

Digital System Design

Hajar Falahati

hfalahati@ipm.ir
hfalahati@ce.sharif.edu

DSD

• Digital System Design (DSD)

Outline

Digital Computer Systems

Digital Computer Systems

System

- A set of interacting components that acts as a whole
- Performs the desired functions
 - Behavior

Computer

- Brukes Goldsten, Von Neuman
 - Preliminary discussion of the logical design of an electronic computing instrument
 - 1946

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Components

- Three key components
 - Computation
 - Communication
 - Storage / Memory

Computing System

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Computer Systems Are Every Where!

CAD/CAM

Digital Biology

Military Applications

Computer System

- A computer combined with peripheral equipment and software
- Combination of hardware, software, user and data
 - Performs desired functions

Hardware Vs. Software

- Software
 - Flexibility
 - Ease of modification
 - Ease of upgrade

- Hardware
 - High speed
 - Low power consumption!

Digital Vs. Analog

- Analog
 - Time-varying signals
 - Take any value across a continuous time domains
 - Sensing and actuating environmental values

- Digital
 - Finite values in discrete time domains
 - Algorithmic control
 - Data processing

0100111101

Digital System

- Takes a set of discrete information as inputs
- Takes discrete internal information as system state
- Generates a set of discrete information as outputs

Digital Computer Systems

- Binary values
 - **Digits:** 0,1
 - Words (symbol): False (F), True (T)
 - Words: Low (L), High (H)
 - Words: On, Off
 - Voltage (CPU)
 - Electrical charge (DRAM)
 - Magnetic Field Direction (Disk)
 - Surface Pits/Lights (CD)

Example of analog and digital representations of human Heart Beat:

Why Digital?

Why Digital?

- High noise immunity
- Better reliability

Why Digital? (cont'd)

- Design and Implementation simplicity
 - No complex mathematics formula and details of physical processes
 - Modular design
 - Easier implementation
- Programmability
 - Easy to program
- More flexibility
 - Easy to program and modify

Digital Computer System: Trend

- Non-Electronic Computing Machines
 - Abacus

Electronic Computers

Non-Electronic Computing Machines

- Punch machine
 - Punch cards
 - Presenting digital information by the presence or absence of holes.

Non-Electronic Computing Machines

- Difference engine
 - Automatic mechanical calculator
 - Polynomial functions

Non-Electronic Computing Machines

- Analytical engine
 - Programmable
 - Punch cards

Electro-Mechanical Computers

- Electric switches drove mechanical relays to perform the calculation
- Low operating speed

Electronic Computers: 1st Generation

Generation	year	Technology
1 st generation	1945-1955	Vacuum tubes

Electronic Computers: 2nd Generation

Generation	year	Technology
1 st generation	1945-1955	Vacuum tubes
2 nd generation	1955-1965	BJT transistors

Electronic Computers: 3rd Generation

Generation	year	Technology
1 st generation	1945-1955	Vacuum tubes
2 nd generation	1955-1965	BJT transistors
3 rd generation	1965-1974	Integrated Circuits

Integrated Circuits (ICs)

- A collection of gates fabricated on a single silicon chip
 - Many Applications
 - Low power
 - Small area
 - High speed

Integrated Circuits

Electronic Computers: Integrated Circuits (ICs)

- A collection of gates fabricated on a single silicon chip
 - Small Scale Integration (SSI)
 - A small number of gates
 - Medium Scale Integration (MSI)
 - > 100 gates
 - Decoder, register, counter
 - Large Scale Integration (LSI)
 - > 1000 gates
 - Small memories, PLDs
 - Very Large Scale Integration (VLSI)
 - > 1,000,000 transistors
 - Microprocessors, memories

Electronic Computers: 5th Generation

Generation	year	Technology
1 st generation	1945-1955	Vacuum tubes
2 nd generation	1955-1965	BJT transistors
3 rd generation	1965-1974	Integrated Circuits
4 th generation	1974-1989	VLSI
5 th generation	1990-present	ULSI

Moore's Law

- 2x transistors/chip every 1.5 years
 - First transistor 1947 (Nobel prize)
 - First Silicon transistor 1954
 - First CMOS gate 1963
 - First commercial CMOS chips 1974
 - Digital watches
 - Nowadays, largest chips have >10'000'000'000 transistors about as many people on the planet

Why Digital Design?

Growing Complexity

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Year of introduction

Simplifying Modeling and Design

Facilitate modeling the digital systems

Emerging Applications

- New requirements
- User experiences
- Rapid change!

Application-Specific Implementation

- The era of domain-specific hardware-software codesign
 - https://iscaconf.org/isca2018/turing_lecture.html

A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design, Enhanced Security, Open Instruction Sets, and Agile Chip Development

John L. Hennessy and David A. Patterson

Deep Learning Market Revenue

Technology Optimizations

- Efficiency parameters
 - Cost
 - Performance
 - Power
 - 0

• Need to be aware of architecture to write the optimized programs

Let's consider GPUs as an example

- Graphic Processing Unit (GPU)
 - NVIDIA V100

GPU: Streaming Multiprocessor (SM)

GPU: Memory

GPU: Performance Constraints

GPU: Coalesced Memory

GPU: Sample Code

Array-of-Structures

```
#define NPTS 1024 * 1024

struct Coefficients_AOS {
    double u[3];
    double x[3][3];
    double p;
    double rho;
    double eta;
};

Coefficients_AOS gridData[NPTS];
```

Structure-of-Arrays

```
#define NPTS 1024 *1024

struct Coefficients_SOA {
    double u[3][NPTS];
    double x[3][3][NPTS];
    double p[NPTS];
    double rho[NPTS];
    double eta[NPTS];
};

Coefficients_SOA gridData;
```


Conceptual Layout

Array-of-Structures Memory Layout


```
double u0 = gridData[threadIdx.x].u[0];
```

```
double x[3][3];
     double p;
     double rho;
     double eta;
};
Coefficients AOS gridData[NPTS];
```

SOA

Array-of-Structures Memory Layout

Structure-of-Arrays Memory Layout

double u0 = gridData.u[0][threadIdx.x];

Structure-of-Arrays

```
#define NPTS 1024 *1024

struct Coefficients_SOA {
    double u[3][NPTS];
    double x[3][3][NPTS];
    double p[NPTS];
    double rho[NPTS];
    double eta[NPTS];
};

Coefficients_SOA gridData;
```

AOS Vs. SOA

"CUDA Optimization Tips, Tricks and Techniques," by Stephen Jones, GTC17.

Array-of-Structures

```
#define NPTS 1024 * 1024

struct Coefficients_AOS {
    double u[3];
    double x[3][3];
    double p;
    double rho;
    double eta;
};

Coefficients_AOS gridData[NPTS];
```

Single-thread code prefers arrays of structures, for cache efficiency

Structure-of-Arrays

```
#define NPTS 1024 *1024

struct Coefficients_SOA {
    double u[3][NPTS];
    double x[3][3][NPTS];
    double p[NPTS];
    double rho[NPTS];
    double eta[NPTS];
};

Coefficients_SOA gridData;
```

SIMT code prefers structures of arrays, for execution & memory efficiency

Execution Time Over Different Techniques

N. Nematollahi, M. Sadrosadati, H. Falahati, M. Barkhordar, H. Sarbazi-Azad, **Neda: Supporting direct inter-core neighbor data exchange in GPUs**. *CAL*, 2018.

Thank You

