MAT02023 - Inferência A

Lista 6 - Avaliação de Estimadores

Exercício 1 Explique com suas palavras o que é uma estatística suficiente.

Exercício 2 Explique com suas palavras o que é uma estatística suficiente mínima.

Exercício 3 Quais são as suposições do Teorema de Famílias Completas para a Família Exponencial. Comente as suposições.

Exercício 4 Fale sobre a suposição de suficiência no Teorema da Equivalência. Uma estatística pode ser minimal sem ser suficiente?

Exercício 5 Comente sobre as afirmações abaixo:

- a) Se existe uma estatística suficiente para θ , então é minimal se for completa.
- b) Uma estatística suficiente e completa é única.

Exercício 6 Mostre que a seguinte igualdade é válida: $E[(T(X) - \theta)^2] = Var[T(X)] + Vicio^2$.

Exercício 7 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde $X_j \sim Bernoulli(\theta)$, para todo $j = 1, \dots, n$. Considere os estimadores

$$\widehat{\theta}_1 = \overline{X}$$
 e $\widehat{\theta}_2 = \frac{Y + \frac{\sqrt{n}}{2}}{n + \sqrt{n}}$,

onde $Y = \sum_{j=1}^{n} X_j$. Encontre:

- a) $\mathbb{E}(\widehat{\theta}_i)$, para i = 1, 2;
- b) $EQM(\widehat{\theta}_i)$, para i = 1, 2.

Exercício 8 Seja X_1, X_2, \dots, X_n uma amostra aleatória onde X_j , para todo $j = 1, \dots, n$, possui função densidade de probabilidade dada por

$$f_X(x,\theta) = f_X(x) = e^{-(x-\theta)}, \quad x > \theta, \quad \theta > 0.$$

Sejam

$$\widehat{\theta}_1 = \overline{X}$$
 e $\widehat{\theta}_2 = X_{(1)}$,

1

dois estimadores para θ .

- a) Verifique se $\widehat{\theta}_1$ e $\widehat{\theta}_2$ são estimadores não viciados para θ ;
- b) Encontre e compare os EQM's dos dois estimadores.

Exercício 9 Seja X_1, X_2, \dots, X_n uma amostra aleatória onde X_j , para todo $j = 1, \dots, n$, possui função densidade de probabilidade dada por

$$f_X(x, \theta) = f_X(x) = \frac{2x}{\theta^2}, \quad 0 < x < \theta, \quad \theta > 0.$$

Sejam

$$\widehat{\theta}_1 = \overline{X}$$
 e $\widehat{\theta}_2 = X_{(n)}$,

dois estimadores para θ .

- a) Verifique se $\widehat{\theta}_1$ e $\widehat{\theta}_2$ são estimadores não viciados para θ ;
- b) Encontre e compare os EQM's dos dois estimadores.

Exercício 10 Seja X_1, X_2, \cdots, X_n uma amostra aleatória, onde $X_j \sim Normal(0, \sigma^2)$, para todo $j = 1, \cdots, n$. Seja $Y^2 = \sum_{j=1}^n X_j^2$. Considere os estimadores

$$\widehat{\sigma}_c^2 = cY^2.$$

- a) Encontre o EQM do estimador acima;
- b) Encontre o valor de c que minimiza o EQM em (a).

Exercício 11 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde X_j , para $j = 1 \dots, n$, possui função densidade de probabilidade dada pela expressão abaixo

$$f_X(x) = (1 - \theta) + \frac{\theta}{2\sqrt{x}} x^{\theta - 1} I_{[0,1]}(x),$$

onde $\theta \in [0,1]$.

- a) Mostre que \overline{X} é um, estimador viciado para θ e calcule o seu vício;
- b) Verifique se \overline{X} é um estimador assintoticamente não viciado para θ ;
- c) Verique se \overline{X} é um estimador consistente em média quadrática para θ .

Exercício 12 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde X_j , para $j = 1 \dots, n$, possui função densidade de probabilidade dada pela expressão abaixo

$$f_X(x) = \theta x^{\theta - 1} I_{(0,1)}(x).$$

Mostre que \overline{X} é um estimador não viciado para $\tau(\theta) = \frac{\theta}{1+\theta}$.

