# ASSIGNMENT 5

#### JONAS TREPIAKAS

#### Contents

| 1.         | Results and Theory                                          | 1 |
|------------|-------------------------------------------------------------|---|
| 2.         | Problems                                                    | 4 |
| 2.1.       | Principal $G$ -bundles                                      | 4 |
| 2.2.       | . Change of fibres of bundles                               | 6 |
| 2.3.       | Associated frame bundles and structure group reductions     | 7 |
| 2.4.       | . Invertible Cobordisms and Boundaries of Compact Manifolds | 7 |
| References |                                                             | 8 |

I will start the assignment by definitions, lemmas and theorems used in the solutions. I have put the problems in a separate section after this.

## 1. Results and Theory

## 1.0.1. Coordinate bundles and fibre bundles.

**Lemma 1.1.** [1, Lemma 2.8] Let  $\mathcal{B}, \mathcal{B}'$  be coordinate bundles having the space base space, fibre and group. Then they are equivalent if and only if there exist continuous maps

$$\overline{g}_{kj} \colon V_j \cap V_k' \to G$$

such that

$$\overline{g}_{ki}(x) = \overline{g}_{kj}(x)g_{ji}(x)$$

$$\overline{g}_{lj}(x) = g'_{lk}(x)\overline{g}_{kj}(x)$$

# 1.0.2. Construction of a bundle from coordinate transformations.

**Definition 1.2.** Let G be a topological group and X a space. By a system of coordinate transformations in X with values in G is meant an indexed covering  $\{V_j\}$  of X by open sets and a collection of continuous maps

$$g_{ji}\colon V_i\cap V_j\to G$$

such that

$$g_{kj}(x)g_{ji}(x) = g_{ki}(x).$$

Remark. We have so far seen that any bundle over X with group G determines such a set of coordinate transformations. We now state a converse.

**Theorem 1.3** (Existence). [1, Thm 3.2] If G is a topological transformation group of Y, and  $\{V_j\}$ ,  $\{g_{ij}\}$  is a system of coordinate transformations in the space X, then there exists a bundle  $\mathcal{B}$  with base space X, fibre Y, group G and coordinate transformations  $\{g_{ij}\}$ . Furthermore, any such bundles are equivalent.

1.0.3. The Principal Bundle and the Principal Map.

**Definition 1.4** (Principal G-bundle). A bundle  $\mathcal{B} = \{B, p, X, Y, G\}$  is called a principal bundle if Y = G and G operates on Y by left translations.

**Definition 1.5** (Associated principal bundle). Let  $\mathcal{B} = \{B, p, X, Y, G\}$  be an arbitrary bundle. The associated principal bundle  $\tilde{B}$  of  $\mathcal{B}$  is the bundle given by the construction/existence theorem using the same base space, the same  $\{V_j\}$ , the same  $\{g_{ji}\}$  and the same group G as for  $\mathcal{B}$ , but replacing Y by G and allowing G to operate on itself by left translations.

**Theorem 1.6** (Equivalence theorem). [1, Thm 10.3] Two bundles having the same base space, fibre and group are equivalent if and only if their associated principal bundles are equivalent.

*Proof.* By Lemma 1.1, equivalence of bundles is purely a property of the coordinate transformations.  $\Box$ 

**Definition 1.7** (Manifold bundle). Let M be a smooth manifold. A manifold bundle over M with structure group G is a fiber bundle  $W \to E \to M$  with structure group G such that E is a manifold and  $E \to M$  is continuous. We say a manifold bundle over M is a smooth manifold bundle if it is a smooth fiber bundle as well as a manifold bundle and G acts by diffeomorphisms on M.

