كل ما تحتاج في مذا المحور

(1) $\underline{\text{rayb}}$: الدالة f أصلية للدالة f على المجال f هذا يعني أن: f

دالتها الأصلية دالتها الأصلية دالتها الأصلية دالتها الأصلية دالتها المشتقة دالتها المشتقة دالتها المشتقة

2) خواص الدوال الأصلية:

- شرط وجود دالة أصلية F للدالة f على المجال I: الدالة f مستمرة على المجال I
- عدد الدوال الأصلية للدالة f على المجال f: غير منتهية أي f(x)+k و f عدد حقيقي
 - F'(x)=G'(x) : الدالتان G و G أصليتان لنفس الدالة على المجال G

3) الدوال الأصلية للدوال المألوفة:

f(x)	F(x)
a	ax + k
X	$\frac{x^2}{\frac{2}{2} + k}$ $\frac{x^{n+1}}{n+1} + k$ $\frac{1}{-\frac{1}{x} + k}$ $2\sqrt{x} + k$
	$\frac{\overline{2} + \kappa}{2}$
x ⁿ	$\frac{X^{n+1}}{X^{n+1}}$
	$\frac{1}{n+1}$
$ \frac{\frac{1}{x^2}}{\frac{1}{\sqrt{x}}} $ $ \frac{1}{x^n} $	$\begin{bmatrix} 1 \\ -\frac{1}{2} + k \end{bmatrix}$
X ²	X
1	$2\sqrt{x} + k$
\sqrt{x}	
1	$-\frac{1}{2}+k$
	$(n-1)x^n$
U'. U	$\frac{U^2}{-}+k$
201.229	2
U'. U ⁿ	$\frac{U^{n+1}}{+ k}$
11/	n+1
U'	$-\frac{1}{x}+k$
U ²	U 1
$ \frac{U'}{U^2} \\ \frac{U'}{U^n} \\ U' $	$-\frac{1}{(n-1)x^{n}} + k$ $\frac{U^{2}}{2} + k$ $\frac{U^{n+1}}{n+1} + k$ $-\frac{1}{U} + k$ $-\frac{1}{(n-1)U^{n-1}} + k$ $2\sqrt{U} + k$
U"	(n - 1)0" 1
$\frac{\sigma}{\sqrt{U}}$	$2\sqrt{U+K}$
U'cos (U)	sin (U)
U'sin (U)	-cos (U)
U'e ^U <u>U'</u>	e ^U + k
$\frac{U'}{U'}$	Ln U + k
U	

4) الحساب التكاملي:

	=	•
$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$	المحدود	التكامل
$\int f(x) dx = F(x) + k$	التكامل الغير محدود	
$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$		علاقة
$\int_{a}^{b} U. V' dx = [U. V]_{a}^{b} - \int_{a}^{b} U'. V dx$	المحدودة	المكاملة بالتجزئة
$\int U.V' dx = U.V - \int U'.V dx$	الغير محدودة	
$m = \frac{1}{b-a} \int_{a}^{b} f(x) dx$	لة على المجال	القيمة المتوسد

التمثيل البياني لها	الحجوم ٧
	$V = \int_{a}^{b} \pi [f(x)]^{2} dx$

 $ua = ||\vec{i}||.||\vec{j}||$: ua كل المساحات يجب أن تضرب في الوحدة $||\vec{i}||.||\vec{j}||$

سلسلة التماريين

التمرين الأول: عين الدوال الأصلية F للدالة f في كل حالة من الحالات التالية:

