Harsh Alpeshkumar Senjaliya

☑ harsh.senjaliya.hs@gmail.com

GitHub

Website

in LinkedIn

S+91-9898889977

EDUCATION

Uka Tarsadia University (UTU), Bardoli, India

2019-2023(Expecting)

B.Tech. Mechatronics Engineering (GPA:8.5/10)

Radiant English Academy, Surat, India

Higher Secondary School - Physics, Chemistry, Mathematics

2017-2019

SKILLS

Programming Languages C/C++, Python, MATLAB, Embedded C, Assembly Language.

Software & Tools Git, Proteus, SolidWorks, ROS2, NumPy, OpenCV, PyTorch, Scikit-learn, LaTex.

RESEARCH EXPERIENCE

Dalhousie University, AIES Lab, Canada [Report][GitHub]

May 2022-Aug 2022

Research Internship under Dr. Ahmad Al-Mallahi

Topic: Nutrient deficiency sensing technology using a spectrophotometer

- Developed nutrient estimation sensing technique for potato plants based on spectroscopy.
- The developed sensing system was deployed into an integrated machine-learning system, which estimates the field's nutrients.
- Further employed YOLOv5 and YOLOv6 algorithms to identify and classify crop signs and illnesses in real time.

Chhotubhai Gopalbhai Institute of Technology, Bardoli, India [GitHub]

Nov 2021-Apr 2022

Research Supervisors Dr.Paresh Gujarati and Dr.Pooja Shah

Topic: Design Optimization of Rocker-Bogie Mechanism using heuristic approaches.

- Seven distinct algorithms were implemented and used to optimize the geometry and kinematics of the rover's wheel suspension system subject to the defined performance metrics.
- Compared the performance of the used algorithm which proved that Simulated Annealing (SA) was the best-performing technique empirically, with a fitness of 760.

Nirma University's Institute of Technology, Ahmedabad, India [GitHub]

Jun 2021–Jan 2022

Research Supervisors Dr.Pooja Shah_and Asst.Prof.Kirti Bardhan

Topic: Comparative study on the modern deep learning architectures for predicting nutritional deficiency in rice plant

- Developed technique to identify nutrient insufficiency(N, K, Ca) in rice crop using MobileNet-v2, Resnet18, DenseNet, VGG16, and SqueezeNet.
- Developed data collecting system to acquire image and environmental parameters using RaspberryPi, Arduino Uno, DHT22, ESP32 and Micro SD card Module.
- Artificially deficiency was created to achieve desired sample symptoms through multiple treatment on the crop hybrid MC13.

COURSE PROJECTS

Developed industrial Pipe Inspection Soft Robot, This bio-inspired robot was built using concept of VAMPs (vacuum-actuated muscle-inspired pneumatic structures).

- This bio-inspired soft robot, pneumatically actuated and capable of inspecting and navigating the inside and outside of an Industrial Pipelines.
- The robot being soft and compliant can grasp and move along a cylindrical pipe of varying dimensions.
- We have achieved a maximum 50 bending angle on the soft linear actuator by regulating the air pressure inside it.

Optimized Ball Collector

- Designed and implemented a Greedy algorithm to find approximately nearest path in C++
- Image processing was implemented to get balls in the area and serial communication to instruct the bot to follow the calculated path using the XBee module.

SCHOLARSHIP AND ACHIEVEMENTS

Mitacs GRI(Global Research Internship) program scholarship 2022

- Mitacs Globalink Research Internship funded 15000 CA\$ to perform research in Canadian research institutes.
- Out of 25000+ applicants, I was chosen for the Mitacs GRI program 2022.

Recognized by the GUSEC and UNICEF (INDIA) in 2021 for developing affordable farming solution.

- Selected under top 100 innovative ideas.
- Developed Early Warning System for rice crop nutrition levels indication.

The Spark Scholarship, 2017

• This scholarship was achieved in Physics, Chemistry and Mathematics with rank 4th out of 700+ participants.

Regional Mathematics Olympiad 2016

Awarded with Bronze Medal at school level

PREPRINTS/PUBLICATIONS

Senjaliya, **H.**, Gajjar, P., Vaghasiya, B., Shah, P. and Gujarati, P., 2022. Optimization of Rocker-Bogie Mechanism using Heuristic Approaches. *arXiv* preprint *arXiv*:2209.06927.

Senjaliya, **H.**, Gajjar, P., Dodia, V., Shah, P. and Bardhan, K., 2022. A comparative study on the modern deep learning architectures for predicting nutritional deficiency in rice plants. *arXiv* preprint