APUNTE N°1. Sistemas de Coordenadas

Definición 1 Sistema Unidimensional

Si en una recta asociamos cada punto a un número real x de modo que el cero separa a los números positivos de los negativos, obtenemos un **sistema coordenado unidimensional** o **sistema coordenado lineal**. Esta asociación es posible por el axioma que señala que existe una correspondencia uno a uno entre los números reales y los puntos de una recta. El número real asociado a un punto se llama **coordenada** del punto y se anota $P(x_1)$.

Definición 2 Distancia entre dos puntos en una recta

Si la coordenada de P es x_1 y la coordenada de Q es x_2 , entonces la distancia entre P y Q está dada por $PQ = |x_2 - x_1|$, en valor absoluto, para asegurar una distancia positiva. Recordemos que $|x_2 - x_1| = |x_1 - x_2|$. Si se sabe que $x_2 > x_1$, no es necesario el valor absoluto pues $x_2 - x_1 > 0$.

Definición 3 Sistema Bidimensional

Si escogemos dos rectas perpendiculares (los Ejes) y asociamos a cada una de ellas un sistema coordenado de modo que el cero de ambas rectas coincida con el punto de intersección (el origen), obtenemos un sistema coordenado bidimensional rectangular o sistema coordenado rectangular en el plano, llamado también sistema coordenado cartesiano en honor a Rene Descarte, filósofo y matemático (1596-1650).

El sentido positivo de la ubicación de los números está dado por la punta de la flecha de los ejes. Ahora cada punto del plano estará asociado a un par ordenado de números reales que son sus **coordenadas**, las coordenadas del punto P(x,y) son su abscisa x y su ordenada y. El Sistema cartesiano permite ubicar la posición de cada punto a través de su distancia a cada Eje. La abscisa x del punto P es el pie de la perpendicular desde P al eje X y la ordenada y es el pie de la perpendicular desde P al eje Y.

Teorema 1 Distancia entre dos puntos en el plano coordenado

Sean $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ dos puntos cualesquiera del plano.

La fórmula que permite calcular la distancia entre los puntos $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ se obtiene aplicando el teorema de Pitágoras al $\triangle P_1 P_2 R$ retángulo en R, es decir,

$$PQ^{2} = PR^{2} + RQ^{2} \Rightarrow PQ = \sqrt{PR^{2} + RQ^{2}}$$

$$PR = |x_{2} - x_{1}| \Rightarrow PR^{2} = |x_{2} - x_{1}|^{2} = (x_{2} - x_{1})^{2}$$

$$RQ = |y_{2} - y_{1}| \Rightarrow RQ^{2} = |y_{2} - y_{1}|^{2} = (y_{2} - y_{1})^{2}$$

Reemplazando en $PQ = \sqrt{PR^2 + RQ^2}$. Se tiene

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Si suponemos que un punto P_1 cambia de posición al punto P_2 se produce un cambio o variación en ambas coordenadas. La medida de los cambios en las coordenadas se llama **incremento**, así:

- $\triangle x = x_2 x_1$ es el incremento de la variable x debido al cambio desde la posición inicial $P_1(x_1, y_1)$ a la posición final $P_2(x_2, y_2)$.
- $\Delta y = y_2 y_1$ es el incremento de la variable y debido al cambio desde la posición inicial $P_1(x_1, y_1)$ a la posición final $P_2(x_2, y_2)$.

Teorema 2 División de un segmento en una razón dada

Si $A(x_1, y_1)$ y $B(x_2, y_2)$ son los extremos de un segmento \overline{AB} , las coordenadas (x, y) de un punto P que lo divide en una razón dada $r = \frac{AP}{PB}$, con $r \neq -1$ son:

$$P(x,y) = P\left(\frac{x_1 + rx_2}{1+r}, \frac{y_1 + ry_2}{1+r}\right)$$

Teorema 3 Coordenadas del punto medio de un segmento.

Si $A(x_1, y_1)$ y $B(x_2, y_2)$ son los extremos de un segmento \overline{AB} , las coordenadas (x, y) de un punto medio P son:

$$P(x,y) = P\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Definición 4 Pendiente de una recta

Si dos rectas se intersectan, pero no son perpendiculares, determinan dos pares de ángulos opuestos por el vértice, uno es agudo y el otro obtuso

Definición 5

Se llama ángulo de dos recta "dirigidas" al formado por los dos lados que se alejan del vértice. Si las rectas son paralelas el ángulo comprendido entre ellas es de 0° o de 180° .

Definición 6 Ángulo de inclinación

Se llama ángulo de inclinación de una recta al formado por la parte positiva del Eje X y la recta, considerada ésta dirigida hacia arriba. Luego $0 \le \alpha \le 180^{\circ}$.

Definición 7 Pendiente

Se llama pendiente o coeficiente angular de una recta a la tangente o coeficiente angular de una recta a la tangente de su ángulo de inclinación. Recordar que la pendiente se denota con la letra m, luego $m = \tan(\alpha)$.

- 1. De las definiciones se deduce que puede tomar todos los valores reales.
- 2. Si el ángulo es agudo, m > 0. Si el ángulo es obtuso m < 0.
- 3. Si una recta es perpendicular al Eje X o paralela al Eje Y su ángulo de inclinación mide 90° como $m = \tan(90^{\circ})$ no está definida, entonces la pendiente de una recta paralela al Eje Y no existe. Por lo tanto podemos establecer que toda recta perpendicular al eje X no tiene pendiente.

Teorema 4

Si P_1 y P_2 son dos puntos diferentes cualesquiera de una recta, la pendiente de la recta es:

$$m = \frac{y_1 - y_2}{x_1 - x_2} \quad \text{con } x_1 = x_2$$

- 1. El orden en que se tomen las coordenadas en $m=\frac{y_1-y_2}{x_1-x_2},\ x_1\neq x_2$ no tiene importancia, ya que $\frac{y_1-y_2}{x_1-x_2}=\frac{y_2-y_1}{x_2-x_1}$.
- 2. La pendiente del segmento $\overline{P_1P_2}$ es la misma que la pendiente de $\overleftarrow{P_1P_2}$ pues $\overline{P_1P_2}\subset \overleftarrow{P_1P_2}$

Teorema 5 Ángulo de dos rectas

Un ángulo especificado θ formado por dos rectas está dado por la fórmula $\tan(\theta) = \frac{m_2 - m_1}{1 + m_1 m_2}$ con $m_1 \cdot m_2 \neq -1$ en donde m_1 es la pendiente inicial y m_2 la pendiente final correspondiente al ángulo θ .

Corolario 1

La condición necesaria y suficiente para que dos rectas sean paralelas es que sus pendientes sean iguales.

Corolario 2

La condición necesaria y suficiente para que dos rectas sean perpendiculares entre sí, es que el producto de sus pendientes sea igual a -1.