

Mathematical Statistics

Seminar Exercises: Week 7

Recap. Throughout this class, $X_1, X_2, ..., X_n, ...$ will be i.i.d. random variables that follow the distribution of a given characteristic X with finite mean and variance.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- E(X + Y) = E(X) + E(Y);
- V(X + Y) = V(X) + V(Y), if X and Y are independent;
- If $E(X) = \mu$ and $V(X) = \sigma^2$, then $E(\overline{X}) = \mu$ and $V(\overline{X}) = \frac{\sigma^2}{\mu}$;
- The Strong Law of Large Numbers (SLLN):

If $(X_n)_{n\in\mathbb{N}}$ is a sequence of i.i.d. random variables with $X_n \sim X$, then

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s.} E(X)$$

• If $X \sim Unif[a,b]$, then:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a,b] \\ 0, & \text{otherwise} \end{cases}$$

• If $X \sim \mathcal{N}(\mu, \sigma)$, then:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ x \in \mathbb{R}$$

A point estimator for the target parameter θ is a statistic:

$$\overline{\theta} = \theta(X_1, X_2, \dots, X_n)$$

We have the following notions:

- unbiased estimator: $E(\overline{\theta}) = \theta$ (the bias: $B := E(\overline{\theta}) \theta$);
- absolutely correct estimator: $E(\overline{\theta}) = \theta$, $\lim_{n \to \infty} V(\overline{\theta}) = 0$;
- consistent estimator: $\overline{\theta} \stackrel{p}{\rightarrow} \theta$;
- The likelihood function of the sample X_1, X_2, \ldots, X_n :

$$L(X_1, X_2, \dots, X_n; \theta) = \prod_{i=1}^n f(X_i; \theta);$$

• Fisher's (quantity of) information relative to θ :

$$I_n(\theta) = E\left(\left(\frac{\partial \ln L(X_1, X_2, \dots, X_n; \theta)}{\partial \theta}\right)^2\right)$$

If the range of X does not depend on θ :

$$I_n(\theta) = -E\left(\frac{\partial^2 \ln L(X_1, X_2, \dots, X_n; \theta)}{\partial \theta^2}\right)$$

or

$$I_n(\theta) = nI_1(\theta)$$

• The efficiency of an absolutely correct estimator $\overline{\theta}$ is

$$e(\overline{\theta}) = \frac{1}{I_n(\theta)V(\overline{\theta})}$$

 $\overline{\theta}$ is an efficient estimator for θ if $e(\overline{\theta}) = 1$

Exercise 1. Let $X\begin{pmatrix} -1 & 1 \\ \frac{1-\theta}{2} & \frac{1+\theta}{2} \end{pmatrix}$, where $\theta \in (0,1)$ is a parameter. Prove that the sample mean $\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j, n \in \mathbb{N}$, is an absolutely correct estimator of θ . Is this estimator efficient?

Exercise 2. Let $X \sim Unif([0,\theta])$, where $\theta > 0$ is a parameter. Consider the estimator $\bar{\theta} = c_n \cdot \max\{X_1, X_2, \dots, X_n\}$, where $c_n \in \mathbb{R}$ depends only on $n \in \mathbb{N}$. Find c_n such that $\bar{\theta}$ is unbiased. Is $\bar{\theta}$ absolutely correct?

Exercise 3. Let $X \sim Unid(\theta)$, where $\theta \in \mathbb{N}^*$ is a parameter, *i.e.* $X \begin{pmatrix} k \\ \frac{1}{\theta} \end{pmatrix}_{k=\overline{1,\theta}}$. Consider the estimator $\overline{\theta} = \max\{X_1, \dots, X_n\}, n \in \mathbb{N}$. Prove that $\overline{\theta}$ is biased, but $E(\overline{\theta}) \to \theta$, as $n \to \infty$.

Exercise 4. Let $X \sim N(\mu, \sigma)$. For a random sample X_1, X_2, \ldots, X_n we consider the estimator $\overline{s} = \frac{1}{n} \sqrt{\frac{\pi}{2}} \sum_{i=1}^{n} \left| X_i - \mu \right|$. Show that it is an absolutely correct estimator for σ and find its efficiency.

Exercise 5. Prove that the sample moment of order 2:

$$\overline{\mu}_2 = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$$

is a consistent estimator of the variance V(X). Deduce that the sample standard deviation is a consistent estimator of the standard deviation of $\sigma = \sqrt{V(X)}$.

<u>Hint:</u> For a sequence $(X_n)_{n\in\mathbb{N}}$ of random variables, almost sure convergence implies convergence in probability:

$$X_n \stackrel{a.s.}{\to} X \Longrightarrow X_n \stackrel{p}{\to} X$$