STL Notes

David Kooi

July 2, 2019

1 STL for Hybrid Systems

1.1 Hybrid Systems Preliminaries

Definition 1.1 (Hybrid System). A hybrid system $\mathcal{H} = (C, F, D, G)$ is defined by a flow set C, flow map F, jump set D, and jump map G, following [3]. $x \in \mathcal{X}$ is the system's state where $\mathcal{X} \subset \mathbb{R}^n$ is the state space. Continuous dynamics are defined on flow set C and are captured by the set valued map $F : \mathcal{X} \rightrightarrows \mathcal{X}$. Discrete dynamics are defined on jump set D and are captured by the set-valued map $G : \mathcal{X} \rightrightarrows \mathcal{X}$. Taken together, \mathcal{H} can be written as:

$$\dot{x} \in F(x)$$
 $x \in C$ (1)
 $x^+ \in F(x)$ $x \in D$

Solutions to a hybrid system \mathcal{H} are defined on ordinary and discrete time:

- 1. Ordinary Time: $t \in \mathbb{R}_{>0} := [0, \infty)$
- 2. Discrete Time: $j \in \mathbb{N} := \{0, 1, 2, ...\}$

Definition 1.2 (Hybrid Time Instance). A hybrid time instance is given by

$$(t,j) \in \mathbb{R}_{>0} \times \mathbb{N}$$

Definition 1.3 (Compact Hybrid Domain). A set $E \subset \mathbb{R}_{>0} \times \mathbb{N}$ is a compact hybrid domain if it can be written as

$$E := \bigcup_{j=0}^{J} ([t_j, t_{j+1}] \times \{j\})$$
 (2)

for a finite sequence of times $0 = t_0 \le t_1 \le t_2 \le ... \le t_{J+1}$.

Definition 1.4 (Hybrid Domain). A set $E \subset \mathbb{R}_{>0} \times \mathbb{N}$ is a hybrid domain if for each $(T,J) \in E$

$$E \cap ([0,T] \times \{0,1,...,J\})$$

is a compact hybrid time domain.

Definition 1.5 (Compact Hybrid Shift). Given a compact hybrid domain E and (t^*, j^*) , the forward compact hybrid shift of E by (t^*, j^*) is

$$(t^*, j^*) + E = \bigcup_{j=0}^{J} ([t_j + t^*, t_{j+1} + t^*] \times \{j + j^*\}$$
(3)

and the backward hybrid shift of E by (t^*, j^*) is

$$E - (t^*, j^*) = \bigcup_{j=0}^{J} ([t_j - t^*, t_{j+1} - t^*] \times \{j - j^*\}$$
(4)

for a finite sequence of times $0 = t_0 \le t_1 \le t_2 \le ... \le t_{J+1}$ and E satisfying (2).

Definition 1.6 (Hybrid Interval). A *hybrid interval* is defined by two hybrid time instances (t_A^*, j_A^*) and (t_B^*, j_B^*) , where $t_A^* + j_A^* \le t_B^* + j_B^*$, and an hybrid domain E, over the range $[t_A^*, t_B^*] \times \{j_A^*, ..., j_B^*\}$.

Definition 1.7 (Compact Hybrid Interval). A hybrid interval is a compact hybrid interval if it has the form

$$\mathcal{I} := (t_A^*, j_A^*) + E = \bigcup_{i=0}^{J} ([t_j + t_A^*, t_{j+1} + t_A^*] \times \{j + j_A^*\}$$
 (5)

- where $J = j_B^* - j_A^*$ and $t_0 = 0 \le t_1 \le t_2 \le ... \le t_{J+1} = t_B^* - t_A^*$.

Definition 1.8 (Open Hybrid Interval). A hybrid time interval is an *open hybrid interval* if it has the form of the following cases:

1. Left open interval

$$\mathcal{I} := \left((t_A^*, t_1 + t_A^*] \times \{j_A^*\} \right) \cup \left\{ (t_A^* + t_1, j_A^* + 1) + E \right\}
= \left((t_A^*, t_1 + t_A^*] \times \{j_A^*\} \right) \cup \left\{ \bigcup_{j=0}^{J} ([t_j + t_A^* + t_1, t_{j+1} + t_A^* + t_1] \times \{j + j_A^* + 1\} \right\}$$
(6)

- where $J = j_B^* j_A^* 1$ and $t_0 = 0 \le t_1 \le t_2 \le \dots \le t_{J+1} = t_B^* t_A^* t_1$;
- 2. Right open interval

$$\mathcal{I} := \left\{ (t_A^*, j_A^*) + E \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right) \\
= \left\{ \bigcup_{j=0}^J ([t_j + t_A^*, t_{j+1} + t_A^*] \times \{j + j_A^*\} \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right)$$
(7)

- where $J=j_B^*-j_A^*-1$ and $t_0=0 \le t_1 \le t_2 \le ... \le t_{J+1}=t_{j_B^*}-t_A^*;$
- 3. Open interval

$$\mathcal{I} := \left((t_A^*, t_1 + t_A^*) \times \{j_A^*\} \right) \cup \left\{ (t_A^* + t_1, j_A^* + 1) + E \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right) \\
= \left((t_A^*, t_1 + t_A^*) \times \{j_A^*\} \right) \cup \left\{ \bigcup_{j=0}^J ([t_j + t_A^* + t_1, t_{j+1} + t_A^*] \times \{j + j_A^* + 1\} \right\} \cup \left([t_{j_B^*}, t_B^*) \times \{j_B^*\} \right)$$
(8)

- where $J=j_B^*-j_A^*-2$ and $t_0=0 \le t_1 \le t_2 \le ... \le t_{J+1}=t_{j_B^*}-t_A^*$.

