

Overview: Estimation and Velocity

- Common Development Project Questions
 - How many features will be completed?
 - When will we be done?
 - How much will this cost?
- Scrum's answer involves:
 - Estimating the size of what is being built
 - Measuring the velocity (rate) the team can get work done
- With the size and velocity information we can derive the likely development duration and cost

Overview - Estimation and Velocity

- Once individual PBI size is estimated, we can add up the total PBI for the release (200 story points) which includes several sprints
- Velocity is a measure of how much work the team can accomplish in a sprint
- At the end of a sprint we add up the points for the PBIs that were completed (done)

Estimated size + measured velocity = (number of sprints) 200 points ÷ 20 points/sprint = 10 sprints teature B Feature C Feature D | Average velocity = 20 Feature E | 2 $-\sum = 200$ points Feature G | 3 20 Feature ZX | 5 Feature ZY | 2 Release 1 Feature ZZ Feature ... | ...

Copyright © 2012, Kenneth S. Rubin and Innolution, LLC. All Rights Reserved

Overview - Estimation and Velocity

- This point total becomes the velocity for the sprint
- Velocity will fluctuate across sprints yielding an Average Velocity (20 points)
- Duration can now be calculated by dividing the size by the velocity (10 sprints)

Copyright © 2012, Kenneth S. Rubin and Innolution, LLC. All Rights Reserve

What and When We Estimate

- Story points are one technique for doing PBI estimates
- We also need to estimate at varying levels of granularity throughout planning & grooming
 - Portfolio Backlog estimates
 - Product Backlog estimates
 - Sprint Backlog (PBI) estimates
 - Ideal/Effort Hours is not necessarily same as elapsed
 - "Ideal" is usually to describe an effort were you are not interrupted
 - Sometimes, optional if team is "good/seasoned"
 - If optional, then **Velocity** is **number of PBIs done**, not the number of story points done

What and When We Estimate

ltem	Portfolio backlog	Product backlog	Sprint backlog tasks
Unit	T-shirt sizes	Story points/ideal days	Ideal hours/effort-hours
When	Portfolio planning	Product backlog grooming	Sprint planning

- Estimate as a Team
 - Traditional projects usually have Proj/Prod manager, architect, or lead developer do initial size estimation
 - Scrum Principle The <u>people who do</u> the work (Dev. Team) collectively provide the estimates
 - PO participates by describing PBIs and answering questions
 - ScrumMaster's role is to help coach & facilitate

Estimates collaboratively

opyright © 2012, Kenneth S. Rubin and Innolution, L.C. All Rights Reserve

Estimating as a team

- This is a central concept to agile, but why is it so important?
- What are the dangers of having one person do the estimating, regardless of their role?
- What should your team be doing when estimating the work to be done?

- **Estimates Are Not** Commitments
 - Sounds "crazy", but it is important that we do not treat them as such
 - Commitments promote a "sandbag" or "over-zealous" mindset for team members
 - We want **realistic** measures, not inflated or understated to impress

- Focus on Accuracy, Not Precision
 - **Precise: 1**0,275 hours; \$132,865.87 = wasteful
 - Time sink estimating something we don't fully understand
 - Invest enough effort to get a goodenough, roughly right estimate
 - There exists a point of diminishing return

Copyright © 2012, Kenneth S. Rubin and Innolution, H.C. All Rights Received

- Use Relative Versus Absolute Sizes
 - Size is determined by comparing a PBI to other PBIs
 - Most of us are better at relative size estimation than absolute
- PBI Estimation Units (no standard unit)
 - **Story Points** (70%)
 - Measures the Bigness or Magnitude of a PBI
 - · Complexity & Size factors considered
 - Comparing User Stories (PBIs) with each other
 - Ideal (effort/person) Days (30%)
 - Not the same as elapsed days (example: any sport)
 - Risk of misinterpretation by stakeholders two ideal days is not necessarily the same as two calendar days

• (Fun!) Technique for sizing PBIs Based On:

Consensus

- Expert Opinions
- **Intense Discussion**
- Relative Sizing
- Accurate Grouping/Binning
- **Leverages Estimating History**

- Goal: Accuracy over Precision
- Common Set of Cards (could be others) uses a modified Fibonacci Sequence,
 - 1, 2, 3, 5, 8, 13, 20, 40, and 100
 - Alternative based on binary: 1,2,4,8,16,32...
- You are using relative comparisons of the work items to each other

