Itô's lemma

Itô's lemma

Itô's lemma: short plan

Light version for functions of time and Wiener process.

Itô's lemma: short plan

- Light version for functions of time and Wiener process.
- Check the martingale property with Itô's lemma.

Itô's lemma: short plan

- Light version for functions of time and Wiener process.
- Check the martingale property with Itô's lemma.
- More general version.

Itô's lemma: light version

Informal theorem

If $Y_t = f(W_t, t)$ then it may be written as

$$Y_t = Y_0 + \int_0^t f_W' dW_u + \int_0^t \left(f_t' + \frac{1}{2} f_{WW}'' \right) du.$$

Itô's lemma: light version

Informal theorem

If $Y_t = f(W_t, t)$ then it may be written as

$$Y_t = Y_0 + \int_0^t f_W' dW_u + \int_0^t \left(f_t' + \frac{1}{2} f_{WW}'' \right) du.$$

Informal theorem

If $Y_t = f(W_t, t)$ then it may be written in the short form as

$$dY_{t} = f'_{W}dW_{t} + f'_{t}dt + \frac{1}{2}f''_{WW}dt.$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \clubsuit .

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \blacksquare .

$$dY_t =$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \mathbb{Z} .

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt +$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process \mathbb{Z} .

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt + \frac{1}{2} 6W_t t^4 dt =$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process $\stackrel{\textstyle \sim}{\sim}$.

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt + \frac{1}{2} 6W_t t^4 dt =$$

$$= 3W_t^2 t^4 dW_t + (4W_t^3 t^3 + 3W_t t^4) dt.$$

Express $Y_t = W_t^3 \cdot t^4$ as an Itô process $\ref{eq:special}$.

$$dY_t = 3W_t^2 t^4 dW_t + 4W_t^3 t^3 dt + \frac{1}{2} 6W_t t^4 dt =$$

$$= 3W_t^2 t^4 dW_t + (4W_t^3 t^3 + 3W_t t^4) dt.$$

$$Y_t = 0 + \int_0^t 3W_u^2 u^4 dW_u + \int_0^t (4W_u^3 u^3 + 3W_u u^4) du.$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:special}$.

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:special}$.

$$dY_t =$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale \clubsuit .

$$dY_t = 4W_t^3 dW_t - 2t dt +$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\stackrel{\textstyle \leftarrow}{\rightleftharpoons}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:substant}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

$$= 4W_t^3 dW_t + (6W_t^2 - 2t) dt.$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\stackrel{\textstyle \bullet}{=}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

$$= 4W_t^3 dW_t + (6W_t^2 - 2t) dt.$$

$$Y_t = 0 + \int_0^t 4W_u^3 dW_u + \int_0^t (6W_u^2 - 2u) du.$$

Check whether the process $Y_t = W_t^4 - t^2$ is a martingale $\ref{eq:substant}$.

$$dY_t = 4W_t^3 dW_t - 2t dt + \frac{1}{2}12W_t^2 dt =$$

$$= 4W_t^3 dW_t + (6W_t^2 - 2t) dt.$$

$$Y_t = 0 + \int_0^t 4W_u^3 dW_u + \int_0^t (6W_u^2 - 2u) du.$$

 (Y_t) is not a martingale!

$$dY_t =$$

$$dY_t = 2W_t dW_t + 0 dt +$$

$$dY_t = 2W_t \, dW_t + 0 \, dt + \frac{1}{2} 2dt =$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2} 2dt = 2W_t dW_t + dt.$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2}2dt = 2W_t dW_t + dt.$$

$$Y_t = 0 + \int_0^t 2W_u, dW_u + \int_0^t 1 \, du.$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2}2dt = 2W_t dW_t + dt.$$

$$Y_t = 0 + \int_0^t 2W_u, dW_u + \int_0^t 1 \, du.$$

$$W_t^2 = 0 + 2 \int_0^t W_u dW_u + t.$$

$$dY_t = 2W_t dW_t + 0 dt + \frac{1}{2}2dt = 2W_t dW_t + dt.$$

$$Y_t = 0 + \int_0^t 2W_u, dW_u + \int_0^t 1 \, du.$$

$$W_t^2 = 0 + 2 \int_0^t W_u dW_u + t.$$
 $\rightarrow \int_0^t W_u dW_u = \frac{1}{2}(W_t^2 - t).$

