Switching and Routing

Computer Networking:
A Top Down Approach
Featuring the Internet,
Jim Kurose, Keith Ross
Addison-Wesley

Link Layer: Introduction

Some terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

Adaptors Communicating

- link layer implemented in "adaptor" (aka NIC)
 - Ethernet card, PCMCI card, 802.11 card
- sending side:
 - encapsulates datagram in a frame
 - adds error checking bits, rdt, flow control, etc.

- receiving side
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to rcving node
- adapter is semi-autonomous
- link & physical layers

MAC Addresses

- □ IP address:
 - o network-layer address
 - O used to get datagram to destination IP subnet
- □ MAC (or LAN or physical or Ethernet) address:
 - MAC = Media Access Control
 - used to get datagram from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs)
 burned in the adapter ROM

MAC Addresses(more)

Each adapter on LAN has unique 6-byte MAC address

MAC Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address → portability
 - o can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - depends on IP subnet to which node is attached

ARP: Address Resolution Protocol

Question: how to determine MAC address of a node knowing its IP address?

Each IP node (Host, Router)on LAN has ARP table

- ARP Table
 - □ IP-MAC address
 mappings for some LAN
 nodes
 - < IP address; MAC address; TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol in the Same LAN

- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - "Who has B's MAC address?"
 - Dest MAC address = FF-FF-FF-FF-FF-FF
 - all machines on LAN receive ARP query
- B receives ARP packet, <u>replies</u> to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A <u>caches</u> (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator
- ARP Spoofing: Malicious nodes can lie about another node's MAC address to receive their traffic.

Routing to another LAN

walkthrough: send datagram from A to B via R

assume A know's B IP address

- Two ARP tables in router R, one for each IP network (LAN)
- □ In routing table at source Host, find router 111.111.111.110
- □ In ARP table at source, find MAC address E6-E9-00-17-BB-4B, etc

- A creates datagram with source A, destination B
- A uses ARP to get R's MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
- A's adapter sends frame
- R's adapter receives frame
- R removes IP datagram from Ethernet frame, sees its destined to B
- R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram sends to B

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

- Preamble: 8 bytes used for synchronizing sender and receiver.
- Addresses: 6 bytes
 - if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol
 - otherwise, adapter discards frame
- □ Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)
- CRC: (cyclic redundancy checksum)
 - checked at receiver, if error is detected, the frame is simply dropped

Ethernet uses CSMA/CD

- Adapter transmits whenever data is ready, but listens first.
- Adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense
- Transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
- Before attempting a retransmission, adapter waits a random time, that is, random access

<u>Hubs</u>

Hubs are essentially physical-layer repeaters:

- bits coming from one link go out all other links
- o at the same rate
- ono frame buffering
- ono CSMA/CD at hub: adapters detect collisions
- oprovides net management functionality

Interconnecting with hubs

- Backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain

Switch

- Link layer device
 - stores and forwards Ethernet frames
 - examines frame header and selectively forwards frame based on MAC dest address
 - when frame is to be forwarded on segment, uses CSMA/
 CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - o switches do not need to be configured

Forwarding

 How do determine onto which LAN segment to forward frame?

Self learning

- Also called "backward learning" or "transparent bridging"
- A switch has a switch table
- entry in switch table:
 - [MAC Address, Interface, Time Stamp]
 - stale entries in table dropped (TTL can be 60 min)
- switch learns which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

Filtering/Forwarding

When switch receives a frame:

```
index switch table using MAC dest address
if entry found for destination
    then{
    if dest on segment from which frame arrived
        then drop the frame
    else forward the frame on interface indicated
    }
else flood
    forward on all but the interface
    on which the frame arrived
```


Switch example

Suppose C sends frame to D

- Switch receives frame from C
 - o notes in bridge table that C is on interface 1
 - because D is not in table, switch forwards frame into interfaces 2 and 3
- frame received by D

Switch example

Suppose D replies back with frame to C.

- Switch receives frame from D
 - o notes in bridge table that D is on interface 2
 - because C is in table, switch forwards frame only to interface 1
- frame received by C

Switch: traffic isolation

- switch installation breaks subnet into LAN segments
- switch filters packets:
 - same-LAN-segment frames not usually forwarded onto other LAN segments
 - segments become separate collision domains

Switches: dedicated access

- Switch with many interfaces
- Hosts have direct connection to switch
- No collisions; full duplex

Switching: A-to-A' and B-to-B' simultaneously, no collisions

More on Switches

- cut-through switching: frame forwarded from input to output port without first collecting entire frame
 - oslight reduction in latency

combinations of shared/dedicated,10/100/1000 Mbps interfaces

Institutional network

Switches vs. Routers

- both store-and-forward devices
 - orouters: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

Summary comparison

	<u>hubs</u>	<u>routers</u>	<u>switches</u>
traffic isolation	no	yes	yes
plug & play	yes	no	yes
optimal routing	no	yes	no
cut through	yes	no	yes