Złożoność obliczeniowa algorytmów Klasy złożoności obliczeniowej

Kordian A. Smoliński

Wydział Fizyki i Informatyki Stosowanej

2024/2025

Klasy złożoności obliczeniowej

Treść wykładu

- 🚺 Języki formalne
 - Języki a maszyna Turinga
 - Języki rekurencyjne i rekurencyjnie przeliczalne
- Klasy złożoności
 - Liniowe przyśpieszanie i liniowa kompresja
 - Klasy złożoności dla asymptotycznych funkcji złożoności
 - Relacje pomiędzy klasami złożoności

Definicje

Alfabet A — dowolny skończony zbiór.

Definicje

Alfabet A — dowolny skończony zbiór.

Symbol σ — dowolny element alfabetu, $\sigma \in A$.

Definicje

Alfabet A — dowolny skończony zbiór.

Symbol σ — dowolny element alfabetu, $\sigma \in A$.

 A^n — zbiór n-elementowych ciągów $\sigma_1\sigma_2\ldots\sigma_n$ alfabetu A.

Definicje

Alfabet A — dowolny skończony zbiór.

Symbol σ — dowolny element alfabetu, $\sigma \in A$.

 A^n — zbiór *n*-elementowych ciągów $\sigma_1\sigma_2\ldots\sigma_n$ alfabetu A.

Słowo w — dowolny skończony ciąg symboli alfabetu A.

Definicje

Alfabet A — dowolny skończony zbiór.

Symbol σ — dowolny element alfabetu, $\sigma \in A$.

 A^n — zbiór *n*-elementowych ciągów $\sigma_1\sigma_2\ldots\sigma_n$ alfabetu A.

Słowo w — dowolny skończony ciąg symboli alfabetu A.

Słowo puste ϵ — 0-elementowy ciąg symboli dowolnego alfabetu ($\{\epsilon\}=A^0$).

Definicje

Alfabet A — dowolny skończony zbiór.

Symbol σ — dowolny element alfabetu, $\sigma \in A$.

 A^n — zbiór n-elementowych ciągów $\sigma_1\sigma_2\ldots\sigma_n$ alfabetu A.

Słowo w — dowolny skończony ciąg symboli alfabetu A.

Słowo puste ϵ — 0-elementowy ciąg symboli dowolnego alfabetu ($\{\epsilon\}=A^0$).

 A^* — zbiór skończonych ciągów symboli alfabetu A,

$$A^* = \{\epsilon\} \cup A \cup A^2 \cup \cdots \cup A^n \cup \cdots$$

Definicje

Alfabet A — dowolny skończony zbiór.

Symbol σ — dowolny element alfabetu, $\sigma \in A$.

 A^n — zbiór *n*-elementowych ciągów $\sigma_1\sigma_2\ldots\sigma_n$ alfabetu A.

Słowo w — dowolny skończony ciąg symboli alfabetu A.

Słowo puste ϵ — 0-elementowy ciąg symboli dowolnego alfabetu ($\{\epsilon\}=A^0$).

A* — zbiór skończonych ciągów symboli alfabetu A,

$$A^* = \{\epsilon\} \cup A \cup A^2 \cup \cdots \cup A^n \cup \cdots$$

Uwaga

Słowem nie jest nieskończony ciąg symboli.

Definicja

Język $L \subset A^*$ to dowolny zbiór skończonych ciągów symboli z alfabetu A.

Definicja

Język $L \subset A^*$ to dowolny zbiór skończonych ciągów symboli z alfabetu A.

Przykłady

 zbiór słów z liter polskiego alfabetu i występujących w pewnym słowniku, np. oko ∈ L, krw ∉ L;

Definicja

Jezyk $L \subset A^*$ to dowolny zbiór skończonych ciągów symboli z alfabetu A.

Przykłady

- zbiór słów z liter polskiego alfabetu i występujących w pewnym słowniku, np. oko $\in L$, krw $\not\in L$;
- zbiór słów złożonych z cyfr od 0 do 9 i reprezentujących liczbe pierwszą, np. $43 \in L$, $51 \notin L$;

Definicja

Jezyk $L \subset A^*$ to dowolny zbiór skończonych ciągów symboli z alfabetu A.

