Network Security Elements of Network Security Protocols

Organizzazione della rete

- II firewall
- La zona demilitarizzata (DMZ)
- System security

Organizzazione della rete

- La principale difesa contro gli attacchi ad una rete è una corretta organizzazione topologica della rete stessa
- Uno dei principali approcci è quello di suddividere la rete in zone di sicurezza
 - i dispositivi e le risorse sono posizionati nelle zone in base ai loro livelli e requisiti di sicurezza
 - la rete acquisisce una maggiore scalabilità ed una conseguente maggiore stabilità

Network Security

3

Organizzazione della rete

- La zona demilitarizzata (DMZ) è una porzione di rete che separa la rete interna dalla rete esterna
- I server nella DMZ sono accessibili dalla rete pubblica, perciò non sono trusted (dalla rete interna) e quindi devono essere segregati rispetto a questa

se un server non è trusted allora la sua compromissione non dovrebbe avere effetti collaterali

Organizzazione della rete

Network Security

5

Firewall: obiettivi e proprietà

- Il Firewall è un dispositivo special purpose che impone una politica di controllo degli accessi tra due reti
- Il Firewall è posizionato tra le due reti con i seguenti obiettivi/proprietà:
- tutto il traffico tra le due reti passa attraverso il firewall
- solo il traffico autorizzato può passare
- il firewall stesso è immune alla penetrazione
 - tutte le funzionalità sconosciute o di dubbia sicurezza possono essere eliminate (principio di economia dei meccanismi)
 - il firewall è amministrato meglio di un host
 - il firewall ha meno utenti di un host

Tipi di firewall

- Packet filter viene installato a monte della rete protetta ed ha il compito di bloccare o inoltrare i pacchetti IP secondo regole definite a priori
- Circuit/application gateway analizza e filtra il traffico a livello trasporto/applicazione. Application gateway sfrutta la conoscenza del particolare servizio

Livello	Oggetto del monitoraggio	Funzione
Application	Data payload	Application gateway (proxy)
TCP Transport	TCP/UDP header	Circuit gateway
IP Network	IP header	Packet filetering

Network Security

7

Application gateway

application gateway

Vantaggi

- Autenticazione del cliente e del server
- Filtraggio specifico per il servizio di tutto il traffico
- Mascheramento della rete
- Logging

Svantaggi

- Non trasparente
- Un gateway per ogni servizio basato su TCP
- Reindirizzamento
- Carico addizionale

Circuit gateway

- Trasparente ma i client devono essere modificati
- Autenticazione del cliente e del server
- Autorizzazione, logging e caching delle connessioni
- Ripulitura della connessione

Network Security

9

Proxy server

I servizi proxy hanno le seguenti caratteristiche

- i servizi proxy sono indipendenti tra di loro
- ciascun servizio proxy implementa solo un sottoinsieme delle funzionalità
- i servizi proxy sono pacchetti ridotti rispetto ai servizi
- un servizio proxy non accede al disco ad eccezione della lettura del suo file di configurazione
- ciascun servizio proxy viene eseguito come utente non privilegiato in una directory privata

Bastion host

 Il bastion host è un host critico per la sicurezza e costituisce la piattaforma per i gateway a livello di applicazione e di circuito

Il bastion host ha le seguenti caratteristiche

- monta un sistema operativo sicuro
- monta solo i servizi proxy necessari
- eroga ciascun servizio solo ad un sottoinsieme degli host della rete
- implementa forme di autenticazione aggiuntive e specifiche
- supporta logging & auditing

Network Security

11

Packet filter

- Un packet filter (screening router) scarta o inoltra un pacchetto IP, da e verso la rete interna, sulla base di un insieme di regole di filtraggio
- Le regole di filtraggio si basano sul valore dei campi contenuti nell'intestazione IP e di trasporto (TCP/UDP) tra cui:
 - l'indirizzo del sorgente e del destinatario
 - il protocollo di trasporto
 - il numero di porta del sorgente e del destinatario
 - i flag SYN, ACK nell'header TCP

• ...

