Ejercicios

Salvo indicación contraria, utilizar el alfabeto de 26 letras.

A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Η	I	J	K	L	M	Ν	O	Р	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
\overline{Q}	R	S	Τ	U	V	W	X	Y	Z							
16	17	18	19	20	21	22	23	24	25							

1. Semana 1

1.1. Criptografía cásica

- 1. Utilizar el cifrado de César para
 - a) cifrar "ASTERIX",
 - b) descifrar "REHOLA".
- 2. Descifrar el mensaje "VEYFCLNS" obtenido por un cifrado de Vigenère con la clave "CAKE".
- 3. Utilizar un cifrado de Vigenère encadenado con la clave inicial "PAN" para
 - a) cifrar "VIGENERE",
 - b) descifrar "RISIIVW".
- 4. Utilizar el alfabeto de 37 caracteres formado por las 26 letras anteriores, las 10 cifras decimales 0, 1, ... 9 y el espacio en blanco

Α	В		\mathbf{Z}	0	1	2	3	4	5	6	7	8	9	""
0	1		25	26	27	28	29	30	31	32	33	34	35	36
para cifrar el mensaje														

MI TELEFONO ES 600123456

siguiendo un cifrado encadenado de Vigenère, con la clave CERO.

Supongamos que hemos equivocado el número de teléfono y que el número correcto es 609123456. Cifrar de nuevo el mensaje con el mismo método. Comparar los bloques de mensaje obtenidos en última posición, en uno y otro caso.

Nota: Se observa que si cambia un dato del mensaje, el último bloque cambia. El último bloque cifrado de un cifrado encadenado puede utilizarse como *código de autenticación de mensaje* (se denomina MAC o "message authentication code"). Así, si junto al mensaje enviamos el último bloque cifrado, el receptor puede saber si el mensaje recibido es correcto o no. Basta con que lo vuelva a cifrar y observe si el último bloque coincide con el recibido aparte.

1.2. Seguridad criptográfica

- 1. Precisar los cuatro servicios criptográficos principales.
- 2. Explicar qué se entiende por seguridad incondicional de un criptosistema.
- 3. Explicar en qué consiste un ataque de texto en claro.

1.3. Conversión de mensajes. Aritmética modular

- 1. Dividir el mensaje "CESAR" en bigramas y transformarlo en números enteros. Después transformar dichos números enteros en bits.
 - Nota: Como $26^2 1 = 675$ necesita 10 bits para ser representado en base $2 (9 \le \log_2 675 < 10)$, se pide representar cada entero con 10 bits.
- 2. Encontar los mensajes tales que los equivalentes numéricos y binarios de los bigramas en los que han sido divididos son:

3. Calcular

$$10 + 13 \mod 15$$
, $10 + (-13) \mod 15$, $15 \cdot 10 \mod 26$, $(-15) \cdot 10 \mod 26$.

- 4. Sabemos que $(\mathbb{Z}_5, +, \cdot)$ es un anillo. ¿Es $(\mathbb{Z}_5, \cdot, +)$ un anillo?
- 5. Siguendo paso a paso el algoritmo de cálculo de potencias modulares, hallar $19^{12} \mod 7$.

Nota:

- a) Justificar que $19^{12} \equiv 5^{12} \mod 7$.
- b) Comprobar que $19^{12} \not\equiv 5^{12 \mod 7} \mod 7$.
- 6. Hallar: a) 38^{75} mód 103; b) 2^{32} mód 16.

1.4. Cifrado afín I. Divisibilidad. Números primos

- 1. Utilizar un cifrado afín con clave a=5, b=10 para cifrar "CESAR".
- 2. Se define la función de cifrado translación como:

donde M es el equivalente numérico de cada letra, N es el número de letras del alfabeto y b es un número entero, $0 \le b \le N-1$.

La clave de cifrado es: b.

- a) Obtener la función de descifrado.
- b) Utilizando la clave b = 15,
 - 1) cifrar "OBELIX",
 - 2) descifrar "PHITGXM".
- c) Interceptamos el criptograma "ELIX". Obtener la clave y descifrar el mensaje sabiendo que la última letra del mensaje en claro es "A".
- 3. Siguiendo paso a paso el algoritmo de Euclides calcular $d=\operatorname{mcd}(a,b)$. Retrocediendo en el cálculo anterior, encontrar números enteros u y v tales que d=au+bv.
 - a) a = 3, b = 26.
 - b) a = 22, b = 28.
 - c) a = 15, b = 28.
- 4. Calcular d = mcd(a, b) con el algoritmo de Euclides. Encontrar números enteros u y v tales que d = au + bv.
 - a) a = 21, b = 15.
 - b) a = -21, b = 15.
 - c) a = 21, b = -15.
 - a = -21, b = -15.