Mathematisches Seminar Prof. Dr. Sören Christensen Henrik Valett, Fan Yu, Oskar Hallmann

Sheet 05

Computational Finance

Exercises for all participants

T-Exercise 16 (Vasiček model for interest rates) (4 points)

Let W be a standard Brownian motion and let x, κ , λ and σ real numbers. Show as in the lecture that the process X with

$$dX(t) := (\kappa - \lambda X(t))dt + \sigma dW(t)$$

and X(0) = x solves the equation

$$X(t) = xe^{-\lambda t} + \frac{\kappa}{\lambda}(1 - e^{-\lambda t}) + \int_0^t e^{-\lambda(t-s)} \sigma dW(s).$$

T-Exercise 17 (4 points)

For $\mu \in R$ and $\sigma, r > 0$ we consider the Black-Scholes market with bond B and stock price process S which evolve according to

$$dB_t = rB_t dt,$$
 $B_0 = 1,$ $dS_t = \mu S_t dt + \sigma S_t dW_t,$ $S_0 > 0.$

- (a) Calculate the Itô process representation of the cubic stock process $X_t := S_t^3$ and the associated quadratic variation process $[X,X]_t$.
- (b) Consider a self-financing portfolio $\varphi = (\varphi_t^0, \varphi_t^1)_{t \ge 0}$ with initial value $V_0(\varphi) = 1$ that always invests half of the wealth into the stock, i.e. $\varphi_t^1 = \frac{V_t(\varphi)}{2S_t}$. Show that the value process $V_t(\varphi)$ is a geometric Brownian motion.

T-Exercise 18 (4 points)

Let W_1 , W_2 be independent standard Brownian motions. Consider a market with three assets S_0 , S_1 , S_2 , which follow the equations

$$S_0(t) = 1,$$

 $dS_1(t) = S_1(t) (3dt + dW_1(t) - dW_2(t)),$
 $dS_2(t) = S_2(t) (1dt - dW_1(t) + dW_2(t)).$

Construct an arbitrage in this market.

T-Exercise 19 (for math only) (4 points)

Let W be a standard Brownian motion and T > 0. Assume that the underlying filtration $(\mathscr{F}_t)_{t \geq 0}$ is generated by W. Let μ be an adapted process and Y an \mathscr{F}_T -measurable random variable. Show that there exist $x \in \mathbb{R}$ and a process H such that the process

$$X = x + \int_0^{\cdot} \mu(s)ds + \int_0^{\cdot} H(s)dW(s)$$

fulfills

$$X(T) = Y$$
.

Determine x and H explicitly for $\mu = 0$ and

(a)
$$Y = (W(T))^2$$
,

(b)
$$Y = \int_0^T W(s) ds$$
 and

(c)
$$Y = (W(T))^3$$
,

respectively.

Hint: Martingale representation theorem.

Submit until: Fri, 19.05.2023, 10:00