PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-221476

(43)Date of publication of application: 11.08.2000

(51)Int.CI.

1/133 G02F GD9G 3/20 G09G 3/36

(21)Application number: 11-027304

(71)Applicant:

SEIKO EPSON CORP

(22)Date of filing:

04.02.1999

(72)Inventor:

AOKI TORU

(54) ELECTROOPTICAL DEVICE DRIVE CIRCUIT, ELECTROOPTICAL DEVICE AND ELECTRONIC EQUIPMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To make luminance unevenness occurring in a boundary between each blocks inconspicuous and to perform a high quality display by connecting the prescribed number of data lines to a first pre-charge signal line and connecting the data lines excepting the prescribed number of data lines to a second pre-charge signal line.

SOLUTION: The data lines 114a-114e among the data lines 114a-114f in respective blocks B1-Bn are respectively connected to a pre-charge signal line NRS1 through switches 161. On the other hand, the data lines 114f placed on the right end part of the blocks are respectively connected to the pre-charge signal line NRS2 through the switches 162. Respective gate electrodes of the switches 161, 162 are respectively connected to a signal line supplied with a pre-charge drive signal NRG. Thus, when the pre-charge drive signal NRG becomes 'H' level, the data lines 114a-114e is pre-charged to the potential of the NRS1, and the data line 114f is pre-charged to the potential of the NRS2 respectively.

LEGAL STATUS

[Date of request for examination]

16.06.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

This Page Blank (uspto)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-221476 (P2000-221476A)

(43)公開日 平成12年8月11日(2000.8.11)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
G02F	1/133	550	G02F	1/133	550	2H093
G 0 9 G	3/20	623	G 0 9 G	3/20	623W	5 C 0 O 6
		642			642B	5 C 0 8 0
•	3/36			3/36		

審査請求 未請求 請求項の数12 OL (全 13 頁)

(21)出願番号 特顯平11-27304

(22)出顧日 平成11年2月4日(1999.2.4)

(71)出願人 000002369

セイコーエブソン株式会社

東京都新宿区西新宿2丁目4番1号

(72) 発明者 青木 透

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(74)代理人 100093388

弁理士 鈴木 喜三郎 (外2名)

最終頁に続く

(54) 【発明の名称】 電気光学装置の駆動回路、電気光学装置および電子機器

(57)【要約】

【課題】 複数本のデータ線を所定本数毎にブロック化し、各プロック毎に順次選択するとともに、選択されたブロックに属するデータ線群毎に、前記所定本数に対応する相数で展開された画像信号をサンプリングして、そのデータ線の電位レベルに基づいて表示を行う場合に、各プロックの境目において発生する輝度ムラを目立たなくする。,

【解決手段】 各ブロック $B1\sim Bn$ において右端に位置するデータ線114fと、それ以外のデータ線114a~114eとを、ブロックの選択の前に、それぞれ異なる電位のプリチャージ信号NRS2、NRS1に接続するプリチャージ回路160を備える。

20

【特許請求の範囲】

【請求項1】 複数の走査線と、複数のデータ線と、前 記各走査線と前記各データ線に接続されたトランジスタ と、前記トランジスタに接続された画素電極とを有する 電気光学装置の駆動回路であって、

前記走査線を順次選択する走査線駆動手段と、

前記走査線が選択された期間において、前記データ線を 複数本毎にまとめたブロックを順次選択するブロック駆

選択されたブロックに属する複数本のデータ線に対して 10 画像信号を供給する画像信号供給手段と、

前記ブロックに属するデータ線に画像信号が供給される 前に、当該ブロックに属する所定数のデータ線を第1の プリチャージ信号線に接続する一方、当該ブロックの前 記所定数のデータ線以外のデータ線を前記第1のプリチ ャージ信号線とは異なる第2のプリチャージ信号線に接 続するプリチャージ手段とを具備することを特徴とする 電気光学装置の駆動回路。

【請求項2】 複数の走査線と、複数のデータ線と、前 記各走査線と前記各データ線に接続されたトランジスタ と、前記トランジスタに接続された画素電極とを有する 電気光学装置の駆動回路であって、

前記走査線を順次選択する走査線駆動手段と、

前記走査線が選択された期間において、前記データ線を 複数本毎にまとめたブロックを順次選択するブロック駆 動手段と、

選択されたブロックに属する複数本のデータ線に対して 画像信号を供給する画像信号供給手段と、

前記ブロックに属するデータ線に画像信号が供給される 前に、当該ブロックに属する所定数のデータ線を第1の 30 プリチャージ電位で充電する一方、当該プロックの前記 所定数のデータ線以外のデータ線を前記第1のプリチャ ージ信号線とは異なる第2のプリチャージ電位で充電す るプリチャージ手段とを具備することを特徴とする電気 光学装置の駆動回路。

【請求項3】 複数の走査線と、複数のデータ線と、前 記各走査線と前記各データ線に接続されたトランジスタ と、前記トランジスタに接続された画素電極とを有する 電気光学装置の駆動回路であって、

前記走査線を順次選択する走査線駆動手段と、

前記走査線が選択された期間において、前記データ線を 複数本毎にまとめたブロックを順次選択するブロック駆 動手段と、

選択されたブロックに属する複数本のデータ線に対して 画像信号を供給する画像信号供給手段と、

プロックが選択される前に、当該ブロックの一端に位置 するデータ線以外のデータ線を第1のプリチャージ電位 に充電する一方、当該ブロックの一端に位置するデータ 線を前記第1のプリチャージ電位とは異なる第2のプリ チャージ電位に充電するプリチャージ手段とを具備する 50 動回路により表示を行うことを特徴とする電気光学装

