

Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH15)

Paper 01:Transition Metals and Organic

Nitrogen Chemistry

Section A (Multiple Choice)

Question number	Answer	Mark
1(a)	The only correct answer is D (Pt, Pt)	1
	A is incorrect because both electrodes should be made of platinum	
	B is incorrect because both electrodes should be made of platinum	
	C is incorrect because both electrodes should be made of platinum	

Question number	Answer	Mark
1(b)	The only correct answer is C (1.00 mol dm ⁻³ HCl(aq))	1
	A is incorrect because H ₃ PO ₄ is not completely ionised	
	B is incorrect because H ₂ SO ₄ is not completely ionised	
	D is incorrect because CH ₃ COOH is not completely ionised	

Question	Answer	Mark
number		
1(c)	The only correct answer is B (17.91 g)	1
	A is incorrect because there should be only one mol of chromium ions per mol of dichromate ions	
	C is incorrect because there should be only one mol of chromium ions per mol of dichromate ions	
	D is incorrect because there should be only one mol of chromium ions per mol of dichromate ions	

Question	Answer	Mark
number		
1(d)	The only correct answer is A (H ₂ SO ₄)	1
	B is incorrect because chloride ions could be oxidised	
	C is incorrect because bromide ions would be oxidised	
	D is incorrect because this would introduce additional chromium species into the mixture	

Question number	Answer	Mark
2	The only correct answer is C $(Pt Fe^{2+}, Fe^{3+} [MnO_4^- + 8H^+], [Mn^{2+} + 4H_2O] Pt)$	1
	 A is incorrect because both electrodes should be made of platinum B is incorrect because both electrodes should be made of platinum and the MnO₄⁻/ Mn²⁺ half-cell does not show 	
	reduction	
	D is incorrect because the MnO ₄ ⁻ / Mn ²⁺ half-cell does not show reduction	

Question	An	swer	Mark
number			
3	Th	e only correct answer is D $(2Ag^{2+} \rightarrow Ag^{+} + Ag^{3+})$	1
	A	is incorrect because the disproportionation is not thermodynamically feasible	
	В	is incorrect because the disproportionation is not thermodynamically feasible	
	\boldsymbol{C}	is incorrect because the disproportionation is not thermodynamically feasible	

Question number	Answer	Mark
number		
4	The only correct answer is A (the cathode has a more positive potential than the anode)	1
	B is incorrect because oxidation always occurs at the anode	
	C is incorrect because oxygen is reduced at the positive electrode	
	D is incorrect because the overall reaction is the same under both acidic and alkaline conditions	

Question	Answer	Mark
number		
5	The only correct answer is B (carbon monoxide forms stronger dative covalent bonds with haemoglobin than does oxygen)	1
	A is incorrect because carbon monoxide can be displaced from carboxyhaemoglobin	
	<i>C</i> is incorrect because the formation of carboxyhaemoglobin does not lead to an increase in the entropy of the system	
	D is incorrect because the difference in bond type does not fully explain the difference in dative covalent bond strength	

Question	Answer	Mark
number		
6	The only correct answer is D (pink solution → blue precipitate → yellow-brown solution)	1
	A is incorrect because $CoCl_2(aq)$ is a pink solution	
	B is incorrect because the blue precipitate dissolves in excess aqueous ammonia to form a yellow-brown solution	
	C is incorrect because CoCl2(aq) is a pink solution	

Question	Answer	Mark
number		
7	The only correct answer is B ([Ni(EDTA)] ²⁻)	1
	A is incorrect because chloride ions act as monodentate ligands	
	C is incorrect because ethanedioate ions act as bidentate ligands	
	D is incorrect because 1,2-diaminoethane molecules act as bidentate ligands	

Question	Answer	Mark
number		
8	The only correct answer is D (none of the products are harmful to the environment)	1
	A is incorrect because the reactions occurring in catalytic converters involve heterogeneous catalysis	
	B is incorrect because carbon monoxide is adsorbed onto the surface of the catalyst	
	C is incorrect because nitrogen is desorbed from the surface of the catalyst	

