Contrôle S1 – Corrigé Architecture des ordinateurs

_	, 1	1		
к	enondre	exclusivement	siir	le sillet
_,	cpondic	CACIGOI V CIIICII C	Jul	ie sajet

Nom: Groupe: Groupe:

Exercice 1 (2 points)

Simplifiez les expressions suivantes. Donnez chaque résultat sous la forme d'une puissance de deux. Le résultat seul est attendu (pas de détail).

Expression	Résultat
$\frac{64^4 \cdot 16^5 \cdot 8^{-8}}{\left(256^{-3} \cdot 32^{16}\right)^4}$	2 ⁻²⁰⁴
$\frac{((65536 \cdot 32^{-3})^3 \cdot 2048^{10})^5}{(64^{-7} \cdot 1024)^{-7} \cdot 256}$	2 ³³³

Exercice 2 (3 points)

- 1. Donnez, <u>en puissance de deux</u>, le nombre d'octets que contiennent les grandeurs suivantes. Le résultat seul est attendu (pas de détail).
 - 256 Gio = **2**³⁸ octets
 - 128 Kib = **2**¹⁴ octets
 - 32 Mib = **2**²² **octets**
- 2. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits que contiennent les grandeurs suivantes. **Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière**. Le résultat seul est attendu (pas de détail).
 - 2¹⁵ bits = **32 Kib**
 - 4 Mio = **32 Mib**
 - 2³⁵ octets = **256 Gib**

Durée: 1 h 30

Exercice 3 (5 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas $\frac{1}{4}$ ou 2^{-2}). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
10111001,01101	Binaire	Décimale	185,40625
CE,68	Hexadécimale	Décimale	206,40625
88,88	Décimale	Hexadécimale (2 chiffres après la virgule)	58,E1
105,40625	Décimale	Binaire	110 1001,01101
151,32	Base 8	Binaire	110 1001,01101
151,32	Base 8	Hexadécimale	69,68
151,32	Hexadécimale	Base 8	521,144
59,27	Décimale	Base 7 (3 chiffres après la virgule)	113,161
32	Base 4	Base 5	24
101110101,01011	Binaire	Hexadécimale	175,58

Exercice 4 (2 points)

Partie 1 : Encodage d'entiers non signés

Soit l'addition sur 8 bits suivante : 250 + 10
 Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

$$250 + 10 = 4$$

2. Soit la soustraction sur 8 bits suivante : **4 – 10**Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

$$4 - 10 = 250$$

Partie 2 : Encodage d'entiers signés

Soit l'addition sur 8 bits suivante : 120 + 10
 Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

2. Soit la soustraction sur 8 bits suivante : **–126 – 10**Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

$$-126 - 10 = 120$$

Exercice 5 (4 points)

Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

Base	2													Base	16					
			1	1	0	C)	0	1	1	1	L	0			9	С	Α	8	
	_	-		1	1	1	-	0	0	1	1	L	1	+		В	F	С	E	
				1	0	1	L	0	0	1	1	1	1		1	5	С	7	6	
Base	2													Base	8 :					
	1	0	1	0	1	0	0	0	1	1	0	0				7	2	4	6	
		1	0	0	1	0			1	1	1	0		+		2	6	5	3	
				1	1	0	0								1	2	1	2	1	
							0	0												
								0												

Exercice 6	(4 points
------------	-----------

Combien de fils d'adresse possède cette mémoire ? | 14

Si l'adresse basse est 0₁₆, quelle est l'adresse haute (en hexadécimal)?

Une mémoire possède 10 fils d'adresse.

Combien d'adresses comporte-t-elle (en hexadécimal)?

Si l'adresse basse est 0_{16} , quelle est l'adresse haute (en hexadécimal) ? $\mathbf{3FF}_{16}$

L'espace mémoire d'un microprocesseur est constitué de quatre mémoires (M1, M2, M3 et M4). M1 et M2 possèdent 4000₁₆ adresses. M3 et M4 possèdent 10 fils d'adresse. Elles sont rangées dans l'ordre suivant : **M1** puis **M2**, **M3** et enfin **M4**. L'adresse basse de l'espace mémoire est 0₁₆.

Compléter le tableau ci-dessous (en hexadécimal) :

Ъ// 1	Adresse basse	000016
M1	Adresse haute	3FFF ₁₆
NAO	Adresse basse	400016
M2	Adresse haute	7FFF ₁₆

MO	Adresse basse	800016
M3	Adresse haute	83FF ₁₆
N/4	Adresse basse	840016
M4	Adresse haute	87FF ₁₆

Quel est le nombre minimum de fils d'adresse requis par le microprocesseur ? 16

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.				