Lec-6. 分布函数、连续型随机变量

主讲教师: 吴利苏 (wulisu@sdust.edu.cn)

主讲教师: 吴利苏 (wulisu@sdust.edu.cn) 主 页: wulisu.cn

目录

- 1. 分布函数
- 2. 连续型随机变量
- 3. 典型连续型随机变量
 - 均匀分布
 - 指数分布
 - 正态分布

随机变量的分布函数

- 对于离散型随机变量,可以用分布律来刻画,比如:表格和概率公式.
- 如何刻画非连续型随机变量?

随机变量的分布函数

- 对于离散型随机变量,可以用分布律来刻画,比如:表格和概率公式.
- 如何刻画非连续型随机变量? ⇒ 分布函数.

分布函数

定义

设 X 是一个随机变量, 函数

$$F(x) = P(X \le x), \qquad x \in \mathbb{R},$$

为 X 的概率分布函数, 简称分布函数.

(1) F(X) 是增函数,定义域是 \mathbb{R} ;

- (1) F(X) 是增函数,定义域是 \mathbb{R} ;
- (2) 任何随机变量都有相应的分布函数;

- **(1)** *F*(*X*) 是增函数,定义域是 ℝ;
- (2) 任何随机变量都有相应的分布函数;
- (3) 不同的随机变量,它们的分布函数可以相同.

- (1) F(X) 是增函数,定义域是 \mathbb{R} ;
- (2) 任何随机变量都有相应的分布函数;
- (3) 不同的随机变量,它们的分布函数可以相同.
- (4) 分布函数的几何意义: F(x) 的值表示 X 落在 $(-\infty, x]$ 上的概率;

- **(1)** *F*(*X*) 是增函数,定义域是 ℝ;
- (2) 任何随机变量都有相应的分布函数;
- (3) 不同的随机变量,它们的分布函数可以相同.
- (4) 分布函数的几何意义: F(x) 的值表示 X 落在 $(-\infty, x]$ 上的概率;
- (5) 分布函数的用途: 可以给出随机变量 X 落入任意一个范围的可能性.

• $P\{a < X \le b\} = P\{X \le b\} - P\{X \le a\}$ = F(b) - F(a).

- $P\{a < X \le b\} = P\{X \le b\} P\{X \le a\}$ = F(b) - F(a).
- $P\{X > a\} = 1 P\{X \le a\} = 1 F(a)$.

- $P\{a < X \le b\} = P\{X \le b\} P\{X \le a\}$ = F(b) - F(a).
- $P\{X > a\} = 1 P\{X \le a\} = 1 F(a)$.
- $P\{a < X < b\} = P\{a < X \le b\} P\{X = b\}$ = $F(b) - F(a) - P\{X = b\}.$

- $P\{a < X \le b\} = P\{X \le b\} P\{X \le a\}$ = F(b) - F(a).
- $P\{X > a\} = 1 P\{X \le a\} = 1 F(a)$.
- $P\{a < X < b\} = P\{a < X \le b\} P\{X = b\}$ = $F(b) - F(a) - P\{X = b\}.$
- $P\{a \le X \le b\} = P\{a < X \le b\} + P\{X = a\}$ = $F(b) - F(a) + P\{X = a\}.$

例

设X的分布律为

求

- **(1)** *X* 的分布函数,
- (2) $P\{X \le \frac{1}{2}\}, P\{\frac{3}{2} < X \le \frac{5}{2}\}, P\{2 \le X \le 3\}.$

解:(1) 当
$$x < -1$$
 时,
$$F(x) = P\{X \le x < -1\} = 0$$
 当 $-1 \le x < 2$ 时,
$$F(x) = P\{X \le x\} = P\{X = -1\} = \frac{1}{4}$$
 当 $2 \le x < 3$ 时,
$$F(x) = P\{X \le x\} = P\{X = -1\} + P\{X = 2\} = \frac{3}{4}$$
 当 $x \ge 3$ 时,
$$F(x) = P\{X \le x\} = P\{X = -1\} + P\{X = 2\} + P\{X = 3\} = 1$$
 故 $F(x) = P\{X \le x\} = P\{X = -1\} + P\{X = 2\} + P\{X = 3\} = 1$ 故 $F(x) = \begin{cases} 0 & x < -1; \\ \frac{1}{4} & -1 \le x < 2; \\ \frac{3}{4} & 2 \le x < 3; \\ 1 & x \ge 3. \end{cases}$ 6/34

解: (2)
$$P\{X \le \frac{1}{2}\} = F(\frac{1}{2}) = \frac{1}{4}$$
,
 $P\{\frac{3}{2} < X \le \frac{5}{2}\} = F(\frac{5}{2}) - F(\frac{3}{2}) = \frac{1}{2}$,
 $P\{2 \le X \le 3\} = F(3) - F(2) + P\{X = 2\} = \frac{3}{4}$.

