Conditional Expected Shortfall

Nonparametric Estimation

Young-geun Kim ygeunkim.github.io

Statistics, SKKU

13 Dec, 2019

- Risk Measures
- Nonparametric Estimation
- Simulation
- Oata Analysis

Reviewed Paper

[1] Z. Cai and X. Wang. "Nonparametric estimation of conditional VaR and expected shortfall". In: *Journal of Econometrics* 147.1 (2008), pp. 120-130. ISSN: 0304-4076. DOI: 10.1016/j.jeconom.2008.09.005.

Keywords

Boundary effects, Empirical likelihood, Expected shortfall, Local linear estimation, Nonparametric smoothing, Value-at-risk, Weighted double kernel

Section 1

Risk Measures

Value at Risk

Given time horizon,

Figure 1: Loss Distribution - Can the financial institution still be in business after a catastrophic event?

Two Viewpoints

Tsay (2010) says that

- Financial institution: Maximal loss of a financial position during a given time period for a given probability
 - Measure of loss under normal market conditions
- Regulatory committe: Minimal loss under extraordinary market circumstances

Definition

- p: **Right** tail probability
- I: Time horizon
- L(I): loss function of the asset from t to t+I
- *F_I*: CDF of *L(I)*

$$p = P[L(I) \ge VaR]$$

i.e. VaR can be computed by finding the p-th quantile.

Quantile Loss

Figure 2: CDF of Loss

$$VaR = \inf \{x: F_I(x) \ge 1 - p\}$$

Loss function and log Returns

Consider dollar $\{P_t\}$.

$$L(I) = P_{t+1} - P_t = R_{t+1} + \ldots + R_{t+1}$$

where $R_t = P_t - P_{t-1}$ is the return series.

- Loss occurs when the return R_t are negative
- Use *negative returns*

log Returns

Taylor expansion

For any $x_0 > 0$,

$$\ln x \approx \ln x_0 + \frac{1}{x_0}(x - x_0)$$

Write $x = x_2$, $x_0 = x_1$. Then

$$\ln \frac{x_2}{x_1} \approx \frac{x_2}{x_1} - 1 = \frac{x_2 - x_1}{x_1}$$

Percentage change

- Log returns $Y_t = \ln R_t$ correspond approximately to percentage changes
- Use negative log returns
- VaR by Upper quantile of the distribution of log return

VaR using log Return

log return

Cai and Wang (2008) used the following value in a real example part.

$$-100 Y_{t+1} = -100 \ln \frac{P_{t+1}}{P_t} \approx \text{percentage loss}$$

Dollar amount of VaR

From t to t+1,

$$VaR = P_t \times VaR(-100Y_{t+1})$$

Subadditivity

- When two portfolios are merged, the risk measure should not be greater than the sum of each.
- VaR underestimates the actual loss.
- Thus, Expected shortfall

VaR and Expected Loss

- VaR: Quantile loss of the loss distribution
- ES: Expected value of loss function if the VaR is exceeded

$$ES:=E[L(I) \mid L(I) \geq VaR]$$

Conditional information

- $\{X_t: t = 1, \dots n\}$
- Exogenous variable: economic, market variables
- or past observed returns e.g. $\{Y_{t-1}\}$

Conditional VaR

- Stationary log-return $\{Y_t: t=1,\ldots n\}$
- Conditional information $\{X_t: t = 1, \dots n\}$
- Conditional VaR (CVaR)

$$\nu_p(x) = S^{-1}(p \mid x)$$

where

- $S(y \mid x) := 1 F(y \mid x)$
- F: conditional CDF of Y_t given $X_t = x$.

Conditional Expected Shortfall

$$\mu_{p}(x) = E[Y_{t} \mid Y_{t} \geq \nu_{p}(x), X_{t} = x]$$

$$= \frac{1}{P(Y_{t} \geq \nu_{p}(x) \mid X_{t} = x)} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x)dy$$

$$= \frac{1}{p} \int_{\nu_{p}(x)}^{\infty} yf(y \mid x)dy$$

Section 2

Nonparametric Estimation

Goal

Risk measures

- CVaR: $\hat{\nu}_p(x)$
- CES: $\hat{\mu}_p(x)$

Workflow of Estimation

Plugging-in Method

$$\hat{\mu}_p(x) = \frac{1}{p} \int_{\hat{\nu}_p(x)}^{\infty} y \hat{f}(y \mid x) dy$$

What to estimate

- Conditional PDF: $\hat{f}(y \mid x)$
- CVaR: $\hat{\nu}_p(x) = \hat{S}^{-1}(p \mid x)$ by inverting the conditional CDF

Weighted Kerel

To make $\hat{F}(y \mid x)$ satisfy its interval [0, 1], Weighted Nadaraya Watson scheme (Cai 2001) is introduced.

