

现代检测技术实验

实验报告

学院:	电信学部	自动化学院
班级:	自动/	化 71
姓名:	胡靖雪	杨珺晴
学号:	2176122411	2176122427

指导老师: 刘瑞玲

2019年11月14日

实验一 金属箔式应变片——电子秤实验

一、实验目的

了解金属箔式应变片的应变效应,直流全桥工作原理和性能,了解电路的定标。

二、实验仪器

应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V 电源、万用表(自备)。

三、实验原理

电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述 电阻应变效应的关系式为

$$\frac{\Delta R}{R} = k \cdot \varepsilon \tag{1-1}$$

式(1-1)中, $\frac{\Delta R}{R}$ 为电阻丝电阻相对变化,k 为应变灵敏系数, $\varepsilon=\frac{\Delta l}{l}$ 为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感组件。如图 1-1 所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。

图 1-1 双孔悬臂梁式称重传感器结构图

全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,如图 1-2。

当应变片初始值相等, 变化量也相等时, 其桥路输出为

$$Uo = E \cdot \frac{\Delta R}{R} \tag{1-2}$$

式(1-2)中E为电桥电源电压, $\frac{\Delta R}{R}$ 为电阻丝电阻相对变化。

式(1-2)表明,全桥输出灵敏度比半桥提高了一倍,非线性误差得到进一步改善。

图 1-2 全桥面板接线图

电子称实验原理同全桥测量原理,通过调节放大电路对电桥输出的放大倍数,使电路输出电压值为质量的对应值,电压量纲(V)改为质量量纲(g),即成一台比较原始的电子称。

四、实验内容与步骤

- 1、将应变传感器上的各应变片分别接到应变传感器模块左上方的 R1、R2、R3、R4 上,可用万用表测量判别,R1=R2=R3=R4=350 Ω 。
- 2、差动放大器调零。从主控台接入 ± 15 V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端 Ui 短接并与地短接,输出端 Uo $_2$ 接数显电压表(选择 2V 档)。将电位器 Rw3 调到增益最大位置(顺时针转到底),调节电位器 Rw4 使电压表显示为 0V。关闭主控台电源。
- 3、按图 1-2 接线,将受力相反(一片受拉,一片受压)的两对应变片分别接入电桥的邻边。
- 4、加托盘后电桥调零。电桥输出接到差动放大器的输入端 Ui,检查接线无误后,合上主控台电源开关,预热五分钟,调节 Rw1 使电压表显示为零。
- 5、将 10 只砝码 (共 200g) 置于传感器的托盘上, 调节电位器 Rw3 (满量程时的增益), 使数显电压表显示为 0.200V (2V 档测量)。
- 6、拿去托盘上所有砝码,观察数显电压表是否显示为 0.000V, 若不为零, 再次将加托盘后电桥调零(调节电位器 Rw1 使电压表显示为 0V)。
 - 7、重复 5、6 步骤, 直到精确为止, 把电压量纲 V 改为质量量纲 Kg 即可以称重。
- 8、将砝码依次放到托盘上并读取相应的数显表值,直到 200g 砝码加完,记下实验结果,填入表 1-1。
- 9、去除砝码, 托盘上加一个未知的重物 (不要超过 1Kg), 记录电压表的读数。根据实验数据, 求出重物的质量。
- 10*(选做)保持 Rw3、Rw4 不变,使用电阻 R6、R7 和受力相反(一片受拉,一片受压)的两只应变片,按双臂电桥接线,按步骤 4 进行加托盘后电桥调零。将砝码依次放到托盘上并读取相应的数显表值,直到 200g 砝码加完,记下实验结果,填入表 1-1。比较双臂电桥与全桥的输出结果。
 - 11、实验结束后,关闭实验台电源,整理好实验设备。

五、数据记录

1.电压-质量记录表

质量(g)	20	40	60	80	100	120	140	160	180	200
电压(V)	0.019	0.039	0.059	0.079	0.100	0.120	0.140	0.161	0.181	0.201

^{2.}测量未知重物为手机,测得电压为 0.233V,可推测手机质量为 233q。

六、实验报告

1、根据实验所得数据计算系统灵敏度 $S = \Delta U/\Delta W$ (ΔU 输出电压变化量, ΔW 质量变化量);

