

NASA TECHNICAL
MEMORANDUM

NASA TM X-53552

December 8, 1966

NASA TM X-53552

FACILITY FORM 602

467 17633

(ACCESSION NUMBER) _____
95 _____
(PAGES) _____
1 _____
(CODE)
TMX - 53552 _____
(NASA CR OR TMX OR AD NUMBER)
30 _____
(CATEGORY)

COMPUTER PROGRAM TRAJECTORY OPTIMIZATION
BY EXPLICIT NUMERICAL METHODS

By James W. Hilliard
Computation Laboratory

GPO PRICE \$ _____

CFSTI PRICE(S) \$ _____

Hard copy (HC) 3.00

Microfiche (MF) .65

ff 653 July 65

George C. Marshall
Space Flight Center,
Huntsville, Alabama

TECHNICAL MEMORANDUM X- 53552

COMPUTER PROGRAM TRAJECTORY OPTIMIZATION

BY EXPLICIT NUMERICAL METHODS

By

James W. Hilliard

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

The details are given of a computer program which calculates the minimum time required for a space vehicle to meet its mission while in an optimum trajectory. Also, the program can maximize an option if the burning time is fixed. The vehicle motion, assumed to be in a plane, is described by two linear differential equations. A precoded subroutine, Runge-Kutta Fourth Order, is used to integrate the equations of motion. Numerical methods are employed to determine the deviation in constraining functions explicitly in terms of first and second order variations in thrust angle. An iteration method is employed which, when computed, provides the effect of first and second order variations in addition to the usual numerical solution to the differential equations.

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53552

COMPUTER PROGRAM TRAJECTORY OPTIMIZATION

BY EXPLICIT NUMERICAL METHODS

By

James W. Hilliard

DIGITAL PROJECTS BRANCH

COMPUTATION LABORATORY

RESEARCH AND DEVELOPMENT OPERATIONS

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	2
ANALYSIS AND EQUATIONS	3
DOCUMENTATION CHECKLIST	16
DECK SETUP INSTRUCTIONS	17
SAMPLE INPUT	19
INPUT CARD FORM	33
APPENDICES	36
FLOW CHART	40
OUTPUT DATA	51
COMPUTER LISTINGS	69
REFERENCES	87
APPROVAL	88
DISTRIBUTION	89

LIST OF ILLUSTRATIONS

Table	Title	Page
1	Computer Requirements and User Information....	25
2	Program Input Data.....	26
3	Units of Measurement.....	28
4	Data Package Card Arrangement.....	29
5	Output Notation.....	34

DEFINITION OF SYMBOLS

Symbol	Definition
\ddot{x}	Horizontal component of acceleration
\ddot{y}	Vertical component of acceleration
\dot{x}	Horizontal component of velocity
\dot{y}	Vertical component of velocity
x	Horizontal component of distance
y	Vertical component of distance
v	Velocity of vehicle
r	Distance of vehicle from center of earth
θ	Angle of velocity vector from the vertical
Φ	Angle of departure
g_0	Gravity acceleration at initial time
r_0	Distance from center of earth at initial time
\ddot{x}_g	Horizontal drag component
\ddot{y}_g	Vertical drag component
T_i	Staging times
t_k	Integration times
Δt_k	Integration time intervals
ξ_k	$\frac{t_k + t_{k+1}}{2}$
$\Delta \xi_k$	$\xi_k - \xi_{k-1}$

DEFINITION OF SYMBOLS
(Continued)

Symbol	Definition
τ_k	$\frac{t_k - T_i}{100}$
a_i	Constant times force
b_i	Constant times mass
c_i	Constant times rate of change of mass
$\frac{f}{m}$	Thrust acceleration
ψ_k	Thrust angles
ψ_o	Thrust angle at initial time
$\Delta\psi_k$	Deviation of thrust angles
ψ_r	Thrust angle at cutoff
t'_r	$T_{n-1} - \frac{100b_n}{c_n}$
v_0	Orbital velocity
E_v	Escape velocity
E	Angular momentum
E_j	Radius 90° from perigee

TECHNICAL MEMORANDUM X-53552

COMPUTER PROGRAM TRAJECTORY OPTIMIZATION
BY EXPLICIT NUMERICAL METHODS

SUMMARY

The details are given of a computer program which calculates the minimum time required for a space vehicle to meet its mission while in an optimum trajectory. Also, the program can maximize an option if the burning time is fixed. The vehicle motion, assumed to be in a plane, is described by two linear differential equations. A precoded subroutine, Runge-Kutta Fourth Order, is used to integrate the equations of motion. Numerical methods are employed to determine the deviation in constraining functions explicitly in terms of first and second order variations in thrust angle. An iteration method is employed which, when computed, provides the effect of first and second order variations in addition to the usual numerical solution to the differential equations.*

* See reference 1.

INTRODUCTION

The purpose of this report is to document a computer program "Trajectory Optimization by Explicit Numerical Methods." The program contains thirteen options with a maximum of eight additional constraints for each option and is applicable to space vehicles with one or more stages. There are three precoded subroutines that must be contained in the source deck.* Three select switches, SS 2, SS 3, and SS 4 are used for additional printed data. SS 2 is turned on if the conditions of power cutoff are desired. If SS 3 is turned on, data throughout the trajectory is printed for all iterations. If it is off, only the last iteration is printed. Turn SS 4 on for the data at every integration interval during the coast period. No disks, drums, or special tapes are used. The program language is FORTRAN IV and the computer is Control Data Corporation's 3200.

"Trajectory Optimization by Explicit Numerical Methods" was conceived and derived by Lyle R. Dickey, Technical and Scientific Staff, Aero-Astro dynamics Laboratory, George C. Marshall Space Flight Center.

* See Appendices I, II, and III.

ANALYSIS AND EQUATIONS

The results desired require the solution to the linearized equations which describe the motion of the vehicle. For analysis, the motion was assumed to be in a plane and described by the following differential equations:

$$\ddot{x} = \frac{f}{m} \sin\psi + \ddot{x}_g ,$$

$$\ddot{y} = \frac{f}{m} \cos\psi + \ddot{y}_g$$

where

$$\ddot{x}_g = \frac{x}{r} g ,$$

$$\ddot{y}_g = \frac{y}{r} g ,$$

$$g = -g_o \frac{r_o}{r^2} ,$$

$$g_o = 9.81 \frac{\text{meters}}{\text{second}^2} ,$$

$$r_o = 6370 \text{ KM} ,$$

$$r = \sqrt{x^2 + y^2} ,$$

$$v = \sqrt{\dot{x}^2 + \dot{y}^2} .$$

The analysis for $\frac{f}{m}$ and ψ are discussed on pages 5 and 6.

At each staging time (T_i) a_i , b_i , and c_i are given for $i=1,2,3,\dots,N$.

The numerical method, Runge-Kutta Fourth Order, is used for integrating the equations of motion. DELT , the integration step size, and T_i are used to compute two tables of time, t_k and Δt_k .

$$t_k = t_{k-1} + \text{DELT},$$

$$\Delta t_k = \text{DELT}$$

for $T_i - t_k \geq \text{DELT}$.

If $T_i - t_k < \text{DELT}$,

then $t_k = T_i$

$$t_{k+1} = T_i,$$

$$\Delta t_k = T_i - t_k,$$

$$\Delta t_{k+1} = 0.0.$$

For the case where $T_i - T_{i-1} \leq \text{DELT}$

then $t_k = T_{i-1}$,

$$t_{k+1} = T_{i-1},$$

$$t_{k+2} = T_{i-1} + \frac{1}{2} (T_i - T_{i-1}),$$

$$t_{k+3} = T_i ,$$

$$t_{k+4} = T_i ,$$

$$\Delta t_k = 0.0 ,$$

$$\Delta t_{k+1} = \frac{1}{2} (T_i - T_{i-1}) ,$$

$$\Delta t_{k+2} = t_{k+1} ,$$

$$\Delta t_{k+3} = 0.0 .$$

The end points are required to be the same.

$$t_1 = T_1 ,$$

$$t_n = T_N .$$

Briefly stated, the t table is discontinuous at each staging time.

An added input value of time, T_2 , is used for calculating the t table into irrational numbers.*

The thrust angles, ψ_k , are computed as follows:

$$\psi_k = \psi_o + (\psi_n - \psi_o) \left[\frac{t_k - t_1}{t_n - t_1} \right]$$

where
$$\psi_o = \tan^{-1} \left[\frac{\dot{x}_o y_o - \dot{y}_o x_o}{x_o \dot{x}_o + y_o \dot{y}_o} \right] ,$$

*See Deck Setup Instructions for choosing a proper value for T_2

$$\psi_n = \theta_n ,$$

$$t'_n = T_N - \frac{100b_N}{C_N} \quad (A)$$

and x_0 , y_0 , \dot{x}_0 and \dot{y}_0 are initial conditions for integration.

Thrust, $\frac{f}{m}$, is described by the following:

$$\frac{f}{m_k} = \frac{a_i}{b_i + c_i \tau_k}$$

where $\tau_k = \frac{t_k - T_i}{100} .$

Runge-Kutta requires the ψ angles to be computed once at t_k , twice at $t_k + \frac{1}{2} \Delta t_k$, and once at t_{k+1} . Three point interpolation is used to compute ψ at $t_k + \frac{1}{2} \Delta t_k$.

$$t = t_k + \frac{1}{2} \Delta t_k ,$$

$$c_1 = \frac{(t - t_{k+1})(t - t_k)}{(t_{k-1} - t_{k+1})(t_{k-1} - t_k)} ,$$

$$c_2 = \frac{(t - t_{k+1})(t - t_{k-1})}{(t_k - t_{k+1})(t_k - t_{k-1})} ,$$

$$c_3 = \frac{(t - t_k)(t - t_{k-1})}{(t_{k+1} - t_k)(t_{k+1} - t_{k-1})} ,$$

then $\psi = c_1 \psi_{k-1} + c_2 \psi_k + c_3 \psi_{k+1} .$

For iteration there are six other tables computed at $t_k + \frac{1}{2} \Delta t_k$.

$$\xi_k = \frac{t_{k-1} + t_k}{2},$$

$$\Delta \xi_k = \xi_k - \xi_{k-1},$$

$$\bar{h}_1 = -\frac{g_0 r_0^2}{r^3} \left[1 - 3\left(\frac{x}{r}\right)^2 \right],$$

$$\bar{h}_2 = \frac{g_0 r_0^2}{r^3} \left[\frac{3xy}{r^2} \right],$$

$$\bar{K}_1 = \bar{h}_2,$$

$$\bar{K}_2 = -\frac{g_0 r_0^2}{r^3} \left[1 - 3\left(\frac{y}{r}\right)^2 \right].$$

The following matrix is defined for iteration:

$$U(t_k, t_{k+1}) = I + A(\xi_k) \Delta t_k,$$

for $k = 1, 2, 3, \dots, n,$

and

$$A(\xi_k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \bar{h}_1 & \bar{h}_2 & 0 & 0 \\ \bar{K}_1 & \bar{K}_2 & 0 & 0 \end{bmatrix}.$$

The cutoff options and additional constraints are defined and stored in a single array, Z.

Option 1. $Z_1 = \text{Time} = t_k$

2. $Z_2 = x = \int f(x) dt$

$$3. \quad z_3 = y = \int f(\dot{y}) dt$$

$$4. \quad z_4 = \dot{x} = \int f(\ddot{x}) dt$$

$$5. \quad z_5 = \dot{y} = \int f(\ddot{y}) dt$$

$$6. \quad z_6 = r = \sqrt{x^2 + y^2}$$

$$7. \quad z_7 = v = \sqrt{\dot{x}^2 + \dot{y}^2}$$

$$8. \quad z_8 = \theta = \tan^{-1} \frac{\dot{y}\dot{x} - \dot{x}\dot{y}}{x\dot{x} + y\dot{y}}$$

$$9. \quad z_9 = \Phi = \tan^{-1} \left(\frac{x}{y} \right)$$

$$10. \quad z_{10} = \Omega_v = v^2 - \frac{g_o r_o^2}{r}$$

$$11. \quad z_{11} = E_v = \frac{1}{2} v^2 - \frac{g_o r_o^2}{r}$$

$$12. \quad z_{12} = E = \dot{x}\dot{y} - \dot{y}\dot{x}$$

$$13. \quad z_{13} = E_j = r - \frac{z_{12}^2}{g_o r_o^2}$$

A 13x4 matrix is defined by placing into its rows

$$\text{Time} \quad C_1 = [\begin{array}{cccc} 0 & 0 & 0 & 0 \end{array}]$$

$$x \quad C_2 = [\begin{array}{cccc} 1 & 0 & 0 & 0 \end{array}]$$

$$y \quad C_3 = [\begin{array}{cccc} 0 & 1 & 0 & 0 \end{array}]$$

$$\begin{aligned}
\dot{x} & \quad C_4 = [\begin{array}{cccc} 0 & 0 & 1 & 0 \end{array}] \\
\dot{y} & \quad C_5 = [\begin{array}{cccc} 0 & 0 & 0 & 1 \end{array}] \\
r & \quad C_6 = [\begin{array}{cccc} \frac{x}{r} & \frac{y}{r} & 0 & 0 \end{array}] \\
v & \quad C_7 = [\begin{array}{cccc} 0 & 0 & \frac{\dot{x}}{r} & \frac{\dot{y}}{r} \end{array}] \\
\theta & \quad C_8 = [\begin{array}{cccc} \frac{x v \cos \theta - \dot{x} r}{r^2 v \sin \theta} & \frac{y v \cos \theta - x v}{r^2 v \sin \theta} & \frac{\dot{x} r \cos \theta - x v}{r v^2 \sin \theta} & \frac{\dot{y} r \cos \theta - y v}{r v^2 \sin \theta} \end{array}] \\
\Phi & \quad C_9 = [\begin{array}{cccc} \frac{1}{y} \left(1 - \frac{x^2}{y^2} \right) & -\frac{x}{r^2} & 0 & 0 \end{array}] \\
0_v & \quad C_{10} = [\begin{array}{cccc} -\frac{g_o r_o^2 x}{r^3} & -\frac{g_o r_o^2 y}{r^3} & 2\dot{x} & 2\dot{y} \end{array}] \\
E_v & \quad C_{11} = [\begin{array}{cccc} -\frac{g_o r_o^2 x}{r^3} & -\frac{g_o r_o^2 y}{r^3} & \dot{x} & \dot{y} \end{array}] \\
E & \quad C_{12} = [\begin{array}{cccc} -\dot{y} & \dot{x} & y & -x \end{array}] \\
E_j & \quad C_{13} = [\begin{array}{cccc} \frac{x}{r} + \frac{2\dot{y} Z_{12}}{g_o r_o^2} & \frac{y}{r} - \frac{2\dot{x} Z_{12}}{g_o r_o^2} & -\frac{2y Z_{12}}{g_o r_o^2} & \frac{2x Z_{12}}{g_o r_o^2} \end{array}]
\end{aligned}$$

$$\bar{z}_{pm} = z_{pm}$$

$$\text{and } z_{qm}^* = z_{qm}$$

where p and q are the numbers that specify power cutoff and coast cutoff options respectively for m=1,2,3,...,M₂.

\bar{K}_{pm} and K_{pm}^* are the values of power and coast cutoff limits for each option for $m=1, 2, 3, \dots, M_2$.

\bar{T} is defined when $\bar{z}_{pm} = \bar{K}_{pm}$,

at this time set $\frac{f}{m} = 0.0$ and integrate to

T_m^* , defined when $z_{pm}^* = K_{pm}^*$.

\bar{T}_{Lpm} and T_{Lpm}^* are tolerances for the options.

$$P_m^* = \frac{-C_{qm}(T_m^*)}{C_{qm}(T_m^*) \dot{x}(T_m^*)}$$

where

$$\dot{x}(T_m^*) = \begin{bmatrix} \dot{x}_n \\ \dot{y}_n \\ \ddot{x}_n \\ \ddot{y}_n \end{bmatrix} .$$

The additional constraints are chosen such that

$$P(r_{mj}) = C r_{mj}(T_m^*) \left[I + \dot{x}(T_m^*) P_m^* \right]$$

for $j = 1, 2, 3, \dots, N_m$

then

$$P_m = \begin{bmatrix} P(r_{m1}) \\ P(r_{m2}) \\ P(r_{m3}) \\ \vdots \\ \vdots \\ P(r_{mN_m}) \end{bmatrix} .$$

$$\hat{P} = C_q(T_m^*) \quad , \quad (B)$$

then $Q = P_{M_2}^*$

or $Q = \hat{P}$.

If \hat{P} is used, then \hat{q} must be the number which specifies the time option, $q = 1$.

$$h_1(t) = Q U(T_{M_2}^*, t) H_1(t) \quad ,$$

$$h_2(t) = Q U(T_{M_2}^*, t) H_2(t)$$

where $H_1 = \frac{f}{m}(t)$

$$\begin{bmatrix} 0 \\ 0 \\ \cos\psi \\ -\sin\psi \end{bmatrix} \quad ,$$

and $H_2 = \frac{1}{2}(\frac{f}{m})$

$$\begin{bmatrix} 0 \\ 0 \\ -\sin\psi \\ -\cos\psi \end{bmatrix} \quad .$$

$$F_m(t) = \begin{cases} P_m U(T_m^*, t) H_1(t), & t_o \leq t \leq \bar{T} \\ 0.0 & , \quad \bar{T} \leq t \leq T_{M_2}^* \end{cases} \quad ,$$

$$G_m(t) = \begin{cases} P_m U(T_m^*, t) H_2(t), & t_o \leq t \leq \bar{T} \\ 0.0, & \bar{T} \leq t \leq T^* \end{cases},$$

then $F(t) = \begin{bmatrix} F_1(t) \\ F_2(t) \\ \vdots \\ \vdots \\ F_{M_2}(t) \end{bmatrix},$

and $G(t) = \begin{bmatrix} G_1(t) \\ G_2(t) \\ \vdots \\ \vdots \\ G_{M_2}(t) \end{bmatrix}.$

$$B = \int_{t_o}^{t_n} F(t) F'(t) dt = \sum_{k=0}^n F(t) F'(t) \Delta \xi_k,$$

$$\bar{Q} = - \int_{t_o}^{t_n} F(t) h_1(t) dt = - \sum_{k=0}^n F(t) h_1(t) \Delta \xi_k,$$

$$\lambda = B^{-1} \bar{Q},$$

$$\epsilon(t) = h_1(t) + \lambda' F(t),$$

$$h^*(t) = h_2(t) + \lambda' G(t).$$

$$Z = \begin{bmatrix} zr_{11}(T_1^*) \\ zr_{12}(T_1^*) \\ \dots \\ zr_{1N_1}(T_1^*) \\ zr_{21}(T_2^*) \\ zr_{22}(T_2^*) \\ \dots \\ zr_{M_2NM_2}(T_{M_2}^*) \end{bmatrix}$$

$$\text{then } \Delta Z = K_L - Z$$

$$\text{where } K_L = \begin{bmatrix} K_1 \\ K_2 \\ \vdots \\ \vdots \\ K_{NM} \end{bmatrix}.$$

K_L , given by the user, are the limits of the additional constraints.

$$|\epsilon(t_k)| < E_o , \quad (C)$$

$$|\Delta z| < E_{l_L} \quad (D)$$

for $L = 1, 2, 3, \dots, N_M$. E_o and E_{l_L} are tolerances given by the user.

