Neural Language Models

Knowledge and Language Engineering Lab

목차

■ 신경망 언어 모델 소개

LSTMs 기반 언어 모델 실습

신경망 언어모델 소개

언어 모델

언어 모델?

- 문장 또는 단어열에 대한 확률 분포
- m개의 단어열이 주어졌을 때 m개의 단어열이 나타날 확률을 계산
- P(I am a boy) = 0.7
- P(I a am boy) = 0.02

적용예

- 품사 태깅
 - P(I_{noun} am_{verb} a_{article} boy_{noun})=?
- 기계 번역
 - P(<u>high</u> winds tonight) > P(<u>large</u> winds tonight)
- 철자 교정
 - P(about fifteen <u>minutes</u> from) > P(about fifteen <u>minuets</u> from)
- 기타 등등…

언어 모델

- 접근 방법
 - P(Today is Wednesday)
 - = P(Today)P(is|Today)P(Wednesday|is,Today)

(a.k.a Auto-regressive)

$$P(W) = P(w_1, w_2, w_3, ..., w_n)$$

$$= P(w_1)P(w_2|w_1)P(w_3|w_2, w_1) ... P(w_n|w_{n-1}, w_{n-2}, ..., w_1)$$

$$= \prod_{i=1}^{n} P(w_i|w_1^{i-1})$$

언어 모델

- 통계기반 언어 모델
 - N-gram 언어 모델
- 신경망 기반 언어 모델 Vector space model
 - Recurrent neural network 기반 언어 모델

순환신경망 (Recurrent Neural Networks; RNNs)

순환신경망 (Recurrent Neural Networks; RNNs)

- 순환신경망 (Recurrent Neural Networks; RNNs)
 - 무작위 길이의 열 → 고정된 길이의 벡터 표현
 - I am a boy
 - Sometimes to understand a word's…
 - At your dictionary we try to gib…

RNN의 입력

RNN의 입력: Embedding Layer (Word to Vector)

RNN 출력

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

Timestep마다 다른 Weight? Or weight sharing?

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

- Timestep마다 동일한 weight 공유
 - 학습 파라미터의 수 감소
 - 네트워크가 학습하지 못한 입력열에 대한 일반화 용이 (Overfitting 감소)
 - 가변길이 입력열에 대한 모델링 가능
 - on monday it was snowing ≈ it was snowing on Monday

$$h_t = \sigma \left(W \cdot [h_{t-1}, x_t] + b_f \right)$$

- 불행하게도, 길이가 긴 열 학습 어려움
 - Vanishing gradient problem

- 불행하게도, 길이가 긴 열 학습 어려움
 - Vanishing gradient problem

- 불행하게도, 길이가 긴 열 학습 어려움
 - Vanishing gradient problem
 - 장기 의존성 학습 어려움 (long-term dependency)

- Long Short-Term Memory networks (LSTMs)
 - Vanishing gradient problem 완화
 - 장기 의존성 학습문제 보완

- LSTMs 핵심 아이디어
 - 셀 스테이트 (cell state) 정보 전달 목적
 - 불필요한 정보 제거
 - 유용한 정보 추가

- LSTMs Step1
 - Forget gate layer
 - 어떤 정보를 셀 스테이트에서 <mark>제거</mark>할 것인지 결정

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- LSTMs Step2
 - Input gate layer
 - 어떤 정보를 셀 스테이트에 더해 줄 것인지 결정

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- LSTMs Step3
 - Update the cell state
 - 과거의 C_{t-1} 을 새로운 C_t 로 업데이트

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- LSTMs Step4
 - Output gate layer
 - 셀 스테이트로부터 어떤 정보를 읽을 것인지 결정

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh(C_t)$$

- LSTMs의 다양한 변형
 - Peep hole
 - Forget + Input gate
 - Gated Recurrent Unit (GRU)

신경망 언어 모델

 $P(\langle S \rangle i, am, a, boy) = P(i|\langle S \rangle) * P(am|I,\langle S \rangle) * P(a|i,am,\langle S \rangle)$ * $P(boy|i,am,a,\langle S \rangle) * P(\langle E \rangle|i,am,a,boy,\langle S \rangle)$

LSTM 기반 언어모델 실습

- Training 과정
 - 학습데이터 (수만 문장 이상)
 - i am a boy .
 - sometimes to understand a word's…
 - at your dictionary we try to gib…
 - • •
 - 단어 사전 구축
 - {i=1, am=2, a=3, boy=4, .=5, sometimes=6, ···}
 - 문장 속 단어들 → 숫자들로 변환
 - **1** 2 3 4 5
 - 6789310···
 - **...**

