The Filtering Problem 2

Shino Takayama
School of Economics
University of Queensland

The 1-Dimensional Linear Filtering Problem

Consider the 1-dimensional case:

(System)

$$dX_{t} = F(t)X_{t}dt + C(t)dU_{t}; \quad F(t), C(t) \in \Re (6.2.3)$$

(Observations)

$$dZ_{t} = G(t)X_{t}dt + D(t)dV_{t}; \quad G(t), D(t) \in \Re (6.2.4)$$

- * Assume that F,G,C,D are bounded on bounded intervals.
- * Assume that $Z_0 = 0$.
- * Assume that X_0 is normally distributed and independent of $\{U_t\}, \{V_t\}$.
- * Assume that D(t) is bounded away from 0 on bounded intervals.

Theorem 6.2.8 (The 1-dimensional Kalman-Bucy filter)

* The solution $\hat{X}_t = E[X_t | \mathcal{G}_t]$ of the 1-dimensional linear filtering problem satisfies the stochastic differential equation

$$d\hat{X}_t = \left(F(t) - \frac{G^2(t)S(t)}{D^2(t)}\right)\hat{X}_t dt + \frac{G(t)S(t)}{D^2(t)}dZ_t;$$

$$\hat{X}_0 = E[X_0] \ (6.2.28)$$

where $S(t) = E[(X_t - \hat{X}_t)^2]$ satisfies the Riccati equation

$$\frac{dS}{dt} = 2F(t)S(t) - \frac{G^{2}(t)}{D^{2}(t)}S^{2}(t) + C^{2}(t);$$

$$S(0) = E[(X_0 - E[X_0])^2] . (6.2.29)$$

Step 1

* Let $\mathcal{L} = \mathcal{L}(Z,t)$ be the closure in $L^2(P)$ of functions which are linear combinations of the form

$$c_0 + c_1 Z_{s_1}(\omega) + \dots + c_k Z_{s_k}(\omega)$$
, with $s_j \le t, c_j \in \Re$.

* Let

 $\mathcal{P}_{\mathcal{L}}$ denote the projection from $L^2(P)$ onto \mathcal{L} .

* Then, with \mathcal{K} as in (6.1.9),

$$\hat{X}_t = \mathcal{P}_{\mathcal{K}}(X_t) = E[X_t | \mathcal{G}_t] = \mathcal{P}_{\mathcal{L}}(X_t).$$

* Then, the best Z-measurable estimate of X_t coincides with the best Z-linear estimate of X_t .

Step 2: Innovation Process

* Replace Z_t by the innovation process N_t :

$$N_t = Z_t - \int_0^t (GX)_s^{\hat{}} ds;$$

where
$$(GX)_s^{\wedge} = \mathcal{P}_{\mathcal{L}(Z,s)}(G(s)X_s) = G(s)X_s$$
.

* N_t has orthogonal increments, i.e.

$$E[(N_{t_1} - N_{s_1})(N_{t_2} - N_{s_2})] = 0$$
 for disjoint intervals $[s_1, t_1], [s_2, t_2]$.

*
$$\mathcal{L}(N,t) = \mathcal{L}(Z,t)$$
 so $\hat{X}_t = \mathcal{P}_{\mathcal{L}(N,t)}(X_t)$

Lemma 6.2.4

$$\mathcal{L}(Z,T) = \{c_0 + \int_0^t f(t)dZ_t; f \in L^2[0,T], c_0 \in \Re\}$$

- * Proof: Denote the right hand side by $\,\mathcal{N}(Z,T)\,$. We show:
 - 1. $\mathcal{N}(Z,T) \subset \mathcal{L}(Z,T)$;
 - 2. $\mathcal{N}(Z,T)$ contains all linear combinations of the form: $c_0 + c_1 Z_{t_1} + \dots + c_k Z_{t_k}; \quad 0 \le t_i \le T$
 - 3. $\mathcal{N}(Z,T)$ is closed in $L^2(P)$.