离散型随机变量的分布函数

一般, 设离散型 X 的分布律为 $P\{X = x_k\} = p_k$, 则 X 的分布函数

$$F(x) = P\{X \le x\} = \sum_{x_k \le x} P\{X = x_k\} = \sum_{x_k \le x} p_k,$$

分布函数在 $x = x_k$ 处有跳跃, 跳跃值为 $p_k = P\{X = x_k\}.$

例

设随机变量 X的分布函数

$$F(x) = \begin{cases} 0 & x < -1; \\ 0.2 & -1 \le x < 3; \\ 0.6 & 3 \le x < 4; \\ 1 & x \ge 4. \end{cases}$$

求 X 的分布律.

解: F(x) 只在 -1,3,4 跳跃, 跳的幅度分别是 0.2,0.4,0.4. 所以, 分布律为

X	-1	3	4
P	0.2	0.4	0.4

性质

设X是离散型随机变量,F(X)是X的分布函数.则

(1) $0 \le F(x) \le 1$;

性质

设X是离散型随机变量,F(X)是X的分布函数.则

- **(1)** $0 \le F(x) \le 1$;
- (2) F(x) 单调不减, 即对任意 $x_1 < x_2$, 有 $F(x_2) F(x_1) = P\{x_1 < X \le x_2\} \ge 0$;

性质

设X是离散型随机变量,F(X)是X的分布函数.则

- **(1)** $0 \le F(x) \le 1$;
- (2) F(x) 单调不减, 即对任意 $x_1 < x_2$, 有 $F(x_2) F(x_1) = P\{x_1 < X \le x_2\} \ge 0$;
- (3) $F(-\infty) = 0$, $F(+\infty) = 1$;

性质

设X是离散型随机变量,F(X)是X的分布函数.则

- **(1)** $0 \le F(x) \le 1$;
- (2) F(x) 单调不减, 即对任意 $x_1 < x_2$, 有 $F(x_2) F(x_1) = P\{x_1 < X \le x_2\} \ge 0$;
- (3) $F(-\infty) = 0$, $F(+\infty) = 1$;
- (4) F(x) 是右连续函数, 即 F(x-0) = F(x). 但 不一定是连续函数

例

一个靶子是半径为 2m 的圆盘, 设击中靶上任一同心圆盘上的点的概率与该圆盘的面积成正比, 并设射击都能中靶, 以 X 表示弹着点与圆心的距离, 求 X 的分布函数.

 $F(x) = P\{X \le x\} = 0,$ 当 0 < x < 2 时. $P\{0 \le X \le x\} = kx^2.$ 取 x = 2, 有 $P\{0 < X < 2\} = k \cdot 2^2$, 而 $P\{0 < X < 2\} = 1$, 则 $k = \frac{1}{4}$, 即 $P\{0 \le X \le x\} = \frac{x^2}{4}.$ 从而 $F(x) = P\{X \le x\} = P\{X < 0\} + P\{0 \le X \le x\} = \frac{x^2}{4}.$

 $F(x) = P\{X \le x\} = 1.$

解: 当 x < 0 时, $\{X < x\}$ 是不可能事件, 于是

当 x > 2 时.

13/34

故
$$F(x) = \begin{cases} 0 & x < 0; \\ \frac{x^2}{4} & 0 \le x < 2; \\ 1 & x \ge 4. \end{cases}$$

图像为一连续曲线.

本题中,分布函数 F(x) 可写为

$$F(x) = \int_{-\infty}^{x} f(t) dt,$$

其中
$$f(t) = \begin{cases} \frac{t}{2} & 0 < t < 2; \\ 0 &$$
其他.

即F(x) 是非负函数 f(t) 在区间 $(-\infty, x]$ 上的积分. 此时, 称 X 为连续型随机变量. (使得 F(X) 连续 的随机变量)

连续型随机变量及其概率密度

定义

若对于随机变量 X 的分布函数 F(x), 存在非负可积函数 f(x), 使得对于任意实数 x 有

$$F(x) = \int_{-\infty}^{x} f(t) dt,$$

则称 X 为连续型随机变量. f(x) 称为 X 的概率 密度函数, 简称概率密度.

