W1796-01

Aqueous quenching medium containing salts of polymeric materials

Patent number:

JP49055510

Publication date:

1974-05-29

Inventor:

Applicant: Classification:

- international:

C21D1/60

- european:

C21D1/60

Application number:

JP19720097969 19721002

Priority number(s):

JP19720097969 19721002

Also published as:

US3939016 (A1) DE2349225 (A1)

Report a data error here

Abstract not available for JP49055510

Abstract of corresponding document: US3939016

A novel quenching medium for steel is provided. The quenching medium is a 0.5-10 wt. % aqueous solution of polyacrylic acid, polymethacrylic acid, a copolymer of acrylic acid and methacrylic acid, or a salt thereof. Intrinsic viscosity [eta] of the polymer is from 0.010 to 0.050 l/g. The quenching medium is superior in various quenching characteristics to conventional quenching media.

Data supplied from the esp@cenet database - Worldwide

19日本国特許庁

昭53-3725

①特許出願公告

特許 公 報

(1) Int.C12. C 21 D 1/60

識別記号 超日本分類 10 A 720.1

庁内整理番号 **44公告** 昭和53年(1978) ² 月 ⁹ 日

6547 - 42

発明の数 1

(全 5 頁)

1

函水溶性焼入冷却液

②特 願 昭47-97969

(2)出 顧 昭47(1972)10月2日

公 開 昭49-55510

(4))昭49(1974)5月29日

72 発 明 者 徳植孝

横浜市旭区市沢町97の6

同 加藤安司

横浜市東逸見町4の21の14

衍出 頗 人 東邦化学工業株式会社

東京都中央区日本橋蛎殻町1の 1409

砂特許請求の範囲

1 極限粘度数 0.0 1 0 0 ~ 0.0 5 0 0 化/gの ポリアクリル酸、ポリメタクリル酸、ポリアクリ ルーメタクリル酸およびこれらの塩類から選ばれ た 少なくとも 1 種を含有させることを特徴とする 水溶性焼入冷却液。

発明の詳細な説明

本発明は炭素鋼、特殊鋼などの金属の物理的性 質を改善する目的で焼入時に急冷のために用いる 水溶性焼入冷却液に関する。

されるから、しばしば内部歪みとか焼割れが発生 する。そのために引き上げ焼入その他複雑な焼入 方法を行う必要がある。

また、油焼入により高炭素鋼を焼入すると不完 全焼きとなり、焼ムラが発生する。

現在までに水焼および油焼などの欠点を改善す る目的で各種の焼入用冷却液が知られているが冷 却液の寿命が短く、焼きムラを生じ焼入材表面に 汚点を生じ鋼材品質の低下が見られ、焼入時に悪 も公害問題を引き起す場合がある。

本発明はこのような欠点を除去するため鋭意研

2

究し、なされたものであつて炭素鋼および特殊鋼 の焼入に際し、従来水焼入か油焼入かのどちらか で行つていた焼入その他複雑な方法による焼入の 広い範囲を本発明の水溶性焼入冷却液の使用礦度 5 を変えることによつて全べて自由に好みの金属組 織に焼入することができる。また炭素鋼および特 殊鋼の焼入時における急冷操作時間を比較的短か くすることができ、焼入時における焼割れ、焼ム ラを防止し、金属強度および構造的完全性を高め 10 金属内部応用力および歪みを最少にし金属組織に 均一な硬化性を与えることができる。

本発明は極限粘度数0.0100~0.05004/ gのポリアクリル酸、ポリメタクリル酸、ポリア クリルーメタクリル酸およびこれらの塩類(例え 15 ばナトリウム塩、カリウム塩およびアミン塩) の 少なくとも1種を水に加え0.5~10多重量にな るように調製することを特徴とする水溶性焼入冷 却液である。

本発明の水溶性焼入冷却液に用いる化合物は、 20 冷却性能、熱安定性および使用後の廃水処理のし やすさからアニオン系のものが好ましい。 特にポ リアクリル酸ナトリウム又はカリウムとポリアク リルーメタクリル酸ナトリウム又はカリウムとの 併用が好ましく、その割合はポリアクリル酸ナト 水焼入により低炭素鋼を焼入すると急速に冷却 25 リウム又はカリウム 5 0 部に対しポリアクリルー メタクリル酸ナトリウム又はカリウム60〜40 部の範囲である。60部以上になると冷却におけ る蒸気膜段階を長くする傾向を示し、従つて不完 全焼入組織となる可能性が多く、40部以下では 30 M S点 (martensite start)の冷却を早くし焼 割れの傾向を示し、実用上問題が多い。