If conditions C and D are not satisfied, then,

$$\bar{F} = -\frac{F}{2h_2^*} ,$$

$$\epsilon = \frac{\epsilon}{2h_2^*} ,$$

$$\bar{B} = \int_{t_o}^{t_n} F(t) \bar{F}'(t) dt = \sum_{k=1}^n F(t_k) \bar{F}'(t_k) \Delta \xi_k ,$$

$$\epsilon_n = \int_{t_o}^{t_n} F(t) \bar{\epsilon}(t) dt = \sum_{k=1}^n F(t_k) \bar{\epsilon}(t_k) \Delta \xi_k ,$$

$$\Delta \lambda = \bar{B}^{-1} [\epsilon_n + \Delta z] ,$$

$$\Delta \psi = -\bar{\epsilon}(t) + \Delta \lambda' \bar{F}(t) .$$

then $\psi = \bar{\psi} + \Delta \psi$,

return to integration with all the initial conditions and repeat
the iteration until conditions C and D are satisfied.

DOCUMENTATION CHECKLIST

JOB NUMBER 560490

<u>Project:</u>	Have It	Remarks
1125	X	
Program Development Charts	X	
Original Problem from Customer	X	
Correspondence	X	
Check Case	X	
Documentation Checklist	X	

Problem:

*Abstract	X	
*Technical Description	X	
Equations	X	
Definition of Terms	X	
Special Options	X	
Numerical Methods for Solution	X	
Technical References	X	
Related Projects	X	

Programming:-

Library Subroutines	X	
Program Subroutines	X	
Special Input Form	X	
Special Input Tape Contents		None Used
Special Output Tape Contents		None Used
Plots Generated		None
Method of Verification	X	
*Block Diagram	X	
Flow Charts	X	
*Program Listing	X	

Deck Setup:

*Computer Configuration	X	
*Estimated Running Time	X	
*Restart Procedure		No Capability
*Deck Sequence	X	
*Required Input Data	X	
*Restrictions & Limitations	X	
*Diagnostics		None Printed
*Normal Output Quantity	X	
*Definition of Output	X	
*Sample Operator Instruction Card	X	
*Sample Save Label		Not Applicable
*Sample Input Form	X	
*Sample Output	X	
*Sample Plots		None Used

Decks:

Symbolic	X	Bldg. 4200, Rm. G24
Binary	X	Bldg. 4200, Rm. G24
Data	X	Bldg. 4200, Rm. G24

Prepared by: James W. Hilliard
Programmer Date

Approved by: Joseph Scollard
Programming Mgr. Date

DECK SETUP INSTRUCTIONS

All the input data must appear sequentially in the data deck as shown in Table 3. The user may not be concerned with T_N that must satisfy Equation A. T_N , A_N , B_N , and C_N must be added for all cases.

$$T_N \leq T_1 + \text{DELT} [175 - 2(N+NO)] ,$$

$$A_N = A_{N-1} ,$$

$$B_N = B_{N-1} ,$$

$$C_N = C_{N-1} ,$$

Where $N=1 +$ number of stages and 175 is the largest allowable number of storages for each single array variable.

NO is the number of options and NR is the maximum number of constraints being used. NC=0 if Equation B is not used and will equal \hat{q} for all other cases. The value of \hat{q} will be the number of the variable being maximized. IO is the number of the cutoff option for which the weighting functions will be computed. IO=1,2,3,---,8. NRUN=0 for the last case in a stack. EO is the tolerance for $\epsilon(t_k)$.

T2 is the second value of the t table desired to irrationalize all the values.

$$T2 = t_2$$

and $T2 - T_1 \leq \text{DELT}.$

The numbers for power cutoff, N6(I), coast cutoff options, N5(I), and the constraints, N2(I,J), can be obtained from the Z array.

Refer to the Example Case and Data Package Card Arrangement, Table 4, for data instructions of all variables.

SAMPLE INPUT

$x_0 = 236255.46$

$y_0 = 6456667.82$

$\dot{x}_0 = 2800.5746$

$\dot{y}_0 = 635.94317$

$T_1 = 184.99481$

$T_2 = 412.5503$

$T_3 = 523.87973$

$T_4 = 528.87973$

$a_1 = 10.787315$

$a_2 = 8.92405155$

$a_3 = 10^{-20}$

$a_4 = 1.96132994$

$b_1 = 1.2867664$

$b_2 = 0.69140715$

$b_3 = 1.0$

$b_4 = 0.36021199$

$c_1 = -0.261282644$

$c_2 = -0.212616813$

$c_3 = 0.0$

$c_4 = 0.046948359$

$\Delta t = 5.0$

$\Delta t_c = 5.0$

SAMPLE INPUT
(Continued)

\hat{q} = 7

r_0 = 6370000.0

g_0 = 9.81

θ_c = 1.5707963

\bar{K}_1 = 412.85503 for time (t_k)

\bar{K}_2 = 773.599673 for time (t_k)

K_1^* = 6370000.0 for radius (r_k)

K_2^* = 773.599673 for time (t_k)

p_1 = 1

p_2 = 1

g_1 = 6

g_2 = 1

\overline{TL}_1 = 0.01

\overline{TL}_2 = 0.01

TL_1^* = 0.1

TL_2^* = 0.01

E_0 = 10^{-5}

$K_{1,1}$ = 5971137.6 constraint for (y_k)

$K_{2,1}$ = 6552000.0 constraint for (r_k)

$K_{2,2}$ = 1.5707963 constraint for (θ_k)

$EL_{1,1}$ = 0.1

$EL_{2,1}$ = 0.1

$EL_{2,2}$ = 10^{-5}

This is a four stage vehicle, because there are four T points.

$$N = 1 + 4.$$

There are two options for power cutoff and coast cutoff.

$$NO = 2.$$

The maximum number of additional constraints used is two.

$$NR = 2.$$

Equation B is used because \hat{q} is given and $NC = \hat{q}$ if given, otherwise $NC = 0$.

$$NC = 7$$

The last option is used to compute the weighting functions.

$$IO = 2$$

There is only one case.

$$NRUN = 0.$$

$$EO = 1.0 \times 10^{-5}$$

$$T2 = 185.0.$$

From the Z array the time option is 1 and the radius option is 6.

N6(1) = 1

N6(2) = 1

N5(1) = 6

N5(2) = 1.

N2(1,1) = 3

N2(2,1) = 6

N2(2,2) = 8

AKB(1) = 412.85503

AKB(2) = 773.599673

AKS(1) = 6370000.0

AKS(2) = 773.599673

TOL1(1) = 0.01

TOL1(2) = 0.01

TOL6(1) = 0.1

TOL6(2) = 0.01

CK(1,1) = 5971137.6

CK(2,1) = 6552000.0

CK(2,2) = 1.5707963

E1(1,1) = 0.1

E1(2,1) = 0.1

E1(2,2) = 10^{-5}

T(I)	A(I)	B(I)	C(I)
184.99481	10.787315	1.2878664	-0.261282644
412.5503	8.92405155	0.69140715	-0.212616813
523.87973	10^{-20}	1.0	0.0
528.87973	1.96132994	0.36021199	-0.046948359
800.0	1.96132994	0.36021199	-0.046948359

XO = 236255.46

YO = 6456667.82

XDO = 2800.5746

YDO = 635.94317

SGO = 9.81

RO = 6370000.0

DELT = 5.0

THC = 1.5707963

This example maximizes the velocity because the burning time
is fixed at 773.599673 seconds.

TABLE 1

COMPUTER REQUIREMENTS AND USER INFORMATION

Floating point	Hardware
32,000 storage locations	Hardware
FORTRAN IV compiler	Software
Subroutine library	Software
Job Number	560490
Estimated running time	
SS 2 On	0.176 hours
SS 2 Off	0.075 hour
Restart procedure	No capability
Deck sequence	See computer Listings
Restrictions	See Introduction and Deck Setup Instructions
Printed diagnostics	None
Originator	Lyle R. Dickey, Technical & Scientific Staff, Aero-Astrodynamic Laboratory

TABLE 2

PROGRAM INPUT DATA

<u>Formula Notation</u>	<u>Computer Language Notation</u>	<u>Units of Measurement</u>	<u>Remarks</u>
N	N		Number of staging times
M ₂	NO		Number of options
N _{M₂}	NR		Number of max. constraints
q	NC		NC ≠ 0 if equation B is used
	IO		Number for the weighting function option
	NRUN		Number of cases
E _o	E0		Tolerance for E(t _k)
	T2	seconds	Desired t ₂ value
P	N6(I)		Numbers of power cutoff options
g	N5(I)		Numbers of coast cutoff options
r _{m_j}	N2(I,J)		Numbers of additional constraints
k _{p_m}	AKB(I)	see Tbl 3	Values of power cutoff limits
k _{g_m} *	AKS(I)	see Tbl 3	Values of coast cutoff limits
t _c	DTA(I)	seconds	Integration increment for coast
TL	TOL1(I)	see Tbl 3	Tolerance for power cutoff
TL*	TOL6(I)	see Tbl 3	Tolerance for coast cutoff
K	CK(I,J)	see Tbl 3	Values of cutoff constraint limits

TABLE 2

PROGRAM INPUT DATA
(Continued)

<u>Formula Notation</u>	<u>Computer Language Notation</u>	<u>Units of Measurement</u>	<u>Remarks</u>
EL_L	E1(I)	see Tbl 3	Tolerance for ΔZ
T_i	T(I)	seconds	Staging times
a_i	A(I)	Newtons	Constant times force
b_i	B(I)	mass	Constant times mass
c_i	C(I)	mass/seconds	Constant times m
x_o	XO	meters	Horizontal initial distance
y_o	YO	meters	Vertical initial distance
\dot{x}_o	XDO	meters/second	Horizontal initial velocity
\dot{y}_o	YDO	meters/second	Vertical initial velocity
g_o	SGO	meters/second ²	Initial gravity acceleration
r_o	RO	meters	Initial distance from center of earth
Δt	DELT	seconds	Power integration increment
θ_c	THC	radians	Velocity vector angle at cutoff

TABLE 3

UNITS OF MEASUREMENT

	\bar{K} , K^* , K , E_1 , \bar{TL} , and TL^*
t_k	Seconds
x	Meters
y	Meters
\dot{x}	Meters/Second
\dot{y}	Meters/Second
r	Meters
v	Meters/Second
θ	Radians
ϕ	Radians
α_v	Meters ² /Second
E_v	Meters/Second
E	Mass ² /Seconds
E_j	Meters

TABLE 4

DATA PACKAGE CARD ARRANGEMENT

<u>Card Number</u>	<u>Variable</u>	<u>Data Field</u>	<u>Remarks</u>
1	N	1-5	Number of stages + 1
1	NO	6-10	Number of options
1	NR	11-15	Number of constraints
1	NC	16-20	0 if equation B is not used
1	NRUN	21-25	0 for last case in a stack
1	IO	26-30	Number of weighting function option
1	EO	31-45	Tolerance for $\epsilon(t_k)$
1	T2	46-60	Value of t_2 desired
2	N6(1)	1-5	
2	N6(2)	6-10	Numbers for power
.	.	.	Cutoff options,
.	.	.	I = 1,2,3,---,NO
2	N6(I)	.	
3	N5(1)	1-5	
3	N5(2)	6-10	Numbers for coast
.	.	.	Cutoff options,
.	.	.	I = 1,2,3,---,NO
3	N5(I)	.	

TABLE 4

DATA PACKAGE CARD ARRANGEMENT
(Continued)

<u>Card Number</u>	<u>Variable</u>	<u>Data Field</u>	<u>Remarks</u>
4	N2(1,1)	1-5	
4	N2(1,2)	6-10	Numbers for
.	.	.	additional constraints
.	.	.	I = 1,2,3,---,NO
4	N2(1,J)	.	
5	N2(2,1)	1-5	J = 1,2,3,---,NR
5	N2(2,2)	6-10	
.	.	.	
.	.	.	
NO+3	N2(I,J)	.	
NO+4	AKB(1)	1-15	First power cutoff value
NO+4	AKS(1)	16-30	First coast cutoff value
NO+4	DTA(1)	31-45	First coast integration increment
NO+4	TOL1(1)	46-60	First power cutoff tolerance
NO+4	TOL6(1)	61-75	First coast cutoff tolerance
NO+5	AKB(2)	1-15	Second power cutoff value
NO+5	AKS(2)	16-30	Second coast cutoff value
.	.	.	.
.	.	.	.

TABLE 4

DATA PACKAGE CARD ARRANGEMENT
(Continued)

<u>Card Number</u>	<u>Variable</u>	<u>Data Field</u>	<u>Remarks</u>
2N0+3	TOL6(I)	61-75	I = 1,2,3,---,NO
2N0+4	CK(1,1)	1-15	First constraint value for first option
2N0+4	E1(1,1)	16-30	Tolerance for first constraint value
2N0+5	CK(1,2)	1-15	Second constraint value for first option
2N0+5	E1(1,2)	16-30	Tolerance for second constraint value
2N0+6	CK(1,J)	1-15	Third constraint value for first option
.	.	.	.
.	.	.	.
2N0+LC*	E1(I,J)	16-30	Tolerance for last constraint value
2N0+LC+1	T(1)	1-15	Initial time
2N0+LC+1	A(1)	16-30	Initial force constant
2N0+LC+1	B(1)	31-45	Initial mass constant
2N0+LC+1	C(1)	46-60	Initial \dot{m} constant
.	.	.	.
.	.	.	.
2N0+N+LC	T(N)	1-15	Calculated T(N)
2N0+N+LC	A(N)	16-30	A(N-1)
2N0+N+LC	B(N)	31-45	B(N-1)
2N0+N+LC	C(N)	46-60	C(N-1)

* LC = total number of constraints used
for one case.

TABLE 4

DATA PACKAGE CARD ARRANGEMENT
(Continued)

<u>Card Number</u>	<u>Variable</u>	<u>Data Field</u>	<u>Remarks</u>
2N0+N+LC+1	XO	1-15	Initial horizontal distance
2N0+N+LC+1	YO	16-30	Initial vertical distance
2N0+N+LC+1	XDO	31-45	Initial horizontal velocity
2N0+N+LC+1	YDO	46-60	Initial vertical velocity
2N0+N+LC+2	SGO	1-15	Gravity at initial time
2N0+N+LC+2	RO	16-30	Initial radius
2N0+N+LC+2	DELT	31-45	Integration increment
2N0+N+LC+2	THC	46-60	θ for power cutoff at T(N)

INPUT CARD FORM

CARD NUMBER	-	5	2	2	7	2	0	0 . 0 0 0 1	1 8 5 .
1									
2		1	1						
3		6	1						
4		3	0						
5		6	8						
6	4 1 2 .	8 5 5 0 3		6 3 7 0 0 0 0 .	0	5 . 0		0 . 0 1	0 . 1
7	7 7 3 .	5 9 9 6 7 3		7 7 3 .	5 9 9 6 7 3	5 . 0		0 . 0 1	0 . 0 1
8	5 9 7 1 1 3 7 .	6		0 . 1					
9	6 5 5 2 0 0 0 .	0	0	0 . 1					
10	1 .	5 7 0 7 9 6 3		0 . 0 0 0 0 1					
11	1 8 4 .	9 9 4 8 1		1 0 .	7 8 7 3 1 5	1 . 2 8 6 7 6 6 4		- 0 .	2 6 1 2 8 2 6 4 4
12	4 1 2 .	5 5 0 3		8 .	9 2 4 0 5 1 5 5	0 . 6 9 1 4 0 7 1 5		- 0 .	2 1 2 6 1 6 8 1 3
13	5 2 3 .	8 7 9 7 3		1 . 0 E - 2 0 1 . 0				0 . 0	
14	5 2 8 .	8 7 9 7 3		1 .	9 6 1 3 2 9 9 4	0 . 3 6 0 2 1 1 9 9		- 0 .	0 4 6 9 4 8 3 5 9
15	8 0 0 .	0		1 .	9 6 1 3 2 9 9 4	0 . 3 6 0 2 1 1 9 9		- 0 .	0 4 6 9 4 8 3 5 9
16	2 3 6 2 5 5 .	4 6		6 4 5 6 6 6 7 .	8 2	2 8 0 0 .	5 7 4 6	6 3 5 .	9 4 3 1 7
17	9 .	8 1		6 3 7 0 0 0 0 .	0	5 . 0		1 .	5 7 0 7 9 6 3

TABLE 5

OUTPUT NOTATION

<u>Notation</u>	<u>Definition</u>	<u>Units</u>
TIME	t_k	Seconds
DELT	Δt_k	Seconds
ETAT	ξ_k	Seconds
DETT	$\Delta \xi_k$	Seconds
CHI	ψ_k	Degrees
DCHI	$\Delta \psi_k$	Degrees
X	x	Meters
Y	y	Meters
XD	\dot{x}	Meters/Second
YD	\dot{y}	Meters/Second
XDD	\ddot{x}	Meters/Second ²
YDD	\ddot{y}	Meters/Second ²
RAD	r	Meters
VEL	v	Meters/Second
THETA	θ	Degrees
PHI	Φ	Degrees
OVEL	o_v	(Meters/Second) ²
EVEL	e_v	(Meters/Second) ²

TABLE 5

OUTPUT NOTATION
(Continued)

<u>Notation</u>	<u>Definition</u>	<u>Units</u>
ENEG	E	Mass ² /Seconds
ENG	E_j	Meters
HB1	\bar{h}_1	$^1/\text{Seconds}^2$
HB2	\bar{h}_z	$^1/\text{Seconds}^2$
KB1	\bar{k}_1	$^1/\text{Seconds}^2$
KB2	\bar{k}_z	$^1/\text{Seconds}^2$
FOM	$\frac{f}{m}$	Meters/Second ²
HS1	h_1	$^1/\text{Radians}$
HS2	h_z	$^1/\text{Radians}^2$
H2S	h_z^*	$^1/\text{Radians}^2$
EPS	ϵ_k	$^1/\text{Radians}$
DRAGX	\ddot{x}_g	Meters/Second ²
DRAGY	\ddot{y}_g	Meters/Second ²

APPENDIX I

RUNKUT

Runge-Kutta Integration INO

WRITTEN BY: C. R. Wallace

PURPOSE: To numerically integrate a set of first and second order differential equations.

