#### **SPE-L1.3**

#### TANDEM-STRAIGHT:

A TEMPORALLY STABLE POWER SPECTRAL REPRESENTATION FOR PERIODIC SIGNALS AND APPLICATIONS TO INTERFERENCE-FREE SPECTRUM, F0, AND APERIODICITY ESTIMATION

Hideki Kawahara, Masanori Morise, Toru Takahashi Ryuchi Nisimura, Toshio Irino and Hideki Banno<sup>†</sup>

Wakayama University, Wakayama Japan <sup>†</sup>Meijyo University, Nagoya Japan

#### Outline

- Reformulation of STRAIGHT(F0 adaptive time-frequency representation)
  - Power spectrum without temporal variations TANDEM
  - Consistent sampling for spectral envelope recovery STRAIGHT
- Unified approach based on TANDEM and STRAIGHT (F0 and aperiodicity detection)

#### Outline

- Reformulation of STRAIGHT(F0 adaptive time-frequency representation)
  - Power spectrum without temporal variations TANDEM
  - Consistent sampling for spectral envelope recovery STRAIGHT
- Unified approach based on TANDEM and STRAIGHT (F0 and aperiodicity detection)

#### Outline

- Reformulation of STRAIGHT(F0 adaptive time-frequency representation)
  - Power spectrum without temporal variations TANDEM
  - Consistent sampling for spectral envelope recovery STRAIGHT
- Unified approach based on TANDEM and STRAIGHT (F0 and aperiodicity detection)

#### SFT-based spectrogram





#### periodic in the time domain



periodic in the time domain

periodic in the frequency domain



# Spline-based optimum smoothing reconstructs the underlying smooth time-frequency representation





### TANDEM spectrum

Power spectrum estimation without periodic variations

Time window has low level side lobes.

- Time window has low level side lobes.
- Only two harmonic components exist in each equivalent band-pass filter.

- Time window has low level side lobes.
- Only two harmonic components exist in each equivalent band-pass filter.

$$\begin{aligned} \delta(\omega) + \alpha e^{j\beta} \delta(\omega - \omega_0) \\ |S(\omega, \tau)|^2 &= H^2(\omega) + \alpha^2 H^2(\omega - \omega_0) \\ &+ 2\alpha H(\omega) H(\omega - \omega_0) \cos(\omega_0 \tau + \beta) \\ |S(\omega, \tau)|^2 + |S(\omega, \tau + T_0/2)|^2 \end{aligned}$$

- Time window has low level side lobes.
- Only two harmonic components exist in each equivalent band-pass filter.

$$\begin{split} \delta(\omega) + \alpha e^{j\beta} \delta(\omega - \omega_0) & \stackrel{\text{signal model}}{\longleftarrow} \\ |S(\omega,\tau)|^2 &= H^2(\omega) + \alpha^2 H^2(\omega - \omega_0) \\ &\quad + 2\alpha H(\omega) H(\omega - \omega_0) \cos(\omega_0 \tau + \beta) \\ |S(\omega,\tau)|^2 + |S(\omega,\tau + T_0/2)|^2 \end{split}$$

- Time window has low level side lobes.
- Only two harmonic components exist in each equivalent band-pass filter.

power spectrum 
$$\delta(\omega) + \alpha e^{j\beta} \delta(\omega - \omega_0) \stackrel{\text{signal model}}{\longleftarrow} |S(\omega,\tau)|^2 = H^2(\omega) + \alpha^2 H^2(\omega - \omega_0) \\ + 2\alpha H(\omega) H(\omega - \omega_0) \cos(\omega_0 \tau + \beta) \\ |S(\omega,\tau)|^2 + |S(\omega,\tau + T_0/2)|^2$$

- Time window has low level side lobes.
- Only two harmonic components exist in each equivalent band-pass filter.

power spectrum 
$$\delta(\omega) + \alpha e^{j\beta} \delta(\omega - \omega_0) \stackrel{\text{signal model}}{\longleftarrow} |S(\omega,\tau)|^2 = H^2(\omega) + \alpha^2 H^2(\omega - \omega_0) \\ + 2\alpha H(\omega) H(\omega - \omega_0) \cos(\omega_0 \tau + \beta)$$
 periodic variation 
$$|S(\omega,\tau)|^2 + |S(\omega,\tau + T_0/2)|^2$$

# TANDEM spectrum

Calculate power spectra of T0/2 apart and then average them.



ICASSP 2008 Las Vegas, 30 March-4 April, 2008

# TANDEM spectrum

Calculate power spectra of T0/2 apart and then average them.