$$f(x) = \frac{2x + 3}{(x^2 + 3x + 8)^2}$$

$$f(x) = 1 - x + \frac{x}{(x^2 + 1)^3}$$

$$f(x) = \frac{12x}{\sqrt{x^2 + 1}}$$

$$f(x) = \cos(2x) - \frac{\sin(x)}{2}$$

$$f(x) = 2x + 3 - \frac{4}{x + 1} + \frac{2}{(5x - 1)^2}$$

$$f(x) = x \cdot e^{x^{2}}$$

$$f(x) = \frac{e^{x}}{(e^{x} + 1)^{2}}$$

$$f(x) = \frac{1}{x \cdot Ln(x)}$$

$$f(x) = tan(x)$$

$$f(t) = \frac{e^{t} - e^{-t}}{e^{t} + e^{-t}}$$

 $f(x) = \frac{x^3 - 8x^2 + 22x - 3}{(y - 3)^2}$: حيث x دالة عددية ذات المجهول f

$$f(x) = \frac{\frac{1}{(x-3)^2}}{(x-3)^2}$$
: عين الأعداد الحقيقية $\alpha, \beta, \gamma, \lambda$ حيث: (1 $f(x) = \alpha x + \beta + \frac{\gamma}{x-3} + \frac{\lambda}{(x-3)^2}$ عين الدالة الأصلية $f(x) = \alpha x + \beta + \frac{\gamma}{x-3} + \frac{\lambda}{(x-3)^2}$ عين الدالة الأصلية $f(x) = \alpha x + \beta + \frac{\gamma}{x-3} + \frac{\lambda}{(x-3)^2}$ 2 عين الدالة الأصلية $f(x) = \alpha x + \beta + \frac{\gamma}{x-3} + \frac{\lambda}{(x-3)^2}$

x=4 عين الدالة الأصلية F للدالة f التي تنعدم من أجل (2)

التمرين الثالث: f دالة عددية ذات المجهول x حيث:

$$f(x) = (x^2 - 3x + 1)e^{-x}$$

عين الأعداد الحقيقية $g(x)=(ax^2+bx+c)e^{-x}$ بـ: R هي الدالة g المعرفة على $g(x)=(ax^2+bx+c)e^{-x}$ للدالة f

1) عين الدوال الأصلية F للدالة f بالتكامل بالتجزئة الغير محدود في كل حالة من الحالات التالية:

$$f(x) = x\sin(x)$$

$$f(x) = x^2\cos(x)$$

$$f(x) = x^2. Ln(x)$$

$$f(x) = xe^x$$

$$f(x) = x \ln(x)$$

- $(Ln(x))^4$ في حالة F في حالة $(Ln(x))^3$ و $(Ln(x))^3$ أحسب الدالة الأصلية لـ $(2n(x))^4$
 - [2;5] على المجال ($(Ln(x))^4$ أحسب مساحة (3

التمرين الخامس: أحسب المساحات التالية:

$$S_{1} = \int_{0}^{\frac{\pi}{4}} \tan(x) dx$$

$$S_{2} = \int_{0}^{1} \frac{x}{\sqrt{1+x^{2}}} dx$$

$$S_{3} = \int_{0}^{1} x\sqrt{x^{2}+1} dx$$

$$S_{4} = \int_{0}^{1} (x+1)e^{x^{2}+2x} dx$$

$$S_{5} = \int_{1}^{2} \frac{x^{2}-x+1}{x^{2}+1} dx$$

التمرين السادس: المعرفتين كما يلي: المستوي المنسوب إلى معلم متعامد ومتجانس ($(0,\vec{1},\vec{j})$) نتعبر الدالتين المعرفتين كما يلي:

$$f(x) = \sqrt{x - 1}$$

$$g(x) = x^3 - 3x^2 + 3x - 1$$

$$y = -x$$

- S_{9} إلى من الأحياز الموضحة في الشكل من S_{1} إلى و
- 2) استنتج مساحة الحيز بين المنحنيين على المجال [2,2; 1]
 - (3) أحسب مساحة المنحنى (Cg) على المجال [2,2]
 - [1;2] على المجال المنحنى ((C_f)) على المجال (4

نتائج التماريين

$$F(x) = \int x \operatorname{Ln}(x) dx = \frac{x^2}{4} (2\operatorname{Ln}(x) - 1) + k$$

$$F(x) = \int x^2 \operatorname{Ln}(x) dx = \frac{x^3 (3\operatorname{Ln}(x) - 1)}{9} + k$$

$$F(x) = \int \operatorname{Ln}(x) dx = x(\operatorname{Ln}(x) - 1) + k$$

$$F(x) = \int [\operatorname{Ln}(x)]^2 dx$$

$$= x \left[(\operatorname{Ln}(x))^2 - 2\operatorname{Ln}(x) + 2 \right] + k$$

$$F(x) = \int [\operatorname{Ln}(x)]^3 dx$$

$$= x \left[(\operatorname{Ln}(x))^3 - 3(\operatorname{Ln}(x))^2 + 6\operatorname{Ln}(x) - 6 \right] + k$$

$$F(x) = \int [\operatorname{Ln}(x)]^4 dx$$

$$= x \left[(\operatorname{Ln}(x))^4 - 4(\operatorname{Ln}(x))^3 + 12(\operatorname{Ln}(x))^2 - 24\operatorname{Ln}(x) + 24 \right] + k$$

