Aprendizaje Automático y Minería de Datos

Regresión lineal multivariante

Cristina Tîrnăucă

Dept. Matesco, Universidad de Cantabria

Fac. Ciencias - Grado en Ing. Informática

Datos de entrada y notación

Datos de entrenamiento:

Superficie	Número	Precio
(x_1)	habitaciones (x_2)	(y)
88	2	210000
90	2	230000
47	1	95000
111	4	230000

Notación:

m = número de ejemplos

 $x_1, x_2 = \text{variables de entrada}, x_1^{(i)} \text{ y } x_2^{(i)}$

 $y = \text{variable de salida}, y^{(i)}$

Objetivo: hallar $h_{\theta}(x_1, x_2) = \theta_0 + \theta_1 * x_1 + \theta_2 * x_2$ tal que el error mínimo cuadrado para los datos de entrenamiento sea mínimo.

Regresión lineal multivariante Pisos de obra nueva en Santander

Método analítico

Caso particular: 2 variables

Objetivo: hallar $h_{ heta}(x_1,x_2)= heta_0+ heta_1*x_1+ heta_2*x_2$

Bajo condición: el coste $J(\theta)=$ mínimo, donde

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_1^{(i)}, x_2^{(i)}) - y^{(i)})^2$$

Solución analítica:

$$\theta = (X^t * X)^{-1} * X^t * y$$

$$X = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & x_2^{(m)} \end{pmatrix} \qquad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix} \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix}$$

Método analítico

Caso general: p variables

Objetivo: hallar $h_{\theta}(x_1, \dots, x_p) = \theta_0 + \theta_1 * x_1 + \dots + \theta_p * x_p$ Bajo condición: el coste $J(\theta) =$ mínimo, donde

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_1^{(i)}, \dots, x_p^{(i)}) - y^{(i)})^2$$

Solución analítica:

$$\theta = (X^t * X)^{-1} * X^t * y$$

$$X = \begin{pmatrix} 1 & x_1^{(1)} & \cdots & x_p^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_p^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(m)} & \cdots & x_p^{(m)} \end{pmatrix} \quad y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix} \quad \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix}$$

Método iterativo

Algorítmo del gradiente descendente, caso general, II

Objetivo: hallar $h_{\theta}(x) = \theta_0 + \theta_1 * x_1 + \cdots + \theta_p * x_p$ Bajo condición: el coste $J(\theta) =$ mínimo, donde

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_1^{(i)}, \dots, x_p^{(i)}) - y^{(i)})^2$$

repetir hasta convergencia { $\theta_0 = \theta_0 - \alpha * \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 * x_1^{(i)} + \ldots + \theta_p * x_p^{(i)} - y^{(i)}\right) * 1$ $\theta_j = \theta_j - \alpha * \frac{1}{m} \sum_{i=1}^m \left(\theta_0 + \theta_1 * x_1^{(i)} + \ldots + \theta_p * x_p^{(i)} - y^{(i)}\right) * x_j^{(i)}$ (para $j = 1, \ldots, p$) } $\alpha = \text{ratio de aprendizaie}$

Método iterativo

Algorítmo del gradiente descendente, caso general, I

Objetivo: hallar $h_{\theta}(x) = \theta_0 + \theta_1 * x_1 + \cdots + \theta_p * x_p$ Bajo condición: el coste $J(\theta) =$ mínimo, donde

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_1^{(i)}, \dots, x_p^{(i)}) - y^{(i)})^2$$

repetir hasta convergencia { $heta_j = heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$ (para $j = 0, 1, \ldots, p$) } lpha = ratio de aprendizaje

Método iterativo

Escalación de variables

Re-escalación de variables \rightarrow [0,1]

$$x' = \frac{x - \min}{\max - \min}$$

Estandarización de variables

$$x' = \frac{x - \text{promedio}}{\text{desviación estándar}}$$

Ventajas y desventajas

Iterativo

- Hay que elegir α .
- Hace falta iterar muchas veces.
- Escalación de variables.
- Funciona bien incluso para *p* muy grande.

Analítico

- No hay que elegir α .
- No hace falta iterar.
- Hay que calcular $(X^t * X)^{-1}$
- Lento, si *p* es muy grande.

Regresión polinómica

Pisos de obra nueva en Santander

$$\theta_0 + \theta_1 * x_1 + \theta_2 * x_2 + \theta_3 * x_3$$

 $x_1 = superficie$
 $x_2 = (superficie)^2$
 $x_3 = (superficie)^3$

$$\theta_0 + \theta_1 * x + \theta_2 * x^2$$

$$\theta_0 + \theta_1 * x + \theta_2 * x^2 + \theta_3 * x^3$$