

Amibes libres

Y. Merad

Introduction

Leur nom vient du grec amoibē signifiant
 « transformation ».

 On a des Amibes parasites (Entamoeba histolytica) et des amibes capables d'évoluer d'une façon totalement autonome (amibes libres)

Historique

- 1956 Cultbertson découvre une amibe (Acanthamoeba culbertsoni) au niveau du rein d'un singe.
- 1965 Fowler et Carter: découvrent la MEAP et mettent en évidence *Naegleria fowleri*.

Définition

- □ Ce sont des protozoaires libres (non parasites)
- □ Vivant dans la nature (contamination accidentelle lors de baignades)
- ☐ Ils sont responsables de:
- ✓ Méningo encephalite primitive : Naeglerai fowleri: évolution rapide vers la mort
- Encephalite granulomateuse
 - Acanthamoeba: évolution lente
- ✓ Kératite (Acanthamoeba sp)

Epidémiologie

- Répartition géographique et biotope
- Contamination
- Agent pathogène

Eaux contaminées+++

Eaux chaudes Eaux douces

- •Étangs
- •Lac
- •Rivières
- maraisFlaques d'eau

Égouts

Établissement thermaux Piscines non entretenues

Installations industrielles (eau de refroidissement)

Pas d'amibes en eau de mer Cl (40/1000)

I•A 25°C on retrouveI 10 amibes/litreI dans les piscines

- •Naegleria fowleri se I développe entre 35 I et 40°C
 - •Acanthamoeba culbertsoni supporte 35 et 37°C

Période estivale+++

Agents pathogènes

- Acanthamoeba sp
- Naegleria fowleri
- Balamuthia mandrillaris: touche le singe et exceptionnellement l'immunodéprimé
- Sappinia diploidea
- Paravahlkampfia francinae:
- a un pronostic favorable

Acanthamoeba sp

- □ La contamination se fait chez les porteurs de lentilles de contact (excoriation au niveau de la cornée, traumatismes répétés)
- Après lavages des lentilles par une eau contaminée
- □ Il peut provoquer une encephalite par voie naso-pharyngienne
- □ Parfois seulement par le vent de sable dans les régions chaudes et sèches

Acanthamoeba sp

trophozoite

A. Castellani au microscope optique

Au microscope électronique

kyste

A. Castellani au microscope optique

Acanthamoeba sp

Forme végétative trophozoite

- □15 à25 µm, Déplacement assez lent avec pseudopodes hérissés de prolongements filiforme ou en aiguilles (Acanthapodes)
- ☐ Aspect épineux au microscope électronique
- Le noyau comporte un très volumineux caryosome central.
- □Présence d'une vacuole pulsatile (impression de clignotement)
- **■**Mouvement éruptifs donnant l'impression de « bouillonnement »

Forme kystique

- Un seul noyau à double paroi:
- Externe, plissée, épineuse et épaisse
- Interne, étoilée mince adhérente à la
- paroi externe au niveau « d'ostioles »,
 - dont le nombre varie selon les espèces (
 - 7 chez A.castellani)
- Forme de résistance dans la nature (enkystement réversible)
- Retrouvée dans les lésions et en culture

Balamuthia mandrillaris

- ☐ Très ramifiée
- ☐ Forme végétative (trophozoite):
 - 12-60 μm
- Forme kystique: 15 μm

Naegleria fowleri

Forme végétative amiboide

Forme flagellée

Forme kystique

- □10 à 30 µm, assez mobile
- **□**Pseudopodes larges et kystes arrondis
- □Volumineux caryosome central entouré d'un halo
- □ Présence de vacuole pulsatile
- retrouvée dans le milieu extérieur et les cultures

- 2 8 à 12 μm, forme allongée en cigare avec deux flagelles à l'extrémité anterieure
- ☐ très mobile, intervient dans la contamination mais n'est pas retrouvée au niveau des lésions
- ☐Stade temporaire, uniquement dans le milieux extérieur et en quelques heures (1 à 2 heures)

