APSC 1001

Introduction to Matrices with Python

import numpy as np

Dr. Kartik Bulusu, MAE Dept.

Teaching Assistant: Samantha Racan, MAE Dept.

Learning Assistants:
Olivia Legault, CS Dept.
George Wang, MAE Dept.
Rick Sear, CS Dept.

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Photo: Kartik Bulusu

What patterns do you notice?

Digital image is a matrix

These images contain elements of "uint8" data type

49	49		34	35	35
:	÷		÷	÷	÷
:	÷	٠.,	÷	÷	÷
: 40	:		:	:	:
40	34		51	49	46

Python:

>>> import matplotlib.pyplot as plt

>>> img = plt.imread('name')

>>> plt.imshow(img, cmap=plt.cm.hot)

>>> plt.show()

Fingerprint image source: https://commons.wikimedia.org/wiki/File:Fingerprint_picture.svg Einstein image source: http://mytree.tv/think/einstein-gnu-think-freely/ Feynman image source: https://commons.wikimedia.org/wiki/File:Richard_feynman_-_fermilab1.jpg

School of Engineering & Applied Science

Prof. Kartik Bulusu, MAE Dept.

APSC 1001 (Fall 2020)

Introduction to Engineering for Undeclared Majors

What is a Matrix?

DATA

- Arranged in ROWS and COLUMNS
- Typically carries a MEANING

DATA

Rectangular ARRAY of numbers

ARRAYS

- Two-dimensional arrays
- *m* rows and *n* columns

Source: http://giphy.com/search/matrix-gif

	1	-4		
9		6		
1	5	3	_ 	
)	5	9 ⁻	
- '	_	•		
	11	7	7]	
	А	,	√ I	

The ORDER of a matrix

- $A_{m \times n}$ is $m \times n$
- Read as "m-by-n"

a_{ij} is called an ELEMENT

at the ith row and jth column of A

School of Engineering & Applied Science THE GEORGE WASHINGTON UNIVERSITY

Bookkeeping in a Matrix

```
import numpy as np
A = np.matrix([[-1, 2],[3, 4]])
A[0,0]
A[0,:]
A[:,0]
A[1,0]
```

Prof. Kartik Bulusu, MAE Dept. APSC 1001 (Fall 2020)

Introduction to Engineering for Undeclared Majors

Matrix scalar operations

$$A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} \& s = 6$$

- Matrix, A has m rows and m columns
- The ORDER of matrix, A ??
- The ORDER of the scalar, s??

Scalar Multiplication and Division

- Each element a_{ij}
- Is either multiplied with or divided by s

$$\begin{cases} A * S = D \\ (mxm) * (1x1) = (mxm) \end{cases}$$

$$A * S^{-1} = F \\ (mxm) * (1x1) = (mxm) \end{cases}$$

$$\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} * 6 = \begin{bmatrix} -6 & 12 \\ 18 & 24 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix} * \left(\frac{1}{6}\right) = \begin{bmatrix} -\frac{1}{6} & \frac{1}{3} \\ \frac{1}{2} & \frac{2}{3} \end{bmatrix}$$

Python:

$$>>> B1 = A * 6$$

$$>>> B2 = A * (1/6)$$

School of Engineering & Applied Science


```
Python Commands:
>>> import numpy as np
>>> A = np.matrix([[-1, 2], [3, 4]])
>>> np.matrix('1 2; 3 4') # use Matlab-style syntax
>>> np.arange(25).reshape((5, 5)) # create a 1-d range and reshape
>>> np.array(range(25)).reshape((5, 5)) # pass a Python range and reshape
>>> np.array([5] * 25).reshape((5, 5)) # pass a Python list and reshape
>>> np.empty((5, 5)) # allocate, but don't initialize
>>> np.ones((5, 5)) # initialize with ones
>>> np.zeros([5, 5])
>>> np.ndarray((5, 5)) # use the low-level constructor
```