ことを特徴とする電気光学装置の駆動回路。

【請求項4】 前記ブロック駆動手段による選択方向が 前記各ブロックから見て前記一端の方向であれば、前記 第2のプリチャージ電位は、前記第1のプリチャージ電 位よりも絶対値で見て大きい一方、前記ブロック駆動手 段による選択方向が前記各プロックから見て前記一端の 方向でなければ、前記第2のプリチャージ電位は、前記 第1のプリチャージ電位よりも絶対値で見て小さいこと を特徴とする請求項3記載の電気光学装置の駆動回路。

【請求項5】 前記プリチャージ手段は、前記各ブロッ クの選択前に、それぞれ一括して前記データ線に接続す ることを特徴とする請求項4記載の電気光学装置の駆動 回路。

【請求項6】 前記第1および第2のプリチャージ電位 の極性を、それぞれ周期的に反転させることを特徴とす る請求項3記載の電気光学装置の駆動回路。

【請求項7】 前記プリチャージ手段は、

前記プロックの一端に位置するデータ線以外のデータ線 を第1のプリチャージ電位に充電する第1の接続素子

前記ブロックの一端に位置するデータ線を前記第2のプ リチャージ電位に充電する第2の接続素子とからなるこ とを特徴とする請求項3記載の電気光学装置の駆動回 路。

【請求項8】 前記第1および第2の接続素子は、同一 基板上に形成された薄膜トランジスタであることを特徴 とする請求項7記載の電気光学装置の駆動回路。

【請求項9】 前記第1および第2のプリチャージ電位 は、前記画像信号の略白または略黒色に相当する電位で あることを特徴とする請求項9記載の電気光学装置の駆 動同路。

【請求項10】 複数の走査線と、複数のデータ線と、 前記各走査線と前記各データ線に接続されたトランジス タと、前記トランジスタに接続された画素電極とを有す る電気光学装置の駆動回路であって、

前記走査線を順次選択する走査線駆動回路と、

前記走査線が選択された期間において、前記データ線を 複数本毎にまとめたブロックを順次選択するシフトレジ スタ回路と、

選択されたブロックに属する複数本のデータ線に対して 画像信号をサンプリングして供給するサンプリング回路 ٤.

プロックが選択される前に、当該プロックの一端に位置 するデータ線以外のデータ線を第1のプリチャージ電位 に充電する一方、当該ブロックの一端に位置するデータ 線を前記第1のプリチャージ電位とは異なる第2のプリ チャージ電位にに充電するプリチャージ回路とを具備す ることを特徴とする電気光学装置の駆動回路。

【請求項11】 請求項1~10のいずれかに記載の駆

10

胃.

【請求項12】 請求項11記載の電気光学装置を表示 部に用いたことを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、液晶表示 装置などの電気光学装置に用いて好適な電気光学装置の 駆動回路、電気光学装置、および、その電気光学装置を 表示部に用いた電子機器に関する。

[0002]

【従来の技術】従来の電気光学装置、例えば、アクティ ブマトリクス型の液晶表示装置について、図7および図 8を参照して説明する。

【0003】まず、図7に示されるように、従来の液晶 表示装置は、液晶パネル100°と、タイミング回路2 00と、画像信号処理回路300と、プリチャージ信号 供給回路430とから構成される。このうち、タイミン グ回路200は、各部で使用されるタイミング信号(必 要に応じて後述する)を出力するものである。また、画 **像信号処理回路300内部におけるシリアルーパラレル** 変換回路302は、一系統の画像信号VIDを入力する と、これをN相(図においてはN=6)の画像信号に展 開して出力するものである。ここで、画像信号をN相に 展開する理由は、後述するサンプリング回路において、 TFTに供給される画像信号の印加時間を長くして、サ ンプリング時間および充放電時間を十分に確保するため である。

【0004】一方、増幅・反転回路304は、反転が必 要となるものを反転させて適宜、増幅してから、シリア ルーパラレル変換された画像信号VID1~VID6と 30 して液晶表示装置100'に供給するものである。な お、反転するか否かについては、データ信号の印加方式 が①走査線単位の極性反転であるか、②データ信号線単 位の極性反転であるか、③画素単位の極性反転であるか に応じて定められ、その反転周期は、1水平走査期間ま たはドットクロック周期に設定される。ただし、この従 来例においては説明の便宜上、①走査線単位の極性反転 である場合を例にとって説明する。

【0005】また、プリチャージ信号供給回路430 において、プリチャージ信号NRSを極性反転して液晶 表示装置100'に供給するものである。なお、ここで いう極性反転は、画像信号の振幅中心電位を基準電位と して、その電圧レベルを交互に反転させることをいう。 【0006】次に、液晶表示装置100°について説明 する。この液晶表示装置100%は、素子基板と対向基 板とが間隙をもって対向し、この間隙に液晶が封入され

【0007】このうち、素子基板にあっては、図8にお 50 するための信号である。

た構成となっている。ここで、素子基板と対向基板と

は、石英基板や、ハードガラス等からなる。

いてX方向に沿って平行に複数本の走査線112が配列 して形成され、また、これと直交するY方向に沿って平 行に複数本のデータ線114が形成されている。ここ で、各データ線114は6本を単位としてブロック化さ れており、これらをプロックB1~Bnとし、以降説明 の便宜上、一般的なデータ線を指摘する場合には、その 符号を114として示すが、特定のデータ線を指摘する 場合には、その符号を114a~114fとして示すこ

【0008】そして、これらの走査線112とデータ線 114との各交点においては、スイッチング索子とし て、例えば、各薄膜トランジスタ(Thin Film Transist or:以下、「TFT」と称する) 116のゲート電極が 走査線112に接続される一方、TFT116のソース 電極がデータ線114に接続されるとともに、TFT1 16のドレイン電極が画素電極118に接続されてい る。そして、各画素は、画素電極118と、対向基板に 形成された共通電極と、これら両電極間に挟持された液 晶とによって構成されて、走査線112とデータ線11 4との各交点において、マトリクス状に配列することと 20 なる。なお、このほかに保持容量(図示省略)が各画素 電極118に接続された状態で形成されている。