Przykłady

- zbiór słów z liter polskiego alfabetu i występujących w pewnym słowniku, np. oko $\in L$, krw $\not\in L$;
- zbiór słów złożonych z cyfr od 0 do 9 i reprezentujących liczbe pierwszą, np. $43 \in L$, $51 \notin L$;
- zbiór słów nad alfabetem $A = \{0, ..., 9, +, =\}$ reprezentujących prawidłowo zapisane działanie dodawania liczb naturalnych, np. $13 + 5 = 18 \in L$ $= 12 = 7 + \not\in L$.

Języki a maszyna Turinga

Maszyna Turinga M o n+1 kolorach może obliczać funkcję na słowach w nad n-elementowym alfabetem A:

Języki a maszyna Turinga

Maszyna Turinga M o n+1 kolorach może obliczać funkcję na słowach w nad n-elementowym alfabetem A:

ullet dowolny ciąg białych komórek taśmy reprezentuje słowo puste ϵ ;

Języki a maszyna Turinga

Maszyna Turinga M o n+1 kolorach może obliczać funkcję na słowach w nad n-elementowym alfabetem A:

- ullet dowolny ciąg białych komórek taśmy reprezentuje słowo puste ϵ ;
- każdemu symbolowi alfabetu A odpowiada któryś z pozostałych kolorów taśmy.

Języki a maszyna Turinga

Maszyna Turinga M o n+1 kolorach może obliczać funkcję na słowach w nad n-elementowym alfabetem A:

- ullet dowolny ciąg białych komórek taśmy reprezentuje słowo puste ϵ ;
- każdemu symbolowi alfabetu A odpowiada któryś z pozostałych kolorów taśmy.

Definicja

M(w) to słowo reprezentowane na taśmie, po tym jak M zatrzyma się na słowie $w \in A^*$.

Języki a maszyna Turinga

Maszyna Turinga M o n+1 kolorach może obliczać funkcję na słowach w nad n-elementowym alfabetem A:

- ullet dowolny ciąg białych komórek taśmy reprezentuje słowo puste ϵ ;
- każdemu symbolowi alfabetu A odpowiada któryś z pozostałych kolorów taśmy.

Definicja

M(w) to słowo reprezentowane na taśmie, po tym jak M zatrzyma się na słowie $w \in A^*$.

Jeżeli M nie zatrzymuje się na w, to $M(w) = \nearrow$.

Języki a maszyna Turinga

Definicje

M akceptuje $w \iff M(w) = \epsilon$.

Języki a maszyna Turinga

Definicje

M akceptuje $w \iff M(w) = \epsilon$.

M odrzuca $w \iff M(w) \neq \epsilon$.

Języki a maszyna Turinga

Definicje

M akceptuje $w \iff M(w) = \epsilon$.

M odrzuca $w \iff M(w) \neq \epsilon$.

Definicja

Maszyna M rozpoznaje język L, jeżeli $\forall w \in L : M(w) = \epsilon$.

Języki a maszyna Turinga

Definicje

M akceptuje $w \iff M(w) = \epsilon$.

M odrzuca $w \iff M(w) \neq \epsilon$.

Definicja

Maszyna M rozpoznaje język L, jeżeli $\forall w \in L : M(w) = \epsilon$.

Definicja

Maszyna M rozstrzyga język L, jeżeli

 $(\forall w \in L \colon M(w) = \epsilon) \land (\forall w \not\in L \colon M(w) \neq \epsilon).$

Języki a maszyna Turinga

Definicje

M akceptuje $w \iff M(w) = \epsilon$.

M odrzuca $w \iff M(w) \neq \epsilon$.

Definicja

Maszyna M rozpoznaje język L, jeżeli $\forall w \in L : M(w) = \epsilon$.

