1 Introduction aux produits dérivés

Produits dérivés

Titre financier dont sa valeur est déterminée par le prix de quelque chose d'autre, soit l'**actif sous-jacent** du produit dérivé.

Tout comme un couteau n'est pas dangereux de soi, les produits dérivés ne le sont pas non plus. Cependant, on peut heurter quelqu'un avec un couteau tout comme on peu couper des patates. Les produits dérivés sont en fait des **outils de gestion du risque** qui deviennent utile lorsque le risque du sous-jacent augmente.

Origine

Après 1971, le président Nixon a voulu défaire le standard de l'or (qui a causé de l'hyperinflation dans plusieurs pays) pour plutôt laisser le libre-marché fixer la valeur des devise de chaque pays.

Exemples de produits dérivés

- > Contrat à terme standardisé (futures);
- Contrat à terme de gré-à-gré (forwards);
 Gré: acceptation, ou consentement;
- > Option d'achat (call);
- > Option de vente (put);
- > Les swaps;

Exemples de sous-jacent aux produits dérivés

> Action;

> Climat;

- > Indice boursier;
- > Devise;

> Prix d'une marchandise;

Utilité

> Gestion des risques (hedging);

Pour exemple, un avion peut se procurer une option d'achat pour contrer le risque d'une augmentation du prix du pétrole;

On dit qu'elle « hedge » contre le prix du pétrole.

> Spéculation;

Pour exemple, un investisseur croît que le prix d'une action va augmenter et se procure une option d'achat;

- > **Réduction** des **frais** de **transaction** : Faire le même profit qu'en transigeant des actions sans réellement les transiger;
- > **Arbitrage** réglementaire : Éliminer le risque de posséder un actif en retenant ses privilèges;

Pour exemple, un investisseur élimine le risque d'une action avec une option de vente tout en conservant ses droits de vote;

Parties prenantes

End-users: Participants au contrat du produit dérivé;

Market-makers : Intermédiaire visant à faire un profit de la transaction entre end-users

Economic observers : Observateurs du marché analysant et régulant les activités des market-makers et end-users ;

Transactions

Transaction gré-à-gré

Transaction sans intermédiaire ou à l'extérieur de la bourse.

Raisons pour ce type de transaction

- > Ce sont souvent de grosses transaction. On peut donc économiser sur les frais de transaction.
- > On peut combiner (sur une même transaction) plusieurs microtransaction et plusieurs types d'actifs.

Étapes d'une transaction

- 1. L'acheteur et le vendeur se trouvent;
- 2. On définit les obligations de chaque partie, on dit que la transaction est « **cleared** » ;
 - > C'est-à-dire, l'actif à livrer, la date d'échéance, le prix, etc.;
 - > Les transactions sur les marchés financiers sont *cleared* avec un intermédiaire surnommé le « **clearing house** »;
 - > Elle met en relation les acheteurs et vendeurs (1ère étape), et tient compte des obligations et paiements;
- 3. La transaction a lieu et les obligations sont remplies par chaque partie, on dit que la transaction est « settled » ;
- 4. Les registres de propriétés sont mis à jour.

Vente à découvert « (short-sell) »

Lorsqu'on croit que le prix d'une action va baisser, on peut faire un profit quand même.

Étapes d'une vente à découvert

Au début :

Après une certaine période de temps :

- 1. Emprunt d'un titre;
- 3. Achat du titre;

2. Vente du titre;

4. Remboursement du titre

Exemple de vente à découvert

- > Mon ami James possède 5 actions d'Apple ayant chacune une valeur de 5\$;
- > Je lui emprunte ses 5 actions et lui promets d'y retourner;
- > Immédiatement, je revends ses actions sur le marché des actions;
 - Je ne suis pas inquiété, je suis certain que le prix va baisser;
 - Ce faisant, je suis certain que je serai capable de racheter ses actions plus tard à un prix plus faible.
- > Après une certaine période de temps, j'achète 5 actions au nouveau prix et j'y retourne.

Raisons pour une vente à découvert

- > **Spéculation**: Un investisseur tire profit d'une baisse de prix;
- > **Financement**: Une vente à découvert est une façon d'emprunter de l'argent;
- > Couverture (hedging) : Un investisseur peut éliminer le risque d'une position longue sur une action avec une vente à découvert.

Type de risques

Risque de défaut (de crédit) Risque de ne pas être payé;

- > Ce risque peut être réduit avec un dépôt initial en garantie ou une marge de sécurité;
- > « credit risk ».

Risque de rareté Si il est difficile de trouver un acheteur et un vendeur pour le sous-jacent (pas beaucoup de transactions signifie beaucoup de négociations et de variation dans les prix).

