Insper Bacharelado em Engenharia da Computação

Adney Moura e Letícia Coêlho

Design de Computadores : MIPS

São Paulo Abril de 2023

Sumário

1	Diagrama Inicial do Projeto	2
2	Conceitos Desenvolvidos	2
3	Novas Instruções Mudanças realizadas	3
	3.1 NOR	3
	3.2 LBU - Load Byte Unsigned	4
	3.3 SLL - Shift Left Logical	4

1 Diagrama Inicial do Projeto

Figura 1: Diagrama Principal da Arquitetura reproduzida no Projeto

2 Conceitos Desenvolvidos

1. Ciclo único A e B completo.

Instruções realizadas , ciclo A: lw , sw, add , sub , AND , OR , slt , j , beq. Instruções realizadas , ciclo B: lui, addi , ANDI , ORI , SLTI , bne , jal , jr.

2. Instruções extras : LBU (Load Byte Unsigned) , NOR e SLL (Shift Left Logical).

3 Novas Instruções | Mudanças realizadas

3.1 NOR

Figura 2: Tabela verdade da porta NOR

Podemos obter o mesmo resultado acima quando negamos as duas entradas de uma porta AND. Foi dessa forma que implementamos a instrução NOR em nossa ULA. Isso é possível observar na imagem a seguir:

Figura 3: ULA realizano a operação NOR

3.2 LBU - Load Byte Unsigned

Podemos resumir essa instrução como:

$$R[rt] = \{24b$$
"0", $M[rs + ExtSignalImm](7:0)]\}$

Para implementarmos essa nova instrução, realizamos a seguinte mudança na arquitetura inicialmente mostrada:

Figura 4: Fluxo de dados para realizar a instrução LUB

3.3 SLL - Shift Left Logical

Adicionamos módulo SHIFT , que realiza o shift left do valor lido do registrador Rt. O MUX permite que a seleção desse valor seja escrito no Rd para realizar o pedido pelo instrução.

$$R[rd] = R[rt] << shamt$$

Figura 5: Fluxo de dados para realizar a operação SLL