

02 VR 핵심기술 및 적용 사례

02-1 VR 구성요소

가상현실 핵심기술은 다음과 구성되며, 발전되고 있음

- ① 입력
- ② 출력
- ③ 시각화 및 인터액션 (모델링, 렌더링 등)
- ④ 네트워크
- ⑤ 데이터베이스
- ⑥ 인공지능

VR **핵심 기술**

- VR 기술은 디스플레이나 인식 및 가시화와 같은 소프트웨어 기술 이외에도 다양한 분야의 기술들이 종합적이고 유기적으로 융합된 복합 기술임
- 아래는 VR과 관련이 깊은 주요 기술 분야를 보여줌
 - Brain Science
 - Sociology
 - Ergonomics
 - Human Computer Interaction
 - Haptics
 - Mechanical Engineering
 - Robotics
 - 3D Displays
 - Computer Graphics(Real time, interactive)
 - Software Engineering
 - Computer Vision
 - Motion Tracking& Recognition
 - 3D Interfaces
 - 3D Sounds
 - Psychology

출처: https://www.motioncapture.co.kr/prime2

출처: https://pixabay.com/ko/ph otos/vr-%EA%B0%80%EC%83%81-%EA%B0%80%EC%83%81-

%ED%98%84%EC%8B%A4

%EA%B8%B0%EC%88%A0 -3460451/

위치, 방향, 이벤트정보
3D영상, 음향, Force feedback 렌더링 시스템 World Database

입력부	참여자의 위치, 방향 및 행위로 인한 이벤트 정보를 전송	
출력부	입력정보에 대응하는 3차원 영상, 음향, 촉각(Force Feedback) 등의 출력을 전달	
시각화시스템	참여자의 정보를 월드 데이터베이스에 반영하여 실시간으로 새롭게 변화된 3D 영상과 음향을 재생	
네트워크	VR 시스템에서 데이터를 송신, 수신	
데이터베이스	가상현실과 관련된 데이터를 저장, 관리	

VR **시스템 구성 (예시**)

출력장치 (시각-청각 디스플레이 장치) ►

출력화면 (렌더링 영상)

입력장치 (컨트롤러) 시각화 및 인터액션 (연산)

02-2 VR 사례

군수 (Military)

- 가상 비행기/우주 비행/선박 등의 조종 및 훈련
- 위급상황, 비상상황 시 위기대처능력을 배양할 수 있음

의료 (Medicine) : 가상 의료 (수술, 진단)

- 의사에게 VR 수술 시뮬레이터를 이용한 사전 수술 훈련 기회를 제공함
- 반복적인 수술 기회를 제공하여 수술 정확도를 향상시킴

엔터테인먼트(Entertainment): 가상 스튜디오

엔터테인먼트(Entertainment): 테마파크 - 4D Rider

산업(Industry): 가상 모델 하우스

• 주택 및 부동산의 평면도 및 3차원 모델을 이용하여 360도 관찰이 가능한 모델 하우스 기능을 제공함

산업(Industry): 가상 피팅룸

- 가상환경에서 실제 옷을 착용할 수 있음
- 온라인 쇼핑의 약점인 실제 작용해 보지 못해 생기는 소비자 불만족을 해결함

산업(Industry): 로봇 시뮬레이션

- 깊이카메라를 이용하여 실시간 3차원 지도 생성
- 생성된 3차원 지도를 이용하여 주행 알고리즘을 구동함

교육(Education): 가상 운전 교육 시뮬레이터

교육(Education): 가상 PLC 교육 시스템 (시뮬레이터)

교육(Education): 촉각 장치

https://youtu.be/OK2y4Z5IkZ0?t=2m3s

YTN Science, "VR 5G", 2019

과제 #1

2. 과제 #1

■ 과제 내용

• VR 을 적용한 최신사례 3개 조사 및 정리 (강의자료와 같이 적용 분야, 대표그림, 동영상 포함한 각 1페이지, 총 3페이지)

■ 제출 방식

- 보고서 양식: EL 시스템 과제란 참조
- 보고서 제출: EL 시스템 과제란에 업로드
- 제출 기한 (3/17 22시까지) 보고서 양식: EL 시스템 과제란 참조

VR 1차 과제보고서 (예시) – 성명 (학번)

사례 #1 - 엔터테인먼트(Entertainment): 가상 스튜디오

게임 엔진이란?

- 게임 엔진은 그래픽을 시각화하기 위한 그래픽 엔진, 음향 효과를 위한 사운드 엔진, 물리 연산을 위한 물리 엔진, UI 시스템 등을 포함하며, VR 저작에 주로 사용됨
- 2010년 이후로 출시되는 게임들이 사용한 게임 엔진 중 Unity 와 Unreal이 가장 많이 사용되었음

Unity**와** Unreal 비교

• 전세계적으로 가장 많이 사용되는 Unity와 Unreal은 다음의 특징을 가짐

구분	UNREAL	unity
장점	상대적으로 높은 그래픽 성능 PC 콘텐츠 제작에 적합	 낮은 개발 난이도 (직관적인 GUI, 무료 모델, 개발용 리소스) 모바일 콘텐츠 제작에 적합
단점	높은 개발 난이도 고사양 개발 환경 필요	• 상대적으로 낮은 그래픽 성능
라이센스	무료연간 수익 100만 달러 이상 시, 각 콘텐츠에 5% 로열티를 지불	 무료 월 \$40 (매출 20만 달러 이하) 월 \$150 (매출 20만 달러 이상) 연 \$4,000 (솔루션 제공, 기업용)

왜 Unity**가 선호되는가**?

- 다만, 최근에는 Unity와 Unreal 엔진 간의 그래픽 차이가 점점 줄어들고 있기에, Unity에서의 개발은 좋은 선택임
- Unity는 회사의 전년도 매출이 10만 달러 이하일 경우 라이선스가 무료이며, Unreal과 달리 로열티가 없음
- 또한 하나의 개발 환경에서 다양한 플랫폼으로 이식이 가능함 (PC에서 개발한 것을 모바일 또는 웹 버전 등으로 이식 가능)

그래픽 비교 (Unity vs Unreal)

