Noise_v2 噪声下 3.3.1 实验结果补充展示

表 1 由 3 个独立模型组成的容错系统的表现情况(Noise_v2 噪声)

实验环境			测试	性能			多数投票 统计结果	排名投票 统计结果
	模型1	模型 2	模型 3	模型平均	多数投票	排名投票	优于平均	优于平均
	59.51	56.80	145.74	87.35	154.44	151.34	Y	Y
	111.19	198.01	122.70	143.97	177.68	181.38	Y	Y
	122.70	100.26	49.21	90.72	172.37	170.50	Y	Y
	67.30	122.70	100.26	96.75	100.97	105.29	Y	Y
Controlo	56.80	122.70	49.21	76.24	161.51	154.52	Y	Y
Cartpole	122.70	100.26	145.74	122.90	160.76	160.35	Y	Y
	59.51	198.01	49.21	102.24	180.11	179.62	Y	Y
	111.19	198.01	100.26	136.49	171.31	169.66	Y	Y
	111.19	122.70	145.74	126.54	163.54	161.83	Y	Y
	59.51	56.80	114.30	76.87	107.46	105.56	Y	Y
	-162.27	-191.68	-181.57	-178.51	-167.05	-169.90	Y	Y
	-148.42	-134.47	-191.68	-158.19	-145.96	-145.37	Y	Y
	-149.36	-136.78	-134.47	-140.20	-133.62	-137.07	Y	Y
	-149.36	-181.57	-167.60	-166.17	-167.18	-164.11	Y	Y
Mountaincar	-149.36	-162.27	-184.51	-165.38	-167.46	-166.08	N	Y
Mountainear	-136.78	-191.68	-181.57	-170.01	-165.40	-164.72	Y	Y
	-182.58	-149.36	-181.57	-171.17	-162.16	-161.79	Y	Y
	-182.58	-136.78	-167.60	-162.32	-150.91	-155.84	Y	Y
	-148.42	-134.47	-167.60	-150.16	-141.58	-140.09	Y	Y
	-182.58	-134.47	-162.27	-159.77	-148.11	-146.94	Y	Y
	-104.83	-119.31	-139.45	-121.20	-107.24	-102.92	Y	Y
	-117.44	-139.45	-153.13	-136.68	-120.64	-113.66	Y	Y
	-119.31	-109.57	-153.13	-127.33	-110.78	-108.70	Y	Y
Acrobot	-127.60	-123.92	-126.23	-125.91	-125.37	-125.78	Y	Y
	-104.83	-126.23	-153.13	-128.06	-104.21	-106.60	Y	Y
	-117.44	-123.92	-153.13	-131.50	-127.75	-115.17	Y	Y
	-127.60	-119.31	-107.80	-118.24	-102.87	-105.11	Y	Y

-104.83	-107.80	-126.23	-112.95	-102.65	-100.78	Y	Y
-119.31	-139.45	-153.13	-137.30	-121.04	-109.55	Y	Y
-104.83	-107.80	-126.23	-112.95	-102.35	-101.52	Y	Y

表 2 由 5 个独立模型组成的容错系统的表现情况(Noise_v2 噪声)