Packet filter: politiche di filtraggio

- exclusive policy (open system policy)
 –la regola di default è inoltrare: ciò che non è espressamente proibito viene permesso
- inclusive policy (closed system policy)
 –la regola di default è scartare: ciò che non è espressamente permesso viene proibito

Network Security

13

Regole

 Un firewall applica un insieme di regole; ogni regola ha la seguente struttura (IPF*-like)

action options selection [flags keep state]

- il campo action specifica cosa fare con un pacchetto che soddisfa la regola di selezione
- il campo selection specifica la regola di selezione dei pacchetti
- il campo options specifica
 - l'interfaccia (on interface) su cui applicare la regola di selezione,
 - se la regola di selezione deve essere applicata ai pacchetti in ingresso (in) o in uscita (out)
- i campi **flags** e **keep state** saranno discussi più avanti

^{*} IPF (IPfilter Firewall); per brevità, nelle regole seguenti, la keyword quick è omessa

Regole: esempi

- block in on dc0 proto tcp/udp from UnIP to any
 bloccare tutto il traffico entrante proveniente da UnIP
- pass in on dc0 proto tcp from any to MioIP port = 25
 passare il traffico di email destinato a MioIP
- pass out on dc0 proto tcp from any to any port = 25 passare il traffico di email in uscita
- block out log on dc0 all –bloccare tutto il traffico in uscita (default)
- block in log on dc0 all –bloccare tutto il traffico in ingress (default)

Network Security

15

Stateful packet filtering (cont.)

 Si autorizzano i pacchetti in uscita verso la porta 80 di un qualunque host

pass out on dc0 proto tcp from any to any port = 80

 Si autorizzano i pacchetti in ingresso provenienti dalla porta 80 di un qualunque host

pass in on dc0 proto tcp from any port = 80 to any

 Attenzione: non c'è nessuna garanzia che un pacchetto proveniente dalla porta 80 di un host esterno sia stato inviato dal servizio WWW

Stateful packet filtering (cont.)

- Lo stateful filtering considera il traffico come uno scambio bidirezionale di pacchetti IP che costituisce una sessione di conversazione (conversation session)
- Lo stateful filtering permette di generare dinamicamente le regole per il prossimo pacchetto (anche ICMP) nella sessione di conversazione
- In uscita/ingresso, se un pacchetto soddisfa il criterio di selezione della regola dinamica, il pacchetto viene lasciato passare e viene generata la regola per il prossimo pacchetto; altrimenti al pacchetto sono applicate le regole statiche
- Lo stateful filtering permette di concentrarsi sul passare o bloccare una nuova sessione: i successivi pacchetti della sessione subiranno la stessa sorte

Network Security

17

Stateful packet filtering (cont.)

Outbound traffic

allow out non-secure standard www function

pass out on dc0 proto tcp from any to any port = 80 flags S keep state

Inbound traffic

allow in standard www function

pass in on dc0 proto tcp from any to any port = 80 flags S keep state

- Keep state
 –la parola chiave keep state in una regola pass attiva lo stateful filtering se un pacchetto soddisfa il criterio di selezione
- Flag S—il flag S specifica un pacchetto che trasporta un tcp connection request

Stateful packet filtering (cont.)

allow out access to my ISP's DNS

pass out on dc0 proto tcp from any to *ISP* port = 53 flags S keep state

pass out on dc0 proto udp from any to ISP port = 53 keep state

allow access to my ISP's DHCP Server

pass out on dc0 proto udp from any to *ISP* port = 67 keep state pass in on dc0 proto udp from *ISP* to any port = 68 keep state

Network Security

19

Screened host firewall (single-homed)

- il packet filter fa passare i pacchetti provenienti dall'esterno e diretti al bastion host
- il packet filter può far passare i pacchetti provenienti dall'esterno e diretti ad un server che non ha un livello di sicurezza elavato (es. server web)
- il packet filter fa passare i pacchetti provenienti dal bastion host e diretti verso l'esterno
- il traffico viene analizzato due volte, ma se il packet filter viene compromesso, il traffico esterno può raggiungere la rete interna

Screened host firewall (dual-homed)

 il dual-homed bastion host previene i problemi causati dalla compromissione del packet filter perché un pacchetto deve "fisicamente" attraversare il bastion host

Network Security

21

Screened subnet firewall

- È l'architettura più sicura delle tre
- La DMZ è accessibile sia dalla rete interna sia dalla rete esterna
- Il traffico non può attraversare la DMZ

Three-legged architecture

- Il firewall deve avere tre interfacce
- la DMZ rimane isolata dalla rete interna

Network Security

23

Organizzazione della rete

Scopo della DMZ

- La politica di sicurezza prevede che
 - certe informazioni aziendali siano rese disponibili all'esterno
 - dall'esterno non è possibile comunicare direttamente con gli host nella rete interna
 - gli host della rete interna non possono comunicare direttamente con l'esterno
- La DMZ fa da "pompa" e regola le informazioni che escono dall'interno

Network Security

25

Il processo di hacking

- Selezionare il target
- Identificare i sistemi da attaccare
- Ottenere informazioni

- Ottenere l'accesso
- Acquisire privilegi
- Evitare la scoperta
- Realizzare l'obiettivo

Attraverso la rete

- Banner scanning
- Network profiling (nmap, nessus, ...)