【0009】さて、走査線駆動回路120は、素子基板 上に形成され、タイミング回路200からのクロック信 号CLYや、その反転クロック信号CLYINV、転送開 始パルスDY等に基づいて、パルス的な走査信号を各走 **査線112に対して順次出力するものである。詳細に** は、走査線駆動回路120は、垂直走査期間の最初に供 給される転送開始パルスDYを、クロック信号CLYお よびその反転クロック信号CLYINVにしたがって順次 シフトして走査線信号として出力し、これにより各走査 線112を順次選択するものである。

【0010】一方、サンプリング回路130は、サンプ リング用のスイッチ131を各データ線114の一端に おいて、各データ線114毎に備えるものである。この スイッチ131は、同じく素子基板上に形成されたTF Tからなり、このスイッチ131のソース電極には、画 像信号VID1~VID6が入力されている。そして、 ブロックB1のデータ線114a~114 f に接続され は、タイミング回路200により指示されるタイミング 40 た6個のスイッチ131のゲート電極は、サンプリング 信号S1が供給される信号線に接続され、ブロックB2 のデータ線114a~114fに接続された6個のスイ ッチ131のゲート電極は、サンプリング信号S2が供 給される信号線に接続され、以下同様に、ブロックBn のデータ線114a~114fに接続された6個のスイ ッチ131のゲート電極は、サンプリング信号Snが供 給される信号線に接続されている。ここで、サンプリン グ信号S1~Snは、それぞれ水平有効表示期間内に画 像信号VID1~VID6をブロック毎にサンプリング

【0011】また、シフトレジスタ回路140は、同じ く素子基板上に形成され、タイミング回路200からの クロック信号CLXや、その反転クロック信号CLXIN V、転送開始パルスDX等に基づいて、サンプリング信 号S1~Snを順次出力するものである。詳細には、シ フトレジスタ回路140は、水平走査期間の最初に供給 される転送開始パルスDXを、クロック信号CLXおよ びその反転クロック信号CLXINVにしたがって順次シ フトするとともに、これらシフトした信号のパルス幅を 隣接する信号同士で重ならないように狭めて、サンプリ ング信号S1~Snとして順次出力するものである。

【0012】このような構成において、サンプリング信 号S1が出力されると、ブロックB1に属する6本のデ ータ線114a~114 fには、それぞれ画像信号VI D1~VID6がサンプリングされて、これらの画像信 号VID1~VID6が現時点の選択走査線における6 個の画素に、当該TFT116によってそれぞれ書き込 まれることとなる。

【0013】この後、サンプリング信号S2が出力され ると、今度は、ブロックB2に属する6本のデータ線1 14a~114fには、それぞれ画像信号VID1~V ID6がサンプリングされ、これらの画像信号VID1 ~VⅠD6がその時点の選択走査線における6個の画素 に、当該TFT116によってそれぞれ書き込まれるこ ととなる。

【0014】以下同様にして、サンプリング信号S3、 S4、……、Snが順次出力されると、ブロックB3、 B4、……、Bnに属する6本のデータ線114a~1 14 fには、それぞれ画像信号VID1~VID6がサ ンプリングされ、これらの画像信号VID1~VID6 がその時点の選択走査線における6個の画素にそれぞれ 書き込まれることとなる。そして、この後、次の走査線 が選択されて、ブロックB1~Bnにおいて同様な書き 込みが繰り返し実行されることとなる。

【0015】この駆動方式では、サンプリング回路13 0におけるスイッチ131を駆動制御するシフトレジス 夕回路140の段数が、各データ線を点順次で駆動する 方式と比較して1/6に低減される。さらに、シフトレ ジスタ回路140に供給すべきクロック信号CLXおよ びその反転クロック信号CLXINVの周波数も1/6で 済むので、段数の低減化と併せて低消費電力化も図られ ることとなる。

【0016】一方、上記表示装置においては、各データ 線114は容量成分を有するため、スイッチ131によ ってサンプリングされた画像信号VID1~VID6を TFT116によって画素に書き込むのに要する時間が 長期化する傾向がある。これを解消するために、プリチ ャージ回路160'が設けられる。このプリチャージ回 路160 は、スイッチ165を各データ線114の他 端において各データ線114毎に備えるものである。こ 50 ジされる。その後、プリチャージ駆動信号NRGが

のスイッチ165は同じく素子基板上に形成されたTF Tからなり、そのドレイン電極(またはソース電極)が データ線114に接続され、そのソース電極(またはド レイン電極) がプリチャージ信号線NRSに接続されて いる。また、各スイッチ165のゲート電極は、プリチ ャージ駆動信号NRGが供給される信号線に接続されて いる。このプリチャージ駆動信号NRGは、サンプリン グ信号S1~Snよりも先行するタイミングにおいて、 すなわち、ある走査線の選択が終了してから次の走査線 が選択されて画像信号がデータ線に印加されるまでの水 平帰線期間において、「H」レベルとなるパルス的な信 号である。このため、各データ線114は、各スイッチ 165を介してプリチャージ信号線NRSの電位にプリ チャージされた後、各スイッチ131のサンプリングに よって画像信号VID1~VID6の電位に遷移する。 したがって、画像信号VID1~VID6自体によるデ ータ線114の充放電量は小さくなるので、書き込みに 要する時間が短縮化されることとなる。

[0017]

