Scribe: Adrian Fagerland

Chapter 26: The Black-Scholes-Merton Equation

Remembering

$$d_1 = \frac{\ln(S/K) + (r - \delta + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

Calculating the required partial derivatives

1. $\frac{\partial V}{\partial t}$:

We use the product rule, and chain rule. $\frac{\partial V}{\partial t} = Se^{-\delta(T-t)} \left(\delta N(d_1) + \frac{\partial N(d_1)}{\partial t} \right)$.

Note that $\frac{\partial N(d_1)}{\partial t} = N'(d_1)\frac{\partial d_1}{\partial t}$. $N'(d_1)$ is just the pdf of the standard normal distribution, with d_1 as an argument.

After calculating $\frac{\partial d_1}{\partial t}$, we get that

$$\frac{\partial V}{\partial t} = \delta S e^{-\delta(T-t)} N(d_1) + S e^{-\delta(T-t)} N'(d_1) \left[-\frac{\ln(S/K)}{2\sigma(T-t)^{3/2}} + \frac{r - \delta + \sigma^2/2}{-\sigma\sqrt{T-t}} \right]$$

$$\frac{\partial V}{\partial t} = \delta S e^{-\delta(T-t)} N(d_1) + S e^{-\delta(T-t)} N'(d_1) \left[\frac{-\sigma^2(T-t)d_1 - (r - \delta + \sigma^2/2)(T-t)}{\sigma(T-t)\sqrt{T-t}} \right]$$

$$\frac{\partial V}{\partial t} = S e^{-\delta(T-t)} \left(\delta N(d_1) - \frac{N'(d_1)}{\sigma\sqrt{T-t}} \left[(r - \delta + \frac{1}{2}\sigma^2) + d_1\sigma \frac{1}{\sqrt{T-t}} \right] \right)$$

2. $\frac{\partial V}{\partial S}$:

Using the chain rule, we have:

$$\frac{\partial V}{\partial S} = e^{-\delta(T-t)}N(d_1) + Se^{-\delta(T-t)}N'(d_1)\frac{\partial d_1}{\partial S}$$

Since $\frac{\partial d_1}{\partial S} = \frac{1}{S\sigma\sqrt{T-t}}$, the result is,

$$\frac{\partial V}{\partial S} = e^{-\delta(T-t)} \left[N(d_1) + \frac{N'(d_1)}{\sigma\sqrt{T-t}} \right]$$

3. $\frac{\partial^2 V}{\partial S^2}$:

$$\frac{\partial^2 V}{\partial S^2} = e^{-\delta(T-t)} N'(d_1) \frac{\partial d_1}{\partial S} + e^{-\delta(T-t)} \left[\frac{N''(d_1) \frac{\partial d_1}{\partial S} \sigma \sqrt{T-t} - N'(d_1) \sigma \sqrt{T-t} \frac{\partial d_1}{\partial S}}{\sigma^2(T-t)} \right]$$

After simplifying by applying $\frac{\partial d_1}{\partial S} = \frac{1}{S\sigma\sqrt{T-t}}$, it reduces to

$$\frac{\partial^2 V}{\partial S^2} = \frac{e^{-\delta(T-t)}}{S\sigma\sqrt{T-t}} \left[N'(d_1) \left(\frac{-d_1}{S\sigma\sqrt{T-t}} \right) \right]$$
$$\frac{\partial^2 V}{\partial S^2} = -\frac{e^{-\delta(T-t)}N'(d_1)d_1}{S^2\sigma^2(T-t)}$$

Plugging these values into the Black-Scholes equation, we get 0 = 0. Hence, $V(S,t) = Se^{-\delta(T-t)}N(d_1)$ satisfies the Black-Scholes equation.

Exercises from other sources 1

(a)

 $f = e^{-r(T-t)}E^*[\ln(S_T)]$, where E^* denotes the expectation under the risk-neutral measure. Under the risk-neutral measure, the stock price follows a geometric Brownian motion: $S_T = S_t e^{(r-\frac{1}{2}\sigma^2)(T-t)+\sigma W^*_{(T-t)}}$, where $W^*_{(T-t)}$ is a standard Brownian motion under the risk-neutral measure, and thus is normally distributed $\tilde{N}(0,T-t)$.

Taking the natural logarithm of both sides:

$$\ln(S_T) = \ln(S_t) + (r - \frac{1}{2}\sigma^2)(T - t) + \sigma W_{(T-t)}^*$$

Calculating $E^*[\ln(S_T)]$:

$$E^*(\ln S_T) = \ln S + (r - \frac{\sigma^2}{2})(T - t)$$

Substituting into the pricing formula:

$$f = e^{-r(T-t)} \left[\ln(S_t) + \left(r - \frac{1}{2}\sigma^2\right)(T-t) \right]$$

(b)

1. $\frac{\partial f}{\partial t}$:

$$\begin{split} \frac{\partial f}{\partial t} &= re^{-r(T-t)}[\ln(S) + (r-\frac{1}{2}\sigma^2)(T-t)] + e^{-r(T-t)}[-(r-\frac{\sigma^2}{2})] \\ \frac{\partial f}{\partial t} &= rf - e^{-r(T-t)}(r-\frac{1}{2}\sigma^2) \end{split}$$

2. $\frac{\partial f}{\partial S}$:

$$\frac{\partial f}{\partial S} = e^{-r(T-t)} \frac{1}{S}$$

3. $\frac{\partial^2 f}{\partial S^2}$:

$$\frac{\partial^2 f}{\partial S^2} = -e^{-r(T-t)} \frac{1}{S^2}$$

Substituting into equation:

$$rf - e^{-r(T-t)}\left(r - \frac{1}{2}\sigma^2\right) + \frac{\sigma^2}{2}S^2\left(-e^{-r(T-t)}\frac{1}{S^2}\right) + rSe^{-r(T-t)}\frac{1}{S} - rf = 0$$

Simplifying leads to:

$$-e^{-r(T-t)}(r-\frac{1}{2}\sigma^2) - \frac{1}{2}\sigma^2e^{-r(T-t)} + re^{-r(T-t)} = 0$$

hence 0 = 0

Thus, the price f does satisfy the equation.

Exercises from other sources 2

The code is in the attached notebook.

 \mathbf{a}

[****************100

Annualized Volatility for AAPL: 0.2383

Last Closing Price: 248.01

\mathbf{b}

Asian Call Option Price: 3.7913

Asian Call Option Price STD: 5.8150

\mathbf{c}

Price	STD
4.094162	5.931863
3.659383	5.689137
3.769529	5.758022
3.792481	5.729376
3.767705	5.749505
3.817293	5.800743
	4.094162 3.659383 3.769529 3.792481 3.767705