20.06.03

庁 玉 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 8月20日

REC'D 0 8 AUG 2003

出 Application Number:

特願2002-239843

[ST. 10/C]:

[JP2002-239843]

出 人 Applicant(s):

タカラバイオ株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH

RULE 17.1(a) OR (b)

2003年 7月25日

特許庁長官 Commissioner, Japan Patent Office 【書類名】 特許願

【整理番号】 T-1791

【提出日】 平成14年 8月20日

【あて先】 特許庁長官 殿

【国際特許分類】 C08B 37/00

C12N 9/00

C12P 19/00

【発明者】

【住所又は居所】 青森県弘前市大字在府町82-4 タカラバイオ株式会

社 バイオ研究所 マリンバイオ研究部門内

【氏名】 酒井 武

【発明者】

【住所又は居所】 青森県弘前市大字在府町82-4 タカラバイオ株式会

社 バイオ研究所 マリンバイオ研究部門内

【氏名】 石塚 久美子

【発明者】

【住所又は居所】 滋賀県大津市瀬田三丁目4番1号 タカラバイオ株式会

社内

【氏名】 加藤 郁之進

【特許出願人】

【識別番号】 302019245

【氏名又は名称】 タカラバイオ株式会社

【代表者】 加藤 郁之進

【手数料の表示】

【予納台帳番号】 173212

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

ページ: 2/E

【物件名】

要約書

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 ナマコ由来硫酸化フカン

【特許請求の範囲】

【請求項1】 下記の理化学的性質を有することを特徴とするエンド型 α-L-フコシダーゼ。

- (Ι)作用:硫酸化フカンに作用して、α-L-フコシル結合を加水分解し、 硫酸化フカンを低分子化させる。
 - (II) 至適 p H:本酵素の至適 p Hは7~10付近である。
 - (III) 至適温度:本酵素の至適温度は約25~45℃である。

【請求項2】 請求項1記載のエンド型α-L-フコシダーゼ生産能を有するフ コイダノバクター属細菌を培養し、その培養物から該酵素を採取することを特徴 とする請求項1記載のエンド型 α-L-フコシダーゼの製造方法。

【請求項3】 下記の理化学的性質を有することを特徴とする硫酸化フカンスル ファターゼ。

- (I)作用:硫酸化フカンに作用して、硫酸エステル結合を加水分解し、硫酸 を遊離させる。また、請求項1記載のエンド型α-L-フコシダーゼと共存して 、ナマコ由来硫酸化フカンの低分子化を進行させる。
 - (II) 至適pH:本酵素の至適pHは5.5~10付近である。
 - (I I I) 至適温度:本酵素の至適温度は約20~45℃である。

【請求項4】 請求項3記載の硫酸化フカンスルファターゼ生産能を有するフコ イダノバクター属細菌を培養し、その培養物から該酵素を採取することを特徴と する請求項3記載の硫酸化フカンスルファターゼの製造方法。

硫酸化フカンに請求項1記載のエンド型α-L-フコシダーゼを 【請求項5】 作用させて取得することを特徴とする硫酸化フカンオリゴ糖の製造方法。

【請求項6】 塩化ナトリウムの共存下で行うことを特徴とする請求項5記載の 硫酸化フカンオリゴ糖の製造方法。

【請求項7】 請求項5又は6記載の方法で得られる硫酸化フカンオリゴ糖。

【請求項8】 硫酸化フカンに請求項1記載のエンド型α-L-フコシダーゼ及 び請求項3記載の硫酸化フカンスルファターゼを作用させて取得することを特徴

【請求項9】 塩化ナトリウム及び/又はカルシウムイオンの共存下で行うことを特徴とする請求項8記載の硫酸化フカンオリゴ糖の製造方法。

【請求項10】 請求項8又は9記載の方法で得られる硫酸化フカンオリゴ糖。 【発明の詳細な説明】

[0001]

【本発明の属する技術分野】

本発明は糖鎖工学分野において有用な硫酸化フカンを分解する酵素、該酵素の 製造方法、該酵素を活性化させる様々な因子、並びに糖鎖工学用試薬として有用 な硫酸化フカンオリゴ糖、及びそれらの製造方法に関する。

[0002]

【従来の技術】

ナマコには数種の硫酸化多糖が含まれている。これらの中には、硫酸化フコースを主要構成成分とする多糖、すなわち、硫酸化フカンが存在する。ナマコ由来硫酸化フカンのエイズウイルス感染抑制作用や抗凝血作用等が報告されているが、ナマコ由来硫酸化フカンを医薬品として開発する場合、その構造を決定する必要が生じる。ナマコ由来硫酸化フカンの構造は研究されているが、現時点ではその平均的構造が判明しているに過ぎない。硫酸化フカンの構造決定の際、硫酸化フカンを分解する酵素を用いれば非常に有利であるが、ナマコ由来硫酸化フカンを分解する酵素は市販されていない。一方、硫酸化フカンは種々の褐藻類にも含まれており、その構造は由来となる海藻により異なることが多い。例えば、ヒバマタ、マコンプ、モズクそれぞれから抽出される硫酸化フカンは異なる構造を持つ。そして、これまで褐藻類由来の硫酸化フカンを分解する酵素がいくつか報告されているが(国際公開第96/34004号パンフレット、国際公開第99/41288号パンフレット)、いずれも、ナマコ由来硫酸化フカンを分解することはできない。すなわち、ナマコ由来硫酸化フカンと褐藻類由来硫酸化フカンの構造は異なると考えられる。

