TD 1: Automates à Etats Finis

Exercice 1.

Soit l'automate $\mathcal{A} = (\{0,1\},\{0,1,2,3\},\{0\},\{0\},\delta)$ défini par la fonction de transition:

$$\delta = \{(0,0,2); (0,1,1); (1,0,3); (1,1,0); (2,0,0); (2,1,3); (3,0,1); (3,1,2)\}$$

- 1. Donner les états initiaux et finaux.
- 2. Décrire le type de l'automate (complet, déterministe, transitions spontanées) et le représenter sous forme de graphe.
- 3. Est-ce que les mots suivants sont reconnus par l'automate ? 10001, 110101, 100, 10101, ϵ

Exercice 2.

Représenter sous forme de graphe les automates qui reconnaissent les mots suivants. Pour chacun décrire le type de l'automate (complet, déterministe, transitions spontanées).

- 1. "church" et "chomsky"
- 2. les mots de l'alphabet $\Sigma = \{a, b, c\}$ décrits par l'expression régulière: $(a + b + c)^*b(a + b + c)$

Exercice 3.

Pour chacun des problèmes suivantes, représenter l'automate correspondant au problème et décrire le langage qu'il reconnaît.

- 1. Un automate capable de reconnaître un nombre réel, sachant que les réels peuvent prendre les formes suivantes: 3.1415, 276, 234., .234.
- 2. Un automate capable de saisir d'un code secret de carte bancaire doit accepter 4 chiffres suivi de la validation, avec la possibilité de corriger le dernier chiffre saisi et d'annuler toute la saisie.

Exercice 4.

Soit l'automate $\mathcal A$ dont la fonction de transition est définie par la matrice suivante:

δ	a	b	ϵ
0			$\{1,7\}$
1			$\{1,3\}$
2	3		
2 3 4 5			6
4		5	
			6
6			$\{0,7\}$
7	8		
8	9		
9		10	

Marie Tahon Page 1 / 3

L'état initial est q_0 et il n'y a qu'un état final: q_{10} .

- 1. Identifier précisément les éléments manquant du quintuplet qui définit $\mathcal{A} = (\Sigma, Q, q_0, F, \delta)$.
- 2. Décrire le type de l'automate (complétude, déterministe, transitions spontanées) et le représenté sous forme de graphe.
- 3. Donner le langage reconnu par \mathcal{A} sous la forme d'une expression régulière.
- 4. Supprimer les ϵ -transitions de l'automate. On notera $\mathcal B$ l'automate obtenu.

Exercice 5. Opérations sur les automates

Soit les automates \mathcal{A} et \mathcal{B} suivants:

- 1. Sont-ils déterministes ?
- 2. Déterminer l'union $\mathcal{A} \cup \mathcal{B}$
- 3. Déterminer l'intersection $\mathcal{A} \times \mathcal{B}$
- 4. Déterminer la concaténation $\mathcal{A} + \mathcal{B}$
- 5. Déterminer les fermetures de Kleene \mathcal{A}^{\star} et \mathcal{B}^{\star}
- 6. Déterminer le complémentaire \mathcal{B}

Exercice 6.

Soit l'automate à états fini M sur l'alphabet $\Sigma = \{a, b\}$ représenté par la figure suivante:

Marie Tahon Page 2 / 3

- 1. Décrire l'automate (déterministe, transitions spontanées).
- 2. Décrire brièvement en français, le langage L reconnu par l'automate M. Donner l'expression rationnelle qui le dénote (on peut traiter la question suivante en premier lieu).
- 3. Parmi les mots suivants, lesquels appartiennent au langage L: $\epsilon, a, b, ab, aa, aab, aabb, abab, ababa$. Rq: ces mots pourront être utilisés dans les questions suivantes et ainsi détecter d'éventuelles erreurs lors des transformations des automates.
- 4. Eliminer les transitions spontanées de l'automate M. Ne pas oublier de supprimer les états devenus inutiles. On appellera M_2 l'automate ainsi obtenu.
- 5. Déterminiser l'automate M_2 obtenu. On cherche à obtenir un automate déterministe complet que l'on appellera M_3 .

Exercice 7.

Construire des automates éventuellement non-déterministes qui reconnaissent les expressions régulières suivantes à l'aide de l'algorithme de Thompson:

- 1. $(a+b)^3 a^* (a+b)^+$
- 2. $(ab^*a + ba^+)^* + b^3a^*ba$