

Data Science Program

Statistics Session -9

Session - 9 Content

Content

- Independent Samples T Test
- Dependent T test
- One Way ANOVA
- Categorical Data Analysis

RECAP

Herkes önceki dersten hatırladığı 1 cümle yazabilir mi?

Significance Test Steps

HYPOTHESIS TESTS:

INDEPENDENT SAMPLES TITEST

Bağımsız t testi (Unpaired † testi)

Independent Samples T test

Bağımsız t testi

- Aynı continous, dependent değişken üzerinde iki independent grup arasındaki ortalamaları karşılaştırır
- İki farklı grup üzerinden tek değişkenini analizi için Independent t test kullanılabilir

Independent Samples T test

Assumptions

- 2 grup için quantitative-nicel bir değişken
- Rasgele örneklemden bağımsız rasgele değişkenler
- Her grup için Normal dağılım

- Null Hipotez:
 - H_0 : $\mu_1 = \mu_2$

(İki grubun ortalamaları arasında fark yok)

- Alternative Hipotez:
 - H_a: µ₁ ≠ µ₂
 (Significant difference between the means of the two groups)

Independent Samples T test

Test Statistics

 Equal Variances not assumed (2 grubun varyanslarının eşit olmadığı varsayılırsa)

$$t=rac{(ar{x_1}-ar{x_2})}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}} \hspace{1cm} df=rac{\left(rac{s_1^2}{n_1}+rac{s_2^2}{n_2}
ight)^2}{rac{1}{n_1-1}\left(rac{\dot{s_1^2}}{n_1}
ight)^2+rac{1}{n_2-1}\left(rac{s_2^2}{n_2}
ight)^2}$$

Equal Variances assumed (2 grubun varyansları eşit varsayılırsa)

$$t=rac{ar{(ar{x_1}-ar{x_2})}}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}} \hspace{0.5cm} s_p=\sqrt{rac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}$$
 df = n_1+n_2 - 2

Independent Samples T test - Example

- Bir kimyasal prosesin ortalama verimini nasıl etkilediklerini belirlemek için iki katalizör analiz edilecektir.
- Halen kullanımdaki 1.katalizör yerine verimi düşürmemek kaydıyla daha ekonomik 2.katalizör araştırılmaktadır.
- 2.katalizör için bir pilot uygulama alanında test edilip tablodaki değerler elde edilmiştir.
- 0,05 için, eşit varyans olduğu varsayılarak, ortalama verimler arasında anlamlı bir fark var mı?

Test No	1.Katalizör	2.Katalizör
1	91,50	89,19
2	94,18	90,95
3	92,18	90,46
4	95,39	93,21
5	91,79	97,19
6	89,07	97,04
7	94,72	91,07
8	89,21	92,75
Xort	92,225	92,733
S	2,39	2,98

Independent Samples T test - Example

2 grup için Quantitative değişken

Independent random örnekler

2 grup da Normal dağılım

Null Hypothesis (H_0 : $\mu_1 = \mu_2$)

Alternate Hypothesis (H_a : $\mu_1 \neq \mu_2$)

Independent Samples T test - Example

Sample Sizes

o $n_1 = 8$ o $n_2 = 8$ Sample Std.Spm

o $s_1 = 2.39$ o $s_2 = 2.98$

$$s_p = \sqrt{\frac{(8-1)2.39^2 + (8-1)2.98^2}{8+8-2}} = 2.70$$

Independent Samples T test - Example

2.Katalizörün birinciden farklı olduğuna dair elimizde yeterli güçlü bir kanıt yoktur.