本発明の水溶性焼入冷却液の極限粘度数が 0.0100 &/g以下では冷却性能は水単独の場 合と大差なく、その冷却液の磯度を増加しても 臭ガスの発生とか冷却使用後の廃液処理の点から 35 MS点通過の冷却性は緩和することができないし、 極限粘度数が0.0500化/g以上では冷却性能

中の蒸気膜段階が長くなり不完全焼入の原因となる。

30

本発明における水溶性焼入冷却液の機度は 0.5~10%の範囲が好ましく、0.5%以下では 冷却性能は水と大差なく焼入製品に焼割れが発生 する場合がある。10%以上では熱伝導性が悪く、 焼入としての実用性がない。

本発明の水溶性焼入冷却液に加熱された金属が投入された場合、ポリアクリル酸、ポリメタクリル酸、ポリアクリルーメタクリル酸およびそれらの塩類の少なくとも1種の極性基が金属に向つて配列し、それらが幾層にも配向し液温の上昇を防 10 ぎ熱の拡散を緩和にし、金属表面全体に被覆され、熱伝導性を低下させる。更に金属投入時の焼き割れ、焼き歪みの防止となるMS点付近の冷却速度が極めて緩和になることは他に類例がない。

次に本発明を実施例により説明する。ただし、 実施例1~4において用いるポリアクリル酸ナト リウムの極限粘度数は 0.0 2 3 4 &/g およびポ リアクリルーメタクリル酸ナトリウムの極限粘度 数は 0.0 3 9 6 &/g である。

実施例 1

(1) 焼入試験供試品:炭素鋼(S450)丸棒直 径25mm、長さ50mm

(2) 焼入条件;

試料番号	試料組成
1 — A	ポリアクリル酸ナトリウムとポリア
	クリルーメタクリル酸ナトリウムと
	の等量混合物の 1.0 多水溶液
1 — B	ポリアクリル酸ナトリウムとポリア
	クリルーメタクリル酸ナトリウムと
	の等量混合物の 1.6 多水溶液
1 - C	ポリアクリル酸ナトリウムとポリア
	クリルーメタクリル酸ナトリウムと
	の等量混合物の 3.0 %水溶液
1 — D	水单独
1 — E	焼入油(JIS K 2242
	1 種一1 号)

液量; 5 ℓ、液温; 28 ~ 32 ℃、加熱温度; 850 ℃×40 分、焼入温度; 850 ℃

(3) 焼入試験結果

試料番号	表面硬さ(HRC)	芯部硬さ(HRC)
i A	6 0. 0 - 6 0. 9	4 6.5
1 — B	5 6.0 - 5 7.6	4 5. 2

4

試	料番号	表面硬さ(HRC) 芯部硬さ(HRC)
1	- C	2 8. 5 - 3 1.	5 2 7. 5
1	– D	5 9.5 - 6 2.6	5 4 5. 2
1	–E	2 5. 4 - 2 8.	2 7.0

実施例 2

(1) 焼入試験供試品;クロムモリフデン鋼(SCM-3)丸棒直径25㎜、長さ50㎜

(2) 焼入条件; 試料番号

2 — A	ポリアクリル酸ナトリウムとポリア
	クリルーメタクリル酸ナトリウムと
	の等量混合物の 1.0 易水溶液
2 _ 0	ゼリアクリル酸ナトリウィレゼリア

試 料 組 成

- 2 B ポリアクリル酸ナトリウムとポリア クリルーメタクリル酸ナトリウムと の等量混合物の 4.0 多水溶液
- 2-C ポリアクリル酸ナトリウムとポリア クリルーメタクリル酸ナトリウムと の等量混合物の 4.6 %水溶液
- 2-D 水単独
- 2-E 焼入油(JIS K 2242 1種-1号)

液量;5 L、液温;28~32℃、加熱温度; 850℃×40分、焼入温度;850℃

(3) 焼入試験結果

試料番号 表面硬さ(HRC) 芯部硬さ(HRC)

