Tarea 1

Física Atómica y Materia Condensada

Fecha de entrega: Martes 12 de septiembre

1. Adición de momentos angulares: acoplamiento entre momento angular orbital y de spin (valor total: 5 pt)

Considera una partícula cuyos números cuánticos de momento angular orbital y de spin son $j_1 = 1$ y $j_2 = 1/2$, respectivamente. Realiza la adición de estos momentos angulares, es decir:

- (a) Valor: 1.0 pt Determina los posibles valores de los números cuánticos j y m del sistema acoplado.
- (b) Valor: 3.0 pt Expresa los elementos de la base acoplada $\{|j,m\rangle\}$ en términos de los elementos de la base desacoplada $\{|j_1,j_2;m_1,m_2\rangle\}$. Para ello debes calcular "a mano" todos los coeficientes de Clebsch-Gordan involucrados, $\langle j_1,j_2;m_1,m_2|j,m\rangle$.
- (c) Valor: 1.0 pt Escribe la matriz de transformación entre estas dos bases.

2. Perturbación en un sistema de tres estados (valor total: 5 pt)

Considera un sistema que solo tiene tres estados linealmente independientes. Considera ahora que el Hamiltoniano del sistema está dado por la siguiente matriz:

$$\hat{H} = V_0 \begin{pmatrix} 1 - \epsilon & 0 & 0 \\ 0 & 1 & \epsilon \\ 0 & \epsilon & 2 \end{pmatrix},$$

en donde V_0 es una constante y ϵ es un número pequeño, es decir, $\epsilon \ll 1$.

- (a) Valor: 0.5pt Si consideramos que ϵ es el resultado de una perturbación, escribe este Hamiltoniano como la suma de un Hamiltoniano imperturbado \hat{H}_0 y una perturbación \hat{W} , es decir, $\hat{H} = \hat{H}_0 + \hat{W}$, de tal forma que $\hat{H} = \hat{H}_0$ cuando $\epsilon = 0$.
- (b) Valor: 0.5pt ¿Quiénes son los eigenvalores y los eigenvectores del Hamiltoniano imperturbado \hat{H}_0 ? Nota que este Hamiltoniano tiene un eigenvalor no degenerado y dos eigenvalores degenerados.
- (c) Valor: 1.0pt El Hamiltoniano \hat{H} puede resolverse exactamente. Encuentra los eigenvalores exactos de \hat{H} . Una vez que los hayas encontrado, exprésalos como una serie de potencias de Taylor en ϵ hasta segundo orden, es decir, conserva todos los términos con orden igual o menor a ϵ^2 .
- (d) Valor: 1.0pt Utiliza el caso **no** degenerado de la teoría de perturbaciones independientes del tiempo para calcular las correcciones a primer y segundo orden del eigenvalor **no** degenerado del Hamiltoniano imperturbado \hat{H}_0 . Compara este resultado con el que encontraste en (c).
- (e) Valor: 2.0pt Utiliza ahora el caso degenerado de la teoría de perturbaciones independientes del tiempo para calcular las correcciones a primer orden de los dos eigenvalores degenerados de \hat{H}_0 . Compara con los resultados del inciso (c).

3. Problema Extra: Incertidumbre de \hat{J}_x y \hat{J}_y (valor: +1 pt)

Sea $\hat{\vec{J}}$ el operador general de momento angular con componentes \hat{J}_x , \hat{J}_y y \hat{J}_z . En clase aprendimos que estas componentes no conmutan entre sí y por lo tanto deben satisfacer alguna relación de incertidumbre. Considerando la base de autoestados $|j,m\rangle$ de los operadores \hat{J}^2 y \hat{J}_z , encuentra la relación de incertidumbre $\Delta \hat{J}_x \Delta \hat{J}_y$.

Recuerda que la definición de la desviación estándar de un operador $\hat{\mathcal{O}}$ es

$$\Delta \hat{\mathcal{O}} = \sqrt{\langle \hat{\mathcal{O}}^2 \rangle - \langle \hat{\mathcal{O}} \rangle^2}$$

Sugerencia: Utiliza los operadores de ascenso y descenso, $\hat{J}_{+} = \hat{J}_{x} + i\hat{J}_{y}$ y $\hat{J}_{-} = \hat{J}_{x} - i\hat{J}_{y}$, recordando que su acción sobre los estados $|j,m\rangle$ es:

$$\hat{J}_{\pm} |j,m\rangle = \sqrt{j(j+1) - m(m\pm 1)} \hbar |j,m\pm 1\rangle.$$