Chapter 12

- 12.) Let $a, b, c \in R$ where a is a unit. Suppose $b \mid c$, then c = bd for some $d \in R$. We know that $d = d(aa^{-1}) = a(da^{-1})$, thus $c = ba(da^{-1})$, and thus $ab \mid c$. Next, suppose $ab \mid c$, then c = abd for some $d \in R$. We previous established that $d = ada^{-1}$, thus $c = abd = ab(ada^{-1}) = b(a^2da^{-1} = b(ad))$, thus $b \mid c$.
- 16.) Let $n, a \in R$. We can see that n * (-a) = n * ((-1) * a) = (n * (-1)) * a = (-n) * a = ((-1) * n) * a = (-1) * (n * a) = -(n * a).

Chapter 13

- 3.) Let R be a commutative ring with cancellation, and let $a, b \in R$ where $a \neq 0$ and ab = 0. Let $c \in R$ where $c \neq 0$, then c(ab) = c(0) = 0, thus c(ab) = a(cb) = 0. For the sake of establishing a contradiction, suppose $b \neq 0$, then
- 4.) The zero-divisors of \mathbb{Z}_{20} are 2, 4, 5, 6, 8, 10, 12, 14, 15, 16 and 18, as

$$2*10 \equiv 4*15 \equiv 5*8 \equiv 6*10 \equiv 12*5 \equiv 16*10 \equiv 0 \pmod{20}$$

We can see that the zero-divisors are all elements of \mathbb{Z}_{20} that are not units.

5.) Let $a \in \mathbb{Z}_n$ where $a \neq 0$, and suppose $a \notin U_n$, then $\gcd(a,n) = d$ for some $d \geq 2$. Since $d \mid n$, let k = n/d. We know that $k \neq 0$ because $a \neq 0$, thus $\gcd(a,n) \neq 0$. Finally, since $d \mid a$, we know that a = dl for some $l \in \mathbb{Z}$, thus $ak = dln/d = ln \equiv 0 \pmod{n}$, thus since $a, k \neq 0$, we know that a is a zero-divisor.