【発明が解決しようとする課題】しかしながら、複数同 時駆動方式とプリチャージとを併用しても、各ブロック B1~Bnの境目において輝度ムラが、特に、中間調レ ベルで規則的パターンを表示させた場合に発生する、と いう問題が生じた。そこで、この輝度ムラの発生原理に ついて、ブロックB1およびB2に着目し、規則パター ンの一例として簡単なベタパターンを表示させる場合を 例にとって説明する。この場合、ブロックB1に属する データ線のうちブロックB2に隣接するデータ線114 fに供給されるべき画像信号VID6と、ブロックB2 に属するデータ線のうちブロックB1に隣接するデータ 線114aに供給されるべき画像信号VID1とは、そ れぞれ図9に示されるように同電位となる。なお、一般 に、画像信号VID1~VID6は、水平帰線期間にお いて黒色に相当する電位に振られる。

【0018】また、図9に示す波形例は、プリーチャー ジ信号NRSの電位が、データ線114に印加される画 像信号VID1~VID6 (図9では、VID1、VI D6だけを示している)の極性と同一極性に設定され、 かつ、走査線毎に極性反転する場合を示している。

【0019】図9に示す波形例にあっては、プリチャー ジ信号線NRSの電位は、電位変化が大きいところまで 一端プリチャージするため、ノーマリホワイトモードで あれば黒色に相当する電位(逆に、ノーマリブラックモ ードであれば白色に相当する電位)に設定されている。 【0020】さて、図9において 正極側のタイミング t 11に至ると、プリチャージ駆動信号NRGが「H」 レベルとなる。このため、すべてのスイッチ165がオ ンとなるため、すべてのデータ線114はスイッチ16 5を介してプリチャージ信号NRSの電位にプリチャー

「L」レベルとなるが、すべてのデータ線は、その容量 成分によりプリチャージ電位を維持する。

【0021】次に、タイミング t 12に至ると、サンプリング信号S1が「H」レベルに立ち上がる。このため、ブロックB1のデータ線114fにあっては、スイッチ131によって画像信号VID6がサンプリングされるため、データ線114fの電位は、それまで維持していたプリチャージ信号NRSの電位からサンプリングされた画像信号VID6に相当する電位となり、これが現時点において選択されている走査線のTFT116によって当該画素に書き込まれる。この後、サンプリング信号S1が「L」レベルに立ち下がる。

【0022】さらに、タイミング t 13に至ると、サンプリング信号S 2が「H」レベルに立ち上がるため、ブロックB 2のデータ線114aにあっては、スイッチ131によって画像信号V I D 1がサンプリングされる。このため、ブロックB 2のデータ線114aの電位は、それまで維持していたプリチャージ信号NRSの電位から、サンプリングされた画像信号V I D 1の電位まで遷移する。これが現時点において選択されている走査線のTFT116によって当該画素に書き込まれる。

【0023】これに対し、ブロックB1に属するデータ線のうち、ブロックB2に隣接するデータ線114fについては、ブロックB2のデータ線114aと容量的に結合しているため、ブロックB2のデータ線114aの電位がプリチャージ電位NRSから画像信号VID1の電位まで遷移すると、すでに書き込みが終了しているにもかからわず、遷移の影響を受けて電位が変動することになる。

【0025】これに対して、各ブロックおける他のデータ線114a~114eについては、隣接するブロックのデータ線114aの電位遷移による影響を受けない(にくい)ので、これらのデータ線に接続された画素のうち、現時点において選択された走査線にかかる画素は本来の書込電位に相当する譲度を維持することになる。【0026】よって、すべての画素に対して同一設度の表示をしようとしても、あるブロックのデータ線114に接続された画素の譲度と、それ以外のデータ線114a~114eに接続された画素の譲度とに差が生じるので、結局、各ブロックB1~Bnの境目において輝度ムラが発生することとなる。

【0027】このような輝度ムラは、プリチャージ信号 NRSを正負極毎に絶対値で異なるレベルとなるように 設定すれば、例えば、正極側で白色に相当する電位に、 負極側で黒色に相当する電位にそれぞれ設定すれば、正 極側における画像信号のサンプリングでは黒側に、正極 側における画像信号のサンプリングでは自側に、それぞ れ書き込まれるので、両者の打ち消しによって、ある程度、解消することは可能である。しかし、この方法で も、ビデオ信号のレベルによって輝度ムラを完全に目立 たなくする程度にまで解消することができないし、プリチャージ信号を印加してから本来のデータが書き込まれる間の短期間ではあるが、直流成分が印加されることに なるので、液晶劣化を引き起こす原因にもなる。

【0028】本発明は、上述した事情に鑑みてなされたものであり、各ブロックの境目において発生する輝度ムラを目立たなくして、高い品質の表示が可能な電気光学装置の駆動回路、電気光学装置および電子機器を提供することを目的としている。

[0029]

【課題を解決するための手段】上記目的を達成するため に本発明にあっては、複数の走査線と、複数のデータ線 と、前記各走査線と前記各データ線に接続されたトラン ジスタと、前記トランジスタに接続された画素電極とを 有する電気光学装置の駆動回路であって、前記走査線を 順次選択する走査線駆動手段と、前記走査線が選択され た期間において、前記データ線を複数本毎にまとめたブ ロックを順次選択するブロック駆動手段と、選択された ブロックに属する複数本のデータ線に対して画像信号を 供給する画像信号供給手段と、前記ブロックに属するデ ータ線に画像信号が供給される前に、当該ブロックに属 する所定数のデータ線を第1のプリチャージ信号線に接 続する一方、当該プロックの前記所定数のデータ線以外 のデータ線を前記第1のプリチャージ信号線とは異なる 第2のプリチャージ信号線に接続するプリチャージ手段 とを具備することを特徴とする。

【0030】一般に、複数のデータ線は画素を介して互いに容量的に結合しているが、同一ブロック内に属するデータ線同士においては、同タイミングでサンプリングが実行されるので、あるデータ線の電位遷移が他のデータ線の電位に影響を及ぼすことはない。しかし、異なるブロックに属するデータ線は、隣接ブロックに位置するデータ線がプリチャージ電位からサンプリングされた画像信号の電位まで遷移すると、その遷移によって本来の審込電位から変動する。これがブロック境目における輝度ムラの原因となる。