Itô's lemma: general version

Informal theorem

If $Y_t = f(X_t, t)$ where (X_t) is an Itô process then Y_t may be written in the short form as

$$dY_t = f_X' dX_t + f_t' dt + \frac{1}{2} f_{XX}''(dX_t)^2,$$

where $(dX_t)^2$ is calculated using symbolic rules

$$dt \cdot dW_t = 0$$
, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t \bigcirc .

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_t =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_t = 2S_t dS_t + 0 dt +$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\text{\tiny constant}}{\rightleftharpoons}$.

$$dY_t = 2S_t dS_t + 0 dt + \frac{1}{2}2(dS_t)^2 =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_t = 2S_t dS_t + 0 dt + \frac{1}{2}2(dS_t)^2 =$$

$$= 2S_t(\mu S_t dt + \sigma S_t dW_t) + 1 \cdot (\mu S_t dt + \sigma S_t dW_t)^2 =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for Y_t $\stackrel{\textstyle \sim}{\rightleftharpoons}$.

$$dY_{t} = 2S_{t} dS_{t} + 0 dt + \frac{1}{2}2(dS_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + 1 \cdot (\mu S_{t} dt + \sigma S_{t} dW_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + \sigma^{2} S_{t}^{2} dt =$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for $Y_t \gtrsim 1$.

$$dY_{t} = 2S_{t} dS_{t} + 0 dt + \frac{1}{2} 2(dS_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + 1 \cdot (\mu S_{t} dt + \sigma S_{t} dW_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + \sigma^{2} S_{t}^{2} dt =$$

$$= (2\mu S_{t}^{2} + \sigma^{2} S_{t}^{2}) dt + 2\sigma S_{t}^{2} dW_{t}.$$

Consider $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $Y_t = S_t^2$.

Find dY_t and recover the full form for $Y_t \gtrsim 1$.

$$dY_{t} = 2S_{t} dS_{t} + 0 dt + \frac{1}{2} 2(dS_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + 1 \cdot (\mu S_{t} dt + \sigma S_{t} dW_{t})^{2} =$$

$$= 2S_{t}(\mu S_{t} dt + \sigma S_{t} dW_{t}) + \sigma^{2} S_{t}^{2} dt =$$

$$= (2\mu S_{t}^{2} + \sigma^{2} S_{t}^{2}) dt + 2\sigma S_{t}^{2} dW_{t}.$$

$$Y_t = S_0^2 + \int_0^t 2\sigma S_u^2 dW_u + \int_0^t (2\mu S_u^2 + \sigma^2 S_u^2) du.$$

Informal theorem 🧲

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

Informal theorem 🧲

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

1. Calculate the second order Taylor expansion of f.

Informal theorem

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

- 1. Calculate the second order Taylor expansion of f.
- 2. Simplify the result using symbolic rules $dt \cdot dW_t = 0$, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Informal theorem

If $Y_t = f(X_t, Z_t, t)$ where (X_t) and (Z_t) are Itô processes then the short form of Y_t may be obtained in two steps:

- 1. Calculate the second order Taylor expansion of f.
- 2. Simplify the result using symbolic rules $dt \cdot dW_t = 0$, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.

Reminder: dW_t , dY_t , dX_t , dZ_t do not exist!

It's only a quick way to find the full form.

Itô's lemma: summary

Basic tool to study stochastic integrals.

Itô's lemma: summary

- Basic tool to study stochastic integrals.
- Easy to check whether the process is a martingale.

Itô's lemma: summary

- Basic tool to study stochastic integrals.
- Easy to check whether the process is a martingale.
- Easily written in short form:

$$dt \cdot dW_t = 0$$
, $dt \cdot dt = 0$, $dW_t \cdot dW_t = dt$.