(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番母

特開平4-280864

(43)公開日 平成4年(1992)10月6日

(51) intCl.¹

識別配号 广内整理番号

技術表示

C 0 4 B 35/48 A 6 1 C 7/14 Z 7310-4G

技術表示随所

61G 7/14 7:/28

9163-4C

A61C 7/00

FI

В

審査翻求 未開求 簡求項の数5(全 9 頁)

(21) 出願番号	特數平3-40250	(71)出顧人	000113263
		1 .	ホーヤ株式会社
(22) 出顧日	平成3年(1991)3月6日	1	東京都新宿区中落合2丁目7番5号
	1	(71)出願人	000004307
			日本曹連株式会社
			東京都千代田区大手町2丁目2番1号
		(72) 晃明者	育田 昌弘
			東京都新宿区中容合2丁目7番5号 ホー
		\	ヤ株式会社内
	•	(72) 発明者	木村 信失
			東京都千代田区大手町2丁目2番1号
			本做理株式会社内
		(74)代理人	弁理士 中村 幹男
			最終頁に統・

(54) 【発明の名称】 象牙色シルコニア焼結体及びその用途

(57) 【要約】

(目的) 報性、機械的強度が高く、審集性が高い象牙 色ジルコニア焼結体、その製造方法および歯列矯正用ブ ラケットとしての用途を提供する。

【構成】 象牙色ジルコニア焼結体は、安定化剤を含む ZrO: を主成分とし、この安定剤含有ZrO: に対 U, Er, O, €0. 05~1. 0 € N%, Pr, On €0.0001~0.05€N%, Fer Or €0.0 001~0. 3モル%、2nOを0. 05~0. 3モル **%含有させたことを特徴とする。このジルコニア焼結体** は、(A)ジルコニア化合物、焼成後安定化剤となる化 合物、エルビウム化合物およびプラセオジウム化合物を 含む溶液から得られた粉末を仮焼した後、鉄化合物およ び亜鉛化合物を添加混合して、成形、焼結することによ り、または (B) 安定化剤を含むジルコニア粉末にエル ピウム化合物、プラセオジウム化合物、鉄化合物および 亜鉛化合物を、前2者の化合物は溶液の状態で添加混合 して、成形、焼結することにより得られる。このジルコ ニア焼結体は、歯列矯正用プラケットとして用いられ ð.

【特許請求の範囲】

【請求項1】 安定化剤を含むZrOx を主成分とし、 この安定化剤含有ZrO:に対し、EriOiをO.0 5~1. 0モルガ、Pr. Oirを0. 0001~0. 0 5モル米、Fe: O: を0. 0001~0. 3モル米、 2 n O を 0. 0 5 ~ 0. 3 モル%含有させたことを特徴 とする象牙色ジルコニア焼結体。

【請求項2】 ジルコニア化合物、焼成後安定化剤とな る化合物、エルビウム化合物およびプラセオジウム化合 物を含む溶液から得られた粉末を仮焼した後、鉄化合物 10 合物を含有させた歯列矯正用ブラケットが開示されてい および亜鉛化合物を添加混合して、成形、焼むすること を特徴とする簡求項1に記載の象牙色ジルコニア焼結体 の製造方法。

【酬求項3】 安定化剤を含むジルコニア粉末にエルビ ウム化合物、プラセオジウム化合物、飲化合物および亜 鉛化合物を、前2者の化合物は溶液の状態で添加混合し て、成形、焼結することを特徴とする酵水項1に配載の 象牙色ジルコニア焼結体の製造方法。

【請求項4】 請求項1に記載の象牙色ジルコニア焼結 ١.

【酵水項5】 表面にピッカース硬さ100~700kg /mm ? の材料からなる厚さ50~300μm の被役層を 設けた請求項4に配職の歯列矯正用プラケット。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、象牙色ジルコニア焼結 体、その製造方法および歯列矯正用プラケットとしての 用途に関する。

[0002]

【従来の技術】ジルコニア焼結体、特に正方品ジルコニ ア焼結体はその高い強度と鏡面研磨後の表面光沢の美し さから刃物などの家庭用品やゴルフシューズ、スパイク などのスポーツ用品への応用が進んでいるが、印鑑、ア クセサリー、時計の枠や文字盤、眼鏡のフレームなどの 象牙代替材への応用も広がりを見せている。こうした広 がる用途に対応するためには、各種の色をもったカラー ジルコニアが要領されている。特に象牙代替材の場合、 天然の象牙により近い色が好まれるが、こうした色のジ ルコニアは報告されていない。