DESCRIPTION: This FORTRAN subroutine uses the fourth order Runge-Kutta integration formulas (Hildebrand, page 238) to numerically integrate a set of differential equations which may be solved for the highest order derivatives of each variable. There must be only one independent variable.

USAGE: The subroutine must be called four times for each time step. The calling sequence is:

```
CALL RUNKUT (NEQ,NSO,H,X,F,Y,YP,FK,AY,AYP,SUM1,SUM2,IND)
```

NEQ - Number of equations
NSO - Number of second order equations
H - Step Size
X - Independent variable
F - Highest order derivatives (a block of NEQ values)
Y - Dependent variables (a block of NEQ values)
YP - First derivatives of dependent variables (second order equations only) (NSO values)
FK,AY,AYP,SUM1,SUM2 - Auxiliary block storage (NEQ values of FK,AY, SUM2; NEQ values of AYP and SUM1)
IND - Indicator for which of the four passes is being made through the subroutines; i.e.,
IND = 1,2,3, or 4.

In order to have all values (including any variables computed from intermediate equations) correct at each time step it is recommended that subroutine RUNKUT be called before the highest order derivatives are computed.

Example: Suppose the equation

$$\begin{aligned} u'' &= g_1(u', u, v, w', w, t) \\ v' &= g_2(u', u, v, w', w, t) \\ w'' &= g_3(u', u, v, w', w, t) \end{aligned}$$

are to be integrated for 100 steps with a step size of .1. This could be coded as follows:

```
:
EQUIVALENCE (u'', F(1)), (w'', F(2)), (v', F(3)),
             (u, Y(1)), (w, Y(2)), (v, Y(3)),
             (u', YP(1)), (w', YP(2))
DIMENSION F(3), Y(3), YP(2), FK(3), AY(3), AYP(3),
          SUM1(3), SUM2(3)
NEQ = 3
NSO = 2
H = .1
X = 0.
NP = 101
DO 1 I = 1, NP
    IF (I-1) 2, 3, 2
3   IND = 4
    GO TO 4
2   IND = 1
5   CALL RUNKUT (NEW, NSO, H, X, F, Y, YP, FK, AY, AYP, SUM1, SUM2, IND)
4   u'' = g1
      v' = g2
      w'' = g3
      IND = IND + 1
      IF (IND - 4) 5, 5, 6
6   (any desired coding)
1   CONTINUE
:
```

RESTRICTIONS: Equations may not be higher than second order. If there are both first and second order equations, the variables from the second order equations should be placed first in the blocks. The error is of the order of H^5 times the fifth derivative of the dependent variable.

TIMING: The computation within the subroutine would require less than one second for 4 equations for 100 time steps.

APPENDIX II

SUBROUTINE: Matrix Inverse

WRITTEN BY:

MODIFIED BY: Sylvia Bryant

PURPOSE: Compute the inverse of a matrix

USAGE: CALL MINV (A, AI, DET, M)

Where: A is a (MXM) matrix

AI is the resulting inverse of A

DET is the value of the determinant of A. If A is
a singular matrix, DET = 0.

M is the size of A.

There exist two versions of this subroutine. In one case A and AI are two-dimensional arrays (M, M) and must be dimensioned in the user's program and in the subroutine. In the second version A and AI are single arrays and must be dimensioned by the user's program only.

In both cases the array IORD must be dimensioned (M) in the subroutine.

Upon return from the subroutine, A is unchanged.

APPENDIX III

SUBROUTINE: Matrix Multiply

WRITTEN BY: James W. Hilliard and Sylvia Bryant

LANGUAGE: FORTRAN IV

PURPOSE: To compute the product of (single)(single),
(double)(double), (single)(double), or
(double)(single) array matrices.

USAGE: CALL MATMP(I1, I2, I3, I4, I5, I6, I, J, K, A, B, C)

WHERE: I1 is the number of dimensioned rows of A
I2 is the number of dimensioned columns of A
I3 is the number of dimensioned rows of B
I4 is the number of dimensioned columns of B
I5 is the number of dimensioned rows of C
I6 is the number of dimensioned columns of C
A is a (I x J) matrix
B is a (J x K) matrix
C is a (I x K) matrix

RESTRICTIONS: (1) I1, I2, I3, I4, I5, and I6 must NOT be zero (0)
for single array matrices.

EXAMPLE: DIMENSION A(20), I1 or I2 must = 1.

(2) Neither A nor B may be C.

EXAMPLE: CALL MATMP(I1, I2, I3, I4, I5, I6,
I, J, K, A, B, A) is illegal.

(3) $I \leq I1$ $J \leq I2$ $K \leq I4$
 $I \leq I5$ $J \leq I3$ $K \leq I6$

STORAGE: $263_8 = 179_{10}$ locations.

FLOW CHART
FOR COMPUTER PROGRAM

OUTPUT DATA OF THE COMPUTER PROGRAM

*** OPTIMUM GUIDANCE ***

VEHICLE HAS 4 STAGES
AND 2 OPTIONS(S)

K	STAR	TL BAR	TL STAR	TL STAR
4.12855030E 02	6.37000000E 06	1.00000000E-02	1.00000000E-02	1.00000000E-01
7.73599673E 02	7.73599673E 02	1.00000000E-02		1.00000000E-02

STAGING TIME	A(I)	B(I)	C(I)
1.84994810E 02	1.07873150E 01	1.28676640E 00	-2.61282644E-01
4.12855030E 02	8.92405155E 00	6.91407150E-01	-2.12616813E-01
5.23879730E 02	1.00000000E-20	1.00000000E 00	0
5.28879730E 02	1.96132994E 00	3.60211990E-01	-4.69483590E-02
8.00000000E 02	1.96132994E 00	3.60211990E-01	-4.69483590E-02

X0=	2.36255460E 05	Y0=	6.45666782E 06	XD0=	2.80057460E 03	YD0=	6.35943170E 02
G0=	9.81000000E 00	R0=	6.37000000E 06	THC=	1.57079630F 00	DELT=	5.00000000E 00

CONSTRAINT NUMBERS	VALUES	TOLERANCES
3	5.97113760E 06	1.00000000E-01
6	6.55520000E 06	1.00000000E-01
8	1.57079630E 00	1.00000000E-05

CONDITIONS FOR POWER CUTOFF, ITERATION 1

TIME	4.12855030E 02	DEL	2.85502999E 00	ETAT	4.10000000F 02	DET	3.92751500E 00
CHI	7.75653021E 01	X=	1.11046575E 06	Y=	6.42076774E 06	XD	5.08628094E 03
YD=	-8.96766173E 02	RAD	6.51608721E 06	VEL	5.16473072E 03	THETA	9.01869113E 01
PHI	9.67138210E 00	OVEL	-3.44142708E 07	EVEL	-9.55029850E 07	ENEQ	3.36536567E 10
ENG	3.670886200E 06	FOM	1.56019710E 01	DRAGX	-1.59768960F 00	DRAGY	-9.23791926E 00

CONDITIONS FOR COAST CUTOFF, ITERATION 1

TIME	6.44352789E 02	DEL	1.49775909E 00	X=	2.22951292F 06	Y=	5.96709071E 06
XD=	4.51116560E 03	YD=	-3.02089404E 03	RAD	6.36999995F 06	VEL	5.42921872E 03
THETA	1.03320732E 02	PHI	2.04874392E 01	OVEL	-3.30132845F 07	EVEL	-9.55029850E 07
ENEQ	3.36536567E 10	ENG	3.670886200E 06	DRAGX	-3.43351997F 00	DRAGY	-9.18950724E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 1

TIME	7.73599673E 02	DEL	3.59967299E 00	ETAT	7.71799837F 02	DET	1.79983650E 00
CHI	8.14510987E 01	X=	3.47319953E 06	Y=	5.65806078F 06	XD	7.24809835E 03
YD=	-3.39039321E 03	RAD	6.63903357E 06	VEL	8.00185578F 03	THETA	8.35247838E 01
PHI	2.76162413E 01	OVEL	4.07226613E 06	EVEL	-5.58851636F 07	ENEQ	5.27856931E 10
ENG	-3.60749569E 05	FOM	8.01646939E 00	DRAGX	-4.72457782F 00	DRAGY	-7.69663509E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 2

TIME	4.12855030E 02	DEL	2.85502999E 00	ETAT	4.10000000F 02	DET	3.92751500E 00
CHI	8.818518891E 01	X=	1.10659784E 06	Y=	6.43100556F 06	XD	5.08548507E 03
YD=	-9.57937867E 02	RAD	6.52551847E 06	VEL	5.17492061F 03	THETA	9.09042343E 01
PHI	9.62465886E 00	OVEL	-3.42206200E 07	EVEL	-9.52210433F 07	ENEQ	3.37648347E 10
ENG	3.661446327E 06	FOM	1.56019710E 01	DRAGX	-1.58523140F 00	DRAGY	-9.21258888E 00

CONDITIONS FOR COAST CUTOFF, ITERATION 2

TIME	6.40719740E 02	DELT	2.864470976E 00	X=	2.20930218F 06	Y=	5.97460325E 06
XD=	4.52446063E 03	YD=	-3.04755845E 03	RAD	6.37000000F 06	VEL	5.45512205E 03
THETA	1.03669678E 02	PHI	2.02934985E 01	OVEL	-3.27313435F 07	EVEL	-9.52210435E 07
ENEQ	3.37648347E 10	ENG	3.66146327E 06	DRAGX	-3.40239469F 00	DRAGY	-9.20107659E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 2

TIME	7.73599673E 02	DELT	3.59967299E 00	ETAT	7.71799837F 02	DETT	1.79983650E 00
CHI	1.48044177E 02	X=	3.45584482E 06	Y=	5.55017661F 06	XD=	6.99719212E 03
YD=	-4.52207398E 03	RAD	6.53814376E 06	VEL	8.33125745F 03	THETA	9.09647037E 01
PHI	2.78594370E 01	OVEL	8.52722050E 06	EVEL	-5.23554097F 07	ENEQ	5.44632380E 10
ENG	-9.13619414E 05	FOM	8.01646939E 00	DRAGX	-4.92196706F 00	DRAGY	-7.90480756E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 3

TIME	4.12855030E 02	DELT	2.85502999E 00	ETAT	4.10000000F 02	DETT	3.92751500E 00
CHI	8.87367056E 01	X=	1.10568690E 06	Y=	6.43328340F 06	XD=	5.08126423E 03
YD=	-9.51237279E 02	RAD	6.52760897E 06	VEL	5.16953562F 03	THETA	9.08511829E 01
PHI	9.61386167E 00	OVEL	-3.42567891E 07	EVEL	-9.52376767F 07	ENEQ	3.37409834E 10
ENG	3.66759864E 06	FOM	1.56019710E 01	DRAGX	-1.58240517F 00	DRAGY	-9.20700051E 00

CONDITIONS FOR COAST CUTOFF, ITERATION 3

TIME	6.43128105E 02	DELT	2.73075008E-01	X=	2.21841925F 06	Y=	5.97122399E 06
XD=	4.51319140E 03	YD=	-3.06150727E 03	RAD	6.37000000F 06	VEL	5.45359729E 03
THETA	1.03769910E 02	PHI	2.03809550E 01	OVEL	-3.2749767F 07	EVEL	-9.52376767E 07
ENEQ	3.37409834E 10	ENG	3.666759864E 06	DRAGX	-3.41643530F 00	DRAGY	-9.19587244E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 3

TIME	7.73599673E 02	DELT	3.59967299E 00	ETAT	7.71799837F 02	DETT	1.79983650E 00
CHI	1.37809636E 02	X=	3.45808785E 06	Y=	5.56850909F 06	XD=	7.06902920E 03
YD=	-4.39031628E 03	RAD	6.55489627E 06	VEL	8.32142120F 03	THETA	9.00023016E 01
PHI	2.78142456E 01	OVEL	8.51901980E 06	EVEL	-5.22080112F 07	ENEG	5.45460527E 10
ENG	-9.19545867E 05	FOM	8.01646939E 00	DRAGX	-4.88749605F 00	DRAGY	-7.87026495E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 4

TIME	4.12855030E 02	DELT	2.85502999E 00	ETAT	4.10000000F 02	DETT	3.92751500E 00
CHI	8.87307598E 01	X=	1.10565827E 06	Y=	6.43334217F 06	XD=	5.08115114E 03
YD=	-9.51054724E 02	RAD	6.52766203E 06	VEL	5.16939088F 03	THETA	9.08497598E 01
PHI	9.61354067E 00	OVEL	-3.42577898E 07	EVEL	-9.52381817F 07	ENEG	3.37403254E 10
ENG	3.66776326E 06	FOM	1.56019710E 01	DRAGX	-1.58232560F 00	DRAGY	-9.20686007E 00

CONDITIONS FOR COAST CUTOFF, ITERATION 4

TIME	6.43190095E 02	DELT	3.35065168E-01	X=	2.21864746F 06	Y=	5.97113921E 06
XD=	4.51289852E 03	YD=	-3.06185651E 03	RAD	6.37000000F 06	VEL	5.45355098E 03
THETA	1.03772484E 02	PHI	2.03831447E 01	OVEL	-3.27484817F 07	EVEL	-9.52381817E 07
ENEG	3.37403254E 10	ENG	3.66776326E 06	DRAGX	-3.41678675F 00	DRAGY	-9.19574187E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 4

TIME	7.73599673E 02	DELT	3.59967299E 00	ETAT	7.71799837F 02	DETT	1.79983650E 00
CHI	1.37421071E 02	X=	3.45776115E 06	Y=	5.56909200F 06	XD=	7.06884604E 03
YD=	-4.38888666E 03	RAD	6.55521914E 06	VEL	8.32051143F 03	THETA	8.99997178E 01
PHI	2.78108470E 01	OVEL	8.50687050E 06	EVEL	-5.22171695F 07	ENEG	5.45427758E 10
ENG	-9.18324938E 05	FOM	8.01646939E 00	DRAGX	-4.88631223F 00	DRAGY	-7.86992582E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 5

TIME	4.12855030E 02	DELT	2.85502999E 00	ESTAT	4.10000000F 02	DETT	3.92751500E 00
CHI	8.87357035E 01	X=	1.10565480E 06	Y=	6.43334977F 06	XD=	5.08113720E 03
YD=	-9.51062735E 02	RAD	6.52766894E 06	VEL	5.16937864F 03	THETA	9.08499169E 01
PHI	9.61350103E 00	OVEL	-3.42578519E 07	EVEL	-9.52381793F 07	ENEQ	3.37402799E 10
ENG	3.66777788E 06	FOM	1.56019710E 01	DRAGX	-1.58231561F 00	DRAGY	-9.20684175E 00

CONDITIONS FOR COAST CUTOFF, ITERATION 5

TIME	6.43192816E 02	DELT	3.37786316E-01	X=	2.21865337F 06	YE	5.97113701E 06
XD=	4.51287829E 03	YD=	-3.06188672E 03	RAD	6.37000000F 06	VEL	5.45355121E 03
THETA	1.03772810E 02	PHI	2.03832014E 01	OVEL	-3.27484793F 07	EVEL	-9.52381793E 07
ENER	3.37402799E 10	ENG	3.66777788E 06	DRAGX	-3.41679586F 00	DRAGY	-9.19573849E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 5

TIME	7.73599673E 02	DELT	3.59967299E 00	ESTAT	7.71799837F 02	DETT	1.79983650E 00
CHI	1.37416181E 02	X=	3.45775818E 06	Y=	5.56907200F 06	XD=	7.06886955E 03
YD=	-4.38895902E 03	RAD	6.55520057E 06	VEL	8.32056957F 03	THETA	8.99999856E 01
PHI	2.78108937E 01	OVEL	8.50766600E 06	EVEL	-5.22165460F 07	ENEQ	5.4543024E 10
ENG	-9.18405613E 05	FOM	8.01646939E 00	DRAGX	-4.886634954F 00	DRAGY	-7.86996442E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 6

TIME	4.12855030E 02	DELT	2.85502999E 00	ESTAT	4.10000000F 02	DETT	3.92751500E 00
CHI	8.87359094E 01	X=	1.10565474E 06	Y=	6.43334983F 06	XD=	5.08113713E 03
YD=	-9.51064757E 02	RAD	6.52766899E 06	VEL	5.16937895F 03	THETA	9.08499396E 01
PHI	9.61350049E 00	OVEL	-3.42578483E 07	EVEL	-9.52381752F 07	ENEQ	3.37402819E 10
ENG	3.66777758E 06	FOM	1.56019710E 01	DRAGX	-1.58231549F 00	DRAGY	-9.20684162E 00

CONDITIONS FOR COAST CUTOFF, ITERATION 6

TIME	6.43192499E 02	DELT	3.37468693E-01	X=	2.21865187F 06	Y=	5.97113757E 06
XD=	4.51287927E 03	YD=	-3.06188594E 03	RAD	6.37000000F 06	VEL	5.45355158E 03
THETA	1.03772812E 02	PHI	2.03831870E 01	OVEL	-3.27484752F 07	EVEL	-9.52381752E 07
ENEQ	3.37402819E 10	ENG	3.66777758E 06	DAGX	-3.41679354F 00	DRAY	-9.19573935E 00

CONDITIONS FOR POWER CUTOFF, ITERATION 6

TIME	7.73599673E 02	DELT	3.59967299E 00	ETAT	7.71799837F 02	DETT	1.79983650E 00
CHI	1.37416226E 02	X=	3.45775808E 06	Y=	5.56907141F 06	XD=	7.06886919E 03
YD=	-4.38896098E 03	RAD	6.55520002E 06	VEL	8.32057030F 03	THETA	8.99999964E 01
PHI	2.78108950E 01	OVEL	8.50767298E 06	EVEL	-5.22165441F 07	ENEQ	5.45430026E 10
ENG	-9.18406211E 05	FOM	8.01646939E 00	DAGX	-4.88635064F 00	DRAY	-7.86996557E 00

A DELT of 5.0 seconds was used for the power and coast flights of this trajectory. Because of the excessive amount of output data, this report will show prints at every 20.0 seconds. The coast flight data is not printed because SS 4 was not turned on.

