Exercise 1. Let Ω be a domain containing the unit circle $C_1(0)$. Show that there is no function F(z) holomorphic on Ω such that $e^{F(z)} = z$ on Ω . [Hint: What would F'(z) be? Can you prove that F'(z) admits no primitive on Ω ?]

Answer

Suppose F is a function which satisfies the equation. Differentiating we get

$$e^{F(z)}F'(z) = 1 \to F'(z) = \frac{1}{e^{F(z)}} = \frac{1}{z}.$$

In $\mathbb{C}\setminus]-\infty,0]$ we have that $\frac{1}{z}$ admits $\log(z)$ as a primitive. So let us define $G(z)=F(z)-\log(z)$, this function has derivative 0 so G is constant.

This means that $F(z) = \log(z) + C$

Exercise 2. Let Ω be a domain with $0 \notin \Omega$.

- (a) Suppose f,g are continuous branches of the logarithm on Ω . Show that there is some integer n such that $g(z)=f(z)+2\pi in$. $[\![$ Hint: Ω is connected. $[\![$]
- (b) Suppose f(z) is a continuous branch of the logarithm. Show that f(z) is holomorphic. \llbracket Hint: Ω can be covered by simply connected domains. \rrbracket