে। P^H পেপার দিয়ে এসিডিটি পরীক্ষা করতে হবে।
৫. প্রাপ্ত কেলাস পদার্থটি নিয়ে উহাতে গরম এসিটোন যোগ করতে হবে। যতক্ষণ না কেলাস পদার্থে গরম এসিটোন সম্পূর্ণরূপে দ্রব্যীভূত হয়।
৬. এখন দ্রবণটি ঠাণ্ডা করি ফলে বিশুদ্ধ কেলাস তৈরী হবে। কেলাসগুলি ফিল্টার করে ছায়াযুক্ত জায়গায় শুকাতে হবে।
৭. এইগুলোই আমাদের কমলা রংয়ের টেটিরিল।

সতর্কতাঃ বিকার-১, বিকার-২ এ ঢালার সময় অবশ্যই ইহা একটি বরফ পাত্রে রেখে করতে হবে যাতে তাপমাত্রা নিয়ন্ত্রনে থাকে।

চিত্রঃ টেটিরিল প্রস্তুতি।

আর.ডি.এক্স (RDX) বা Cylonite, $C_3H_6N_6O_6$

বৈশিষ্ট্যঃ

১. ইহা সাদা বর্ণের কেলাস (ক্রিস্টাল) পদার্থ।
২. ইহা পানিতে দ্রবণীয় নয় কিন্তু গরম এসিটোন (C_3H_6O) এবং বেনজিনে (C_6H_6) দ্রব্যীভূত হয়।
৩. ইহা তেমন তাপ কিংবা ধাক্কা স্পর্শকাতর নয় কিন্তু ঘর্ষণের প্রতি স্পর্শকাতর।
৪. ফালমিনেট বা অ্যাজাইড ডেটনেটের হিসেবে ব্যবহার করে ১৭০° তাপ মাত্রায় ইহার বিস্ফোরণ শুরু হয়। কিন্তু এটি আগনের সাহায্যে বিস্ফোরিত হতে পারে না। এটি যৌগিক ডেটনেটের জন্য বুষ্টার হিসাবে ব্যবহার করা যেতে পারে।

প্রথম পদ্ধতিঃ হেক্সামিন ($C_6H_{12}N_4$) থেকে RDX ($C_3H_6N_6O_6$) তৈরী।

উপাদানঃ

উপাদান	পরিমাপ
নাইট্রিক এসিড (HNO_3), ঘনত্ব=৮৫% +	১২০ মিলি
হেক্সামিন ($C_6H_{12}N_4$)	৭০ গ্রাম
স৉নি	৭৫০ মিলি

প্রস্তুত প্রণালীঃ

- ১২০ মিলি শক্তিশালী (৮৫%) নাইট্রিক এসিড (HNO_3) একটি বিকারের মধ্যে রেখে উহার তাপমাত্রা ২০-৩০° C এর মধ্যে রাখতে হবে। তাপমাত্রা অবশ্যই গরম ও ঠাণ্ডা পানি পাত্রে রেখে নিয়ন্ত্রণ করতে হবে।
- ১/২ টেবিল চামচ করে হেক্সামিন পনের মিনিট পর পর এসিডে যোগ করতে হবে এবং মৃদুভাবে অনবরত ঝাঁকাতে হবে। এইভাবে ৭০ গ্রাম হেক্সামিন যোগ করতে হবে। এভাবে হেক্সামিন সম্পূর্ণভাবে এসিডে যোগ করতে সাধারণভাবে তিন ঘন্টা সময় লাগবে।
- সমস্ত হেক্সামিন এসিডে দ্রবীভূত হলে মিশ্রণের তাপমাত্রা ৫৫°C করতে হবে এবং ১০ মিনিটের জন্য ঐ তাপমাত্রা স্থির রাখতে হবে।
- এখন বিকারটি ২০°C তাপমাত্রায় ঠাণ্ডা করতে হবে।
- অতঃপর দ্রবনে ৭৫০ মিলি ঠাণ্ডা পানি যোগ করতে হবে। মিশ্রণটিতে সাদা কেলাস তৈরী হবে এবং বিকারের মধ্যে তা দেখা যাবে।
- কেলাসগুলো ফিল্টার করে ৭৫০ মিলি ঠাণ্ডা পানিতে ধোত করতে হবে।
- এটাই আমাদের RDX ($C_3H_6N_6O_6$)। এতে কিছু অপদ্রব থাকে।

বিশুদ্ধকরণঃ

দ্রবণে ২% সোডিয়াম কার্বনেট যোগ করে p^H পেপার ব্যবহার করে এসিড প্রশমন করতে হবে এবং পুনরায় ফিল্টার করতে হবে। যদি আপনি RDX কে বিশুদ্ধ করতে চান তবে ১৫০ মিলি গরম অ্যাসিটোন ব্যবহার করতে পারেন। এক্ষেত্রে গরম অ্যাসিটোনে RDX কেলাস যোগ করে দ্রবীভূত করুন এবং মিশ্রণটিকে পুনরায় ঠাণ্ডা করুন এবং ফিল্টার করুন। যে কেলাস পাওয়া যাবে সেটাই বিশুদ্ধ RDX কেলাস ইহা শুকনো পাত্রে সংরক্ষণ করতে হবে।

দ্বিতীয় পদ্ধতিঃ এটি অপেক্ষাকৃত নতুন এবং উন্নত পদ্ধতি (তারিখঃ ১২-০৩-১৬)

উপাদানঃ পরিমাণ আগের মতোই।

প্রস্তুত প্রণালীঃ (মূল কপির ইংরেজি বোার ক্ষেত্রে লেখকের কিছু সমস্যা রয়েছে অনুগ্রহ করে পরীক্ষা করুন।)

- হেক্সামিন গুড়া করুন।
- ৫°C তাপমাত্রায় ১২০ মিলি নাইট্রিক এসিড একটি বিকারে রাখুন।
- নাইট্রিক এসিডে আস্তে আস্তে হেক্সামিন যোগ করুন। মিশ্রণের তাপমাত্রা ২০-৩০° C এর মধ্যে রাখুন।
- পানি/বালি গাহে মিশ্রণটি ৫০-৫৫° C তাপমাত্রায় ১০ মিনিট উত্তপ্ত করুন।
- বাদামী ধোঁয়া না দেখা পর্যন্ত তাপমাত্রা বাড়াতে থাকুন। যদি তাপমাত্রা ১০° C অতিক্রম না করে তবে পাত্রের পানি বা বালু কমিয়ে (আপনি সব পানি বা বালু নামিয়ে রাখতে পারেন কিন্তু সরাসরি আগুন বা ধাতুর সংস্পর্শে রাখা যাবে না) তাপমাত্রা বাড়াতে হবে। বাদামী ধোঁয়া না দেখা পর্যন্ত তাপমাত্রা বাড়াতে থাকুন। সাদা ধোঁয়া নয়। সম্ভবতঃ তাপমাত্রা ৯০-১০০° C। যদি ১০০° C তাপমাত্রায়ও বাদামী ধোঁয়া না আসে তবে পরবর্তী ধাপে এগিয়ে যান। বাদামী ধোঁয়া দেখার সঙ্গে সঙ্গে নামিয়ে ফেলতে হবে এবং পরবর্তী ধাপে যেতে হবে।
- মিশ্রণে ৭৫০ মিলি পানি যোগ করুন। উল্টা নয় (মিশ্রণটিকে পানিতে যোগ করবেন না)।
- ৩০ মিনিট অপেক্ষা করুন।
- সোডিয়াম কার্বনেট দ্বারা পরিষ্কার করতে হবে এবং এসিড প্রশমিত না হওয়া পর্যন্ত তা যোগ করতে হবে। এখানে অমৃশূণ্যতা পরিমাপের জন্য p^H পেপার ব্যবহার করতে হবে।
- ফিল্টার করতে হবে এবং পরিষ্কার করার জন্য পানি ব্যবহার করুন।
- পাউডার করার জন্য ফ্যানের বাতাসে শুকান। ঘরের মধ্যে হলে ফ্যান অথবা হেয়ার ড্রাইয়ার বেশী উপযোগী। সূর্যালোক কোণভাবেই ব্যবহার করা যাবে না। যদি বাইরে হয় তবে ছায়াতে শুকাতে হবে।

চি.এন.টি (টাই-নাইট্রো-টলুইন), $C_6H_2CH_3(NO_2)_3$

বৈশিষ্ট্য বা ধর্মাবলীঃ

১. সাদা অথবা হলুদ রংয়ের কেলাস (ক্রিস্টাল)।
২. ইহা বিশুদ্ধ অবস্থায় সাদা থাকে।
৩. ইহা পানিতে অদ্বিতীয়।
৪. ইহা অ্যাসিটোন(C_3H_6O), নাইট্রিক এসিড (HNO_3) এবং সালফিউরিক এসিডে দ্রবণীয়। দ্রবনে পানি যোগ করে আবার তা ফেরত পাওয়া যায়।
৫. ইহা ধাতুর সাথে বিক্রিয়া করে না।
৬. ইহার গলনাংক $80^{\circ}C$ । এজন্য বিস্ফোরক বা রকেটের (RPG7, BM12, Rocket 122) জ্বালানী হিসেবে TNT পছন্দসই। হিসাবে ভালো। বিস্ফোরকে যেমন RPG7, BM12, রকেট 122 তে সংরক্ষণ করা যায়।
৭. ইহা $300-310^{\circ}C$ তাপমাত্রায় বিস্ফোরিত হয়।
৮. ইহা ডেটনেটের সাহায্যে বিস্ফোরিত হয়।
৯. ইহা শুধুমাত্র আগুন দ্বারা পোড়ে। কিন্তু পরিমাণে বেশী যেমন ১০০ কেজি হলে বিস্ফোরিত হতে পারে।

সর্তকতা :

সূর্যালোকে রেখে দিলে ইহার উপর তলে একটি আবরণ সৃষ্টি হয় যা ঘর্ষনে খুবই বিপদজনক। বিস্ফোরিত হতে পারে।

বিষ হিসেবে

কাউকে হত্যা করতে ১ গ্রাম TNT পাউডার খাওয়ানোই যথেষ্ট। এতে সময় লাগবে ১২-২০ ঘন্টা।

প্রস্তুত প্রণালীঃ

১. ২৯.৪ গ্রাম সালফিউরিক এসিড এবং ১৪.৬ গ্রাম নাইট্রিক এসিডের দ্রবণে ১০ গ্রাম টলুইন ধীরে ধীরে যোগ করতে হবে এবং ভাল ভাবে নাড়তে হবে। মিশ্রনের তাপমাত্রা $30-40^{\circ}C$ এর মধ্যে রাখতে হবে।
২. ১৫ মিনিট নাড়ার পর দ্রবনের উপরের স্তর সংগ্রহ করতে হবে। এটা মনো-নাইট্রো-টলুইন।
৩. প্রাপ্ত মিশ্রণকে ১৫.৯ গ্রাম সালফিউরিক এসিডে দ্রবীভূত করতে হবে। এই মিশ্রণ কার্য একটি বরফ পাত্রে রেখে করতে হবে। অতঃপর দ্রবণটিকে $50^{\circ}C$ তাপমাত্রায় উত্তপ্ত করতে হবে।
৪. এখন ৫.২৫ গ্রাম সালফিউরিক এসিড এবং ৫.২৫ গ্রাম নাইট্রিক এসিডের মিশ্রণ খুবই আস্তে আস্তে দ্রবনে যোগ করতে হবে এবং মিশ্রণের তাপমাত্রা $80^{\circ}C$ থেকে $90^{\circ}C$ এর মধ্যে হবে। এভাবে ১৫ মিনিট নাড়তে হবে। লক্ষ্য রাখতে হবে তাপমাত্রা $80^{\circ}C$ থেকে $90^{\circ}C$ এর মধ্যে স্থির আছে কিনা।
৫. প্রাপ্ত মিশ্রণের উপরের স্তরটি হলো ডাই-নাইট্রো-টলুইন এবং নিচের স্তরটি এসিড।
৬. এখন $90^{\circ}C$ তাপমাত্রায় বিকারের মধ্যে ১৪.৫ গ্রাম সালফিউরিক এসিড যোগ করতে হবে।
৭. অতঃপর তাপমাত্রা বৃদ্ধি করে ১০০-১১৫° C করতে হবে। এই তাপমাত্রায় ৭.৮ গ্রাম সালফিউরিক এসিড (১৫% এসিড ও ৮৫% পানির দ্রবণ) ও ৭.৮ গ্রাম নাইট্রিক এসিডের (৬৫% বা তার বেশি) মিশ্রণ ফোটায় ফোটায় বিকারে যোগ করতে হবে। অতঃপর ১০০-১৫০° C তাপমাত্রায় ২ ঘন্টা নাড়তে হবে।
৮. দুই ঘন্টা পর উপরের স্তরটি আলাদা করে ফুটান্ত পানিতে রাখতে হবে এবং কিছুক্ষণ নাড়ানোর পর গরম পানি থেকে তৈলাক্ত স্তর সংগ্রহ করে একটি বিকারে রেখে তাতে ঠান্ডা পানি যোগ করতে হবে। ফলে ইহা কঠিন হয়ে যাবে। ইহাই আমাদের টি এন টি (TNT)। এতে কিছু অপদ্রব্য মিশ্রিত থাকে।

TNT-র বিশেধন প্রক্রিয়াঃ

১. গাঢ় সোডিয়াম সালফাইট ($NaSO_3$) ও গাঢ় সোডিয়াম কার্বনেটের দ্রবণকে ১:১ অনুপাতে মিশ্রিত করে থকথকে পেষ্ট তৈরী করি।
২. উক্ত মিশ্রনের মধ্যে পরিমাণ মত এক টুকরা TNT নিয়ে দ্রবণটি $71^{\circ}C$ তাপমাত্রায় উত্তপ্ত করি এবং ৫ থেকে ৭ মিনিট এভাবে রাখি। দ্রবণটি লাল বর্ণ ধারণ করবে। ইহাই অপদ্রব্য।
৩. তৈলাক্ত স্তরটি আলাদা করে নিয়ে লাল দ্রবণটি বাদ দিতে হবে।
৪. প্রাপ্ত তৈলাক্ত অংশের সহিত গরম পানি যোগ করে তারপর তাতে ঠান্ডা পানি যোগ করতে হবে। ফলে ইহা কঠিন হয়ে যাবে।
৫. এটাই হবে আমাদের বিশুদ্ধ টি এন টি (TNT)।

ধাক্কা এবং নিষ্কেপক চার্জ (Propellant)

নাইট্রো-সেলুলোজ, Nitro-cellulose

নাইট্রো-সেলুলোজ একটি নিষ্কেপক চার্জ। ইহা রকেট এবং মিসাইলকে দূরবর্তী স্থানে উড়িয়ে নিয়ে যেতে সাহায্য করে। নাইট্রো-সেলুলোজ ব্ল্যাক পাউডার এবং ব্ল্যাক পাউডার মিশ্রনের সাথে একত্রিত হয়ে কাজ করে। নাইট্রো-সেলুলোজ তৈরী করতে প্রধানত তুলা ব্যবহৃত হয়। সেনাবাহিনীতে নাইট্রো-সেলুলোজ তৈরী করতে তুলা ব্যবহার করা হয়। নাইট্রো-সেলুলোজ ব্যবহার করে ধোয়াবিহীন পাউডার তৈরী করা যায়। সেলুলোজ প্রধানত কাঠ বা তুলার মধ্যে পাওয়া যায় তবে ইহা কাঠের গুড়া (মুবার গাছ থেকে যেটা পাওয়া যায়) এবং পুকোজেও পাওয়া যায়।

বৈশিষ্ট্য/ধর্মাবলীঃ

১. ইহা ৬১৭° সে. তাপমাত্রায় গলে যায়।
২. ইহার আপেক্ষিক ঘনত্ব ১.৬।
৩. ইহা এসিটোন, মিথানল, ইথাইল অ্যালকোহল এবং প্রসাধনীতে দ্রবীভূত হয়। একবার দ্রবীভূত হয়ে গেলে একে আর আলাদা করা যায় না।
৪. ইহা ১৮০°-১৮৫° সে. তাপমাত্রায় বিস্ফেরিত হয়।
৫. ইহা তাপমাত্রার প্রতি খুবই স্পর্শকাতর।
৬. ইহা আঘাতে খুব বেশি স্পর্শকাতর নয়।

সেলুলোজের উৎসঃ

১. মুবার গাছের গুড়া বহুল পরিমাণে ব্যবহৃত হয়। (তুলার চেয়েও বেশি)
২. তুলা, শাক-সবজি এবং কাঠের গুড়ায় প্রচুর পরিমাণে সেলুলোজ পাওয়া যায়।
৩. পুকোজে ইহা পাওয়া যায় তবে পরিমাণে কম।

সেলুলোজ প্রস্তুতিঃ

১. একটি কটনবাড নিয়ে ইহা হতে তুলা ছাড়াতে হবে। অতঃপর তুলাগুলো টেনে টেনে লম্বা করতে হবে যাতে ইহার মধ্যে বায়ু ছিদ্র থাকে।
২. ৩০% সোডিয়াম হাইড্রোক্সাইড দ্রবনে তুলাগুলো ৩০ মিনিট সিদ্ধ করতে হবে।
৩. সোডিয়াম হাইপোক্লোরেট (NaOClO_3) দ্রবনে ইহা ধোত করতে হবে।
৪. এই কটনবাডটি এখন আমাদের সেলুলোজ ($\text{C}_6\text{H}_6\text{O}_5$)।

নেটঃ যদি কোন কেমিষ্ট থেকে তুলা পাওয়া যায় তবে ইহা ধোত করার প্রয়োজন নেই। এম. আহমেদ লেপ/তোশকের তুলা ব্যবহার করেই নাইট্রো-সেলুলোজ তৈরী করেছেন। কটনবাডগুলো উক্ত পদ্ধতি অনুসারে তৈরী করা হয়েছিল না কিন্তু বেশ ভাল কাজ করেছে। এর অর্থ হলো সম্ভবত সেলুলোজ তৈরী জরুরী নয়। তবে ইহা নিশ্চিত যে, কোন ফার্মেসী থেকে ভালো তুলা ব্যবহার করা যেতে পারে কিন্তু কম দামী কোন উপকরণ ব্যবহার করা উচিত নয় কারণ ইহা প্রসারিত না হয়ে ভেঙ্গে যেতে পারে।

প্রথম পদ্ধতিঃ

উপাদানঃ

তুলা	সালফিউরিক এসিড (H_2SO_4)	নাইট্রিক এসিড (HNO_3) ৬৫% ঘন
১৭ গ্রাম	২৫০ মিলি	১৫০ মিলি

প্রস্তুত প্রণালীঃ

১. প্রথমে তুলা প্রস্তুত করতে হবে। তুলা ভালো করে টেনে টেনে হালকা করতে হবে যাতে ইহা নরম তুলাতুলে হয়।
২. একটি বিকারে নাইট্রিক এসিড রেখে ইহার তাপমাত্রা ৫০-১০° সে. এ নামিয়ে আনতে হবে।
৩. অতঃপর তাতে ধীরে ধীরে সালফিউরিক এসিড যোগ করতে হবে এবং অনবরত নাড়তে হবে। এসময় মিশ্রনের তাপমাত্রা ২৫° সে. এর নিচে রাখতে হবে। বিকারটি একটি বরফ পাত্রে রাখা উচিত।
৪. উক্ত মিশ্রনে ১৭ গ্রাম প্রস্তুতকৃত তুলা যোগ করতে হবে এবং নাড়তে হবে। মিশ্রনের তাপমাত্রা ১৫০-২৫০° সে. এর মধ্যে রাখতে হবে।
৫. মিশ্রন থেকে তুলাগুলো পৃথক করে প্রবাহমান পানিতে ১০ মিনিট ধরে ধোত করতে হবে।
৬. এরপর তুলাগুলো একটি প্রেসার কুকারে নিয়ে ১৫-২০ মিনিট ধরে সিদ্ধ করতে হবে। বয়েলিং শুরু হবার সাথে সাথে একটি টাইমার চালু করতে হবে।
৭. এখন তুলাগুলো আলাদা করে হালকা ভাবে ধোত করতে হবে।

୮. ୨% ସୋଡ଼ିଆମ ବାଇ କାର୍ବନେଟ (NaHCO_3) ଦ୍ରବନ ଦାରା ତୁଳାଗୁଲୋ ଧୌତ କରେ ଟେନେ ଟେନେ ହାଲକା କରେ ଶୁକାତେ ହବେ । ଶୁକାନୋ ଜନ୍ୟ ଆପଣି ଇଲେକ୍ଟ୍ରିକ ଫ୍ୟାନ ବା 25° ସେ. ତାପମାତ୍ରା ମାଇକ୍ରୋଓଯେବେ ଓଡେନ ବ୍ୟବହାର କରତେ ପାରେନ ।

୯. ଇହାଇ ହଲୋ ଆମାଦେର ବିଶୁଦ୍ଧ ନାଇଟ୍ରୋ-ସେଲୁଲୋଜ ।

ଦ୍ୱିତୀୟ ପଦ୍ଧତିଃ

ଏହି ପଦ୍ଧତିତେ ପ୍ରାଣ୍ତ ଫଲାଫଳ ଏକଇ କିନ୍ତୁ ଏଥାନେ ଯଦିଓ ସମୟ କିଛିଟା ବେଶୀ ପ୍ରୋଜନ ହୟ ତବେ କମ କାଜ କରା ଲାଗେ । ଇହାତେ ଶୁରୁମାତ୍ର $5-7$ ନଂ ଧାପେର ପାର୍ଥକ୍ୟ ରଯେଛେ ।

ପ୍ରସ୍ତୁତ ପ୍ରଣାଲୀଃ

୧. - ୪. ପ୍ରଥମ ପଦ୍ଧତିର ଅନୁରୂପ ।
୫. ଏସିଡ ମିଶନେ ତୁଳାଗୁଲୋ $5-8$ ମିନିଟ ରେଖେ ଦିତେ ହବେ ।
୬. ତୁଳାଗୁଲୋ ଆଲାଦା କରେ ଏସିଡ ମୁକ୍ତ କରତେ ହବେ । ପାନି ବ୍ୟବହାରେ ପ୍ରୋଜନ ନେଇ ।
୭. ଏଥନ ପ୍ରାଣ୍ତ ତୁଳାଗୁଲୋ ଏକଟି ପ୍ରେସାର କୁକାରେ 30 ମିନିଟ ଧରେ ସିନ୍ଦ୍ର କରତେ ହବେ । ପ୍ରେସାର କୁକାର ହିସେଲ ଦିଲେ ଟାଇମାର ଚାଲୁ କରତେ ହବେ ।
୮. - ୧୦. ପ୍ରଥମ ପଦ୍ଧତିର ଅନୁରୂପ ।

ନୋଟ୍ୟୁନ୍‌ଟଃ

୧. ୨% ସୋଡ଼ିଆମ ବାଇ କାର୍ବନେଟ (NaHCO_3) ଦ୍ରବନ ଦାରା ତୁଳାଗୁଲୋ ଧୌତ କରେ ଶୁକାନୋର ପର ଆମରା ଏକଟି ଲୋହାର କନ୍ଟେଇନାରେ (ବାୟୁନିରୋସି) ରାଖତେ ପାରି ଏବଂ ଡ୍ରାଇଵ ବା ହୋଯାଇଟ ପାଉଡାର ଫିଟ୍ଜ ବ୍ୟବହାର କରେ ବିଷ୍ଫୋରିତ କରତେ ପାରି ।
୨. ବିଦ୍ୟୁତର ପ୍ରତି ଖୁବଇ ସ୍ପର୍ଶକାତର । ଡେଟୋନେଟରେ ଫାଲମିନେଟେର ଜାଯଗାୟ ବ୍ୟବହାର କରା ଯେତେ ପାରେ । ବାଲିଶ ବା ଲେପ-ତୋଶକ ନାଇଟ୍ରୋ-ସେଲୁଲୋଜ ଦିଯେ ଭର୍ତ୍ତ କରେ ଏକଟି ବୈଦ୍ୟୁତିକ ତାର ଦିଯେ ବିଷ୍ଫୋରିତ କରା ଯେତେ ପାରେ ।

ନାଇଟ୍ରୋ-ସେଲୁଲୋଜକେ ବିଭିନ୍ନ ଆକୃତି ପ୍ରଦାନଃ

ଆପଣି ଯଦି ନାଇଟ୍ରୋ-ସେଲୁଲୋଜକେ ଏକଟି ନିର୍ଦିଷ୍ଟ ଆକୃତି ଦିତେ ଚାନ ତବେ,

୧. ଶୁକ ନାଇଟ୍ରୋ-ସେଲୁଲୋଜ ତୁଳା ଓଜନ କରତେ ହବେ । ଏହି ଓଜନେର 7 ଗ୍ରାମ ମିଥାନଲ (CH_3OH) ତୁଳାଗୁଲୋର ମଧ୍ୟେ ରାଖତେ ହବେ । ଭାଲୋଭାବେ ମିଶାତେ ହବେ ଏବଂ ଏକଟି ପେଟ୍ ପାଓ୍ୟା ଯାବେ । ଯେ ଆକୃତି ଦିତେ ଚାନ ସେଇ ଛାଁଚେ ରେଖେ ଶୁକାନ ।
୨. ଯଦି ମିଥାନଲ ନା ଥାକେ ତବେ 4 ଗ୍ରାମ ଅ୍ୟାସିଟୋନ ($\text{C}_3\text{H}_6\text{O}$) ଯୋଗ କରତେ ପାରେନ । ଏଟି ନିଷ୍କେପକ ହିସେବେ ବ୍ୟବହତ ହୟ । ଆମରା ଯଦି ଅ୍ୟାସିଟୋନ ବ୍ୟବହାର କରି ତବେ ତା RPG7 -ଏ ଏବଂ ଅନ୍ୟାନ୍ୟ ସାମରିକ ଅନ୍ତର୍ଭାବରେ ନାଇଟ୍ରୋ-ସେଲୁଲୋଜ ବ୍ୟବହାର କରାର ମତୋଇ ହବେ ।

ଆର୍ଡ ନାଇଟ୍ରୋ-ସେଲୁଲୋଜ ତୈରିୟଃ

ଏହି ଆର୍ଡ ନାଇଟ୍ରୋ-ସେଲୁଲୋଜ ହଚେ ଏହି ପେଟ୍ ଯା ମିଥାନଲ ମେଶାନୋର ପର ଉଂପନ୍ନ ହୟ । କିନ୍ତୁ ଏକ୍ଷେତ୍ରେ ତା ଶୁକାନୋ ହୟ ନା ।

ପାଇରୋ-ସେଲୁଲୋଜ

ଉପାଦାନଃ

ତୁଳା	ସାଲଫିଡ୍ରିକ ଏସିଡ (H_2SO_4)	ନାଇଟ୍ରିକ ଏସିଡ (HNO_3)
୫ ଗ୍ରାମ	୭୫ ମିଲି	୭୫ ମିଲି

ପ୍ରସ୍ତୁତ ପ୍ରଣାଲୀଃ

୧. ୭୫ ମିଲି ସାଲଫିଡ୍ରିକ ଏସିଡ (H_2SO_4)-ଏର ସାଥେ ୭୫ମିଲି ନାଇଟ୍ରିକ ଏସିଡ (HNO_3) ମେଶାତେ ହବେ ଏବଂ ତାପମାତ୍ରା 25° ସେ. ଏର ନିଚେ ରାଖତେ ହବେ ।
୨. ଉତ୍ତର ମିଶନେ ଖୁବଇ ଦ୍ରୁତ 5 ଗ୍ରାମ ଛୋଟ ଟୁକରା କରା ମେଡିକ୍ୟାଲ ତୁଳା ଯୋଗ କରତେ ହବେ ।
୩. ଅତପର ମିଶନ୍‌ଟିକେ 30 ମିନିଟ ନାଡ଼ିତେ ହବେ ।
୪. ତୁଳାଗୁଲୋ ତୁଲେ ନିଯେ ଏସିଡେର ଦ୍ରୁବନ୍ତି ବାଦ ଦିତେ ହବେ ।
୫. ଏକଟି ବଡ଼ ବିକାରେ ଠାଣ୍ଡା ପାନିର ମଧ୍ୟେ ତୁଳାଗୁଲୋ ରାଖତେ ହବେ ।
୬. ତୁଳାଗୁଲୋକେ ଟ୍ୟାପେର ନିଚେ ରେଖେ ପ୍ରବାହମାନ ପାନିତେ ଧୁତେ ହବେ ।
୭. ଏଥନ ତୁଳାଗୁଲୋ ନିଯେ ଦେବ ସନ୍ଟା ଫୁଟ୍ସ୍ ପାନିତେ ଫୁଟାତେ ହବେ ।
୮. ଏଥନ ତୁଳାଗୁଲୋକେ ପେପାର ଦିଯେ ପରିକ୍ଷା କରତେ ହବେ ଏବଂ 2% ସୋଡ଼ିଆମ କାର୍ବନେଟ ଦ୍ରୁବନ ଦିଯେ ଧୁତେ ହବେ ।

৯. তুলাগুলাকে ৪৮ ঘন্টা উঞ্চ জায়গায় বা রোদে রেখে শুকাতে হবে।
১০. এটিই আমাদের বিশুদ্ধ পাইরো-সেলুলোজ। এটি নাইট্রো-সেলুলোজের পরিবর্তে বিভিন্ন মিশ্রনে ব্যবহার করা যেতে পারে।

গান কটন

উপাদানঃ

তুলা	মিশ্রন
৪ গ্রাম	১৪০ গ্রাম

মিশ্রনে নিম্নোক্ত উপাদানগুলো থাকবেঃ

নাইট্রিক এসিড (HNO_3)	সালফিউরিক এসিড (H_2SO_4)	ডিস্টিল ওয়াটার
২৪%	৬৭%	৯%

প্রস্তুত প্রণালীঃ

১. ১৪০ গ্রাম মিশ্রনে ৪ গ্রাম তুলা ২০-৩০ মিনিট রেখে দিতে হবে।
২. এরপর তুলাগুলো নিয়ে এসিড মিশ্রনটি বাদ দিতে হবে।
৩. পাইরো-সেলুলোজের ন্যায় একই পদ্ধতি অবলম্বন করছন।

বিভিন্ন প্রকার বিস্ফোরক মিশ্রণ

পটাসিয়াম ক্লোরেট ($KClO_3$)-এর মিশ্রণ

পটাসিয়াম ক্লোরেট মিশ্রণের নিয়মাবলীঃ

১. পটাসিয়াম ক্লোরেট-এর সকল মিশ্রনের জন্য নিম্নের নিয়মাবলী অনুসরণ করতে হবে।
২. মিশ্রণের পূর্বে সকল পদার্থ খুব সর্তকতার সাথে গুড়া এবং চালতে হবে।
৩. পদার্থটি বিশুদ্ধ কিনা তা নিশ্চিত করতে হবে।
৪. পটাসিয়াম ক্লোরেটের কেলাস গুলি সম্পূর্ণ শুকনা কিনা তা নিশ্চিত হতে হবে। যদি শুকনা না হয় তবে একটি বালির পাত্রে রেখে গরম করে শুকাতে হবে বা রোদ্রে কিছু সময় রেখে শুকাতে হবে।
৫. বুকিপূর্ণ পদার্থগুলি ঠাণ্ডা জায়গায় মেশাতে হবে এবং মেশানোর পূর্বে পদার্থগুলি ঠাণ্ডা করে নিতে হবে। (এটি সকল মিশ্রনের জন্য মূলনীতি।)
৬. কখনও কোন সিঙ্গ পদার্থ ব্যবহার করা যাবে না। প্রথমেই ইহা শুকাতে হবে।
৭. কম স্পর্শকাতর পদার্থ দিয়ে প্রথম মিশ্রণ শুরু করতে হবে। যেমনঃ সালফার কার্বনের প্রতি কম স্পর্শকাতর সুতরাং এ দুইটি স্পর্শকাতর পদার্থ যেমনঃ পটাসিয়াম ক্লোরেটের সাথে মেশানোর পূর্বে মেশাতে হবে।
৮. ভালো ফলাফলের জন্য একটি সুস্থ ভালো চালুনী ব্যবহার করতে হবে।
৯. ঘর্ষণ পরিহার করার জন্য একটি প্লাষ্টিক চালুন ব্যবহার করতে হবে।
১০. প্রতিটি নতুন পদার্থ মেশানোর পর মিশ্রণটি পুনরায় চালুনী করতে হবে।

মিশ্রন - ১ঃ ইয়েলো পাউডার (সালফার এবং অ্যালুমিনিয়াম পাউডার-এর সাথে)

পটাসিয়াম ক্লোরেট ($KClO_3$)	সালফার	অ্যালুমিনিয়াম পাউডার
২	১	১
৫০ গ্রাম	২৫ গ্রাম	২৫ গ্রাম