【0031】これに対し、本発明によれば、所定数のデータ線を第1のプリチャージ信号線に接続する一方、当該プロックの前記所定数のデータ線以外のデータ線を前記第1のプリチャージ信号線とは異なる第2のプリチャージ信号線に接続するため、、輝度ムラが起こりやすい

30

所定データ線に対してプリチャージ電位を変えることに より、輝度ムラを抑えることができる。

【0032】本発明は、複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線に接続されたトランジスタと、前記トランジスタに接続された画素電極とを有する電気光学装置の駆動回路であって、前記走査線を順次選択する走査線駆動手段と、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロックを順次選択するブロック駆動手段と、選択されたブロックに属する複数本のデータ線に対して画像信号供給手段と、前記ブロックに属するで出るである画像信号が供給される前に、当該ブロックに属する所定数のデータ線を第1のプリチャージ電位で充電する一方、当該ブロックの前記所定数のデータ線を第1のプリチャージ電位で充電するプリチャージ電位で充電するプリチャージ手段とを具備することを特徴とする。

【0033】上述のように、ブロックに属する所定数のデータ線は第1のプリチャージ電位で充電される一方、当該ブロックの前記所定数のデータ線以外のデータ線は 20前記第1のプリチャージ信号線とは異なる第2のプリチャージ電位で充電されるため、輝度ムラの起こりやすいデータ線に対して異なるプリチャージ電位に充電することにより、輝度ムラを抑えることができる。

【0034】本発明は、複数の走査線と複数のデータ線と、前記各走査線と前記各データ線に接続されたトランジスタと、トランジスタに接続された画素電極とを有する電気光学装置の駆動回路であって、前記走査線を順次選択する走査線駆動手段と、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロッ 30 クを順次選択するブロック駆動手段と、選択されたブロックに属する複数本のデータ線に対して画像信号を供給する画像信号供給手段と、ブロックが選択される前に、当該ブロックの一端に位置するデータ線を削記第1のプリチャージ電位とは異なる第2のプリチャージ電位に充電するプリチャージ手段とを具備することを特徴としている。

【0035】異なるブロックに属するデータ線、特に、ブロックの一端に位置するデータ線の電位は、隣接ブロックの他端部に位置するデータ線がプリチャージ電位からサンプリングされた画像信号の電位まで遷移すると、その遷移によって本来の書込電位から変動し、これがブロック境目における輝度ムラの原因となる。

【0036】これに対し、本発明によれば、ブロックの一端に位置するデータ線とそれ以外のデータ線とに対し、当該ブロックに属するデータ線へ書き込む前に、それぞれ異なる電位にプリチャージされるため、ブロック境目における輝度ムラを抑えることができる。

【0037】ここで、前記ブロック駆動手段による選択 50

方向が前記各ブロックから見て前記一端の方向であれば、前記第2のプリチャージ電位は、前記第1のプリチャージ電位は、前記第1のプリチャージ電位よりも絶対値で見て大きくする一方、前記ブロック駆動手段による選択方向が前記各ブロックから見て前記一端の方向でなければ、前記第2のプリチャージ電位は、前記第1のプリチャージ電位よりも絶対値で見て小さくすると、上記変動が小さくなるので、ブロック境目における輝度ムラを抑えることが可能となる。

10

【0038】また、前記プリチャージ手段は、前記各ブロックの選択前に、それぞれ一括して接続する構成と、ブロックの選択よりも所定の時間だけ先行したタイミングにおいて各ブロック毎に接続する構成とが考えられるが、簡略化の観点からすれば、前者の構成の方が有利である

【0039】さらに、本発明においては、前記第1および第2のプリチャージ電位の極性を、それぞれ周期的に 反転させることが望ましい。これにより、各画素に直流 成分が印加されるのを防止することが可能となる。

【0040】ところで、本発明において、前記プリチャージ手段は、前記プロックの一端に位置するデータ線以外のデータ線を第1のプリチャージ電位に接続する第1の接続素子と、前記ブロックの一端に位置するデータ線を前記第2のプリチャージ電位に接続する第2の接続素子とからなることが望ましい。

【0041】さらに、前記第1および第2の接続素子は、同一基板上に形成された薄膜トランジスタであることが望ましい。これにより、各回路の集積化が容易となるので、低コスト化や省スペース化等が図られることとなる。

【0042】また、本発明にあっては、複数の走査線と、複数のデータ線と、前記各走査線と前記各データ線に接続されたトランジスタと、トランジスタに接続された画素電極とを有する電気光学装置の駆動回路であって、前記走査線を順次選択する走査線駆動回路と、前記走査線が選択された期間において、前記データ線を複数本毎にまとめたブロックを順次選択するシフトレジスタ回路と、選択されたブロックに属する複数本のデータ線に対して画像信号をサンプリングして供給するサンプリング回路と、プロックが選択される前に、当該ブロックの一端に位置するデータ線以外のデータ線を第1のプリチャージ電位に充電する一方、当該ブロックの一端に位置するデータ線を前記第1のプリチャージ電位とは異なる第2のプリチャージ電位に充電するプリチャージ電位とた真体することを特徴としている。

【0043】さらに、本発明にかかる電気光学装置は、 上記駆動回路により表示を行うことを特徴とし、また、 本発明にかかる電子機器は、上記電気光学装置を表示部 に用いたことを特徴としている。

[0044]

【発明の実施の形態】以下、本発明の実施形態について

20

図面を参照して説明する。

【0045】<液晶表示装置>まず、電気光学装置の一 例として、第1実施形態にかかるアクティブ・マトリク ス型の液晶表示装置について説明する。図1は、この液 晶表示装置の全体構成を示すブロック図である。本実施 形態にかかる液晶表示装置にあっては、上記輝度ムラを 解消するために、タイミング回路200により指示され るタイミングにおいて、プリチャージ信号NRS1、N RS2を極性反転して液晶表示装置100に供給するプ リチャージ信号供給回路410、420が備えられる点 10 において図7に示す従来例と相違している。