[0003]

【発明が解決しようとする課題】

3/

以上のことから、ナマコ由来硫酸化フカンを分解する酵素、及び酵素的に製造 した構造が均一な硫酸化フカンオリゴ糖が求められていた。

すなわち、本発明の目的は、ナマコ由来硫酸化フカンを分解する硫酸化フカン 分解酵素、該酵素の製造方法、及び硫酸化フカンに該酵素を作用させて得られる 低分子化物及びその製造方法を提供することにある。また、本発明の目的は、硫 酸化フカン分解酵素の活性化因子を提供することにもある。

[0004]

【課題を解決するための手段】

本発明者らは、フコイダノバクター属に属する細菌の1菌株、フコイダノバク ター マリナス(Fucoidanobacter marinus)SI-0098が新規な硫酸化フカン分解 酵素を生産することを見出し、該酵素の製造方法を見出した。また、該酵素を利 用してナマコ由来硫酸化フカンから、新規な硫酸化フカンオリゴ糖を製造できる ことを見出し、本発明を完成させた。

[0005]

すなわち、本発明の第1の発明は、フコイダノバクター属細菌の培養物から得 られたエンド型 α - L - フコシダーゼに関する。

本発明の第1の発明において、該酵素は、エンド型 α – L – フコシダーゼ生産 能を有するフコイダノバクター属細菌を培養し、その培養物から採取することが できる。

[0006]

本発明の第2の発明は、フコイダノバクター属細菌の培養物から得られた硫酸 化フカンスルファターゼに関する。

本発明の第2の発明において、該酵素は硫酸化フカンスルファターゼ生産能を 有するフコイダノバクター属細菌を培養し、その培養物から採取することができ る。

[0007]

本発明の第3の発明は、ナマコ由来硫酸化フカン画分に、本発明の第1の発明 のエンド型α-L-フコシダーゼを作用させて得られる硫酸化フカンオリゴ糖に 関する。

[0008]

[0009]

【発明の実施の形態】

以下本発明に関して具体的に説明する。

本発明において、特に限定されるものではないが、例えば、マナマコ由来硫酸化フカンを使用できる。マナマコは、本発明の硫酸化フカンオリゴ糖の生産効率が高く、原料として好適である。

[0010]

本発明のエンド型 α - L - フコシダーゼとは、ナマコ由来硫酸化フカンに作用して還元性末端にフコースを持つオリゴ糖を生成させる酵素である。

本発明の硫酸化フカンスルファターゼとは、ナマコ由来硫酸化フカン及びナマコ由来硫酸化フカンオリゴ糖に作用して硫酸を遊離させる酵素である。

本発明の硫酸化フカンオリゴ糖は、ナマコ由来硫酸化フカンに本発明のエンド型 α-L-フコシダーゼ単独、又は本発明の硫酸化フカンスルファターゼと一緒に作用させて得られるオリゴ糖で、還元性末端糖がフコースである。

[0011]

本発明で使用する硫酸化フカンを製造する際にはまず、ナマコを水性溶媒中に

[0012]

このようにしてナマコの硫酸化多糖画分を得ることができる。該画分を硫酸化フカン画分として、例えば本発明のエンド型 α -L-フコシダーゼや硫酸化フカンスルファターゼの活性測定用基質及び本発明の硫酸化フカンオリゴ糖製造用の基質として使用できる。該画分を陰イオン交換カラムで分離すればより純度の高い硫酸化フカンを得られる。上記の硫酸化多糖画分も陰イオン交換カラムで精製した硫酸化フカンもともに本発明のエンド型 α -L-フコシダーゼや硫酸化フカンスルファターゼの活性測定用基質及び本発明の硫酸化フカンオリゴ糖製造用の基質として使用できる。

[0013]

本発明の、エンド型 α -L-フコシダーゼ及び硫酸化フカンスルファターゼの製造に使用される細菌としては、該酵素を生産する細菌であれば特に限定はないが例えば、フコイダノバクター マリナス(Fucoidanobacter marinus) SI-0098株が挙げられる。当該細菌株は本発明者らが単離した細菌である。なお、上記菌株はFucoidanobacter marinus SI-0098と表示され、独立行政法人産業技術総合研究所特許生物寄託センターにFERMP-14873として平成7年3月29日(原寄託日)より寄託され、ブダペスト条約に基づき上記独立行政法人産業技術総合研究所特許生物寄託センターにFERMBP-5403として平成8年2月15日(移管日)より寄託されている。

[0014]

本発明者らは、本菌株の16S rRNAをコードするDNAの塩基配列を決定し、既知の細菌との相同性を調べ、本菌株がVerrucomicrobiaに最も近い新属の細菌であると再確認した。

[0015]

[0016]