实验				测试	性能				多数投票 统计结果	排名投票 统计结果
环境	模型1	模型 2	模型 3	模型 4	模型 5	模型平均	多数投票	排名投票	优于平均	优于平均
	67.30	111.19	56.80	100.26	49.21	76.95	127.14	123.95	Y	Y
	111.19	198.01	122.70	145.74	49.21	125.37	198.58	197.57	Y	Y
	59.51	56.80	122.70	145.74	49.21	86.79	189.76	190.48	Y	Y
	67.30	59.51	198.01	122.70	145.74	118.65	192.89	190.71	Y	Y
Cart	59.51	198.01	100.26	145.74	49.21	110.55	199.22	198.69	Y	Y
pole	198.01	56.80	122.70	114.30	49.21	108.20	173.65	176.35	Y	Y
	67.30	59.51	198.01	56.80	122.70	100.86	156.36	155.02	Y	Y
	67.30	59.51	111.19	198.01	114.30	110.06	144.65	145.05	Y	Y
	59.51	111.19	122.70	114.30	100.26	101.59	115.88	120.66	Y	Y
	67.30	111.19	56.80	122.70	49.21	81.44	149.56	147.65	Y	Y
	-148.42	-136.78	-134.47	-162.27	-181.57	-152.70	-144.13	-142.17	Y	Y
	-148.42	-136.78	-134.47	-162.27	-184.51	-153.29	-145.88	-143.56	Y	Y
	-149.36	-136.78	-162.27	-184.51	-167.60	-160.10	-159.19	-161.84	Y	Y
Mo	-182.58	-148.42	-136.78	-162.27	-184.51	-162.91	-158.09	-159.53	Y	Y
unta	-182.58	-149.36	-134.47	-162.27	-191.68	-164.07	-169.21	-175.29	N	N
inca	-182.58	-149.36	-134.47	-191.68	-167.60	-165.14	-171.11	-171.17	N	N
r	-149.36	-136.78	-134.47	-184.51	-191.68	-154.54	-166.34	-167.56	N	N
	-148.42	-134.47	-162.27	-184.51	-167.60	-159.45	-150.20	-146.34	Y	Y
	-136.78	-134.47	-184.51	-191.68	-181.57	-165.80	-160.05	-162.00	Y	Y
	-182.58	-149.36	-136.78	-134.47	-167.60	-154.16	-150.84	-150.24	Y	Y
	-127.60	-119.31	-139.45	-123.92	-126.23	-127.30	-106.58	-103.87	Y	Y
	-117.44	-104.83	-119.31	-109.57	-107.80	-111.79	-96.64	-99.91	Y	Y
Acr	-104.83	-119.31	-109.57	-126.23	-153.13	-122.61	-96.54	-96.50	Y	Y
obot	-104.83	-127.60	-119.31	-123.92	-126.23	-120.38	-104.52	-101.95	Y	Y
	-117.44	-104.83	-107.80	-126.23	-153.13	-121.89	-98.95	-95.39	Y	Y
	-117.44	-104.83	-127.60	-123.92	-126.23	-120.00	-107.15	-100.46	Y	Y

-117.44	-119.31	-109.57	-107.80	-153.13	-121.45	-101.60	-103.60	Y	Y
-104.83	-119.31	-139.45	-107.80	-123.92	-119.06	-101.21	-100.58	Y	Y
-117.44	-127.60	-139.45	-123.92	-126.23	-126.93	-107.58	-106.03	Y	Y
-117.44	-119.31	-107.80	-123.92	-126.23	-118.94	-107.77	-104.07	Y	Y

表 3 由 7 个独立模型组成的容错系统的表现情况(Noise_v2 噪声)

实验环境	ì	则试性能			多数投票 统计结果	排名投票 统计结果
	独立模型	模型平均	多数投票	排名投票	优于平均	优于平均
	模型 1: 59.51					
	模型 2: 198.01					
	模型 3: 56.80					
	模型 4: 122.70	113.90	168.83	169.77	Y	Y
	模型 5: 114.30					
	模型 6: 100.26					
	模型 7: 145.74					
	模型 1: 67.30					
	模型 2: 59.51					
	模型 3: 198.01					
	模型 4: 122.70	115.40	151.96	152.39	Y	Y
	模型 5: 114.30					
	模型 6: 100.26					
	模型 7: 145.74					
	模型 1: 67.30					
	模型 2: 59.51					
Cartpole	模型 3: 198.01					
	模型 4: 122.70	101.61	157.03	155.04	Y	Y
	模型 5: 114.30					
	模型 6: 100.26					
	模型 7: 49.21					
	模型 1: 198.01					
	模型 2: 56.80					
	模型 3: 122.70					
	模型 4: 114.30	112.43	184.02	188.59	Y	Y
	模型 5: 100.26					
	模型 6: 145.74					
	模型 7: 49.21					
	模型 1: 67.30					
	模型 2: 59.51					
	模型 3: 198.01	107.19	153.15	151.87	Y	Y
	模型 4: 56.80					
	模型 5: 122.70					