Question	Answer	Mark
number		
9	The only correct answer is C (Mn ²⁺)	1
	$m{A}$ is incorrect because MnO4 $^-$ ions are neither a product nor a catalyst in this reaction	
	$m{B}$ is incorrect because H^+ ions are neither a product nor a catalyst in this reaction	
	D is incorrect because CO2 is not a catalyst in this reaction	

Question number	Answer	Mark
10	The only correct answer is A (both Fe ²⁺ (aq) and Fe ³⁺ (aq) catalyse the reaction)	
	B is incorrect because both $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$ catalyse the reaction	
	C is incorrect because both $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$ catalyse the reaction D is incorrect because both $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$ catalyse the reaction	

Question number	Answer	Mark
11	The only correct answer is D (1
	A is incorrect because this product is formed by the substitution of one chlorine atom in CHCl3	
	B is incorrect because this product is formed by the substitution of two chlorine atoms in CHCl ₃	
	C is incorrect because this product is formed by the substitution of all three chlorine atoms in CHCl ₃	

Question	Answer	Mark
number		
12	The only correct answer is C (330.7)	
	A is incorrect because this is the molar mass of bromobenzene	
	B is incorrect because this is the molar mass of the monosubstituted product	
	D is incorrect because this is the molar mass of the fully substituted product	

Question	Answer	Mark
number		
13	The only correct answer is C (CH ₃ CH ₂ CH ₂ NH ₂ > NH ₃ > C ₆ H ₅ NH ₂)	
	A is incorrect because $C_6H_5NH_2$ is the weakest base in the sequence	
	B is incorrect because CH ₃ CH ₂ CH ₂ NH ₂ is a stronger base than NH ₃	
	D is incorrect because this shows the order of increasing basicity	

Question	Answer	Mark
number		
14	The only correct answer is B (H ₂ N)	
	<i>A</i> is incorrect because this amine could be prepared by the reduction of butanenitrile	
	<i>C</i> is incorrect because this amine could be prepared by the reduction of 2-methylpropanenitrile	
	D is incorrect because this amine could be prepared by the reduction of 2,2-dimethylpropanenitrile	

Question number	Answer	Mark
15	The only correct answer is B (4)	1
	A is incorrect because the repeat unit of the polymer is formed from four different amino acids	
	 C is incorrect because the repeat unit of the polymer is formed from four different amino acids D is incorrect because the repeat unit of the polymer is formed from four different amino acids 	

Question	Answer	Mark
number		
16	The only correct answer is D (carbon dioxide giving carboxylic acids)	
	A is incorrect because Grignard reagents react with water giving alkanes	
	B is incorrect because Grignard reagents react with methanal giving primary alcohols	
	C is incorrect because Grignard reagents react with ketones giving tertiary alcohols only	

Question	Answer	Mark
number		
17	The only correct answer is C (will be lower than the true value)	
	$m{A}$ is incorrect because using a sample that is impure would cause the value to be lower	
	B is incorrect because using a sample that is impure would cause the value to be lower	
	D is incorrect because using a sample that is impure would cause the value to be lower	

Section B

Question Number	Answer	Additional guidance	Mark
18(a)		Example of calculation:	2
	• any indication that A contains FeCl ₂ /iron(II) chloride (1)	Ignore (A contains) Fe ²⁺ Ignore [FeCl ₄] ²⁻	
	• working to show that A is a tetrahydrate (1)	mass of water = $198.8 - (55.8 + 2 \times 35.5)$	
		= 72.0 (g) moles of water = $72.0 \div 18.0 = 4$	
		A is FeCl ₂ .4H ₂ O/iron(II) chloride tetrahydrate	
		Allow FeCl ₂ (H ₂ O) ₄	

Question Number	Answer	Additional guidance	Mark
18(b)	• [Fe(H ₂ O) ₆] ²⁺	Allow $[Fe(OH)(H_2O)_5]^+ / [Fe(Cl)(H_2O)_5]^+$	1
		Ignore omission of square brackets Ignore name even if incorrect	

