Реализовать параллельный алгоритм матричного умножения.

Задание

Задача: Реализовать параллельный 3D алгоритм DNS матричного умножения (разработать параллельную программу с использованием технологии MPI). Протестировать полученную программу на Bluegene. Составить графики времени работы, ускорения, эффективности для матриц размерности 512×512 , 1024×1024 , 1536×1536 , 2048×2048 и для числа процессов:

- 1;
- $8 = 2^3$;
- $64 = 4^3$;
- в качестве бонуса: $512 = 8^3$.

Формат файла-матрицы: Матрицы представляются в виде бинарного файла следующего формата:

Тип	Значение	Описание
int32_t	N >0	Число строк/столбцов матрицы
Maccub чисел типа int32_t	N х N элементов	Массив элементов матирцы

Элементы матрицы хранятся построчно. Матрица квадратная.

Формат командной строки: <binary> <матрица_a> <матрица_b> <матрица_c> Пример запуска:

\$ mpisubmit.bg -n 64 ./run -- a b c

Требования к решению

Можно использовать пользовательские типы данных MPI (user-defined datatypes) для распределения матрицы между узлами и для сбора результата для последующего сохранения их в файле.

Ни один узел (кроме, возможно, мастер-узла для ввода/вывода) не должен хранить всю матрицу целиком.

Гарантируется, что число MPI-процессов является кубом натурального числа: $N_p = p^3$, а размер матрицы $n \times n$ таков, что n кратно p.

Решение должно содержать Makefile.

Makefile должен содержать target test.

При вызове make test должен запускаться скрипт ./test.sh 1 .

 $^{^{1}}$ Тесты не будут работать на bluegene, потому что там используется BigEndian.