ধর্মাবলী/ বৈশিষ্ট্যঃ

১. ইহা ধূসর কলো রংয়ের।
২. ইহা ঘর্ষণ, চাপ বা আঘাত অথবা আগুনে খুবই স্পর্শকাতর।
৩. ইহা আগুনে পোড়ালে খুবই উজ্জ্বল আলো (ক্যামেরার ফ্ল্যাশের চেয়ে বেশী) সৃষ্টি হয়।
৪. ইহা আঘাত কিংবা ঘর্ষণে বিস্ফোরিত হয়।
৫. ইহা বিকট শব্দে বিস্ফোরিত হয় এবং ইহা ডেটনেটের সাহায্যে অথবা ডেটনেটের ছাড়াই বিস্ফোরিত হতে পারে।
৬. বুলেটে ব্যবহৃত ব্ল্যাক পাউডারের চেয়ে ইহা বেশী শক্তিশালী বিস্ফোরক। ইহার কারণ হলো ব্ল্যাক পাউডারে পটাসিয়াম নাইট্রেট ব্যবহৃত হয়, যেখানে ইয়েলো পাউডারে ব্যবহৃত হয় পটাসিয়াম ক্লোরেট। পটাসিয়াম নাইট্রেটের চেয়ে পটাসিয়াম ক্লোরেট বেশী শক্তিশালী।

প্রস্তুত প্রণালীঃ

১. একটি পাত্রে ২৫ গ্রাম সালফার পাউডার নিন।
২. ২৫ গ্রাম অ্যালুমিনিয়াম পাউডার ইহাতে যোগ করুন।
৩. খুব সর্তকতার সহিত মেশাতে হবে। অ্যালুমিনিয়াম পাউডার বাতাসে উড়ে যায়। ইয়েলো পাউডারের বিস্ফোরণকে এড়িয়ে চলার জন্য অবশ্যই ঘর্ষণকে এড়িয়ে চলতে হবে।
৪. মিহি পাউডার না হওয়া পর্যন্ত পটাসিয়াম ক্লোরেটকে গুড়া এবং চালুনী করতে হবে।
৫. পাত্রের মিশ্রণে পটাসিয়াম ক্লোরেট যোগ করতে হবে।
৬. উত্তমরূপে মেশান। এটাই হলো ইয়েলো পাউডার। খুবই স্পর্শকাতর এবং খুবই শক্তিশালী।

নোটঃ

১. ইয়েলো পাউডার কখনও কোন গরম জায়গায় সংরক্ষণ করা যাবে না।
২. ডেটনেটের কাছাকাছি কোন স্থানে সংরক্ষণ করা যাবে না।
৩. ইয়েলো পাউডার ফিউজ কিংবা ডেটনেটের সাহায্যে বিস্ফোরিত হতে পারে।

୮. ଯদି ଆପଣି ଫିଟ୍‌ଜ ବ୍ୟବହାର କରେନ ତବେ ଇଯୋଲୋ ପାଉଡ଼ାରକେ ଏକଟି ବାୟୁ ଶୂନ୍ୟ ଲୋହାର ପାତ୍ରେ ରାଖିତେ ହବେ । ପାତ୍ରଟି ଅବଶ୍ୟକ ବାୟୁ ଶୂନ୍ୟବସ୍ଥାୟ ସୀଳ କରା ହତେ ହବେ ।
୯. ଆଘାତେର ସାହାୟ୍ୟ ଇଯୋଲୋ ପାଉଡ଼ାର ବିଷ୍ଫୋରିତ କରା ସମ୍ଭବ । ସେହେତୁ ଇହା ଆଘାତ ଜନିତ ଗ୍ରେନେଡ ବ୍ୟବହାର କରା ଯେତେ ପାରେ । ବିପରୀତ ଆଘାତ ଥେକେ ରକ୍ଷା ପାଓଯାର ଜନ୍ୟ ଏକଟି ଦେଓୟାଲେର ପାର୍ଶ୍ଵେ ଥେକେ ନିକ୍ଷେପ କରତେ ହବେ । କିଛୁ ନୁଡ଼ି ପାଥର ବା ବଲ-ବିଯାରିଂ ପାତ୍ରେ ରାଖିତେ ହବେ ।
୧୦. ଇଞ୍ଜ୍‌ପ୍ରେସ୍ ଗ୍ରେନେଡ ଆକାରେ ବ୍ୟବହତ କରେକ ଗ୍ରାମ ଇଯୋଲୋ ପାଉଡ଼ାର ଏକଟି ଆଦର୍ଶ ହ୍ୟାନ୍ଡ ଗ୍ରେନେଡର ସମାନ କାଜ କରେ ।

ଫଲାଫଲ:

ପରୀକ୍ଷା-୧୫ ତାରିଖ- ୫-୧୨-୧୫ ।

ଭାଲୋ କାଜ କରେଛେ ।

ମିଶନ - ୨୫ ହୋଇଟ୍ ପାଉଡ଼ାର (କାର୍ବନ ଏବଂ ସାଲଫାର-ଏର ସାଥେ)

ପଟାଶିଆମ କ୍ଲୋରେଟ	କାର୍ବନ	ସାଲଫାର
୭୫%	୧୨.୫%	୧୨.୫%

ପ୍ରକ୍ରିୟା:

ଇଯୋଲୋ ପାଉଡ଼ାରେ ମତୋ ।

ପରୀକ୍ଷା-୧୫

ଭାଲୋ କାଜ କରେଛେ ।

ମିଶନ - ୩୫ ନାଇଟ୍ରୋ-ବେନଜିନ (C6H5NO2)-ଏର ସାଥେ

ପଟାଶିଆମ କ୍ଲୋରେଟ (KClO ₃)	ନାଇଟ୍ରୋ-ବେନଜିନ (C ₆ H ₅ NO ₂)
୮୦%	୨୦%

ନାଇଟ୍ରୋ-ବେନଜିନେ (C₆H₅NO₂) ସଙ୍ଗେ ପଟାଶିଆମ କ୍ଲୋରେଟ (KClO₃) ମିଶନେର ବୈଶିଷ୍ଟ୍ୟାବଳୀ:

୧. ପାନିର ସଙ୍ଗେ ମିଶାଲେ ମିଶନଟିକେ ବିଭିନ୍ନ ଆକୃତି ଦେଯା ଯାଯା ଏବଂ ସ୍ପର୍ଶକାତରତାଓ ଅନେକ କମ ଥାକେ ।
୨. ଏହି ମିଶନଟି ମାଝାମାଝି ମାତ୍ରାର ବିଷ୍ଫୋରକ ଏକେ ସାଧାରଣ ଡେଟୋନେଟରେ ସାଥେ ବ୍ୟବହାର କରା ଯାଯା । ଏକେ ଡିନାମାଇଟ୍‌ଟର ବିକଳ୍ଳ ହିସେବେ ବ୍ୟବହାର କରା ଯାଯା ।
୩. ଆମାଦେର ଶିକ୍ଷକେର ଅଭିଜ୍ଞତା ଥେକେ ଦେଖା ଗେଛେ ଯେ ୧୦୦ ଗ୍ରାମ ବିଷ୍ଫୋରକ ୪ ମିମି ପୁରୁଷ ଏକଟି ଷ୍ଟିଲ ପାତେ ୨୦ ସେମି ବ୍ୟାସେର ଏକଟି ଛିଦ୍ର କରତେ ସକ୍ଷମ । ସୁତରାଂ ଏଟା ପ୍ରମାନ କରେ ଯେ ଏହି ବିଷ୍ଫୋରକ ଟି.ଏନ.ଟି-ର ଚେଯେ ଶକ୍ତିଶାଲୀ କେନନା ଟି.ଏନ.ଟି ଷ୍ଟିଲ ଶିଲ୍ଡେ ଛିଦ୍ର କରତେ ପାରେ ନା ।
୪. ନାଇଟ୍ରୋ-ବେନଜିନ ଏକଟି ବିଷ । ଏହି ତ୍ରକେର ମଧ୍ୟେ ଦିଯେ ଶରୀରେ ପ୍ରବେଶ କରତେ ପାରେ । ଶରୀରେ କୋଣ ଅଂଶେ ଲେଗେ ଗୋଲେ ପ୍ରଚୁର ପାନି ଦିଯେ ଧୁଯେ ଫେଲତେ ହବେ ।
୫. ଏହି ବିଷ୍ଫୋରକ ମିଶନଟି କ୍ଲୋରେଟ-ଏର ଅନ୍ୟାନ୍ୟ ମିଶନେର ଚେଯେ ଶକ୍ତିଶାଲୀ ।
୬. ଏହି ମିଶନଟି (ନାଇଟ୍ରୋ-ବେନଜିନ + ପଟାଶିଆମ କ୍ଲୋରେଟ) ଶୁଦ୍ଧମାତ୍ର ଏକଟି ଫିଟ୍‌ଜେର ସାହାୟ୍ୟ ବିଷ୍ଫୋରିତ ହତେ ପାରେ । ଯଦି ମିଶନେର ଅନୁପାତ ନିଚେର ମତୋ ହୁଏ ।

୧. ପଟାଶିଆମ କ୍ଲୋରେଟ	୧. ସୁଗାର	୧. ନାଇଟ୍ରୋ-ବେନଜିନ
୨.	୨.	୨.

ମିଶନେ ଉପାଦାନେର ପରିମାଣ:

ପଟାଶିଆମ କ୍ଲୋରେଟ (KClO ₃)	ନାଇଟ୍ରୋ-ବେନଜିନ (C ₆ H ₅ NO ₂)
୮୦ ଗ୍ରାମ	୨୦ ଗ୍ରାମ

ପ୍ରକ୍ରିୟା:

୧. ୮୦ ଗ୍ରାମ ପଟାଶିଆମ କ୍ଲୋରେଟ ନିଯେ ଉତ୍ତମରମ୍ପେ ଚାଲୁବୀ କରେ ଏକଟି ପ୍ଲାସ୍ଟିକ ବା ଲୋହାର କଟ୍‌ଟେଇନାରେ ରାଖୁନ ।
୨. ୨୦ ଗ୍ରାମ ନାଇଟ୍ରୋ-ବେନଜିନ ନିନ । (ଓଜନ ସମ୍ପର୍କେ ସନ୍ଦେହ ଥାକିଲେ ଓଜନ ହିସେବେ ଆୟତନ ପରିମାପ କରେ ନିତେ ପାରେନ ।)
୩. ଏକଟି ଡ୍ରପାରେର ସାହାୟ୍ୟ ନାଇଟ୍ରୋ-ବେନଜିନକେ ପଟାଶିଆମ କ୍ଲୋରେଟ-ଏର ଉପର ଛଢିଯେ ଦିନ । ଅତପର ୩-୫ମିନିଟ ରେଖେ ଦିନ ।

গুরুত্বপূর্ণ বিষয়ঃ

- নাইট্রো-বেনজিন পটাশিয়াম ক্লোরেট-এর ছড়িয়ে দেয়ার পর মিশ্রণটি সরানো, ঝাকানো এবং নাড়ানো যাবে না। উত্তমরূপে ছড়াতে হবে যাতে কিনারাগুলোতেও নাইট্রো-বেনজিন ভালোভাবে পৌছায়।
- মিশ্রণটি যাতে তরল না হয়ে যায় সেজন্য একে একটি বায়ুনিরোধী প্লাস্টিক বা স্টীলের কন্টেইনারে রাখতে হবে।
- মিশ্রণটির জন্য ডেটোনেটর হিসেবে ৩ গ্রাম ফালমিনেট বা অ্যাজাইড ব্যবহার করতে হবে, যদি অ্যাসিটোন বা হেক্সামিন ব্যবহৃত হয় তবে তা ৬ গ্রাম নিতে হবে।
- মিশ্রণটিকে জ্বালানোর জন্য বিশেষ সতর্কতা অবলম্বন করতে হবে কেননা নাইট্রো-বেনজিন খুব দ্রুত জ্বলে।

ফলাফলঃ

পরীক্ষা-১ঃ তারিখঃ- ০৭-১২-১৯৫৫।

পটাশিয়াম ক্লোরেট	নাইট্রো-বেনজিন	ডেটোনেটর
৪০ গ্রাম	১০ গ্রাম (মিলি নয়)	প্রথমে লেড অ্যাজাইডের (PbN_6)
		পরে হেক্সামিন-পার-অক্সাইড ($(C_6H_{12}N_4)_2O_2$)

আমি প্রথমে পটাশিয়াম ক্লোরেটকে একটি কন্টেইনারে নিই। অতপর একটি ড্রপারের সাহায্যে নাইট্রো-বেনজিন পটাশিয়াম ক্লোরেট- এর উপরিতলে সমভাবে ছড়িয়ে দেই। এটি ভালো কাজ করেছে।

আরও কতিপয় মিশ্রণ (খুবই শক্তিশালী মিশ্রণ)ঃ

মিশ্রণ - ৪ঃ নাইট্রো-বেনজিন, বেরিয়াম নাইট্রেট, টি. এন. টি, অ্যামোনিয়াম নাইট্রেট, কার্বন-এর সাথে

KClO ₃	নাইট্রো-বেনজিন C ₆ H ₅ NO ₂	বেরিয়াম নাইট্রেট Ba(NO ₃) ₂	T.N.T	NH ₄ NO ₃	C
৪০ গ্রাম	৩০ গ্রাম	৩০ গ্রাম	৩০ গ্রাম	৪৭ গ্রাম	২ গ্রাম

এটি খুবই শক্তিশালী মিশ্রণ। এই মিশ্রণটি শুধুমাত্র ডেটোনেটরসহ বিস্ফোরিত হবে, কারন এর শক্তি ওয়েভ দরকার।

মিশ্রণ - ৫ঃ নাইট্রো-বেনজিন, কফি, ম্যাগনেসিয়াম পাউডার-এর সাথে

KClO ₃	নাইট্রো-বেনজিন C ₆ H ₅ NO ₂	কফি	Mg পাউডার
৮৬ গ্রাম	৩০ গ্রাম	৯ গ্রাম	৪৫ গ্রাম

এটি খুবই শক্তিশালী মিশ্রণ। এই মিশ্রণটি শুধুমাত্র ডেটোনেটরসহ বিস্ফোরিত হবে, কারন এর শক্তি ওয়েভ দরকার।

মিশ্রণ - ৬ঃ সালফার-এর সাথে

পটাশিয়াম ক্লোরেট	সালফার
১১	১

প্রস্তুত প্রণালীঃ

- উপাদান দুইটি পৃথকভাবে ভালোভাবে গুড়া করে চালুনী করতে হবে।
- উপাদান দুইটিকে উত্তমরূপে মেশাতে হবে।
- মিশ্রণটিকে পুনরায় চালুনী করতে হবে।

এই মিশ্রণটি ইম্প্যাট বোমাতেও ব্যবহৃত হয়। এই বোমাটি নিচের মতো করে তৈরী করা যায়।

চিত্রঃ ইম্প্যাট বোমা।

নোটঃ

- বোমার সূচনা নিশ্চিত করার জন্য স্টীল কন্টেইনারের উভয় পাশে স্টীলের টুকরা বা বল রাখতে হবে।
- বোমা এবং বলের মধ্যে কিছুটা ফাকা জায়গা রাখতে হবে।

৩. বোমাটিকে সিল করার পর একে মৃদুভাবে ঝাকাতে হবে যাতে বলগুলোর সঙ্গে চার্জ বা মিশ্রনটি মিশ্রিত হতে পারে।
৪. লক্ষ্য বস্তুর আকৃতি যেন কঠিনাকার হয় সে বিষয়ে লক্ষ্য রাখতে হবে যাতে করে বোমাটি বিস্ফোরিত হবার সম্মুখ সম্ভাবনা থাকে।

ফলাফলঃ

পরীক্ষা-১ঃ তারিখঃ- ০৬-১২-১৫।

বিস্ফোরিতঃ

১. ফিউজ - হোয়াইট পাউডার (কাঠের গুড়া দিয়ে তৈরী)
২. ডেটোনেট - হেক্সামিন পার অক্সাইড
৩. প্রধান চার্জ - ৮৮ গ্রাম পটাশিয়াম ক্লোরেট + ৮ গ্রাম সালফার

আমি কোন ইম্প্যাক্ট বোমা তৈরী করিনি যেভাবে নির্দেশনা ছিল। আমি ডেটোনেটের দিয়ে বিস্ফোরিত করার জন্য একটি স্থির বোমা তৈরী করেছিলাম যাতে তা প্রধান চার্জের সাথে কাজ করে কিনা তা বোঝা যায়। বোমাটি বিস্ফোরিত হয়নি। কেবলমাত্র ডেটোনেটের বিস্ফোরিত হয়েছিল। আমরা সিদ্ধান্তে পৌছালাম যে ডেটোনেটের চার্জটিকে বিস্ফোরিত করার জন্য যথেষ্ট শক্তিশালী ছিল না যেহেতু বোমাটি ইম্প্যাক্ট বা আঘাতের জন্য তৈরী করা হয়েছিল।

পরীক্ষা-২ঃ তারিখঃ- ০৬-১২-১৫।

বিস্ফোরিতঃ

১. ফিউজ - হোয়াইট পাউডার (কাঠের গুড়া দিয়ে তৈরী)।
২. ডেটোনেট - ৫০% লেড অ্যাজাইড (PbN_6) এবং ৫০% হেক্সামিন পার অক্সাইড ($C_6H_{12}N_4)_2O_2$ । এই দুইটি সূচনাকারী পদার্থ মিশ্রিত করা হয়নি। লেড অ্যাজাইড ডেটোনেটের পাশে চার্জের কাছে রাখা হয়েছিল। হেক্সামিন পার অক্সাইড ফিউজের পরে রাখা হয়েছিল।
৩. প্রধান চার্জ - ৮৮ গ্রাম পটাশিয়াম ক্লোরেট ($KClO_3$) এবং ৮ গ্রাম সালফার (S)।

আমি ডেটোনেটের পরিবর্তন করে লেড অ্যাজাইড অন্তর্ভুক্ত করেছিলাম। আমি মনে করেছিলাম এটা প্রধান চার্জকে বিস্ফোরিত করার জন্য প্রয়োজনীয় শক্তি ওয়েভ তৈরী করবে। লেড অ্যাজাইড হেক্সামিনের থেকে বেশি শক্তিশালী। কিন্তু এ উভয়ের সমন্বয়ে তৈরীকৃত ডেটোনেটের শুধুমাত্র লেড অ্যাজাইড দিয়ে তৈরীকৃত ডেটোনেটের থেকে বেশি শক্তিশালী।

বোমাটি এবারও বিস্ফোরিত হলো না। আমার শিক্ষক জানালেন এই বোমাটি শুধুমাত্র ইম্প্যাক্ট বোমা হিসেবেই বিস্ফোরিত হবে, স্থির বোমা হিসেবে বিস্ফোরিত হবে না। তিনি আরও জানালেন এটি ইম্প্যাক্ট বোমা হিসেবে অবশ্যই ভালো কাজ করবে যেহেতু তিনি নিজে তা পরীক্ষা করেছেন।

ইম্প্যাক্ট বোমা তৈরীর নতুন পদ্ধতিঃ

যেকোন শক্তিশালী মিশ্রন (পটাশিয়াম ক্লোরেট, অ্যামোনিয়াম নাইট্রেট বা ইউরিয়া নাইট্রেট) ৯০% এবং উভয় পাশে স্টীলের টুকরা বা বলের সাথে ১০% লেড অ্যাজাইড রাখলে বোমাটি ভালো কাজ করবে এবং নিশ্চয়তা সহকারে বিস্ফোরিত হবে।

মিশ্রন - ৭৪ ডিজেল বা কেরোসিন বা চিনি-র সাথে

এটি হচ্ছে ক্লোরেটের প্রধান চার্জঃ

পটাশিয়াম ক্লোরেট ডিজেল বা কেরোসিন বা চিনি

৯

১

এই পদ্ধতিটি নাইট্রো-বেনজিন + পটাশিয়াম ক্লোরেট দিয়ে বোমা বানানোর পদ্ধতিটির অনুরূপ। কিন্তু পরিমানগত কিছু পার্থক্য বিদ্যমান। পটাশিয়াম ক্লোরেট নিয়ে গুড়া করে মিহি করুন। অতপর একে একটি স্টীল কন্টেইনারে রাখুন এবং ডিজেল বা কেরোসিন এর উপর ছড়িয়ে দিন। তারপর একটি ডেটোনেটের যোগ করুন।

বিদ্রূঢ় ডেটোনেটের সূচনাকারী পদার্থের পরিমাণ দ্বিগুণ করতে হবে।

বৈশিষ্ট্যবলীঃ

১. এটি স্পর্শকাতর নয় সেজন্য ডেটোনেটের প্রয়োজন।
২. এটি নাইট্রো-বেনজিন বোমার চেয়ে এক-চতুর্থাংশ কম শক্তিশালী।
৩. ডিজেল বা কেরোসিন বোমাকে সবসময় একটি লোহার কন্টেইনারে প্যাক করে রাখা উচিত।
৪. এটিকে কোন ব্যক্তির বিরুদ্ধেও ব্যবহার করা যায়।

চিনির ক্ষেত্রে, একে ভালোভাবে গুড়া করে নিতে হবে এবং ক্লোরেটের সঙ্গে ভালোভাবে মিশ্রন করতে হবে। এটি যদি ভালোভাবে গুড়া না হয় এবং ভালোভাবে না মেশে তবে বিস্ফোরিত হবে না।

গুরুত্বপূর্ণ নোটঃ কিছু পরিবর্তন করে আমরা মিশ্রনটিকে ডেটোনেটের ছাড়াই বিস্ফোরিত করতে পারি। সেক্ষেত্রে উপাদান এবং পরিমাণ নিচের মতো হবে।

পটাশিয়াম ক্লোরেট চিনি অ্যালুমিনিয়াম পাউডার

৮৫	৫	৩
----	---	---

এই মিশনের ক্ষেত্রে কোন ডেটোনেটের প্রয়োজন নেই। তবে উপাদানগুলো ভালোভাবে গুড়া করা এবং চালুনী করা খুবই গুরুত্বপূর্ণ।

মিশন - ৮৪ পটাশিয়াম নাইট্রেট, ম্যাগনেসিয়াম, সালফার, কার্বন ও ইঞ্জিন ওয়েল-এর সাথে

এটিও পটাশিয়াম ক্লোরেটের প্রধান চার্জ।

বিঃদ্রঃ কোন মিশনে আমরা যদি ইঞ্জিন ওয়েল ব্যবহার করি তবে ভালো ফলাফলের জন্য আমরা ইঞ্জিন ওয়েলের পরিবর্তে নাইট্রো-বেনজিন ব্যবহার করতে পারি।

প্রয়োজনীয় উপাদানের আনুপাতিক পরিমাণঃ

KClO ₃	KNO ₃	S	C	ইঞ্জিন ওয়েল	Mg
৭৮	১২	৬	৪	৮	১০

মিশনে ব্যবহারের পূর্বে নিশ্চিত হতে হবে যে উপাদানগুলো পুরোপুরি শুকনা অবস্থায় আছে। মিশনটিকে ডেটোনেটের সহ বা ছাড়াই বিস্ফোরিত করা যায়। আমাদের পরীক্ষায় আমরা একই পরিমাণ উপাদান নিয়েছিলাম শুধুমাত্র ইঞ্জিন ওয়েল দিগ্ন নিয়েছিলাম। মিশনটি প্রচুর ঘোয়াসহ বিস্ফোরিত হয়েছিল। সুতরাং বলা যায় যে একটি একটি ভালো স্মোক বোমা।

মিশন - ৯৪ পটাশিয়াম নাইট্রেট, অ্যালুমিনিয়াম পাউডার, চিনি, সালফার, কার্বন ও ইঞ্জিন ওয়েল-এর সাথে

KClO ₃	KNO ₃	S	কার্বন (বড়ই) C	ইঞ্জিন ওয়েল	Al পাউডার	চিনি
৬০ গ্রাম	৩০ গ্রাম	১০ গ্রাম	১০ গ্রাম	১০ মিলি	৩০ গ্রাম	২০ গ্রাম

মিশন - ১০৪ বেনজিন এবং কাঠের গুড়ার সাথে

এটি পটাশিয়াম ক্লোরেট-এর প্রধান চার্জগুলোর মধ্যে সপ্তম।

উপাদানের পরিমাণঃ

পটাশিয়াম ক্লোরেট	বেনজিন	কাঠের গুড়া
৮৮.৫%	৮%	৩.৫%

বিঃদ্রঃ কাঠের গুড়া এবং পটাশিয়াম ক্লোরেট-এর মিশনে বেনজিন মিশ্রিত করার পর মিশনটিকে সম্পূর্ণরূপে শুকাতে হবে। এটি শুধুমাত্র ডেটোনেটের সাহায্যে বিস্ফোরিত হতে পারে এবং একে অবশ্যই শক্ত লোহা বা স্টীলের কন্টেইনারে আবদ্ধ রাখতে হবে।

মিশন - ১১৪ ঘি বা ভেসলিনের সাথে

এটি পটাশিয়াম ক্লোরেট-এর প্রধান চার্জগুলোর মধ্যে অষ্টম। এর শক্তি হচ্ছে ১.৫ টি.এন.টি এর সমান।

পটাশিয়াম ক্লোরেট	ভেসলিন
৮৮%	১২%

পটাশিয়াম ক্লোরেট	ভেসলিন
৮৫ গ্রাম	১৫ গ্রাম

নতুন এই মিশনটি আরও শক্তিশালী

পটাশিয়াম ক্লোরেট	ঘি
৮৮%	১২%

একে প্লাস্টিক বিস্ফোরকও বলা হয় যেহেতু একে যেকোন আকৃতি দেয়া যায়। এই মিশনটি এয়ারপোর্ট বা যেকোন জায়গায় চিহ্নিত করা যায় না তাই এরোপ্লেন উড়িয়ে দিতে অনেকেই এটি ব্যবহার করে।

যদি আপনি ৮ ফোটা নাইট্রো-বেনজিন ঘোগ করেন তবে এর শক্তি হবে ১.৫ টি.এন.টি-র সমান।

এই মিশন তৈরীর ক্ষেত্রে গুরুত্বপূর্ণ কিছু নোটঃ

পটাশিয়াম ক্লোরেট ভালোভাবে গুড়া করে এবং চালুনী করার পর ভেসলিন মিশ্রিত করার জন্য রচ্চি তৈরীর একটি গামলা ব্যবহার করতে হবে।

এই মিশনটি ডেটোনেটের সাহায্যে ভয়ানকভাবে বিস্ফোরিত হবে।

ফলাফলঃ

পরীক্ষা-১ঃ তারিখঃ- ০৬-১২-১৫।

বিস্তারিতঃ

পটাশিয়াম ক্লোরেট	ঘি	ডেটোনেটর
৮৮ গ্রাম	১২ গ্রাম	হেক্সামিন পার অক্সাইড

সবকিছু ভালোভাবে কাজ করেছিল।

এই মিশ্রণগুলি সম্পর্কিত বিশেষ নোটঃ

যদি আমরা কয়েক ফোটা নাইট্রো-বেনজিন (৫-৬ ফোটা) বা ১০ ফোটা ব্যবহৃত ইঞ্জিন ওয়েল যোগ করি তবে মিশ্রনটি অধিকতর শক্তিশালী বিস্ফোরক হবে।

এই মিশ্রনটি যদি এয়ারপোর্টে চেক করা হয় তবে তা ডিডাকটিভ মেশিন দিয়ে খুজে বের করা খুবই কঠিন।

আমরা নিচের উপাদানগুলোও উল্লেখিত আনুপাতিক হারে ব্যবহার করতে পারি।

পটাশিয়াম ক্লোরেট	ভেসলিন	অ্যালুমিনিয়াম পাউডার	ম্যাগনেশিয়াম
৭০%	১২%	৭%	১১%

এই মিশ্রনটিকে পরীক্ষা করা হয়েছিল এবং বিস্ফোরনটি খুবই শক্তিশালী শব্দ এবং প্রচুর আলো উৎপন্ন করেছিল।

মিশ্রন - ১২ঃ কফি, চিনি, অ্যালুমিনিয়াম পাউডার-এর সাথে

এটি পটাশিয়াম ক্লোরেট-এর প্রধান চার্জগুলোর মধ্যে নবম। এর শক্তি ১.৫ টি.এন.টি। এটিও দুই প্রকারের।

পটাশিয়াম ক্লোরেট	কফি	চিনি	অ্যালুমিনিয়াম পাউডার
৭০%	১০%	৫%	১৫%

মিশ্রনটি ডেটোনেটর সহ বা ডেটোনেটর ছাড়াই এবং ফিউজের সাথেও বিস্ফোরিত হবে। মিশ্রন করার পূর্বে সকল উপাদান ভালোভাবে গুড়া করে এবং চালুনী করে নিতে হবে।

মিশ্রন - ১৩ঃ টি.এন.টি, অ্যালুমিনিয়াম পাউডার, ভেসলিন এবং চিনির সাথে

পটাশিয়াম ক্লোরেট	টি.এন.টি	অ্যালুমিনিয়াম পাউডার	ভেসলিন	চিনি
৬০ গ্রাম	১০ গ্রাম	১৫ গ্রাম	১০ গ্রাম	১০ গ্রাম

উপরোক্ত মিশ্রনটি ডেটোনেটর সহ বা ডেটোনেটর ছাড়াই এবং ফিউজের সাথেও বিস্ফোরিত হবে। চার্জটি বিস্ফোরকের সকল অংশকে টুকরা টুকরা করে ফেলবে।

মিশ্রন - ১৪ঃ কতিপয় মিশ্রনের পরীক্ষা

পরীক্ষা-১ঃ

মিশ্রনের নাম	KClO ₃	NH ₄ NO ₃	KMnO ₄	Al	S	C	কাঠের গুড়া
মুজাহিদ ১	৪৫ গ্রাম	২৫ গ্রাম	১০ গ্রাম	১০ গ্রাম	১৫ গ্রাম	১০ গ্রাম	১০ গ্রাম

পরীক্ষা-২ঃ

মিশ্রনের নাম	KClO ₃	Al	S	C
মুজাহিদ ২	৫০%	৫%	২০%	২৫%

পরীক্ষা-৩ঃ

মিশ্রনের নাম	হোয়াইট পাউডার (কাঠের গুড়ার মিশ্রন)	ম্যাগনেশিয়াম পাউডার
মুজাহিদ ৩	৭৫%	২৫%

পরীক্ষা-৪ঃ

KClO ₃	KMnO ₄	Al	ইঞ্জিন ওয়েল বা বেনজিন	চিনি	S	C
৬	৩	৩	১	২	১	১

উপরোক্ত মিশনগুলি ডেটোনেটের সহ বা ডেটোনেটের ছাড়াই এবং ফিউজের সাথেও বিস্ফোরিত হবে। সুতরাং এই মিশনগুলিকে লোহা বা স্টীলের কটেইনারে রাখতে হবে।

মিশন - ১৫: সোডিয়াম ক্লোরেট, অ্যালুমিনিয়াম পাউডার, ইঞ্জিন ওয়েল, চিনি, সালফার এবং কার্বনের সাথে

$KClO_3$	সোডিয়াম ক্লোরেট ($NaClO_3$)	Al পাউডার	নোংরা ইঞ্জিন ওয়েল	চিনি	S	C
৬	৩	৩	১	১	১	১

$KClO_3$	সোডিয়াম ক্লোরেট ($NaClO_3$)	Al পাউডার	নোংরা ইঞ্জিন ওয়েল	চিনি	S	C
৬	৩	১	১	১	১	১

এই মিশন দুইটি শুধুমাত্র ডেটোনেটেরসহ বিস্ফোরিত হবে, কারণ শক্ত ওয়েল দরকার। সোডিয়াম ক্লোরেট খুব একটা স্পর্শকাতর নয়।

মিশন - ১৬: অ্যামোনিয়াম নাইট্রেট, অ্যালুমিনিয়াম পাউডার, ইঞ্জিন ওয়েল, চিনি, সালফার এবং কার্বনের সাথে

$KClO_3$	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)	Al পাউডার	ইঞ্জিন ওয়েল	চিনি	S	C
৬	৩	৩	১	২	১	১

$KClO_3$	অ্যামোনিয়াম নাইট্রেট	Al পাউডার	ইঞ্জিন ওয়েল	চিনি	S	কার্বন (বড়ই,আকন্দ)
৬০ গ্রাম	৩০ গ্রাম	৩০ গ্রাম	১০ মিলি	২০ গ্রাম	১০ গ্রাম	১০ গ্রাম

এই মিশন দুইটি শুধুমাত্র ডেটোনেটেরসহ বিস্ফোরিত হবে, কারণ এর শক্ত ওয়েল দরকার।

মিশন - ১৭: সোডিয়াম নাইট্রেট, অ্যালুমিনিয়াম/ম্যাগনেসিয়াম পাউডার, ইঞ্জিন ওয়েল, চিনি, সালফার এবং কার্বনের সাথে

$KClO_3$	সোডিয়াম নাইট্রেট ($NaNO_3$)	Al পাউডার	নোংরা ইঞ্জিন ওয়েল	চিনি	S	C
৬	৩	১	১	২	১	১