LAST ITERATION # NUMBER 6

ALL TOLERANCES CHECK

TIME	1.84994810E 02	DEL1	5.18999994E-03	ETAT	1.84994810F 02	DETT	2.50000000E 00
CHI	6.40125793E 01	DCH1	-1.12976268E-04	X=	2.362255460F 05	Y=	6.45666782E 06
XD=	2.80057460E 03	YD=	6.35943170E 02	XDD	-2.25283975F 06	YDD	-6.15684636E 07
RAD	6.46098878E 06	VEL	2.87187078E 03	THETA	7.51108828F 01	PH1	2.09557075E 00
OVEL	-5.33620286E 07	EVEL	-1.14971699E 08	ENEG	1.79321349F 10	ENG	6.46098878E 06
HB1	-1.46995765E-06	HB2	1.61799553E-07	KB1	1.61799553F-07	KB2	2.94583588E-06
FOM	8.38327376E 00	HS1	8.12458924E-03	HS2	-1.64473911F-03	H2S	-5.19610551E-03
EPS	3.81783138E-09						
TIME	1.85000000E 02	DEL1	5.00000000E 00	ETAT	1.87494810F 02	DETT	5.18999994E-03
CHI	6.40131446E 01	DCH1	-1.12971519E-04	X=	2.36269995F 05	Y=	6.45667112E 06
XD=	2.80061190E 03	YD=	6.35912778E 02	XDD	7.18705346F 00	YDD	-5.85595658E 00
RAD	6.46099261E 06	VEL	2.87190043E 03	THETA	7.51115112F 01	PH1	2.09429801E 00
OVEL	-5.33618218E 07	EVEL	-1.14971456E 08	ENEG	1.79323829F 10	ENG	5.65314744E 06
HB1	-1.46834051E-06	HB2	1.66431806E-07	KB1	1.66431806F-07	KB2	2.94290366E-06
FOM	8.38336211E 00	HS1	8.12464599E-03	HS2	-1.64481960F-03	H2S	-5.19614456E-03
EPS	3.81692189E-09						
TIME	1.90000000E 02	DEL1	5.00000000E 00	ETAT	1.87500000F 02	DETT	5.00000000E 00
CHI	6.45567075E 01	DCH1	-1.08658862E-04	X=	2.50363275F 05	Y=	6.45977739E 06
XD=	2.83677659E 03	YD=	6.06575367E 02	XDD	7.27903259E 00	YDD	-5.87918328E 00
RAD	6.46462727E 06	VEL	2.90090246E 03	THETA	7.57109348F 01	PH1	2.21785309E 00
OVEL	-5.31597595E 07	EVEL	-1.14734754E 08	ENEG	1.81730811F 10	ENG	5.63494987E 06
HB1	-1.46515977E-06	HB2	1.75729504E-07	KB1	1.75729504F-07	KB2	2.93727521E-06
FOM	8.46934964E 00	HS1	8.17940414E-03	HS2	-1.72282116F-03	H2S	-5.23432702E-03
EPS	3.75257514E-09						

TIME	1.95000000E 02	DELI	5.00000000E 00	ETAT	1.92500000F 02	DET	5.00000000E 00
CHI	6.51007984E 01	DCHI	-1.04197507E-04	X=	2.64638533F 05	Y=	6.46273667E 06
XD=	2.87340470E 03	YD=	5.77118456E 02	XDD	7.37245559F 00	YDD	-5.90381799E 00
RAD	6.46815266E 06	VEL	2.93078834E 03	THETA	7.62984807F 01	PHI	2.34289752E 00
OVEL	-5.29519135E 07	EVEL	-1.14493347E 08	ENEQ	1.84173302F 10	ENG	5.61602341E 06
HB1	-1.46200924E-06	HB2	1.85119923E-07	KB1	1.85119923F-07	KB2	2.93175662E-06
FOM	8.55711939E 00	HS1	8.23392095E-03	HS2	-1.80214300F-03	H2S	-5.27370698E-03
EPS	3.68072506E-09						
TIME	2.00000000E 02	DELI	5.00000000E 00	ETAT	1.97500000F 02	DET	5.00000000E 00
CHI	6.56453762E 01	DCHI	-9.96003333E-05	X=	2.79098106F 05	Y=	6.46554836E 06
XD=	2.91050362E 03	YD=	5.47534813E 02	XDD	7.46736137F 00	YDD	-5.92987933E 00
RAD	6.47156947E 06	VEL	2.96155799E 03	THETA	7.68740736F 01	PHI	2.46945358E 00
OVEL	-5.27381160E 07	EVEL	-1.14247058E 08	ENEQ	1.86651860F 10	ENG	5.59635040E 06
HB1	-1.45888639E-06	HB2	1.94605596E-07	KB1	1.94605596F-07	KB2	2.92634440E-06
FOM	8.64672735E 00	HS1	8.28819798E-03	HS2	-1.88281690F-03	H2S	-5.31431845E-03
EPS	3.60569175E-09						
TIME	2.20000000E 02	DELI	5.00000000E 00	ETAT	2.17500000F 02	DET	5.00000000E 00
CHI	6.78277322E 01	DCHI	-7.98300396E-05	X=	3.38827576F 05	Y=	6.47530555E 06
XD=	3.06376091E 03	YD=	4.27787781E 02	XDD	7.86267081F 00	YDD	-6.04879190E 00
RAD	6.48416426E 06	VEL	3.09348239E 03	THETA	7.90559424F 01	PHI	2.99124889E 00
OVEL	-5.18198339E 07	EVEL	-1.13209301E 08	ENEQ	1.96938417F 10	ENG	5.50981869E 06
HB1	-1.44661958E-06	HB2	2.33552176E-07	KB1	2.33552176F-07	KB2	2.90568867E-06
FOM	9.02474666E 00	HS1	8.50295947E-03	HS2	-2.21971876F-03	H2S	-5.48981204E-03
EPS	3.26099325E-09						
TIME	2.40000000E 02	DELI	5.00000000E 00	ETAT	2.37500000F 02	DET	5.00000000E 00
CHI	7.00145894E 01	DCHI	-5.79044491E-05	X=	4.01703029F 05	Y=	6.48264241E 06
XD=	3.22519331E 03	YD=	3.05419571E 02	XDD	8.28543063F 00	YDD	-6.19225124E 00
RAD	6.49507643E 06	VEL	3.23962235E 03	THETA	8.10444788F 01	PHI	3.53908217E 00
OVEL	-5.07911757E 07	EVEL	-1.12077504E 08	ENEQ	2.07850869F 10	ENG	5.40976140E 06
HB1	-1.43458075E-06	HB2	2.74230731E-07	KB1	2.74230731F-07	KB2	2.88644838E-06
FOM	9.43732967E 00	HS1	8.71416825E-03	HS2	-2.58119359F-03	H2S	-5.68814465E-03
EPS	2.83807822E-09						

TIME	2.60000000E 02	DELT	5.00000000E 00	ETAT	2.57500000F 02	DETT	5.00000000E 00
CH1	7.22033411E .01	DCH1	-3.38932116E-05	X=	4.67893691E 05	Y=	6.48750149E 06
XD=	3.39538582E 03	YD=	1.79922990E 02	XDD	8.73937106E 00	YDD	-6.36193636E 00
RAD	6.50435239E 06	VEL	3.40014957E 03	THETA	8.28415452E 01	PHI	4.11451182E 00
OVEL	-4.96379101E 07	EVEL	-1.10836837E 08	ENEQ	2.19433857E 10	ENG	5.29470331E 06
HB1	-1.42258225E-06	HB2	3.16813428E-07	KB1	3.16813428E-07	KB2	2.86838199E-06
FOM	9.88944392E 00	HS1	8.92224696E-03	HS2	-2.97010252E-03	H2S	-5.91234580E-03
EPS	2.32466846E-09						
TIME	2.80000000E 02	DELT	5.00000000E 00	ETAT	2.77500000F 02	DETT	5.00000000E 00
CH1	7.43914236E 01	DCH1	-7.86385692E-06	X=	5.37581294E 05	Y=	6.48981485E 06
XD=	3.57500660E 03	YD=	5.07537788E 01	XDD	9.22911493E 00	YDD	-6.55989033E 00
RAD	6.51204196E 06	VEL	3.57536686E 03	THETA	8.44513720E 01	PHI	4.71917349E 00
OVEL	-4.83434141E 07	EVEL	-1.09470076E 08	ENEQ	2.31738467E 10	ENG	5.16292878E 06
HB1	-1.41041780E-06	HB2	3.61478092E-07	KB1	3.61478092E-07	KB2	2.85123131E-06
FOM	1.03870568E 01	HS1	9.12783763E-03	HS2	-3.38991709E-03	H2S	-6.16606115E-03
EPS	1.70598469E-09						
TIME	3.00000000E 02	DELT	5.00000000E 00	ETAT	2.97500000F 02	DETT	5.00000000E 00
CH1	7.65763350E 01	DCH1	2.00470495E-05	X=	6.10961925E 05	Y=	6.48950324E 06
XD=	3.76482718E 03	YD=	-8.26776714E 01	XDD	9.76041994E 00	YDD	-6.78862470E 00
RAD	6.51819965E 06	VEL	3.76573489E 03	THETA	8.58797178E 01	PHI	5.35478554E 00
OVEL	-4.68881570E 07	EVEL	-1.07957073E 08	ENEQ	2.44823711E 10	ENG	5.01242813E 06
HB1	-1.39785822E-06	HB2	4.08408070E-07	KB1	4.08408070E-07	KB2	2.83471600E-06
FOM	1.09374002E 01	HS1	9.33184553E-03	HS2	-3.84488875E-03	H2S	-6.45371524E-03
EPS	9.74978320E-10						
TIME	3.20000000E 02	DELT	5.00000000E 00	ETAT	3.17500000F 02	DETT	5.00000000E 00
CH1	7.87556527E 01	DCH1	4.97056324E-05	X=	6.88248348E 05	Y=	6.48647504E 06
XD=	3.96574817E 03	YD=	-2.21017022E 02	XDD	1.03405011E 01	YDD	-7.05126060E 00
RAD	6.52288619E 06	VEL	3.97190220E 03	THETA	8.71331627E 01	PHI	6.02315538E 00
OVEL	-4.52490327E 07	EVEL	-1.06274072E 08	ENEQ	2.58758411E 10	ENG	4.84082775E 06
HB1	-1.38464653E-06	HB2	4.57791733E-07	KB1	4.57791733E-07	KB2	2.81852726E-06
FOM	1.15493248E 01	HS1	9.53549592E-03	HS2	-4.34027402E-03	H2S	-6.78072899E-03
EPS	1.11413101E-10						

TIME	3.40000000E 02	DEL1	5.00000000E 00	ETAT	3.37500000F 02	DETT	5.00000000E 00
CH1	8.09270475E 01	DCH1	8.09836252E-05	X=	7.69672896F 05	Y=	6.48062508E 06
XD=	4.17883259E 03	YD=	-3.64980003E 02	XDD	1.09784670F 01	YDD	-7.35172122E 00
RAD	6.52617023E 06	VEL	4.19474102E 03	THETA	8.82185360F 01	PHI	6.72618682E 00
OVEL	-4.33984791E 07	EVEL	-1.04392810E 08	ENEQ	2.736233625F 10	ENG	4.64529792E 06
HB1	-1.37049227E-06	HB2	5.09821480E-07	KB1	5.09821480F-07	KB2	2.80232069E-06
FOM	1.22337790E 01	HS1	9.74040926E-03	HS2	-4.88263820F-03	H2S	-7.15381469E-03
EPS	-9.03810360E-10						
TIME	3.60000000E 02	DEL1	5.00000000E 00	ETAT	3.57500000F 02	DETT	5.00000000E 00
CH1	8.30882964E 01	DCH1	1.13719172E-04	X=	8.55491142E 05	Y=	6.47183301E 06
XD=	4.40534939E 03	YD=	-5.15370975E 02	XDD	1.16859198E 01	YDD	-7.69499852E 00
RAD	6.52813049E 06	VEL	4.43539293E 03	THETA	8.91424692F 01	PHI	7.46588921E 00
OVEL	-4.13033055E 07	EVEL	-1.02279322E 08	ENEQ	2.89515809F 10	ENG	4.42242953E 06
HB1	-1.35506499E-06	HB2	5.64692088E-07	KB1	5.64692088F-07	KB2	2.78570787E-06
FOM	1.30044704E 01	HS1	9.94870404E-03	HS2	-5.48027231F-03	H2S	-7.58138235E-03
EPS	-2.09433892E-09						
TIME	3.80000000E 02	DEL1	5.00000000E 00	ETAT	3.77500000F 02	DETT	5.00000000E 00
CH1	8.52372914E 01	DCH1	1.47726768E-04	X=	9.45986564F 05	Y=	6.45996130E 06
XD=	4.64683125E 03	YD=	-6.73107839E 02	XDD	1.24777974E 01	YDD	-8.08752897E 00
RAD	6.52885829E 06	VEL	4.69532904E 03	THETA	8.99110524F 01	PHI	8.24438868E 00
OVEL	-3.89231039E 07	EVEL	-9.98923225E 07	ENEQ	3.06551010F 10	ENG	4.16806681E 06
HB1	-1.33798653E-06	HB2	6.22598216E-07	KB1	6.22598216F-07	KB2	2.76824659E-06
FOM	1.38787927E 01	HS1	1.01631403E-02	HS2	-6.14377645F-03	H2S	-8.07411025E-03
EPS	-3.49291440E-09						
TIME	4.00000000E 02	DEL1	5.00000000E 00	ETAT	3.97500000F 02	DETT	5.00000000E 00
CH1	8.73720458E 01	DCH1	1.82837333E-04	X=	1.04147656F 06	Y=	6.44485267E 06
XD=	4.90515262E 03	YD=	-8.39255998E 02	XDD	1.33735787F 01	YDD	-8.53773389E 00
RAD	6.52846072E 06	VEL	4.97643174E 03	THETA	9.05295722F 01	PHI	9.6394294E 00
OVEL	-3.62080588E 07	EVEL	-9.71809904E 07	ENEQ	3.24870514F 10	ENG	3.87707618E 06
HB1	-1.31882197E-06	HB2	6.83730772E-07	KB1	6.83730772F-07	KB2	2.74942927E-06
FOM	1.48791546E 01	HS1	1.03873255E-02	HS2	-6.88689367F-03	H2S	-8.64576203E-03
EPS	-5.14410203E-09						

TIME	4.1000000E 02	DEL1	2.85502999E 00	ETAT	4.06427515F 02	DETT	3.57248500E 00
CH1	8.84334958E 01	DCH1	2.00749892E-04	X=	1.09120486F 06	Y=	6.43602913E 06
XD=	5.04133296E 03	YD=	-9.25868814E 02	XDD	1.38681807F 01	YDD	-8.78782686E 00
RAD	6.52787860E 06	VEL	5.12564835E 03	THETA	9.07839395F 01	PH1	9.48986185E 00
OVEL	-3.47060978E 07	EVEL	-9.56844667E 07	ENEG	3.34564783F 10	ENG	3.71589634E 06
HB1	-1.30947841E-06	HB2	7.12099343E-07	KB1	7.12099343F-07	KB2	2.74049833E-06
FOM	1.54354358E 01	HS1	1.05045046E-02	HS2	-7.29375048F-03	H2S	-8.96661298E-03
EPS	-6.07997208E-09						
TIME	4.12855030E 02	DEL1	2.05897008E-04	ETAT	4.10000000F 02	DETT	3.92751500E 00
CH1	8.87359094E 01	DCH1	2.05897008E-04	X=	1.10565474F 06	Y=	6.43334983E 06
XD=	5.08113713E 03	YD=	-9.51064757E 02	XDD	1.40158585F 01	YDD	-8.86265056E 00
RAD	6.52766899E 06	VEL	5.16937895E 03	THETA	9.08499396F 01	PH1	9.61350049E 00
OVEL	-3.42578483E 07	EVEL	-9.52381752E 07	ENEG	3.37402819F 10	ENG	3.66777758E 06
HB1	-1.30793802E-06	HB2	7.16696378E-07	KB1	7.16696378F-07	KB2	2.73904961E-06
FOM	1.56019710E 01	HS1	1.053863341E-02	HS2	-7.41480871F-03	H2S	-9.06306104E-03
EPS	-6.36237019E-09						
TIME	4.12855030E 02	DEL1	2.14497001E 00	ETAT	4.13927515F 02	DETT	1.42751499E 00
CH1	7.00440656E 01	DCH1	6.72604553E-06	X=	1.10565474F 06	Y=	6.43334983E 06
XD=	5.08113713E 03	YD=	-9.51064757E 02	XDD	1.05497697F 01	YDD	-4.80168761E 00
RAD	6.52766899E 06	VEL	5.16937895E 03	THETA	9.08499396F 01	PH1	9.61350049E 00
OVEL	-3.42578483E 07	EVEL	-9.52381752E 07	ENEG	3.37402819F 10	ENG	3.66777758E 06
HB1	-1.30676307E-06	HB2	7.20165881E-07	KB1	7.20165881F-07	KB2	2.73792276E-06
FOM	1.29070860E 01	HS1	1.21901555E-02	HS2	-4.41351715F-03	H2S	-1.03438006E-02
EPS	8.52878657E-10						
TIME	4.15000000E 02	DEL1	5.00000000E 00	ETAT	4.15355030F 02	DETT	2.14497001E 00
CH1	7.03311450E 01	DCH1	6.12898643E-06	X=	1.11657796F 06	Y=	6.43129875E 06
XD=	5.10385904E 03	YD=	-9.61395991E 02	XDD	1.06366390F 01	YDD	-4.83143376E 00
RAD	6.52750718E 06	VEL	5.19361717E 03	THETA	9.08183063F 01	PH1	9.70691400E 00
OVEL	-3.40081792E 07	EVEL	-9.49900178E 07	ENEG	3.38979158F 10	ENG	3.64083065E 06
HB1	-1.30277667E-06	HB2	7.31767969E-07	KB1	7.31767969F-07	KB2	2.73408419E-06
FOM	1.29927873E 01	HS1	1.22314238E-02	HS2	-4.48214657F-03	H2S	-1.03725274E-02
EPS	8.39918357E-10						

