SUPPLEMENT 2 TO CHAPTER 20

REGENERATIVE METHOD OF STATISTICAL ANALYSIS

20S2-1.

(a)
$$y_1 = 0 + 5 + 4$$
 $= 9$; $z_1 = 3$ $y_2 = 0 + 2$ $= 2$; $z_2 = 2$ $y_3 = 0 + 3 + 1 + 6$ $= 10$; $z_3 = 4$ $\overline{y} = 21/3 = 7$; $\overline{z} = 9/3 = 3$ Est $\{W_q\} = \frac{7}{3} = 2\frac{1}{3}$ $s_{11}^2 = (81 + 4 + 100)/2 - (9 + 2 + 10)^2/6 = 19$ $s_{22}^2 = (9 + 4 + 16)/2 - (3 + 2 + 4)^2/6 = 1$ $s_{12}^2 = (27 + 4 + 40)/2 - (21)(9)/6 = 4$ $s^2 = 19 - (2)(7/3)(4) + (7/3)^2 = 5.778 \Rightarrow s = 2.404$ $1 - 2\alpha = 0.90 \Rightarrow \alpha = 0.05 \Rightarrow K_\alpha = 1.645$ $P\{1.572 \le W_q \le 3.094\} = 0.90$ (b) $y_1 = 0 + 3 + 2$ $= 5$; $z_1 = 3$ $y_2 = 0 + 3 + 1 + 5 = 9$; $z_2 = 4$ $y_3 = 0$ $= 0$; $z_3 = 1$ $y_4 = 0 + 2 + 4$ $= 6$; $z_4 = 3$ $y_5 = 0 + 3 + 5 + 2$ $= 10$; $z_5 = 4$ $\overline{y} = 30/5 = 6$; $\overline{z} = 15/5 = 3$ Est $\{W_q\} = \frac{6}{3} = 2$ $s_{11}^2 = (25 + 81 + 36 + 100)/4 - (10 + 6 + 0 + 9 + 5)^2/20 = 15\frac{1}{2}$ $s_{22}^2 = (9 + 16 + 1 + 9 + 16)/4 - (3 + 4 + 1 + 3 + 4)^2/20 = 1\frac{1}{2}$ $s_{12}^2 = (15 + 36 + 0 + 18 + 40)/4 - (30)(15)/20 = 4\frac{3}{4}$ $s^2 = 15\frac{1}{2} - (2)(2)\left(4\frac{3}{4}\right) + (2)^2\left(1\frac{1}{2}\right) = 2\frac{1}{2} \Rightarrow s = 1.581$ $1 - 2\alpha = 0.90 \Rightarrow \alpha = 0.05 \Rightarrow K_\alpha = 1.645$ $P\{1.612 \le W_q \le 2.388\} = 0.90$

20S2-2.

When a service completion occurs, t minutes have passed since the last arrival, where $0 \le t \le 25$. The time until the next arrival is uniformly distributed between \overline{t} and 25 - t, where $\overline{t} = \max(0, 5 - t)$. Thus, the probabilistic structure of when future arrivals will occur depends on the history, so this cannot be a regeneration point.

20S2-3.

(a) For any new tube, the time of the next failure is given by "current time +1000 + 1000r," where r is a random number from Table 20.3. At each shutdown, one hour is added to the time of the next failure for all tubes when simulating the status quo and two hours are added when simulating the proposal.

Simulation of the status quo:

					Time of Failure of				
Time	r_1	r_2	r_3	r_4	Tube 1	Tube 2	Tube 3	Tube 4	
0	0.096	0.569	0.665	0.764	1096	1569	1665	1764	
1096	0.842	_	_	_	2939	1570	1666	1765	
1570	_	0.492	_	_	2940	3063	1667	1766	
1667	_	_	0.224	_	2941	3064	2892	1767	
1767	_	_	_	0.950	2942	3065	2893	3718	
2893	_	_	0.610	_	2943	3066	4504	3719	
2943	0.145				4089	3067	4505	3720	
3067	_	0.484	_	_	4090	4552	4506	3721	
3721	_	_	_	0.552	4091	4553	4507	5274	
4091	0.350	_	_	_	5442	4554	4508	5275	
4508	_	_	0.590	_	5443	4555	6099	5276	
4555	_	0.430			5444	5986	6100	5277	
5000	_	_	_	_	5444	5986	6100	5277	

Estimated cost of the status quo: $11 \times \$1,200 = \$13,200$

Simulation of the proposal:

Time	r_1	r_2	r_3	r_4	First Tube to Fail	Time of Failure
0	0.096	0.569	0.665	0.764	Tube 1	1096
1096	0.842	0.492	0.224	0.950	Tube 3	2322
2322	0.610	0.145	0.484	0.552	Tube 2	3469
3469	0.350	0.590	0.430	0.041	Tube 4	4512
4512	0.802	0.471	0.255	0.799	Tube 3	5769

Estimated cost of the proposal: $4 \times \$2,800 = \$11,200$

- (b) Based on the simulation results in part (a), the proposal should be accepted.
- (c) For the proposed policy, each shutdown is a regeneration point because all tubes are replaced and the process begins a new. For the status quo, the process never repeats itself because each tube is replaced when it fails.

