PART 2: Similarity based on paths

Assumption: Nodes connected by many paths of short distance are more likely to be connected

A: Presence of path between node *i* and *j*

A²: Number of path between node *i* and *j* in two steps

A³: Number of path between node *i* and *j* in three steps

. . .

Katz similarity: counts the number of walk at all distances between two nodes, giving shorter walks more weight

PART 3: Node embeddings

We can define each node by its connections

You can use it to predict something about the node:

- but that would mean thousands or millions of parameters!
- and it only provides information at the local level

Lower dimensionality representation

- That captures the network structure
- Where similar nodes should have similar embeddings

Node embeddings

What do we mean with similar nodes?

- Nodes with similar position in the network
 - → Unsupervised learning: Spectral methods and Shallow neural networks

→ Node classification

X = Embedding

Y = outcome to be predicted

Nodes that are connected (for link prediction)

→ Link prediction

 $X = combination of the two embeddings <math>X_1$ and X_2 (e.g. X_1*X_2 , or np.abs($X_1 - X_2$))

Y = link/no link

Part 3.1: Spectral methods

Related to characteristic eigenvectors of matrices associated with the network

Principal Component Analysis (PCA)

- Correlated variables → Linear combination of orthogonal variables
- Eigenvectors corresponding to the largest k eigenvalues of A^TA (centered)

Singular Value Decomposition (SVD)

• Eigenvectors corresponding to the largest k eigenvalues of A^TA (uncentered)

Laplacian Eigenmaps (LE)

- Assumes that the nodes lie on a low-dimensional space
- Nodes close in that space are also close in the network
- That space = the eigenvectors corresponding to the smallest k eigenvectors of the normalized Laplacian matrix $D^{-1}(D-A)$

Part 3.2: Shallow Neural Networks

Regular networks: Text, images

- Text analysis: Chain (nodes = words)
- Images: Lattices (nodes = pixels)

https://distill.pub/2021/understanding-gnns/

Node2vec / deepwalk

Idea:

- 1. Generate "sentences" using random walks.
- 2. Use methods from text analysis

Pazzi -> Salviati -> Medici -> Albizzi

. . .

Text analysis: Word2vec

Word2vec

Distributional hypothesis: similar words will be surrounded by similar words (you will know a word by the company it keeps)

What words tend to appear around "Network"?

- Network Science
- Network Analysis
- → Words *science* and *analysis* are similar

Text analysis: Word2vec

Step 1: Create co-occurrance matrix

- I like deep learning
- I like NLP
- I enjoy flying

Context word

	counts	Î	like	enjoy	deep	learning	NLP	flying	: *)
	1	0	2	1	0	0	0	0	0
	like	2	0	0	1	0	1	0	0
)	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
	•	0	0	0	0	1	1	1	0

Text analysis: Word2vec

Step 2: Train a classification model

- Positive examples: target word should predict context words (Skip-Gram)
- Negative examples: target word should not predict random words (i.e., not context words)

Two vectors are similar if they have a high dot product (~cosine similarity)

- Vector associated to "deep": w1["deep",:]
- Vector associated to "learning": w2[:,"learning"]

Skip Gram Architecture

Intuition:

 Modify W1 and W2 so target embeddings are close (have a high dot product) to context embeddings for nearby words and further from context embeddings for noise words that don't occur nearby

Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition (Jurafsky and Dan, 2009)

In networks: DeepWalk / Node2Vec

Distributional hypothesis: The more often two nodes appear near the same nodes in the same random walk, the more similar their embeddings will be.

Step 1: Create co-occurrance matrix

Pazzi -> Salviati -> Medici -> Albizzi

Medici -> Albizzi -> Guadagni -> Medici

Context node

•••	Pazzi	Salviati	Guadagni	Medici	Albizzi
Pazzi		1		1	1
Salviati	1				
Guadagni					
Medici	1		1	1	1
Albizzi	1			1	

Step 2: Create embeddings representing how similar the neighbors of each node are

node2vec

Difference with deepwalk: generate "sentences" using biased random walks.