【0046】さらに、液晶表示装置100にあっては、 プリチャージ回路160として、図8に示されるものに 代えて、図2に示されるものが用いられる。

【0047】図2に示されるように、プリチャージ回路 160は、TFTからなるスイッチ161、162を、 各データ線114の他端において各データ線114毎に 備えるものであり、画素電極118を駆動するTFT1 16と同一のプロセスによって上記素子基板上に形成さ れる。ここで、ブロックB1を例にとって説明すれば、 5個のスイッチ161の各ドレイン電極(またはソース 電極)は、それぞれデータ線1111a~114eに接続 され、各ソース電極(またはドレイン電極)がプリチャ ージ信号線NRS1に接続されている一方、スイッチ1 62のドレイン電極 (またはソース電極) は、データ線 114 fに接続され、そのソース電極(またはドレイン 電極) がプリチャージ信号線NRS2に接続されてい る。すなわち、各プロックB1~Bnにおけるデータ線 114a~114fのうち、図において、データ線11 4a~114eについては、それぞれスイッチ161を 30 介してプリチャージ信号線NRS1に接続されている一 方、各プロックB1~Bnにおけるデータ線114a~ 114fのうち、ブロックの右端部に位置するデータ線 114 fについては、それぞれスイッチ162を介し て、プリチャージ信号線NRS2に接続されている。 【0048】そして、スイッチ161、162の各ゲー ト電極は、それぞれプリチャージ駆動信号NRGが供給 される信号線に接続されている。したがって、プリチャ ージ駆動信号NRGが「H」レベルとなると、各ブロッ クB1~Bnのデータ線114a~114eはプリチャ ージ信号NRS1の電位に、各プロックB1~Bnのデ ータ線114fはプリチャージ信号NRS2の電位に、

【0049】次に、この液晶表示装置における動作につ いて説明する。図3は、各部の動作を説明するためのタ イミングチャートであり、従来の技術で説明した図9に 対応したものである。図3に示されるように、プリチャ ージ信号NRS1の電位は、プリチャージ信号NRS2 の電位よりも絶対値で見て小さく、かつ、それらのレベ ルは、ノーマリホワイトモードでいえば略黒色に相当す 50 までの遷移する場合と比較すると、少なく抑えられる。

それぞれプリチャージされることとなる。

るレベルである。また、プリチャージ信号NRS1、N RS2は、それぞれ図1におけるプリチャージ信号供給 回路410、420によって供給され、その極性は、タ イミング回路200によって画像信号VID1~VID 6 (図3では、VID1、VID6だけを示している) に同期し、画像信号VID1~VID6の極性と同一極 性に設定され、かつ、走査線毎に極性反転される。

12

【0050】さて、図3において 正極側のタイミング t 11に至ると、プリチャージ駆動信号NRGが「H」 レベルとなる。このため、すべてのスイッチ161、1 62がオンとなるため、各ブロックB1~Bnのデータ 線114a~114eはスイッチ161を介してプリチ ャージ信号NRS1の電位に、ブロックB1~Bnのデ ータ線114fはスイッチ162を介してプリチャージ 信号NRS2の電位に、それぞれプリチャージされる。 その後、プリチャージ駆動信号NRGが「L」レベルと なるが、すべてのデータ線は、その容量成分によりプリ チャージ電位を維持する。

【0051】次に、タイミングt12に至ると、サンプ リング信号S1が「H」レベルに立ち上がる。このた め、ブロックB1のデータ線114fにあっては、スイ ッチ131によって画像信号VID6がサンプリングさ れるため、データ線114fの電位は、それまで維持し ていたプリチャージ信号NRS2の電位から画像信号V ID6に相当する電位となり、これが現時点において選 択されている走査線のTFT116によって当該画素に 書き込まれる。この後、サンプリング信号S1が「L」 レベルに立ち下がる。

【0052】さらに、タイミング t 13に至ると、サン プリング信号S2が「H」レベルに立ち上がるため、ブ ロックB2のデータ線114aにあっては、スイッチ1 31によって画像信号VID1がサンプリングされる。 このため、ブロックB2のデータ線114aの電位は、 それまで維持していたプリチャージ信号NRS1の電位 から、サンプリングされた画像信号VID1の電位まで 遷移する。これが現時点において選択されている走査線 のTFT116によって当該画案に書き込まれる。

【0053】ここで、ブロックB1に属するデータ線の うち、右端部に位置する(すなわち、ブロックB2に隣 接する) データ線114fについては、ブロックB2の データ線114aと容量的に結合しているため、ブロッ クB2のデータ線114aの電位がプリチャージ信号N RS2の電位からサンプリングされた画像信号VID1 の電位まで遷移すると、その遷移の影響を受けて電位が 変動する。しかし、プリチャージ信号NRS1の電位 は、プリチャージ信号NRS2の電位よりも絶対値で見 て小さいので、プリチャージ信号NRS1の電位から画 像信号VID1の電位までの遷移による影響は、プリチ ャージ信号NRS2の電位から画像信号VID1の電位 したがって、ブロックB1のデータ線114fの電位は、ブロックB2のデータ線114aの電位が遷移しても、その遷移量が小さいので、その影響をほとんど受けずに、本来の書込電位に近い電位を維持することとなる。負極側のタイミングt21、t22、t23では正極側のタイミングt11、t12、t13と同様な動作が行われるから、負極側でも同様であり、さらに、現時点の選択走査線において他のブロックB2~Bnについても、また、他の走査線についても同様である。

