Proiect Statistică

Chirobocea Mihail-Bogdan 312 Costea Răzvan-George 311 Marin Mircea-Mihai 312 Popa Mihai-Cristian 311

Lider echipă: Chirobocea Mihail-Bogdan

I. Inegalitatea Berry-Essen

1. Am tansmis prin parametru pdf-ul / pmf-ul variabilei aleatoare X. Au fost folosite formulele pentru medie și varianță:

$$E(X) = \int_{-\infty}^{\infty} xf(x) dx / \sum_{i=0}^{n} x_i p_i$$

$$Var(X) = E(X^2) - E(X)^2$$

În cazul discret, probabilitățile sunt calculate folosind funcția de masa, i.e. pmf. În cazul continuu integrala este calculată folosind metoda Monte Carlo.

2. Functia primește ca parametru o variabila aleatoare X si returneaza rezultatul cerut.

```
34 #2
35 v mom_3 <- function(X){
36    return(mean(abs(X - mean(X))**3))
37 a }
38</pre>
```

3. Am scris o funcție care calculează marginea Berry-Essen care primește ca parametru variabila aleatoare X_1 și volumul eșantionului n. Apoi am construit un dataframe care contine primele 2 coloane, i.e. distribuția si volumul pentru care va fi calculată marginea. Pentru fiecare volum n am generat 10^6 numere din fiecare distribuție și am calculat marginea. Aceste rezultate sunt puse intr-un vector, iar acest vector este adaugat ca și coloană la dataframe.

```
sigma = sqrt(mean(X_1**2) - mean(X_1)**2)
return(33/4 * (mom_3(X_1)) / (sqrt(n) * sigma**3))
45 names = c('Binomial', 'Geometric', 'Poisson', 'Uniform', 'Exponential', 'Gamma', 'Beta')
     volumes = c(30, 100, 1000)
     BE Margins <- data.frame(
        'Distribution' = c(c(names, names), names),
'Volume' = sort(c(c(c(c(c(c(c(volumes, volumes), volumes), volumes), volumes), volumes))
     margins <- c()
56 v for(n in volumes){
       X_1_bin = rbinom(10^6, 3, 0.4)
       X_1_geom = rgeom(10^6, 0.3)
X_1_pois = rpois(10^6, 10)
       X_1_unif = sample(1:20, 10^6, replace=T)
       X_1_exp = rexp(10^6, 3)
X_1_gamma = rgamma(10^6, 9, 0.5)
       X_1_beta = rbeta(10^6, 2, 2)
       margins <- c(margins, BE_Margin(X_1_bin, n))</pre>
       margins <- c(margins, BE_Margin(X_1_geom, n))
margins <- c(margins, BE_Margin(X_1_pois, n))
         margins <- c(margins, BE_Margin(X_1_unif, n))</pre>
        margins <- c(margins, BE\_Margin(X_1\_exp, n))
        \label{eq:margins} \begin{array}{ll} \text{margins} < & \text{c(margins, BE\_Margin}(X\_1\_gamma, \ n)) \\ \text{margins} < & \text{c(margins, BE\_Margin}(X\_1\_beta, \ n)) \\ \end{array}
     BE_Margins$Margin = margins
     BE Margins
```

*	Distribution ‡	Volume ‡	Margin ‡
1	Binomial	30	2.2131096
2	Geometric	30	3.6616273
3	Poisson	30	2.4235634
4	Uniform	30	1.9543812
5	Exponential	30	3.6182861
6	Gamma	30	2.5472591
7	Beta	30	2.1057724
8	Binomial	100	1.2110884
9	Geometric	100	2.0002072
10	Poisson	100	1.3262601
11	Uniform	100	1.0703577
12	Exponential	100	2.0032390
13	Gamma	100	1.3992403
14	Beta	100	1.1530103
15	Binomial	1000	0.3831067
16	Geometric	1000	0.6334175
17	Poisson	1000	0.4192049
18	Uniform	1000	0.3385089
19	Exponential	1000	0.6304585
20	Gamma	1000	0.4419005
21	Beta	1000	0.3645935

În tabel se poate observa că marginea scade cu cât volumul eșantionului crește. Deci aproximarea realizată de TLC este mai exactă dacă volumul eșantionului este mare.

