1. Aksjomaty prawdopodobieństwa oraz wynikające z nich własności prawdopodobieństwa,

Funkcja $P: F \rightarrow R$ jest funkcją prawdopodobieństwa, gdy:

- $P(A) \ge 0$ dla dowolnego $A \in F$
- $P(\Omega) = 1$
- $A_1 \cup A_2 \cup A_3 \cup ... = P(A_1) + P(A_2) + P(A_3)$... jeżeli zbiory A_1, A_2, A_3 ... są parami rozłączne (tzn. nie mają części wspólnej, $A_i \cap A_j = \emptyset$ $dla \ i \neq j$

Z aksjomatów tych wynikają pewne własności prawdopodobieństwa:

- dla każdego zdarzenia A prawdziwe jest P(A)= 1- P(A)
- dla każdego zdarzenia $A \in \Omega$ prawdziwa jest nierówność: $0 \le P(A) \le 1$.

2. Wzór włączeń i wyłączeń,

Jeśli A_1,\ldots,A_n są zbiorami skończonymi, to $|A_1\cup\ldots\cup A_n|=\sum_{k=1}^n(-1)^{k+1}\sum_{T\in P_k(n)}|\bigcap_{j\in T}A_j|$

3. Wzór łańcuchowy,

Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Niech $A_1, \dots, A_n \in F$ oraz $P(A_1 \cap \dots \cap A_{n-1}) > 0$ Wtedy: $P(A_1 \cap \dots \cap A_{n-1} \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|(A_1 \cap A_2)) \dots P(A_n|(A_1 \cap \dots \cap A_{n-1}))$

4. Twierdzenie o prawdopodobieństwie całkowitym, z założeniami,

Niech $\{B_n, n \in T \subset N\}$ będzie rozbiciem zbioru Ω takim, że $P(B_n) > 0$ dla każdego n.

Wtedy dla dowolnego zdarzenia losowego A mamy $P(A) = \sum_{n \in T} P(A|B_n)P(B_n)$

5. Twierdzenie (wzór) Bayesa, z założeniami,

Niech $\{B_n, n \in T \subset N\}$ będzie rozbiciem zbioru Ω takim, że $P(B_n) > 0$ dla każdego n.

Wtedy dla dowolnego zdarzenia losowego A takiego, że P(A)>0 i dla każdego $n\in T$ mamy $P(B_n|A)=\frac{P(A|B_n)P(B_n)}{P(A)}$

P(A) możemy wyliczyć z twierdzenia o prawdopodobieństwie całkowitym.

6. Definicje niezależności dwóch oraz niezależności n zdarzeń,

Dla dwóch zdarzeń:

Zdarzenia A i B nazywamy niezależnymi, jeśli prawdopodobieństwo iloczynu zdarzeń jest równe iloczynowi prawdopodobieństw tych zdarzeń. $P(A \cap B) = P(A) \cdot P(B)$

Dla n zdarzeń:

Zdarzenia A_1,A_2,\dots,A_n nazywamy niezależnymi, jeśli dla dowolnego ciągu indeksów $i_1 < i_2 < \dots < i_k$ zachodzi $P(A_{i_1} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot A_{i_k}$

7. Schemat Bernoulliego - jego określenie oraz wzór na prawdopodobieństwo liczby sukcesów,

Jeżeli przeprowadzimy *n* niezależnych i identycznych doświadczeń, w których są tylko dwa możliwe wyniki, to taki ciąg powtórzeń tego samego doświadczenia nazywamy schematem Bernoulliego. W schemacie tym jedno ze zdarzeń elementarnych nazywamy sukcesem, a drugie porażką.

W schemacie n prób Bernoulliego prawdopodobieństwo $P_n(k)$ otrzymania dokładnie k sukcesów wyraża się wzorem: $P_n(k) = \binom{n}{k} p^k q^{n-k}$

gdzie p jest prawdopodobieństwem sukcesu, zaś q=1-p prawdopodobieństwem porażki w próbie Bernoulliego, przy czym 0 .