Definicja

Maszyna M rozstrzyga język L, jeżeli

 $(\forall w \in L : M(w) = \epsilon) \land (\forall w \not\in L : M(w) \neq \epsilon).$

Definicja

Niech $f: A^* \to A^*$. Maszyna M oblicza funkcję f, jeżeli

 $\forall w \in A^* : M(w) = f(w).$

Języki a maszyna Turinga

Przykład (palindromy)

 $A = \{0, 1\}, w \in L \subset A^* \iff w \text{ jest palindromem}.$ Maszyna Turinga rozstrzygająca czy w jest palindromem:

Rysunek: Maszyna Turinga dla palindromów

Języki a maszyna Turinga

Przykład (palindromy)

Rysunek: Obliczenia maszyny Turinga dla palindromów

Języki rekurencyjne i rekurencyjnie przeliczalne

Definicja

Język L jest rekurencyjnie przeliczalny, jeżeli istnieje maszyna M, która rozpoznaje L.

Języki rekurencyjne i rekurencyjnie przeliczalne

Definicja

Język L jest rekurencyjnie przeliczalny, jeżeli istnieje maszyna M, która rozpoznaje L.

Definicja

Język L jest rekurencyjny, jeżeli istnieje maszyna M, która rozstrzyga L.

Języki rekurencyjne i rekurencyjnie przeliczalne

Definicja

Język *L* jest rekurencyjnie przeliczalny, jeżeli istnieje maszyna *M*, która rozpoznaje *L*.

Definicja

Język L jest rekurencyjny, jeżeli istnieje maszyna M, która rozstrzyga L.

Fakt

Każdy język rekurencyjny jest rekurencyjnie przeliczalny.

Języki rekurencyjne i rekurencyjnie przeliczalne

Definicja

Język *L* jest rekurencyjnie przeliczalny, jeżeli istnieje maszyna *M*, która rozpoznaje *L*.

Definicja

Język L jest rekurencyjny, jeżeli istnieje maszyna M, która rozstrzyga L.

Fakt

Każdy język rekurencyjny jest rekurencyjnie przeliczalny.

Definicja

Funkcja $f: A^* \to A^*$ jest funkcją rekurencyjną, jeżeli istnieje maszyna M taka, że $\forall w \in A^*: M(w) = f(w)$.

Definicja

Język L nad alfabetem A należy do klasy złożoności $\mathsf{TIME}(f(n))$ wtedy i tylko wtedy, gdy istnieje maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w czasie f(n), tj. T(M, w) = f(n).

Definicja

Język L nad alfabetem A należy do klasy złożoności $\mathsf{TIME}(f(n))$ wtedy i tylko wtedy, gdy istnieje maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w czasie f(n), tj. T(M, w) = f(n).

Przykład

Palindromy nad $A = \{0, 1\}$ należą do $TIME(\frac{(n+1)(n+2)}{2})$.

Definicja

Język L nad alfabetem A należy do klasy złożoności $\mathsf{TIME}(f(n))$ wtedy i tylko wtedy, gdy istnieje maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w czasie f(n), tj. T(M, w) = f(n).

Przykład

Palindromy nad $A = \{0, 1\}$ należą do $TIME(\frac{(n+1)(n+2)}{2})$.

Definicja

Język L nad alfabetem A należy do klasy złożoności $\mathbf{SPACE}(f(n))$ wtedy i tylko wtedy, gdy istnieje maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w pamięci f(n), tj. S(M, w) = f(n).

Definicja

Język L nad alfabetem A należy do klasy złożoności $\operatorname{NTIME}(f(n))$ wtedy i tylko wtedy, gdy istnieje niedeterministyczna maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w czasie f(n), tj. T(M, w) = f(n).

Definicja

Język L nad alfabetem A należy do klasy złożoności $\mathbf{NTIME}(f(n))$ wtedy i tylko wtedy, gdy istnieje niedeterministyczna maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w czasie f(n), tj. T(M, w) = f(n).

Definicja

Język L nad alfabetem A należy do klasy złożoności NSPACE(f(n)) wtedy i tylko wtedy, gdy istnieje niedeterministyczna maszyna M, która dla każdego $w \in A^*$, |w| = n rozstrzyga czy $w \in L$ w pamięci f(n), tj. S(M, w) = f(n).

