Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-II Examination June-2010

Subject code: 110005

Subject Name: Elements o	of Electrical	Engineering
---------------------------------	---------------	--------------------

Date:19 / 06 / 2010 Time:02.30 pm – 05.00 pm

Total Marks: 70

•	4				
l'n	str	111	۱tı	Λn	
111	3 L I	uч	JLI	vII	ъ.

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Find the resistance between the terminals A and B in the network shown in the Fig. 1.
 (b) A carbon colour coded resistor has first ring of orange, second of blue, third of red 02
 - and fourth of golden colour. Find the specifications of the resistor.

 (C) Define temperature co-efficient of resistance. How does the resistance of different

 (6)
 - (C) Define temperature co-efficient of resistance. How does the resistance of different materials vary with temperature? Prove that $\alpha_1 = \alpha_0/(1 + \alpha_0 t)$ and $\alpha_2 = 1/[(1/\alpha_1) + (t_2-t_1)]$
- O.2 (a) (i) Give the circuit diagram of ELCB. Explain its working and applications.
 - (ii) Discuss any one method of earthing. In the RC circuit shown in the **Fig. 2**, R= 2 M Ω and C= 5 μ F. The capacitor is
 - (b) In the RC circuit shown in the Fig. 2, $R=2 M\Omega$ and $C=5\mu F$. The capacitor is charged to an initial potential of 50 V, when the switch is closed at t=0+. Calculate
 - 1. Initial rate of charging of the capacitor voltage.
 - 2. Capacitor voltage after time = 5λ seconds.

If the polarity of the capacitor voltage is reversed, calculate,

- 3. The values of the above quantities.
- 4. Time taken for Vc to reach -10 V, 0V and 95 V.

OR

- (b) Two square conducting plates having a cross sectional area of 2500 cm² and 1 cm distance between them are connected across a 600 V supply voltage. They have a dielectric, 0.8 cm thick having a relative permittivity of 4 between them. The remaining space is filled with air. Calculate the capacitance of the condenser and the energy stored in it.
- Q.3 (a) Describe "Ceramic Capacitors".
 (b) An iron ring of 40cm mean diameter and a cross section of 3 cm diameter, has an
 05
 - (b) An iron ring of 40cm mean diameter and a cross section of 3 cm diameter, has an air gap of 2 mm. It is uniformly wound with 750 turns of wire and carries a current of 3 A. The iron path takes 60 % of the total mmf. Neglect magnetic leakage. Find the total mmf, magnetic flux, reluctance and flux density in the ring.
 - **(C)** Discuss the forces acting between two parallel current carrying conductors.

OR

- Q.3 (a) Compare electrical circuit with magnetic circuit.
 - (b) Derive the equation for the co-efficient of coupling of two magnetically coupled coils A and B.
 - (c) Two coils having 200 and 100 turns respectively are wound side by side on a closed iron circuit of cross section 140 cm² and mean length of flux path135 cm. The current in the first coil increases steadily from 0 to 7 A in 5 milliseconds. Assume the co-efficient of coupling equal to 1 and the permeability of iron equal to 1800. Find the self inductance of each coil and the induced emf in the second coil.

06

03

Q.4	(a)	A series RLC circuit consists of a resistance of 500 Ω , inductance of 50mH and a capacitance of 20 pF. Find	05
		1. The resonant frequency.	
		2. The Q-factor of the circuit at resonance.	
		3. The half power frequency.	
	(b)	Discuss different methods of representation of vector quantities.	03
	(c)	Calculate the RMS and average value of the sinusoidal waveform shown in the	06
	(0)	Fig.3 From them, find the peak factor and form factor.	00
		OR	
Q.4	(a)	Discuss how the inductance of a choke coil can be measured using a rheostate, a	04
V. .	(4)	voltmeter and an ammeter.	•
	(b)	Derive the equation of power in a single phase AC circuit in vector form only.	02
	(c)	In a series parallel circuit, the parallel branches 'A' and 'B' are in series with	08
	(-)	branch 'C'. The impedances are $Z_A = (4+j3) \Omega$, $Z_B = (4-j16/3) \Omega$ and $Z_C = (2+j8) \Omega$.	
		If the current $Ic = (25+j0)$ Amp., determine the branch currents and voltages and	
		the total voltage. Hence calculate the complex power (the active and reactive	
		powers) for each branch and the whole circuit.	
Q.5	(a)	Three identical coils each of $(4.2 + j5.6) \Omega$ are connected in star across a 415 V, 3	05
	()	phase, 50 Hz AC supply. Find	
		1. Phase voltage.	
		2. Phase current.	
		3. Readings of two wattmeter's W1 and W2 when they are connected to	
		measure the total power.	
	(b)	Discuss staircase wiring.	03
	(c)	1. Discuss electrical characteristics of batteries.	04
		2. Give connection diagram of a battery charging circuit	02
		OR	
Q.5	(a)	A delta connected load having branch impedances of (15 +j20) Ω is connected to a	05
		220V, 3 phase AC supply. Find	
		1. Line currents.	
		2. Per phase power consumed.	
		3. What is the phasor sum of the line currents? Why does it have this value?	
	(b)	Draw the connection diagram of a tube light and explain its starting and working.	04
	(c)	Explain the construction of a three phase cable.	05

