NATHAN WALTER

 $(847) \cdot 849 \cdot 7896 \diamond \text{walter9@illinois.edu}$

Current Address: 120 Talbot Laboratory, 104 S. Wright St. & Urbana, Illinois 61801

Permanent Address: 2320 Thayer St. \diamond Evanston, Illinois 60201

EDUCATION

University of Illinois at Champaign-Urbana (UIUC)

August, 2013 – present

Master of Science in Nuclear, Plasma, and Radiological Engineering (NPRE)

PhD Candidate in Nuclear, Plasma, and Radiological Engineering (NPRE)

Computational Science and Engineering Certificate Expected Master's Degree Completion: August, 2015

Expected PhD Completion: May, 2018

Advisor: Yang Zhang

University of Illinois at Champaign-Urbana (UIUC)

August, 2010 – January, 2014

Bachelor of Science in Nuclear, Plasma, and Radiological Engineering (NPRE)

Minor in Mathematics Overall GPA: 3.84/4.00

RESEARCH INTERESTS

Understanding slow material processes from a atomistic scale; Neutron and X-ray scattering; Classical and Ab Initio molecular dynamics for modeling and simulation; Materials undergoing irradiation; Large deformation constitutive material equations.

APPOINTMENTS

Research Assistant Yang Zhang's Research Group

January, 2014 – present

Nuclear Regulatory Commission Graduate Fellowship

January 2014 – present

Teaching Assistant

August, 2013 – January, 2014

NPRE 448: Nuclear Systems Engineering and Design

RESEARCH EXPERIENCE

Master's Degree Research

January 2014 – present

- Implemented a method of directly sampling the energy landscape into GROMACS in order to study the activation barrier statistics of various systems
- Developed reduction codes to extract quantities from classical and ab initio molecular dynamics simulations relevant for comparing simulations to scattering experiments (i.e. intermediate scattering function, density of states, etc.)
- Performed ab initio molecular dynamic simulations to study the vibrational modes in D₂O and compare to neutron scattering experiments conducted at SEQUOIA, SNS, ORNL.
- Performed ab initio molecular dynamic simulations to study the effects of hydrogen impurities on liquid lithium transport properties

Neutron and X-ray Scattering Summer School

June 2015

- Studied x-ray scattering methods at the Advanced Photon Source, APS, Argonne National Laboratory (ANL)
- Studied neutron scattering methods at SNS and HFIR, Oak Ridge National Laboratory (ORNL)

Scattering Experiments

May 2014

- Participated on Inelastic Neutron Scattering experiments on liquid metals performed at CNCS, SNS, Oak Ridge National Labratory (ORNL)
- Analyzed scattering data on D₂O performed at SEQUOIA, SNS, Oak Ridge National Labratory (ORNL)

Los Alamos Computational Physics Student Summer Workshop

Summer 2014

- Implemented a strain-based constituent equation for large material deformation under high strainrates into a production hydrocode
- Developed concepts for extending the strain-based formulation from perfectly plastic materials to rate-hardening materials.
- Studied the advantages of the strain-based with pertaining to advection in Lagrangian mode, finite material rotations, and artificial viscosity.

Institute for Genomic Biology

Summer 2012

Undergraduate Research Assistant to Biofuel Lab Research

Champaign, IL

- Worked on British Petroleum (BP) Biofuel Project
- Analyzed soil samples for carbon/nitrogen make-up
- Studied different plants' potential as a biofuel

University of Northeastern Illinois

Summer 2009

Student Research Assistant on Abstract Topology Project

Chicago, IL

- Implemented Java code to simulate contact points
- Developed mathematical and programming algorithms for the project

TECHNICAL STRENGTHS

Computer Programming Languages C, C++, Matlab, Python, Fortran, Java, LATEX, Swift,

AJAX

Software GROMACS, LAMMPS, VASP, SRIM/TRIM, FLAG,

VMD, IGOR Pro, Dave, gnuplot, Adobe Photoshop,

Illustrator, Flash, SPSS

PUBLICATIONS

Nathan Walter, Paul Friedrichsen, Scott Runnels, "Extending a Strain Space Formulation for Plasticity to Rate-Hardening Materials and Finite Rotations", submitted to Mathematics and Computers

in Simulation.

Nathan Walter, Paul Friedrichsen, Scott Runnels, "Extending a Strain Space Formulation for Plasticity to Rate-Hardening Materials and Finite Rotations", LA-UR-15-23329, Los Alamos Unlimited Release (2015).

Zhikun Cai, Nathan Walter, Yang Zhang, "Energy Landscape Statistics And Coarsening In Liquids: A Relaxation Mode Analysis", to be submitted.

Nathan Walter, Paul Friedrichsen, "Improving Plasticity Modeling in Hydrocodes with Hypoelastic Frameworks", LA-UR-14-26946, Los Alamos Unlimited Release (2014).

PRESENTATIONS

Poster, American Physical Society March Meeting, "Energy Landscape Statistics of Kob-Andersen Liquid From Direct Energy Barrier Sampling" March, 2015

Contributed Talk, Los Alamos Student Summer Symposium, "A New Strain-Based Method for Plastic Flow Simulations"

August, 2014

AWARDS AND HONORS

U.S. Department of Energy, Naval Reactors (NR), Rickover Fellowship Program in Nuclear Engineering Honorable Mention April, 2014

Nuclear Regulatory Commission Undergraduate Scholarship Fall, 2011 – Spring, 2013

University of Illinois at Champaign-Urbana Dean's List Recipient Spring 2011 – Spring 2013