8. Definicja dystrybuanty jednowymiarowej zmiennej losowej (dla typu dyskretnego oraz typu ciągłego),

Dystrybuantą jednowymiarowej zmiennej losowej X : $\Omega \to \mathbb{R}$ nazywamy funkcję F_X : $\mathbb{R} \to \mathbb{R}$ określoną wzorem: $F_X(x) = P(X \le x) = P(X^{-1}(-\infty, x])$

Jeśli X ma rozkład dyskretny, to: $F_X(x) = \sum_{x_i \le x} P(X = x_i)$

Zmienna losowa X o dystrybuancie F_X ma rozkład ciągły (jest typu ciągłego), jeżeli istnieje funkcja $f_X\colon R\to R$ taka, że: $F_X(x)=\int_{-\infty}^x f_X(t)dt$

9. Własności dystrybuanty jednowymiarowej zmiennej losowej (dla typu dyskretnego oraz typu ciągłego),

Funkcja F: $R \rightarrow R$ jest dystrybuantą jednowymiarowej zmiennej losowej wtedy i tylko wtedy, gdy:

- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to+\infty} F(x) = 1$
- F jest funkcją niemalejącą $(x_1 < x_2 \rightarrow F(x_1) \le F(x_2))$
- F jest funkcją co najmniej prawostronnie ciągłą

Jeśli X ma rozkład ciągły, to:

- F_X jest funkcją ciągłą w zbiorze R
- $F'_X(x) = f(x)$ w każdym punkcie ciągłości x funkcji f_X

10. Definicja gęstości jednowymiarowej zmiennej losowej typu ciągłego i jej własności,

Jeśli dystrybuanta jest funkcją ciągłą to wówczas nieujemna funkcja określona jako $f(x) = \frac{dF(x)}{dx} = F'(x)$ zwana jest funkcją gęstości prawdopodobieństwa lub gęstością prawdopodobieństwa zmiennej losowej X. Zgodnie z tą definicją, gęstość prawdopodobieństwa zmiennej losowej X określa prawdopodobieństwo zajścia zdarzenia w którym ($x \le X < x + dx$)

Własności:

- $\bigwedge_{a < b} P(a < X \le b) = P(a \le X < b) = P(a < X < b) = P(a \le X \le b) = \int_a^b f(x) dx = F(b) F(a)$
- $\bigwedge_{c \in R} P(X = c) = 0$
- $\bullet \int_{-\infty}^{\infty} f(x) dx = 1$
- Jeśli x jest punktem ciągłości, to f(x) = F'(x)

11. Zapisywanie wzorów na prawdopodobieństwo $P(a < X \le b)$ (itp.) za pomocą dystrybuanty oraz za pomocą gęstości (to drugie - w przypadku zmiennej losowej typu ciągłego),

Za pomocą dystrybuanty (F(x) - dystrybuanta):

$$P(a < X \le b) = F(b) - F(a)^{-}$$
 - dla zmiennej losowej typu dyskretnego

$$P(a < X \le b) = F(b) - F(a)$$
 – dla zmiennej losowej typu ciągłego

Za pomocą gęstości (f(x) – gęstość):

$$P(a < X \le b) = \int_a^b f(x)dx$$
 – dla typu ciągłego

12. Wzory na wartość oczekiwaną zmiennej losowej (dla zmiennych losowych typu dyskretnego oraz dla zmiennych losowych typu ciągłego),

gdy X jest typu dyskretnego (skokowego) o rozkładzie postaci $\{(x_i, p_i), i = 1, 2, ... n\}$: $EX = \sum_{i=1}^n x_i \cdot p_i$

gdy X jest typu ciągłego o gęstości f: $EX = \int_{-\infty}^{\infty} x \cdot f(x) dx$

