Základy středoškolské kombinatoriky

DAVID WEBER

david.weber99@seznam.cz

27. června 2022

Obsah

1	Úvodem		
	1.1	Was ist kombinatorika?	2
	1.2	Množiny	3
2 Kombinatorické počítání		nbinatorické počítání	5
	2.1	Pravidlo součinu a součtu	5
	2.2	Variace, permutace a kombinace	8
Se	Seznam použité literatury		

Kapitola 1

Úvodem

1.1 Was ist kombinatorika?

Kombinatorika představuje matematickou disciplínu zabývající se se kolekcemi prvků množin s definovanou vnitřní strukturou. Řekneme-li to méně formálně, studuje, kolika způsoby lze sestavit konfiguraci s jistými vlastnostmi. Zároveň se tak váže k blízkému oboru zvanému teorie pravděpodobnosti.

Typickou úlohou (otázkou) kombinatoriky je třeba tato:

Úloha 1.1.1. Na svatbě je n lidí.

- (a) Kolika způsoby lze n svatebčanů sestavit do řady?
- (b) V kolika případech stojí nevěsta napravo od ženicha?
- (c) Kolik je řad, že ženich a nevěsta stojí vedle sebe?

Poměrně pěknou a lehce humornou úlohou spadající do klasické kombinatoriky je např. tzv. problém šatnářky.

Úloha 1.1.2. Ctihodní pánové v počtu n přijdou na shromáždění, všichni v kloboucích, a odloží si své klobouky do šatny. Při odchodu šatnářka, možná ten den velmi roztržitá, možná dokonce z mizerného osvětlení osleplá, vydá z pánů náhodně jeden z klobouků. Jaká je pravděpodobnost, že žádný pán nedostane od šatnářky zpět svůj klobouk? [1, str. 105]

Dalšími zajímavými problémy jsou např. tyto

Úloha 1.1.3. ■ Jaký maximální počet oblastí může vzniknout, jestliže pomocí n přímek rozdělíme rovinu? [2, str. 38]

- Kolika způsoby lze rozměnit jeden dolar? [3, str. 130]
- Kolik různých náhrdelníků s dvaceti korálky lze vyrobit z korálků rodonitu, růženínu a lazuritu, pokud lze náhrdelník nosit v jakékoli orientaci? [3, str. 130]

Kromě první zmíněné úlohy jsou ostatní svým řešením již nad rámec tohoto textu, avšak např. zmíněný problém šatnářky 1 1.1.2 vede posléze k velmi zajímavým výsledkům. Nicméně pro řešení úlohy 1.1.1 a jí příbuzných si v dalších odstavcích vybudujeme potřebný matematický aparát.

¹Konkrétně zde se při řešení využije tzv. princip inkluze a exkluze.

1.2 Množiny

Množiny pro nás budou klíčovým pojmem, neboť s jejich pomocí budeme formulovat další části výkladu. Proto považuji za nezbytné si zopakovat aspoň některé základní vlastnosti a operace, které s množinami můžeme provádět. Množinou v matematice rozumíme "soubor neuspořádaných prvků". Dvě množiny tak považujeme za stejné (sobě rovné) právě tehdy, když mají stejné prvky. Byť tento popis nepředstavuje zcela formální definici, pro naše potřeby s tímto chápáním vystačíme.

Množiny zapisujeme pomocí složených závorek {, }, přičemž jejich specifikace lze provést dvě způsoby:

- výčtem (výpisem) jednotlivých prvků,
- společnou vlastností

Příklad 1.2.1. Množinu M obsahující prvky a, b, c lze jako

$$M = \{a, b, c\}.$$

V případě většího počtu prvků, avšak s jistou strukturou, můžeme množinu specifikovat buď pomocí "..." nebo explicitním vyjádřením specifické vlastnosti.

Příklad 1.2.2. Množinu všech přirozených čísel menších nebo rovny 5 lze zapsat jako

$$S = \{ n \in \mathbb{N} \mid n \le 5 \}$$
 nebo $S = \{ 1, 2, \dots, 5 \}$.

Důležitou vlastností množin je, že neuvažujeme násobné výskyty prvků. Tedy např. množiny $M=\{1,\,2,\,3\}$ a $N=\{1,\,2,\,3,\,3\}$ jsou si rovny, tj. M=N. Též je vhodné si připomenout, že chceme-li vyjádřit, že libovolný prvek a je v množině A, pak píšeme $a\in A$ (čteme "a náleží množině A"). Naopak v případě, že prvek a nenáleží množině A, píšeme $a\notin A$.