Frais

investisseur : short-seller prêteur : Détenteur des actions dont l'investisseur a emprunté;

- « *short-sale proceeds* » Le recettes de la vente sont conservés comme collatéral au cas où que l'investisseur ne retourne pas les actions;
 - > Soit le prêteur, ou un parti tierce, va conserver les revenus de la vente à découvert jusqu'au retour des actions;
 - > À ce moment, elles seront retournées à l'investisseur.
- « a haircut » Marge de sécurité pour couvrir le risque que le prix des actions augmente trop pour que l'investisseur ait la capacité financière des retourner, le prêteur exige un « dépôt » additionnel;
 - > Comme les recettes de la vente, cette marge de sécurité sera retournée au prêteur.
- « *Interest* » Il est naturel que le prêteur exige un retour sur la vente à découvert également;
 - > Dans le marché des actions, l'intérêt accumulé sur le collatéral est le « *short rebate* » ;
 - > Dans le marché des obligations, c'est le taux de mise en pension (« repo rebate »);
 - > Ces taux sont habituellement *plus faible que* ceux du *marché* et sont fondés sur l'offre et la demande.
- « *Dividends* » Il est possible que des dividendes sont payables lors du prêt;
 - > Puisque le détenteur de l'action sera celui à qui l'investisseur à vendu les actions, l'investisseur et le prêteur ne vont pas les recevoir;
 - > Du point de vue du prêteur, les dividendes sont des paiements en espèce qu'il aura reçu s'il n'avait pas prêté l'action;
 - > Ce faisant, l'investisseur va payer ces dividendes au prêteur s'il y en a;
 - > Ce paiement ce nomme le **taux de location** (« *lease rate* ») de l'actif.

Mesures de taille et d'activité d'un marché

Volume total des transactions : Nombre total de titres transigés pendant une période;

Valeur marchande: nombre d'actions \times prix par action (\$);

« Market value ».

Valeur notionnelle : Valeur de l'actif sous-jacent du produit dérivé ;

Position ouverte : Nombre de contrats encore en vigueur du produit dérivé;

« Open interest ».

Rôle des marchés financiers : Partage du risque et diversification des risques.

Bid-Ask Spread

Écart entre le prix de vente (**ask**) et d'achat (**bid**). Ceci correspond à la **marge de profit** que le teneur de marché (*market maker*) conserve. En l'absence d'arbitrage, on aura Ask - Bid > 0.

Prix

Ask: Prix le plus *élevé* auquel un investisseur est prêt à payer pour le sous-jacent;

Lorsque le teneur de marché vend une action à un investisseur, il *ask* le prix plus élevé;

« ask price » se traduit au **cours vendeur** représentant l'idée de regarder les prix auxquels se transigent l'actif;

Bid : Prix le plus *faible* auquel un investisseur est prêt à vendre le sous-jacent

« bid price » se traduit au cours acheteur;

Lorsque le teneur de marché achète une action d'un investisseur, il *bid* le prix plus faible;

Terminologie des marchés

Ordre au cours du marché : On achète et vend selon les prix Bid Ask actuels;

« Market order ».

Ordre à cours limité : On achète le sous-jacent si Ask < k ou on vend le sous-jacent si Bid > k.

« Limit order ».

Ordre de vente stop : On veut limiter sa perte si un sous-jacent perd énormément de valeur. Donc, on va vendre le sous-jacent si $Bid \le k$.

« Stop-loss order ».

Longue On se considère en position longue **par rapport au sous-jacent** si notre stratégie nous permet de bénéficier d'une hausse du sous-jacent.

Courte On se considère en position longue **par rapport au sous-jacent** si notre stratégie nous permet de bénéficier d'une baisse du sous-jacent.

2 Introduction aux Forwards et aux options

Terminologie

Premium : Flux financiers à t = 0;

Prix de l'option / prime;

Si positif, il s'agît d'un coût;

Si négatif, il s'agît d'une compensation.

Valeur à l'échéance T: Les flux de trésorie au temps t = T;

- > « payoff »;
- > C'est à dire, l'argent que l'on reçoit à l'échéance;
- > Dans le cas de l'achat d'un actif, on reçoit son prix et donc s'il est nul on ne reçoit rien;
- > C'est le profit qui prend en compte les dépenses initiales et qui sera négatif.

Profit ^a = (valeur à l'échéance) - (valeur accumulée du coût inital)

= *VA*(flux monétaires) ^b

 r_f : taux d'intérêt sans risque (effectif annuel).

r : force d'intérêt sans risque (annuelle).

- a. Valeure Accumulée au taux sans risque.
- b. Pour exemple acheter une voiture et la revendre 10 ans plus tard—(prix de revente à dans 10 ans) (valeur accumulée du coût d'achat inital à 0 au courant des 10 dernières années).