(d)

Cycle	Cycle Cost	Cycle Length
1	\$2,800	1096
2	\$2,800	1226
3	\$2,800	1147
4	\$2,800	1043

$$\overline{y} = \$2, 800, \overline{z} = 1128$$

$$Est{cost/hour} = 2800/1128 = $2.482$$

 $P\{2.314 \le \text{cost/hour} \le 2.650\} = 0.95$

$$\begin{split} s_{11}^2 &= \frac{(4 \times 2800^2)}{3} - \frac{(4 \times 2800)^2}{12} = 0 \\ s_{22}^2 &= \frac{(1086^2 + 1226^2 + 1147^2 + 1043^2)}{3} - \frac{(1086 + 1226 + 1147 + 1043)^2}{12} = 6071\frac{1}{3} \\ s_{12}^2 &= \frac{(2800)(1086 + 1226 + 1147 + 1043)}{3} - \frac{(4)(2800)(1086 + 1226 + 1147 + 1043)}{12} = 0 \\ s^2 &= 0 - (2.482)(0)(2) + (2.482)^2 \left(6071\frac{1}{3}\right) = 37410 \Rightarrow s = 193.4 \\ 1 - 2\alpha &= 0.95 \Rightarrow \alpha = 0.025 \Rightarrow K_\alpha = 1.96 \end{split}$$

20S2-4.

(a)

(i)

	Data			Results	
Number of Servers =	1		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L:	4.87903777	3.344529192	6.41354635
Distribution =	Exponential	L _q :	4.06903737	2.552881224	5.585193514
Mean =	1.25	W =	6.08705507	4.231161152	7.942948994
		W _q =	5.07650396	3.233440493	6.91956742
Service Times		P ₀ =	0.1899996	0.16425264	0.215746552
Distribution =	Exponential	P ₁ :	0.15101797	0.132489844	0.169546091
Mean =	1	P ₂ :	0.12530975	0.111337121	0.13928237
		P ₃ :	0.09541037	0.084720833	0.106099913
		P ₄ =	0.07620596	0.066901918	0.085509999
Length of Simulation R	un	P ₅ :	0.06224509	0.054038618	0.07045157
Number of Arrivals =	10,000	P ₆ :	0.05620591	0.047527927	0.064883901
		P ₇ :	0.0420322	0.035157883	0.048906526
		P ₈ =	0.03118735	0.025046424	0.037328273
Run Simula	ation	P ₉ =	0.02715091	0.020825618	0.03347620
Run Simula	illori	P ₁₀ =	0.02295245	0.016668188	0.029236719

(ii)

	Data			Results	
Number of Servers =	1		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L	= 2.72338571	2.426711315	3.020060108
Distribution =	Exponential	Lq	1.92941897	1.646668271	2.212169662
Mean =	1.25	W	3.42557184	3.099322189	3.751821491
		W_q	2.4268921	2.104137696	2.749646512
Service Times		P ₀	0.20603325	0.188347397	0.223719112
Distribution =	Erlang	P ₁	0.21238852	0.196737339	0.228039706
Mean =	1	P ₂	0.16915551	0.157922441	0.180388584
k =	4	P ₃	0.12039424	0.111814695	0.128973778
		P ₄	0.0820109	0.074401677	0.089620118
Length of Simulation R	un	P ₅	0.06040587	0.053059888	0.067751862
Number of Arrivals =	10,000	P ₆	0.04648171	0.038778844	0.054184579
		P ₇	0.03450976	0.02699144	0.042028079
		P ₈	= 0.02377114	0.017106209	0.030436065
		P ₉	0.01509947	0.009781903	0.020417036
Run Simula	ation	P ₁₀	0.01074926	0.005500231	0.015998293

(iii)

