Statistical Inference: The Big Picture

PLSC 309 15 April 2019

000

First things first

Logistics

- There is no problem set this week
- There is a **two-day** lab
 - So both **Wednesday** and **Friday** will be lab days
- That means make sure to come to class on Wednesday, or email me ahead of time, or else you'll be working alone!

Final week of semester

- April 22-26 there will be **no class** and **no assignments**
- Starting this week, I will accept up to **3** revisions per week
- Final due date for revisions is 12:00 AM April 29
- Office hours will be MWF next week
 - o 9-12

Modern Statistical Analysis

What is statistical inference?

Find g(x) from X_D and y_D, where...

● D is a given dataset drawn

- from the real world
- g(x) is the best guess for f(x)

We've learned a lot of g(x) this semester

- OLS represents g(x) as a straight line
- GLMs allow us to extend that to all different kinds of functions
 - o Poisson
 - o Binomial
 - Multinomial
 - Exponential
- But let's forget about that and think of g(x) as any type of approximation of a real world function

The Guessing Game: Hypothesis space

$$h_1, ..., h_m \subseteq \mathcal{H}$$
 $h_i = (\mathbf{X}, \mathbf{w}, \hat{\mathbf{y}})$
 $h_i = g'(\mathbf{X})$

E.g., voter turnout

What affects the size of your hypothesis space?

- 1. What functional form you use
 - a. Linear, logistic, etc.
- 2. Are there any interactions?
 - a. Including exponentiated terms
- 3. What data do you use?
 - a. Which explanatory variables
 - b. Measurement and operationalization
- 4. How do you calculate your errors?

Where's waldo?

Bad guesses and more complex ${\cal H}$

What we want to know is how likely we are to guess the wrong thing?

$$P[h_{train} \neq h_?] =$$

$$P(h_i \neq h_i) \vee P(h_i \neq h_i) \vee ...$$

Things will obviously start to get out of hand as the complexity of H increases!

Intuition behind complex ${\cal H}$ and difficulty of modelling

Chess

VS.

Topic Model

- Complicated models
 designed for messy target
 function and very large,
 sparse matrix
- Gold standard is human coded

Bias and variance

Bias

- g(x) makes wrong predictions
- g(x) should be *flexible*
- Being really good at making really bad predictions

Variance

- g(x) captures too much noise
- g(x) should be *simple*
- Being really bad about making really good predictions

Cost = loss + regularization

• How we manage the bias-variance tradeoff: tells us when too much fit is a bad thing

sum of squared errors:
$$\sum (\mathbf{w}^T \mathbf{x} - \hat{\mathbf{y}})^2$$

w/ regularization:
$$\sum (\mathbf{w}^T \mathbf{x} - \hat{\mathbf{y}})^2 + \lambda ||\mathbf{w}||^2$$

• We know this intuitively. We need to find a way to shrink **w**, or else we risk overfitting.

Regularization = adding noise, reducing weights

- Regularization is when we deliberately induce noise into the data
- In other words, we "tone down" our conclusions
- This is to avoid overfitting and improve predictive validity

Common cost functions

Loss and Regularizer	Classification
1.Ordinary Least Squares $\min_{\mathbf{w}} rac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{ op} x_i - y_i)^2$	Squared Loss No Regularization
2.Ridge Regression $\min_{\mathbf{w}} rac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^ op x_i - y_i)^2 + \lambda \ w\ _2^2$	$ullet$ Squared Loss $ullet$ l_2 -Regularization
3.Lasso $\min_{\mathbf{w}} rac{1}{n} \sum_{i=1}^n (\mathbf{w}^ op \mathbf{x}_i - \overrightarrow{y_i})^2 + \lambda \ \mathbf{w}\ _1$	+ sparsity inducing (good for feature selection) + Convex - Not strictly convex (no unique solution) - Not differentiable (at 0)
4.Logistic Regression $\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i(\mathbf{w}^{\top}\mathbf{x}_i + b)}\right)$	Often l_1 or l_2 Regularized

- Most cost functions are used because of their "pliability"
- But there are many other that we can optimize without an analytical solution!

Source: Kilian Weinberger

So far...

