

Q O O SYSTEMATIC & **EVOLUTIONARY**

http://www.larschatrou.wixsite.com/mysite

Lars.Chatrou(@)UGent.be +32 (0)9 264 50 14

Dr. LARRIDON, Isabel Visiting Professor LLarridon(©)kew.org

Dr. FONSECA, Luiz

Postdoctoral Researcher

Luiz Fonseca(@)UGent.be

KAGAME, Samuel Paul

SamuelPaul.Kagame(@)UGent.be

Keywords Convolvulacese, genomics, Incom-

PhD student

PhD student jetajkia(©)bau.edu.bd Keywords: Annonaceae, Bangladesh, conservation, evolution, floral scent, phylogenetics

VLAEMINCK, Marleen

ASSELMAN, Pieter

Administrative staff - secretary

Marleen, Vlaeminck (©) UGent. be +32 (0)9 264 50 56

Administrative and technical staff

Keywords: Annonacese, Anning, floral scent,

Dr. SAMAIN, Marie-Stéphanie Visiting Professor mariestephanie.samain@gmail.com Keywords basel angiosperms, conservation, evolution, Nectropics, Hydrongers

Dr. GOETGHEBEUR, Paul Professor Emeritus Paul.Goetghebeur(@)UGent.be

FABRIANI, Federico
Teaching assistant/PhD student
Federico.Fabriani,@JUGent.be Keywords Annonacese, Ovgovito

Keywords consensation; Quines; phyto-chemistry; useful plants; West Africa

DE VOS, Kristof Administrative and technical staff Kristof.Devos(@)UGent.be +32 (0)9 264 50 62

HEYNDERICKX, Rosette Voluntary member of staff Rosette Heyndericko(@)UGent.be +32 (0)9 264 50 56

Centrum voor Fylogenie en Moleculaire Evolutie

Research group

Prof. Dr. Mieke Verbeken Senior lecturer

+32 (0)9 264 50 70 Mieke.Verbeken@UGent.be

Ruben De Lange

Teaching assistant/Ph.D. Student +32 (0)9 264 87 79 Ruben.DeLange@UGent.be

Bobby Sulistyo

Teaching assistant/Ph.D. Student +32 (0)465077630 bobby.sulistyo@UGent.be

Dr. Danny Haelewaters

Postdoctoral researcher +32 (0)9 Danny.Haelewaters@UGent.be

Nathan Schoutteten

Ph.D. Student +32 (0)9 284 50 63 nathan.schoutteten@UGent.be

Glen Dierickx

Ph.D. Student +32 (0)9 264 87 78 Glen.Dierickx@UGent.be

Kristof de Vos

Technician +32 (0)9 264 50 62 Kristof.deVos@UGent.be

Pieter Asselman

Technician +32 (0)9 264 87 45 Pieter.Asselman@UGent.be

Dr. Jorinde Nuytinck

Research fellow at Naturalis Biodiversity Center +32 (0)9 264 87 80 Jorinde.Nuytinck@Naturalis.nl

Overview

Centrum voor Fylogenie en Moleculaire Evolutie

- Intro nanopore sequencing
- Sample preparation: a technical overview
 - gDNA
 - amplicon
 - multiplexing
- Sequencing results and applications
 - Nanopore VS Sanger
 - Metabarcoding

How does it work?

Nanopore Sequencing

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

The heart of our technology

- In nature, protein nanopores function as gateways between two systems.
- We have carefully engineered protein nanopores through mutating key residues in the barrel of the pore.

How does it work?

Nanopore Sequencing VS Sanger

Centrum voor Fylogenie en Moleculaire Evolutie

How does it work?

Nanopore Sequencing

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

Highly scalable

High-throughput, versatile benchtop

system (P24 or P48)

Commercially available

Mk1B

Portable, USB powered biological analysis

512* channels For up to 30 Gb/flow cell

Commercially available

Five flow cells and integrated computing

5 x 512=2,560* channels for up to 150Gb/device

> P24: 24 x 3,000* channels for >3.5Tb

P48: 48 x 3,000* channels for >7Tb

Flongle

Complete sequencing.

analysis and viewing device

512* channels

For up to 30Gb/flow cell

Adapter for MinION/GridION supports smaller single-use flow cells 128 channels, up to 1.8Gb now, towards 3Gb

The manner of the second

*up to this number of nanopore channels may be available for sequencing at any time

Commercial model: Place instruments (no CapEx requirement) -> Sell consumables, services (Flow cells, kits)

Overview

Centrum voor Fylogenie en Moleculaire Evolutie

- Intro nanopore sequencing
- Sample preparation: a technical overview
 - gDNA
 - amplicon
 - multiplexing
- Sequencing results and applications
 - Nanopore VS Sanger
 - Metabarcoding

Sample preparation

DNA QC

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

Nucleic Acid Conc. Unit A260 A280 260/280 260/230 Sample Type Factor

ng/μl 4.150 | 2.410 | 1.72

ng/μl 21.601 12.369 1.75

207.5

1080.1

Size and Concentration

Fluorescence & Electrophoresis

50.00

Sample preparation

Nanopore libraryprep

Centrum voor Fylogenie en Moleculaire Evolutie

Sample preparation

Multiplexing

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

Stage 2

Overview

Centrum voor Fylogenie en Moleculaire Evolutie

- Intro nanopore sequencing
- Sample preparation: a technical overview
 - gDNA
 - amplicon
 - multiplexing
- Sequencing results and applications
 - Nanopore VS Sanger
 - Metabarcoding

Nanopore VS SANGER

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

ITP 2023-2026 - MYCOBLITZ IN BENIN: A LAB IN A BACKPACK Capacity building VLIR project

Nanopore VS SANGER

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

#SPECIES VS GENERA

Amplification success rate (ITS1-4:650bp)

Nanopore VS SANGER

Centrum voor Fylogenie en Moleculaire Evolutie

Nanopore VS SANGER

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

AMPLICON SORTER VS NGSPECIESID

Fungal metabarcoding

Centrum voor Fylogenie en Moleculaire Evolutie

Fagaceae fagus sylvatica

Fungal metabarcoding using Nanopore sequencing: illuminating ectomycorrhizal diversity in Fagus sylvatica nurse logs (Glen Dierickx et.al., unpublished results)

Fungal metabarcoding

Centrum voor Fylogenie en Moleculaire Evolutie

Fungal metabarcoding

Centrum voor Fylogenie en Moleculaire Evolutie

Pieter.Asselman@Ugent.be

Mock community at different quality thresholds zOTUs identified to species

Fig 1: BC30 – Mock community -350kb reads (Glen Dierickx et.al unpublished)

http://www.larschatrou.wixsite.com/mysite

Thank you for your attention!

http://www.mycology.be

https://github.com/orgs/MycoMatics/

Centrum voor Fylogenie en Moleculaire Evolutie