连续型随机变量及其概率密度

定义

若对于随机变量 X 的分布函数 F(x), 存在非负可积函数 f(x), 使得对于任意实数 x 有

$$F(x) = \int_{-\infty}^{x} f(t) dt,$$

则称 X 为连续型随机变量. f(x) 称为 X 的概率 密度函数, 简称概率密度.

改变概率密度 f(x) 的个别点的取值不影响 F(x) 的取值. (见注3)

性质

设 f(x) 是连续型随机变量 X 的概率密度,则

- **(1)** $f(x) \ge 0$;
- (2) $\int_{-\infty}^{+\infty} f(x) dx = 1$;
- (3) $\forall x_1, x_2 \in \mathbb{R}, x_1 \leq x_2$,

$$P\{x_1 < X \le x_2\} = F(x_2) - F(x_1) = \int_{-\infty}^{\infty} f(t) dt.$$

• $P\{X \le a\} = F(a) = \int_{-\infty}^{a} f(x) dx$

• $P\{X > a\} = 1 - P\{X \le a\} = \int_{a}^{+\infty} f(x) dx$

• $P\{X \le a\} = F(a) = \int_{-\infty}^a f(x) dx$

- $P\{x_1 < X \le x_2\} = P\{x_1 < X < x_2\};$
- $\forall a \in \mathbb{R}, P\{X=a\}=0, \mathbb{A}$

• $P\{X > a\} = 1 - P\{X \le a\} = \int_{a}^{+\infty} f(x) dx$;

• $P\{X \le a\} = F(a) = \int_{-\infty}^{a} f(x) dx$,

- $P\{X \le a\} = F(a) = \int_{-\infty}^{a} f(x) dx$ • $P\{X > a\} = 1 - P\{X \le a\} = \int_{a}^{+\infty} f(x) dx$;
- $\forall a \in \mathbb{R}, P\{X=a\}=0, \mathbb{R}$

$$P\{x_1 < X \le x_2\} = P\{x_1 < X < x_2\};$$

• $\{X = a\}$ 是不可能事件 $\Rightarrow P\{X = a\} = 0$; 而 $P\{X=a\}=0 \Rightarrow \{X=a\}$ 是不可能事 件:

- $\forall a \in \mathbb{R}, \ P\{X = a\} = 0, \ \mathbb{H}$ $P\{x_1 < X \le x_2\} = P\{x_1 < X < x_2\};$
 - $\{X = a\}$ 是不可能事件 $\Rightarrow P\{X = a\} = 0$; 而 $P\{X = a\} = 0 \Rightarrow \{X = a\}$ 是不可能事件;

• $P\{X > a\} = 1 - P\{X \le a\} = \int_{a}^{+\infty} f(x) dx$;

• $P\{X \le a\} = F(a) = \int_{-\infty}^{a} f(x) dx$

对于连续型随机变量 X.

 $P\{X \in D\} = \int_D f(x) dx, \quad \forall D \subset \mathbb{R}.$

性质

设 f(x) 是连续型随机变量 X 的概率密度,则 (4) 在 f(x) 的连续点 x, F'(x) = f(x), 即

$$f(x) = F'(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{P\{x < X \le x + \Delta x\}}{\Delta x}.$$

其中 $P\{x < X \le x + \Delta x\} \approx f(x) \cdot \Delta x$ 表示 X 落在 x 附近 $(x, x + \Delta x]$ 上的概率近似等于 $f(x)\Delta x$.

注

- (1) $f(X_2) > f(x_1)$ 表示落在 x_2 附近的概率大于落在 x_1 附近的概率, 而不是取 x_2 的概率大于取 x_1 的概率;
- **(2)** f(x) 的值是可以大于 1.

(3)
$$f(x) = \frac{\int_{-\infty}^{x} f(t) dt}{\frac{d}{dx} F(x)} F(x)$$
.