$KClO_3$	সোডিয়াম নাইট্রেট ($NaNO_3$)	Mg পাউডার	Al পাউডার	নোংরা ইঞ্জিন ওয়েল	চিনি	C
৬	৩	৩	১	১	১	১

এই মিশনটি শুধুমাত্র ডেটোনেটেরসহ বিস্ফোরিত হবে, কারণ এর শক্ত ওয়েল দরকার।

মিশন - ১৮: ইঞ্জিন ওয়েল-এর সাথে

$KClO_3$	ইঞ্জিন ওয়েল
৮৫ গ্রাম	১৫ মিলি

মিশন - ১৯: ইঞ্জিন ওয়েল, চিনি-র সাথে

$KClO_3$	নোংরা ইঞ্জিন ওয়েল	চিনি
৩	১	১

$KClO_3$	নোংরা ইঞ্জিন ওয়েল	চিনি
৩০	১০	১০

এ দুইটি প্রজ্ঞলন চার্জ। এর জন্য ইয়েলো বা হোয়াইট পাউডারের ফিউজ প্রয়োজন।

বিঃদ্রঃ সকল প্রজ্ঞলন চার্জের জন্য শুধুমাত্র টাইম ফিউজ প্রয়োজন।

মিশন - ২০: সালফার, অ্যালুমিনিয়াম পাউডার, চিনি-সাথে

এটি একটি প্রজ্ঞলন এবং বিস্ফোরন মিশন

KClO ₃	S	চিনি	Al পাউডার
৩	১	১	১

এই চার্জটি ফিউজ সহ বা ফিউজ ছাড়াই বিস্ফেরিত হবে।

ফলাফলঃ

পরীক্ষা-১ঃ তারিখঃ- ০৬-১২-৯৫

বিস্ফেরিতঃ

পটাশিয়াম ক্লোরেট (KClO ₃)	অ্যালুমিনিয়াম (Al)	চিনি (C ₁₂ H ₂₂ O ₁₁)	সালফার (S)
৫০ গ্রাম	১৬.৫ গ্রাম	১৬.৫ গ্রাম	১৬.৫ গ্রাম

ডেটোনেটর - হেয়ামিন পার অক্সাইড (C₆H₁₂N₄)₂O₂

ভালো কাজ করেছে। একটি বিষয় সবসময় মনে রাখতে হবে যে পটাশিয়াম ক্লোরেট (KClO₃) সবসময় পরে মিশাতে হবে।

মিশ্রন - ২১ঃ ম্যাগনেসিয়াম পাউডার, অ্যালুমিনিয়াম পাউডার, আয়রণ পাউডার, কার্বন এবং সালফারের সাথে

এটি একটি প্রজ্ঞলন মিশ্রন

KClO ₃	C	S	Mg পাউডার	Fe পাউডার	Al পাউডার
৩	১	১	১	১	১

এই চার্জ প্রচুর আলো উৎপন্ন করে।

অ্যামোনিয়াম নাইট্রেট (NH₄NO₃)-এর মিশ্রন

অ্যামোনিয়াম নাইট্রেট (NH₄NO₃) এমন একটি উপাদান যা বিক্রিয়ার গতিকে শ্লথ করে দেয়। অতএব একে সুবিধাজনক চালনাকারী পদার্থের সাথে ব্যবহার করতে হবে। যেমন, ইয়েলো পাউডার বা হোয়াইট পাউডার বা চিনি+পটাশিয়াম ক্লোরেট (১৪৩ ক্রমানুসারে)।

এগুলোকে প্রধান চার্জের ওজন অনুসারে ডেটোনেটরের চারপাশে রাখতে হবে। এটি খুব সহজেই আর্দ্রতা দ্বারা আক্রান্ত হয় কাজেই ব্যবহারের পূর্বে সম্পূর্ণরূপে শুকানের জন্য বালি গাহে নিয়ে তাপ দিতে হবে।

শক্তি = ০.৫৬ টি.এন.টি। এটি বড় বোমার ক্ষেত্রে খুবই উপযোগী কেননা এটি বাজারে প্রস্তুতকৃত অবস্থায় পাওয়া যায়। শুধু মেশালেই হলে।

অ্যামোনিয়াম নাইট্রেটকে পাউডারে পরিণত করার জন্য কোন প্রকার ঝুঁকি ছাড়াই ভ্রেন্ডার ব্যবহার করা যায়।

সকল মিশ্রন ডেটোনেটর এবং ইয়েলো বা হোয়াইট পাউডার (কাঠের গুড়া দিয়ে প্রস্তুতকৃত) এর সাথে বিস্ফেরিত হবে। এই পাউডারকে বলা হয় বুস্টার।

বিদ্রঃ- এমোনিয়াম নাইট্রেট এর সকল প্রকার চার্জের ভিতরে ১৫% বুস্টার ব্যবহার করতে হবে। বুস্টারের বারুদ হিসেবে ইয়েলো, ব্লাক বা হোয়াইট পাউডার ব্যবহার করা যায়।

অ্যামোনিয়াম নাইট্রেট (NH₄NO₃)-এ নাইট্রোজনের পরিমাণ যদি ৩০-৩৩% হয় তবে ৫-১০ গ্রাম বুস্টার লাগবে।

অ্যামোনিয়াম নাইট্রেট (NH₄NO₃)-এ নাইট্রোজনের পরিমাণ যদি ২০-২৫% হয় তবে ১৫-২০ গ্রাম বুস্টার লাগবে।

অ্যামোনিয়াম নাইট্রেট শুকানোর নিয়মাবলীঃ

অ্যামোনিয়াম নাইট্রেট দিয়ে চার্জ তৈরী করার পূর্বে অ্যামোনিয়াম নাইট্রেটকে শুকিয়ে নিতে হবে। শুকানোর পর গুড়ে করে ছেকে নিতে হবে।

অ্যামোনিয়াম নাইট্রেট শুকানোর পদ্ধতিঃ

একটি কড়াই নিয়ে এর উপর বালি দিয়ে ভর্তি করুন। এবার বালির উপর আরেকটি খালি কড়াই চড়ান। এবার খালি কড়াইয়ের মধ্যে অ্যামোনিয়াম নাইট্রেট ঢালুন, এবার হালকা হালকা তাপে অ্যামোনিয়াম নাইট্রেটকে নাড়তে থাকুন। যখন দেখতে পাবেন যে, অ্যামোনিয়াম নাইট্রেট-এর কালার হালকা পরিবর্তন হয়ে ছাই বা বাদামী কালার ধারণ করছে, তখন নাড়ানো বন্ধ করে চুলা থেকে নামিয়ে গুড়া করে ছেকে নির্দিষ্ট পরিমাণে মেপে ও নির্দিষ্ট বস্তু মিল করে চার্জ তৈরী করতে পারেন।

মিশ্রন - ১ঃ অ্যালুমিনিয়াম পাউডার এবং সালফার-এর সাথে

অ্যামোনিয়াম নাইট্রেট (NH ₄ NO ₃)	Al পাউডার	সালফার (S)
৮৫	১০	৫

অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)	Al পাউডার	সালফার (S)
৮.৫	১	০.৫

মিশন - ২৪ ইউরিয়া নাইট্রেট এবং অ্যালুমিনিয়াম পাউডার-এর সাথে

NH_4NO_3	ইউরিয়া নাইট্রেট	Al পাউডার
৬ গ্রাম	২ গ্রাম	১ গ্রাম

NH_4NO_3	ইউরিয়া নাইট্রেট	Al পাউডার
৩ গ্রাম	৩ গ্রাম	১ গ্রাম

NH_4NO_3	ইউরিয়া নাইট্রেট	Al পাউডার
২ গ্রাম	৪ গ্রাম	১ গ্রাম

মিশন - ৩৪ অ্যামোনাল (অ্যালুমিনিয়াম পাউডার-এর সাথে)

NH_4NO_3	Al পাউডার
৮০ গ্রাম	৫৪ গ্রাম

NH_4NO_3	Al পাউডার
৭৮ গ্রাম	৫৪ গ্রাম

এই মিশনটি অত্যধিক শক্তিশালী এবং খুবই শক্তিশালী আলো উৎপাদক। একে লাইট বোমা হিসেবে ব্যবহার করা যায়।

ভূমিকম্প (Al পাউডার-এর সাথে)

NH_4NO_3	Al পাউডার
৪০ গ্রাম	১০ গ্রাম

NH_4NO_3	Al পাউডার
৮১%	১৯%

এটি সবচেয়ে শক্তিশালী অ্যামোনিয়াম নাইট্রেট মিশন। এর শক্তি = ২ টি.এন.টি। এটি খুবই শক্তিশালী আলো, স্ফুলিঙ্গ তৈরী করবে এবং ভূমিতে ঝাকুনি তৈরী করবে।

মিশন - ৪৪ টি.এন.টি এবং অ্যালুমিনিয়াম পাউডার-এর সাথে

NH_4NO_3	টি.এন.টি	Al পাউডার
৮৯%	১০%	১%

এটি একটি স্টীল শীটকে ভেদ করবে এবং ছিদ্র তৈরী করবে।

মিশন - ৫৪ টি.এন.টি এবং অ্যামোনিয়াম অক্সালেট ($\text{C}_2\text{H}_8\text{N}_2\text{O}_4$)-এর সাথে

NH_4NO_3	টি.এন.টি	অ্যামোনিয়াম অক্সালেট $\text{C}_2\text{H}_8\text{N}_2\text{O}_4$
৮৯%	১০%	১%

উচ্চমাত্রার শব্দ তৈরী করবে কিন্তু তুলনামূলকভাবে কম শক্তিশালী।

মিশন - ৬৪ টি.এন.টি, কার্বন এবং অ্যালুমিনিয়াম পাউডার-এর সাথে

NH_4NO_3	টি.এন.টি	C	Al পাউডার
৬০%	১৫%	৭%	১৮%

মিশন - ৭৪ মেসক্যাফে (কফি এবং অ্যালুমিনিয়াম পাউডার-এর সাথে)

NH_4NO_3	কফি	Al পাউডার
৬০ গ্রাম	২০ গ্রাম	২০ গ্রাম

NH_4NO_3	কফি	Al পাউডার
৬ গ্রাম	২ গ্রাম	২ গ্রাম

সহজে এবং তাড়াতাড়ি প্রস্তুত করা যায়। এটি আরেকটি শক্তিশালী মিশন। শক্তি = ১.৪ টি.এন.টি।

মিশন - ৮৪ অ্যানফো (A.N.F.O) (ডিজেলের সাথে)

NH_4NO_3	ডিজেল
৯০ গ্রাম	১০ মিলি

NH_4NO_3	ডিজেল
৯ গ্রাম	১ গ্রাম

প্রস্তুত প্রণালীঃ

প্রথমে অ্যামোনিয়াম নাইট্রেটকে শুকিয়ে নিয়ে উত্তমরূপে গুড়া করুন এবং চালুনী করুন। এরপর মেপে নিয়ে কিছু পরিমাণ ডিজেল মিল্ক করে রৌদ্রে শুকাতে দিন। শুকানো হয়ে গেলে আবার কিছু ডিজেল মিল্ক করে রৌদ্রে শুকাতে দিন। নির্দিষ্ট পরিমাণে করতে হবে।

মিশন - ৯৪ কাঠের গুড়া বা চিনির সাথে

NH_4NO_3	কাঠের গুড়া বা চিনি
৯ গ্রাম	১ গ্রাম

এই মিশনটির জন্য ডেটোনেটরের সাইজ দিগ্ন করে দিতে হবে। কাঠের গুড়া বা চিনি স্পর্শকাতর নয়।

মিশন - ১০৪ অ্যালুমিনিয়াম পাউডার এবং কার্বনের সাথে

NH_4NO_3	Al পাউডার	C
৮০%	১৫%	৫%

মিশন - ১১৪ টি.এন.টি-এর সাথে

NH_4NO_3	টি.এন.টি
৮০%	৬০%

এটি খুবই শক্তিশালী মিশন এবং এটি ডেটোনেটরের সাহায্যে বিক্ষেপিত হয়।

মিশন - ১২৪ সাউন্ড ব্লাস্টার (অ্যালুমিনিয়াম পাউডার এবং কাঠের গুড়ার সাথে)

NH_4NO_3	Al পাউডার	কাঠের গুড়া
৮৫%	১০%	৫%

শক্তি = ০.৫ টি.এন.টি। এই মিশনটি উচ্চমাত্রার শব্দ উৎপাদন করে। মনোযোগ আকর্ষণের জন্য কার্যকরী।

ইউরিয়া নাইট্রেট-এর মিশ্রন

সকল মিশ্রনই ডেটোনেটের সাথে এবং ইয়েলো/হোয়াইট পাউডারের সাথে বিস্ফোরিত হবে। ৪, ৫ এবং ৬ নং মিশ্রনগুলি টি.এন.টি-র চেয়ে বেশি শক্তিশালী।

মিশ্রন - ১ঃ অ্যামোনিয়াম নাইট্রেট এবং অ্যালুমিনিয়াম পাউডার-এর সাথে

অ্যামোনিয়াম নাইট্রেট	ইউরিয়া নাইট্রেট	AI পাউডার
৬ গ্রাম	২ গ্রাম	১ গ্রাম

অ্যামোনিয়াম নাইট্রেট	ইউরিয়া নাইট্রেট	AI পাউডার
৩ গ্রাম	১ গ্রাম	১ গ্রাম

অ্যামোনিয়াম নাইট্রেট	ইউরিয়া নাইট্রেট	AI পাউডার
২ গ্রাম	৪ গ্রাম	১ গ্রাম

মিশ্রন - ২ঃ অ্যালুমিনিয়াম পাউডার-এর সাথে

ইউরিয়া নাইট্রেট	AI পাউডার
৪ গ্রাম	১ গ্রাম

পরীক্ষা-১ঃ তারিখঃ-০৭-১২-১৯৯৫

পরিক্ষা-২ঃ তারিখঃ-০১-০৮.০৮

ফলাফলঃ ইউরিয়া নাইট্রেট এবং AI পাউডার এর মিশ্রন তৈরী করে তৃতী প-স্টিকের কৌটায় সম্পূর্ণ ভরে কৌটার মুখ লাগিয়ে রাখা হয়েছিল। গ্রেনেডের বড় হিসেবে এই প-স্টিকের কৌটা ব্যবহার করা হয়েছিল। তখনও বড়তে স্পি-স্টার লাগানো হয়নি। ২০-২৫ মিনিটের মাথায় ১টা কৌটা আপনা আপনি বিস্ফোরিত হয়। তখন সবাই সামনে বসা ছিল। পরে বাকিগুলো পানিতে ফেলার জন্য বালতিতে ফেলার সাথে সাথেই বাকি দুটি বিস্ফোরিত হয়।

মন্তব্যঃ এই মিশ্রন খুবই ঝুকিপূর্ণ। সুতরাং এই মিশ্রন বাতিল বলে গণ্য হবে।

ইউরিয়া নাইট্রেট	অ্যালুমিনিয়াম পাউডার	বুস্টার	ডেটোনেটর
৪০ গ্রাম	১০ গ্রাম	হোয়াইট পাউডার (কাঠের গুড়া দিয়ে তৈরী)	হেক্সামিন পার অক্সাইড এবং লেড অ্যাজাইড

ফলাফল কি হয় তা দেখার জন্য আমি সদ্য প্রস্তুতকৃত ইউরিয়া নাইট্রেটকে গুড়া এবং চালুনী করি। অ্যালুমিনিয়াম পাউডার মিহিভাবে গুড়া করা আছে। বোমাটি তৈরী করা হলে যখন ডেটোনেটের জন্য একটি গর্ত করা হলো তখন আমার শিক্ষক তাতে ১০ গ্রাম হোয়াইট পাউডার দিয়ে ভর্তি করে দিলেন এবং কটেইনারের উপরেও পূর্ণ করে দিলেন। তিনি ৫ গ্রাম দিতেন কিন্তু তিনি পরীক্ষা করছিলেন। যখন ডেটোনেটের বোমার মধ্যে রাখা হলো তার চারিদিকে শুধুমাত্র হোয়াইট পাউডারই থাকলো যা ডেটোনেটের জন্য বুস্টার হিসেবে কাজ করেছিল।

বোমাটি বিস্ফোরিত হলো কিন্তু ততটা শক্তিশালী ছিলনা। এটা এজন্য যে ইউরিয়া নাইট্রেট ভালোভাবে গুড়া করা ছিলনা।

মিশ্রন - ৩ঃ সালফার এবং অ্যালুমিনিয়াম পাউডার-এর সাথে

সালফার	ইউরিয়া নাইট্রেট	AI পাউডার
২ গ্রাম	৬ গ্রাম	২ গ্রাম

মিশ্রন - ৪ঃ কফি এবং অ্যালুমিনিয়াম পাউডার-এর সাথে

কফি	ইউরিয়া নাইট্রেট	AI পাউডার
১ গ্রাম	৪ গ্রাম	১ গ্রাম

নাইট্রো-গি-সারিন $C_3H_5(ONO_2)_3$ -এর কতিপয় বিস্ফোরক মিশ্রণ

বোমা তৈরীর ক্ষেত্রে নাইট্রো-গ্লিসারিন গ্রাম হিসেবে পরিমাপ করা হয়েছে মিলি হিসেবে নয়। এটি সাধারণভাবে প্রযোজ্য।

মিশ্রণ - ১ঁ: ডিনামাইট (সোডিয়াম নাইট্রেট, কাঁচের গুড়া এবং সোডিয়াম কার্বনেট-এর সাথে)

বৈশিষ্ট্য/ ধর্মাবলীঃ

১. ইহা বিভিন্ন রংয়ের একটি নরম পদার্থ। নাইট্রো-গ্লিসারিনের মধ্যেকার শোষক পদার্থের উপর এর রং নির্ভর করে।
২. দীর্ঘ সংরক্ষণে ইহার কর্মক্ষমতা লোপ পায়।
৩. বড় রকমের আঘাতে ইহা বিস্ফোরিত হতে পারে। ইহার বিস্ফোরণ গতি প্রতি সেকেন্ডে ৪-৭ মাইল।
৪. ইহাতে অক্সিডাইজার বা জারক হিসেবে সোডিয়াম নাইট্রেট ($NaNO_3$), এসিড নাশক হিসেবে সোডিয়াম কার্বনেট (Na_2CO_3), কাঁচের গুড়া, ব্যবহৃত হয়। (সালফার (S) বা লবন ($NaCl$) যোগ করলে এর কার্যকারীতা বৃদ্ধি পায়)।
৫. ইহার আপেক্ষিক ঘনত্ব ১.২ থেকে ১.৬।

উপাদানঃ

নাম	পরিমাণ
নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	১৫%
সোডিয়াম নাইট্রেট ($NaNO_3$)	৬২.৯%
কাঁচের গুড়া	২১.২%
সোডিয়াম কার্বনেট (Na_2CO_3)	০.৯%

প্রস্তুত প্রণালীঃ

১. উপাদান সূমহ পরিমাণ মত সংগ্রহ করে উত্তমরূপে চালতে হবে।
২. তারপর কাঁচের গুড়া এবং সোডিয়াম নাইট্রেট মেশাতে হবে এবং পরে সোডিয়াম কার্বনেট যোগ করতে হবে।
৩. অতঃপর ইহাতে নাইট্রো-গ্লিসারিন ফোটায় ফোটায় যোগ করতে হবে।
৪. ভালো ভাবে মেশাতে হবে এবং একটি ভালো পাত্রে সংরক্ষণ করতে হবে।
৫. ইহা ০.৭ TNT।

সংরক্ষণঃ

১৫-৪০°C তাপমাত্রায় ডিনামাইট থেকে নাইট্রো-গ্লিসারিন পৃথক হয়ে যায়। ফলে ইহা ঝুকিপূর্ণ হতে পরে। আবার অতিনিম্ন তাপমাত্রায়ও (যেমন, ০° সে.) ইহা খুবই বিপদজনক।

মিশ্রণ - ২ঁ: নাইট্রো-সেলুলোজ-এর সাথে

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ
৯৩% গ্রাম	৭% গ্রাম

শুধুমাত্র ৩ দিনের জন্য ভালো (১২-০৩-৯৬)। এর শক্তি ৪ টি.এন.টি।

নাইট্রো-সেলুলোজের ছোট টুকরাতে সতর্কতার সাথে নাইট্রো-গ্লিসারিন শোষণ করাতে হবে। এটা করতে একটি কন্টেইনারে নাইট্রো-সেলুলোজের টুকরা রেখে তার উপর নাইট্রো-গ্লিসারিন ঢালতে হবে। এটি শোষিত হয়ে যাবে।

মিশ্রণ - ৩ঁ: নাইট্রো-কাঁচের গুড়ার সাথে

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-কাঁচের গুড়া
৮০% গ্রাম	৬০% গ্রাম

পদ্ধতি নাইট্রো-গ্লিসারিনের মতই।

মিশ্রণ - ৪ঁ: কাঁচের গুড়ার সাথে

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	কাঁচের গুড়া
৮০% গ্রাম	২০% গ্রাম

পদ্ধতিঃ

১. কাঠের গুড়া একটি কটেইনারে রাখতে হবে।
২. নাইট্রো-গ্লিসারিন এর উপর ফেলতে হবে। কাঠের গুড়া নাইট্রো-গ্লিসারিন শুষে নিবে। এটি ২.৫ টি.এন.টি. একে সংরক্ষণ করবেন না।

মিশন - ৫: নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)
৭৫% গ্রাম	৫% গ্রাম	১৫% গ্রাম

এর শক্তি ৩.৫ টি.এন.টি। উপাদান ১০০% না হলেও সমস্যা নেই।

মিশন - ৬: সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং অ্যামোনিয়াম অক্সালেট-এর সাথে

নাইট্রো-গ্লিসারিন	সোডিয়াম নাইট্রেট ($NaNO_3$)	কাঠের গুড়া	অ্যামোনিয়াম অক্সালেট ($C_2H_8N_2O_4$)
৩২%	২৮%	১০%	২৯%
নাইট্রো-গ্লিসারিন	সোডিয়াম নাইট্রেট ($NaNO_3$)	কাঠের গুড়া	অ্যামোনিয়াম অক্সালেট ($C_2H_8N_2O_4$)
৩৫%	২৩%	২৭%	১%

মিশন - ৭: পটাশিয়াম নাইট্রেট এবং কাঠের গুড়ার সাথে (পরীক্ষিত)

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	পটাশিয়াম নাইট্রেট (KNO_3)	কাঠের গুড়া
৩৫%	২৩%	২৭%

মিশন - ৮: পটাশিয়াম নাইট্রেট, সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং অ্যামোনিয়াম অক্সালেট-এর সাথে

নাইট্রো-গ্লিসারিন ($C_3H_5(ONO_2)_3$)	পটাশিয়াম নাইট্রেট (KNO_3)	সোডিয়াম নাইট্রেট ($NaNO_3$)	কাঠের গুড়া	অ্যামোনিয়াম অক্সালেট ($C_2H_8N_2O_4$)
২৪%	৯%	৫৬%	৯%	২%

মিশন - ৯: পটাশিয়াম নাইট্রেট, নাইট্রো-সেলুলোজ, কাঠের গুড়া এবং অ্যামোনিয়াম অক্সালেট-এর সাথে

নাইট্রো-গ্লিসারিন ($C_3H_5(ONO_2)_3$)	পটাশিয়াম নাইট্রেট (KNO_3)	নাইট্রো-সেলুলোজ	কাঠের গুড়া	অ্যামোনিয়াম অক্সালেট ($C_2H_8N_2O_4$)
৩৩%	২৭%	১%	১০%	২৯%

মিশন - ১০: স্টার্চ এবং নাইট্রো-সেলুলোজ-এর সাথে

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	স্টার্চ	নাইট্রো-সেলুলোজ
৮৭%	৫০%	৩%

মিশন - ১১: সোডিয়াম নাইট্রেট, কাঠের গুড়া এবং পটাশিয়াম ক্লোরেট-এর সাথে (পরীক্ষিত)

নাইট্রো-গ্লিসারিন	সোডিয়াম নাইট্রেট ($NaNO_3$)	কাঠের গুড়া	পটাশিয়াম ক্লোরেট ($KClO_3$)
৩৫%	২৩%	২৭%	১%

মিশন - ১২: সোডিয়াম নাইট্রেট, কাঠের গুড়া, পটাশিয়াম ক্লোরেট এবং চক-এর সাথে (পরীক্ষিত)

নাইট্রো-গ্লিসারিন	সোডিয়াম নাইট্রেট ($NaNO_3$)	কাঠের গুড়া	পটাশিয়াম ক্লোরেট ($KClO_3$)	চক
১৮%	৭০%	৫.৫%	৮.৫%	২%

মিশন - ১৩ঃ বেরিয়াম নাইট্রেট, কাঁচের গুড়া এবং সোডিয়াম কার্বনেট-এর সাথে

নাইট্রো-গ্লিসারিন	বেরিয়াম নাইট্রেট (BaNO_3)	কাঁচের গুড়া	সোডিয়াম কার্বনেট (Na_2CO_3)
২৬%	৮০%	৩২%	২%

ମିଶ୍ରନ - ୧୪୫ ପଟ୍ଟାଶିଯାମ ନାଇଟ୍ରୋଟ, ବେରିଯାମ ନାଇଟ୍ରୋଟ, କାଂଠେର ଗୁଡ଼ା, ଅୟମୋନିଯାମ ଅସ୍ତାଲେଟ ଏବଂ କ୍ୟାଲିସିଯାମ କାର୍ବନେଟ-ୟାର ସାଥେ

নাইট্রো-গ্লিসারিন (C ₃ H ₅ (ONO ₂) ₃)	পটাশিয়াম নাইট্রেট (KNO ₃)	বেরিয়াম নাইট্রেট (BaNO ₃)	কাঁচের গুড়া	অ্যামোনিয়াম অক্সালেট (C ₂ H ₈ N ₂ O ₄)	ক্যালসিয়াম কার্বনেট (CaCO ₃)
২৩%	২৭.৫%	৮%	৩৭%	৮%	৫%

মিশন - ১৫: নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে (পরীক্ষিত)

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ	অ্যামেনিয়াম নাইট্রেট (NH_4NO_3)
১২% গ্রাম	০.৫% গ্রাম	৮৭.৫% গ্রাম

নাইট্রো-গিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)
২৪% গ্রাম	১% গ্রাম	৭৫% গ্রাম

মিশন - ১৬ঁ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট, কাঠের গুড়, অ্যামোনিয়াম অক্সালেট এবং সোডিয়াম-ক্রোরেট-এর সাথে (পরীক্ষিত)

নাইট্রো-চিসারিন	নাইট্রো-সেলুগোজ	অ্যামোনিয়াম নাইট্রেট	কঁচের গুড়	অ্যামোনিয়াম অক্সালেট	সোডিয়াম-ক্লোরেট
$\text{C}_3\text{H}_5(\text{ONO}_2)_3$		(NH_4NO_3)		$(\text{C}_2\text{H}_8\text{N}_2\text{O}_4)$	(NaClO_3)
৯.৫% গ্রাম	০.৫% গ্রাম	৫৯% গ্রাম	৬%	১০%	১৫%

মিশন - ১৭৮ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট এবং কার্বন-এর সাথে

নাইট্রো-গ্লিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)	কার্বন (C)
৭১% গ্রাম	৪% গ্রাম	২৩% গ্রাম	২%

মিশন - ১৮ঁ নাইট্রো-সেলুলোজ, পটাশিয়াম নাইট্রেট এবং কাঠের গুড়ার সাথে

নাইট্রো-ফিসারিন $\text{C}_3\text{H}_5(\text{ONO}_2)_3$	নাইট্রো-সেলুলোজ	পটাশিয়াম নাইট্রেট (KNO_3)	কাঠের গুড়
৭৫% গ্রাম	৫% গ্রাম	১৫% গ্রাম	৫%

মিশন - ১৯: নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে

নাইট্রো-গ্লিসারিন $\text{C}_3\text{H}_5(\text{ONO}_2)_3$	নাইট্রো-সেলুলোজ	অ্যামিনিয়াম নাইট্রেট (NH_4NO_3)
২৯% ধার্ম	১% ধার্ম	৭০% ধার্ম

মিশন - ২০৪ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট এবং পটাশিয়াম নাইট্রেট-এর সাথে

নাইট্রো-ছিসারিন	নাইট্রো-সেলুলোজ	অ্যামোনিয়াম নাইট্রেট	পটাশিয়াম নাইট্রেট
$\text{C}_3\text{H}_5(\text{ONO}_2)_3$		(NH_4NO_3)	(KNO_3)
২৯% গ্রাম	১% গ্রাম	৬৫% গ্রাম	৫% গ্রাম

মিশন - ২১: নাইট্রো-সেলুলোজ এবং অ্যামোনিয়াম নাইট্রেট-এর সাথে

নাইট্রো-গ্লিসারিন $\text{C}_3\text{H}_5(\text{ONO}_2)_3$	নাইট্রো-সেলুলোজ	অ্যামেনিয়াম নাইট্রেট (NH_4NO_3)
৭৩.৮% গ্রাম	১৩.৩% গ্রাম	১৩.৩% গ্রাম

নাইট্রো-ফিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)
-----------------------------------	-----------------	--------------------------------------

৭৯% গ্রাম	৫% গ্রাম	১৫% গ্রাম
-----------	----------	-----------

মিশ্রন - ২২৪ নাইট্রো-সেলুলোজ, অ্যামোনিয়াম নাইট্রেট এবং কাঠের গুড়ার সাথে

নাইট্রো-ফিসারিন $C_3H_5(ONO_2)_3$	নাইট্রো-সেলুলোজ	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)	কাঠের গুড়া
-----------------------------------	-----------------	--------------------------------------	-------------

৭৫% গ্রাম	৫% গ্রাম	১৫% গ্রাম	৫% গ্রাম
-----------	----------	-----------	----------

নাইট্রো-মিথেনের (CH_3NO_2) মিশ্রন

সকল মিশ্রনই টি.এন.টি-র চেয়ে শক্তিশালী।

মিশ্রন - ১৪ কাঠের গুড়ার সাথে (পরীক্ষিত)

নাইট্রো-মিথেন (CH_3NO_2)	কাঠের গুড়া
------------------------------	-------------

৮০%	২০%
-----	-----

একটি ড্রপারের সাহায্যে কাঠের গুড়ার মধ্যে নাইট্রো-মিথেন (CH_3NO_2) ঢালতে হবে। পরীক্ষার সময় ১০-২০ গ্রাম মিশ্রন তৈরী করা হয়েছিল। বিস্ফোরণের শক্তি ১০০ গ্রাম টি.এন.টি বা অন্য যেকোন প্রধান চার্জের সমান ছিল।

মিশ্রন - ২০ ইথাইল ডিনামাইট (ডিনামাইটের সাথে)

নাইট্রো-মিথেন (CH_3NO_2)	ইথাইল ডিনামাইট
------------------------------	----------------

৯৫%	৫%
-----	----

নোটঃ আইস বাথে রাখা একটি বিকারে নাইট্রো-মিথেন নিয়ে তার মধ্যে ডিনামাইট যোগ করতে হবে। এটি বর্ণহীন তরল উৎপন্ন করবে।

মিশ্রন - ৩৪ অ্যানিলিন-এর সাথে

নাইট্রো-মিথেন (CH_3NO_2)	অ্যানিলিন ($C_6H_5NH_2$)
------------------------------	----------------------------

৯৪%	৬%
-----	----

এটি নাইট্রো-মিথেন (CH_3NO_2)-এর সবচেয়ে শক্তিশালী মিশ্রন।

মিশ্রন - ৪৪ অ্যামোনিয়াম নাইট্রেট-এর সাথে (পরীক্ষিত)

নাইট্রো-মিথেন (CH_3NO_2)	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)
------------------------------	--------------------------------------

৬৪ গ্রাম	১৬০ গ্রাম
----------	-----------

এই মিশ্রনটি বিস্ফোরনের ক্ষেত্রে সবচেয়ে বেশি স্পর্শকাতর। এটি মিশ্রন-১ এর চেয়ে বেশি শক্তিশালী।

প্রস্তুতিঃ

- একটি বাটি অ্যামোনিয়াম নাইট্রেট (NH_4NO_3) দিয়ে ভর্তি করতে হবে।
- আন্তে আন্তে নাইট্রো-মিথেন এতে যোগ করতে হবে।
- শুকানোর জন্য রেখে দিতে হবে।

মিশ্রন - ৫৪ অ্যামোনিয়াম হাইড্রোক্লাইড-এর সাথে

নাইট্রো-মিথেন (CH_3NO_2)	অ্যামোনিয়াম হাইড্রোক্লাইড (NH_4OH)
------------------------------	---

৯৪%	৬%
-----	----

এই মিশ্রনটি দেখতে পানির মতো।

মিশ্রন - ৬৪ নাইট্রো-সেলুলোজ-এর সাথে (পরীক্ষিত)

নাইট্রো-মিথেন (CH_3NO_2)	নাইট্রো-সেলুলোজ
------------------------------	-----------------

