MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

5^a Lista de Exercícios - Resolução dos Exercícios

2-) Seja $f: I \to \mathbb{R}$ contínua no intervalo $I \subset \mathbb{R}$. Se, para cada $x \in I$ (exceto, possivelmente, na extremidade superior de I, caso a mesma esteja em I), existir $f'_+(x)$ e for > 0, então f é estritamente crescente.

Demonstração: Suponha que f não seja estritamente crescente, ou seja, suponha que existam $x, y \in I$ tais que x < y e $f(x) \ge f(y)$. Para todo $a \in [x, y[$, f é derivável à direita em a e $f'_+(a) > 0$, logo existe $\delta > 0$ tal que $a + \delta \in [x, y]$ e $f(a + \delta) > f(a)$, donde a não é ponto de máximo de $f|_{[x,y]}$. Como $f(y) \le f(x)$, segue-se que y também não é ponto de máximo de $f|_{[x,y]}$. Então a função contínua $f|_{[x,y]}$ não tem ponto de máximo, o que contraria o teorema de Weierstrass.

- **4-)** Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ derivável no intervalo I. Dado $a \in I$, são equivalentes:
 - (a) f' é contínua em a;
 - (b) $\forall (x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ seqüências em I tais que $(\forall n\in\mathbb{N})$ $x_n\neq y_n$, $x_n\to a$ e $y_n\to a$, tem-se $\frac{f(y_n)-f(x_n)}{y_n-x_n}\to f'(a)$.

DEMONSTRAÇÃO: Suponha f' contínua em a. Sejam $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ seqüências em I tais que $(\forall n\in\mathbb{N})$ $x_n\neq y_n, x_n\to a$ e $y_n\to a$. Para todo $n\in\mathbb{N}$, o teorema do valor médio garante a existência de um θ_n no intervalo aberto com extremos x_n e y_n tal que $f(y_n)-f(x_n)=f'(\theta_n)(y_n-x_n)$, donde $\frac{f(y_n)-f(x_n)}{y_n-x_n}=f'(\theta_n)$. Como as seqüências $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ convergem para a, segue-se do teorema do confronto que a seqüência $(\theta_n)_{n\in\mathbb{N}}$ também converge para a, e da continuidade de f' em a segue-se que $f'(\theta_n)\to a$, donde $\frac{f(y_n)-f(x_n)}{y_n-x_n}\to a$.

Reciprocamente, suponha que $\forall (x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ seqüências em I tais que $(\forall n\in\mathbb{N})$ $x_n\neq y_n$, $x_n\to a$ e $y_n\to a$, tem-se $\frac{f(y_n)-f(x_n)}{y_n-x_n}\to f'(a)$. Provemos que f' é contínua em a. Seja $(x_n)_{n\in\mathbb{N}}$ uma seqüência em I tal que $x_n\to a$. Para cada $n\in\mathbb{N}$, pela definição de derivada podemos tomar $y_n\in (x_n-1/n,x_n+1/n)\cap I\setminus\{x_n\}$ tal que $|\frac{f(y_n)-f(x_n)}{y_n-x_n}-f'(x_n)|<1/n$. Como $x_n\to a$ e $1/n\to 0$, o teorema do confronto garante que $y_n\to 0$. Assim, por hipótese segue-se que $\frac{f(y_n)-f(x_n)}{y_n-x_n}\to f'(a)$, e uma nova aplicação do teorema do confronto garante que $f'(x_n)\to f'(a)$.

12-) Seja $f: I \to \mathbb{R}$ derivável no intervalo fechado $I \subset \mathbb{R}$ (limitado ou não). Dado $c \in [0,1)$, suponha que $(\forall x \in I) | f'(x) | \leq c$, e que $f(I) \subset I$. Mostre que f tem um único ponto fixo a em I (i.e. existe um único $a \in I$ tal que f(a) = a) e que, para todo $x_1 \in I$, a seqüência definida indutivamente por $(\forall n \in \mathbb{N}) x_{n+1} = f(x_n)$ é tal que $x_n \to a$.

DEMONSTRAÇÃO: (i) f é lipschitziana, com constante de Lipschitz c: $\forall x, y \in I$ com x < y, pelo teorema do valor médio existe $\theta \in]x, y[$ tal que $f(y) - f(x) = f'(\theta)(y - x)$, donde $|f(y) - f(x)| \le c|y - x|$.