13. Własności wartości oczekiwanej,

- wartość oczekiwana zmiennej dyskretnej określonej w skończonej przestrzeni zdarzeń elementarnych jest skończoną sumą liczb rzeczywistych i zawsze istnieje
- jeśli zmienna losowa przyjmuje nieskończenie wiele wartości, to może się zdarzyć, że wartość oczekiwana tej zmiennej nie istnieje
- jeśli istnieją EX i EY, to dla każdego rzeczywistego c zachodzą równości:

$$\begin{split} E(c) &= c \\ E(cX) &= c \cdot EX \\ E(c_1 \cdot X + c_2 \cdot Y) &= c_1 \cdot EX + c_2 \cdot EY \\ \text{Jeśli } X &\geq 0 \text{ , } to \ EX \ \geq 0 \\ \text{Jeśli } X &\leq Y, to \ EX \ \leq EY \\ |EX| &\leq E|X| \end{split}$$

$$E(X - EX) = 0$$

• jeśli X i Y są niezależnymi zmiennymi losowymi, to $E(X \cdot Y) = EX \cdot EY$

14. Wzory na wariancję zmiennej losowej (dla zmiennych losowych typu dyskretnego oraz dla zmiennych losowych typu ciągłego),

$$D^2X = E(X - EX)^2$$

15. Własności wariancji,

Niech X – zmienna losowa, której EX < ∞ . Wtedy istnieje wariancja D^2X oraz:

- $D^2X = E(X^2) (EX)^2$
- $D^2X \ge 0$
- $D^2(c \cdot X) = c^2 \cdot D^2 X$

16. Interpretacja odchylenia standardowego zmiennej losowej,

Odchylenie standardowe $\sqrt{D^2X}$ zmiennej losowej X informuje o tym, jak średnio różnią się wartości zmiennej losowej od wartości średniej.

17. Momenty zwykle oraz momenty centralne (dla zmiennych losowy typu dyskretnego oraz dla zmiennych losowych typu ciągłego),

Momenty zwykłe – wartości oczekiwane zmiennych losowych X^r , gdzie r > 0.

Np. EX^2 - drugi moment (moment zwykły rzędu drugiego)

Momenty centralne rzędu r to wartości $E(X - EX)^r$, o ile istnieją.

Np. D^2X - moment centralny drugiego rzędu, czyli wariancja.

18. Przykłady ważniejszych zmiennych losowych typu dyskretnego oraz typu ciągłego (wraz z odpowiednimi wzorami określającymi te rozkłady),

Przykłady zmiennej typu dyskretnego/skokowego:

- dwupunktowy X ma rozkład dwupunktowy z parametrem p, ozn. $X \sim D(p)$, jeśli istnieją liczby rzeczywiste
 - a, b oraz $p \in (0,1)$ takie, że: P(X=a) = p, P(X=b) = 1-p, EX = ap + b(1-p), $D^2X = p(1-p)(a-b)^2$
- dwumianowy X ma rozkład dwumianowy z parametrem n oraz $p \in (0,1)$, ozn. $X \sim B_{in}(n,p)$, jeśli $P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$, $k=0,1\dots n$, EX=np, $D^2X=np(1-p)$
- Poissona X ma rozkład Poissona z parametrem λ , ozn. $X \sim P_o(\lambda)$, $P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$, k = 0,1,2..., $EX = \lambda$, $D^2X = \lambda$
- geometryczny X ma rozkład geometryczny z parametrem $p \in (0,1)$, ozn. $X \sim Geo(p)$, jeśli $P(X=k)=(1-p)^{k-1}p, k=1,2..., EX=\frac{1}{p}, D^2X=\frac{1-p}{p^2}$

Przykłady zmiennej typu ciągłego:

• jednostajny – X ma rozkład jednostajny w przedziale [a, b], jeśli gęstość tego rozkładu wyraża się wzorem $f(x) = \{\frac{1}{b-a}, gdy \ x \in [a,b]; \ 0 \ w \ p. \ p. \}$. ozn. $X \sim U([a,b]), EX = \frac{a+b}{2}, D^2X = \frac{(b-a)^2}{12}$

- wykładniczy X ma rozkład wykładniczy z parametrem λ , ozn. $X \sim Exp(\lambda)$, jeśli gęstość tego rozkładu wyraża się wzorem $f(x) = \{\lambda e^{-\lambda x}, g dy \ x > 0; 0 \ w \ p. \ p. \}, EX = \frac{1}{\lambda}, D^2X = \frac{1}{\lambda^2}$
- normalny (Gaussa) X ma rozkład normalny z parametrami m, δ , ozn. $X \sim N(m, \delta)$, jeżeli gęstość tego rozkładu jest dana wzorem $f(x) = \frac{1}{\sqrt{2\pi} \cdot \delta} e^{-\frac{(x-m)^2}{2\delta^2}}$, EX = m, $D^2X = \delta^2$