৫ গ্রাম

৮ গ্রাম

নোটঃ নাইট্রো-মিথেন নাইট্রো-সেলুলোজের সাথে মেশাতে হবে।

নাইট্রো-সেলুলোজ-এর মিশ্রণ

নাইট্রো-গ্লিসারিনের সাথে এই মিশ্রনকে পরীক্ষা করতে।

আমরা যেকোন মিশ্রণ যেমন ব্ল্যাক পাউডার, ইয়েলো পাউডার বা হোয়াইট পাউডার শুকানোর পূর্বে নাইট্রো-সেলুলোজের সাথে (২ পাউডার : ১ নাইট্রো-সেলুলোজ) ভালোভাবে মেশাতে পারি।

মিশ্রণ - ১ঃ পটাশিয়াম নাইট্রেট এবং সালফারের সাথে

নাইট্রো-সেলুলোজ পেষ্ট	পটাশিয়াম নাইট্রেট (KNO_3)	সালফার (S)
২০ গ্রাম	৭.৫ গ্রাম	২.৫ গ্রাম

ভালোভাবে মেশাতে হবে এবং শুকাতে হবে।

মিশ্রণ - ২ঃ নাইট্রো-মিথেন-এর সাথে

নাইট্রো-সেলুলোজ পেষ্ট	নাইট্রো-মিথেন (CH_3NO_2)
৮ গ্রাম	৫ গ্রাম

সম্ভবত এতে শুকনা নাইট্রো-সেলুলোজ ব্যবহৃত হওয়া উচিত। নাইট্রো-মিথেন (CH_3NO_2) নাড়ানো খুবই বিপদজনক।

নাইট্রো-বেনজিন ($C_6H_5NO_2$)-এর মিশ্রণ

মিশ্রণ - ১ঃ নাইট্রো বেনজিন এবং পটাসিয়াম ক্লোরেট-এর মিশ্রণ

নাইট্রো-বেনজিন ($C_6H_5NO_2$)	পটাসিয়াম ক্লোরেট ($KClO_3$)
১০ মিলি	৪০ গ্রাম

মিশ্রণ - ২ঃ নাইট্রো বেনজিন, পটাসিয়াম ক্লোরেট এবং চিনি-র মিশ্রণ

নাইট্রো-বেনজিন ($C_6H_5NO_2$)	পটাসিয়াম ক্লোরেট ($KClO_3$)	সুগার (চিনি)
১০ মিলি	৩০ গ্রাম	১০ গ্রাম

মিশ্রণ - ৩ঃ নাইট্রো-বেনজিন, পটাসিয়াম ক্লোরেট, চিনি এবং পটাসিয়াম পার ম্যাঙ্গানেট-এর মিশ্রণ

নাইট্রো-বেনজিন ($C_6H_5NO_2$)	পটাসিয়াম ক্লোরেট ($KClO_3$)	সুগার (চিনি)	পটাসিয়াম পার ম্যাঙ্গানেট
১৫ মিলি	৩০ মিলি	১০ মিলি	১০ মিলি

প্রস্তুত প্রণালীঃ

উক্ত চার্জ গুলো তৈরী করার জন্য পটাসিয়াম ক্লোরেট, চিনি, পটাসিয়াম পার ম্যাঙ্গানেট এই তিনটি পদার্থকে আলাদা আলাদা ভাবে গুড়ে করে ছেকে নিয়ে মিক্সের নিয়মানুস্যাবলী কঠিন পদার্থগুলো আগে মিক্স করে নিতে হবে, তারপর নাইট্রো-বেনজিনকে খুব ধীরে ধীরে কিছু কিছু করে চেলে মিক্সিং রড দিয়ে মিক্স করতে হবে। কোন মতেই নাইট্রো-বেনজিনকে একবারে পটাসিয়াম ক্লোরেটের মধ্যে চেলে দিবেন না। কারণ বিক্রিয়া বেশী করে আঙ্গন ধরে যেতে পারে। যদি কখনোও এরপ ঘটে যায় তাহলে হাতের কাছে রাখা পানি দিয়ে আঙ্গন নিভানোর চেষ্টা করতে হবে।

বিদ্রূঃ- উপরোক্ত তিনটি চার্জ প্লাস্টিক গুনসম্পর্ক, কেননা এতে অর্দ্ধতা লাগে না। এজন্য এই চার্জগুলিকে প্লাস্টিক চার্জ বলা হয়।

পটাসিয়াম পার ম্যাঙ্গানেট ($KMnO_4$)-এর মিশ্রণ

মিশ্রণ - ১ঃ পটাসিয়াম পার ম্যাঙ্গানেট এবং অ্যালুমিনিয়াম পাউডার-এর মিশ্রণ

পটাসিয়াম পার ম্যাঙ্গানেট ($KMnO_4$)	অ্যালুমিনিয়াম পাউডার (Al)
৬০ গ্রাম	৪০ গ্রাম

মিশ্রন - ২৪ পটাসিয়াম পার ম্যাঙ্কানেট, অ্যালুমিনিয়াম পাউডার এবং চিনি-র মিশ্রন

পটাসিয়াম পার ম্যাঙ্কানেট ($KMnO_4$)	অ্যালুমিনিয়াম পাউডার (Al)	সুগার (চিনি)
২০ গ্রাম	১০ গ্রাম	১০ গ্রাম

ইহা খুব বেশী গ্যাসের সৃষ্টি করে, ইহা খুব শক্তিশালী ধামাকা করে। এই চার্জের জন্য ১৫% বুস্টার দিতে হয়।

অ্যালুমিনিয়াম পাউডারের মিশ্রন (উচ্চ তাপমাত্রার বিস্ফোরক)

কোন মিশ্রনে অ্যালুমিনিয়াম পাউডার যোগ করে মিশ্রনটিকে উচ্চ তাপমাত্রার বিস্ফোরকে পরিণত করা যায়। কারণ অ্যালুমিনিয়াম বিস্ফোরণের ফলে উৎপন্ন উপাদানের সাথে নিম্নোক্ত বিক্রিয়া করেঃ

অ্যালুমিনিয়াম বিক্রিয়ায় খুবই কার্যকর কারণ এর পরমানুর বাইরের খোলসে তিনটি মুক্ত ইলেক্ট্রন থাকায় তা যেকোন ধাতুর সঙ্গে বিক্রিয়া করতে পারে। এজন্য অ্যালুমিনিয়াম এবং অন্য ধাতুর মধ্যে বিক্রিয়া রোধের জন্য কোন বোমাতে রাখার পূর্বে অবশ্যই এর সঙ্গে কিছু প্যারাফিন মিশিয়ে নিতে হবে। অ্যালুমিনিয়াম মিশ্রনের মধ্যে কখনোই কোন ক্লোরাইড রাখা উচিত নয়। কারণ সাধারণ তাপমাত্রাও এদের মধ্যে বিক্রিয়া ঘটতে পারে।

মিশ্রন - ১৪: অ্যামোনিয়াল (অ্যামোনিয়াম নাইট্রেট-এর সাথে)

NH ₄ NO ₃	2Al
= 18 + (8*1) + 18 + 18 (১৬*৩)	= ২*২৭
= ৭৮ গ্রাম	= ৫৪ গ্রাম

নেটও সবধরনের মিশ্রন তৈরীর পূর্বে সবসময় ব্যবহৃত উপাদানের আনবিক ওজন হিসাব করে নিতে হবে। এই বোমা বিশেষ করে রাতে ব্যবহার করা হয়। কারণ এটি তীব্র আলো এবং শব্দ উৎপন্ন করে।

মিশ্রন - ২৪ অ্যামোনাইট (অ্যামোনিয়াম নাইট্রেট এবং টি.এন.টি-এর সাথে)

অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)	টি.এন.টি ($C_6H_2CH_3(NO_2)_3$)	অ্যালুমিনিয়াম (Al) পাউডার
৬৫%	২০%	১৫%

এই বোমা ট্যাংক এবং অন্যান্য ধাতব বস্তু ভেদ করতে ব্যবহৃত হয়।

মিশ্রন - ৩৪: থারমিট (অ্যামোনিয়াম নাইট্রেট/বেরিয়াম অক্সাইড, ম্যাগনেসিয়াম পাউডার, ফেরাস অক্সাইড এবং মোটরের তেল-এর সাথে)

অ্যামোনিয়াম নাইট্রেট (NH_4NO_3) বা	ম্যাগনেসিয়াম (Mg) পাউডার	ফেরাস অক্সাইড (FeO)	অ্যালুমিনিয়াম (Al) পাউডার	পরিষ্কার মোটরের তেল
২০ গ্রাম	৩০ গ্রাম	১৬০ গ্রাম	৫৪ গ্রাম	২০ গ্রাম

মিশ্রনটিকে একটি শক্ত লোহার কন্টেইনারে রাখতে হবে। ডেটোনেটরের চারিদিকে অবশ্যই ইয়েলো বা হোয়াইট পাউডার দিতে হবে। এই বোমা 2300° সে. তাপ উৎপন্ন করে। আমরা জানি লোহার গলনাংক 1750° সে।

প্রজ্ঞালন মিশ্রন

মিশ্রন - ১৪: জিংক পাউডার এবং অ্যামোনিয়াম নাইট্রেট-এর মিশ্রন

জিংক (Zn) পাউডার	অ্যামোনিয়াম নাইট্রেট (NH_4NO_3)
৫	১৫

এই মিশ্রনে এক ফোটা পানি যোগ করলে তাতে আগুন ধরবে। এই মিশ্রনটি পটাশিয়াম ক্লোরেট + চিনি-র মিশ্রনের মতো জ্বলবে।

নেটঃ এই মিশ্রনের বাতাসে অবস্থিতি থেকে সতর্ক থাকুন।

মিশ্রন - ২৪ ম্যাগনেসিয়াম পাউডার এবং ছিসারিন-এর মিশ্রন

মেঝেতে কিছু ম্যাগনেসিয়াম পাউডার ছড়িয়ে দিয়ে তার উপর কিছু ছিসারিন ফেলুন। অল্প সময়ের জন্য মিশ্রনটিতে আগুন ধরবে।

মিশ্রন - ৩৪ পটাসিয়াম-পার-ম্যাঙ্গানেট এবং সালফিউরিক এসিড (কয়েক ফোটা)-এর মিশ্রন

মিশ্রনটিতে আগুন ধরবে।

মিশ্রন - ৪৪ প্রজ্ঞলন চার্জ (ক্যালসিয়াম হাইপোক্লোরাইড এবং ব্রেক ফ্লাইড-এর মিশ্রন)

ব্রেক ফ্লাইড (কয়েক ফোটা)	ক্যালসিয়াম হাইপোক্লোরাইড (CaOCl)
৩০%	৭০%

ক্যালসিয়াম হাইপোক্লোরাইড (CaOCl) পানি পরিষ্কার করতে সুইমিং পুলে ব্যবহৃত হয় এবং ব্লিচিং/রঙ্গক উপাদান হিসেবে কাজ করে। যখন উপরোক্ত দুইটি উপাদান মেশানো হয় তখন আগুন জ্বলে।

কতিপয় বিস্ফোরক পাউডার

বিস্ফোরক পাউডার হচ্ছে কতিপয় বিস্ফোরক উপাদানের মিশ্রন প্রস্তুতকৃত হালকা বারংবসমূহ। যেমনঃ-

১. ব্ল্যাক পাউডার
২. হোয়াইট পাউডার
৩. ইয়েলো পাউডার

ব- যাক পাউডার

ব্ল্যাক পাউডার আবার দুই প্রকার-

১. ঠাণ্ডা ভাবে তৈরীকৃত ব্ল্যাক পাউডারঃ এটি হালকা এবং স্পর্শকাতর।
২. গরম ভাবে তৈরীকৃত ব্ল্যাক পাউডারঃ এটি স্পর্শকাতর নয়।

ঠাণ্ডা ভাবে তৈরীকৃত বারংবসমূহ নিম্নরূপঃ

মিশ্রন - ১৪ পটাসিয়াম ক্লোরেট, সালফার এবং অ্যালুমিনিয়াম পাউডার-এর মিশ্রন

পটাসিয়াম ক্লোরেট (KClO ₃)	সালফার (S)	অ্যালুমিনিয়াম পাউডার (Al)
৭৫ গ্রাম	১২.৫ গ্রাম	১২.৫ গ্রাম

মিশ্রন - ২৪ পটাশিয়াম নাইট্রেট, কার্বন এবং সালফার-এর মিশ্রন

পটাশিয়াম নাইট্রেট (KNO ₃)	কার্বন (C)	সালফার (S)
৭৫ গ্রাম	১৫ গ্রাম	১০ গ্রাম

পটাশিয়াম নাইট্রেট (KNO ₃)	কার্বন (C)	সালফার (S)
৬২ গ্রাম	১৮ গ্রাম	২০ গ্রাম

মিশ্রন - ৩৪ পটাসিয়াম ক্লোরেট, সালফার এবং কার্বন-এর মিশ্রন

পটাসিয়াম ক্লোরেট (KClO ₃)	সালফার (S)	কার্বন (আকন্দ)
২৫ গ্রাম	৫ গ্রাম	৫ গ্রাম

বিশ্বেঃ এই মিশ্রন থেকে যে বারংব তৈরী হবে তা আমরা তালকার ভিতরে বারংবে দাফিয়া হিসেবে ব্যবহার করে থাকি।

উপরোক্ত মিশ্রণগুলো তৈরী করার জন্য প্রত্যেকটি বস্তুকে আলাদা আলাদা ভাবে গুড়ো করে নিয়ে ভালভাবে ছেকে নিয়ে নির্দিষ্ট পরিমাণে মেপে নিয়ে নিয়ম মাফিক মিশ্রিত করলেই ব্ল্যাক পাউডার তৈরী হয়ে যাবে।

গরম ভাবে ব্ল্যাক পাউডার তৈরী করার পদ্ধতিঃ

মিশ্রন - ৪৪ পটাশিয়াম নাইট্রেট, কার্বন, সালফার-এর মিশ্রন (তাপ দিয়ে)

উপাদানসমূহঃ

পটাসিয়াম নাইট্রেট (KNO_3)	কার্বন (C)	সালফার (S)	ডিস্ট্রিল ওয়াটার	ইথাইল এলকোহল ($\text{C}_2\text{H}_5\text{OH}$)
২২.৫ গ্রাম	৪.৫ গ্রাম	৩ গ্রাম	১৫ মিলি	৬৪ মিলি

প্রস্তুত প্রণালীঃ

- পটাসিয়াম নাইট্রেট, সালফার এবং কার্বন তিনটি পদার্থ নিয়ম মাফিক গুড়ো করে ছেকে, মেপে এবং মিশ্রিত করে ব্ল্যাক পাউডার তৈরী করতে হবে।
- এবার একটি পরিষ্কার বিকারে উক্ত ব্ল্যাক পাউডারগুলোকে ঢেলে নিয়ে তার মধ্যে ১৫ মিলি ডিস্ট্রিল ওয়াটার যোগ করে মিস্কিন রড দিয়ে ভালোভাবে নাড়তে নাড়তে হবে।
- বুদ বুদ উঠে গেলেই চুলা থেকে নামিয়ে নিয়ে ৬৪ মিলি ইথাইল এলকোহল উক্ত বিকারের মধ্যে ঢেলে দিতে হবে এবং এ অবস্থায় কিছুক্ষন রেখে দিতে হবে।
- এবার ফিল্টার পেপারের সাহায্যে দানাগুলোকে ফিল্টার করে রোদে শুকাতে হবে। এটাই ব্ল্যাক পাউডার।

হোয়াইট পাউডার

মিশ্রন - ১ঁ: পটাসিয়াম ক্লোরেট এবং চিনি-র মিশ্রন

পটাসিয়াম ক্লোরেট (KClO_3)	সুগার (চিনি)
৩০ গ্রাম	১০ গ্রাম

পটাসিয়াম ক্লোরেট (KClO_3)	সুগার (চিনি)
৫০ গ্রাম	২৫ গ্রাম
পটাসিয়াম ক্লোরেট (KClO_3)	সুগার (চিনি)
৫০ গ্রাম	৫০ গ্রাম

মিশ্রন - ২ঁ: পটাসিয়াম ক্লোরেট এবং সালফার-এর মিশ্রন

পটাসিয়াম ক্লোরেট (KClO_3)	সালফার (S)	কাঠের গুড়া
৭৫ গ্রাম	১২.৫ গ্রাম	১২.৫ গ্রাম

বিশেষ নোটঃ সুগারকে খুব ভাল করে গুড়া করে পাউডার বানিয়ে ফেলতে হবে, তারপর ছেকে নিতে হবে আর পটাসিয়াম ক্লোরেট-কে গুড়া করার সময় ঘসাঘসি করা যাবে না। তাহলে আগুন ধরে যেতে পারে। খুব ধীরে ধীরে উপর থেকে চাপ দিয়ে গুড়া করতে হবে এবং সোডাস্ট/কাঠের গুড়া খুব ভাল করে রোদে শুকিয়ে নিয়ে ভাল ভাবে ছেকে নিতে হবে। ছাকার পর সব চাইতে মিহি যে গুড়াগুলো পাওয়া যাবে সেগুলো নিতে হবে। বাকিগুলো ফেলে দিতে হবে।

ইয়েলো পাউডার

ইয়েলো পাউডার ব্ল্যাক ও হোয়াইট পাউডারের চেয়ে একটু স্পর্শকাতর। ইহা বুস্টার ও ডেটোনেটের ব্যবহার করা হয়।

মিশ্রন - ১ঁ: পটাসিয়াম ক্লোরেট, সালফার এবং অ্যালুমিনিয়াম পাউডার-এর মিশ্রন

পটাসিয়াম ক্লোরেট (KClO_3)	সালফার (S)	অ্যালুমিনিয়াম পাউডার (Al)
৫০ গ্রাম	২৫ গ্রাম	২৫ গ্রাম

পটাসিয়াম ক্লোরেট (KClO_3)	সালফার (S)	অ্যালুমিনিয়াম পাউডার (Al)
৪০ গ্রাম	২০ গ্রাম	২৫ গ্রাম

মিশ্রন - ২৪ পটাসিয়াম ক্লোরেট, সালফার এবং কফি-র মিশ্রন

পটাসিয়াম ক্লোরেট ($KClO_3$)	সালফার (S)	কফি (COFFE)
৭৫ গ্রাম	১২.৫ গ্রাম	১২.৫ গ্রাম

বিশেষ কিছু মিশ্রণ:

মিশ্রন - ১৪ সোডিয়াম নাইট্রেট এবং অ্যালুমিনিয়াম পাউডার-এর মিশ্রণ

সোডিয়াম নাইট্রেট ($NaNO_3$)	অ্যালুমিনিয়াম পাউডার
৮০%	২০%

মিশ্রন - ২৪ লেড নাইট্রেট এবং টি.এন.টি-এর মিশ্রণ

লেড নাইট্রেট (Pb_2NO_3)	টি.এন.টি
৭২%	২৮%

এটি খুবই শক্তিশালী মিশ্রন এবং এটি ডেটোনেটের সাহায্যে বিস্ফোরিত হয়।

মিশ্রন - ৩৪ বেরিয়াম নাইট্রেট এবং টি.এন.টি-এর মিশ্রণ

বেরিয়াম নাইট্রেট ($BaNO_3$)	টি.এন.টি
৬০%	৪০%

এটি খুবই শক্তিশালী মিশ্রন এবং এটি ডেটোনেটের সাহায্যে বিস্ফোরিত হয়।

মিশ্রন - ৪৪ ব্ল্যাক পাউডার (পটাসিয়াম নাইট্রেট, সালফার এবং কার্বনের মিশ্রন)

পটাসিয়াম নাইট্রেট (KNO_3)	সালফার (S)	কার্বন (C)
৭৫%	১০%	১৫%

এটি বুলেটে এবং বড় বোমায় ব্যবহৃত ব্ল্যাক পাউডারের মতো।

মিশ্রন - ৫৪ ব্ল্যাক পাউডার এবং ম্যাগনেসিয়ামের মিশ্রণ

ব্ল্যাক পাউডার	Mg পাউডার
১ম মিশ্রন	৫০%
২য় মিশ্রন	৮০%

উপরোক্ত মিশ্রন দুইটি ডেটোনেটের এবং এর চারপাশে ইয়েলো বা হোয়াইট পাউডারের সাথে বিস্ফোরিত হয়।

মিশ্রন - ৬৪ পটাসিয়াম পার ম্যাঙ্গানেট এবং অ্যালুমিনিয়াম পাউডারের মিশ্রণ

পটাসিয়াম পার ম্যাঙ্গানেট ($KMnO_4$)	Al পাউডার
৬০%	৪০%

এটি ডেটোনেটের এবং এর চারপাশে ইয়েলো বা হোয়াইট পাউডারের সাথে বিস্ফোরিত হয়।

মিশ্রন - ৭৪ পটাসিয়াম পার ম্যাঙ্গানেট, চিনি এবং অ্যালুমিনিয়ামের মিশ্রণ

পটাসিয়াম পার ম্যাঙ্গানেট ($KMnO_4$)	চিনি	Al পাউডার
২ গ্রাম	১ গ্রাম	১ গ্রাম

এটি ডেটোনেটের এবং এর চারপাশে ইয়েলো বা হোয়াইট পাউডারের সাথে বিস্ফোরিত হয়।

মিশ্রন - ৮৪ নাইট্রিক এসিড এবং নাইট্রো-বেনজিন-এর মিশ্রণ

নাইট্রিক এসিড, HNO_3 (৯০% গাঢ়)	নাইট্রো-বেনজিন ($C_6H_5NO_2$)

১

১

ইহা একটি তরল বিস্ফোরক, ইহার বিস্ফোরণের জন্য ডেটনেটর প্রয়োজন হয়। ইহা লাল রংয়ের হয়।

প্রস্তুত প্রণালীঃ

১. ৫০ মিলি নাইট্রো-বেনজিনের মধ্যে ৫০ মিলি নাইট্রিক এসিড যোগ করতে হবে।
২. মিশ্রনের পর কোন প্রকার বিচ্ছিন্ন স্তর ছাড়াই একটি লাল রংয়ের তরল পদার্থ উৎপন্ন হবে। এই তরল পদার্থটি খুবই বিপদজনক। ইহা ডেটনেটরের সাহায্যে বিস্ফোরিত হয়।

বিধ্রূঃ ইহা বিস্ফোরিত হয়ে “আবু হাময়ার” দুইটি হাত উড়ে যায়। সে সময় মাত্র ৪০ মিলি পরিমাণ ব্যবহার করা হয়েছিল। ইহা এত বেশি শক্তিশালী এবং বিপদজনক যে, কেউ পরে আর এটা নিয়ে চেষ্টা করেনি। তবে আমি মনে করি আমার চেষ্টা করা উচিত।

মিশ্রন - ১১ঃ কার্বনেট (কার্বন টেট্রো-ক্লোরাইড এবং অ্যালুমিনিয়াম পাউডার-এর মিশ্রন)

কার্বন টেট্রো-ক্লোরাইড (CCl_4) অ্যালুমিনিয়াম পাউডার (Al)

১

১

প্রস্তুত প্রণালীঃ

১. অ্যালুমিনিয়াম পাউডারের মধ্যে কার্বন টেট্রো-ক্লোরাইড ফেঁটায় ফেঁটায় যোগ করতে হবে।
২. কার্বন টেট্রো-ক্লোরাইড বাষ্পীয় হওয়ার পূর্বেই দ্রুত মিঞ্চিং রডের সাহায্যে ভালভাবে নাড়তে হবে।

নেটঃ কার্বন টেট্রো-ক্লোরাইডের বাষ্পীভূত হওয়া রোধ করার জন্য মিশ্রণের সাথে সাথে ব্যবহার করতে হবে। মিশ্রটিকে শক্তিশালী করার জন্য ভালভাবে ভরতে হবে এবং প্যাক/আবদ্ধ করতে হবে।

মিশ্রন - ১০ঃ অ্যাসেট্রোলাইট - A (অ্যালুমিনিয়াম পাউডার, অ্যামোনিয়াম নাইট্রেট এবং হাইড্রোসিল হাইড্রাস-এর মিশ্রন)

অ্যালুমিনিয়াম পাউডার (Al) অ্যামোনিয়াম নাইট্রেট (NH_4NO_3) হাইড্রোসিল হাইড্রাস ($\text{N}_2\text{H}_5\text{OH}$)

২০ গ্রাম

৬৭ গ্রাম

৩৩ গ্রাম

মিশ্রন - ১১ঃ অ্যাসেট্রোলাইট - G (অ্যামোনিয়াম নাইট্রেট এবং অ্যানহাইড্রাস হাইড্রোসিল-এর মিশ্রন)

অ্যামোনিয়াম নাইট্রেট (NH_4NO_3) অ্যানহাইড্রাস হাইড্রোসিল (N_2H_4)

২

১

এটি ১২-০৩-৯৬ পর্যন্ত সবচেয়ে শক্তিশালী বিস্ফোরক। ১-২ বছরের জন্য ভালো। সরাসরি শিক্ষকের কাছ থেকে পাওয়া।

প্রস্তুত প্রণালীঃ

১. মিশ্রনের পরিমাণ অনুযায়ী ইহার পাঁচগুণ বেশী আয়তনের একটি পাত্র নিতে হবে। কারণ বিক্রিয়ার শুরুতে মিশ্রনের আয়তন বাড়তে থাকে।
২. অ্যামোনিয়াম নাইট্রেট অবশ্যই খুবই ধীরে ধীরে যোগ করতে হবে এবং সম্পূর্ণরূপে দ্রবীভূত না হওয়া পর্যন্ত নাড়তে হবে।

ডেটনেটর (Detonators)

ডেটনেটর

ডেটনেটর দুই প্রকার। যথা-

১. বৈদ্যুতিক ডেটনেটর।
২. অগ্নিশিখা ডেটনেটর।

বৈদ্যুতিক ডেটনেটরঃ

নাইক্রম ওয়্যার, টর্চের বাল্ব, রিমোট টাইমার ইত্যাদি লাগিয়ে বিষ্ফোরণ ঘটানোকে বৈদ্যুতিক বিষ্ফোরণ বলে।

১. ইহা অ্যালুমিনিয়াম বা প্লাস্টিকের সিলিন্ডারে তৈরী হয় যাহার এক প্রান্ত খোলা এবং অপর প্রান্ত আটকানো।
২. ইহাতে কমপক্ষে ১ গ্রাম এবং সর্বোচ্চ ১.৫ গ্রাম সূচনাকারী পদার্থ থাকে। যেমন- ফালমিনেট বা অ্যাজাইড।

চিত্রঃ বৈদ্যুতিক ডেটনেটর

বৈদ্যুতিক ডেটনেটরে ব্যবহৃত সূচনাকারী পদার্থকে নিম্নোক্ত উপায়ে প্রজ্ঞালিত করা যায়।

১. ফিলামেন্ট ব্যবহার করে
২. টর্চ লাইটের বাল্ব ব্যবহার করে

ফিলামেন্টঃ

নাইক্রোম ওয়্যার দিয়ে নিজেরাই ফিলামেন্ট তৈরী করা যায়। এজন্য প্রথমে আমাদের ৪৪ অথবা ৪৬ নাস্বারের নাইক্রোম ওয়্যার সংগ্রহ করতে হবে। ফিলামেন্ট প্রস্তরির ক্ষেত্রে নিম্নোক্ত বিষয়গুলো খেয়াল রাখা দরকার-

১. নাইক্রোম ওয়্যার এর নাস্বার যত বেশী হবে তার তত চিকন হবে।
২. নাইক্রোম ওয়্যার যত মোটা হবে তত বেশী ভোল্টেজ প্রয়োজন হবে। আর চিকন হলে কম ভোল্টেজ প্রয়োজন হবে।
৩. ব্যাটারী ও তার দিয়ে বিষ্ফোরণ ঘটানোর সময় যত লম্বা তার নিবেন তত বেশী ভোল্টেজের প্রয়োজন হবে।
৪. ফিলামেন্টের প্যাচ যত বেশী হবে ভোল্টেজ তত বেশী প্রয়োজন হবে।
৫. ফিলামেন্টের প্যাচ যত বড় হবে ভোল্টেজ তত বেশী লাগবে আর ছোট প্যাচ হলে কম ভোল্টেজ লাগবে।

ফিলামেন্ট তৈরীর পদ্ধতিঃ

১. প্রথমে একটি ছোট এবং চিকন লোহার স্টিক নিতে হবে। সেক্ষেত্রে সোনামুখি সুই ব্যবহার করা যেতে পারে।
২. সোনামুখি সুইয়ের উপর ৪৪ নাস্বার নাইক্রম দিয়ে খুব ঘন করে ৭/৮ প্যাচ দিতে হবে।
৩. এবার সুইয়ের উপর তৈরীকৃত ফিলামেন্টের দুই মাথায় দুটি তার সংযোগ দিতে হবে। খুব ভাল তাবে খেয়াল রাখতে হবে ফিলামেন্টের প্যাচগুলো যেন ফাক হয়ে না যায়। আর দুই প্রান্তে দুটো তার যেন খুলে না যায়। প্রয়োজনে তারের মাথা সুতো দিয়ে মুড়িয়ে নিতে পারেন।
৪. আপনার ফিলামেন্ট তৈরীর কাজ শেষ। এবার খুব সাবধানে ধীরে ধীরে ফিলামেন্টের ভিতর থেকে সোনামুখি সুইটি বের করে নিতে হবে।
৫. এবার এই নাইক্রম ওয়্যারটি ৬ বা ৯ ভোল্ট ব্যাটারীতে সংযোগ দিলে ইনশাআল্যাহ জ্বলে উঠবে।

টর্চ লাইটের বাল্বঃ

যদি কখনোও নাইক্রম ওয়্যার তার না পাওয়া যায় সেক্ষেত্রে টর্চ লাইটের বাল্ব দিয়ে আমরা নাইক্রম ওয়্যারের কাজ চালিয়ে নিতে পারি।

প্রস্তুত প্রণালীঃ

১. প্রথমেই একটি ২.৫ ভোল্ট বা ৪.৮ ভোল্ট এর বাল্ব নিতে হবে।
২. এবার বাল্বের বডিতে একটি তার, আর বাল্বের গোড়ায় সাদা উচু জায়গায় আরেকটি তার দিয়ে সংযোগ দিতে হবে, তাহলে বাল্ব থেকে দুইটি সংযোগ পাওয়া যাবে।
৩. এবার খুব সাবধানে বাল্বের কাচ ভেঙে ফেলতে হবে।

৮. অতপর এই বাল্বটি ডেটনেটরের ভিতরে ঢুকিয়ে দিয়ে অপর দুই প্রান্তের লম্বা তার নিয়ে ব্যাটারীতে সংযোগ দিলেই আমাদের চার্জটি ফাটানো সম্ভব হবে পারে ।

বিশ্বের কাচ সম্পূর্ণ না ভেঙ্গে শুধু মাথার দিকটা সুচ বা ধারালো চোখা মাথাওয়ালা কেন ক্ষু ড্রাইভার দিয়ে ধীরে ধীরে ছিঁড় করতে হবে । এবার এই ছিঁড় দিয়ে হোয়াইট পাউডার ঢুকাতে হবে । খেয়াল রাখবেন ফিলামেন্ট যেন ছিঁড়ে না যায় । অতপর এই বাল্বটির ছিঁড় আঠা যুক্ত কাগজ দিয়ে বন্ধ করে দিন । প্রত্যেকটি বাল্ব দিয়ে কাজ শুরু করার সময়, আগে এবং পরে ফিলামেন্টটি ঠিক আছে কি না তা মিটার দিয়ে চেক করে নিতে হবে ।

অগ্নিশিখা ডেটনেটরঃ

এটি বৈদ্যুতিক ডেটনেটরের অনুরূপ । তবে এখানে সূচনাকারী পদার্থকে প্রজ্ঞালিত করার জন্য বিদ্যুৎ প্রবাহের পরিবর্তে ফিউজ ব্যবহৃত হয় । যেমনঃ- আগরবাতি, কয়েল, সিগারেট, ফাতিল ইত্যাদি ।

চিত্রঃ অগ্নিশিখা ডেটনেটর

মেকানিক্যাল ডেটনেটরঃ

তোন, ফায়ার পিন লাগিয়ে যে বিষ্ফোরণ ঘটানো হয় তাকে মেকানিক্যাল বিষ্ফোরণ বলে । যেমনঃ হ্যান্ড হেনেট, মেকানিক্যাল মাইন ইত্যাদি ।

ডেটনেটরের বারংদকে তিন ভাগে ভাগ করা হয়েছে । যেমন-

১. প্রজ্ঞালিত বারংদ । যথাঃ- হোয়াইট পাউডার, ইয়েলো পাউডার, ব্ল্যাক পাউডার ইত্যাদি ।
২. উৎসাহ দানকারী বারংদ । যথাঃ- লেড অ্যাজাইড, মারকারি ফালমিনেট, হেক্সামিন, সিলভার অ্যাজাইড, অ্যাসিটোন পার অক্সাইড ইত্যাদি ।
৩. তৎপরতা সৃষ্টিকারী বারংদ । যথাঃ- RDX, TNF, TETRA OIL, PETN, TNN ইত্যাদি ।

