Mithun Mohan Raj

Machine Learning assignment - 1

K Nearest Neighbors – Classification algorithm

Algorithm:

A case is classified by a majority vote of its neighbors, with the case being assigned to the class most common amongst its K nearest neighbors measured by a distance function. If K = 1, then the case is simply assigned to the class of its nearest neighbor. If k>1, then the case is assigned to the class of majority among its nearest neighbors. (1)

Pseudocode of k-nearest neighbor algorithm(k=1):

A. Load the MNIST datasets by creating a function that reads idx files.

def read idx(filename)

- B. Change the datatype of the data as float64 in-order to make the calculations efficient.
- C. Assign the k value as 1.
- D. Taking one Testing image at a time, calculate the one nearest neighbor for the test image.

for x in range(int(len(test_data))):
 neighbors = getNeighbors(train_data,test_data[x], k,train_label)

E. Calculate the Euclidean distance between the training images and testing image and store the distances for the particular test image at a time.

length = len(testInstance)-1

for x in range(int(len(trainingSet))):

dist = euclideanDistance(testInstance, trainingSet[x],length)

F. Determine the training image that has the least Euclidean distance with the test image by sorting the distances in the ascending order.

distances.sort(key=operator.itemgetter(2))

- G. Using the index of determined training image, find the training label corresponding to the training image.
- H. Choose the determined training image as nearest neighbor for the given test image.

for x in range(k):

neighbors.append(distances[x][1])

I. The nearest neighbor is the predicted label for the test image and compare it with the corresponding test label.

Predicted_label = getNeighbors(train_data,test_data[x], k,train_label)

if label_pred==test_label[x]:

correct_v +=1

- J. Increase the count by 1 if the predicted label is same as the test label.
- K. Repeat the steps from D to J for all the test images taking one at a time.
- L. Calculate the accuracy of the algorithm by taking the ratio between total number of correctly predicted labels(count) to the total number of test labels.

accuracy=correct v/(int(len(test label)))

DATASETS

Training Set-:

- ➤ The dataset contains 60,000 training image examples of the handwritten digits from 0 to 9.
- ➤ The size of each image is given as 28 * 28 pixels per image.

Test Set-:

- ➤ The dataset contains 10,000 training image examples of the handwritten digits from 0 to 9.
- ➤ The size of each image is given as 28 * 28 pixels per image.

Training Label-:

The dataset contains 60,000 training labels of the handwritten digits from 0 to 9.

Test Label-:

The dataset contains 10,000 training labels of the handwritten digits from 0 to 9.

Parameters

Accuracy:

"Accuracy" is the ratio of total number of correctly predicted labels to the total number of labels.

Formula used:

Accuracy in % = (Total number of correctly predicted labels/total number of labels) x 100

Euclidean distance:

"Euclidean distance" is the straight-line distance between two corresponding pixels of training and testing image respectively and is evaluated using the euclidean norm.

Formula used:

Euclidean distance (train-image, test-image) = $\sqrt{\Sigma}$ ((test-image-pixel)– (train-image-pixel))^2

RESULTS:

The following is image of the output terminal window for k-nearest neighbor algorithm for k = 1.

The above value for the "Accuracy" shows that k-nearest neighbor Algorithm for (k=1) predicts 96.91%(approximately 97%) of the test images accurately.

K-fold Cross-validation

Algorithm:

This approach involves randomly dividing the set of observations into k groups, or folds, of approximately equal size. The first fold is treated as a validation set, and the method is fit on the remaining k - 1 folds. (2)

Procedure of 10-Fold cross-validation:

1) Load the MNIST datasets by creating a function that reads idx files.

```
def read idx(filename):
```

- 2) Change the datatype of the data as float64 in-order to make the calculations efficient.
- 3) Shuffle the training datasets randomly.