Question Number	Answer	Additional guidance	Mark
18(c)		Example of diagram:	1
18(0)	A diagram showing the octahedral shape	Accept arrows for dative covalent bonds Allow CN for C=N Do not award KCN/HCN for C=N Do not award M for Fe Ignore connectivity of CN ligands Ignore lone pairs Ignore omission of square brackets Ignore all charges	1
		Do not award diagrams with no 3D shape	

Question Number	Answer	Additional guidance	Mark
18(d)		Example of calculation:	3
	• moles of K, Fe (1)	mol K = $35.6 \div 39.1 = 0.91049$ Allow 0.91282 from A_r value of 39	
		mol Fe = $17.0 \div 55.8 = 0.30466$ Allow 0.30357 from A_r value of 56	
		Ignore SF	
	• moles of C and N (1)	$mol C = 21.9 \div 12.0 = 1.8250$	
		$mol N = 25.5 \div 14.0 = 1.8214$	
		Ignore SF except 1 SF	
	calculation of K:Fe:C:N mole ratio and empirical formula (1)	K: Fe: C: N 0.91049: 0.30466: 1.825: 1.8214 3: 1: 6: 6 empirical formula is K ₃ FeC ₆ N ₆ Allow K ₃ Fe(CN) ₆ Allow elements in any order TE on moles of K, Fe, C and N provided empirical formula is closest whole number ratio	
		Correct answer with no working scores (3)	

Question Number	Answer	Additional guidance	Mark
18(e)	An equation including:	Example of equation:	2
		$2[Fe(CN)_6]^{4-} + Cl_2 \rightarrow 2[Fe(CN)_6]^{3-} + 2Cl^{-}$	
	• $[Fe(CN)_6]^{4-}$ reactant and $[Fe(CN)_6]^{3-}$ product (1)	Allow K ₄ [Fe(CN) ₆] reactant and K ₃ [Fe(CN) ₆] product Ignore omission of square brackets	
	• rest of equation and balancing (1)	M2 dependent on M1 Allow multiples Ignore state symbols even if incorrect Do not award uncancelled K ⁺ spectator ions	
		If no other mark awarded, award (1) for any multiple of the following equation: $2Fe^{2+} + Cl_2 \rightarrow 2Fe^{3+} + 2Cl^{-}$	

Question Number	Answer Additional guidance		Mark
18(f)	A completed table showing:	Example of completed table:	2
	• correct identification for reaction 2 (1)	Neutralisation Ligand exchange Redox	
		Reaction 2	
	• correct identification for reaction 3 (1)	Reaction 3	
		Allow any form of positive identification, including crosses	
		Ignore any form of negative identification	
		Do not award more than 1 box ticked in each row	

(Total for Question 18 = 11 marks)

Question Number	Answer	Additional guidance	Mark
19(a)	• suitable test: bromine water/Br ₂ (aq) (1)	Allow bromine / Br ₂ ((l)) / Br ₂ in organic solvent	2
		Do not award Br/Br ⁻	
		Accept potassium manganate((VII))/KMnO ₄ and acidified/named acid/H ⁺	
		Do not award hydrogenation	
		Do not award combustion	
	• result of test: decolourises (from orange) with Dewar structure (and no change with benzene) (1)	Allow does not decolourise with benzene Allow brown/orange/yellow for colour of bromine water Allow red/brown/orange for colour of bromine Allow pink/purple for colour of potassium manganate((VII)) Ignore colour fades for decolourises Ignore reference to addition/substitution Do not award any reference to decolourisation/reaction with benzene	

Question Number	Answer	Additional guidance	Mark
19(b)		Ignore any reference to IR and/or ¹³ C NMR	2
	• similarity: (both compounds have) one (NMR) peak (1)	Allow (both compounds have) one proton environment Ignore just same number of peaks	
		Ignore references to relative peak area/integration/splitting	
		Do not award any other number of peaks	
	• difference: expected chemical shift values (1)	chemical shift for benzene within range of 6.4 to 8.4 ppm (actual value is 7.3 ppm) and chemical shift for Ladenburg structure within range of 0 to 2.3 ppm (actual value is 2.3 ppm)	
		Allow any range or value within the above ranges	
		Ignore just benzene would have a higher chemical shift than Ladenburg structure or reverse argument	
		Do not award additional incorrect chemical shifts	