**Definition 1.8** (Associated bundles). Let M be a smooth manifold, and fix a manifold bundle  $E \stackrel{\xi}{\to} M$  with fibre a smooth manifold W and structure group  $G \le \operatorname{Homeo}(W)$ . Given another smooth manifold W' such that there exists an injective group homomorphism  $\iota \colon G \hookrightarrow \operatorname{Homeo}(W')$ , the associated W'-manifold bundle of  $\xi$  is defined as follows. Let  $\{U_{\alpha}, \varphi_{\alpha}\}_{\alpha}$  be a cover of M by open neighborhoods together with trivializations  $\varphi_{\alpha}$  of  $\xi$ . Transition maps  $\varphi_{\alpha}\varphi_{\beta}^{-1}$  give rise to transition function  $g_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to G \le \operatorname{Homeo}(W)$  satisfying the cocycle condition. We define the associated W'-manifold by gluing trivializations  $U_{\alpha} \times W'$  along transition maps

$$\iota \circ q_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to G \xrightarrow{\iota} \text{Homeo}(W')$$
.

**Definition 1.9** (Structure group reduction). Fix a manifold bundle  $\xi \colon E \to M$  over a smooth manifold M, with fibre a smooth manifold W and structure group G. Given a subgroup  $H \leq G$ ,  $\xi$  is said to admit a structure group reduction to H if it is isomorphic to a bundle so that all transition maps  $g_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to G$  take values in H.

1.0.4. The Induced Bundle.

**Definition 1.10** (Induced Bundle). Suppose  $\mathcal{B}', X$  and  $\eta$  are as before. Form the product space  $X \times B'$  and let  $p \colon X \times B' \to X, h \colon X \times B' \to B'$  be the natural projections. Define  $B = X \times_{X'} B' := \{(x,b') \in X \times B' \mid \eta(x) = p'(b')\}$  to be the fibered product.

We want to give  $[p: B \to X]$  a fibre bundle structure (by giving it a coordinate bundle structure). Define  $V_j = \eta^{-1}(V_j')$  and set

$$\varphi_j(x,y) = (x, \varphi'_j(\eta(x), y)).$$

Let's give these maps some motivation. For these to be trivializations, we want  $\varphi_j$  to be homeomorphisms  $p^{-1}(V_j) \cap B = p|_B^{-1}(V_j) \cong V_j \times Y$ . Now,  $\varphi_j$  simply maps x to x in the first coordinate, but  $\varphi_j'$  by assumption maps  $V_j' \times Y$  homeomorphically onto  $p'^{-1}(V_j')$ . Hence in particular,  $\varphi_j'(\eta(x), y) \in p'^{-1}(V_j') \subset B'$ . So  $(x, \varphi_j'(\eta(x), y)) \in B$  if and only if  $\eta(x) = p'(\varphi_j'(\eta(x), y))$ , but this is true by assumption. Furthermore,  $(x, \varphi_j'(\eta(x), y)) \in X \times B'$ , so applying p, we get  $p(x, \varphi_j'(\eta(x), y)) = x$  which is in  $V_j$  when  $x \in V_j$ . Hence putting things together,  $\varphi_j$  maps  $V_j \times Y$  to  $p^{-1}(V_j) \cap B$ . We, in fact, want to show that  $\varphi_j$  is a homeomorphism of these spaces. For this, simply note that the map  $(u, v) \mapsto (u, \pi_2 \circ \varphi_j'^{-1}(v))$  is an inverse.

Lastly, let for  $x \in V_i \cap V_j$ ,  $g_{ij}(x) = \varphi_{i,x}^{-1} \varphi_{j,x} = p_i \varphi_{j,x}$ Note then that

$$g_{ij}(x)y = p_i \varphi_{j,x}(y)$$

$$= p_i \left( x, \varphi'_j \left( \eta(x), y \right) \right)$$

$$= p'_i \varphi'_j \left( \eta(x), y \right)$$

$$= g'_{ij} \left( \eta(x) \right) y$$

So the clutching functions are simply  $g'_{ij} \circ \eta$  which are indeed continuous.

