Classification & Decision Trees

Business Analytics

Business Analytics Definition

Business analytics refers to the application of data analysis and modeling techniques for understanding business situations and improving business decisions.

IMPLICATIONS:

- data → past business performance
- methods → statistics + mathematics + computational methods
- business decisions → actionable insight

Types of Analytics

What has happened?

Descriptive Analytics

Predictive Analytics

Prescriptive Analytics

Business Impact

Review

Regression - Theory

- **Linear Models**
- Ordinary Least Squares
- Simple Linear Regression

Regression - Application

- a. Model strength
- b. Model interpretation
- Dummy variables
- Non-linear transformations
- 3. Prediction

Lesson Objectives

- Classification
 - Statistical classification
 - **Decision Trees**

Classification

Classification is the task of assigning objects to one of several predefined categories.

- detecting spam emails based on message header and content
- segmenting customers based on their response to an offer
- categorizing loan applications according to their risk level

Classification

- A classification model can serve as an explanatory tool to distinguish between objects of different classes -- descriptive analytics
- It can also be used to predict the class label of unknown records -- predictive analytics
- Classification techniques are most suited for predicting or describing data sets with binary or nominal categories.
 - They are less effective for ordinal categories (e.g.: classify a person as a member of high-, medium-, or low-income group) because they do not consider the implicit order among the categories.
- Examples of classification techniques include decision tree classifiers, neural networks, support vector machines, naive Bayes classifiers...

Classification Example

Statistical Classification

Statistical Classification Examples

Classification

Regression

Output: Discrete (labels); Decision boundary **Evaluation:** Accuracy;

Output: Continuous (number); best fit line **Evaluation:** Sum of Errors; R²

Recap of Modeling Process

- Employ a learning algorithm to identify a model that best fits the relationship between the attribute set and class label of the input data.
- The model should both fit the input data well and correctly predict the class labels of records it has never seen before.
 - training set
 - test set
- Key objective is to build models with good generalization capability.

Recap of Modeling Process

Classification

- Evaluation of the performance of a classification model is based on the counts of test records correctly and incorrectly predicted by the model.
 - confusion matrix

		Predicted Class	
		Class = 1	Class = 0
	Class = 1	f_{11}	f_{10}
	Class = 0	f_{01}	f_{00}

Other performance metrics:

Accuracy =
$$\frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$$

 Base rate: how well would a classifier perform by simply choosing that class for every instance

Decision Trees

- Pose a series of questions about the characteristics of the target variable.
 - A follow-up question is asked until a conclusion is reached about the class label of the record
- The series of questions and their possible answers can be organized in the form of a decision tree.
 - nodes -- root node, internal nodes, leaf or terminal nodes
 - directed edges
- Each leaf node is assigned a class label.
- Non-terminal nodes contain attribute test conditions to separate records that have different characteristics.

- Determining whether a customer becomes a loan write-off
 - Binary classification problem with target variable "yes" or "no"

- Determining whether a customer will default on a loan
 - Binary classification problem with target variable "yes" or "no"
 - Customers represented as stick figures with three attributes

- Determining whether a customer will default on a loan
 - Binary classification problem with target variable "yes" or "no"
 - Customers represented as stick figures with three attributes
 - head shape
 - body shape
 - body color
 - Which of the attributes would be best to segment these people into groups to distinguish defaults from non defaults?
 - We would like the resultant groups to be as pure as possible with respect to the target variable.

body-color = gray

Are these groups pure?

First partitioning: Body shape

Rectangular Bodies

Oval Bodies

Second partitioning: Oval body people subgrouped by head type

Third partitioning: Rectangular body people subgrouped by body color

The classification tree resulting from the splits

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Classification Example

- Data from direct marketing campaigns of a Portuguese banking institution
- The marketing campaigns were based on phone calls.
- Often, more than one contact to the same client was required
- Outcome: customer signed up for a bank term deposit or not
 - subscribe = yes/no
- The classification goal is to predict if a given client will subscribe (yes/no) for a term deposit.
- https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

Data Attributes

bank client data:

- 1 age (numeric)
- 2 job : type of job (categorical: "admin.", "unknown", "unemployed", "management", "housemaid", "entrepreneur", "student", "blue-collar", "self-employed", "retired", "technician", "services")
- 3 marital: marital status (categorical: "married", "divorced", "single"; note: "divorced" means divorced or widowed)
- 4 education (categorical: "unknown", "secondary", "primary", "tertiary")
- 5 default: has credit in default? (binary: "yes", "no")
- 6 balance: average yearly balance, in euros (numeric)
- 7 housing: has housing loan? (binary: "yes", "no")
- 8 loan: has personal loan? (binary: "yes","no")

related with the last contact of the current campaign:

- 9 contact: contact communication type (categorical: "unknown", "telephone", "cellular")
- 10 day: last contact day of the month (numeric)
- 11 month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")
- 12 duration: last contact duration, in seconds (numeric)

other attributes:

- 13 campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
- 14 pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted)
- 15 previous: number of contacts performed before this campaign and for this client (numeric)
- 16 poutcome: outcome of the previous marketing campaign (categorical: "unknown", "other", "failure", "success")

Output variable (desired target):

17 - subscribe - has the client subscribed a term deposit? (binary: "yes", "no")

Subscribe for Deposit?

Homework - Part 1

The goal of this assignment is to develop a classification model for the census income dataset you worked on last time.

- Census Income Data Set in the UCI Machine Learning Repository
 - https://archive.ics.uci.edu/ml/datasets/Census+Income
- Create a classification model to determine whether the income of an individual is greater than \$50K.
- Identify the top 2/3 criteria that distinguish those whose income is greater than \$50K and those whose income is less than \$50K.
- Are the decision tree results in line with your findings from your exploratory analysis?

Homework - Part 2

The goal of to discover a something with Math data we used in the exam

- Load the portugal math data
- Create a classification model to determine student success
- How would you incorporate this new findings into a regression model
- With your new findings, what are the business implications here