Question Number	Answer	Additional guidance	Mark
19(c)	An explanation that makes reference to the following points:	Ignore any reference to: C—H bonds bond strength/bond angle delocalised electrons Dewar/Ladenburg structures	2
	• showed that all C–C bonds are the same length in benzene (1)	Allow showed benzene is a regular hexagon Allow showed benzene contains only one type of carbon-carbon bond	
		Allow benzene bond lengths are in between C=C and C-C Ignore just benzene has no C=C bonds Do not award benzene bond lengths are longer than C-C/ shorter than C=C	
	• in Kekulé structure the C=C bonds would be shorter than the C-C bonds (or reverse argument) (1)	Allow Kekulé structure would have shown two different lengths/types of carbon-carbon bond Allow Kekulé structure would have alternating carbon-carbon bond lengths Ignore just Kekulé has C=C bonds	
		Do not award C–C bonds would be shorter than the C=C bonds If no other mark awarded, just bond lengths equal in benzene but different in Kekulé scores (1)	

Question Number	Answer		Additional guidance	Mark
19(d)(i)	A diagram showing:		Example of diagram:	2
	 correct relative stabilities two or three numerical differences in enthalpy with appropriate arrows 	(1)(1)	H / kJ mol ⁻¹ (-)79	
			(-)297	
			Allow names for structures	
			If three values and arrows are given they must all be correct to score M2	
			Allow slight imprecision in start and end of arrows in M2	
			Ignore any x-axis label	
			Do not award double headed arrows in M2 Do not award incorrect sign in M2	

Question Number	Answer	Additional guidance	Mark
19(d)(ii)	An answer that makes reference to the following:		1
	 pi bonds are weaker/more reactive/require less energy to break (than sigma bonds) or 	Ignore just Dewar structure has pi/double bonds/is unsaturated Ignore just Dewar structure has weaker bonds Do not award C=C/double bonds weaker/require less energy to break (than C-C/single bonds)	
	fewer bonds must break to convert the Dewar structure to benzene	Accept reverse argument Allow any specified numbers to indicate fewer bonds must break	
		Ignore fewer new bonds must form Ignore Dewar structure is more similar to benzene Ignore carbon atoms already in a ring/hexagon Ignore any reference to intermolecular forces	
		Do not award (higher) ring strain in Ladenburg Do not award smaller difference in enthalpy Do not award Ladenburg structure more stable	

Question Number	Answer	Additional guidance	Mark
19(e)	An explanation that makes reference to the following points:	Allow double bond for C=C throughout	2
	 E-hexa-1,4-diene twice the hydrogenation enthalpy (of hex-3-ene) as two (isolated) C=C bonds 	Accept -118 × 2 (=-236) as two C=C bonds Allow twice the hydrogenation enthalpy as no delocalisation of pi-bond(s)	
	 E-hexa-1,3-diene less exothermic/more stable (by 22 kJ mol⁻¹ than E-hexa-1,4-diene and as some delocalisation of pi-bond(s) 	Accept less negative Allow more positive Allow some delocalisation of double bond(s) Allow double bonds/p-orbitals are conjugated Allow double bonds/p-orbitals are close enough to overlap Ignore just C=C are close Ignore just delocalisation of electrons Ignore electron density more spread out Ignore resonance stabilised	

Question Number	Answer	Additional guidance	Mark
19(f)(i)		Example of correct skeletal formulae:	2
	• skeletal formula of any one isomer (1)	J j.	
	• skeletal formulae of second and third isomers (1)		
		(1,2-isomer) (1,3-isomer) (1,4-isomer)	
		Allow Kekulé benzene ring	
		Allow structural/displayed CH3 and CH3CO groups	
		If no other mark awarded, 1,2-, 1,3- and 1,4-isomers with incorrect side chain/cyclohexane ring scores (1)	