Independent Samples Z test – Example 2

Örnek - σ 'nın bilinmesi durumuna örnek

- Özel bir ürün geliştiricisinin ürettiği bir boya için, 2 boya formülasyonu test ediliyor. 1. ürün standart bir üründür ve 2.ürün ise yeni bir üründür.
- Önceki tecrübelere göre 1.ürünün kullanım süresi için σ=8 dakikadır. Yeni üründe bu süre değişmemelidir.
- 10 kişiye ilk ürün verilmiş, 10 kişiye de de 2.ürün verilmiş ve bu randomly yapıldı
- Grupların ortalaması x1=121 ve x2=112 dakikadır.
- α =0,05 için buradan nasıl bir sonuç çıkar

Independent Samples Z test - Example

Independent random örnekler

Popülasyonun σ biliniyor veya 30 gözlem olması

Null Hypothesis (H_0 : $\mu_1 - \mu_2 = 0$)

Alternate Hypothesis (H_a : $\mu_1 > \mu_2$)

Independent Samples Z test - Example

Independent Samples T test - Example

P - Value = 0,0059

 $\alpha = 0.05$

P-Value $< \alpha = 0.05$

P-değeri önceden belirlenen α değerinden küçük olduğu için Null hipotezi reject olur

2. Ürüne uygulanan proses olumlu bir katkı sağlamıştır

Large Sample, σ bilinmiyor – Example 3

Örnek - σ 'nın bilinmediği duruma örnek

- Egzersiz yapmanın kan basıncı üzerindeki etkileri inceleniyor.
- n1=500 hasta nın yüksek kan basınınca sahip olduğu görülüp bunlara bir egzersiz programı ugulanıyor
- n2= 400 olan diğer bir yüksek kan basıncı olan hastaya da egzersiz önerilmiyor.
- 1 yıl sonra alınan ortalamalar şöyle oluyor.

Xlort: 10,67 x2ort: 7,83

■ S1:3,895 s2:4,224

$$\overline{x} = \frac{\sum_{i=1}^{n_1} x_i}{n_1} = 10.67 \quad \overline{y} = \frac{\sum_{i=1}^{n_2} y_i}{n_2} = 7.83$$

$$s_1 = \sqrt{\frac{\sum_{i=1}^{n_1} (x_i - \overline{x})^2}{n_1 - 1}} = 3.895$$

$$s_2 = \sqrt{\frac{\sum_{i=1}^{n_2} (y_i - \overline{y})^2}{n_2 - 1}} = 4.224$$

Large Sample, σ bilinmiyor – Example

Örnekler random seçilmiş

Independent random örnekler

Popülasyonun gözlem sayısı 30'dan fazla

Null Hypothesis (H_0 : $\mu_1 - \mu_2 = 0$)

Alternate Hypothesis ($H_a: \mu_1 > \mu_2$)

Large Sample, σ bilinmiyor – Example

Large Sample, σ bilinmiyor – Example

P - Value = 0,0000

 $\alpha = 0.05$

P-Value < α = **0,05**

P-değeri önceden belirlenen a değerinden küçük olduğu için Null hipotezi reject olur

Yapılan egzersizlerin kan basıncını düşürme üzerinde önemli bir etkisi vardır

Two-sample t test for difference of means

HYPOTHESIS TESTS:

DEPENDENT T TEST

Bağımlı t testi (Paired t test)

Bağımlı t testi

- paired sample t test de denir
- Aynı continous, dependent değişken üzerinde ilgili iki grup arasındaki ortalamaları karşılaştırır

Örnek: 2 aylık sigara bırakma tedavisi alan kişilerin önceki ve sonraki günlük sigara tüketimleri örneği

ID	Öncesi	Sonrası	Fark
1	12	10	2
2	18	7	11
3	23	22	1
4	10	12	-2
5	8	4	4

Dependent † test

Assumptions

- Bağımlı değişken süreklidir ve aynı denek örneğinde iki kez ölçülür.
- Bağımsız değişken iki kategorik, "ilgili grup" veya "eşleşen çiftlerden"(paired) oluşan 2 kategorik gruptur
- Değişkenlerin skorları arasındaki fark normal dağılmıştır.

