

Proportional-Integral Control

ENCE361 Embedded Systems 1

Course Coordinator: Ciaran Moore (ciaran.moore@Canterbury.ac.nz)

Lecturer: Le Yang (le.yang@canterbury.ac.nz)

Department of Electrical and Computer Engineering

Where we're going today

Introduction to control systems

Proportional control

Integral control

Digital PI control

Introduction to Control Systems

- Control system = interconnection of components forming a configuration that provides a desired system response
 - Process: a series of task together transforming inputs to outputs
 - Actuator (mover): take control signal and convert the source of energy into (mechanic) move
 - Controller: produce the control signal in a format suitable as input to actuator

Example: Liquid Level System

Open-Loop Control System

Use a controller or actuator to directly control the process

- Conceptually simple and easy
 - Example: toaster, old microwave oven, washing machine
- Design an open-loop control system requires accurate knowledge on the plant (actuator + process)
 - Unreliable when there are unexpected variations in the system

Closed-Loop Control System

- Open-loop control system does not monitor the system output but simply assumes it works as expected
- Closed-loop control system uses a sensor (e.g., yourself ©) to feed system output back to adjust controller behavior adaptively

Where we're going today

Introduction to control systems

Proportional control

Integral control

Digital PI control

Proportional Control

- Proportional control (P) monitors error signal e(t) = desired response x(t) - system output m(t)
- But let the magnitude of control signal depend on the error magnitude
- Proportional controller drives actuator in proportional to e(t)
 - Controller output is

$$c(t) = k_p e(t) = k_p(x(t) - m(t))$$

oportional control gain

• k_p is the proportional control gain

•
$$c(t) = \begin{cases} 1, & e(t) > T \\ 0, & e(t) < 0 \\ k_p e(t), 0 < e(t) < T \end{cases}$$

Transfer characteristic of a proportional control system.

Offset Error (1)

- Proportional controller drives actuator in proportional to e(t)
 - Controller output is

$$c(t) = k_p e(t) = k_p(x(t) - m(t))$$

At equilibrium, we have

$$m(t) = k_p e(t) = k_p(x(t) - m(t))$$

$$m(t) = \frac{k_p}{k_p + 1} x(t) \neq x(t)$$

Offset Error (2)

- Proportional control has offset error
 - Increasing gain k_p (blue)
 - Faster response
 - Decrease offset error
 - Increase overshoot
 - Decreasing gain k_p (dashed)
 - Slower response
 - Increase offset error
 - Decrease overshoot

Where we're going today

Introduction to control systems

Proportional control

Integral control

Digital PI control

Integral Control (1)

- Problem of proportional control
 - Controller output solely depends on instantaneous error signal
 - Offset error always exists

$$m(t) = \frac{k_p}{k_p + 1} x(t) \neq x(t)$$

- ullet Increasing gain k_p reduces offset error at the cost of increased overshoot and possible instability
- Naïve solution: manual reset
 - To achieve m(t)=x(t), provide a scaled response $x'(t)=\frac{k_p+1}{k_p}x(t)$ such that

$$m(t) = \frac{k_p}{k_p + 1} x'^{(t)} = \frac{k_p}{k_p + 1} * \frac{k_p + 1}{k_p} x(t) = x(t)$$

Integral Control (2)

- Integral control: an automatic approach to correct offset error e(t)
 - Controller output depends on the integral of error signal e(t)

$$c(t) = k_i \int_{-\infty}^{t} e(\tau) d\tau$$

- k_I is the integral control gain
- If there is an offset error (i.e., e(t) is non-zero)
 - Integral control would increases c(t) to correct it
- Even if e(t) is zero, c(t) can still be non-zero!
 - Proportional Integral (PI) control
- Integrating error signal e(t)=x(t)-m(t) may reduce noise in measured system output m(t)
 - Recall digital signal conditioning in Lectures 4 & 5

Integral Control (3)

- Integral controller output depends on entire history of the error signal
 - It could introduce overshoot and even oscillation
 - Example: a positive e(t) persists \rightarrow increased integral control output

e(t) = 0 but positive integral control output persists \rightarrow overshoot

a negative $e(t) \rightarrow$ reduced integral control output

e(t) = 0 but negative integral control output persists \rightarrow oscillation

Digital Realization of Integral Control

- How to implement error integration in C code?
 - Sampling with is needed to approximate <u>numerically</u> the integral using summation

Error signal: $e(t) \rightarrow e(nT_s)$, T_s : sampling interval

Control Signal: $c(t) \rightarrow c(nT_s)$, possible DAC needed before output

$$c(t) = k_i \int_{-\infty}^{t} e(\tau) d\tau$$

 $E(nT_S) = E((n-1)T_S) + T_S \cdot e(nT_S)$, Approximated signal integral $c(nT_S) = k_i \cdot E(nT_S)$, Amplify control signal

Numerical integration with ZOH

Where we're going today

Introduction to control systems

Proportional control

Integral control

Digital PI control

Digital PI Control

• PI controller output:

$$c(t) = k_p e(t) + k_i \int_{-\infty}^{t} e(\tau) d\tau$$

Digital PI controller output:

$$c(nT_s) = k_p e(nT_s) + k_i \left(E((n-1)T_s) + T_s \cdot e(nT_s) \right)$$

$$E(nT_s) = E((n-1)T_s) + T_s \cdot e(nT_s)$$

Digital Realization

```
// Error signal integration
   static double error_integrated = 0.0;
   static double error_previous = 0.0;
                                              // Previous error sample
3
   double pid_update (double error, double proportional_gain,
                        double integral_gain, double derivative_gain,
                        double delta_t)
7
        double error_derivative;
        double control;
11
                                                      // Error signal integration
        error_integrated += error * delta_t;
        error_derivative = (error - error_previous) / delta_t; // Error signal time derivative
13
                                                      // Proportional control
        control = error * proportional_gain
15
                                                      // Integral control
            + error_integrated * integral_gain
            + error_derivative * derivative_gain; // Derivative control
17
        error_previous = error;
                                                      // Update previous error sample
19
                                                      // Control signal c(t)
       return control;
21
```

Output Saturation & Integral Windup

- Controller output has no limits on its magnitude
- Actuator may not be able to "follow" controller output
 - Fundamental limitation, due to e.g., power and physical constraints
 - Further demands from controller output have no effect

- With integral control, the accumulated error and control output can be very large, causing significant overshoot
 - Integral windup

Digital Realization

```
P = Kp * error;
                                          // Proportional control
dI = Ki * error * T;
                                          // Integral control
D = (Kd/T)*(error - prev_error); // Derivative control
control = P + (I + dI) + D;
                                     // PID control signal c(t)
                                         // Update previous error sample
prev_error = error;
// Enforce output limits
if (control > OUTPUT_MAX)
     control = OUTPUT_MAX;
else if (control < OUTPUT_MIN)
     control = OUTPUT_MIN;
else
                                         // Accumulate error signal only if controller output
     I += dI;
                                         // falls within [OUTPUT MIN, OUTPUT MAX]
```

PI Control Tuning (1)

- Rise time: time taken for m(t) to go from 10% to 90% of its steady value
- Overshoot:

(max value – steady value)/steady value *100%

- Settling time: time taken for m(t) to be bounded within a tolerance of say, 2% of its steady value
- Steady-state error: difference between the steady value of m(t) and desired response x(t)

PI Control Tuning (2)

Effects of Increasing Gains

	Rise Time	Overshoot	Settling Time	Steady-state Error
Proportional control gain k_p	Decrease	Increase	Small change	Decrease
Integral control gain k_i	Decrease	Increase	Increase	Eliminate