Multiple Sequence Alignment

Lessons from the School of Hard Knocks

Michael Nute

STAMPS 2022

July 29, 2022

Brief Intro to Molecular Phylogenetics

Notes:

- Only character mutation shown. Other operations are possible:
 - Insertion and deletion
 - Duplication
 - Transposition
 - Etc...
- Observed data are the "extant" sequences (at the bottom of the tree).

Two Separate-but-Related Problems:

- 1. Identify which groups of characters share a common ancestor. (Multiple Sequence Alignment)
- 2. Identify topological structure of the evolutionary history. (Phylogeny Estimation)

Multiple Sequence Alignment: Definition & Goal

<u>Input</u>: Sequences from different organisms (or different loci) that evolved from a common ancestor.

Goal: Align sequences so that all sets of positions having a common ancestor are grouped together.

- Not the same as aligning short sequences (or reads) to a reference ("mapping").
- Not the same as **genome** alignment
- Typically done before creating a phylogenetic tree...

Tools:

- MAFFT
- Muscle
- PASTA
- ClustalW
- DiAlign
- BAli-Phy

- PRANK
- T-COFFEE
- ...et cetera

Garbage Alignment

Garbage Tree

Multiple Sequence Alignment (Single-Gene)

- Goal: Align the sequences so that each set of "aligned" characters evolved from a common ancestral character.
 - Typically only allow mutation and insertion/deletion
 - (i.e. aligned sequences must have same characters, in same order, as originals).
 - Related to problem of phylogeny estimation.

White indicates a "gap" in the alignment, a.k.a. an insertion or deletion (indel)

Very Approximate

Data Properties Affecting Multiple Sequence Alignment

- Avg Sequence Similarity (rate of evolution)
- # of Sequences
- Presence of highly conserved regions
- Sequence Length heterogeneity
- Gap length/frequency
- Sequence fragmentation (not the same as heterogeneity)
- Avg Sequence Length

MSA Algorithms & Software (Partial List)

Tool	Use Case	Comments
MAFFT (Katoh et al., 2002)		 Uses patterns of insertion/deletion to find optimal alignment Generally pretty accurate in most conditions.
MUSCLE (Edgar, 2004)	Single Gene MSA (small N)	Progressive alignment. Suitable for relatively high overall sequence similarity.
CLUSTAL (Sievers et al., 2011)		Ideal for protein alignments with structurally important sites.
PASTA (Mirarab et al., 2015)	Single Gene MSA (large N)	Divide-and-conquer algorithm. Ideal for scaling alignment to large number of sequences (>1000)
HMMER (Eddy, 1998)	Query sequence alignment to reference ("mapping")	• Represents reference alignment as HMM. Query sequence alignment performed using standard HMM algorithms.

I tend to tell people:

- Just run MAFFT for anything less than 500 sequences or so
- Muscle is fine too if the divergence is low...
- ...or ClustalW for AA sequences with important structural sites
- Use PASTA for over 1k sequences or if avg. %-identity is very low (high rate of evolution).

This simplistic advice is a STAMPS 2022 exclusive...

Large N, Low %ANI → Very Hard Alignment

RAxML(ClustalW) RAxML(Muscle)

It is far easier than widely appreciated to get an alignment with ≈0% accuracy.

BE CAREFUL OUT THERE!

What Happens If the Alignment is Garbage?

A poor alignment will give a tree with *very deep* branches

- I.e. long branches above leaves.
 - A "Star"-like tree
- "Nothing in this tree is systematically related to anything else in any significant capacity."
 - Could be because relationships were nuked by bad alignment
- Of course, star-like trees can be real! (e.g. birds)

Failure Modes: Under/Over-Alignment

- Most of the commonly used alignment methods will tend to *over*-align.
- ...better than aligning just the right amount incorrectly!
- ...but can lead to some weird internal branches...