TIME	4.20000000E 02	DELI	5.00000000E 00	ETAT	4.17500000F 02	DETT	5.00000000E 00
CH1	7.10063411E 01	DCH1	4.74283798E-06	X=	1.14223107F 06	Y=	6.42643108E 06
XD=	5.15755677E 03	YD=	-9.85732608E 02	XDD	1.08434799F 01	YDD	-4.90396987E 00
RAD	6.52715162E 06	VEL	5.25091046E 03	THETA	9.07416312F 01	PH1	9.92607116E 00
OVEL	-3.34130998E 07	EVEL	-9.43982603E 07	ENEQ	3.42706176F 10	ENG	3.57664911E 06
HB1	-1.29702736E-06	HB2	7.48097873E-07	KB1	7.48097873F-07	KB2	2.72855849E-06
FOM	1.31970479E 01	HS1	1.23270662E-02	HS2	-4.645688701F-03	H2S	-1.04419242E-02
EPS	8.08540790E-10						
TIME	4.40000000E 02	DELI	5.00000000E 00	ETAT	4.37500000E 02	DETT	5.00000000E 00
CH1	7.38038048E 01	DCH1	-6.87438888E-07	X=	1.24760865F 06	Y=	6.40571428E 06
XD=	5.38317785E 03	YD=	-1.08708609E 03	XDD	1.17369423F 01	YDD	-5.24596693E 00
RAD	6.52607867E 06	VEL	5.49184485E 03	THETA	9.03956087F 01	PH1	1.08228075E 01
OVEL	-3.08348271E 07	EVEL	-9.18300141E 07	ENEQ	3.58393572F 10	ENG	3.29927493E 06
HB1	-1.27175316E-06	HB2	8.14664267E-07	KB1	8.14664267F-07	KB2	2.70394045E-06
FOM	1.40826241E 01	HS1	1.26971166E-02	HS2	-5.35632221F-03	H2S	-1.07575350E-02
EPS	6.73026079E-10						
TIME	4.60000000E 02	DELI	5.00000000E 00	ETAT	4.57500000F 02	DETT	5.00000000E 00
CH1	7.67613146E 01	DCH1	-5.842888275E-06	X=	1.35768496F 06	Y=	6.38289584E 06
XD=	5.62782858E 03	YD=	-1.19622323E 03	XDD	1.27496626F 01	YDD	-5.68592158E 00
RAD	6.52569290E 06	VEL	5.75355581E 03	THETA	8.99916822F 01	PH1	1.17528520E 01
OVEL	-2.78953883E 07	EVEL	-8.88941811E 07	ENEQ	3.75459379F 10	ENG	2.98426794E 06
HB1	-1.24249664E-06	HB2	8.83168239E-07	KB1	8.83168239F-07	KB2	2.67487322E-06
FOM	1.50956009E 01	HS1	1.30391774E-02	HS2	-6.17004481F-03	H2S	-1.11451209E-02
EPS	5.20458343E-10						
TIME	4.80000000E 02	DELI	5.00000000E 00	ETAT	4.77500000F 02	DETT	5.00000000E 00
CH1	7.98845203E 01	DCH1	-1.05856079E-05	X=	1.47286584F 06	Y=	6.35779897E 06
XD=	5.89410363E 03	YD=	-1.31533697E 03	XDD	1.39034794F 01	YDD	-6.24820478E 00
RAD	6.52617357E 06	VEL	6.03908676E 03	THETA	8.953688611F 01	PH1	1.27177875E 01
OVEL	-2.45237312E 07	EVEL	-8.55180312E 07	ENEQ	3.94108408F 10	ENG	2.62420714E 06
HB1	-1.20877338E-06	HB2	9.53500468E-07	KB1	9.53500468F-07	KB2	2.64075317E-06
FOM	1.62656014E 01	HS1	1.33403381E-02	HS2	-7.10738829F-03	H2S	-1.16234299E-02
EPS	3.46517481E-10						

TIME	5.0000000E 02	DEL	5.0000000E 00	ETAT	4.9750000F 02	DETT	5.0000000E 00
CHI	8.31765784E 01	DCH1	-1.47352352E-05	X=	1.59361374F 06	Y=	6.33019770E 06
XD=	6.18509518E 03	YD=	-1.44717383E 03	XDD	1.52267190F 01	YDD	-6.96416611E 00
RAD	6.52771075E 06	VEL	6.35214251E 03	THETA	8.90385661F 01	PHI	1.37192972E 01
OVEL	-2.06302223E 07	EVEL	-8.16101590E 07	ENEQ	4.14591114F 10	ENG	2.20961661E 06
HB1	-1.17005613E-06	HB2	-1.02550534E-06	KB1	1.02550534F-06	KB2	2.60092769E-06
FOM	1.76322041E 01	HS1	1.35843118E-02	HS2	-8.19475049F-03	H2S	-1.22176967E-02
EPS	1.43472789E-10						
TIME	5.2000000E 02	DEL	3.87972999E 00	ETAT	5.16939865F 02	DETT	3.06013501E 00
CHI	8.66373089E 01	DCH1	-1.81309612E-05	X=	1.72045922F 06	Y=	6.29980430E 06
XD=	6.50455215E 03	YD=	-1.59519882E 03	XDD	1.67574027F 01	YDD	-7.87487120E 00
RAD	6.53050643E 06	VEL	6.69730229E 03	THETA	8.85046104F 01	PHI	1.47591919E 01
OVEL	-1.60999737E 07	EVEL	-7.70538053E 07	ENEQ	4.37218801F 10	ENG	1.72820090E 06
HB1	-1.12710058E-06	HB2	1.09689015E-06	KB1	1.09689015F-06	KB2	2.55610098E-06
FOM	1.92495085E 01	HS1	1.37506081E-02	HS2	-9.46703469E-03	H2S	-1.29625718E-02
EPS	-9.14042175E-11						
TIME	5.23879730E 02	DEL	0	ETAT	5.2000000F 02	DETT	5.12972999E 00
CHI	8.73280381E 01	DCH1	-1.86834768E-05	X=	1.74582206F 06	Y=	6.29355559E 06
XD=	6.57019381E 03	YD=	-1.62614310E 03	XDD	1.70825162F 01	YDD	-8.07850605E 00
RAD	6.53121249E 06	VEL	6.76844059E 03	THETA	8.83975875F 01	PHI	1.49655270E 01
OVEL	-1.51354541E 07	EVEL	-7.60826962E 07	ENEQ	4.41888364F 10	ENG	1.62578048E 06
HB1	-1.12251665E-06	HB2	1.10406872E-06	KB1	1.10406872F-06	KB2	2.55130017E-06
FOM	1.95982258E 01	HS1	1.37717176E-02	HS2	-9.73907340F-03	H2S	-1.31283557E-02
EPS	-1.40516931E-10						
TIME	5.23879730E 02	DEL	0	ETAT	5.25129730F 02	DETT	0
CHI	8.73280381E 01	DCH1	-1.86869339E-05	X=	1.74582206F 06	Y=	6.29355559E 06
XD=	6.57019381E 03	YD=	-1.62614310E 03	XDD	1.70825170F 01	YDD	-8.07850585E 00
RAD	6.53121249E 06	VEL	6.76844059E 03	THETA	8.83975875F 01	PHI	1.49655270E 01
OVEL	-1.51354541E 07	EVEL	-7.60826962E 07	ENEQ	4.41888364F 10	ENG	1.62578048E 06
HB1	-1.11952818E-06	HB2	1.10869383E-06	KB1	1.10869383F-06	KB2	2.54813371E-06
FOM	1.0000000E-20	HS1	7.02702263E-24	HS2	-4.96936483F-24	H2S	-6.69874702E-24
EPS	-7.18371869E-32						

TIME	5.26379730E 02	DEL T	2.50000000E 00	ETAT	5.25129730F 02	DETT	1.25000000E 00
CHI	8.77765007E 01	DCH1	-1.90217116E-05	X=	1.76223972F 06	Y=	6.28946214E 06
XD=	6.56392915E 03	YD=	-1.64861371E 03	XDD	-2.51732028F 00	YDD	-8.98435694E 00
RAD	6.53167841E 06	VEL	6.76779825E 03	THETA	8.84466194F 01	PHI	1.50988358E 01
OVEL	-1.51398015E 07	EVEL	-7.60826962E 07	ENEQ	4.41888364F 10	ENG	1.62624640E 06
HB1	-1.11352726E-06	HB2	1.11794052E-06	KB1	1.11794052F-06	KB2	2.54183187E-06
FOM	1.00000000E-20	HS1	6.95073854E-24	HS2	-5.00220179F-24	H2S	-6.67652403E-24
EPS	-8.76298125E-32						
TIME	5.28879730E 02	DEL T	0	ETAT	5.26379730F 02	DETT	3.06013501E 00
CHI	8.82274908E 01	DCH1	-1.93406897E-05	X=	1.77864165F 06	Y=	6.28531254E 06
XD=	6.55760722E 03	YD=	-1.67106487E 03	XDD	-2.54022338F 00	YDD	-8.97656811E 00
RAD	6.53212981E 06	VEL	6.76717594E 03	THETA	8.84956674F 01	PHI	1.52318622E 01
OVEL	-1.51440130E 07	EVEL	-7.60826962E 07	ENEQ	4.41888364F 10	ENG	1.62669780E 06
HB1	-1.11051473E-06	HB2	1.12256224E-06	KB1	1.12256224F-06	KB2	2.53869639E-06
FOM	1.00000000E-20	HS1	6.87344132E-24	HS2	-5.03483824F-24	H2S	-6.65466950E-24
EPS	-1.03615031E-31						
TIME	5.28879730E 02	DEL T	0	ETAT	5.29439865F 02	DETT	1.93986499E 00
CHI	8.82274908E 01	DCH1	-1.93412101E-05	X=	1.77864165F 06	Y=	6.28531254E 06
XD=	6.55760722E 03	YD=	-1.67106487E 03	XDD	-2.54022340F 00	YDD	-8.97656811E 00
RAD	6.53212981E 06	VEL	6.76717594E 03	THETA	8.84956674F 01	PHI	1.52318622E 01
OVEL	-1.51440130E 07	EVEL	-7.60826962E 07	ENEQ	4.41888364F 10	ENG	1.62669780E 06
HB1	-1.10915957E-06	HB2	1.12462644E-06	KB1	1.12462644F-06	KB2	2.53727208E-06
FOM	5.44493241E 00	HS1	3.74254234E-03	HS2	-2.74143539F-03	H2S	-3.62342256E-03
EPS	-5.64455149E-11						
TIME	5.30000000E 02	DEL T	5.00000000E 00	ETAT	5.31379730F 02	DETT	1.12027001E 00
CHI	8.84304518E 01	DCH1	-1.94822649E-05	X=	1.78598977F 06	Y=	6.28343496E 06
XD=	6.56085739E 03	YD=	-1.68094109E 03	XDD	-2.90036318F 00	YDD	-8.82371149E 00
RAD	6.53232840E 06	VEL	6.77276994E 03	THETA	8.85033404F 01	PHI	1.52914061E 01
OVEL	-1.50664179E 07	EVEL	-7.60032485E 07	ENEQ	4.42268643F 10	ENG	1.61844978E 06
HB1	-1.10169870E-06	HB2	1.13587656E-06	KB1	1.13587656F-06	KB2	2.52938279E-06
FOM	5.45289423E 00	HS1	3.72894123E-03	HS2	-2.75338772F-03	H2S	-3.62344930E-03
EPS	-6.06519279E-11						

TIME	7.00000000E 02	DELT	5.00000000E 00	DCH1	8.61413354E-06	XAT	6.97500000F 02	DETT	5.00000000E 00
CH1	1.22935267E 02	DCH1	8.61413354E-06	X=	2.94007595F 06	Y=	5.85633090E 06	Y=	5.85633090E 06
XD=	6.98394733E 03	YD=	-3.43750519E 03	DD	1.72249547F 00	YDD	-1.20947170E 01	YDD	-1.20947170E 01
RAD	6.55291220E 06	VEL	7.78408390E 03	THETA	8.95482549F 01	PHI	2.41642033E 01	PHI	2.41642033E 01
OVEL	-1.53455559E 05	EVEL	-6.089888733E 07	ENEG	5.10068329F 10	ENG	1.69603376E 04	ENG	1.69603376E 04
HB1	-5.50147385E-07	HB2	1.70903434E-06	KB1	1.70903434F-06	KB2	1.96458463E-06	KB2	1.96458463E-06
FOM	7.00790757E 00	HS1	-1.67299770E-04	HS2	-4.43099270F-03	H2S	-4.31706118E-03	H2S	-4.31706118E-03
EPS	-5.38022960E-10								
TIME	7.20000000E 02	DELT	5.00000000E 00	DCH1	1.79168597E-05	XAT	7.17500000F 02	DETT	5.00000000E 00
CH1	1.27029503E 02	DCH1	1.79168597E-05	X=	3.08008066F 06	Y=	5.78513176E 06	Y=	5.78513176E 06
XD=	7.01556122E 03	YD=	-3.68391593E 03	DD	1.43373738F 00	YDD	-1.25467133E 01	YDD	-1.25467133E 01
RAD	6.55397943E 06	VEL	7.92397222E 03	THETA	8.96728219F 01	PHI	2.51714501E 01	PHI	2.51714501E 01
OVEL	2.05380967E 06	EVEL	-5.86817165E 07	ENEG	5.19327042F 10	ENG	-2.21405965E 05	ENG	-2.21405965E 05
HB1	-4.66405622E-07	HB2	1.76661175E-06	KB1	1.76661175F-06	KB2	1.88017451E-06	KB2	1.88017451E-06
FOM	7.25118226E 00	HS1	-8.30598195E-04	HS2	-4.57471274F-03	H2S	-4.52494774E-03	H2S	-4.52494774E-03
EPS	-5.57918156E-10								
TIME	7.40000000E 02	DELT	5.00000000E 00	DCH1	2.78327190E-05	XAT	7.37500000F 02	DETT	5.00000000E 00
CH1	1.31018038E 02	DCH1	2.78327190E-05	X=	3.22065789F 06	Y=	5.70891391E 06	Y=	5.70891391E 06
XD=	7.04110021E 03	YD=	-3.93937819E 03	DD	1.11549766F 00	YDD	-1.29994335E 01	YDD	-1.29994335E 01
RAD	6.55471855E 06	VEL	8.06819637E 03	THETA	8.979696336F 01	PHI	2.61671723E 01	PHI	2.61671723E 01
OVEL	4.36711517E 06	EVEL	-5.63615623E 07	ENEG	5.28844244F 10	ENG	-4.71274099E 05	ENG	-4.71274099E 05
HB1	-3.78519900E-07	HB2	1.82127327E-06	KB1	1.82127327F-06	KB2	1.79183382E-06	KB2	1.79183382E-06
FOM	7.51195461E 00	HS1	-1.52029827E-03	HS2	-4.70320903F-03	H2S	-4.76869285E-03	H2S	-4.76869285E-03
EPS	-5.66387826E-10								
TIME	7.60000000E 02	DELT	5.00000000E 00	DCH1	3.80978074E-05	XAT	7.57500000E 02	DETT	5.00000000E 00
CH1	1.34876840E 02	DCH1	3.80978074E-05	X=	3.36168043F 06	Y=	5.62749633E 06	Y=	5.62749633E 06
XD=	7.06000597E 03	YD=	-4.20388432E 03	DD	7.70985957F-01	YDD	-1.34508662E 01	YDD	-1.34508662E 01
RAD	6.55512092E 06	VEL	8.21683197E 03	THETA	8.99190050F 01	PHI	2.71502349E 01	PHI	2.71502349E 01
OVEL	6.79137791E 06	EVEL	-5.39335719E 07	ENEG	5.38622734F 10	ENG	-7.33099314E 05	ENG	-7.33099314E 05
HB1	-2.86468407E-07	HB2	1.87272271E-06	KB1	1.87272271F-06	KB2	1.69954575E-06	KB2	1.69954575E-06
FOM	7.79218281E 00	HS1	-2.23165853E-03	HS2	-4.81737601F-03	H2S	-5.05139890E-03	H2S	-5.05139890E-03
EPS	-5.62067726E-10								

TIME	7.6500000E 02	DELI	5.0000000E 00	ESTAT	7.6250000F 02	DETT	5.0000000E 00
CH1	1.35818993E 02	DCH1	4.06958827E-05	X=	3.39698973F 06	Y=	5.60630831E 06
XD=	7.06363693E 03	YD=	-4.27142005E 03	XXDD	6.81163070F-01	YDD	-1.35634071E 01
RAD	6.55516835E 06	VEL	8.25469539E 03	THETA	8.99489573F 01	PHI	2.73938899E 01
OVEL	7.41548547E 06	EVEL	-5.33090250E 07	ENEGL	5.41108965F 10	ENG	-8.00490622E 05
HB1	-2.62803382E-07	HB2	1.88504624E-06	KB1	1.88504624F-06	KB2	1.67585599E-06
FOM	7.86553740E 00	HS1	-2.41243367E-03	HS2	-4.84384162F-03	H2S	-5.12855629E-03
EPS	-5.59225555E-10						
TIME	7.7000000E 02	DELI	3.59967299E 00	ESTAT	7.67500000F 02	DETT	4.29983650E 00
CH1	1.36751634E 02	DCH1	4.32882450E-05	X=	3.43231605F 06	Y=	5.58478120E 06
XD=	7.06681534E 03	YD=	-4.33951815E 03	XXDD	5.89974187F-01	YDD	-1.36758156E 01
RAD	6.55519446E 06	VEL	8.29284612E 03	THETA	8.99786196F 01	PHI	2.76366655E 01
OVEL	8.04702830E 06	EVEL	-5.26772402E 07	ENEGL	5.43612152F 10	ENG	-8.68676955E 05
HB1	-2.42239921E-07	HB2	1.89549472E-06	KB1	1.89549472F-06	KB2	1.65533713E-06
FOM	7.94028622E 00	HS1	-2.59428923E-03	HS2	-4.86952998F-03	H2S	-5.20841853E-03
EPS	-5.551889672E-10						
TIME	7.73599673E 02	DELI	7.20521199E-04	ESTAT	7.71799837E 02	DETT	1.79983650E 00
CH1	1.37416226E 02	DCH1	-4.38896098E 03	X=	3.45775808E 06	Y=	5.56907141E 06
XD=	7.06886919E 03	YD=	8.32057030E 03	XXDD	5.38133412F-01	YDD	-1.37724019E 01
RAD	6.55520002E 06	VEL	-5.22165441E 07	THETA	8.99999964F 01	PHI	2.78108950E 01
OVEL	8.50767298E 06	EVEL	2.46022185-292	ENEGL	5.45430026F 10	ENG	-9.18406211E 05
HB1	2.46022185-292	HB2	2.46022185-292	KB1	2.46022185-292	KB2	2.46022185-292
FOM	8.01646939E 00	HS1	-2.73305180E-03	HS2	-4.90073000F-03	H2S	-5.28179115E-03
EPS	1.23962877E-07						

At time 773.599673, HB1, HB2, KB1, and KB2 have no meaning since they are computed at the midpoint of the integration increment.

