

Name: Chirag Shah Assignment-4 Roll No.: FWC22053

Triangle Law of Vector addition

The triangle law of vector addition says that when two vectors are represented as two sides of a triangle with the same order of magnitude and direction, then the magnitude and direction of the resultant vector is represented by the third side of the triangle taken in reverse order..

$$\mathbf{R} = \mathbf{A} + \mathbf{B} \tag{1}$$

Vector addition

Dot product

When two vectors a and b are perpendicular then their dot product is 0:

$$\boldsymbol{a}.\boldsymbol{b} = ||\boldsymbol{a}|| \, ||\boldsymbol{b}|| cos(\theta) \tag{2}$$

And since they are perpendicular then the angle between them is 90.

$$a.b = ||a|| ||b|| cos(90^\circ) = 0$$
 (3)

Problem Statement:

Construct a right triangle whose base is 12cm and sum of its hypotenuse and other side is 18cm.

SOLUTION:

Let A,B and C be the vertices of right triangle with with coordinates (0,0), (12,0) and (0,k) respectively.

OB-Base. AB-Hypotenuse. OA-Side.

Given:

Since its a right triangle OA \perp OB

Since base is 12cm length of OB = 12 i.e,

$$||\boldsymbol{b}|| = 12 \tag{4}$$

Sum of length OA and AB = 18cm i.e.

$$||a|| + ||c|| = 18$$
 (5)

To Find

The magnitude of ai.e||a||

STEP-1

Let k be the unknown point in the vertex A

Then coordinates of vertices O,A and B are:

O(0,0)

B(12,0)

A(0,k)

We know that ||a|| + ||c|| = 18

So, Let x=18

$$||\boldsymbol{a}|| + ||\boldsymbol{c}|| = x \tag{6}$$

We know that,

$$||c^2|| = ||a^2|| + ||b^2||$$
 (7)

Since OA \perp OB i.e $\boldsymbol{a} \perp \boldsymbol{b}$

From Dot product

$$\mathbf{a}.\mathbf{b} = 0 \tag{8}$$

STEP-2

(1.) If we find ||a|| we can get k in A(0,k)

$$O = \begin{pmatrix} 0 \\ 0 \end{pmatrix} B = \begin{pmatrix} 12 \\ 0 \end{pmatrix} A = \begin{pmatrix} 0 \\ k \end{pmatrix} \tag{9}$$

By using equation (7)

$$||c^2|| = ||a^2|| + ||b^2||$$

$$||b^2|| = ||c^2|| - ||a^2||$$
 (10)

We know that $||c^2|| - ||a^2|| = ||c - a|| * ||c + a||$ Since, ||c + a|| = x

$$||b^{2}|| = ||c - a|| * (x)$$
 (11)

$$||\boldsymbol{c} - \boldsymbol{a}|| = \frac{||\boldsymbol{b^2}||}{x} \tag{12}$$

And,

$$||\boldsymbol{c} + \boldsymbol{a}|| = x \tag{13}$$

Using equation (12) and (13),

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} c \\ a \end{pmatrix} = \begin{pmatrix} x \\ \frac{||\mathbf{b}^2||}{x} \end{pmatrix} \tag{14}$$

STEP-2

Using equation (14)

Let,

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \tag{15}$$

$$y = \begin{pmatrix} c \\ a \end{pmatrix} \tag{16}$$

$$Q = \begin{pmatrix} x \\ \frac{||\boldsymbol{b^2}||}{x} \end{pmatrix} \tag{17}$$

We know that,

$$P * y = Q \tag{18}$$

And,

$$P^{-1}P = I \tag{19}$$

multiplying P^{-1} onboth sidesine quation (18)

$$y = P^{-1}Q \tag{20}$$

Using equation (20) we get,

$$||\boldsymbol{c}|| = 13\tag{21}$$

$$||\boldsymbol{a}|| = 5 \tag{22}$$

The Coordinates of A(0,k) is,

$$A(0,5) \tag{23}$$

Result

implementation

Equation no	Role
7	Pythagorean Theorem
14	Matrix form of Linear equation
19	Results Identity matrix
21	Length of \boldsymbol{c}
22	Length of \boldsymbol{a}
23	substituting k=5

Construction

vertex	coordinates
О	(0,0)
A	(0,5)
В	(12,0)

Download the code Github link: Assignment-4.