- (ii) De (i), segue-se que, dado $x_1 \in I$ a seqüência $(x_n)_{n \in \mathbb{N}}$ definida indutivamente conforme o enunciado é de variação limitada (portanto, convergente), pois $(\forall n \in \mathbb{N}) |x_{n+2} x_{n+1}| = |f(x_{n+1}) f(x_n)| \le c|x_{n+1} x_n|$. Seja a o limite da referida seqüência; então $a \in I$, pelo fato de ser I fechado. Afirmo que a é um ponto fixo de f. Com efeito, a continuidade de f implica que $x_{n+1} = f(x_n) \to f(a)$; como $(x_{n+1})_{n \in \mathbb{N}}$ é uma subseqüência de $(x_n)_{n \in \mathbb{N}}$, também temos $x_{n+1} \to a$, e a unicidade do limite garante que a = f(a).
- (iii) O ponto fixo de f é único. De fato, dados $a, b \in I$ pontos fixos de f, tem-se: $|a-b| = |f(a)-f(b)| \le c|a-b|$, donde $(1-c)|a-b| \le 0$, donde |a-b| = 0, i.e. a=b.
- 13-) Sejam $p \in \mathbb{N}$ e $c \in [0,1)$. Dada $f: I \to \mathbb{R}$ derivável no intervalo fechado $I \subset \mathbb{R}$, suponha que $f(I) \subset I$ e que $g \doteq f^p \doteq f \circ f \circ \cdots \circ f$ satisfaça $(\forall x \in I) |g'(x)| \leq c$. Prove que f tem um único ponto fixo $a \in I$ e que, para todo $x \in I$, $\lim_{n \to \infty} f^n(x) = a$.

Demonstração:

- (i) Pela questão anterior, g tem um único ponto fixo $a \in I$ e, para todo $x \in I$, tem-se $\lim_{n\to\infty} g^n(x) = a$. (ii) Afirmo que, para todo $x \in I$, $\lim_{n\to\infty} f^n(x) = a$. Como efeito, dado $x \in I$, tome $x_0 \doteq x, x_1 \doteq f(x), \dots, x_{p-1} \doteq f^{p-1}(x)$. Por (i), para cada $k \in \{0, \dots, p-1\}$, tem-se $\lim_{n\to\infty} g^n(x_k) = a$, i.e. $\lim_{n\to\infty} f^{np}(x_k) = a$. Noutras palayras definindo-se $F: \mathbb{Z}_+ \to \mathbb{R}$ por $F(n) \doteq f^n(x)$ e tomando-se
- $f(x), \ldots, x_{p-1} = f^{r}$ (x). For (1), para cada $k \in \{0, \ldots, p-1\}$, tem-se $\min_{n \to \infty} g$ (x_k) = a, i.e. $\lim_{n \to \infty} f^{np}(x_k) = a$. Noutras palavras, definindo-se $F : \mathbb{Z}_+ \to \mathbb{R}$ por $F(n) \doteq f^n(x)$, e tomando-se $(\forall k \in \{0, \ldots, p-1\}) N_k \doteq \{k + np \mid n \in \mathbb{Z}_+\}$, tem-se $(\forall k) \lim_{n \to \infty} F|_{N_k}(n) = a$. Como $\bigcup_{0 \le k \le p-1} N_k = \mathbb{Z}_+$, segue-se $\lim_{n \to \infty} F(n) = a$.
- (iii) Segue-se de (ii) que a é ponto fixo de f (pelo mesmo argumento usado na questão anterior). Além disso, se $b \in I$ também for ponto fixo de f, a seqüência $\{f^n(b)\}_{n \in \mathbb{N}}$ é constante e igual a b, e por (ii) deve convergir para a, donde b = a.
- **21-**) Sejam $f \in g$ analíticas num intervalo aberto $I \subset \mathbb{R}$. Se existe $a \in I$ tal que $f \in g$ coincidem, juntamente com todas as suas derivadas, no ponto a, então $(\forall x \in I) f(x) = g(x)$. Mostre que isto seria falso se supuséssemos apenas $f \in g$ de classe C^{∞} .

DEMONSTRAÇÃO:

