BT ÔN TẬP CHƯƠNG 1

I. PHẦN TRẮC NGHIÊM:

- **CÂU 1.** Tính tổng $S = \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 85^\circ$. **(B)** $S = \frac{19}{2}$. **(C)** S = 8.

- $(\mathbf{D}) S = 9.$
- CÂU 2. Cho góc lượng giác với tia đầu và tia cuối như trong hình. Tên của góc lượng giác

- (A) (Ox, Oy).
- (\mathbf{B}) (Oy, Ox).
- (\mathbf{C}) (Om, Oy).
- $(\mathbf{D})(Om,Ox).$

CÂU 4. Trong các khẳng định sau, khẳng định nào là sai?

 $(\mathbf{A})\sin(\pi-\alpha)=\sin\alpha.$

(B) $\cos(\pi - \alpha) = \cos \alpha$.

 $(\mathbf{C})\sin(\pi+\alpha)=-\sin\alpha.$

 $(\mathbf{D})\cos(\pi+\alpha)=-\cos\alpha.$

CÂU 5. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $\frac{2\pi}{3}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

CÂU 6. Rút gọn biểu thức $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$, ta được

 $(\mathbf{A}) M = \sin 4a.$

(B) $M = 1 - 2\cos^2 a$.

 \mathbf{C} $M = 1 - 2\sin^2 a$.

 $(\mathbf{D}) M = \cos 4a.$

CÂU 7. Tập nghiệm của phương trình $3\cos\left(3x - \frac{\pi}{3}\right) = 0$ là

CÂU 8. Phương trình $\sqrt{3}\sin x + \cos x = 1$ tương đương với phương trình nào sau đây?

 $(A) \cos\left(x + \frac{\pi}{6}\right) = \frac{1}{2}$

 $\mathbf{B}\sin\left(x+\frac{\pi}{3}\right) = \frac{1}{2}.$

 $\mathbf{C}\cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}.$

 $(\mathbf{D})\sin\left(x - \frac{\pi}{6}\right) = \frac{1}{2}.$

CÂU 9. Tìm điều kiện xác định của hàm số $y = \cot x$.

(B) $x \neq k2\pi, k \in \mathbb{Z}$.

 $(\mathbf{C}) x \neq k\pi, k \in \mathbb{Z}.$

ĐIỂM:

"Tiến lên phía trước như cơn lốc."

QUICK NOTE

		_				_
\boldsymbol{a}			N	$\overline{}$	т	
-	U		N	О	11	

	-	-	-	-	•	•	•	•	•		-	-	-	•	•	-	-	-	-	•	•		-	

CÂU 10. Hàm số nào sau đây đồng biến trên khoảng $(0; \pi)$?

$$(\mathbf{A}) y = x^2.$$

$$(\mathbf{B}) y = \cos x.$$

$$(\mathbf{C}) y = \sin x.$$

(**D**) $y = \tan x$.

CÂU 11. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $-\frac{5\pi}{6}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

$$(O'u', Ov') = \frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

$$(O'u', Ov') = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

CÂU 12. Hình bên dưới là đồ thị của hàm số nào dưới đây?

$$(A) y = -3\cos x.$$

B)
$$y = -2 - \cos x$$
. **C**) $y = 2 + |\cos x|$.

$$\mathbf{\widehat{C}} y = 2 + |\cos x|.$$

$$(\mathbf{D}) y = \cos x - 4.$$

CÂU 14. Cho hàm số $y = \sin^2 x - \sin x + 2$. Gọi M, N lần lượt là GTLN và GTNN của hàm số đã cho. Khi đó M+N bằng

(A)
$$k = -\frac{1}{2}$$
.

B
$$\frac{23}{4}$$
.

$$\bigcirc \frac{15}{4}$$
.

CÂU 15. Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

B)
$$y = x^2 + 1$$
.

$$\bigcirc y = \cot x.$$

CÂU 16. Góc 18° có số đo bằng rađian là bao nhiêu?

$$\bigcirc$$
 π .

$$\mathbf{B} \frac{\pi}{360}$$

$$\mathbf{C} \frac{\pi}{10}$$

$$\bigcirc \frac{\pi}{18}$$

CÂU 17. Biểu diễn các góc lượng giác $\alpha=-\frac{5\pi}{6},\ \beta=\frac{\pi}{3},\ \gamma=\frac{25\pi}{3},\ \delta=\frac{17\pi}{6}$ trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

$$(\mathbf{A}) \beta \text{ và } \gamma.$$

$$(\mathbf{B}) \alpha, \beta, \gamma.$$

$$\bigcirc \beta, \gamma, \gamma$$

$$\bigcirc$$
 α và β .