Dontrat à terme (de gré à gré) « forward contract »

Contrat selon lequel:

- > deux partis s'engagent d'échanger—un à acheter et l'autre à vendre;
- > une *certaine* **quantité** d'un *certain* **bien**—l'actif sous-jacent *S* ;
- \rightarrow à un *certain* **prix**—prix à terme $F_{0,T}$;
- > à un *certain* **endroit** à une *certaine* **date**—date d'échéance, *T* ;

L'engagement est au départ à t=0 mais aucune transaction y a lieu. Ce faisant, le profit sera égale à la valeur à l'échéance puisqu'il n'a pas de flux financiers à 0 à accumuler. L'achat **ferme** en revanche, implique l'*achat* et la livraison de l'actif au départ à t=0. Donc :

Transaction	Valeur à l'échéance	Profit
Achat ferme	S_T	$S_T - S_0 e^{rT}$
Contrat à terme (achat)	$S_T - F_{0,T}$	$S_T - F_{0,T}$

Notation de prix

 S_t : **Valeur** de l'actif **s**ous-jacent à t;

 S_0 : Prix au comptant;

 \rightarrow Le prix au comptant représente le paiement pour la livraison immédiate à t=0;

> « (spot price) ».

 $F_{0,T}$: est le prix à terme;

 $F_{0,T} = S_0 e^{r(T-0)}$

 $F_{0,0}$: est nul;

> La notation $F_{0,T}$ vient de « future » ou « forward ».

Exemple de bateau

- > Je veux acheter un (*quantité*) bateau (*bien*), mais il est inconvénient pour moi de le recevoir maintenant;
- > En lieu, puisque je veux l'acheter maintenant, je signe une entente (engagement) pour l'acheter;
- > La seule différence entre l'acheter aujourd'hui (au prix au comptant S_0) et l'acheter lorsque la neige fond (au prix à terme $F_{0,T}$) est l'accumulation d'intérêt;
- > Puisqu'on suppose tout les deux d'êtres fiables et sans risque, le prix est accumulé au taux sans risque (r) et le prix payable rendu à l'été (T) sera $F_{0,T} = S_0 e^{r(T-0)}$;

Si le taux sans risque est un **taux plutôt** qu'une *force* d'intérêt, on obtient $F_{0,T} = S_0(1 + r_f)^T$.

Types d'exercices

Européen : Au moment d'expiration de l'option T;

Américain: **N'importe quand** (**a**ny moment) d'ici *T*;

Bermudien: À quelques périodes (bounded periods) d'ici *T*;

En réalité, la *majorité sont américain* et donc nous effectuons uniquement des calculs avec ce type.

Option d'achat

Contrat qui:

- > permet (optionnel) à son détenteur d'acheter;
- > une certaine quantité d'un certain bien—l'actif sous-jacent;
- → à un certain prix—prix d'exercice K;
- > à un *certain* **endroit** à, ou d'ici, une *certaine* **date**—date d'échéance, *T*;

Notation

 C_0 : **Prix** pour acheter l'option d'achat;

C(K): Notation pour représenter l'option d'achat (« *Call* ») avec un prix d'exercice de K.

Option de vente

Contrat qui permet à son détenteur de vendre au lieu d'acheter.

Notation

 P_0 : **Prix** pour acheter l'option de vente;

P(K): Notation pour représenter l'option de vente (« Put ») avec un prix d'exercice de K.

Pour bien comprendre les définitions de profit au tableau ci-dessous, ne pas oublier que C_0 représente le prix, ou « *premium* », payé par l'acheteur d'une option et donc qu'il est naturel de le soustraire de sa valeur à l'échéance. Le vendeur de l'option tant qu'a lui reçoit ce paiement et on y additionne la valeur accumulée en lieu. Il s'ensuit donc que la ligne de profit pour la position longue est moins élevée, car

Il s'ensuit donc que la ligne de profit pour la position longue est moins élevée, car on y soustrait la valeur accumulée du prix alors que celle de la position courte est

Exercice (levée)

Décision d'exercer l'option d'achat ou de vente.

Notation

K : Prix d'exercice (*strike price*);

plus élevée.

Autre Contrat	Position	Rôle	Stratégie	Valeur à T (payoff)	Profit
Contrat à terme	Longue	obligation d'acheter	garantie / fixer le prix d'achat du sous-jacent	$S_T - F_{0,T}$	
	Courte	obligation de vendre	garantie / fixer le prix de vente du sous-jacent	$-(S_T - F_{0,T})$	
d'achat (call)	Longue	droit d'acheter	achat d'assurance contre un prix sous-jacent élevé	$\max\{0,S_T-K\}$	$\max\{0,S_T-K\}-C_0\mathrm{e}^{rT}$
Option	Courte	obligation de vendre	vente d'assurance contre un prix sous-jacent élevé	$-\max\{0,S_T-K\}$	$-\max\{0,S_T-K\}+C_0e^{rT}$
de vente (put)	Longue	droit de vendre	achat d'assurance contre un prix sous-jacent faible	$\max\{0, K - S_T\}$	$\max\{0, K - S_T\} - P_0 e^{rT}$
	Courte	obligation d'acheter	vente d'assurance contre un prix sous-jacent faible	$-\max\{0,K-S_T\}$	$-\max\{0,K-S_T\}+P_0e^{rT}$