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowe przyśpieszanie)

 $L \in TIME(f(n)) \implies \forall \epsilon > 0 \colon L \in TIME(\epsilon f(n) + n + 2).$

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowe przyśpieszanie)

$$L \in \mathbf{TIME}(f(n)) \implies \forall \epsilon > 0 \colon L \in \mathbf{TIME}(\epsilon f(n) + n + 2).$$

Dowód.

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowe przyśpieszanie)

 $L \in TIME(f(n)) \implies \forall \epsilon > 0 \colon L \in TIME(\epsilon f(n) + n + 2).$

Dowód.

C. H. Papadimitriou,

Złożoność obliczeniowa,

Wydawnictwa Naukowo-Techniczne, Warszawa 2002.

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowe przyśpieszanie)

 $L \in TIME(f(n)) \implies \forall \epsilon > 0: L \in TIME(\epsilon f(n) + n + 2).$

Dowód.

C. H. Papadimitriou,

Złożoność obliczeniowa,

Wydawnictwa Naukowo-Techniczne, Warszawa 2002.

Wniosek

Funkcja f(n) w definicjach klas złożoności czasowej może być rozpatrywana z dokładnością do stałej.

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowa kompresja)

 $L \in \mathbf{SPACE}(f(n)) \implies \forall \epsilon > 0 \colon L \in \mathbf{SPACE}(\epsilon f(n) + 2).$

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowa kompresja)

 $L \in \mathbf{SPACE}(f(n)) \implies \forall \epsilon > 0 \colon L \in \mathbf{SPACE}(\epsilon f(n) + 2).$

Dowód.

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowa kompresja)

 $L \in \mathbf{SPACE}(f(n)) \implies \forall \epsilon > 0 \colon L \in \mathbf{SPACE}(\epsilon f(n) + 2).$

Dowód.

C. H. Papadimitriou,

Złożoność obliczeniowa,

Wydawnictwa Naukowo-Techniczne, Warszawa 2002.

Liniowe przyśpieszanie i liniowa kompresja

Twierdzenie (liniowa kompresja)

 $L \in \mathbf{SPACE}(f(n)) \implies \forall \epsilon > 0 \colon L \in \mathbf{SPACE}(\epsilon f(n) + 2).$

Dowód.

C. H. Papadimitriou,

Złożoność obliczeniowa,

Wydawnictwa Naukowo-Techniczne, Warszawa 2002.

Wniosek

Funkcja f(n) w definicjach klas złożoności pamięciowej może być rozpatrywana z dokładnością do stałej.

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje

Określamy następujące klasy złożoności czasowej:

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje

Określamy następujące klasy złożoności czasowej:

 $P = \bigcup_{k>1} TIME(n^k)$ języki rozstrzygalne w (deterministycznym) czasie wielomianowym;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje

Określamy następujące klasy złożoności czasowej:

 $P = \bigcup_{k>1} TIME(n^k)$ języki rozstrzygalne w (deterministycznym) czasie wielomianowym;

 $NP = \bigcup_{k>1} NTIME(n^k)$ języki rozstrzygalne w niedeterministycznym czasie wielomianowym;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje

Określamy następujące klasy złożoności czasowej:

 $P = \bigcup_{k>1} TIME(n^k)$ języki rozstrzygalne w (deterministycznym) czasie wielomianowym;

 $NP = \bigcup_{k>1} NTIME(n^k)$ języki rozstrzygalne w niedeterministycznym czasie wielomianowym;

EXP = $\bigcup_{k>1}$ **TIME** (2^{n^k}) języki rozstrzygalne w (deterministycznym) czasie wykładniczym;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje

Określamy następujące klasy złożoności czasowej:

 $P = \bigcup_{k>1} TIME(n^k)$ języki rozstrzygalne w (deterministycznym) czasie wielomianowym;

 $NP = \bigcup_{k>1} NTIME(n^k)$ języki rozstrzygalne w niedeterministycznym czasie wielomianowym;

EXP = $\bigcup_{k>1}$ **TIME** (2^{n^k}) języki rozstrzygalne w (deterministycznym) czasie wykładniczym;

NEXP = $\bigcup_{k>1}$ **NTIME** (2^{n^k}) języki rozstrzygalne w niedeterministycznym czasie wykładniczym.

