# 液晶显示和热敏电阻

2020.12.25

### LCD 1602 说明

#### <u>参考</u>

液晶屏幕LCD1602A能够同时显示16列2行字符,每个字符由8行5列个像素阵列组成。每个像素是屏幕上的一个点,对应的数据为1时显示黑点,为0不显示。



DDRAM(Display Data RAM) 用来寄存待显示的字符代码, 共80个字节, 其地址和屏幕的对应关系如上图所示。



VCC - 3.3V (V3)

| 编号 | 符号  | 引脚说明    | 编号 | 符号         | 引脚说明  |
|----|-----|---------|----|------------|-------|
| 1  | VSS | 电源地     | 9  | <b>D2</b>  | 数据    |
| 2  | VDD | 电源正极    | 10 | <b>D</b> 3 | 数据    |
| 3  | VL  | 液晶显示偏压  | 11 | <b>D4</b>  | 数据    |
| 4  | RS  | 数据/命令选择 | 12 | <b>D5</b>  | 数据    |
| 5  | R/W | 读/写选择   | 13 | <b>D</b> 6 | 数据    |
| 6  | E   | 使能信号    | 14 | <b>D</b> 7 | 数据    |
| 7  | D0  | 数据      | 15 | BLA        | 背光源正极 |
| 8  | D1  | 数据      | 16 | BLK        | 背光源负极 |

第1脚: VSS为地电源。

第2脚: VDD接5V正电源。

第3脚: VL(V0)为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比

度过高时会产生"鬼影",使用时可以通过一个10K的电位器调整对比度。更简单的接法就是

通过一个电阻接地。\*可按上页接线,两边分别接2个和3个330欧的电阻。

第4脚: RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚: R/W为读写信号线, 高电平时进行读操作, 低电平时进行写操作。当RS和R/W共同

为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS

为高电平R/W为低电平时可以写入数据。

第6脚: E端为使能端, 当E端由高电平跳变成低电平时, 液晶模块执行命令。

第7~14脚: D0~D7为8位双向数据线。

第15脚:背光源正极。 第16脚:背光源负极。 LCD1602内置了192个常用字符的字模,存于字符产生器CGROM(Character Generator ROM)中,另外还有允许用户自定义8个字符,存于CGRAM(Character Generator RAM)中。

CGRAM和 CGROM编码



**CGROM** 



地址0x00~0x07或0x08~0x0F为自定义8个字符的地址,地址0x00和0x08都是第0个自定义字符的地址。

#### 1602液晶模块内部的控制器共有11条控制指令,如表所示:

| 序号 | 指令                 | RS | R/W | <b>D</b> 7 | D6                                  | D5                              | D4 | D3 | D2   | D1  | D0  |   |
|----|--------------------|----|-----|------------|-------------------------------------|---------------------------------|----|----|------|-----|-----|---|
| 1  | 清显示                | 0  | 0   | 0          | 0                                   | 0                               | 0  | 0  | 0    | 0   | 1   | 4 |
| 2  | 光标返回               | 0  | 0   | 0          | 0                                   | 0                               | 0  | 0  | 0    | 1   | *   | 7 |
| 3  | 置输入模式              | 0  | 0   | 0          | 0                                   | 0                               | 0  | 0  | 1    | I/D | S   | 7 |
| 4  | 显示开/关控制            | 0  | 0   | 0          | 0                                   | 0                               | 0  | 1  | D    | C   | В   | 7 |
| 5  | 光标或字符移             | 0  | 0   | 0          | 0                                   | 0                               | 1  | S/ | R/   | *   | *   | 1 |
|    | 位.                 |    |     |            |                                     |                                 |    | C  | L    |     |     |   |
| 6  | 置功能                | 0  | 0   | 0          | 0                                   | 1                               | DL | N  | F    | *   | * \ |   |
| 7  | 置字符发生存<br>贮器地址     | 0  | 0   | 0          | 1                                   | 1 用于自定义字符的序号(0~7)和<br>点阵行号(0~7) |    |    |      |     |     |   |
| 8  | 置数据存贮器 地址          | 0  | 0   | 1          |                                     | 数据存标定位                          |    |    | 40~4 | F   |     |   |
| 9  | 读忙标志或地<br>址        | 0  | 1   | BF         | 计数器地址 (光标处的地址)<br>BF-忙标志(Busy Flag) |                                 |    |    |      |     |     |   |
| 10 | 写数到                | 1  | 0   | 要写         | 要写的数据内容                             |                                 |    |    |      |     | 1   |   |
|    | CGRAM或<br>DDRAM)   |    |     |            | 合出在光标处显示的字符编码<br>或者自定义字符的一行点阵       |                                 |    |    |      |     |     |   |
| 11 | 从CGRAM或<br>DDRAM读数 | 1  | 1   |            | 读出的数据内容                             |                                 |    |    |      |     |     | 1 |