Question Number	Answer		Additional guidance	Mark
19(f)(ii)	• (identification of X as) 1,4-isomer	(1)	Allow any form of identification, including (f)(i) annotation Allow just '1,4' or 'para'	2
	• (7 peaks consistent with) 7 carbon environments	(1)	M2 dependent on a structure containing 7 carbon environments	
			Accept 1,2-isomer and/or 1,3-isomer have 9 carbon environments/would have 9 peaks	
			Allow (4 arene peaks consistent with) 4 arene carbon environments	
			Allow 1,2-isomer and/or 1,3-isomer have 6 arene carbon environments/would have 6 arene peaks	

Question Number	Answer	Additional guidance	Mark
19(f)(iii)	A mechanism including:	Example of mechanism: O H O (+ H ⁺)	4
	• curly arrow from on or within circle to C ⁺ of CH ₃ CO ⁺ (1)	Allow Kekulé benzene ring	
	• structure of intermediate ion (1)	'Horseshoe' facing tetrahedral carbon and covering at least three carbons with some part of positive sign within 'horseshoe' Allow methyl at 1,2- or 1,3-positions Ignore missing methyl substituent Do not award dotted/dashed C–H/C–C bonds unless 3D structure	
	• curly arrow from C–H bond to within ring and correct product (1)	Allow 1,2- or 1,3-product from corresponding intermediate Do not award missing methyl substituent	
	• balanced equation for regeneration of catalyst (1)	$AlCl_4^- + H^+ \rightarrow AlCl_3 + HCl$	

(Total for Question 19 = 19 marks)

Question Number	Answer	Additional guidance	Mark
20(a)	An answer that makes reference to one of the following points:	Ignore references to ionisation energy Ignore partially full d orbital(s)/d subshell Ignore more than one stable ion Ignore references to heterogeneous catalysis/adsorption Ignore references to alternative reaction pathways/activation energy	1
	 variable oxidation state/oxidation number or (easily) oxidised and reduced (back to original oxidation state) 	Allow can change oxidation state/oxidation number Allow have different oxidation state(s)/oxidation number(s) Ignore variable valency	
	 (easily) donate and accept electrons (from other molecules/species) 	Allow just lose and gain electrons (easily)	

Question Number	Answer	Additional guidance	Mark
20(b)(i)	An answer that makes reference to the following points: • monodentate: forms a single/one dative (covalent) bond (1)	Accept coordinate for dative throughout Accept donates a single/one lone pair Allow occupies a single/one coordination site	2
	• ligand: (a species with a) lone pair (of electrons) that can form a dative (covalent) bond to a (central transition) metal (ion) (1)		

Question Number	Answer	Additional guidance	Mark
20(b)(ii)	A completed diagram showing:	Expected diagram:	1
	• three adjacent THF/Cl ligands	Cl Cl Cl	
		Ignore lone pairs	
		Ignore 1– charge on Cl ligands	

Question Number	Answer	Additional guidance	Mark
20(c)(i)	• yellow to (permanent pale) green	Ignore qualifiers, eg pale	1
		Ignore precipitate	
		Do not award green to yellow	
		Do not award any combination of yellow and green, eg yellowy-green	
		Do not award any other colour	

Question Number	Answer	Additional guidance	Mark
20(c)(ii)	A calculation including:	Example of calculation:	5
	• moles of Ti^{3+} in titre (1)	moles of Ti ³⁺ = $0.085 \times \frac{20.70}{1000}$ = $0.0017595 / 1.7595 \times 10^{-3}$	
	• moles of Mg(NO ₃) ₂ .6H ₂ O in 100 cm ³ (1)	moles of Mg(NO ₃) ₂ .6H ₂ O = $\frac{0.75}{256.3}$ = 0.0029263 / 2.9263 × 10 ⁻³	
	• moles of NO_3^- in 10.00 cm ³ (1)	moles of $NO_3^- = \underline{0.0029263} \times 2 = 0.00058525 / 5.8525 \times 10^{-4}$ 10 TE on moles $Mg(NO_3)_2.6H_2O$	
		Ignore SF except 1 SF in M1, M2 and M3 Ignore truncation of moles in M1, M2 and M3, eg 0.0005852	
	• Ti^{3+} : NO_3^- mol ratio (1)	$Ti^{3+}: NO_3^- \text{ mol ratio} = 0.0017595: 0.00058525$ = 3 : 1 TE on moles Ti^{3+} and moles NO_3^-	
	• final oxidation state of nitrogen (1)	final oxidation state of nitrogen = $(+)2$	
		TE on mol ratio provided final oxidation state of nitrogen is between -3 and $+4$, eg Ti ³⁺ : NO ₃ ⁻ mol ratio = 0.0017595 : 0.00029263 = 6 : 1 final oxidation state of nitrogen = -1	
		Do not award incorrect oxidation state of N in NO ₃ ⁻	
		Correct answer with no working scores (1)	