答:
$$S = \frac{\Delta U}{\Delta W} = \frac{0.201 - 0.019}{200 - 20} = 0.001011$$

2、计算电桥的非线性误差 δ_{f1} = Δ m/y_{FS}×100%。

答:用 Matlab 绘制拟合直线如右图所示,得到的拟合直线为

$$\delta_{\text{FI}} = \frac{\Delta m}{y_{FS}} \times 100\% = \frac{0.0023}{0.201 - 0.019} = 1.26\%$$

3、全桥测量中,当两组对边(R1、R3 为对边)电阻值 R 相同时,即 R1 = R3, R2 = R4, 而 R1≠R2 时,是否可以组成全桥?

答: 不可以组成全桥。构成全桥的条件为

$$R_1 \times R_3 = R_2 \times R_4$$

对边相等不满足条件, 因此不能构成全桥。

实验二 霍尔传感器转速测量实验

一、实验目的

了解霍尔组件的应用——测量转速。

二、实验仪器

霍尔传感器、可调直流电源、转动源、频率/转速表。

三、实验原理

利用霍尔效应表达式: $U_H = K_H IB$, 当被测圆盘上装上 N 只磁性体时, 转盘每转一周磁场变化 N 次, 每转一周霍尔电势就同频率相应变化, 输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。

四、实验内容与步骤

1、如图 1-3, 霍尔传感器已安装于传感器支架上, 且霍尔组件正对着转盘上的磁钢。

2、将+5V 电源接到三源板上"霍尔"输出的电源端,"霍尔"输出接到频率/转速表(切换到测转速位置)。

3、打开实验台电源,选择不同电源+4V、+6V、+8V、+10V、12V(±6)、16V(±8)、20V(±10)、24V驱动转动源,可以观察到转动源转速的变化,待转速稳定后记录相应驱动电压下得到的转速值,填入表 1-2。也可用示波器观测霍尔元件输出的脉冲波形。

电压(V)	+4V	+6V	+8V	+10V	12V	16V	20V	24V
转速(rpm)	289	630	1013	1390	1673	2371	3079	3645

表 1-2 电压-转速记录表

五、实验报告

1、分析霍尔组件产生脉冲的原理。

由霍尔效应表达式: $U_H = K_H IB$ 可知,电压与磁场强度成正比。转盘上等间隔地安装有磁钢,当转盘转动时,磁钢靠近霍尔元件时,磁场强度增大,则此时电势产生最大值;而当磁钢远离霍尔元件时,磁场强度减小,此时产生最小值。在转盘转动过程中,磁场周期变化,同时霍尔电势就同频率相应变化,从而产生脉冲信号。

2、根据记录的驱动电压和转速,作 V-RPM 曲线。

实验三 光电传感器转速测量实验

一、实验目的

了解光电转速传感器测量转速的原理及方法。

二、 实验仪器

转动源、光电传感器、直流稳压电源、频率/转速表、示波器

三、实验原理

光电式转速传感器有反射型和透射型二种,本实验装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。

四、 实验内容与步骤

- 1、光电传感器已安装在转动源上,如图 1-4 所示。+5V 电源接到三源板"光电"输出的电源端,光电输出接到频率/转速表的"f/n"。
- 2、打开实验台电源开关,用不同的电源驱动转动源转动,记录不同驱动电压对应的转速,填入表 1-3,同时可通过示波器观察光电传感器的输出波形。

表 1-3 电压-转速记录表

电压(V)	+4V	+6V	+8V	+10V	12V	16V	20V	24V
转速(rpm)	293	710	1050	1496	1863	2685	3441	4122

五、实验报告

根据测得的驱动电压和转速,作V-RPM曲线。并与霍尔传感器测得的曲线比较。

绘制的曲线可知,用霍尔传感器和光电传感器测量转速得到的结果虽有一定误差,但 是变化规律及数值基本相似。同时可以观察到转速与驱动电压在误差允许范围内成正相关关 系,与理论相符,证明了实验结果的正确性。

实验四 E型热电偶测温实验

一、实验目的

了解 E 型热电偶的特性与应用

二、实验仪器

智能调节仪、PT100、E型热电偶、温度源、温度传感器实验模块。

三、实验原理

热电偶是一种使用最多的温度传感器,它的原理是基于 1821 年发现的塞贝克效应,即两种不同的导体或半导体 A 或 B 组成一个回路,其两端相互连接,只要两节点处的温度不同,一端温度为 T,另一端温度为 To,则回路中就有电流产生,如图 1-5 (a),即回路中存在电动势,该电动势被称为热电势。

