OUESTION BANK: (JNTUH)

S. No	Question	Blooms Taxonomy Level	Course Outcomes
	$\mathbf{UNIT} - \mathbf{I}$		
	PART – A (SHORT ANSWER QUESTION	(S)	
1	Define the term algorithm and state the criteria the algorithm should satisfy.	Knowledge	1
2	Compute the average case time complexity of quick sort	Apply	1
3	Describe the role of space complexity and time complexity of a program?	Knowledge	1
4	If $f(n)=5n^2+6n+4$, then prove that $f(n)$ is $O(n^2)$	Apply	4
5	What is meant by divide and conquer? Give the recurrence relation for divide and conquer.	Understand	1
	PART – B (LONGANSWER QUESTIONS	5)	
1	Write binary search algorithm and analyze its time complexity	Understand	1
2	Explain quick sort algorithm and simulate it for the following data 20, 5,10,16,54,21	Apply	1
3	Illustrate merge sort algorithm and discuss time complexity	Understand	2
4	Describe strassen's matrix multiplication.	Understand	2
5	Sort the list of numbers using merge sort: 78, 32, 42, 62, 98, 12, 34, 83	Apply	1

S. No	Question	Blooms Taxonomy Level	Course Outcomes
	UNIT – II		
	PART – A (SHORT ANSWER QUESTIONS)		
1	Discuss about union operation on sets	Knowledge	2
2	Describe AND/OR graph	Understand	2
3	Explain game tree	Understand	3
4	Define a connected and bi-connected component.	Knowledge	2
5	Define an articulation point?	Knowledge	2
	PART – B (LONGANSWER QUESTIONS	S)	
1	Discuss N-queens problem and algorithm	Understand	2
2	Discuss about weighting rule for finding UNION of sets and		
<i>_</i>	collapsing rule	Understand	2
3	Differentiate divide and conquer and greedy method	Understand	2
4	Discuss Graph coloring problem	Understand	2
5	Compare and contrast BFS and DFS.	nalyze	2

S. No	Question	Blooms Taxon omy Level	Course Outcomes
	UNIT – III		
	PART – A (SHORT ANSWER QUESTION)	S)	
1	Define greedy method	Know edge	3
2	State Prim's algorithm	Knowledge	3
3	What is job sequencing with deadlines problem	Know edge	3
4	State the principle of optimality	Know edge	3
5	Define minimum cost spanning tree	Know edge	3
	PART – B (LONGANSWER QUESTIONS)	
1	Discuss single source shortest path problem with example	Apply	3
2	Discuss kruskal's algorithm with an example	Understand	3
3	Write an algorithm knapsack problem .Give example	Apply	3
4	Explain prims algorithm with an example	Understand	3
5	Compute the optimal solution for knapsack problem using greedy method N=3,		
	M = 20, (p1,p2,p3) = (25,24,15), (w1,w2,w3) = (18,15,10)	Apply	3

S.No	Question	Blooms Taxonomy Level	Course Outcomes	
	UNIT – IV			
	PART – A (SHORT ANSWER QUESTI	ONS)		
1	Write an algorithm for optimal binary search tree Give example	Apply	4	
2	Explain 0/1 knapsack problem with example	Understand	4	
3	Discuss all pairs shortest path problem with an example	Understand	4	
4	Explain 8 – Queens problem	Understand	4	
5	Define Sum of Subsets problem	Understand	4	
	PART – B (LONGANSWER QUESTIONS)			
1	Describe the travelling salesman problem and discuss how to solve it using dynamic programming?	Understand	4	
2	Explain the concept Chained matrix multiplication.	Apply	4	
3	Solve the solution for 0/1 knapsack problem using dynamic programming(p1,p2,p3, p4) = (11, 21, 31, 33), (w1, w2, w3, w4) = (2, 11, 22, 15), M=40, n=4	Apply	4	
4	Use optimal binary search tree algorithm and compute wij, cij, rij, 0<=i<=j<=4,p1=1/10, p2=1/5, p3=1/10, p4=1/120, q0=1/5, q1=1/10, q2=1/5, q3=1/20,q4=1/20.	Apply	3	

