Lagrangian density
$\frac{2}{3}t_3 \omega_{\alpha}^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} + \frac{2}{3}t_2 \omega_{\prime}^{\ \ \kappa \lambda} \omega_{\kappa \lambda}^{\ \ \prime} + \frac{1}{3}t_2 \omega_{\kappa \lambda}^{\ \ \prime} \omega_{\kappa \lambda}^{\ \ \prime} +$
$\frac{3}{2} r_3 \partial_i \omega^{\kappa \lambda}_{\ \ \kappa} \partial^i \omega_{\lambda}^{\ \alpha} + \frac{2}{3} r_2 \partial^\beta \omega^{\theta \alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} - \frac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} -$
$rac{2}{3}r_2\partial_ heta\omega_{lphaeta}^{\kappa}\partial_\kappa\omega^{ hetalphaeta} + rac{5}{2}r_3\partial_lpha\omega_\lambda^{}\partial_\kappa\omega^{ heta\kappa\lambda} - rac{5}{2}r_3\partial_ heta\omega_\lambda^{}\partial_\kappa\omega^{ heta\kappa\lambda} +$
$rac{3}{2}r_3\partial_{lpha}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $3r_3\partial_{ heta}\omega_{\lambda}^{a}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ + $rac{1}{6}t_2\partial^{lpha}f_{\kappa}\partial^{\kappa}f_{}^{}$ -
$\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \theta} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\ \kappa}\partial^{\kappa}f_{\alpha\lambda} - \frac{2}{3}t_3\omega_{\kappa\alpha}^{\ \alpha}\partial^{\kappa}f'_{\ \prime} -$
$\frac{2}{3}t_3\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^\kappa f'_{\;\;l}\; -\frac{4}{3}t_3\;\partial^\alpha f_{\;\;\kappa\alpha}\;\partial^\kappa f'_{\;\;l}\; +\frac{2}{3}t_3\;\partial_\kappa f^\lambda_{\;\;\lambda}\;\partial^\kappa f'_{\;\;l}\; +\frac{1}{3}t_2\;\omega_{l\theta\kappa}\;\partial^\kappa f^{l\theta}\; -$
$\frac{2}{3}t_{2}\ \omega_{_{IK}\theta}\ \partial^{\kappa}f^{'\theta} - \frac{1}{3}t_{2}\ \omega_{_{\theta IK}}\ \partial^{\kappa}f^{'\theta} + \frac{2}{3}t_{2}\ \omega_{_{\theta KI}}\ \partial^{\kappa}f^{'\theta} + \frac{2}{3}t_{3}\ \omega_{_{I\alpha}}^{\ \alpha}\ \partial^{\kappa}f^{'}_{\ K} +$
$rac{2}{3}t_3\;\omega_{_{1}\lambda}^{\lambda}\;\partial^{\kappa}f_{\kappa}}^{}-rac{1}{6}t_2\;\partial^{\kappa}f_{\kappa}}^{}-rac{1}{6}t_2\;\partial_{\kappa}f_{\lambda}}^{}\partial^{\kappa}f_{\lambda}}^{}+$
$\frac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} + \frac{2}{3}t_3\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} + \frac{1}{3}r_2\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta} +$
$rac{2}{3}r_2\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta heta}^{-}rac{2}{3}r_2\partial^\beta\omega_{\alpha\lambda}^{}\partial_\lambda\omega_{lphaeta}^{\prime}^{\prime}+rac{2}{3}r_2\partial^\beta\omega_{\alpha}^{\lambdalpha}\partial_\lambda\omega_{lphaeta}^{\prime}^{\prime}-$
$4 r_3 \partial^\beta \omega_{\lambda}^{\lambda \alpha} \partial_\lambda \omega_{\alpha \beta}^{\ \ \prime} - \tfrac{5}{2} r_3 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + \tfrac{5}{2} r_3 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa}$
Added source term: $f^{lphaeta}$ $ au_{lphaeta}+\omega^{lphaeta\chi}$ $\sigma_{lphaeta\chi}$

					3 (3)		I m
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4i}{3kr_3+6k^3r_3}$	$\frac{i\sqrt{2} (9k^2 r_3 - 4t_3)}{3k(1 + 2k^2)^2 r_3 t_3}$	0	$\frac{2(9k^2r_3-4t_3)}{3(1+2k^2)^2r_3t_3}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	$\frac{9k^2r_3-4t_3}{3(k+2k^3)^2r_3t_3}$	0	$-\frac{i\sqrt{2}(9k^2r_3-4t_3)}{3k(1+2k^2)^2r_3t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$-\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+6k^4r_3}$	0	$\frac{4i}{3kr_3+6k^3r_3}$
$\tau_1^{\#1}_+ \alpha_\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{#2} + \alpha$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$\left -\frac{1}{3} \tilde{l} \sqrt{2} k t_3 \right $
$\omega_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{6} \left(-9 k^2 r_3 + 4 t_3 \right)$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{\varepsilon}{2^{3}}$	$2 \left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2}\ t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{\beta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_{1+}^{#1} +^{\alpha\beta}$	$\omega_1^{\#_1} +^\alpha$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{lpha}$

 $\omega_{0^+}^{\#1}$

 $i\sqrt{2}kt_3$

1 1 #

 $\tau_{0}^{\#2} == 0$

Source constraints SO(3) irreps

 $f_{0^{+}}^{#1}$

 $-i \sqrt{2} kt_3$

 $2 k^2 t_3$

0

0

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

m

 $\tau_{1}^{\#2}\alpha + 2ik \ \sigma_{1}^{\#2}\alpha = =$

 $t_0^{\#1} - 2ik\sigma_0^{\#1} = 0$

 $f_{0^{+}}^{#2}$

Ж

 $\iota_{1}^{\#1}{}^{\alpha\beta}+ik\;\sigma_{1}^{\#1}{}^{\alpha\beta}$

 $\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$

 $\sigma_{2}^{\#1}\alpha\beta\chi == 0$

 $\tau_2^{\#1}\alpha\beta == 0$

Total #:

 $\omega_0^{\sharp_1}$

0

0

5 5 5

 $0 k^2 r_2 + t_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$ u_2^{\#1} \dagger^{lphaeta\chi}$	0	0	0

 $\sigma_{0}^{\#1}$

0

$\tau_0^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
·	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0^-}^{\#1}$ †

0

0

 $\frac{1}{k^2 r_2 + t_2}$

Massive	particl	1
		ſ

Pole residue: Polarisations: Square mass: Spin: Parity: Odd Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)