设随机变量 X 具有概率密度

$$f(x) = \begin{cases} kx & 0 \le x < 3; \\ 2 - \frac{x}{2} & 3 \le x \le 4; \\ 0 & \sharp \text{ i.e.} \end{cases}$$

- (1) 确定常数 k.
- (2) 求X的分布函数F(x).
- **(3)** $\# P\{1 < X \le \frac{7}{2}\}.$

解: (1) 由
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
, 得 $k = \frac{1}{6}$. (2)

 $(3)P\{1 < X \le \frac{7}{2}\} = F(\frac{7}{2}) - F(1) = \frac{41}{48}$

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$= \begin{cases} 0 & x < 0; \\ \frac{x^2}{12} & 0 \le x < 3; \\ -3 + 2x - \frac{x^2}{4} & 3 \le x < 4; \\ 1 & x \ge 4. \end{cases}$$

21/34

设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0 & x < 0; \\ \frac{x}{3} & 0 \le x < 3; \\ 1 & x \ge 3. \end{cases}$$

$$\text{\vec{x} X $ \text{ oh } \\ \text{$\mathbb{R}} \\ \text$$

解:
$$f(x) = F'(x) = \begin{cases} \frac{1}{3} & 0 < x < 3; \\ 0 &$$
其他.

均匀分布

定义

若 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b; \\ 0 & \text{ i.e.} \end{cases}$$

则称 X 在 (a,b) 上服从均匀分布, 记为 $X \sim U(a,b)$.

性质

均匀分布具有等可能性.

即 $\forall a < k < k + l < b$, 均有

$$P\{k < X < k+l\} = \int_{k}^{k+l} \frac{1}{b-a} dt = \frac{l}{b-a},$$

与 k 无关, 仅与 l 有关. 即服从 U(a,b) 上的均匀分布的 X 落入 (a,b) 中任意子区间上的概率只与区间长度有关, 与区间所处位置无关. 即 X 落入 (a,b) 中的等长度的任意子区间上是等可能的.

24/34

若 $X \sim \cup (a, b)$, 则 $P\{a < X < b\} = 1$, 且分布函数为

$$F(x) = \begin{cases} 0 & x < a; \\ \frac{x-a}{b-a} & a \le x < b; \\ 1 & x \ge b. \end{cases}$$

当
$$a \le x \le b$$
 时,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{a}^{x} \frac{1}{b-a} = \frac{x-a}{b-a}.$$

在区间 (-1,2) 上随机取一数 X, 求

- (1) 写出 X 的概率密度函数;
- (2) 该数在 (-0.5,1) 中的概率;
- (3) 该数为正数的概率.

在区间 (-1,2) 上随机取一数 X, 求

- (1) 写出 X 的概率密度函数;
- (2) 该数在 (-0.5,1) 中的概率;
- (3) 该数为正数的概率.

解:(1) X 在 (-1,2) 上服从均匀分布, 故 $f(x) = \begin{cases} \frac{1}{3} & -1 < x < 2; \\ 0 & \text{其他.} \end{cases}$

(2)
$$P\{-0.5 < X < 1\} = \int_{-0.5}^{1} f(x) dx = \frac{1}{2}$$
.

(3)
$$P{X > 0} = \int_0^{+\infty} f(x) dx = \frac{2}{3}$$
.

均匀分布的概率计算

若 $X \sim \cup (a, b)$, 则 $\forall I \subset \mathbb{R}$, 有

法一:

$$P\{X \in I\} = \int_{I} f(x) dx,$$

法二:

$$P\{X \in I\} = \frac{I \cap (a, b) \text{ 的长度}}{(a, b) \text{ 的长度}}.$$

指数分布

定义

若 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0; \\ 0 & x \le 0. \end{cases}$$

其中 $\theta > 0$ 为常数, 则称 X 服从参数为 $\theta > 0$ 的指数分布. 记为 $X \sim E(\theta)$.

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\theta}} & x > 0; \\ 0 & x \le 0. \end{cases}$$

性质

指数分布具有无记忆性. 即 $\forall s, t > 0$, 有 $P\{X > s + t | X > s\} = P\{X > t\}$.

性质

指数分布具有无记忆性. 即 $\forall s, t > 0$, 有 $P\{X > s + t | X > s\} = P\{X > t\}$.

证明:
$$P\{X > s + t | X > s\} = \frac{P\{\{X > s + t\} \cap \{X > s\}\}}{P\{X > s\}}$$

$$= \frac{P\{X > s + t\}}{P\{X > s\}} = \frac{1 - F(s + t)}{1 - F(s)}$$

$$= e^{-\frac{t}{\theta}} = P\{X > t\}$$

若把 X 记为一元件的寿命. 已知元件使用了 s 小时, 总共能使用至少 s+t 小时的概率与从开始使用时算起它至少能使用 t 小时的概率相等. 元件对它已使用过 s 小时没有记忆.