S.No	Question	Blooms Taxonomy Level	Course Outcomes
	UNIT – V		
	PART – A (SHORT ANSWER QUESTION	NS)	
1	Define a dead node	Knowledge	5
2	Differentiate live node and dead node	Knowledge	5
3	Compare NP-hard and NP-completeness	Knowledge	5
4	Define deterministic problem	Understand	5
5	Define maxclique problem?	Understand	5
	PART – B (LONG ANSWER QUESTION	IS)	
1	Explain the principle of FIFO branch and bound	Apply	5
2	Explain the method of reduction to solve travelling sales person problem using branch and bound	Apply	5
3	Write non deterministic algorithm for sorting and searching	Understand	5
4	What is chromatic number decision problem and clique		
7	decision problem	Apply	5
5	Explain Cook's theorem	Apply	5

X. OBJECTIVE QUESTIONS MULTIPLE CHOICE QUESTIONS

UNIT-I

- 1. In analysis of algorithm, approximate relationship between the size of the job and the amount of work required to do is expressed by using ______
- (a) Central tendency (b) Differential equation (c) Order of execution (d) Order of magnitude (e) Order of Storage.

Ans :Order of execution

- 2. Worst case efficiency of binary search is
- (a) log 2 n + 1 (b) n (c) N2 (d) 2n (e) log n.

Ans: log2 n + 1

- 3. For analyzing an algorithm, which is better computing time?
- (a)O (100 Log N) (b) O (N) (c)O (2N) (d) O (N logN) (e) O (N2).

Ans :O (100 Log N)

- 4. Consider the usual algorithm for determining whether a sequence of parentheses is balanced. What is the maximum number of parentheses that will appear on the stack AT ANY ONE TIME when the algorithm analyzes: (()(())(()))
- (a) 1 (b)2 (c)3 (d) 4

Ans :3

- 5. Breadth first search _____
- (a) Scans each incident node along with its children. (b) Scans all incident edges before moving to other node.(c) Issame as backtracking (d) Scans all the nodes in random order. Ans: Scans all incident edges before moving to other node.
- 6. Which method of traversal does not use stack to hold nodes that are waiting to be processed?
- (a) Dept First (b) D-search (c)Breadth first (d) Back-tracking

Ans: Breadth first

- 7. The Knapsack problem where the objective function is to minimize the profit is____
- (a) Greedy (b) Dynamic 0 / 1 (c) Back tracking (d) Branch & Bound 0/1

Ans: Branch & Bound 0/1

- 8. Choose the correct answer for the following statements:
 - I. The theory of NP–completeness provides a method of obtaining a polynomial time for NPalgorithms.
 - II. All NP-complete problem are NP-Hard.
- (a) I is FALSE and II is TRUE (b) I is TRUE and II is FALSE (c) Both are TRUE (d) Both are FALSE

Ans: I is FALSE and II is TRUE

- 9. If all c(i, j)'s and r(i, j)'s are calculated, then OBST algorithm in worst case takes one of the following time.
- (a) O(n log n) (b) O(n3) (c) O(n2) (d) O(log n) (e) O(n4).

Ans: O(n3)

- 10. The upper bound on the time complexity of the nondeterministic sorting algorithm is
- (a) O(n) (b) O(n log n) (c) O(1) (d) O(log n) (e) O(n2).

Ans: O(n)

UNIT-II

- 1. Name the node which has been generated but none of its children nodes have been generated in state space tree of backtracking method.
- (a) Dead node (b) Live node (c) E-Node (d) State Node

Ans: Livenode

- 2. How many nodes are there in a full state space tree with n = 6?
- (a) 65 (b) 64 (c) 63 (d) 32

Ans: 63

- 3. This algorithm scans the list by swapping the entries whenever pair of adjacent keys are out of desired order.
- (a) Insertion sort. (b) Bubble sort. (c) Shell sort. (d) Quick sort.

Ans: Bubble sort.

- 4. From the following chose the one which belongs to the algorithm paradigm other than to which others from the following belongs to.
- (a) Minimum & Maximum problem. (b) Knapsack problem. (c) Selection problem.(d) Merge sort.

Ans: Knapsack problem.

- 5. To calculatec(i, j)'s, w(i, j)'s and r(i, j)'s; the OBST algorithm in worst case takes the following time.
- (a) $O(\log n)$ (b) O(n4) (c) O(n3) (d) $O(n \log n)$

Ans: O (n3)

- 6. What is the type of the algorithm used in solving the 4 Queens problem?
- (a) Greedy (b) Dynamic (c) Branch and Bound (d) Backtracking.

Ans: Backtracking.