Weight

$$W_{c,t}(x,h) = \frac{p_t(x)W_h(x - X_t)}{\sum_{i=1}^{n} p_i(x)W_h(x - X_i)}$$

Weights of kernel

$$p_t(x) = \frac{1}{n[1 + \lambda(X_t - x)W_h(x - X_i)]} \ge 0$$

Find λ which maximizes the log of the empirical likelihood,

$$L_n(\lambda) = -\sum_{t=1}^n \ln\left[1 + \lambda(X_t - x)W_h(x - X_i)\right]$$

Newton-Raphson

First order derivative

$$L'_n(\lambda) = \sum_{t=1}^n \frac{(X_t - x)W_h(x - X_i)}{1 + \lambda(X_t - x)W_h(x - X_i)}$$

Second order derivative

$$L_n''(\lambda) = -\sum_{t=1}^n \frac{\{(X_t - x)W_h(x - X_i)\}^2}{(1 + \lambda(X_t - x)W_h(x - X_i))^2} = -L_n'(\lambda)^2$$

Algorithm 1: Newton-Raphson method finding lambda

input : empirical log-likelihood, first and second order derivative

- 1 Initialize $\hat{\lambda}_{old}$;
- 2 while $|\hat{\lambda}_{\mathit{old}} \hat{\lambda}_{\mathit{new}}| > \epsilon$ do
- 3 Update λ by

$$\hat{\lambda}_{new} = \hat{\lambda}_{old} - \frac{L'_n(\hat{\lambda}_{old})}{L''_n(\hat{\lambda}_{old})}$$

4 end

output: $\hat{\lambda}_{new}$

Weighted Double Kernel Local Linear

Combining Double Kernel Local Liear (Cai and Wang 2008) and WNW (Cai 2001),

Conditional pdf

$$\hat{f}_{cai}(y \mid x) = \sum_{t=1}^{n} W_{c,t}(x,h) Y_{t}^{*}(y)$$

where initial estimate $Y_t^*(y) = K_{h_0}(y - Y_t)$ with symmetric kernel K_{h_0} .

Conditional cdf

$$\hat{F}_{cai}(y \mid x) = \sum_{t=1}^{n} W_{c,t}(x,h) G_{h_0}(y - Y_t)$$

where G_{h_0} is the cdf of K_{h_0} , i.e.

$$G_{h_0}(y-Y_t)=\int_{-\infty}^y K_{h_0}(y-Y_t)dy$$

WDKLL of CVaR

$$\hat{S}_{cai}(y \mid x) = 1 - \hat{F}_{cai}(y \mid x)$$

and invert it

$$\hat{\nu}_p^{(cai)}(x) = \hat{S}_{cai}^{-1}(p \mid x)$$

Inverting method

Goal: find y value that has 1 - p as cdf value.

- Make grid of y
- 2 Make cdf value for each y
- Take every value that is equal or larger than 1 p
- Take minimum among them

WDKLL of CES

Plug-in the previous results

$$\hat{\mu}_{p}(x) = \frac{1}{p} \sum_{t=1}^{n} W_{c,t}(x,h) \left[Y_{t} \bar{G}_{h_{0}}(\hat{\nu}_{p}(x) - Y_{t}) + hG_{1,h_{0}}(\hat{\nu}_{p}(x) - Y_{t}) \right]$$

where $\bar{G}(u) = 1 - G(u)$ and $G_1(u) = \int_u^{\infty} vK(v)dv$.

Asymptotic Normality

Bias of

- $\hat{f}_{cai}(y \mid x)$
- $\hat{S}_{cai}(y \mid x) = 1 \hat{F}_{cai}(y \mid x)$
- $\hat{\nu}_p(x)$
- $\hat{\mu}_p(x)$

at both

Interior	Boundary
X	x = ch

AMSE

Bias

Note that

$$\hat{\mu}_p(x) - \mu(x) = O_p\left(h^2 + h_0^2 + (nh)^{-\frac{1}{2}}\right)$$

and hence, $\hat{\mu}_p(x)$ is a *consistent* with a convergent rate \sqrt{nh}

Optimal Bandwidth

$$n^{-\frac{4}{5}}$$

Bandwidth Selection

Criterion

Nonparametric AIC (Cai and Tiwari 2000)