两种不同导体或半导体的组合被称为热电偶。当回路断开时,在断开处 a/b 之间便有一电动势 E_7 ,其极性和量值与回路中的热电势一致,如图 1-5 (b),并规定在冷端,当电流由 A 流向 B 时,称 A 为正极, B 为负极。

实验表明,当 E_T 较小时,热电势 E_T 与温度差($T-T_0$)成正比,即 $E_T=S_{AB}$ ($T-T_0$) (1-3)

SAB 为塞贝克系数,又称为热电势率,它是热电偶的最重要的特征量,其符号和大小取决于热电极材料的相对特性。

热电偶工作的基本定律如下:

(1) 均质导体定律

由一种均质导体组成的闭合回路,不论导体的截面积和长度如何,也不论各处的温度分布如何,都不能产生热电势。

(2) 中间导体定律

用两种金属导体 A,B 组成热电偶测量时,在测温回路中必须通过连接导线接入仪表测量温差电势 E_{AB} (T, T_0),而这些导体材料和热电偶导体 A,B 的材料往往并不相同。在这种引入了中间导体的情况下,回路中的温差电势是否发生变化呢?热电偶中间导体定律指出:在热电偶回路中,只要中间导体 C 两端温度相同,那么接入中间导体 C 对热电偶回路总热电势 E_{AB} (T, T_0) 没有影响。

(3) 中间温度定律

如图 1-6 所示,热电偶的两个结点温度为 T_2 , T_2 时,热电势为 E_{AB} (T_2 , T_2),两结点温度为 T_2 , T_3 时,热电势为 E_{AB} (T_2 , T_3),那么当两结点温度为 T_2 , T_3 时的热电势则为

$$E_{AB}$$
 (T_1 , T_2) + E_{AB} (T_2 , T_3) = E_{AB} (T_1 , T_3) (1-4) 式 (1-4) 就是中间温度定律的表达式。譬如: T_2 =100°C, T_2 =40°C, T_3 =0°C, 则

 E_{AB} (100, 40) $+E_{AB}$ (40, 0) $=E_{AB}$ (100, 0) (1-5)

图 1-6 中间温度定律

四、实验内容与步骤

- 1、利用 Pt100 温度控制调节仪将温度控制在 50°C, 在另一个温度传感器插孔中插入 E型热电偶温度传感器。
- 2、将±15V 直流稳压电源接入温度传感器实验模块中。温度传感器实验模块的输出 Uo2 接主控台直流电压表。
- 3、将温度传感器模块上差动放大器的输入端 Ui 短接,调节 Rw3 到最大位置,再调节电位器 Rw4 使直流电压表显示为零。
- 4、拿掉短路线, 按图 1-7 接线, 并将 E 型热电偶的两根引线, 热端(红色)接 a, 冷端(绿色)接 b, 记下模块输出 Uo2 的电压值。

图 1-7

- 5、改变温度源的温度,每隔 5° C 记下 Uo2 的输出值,直到温度升至 120° C,并将实验结果填入表 1-4。
- 6、将温度调节仪重新设定为 50° C,并通过风扇降温,在降温过程中每隔 5° C 记下 Uo2的输出值,直到温度降至 50° C,并将实验结果填入表 1-4。

五、数据记录

温度-电压记录表

T (°C)	50	55	60	65	70	75	80	85	90	95	100
U ₀₂ (V) 升温	0.076	0.090	0.108	0.123	0.140	0.158	0.175	0.192	0.210	0.228	0.244
U ₀₂ (V) 降温	0.071	0.086	0.103	0.118	0.136	0.152	0.170	0.186	0.204	0.221	0.239
T (°C)	105	110	115	120							
U ₀₂ (V) 升温	0.262	0.280	0.297	0.314							
U ₀₂ (V) 降温	0.256	0.274	0.293	0.314							