【0003】一方、歯列矯正の際に用いられるプラケッ トの材料として、従来、ステンレス鋼が用いられてい る。その理由は、各面に接着したプラケットは歯列矯正 の際、金属製ワイヤー等で強く引っ張られるため、破 折、欠けを生じないように高強度、高靱性であることが 必要とされるが、ステンレス網はこの条件を消足するか らである。しかしステンレス銅は金属光沢を有し色彩的 に目立ち容英性に欠けるという欠点があった。そこで、 この欠点を解決するものとして、特開昭61-2581 7 丹公報には単結晶アルミナを使用した横列矯正用プラ 50 安定化剤を含むジルコニア粉末にエルビウム化合物、ブ

ケットが関示されている。又、特開昭64-46451 号公银にはイットリアを含有する単結晶ジルコニアを使 用した歯列矯正用プラケットが開示されている。さら に、特開昭64-52448号公報には酸化マグネシウ ムと酸化アルミニウムとから成るスピネル型輸品を有す るセラミックスを使用した歯列矯正用ブラケットが開示 されている。さらに特朗平2-21857号公報には、 イットリアなどで部分安定化されたジルコニアに酸化 鉄、酸化マンガンまたは酸化ニッケルまたはこれらの混 5.

2

[0004]

【兜明が解決しようとする課題】しかしながら、前記特 開昭64-25847号公報に配載の単結晶アルミナは 逸明性には優れているので密美性は良いが、加工コスト が高く、またその強度に方向性があり、靱性が低いの で、割れたり、欠けたりし易く、破壊面がガラス状に鋭 利になるという欠点がある。また前配符開昭64-46 451号公報に記載のイットリアを含有する単結晶ジル 体を材料とすることを特徴とする歯列指正用プラケッ 20 コニア及び前配特開昭84-52448号公報に配載の スピネル型結晶セラミックは透明性があり、容美性に優 れているが、機械的強度が低く破折のおそれがあるとい う欠点がある。また特別平2-21857号公報に記載 の酸化鉄などの選移金属酸化物を含有する部分安定化ジ ルコニアは、穏々の色を出すことが可能であるが、象牙 色を得ることができない。また、この部分安定化ジルコ 二アを歯に抜着した場合、透光性に乏しいため密美性が 充分あるとはいいがたいものであった。したがって、本 発明の目的は、物性、機械的強度が高く、密発性が高い 30 象牙色ジルコニア焼給体、その製造方法および歯列矯正 用ブラケットとしての用途を提供することにある。

[0005]

【課題を解決するための手段】本発明は、上記目的を達 成するためになされたものであり、本発明のジルコニア 焼結体は、安定化剤を含む2 r O: を主成分とし、この 安定化剤含有2 r O: に対し、E r: O: を0.05~ 1. 0モル%、Pr. Onを0. 0001~0. 05モ ル%、Fe: O: を0. 0001~0. 3モル%、Zn 〇を0.05~0.3モル%含有させたことを特徴とす め なものである。

【0006】また上記の組成を有するジルコニア焼結体 を製造するための本発明の方法は、下紀の方法(A)ま たは(B)からなる。

【0007】方法(A)

ジルコニア化合物、焼成後安定化剤となる化合物、エル ピウム化合物およびプラセオジウム化合物を含む熔液か ら得られた粉末を仮焼した後、鉄化合物および亜鉛化合 物を添加混合して、成形、焼結する。

[0008] 方法(B)

ラセオジウム化合物、鉄化合物および亜鉛化合物を、前 2 者の化合物は溶液の状態で添加混合して、成形、焼結

【0009】さらに本発明の歯列矯正用プラケットは、 上記の組成を有するシルコニア焼結体を材料とするもの

【0010】先ず、本発明のジルコニア焼結体について 説明する。本発明のジルコニア焼給体は、安定化剤を合 む ZrO: を主成分とする。安定化剤としては、ジルコ ニア焼給体が高強度を必要とする場合には、Y: O: が 10 れる。 最も好ましく(含有量としては安定化剤とステロ。の和 に対し、1.0~7.0モル%)、次いでCeO; (1 0~16モル%)が好ましいが、高強度を余り必要とし ない場合にはCaO(8~12モル%)やMgO(16 ~26モル%)も安定化剤として使用できる。