- We have defined the goal of statistical modelling as minimizing generalization erro
- Intuitively, generalization is trade-off between flexibility and simplicity
- Shown this in two different cases
 - Computationally: as hypothesis space gets more complex, it is more likely to contain the correct hypothesis, but you are less likely to be able to find it
 - Statistically: models for a particular dataset are designed to balance informative and uninformative information (simplicity vs flexibility)
- There are two things we have to worry about
 - \circ *Underfitting*: f(x) cannot be identified within the hypothesis (not flexible, or not enough data)
 - \circ Overfitting: g(x) thinks that error in y is actually part of f(x)
- Use regulization and resampling

Modelling = Representation + Evaluation + Optimization

Representation

- Express real world phenomena as informative features and an outcome of interest
- Choose a class of models to relate features and outcomes

2. Evaluation

- Cost function helps determine which g(x) to pick
- Regularization helps reduce generalization error

Optimization

 Out of all the different representations, find the one that minimizes the total cost of all of our screw ups

Source: Pedros Domingos

Two problems for learning from social data

- Your data sucks!
 - a. *Too much* of the wrong information
 - b. Not enough of the right information
- The world is messy
 - a. Complex models require flexible model classes
 - b. Need to adjust for comparing different strategies

Your data sucks!

Not enough of the right information

- You are missing critical information that would explain f(x)
- In other words, f(x) could be outside of your hypothesis space

Too much of the wrong information

- Curse of dimensionality
- Need to fit simpler g(x)

To make things worse, these often happen together. Because you're lacking very important information, you end up including lots of features that you don't need.

- There is a ton of data available
 - Social-media platforms
 - Micro-behavioral data
- But none of the right data is available
 - Impossible to get a random sample

Who uses social networking sites % of internet users within each group who use social networking sites

		% who use social networking sites
All i	nternet users 18+ (n=5,112)	73%
ā	Men (n=2,368)	69
b	Women (n=2,744)	78 ^a
Rac	e/ethnicity	22
a	White, Non-Hispanic (n=3,617)	72
b	Black, Non-Hispanic (n=532)	73
С	Hispanic (n=571)	79 ^{ab}
Age		
а	18-29 (n=929)	90 ^{bcd}
b	30-49 (n=1,507)	78 ^{cd}
C	50-64 (n=1,585)	65 ^d
d	65+ (n=1,000)	46
Edu	cation attainment	
а	No high school diploma (n=243)	74
b	High school grad (n=1,238)	69
C	Some College (n=1,461)	75 ^b
d	College + (n=2,144)	75 ^b
Hou	sehold income	<u> </u>
a	Less than \$30,000/yr (n=1,212)	77
b	\$30,000-\$49,999 (n=886)	73
C	\$50,000-\$74,999 (n=746)	73
d	\$75,000+ (n=1,600)	75
Urb	anity	50 Na
а	Urban (n=1,605)	76 ^{bc}
b	Suburban (n=2,585)	72
	Dural (n=022)	70

The Caveman Effect

The caveman effect in political science

- What is the effect of ideology on whether or not a candidate wins an election?
- Do economic reforms increase GDP growth?
- What is the effect of media bias on political beliefs?

Homo Economicus

- Most of political science and economics assumes rational behavior
- We find much evidence in advanced, industrial democracies to support this behavior
- This actually doesn't apply in most other cultures in the world

The world is messy

Do we live in this world?

The world is messy

Complicated Models Require Big Data

- If you are interested in age and state of residence as explanatory variables, you only need data that varies along those two dimensions
 - Young Old People
 - Every state
- If you are interested in an interaction between the two, you need data that covers every possible intersection
 - Young and old people in every state

A Note on Assumptions

- We have been quite clear about the amount of assumptions required for models to work
- Assumptions are not a binary choice, there are degrees of adherence to assumptions
- The proof is in the pudding
- If you get better predictions with bad assumptions, then ignore the violations of those assumptions!

Conclusion

- Statistical modelling is fundamentally about balancing complexity and parsimony
- A model is only as good as the data that goes into it
- Social phenomena are messy and complex
- Always be critical about your data and where it comes from

Thanks for listening!