COMP2610/COMP6261 – Information Theory

Tutorial 6

Naisheng Liang (naisheng.liang@anu.edu.au)

Question 1. Entropy

Let $p=(p_1,p_2,\cdots,p_m)$ be a probability distribution on m elements, i.e, $p_i\geq 0$, and $\sum_{i=1}^m p_i=1$. Define a new distribution q on m-1 elements as $q_1=p_1, q_2=p_2, \cdots, q_{m-2}=p_{m-2}$, and $q_{m-1}=p_{m-1}+p_m$, i.e., the distribution q is the same as p on any $i\in\{1,2,\cdots,m-2\}$, and the probability of the last element in q is the sum of the last two probabilities of p. Show that

$$H(p) = H(q) + (p_{m-1} + p_m)H(\frac{p_{m-1}}{p_{m-1} + p_m}, \frac{p_m}{p_{m-1} + p_m}).$$

Question 2. Mutual Information and Relative Entropy

Let X, Y, Z be three random variables with a joint probability mass function p(X, Y, Z).

(a). Show that

$$I(X,Y;Z) - I(Y,Z;X) = I(Y;Z) - I(X;Y).$$

(b). The relative entropy between the joint distribution and the product of the marginals is D(p(x,y,z)||p(x)p(y)p(z)). Show that

$$D(p(x,y,z)||p(x)p(y)p(z)) = I(X;Y) + I(X,Y;Z).$$

Question 3. Markov Chain

Suppose a Markov chain $X_1 \to X_2 \to X_3$, starts in one of n states, i.e., $X_1 \in \{1, 2, \dots, n\}$. Suppose X_2 will go down to k < n states, i.e., $X_2 \in \{1, 2, \dots, k\}$. Then X_3 go back to m > k states, i.e., $X_3 \in \{1, 2, \dots, m\}$.

- (a). What is the upper bound of $I(X_1; X_3)$?
- (b). Evaluate I(X1;X3) for k = 1, and conclude that no dependence can survive.

Question 4. Inequalities

A coin is known to land heads with probability $\frac{1}{5}$. The coin is flipped N times for some even integer N.

- (a). Using Markov's inequality, provide a bound on the probability of observing $\frac{N}{2}$ or more heads.
- (b). Using Chebyshev's inequality, provide a bound on the probability of observing $\frac{N}{2}$ or more heads. Express your answer in terms of N.