Cum $\mu < \infty \land \sigma < \infty \land E(|X_i|^3) < \infty$, atunci se poate observa că

$$\lim_{n \to \infty} \left(\frac{33}{4} \frac{E(|X_1 - \mu|)^3}{\sqrt{(n)} \, \sigma^3} \right) = 0$$

4. Pentru fiecare volum n a fost construită variabila aleatoare Z_n , calculând mai întâi media de selecție \overline{X} . Funcția de repartiție a fost calculată folosind funcția din R ecdf().

Întervalul ales este [0,1] care a fost construit in R folosind funcția seq(). Pentru fiecare punct din secvență se calculează diferența cerută care este stocată intr-un vector pentru a fi plotată.

Procesul descris mai sus este repetat pentru fiecare repartiție cerută.

```
# Geometric

volumes <- c(30, 100, 1000)

for(n in volumes){
    X_bar <- c()

# Init the sampling mean

    X_1 <- rgeom(10^6, 0.3)

    X_bar <- c(X_bar, mean(X_1))

for(i in 2:n){
        X_i <- rgeom(10^6, 0.3)

        X_bar <- c(X_bar, mean(X_i))

        X_bar <- c(X_bar, mean(X_i))

# Init Z_n ry

sigma = sqrt(mean(X_1**2) - mean(X_1)**2)

Z_n <- (sqrt(n) * (X_bar - mean(X_1))) / sigma

# Use ecdf() function to find the cdf of Z_n

cdf <- ecdf(Z_n)

# Define [0, 1] interval

x <- seq(0, 1, 0.001)

diff <- c()

for(t in x){
    # Compute the difference
    diff <- c(diff, cdf(t) - pnorm(t))

}

# Plot

plot(x, diff, main=sprintf('Geometric with %d volume', n), lwd=0.5)

lines(x, diff, col="red")
```

```
# Discrete Unifor volumes <- c(30, 100, 1000)

for(n in volumes){
    X_bar <- c()

    # Init the sampling mean
    X_1 <- sample(1:20, 10^6, replace = T)
    X_bar <- c(X_bar, mean(X_1))

for(i in 2:n){
    X_bar <- c(X_bar, mean(X_i))

    X_bar <- c(X_bar, mean(X_i))

    X_bar <- c(X_bar, mean(X_i))

    X_bar <- c(X_bar, mean(X_i))

# Init Z_n ry

signa = sqrt(mean(X_1**2) - mean(X_1)**2)

Z_n <- (sqrt(n) * (X_bar - mean(X_1)) / sigma

# Use ecdf() function to find the cdf of Z_n

cdf <- ecdf(Z_n)

# Define [0, 1] interval

x <- seq(0, 1, 0.001)

diff <- c()

for(t in x){
    # Compute the difference

diff <- c(diff, cdf(t) - pnorm(t))

}

# Plot

plot(x, diff, main=sprintf('Discrete Uniform with %d volume', n), lwd=0.5)

lines(x, diff, col="red")
```

```
# Exponential
volumes <- c(30, 100, 1000)

for(n in volumes){
    X_bar <- c()

    X_bar <- c()

    X_bar <- c()

    X_bar <- c(X_bar, mean(X_1))

    X_bar <- c(X_bar, mean(X_1))

    X_bar <- c(X_bar, mean(X_1))

    X_bar <- c(X_bar, mean(X_1))

# Init Z_n ry

signa = sqrt(mean(X_1**2) - mean(X_1)**2)

Z_n <- (sqrt(n) * (X_bar - mean(X_1)) / sigma

# Use ecdf(Z_n)

# Define [0, 1] interval
x <- seq(0, 1, 0.001)
diff <- c()
for(t in x){
# Compute the difference
diff <- c(diff, cdf(t) - pnorm(t))

# Plot
plot(x, diff, main=sprintf('Exponential Uniform with %d volume', n), lwd=0.5)
lines(x, diff, col="red")
```