Degré de parité	« Moneyness »	Option d'achat	Option de vente
au cours	« At-the-money »	$S_T = K$	$S_T = K$
dans le cours	« In-the-money »	$S_T > K$	$S_T < K$
hors du cours	« Out-of-the-money »	$S_T < K$	$S_T > K$

3 Stratégie de couverture

3.1 Préliminaires

Hypothèses

Pour tout le chapitre, nous posons les hypothèses suivantes :

- 1. Taux d'intérêt *i* constant;
- 3. Aucun risque de défaut;
- 2. Aucuns frais de transaction;
- 4. Aucun versement intermédiaire.

Propriétés des maximums et minimums

$$\begin{aligned} \max(a,b)+c&=\max(a+c,b+c)\\ \min(a,b)+c&=\min(a+c,b+c)\\ \min(a,b)&=-\max(-a,-b)\\ \max(a,b)\times c&=\max(a\times c,b\times c),\,c>0\\ \max(a,b)+\min(a,b)&=a+b \end{aligned}$$

Floor

On achète S en se protégant contre une baisse trop importante du sous-jacent (**position longue**)

$$Floor = Stock + Put(K,T)$$

$$Premium = S_0 + P(K,T) > 0$$

$$Payoff = \begin{cases} K & , S_T \le K \\ S_T & , S_T > K \end{cases}$$

Cap

On vend à découvert *S* en se protégant contre une hausse trop importante du sousjacent (car il faudra éventuellement le racheter!). **Position courte**.

$$\begin{aligned} ⋒ = Call(K,T) - Stock \\ &Premium = C(K,T) - S_0 < 0 \\ &Payoff \begin{cases} -S_T &, S_T \leq K \\ -K &, S_T > K \\ \end{aligned}$$

Écart haussier « Bull Spread »

Crée en:

- > Achetant une option d'achat $C(K_1)$ et vendant une autre option achat $C(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$;
- > Achetant une option de vente $P(K_1)$ et vendant une autre option de vente $P(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$.

Contexte

- > Typiquement utilisé lorsqu'un investisseur croit que, entre deux prix d'exercice, le prix va augmenter *mais* qu'il
 - Qu'il ne veut pas une perte trop importante si le prix de l'actif baisse;
 - Ni qu'il veut payer pour plus de profit qu'il s'attend à recevoir.
- > « *Bull Spread* » provient de l'idée d'être « *bull-ish* » et prévoir une augmentation du prix de l'action à un intervalle;

On peut également visualiser un taureau avec ses cornes pointues vers le haut prêt à attaquer.

Écart baissier « Bear Spread »

L'inverse d'un écart haussier, il est crée en :

- > Vendant une option d'achat $C(K_1)$ et achetant une autre option achat $C(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$;
- > Vendant une option de vente $P(K_1)$ et achetant une autre option de vente $P(K_2)$ à un prix d'exercice plus élevé $K_2 > K_1$.

Contexte

- > Typiquement utilisé lorsqu'un investisseur croit que, entre deux prix d'exercice, le prix va baisser *mais* qu'il
 - Qu'il ne veut pas une perte trop importante si le prix de l'actif baisse;
 - Ni qu'il veut payer pour plus de profit qu'il s'attend à recevoir.
- > « *Bear Spread* » provient de l'idée d'investir avec précaution pour « *bear-er* » une et baisse du prix de l'action à un intervalle;

On peut également visualiser un ours qui va « strike down » avec ses pates d'ours en attaque.

E Écart sur ratio d'options « Ratio Spread »

Crée en:

- \rightarrow achetant m options à un prix d'exercice K_1 et
- > puis **vendant** *n* options à un prix d'exercice *K*₂ différent où
- $\rightarrow m \neq n \text{ et } K_1 \neq K_2.$

Boite « Box Spread »

- > La stratégie consiste à acheter un écart haussier ainsi qu'un écart baissier où l'un utilise des options d'achat et l'autre des options de vente (ayant les mêmes caractéristiques);
- > Il est utilisé pour emprunter ou prêter de l'argent avec une valeur à l'échéance connue en avance, peu importe la direction prise par la valeur de l'actif sous-jacent;
- > Il est donc équivalent à une obligation zéro-coupons.

Si on crée un écart haussier avec des

> options d'achat

> options de ventes

et un écart baisser avec

> options de ventes > options d'achat la valeur à l'échéance est équivalente à celle d'une obligation zéro-coupon sans risque

> à position longue.

