Class 9: Structural Bioinformatics pt. 1

Troy Lee (A17078296)

The main database fro structural data is called the PDV (Protein Data Bank). Lets see what is contains:

Data from: https://www.rcsb.org/statsOr data from alternate link: https://tinyurl.com/pdbstats24 Read this into R

```
pdbdb <-read.csv("pdb_stats.csv")</pre>
```

and answer the following questions

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

pdbdb\$Total

```
[1] "195,610" "12,318" "13,720" "4,531" "213" "22"
```

I need to remove the comma and convert to numeric to do math:

```
as.numeric( sub(",", "", pdbdb$Total) )
```

```
[1] 195610 12318 13720 4531 213 22
```

I could turn this into a function to fix the whole table or any future table I read like this:

```
x <- pdbdb$Total
as.numeric( sub(",","",x))</pre>
```

```
[1] 195610 12318 13720 4531 213 22
```

```
comma2numeric <- function(x) {
  as.numeric( sub(",","", x))
}</pre>
```

Test it

```
comma2numeric(pdbdb$X.ray)
```

```
[1] 167192 9639 8730 2869 170 11
```

```
apply(pdbdb, 2, comma2numeric)
```

Warning in FUN(newX[, i], ...): NAs introduced by coercion

	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Other	Total
[1,]	NA	167192	15572	12529	208	77	32	195610
[2,]	NA	9639	2635	34	8	2	0	12318
[3,]	NA	8730	4697	286	7	0	0	13720
[4,]	NA	2869	137	1507	14	3	1	4531
[5,]	NA	170	10	33	0	0	0	213
[6,]	NA	11	0	6	1	0	4	22

```
apply(pdbdb, 2, comma2numeric)
```

Warning in FUN(newX[, i], ...): NAs introduced by coercion

	Molecular.Type	X.ray	EM	NMR	${\tt Multiple.methods}$	${\tt Neutron}$	Other	Total
[1,]	NA	167192	15572	12529	208	77	32	195610
[2,]	NA	9639	2635	34	8	2	0	12318
[3,]	NA	8730	4697	286	7	0	0	13720
[4,]	NA	2869	137	1507	14	3	1	4531
[5,]	NA	170	10	33	0	0	0	213
[6,]	NA	11	0	6	1	0	4	22

Or try a different read/import function

```
library(readr)
pdbdb <- read_csv("pdb_stats.csv")</pre>
Rows: 6 Columns: 8
-- Column specification -----
Delimiter: ","
chr (1): Molecular Type
dbl (3): Multiple methods, Neutron, Other
num (4): X-ray, EM, NMR, Total
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
sum(pdbdb$Total)
[1] 226414
     Q1: What percentage of structures in the PDB are solved by X-Ray and Electron
     Microscopy.
sum(pdbdb$`X-ray`)/sum(pdbdb$Total) *100
[1] 83.30359
sum(pdbdb$`EM`/sum(pdbdb$Total)) *100
[1] 10.18091
     Q2: What proportion of structures in the PDB are protein?
sum(pdbdb$Total[1]/sum(pdbdb$Total)) *100
[1] 86.39483
     Q3: Type HIV in the PDB website search box on the home page and determine
     how many HIV-1 protease structures are in the current PDB?
110 HIV-1 Protease structures.
```

Mol*

 Mol^* (pronounced "molstar") is a new wed-based molecular viewer that we will need to learn the basics of here.