TIME	5.40000000E 02	DELT	5.00000000E 00	ETAT	5.37500000F 02	DETT	5.00000000E 00
CHI	9.02629644E 01	DCHI	-2.05785362E-05	X=	1.85124308E .04	Y=	5.26618201E .16
XD=	6.58977588E 03	YD=	-1.76988673E 03	XDD	2.88267368E 00	YDD	-8.96666005E 00
RAD	6.53406378E 06	VEL	6.82331629E 03	THETA	8.85706178E 01	PHI	1.58226436E 01
OVEL	-1.43630012E 07	EVEL	-7.52836476E 07	ENEQ	4.45701106E 10	ENG	1.54361558E 06
H81	-1.07678277E-06	HB2	1.17253942E-06	KB1	1.17253942F-06	KB2	2.50333975E-06
FOM	5.52500994E 00	HS1	3.60095811E-03	HS2	-2.86040983F-03	H2S	-3.62546258E-03
EPS	-9.48148227E-11						
TIME	5.60000000E 02	DELT	5.00000000E 00	ETAT	5.57500000F 02	DETT	5.00000000E 00
CHI	9.40427429E 01	DCHI	-2.18933283E-05	X=	1.98411221F 06	Y=	6.22897089E 06
XD=	6.64697520E 03	YD=	-1.95225337E 03	XDD	2.83409164F 00	YDD	-9.27495951E 00
RAD	6.53733735E 06	VEL	6.9273935E 03	THETA	8.86995823F 01	PHI	1.68832870E 01
OVEL	-1.28965679E 07	EVEL	-7.37867083E 07	ENEQ	4.52773048F 10	ENG	1.38726582E 06
H81	-1.02426820E-06	HB2	1.24506081E-06	KB1	1.24506081F-06	KB2	2.44870257E-06
FOM	5.67511931E 00	HS1	3.30741862E-03	HS2	-3.07610862F-03	H2S	-3.64019997E-03
EPS	-1.63709046E-10						
TIME	5.80000000E 02	DELT	5.00000000E 00	ETAT	5.77500000F 02	DETT	5.00000000E 00
CHI	9.79625045E 01	DCHI	-2.19064808E-05	X=	2.11761427F 06	Y=	6.18804881E 06
XD=	6.70299899E 03	YD=	-2.14107995E 03	XDD	2.76442821F 00	YDD	-9.61246043E 00
RAD	6.54035460E 06	VEL	7.03664827E 03	THETA	8.88231062F 01	PHI	1.79407435E 01
OVEL	-1.13476312E 07	EVEL	-7.22096813E 07	ENEQ	4.60124664F 10	ENG	1.22168326E 06
H81	-9.68103509E-07	HB2	1.31638252E-06	KB1	1.31638252F-06	KB2	2.39058598E-06
FOM	5.83361315E 00	HS1	2.96185357E-03	HS2	-3.29187084F-03	H2S	-3.67088844E-03
EPS	-2.31693775E-10						
TIME	6.00000000E 02	DELT	5.00000000E 00	ETAT	5.97500000F 02	DETT	5.00000000E 00
CHI	1.02001563E 02	DCHI	-2.04791880E-05	X=	2.25222126F 06	Y=	6.14328082E 06
XD=	6.75738473E 03	YD=	-2.33693535E 03	XDD	2.66963666F 00	YDD	-9.9774401E 00
RAD	6.54311851E 06	VEL	7.15007099E 03	THETA	8.89434259F 01	PHI	1.89940802E 01
OVEL	-9.71282577E 06	EVEL	-7.05491667E 07	ENEQ	4.67758075F 10	ENG	1.04651115E 06
H81	-9.08204817E-07	HB2	1.38634109E-06	KB1	1.38634109F-06	KB2	2.32890368E-06
FOM	6.00121411E 00	HS1	2.56305786E-03	HS2	-3.50486329F-03	H2S	-3.71965910E-03
EPS	-2.97404767E-10						

TIME	6.20000000E 02	DEL1	5.00000000E 00	DET1	6.17500000E 02	DET1	5.00000000E 00
CHI	1.06133713E 02	DCH1	-1.75310815E-05	X=	2.38789515F 06	Y=	6.09452102E 06
XD=	6.80959262E 03	YD=	-2.54034442E 03	XDD	2.54609052F 00	YDD	-1.03672970E 01
RAD	6.54562676E 06	VEL	7.26800533E 03	THETA	8.90624707F 01	PH1	2.00423596E 01
OVEL	-7.98912737E 06	EVEL	-6.88021562E 07	ENEQ	4.75672815F 10	ENG	8.61434074E 05
HB1	-8.4493208E-07	HB2	1.45476036E-06	KB1	1.45476036F-06	KB2	2.26357786E-06
FOM	6.17873036E 00	HS1	2.11130081E-03	HS2	-3.71210480F-03	H2S	-3.78876910E-03
EPS	-3.59705155E-10						
TIME	6.40000000E 02	DEL1	5.00000000E 00	DET1	6.37500000E 02	DET1	5.00000000E 00
CHI	1.10328034E 02	DCH1	-1.30496223E-05	X=	2.52458642F 06	Y=	6.04161359E 06
XD=	6.85901717E 03	YD=	-2.75176862E 03	XDD	2.39089653F 00	YDD	-1.07783222E 01
RAD	6.54787228E 06	VEL	7.39042266E 03	THETA	8.91817546F 01	PH1	2.10845585E 01
OVEL	-6.17382655E 06	EVEL	-6.69660002E 07	ENEQ	4.83866091F 10	ENG	6.66177228E 05
HB1	-7.76895332E-07	HB2	1.52145086E-06	KB1	1.52145086F-06	KB2	2.19453935E-06
FOM	6.36706861E 00	HS1	1.60843396E-03	HS2	-3.91067837F-03	H2S	-3.88057941E-03
EPS	-4.15809609E-10						
TIME	6.60000000E 02	DEL1	5.00000000E 00	DET1	6.57500000E 02	DET1	5.00000000E 00
CHI	1.14550243E 02	DCH1	-7.09095069E-06	X=	2.66223293F 06	Y=	5.98439427E 06
XD=	6.90500468E 03	YD=	-2.97159013E 03	XDD	2.20216574F 00	YDD	-1.12062778E 01
RAD	6.54984420E 06	VEL	7.51727594E 03	THETA	8.93022850F 01	PH1	2.21196494E 01
OVEL	-4.26443384E 06	EVEL	-6.50383052E 07	ENEQ	4.92333356E 10	ENG	4.60498235E 05
HB1	-7.05344003E-07	HB2	1.58620887E-06	KB1	1.58620887F-06	KB2	2.12172762E-06
FOM	6.56724959E 00	HS1	1.05782374E-03	HS2	-4.09796622F-03	H2S	-3.99753620E-03
EPS	-4.65490757E-10						
TIME	6.80000000E 02	DEL1	5.00000000E 00	DET1	6.77500000E 02	DET1	5.00000000E 00
CHI	1.18764474E 02	DCH1	1.94708154E-07	X=	2.80075917F 06	Y=	5.92269203E 06
XD=	6.94687529E 03	YD=	-3.20010186E 03	XDD	1.97919121F 00	YDD	-1.16465748E 01
RAD	6.55152905E 06	VEL	7.64851150E 03	THETA	8.94245018F 01	PH1	2.31465635E 01
OVEL	-2.25851444E 06	EVEL	-6.30167563E 07	ENEQ	5.01069176F 10	ENG	2.44170753E 05
HB1	-6.29778895E-07	HB2	1.64881531E-06	KB1	1.64881531F-06	KB2	2.04509060E-06
FOM	6.78042656E 00	HS1	4.64093707E-04	HS2	-4.27187198F-03	H2S	-4.14216184E-03
EPS	-5.06474862E-10						

LISTINGS FOR THE COMPUTER
PROGRAM AND THE THREE SUBPROGRAMS

```

DIMENSION CM(13,4),PSM(1,4),CXDM(4,1),PR(8,4),CR(8,4),AID(4,4),
1QM(1,4),ULM(4,4),H1(4,1),H2(4,1),FM(8,175),GM(8,175),CAP(8,1),
2BM(8,8),FK(2),AY(2),AYP(2),SM1(2),SM2(2),AEK(4,4),AEK1(4,4),PRD1
3(4,4),PRD2(4,4),ZZD(8,1),ULP(4,4),QBM(8,1),F1(8,1),F2(8,1),CQ(1,4)
4,FT(1,8),EN(8,1),CK(13,8),E1(13,8),CKK(13),E11(13),N5(13),JPP(8)
COMMON N2(13,8),AKB(8),AKS(8),DTA(8),T(10),A(10),B(10),C(10),
1ST(175),SDT(175),ET(175),DET(175),CHI(175),DCHI(175),R1(175),V1(17
25),PHI(175),OV(175),EV(175),FOM(175),HB1(175),HB2(175),AK1(175),
3AK2(175),THET(175),X1(175),Y1(175),XD1(175),YD1(175),XDD1(175),
4YDD1(175),Z1(13),Z2(13),N6(13),TOL1(13),TOL6(13),EP(1,175),H2S(1,1
575),W1(2),W2(2),W3(2),ENG(175),FNJ(175),IWAS(8),IT(8),HS1(175),
6HS2(175)
COMMON TOL3(13),TOL7(13),AKS1(8),AKB1(8),N3(8),N7(8),DTC(8),
1N1(13,8)
EQUIVALENCE (XDD,W1(1)),(YDD,W1(2)),(X,W2(1)),(Y,W2(2)),
1(XD,W3(1)),(YD,W3(2))
1 READ(60,2)N,NO,NR,NC,IR,IO,NRUN,EO,T2
2 FORMAT(7I5,2F15.0)
READ(60,201)(N6(J),J=1,13)
'201 FORMAT(13I5)
READ(60,201)(N5(J),J=1,13)
DO 300 I=1,NO
300 READ(60,3)(N2(I,J),J=1,8)
3 FORMAT(8I5)
DO 4 I=1,NO
4 READ(60,5)AKB(I),AKS(I),DTA(I),TOL1(I),TOL6(I)
5 FORMAT(5E15.0)
DO 255 I=1,8
JPP(I)=0
DO 255 J=1,13
255 CK(J,I)=0.0
DO 253 J=1,NO
K=1
DO 253 I=1,13
IF(I-N2(J,K))253,254,253
254 READ(60,501)ADC1,ETL1
CK(I,J)=ADC1
E1(I,J)=ETL1
K=K+1
253 CONTINUE
501 FORMAT(2E15.0)
DO 6 I=1,N
6 READ(60,599)T(I),A(I),B(I),C(I)
599 FORMAT(4E15.0)
READ(60,7)XO,YO,XDO,YDO,SGO,RO,DELT,THC
7 FORMAT(4E15.0/4E15.0)
NN1=N-1
WRITE(61,11)NN1,NO
11 FORMAT(1H1,///46X,24H*** OPTIMUM GUIDANCE ***//48X,12HVEHICLE HAS
1 I2,7H STAGES/50X,4H AND I2,10H OPTION(S))
WRITE(61,12)
12 FORMAT(11X,15H      K BAR      11X,15H      K STAR      11X,15H      TL B
1AR      11X,15H      TL STAR      )
DO 13 I=1,NO
13 WRITE(61,14)AKB(I),AKS(I),TOL1(I),TOL6(I)

```

```

14 FORMAT(4(11X,E15.8))
  WRITE(61,15)
15 FORMAT(//11X,15H STAGING TIME 11X,15H      A(I)      11X,15H
1B(I)      11X,15H      C(I)      )
  DO 16 I=1,N
16 WRITE(61,14)T(I),A(I),B(I),C(I)
  WRITE(61,17)XO,YO,XDO,YDO,SGO,RO,THC,DELT
17 FORMAT(//5X,6HXO= E15.8,5X,6HYO= E15.8,5X,6HXDO= E15.8,5X,6HY
1DO= E15.8,5X,6HGO= E15.8,5X,6HRO= E15.8,5X,6HTHC= E15.8,5X,6
2HDELT= E15.8)
  WRITE(61,124)
124 FORMAT(//16X,10HCONSTRAINT11X,15H CONSTRAINT 11X,15H CONSTRAIN
1T /16X,10H NUMBERS 11X,15H VALUES 11X,12H TOLERANCES)
  DO 125 J=1,8
NADD=0
  DO 125 I=1,13
NADD=NADD+1
  IF(CK(I,J))126,125,126
126 WRITE(61,127)NADD,CK(I,J),E1(I,J)
125 CONTINUE
127 FORMAT(16X,I5,5X,2(11X,E15.8))
RA=57.2957791
GO1=-SGO*RO**2
TPN=T(N)-(100.0*B(N))/C(N)
CON=(XDO*YO-YDO*XO)/(XO*XDO+YO*YDO)
CHIO=ATAN(CON)
IF(CHIO)18,19,19
18 CHIO=CHIO+3.1415926
19 THD=THC-CHIO
K=2
IFST=4
  DO 20 I=1,N
  IF(I.EQ.1)21,22
21 ST(1)=T(1)
DT=T(2)-T(1)
TLT=T2-T(1)
  IF(DT-TLT)23,24,25
23 ST(5)=T2
SDT(4)=T2-T(2)
GO TO 26
24 ST(5)=T(2)+DELT
SDT(4)=DELT
GO TO 26
25 IF(DT.LE.DELT)27,28
27 ST(5)=T2+DELT
SDT(4)=ST(5)-T(2)
26 K=K+3
CHK=0.0
ST(2)=ST(1)+0.5*DT
ST(3)=T(2)
ST(4)=T(2)
SDT(1)=0.5*DT
SDT(2)=SDT(1)
SDT(3)=0.0
IFST=0

```

```

        GO TO 137
28  ST(2)=T2
    SDT(1)=TLT
    GO TO 137
22  DT=T(I)-T(I-1)
    IF(IFST.EQ.0)138,139
138 IFST=4
    GO TO 20
139 IF(I.EQ.2)140,141
141 IF(DT.LE.DELT)142,143
143 SDT(K)=DELT-CHK
    ST(K+1)=ST(K)+SDT(K)
    GO TO 144
140 SDT(K)=DELT
    ST(K+1)=ST(K)+DELT
144 CHK=T(I)-ST(K+1)
    IF(CHK-DELT)145,225,146
146 K=K+1
    GO TO 140
145 SDT(K+1)=CHK
226 SDT(K+2)=0.0
    ST(K+2)=T(I)
    ST(K+3)=T(I)
    K=K+3
    GO TO 137
225 SDT(K+1)=CHK
    CHK=0.0
    GO TO 226
142 DOT=DT+CHK
    IF(DOT-DELT)147,148,149
147 CHK=T(I)-ST(K-2)
    GO TO 150
148 CHK=0.0
    GO TO 150
149 CHK=T(I)-(ST(K-2)+DELT)
150 K=K+3
    ST(K-2)=ST(K-3)+0.5*DT
    ST(K-1)=T(I)
    ST(K)=T(I)
    SDT(K-3)=0.5*DT
    SDT(K-2)=SDT(K-3)
    SDT(K-1)=0.0
137 K2=K
    K3=K2+1
20  CONTINUE
    WRITE(61,269)K,K2
269 FORMAT(2(5X,I4))
    DO 29 I=1,K2
    IF(I.EQ.1)60,81
60  ET(I)=ST(I)
    GO TO 62
81  ET(I)=ST(I-1)+0.5*SDT(I)
    DET(I-1)=ET(I)-ET(I-1)
62  CHI(I)=CHIO+THD*((ST(I)-ST(1))/(TPN-ST(1)))
    DCHI(I)=0.0

