MAPPINGS

Xie zejian

xiezej@gmail.com

November 29, 2020

Continuous

 (Ω, τ) and (Ω', τ') are two spaces and f is a mapping from Ω to Ω' in the following.

- 1. $ff^{-1}(A) \subset A$
- 2. $f^{-1}f(A) \supset A$
- 3. $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$
- 4. $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$
- 5. $f^{-1}(A^c) = (f^{-1}(A))^c$
- 6. $f^{-1}f(A) = A$ always holds if f is injection while $ff^{-1}(A) = A$ always holds if g is surjection.
- 7. If f is bijection, $(f^{-1})^{-1}(A)=f(A)$ always hold. 8. $(f\circ g)^{-1}(A)=g^{-1}f^{-1}(A)$
- 9. $f^{-1}(A) \subset f^{-1}(B) \iff A \subset B$
- 10. $f(A) \subset f(B) \iff A \subset B$

Proof see Terence tao *Analysis 1*. ■

f is **continuous** at x if for every neighborhood V' of f(x), there is a neighborhood V of x s.t. $f(V) \subset V'$. It's continuous if it's continuous at every points $x \in \Omega$.

f is continuous iff $f^{-1}(G')$ is open for every open subset G' of Ω' .

Proof \Longrightarrow : For any $x \in f^{-1}(G')$, it's sufficient to show that $f^{-1}(G')$ is its neighborhood. By definition, there is a neighborhood V s.t. $f(V) \subset G'$, and

$$x \in V \subset f^{-1}f(V) \subset f^{-1}(G')$$

 \Leftarrow : For every neighborhood V', there is some open G' contain f(x), and $f^{-1}(G')$ is neighborhood of x and $ff^{-1}(G') \subset G'$.

f is continuous iff

$$f^{-1}(A^{\circ}) \subset (f^{-1}(A))^{\circ}$$

for all $A \subset \Omega'$.

Proof \Longrightarrow : $f^{-1}(A^\circ)$ is open and th claim follows from $f^{-1}(A\circ) \subset f^{-1}(A)$. \Longleftrightarrow : Suppose A is open, then $A^\circ = A$ and hence $f^{-1}(A) \subset (f^{-1}(A))^\circ$. Which suggets $f^{-1}(A)$ is open.

Suppose $f: \Omega_1 \to \Omega_2$ and $g: \Omega_2 \to \Omega_1$, $f \circ g$ is continuous if f and g are continuous.

Proof Suppose G_3 is open and the claims follows from $(f \circ g)^{-1}(G_3) = f^{-1}(g^{-1}(G_3))$.

 (Ω, τ) and (Ω', τ') are said to be **homeomorphic** if there exist continuous bijection f, s.t f^{-1} is continuous and such f is called **homeomorphism**.

f is open if f(G) is open for all open set $G \in \tau$ and is closed if f(F) is closed for all closed set $f(F)^c \in \tau$.

Suppose f is bijection, then it's homeomorphism iff it's continuous and either open or closed. **Proof** By the continuity of f^{-1} , since $(f^{-1})^{-1}(G) = f(G)$ for all open set G.

$$f^{-1}$$
 is continuous $\iff f(G)$ is open $\iff f$ is open .

Suppose f is bijection, it's a homeomorphism iff τ' is the finest topology where f continuous. **Proof** Suppose f is homeomorphism, T_0 is another topology where f is continuous. For any $G \in \tau_0$, $f^{-1}(G) \in \tau$ by the continuity of f^{-1} ,

$$G = (f^{-1})^{-1}(f^{-1}(G)) \in \tau'$$

That is τ' is finer than any τ_0 .

Remark $\mathcal{P}(\otimes)$ let all f continuous and $\{\emptyset, \Omega\}$ let all $g: \Omega' \to \Omega$ continuous.

2 Induced topology

Suppose $\{(\Omega_i, \mathcal{T}_i)\}_{i \in I}$ a family of topological space and $(f_i)_{i \in I}$ w.r.t $\{(\Omega_i, \mathcal{T}_i)\}_{i \in I}$. Let A be the set of all the topologies s.t. f_i is continuous for all i. We call $\cap A$, i.e., the corest topology in A the **topology induced** on Ω by $(f_i)_{i \in I}$.

Theorem The topology generated by $(f_i)_{i\in I}$ is the topology $\tau(\mathcal{S})$ generated by

$$\mathcal{S} = \{ X \in \mathcal{P}(\Omega) : \exists G_i \in \mathcal{T}_i \ni X = f_i^{-1}(G_i) \}$$

Proof Clearly $S \subset \cap A$ and thus $\tau(S) \subset \cap A$. On the other hand, $\tau(S) \in A$ and thus $\tau(S) \supset \cap A$.