Mai jos se pot analiza graficele pentru fiecare repartiție:

5. Știind pdf-ul, respectiv pmf-ul, puntem calcula funcția de repartiție pentru a simula variabila aleatoare folosind metoda inversă. Am scris o funcție pentru cazul discret și una pentru cazul continuu. Fiecare dintre acestea folosește funcțiile scire la punctul 1.

```
336 ∨ Margin_c <- f
                               tion(X_1, n, pdf){
        miu <- E_c(pdf)
          sigma <- sqrt(Var_c(pdf))
                  rn(33/4 * mean(abs(X_1 - miu)**3) / (sqrt(n) * sigma**3))
342 # Compute B-E margin for discrete ry
343 v Margin_d <- function(X_1, n, pmf){</pre>
         miu <- E_d(pmf)
          sigma <- sqrt(Var_d(pmf))
return(33/4 * mean(abs(X_1 - miu)**3) / (sqrt(n) * sigma**3))</pre>
349 ♥ pdf <- function(x){
350 3*exp(-3*x)
351 4 }
353 * pmf <- function(x){
354          exp(-10)*(10^x)/(factorial(x))
355 * }
357 • generate_c <- function(){
358 # we know the pdf/pmf so
          x <- -1/3*log(u)
return(x)
364 • generate_d <- function(){
365  # we know the pdf/pmf so
           for(i in 1:10^6){
    u <- runif(1)
    j <- 0
             p <- exp(-10)
F_x <- p
while(u >= F_x){
               p <- (10*p)/(j+1)
F_x <- F_x + p
              X[i] <- j
                - generate_c()
        Margin_c(X_1, 1000, pdf)
        X_1 <- generate_d()</pre>
        Margin_d(X_1, 1000, pmf)
```

Rezultatele obținute folosind media si varianța de la punctul 1 sunt foarte apropiate față de cele de la punctul 3, unde media a fost calculată folosind funcția din R mean(). Și în acest caz, are loc concluzia dată la punctul 3.

Exercitiul 2

<u>2.1.</u>

Probabilitatea de acceptare a unei valori prin metoda respingerii este $\frac{1}{c}$, unde c este constanta care mărginește raportul $\frac{f(x)}{g(x)}$.

Pentru a putea ajunge la acel rezultat, ne întoarcem la algoritmul metodei respingerii:

- **1.** Generez U
- **2.** Generez *Y*
- 3.

a. Dacă
$$U \leq \frac{f(Y)}{cg(Y)}$$
, atunci $X \leftarrow Y$

b. Altfel, înapoi la pasul 1.

Pasul de acceptare-respingere, 3, conține probabilitatea de acceptare :

$$P('acceptare') = P(U \le \frac{f(Y)}{cg(Y)}) =$$

$$= \int_{D} P\left(U \le \frac{f(Y)}{cg(Y)} \middle| Y = y\right) g(y) dy$$

$$= \int_{D} \frac{f(y)}{g(y)} g(y) dy = \frac{1}{c} \int_{D} f(y) dy = \frac{1}{c}$$

pentru f, g funcții de densitate ale unor variabile aleatoare, unde D este domeniul de definiție al lui f(domeniu pe care l-am restrâns și pe g, i.e. $g = g_D$).

2.2.

$$E\left[1_{U \le \frac{f}{g}}\right] = P\left(U \le \frac{f(Y)}{g(Y)}\right) = \frac{1}{c}$$
, conform subpunctului 2.1 .

Pentru funcția f dată, unde nu cunoaștem constanta de normalizare, considerăm

$$f(x) = \alpha p(x); p(x) = \sin^2 x \ e^{-x^2 \sqrt{x}}$$

Atunci,
$$f(x) \le cg(x) \Leftrightarrow p(x) \le \frac{c}{\alpha}g(x)$$
. Notând $\frac{c}{\alpha} := M, p(x) \le Mg(x)$.

Atât pentru f(x) cât și pentru p(x) se poate aplica metoda respingerii, și din studiul celor două, putem găsi aproximări ale constantei de normalizare α .

2.4.