> à position courte.

Cela est donc équivalent à

> à prêter de l'argent.

> à emprunter de l'argent.

$$\begin{aligned} \text{Box Spread} &= Bull(Call) + Bear(Put) \\ &= Call(K_1, T) - Call(K_2, T) \\ &+ Put(K_2, T) - Put(K_1, T) \end{aligned}$$

$$\begin{aligned} \text{Premium} &= C(K_1, T) - C(K_2, T) \\ &+ P(K_2, T) - P(K_1, T) > 0 \end{aligned}$$

$$\begin{aligned} \text{Payoff} &= K_2 - K_1, \forall S_T \end{aligned}$$

Tunnel « *Collar* » et action couverte par un tunnel « *Collared stock* »

Le tunnel (« Collar ») est crée en

- \rightarrow Achetant une option de vente $P(K_1)$ et
- > vendant une option d'achat $C(K_2)$ où
- > $K_1 < K_2$.

Lorsqu'on achète l'actif (position longue) en plus, nous obtenons une action couverte par un tunnel (« *Collared stock* »).

La largeur du tunnel est $K_2 - K_1$.

$$tunnel = P(K_1) - C(K_2)$$
action couverte par un tunnel = $P(K_1) - C(K_2) + S_T$

Stellage « straddle »

Créé en achetant une option de vente et une option d'achat avec un prix d'exercice *K*.

Contexte

- > Souvent bâti avec un prix d'exercice au cours du marché (in-themoney);
- > L'idée est de faire un profit si le prix de l'actif sous-jacent baisse ou descend;
- > Son avantage est donc qu'il peut être profitable avec une baisse ou hausse du prix de l'actif sous-jacent;
- > Cependant, puisqu'il faut acheter deux options au cours du marché, le coût est plutôt élevé.

Straddle = Put(K, T) + Call(K, T).

Il s'ensuit que la valeur à l'échéance est :

$$|S_T - K| \equiv \begin{cases} (K - S_T) + 0 = K - S_T, & S_T \le K \\ 0 + (S_T - K) = S_T - K, & S_T > K \end{cases}$$

Stellage élargi « strangle »

Créé en

- \rightarrow achetant une option de vente avec un prix d'exercice K_1 et
- > achetant une option d'achat avec un prix d'exercice K_2 où
- > $K_1 < K_2$.

Contexte

- > Pour réduire le coût des primes, les options sont à des prix d'exercice hors du cours du marché (out-of-the-money);
- > Cela réduit la perte maximale mais augmente la variation nécessaire pour faire un profit.

Strangle =
$$Put(K_1, T) + Call(K_2, T)$$
.

Il s'ensuit que la valeur à l'échéance est :

$$\begin{cases} (K_1 - S_T) + 0 = K_1 - S_T, & S_T \le K_1 \\ 0 + 0 = 0, & K_1 < S_T \le K_2 \\ 0 + (S_T - K_2) = S_T - K_2, & S_T > K_2 \end{cases}$$

Écart papillon « Butterfly Spread (BFS) »

Créé en

- \rightarrow achetant stellage élargi avec prix d'exercices K_1 et K_3
- > vendant un stellage avec un prix d'exercice K₂ où
- $\rightarrow K_1 < K_2 < K_3;$
- > L'écart papillon est symétrique avec $K_2 K_1 = K_3 K_2$.

$$BFS = \textit{Put}(K_1, T) + \textit{Call}(K_3, T) - \textit{Put}(K_2, T) - \textit{Call}(K_2, T).$$

Notes

- > Il existe plusieurs façons de recréer un écart papillon;
- \rightarrow Pour exemple, un écart haussier aux prix d'exercice K_1 et K_2 combiné avec un écart baissier aux prix d'exercice K_2 et K_3 .

$$BFS = Call(K_1, T) - 2Call(K_2, T) + Call(K_3, T).$$

Écart papillon asymétrique

- > De façon similaire à l'écart papillon, on vend et achète en proportion différentes le stellage et stellage élargi;
- \rightarrow A-BFS = $mCall(K_1, T) (m + n)Call(K_2, T) + nCall(K_3, T);$
- > L'écart est asymétrique avec $m(K_2 K_1) = n(K_3 K_2)$.

On utilise la notation avec λ : $\lambda = \frac{K_3 - K_2}{K_3 - K_1}$

$$\lambda = \frac{K_3 - K_2}{K_3 - K_1}$$

Pour chaque option avec un prix d'exercice de K_2 achetée, on achète λK_1 et $(1-\lambda)K_3$.