**Theorem 1.11** (Equivalence Theorem/pullbacks of fibre bundles with the same fibre and group exist). Let  $\mathcal{B}, \mathcal{B}'$  be two bundles having the same fibre and group and  $h: \mathcal{B} \to \mathcal{B}'$  a bundle map. Let  $\eta: X \to X'$  be the induced map of base spaces. Then the induced bundle  $\eta^*\mathcal{B}'$  is equivalent to  $\mathcal{B}$ , and there is an equivalence  $h_0: \mathcal{B} \to \eta^*\mathcal{B}'$  such that h is the composite  $h = h^* \circ h_0$  where  $h^*: \eta^*\mathcal{B}' \to \mathcal{B}'$  is the induced map:



Note. A "Bundle Theory" is also called a Cartesian Fibration over Sm.

**Definition 1.12** (Bundle Theory). A bundle theory is a functor from some arbitrary category  $\mathcal{B}$  to Sm subject to the following conditions.

Given a map  $f: M \to N$  between smooth manifolds in Sm, there exists a map  $f^* \colon \mathcal{B}(N) \to \mathcal{B}(M)$ .

The solid arrows in the diagram below, the dashed lifts are in bijection and the

diagram commutes.



In the sense that given  $\varphi$ , there exists a  $\psi$ , everything commutes and composite map above is mapped under the functor to the composite map below.

Furthermore, it is required to satisfy gluing (the cocycle condition). I describe this in the solution of the problem below.

A bundle  $B \to M$  is called locally trivial if for each point  $x \in M$ , there exists a neighborhood  $x \in U \stackrel{i}{\hookrightarrow} M$  and there exists a bundle  $B' \to *$  and a pullback along  $\pi \colon U \to *$  for B' such that there exists an isomorphism  $i^*B \cong \pi^*B'$ .

#### 2. Problems

- 2.1. **Principal** G-bundles. Let G be a discrete group. Consider the category  $\operatorname{Sm}^G$  where objects are smooth manifolds equipped with a free, fixed point free action by G which is properly discontinuous: the exists a cover  $\{U_{\alpha}\}_{{\alpha}\in A}$  of M so that  $\{g\cdot U_{\alpha}\}$  are pairwise disjoint for all  ${\alpha}\in A$  and  $g\in G$ . Furthermore, morphisms are smooth maps which are G-equivariant:  $f\colon M\to N$  is such that  $f(g\cdot x)=g\cdot f(x)$  for all  $g\in G$  and  $x\in M$ .
- **Problem 2.1.** (1) (2pts) Show that for  $M \in \mathrm{Sm}^G$ , the quotient M/G admits a structure of a smooth manifold so that the map  $M \to M/G$  is a local diffeomorphism.
  - (2) (5pts) Check that the association  $M\mapsto M/G$  defines a functor  $\mathrm{Sm}^G\to \mathrm{Sm}$ , and show that this defines a locally trivial bundle theory on smooth manifolds.
- Proof. (1) (2 pts) (I will assume that G acts by homeomorphisms on M) Using the covering space quotient theorem (theorem 12.14 in Lee's book on Topological Manifolds), we find that  $M \to M/G$  is a covering space. To construct a smooth structure on M/G, let  $p \in M/G$  and U an evenly covered open neighborhood of p. Then U splits into homeomorphic copies  $\sqcup U_\alpha$  in M with  $\pi|_{U_\alpha} : U_\alpha \cong U$  homeomorphisms. For  $\tilde{p} \in U_\alpha$ , choose a smooth chart  $(V_{\tilde{p}}, \varphi_{\tilde{p}})$  contained in  $U_\alpha$ . Since  $\tilde{p} = g \cdot p$  for some g, we may as well denote these charts as  $(V_{g,p}, \psi_{g,p})$ . Now consider the charts  $(\pi|_g(V_{g,p}), \psi_{g,p} \circ (\pi|_g)^{-1})$ . On an overlap the transition functions have the form

$$\psi_{g,p} \circ (\pi|_g)^{-1} \left( \psi_{g',p'} \circ (\pi|_{g'})^{-1} \right)^{-1} = \psi_{g,p} \circ (\pi|_g)^{-1} \pi|_{g'} \circ \psi_{g',p'}^{-1} = \psi_{g,p} \circ \psi_{g',p'}^{-1}$$

on the overlap, which is smooth by assumption. Hence we indeed obtain a smooth structure on M/G. In particular, the map  $\pi \colon M \to M/G$  has coordinate form

$$\left(\psi_{g,p}\circ\pi|_g^{-1}\right)\pi\circ\psi_{g,p}^{-1}=\mathrm{id}$$

which is a diffeomorphism. So  $\pi$  is a local diffeomorphism when we equip M/G with this smooth structure.

