

Better track your ML experiments with

m fow

Here's a situation that you may be <u>familiar</u> with

Week 1 - your start a project

Week 2 - You get more data...

Week 3 - Another data scientist joins the team

Week 4 - You start having some results

Fichiers	Actifs	Grappes				
Sélectionner des éléments pour leur appliquer des actions.						
0	la / expo	orts				
<u></u>	•					
	nodel_v11_al	ice_best.pkl				
	nodel_v1_alic	e_all_data.pkl				
	nodel_v1_bol	o.pkl				
	nodel_v1_bol	o_auc_0-Copy1.76.	pkl			
□ □ r	nodel_v1_bol	o_auc_0.76.pkl				
□ 🗅 r	nodel_v2_bol	o.pkl				
□ □ r	nodel_v3_alic	e.pkl				

Week 5 - your manager comes in

- How does the best model score?
- On which data has it been trained?
- What are the different experiments each data scientist undertook?
- Is it possible to deploy the model to the business teams to try it out?

m flow

What is MLflow?

"MLflow is an open source platform to manage the **ML lifecycle**, including **experimentation**, **reproducibility**, **deployment**, and a **central model registry**. MLflow currently offers four components"

MLflow Tracking

Record and query experiments: code, data, config, and results

Read more

MLflow Projects

Package data science code in a format to reproduce runs on any platform

Read more

MLflow Models

Deploy machine learning models in diverse serving environments

Read more

Model Registry

Store, annotate, discover, and manage models in a central repository

Read more

Integrated to a large set of libraries, frameworks and cloud providers

Integrations with: O PyTorch K Keras RAPIDS TensorFlow python H,O.ai ONNX mleap spaCy LightGBM fast.ai XGBoost GLUON CONDA docker OPTUNA - RAY PYCARET kubernetes Azure Machine Learning databricks

And used by many companies...

Some **alternative** to MLflow

The lifecycle of an ML project

Development

Exploratory data analysis
Feature engineering and model
training
Evaluation, validation and versioning

Deployment

Reproducibility and dependency management Scalability Batch vs real time

Operations

Monitoring et alerting

Debugging

Feedbacks

Resource managements

Delivery

Dashboards

User interfaces

APIs

Notifications & recommendations

MLflow enforces MLOPs principles

MLOPs = Machine Learning + DEV + OPs

- DEV: packaging, déploiement, testing, release
- OPS: Config, monitoring

A set of principles to unify development and operations

Enforces automation and monitoring at every stage (integration, testing, release, ...)

Speeds up time to production

Allows to detect bugs and errors early

What does MLflow track?

- **parameters:** n_estimators, max_depth, epochs, kernel_size, dropout, batch_size?
- metrics: AUC, MAE, MSE; F1 score, accuracy, R-squared (r2)
- data: what version of the data has the model been trained on?
- **□** artifacts:
 - models: binary outputs (think pickle files)
 - other outputs (images, csv, text, html, etc.)
- **source**: which script/notebook was responsible of this run?
- **tags and comments:** individual or team annotations

Some terminology: runs et experiments


```
pip install mlflow
```

```
import mlflow

# set tracking URI i.e. where MLflow saves runs
# the format : "file://" + absolute path

mlflow.set_tracking_uri("file:///Users/ahmed.besbes/projects/mlflow/mlruns")

# create an experiment
experiment_id = mlflow.create_experiment("training experiment")
```

```
with mlflow.start run(experiment id=experiment id):
    model = RandomForestClassifier(
       n_estimators=n_estimators,
       max_depth=max_depth,
       max_features=max_features,
       n_jobs=3,
    model.fit(x_train, y_train)
    y_pred = model.predict(x_test)
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision score(y test, y pred)
    recall = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    auc = roc_auc_score(y_test, y_pred)
   mlflow.log_param("n_estimators", n_estimators)
                                                                    hyperparameters logging
   mlflow.log_param("max_depth", max_depth)
   mlflow.log param("max features", max features)
   mlflow.log metric("accuracy", accuracy)
   mlflow.log_metric("precision", precision)
                                                                    metric logging
   mlflow.log_metric("recall", recall)
   mlflow.log_metric("f1", f1)
   mlflow.log_metric("auc", auc)
    mlflow.sklearn.log_model(model, "model")
                                                                    model logging
```


Auto logging - Keras

```
import mlflow
import mlflow.keras
# Build, compile, enable autologging, and train your model
keras_model = ...
keras_model.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])
# autolog your metrics, parameters, and model
mlflow.keras.autolog()
results = keras_model.fit(
    x_train, y_train, epochs=20, batch_size=128, validation_data=(x_val, y_val))
```

Enables (or disables) and configures autologging from Keras to MLflow. Autologging captures the following information:

Metrics and Parameters

- Training loss; validation loss; user-specified metrics
- Metrics associated with the EarlyStopping callbacks: stopped_epoch, restore_best_weight, last_epoch, etc
- fit() or fit_generator() parameters; optimizer name; learning rate; epsilon
- fit() or fit_generator() parameters associated with EarlyStopping: min_delta, patience, baseline, restore_best_weights, etc

DEMO

code @: https://github.com/ahmedbesbes/mlflow

MLflow Projects

MLflow Models

Ressources

- https://kaskada.com/insights/a-quide-to-mlops-for-data-scientists-part-1
- https://medium.com/swlh/hyperparameter-tuning-with-mlflow-tracking-b67ec4de1
 8c9
- https://www.mlflow.org/docs/latest/tutorials-and-examples/tutorial.html

Questions?