19. Reguły jednej, dwóch oraz trzech sigm,

Dla rozkładu normalnego $X \sim N(m, \delta)$ lub zbliżonego do niego:

$$P(|X-m|<\delta)=68,27\%$$
, czyli 68,27% wartości cechy znajduje się w zakresie od $\bar{x}-\delta$ do $\bar{x}+\delta$

$$P(|X-m|<2\delta)=95,45\%$$
, czyli 95,45% wartości cechy znajduje się w zakresie od $\bar{x}-2\delta$ do $\bar{x}+2\delta$

$$P(|X-m|<3\delta)=99,73\%$$
, czyli 99,73% wartości cechy znajduje się w zakresie od $\bar{x}-3\delta$ do $\bar{x}+3\delta$

Gdzie \bar{x} – średnia arytmetyczna, δ - odchylenie standardowe

20. Definicja dystrybuanty dwuwymiarowej zmiennej losowej (dla typu dyskretnego oraz typu ciągłego),

Dystrybuanta dwuwymiarowej zmiennej losowej (X,Y) to funkcja $F: \mathbb{R}^2 \to [0,1]$ określona wzorem: $F(t,s) = F_{(X,Y)}(t,s) = P(X \le t,Y \le s)$

w przypadku typu dyskretnego/skokowego:

$$F_{(X,Y)}(t,s) = \sum_{i: x_i \le t, j: y_i \le s} P(X = x_i, Y = y_j) = \sum_{i: x_i \le t, j: y_i \le s} p_{ij}$$

w przypadku typu ciągłego:

$$F_{(X,Y)}(t,s) = \int_{-\infty}^{t} \left[\int_{-\infty}^{s} f(x,y) dy \right] dx$$

21. Własności dystrybuanty dwuwymiarowej zmiennej losowej (dla typu dyskretnego oraz typu ciągłego),

- dla każdego t_1, t_2 : $t_1 < t_2 => F(t_1, s) \le F(t_2, s)$; $s \in \mathbb{R}$
- dla każdego s_1, s_2 : $s_1 < s_2 => F(t, s_1) \le F(t, s_2)$; $t \in R$ To funkcja niemalejąca
- $F_{(X,Y)}(t,s) \to 0$, $gdy t \to -\infty lub s \to -\infty$
- $F_{(X,Y)}(t,s) \to 1$, $gdy \ t \to +\infty \ lub \ s \to +\infty$ Jest prawostronnie ciągła
- jeśli $t \le u$ i $s \le v$, to $F_{(X,Y)}(u,v) F_{(X,Y)}(u,s) F_{(X,Y)}(t,v) + F_{(X,Y)}(t,s) \ge 0$

22. Definicja gęstości dwuwymiarowej zmiennej losowej typu ciągłego,

Wektor losowy (X, Y) jest dwuwymiarową zmienną losową typu ciągłego, gdy istnieje nieujemna funkcja f określona na R^2 taka, że $P((X,Y) \in A) = \iint_{R^2} f(x,y) dx dy$ dla każdego $A \in B(R^2)$.

Funkcję f nazywamy gęstością dwuwymiarowej zmiennej losowej (X, Y).

Spełnia ona warunek: $\iint_{\mathbb{R}^2} f(x, y) dx dy = 1$

23. Wzory na prawdopodobieństwo warunkowe dla zmiennej losowej typu dyskretnego,

$$P(X = x_i | Y = y_j) = \frac{P_{ij}}{P_{i,i}}, \qquad P(Y = y_j | X = x_i) = \frac{P_{ij}}{P_{i,i}}$$

24. Wzory na gęstości brzegowe,

$$f_1(x) = f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
, $f_2(y) = f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$

25. Nierówność Schwarza,

Jeśli X, Y – zmienne losowe, takie że EX² < +∞, EY² < +∞ to wtedy E(X·Y) $\leq \sqrt{EX^2} \cdot \sqrt{EY^2}$

26. Definicja kowariancji i jej własności,

$$cov(X, Y) = E(XY) - E(X) \cdot E(Y)$$

Kowariancja jest to wielkość charakteryzująca wspólne zmiany dwóch zmiennych X i Y. Jest oczekiwaną wartością iloczynu wartości zmiennych X i Y od ich wartości oczekiwanych.

