CMPE 462 Machine Learning Department of Computer Engineering Bogazici University

# PROJECT 2 SUPPORT VECTOR MACHINES

Group Name: Hacı Kolonyası

Student ID1: 2015300084

Student ID2: 2015401183



# Contents

| 1 | Hard Margin Linear SVM                                      | 1        |
|---|-------------------------------------------------------------|----------|
| 2 | Soft Margin SVM                                             | 2        |
| 3 | C & Support Vector Relationship 3.1 Effect of Increase in C | <b>5</b> |
| 4 | Changes in Hyperplane                                       | 6        |
| 5 | Bonus                                                       | 9        |

## 1. Hard Margin Linear SVM

We used svm\_train and svm\_predict functions at github source<sup>[1]</sup> and function parameters can be checked at this file<sup>[2]</sup>.

To train the data with hard margin linear SVM, we set the option as '-c 100000000000 -t 0'. c parameter is about how hard the SVM is. We determined c as too high for hard SVM. t parameter is about kernel type. -t 0 is linear SVM.

Training accuracy is 74.6667% (112/150) and test accuracy is 77.5% (93/120).

# 2. Soft Margin SVM

We used SVM with different C values(exponential an linear C values) and different Kernel types:

| -t: | Kernel Type           |
|-----|-----------------------|
| 0:  | linear                |
| 1:  | polynomial            |
| 2:  | radial basis function |
| 3:  | sigmoid               |

The option argument is '-c c\_value -t kernel\_type\_number'.

Firstly, we tried exponential C values with each kernel type.

 $C \ values = [0.0001, \ 0.0003, \ 0.001, 0.003, 0.01, \ 0.03, \ 0.1, \ 0.3, \ 1, \ 3, \ 10, \ 30, \ 100, \ 300, \ 1000, \ 3000, \ 10000, \ 30000, \ 100000]$ 

| training accuracies: |            |                |                  |             |
|----------------------|------------|----------------|------------------|-------------|
| C values:            | linear SVM | polynomial SVM | radial basis SVM | sigmoid SVM |
|                      |            |                |                  |             |
| 0.000100             | 53.333333  | 53.333333      | 53.333333        | 53.333333   |
| 0.000300             | 53.333333  | 53.333333      | 53.333333        | 53.333333   |
| 0.001000             | 53.333333  | 53.333333      | 53.333333        | 53.333333   |
| 0.003000             | 68.666667  | 53.333333      | 53.333333        | 53.333333   |
| 0.010000             | 82.666667  | 53.333333      | 53.333333        | 53.333333   |
| 0.030000             | 84.666667  | 53.333333      | 53.333333        | 53.333333   |
| 0.100000             | 86.000000  | 53.333333      | 83.333333        | 82.000000   |
| 0.300000             | 85.333333  | 85.333333      | 84.666667        | 84.000000   |
| 1.000000             | 86.666667  | 86.000000      | 86.666667        | 82.666667   |
| 3.000000             | 89.333333  | 89.333333      | 90.666667        | 83.333333   |
| 10.000000            | 88.666667  | 94.000000      | 95.333333        | 78.000000   |
| 30.000000            | 88.666667  | 96.666667      | 98.000000        | 76.000000   |
| 100.000000           | 88.666667  | 98.666667      | 99.333333        | 76.666667   |
| 300.000000           | 90.000000  | 100.000000     | 99.333333        | 75.333333   |
| 1000.000000          | 90.000000  | 100.000000     | 100.000000       | 75.333333   |
| 3000.000000          | 90.000000  | 100.000000     | 100.000000       | 76.000000   |
| 10000.000000         | 90.000000  | 100.000000     | 100.000000       | 75.333333   |
| 30000.000000         | 89.333333  | 100.000000     | 100.000000       | 76.000000   |
| 100000.000000        | 90.000000  | 100.000000     | 100.000000       | 75.333333   |

Figure 2.1: Training Accuracy Table

| test accuracies: |            |                |                  |             |
|------------------|------------|----------------|------------------|-------------|
| C values:        | linear SVM | polynomial SVM | radial basis SVM | sigmoid SVM |
| 0.000100         | 58.333333  | 58.333333      | 58.333333        | 58.333333   |
| 0.000300         | 58.333333  | 58.333333      | 58.333333        | 58.333333   |
| 0.001000         | 58.333333  | 58.333333      | 58.333333        | 58.333333   |
| 0.003000         | 76.666667  | 58.333333      | 58.333333        | 58.333333   |
| 0.010000         | 84.166667  | 58.333333      | 58.333333        | 58.333333   |
| 0.030000         | 84.166667  | 58.333333      | 58.333333        | 59.166667   |
| 0.100000         | 83.333333  | 58.333333      | 84.166667        | 84.166667   |
| 0.300000         | 83.333333  | 84.166667      | 84.166667        | 85.000000   |
| 1.000000         | 85.000000  | 82.500000      | 84.166667        | 84.166667   |
| 3.000000         | 84.166667  | 80.833333      | 83.333333        | 82.500000   |
| 10.000000        | 81.666667  | 80.833333      | 77.500000        | 80.000000   |
| 30.000000        | 81.666667  | 81.666667      | 78.333333        | 75.000000   |
| 100.000000       | 81.666667  | 75.000000      | 78.333333        | 72.500000   |
| 300.000000       | 81.666667  | 74.166667      | 80.000000        | 74.166667   |
| 1000.000000      | 81.666667  | 75.833333      | 76.666667        | 74.166667   |
| 3000.000000      | 81.666667  | 75.833333      | 76.666667        | 73.333333   |
| 10000.000000     | 81.666667  | 75.833333      | 76.666667        | 74.166667   |
| 30000.000000     | 80.833333  | 75.833333      | 76.666667        | 75.000000   |
| 100000.000000    | 82.500000  | 75.833333      | 76.666667        | 73.333333   |

