Solid Electrolyte Chemical Sensors for Aerospace Applications

Jennifer Xu and Gary Hunter

NASA Glenn Research Center

Chung-Chiun Liu

Case Western Reserve University

Benjamin Ward

Makel Engineering, Inc.

Outline

- Background of Chemical Sensors at NASA GRC
- Solid Electrolyte Chemical Microsensors
 - Oxygen sensors
 - Carbon dioxide sensors
- Summary

Background of Chemical Sensors at NASA GRC

Sensors and platforms

H₂, CH₄, C₂H₄, C₃H₆, CO₂, CO, NOx, and N₂H₄ Schottky diodes, resistors, and electrochemical cells

Approaches

Microfabrication, small size, low weight, cost, and power consumption. Batch fabrication, sensor arrays, smart sensor system and use as "Lick and Stick"

Applications

Engine health and emissions monitoring, fuel leak detection, low false alarm fire detection, and environmental monitoring

Oxygen Microsensor Structure

AutoCAD drawing of an interdigitated electrode structure and two contacts

Oxygen Microsensor Testing Results

Oxygen Microsensor Repeatability Testing

Oxygen Microsensor Current Vs. Log of Oxygen Concentration (Linear fitting from 0.5% to 16%)

Oxygen Microsensor Testing Results

Oxygen Microsensor Current Vs. Log of Oxygen Concentrations (Linear fitting from 0.025% to 0.7%)

Amperometric O₂ Microsensor Sensing Mechanism

(Interdigitated electrodes simplified showing one pair of electrodes)

Solid Electrolyte Carbon Dioxide Microsensors

Pt interdigitated finger electrode on Al₂O₃ substrate

SEM image of a fabricated CO₂ sensor

Carbon dioxide microsensor tested at 600°C, 1V

Side view of microfabricated CO₂ sensor

(Simplified with two electrodes, patent filed)

Na2CO3/BaCO3				
NASICON	Pt(+)	NASICON	Pt(-)	NASICON
Al_2O_3				

Nanocrystalline Tin Oxide Coated to Reduce Solid Electrolyte Carbon Dioxide Sensor Operation Temperature

Nanocrystalline Tin Oxide Improves Solid Electrolyte Carbon Dioxide Sensor Performance

Sensor Responses Significantly Changed with Nanocrystalline Coating

Sensors without tin oxide sol gel addition

Sensors after tin oxide sol gel addition

Nanocrystalline Tin Oxide Improve Solid Electrolyte Carbon Dioxide Sensor

Solid Electrolyte CO₂ Sensor with Nanocrystalline SnO₂ (Detection temperature greatly reduced from 600°C to 375°C)

Sensing Mechanism of Solid State Electrochemical Sensors for Carbon Dioxide Gases

- Reduction site
- Oxidation site

- Reduction reaction at Pt(-) electrodes $2Na^+ + CO_2 + 1/2 O_2 + 2e^- \rightarrow Na_2CO_3$
- N-type metal oxides: supply more electrons or enhance electrons flow
- Results: Detection temperature decreased and power consumption reduced

Summary

- Oxygen and carbon dioxide microsensors developed using same microsensor platform
- Oxygen sensor uses one sensing material system YSZ. By depositing the right thickness, YSZ can be both diffusion barrier and sensing material. Simplest sensor fabrication but wide oxygen detection was achieved: linear current response to the log of oxygen concentration from 0.025% to 16%
- Carbon dioxide sensor using two-material sensing system uniquely fabricated on interdigitated electrode, forming robust structure. Wide carbon dioxide detection achieved. Linear current response to the log of carbon dioxide concentration from 0.02% to 2% in air
- Solid electrolyte CO₂ sensor improved and sensor power consumption decreased through addition of n-type SnO₂ nanomaterial. CO₂ operation temperature decreased from 600°C to 375°C. CO₂ in air from 0.5% to 4% was tested
- Further improvement including expending sensor detection ranges and further reduce power consumption by reducing operation temperature.
- Oxygen and carbon dioxide microsensors can be used for aerospace applications such as fire detection and environmental monitoring.

Acknowledgements

Mike Artale, Peter Lampard, and Drago Androjna Dorothy Lukco and Beth Osborn Lawrence Matus and Mary Zeller

NASA Aviation Safety Program/IVHM Project NASA ETDP/Space Fire Prevention Task

