Université de Jijel Département Informatique Module : Architecture des ordinateurs Facultés des Sciences exactes et informatique 2^{ème} Année LMD Durée : 01 H 00 mn

Corrigé type du contrôle Jany, 2020

Questions de cours

1. Nommer les éléments numérotés dans la figure suivante en utilisant les noms : UAL, Séquenceur, RTA, CO, Quartz, RI, ACC, RM, RA, RTR, UC, Décodeur, PSW, Horloge, R/W,RTUAL, registre généraux, Bus d'adresses, Bus de données, Bus de commandes. mémoire centrale, Et donner le rôle de chaque élément numéroté (3 pts)

Numéro	Nom de l'élément	Rôle de l'élément	
① →	RTA	Registre Tampon d'Adresse, utilisé pour accéder à une donnée en mémoire.	
② →	СО	Compteur d'instructions : pointe sur la prochaine instruction	
③→	ACC	Accumulateur : peut contenir un des deux opérandes avant l'exécution, comme il peut également dans certains types de processeurs recevoir le résultat après	
④ →	RTUAL	Registre Tampon de l'UAL, stocke temporairement l'un des deux opérandes d'une instruction arithmétique	
③ →	UAL	L'unité arithmétique et logique : pour le calcul des opérations arithmétique et logique	
⑤ →	RTR	Stocke temporairement le résultat d'une instruction arithmétiques;	
⊙ →	PSW	Registre d'état : donne l'état de la machine à chaque instant et stocke les indicateurs	

Numéro	Nom de l'élément	Rôle de l'élément	
®→ RI		Registre Instruction, contient le code de l'instruction en cours d'exécution (lu en mémoire via le bus de données);	
⊙ →	Décodeur	chargée du décodage des instructions pour déterminer l'opération à effectuer	
◎ →	Séquenceur	générer les signaux de commande nécessaires pour actionner et contrôler les unités participant à l'exécution d'une instruction donnée	
⊕ →	Horloge	Synchronise toutes les actions de l'unité centrale.	
€	Quartz	quartz pour définir le temps. Il a la propriété d'osciller à une fréquence précise lorsqu'il est stimulé électriquement.	
③ →	R/W	Bus de commande	
@ →	Registres genereaux	Utiliser pour le calcule	
(15)→	UC	L'unité centrale	

2. Donner le contenu des indicateurs: ZF, CF, SF, et OF après l'exécution des trois programmes suivants:(2 pts)

Programme 1	Programme 2	Programme 3
MOV AH, BOH	MOV AH,FOH	MOV AH,50H
ADD AH,BCH	ADD AH,10H	ADD AH,60H

Programme 1
SF = 0 CF = 1
ZF = 0 OF = 1

Programme 2
SF = 0 CF = 1
ZF = 1 OF = 0

Programme 3
SF = 1 CF = 0
ZF = 0 OF = 1

3. Précisez le mode d'adressage utilisé pour chacune des instructions suivantes. :(2 pts)

Instruction		Mode d'adressage	
MOV	[BP+SI], AH	Adressage basé et indexé	
ADD	BX, [DI+123H]	Adressage indexé avec déplacement	
INC	BX	Adressage implicite	
SUB	DL, [DS:23H]	Adressage direct	

4. Parmi les instructions suivantes, indiquez celles qui sont incorrectes et corrigez-les. (2 pts)

Instruction	Oui/Non	Proposition de correction
PUSH AH	non	PUSH AX
ROL AX, 5	non	ROL AX,1 ou bien : MOV CL,5 puis ROL AX,CL
MUL AX, 2	non	MUL AX
SUB BX, AL	non	SUB BX, AX ou bien SUB BL, AL

Dites ce que le programme assembleur suivant calcul après l'exécution (4 pts)

Frogra	mme asse	mbleur	
	MOV	AX, 6	
Etq1:	MOV	CX, AX	
	AND	CX, 1	
	JE	Etq2	
	MOV	CX, AX	
	ADD	AX, AX	
	ADD	AX, CX	
	ADD	AX, 1	
Etq2:	SAR	AX, 1	
	MOV	CX, AX	
	SUB	CX, 1	
	JNE	Etq1	7
	HALT		3 4

Exercice 2 Quel est le travail réalisé par le programme assembleur suivant (3 pts)

Programme assembleur

ASSUM E CS: Code, DS: DATA

Data SEGMENT
N DB ?
S DW ?
M DW 100
Data ENDS

Code SEGMENT

DEBUT: MOV AX, DATA

MOV DS, AX MOV AX, 0

MOV BX, 0

BOUCLE: INC BL

ADD AX, BX

CMP AX, M

JB BOUCLE SUB AX, BX

DEC BL

MOV S, AX

MOV N, BL

MOV AX, 4C00H

INT 21H

Code ENDS

END DEBUT

EXERCICE 3

Ecrire un programme assembleur qui détermine le premier et le deuxième minimum (min1, min2) d'un tableau de 15 éléments entiers (4 pts)

ASSUME CS: CODE, DS:DATA DATA SEGMENT DB 18,11,29,7,15,34,42,89,8,76,4,61,43,12,6 TAB NELT DW 14 DATA ENDS CODE SEGMENT AX, DATA MOV Tri: MOV DS, AX MOV BX, offset TAB MOV AL, [BX] INC BX MOV CX, NELT Boucle: MOV AH, [BX] CMP AL, AH JB Suite ;Test < MOV BL, AL MOV AL, AH Suite: INC DEC Boucle ;Test≠ JNE AH, 4CH MOV INT 21H CODE ENDS END Tri

Exercice 1' Suité

Debut vor I, n: entir, Reel U;

UC 6, FC-1

TG I & n faire

Schemosz = 0 alon,

The 4/2

Sinen

The July 1

Final I+1

Final I+1

TG Echive (u)