Lista nr 12 z matematyki dyskretnej

- (D) Pokaż, że dla każdego grafu istnieje pewna kolejność wierzchołków, przy której algorytm zachłanny (sekwencyjny) działa w sposób optymalny.
- 2. Znajdź pokolorowanie grafu Mycielskiego M_4 za pomocą algorytmu sekwencyjnego.
- 3. (D) Niech M_k będzie k-tym grafem Mycielskiego. Wykaż, że M_k nie zawiera trojkątow i $\chi(M_k) = k$ dla każdego k.
- 4. Wykaż, że jeśli w algorytmie sekwencyjnym zostało użytych k kolorów do pomalowania grafu, to ten graf ma przynajmniej k(k-1)/2 krawędzi. Wykaż stąd, że każdy graf zawiera przynajmniej $\chi(G)(\chi(G)-1)/2$ krawędzi, gdzie $\chi(G)$ jest liczbą chromatyczną grafu G.
- 5. Wykaż, że liczba chromatyczna grafu, w którym stopień żadnego wierzchołka nie przekracza 3, może być znaleziona w czasie wielomianowym.
- 6. Dla każdego n>1 skonstruuj graf dwudzielny na 2n wierzchołkach i uporządkowanie tych wierzchołków, dla których algorytm sekwencyjny używa n kolorów.
- 7. nk studentów, przy czym $k \geq 2$, jest podzielonych na n towarzystw po k osób i na $n \geq 2$ kół naukowych po k osób każde. Wykaż, że da się wysłać delegację 2n osób tak, by każde towarzystwo i każde koło naukowe było reprezentowane.
- 8. Niech G=(V,E) będzie pewnym grafem dwudzielnym a $d:V\to N$ funkcją na zbiorze wierzchołków. Skonstruuj algorytm, który znajduje podgraf $G'=(V,E'\subseteq E)$ grafu G taki, że dla każdego wiezchołka $v\in V$ stopień $v\le G'$ wynosi zadane d(v) lub stwierdza, że takowy nie istnieje.

Wskazówka: można użyć przepływów.

Trzy kolejne zadania domowe można wybrać z zadań 4-8.

Katarzyna Paluch