Budget and Cost Constraints

Suppose that an individual buys x_1 units of a good G_1 and G_2 units a good G_2 . If the prices of the goods are g_1 and g_2 respectively, and the individual has a fixed budget g_1 , then the equation $g_1x_1 + g_2x_2 = g_1$ is called the budget constraint. It shows the combinations of two goods that it is possible to buy with a given amount of money and a given set of prices. Graphically, the equation

represents a straight line called the budget line. The slope of the budget constraint is $m = -\frac{p_1}{p_2}$

from which we can conclude that

- if the price ratio changes the slope of the budget line changes,
- if the budget alters but the prices remain unchanged, the slope of the budget linedoes not alter.

In the similar fashion, let us assume that a firm wants to maximize output and that the production function is of the form f(K, L) where K is the number of units of capital and L is the number of units of labor. If p_K denotes the cost of each unit of capital and p_K denotes the cost of each unit of labor, the cost to the firm of using as input K units of capital and L units of labor is $p_K K + p_L L$. If the firm has fixed amount C to spend on these inputs, then $Lp_L + Kp_k = C$

is called the cost constraint (or budget constraint) for the firm.

EXAMPLE 2

The total cost function of a firm is $TC = 3x^2 + 2xy + 7y^2$ where x and y denote the number of items of goods G_x and G_y , respectively, that are produced. Find the values of x and y which minimize costs if a total of 40 goods must be produced.

Solution:

Here,
$$TC = 3x^2 + 2xy + 7y^2$$

Since, a total of 40 goods must be produced,
 $x + y = 40$
Thus $TC = 3x^2 + 2x(40 - x) + 7(40 - x)^2 = 8x^2 - 480x + 11200$

Differentiating TC' = 16x - 480TC'' = 16Since TC'' > 0, for the maximum value of TC, TC' = 0 16x - 480 = 0 x = 3 y = 40 - 3 = 37Hence, the required values are: x = 3, y = 37.

Exercise 23.5

- 1. A consumer has an income of Rs. 2000 to spend on the two goods G₁ and G₂ with prices are Rs 200 and Rs 50 each, respectively.
 - a. Formulate and graph the consumer's budget constraint.
 - b. What is the slope of the constraint?
 - c. What happens to the slope if the price of G₂riss to Rs.100?
 - d. What happens if the income then falls to Rs.1500?
- 2. A firm has a budget of Rs.80,000 per week to spend on the two inputs K and L. One week it is observed to buy 120 units of L and 25 of K. Another week it is observed to buy 80 units of L and 50 of K. Find out the prices of K and L, which are assumed to be unchanged from one week to the next.
- 3. If a consumer's income doubles and the prices of the two goods that the consumerspends the entire income on also double, what happens to the budgetconstraint?
- 4. Find the minimum value of $3x^2 + 2xy + y^2$ subject to x + y = 40.
- 5. A firm's unit capital and labor costs are Rs.100 and Rs.200, respectively. If the production function is given by $Q = 4LK + L^2$. Find the maximum output and levels of K and L at which it is achieved when total input costs are fixed at Rs. 21000.
- 6. An individual's utility function is given by $U = x_1x_2$, where x_1 and x_2 denote the number of items of goods G_1 and G_2 . The prices of the goods are Rs. 2 and Rs. 10 respectively. Assuming that the individual has Rs. 400 available to spend on these good, find the utility-maximizing values of x_1 and x_2 .
- 7. A firm's production function is given by $Q = 2K^{1/2}L^{1/2}$. Unit capital and labor costs are \$4 and \$3 respectively. Find the values of K and L which minimizes the total input costs if the firm is contracted to provide 160 units of output.