Hypothesis

- Null Hipotez:
 - H_0 : $\mu_1 \mu_2 = 0$ veya $\mu_D = 0$

(Eşleşmiş paired popülasyonların ortalamaları arası fark 0'dır)

- Alternative Hipotez:
 - H_a: µ_D ≠ 0

(eşleştirilmiş popülasyon ortalamaları arasındaki fark 0 değildir)

Dependent † test

Test Statistics

$$t = \frac{\bar{x}_{diff}}{s_{\bar{x}}} \qquad \qquad s_{\bar{x}} = \frac{s_{diff}}{\sqrt{n}}$$

 $ar{x}_{ ext{diff}}$ = Sample mean of the differences

n =Sample size (i.e., number of observations)

 $s_{
m diff}$ = Sample standard deviation of the differences

 $s_{\bar{x}}$ = Estimated standard error of the mean (s/sqrt(n))

Independent and Dependent Samples

Independent Samples

Dependent Samples

Dependent t test - Example

- Bir yayında verilen çelik kirişlerin shear strength değerlerin tahmini verilmiştir.
- Buradaki 9 kirişe 2 metot(Karlsruhe-Lehigh) uygulanmıştır.
- a=0,05 için ortalamalar açısından bu 2 metot arasında fark olup olmadığını inceleyelim.
- (Girder: Kiriş)

Girder	Karlsruhe Method	Lehigh Method	Difference d _j
S1/1	1.186	1.061	0.125
S2/1	1.151	0.992	0.159
S3/1	1.322	1.063	0.259
S4/1	1.339	1.062	0.277
S5/1	1.2	1.065	0.135
S2/1	1.402	1.178	0.224
S2/2	1.365	1.037	0.328
S2/3	1.537	1.086	0.451
52/4	1.559	1.052	0.507

Dependent † test – (Paired † Test)

Null Hypothesis (H_0 : $\mu_D = 0$)

Alternate Hypothesis (H_a : $\mu_D \neq 0$)

Dependent t test - (Paired t Test)

$$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}} = \frac{0.2769}{0.1350 / \sqrt{9}} = 6.15$$

In [2]: 2*(1-stats.t.cdf(6.15, 8))
Out[2]: 0.00027399606897193785

P-value = 0.0003

Dependent T test – (Paired T Test)

P - Value = 0, 0003

α= **0,025**

P-Value < α = 0,025

P-değeri önceden belirlenen α değerinden küçük olduğu için Null hipotezi reject olur

Karslruhe metodu ortalamalar üzerinden Lehigh e göre daha yüksek bir dayanım tahmini yaptığı görülmüştür.

HYPOTHESIS TESTS:

One-way ANOVA

Tek yönlü ANOVA

Tek Yönlü ANOVA testi

- Analysis of Variance kısaltması olarak ANOVA, birkaç grubun ortalamalarını karşılaştırmak için inferential bir yöntem
- Tek Yönlü ANOVA, üç veya daha fazla grubun ortalamaları arasında karşılaştırabilir.

Periyot	İçme durumu
5,1	0
7,8	2
7,1	1
8,6	2
4,9	0
7.7	1

One-way ANOVA test

Assumptions

- Continous olan Dependent variable
- Categoric olan
 Independent variable
- Independent gözlemler
- Her grup için dependent variable'in normal dağılımı
- Gruplar arası yaklaşık eşit varyanslar

Hypothesis

- Null Hipotez:
 - H_0 : $\mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$

(Tüm k adet popülasyon ortalamaları eşit)

- Alternative Hipotez:
 - H_a: µ_i diğerlerinden farklı

(k adet popülasyondan en az birinin ortalaması diğerlerine eşit değil)

One-way ANOVA test

Test Statistics - ANOVA Table

One-way ANOVA test

Test Statistics - ANOVA Table

Değişkenlik Kaynağı	Kareler Toplamı	Serbestlik Derecesi	Kareler Ortalaması	Test Istatistiği
Gruplar arası	$SS_B = \sum_{i=1}^k \frac{T_i^2}{n_i} - \frac{T^2}{N}$	v ₁ =k-1	$\mathbf{MS_B} = \mathbf{S_B^2} = \frac{\mathbf{KT_B}}{\mathbf{v_1}}$	$\mathbf{F_h} = \frac{\mathbf{S}_B^2}{\mathbf{S}_W^2}$
Gruplar içi	$SS_{W} = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} X_{ij}^{2} - \sum_{i=1}^{k} \frac{T_{i}^{2}}{n_{i}}$	v ₂ =N-k	$\mathbf{MS}_{\mathbf{W}} = \mathbf{S}_{\mathbf{W}}^{2} = \frac{\mathbf{KT}_{\mathbf{W}}}{\mathbf{v}_{2}}$	
Toplam	$SS_T = KT_R + KT_W$	v=N-1		