4) Split the datasets into K=10 groups and perform the following steps.

```
for i in range(10):
```

A. For each group, assign one group as the test set and other groups as the training set.

```
test_kfold =train_s[(i*6000):(6000 * (i + 1)), :]
for j in range(10):
    if(j!=i):
    train=train_s[(j * 6000):(6000*(j+1)),:]
```

B. Assign the k value as 1 to 10 and repeat the following steps for each k.

```
k=[1,2,3,4,5,6,7,8,9,10]
for i in k:
```

C. Taking one Testing image at a time, calculate the Euclidean distance between the training images and test image.

```
for x in range(int(len(test_data))):
```

neighbors = getNeighbors(train_data,test_data[x], k,train_label) dist = euclideanDistance(testInstance, trainingSet[x], length)

- D. Sort the training images corresponding to their Euclidean distances with the test image.
- E. Determine the first k-training images that has the least Euclidean distances with the test image and arrange them in the ascending order of distances.
- F. Using the indexes of determined training images, find the k-nearest training labels corresponding to the training image.
- G. Choose the determined training images as k-nearest neighbors for the given test image.

for x in range(k):

neighbors.append(distances[x][1])

H. Find one majority class of label among the k-nearest training labels

```
def find_majority(neighbors):
    value =neighbors[m,:]
    if value in tuple(countneighbours):
        countneighbours[tuple(value)] += 1
else:
        countneighbours[tuple(value)] = 1
        print(countneighbours)
```

I. The majority class of label is the predicted label for the test image and compare it with the corresponding test label.

```
label_pred=find_majority(neighbors)
    if label_pred==test_label[x]:
        correct_v +=1
```

- J. Increase the count by 1 if the predicted label is same as the test label.
- K. Repeat the steps from c to J for all the test images taking one at a time.
- L. Calculate the accuracy of the algorithm for each "k" by taking the ratio between the total number of correctly predicted labels (count) to the total number of test labels.

accuracy=correct_v/(int(len(test_label)))

- M. Print the calculated accuracy for each k (from 1 to 10)
- 5, Repeat the step 4 for each of the 10-fold groups and print the K x k (10*10)

Accuracies.

6, calculate the averages of accuracies for each k and find the maximum of averages.

Average(for each k)= (sum of accuracies for each fold)/10

7, The k value having the maximum average value of accuracies is the Optimal k value of the Algorithm.

Optimal k = k with maximum average value

DATASETS

Training Image dataset and training label dataset are shuffled randomly and used as datasets for each of the k-folds.

Datasets for each fold:

Test dataset:

- 1, one group of training image dataset is the test dataset.
- 2, the dataset contains 6000 training image examples of handwritten digits of 0 to 9.
- 3, Size of the each image is given as 28*28 pixels per image.

Training dataset:

- 1, The remaining group of training image dataset is training set.
- 2, The dataset contains 54,000 training image examples of handwritten digits of 0 to 9.
- 3, Size of the each image is given as 28*28 pixels per image.

Test Label:

- 1, one group of training label dataset as a test labels.
- 2, The dataset contains 6000 training label examples of handwritten digits of 0 to 9

Training Label:

- 1, The remaining group of training label dataset as training labels.
- 2, The dataset contains 54,000 training label examples of handwritten digits of 0 to 9.

Parameters:

Optimal k-value:

It is the value of k for which average of accuracies for all 10-fold groups is maximum.

Formula used:

Optimum k-value = Maximum(k-Averages)

For each k, Average = (sum of accuracies/10)

Result:

The following image represents a table of accuracies for each of the 10-fold groups against k values.

k\K-FOLDS	K=1	K=2	K=3	K=4	K=5	K=6	K=7	K=8	K=9	K=10	sum	average	
k=1	97.4167	97.2	97.23333	97.13333	97.2	97.35	97.41667	97.43333	97.16667	97.38333	972.9333	97.29333	
k=2	97.4167	97.2	97.23333	97.13333	97.2	97.35	97.41667	97.43333	97.16667	97.38333	972.9333	97.29333	
k=3	97.3333	97.31667	97.48333	97.4	97.25	97.45	97.41667	97.51667	96.95	97.45	973.5667	97.35667	
k=4	97.4333	97.3	97.4	97.66667	97.38333	97.83333	97.53333	97.56667	97.21667	97.5	974.8333	97.48333	Optimal k
k=5	97.25	97.11667	97.38333	97.36667	97.15	97.58333	97.46667	97.45	96.88333	97.43333	973.0833	97.30833	
k=6	97.2167	97.31667	97.36667	97.41667	97.23333	97.71667	97.43333	97.41667	96.83333	97.48333	973.4333	97.34333	
k=7	97.1167	97.11667	97.15	97.31667	96.98333	97.48333	97.13333	97.26667	96.86667	97.3	971.7333	97.17333	
k=8	97.0167	97.11667	97.3	97.4	97	97.5	97.16667	97.16667	96.83333	97.28333	971.7833	97.17833	
k=9	97	96.91667	97.18333	97.28333	96.78333	97.4	96.8	96.98333	96.68333	97.15	970.1833	97.01833	
k=10	97	96.98333	97.15	97.35	96.81667	97.3	97	97.01667	96.7	97.1	970.4167	97.04167	