本発明のエンド型 α - L - フコシダーゼ及び硫酸化フカンスルファターゼを生 産する細菌を培養するにあたり、培地に加える栄養源は使用する微生物が利用し 、該酵素を生産するものであればよく、炭素源としては、例えば、硫酸化フカン 、ナマコ、干しナマコ、海藻、アルギン酸、ラミナラン、フコース、グルコース 、マンニトール、グリセロール、サッカロース、マルトース、デンプン等が利用 でき、窒素源としては、酵母エキス、ペプトン、カザミノ酸、コーンスティープ リカー、肉エキス、脱脂大豆、硫安、塩化アンモニウム、尿素、尿酸等が適当で ある。その他にナトリウム、カリウム、マグネシウム、カルシウム、亜鉛等の塩 化物、リン酸塩、硫酸塩等を加えてもよい。なお、一般に海水から採取した微生 物は、海水あるいは市販の人工海水を用いれば極めて生育しやすい。

[0017]

また、培養条件は使用する微生物、培地組成等に応じ、本発明のエンド型 α ー L-フコシダーゼ及び硫酸化フカンスルファターゼの生産量が最大になるように 設定するが、一般に培養温度は15~30℃、培地のpHは5~9がよく、5~ 7 2 時間の通気攪拌培養で本発明のエンド型 α – L – フコシダーゼ及び硫酸化フ カンスルファターゼの生産量は最高に達する。培養終了後、遠心分離により菌体 と培養上清に分画し、それぞれから本発明のエンド型α-L-フコシダーゼ及び 硫酸化フカンスルファターゼを得ることができる。

[0018]

上記のフコイダノバクター マリナス SI-0098を適当な培地で培養し 、その菌体を集め、通常の細胞破砕手段、例えば超音波処理で菌体を破砕すると 無細胞抽出液が得られる。次いでこの抽出液から通常の精製手段により本発明の エンド型 α – L – フコシダーゼ及び硫酸化フカンスルファターゼを精製すること

[0019]

本発明のエンド型 α-L-フコシダーゼの理化学的性質は以下の通りである。

- (I)作用:硫酸化フカン及び硫酸化フカンオリゴ糖などに作用して、 $\alpha-L-$ フコシル結合を加水分解する。
- (II) 至適pH:本酵素の至適pHは7~10付近にある(図1)。

すなわち図1は本酵素の反応時のpHと相対活性の関係を表すグラフであり、 縦軸は相対活性(%)、横軸はpHを示す。

(III) 至適温度:本酵素の至適温度は約25~45℃付近にある(図2)。すなわち、図2は本酵素の反応時の温度と相対活性の関係を表すグラフであり、縦軸は相対活性(%)、横軸は温度(℃)を示す。

[0020]

本発明のエンド型 α - L - D

[0021]

本発明のエンド型 $\alpha-L-フョシダーゼは塩化ナトリウムの存在下で活性化される。$

塩化ナトリウムは、試薬の塩化ナトリウム、食塩、海水、人工海水等、塩化ナトリウムを含むものならばいかなる物質でも使用できる。本発明の、エンド型 α ーLーフコシダーゼの反応液に添加する塩化ナトリウム濃度は 1 mMから 1 M程度がよく、好ましくは 5 mMから 9 0 0 mM程度がよい。

[0022]

本発明の硫酸化フカンスルファターゼの理化学的性質は以下の通りである。

(I) 作用:硫酸化フカン及び硫酸化フカンオリゴ糖などに作用して、硫酸を遊

(II) 至適pH:本酵素の至適pHは5.5~10付近にある(図4)。

すなわち図4は本酵素の反応時のpHと相対活性の関係を表すグラフであり、 縦軸は相対活性(%)、横軸はpHを示す。

(III) 至適温度:本酵素の至適温度は約20~45℃付近にある(図5)。 すなわち、図5は本酵素の反応時の温度と相対活性の関係を表すグラフであり 、縦軸は相対活性(%)、横軸は温度(℃)を示す。

[0023]

本発明の硫酸化フカンスルファターゼは、遊離した硫酸を測定して確認でき、 生産菌の培養液を遠心分離した上清、無細胞抽出液、各種カラムクロマトによる 精製後の酵素液でも確認できる。

[0024]

本発明の硫酸化フカンスルファターゼは塩化ナトリウム及び/又はカルシウムイオンの存在下で活性化される。

塩化ナトリウムは、試薬の塩化ナトリウム、食塩、海水、人工海水等、塩化ナトリウムを含むものならばいかなる物質でも使用できる。本発明の、硫酸化フカンスルファターゼの反応液に添加する塩化ナトリウム濃度は1mMから2M程度がよく、好ましくは5mMから1M程度がよい。

[0025]

カルシウムイオンは、試薬の塩化カルシウム、酢酸カルシウム等、カルシウムイオンを含むものならばいかなる物質でも使用できる。本発明の、硫酸化フカンスルファターゼの反応液に添加するカルシウムイオン濃度は 0. 1 mMから 1 M程度がよく、好ましくは 1 mMから 5 0 0 mM程度がよい。

[0026]

フコイダノバクター マリナス SI-0098株は硫酸化フカンを資化する 微生物であり、硫酸化フカンを分解するために菌体内及び菌体外に本発明のエンド型 α - L-フコシダーゼ及び硫酸化フカンスルファターゼを生産する。

[0027]

