odmocnovani

November 3, 2017

1 Odmocňování v $\mathbb R$ a v $\mathbb C$

Jana Ernekerová, Tomáš Kalvoda, 2014, 2017

1.1 Odmocňování v R

Definujeme **přirozené odmocniny**, ozn. $a^{\frac{1}{n}} = \sqrt[n]{a}$ jako jisté reálné řešení rovnice $x^n = a$ (viz dále). V závislosti na n rozlišujeme mezi následujícími případy:

1.1.1 Sudá odmocnina $\sqrt[2k]{x}$

Je-li $n=2k,\,k\in\mathbb{N}$, sudé, pak $x^n\geq 0$ pro všechna $x\in\mathbb{R}$, což znamená, že rovnice $x^n=a$ má reálné řešení jen pro $a\geq 0$.

```
In [10]: g1 = plot(x^2, (x, -3, 3), legend_label='\$y=x^2')
g2 = plot(3, (x, -3, 3), legend_label='\$a>0$', linestyle='--', color='greegy g3 = plot(-3, (x, -3, 3), legend_label='\$a<0$', linestyle='--', color='recolor='recolor='g1 + g2 + g3).show(gridlines=True, figsize=6, axes_labels=['\$x$', '\$y$'])
```


Pro a>0 jsou tato řešení dvě, neboť $x^{2k}=(-x)^{2k}$. Sudou odmocninu $\sqrt[2k]{a}$ definujeme jako **nezáporné** řešení rovnice $x^{2k}=a$. Proto je $\sqrt{x^2}$ rovno |x| a nikoli x.

```
In [15]: g1 = plot(x^(1/2), (x, 0, 10), legend_label='$y=\sqrt[2]{x}$') g2 = plot(x^(1/4), (x, 0, 10), legend_label='$y=\sqrt[4]{x}$', color='red g3 = plot(x^(1/6), (x, 0, 10), legend_label='$y=\sqrt[6]{x}$', color='gree (g1 + g2 + g3).show(figsize=6, gridlines=True, axes_labels=['$x$', '$y$'])
```


1.1.2 Lichá odmocnina 2k-1/x

Je-li n=2k-1, $k\in\mathbb{N}$, liché, pak rovnice $x^{2k-1}=a$ má jediné řešení, které značíme $\sqrt[2k-1]{a}$. Například platí $\sqrt[3]{-8}=-2$.

Z výše uvedeného je patrné, že třetí odmocnina $\sqrt[3]{x}$ je funkce definovaná na celém \mathbb{R} . Jak je ale patrné z následujícího výpočtu, Sage se takto zavedeným odmocňováním neřídí. Implicitně pracuje v komplexním oboru. Tím se budeme zabývat níže.

Chceme-li vykraslit graf liché odmocniny, stačí použít její alternativní vyjádření (rozmyslete!) $^{2k-1}\sqrt{x}=\operatorname{sgn}(x)\cdot ^{2k-1}\sqrt{|x|}$.

```
In [17]: g1 = plot(sign(x) *abs(x)^(1/3), (x, -5, 5), legend_label='$y=\sqrt[3]{x}$ g2 = plot(sign(x) *abs(x)^(1/5), (x, -5, 5), legend_label='$y=\sqrt[5]{x}$ g3 = plot(sign(x) *abs(x)^(1/7), (x, -5, 5), legend_label='$y=\sqrt[7]{x}$ (g1 + g2 + g3).show(figsize=6, gridlines=True, axes_labels=['$x$', '$y$'])
```


1.2 Odmocňování v C

Nechť $n \in \mathbb{N}$ a $z \in \mathbb{C}$. Pak n-tou odmocninou z komplexního čísla z nazýváme každé číslo $x \in \mathbb{C}$, pro které platí $x^n = z$ a značíme $\sqrt[n]{z}$.

Roynice

$$x^n = |a| (\cos \alpha + i \sin \alpha), \quad |a| \neq 0$$

má v oboru komplexních čísel právě n různých kořenů:

$$x_k = \sqrt[n]{|a|} \left(\cos \frac{\alpha + 2k\pi}{n} + i \sin \frac{\alpha + 2k\pi}{n} \right), \quad k = 0, 1, 2, ..., n - 1.$$

Body x_k jsou vrcholy pravidelného n-úhelníku vepsaného do kružnice se středem v počátku a s poloměrem $\sqrt[n]{|a|}$.

Co bychom jistě měli zmínit je základní věta algebry, jejíž důkaz si uvedeme později v lineární algebře a která říká, že každý nekonstantní polynom, tedy polynom stupně $n \geq 1$, s komplexními koeficienty má alespoň jeden komplexní kořen.

V následující demonstraci si ukažme komplexní odmocniny z 1, tedy komplexní řešení rovnice $x^n=1$. V dříve uvedeném vzorci proto máme a=1 a $\alpha=0$. Proto

$$x_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, \quad k = 0, 1, 2, \dots, n - 1.$$

```
In [19]: @interact
    def roots(n=slider(1,10, step_size=1)):
        roots = [ [cos(2*k*pi/n), sin(2*k*pi/n)] for k in range(n) ]
        pts = points(roots, size=30, color='red')
        circ = circle((0,0),1)
        show(circ + pts, figsize=6)
```

Odmocninu, kterou vrací Sage (nebo Mathematica) je ta s nejmenší $\alpha \in (0,2\pi)$. Jde o tzv. hlavní hodnotou odmocniny.