Pentru a rezolva acest subpunct, am folosit cod R, aplicând principiile de la 2.2.

Începem cu definițiile din enunț

```
#Exercitial 2, subpunctul 4
#partea ne-constanta a lui f. in alte cuvinte, f proportional cu fb.
fb <- function(x) {
    (sin(x))^2*exp(-x^2*sqrt(x))
}

#g1,g2,g3 din enunt
g1 <- function(x) {
    (exp(-x))
}

g2 <- function(x) {
    (1/(pi)* (1/(1+x^2/4)))
}

g3 <- function(x) {
    (1/sqrt(pi/2)*exp(-x^2/2))
}</pre>
```

Aflăm c1, c2, c3 optimi(i.e. $c_i = \max_{x \in (0,\infty)} \frac{f(x)}{g(x)}$) folosind funcția optimize și luând a doua poziție din lista rezultată.

```
h1 <- function(x){
    fb(x)/g1(x)}
    c1 <- optimize(h1, lower=0,upper=10, maximum = T)
    h2 <- function(x){
        fb(x)/g2(x)}
    c2 <- optimize(h2, lower=0,upper=10, maximum = T)
    h3 <- function(x){
        fb(x)/g3(x)}
    c3 <- optimize(h3, lower=0,upper=10, maximum = T)

c1 <-as.numeric((c1)[2])
    c2 <-as.numeric((c2)[2])
    c3 <-as.numeric((c3)[2])
```

Câteva grafice:

Functiile h1,h2,h3 impartite la valorile lor maxime verde,rosu,albastru

Apoi, aplicăm metoda respingerii:

```
t <- 10000

sf_1 <- function(x, n) {
    repeat {
        u <- runif(1, 0, 1)
        y <- rexp(1)
        if (u <= fb(y)/(c1*g1(y))) {
            return(y)
        }}}

x1 <- sapply(1:(t), sf_1)
|
x1 <- seq(min(x1), max(x1), 0.001)
hist(x1, freq = F,main='Rezultatul metodei respingerii, g1',xlab='0x',ylab='0y')
lines(x1, fb(x1), col = "blue")</pre>
```


Pentru același cod dar cu g2, g3 în loc de g1:

Se observă că funcția fb, în lipsa constantei de normalizare, nu se află deasupra histogramei. Astfel, o metodă de a deduce constanta de normalizare este să găsim o constantă care ar face graficul funcției să se potrivească cu histograma. În cazul nostru, acea constantă este aproximativ 3.844, care pare să fie în jur de $e\sqrt{2}$. Înmulțind funcția fb cu $e\sqrt{2}$,

```
f <- function(x) {
    exp(1)*2^0.5*(sin(x))^2*exp(-x^2*sqrt(x))
}

#Gasim ca
hist(X1, freq = F,main='Pentru rezultatul aferent g1',xlab='0x',ylab='0y')
lines(x1, f(x1), col = "blue")
hist(X2, freq = F,main='Pentru rezultatul aferent g2',xlab='0x',ylab='0y')
lines(x2, f(x2), col = "blue")
hist(X3, freq = F,main='Pentru rezultatul aferent g3',xlab='0x',ylab='0y')
lines(x3, f(x3), col = "blue")</pre>
```

Pentru rezultatul aferent g1

Pentru rezultatul aferent g3

Astfel, se potrivește bine pentru fiecare g.

III.

1) Pentru simularea lui T,vom avea nevoie sa simulam valori din distributiile:

$$Bin(\alpha_i) {\sim} \begin{pmatrix} 0 & 1 \\ 1 - \alpha_i & \alpha_i \end{pmatrix} \, si \, Exp(\lambda_i)$$

Folosim metoda inversa pentru simularea $Bin(\alpha_i)$

- Generam U~Unif(0,1)
- $X = \begin{cases} 0, & \text{daca } u < 1 \alpha_i \\ 1, & \text{daca } u \ge 1 \alpha_i \end{cases}$