CÂU 18. Cho góc lượng giác (Ou, Ov) có số đo là $\frac{3\pi}{4}$, góc lượng giác (Ou, Ow) có số đo là $\frac{5\pi}{4}.$ Số đo của góc lượng giác (Ov,Ow)là

$$(Ov, Ow) = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(\mathbf{B}) (Ov, Ow) = 2\pi + k2\pi \ (k \in \mathbb{Z}).$$

$$(\mathbf{D}) (Ov, Ow) = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

CĂU 19. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 45° . Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Công thức biểu thị số đo góc lượng giác (O'u', O'v') là

(A)
$$(O'u', Ov') = -45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

$$\bigcirc$$
 $(O'u', Ov') = 135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

$$\bigcirc$$
 $(O'u', Ov') = -135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

CÂU 20. Hàm số $y = 3 - 5 \sin x$ có giá trị lớn nhất bằng

$$(\mathbf{C})$$
 8

$$\bigcirc$$
 4.

CÂU 21. Rút gọn biểu thức $M = \sin(\pi - a) + \tan(\frac{\pi}{2} - a) + \sin(-a) + \cot(\pi + a)$ được

$$(A) M = 2 \cos a.$$

$$\bigcirc$$
 $M = 2 \tan a$

$$\mathbf{B}) M = 2 \tan a. \qquad \mathbf{C} M = 2 \cot a.$$

$$\mathbf{(D)} M = 0.$$

$$(\mathbf{B}) M(\pi; 1).$$

$$\mathbb{C}$$
 $Q(3\pi;1)$.

$$(\mathbf{D}) N(0;1).$$

CÂU 23. Tập xác định của hàm số $y=2017\tan^{2018}\left(2x+\frac{\pi}{3}\right)$ là

CÂU 24. Tìm khẳng định đúng (với điều kiện các hệ thức đã xác định).

$$(\mathbf{A})\cos\left(\pi - \alpha\right) = \cos\alpha.$$

$$\mathbf{B}\cos\left(-\alpha\right) = \cos\alpha.$$

$$\mathbf{C}\sin\left(\pi-\alpha\right)=-\sin\alpha.$$

II. PHẦN TƯ LUÂN:

CÂU 25. Giải các phương trình

a)
$$\sin x = -\frac{1}{2};$$

e)
$$\cos x = \frac{\sqrt{3}}{2};$$

h)
$$\cos 3x = \cos\left(x + \frac{\pi}{3}\right);$$

b)
$$\sin x = \frac{\sqrt{2}}{2}$$
;

f)
$$\cos x = -\frac{\sqrt{2}}{2}$$
;

i)
$$\tan x = \frac{1}{\sqrt{3}};$$

c) $\sin 3x = \sin 2x$;

$$j) \tan x = -1;$$

d) $\sin x = \cos 3x$;

g)
$$\cos x = -\frac{1}{2};$$

$$k) \cot 2x = -\sqrt{3}.$$

CÂU 26. Giải phương trình:

a)
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$$

b)
$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$$
 c) $\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$

c)
$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$$

d)
$$2\cos 3x + 5 = 3$$
;

e)
$$3 \tan x = -\sqrt{3}$$
;

f)
$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$
.

CÂU 27. Giải phương trình:

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x;$$

b)
$$\sin 2x = \cos 3x$$
;

c)
$$\cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right)$$
.

CÂU 28. Giải các phương trình sau

a)
$$2\sin x + \sqrt{2} = 0$$
;

b)
$$\sin 2x - \cos x + 2\sin x = 1;$$

c)
$$3\sin^2 x - 5\sin x + 2 = 0$$
;

d)
$$\sqrt{3} \tan^2 x - 2 \tan x + \sqrt{3} = 0;$$

e)
$$2\cos^2 2x - 5\cos 2x + 2 = 0$$
;

f)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0$$
.

CÂU 29. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 2(\sin x + \cos x) + \sin 2x + 3$.

CÂU 30. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sqrt{3}\sin x - \cos x + 5$.

	•	•	•	•	•	•	•	•	•	•	-	•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ŧ	Ŧ	•	7
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