- 7.In Knapsack problem, the best strategy to get the optimal solution, where Pi, Wi is the Profit, Weight associated with each of the Xi h object respectively is to
- (a) Arrange the values Pi/Wi in ascending order (b) Arrange the values Pi/Xi in ascending order
- (c) Arrange the values Pi/Wi in descending order (d) Arrange the values Pi/Xi in descending order

Ans: Arrange the values Pi/Xi in descending order

8.Greedy job scheduling with deadlines algo (a) $O(N)$ (b) $\Omega(n \log n)$ (c) $O(n2 \log n)$	± 7
Ans: O(N)	
	h belongs to the algorithm paradigm other than to s to.
	napsack problem(c) Selection problem (d) Merge
Ans : Knapsack problem	
UNIT-III	
	does not belongs to the same paradigm to which
(a) Minimum & Maximum problem	(b) Knapsack problem
(c) Selection problem	(d) Merge sort
Ans:Knapsack problem	· / · · · ·
2. Primsalgorithm is based on	method
a. Divide and conquer method c. Dynamic p	
b. Greedy method d. Branch and bound	
Ans. Greedy Method	
3. The amount of memory needs to run to co	ompletion is known as
a. Space complexity c. Worst case	
b. Time complexity d. Best case	
Ans: Space complexity	
4. The amount of time needs to run to comp	oletion is known as
a. Space complexity c. Worst case	
b. Time complexity d. Best case	
Ans: Time complexity	
- ·	steps that can executed for the given parameters
a. Average case c. Worst case	tops that can executed for the given parameters
b. Time complexity d. Best case	
Ans: Best case	
	steps that can executed for the given parameters
a. Average case c. Worst case	steps that can executed for the given parameters
b. Time complexity d. Best case	
Ans:Worst case	
	eps that can executed for the given parameters
a. Average case c. Worst case	ps that can executed for the given parameters
C	
b. Time complexity d. Best case	
Ans: Average Case	haaaa uuliah aua
8. Testing of a program consists of 2 p	hases which areand
a Avaraga agga & Worst agga h Tima a	complayity & Space complayity
a. Average case & Worst case b. Time c	<u> </u>
c. Validation and checking errors d. Deb	bugging and profitting
Ans: Debugging and profiling	anala in
9. Worst case time complexity of binary sea	
a. $O(n)$ b. $O(logn)$ c. $\Theta(nlogn)$ d. $\Theta(logn)$)
Ans: $\Theta(\log n)$	1 .
10. Best case time complexity of binary sea	
a. O(n) c. Θ(nlogn)b. O(logn) d. Θ(logn)
Ans: Θ(logn)	

UNIT-IV
1. Tight bound is denoted as
a. Ω c. Θ
$b. \Omega d. O$
Ans: O
2. Upper bound is denoted as
a. Ω c. Θ
b. ω d. O
Ans: O
3. lower bound is denoted as
a. Ω c. Θ
b. ω d. O
Ans :Ω
4. The function $f(n)=o(g(n))$ if and only if Limit $f(n)/g(n)=0$ n-> ∞
a. Little oh b. Little omega
b. Big oh d. Omega
Ans: Little oh
5. The function $f(n) = o(g(n))$ if and only if Limit $g(n)/f(n) = 0$ $n - \infty$
a. Little oh b. Little omega
b. Big oh d. Omega
Ans : Little omega
6. Thegeneralcriteriaofalgorithm;zero or more quantities are externally supplied is
a. Output b. Finiteness
b. Effectiveness d. Input
Ans : Input
7. The general criteria of algorithm; at least one quantity is produced
a. Output b. Finiteness
b. Effectiveness d. Input
Ans: Output
8. The general criteria of algorithm; Each instruction is clear and unambiguous
a. Output b. Definiteness
b. Effectiveness d. Input
Ans: Definiteness
9. The general criteria of algorithm; algorithm must terminates after a finite number
of steps
a. Output b. Finiteness
b. Effectiveness d. Input
Ans : Finiteness
10. Which is not a criteria of algorithm
a. Input b. Output
b. Time complexity d. Best case
Ans: Best case
UNIT-V
1. job sequencing with deadline is based onmethod
a. greedy method c. branch and bound
b. dynamic programming d. divide and conquer
Ans. Greedy method
2. fractional knapsack is based onmethod