设某人电话通话时间 X (分钟) 服从指数分布, 概率密度

$$f(x) = \begin{cases} \frac{1}{15}e^{-\frac{x}{15}} & x > 0; \\ 0 & x \le 0. \end{cases}$$

求

- (1) 他通话时间在 $10 \sim 20$ 分钟之间的概率.
- (2) 若他已打了 10 分钟, 求他继续通话超过 15 分钟的概率.(即, 若他已打了 10 分钟, 求他总共通话超过 25 分钟的概率).

30/34

解: (1)
$$P{10 < X < 20} = \int_{10}^{20} f(x) dx = e^{-\frac{2}{3}} - e^{-\frac{4}{3}}$$
.

利用分布函数
$$F(x) = \begin{cases} 1 - e^{-\frac{x}{15}} & x > 0; \\ 0 & x \le 0. \end{cases}$$

$$P\{10 < X < 20\} = F(20) - F(10) = e^{-\frac{2}{3}} - e^{-\frac{4}{3}}.$$

(2) 指数分布无记忆性.

$$P\{X > 25 | X > 10\} = P\{X > 15\}$$

$$= \int_{15}^{+\infty} f(x) dx = e^{-1}$$

设一地段相邻两次交通事故的间隔时间 (小时) X服从参数为 ½ 的指数分布. 求已知在过去的 13 小时中没有发生交通事故, 那么在未来的 2 小时内不发生事故的概率.

设一地段相邻两次交通事故的间隔时间 (小时) X服从参数为 ½ 的指数分布. 求已知在过去的 13 小时中没有发生交通事故, 那么在未来的 2 小时内不发生事故的概率.

解:
$$X \sim E(\boldsymbol{\theta})$$
, $\boldsymbol{\theta} = \frac{13}{2}$,
$$f(x) = \begin{cases} \frac{2}{13}e^{-\frac{2x}{13}} & x > 0; \\ 0 & x \le 0. \end{cases}$$
所以 $P\{X > 15|X > 13\} = P\{X > 2\}$
$$= \int_{2}^{+\infty} f(x) dx = 1 - F(2) = e^{-\frac{4}{13}}.$$

指数分布的用途

- 表示独立随机事件发生的间隔, 比如旅客进机场的时间间隔、维基百科新条目出现的时间间隔等等;
- 在排队登记中,一个顾客接受服务的时间长 短也可用指数分布近似。
- 无记忆性的现象 (连续时).

正态分布 (高斯分布 Gauss)

例

若连续型随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad -\infty < x < +\infty,$$

其中 μ , σ (σ > 0) 为常数, 则称 X 服从参数为 μ , σ 的正态分布或高斯分布. 记 $X \sim N(\mu, \sigma^2)$.

- # % # % % % % % % % %
- 规范性: $\int_{-\infty}^{+\infty} f(x) dx = 1$

- 非负性: f(x) > 0.
- 规范性: $\int_{-\infty}^{+\infty} f(x) dx = 1$

证: $\diamondsuit (x - \mu)/\sigma = t$, 则

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt.$$

记 $I=\int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}dt$,则

$$I^{2} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{t^{2}+u^{2}}{2}} dt du.$$

取极坐标变换. 令 $t = r\cos\theta$. $u = r\sin\theta$. 则 $I^{2} = \int_{-\infty}^{2\pi} \int_{-\infty}^{+\infty} re^{-\frac{r^{2}}{2}} dr d\boldsymbol{\theta} = 2\boldsymbol{\pi}.$

$$I > 0$$
,则 $I = \sqrt{2\pi}$,故 $\int_{-\infty}^{+\infty} f(x) dx = 1$.

性质 (正态分布的性质)

- (1) f(x) 关于 $x = \mu$ 对称, 即 $\forall h > 0$, $P\{\mu h < X \le \mu\} = P\{\mu < X \le \mu + h\}$.
- (2) 当 $x \leq \mu$ 时, f(x) 严格单增.
- (3) f_{max}) = $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$, 表明 x 离 μ 越远, f(x) 值越小, 同样长度的区间, 当区间离 μ 远时, X 落在这个区间上的概率越小.

