

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Bahasa Reguler

- Dari suatu alfabet Σ , maka bahasa-bahasa reguler adalah:
 - Bahasa kosong (\emptyset), bahasa hanya berisi satu string kosong ($\{\epsilon\}$), serta bahasa-bahasa hanya berisi satu string simbol tunggal ($\{a\}$, yang mana $a \in \Sigma$).
 - Bahasa-bahasa hasil operasi **union** dari bahasa-bahasa reguler: $L_1 = L_2 \cup L_{3,}$ yang mana L_2 dan L_3 adalah reguler
 - Bahasa hasil operasi **konkatenasi** dari bahasa-bahasa reguler: $L_1 = L_2 L_3$, yang mana L_2 dan L_3 adalah reguler
 - Bahasa hasil operasi **Kleene*** dari bahasa reguler

Contoh-contoh

- $L = \{w \in \{0, 1\}^* : w \text{ berakhiran } 10\}$ = $\{0, 1\}^* \{10\} = (\{0\} \cup \{1\})^* (\{1\}\{0\})$
- $L = \{a^m b^n : m, n \ge 0\}$ = $\{a\}^* \{b\}^*$
- $L = \{w \in \{a, b\}^* : |w| \text{ bilangan genap}\}\$ = $(\{a \cup b\} \{a \cup b\})^*$
- Pertanyaan: bisakah $\{a^nb^n : n \ge 0\}$ diekspresikan sebagai hasil operasi-operasi demikian? Tidak! (mengapa?)

Ekspresi Reguler (Regex)

• Penulisan deretan operasi himpunan untuk menspesifikasikan bahasa reguler dapat disederhanakan menjadi suatu **string ekspresi reguler**.

Ekspresi Himpunan: L	Ekspresi Reguler: $lpha$
Ø	Ø
{ε}	3
{a}	a
$L_1 \cup L_2$	$lpha \cup eta$
$L_1 L_2$	$egin{array}{c} lpha \cup eta \ & lpha eta \end{array}$
L^*	$lpha^*$
L^+	$lpha^+$
(L)	(α)

Contoh-contoh

- $L_1 = \{w \in \{0, 1\}^* : w \text{ berakhiran } 10\}$ = $\{0, 1\}^* \{10\} = (\{0\} \cup \{1\})^* (\{1\}\{0\})$ ekspresi reguler L_1 adalah $(0 \cup 1)^* 10$
- $L_2 = \{ \in \{a, b\}^* : w \text{ tidak berisi substring } aa \}$ ekspresi reguler L_2 adalah $(ab \cup b)^* (a \cup \varepsilon)$
- $L_3 = \{a^m b^n : m, n \ge 0\} = \{a\}^* \{b\}^*$ ekspresi reguler L_3 adalah $a^* b^*$
- $L_4 = \{w \in \{a, b\}^* : |w| \text{ bilangan genap}\}\$ = $(\{a \cup b\}\{a \cup b\})^*$ ekspresi reguler L_4 adalah $((a \cup b)(a \cup b))^*$

Precedence Order dari Operator

- Seperti pada ekspresi aljabar, ekspresi reguler memerlukan pengurutan presedensi operator:
 - Tertinggi Kleene-* (seperti halnya pangkat),
 - Kemudian konkatenasi (seperti halnya perkalian),
 - Lalu union (seperti halnya penjumlahan)
 - Sepasang kurung menyatukan ekspresi di dalam tanda kurung tsb terhadap operator di luarnya.

Bahasa vs Ekspresi

- Ingat: bahasa reguler L adalah himpunan string sementara ekspresi reguler α adalah string menspesifikasikan bahasa reguler atau $L(\alpha)$.
- Suatu bahasa reguler *L* bisa dispesifikasikan oleh beberapa ekspresi reguler berbeda (tidak unik, tapi arti sama!)
 - Contoh: $L = \{w \in \{a, b\}^* : \#_a(w) \text{ bilangan ganjil}\}$
 - Ekspresi regulernya:
 - Bisa $b^*(ab^*ab^*)^*ab^*$, juga bisa $b^*ab^*(ab^*ab^*)^*$

Ekspresi Reguler -> FSM

• **Teorema**: bahasa untuk setiap ekspresi reguler, dapat diterima oleh bbrp FSM tertentu, dan berarti juga bahasa reguler.

• **Bukti**: dengan membangun FSM *M* dari ekspesi reguler

 α sehingga $L(\alpha) = L(M)$

• Untuk $\alpha = c$, $c \in \Sigma$, mesin M seperti Gambar (a).

- Untuk $\alpha = \emptyset$, mesin M seperti Gambar (b)
- Untuk $\alpha = \varepsilon$, mesin M seperti Gambar (c).
- Untuk α lain....(next page)

Regex→ FSM [Union]

- Untuk α lain, diketahui juga bahwa β dan γ ekspresi-ekspresi reguler dengan
 - $L(\beta)$ diterima oleh $M_1 = (K_1, \Sigma, \delta_1, s_1, A_1)$,
 - $L(\gamma)$ diterima oleh $M_2 = (K_2, \Sigma, \delta_2, s_2, A_2)$, dan
 - $\circ K_1 \cap K_2 = \emptyset$
- Untuk $\alpha = \beta \cup \gamma$, sehingga $L(\alpha) = L(\beta) \cup L(\gamma)$, maka $L(\alpha)$ diterima oleh $M_3 = (K_3, \Sigma, \delta_3, s_3, A_3)$ sbb:

$$\bullet \ K_3 = K_1 \cup K_2 \cup \{s_3\}, \, s_3 \notin K_1 \cup K_2$$

$$\circ \ \delta_3 = \delta_1 \cup \delta_2 \cup \{((s_3, \varepsilon), s_1), ((s_3, \varepsilon), s_2)\}_{\varepsilon}$$

 $\circ A_3 = A_1 \cup A_2$

Regex → FSM [Konkatenasi]

- Untuk α lain, diketahui juga bahwa β dan γ ekspresiekspresi reguler dengan
 - $L(\beta)$ diterima oleh $M_1 = (K_1, \Sigma, \delta_1, s_1, A_1)$,
 - $L(\gamma)$ diterima oleh $M_2 = (K_2, \Sigma, \delta_2, s_2, A_2)$, dan
 - $\circ K_1 \cap K_2 = \emptyset$
- Untuk $\alpha = \beta \gamma$, sehingga $L(\alpha) = L(\beta) L(\gamma)$, maka $L(\alpha)$ diterima oleh $M_3 = (K_3, \Sigma, \delta_3, s_3, A_3)$, sbb:
 - $K_3 = K_1 \cup K_2$
 - $\delta_3 = \delta_1 \cup \delta_2 \cup \{((q, \varepsilon), s_2) : q \in A_1\}$
 - $A_3 = A_2$

Regex → FSM [Kleene*]

- Untuk α lain, diketahui juga bahwa β ekspresi reguler dengan $L(\beta)$ diterima oleh $M_1 = (K_1, \Sigma, \delta_1, s_1, A_1)$,
- Untuk $\alpha = \beta^*$, sehingga $L(\alpha) = L(\beta)^*$, maka $L(\alpha)$ dapat diterima oleh $M_3 = (K_3, \Sigma, \delta_3, s_3, A_3)$ sbb:
 - $K_3 = K_1 \cup \{s_3\}$, dengan $s_3 \notin K_1$
 - $\delta_3 = \delta_1 \cup \{((s_3, \varepsilon), s_1), ((q, \varepsilon), s_1) : q \in A_1\}$
 - $A_3 = A_1 \cup \{s_3\}$

Contoh Untuk $(b \cup ab)^*$

