Egzamin z **analizy matematycznej I.2** Część teoretyczna 29 czerwca 2022, 9:00 – 9:45

Imię, nazwisko, nr indeksu	
1.	(4p) Sformułować i $\mathbf{wykazać}$ twierdzenie Fermata (o warunku koniecznym istnienia ekstremum lokalnego).
2.	(2p) Podać definicję funkcji wypukłej.
3.	(2p) Sformułować twierdzenie o wzorze Taylora z resztą w postaci Lagrange'a.
4.	(2p) Podać definicję zbieżności jednostajnej.
5.	(4p) Niech $A,B\subset\mathbb{R}$. Wykazać, że jeśli ciąg funkcyjny $(f_n)_n:A\cup B\to\mathbb{R}$ jest jednostajnie
	zbieżny na A i jednostajnie zbieżny na B , to jest jednostajnie zbieżny na $A \cup B$.

6. (4p) Udowodnić, następujące stwierdzenie. $Jeśli \ funkcja \ f:[a,b] \to \mathbb{R} \ jest \ ciągła \ i \ nieujemna \ oraz$

$$\int_{a}^{b} f(t)dt = 0, \ to \ \forall_{x \in [a,b]} \ f(x) = 0.$$

7. (4p) Podać przykład ciągu $f_n:[a,b]\to\mathbb{R}$ funkcji całkowalnych w sensie Riemanna, punktowo zbieżnego do $f:[a,b]\to\mathbb{R}$, całkowalnej w sensie Riemanna, takiego, że

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx \neq \int_{a}^{b} f(x) dx.$$

Uzasadnić, że podany ciąg ma żądaną własność.