后面把10称为写数据,1~8称为写指令

1-清除屏幕

/2-光标归于左上角 / (屏幕内容不变)

I/D=1:写入新数据后(光标)右移 I/D=0:写入新数据后(光标)左移

S=1: 移动整个屏幕

S=0: 移动光标

D 1-显示开 0-显示关

C 1-显示光标 0-不显示光标

B 1-光标闪烁 0-不闪烁

S/C 1-移动屏幕 0-移动光标 R/L 1-右移一个字符 0-左移

DL 1-8位数据接口 0-4位接口

N 1-两行显示

0-1行显示

F 1-5×10点阵

0-5×8(两行)

1602液晶模块的读写操作、屏幕和光标的操作都是通过指令编程来实现的。(说明:1为高电平、0为低电平)

指令1: 清显示, 指令码01H,光标复位到地址00H位置。

指令2: 光标复位, 光标返回到地址00H。

指令3: 光标和显示模式设置I/D: 光标移动方向, 高电平时写入新数据后右移, 低电平左移 S:屏幕上所有文字是否左移或者右移。高电平表示有效, 低电平则无效。

指令4:显示开关控制。D:控制整体显示的开与关,高电平表示开显示,低电平表示关显示C:控制光标的开与关,高电平表示有光标,低电平表示无光标B:控制光标是否闪烁,高电平闪烁,低电平不闪烁。

指令5: 光标或显示移位S/C: 高电平时移动显示的文字, 低电平时移动光标。

指令6:功能设置命令DL:高电平时为4位总线,低电平时为8位总线N:低电平时为单行显示,高电平时双行显示F:低电平时显示5x7的点阵字符,高电平时显示5x10的点阵字符。

指令7:设置CGRAM或CGROM地址。

指令8:设置DDRAM地址。

指令9:读忙信号和光标地址BF:为忙标志位,高电平表示忙,此时模块不能接收命令或者数据,如果为低电平表示不忙。每次写入下一个命令或数据时都要先查询是否忙,否则会造成写入失败。可以采用延迟的方法代替。

指令10: 写数据。

指令11:读数据。

### 用CGRAM定义字符

写入8个字节(字模地址为00000000~00000111或00001000~00001111)的数据(命令10)可以自定义一个5\*8字符,每个字节的前3位没有被使用。定义摄氏温标的符号的8个字节为0x10,0x06,0x09,0x08,0x08,0x09,0x06,0x00。地址格式如下:



第几(0~7)个 每个自定义字符的字模的第 自定义字符 几(0~7)行

定义一个新字符,只要设置好CGRAM地址,依次写入这个字模数据即可: 假设要定义第三个(从0开始)自定义字符(字模地址为0x03或0x0b)为°C:

C7-01011111 D10-0x00

输出:

C7-01011000 D10-0x10 C7-01011001 D10-0x06 C7-01011010 D10-0x09 C7-01011011 D10-0x08 C7-01011100 D10-0x08 C7-01011101 D10-0x09 C7-01011110 D10-0x06

### 写操作时序

延迟的目的是防止覆盖前一个操作

#### 写数据

- 1、延迟150ns
- 2、RS高电平
- 3、R/W低电平
- 4、E高电平
- 5、写DBO~DB7
- 6、E低电平

#### 写指令

- 1、延迟150ns
- 2、RS低电平
- 3、R/W低电平
- 4、E高电平
- 5、写DBO~DB7
- 6、E低电平



## 读操作时序

- 1、延迟150ns (延迟的目的是防止覆盖前一个操作)
- 2、发出RS信号 (1-数据 0-指令)
- 3、R/W高电平
- 4、E高电平
- 5、读DB0~DB7
- 6、E低电平



