

METU - Department of Computer Engineering

CNG 403 – Introduction to Deep Learning 2024-2025 Spring

Web & Forum: ODTUclass page of the course.

Instructor: Sinan Kalkan, skalkan@metu.edu.tr (Office hours: by appointment)

Teaching Assistant: Bedrettin Çetinkaya, bckaya@metu.edu.tr

Lectures: Video recordings shared on Monday and Thursday on ODTUclass. Q&A Session on Tuesdays at 10:40am online at https://meet.google.com/oqc-vmqa-nhk

Credits: METU: 3 Theoretical, 0 Laboratory; ECTS: 8.0

Catalog Description: Fundamental concepts in machine learning; history of artificial neuron models; perceptron learning; gradient descent and its alternatives; multi-layer perceptrons; convolutional neural networks; recurrent neural networks.

Textbook: Zhang, Lipton, Li, Smola, "Dive into Deep Learning", Cambridge University Press, 2023. https://d2l.ai/ The following can also be useful: Chollet, "Deep Learning with Python", Manning Publications, 2017.

Grading:

Attendance to the Q&A Sessions	5%
Quizzes	10%
Assignments with Exams (x 2)	30%
Midterm Exam	20%
Final Exam	35%

Warnings

- (1) Participating in the final exam is subject to the following conditions: (i) Attending 60% of the quizzes and 60% of the Q&A sessions. (ii) Completing half of the given assignments. (iii) Participating in the Midterm Exam. Not satisfying them will result NA as the grade, implying being ineligible for a resit exam from the course.
- (2) The use of Generative AI tools is strictly forbidden (see also the next page).

Tentative Schedule:

Week & Date		Торіс	
1	17 Feb	Mathematical foundations for deep learning	
		[Linear algebra, differentiation, probability/statistics]	
2	24 Feb	Fundamental concepts in machine learning	
		[Supervised, unsupervised, self-supervised, reinforcement, continual, meta learning.	
		Classification vs. regression. Issues in machine learning: Hypothesis space,	
		bias/variance tradeoff, overfitting, generalization]	
3	3 Mar	Introduction to neuron models	
		[History of artificial neuron models; perceptron learning; linear	
		classification/regression]	
4	10 Mar	Gradient descent and its alternatives	
5	17 Mar	Multi-layer perceptrons (MLPs)	
		[Activation functions; model architecture; forward pass]	
6	24 Mar	Multi-layer perceptrons (MLPs)	
U		[Backpropagation]	
	31 Mar	Multi-layer perceptrons (MLPs)	
7		[Weight initialization, input preprocessing, batch normalization, convergence,	
		representational capacity]	
8	7 April	Midterm Exam [Tentative]	
	14 Apr	Convolutional neural networks (CNNs)	
9		[Problems with MLPs and motivation for CNNs. Different operations in CNNs.	
		Designing a CNN architecture]	
	21 Apr	Convolutional neural networks (CNNs)	
10		[Types of convolution (shared/unshared, deformable, separable, group).	
		Backpropagation in CNNs]	
11	28 Apr	Convolutional neural networks (CNNs)	
		[Popular CNN architectures: LeNet, AlexNet, GoogleNet, VGG, ResNet, ResNext,	
		DenseNet, ConvNext. Visualizing and understanding CNNs]	
	5 May	Recurrent neural networks (RNNs)	
12		[Time-series/sequence modeling. Unfolding feedback connections. Backpropagation	
		through time]	
13	12 May	Recurrent neural networks (RNNs)	
-5		[Vanishing & exploding gradients. Long Short Term Memory and its variations]	
14	19 May	Recent Advances	
		[Self-attention, transformers, foundation models]	
15	26 May	Recent Advances	
		[Self-attention, transformers, foundation models]	

Professionalism and Ethics

Students are expected to complete the assignments/exams on their own. Sharing your work with others, uploading the assignment/exam questions to the online websites for seeking solutions, and/or presenting someone else's work/solution as your own work will be considered cheating. In addition, using generative AI tools to generate solutions and/or presenting generative AI solutions as one's original work will also be considered cheating. For a comprehensive cheating definition, please refer to: https://ncc.metu.edu.tr/res/academic-code-of-ethics

When a breach of the code of ethics occurs (cheating, plagiarism, deception, etc.), the student will be added to the BLACK list, and the instructor can apply one of the following:

- Perform an oral or written test for the students to confirm their knowledge and assess their grades. If the follow-up exam (oral/written) results in failure, the instructor can apply one of the other items below.
- 2. Give a "zero" grade directly for the relevant exam/assignment,
- 3. Give a "zero" grade for a larger part or all of the assignments,
- 4. Give a failing letter grade for the course,
- 5. Forward the case to the discipline committee.

Makeup Exam Policy

There will be no makeup exams unless the student has a valid medical leave approved by the METU NCC Health Center. Students who provide a valid medical leave approved by the METU NCC Health Center will be eligible for a makeup examination, subject to the following regulations:

- 1. There will be a single makeup exam.
- 2. The makeup examination will be conducted after the final exams at the end of the semester.
- 3. The makeup examination will be comprehensive and can cover all topics addressed throughout the semester, regardless of the specific exam missed (e.g., quizzes, midterm, final).
- 4. The grade obtained in the comprehensive makeup examination will replace the grade of the missed assessment.
- 5. In the unlikely cases where a student missed multiple exams with valid medical documentation, the grade of the makeup exam will replace
 - the grades of all the missed elements.