Wielowymiarowe modele w analizie danych biologicznych

Monika Mokrzycka

Instytut Genetyki Roślin PAN w Poznaniu

Warsztaty, Politechnika Warszawska

- dane jęczmienne (*Hordeum vulgare* L.)
- chromatografia gazowa ze spektrometrią mas (GC-MS)
- odporność na suszę

- surowe dane: 51135 charakterystyk dla 422 próbek
- 211 prób biologicznych po uśrednieniu po powtórzeniach technicznych
- 781 charakterystyk po wstępnym przetworzeniu

Dane dostępne:

https://github.com/adammieldzioc/Barley-data

Dane: 781 × 213

Scan_Nr 🗦	Ret_umin [‡]	X1 [‡]	X2 [‡]	Х3 🗦	X4 [‡]	X5 [‡]	X6 [‡]	X7 [‡]	X8 [‡]	X9 [‡]	X10 [‡]	X11 [‡]	X12 [‡]	X13 [‡]	X14 [‡]	X15 [‡]
111	8643700	301.5	190.5	196.5	227.0	203.0	272.5	228.0	209.5	230.0	177.0	184.5	190.0	224.5	271.5	251.0
112	8677050	1447.0	2767.5	1440.5	3730.0	2291.5	1994.5	1732.5	1428.5	2690.0	1799.5	2393.0	1333.0	1570.0	2106.0	3526.5
113	8710383	1233.5	1178.5	1248.0	1155.5	1000.5	556.5	487.0	682.0	636.0	1247.0	539.0	470.5	487.0	1166.5	1162.0
114	8743733	693.0	556.0	557.5	701.5	559.5	601.0	546.0	487.0	566.5	427.5	456.0	472.0	465.5	628.0	631.0
115	8777083	5855.5	6019.5	5083.0	3746.0	3499.0	4323.5	4251.5	5773.5	6521.0	3390.0	4059.0	4729.0	2091.5	5718.0	5994.0
116	8810416	632.0	534.0	573.0	2324.5	3099.0	2371.5	2323.0	535.0	608.5	1826.0	497.5	607.5	1300.0	537.0	686.5
117	8843766	871.5	1127.5	1114.0	905.0	829.5	655.0	608.5	591.0	654.0	665.0	593.5	587.0	566.0	832.0	901.0
118	8877017	3553.5	3025.5	2962.5	2051.5	1774.0	1475.5	1754.5	1482.0	5078.5	1227.5	1478.0	2475.5	1744.0	2613.5	2730.5
119	8910367	1074.5	1219.5	1193.0	1241.0	1275.0	822.5	806.0	680.0	822.5	794.0	666.5	697.0	1267.5	1427.0	1053.5
120	8943700	1161.5	450.0	461.5	464.5	1857.0	482.5	555.5	1780.5	932.5	737.5	1017.0	359.5	365.0	491.5	4652.0
121	8977050	615.0	1997.0	1690.0	2646.5	3066.0	2169.5	423.5	517.0	602.5	612.5	424.5	872.5	512.0	600.0	659.0
122	9010400	1548.0	1550.0	1468.0	1408.0	1315.0	894.5	1442.5	878.0	889.5	1002.0	752.0	719.5	971.5	1571.5	1492.0
123	9043734	1965.5	1728.5	1508.0	1570.5	1344.5	1311.5	1401.0	1319.5	1424.5	1175.5	1125.5	1086.5	730.0	1974.5	2151.5
124	9077084	1492.5	959.0	1063.0	1327.5	1491.0	1151.5	1045.0	913.5	989.5	1001.0	842.0	966.5	839.5	1488.5	1658.5
125	9110434	2663.5	1911.5	2208.5	2318.0	2387.0	2202.0	1999.5	1833.0	1964.5	1757.5	1803.5	1715.0	1797.5	2528.5	2384.0
126	9143766	3924.0	4451.5	3814.0	3774.5	3830.5	7101.5	4062.5	3824.0	4952.5	2679.0	4081.5	5620.5	3775.5	3679.0	4110.0
127	9177016	30424.0	8609.0	27016.5	22143.5	31923.0	25187.5	7609.0	5695.0	5447.0	4580.0	9635.5	7056.0	27737.0	8295.5	19328.0
128	9210366	6372.0	8307.5	3229.0	3252.5	8479.5	2740.5	2679.5	2661.0	2704.0	2362.0	2465.0	2355.0	5350.5	3564.5	3411.0
129	9243716	3057.0	2809.0	2731.5	8631.5	2778.5	1972.5	1911.0	2045.5	2042.5	1840.0	1817.0	1732.0	1735.0	3074.0	2903.
130	9277050	2512.5	6596.0	4838.5	9338.0	9527.0	6540.0	4744.0	3534.5	6167.5	3522.0	5224.5	5608.5	2554.0	2466.5	4566.
131	9310400	10837.0	4422.5	5479.5	8993.5	23851.5	7205.5	9219.0	3293.5	3348.0	7356.0	3195.5	3117.0	4308.5	6165.0	17068.0

