Ciência das Redes Redes Neurais de Grafos

Thiago H Silva

Node embeddings

Limitações dos métodos de shallow encoders (como o node2vec):

- Não incorpora features de nó:
 - Os nós em muitos gráficos têm recursos que podemos e devemos usar

Deep graph encoders

Podemos usar métodos de aprendizagem profunda com base em redes neurais de grafos (GNNs):

$$ENC(v) = Múltiplas camadas de transformações não lineares baseadas na estrutura do grafo$$

Deep graph encoders

Deep graph encoders

Graph Neural Networks

Ideia geral

Ideia principal: transmitir mensagens ao longo das arestas do grafo, aglomerar e transformar

CNNs (em grades) como transmissora de mensagens

Single CNN layer with 3x3 filter:

Update for a single pixel:

- Transform messages individually $\mathbf{W}_i\mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Full update:

$$\mathbf{h}_4' = \sigma(\mathbf{W}_0\mathbf{h}_0 + \mathbf{W}_1\mathbf{h}_1 + \dots + \mathbf{W}_8\mathbf{h}_8)$$

Considere este grafo não direcionado

Considere este grafo não direcionado

Calcular a atualização para o nó em vermelho

Update rule:

$$\mathbf{h}_i' = \sigma\left(\mathbf{W}_0\mathbf{h}_i + \sum_{j \in \mathcal{N}_i} \alpha_{ij}\mathbf{W}_1\mathbf{h}_j
ight)$$
 Indices dos vizinhos Constan

Constante de normalização

Considere este grafo não direcionado

Calcular a atualização para o nó em vermelho

Update rule:

$$\mathbf{h}_i' = \sigma \left(\mathbf{W}_0 \mathbf{h}_i + \sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W}_1 \mathbf{h}_j \right)$$

Índices dos vizinhos

Propriedades desejáveis:

- Compartilhamento de pesos em todas as localidades
- Complexidade linear O(E)
- Aplicáveis em cenários indutivos (novos nós e arestas)

Limitações

- Não suporta a interação entre pares
- Não suporta features de arestas

Constante de normalização

GNNs mais expressivas

MoNet & Relational GCN for modeling relational data

Monti et al. (CVPR 2017), Schlichtkrull & Kipf et al. (arXiv 2017, ESWC 2018)

$$\mathbf{h}_i' = \sigma \left(\sum_{r=1}^R \sum_{j \in \mathcal{N}_i} \alpha_{ij}^r \mathbf{W}_r \mathbf{h}_j \right) \quad \begin{array}{l} \alpha_{ij}^r \text{ based on:} \\ \bullet \text{ Edge type (Relational GCN)} \\ \bullet \text{ Auxiliary features (MoNet), e.g. node degree} \end{array} \right)$$

Self-attention and Graph Attention Networks

Vaswani et al. (NIPS 2017), Veličković et al. (ICLR 2018)

$$\alpha_{ij}^{r} = \frac{\exp(\mathbf{h}_{i}^{T} \mathbf{W}_{r}' \mathbf{h}_{j})}{\sum_{k \in \mathcal{N}_{i}} \exp(\mathbf{h}_{i}^{T} \mathbf{W}_{r}' \mathbf{h}_{k})}$$

Multi-head dot product attention:

- Activation-dependent α_{ij}^r
- · Bi-linear scoring

GNNs com Edge Embeddings

Formally:
$$v \rightarrow e$$
: $\mathbf{h}_{(i,j)}^l = f_e^l([\mathbf{h}_i^l, \mathbf{h}_j^l, \mathbf{x}_{(i,j)}])$

$$e \rightarrow v$$
: $\mathbf{h}_j^{l+1} = f_v^l([\sum_{i \in \mathcal{N}_j} \mathbf{h}_{(i,j)}^l, \mathbf{x}_j])$

Pros:

- Suporte a features de arestas
- Mais expressivas do que GCN
- Bastante flexível

Cons:

- Precisa armazenar ativações baseadas em arestas intermediárias
- Na prática mais lentas do que GCN / Self-attention models

• Relembrando – O que as redes neurais profundas fazem?

- Aprendem features importantes do input
 - Permitem fazer tarefas variadas
- Usar esse recurso para transformar o input (codificar encode)

- AutoEcoders são redes neurais que trabalham no regime não supervisionado
- Ou seja não precisamos de rótulos

Necessário uma rede convolucional de grafo (graph convolution network)

Que produz uma representação de *embeddings* em baixa dimensão

Saída da rede neural de grafo

Produto interno (Inner product)

$$Adj_{(A,B)} = sigmoid([5,2] * [1,4]^T)$$

$$Adj_{(A,C)} = sigmoid([5,2] * [2,3]^T)$$

. . .

