Том 5

ХУЗИН РУСЛАН ИЛЬДАРОВИЧ СЕЛИВАНОВ СЕРГЕЙ ГРИГОРЬЕВИЧ

Уфимский государственный авиационный технический университет khuzinrus@yandex.ru

НОРМЫ ВРЕМЕНИ НА ТЕХНОЛОГИЧЕСКУЮ ПОДГОТОВКУ ПРОИЗВОДСТВА АВТОМОБИЛЬНЫХ ТРУБ

В данной статье рассмотрен метод определения норм времени для формирования плана технологической подготовки производства с помощью математических моделей с применением статистических данных и линий регрессии.

Ключевые слова. Сеть Петри, нормы времени, линии регрессии, математическая модель АСТПП.

В данной публикации разработан метод применения имитационных моделей в виде сетей Петри (рис.1) для планирования технологической подготовки машиностроительного производства и разработки инновационных проектов. Для успешного практического применения этих моделей необходимо знать длительность всех работ, входящих в состав инновационного проекта.

Рисунок 1 - Имитационная сеть Петри, примененная к проекту технического перевооружения производства

Чаще всего для этого применяются таблицы норм времени, представленные в справочниках, однако они существуют не для всех видов работ и не учитывают специфику производств на различных предприятиях. Альтернативным решением является разработка и применение, на основе статистических и справочных данных, специально разработанных для нормирования инновационных проектов математических моделей, представляющих собой линии регрессии следующего вида (рис.2):

Таблица 1 - Математические модели для расчета норм времени на выполнение проектных работ по технологической подготовке производства авто-

мобильных труб

	моондыных тр	<i>y</i> •	
№	Нормы времени на разработку техно- логических документов, час	Уравнение линии регрессии	Величина
1	(2)	(3)	(4)
1	Нормы времени на разработку тех-	(х - количество	
	нологических документов раскроя и	размеров чертежа)	
	отрезки заготовок:		
	Отработка конструкции деталей на	$\mathbf{t}_{\text{cr}(\mathfrak{I})} =$	0,9972
	технологичность	$20,251 \cdot \mathbf{x}^{1,1142}$	
	Разработка маршрутных карт	$\mathbf{t}_{ ext{ct}(\mathfrak{I})}$	0,9883
		$=1,1341 \cdot e^{5,0292X}$	
	Разработка карт технологического	$\mathbf{t}_{\text{cr}(3T)} =$	0,9972
	процесса раскроя и отрезки заготовок	$18,772 \cdot \mathbf{x}^{1,2826}$	
	Разработка без текстовых операцион-	$\mathbf{t}_{\text{cr}(3T)} =$	0,9955
	ных карт	$63,755 \cdot \mathbf{x}^{1,5638}$	
	Разработка карты эскизов	$\mathbf{t}_{\text{cr}(\Im r)} =$	0,9958
		$36,401 \cdot \mathbf{x}^{1,1934}$	
	Разработка типовых операционных	$\mathbf{t}_{\text{CT}(2T)}$	0,9961
	карт	$=20,237 \cdot \mathbf{x}^{1,2665}$	
	Разработка маршрутных карт для ти-	$\mathbf{t}_{\text{cr}(9\text{T})} = 185,58 \cdot \mathbf{x}^2 -$	0,9963
	пового технологического процесса	$-128,19 \cdot x + 26,416$	
2	Нормы времени на разработку тех-	(х – количество	
	нологических документов обработ-	размеров чертежа)	
	ки деталей на одно- и многошпин-		
	дельных автоматах		
	Разработка операционных карт обра-	$\mathbf{t}_{\text{cr}(3T)} = 0.089 \cdot \mathbf{x}^{2.0348}$	0,9981
	ботки		
	Разработка операционных карт обра-	$ \mathbf{t}_{\text{CT}(3\text{T})} = $	0,9974
	ботки на автоматах продольного то-	$0.0637 \cdot \mathbf{x}^{2.3853}$	
	чения		0.000
	Разработка операционных карт груп-	$\mathbf{t}_{\text{cr}(9\text{T})} = 2.0638$	0,9986
	повой наладки на многошпиндельных	$0.0704 \cdot \mathbf{x}^{2.0638}$	
	и одношпиндельных автоматах на		
	группу деталей		