About 1.

* This follows from the fact that if f is continuous, then

$$\int_{0}^{T} f(t)dZ_{t} = \lim_{n \to \infty} \sum_{j} f(j \cdot 2^{-n}) \cdot (Z_{(j+1)2^{-n}} - Z_{j \cdot 2^{-n}}).$$

About 2.

- Suppose $0 \le t_1 < t_2 < \dots < t_k \le T$.
- * We can write:

$$\sum_{i=1}^k c_i Z_{t_i} = \sum_{i=0}^{k-1} c_j \, \Delta Z_{t_i} = \sum_{i=0}^{k-1} \int_{t_j}^{t_{j+1}} c_j \, dZ_t = \int_0^T \left(\sum_{j=0}^{k-1} c_j \, \chi_{[t_j,t_{j+1})}(t) \right) dZ_t,$$

where
$$\Delta Z_j = Z_{t_{j+1}} - Z_{t_j}$$
.

About 3.

 \star If $f \in L^2[0,T]$, then

$$E\left[\left(\int_{0}^{T} f(t)dZ_{t}\right)^{2}\right] =$$

$$= E\left[\left(\int_{0}^{T} f(t)G(t)X_{t}dt\right)^{2}\right] + E\left[\left(\int_{0}^{T} f(t)D(t)dV_{t}\right)^{2}\right]$$

$$+2E\left[\left(\int_{0}^{T} f(t)G(t)X_{t}dt\right)\left(\int_{0}^{T} f(t)D(t)dV_{t}\right)\right].$$

About 3 continued

* Since

$$E\left[\left(\int_{0}^{T} f(t)G(t)X_{t}dt\right)^{2}\right] \leq A_{1} \cdot \int_{0}^{T} f(t)^{2}dt;$$

$$E\left[\left(\int_{0}^{T} f(t)D(t)dV_{t}\right)^{2}\right] = \int_{0}^{T} f^{2}(t)D^{2}(t)dt.$$

* we conclude that:

$$A_0 \cdot \int_0^T f(t)^2 dt \le E \left| \left(\int_0^T f(t) dZ_t \right)^2 \right| \le A_2 \cdot \int_0^T f^2(t) dt. (6.2.11)$$

* As $L^2[0,T]$ is complete, this completes the proof.

Innovation Process

* Now we define the Innovation Process N_t as follows:

$$N_t = Z_t - \int_0^t (GX)_s^{\wedge} ds, \text{ where } (GX)_s^{\wedge} = \mathcal{P}_{\mathcal{L}(Z,s)}(G(s)Z_s)G(s)\hat{X}_s$$

i.e.
$$dN_t = G(t)(X_t - \hat{X}_t)dt + D(t)dV_t$$
. (6.2.13)

Lemma 6.2.5.

- N_t has orthogonal increments;
- 2. $E[N_t^2] = \int_0^t D^2(s) ds$; 3. $\mathcal{L}(N,t) = \mathcal{L}(Z,t)$ for all $t \ge 0$;
- 4. N_t is a Gaussian Process.

Proof for 1: Since $X_r - \hat{X}_r \perp \mathcal{L}(Z,r) \subset \mathcal{L}(Z,s)$ for $r \geq s$, and V has independents increments,

$$E[(N_t - N_s)Y] = E\left[\left(\int_s^t G(r)(X_r - \hat{X}_r)dr + \int_s^t D(r)dV_r\right)Y\right]$$

$$= \int_{s}^{t} G(r)E[(X_r - \hat{X}_r)Y]dr + E\left[\int_{s}^{t} D(r)dV_rY\right] = 0.$$

Proof for 2.

