Analisi Matematica 2 – 8 giugno 2023 – Ing. Informatica Proff. Garrione - Gazzola - Noris - Piovano

Cognome:	Nome:	Matricola:

Parte A	Es.1	Es.2	Es.3	Totale

Per superare l'esame devono essere raggiunte le seguenti soglie: parte $A \ge 4$, parte $B \ge 12$, totale ≥ 18 . Tempo di svolgimento complessivo delle parti A+B=100 minuti.

PARTE A. Domanda aperta (4 punti). Sia $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, con A aperto, e sia $(x_0, y_0) \in A$. Scrivere la definizione di differenziabilità per f in (x_0, y_0) e dimostrare che se f è differenziabile in (x_0, y_0) allora è continua in tale punto.

Domande a risposta multipla $(4 \times 1 = 4 \text{ punti})$: una sola è corretta.

- (1) Sia $a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ la serie di Fourier della funzione $f(x) = \cos x \sin x$. Allora:
- (a) $a_2 = b_2 = 1/2$ (b) $a_2 = b_2 = 0$ (c) $a_2 = 0$ e $b_2 = 1$ (d) $a_2 = 0$ e $b_2 = 1/2$ \boxed{V}
- (2) Siano $E \subset \mathbb{R}^2$ e $x_0 \in \mathbb{R}^2$. Allora:
- (a) se $x_0 \in E$, allora x_0 è un punto interno ad E (b) se $x_0 \in \partial E$, allora $x_0 \notin E$
- (c) se x_0 è un punto esterno ad E, allora $x_0 \notin E[V]$ (d) nessuna delle altre
- (3) Sia $f: \mathbb{R}^2 \to \mathbb{R}$ di classe C^2 e sia $x_0 \in \mathbb{R}^2$ un suo punto critico. Si denoti con $H_f(x_0)$ la matrice Hessiana di f calcolata in x_0 . Allora:
- (a) se 2 è un autovalore di $H_f(x_0)$, allora x_0 non può essere un punto di massimo relativo per f V
- (b) se det $H_f(x_0) < 0$, il punto x_0 può essere un punto di minimo relativo per f
- (c) se i termini sulla diagonale principale di $H_f(x_0)$ sono gli unici nulli, x_0 può essere estremo relativo per f
- (d) nessuna delle altre
- (4) Sia $\varphi: [0, 2\pi] \to \mathbb{R}^2$ definita da $\varphi(t) = (\cos t, \sin t)$. Quale tra le seguenti curve percorre il sostegno di φ due volte in senso orario, mantenendo il punto iniziale e il punto finale di φ ?
- (a) $\psi(s) = (\cos s, -\sin s), s \in [0, \pi]$ (b) $\psi(s) = (\cos(2s), -\sin(2s)), s \in [0, 2\pi]$ (c) $\psi(s) = (\cos(2s), -\sin(2s)), s \in [0, \pi]$ (d) $\psi(s) = (\cos s, -\sin s), s \in [0, 2\pi]$

PARTE B. Esercizi $(3 \times 8 = 24 \text{ punti})$

Esercizio 1 (a) (4 punti) Determinare l'integrale generale dell'equazione differenziale $y''(t)+2y'(t)+y(t)=e^{-2t}$. (b) (2 punti) Stabilire se tale equazione possieda soluzioni y tali che $\lim_{t\to+\infty}y(t)=0$; in caso affermativo, determinarle tutte.

(c) (2 punti) Risolvere il problema di Cauchy $\begin{cases} y''(t) + 2y'(t) + y(t) = e^{-2t} \\ y(0) = 1 \\ y'(0) = -1. \end{cases}$

(S) (a) Per prima cosa risolviamo l'equazione omogenea associata y''(t) + 2y'(t) + y(t) = 0. Per far ciò, determiniamo il polinomio caratteristico e le sue radici:

$$p(\lambda) = \lambda^2 + 2\lambda + 1 = (\lambda + 1)^2,$$
 $p(\lambda) = 0 \Leftrightarrow \lambda = -1.$

Trattandosi di una radice doppia, l'integrale generale dell'equazione omogenea associata è $y_o(t) = C_1 e^{-t} + C_2 t e^{-t}$, al variare di $C_1, C_2 \in \mathbb{R}$. Cerchiamo adesso una soluzione particolare dell'equazione completa. La forzante è di tipo esponenziale, con coefficiente dell'esponente -2, che non risulta essere uno zero del polinomio caratteristico. Quindi una soluzione particolare ha la forma $z(t) = Ae^{-2t}$, per un opportuno $A \in \mathbb{R}$. Per determinare A, sostituiamo z nell'equazione completa:

$$z''(t) + 2z'(t) + z(t) = 4z(t) - 4z(t) + z(t) = z(t) = Ae^{-2t}$$
 impongo e^{-2t} .

da cui A = 1. In conclusione, una soluzione particolare ha la forma $y_p(t) = e^{-2t}$. Dunque, per il teorema di struttura, l'integrale generale dell'equazione completa è

$$y(t) = y_o(t) + y_p(t) = C_1 e^{-t} + C_2 t e^{-t} + e^{-2t},$$

al variare di $C_1, C_2 \in \mathbb{R}$.