Batching

input

<s></s>	I	am	а	boy		<pad></pad>	<pad></pad>
< S >	sometimes	to	understand	а	word		<pad></pad>
<s></s>	we	try	to	build	а	dictionary	

Output (Target)

1	am	а	boy	•	⟨E⟩	<pad></pad>	<pad></pad>
sometimes	to	understand	а	word	•	⟨E⟩	<pad></pad>
we	try	to	build	а	dictionary		⟨E ⟩

- Batching
- input

7	1	2	3	4	5	0	0
7	6	to	7	а	8	5	0
7	9	10	11	12	3	13	5

 $\langle S \rangle = 7, \langle E \rangle = 8, \cdots \}$

<u>T</u> {⟨pad⟩=0, i=1, am=2, a=3, boy=4, .=5, sometimes=6,

Output (Target)

1	2	3	4	5	8	0	0
6	to	7	а	8	5	8	0
9	10	11	12	3	13	5	8

- Training 과정
 - One-hot representation 변환
 - word idx: 1 2 3 4 5 6

One-hot vector representation

	< S>	1	0	0	0	0	0	0	•••	0
Ce	i	0	1	0	0	0	0	0		0
	am	0	0	1	0	0	0	0		0
ıter	a	0	0	0	1	0	0	0		0
sentence	boy	0	0	0	0	1	0	0		0
	•	0	0	0	0	0	1	0		0
Training	<pad></pad>	0	0	0	0	0	0	1		0
	<pad></pad>	0	0	0	0	0	0	1		0
	•					:				
	<pad></pad>	0	0	0	0	0	0	1	•••	0

Training 과정

127

- Word-embedding 변환
 - word idx: 1 2 3 4 5 6

Word-embedding

	\3/
	i
JCe	am
<u>ıtel</u>	a
Sel	boy
ing	•
ain	<pad></pad>
	<pad></pad>
	•

<pad>

0.24	0.15	0.58	0.94	0.14	0.25	0.33	0.85	0.15	
0.11	0.78	0.91	0.17	0.64	0.75	0.64	0.87	0.36	
0.78	0.91	0.33	0.87	0.36	0.87	0.36	0.25	0.33	
0.85	0.15	0.36	0.64	0.78	0.64	0.75	0.87	0.36	
0.25	0.33	0.33	0.85	0.64	0.75	0.33	0.64	0.75	
0.91	0.33	0.64	0.58	0.94	0.25	0.33	0.15	0.58	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
:									
0	0	0	0	0	0	0	0	0	

Training 과정

Testing 과정

 $P(\langle S \rangle, i, am, a, boy) = P(i|\langle S \rangle) * P(am|I,\langle S \rangle) * P(a|i,am,\langle S \rangle)$

* $P(boy|i,am,a,\langle S \rangle)$ * $P(\langle E \rangle|i,am,a,boy,\langle S \rangle)$ 34

CODE REVIEW

언어모델 실습

- NLTK 설치
 - sudo pip3 install nltk

언어모델 실습

- 1. 언어 모델 학습하기 isTrain=True
- 2. 언어 모델 확습 완료 후 isTrain=False
- 3. 주어진 문장 확률 분포 계산
 - P(<S>, i, am, a, boy)
 - = $P(i|\langle S \rangle) * P(am|I,\langle S \rangle) * P(a|i,am,\langle S \rangle) * P(boy|i,am,a,\langle S \rangle)$ * $P(\langle E \rangle |i,am,a,boy,\langle S \rangle)$
 - def pred_sent_prob(sent) 함수 완성
 - 1. sent 의 단어 index 변환
 - 2. LSTM 에 입력 전달 후, output 출력
 - 3. output 값에서 위의 각 단어의 확률 값 (Log 확률) 추출 : (P(i), P(am), P(a), P(boy), P(⟨E⟩)
 - 4. 각 단어의 Log 확률의 **합** return (Log 확률 합 ≅ 확률 곱)
 - 5. 결과 출력 확인 (아래 두 문장의 확률 비교)
 print('P(i am a boy) =', pred_sent_prob([['i', 'am', 'a', 'boy']])
 print('P(i boy am a) =', pred_sent_prob([['i', 'boy', 'am', 'a']]) 37

Q & A