

INITIALIZATION

Vincent Barra LIMOS, UMR 6158 CNRS, Université Clermont Auvergne

What we know

- Initialization should break symmetry
- the relative scale of weights is fundamental.
- and so is initialization.

First bad idea

$$\forall i \ \boldsymbol{w}_i = 0$$

1 hidden layer MLP: $(\forall l \in \{1,2\})(\forall i \in \{0,2\})$

$$y_i^l = \sigma \left(\sum_{j=0}^2 w_{ij}^l y_i^{l-1} \right)$$

Using backpropagation on error ${\it E}$

$$\frac{\partial E}{\partial w_{0j}^1} = \frac{\partial E}{\partial w_{1j}^1} = \frac{\partial E}{\partial w_{2j}^1}$$

Hidden neurons learn the same parameters ⇒ redundance.

Second bad idea

 $\forall i \; oldsymbol{w}_i = \delta$: Same result!

Second bad idea

 $\forall i \; oldsymbol{w}_i = \delta$: Same result!

A better idea ?

After 50 epochs

Second bad idea

 $\forall i \ w_i = \delta$: Same result!

A better idea?

$$\forall i \ \boldsymbol{w}_i \leadsto 10^{-m} \mathcal{N}(0,1) \ m > 0$$

After 10 epochs

After 20 epochs ⇒ vanishing gradient (See dedicated slides).

After 50 epochs

A second better idea?

 $\forall i \ w_i \leadsto \text{high random values}$

The scalar products of the post synaptic potentials saturate he activation functions σ . The derivatives tends towards 0.

⇒ vanishing gradient (See dedicated slides).

Xavier/Glorot initialization

MLP $w \in \mathbb{R}^d i.i.d \rightsquigarrow \mathcal{N}(0,1)$ with input $x \in \mathbb{R}^d$, x_i $i.i.d \rightsquigarrow \mathcal{N}(0,1)$. Post synaptic potential of a neuron in the first hidden layer: $w^T x$.

$$Var(\boldsymbol{w}^T \boldsymbol{x}) = \sum_{i=1}^{d} Var(w_i x_i)$$
$$= \sum_{i=1}^{d} \left(\mathbb{E}(w_i)^2 Var(x_i) + \mathbb{E}(x_i)^2 Var(w_i) + Var(w_i) Var(x_i) \right)$$

Since $\mathbb{E}(w_i) = \mathbb{E}(x_i) = 0$

$$Var(\boldsymbol{w}^T\boldsymbol{x}) = \sum_{i=1}^{d} Var(w_i)Var(x_i)$$

 $w_i, x_i \text{ i.i.d} \Rightarrow Var(\boldsymbol{w}^T \boldsymbol{x}) = dVar(w_i)Var(x_i)$

More generally

LIMOS

$$Var(y^l) = (dVar(w_i))^l Var(x_i)$$

 \Rightarrow Each neuron van vary about d times the variation of its input.

Xavier/Glorot initialization

- if $dVar(w_i)>1$ the gradient increases when going deeper in the network
- if $dVar(w_i) < 1$ vanishing gradient as l increases
- \Rightarrow impose $dVar(w_i)=1$, thus $Var(w_i)=1/d$ and

$$oldsymbol{w}_{ij}^l \leadsto rac{1}{\sqrt{m^{l-1}}} \mathcal{N}(0,1)$$

where m^{l-1} : number of neurons of layer l-1.

If $\sigma=ReLU$ one can multiply by $\frac{\sqrt{2}}{\sqrt{m^{l-1}}}$ to take into account the negarive part that does not participate to the variance.