☑ Answers:

- 1. a. $4x_1 + x_2 = 40$, b. -4 c. slope increases to -2
 - d. slope remains the same, budget line moves towards the origin.
- 2. Rs. 800, Rs. 500 3. The budget constraint does not change
- 2. Rs. 800, Rs. 500 5. Rs. 25,200, K = 90, L = 60 6. $x_1 = 100$, $x_2 = 20$ 7. K = $40\sqrt{3}$, L = $160/\sqrt{3}$

Exercise 23.5

- 1. A consumer has an income of Rs. 2000 to spend on the two goods G₁ and G₂ with prices are Rs 200 and Rs 50 each, respectively.
 - Formulate and graph the consumer's budget constraint.
 - b. What is the slope of the constraint?
 - c. What happens to the slope if the price of G₂ rises to Rs 100?
 - d. What happens if the income then falls to Rs1500?

Solution:

a. Given, G₁ and G₂ be two types of good with prices is 200 and Rs.50 respectively. Also, a consumers has an income = Rs.2000.

Let x_1 and x_2 be the quantity of goods of type G_1 and G_2 respectively. Then total price will be $200x_1 + 50x_2$.

Since, budget is limited to Rs.2000, the required budget constraint is given by

$$200x_1 + 50x_2 = 2000$$

i.e.
$$4x_1 + x_2 = 40$$

Activate W

Go to Settings

b. We have budget equation $200x_1 + 50x_2 = 2000$

∴ Slope (m) =
$$-\frac{\text{Coefficient of } x_1}{\text{Coefficient of } x_2} = -\frac{200}{50} = -4$$

c. When the price of good G_2 rises to Rs.100 then budget equation will be $200x_1 + 100x_2 = 2000$

:. Slope =
$$-\frac{200}{100} = -2$$

∴ Slope increases to –2.

d. When income falls to Rs.1500, then budget constraint becomes $200x_1 + 50x_2 = 1500$

:. Slope =
$$-\frac{200}{50}$$
 = -4

- :. Slope remains same.
- 2. A firm has a budget of Rs80,000 per week to spend on the two inputs K and L. One week it is observed to buy 120 units of L and 25 of K. Another week it is observed to buy 80ctive units of L and 50 of K. Find out the prices of K and L, which are assumed to be to S unchanged from one week to the next.

Then, budget equation is given by

Also, on another week it is observed to buy 80 units of L and 50 units of K, then

Solving (i) and (ii), we get

- - -

$$L = \frac{80000}{160} = 500$$

Substituing the value of L in equation (i) we get,

$$K = 800$$

Therefore, the prices of K and L are Rs. 800 and Rs.500 respectively.

3. If a consumer's income doubles and the prices of the two goods that the consumer spends the entire income on also double, what happens to the budget constraint?

Solution:

Let Rs. y be the income of a certain consumer, which need to be consumed on two goods costing Rs. x₁ and Rs. x₂. Then budget constraint is written as

$$ax_1 + bx_2 = y ... (i)$$

Where a and b are respective quantities of two goods.

According to question, when consumeers income doubles and the price of two goods also double, then budget constrain becomes

$$a(2x_1) + b(2x_2) = 2y$$

or, $ax_1 + bx_2 = y$... (ii)

: Equation (i) and (ii) shows budget constriant doesn't change.

 $\Gamma \wedge + \wedge$

4. Find the minimum value of $3x^2 + 2xy + y^2$ subject to x + y = 40.

Solution:

Let
$$f(x, y) = 3x^2 + 2xy + y^2$$
 with constraint $x + y = 40$

$$f(x) = 3x^2 + 2x (40 - x) + (40 - x)^2 [\because y = 40 - x]$$

Differentating bothd sides w.r.to x

$$f'(x) = 6x + 80 - 4x - 2(40 - x) = 2x + 80 - 80 + 2x = 4x$$

Again, Differentating w.r.to x

$$f''(x) = 4 > 0$$
 (case of minima)

For minima, f'(x) = 0

i.e.
$$4x = 0$$

$$x = 0$$

Putting the value of x in x + y = 40, we get y = 40

$$\therefore$$
 f(x, y) = 3x² + 2xy + y² gives minimum value at x = 0 and y = 40

:. The minimum value is
$$3 \times 10^2 + 2 \times 0 \times 40 + 40^2 = 1600$$

5. A firm's unit capital and labor costs are Rs100 and Rs200, respectively. If the production function is given by Q = 4LK + L². Find the maximum output and levels of K and L at which it is achieved when total input costs are fixed at Rs. 21000.