2 - A	5 8.1 - 6 0.2	5 7. 9
2 - B	5 2.4 - 5 4.6	5 0.5
2 — C	4 9.2 - 5 3.3	5 0.3
2 D	6 0.5 - 6 1.3	6 0.6
2 - E	5 2.5 - 5 6.1	5 7. 3

実施例 3

35 (1) 焼入試験供試品; クロムモリブデン鋼 (SCM-3)のメインアーム(自動車部品) および炭素工具鋼(SK-5)のパネ

(2) 焼入条件; 試料番号

40		
•••	3 - A	ポリアクリル酸ナトリウムとポリア
		クリルーメタクリル酸ナトリウムと
		の等量混合物の3%水溶液
	_	***

試料組成

3 一 8 水単独

5

液温; 28~50℃、加熱温度; 850℃×50 実施例 5 分(メインアーム)および950℃×3分(バネ) (3) 焼入結果-1

試料番号 メインアーム表面硬さ バネ表面硬さ (HeC)

	(IRC)	(Incc)
3 - A	5 8.4 ~ 5 9.5	6 1.0~6 3.2
3 — B	5 1.2 - 5 3.4	6 0.8~6 3.8

(4) 焼入結果一2

水焼入したメインアームおよびパネは焼割れが 10 認められたがポリアクリル酸ナトリウムとポリア クリルーメタクリル酸ナトリウムとの等量混合物 の3多水溶液によつて焼入したメインアームおよ びバネは水焼入よりも高い硬度のものが得られて いるにもかかわらず焼割れの発生は認められなか15 つた。

但し、メインアームについてはJIS G 0565に準じて試験し、パネについては目視に よつて判定した。

実施例 4

(1) 焼入試験供試品; 炭素鋼(S45C) 丸棒直 径25㎜、長さ50㎜およびクロムモリプデン 鋼(SСM一3)丸棒直径25㎜、長さ50㎜

試

(2) 焼入条件; 試料番号

4 - A	ポリアクリル酸ナトリウムとポリア
	クリルーメタクリル酸ナトリウムと
	の等量混合物の10%水溶
4 — B	焼入油(JIS K 2242 30
	1種-1号)

料

組

成

液量;5℃、液温;28~32℃、加熱温度; 850℃×40分、焼入温度;850℃

(3) 焼入試験結果

試料番号 炭素鋼表面硬さ クロムモリブデン

	(HRC)	鋼表面硬さ (HRC)	
4 - A	1 0.0 - 1 3.7	3 5.5 - 4 0.0	
4 — B	2 5. 4 - 2 8. 4	5 2.5 - 5 6.1	40

ただし、焼入前の炭素鋼表面硬さ(HRC)は 7.8~8.3 および焼入前のクロムモリブデン鋼表 850C×50分、焼入温度;850℃ 面硬さ(HRC)は17.0~18.5である。

6

極限粘度数 0.0 2 3 4 ℓ/⋅g のポリアクリル酸、 極限粘度数 0.0 2 3 0 化/gのポリメタクリル酸、 | 極限粘度数00396L/gのポリアクリルーメ 5 タクリル酸およびその塩の相違による焼入性能試 験結果

- (1) 焼入試験供試品;クロムモリブデン鋼 (SCM-3)のメインアーム
- (2) 焼入条件;

試料番号	試料組成
5 — A	ポリアクリル酸の 1.5 多水溶液
5 — B	ポリアクリルーメタクリル酸の 1.5
	% 水溶液
5 - C	ポリアクリル酸とポリアクリルーメ
	タクリル酸との等量混合物の 1.5 %
	水溶液
5 — D	ポリアクリル酸カリウムの 1.5 %水
	溶液
5 — E	ポリアクリルーメタクリル酸カリウ
	ムの 1.5 男水溶液
$5 - \mathbf{F}$	ポリアクリル酸カリウムとポリアク
	リルーメタクリル酸カリウムとの等
	量混合物の1.5%水溶液
5 - G	ポリアクリル酸トリエタノールアミ
	ン塩の 1.5 %水溶液
5 — H	ポリアクリルーメタクリル酸トリュ
_	タノールアミン塩の 1.5 多水溶液
5 — I	ポリアクリル酸トリエタノールアミ
	ン塩とポリアクリルーメタクリル酸
	トリエタノールアミン塩との等量復
	合物の1.5多水溶液
5 — J	焼入油(JIS K 2242
	1種-1号)
5 — K	水単独
5 — L	ポリメタクリル酸の 1.5 多水溶液
5 - M	ポリメタクリル酸カリウムの 1.5 9
0 .2	水溶液
5 – N	ポリメタクリル酸トリエタノールフ
	5