ICASSP 2008 Las Vegas, 30 March-4 April, 2008



# STRAIGHT spectrum

Reformulation based on consistent sampling

- Periodic sampling also in the frequency domain
  - Continuous spectrum has to be recovered from sampled values (D/A conversion)



- Periodic sampling also in the frequency domain
  - Continuous spectrum has to be recovered from sampled values (D/A conversion)



- Periodic sampling also in the frequency domain
  - Continuous spectrum has to be recovered from sampled values (D/A conversion)



- Periodic sampling also in the frequency domain
  - Continuous spectrum has to be recovered from sampled values (D/A conversion)



- Does not require perfect reconstruction
  - Resampled value required to be consistent with the initially sampled value



#### Sampling—50 Years After Shannon

MICHAEL UNSER, FELLOW, IEEE

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 4, APRIL 2000

$$a_{12}(k) = \langle \varphi_1(x-k), \varphi_2(x) \rangle \tag{22}$$

where  $\varphi_1$  is the analysis function and where  $\varphi_2$  is the generating (or synthesis) function on the reconstruction side.

Theorem 2 [127]: Let  $f \in H$  be an unknown input function. Provided there exists m > 0 such that  $|A_{12}(e^{j\omega})| \ge m$ , a.e., then there is a unique signal approximation  $\tilde{f}$  in  $V(\varphi_2)$  that is consistent with f in the sense that

$$\forall f \in H, c_1(k) = \langle f, \varphi_1(x-k) \rangle = \langle \tilde{f}, \varphi_1(x-k) \rangle.$$
 (23)

This signal approximation is given by

$$\tilde{f} = \tilde{P}f(x) = \sum_{k \in \mathbb{Z}} (c_1 * q)(k)\varphi_2(x - k) \tag{24}$$

where

$$Q(z) = \frac{1}{\sum_{k \in \mathbb{Z}} a_{12}(k) z^{-k}}$$
 (25)

- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



sampling at harmonic frequencies

- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



sampling at harmonic frequencies

- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



sampling at harmonic frequencies

sampling pulse removal by holding

- Does not require perfect reconstruction
  - Resampled values are required to be consistent with the initially sampled value



# A simple implementation

 Holding using cumulative power spectrum and interpolation of differentiation

$$TANDEM \ spectrum$$
 
$$C(\omega) = \int_{\omega_L}^{\omega} P_T(\lambda) d\lambda$$
 
$$L_S(\omega) = \ln \left[ C(\omega + \omega_0/2) - C(\omega - \omega_0/2) \right] - \ln \omega_0$$
 
$$P_{TST}(\omega) = e^{\left[ \bar{q}_1(L_S(\omega - \omega_0) + L_S(\omega + \omega_0)) + \bar{q}_0 L_S(\omega) \right]}.$$

 Holding using cumulative power spectrum and interpolation of differentiation

$$TANDEM \ spectrum$$
 
$$C(\omega) = \int_{\omega_L}^{\omega} P_T(\lambda) d\lambda$$
 
$$L_S(\omega) = \ln \left[ C(\omega + \omega_0/2) - C(\omega - \omega_0/2) \right] - \ln \omega_0$$
 
$$P_{TST}(\omega) = e^{\left[ \bar{q}_1(L_S(\omega - \omega_0) + L_S(\omega + \omega_0)) + \bar{q}_0 L_S(\omega) \right]}.$$

 Holding using cumulative power spectrum and interpolation of differentiation

$$C(\omega) = \int_{\omega_L}^{\omega} P_T(\lambda) d\lambda \quad \text{holding and interpolation}$$
 
$$L_S(\omega) = \ln \left[ C(\omega + \omega_0/2) - C(\omega - \omega_0/2) - \ln \omega_0 \right]$$
 
$$P_{TST}(\omega) = e^{[\bar{q}_1(L_S(\omega - \omega_0) + L_S(\omega + \omega_0)) + \bar{q}_0 L_S(\omega)]}.$$

 Holding using cumulative power spectrum and interpolation of differentiation

$$C(\omega) = \int_{\omega_L}^{\omega} P_T(\lambda) d\lambda \quad \text{holding and interpolation}$$
 
$$L_S(\omega) = \ln \left[ C(\omega + \omega_0/2) - C(\omega - \omega_0/2) - \ln \omega_0 \right]$$
 
$$P_{TST}(\omega) = e^{[\bar{q}_1(L_S(\omega - \omega_0) + L_S(\omega + \omega_0)) + \bar{q}_0 L_S(\omega)]}.$$