## 初始化(复位)过程和显示字符

#### 初始化

写指令38H 设置模式: 8位数据接口, 两行, 5\*8字符点阵

写指令0CH 显示设置: 开显示, 光标不显示, 不闪烁

写指令01H:清屏

#### 从左上角(或当前光标处)开始写字符

D10-字符编码1 D10-字符编码2 D10-字符编码3 ……

D10 - 写数据(第10条控制指令)

写入一个字符后光标自动会移到下一个字符处。指令3可以修改光标左右移的方式。

#### 从定位光标写字符

C8-光标位置 D10-字符编码1 C8-光标位置 D10-字符编码2 D10-字符编码3 ·····

C8 - 写指令8

| p+rb 会粉     | 77 🗆         | 20  | 极限值 | 单位  | 2001 S-14 AZ AL |                  |  |
|-------------|--------------|-----|-----|-----|-----------------|------------------|--|
| 时序参数        | 符号           | 最小值 | 典型值 | 最大值 | 甲亚              | 测试条件             |  |
| E 信号周期      | to           | 400 | -   | -   | ns              |                  |  |
| E 脉冲宽度      | tpw 150      |     | -   | -   | ns              | 引脚E              |  |
| E 上升沿/下降沿时间 | tR, tF       | -   | -   | 25  | ns              |                  |  |
| 地址建立时间      | tsP1         | 30  | -   |     | ns              | SISHIE DC D/W    |  |
| 地址保持时间      | THD1         | 10  | -   | -   | ns              | 引脚 E、RS、R/W      |  |
| 数据建立时间(读操作) | to           | -   | -   | 100 | ns              |                  |  |
| 数据保持时间(读操作) | tHD2         | 20  | -   | -   | ns              | 引脚 DBO~DB7       |  |
| 数据建立时间(写操作) | 写操作) tsp2 40 |     | -   | -   | ns              | ו פט⊸יטפט ואמו כ |  |
| 数据保持时间(写操作) | tHD2         | 10  | -   | -   | ns              |                  |  |

#### 功能框图



## 热敏电阻

### MF52 10K B值(3950)

NTC 热敏电阻 10K (型号: MF52AT) 5%精度 B值: 3950 1%

#### 1. 型号说明

| MF     | 52  | 103   | Н    | 3950  | F    | A      |
|--------|-----|-------|------|-------|------|--------|
| NTC 热敏 | 环氧系 | 电阻值   | 阻值允差 | B值    | B值允差 | B值类别   |
| 电阻     | 列   | 10K Ω | ±5%  | 3950K | ±1%  | B25/50 |

#### 2. 电气性能

| 序号   | 项目          | 符号     | 测试条件                                     | 最小值  | 正常值         | 最大<br><u>值</u> | 单位    |
|------|-------------|--------|------------------------------------------|------|-------------|----------------|-------|
| 3-1. | 25℃的电<br>阻值 | R25    | $Ta=25\pm0.05$ °C $P_{\tau} \leq 0.1$ mw | 9. 9 | 10.0        | 10.            | kΩ    |
| 3-2. | 50℃的电<br>阻值 | R50    | $Ta=50\pm0.05$ °C $P_{\tau} \le 0.1$ mw  | /    | 4. 065<br>0 | /              | kΩ    |
| 3-3. | B值          | B25/50 |                                          | 3436 | 3470        | 350<br>4       | K     |
| 3-4. | 耗散系数        | σ      | Ta=25±0.5℃                               | 2. 0 | /           | /              | mw/°C |
| 3-5. | 时间常数        | τ      | Ta=25±0.5℃                               | /    | /           | 15             | sec   |
| 3-6. | 绝缘电阻        | /      | 500VDC                                   | 50   | /           | /              | MΩ    |
| 3-7. | 使用温度 范围     | /      | /                                        | -55  | /           | +125           | ℃     |