Il processo di hacking

Network Security

27

Proteggere gli indirizzi della rete interna

Il firewall esterno (cont.)

- FWE permette traffico in ingresso di tipo SMTP, HTTP[S], [DNS]
- Dall'esterno si "vede" solo l'indirizzo IP di FWE
- I server in DMZ sono dei gateway
 (si assume che FWE svolga anche "limitate" funzioni di gateway)

Network Security

29

Il firewall esterno

- Sicurezza limitata in quanto gli indirizzi interni sono visibili
- Scalabilità limitata in quanto non è possibile alcuna forma di distribuzione del carico ed è possibile solo una limitata riconfigurabilità

Network Security 30

Caso di Studio: Dribbles Co.

Caso di Studio: Dribbles Co.

Il firewall esterno

- Maggiore sicurezza
- Maggiore scalabilità

Network Security

31

Il Firewall interno

Il firewall interno deve

- permettere la connessione tra il mail server interno ed il mail server in DMZ
- permettere la connessione al DNS in DMZ
- permettere le connessioni SSH verso i server della DMZ

Caso di Studio: Dribbles Co.

Il firewall interno

Network Security

33

Il firewall interno

Mail Server in DMZ deve conoscere un indirizzo per il Mail Server Interno e viceversa

Non è necessario che questi indirizzi siano i reali indirizzi dei server ma possono essere indirizzi fittizi che il firewall riconosce

Questi indirizzi possono essere fissi oppure si può utilizzare il DNS

Network Security 34

Caso di Studio: Dribbles Co.

II Mail Server in DMZ

- Il mail server (proxy) ha il compito di analizzare e bonificare il contenuto e gli indirizzi di ogni messaggio di email; il firewall deve perciò compiere solo controlli rudimentali
- Quando riceve un email
- a) il proxy ricostruisce l'email (header, body ed attachments), riporta gli attachment nella loro forma nativa ed analizza l'email e gli attachment così ottenuti
- b) il proxy riporta l'email in formato SMTP e la ricontrolla
- c) sulla base del destinatario, il proxy inoltra l'email al mail server interno
- Quando invia un email
 - il proxy esegue gli stessi passi a) e b); il passo c) è diverso. Al passo b) cerca informazioni proprietarie e sensibili
- c) il proxy scandisce l'header, qualunque informazione relativa ad indirizzi/nomi interni è cancellata o riscritta

Network Security

35

WWW server in DMZ

WWW server in DMZ

Network Security

37

SSH

- SSH permette di operare su di una macchina remota in modo sicuro
- È stato concepito per rimpiazzare gli r-tools
- SSH fornisce two-way authentication e permette di stabilire una connessione sicura (confidenzialità ed integrità) con la macchina remota
- SSH opera su TCP ed utilizza come porta d'ascolto la porta 22

Il client può essere autenticato dal server tramite password oppure tramite la sua chiave pubblica

Network Security

39

Connessioni SSH

- La connessione SSH è diretta e non mediata da un proxy. Tuttavia,
- il firewall garantisce che la connessione sia originata da un host interno trusted e sia diretta solo a server in DMZ
- solo gli amministratori di rete hanno accesso al trusted host
- il canale SSH è sicuro

Network Security

Caso di Studio: Dribbles Co.

40

DNS in DMZ

- DNS contiene le entrate nome-indirizzo necessarie ai server in DMZ e cioè le entry relative a:
 - web server, mail server e log server in DMZ
 - trusted administrative host
 - firewall esterno (per mail transfer)
 - firewall interno (per mail transfer)
- DNS in DMZ non conosce gli indirizzi del mail server interno
- DNS deve essere aggiornato solo se cambia l'indirizzo del trusted administrative host

Network Security

41

LOG server in DMZ

