Линейная Алгебра и Геометрия Определения

28 ноября 2016 г.

1. Совместные и несовместные СЛУ.

Совместная СЛУ – это СЛУ, которая имеет хотя бы одно решение. Несовместная СЛУ – не имеет решений.

2. Эквивалентные СЛУ.

Это СЛУ, которые имеют одинакавое множества решений.

3. Расширенная матрица системы линейных уравнений.

Матрица вида $(A|\vec{b})$. Где A – матрица коэффициентов, \vec{b} – вектор свободных членов.

4. Элементарные преобразования матриц. –

Это такие преобразования в результате которых не меняется эквивалентность матриц, т.е. множество решений СЛУ, которому соответствует данная матрица.

- (а) Прибавление к одной строке матрицы другой строки, домноженной на некоторый коэффициент.
- (b) Перестановка двух строк матрицы.
- (с) Умножение строки матрицы на некоторый коэффициент.

5. Ступенчатый вид матрицы.

- (а) Номера ведущих элементов (первый ненулевой) строк строго возрастают.
- (b) Все нулевые строки стоят в конце.

6. Улучшенный ступенчатый вид матрицы.

- (а) Имеет ступенчатый вид.
- (b) Все ведущие элементы строк равны 1 и во всех столбцах, содержащих ведущие элементы, все остальные элементы равны нулю

7. Теорема о каноническом виде, к которому можно привести матрицу при помощи элементарных преобразований строк.

Теорема. Всякую матрицу элементарными преобразованиями можно привести κ каноническому виду.

8. Общее решение совместной системы уравнений.

Преамбула: Когда в матрице, соответствующей СЛУ ненулевых строк меньше, чем неизвестных.

Тогда назовем главными те неизвестные, коэффициенты при которых являются лидерами строк, а остальные назовем свободными. Отбросив нулевые строки и перенеся члены со свободными неизвестными в правую часть, мы снова получим строго треугольную систему. Решая ее как в предыдущем случае, находим выражение главных неизвестных через свободные. Подставляя в свободные любые значения, получаем бесконечное количество решений — система будет неопределенной.

Суть:

Общее решение совместной СЛУ – это множество всех решений этой системы.

9. Сколько может быть решений у СЛУ с действительными коэффициентами.

- (а) Если система несовместна, то она не имеет решений.
- (b) Если система совместна и определена, то она имеет одно решение.
- (с) Если система совместна и неопределена, то она имеет бесконечно много решений.

10. Однородная СЛУ. Что можно сказать про ее множество решений? –

это СЛУ вида $A\vec{x}=0$, т.е. СЛУ у которой все правые части уравнений равны нулю. О ней можно сказать то, что она всегда совместна, т.к. всегда имеет как минимум одно решение: $\vec{x}=0$.

Теорема. Пусть с — какое-то решение неоднородной системы, а L — множество всех решений связанной с ней однородной системы. Тогда c+L есть множество всех решений неоднородной системы.

11. Свойство однородной СЛУ, у которой число неизвестных больше, чем число уравнений.

У такой СЛУ при приведении к ступенчатому виду будет хотя бы одна свободная неизвестная x_i . Значит СЛУ имеет бесконечно много решений, среди которых есть ненулевые.

12. Сумма двух матриц и умножение матрицы на скаляр.

Замечание. Говоря «матрица A размера $m \times n$ » мы подразумеваем, что в матрице m строк u n столбиов. Это можно обозначить следующим образом: $A \in Mat_{m \times n}$.

Cуммой двух матриц A и B размера $m \times n$ называется такая матрица C размера $m \times n$, в которой каждый элемент равен сумме соответствующих элементов матриц A и B, т.е.:

$$c_{ij} = a_{ij} + b_{ij}$$

Замечание. Сложение двух матриц определено только в том случае, когда их размеры одинаковы

Свойства сложения матриц:

- (a) $\forall A, B, C \in Mat_{m \times n} (A + B) + C = A + (B + C)$ ассоциативность.
- (b) $\forall A, B \in Mat_{m \times n} A + B = B + A \text{коммутативность}.$
- (c) $\exists \ 0 \in Mat_{m \times n} : \forall A \in Mat_{m \times n} \ A + 0 = 0 + A = A$ сложение с нулевой матрицей (существование нейтрального элемента по сложению)
- (d) $\forall A \in Mat_{m \times n} \exists ! (-A) = (-a_{ij}) : A + (-A) = (-A) + A = 0$ существование противоположной матрицы.

∃! – существует и притом только один.

Произведением матрицы A размера $m \times n$ на **скаляр** λ называется такая матрица B размера $m \times n$, в которой каждый элемент равен произведению соответствующего элемента матрицы A и скаляра λ , т.е.:

$$b_{ij} = \lambda \cdot a_{ij}$$

Свойства умножения матриц на скаляр:

- (a) $\forall A \in Mat_{m \times n} \ 1 \cdot A = A$ умножение на единичный скаляр. (существование нейтрального элемента по умножению)
- (b) $\forall \alpha, \beta \in \mathbb{R}, A \in Mat_{m \times n} (\alpha \beta) A = \alpha(\beta A) \text{ассоциативность}.$
- (c) $\forall \alpha, \beta \in \mathbb{R}, A \in Mat_{m \times n} \ (\alpha + \beta)A = \alpha A + \beta A$ дистрибутивность относительно скаляров.
- (d) $\forall \lambda \in \mathbb{R}, \forall A, B \in Mat_{m \times n} \ \lambda(A+B) = \lambda A + \lambda B$ –дистрибутивность относительно матриц.

