MODELARE ŞI SIMULARE

COLOCVIU 2024 - 334AA

In figura de mai jos sunt reprezentate doua rezervoare perfect amestecate si care comunica intre ele.

In primul rezervor intra o solutie sarata cu concentratia de sare c(t) si debitul volumetric Q_{in} . Concentratiile de sare in cele doua rezervoare sunt c_1 si c_2 . Debitele intre cele doua rezervoare se cunosc si sunt egale cu Q_1 si Q_2 , cu $Q_1 > Q_2 > 0$. Volumele de lichid in cele doua rezervoare raman constante (V_1 si V_2).

Se cer:

- 1. Modelul matematic al sistemului dat, exprimat in urmatoarele trei forme:
 - 1a. model pe stare (iesirile sunt cele doua variabile de stare)
 - 1b. intrare-iesire (ecuatia diferentiala, intrarea este c, iar iesirea este c₂)
 - 1c. functie de transfer de la intrarea c la iesirea c2
- 2. Diagramele Simulink pentru simularea sistemului, **pornind de la fiecare dintre cele trei modele determinate mai sus**, cand se cunosc urmatoarele:

$$Q_1 = 10 \frac{m^3}{s}, Q_2 = 5 \frac{m^3}{s}, V_1 = 15 m^3, V_2 = 15 m^3, c_1(0) = c_2(0) = 0, c(t) = \overline{c} = 2.5 \frac{kg}{m^3}$$

- 3. Scriptul MATLAB pentru afisarea graficelor celor doua concentratii (unul sub celalalt, cu etichete si titluri).
- 4. Intrarea c este afectata de un zgomot aleator uniform distribuit (in limite -0,25:0,25). Simulati dinamica sistemului in acest caz si afisati pe acelasi osciloscop intrarea c afectata de zgomot, c_1 si c_2 . Afisati cate un scatter plot pentru semnalele c_1 si c_2 (unul realizat in MATLAB, unul in Simulink). Calculati coeficientul de corelatie intre semnalele c_1 si c_2 . Furnizati un script Matlab pentru calculul acestui coeficient.

Bonus (1 punct). Sa se determine **analitic** valorile de regim stationar pentru c_1 si c_2

Punctaj

- 1-3 puncte (1a = 1punct, 1b = 1 punct, 1c = 1 punct)
- 2 3 puncte (fiecare diagrama = 1 punct)

- 3 1 punct (scriptul = 1 punct)
- 4-2 puncte (simulare = 0.5 puncte, fiecare scatter plot = 0.5 puncte, coeficient de corelatie = 0.5 puncte)

Se predau:

- Rezolvarea pct. 1 (pe hartie)
- Trei diagrame Simulink
- Trei scripturi Matlab (unul la pct. 3, unul pentru scatter plot si unul pentru calculul coeficientului de corelatie)
- Concluzii (txt sau pdf) care contin observatii legate de rezolvarea problemei (de exemplu, "am ales blocul X deoarece...", "am ales sa simulez pentru un timp de N secunde deoarece", "am ales un pas constant = ..., deoarece" etc.)

Denumirea fisierelor:

- Fişierele Simulink, denumite astfel: Prenume_Nume_Simulink_1.slx, Prenume_Nume_Simulink_2.slx, etc.
- Script MATLAB (.m) comentat, cu denumirea: Prenume_Nume_Matlab_script_1.m, Prenume_Nume_Matlab_script_2.m, etc.
- Fișiere de date generate (.mat), cu denumirea: Prenume_Nume_Matlab_mat_1.mat, Prenume_Nume_Matlab_mat_2.mat, etc.
- Concluzii: Prenume_Nume_Concluzii si extensia txt sau pdf