Exercício 13 X_1, X_2, \dots, X_n uma amostra aleatória, onde $\mathbb{E}(X_j) = \mu$ e $(X_j) = \sigma^2$, para todo $j = 1, \dots, n, \sigma^2$ finita. Considere os estimadores para a média populacional

$$\widehat{\mu}_1 = \overline{X}$$
 e $\widehat{\mu}_2 = \frac{X_1 + X_n}{2}$.

- a) Verifique se os estimadores são não viciados;
- b) Qual dos estimadores é mais eficiente?
- c) Analise os estimadores quanto à consistência.

Exercício 14 Prove o seguinte teorema:

Teorema 1 (Desigualdade de Cramér-Rao) Seja $X=(X_1,\ldots,X_n)$ uma amostra da densidade $f(x/\theta)$. Considere $W(x)=W(X_1,\ldots,X_n)$ como qualquer estimador satisfazendo

$$\frac{\partial}{\partial \theta} E[W(X)] = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(X) f(x/\theta)] dx \quad e \quad Var[W(X)] \geq \infty$$

 $Ent\~ao$

$$Var[W(X)] \geq \frac{\left(\frac{\partial}{\partial \theta} E[W(X)]\right)^2}{E\left(\left[\frac{\partial}{\partial \theta} log f(X/\theta)\right]^2\right)}.$$

Exercício 15 Prove o seguite corolário: Se as suposições do teorema anterior estão satisfeitas e além disso X_1, \ldots, X_n são iid com densidade $f(X/\theta)$, então

$$Var[W(X)] \ge \frac{\left(\frac{\partial}{\partial \theta} E[W(X)]\right)^2}{nE\left(\left[\frac{\partial}{\partial \theta} log f(X_i/\theta)\right]^2\right)}$$

observe que W(X) no numerador é multivariado, isto é, $X = (X_1, \dots, X_n)$, enquanto $f(X_i/\theta)$ é univariado.

Exercício 16 Qual a diferença entre consistência forte e consistência fraca?

Exercício 17 Faça os seguintes exercícios do livro Statistical Inference:

a) 7.9, 7.11 (a), 7.12 (b) e (c), 7.38, 7.40,

Exercício 18 Seja X uma única observação da distribuição Bernoulli (θ) . Considere os estimadores $T_1(X) = X$ e $T_2(X) = 1/2$.

- a) Os estimadores $T_1(X)$ e $T_2(X)$ são estimadores não-viciados para θ ?
- b) Calcule o EQM para $T_1(X)$ e $T_2(X)$.

Exercício 19

Seja X_1, \ldots, X_n uma amostra aleatória da densidade $f(x|\theta) = \theta(1+x)^{-(1+\theta)}I_{0,\infty}(x)$, em que $\theta > 0$.

- a) Qual o estimador de máxima verossimilhança de $1/\theta$?
- b) Encontre o limite inferior de Cramér-Rao (LICR) para $e^{-\theta}$.
- c) Encontre o LICR para a variância de um estimador não-viciado de $1/\theta$.

Exercício 20 Seja X_1, \ldots, X_n uma amostra aleatória de uma $Exponencial(\lambda)$.

- (a) Encontre, se possível, um estimador não viciado de variância uniformemente mínima (ENV-VUM) para $1/\lambda$.
- (b) Encontre, se possível, um ENVVUM para λ .

Exercício 21 Seja X_1, \ldots, X_n uma amostra aleatória de uma Binomial(k, p), com k conhecido. Encontre, se possível, um ENVVUM para P(X = 1).

Exercício 22 Suponha que quando o raio de um círculo é medido, é cometido um erro que tem uma distribuição $N(0, \sigma^2)$. Se forem realizadas n medições independentes, encontre um estimador não viciado da área do círculo. É o melhor não viciado?

Exercício 23 Seja X_1, X_2, \dots, X_n uma amostra aleatória, onde $X_1 \sim Poisson(\lambda)$, e \overline{X} e S^2 estimadores da média e da variância amostral.

- a) Prove que \overline{X} é o melhor estimador não viciado de $\lambda.$
- b) Prove a identidade $\mathbb{E}(S^2|\overline{X}) = \overline{X}$ e utilize-a para demonstrar explicitamente que $Var(S^2) > Var(\overline{X})$.