

Images and Cameras

CS 355: Interactive Graphics and Image Processing

Image Processing

Scene Descriptions

Vision

Image Processing

Raster Images

Digital images from cameras are made up of discrete pixels

Signals as Functions

- Digital signals can be thought of as sampled functions
- Domains:
 - Time (audio)
 - Space (images)
 - Both (video)

- Ranges:
 - Changing air pressure (audio)
 - Visible light (photographs, video)
 - Other properties (X-rays, MRI, range images, etc.)

Domain

Sampling vs. Quantization

Sampling

- Samples per unit length, area, etc.
- Often expressed as rate, spacing, or density

Quantization

- Levels of precision in sampled values
- Usually number of levels or number of bits

Sampling vs. Quantization

- 600 dots per inch
- black and white images
- 256-level grey
- 8-bit grey

- 30 frames per second
- 24-bit color
- 44.1 KHz audio
- 16-bit audio

Storage

- We usually store digital signals (including images) as arrays
 - Audio: 1-D domain, 1-D array of values (PCM)

90	50	8		42
----	----	---	--	----

Images: 2-D domain, 2-D array

88	86	8		9
91	92	10		7
87	91	9		8
:			٠.	:
90	89	11		8

Storage

- In memory: usually just arrays
 - Be careful of (x,y) vs. row-major ordering
- On disk: may be something else entirely
 - Tiled storage (think virtual memory)
 - Hierarchical/Interlaced
 - Compressed
- Headers: EXIF, compression settings, etc.

How do we get images?

Acquisition Devices

Aperture

- Scanning
- Sensor

- Quantizer
- Output storage medium

Apertures

- Pixels aren't point samples
- Total light over an area of the visible scene
- Controlled by the camera's iris (photographers: F-stop)
- Also caused by physical sensor area (pixel's area on the camera's sensor)

Apertures

- Sampling and size of aperture determine resolution
 - Smaller apertures = better resolution
 - Larger apertures = worse resolution
- Lenses allow a physically larger aperture to act as an effectively smaller one

Resolution

Sensors

- Converts light (photons) to chemical and/or electrical response
- Examples
 - Silver halide crystals (film)
 - Photoreceptors in our eyes (rods, cones)
 - Charge-coupled device (CCD)
 - CMOS arrays

Bayer Patterns

- Most commercial-grade cameras sample only one color per pixel
- Small colored filter over each sensor element
- 16 megapixels =
 - 8 megapixels green
 - 4 megapixels red
 - 4 megapixels blue
- You get interpolated combination

Noise

- Unavoidable random fluctuations from "correct" value
- Can usually be modeled as a statistical distribution with mean at the "correct" value
- A measured sample will vary from that mean according to the distribution std. dev.

 μ

 σ

Signal-To-Noise Ratio

Measure of how "noise free" a signal is

$$SNR = \frac{\mu}{\sigma}$$

Sources of Noise

- Quantum nature of light
- Sensor inhomogeneity
- Electrical fluctuations
- "Background" noise

May not be random

Shot Noise

Reducing Shot Noise

- The only way to reduce quantum noise is to collect more light with the sensor
 - Turn up the source
 - Larger aperture
 - Collect for longer
- What are the tradeoffs?

Fundamental Tradeoff

Noise

Spatial resolution (blurring)

Temporal resolution (motion blur)

Measuring Resolution

- One common way is to use alternating black/white lines with fixed spacing
 - Increase the density until you can't resolve (discern) the separate lines
 - Gradually blurs to grey
 - Stop when half the original contrast
 - Units: line pairs per millimeter

Measuring Resolution

Sampling Revisited

- How much sampling is enough?
 - Shannon Sampling Theorem: twice the highest frequency in the signal (in theory)
 - Nyquist rate
- What happens if you sample above this?
 - Avoids dangers of theoretical limits
 - Better for intermediate processing
- What happens if you don't sample enough?
 - Aliasing (false low-frequencies components appear)
 - In images this causes Moiré patterns
- Insufficient sampling during acquisition introduces flaws that cannot be corrected through later processing

Different kind of aliasing than jaggies, but related

Moiré Patterns

Camera Problems

- Noise
- Spatial blur
- Motion blur
- Bayer sampling artifacts
- Lens distortion

- Chromatic aberration
- Brightness
- Contrast
- Color balance
- Tone mapping (color responses)

The Pixel Grid

- Many of the things we do involve using "neighboring" pixels
- Common approaches:
 - 4-connected (N, S, E, W)
 - 8-connected (add NE, SE, SW, NW)
- Distance?
 - Euclidean (as the crow flies)
 - 4-connected ("city block", "Manhattan")
 - 8-connected ("chessboard")

Coming up...

- Level (point) operations: brightness, contrast, etc.
- Interimage: blending, masking, differencing, compositing
- Neighborhood operations:
 - noise reduction
 - sharpening
 - edge detection
- Interpolation
- Geometric operations: resizing, rotating, warping