- **4**8 à 12μm forme arrondie ou semi-lunaire
- Les kyste ne sont pas
 retrouvés au niveau des
 lésions car ils n'ont pas le
 temps de se constituer (l'
 évolution clinique est
 rapidement fatale)
- Les kystes sont observés dans la nature et en culture

Clinique

1 Forme méningée

Fièvre 40°C, rhino-pharyngite

Méningite

Ou

Méningo-Encéphalite

Clinique

2 Forme oculaire

Kératite, ulcération, perforation de la cornée

Kératite à Acanthamoeba

Kératite amibienne avec perforation

Facteurs de risque de la kératite amibienne

- •Traumatisme
- •Porteurs de lentille
- leau suspecte++

Clinique

3 Acanthmoebose cutanée

Rare, touche les sujets immunodéprimés

Diagnostic

A évoquer chez les baigneurs

Prélèvement méningite biopsie, écouvillonnage, LCR, LBA, post-mortem, salive Prélèvement kératite Grattage cornée++, écouvillonnage, Lentille, liquide lentille

!-Examen direct Trophozoite++ ·Frottis: Gram, **Giemsa** · Culture ✓ Agar 2% enrichi en bactéries: forme végétative en 48h et s'enkystent en 10 jours **✓** Culture cellulaire -PCR Liquide cornée **PELISA/salive**

Acanthamoeba sp anapath

Acanthamoeba sp en culture Après immunofluorescence

PCR: migration

Traitement

- ☐ Amphotéricine B+(Tétracycline ou Rifampicine)en IV et en intrathécale , miconazole®
- Pour les Kératites: Kétoconazole par voie générale+ATB et collyre par voie locale
- ☐ Traitement de plusieurs mois , Chirurgie (kératoplastie) pour les lésions oculaires
 - Prophylaxie usage du chlore (0,5 mg/l)
- □ Recherche dans les piscines et puits par filtration
- Renouveler l'eau, port de masque de plongeur
- □ Laver les lentilles de contact avec des solutions isotoniques stériles
- ☐ Filtration des eaux, brossage des espaces entre les carrelages de piscine

Amibes et Amoeboses

Y. Merad

Introduction

- 500 millions de personnes sont colonisées par Entamoeba dispar
- •Entamoeba histolytica, responsable d'une mortalité autour de 40000/an
- •3^{ème} cause de mortalité

 parasitaire après le paludisme et la bilharziose.
- maladie liée au péril fécal et à l'existence de très nombreux porteurs asymptomatiques.

 Les amibes sont des organismes microscopiques unicellulaires de forme irrégulière, se déplaçant à l'aide de pseudopodes

 Une seule espèce est pathogène : Entamoeba histolytica

Amibes du colon

- Entamoeba histolytica/dispar
- ☐ Entamoeba coli
- Entamoeba polecki
- Endolimax nanus
- 🔲 Pseudolimax butschlii
- 🗖 Entamoeba hartmanni

classification

E/ protozoaire
SE/Sarcomastigophora
CI/Rhizpodes
G/ Entamoeba
Iodomoeba
Pseudolimax

Répartition géographique

†Amérique centrale †Inde †zone tropicales

Mode de contamination

Ingestion de kystes

Directe

Féco-orale (mains sales)
Certaines pratiques sexuelles

Indirecte

Eaux souillées ou suspectes Légumes souillées Géophagie Mouches

Les kystes

- •Résistent 15 jours à 18°C
- Résistent 10 joursdans les selles
 - Résistent 3 mois dans l'eau à 4°C
- Résistent
 détergeant, détruits
 à la température de
 50°C

Caractéristique des formes parasitaires

Forme kystique

Forme végétative 'trophozoïte'