3. 机械试验

| <b>3.</b> 化版          | 四型                                       |                                                                                                     |
|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 项目                    | <br>  技术要<br>  求                         | 测试条件及方法                                                                                             |
| 4-1.<br>可焊<br>性       | 引焊由和良上积以出料流浸好锡的,面以上95%                   | 将引出端沾助焊剂后,浸入温度为 230±5℃锡槽中,锡面距 NTC 本体下端 2-2.5mm 处,持续 2±0.5S<br>(参照 IEC60068-2-20 试验 Ta/GB2423.28 Ta) |
| 4-2.<br>耐焊<br>接热      | 无可见<br>性损伤<br>ΔR/R <sup>2</sup><br>5≤±2% | 将引出端浸入温度为 260±5℃锡槽中,锡面距 NTC 本体下端 5mm 处持续 5±1S<br>(参照 IEC60068-2-20 试验 Tb/GB2423. 28 Tb)             |
| 4-3.<br>引出<br>端强<br>度 | 无脱落<br>△R/R2<br>5≤2%                     | 试验 Ua: 拉力 5N,持续 10S;<br>(参照 IEC60068-2-21 / GB2423.29 U试验)                                          |

#### 4. 可靠性试验

| <b>→</b> □ □ □ | 工队业      |             |                                                                  |
|----------------|----------|-------------|------------------------------------------------------------------|
| 序号             | 项目       | 技术要求        | 测试条件及方法                                                          |
| 5-1.           | 高温试验     | Δ R/R25≪±2% | 125±5℃,通电 1000±24h,DC0.2mA<br>(参照 IEC60068-2-2/GB2423.2 试验)      |
| 5-2.           | 低温试验     | Δ R/R25≪±2% | -55±5℃,通电 1000±24h,DC0.2mA<br>(参照 IEC60068-2-1/GB2423.1 试验)      |
| 5-3.           | 耐潮湿试验    | Δ R/R25≪±2% | 40±2℃, 90%-95%RH 环境下放置 100±24h<br>(参照 IEC60068-2-3/GB2423. 3 试验) |
| 5-4.           | 温度冷热循环试验 | Δ R/R25≪±2% | -<br>55℃×30min→80℃×5min→125℃×30min→<br>80℃×5min,反复5次             |
|                |          |             | (参照 IEC60068-2-14/GB2423. 22 试验)                                 |

#### 5. 使用注意事项

将产品引线裁剪成所需要的长度,注意最小长度≧5mm。

### 热敏电阻---温度阻值对照表

### R25°C=10K

| <b>T(</b> ℃) | R(KΩ)    | <b>T(℃)</b>  | R(KΩ)   | <b>T(</b> ℃) | R(KΩ)   | <b>T(</b> ℃) | R(KΩ)   |
|--------------|----------|--------------|---------|--------------|---------|--------------|---------|
| -40          | 190.5562 | -27          | 99.5847 | -14          | 53.1766 | -1           | 29.2750 |
| -39          | 183.4132 | -26          | 94.6608 | -13          | 50.7456 | 0            | 28.0170 |
| -38          | 175.6740 | -25          | 90.0326 | -12          | 48.4294 | 1            | 26.8255 |
| -37          | 167.6467 | -24          | 85.6778 | -11          | 46.2224 | 2            | 25.6972 |
| -36          | 159.5647 | -23          | 81.5747 | -10          | 44.1201 | 3            | 24.6290 |
| -35          | 151.5975 | -22          | 77.7031 | -9           | 42.1180 | 4            | 23.6176 |
| -34          | 143.8624 | -21          | 74.0442 | -8           | 40.2121 | 5            | 22.6597 |
| -33          | 136.4361 | -20          | 70.5811 | -7           | 38.3988 | 6            | 21.7522 |
| -32          | 129.3641 | -19          | 67.2987 | -6           | 36.6746 | 7            | 20.8916 |
| -31          | 122.6678 | -18          | 64.1834 | -5           | 35.0362 | 8            | 20.0749 |
| -30          | 116.3519 | -17          | 61.2233 | -4           | 33.4802 | 9            | 19.2988 |
| -29          | 110.4098 | -16          | 58.4080 | -3           | 32.0035 | 10           | 18.5600 |
| -28          | 104.8272 | -15          | 55.7284 | -2           | 30.6028 | 11           | 18.4818 |
| <b>T(</b> ℃) | R(KΩ)    | <b>T(</b> ℃) | R(KΩ)   | <b>T(</b> ℃) | R(KΩ)   | <b>T(</b> ℃) | R(KΩ)   |
| 12           | 18.1489  | 25           | 10.0000 | 38           | 6.1418  | 51           | 3.9271  |
| 13           | 17.6316  | 26           | 9.5762  | 39           | 5.9343  | 52           | 3.7936  |
| 14           | 16.9917  | 27           | 9.1835  | 40           | 5.7340  | 53           | 3.6639  |