 $\rm https://molstar.org.viewer/$

We will use PDB code: 1HSG

Figure 1: A first image from molstar

Some more custom images:

Figure 2: Surface display showing Merk compound in the peptide binding pocket

Figure 3: The all important cataytic ASP25 amino acids

The Bio3D package

The bio3d package allows us to do all sorts of structural bioinformatics work in R. Let's start with how it can read these PDB files:

```
library(bio3d)
pdb <- read.pdb("1hsg")

Note: Accessing on-line PDB file
pdb</pre>
```

```
Call: read.pdb(file = "1hsg")
```

```
Total Models#: 1
     Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
     Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
      PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
attributes(pdb)
$names
[1] "atom"
            "xyz"
                     "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
head(pdb$atom)
  type eleno elety alt resid chain resno insert
                                                                  z o
                                                     Х
                                                            У
1 ATOM
          1
               N < NA >
                         PRO
                                 Α
                                      1 <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
          2
               CA <NA>
                         PRO
                                       1 <NA> 30.307 38.663 5.319 1 40.62
                                 Α
                         PRO
                                      1 <NA> 29.760 38.071 4.022 1 42.64
3 ATOM
          3
               C <NA>
                                 Α
                                      1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
          4
               O <NA>
                         PRO
                                 Α
                                      1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
               CB <NA>
                         PRO
                                Α
6 ATOM
               CG <NA>
                         PRO
                                       1 <NA> 29.296 37.591 7.162 1 38.40
```

segid elesy charge

N

- C <NA> 2 <NA>
- 3 <NA> C <NA>
- 4 <NA> O <NA>

```
5 <NA> C <NA> 6 <NA> C <NA>
```

```
pdbseq(pdb)[25]
```

25 "D"

Q7: How many amino acid residues are there in this pdb object?

```
sum(pdb$calpha)
```

[1] 198

length(pdbseq(pdb))

[1] 198

Q8: Name one of the two non-protein residues?

HOH and MK1

Q9: How many protein chains are in this structure?

2

unique(pdb\$atom\$chain)

```
[1] "A" "B"
```

Predicting functional motions of a single structure

Let's do a bioinformatics prediction of functional motions - i.e. the movements that one of these molecules needs to make to do its stuff.

```
adk <- read.pdb("6s36")
```

```
Note: Accessing on-line PDB file PDB has ALT records, taking A only, rm.alt=TRUE
```

```
Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
# Perform flexiblity prediction
m <- nma(adk)
 Building Hessian...
                           Done in 0.05 seconds.
 Diagonalizing Hessian... Done in 0.45 seconds.
plot(m)
```


Write out multi-model PDB file (trajectory) that we can use to make an animation of the predicted motions.

```
mktrj(m, file="adk.pdb")
```

I can open this in Mol* to play the trajectory...

Comparative analysis of protein structures

```
library(bio3d)
```

Here we will find and analyze all ADK structures in the PDB database.

We will start with a single databse accession id: "lake_A"

```
id <- "lake_A"
get.seq(id)</pre>
```

Warning in get.seq(id): Removing existing file: seqs.fasta

Fetching... Please wait. Done.

```
MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
pdb|1AKE|A
                                                                            60
            61
                                                                            120
             DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI
pdb|1AKE|A
           121
                                                                            180
             VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
pdb|1AKE|A
           121
                                                                            180
           181
                                                 214
             YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
pdb | 1AKE | A
           181
                                                 214
Call:
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
I ran these cmds in the R brain/console
install.packages("BiocManager") BiocManager::install("msa")
aa <- get.seq("1ake_A")</pre>
Warning in get.seq("lake_A"): Removing existing file: seqs.fasta
Fetching... Please wait. Done.
```

60

- Q10. Which of the packages above is found only on BioConductor and not CRAN? The msa package is from BioConductor
 - Q11. Which of the above packages is not found on BioConductor or CRAN?:

- Q12. True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket?
- Q13. How many amino acids are in this sequence, i.e. how long is this sequence?