Question Number	Answer	Additional guidance	Mark
20(c)(iii)	An equation including:	Example of equation: $3Ti^{3+} + H_2O + NO_3^- \rightarrow 3TiO^{2+} + 2H^+ + NO$	2
	• selection of correct nitrogen half-equation (1)	TE on (c)(ii) provided +3 or +4 oxidation state	
	• balanced ionic equation from chosen half-equations (1)	Allow multiples Allow reversible arrow Ignore state symbols even if incorrect	

Question Number	Answer	Additional guidance	Mark
20(c)(iv)	An answer that makes reference to the following point:	Example of calculation:	1
	• (calculation of) $E^{\bullet}_{\text{cell}}$ value	$(E^{\bullet}_{\text{cell}} = 0.96 - 0.10 =) (+)0.86 \text{ (V)}$	
		TE on ionic equation from (c)(iii):	
		$(+)0.7(0)$ (V) for $Ti^{3+} + NO_3^- \rightarrow TiO^{2+} + NO_2$	
		$(+)0.84 \text{ (V) for } 2\text{Ti}^{3+} + \text{H}_2\text{O} + \text{NO}_3^- \rightarrow 2\text{Ti}\text{O}^{2+} + \text{H}^+ + \text{HNO}_2$	

Question Number	Answer	Additional guidance	Mark
20(c)(v)	An answer that makes reference to the following point:		1
	• (heat is to) speed up/increase rate of reaction	Allow to ensure fast oxidation of Ti^{3+} Allow to provide activation energy/ E_a Allow (reaction has a) high activation energy/ E_a	
		Ignore just to provide (more) energy Ignore to increase collision frequency Ignore to ensure complete reaction Ignore any reference to thermodynamic feasibility	

Question Number	Answer		Additional guidance	Mark
20(c)(vi)	This question assesses a student's a logically structured answer with lin reasoning.	•		6
	Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning.			
	The following table shows how the indicative content.		The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer	
	Number of indicative marking	Number of marks awarded	with five indicative marking points that is partially	
	points seen in answer	for indicative marking points	structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	
	6	4		
	5-4	3		
	3-2	2		
	1	1		
	The following table shows how the structure and lines of reasoning.	marks should be awarded for	If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
		Number of marks awarded for structure and sustained lines of reasoning	If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s). Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning.	
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.			
	Answer is partially structured with some linkages and lines of reasoning.	1		
	Answer has no linkages between points and is unstructured.	0		

Indicative points:	
• IP1: identification of [Ti(H ₂ O) ₆] ³⁺ complex ion	Allow [Ti(H ₂ O) ₅ Cl] ²⁺ / [Ti(H ₂ O) ₄ Cl ₂] ⁺
• IP2: partially filled d-subshell/d-orbital(s) (in Ti ³⁺)	Accept incomplete for partially filled Accept (Ti ³⁺ is) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ (4s ⁰) Allow (Ti ³⁺ is) (3)d ¹
IP3: splitting in energy of d-subshell/d-orbitals by water/ligands	water/ligands and split the energy of the d-subshell/d-orbitals Allow ligands cause d-d splitting Do not award d-orbital (singular)
IP4: absorption of light/photon/(electromagnetic) radiation and electronic transition	(visible) light/photon/(electromagnetic) radiation is absorbed and promoting electrons from lower to higher energy Allow light etc causes d-d transitions
IP5: origin of observed colour of complex ion	colour due to reflected/transmitted light Allow colour due to wavelengths/frequencies of light that are not absorbed Allow complementary colour observed Do not award any reference to emission of light
IP6: clearer colour change at end-point with indicator	Accept reverse argument Allow colours are more intense/distinct/sharp/strong Allow concentration (of [Ti(H ₂ O) ₆] ³⁺ /TiCl ₃) too low to accurately determine end-point in absence of indicator Ignore just easier to determine end-point Ignore just more accurate/precise Ignore mention of specific colours, even if incorrect
	Do not award reference to acid-base colour change

