Lecture 12

Date: March 1st, 2011

Sao-Jie Chen

Today

- SR latch
- Develop SR master—slave flip-flop
- Clock
- Type of flip-flop clocking:
 - positive-edge, negative-edge, master-slave
- Reading sequential circuits

Review: a Clocking Solution: Master-Slave

Types of Flip-Flops

D Flip-Flop						
Next-	State Table	Excitation	1 Table			
D	\mathbf{Q}^+	$Q Q^+$	D			
0	0	0 0	0			
1	1	0 1	1			
		1 0	0			
		1 1	1			

T Flip-Flop						
Next-	State Table	Excitation Table				
T	\mathbf{Q}^+		$Q Q^+$		T	
0	Q		0 0		0	
1	Q'		0 1		1	
			1 0		1	
			1 1		0	

SR Flip-Flop							
Next-St	ate Table	Excitation	Excitation Table				
S R	\mathbf{Q}^+	$Q Q^+$	$Q Q^+$ S				
0 0	Q	0 0	0	X			
0 1	0	0 1	1	0			
1 0	1	1 0	0	1			
11	?	1 1	X	0			

JK Flip-Flop							
Next-Sta	te Table	Excitation	Excitation Table				
JK	Q^+	$Q Q^+$ $J K$					
0 0	Q	0 0	0	X			
0 1	0	0 1	1	X			
10	1	1 0	X	1			
1 1	Q'	1 1	X	0			

Combinational vs. Sequential Circuits

Combinational:

- 1. No memory
- 2. Output a function only of current inputs
- 3. Build using only combinational components (AND, OR, NOT gates, etc.)

Sequential:

- 1. Has memory
- Output a function of current inputs
 previous inputs
- 3. Build using only combinational components & storage elements (latches, FF's)

State of a Sequential Circuit

The state is the binary information stored at any given time.

Synchronous Circuits

All storage elements are clocked: their states change simultaneously at fixed intervals, specified by a period input called clock.

Clocking Requirements

- Clock period must be long enough for network to stabilize
- Clock pulse must be long enough to provide sufficient switching energy to the flip-flops

Actual case master-slave flip-flop

Flip-Flop Clocking (1)

A *master-slave flip-flop* changes state on the falling CLK edge, based on the S and R values while CLK = 1 and immediately prior to 1 => 0 CLK transition

A *positive-edge-triggered flip-flop* changes state on the rising CLK edge, based on the S and R values immediately prior to 0 => 1 CLK transition

Flip-Flop Clocking (2)

A *negative-edge-triggered flip-flop* changes state on the falling CLK edge, based on the S and R values immediately prior to 1 => 0 CLK transition

Types of flip-flops

Types of Flip-flop Clocking

State Variables vs. States

- State in a sequential circuit is the binary information stored at any given time.
- When state changes occur?
 - only at the clock pulse
- When can output change?
 - when the state changesor
 - when the inputs change
- How many states are there?
 - 1 FF => 1 state var, 2 states: 0, 1
 - 2 FFs => 2 state var's, 4 states: 00, 01, 10, 11
 - 3 FFs => 3 state var's, 8 states: 000, 001,, 111

Simple Sequential Circuit Timing Diagram D Flip-Flops

Assume: A = B = C = 0

Sequential Network Analysis Example D Flip-Flops

Sequential Network Analysis Example D Flip Flops (cont.)

Flip-flop inputs:

Flip-flop outputs:

$$D_A = x'A + xB'$$

$$z = x B A'$$

 $D_B = x' B + x A$

Next state table:

Current state input		FF inputs		Next state		output	
Α	В	x	D _A	D _B	A ⁺	B ⁺	Z
0	0	0	0	0	0	0	0
0	0	1	1	0	J	0	0
0	1	0	0	1	0	1	0
0	1	1	0	0	0	0	1
1	0	0	1	0	1	0	0
1	0	1	1	1	1	1	0
1	1	0	1	1	1	1	0
1	1	1	0	1	0	1	0

State diagram:

States: AB or A+B+

Label: x/z (input/output)

Sequential Network Analysis Example (cont.) What does this circuit do?

0/0

10

1/0

0/0

00

1/0

Examine a timing diagram

Given input x, determine output z and the sequence of states Assume initial state is 00

z = 1 when the number of 1's read thus far is 0 mod 4 (and >= 4)

Sequential Network Analysis Example JK Flip-Flops

Sequential Network Analysis Example JK Flip Flops (cont.)

Flip-flop inputs:

Flip-flop outputs:

$$J_A = x B'$$
 $J_B = x A$

$$z = x A' B$$

$$K_A = x B$$
 $K_B = x A'$

$$K_B = x A'$$

Next state table:

Current state input			FF inputs				Next state		output
Α	В	X	J _A	K _A	J _B	K _B	A ⁺	B ⁺	Z
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	0	0	0	0	0	1	0
0	1	1	0	1	0	1	0	0	1
1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	1	0	1	1	0
1	1	0	0	0	0	0	1	1	0
1	1	1	0	1	1	0	0	1	0

1/0 00 10 1/1 1/0 11 1/0

0/0

0/0

Does the same thing as our previous example:

16

The state diagram would be identical!