Podstatnou vlastností pro nás budou operace sjednocení, průniku a rozdílu množin.

Definice 1.2.3 (Sjenocení, průnik a rozdíl). Mějme množiny² A, B. Pak definujeme:

- (i) sjednocení $A \cup B = \{x \mid x \in A \lor x \in B\}$, tj. výsledná množina obsahuje prvky množiny A a zároveň prvky množiny B.
- (ii) průnik $A \cap B = \{x \mid x \in A \land x \in B\}$, tj. výsledná množina obsahuje *pouze* prvky, které náleží oběma množinám.
- (iii) rozdíl $A \setminus B = \{x \mid x \in A \land x \notin B\}$, tj. výsledná množina obsahuje pouze ty prvky z množiny A, které nenáleží množině B.

Příklad 1.2.4. Pro množiny³ $X=\{x,\,y,\,z\}$ a $Y=\{x,z,\{z\}\,,w\}$ platí

- $X \cup Y = \{x, y, z\} \cup \{x, z, \{z\}, w\} = \{x, y, z, x, z, \{z\}, w\} = \{x, y, z, \{z\}, w\},$
- $X \cap Y = \{x, y, z\} \cap \{x, z, \{z\}, w\} = \{x, z\},$
- $X \setminus Y = \{x, y, z\} \setminus \{x, z, \{z\}, w\} = \{x, z\} = \{y\}.$

Zkuste si výsledky operací porovnat s definicí 1.2.3 výše.

²Mohou být **konečné** i **nekonečné**, avšak nás budou zajímat konečné množiny.

 $^{^3}$ U množiny Y si uvědomme, že prvek $\{z\}$ není to samé jako prvek z, tedy např. po sjednocení se ve výsledné množině vyskytnou oba.

KAPITOLA 1. ÚVODEM 4

Pro větší počet množin můžeme využít pro zápis sjednocení tzv. *velké operátory* \bigcup , \bigcap . Máme-li tedy množiny X_1, X_2, \ldots, X_n , můžeme jejich sjednocení, resp. průnik zapsat jako

$$\bigcup_{i=1}^n X_i = X_1 \cup X_2 \cup \cdots \cup X_n \quad \text{resp.} \quad \bigcap_{i=1}^n X_i = X_1 \cap X_2 \cap \cdots \cap X_n$$

Poslední, co nás bude zajímat, je velkost množiny. Tu budeme označovat svislými čarami, tedy např. velikost množiny X zapíšeme jako |X|. Konkrétně např. pro množinu $A = \{-1, 0, 10, 20\}$ je velikost |A| = 4.

Poznámka 1.2.5. K závěru ještě pár poznámek:

- Prázdnou množinu (tj. množinu neobsahující žádné prvky) budeme značit symbolem ∅.
- Pokud platí pro množiny A a B, že nemají žádné společné prvky, tj. $A \cap B = \emptyset$, pak je nazýváme disjunktní. Obecněji řekneme-li, že množiny X_1, X_2, \ldots, X_n jsou **po dvou** disjunktní, pak tím myslíme, že pro libovolnou dvojici množin X_i a X_j platí

$$X_i \cap X_j = \emptyset$$
,

přičemž $0 \leqslant i, j \leqslant n$.

Kapitola 2

Kombinatorické počítání

Nyní se již podíváme na některé základní nástroje kombinatoriky a jejich využití. Na úvod se takto proto podíváme na pár motivačních příkladů.

2.1 Pravidlo součinu a součtu

Vezměme si pro začátek jednu motivační úlohu.

Úloha 2.1.1. Předpokládejme, že chceme zjistit počet různých kurzů nabízených Wisconsinskou univerzitou v Madisonu. Kurzy rozdělíme podle oddělení, na kterém jsou uvedeny. Za předpokladu, že nedochází ke křížovému vypisování (křížové vypisování nastává, když je stejný kurz vypsán na více než jedné katedře), kolik předmětů si můžeme jako studenti zapsat? [4, str. 28]

 \check{R} ešení. K problému můžeme přistoupit následovně: předměty si postupně rozdělíme do množin. Množinu všech dostupných předmětů si označíme C (z angl. classes). To znamená, že hledáme |C|. Předměty si rozdělíme do množin podle katedry, která je nabízí. Tedy máme-li na univerzitě, pro zjednodušení, např. 5 kateder, pak se nám předměty rozdělí do pěti množin, které si označíme C_1,\ldots,C_5 . Množina všech předmětů C je jednoduše sjednocením předmětů z jednotlivých kateder C_1,\ldots,C_5 , tj.

$$C = \bigcup_{i=1}^{5} C_i = C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5$$
.