Folosim metoda inversa pentru simularea $Exp(\lambda_i)$

- Generam U~Unif(0,1)
- $F(x) = \begin{cases} 1 e^{-\lambda_i x}, & x \ge 0 \\ 0, & \text{altfel} \end{cases}$
- $X = F^{-1}(U) \Rightarrow x = F^{-1}(u), \forall x \ge 0$
- $\Rightarrow u = F(x) \Leftrightarrow u = 1 e^{-\lambda_i x} \Leftrightarrow x = -\frac{1}{\lambda_i} \ln (1 u)$
- $X = -\frac{1}{\lambda_i} \ln (1 U)$

 α_i , λ_i le vom genera uniform

T = 0

Avand un examen cu un numar de n exercitii, algoritmul pentru simularea lui T este:

pentru
$$i \in \overline{1, n}$$
:
$$generam \ b := Bin(\alpha_i)$$

$$daca \ b = 0:$$

$$STOP$$

$$altfel:$$

$$generam \ t := Exp(\lambda_i)$$

T = T + t

Algoritmul de mai sus genereaza o singura valoare pentru T,insa il putem scala in R pentru a genera $10^6\,$ valori

 $n \rightarrow numarul de sample-uri, i.e. 10^6$

 $max_n \rightarrow numarul de exercitii, i.e. n$

 $p \rightarrow un$ vector ce contine valorile $\alpha_1, ..., \alpha_n$

 $1 \rightarrow \text{un vector ce contine valorile } \lambda_1, \dots, \lambda_n$

 $b \to o$ matrice care are pe fiecare coloanal cate 10^6 sample-uri din Bin (α_i) , $i \in \overline{1, n}$

 $t \to o$ matrice care are pe fiecare coloanal cate 10^6 sample-uri din $Exp(\lambda_i)$, $i \in \overline{1,n}$

```
stop <- apply(b, MARGIN = 1, function(x) {
    # pastram indicii pozitiilor unde avem 0 in vectorul linie
    i <- which(x == 0)
    # daca nu exista 0, atunci elevul A rezolva tot examenul
    if (length(i) == 0){
        return(max_n)
    }
    # daca exista 0, atunci elevul A se opreste la primul 0
    return(i[1]-1)
})</pre>
```

Pentru fiecare sample din b cautam la al catelea exercitiu se opreste elevul din rezolvat.

```
t_stop <- cbind(t, stop)
# MARGIN=1 -> functia va primia ca input fiecare linie din t_stop
T <- apply(t_stop, MARGIN = 1, function(x){
    # x[length(x)] = indicele de oprire
    # sumam toti timpi pana la indicele de oprire
    return(sum(x[1:x[length(x)]]))
})</pre>
```

Pentru fiecare sample din t facem suma primelor elemente, pana la exercitiul la care elevul se opreste din rezolvat.

Histogram of T

2) Pentru calculul exact al E(T) vom considera urmatoarele evenimente

H = evenimentul ca elevul sa termine examenul in timpul t

B = evenimentul ca elevul sa se opreasca din lucru la al n - lea exercitiu

Vrem sa aflam
$$P(H|B) = \frac{P(H \cap B)}{P(B)}$$

$$X_i \sim Exp(\lambda_i)$$
,

$$X_{i} \sim \operatorname{Exp}(\lambda_{i}),$$

$$\sum_{i=1}^{n} X_{i} \sim \operatorname{Hypo}(\lambda_{1}, \dots, \lambda_{n}) \Rightarrow P(H \cap B) = \sum_{i=1}^{n} \lambda_{i} e^{-x\lambda_{i}} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{\lambda_{j}}{\lambda_{j} - \lambda_{i}}$$

$$P(B) = (1 - \alpha_n) \prod_{i=1}^{n} \alpha_i$$

$$E(T) = \int_{\mathbb{R}} P(H|B) d\lambda, \qquad \int_{0}^{\infty} e^{-x\lambda_{i}} dx = \frac{1}{\lambda_{i}}$$

$$E(T) = \frac{\sum_{i=1}^{n} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{\lambda_{j}}{\lambda_{j} - \lambda_{i}}}{(1 - \alpha_{n}) \prod_{i=1}^{n} \alpha_{i}}$$