【0011】本発明のジルコニア焼結体は、主成分であ る安定化剤含有2 r O₁ に対して、F r₁ O₁ を 0. 0 5~1. 0モル%、Pr. Onを0. 0001~0. 0 5モル%、Fe: O: を0. 0001~0. 3モル%、 2nOを0.05~0.3モル%含有させたものであ 20

[0012] Er, O. Pr. O. BEUFe, O. は着色剤として働くもので、ジルコニア焼結体に天然の 象牙色を付与する。 Bra Oa . Pra OaおよびFe ■ O」の量を上述の範囲に限定した理由は、上述の量よ り少ないと、習色の効果が得られず、上述の量より多い と象牙色と言えなくなるばかりか、焼結体特性にも悪影 好がでるからである。

【0013】 スn O は焼結助剤として用いられた亜鉛化 を0.05~0.3モル%に限定した理由は、0.05 モル%未満であると、焼結助剤である亜鉛化合物の量が 少なくなりすぎて、焼結助剤としての効果が出躁く、一 方 U. 3 モル%を超えると、焼結助剤である亜鉛化合物 の量が多くなりすぎて、焼結体特性に悪影響が出るから である。

【0014】次に、上述のジルコニア焼給体を製造する ための本発明の方法について説明する。既に述べたよう に本発明のジルコニア焼結体の製造方法は、方法(A) または方法(B)からなる。

【0015】方法(A)

先ず、ジルコニア化合物、焼成役安定化剤となる化合 物、エルビウム化合物およびプラセオジウム化合物を含 む溶液から、これらの化合物を含む粉末を得る。溶液か らの粉末の形成は、共沈法、蒸発乾固法、しゅう酸塩 法、加水分解法などの手段を用いて実施される。

【0016】原料のジルコニア化合物は、焼成後ジルコ ニアになる化合物であり、その具体例とし、ZrOCl 1 . ZrO (NO;) 1 . ZrOSO; . ZrO (C; H. O.). . 2 r (C. H. O) . . 2 r (C. H.

O) などの可容性化合物が挙げられる。焼成後安定化 剤(Y: O: , CeO: , CaO, MgOなど)になる 化合物としては、Y. Ce. Ca. Mgの塩化物、硝酸 塩、酢酸塩などの可溶性化合物が挙げられる。 エルビウ ム化合物およびプラセオジウム化合物は、焼成後じгュ Ox およびPre Oxiとなって着色剤として働くもので あり、これらの化合物の具体例としては、ErCl。」 PrCl, などの塩化物やEr(NO,), Pr(N O』)』 などの硝酸塩などの可溶性化合物などが挙げら

【0017】 上述のジルコニア化合物に対するエルビウ ム化合物およびプラセオジウム化合物の配合量は最終製 品であるシルコニア焼結体における安定化剤含有210 』に対して、Er₂O₂がO.05~1.0モル%およ びPr Oilが0.0001~0.05モル%となる量 とする。また、焼成後安定化剤となる化合物の配合量 は、最終製品であるジルコニア焼結体において安定化剤 が所定量(安定化剤とZrO』の和に対して、YrO」 の場合1.0~7.0モル%、CeO:の場合10~1 6 モル%、CaOの場合8~12モル%、MgOの場 合、16~2.6モル%)存在し得る量とするのが好まし ٧s.

【0018】方法 (A) においては、上で得られた粉末 を次に仮焼する。好ましい仮焼温度は800~1100 ℃であるが、得られた仮焼粉の比衷面積は低温仮焼ほど 大きく、また高温仮焼ほど低くなるので、好ましい仮焼 温度は目的とする粉末の比較面積により選べばよい。従 って、比波面積15~20m~/gの粉末を得たい場合 は900℃前後、6~10m²/gの粉末を得たい場合

【0019】方法(A)においては、上記の仮焼後、鉄 化合物および亜鉛化合物を添加混合して、成形、焼薪し て目的とするジルコニア焼結体を得る。

【0020】鋏化合物は、焼成後FeiOiとなって着 色剤として働くものであり、その具体例としては、塩化 鉄、硝酸鉄、酢酸鉄、鉄アセチルアセトネートなどの可 溶性化合物や酸化鉄、炭酸鉄、水酸化鉄などの不溶性化 合物が挙げられる。亜鉛化合物は、焼結助剤として働く ものであり、焼成後2nOになる任意の亜鉛化合物が用 40 いられる。その具体例としては、酸化物や炭酸塩などの 不溶性化合物や、酢酸塩、塩化物などの可溶性化合物な どが挙げられる。