(Total for Question 20 = 20 marks)
TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Ι Λ ΝΕΨών		Mark
21(a)	A completed mechanism showing:	Example of completed mechanism:	1
	• curly half-arrows to show homolytic fission of O–H bond	T THO X	
		Accept curly half-arrows originating from opposite sides of the O–H bond	
		Left-hand curly half-arrow must terminate between T [•] and H	
		Right hand curly half-arrow must terminate on or near to O atom of H–O	

Question Number	Answer	Additional guidance	Mark
21(b)	A completed mechanism showing:	Example of completed mechanism:	2
		Protein——Se Z	
		Penalise curly half-arrows once only	
	• curly arrow from lone pair on Se ⁻ to correct C of C=C (Do not award curly arrow from negative charge on Se ⁻	
	• curly arrow from C=C bond to C–C bond and	Ignore $(\delta+)C=C(\delta-)$ dipole Do not award $(\delta-)C=C(\delta+)$ dipole Do not award full charge on either carbon of C=C bond	
	curly arrow from C=O bond to O) Do not award incorrect (δ -)C=O(δ +) dipole	

Question Number	Answer	Additional guidance	ce		Mark
21(c)	A completed table showing:	Example of complet	Example of completed table:		
	• two or three correct answers (1)		[Au(Curc) ₂]+	[Al(Curc)(C ₂ H ₅ OH) ₂ (NO ₃) ₂]	
		Coordination number	4	<u>6</u>	
	• four correct answers (2)	O-M-O bond angle	90°	90° Ignore 180°	
		Shape	square planar	octahedral	
		Charge on metal ion	<u>+3</u>	+3	

Question Number	Answer	Additional guidance	Mark
21(d)(i)		If name and formula given, both must be correct to score M1	2
	• K ₂ Cr ₂ O ₇ and H ₂ SO ₄ (1)	Accept names (eg sodium dichromate((VI)) and sulfuric acid) Allow Cr ₂ O ₇ ²⁻ and H ⁺ / acidified dichromate	
		Ignore concentration of acid	
		Do not award KMnO ₄ for K ₂ Cr ₂ O ₇	
		Do not award HCl for H ₂ SO ₄	
	• heat/reflux (1)	M2 dependent on some mention of dichromate (or manganate) oxidising agent Ignore distillation	

Question Number	Answer	Additional guidance	Mark
21(d)(ii)		Example of correct structure:	1
	• correct structure for 2-aminobenzoic acid		
		HO_O	
		NH ₂	
		Accept hydrochloride salt (-NH ₃ Cl)	
		Allow protonated amine group (-NH ₃ ⁺)	
		Allow any correct combination of skeletal, structural or displayed formulae	
		Allow Kekulé benzene	
		Ignore connectivity	
		Ignore name, even if incorrect	

Question Number	Answer	Additional guidance	Mark
21(d)(iii)	NaNO ₂ /sodium nitrite/sodium nitrate(III)	Allow HNO ₂ /nitrous acid	1
	and	Allow H ⁺ and NO ₂ ⁻	
	HCl/hydrochloric acid		
	-	Ignore conditions, including concentration of HCl	
		Ignore H ₂ O	
		Do not award NaNO ₃ /sodium nitrate	

Question Number	Answer	Additional guidance	Mark
21(d)(iv)	• correct structure for <i>N</i> , <i>N</i> -dimethylphenylamine	Example of correct structure:	1
		N/	
		Allow any correct combination of skeletal, structural or displayed formulae	
		Allow Kekulé benzene	
		Ignore quaternary salt (-N(CH ₃) ₃ ⁺)	
		Ignore name, even if incorrect	