3) $P = \frac{\text{\#cazuri favorabile}}{\text{\#cazuri totale}} = \frac{\text{\#a finalizat activitate}}{10^6}$

In acest caz, finalziarea activitatii este echivalenta cu a nu se opri la niciun exercitiu.

$$p_{finish} <-sum(stop == max_n)/n$$

 $p_{finish} = 0.133064$

4)
$$P = \frac{\text{\#cazuri favorabile}}{\text{\#cazuri totale}} = \frac{\text{\#a finalizat activitate intr-un timp mai mic decat } \sigma}{10^6}$$

$$\text{time <- runif(1, 1, 120)} \\ p_finish_time <- sum(T[which(stop == max_n)] < time)/n} \\ p_finish_time = 0.10074$$

5) Vom selecta din T acele valori pentru care a fost finalziata activitatea

```
time_finish <- T[stop == max_n]
min_time <- min(time_finish)
max_time <- max(time_finish)

hypo_samples <- c()
for(i in 1:max_n){
    if(i==1){
        hypo_samples <- rexp(length(time_finish), l[i])
    } else{
        hypo_samples <- hypo_samples+rexp(length((time_finish)), l[i])
    }
}
max_time <- max(hypo_samples)

# plotam histogramele una sub celalta
par(mfrow=c(2,1))
hist(time_finish, xlim = c(min_time, max_time), breaks = 10^4, freq = FALSE)
hist(hypo_samples, xlim = c(min_time, max_time), breaks = 10^4, freq = FALSE)</pre>
```

Mai departe am generat o distributie hypoexponentiala cu aceasi parametri si acelasi numar de sample-uri.

Histogram of time_finish

Histogram of hypo_samples

Observatie:

Finalizarea activitatii presupune rezolvarea tuturor exercitiilor, astfel ca pentru calculul lui T va trebui sa sumam toate variabilele aleatoare din distributiile exponentiala de parametri λ_i , acest lucru nu este nimic altceva decat distrbutia $\text{Hypo}(\lambda_1, \dots, \lambda_n)$

```
\begin{array}{l} \textit{6)} \ P_k = \frac{\text{\#cazuri favorabile}}{\text{\#cazuri totale}} = \frac{\text{\#s-a oprit din lucru pana la exc k}}{10^6} \\ p_k <- c() \\ \text{for (k in 1:max_n)} \{ \\ p_k <- c(p_k, \text{sum(stop } < k)/n) \\ \} \\ \text{plot(1:max_n, p_k, type="l", xlab="k", ylab="p_k", main="plot of p_k")} \\ p_k \\ \text{num [1:4] 0.49 0.692 0.8 0.867} \end{array}
```

Plot of p_k

Exercitiul 4:

```
1) Fie X1,X2,....Xn v.a. i.i.d Xi\simBeta(1 \square , 1 \square ) şi X\simBinomial(1, 1 2 ).
        (i) Verificati dacă Xn \square \rightarrow X.
# Generam sirul Xn
genXn <- function(n)
 res \leftarrow rbeta(n, 1/n, 1/n)
 return(res)
# Folosim functia check.convergence in modul "L" pentru a verifica convergenta in distributie la
# X pe care il introducem prin functia de masa si prin cea de repartitie
check.convergence(500, 250, genXn, mode="L",
            density = F,
            densfunc = function(x) \{ dbinom(x, 1, 1/2) \},
            probfunc = function(x){pbinom(x, 1, 1/2)})
check.convergence(2000, 1000, genXn, mode="L",
            density = F,
            densfunc = function(x) \{ dbinom(x, 1, 1/2) \},
            probfunc = function(x) {pbinom(x, 1, 1/2)})
```

Convergence in law?

Acesta este graficul pentru nmax = 500 si M = 250.

Acesta este graficul obtinut pentru n $\max = 2000 \text{ si M} = 1000.$

Putem observa ca de la un grafic la altul eroarea a scazut semnificativ, deci pentru un nmax suficient de mare si un M suficient de mare am obtine graficul erorii foarte aproape de planul orizontal zero.

