MAS205 Complex Variables 2005-2006

Exercises 9

Exercise 33: Let $f(z) = \Re(z)$. Find the values of $\int_{\mathcal{C}_k} f(z)dz$ where

- (a) C_1 denotes the straight line from $z_0 = 3$ to $z_1 = 3i$,
- (b) C_2 denotes the arc from $z_0=3$ to $z_1=3i$ along a circle of radius 3 about the origin.

Find a simple closed contour C for which $\int_{C} f(z)dz \neq 0$.

Exercise 34: By applying Cauchy's theorem (or otherwise) show that $\int_{\mathcal{C}} f(z)dz = 0$ where \mathcal{C} is the unit circle $\{z \in \mathbb{C} : |z| = 1\}$ and

(a)
$$f(z) = \frac{1}{z^2 + 5}$$
 (b) $f(z) = \frac{1}{z^2 - 2iz - 5}$ (c) $f(z) = \tanh z$

Exercise 35: Use the Cauchy integral formula to evaluate each of the following integrals, where \mathcal{C} is the positively oriented circle $\{z \in \mathbb{C} : |z-3|=1/2\}$:

(a)
$$\int_{\mathcal{C}} \frac{(z+2)^3}{(z-3)z^2} dz$$

(b)
$$\int_{\mathcal{C}} \frac{\exp z}{(z-\pi)\cos z} dz$$

Exercise 36: Use the residue theorem to calculate

(a)
$$\int_{\mathcal{C}} \frac{1}{(z^2+4)(z+2+2i)} dz$$

for $C = C_1$, the positively oriented circle of radius 3 centred at 1, and for $C = C_2$, the positively oriented square with corners -3 - 3i and 1 + i;

(b)
$$\int_{\mathcal{C}} \frac{1}{z(z^2 - 4)(z - 2)} dz$$

where \mathcal{C} is the positively oriented circle of radius 2 centred at 1.