Forwards et Futures

4 façons d'acheter une action

Contrat	Moment de paiement	Moment de d'achat	Paiement
Outright purchase	0	0	S_0
Forward contract	T	T	$F_{0,T}$
Prepaid forward contract	0	T	$F_{0,T}^{P}$
Fully leveraged purchase	T	0	$S_0 e^{rT}$

Achat pleinement par emprunt « Fully leveraged purchase »: Emprunte de l'argent pour acheter l'actif maintenant (t=0) et rembourse l'argent au temps T;

Contrat à terme de gré à gré prépayé « Prepaid forward contract » : Paye au début (t=0) au prix P au lieu de plus tard, mais on reçoit quand même l'actif plus tard.

Ce faisant, on s'attend que $F_{0,T} = F_{0,T}^P e^{rT}$.

Notation de prix

 $F_{0,T}^{P}$: est le **prix à terme** d'un contrat à terme de gré à gré prépayé;

$$F_{0,T} = F_{0,T}^P e^{rT}$$
.

La loi du prix unique

Stipule que deux portefeuilles avec les mêmes profits doivent avoir le même prix.

Nous tarifions des contrats à terme de gré à gré *prépayé* et utilisons ces prix pour dériver le prix des contrats à terme de gré à gré.

Tarification d'un contrat à terme de gré à gré prépayé

Sans dividendes, on obtient un prix de S_0 ; soit, le prix de l'actif sous-jacent aujourd'hui. Dans le cadre d'une action cependant, il peut y avoir des dividendes.

Les dividendes sont payables au propriétaire de l'action. Puisque l'acheteur du contrat (position longue) va seulement posséder le contrat au temps T, il ne recevra alors pas de dividendes. Cela baisse donc la valeur de l'action et le prix du contrat devrai tenir cela en compte.

Dans le cas de **dividendes discrets**, il suffit de soustraire la valeur actualisée des dividendes : $F_{0,T}^P = S_0 - PV(div)$.

Un modèle de **dividendes payés continument** suppose un taux de dividendes continûment composé δ . Alors, une part de l'action au temps initial devient $e_{\delta T}$ parts au temps T. Cependant, nous voulons seulement une part au temps T et donc nous devons acheter $e_{-\delta T}$ parts au début. Le prix est donc $F_{0,T}^P = S_0 e^{-\delta T}$.

En bref:

Dividendes	Prix à terme prépayé	Prix à terme
Sans dividendes	S_0	S_0e^{rT}
Dividendes payés continument	$S_0 e^{-\delta T}$	$S_0 e^{(r-\delta)T}$
Dividendes discrets	$S_0 - PV(div.)$	$S_0e^{rT} - FV(div.)$

Prime à terme « forward premium »

Défini comme le ratio du prix à terme au prix courant de l'actif sous-jacent :

Prime à terme =
$$\frac{F_{0,T}}{S_0}$$

La prime à terme annualisée (« annualized forward premium ») est $\frac{1}{T} \ln \left(\frac{F_{0,T}}{S_0} \right)$.

Ontrat à terme synthétique « synthetic forward »

Un contrat à terme synthétique réplique la valeur à l'échéance d'un contrat à terme sans réellement en signer un.

Avec un vrai contrat à terme :

- > le coût inital est nul et
- > la valeur à l'échéance est l'écart entre le prix à terme et la valeur du sous-jacent $(S_T F_{0,T})$.

Avec un contrat à terme synthétique :

- > on prévoit l'échange du bien contre un prix quelconque *K* et
- \rightarrow la valeur à l'échéance est leur écart ($S_T K$).
- > Il s'ensuit que le coût initial ne peut être nul et
- > c'est pourquoi on **emprunte de l'argent**, ou de façon équivalente, **vend une obligation zéro-coupons**.

En bref, on achète l'actif et emprunte de l'argent :

Transaction	Flux au temps 0	Flux au temps T
Acheter un actif	-S(0)	+S(T)
Emprunter de l'argent	+S(0)	$-S(0)e^{rT} = -F_{0,T}$
Net des flux monétaires	0	$S(T) - F_{0,T}$

Forward synthétique avec dividendes On suppose le réinvestissement des dividendes.

Forward_{avec div.} =
$$e^{-\delta T} Stock - (e^{-\delta T} \cdot S_0) Bond$$

 $Premium = e^{-\delta T} S_0 - e^{-\delta T} S_0 = 0$
 $Payoff = S_T - S_0 e^{(r-\delta)T}$

Est-ce de l'arbitrage?

Flux monétaires	Oui	Non
Au temps 0, est-ce que le flux monétaire net est ≥ 0 ?	X	
Est-ce que tous les flux monétaires nets futurs sont ≥ 0 ?	X	
Est-ce qu'au moins un des flux monétaires nets futurs est > 0 ?	X	

Si la réponse à tous les questions est oui, alors il y a une opportunité d'arbitrage.

Desition Synthétique

Une position synthétique réplique la valeur à l'échéance d'une autre position.

Achat au comptant - vente à terme « Cash-and-carry »

L'investisseur reçoit de l'argent d'un emprunt qu'il utilise pour acheter l'action qu'il porte à terme au futur.