Two bandwidths

- Initial bandwidth h: insensitive to the final estimation
- ullet WNW bandwith λ

Strategy

Use linear estimators

- ullet WNW estimator: select one \tilde{h}
 - $h \le 0.1\tilde{h}$: take small initial bandwidth
- Given h
 - Use \hat{F}_{cai}

Section 3

Simulation

AR(1)-GARCH(1, 0)

$$\begin{cases} X_t = Y_{t-1} \\ Y_t = 0.01 + 0.62X_t + \sigma_t \epsilon_t \\ \sigma_t^2 = 0.15 + 0.65\sigma_{t-1}^2 \\ \epsilon_t \sim N(0, 1) \end{cases}$$

True conditional distribution

Since $\epsilon_t \sim N(0,1)$,

$$\sigma_t \epsilon_t \sim N(0, \sigma_t^2)$$

$$Y_t \mid X_t \sim N\left(0.01 + 0.62X_t, \sigma_t^2\right)$$

True CES

- For each X_t , pnorm(x, mean, sd) gives the conditional cdf value.
- Inverting $S(y \mid x) = 1 F(y \mid x)$ gives $\nu_p(x)$.

$$\nu_p(x) = S^{-1}(p \mid x)$$

• Plugging-in method gives $\mu_p(x)$.

$$\mu_p(x) = \frac{1}{p} \int_{\nu_p(x)}^{\infty} y f(y \mid x) dy$$

Goal of MC Simulation

- Compute the error between the true $\mu_p(x)$ and $\hat{\mu}_p(x)$
- Is the estimator of Cai and Wang (2008) good?

Process

Monte Carlo Samples:

- For fixed x_t (pre-determined grid points)
- ② Generate GARCH(1, 0): (σ_t, ϵ_t)
- **3** Generate Y_t using AR(1) for each $X_t = Y_{t-1}$
- **4** AR(1): $Y_t = 0.01 + 0.62 Y_{t-1} + \sigma_t \epsilon_t$

Expected Prediction Error

Figure 3: Simulating Expected prediction error

Monte Carlo Samples

```
#>
         sigma
               garch
                         mc
                               хt
                                      уt
                         s1 0.005 -0.397
#>
      1: 0.655 -0.41011
#>
     2: 0.655
              0.12022
                         s1 0.010
                                   0.136
     3: 0.655 -0.54705
                         s1 0.015 -0.528
#>
#>
     4: 0.655
              1.04436
                         s1 0.020
                                   1.067
#>
     5: 0.655 0.21571
                         s1 0.025
                                   0.241
#>
        0.655 - 0.00527 \text{ s} 20 \ 0.480
                                   0.302
  1997:
         0.655 0.67677 s20 0.485
                                   0.987
  1998: 0.655 -0.52315 s20 0.490 -0.209
#> 1999: 0.655 0.65742 s20 0.495
                                   0.974
#> 2000: 0.655 -0.20423 s20 0.500
                                   0.116
```

Numerical Results

Section 4

Data Analysis

Bitcoin

Figure 4: Bitcoin price in USD

Daily Return

As mentioned, Cai and Wang (2008) used daily return defined by y_t : = $-100 \ln \frac{P_t}{P_{t-1}}$

Figure 5: Daily return of bitcoin price

CES for DJI

Figure 6: Conditional Expected Shortfall given each lagged variable value

- Volatility smile
- Conditional information x: positive y_{t-1} means loss

Interpretation

Following Cai and Wang (2008),

- Risk tends to be lower when lagged log loss is close to the emprirical average,
- and larger otherwise
- Bitcoin price is more likely to fall if there were a loss within the last day than if there was a same amount of positive return.

References

Cai, Zongwu. 2001. "Weighted Nadaraya-Watson Regression Estimation." Statistics & Probability Letters 51 (3): 307–18.

Cai, Zongwu, and Ram C Tiwari. 2000. "Application of a Local Linear Autoregressive Model to Bod Time Series." *Environmetrics: The Official Journal of the International Environmetrics Society* 11 (3): 341–50.

Cai, Zongwu, and Xian Wang. 2008. "Nonparametric estimation of conditional VaR and expected shortfall." *Journal of Econometrics* 147 (1): 120–30. https://doi.org/10.1016/j.jeconom.2008.09.005.

Tsay, Ruey S. 2010. Analysis of Financial Time Series. John Wiley & Sons.