ডেটনেটরের প্রস্তুত প্রণালীঃ

ডেটনেটরকে সাধারণত তিনটি স্তরে ভাগ করা হয়ে থাকে । ডেটনেটর তৈরী করার জন্য চার্জের অনুপাতে ডেটনেটর প্রস্তুত করতে হয় । ডেটনেটর তৈরী করার জন্য প্রথমে একটি প্লাস্টিক বা কাচের বা অ্যালুমিনিয়ামের পাইপ নিতে হবে । কোন প্রকার লৌহ বা পিতল, তামা, দস্তা, এই ধরনের মেটালের পাইপে ডেটনেটর প্রস্তুত করা উচিত নয় । কেননা ডেটনেটরের নিচের অংশে যে বারংদ ব্যবহার করা হয় তার সঙ্গে কিছু পরিমাণ এসিড থেকে যায় । এসিড যেহেতু লোহা, পিতল বা এই ধরনের মেটালের সাথে বিক্রিয়া করে, তাই এই ধরনের পাইপ ব্যবহার করা উচিত নয় । ডেটনেটর প্রস্তুত করার জন্য একে তিনটি স্তরে ভাগ করা হয় ।

১. নিচের অংশে ৬০% জায়গায় - তৎপরতা সৃষ্টিকারী শক্তি বারংদ
২. মধ্যভাগে ৩০% জায়গায় - উৎসাহ দানকারী বারংদ
৩. উপরে বাকি ১০% জায়গায় - প্রজ্ঞালিত বারংদ

বুস্টার (BOSTER)

যে বারংদ ধীরে ধীরে রিয়েকশন করে বা গ্যাসে রূপান্তরিত হয় তাহাকে বিষ্ফোরিত করার জন্য যেখানে ডেটনেটর লাগানো হয় সেই জায়গার মধ্যে মধ্যম ক্রিয়াশীল বারংদ এর ছোট একটি চার্জ রেখে দেওয়া হয় এবং সেই ছোট চার্জের ভিতরে ডেটনেটর লাগানো হয় । এমন ভাবে লাগানো হয় যে, ডেটনেটরের চারপার্শে থাকে আপনার সেই চার্জ বা বুস্টার । আর বুস্টারের চারপার্শে থাকে মূল চার্জ ।

ফিউজ (Fuzes) বা ফাতিল

ফিউজ বা ফাতিল দুই পদ্ধতিতে বানানো যায়। যথাঃ-

১. অগ্নি-স্ফুলিঙ্গ ফাতিল
২. বিঝোরক ফাতিল

অগ্নি-স্ফুলিঙ্গ ফিউজ/ফাতিল

এই ফাতিলকে আরো দুই ভাগে ভাগ করা যায়। যেমনঃ-

- অল্পগতি সম্পন্ন
- দ্রুতগতি সম্পন্ন

অল্পগতি সম্পন্ন ফিউজ/ফাতিলঃ

১. আলো এবং শিখার সাহায্যে দহন হবে।
২. ইহা অবশ্যই ৪৮ সে.মি./সে. গতি সম্পন্ন হবে।
৩. ইহা পানির নিচে দহনযোগ্য হবে।
৪. ৯০ মিটার পানির নিচে ইহা দহন করতে পারবে এবং ২৪ ঘন্টার জন্য পানির নিচে সংরক্ষণযোগ্য হবে।
৫. যদি আমরা কোন জ্বলন্ত ফিউজকে থামাতে চাই তবে ঠিক ২ সে.মি. আগে কেটে দিতে হবে।

একটি ফিউজ বানানোর পদ্ধতিঃ

১. একটি ভালো রাবার পাইপ নিতে হবে যাতে ছোট ছিদ্র থাকে (২ মিমি ব্যাস)।
২. এটি থেকে ২.৫ ইঞ্চি কেটে নিতে হবে।
৩. রশি দিয়ে একে তিনবার পঁচাতে হবে। অতপর ইহা সড়কে ব্যবহৃত পিচে ডোবাতে হবে যাতে একটি আবরণ পড়ে।
৪. দান্ত পাউডার দিয়ে ইহা ভরতে হবে। যেমন- সাদা, হলুদ কিংবা কালো পাউডার। তবে কার্বনের তুলনায় কাঠের গুড়ার সহিত সাদা পাউডার ভালো, কারণ কার্বনের চেয়ে কাঠের গুড়া ধীরে জ্বলে হয়।
৫. সাদা পাউডার ভর্তি প্লাষ্টিকের একটি ফিউজ তৈরী হলো যাহার ব্যাস ২ মিমি এবং দৈর্ঘ্য ২.৫ ইঞ্চি। ইহা ৩০ সে. সময়ে দহন হবে।

অল্প গতিসম্পন্ন ফাতিল/ফিউজ বানানোর পদ্ধতিঃ- দুই পদ্ধতিতে অল্পগতি সম্পন্ন ফাতিল তৈরী করা যায়।

১. তাপ না দিয়ে
২. তাপ দিয়ে

তাপ না দিয়ে ফাতিল/ফিউজ বানানোর পদ্ধতিঃ

বিভিন্ন প্রকার ফাতিল/ফিউজ-এর মিশ্রণঃ

মিশ্রন - ১ঃ পটাসিয়াম ক্লোরেট এবং চিনি-র মিশ্রন

পটাসিয়াম ক্লোরেট ($KClO_3$)	সুগার (চিনি)
--------------------------------	--------------

৫০ গ্রাম	৫০ গ্রাম
----------	----------

এই মিশ্রনটি দিয়ে তৈরীকৃত ফাতিল/ফিউজ-এর প্রজ্বলন গতিবেগ ৩.৫ সে.মি/সেকেন্ড।

মিশ্রন - ২ঃ পটাসিয়াম পারমাঙ্গনেট এবং চিনি-র মিশ্রন

পটাসিয়াম পারমাঙ্গনেট ($KMnO_4$)	সুগার (চিনি)
------------------------------------	--------------

৩০ গ্রাম	১০ গ্রাম
----------	----------

এই মিশ্রনটি দিয়ে তৈরীকৃত ফাতিল/ফিউজ-এর প্রজ্বলন গতিবেগ ৩ সে.মি/সেকেন্ড।

মিশ্রন - ৩ঃ পটাসিয়াম নাইট্রেট এবং চিনি-র মিশ্রন

পটাসিয়াম নাইট্রেট (KNO_3)	সুগার (চিনি)
--------------------------------	--------------

৫০ গ্রাম	৫০ গ্রাম
----------	----------

এই মিশ্রনটি দিয়ে তৈরীকৃত ফাতিল/ফিউজ-এর প্রজ্বলন গতিবেগ ৫.৫ সে.মি/সেকেন্ড।

মিশ্রন - ৪ঃ ম্যাচের বারংদ এবং চিনি-র মিশ্রন

ম্যাচের বারংদ	সুগার (চিনি)
৩০ গ্রাম	১০ গ্রাম

এই মিশ্রনটি তৈরীর সময় ম্যাচের কাঠি হতে বারংদগুলো আলাদা করে নিয়ে খুব ধীরে ধীরে গুড়া করে নিতে হবে। তারপর সুগার মিশ্রিত করতে হবে। ইহার সময় পরীক্ষাধীন।

বিশেষ নেটঃ উপরোক্ত মিশ্রণগুলো দিয়ে বারংদ বানানোর জন্য নির্দিষ্ট রাসায়নিক পদার্থসমূহ প্রত্যেকটি আলাদা আলাদা ভাবে ধীরে ধীরে খুব ভাল ভাবে গুড়া করে নিতে হবে। গুড়া করার পর চিকন ছিদ্র বিশিষ্ট ছাকনি দিয়ে ভাল করে ছেকে নিতে হবে। এবার নির্দিষ্ট পরিমাণে আলাদা আলাদা ভাবে মেপে নিয়ে নিয়ম মাফিক মিশ্রিত করতে হবে। একটি কথা খেয়াল রাখা দরকার, বারংদ গুলো গুড়া করার সময় যথেষ্ট সাবধান থাকা দরকার। আপনার গুড়া করা এবং ছাঁকা রাসায়নিক পদার্থসমূহ যত ছোট বা মিহি করা যায় ততই ভাল এবং মিশ্রিত করার সময় যথেষ্ট ধৈর্য সহকারে ধীরে ধীরে সাবধানতার সহিত মিশ্রিত করতে হবে। অতপর জ্বালিয়ে পরীক্ষা করার জন্য খুবই অল্প পরিমাণে পোড়ানো দরকার এবং পোড়ানোর সময় হাত লম্বা করে মুখ সরিয়ে নিয়ে সাবধানতার সহিত পোড়াতে হবে।

তাপ দিয়ে ফাতিল/ফিউজ বানানোর পদ্ধতিঃ

মিশ্রন - ৫ঃ পটাসিয়াম ক্লোরেট, চিনি এবং পানি-র মিশ্রন

পটাসিয়াম ক্লোরেট (KClO ₃)	সুগার (চিনি)	পানি
৫০ গ্রাম	৫০ গ্রাম	১০০ মিলি

প্রস্তুত প্রণালীঃ

১. পটাসিয়াম ক্লোরেট এবং চিনি আলাদা আলাদা করে পিশে নিতে হবে।
২. তারপর ভালভাবে ছেকে নিয়ে নির্দিষ্ট পরিমাণে মেপে নিয়ে ধীরে ধীরে মিশ্রিত করতে হবে।
৩. একটি পরিক্ষার বিকারে ১০০ মিলি পরিক্ষার ডিস্ট্রিল ওয়াটার নিয়ে তার মধ্যে উক্ত মিশ্রিত বারংদটি ঢালতে হবে।
৪. এবার চুলার উপর নিয়ে অনেকন গরম করুন।
৫. যখন পানিগুলো ফুটতে শুরু করবে তখন উক্ত বিকারে মধ্যে সুতার ফিতা বা রশ্মি ভাল করে চুবাতে হবে।
৬. অতপর ভিজা ফাতিলটা রোদে শুকিয়ে প্লাষ্টিকের কাগজে মুড়িয়ে কোটার মধ্যে স্টোর করুন।

মিশ্রন - ৬ঃ পটাসিয়াম ক্লোরেট, সালফার এবং কার্বন-এর মিশ্রন

পটাসিয়াম ক্লোরেট (KClO ₃)	সালফার (S)	কার্বন-বরই (C)
২৫ গ্রাম	৫ গ্রাম	৫ গ্রাম

প্রস্তুত প্রণালীঃ

১. পূর্বের মত প্রত্যেকটি উপাদান ভালভাবে গুড়া করে ছেকে নিয়ে মেপে নিয়ে মিশ্রিত করুন।
২. এবার একটি পাত্রের মধ্যে আঠা তৈরী করার জন্যে ময়দা এবং পানি মিশ্রিত করে আঠা তৈরী না হওয়া পর্যন্ত গরম করুন। আঠা তৈরী হয়ে গেলে চুলা থেকে পাত্রটি নামিয়ে নিন।
৩. অতপর পূর্বে প্রস্তুতকৃত বারংদের মধ্যে তৈরীকৃত আঠা পরিমাণ মতো নিয়ে ভালভাবে মেশান।
৪. এবার উক্ত আঠালো মিশ্রনের মধ্যে পাটের রশ্মি বা সুতার ফিতা ভালভাবে মাখিয়ে নিন।
৫. তারপর সুতাগুলো রৌদ্রে শুকিয়ে প্লাষ্টিকের কাগজে মুড়িয়ে কোটায় রেখে দিন।

ফিউজ ব্যবহার করার পদ্ধতিঃ

১. আপনার ফিউজটিকে কয়েক টুকরা করুন। টুকরাগুলো পোড়ান এবং সময় নেট করুন।
২. উপর্যুক্ত ব্যবহারের জন্য উভয় পার্শ্ব থেকে ১০ সে.মি. পরিমাণ কাটতে হবে।
৩. প্রয়োজনীয় সময় অনুযায়ী ফিউজ কাটতে হবে।
৪. ফিউজের একপাস্ত ৪৫° কোণে (যে প্রাস্ত জ্বালাবেন) এবং অপর প্রাস্ত (যে প্রাস্ত ডেটনেটেরে বসাবেন) ৯০° কোণে কাটতে হবে।

(চিত্রানুযায়ী)

চিত্রঃ ফিউজ যেভাবে কাটতে হবে

- সতর্কতার সাথে ডেটনেটের মধ্যে ফিউজটি প্রবেশ করান। ডেটনেটের শুরুর দিকে চাপ দিয়ে (দাঁত দিয়ে) ফিউজটিকে আটকান। সূচনাকারী এবং ফিউজের মধ্যে ফাকা জায়গা আছে কিনা নিশ্চিত হোন।

দ্রুত গতিসম্পন্ন ফিউজ/ফাতিলঃ

বৈশিষ্ট্য/ ধর্মাবলীঃ

- দ্রুত দহনযোগ্য ফিউজের জন্য বেশী ব্যাসের পাইপ ব্যবহৃত হয়।
- দহন গতিবেগ ৬০-৯০ মিটার/ সে. হবে।
- ইহা পানির অত্যধিক গভীরে দহনযোগ্য হবে।
- ইহা বিশেষ অভিযানে, ফাঁদে এবং অ্যামবুশের জন্য ব্যবহৃত হবে।

দ্রুত গতিসম্পন্ন ফাতিল নিম্নোক্ত উপায়ে তৈরী করা যায়।

তাপ না দিয়ে ফাতিল বানানোর পদ্ধতিঃ

মিশ্রন - ৭৪ পটাসিয়াম ক্লোরেট, সালফার এবং কার্বন-এর মিশ্রন

পটাসিয়াম ক্লোরেট ($KClO_3$)	সালফার (S)	কার্বন-আকন্দ/বরাই (C)
৭৫ গ্রাম	১২.৫ গ্রাম	১২.৫ গ্রাম

মিশ্রন - ৮৪ পটাসিয়াম ক্লোরেট, চিনি এবং কার্বন-এর মিশ্রন

পটাসিয়াম ক্লোরেট ($KClO_3$)	সুগার (চিনি)	কার্বন (C)
১০ গ্রাম	১০ গ্রাম	৫ গ্রাম

তাপ দিয়ে ফাতিল বানানোর পদ্ধতিঃ

মিশ্রন - ৯৪ পটাসিয়াম ক্লোরেট, চিনি এবং পানি-র মিশ্রন

পটাসিয়াম ক্লোরেট ($KClO_3$)	সুগার (চিনি)	ডিস্ট্রিল ওয়াটার
২০ গ্রাম	১০ গ্রাম	৪০ মিলি

প্রস্তুত প্রণালীঃ

ইহার প্রস্তুত প্রণালী দীরে দহনযোগ্য ফিউজের অনুরূপ। তবে এখানে উপকরণগুলি অত্যধিক মিহি হতে হবে যাহা বিশেষ চালুনীর সাহায্যে তৈরী করতে হবে।

বিস্ফোরক ফিউজ/ফাতিল

কতিপয় চার্জকে চেনের আকারে একটির সাথে আরেকটির সংযোগ ঘটানোর জন্য যে পাইপ ব্যবহার করা হয় যার মধ্যে একটা মোট রশ্মি আকারের সুতা থাকে এবং ঐ পাইপের ভিতরে PETN বা RDX বা হেক্সামিন পার অক্সাইড ব্যবহার করা হয়। যাতে একটি চার্জ ফাটলে সবগুলি চার্জ একই সাথে বিস্ফোরিত হয়। এই ক্ষেত্রে ডেটনেটের শুধুমাত্র বিস্ফোরক ফাতিলের সাথে লাগানো হয়।

ইহাতে প্রধান চার্জ ব্যবহৃত হয়। একটি বিস্ফোরক ফাতিল/ফিউজের উদাহরণ হচ্ছে প্রাইমার কর্ড।

বৈশিষ্ট্য/ধর্মাবলীঃ

- ইহা একটি ফাঁকা নল, যাহা তুলার সুতা দিয়ে পরিপূর্ণ থাকে। ইহাতে প্রধান চার্জ যেমন- আর.ডি.এক্স. বা অ্যাসিটোন পার অক্সাইড ব্যবহৃত হয়।
- ইহার বিস্ফোরণ গতিবেগ ৬০০০-৭০০০ মি/সে.।
- ইহা তাপ বা শিখার সাহায্যে বিস্ফোরিত হয় না। ইহা এগুলোর সাহায্যে কেবল পোড়ে। এজন্য এর বিস্ফোরণের জন্য ডেটনেটের ব্যবহার করতে হবে।

প্রস্তুত প্রণালীঃ ইহার প্রস্তুত প্রণালী অন্যান্য ফিউজের অনুরূপ।

পরীক্ষাঃ বিস্ফোরক ফাতিল/ প্রাইমার কর্ড (১৬-১২-৯৫)

মিশ্রণঃ ইউরিয়া নাইট্রেট ($(\text{NH}_2)_2\text{C}(\text{NO}_3)_2$) + অ্যালুমিনিয়াম (Al)

উদ্দেশ্যঃ একটি প্রাইমার কর্ড ব্যবহার করে দুইটি বোমা একই সঙ্গে সেট করা।

প্রথম বোমাঃ

ইউরিয়া নাইট্রেট ($(\text{NH}_2)_2\text{C}(\text{NO}_3)_2$)	অ্যালুমিনিয়াম (Al)	ডেটোনেটর	সুইচ
৮০ গ্রাম	১০ গ্রাম	হাইড্রোজেন পার অক্সাইড (H_2O_2) + লেড অ্যাজাইড (PbN_6)	ফিউজ

দ্বিতীয় বোমাঃ

ইউরিয়া নাইট্রেট ($(\text{NH}_2)_2\text{C}(\text{NO}_3)_2$)	অ্যালুমিনিয়াম (Al)	সালফার (S)	ডেটোনেটর
৬০ গ্রাম	২০ গ্রাম	২০ গ্রাম	প্রাইমার কর্ড

পদ্ধতি-১ঃ প্রথম বোমার ডেটোনেটরের সাথে প্রাইমার কর্ডটি সংযুক্ত করেছিলাম। এক্ষেত্রে ব্যাপারটি হচ্ছে যখন ডেটোনেটর বিস্ফোরিত হয় একইসঙ্গে তা প্রাইমার কর্ডকেও কার্যকর করে। এই প্রাইমার কর্ডটি দ্বিতীয় বোমাকেও একইসঙ্গে কার্যকর করেছিল।

ফলাফল-১ঃ শুধুমাত্র প্রথম বোমাটি বিস্ফোরিত হয়েছিল এবং প্রাইমার কর্ডটির (১ম বোমার সাথে সংযুক্ত ছিল) অর্ধেক পর্যন্ত গিয়েছিল।

সিদ্ধান্ত-১ঃ প্রাইমার কর্ডের মধ্যে ফাকা জায়গা ছিল। এজন্য দ্বিতীয় বোমাটির কাছে পৌছানোর আগেই বিস্ফোরণ থেমে গিয়েছিল।

পদ্ধতি-২ঃ আরেকটি ডেটোনেটর এবং ফিউজ তৈরী করেছিলাম। এর সঙ্গে প্রাইমার কর্ডটি যুক্ত করেছিলাম এবং বোমাটি সেট করেছিলাম।

ফলাফল-২ঃ এবারে ২য় বোমাটি বিস্ফোরিত হয়েছিল।

সিদ্ধান্ত-২ঃ

- (১) উভয় বোমা কাজ করেছিল।
- (২) কখনো কখনো প্রাইমার কর্ড ঠিক থাকে না।

ইউরিয়া নাইট্রেট ($(\text{NH}_2)_2\text{C}(\text{NO}_3)_2$) বা অ্যামোনিয়াম নাইট্রেট (NH_4NO_3) ভিত্তিক বোমার শক্তি নিচের দিকে যায়। কাজেই সবচেয়ে উত্তম ফলাফল পাওয়া যাবে যদি ছাদের উপর বিস্ফোরিত করা হয়।

টাইম ডিলে ফিউজ/ফাতিল

ক্যাপসুল টাইমার

একটি মেডিকেল ক্যাপসুলে সালফিউরিক এসিড ভরে পটাসিয়াম ক্লোরেট এবং চিনির (১:১ অনুপাত) মিশ্রণে রাখতে হবে। উক্ত মিশ্রণের চারপাশে সূচনাকারী (Initiator) পদার্থ (ফালমিনেট, এ্যাজাইড) রাখতে হবে। যখন এসিড ক্যাপসুলের সঙ্গে বিক্রিয়া করে ইহার চারপাশ ক্ষয় করে ফেলে তখন এসিড পটাসিয়াম ক্লোরেট এবং চিনির (১:১ অনুপাত) মিশ্রণটিতে প্রজ্ঞলন ঘটাবে। যার ফলশ্রুতিতে উজ্জল অগ্নিশিখা তৈরী হবে যা সূচনাকারী পদার্থকে ডেটোনেট করে।

বিশেষ নোটঃ যদি আপনি টাইমারের সময় বৃদ্ধি করতে চান তবে ক্যাপসুলের পুরুত্ব দ্বিগুণ বা তিনগুণ বাঢ়াতে হবে এবং এসিডের মধ্যে কয়েক ফেঁটা ছিসারিন যোগ করতে হবে। ইহা ক্যাপসুলের উপর H_2SO_4 এর বিক্রিয়াকে বিলম্বিত করবে। আপনি পটাসিয়াম ক্লোরেটের গুণাঙ্গণ বৃদ্ধি করলে ইহা অগ্নি বিস্ফোরণ বৃদ্ধি করবে এবং চিনির পরিমাণ বৃদ্ধি করলে ইহা অগ্নিশিখা বৃদ্ধি করবে।

চিত্রঃ ক্যাপসুল টাইমার

ক্যাপসুলের সময় বর্ধিতকরণঃ

সালফিউরিক এসিড (H_2SO_4) এবং কয়েক ফেন্টা ফ্লিসারিন ($C_3H_5(OH)_3$) ক্যাপসুলকে ভেদ করে পটাশিয়াম ক্লোরেট এবং চিনির মিশ্রনের সাথে বিক্রিয়া করতে ১ ঘন্টা বেশি সময় লাগবে।

চিত্রঃ ক্যাপসুল টাইমার ডেটনেটর

চিত্রঃ ক্যাপসুল টাইমার ডেটনেটর

ফলাফলঃ

পরীক্ষাঃ তারিখঃ ০৩-১২-১৯৫

আমরা চাল থেকে তৈরী করা একটি ক্যাপসুলে ৫ মিলি সালফিউরিক এসিড নিই। এটি ক্যাপসুলটিকে ক্ষয় করতে ৪০ মিনিট সময় নেয়। এটা এজন্য যে এসিডটি ২ বছরের পুরাতন এবং তা একটি স্বচ্ছ কাচের কন্টেইনারে রাখিত ছিল (সুর্যের আলো প্রবেশ করায় এসিডের মাত্রা দুর্বল হয়ে যায়। এটিকে একটি কালো কাচের কন্টেইনারে রাখলে তা এখনও শক্তিশালী থাকতো।)। এসিডটি যদি শক্তিশালী হতো তবে সম্ভবত ২৫ মিনিট সময় লাগতো।

পাইরোটেকনিক (আতশবাজির) ডিলে/কালক্ষেপন

সম্ভবত সবচেয়ে সহজ কালক্ষেপন কৌশল হচ্ছে ধীরে ধীরে পুড়তে থাকা ফিউজ/স্ফুলিঙ্গবাহী। এ ধরণের ডিলে তৈরীর ক্ষেত্রে প্রয়োজনীয় বস্তু এবং দক্ষতা দুটিই সাধারণ এবং তৈরী বস্তুটির ব্যবহারও সহজ। এধরণের ডিলের ক্ষেত্রে বাধা হচ্ছে এতে ধোয়া তৈরী হয় এবং তা এই ডিভাইসটির অবস্থান প্রকাশ করে ফেলে। একটি আতশবাজীর স্ফুলিঙ্গবাহক (ফিউজ) একটি প্রাকৃতিক তন্ত্র (ফাইবার) তার, গানপাউডার বা যেকোন নিম্নমাত্রার বিস্ফোরক পাউডার এবং গুঁ দিয়ে তৈরী করা যায়। সাধারণভাবে তারের গায়ে গুঁ লাগিয়ে তারটি পাউডারের উপর গড়াগড়ি করিয়ে এটি তৈরী করা যায়। খেয়াল রাখুন যাতে প্রচুর পরিমাণ পাউডার তারে লাগে অতঃপর তারটি শুকান। শুকানোর পর এতে রংয়ের আবরণ দিয়ে একে আরও স্থায়ী এবং অর্দ্ধতারোধক করা যায়। হাতে তৈরী এই ফিউজটির সময় পরীক্ষা করতে হবে।

আলোর কনিকা ছড়ায় এমন আতশবাজিও বিস্ফোরক ফিউজ হিসেবে ব্যবহৃত হতে পারে। এটি একটি নির্দিষ্ট হারে পুড়তে থাকে এবং যদি একবার ঝঁজে তবে নেভানো প্রায়ই অসম্ভব।

লেড ব্রেক ফিউজ

এই ধরণের ফিউজ দ্বিতীয় বিশ্বযুদ্ধে ভীতিকর এবং নির্ভরতা সহকারে ব্যবহৃত হয়েছিল। এতে ছোট এক টুকরা লেড-এর সোল্ডারিং করার তার দিয়ে উচু হয়ে থাকা স্ট্রাইকার (যেটি দিয়ে আঘাত করা হবে) বা ফায়ারিং পিন আটকে রাখা হয়। স্ট্রাইকার স্পিংয়ের চাপ স্ট্রাইকার হাতলের

উপরিভাগকে সোল্ডারিং করার তারের বিপরীত দিকে টেনে রাখে এবং ধীরে ধীরে তার পথের তারকে কেটে ফেলে। সোল্ডারিং করার তার যখন আর স্প্রংয়ের বলকে বাধা দিতে পারে না তখন প্রাইমারে (কার্তুজে আগুন ধরানোর যে ছিদ্র) আঘাত করার জন্য স্ট্রাইকারকে ছেড়ে দেয় এবং চার্জকে ডেটোনেট করে।

তিনটি বিষয়ের উপর ভিত্তি করে ডিলের দৈর্ঘ্য ঠিক করা হয়।

১. স্প্রংয়ের ক্ষমতা - শক্ত স্প্রং তাড়াতাড়ি তার কাটে
২. সোল্ডার টাইপ - উপাদান এবং পুরুষের দিক থেকে সোল্ডারিং করার তার বিভিন্ন রকম হয়। বিস্ফোরকের সাথে ব্যবহারের পূর্বে তারটি পরীক্ষা করে নেয়া দরকার।
৩. তাপমাত্রা - ঠাণ্ডা আবহাওয়ায় সোল্ডারিং করার তার কিছুটা শক্ত হয়ে যায়। সুতরাং সাধারণ তাপমাত্রার চেয়ে এ অবস্থায় ডিলে বেশিক্ষণ স্থায়ী হবে। বিপরীতক্রমে অত্যন্ত উচ্চ তাপমাত্রায় তারটি নরম হয়ে যাবে এবং ডিলে কমে যাবে।

প্রয়োজনীয় বস্তুসমূহঃ

১. ১২-পেনি ডুপ্লেক্স পেরেক (নেইল - স্ট্রাইকার)
২. ৫/১৬" ধাতব টিউব, ৩" লম্বা (ফিউজ বডি)
৩. ৬ নম্বার ওয়াশার (শেয়ার পিন সাপোর্ট)
৪. ১/৮" * ১-৩/৮" স্প্রং
৫. ১/৮" * ১-১/২" ষ্টিলের বল (প্রাইমার/ডেটোনেট সংযোজন)
৬. ছোট রাইফেল বা পিস্টলের প্রাইমার
৭. ব্লাস্টিং ক্যাপ বা হাতে তৈরী ডেটোনেটর
৮. কোট হ্যাঙ্গারে ব্যবহৃত তার (আর্মি এবং সেফটি পিন)
৯. সোল্ডারিং করার তার (শেয়ার পিন)

প্রস্তুত প্রণালীঃ

১. স্ট্রাইকার - ডুপ্লেক্স পেরেকের মাথা করাত দিয়ে কেটে ফেলুন এবং যেকোন বাড়তি দৈর্ঘ্য কেটে বাদ দিন। পেরেকে ড্রিল মেশিন দিয়ে সুচালো মাথার ১-১/৮" উপরে ৩/৩২" মাপের দুইটি ছিদ্র করুন। একটির সঙ্গে অপর ছিদ্রটি যেন ৯০ ডিগ্রি কোণ করে থাকে এবং ১/৮" দুরে থাকে। পেরেকটি পুনরায় আটকান এবং শিরিয় কাগজ দিয়ে ঘষে মসৃণ করুন।
২. ফিউজ বডি - একটি ৫/১৬" ধাতব টিউব থেকে ৩" দৈর্ঘ্যের টুকরা পাইপ কাটার দিয়ে কেটে নিন। একটি সস্তা পাইপ কাটার কিনুন এবং একে ফাইল (কঠিন বস্তু ঘষে মসৃণ করে) দিয়ে একটু ভোঁতা করে নিন যাতে পাইপটি কাটার আগে কিছুটা বসে (দুমড়ে) যায়। এটি স্প্রংয়ের বসার নিরাপদ জায়গা তৈরী করবে। টিউবটির নিচের মাথা (দুমড়ানো নয়) থেকে ১/২" দুরে একটি ৩/৩২" ছিদ্র করুন। এটি পজিটিভ সেফটি পিন ধরে রাখবে। কাঁটা হয়ে থাকা যেকোন কিছু টিউব থেকে তুলে ফেলুন।
৩. প্রাইমার/ডেটোনেট সংযোজন - একটি বোল্টের মাথা এবং ১/২" বাদ দিয়ে বাকি প্যাচটুকু কেটে ফেলুন। দুইমাথা ফাইল দিয়ে ঘষে সমতল করুন। একটি ১১/৬৪" বিট ব্যবহার করে ড্রিল দিয়ে বোল্টের মাঝে (যে মাথায় প্যাচ নেই) একটি গর্ত করুন। খুব বেশি গভীর নয়, প্রাইমারটি বসার জন্য। এবার প্রথম গর্তটির মধ্যেখানে বোল্টের বাকি অংশের ভিতর দিয়ে একটি ছিদ্র করুন। এটি খুব সহজ কাজ নয় কাজেই অতিরিক্ত বোল্ট এবং ড্রিল করার বিট হাতে রাখুন। এবার বোল্টটিকে ড্রিলে আটকে ফাইল দিয়ে প্যাচওয়ালা মাথা এমনভাবে ঘষুন যাতে তা সহজেই ব্লাস্টিং ক্যাপের মুখে প্রবেশ করে। এবারে বোল্টটি উল্টা করুন এবং ফাইলের ধার দিয়ে প্রাইমারওয়ালা মাথা থেকে ১/৮" নিচে বোল্টের গায়ে একটি গ্রস্ত (খাজ কাটা) করুন। শক্ত চোয়াল বিশিষ্ট যন্ত্র এবং প্যাড হিসেবে একটি কাঠের টুকরা ব্যবহার করে বড় ছিদ্রের উপর প্রাইমারটি বসান। এটি ধীরে ধীরে এবং সতর্কভাবে করুন এবং অবশ্যই চোখ রক্ষার জন্য কিছু পরে নিন। এখন ওয়াটারপ্রুফ করার জন্য একটি সিলার দিয়ে প্রাইমারের চারিদিকে রং করুন যেমন, নেইল পালিশ দিয়ে।
৪. শেয়ার পিন সাপোর্ট - ওয়াশারের মাঝের ছিদ্রটি একটি ১১/৬৪" ড্রিল বিট দিয়ে বড় করুন।