* By Ito formula, we have

$$d(N_t^2) = 2N_t dN_t + \frac{1}{2}2(dN_t)^2 = 2N_t dN_t + D^2 dt.$$

* Thus,

$$E(N_t^2) = E \left[\int_0^t 2N_s dN_s \right] + \int_0^t D^2(s) ds.$$

* Now

$$\int_{0}^{t} N_{s} dN_{s} = \lim_{\Delta t_{j} \to \infty} \sum N_{t_{j}} [N_{t_{j+1}} - N_{t_{j}}],$$

* Since N_t has orthogonal increments, we have

$$E\left[\int_{0}^{t} N_{s} dN_{s}\right] = 0.$$

Proof for 3.

- * It is clear that $\mathcal{L}(N,t) \subset \mathcal{L}(Z,t)$ for all $t \geq 0$.
- * Choose $f \in L^2[0,t]$.
- * To prove $\mathcal{L}(Z,t) \subset \mathcal{L}(N,t)$ for all $t \ge 0$, observe:

$$\int_{0}^{t} f(s)dN_{s} = \int_{0}^{t} f(s)dZ_{s} - \int_{0}^{t} f(r)D(r)\hat{X}_{r}dr$$

$$= \int_{0}^{t} f(s)dZ_{s} - \int_{0}^{t} f(r)\left[\int_{0}^{t} g(r,s)dZ_{s}\right]dr - \int_{0}^{t} f(r)c(r)dr$$

$$= \int_{0}^{t} \left[f(s) - \int_{0}^{t} f(r)g(r,s)dr\right]dZ_{s} - \int_{0}^{t} f(r)c(r)dr.$$

Proof for 3 continued

* From the theory of Volterra integral equation, there exists for all $h \in L^2[0,t]$ and $f \in L^2[0,t]$ such that

$$f(s) - \int_{s}^{t} f(r)g(r,s)dr = h(s).$$

* So by choosing $h=\chi_{[0,t_1]}$ where $0 \le t_1 \le t$, we obtain

$$\int_{0}^{t} f(r)c(r)dr + \int_{0}^{t} f(s)dN_{s} = \int_{0}^{t} \chi_{[0,t_{1}]}(s)dZ_{s} = Z_{t_{1}},$$

which implies $\mathcal{L}(Z,t) \subset \mathcal{L}(N,t)$ for all $t \ge 0$.

Proof for 4.

 \hat{X}_t is a limit in $L^2(P)$ of linear combinations of the form: $M = c_0 + c_1 Z_{s_1} + \cdots + c_k Z_{s_k}$, where $s_k \leq t$.

* Therefore

$$\left(\hat{X}_{t_1},\cdots,\hat{X}_{t_m}\right)$$

is a limit of m-dimensional random variable

$$(M^{(1)},\cdots,M^{(m)})$$

whose components are linear combinations of this form.

 $\left(M^{(1)},\cdots,M^{(m)}\right)$ has a normal distribution since $\{Z_t\}$ is Gaussian and the limit has. So $\{\hat{X}_t\}$ is Gaussian. Thus, so is

$$N_t = Z_t - \int_0^t G(S) \hat{X}_s ds.$$

Step 3. The Innovation Process and Brownian Motion

* Let

$$N_{t} = Z_{t} - \int_{0}^{t} G(s) \hat{X}_{s} ds$$

be the innovation process defined in Step 2.

We have assumed that D(t) is bounded away from 0 on bounded intervals. Define the process $R_t(\omega)$ by

$$dR_{t} = \frac{1}{D(t)}dN_{t}(\omega); t \ge 0$$

Lemma 6.2.6 - R_t is a 1-dimensional Brownian motion.

Proof of Lemma 6.2.6.