(2) (5 pts) Define the functor  $F \colon \mathrm{Sm}^G \to \mathrm{Sm}$  sending  $M \mapsto M/G$  with the smooth structure defined in the first part of the exercise. Here, since maps  $f \colon M \to N$  in  $\mathrm{Sm}^G$  are G-equivariant, they, in particular, descend to smooth maps  $\overline{f} \colon M/G \to N/G$ , and we let  $F(f) = \overline{f}$ . Then indeed  $F(\mathrm{id}_M) = \mathrm{id}_M = \mathrm{id}_{M/G}$  and if  $f \colon M \to N$  and  $g \colon N \to P$ , then  $F(g \circ f) = \overline{g \circ f}$ . But by pasting the two squares

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} N & \stackrel{g}{\longrightarrow} P \\ \downarrow & \downarrow & \downarrow \\ M/G & \stackrel{\overline{f}}{\longrightarrow} N/G & \stackrel{\overline{g}}{\longrightarrow} P/G \end{array}$$

we find that  $\overline{g \circ f} = \overline{g} \circ \overline{f}$ . So  $F(g \circ f) = F(g) \circ F(f)$ .

This shows that F is indeed a functor.

We want to show that this defines a bundle theory on Sm. So suppose we have some  $N \in \text{Sm}^G$  and  $f: M \to N/G$  in Sm. Now, the quotient map  $N \to N/G$  is a submersion (show this), so the pullback along f exists in Sm, giving

$$\begin{array}{ccc} f^*N & \longrightarrow & N \\ \downarrow & & \downarrow \\ M & \longrightarrow & N/G \end{array}$$

Lastly, we must then show that  $f^*N$  is in  $\mathrm{Sm}^G$ . For this, note that the induced bundle  $f^*N$  is precisely the pullback which is equivalent as a fibre bundle to  $M\times_{N/G}N$ . But this inherits a natural action of G given by  $g\cdot(m,n)=(m,g\cdot n)$ . Choosing the same cover  $\{U_\alpha\}$  for N as given in the condition of it being in  $\mathrm{Sm}^G$ , i.e.,  $\{g\cdot U_\alpha\}$  being disjoint for all g and  $\alpha$ , the neighborhoods  $M\times U_\alpha\cap f^*N$  then satisfy the same conditions under this action of G. Lastly, the map  $f^*N\cong M\times_{N/G}N\to N$  given by the projection to the N component which is the top map in the pullback diagram is naturally G-equivariant. This shows that the above diagram indeed can be made.

Now suppose we have some  $P \in \mathrm{Sm}^G$  and a bundle map  $P \to N$  giving the solid part of the diagram

$$P \xrightarrow{P} M \times_{N/G} N \xrightarrow{N} M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P/G \longrightarrow M \longrightarrow N/G$$

where the map  $P \to N$  descends to the composite map  $P/G \to M \to N/G$  on the bottom.

We then want to show that the dashed map exists. Let  $p: P \to P/G$  and  $q: f^*N \cong M \times_{N/G} N \to M$  be the projection. Let  $k: P \to N$  be the map on the top. Let  $f: P/G \to M$  be the map on the bottom. Define a map  $h: P \to M \times_{N/G} N$  by h(x) = (f(p(x)), k(p)). Then if  $l: M \to N/G$  denotes the map on the bottom,  $l \circ f(p(x)) = \pi(k(p))$  where  $\pi: N \to N/G$ . By definition then  $h(x) \in M \times_{N/G} N$ .