```

```

29 CONTINUE
    DO 202 II=1,4
    DO 202 JJ=1,4
    IF(II.EQ.JJ)203,204
203 AID(II,JJ)=1.0
    GO TO 202
204 AID(II,JJ)=0.0
202 CONTINUE
    H1(1,1)=0.0
    H1(2,1)=0.0
    H2(1,1)=0.0
    H2(2,1)=0.0
    AEK(1,1)=0.0
    AEK(1,2)=0.0
    AEK(1,3)=1.0
    AEK(1,4)=0.0
    AEK(2,1)=0.0
    AEK(2,2)=0.0
    AEK(2,3)=0.0
    AEK(2,4)=1.0
    AEK(3,3)=0.0
    AEK(3,4)=0.0
    AEK(4,3)=0.0
    AEK(4,4)=0.0
    CM(1,1)=0.0
    CM(1,2)=0.0
    CM(1,3)=0.0
    CM(1,4)=0.0
    DO 75 II=2,5
    DO 75 JJ=1,4
75 GM(II,JJ)=AID(II-1,JJ)
    IF(MO.EQ.0)
    DO 170 MO=1,NO
170 IWAS(MO)=K2
30 L1=1
    ITER=ITER+1
    IDEL=0
    NCOUTT=1
    NSEC=0
    DO 808 II=1,8
    JPP(II)=0
    TOL3(II)=TOL1(II)
    TOL7(II)=TOL6(II)
    DTC(II)=DTA(II)
    N3(II)=N5(II)
    AKS1(II)=AKS(II)
    AKB1(II)=AKB(II)
808 N7(II)=N6(II)
    DO 131 II=1,NO
    DO 131 JJ=1,NR
131 N1(II,JJ)=N2(II,JJ)
    DO 215 II=1,8
    DO 215 JJ=1,175
    FM(II,JJ)=0.0
215 GM(II,JJ)=0.0

```

```

LCC=0
L2=2
IZ1=0
NCOUNT=0
IPOWER=1
ISEC=1
LA=NO
NEQ=2
NSO=2
DTR=SDT(1)
TRK=ST(1)
DO 31 I=1,K
IND=1
IF(I.EQ.1)33,34
33 X=XO
Y=Y0
XD=XDO
YD=YDO
X1(I)=XO
Y1(I)=Y0
XD1(I)=XDO
YD1(I)=YDO
R1(I)=SQRT(X**2+Y**2)
V1(I)=SQRT(XD**2+YD**2)
CON1=(X*XD+Y*YD)/(R1(I)*V1(I))
THET(I)=ACOS(CON1)
CON1=X/Y
PHI(I)=ATAN(CON1)
OV(I)=V1**2+GO1/R1
EV(I)=V1**2+2.*GO1/R1
ENG(I)=XD*Y-YD*X
ENJ(I)=R1(I)-ENG(I)/(-GO1)
FMM=A(I)/B(I)
FOM(I)=FMM
CHII=CHI(I)
XDD1(I)=FMM*SIN(CHII)+X*GO1/(R1(I)*R1(I))
YDD1(I)=FMM*COS(CHII)+Y*GO1/(R1(I)*R1(I))
34 R=SQRT(X**2+Y**2)
G=GO1/R**2
DRAGX=X*G/R
DRAGY=Y*G/R
XDD=FMM*SIN(CHII)+DRAGX
YDD=FMM*COS(CHII)+DRAGY
CALL RUNKUT(NEQ,NSO,DTR,TRK,W1,W2,W3,FK,AY,AYP,SM1,SM2,IND)
IF(IPOWER)38,39,38
38 IF(IND.EQ.2)40,41
40 HB1(I)=(GO1/R**3)*(1.-3.*(X/R)**2)
HB2(I)=(-GO1/R**3)*(3.*X*Y/R**2)
AK1(I)=HB2(I)
AK2(I)=(GO1/R**3)*(1.-3.*(Y/R)**2)
GO TO 47
41 IF(IND.LT.3)47,48
47 AAT=ST(I)+0.5*SDT(I)
IF(I.EQ.1)42,241
241 IF(SDT(I-1).EQ.0.0)42,267

```

```

267 IF(SDT(I).EQ.0.0)46,43
42 CH1=CHI(I)
    CH2=CHI(I+1)
    CH3=CHI(I+2)
    AAA=AAT-ST(I+2)
    AAB=AAT-ST(I+1)
    AAC=ST(I)-ST(I+2)
    AAD=ST(I)-ST(I+1)
    AAE=AAT-ST(I)
    AAF=ST(I+1)-ST(I+2)
    AAG=ST(I+1)-ST(I)
    AAH=ST(I+2)-ST(I+1)
    AAI=ST(I+2)-ST(I)
    GO TO 44
43 CH1=CHI(I-1)
    CH2=CHI(I)
    CH3=CHI(I+1)
    AAA=AAT-ST(I+1)
    AAB=AAT-ST(I)
    AAC=ST(I-1)-ST(I+1)
    AAD=ST(I-1)-ST(I)
    AAE=AAT-ST(I-1)
    AAF=ST(I)-ST(I+1)
    AAG=ST(I)-ST(I-1)
    AAH=ST(I+1)-ST(I)
    AAI=ST(I+1)-ST(I-1)
44 CHII=CH1*((AAA*AAB)/(AAC*AAD))+CH2*((AAA*AAE)/(AAF*AAG))+CH3*((AAB
1*AAE)/(AAH*AAI))
45 TAU=(AAT-T(L1))/100.0
    FMM=A(L1)/(B(L1)+C(L1)*TAU)
    GO TO 46
48 AAT=ST(I+1)
    CHII=CHI(I+1)
    CC1=ST(I)-T(L2)
    IF(CC1.EQ.0.0)35,45
35 IF(ISEC.EQ.1)37,36
36 ISEC=1
    GO TO 45
37 ISEC=2
    L1=L1+1
    L2=L2+1
    GO TO 45
46 IND=IND+1
    IF(IND.LE.4)34,49
49 FOM(I+1)=FMM
    R=SQRT(X**2+Y**2)
    V=SQRT(XD**2+YD**2)
    XDD1(I+1)=XDD
    YDD1(I+1)=YDD
    X1(I+1)=X
    Y1(I+1)=Y
    XD1(I+1)=XD
    YD1(I+1)=YD
    R1(I+1)=R
    V1(I+1)=V

```

```

CON1=(X*XD+Y*YD)/(R*V)
THET(I+1)=ACOS(CON1)
CON1=X/R
PHI(I+1)=ATAN(CON1)
OV(I+1)=V**2+GO1/R
EV(I+1)=V**2+2.*GO1/R
ENG(I+1)=XD*Y-YD*X
ENJ(I+1)=R-(ENG(I+1)**2)/(-GO1)
Z1(1)=ST(I)
Z1(2)=X1(I)
Z1(3)=Y1(I)
Z1(4)=XD1(I)
Z1(5)=YD1(I)
Z1(6)=R1(I)
Z1(7)=V1(I)
Z1(8)=THET(I)
Z1(9)=PHI(I)
Z1(10)=OV(I)
Z1(11)=EV(I)
Z1(12)=ENG(I)
Z1(13)=ENJ(I)
GO TO 113
200 IF(NSEC)113,128,113
128 Z1(LY)=Z2(LY)
113 Z2(1)=TRK
Z2(2)=X
Z2(3)=Y
Z2(4)=XD
Z2(5)=YD
Z2(6)=R
Z2(7)=SQRT(XD*XD+YD*YD)
V=Z2(7)
CON1=(X*XD+Y*YD)/(R*V)
Z2(8)=ACOS(CON1)
CON1=X/Y
Z2(9)=ATAN(CON1)
Z2(10)=V**2+GO1/R
Z2(11)=V**2+2.*GO1/R
Z2(12)=XD*Y-YD*X
Z2(13)=ENJ(I+1)
CM(6,1)=X/R
CM(6,2)=Y/R
CM(6,3)=0.0
CM(6,4)=0.0
CM(7,1)=0.0
CM(7,2)=0.0
CM(7,3)=XD/R
CM(7,4)=YD/R
DMM=R*R*V*SIN(Z2(8))
DMN=R*V*V*SIN(Z2(8))
CM(8,1)=(X*V*COS(Z2(8))-XD*R)/DMM
CM(8,2)=(Y*V*COS(Z2(8))-YD*R)/DMM
CM(8,3)=(XD*R*COS(Z2(8))-X*V)/DMN
CM(8,4)=(YD*R*COS(Z2(8))-Y*V)/DMN
CM(9,1)=Y/R**2

```

```

CM(9,2)=X/R**2
CM(9,3)=0.0
CM(9,4)=0.0
CM(10,1)=GO1*X/R**3
CM(10,2)=GO1*Y/R**3
CM(10,3)=2.*XD
CM(10,4)=2.*YD
CM(11,1)=CM(10,1)
CM(11,2)=CM(10,2)
CM(11,3)=XD
CM(11,4)=YD
CM(12,1)=-YD
CM(12,2)=XD
CM(12,3)=Y
CM(12,4)=-X
CM(13,1)=X/R+(2.*Z2(12)*YD)/(-GO1)
CM(13,2)=Y/R-(2.*Z2(12)*XD)/(-GO1)
CM(13,3)=(-2.*Z2(12)*Y)/(-GO1)
CM(13,4)=(2.*Z2(12)*X)/(-GO1)
CXDM(1,1)=XD
CXDM(2,1)=YD
CXDM(3,1)=XDD
CXDM(4,1)=YDD
IF(IPOWER)71,70,71
71 DO 50 J=1,LA
IF(JPP(J)-J)256,50,256
256 JP=J
LO=N7(JP)
TOL2=Z2(LO)-AKB1(JP)
IF(ABS(TOL2).LE.TOL3(JP))51,52
52 DLTC=ABS(Z1(LO)-Z2(LO))
DLTK=ABS(Z1(LO)-AKB(JP))
IF(DLTC.LT.DLTK)83,54
54 IF(NSEC.EQ.0)161,164
161 IG=K3
IT(NCOUTT)=I+2
165 SDT(IG)=SDT(IG-2)
ST(IG)=ST(IG-2)
ET(IG)=ET(IG-2)
DET(IG)=DET(IG-2)
CHI(IG)=CHI(IG-2)
IG=IG-1
IF(IG.EQ.IT(NCOUTT))164,165
164 IDEL=JP
NSEC=4
151 DZ1=Z2(LO)-Z1(LO)
DZ2=AKB1(JP)-Z1(LO)
CHI(I+1)=(DZ2*(CHI(I+1)-CHI(I)))/DZ1+CHI(I)
CHII=CHI(I)
DTR=(DZ2*(TRK-ST(I)))/DZ1
TRK=ST(I)
W2(1)=AY(1)
W2(2)=AY(2)
W3(1)=AYP(1)
W3(2)=AYP(2)

```

```

I=I-1
GO TO 31
83 IF(NSEC.EQ.0)188,82
188 DTR=SDT(I+1)
GO TO 50
82 IF(JP.EQ.IDEL)151,50
50 CONTINUE
GO TO 31
51 DO 154 M01=1,N
IF(TRK.EQ.T(M01))155,154
154 CONTINUE
IF(SDT(I+1).EQ.0.0)155,242
242 IF(NCOUTT-1)227,156,227
227 IF(AKB(NCOUTT)-AKB(NCOUTT-1))156,229,156
229 IF(N6(NCOUTT)-N6(NCOUTT-1))156,155,156
156 IWAS(NCOUTT)=I
CHI(I+2)=CHI(I+1)
ST(I+1)=TRK
ST(I+2)=TRK
SDT(I)=DTR
SDT(I+1)=0.0
SDT(I+2)=ST(I+3)-ST(I+2)
ET(I+1)=ST(I)+0.5*SDT(I)
ET(I+3)=ST(I+1)+0.5*SDT(I+2)
ET(I+2)=ST(I+1)
DET(I)=ET(I+1)-ET(I)
DET(I+1)=ET(I+2)-ET(I+1)
DET(I+2)=ET(I+3)-ET(I+2)
DET(I+3)=ET(I+4)-ET(I+3)
155 NSEC=0
JP(1)=JP
IDEL=0
GO TO(58,59)SSWTCHF(2)
58 TH=THET(I+1)*RA
PH=PHI(I+1)*RA
CH=CHII*RA
WRITE(61,80)ITER,TRK,DTR,FT(I+1),DET(I+1),CH,Z2(2),Z2(3),Z2(4),Z2(
15),Z2(6),Z2(7),TH,PH,Z2(10),Z2(11),Z2(12),Z2(13),FOM(I+1),DRAGX,DR
2AGY
80 FORMAT(//32X,39HCONDITIONS FOR POWER CUTOFF, ITERATION I2///5X,
16HTIME E15.8,5X,6HDELT E15.8,5X,6HETAT E15.8,5X,6HDETT E15.8/5
2X,6HCHI E15.8,5X,6HX= E15.8,5X,6HY= E15.8,5X,6HxD= E15.8
3/5X,6HYD= E15.8,5X,6HRAD E15.8,5X,6HVEL E15.8,5X,6HTHETA E15
4.8/5X,6HPhi E15.8,5X,6HQVEL E15.8,5X,6HEVEL E15.8,5X,6HENEG E
515.8/5X,6HENG E15.8,5X,6HFOM E15.8,5X,6HDRAGX E15.8,5X,6HDRAGY
6 E15.8)
59 TOL2=AKS1(JP)-AKB1(JP)
DO 68 II=1,4
DO 68 JJ=1,4
68 ULM(II,JJ)=AID(II,JJ)
IF(N7(JP).EQ.N3(JP))304,86
304 IF(ABS(TOL2).LE.0.01)61,86
86 IF(LO-1)244,245,244
245 DO 246 II=1,4
246 PSM(1,II)=0.0

```

```

        GO TO 247
244 DO 238 II=1,4
238 CQ(1,II)=CM(LO,II)
    CALL MATMP(1,4,4,1,4,4,1,4,1,CQ,CXDM,PRD1)
    DO 239 II=1,4
239 PSM(1,II)=-CQ(1,II)/PRD1
247 CALL MATMP(4,1,1,4,4,4,4,1,4,CXDM,PSM,PRD1)
    DO 240 II=1,4
    DO 240 JJ=1,4
240 ULM(II,JJ)=AID(II,JJ)+PRD1(II,JJ)
    GO TO(53,67)SSWTCHF(4)
53 WRITE(61,110)
110 FORMAT(///36X,20HCONDITIONS FOR COAST)
67 IPOWER=0
    DTR=DTC(JP)
313 IND=1
    FMM=0.0
    GO TO 34
39 IF(IND.EQ.2)63,64
63 HBA=(GO1/R**3)*(1.-3.*(X/R)**2)
    HBB=(-GO1/R**3)*(3.*X*Y/R**2)
    HBC=HBB
    HBD=(GO1/R**3)*(1.-3.*(Y/R)**2)
64 IND=IND+1
    IF(IND.GT.4)65,34
65 AEK(3,1)=HBA
    AEK(3,2)=HBB
    AEK(4,1)=HBC
    AEK(4,2)=HBD
    DO 66 II=1,4
    DO 66 JJ=1,4
66 AEK1(II,JJ)=AID(II,JJ)+AEK(II,JJ)*DTR
    CALL MATMP(4,4,4,4,4,4,4,4,4,AEK1,ULM,PRD1)
    DO 69 II=1,4
    DO 69 JJ=1,4
69 ULM(II,JJ)=PRD1(II,JJ)
    LY=N3(JP)
    GO TO 200
70 IF(LY.EQ.1)305,306
305 TOL2=TRK-AKS1(JP)
    IF(ABS(TOL2).LE.TOL7(JP))91,311
311 IF(TOL2)67,67,312
312 DTR=DTC(JP)-(TRK-AKS1(JP))
    TRK=TRK-DTC(JP)
    GO TO 307
306 TOL2=Z2(LY)-AKS1(JP)
    IF(ABS(TOL2).LE.TOL7(JP))91,73
73 DLTC=ABS(Z1(LY)-Z2(LY))
    DLTK=ABS(Z1(LY)-AKS(LY))
    IF(DLTC.LT.DLTK)89,74
89 GO TO(103,111)SSWTCHF(4)
103 TH=Z2(8)*RA
    PH=Z2(9)*RA
    WRITE(61,114)TRK,DTR,Z2(2),Z2(3),Z2(4),Z2(5),Z2(6),Z2(7),TH,PH,
    Z2(10),Z2(11),Z2(12),Z2(13),DRAGX,DRAGY

```

```

114 FORMAT(//5X,6HTIME E15.8,5X,6HDELT E15.8,5X,6HX= E15.8,5X,6HY
1= E15.8/5X,6HxD= E15.8,5X,6HYD= E15.8,5X,6HRAD E15.8,5X,6
1HVEL E15.8/5X,6HTHETA E15.8,5X,6HPHI E15.8,5X,6HOVEL E15.8,5X
2,6HEVEL E15.8/5X,6HENEG E15.8,5X,6HENG E15.8,5X,6HDRAGX E15.8,
35X,6HDRAGY E15.8)
111 IF(NSEC)90,67,90
 74 NSEC=4
 90 DZ1=Z2(LY)-Z1(LY)
    DZ2=AKS1(JP)-Z1(LY)
    TRK=TRK-DTR
    DTR=DZ2*DTR/DZ1
307 W2(1)=AY(1)
    W2(2)=AY(2)
    W3(1)=AYP(1)
    W3(2)=AYP(2)
    GO TO 313
 91 WRITE(61,112)ITER
112 FORMAT(///32X,39HCONDITIONS FOR COAST CUTOFF, ITERATION I2)
    TH=Z2(8)*RA
    PH=Z2(9)*RA
    WRITE(61,114)TRK,DTR,Z2(2),Z2(3),Z2(4),Z2(5),Z2(6),Z2(7),TH,PH,
    Z2(10),Z2(11),Z2(12),Z2(13),DRAGX,DRAGY
    NSEC=0
    GO TO 92
 61 NCOUNT=NO
    LW=LO
    GO TO 72
 92 NCOUNT=NCOUNT+1
    NCOUTT=NCOUTT+1
    LW=LY
 72 IF(LW-1)330,331,330
331 DO 332 II=1,4
332 PSM(1,II)=0.0
    GO TO 333
330 DO 76 II=1,4
 76 CQ(1,II)=CM(LW,II)
    CALL MATMP(1,4,4,1,4,4,1,4,1,CQ,CXDM,PRD2)
    DO 77 II=1,4
 77 PSM(1,II)=-CQ(1,II)/PRD2
333 IF(NC-1)206,207,206
206 DO 208 II=1,4
208 QM(1,II)=PSM(1,II)
    GO TO 205
207 DO 210 II=1,4
210 QM(1,II)=CM(7,II)
205 LC=0
    DO 78 II=1,NR
    LB=N1(JP,II)
    IF(LB)79,78,79
 79 LC=LC+1
    IZ1=IZ1+1
    ZZD(IZ1)=Z2(LB)
    CKK(IZ1)=CK(LB,JP)
    E11(IZ1)=E1(LB,JP)
    DO 790 MI=1,4