液量;5℃、液温;28~32℃、加熱温度;

ミン塩の1.5 多水溶液

(3) 焼入試験結果

試料番号	表面硬さ(HRC)	芯部硬さ(HR)	C)焼割れ	
5 — A	5 9.5 ~ 6 1.2	6 0.4	なし	
5 — B	5 9.8 - 6 1.0	5 9.0	なし	
5 — C	5 9.3 - 6 0.8	5 9.5	なし	
5 — D	5 8.5 - 5 9.2	5 8.8	なし	
5 — E	5 8.4 ~ 5 9.4	5 8.3	なし	
5 - F	5 8.8 - 5 9.6	5 8.5	なし	
5 — G	5 9.0 ~ 6 0.1	5 9.3	なし	
5 — H	5 9.3 - 6 1.0	6 0.7	なし	
5 — I	5 8.5 ~ 5 9.5	5 9.5	なし	
5 — J	5 2.5 - 5 8.1	5 7.3	なし	
5 – K	5 8. 5 ~ 6 1. 3	6 0.6	あり	
5 — L	5 9.3 - 6 1.3	5 9.4	なし	
5 — M	5 8.8 - 5 9.9	5 9.0	なし	
5. — N	5 9.5 - 6 0.4	6 0.0	なし	

注;焼割れはJIS G 0565に準じて測定する。

実施例 6

20* (SCM-3)のメインアーム

極限粘度数の相違による焼入性能

(2) 焼入条件;

(1) 焼入試験供試品:クロムモリプデン鋼

試料番号	,	試	料	組	成
6 - A	水単独			•	
6 — B	極限粘度数 0.0088 L/g	粘度数 0.0 0 8 5	ℓ∕g のポリ	アクリルー	ル酸ナトリウム と極D メタクリル酸ナトリウム
6 - C	極限粘度数 0.0 1 25 L/g		092 <i>L/</i> g0	コポリアクリ	ル酸ナトリウムと極 メタクリル酸ナトリウム
6 - D	極限粘度数 0.0 2 6 8 <i>L</i> /g		230 L/g	コポリアクリ	iル酸ナトリウムと極原 メタクリル酸ナトリウム
6 - E	極限粘度数 0.03 40 L/g	との等量混合物 / 極限粘度数 0.0	9の3多水溶 234 <i>L/</i> gの	i液 ロポリアクリ	ル酸ナトリウムと極いメタクリル酸ナトリウム
6 - F	極限粘度数 0.0 4 9 5 L /g	との等量混合物 /極限粘度数 0.0	の3%水径 330 <i>L/</i> gの	液 ロポリアクリ	ル酸ナトリウムと極 メタクリル酸ナトリウム
6 - G	極限粘度数0.0518ℓ/g	1	420 e/g o	コポリアクリ	!ル酸ナトリウムと極! メタクリル酸ナトリウム

6-H 焼入油(JIS K 2242 1種-1号)

液量;5 L、液温;28~32℃、加熱温度;850℃×50分、焼入温度;850℃

との等量混合物の3多水溶液

10

(3) 焼入試験結果(各試料につき10本のテスト ピースを処理)

試料番号	表面硬さ(HRC)	金属組織観察
6 - A	6 0.5 ~ 6 2.5	焼割れあり(10本共)
6 - B	5 9.8 - 6 1.0	焼割れあり(10本中2本)
6 — C	5 8.1 - 6 0.2	焼割れなし(10本共)
6 — D	5 5.4 \sigms 5 7.8	焼割れなし(10本共)
6 — E	5 2.6 - 5 4.3	焼割れなし(10本共)
6 - F	5 1.0 - 5 3.3	焼割れなし(10本共)
6 - G	4 9. 2 - 5 4. 5	焼割れなし
		不完全焼入(10本中2本)
6 — H	5 0.5 - 5 6.3	焼割れなし
		不完全焼入(10本中2本)

注;焼割れはJ IS G 0565 に準じて測定し、不完全焼入は焼入後の金属組織によつて判定した。

66引用文献

英国特許 1163345

特 公 昭30-1205