a. greedy method c. branch and boundb. dynamic programming d. divide and conquer
Ans. Greedy method
3. 0/1 knapsack is based onmethod
a. greedy method c. branch and bound
b. dynamic programming d. divide and conquer
Ans. Dynamic programming
4. The files x1,x2,x3 are 3 files of length 30,20,10 records each. What is the optimal
merge pattern value?
a. 110 c. 60
b. 90 d. 50
Ans. 90
5. The optimal merge pattern is based on method
a. Greedy method b. Dynamic programming
c. Knapsack method d. Branch and bound
Ans. Greedy method
6. Who invented the word Algorithm a. Abu Ja'far Mohammed ibn Musa c. Abu Mohammed Khan
b. Abu Jafar Mohammed Kasim d. Abu Ja'far Mohammed Ali Khan
Ans. Abu Ja'far Mohammed ibn Musa
7. In Algorithm comments begin with
a. /* c. /
b. */ d. //
Ans: //
8. The of an algorithm is the amount of memory it needs to run to
completion.
a. Space Complexity c. Best Case
b. Time Complexity d. Worst Case
Ans: Space Complexity
9 is the process of executing a correct program on data sets and
measuring the time and space it takes to compute the results.
a. Debugging c. Combining
b. Profiling d. Conqure
Ans: Profiling
10. In Algorithm Specification the blockes are indicated with matching
a. Braces c. Square Bracketsb. Parenthesis d. Slashes
Ans: Braces
ins · Diaces
FILL IN THE BLANKS
UNIT-I
1. The worst case time complexity of the nondeterministic dynamic knapsack algorithm is
<u></u>
Ans : O (n)
2. Recursive algorithms are based on approach
Ans :Bottom-up approach
3. What do you call the selected keys in the quick sort method
Ans: Pivot key
4. How do you determine the cost of a spanning tree?

Ans :By the sum of the costs of the edges of the tree8.
5. The time complexity of the normal quick sort, randomized quick sort algorithms in the
worst case is
Ans: $O(n2)$, $O(n2)$
6. Let there be an array of length 'N', and the selection sort algorithm is used to sort it, how
many times a swap function is called to complete the execution?
Ans: N-1 times 7. The Serting methody high is used for external cert is
7. The Sorting methodwhich is used for external sort is Ans :Radix sort
8. The graph colouringalgorithm's time can be bounded by
Ans: O(nmn).
9. Sorting is not possible by using methods?
(a) Insertion (b) Selection (c) Deletion (d) Exchange
Ans :Deletion
10. What is the type of the algorithm used in solving the 8 Queens problem?
Ans: Backtracking
UNIT-II
1. Identify the name of the sorting in which time is not proportional to n2.
(a) Selection sort (b) Bubble sort (c) Quick sort (d) Insertion sort.
Ans: Insertion sort
2. The optimal solution to a problem is a combination of optimal solutions to its
subproblems. This is known as
Ans: Principle of OptimalityWhich of the following versions of merge sort algorithm does use space efficiently?
(a) Contiguous version (b) Array version (c) Linked version (d) Structure
version (e) Heap version.
Ans : Linked version
4. Identify the correct problem for multistage graph from the list given below.
(a) Resource allocation problem (b) Traveling salesperson problem
(c) Producer consumer problem (d) Barber's problem
Ans: Resource allocation problem
5. How many edges are there in a Hamiltonian cycle if the edge cost is 'c' and the cost of
cycle is 'cn'
Ans:n.
6. A problem L is NP-complete iff L is NP-hard and
Ans: LεNP 7. What would be the cost value for any engageing node of a sub-tree with rest 'π' using
7. What would be the cost value for any answering node of a sub tree with root 'r' using
branch-bound algorithm? Ans: Minimum
Ans. Minimum
UNIT-III
Average case time complexity of binary search is
Ans: $\Theta(\log n)$
2. Merge sort invented by
Ans: JOHN VON NEUMANN
3. Quick sort invented by
Ans: CARHOARE
4. Worst case time complexity of Quick sort is
Ans: O(n2)

5. Best case time complexity of Quick sort is
Ans: O(nlogn)
6. Average case time complexity of Quick sort is Ans: O(nlogn)
7. Which design strategy stops the execution when it find the solution otherwise starts the
problem from top
Ans: Back Tracking
8. Graphical representation of algorithm is
Ans: Flow Chart
9. In pseudo-code conventions input express as
Ans: Write
10. In pseudo-code conventions output express as
Ans: Read
UNIT-IV
1. Which is not in general criteria of algorithm
a. Input b. Output
b. Time complexity d. Effectiveness
Ans: Time complexity
2. Time complexity of given algorithm is
Algorithm Display(A)
{
S:=0.0;
For i:=0 to n-1
{ \$\cdot \C \ \ A \(\); \
S:=S+A[i]; Return S;
Return 5,
}
Ans: 4n+4
3. Time complexity of given algorithm
AlgorithmSum(A,S)
{
for i:=1 to n-1
{
for j:=2 to n-1
{ S:-S:::::
S:=S+i+j; return S;
}
}
}
Ans:6n2-14n+10
4. kruskal algorithm is based onmethod
Ans. Greedy method
5. Prims algorithm is based on method
Ans. Greedy Method
6. The output of Kruskal and Prims algorithm is
Minimum cost spanning tree

