Amostras aleatórias

Patrícia de Siqueira Ramos

UNIFAL-MG, campus Varginha

25 de Setembro de 2018

2.1 Amostras aleatórias

Amostras aleatórias

• Seja uma amostra aleatória (a.a.) de tamanho n e, para cada unidade amostral (u.a.), foram observados os valores de p variáveis (ou seja, tem-se n vetores aleatórios i.i.d. - independentes identicamente distribuídos):

$$u.a.1$$
 $u.a.2$... $u.a.n$

$$\square$$
 \square ... \square

$$\mathbf{X}_1.$$
 $\mathbf{X}_2.$... $\mathbf{X}_{n}.$

em que X_i , é o vetor de observações para a *i*-ésima unidade amostral:

$$\mathbf{X}_{i\cdot} = \left[\begin{array}{c} X_{i1} \\ X_{i2} \\ \vdots \\ X_{ip} \end{array} \right]$$

Juntos, os vetores X_1 ., X_2 ., ..., X_n . formam a matriz de dados:

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{bmatrix},$$

em que X_{ij} é a j-ésima variável medida da i-ésima unidade amostral

a) Vetor de médias amostrais

a) Vetor de médias amostrais

• O vetor μ será estimado pelo vetor de médias amostrais $\bar{\mathbf{X}}$.

$$ar{\mathbf{X}} = egin{bmatrix} ar{X}_1 \ ar{X}_2 \ dots \ ar{X}_1 \end{bmatrix} = rac{1}{n} \sum_{i=1}^n \mathbf{X}_{i\cdot} = rac{1}{n} (\mathbf{X}_{1\cdot} + \mathbf{X}_{2\cdot} + \cdots + \mathbf{X}_{n\cdot}),$$

em que \bar{X}_j é a média amostral da j-ésima variável, $j=1,\ldots,p$ e \mathbf{X}_i . é o vetor de observações para a i-ésima unidade amostral:

$$\mathbf{X}_{i\cdot} = \begin{bmatrix} X_{i1} \\ X_{i2} \\ \vdots \\ X_{ip} \end{bmatrix}$$

A matriz de covariâncias Σ será estimada por:

$$\mathbf{S}_{p \times p} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1p} \\ S_{21} & S_{22} & \dots & S_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ S_{p1} & S_{p2} & \dots & S_{pp} \end{bmatrix},$$

sendo
$$S_{ij} = S_{ji}, i \neq j$$
.

- Variância amostral da i-ésima variável: $S_{ii} = S_i^2 = \sum_{l=1}^n \frac{(X_{li} \bar{X}_i)^2}{n-1}$
- Covariância amostral entre a i-ésima e a j-ésima variáveis:

$$S_{ij} = \sum_{l=1}^{n} \frac{(X_{li} - \bar{X}_i)(X_{lj} - \bar{X}_j)}{n-1}.$$

 Lembrar que a variância é a covariância de uma variável com ela mesma

- Variância amostral da i-ésima variável: $S_{ii} = S_i^2 = \sum_{l=1}^n \frac{(X_{li} X_i)^2}{n-1}$
- Covariância amostral entre a i-ésima e a j-ésima variáveis:

$$S_{ij} = \sum_{l=1}^{n} \frac{(X_{li} - \bar{X}_i)(X_{lj} - \bar{X}_j)}{n-1}.$$

- Lembrar que a variância é a covariância de uma variável com ela mesma
- Matricialmente, $\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_{i\cdot} \bar{\mathbf{X}}) (\mathbf{X}_{i\cdot} \bar{\mathbf{X}})^{T}$.

c) Matriz de soma de quadrados e produtos

• Outra matriz que pode aparecer em técnicas multivariadas:

$$\mathbf{W}_{p \times p} = \begin{bmatrix} W_{11} & W_{12} & \dots & W_{1p} \\ W_{21} & W_{22} & \dots & W_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ W_{p1} & W_{p2} & \dots & W_{pp} \end{bmatrix} = (n-1)\mathbf{S}.$$

d) Matriz de correlações amostrais

• A matriz ρ será estimada por:

$$\mathbf{R}_{p \times p} = \begin{bmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \dots & 1 \end{bmatrix},$$

em que

$$r_{ij} = \frac{S_{ij}}{\sqrt{S_{ii}S_{jj}}}$$

é o coeficiente de correlação amostral entre as variáveis i e j.

d) Matriz de correlações amostrais

• Matricialmente, definindo $\mathbf{D} = diag(\mathbf{S}) = diag(S_{ii})$ e $\mathbf{D}^{-1/2} = diag(1/\sqrt{S_{ii}})$,

$$R = D^{-1/2}SD^{-1/2}$$
.

Obtenha \bar{X} , S, W e R de todas as maneiras apresentadas nesta aula considerando a seguinte amostra aleatória (n = 4, p = 3):

$$\boldsymbol{X}_{1\cdot} = \left[\begin{array}{c} 7 \\ 3 \\ 9 \end{array} \right], \boldsymbol{X}_{2\cdot} = \left[\begin{array}{c} 4 \\ 6 \\ 11 \end{array} \right], \boldsymbol{X}_{3\cdot} = \left[\begin{array}{c} 4 \\ 2 \\ 5 \end{array} \right], \boldsymbol{X}_{4\cdot} = \left[\begin{array}{c} 5 \\ 5 \\ 7 \end{array} \right].$$

(Monte a matriz de dados X antes)