

183 DB Weekly Report

Final Presentation

Team Parsley
Lin Li, Amir Omidfar, Wilson Chang, Angel Jimenez

Underactuated Robotics

- Interest on underactuated Robotics
- Make use of system dynamics, more natural, cost and power efficient
- Inspiration from Rocket Control, controller for steering
- Explore the possibility through a quadcopter

Outline

- Mathematical Model
- Simulation
- Motor Exploration
- Actual Implementation
- Conclusion and Expectation for demo

Body Model

$${}^{O}F_{net,B} = {}^{O}F_{GB} + {}^{O}F_{T} + {}^{O}F_{CB} = m_{B}{}^{O}a_{B}$$
 ${}^{O}\tau_{net,B} = R(q_{B})^{B}\tau_{CB} = {}^{O}I_{B}{}^{O}\alpha_{B}$

Controller Model

$${}^{O}F_{net,C} = {}^{O}F_{BC} + {}^{O}F_{GC} = m_{C} {}^{O}a_{C}$$
 ${}^{O}\tau_{net,C} = R(q_{C}) {}^{C}\tau_{BC} + {}^{O}\tau_{RF} = {}^{O}I_{c} {}^{O}\alpha_{C}$

Merging equations

- We could never know the reaction forc ${}^oF_{BC} = {}^oF_{CB}$ ${}^o au_{BC} = {}^o au_{CB}$
- Angular acceleration $2\left[\ddot{q}_Bq_B^*-(\dot{q}_Bq_B^*)^2\right]$ $2\left[\ddot{q}_Cq_C^*-(\dot{q}_Cq_C^*)^2\right]$

From Newton's 2nd Law of

$$\begin{array}{l}
\stackrel{O}{\text{Modelico}} \stackrel{O}{\text{Till}} {}^{O} \boldsymbol{F}_{BC} + {}^{O} \boldsymbol{F}_{GC} = m_{C} {}^{O} \boldsymbol{a}_{C} \\
\stackrel{O}{\boldsymbol{\tau}_{net,C}} = R(\boldsymbol{q}_{C}) {}^{C} \boldsymbol{\tau}_{BC} + {}^{O} \boldsymbol{\tau}_{RF} = {}^{O} I_{c} {}^{O} \boldsymbol{\alpha}_{C} \\
\stackrel{O}{\boldsymbol{F}_{net,B}} = {}^{O} \boldsymbol{F}_{GB} + {}^{O} \boldsymbol{F}_{T} + {}^{O} \boldsymbol{F}_{CB} = m_{B} {}^{O} \boldsymbol{a}_{B} \\
\stackrel{O}{\boldsymbol{\tau}_{net,B}} = R(\boldsymbol{q}_{B}) {}^{B} \boldsymbol{\tau}_{CB} = {}^{O} I_{B} {}^{O} \boldsymbol{\alpha}_{B}
\end{array}$$

System State

- $p_{sys} = p_B$ and $q_{sys} = q_B$,

Define state of the syst
$$\begin{bmatrix} p_C \\ q_C \end{bmatrix} = \begin{bmatrix} p_B + r_{BC} \\ q_\theta q_B \end{bmatrix} = \begin{bmatrix} p_{sys} + r_{BC} \\ q_\theta q_{sys} \end{bmatrix}$$
 $\begin{bmatrix} \dot{p}_C \\ \dot{q}_C \end{bmatrix} = \begin{bmatrix} \dot{p}_{sys} + \dot{R}(q_{sys})^B r_{BC} \\ q_\theta \dot{q}_{sys} + \dot{q}_\theta q_{sys} \end{bmatrix}$ $\begin{bmatrix} \dot{p}_C \\ \dot{q}_C \end{bmatrix} = \begin{bmatrix} \ddot{p}_{sys} + \ddot{R}(q_{sys})^B r_{BC} \\ q_\theta \ddot{q}_{sys} + \ddot{q}_\theta q_{sys} \end{bmatrix}$ $\begin{bmatrix} \ddot{p}_C \\ \ddot{q}_C \end{bmatrix} = \begin{bmatrix} \ddot{p}_{sys} + \ddot{R}(q_{sys})^B r_{BC} \\ q_\theta \ddot{q}_{sys} + 2[\dot{q}_\theta \dot{q}_{sys}] + \ddot{q}_\theta q_{sys} \end{bmatrix}$