- Também pode ser usada para classificação de nó:
 - Cenário: alguns nós possuem labels
 - Objetivo: predizer os labels de nós que não possuem labels


```
CLASS GAE (encoder, decoder=None)
                                        [source]
  The Graph Auto-Encoder model from the "Variational Graph Auto-Encoders" paper based on
  user-defined encoder and decoder models.

    encoder (Module) – The encoder module.

    PARAMETERS:

    decoder (Module, optional) – The decoder module. If set to None, will

                           default to the torch geometric.nn.models.InnerProductDecoder.(default:
                            None
   reset_parameters ( )
                          [source]
   encode (*args, **kwargs)
                               [source]
     Runs the encoder and computes node-wise latent variables.
   decode (*args, **kwargs)
                               [source]
     Runs the decoder and computes edge probabilities.
   recon_loss ( z, pos_edge_index, neg_edge_index=None )
                                                          [source]
     Given latent variables z, computes the binary cross entropy loss for positive edges
      pos edge index and negative sampled edges.
                            • z (Tensor) – The latent space Z.
        PARAMETERS:
                            • pos_edge_index (LongTensor) - The positive edges to train against.

    neg_edge_index (LongTensor, optional) – The negative edges to train

                              against. If not given, uses negative sampling to calculate negative
```

edges. (default: None)

Demonstração usando a implementação do PyG (Pytorch geometric)

Outras abordagens para aprendizado não supervisionado

Table 1. Components of unsupervised learning methods on graphs in existing algorithms: DeepWalk (Perozzi et al., 2014), GAE (Kipf & Welling, 2016b), S-VGAE (Davidson et al., 2018), DGI (Veličković et al., 2018), and G2G (Bojchevski & Günnemann, 2017).

Method	Encoder	Representation	Score	Loss	Sampling
DeepWalk	LUT	$\mathbf{z}_i \in \mathbb{R}^D$	$\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$	$-\log S - \log(1 - \tilde{S})$	(+) random walk neighbors (-) non-neighbors
GAE	GCN	$\mathbf{z}_i \in \mathbb{R}^D$	$\sigma(\mathbf{z}_i^{ op}\mathbf{z}_j)$	$-\log S - \log(1 - \tilde{S})$	(+) 1st order neighbors (-) non-neighbors
S-VGAE	GCN	$\mathbf{z}_i \sim \text{vMF}(\mathbf{z})$	$\sigma(\mathbf{z}_i^{\top}\mathbf{z}_j)$	$-\log S - \log(1 - \tilde{S})$	(+) 1st order neighbors (-) non-neighbors
DGI	GCN	$\mathbf{z}_i \in \mathbb{R}^D$	$\sigma\left(\mathbf{z}_{i}^{T}\mathbf{W}\mathbf{s}\right)$	$-\log S - \log(1 - \tilde{S})$	(+) original graph(-) corrupted graph
G2G	MLP	$\mathbf{z}_{\mu} \in \mathbb{R}^{D} \ \mathbf{z}_{\Sigma} \in \mathbb{R}^{D}$	$\exp(-\mathrm{KL}(\mathcal{N}_i \ \mathcal{N}_j))$	$(\log S)^2 + \tilde{S}$	(+) 1st order neighbors(-) higher order neighbors

GAE: Graph Auto-Encoders, G2G: Graph2Gauss, DGI: Deep Graph Infomax $\mathbf{s} = \sum_{i=1}^{N} \mathbf{z}_i$

Um grafo em PyG é descrito por uma instância de *torch_geometric.data.Data*, que contém os seguintes atributos por padrão:

- data.x: Node feature matrix with shape [num_nodes, num_node_features]
- data.edge_index: Graph connectivity in COO format with shape [2, num_edges] and type torch.long
- data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features]
- data.y: Target to train against (may have arbitrary shape), e.g., node-level targets of shape [num_nodes, *] or graph-level targets of shape [1, *]
- data.pos: Node position matrix with shape [num_nodes, num_dimensions]

Nenhum desses atributos é obrigatório.

O objeto Data não está restrito a esses atributos.

Quatro arestas definidas

Embora o gráfico tenha apenas duas arestas, precisamos definir quatro tuplas de índice para explicar as duas direções de uma aresta.

Data DataLoader

Classes que organizam e facilitam o trabalho com um dataset de grafos

Mini-batches

Oferece recursos para facilitar o trabalho com mini-batches

 Recursos para gerenciar treinamento e teste (mesmo que com um grafo apenas)

Graph Neural Networks

Área nova e difícil de acompanhar

Inúmeras aplicações e sucesso

Ainda muitos desafios

GCN for recommendation on 16 billion edge graph!

Agradecimentos e referências

Alguns slides foram derivados de Thomas Kipf – University of Amsterdam

Paper "Variational Graph Auto-Encoders" 2016

Biblioteca oficial do Pytorch Geometric