লেড ব্রেক ফিউজ

সংযোজনঃ

- স্প্রিং এবং ফায়ারিং পিনে তেলের হালকা একটা আবরণ দিন। তারপর এদেরকে টিউবের মধ্যে প্রবেশ করান। একটি $1/8"$ রড ব্যবহার করে চাপ দিন যতক্ষণ না টিউবের শেষ মাথা থেকে স্ট্রাইকার শ্যাফট (হাতল) দেখা যায়। শ্যাফটের উপর ওয়াশারটি লাগান এবং নিচের ছিদ্র দিয়ে একটি কোট ঝুলানোর তার (আর্মিং পিন) ঢুকিয়ে দিন। রডের চাপ সরিয়ে নিন। আর্মিং পিনের সাহায্যে স্ট্রাইকারটি টিউবের ভিতর রয়ে যাবে।
- একটুকরা সোল্ডারিং করার তার উপরের ছিদ্র দিয়ে ঢুকিয়ে দিন এবং এর প্রান্ত ধরে ফিউজের বড়ির দিকে টান দিয়ে নামান। টেপ দিয়ে একে জায়গা মত রাখুন।
- সংযোজিত প্রাইমার/ডেটোনেটরকে টিউবের মধ্যে প্রবেশ করান। গুরুতরি (খাজটি) যেখানে আছে সেখানে ভোতা কাটারটি দিয়ে চাপ দিয়ে ভিতরের দিকে একটি ভাজ তৈরী করুন। সাবধানতার জন্য একফোটা সুপার গ্লু যোগ করতে পারেন।
- ফিউজ বড়ির উপর পজিটিভ সেফটি পিন হোলগুলোর (ছিদ্র) একটি ছেট একটুকরা টেপ দিয়ে ঢেকে দিন। মাঝ বরাবর একটা সোজা পিন ঢুকিয়ে ছিদ্র করুন। সেফটি পিনটি এই ছিদ্রের মধ্যে দিয়ে ঢুকিয়ে দিন। টেপ একে ধরে রাখবে।
- অল্প পরিমাণ মিহিঙড়া নিম্নমাত্রার বিস্ফোরক ব্লাস্টিং ক্যাপের মধ্যে ঢালুন। এবং খাজ/ভাজ করে বা টেপ দিয়ে একে জায়গা মতো রাখুন। ফিউজটি এখন প্রস্তুত।

অপারেশন/চালনাঃ

- বিস্ফোরক চার্জের মধ্যে ফিউজটি প্রবেশ করান। আর্মিং পিনটি খুলে ফেলুন। স্ট্রাইকার শ্যাফটটি সবলে সোল্ডারিং করার তারের উপর পড়বে এবং তারটিকে কাটতে শুরু করবে। যেভাবেই হোক তারটি ধরে রাখতে ব্যর্থ হলে পজিটিভ সেফটি পিনটি স্ট্রাইকারকে ধরে ফেলবে।
- যদি তারটি ধরে রাখে তবে সেফটি পিনটি সরিয়ে ফেলুন।
- ফিউজটি এখন বিস্ফোরণের জন্য প্রস্তুত।

ক্লুকওয়ার্ক ইলেক্ট্রিক্যাল ডিলে

ডিলে বিস্ফোরণের ক্ষেত্রে যান্ত্রিক (এনালগ) ঘড়ি এবং হাতঘড়ির ব্যবহার একটি সাধারণ এবং কার্যকরী পদ্ধতি। এধরণের ফিউজ একটি হাতঘড়ি বা একটি এলার্ম ঘড়ি দিয়ে সহজেই তৈরী করা যায়। উভয়ের ক্ষেত্রে গঠনগত কিছু পার্থক্য ছাড়া একই মূলনীতি অনুসরণ করা হয়। এই ফিউজ তৈরীর ক্ষেত্রে মূল বিষয় হচ্ছে এর ঘূর্ণায়মান হাতের ব্যবহারের মাধ্যমে একটি ইলেক্ট্রিক্যাল সার্কিট পূর্ণ করা এবং বোমা বিস্ফোরিত করা।

মূল এনালগ ইলেক্ট্রিক্যাল ডিলে সার্কিট

প্রস্তুত প্রণালীঃ

- ঘড়ির উপর থেকে প্লাস্টিকের ঢাকনিটি খুলে ফেলুন।
- যদি এক ঘন্টার কম ডিলে দরকার হয় তবে ঘন্টার কাঁটাটি খুলে ফেলুন। আর যদি এক ঘন্টার বেশি ডিলে দরকার হয় তবে মিনিটের কাঁটাটি খুলে ফেলুন। সেকেন্ডের কাঁটা থাকলে তা খুলে ফেলুন।
- কাঁটার যেখানে সংযোগ ২-এর সাথে লাগে ওখানে ঘন্টে ফিনিশিং তুলে ফেলুন এতে সংযোগ ভালো হবে।
- ডায়াল কভারের মধ্যে দিয়ে একটি ছিদ্র করুন। একটি ছেট স্ক্রু এক্ষেত্রে সংযোগের জন্য ব্যবহৃত হবে। কিন্তু যদি একটি হাতঘড়ি ব্যবহৃত হয় তবে সংযোগের জন্য তারের শেষ মাথা। টেপ বা গুঁ দিয়ে সংযোগটিকে জায়গা মতো স্থাপন করুন। (নোটঃ একফোটা মডেল এয়ারপ্লেনে ব্যবহৃত গুঁ এক্ষেত্রে ভালো কাজ করবে কিন্তু সায়ানো-এক্রিলিক “সুপার গুঁ” ব্যবহার থেকে বিরত থাকুন কেননা এই ধরণের আঠার কৈশিক আকর্ষণের জন্য সংযোগটি অপরিবাহী হয়ে যেতে পারে।)
- ডায়াল কভারটি লাগান। পরীক্ষা করুন যাতে কাঁটা সংযোগটিকে স্পর্শ করবে।
- অপর সংযোগটি ঘড়ির কেসের সঙ্গে সংযোগ করুন। এলার্ম ঘড়ির ক্ষেত্রে, ঘড়িটিকে খোলার জন্য বাইরে একটি স্ক্রু লাগানো থাকে। এই স্ক্রুটি সরাসরি যত্নের গায়ের সঙ্গে লাগানো থাকে যা উভয় সংযোগ হিসাবে কাজ করে। হাতঘড়ির ক্ষেত্রে ভালো সংযোগের জন্য তারকে কেসের সঙ্গে সোন্দারিং করে লাগাতে হবে।
- ড্রায়িংয়ের মতো করে সার্কিটে অন্যান্য অংশ লাগাতে হবে। খেয়াল রাখুন আর্মিং সুইচ যেন অফ করা থাকে। ডেটোনেটরের সাথে সংযুক্ত করার পূর্বে সর্তকর্তার জন্য একটি লাইট বাল্ব দিয়ে সার্কিটটি চেক করে নেয়া ভালো।

কলান্সিং সার্কিট

কলান্সিং সার্কিট একটি সাধারণ, সস্তা এবং নির্ভরযোগ্য ডিলে। এই সার্কিটটি এত সহজ যে যেকেউ এটা বানাতে পারে। এমনকি তার ইলেক্ট্রনিক্সে কোন দক্ষতারও প্রয়োজন নেই।

ডিলে কৌশলের মূল চালিকা শক্তি হচ্ছে একটি ইলেক্ট্রিক রিলে। রিলে মূলত একটি ইলেক্ট্রো-ম্যাগনেটিক সুইচ। একটি ব্যাটারী থেকে বিদ্যুৎ সুইচটির কয়েলের মধ্যে দিয়ে প্রবাহিত হয়। যা নড়াচড়া করতে পারে এমন একটি সংযোগ প্রান্তকে অপর একটি স্থির সংযোগ প্রান্ত হতে দুরে সরিয়ে দেয় বা কাছে নিয়ে আসে।

দুইটি স্থির সংযোগ প্রান্ত “নরমাল ওপেন”(NO) বা “নরমাল ক্লোজড”(NC) হিসেবে পরিচিত। রিলেতে বিদ্যুৎ শক্তি না থাকলে যে সংযোগ প্রান্তটি নড়াচড়া করতে পারে সেটি একটি স্প্রিং দিয়ে NC-এর সাথে লাগানো থাকে। যখন রিলেতে বিদ্যুৎ শক্তি প্রবাহিত হয় তখন যে সংযোগ প্রান্তটি নড়াচড়া করতে পারে সেটি NO-এর সঙ্গে লেগে যায়। এই সার্কিটে একটি তার NC সংযোগ প্রান্তের সাথে লাগানো থাকে। অপরটি যে সংযোগ প্রান্তটি নড়াচড়া করতে পারে তার সঙ্গে লাগানো থাকে। যখন রিলেতে বিদ্যুৎ শক্তি প্রবাহিত হয় তখন NC সংযোগটি

কেটে যায়। এবং সার্কিটটি অসম্পূর্ণ হয়ে পড়ে। যখন ব্যাটারীর শক্তি এতটা কমে যায় যাতে ম্যাগনেটিক কয়েল আর স্প্রিংয়ের বিপরীতে সংযোগটিকে ধরে রাখতে পারে না তখন তা NC সংযোগ প্রান্তের সঙ্গে যুক্ত হয় এবং সার্কিটটি পূর্ণ করে এবং ইনশিয়েটর বিস্ফোরিত হয়। এই ব্যাপারটি ঘটতে কতটুকু সময় নিবে তা প্রাথমিকভাবে রিলে কয়েলের ওহমিক রেজিস্ট্রেস (রোধ) এবং ব্যাটারির ধরনের উপর নির্ভর করে। কিছু কিছু ব্যাটারী যেমন ক্যামেরার ফটো ফ্ল্যাশে ব্যবহৃত হয় এধরনের ব্যাটারি হাই ভোল্টেজের কিন্তু একটি নির্দিষ্ট মাত্রার শক্তি তুলনামূলক কম সময়ের জন্য ধরে রাখতে পারে। অতএব এধরণের ব্যাটারি ব্যবহৃত হলে ডিলের সময় কমে যাবে। বেশি ওহমের অর্থ হচ্ছে ডিলে বেশিক্ষণ স্থায়ী হবে।

একই ভোল্টেজের সাধারণ ফ্ল্যাশ লাইট ব্যাটারী উপরে বর্ণিত ব্যাটারীর চেয়ে অধিক সময় ধরে সংযোগটিকে কাটা অবস্থায় রাখবে। অ্যালকালাইন ব্যাটারীও অধিক সময় ধরে সংযোগটিকে কাটা অবস্থায় রাখবে। সুতরাং ডিলের অংশগুলোর সংযুক্তি কি পরিমাণ ডিলে দরকার তার উপর নির্ভরশীল। বেশিক্ষণ ডিলের জন্য হাই ওহমিক রেজিস্ট্রেস-এর রিলে এবং যে ব্যাটারি এর ভোল্টেজ দীর্ঘ সময় দিতে পারবে এমন একটি ব্যাটারী ব্যবহার করতে হবে। কম সময়ের ডিলের জন্য লো ওহমিক রেজিস্ট্রেস-এর রিলে এবং কম সময়ের জন্য ভোল্টেজ সরবরাহ করতে পারে এমন একটি ব্যাটারী ব্যবহার করতে হবে।

যথাযথ সংযুক্তি সম্ভব হলে ডিলে ১৫ মিনিট থেকে কয়েক মাস পর্যন্ত হতে পারে। এর একমাত্র অসুবিধা হচ্ছে সঠিক সময়ের ব্যাপারে নির্ভুল হতে না পারা। তাপমাত্রা, ব্যাটারির অবস্থা, এবং অন্যান্য অবস্থার পরিপ্রেক্ষিতে ডিলে ২৫% বা তার বেশি ও এদিক-ওদিক হতে পারে। সেকেন্ডের নির্ভুলতা পেতে একটি ইলেক্ট্রনিক টাইমার ব্যবহার করুন।

প্রয়োজনীয় বস্তুসামগ্রী:

১. একটি ডিসি রিলে
২. একটি রিলে ব্যাটারী
৩. দুই মাথা বিশিষ্ট বা বিশেষ ধরণের সুইচ
৪. একটি ফায়ারিং ব্যাটারী
৫. একটি ইলেক্ট্রনিক ইনশিয়েটর
৬. একটি সবুজ রিলে ল্যাম্প
৭. মাউন্টিং/ধরে রাখার/ সাজানোর বোর্ড

একটি রিলের জন্য যে ভোল্টেজ ঠিক করা থাকে তার চেয়ে ৫০% পর্যন্ত বেশি ভোল্টেজে রিলের কয়েলটি না পুড়ে থাকতে পারে। যেমন, ৬ ভোল্টের রিলে নিরাপদেই ৯ ভোল্ট পর্যন্ত ব্যবহার করতে পারে। সাধারণত এভাবে দীর্ঘ সময়ের ডিলে পাওয়া যাবে কিন্তু তা কোন ধরণের ব্যাটারী ব্যবহার করা হয়েছে তার উপর নির্ভরশীল। বিপরীতক্রমে, যদি কম সময়ের ডিলে দরকার হয় তবে রিলেকে নিম্নমাত্রার ভোল্টেজে চালানো যেতে পারে। ঠিক কর নিম্ন ভোল্টেজে এটি চলতে পারবে তার জন্য অবশ্য পরীক্ষার প্রয়োজন রয়েছে।

রিলের যেকোন একটি পাওয়ার লিডে রেজিস্ট্রেস যুক্ত করেও নিম্নমাত্রার ডিলে তৈরী করা যায়। এক্ষেত্রে ডিলের দৈর্ঘ্য নির্ণয়ের জন্য আবারও পরীক্ষার প্রয়োজন হতে পারে। এই পরীক্ষার সময় নিম্নমাত্রার রেজিস্ট্র/রোধ দিয়ে শুরু করতে হবে এবং ক্রমান্বয়ে রোধ বাঢ়াতে হবে যতক্ষণ না প্রয়োজনীয় দৈর্ঘ্যের ডিলে পাওয়া যায়।

এই ধরণের ডিলে ল্যাম্প এবং সুইচ ছাড়াই সস্তায় তৈরী করা যায় কিন্তু ওগুলো আসলেই একটি নিরাপদ ডিলে কৌশলের জন্য।

Schematic Diagram of Relay Contacts

অপারেশন/ চালনাঃ

১. সুইচ-এ (রিলে) কে অন করুন। সবুজ বাতিটি মিটমিট ছাড়াই স্থিরভাবে জ্বলবে।
২. সুইচ-বি (ফায়ারিং) কে অন করুন। লাল বাতিটি জ্বলবেনা।
৩. সুইচ-এ (রিলে) কে অফ করুন। এখন লাল বাতিটি জ্বলবে।
৪. সুইচ-এ (রিলে) কে আবার অন করুন। সবুজ বাতিটি জ্বলবে এবং লাল বাতিটি নিভে যাবে। এটি নির্দেশ করে যে সার্কিটটি নিরাপদ।
৫. যদি লাল বাতিটি নিভে যায় তবে ডেটোনেটরটি নিরাপদে প্লাগ ইন করা যেতে পারে। বোমটি এখন বিস্ফোরনযুক্ত হয়ে আছে।

নেটওয়ার্ক যদি চান ডেটোনেটরের জ্যাকের পরিবর্তে দুইটি সিঙ্গেল তার একটি করে ব্যবহার করতে পারেন যা ডেটোনেটরের লেগ ওয়ারের সাথে বিশেষভাবে (ওয়েস্টার্ন ইউনিয়ন পিগটেইল স্প্লাইস) পেচামো যেতে পারে।

সহজ রাসায়নিক ডিলে ফিউজ, ১

এই ধরনের ডিলেতে ক্ষয়কারী রাসায়নিক তরল পদার্থ ব্যবহৃত হয় যা দুইটি রাসায়নিক পদার্থের মধ্যে রাখিত পৃথককারী পর্দাকে ক্ষয় করে অবশেষে বিক্রিয়ক পদার্থের সংস্পর্শে আসে রাসায়নিক বিক্রিয়ার মাধ্যমে তাপ ও শিখা উৎপন্ন করে যা বিস্ফোরিত হবার প্রথম শর্ত। ক্ষয়কারী পদার্থ হিসেবে সাধারণত ঘন সালফিউরিক এসিড ব্যবহৃত হয় যা প্রস্তুতকৃত অবস্থায় পাওয়া যায়। অধিকাংশ ক্ষেত্রে সাধারণত ক্লোরেট ভিত্তিক বিক্রিয়ক মিশ্রণ ব্যবহৃত হয় যেমন, পটাশিয়াম ক্লোরেট এবং চিনি বা ম্যাচের বারুদ। পৃথককারী হিসেবে যে বস্তুটি ব্যবহৃত হয় তা বিভিন্ন রকম হতে পারে, যেমনঃ কাগজ, কার্ডবোর্ড, কপার সীট, রাবার সীট (বেলুন, কনডম ইত্যাদি), জেলাটিন ক্যাপসুল, এমনকি পিং-পং বল।

এখানে যে ডিলেটি দেখনো হয়েছে তাতে একটি সালফিউরিক এসিডের টিউবের শেষ মাথায় একটি জেলাটিন ক্যাপসুল গু দিয়ে লাগানো থাকে। অধিকাংশ রাসায়নিক ডিলে টাইমারের সময়ের বিভিন্নতার প্রধান কারণ হচ্ছে তাপমাত্রার পার্থক্য। উচ্চ এবং নিম্ন তাপমাত্রায় ডিলে সময়ের ক্ষেত্রে বড় ধরণের পরিবর্তন লক্ষ্য করা যায়। খুব কম তাপমাত্রায় (৩২ ডিগ্রি ফারেনহাইট-এর কম) এটা অকার্যকর হয়ে পড়ে। এটি প্রকৃতই একটি বাধা, যাই হোক মাঝামাঝি তাপমাত্রায় এই রাসায়নিক ডিলেটির কার্যকারীতা নির্ভরযোগ্য এবং বেশ সঠিক এবং খরচও এক-চতুর্থাংশ পড়ে। ডিলে টাইম নির্ণয়ের জন্য কিছু পরীক্ষা-নিরীক্ষা প্রয়োজন রয়েছে।

প্রয়োজনীয় বস্তুসমূহঃ

১. কাচের টিউব
২. জেলাটিন ক্যাপসুল
৩. ইপোক্সি (এক ধরনের আঠা)
৪. ছোট জন্মদিনের মোমবাতি
৫. সালফিউরিক এসিড

প্রস্তুত প্রণালীঃ

১. একটি কাচের টিউবের ৩” লম্বা অংশ কেটে নিন। যদি টিউবের কাটার না থাকে তবে একটি তিনকোনা বিশিষ্ট ফাইল ব্যবহার করে টিউবটির পরিধি বরাবর ঘষে একটি খাজ কাটতে পারেন। বেশ গভীর হলে টিউবের দুই মাথা ধরে একটু বাকালে তা খাজ কাটা জায়গা বরাবর ভেঙ্গে বা কেটে যাবে।
২. জন্মদিনের মোমবাতির শেষ প্রান্তে তাপ দিয়ে টিউবের শেষ মাথা দিয়ে কমপক্ষে ৩/৮” চাপ দিয়ে ঠেলে দিন এবং বাকী অংশটুকু কেটে ফেলুন।
৩. টিউবটিকে একটি স্ট্যান্ডের সাহায্যে খাড়া করে দাঢ় করান। আই ড্রপার দিয়ে টিউবটি তিন-চতুর্থাংশ ঘন সালফিউরিক এসিড দিয়ে পূর্ণ করুন। গলার চারিদিকে মুছে ফেলুন।
৪. ইপোক্সি দিয়ে গলার পাশে চারিদিকে রঁ করুন এবং তাড়াতাড়ি ক্যাপসুলের অর্ধেক প্রবেশ করিয়ে দিন। আঠা শুকিয়ে গেলে জোড়ামুখ বরাবর যেখানে পরিমান মতো আঠা নাই সেখানে আরও কিছু ইপোক্সি আলতোভাবে লাগিয়ে দিন। শুকান।
৫. নিরাপত্তার জন্য জোড়ামুখ বরাবর ইলেক্ট্রিক টেপ দিয়ে মোড়ান। ফিউজটিকে খাড়া অবস্থায় রাখুন যাতে রাসায়নিক প্রক্রিয়া চালু না হয়ে যায়। এই ধরণের ফিউজ প্রয়োজন মতো তৈরী করা উচিত এবং দীর্ঘ সময় ধরে সংরক্ষণ করবেন না। এই ধরনের ফিউজ বহনের ক্ষেত্রে অনেক সতর্কতা অবলম্বন করতে হবে।
৬. ফিউজটিকে একটি বিস্ফোরণ কাজে ব্যবহার করতে হলে এটিকে বিক্রিয়ক পাউডার ভর্তি অপর একটি ছোট টিউবের সঙ্গে লাগাতে হবে যার একপাশে থাকবে ফিউজ এবং অপর পাশে থাকবে ডেটোনেটর। ডেটোনেটরটি স্বাভাবিকভাবে অবশ্যই অ-বৈদ্যুতিক ধরণের হতে হবে এবং টিউবটির অপর প্রান্তে লাগাতে হবে।

সাবধানতাঃ যেহেতু এসিড জেলাটিন মেম্ব্রেন বা তুককে ক্ষয় করে পাতলা থেকে পাতলাতর করতে থাকে। সুতরাং ফিউজটি অধিক থেকে অধিকতর শক্ত সংবেদনশীল হয়ে পড়ে। একবার কাজ শুরু হয়ে গেলে একে আর বিস্থিত করা ঠিক হবে না। তাতে বিস্ফোরকটি স্বতন্ত্রভাবে বিস্ফোরিত হতে পারে। বোমা ক্ষেয়াড়ের সদস্যরা কার্যকর অবস্থায় একে সরানো বা ডিফিউজ করার এমনকি করতে চাওয়ার বিপদ সম্পর্কে সচেতন।

সহজ রাসায়নিক ডিলে ফিউজ

সহজ রাসায়নিক ফিউজ, ২

এই ফিউজটির মূলনীতিও আগেরটির মতো। এক্ষেত্রে সালফিউরিক এসিড একটি ছোট কাচের ভায়াল (ওষধ রাখার কাচের শিশি)-এ রাখা হয়। এবং এক্ষেত্রে টিউবের উপরিভাগ চূর্ণ করার মাধ্যমে ফিউজটি কার্যকর হয় যেখানে ভায়ালটি ভেঙে যায় এবং এসিডকে একটি পাতলা রাবার মেম্ব্রেনের সংস্পর্শে আসতে দেয় যা পরবর্তীতে মেম্ব্রেনকে ক্ষয় করে বিক্রিয়ক বস্তুর সঙ্গে যুক্ত হয়। ছোট কাচের ভায়াল সুগন্ধির দোকানে পাওয়া যায় বা লাইট বাল্কে পরিবর্তন করার মাধ্যমে বা হোমিওপ্যাথি ওষধের দোকানে পাওয়া যায়। যাই হোক, যে ভায়ালই ব্যবহৃত হোক না কেন তার স্টপার বা ছিপিটিকে অবশ্যই এসিড থেকে রক্ষার জন্য মোমের আবরণ দিয়ে নিতে হবে। এসিড ভায়ালের সাইজের উপর ভিত্তি করে ক্রাশিং টিউবের সাইজ নির্ধারণ করা হয়।

প্রয়োজনীয় বস্তুসমূহঃ

১. ক্রাশ টিউব - এসিড ভায়ালের বহিঃব্যাসের সমান অন্তঃব্যাসবিশিষ্ট এবং ভায়ালের চেয়ে $3/8"$ লম্বা নরম এ্যালুমিনিয়াম বা কপার টিউব।
২. রাবার মেম্ব্রেন - সবচেয়ে ভালো হয় একটি লম্বা বেলুনের শেষ মাথা ব্যবহার করলে। কনডম ব্যবহার করবেন না কারণ এতে লেগে থাকা লুভিকেন্ট (পিচিলকারক) এবং স্পার্মিসাইড (শুক্রাণুর কার্যক্ষমতা নষ্ট করার রাসায়নিক পদার্থ) এসিডকে তার কাজ ঠিকমতো করতে বাধা প্রদান করবে।
৩. সাপোর্ট টিউব - ক্রাশ টিউবের অন্তঃব্যাসের সমান বহিঃব্যাস বিশিষ্ট শক্ত ধাতব টিউব।
৪. অ্যাডাপ্টার স্লিপ - এটি লাগতে পারে যদি বানিজ্যিক ব্লাস্টিং ক্যাপ ব্যবহৃত হয়।
৫. এসিড ভায়াল - উপরে দেখুন
৬. বিক্রিয়ক বস্তু - ক্লোরেট পাউডার বা ম্যাচের বারুদ

প্রস্তুত প্রণালীঃ

১. ক্রাশ টিউবটি যথাযথ পরিমাপে কেটে নিন।

২. একটি বেলুনের বন্ধ মাথার দিক থেকে এক ইঞ্জিং পরিমাণ কেটে ক্রাশিং টিউবের প্রান্ত দিয়ে প্রবেশ করিয়ে দিন। লক্ষ্য রাখুন যেন গা ঘেষে থাকে। টেপ পেচিয়ে একে আরও নিরাপদ করুন।
৩. এসিড ভায়ালটিকে ক্রাশ টিউবের মধ্যে প্রবেশ করান এবং একে জায়গামতো রাখতে এক ফোটা ইপোক্সি দিন। শুকালে টিউবের উপরিভাগ ইপোক্সি পুটির বুদবুদ বা অটো বডি ফিলার দিয়ে ঢেকে দিন।
৪. একটি বড় ধাতব বা প্লাস্টিক টিউব দিয়ে একটি এ্যাডাপ্টার টিউব তৈরী করতে হবে। এটি অবশ্যই দুই ইঞ্জিং লম্বা হতে হবে এবং এর ভিতর রাবার মেম্ব্রেনসহ ক্রাশিং টিউবটি খাপে খাপে বসে যাবে (খুব বেশি টাইট যেন না হয়)।
৫. ক্রাশ টিউবটি এ্যাডাপ্টার টিউবের ভিতরে এক ইঞ্জিং গভীরতা পর্যন্ত রাবার লাগানো মাথা আগে দিয়ে প্রবেশ করাতে হবে।
৬. ডেটোনেটরের খোলা প্রাম্ভ বিক্রিয়ক পাউডার বা ম্যাচের বারঝন দিয়ে পূর্ণ করতে হবে এবং একে এ্যাডাপ্টার টিউবের খোলা মুখ দিয়ে যতদুর ভিতরে যায় ততদুর প্রবেশ করাতে হবে। চাপ দিবেন না। জায়গামতো বসিয়ে টেপ দিয়ে লাগান। (নোটঃ এডাপ্টারের সঙ্গে মানানসই করার জন্য ডেটোনেটরের গায়ে একটুকরা ছোট টিউব হাতা বা স্লিপ হিসেবে পরানো হতে পারে। ইপোক্সি বা সুপার প্লি দিয়ে ডেটোনেটরের সাথে স্লিপকে লাগাতে হবে। সিলার হিসেবে টেপ লাগানো যেতে পারে।) এখন ফিউজটি তৈরী।
৭. ব্যবহারের জন্য ডেটোনেটরটিকে বিস্ফোরক চার্জের মধ্যে রাখুন। লক্ষ্য রাখুন যাতে টিউবের উপরিভাগ উপরের দিকে থাকে। অন্য অবস্থায় এটির কার্যকারীতা নির্ভরযোগ্য হবে না।
৮. টিউবের উপরিভাগ একজোড়া সাড়াশি (প্লায়ার্স)-র দিয়ে বিস্তৃত করুন বা শুইয়ে দিন। ফিউজটি এখন বিস্ফোরোন্নুখ। সালফিউরিক এসিড রাবার মেম্ব্রেনের মধ্যে দিয়ে গিয়ে বিক্রিয়ক বস্তুর সঙ্গে মিলবে এবং অগ্নিবালক তৈরী করবে যা ডেটোনেটরকে প্রজ্বলিত করবে।

কাপড়ের পিন বা সোল্ডার ওয়ার ডিলে

কাপড়ের পিন ডিলে সার্কিট

কেমিক্যাল/মেকানিক্যাল ডিলে ফিউজ

সেনাবাহিনীর অধিকাংশ “টাইম পেনসিল”-এর এবং এই ফিউজটি তৈরীর মূলনীতি একই। একটি স্ট্রাইকার বা ফায়ারিং পিনকে একটি চিকন/পাতলা তার বা লাইন দিয়ে ধরে রাখা হয়। এই তারের এক জায়গায় একটি শোষক পদার্থ যুক্ত প্যাড দিয়ে মোড়ানো থাকে। প্যাডের ক্ষয়কারী রাসায়নিক দ্রব্য তারকে ক্ষয় করতে শুরু করে। একটি নির্দিষ্ট সময় পরে তারটি আর স্ট্রাইকার স্প্রিংয়ের টানকে ধরে রাখতে পারে না। তারটি একে ছেড়ে দেয় এবং এটি প্রাইমারটি ডেটোনেটরকে প্রজ্বলিত করে যা চার্জকে প্রজ্বলিত করে। ক্ষয়কারী পদার্থটি একটি ছোট ভায়ালে রাখিত থাকে। ফিউজটিকে কার্যকর করার সময় ব্যবহারকারী এটিকে ভেঙে ফেলে। হাত দ্বারা অপারেশনের ক্ষেত্রে এটি প্রস্তুতকারকের জন্য সমস্যা তৈরী করে। এটির যান্ত্রিকতার জন্য দুই অংশে দুইরকম টিউব দরকার। একদিকে শক্ত ধাতব টিউব স্প্রিং/ফায়ারিং যন্ত্রকে সাপোর্ট দেয়ার জন্য এবং অন্য দিকে নরম ধাতুর টিউব যা আঙুল দিয়ে ভাঙ্গা যায় এবং যা ভালোভাবে সিল করা থাকে যাতে লিক না করে। আরেকটি ব্যাপার হচ্ছে ক্ষয়কারী পদার্থটি একটি ছোট ভঙ্গুর কাচের ভায়ালে সিল করা থাকতে হবে যা সরঁ টিউবের মধ্যে সেট হবে। এইজাতীয় ডিলে পেতে এইসব ব্যাপারে অধিক লক্ষ্য রাখতে হবে। এভাবে তৈরীকৃত ডিলেটি বেশ সঠিক এবং নির্ভরযোগ্য।

ভিন্ন ভিন্ন দ্রাবক বা ক্ষয়কারী এবং তারের সম্মিলনের মাধ্যমে মূল ডিজাইনটির পরিবর্তনও করা যেতে পারে। চাপ দেয়া যায় এমন, নাকের স্প্রে-তে ব্যবহৃত হয় এরকম ছোট প্লাস্টিকের বোতলেও দ্রাবকটিকে রাখা যায়। এক্ষেত্রে দ্রাবককে সজোরে আর্মিং পোর্টের মধ্যে দিয়ে শোষক প্যাডে প্রবেশ করিয়ে ফিউজটিকে কার্যকর করা হয়।

এখানে ৫/১৬" ষ্টেইনলেস স্টীল-এর টিউব ব্যবহৃত হয়েছে কিন্তু অন্যান্য টিউব বা পাইপ (ধাতব, প্লাস্টিক, ইত্যাদি)-ও ব্যবহার করা যায়। ভিন্ন পরিমাপের টিউবের ক্ষেত্রেই শুধুমাত্র মূল ডিজাইন পরিবর্তিত হতে পারে।

এই ফিউজে তরল দ্রবণ হিসেবে ফেরিক ক্লোরাইড ব্যবহৃত হয় যা কপার তারকে ক্ষয় করবে। দ্রবণটি ইলেক্ট্রনিক্স সাপ্লাইয়ের দোকান থেকে সহজেই পাওয়া যায়। এটি কপারের সার্কিট বোর্ড-এর কাজে ব্যবহৃত হয়। এটি বেশ সস্তা। এক গ্যালন ১৫ ডলার। দ্রবণটি একটি শোষক প্যাড দ্বারা শোষণ করানো হয় এবং এটি তারটিকে ক্ষয় করতে শুরু করে। তারটিকে ক্ষয় করতে কতৃক সময় লাগবে তা আপমাত্রা, দ্রবণের শক্তি এবং তারের পুরুষ্ট্রের উপর নির্ভরশীল।

কেনার সময় ফেরিক ক্লোরাইড একটি সম্পৃক্ত দ্রবণ থাকে। এর অর্থ হচ্ছে পানি যতটা স্বত্ব ফেরিক ক্লোরাইড ধরে রাখে। পানি যোগ করলে তা দ্রবণকে দুর্বল করে ফেলে এবং ডিলে টাইম বেড়ে যায়। সবসময় ডিলের সময় বের করতে পরীক্ষা করে দেখুন।

প্রযোজনীয় বস্তুসমূহঃ

১. ফায়ারিং পিন - ফায়ারিং পিন একটি ১২ পেনি ডুপ্লেক্স পেরেক থেকে তৈরী করা যায়। পেরেকটির মাথা এবং অতিরিক্ত দৈর্ঘ্য কেটে ফেলা হয় এবং পেরেকটি একটি ড্রিলে আটকে একটি ফাইল দিয়ে ইচ্ছামতো আকৃতি দেয়া যায়। ফায়ারিং পিন এবং স্প্রিং খুবই ঘনিষ্ঠভাবে অবস্থান করে এবং এটিকে প্রাইমারের সাথে কেন্দ্রের দিকে রাখতে কোন সাপোর্টের প্রয়োজন নেই।
২. শোষক প্যাড - শোষক প্যাড হচ্ছে একটি ছোট সুতার দল।
৩. টিউব - টিউবের শেষ মাথা ইপোক্সি বা অটো বডি ফিলার দিয়ে সীল করা হয়। এই ফিলারের উপর একটি ছোট স্টীলের পিন থাকে যা তারের জন্য একটি এ্যাংকর হিসেবে কাজ করে। ইপোক্সি সীল দেবার আগে তারটিকে পিনের সঙ্গে শক্তভাবে লাগানো হয়।
৪. এ্যাডাপ্টার - প্রাইমার বা ডেটোনেটর এ্যাডাপ্টারটি লেড ব্রেক ফিউজে ব্যবহৃত এ্যাডাপ্টারটির মতোই।
৫. ফিউজ বডি - ফিউজ বডিটি একটি ৫/১৬" টিউব থেকে ৩" পরিমাণ কেটে নেয়া হয়। ভোতা কাটারটি ব্যবহার করে উপর থেকে ৩/৮" নিচে একটি খাঁজ করা হয়। আর্মিং পোর্টটি একটি ১/৮" গর্ত যা খাঁজের একটু উপরে করা হয়।