ANOVA Senaryo Örnekleri

- Eğitim metotlarının öğrenci üzerindeki etkisinin incelenmesi
- 3 farklı tedavi yönteminin hastayı iyileştirme sürecindeki değişim
- 4 farklı Vidoe oluşturma metotlarının aynı kalitede olup olmadığı
- 3 yeni ilacın plasebo ya göre ne kadar farklı olduğu

e-way ANOVA test - Example

Örnek

- Statsmodal ile sunulan diğer bir Cushing data seti (Mass paketi içinde) vardır. (csv dosya) (Cushing diye bir hastalık)
- Bu hastalıkla ilgili 4 farklı grup var. Adenoma (a), biliteral hyperplasia (b), carcinoma (c), unknown (u).
- Bu 4 çeşit hastalıkla ilgili olarak bir ilacın kortizon seviyesine etki derecesi açısından bir fark olup olmadığını görmek için değerlendirme yapılacaktır.

Toplam gözlem sayısı, n = 27

Her gruptaki gözlem sayısı, n1=6, n2=10, n3=5 ve n4=6

Grupların üstteki sırayla ortalamaları: 3, 8.2, 19.7 ve 14

Degree of freedoms: df1= 4-1= 3, df2= 27 - 4 = 23

 $SS_B = 893.5 \text{ ve } SS_W = 2123.6$

One-way ANOVA test - Example

ANOVA Table

	Sum of Squares	df	Mean Square	F
Group (Between)	SSR = 893.5	' k-1 = 3	MSR = 893.5 / 3 = 297.8	MSR/MSE = 297.8 / 92.3 = 3.226
Error (Within)	SSE = 2123.6	n-k = 23	MSE = 2123.6 / 23 = 92.3	
Total	SST = 3017.1	n-1 = 27		

One-way ANOVA test - Example

One-way ANOVA test - Example

P - Value = 0, 041

 $\alpha = 0.05$

P-Value < α = 0,05

P-değeri önceden belirlenen α değerinden küçük olduğu için Null hipotezi reject olur

Gruplar arasındaki farkın istatistik olarak anlamlı olduğu söylenir.

A One-Way ANOVA Example

> An Example of One–Way Analysis of Variance (ANOVA)

CATEGORICAL DATA ANALYSIS Kategorik Data Analizi

Categorical Data Hypothesis Test

Kategorik Dataların Hipotez Testleri

- Chi-Square (Ki-kare) test kullanılabilmektedir
- Categoric data var ise population proportion testler kullanılmalıdır
- Sayısal olmayan değişkenler arasındaki herhangi bir ilişkinin var olup olmadığını ileri sürerek (HO hipotezi) bu hipotezi red edilip edilip edilmeyeceğinin incelenmesinde uygulanacak test kikare testidir.

Categorical Data Hypothesis Test

Kategorik Dataların Hipotez Testleri

Karşılaştırılacak 2 Kategori Örneği:

- 1. Sigara içme durumu (İçer İçmez)
 - Akciğer kanseri (Kanserdir Değildir)
- **2**.
 - Irk grubu Şeker hastalığı meyli
- Testte sorumuz şu:
 - Bir faktörün (değişkenin) varlığı/yokluğu, diğer faktörün (değişken) varlığını/yokluğunu etkiler mi?

Vaka

Üretim sektöründe faaliyet göstermekte olan bir firmada **ürün kalitesi** ile **çalışanların eğitim durumları** arasında bir ilişki olduğu düşünülmektedir. Bu tezin incelenmesi için ki-kare testi kullanılır.