Podziel dane na podzbiory:

- **X**₁ cechy od 1 do 250
- **X**₂ cechy od 251 do 500
- **X**₃ cechy od 501 do 750

- dane jęczmienne (Hordeum vulgare L.)
- chromatografia gazowa ze spektrometrią mas (GC-MS)
- odporność na suszę

- surowe dane: 51135 charakterystyk dla 422 próbek
- 211 prób biologicznych po uśrednieniu po powtórzeniach technicznych
- 781 charakterystyk po wstępnym przetworzeniu
- przekształcone przez logarytm

Identyfikacja struktury

Struktury kowariancyjne $m \times m$:

kompletnej symetrii (CS)

Metody identyfikacji struktury:

- norma Frobeniusa
- entropijna funkcja straty

Struktury kowariancyjne

$$\mathscr{S}_{\mathit{CS}}$$

$$\zeta = \min_{\Gamma \in \mathscr{S}_{\mathit{CS}}} f(\mathbf{\Omega}, \Gamma)$$

 $oldsymbol{\Omega}$ - nieznana

$\mathsf{MLE}(\mathbf{\Omega})$

$$S = \frac{1}{n} X Q_{1_n} X'$$

gdzie

• X - macierz obserwacji

$$\mathbf{X} \sim N_{q,n}(\mu \mathbf{1}'_n, \mathbf{\Omega}, \mathbf{I}_n)$$

 $\bullet \ \mathbf{Q}_{1_n} = \mathbf{I}_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n'$

Struktury kowariancyjne

$$S_1 = \frac{1}{n} X_1 Q_{1_n} X_1'$$

 $S_2 = \frac{1}{n} X_2 Q_{1_n} X_2'$
 $S_3 = \frac{1}{n} X_3 Q_{1_n} X_3'$

$\log \mathbf{X}_i$

$$\det \mathbf{S}_i > 0, \qquad i = 1, \cdots, 3$$

Struktury kowariancyjne

kompletnej symetrii (CS)

$$\boldsymbol{\Gamma}_{CS} = \sigma^{2} \begin{pmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \rho & \rho & 1 & \dots & \rho \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho & \rho & \rho & \dots & 1 \end{pmatrix} = \sigma^{2} \left[(1 - \rho) \boldsymbol{I}_{m} + \rho \boldsymbol{1}_{m} \boldsymbol{1}'_{m} \right]$$

$$\sigma^{2} > 0, \qquad \rho \in \left(-\frac{1}{m-1}; 1 \right)$$

Identyfikacja struktury

Identyfikacja struktury

Metody identyfikacji struktury

$$\mathsf{S},\mathsf{\Gamma}\in\mathbb{R}_m^>$$

Frobenius norm

$$f_F(\mathbf{S}, \mathbf{\Gamma}) = ||\mathbf{S} - \mathbf{\Gamma}||_F = \sqrt{\operatorname{tr}[(\mathbf{S} - \mathbf{\Gamma})^2]}$$

Entropy loss function

$$f(\mathbf{S}, \mathbf{\Gamma}) = \operatorname{tr}\left(\mathbf{S}^{-1}\mathbf{\Gamma}\right) - \ln\left(\operatorname{det}\left[\mathbf{S}^{-1}\mathbf{\Gamma}\right]\right) - m$$

$$\zeta_F = \min_{\Gamma \in \mathscr{S}_{CS}} f_F(\mathbf{S}, \Gamma)$$
 i $\zeta_E = \min_{\Gamma \in \mathscr{S}_{CS}} f_E(\mathbf{S}, \Gamma)$

Aproksymacja $\Gamma \in \mathscr{S}_{CS}$

norma Frobeniusa:

$$\begin{cases} \rho &= \frac{\alpha}{(m-1)\operatorname{tr}(\mathbf{S}')} \\ \sigma^2 &= \frac{\operatorname{tr}(\mathbf{S}' + \rho\alpha)}{m + m(m-1)\rho^2} \end{cases} \qquad \alpha = \operatorname{tr}\left[\mathbf{S}'(\mathbf{1}_m\mathbf{1}'_m - \mathbf{I}_m)\right]$$

entropijna funkcja straty:

$$\begin{cases} \rho & = -\frac{\alpha}{(m-1)\operatorname{tr}(\mathbf{S}^{-1}) + (m-2)\alpha} \\ \frac{m}{\sigma^2} & = \operatorname{tr}(\mathbf{S}^{-1}) + \rho\alpha \end{cases} \qquad \alpha = \operatorname{tr}\left[\mathbf{S}^{-1}(\mathbf{1}_m\mathbf{1}_m' - \mathbf{I}_m)\right]$$