From the above table, we can infer that "k=4" has the maximum average value of accuracies as 97.4833

Hence the Optimal k-value for the algorithm is "4"

K-nearest neighbor for optimal-k

Pseudocode:

A. Load the MNIST datasets by creating a function that reads idx files.

def read_idx(filename):

- B. Change the datatype of the data as float64 in-order to make the calculations efficient.
- C. Assign the k value as 4(optimal).

$$K = 4$$

D. Taking one Testing image at a time, calculate the Euclidean distance between the training images and test image.

for x in range(int(len(test_data))):

neighbors = getNeighbors(train_data,test_data[x], k,train_label)

dist = euclideanDistance(testInstance, trainingSet[x], length)

- E. Sort the training images corresponding to their Euclidean distances with the test image.
- F. Determine the first k-training images that has the least Euclidean distances with the test image and arrange them in the ascending order of distances.
- G. Using the indexes of determined training images, find the k-nearest training labels corresponding to the training image.
- H. Choose the determined training images as k-nearest neighbor for the given test image.

for x in range(k):

neighbors.append(distances[x][1])

I. Find one majority class of label among the k-nearest training labels.

```
def find_majority(neighbors):
    value =neighbors[m,:]
    if value in tuple(countneighbours):
        countneighbours[tuple(value)] += 1
else:
        countneighbours[tuple(value)] = 1
        print(countneighbours)
```

J. The majority class of label is the predicted label for the test image and compare it with the corresponding test label.

```
label_pred=find_majority(neighbors)

if label_pred==test_label[x]:
```

correct_v +=1

- K. Increase the count by 1 if the predicted label is same as the test label.
- L. Repeat the steps from D to J for all the test images taking one at a time.
- M. Calculate the accuracy of the algorithm by taking the ratio between total number of correctly predicted labels(count) to the total number of test labels.

accuracy=correct_v/(int(len(test_data)))

N. Calculate the confusion matrix by comparing the classes in both predicted and actual Labels and by keeping the count on every set of class pairs.

```
x1=pd.Series(y_actu, name='Actual')
y1=pd.Series(y_pred, name='Predicted')
df_confusion = pd.crosstab(x1,y1,margins=True)
print(df_confusion)
```

Data-sets:

Data-sets section is same as that of k-nearest neighbor (k=1) section.

Parameters:

Confidence Interval:

A confidence interval is a bound on the estimate of a population variable. It is an interval statistic used to quantify the uncertainty on an estimate.(3)

Formula used:

95% Confidence Interval = $p \pm 1.96 \times \sigma$

P = success rate = accuracy/100

 $\sigma = \sqrt{(p(1-p))/n}$, where n = number of samples.

Result:

The accuracy for the algorithm with optimal k-value is "97.16%"

95% confidence interval = $0.9716 \pm 1.96 \times (0.16611)$

= [0.96837,0.97482]

The following image represents the confusion matrix for the algorithm with the optimal k-value = 4

Predicted	0	1	2	3	4	5	6	7	8	9	A11
Actual											
9	973	1	1	0	0	1	3	1	0	0	980
1	Θ	1132	2	0	Θ	0	1	Θ	0	0	1135
2	10	5	995	2	1	0	ø	16	3	0	1032
3	0	1	2	975	1	14	1	7	4	5	1010
4	1	5	0	Θ	948	0	4	4	0	20	982
5	4	0	Θ	9	2	864	6	1	3	3	892
5	4	2	0	Θ	3	3	946	Θ	0	0	958
7	0	17	4	0	3	0	0	993	0	11	1028
В	5	2	4	13	5	10	4	4	922	5	974
9	2	5	2	7	8	4	1	11	1	968	1009
A11	999	1170	1010	1006	971	896	966	1037	933	1012	10000

Sliding window

Pseudocode:

- A. Load the MNIST datasets by creating a function that reads idx files.
- B. Change the datatype of the data as float64 in-order to make the calculations efficient.
- C. Assign the k value as 4(optimal).

$$K = 4$$

for x in range(int(len(raw_test))):

D. Take one training image of size 28*28 at a time and pad the image with zeros so that the padded image size is 30*30.

```
for x in range(int(len(trainingset))):
    sample = np.array(trainingset[x, :])
sample = np.pad(sample, pad width=1, mode='constant', constant values=1)
```