本発明の硫酸化フカンオリゴ糖とは、ナマコ由来硫酸化フカン、若しくは硫酸化フカン含有物に本発明のエンド型 α - L - D -

[0028]

本発明の硫酸化フカンオリゴ糖を調製する際、硫酸化フカン、若しくは硫酸化 フカン含有物の溶解は定法で行えばよく、溶解液中の硫酸化フカン、若しくは硫 酸化フカン含有物はその最高溶解濃度でもよいが、通常はその操作性、反応に使 用する本発明のエンド型α-L-フコシダーゼ及び硫酸化フカンスルファターゼ の量を考慮して選定すればよい。硫酸化フカンの溶解液としては、水、緩衝液等 より目的に応じて選択すればよい。反応の条件は、使用する酵素が活性を示す範 囲であれば特に限定はないが、溶解液のpHは通常中性付近で、酵素反応は通常 30℃付近で行う。反応に使用する本発明のエンド型α−L−フコシダーゼ及び 硫酸化フカンスルファターゼの配合比率や使用量、反応液の組成、反応時間等の 調整により、硫酸化フカンオリゴ糖の分子量を調整できる。この様にして得られ た本発明の硫酸化フカンオリゴ糖を分子量分画あるいは陰イオン交換カラムによ り分画すれば、更に均一な分子量あるいは均一な荷電密度分布の本発明の硫酸化 フカンオリゴ糖を調製できる。分子量分画は定法、例えばゲルろ過法や限外ろ過 法を使用すればよい。低分子化物は、必要に応じて更にイオン交換樹脂処理、活 性炭処理等の精製操作を行ってもよく、必要に応じて脱塩処理、無菌処理、凍結 乾燥処理もできる。

[0029]

本発明の硫酸化フカンオリゴ糖は、硫酸基を分子中に有しており、該基は種々の塩基と塩を形成する。本発明の硫酸化フカンオリゴ糖は、塩になった状態が安定であり、通常ナトリウム及び/又はカリウム及び/又はカルシウム等の塩の形態で提供される。これらの物質の塩はダウエックス50W等の陽イオン交換樹脂を利用して遊離の本発明の硫酸化フカンオリゴ糖に導ける。また、これらは、必

[0030]

本発明の硫酸化フカンオリゴ糖は、薬学的に許容される塩、例えばナトリウム 、カリウム等のアルカリ金属、カルシウム、マグネシウム、亜鉛等のアルカリ土 類金属、アンモニウム等の塩とすることができる。

[0031]

本発明のエンド型 α -L-フコシダーゼ及び硫酸化フカンスルファターゼは硫酸化フカンを低分子化するため硫酸化フカンの構造解析に使用できる。また、本発明の硫酸化フカンオリゴ糖は糖鎖工学用試薬として使用できる。例えば、特公平5-65108号公報記載の方法により2-アミノピリジル化(PA化)を行い、該オリゴ糖のPA-化物を調製すれば、硫酸化フカンオリゴ糖の蛍光標識標準物質として使用できるなど糖鎖工学用試薬として極めて有用な物質を提供できる。また、本発明の硫酸化フカンオリゴ糖は抗原として利用でき、公知の方法により、本発明の硫酸化フカンオリゴ糖を認識する抗体を作製することができる。本発明の硫酸化フカンオリゴ糖を認識する抗体を作製することができる。本発明の硫酸化フカンオリゴ糖を認識する抗体は、硫酸化多糖の構造解析に利用でき、極めて有用である。

[0032]

【実施例】

以下に本発明を実施例をもって具体的に示すが、本発明は以下の実施例の範囲 のみに限定されるものではない。

参考例1 ナマコ由来硫酸化多糖画分の調製

市販のマナマコ35kgの体壁部分を細断し、4倍量のアセトンとともにホモジナイザーで8000回転、5分処理後、ろ紙でろ過し残さを得た。得られた残さを4倍量のアセトンとともにホモジナイザーで8000回転、5分処理後、ろ紙でろ過し残さを得た。得られた残さを吸引乾燥させ、1132gのナマコ体壁アセトン処理物を得た。

[0033]

400gのナマコ体壁アセトン処理物を、10リットルの100mM塩化ナトリウム及び10mM塩化カルシウムを含む30mMイミダゾールー塩酸緩衝液(

[0034]

参考例2 硫酸化フカン画分の調製

参考例1記載のナマコ由来硫酸化多糖画分の乾燥物7gを、50mM塩化ナトリウムと10%エタノールを含む20mMイミダゾール塩酸緩衝液(pH7.0)700mlに溶解し、遠心分離により不溶物を除去した。得られた上清を、同緩衝液で平衡化した5リットルのDEAE—セルロファインA-800カラムにかけ、同緩衝液で洗浄後、50mMから2.05Mの塩化ナトリウム濃度勾配により溶出させた。溶出液は500mlずつ分取した。各フラクションの総糖量をフェノール硫酸法により、ウロン酸量をカルバゾール硫酸法により測定した。塩化ナトリウム濃度0.8~1.5Mで溶出された画分(フラクションナンバー45~57)を硫酸化フカン画分とした。

[0035]