aa

```
60
             1
pdb|1AKE|A
             \tt MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
                                                                             120
             {\tt DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDRI}
pdb|1AKE|A
            61
                                                                             120
            121
                                                                             180
             VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
pdb|1AKE|A
            121
                                                                             180
            181
                                                 214
pdb|1AKE|A
             YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
            181
                                                 214
Call:
  read.fasta(file = outfile)
Class:
  fasta
Alignment dimensions:
  1 sequence rows; 214 position columns (214 non-gap, 0 gap)
+ attr: id, ali, call
length(aa)
[1] 3
#b <- blast.pdb(aa)</pre>
```

```
#attributes(b)
#b$hit.tbl
#hits <- plot(b)</pre>
#hits$pdb.id
Pre-calculated results
hits <- NULL
hits$pdb.id <- c('1AKE_A','6S36_A','6RZE_A','3HPR_A','1E4V_A','5EJE_A','1E4Y_A','3X2S_A','6H.
# Download releated PDB files
files <- get.pdb(hits$pdb.id, path="pdbs", split=TRUE, gzip=TRUE)</pre>
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1AKE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6S36.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/6RZE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/3HPR.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1E4V.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/5EJE.pdb exists. Skipping download
Warning in get.pdb(hits$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):
pdbs/1E4Y.pdb exists. Skipping download
```

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE):

pdbs/3X2S.pdb exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6HAP.pdb exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/6HAM.pdb exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4K46.pdb exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/3GMT.pdb exists. Skipping download

Warning in get.pdb(hits\$pdb.id, path = "pdbs", split = TRUE, gzip = TRUE): pdbs/4PZL.pdb exists. Skipping download

	1	0%
 =====		8%
 ========= :	I	15%
 ===================================	1	23%
 ===================================	I	31%
ı ====================================	1	38%
 ===================================	1	46%
 ===================================	I	54%
 ===================================	I	62%
 ===================================	1	69%
 	I	77%
 ===================================	1	85%
I		

Next we will use the pdbaln() function to align and also optionally fit (i.e. superpose) the identified PDB structures.

```
# Align releated PDBs
pdbs <- pdbaln(files, fit = TRUE, exefile="msa")</pre>
```

```
Reading PDB files:

pdbs/split_chain/1AKE_A.pdb
pdbs/split_chain/6S36_A.pdb
pdbs/split_chain/6RZE_A.pdb
pdbs/split_chain/3HPR_A.pdb
pdbs/split_chain/1E4V_A.pdb
pdbs/split_chain/5EJE_A.pdb
pdbs/split_chain/1E4Y_A.pdb
pdbs/split_chain/3X2S_A.pdb
pdbs/split_chain/6HAP_A.pdb
pdbs/split_chain/6HAP_A.pdb
pdbs/split_chain/6HAM_A.pdb
pdbs/split_chain/4K46_A.pdb
pdbs/split_chain/3GMT_A.pdb
pdbs/split_chain/3GMT_A.pdb
```

PDB has ALT records, taking A only, rm.alt=TRUE

Extracting sequences

```
pdb/seq: 1    name: pdbs/split_chain/1AKE_A.pdb
    PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 2    name: pdbs/split_chain/6S36_A.pdb
    PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 3    name: pdbs/split_chain/6RZE_A.pdb
    PDB has ALT records, taking A only, rm.alt=TRUE
pdb/seq: 4    name: pdbs/split_chain/3HPR_A.pdb
```

PDB has ALT records, taking A only, rm.alt=TRUE pdb/seq: 5 name: pdbs/split_chain/1E4V_A.pdb pdb/seq: 6 name: pdbs/split_chain/5EJE_A.pdb PDB has ALT records, taking A only, rm.alt=TRUE pdb/seq: 7 name: pdbs/split chain/1E4Y A.pdb pdb/seq: 8 name: pdbs/split_chain/3X2S_A.pdb pdb/seq: 9 name: pdbs/split chain/6HAP A.pdb pdb/seq: 10 name: pdbs/split_chain/6HAM_A.pdb PDB has ALT records, taking A only, rm.alt=TRUE pdb/seq: 11 name: pdbs/split_chain/4K46_A.pdb PDB has ALT records, taking A only, rm.alt=TRUE pdb/seq: 12 name: pdbs/split_chain/3GMT_A.pdb pdb/seq: 13 name: pdbs/split_chain/4PZL_A.pdb