E. From the padded image, extract 9 images each of size 28*28 for every training image.

```
s1 = np.array(sample[0:28, 0:28]) s2 = np.array(sample[0:28, 1:29]) s3 = np.array(sample[0:28, 2:30]) s4 = np.array(sample[1:29, 0:28]) s5 = np.array(sample[1:29, 1:29]) s6 = np.array(sample[1:29, 2:30]) s7 = np.array(sample[2:30, 0:28]) s8 = np.array(sample[2:30, 1:29]) s9 = np.array(sample[2:30, 2:30])
```

F. Take one test image at a time and calculate the Euclidean distances between the 9 extracted image and the test image.

```
image = np.array([s1, s2, s3, s4, s5, s6, s7, s8, s9])
for i in range(9):
    dist = euclideanDistance(testinstance, test,length)
```

G. Minimum of the 9 calculated distances is the Euclidean distance for that training image with the given test image.

min_dist = np.amin(distances)

- H. Now repeat the steps from D to G to calculate Euclidean distances for all the training images to the given test image.
- I. Sort the training images corresponding to their Euclidean distances with the test image.

distances main.sort(key=operator.itemgetter(2))

- J. Determine the first k-training images that has the least Euclidean distances with the test image and arrange them in the ascending order of distances.
- K. Using the indexes of determined training images, find the k-nearest training labels corresponding to the training image.
- Choose the determined training images as k-nearest neighbors for the given test image.for x in range(k):

neighbors.append(distances_main[x][1])

M. Find one majority class of label among the k-nearest training labels

```
def find_majority(neighbors):
```

value =neighbors[m,:]

if value in tuple(countneighbours):

countneighbours[tuple(value)] += 1

else:

countneighbours[tuple(value)] = 1

print(countneighbours)

- N. The majority class of label is the predicted label for the test image and compare it with the corresponding test label.
- O. Increase the count by 1 if the predicted label is same as the test label.

```
if label_pred==test_label[x]:
```

correct v +=1

- P. Repeat the steps from D to O for all the test images taking one at a time.
- Q. Calculate the accuracy of the algorithm by taking the ratio between total number of correctly predicted labels(count) to the total number of test labels.

accuracy=correct_v/(int(len(raw_test)))

O. Calculate the confusion matrix by comparing the classes in both predicted and actual Labels and and by keeping the count on every set of class pairs.

```
x1=pd.Series(y_actu, name='Actual')
y1=pd.Series(y_pred, name='Predicted')
df_confusion = pd.crosstab(x1,y1,margins=True)
print(df_confusion)
```

Datasets:

Datasets used are same as that of used in optimal k-nn standard section.

Parameters:

Confidence Interval:

A confidence interval is a bound on the estimate of a population variable. It is an interval statistic used to quantify the uncertainty on an estimate.

Formula used:

95% Confidence Interval = p \pm 1.96 x σ

P = success rate = accuracy/100

$$\sigma = \sqrt{(p(1-p))/n}$$

n = number of samples.

Result:

The accuracy for the sliding window algorithm with optimal k-value is "97.94%"

95% Confidence Interval = $0.9794 \pm 1.96 \times 0.00142 = [0.97661, 0.98218]$

Accu Pr			timal 1 2		slidir 4	ng wir 5	ndow :	is : 9 7	7.94	9	All
Ac	tu										
0	97	3 1	1	0	0	1	3	1	0	0	980
1	0	113	2 2	0	0	0	1	0	0	0	1135
2	10	5	100	0 2	2 1	1 6	9 (9 1	1	3 0	1032
3	0	1	2	988	1	0	1	8	4	5	1010
4	1	5	0	0	958	0	4	4	0	10	982
5	4	0	0	9	2	864	6	1	3	3	892
6	4	2	0	0	3	3	946	0	0	0	958
7	0	4	4	0	3	0	0	1006	0	11	1028
8	5	2	4	4	5	0	4	4	941	5	974
9	2	5	2	7	0	4	1	0	1	977	1009
All	999	1170	1010	1006	971	896	966	1037	933	1012	10000

The above image represents the confusion matrix for the Sliding window algorithm with the optimal k-value = 4

8, The sliding window algorithm is a better algorithm than a standard algorithm by the difference rule.

References:

(1)https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

- (2) https://machinelearningmastery.com/k-fold-cross-validation/
- (3) https://machinelearningmastery.com/confidence-intervals-for-machine-learning/