Chapter 20

Augmented Reality and Virtual Reality

- 20.1 Defining Augmented Reality and Virtual Reality
- 20.2 Anatomy of AR and VR Systems
- 20.3 Early Foundational Systems and Applications
- 20.4 Enabling Hardware and Infrastructure
- 20.5 Modern AR Systems and Applications
- 20.6 Limitations and Challenges

- Reality is one end of a spectrum
- Virtuality (total simulation) is the other
- AR, VR, and MR are all in-between

- AR closer to reality → real elements >> virtual elements
- Example: standing in field of grass
 - virtual guidelines
 - virtual ball
 - predominantly real environment

- Conversely, augmented virtuality closer to virtuality predominantly virtual
- Example: standing in cubic white room, but
 - o real surroundings (room) replaced with rectangular virtual soccer arena
 - virtual players
 - o real soccer ball
- Both AR and AV are examples of mixed reality

- What about virtual reality?
- VR attempts to replace reality with simulated reality.
- Problematic: not quite virtuality, but not quite mixed reality?

- True virtuality is entirely simulated, à la Matrix
 - Simulated bleeding === real bleeding
- However, some aspects are undesirable (dying, injuries)
- VR eliminates these

- Mixed reality is a blend of reality and virtuality
- VR does not necessarily achieve this, but often lumped in for convenience

- AR first defined by Ivan Sutherland in 1968:
 - Illusion of a 3D object presented in 2D that changes in exactly the way a real object would change when the user's head moves.
- Sutherland also made first optical head-mounted display & AR system
- Definition was too broad though,
 VR fits under this definition

- Revised definition in 1997 of AR to be a system that
 - Combines real and virtual objects in a real environment
 - Aligns both real and virtual objects with each other
 - Runs interactively in real-time
 - Is registered in three dimensions
- Opposite problems: this definition was too narrow
 - Smartphone driven AR completely excluded (lack of 3D registration)
- But also too broad
 - Spatial audio systems emitting sound of a virtual ball rolling fits the definition.

- Take the best of both worlds and define AR as
 - a predominantly visual system
 - that combines real and virtual objects in a real environment
 - while aligning the real and virtual together
 - · running in real-time
 - allows 6 degrees of freedom of interaction (position, orientation)
 with virtual objects
- What about VR?
 - Challenging to define outside of a simulated experience of reality
 - Future implementations of VR may be vastly different than today

- Try defining VR from first principles
 - Compared to AR systems, VR replaces everything seen
 - Existence of telepresence
- Telepresence necessitates head-mounted displays
- Milgram provides a taxonomy of displays

Class	Characteristics	Real/Virtual world	Overlays
1	Monitor-based, showing video of reality	R	CGI
2	Head-mounted, showing video of reality	R	CGI
3	Head-mounted, optical view of reality	R	CGI
4	Extension of 3 with stereoscopic video	R	CGI
5	Monitor+head displays showing video of CGI with video cutouts of reality	V	Video of reality
6	Extension of 5 with real object interactions	V	None

- AR and VR systems have 3 principle tasks
 - Sensation
 - Localization & Alignment
 - Digital World Simulation
- Tasks are pipelined, source-sink data flow

Sensation

- Analog-to-digital conversion of various aspects of the real environment
- Continuous stream of raw information
- Individual sensors provide windows to the world
- Combined, they provide meaning

- Localization & Alignment
 - Hardest task
 - Many aspects to consider
 - User-centric? World-centric? Single-user? Multiuser?
 - Sensor data contains noise and error
 - Will look at different systems over time to see different solutions

- Virtual World Simulation
 - Similar to video games
 - User input processed at this stage
 - Virtual objects are placed according to localization
 - In multiuser systems, external user actions are applied
 - World advances one simulation step forward

- Application or Platform?
 - Security and privacy issues
 - Different stakeholders: enduser, system maintainer, AR world developer
 - Data stewardship who protects what?