Prin urmare putem trage concluzia ca Xn converge in distributie la X.

```
probfunc = function(x) {pbinom(x, 1, 1/2)})
check.convergence(500, 250, genXn, argsXn=list(a = 2, b = 5), mode="L",
           \overline{\text{density}} = F,
           densfunc = function(x) \{ dbinom(x, 1, 1/2) \},
           probfunc = function(x){pbinom(x, 1, 1/2)})
check.convergence(2000, 1000, genXn, argsXn=list(a = 2, b = 5), mode="L",
           density = F,
           densfunc = function(x) \{dbinom(x, 1, 1/2)\},\
           probfunc = function(x) {pbinom(x, 1, 1/2)})
check.convergence(500, 250, genXn, argsXn=list(a = 5, b = 2), mode="L",
           density = F,
           densfunc = function(x) \{ dbinom(x, 1, 1/2) \},
           probfunc = function(x){pbinom(x, 1, 1/2)})
check.convergence(2000, 1000, genXn, argsXn=list(a = 5, b = 2), mode="L",
           density = F,
           densfunc = function(x) \{ dbinom(x, 1, 1/2) \},
           probfunc = function(x) {pbinom(x, 1, 1/2)})
```

Convergence in law?

Pentru a si b egale (a = b = 5) obtinem ceva analog cu punctul (i). In stanga avem graficul pentru nmax = 500 si M = 250, iar in dreapta graficul pentru nmax = 2000 si M = 1000. In acest caz Xn converge in distributie la X.

Pentru a=2 si b=5, eroarea ramane constanta, pentru (500, 250) si (2000, 1000) de unde tragem concluzia ca pentru a
b si Xi~Beta(\Box/\Box , \Box/\Box), cu a>0,b>0, Xn nu converge in distributie la X~Binomial(1, 1 2).

Pentru a = 5 si b = 2, obtinem acelasi lucru ca pentru a = 2 si b = 5 si anume ca pentru a > b si Xi~Beta(\Box/\Box , \Box/\Box), cu a > 0,b > 0, Xn nu converge in distributie la X~Binomial(1, 1 2).

```
2) Fie X1,X2,...Xn v.a. i.i.d uniform distribuite pe mulțimea de valori \{1/\square, 2/\square ... 1\} și
X \sim Unif(0,1). (i) Verificați dacă Xn \square \rightarrow X.
# Functia care ne genereaza valori cu aceeasi probabilitate
rUnifDisc <- function(n, discreteUnifValues) sample(discreteUnifValues, n, replace=T)
# Generam Xn pe care il vom folosi in check.convergence, uniform discret pe \{1/n, 2/n, ..., 1\}
genXn <- function(n)
 discreteUnifValues \leq- seq(from = 1/n, to = 1, by = 1/n)
 res <- rUnifDisc(n, discreteUnifValues)
 return(res)
# Verificam convergenta in distributie la X uniform continua pe (0, 1)
check.convergence(nmax = 500, M = 250, genXn, mode="L",
            density = F,
            densfunc = function(x) \{ dunif(x, 0, 1) \},
            probfunc = function(x) \{punif(x, 0, 1)\}\)
check.convergence(nmax = 2000, M = 1000, genXn, mode="L",
            density = F,
            densfunc = function(x) \{ dunif(x, 0, 1) \},
            probfunc = function(x) \{punif(x, 0, 1)\})
```

Convergence in law?

0.10 0.10 0.08 0.06 0.02 0.04 0.00 400 0.02 200 Activate V 0.00 Twate Wind

Convergence in law?

