ALGEBRA e LOGICA

CdL in Ingegneria Informatica

prof. Fabio GAVARINI

Sessione Estiva Anticipata 2014–2015 / Sessione Invernale 2013–2014 — II appello
Esame scritto del 23 Febbraio 2015 — COMPITO \mathbb{R}

N.B.: compilare il compito in modo <u>sintetico</u> ma **esauriente**, spiegando chiaramente quanto si fa, e scrivendo in corsivo con grafia leggibile.

 \dots \mathbb{R} \dots

- [1] Sia D_{189} l'insieme dei numeri naturali divisori di 189, dotato della relazione d'ordine di divisibilità, e sia $\mathcal{P}(\{h, k, \ell\})$ l'insieme delle parti dell'insieme $\{h, k, \ell\}$, dotato della relazione d'ordine di inclusione; in particolare, entrambi sono insiemi ordinati.
 - (a) D_{189} è totalmente ordinato? $\mathcal{P}(\{h, k, \ell\})$ è totalmente ordinato?
- (b) D_{189} è limitato? $\mathcal{P}(\{h, k, \ell\})$ è limitato? In entrambi i casi, se la risposta è negativa se ne spieghi il perché, se è affermativa si precisi chi siano i limiti.
- (c) D_{189} è un reticolo? $\mathcal{P}(\{h, k, \ell\})$ è un reticolo? Se sono entrambi reticoli, sono isomorfi l'uno all'altro?
 - (d) D_{189} è un'algebra di Boole? $\mathcal{P}(\{h, k, \ell\})$ è un'algebra di Boole?
 - (e) Quali sono se esistono gli atomi di D_{189} e gli atomi di $\mathcal{P}(\{h, k, \ell\})$?
- [2] (a) Scrivere in base b' := DIECI il numero N che in base b := CINQUE è espresso dalla scrittura posizionale $N := (2413)_b$.
- (b) Scrivere in base b := CINQUE il numero T che in base b' := DIECI è espresso dalla scrittura posizionale $T := (479)_{b'}$.
- (c) Scrivere in base b':= DIECI il numero K che in base b''= DODICI, tramite le dodici cifre (ordinate!) dell'insieme $\{0\,,\,1\,,2\,,3\,,\ldots\,,8\,,9\,,\perp\,,\wedge\,\}$, è espresso dalla scrittura posizionale $K:=(4\,\bot\,5)_{b''}$.
- [3] Sia $q \in \mathbb{Q}$. Determinare se esistono tutte le successioni $\underline{a}^{(q)} := \left\{a_n^{(q)}\right\}_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ (dipendenti dal parametro q), tali che

$$a_0^{(q)} = 2\,q + 1$$
 , $a_1^{(q)} = 2\,q - 3$, $a_n^{(q)} = 6\,a_{n-1}^{(q)} - 5\,a_{n-2}^{(q)}$ $\forall n \geq 2$.

[4] Determinare l'insieme di tutte le soluzioni del sistema di equazioni congruenziali

$$\circledast : \begin{cases} -66 x \equiv 128 \pmod{7} \\ 128 x \equiv -86 \pmod{10} \end{cases}$$

- [5] Dati i due numeri interi a := 27 e b := 72, calcolare $\delta := \text{M.C.D.}(a, b)$, calcolare $\mu := \text{m.c.m.}(a, b)$, e determinare una identità di Bézout per M.C.D.(a, b).
- [6] Si consideri il polinomio booleano $R(h, k, \ell)$, nelle variabili $h, k \in \ell$, dato da

$$\begin{split} R(h,k,\ell) \;\; := \;\; \Big(\, 0' \wedge \Big(\, \ell' \vee \big(\, h' \wedge 1 \wedge k \, \big)' \, \Big) \Big)' \, \vee \, \Big(\, h \wedge 1 \wedge \ell \wedge k' \, \big) \, \vee \\ & \qquad \qquad \vee \, \Big(\, h'' \vee \Big(\big(\, \ell' \wedge 1 \wedge k \, \big)' \wedge \big(\, h'' \vee \ell' \vee h \, \big) \Big) \Big)' \, \vee \, \big(\, k \vee h' \vee 0 \vee \ell' \, \big)' \end{split}$$

- (a) Determinare la forma normale disgiuntiva di $R(h, k, \ell)$.
- (b) Determinare la somma di tutti gli implicanti primi di $R(h, k, \ell)$.
- (c) Determinare una forma minimale di $R(h, k, \ell)$.

