

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

I1

Topología - MAT2545 Fecha de Entrega: 2020-04-17 Solución problema 1: Sea x_n una sucesión acotada, se sabe que toda sucesión acotada tiene una subsucesión convergente, por lo tanto, se genera el siguiente proceso, dado una sucesión acotada x_n se sabe que existe una subsucesión convergente x_{n_k} , s.p.d.g. se tiene que $n_1 = 1$, sea $x_{n,1}$ la sucesión x_n sin los indices de x_{n_k} . Ahora por inducción en j, $x_{n,j-1}$ es una sucesión acotada, por lo que tiene una subsucesión convergente $x_{n_k,j-1}$, s.p.d.g. $x_{n_1} = x_i$, donde i es el menor indice que sigue libre de x_n , se define $x_{n,j}$ como $x_{n,j-1}$ sin los indices de $x_{n_k,j-1}$. Ahora, se define $p \lim x_n = \lim_{n \to \infty} \sum_{j=1}^n \frac{\lim x_{n_k,j}}{2^j}$, esta función esta definida para toda sucesión de B. Para que cumpla las propiedades pedidas se nota lo siguiente,

$$\inf x_n \le \lim x_{n_k} \le \sup x_n$$

para toda subsucesión x_{n_k} . Por lo que p lím $x_n = \lim_{n \to \infty} \sum_{j=1}^n \frac{\lim x_{n_k,j}}{2^j} \le \lim_{n \to \infty} \sum_{j=1}^n \frac{\sup x_n}{2^j} = \sup x_n$, análogamente para el infimo. Usando esto, se tiene que p lím $1 = 1^1$, más aún

$$p \lim cx_n = \lim_{n \to \infty} \sum_{j=1}^n \frac{\lim cx_{n_k,j}}{2^j}$$

$$= \lim_{n \to \infty} \sum_{j=1}^n c \frac{\lim x_{n_k,j}}{2^j}$$

$$= \lim_{n \to \infty} c \sum_{j=1}^n \frac{\lim x_{n_k,j}}{2^j}$$

$$= c \lim_{n \to \infty} \sum_{j=1}^n \frac{\lim x_{n_k,j}}{2^j}$$

$$= c(p \lim x_n),$$

análogamente $p \operatorname{lim}(x_n + y_n) = p \operatorname{lim} x_n + p \operatorname{lim} y_n$ y $p \operatorname{lim}(x_n \cdot y_n) = p \operatorname{lim} x_n \cdot p \operatorname{lim} y_n$. Para la propiedad (c), sean x_n y y_n dos sucesiones acotadas con finitos términos distintos, luego sean x_{n_k} e y_{n_k} subsucesiones con los mismos indices, si x_{n_k} es convergente se tiene que y_{n_k} es convergente, y convergen a lo mismo, ya que tienen a lo más finitos términos distintos, por lo tanto se tiene que $p \operatorname{lim} x_n = p \operatorname{lim} y_n$.

Solución problema 2: Sea $Y \subset X$ un subespacio cerrado de un e.t. normal (T4), luego sean A, B cerrados disjuntos en Y. Como A es cerrado en Y, se tiene que $Y \setminus A = Y \cap U$ donde U es un abierto en X, entonces $Y \setminus (Y \setminus A) = Y \setminus (Y \cap U)$, por lo que $A = Y \setminus U = Y \cap (X \setminus U)$, como $Y \setminus X \setminus U$ son cerrados, se tiene que A es cerrado en X. Análogamente se tiene que

 $^{^{1}}$ sup $1 = \inf 1 = 1$

B es cerrado en X y es disjunto de A, por lo que usando que X es T4, se tiene que existen dos abiertos U, V en X tal que $U \cap V = \emptyset$, $A \subset U$ y $B \subset V$. Ahora se nota que $A \subset U \cap Y$, $B \subset U \cap Y$ y que $Y \cap (U \cap V) = (U \cap Y) \cap (V \cap Y) = \emptyset$, por lo que por definición de topología del subespacio se tiene que $U \cap Y$ y $V \cap Y$ son abiertos en Y, como cada uno contiene a A y B respectivamente, son disjuntos, y A y B son cerrados disjuntos arbitrarios, se tiene que Y con la topología del subespacio es normal (T4).

Solución problema 3: Sea $f:[0,1]^2 \to \mathbb{R}^2$ definida por $f(t,x)=((1-x)\cos(2\pi t)+x,(1-x)\sin(2\pi t))$, se nota que es una función continua al ser composición de funciones continuas², además se nota que $f(t,0)=(\cos(2\pi t),\sin(2\pi t))$ y que $f(t,1)=((1-1)\cos(2\pi t)+1,(1-1)\sin(2\pi t))=(0\cos(2\pi t)+1,0\sin(2\pi t))=(1,0)=g(t)$. Demostrando que h y g son homotópicos.

²Se puede revisar esto usando materia de Cálculo III, ya que la función es multivariada.