L'inverse arrive lorsque le marché offre un contrat à terme de gré à gré sousévalué.

Calcul avec prime de risque et nuance

> Certains sous-jacent ont une composante de risque non-négligeable. Or, on ne peut pas dire que $F_{0,T}={\rm E}\,[S_T]$. Toutefois,

$$F_{0,T} = \mathbb{E}\left[S_T\right] e^{-(\alpha - r)T}$$

où α est la prime de risque qu'on enlève pour obtenir le prix du Forward, tel que

$$\alpha = \underbrace{r}_{\text{Taux sans risque}} + \underbrace{(\alpha - r)}_{\text{Prime de risque}}$$

Forward de devise

Put-Call parity avec les devises

DD Devise locale

DÉ Device étrangère

 x_0 Taux de change $\frac{DD}{D}$ actuel (t = 0)

 r_D Taux sans risque <u>local</u>

r Taux sans risque étranger

Le prix Forward prépayé pour une unité de DÉ à t=0 (payé en DD) est

$$F_{0,T}^{P} = x_0 (1+r)^{-T}$$

Et le prix Forward (à t=T) pour une unité de DÉ est

$$F_{0,T} = F_{0,T}^{P} (1 + r_{D})^{T}$$

$$= x_{0} \left(\frac{1 + r_{D}}{1 + r}\right)^{T}$$

$$= x_{0} e^{(r_{D} - r)T}$$

Forward synthétique de devise

- > Emprunt de $x_0(1+r)^{-T}$ DD au taux r_D
- > Convertir les DD en DÉ
- > Dépôt de $(1+r)^{-T}$ DÉ (au taux r) de 0 à T.

Le payoff sera $x_t - x_0 \left(\frac{1+r_D}{1+r}\right)^T$.

Contrat à terme standardisé « future contract »

Différences aux contrats à terme de gré-à-gré :

1. Personnalisable;

- > Pour un *forward*, l'acheteur et le vendeur peuvent choisir n'importe quel prix, montant, date d'échéance ou actif sous-jacent;
- > Pour un *future*, ces composantes sont prédéterminées et ont dit donc qu'il est **standardisé**.

2. Valorisation au prix du marché « Marked-to-Market »;

- > Pour un *forward*, tous les échanges d'argent se produisent à l'échéance (contrat est réglé à l'échéance);
- > Pour un *future*, les pertes et profits sont réglés tous les jours (processus de valorisation au prix du marché).

3. Risque de défaut;

- > Pour un forward, le contrat est pleinement exposé au risque de défaut;
- > Pour un *future*, avec le règlement quotidien des pertes et de profit le risque de défaut est minimisé.
- 4. **Liquidité** : fait référence à l'aise d'acheter ou de vendre un actif, ou de façon équivalente, de sortir ou entrer de leur position;
 - > Pour un *forward*, il est impossible de sortir d'un contrat et donc ils ne sont pas liquides;
 - > Pour un *future*, puisqu'ils sont transigés sur les marchés boursiers, ils sont liquides.

5. Limite de prix;

- > Pour un *forward*, il n'y a aucune limite de prix sur l'actif sous-jacent et il peut varier sans limites;
- > Pour un *future*, il y a des limites incluses dans le contrat.

Puisque le règlement des contrats à terme standardisé est différent des contrats à terme de gré à gré, le prix à terme sera également différent.

Marges initiales et de maintien « initial and maintenance margins »

Compte Afin de contrer le risque de défaut, l'acheteur et le vendeur doivent déposer de l'argent dans un compte (« a *margin account* ») accumulant de l'intérêt;

Marge initale Le dépôt initial est nommé la marge initiale (« inital margin »);

Marge de maintien Les pertes et profits sont soustraits du compte et donc un niveau minimal est requis—la marge de maintien (« maintenance margin »);

Appel de marge Si le montant dans le compte descend en dessous de la marge de maintien, nous recevons un appel de marge (« *margin call* ») qu'il faut y ajouter des fonds pour ramener la balance à la **marge initiale**.

Example : On suppose l'achat d'une action se transigeant au prix de 950\$ aujourd'hui ayant 250 parts sous-jacent. La force d'intérêt est de 6%, la marge initiale égale à 80% de la valeur notionnelle et la marge de maintien 10% de la marge initiale.

Ce faisant, la **balance de la marge** dans une semaine sera :

$$+\underbrace{\begin{array}{c}\text{gains (pertes)}\\+250\\\text{nombre}\\\text{sous-jacent}\end{array}}_{\text{nombre achet\'e}}\times\underbrace{\begin{array}{c}(F_{1/52,T}-950)\\\text{profit par action}\\\text{dans une semaine}\end{array}$$

9 Put-Call Parity

Call - Put = Stock - Bond

Put-Call Parity avec devises

 $Call(x_0, K, T)$: Option d'achat qui permet d'acheter 1 unité de DÉ pour K unité de DD à l'échéance t = T.

