

3 V Stereo Headphone Power Amplifier

Overview

The LA4800V is a headphone stereo power amplifier IC that features a high signal-to-noise ratio, high ripple rejection, low distortion and low current consumption, making it ideal for portable CD players.

Functions

- Headphone stereo power amplifier
- · Beep tone
- · Power switch
- · Power mute switch

Features

- 96 dB (typ) high S/N ratio at 7 µV
- 76 dB (typ) high ripple rejection
- 0.07% (typ) low distortion with $R_L = 16~\Omega$
- 6.2 mA (typ) low current consumption
- Outputs do not require electrolytic capacitors.
- Available in 16-pin SSOPs

Package Dimensions

unit: mm

3178-SSOP16

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		4.5	V
Power dissipation	Pd max		375	mW
Operating temperature range	Topr		-15 to 50	°C
Storage temperature range	Tstg		-40 to 150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Recommended Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		3.0	V
Load resistance	R _L		16 to 32	Ω
Operating supply voltage range	V _{CC} op		1.8 to 3.6	V

Operating Characteristics at Ta = 25°C, $V_{\rm CC}$ = 2.5 V, $R_{\rm L}$ = 16 Ω , f = 1 kHz unless otherwise noted. Values in parentheses indicate $V_{\rm CC}$ = 3.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
	I _{CCO1}	IC OFF		0.05	1.0	μΑ
Quiescent supply current	I _{CCO2}	Mute ON		1.6 (1.65)	3.0	mA
	I _{CCO3}	No input signal		6.2 (6.8)	9.0	mA
Voltage gain	VG	$V_O = -10 \text{ dBm}$	10.3	11.8	13.3	dB
Channel balance	V_{RL}	$V_O = -10 \text{ dBm}$	-1	0	1	dB
Output power	PO	V _{CC} = 3.0 V, THD = 10%	15	25		mW
Total harmonic distortion	THD	$V_{O} = 0.35 \text{ V}$		0.075	0.2	%
Output noise voltage	V _{NO}	Rg = 1 k Ω , DIN AUDIO		7.8	15	μV
Crosstalk	CT	$f = 1 \text{ kHz}, \text{ TUN}, \text{ V}_{\text{O}} = -10 \text{ dBm}$	35	45		dB
Ripple rejection	R.R	$V_{CC} = 1.7 \text{ V, f} = 100 \text{ Hz, V}_{CR} = -20 \text{ dBm,}$ TUN = 100 Hz	65	76		dB
Mute attenuation	V _{OFF}	THD = 1%	-80	-96		dB
Beep tone output voltage	V _{O BEEP}	V _I = -13.5 dBm (sine wave)	1.5	3.0		mV
Output DC offset voltage	V _{DC OFF}	$V_I = 0 \text{ V, Rg} = 1 \text{ k}\Omega$	-20	0	20	mV
Power ON current sensitivity	I _{1 ON}	$V_{CC} = 1.7 \text{ V}, V_5 \ge 1.0 \text{ V}$		50	60	μΑ
Power OFF voltage sensitivity	V _{1 OFF}	$V_{CC} = 1.7 \text{ V}, V_5 \le 0.1 \text{ V}$	0.5	0.6		V
Mute OFF current sensitivity	I ₁₆ OFF	$V_{CC} = 1.7 \text{ V}, V_5 \ge 1.0 \text{ V}$		4.5	6.0	μΑ
Mute OFF voltage sensitivity	V ₁₆ OFF	V _{CC} = 1.7 V	1.0	1.25	1.5	V
Mute ON voltage sensitivity	V _{16 ON}	V _{CC} = 1.7 V		0.9	1.0	V

Pin Assignment and Block Diagram

Test Circuit

Unit (resistance: Ω , capacitance: F)

Sample Application Circuit

Pin Description

 $V_{CC} = 2.5 \text{ V}$ Unit (resistance: Ω)

Pin number	Pin name	V _{DC} (V)	Equivalent circuit	Pin description		
1	PWR SW	0 to 0.7	20 k 45	Power switch Turns ON the power to the V _{CC} pin.		
2	IN A	1.1	300	Power input pins		
4	IN B	1.1	1.1	1.1	② W Flok	10 kΩ input resistance
3	IN C	1.1	3 300 300 mm	Power amplifier common input pin Usually connected to Vref		

Continued on next page.