371
$$\sin(x + \frac{\pi}{3}) + \cos(x + \frac{\pi}{3}) = 1$$

$$x + \frac{\pi}{3} = t$$

$$x + \frac{\pi}{3} = 2k\pi$$

$$\frac{\sqrt{3}\cos x + 2\sin x}{\cot x} = \frac{1 + \sin^2 x - \cos 2x}{\cos x}$$

cot × deve existere! =>
$$\times \neq k\pi$$
 (cot × = $\frac{\cos x}{\sin x}$ e $\frac{\sin x}{\cos x}$) => $\frac{x}{\pi} \neq k\pi$ cot × deve enere $\frac{1}{\pi} = \frac{\cos x}{2}$ cot × $\frac{\pi}{2} = \frac{\cos x}{\sin x}$ e $\frac{\sin x}{\sin x} = \frac{\cos x}{\sin$

souble × + KTE)

$$= \frac{1 + \sin^2 x - \cos 2x}{\cos x}$$

IMPOSS. PER C.E.

$$X = \frac{\pi}{3} + K\pi$$

log
$$(3\sin x)$$
 - $\log_3 \cos x = \log_3 \sqrt{27}$ $\left[\frac{\pi}{3} + 2k\pi\right]$

log $(3\sin x)$ - $\log_3 \cos x = \log_3 \sqrt{27}$ of agometic dei logaritum dervor ence >0

[3 sin x > 0 => sin x > 0

[437] log $(3\sin x)$ - $(3\cos x)$ -