【0021】上記鉄化合物および亜鉛化合物の添加量 は、最終製品であるジルコニア挽給体における安定化剤 合有2.rO: に対して、Fe. O: が0. 0001~ 0.3モル%、2nOが0.05~0.3モル%となる 盤とする。

【0022】 鉄化合物および亜鉛化合物を添加混合した 後の成形は、ラパープレス法、金型成形法、押出成形 50 法、射出成形法なども用いて行なわれ、最終製品である ジルコニア焼結体の用途に応じて所定形状の成形体を得 る。次にこの成形体の焼結は、次のような条件で行なわ れる。焼結温度は、粉末の比表面積や成形圧力により異 なるが、通常比表面積6mº/gの粉末で、成形圧力が 静水圧2 t/cm の場合は1300~1400℃の焼給 温度にすることにより、そして比炎面積15m1/gの 粉末で、成形圧力が同一の場合は1200~1300℃ の焼粘温度にすることにより理論密度の98%以上の焼 結体が得られる。この焼結盘度は市販ジルコニア粉末 (比表面積10~15m²/g) の焼結温度(1450 10 ~1500℃) に比べて200~300℃低い温度であ る。焼結時間は、0.5~10時間である。

【0023】このようにして得られたジルコニア焼結体 の曲げ強度は、市販ジルコニア焼結体(Y: O: 含量3 モル%品)と同等かそれ以上の強度を示す。また得られ たジルコニア焼結体は高靭性を示す。さらに得られたジ ルコニア焼結体は、象牙色を有し、密巣性に優れている ので、印鑑、アクセサリー、時計の枠や文字盤、眼鏡の フレームなどの象牙代替材として用いられる。さらに歯 列矯正用プラケットとしても用いられるが、この点につ 20 なるブラケットに比べ優れている。 いては校に群述する。

【0024】方法(B)

方法(B)は、予め調製した安定化剤含有ジルコニア粉 末に、エルピウム化合物、プラセオジウム化合物、鉄化 合物および亜鉛化合物を、前2者の化合物は溶液の状態 で添加混合して、成形、焼結することによりシルコニア 焼結体を得るものである。この方法(B)において用い られる安定化剤含有ジルコニア粉末は、ZrOCl:、 Zro (No.), Zroso, Zro (C. H. 11 , Y (NO1) 1 , Y (C2 H1 O2) 1 , Ce C li, Ce (NOi) i, Ce (Çi Hi Qi) i, C aCl1, Ca (NO1) i, MgCl1, Mg (NO 」)」などの焼成後安定化剤(Yı Oı, Ce Oı, C aO、MgOなど)となる化合物とを含む溶液に、共沈 法、蒸発乾固法、しゅう酸塩法、加水分解法などの処理 を施した後、得られた団体粉を乾燥し、次いで仮焼する ことにより得られる。

【0025】この安定化剤含有ジルコニア粉末に添加、 混合されるエルビウム化合物およびプラセオジウム化合 40 説明する。 物は、焼成後BriOiおよびPriOiとなって着色 剤として働くものである。これらの化合物は、安定化剤 含有ジルコニア粉末への添加、混合時に溶液の状態であ る必要があるので、前記方法(A)で用いたと同一の可 溶性化合物が用いられる。一方、軟化合物および亜鉛化 合物は、安定化剤含有ジルコニア粉末への添加、混合時 に溶液の状態である必要が必ずしもないので、方法 (A) で用いたと同一の可溶性化合物および不溶性化合 物が用いられる。成形、焼粘も前配方法(A)で用いた と同一の力法が採用され、目的とするジルコニア挽結体 60 出成形法によってブラケット形状及び物性測定用試験片

が得られる。この方法(B)で得られたジルコニア焼結 体は、方法(A)で得られたものと同様に、市販ジルコ ニア焼結体(Yi O) 含量3モル%品)と同等またはそ れ以上の曲げ強度を示し、また高朝性を示す。このよう にして得られたジルコニア焼結体の成分分析は化学分析 及び原子吸光分析を用いることにより行なうことができ る。そして象牙色を有することから象牙代替材として用 いられる。さらに、次に述べるように歯列矯正用プラケ ットとしても用いられる。