Furthermore,

$$h\left(g\cdot x\right)=\left(f\left(p\left(g\cdot x\right)\right),k\left(g\cdot x\right)\right)=\left(f\left(p\left(x\right)\right),g\cdot k(x)\right)=g\cdot \left(f\left(p\left(x\right)\right),k(x)\right)=g\cdot h(x),$$
 so  $h$  is  $G$ -equivariant.

Next we must check that the bundle theory is locally trivial. That is, we must check that for any  $M \in \operatorname{Sm}^G$  and any point  $x \in M/G$ , there exists an open neighborhood U about x such that if we let  $\pi \colon U \to *$  be the unique map and  $i \colon U \to M/G$  the open embedding, there exists a manifold  $N \in \operatorname{Sm}^G$  such that  $N/G \cong *$ , and such that the pullbacks are isomorphic:  $i^*M \cong \pi^*N$ .

Note that these pullbacks are really

$$U \times_{M/G} M \cong i^*M \longrightarrow M$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$U \longrightarrow M/G$$

But clearly if  $(u, m) \in U \times_{M/G} M$ , then essentially  $\overline{m} = u$ , so  $U \times_{M/G} M \cong p^{-1}(U)$ , and

$$U\times N\cong U\times_* N \longrightarrow N$$
 
$$\downarrow \qquad \qquad \downarrow$$
 
$$U \longrightarrow *$$

So we find that the condition is indeed equivalent to the usual one: the existence of a neighborhood U about x and a homeomorphism  $p^{-1}(U) \cong U \times N$ . In this case, suppose  $x \in M/G$  and simply choose one of the  $U_{\alpha}$  such that  $x \in p(U_{\alpha})$ . Note that this is open in M/G since the  $g \cdot U_{\alpha}$  are pairwise disjoint and g acts by homeomorphisms (G is discrete and each g has  $g^{-1}$  as inverse). Choosing  $U = p(U_{\alpha})$ , we get  $p^{-1}(U) = \sqcup_{g \in G} U_{\alpha} \cong U_{\alpha} \times G \cong U \times G$  where  $G \in \operatorname{Sm}^G$  is precisely G considered as a smooth manifold with the trivial charts  $g \mapsto *$ , at each  $g \in G$ . Indeed then  $G/G \cong *$ , so this satisfies the condition above. I.e., the functor  $\operatorname{Sm}^G \to \operatorname{Sm}$  is locally trivial.

Lastly, we must check gluing. Namely that for  $M \in \operatorname{Sm}^G$  and some open coordinate neighborhoods  $U_i, U_j, U_k \subset M/G$ , with coordinate maps  $g_{ij} \colon U_i \cap U_j \to G, g_{jk} \colon U_j \cap U_k \to G$  and  $g_{ki} \colon U_k \cap U_i \to G$ , the maps satisfy  $g_{ik}(x) = g_{ij}(x)g_{jk}(x)$  for  $x \in U_i \cap U_j \cap U_k$ . As we saw above,  $p^{-1}(U_i) = U_i \times G$ , and we shall call this coordinate function  $\varphi_i \colon U_i \times G \to p^{-1}(U_i)$ . Let  $g_{ij}(x) = \varphi_{i,x}^{-1}\varphi_{j,x}$  where  $\varphi_{i,x}(y) = \varphi_i(x,y)$  is the function considered only as a function of y. But then the condition  $g_{ij}(x)g_{jk}(x) = g_{ik}(x)$  follows trivially.

This completes the proof that the functor we constructed  $\mathrm{Sm}^G \to \mathrm{Sm}$  is indeed a bundle theory over  $\mathrm{Sm}$ .