Categorical Data Hypothesis Test

Oranlar arasındaki karşılaştırma

Tedavi	İyileşme var	İyileşme yok	Toplam
Yeni İlaç	18	6	24
Plasebo	9	11	20
Toplam	27	17	44

Tabloya göre ilaç ile iyileşme oranı: 18/24 = %75

Tabloya göre plasebo ile iyileşme oranı: 9/20 = %45

Categorical Data Hypothesis Test

Oranlar arasındaki karşılaştırma

Tedavi	İyileşme var	İyileşme yok	Toplam
Yeni İlaç	18(a)	6 (b)	24
Plasebo	9 (c)	11 (d)	20
Toplam	27	17	44

$$\chi^2 = \sum \frac{(obs - \exp)^2}{\exp}$$

Seçilen kişinin yeni ilaç almış gruptan olma ihtimali: 24/44

Seçilen kişinin yeni iyileşmiş gruptan olma ihtimali: 27/44

Seçilen kişinin iyileşmiş olup yeni ilaç almış gruptan olma ihtimalinde a hücresi için beklenen değer (expected value): 24*27/44 =14.73

Categorical Data Hypothesis Test

Oranlar arasındaki karşılaştırma

Tedavi	İyileşme var	İyileşme yok	Toplam
Yeni İlaç	18 (14,73)	6 (9,27)	24
Plasebo	9 (12,27)	11 (7,73)	20
Toplam	27	17	44

$$\chi^2 = \sum \frac{(obs - \exp)^2}{\exp}$$

$$\sum \frac{(obs - exp)^2}{exp} = \frac{(18 - 14.73)^2}{14.73} + \frac{(6 - 9.27)^2}{9.27} + \frac{(9 - 12.27)^2}{12.27} + \frac{(11 - 7.73)^2}{7.73}$$

$$X^2 = 4,14$$

■ Df = (Tablodaki satır sayısı -1)*(tablodaki Sütun sayısı -1)= 1

Categorical Data Hypothesis Test

WHICH TEST FOR THE PROBLEMS

Hangi problem için hangi istatistiksel testi yapabiliriz?

Statistical Tests:

- T-Test:
 - Compare the Means between two groups
 - Small Sample Size
- Z-Test:
 - Compare the Means between two groups
 - Large Sample Size
- · ANOVA:
 - Compare the Means between two+ groups
- · Chi-Square:
 - Compares Proportions between two groups

Examples

- 1. Her iki günde de aynı 20 istasyonu kontrol ederek, Çarşamba ve Cumartesi benzin fiyatları ortalamaları (mean) arasında önemli bir fark var mı?
 - 2. Önümüzdeki tatil döneminde uçakla seyahat edenlerin yüzdesi (percentage), araba ile seyahat edenlerin yüzdesinden (percentage) daha fazla olacak mı?
- 3. İstanbuldaki ortalama (average) mazot fiyatı ile Karstaki ortalama (average) mazot fiyatı arasındaki anlamlı bir fark var mı?
- 4. Dört farklı araç tipinin ortalama olarak yaptıkları kilometreler arası fark
 - 5. İki havayolu şirketinin seyahatinde yaşanan ortalama gecikmeler arasında fark var mıdır

Examples

Drnek-2

- Bir trafik memuru bir otoyoldaki güvenlik için sürücülerle alakalı bazı testler yapmak istemektedir. Hangi durum için hangi testi uygulamalıdır?
- 1. Yoldaki hız limiti 90 km/h ama memur sürücülerin daha hızlı gittiğini düşünüyor. Bu şüphe doğru mu?
- 2. Kadın ve erkeklere hızlarını sorup, aralarında bir fark olup olmadığına bakmak istiyor
- 3. İnsanların Hafta içi ve hafta sonu hızları arasında fark var mıdır ?
- 4. Sürücülerin 2 yıl önce %60 ının sürüş esnasında telefon kullandığı biliniypr. Memur bunun şimdi daha fazla olduğunu düşünüyor. İspatı ?
- 5. Genç-orta yaş ve yaşlı grupları arasında genç sürücülerin daha hızlı gittiğini düşünüyor. İspatı

Python Coding Solution arsenic_data.ipynb