- Abondance Dissémination Résistance
- MobilitéFragilitéInvasivehématophage

Forme kystique

Forme végétative

Distinction entre les amibes

Aspect

Type de déplacement

•Forme/taille

(ovale, ronde, amoeboide)

•Le/les Noyau(x)

(nombre, caryosome, répartition de chromatine)

Cytoplasme

(endo et ectoplasme, hématies phagocytées

- Unidirectionnel
- Désordonné

Noyaux amibes

E.histolytica

E. coli

Endolimax nanus

P.butschlii

Différences morphologique entre les Amibes

Entamoeba Histolytica	Entamoeba hartmanni	Entamoeba coli	Entamoeba polecki	Endolimax nanus	pseudolimax butschlii	dientamoeba fragilis
15-20 µ						

Cycle parasitaire

Forme kystique 10-15µm

Forme végétative 20-40µm

8 amoebules → amibes de type minuta → amibiase infestation

La forme minuta devient pathogène si les condition sont défavorables:

•Hôte: Stress, maladie

Parasite: virulence

Cycle parasitaire

Forme kystique 10-15µm

Forme végétative 20-40µm

8 amoebules → amibes de type minuta → amibiase infestation

La forme minuta devient pathogène si les condition sont défavorables:

•Hôte: Stress, maladie

Parasite: virulence

Formes cliniques

Amibiase intestinale

Dysenterie amibienne

- Selles afécales
- •Diarrhée+sang+
- glaires
- Ténesmes
- Epreintes

Forme hépatique

Triade de Fonton

- •Fièvre
- •Douleur HD
- hépatomégalie

Forme intestinale

- Ulcérations en 'coups d'ongles'
- •Abcès en 'boutons de chemises'

Forme hépatique

Abcès amibien

Complications

- Localisation secondaire
 A partir d'une amibiase intestinale on peut avoir une forme hépatique, pleuro-pulmonaire, cérébrale ou autre et cela après plusieurs mois ou années
- surinfection bactérienne
- perforation intestinale
- hémorragie digestive
- amoebomes coliques
- colite cicatricielle

Diagnostic biologique

Amibiase intestinale

Amibiase tissulaire

3 EPS

Etat frais: FK, FV

Lugol

MIF

T. Ritchie: FK

Coproculture:

Dobell-Laidlaw, LMS

Copro-Ag PCR **Présomption**

VS↑,CRP↑,PNN↑

immunologie

•HIA

•ELISA

•IFI

•IEP/ES

Coproparasitologie

Dc initial

Diagnostic radiologique

Echo/TDM/téléthorax

Diagnostic biologique

Ac apparaissant 3-4 j
 après le début de la
 maladie atteignant un
 taux puis restent en
 plateau

Associer deux techniques immunologiques

Traitement

Amoebicide tissulaires (diffusible)

- -Metronidazole(flagyl®): cp 250mg, 500mg, susp buv 4%, 30-40mg/kg/j pdt 7-10 j
- -Tinidazole(fasigyne®): cp 500mg, 2g/j pdt 4-5 j
- -Ornidazole(tiberal®): cp 500mg
- -Secnidazole(flagentyl®): en prise unique

Amoebicide de contact

- -Metronidazole(flagyl®), paramomycine(Humatin®), oxyquinoleines non iodées (intetrix®)
- Pour l'amibiase intestinale, parasitologie des selles de contrôle, 1 mois après le Traitement pour l'amibiase hépatique associer un amoebocide de contact et tissulaire pendant 10j

Pour les porteurs sains, amoebocide de contact

Pour certaines amibiases hépatiques et les abcès coliques volumineux le traitement chirurgical s'impose

Prophylaxie

Individuelle

- Hygiène des mains
- ·lavages des fruits et des légumes (sinon peler ou cuire ces produits)
- consommation d'eau contrôlée ou en bouteilles

Collective

- Lutte contre le péril fécal
- dépistage systématique pour les manipulateurs d'aliments
- Dépistage et traitement des porteurs sains