	模型 6: 100.26					
	模型 7: 145.74					
	模型 1: 67.30					
	模型 2: 59.51					
	模型 3: 198.01	02.40	165.05	165.50	37	37
	模型 4: 56.80	93.40	165.95	165.58	Y	Y
	模型 5: 122.70					
	模型 6: 100.26					
	模型 7: 49.21					
	模型 1: 59.51					
	模型 2: 111.19					
	模型 3: 56.80					
	模型 4: 122.70	87.71	136.50	134.77	Y	Y
	模型 5: 114.30					
	模型 6: 100.26					
	模型 7: 49.21					
	模型 1: 59.51					
	模型 2: 198.01					
	模型 3: 56.80					
	模型 4: 122.70	100.11	166.70	165.41	Y	Y
	模型 5: 114.30					
	模型 6: 100.26					
	模型 7: 49.21					
	模型 1: 59.51					
	模型 2: 111.19					
	模型 3: 198.01					
	模型 4: 56.80	106.17	195.14	195.40	Y	Y
	模型 5: 122.70					
	模型 6: 145.74					
	模型 7: 49.21					
	模型 1: 59.51					
	模型 2: 198.01					
	模型 3: 122.70					
	模型 4: 114.30	112.82	191.65	189.26	Y	Y
	模型 5: 100.26					
	模型 6: 145.74					
	模型 7: 49.21					
	模型 1: -182.58					
	模型 2: -149.36					
	模型 3: -136.78					
Mountaincar	模型 4: -134.47	-163.09	-166.37	-171.29	N	N
1,10 diluilloui	模型 5: -162.27	103.07	100.57	1,1.2)	1,	1,
	模型 6: -184.51					
	模型 7: -191.68					
	庆王 /; -191.00				<u> </u>	<u> </u>

模型 1: -182.58 模型 2: -149.36 模型 3: -148.42 模型 4: -136.78 模型 5: -191.68 模型 6: -181.57 模型 7: -167.60	-165.43	-163.17	-164.66	Y	Y
模型 1: -182.58 模型 2: -149.36 模型 3: -148.42 模型 4: -162.27 模型 5: -191.68 模型 6: -181.57 模型 7: -167.60	-169.07	-169.31	-168.83	Y	Y
模型 1: -149.36 模型 2: -148.42 模型 3: -134.47 模型 4: -162.27 模型 5: -184.51 模型 6: -181.57 模型 7: -167.60	-161.17	-160.08	-156.44	Y	Y
模型 1: -149.36 模型 2: -136.78 模型 3: -134.47 模型 4: -162.27 模型 5: -184.51 模型 6: -191.68 模型 7: -167.60	-162.61	-157.91	-159.57	Y	Y
模型 1: -182.58 模型 2: -136.78 模型 3: -134.47 模型 4: -162.27 模型 5: -184.51 模型 6: -191.68 模型 7: -181.57	-169.36	-165.24	-162.92	Y	Y
模型 1: -182.58 模型 2: -136.78 模型 3: -134.47 模型 4: -184.51 模型 5: -191.68 模型 6: -181.57 模型 7: -167.60	-170.12	-158.62	-161.99	Y	Y
模型 1: -182.58 模型 2: -149.36	-169.82	-174.24	-175.10	N	N

	144			I	I	
	模型 3: -136.78					
	模型 4: -162.27					
	模型 5: -184.51					
	模型 6: -191.68					
	模型 7: -181.57					
	模型 1: -182.58					
	模型 2: -149.36					
	模型 3: -134.47					
	模型 4: -162.27	-167.07	-165.41	-167.23	Y	Y
	模型 5: -191.68					
	模型 6: -181.57					
	模型 7: -167.60					
	模型 1: -182.58					
	模型 2: -149.36					
	模型 3: -148.42					
	模型 4: -134.47	-165.52	-168.62	-167.52	N	Y
	模型 5: -184.51					
	模型 6: -191.68					
	模型 7: -167.60					
	模型 1: -117.44					
	模型 2: -127.60					
	模型 3: -119.31					
	模型 4: -109.57	-127.53	-103.26	-101.06	Y	Y
	模型 5: -139.45					
	模型 6: -126.23					
	模型 7: -153.13					
	模型 1: -117.44					
	模型 2: -127.60					
	模型 3: -119.31					
	模型 4: -109.57	-122.68	-99.37	-102.93	Y	Y
	模型 5: -107.80	122.00),,,,,	102.95	1	1
Acrobot	模型 6: -123.92					
11010001	模型 7: -153.13					
	模型 1: -117.44					
	模型 2: -127.60					
	模型 3: -119.31					
	模型 4: -139.45	-126.95	-101.90	-100.72	Y	Y
	模型 5: -107.80	120.73	101.70	100.72	1	1
	模型 6: -123.92					
	模型 7: -153.13					
	模型 1: -127.60					
	模型 2: -119.31					
	模型 3: -109.57	-128.46	-101.39	-101.29	Y	Y
	模型 4: -139.45			1		