20.3 Early Foundational Systems

- Swords of Damocles -Sutherland 1968
 - Pioneering work, ~20 years ahead of time
 - Computers still used punch cards
 - Possibly first pseudo-GPU
 - Used mechanical linkage for localization

Early Foundational Systems

- Swords of Damocles Sutherland 1968
 - A2D conversion of mechanical tension
 - Computer calculates perspective matrix, generates vertex list for virtual objects
 - Proto-GPU takes matrix, list and generates 2D image
 - Display driver sends image to headset

Early Foundational Systems

- Swords of Damocles Sutherland 1968
 - Limited to simple lines
 - No interaction outside of moving head
 - Restricted movement to range of linkage
- Main innovations
 - Proto-GPU pipeline and clipping algorithms
 - Utilization of "kinetic depth effect" to imitate real objects

FIGURE 9—A computer-displayed perspective view of the "room" as seen from outside

Early Foundational Systems

- Visually-coupled airborne systems simulator US Air Force 1977
 - Early flight simulator for air force pilots
 - Part of a larger "Super Cockpit" program for targeting HUDs
 - No position localization pilots stationary in seats
- Many AR applications of this time were military
 - Computers still in infancy stage, just transitioned from vac tubes to transistors
 - Required expensive purpose-built hardware

20.4 Enabling Hardware and Infrastructure

- Three key fundamental advancements
 - Global Positioning System
 - Graphical Processing Unit
 - Internet
- Each lowered the barrier to entry for AR

- Global Positioning System
 - Solved general localization problem
- Localization is always relative to a reference point
 - How would you tell someone where you are now?
 - Room numbers are relative to a building, buildings to a street, streets to a city, etc.
- Simultaneous Localization And Mapping is difficult for this reason
 - To localize, need a reference point
 - To map/obtain a reference point, need localization

- GPS provides "global" reference point: Earth's spherical surface
 - Bisect sphere twice to get meridian and equatorial axes (not quite true, but close enough)
 - Positioning now relative to these two axes
 - Report arc length up/down and left/right of principal axes
- Localize via triangulation, then plot on map (axes)
 - GPS uses constellation of satellites
 - Minimum 3 satellites visible at any location on Earth

- Initial accuracy of ~100 metres
 - US Gov feared misuse for weapons guidance
 - Added uniform noise to distort signals
 - The limit was later turned off, the accuracy can now be within 30 centimeters
- GPS enabled portability to AR systems
 - Differential GPS (DGPS) can be used for higher accuracy

* Images of "The Touring Machine" with permission of Dr. Stephen K. Feiner, Columbia University.

- The Touring Machine,
 Feiner 1997
 - First notable overhaul of AR systems
 - Designed as a digital assistant for marking areas/buildings of interest
 - Used over-the-counter parts to build
 - Localized using GPS + gyroscope
 - Accurate to ~1 metre due to DGPS

- Differential GPS (DGPS)
 - Requires known fixed-location receiving station
 - Station requests position from GPS
 - Computes difference against known location
 - Correction factor is broadcast over shortwave radio

- The Touring Machine, Feiner 1997
 - Still had challenges that needed resolving
- Energy Consumption
 - Increase in visual fidelity = increase power draw
 - Battery power is limited
- Display Quality
 - Direct sunlight is very bright, difficult to overpower
 - Neutral density filters are a necessity
- Tracking Quality
 - Analog sensors still have noise
 - Compounded noise over time severely degrades tracking

Graphics Processing Unit

- Provided acceleration for and standardized graphical processing pipeline
- Alleviates some energy concerns
- All AR systems use dedicated GPUs now
- 2-stage pipeline: geometry + pixelization
- Pipeline has drawbacks for AR work

Geometry Stage

- User supplies vertex list, view + projection matrices, primitive shape
 - Valid primitives: Triangle, line, point
- Vertices are created in 2D/3D space based on list by Vertex Shader
- Shader applies view matrix to supplied vertex list
 - Programmable version of Sutherland's matrix multiplier