2024/2025

Klasy złożoności dla asymptotycznych funkcji złożoności

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje (klasy złożoności pamięciowej)

L = SPACE(log n) języki rozstrzygalne w (deterministycznej) pamięci logarytmicznej;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje (klasy złożoności pamięciowej)

L = SPACE(log n) języki rozstrzygalne w (deterministycznej) pamięci logarytmicznej;

NL = NSPACE(log n) języki rozstrzygalne w niedeterministycznej pamięci logarytmicznej;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje (klasy złożoności pamięciowej)

L = SPACE(log n) języki rozstrzygalne w (deterministycznej) pamięci logarytmicznej;

NL = NSPACE(log n) języki rozstrzygalne w niedeterministycznej pamięci logarytmicznej;

PSPACE = $\bigcup_{k>1}$ **SPACE**(n^k) języki rozstrzygalne w (deterministycznej) pamięci wielomianowej;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje (klasy złożoności pamięciowej)

L = SPACE(log n) języki rozstrzygalne w (deterministycznej) pamięci logarytmicznej;

NL = NSPACE(log n) języki rozstrzygalne w niedeterministycznej pamięci logarytmicznej;

PSPACE = $\bigcup_{k>1}$ **SPACE**(n^k) języki rozstrzygalne w (deterministycznej) pamięci wielomianowej;

NPSPACE = $\bigcup_{k>1}$ **NSPACE**(n^k) języki rozstrzygalne w niedeterministycznej pamięci wielomianowej;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje (klasy złożoności pamięciowej)

- L = SPACE(log n) języki rozstrzygalne w (deterministycznej) pamięci logarytmicznej;
- NL = NSPACE(log n) języki rozstrzygalne w niedeterministycznej pamięci logarytmicznej;
- **PSPACE** = $\bigcup_{k>1}$ **SPACE**(n^k) języki rozstrzygalne w (deterministycznej) pamięci wielomianowej;
- **NPSPACE** = $\bigcup_{k>1}$ **NSPACE**(n^k) języki rozstrzygalne w niedeterministycznej pamięci wielomianowej;
- **EXPSPACE** = $\bigcup_{k>1}$ **SPACE** (2^{n^k}) języi rozstrzygalne w (deterministycznej) pamięci wykładniczej;

Klasy złożoności dla asymptotycznych funkcji złożoności

Definicje (klasy złożoności pamięciowej)

- L = SPACE(log n) języki rozstrzygalne w (deterministycznej) pamięci logarytmicznej;
- NL = NSPACE(log n) języki rozstrzygalne w niedeterministycznej pamięci logarytmicznej;
- **PSPACE** = $\bigcup_{k>1}$ **SPACE**(n^k) języki rozstrzygalne w (deterministycznej) pamięci wielomianowej;
- **NPSPACE** = $\bigcup_{k>1}$ **NSPACE**(n^k) języki rozstrzygalne w niedeterministycznej pamięci wielomianowej;
- **EXPSPACE** = $\bigcup_{k>1}$ **SPACE** (2^{n^k}) języi rozstrzygalne w (deterministycznej) pamięci wykładniczej;
- **NEXPSPACE** = $\bigcup_{k>1}$ **NSPACE** (2^{n^k}) języki rozstrzygalne w niedeterministycznej pamięci wykładniczej.