## 2.2. Change of fibres of bundles.

**Problem 2.2** (Change of fibres of bundles). (3pts) Let  $W_0$  and  $W_1$  be two smooth manifolds, and let G be a group which we assume as a simultaneous subgroup of both  $\operatorname{Homeo}(W_0)$  and  $\operatorname{Homeo}(W_1)$ , i.e., we have injective group homomorphisms  $\iota_0 \colon G \hookrightarrow \operatorname{Homeo}(W_0)$  and  $\iota_1 \colon G \hookrightarrow (W_1)$ . Given a fixed smooth manifold M,

construct a bijection  $\operatorname{Bun}_G^{W_0}(M) \to \operatorname{Bun}_G^{W_1}(M)$ , where  $\operatorname{Bun}_G^{W_i}(M)$  denotes the set of isomorphism classes of manifold bundles with fibre  $W_i$  and structure group G over the base space M.

Proof. (3pts) Let  $\mathcal{B} = \{B, p, M, W_0, G\} \in \operatorname{Bun}_G^{W_0}$ . By Theorem 1.6, the bundle  $\mathcal{B}$  is equivalent to its associated principal bundle  $\tilde{\mathcal{B}} = \{B, p, M, G, G\}$  which thus represents the same isomorphism class. But by assumption, G embeds into  $\operatorname{Homeo}(W_1)$ , so by Theorem 1.3, also  $\tilde{\mathcal{B}}$  is equivalent to  $\{B, p, M, W_1, G\} =: \mathcal{B}'$  which has the same coordinate transformations. Thus  $\tilde{\mathcal{B}}$  and  $\tilde{\mathcal{B}}'$  are equivalent. Now, seeing as equivalence of bundles is purely determined by their base space, fibre, structure group and coordinate transformations by Lemma 1.1, this gives an injective map  $\operatorname{Bun}_G^{W_0} \to \operatorname{Bun}_G^{W_1}$ . We can simply use the existence theorem directly. Seeing as we can do the exact same thing to obtain an injective map  $\operatorname{Bun}_G^{W_1} \to \operatorname{Bun}_G^{W_0}$ , we obtain a bijection by Schröder-Bernstein.

# 2.3. Associated frame bundles and structure group reductions. I couldn't figure this one out in time.

**Problem 2.3** (Associated frame bundles and structure group reductions). For a rank d vector bundle  $\xi \colon E \to M$  over a smooth manifold, we define the associated frame bundle  $\operatorname{Fr}(\xi)$  as the associated  $\operatorname{GL}_d(\mathbb{R})$ -bundle.

(1) (1 pt) For M a smooth d-dimensional manifold, we define its frame bundle Fr(M) as the associated frame bundle of its tangent bundle TM. Show that  $Fr(M) \to M$  is a principal  $GL_d(\mathbb{R})$ -bundle.

#### 2.4. Invertible Cobordisms and Boundaries of Compact Manifolds.

**Problem 2.4** (Invertible cobordisms and boundaries of compact manifolds). Let  $W_0 \colon M_0 \leadsto \varnothing$  and  $W_1 \colon M_1 \leadsto \varnothing$  be two compact d-dimensional smooth cobordisms from compact (d-1)-dimensional smooth manifolds  $M_0$  and  $M_1$  to the empty manifold, viewed as a (d-1)-manifold. In other words, we have a smooth embedding  $M_i \times \mathbb{R} \hookrightarrow W_i$  satisfying that  $M_i \times (-\infty, 0]$  is closed, and such that their complement  $W_i - (M_i \times \mathbb{R})$  is compact. We define  $\mathrm{Int}(W_i)$  to be the complement of the image of  $M_i \times (-\infty, t]$  for some  $t \in \mathbb{R}$  (and hence any  $t \in \mathbb{R}$ ), and observe that  $\mathrm{Int}(W_i)$  is again a smooth manifold, being an open subset of  $W_i$ .