参考例 3 エンド型 α - L - フコシダーゼ活性測定方法

 $15\mu1$ の1%の硫酸化フカン画分溶液と、 $75\mu1$ の50mMリン酸ナトリウム緩衝液(pH8.5)と、 $9\mu1$ の4M塩化ナトリウムと、 $41\mu1$ の水と、 $10\mu1$ の本発明のエンド型 $\alpha-L-$ フコシダーゼ溶液とを混合し、37℃で 1時間反応させた後、反応液を100℃で10分間処理し、遠心分離後 $100\mu1$ を10 と 10 と 10 が照として、本発明の

エンド型 α-L-フコシダーゼ溶液の代わりに、その酵素溶液を溶解している緩 衝液を用いて反応させたもの及び硫酸化フカン画分の代わりに水を用いて反応さ せたものを同様にHPLCで分析した。

[0036]

1単位のエンド型 α - L - フコシダーゼ活性は上記反応系において 1 分間に 1 μ m o 1 の硫酸化フカンのフコシル結合を切断する酵素量とした。エンド型 α - L - フコシダーゼ活性は下記式により求めた。

[0037]

 $\{(15 \times 1000 \times 1/100) / MG\} \times \{(MG/M) - 1\} \times \{1/(60 \times 0.01)\} = U/m \}$

[0038]

15×1000×1/100: 反応系中に添加した硫酸化フカン画分 (μg)

MG:基質硫酸化フカンの平均分子量

M:反応生成物の平均分子量

(MG/M)-1:1分子の硫酸化フカンが酵素により切断された部位の数

60:反応時間(分)

0.01:酵素液量(m1)

[0039]

なお、HPLC条件は下記によった。

装置: L-6200型(日立製作所製)

カラム:OHpak SB-806HQ(8×300mm、昭和電工社製)

溶離液:5 mMのアジ化ナトリウムを含む50mMの塩化ナトリウム

検出: 視差屈折率検出器 (Shodex RI-71、昭和電工社製)

流速:1 m l //分

カラム温度:25℃

[0040]

反応生成物の平均分子量の測定のために、市販の分子量既知のプルラン(STANDARD P-82、昭和電工社製)を上記のHPLC分析と同条件で分析し、プルランの分子量と保持時間との関係を曲線に表し、上記反応生成物の分子

量測定のための標準曲線とした。また、タンパク質の定量は、酵素液の280nmの吸光度を測定することにより行った。その際1mg/mlのタンパク質溶液の吸光度を1.0として計算した。

[0041]

参考例 4 硫酸化フカンスルファターゼ活性測定方法

 $15\mu101\%$ の硫酸化フカン画分溶液と、 $75\mu1050$ mMイミダゾールー塩酸緩衝液(pH7.0)と、 $6\mu104$ M塩化ナトリウムと、 $3\mu101$ M 塩化カルシウムと、 $31\mu10$ 水と、 $20\mu10$ 本発明の硫酸化フカンスルファターゼ溶液とを混合し、37 で 1 時間反応させた後、反応液を100 で 10 分間処理し、遠心分離後 $100\mu1$ を $100\mu1$

[0042]

1単位の硫酸化フカンスルファターゼ活性は上記反応系において 1 分間に 1 μ m o 1 の硫酸を生成させる酵素量とした。硫酸化フカンスルファターゼ活性は下記式により求めた。

[0043]

 $S/(6.0 \times 0.02) = U/m1$

[0044]

S:反応により生成した硫酸 (μmole)

60:反応時間(分)

0.02:酵素液量(m1)

[0045]

なお、HPLC条件は下記によった。

装置:L-6200型(日立製作所製)

カラム: OHpak SB-804HQ (8×300mm、昭和電工社製)

溶離液:5mMのアジ化ナトリウムを含む50mMの塩化ナトリウム

検出:示差屈折率検出器 (Shodex RI-71、昭和電工社製)

流速:1m1/分

カラム温度:35℃

[0046]

反応により遊離した硫酸量の測定のために、1mM及び0.5mMの硫酸ナトリウムを上記のHPLC分析と同条件で分析し、硫酸ナトリウム濃度とそのピークの高さとの関係を曲線に表し、遊離硫酸量測定のための標準曲線とした。

[0047]

実施例 1 エンド型 $\alpha-L-$ フコシダーゼの調製(1)

フコイダノバクター マリナス SI-0098を参考例1の方法で調製したナマコ由来硫酸化多糖画分0.3%とペプトン1%を含む人工海水(ジャマリンラボラトリー社製)pH8.2からなる培地5mlを120 $\mathbb C$ 、20分間オートクレーブ処理した培地に接種し、25 $\mathbb C$ で2日培養した。得られた培養物のうち150 μ 1を、上記と同じ成分を含む100mlの培地に植え継ぎ、25 $\mathbb C$ で3日培養した。上記と同じ成分及び0.01%消泡剤(KM70、信越化学工業社製)を含む培地600mlを2リットルの三角フラスコに入れたものを7本用意し、120 $\mathbb C$ 、20分間オートクレーブ処理後、各培地に上記の培養物を1mlずつ接種し、25 $\mathbb C$ で3日培養した。培養終了後、培養液を遠心分離して菌体及び培養上清を得た。同じ培養を繰り返し、培養液12.6リットルから約15gの湿菌体を得た。