Figure 2.2: Test Accuracy Table



Figure 2.3: Accuracy Plots with different C values and Kernel Types

For all C value and kernel type pairs, training and test accuracies can be checked.

When C value increases (when the model is closer to the hard SVM), training accuracy increases for all kernel types (except sigmoid SVM). Polynomial and radial basis SVM models have 100% training accuracy for high C values.

However, when C value increases (when the model is closer to the hard SVM), test accuracy increases until some c values and then decreases for all kernel types. At the c interval [0.1 1], all kernel types are successful and have high test accuracies. The best C value is 1.0 for linear SVM, 0.3 for polynomial SVM, 0.1, 0.3, 1.0 for radial basis SVM and 0.3 for sigmoid SVM.

Secondly, we tried linear C values at this interval with each kernel type.

C values = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

| linear SVM | polynomial SVM                                                                                       | radial basis SVM                                                                                                                                                                                                                                                      | sigmoid SVM                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 86.000000  | 53.333333                                                                                            | 83.333333                                                                                                                                                                                                                                                             | 82.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85.333333  | 64.000000                                                                                            | 84.000000                                                                                                                                                                                                                                                             | 83.333333                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85.333333  | 85.333333                                                                                            | 84.666667                                                                                                                                                                                                                                                             | 84.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 86.000000  | 84.000000                                                                                            | 84.000000                                                                                                                                                                                                                                                             | 84.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 86.666667  | 84.666667                                                                                            | 84.666667                                                                                                                                                                                                                                                             | 84.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 88.666667  | 84.666667                                                                                            | 85.333333                                                                                                                                                                                                                                                             | 84.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87.333333  | 85.333333                                                                                            | 85.333333                                                                                                                                                                                                                                                             | 84.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87.333333  | 86.000000                                                                                            | 86.000000                                                                                                                                                                                                                                                             | 84.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87.333333  | 86.000000                                                                                            | 86.666667                                                                                                                                                                                                                                                             | 84.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 86.666667  | 86.000000                                                                                            | 86.666667                                                                                                                                                                                                                                                             | 82.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | 86.000000<br>85.333333<br>85.333333<br>86.000000<br>86.666667<br>88.666667<br>87.333333<br>87.333333 | 86.000000       53.33333         85.333333       64.000000         85.333333       85.333333         86.000000       84.000000         86.66667       84.666667         87.333333       85.333333         87.333333       86.000000         87.333333       86.000000 | 86.000000       53.333333       83.333333         85.333333       64.000000       84.000000         85.333333       85.333333       84.666667         86.000000       84.000000       84.000000         86.666667       84.666667       84.666667         88.666667       84.666667       85.333333         87.333333       85.3333333       85.3333333         87.333333       86.000000       86.000000         87.3333333       86.000000       86.666667 |

Figure 2.4: Training Accuracy Table

| test accuracies: |            |                |                  |             |
|------------------|------------|----------------|------------------|-------------|
| C values:        | linear SVM | polynomial SVM | radial basis SVM | sigmoid SVM |
|                  |            |                |                  |             |
| 0.100000         | 83.333333  | 58.333333      | 84.166667        | 84.166667   |
| 0.200000         | 84.166667  | 67.500000      | 83.333333        | 84.166667   |
| 0.300000         | 83.333333  | 84.166667      | 84.166667        | 85.000000   |
| 0.400000         | 85.000000  | 78.333333      | 84.166667        | 84.166667   |
| 0.500000         | 85.000000  | 79.166667      | 83.333333        | 84.166667   |
| 0.600000         | 85.000000  | 79.166667      | 83.333333        | 84.166667   |
| 0.700000         | 85.000000  | 80.833333      | 84.166667        | 83.333333   |
| 0.800000         | 85.000000  | 82.500000      | 84.166667        | 82.500000   |
| 0.900000         | 84.166667  | 82.500000      | 84.166667        | 83.333333   |
| 1.000000         | 85.000000  | 82.500000      | 84.166667        | 84.166667   |

Figure 2.5: Test Accuracy Table



Figure 2.6: Accuracy Plots with different C values and Kernel Types

All kernel types (except polynomial SVM with lower c values) have high training and test accuracy. The models with highest test accuracy (85%) are linear SVM with 0.4, 0.5, 0.6, 0.7, 0.8 and 1.0 C values and sigmoid SVM with 0.3 C value.