	Data			Results	
Number of Servers =	1		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L :	2.36102228	2.133069489	2.588975073
Distribution =	Exponential	L _q =	1.56238106	1.346964384	1.777797733
Mean =	1.25	W =	2.95629904	2.715448043	3.197150042
		W _q =	1.95629904	1.715448043	2.197150042
Service Times		P ₀ =	0.20135878	0.18542182	0.217295736
Distribution =	Constant	P ₁ =	0.24659089	0.230719649	0.262462131
Value =	1	P ₂ =	0.18551928	0.175252934	0.195785632
		P ₃ =	0.1236632	0.115231596	0.1320948
		P ₄ =	0.08618065	0.078092827	0.094268471
Length of Simulation R	un	P ₅ =	0.05600588	0.048413787	0.063597968
Number of Arrivals =	10,000	P ₆ =	0.03835197	0.030657389	0.04604656
		P ₇ =	0.02567582	0.018972941	0.032378704
		P ₈ =	0.0158616	0.010224825	0.021498383
Dun Circula	4:00	P ₉ =	0.00962322	0.005462589	0.013783841
Run Simula	ation	P ₁₀ =	0.00542071	0.002088955	0.00875247

$$L_{q_2}/L_{q_1} = 1.93/4.07 = 0.47, L_{q_3}/L_{q_1} = 1.56/4.07 = 0.38$$

(b)
$$L_q=\frac{\lambda^2\sigma^2+\rho^2}{2(1-\rho)}, L=\rho+L_q, W_q=\frac{L_q}{\lambda}, W=W_q+\frac{1}{\mu}$$

(i)
$$L_{q_1} = \frac{0.64 + 0.64}{2 \times 0.2} = 3.2, L_1 = 4, W_{q_1} = 4, W_1 = 5$$

(ii)
$$L_{q_2} = \frac{0.64 \times 0.25 + 0.64}{2 \times 0.2} = 2, L_2 = 2.8, W_{q_2} = 2.5, W_2 = 3.5$$

(iii)
$$L_{q_3} = \frac{0.64}{2\times0.2} = 1.6, L_3 = 2.4, W_{q_3} = 2, W_3 = 3$$

$$L_{q_2}/L_{q_1} = 0.675, L_{q_3}/L_{q_1} = 1.6/3.2 = 0.5$$

They all fall into 95% confidence intervals in (a).

20S2-5.

(i)

	Data			Results	
Number of Servers =	2		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L=	4.04410476	3.55223048	4.535979034
Distribution =	Exponential	L _q =	2.46588202	2.004050365	2.927713682
Mean =	0.625	W =	2.53201747	2.243162514	2.820872423
		W _q =	1.54389086	1.266283183	1.821498531
Service Times		P ₀ =	0.11968088	0.106050845	0.133310916
Distribution =	Exponential	P ₁ =	0.18241551	0.165942487	0.198888524
Mean =	1	P ₂ =	0.14682206	0.135064103	0.158580013
		P ₃ =	0.1174116	0.108084485	0.126738716
		P ₄ =	0.09455108	0.086683682	0.102418474
Length of Simulation R	un	P ₅ =	0.07588536	0.068940487	0.082830237
Number of Arrivals =	10,000	P ₆ =	0.06080669	0.053342123	0.06827125
		P ₇ =	0.04646041	0.039609107	0.053311723
		P ₈ =	0.03437865	0.0287365	0.0400208
Dun Cironda	tion	P ₉ =	0.02643309	0.021235661	0.031630518
Run Simula	allon	P ₁₀ =	0.02198272	0.016342638	0.027622795

(ii)

	Data				Results	
Number of Servers =	2			Point	95% Confide	nce Interval
				Estimate	Low	High
Interarrival Times		L	_=	2.86940277	2.655401428	3.08340411
Distribution =	Erlang	L,	_q =	1.28514868	1.094469272	1.475828087
Mean =	0.625	W	٧ =	1.79859409	1.667426546	1.929761643
k =	4	W,	q =	0.80555468	0.687401521	0.923707836
Service Times		P	0 =	0.08788009	0.079559951	0.096200237
Distribution =	Exponential	P	1 =	0.23998572	0.223898835	0.25607261
Mean =	1	P:	2 =	0.21905849	0.206494297	0.231622688
		P;	3 =	0.15304732	0.143823719	0.162270921
		P.	4 =	0.10218281	0.094322966	0.110042646
Length of Simulation R	un	P,	₅ =	0.06743454	0.059859123	0.075009951
Number of Arrivals =	10,000	P _e	6 =	0.04697817	0.03996655	0.053989791
		P	7 =	0.02872811	0.022787465	0.034668759
		P	8 =	0.02146079	0.01479521	0.028126376
David Character Cons		P	9 =	0.01418783	0.00823392	0.020141735
Run Simula	ation	P ₁₀	0 =	0.00984255	0.004906822	0.014778274

(iii)