Własności:

- $|\operatorname{cov}(X, Y)| \leq \sqrt{D^2 X \cdot D^2 Y}$ o ile $D^2 X < +\infty$, $D^2 Y < +\infty$
- Cov(X + a, Y + b) = cov(X, Y)
- $Cov(aX + bY, Z) = a \cdot cov(X,Z) + b \cdot cov(Y, Z)$

27. Definicja współczynnika korelacji i interpretacje jego wartości,

Współczynnik korelacji jest miernikiem zależności między dwiema cechami

$$\rho\left(X,Y\right) = \frac{cov(X,Y)}{\sqrt{D^2X}*\sqrt{D^2Y}}$$
 o ile $D^2X > 0$, $D^2Y > 0$

Własności:

- $| \rho (X, Y) | \leq 1$
- Jeśli ρ (X, Y) = 0 , to mówimy, że X, Y są nieskorelowane
- Jeśli ρ (X, Y) = 1, to istnieje liniowa zależność dodatnia między zmiennymi losowymi X, Y tzn. Y = aX + b
- Jeśli ρ (X, Y) = -1, to istnieje liniowa zależność ujemna między zmiennymi losowymi X, Y
- Jeśli ρ (X, Y) > 0, to większym wartościom jednej zmiennej losowej odpowiadają średnio większe wartości drugiej zmiennej losowej
- Jeśli ρ (X, Y) < 0, to większym wartościom X/Y odpowiadają średnio większe wartości Y/X

28. Wyznaczanie momentów zwykłych zmiennej losowej $X \sim N(0, 1)$,

$$EX^{t} = \int_{-\infty}^{+\infty} x^{t} * f(x) dx$$

29. Sformułowanie Twierdzenia De Moivre'a-Laplace'a (tzn., CTG dla schematu Bernoulliego),

$$P\left(\alpha < \frac{S_n - np}{\sqrt{np(1-p)}} \le \beta\right) = \theta(\beta) - \theta(\alpha)$$

$$P\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le \beta\right) = \theta(\beta)$$

$$P(S_n \le m) = P\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le \frac{m - np}{\sqrt{np(1-p)}}\right) = \theta\left(\frac{m - np}{\sqrt{np(1-p)}}\right)$$

30. Nierówność Markowa i jej wykorzystanie w dowodzie nierówności Czebyszewa,

$$P(|X| \ge \varepsilon) \le \frac{E(|X|^p)}{\varepsilon^p}$$

31. Nierówność Czebyszewa dla częstości sukcesów w schemacie Bernoulliego,

$$\forall \ \varepsilon > 0 \ P\left(\left|\frac{Sn}{n} - p\right| \ge \varepsilon\right) \le \frac{p*q}{n*\varepsilon^2}$$

32. Pojęcie próby losowej,

Zmienne losowe X_1 , X_2 , ..., X_n nazywamy próbą losową rozmiaru n z rozkładu o gęstości f(x) (o dystrybuancie F(x)) jeśli X_1 , X_2 , ..., X_n są niezależnymi zmiennymi losowymi o wspólnym rozkładzie z gęstości f(x) (z dystrybuantą F(x)).

33. Pojęcie statystyki z próby,

Statystyką z próby nazywamy zmienną losową (np. Z_N), będącą funkcją zmiennych X_1 , X_2 , ..., X_N . Statystykami z próby są, na przykład, średnia arytmetyczna, wariancja oraz inne parametry.

34. Definicja estymatora,

Estymatorem parametru θ rozkładu cechy X nazywamy dowolną statystykę $T(X_1, X_2, ..., X_n)$, służącą do oszacowania nieznanej wartości tego parametru.