SOLUZIONI

- [1] (a) Un insieme ordinato $(E; \preceq)$ è totalmente ordinato se per ogni $e', e'' \in E$ si ha $e' \preceq e''$ oppure $e'' \preceq e'$ (in breve, "e' ed e'' sono comparabili"). Nel caso in esame $(D_{189}; |)$ non è totalmente ordinato, perché ad esempio si ha che per $3, 7 \in D_{189}$ si verifica che $3 \not\mid 7$ (cioè "3 non divide 7") e $7 \not\mid 3$ (cioè "7 non divide 3"). Analogamente, $(\mathcal{P}(\{h,k,\ell\}); \subseteq)$ non è totalmente ordinato, perché ad esempio si ha che per $\{h\}, \{k\} \in \mathcal{P}(\{h,k,\ell\})$ si verifica che $\{h\} \not\subseteq \{k\} \in \{k\} \subseteq \{h\}$.
- (b) D_{189} è limitato, con minimo $\min(D_{189}) = 1$ e massimo $\max(D_{189}) = 189$. Analogamente anche $\mathcal{P}(\{h, k, \ell\})$ è limitato, con minimo $\min(\mathcal{P}(\{h, k, \ell\})) = \emptyset$ e massimo $\max(\mathcal{P}(\{h, k, \ell\})) = \{h, k, \ell\}$.
- (c) Un insieme ordinato $(E; \preceq)$ è un reticolo se per ogni $e', e'' \in E$ esiste $\inf(e', e'') \in E$ e $\sup(e', e'') \in E$. Nei casi in esame si ha che entrambi $(D_{189}; |)$ e $(\mathcal{P}(\{h, k, \ell\}); \subseteq)$ sono reticoli, in cui $\inf(d', d'') = M.C.D.(d', d'')$ e $\sup(d', d'') = m.c.m.(d', d'')$ per ogni $d', d'' \in D_{189}$ mentre $\inf(S', S'') = S' \cap S''$ e $\sup(S', S'') = S' \cup S''$ per ogni $S', S'' \in \mathcal{P}(\{h, k, \ell\})$.

Infine, i due reticoli $(D_{189}; |)$ e $(\mathcal{P}(\{h, k, \ell\}); \subseteq)$ non sono isomorfi. Una possibile spiegazione è la seguente. Se i due reticoli fossero isomorfi, un qualunque isomorfismo da

- D_{189} a $\mathcal{P}(\{h,k,\ell\})$ darebbe per restrizione una biiezione tra l'insieme degli atomi di D_{189} e l'insieme degli atomi di $\mathcal{P}(\{h,k,\ell\})$; ma D_{189} ha esattamente due atomi che sono 3 e 7 mentre $\mathcal{P}(\{h,k,\ell\})$ ha esattamente tre atomi che sono i tre singoletti $\{h\}$, $\{k\}$ e $\{\ell\}$: quindi non ci può essere una biiezione tra i due insiemi di atomi (hanno cardinalità diverse...), e dunque i due reticoli considerati non sono isomorfi sebbene abbiano la stessa cardinalità, precisamente $|D_{189}| = 8 = |\mathcal{P}(\{h,k,\ell\})|$.
- (d) Ricordiamo che un'algebra di Boole è un reticolo limitato, distributivo e complementato. Ora, i reticoli D_{189} e $\mathcal{P}\big(\{h,k,\ell\}\big)$ sono entrambi limitati vedasi (b) e distributivi; però D_{189} non complementato (perché, ad esempio, non esiste un complemento per 3) e quindi non è un'algebra di Boole, mentre invece $\mathcal{P}\big(\{h,k,\ell\}\big)$ è complementato (per ogni $S \in \mathcal{P}\big(\{h,k,\ell\}\big)$ come complemento in $\mathcal{P}\big(\{h,k,\ell\}\big)$ c'è il suo complementare $\{h,k,\ell\}\setminus S$) e quindi è un'algebra di Boole.
- N.B.: questo è anche un altro modo per provare che i due reticoli D_{189} e $\mathcal{P}(\{h,k,\ell\})$ non sono isomorfi l'uno all'altro: infatti, se lo fossero allora sarebbero entrambi algebre di Boole oppure entrambi non lo sarebbero, e invece non è così (hanno proprietà opposte).
- (e) Ricordiamo che in un insieme ordinato si dicono atomi gli elementi (se esistono...) che coprono il minimo. Nei casi in esame, gli atomi di D_{189} sono 3 e 7 cioè gli unici fattori primi di 189 mentre gli atomi di $\mathcal{P}(\{h,k,\ell\})$ sono i tre singoletti $\{h\}$, $\{k\}$ e $\{\ell\}$.