Relacje pomiędzy klasami złożoności

TIME $(f(n)) \subseteq NTIME(f(n))$ (każda maszyna deterministyczna jest maszyną niedeterministyczną);


```
TIME(f(n)) \subseteq NTIME(f(n)) (każda maszyna deterministyczna jest maszyną niedeterministyczną); 
SPACE(f(n)) \subseteq NSPACE(f(n)) (j.w.);
```



```
TIME(f(n)) \subseteq \mathsf{NTIME}(f(n)) (każda maszyna deterministyczna jest maszyną niedeterministyczną); 

SPACE(f(n)) \subseteq \mathsf{NSPACE}(f(n)) (j.w.); 

TIME(f(n)) \subseteq \mathsf{SPACE}(f(n)) (maszyna nie może zapisać więcej komórek niż czas jej działania);
```



```
TIME(f(n)) \subseteq \mathsf{NTIME}(f(n)) (każda maszyna deterministyczna jest maszyną niedeterministyczną); 
SPACE(f(n)) \subseteq \mathsf{NSPACE}(f(n)) (j.w.); 
TIME(f(n)) \subseteq \mathsf{SPACE}(f(n)) (maszyna nie może zapisać więcej komórek niż czas jej działania); 
NTIME(f(n)) \subseteq \mathsf{NSPACE}(f(n)) (j.w.);
```



```
TIME(f(n)) \subseteq NTIME(f(n)) (każda maszyna
 deterministyczna jest maszyna niedeterministyczna):
SPACE(f(n)) \subseteq NSPACE(f(n)) (j.w.);
TIME(f(n)) \subseteq SPACE(f(n)) (maszyna nie może zapisać
 więcej komórek niż czas jej działania);
NTIME(f(n)) \subseteq NSPACE(f(n)) (j.w.);
\exists c > 1: NTIME(f(n)) \subseteq \text{TIME}(c^{f(n)}) (symulacja maszyny
 niedeterministycznej na maszynie deterministycznej);
```



```
TIME(f(n)) \subseteq NTIME(f(n)) (każda maszyna
 deterministyczna iest maszyna niedeterministyczna):
SPACE(f(n)) \subseteq NSPACE(f(n)) (j.w.);
TIME(f(n)) \subseteq SPACE(f(n)) (maszyna nie może zapisać
 wiecei komórek niż czas jej działania);
NTIME(f(n)) \subseteq NSPACE(f(n)) (j.w.);
\exists c > 1: NTIME(f(n)) \subseteq \text{TIME}(c^{f(n)}) (symulacja maszyny
 niedeterministycznej na maszynie deterministycznej);
\exists c > 1: NSPACE(f(n)) \subseteq TIME(c^{f(n)}) (i.w.);
```


Relacje pomiędzy klasami złożoności

```
TIME(f(n)) \subseteq NTIME(f(n)) (każda maszyna
 deterministyczna iest maszyna niedeterministyczna):
SPACE(f(n)) \subseteq NSPACE(f(n)) (j.w.);
TIME(f(n)) \subseteq SPACE(f(n)) (maszyna nie może zapisać
 więcej komórek niż czas jej działania);
NTIME(f(n)) \subseteq NSPACE(f(n)) (j.w.);
\exists c > 1: NTIME(f(n)) \subseteq \text{TIME}(c^{f(n)}) (symulacja maszyny
 niedeterministycznej na maszynie deterministycznej);
\exists c > 1: NSPACE(f(n)) \subset TIME(c^{f(n)}) (j.w.);
\exists c > 1: SPACE(f(n)) \subseteq TIME(c^{f(n)}) (liczba możliwych
 konfiguracji maszyny);
```


2024/2025

Relacje pomiędzy klasami złożoności

TIME $(f(n)) \subseteq NTIME(f(n))$ (każda maszyna

deterministyczna iest maszyna niedeterministyczna):

```
SPACE(f(n)) \subseteq NSPACE(f(n)) (i.w.):
TIME(f(n)) \subset SPACE(f(n)) (maszyna nie może zapisać
 więcej komórek niż czas jej działania);
NTIME(f(n)) \subseteq NSPACE(f(n)) (j.w.);
\exists c > 1: NTIME(f(n)) \subseteq \text{TIME}(c^{f(n)}) (symulacja maszyny
 niedeterministycznej na maszynie deterministycznej);
\exists c > 1: NSPACE(f(n)) \subseteq \text{TIME}(c^{f(n)}) (j.w.);
\exists c > 1: SPACE(f(n)) \subseteq TIME(c^{f(n)}) (liczba możliwych
 konfiguracji maszyny);
NTIME(f(n)) \subseteq SPACE(f(n)) (maszyna deterministyczna
 może symulować niedeterministyczna).
```

4 D F 4 D F 4 D F 4 D F