35. Definicja przedziału ufności,

Przedział ufności (estymator przedziałowy) jest przedziałem o końcach zależnych od próby losowej $X_1, X_2, ..., X_n$, który z pewnym, z góry zadanym, prawdopodobieństwem pokrywa nieznaną wartość

parametru
$$\theta$$
 , tzn. $P\left(\theta\in\left(\underbrace{\theta(X_1,X_2,...,X_n)}_{-},\;\bar{\theta}(X_1,X_2,...,X_n)\right)\right)=1-\alpha$.

36. Od czego zależy długość przedziału ufności?,

Długość przedziału ufności zależy od:

- liczność próby im liczniejsza próba, tym mniejsza długość ($n \nearrow \Rightarrow d \searrow$),
- poziom ufności im większy poziom ufności, tym większa długość $(1-\alpha \nearrow \Rightarrow d\nearrow)$,
- wariancja cechy im większa wariancja cechy, tym mniejsza długość ($\sigma^2 \nearrow \Rightarrow d \searrow$).

37. Definicje błędu I rodzaju oraz błędu II rodzaju,

Przy testowaniu hipotez statystycznych istnieją dwa rodzaje błędów:

- błąd I rodzaju polega on na odrzuceniu H₀, gdy jest ona w rzeczywistości prawdziwa,
- błąd II rodzaju polega on na nieodrzuceniu (przyjęciu) hipotezy H₀, gdy jest ona w rzeczywistości fałszywa.

38. Definicja poziomu istotności testu,

Poziom istotności testu (oznaczany najczęściej przez α) jest to prawdopodobieństwo popełnienia błędu I rodzaju, czyli odrzucenia hipotezy zerowej, gdy jest ona w rzeczywistości prawdziwa.

39. Definicja mocy testu,

Moc testu (oznaczany najczęściej przez $1-\beta$) jest to prawdopodobieństwo niepopełnienia błędu II rodzaju, czyli prawdopodobieństwo odrzucenia fałszywej hipotezy zerowej.

40. Definicja *p*-wartości oraz jej wyznaczanie dla podanej wartości statystyki testowej odpowiedniego testu,

p-wartość (*p*-value) – minimalny poziom istotności, przy którym otrzymana wartość statystyki testowej prowadzi do odrzucenia hipotezy zerowej H₀.

 α oznacza poziom istotności testu. Wtedy:

- gdy p-wartość $\leq \alpha$, to hipotezę H₀ odrzucamy na korzyść hipotezy alternatywnej H₁,
- gdy p-wartość > α , to nie mamy podstaw do odrzucenia hipotezy H_0 (H_0 przyjmujemy).

41. Zaznaczanie (na odpowiednim rysunku) kwantyla rozkładu normalnego,

Gdzie $z_{\alpha/2}$ stanowi wartość z tablicy kwantyli rozkładu normalnego, odczytaną dla odpowiedniego α (u nas zamiast z oznacza się to u)

42. Zaznaczanie (na odpowiednim rysunku) wartości krytycznej rozkładu t-Studenta,

Gdzie $t_{\alpha,V}$ stanowi wartość z tablicy kwantyli rozkładu normalnego, odczytaną dla odpowiedniego α i V (u nas zamiast V oznacza się to r)

43. Jakiego rodzaju hipotezy weryfikujemy w teście chi-kwadrat zgodności?,

Weryfikujemy hipotezę H_0 : cecha X ma rozkład F; poziom istotności α .

44. Jakiego rodzaju hipotezy weryfikujemy w teście chi-kwadrat niezależności?,

Obserwujemy dwie cechy: X, Y (mogą być ilościowe lub jakościowe).

Weryfikujemy hipotezę H_0 : cechy X, Y są niezależne, wobec hipotezy alternatywnej H_1 : istnieje zależność między cechami X, Y; poziom istotności α .

45. Interpretacja współczynnika kierunkowego w oszacowaniu liniowej funkcji regresji.

Współczynnik ten odpowiada na pytanie, jaki jest przeciętny przyrost wartości zmiennej zależnej na jednostkę przyrostu zmiennej niezależnej.