Protože ze zadání víme, že každý předmět je vypsán v rámci **právě jedné** katedry, pak množiny C_1, \ldots, C_5 jsou po dvou disjunktní. Takže nám jednoduše stačí spočítat předměty na jednotlivých katedrách

$$|C| = \sum_{i=1}^{5} |C_i| = |C_1| + |C_2| + |C_3| + |C_4| + |C_5|$$
.

Ačkoliv jsme úlohu 2.1 jsme řešili sice trochu složitě, avšak intuitivně je tento způsob nejspíše jasný. Mámeli n_1 způsobů, jak provést určitou akci a n_2 způsobů, jak provést nějakou jinou akci (kterou nelze provést současně s první), pak máme dohromady $n_1 + n_2$ způsobů, jak vybrat některou činnost.

Z tohoto jednoduchého principu plyne tzv. kombinatorické pravidlo součtu, které budeme v dalších úlohách využívat.

Věta 2.1.2 (Kombinatorické pravidlo součtu). *Jsou-li* X_1, X_2, \ldots, X_n konečné množiny, které jsou po dvou disjunktní, pak platí

$$|X_1 \cup X_2 \cup \cdots \cup X_n| = |X_1| + |X_2| + \cdots + |X_n|$$

nebo zkráceně

$$\left| \bigcup_{i=1}^{n} X_i \right| = \sum_{i=1}^{n} |X_i|.$$

Představme si, že máme městečka A, B, C, mezi nimiž vede po řadě 3 a 5 cest (tj. 3 cesty mezi A a B, 4 cesty mezi B a C).

Obrázek 2.1: Cesty mezi městy A, B, C.

Chceme zjistit počet všech způsobů, jak se dostat z města A do města C. Jak aplikujeme pravidlo součtu zde? Mohli bychom si zde rozdělit cesty z A do C do množin podle toho, kterou cestou jsme dorazili z A do B. Pokud tak učiníme, pak jsme rozdělili cesty do celkem tří množin $P_1,\,P_2,\,P_3$, přičemž všechny jsou po dvou disjunktní (žádná z cest z A do C nemůže obsahovat dvě různé cesty z A do B) a množina P obsahuje všechny cesty z A do C. Tedy celkový počet cest |P| je roven součtu $|P_1| + |P_2| + |P_3|$. Pro každou cestu mezi městy A a B máme 4 možnosti, kudy se dostat z B do C. Tedy

$$|P_1| = |P_2| = |P_3| = 4.$$

To znamená, že celkový počet cest $|P| = |P_1| + |P_2| + |P_3| = 4 + 4 + 4 = 3 \cdot 4 = 12..$

Tento způsob je jistě velmi nepraktický a navíc je celkem očividné, že na daný výsledek jsme mohli přijít hned. Stačilo vynásobit počet cest mezi městy A a B a počet cest mezi městy B a C. Z toho dostáváme druhé kombinatorické pravidlo:

Věta 2.1.3 (Kombinatorické pravidlo součinu). *Počet uspořádaných* k-tic, jejichž i-tý člen lze vybrat n_i způsoby je roven

$$n_1 \cdot n_2 \cdot \dots \cdot n_k = \prod_{i=1}^k n_i$$

Je důležité zmínit, že jednotlivé výběry **musí být nezávislé**, tedy výběr na jednu pozici nesmí ovlivnit počet výběrů na ostatní pozice. Méně formálně, avšak užitečněji, můžeme pravidlo formulovat i takto: *Lze-li první výběr provést celkem n způsoby a druhý výběr m způsoby bez ohledu na první výběr, pak celkový počet dvojic možných výběrů je nm.* (Pochopitelně, toto lze zobecnit na libovolný počet výběrů, jako je tomu v 2.1.3.)

Úloha 2.1.4. Křídy jsou vyráběny

- ve 3 různých barvách,
- v 8 různých délkách
- a o 4 různých průměrech.

Kolik typů kříd celkově lze zakoupit? [4, str. 29]

Řešení. Barvu křídy můžeme vybrat celkem třemi způsoby, délku osmi způsoby a průměr křídy celkem čtyřmi způsoby. Protože výběry jsou na sobě nezávislé, pak podle předchozího pravidla součinu existuje celkem $3\cdot 8\cdot 4=96$ typů kříd.

