

วัตถุโบราณ (Antique)

ช่วงปีใหม่ ทุกคนก็นึกถึงแต่อะไรใหม่ ๆ แต่เรื่องอะไรเราจะต้องไปทำตามคนอื่นเขา เรามาตามหา**ของเก่า**กันดีกว่า

แคตตาล็อกของ โจ้น้อยส์ พนักงานรับแลกวัตถุโบราณมีของอยู่ N ชิ้น แต่ละชิ้นมีค่าความเก่าแก่ (antique) และ ค่าความสวยงาม (beauty) เป็น (a_i,b_i) ซึ่งด้วยเส้นสายที่เรามีอยู่กับโจ้น้อยส์ ในตอนเริ่มต้นเราจะมีวัตถุโบราณใน แคตตาล็อกทั้งหมดแบบไม่จำกัด เราสามารถเอาวัตถุโบราณชิ้นที่ (a_i,b_i) กับ (a_j,b_j) ไปแลกวัตถุโบราณชิ้นที่มี ค่า $(a_i \times a_j,b_i \times b_j)$ ได้ โดยมีข้อแม้ว่าวัตถุโบราณที่แลกมาจะต้อง**อยู่ในแคตตาล็อกของโจ้น้อยส์เท่านั้น**

แต่ทว่า aเปดฟอล TN สายสืบของเราก็ได้ไปรู้มาว่าเครื่องคิดเลขของโจ้น้อยส์มีหน่วยความจำที่จำกัด ทำให้ค่าความ เก่าแก่ (a) overflow ที่ K กล่าวคือถ้าค่าความเก่าแก่มีค่าเท่ากับ K ตัวเลขบนเครื่องจะวนกลับไปเริ่มนับที่ 0 อีก ครั้ง

นอกจากนี้ สเปดฟอล $^{
m TN}$ ได้ยินมาว่าวัตถุโบราณที่มีค่า (A,B) ในแคตตาล็อกเป็นชิ้นที่มีความเหมาะสมเอาไปจับ ฉลากปีใหม่มากที่สุด เราจึงอยากทราบว่าจะมีวิธีแลกวัตถุโบราณที่เรามีอยู่ไปยัง (A,B) โดยใช้จำนวนวัตถุโบราณ ตั้งต้น**มากที่สุด**กี่ชิ้น

ข้อมูลนำเข้า

บรรทัดแรก จำนวนเต็ม N,K,A,B แทนจำนวนวัตถุโบราณ ขีดจำกัดเครื่องคิดเลข ค่าความเก่าแก่และค่าความ สวยงามของวัตถุที่เราต้องการ

N **บรรทัดต่อมา** จำนวนเต็ม a_i,b_i แทนค่าความเก่าแก่และค่าความสวยงามของวัตถุโบราณชิ้นที่ i ในแคตตา ล็อก $(1\leq i\leq N)$

ข้อมูลส่งออก

ส่งออกจำนวนเต็ม จำนวนวัตถุโบราณตั้งต้นที่มากที่สุดที่ใช้ในการแลกวัตถุโบราณ (A,B)

ข้อจำกัด

- $1 \le N \le 200\,000$
- $1 \le K \le 10$
- $0 \le a_i, A < K$
- $2 < b_i, B < 100\,000\,000$
- ullet $(a_i,b_i)
 eq (a_j,b_j)$ สำหรับทุก ๆ i,j

หมายเหตุ การพิจารณา Time complexity คร่าว ๆ ทางทฤษฎีของข้อนี้อาจไม่ตรงกับสิ่งที่เกิดขึ้นจริง

ปัญหาย่อย

- 1. (10 คะแนน) b_i เป็นจำนวนเฉพาะ
- 2. (20 คะแนน) $N \leq 1,000$ รับประกันว่าคำตอบเป็น 1 หรือ 2 เท่านั้น
- 3. (70 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

ตัวอย่าง

ตัวอย่างที่ 1

ข้อมูลนำเข้า

```
5 5 3 32
3 32
2 4
2 2
4 8
1 2
```

ข้อมูลส่งออก

5

ตัวอย่างที่ 2

ข้อมูลนำเข้า

```
4 3 1 9
1 5
2 3
0 2
1 9
```

ข้อมูลส่งออก

2

ตัวอย่างที่ 3

ข้อมูลนำเข้า

7 5 3 54

2 3

1 6

4 3

3 54

4 2

3 9

0 5

ข้อมูลส่งออก

4

คำอธิบาย

ตัวอย่างที่ 1

เราสามารถแลกวัตถุโบราณที่มีค่า (3,32) ได้ด้วยการใช้วัตถุโบราณตั้งต้นได้แก่ (1,2) จำนวน 2 ชิ้น และ (2,2) จำนวน 3 ชิ้น โดยมีวิธีการแลกดังนี้ (กำหนดวงเล็บปีกกาแทนการแลกสินค้า)

• เริ่มต้นจากการแลกวัตถุโบราณ (1,2) และ (2,2) ไปยัง $(1\times 2,2\times 2)=(2,4)$ (ไม่จำเป็นต้องแลก เฉพาะวัตถุโบราณที่ติดกันแบบในตัวอย่าง)

$$\{(1,2),(2,2)\},\{(1,2),(2,2)\},(2,2)$$

ullet ต่อมาแลกวัตถุโบราณ (2,4) และ (2,2) ไปยังวัตถุโบราณ (2 imes 2,4 imes 2)=(4,8)

$$(2,4),\{(2,4),(2,2)\}$$

• จากนั้นแลกวัตถุโบราณ (2,4) และ (4,8) ไปยัง $(2\times 4,4\times 8)=(8,32)$ ซึ่งเมื่อพิจารณา overflow แล้วจะกลายเป็น (3,32)

$$\{(2,4),(4,8)\}$$

• จำนวนวัตถุโบราณตั้งต้นที่ใช้จึงเป็น 5 ชิ้น ซึ่งเป็นจำนวนที่มากที่สุดที่เป็นไปได้ คำตอบของตัวอย่างนี้จึงเป็น 5

(3, 32)

ขีดจำกัด

Time limit: 1 secondMemory limit: 512 MB