Definition 1.9 (Hybrid Arc). A function $\phi: E \mapsto \mathcal{X}$ is a hybrid arc if E is a hybrid time domain and for each $j \in \mathbb{N}$, the function $t \mapsto \phi(t,j)$ is absolutely continuous on the interval $I_j := \{t : (t,j) \in E\}$. The interior of I^j is denoted int I^j .

Definition 1.10 (Solution of a Hybrid System). A hybrid arc ϕ is a solution to hybrid system $\mathcal{H} = (C, F, D, G)$ if

- 1. $\phi(0,0) \in \overline{C} \cup D$
- 2. for all $j \in \mathbb{N}$ such that I^j has a nonempty interior
 - $\phi(t,j) \in C$ for all $t \in \text{int } I^j$
 - $\dot{\phi}(t,j) \in F(\phi(t,j))$ for almost all $t \in I^j$
- 3. for all $(t, j) \in \text{dom } \phi$ such that $(t, j + 1) \in \text{dom } \phi$
 - $\phi(t,j) \in D$
 - $\phi(t, j+1) \in G(\phi(t, j))$

1.2 STL Definitions

Definition 1.11. (Atomic Proposition)

An atomic proposition $p^{\mu}: \mathcal{X} \mapsto \mathbb{B}$ is a function that maps the state space of the system to a boolean value. The set of all atomic propositions is denoted by \mathcal{P} .

The function $\mu: \mathcal{X} \to \mathbb{R}$ represents a robustness measure of the proposition and has following relation to an atomic proposition.

$$\begin{array}{l} \mu > 0 \Leftrightarrow p^{\mu} = 1 \\ \mu \leq 0 \Leftrightarrow p^{\mu} = 0 \end{array}$$

Definition 1.12 (STL Grammar). STL formulas are defined recursively by the following grammar:

$$\varphi ::= p^{\mu} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \Diamond_{\mathcal{I}} \varphi \mid \varphi_1 \ \mathcal{U}_{\mathcal{I}} \ \varphi_2$$

Where \mathcal{I} is a open or closed hybrid interval and φ , φ_1,φ_2 are STL formulae.

The fact that a hybrid arc satisfies STL formula φ at hybrid time instance (t,j) is given by $\varphi(\phi(t,j)) = 1$. When a hybrid arc does not satisfy a proposition then $\varphi(\phi(t,j)) = 0$.

The validity of a formula φ with respect to hybrid arc ϕ at at time (t,j) is defined inductively as

$$\begin{split} (\phi,(t,j)) &\models p^{\mu} &\iff \mu(\phi(t,j)) > 0 \\ (\phi,(t,j)) &\models \varphi &\iff \varphi(\phi(t,j)) = 1 \\ (\phi,(t,j)) &\models \neg \varphi &\iff \neg((\phi,(t,j)) \models \varphi) \\ (\phi,(t,j)) &\models \varphi \land \psi &\iff (\phi,(t,j)) \models \varphi \land (\phi,(t,j)) \models \psi \\ (\phi,(t,j)) &\models \Diamond_{\mathcal{I}} \varphi &\iff \exists (t',j') \in (t,j) + \mathcal{I} \text{ s.t } (\phi,(t',j')) \models \varphi \\ (\phi,(t,j)) &\models \psi \ \mathcal{U}_{\mathcal{I}} \varphi &\iff \exists (t',j') \in (t,j) + \mathcal{I} \text{ s.t } (\phi,(t',j')) \models \varphi \\ \land \forall (t'',t'') \in (t,t) + \mathcal{I}) \cap ([t,t'] \times [t,t,t']), \ (\phi,(t'',t'')) \models \psi \end{split}$$

References

- [1] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, "Reactive synthesis from signal temporal logic specifications," Seattle, Washington, 2015. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2728606.2728628
- [2] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, "Signal Temporal Logic meets Hamilton-Jacobi Reachability: Connections and Applications," 2018.
- [3] R. Goebel, R. G. Sanfelice, and A. R. Teel, *Hybrid Dynamical Systems: Modeling, Stability, and Robustness.* New Jersey: Princeton University Press, 2012.
- [4] A. Donzé and O. Maler, "Robust Satisfaction of Temporal Logic over Real-Valued Signals." Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.