(b) Essendo

$$\lim_{t \to +\infty} e^{-t} = \lim_{t \to +\infty} t e^{-t} = \lim_{t \to +\infty} e^{-2t} = 0,$$

tutte le soluzioni dell'equazione data verificano $\lim_{t \to +\infty} y(t) = 0$.

(c) Per risolvere il problema di Cauchy, calcoliamo la derivata dell'integrale generale:

$$y'(t) = -C_1 e^{-t} + C_2 e^{-t} - C_2 t e^{-t} - 2e^{-2t}$$

e imponiamo le due condizioni iniziali: $\begin{cases} y(0) = C_1 + 1 = 1 \\ y'(0) = -C_1 + C_2 - 2 = -1, \end{cases}$ da cui deduciamo $C_1 = 0, C_2 = 1$. La soluzione del problema di Cauchy è perciò $te^{-t} + e^{-2t}$.

Esercizio 2 Sia $g:[0,\pi]\to\mathbb{R}$ definita da

$$g(x) = \begin{cases} \frac{3}{4}\pi^2 & x \in [0, \pi/2) \\ -x^2 + \pi^2 & x \in [\pi/2, \pi]. \end{cases}$$

Sia $g_p: [-\pi, \pi] \to \mathbb{R}$ l'estensione pari di g, e sia $f: \mathbb{R} \to \mathbb{R}$ l'estensione 2π -periodica di g_p .

- (a) (1 punto) Disegnare il grafico di f sull'intervallo $[0, 4\pi]$.
- (b) (4 punti) Scrivere la serie di Fourier di f.
- (c) (3 punti) Discutere convergenza puntuale, convergenza in media quadratica e convergenza totale della serie trovata.
- (S) (a) Il grafico di f su $[0, 4\pi]$ è riportato in figura:

(b) Scrivendo la serie di Fourier nella forma $a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$, calcoliamo i coefficienti a_0, a_n, b_n . Poiché f è pari, $b_n = 0$ per ogni n. Si ha poi

$$a_0 = \frac{1}{\pi} \left(\int_0^{\pi/2} \frac{3}{4} \pi^2 \, dx + \int_{\pi/2}^{\pi} (-x^2 + \pi^2) \, dx \right) = \frac{7}{12} \pi^2,$$

$$a_n = \frac{2}{\pi} \left(\int_0^{\pi/2} \frac{3}{4} \pi^2 \cos(nx) \, dx + \int_{\pi/2}^{\pi} (-x^2 + \pi^2) \, \cos(nx) \, dx \right) = \frac{2}{n^2} \cos\left(\frac{n\pi}{2}\right) - \frac{4\cos(n\pi)}{n^2} - \frac{4}{n^3\pi} \sin\left(\frac{n\pi}{2}\right),$$

procedendo per esempio per parti nel secondo integrale. Segue che la serie di Fourier associata ad f si scrive come

$$\frac{7}{12}\pi^2 + \sum_{n=1}^{+\infty} \left(\frac{2}{n^2} \cos\left(\frac{n\pi}{2}\right) - \frac{4(-1)^n}{n^2} - \frac{4}{n^3\pi} \sin\left(\frac{n\pi}{2}\right) \right) \cos(nx).$$

Si può eventualmente notare che $a_1=(4/n^2-4/(n^3\pi)), a_2=-6/n^2, a_3=(4/n^2+4/(n^3\pi)), a_4=-2/n^2$ e tali coefficienti si ripetono ciclicamente $(a_1=a_5=a_9=\ldots,a_2=a_6=a_{10}=\ldots$ e così via).

(c) La funzione f è 2π -periodica, regolare a tratti e continua su \mathbb{R} . Pertanto, la serie di Fourier determinata al punto precedente converge totalmente e quindi anche puntualmente ad f su tutto \mathbb{R} . Poiché f è regolare a tratti, la serie di Fourier di f converge ad f anche in media quadratica.

Esercizio 3 Calcolare

$$I = \iiint_D z \, e^{-(x^2 + y^2)} \, dx \, dy \, dz \quad \text{con} \quad D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1, \ z^2 \le x^2 + y^2 \le 4z^2\}.$$

(S) In coordinate cilindriche (o, equivalentemente, tramite integrazione per strati e passaggio a coordinate polari), l'integrale diventa

$$\begin{split} I &= \int_0^1 \left(\int_0^{2\pi} d\vartheta \int_z^{2z} e^{-\rho^2} \rho \ d\rho \right) z dz = 2\pi \int_0^1 z \left[-\frac{e^{-\rho^2}}{2} \right]_z^{2z} \ dz = -\pi \int_0^1 z \left[e^{-4z^2} - e^{-z^2} \right] \ dz \\ &= -\pi \left\{ \int_0^1 z \ e^{-4z^2} \ dz - \int_0^1 z \ e^{-z^2} \ dz \right\} = -\pi \left[-\frac{e^{-4z^2}}{8} + \frac{e^{-z^2}}{2} \right]_0^1 = \frac{\pi}{8} e^{-4} - \frac{\pi}{2} e^{-1} - \frac{\pi}{8} + \frac{\pi}{2}. \end{split}$$