## Assignment 4 Hand in date: October 21, 2020

Exercise 1. Show that any preorder is equivalent (as a category) to a poset.

**Exercise 2.** Show that a cartesian closed category with a *zero object* (recall this is an object which is both initial and terminal) is *equivalent* to the category with exactly one object and one arrow, the identity.

**Exercise 3.** Let  $\mathbb{C}$  be a cartesian closed category. Show the following properties.

• Let  $f: A \times B \to C$  and  $g: C \to D$  be morphisms. Recall that using exponential transposes and evaluation we can define the morphism  $g^B: C^B \to D^B$ . Show

$$g^B \circ \widetilde{f} = \widetilde{g \circ f}$$

as morphisms  $A \to D^B$ .

• Show that for any  $f: A \times B \to C$  and any  $h: A' \to A$  we have

$$\widetilde{f} \circ h = f \circ (\widetilde{h \times} id)$$

as morphism  $A' \to C^B$ .

**Exercise 4.** Let  $\mathbb{C}$  be a cartesian closed category. Recall that in such a category the mapping  $f \mapsto \widetilde{f}$  is an isomorphism (bijection) of hom-sets

$$\mathbf{Hom}_{\mathbb{C}}(A \times B, C) \to \mathbf{Hom}_{\mathbb{C}}(A, C^B).$$

Let us call this isomorphism  $\Lambda_{A,B,C}$ . Show that it is natural in C and A.

Concretely this means that you must show that the following diagram commutes for any morphism  $g: C \to D$ 

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbb{C}}(A\times B,C) & \stackrel{\Lambda_{A,B,C}}{\longrightarrow} & \operatorname{Hom}_{\mathbb{C}}\big(A,C^B\big) \\ \\ \operatorname{Hom}_{\mathbb{C}}(A\times B,g) & & & & & \operatorname{Hom}_{\mathbb{C}}(A,g^B) \\ \\ \operatorname{Hom}_{\mathbb{C}}(A\times B,D) & \stackrel{\Lambda_{A,B,D}}{\longrightarrow} & \operatorname{Hom}_{\mathbb{C}}\big(A,D^B\big) \end{array}$$

and that the following diagram commutes for any morphism  $h: A' \to A$ .

$$\begin{array}{ccc} \mathbf{Hom}_{\mathbb{C}}(A\times B,C) & \xrightarrow{\Lambda_{A,B,C}} & \mathbf{Hom}_{\mathbb{C}}\left(A,C^B\right) \\ \\ \mathbf{Hom}_{\mathbb{C}}(h\times \mathrm{id},C) & & & \downarrow \mathbf{Hom}_{\mathbb{C}}(h,C^B) \\ \\ \mathbf{Hom}_{\mathbb{C}}(A'\times B,C) & \xrightarrow{\Lambda_{A',B,C}} & \mathbf{Hom}_{\mathbb{C}}\left(A',C^B\right) \end{array}$$

**Remark 1.** In brief, this shows that the two functors

$$(A, C) \mapsto \mathbf{Hom}_{\mathbb{C}}(A \times B, C)$$

and

$$(A,C) \mapsto \mathbf{Hom}_{\mathbb{C}}(A,C^B)$$

are isomorphic as functors  $\mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Sets}$ . Later on we shall see that this means precisely that the functor  $A \mapsto A \times B$  is *left adjoint* to the functor  $C \mapsto C^B$ .