Geometry Stage

- Processed vertices are checked if still in view, vertices not in view are removed
- Remaining vertices are connected in the order supplied, using the supplied primitive
- Primitives are then rasterized
 - 1 pixel = 1 fragment (not really, but good enough conceptually)
 - N fragments per 1 primitive
- Similar function performed by Sutherland's Clipping Divider

Pixelization Stage

- Fragments are coloured in by Fragment Shader
 - Lighting, texturing, reflectivity, etc. all handled by programmable fragment shader
- At blending + testing, case of multiple fragments at a single pixel are dealt with
- Example: overlapping shapes 2 fragments, 1 pixel
- Solve by either blending colours, or depth

Output

Blending -

Testina

Fragment

Shader

Pipeline Drawbacks in AR

- Pipeline was made for *generating* imagery from nothing, not for merging imagery
- Depth + image output buffers are located on GPU

Pipeline Drawbacks in AR

- Consider case where virtual object is hidden behind real object
- Occlusion must be pixel-perfect, can be achieved in 2 ways
 - Render image → remove bad pixels on CPU
 - Create depth mask on CPU → use mask on GPU
- 1st method stalls rendering due to data transfer to CPU
- 2nd method requires depth "shading" (custom GPU/pipeline)
- HoloLens took latter approach

- Internet
 - Simplified multiuser systems
 - Virtual objects no longer had to be static
 - Client-server architecture allowed for multiuser coordination
 - Enabled higher mobility systems
 - Enabled offloading of difficult/complex computations

- Studierstube Szalavári 1998
 - One of the first AR systems to support multiple simultaneous users
 - Achieved by limiting scope of problem
 - Similar to Sutherland's system, only worked in a specific room
 - Utilized various magnetically tracked devices: 3D cursor, HMD,
 2D control plane
 - Centralized servers maintained spatial coordinates of each object
 - HMD client responsible for local POV rendering
 - Desync was possible, synchronization was not pixel-perfect
 - System architecture was very similar to how MMORPGs were.

- AR Quake Thomas 2001
 - One of the first AR systems to work outdoors
 - PC users could connect with AR users using the campus as the "level"
 - Hybrid tracking approach
 - Used GPS for coarse location data
 - Fiducial markers for context-specific location data
 - Documented difficulties of AR in uncontrolled environments

Outdoor AR Drawbacks

- Inaccurate colour blending models due to additive/subtractive light projection methods
 - Notice how yellow face doesn't appear yellow
- Direct sunlight is very, very bright and over-powers most light projection methods
 - Image is very dim due to having to block most of the sunlight
- Power-scarce environment due to being battery powered
 - System could not run for particularly long without needing to recharge

* Image with permission of Dr. Bruce H. Thomas, University of South Australia.

Technological Revolutions of the 2000s

Applications

- Computing power became exponentially cheaper
- Enabled plethora of applications for AR

Navigational

- · Touring Machine, NaviCam, etc.
- Militaristic
 - Fight jet cockpits
- Industrial
 - Assembly plants at BMW, Boeing, Airbus, etc.
- Educational
 - Virtual tour guides
- Entertainment
 - 1&10 yellow line marker in American Football

- Hardware initially focused on miniaturization, but began shifting to ASICs
- Current transistors are fabricated <7 nm apart
- Computation began to turn into a commodity
- New form-factors for AR systems emerged as a result

iPhones and Mobile Computing

- Smartphones became ubiquitous during this time
- Smartphone sensors became more pervasive
- Smartphones became incrementally more affordable
 - Low end phones are generally equipped with magnetometers and gyroscopes now

Pokémon GO

- One of the first AR applications to take advantage of the above factors
- At its peak, installed on over 10% of all US Android devices
- Demonstrated that smartphone-based AR is sufficient for the general public
- Influenced the creation of ARCore and ARKit from Google/Apple