- * Observe that R_t
- has continuous paths;
- 2. has orthogonal increments (as N_t is);
- 3. is Gaussian (as N_t is);
- 4. and $E[R_t] = 0$ and $E[R_t R_s] = \min(s, t)$.
 - * because by the Ito formula

$$d(R_t^2) = 2R_t dR_t + (dR_t)^2 = 2R_t dR_t + dt.$$

* By 2,
$$E[R_t^2] = E[\int_0^t ds] = t.$$

* For
$$s < t$$
,
$$E[R_t R_s] = E[(R_t - R_s)R_s] + E[R_s^2] = E[R_s^2] = s.$$

Lemma 6.2.7

$$\hat{X}_t = E[X_t] + \int_0^t \frac{\partial}{\partial s} E[X_t R_s] dR_s. (6.2.15)$$

* Proof: From Lemma 6.2.4, we know that

$$\hat{X}_t = c_0(t) + \int_0^t g(s) dR_s$$
 for some $g \in L^2[0,t], c_0(t) \in \Re$.

* Taking expectations, we see that

$$c_0(t) = E[\hat{X}_t] = E[X_t].$$

* Thus,

$$(X_t - \hat{X}_t) \perp \int_0^t f(s) dR_s$$
 for all $f \in L^2[0,t]$.

Proof of Lemma 6.2.7 Continued

* Therefore,

$$E\left[X_{t}\int_{0}^{t}f(s)dR_{s}\right]=E\left[\hat{X}_{t}\int_{0}^{t}f(s)dR_{s}\right]=E\left[\int_{0}^{t}g(s)dR_{s}\int_{0}^{t}f(s)dR_{s}\right]$$

$$= E \left[\int_0^t g(s) f(s) ds \right] = \int_0^t g(s) f(s) ds \quad \text{for all } f \in L^2[0, t].$$

* If we choose $f = \chi_{[0,r]}$ for some $r \le t$, we obtain:

$$E[X_t R_\tau] = \int_0^\tau g(s) ds$$
 or $g(r) = \frac{\partial}{\partial \tau} E[X_t R_\tau].$

Step 4: An Explicit Formula

* This is obtained by noting that:

$$X_{t} = \exp\left(\int_{0}^{t} F(s)ds\right) \left[X_{0} + \int_{0}^{t} \exp\left(-\int_{0}^{t} F(u)du\right)C(s)dU_{s}\right]$$

$$= \exp\left(\int_{0}^{t} F(s)ds\right) X_{0} + \int_{0}^{t} \exp\left(\int_{s}^{t} F(u)du\right) C(s)dU_{s}.$$

* Note that:
$$E[X_t] = E[X_0] \exp\left(\int_0^t F(s)ds\right)$$
.

Step 4 Continued

* More generally,

for
$$0 \le r \le t$$
,

$$X_{t} = \exp\left(\int_{r}^{t} F(s)ds\right) X_{0} + \int_{r}^{t} \exp\left(\int_{s}^{t} F(u)du\right) C(s)dU_{s}. (6.2.16)$$

Step 5: Mean Square Error

* From Lemma 6.2.7,

$$\hat{X}_t = E[X_t] + \int_0^t f(s, t) dR_s$$

where
$$f(s,t) = \frac{\partial}{\partial s} E[X_t R_s]$$
 (6.2.17)

* From (6.2.13) and (6.2.14),

$$R_s = \int_0^s \frac{G(r)}{D(r)} (X_r - \hat{X}_r) dr + V_s$$

Mean Square Error 2

Then, we obtain:

$$E[X_t R_s] = \int_0^s \frac{G(r)}{D(r)} E[X_t \tilde{X}_r] dr \text{ where } \tilde{X}_r = X_r - \hat{X}_r \text{ (6.2.18)}.$$

From (6.2.16), we obtain

$$E[X_t \tilde{X}_r] = \exp\left(\int_r^t F(v) dv\right) E[X_r \tilde{X}_r] = \exp\left(\int_r^t F(v) dv\right) S(r)$$

where
$$S(r) = E[(\tilde{X}_r)^2]$$
 (6.2.19)

Step 5: The Riccati Equation

* We claim that S(t) satisfies:

$$\frac{dS}{dt} = 2F(t)S(t) - \frac{G^2(t)}{D^2(t)}S^2(t) + C^2(t).$$
 (The Riccati Equation)