| 15           | 16.2797 | 28           | 8.8186 | 41           | 5.5405 | 54           | 3.5377 |
|--------------|---------|--------------|--------|--------------|--------|--------------|--------|
| 16           | 15.5350 | 29           | 8.4784 | 42           | 5.3534 | 55           | 3.4146 |
| 17           | 14.7867 | 30           | 8.1600 | 43           | 5.1725 | 56           | 3.2939 |
| 18           | 14.0551 | 31           | 7.8608 | 44           | 4.9976 | 57           | 3.1752 |
| 19           | 13.3536 | 32           | 7.5785 | 45           | 4.8286 | 58           | 3.0579 |
| 20           | 12.6900 | 33           | 7.3109 | 46           | 4.6652 | 59           | 2.9414 |
| 21           | 12.0684 | 34           | 7.0564 | 47           | 4.5073 | 60           | 2.8250 |
| 22           | 11.4900 | 35           | 6.8133 | 48           | 4.3548 | 61           | 2.7762 |
| 23           | 10.9539 | 36           | 6.5806 | 49           | 4.2075 | 62           | 2.7179 |
| 24           | 10.4582 | 37           | 6.3570 | 50           | 4.0650 | 63           | 2.6523 |
| <b>T(</b> ℃) | R(KΩ)   | <b>T(</b> ℃) | R(KΩ)  | <b>T(</b> ℃) | R(KΩ)  | <b>T(</b> ℃) | R(KΩ)  |
| 64           | 2.5817  | 77           | 1.7197 | 90           | 1.2360 | 103          | 0.8346 |
| 65           | 2.5076  | 78           | 1.6727 | 91           | 1.2037 | 104          | 0.8099 |
| 66           | 2.4319  | 79           | 1.6282 | 92           | 1.1714 | 105          | 0.7870 |
| 67           | 2.3557  | 80           | 1.5860 | 93           | 1.1390 | 106          | 0.7665 |
| 68           | 2.2803  | 81           | 1.5458 | 94           | 1.1067 | 107          | 0.7485 |
| 69           | 2.2065  | 82           | 1.5075 | 95           | 1.0744 | 108          | 0.7334 |
| 70           | 2.1350  | 83           | 1.4707 | 96           | 1.0422 | 109          | 0.7214 |
| 71           | 2.0661  | 84           | 1.4352 | 97           | 1.0104 | 110          | 0.7130 |
| 72           | 2.0004  | 85           | 1.4006 | 98           | 0.9789 |              |        |
| 73           | 1.9378  | 86           | 1.3669 | 99           | 0.9481 |              |        |
| 74           | 1.8785  | 87           | 1.3337 | 100          | 0.9180 |              |        |
| 75           | 1.8225  | 88           | 1.3009 | 101          | 0.8889 |              |        |
| 76           | 1.7696  | 89           | 1.2684 |              |        |              |        |



(1) 
$$V_i = V_{cc} * R_2/(R_2 + R_x)$$
  
 $V_i = V_{cc} * n/2^{12}$ 

n为A/D转换得到的数值

(2) 求出R<sub>x</sub>后,再查热敏电阻的温度阻值对照表。



$$Tx = (Rx-R1) * (T2-T1)/(R2-R1) + T1$$