 $Put(x_0, K, T)$: Option de vente qui permet d'acheter 1 unité de DÉ pour K unité de DD à l'échéance t = T.

Alors, on peut réécrire l'équation Put-Call Parity :

$$Call(x_0, K, T) - Put(x_0, K, T) = x_0(1+r)^{-T} - K(1+r_D)^{-T}$$

Parité généralisée et option d'échange

 $Call(S_t, Q_t, T - t)$: Option d'achat qui permet d'acheter le sous-jacent S au prix du sous-jacent Q au temps t = T.

 $Put(S_t, Q_t, T - t)$: Option de vente qui permet de vendre le sous-jacent S au prix du sous-jacent Q au temps t = T.

On peut généraliser l'équation Put-Call Parity :

$$C(S_t, Q_t, T - t) - P(S_t, Q_t, T - t) = F_{t,T}^P(S) - F_{t,T}^P(Q)$$

Options sur devise

$$Call_{DD}(x_0, K, T) = K \cdot Put_{DD}\left(\frac{1}{x_0}, \frac{1}{K}, T\right)$$
$$= K \cdot x_0 \cdot Put_D\left(\frac{1}{x_0}, \frac{1}{K}, T\right)$$

Comparaison de différentes options

Option américaine vs européenne

$$C_{amer}(K,T) \geq C_{euro}(K,T)$$

$$P_{amer}(K,T) \geq P_{euro}(K,T)$$

Option d'achat américaine Bien qu'on puisse exercer l'option américaine au moment qu'on veut, il peut être optimal d'exercer avant l'échéance seulement si

$$PV(div) > K\left(1 - (1 + r_f)^{-(T-t)}\right)$$

ou si

$$PV(div) > P(K, T-t) + K\left(1 - (1+r_f)^{-(T-t)}\right)$$

Option de vente américaine Le moment optimal pour exercer le Put serait tout juste **après la date ex-dividende**.

Date d'expiration Pour $T_1 < T_2$,

$$C(K, T_1) \leq C(K, T_2)$$

$$P(K,T_1) \leq P(K,T_2)$$

1. i.e.
$$K_t = K(1 + r_f)^T$$
.

Prix d'exercice Les différentes conditions énumérées ci-bas doivent être respectées :

$$\begin{array}{ll} C(K,T) \geq S_0 - K & P(K,T) \geq K - S_0 \\ C(K_1,T) > C(K_2,T) & P(K_1,T) < P(K_2,T) \\ C(K_1,T) - C(K_2,T) \leq K_2 - K_1 & P(K_2,T) - P(K_1,T) \leq K_2 - K_1 \\ \frac{C(K_1,T) - C(K_2,T)}{K_2 - K_1} \geq \frac{C(K_2,T) - C(K_3,T)}{K_3 - K_2} & \frac{P(K_2,T) - P(K_1,T)}{K_2 - K_1} \geq \frac{P(K_3,T) - P(K_2,T)}{K_3 - K_2} \end{array}$$

Si le prix d'exercice est Constant en valeur actualisée 1 , alors, avec t < T

$$C(K_t,t) \leq C(K_T,T)$$

$$P(K_t, t) \leq P(K_T, T)$$

10 Introduction au modèle binomial d'évaluation des options

Probabilité neutre au risque

- $\Rightarrow U = uS$ est la valeur supérieure que peut prendre le sous-jacent S
- D = dS est la valeur inférieure que peut prendre le sous-jacent S
- $\rightarrow p$ est la probabilité (Bernouilli) que le sous-jacent prenne la valeur U.
- C_u , C_d , P_u et P_d sont les payoff d'un call (ou put) selon la valeur du sous-jacent après h périodes.
- > r et δ sont respectivement la force d'intérêt sans risque et le taux de dividende continu.

Alors, la probabilité neutre au risque est

$$p = \frac{e^{(r-\delta)h} - d}{u - d}$$

Portefeuille réplicatif d'une option

On peut reproduire une option (Call ou Put) avec la stratégie suivante :

$$C = \Delta S + B$$

où B et ΔS changent de signe selon si c'est un Call ou un Put. On peut obtenir la prime initiale (Premium) et les composantes du portefeuille réplicatif avec

$$\Delta = e^{-\delta h} \left(\frac{C_u - C_d}{U - D} \right) = e^{-\delta h} \left(\frac{C_u - C_d}{S(u - d)} \right)$$

$$B = e^{-rh} \left(\frac{U \cdot C_d - D \cdot C_u}{U - D} \right) = e^{-rh} \left(\frac{uC_d - dC_u}{u - d} \right)$$

Premium = $\Delta S_0 + B$