

A/B = A Bad Idea?

Improved Insights with

Design & Analysis of Experiments in R

David Moxley

11 March 2020

Intro

David Moxley

Senior Consultant Impact Makers

To Make a Lasting Impact

Founded in 2006

\$20+ million revenue

80 employees

Certified B Corp

Motivation

- Lack of emphasis on experimentation in the Richmond market
- Prevalence in a variety of industries and business units
- Popularity of A/B design
- Ignored subtleties of A/B tests

Agenda

- Why do we experiment & why analyze in R?
- What's an A/B experiment?
- Case Studies
- Alternative Design of Experiments
- Analyzing in R
- Developing a broader "Test and Learn" culture

Why R? Tools

The Marketplace

General-Purpose

Purpose-Built

Statistical Languages

DoE Analysis Tool **Automated General DoE**

Subject-Specific

Technical Demand of User

Why analyze experiments in R?

As a practitioner...

- Continuity with other workflows
- Transparency
- Powerful visualization packages
- Instructional value*

As a business leader...

- Extensible framework
- Transparency
- Learning curve for analytical teams
- Cost

Why do we experiment?

Why do we experiment?

"You break you buy it"

PAVLOV'S GREAT-GREAT GRANDSON'S DOG

CartoonStock.com

Why do we experiment?

- "You break you buy it"
- Break it before you buy it
- Foster a learning culture
- Tease out causality
- Provide direction to the business

PAVLOV'S GREAT-GREAT GRANDSON'S DOG

CartoonStock.com

The Goal

- Minimize the impact on the business*
- Offer a simple design
- Eliminate systematic error
- Understand the range of validity
- Offer a precise estimate
- Convey uncertainty
- Iterate!

Types of Experiments

Types	Example	Strengths	Potential Issues
Laboratory	Survey Research	High internal validityEase of replicability	Lack of RealismPoor Generalizability
Field	 Tele- marketing 	Strong internal validityVery Realistic	Generalizability (?)Potential selection bias
Natural	TV Ad test	Highly RealisticGeneralizability (?)	Causal Inference (?)Data Collection

What's an A/B Experiment?

- Randomized Controlled Trial
 - Split-run testing
- Random assignment to two or more variants, A, B,...n
- Widely used for testing Machine Learning models
- Popular in digital space, UX research, etc.

Naïve A/B Designs Case Studies

Case Study: Price Elasticity Test

- B2B retailer tested price changes for a set of SKUs
 - Cell 1: 5% increase, free shipping
 - Cell 2: 10% increase, free shipping
- Salespeople/Accounts pseudo-randomly assigned to cells
 - Cells were balanced for total sales
- Total Sales for the Cells were measured
- Analysis via Difference in Differences
- Test continually monitored until predetermined alpha of .1 was reached

Case Study: Potential Drawbacks

- No treatment for confounding factors
- Sample bias invalidated Difference in Differences analysis
- Entangle effects through overly simple design
 - No understanding of interactions
- "Peeking" violated an underlying assumption of statistical inference

What is "Peeking"?

The Real Issue

"To consult the statistician[/data scientist/consultant] after an experiment is finished is often merely to ask him to conduct a post-mortem examination. He can perhaps say what the experiment died of."

-R.A. Fisher, 1938

Design of Experiments Overview

Keys to a Good Design

- 1. Replication
- 2. Randomization
- 3. Control

Types of Designs

- Comparative studies
- Single Factor
- Blocking Designs
 - Randomized Complete Block
 - Balanced Incomplete Block
- Factorial
- Fractional Factorial
- Response Surface Designs

Types of Designs

- Comparative studies
- Single Factor
- Blocking Designs
 - Randomized Complete Block
 - Balanced Incomplete Block
- Factorial
- Fractional Factorial
- Response Surface Designs

Redesign Our Case Study

Case Study: Two-Factor Factorial in a Randomized Complete Block

Sales Person	Price % Increase	Shipping Fee
1	5	Yes
1	10	No
1	10	Yes
1	5	No
5	5	Yes
5	10	No
5	10	Yes
5	5	No

$$y_{ijk} = \mu + \tau_i + \alpha_j + (\tau \alpha)_{ij} + \beta_k + \epsilon \begin{cases} i = 1 \text{ to } 2\\ j = 1 \text{ to } 2\\ k = 1 \text{ to } 5 \end{cases}$$

Case Study: Sequential Sampling Procedure

- Frequentist hypothesis testing assumes **fixed sample**
 - Central Limit Theorem
- Business pressure, ethical considerations, user negligence can lead to a desire to monitor, "peek" at test results
- Larger conversation intersects with Theory of Optimal Stopping
 - The "Secretary Problem"

Case Study: Sequential Sampling Procedure

- Wald's Sequential Probability Ratio Test (SPRT)
- Optimizely's Mixture Sequential Probability Test (mSPRT)
- Multi-Armed Bandit
- Bayesian Methods
- Evan Miller's Sequential Procedure with Stopping Metric
 - 1. Choose a target sample size, n, at the outset
 - 2. Assign to treatments with equal probabilities
 - 3. Track incoming successes for each treatment cell, A, B,..i
 - 4. If A B = $2\sqrt{n}$, declare A the winner, B-A = $2\sqrt{n}$, B is the winner
 - 5. If T + C = N, there is no winner, fail to reject null hypothesis

Analysis Procedures Overview

Stats Refresher

- Degrees of Freedom
- T-test
 - One-Sample: $\frac{\bar{X}-u}{\frac{sd}{\sqrt{n}}}$
 - Unpaired: $\frac{\bar{X}_1 \bar{X}_2}{sd_p \sqrt{\frac{1}{n_1} \frac{1}{n_2}}}$
 - Paired: $\frac{\bar{X}_d}{\frac{sd_o}{\sqrt{n}}}$
- Sum of Squares: $\sum (x_i \bar{x})^2$

- F-test
 - $\frac{MSE_{Larger\ Sample}}{MSE_{Smaller\ Sample}}$
- p-value: Type I error
- Power: Type II error

Stats Refresher

ANOVA

$$y_{ijk} = \mu + \tau_i + \alpha_j + \beta_k + \epsilon$$

$$\begin{cases} i = 1 \text{ to } i \\ j = 1 \text{ to } j \\ k = 1 \text{ to } k \end{cases}$$

```
Df Sum Sq Mean Sq F value Pr(>F)

A 1 1116 1116 387.430 < 2e-16 ***

B 1 9214 9214 3197.928 < 2e-16 ***

C 1 751 751 260.575 9.88e-15 ***

D 1 5 5 1.833 0.188

E 1 2 2 0.531 0.473

A:B 1 504 504 174.935 8.68e-13 ***

Residuals 25 72 3
```

General Procedure

Analyzing in R Case Studies

R Script

A/B[ad] Idea? Conclusion

Are A/B Designs a good idea?

Pros	Cons
Simple Design	Entangled Effects
Statistical efficiency with minimal sample	Susceptible to systematic bias
Well suited for digital studies	Potential issues with "peeking"

Parting Advice

- Collaborate with the business
- Keep Design and Analysis simple
- Remember statistical vs business significance
- Experimentation is mean to be iterative

Source: JMP.com

Thank you!

- Connect: <u>dmoxley@impactmakers.com</u>
- Questions: dmoxley@impactmakers.com
- Data/Slides/R Code: <u>github.com/davidrmoxley/DoE</u>
- Continue the Conversation: <u>impactmakers.lpages.co/advanced-analytics/</u>