- p = controls probability of going back to previous node
- 1 = weight of going to a node adjacent to the previous one
- q = controls probability of going to new nodes

Using node2vec

Depending on q

~ similiarity reflecting clusters

~ similiarity reflecting "structural roles"

Figure 3: Complementary visualizations of Les Misérables coappearance network generated by *node2vec* with label colors reflecting homophily (top) and structural equivalence (bottom).

Big problem: how to set up q and p?

Part 3.3: Graph Neural Networks (GNNs)

Node2vec created the embeddings in an unsupervised (or self-supervised) way. But we can do it in a *supervised* way, so **node embeddings are similar if nodes have the same outcome**

In the context of link prediction → The same outcome = being connected

Problem:

https://distill.pub/2021/understanding-gnns/

Solution:

 Intuition: Nodes aggregate information from their neighbors using neural networks

https://web.stanfod.edu/class/cs224w/

Example (Graph Convolutional Network)

https://web.stanfod.edu/class/cs224w/

$$h^{(k)} = f((D^{-1}A + I) \cdot h^{(k-1)}W^{(k)^T})$$
Node
Normalized
Node
Trainable
embedding
(at layer k)
Node
Trainable
embedding
weights
(layer k-1)

https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/understanding-gnns/

GNN: Graph Neural Networks ~ message passing + feature mixing

$$egin{aligned} m{h_A^{(1)}} &= f\left(W^{(1)} imes rac{h_B^{(0)} + h_C^{(0)} + h_D^{(0)}}{3} + B^{(1)} imes m{h_A^{(0)}}
ight) \\ &= f\left(1 imes rac{4 + -5 + 0}{3} + 1 imes m{4}
ight) \\ &= f\left(-0.33 + 4
ight) \\ &= f\left(3.67
ight) \\ &= \mathrm{ReLU}\left(3.67
ight) = 3.67. \end{aligned}$$

$$egin{align} m{h_A^{(2)}} &= f\left(W^{(2)} imes rac{h_B^{(1)} + h_C^{(1)} + h_D^{(1)}}{3} + B^{(2)} imes m{h_A^{(1)}}
ight) \ &= f\left(1 imes rac{6 + 0 + 4}{3} + 1 imes 3.67
ight) \ &= f\left(3.33 + 3.67
ight) \ &= f\left(7
ight) \ &= ext{ReLU}\left(7
ight) = 7. \end{array}$$

$$\mathbf{H}^{(\ell+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(\ell)} \mathbf{W}^{(\ell)} \right)$$
 Final embedding used to predict college completion

Recap node embeddings

We want to create low-dimensional embeddings:

- Spectral methods → Based on the eigenvectors of the network
 - Unsupervised, similarity = similar position in the network
- Shallow neural networks → Based on random walks on the network
 - Unsupervised/self-supervised, similarity = similar neighborhood
- Graph Neural Networks → Based on message passing between nodes + node features
 - Supervised, similarity = similar position in the network and similar outcome
 - Many GNNs (GCN, GAT, SAGE, Transformer...)

Stacking classifiers

Stacking = Combining multiple models to build a stronger one.

Each individual method (Jaccard, Katz, SVD, etc.) makes predictions for link probabilities, but each has its own strengths and weaknesses.

Instead of choosing the best method, we let a new model learn how to combine them effectively.

How It Works:

- * Train several base classifiers using different features (e.g. Jaccard, Katz).
- * Each base model outputs a prediction score (probability).
- * Combine these predictions into a new dataset.
- * Train a meta-classifier (e.g. Logistic Regression) on these outputs.

Predict links in the PPI network

Evaluated using AUC

- Based on common neighbors
 - → change nx.jaccard_coefficient
- Based on paths
 - → Try different path lengths and katz decay
- Based on Spectral methods
 - → Try different methods, different embedding size
 - → Try different ways to combine embeddings (pairwise_L1)
- Based on node2vec (if it works on your computer)
 - → Try different dimension/walk_length/context size (window)
- Based on GNN
 - → Try different dimension/learning rate/dropout/convolutional layer

