## → Chapter 5 - Outlier Analysis

## Segment 8 - Extreme value analysis using univariate methods

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
from pylab import rcParams

%matplotlib inline
rcParams['figure.figsize'] = 5,4

address = 'C:/Users/Lillian/Desktop/ExerciseFiles/Data/iris.data.csv'
df = pd.read_csv(filepath_or_buffer=address, header=None, sep=',')

df.columns=['Sepal Length','Sepal Width','Petal Length','Petal Width', 'Species']

X = df.iloc[:,0:4].values
y = df.iloc[:,4].values
df[:5]
```

|   | Sepal Length | Sepal Width | Petal Length | Petal Width | Species |
|---|--------------|-------------|--------------|-------------|---------|
| 0 | 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 1 | 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 2 | 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 3 | 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 4 | 5.0          | 3.6         | 1.4          | 0.2         | setosa  |

▼ Identifying outliers from Tukey boxplots

```
df.boxplot(return_type='dict')
plt.plot()
```



Sepal\_Width = X[:,1]
iris\_outliers = (Sepal\_Width > 4)
df[iris\_outliers]

|    | Sepal Length | Sepal Width | Petal Length | Petal Width | Species |
|----|--------------|-------------|--------------|-------------|---------|
| 15 | 5.7          | 4.4         | 1.5          | 0.4         | setosa  |
| 32 | 5.2          | 4.1         | 1.5          | 0.1         | setosa  |
| 33 | 5.5          | 4.2         | 1.4          | 0.2         | setosa  |

Sepal\_Width = X[:,1]
iris\_outliers = (Sepal\_Width < 2.05)
df[iris\_outliers]</pre>

|    | Sepal Length | Sepal Width | Petal Length | Petal Width | Species    |
|----|--------------|-------------|--------------|-------------|------------|
| 60 | 5.0          | 2.0         | 3.5          | 1.0         | versicolor |

## Applying Tukey outlier labeling

```
pd.options.display.float_format = '{:.1f}'.format
X_df = pd.DataFrame(X)
print(X_df.describe())
             0
                  1
                       2
                            3
    count 150.0 150.0 150.0 150.0
           5.8 3.1
                     3.8
    mean
                          1.2
    std
           0.8 0.4 1.8
                          0.8
    min
           4.3 2.0 1.0
                          0.1
    25%
           5.1 2.8 1.6 0.3
           5.8 3.0 4.3 1.3
    50%
    75%
           6.4 3.3 5.1 1.8
           7.9 4.4 6.9 2.5
    max
```