N-view Depth Consistency Testing Algorithm

Pravin Kumar Rana
Sound and Image Processing Lab.(SIP)
KTH - Royal Institute of Technology
SE-10044 Stockholm, Sweden

Outline

- N-view Depth Consistency Testing Algorithm (DCTA)
- Adaptive Connection Threshold: Cluster Approach

Depth Consistency Testing Algorithm(DCTA)

Original Texture from Multiple Viewpoints

Original Depth Maps from Multiple Viewpoints

N-view DCTA Performance

N-view DCTA Performance

Table 1.

Average PSNR (in dB) of the virtual view synthesized by using N-view DCTA supported View Synthesis (Averaged over 10 frames).

Test Sequences	Virtual Viewpoint	Number of References							
		#3	#4	#5	#6	#7	#8		
Pantomime	40	39.3	39.8	39.8	40.3	40.5	40.2		
Dog	43	29.6	32.0	32.8	33.5	33.3	32.6		
Newspaper	04	28.7	30.3	30.5	30.7	X			
Lovebird1	07	29.0	30.2	30.6	30.7	31.0	31.0		

Connection Threshold

Reference Depth Maps

$$= \begin{pmatrix} 0 & \Delta_{1,2} & \Delta_{1,3} & \cdots & \Delta_{1,N} \\ \Delta_{2,1} & 0 & \Delta_{2,3} & \cdots & \Delta_{2,N} \\ \Delta_{3,1} & \Delta_{3,2} & 0 & \cdots & \Delta_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Delta_{N,1} & \Delta_{N,2} & \Delta_{N,3} & \cdots & 0 \end{pmatrix} \quad where, \Delta_{i,j} = (d_i - d_j);$$

where,
$$\Delta_{i,j} = (d_i - d_j)$$
;

Connection Threshold: A Cluster Approach

Cluster Distribution

Relative Distance Classification for Class C Cluster

$$\Delta = \begin{pmatrix} 0 & \Delta_{1,2} & \Delta_{1,3} & \cdots & \Delta_{1,N} \\ \Delta_{2,1} & 0 & \Delta_{2,3} & \cdots & \Delta_{2,N} \\ \Delta_{3,1} & \Delta_{3,2} & 0 & \cdots & \Delta_{3,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Delta_{N,1} & \Delta_{N,2} & \Delta_{N,3} & \cdots & 0 \end{pmatrix}$$

where,

$$\theta_{1} = \min \left\{ \left[\Delta_{i,j} \right] \middle| \Delta_{i,j} \middle| > 0; j > i \right\}$$

$$\theta_{2} = \min \left\{ \left[\Delta_{i,j} \right] \middle| \Delta_{i,j} \middle| > \theta_{1}; j > i \right\}$$

•••

Define relative distances:

$$\widetilde{\theta}_{1} = \frac{\theta_{1}}{\theta_{\max}}, \ \widetilde{\theta}_{2} = \frac{\theta_{2}}{\theta_{\max}}, \ \cdots \ \cdots, 1$$

Relative Distance Classification for Class C Cluster

Connection Threshold

Class A Cluster Depth Pixel
$$T_A=0.0$$

$$T_{\scriptscriptstyle B} <= 2\sigma_{\scriptscriptstyle B}$$

Class C_i Cluster Depth Pixel
$$\int_{C_i} T_{C_i} <= 2\sigma_{C_i}$$

N-view DCTA Performance

Test Sequences	Virtual Viewpoint	Cluster A, plus	Number of References						
			#3	#4	#5	#6	#7	#8	
Pantomime	40	В, С	39.2	39.7	39.8	40.3	40.0	39.6	
		B, C ₁ , C ₂	39.3	39.8	39.8	1	1	1	
		B ₁ , B ₂	1	-	1	1	40.5	40.2	
Dog	43	В, С	29.0	30.7	32.5	33.5	33.3	32.6	
		B, C ₁ , C ₂	29.6	31.0	32.8	1	1	1	
Newspaper	04	В, С	28.1	29.9	30.2	30.7	X		
		B, C ₁ , C ₂	28.7	30.2	30.5	30.7			
Lovebird1	07	В, С	28.6	29.8	30.3	30.7	31.0	31.0	
		B, C ₁ , C ₂	29.0	30.2	30.6	-	-	-	

Table 2: Average PSNR (in dB) of the virtual view synthesized by using N-view DCTA supported View Synthesis (Averaged over 10 frames).