G

【0026】次に本発明の歯列矯正用プラケットについ て説明する。本発明の歯列矯正用プラケットは、上述の ように安定化剤を含むZrOi を主成分とし、この安定 化剤含有2 r O; に対してE r; O; を 0, 0 5~ 1. 0モル%、Pr. Ouを0. 0001~0. 05モル %. Fe, O, を0. 0001~0. 3モル%、ZnO を0、05~0、3モル名含むジルコニア焼結体からな るものであり、役述の実施例からも明らかなように、卷 **美性に優れ、靭性、機械的強度も高いので、従来のステ** シレス鋼からなるプラケットや従来のセラミックスから

【0027】本発明の歯列矯正用プラケットを構成する ジルコニア焼給体の使さはピッカース使さで900~1 250kg/cm * でありアルミナに比べてかなり軟らかい が、風者によってはブラケットが対合歯と接触し、歯 質、歯並びの関係で対合歯を冷耗させる可能性があるの で、天然歯よりも軟らかいかあるいは天然歯の硬さに近 い硬さ (実質的にはピッカース硬さ100~700kg/m m・) の材料からなる被視層を設けることにより、上記 摩託を防ぐことができる。この被種層の厚さは60μα O:),などの焼成後ジルコニアになる化合物と、YC 30 未満であると被覆層が磨滅してしまい、300 um を超 えるとブラケット焼結体との剥離などの不都合が生ずる ので、50~300μmが良い。被種層としてはエポキ シ樹脂、ポリウレタン樹脂等の高分子樹脂を単独成いは アルミナ、マグネシア、ジリカ等の無機材料粉末フィラ ーを届入したもの、マイカ徴結晶を析出した結晶化ガラ スなどが用いられ、直接或いは接着剤によりジルコニア 焼結体に被覆される。

[0028]

【実施例】以下に実施例を挙げ、本発明を更に具体的に

実施例1-1~1-5

Zrocli, YCli, Ercli 及びPrCli の 水溶液を p H を 1 0 に維持したアンモニア水中に満下し て生成した共沈物をろ過、水洗、アルコール洗浄した 後、110℃で乾燥した。得られた乾燥粉を1000℃ で3時間仮焼して比表面独約6㎡ /gの粉末を得た。 この仮焼粉末に酢酸亜鉛ならび硝酸鉄のエダノール榕被 を加え、約1日間ポールミル混合を行った後、スラリー を蒸発乾固して原料粉末を得た。次に上配原料粉末を射

形状に成形、脱脂した後、電気炉中で100℃/時の昇 温速度で1300℃まで昇温し、その温度に3時間保持 して、500℃/時の速度で600℃まで冷却し、その 後、炉内で室温まで冷却した。

【0029】各種添加剤の量を変え、実施例1-1~1 -5の焼結体を得た。表1に物性測定用試験片の曲げ強. 度 (JIS R 1601)、破壞物性Kic (荷瓜30 kgのピッカース圧痕によるIM(インデンテーション・ マイクロフラクチャー)法)を測定した結果を示した。 これら実施例の焼結体は105~115kg/mm という 10 【0032】 高い曲げ強度と6.5~8.7MPam1/7 という高い Kic を示した。

【0030】又、プラケット形状焼結体をパレル研磨す ることにより、選孔性で光沢があり、後1に示すように 象牙色の天然歯に似た色調のプラケットが得られた。 【0031】比較例1-1~1-4 各種添加物の量を本発明の範囲外とした以外は実施例1 と同様の方法により得た焼結体の物性値を表しに示す。 表1より曲げ強度が7.2~1.00kg/m * と低く、Kic も5. 0~6. OMP am1/8 と低かった。また色調も 不満足なものであった。

8

【我1】

10

		,
	•	

【0033】実施例2-1~2-4

2 rOCl. 及びYCl. の水溶液をpHを10に維持 したアンモニア水中に商下して生成した共沈物をろ過、 水洗、アルコール洗浄した後、110℃で乾燥した。得 られた乾燥粉を1000℃で3時間仮焼して比衷面積約 50 を2 t /cm *の静水圧でラバープレス法によって成形し

6 m³ / gの粉末を得た。この粉末に酢酸エルピウム、 **酢酸プラセオジウムのメタノール溶液及び炭酸亜鉛、酸** 化鉄を加え、約1日間ポールミル混合を行った後、スラ リーを蒸発乾固して混合粉末を得た。次にこの混合粉末 11

た後、電気炉中で100℃/時の昇温速度で1300℃ まで昇温し、その温度に3時間保持して焼結し、500 ℃/時の速度で60.0℃まで冷却し、その後、窒息まで 炉内で冷却した。

【0034】この焼餡体をプラケット形状及び物性原定 用試験片に研削加工し、1300℃で30分HIP処理 した.

