Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2009

Soluciones del segundo parcial de Matemática Discreta 2. 26 de Junio de 2009

Ejercicio 1. Sea G un grupo abeliano finito, $s \in \mathbb{Z}$. Definimos la función $\psi : G \to G$ como $\psi(x) = x^s$.

1. Mostrar que ψ es un morfismo de grupos:

 $\psi(xy) = (xy)^s = x^s y^s$ (donde la última igualdad se verifica por ser G abeliano).

2. Probar que si s y |G| son coprimos, entonces ψ es biyectiva:

Inyectividad: Si $\psi(x) = \psi(y) \Rightarrow x^s = y^s$.

Por Bezout existen $\alpha, \beta \in \mathbb{Z}$ tales que $\alpha s + \beta |G| = 1$. Como $x^{|G|} = e$ se tiene que:

$$x = x^1 = x^{\alpha s + \beta |G|} = (x^s)^{\alpha} \cdot (x^{|G|})^{\beta} = (x^s)^{\alpha} = (y^s)^{\alpha} = (y^s)^{\alpha} \cdot (y^{|G|})^{\beta} = y^{\alpha s + \beta |G|} = y^{\alpha s + \beta$$

Lo que prueba la inyectividad de ψ .

Como $\psi: G \to G$ es inyectiva y G finito entonces ψ es una biyección.

3. Probar que si s y |G| no son coprimos, entonces ψ no es biyectiva:

Sea d = mcd(s, |G|) y consideramos p primo tal que p|d. Como d|s resulta que p|s (o sea s = kp, con $k \in \mathbb{Z}$). De igual forma p|d implica p||G|, luego por Cauchy existe H < G con |H| = p. Por Lagrange resulta que $h^p = e$ para todo $h \in H$ y por lo tanto $h^s = (h^p)^k = e^k = e$. Para ver que ψ no es inyectiva nos basta con tomar dos elementos distintos de H (ambos van a parar a e con ψ).

4. Sea $h: S_3 \to S_3$ definida como $h(\sigma) = \sigma^2$. ¿Es h un morfismo?:

Si h fuese morfismo, $h(ab) = h(a)h(b), \forall a, b \in S_3$, es decir $(ab)^2 = a^2b^2, \forall a, b \in S_3$ y esto implicaría que S_3 es abeliano, lo cual sabemos que es falso. Entonces h no es un morfismo.

(Para una prueba directa basta con un contraejemplo, se pueden tomar por ejemplo $a = (1\ 2)$ y $b = (1\ 3)$, resulta $h(ab) \neq h(a)h(b)$).

Ejercicio 2.

- 1. Sea H < G de orden m y $g \in G$, probar que $K = gHg^{-1}$ también es un subgrupo de G. ¿Cuál es el cardinal de K? (justifique su respuesta):
 - i) No vacío: $e = qeq^{-1} \in K$ pues $e \in H$.
 - ii) Cerrado por producto: Si $k_1 = gh_1g^{-1}$ y $k_2 = gh_2g^{-1}$ con $h_1, h_2 \in H$ resulta que $k_1k_2 = gh_1h_2g^{-1} \in K$ (pues $h_1h_2 \in H$).

iii) Cerrado por inverso: Si $k = ghg^{-1}$ con $h \in H$ entonces $g^{-1} = (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in K$ (pues $h^-1 \in H$).

El cardinal de K es el mismo que el de H, para verlo alcanza encontrar una biyección entre ambos conjuntos. Consideramos $\varphi: H \to K$ tal que $\varphi(h) = ghg^{-1}$.

 φ es sobreyectiva por definición de K. Como $\varphi(h_1) = \varphi(h_2) \Rightarrow gh_1g^{-1} = gh_2g^{-1} \Rightarrow h_1 = h_2$ (esto último es por la cancelativa por izquierda y por derecha en un grupo), por lo tanto φ es la biyección buscada.

2. Sea G un grupo y H y K dos subgrupos distintos de G, supongamos que |H| = |K| = m y sea q el menor divisor primo de m. Probar que $|H \cap K| \le m/q$.