UNIT-V
1. Huffmancodes are the applications of with minimal weighted external
path length obtained by an optimal set.
Ans: Binary tree
2. From the following which is not return optimal solution
a. Dynamic programming c. Backtracking
b. Branch and bound d. Greedy method
Ans. Backtracking
3 is an algorithm design method that can be used when the solution
to a problem can be viewed as the result of a sequence of decisions
Ans: Dynamic programming
4. The name backtrack was first coined by
Ans :D.H.Lehmer
5. The term refers to all state space search methods in which all hildren of the -
nodes are generated before any other live node can becomethe E-node.
Ans; Branch and Bound
6. A is a round trip path along n edges of G that visits every vertex once
and returns to its starting position.
Ans :Hamiltonian Cycle
7. Graph Coloring is type of algorithm design strategy
Ans: Backtracking
8. Which of the following is not a limitation of binary search algorithm?
a. must use a sorted array
b. requirement of sorted array is expensive when a lot of insertion and deletions are needed
c. there must be a mechanism to access middle element directly
d. binary search algorithm is not efficient when the data elements are more than 1000.
Ans: binary search algorithm is not efficient when the data elements are more than
1000.
9. Binary Search Algorithm cannot be applied to Ans:Sorted linked list
10. Two main measures for the efficiency of an algorithm are
Ans: Time and Space
rins . Time and Space
XI. GATE QUESTIONS:
1. The order of an internal node in a B+ tree index is the maximum number of children it can
have. Suppose that a child pointer takes 6 bytes, the search field value takes 14 bytes, and
the block size is 512 bytes. What is the order of the internal node?
·
A) 24B) 25C) 26D) 27
Answer: (C)
2 The best data structure to check whether an arithmetic expression has balanced parentheses
is a
A) queue B) stack C) tree D) list
Answer: (B)
3. A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-
order traversal of the heap is given below: 10, 8,5,3,2 Two new elements 1 and 7 are
inserted in the heap in that order. The level-order traversal of the heap after the insertion of
the elements is
A) 10,8,7,5,3,2,1B) 10,8,7,2,3,1,5C) 10,8,7,1,2,3,5D) 10,8,7,3,2,1,5
Answer · (D)

4 The following numbers are inserted into an empty binary search tree in the given order: 10, 1, 3, 5, 15, 12, 16. What is the height of the binary search tree (the height is the maximum distance of a leaf node from the root)?

A) 2B) 3C) 4D) 6

Answer: (B)

5 The goal of structured programming is to

A) have well indented programs B) be able to infer the flow of control from the compiled Code C) be able to infer the flow of control from the program text D) avoid the use of GOTO

statements

Answer: (C)

6 The tightest lower bound on the number of comparisons, in the worst ease, for comparison-based sorting is of the order of

A) nB) n 2 C) n log n D) n log 2 n

Answer: (B)

7 Let G be a simple graph with 20 vertices and 100 edges. The size of the minimum vertex cover of G is 8. Then, the size of the maximum independent set of G is

A) 12 B) 8 C) Less than 8 D) More than 12

Answer: (A)

8 Let A be a sequence of 8 distinct integers sorted in ascending order. How many distinct pairs of sequences, B and C are there such that (i) each is sorted in ascending order, (ii) B has 5 and C has 3 elements, and (iii) the result of merging B and C gives A?

A) 2B) 30C) 56D) 256

Answer: (D)

9 A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is given below: 10, 8,5,3,2 Two new elements 1 and 7 are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the elements is

A) 10,8,7,5,3,2,1B) 10,8,7,2,3,1,5C) 10,8,7,1,2,3,5D) 10,8,7,3,2,1,5

Answer: (D)

10 The S-N curve for steel becomes asymptotic nearly at

A) 10^3 cycles B) 10^4 cyclesC) 10^6 cycles D) 10^9 cycles

Answer: (C)