【0054】このように、各ブロックB1~Bnの右端 部に位置するデータ線114fは、本来の書込電位に近 い電位を維持するので、各ブロックB1~Bnの境目に おける輝度ムラの発生が抑えられることとなる。

【0055】次に、プリチャージ信号NRS1、NRS2の電位について検討してみる。上述のように、あるブロックの右端部に位置するデータ線114fの電位は、それに隣接するデータ線114aの電位遷移によって変動するが、その変動量は、第1に、データ線114aの電位遷移量とに依存する。このうち、データ線114aの電位遷移量とに依存する。このうち、データ線114との結合容量は動作時において一定とみなせる。また、データ線114aの電位遷移量は、プリーチャージ信号NRS1の電位と画像信号VID1の電位を正負極においてそれぞれ固定すると、データ線114fにおける変動量は、その隣接データ線114aに供給すべき画像信号VID1のみに依存することとなる。

【0056】このため、データ線114fにおける変動 量を小さくするためのプリチャージ信号NRS2の電位 30 は、理想的には、その隣接データ線114aに供給すべ き画像信号VID1に応じて設定すべきである。

【0057】しかし、プリチャージは、画像信号のサン プリングよりも先行するタイミングで実行されるので、 プリチャージ信号NRS2の電位を画像信号VID1に 応じて設定するには、あるブロックに隣接するデータ線 114 a に供給すべき画像信号VID1に基づいて、そ のプロックに供給すべきプリチャージ信号NRS2の電 位を決定した後に、その決定の基礎となった画像信号V ID1をそのブロックに隣接するブロックにおいてサン プリングする構成となる。このため、供給された画像信 号VID1~VID6に基づくリアルタイム表示はでき ないし、プリチャージ信号NRS2の電位を画像信号V ID1に基づいて決定した後、実際のサンプリングま で、画像信号VID1~VID6をなんらかの形でバッ ファリングすることが必要となり、構成が複雑化する。 【0058】したがって、単に、各ブロックB1~Bn の境目に発生する輝度ムラを抑えるのであれば、灰色 (中間調) に相当する画像信号の電位を書き込む場合 に、その電位遷移による電位変動が最も少なくなるよう

に、プリチャージ信号NRS1の電位に対してプリチャージ信号NRS2の電位を定めれば十分と考えられる。 ただし、本発明において上記理想的な場合を排除する趣 旨ではない。

14

【0059】ところで、上記実施形態にあっては、図4 (a) に示されるように、各ブロックB1~Bnの右端 部に位置するデータ線114fのみを、スイッチ162 を介してプリチャージ信号線NRS2に接続し、他のデ ータ線114a~114eを、スイッチ161を介して ・ プリチャージ信号線NRS1に接続する構成としたが、 これとは逆に、図4 (c) に示されるように、左端部に 位置するデータ線114aのみをプリチャージ信号線N RS2に接続し、他のデータ線114b~114fをプ リチャージ信号線NRS1に接続する構成としても良 い。すなわち、各ブロックの左右いずれか一端に位置す るデータ線114aまたは114fを、他のデータ線と 異なる電位にてプリチャージする構成とすれば良い。た だし、この構成では、プリチャージ信号NRS1の電位 を、プリチャージNRS2の電位よりも絶対値で見て大 きくする、あるいは、入れ替える必要がある。

【0060】このことはまた、上記実施形態において、各ブロックB1~Bnの選択方向を一方向に制限する必要がないことを意味する。すなわち、上記実施例の説明にあっては、ブロックB1、B2、……、Bnというように右方向で選択する場合を例にとったが、これとは反対に、図4(b)または図4(d)に示されるように、ブロックBn、B(n-1)、……、B1というように左方向で選択する場合でも同様な構成で済むことを意味している。ただし、図4(b)または図4(d)にされる構成では、それぞれ図4(a)または図4(c)に示される構成では、それぞれ図4(a)または図4(c)に示される構成では、それぞれ図4(a)または図4(c)に示される構成では、それぞれ図4(a)または図4(c)に示される構成では、それぞれ図4(a)または図4(c)に示される構成では、オースの選択する必要がある。

【0061】すなわち、ブロック選択方向が、各ブロッ クからみてプリチャージ信号NRS2でプリチャージさ れるデータ線が位置する方向であれば、プリチャージ信 号NRSの電位は、プリチャージ信号NRS1の電位よ りも絶対値で見て大きくし、反対に、ブロック選択方向 が、各プロックからみてプリチャージ信号NRS2でプ リチャージされるデータ線が位置する方向でなければ、 プリチャージ信号NRS2の電位は、プリチャージ信号 NRS1の電位よりも絶対値で見て小さくすれば良い。 例えば、図4(b)に示される例でいえば、プリチャー ジ信号NRS2でプリチャージされるデータ線が位置す る方向は、各ブロックからみて右方向であり、これは左 方向であるブロック選択方向と同方向ではない。このた め、プリチャージ信号NRS2の電位は、プリチャージ 信号NRS1の電位よりも絶対値で見て小さく設定する こととなる。

【0062】なお、このようにプリチャージ信号NRS1、NRS2における電位の大小関係を逆にするには、

プリチャージ信号供給回路410、420に対して出力 信号の振幅に変化を与える構成や、プリチャージ信号供 給回路410、420の出力信号を入れ替えて供給する 構成などが考えられる。

【0063】また、上述の説明では、各ブロックB1~ Bnを順次選択するとともに、選択された1つのブロッ クに属する6本のデータ線114に対し、6相にシリア ルーパラレル変換された画像信号VID1~VID6を 同時にサンプリングして供給する構成したが、このシリ アルーパラレル変換の数および同時に供給するデータ線 10 の数 (すなわち、1 つのブロックを構成するデータ線の 数)は、「6」に限られるものではない。シリアルーパ ラレル変換の数および同時に印加するデータ線の数とし ては、カラーの画像信号が3つの原色に係る信号からな ることとの関係から、3の倍数であることが制御や回路 を簡易化する上で好ましい。このため、1つのブロック を構成するデータ線数を、3本や、12本、24本、… …、等として、データ線に対して3相のシリアルーパラ レル変換や、12相のシリアルーパラレル変換展開、2 4相のシリアルーパラレル変換等されて並列供給された 20 画像信号を同時に供給するように構成しても良い。