Como $H \cap K < H \Rightarrow |H \cap K|$ divide a |H| = m, si $|H \cap K| = m$ entonces $H \cap K = H \Rightarrow H \subset K$, pero al tener el mismo cardinal resutaría H = K lo cual es absurdo.

Por consiguiente $|H \cap K|$ es un divisor de m menor que m asi que $|H \cap K| \leq m/q$ como queríamos probar.

3. Sea G un grupo de orden n y p el menor divisor primo de n, sea H < G con [G:H] = p. Supongamos además que p^2 no divida a n. Probar que $H \triangleleft G$:

Sea n = pm, como $p^2 \not| n$ resulta $p \not| m$. Sea q el menor divisor primo de m. Como [G:H] = p tenemos que |H| = m.

Supongamos que $H \not \sim G$ entonces existe $g \in G$ tal que $gHg^{-1} \neq H$. Llamemos $K = gHg^{-1}$.

Por la primer parte K < G, |H| = |K| = m y por nuestra suposición $H \neq K$. Por la segunda parte $|H \cap K| \leq m/q$. Luego tenemos que:

$$|HK|=\frac{|H||K|}{|H\cap K|}=\frac{m^2}{|H\cap K|}\geq \frac{m^2}{m/q}=qm$$

Pero q|n (pues q|m) y $q \neq p$ (pues $p \nmid m$) asi que q > p lo cual implicaría que $|HK| \geq qm > pm = n$ lo cual es absurdo pues $HK \subset G$ y |G| = n. Por lo tanto H es normal.

Ejercicio 3.

1. Sea $n \in \mathbb{Z}^+$ impar y sea $b \in \mathbb{Z}$ tal que $2 \le b \le n-1$. Si $b^{n-1} \equiv 1 \mod(n)$ y $b^{\frac{n-1}{p}} \not\equiv 1 \mod(n)$, para cada factor primo p de n-1, demostrar que n es primo:

Para probar que n es primo basta chequear que $\varphi(n) = n - 1$.

Por un lado $\varphi(n) \leq n-1$ por definición.

Sea s el orden de b en \mathbb{Z}_n^* .

Como $b^{n-1} \equiv 1 \pmod{n} \Rightarrow s|n-1$

Como $b^{(n-1)/p} \not\equiv 1 \pmod{n} \Rightarrow s \not\mid (n-1)/p$ para todo primo p|n.

Por lo tanto s = n - 1, por Lagrange resulta que $s | \varphi(n)|$ lo cual implica $\varphi(n) \ge n - 1$, luego $\varphi(n) = n - 1$ y por lo tanto n es primo.

2. Hallar un b que verifique las condiciones del item anterior si n=71. (Sug.: usar que $7^5\equiv 51 \text{m\'ed}(71)$)

Tomemos b=7. $7^{10}\equiv (51)^2\equiv (-20)^2\equiv 45\pmod{71}$. $7^{14}\equiv (-10)\cdot 7^{15}\equiv (-10)\cdot (-20)^3\equiv 45\cdot 58\equiv 26\cdot 13\equiv 54\pmod{71}$. $7^{35}\equiv (51)^7\equiv (-20)^7\equiv -(2)^{14}\cdot 5^7\equiv -1\pmod{71}$ (en la última congruencia se usó que $2^6=64\equiv -7\pmod{71}$ y que $5^3\equiv -17\pmod{71}$). Finalmente $7^{70}\equiv (7^{35})^2\equiv (-1)^2\equiv 1\pmod{71}$.

3. Resolver: $x^{15} \equiv 51 \mod(71)$:

Por la parte anterior 7 es raiz primitiva módulo 71 asi que $x \equiv 7^t \pmod{71}$ con $0 \le s < 70$. Se tiene que:

$$x^{15} \equiv 7^{15t} \equiv 7^5 \Leftrightarrow 15t \equiv 5 \pmod{70} \Leftrightarrow 3t \equiv 1 \pmod{14} \Leftrightarrow t \equiv 5 \pmod{14}$$

Luego t = 14s + 5 con $0 \le t < 70$ implica que $t \in \{5, 19, 33, 47, 61\}$. Así que las soluciones son los $x \equiv 7^5, 7^{19}, 7^{33}, 7^{47}, 7^{61} \pmod{71}$.