Pokémon GO

- Used magnetometer to determine compass orientation (yaw)
- Used gyroscope to determine angle relative to ground (pitch) and head tilt (roll)
- GPS provided relative location to nearest Pokémon
- Rear smartphone camera acted as "real world" backdrop
- · Pokémon would then be rendered on top of this image

- Commodification of Computing
 - Incremental advancements in manufacturing processes and CPU architecture design
 - Opened market for fully custom CPU fabrication
 - Customizable SoCs and instruction set architectures
 - Significant power savings through 1 chip = 1 function
 - iPhones have a Neural Processing Unit
 - HoloLens have a Holographic Processing Unit
 - Dedicated processing chips have allowed HoloLens to achieve
 720p at 60 FPS per eye

- HoloLens: HPU
 - Custom SoC that bridges gap between conventional graphics pipeline and AR pipeline
 - Adds dedicated vision processing for environmental semantics
 - Supports depth shading via custom support for capturing depth

HoloLens: Display Mechanism

- Principle mechanism of action is a light additive microdisplay, transferred to both eyes
- Bulky prism acts as optical carrier with total internal reflection (like a fibre optic cable)
- Real world light is emitted into the prism via an additional correctional prism
- Major drawback of this system is the inability to render pure black objects (cannot remove light)
- Secondary drawback is that all objects will be transparent to a degree since light is multiplexed immediately prior to entering retina

- Color Perception
- Depth
- Localization
- Information Presentation
- Social Acceptance

Color Perception

- Noted by Feiner and Thomas (and demonstrated by HoloLens),
 optical AR displays have many challenges in color
- Three intrinsic, core problems:
 - Sunlight is extremely bright
 - Light can be either additive or subtractive w/ displays, but not modified vis-a-vis software graphics style
 - AR "backgrounds" are dynamically colored and uncontrollable
- Optical AR display must be able to account for these issues, otherwise unexpected results may occur

Depth

- Extremely important aspect of high fidelity AR that is still not yet fully solved
- Currently, real objects cannot be in front of virtual objects; real-time segmentation is too hard
- Possible in specific specialized cases, but not in general
- HoloLens uses infrared sensors to pick up depth, IR absorbing surfaces, like water, cannot be picked up
- Software methods, like stereo triangulation, may prove to be more suitable, but finding corresponding points between cameras is extremely hard

Localization

- One of the largest contributing factors to localization error is latency
- Stale sensor data leads to stale image data
- By the time an image is displayed, it could be 2 frames stale in terms of sensor data
- Simple example is the smoothness between 30 Hz and 144 Hz monitors

Localization

- Following latency is sensor accuracy and precision related errors
- Accuracy how close estimate of X is to X
- Precision how close estimate of X is to prior estimate of X
- One can be accurate, but not precise
 - Think arrows hitting close to bulls-eye, but bad clustering
- And also precise, but not accurate
 - Arrows hitting nowhere near bulls-eye, but tight clustering
- Very difficult to be both precise AND accurate
- Even harder to be precise, accurate, AND fast

- Information Presentation
 - AR conveys visual data, which can be information-dense
 - Balancing act in providing sufficient information without overloading the user
 - Similarly, new UI paradigms will be necessary
 - Transitioning between different AR contexts?
 - AR interface control inputs?
 - Control mechanisms?

- Social Acceptance
 - Google Glass predated HoloLens by almost 5 years, but was a universal flop
 - Received widespread criticism and social rejection, despite being almost identical to HoloLens
 - Reasons were twofold
 - Innocuous camera that could record everything (Privacy)
 - Non-invasive design meant the wearer could zone-out on the device (Safety)
 - Some users may also experience virtual reality sickness
 - Consequences of completely replacing/augmenting a person's view with a digital one is not entirely well understood yet
 - In today's techno-centric world, AR treads on a fine line between utility and privacy/safety
 - We bear the burden to ensure that public good outweighs the negatives