Wyznaczanie współczynnika rozszerzalności liniowej ciał stałych - doświadczenie 103 (sala 217)

Sebastian Maciejewski (132275) i Jan Techner 132332

10 listopada 2017

1 Wstęp teorytyczny

Zmiana temperatury ciała z reguły powoduje zmianę jego wymiarów liniowych. Elementarny przyrost temperatury dT ciała o długości l powoduje przyrost długości dl, który jest określony wzorem:

$$dl = \alpha \, l \, dT. \tag{1}$$

Współczynnik α nazywany jest współczynnikiem rozszerzalności liniowej. Jego wartość liczbowa jest równa względnemu przyrostowi długości dl/l spowodowanemu zmianą temperatury o 1°C i zależy od rodzaju ciała, a także od temperatury. Zależność współczynnika α od temperatury powoduje, że długość ciała jest na ogół nieliniową funkcją temperatury. Jednakże w zakresie niewielkich zmian temperatury można przyjąć, że współczynnik α jest stały, a długość jest wprost proporcjonalna do temperatury. W takim przypadku wzór (1) można zastąpić wzorem:

$$l - l_0 = \alpha_{sr} \, l_0 \, \Delta T,\tag{2}$$

który znacznie ułatwia obliczenie długości w dowolnej temperaturze.

Przyczyny zjawiska rozszerzalności cieplnej są związane ze stukturą mikroskopową ciał. Ciała stałe są zbudowane z atomów (jonów) rozłożonych regularnie w przestrzeni i tworzących sieć krystaliczą. Atomy są ze sobą powiązane siłami pochodzenia elektrycznego, co uniemożliwia im trwałą zmianę położenia. Dostarczona do kryształu energia cieplna wywołuje drgania atomów wokół położeń równowagi, a amplituda tych drgań rośnie wraz ze wzrostem temperatury. Częstotliwość drgań atomów sięga rzędu 10¹³ Hz. W tej sytuacji ciężko jest określić odległośc między atomami, a pojęcie to ma sens tylko jako odległość pomiędzy środkami drgań sąsiednich atomów.

Gdyby energia kinetyczna atomów była równa zeru, znajdowałyby się one w odległości r_0 od siebie, a przy tej odległości energia potencjalna ma swoje minimum. W rzeczywistości jednak atomy wykonują drgania wokół położeń równowagi, tnz. mają pewną energię kinetyczną, zależną od temperatury. Wskutek asymetrii krzywej potencjalnej średnia odległość między cząsteczkami nie będzie się pokrywać z wartością r_0 , ale będzie rosła wraz ze wzrostem temperatury.

Z powyższego opisu wynika, że podczas wzrostu temperatury rośnie nie tylko amplituda drgań atomów, ale także średnia odległość między nimi, co rzutuje na makroskopowe wydłużenie ciała zwane rozszerzalnością cieplną.

Opis doświadczenia

Badane ciała, w naszym przypadku 3 pręty (stalowy, mosiężny i miedziany), umieszczamy w płaszczu wodnym połączonym z termostatem. Jeden koniec każdego z prętów umieszczony jest w uchwycie, natomiast drugi przesuwa się w miarę podgrzewania. Wydłużenie każdego pręta mierzymy czujnikiem mikrometrycznym, a jego temperaturę termometrem elektrycznym.

2 Wyniki pomiarów

Początkowa długość i temperatura prętów została zamierzona na początku i wynosiła:

23,4 °C i 72,3 cm dla stali,

23,8 °C i 71,2 cm dla mosiądzu,

 $23.8~^{\circ}\mathrm{C}$ i $72.35~\mathrm{cm}$ dla miedzi.

Poniższa tabela ukazuje zmiany długości prętów pod wpływem temperatury. Dokładność pomiarów temperatury to $\Delta t = \pm 0, 1^{\circ}C$, zaś pomiarów długości to $\Delta l = \pm 0, 01mm$ dla pomiaru wydłużenia oraz $\Delta l = \pm 0, 05cm$ dla pomiaru długości początkowej.

Stal		Mosiądz		Miedź	
t (°C)	Δ l (mm)	t (°C)	Δ l (mm)	t (°C)	Δl (mm)
27,5	0,04	27,7	0,07	27,4	0,06
33,2	0,11	33,3	0,19	32,6	0,15
38,6	0,16	38,3	0,26	38,2	0,23
43,1	0,21	43,0	0,34	43,0	0,30
48,0	0,25	48,3	0,44	48,3	0,38
53,2	0,32	53,0	0,53	53,0	0,47
58,2	0,37	58,1	0,63	58,0	0,54
53,3	0,28	53,1	0,50	53,2	0,42
48,3	0,23	48,4	0,42	48,4	0,34
43,3	0,23	43,2	0,33	43,1	0,26
38,5	0,13	38,4	0,26	38,4	0,19
33,2	0,08	33,3	0,17	32,2	0,12
28,1	0,02	28,1	0,08	28,2	0,04

3 Opracowanie wyników

Korzystając z regresji liniowej (zależność długości pręta od temperatury jest liniowa) możemy policzyć współczynnik a występujący we wzorze:

$$a = \alpha_{sr} l_0, \tag{3}$$

przy pomocy wzoru $a=\frac{n\Sigma x_iy_i-\Sigma x_i\Sigma y_i}{n\Sigma x_i^2-(\Sigma x_i)^2}$ zastosowanego do funkcji dl=f(T), której wartości znajdują się w tabeli z wynikami pomiarów. Możemy zatem policzyć współczynnik α i błąd $\Delta\alpha=\alpha(\frac{\Delta l}{l}+\frac{\Delta dl}{dl}+\frac{\Delta T}{T})$ dla każdego z badanych metali.

Dla stali otrzymany przez nas wynik to $\alpha_{sr}=(14,64\pm0,79)*10^{-6}K^{-1},$ dla mosiądzu $\alpha_{sr}=(25,58\pm0,88)*10^{-6}K^{-1},$ zaś dla miedzi $\alpha_{sr}=(22,01\pm0,85)*10^{-6}K^{-1}.$

Wyniki, które otrzymaliśmy nieznacznie jedynie odbiegają od wartości podanych w tablicach, głównie dlatego, że większość tablic podaje współczynnik rozszerzalności dla temperatury bliskiej 20°C, zaś nasze pomiary dotyczą średniego współczynnika w znacznie szerszym zakresie temperatur. Część różnic wynika też zapewne z niedokładności wykorzystywanych urządzeń pomiarowych, choć jak widać powyżej błąd wyznaczenia α jest stosunkowo mały.