模型 5: -123.92					
模型 6: -126.23					
模型 7: -153.13					
模型 1: -117.44					
模型 2: -104.83					
模型 3: -119.31					
模型 4: -109.57	-119.43	-97.91	-95.67	Y	Y
模型 5: -107.80					
模型 6: -123.92					
模型 7: -153.13					
模型 1: -104.83					
模型 2: -127.60					
模型 3: -119.31					
模型 4: -109.57	-119.25	-99.00	-98.95	Y	Y
模型 5: -139.45					
模型 6: -107.80					
模型 7: -126.23					
模型 1: -117.44					
模型 2: -127.60					
模型 3: -119.31					
模型 4: -139.45	-123.11	-107.01	-99.98	Y	Y
模型 5: -107.80	123.11	107.01	77.70	1	1
模型 6: -123.92					
模型 7: -126.23					
模型 1: -117.44					
模型 2: -104.83					
模型 3: -127.60					
模型 4: -109.57	-118.99	-98.83	-95.58	Y	Y
模型 5: -139.45	-110.	-70.03	-73.36	1	1
模型 6: -107.80					
模型 7: -126.23					
模型 1: -119.31					
模型 2: -109.57					
模型 3: -139.45					
	-125.63	00.92	07.57	V	v
模型 4: -107.80	-123.03	-99.82	-97.57	Y	Y
模型 5: -123.92					
模型 6: -126.23					
模型 7: -153.13					
模型 1: -104.83					
模型 2: -127.60					
模型 3: -119.31	-118.92	-96.86	-98.77	Y	Y
模型 4: -109.57					
模型 5: -139.45					
模型 6: -107.80					

模型 7: -123.92			

Noise_v2 噪声下 4.3.1 实验结果补充展示

表 1 基于网络结构多样性构建的容错系统的表现情况(Noise_v2 噪声)

实验环境			测试	性能			多数投票 统计结果	排名投票 统计结果
	最优模型	最差模型	其他模型	模型平均	多数投票	排名投票	优于平均	优于平均
	111.56	67.30	107.26	95.37	88.85	90.71	Y	Y
	111.56	67.30	94.40	91.09	90.10	89.08	Y	Y
	127.80	67.30	111.56	102.22	133.56	138.26	Y	Y
	107.26	67.30	94.40	89.65	114.63	118.48	Y	Y
Controllo	127.80	67.30	107.26	100.79	117.03	128.80	Y	Y
Cartpole	127.80	67.30	94.40	96.50	176.05	177.79	Y	Y
	111.56	94.40	107.26	104.41	121.17	115.47	Y	Y
	127.80	107.26	111.56	115.54	146.00	134.10	Y	Y
	127.80	94.40	111.56	111.25	172.35	179.00	Y	Y
	127.80	94.40	107.26	109.82	187.80	189.08	Y	Y
	-185.92	-191.22	-190.34	-189.16	-183.25	-187.98	Y	Y
	-180.07	-190.34	-185.92	-185.44	-181.29	-181.42	Y	Y
	-182.56	-190.34	-185.92	-186.27	-170.01	-171.78	Y	Y
	-180.07	-191.22	-190.34	-187.21	-178.99	-182.93	Y	Y
Manutainaan	-182.56	-191.22	-190.34	-188.04	-177.80	-181.10	Y	Y
Mountaincar	-180.07	-190.34	-182.56	-184.32	-185.69	-180.46	Y	Y
	-180.07	-191.22	-185.92	-185.74	-179.84	-180.60	Y	Y
	-182.56	-191.22	-185.92	-186.56	-172.88	-176.94	Y	Y
	-180.07	-185.92	-182.56	-182.85	-174.28	-174.33	Y	Y
	-180.07	-191.22	-182.56	-184.61	-182.02	-181.31	Y	Y
	-112.23	-142.48	-115.63	-123.44	-114.58	-108.43	Y	Y
	-105.94	-142.48	-115.63	-121.35	-106.83	-104.34	Y	Y
	-115.63	-142.48	-128.19	-128.77	-116.34	-115.58	Y	Y
Acrobot	-105.94	-115.63	-112.23	-111.27	-99.46	-102.15	Y	Y
	-112.23	-128.19	-115.63	-118.68	-107.00	-106.50	Y	Y
	-105.94	-128.19	-115.63	-116.59	-105.86	-104.69	Y	Y
	-105.94	-142.48	-112.23	-120.22	-109.80	-103.00	Y	Y