【0035】各種添加剤の量を変え、実施例2-1~2 - 4の焼結体を得た。安2に示すように得られた焼結体 16 も 6. 1~7. 2 M P a m1/1 と高かった。

【0036】又、ブラケット形状焼給体をパレル研磨す ることにより、透光性で光沢があり、表1に示すように 象牙色の天然歯に似た色脚のプラケットを得ることがで きた。

【0037】比较例2-1~2-3

12

各種添加物の量を本発明の範囲外とした以外は、実施例 2と同様の方法により得た焼結体の物性値を表2に示 す。 衷 2 より比較例 2 - 1 および 2 - 3 の焼結体は、曲 げ強度が7.2及び7.8kg/m * と低く、破壊靭性も4. 8及び5. 1MPam'/ と低かった。また比較例2-1~2-3の焼結体のいずれも色調が不満足であった。 【0038】比較例3-1, 3-2

酢酸エルビウム溶液及び酢酸プラセオジウムの溶液の代 わりに酸化エルビウム感激液 (比較例3-1) 及び酸化 の曲げ強度は98~105kg/mm *と高く、破壊靭性K 10 プラセオジウム船ھ液(比較例3-2)を使用した以外 は実施例2と同様の方法で得た焼結体の物性値を表2に 示す。表2より、これらの焼結体は、曲げ強度、破壊靭 性Kntおよび色調ともに劣っていた。

> [0039] 【表2】

N

88	200		成 (モ	(≴11%)		無格温度	旋結 密度	曲げ強度	Žĺ	朝
Y2 08 Er2 03 Pr8 011	Prg OIL	. 1		Fe2Os	ZnO	(2)	(8/ca 3)(kg/an	~	OPas 1/2)	
1.5 1.0 0.0001		0.0001		0.02	0.8	1300	6.12	102	6.2	象牙色
2.0 0.5 0.02		20.0		10.0	0.2	1300	6.10	100	7.2	象牙色
2.6 0.01 0.03		0.03		0.2	0.02	0081	6.02	88	1.9	象牙色
2.0 0.8 0.001	_	100.0		10.0	0.1	0081	70.9	501	8.3	象牙色
1.5 2.0 0.0001		0.0001		0.02	8.0	0081	86.3	72	8.4	६४८ हरू
2.0 0.5 0.08		0.08		10.0	0.3	1800	. 30.8	103	8.8	跑船
2.6 0.5 0.001		100.0		9.0	0.8	1.800	8.02	78	1*9.	茶色
1.5 1.0 0.0001		0.0001		0.02	0.3	0081	5.70	85	4.0	EMB, 843
2.0 0.5 0.02		0.02		0.01	0.2	1300	28.3	69	4.7	18. 845

【0040】実施例3

実施例1によって作製されたプラケットおよび物性例定 用試験片を、実施例1によって作製したジルコニア原料 粉末を10wt%分散した液状の市販ポリウレタン樹脂 (日本ポリウレタン社製RU-39) にディップコート 50 【0041】

して硬化して、表面に厚さ120μα、ピッカース硬さ 150kg/mm * の被膜層を形成し、天然歯の摩託を防 ぐ、光沢のあるプラケットを作製した。被費層形成によ る材料の強度、靱性の変化はなかった。

15

【発明の効果】本発明のシルコニア焼結体は、機械的強度、靭性が高く、色調が鮮明な象牙色シルコニア焼結体であるので印鑑、装飾用品、娯楽用品、文房具、時計部品、歯列爆正用ブラケッド等幅広い用途が期待できる。

【0042】特に歯列矯正用プラケットに使用した場合、色調が天然歯に近く、透明感もあるので審美性に優れ、必要に応じて被覆層も形成でき対合歯の摩託を防ぐことができる。

16

フロンドページの統き

(72)発明者 岡村 博道

東京都千代田区大手町·2:丁目 2番 1 号 日本智遵株式会社内