সংযুক্তিরণঃ

১. কপার তারের একমাথা ফায়ারিং পিনের সঙ্গে আটকান। তারটিকে কয়েক পাকে মোচড়ান এবং এক ফোটা সোল্ডার দিন যাতে মোচড়ানো খুলে না যায়।
২. ফায়ারিং পিন এবং তারের উপর দিয়ে স্প্রিংকে ঢুকিয়ে দিন। তেলের হালকা প্রলেপ দিন এবং সংযুক্ত গোটা যন্ত্রকে ফিউজ বডির ভিতর বসিয়ে দিন।
৩. অপর প্রান্তের মধ্যে দিয়ে তারটিকে টানুন। খাঁজের উপরে এবং উপর থেকে ১/৮" নিচ পর্যন্ত জায়গাটিকে সুতা দিয়ে মুড়িয়ে দিন।
৪. স্প্রিংকে সংকুচিত করে তারটিকে টানটান করুন। এ্যাংকর পিনের চারিদিকে পেচান এবং বাড়তি অংশ কেটে ফেলুন। যদি কিছুটা চিলা থাকে তবে পিনটিকে কয়েকবার পেচিয়ে একে টাইট করা যায়। টিউবের উপর পর্যন্ত পৌছে তারপর পিনটিকে রেখে দিন।
৫. সুতার উপরের খালি জায়গা ইপোক্সি বা অটো বডি ফিলার দিয়ে পূর্ণ করুন।
৬. প্রাইমার বা ডেটোনেটর এ্যাডাপ্টার একত্র করে লেড ব্রেক ফিউজের ন্যায় টিউবের মধ্যে রাখুন।

কেমিক্যাল/মেকানিক্যাল ফিউজ

এসসিআর মডিফায়েড ইলেক্ট্রনিক ক্লক

বাজারে অনেক ধরনের সময় পরিমাপক যন্ত্র পাওয়া যায় যেগুলোকে পরিবর্তিত করে ইলেক্ট্রনিক টাইম-ডিলে ফিউজ হিসাবে ব্যবহার করা যায়। যেমনঃ ট্রাভেল এলার্ম, কাউন্ট-ডাউন টাইমার এবং ডিজিটাল এলার্ম ঘড়ি ইত্যাদি। এসব কিছুতেই একই কৌশল ব্যবহৃত হয় তা হচ্ছে SCR (Silicon Controlled Rectifier) সুইচ সার্কিট। যদিও বিভিন্নতার জন্য কিছুটা গঠনগত পার্থক্য রয়েছে।

SCR হচ্ছে একটি ইলেক্ট্রনিক সুইচ যা ঘড়ির এলার্ম বাজার (গুঞ্জন ধ্বনি) হতে যে ক্ষুদ্র ইলেক্ট্রিক পাল্স উৎপন্ন হয় তাতে সার্কিট সম্পূর্ণ করে। একটি SCR -এর তিনটি পা আছে - পাওয়ার ইন (ব্যাটারী থেকে), পাওয়ার আউট (ডেটোনেটরে), এবং গেট (এলার্ম বাজারে) (বিস্তারিত জানতে ড্রাই দেখুন)।

যখন ঘড়ি SCR গেট (A-1)-এর দিকে পাল্স নির্গত করে তখন সার্কিট সম্পূর্ণ করে এবং ব্যাটারী পজিটিভ দিক থেকে পাওয়ারকে ডেটোনেটরের দিকে যেতে দেয়। সার্কিট ড্রাইয়ে দুইটি উভয় অংশ দেখানো আছে, একটি মোমেন্টারী সুইচ (B) এবং পাওয়ার সুইচ (D)। এদের অত্তা প্রয়োজন নেই কিন্তু এগুলো ফিউজকে নিরাপদ করবে এবং এর ব্যবহার সহজ করবে। মোমেন্টারী সুইচ ব্যাটারী থেকে SCR -এ পাওয়ার প্রবাহ কেটে দেয়। এর প্রয়োজন আছে কেননা SCR পুনরায় খুলবে (সার্কিট অসম্পূর্ণ হওয়া) না এমনকি যদিও ঘড়ি থেকে পাল্স নির্গমন বাধাগ্রস্থ হয়। যেকোন অন-অফ সুইচ ব্যবহার করা যায় তবে মোমেন্টারী সুইচ ব্যবহার সহজ এবং এটি ছোট।

পাওয়ার ল্যাম্প ফায়ারিং তারের মধ্যে দিয়ে পাওয়ার (ডেটোনেটরকে জ্বালানের জন্য) প্রবাহিত হওয়াকে নির্দেশ করে। এটা জানা দরকার যে ডেটোনেটরটি একটি সক্রিয় পাওয়ার উৎসের সঙ্গে সংযুক্ত কিনা কেননা এটি যদি তাৎক্ষণিক ডেটোনেট করে তবে ফলাফল কি হবে।

ঘড়িটি বাজার থেকে খুব সহজেই পাওয়া যাবে। এবং দামও সস্তা। শুধুমাত্র একটি নতুন এবং নির্ভয়োগ্য ব্যাটারী এতে লাগানো লাগতে পারে। তিনটি প্রধান ঘড়ি হচ্ছে ট্রাভেল এলার্ম, ডিজিটাল এলার্ম ঘড়ি, কাউন্টডাউন টাইমার।

ভিন্ন ভিন্ন ঘড়ির এলার্ম বাজারের কৌশল বিভিন্ন হয়। ট্রাভেল এলার্ম ঘড়িতে এলার্মের জন্য একজোড়া ক্ষুদ্র কাসা বা পিতলের স্প্রিং থাকে। কাউন্টডাউন টাইমারে দুইটি তার একটি বাজারের সঙ্গে সংযুক্ত থাকে। এটি ডিক্ষ আকারে থাকতেও পারে আবার নাও থাকতে পারে।

ঘড়ির কেস খুলে ফেলুন এবং এলার্ম বাজারকে দেখুন। একটি মাল্টিমিটারের সাহায্যে পজিটিভ সংযোগটি বের করুন। এখানেই এসসিআর-এর গেট (পা) লাগাতে হবে।

প্রস্তুত প্রণালীঃ

সার্কিট সংযুক্তকরণ খুবই সাধারণ কাজ। নিরাপত্তার জন্য ডেটোনেটরের সঙ্গে সেফটি সুইচ লাগাতে হবে। এটি অপারেশনকে সহজ এবং নিরাপদ করবে। ডেটোনেটরটি সার্কিটে সংযুক্ত থাকা অবস্থায়ও টাইমারকে সেট করা এবং টেস্ট করা সম্পূর্ণ নিরাপদ। নিরাপত্তার আরেকটি দিক হচ্ছে যে তারটি ডেটোনেটরে ঘায় তাকে একটি শুরু স্টেরিও হেডফোন জ্যাকের সাথে লাগানো হয়। ডেটোনেটরের তার হেডফোনের প্লাগের সাথে লাগানো হয়। টাইমারটি চালু করে যখন দেখা হয় যে সার্কিটটি নিরাপদ তখন ডেটোনেটরটিকে জ্যাকে লাগানো হয়।

SCR সুইচিং সার্কিট

অপারেশনঃ

- টাইমারটি সেট করুন বা নির্দিষ্ট সময়ে এলার্ম দিন।
- পাওয়ার ল্যাম্পটি দেখে নিশ্চিত হোন ডেটোনেটরের তারে পাওয়ার আছে কি না।
- যদি সবকিছু ঠিক থাকে তবে ডেটোনেটরটিকে সংযুক্ত করুন।
- কাউন্টডাউন চালু করুন।

নেটওয়ার্কে ডেটোনেটর তারের সঙ্গে একটি বাজার সংযুক্ত করে ডিলেটিকে কয়েকবার পরীক্ষা করুন। ডিলেটি তৈরীর কাজ শেষ হলে এবং বাজার শব্দ করলে SCR -কে রিসেট করে ডেটোনেটরের তার থেকে পাওয়ার প্রবাহ থামাতে ব্যাটারীটি খুলে ফেলুন বা মোমেন্টারী সুইচকে নিচে নামান।

শর্ট ডিলে ইলেক্ট্রনিক সার্কিট

এই ডিভাইসটি সহজে তৈরী করা যায়, সঠিক, নির্ভরযোগ্য এবং সন্তা। পার্টসগুলো সহজলভ্য এবং দাম পাচ ডলারের নিচে। ভিন্ন ভিন্ন সমন্বয়ের মাধ্যমে ডিলে ১০ সেকেন্ড থেকে তিন ঘন্টা পর্যন্ত হয়। ডিলের দৈর্ঘ্য নির্ণয়ের জন্য আর-২ এবং সি-১ (চার্ট দেখুন)-এর মান ব্যবহৃত হয়।

শর্ট ডিলে ইলেক্ট্রনিক সার্কিট

সার্কিট এবং এর বিভিন্ন অংশের বর্ণনা:

১. আর-১ - এটি একটি স্থির রেজিস্টর, মান ৪.৭ কে। এটি কখনো পরিবর্তিত হয় না।
২. আর-২ - এটি আরেকটি রেজিস্টর। এটি স্থির, পরিবর্তনশীল বা এদুয়ের সময়েও হতে পারে। একটি পরিবর্তনশীল রোধের (পোটেনশিওমিটার) ব্যবহারের মাধ্যমে প্রয়োজনানুসারে ডিলেকে একটি নির্দিষ্ট রেঞ্জের মধ্যে এডজাষ্ট করা যায়।
৩. সি-১ - এটি একটি ক্যাপাসিটর, একটি সাধারণ ইলেক্ট্রনিক উপাদান। একাকী বা আর-২ এর সঙ্গে সময়ের মাধ্যমে (উভয়) এর মান বাড়নোর মাধ্যমে ডিলেকে দীর্ঘস্থায়ী করা যায়। ক্যাপাসিটর (এবং রেজিস্টর) অনেক ইলেক্ট্রনিক সামগ্রীর দোকানে বা এসব দোকানে খোজাখুজি করলে পাওয়া যেতে পারে।
৪. কিট-১ - এটি একটি 2N3906 ট্রানজিস্টর। অন্যান্য মডেলের ট্রানজিস্টরও ব্যবহার করা যায়। নিজে না বুঝলে সাপ্লায়ারের সাথে আলোচনা করতে পারেন।
৫. 555IC চিপ - এটি এ যাবৎ আবিস্কৃত IC চিপগুলোর মধ্যে জনপ্রিয়তম এবং অনেক সার্কিটে দেখা যায়। সন্তা এবং বিবিধ ব্যবহারোপযোগী।

এটি তৈরীর আগে বা যেকোন সার্কিট তৈরীর আগে বেসিক ইলেক্ট্রনিক্স সম্পর্কে কিছুটা পড়লেখা করা উচিত। ইলেক্ট্রনিক্স পরীক্ষা করার সময় ডিলে বা অভিজ্ঞতা অর্জনের জন্য পরীক্ষা করার সময় সোন্দার ছাড়া “ব্রেডবোর্ড” ব্যবহার করা ভাল।

এই সার্কিট ১৪ এম রেজিস্টেস এবং ১০০০ ক্যাপাসিটেস ক্ষমতা সম্পর্ক (Maxed out)। কোন বিশেষ কারনে যখন ক্যাপাসিটরের মান বাড়াবেন তখন রেজিস্টরের মান বাড়নোর দিকেও খেয়াল রাখতে হবে। সংযুক্ত শেষ করার পর ডিলের সময় আবার পরীক্ষা করে নিশ্চিত হতে হবে যে কোন পরিবর্তন হয়নি। সোন্দারিং করার জন্য রেজিস্টেস বেড়ে যায় এবং সময় পরিবর্তিত হয়ে যায়। সবকিছু সংযোজন এবং পরীক্ষা করা হয়ে গেলে ইপোর্সি রেজিন বা এজাতীয় বন্ধ দিয়ে থ্রেপ দিতে হবে যা ক্ষয়ক্ষতির হাত থেকে ইলেক্ট্রনিক উপাদানকে রক্ষা করবে।

কিছু চমৎকার পাওয়ার সুইচ, আর্মিং সুইচ এবং ফায়ারিং ল্যাম্প সংযোজনের মাধ্যমে ডিভাইসটিকে সর্বোচ্চ নিরাপত্তা সহকারে নড়াচড়া বা কার্যকর করা যায়। সবকিছু সম্পর্ক হলে পাওয়ার সুইচ সক্রিয় করা হয়। লাল বাতিটি যদি না জ্বলে তবে আর্মিং সুইচটি অন করা হয়। বেমাটি এখন সক্রিয় এবং ডিলে সময় পরে এটি বিক্ষেপিত হবে।

৮-রেঞ্জ ইলেক্ট্রনিক টাইমার

এই ডিভাইসটি আগেরটির মতই কেননা এটিতেও 555IC চিপ কেন্দ্রীয়ভাবে ব্যবহৃত হয়। 4017 ডিকেড কাউন্টার সংযোজনের মাধ্যমে ডিলেকে বর্ধিত করা যায়। 555-এ এমনভাবে তার লাগানো হয় যাতে এটি একটি নির্দিষ্ট সময় পর পর 4017-র দিকে একটি পাল্স নির্গত করে। এরকম 10টি পাল্স গ্রহণ করে প্রথম 4017-টি পূর্বের চিপের ডিলে সময়কে 10 দিয়ে গুণ করবে। প্রয়োজন অনুযায়ী সংযোজন করা যায় কিন্তু তা উদাহরণের মতো করে। যেমন, পাঁচটি ডিকেড কাউন্টার দুই মাসের ডিলে তৈরী করবে।

অংশগুলোর মান পরিবর্তন করার মাধ্যমে পূর্বের উদাহরণের মত মূল সময় (555 কর্তৃক পাল্স নির্গত করার ফ্রিকোয়েন্সি)-এর পরিবর্তন করা যায়। অনেক ডিকেড কাউন্টার ব্যবহার করার পরিবর্তে বড় মানের যন্ত্রাংশ (পূর্বের উদাহরণের মতো) ব্যবহার করতে প্রযুক্ত হবেন না। এটি একই ধরণের সার্কিট নয় এবং বড় মানের যন্ত্রাংশ ব্যবহার করলে তা সার্কিটকে অস্থিতিশীল করে তোলে এবং অনেক ঝামেলা করে। একটি নির্ভরযোগ্য ডিলে অতীব জরুরী। কিভাবে যন্ত্রাংশের মান থেকে ডিলে নির্ণয় করা যায় তা ক্যালকুলেশন চার্টে দেখানো হলো।

ক্যালকুলেশন চার্টঃ

$$F = (\text{Frequency of output}) 0.693 \times (\text{Constant value for 555 IC}) \times 0.0001 \times (\text{C-1, 100-uf capacitor}) \times 1,000,000 \times (\text{R-1, 1M resistor}) + 2 \times 4700 \times (\text{R-2, 4.7K resistor})$$

$$\text{বা, } F = 0.693 \times 0.0001 \times 1,009,400$$

$$\text{বা, } F = 69.95 \text{ seconds}$$

555 প্রতি 69.95 সেকেন্ডে 4017 চিপে একটি করে পাল্স পাঠাবে এবং স্বয়ংক্রিয়ভাবে নিজেকে রিসেট করবে। 10টি পাল্স গ্রহণ করে (699.5 সেকেন্ড ডিলে বা 11 মিনিট 39 সেকেন্ড) এটি দ্বিতীয় 4017 চিপে একটি পাল্স পাঠাবে এবং রিসেট করবে। দ্বিতীয় 4017 চিপ 10টি পাল্স গ্রহণ করে (116.5 মিনিট ডিলে) একটি পাল্স নির্গত করবে এবং রিসেট করবে। এবং এভাবে চিপের পরিমান অনুসারে সামনে এগুবে। এখানে একটি উদাহরণ দেখানো হলো। যন্ত্রাংশগুলো পরিবর্তন করেও প্রয়োজনীয় ডিলে পাওয়া সম্ভব।

উদাহরণঃ 555 + 100-uf capacitor (C-1) + 1M resistor (R-1) + 4.7K resistor (R-2) 555

$$= 69.95 \text{ seconds } 4017-1$$

$$= 699.5 \text{ seconds } 4017-2$$

$$= 116.5 \text{ minutes } 4017-3 + 19 \text{ hours, 25 minutes } 4017-4$$

$$= 194 \text{ hours, 18 minutes, or approximately 8 days } 4017-5$$

$$= \text{Approximately 80 days}$$

ব্যাটারী সম্পর্কিত একটি নোটঃ

যেকোন ইলেক্ট্রনিকের বিস্ফোরক ডিভাইসের ক্ষেত্রে কেবলমাত্র নতুন ব্যাটারী ব্যবহার করতে হবে। আবহাওয়া ঠান্ডা হলে (৫০ ডিগ্রি ফারেনহাইটের নিচে) অ্যালকালাইন ব্যাটারী ব্যবহার করতে হবে। এর চেয়ে কম তাপমাত্রায় ব্যাটারীটিকে অন্তরিত (ইন্সুলেটেড) হতে হবে। এক্সপান্ডিং ফোম ইনসুলেশন-এর ক্ষেত্রে একটি ক্যান থেকে স্প্রে করা হয়, এটি ভালো কাজ করে। এই অন্তরক উচ্চ তাপমাত্রায়ও ব্যাটারী এবং সার্কিটকে রক্ষা করবে।

বিভিন্ন প্রকার বোমা

ইস্প্যান্ট বোমা

সাধারণ মিশ্রণ প্রণালীঃ

সূচনাকারী পদার্থ	প্রধান চার্জ	বিস্ফেরক
১৫%	১৫%	৭০%

যেমনঃ লেড অ্যাজাইড বা ফালমিনেট যেমনঃ টি.এন.টি যেমনঃ ইয়েলো পাউডার

বিশ্বেঃ যখন শুধুমাত্র ইয়েলো পাউডার ব্যবহৃত হবে তখন আনুপাতিক হার নিম্নরূপ হবে। এটি তেমন শক্তিশালী হবে না।

সূচনাকারী পদার্থ	প্রধান চার্জ
১৫%	৮৫%

যেমনঃ লেড অ্যাজাইড বা ফালমিনেট যেমনঃ ইয়েলো পাউডার

চিত্রঃ ইস্প্যান্ট বোমা

প্রস্তুত প্রণালীঃ

- সূচনাকারী পদার্থ পাউডার হিসাবে থাকতে হবে। হাত বা আঙুলের সাহায্যে পাউডার করতে হবে। চালুনী ব্যবহার করা যাবে না।
- প্রধান চার্জকে সতর্কতার সাথে গুড়া করুন।
- বোমাটিকে সতর্কতার সাথে যথাযথভাবে ভরুন। বোমার মধ্যে কোন খালি জায়গা থাকা যাবে না। খালি জায়গা খুবই বিপদজনক কেননা তা সূচনাকারী পদার্থকে ঘর্ষণের আঘাতজনিত কারনে বিস্ফেরিত করতে পারে।
- যদি কোন খালি জায়গা থাকে এবং তা পরিমাণে অল্প হয় তবে তা তুলা বা লোহার টুকরা দ্বারা ভরুন।
- যে লোহার টুকরাগুলো ব্যবহার করা হয় সেগুলো যদি বড় হয় তবে তাতে ছিদ্র করে বিষ ঢুকিয়ে দিন এবং ছিদ্রটি মোম দিয়ে আটকিয়ে দিন। অথবা টুকরাগুলো গরম করে বিষের মধ্যে ডুবান এবং বোমাতে ব্যবহার করুন।
- বোমাটিকে একটি লাঠির সাহায্যে ছুড়ুন। বোমাটিকে একটি লাঠির সাথে বেধে প্রথমে ঘোরান এবং তারপর ছুড়ে দিন। হঠাতে করে ঝাকি দিয়ে ছোড়ার চেয়ে এটি নিরাপদ।

নোটঃ

- বোমার সূচনা নিশ্চিত করার জন্য স্টীল কন্টেইনারের উভয় পাশে স্টীলের টুকরা বা বল রাখতে হবে।
- বোমা এবং বলের মধ্যে কিছুটা ফাকা জায়গা রাখতে হবে।
- বোমাটিকে সিল করার পর একে মৃদুভাবে ঝাকাতে হবে যাতে বলগুলোর সঙ্গে চার্জ বা মিশ্রণটি মিশ্রিত হতে পারে।
- লক্ষ্য বস্ত্র আকৃতি যেন কঠিনাকার হয় সে বিষয়ে লক্ষ্য রাখতে হবে যাতে করে বোমাটি বিস্ফেরিত হ্বার সমূহ সম্ভাবনা থাকে।

ইস্প্যান্ট বোমা তৈরীর নতুন পদ্ধতিঃ

যেকোন শক্তিশালী মিশ্রণ (পটাশিয়াম ক্লোরেট, অ্যামোনিয়াম নাইট্রেট বা ইউরিয়া নাইট্রেট) ৯০% এবং উভয় পাশে স্টীলের টুকরা বা বলের সাথে ১০% লেড অ্যাজাইড রাখলে বোমাটি ভালো কাজ করবে এবং নিশ্চয়তা সহকারে বিস্ফেরিত হবে।

পরীক্ষাঃ ইস্প্যান্ট গ্রেনেড (১৭-১২-৯৫)

মিশ্রণঃ পটাশিয়াম ক্লোরেট ($KClO_3$) + সালফার (S)

উদ্দেশ্যঃ একটি ইস্প্যান্ট গ্রেনেড তৈরী করা।

উপকরণ	পরিমাণ
পটাশিয়াম ক্লোরেট ($KClO_3$)	২২ গ্রাম
সালফার (S)	২ গ্রাম
ডেটনেটর (লেড অ্যাজাইড)	১ গ্রাম
ফিউজ	১
লোহার কন্টেইনার	১
ছোট বল/টুকরা (প্রতিটি ৫মিমি)	১৬
প্লাস্টিক পাইপ	৭ ইঞ্চি

প্রস্তুত প্রণালীঃ

- লোহার কন্টেইনারের নিচে ৮ টি ছোট বল রেখেছিলাম।
- বলগুলোর উপর $1/2$ গ্রাম লেড অ্যাজাইড রেখেছিলাম।
- লেড অ্যাজাইড-এর উপর মিশ্রন রেখেছিলাম।
- মিশ্রনের উপর আরও ৮ টি ছোট বল রেখেছিলাম।
- বলগুলোর উপর $1/2$ গ্রাম লেড অ্যাজাইড রেখেছিলাম।
- স্ক্রু দিয়ে আটকে দিয়েছিলাম। (স্ক্রু-র আশেপাশে থেকে সমস্ত মিশ্রন এবং লেড অ্যাজাইড পরিষ্কার করা হয়েছে কিনা নিশ্চিত হোন কেননা স্ক্রু-র ঘষা লেগে বিস্ফোরণ ঘটতে পারে। অন্যদের কাছ থেকে দুরে গিয়ে একাকী স্ক্রু লাগানোর কাজটি করুন।)
- ডায়াগ্রামের মতো করে প্লাস্টিক পাইপের সাথে কন্টেইনারটি টেপ দিয়ে আটকেছিলাম (কন্টেইনারটি যেন উলস্বভাবে অবস্থান করে যাতে ভালোভাবে বিস্ফোরিত হয়।)
- বোমাটিকে পাথরের উপর ছুড়ে দিয়েছিলাম। ঘাসের উপর বিস্ফোরিত হবে না। হঠাতে বাকি দিয়ে ছুড়বেন না। গ্রেনেড ছোড়ার মতো করে ছুড়ুন।

চিত্রঃ ইস্প্যান্ট গ্রেনেড।

ফলাফলঃ ভালোভাবে বিস্ফোরিত হয়েছিল।

সিদ্ধান্তঃ

- তৈরী করা খুবই বিপদজনক। এটি পরিত্যাগ করুন।
- প্রকৃত মিশ্রনে এটি ব্যবহার করা খুবই বিপদজনক। অন্ত পরিমাণ ঝাকিতেই বিস্ফোরণ ঘটে। এটি পরিত্যাগ করুন।
- শার্পনেল তৈরীর জন্য কন্টেইনারের গায়ে দাগ কাটুন। অ্যামেরিকান গ্রেনেডকে অনুকরণ করতে পারেন।

ফ্রাগমেন্টেশন গ্রেনেড

কার্যকর ফ্রাগমেন্টেশন গ্রেনেড উচ্চমাত্রার একটি ব্লক বা কার্টিজ, শার্পনেল, নন-ইলেক্ট্রিক ব্লাস্টিং ক্যাপ এবং ফিউজের (ইনিশিয়েটর হিসেবে) সমন্বয়ে তৈরী করা যায়। শার্পনেল যেমন, পেরেক, বলবেয়ারিং বাইরে আটকানো থাকে।

প্রযোজনীয় বস্তুসমূহঃ

- উচ্চমাত্রার বিস্ফোরক
- নেইল (পেরেক)
- নন-ইলেক্ট্রিক ব্লাস্টিং ক্যাপ

৮. ফিউজ কর্ড
৯. টেপ, স্ট্রিং, তার বা গু

প্রস্তুত প্রণালীঃ

১. স্ট্যান্ডার্ড TNT ব্লক ছাড়া যদি অন্য বিস্ফোরক চার্জ ব্যবহৃত হয় তবে চার্জের কেন্দ্রে ব্লাস্টিং ক্যাপ প্রবেশ করানোর জন্য একটি গর্ত করুন। TNT-কে তুলনামূলক নিরাপত্তার সাথে ড্রিল করা যায়। প্লাস্টিক বিস্ফোরকের ক্ষেত্রে একটি গোলাকার কাঠি ব্যবহার করে চার্জের কেন্দ্রে চাপ দিয়ে একটি গর্ত করুন। ব্লাস্টিং ক্যাপটিকে পুরাপুরি গ্রাস করার জন্য গর্তটিকে যথেষ্ট পরিমাণ গভীর করতে হবে।
২. টেপ বা গু দিয়ে বা বেধে একটি বা দুইটি সারিতে পেরেক বা অন্যান্য শার্পনেলকে বিস্ফোরক বাল্বের সাইডে আটকাতে হবে। ব্লকের চারিদিক শার্পনেল দিয়ে পুরাপুরি ঢেকে দিতে হবে।
৩. ফিউজ কর্ডের একদিকে ব্লাস্টিং ক্যাপকে রাখুন এবং প্লাইয়ার্স দিয়ে খাজ কাটুন।
৪. নোটঃ ফিউজ কর্ডটি কতটুকু লম্বা হবে তা বের করতে একটি জানা দৈর্ঘ্যের কর্ডকে পুড়তে দিন। যদি ১২ ইঞ্চি পুড়তে ৩০ সেকেন্ড লাগে তবে ১০ সেকেন্ডের ডিলের জন্য ৪ ইঞ্চি (১০ সেঁচিঃ) ফিউজ লাগবে ইত্যাদি।
৫. বিস্ফোরক ব্লকের মধ্যে ব্লাস্টিং ক্যাপটি প্রবেশ করান। ফিউজ কর্ডটিকে টেপ দিয়ে বা বেধে জায়গা মতো রাখুন যাতে হোনেড ছোড়ার সময় পড়ে না যায়।

অন্যান্য ব্যবহারঃ

বিস্ফোরক ব্লকের এক দিকে নেইলগুলো লাগিয়ে একটি কার্যকরী, উদ্দেশ্যমূলক মাইন তৈরী করা যায়। বিস্ফোরক ইনিশিয়েটর হিসেবে ট্রিপওয়ার, প্রেসার প্লেট বা মোশন সেন্সর ব্যবহারের সুবিধা বাড়ানোর জন্য একেতে একটি ইলেক্ট্রিক ব্লাস্টিং ক্যাপ ব্যবহার করা হয়।

পাইপ বোমা

ইম্প্রোভাইজড বিস্ফোরক ডিভাইসের মধ্যে পাইপ বোমা খুব সম্ভবত সহজতম। এই বোমার পরিচিত রূপটি হচ্ছে একটি ছোট দৈর্ঘ্যের লোহার পাইপ যার দুই মাথা প্যাচ কাটা ক্যাপের মাধ্যমে বন্ধ করা। পাইপটি কোন একটি নিম্নমাত্রার বিস্ফোরক প্রপেলেন্ট (উৎক্ষেপক) দিয়ে পূর্ণ থাকে (সাধারণত গান পাউডার বা ম্যাচের বারুদ)। উচ্চমাত্রার বিস্ফোরকও পাইপ বোমায় অবশ্যই ব্যবহৃত হতে পারে তবে সেক্ষেত্রে পাইপ শুধুমাত্র ভেঙ্গে টুকরা টুকরা হয়ে যাবার জ্যাকেট (স্প্লিটার) হিসেবে ব্যবহৃত হয় এবং বিস্ফোরণকে ধরে রাখায় অংশ গ্রহণ করে না। অতএব কার্যতঃ এটি পাইপ বোমা নয়। একটি জ্বলনকারী, এবং একটি ফিউজ পাইপের বডি বা ক্যাপের ছিদ্র দিয়ে পাইপের মধ্যে প্রবেশ করাতে হবে। ছড়িয়ে পড়ার জন্য পেরেক বা বল বেয়ারিং পাইপ বডির বাইরে সেটে দেয়া হয় যাতে এই ডিভাইসটির অনেক দিকে ক্ষতি করার সামর্থ্য থাকে মোটামুটি ১০ মিটার ব্যাসার্ধের মধ্যে। পাইপ বোমা যেকোন টিউব ব্যবহার করে করা যায়। কিন্তু শক্ত পাইপ চূর্ণবিচূর্ণ হবার পূর্বে বিস্ফোরণ প্রক্রিয়াকে ভালোভাবে ধারণ করতে পারে কাজেই বেশ শক্তিসম্পন্ন বিস্ফোরণ পাওয়া যায়। নিরাপদ প্রস্তুতকরণ প্রক্রিয়া, ভালো কার্যকারীতা, সর্বোচ্চ শক্তি এবং ভয়াবহৃতার দিকে লক্ষ্য রেখে পাইপ বোমা তৈরীর কিছু ধারণা নিচে দেওয়া হলো।

ক্ল্যাসিক পাইপ বোমার ডিজাইন

নিরাপদ প্রস্তুতিঃ

একটি পাইপ বোমা একটি মারাত্মক এবং স্বাভাবিকভাবেই অনিরাপদ ডিভাইস। অনেক বোমাবাজ তাদের ডিভাইস যথাসময়ের পূর্বে প্রজ্ঞালিত হবার কারণে মারা গেছে, পঙ্ক হয়ে গেছে, আহত হয়েছে বা অন্ধ হয়েছে এবং পরিণামে ধরা পড়ে গেছে।

১. স্থির বিদ্যুতের কারণে স্ফুলিঙ্গ উৎপন্ন হওয়া। এজাতীয় স্ফুলিঙ্গের উৎপন্ন হওয়া কমাতে পাইপের ভিতরে প্লাস্টিকের ব্যাগ দিয়ে তারপর প্রোপেলেন্ট ভরা হয়।
২. তাপ উৎস থেকে স্ফুলিঙ্গ বা শিখা। যেকোন বিস্ফোরক ডিভাইসকে কখনোই উন্মুক্ত শিখা বা স্ফুলিঙ্গ যেমন, সিগারেট, কাঠের স্টোভ, মোমবাতি, গ্যাস ল্যাম্প ইত্যাদির কাছে নেয়া যাবে না।
৩. বড় রকমের আঘাত বা বিস্ফোরণ শক্তি। যদি একটি পাইপ বোমা পড়ে যায় বা জোরে আঘাত করা হয়। তবে বোমাটি সরু বা পাতলা হলেও এটি বিস্ফোরিত হতে পারে। অপর একটি বিস্ফোরণের শক্তি ওয়েভ, ফায়ার-আর্ম ডিস্চার্জ করা বা এমনকি একটি গাড়ির ইঞ্জিনের শক্তিশালী ব্যাক-ফায়ার-এর কারণেও বিস্ফোরণ ঘটতে পারে। একে বলা হয় সংবেদনশীল বিস্ফোরণ। এগুলো সাধারণত ঘটে না কিন্তু পাইপ বোমা তৈরী করার সময় এজাতীয় সম্ভাবনা থিতে দেখা উচিত।
৪. পাইপের প্যাচে পাউডার জড়িয়ে থাকা। এটি আপাতদৃষ্টিতে অসময়ে বোমা বিস্ফোরণের খুবই সাধারণ একটি কারণ। পাইপের প্যাচে পাউডার থাকলে পরে যখন পাইপের ক্যাপ লাগানো হয় তখন পাউডার-এ ঘষা লাগার মাধ্যমে পাউডার জ্বলে ওঠে এবং বিস্ফোরিত হয়। এ অবস্থা থেকে পরিত্রানের উপায় হচ্ছে একটি টুথব্রাস দিয়ে প্যাচগুলো পরিষ্কার করে এবং শেষ পর্যায়ে পাইপ এবং ক্যাপের প্যাচে কিছুটা ভেসলিন লাগিয়ে তারপর ক্যাপ লাগানো। এছাড়া প্লাস্টিক ব্যাগে পাউডার ভরে বা ক্যাপের পরিবর্তে অন্যকিছু ব্যবহার করে যেমন, বড়ো ব্যবহার করে এজাতীয় সমস্যা থেকে পরিত্রান পাওয়া যায়।

