FORÇA MAGNÉTICA ENTRE CABOS PARALELOS COM CORRENTE

Dois cabos com correctes $I_1 \in I_2$, com comprimento l_1 , distanciados $d_2 \Rightarrow I_1 \Rightarrow B_1 \Rightarrow F_{12} = (I_2 \times B_1) l$ $F_{12} = \frac{2 \text{km} I_1 I_2 l}{d}$

$$F_{12} = \frac{2kmI_{1}I_{2}l}{d}$$

Dais Casos

 F_{12} F_{12} F_{12} F_{12} F_{12} F_{12} F_{12} F_{13} correntes no mesmo sentido correntes em sentidos o postos força atrativa força repulsiva

INDUÇÃO ELETROMAGNÉTICA

Regarencial em movimento com o condutor

Fm=0

campo elétrico Ei (induzido)

devido à variação de B

$$\vec{F} = q\vec{E}i$$
 como $\vec{F} = q(\vec{v} \times \vec{B})$

$$\vec{E}_i = \vec{v} \times \vec{B}$$

$$\mathcal{E}_i = \int_{P}^{Q} \vec{E}_i \cdot d\vec{r}$$

Regerencial com relocidade

$$\vec{B}$$
, $\vec{E}_i = \frac{1}{2} \vec{G} \times \vec{B}$

$$\overrightarrow{F} = \underbrace{\frac{1}{2}(\overrightarrow{O} \times \overrightarrow{B})}_{2} + \underbrace{\frac{1}{2}(\overrightarrow{O} \times \overrightarrow{B})}_{2}$$

Fluxo magnético:
$$\frac{1}{5} = \frac{5}{8} \cdot \hat{n} dA$$
 reperencial em mov. com o condutor $\frac{1}{5}$

reperencial em mov. Com o condutor
$$S$$

area $AYS = LV\Delta t B$
 $Ei = \Delta YS$
 Δt

$$\varepsilon_i = \frac{\Delta \gamma_s}{\Delta t}$$

DE FARADAY

$$E_i = -\frac{d\gamma_s}{dt}$$

Lei de Lenz: guando existir variação de 75, a f.e.m. induzida produz corrente induzida que contraria essa variação de 75

$$= (NBA sind) \frac{d\theta}{dt}$$

$$Ei = NBA w sin(wt+\theta_0) \qquad (se w = constante)$$

$$\Delta V_{PQ} = E_i$$
 $P = \frac{2\pi}{\omega}$
 $V_{PQ} = E_i$
 $V_{PQ} = E$

 $f = \frac{W}{2\pi}$ (frequência)