State Varia θ Le:

- Yaw angle difference
- Turn into Quaternion express

$$\begin{aligned} \boldsymbol{q}_{\boldsymbol{\theta}} &= \cos(\frac{\theta}{2}) + \sin(\frac{\theta}{2}) R(\boldsymbol{q}_{\boldsymbol{s}\boldsymbol{y}\boldsymbol{s}})^{B} \hat{\boldsymbol{z}_{\boldsymbol{B}}} \\ \dot{\boldsymbol{q}}_{\boldsymbol{\theta}} &= -\frac{1}{2} \sin(\frac{\theta}{2}) \dot{\boldsymbol{\theta}} + \frac{1}{2} \cos(\frac{\theta}{2}) \dot{\boldsymbol{\theta}} R(\boldsymbol{q}_{\boldsymbol{s}\boldsymbol{y}\boldsymbol{s}})^{B} \hat{\boldsymbol{z}_{\boldsymbol{B}}} + \sin(\frac{\theta}{2}) R(\dot{\boldsymbol{q}_{\boldsymbol{s}\boldsymbol{y}\boldsymbol{s}}})^{B} \hat{\boldsymbol{z}_{\boldsymbol{B}}} \end{aligned}$$

$$\zeta = 2I_B(\dot{q}_{sys}q_{sys}^*)^2 + 2I_C[(q_\theta\dot{q}_{sys} + \dot{q}_\theta q_{sys})(q_\theta q_{sys})^*]^2 - 4I_C(\dot{q}_\theta\dot{q}_{sys})(q_\theta q_{sys})^*$$

 $F_{BC} = m_B \ddot{p}_{sys} - F_{GB} - F_T$

System of equations

$$(m_b + m_c)\ddot{\boldsymbol{p}}_{sys} + m_c\ddot{R}(\boldsymbol{q}_{sys})^B \boldsymbol{r}_{BC} = \boldsymbol{F}_{GC} + \boldsymbol{F}_{GB} + \boldsymbol{F}_{T}$$

$$2I_B[\ddot{\boldsymbol{q}}_{sys}\boldsymbol{q}_{sys}^*] + 2I_C[\boldsymbol{q}_{\theta}\ddot{\boldsymbol{q}}_{sys}(\boldsymbol{q}_{\theta}\boldsymbol{q}_{sys})^*] + 2I_C[\ddot{\boldsymbol{q}}_{\theta}\boldsymbol{q}_{sys}](\boldsymbol{q}_{\theta}\boldsymbol{q}_{sys})^* - \boldsymbol{r}_{CB} \times \boldsymbol{F}_{BC} = \zeta$$

$$q_r\ddot{q}_r + q_i\ddot{q}_i + q_j\ddot{q}_j + q_k\ddot{q}_k + \dot{q}_r^2 + \dot{q}_i^2 + \dot{q}_j^2 + \dot{q}_k^2 = 0$$

- 8 equations, 8 unknc $f(\ddot{\pmb{p}}, \ddot{\pmb{q}}, \ddot{\theta}, \dot{\pmb{p}}, \dot{\pmb{q}}, \dot{\theta}, \pmb{p}, \pmb{q}, \theta) = 0$
- Should be able to

solve for $\ddot{\boldsymbol{p}}, \ddot{\boldsymbol{q}}, \ddot{\boldsymbol{\theta}}$ given $\dot{\boldsymbol{p}}, \dot{\boldsymbol{q}}, \dot{\boldsymbol{\theta}}, \boldsymbol{p}, \boldsymbol{q}, \boldsymbol{\theta}$.

