Zadanie 15. (4 pkt)

W dowolnym trójkącie ABC punkty M i N są odpowiednio środkami boków AC i BC (Rys. 1).

Zapoznaj się uważnie z następującym rozumowaniem:

Korzystając z własności wektorów i działań na wektorach, zapisujemy równości:

$$\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} \tag{1}$$

oraz

$$\overrightarrow{MN} = \overrightarrow{MC} + \overrightarrow{CN} \tag{2}$$

Po dodaniu równości (1) i (2) stronami otrzymujemy:

$$2 \cdot \overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MC} + \overrightarrow{AB} + \overrightarrow{BN} + \overrightarrow{CN}$$

Ponieważ $\overrightarrow{MC} = -\overrightarrow{MA}$ oraz $\overrightarrow{CN} = -\overrightarrow{BN}$, więc:

$$2 \cdot \overrightarrow{MN} = \overrightarrow{MA} - \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} - \overrightarrow{BN}$$

$$2 \cdot \overrightarrow{MN} = \overrightarrow{0} + \overrightarrow{AB} + \overrightarrow{0}$$

$$\overrightarrow{MN} = \frac{1}{2} \cdot \overrightarrow{AB}$$
.

Wykorzystując własności iloczynu wektora przez liczbę, ostatnią równość można zinterpretować następująco:

odcinek łączący środki dwóch boków dowolnego trójkąta jest równoległy do trzeciego boku tego trójkąta, zaś jego długość jest równa połowie długości tego boku.

Przeprowadzając analogiczne rozumowanie, ustal związek pomiędzy wektorem \overline{MN} oraz wektorami \overline{AB} i \overline{DC} , wiedząc, że czworokąt ABCD jest dowolnym trapezem, zaś punkty M i N są odpowiednio środkami ramion AD i BC tego trapezu (Rys. 2).

Podaj interpretację otrzymanego wyniku.