[0048]

得られた菌体を200m1の100mM塩化ナトリウム及び $5mM\beta-$ メルカプトエタノールを含む10mMイミダゾールー塩酸緩衝液(pH7.5)に懸濁させ、超音波処理により菌体を破砕し、遠心分離して上清を得た。得られた上清を上記の緩衝液で充分透析し、遠心分離して上清を得た。

[0049]

得られた上清を同じ緩衝液で平衡化した 500m1のDEAE -セルロファインA -800のカラムにかけ、同じ緩衝液で洗浄後、100mMから 500mM 塩化ナトリウムの濃度勾配により溶出させ、溶出液を45m1ずつに分画し、各フラクションの本発明のエンド型 $\alpha-L-$ フコシダーゼ活性を測定し、活性画分

[0050]

得られた活性画分を $50\,\mathrm{mM}$ 塩化ナトリウム及び $5\,\mathrm{mM}\,\beta$ ーメルカプトエタノールを含む $10\,\mathrm{mM}$ イミダゾールー塩酸緩衝液($p\,H\,7$. 5)で充分透析し溶媒置換した。この酵素溶液を同じ緩衝液で平衡化した $1\,50\,\mathrm{m}\,\mathrm{l}$ のDEAEーセルロファインA $-8\,00\,\mathrm{o}$ のカラムにかけ、同じ緩衝液で洗浄後、 $50\,\mathrm{mM}$ から $40\,\mathrm{o}$ mM塩化ナトリウムの濃度勾配により溶出させ、溶出液を $20\,\mathrm{m}\,\mathrm{l}$ ずつに分画し、各フラクションの本発明のエンド型 $\alpha-\mathrm{L}-\mathrm{7}$ コシダーゼ活性を測定し、活性画分を集めた。

[0051]

得られた活性画分を $50\,\mathrm{mM}$ 塩化ナトリウム及び $5\,\mathrm{mM}\,\beta$ ーメルカプトエタノールを含む $10\,\mathrm{mM}\,7$ ミダゾールー塩酸緩衝液($p\,H\,7$. 5)で充分透析し溶媒置換した。この酵素溶液を同じ緩衝液で平衡化した $80\,\mathrm{m}\,1$ の硫酸化セルロファインのカラムにかけ、同じ緩衝液で洗浄後、 $50\,\mathrm{mM}\,$ から $1500\,\mathrm{mM}\,$ 塩化ナトリウムの濃度勾配により溶出させ、溶出液を $5\,\mathrm{m}\,1$ ずつに分画し、各フラクションの本発明のエンド型 α ーレーフコシダーゼ活性を測定し、活性画分を集めた。

[0052]

得られた活性画分を $100 \, \text{mM}$ 塩化ナトリウム及び $5 \, \text{mM} \, \beta$ - メルカプトエタノールを含む $10 \, \text{mM}$ イミダゾールー塩酸緩衝液($p \, \text{H} \, 7$. 5)で充分透析し溶媒置換した。次に、 $150 \, \text{mM}$ 塩化ナトリウム及び $5 \, \text{mM} \, \beta$ - メルカプトエタノールを含む $40 \, \text{mM}$ リン酸カリウム緩衝液で充分透析し溶媒置換した。この酵素溶液を同じ緩衝液で平衡化した $40 \, \text{m} \, 1$ のヒドロキシルアパタイト(和光純薬製)のカラムにかけ、同じ緩衝液で洗浄後、 $40 \, \text{m} \, \text{M}$ から $250 \, \text{m} \, \text{M}$ リン酸カリウムの濃度勾配により溶出させ、溶出液を $6 \, \text{m} \, 1$ ずつに分画し、各フラクションの本発明のエンド型 $\alpha \, -$ L - フコシダーゼ活性を測定し、活性画分を集めた。

[0053]

得られた活性画分を100 mM塩化ナトリウム及び $5 \text{ mM}\beta$ ーメルカプトエタノールを含む10 mMイミダゾールー塩酸緩衝液(pH7.5)で充分透析し溶媒置換した。この酵素溶液を同じ緩衝液で平衡化した1520 m1のセファクリ

[0054]

以上の精製工程を表1にまとめる。

[0055]

【表1】

工程	総タンパク質(mg)	総活性(mU)	比活性(mU/mg)	収率(%)
抽出液	5, 520	20, 400	3.700	100
DEAE-セルロファイン	193	10, 800	56. 0	52.9
DEAE-セルロファイン	140	6, 700	47. 9	32.8
硫酸化セルロファイン	4. 58	1, 860	406	9. 12
ヒドロキシルアパタイト	2. 12	2, 440	1, 150	12.0
セファクリル S-200	1. 40	1, 220	871	5. 98

[0056]

実施例 2 エンド型 αーLーフコシダーゼの調製 (2)

フコイダノバクター マリナス SI-0098を実施例1に記載の方法で培養し、培養液4.2リットルから約6gの湿菌体を得た。

得られた菌体を50mlの50mM塩化ナトリウムを含む10mMリン酸ナトリウム緩衝液(pH7.5)に懸濁させ、超音波処理により菌体を破砕し、遠心分離して上清を得た。得られた上清を上記の緩衝液で充分透析し、遠心分離して上清を得た。