13. Транспонированная матрица. –

Это матрица, над которой проведено преобразование, при котором стобцы становятся строками и наоборот, т.е.:

$$(a_{ij})^T = a_{ji}$$

Обозначается A^T .

Свойства транспонирования:

- (a) $(\lambda A)^T = \lambda (A)^T$ связь с умножением на скаляр.
- (b) $(A + B)^T = A^T + B^T$ связь со сложением матриц.
- (c) $(AB)^T = B^T A^T$

14. Произведение двух матриц.

Произведением двух матриц $A \in Mat_{m \times l}$ и $B \in Mat_{l \times n}$ называется такая матрица $C \in Mat_{m \times n}$ размера $m \times n$, в которой каждый элемент (ij) равен сумме произведений элементов і-ой строки матрицы A на элементы ј-ый столбец матрицы B, т.е.:

$$c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \ldots + a_{il} bnl.$$

Свойства произведения матриц:

- (а) Некоммутативно в общем случае.
- (b) A(B+C) = AB + AC левая дистрибутивность.
- (c) (A+B)C = AC + BC правая дистрибутивность.
- (d) $\lambda(A+B) = (\lambda A)B = A(\lambda B)$.
- (e) A(BC) = A(BC) ассоциативность.

15. Диагональная матрица. –

Квадратная матрица, элементы которой вне главной диагонали равны нулю. Обозначается как $diag(a_{11}, a_{22}, a_{33}, a_{44} \dots a_{nn})$.

16. Единичная матрица, ее свойства. –

квадратная матрица, у которой элементы главной диагонали равны единицы, а остальные нулю, т.е. $E_n = diag(1,1,1...1)$.

Основное свойство:

$$\forall A \in Mat_{n \times n} \ AE = EA = A.$$

Еще:

- (a) $\forall A \in Mat_{n \times n} A^0 = E$.
- (b) $\forall A \in Mat_{n \times n} AA^1 = E$.
- (c) det E = 1

17. След квадратной матрицы A. –

Это сумма всех стоящих на главной диагонали матрицы A элементов. Обозначается tr A (от английского слова «trace» — след). Свойства следа:

- (a) $tr(\lambda A) = \lambda tr(A)$.
- (b) $tr(A+B)^T = trA + trB$
- (c) $tr(A)^T = trA$

18. След произведения двух матриц.

$$\forall A \in Mat_{m \times n}, B \in Mat_{n \times m} trAB = trBA.$$

Доказательство. Пусть AB = X, BA = Y, тогда:

$$trX = \sum_{k=1}^{m} x_{kk} = \sum_{k=1}^{m} \left(\sum_{l=1}^{n} a_{kl} b_{lk} \right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{m} b_{lk} a_{kl} \right) = \sum_{l=1}^{n} y_{ll} = trY.$$

19. Перестановки и подстановки элементов множества $\{1,\,2,\,\dots\,n\}$.

Перестановкой из n элементов множества $\{1, 2, \dots n\}$ называется всякий упорядоченный набор, в котором каждый элемент присутствует ровно один раз.

 $\pmb{\Pi o d c ma ho e ko u}$ — биективное отображение из множества $\{1, 2, \dots n\}$ в него же. Обозначение:

$$\sigma = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ \sigma(x_1) & \sigma(x_2) & \dots & \sigma(x_n) \end{pmatrix}$$

Говорят, что x_1 переходит в $sigma(x_1), x_2$ переходит в $sigma(x_2)$ и т.д.

20. Инверсия в подстановке. Знак подстановки. Чётные и нечётные подстановки.

Инверсия – это такая пара индексов i и j, что i < j, но $\sigma(i) > \sigma(j)$.

Пусть число инверсий в подстановке $\sigma = N(\sigma)$. Тогда **знак подстановки** $(-1)^{N(\sigma)}$.

Подстановка чётна, если ее знак равен 1 и нечетна иначе.

21. **Произведение двух подстановок.** – это новая подстановка степени n, получившаяся в результате последовательного (справа налево!) применения двух перестановок степени n. Свойства произведения подстановок:

- (a) $(\sigma_1\sigma_2)\sigma_3 = \sigma_1(\sigma_2\sigma_3)$ ассоциативность.
- (b) Подстановки степени больше двух некоммутативны.
- (c) det E = 1

22. Тождественная подстановка, обратная подстановка.

Тождественная подстановка – переводит элементы сами в себя, обозначается id. T.e. $id(x) = x, \forall x.$

Свойство:

$$\forall \ \sigma \ id \cdot \sigma = \sigma \cdot id = id.$$

Обратная подстановка – такая подстановка σ^{-1} , что $\sigma \cdot \sigma^{-1} = \sigma^{-1} \cdot \sigma = id$.

Свойство:

 $sgn(\sigma) = sgn(\sigma^{-1})$. – Знак обратной подстановки равен знаку исходной.

23. Транспозиция, элементарная транспозиция.

 $extbf{Tpahcnosuuus}$ — это такая подстановка, которая меняет ровно два элемента местами. $extbf{Элементарнs}$ транспозиция, которая меняет местами два соседних элемента.

24. Поведение знака подстановки при умножении справа на транспозицию. ??Знак транспозиции??.

Пусть τ – транспозиция, тогда $sgn(\sigma\tau) = -sgn(\sigma)$.

25. Теорема о знаке произведения двух подстановок.

Теорема. Знак произведения подстановок есть произведение знаков подстановок. $sgn(\sigma \rho) = sgn(\sigma) \cdot sgn(\rho)$.