* Proof: Applying the Pythagorean theorem, (6.2.15) and the Ito isometry, we obtain

$$S(t) = E[(X_t - \hat{X}_t)^2] = E[X_t^2] - 2E[X_t \hat{X}_t] + E[\hat{X}_t^2]$$

$$= E[X_t^2] - E[\hat{X}_t^2]$$

$$= T(t) - \int_0^t f(s, t)^2 ds - E[X_t]^2 \quad \text{where } T(t) := E[X_t^2].$$

The Riccati Equation 2

* By (6.2.16) and the Ito isometry, we obtain:

$$T(t) = \exp\left(2\int_{0}^{t} F(s)ds\right) E[X_0^2] + \int_{0}^{t} \exp\left(2\int_{s}^{t} F(u)du\right) C^2(s)ds.$$

* Thus,

$$\frac{dT}{dt} = 2F(t) \exp\left(2\int_{0}^{t} F(s)ds\right) E[X_{0}^{2}] + C^{2}(t)$$

$$+ \int_{0}^{t} 2F(t) \exp\left(2\int_{0}^{t} F(u)du\right) C^{2}(s)ds$$

$$= 2F(t)T(t) + C^{2}(t). (6.2.24)$$

The Riccati Equation 3

* By (6.2.22), (6.2.24) and Step 4, we obtain:

$$\frac{dS}{dt} = \frac{dT}{dt} - f(t,t)^2 - \int_0^t 2f(s,t) \frac{\partial}{\partial t} f(s,t) ds - 2F(t) E[X_t]^2$$

$$=2F(t)T(t)+C^{2}(t)-\frac{G^{2}(t)S^{2}(t)}{D^{2}(t)}-2\int_{0}^{t}f^{2}(s,t)F(t)ds-2F(t)E[X_{t}]^{2}$$

$$=2F(t)T(t)+C^{2}(t)-\frac{G^{2}(t)S^{2}(t)}{D^{2}(t)}.$$

Step 5: Stochastic Differential Equation

From the formula:

$$\hat{X}_t = c_0(t) + \int_0^t f(s,t) dR_s \quad \text{where } c_0(t) = E[X_t]$$

* we obtain:

* we obtain:
$$d\hat{X}_t = c_0 '(t)dt + f(t,t)dR_t + \left(\int_0^t \frac{\partial}{\partial t} f(s,t)dR_s\right)dt, \quad (6.2.25)$$
* since

$$\int_{0}^{u} \left(\int_{0}^{t} \frac{\partial}{\partial t} f(s,t) dR_{s} \right) dt = \int_{0}^{u} \left(\int_{s}^{u} \frac{\partial}{\partial t} f(s,t) dt \right) dR_{s}$$

$$= \int_{0}^{u} (f(s,u) - f(s,s)) dR_{s} = \hat{X}_{u} - c_{0}(u) - \int_{0}^{u} f(s,s) dR_{s}.$$

SDE₂

* Thus, since $c_0'(t) = F(t)c_0(t)$ (step 4) $d\hat{X}_t = c_0'(t)dt + \frac{G(t)S(t)}{D(t)}dR_t + \left(\int_0^t f(s,t)dR_s\right)F(t)dt$ or $d\hat{X}_t = c_0'(t)dt + \frac{G(t)S(t)}{D(t)}dR_t + F(t)\cdot(\hat{X}_t - c_0(t))dt$

$$= F(t)\hat{X}_t dt + \frac{G(t)S(t)}{D(t)} dR_t. (6.2.26)$$

Final line

* As
$$dR_t = \frac{1}{D(t)} \left[dZ_t - G(t) \hat{X}_t dt \right]$$

we obtain:

$$d\hat{X}_t = \left(F(t) - \frac{G^2(t)S(t)}{D^2(t)}\right)\hat{X}_t dt + \frac{G(t)S(t)}{D^2(t)} dZ_t.$$