[0057]

得られた上清を同じ緩衝液で平衡化した300m1のDEAEーセルロファインA-800のカラムにかけ、同じ緩衝液で洗浄後、50mMから500mM塩化ナトリウムの濃度勾配により溶出させ、溶出液を25m1ずつに分画し、各フラクションの本発明のエンド型 $\alpha-L-$ フコシダーゼ活性を測定し、活性画分を集めた。

[0058]

得られた活性画分を $100\,\mathrm{mM}$ 塩化ナトリウムを含む $10\,\mathrm{mM}$ リン酸ナトリウム緩衝液 ($\mathrm{pH7.5}$) で充分透析し溶媒置換した。この酵素溶液を同じ緩衝液で平衡化した $50\,\mathrm{ml}$ のDEAE-セルロファインA- $800\,\mathrm{on}$ カラムにかけ、同じ緩衝液で洗浄後、 $100\,\mathrm{mM}$ から $400\,\mathrm{mM}$ 塩化ナトリウムの濃度勾配により溶出させ、溶出液を $10\,\mathrm{ml}$ ずつに分画し、各フラクションの本発明のエンド型 $\alpha-\mathrm{L}-$ フコシダーゼ活性を測定し、活性画分を集めた。

[0059]

得られた活性画分を $50\,\mathrm{mM}$ 塩化ナトリウムを含む $50\,\mathrm{mM}$ リン酸カリウム緩衝液($\mathrm{pH7.}$ 5)で充分透析し溶媒置換した。この酵素溶液を同じ緩衝液で平衡化した $20\,\mathrm{m1}$ のヒドロキシルアパタイトのカラムにかけ、同じ緩衝液で洗浄後、 $50\,\mathrm{mM}$ から $200\,\mathrm{mM}$ のリン酸カリウムの濃度勾配により溶出させ、溶出液を $10\,\mathrm{m1}$ ずつに分画し、各フラクションの本発明のエンド型 $\alpha-\mathrm{L}-$ フコシダーゼ活性を測定し、活性画分を集めた。

[0060]

得られた活性画分を、 $100 \, \text{mM}$ 塩化ナトリウム及び $5 \, \text{mM}$ アジ化ナトリウムを含む $10 \, \text{mM}$ イミダゾールー塩酸緩衝液($p \, \text{H} \, 7$. 5)で平衡化した $15 \, 20 \, \text{m} \, 1$ のセファクリルSー $200 \, (4.4 \times 100 \, \text{cm}$ 、ファルマシア社製)のカラムにかけ、同じ緩衝液で溶出させ、溶出液を $13.5 \, \text{m} \, 1$ ずつに分画し、各フラクションの本発明のエンド型 $\alpha - L -$ フコシダーゼ活性を測定した。

こうして本発明のエンド型 $\alpha-L-$ フコシダーゼの精製物を得た。以上の精製工程を表2にまとめる。

[0061]

工程	総タンパク(mg)	総活性(mU)	比活性(mU/mg)	収率(%)
抽出液	2, 067	8, 010	, 3. 88	100
透析	1, 923	6, 980	3. 63	87. 1
DEAE-セルロファイン	53. 3	6, 590	124	82. 3
DEAE-セルロファイン	29. 2	6, 500	223	81.1
ヒドロキシルアパタイト	3. 91	3, 220	824	40. 2
セファクリル S-200	1. 19	2, 280	1, 920	28. 4

[0062]

本発明のエンド型 α - L - 7 - 2 4 -

[0063]

実施例4 硫酸化フカンスルファターゼ

実施例1及び2の方法により精製した本発明のエンド型αーLーフコシダーゼ 単独では、ナマコ由来硫酸化フカンを実施例3に示した分子量分布より低分子化 させることができなかった。そこで、本発明のエンド型αーLーフコシダーゼと 共存してナマコ由来硫酸化フカン画分を低分子化させる画分を探した。その結果 実施例1に記載した硫酸化セルロファインの溶出画分のうち、600mM付近の 塩化ナトリウムで溶出される画分に、本発明のエンド型α-L-フコシダーゼに よる硫酸化フカンの低分子化を活性化させる活性が検出された。そこで、該画分 をナマコ由来硫酸化フカンに作用させ、反応液中に生成した物質を調べた。まず 、反応液を参考例4に記載の方法でHPLCにより分析したところ、硫酸の生成)が確認できた。次に、糖を含む低分子成分が生成していないかどうかを調べるた め、反応液をセルロファインGCL-25のカラム(4×90cm)でゲルろ過 し、溶出させた各フラクションの総糖量をフェノールー硫酸法により分析した。 その結果、糖を含む低分子成分は生成していなかった。このようにして、本発明 のエンド型 α – L – フコシダーゼによる硫酸化フカンの低分子化を活性化させる 酵素は硫酸化フカンスルファターゼであることが強く示唆されたので、参考例4 に記載の方法で活性が検出される硫酸化フカンスルファターゼの精製を行った。

[0065]

[0066]

本発明の硫酸化フカンスルファターゼの精製物の至適pH、温度、塩濃度を調

[0067]

