Day 13

Lab Assignments

1. WAP to read a matrix and find the sum of the elements of that matrix.

Input: Enter the row and column size of the matrix: 3 4

Enter the elements of the matrix of order 3×4 :

2 4 5 7 1 3 2 1 4 3 8 9

Output: Sum of the elements of the matrix: 49

2. WAP to add two matrices and display it.

Input 1: Enter the row and column size of matrix 1: 3 2

Enter the row and column size of matrix 2: 3 2

Enter the elements of matrix 1:

2 4 1 3 4 3

Enter the elements of matrix 2:

1 2 3 2 2 3

Output 1:

Matrix 1:

2 4 1 3 4 3

Matrix 2:

1 2 3 2 2 3

Sum of Matrix 1 and Matrix 2:

3 6 4 5 6 6

Input 2: Enter the row and column size of matrix 1: 3 4 Enter the row and column size of the matrix 2: 3 2

Output 2: Matrix are not compatible for addition.

3. WAP to multiply two matrices and display it.

Input 1: Enter the row and column size of matrix 1: 3 3

Enter the row and column size of matrix 2: 3 2

Enter the elements of matrix 1:

2 4 2 1 3 1 4 3 1

Enter the elements of matrix 2:

1 2 3 2 2 3

Output 1:

Matrix 1:

		2	4	2		
		1	3	1		
		4	3	1		
	Ma	atrix 2:				
		1	2			
		3	2			
		2	3			
	Pro	oduct of	Matrix	1 and 1	Matrix 2	2:
		18	18			
		12	11			
		15	17			
	Input 2:	Enter t	he row	and col	lumn siz	ze of matrix 1: 3 4
		Enter t	he row	and col	lumn siz	ze of the matrix 2: 3 2
	Output 2:	: Matrix	are not	compa	tible for	r multiplication.
4.	WAP to fi	nd out t	he trans	spose of	f a givei	n matrix.
	Input:	Enter t	he row	and col	lumn siz	ze of matrix: 3 3
		Enter t	he elem	nents of	matrix	
		2	4	2		
		1	3	1		
	_	4	3	1		
	Output:					
	Or	iginal M				
		2	4	2		
		1	3	1		
	Т.,	4	3	1 N	1 - 4 ·	
	113	anspose			iatrix:	
		2 4	1	4		
		2	3	3		
		2	1	1		
5	WAP to fi	nd the s	um of e	element	e of unr	er triangular.
٥.	Input:					of a square matrix: 3
	input.				matrix	
		2	4	2	1110011711	•
		1	3	1		
		4	3	1		
	Output:					
	_	atrix:				
		2	4	2		
		1	3	1		
		4	3	1		
						ular matrix: 13
6.	WAP to fi					nns of a matrix.
	Input:					ze of the matrix: 3 3
		Enter t			matrix	
			2	4	2	
			1	3	1	
			4	3	1	DOWN GVE
	Output:		2	4	2	ROW SUM
			2	4	2	8

	1 4	3	1 1		5 8
COL SUM	7	10	4		

Home Assignments

1. WAP to find the Trace (sum of the diagonal element) of a given n×n matrix.

Input: Enter the row or column size of a square matrix: 3

Enter the elements of matrix:

2	4	2
1	3	1
4	3	1

Output:

Matrix:

Sum of the diagonal elements: 6

2. WAP to print the elements of upper triangular matrix.

Input: Enter the row or column size of a square matrix: 3

Enter the elements of matrix:

Output:

Matrix:

Upper Triangular Matrix:

3. WAP to check whether a matrix is identity matrix or not.

Input 1: Enter the row and column size of the matrix: 3 3 Enter the elements of the matrix:

$$\begin{array}{cccc} 1 & & 0 & & 0 \\ 0 & & 1 & & 0 \\ 0 & & 0 & & 1 \end{array}$$

Output 1: Given matrix is an Identity Matrix.

Input 2: Enter the row and column size of the matrix: 3 3

Enter the elements of the matrix:

Output 2: Given matrix is not an Identity Matrix.

4.	WAP to	find ou	it the co	ount of even and odd numbers in a matrix.
	Input:			w and column size of the matrix: 3 3
	•			ements of the matrix:
		1	0	10
		4	1	2
		5	8	1
	Output:			
	-	Matri	x:	
		1	0	10
		4	1	2
		5	8	1
		Numl	ber of e	ven elements: 4
		Numl	ber of o	dd elements: 5
5.	WAP to	test wh	ether a	square matrix is symmetrical or not. A matrix is
				ne as its transpose.
	Inpu	t 1: E1	nter the	row / column size of the matrix: 3
		Ente	r the ele	ements of the matrix:
		1	0	5
		0	1	2
		5	2	1
	Outpu			
		Giver	n Matrix	
		1	0	5
		0	1	2
		5	2	1
			•	mmetrical
	Input			ow / column size of the matrix: 3
		Ente		ements of the matrix:
		1	0	10

Output 2:

Given Matrix:

1	0	10
4	1	2
5	8	1

1

2

Matrix is not Symmetrical

6. WAP read a matrix and determine whether it is a sparse matrix or not. A martix which has more zero elements than non-zero elements is known as a sparse matrix.

Input 1: Enter the row and column size of the matrix: 3 3

Enter the elements of the matrix:

$$\begin{array}{cccc} 0 & 2 & 0 \\ 0 & 0 & 4 \\ 5 & 0 & 0 \end{array}$$

Output 1:

Given Matrix:

1	0	10
4	1	2
5	8	1

It is a Sparse Matrix.

Input 2: Enter the row and column size of the matrix: 4 4

Enter the elements of the matrix:

0	2	0	5
0	0	4	6
5	7	0	8

Output 2:

Given Matrix:

0	2	0	5
0	0	4	6
5	7	0	8

It is not a Sparse Matrix.

Book Exercises

- 1. WAP that fills a five-by-five matrix as follows: [Page No: 255, Exercise 8.8]
 - Upper left triangle with +1s
 - Lower right triangle with -1s
 - Right to left diagonal with zeros

Output:	0	1	1	1	1
	-1	0	1	1	1
	-1	-1	0	1	1
	-1	-1	-1	0	1
	-1	-1	-1	-1	0

2. The annual examination results of 100 students are tabulated as follows:

[Page No: 255, Exercise 8.5]

Roll No	Subject 1	Subject 2	Subject 3

Write a program to read the data and determine the following:

- (a) Total marks obtained by each student
- (b) The highest marks in each subject and the Roll No. of the students who secured it.
- (c) The student who obtained the highest total marks.