DEEP LEARNING

FOR SPEECH AND LANGUAGE

Day 3 Lecture 2

Speaker Recognition

Hernando Supported by

Giró-i-Nieto

aws educate

Javier Hernando javier.hernando@upc.edu

Acknowledgments

Miquel India, Omid Ghahabi, Pooyan Safari Ph.D. candidates

Outline

- State-of-the-art Speaker Recognition
- DL in Speaker Recognition
 - End-to-End
 - Front-End
 - Features
 - i-vector Extraction
 - Features to Embeddings
 - Vectors to Embeddings
 - Back-End

Speaker Recognition Tasks

Speech Recognition Tasks

GMM-UBM Universal Background Model

Supervectors

i-vectors

Fig. 6. t-SNE visualization of i-vectors obtained from speaker verification system using (a) IFCC, (b) FDLP and (c) MFCC features. K. Vijayan et al./Speech Communication 81 (2016) 54–71

i-vector Scoring

Resemblance Measurement

. Cosine Distance Scoring
$$score(\mathbf{w}_1, \mathbf{w}_2) = \frac{\mathbf{w}_1^T \cdot \mathbf{w}_2}{\|\mathbf{w}_1\| \cdot \|\mathbf{w}_2\|} = cos(\theta_{\mathbf{w}_1, \mathbf{w}_2})$$

Probabilistic Linear Discriminant Analysis (PLDA)

SoA Speaker Recognition

DL in Speaker Recognition

End-to-End

End-to-End

Speaker Verification

Speaker Identification

ADBN Feature Classification

P. Safari, O. Ghahabi, J. Hernando, "Feature classification by means of Deep Belief Networks for speaker recognition", Proc. EUSIPCO 2015

ADBN Feature Classification

Fig. 5. Comparison of DET curves for MLP and the proposed ADBN.

Front-End: Features

ASR BN Features

After M. Mclaren e al., "Advances in deep neural network approaches to speaker recognition" ICASSP 2015.

Denoising Autoencoder BN Features

Denoising autoencoder for cepstral domain dereverberation.

- Transfrom noisy features of reverberant speech to clean speech features.
- Pre-Trainning with Deep Belief Networks (DBN)

Zhang et al., Deep neural network-based bottleneck feature and denoising autoencoder-based fro distant-talking speaker identification, EURASSIP Journal on Audio, Speech, and Music Processing (2015) 2015:12

Adversarial Networks BN Features

H. Yu, Z-H. Tan, Z. Ma, J. Guo, Adversarial Network Bottleneck Features for Noise Robust Speaker Verification, Proc. INTERSPEECH 2017

CDBN Features

randomly selected first-layer CDBN bases

Unsupervised feature learning for audio classification using convolutional deep belifer networks, H. Lee et al., Advances in Neural Information Processing Systems, 22:1096–1104, 2009

CDBN Features

Front-End: i-vector Extraction

DL Front-End: i-vectors

After M. Mclaren e al., "Advances in deep neural network approaches to speaker recognition" ICASSP 2015.

Front-End: Features to Embeddings

DNN Embeddings

D. Snyder, D. Garcia-Romero, D. Povey, S. Khudanpur, Deep Neural Network Embeddings for Text-Independent Speaker Verification, Proc. INTERSPEECH 2017

CNN Embeddings

Five Speaker representations in 2 dimensions.

Left figure show the output vector of the softmax layer L8.

Right figure correspond to the same output vector of L5 dense layer.

Differents colors are assigned to different speakers.

Yanik Lukic et al. "Speaker Identification and Clustering using Convolutional Neural Networks". In 2016 IEEE International workshop on machine learning for signal processing. (2016)

Convolutional Time-Delay DNN Embeddings

<u>L Li</u>, Y Chen, Y Shi, <u>Z Tang</u>, <u>D Wang</u>, Deep Speaker Feature Learning for Text-independent Speaker Verification, Proc. INTERSPEECH 2017

RBM Embeddings

RBM Embeddings

RBM supervectors

- Mean-normalization
- PCA whitening with dimension reduction
- PCA trained based on all background RBM supervectors
- The output of the whitening stage is called RBM-vector

RBM Embeddings

i-vector (400) Fusion i-vector (400) & RBM-vector (2000)

5

False Alarm probability (in %)

10

20

PLDA scoring

Front-End: Vectors to Embeddings

From Supervectors to Embeddings

Mickael Rouvier et al. "Speaker Diarization trough Speaker Embeddings". 23rd European Signal Processing Conference. (2015)

GMM-RBM vectors

O. Ghahabi, J. Hernando, Restricted Boltzmann machines for vector representation of speech in speaker recognition, Computer Speech & Language, 47 (2018) 16-29

GMM-RBM vectors

Performance comparison of proposed GMM-RBM vectors and conventional i-vectors on the **evaluation** set core test condition-common 5 of NIST 2010 SRE. GMM-RBM vectors and i-vectors are of a same size of 400.

		Cosine		PLDA	
		EER (%)	minDCF	EER (%)	minDCF
[1]	i-Vector	6.270	0.05450	4.096	0.04993
[2]	GMM-RBM vector (trained with ReLU)	6.638	0.06228	4.517	0.05085
[3]	GMM-RBM vector (trained with VReLU)	6.497	0.06099	3.907	0.05184
Fusion [1] and [3]		5.791	0.05238	3.814	0.04673

Back-End

DNN i-Vector Back-End

O. Ghahabi, J. Hernando, Deep Learning Backend for Single and Multi-Session i-Vector Speaker Recognition, to be appear in IEEE Trans. Audio, Speech and Language Processing

DNN i-Vector Back-End

	Labeled Background Data	Prog Set		Eval Set			
		EER	minDCF	EER	minDCF		
[1] Cosine	No	4.78	386	4.46	378		1
[2] PLDA (Estimated Labels)	No	3.85	300	3.46	284	23%	1
[3] DNN-3L	No	4.36	297	3.93	291	<	3
Fusion [2] & [3]	No	2.95	259	2.64	238	<	
[4] PLDA (Actual Labels)	Yes	2.23	226	2.01	207	<	1
Fusion [2] & [4]	Yes	2.04	220	1.85	204	6%	983
Fusion [3] & [4]	Yes	2.10	219	1.98	194		1
Fusion [2] & [3] & [4]	Yes	1.90	203	1.72	184	-	

NIST SRE 2014 i-Vector Challenge

(more than 100 participants)

- o Top 20 in the 1st Phase (unlabeled background data)
- o 2nd rank in the 2nd Phase (labeled background data)