In graficul din stanga, am verificat convergenta pentru nmax = 500 si M = 250, iar in graficul din dreapta pentru nmax = 2000 si M = 1000. Observam ca diferenta dintre Fn(t) si F(t) a scazut odata cu cresterea lui n si M, asadar Xn converge in distributie la X~Unif(0,1).

```
(ii) Dar Xn \square \rightarrow X?
```

```
# Functia care ne genereaza valori cu aceeasi probabilitate pe intervalul discretizat anterior rUnifDisc <- function(n, discreteUnifValues) sample(discreteUnifValues, n, replace=T) # Generam un nou sir Xn, care este obtinut din Xn generat ca in subpunctul 2i) # din care scadem un X cu distributie uniforma pe (0, 1) genXn <- function(n) { X <- runif(1) discreteUnifValues <- seq(from = 1/n, to = 1, by = 1/n) res <- rUnifDisc(n, discreteUnifValues) - X return(res) } check.convergence(nmax = 2000, M = 1000, genXn, mode="p")
```


A avea convergenta in probabilitate de la Xn la X este echivalent cu a avea convergenta in probabilitate de la Xn-X la 0. Prin urmare generatorul nostru este sub forma Xn-X, iar pentru a avea convergenta in probabilitate ar trebui sa observam in graficul din dreapta o descrestere spre 0 a lui pn. Pentru ca pn nu scade spre 0 putem concluziona ca Xn nu converge in probabilitate la X.

3) Fie X1,X2,....Xn v.a. i.i.d . Notăm cu m și respectiv M infimumul și respectiv supremumul mulțimii valorilor pe care le poate lua X1. (i.e. $P(m \le X \le M) = 1$, P(X10 și P(X1 > b) > 0 pentru orice a>m și respectiv b

```
(i) Verificați că min\{X1, X2...Xn\} \square.\square. \rightarrow m
```

```
# Luam Xi~Exp(2) si folosim cummin pentru a obtine repartitia min\{X1, X2...Xn\} genXn <- function(n) {      xMin <- cummin(rexp(n, 2))      # Aleg ca infimum minimul repartitiei xMin obtinute infimum <- min(xMin) # Verific daca xMin converge aproape sigur la infimum return(xMin - infimum) }
```

check.convergence(nmax = 2000, M = 1000, genXn, mode = "as")

Observam ca pentru nmax = 2000 si M = 1000, in graficul din dreapta, an descreste spre 0, deci putem concluziona ca min $\{X1, X2 ... Xn\}$ $\square.\square \rightarrow m$, pentru Xi \sim Exp(2). Verificam identic si cazul Xi \sim Pois(5).

```
genXn <- function(n)
{
   xMin <- cummin(rpois(n, 5))
   infimum <- min(xMin)
   return(xMin - infimum)
}</pre>
```

check.convergence(nmax = 2000, M = 500, genXn, mode = "as")

Observam ca pentru nmax = 2000 si M = 1000, in graficul din dreapta, an descreste spre 0, deci putem concluziona ca min $\{X1, X2 ... Xn\}$ $\square . \square . \rightarrow m$, pentru $Xi \sim Pois(5)$.

(ii) Verificati că max $\{X1, X2 ... Xn\} \square .\square . \rightarrow M$.

```
# Luam Xn exponentiale de 2,
genXn <- function(n)
{ # xMax va fi max{X1,X2,...Xn}
xMax <- cummax(rexp(n, 2))
# supremum luam valoarea maxima din xMax
supremum <- max(xMax)
# verificam convergenta aproape sigura a lui xMax la supremum
return(xMax - supremum)
}
check.convergence(nmax = 2000, M = 1000, genXn, mode = "as")
```


Observam ca pentru n $\max = 2000 \text{ si M} = 1000$, in graficul din dreapta, an descreste spre 0, deci putem

```
concluziona ca \max\{X1, X2...Xn\} \square.\square. \to M(\text{supremumul}, \text{ nu argunentul din check.convergence}), pentru <math>Xi \sim Exp(2).
```

```
#Verificam si pentru Xi~Pois(5).
genXn <- function(n)
{
   xMax <- cummax(rpois(n, 5))
   supremum <- max(xMax)
   return(xMax - supremum)
}
check.convergence(nmax = 2000, M = 1000, genXn, mode = "as")</pre>
```


Observam ca pentru nmax = 2000 si M = 1000, in graficul din dreapta, an descreste spre 0, deci putem concluziona ca max $\{X1, X2...Xn\}$ $\Box.\Box. \rightarrow M(supremumul, nu argunentul din check.convergence), pentru <math>Xi \sim Pois(5)$.