金沢ナ	、学大学院自然科学研究科	博士前期課程入学試験	段 問題用紙
対 象	機械科学専攻,電子性	青報科学専攻,環境デザイ	ン学専攻
試験科目名	数 学	P. 1	/ 1

2017年8月22日(火)9:00-10:00

[注意] 1. 問題 1, 2, 3, 4 のうち, 2題を選択して解答すること.

- 2. 解答は各題ごとに分けて、1題を1枚の答案用紙の表に書くこと.
- 1 次の微分方程式を解け.

(1)
$$\frac{d^4y}{dx^4} + 8\frac{d^2y}{dx^2} + 16y = 0$$
 (2) $\frac{d^2y}{dx^2} + 4y = 3\sin 2x$

(2)
$$\frac{d^2y}{dx^2} + 4y = 3\sin 2x$$

(3)
$$3\frac{d^2y}{dx^2} + \frac{dy}{dx} = 3x^2 + 2x - 1$$

(3)
$$3\frac{d^2y}{dx^2} + \frac{dy}{dx} = 3x^2 + 2x - 1$$
 (4) $(y^3 \sin 2y + 3x^2y) dx + (2xy^3 \cos 2y - 2x^3) dy = 0$ $(y > 0)$

- [2] ベクトル場 $\mathbf{A} = (y-x, z-y, x-z), \mathbf{B} = (z, x, y)$ について次の問いに答えよ.
 - (1) $rot(A \times B)$ を求めよ.
 - (2) 曲線 $C: \mathbf{r}(t) = (1, t, t^2)$ $(0 \le t \le 1)$ に対して線積分 $\int_C \mathbf{B} \cdot d\mathbf{r}$ を求めよ.
 - (3) 楕円面 $S: x^2 + 4y^2 + 9z^2 = 1$ に対して、面積分 $\iint_{\mathcal{S}} \left\{ \operatorname{grad} \left(\boldsymbol{B} \cdot \left(\operatorname{rot} \left(\boldsymbol{A} \times \boldsymbol{B} \right) \right) \right) \right\} \cdot \boldsymbol{n} \, dS$ を求めよ、ただし、 n は S の外向き単位法線ベクトルとする.
- 3 zを変数とする複素関数

$$f(z) = \frac{1}{(z^2 - 4z + 5)(z^2 + 9)}$$

について次の問いに答えよ.

- (1) f(z) の全ての特異点と各特異点における留数を求めよ.
- (2)積分

$$\int_{-\infty}^{\infty} f(x) \, dx$$

を求めよ、ただし、 $C_R: z=Re^{i\theta} \ (R>0,\ 0\le\theta\le\pi)$ として

$$\lim_{R \to \infty} \int_{G_R} f(z) \, dz = 0$$

であることを用いても良い.

- 4 次の問いに答えよ.
 - (1) 関数 F(s) に対するラプラス逆変換を $f(t)=\mathcal{L}^{-1}[F(s)]$ で表すとき, $\mathcal{L}^{-1}\left[\frac{1}{s^3+1}\right]$ と $\mathscr{L}^{-1}\Big[\frac{1}{(s+1)(s^2-1)}\Big]$ を求めよ.
 - (2) 次の微分方程式の初期値問題

$$\frac{d}{dt}x(t) + x(t) = t^2, \qquad x(0) = 1$$

をラプラス変換を用いて解け.