শক্তি বা শক্তিশালী বাড়ানো

১. যদি হাতে তৈরী প্রোপেলেন্ট ব্যবহার করেন তবে যতটা মিহি করা সম্ভব হয় করুন। তবে নিশ্চিত হোন যে এটি শুকনা এবং ভালোভাবে মেশানো হয়েছে। যদি বানিজ্যিকভাবে ব্যবহৃত ব্ল্যাক পাউডার ব্যবহার করেন তবে FFFFg খুবই চমৎকার এবং এটি একটি ভালো ফিলার হিসেবে কাজ করে। যদি ধোয়াইন পাউডার সহজলভ্য হয় তবে DBSP ব্যবহার করুন কেননা এটি SBSP-এর চেয়ে বেশি শক্তিশালী। সম্ভবত সবচেয়ে শক্তিশালী নিম্নমাত্রার বিস্ফোরক ফিলার হচ্ছে পটশিয়াম ক্লোরেট পাউডার।
২. ধৰ্মসংক্রমতা বাড়ানোর জন্য পাইপের গায়ে স্ফুলাকৃতির বা সুচালো কিছু ফিতা বা টেপ দিয়ে লাগান যেমন, পেরেক, বল বেয়ারিং, নাট এবং বল্টু এবং যেকোন স্ফুলাকৃতির স্ক্র্যাপ মেটাল ইত্যাদি।

ভালো কার্যকারীতা

১. যদি একটি ফিউজ ব্যবহার করেন তবে নিশ্চিত হোন যে এটি শুকনা এবং ভালো অবস্থায় আছে। ভাল কার্যকারিতার জন্য এরকম তিন চারটি ফিউজ একত্রে পেচিয়ে ব্যবহার করা একটা ভালো উপায়। যদি বানিজ্যিকভাবে ব্যবহৃত ফিউজ না পাওয়া যায় তবে হাতে তৈরী একটি উত্তম ফিউজ হচ্ছে ‘স্পার্কলর’। এগুলো উজ্জ্বলভাবে জ্বলা আতশবাজি যা বাচ্চাদের জন্মদিনের কেকে ব্যবহৃত হয়। এটি একটি সোজা ধাতব তারের গায়ে ধীরে ধীরে জ্বলে এরপে প্রোপেলেন্ট আবরণ হিসেবে লাগানো থাকে। এগুলো সস্তা, খুবই সাধারণ এবং খুবই ধীরে এবং ভালোভাবে পোড়ে এবং যাকে নেভানো প্রায়ই অসম্ভব।
২. যদি বোমার মধ্যে একটি হাতে তৈরী লাইট বাল্ব স্ফুলিং ব্যবহার করেন তবে আপনি যে ডিজাইনটি ব্যবহার করেছেন ওটার ব্যবহারিক প্রয়োগের ব্যাপারে নিশ্চিত হোন। বোমার ভিতরের খালি জায়গা ভালোভাবে প্রোপেলেন্ট দ্বারা পূর্ণ করতে হবে যাতে স্ফুলিংটি যখন জ্বলবে তখন যেন প্রোপেলেন্টের সাথে লেগে থাকে।
৩. যেকোন সময় নির্দেশক, ঘড়ি বা ডিলেকে দুইবার চেক করুন। নিশ্চিত হোন যে তারগুলোর সংযোগ ঠিক আছে এবং যেখানে প্রয়োজন নতুন ব্যাটারী ব্যবহার করা হয়েছে। প্রকৃত বোমায় কখনোই টেষ্ট না করে কোন ডিজাইন, সিস্টেম বা প্রোপেলেন্ট ব্যবহার করবেন না।

নেটুং স্মরণ রাখবেন একটি অবিস্ফোরিত বোমা ইনভেষ্টিগেটরদের জন্য শেষ চিহ্ন যার সাহায্যে তারা আপনি কে এবং তার তথ্য প্রমান পেয়ে যেতে পারে। একটি বোমা তৈরী হওয়ার পর এর কাজ হচ্ছে বিস্ফোরিত হওয়া ... যথাসময়ে।

সুবিধাজনক পাইপ বোমা তৈরীর জন্য কিছু ধারণাঃ

এক ফুট পাইপ কেটে এবং প্যাচ কেটে রাখা পাইপ সেকশন এবং ক্যাপ ব্যবহার না করে কমপক্ষে এক ইঞ্চিং অন্তঃব্যাস বিশিষ্ট বাতিল করা পাইপ থেকে এক ফুট অংশ কেটে নিন। প্রাতঃগুলো বন্ধ করার জন্য ক্যাপ না কিনে অটো বিডি ফিলার যেমন বড়ো ব্যবহার করুন। এটি করার জন্য প্রথমে প্রতি মাথায় পরিধি বরাবর ড্রিল দিয়ে ছয় বা আটটি ১/৪ ইঞ্চিং ফুটা করুন। এরপর এক প্রান্ত এক ইঞ্চিং গভীর করে ভরার জন্য যথেষ্ট পরিমাণ বড়ো মেশান এবং একটি কাগজের উপর উচু করে রাখুন। পাইপের একমাথা মেশানো বড়োর উপর রাখুন। লক্ষ্য রাখুন যাতে এক ইঞ্চিং পরিমাণ পূর্ণ হয় এবং ফুটোগুলো দিয়ে বাইরের দিকে কিছুটা বের হয়ে যায়। এবার বড়োকে শক্ত হতে দিন। পাইপের কেন্দ্রে ফিউজ এবং প্রজ্জলিত করার তারের জন্য একটি ছিদ্র করুন। বন্ধ মাথা নিচের দিকে দিয়ে পাইপটিকে খাড়া করুন। পাইপের অর্ধেক পর্যন্ত প্রোপেলেন্ট দিয়ে পূর্ণ করুন। ফিউজ এবং ইগনাইটারকে বিপরীত দিকের পাইপের গায়ের সঙ্গে আঠা দিয়ে লাগানোর জন্য কিছুটা জায়গা খালি রাখুন। আঠা শুকিয়ে গেলে আবার প্রোপেলেন্ট দিয়ে পূর্ণ করতে থাকুন এবং উপর থেকে এক ইঞ্চিং পর্যন্ত খালি রেখে পূর্ণ করুন। বড়ো দিয়ে খালি জায়গা পূর্ণ করুন এবং লক্ষ্য রাখুন যাতে বড়ো ফুটোগুলো দিয়ে বাইরের দিকে কিছুটা বের হয়ে যায়। এবার বড়োকে শক্ত হতে দিন। এই বড়ো ক্যাপ পাইপ বোমের চাপকে কিছুসময় ধরে রাখবে এবং লোহার পাইপকে নিজে থেকেই টুকরা টুকরা হয়ে যাওয়া নিশ্চিত করবে। এই পাইপ বোম ডিজাইন আসলেই ভালো কাজ করে এবং সস্তা, তৈরী করা নিরাপদ এবং পাইপ সেকশন এবং ক্যাপ কেনা থেকে কম তথ্যপ্রমান রাখে।

উন্নত পাইপ বোম ডিজাইনঃ

কিছু পরীক্ষার পর এমন একটি পাইপ বোমা তৈরী করা সম্ভব হয়েছে যা মেটাল ডিটেক্টরকে ফাঁক দিতে সক্ষম। এক্ষেত্রে PVC পাইপ বডি হিসেবে ব্যবহৃত হয়। এটি এক ফুট PVC সেকশন যা কেনাও যেতে পারে আবার তৈরী করেও নেয়া যেতে পারে। ক্যাপ কিনে PVC সিমেন্ট দিয়ে আটকানো যেতে পারে বা বড়ো ক্যাপও ব্যবহার করা যেতে পারে। এই ডিজাইনে আমরা কোন ধাতু ব্যবহার করবো না সুতরাং আমাদের ফিউজ বা প্রজ্ঞালক এবং ডিলে অবশ্যই অধাতব হতে হবে। এবং আমাদের শুদ্ধ ধারালো অংশও ধাতব হওয়া যাবে না এক্ষেত্রে মার্বেল পাইপ বডির সঙ্গে আটকে দিতে হবে যা ভালই কাজ করবে। এই বোমা ধাতব বোমার মতো অতটা শক্তিশালী হবেনা কেননা এর PVC পাইপ বিস্ফোরিত করার গ্যাসকে বেশিক্ষণ ধরে রাখতে পারেনা যা শক্তিশালী বিস্ফোরনের জন্য অপরিহার্য। কিন্তু যদি এটি সঠিকভাবে তৈরী করা হয় এটি পাচ থেকে সাত মিটার ব্যাসার্ডের মধ্যে ভালই ক্ষতিকর তাঙ্গব চালাবে।

মেইল বোমা

এধরনের ডিভাইসে একটি খাম বা ছোট প্যাকেজ থাকে যাতে বিস্ফোরক ডিভাইস থাকে এবং যা খাম খোলা মাত্র বা রিমোট কন্ট্রোলের সাহায্যে ডেটোনেট করা হয়। মেইল বোম দুই ধরণের

লেটার বোমা

লেটার বোমা প্যাকেজ বোমার চেয়ে কম সন্দেহ তৈরী করে। এই ডিভাইসে একটি খাম থাকে যাতে ডেটোনেটের সহ বিস্ফোরক থাকে খোলা মাত্রই বিস্ফোরিত হওয়ার কোশল থাকে। সাধারণ বাণিজ্যিক খাম বা বড় ফোন্ডার ব্যবহৃত হতে পারে। সমস্যা হচ্ছে খামের ভিতরের অল্প পরিমাণ জায়গা। এজন্য খুবই শক্তিশালী উচ্চ মাত্রার বিস্ফোরক প্রয়োজন। শীট বিস্ফোরকের মধ্যে M-118 বা M186 এজাতীয় কাজের জন্য উন্নত। সেনাবাহিনীর শীট বিস্ফোরক সহজে পাওয়া সম্ভব নয় তবে শীট বিস্ফোরক কিভাবে তৈরী করা যাবে তা এখানে হাতে তৈরী বিস্ফোরক অধ্যায়ে দেওয়া হয়েছে। শীট বিস্ফোরককে খামের মাপে সাইজ করে বসানো হয় এবং ডেটোনেটের সেট করা হয় এবং খাম খোলামাত্র বিস্ফোরিত হবার সবচেয়ে প্রমাণিত পদ্ধতি হচ্ছে মিউজিক্যাল হিটিং কার্ড। এটি এমন একধরনের কার্ড যা খোলা মাত্র একটি ক্ষুদ্র স্পিকারে একটি টোন বাজানো হয় যা একটি ঘড়ির ব্যাটারির সাহায্যে চলে। এই তৈরী করা সার্কিটটির স্পিকারের সংযোগস্থলে ডেটোনেটের (অধিক শক্তিসম্পন্ন ব্যাটারী প্রয়োজন) সংযোগ করা হয় এবং কার্ডের মধ্যে শীট বিস্ফোরক এবং ডেটোনেটের রাখা হয়।

এই ডিভাইসের বিশেষ অসুবিধা হচ্ছে এটি অপরেটরকে খুব বেশি পরিবর্তনের সুযোগ দেয় না। সন্দেহের উদ্দেশ্যে না করে ক্ষয়ক্ষতি বাড়ানোর কোন কিছু যোগ করার কোন পথ নেই। এজাতীয় আক্রমনের প্রধান লক্ষ্য হচ্ছে মুখ্য ব্যক্তিকে ধ্বংস করা এবং এটি একমাত্র সম্ভব যদি ঐ ব্যক্তি আপনার ডিভাইসকে কোনভাবে সন্দেহ না করে।

প্যাকেজ বোমা

এজাতীয় ডিভাইসের ক্ষেত্রে কি ধরনের বিস্ফোরক ডিভাইস ব্যবহার করবে সে বিষয়ে ব্যবহারকারীর বেশ কয়েকটি অপশন থাকে। একটি নিম্নমাত্রার বিস্ফোরকের পাইপ বোমা বা উচ্চমাত্রার বিস্ফোরকও ব্যবহৃত হতে পারে। এটা নির্ভর করে ব্যবহারকারীর নিকট কোন বিস্ফোরকটি সহজলভ্য। প্যাকেজের সাইজ একটি ভিডিও ক্যাসেটের ক্ষেত্রে আকৃতি থেকে শুরু করে একটি জুতার বাল্ব বা এর চেয়ে বড়ও হতে পারে যাতে একটি শক্তিশালী বোমা তৈরীর জন্য যথেষ্ট জায়গা থাকে।

হাত দিয়ে দেয়া যায় এরকম প্যাকেজের উপর ভিত্তি করে এই ডিভাইসটি অনেক প্রকার হতে পারে। যা একটি তার বা রেডিও নিয়ন্ত্রিত ইনিশিয়েটরের সাথে যুক্ত থাকে। এটি যাকে টাগেটি করা হয়েছে তার দরজায় রেখে আসা হয় এবং যখন তিনি এটি গ্রহণ করেন বা কাছে যান তখন একজন অপারেটর দুর থেকে এর বিস্ফোরণ ঘটান। তার নিয়ন্ত্রিত সিস্টেম যথেষ্ট সহজ। এক্ষেত্রে যা প্রয়োজন তা হচ্ছে বেশ একটি লম্বা তার। যখনই তা স্পর্শ করা হয় তখনই সার্কিট সম্পূর্ণ হয় এবং ইনিশিয়েটর বা ডেটোনেটের পাওয়ার যায়। এটি মনে রাখা দরকার যে যত বেশি লম্বা তার হবে তত বেশি পাওয়ার প্রয়োজন হবে। সুতরাং প্রয়োজনের তুলনায় অধিক ক্ষমতা সম্পন্ন ব্যাটারী ব্যবহার করা দরকার। এটি বেশ বিপদজনক আক্রমণ পত্তা। সুতরাং ধরা না পড়ার জন্য মজবুত কৌশল অবলম্বন করা প্রয়োজন।

ব্যাক প্যাক বোমা

ব্যাক প্যাক বোমা সাধারণত একটি ব্যাক বা বড় ব্যাগে লুকানো থাকে। ব্যবহারকারী ডিভাইসটিকে লক্ষ্যস্থলে নিয়ে যায় এবং এটিকে রেখে আসে। তিনি চলে আসার পরপরই এটি বিস্ফোরিত হয়। একটি ব্যাক প্যাকে বেশ বড় এবং শক্তিশালী ডিভাইস (৬০-৭০ পাউন্ড পর্যন্ত), বিস্ফোরক ও শার্পনেলসহ রাখার জন্য যথেষ্ট জায়গা থাকে। এজাতীয় ডিভাইসের ক্ষেত্রে নিম্ন বা উচ্চ মাত্রার বিস্ফোরক ব্যবহৃত হয়। নিম্নমাত্রার বিস্ফোরকের ক্ষেত্রে ভয়াবহতা বাঢ়ানোর জন্য শার্পনেল ব্যবহৃত হয়। এটি প্রয়োগের সময় খুবই সতর্কতা অবলম্বন করতে হবে। যদি ঠিকমতো তৈরী করা, সেট করা বা বহন করা না হয় তবে তা ব্যবহারকারীকে মাছের খাবারে পরিণত করবে।

গাড়ি বোমা

এজাতীয় বোমার জন্য একটি প্যাসেঞ্জার ভ্যান সবচেয়ে ভালো তবে একটি বড় সেডান বা একটি বড় ট্রাকও যথেষ্ট হতে পারে। বড় ভাড়া করা ভ্যানগুলোকে বাদ দেয়া যেতে পারে। দামী এবং সহজলভ্য নয় যেমন TNT বা C-4 ব্যবহার করার চেয়ে সন্তো এবং হাতে তৈরী বিস্ফোরক ব্যবহার করা উচিত। সবচেয়ে ভালো হচ্ছে AN-FO। যার প্রতি ১০০ পাউন্ডের দাম পড়বে ১৫ ডলার।

সিলিঙ্ক্রিক্যাল ক্যাভিটি শেপড চার্জ (সিলিন্ডার আকৃতির গহ্বরে চার্জ)

একটি আকৃতির চার্জ একটি সাধারণ পাইপ হতে তৈরী করা যায়। এটি ১-১/২ ইঞ্চি (৩-১/২ সেমি) স্টীল ভেদ করবে যা ১-১/২ ইঞ্চি (৩-১/২ সেমি) ব্যাসের গর্ত তৈরী করবে। এধরনের ডিভাইস একটি সামরিক যানকে অকেজো করতে পারবে, নিরাপত্তা দরজা এবং সিন্দুককে ফাটল তৈরী করতে পারবে বা একটি ভারী শিল্প যন্ত্রাংশকে ধ্বংস করতে পারবে।

প্রয়োজনীয় বস্তুসামগ্রী:

১. লোহা বা স্টীলের পাইপ, ২ হতে ২-১/২ ইঞ্চি (৫ থেকে ৬-১/২ সেমি) ব্যাস বিশিষ্ট এবং ৩ থেকে ৪ ইঞ্চি (৭-১/২ থেকে ১০ সেমি) লম্বা।
২. ধাতব পাইপ, ১/২ থেকে ৩/৪ ইঞ্চি (১-১/২ থেকে ২ সেমি) ব্যাস এবং ১-১/২ ইঞ্চি (৩-১/২ সেমি) লম্বা, দুই মাথা খোলা।
৩. প্লাস্টিক ক্যাপ
৪. অধাতব রড, ১/৪ ইঞ্চি (৬ সেমি) ব্যাস বিশিষ্ট
৫. প্লাস্টিক বিস্ফোরক

প্রস্তুত প্রণালীঃ যদি প্লাস্টিক বিস্ফোরক ব্যবহার করা হয়-

১. বড় পাইপটি সমতল মেঝেতে রাখুন। হাতের সাহায্যে এবং আস্তে আস্তে টিপে বিস্ফোরক পাইপে ভরুন। উপরে আনুমানিক ১/৪ ইঞ্চি (৬ মিমি) জায়গা খালি রাখুন।
২. বিস্ফোরকের কেন্দ্রে রডটিকে প্রবেশ করান। গর্তটিকে ছোট পাইপের ব্যাস এবং দৈর্ঘ্যের সমান বড় করুন।
৩. ছোট পাইপটি গর্তে প্রবেশ করান।
৪. গুরুত্বপূর্ণ নিশ্চিত হোন যাতে বিস্ফোরক এবং ছোট পাইপের মধ্যে সরাসরি সংযোগ থাকে। যদি প্রয়োজন পড়ে পাইপের চারপাশে বিস্ফোরক আস্তে আস্তে ঠেসে দিন।
৫. নিশ্চিত হোন যে ওখানে ছোট পাইপের উপরে ১/৪ ইঞ্চি (৬ মিমি) খালি জায়গা আছে। যদি প্রয়োজন পড়ে তবে কিছুটা বিস্ফোরক সরিয়ে ফেলুন।
৬. পাইপটিকে উল্টা করে ধরুন এবং প্লাস্টিক ক্যাপের জন্য গর্ত করতে রডটিকে বিপরীত প্রাস্তের বিস্ফোরকের কেন্দ্রে ১/২ ইঞ্চি (১-১/৮ সেমি) ঢোকান।

সাবধানতাঃ চার্জটি ব্যবহারের আগে প্লাস্টিক ক্যাপ প্রবেশ করাবেন না।

ব্যবহার বিধি:

পদ্ধতি ১ঃ যদি ইলেক্ট্রিক প্লাস্টিক ক্যাপ ব্যবহার করা হয়

১. প্লাস্টিক ক্যাপটি এর জন্য তৈরী করা গর্তের মধ্যে রাখুন। সাবধানতাঃ চার্জটি ব্যবহারের আগে প্লাস্টিক ক্যাপ প্রবেশ করাবেন না।
২. পাইপের অপর মাথাটি লক্ষ্যবস্তুর বিপরীতে রাখুন। যদি লক্ষ্যবস্তু সমতলে না থাকে তবে একে লক্ষ্যবস্তুর সঙ্গে পাইপের উপরিভাগকে টেপ বা স্ট্রিং দিয়ে বাধুন।
৩. সাবধানতাঃ নিশ্চিত হোন যাতে পাইপের ভিত্তি লক্ষ্যবস্তুর সাথে সমতলবর্তী থাকে এবং পাইপের ভিত্তি এবং লক্ষ্যবস্তুর মাঝে আর যেন কিছু না থাকে।
৪. ফায়ারিং সার্কিটের সাথে প্লাস্টিক ক্যাপের লিড সংযুক্ত করুন।

পদ্ধতি ২ - যদি নন-ইলেক্ট্রিক প্লাস্টিক ক্যাপ ব্যবহৃত হয়ঃ

১. ফিউজের চারিদিকে ক্যাপে খাজ কাটুন। সাবধানতাঃ ফিউজটি যেন যথেষ্ট লম্বা হয় যাতে ডিলেটি নিরাপদ হয়।
২. পদ্ধতি ১ এর ধাপ ১, ২ এবং সাবধানতা অনুসরণ করুন

৩. প্রস্তুতি সম্পর্ক হলে ফিউজে আগুন জ্বালান।

অগ্নিবোমা

অগ্নিবোমা ডিভাইস কোন কিছু ইচ্ছাকৃতভাবে জ্বালিয়ে দিতে ব্যবহৃত হয়।

পেট্রোল বোমা

উপকরণঃ

উপকরণ	পরিমাণ
পেট্রোল	৯০%
সালফিউরিক এসিড	১০%
হোয়াইট পাউডার/ ব্ল্যাক পাউডার	২০%
কাচের বোতল	১টা

প্রস্তুত প্রণালীঃ

- পরিষ্কার খালি কাচের বোতলে ৯০% পেট্রোল দিয়ে ভর্তি করতে হবে।
- উক্ত বোতলের ভিতরে সালফিউরিক এসিড ১০% ভর্তি করে বোতলের মুখ ভাল করে লাগাতে হবে।
- এবার একটু তুলার মধ্যে পানি লাগিয়ে বোতলের মুখ এবং সমস্ত বড়ি ভাল করে মুছতে হবে যাতে করে এতটুকুও এসিড লেগে না থাকে। অতপর শুকনো তুলা দিয়ে বোতলটি মুছতে মুছতে শুকিয়ে ফেলতে হবে।
- এবার বোতলের মাপে পলিথিন কেটে নিয়ে তার উপর হোয়াইট বা ব্ল্যাক পাউডার বিছিয়ে পলিথিনটি বোতলের বিডিতে ভালভাবে প্যাচিয়ে বেধে দিতে হবে। আপনার পেট্রোল বোমা তৈরী শেষ।
- এবার এই পেট্রোল বোমাটি শক্ত কোন বস্তুতে নিক্ষেপ করলে বোতলের কাচ ভেঙ্গে গেলেই বোতলের সালফিউরিক এসিড বোতলের বাহিরে লাগানো ব্ল্যাক পাউডার-এর সংস্পর্শে আগুন জ্বালাবে এবং তাতে পেট্রোল জ্বলে উঠবে এবং লক্ষ্যবস্তুকে পুড়াবে।

বিদ্রঃ লক্ষ্যবস্তুতে নিক্ষেপ করার পর বোতল যদি না ভাঙ্গে তাহলে পেট্রোল বোমাটি ফাটবে না। সে জন্য এমন স্থানে বা এমন ভাবে নিক্ষেপ করতে হবে যাতে করে বোতলটি ভেঙ্গে যায়।

“ড্রানো” + ব্রেক ফ্লাইড ফায়ার বোম

এটি একটি বিশেষ ধরনের মলোটোভ ককটেইল। এতে কোন ফিউজ বা ইনিশিয়েটর দরকার নেই। একটি কাচের বোতলে ব্রেক ফ্লাইড রেখে তাকে একটি কাগজের ব্যাগে নিচে কিছু “ড্রানো” স্ফটিক রেখে তাতে রাখা হয়। যখন ডিভাইসটি ছোড়া হয় তখন বোতলটি ভেঙ্গে ফ্লাইড এবং ড্রানো মিশে যায় যাতে শিখাসহ বিস্ফোরিত হয়।

মলোটোভ ককটেইল

এতে একটি কাচের বোতলের $\frac{1}{8}$ অংশ দাহ্য তরল ফুয়েল ভর্তি থাকে এবং বোতলের মুখে একটি ফুয়েল ভেজানো কাপড় বা কাগজ ঠেসে দেয়া থাকে। $\frac{1}{8}$ অংশ (আয়তন হিসেবে) তরল সাধান যোগ করা হয় যা ফুয়েলকে আঠালো করবে এবং লক্ষ্যবস্তুর গায়ে লেগে থাকবে। ফিউজ জ্বালানো হয় এবং বোতলটি লক্ষ্যে নিক্ষেপ করা হয়। তারপর এটি চুর্ণ বিচুর্ণ হয়ে মোটমুটি ৪ ফুট ব্যাসার্দের বৃত্তে শিখা ছড়িয়ে পড়ে। বোতলটিকে বেশি ভর্তি করবেন না তাহলে তা আপনার হতেই বিস্ফোরিত হয়ে যেতে পারে।

Classic Molotov Cocktail

নতুন পদ্ধতিতেঃ

যখন বোতলটি ছোড়া হবে তখন বোতল ভেঙ্গে সালফিউরিক এসিড বের হয়ে আসবে এবং পটাশিয়াম ক্লোরেট ও চিনির (১:১) মিশনের সংস্পর্শে আগুন উৎপন্ন করবে।

চিত্রঃ মলোটোভ (পুরাতন ও নতুন পদ্ধতিতে)

নাপাম বোমা

এতে নিম্নোক্ত উপাদান থাকেঃ

বেনজিন (C ₆ H ₆)	চিনি	সাবান (ধাতব)
৯	১	১

সাধারণ সাবান থেকে ধাতব সাবান তৈরীর পদ্ধতিঃ

১. এক টুকরা সাবান নিয়ে ৫ গ্রাম এ্যালুমিনিয়াম সালফেট এবং ৫ গ্রাম ম্যাগনেশিয়াম সালফেট সহ ভালোভাবে ফুটাতে হবে এবং নাড়তে হবে। এটিই ধাতব সাবান।
২. নাপাম বোমার মিশনটি এর সঙ্গে ভালোভাবে মেশান। এখন এটি ব্যবহারের জন্য প্রস্তুত।
৩. আপনি ম্যাগনেশিয়াম পাউডার + এ্যালুমিনিয়াম পাউডার এবং লৌহ পাউডার এবং ফোম এবং ফসফরাস ব্যবহার করতে পারেন। প্রচুর পরিমাণ ফসফরাস ব্যবহার করলে তাকে ফসফরাস নাপাম বোমা বলে। এটি নিজে নিজেই জ্বলে।

চিত্রঃ নাপাম বোমা প্রস্তুতি।

সোডিয়াম বোমা

এতে নিম্নোক্ত উপাদান থাকেঃ

সোডিয়াম (Na)	পানি (H ₂ O)
2Na = 8৬ গ্রাম	2H ₂ O = 3৬ গ্রাম

সতর্কতাঃ

খালি হাতে স্পর্শ করবেন না এবং আপনার চোখের ব্যাপারে খুবই সতর্কতা অবলম্বন করতে হবে। এটি চোখকে পুরাপুরি নষ্ট করে দেয়। একটি বোতলের অর্ধেক পানি দিয়ে ভরতে হবে। সোডিয়ামের দুইটি ক্যাপসুল এবং ক্যালসিয়াম কার্বাইডের দুইটি ক্যাপসুল নিতে হবে। পানির স্পর্শে সোডিয়াম আগুন উৎপন্ন করবে এবং পানির স্পর্শে কার্বাইড হাইড্রোজেন গ্যাস উৎপন্ন করবে। এই ছেট বোতলটি একটি তেলের ট্যাংকারের মধ্যে রেখে দিতে তা বিস্ফোরিত হবে এবং তেলে আগুন ছাড়িয়ে পড়বে।

চিত্রঃ সোডিয়াম বোমা।

ম্যাগনেসিয়াম বোমা

পরীক্ষার জন্য একটি পাথরের উপর ছুড়ে দিলে সালফিটেরিক এসিড পটাশিয়াম ক্লোরেট + চিনির মিশ্রনের সাথে বিক্রিয়া করে আগুন জ্বালাবে। অতপর ম্যাগনেসিয়াম পাউডারে আগুন ধরে স্টীল কট্টেইনারটি বিস্ফোরিত হবে।

চিত্রঃ ম্যাগনেসিয়াম বোমা।

ফসফরাস বোমা ৪-

চিত্রঃ ফসফরাস বোমা।

BKA বোমা ৪-

চিত্রঃ BKA বোমা।

স্মোক বোমা ৪-

উপকরণঃ

পটাশিয়াম ক্লোরেট ($KClO_3$)	চারকোল
৬০%	৪০%

একটি লোহার পাইপে মিশ্নেটি রেখে ফিউজের সাহায্যে প্রজ্ঞালিত করলে দীর্ঘসময় ধরে ধোয়া পাওয়া যাবে।

এটি একটি বস্তাপচা স্মোক বোমা ১৯৯৬ সালের আগে ব্যবহৃত হয়েছিল।

চিত্রঃ স্মোক বোমা।

ফ্লাসিং বোমা ৪-

পটাশিয়াম ক্লোরেট ($KClO_3$)	চিনি	ম্যাগনেশিয়াম
৩	১	১

একটি লোহার পাইপে মিশ্নেটি নিয়ে একটি ফিউজের সাহায্যে জ্বালাতে হবে। এটি দীর্ঘসময় ধরে আলো দিবে।

টাইম ডিলে ফায়ার বোমা

এটি একটি বিশেষ ধরনের মলোটোভ ককটেইল যাতে টাইম ডিলে কৌশল সংযোজন করা থাকে। এক্ষেত্রে ব্যবহারকারী ঘটনাস্থল ত্যাগ করার কিছু পরেই বোমাটি বিস্ফোরিত হয়। এ ধরনের বোমাতে একটি প্লাস্টিকের কটেইনারে ফুয়েল পরিপূর্ণ করে ভরা হয়। একটি ছোট, ওয়াটার প্রচ্ছ পাইপ বোমা কটেইনারের উপরে রাখা হয় এবং টাইম ডিলেতে সময় ঠিক করে দেয়া হয়। যখন পাইপ বোমা বিস্ফোরিত হয় এটি চারিদিকে শিখাকে ছড়িয়ে দেয় এবং বেশ বড় অগ্নিকান্ড তৈরী করে।

Time Delay Firebomb

পরিশিষ্ট

বিস্ফোরকের তুলনামূলক শক্তির তালিকা

তালিকা - ১

ক্রমিক নং	নাম	পাওয়ার	রেঞ্জ/শক্তি-প্রতি সেকেন্ডে
১	RDX	8387	M.P.S
২	PETN	8387	M.P.S
৩	DYNAMITE (বেশী শক্তিশালী)	7800	M.P.S
৪	DYNAMITE (মধ্যম শক্তিশালী)	7600	M.P.S
৫	DYNAMITE (সাধারণ)	7500	M.P.S
৬	NITRO-GLYCERIN	7700	M.P.S
৭	TNF (পিকারিক)	7650	M.P.S
৮	C ₄	7630	M.P.S
৯	C ₃	7625	M.P.S
১০	TNT	7000	M.P.S
১১	LEAD AZAID	5327	M.P.S
১২	MERCURY FULMINATE	5032	M.P.S
১৩	BLACK POWDER	400	M.P.S

তালিকা - ২

ক্রমিক নং	নাম	পাওয়ার	রেন্স	পানিতে শক্তি
১	TNT	21000	P.S সেকেন্ডে	খুব ভাল
২	TETRIL	23000	P.S সেকেন্ডে	খুব ভাল
৩	C ₃	26000	P.S সেকেন্ডে	ভাল
৪	C ₄	26000	P.S সেকেন্ডে	খুব ভাল
৫	DYNAMITE	16000	P.S সেকেন্ডে	ভাল
৬	AMMONAL CHARGE	11000	P.S সেকেন্ডে	খুব ভাল
৭	PETN	2000	P.S সেকেন্ডে	খুব ভাল
৮	PE ₂	26000	P.S সেকেন্ডে	খুব ভাল
৯	PE ₃	26000	P.S সেকেন্ডে	খুব ভাল
১০	PE ₃ A	26000	P.S সেকেন্ডে	খুব ভাল
১১	WBOX	26000	P.S সেকেন্ডে	খুব ভাল