Matlab Implementation

- State evolution equation
- $s_{t+1} = s_t + \dot{s}_t \Delta t$

$$m{s_{sys}} = egin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{\theta} \\ p \\ q \\ \theta \end{bmatrix} \quad ext{so that} \quad \dot{s}_{sys} = egin{bmatrix} \ddot{p} \\ \ddot{q} \\ \dot{p} \\ \dot{q} \\ \dot{\dot{\theta}} \end{bmatrix}$$

Unfortunately, implementation in Matlab yield no solutions....

Math Modelling: Challenges

- Rotation is hard
- No close form solution
- Rely on numerical method
- A lot can go wrong

Starting from measuring and sketching

Making a list of geometric components

Main body -- Box shape: 1 Motor -- Cylinder shape: 1

Mass stick -- Cylinder shape: 1

Mass -- Sphere shape: 1 Leg -- Cylinder shape: 4

Propeller holder -- Cylinder shape:4

Propeller: 4

Simulink: 3D world editor

Axis-angle representation (Quaternion)

$$(\text{axis, angle}) = \left(\begin{bmatrix} e_x \\ e_y \\ e_z \end{bmatrix}, \theta \right) = \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \frac{\pi}{2} \right)$$

Starting with the main body

Adding the motor

Adding the spinning stick

Adding the mass

Adding the legs

Adding the propeller holders

Adding the propellers

Simulation: Updating State Information

Simulink block diagram

Simulation: Updating State Information

The net force calculating system

Simulation: Updating State Information

The net torque calculating system

Simulation: Conclusion

Low spinning rate

Simulation Demo Video:

High load/max load ratio

Optimal parameter setting

Simulation: Challenges

- Getting used to quaternion representation
- Making assumptions
- Adding more and more math details

Conclusion: Model and Simulation

- Hard control problem
- Deriving an exact mathematical model may be even harder
- Spent 5 weeks on this
- Focus started to shift towards the practical implementation

Model Difficulties

- Vijay Kumar
- Math becoming increasingly difficult
- Redesign & coaxial rotor
- Counter-Torque spin of m

$$I = \frac{1}{3}M_{rod}L^{2} + \frac{2}{5}M_{sphere}R^{2} + M_{sphere}(L+R)^{2}$$

 $I = I_{
m rod \ about} + I_{
m sphere \ about} + Parallel \ axis \ contribution$

Motor Comparison: Torque & Speed

Motor	Pros	Cons
Stepper	lower speed, Torque control, encoder	Weight, size, energy
Servo	High speed & torque, energy efficient, weight	Lower speed range
Permanent Magnet DC	Great Starting torque, good speed regulation	Limited Torque
Series DC	Large Starting Torque	No speed regulation
Shunt DC	Great speed regulation	Low Starting Torque
Compound	Good Starting Torque	Poor Speed Regulation

Motor Conclusion

Servo w/ Enc.

Stepper w/ Enc. Stall Prevention Stall Detection Torque Control No tuning when commanding position Heat due to full current draw Lose torque as speed is increased

Increase
current/torque to
correct for errors
in motor speed
Require tuning
when
commanding
position
Flat Torque vs
speed curve

Absolute encoder allows the determination of position.
Can use PID regulator
Can calculate speed from

angular position

Permanent

Magnet DC w/

- CrazyFlie Limitations
- 7mm brushed DC
- Weight: 2.7g
- Kv: 14000 rpm/V
- Medium sized drone
- Stepper or Servo

Motor Control: Physical Representation

Assumptions:

$$T = K_i \psi i$$

- Voltage input
- Rotational speed output
- Rigid components
- Constant E-Field
- Friction Torque is proportional to angular velocity

$$L\frac{di}{dt} + Ri + K_i\dot{\theta} = V$$

$$J\ddot{\theta} + u\dot{\theta} = K_i i$$

Motor Control: Speed


```
Resistor (R) Gain
Voltage Input
                                      Inductance (L) Gain
                                                                         Torque (K) Gain
                    EMF (K) Gain
                                                      Friction (u) Gain
                             theta integrator
```


