

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

Claims 1-10 are canceled.

1 11. (Originally presented) A method for maintaining a substantially constant error in an output voltage sourced by an amplifier comprising a first circuit and a second circuit, said method comprising:

driving said output voltage in a first region of operation in each of said first circuit and said second circuit, wherein in said first region of operation, said first circuit substantially drives said output;

sensing a condition wherein V_{in} reaches V_{ref} ; and

causing a switch over from said first region of operation to a second region of operation in each of said first circuit and said second circuit, wherein in said second region of operation, said second circuit substantially drives said output;

wherein V_{ref} is set to provide a substantially constant error within said output

PN
voltage.

2 12. (Originally presented) The method of claim 11, wherein said first circuit is a p-channel amplifier and said second circuit is an n-channel amplifier.

3 13. (Originally presented) The method of claim 12, wherein
said first region of operation comprises operation wherein said p-channel amplifier is active and said n-channel is relatively not active; and

 said second region of operation comprises operation wherein said n-channel amplifier is active and

4 14. (Originally presented) The method of claim 11, wherein said first circuit is a n-channel amplifier and said second circuit is an p-channel amplifier.

5 15. (Originally presented) The method of claim 14, wherein
said first region of operation comprises operation wherein said n-channel
amplifier is active and said p-channel is relatively not active; and
said second region of operation comprises operation wherein said p-channel
amplifier is active and said n-channel is relatively not active.

6 16. (Originally presented) The method of claim 11, wherein Vref is set to
provide a substantially constant error within said output voltage by making Vref sufficiently
large in comparison to Vin.

7 17. (Originally presented) The method of claim 11, wherein
Vref is set to provide a substantially constant error within said output voltage by
making Vref sufficiently small in comparison to Vin.

8 18. (Originally presented) An apparatus, comprising:
means for driving an output voltage in a first region of operation in each of a first
circuit and a second circuit;
means for sensing a condition wherein an input voltage (Vin) reaches a reference
voltage (Vref);
means for switching over from a first region of operation to a second region of
operation in each of said first circuit and said second circuit; and
means for setting Vref to be sufficiently large, thereby maintaining a substantially
constant error in said output voltage.

19. (Currently Canceled)

9 20. (Presently Amended) The method of claim 19, A method, comprising:
driving an output voltage in a first region of operation substantially by a first
circuit for a substantial portion of an amplifier's entire range of operation;
sensing a condition wherein an input voltage, Vin, reaches a reference voltage,
Vref; and
switching over from the first region of operation to a second region of operation;

wherein a second circuit substantially drives the output voltage for a remaining portion of the amplifier's range of operation; and

wherein the reference voltage, Vref, is made sufficiently large to provide a substantially constant error within the output voltage by causing operation in the first region to occur for a substantial portion of the amplifier's entire range of operation.