- Group (bin) together like-sized PBIs and assign them same number on our scale
- Full Scrum team participates
 - Product Owner presents, describes, & clarifies
 - ScrumMaster coaches & keeps game moving
 - Dev. Team collaboratively generates estimates

Playing the game

- 1. Each Dev. Team member has a deck of cards
- 2. PO selects PBI to estimate, discuss
- 3. Each estimator **privately** selects a card
- 4. Estimates are **simultaneously** exposed
- 5. Exposed estimates:
 - All have same card consensus, becomes PBI estimate
 - Different cards engage in discussion to expose assumptions and misunderstandings (ask high and low estimators to explain)
 - Return to Step 3 until consensus is reached
 - Consensus is usually reached within 2 to 3 rounds

This deck includes other cards including ½, infinity, question, and pi. Some decks also include a zero card (meaning too small or already done)

Benefits

- Consensus estimates usually better than one person
- Individual knowledge that is not shared by everyone on the team can be discussed
- The PBI discussion is <u>really helpful and</u> valuable

This deck includes other cards including ½, **infinity**, **question**, and **pi**. Some decks also include a **zero** card (meaning too small or already done)

What is Velocity?

- Velocity
 - Is the amount of work completed each sprint
 - Is calculated by adding size of completed PBIs by end of sprint
 - PBIs are either done or not
 - Measures output (size), not outcome (value)

Copyright © 2012, Kenneth S. Rubin and Innolution, LLC. All Rights Reserve

Feature ... | ...

What is Velocity?

- Velocity
 - Is essential for Scrum planning –
 both release-level and sprint-level
 - Is a diagnostic metric the team can use to evaluate and improve its use of Scrum
- PBI size does not necessarily = most valuable to PO

Copyright © 2012, Kenneth S. Rubin and Innolution, LLC. All Rights Reserve

Calculate a Velocity Range

- Using a Velocity Range is a good way to be more accurate without being overly precise
 - Problem: Questions about how much can be done, when will it be done, and what will it cost are asked at the start of a project when the least is probably known for preciseness
 - The range indicates 10 to 12 sprints

Copyright © 2012, Kenneth S. Rubin and Innolution, LLC. All Rights Reserved.

Forecasting Velocity

- Long-lived teams make it easy to determine velocity (range)
- New teams not so...
 - Have the team perform one sprint plan to determine PBIs it thinks it can complete; that becomes its initial velocity
 - Could have team perform two sprints and then create a high/low range for initial velocity
 - Once team actually performs a sprint a real velocity would be known and that should replace the forecast

Copyright © 2012 Kenneth S. Rubin and Innolution, LLC, All Rights Reserved

Affecting Velocity

- A team's velocity cannot continue to increase forever (Trend 1 in top graph)
- Velocity fluctuates and at some point it could plateau (Trend 2 in top graph)
- New tools, increased training, new team members can have a positive effect on velocity

right © 2012 Kenneth S. Rubin and Insolution 11.C. All Rights Record

Affecting Velocity

- New/additional "anything" usually causes a dip in velocity until the team adapts to the "new" normal
- Overtime (bottom graph) is usually thought of as a way to increase velocity which it might in the short run but over time it leads to lower velocity and product quality

Time

Copyright © 2012, Kenneth S. Rubin and Innolution, LLC. All Rights Reserved.

Using Velocity

- Velocity is used as a key planning tool and for a team's diagnostic metric
- Velocity should not be used as a performance metric to attempt to judge team productivity
 - Using it this way can motivate wasteful and dangerous behavior
 - Teams typically do not use a common baseline across teams for determining PBI size
 - Causes "gaming" the system and point inflation

enneth S. Rubin and Innolution, LLC. All Rights Reserve

Sprint Burndown

- Shows the days of the Sprint and the effort left to work on each day.
- Tells us how much work is left to be done by the group

Sprint Burndown

- · Can help us see if:
 - The work is being completed
 - Are there any spikes? (work got added during the Sprint)
 - Did the team start off on the right track?
 - Did it complete all the story efforts by the last day?

Sprint Burnup

- Similar to burndown but starts with the total work and the completed work the team has done.
- As the team completes the work, the line trends up to reach the total work line.
- The total work can also change up or down (although ideally it shouldn't).

What other thing a Burndown chart tells us about the team?

 What other items do you suspect we can learn about how the team is doing?

