Ideas

Simon Pohmann

April 27, 2022

1 (d, ϵ) -structures

Let p be a prime. Consider the category EC defined by

$$\label{eq:obecome} \begin{split} \operatorname{Ob}(\operatorname{EC}) &:= \{E \text{ elliptic curve over } \mathbb{F}_{p^2} \} \\ \operatorname{Hom}_{\operatorname{EC}}(E,E') &:= \{\psi : E \to E' \text{ isogeny} \} \end{split}$$

Have a functor

and a functor

$$\hat{\cdot}: EC \to EC^{op}, E \mapsto E, \phi \mapsto \hat{\phi}$$

 (d,ϵ) -structures and their isogenies are given by the category $\mathrm{ES}_{d,\epsilon}$ defined by

$$Ob(ES) := \{ (E, \psi) \mid E \in EC, \ \psi : E \to E^{(p)}, \ \hat{\psi} = \epsilon \psi^{(p)} \}$$

$$Hom_{ES}((E, \psi), (E', \psi')) := \{ \phi : E \to E' \mid \psi' \circ \phi = \phi^{(p)} \circ \psi \}$$

2 j-invariant and modular polynomials

Consider the j-invariant

$$j:\mathcal{H}\to\mathbb{C}$$

that assigns to a complex elliptic curve given by a lattice $\mathcal{L}\{\tau,1\}$ its j-invariant $j(\tau)$. Then it is a fact that for $N \in \mathfrak{N}$ the map

$$j_N: \mathcal{H} \to \mathbb{C}, \quad \tau \mapsto j(N\tau)$$

is algebraic over $\mathbb{C}(j)$ and its minimal polynomial is $\Phi_N(X,j)$. This Φ_N is called modular polynomial, and we have $\Phi_N \in \mathbb{Q}[X,Y]$ and furthermore $\Phi_N(X,Y) = \Phi_N(Y,X)$.

Furthermore, it holds that

$$\Phi_N(j(E), j(E')) = 0$$

for any E' such that there is an N-isogeny $E \to E'$ (No idea how to prove that). We see then that for all primes p, have

$$\Phi_N(j(E), j(E')) = 0$$

for elliptic curves E, E' defined over $\bar{\mathbb{F}}_p$ such that there is an N-isogeny $E \to E'$. This shows that if we have a (d, ϵ) -structure (E, ψ) then

$$\Phi_d(j(E), j(E^{(p)})) = \Phi_d(j(E), j(E)^p) = 0$$

as there is the d-isogeny $\psi: E \to E^{(p)}$.

3 My first idea

As usual, let p be a (big) prime and consider $q := p^2$. Consider a (small) prime l. Then every supersingular Elliptic Curve E/\mathbb{F}_q satisfies $\Phi_n(j(E), j(E)^p) = 0$ with $n = l^{O(\log(p))}$, as the supersingular l-isogeny graph is an expander with mixing length $O(\log(p))$, hence there is a path from E to $E^{(p)}$ of length $O(\log(p))$.

Now we analyze when $\Phi_n(j(E), j(E)^p) = 0$ for an ordinary Elliptic Curve E/\mathbb{F}_q .

Using the isogeny graph

Since the connected component of E in the l-isogeny graph is a vulcano, we can find a path (of length $O(\log(p))$) to an Elliptic Curve in the crater, say E_0 . Hence there are ascending l-isogenies

$$E \rightarrow ... \rightarrow E_0$$

Let $K := \operatorname{End}^0(E_0)$ and consider the maximal order $\mathcal{O}_K \subseteq K$, $\mathcal{O}_0 := \operatorname{End}(E_0)$ and $\mathcal{O} := \operatorname{End}(E)$. Then have that $\mathcal{O} \subseteq \mathcal{O}_0 \subseteq \mathcal{O}_K$ with $[\mathcal{O}_0 : \mathcal{O}] = l^{O(\log(p))}$ and $l \nmid [\mathcal{O}_K : \mathcal{O}_0]$. Now we are in one of the following cases:

- (1) E_0 is defined over \mathbb{F}_p , i.e. $E_0^{(p)}=E_0$; Then $\Phi_n(j(E),j(E)^p)=0$
- (II) $E_0^{(p)}$ is (nontrivially) l-isogeneous to E_0 , i.e. they are two distinct vertices on the crater; Then it is likely that $\Phi_n(j(E), j(E)^p) \neq 0$, but that depends on the distance in the crater
- (III) $E_0^{(p)}$ is not *l*-isogeneous to E_0 ; Then $\Phi_n(j(E), j(E)^p) \neq 0$

Analyzing (III)

Now consider only E_0 and denote $\mathcal{O} := \mathcal{O}_0$ and $E := E_0$.

Let $[\mathfrak{a}] \in \mathrm{Cl}(\mathcal{O})$ such that $[\mathfrak{a}].E = E^{(p)}$. We have (III) if and only if $[\mathfrak{a}]$ contains no integral ideal of index l^r , for any $r \in \mathfrak{N}$. Assume it does, say \mathfrak{b} . Then $\mathfrak{b} = \alpha \mathfrak{a}$ for some $\alpha \in \mathfrak{a}^{-1}$ with

$$\mathfrak{N}(\alpha) = \frac{\mathfrak{N}(\mathfrak{b})}{\mathfrak{N}(\mathfrak{a})} = \frac{l^r}{\mathfrak{N}(\mathfrak{a})}$$

Since we do not require α to be integral, we can substitute α by α/l and so find that

$$\mathfrak{N}(\alpha) = \mathfrak{N}(\mathfrak{a})^{-1}$$
 or $\mathfrak{N}(\alpha) = l\mathfrak{N}(\mathfrak{a})^{-1}$

This leads us to the interesting (slightly weaker) question: When does there exist some $\alpha \in K$ with $\mathfrak{N}(\alpha) = N$ for some (square-free) N?