pdbs

[Truncated_Name:1]1AKE_A.pdb [Truncated_Name:2]6S36_A.pdb [Truncated_Name:3]6RZE_A.pdb [Truncated_Name:4]3HPR_A.pdb [Truncated_Name:5]1E4V_A.pdb [Truncated_Name:6]5EJE_A.pdb [Truncated_Name:7]1E4Y_A.pdb [Truncated_Name:8]3X2S_A.pdb [Truncated_Name:9]6HAP_A.pdb [Truncated_Name:10]6HAM_A.pdb [Truncated_Name:11]4K46_A.pdb [Truncated_Name:12]3GMT_A.pdb [Truncated_Name:12]3GMT_A.pdb

[Truncated_Name:1]1AKE_A.pdb [Truncated_Name:2]6S36_A.pdb [Truncated_Name:3]6RZE_A.pdb [Truncated_Name:4]3HPR_A.pdb [Truncated_Name:5]1E4V_A.pdb [Truncated_Name:6]5EJE_A.pdb [Truncated_Name:7]1E4Y_A.pdb [Truncated_Name:8]3X2S_A.pdb TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDACKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE
TGDMLRAAVKSGSELGKQAKDIMDAGKLVTDELVIALVKE

40

1

[Truncated_Name:9]6HAP_A.pdb [Truncated_Name:10]6HAM_A.pdb [Truncated_Name:11]4K46_A.pdb [Truncated_Name:12]3GMT_A.pdb [Truncated_Name:13]4PZL_A.pdb	TGDMLF TGDMLF TGDMLF	RAAI RAAI RAAV RETI	KSGS KAGT KAGT	ELGKO ELGKO PLGVE ALGQE	AKDI QAKSV EAKTY	MDAGI IDAG(MDEGI	KLVTDE QLVSDI KLVPDS	ELVIALV EIIIALV DIILGLV EIIIGLV FIIKIV	KE KE KE
[Truncated_Name:1]1AKE_A.pdb [Truncated_Name:2]6S36_A.pdb [Truncated_Name:3]6RZE_A.pdb [Truncated_Name:4]3HPR_A.pdb [Truncated_Name:5]1E4V_A.pdb [Truncated_Name:6]5EJE_A.pdb [Truncated_Name:7]1E4Y_A.pdb [Truncated_Name:8]3X2S_A.pdb [Truncated_Name:9]6HAP_A.pdb [Truncated_Name:10]6HAM_A.pdb [Truncated_Name:11]4K46_A.pdb [Truncated_Name:12]3GMT_A.pdb [Truncated_Name:12]3GMT_A.pdb	RIAQEI RIAQEI RIAQEI RIAQEI RIAQEI RIAQEI RICQEI RICQEI RICQEI RIAQDI	OCRNO OCRNO OCRNO OCRNO OCRNO OSRNO OSRNO OCANO OCANO OCNNO	GFLL GFLL GFLL GFLL GFLL GFLL GFLL GFLL	DGFPF DGFPF DGFPF DGFPF DGFPF DGFPF DGFPF DGFPF DGFPF DGFPF	QTIPQ TIPQ TIPQ TIPQ TIPQ TIPQ TIPQ TIPQ TIPQ TIPQ TIPQ	ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI ADAMI	KEAGIN KEAGUN	IVDYVLE	FD FD FD FD FD FD FD FD ID
[Truncated_Name:1]1AKE_A.pdb [Truncated_Name:2]6S36_A.pdb [Truncated_Name:3]6RZE_A.pdb [Truncated_Name:4]3HPR_A.pdb [Truncated_Name:5]1E4V_A.pdb [Truncated_Name:6]5EJE_A.pdb [Truncated_Name:7]1E4Y_A.pdb [Truncated_Name:8]3X2S_A.pdb [Truncated_Name:9]6HAP_A.pdb [Truncated_Name:10]6HAM_A.pdb [Truncated_Name:11]4K46_A.pdb [Truncated_Name:12]3GMT_A.pdb [Truncated_Name:13]4PZL_A.pdb	VPDELI	IVDK IVDA IVDR IVDR IVDR IVDR IVDR IVER IVER	IVGR IVGR IVGR IVGR IVGR IVGR IVGR MAGR MSGR ITGR	RVHAF RVHAF RVHAF RVHAF RVHAF RVHAF RVHAF RVHAF RAHL	PSGRV PSGRV PSGRV PSGRV PSGRV PSGRV PSGRV PSGRV ASGRT ASGRT	YHVKI	FNPPKV FNPPKV FNPPKV FNPPKV FNPPKV FNPPKV FNPPKV FNPPKV FNPPKV	YEGKDDV	TG TG TG TG TG TG TG TG TG
	161								200

```
[Truncated_Name:1]1AKE_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:2]6S36_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:3]6RZE_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:4]3HPR_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated Name:5]1E4V A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated Name: 6] 5EJE A.pdb