- Holding using cumulative power spectrum and interpolation of differentiation
- Compensation on log-spectrum to assure results to be positive

$$C(\omega) = \int_{\omega_T}^{\omega} P_T(\lambda) d\lambda$$
 holding and interpolation

$$L_S(\omega) = \ln \left[ C(\omega + \omega_0/2) - C(\omega - \omega_0/2) \right] - \ln \omega_0$$
  
$$P_{TST}(\omega) = e^{\left[ \bar{q}_1 (L_S(\omega - \omega_0) + L_S(\omega + \omega_0)) + \bar{q}_0 L_S(\omega) \right]}.$$

compensation on log-spectrum

- Holding using cumulative power spectrum and interpolation of differentiation
- Compensation on log-spectrum to assure results to be positive

$$C(\omega) = \int_{\omega_T}^{\omega} P_T(\lambda) d\lambda$$
 holding and interpolation

$$L_S(\omega) = \ln \left[ C(\omega + \omega_0/2) - C(\omega - \omega_0/2) \right] - \ln \omega_0$$
  
$$P_{TST}(\omega) = e^{\left[ \bar{q}_1 (L_S(\omega - \omega_0) + L_S(\omega + \omega_0)) + \bar{q}_0 L_S(\omega) \right]}.$$

compensation on log-spectrum

TANDEM spectrogram



STRAIGHT spectrogram





### Periodicity detection

Unified framework based on TANDEM and STRAIGHT spectra

STRAIGHT spectrum --> envelope

- STRAIGHT spectrum --> envelope
- TANDEM spectrum --> envelope modulated by periodic excitation

- STRAIGHT spectrum --> envelope
- TANDEM spectrum --> envelope modulated by periodic excitation
- TANDEM spectrum divided by STRAIGHT spectrum yields bias plus modulation

- STRAIGHT spectrum --> envelope
- TANDEM spectrum --> envelope modulated by periodic excitation
- TANDEM spectrum divided by STRAIGHT spectrum yields bias plus modulation

variation spectrum

TANDEM spectrum

$$P_C(\omega) = \frac{P_T(\omega)}{P_{TST}(\omega)} - 1$$

STRAIGHT spectrum

 Band-pass filtering in the spatial frequency domain

- Band-pass filtering in the spatial frequency domain
  - Time windowing --> low pass

- Band-pass filtering in the spatial frequency domain
  - Time windowing --> low pass
  - Variation spectrum --> high pass

- Band-pass filtering in the spatial frequency domain
  - Time windowing --> low pass
  - Variation spectrum --> high pass
  - Band-pass response --> tunable to F0

- Band-pass filtering in the spatial frequency domain
  - Time windowing --> low pass
  - Variation spectrum --> high pass
  - Band-pass response --> tunable to F0
- In the higher (original) frequency region, harmonic structure is corrupted by moire effects









#### F0 tuned F0 detector



#### F0 tuned F0 detector

spatial frequency component

$$A(\tau;T_0) = \int_{-\infty}^{\infty} w_{\omega 0,N}(\omega) P_C(\omega;T_0) e^{-j\omega\tau} d\omega$$
 selector of lower frequency region

$$w_{\omega 0,N}(\omega) = c_0 \left( 1 + \cos \left( \pi \omega / N \omega_0 \right) \right)$$



#### F0 tuned F0 detector

#### response to random inputs



### Group of detectors

combination of detectors to cover wider region



### Group of detectors

combination of detectors to cover wider region



#### Combined detectors



#### Combined detectors







periodicity of a periodic pulse train



periodicity of a periodic pulse train





## Periodicity spectrogram



## Periodicity spectrogram

$$Q_C^2(\omega; T_C) = \left| \int_{-\infty}^{\infty} h_N(\lambda; T_C) P_C(\omega - \lambda; T_C) d\lambda \right|^2$$

quadrature signal to select F0 related variation

$$h_N(\omega) = w_{\omega 0, N}(\omega) \exp(2\pi j\omega/\omega_0)$$

a practical implementation of envelope

$$w_{\omega_C,N}(\omega) = c_0 \left(1 + \cos\left(\pi\omega/N\omega_C\right)\right)$$







# Concluding remarks TANDEM-STRAIGHT is theoretically tractable



# Concluding remarks TANDEM-STRAIGHT is theoretically tractable



# Concluding remarks TANDEM-STRAIGHT is theoretically tractable

## Appendix

#### Combined F0 detectors