	Data			Results	
Number of Servers =	2		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L	2.60279949	2.409533768	2.796065206
Distribution =	Constant	Lq	= 1.0137771	0.845468642	1.182085562
Value =	0.625	W	1.62674968	1.505958605	1.747540754
		W _q	0.63361069	0.528417901	0.738803476
Service Times		P ₀	0.07483172	0.067303152	0.082360281
Distribution =	Exponential	P ₁	0.26131418	0.243064069	0.279564296
Mean =	1	P ₂	0.25789822	0.244238516	0.271557916
		P ₃	0.15619313	0.146337505	0.166048745
		P ₄	0.09746869	0.08773456	0.107202822
Length of Simulation R	un	P ₅	0.06257259	0.052995794	0.072149386
Number of Arrivals =	10,000	P ₆	0.0388295	0.030093467	0.047565538
		P ₇	0.02255516	0.015853677	0.029256644
		P ₈	0.01252675	0.008005617	0.017047883
Dun Cironda	tion	P ₉	0.00585078	0.002756411	0.008945158
Run Simula	allon	P ₁₀	0.00430886	0.001317909	0.007299815

 $L_{q_2}/L_{q_1} = 1.29/2.47 = 0.52, L_{q_3}/L_{q_1} = 1.01/2.47 = 0.41$

20S2-6.

	Data				Results	
Number of Servers =	1			Point	95% Confide	nce Interval
				Estimate	Low	High
Interarrival Times			L=	4.2911208	3.580199095	5.002042509
Distribution =	Exponential	L	-q =	3.48193864	2.790979562	4.172897717
Mean =	1	W	V =	4.27450872	3.619225209	4.929792236
		W	'q =	3.46845912	2.822990545	4.113927697
Service Times		P	' ₀ =	0.19081784	0.166501011	0.215134664
Distribution =	Exponential	Р	1 =	0.15255487	0.134895841	0.170213906
Mean =	0.8	P	₂ =	0.11905166	0.106286404	0.13181692
		P	3 =	0.10175524	0.092077494	0.111432992
		P	4 =	0.08389876	0.075564479	0.092233044
Length of Simulation R	un	P	₅ =	0.06123564	0.053975668	0.068495604
Number of Arrivals =	10,000	P	' ₆ =	0.05137418	0.044309177	0.058439176
		Р	P ₇ =	0.04114546	0.034871539	0.047419377
		P	' ₈ =	0.03639616	0.029474684	0.043317632
Run Simulation		P	9 =	0.03166299	0.023347529	0.039978447
Run Simula	illon'	P ₁	0 =	0.02653407	0.018696268	0.034371877

	Data			Results	
Number of Servers =	1		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L	= 2.6200808	2.316932956	2.923228649
Distribution =	Erlang	L_q	= 1.81857185	1.529344973	2.107798727
Mean =	1	W	= 2.61849292	2.322735858	2.914249992
k =	4	W_q	= 1.81746972	1.533437067	2.101502373
Service Times		P ₀	= 0.19849105	0.181119032	0.215863063
Distribution =	Exponential	P ₁	= 0.23984341	0.222687222	0.256999605
Mean =	0.8	P ₂	= 0.17199717	0.160956734	0.18303761
		P ₃	= 0.11861122	0.109457495	0.127764955
		P ₄	= 0.08105923	0.073189799	0.088928655
Length of Simulation R	un	P ₅	= 0.0537207	0.046173793	0.061267614
Number of Arrivals =	10,000	P ₆	= 0.04044456	0.032967741	0.047921373
		P ₇	= 0.03226234	0.024660756	0.03986393
		P ₈	= 0.02285132	0.016014453	0.029688193
		P ₉	= 0.01397258	0.009235805	0.018709353
Run Simula	allon	P ₁₀	= 0.00827044	0.004580435	0.011960443

	Data			Results	
Number of Servers =	1		Point	95% Confide	nce Interval
			Estimate	Low	High
Interarrival Times		L =	2.12966982	1.879312107	2.380027537
Distribution =	Constant	$L_q =$	1.32953423	1.091852419	1.56721604
Value =	1	W =	2.12966982	1.879312107	2.380027537
		$W_q =$	1.32953423	1.091852419	1.56721604
Service Times		P ₀ =	0.19986441	0.183544775	0.21618404
Distribution =	Exponential	P ₁ =	0.29281298	0.273527473	0.312098488
Mean =	0.8	P ₂ =	0.18827746	0.177005913	0.199549014
		P ₃ =	0.12222875	0.111746308	0.132711198
		P ₄ =	0.0780542	0.068346215	0.087762184
Length of Simulation Re	un	P ₅ =	0.04689815	0.037890832	0.05590546
Number of Arrivals =	10,000	P ₆ =	0.02863435	0.020994488	0.036274217
		P ₇ =	0.01633121	0.010115182	0.022547243
		P ₈ =	0.01019452	0.00485594	0.015533105
Dun Cimula	tion	P ₉ =	0.00647183	0.001373016	0.011570642
Run Simula	allon	P ₁₀ =	0.00323684	-4.77602E-05	0.006521442

$$L_{q_2}/L_{q_1} = 1.82/3.48 = 0.52, L_{q_3}/L_{q_1} = 1.32/3.48 = 0.38$$