【0064】〈電子機器〉次に、上述した液晶表示装置 100を電子機器に用いた例のいくつかについて説明する。

【0065】<その1:プロジェクタ>まず、この液晶 表示装置をライトバルブとして用いたプロジェクタにつ いて説明する。図5は、このプロジェクタの構成例を示 す平面図である。

【0066】この図に示すように、プロジェクタ110 0内部には、ハロゲンランプ等の白色光源からなるラン 30 プユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド1 104内に配置された4枚のミラー1106および2枚 のダイクロイックミラー1108によってRGBの3原 色に分離され、各原色に対応するライトバルブとしての 液晶パネル1110R、1110Bおよび1110Gに 入射される。

【006.7】液晶パネル1110R、1110Bおよび1110Gの構成は、上述した液晶表示装置100と同等であり、図示しない画像信号処理回路から供給される40R、G、Bの原色信号でそれぞれ駆動される。さて、これらの液晶パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112においては、RおよびBの光が90度に屈折する一方、Gの光が直進する。したがって、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン等にカラー画像が投写されることとなる。

【0068】ここで、各液晶パネル1110R、111 0Bおよび1110Gによる表示像について着目する と、液晶パネル1110Gによる表示像は、液晶パネル1110R、1110Bによる表示像に対して左右反転することが必要となる。すなわち、液晶パネル1110Gにおけるブロック選択方向は、液晶パネル1110R、1110Bにおけるブロック選択方向とは逆になるため、液晶パネル1110Gに供給されるプリチャージ信号NRS1、NRS2と、液晶パネル1110Gに供給されるプリチャージ信号NRS1、NRS2との大小関係は互いに逆の関係にある。

16

【0069】なお、液晶パネル1110R、1110B および1110Gには、ダイクロイックミラー1108によって、R、G、Bの各原色に対応する光が入射するので、対向基板にカラーフィルタを設ける必要はない。【0070】<その2:モバイル型コンピュータ>次に、この液晶表示装置を、モバイル型のコンピュータトに、この液晶表示装置を、モバイル型のコンピュータに適用した例について説明する。図6は、このコンピュータの構成を示す正面図である。図において、コンピュータ1200は、キーボード1202を備えた本体部1204と、液晶ディスプレイ1206とから構成されている。この液晶ディスプレイ1206は、先に述べた液晶表示装置100の背面にバックライトを付加することにより構成されている。

【0071】なお、図5および図6を参照して説明した電子機器の他にも、液晶テレビや、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、携帯電話、テレビ電話、POS端末、タッチパネルを備えた装置等などが挙げられる。そして、本発明にかかるこれらの各種電子機器に適用可能なのは言うまでもない。

【0072】さらに、本発明は、アクティブマトリクス型液晶表示装置としてTFTを用いたもの例にとって説明したが、これに限られず、スイッチング素子としてTFD(Thin Film Diode:薄膜ダイオード)を用いたものや、STN液晶を用いたパッシブ型液晶などにも適用可能であり、さらに、液晶表示装置に限られず、エレクトロ・ルミネッセンス素子など、各種の電気光学効果を用いて表示を行う表示装置にも適用可能である。

[0073]

【発明の効果】以上説明したように本発明によれば、各 ブロックにおいて一端に位置するデータ線とそれ以外の データ線とに対して、各ブロックに属するデータ線のサ ンプリング前に、それぞれ異なる電位でプリチャージす ると、変動分が小さくなるので、ブロックの境目におい て発生する輝度ムラを目立たなくすることが可能とな る。

【図面の簡単な説明】

【図1】 本発明の実施形態にかかる液晶表示装置の全体構成を示すブロック図である。

【図2】 同液晶表示装置における液晶表示装置の電気

50

的構成を示すブロック図である。

【図3】 同液晶表示装置の動作を示すタイミングチャートである。

【図4】 (a)~(d)は、それぞれブロックの選択方向とブロックー端に位置するデータ線との各組合せにおけるプリチャージNRS1、NRS2の大小関係を示す図である。

【図5】 同液晶表示装置を適用した電子機器の一例た る液晶プロジェクタの構成を示す断面図である。

【図 6 】 同液晶表示装置を適用した電子機器の一例た 10 るパーソナルコンピュータの構成を示す正面図である。

【図7】 従来の液晶表示装置の全体構成を示すプロック図である。

【図8】 従来の液晶表示装置における液晶表示装置の 電気的構成を示すブロック図である。 18 【図9】 従来の液晶表示装置の動作を示すタイミング チャートである。

【符号の説明】

100……液晶表示装置

1 1 2 ……走査線

1 1 4 a ~ 1 1 4 f ……データ線

1 1 6 ····· T F T

118……画素電極

120……走査線駆動回路

130……サンプリング回路

140……シフトレジスタ回路

160……プリチャージ回路

161……スイッチ (第1の接続素子)

162……スイッチ(第2の接続素子)

【図1】

【図6】

[図2]

【図7】

【図8】

フロントページの続き

Fターム(参考) 2H093 NA16 NB27 NC03 NC12 NC13

NC16 NC22 NC23 NC34 ND09

NGO2

5C006 AA22 AF51 AF71 BB16 BC03

BC12 BC23 BF03 BF25 BF49

EC11 FA16 FA22

5C080 AA10 BB05 CC03 DD05 EE17

EE28 FF11 JJ02 JJ04 JJ06

This Page Blank (uspto)