General term of an arithmetic sequence

A general term of an arithmetic sequence T_i is a function in order

i.e., it's an expression in one **independent** variable (let's call it 'i') representing the order of each term, i.e., (1st term, 2nd term, 3rd term, ...etc.).

Substituting that independent variable 'i' gives the value of the i_{th} term.

Deriving the general term T_i of an arithmetic sequence

- 1. **Keep** calculating differences between terms until it becomes a **constant difference**, let this happen after *n* times of subtracting.
- 2. Assume a polynomial in i of degree n to be the general term T_i , i.e., $T_i = P_n(i)$
- 3. Substitute (n + 1) terms of the given sequence in $P_n(i)$ and solve the (n + 1) equations simultaneously to get the values of coefficients of that polynomial.

Example:

The sequence 1, 10, 23, 40, 61 ...

Let's calculate the differences,

4 4
$$\rightarrow$$
 A constant difference after **2** times of subtracting

Assume
$$T_i = ai^2 + bi + c$$

At
$$i = 1 \rightarrow a + b + c = 1$$

At
$$i = 2 \to 4a + 2b + c = 10$$

At
$$i = 3 \rightarrow 9a + 3b + c = 23$$

Solving the equation, we get a = 2, b = 3, c = -4

Which is the general term $T_i = 2i^2 + 3i - 4$

Sigma notation \sum

$$\sum_{i=1}^{n} T_i$$

 \boldsymbol{i} is the independent variable representing order in the general term $\boldsymbol{T_i}$

 \boldsymbol{n} represents the number of terms to be added after substitution of each \boldsymbol{i}

$$\sum_{i=1}^{n} C = n * C, \text{ where C is a constant}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$$

From the above equations we can deduce rules for summing Odd and Even numbers

For ODD numbers,
$$\sum_{i=1}^{n} 2i - 1 = n^2$$

For EVEN numbers,
$$\sum_{i=1}^{n} 2i = n^2 + n$$

Ranged sigma \sum

The sum of terms of the sequence whose general term is T_i in range [L, R]

$$\max_{i = 1} t \max_{i \leq R} \max_{i \leq L-1} \max_{i \leq L-1} T_i$$

We can easily get the maximum i makes $T_i \leq X$ using binary search!

Or simply we can find the floor of the solution to the general term of that sequence The floor of a number can be easily acquired by casting to an int type

```
11 Sum {};
// Solving the general term equation. Assume it's Ti = (3i² + 13i - 7)
ll X = (-13 + sqrtl (169 + 12 * (7 + R))) / 6;
ll Y = (-13 + sqrtl (169 + 12 * (6 + L))) / 6;

// Σ Ti = Σ (3i² + 13i - 7) = X³ + 8X²
Sum += (X * X * X + 8 * X * X) - (Y * Y * Y + 8 * Y * Y);
```