Theorem g is (τ', τ) continuous iff $f_i \circ g$ continuous for each f_i . Where τ is $\tau(S)$ in above theorem. **Proof** \Longrightarrow is immediately. \iff , suppose $G \in \tau$, by above theorem, this implies

$$G = \cup_I \cap_F X = \cup_I \cap_F f_i^{-1}(G_i)$$

thus $g^{-1}(G)$ is open since $f\circ g^{-1}$ is continuous and thus $g^{-1}(G)=\cup_I\cap_F g^{-1}f^{-1}(G)=\cup_I\cap_F (f\circ g)^{-1}(G)$.

The **subspace topology**(relative topology) τ_A in (Ω, τ) induced by subset $A \subset \Omega$ is just topology induced by identical mapping w.r.t (A, τ) , that is

$$\tau_A = \{ A \cap U : U \in \tau \}$$

It's clear that a subset $B \in \tau_A$ is closed iff $B = A \cap F$ for some F closed in τ . In additionally,

$$\forall B \in \tau_A$$
:

$$\operatorname{Cl}_{\tau_A}(B) = A \cap \operatorname{Cl}_{\tau}(B)$$

and

$$\mathop{\rm Int}_{\tau}(B) \subset \mathop{\rm Int}_{\tau_A}(B)$$

Proof Note

$$\mathrm{Cl}(B) = \cap \{F : F \supset B \text{ and } F^c \in \tau\}$$

thus

$$A\cap \mathop{\mathrm{Cl}}_{\tau}(B)=A\cap (\cap \{F:F\supset B \text{ and } F^c\in \tau\}=\cap \{A\cap F:F\supset B \text{ and } F^c\in \tau\}$$

that is just $Cl_{\tau_A}(B)$. However

$$\mathop{\rm Int}_{\tau}(B)=\cup\{G:G\subset B\text{ and }G\in\tau\}$$

thus

$$\operatorname{Int}_{\tau_A}(B)A\cap\operatorname{Int}_{\tau}(B)=\cup\{A\cap G:G\subset B\text{ and }G\in\tau\}\subset\operatorname{Int}_{\tau_A}(B)$$

The difference result from

$$A \cap G$$
 and $G \subset B \implies A \cap G \subset B$

while

$$A \cap F$$
 and $F \supset B \iff A \cap F \supset B$

If A is dense, suppose N is a neighborhood of $a \in A$ in τ_A , then \overline{N} is a neighborhood of a in τ . **Proof** By definition, there is some $G \in \tau$ s.t.

$$a\in G\cap A\subset N$$

It's sufficient to show that $a \in G \subset \overline{N}$, that is $\forall x \in G, x \in \overline{N}$. Consider any neighborhood W of x in τ , then $W \cap G$ is also neighborhood, note A is dense, $x \in \overline{A}$, which follows $W \cap G \cap A \neq \Longrightarrow W \cap N \neq$, thus $x \in \overline{N}$.

Suppose $A \cup B = \Omega$ and $M \in \tau_A$ and $M \in \tau_B$, then $M \in \tau$.

Proof By definition, there is $G_A, G_B \in \tau$ s.t.

$$M = A \cap G_A = B \cap G_B$$

It's sufficient to show that $M = G_A \cap G_B$:

$$G_A \cap G_B = (G_A \cap G_B) \cap (A \cup B) = (G_A \cap G_B \cap A) \cup (G_A \cap G_B \cap B) = M \cup M = M$$

Suppose (Ω, τ) is separable, then (A, τ_A) is also separable.

Proof Suppose $\overline{D} = \Omega$ and D is countable, we claim that $\operatorname{Cl}_{\tau_A}(D \cap A) = A$. Which follows from any neighborhood of N in τ_A for any $x \in A$,

$$N \cap D \cap A = (N \cap A) \cap D \neq . \blacksquare$$

2.1 Product topology

Let $((\Omega_i, \tau_i))_{i \in I}$ be family of topological spaces, let $\Omega = \prod_{i \in I} \Omega_i$ and π_i be projection mappings from Ω to Ω_i . The topology τ induced by $(\pi_i)_{i \in I}$ is called **product topology** on Ω and denoted by $\prod_{i \in I} \tau_i$. (Ω, τ) is called **topological product**. A base of this topology is

$$\{\bigcup\bigcap(\prod_{i\in I}X_i)\}$$

where $X_i = \Omega_i$ for all i but one.

Suppose $G \in \prod \tau_i$, then $\pi_i(G) = \Omega_i$ except a finite set in I.

Proof By definition,

$$G = \bigcup_{I} \bigcap_{F} (\prod_{i \in I} X_i)$$

where $X_i = \Omega_i$ for all i but one. Note there is a finitely intersection, that is

$$G = \bigcup_{I} (\prod_{i \in I} X_i)$$

where $X_i = \Omega_i$ for all i but finite exception.

Suppose A_i is subset of each i, then

$$\operatorname{Cl}_{\tau}(\prod A_i) = \prod (\operatorname{Cl}_{\tau_i}(A_i))$$

3 Coinduced topology