-112.23	-142.48	-128.19	-127.63	-117.56	-110.07	Y	Y
-105.94	-142.48	-128.19	-125.54	-114.13	-110.59	Y	Y
-105.94	-128.19	-112.23	-115.45	-107.61	-104.49	Y	Y

表 2 基于探索策略多样性构建的容错系统的表现情况(Noise_v2 噪声)

实验环境			测试	性能			多数投票 统计结果	排名投票 统计结果
	最优模型	最差模型	其他模型	模型平均	多数投票	排名投票	优于平均	优于平均
	138.87	67.30	114.99	107.06	141.87	138.28	Y	Y
	116.41	67.30	114.99	99.57	157.69	154.32	Y	Y
	114.99	67.30	69.04	83.78	88.07	91.93	Y	Y
	138.87	67.30	116.41	107.53	186.03	190.40	Y	Y
Contro alla	138.87	67.30	69.04	91.74	102.08	100.59	Y	Y
Cartpole	116.41	67.30	69.04	84.25	92.48	93.05	Y	Y
	138.87	114.99	116.41	123.42	183.68	190.56	Y	Y
	138.87	69.04	114.99	107.64	158.89	151.24	Y	Y
	116.41	69.04	114.99	100.15	144.34	145.23	Y	Y
	138.87	69.04	116.41	108.11	179.54	178.30	Y	Y
	-190.34	-195.89	-195.71	-193.98	-188.07	-192.97	Y	Y
	-190.34	-195.71	-191.57	-192.54	-195.14	-195.83	N	N
	-190.34	-195.71	-195.54	-193.86	-193.21	-197.14	Y	N
	-190.34	-195.89	-191.57	-192.60	-181.74	-182.67	Y	Y
Manutainan	-190.34	-195.89	-195.54	-193.92	-188.47	-190.30	Y	Y
Mountaincar	-190.34	-195.54	-191.57	-192.48	-188.30	-192.64	Y	Y
	-191.57	-195.89	-195.71	-194.39	-192.91	-191.85	Y	Y
	-195.54	-195.89	-195.71	-195.71	-184.48	-185.15	Y	Y
	-191.57	-195.71	-195.54	-194.27	-188.13	-188.79	Y	Y
	-191.57	-195.89	-195.54	-194.33	-177.74	-179.30	Y	Y
	-109.87	-125.00	-115.63	-116.83	-104.72	-105.85	Y	Y
	-109.87	-127.55	-115.63	-117.68	-116.07	-108.12	Y	Y
A = 1 . 1	-109.87	-115.63	-110.99	-112.16	-102.00	-99.72	Y	Y
Acrobot	-115.63	-127.55	-125.00	-122.73	-108.03	-105.16	Y	Y
	-110.99	-125.00	-115.63	-117.21	-97.43	-98.45	Y	Y
	-110.99	-127.55	-115.63	-118.06	-110.88	-101.09	Y	Y

-109.87	-127.55	-125.00	-120.81	-106.73	-105.32	Y	Y
-109.87	-125.00	-110.99	-115.29	-98.71	-106.73	Y	Y
-109.87	-127.55	-110.99	-116.14	-101.80	-100.93	Y	Y
-110.99	-127.55	-125.00	-121.18	-101.95	-101.68	Y	Y

表 3 基于学习算法多样性构建的容错系统的表现情况(Noise_v2 噪声)