実施例5 ナトリウム塩濃度の影響

本発明のエンド型 α -L-フコシダーゼ及び本発明の硫酸化フカンスルファターゼの反応系に含まれる塩化ナトリウムの濃度と相対活性の関係を調べた。その結果、本発明のエンド型 α -L-フコシダーゼ及び本発明の硫酸化フカンスルファターゼは塩化ナトリウムにより賦活化されることが判明した。

[0068]

実施例6 カルシウム塩濃度の影響

本発明の硫酸化フカンスルファターゼ反応系に含まれる塩化カルシウムの濃度と相対活性の関係を調べた。その結果、本発明の硫酸化フカンスルファターゼは塩化カルシウムにより賦活化されることが判明した。なお、酢酸カルシウムによっても同様の賦活化がみられた。

[0069]

実施例 7 エンド型 α - L - フコシダーゼ及び硫酸化フカンスルファターゼを用いた硫酸化フカンオリゴ糖の調製

参考例 2 に記載のナマコ由来硫酸化フカン画分の 1 %水溶液 3 0 μ 1 に、 1 5 0 μ 1 の 5 0 mM 4 ミダゾールー塩酸緩衝液(p H 7. 0)、 1 4 μ 1 の 4 M塩化ナトリウム、 6 μ 1 の 1 M塩化カルシウム、 6 4 μ 1 の水を混合し、本発明のエンド型 α - L - フコシダーゼを 4 2 4 μ U(1 6 μ 1)及び本発明の硫酸化フカンスルファターゼを 2 2 6 μ U(2 0 μ 1)添加し 3 0 $\mathbb C$ で 2 日間反応後、反応液 1 0 0 μ 1 を参考例 4 に記載の方法で H P L C により分析した。その結果を図 8 に示す。図 8 の縦軸は差示屈折率の相対強度、横軸は保持時間を示す。生成した本発明の硫酸化フカンオリゴ糖は、7 分~ 1 0 分の位置に分子量 9 千を中心値として分布しており、明らかに実施例 3 に記載のオリゴ糖よりも低分子のオリゴ糖を得ることができた。これらのオリゴ糖の糖組成、還元性末端糖分析を行ったところ、実質的に総てフコースであった。

[0070]

すなわち、ナマコ由来硫酸化フカン画分に本発明のエンド型α-L-フコシダ

[0071]

【発明の効果】

本発明によりナマコ由来硫酸化フカンの構造解析やナマコ由来硫酸化フカンの低分子化物の再現性よい製造に用いることができる新規のエンド型 α - L - フコシダーゼ及び硫酸化フカンスルファターゼが提供される。また、該酵素の製造方法についても提供される。また、該酵素を使用することにより糖鎖工学用試薬として有用な様々な分子量の、ナマコ由来硫酸化フカンオリゴ糖が提供される。また、該酵素を効率良く使用するための添加物が提供される。

[0072]

【配列表】

SEQUENCE LISTING

<110> TAKARA BIO INC.

<120> Sulfated fucan from Seacucumber

<130> T-1791

<160> 1

<210> 1

<211> 1521

<212> DNA

<213> Fucoidanobacter marinus SI-0098

<400> 1

agagtttgat cctggctcag aatgaacgct ggcggcgtgg ttcagacatg caagtcgaac 60

[0073]

【図面の簡単な説明】

【図1】 本発明により得られるエンド型α-L-フコシダーゼのpHと相

- 【図4】 本発明により得られる硫酸化フカンスルファターゼのpHと相対活性(%)の関係を表すグラフである。
- 【図5】 本発明により得られる硫酸化フカンスルファターゼの温度 (℃) と相対活性 (%) の関係を表すグラフである。
- 【図6】 本発明により得られる硫酸化フカンスルファターゼの塩濃度 (m M) と相対活性 (%) の関係を表すグラフである。
- 【図7】 本発明により得られるエンド型 $\alpha-L-$ フコシダーゼにより硫酸化フカンを分解して得られる硫酸化フカンオリゴ糖をゲルろ過した際の溶出パターンを表す図である。
- 【図8】 本発明により得られるエンド型 $\alpha-L-7$ コシダーゼと硫酸化フカンスルファターゼにより硫酸化フカンを分解して得られる硫酸化フカンオリゴ糖のHPLC分析の結果を示す図である。

【書類名】 図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

時願2002-239843

8/E

【要約】

【課題】 ナマコ由来硫酸化フカンを分解する糖鎖工学的に有用な酵素、該酵素の製造方法、該酵素を活性化させる因子、並びに糖鎖工学用試薬として有用な硫酸化フカンに該酵素を作用させて得られるオリゴ糖及びその製造方法を提供すること。

【解決手段】 ナマコ由来硫酸化フカンを分解する糖鎖工学的に有用な酵素、該酵素の製造方法、該酵素を活性化させる因子、並びに糖鎖工学用試薬として有用な硫酸化フカンに該酵素を作用させて得られるオリゴ糖及びその製造方法。

【選択図】 なし

特願2002-239843

出願人履歴情報

識別番号

[302019245]

1. 変更年月日 [変更理由] 住 所 2002年 4月 1日 新規登録

住 所 氏 名 滋賀県大津市瀬田三丁目4番1号

タカラバイオ株式会社