Solution:

Given, production function Q = 4LK + L²

Also, it is given that unit labor and capital costs are Rs.200 and Rs.100 respectively. Sincce total input cost is Rs.21000, the constraint is given by

$$200L + 100K = 21000$$

i.e.
$$2L + K = 210$$

$$K = 210 - 2L$$

Then, Q =
$$4L (210 - 2L) + L^2 = 840L - 8L^2 + L^2$$

$$Q = 840L - 7L^2$$

Differentating both sides w.r.to L

$$Q' = 840 - 14L$$

Again Differentating w.r.to L

$$Q'' = -14$$

i.e.
$$840 - 14L = 0$$

$$L = 60$$

When L = 60 Then K = 210 - 2L = 210 - 120 = 90

Since Q'' < 0, the production function is maximum when L = 60 and K = 90.

$$\therefore$$
 Maximum Q = 4LK + L² = 4 × 60 × 90 + 60² = 21600 + 3600 = 25,200

6. An individual's utility function is given by $U = x_1x_2$, where x_1 and x_2 denote the number of items of goods G_1 and G_2 . The prices of the goods are Rs. 2 and Rs.10 respectively. Assuming that the individual has Rs. 400 available to spend on these good, find the utility-maximizing values of x_1 and x_2 .

Solution:

Given utility function
$$U = x_1 x_2 ... (i)$$

Also,
$$2x_1 + 10x_2 = 400$$

$$x_1 + 5x_2 = 200$$

Then (i) becomes

$$U = (200 - 5x_2) x_2 = 200x_2 - 5x_2^2$$

Differentating w.r. to x₂

$$U'' = -10$$

For maximum or minimum U' = 0

i.e.
$$200 - 10x_2 = 0$$

$$x_2 = 20$$

From (ii)
$$x_1 = 200 - 5x_2 = 200 - 5 \times 20 = 100$$

$$x_1 = 100 \text{ and } x_2 = 20$$

From (ii)
$$x_1 = 200 - 5x_2 = 200 - 5 \times 20 = 100$$

$$\therefore$$
 x₁ = 100 and x₂ = 20

Since, U" =
$$-10 < 0$$
, utility function has maximum value when $x_1 = 100$ and $x_2 = 20$.

 $x_1 = 200 - 5x_2 ... (ii)$

Activate Windows
Go to Settings to activa

- 7. A firm's production function is given by $Q = 2K^{1/2}L^{1/2}$. Unit capital and labor costs are \$4 and \$3 respectively. Find the values of K and L which minimizes the total input costs if
 - the firm is contracted to provide 160 units of output.

Solution:

Given production function

$$Q = 2K^{\frac{1}{2}}L^{\frac{1}{2}}, Q = 2\sqrt{KL}$$

Let C can be the total input cost.

Given that \$3 and \$4 are the costs of unit labor and unit capital respectively.

Then,
$$C = 3L + 4K ... (i)$$

But total output (Q) is 160 units

i.e.
$$2\sqrt{KL} = 160$$

$$\sqrt{KL} = 80$$

$$KL = 6400 = \frac{6400}{L}$$
 ... (ii)

From (i)

$$C = 3L + 4 \times \frac{6400}{L} = 3L + \frac{25600}{L}$$

Differentating w.r.to x L

$$C' = 3 - \frac{25600}{L^2}$$

For maximum or minimum, C' = 0

i.e.
$$3L^2 = 25600$$

$$L^2 = \frac{25600}{3} = \frac{160}{\sqrt{3}}$$

From (ii),
$$K = 40\sqrt{3}$$

Since, C" =
$$\frac{51200}{L^3}$$
 > 0 [: L = $\frac{160}{\sqrt{3}}$]

.. Cost is minimum

Hence cost is minimum at L =
$$\frac{160}{\sqrt{3}}$$
 and K = $40\sqrt{3}$

Activate Windows
Go to Settings to activate