LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

λογικη τεχνη

λογικη τεχνη

λογικη = thinking, reasoning (older: spoken word)

λογικη τεχνη

λογικη = thinking, reasoning (older: spoken word)

 $\tau \varepsilon \chi \nu \eta$ = technique, science, art

λογικη τεχνη

λογικη = thinking, reasoning (older: spoken word)

 $\tau \varepsilon \chi \nu \eta$ = technique, science, art

The Art of Thinking

Rhetorica ad Herennium (~ 80 B.C)

 Exordium: use relevant generalities, connect them to the specific topic

- Exordium: use relevant generalities, connect them to the specific topic
- Narratio: state the argument that has to be proven

Rhetorica ad Herennium (~ 80 B.C)

- Exordium: use relevant generalities, connect them to the specific topic
- Narratio: state the argument that has to be proven
- O Divisio: divide into main points

- Exordium: use relevant generalities, connect them to the specific topic
- Narratio: state the argument that has to be proven
- O Divisio: divide into main points
- Confirmatio: set out arguments as well as evidence

- Rhetorica ad Herennium (~ 80 B.C)
 - Exordium: use relevant generalities, connect them to the specific topic
 - Narratio: state the argument that has to be proven
 - Divisio: divide into main points
 - Confirmatio: set out arguments as well as evidence
 - Refutatio: refute opposing arguments

Rhetorica ad Herennium (~ 80 B.C)

- Exordium: use relevant generalities, connect them to the specific topic
- Narratio: state the argument that has to be proven
- O Divisio: divide into main points
- Confirmatio: set out arguments as well as evidence
- Refutatio: refute opposing arguments
- Conclusio: summary of the argument

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches.

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

Some bags are pockets.No pocket is a pouch.

Conclusion: All bags are not

pouches. false

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

- Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches. false
- Some pigs are predators.
 No predator is a pet.
 Conclusion: Some pigs are not pets.

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches. false

Some pigs are predators.
 No predator is a pet.
 Conclusion: Some pigs are not pets. true

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

- Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches. false
- Some pigs are predators.
 No predator is a pet.
 Conclusion: Some pigs are not pets. true

Some maggots are flies.
 No fly is welcome.
 Conclusion: No maggots are welcome.

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

- Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches. false
- Some pigs are predators.
 No predator is a pet.
 Conclusion: Some pigs are not pets. true

Some maggots are flies.
 No fly is welcome.
 Conclusion: No maggots are welcome. false

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

- Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches. false
- Some pigs are predators.
 No predator is a pet.
 Conclusion: Some pigs are not pets. true

- Some maggots are flies.
 No fly is welcome.
 Conclusion: No maggots are welcome, false
- Some doctors are fools.
 All fools are rich.
 Conclusion: Some doctors are rich.

The mental health of the clones in the BBC TV-Series *Orphan Black* is tested with questions of the following kind:

- Some bags are pockets.
 No pocket is a pouch.
 Conclusion: All bags are not pouches. false
- Some pigs are predators.
 No predator is a pet.
 Conclusion: Some pigs are not pets. true

- Some maggots are flies.
 No fly is welcome.
 Conclusion: No maggots are welcome, false
- Some doctors are fools.All fools are rich.Conclusion: Some doctors

are rich. true

... and why in Computer Science?

automated conclusions in

- autonomous driving
- meteorology
- washing machines
- medicine

How to transform our knowledge into Computers?

- 1. we need a formalism to describe it (formulae)
- 2. we need a formalism how to interprete it (interpretation, models)
- 3. we need some ensurance that everything works as intended
 - either formula or negation are true (Consistency)
 - everything provable is really true (Soundness)
 - everything true is provable (Completeness)
 - the axioms are independent of each other (Indepence)

• We know what we have to take care of in transforming thinking to computers?

- We know what we have to take care of in transforming thinking to computers?
- O But what are computers?

- We know what we have to take care of in transforming thinking to computers?
- O But what are computers?
- What is computation?

- We know what we have to take care of in transforming thinking to computers?
- O But what are computers?
- O What is computation?
- As decently as we look into logic, we have to look into the definition of computation!

What is computation?

Definition (Computation (Oxford Dictionary))

- 1. (mass noun) The action of mathematical calculation.
 - (count noun) 'statistical computations'
- 2. The use of computers, especially as a subject of research or study.

i=1; while TRUE i++; i=1; while i<5 i++;

Goal: Program P_1 with input P_2 that decides whether P_2 terminates.


```
i=1;
while TRUE
i++;
```

Goal: Program P_1 with input P_2 that decides whether P_2 terminates. $\hat{=}$ Halt-Problem


```
i=1;
while TRUE
i++;
```

```
i=1;
while i<5
i++;
```

Goal: Program P_1 with input P_2 that decides whether P_2 terminates. $\hat{}=$ Halt-Problem

○ Turing: Halt-Problem is undecidable!

Theory of Computation

We have to investigate what computation means in detail!

- O Which kinds of problems do we have?
- How to encode problems?
- What is the definition of computable/decidable?

PROBLEMS AND ENCODING

Holidays: car, petrol and now?

O Can we reach Hamburg?

Holidays: car, petrol and now?

○ Can we reach Hamburg? Decision-Problem

- O Can we reach Hamburg? Decision-Problem
- How many kilometers can we drive?

- Can we reach Hamburg? Decision-Problem
- How many kilometers can we drive?Optimisation-Problem
- Where can we drive?

- Can we reach Hamburg? Decision-Problem
- How many kilometers can we drive?Optimisation-Problem
- Where can we drive? Search-Problem

Holidays: car, petrol and now?

- Can we reach Hamburg? Decision-Problem
- How many kilometers can we drive?Optimisation-Problem
- Where can we drive? Search-Problem

Here only Decision-Problems!

informal:

○ Output: **yes**, **no** (resp. 0/1 or true/false)

informal:

- Output: **yes**, **no** (resp. 0/1 or true/false)
- Input: Instances of the problem (somehow coded)

informal:

- Output: **yes**, **no** (resp. 0/1 or true/false)
- O Input: Instances of the problem (somehow coded)

Definition (Decision Problem)

tuple (A, B, Σ) with

informal:

- Output: **yes**, **no** (resp. 0/1 or true/false)
- Input: Instances of the problem (somehow coded)

Definition (Decision Problem)

tuple (A, B, Σ) with

 \bigcirc alphabet for encoding Σ

informal:

- Output: **yes**, **no** (resp. 0/1 or true/false)
- Input: Instances of the problem (somehow coded)

Definition (Decision Problem)

tuple (A, B, Σ) with

- \bigcirc alphabet for encoding Σ
- \bigcirc set of all possible inputs $A \subseteq \Sigma^*$

informal:

- Output: **yes**, **no** (resp. 0/1 or true/false)
- Input: Instances of the problem (somehow coded)

Definition (Decision Problem)

tuple (A, B, Σ) with

- \bigcirc alphabet for encoding Σ
- \bigcirc set of all possible inputs $A \subseteq \Sigma^*$
- \bigcirc set of all *yes*-instances $B \subseteq A$

Course Outline

- Propositional Logic
- Application to *real world* proofs.
- Theory of Computation: Chomsky Hierarchy
- Predicate Logic
- Application to *real world* proofs.
- Complexity Theory: P, NP, NPC