```

```

790 CR(LC,MI)=CM(LB,MI)
78 CONTINUE
    CALL MATMP(4,1,1,4,4,4,4,1,4,CXDM,PSM,PRD1)
    DO 87 II=1,4
    DO 87 MJ=1,4
87 PRD1(II,MJ)=AID(II,MJ)+PRD1(II,MJ)
    CALL MATMP(8,4,4,4,8,4,LC,4,4,CR,PRD1,PR)
    KTIM=I+1
    JJ=I+1
    NCOT=LCC+1
    LCC=NCOT+LC-1
    WRITE(61,257)JPP(JP),JP,LC,LCC,NCOT,JJ,KTIM,IZ1
257 FORMAT(//5X,6HJPP= I4,5X,6HJP= I4,5X,6HLC= I4,5X,6HLCC= I4/5
     1X,6HNLCOT= I4,5X,6HJJ= I4,5X,6HKTIM= I4,5X,6HZ1= I4)
    DO 94 II=1,KTIM
    H1(3,1)=COS(CHI(JJ))*FOM(JJ)
    H1(4,1)=-SIN(CHI(JJ))*FOM(JJ)
    H2(3,1)=-SIN(CHI(JJ))*FOM(JJ)*0.5
    H2(4,1)=-COS(CHI(JJ))*FOM(JJ)*0.5
    IF(II-1)216,221,216
216 AEK(3,1)=HB1(JJ)
    AEK(3,2)=HB2(JJ)
    AEK(4,1)=AK1(JJ)
    AEK(4,2)=AK2(JJ)
    DO 218 I1=1,4
    DO 218 J1=1,4
218 AEK1(I1,J1)=AID(I1,J1)+AEK(I1,J1)*SDT(JJ)
    CALL MATMP(4,4,4,4,4,4,4,4,4,ULM,AEK1,ULP)
    DO 219 I1=1,4
    DO 219 J1=1,4
219 ULM(I1,J1)=ULP(I1,J1)
221 CALL MATMP(8,4,4,4,8,4,LC,4,4,PR,ULM,CR)
    CALL MATMP(8,4,4,1,8,1,LC,4,1,CR,H1,F1)
    CALL MATMP(8,4,4,1,8,1,LC,4,1,CR,H2,F2)
    LF=0
    DO 88 I1=NCOT,LCC
    LF=LF+1
    FM(I1,JJ)=F1(LF,1)
    GM(I1,JJ)=F2(LF,1)
88 GM(I1,JJ)=F2(LF,1)
    IF(JP.EQ.IO)85,84
85 CALL MATMP(1,4,4,4,1,4,1,4,4,QM,ULM,PSM)
    CALL MATMP(1,4,4,1,8,1,1,4,1,PSM,H1,F1)
    CALL MATMP(1,4,4,1,8,1,1,4,1,PSM,H2,F2)
    HS1(JJ)=F1(1,1)
    HS2(JJ)=F2(1,1)
84 JJ=KTIM-II
94 CONTINUE
    IF(NCOUNT.EQ.NO)222,223
223 IPOWER=4
    TRK=ST(I+1)
    DTR=SDT(I+1)
    X=X1(I+1)
    Y=Y1(I+1)
    XD=XD1(I+1)

```

```

      YD=YD1(I+1)
31  CONTINUE
222 K2=KTIM
      WRITE(61,259)
259 FORMAT(//5X,6HBM MAT)
      DO 93 II=1,LCC
      DO 95 JJ=1,LCC
      BM(II,JJ)=0.0
      DO 96 KK=1,K2
96  BM(II,JJ)=BM(II,JJ)+FM(II,KK)*FM(JJ,KK)*DET(KK)
      WRITE(61,260)BM(II,JJ)
260 FORMAT(5X,E15.8)
95  CONTINUE
93  CONTINUE
      DO 97 II=1,LCC
      QBM(II,1)=0.0
      DO 99 JJ=1,K2
99  QBM(II,1)=QBM(II,1)-FM(II,JJ)*HS1(JJ)*DET(JJ)
97  CONTINUE
      CALL MINV(BM,BM,TSST,LCC)
      CALL MATMP(8,8,8,1,8,1,LCC,LCC,1,BM,QBM,F1)
      DO 98 II=1,LCC
98  FT(1,II)=F1(II,1)
      CALL MATMP(1,8,8,175,1,175,1,LCC,K2,FT,FM,EP)
      CALL MATMP(1,8,8,175,1,175,1,LCC,K2,FT,GM,H2S)
      DO 186 II=1,K2
      EP(II)=EP(II)+HS1(II)
186 H2S(II)=H2S(II)+HS2(II)
      DO 100 II=1,LCC
100 ZZD(II)=CKK(II)-ZZD(II)
      DO 889 II=1,LCC
      IF(ABS(ZZD(II)).LT.E11(II))889,102
889 CONTINUE
302 DO 101 JJ=1,K2
      IF(ABS(EP(JJ)).LT.E0)101,102
101 CONTINUE
      WRITE(61,129)ITER
129 FORMAT(1H1,///39X,25HLAST ITERATION -- NUMBER I2//41X,20HALL TOLE
     IRANCES CHECK)
104 IPRINT=0
      GO TO 105
102 GO TO(106,107)SSWTCHF(3)
106 IPRINT=1
      WRITE(61,108)ITER
108 FORMAT(1H1,///32X,39HCONDITIONS FOR POWER FLIGHT, ITERATION I2)
105 DO 659 IP=1,K2
      TH=THET(IP)*RA
      PH=PHI(IP)*RA
      CH=CHI(IP)*RA
      DH=DCHI(IP)*RA
      WRITE(61,660)ST(IP),SDT(IP),ET(IP),DET(IP),CH,DH,X1(IP),Y1(IP),
     1XD1(IP),YD1(IP),XDD1(IP),YDD1(IP),R1(IP),V1(IP),TH,PH,OV(IP),
     1EV(IP),ENG(IP),ENJ(IP),HB1(IP),HB2(IP),AK1(IP),AK2(IP),FOM(IP),
     3HS1(IP),HS2(IP),H2S(IP),EP(IP)
659 CONTINUE

```

```

660 FORMAT(//5X,6HTIME E15.8,5X,6HDELT E15.8,5X,6HETAT E15.8,5X,6HD
1ETT E15.8/5X,6HCHI E15.8,5X,6HDCHI E15.8,5X,6HX= E15.8,5X,6
2HY= E15.8/5X,6HXD= E15.8,5X,6HYD= E15.8,5X,6HXDD E15.8,5X
3,6HYDD E15.8/5X,6HRAD E15.8,5X,6HVEL E15.8,5X,6HTHETA E15.8,
45X,6HPHI E15.8/5X,6HOVEL E15.8,5X,6HEVEL E15.8,5X,6HENEG E15.
58,5X,6HENG E15.8/5X,6HHB1 E15.8,5X,6HHB2 E15.8,5X,6HKB1 E1
65.8,5X,6HKB2 E15.8/5X,6HFOM E15.8,5X,6HHS1 E15.8,5X,6HHS2
7E15.8,5X,6HH2S E15.8/5X,6HEPS E15.8)
      WRITE(61,663)
663 FORMAT(//50X,12HETA K MATRIX//)
      DO 664 II=1,4
664 WRITE(61,665)(ULM(II,JJ),JJ=1,4)
665 FORMAT(4(5X,E15.8))
      IF(IPRINT)107,109,107
107 DO 115 II=1,LCC
      DO 116 JJ=1,LCC
      BM(II,JJ)=0.0
      DO 117 KK=1,K2
117 BM(II,JJ)=BM(II,JJ)+FM(II,KK)*(-FM(JJ,KK)*DET(KK)/(2.*H2S(KK)))
116 CONTINUE
115 CONTINUE
      DO 118 II=1,LCC
      EN(II,1)=0.0
      DO 119 KK=1,K2
119 EN(II,1)=EN(II,1)+(FM(II,KK)*EP(KK)*DET(KK)/(2.*H2S(KK)))
118 CONTINUE
      CALL MINV(BM,BM,TSST,LCC)
      DO 120 II=1,LCC
120 EN(II,1)=EN(II,1)+ZZD(II,1)
      CALL MATMP(8,8,8,1,8,1,LCC,LCC,1,BM,EN,ZZD)
      DO 121 II=1,LCC
121 FT(1,II)=ZZD(II,1)
      DO 122 II=1,LCC
      DO 122 KK=1,K2
122 FM(II,KK)=-FM(II,KK)/(2.*H2S(KK))
      CALL MATMP(1,8,8,175,1,175,1,LCC,K2,FT,FM,DCHI)
      DO 127 II=1,K2
127 DCHI(II)=DCHI(II)-EP(II)/(2.*H2S(II))
      DO 123 KK=1,K2
123 CHI(KK)=CHI(KK)+DCHI(KK)
      MOVE=2
      DO 159 MO2=1,K
      IF(MO2.EQ.IWAS(MOVE))157,159
157 IG=MO2+1
      DO 158 MO1=IG,K
      ST(MO1)=ST(MO1+2)
      CHI(MO1)=CHI(MO1+2)
      SDT(MO1-1)=ST(MO1)-ST(MO1-1)
      ET(MO1-1)=ST(MO1-2)+0.5*SDT(MO1-2)
      DET(MO1-1)=ST(MO1-1)+0.5*SDT(MO1-1)-ET(MO1-1)
158 CONTINUE
      MOVE=MOVE+1
159 CONTINUE
      K4=I
      DO 168 MO=K4,K3

```

```

168 CHI(MO+1)=3.*CHI(MO)-3.*CHI(MO-1)+CHI(MO-2)
      GO TO 30
109 IF(NRUN)1,252,1
252 STOP
      END

      SUBROUTINE MATMP(I1,I2,I3,I4,I5,I6,I,J,K,A,B,C)
      DIMENSION A(1),B(1),C(1)
      L1=0
      DO 1 L=1,K
      DO 2 N=1,I
      IC=I5*I6-(I5*(I6-L1)-N)
      C(IC)=0.0
      L2=0
      DO 3 M=1,J
      IA=I1*I2-(I1*(I2-L2)-N)
      IB=I3*I4-(I3*(I4-L1)-M)
      C(IC)=C(IC)+A(IA)*B(IB)
      L2=L2+1
3 CONTINUE
2 CONTINUE
      L1=L1+1
1 CONTINUE
      RETURN
      END

      SUBROUTINE MINV(A,AI,DET,M)
      DIMENSION A(8,8),AI(8,8),IORD(8)
      N=M
      DO 100 I=1,N
      DO 100 J=1,N
100 AI(I,J)=A(I,J)
      DO 51 I=1,N
51 IORD(I)=I
      DET=1.
      DO 1 K=1,N
      KP1=K+1
      TEST=ABS(AI(K,K))
      IND=K
      IF(K-N)21,22,21
21 DO 23 L=KP1,N
      TEST1=ABS(AI(L,K))
      IF(TEST-TFST1)24,23,23
24 TEST=TEST1
      IND=L
23 CONTINUE
      IF(IND-K)25,22,25
25 DO 26 J=1,N
      TEST1=AI(IND,J)
      AI(IND,J)=AI(K,J)
26 AI(K,J)=TFST1
      DFT=-DET
      LL=IORD(K)
      IORD(K)=IORD(IND)
      IORD(IND)=LL

```

```

22 CONTINUE
  IF(AI(K,K))31,32,31
31 AI(K,K)=1./AI(K,K)
  DO 2 J=1,N
    IF(J-K)3,2,3
3 QUOT=AI(K,J)*AI(K,K)
  AI(K,J)=QUOT
  IF(QUOT)42,2,42
42 DO 4 I=1,N
  IF(I-K)5,4,5
5 TEST=AI(I,J)-AI(I,K)*QUOT
  IF(ABS(TEST)-ABS(AI(I,J))*1.0E-5)70,71,71
70 AI(I,J)=0.
  GO TO 4
71 AI(I,J)=TEST
4 CONTINUE
2 CONTINUE
  DO 11 I=1,N
    IF(I-K)12,11,12
12 AI(I,K)=-AI(I,K)*AI(K,K)
11 CONTINUE
  DET=DET/AI(K,K)
1 CONTINUE
55 DO 52 I=1,N
  IND=IORD(I)
  IF(IND-I)53,52,53
53 LL=IORD(I)
  IORD(I)=IORD(IND)
  IORD(IND)=LL
  DO 54 K=1,N
    TEST=AI(K,IND)
    AI(K,IND)=AI(K,I)
54 AI(K,I)=TEST
  GO TO 55
52 CONTINUE
33 RETURN
32 DET=0.
  RETURN
END

```

```

SUBROUTINE RUNKUT(NEQ,NS0,H,X,F,Y,YP,FK,AY,AYP,SUM1,SUM2,INDT)
DIMENSION F(100),Y(100),YP(100),AY(100),AYP(100),SUM1(100)
DIMENSION SUM2(100),FK(100)
IF(INDT-2) 1,2,5
1 AL1=H/2.
  AL2=0.
  AL3=.5
  AL4=1.
  DO 6 I=1,NEQ
    AY(I)=Y(I)
    AYP(I)=YP(I)
    SUM1(I)=0.
6 SUM2(I)=0.
  GO TO 7
2 AL1=H/2.

```

```

X=X+H/2.
AL2=H/4.
AL3=.5
AL4=2.
GO TO 7
5 IF (INDT-3) 3,3,4
3 AL1=H
AL2=H/2.
AL3=1.
AL4=2.
7 DO 8 I=1,NEQ
IF (I -NSO) 9,9,10
9 Y(I)=AY(I)+AL1*AYP(I)+AL2*FK(I)
FK(I)=H*F(I)
YP(I)=AYP(I)+AL3*FK(I)
SUM1(I)=SUM1(I)+FK(I)
GO TO 11
10 FK(I)=H*F(I)
Y(I)=AY(I)+AL3*FK(I)
11 SUM2(I)=SUM2(I)+AL4*FK(I)
8 CONTINUE
RETURN
4 X=X+H/2.
DO 12 I=1,NEQ
FK(I)=H*F(I)
SUM2(I)=(SUM2(I)+FK(I))/6.
IF (I-NSO) 13,13,14
13 Y(I)=AY(I)+H*AYP(I)+H* SUM1(I)/6.
YP(I)=AYP(I)+SUM2(I)
GO TO 12
14 Y(I)=AY(I)+SUM2(I)
12 CONTINUE
RETURN
END

```

REFERENCES

1. Dickey, Lyle R., "Trajectory Optimization by Explicit Numerical Methods," NASA TM X-53464, George C. Marshall Space Flight Center, May 25, 1966, unclassified.
2. Dickey, Lyle R., "Near-Optimum Guidance - An Analysis of Fuel Penalty," NASA TM X-53249, George C. Marshall Space Flight Center, April 23, 1965, unclassified.
3. Dickey, Lyle R., "Guidance Applications of Linear Analysis," NASA TM X-53166, George C. Marshall Space Flight Center, November 27, 1964, unclassified.

December 1966

APPROVAL

TMX-53552

COMPUTER PROGRAM TRAJECTORY OPTIMIZATION
BY EXPLICIT NUMERICAL METHODS

By

James W. Hilliard

The information in this report has been reviewed for security classification. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

This document has also been reviewed and approved for technical accuracy.

H. J. HOELZER

Director, Computation Laboratory

DISTRIBUTION

TM X-53552

R-AERO

Dr. Geissler
 Mr. Jean
 Mr. Dearman
 Mr. Schwaniger
 Mr. Ingram
 Dr. H. Krause
 Mr. Rheinfurth
 Mr. Jandebeur
 Mr. Baker
 Mr. Burns
 Mr. W. Vaughan
 Mr. Hart
 Mr. Lovingood
 Mrs. Chandler
 Mr. Lisle
 Mr. Teague
 Mr. Cummings
 Dr. Sperling
 Dr. Heybey
 Mr. Mabry
 Mr. O. E. Smith
 Mr. Dickey (5)

R-ASTR

Mr. Moore
 Mr. Richard
 Mr. Gassaway
 Mr. Taylor
 Mr. Brooks
 Mr. Hosenthien
 Mr. Scofield
 Mr. Woods
 Mr. Digesu
 Mr. R. Hill
 Mrs. Neighbors
 Dr. R. Decher

R-P&VE

Mr. Swanson
 Mr. Goerner

I-I-IB-DIR

Col. James

I-MO-MGR

Dr. Speer

I-MO-O

Mr. Kurtz

R-RP-U

Mr. R. Bland

R-DIR

DEP-T

R-COMP

Dr. Hoelzer
 Dr. Krenn
 Dr. Arenstorf
 Mr. Hubbard
 Mr. Scollard
 Mr. Hodges
 Mr. Yarbrough
 Mr. Capps
 Mr. Hilliard (5)

MS-IPL (8)

MS-IP
 MS-H
 HME-P
 CC-P
 MS-T (6)

Scientific and Technical Information Facility (25)
 Attn: NASA Representative (S-AK/RKT)
 P. O. Box 5700
 Bethesda, Maryland

EXTERNAL DISTRIBUTION

Mr. Lawrence Hicks
 Department of Physics
 Jacksonville State University
 Jacksonville, Alabama

Mrs. Mildred Johnson
 Department of Mathematics
 Jacksonville State University
 Jacksonville, Alabama