CS4801 : Bayes classifier

Sahely Bhadra 21/8/2017

- 2. Bayes decision rule
 - 1. Classification error
 - 2. Minimum error rate classification
 - 1. Two category
 - 2. Multi category

Recap on classifier

- A. No information
 - Random classifier

 For k class classification

 problem assign class label k to
 a text point with probability 1/k
- B. Prior or class probability is known

- P(error)= $P(C_1)$ if decide C_2 P(C_2) if decide C_1
- P(error)= min { $P(C_1)$, $P(C_2)$ }

Recap on classifier

A. No information

Random classifier
For k class classification
problem assign class label k to
a text point with probability 1/k

P(error)= $P(C_1)$ if decide C_2 P(C_2) if decide C_1

B. Prior or class probability is known

P(error)= min { $P(C_1)$, $P(C_2)$ }

C. Posterior is known

Bayes classifier
The Bayes rule is optimum, that is, it minimises the average probability error!

P(error/x)= $P(C_1/x_t)$ if decide C_2 $P(C_2/x_t)$ if decide C_1

P(error/x)= min { $P(C_1/x_t)$, $P(C_2/x_t)$ }

P(error) = $\int_{-\infty}$ P(error, x)dx = $\int_{-\infty}$ P(error/x)p(x)dx

Expected Loss

• Classification = $f(x) : x \rightarrow \{C_1, C_2\}$

• cost(f(x), y)= L(f(x), y) = cost of assigning class label 'f(x)' when the correct

label is 'y'.

Expected loss

Risk(f) = E[R(x)] =
$$\int_{X} R(x) p(x) dx$$

=
$$\int L(f(x),C_2)p(x/C_2) P(C_2) p(x) dx$$

 $f(x)=C_1$

+
$$\int L(f(x),C_1)p(x/C_1) P(C_1) p(x) dx$$

 $f(x)=C_2$

Risk(f) = E[L(f(x),y)]=
$$\int_{Xy} L(f(x),y)p(x,y) d(x,y)$$

Bayes Error

• Classification = $f(x) : x \rightarrow \{C_1, C_2\}$

• cost(f(x), y)= L(f(x), y) = cost of assigning class label 'f(x)' when the correct label is 'y'.

 $p(x_t/C_2) P(C_2)$

error

Expected loss or risk of classifier 'f'

Risk(f) = E[L(f(x),y)]
=
$$\int_{xy} L(f(x),y)p(x,y) d(x,y)$$

A classifier f^* is called Bayes optimal, -15 -10 -15 or Bayes classifier, if it minimises $p(x_t/C_2) P(C_2) > p(x_t/C_1) P(C_1)$ $p(x_t/C_1) P(C_1) > p(x_t/C_2) P(C_2)$ Risk(f).

Decide The minimum expected loss Risk(f*) is called the **Bayes error**.

Bayes classifier

Classification = f(x) : $x \to \{C_1, C_2\}$ cost(f(x), y) = L(f(x), y) = cost of assigning class label 'f(x)' when the correct label is 'y'.

$$Risk(f) = E[L(f(x),y)]$$

Risk(
$$f=C_1/x$$
) =L₁₁ P(C₁/x_t) +L₁₂ P(C₂/x_t)

Risk(
$$f=C_2/x$$
) =L₂₁ P(C₁/x_t) +L₂₂ P(C₂/x_t)

Bayes classifier: minimises Risk(f)

Decide
$$f=C_1$$

if
 $Risk(f=C_1/x) < Risk(f=C_2/x)$
 $(L_{11} - L_{21}) P(C_1/x_t) < (L_{22} - L_{12}) P(C_2/x_t)$

Decide The minimum expected loss Risk(f*) is called the Bayes error.

Bayes classifier : Zero One Loss

Bayes classifier: minimises Risk(f)

Decide $f=C_1$ if $(L_{11}-L_{21}) P(C_1/x_t) < (L_{22}-L_{12}) P(C_2/x_t)$ otherwise $f=C_2$

For Zero One Loss $L_{11} = L_{22} = 0$ $L_{12} = L_{21} = 1$ 0.5 Decide $f = C_1$ if $(0 - 1) P(C_1/x_t) < (0 - 1) P(C_2/x_t)$ or $P(C_2/x_t) < P(C_1/x_t)$ otherwise $f = C_2$

Naive Implementation

Naive Bayes

Features are independent

Non parametric density estimation

$$P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x} \approx p(\mathbf{x}) \int_{\mathcal{R}} d\mathbf{x} = p(\mathbf{x}) V$$

Nearest Neighbour (fixed k)

$$P = k/n$$

$$P = k/n$$
$$p(\mathbf{x}) = \frac{k/n}{V}$$

Parzen window (Fixed V)

$$P = k/n$$

$$p(\mathbf{x}) = \frac{k/n}{V}$$

Classification Loss

Zero one loss Logistic loss Hinged loss

Square loss?

Next Class

- 23/8
 - Logistic Regression
 - Perceptron classifier