Продолжение табл.1

		11рооолжені	ie maon. i
1	(2)	(3)	(4)
3	Нормы времени на разработку тех-	X – количество	
	нологических документов на меха-	размеров чертежа	
	ническую обработку деталей		
	Отработка конструкции детали на	$ t_{CT(3T)} = $	0,9976
	технологичность	$22,851 \cdot x^{1,0712}$	
	Разработка маршрутной карты	$t_{\text{ct}(3\text{T})} = 3,535 \cdot x^{1,1315}$	0,9957
	Разработка операционных карт меха-	$ t_{CT(\Im T)} =$	0,9883
	нической обработки	$3,1067 \cdot x^{1,9891}$	
	Разработка без текстовых операцион-	$ t_{CT(9T)} =$	0,9988
	ных карт	$4,4206 \cdot x^{1,1321}$	
	Разработка карты эскизов	$ t_{cr(\Im T)} =$	0,9987
		$7,5208 \cdot x^{1,1729}$	
	Разработка маршрутной карты для ти-	$ t_{CT(3T)} = $	0,9988
	пового технологического процесса	$4,0515 \cdot x^{1,0242}$	
	Разработка типовых операционных	$ t_{cr(3r)} =$	0,9989
	карт механической обработки	$3,3004 \cdot x^{0,9725}$	
4	Нормы времени разработки техно-	(x - количество	
	логических документов на термиче-	размеров чертежа)	
	скую обработку		
	Отработка конструкции детали на	$ t_{cr(3T)} = 121,87 \cdot x^2 +$	0,9861
	технологичность	$+78,77 \cdot \mathbf{x} - 1,8353$	
	Разработка маршрутной карты терми-	$ t_{CT(9T)} = $	
	ческой обработки	$2,0205 \cdot e^{2,6286X}$	
	Разработка карты технологического	$ t_{CT(9T)} =$	0,9757
	процесса термической обработки	$1,5673 \cdot e^{1,6861X}$	
	Разработка карты технологического	$t_{\text{ct}(3\text{T})} = 1,867 \cdot x^{2,3644}$	0,9985
	процесса термообработки ТВЧ		
	Разработка карты эскизов	$t_{\text{cr}(3\text{T})} = 107,63 \cdot x^{1,2745}$	0,9887
	Разработка карты типового технологи-	$t_{\text{cr}(9\text{T})} = 5,7571 \cdot x^2 +$	0,9722
	ческого процесса термической обра-	$+1,4757 \cdot \mathbf{x} +1,4344$	
	ботки		
	Разработка ведомостей деталей к ти-	$ \mathbf{t}_{\text{ct}(9\text{T})} = -9,7029 \cdot \mathbf{x}^2$	0,9965
	повому технологическому процессу	+	
	термической обработки с нагревом	$+72,337 \cdot x - 20,673$	
	ТВЧ		0.0550
	Разработка операционных карт терми-		0,9752
	ческой обработки с нагревом ТВЧ	$16,973 \cdot e^{0,4299X}$	

Окончание табл. 1

Том 5

	Окончин			
1	(2)	(3)	(4)	
5	Нормы времени на разработку тех-	х – количество		
	нологических документов для нане-	операций		
	сения защитных покрытий электро-			
	физическими и электрохимическими			
	методами			
	Отработка конструкции деталей на	$t_{\text{CT(9T)}} = 8,9738 \cdot Ln(x)$	0,9883	
	технологичность	+		
		+ 24,674		
	Нормы времени на разработку техно-	$t_{\text{CT(9T)}} = 1,8846 \cdot x^{1,2174}$	0,9884	
	логических документов для нанесения			
	электрохимическими и электрофизи-			
	ческими методами защитных покры-			
	тий			
	Разработка карты типового технологи-	$t_{\text{ct}(9\text{T})} = -0.1148 \cdot x^2$	0,9885	
	ческого процесса нанесения химиче-	+		
	ских и электрохимических покрытий	$+4,0099 \cdot x - 9,2326$		
	Разработка ведомости деталей к типо-	$t_{\text{ct}(9T)} = 15,68 \cdot Ln(x)$	0,9873	
	вому техпроцессу нанесения хими-	_		
	ческих и электрохимических покры-	-18,505		
	тий	,		
	Разработка маршрутной карты элек-	$t_{cr(3T)} = 13,693 \cdot Ln(x)$	0,9812	
	трофизических и электрохимических	_		
	методов обработки	- 1,0299		
	Разработка операционных карт на эле-	$t_{\text{CT}(2T)} =$	0,9858	
	ктрофизические методы обработки	$1,7167 \cdot x^{1,2016}$		
	Разработка карты эскизов	$t_{\text{ct}(9\text{T})} = 16,032 \cdot Ln$	0,9982	
		(x) + 19,058		

Здесь T - это уравнение линии регрессии, а R — величина достоверности аппроксимации. Разработка данных моделей является важным шагом для обеспечения достоверности ранних этапов технологической подготовки производства. В таблице 1, приведены специальные математические модели для разработки проектной документации технологических процессов изготовления автомобильных труб. Аналогичным образом были определены нормы времени и для разработки проектной технологической документации на литейные операции, горячую штамповку и ковку:

Рисунок 2 - Пример зависимости для определения норм времени на разработку технологической документации на ковку и горячую штамповку

Заключение

Полученные данные могут быть использованы в качестве типовых норм для других проектов технологической подготовки производства и других методов планирования инновационных проектов, а именно для сетевых графиков, графиков Ганнта, для имитационных сетей. Обеспечиваемая полученными математическими моделями точность (подтверждена величиной достоверности аппроксимации), что обеспечивает обоснованность применения данного метода для определения норм времени в инновационных проектах технического перевооружения производства на машиностроительных предприятиях.