$$S = \int_2^5 [\operatorname{Ln}(x)]^4 dx = 8,4$$

$$S_1 = \int_0^{\frac{\pi}{4}} \tan(x) dx = -[\operatorname{Ln}|\cos x|]_0^{\frac{\pi}{4}} = -\operatorname{Ln}(\frac{\sqrt{2}}{2})$$

$$S_2 = \int_0^1 \frac{x}{\sqrt{1 + x^2}} dx = \left[\sqrt{x^2 + 1} \right]_0^1 = \sqrt{2} - 1$$

$$S_3 = \int_0^1 x \sqrt{x^2 + 1} dx = \frac{1}{6} \left[(x^2 + 1)^{\frac{3}{2}} \right]_0^1 = \frac{1}{6} (2^{\frac{3}{2}} - 1)$$

$$S_4 = \int_0^1 (x + 1) e^{x^2 + 2x} dx = \left[e^{x^2 + 2x} \right]_0^1 = e^3 - 1$$

$$S_5 = \int_1^2 x^2 - x + 1 dx = \left[x - \frac{1}{2} \operatorname{Ln}|x^2 + 1| \right]_0^1 = \frac{1 - \operatorname{Ln}(2)}{2}$$

$$\frac{1}{2} \operatorname{Ln}(x) = \frac{1}{2} \operatorname{Ln}(x) = 0,33$$

$$S_4 = \int_1^2 [f(x) - g(x)] dx = 0,42$$

$$S_3 = \int_1^2 [1 - f(x)] dx = 0,33$$

$$S_4 = \int_2^{2,2} [g(x) - f(x)] dx = 0,06$$

$$S_5 = \int_0^{2,2} [f(x) - 1] dx = 9,69.10^{-3}$$

$$S_6 = \int_0^{0.32} [y - g(x)] dx = 0,15$$

$$S_7 = \int_0^{0.32} [g(x) - (-1)] dx + \int_0^1 [y - (-1)] dx$$

$$F(x) = \int \frac{2x+3}{(x^2+3x+8)^2} dx = \frac{1}{x^2+3x+8} + k$$

$$F(x) = \int 1 - x + \frac{x}{(x^2+1)^3} dx$$

$$= x - \frac{x^2}{2} - \frac{1}{4(x^2+1)^2} + k$$

$$F(x) = \int \frac{12x}{\sqrt{x^2+1}} dx = 12\sqrt{x^2+1} + k$$

$$F(x) = \int \cos(2x) - \frac{\sin(x)}{2} dx$$

$$= \frac{1}{2}(\sin 2x + \cos x) + k$$

$$F(x) = \int 2x + 3 - \frac{4}{x+1} + \frac{2}{(5x-1)^2} dx$$

$$= x^2 + 3x - 4\ln|x+1| - \frac{2}{25x-5} + k$$

$$F(x) = \int x \cdot e^{x^2} dx = \frac{1}{2}e^{x^2} + k$$

$$F(x) = \int \frac{e^x}{(e^x+1)^2} dx = -\frac{1}{e^x+1} + k$$

$$F(x) = \int \frac{1}{x \cdot \ln(x)} dx = \ln|\ln(x)| + k$$

$$F(x) = \int \tan(x) dx = -\ln|\cos(x)| + k$$

$$F(t) = \int \frac{e^t - e^{-t}}{e^t + e^{-t}} dt = \ln|e^t + e^{-t}| + k$$

$$\alpha = 1; \beta = -2; \gamma = 1; \lambda = 18$$

$$F(x) = \frac{x^2}{2} - 2x + \ln|x-3| - \frac{18}{x-3} + k$$

$$F(x) = \frac{x^2}{2} - 2x + \ln|x-3| - \frac{18}{x-3} + 18$$

$$f(x) = g'(x) \Rightarrow a = -1; b = 1; c = 0$$

$$g(x) = (-x^2 + x)e^{-x}$$

$$F(x) = \int x \sin(x) dx = \sin(x) - x \cdot \cos(x)$$

$$F(x) = \int x^2 \cos(x) dx$$

$$= (x^2 - 2) \sin(x) + 2x \cdot \cos(x)$$

$$F(x) = \int x e^x dx = (x-1)e^x$$

$$= 0.12 + 0.23 = 0.35$$