Rozbieżności

Skorygowane wartości:

•
$$\xi_F = \zeta_F / ||\mathbf{S}||_F$$

•
$$\xi_E = 1 - 1/(1 + \zeta_E)$$

•
$$\xi_k = 1 - 1/(1 + \log \zeta_k), \quad k \in \{F, E\}$$

Rozbieżności i oceny

struktura	podzbiór	ζ_F	ζ_E	ξ_F	ξ _E
	1	1399.1336	655.5110	0.3271	0.7380
CS	2	1387.0465	588.9344	0.2992	0.7348
	3	1512.8434	619.9874	0.2852	0.7364

estymator	podzbiór	σ^2	ρ	$ ho_1$	$ ho_2$
	1	30.7322	0.6555	-	_
$\widehat{\Gamma}_{CS}$	2	29.5329	0.7475	-	-
	3	33.2362	0.7635	-	-
	1	0.0632	0.5145	-	-
$\widetilde{\Gamma}_{CS}$	2	0.0599	0.4558	-	-
	3	0.0443	0.3737	-	-

All data

•
$$\mathbf{X}_{781\times211}\sim N_{m,n}(\mu\mathbf{1}_n',\mathbf{\Omega},\mathbf{I}_n)$$

$$ullet$$
 $\mathbf{S}_{781 imes781}$ - MLE of $oldsymbol{\Omega}$

• Macierz korelacji $\mathbf{R} = \mathbf{D}^{-1}\mathbf{S}\mathbf{D}^{-1}$

•
$$\mathbf{D}^{-1} = diag(\frac{1}{\sqrt{S_{11}}}, \frac{1}{\sqrt{S_{22}}}, ..., \frac{1}{\sqrt{S_{mm}}})$$

All data

Heatmapy

- heatmap.2 w pakiecie gplots
- hclust w pakiecie stats
- dendrogramy

Grupowanie hierarchiczne

Miara niepodobieństwa

m obiektów

- na starcie każdy obiekt jest w swoim klastrze
- następnie najbardziej podobne grupy są łączone iteracyjnie do momentu, gdy wszystkie elementy będą należały do jednego klastra
- odległości między elementami funkcja odległości
- odległości między klastrami kryterium połączenia

Funkcje odległości

Odległości między elementami

• Euclidean -
$$\sqrt{\sum_{i=1}^{m} (\mathbf{u}_i - \mathbf{v}_i)^2}$$

- Maximum $\max_{i} |\mathbf{u}_i \mathbf{v}_i|$
- Manhattan $\sum_{i=1}^{m} |\mathbf{u}_i \mathbf{v}_i|$
- Canberra $\sum_{i=1}^{m} |\mathbf{u}_i \mathbf{v}_i|/|\mathbf{u}_i + \mathbf{v}_i|$
- Binary Jaccard index $J(A,B) = \left(\overline{\overline{A \cap B}}\right) / \left(\overline{\overline{A \cup B}}\right)$
- Minkowski $\left(\sum_{i=1}^{m} |\mathbf{u}_i \mathbf{v}_i|^k\right)^{\frac{1}{k}}, \ k \geqslant 1$

Kryteria połączenia

Odległości między klastrami, D(A, B)A, B - klastry

- Ward.D and Ward.D2 używają analizy wariancji
- Single $D(A,B) = \min_{a \in A, b \in B} d(a,b)$
- Complete $D(A, B) = \max_{a \in A, b \in B} d(a, b)$
- Average (UPGMA Unweighted Pair-Group Method using Arithmetic Averages) $D(A,B) = \text{mean}_{a \in A,b \in B} d(a,b)$
- Mcquitty (WPGMA Weighted Pair Group Method with Arithmetic Mean) bazuje na UPGMA używając rozmiarów klastrów jako wag
- Centroid (UPGMC Unweighted Pair-Group Method using the Centroid Average) D(A,B) = d(centroid(A), centroid(B))
- Median (WPGMC Weighted Pair-Group Method using the Centroid Average) bazuje na UPGMC używając rozmiarów klastrów jako wag

All data

odległość: manhattan, metoda: single

All data

odległość: *minkowski* metoda: *average*

odległość: *minkowski* metoda: *centroid*

odległość: *minkowski* metoda: *complete*

odległość: *minkowski* metoda: *mcquitty*

odległość: *minkowski* metoda: *median*

odległość: *minkowski* metoda: *single*

odległość: *minkowski* metoda: *ward.D*

odległość: *minkowski* metoda: *ward.D2*