实验环境			测试	性能			多数投票 统计结果	排名投票 统计结果
	最优模型	最差模型	其他模型	模型平均	多数投票	排名投票	优于平均	优于平均
	150.97	67.30	91.02	103.10	166.50	169.01	Y	Y
	150.97	49.72	67.30	89.33	196.30	197.23	Y	Y
	150.97	67.30	124.18	114.15	151.97	156.30	Y	Y
	91.02	49.72	67.30	69.35	197.05	197.14	Y	Y
Cantuala	124.18	67.30	91.02	94.17	168.81	168.10	Y	Y
Cartpole	124.18	49.72	67.30	80.40	169.38	164.62	Y	Y
	150.97	49.72	91.02	97.24	178.75	178.21	Y	Y
	150.97	91.02	124.18	122.06	155.72	157.05	Y	Y
	150.97	49.72	124.18	108.29	196.11	193.24	Y	Y
	124.18	49.72	91.02	88.31	189.38	189.57	Y	Y
	-176.05	-190.34	-179.48	-181.95	-182.79	-183.53	Y	Y
	-179.48	-190.34	-180.36	-183.39	-169.76	-176.10	Y	Y
	-166.42	-190.34	-179.48	-178.75	-163.04	-163.58	Y	Y
	-176.05	-190.34	-180.36	-182.25	-182.20	-181.69	Y	Y
M	-166.42	-190.34	-176.05	-177.60	-173.09	-170.64	Y	Y
Mountaincar	-166.42	-190.34	-180.36	-179.04	-168.99	-167.33	Y	Y
	-176.05	-180.36	-179.48	-178.63	-170.69	-174.53	Y	Y
	-166.42	-179.48	-176.05	-173.98	-163.75	-161.48	Y	Y
	-166.42	-180.36	-179.48	-175.42	-159.19	-156.72	Y	Y
	-166.42	-180.36	-176.05	-174.28	-166.18	-167.57	Y	Y
	-115.42	-131.78	-115.63	-120.94	-107.39	-103.25	Y	Y
	-115.63	-131.78	-121.49	-122.96	-104.66	-103.33	Y	Y
Acrobot	-115.63	-155.31	-131.78	-134.24	-116.47	-117.27	Y	Y
	-115.42	-121.49	-115.63	-117.51	-108.77	-103.61	Y	Y
	-115.42	-155.31	-115.63	-128.79	-111.50	-103.87	Y	Y

-115.63	-155.31	-121.49	-130.81	-106.10	-102.36	Y	Y
-115.42	-131.78	-121.49	-122.89	-103.05	-102.03	Y	Y
-115.42	-155.31	-131.78	-134.17	-113.01	-107.62	Y	Y
-121.49	-155.31	-131.78	-136.19	-110.28	-108.74	Y	Y
-115.42	-155.31	-121.49	-130.74	-108.63	-103.61	Y	Y

Noise_v2 噪声下 5.2.1 实验结果补充展示

表 1 基于网络结构构建的容错系统的表现情况的统计结果补充(Noise_v2 噪声)

☆ □Λ TT ↓☆		多数投票统计	十结果		排名投票统证	十结果
实验环境	优于最优	优于最差	优于独立模型数	优于最优	优于最差	优于独立模型数
	N	Y	1	N	Y	1
	N	Y	2	N	Y	2
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
G + 1	N	Y	2	Y	Y	3
Cartpole	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	N	Y	2
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	N	Y	2
Manutainaan	Y	Y	3	Y	Y	3
Mountaincar	N	Y	1	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
A out 14	Y	Y	3	Y	Y	3
Acrobot	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	N	Y	2	Y	Y	3

N	Y	2	Y	Y	3
Y	Y	3	Y	Y	3

表 2 基于探索策略构建的容错系统的表现情况的统计结果补充(Noise_v2 噪声)

☆71人 T.T ↓☆		多数投票统证	十结果		排名投票统证	十结果
实验环境	优于最优	优于最差	优于独立模型数	优于最优	优于最差	优于独立模型数
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	N	Y	2	N	Y	2
	Y	Y	3	Y	Y	3
Controlo	N	Y	2	N	Y	2
Cartpole	N	Y	2	N	Y	2
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	N	Y	2
	N	Y	1	N	Y	1
	N	Y	2	N	Y	2
	Y	Y	3	Y	Y	3
Mountaincar	Y	Y	3	Y	Y	3
Wioumamear	Y	Y	3	N	Y	2
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	N	Y	2	Y	Y	3
	Y	Y	3	Y	Y	3
Acrobot	Y	Y	3	Y	Y	3
ACIOUUI	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3

Y

表 3 基于学习算法构建的容错系统的表现情况的统计结果补充(Noise_v2 噪声)

☆ 11人 T.T. ↓ ☆:		多数投票统计	十结果		排名投票统证	计结果
实验环境	优于最优	优于最差	优于独立模型数	优于最优	优于最差	优于独立模型数
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
Cauto 1	Y	Y	3	Y	Y	3
Cartpole	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	N	Y	1	N	Y	1
	Y	Y	3	Y	Y	3
	Y Y Y Y Y N Y	3	Y	Y	3	
	N	Y	2	N	Y Y	2
Mountaincar	N	Y	2	N	Y	2
Mountainear	N	Y	2	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
Acrobot	Y	Y	3	Y	Y	3
ACIODOL	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3
	Y	Y	3	Y	Y	3

Y	Y	3	Y	Y	3
Y	Y	3	Y	Y	3