六、实验报告

1、根据实验数据,作出 U₀2-T 曲线,分析 E 型热电偶的温度特性曲线,计算其非线性

误差。

答:取升温和降温过程作为 \mathbf{U}_{02} 测量结果的平均值,根据实验数据,用 MATLAB 绘制曲线如下图所示。由图可以看出,E 型热电偶两端电压随温度上升而增大,且呈线性变化趋势。

拟合直线 U=0.0034T-0.1020 $\delta_{\rm fl} = \frac{\Delta L_{\rm max}}{y_{FS}} \times 100\% = \frac{0.008}{0.314 - 0.0735} = 3.33\%$

2、根据中间温度定律和 E 型热电偶分度表,用平均值计算出差动放大器的放大倍数 A。

答:
$$A = \frac{1}{15} \sum_{i=1}^{15} \frac{U_{o2}}{热电动势} = 3.4425$$

实验三十一 电涡流传感器的位移特性实验

一、实验目的:

了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器:

电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表、测微头。

三、实验原理:

通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

四、实验内容与步骤

1.按下图安装电涡流传感器。

图 31-1

2. 在测微头端部装上铁质金属圆盘,作为电涡流传感器的被测体。调节测微头,使铁质金属圆盘的平面贴到电涡流传感器的探测端,固定测微头。

图 31-2

- 3.传感器连接按图 31-2,将电涡流传感器连接线接到模块上标有"^^"的两端,实验模块输出端 Uo 与数显单元输入端 Ui 相接。数显表量程切换开关选择电压 20V 档,模块电源用连接导线从实验台接入+15V 电源。
- 4. 打开实验台电源,记下数显表读数,然后每隔 0.2mm 读一个数,直到输出几乎不变为止。将结果列入下表 31-1。

X (mm)	0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8
U ₀ (V)	1. 59	1.63	1.66	1.69	1. 72	1.75	1.77	1.80	1.82	1.84
X (mm)	2.0	2. 2	2. 4	2.6	2.8	3.0	3. 2	3. 4	3.6	3.8
U ₀ (V)	1.86	1.88	1.89	1. 91	1. 92	1.93	1.94	1.95	1.96	1. 97
X (mm)	4.0	4. 2	4. 4	4.6	4.8	5.0	5. 2	5. 4	5. 6	5.8
U ₀ (V)	1.98	1.99	2.00	2.00	2.01	2.02	2.02	2.03	2.03	2.04
X (mm)	6.0	6. 2	6. 4	6.6	6.8	7.0	7. 2	7. 4	7.6	7.8
U ₀ (V)	2.04	2.04	2.05	2.05	2.05	2.06	2.06	2.06	2.07	2.07
X (mm)	8.0	8. 2	8. 4	8.6						

U ₀ (V)	2.07 2.0	2.07	2. 07						
--------------------	----------	------	-------	--	--	--	--	--	--

表 31-1

五、实验报告

1.根据表 31-1 数据,画出 U-X 曲线,根据曲线找出线性区域及进行正、负位移测量时的最佳工作点,并计算量程为 1mm、3mm 及 5mm 时的灵敏度和线性度(可以用端点法或其它拟合直线)。

观察曲线可知, 在[2,5.4]范围内曲线近似为线性, 则取该段数据并进行最小二乘法拟合可得下图:

拟合曲线为: Y=0.0482x+1.7806, 可计算得:

(1) 则系统灵敏度为
$$S = \frac{\Delta V}{\Delta W} = 0.0482 V / mm$$

(2) 线性度误差为:

x=1mm 时,

$$Y = 0.0482 \times 1 + 1.7806 = 1.8288$$

$$\Delta m = Y - 1.75 = 0.0788$$

$$y_{FS} = 0.17V$$

$$\delta_f = \frac{\Delta m}{y_{FS}} \times 100\% = 46.35\%$$

x=3mm 时

$$Y = 0.0482 \times 3 + 1.7806 = 1.9252$$

$$\Delta m = |Y - 1.93| = 0.0048$$

$$y_{FS} = 0.17V$$

$$\delta_f = \frac{\Delta m}{y_{FS}} \times 100\% = 2.82\%$$

x=5mm 时

$$Y = 0.0482 \times 5 + 1.7806 = 2.0216$$

$$\Delta m = Y - 2.02 = 0.0016$$

$$y_{FS} = 0.17V$$

$$\delta_f = \frac{\Delta m}{y_{FS}} \times 100\% = 0.94\%$$