## 3. C & Support Vector Relationship

#### 3.1 Effect of Increase in C

For this task we used several penalty terms in increasing order to see the effect of it on the number of support vectors. We used the following vector, resp C values and linear kernel:

 $c_{exp} = [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000]$ 



Figure 3.1: Number of support vectors as C increases

#### Conclusion:

As the penalty term increases, the number of the support vectors decreases gradually from 140 to approximately 50. This situation matches with the theory since C is a penalty on slack variables. As C increases we penalize more the violations of the margin. That is why margin gets narrower when C increases and there are fewer support vectors.

## 4. Changes in Hyperplane

In this task we tried to examine the effect of removing one data point from training set on the hyperplane. For this purpose we used C as 10 and linear kernel.

• First of all we calculated initial weight

```
\mathbf{w} = [-1.3072, 0.5251, 1.3479, 1.3830, 1.6137, 0.1593, 0.1314, -1.8510, -0.0279, -0.0750, 0.0706, 2.7299, 0.4445]
```

• Then bias

$$b = 2.3752$$

• We combined b and w to create a new vector called  $w_{combined}$ . We will use this to determine the effect of removing one data point on the location of hyperplane.

$$w_{combined} = [2.3752, -1.3072, 0.5251, 1.3479, 1.3830, 1.6137, 0.1593, 0.1314, ..., 0.4445]$$

• We calculated margin as reciprocal of the norm of weight vector

$$margin = 0.226752003$$

- In the end we determined support vectors by their indices and removed every vector from training set and checked their effects on the following:
  - 1. L2 norm of the difference vector between  $w_{combined}$  and  $w_{combined}$  after removing one data point
  - 2. Margin
  - 3. the number of support vectors



Figure 4.1: L2 norm difference of b and w combined vector

#### Conclusion1:

As we can see from graph when we removed a vector which is not a support vector L2 norm of difference between two vectors is zero or almost zero. However if we remove one support vector it changes our decision boundary and its location and difference is not zero anymore.



Figure 4.2: Margins before and after removing one data point

#### Conclusion2:

As we can see from graph when we removed a vector which is not a support vector margin does not change or change with a difference smaller than 0.00001. So removing non-support vector does not have an effect on margin. In contrast If we remove a vector which is a support vector margin changes drastically. It most of the time increases and in several occasions decreases.



Figure 4.3: The number of suppor vectors before and after removing one data point

#### Conclusion3:

Our initial number of support vectors is 51 when we remove one data point which is not support vector then this number 51 does not change. In contrast when we remove one data point which is a support vector then number of support vectors changes. It may increase decrease or stay same depending on the support vector. This indicates that our hyperplane changes indeed.

#### 5. Bonus

In bonus we implemented primal solution of hard margin SVM with CVXOPT. For this purpose we used the following matrices.

Q, P, A, c matrix forms for the QP solver:

$$Q = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}_{(d+1)x(d+1)} \qquad p = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{(d+1)} \qquad A = \begin{bmatrix} -y_1 & -y_1x_1^T \\ -y_2 & -y_2x_2^T \\ \vdots & \vdots \\ -y_N & -y_Nx_N^T \end{bmatrix}_{Nx(d+1)} \qquad c = \begin{bmatrix} -1 \\ -1 \\ \vdots \\ -1 \end{bmatrix}_{N}$$

For the toy data set:

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3x3} \qquad \qquad p = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_3 \qquad \qquad A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 2 \\ -1 & -2 & 0 \\ -1 & -3 & 0 \end{bmatrix}_{4x3} \qquad \qquad c = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}_4$$

We used solvers.qp function and took u vector ([bias, w1, w2]).

• bias: -1

• weights: [1, -1]

• margin: 0.707

The data points are estimated correctly.



Figure 5.1: Desired and Estimated Points

## Bibliography

- [1] GitHub. 2020. Cjlin1/Libsvm. [online] Available at: <a href="https://github.com/cjlin1/libsvm/tree/master/python">https://github.com/cjlin1/libsvm/tree/master/python</a> [Accessed 17 May 2020].
- [2] Csie.ntu.edu.tw. 2020. LIBSVM A Library For Support Vector Machines. [online] Available at: <a href="https://www.csie.ntu.edu.tw/~cjlin/libsvm/">https://www.csie.ntu.edu.tw/~cjlin/libsvm/</a> [Accessed 17 May 2020].
- [3] Baytaş, İ., 2020. Support Vector Machines Slide.CMPE 462 Machine Learning Bogazici University.
- [4] coefficients, M., 2020. Matlab Libsvm How To Find The W Coefficients. [online] Stack Overflow. Available at: <a href="https://stackoverflow.com/questions/10131385/matlab-libsvm-how-to-find-the-w-coefficients">https://stackoverflow.com/questions/10131385/matlab-libsvm-how-to-find-the-w-coefficients</a> [Accessed 17 May 2020].