Motor Control: Speed

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

$$\frac{d}{dt} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} -\frac{u}{I} & \frac{K_i}{J} \\ -\frac{K_i}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ L^{-1} \end{bmatrix} V$$

$$z = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\theta} \\ i \end{bmatrix}$$

Motor Control: Position

- Simulink Simscape
- ssc_dcmotor
- Similar assumptions
- DC Values need to be measured in lab

$$H(s) = \frac{\Theta(s)}{V(s)} = \frac{K_i}{(Js+u)(Ls+R) + K_i^2}$$

$$H(s) = \frac{\Theta(s)}{V(s)} = \frac{K_i}{s((Js+u)(Ls+R) + K_i^2)}$$

Challenges

- Mathematical modeling
- OCSM Dynamics can be tricky
- Modeling various types of motors is time consuming
- Getting Motors we can test
- Cost of the motors we need

1. CF2.0 Software resources /coding:

Getting sensor measurements from CF2.0 IMU

2. Rotating arm design:

Modifications added

Max Payload 15 g

Motor weight 2.7g

Spinning mass <10g

Motor Encoder

3. Choose the DC motor to use:

Max Payload	15 g
Motor weight	2.7g
Spinning mass	<10g

Use the same motor as CF2's motors:

- 1. Mainly due the payload limit
- 2. Current and voltage ratings matched with our battery constraints
 - a. Rated voltage 4.2V
 - b. Rated current 1000mA
 - c. Test results in lab:
 - i. Run at V=0.5v, I=0.4A
 - ii. Stall current~ 3.5A
 - iii.Handle up to 40g

4. Circuit Design:

Needed Components:

- 1. MCU
- 2. Motor Driver
- 3. Voltage Regulator
- 4. DC motor
- 5. Encoder
- 6. Programmer pins
- 7. RF/Bluetooth Module
- a. Same MCU as CF
- b. Voltage regulator is not needed
- RF/Bluetooth module+programming (through micro usb is provided)
- d. More robust connection to user controller

4. Circuit Design:

So decided to use the I/O pins on CF2

MCU:

- 1. IO 1: for PWM pin
- 2. GND
- 3. VCC (3V) 4. A1 for Encoder

5. Motor Driver:

A. Bidirectional motor driver using H-bridge:

B. Unidirectional motor driver:

5. Motor Driver:

Both designed were tested on CF2's MCU, however uni directional design was picked to be soldered on perfboard for implementation on MCU mainly for simplicity:

Additional connections with different JST connector were used to build the circuit on

Actual Implementation Challenges

- Crazyflie interface
 - Hard to code
 - PWM
- Quadcopter Dynamics is hard
- Motor driver
- Planning

Conclusion

- Researchers can look into our work if they have similar ideas as ours, we explored different possibilities on this hard control problem
- Plan better and execute the plans wiser,
 - Ex: started hacking the quadcopter in the first 5 weeks,
 - Instead of waiting for the math model to come out until 5th week
- Underactuated Robotics is very math based, since it makes use of system's dynamics

Expectation of live demo

- Show our work in each domain
- Paper that shows our Math model -- Wilson
- Computer that we can play with the simulation -- Lin
- Motor research and possibly a simulation -- Angel
- Actual implementation of the quadcopter -- Amir

References

https://www.bitcraze.io/2014/08/crazyflie-2-0-expansion-port/

https://store.bitcraze.io/collections/spare-parts/products/7-mm-dc-motor \break

https://www.micromo.com/technical-library/dc-motor-tutorials/motor-calculations

https://en.wikipedia.org/wiki/Armature_Controlled_DC_Motor

http://tutorial.math.lamar.edu/pdf/Laplace_Table.pdf

https://en.wikipedia.org/wiki/State-space_representation

http://ctms.engin.umich.edu/CTMS/index.php?aux=Home

http://www.ecircuitcenter.com/Circuits/dc_motor_model/DCmotor_model.htm