Úloha 2.1.5. Kolik čtyřciferných přirozených čísel lze sestavit z cifer 0, 1, 2, 3, 4, 5, jestliže

- (a) cifry se mohou opakovat,
- (b) cifry se nemohou opakovat?

(Úloha i řešení [2, str. 7].)

Řešení. Řešení (a) Protože se cifry mohou opakovat, pak na každé číselné pozici máme stejný počet možností výběru číslici, až na první pozici, neboť nemůžeme vybrat číslici 0 (jinak by se nejednalo o *čtyřciferné* číslo). Na první pozici máme tak 5 možností výběru a na zbylých třech máme 6 možností, tj. celkově existuje

$$5 \cdot 6 \cdot 6 \cdot 6 = 1080$$
 možností.

Řešení. Řešení (b) Tentokrát se cifry nesmí opakovat. Úvaha tak zůstává stejná, ale při určování počtu možností výběru musíme zohlednit již vybrané číslice. Na první pozici tak máme 5 možností výběru (nesmíme vybrat nulu), na druhé pozici máme 5 možností (původně jsme měli 6, ale jednu cifru jsme již použili na první pozici), na třetí pozici máme 4 možnosti (2 číslice jsme již použili) a na čtvrté pozici máme 3 možnosti. Celkově tak existuje

$$5 \cdot 5 \cdot 4 \cdot 3 = 300$$
 možností.

Kombinatorické pravidlo součtu a součinu však můžeme v různých úlohách kombinovat. Speciálně, pokud si tak ulehčíme hledání určených konfigurací.

Úloha 2.1.6. Kolik sudých čísel čtyřciferných přirozených čísel lze sestavit z cifer 0, 1, 2, 3, 4, 5, jestliže se nesmí opakovat? [2, str. 8]

Řešení. Aby výsledné číslo bylo sudé, musí končit (tj. mít na čtvrté pozici) číslici 0, 2, nebo 4. Zde již však nastává problém, neboť nemůžeme hned aplikovat pravidlo součinu. Je tomu tak proto, že pokud by byla na čtvrté pozici nula, pak na první pozici máme 5 možností, zatímco pokud by zde byla číslice 2, nebo 4, pak počet přípustných číslic na první pozici je již pouze 4 (nesmíme vybrat číslici 0 a pak číslici na čtvrté pozici). Počet výběrů tak již není nezávislý. Nicméně můžeme každý z případů vyšetřit zvlášť:

- označme si množinu D_1 (z angl. digit) obsahující všechna čísla končící číslicí 0,
- množinu čísel D_2 končících číslicí 2 a
- množinu čísel D₃ končících číslicí 4.

Pro čísla končící nulou máme na první pozici celkem 5 možností, na druhé pak 4 možnosti a na třetí 3 možnosti. Tedy z kombinatorického pravidla součinu máme

$$|D_1| = 5 \cdot 4 \cdot 3 = 60$$
 možností.

Množiny D_2 a D_3 mají stejnou velikost, neboť v obou případech máme na první pozici 4 možnosti výběru, na druhé 4 možnosti výběru a na třetí 3 možnosti. Tj.

$$|D_2| = |D_3| = 4 \cdot 4 \cdot 3 = 48$$
 možností.

Je jasné, že tyto množiny jsou disjunktní (každá dvojice množin obsahuje čísla s jinou číslicí na čtvrté pozici). Tedy podle kombinatorického principu součtu platí

$$|D_1 \cup D_2 \cup D_3| = |D_1| + |D_2| + |D_3| = 60 + 48 + 48 = 156$$
 možností.

2.2 Variace, permutace a kombinace

Seznam použité literatury

- [1] J. Matoušek a J. Nešetřil. *Kapitoly z diskrétní matematiky*. 4., upr. a dopl. vyd. Karolinum, Praha, 2009. ISBN 978-80-246-1740-4.
- [2] A. Slavík. Kombinatorika. [online], Citováno 26. června 2022. Dostupné z: https://www2.karlin.mff.cuni.cz/~slavik/kombinatorika/skripta-kombinatorika.pdf.
- [3] John M. Harris and Michael J. Hirst, Jeffry L. and Mossinghoff. *Combinatorics and graph theory*. Undergraduate Texts in Mathematics. Springer, 2010. ISBN 978-14-419-2723-1.
- [4] Richard A. Brualdi. *Introductory combinatorics*. 5th ed. Pearson/Prentice Hall, 2018. ISBN 978-71-112-6525-2.