- (1) (4pts) Assume that in the situation of the above,  $\operatorname{Int}(W_0)$  is diffeomorphic to  $\operatorname{Int}(W_1)$ . Show that  $M_0$  and  $M_1$  are invertibly cobordant, i.e., there exists a cobordism  $M_0 \rightsquigarrow M_1$  which is invertible in the category  $\operatorname{Cob}_d$ .
- (2) (6pts) Let W be a smooth, open (i.e., non-compact) d-manifold. We define a compact closure of W to be a compact cobordism  $W' \colon M \leadsto \varnothing$  such that W is diffeomorphic to  $\mathrm{Int}(W')$ . Assume that W admits a compact closure  $W' \colon M \leadsto \varnothing$ . Show that the set of compact closures of W up to isomorphism of their interiors is in bijection with the set of invertible cobordisms over M.

*Proof.* (1) (4 pts)

Saying that  $M_0 \rightsquigarrow M_1$  is invertible in  $\operatorname{Cob}_d$  is precisely saying that there exists a cobordism  $M_1 \rightsquigarrow M_0$  such that the composite cobordism  $M_0 \rightsquigarrow M_1 \rightsquigarrow M_0$  is equivalent to the trivial cobordism  $M_0 \rightsquigarrow M_0$ . We will do this using the usual definition of cobordisms with boundaries. Then the problem is equivalently to show that we can find coborisms  $M_0 \rightsquigarrow M_1 \rightsquigarrow M_0$  such that the composite is a

product cobordism. In this case, we are dealing with closed compact manifolds  $W_0, W_1$  such that  $\partial W_0 \cong M_0$  and  $\partial W_1 \cong M_1$ . Furthermore, the boundaries have closed collar neighborhoods  $\partial W_i \times I$ , and removing some open/usual collar neighborhoods of these boundaries  $\partial W_i \times [0,1)$  leaves us with compact spaces which are, by assumption, diffeomorphic. Now, take the cobordism  $W_0$  and choose a collar neighborhood of  $\partial W_0$ :  $M_0 \times [0,1]$ , where  $M_0$  is identified with  $M_0 \times 0$  in  $W_0$ . By assumption, there is a diffeomorphism  $W_0-(M_0\times[0,1])\cong W_1-(M_1\times[0,1])$ . Now, the diffeomorphism extends to the closure of the interiors which is also  $M_i$  since the collar is a cylinder, so we obtain a diffeomorphism  $h: M_0 \times 1 \cong M_1 \times 1$ . Without loss of generality, we can reparametrize, to get the diffeomorphism  $h: M_0 \times 1 \rightarrow$  $M_1 \times 0$  since the boundaries of the interiors must map to each other. Now we can glue the collars by gluing the cobordisms they represent using theorem 1.4 in Milnor's book on h-cobordisms to get a cobordism  $c_h$  which is the manifold  $M_0 \times [0,1] \cup_h M_1 \times [0,1]$ . This indeed now gives a cobordism  $M_0 \rightsquigarrow M_1$ . We can likewise obtain the cobordism  $M_1 \rightsquigarrow M_0$  which is also obtained by gluing  $M_1 \times [0,1]$  with  $M_0 \times [0,1]$  along  $M_1 \times 1$  and  $M_0 \times 0$ . Denote this cobordism by  $c_{h'}$ . We claim that  $c_h c_{h'} = \mathrm{id}_{M_0}$ . That is, that  $c_h c_{h'}$  is a product cobordism/trivial cobordism of  $M_0$ . One way to see this is by using theorem 1.6 in Milnor's book on h-cobordisms which says that  $c_h c_{h'} = c_{h'h} = c_{\mathrm{id}_{M_0}}$  which indeed is the trivial cobordism. Alternatively, each collar neighborhood has no critical values, so  $c_h$ and  $c_{h'}$  both have Morse number 0, and then corollary 3.8 in Milnor's book on h-cobordisms gives that  $c_h c_{h'}$  also has Morse number 0, hence is trivial by theorem 3.4 in the same book.

#### References

[1] Norman Steenrod. *The topology of fibre bundles*. Princeton Landmarks in Mathematics. Reprint of the 1957 edition, Princeton Paperbacks. Princeton University Press, Princeton, NJ, 1999, **pages** viii+229. ISBN: 0-691-00548-6.