- (i) Sejam $A \doteq \{x \in I \mid (\forall n \in \mathbb{Z}_+) f^{(n)}(x) = g^{(n)}(x)\}$ e $B \doteq I \setminus A$. Assim, $A \cap B = \emptyset$ e $A \cup B = I$. Como $(\forall n \in \mathbb{Z}_+) f^{(n)}$ e $g^{(n)}$ são contínuas, segue-se que $(\forall n) A_n \doteq \{x \in I \mid f^{(n)}(x) = g^{(n)}(x)\}$ é fechado em I; e, como a intersecção de uma família arbitrária de fechados em I é um conjunto fechado em I, segue-se que $A = \bigcap_{n \in \mathbb{Z}_+} A_n$ é fechado em I, i.e. $B = I \setminus A$ é aberto em I (portanto aberto em \mathbb{R} , uma vez que I é aberto, por hipótese). Afirmo que A também é aberto. Com efeito, dado $x_0 \in A$, a analiticidade de f e g garante a existência de um $\delta > 0$ tal que $B_{x_0}(\delta) \doteq (x_0 \delta, x_0 + \delta) \subset I$ e tal que $(\forall x \in B_{x_0}(\delta)) f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x x_0)^n$ e $g(x) = \sum_{n=0}^{\infty} \frac{g^{(n)}(x_0)}{n!} (x x_0)^n$; como $(\forall n \in \mathbb{Z}_+) f^{(n)}(x_0) = g^{(n)}(x_0)$ (pois $x_0 \in A$), segue-se que f e g coincidem no intervalo aberto $B_{x_0}(\delta)$, donde $B_{x_0}(\delta) \subset A$, o que mostra que x_0 é ponto interior de A. Portanto, como $x_0 \in A$ foi tomado arbitrariamente, segue-se que A é aberto, como afirmado.
- (ii) De (i) segue-se que $\{A, B\}$ é uma cisão do intervalo I. Ora, já foi demonstrado em aula que todo intervalo de \mathbb{R} é conexo, portanto $\{A, B\}$ deve ser a cisão trivial. Por hipótese, existe $a \in A$, logo $A \neq \emptyset$; então A = I e $B = \emptyset$, portanto f e g coincidem em A.
- (iii) O seguinte exemplo mostra que o enunciado seria falso se supuséssemos f e g apenas de classe C^∞ : tome $I = \mathbb{R}$, a qualquer real menor ou igual a zero, f a função identicamente nula, $g : \mathbb{R} \to \mathbb{R}$ dada por g(x) = 0 se $x \le 0$ e $g(x) = \exp(-1/x)$ se x > 0.

2

OBSERVAÇÃO: no último exemplo assume-se a função exponencial já conhecida de um curso de Cálculo, mas ainda a definiremos formalmente e estudaremos sua diferenciabilidade mais adiante.

22-) (PRINCÍPIO DO PROLONGAMENTO ANALÍTICO) Dadas f e g analíticas no intervalo aberto I, seja $X \subset I$ um conjunto que possui um ponto de acumulação em I. Se $(\forall x \in X) f(x) = g(x)$, então f coincide com g em I. Em particular, se f se anula em X, então f se anula em I.

Demonstração:

Inicialmente, demonstremos o seguinte:

LEMA: Sejam $I \subset \mathbb{R}$ um intervalo, $p \in \mathbb{Z}_+$ e $f: I \to \mathbb{R}$ uma função p vezes derivável em $a \in I$ (para p = 0 isto significa que f é contínua em a). Suponha que exista uma seqüência $(x_n)_{n \in \mathbb{N}}$ em $I \setminus \{a\}$ tal que $x_n \to a$ e tal que $(\forall n \in \mathbb{N})$ $f(x_n) = 0$. Então $(\forall n \in \{0, ..., p\})$ $f^{(n)}(a) = 0$.

SUGESTÃO: Tente demonstrar o lema como exercício, antes de ler o argumento que segue.

Demonstração do Lema:

Será feita por indução sobre p.

- (i) Para p = 0, a tese segue imediatamente da continuidade de f em a.
- (ii) Suponha que a tese seja verdadeira para um dado $p \in \mathbb{Z}_+$; provemos que também será verdadeira para p+1. Com efeito, pela hipótese de indução segue-se que $(\forall n \in \{0,\ldots,p\})$ $f^{(n)}(a) = 0$; resta demonstrar que $f^{(p+1)}(a) = 0$. Pela fórmula de Taylor com resto infinitesimal, podemos escrever, para todo $x \in I$:

$$f(x) = \left[\frac{f^{(p+1)}(a)}{(p+1)!} + r(x)\right](x-a)^{p+1},\tag{1}$$

onde $r: I \to \mathbb{R}$ é contínua em a e r(a) = 0. Seja $(x_n)_{n \in \mathbb{N}}$ em $I \setminus \{a\}$ tal que $x_n \to a$ e tal que $(\forall n \in \mathbb{N}) f(x_n) = 0$. Segue-se de (1) que $(\forall n \in \mathbb{N}) 0 = [\frac{f^{(p+1)}(a)}{(p+1)!} + r(x_n)](x_n - a)^{p+1}$; e, como $(\forall n \in \mathbb{N}) x_n \neq a$, tem-se $(\forall n \in \mathbb{N}) \frac{f^{(p+1)}(a)}{(p+1)!} + r(x_n) = 0$. Finalmente, como $r(x_n) \to 0$ (pela continuidade de r em a), segue-se que $f^{(p+1)}(a) = 0$, o que conclui a demonstração do lema.

Seja $x_0 \in I \cap X'$. Seja $(x_n)_{n \in \mathbb{N}}$ uma seqüência em $X \setminus \{x_0\}$ tal que $x_n \to x_0$. Como f e g coincidem em X, segue-se que a função analítica $F \doteq f - g$ se anula em x_n , para todo $n \in \mathbb{N}$; então, pelo lema, F e todas as suas derivadas se anulam em x_0 . Finalmente, segue-se da questão anterior que F deve ser a função identicamente nula em I, i.e. f e g coincidem em I.