Výstupní zpráva

Jméno: Jan Kai Marek Login: xmarekj00

2. května 2025

Architektura navrženého obvodu (na úrovni RTL)

Schéma obvodu

Popis funkce

Komponenty:

- \mathbf{FSM} řídí chování obvodu skrze 4 definované stavy měnící se na základě vstupů
- CLK_CYCLE_CNT čítač počítající hodinové cykly
- DATA_BIT_CNT čítač přijatých datových bitů
- **Demultiplexor** přiřazuje do konkrétních registrů hodnoty vstupu DIN, které poté dohromady tvoří výstup na DOUT

Funkcionalita:

Obvod se skládá z konečného automatu FSM, čítače hodinových cyklů

CLK_CYCLE_CNT, čítače přijatých datových bitů DATA_BIT_CNT a demultiplexoru. Příchodem start-bitu se obvod přepíná z pasivního stavu IDLE do stavu WAITING_FOR_FIRST_BIT, ve kterém vyčkává 23 cyklů hodin. Následuje začátek přenosu dat skrze DATA_BIT_CNT_ACTIVE a READING_DATA stav. Obvod poté přijímá 8 bitů dat, mezi kterými vždy uběhne 16 hodinových cyklů - při každém přenosu je DATA_BIT_CNT zvýšen o 1. Demultiplexor posílá datový vstup DIN na jeden z osmi datových výstupních registrů. Validace dat je ověřena skrze DOUT_VLD, jehož hodnota je určována na základě STOP BITU (DIN = 1) v posledním stavu WAITING_FOR_STOP_BIT, po kterém se obvod přepíná zpět do začátečního stavu IDLE.

Návrh automatu (Finite State Machine)

Schéma automatu

Popis funkce

Moorovy výstupy:

- CLK_CYCLE_CNT_ACTIVE spouštěč hodinového čítače
- DATA_BIT_CNT_ACTIVE spoučtěč čítače bitů dat

Stavy:

- IDLE obvod je ve výchozím neaktivním stavu
- WAITING_FOR_FIRST_BIT obvod je aktivovaný a vyčkává na první datový bit
- READING_DATA obvod postupně čte jednotlivé datové bity

- WAITING_FOR_STOP_BIT - obvod vyčkává na poslední, validační bit

Funkcionalita:

Obvod se na začátku nachází ve stavu IDLE, ve kterém je neaktivní. Aktivace probíhá skrze příjem prvního bitu (logické 0) a přechází do stavu WAITING_FOR_FIRST_BIT, kde vyčkává na příjem prvního datového bitu. Následně se obvod přesouvá do stavu READING_DATA, ve kterém probíhá příjem 8 bitů dat. Následuje ověření (validace) dat, která je realizována vyčkáním a přijmutím stop-bitu ve stavu WAITING_FOR_STOP_BIT. Obvod následně opět přechází zpět do stavu IDLE.

Snímek obrazovky ze simulací

