Privacy-Preserving Machine Learning in Practice

Honors Thesis Defense

Introduction

"Agencies shall use available...
privacy-enhancing technologies
(PETs)... to protect privacy and to
combat the broader... societal
risks that result from the improper
use of people's data." [1]

Motivation: The increasing prevalence of machine learning and subsequent concerns about data breaches and privacy violations highlights the critical need for robust privacy safeguards

Current State: Existing privacy measures are often inadequate, due in part because privacy research is largely theoretical, with limited practical implementation

Goal: Provide guidance for practitioners and researchers in building and applying secure and privacy-compliant machine learning models in the real world

Contribution: This research conducts a comprehensive analysis of available privacy-preserving methods, assessing their relative performance, efficiency, security and shortcomings on real-world sensitive datasets

Privacy in Machine Learning

S	ta	g	e	
D.,	:			

Privacy Concern

Attacks

Privacy From

Exposing information during acquisition

_

_

Data Storage

Ensuring security and integrity of data at rest

Privacy Breaches, Unauthorized Access

Untrustworthy Storage Platform, Curator

Model Training

Protecting raw data from central server

Privacy Breaches, Data Interception

Untrustworthy Sharing Channel, Collaborators

Model Output

Leaking information about the training data

Reconstruction, Linkage, & Membership Inference

Untrustworthy Client

Homomorphic Encryption

Protecting Data at Rest and In Use

Federated Learning

Protecting Data via Decentralized Learning

- (1) Central server transmits central model to devices
- (2) Devices train their models using local sensitive data
- (3) Model updates are aggregated
- (4) Aggregated model updates are sent to the central server and applied to the central model

Differential Privacy

Protecting Information about Training Data in Model Outputs

1) Add noise to raw data \rightarrow private synthetic data

2) Add noise during model training \rightarrow private model

3) Add noise to model outputs

→ private outputs

Hybrid (FL + DP + HE)

Protects Sensitive Information at All Steps of the ML Pipeline

- (1) Central server transmits central model to devices
- (2) Devices train their models on local sensitive data in a DP manner
- (3) Model updates are aggregated and encrypted according to a HE scheme
- (4) Encrypted aggregated model updates are sent to the central server and applied to the central model

Summary of Privacy-Preserving Approaches

Approach	What?	Why?	How?	Cost?
Homomorphic Encryption	Computation on encrypted data	Protects data at rest and during computation	Cryptographic techniques and number theory	Reduced efficiency
Federated Learning	Decentralized model training	Preserves privacy from untrustworthy server	Local model training and secure aggregation	Reduced efficiency
Differential Privacy	Privacy in data analysis	Ensures privacy of the training data in the output	Noisy model training to mask individual data points	Reduced utility
MMs for Synthetic Data Generation	Generate synthetic private data	Enables data sharing without privacy concerns	Train a model on raw data to label synthetic data	Reduced utility*

Highlighted Example

Key Takeaways and Next Steps

Key Takeaways

- Navigating the tradeoffs between privacy, utility, and efficiency is a critical aspect of PPML in practice
- Each privacy-preserving approach offers unique protections against different threat models
- Combining multiple approaches in a hybrid manner can enhance overall privacy
- Practical implementations often require unique and counterintuitive solutions

Next Steps

- Develop streamlined methods and tools for implementing PPML in real-world applications
- Further investigate the tradeoffs between privacy, utility, and efficiency in different scenarios
- Explore additional privacy-preserving approaches and novel combinations of them in practice

Appendix

- [DP] House Prices Linear Regression Slide 13: House Prices RMSE
- [DP] Student Performance Linear Regression Slide 17: Student Performance RMSE
- [DP] Census Income Logistic Regression Slide 20: Census Income Accuracy
- [DP] Census Income Gaussian Naive Bayes Slide 23: Census Income Accuracy
- [DP] Household Electric Slide 24: Household Electric RMSE
- [DP + FL] Household Electric Slide 25: Household Electric RMSE

House Prices - RMSE

RMSE of DP vs Baseline Linear Regression

House Prices - Coefficient Distances

Distance of DP Coefficients from Baseline Linear Regression

House Prices – Simulated Property Tax

Simulated Property Tax Difference of DP vs Baseline Linear Regression

House Prices - Top 1,3,5 Features

Student Performance - RMSE

Student Performance - Coefficient Distances

Student Performance - Fail Prediction Accuracy

Census Income – Accuracy

Accuracy of DP vs Baseline Logistic Regression

Census Income - Coefficient Distances

Distance of DP Coefficients from Baseline Logistic Regression

Census Income - Simulated Subsidy Difference

Simulated Subsidy Spend Difference of DP vs Baseline Linear Regression

Census Income – Accuracy

Census Income - Simulated Subsidy Difference

Simulated Subsidy Spend Difference of DP vs Baseline Gaussian Naive Bayes

Household Electric - RMSE

Household Electric - RMSE

Household Electric - Time

Novel Approach

Leverage Memorizing Models to Generate Private, Synthetic Data