                                EELTTRKDDQEECVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated Name:7]1E4Y A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:8]3X2S_A.pdb
                                EELTTRKDDQEETVRKRLCEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:9]6HAP_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name: 10] 6HAM_A.pdb
                                EELTTRKDDQEETVRKRLVEYHQMTAPLIGYYSKEAEAGN
[Truncated_Name:11]4K46_A.pdb
                                EDLVIREDDKEETVLARLGVYHNQTAPLIAYYGKEAEAGN
[Truncated_Name:12]3GMT_A.pdb
                                EPLVQRDDDKEETVKKRLDVYEAQTKPLITYYGDWARRGA
[Truncated_Name:13]4PZL_A.pdb
                                EPLITRTDDNEDTVKQRLSVYHAQTAKLIDFYRNFSSTNT
                                      * ** *^ * ** *
                              161
                                                                        200
                              201
                                                           227
[Truncated_Name:1]1AKE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:2]6S36_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated Name:3]6RZE A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated Name: 4] 3HPR A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated Name:5]1E4V A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name: 6] 5EJE_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:7]1E4Y_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:8]3X2S_A.pdb
                                T--KYAKVDGTKPVAEVRADLEKILG-
[Truncated_Name:9]6HAP_A.pdb
                                T--KYAKVDGTKPVCEVRADLEKILG-
[Truncated_Name:10]6HAM_A.pdb
                                T--KYAKVDGTKPVCEVRADLEKILG-
[Truncated_Name:11]4K46_A.pdb
                                T--QYLKFDGTKAVAEVSAELEKALA-
[Truncated_Name: 12] 3GMT_A.pdb
                                E----YRKISG-
[Truncated_Name:13]4PZL_A.pdb
                                KIPKYIKINGDQAVEKVSQDIFDQLNK
                              201
                                                           227
Call:
  pdbaln(files = files, fit = TRUE, exefile = "msa")
Class:
  pdbs, fasta
Alignment dimensions:
  13 sequence rows; 227 position columns (204 non-gap, 23 gap)
+ attr: xyz, resno, b, chain, id, ali, resid, sse, call
```

```
pc.xray <- pca(pdbs)</pre>
```

```
plot(pc.xray, pc.axes = c(1,2))
```


Principal Component Analysis

```
# Perform PCA
pc.xray <- pca(pdbs)
plot(pc.xray)</pre>
```


To visualize the major structural variations in the ensemble the function mktrj() can be used to generate a trajectory PDB file by interpolating along a give PC (eigenvector):

```
# Visualize first principal component
pc1 <- mktrj(pc.xray, pc=1, file="pc_1.pdb")

uniprot <- 248838887
pdb <- 195610

pdb/uniprot *100</pre>
```

[1] 0.0786091