

Universidade Federal do Rio Grande do Norte

Disciplina - Circuitos Digitais - ELE2715 Professor - Samaherni Morais Dias Aluno(a) - Erika Costa Alve Matrícula - 2016019571

Relatório do Laboratório 01

01 Introdução.

Este relatório tem como objetivo de relatar como foi feito a implementação do primeiro laboratório da disciplina de Circuitos Digitais. Para este laboratório foi utilizado o software ModelSim para a criação do algoritmo, utilizando a linguagem de programação VHDL.

Utilizando, também, o que foi dado em sala de aula, as noções de álgebra booleana para a montagem dos circuitos pedidos, figura 01.

Figura 01

02 Implementação.

Para fazer a implementação de cada circuito pedido, foi primeiro observado quais eram as saídas e as entradas do circuito, e logo após foi identificada quais eram as operações booleanas aplicadas no circuito. Assim, então, foi feito um código em VHDL, baseadas nas entradas e saídas do circuitos, e usando as portas lógicas corretas. Para cada saída de cada porta lógica foi utilizado um 'sinal', que é tipo de VHDL, para fazer a conexão de cada porta lógica com a saída final do circuito. Observar as figuras abaixo, referentes aos códigos de cada circuito.

```
entity cktl is
    Dport( A, B, C, D : in bit; S1, S2 : out bit
2
3
     -);
4
     end cktl;
5
6
7
    architecture ckt of cktl is
8
9
            signal sig : bit vector(3 downto 0);
10
11
    □ begin
12
             sig(0) <= A or B;
13
             sig(1) <= not(B xor C);
14
15
             sig(2) \le A and sig(1);
16
             sig(3) \ll D or sig(1);
17
             S1 <= sig(0) xor sig(2);
18
            S2 <= sig(2) or sig(3);
19
20
21 end ckt;
```

Figura 02 - Circuito 1

```
1 pentity ckt2 is
2 | port( A, B, C, D : in bit;
3 | S1, S2 : out bit
4 );
5 end ckt2;
6
7 Barchitecture cktt2 of ckt2 is
8
9
             signal sig : bit_vector(3 downto 0);
10
11 🛱 begin
12
13
             sig(0) <= A xor B;
14
              sig(1) <= not(B xor C);
15
              sig(2) <= A and sig(1);
              sig(3) <= D xor sig(1);
16
17
18
             S1 \le sig(0) and sig(2);
19
             S2 \le sig(2) or sig(3);
20
21 end cktt2;
```

Figura 03 - Circuito 2

```
口 entity ckt3 is
    port( A, B, C, D
                          : in bit;
             S1, S2
                            : out bit
3
4
     -);
     end ckt3;
5
 6
7
    Farchitecture cktt3 of ckt3 is
8
9
              signal sig : bit_vector(3 downto 0);
10
11
    □ begin
12
              sig(0) <= D or C;
13
14
              sig(1) <= B and C;
15
              sig(2) \le D and sig(1);
              sig(3) <= A or sig(1);
16
17
18
              S1 <= (not(sig(0) xor sig(2)));
19
              S2 <= sig(2) or sig(3);
20
21 end cktt3:
```

Figura 04 - Circuito 03

```
E entity ckt4 is
1
2
    port (
             A, B, C , D
3
              S1, S2
                            : out bit
     -);
4
5
      end ckt4;
 6
    Farchitecture cktt4 of ckt4 is
8
9
              signal sig : bit_vector(3 downto 0);
10
11
    □ begin
12
13
              sig(0) <= D xor C;
14
              sig(1) <= B or C;
15
              sig(2) \le D or sig(1);
              sig(3) <= A xor sig(1);
16
17
              S1 <= not(sig(0) xor sig(2));
18
19
              S2 <= sig(2) or sig(3);
20
21 end cktt4:
```

Figura 05 - Circuito 04

Por fim, foi feito um código para simular o funcionamento dos circuitos, para fazer isso foi forçada as entradas dos circuitos para se obter o valor final. Foi Usado o mesmo código de simulação para todos os circuitos, a única coisa que foi alterada foi o nome no 'vsim'.

```
1 vsim ckt4

2 add wave *

3

4 force A 0 0, 1 40 -repeat 80

5 force B 0 0, 1 20 -repeat 40

6 force C 0 0, 1 10 -repeat 20

7 force D 0 0, 1 5 -repeat 10

8

9 run 160
```

Figura 06 - Simulação

03 Resultados.

Para comprovar os resultados dos circuitos implementados em VHDL, foi feita uma tabela verdade de cada circuito e em seguida foi comparado os resultados da tabela verdade com a simulação do código em VHDL.

Circuido					1	
	X,	Xz	23	264	5,	5 _z
ABCD	A+B	B⊕ C	A-Xz	D+K2	x3 Ex,	Ko+X4
0000	0	3		4	0	7
0001	0	1	0	1	0	1
0 0 1 0	0	0	0	Ø	0	D
0 0 0 1	0	0	0	1	0	1
0 0 0 0		0	0	0	2	0
	3				1	7
0 1 0 1		. 0	0	1	1	7
0 1 1 0	1	- 1	0	1	1	7
0 3 3 3	1	- 3	0		1	_ 3
1 0 0 0	1	9	1	3	0	
1001	1	1	1	1	0	0
1 0 10	1	0	0	0	1	1
1 0 3 3	1	0	0	1	1	-
1 1 00	3	0	0	0	A	
1 0 0 1	1	0		1	1	
1 1 10		1	3	5	0	The state of
1 1 11	-	1	1	1	0	
	-	-				

Figura 07 - Tabela Verdade 1.

ei ABCD	vcuito 2, ABB	γ.		X _b A·X ₁	5, z, · x ₃	5 ₂ × ₃ +× ₄
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 1 1	0 0	1 0 0	00000	0 0 0	0 1 1 0
100011011101111011111011111111111111111	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1	0000	7 0 1 0

Figura 08 - Tabela verdade 2.

Figura 09 - Tabela verdade 3.

9	Li	rcui	to	04				/	
			1	x,	Xz	X,	24	5, x.Gx,	5, X. + X.
D	C	B	A	D⊕ C	C+8	D+Kz	A@X		
0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	1	0	1
0	0	1	0	0	1	1	1	0	1
0	0	1	1	0	1	1	0		
0	1	0	0	1	1	3	1	1	1
0	-		1	1	3	1	0	1	1
0	1		a	1	1	3	1	1	1
0	1	1	1	1	1	1	0	1	1
	0	0	0	1	0	1	0	1	1
4				1	0	3	1	1	1
1	0			1	1	3	1	1	1
1	0		0	1	1	1	0	1	7
1	0			0	1	1	1	0	1
1	1	0	0		1	1	0	0	1
1	1	0	+	0	3	1	1	0	1
1	1	1	0	0	1	1	0	0	3
1	1	1	1	0					
				14,500		100	1800	1 PO 19	137 65

Figura 10 - Tabela verdade 4.