性质 (正态分布的性质)

- (4) 在 $x = \mu \pm \sigma$ 处有拐点, 以 x 轴为渐近线.
- **(5)** $\lim_{x \to +\infty} f(x) = 0.$
- (6) 当 σ 固定, 改变 μ 的大小时, f(x) 的图像形状不变, 沿 x 轴平移. μ 为位置参数, 决定对称轴的位置.
- (7) 当 μ 固定, 改变 σ 的大小时, f(x) 的图像形状变, σ 越小, 图像越高越瘦; σ 越大, 图像越胖, σ 为尺度参数, 决定曲线分散程度,

正态分布的用途

- 自然界和人类社会中很多现象可以看成正态分布,比如,人的身高,体重,医学检验指标,测量误差,半导体器件中的热噪声电流或电压.
- 正态分布时最常见的一种分布,一个变量如果受到大量微小的,独立的随机因素的影响,则一般是正态随机变量.
- 二项分布, 泊松分布的极限分布是正态分布。

正态分布的分布函数

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

正态分布的概率计算

$$X \sim N(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$

$$P\{X \le x\} = F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = ?$$
 用 Matlab, excel, R 等软件; 数值积分; 转为标准正态分布, 利用标准正态分布表求.

标准正态分布

若 $Z \sim N(0,1)$, 称 Z 服从标准正态分布.

Z的概率密度函数 $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, 关于 y 轴对 称.

分布函数
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
.

$$\mathbf{\Phi}(-x) = 1 - \mathbf{\Phi}(x).$$

性质

若
$$X \sim N(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$
, 则 $Z = \frac{X-\boldsymbol{\mu}}{\boldsymbol{\sigma}} \sim N(0, 1)$.

证:
$$Z = \frac{X-\mu}{\sigma}$$
 的分布函数为
$$P\{Z \leq x\} = P\{\frac{X-\mu}{\sigma} \leq x\} = P\{X \leq \mu + \sigma x\} = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\mu + \sigma x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$
 令 $\frac{t-\mu}{\sigma} = \mu$, 得
$$P\{Z \leq x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du = \Phi(x).$$
 故 $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$.

性质

若
$$X \sim N(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$
, 则

$$F_X(x) = P\{X \le x\} = P\{\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\} = \Phi(\frac{x-\mu}{\sigma}).$$

$$\forall (x_1, x_2], \ P\{x_1 < X \le x_2\} = P\{\frac{x_1 - \mu}{\sigma} < \frac{X - \mu}{\sigma} \le \frac{x_2 - \mu}{\sigma}\} = \Phi(\frac{x_2 - \mu}{\sigma}) - \Phi(\frac{x_1 - \mu}{\sigma}).$$

i.e.
$$P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{\frac{x_2-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \int_{-\infty}^{\frac{x_2-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt - \int_{-\infty}^{\frac{x_1-\mu}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \mathbf{\Phi}(\frac{x_2-\mu}{\sigma}) - \mathbf{\Phi}(\frac{x_1-\mu}{\sigma}).$$

用天平称一实际重量为 μ 得物体, 天平得读数为随机变量 X, 若 $X \sim N(\mu, \sigma^2)$, 求读数与 μ 的偏差在 3σ 范围内的概率.

解:
$$P\{|X - \mu| < 3\sigma\} = P\{-3\sigma < X - \mu < 3\sigma\} = P\{-3 < \frac{X - \mu}{\sigma} < 3\} = \Phi(3) - \Phi(-3) = 2\Phi(3) - 1 = 0.9973.$$

在 $(\mu - 3\sigma, \mu + 3\sigma)$ 内几乎是肯定的概率. 3σ 法则.

将一温度调节器放置在储存着某种液体的容器内, 调节器调整在 $d^{\circ}C$, 液体的温度 X (以 $^{\circ}C$ 计) 是一个随机变量, 且 $X \sim N(d, 0.5^2)$.

- (1) 若 $d = 90^{\circ}C$, 求 X 小于 $89^{\circ}C$ 的概率.
- (2) 若要求保持液体的温度至少为 $80^{\circ}C$ 的概率不低于 0.99, 问 d 至少为多少?

解: (1)
$$P\{X < 89\} = P\{\frac{X-90}{0.5} < \frac{89-90}{0.5}\} =$$
 $\mathbf{\Phi}(-2) = 1 - \mathbf{\Phi}(2) = 1 - 0.9772 = 0.0228.$
(2) $P\{X \ge 80\} \ge 0.99 = P\{\frac{X-d}{0.5} \ge \frac{80-d}{0.5}\} = 1 - P\{\frac{X-d}{0.5} < \frac{80-d}{0.5}\} = 1 - \mathbf{\Phi}(\frac{80-d}{0.5}) \ge 0.99 = \mathbf{\Phi}(2.327).$
 $\mathbf{\Phi}(\frac{80-d}{0.5}) \le 0.01.$
即 $d > 81.1635$