[2] — (a)
$$N := (2413)_b = (358)_{b'}$$
;
(b) $T := (479)_{b'} = (3404)_b$;
(c) $K := (4 \perp 5)_{b''} = (701)_{b'}$.

[3] — Il polinomio caratteristico associato alle successioni ricorsive cercate è della forma $\Delta(x)=x^2-6\,x+5$, che ha radici $r_+=1$ e $r_-=5$; pertanto le successioni cercate sono della forma $\underline{a}=\left\{a_n=C_+\cdot 1^n+C_-\cdot 5^n\right\}_{n\in\mathbb{N}}$. Imponendo le condizioni iniziali si trova che dev'essere necessariamente $C_+=2\,(q+1)$, $C_-=-1$: perciò esiste una e una sola successione del tipo richiesto, precisamente

$$\underline{a} = \left\{ a_n = 2(q+1) \cdot 1^n + (-1) \cdot 5^n \right\}_{n \in \mathbb{N}}$$

[4]
$$-x \equiv 18 \equiv -17 \pmod{35}$$
, o in altri termini $x = 18 + 35z$, $\forall z \in \mathbb{Z}$.

[5] — I numeri assegnati si fattorizzano univocamente in primi come segue:

$$a := 27 = 3^3$$
 , $b := 72 = 2^3 \cdot 3^2$

Da questo otteniamo

$$\delta := \text{M.C.D.}(a, b) = \text{M.C.D.}(3^3, 2^3 \cdot 3^2) = 3^2 = 9$$

 $\mu := \text{m.c.m.}(a, b) = \text{m.c.m.}(3^3, 2^3 \cdot 3^2) = 2^3 \cdot 3^3 = 216$

Notiamo anche che basta ottenere uno dei due per poi ricavare l'altro tramite la relazione

$$M.C.D.(a,b) \cdot m.c.m.(a,b) = a \cdot b$$
 (1)

Inoltre il M.C.D.(a, b) si può ottenere anche tramite l'algoritmo euclideo delle divisioni successive, che dà quanto segue:

$$27 = 72 \cdot 0 + 27$$

$$72 = 27 \cdot 2 + 18$$

$$27 = 18 \cdot 1 + 9$$

$$18 = 9 \cdot 2 + 0$$
(2)

L'ultimo resto non nullo è il M.C.D. cercato, dunque M.C.D.(27,72) = 9. Inoltre, una volta che si sia calcolato in tal modo il M.C.D.(32,56) si può poi ottenere il m.c.m(27,72) tramite la formula in (1), per cui si trova

$$\text{m.c.m}(27,72) = \frac{27 \cdot 72}{\text{M.C.D}(27,72)} = \frac{1944}{9} = 216$$

Infine, dobbiamo trovare una identità di Bézout per M.C.D.(27,72), cioè un'espressione della forma M.C.D.(27,72) = $27 \cdot r + 72 \cdot s$ per opportuni valori di $r, s \in \mathbb{Z}$. Una tale espressione si può ottenere invertendo le identità in (2): precisamente, così facendo si trova

$$27 + 72 \cdot (-0) = 27$$

$$72 + 27 \cdot (-2) = 18$$

$$27 + 18 \cdot (-1) = 9$$

da cui otteniamo

M.C.D.
$$(27,72) = 9 = 27 + 18 \cdot (-1) = 27 + (72 + 27 \cdot (-2)) \cdot (-1) = 72 \cdot (-1) + 27 \cdot 3 = 72 \cdot (-1) + (27 + 72 \cdot (-0)) \cdot 3 = 27 \cdot 3 + 72 \cdot (-1)$$

quindi una possibile identità di Bézout è

$$9 = 27 \cdot 3 + 72 \cdot (-1)$$

in cui r=3 e s=-1.

$$[6] \quad - \quad (a) \quad F.N.D. = (h \wedge k' \wedge \ell) \vee (h' \wedge k \wedge \ell) \vee (h' \wedge k \wedge \ell') \vee (h' \wedge k' \wedge \ell)$$

$$(c) \quad s.t.i.p. \, = \, \left(h' \wedge k\right) \vee \left(h' \wedge \ell\right) \vee \left(k' \wedge \ell\right)$$

(d) f.m. = $(h' \wedge k) \vee (k' \wedge \ell)$, e questa è l'unica forma minimale possibile.