Question Number	Answer	Additional guidance	Mark
21(d)(v)	An explanation including:		2
	• effect of temperature higher than 5°C (1)	(diazonium/it) decomposes / reacts with water / forms a phenol / undergoes nucleophilic substitution (above 5°C)	
		Ignore byproducts form / side reactions occur / yield too low (above 5°C)	
	• effect of temperature lower than 5°C (1)	(rate of reaction) too slow (below 5°C) Allow just slows down (below 5°C)	
		Ignore insufficient energy for reaction to occur (below 5°C) Ignore any reference to activation energy/collision frequency Ignore freezes (at 0°C and below)	

Question Number	Answer	Additional guidance	Mark
21(e)(i)	A completed equation showing:	Example of equation:	2
	• correct balancing of propanone and sodium ethanoate (1)	2 NaOH + 2 NaOH + 4 H ₂ O	
	• correct balancing of sodium hydroxide and water (1)	M2 dependent on M1	

Question Number	Answer		Additional guidance	Mark
21(e)(ii)	 M1: molar masses M(2-nitrobenzaldehyde) and M(indigotin) 	(1)	Correct answer with no working scores (3) Example of calculation: $M(2\text{-nitrobenzaldehyde}) = 7 \times 12.0 + 5 \times 1.0 + 1 \times 14.0 + 3 \times 16.0$ $= 151(.0 \text{ g mol}^{-1})$ $M(\text{indigotin}) = 16 \times 12.0 + 10 \times 1.0 + 2 \times 14.0 + 2 \times 16.0$ $= 262(.0 \text{ g mol}^{-1})$	3
	Then, for M2 and M3, either:		Allow truncation of mass/moles throughout, eg 0.03816 for 0.038168 Ignore SF except 1 SF in M2 and M3	
	Method 1 (M2 and M3) • moles indigotin in 10.0 g and		moles indigotin in 10.0 g = $\frac{10.0}{262}$ = 0.038168 TE on <i>M</i> (indigotin)	
	indigotin:2-nitrobenzaldehyde mol ratio	(1)	moles 2-nitrobenzaldehyde = 2×0.038168 (= 0.076336) TE on moles indigotin	
	• moles 2-nitrobenzaldehyde required and		moles 2-nitrobenzaldehyde required = $\frac{100}{85} \times 0.076336$ = 0.089807	
	mass 2-nitrobenzaldehyde required	(1)	mass 2-nitrobenzaldehyde required = 0.089807×151 = 13.561 = 14 (g) TE on moles 2-nitrobenzaldehyde TE on $M(2\text{-nitrobenzaldehyde})$	

OR

Method 2 (M2 and M3)

• mass indigotin if 100% yield

mass indigotin if 100% yield =
$$\frac{100}{85} \times 10.0$$

= 11.765 (g)

and

moles indigotin if 100% yield

(1)

(1)

moles indigotin if 100% yield = $\frac{11.765}{262}$ = 0.044903

TE on *M*(indigotin)

• indigotin:2-nitrobenzaldehyde mol ratio

and

mass 2-nitrobenzaldehyde

moles 2-nitrobenzaldehyde = 2×0.044903 (= 0.089807)

TE on moles indigotin

mass 2-nitrobenzaldehyde = 0.089807×151

= 13.561= 14 (g)

TE on moles 2-nitrobenzaldehyde

TE on *M*(2-nitrobenzaldehyde)

Question Number	Answer	Additional guidance	Mark
21(f)(i)	A drawing showing:	Example of drawing:	2
	 hydrolysed ester linkage and correct carbon frame and amine group (1) 	(Na ⁺) O	
	• deprotonated carboxylic acid and phenol groups (1)	42N O (Na+)	
		Allow –ONa	
		Do not award –O–Na	
		Allow E isomer Allow Kekulé benzene	
		Allow any correct combination of skeletal, structural or displayed formulae	

Question Number	Answer	Additional guidance	Mark
21(f)(ii)	A drawing showing:	Example of drawing:	1
	• correct condensation product		
		Allow Kekulé benzene Allow any correct combination of skeletal, structural or displayed formulae	
		Allow diacylated product, ie	
		ON CONTRACTOR	

Total for Section C = 20 marks Total for Paper = 90 marks