

Indian Institute of Science Banglore Department of Computational and Data Sciences (CDS)

DS284: Numerical Linear Algebra

Assignment 1 [Posted Aug 20, 2022]

Faculty Instructor: Dr. Phani Motamarri

TAs: Ashish Rout, Dibya Nayak, Gourab Panigrahi, Nikhil Kodali

Submission Deadline: Sept. 4, 2022 23:59 hrs Max Points: 100

Notations: Vectors and matrices are denoted below by bold-faced lower case and upper case alphabets, respectively.

Problem 1 [30 marks]

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, R(.) denotes the range of the matrix, N(.) denotes the null space of a given matrix, dim(.) denotes the dimension of a vector space, then prove the following:

- (a) $dim[R(\mathbf{AB})] \le dim[R(\mathbf{A})]$ [3 marks]
- (b) If the matrix **B** is non-singular then $dim[R(\mathbf{AB})] = dim[R(\mathbf{A})]$ [3 marks]
- (c) $dim[N(\mathbf{AB})] \le dim[N(\mathbf{A})] + dim[N(\mathbf{B})]$ [4 marks]
- (d) $dim[R(\mathbf{A})] + dim[N(\mathbf{A})] = n$ [4 marks]
- (e) $rank(\mathbf{A}) + rank(\mathbf{B}) n \le rank(\mathbf{AB}) \le min(rank(\mathbf{A}), rank(\mathbf{B}))$ [5 marks] Hint: Use the result in (a)
- (f) Given a vector $\mathbf{u} \in \mathbb{R}^n$, $rank(\mathbf{u}\mathbf{u}^T)$ is 1. [5 marks] *Hint: Use the result in* (a)
- (g) Row rank always equals column rank. [6 marks]

Problem 2 [10 marks]

Suppose there always exists a set of real coefficients $c_1, c_2, c_3, ... c_{10}$ for any set of real numbers $d_1, d_2, d_3, ... d_{10}$

$$\sum_{i=1}^{10} c_j f_j(i) = d_i \qquad \text{for } i \in \{1, 2, ... 10\}$$

where $f_1, f_2, f_3, ... f_{10}$ are a set of functions defined on the interval [1,10]

- (a) Use the concepts discussed in class to show that $d_1, d_2, d_3, ... d_{10}$ determine $c_1, c_2, c_3, ... c_{10}$ uniquely. [6 marks]
- (a) Let **A** be a 10×10 matrix representing the linear mapping from data $d_1, d_2, d_3, ... d_{10}$ to coefficients $c_1, c_2, c_3, ... c_{10}$. What is the i, j th entry of \mathbf{A}^{-1} ? [4 marks]

Problem 3 [15 marks]

A matrix **S** is said to be symmetric if $\mathbf{S}^T = \mathbf{S}$ and skew-symmetric if $\mathbf{S}^T = -\mathbf{S}$. Now verify the following:

- (a) The matrix $\mathbf{Q} = (\mathbf{I} \mathbf{S})^{-1}(\mathbf{I} + \mathbf{S})$ is an orthogonal matrix for any skew-symmetric matrix \mathbf{S} .
- (b) Note that a symmetric matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ can be decomposed as $\mathbf{Q} \mathbf{D} \mathbf{Q}^T$ where \mathbf{Q} is an orthogonal matrix and \mathbf{D} is a diagonal matrix. Using this result, show that $\mathbf{u}^T \mathbf{A} \mathbf{u} = 0 \ \forall \ \mathbf{u} \in \mathbb{R}^m$, if and only if $\mathbf{A} = 0$. [5 marks]
- (c) Show that " $\mathbf{u}^T \mathbf{S} \mathbf{u} = 0 \ \forall \ \mathbf{u} \in \mathbb{R}^m$, if and only if **S** is a skew-symmetric matrix." [7 marks]

Problem 4 [35 marks]

If $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$, then show the following.

(a)
$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2$$
 [5 marks]

(b)
$$\|\mathbf{x}\|_2 \le \sqrt{m} \|\mathbf{x}\|_{\infty}$$
 [5 marks]

(c)
$$\|\mathbf{A}\|_{\infty} \leq \sqrt{n} \|\mathbf{A}\|_{2}$$
 [5 marks]

(d)
$$\|\mathbf{A}\|_2 \le \sqrt{m} \|\mathbf{A}\|_{\infty}$$
 [5 marks]

(e)
$$\|\mathbf{A}\|_F = \sqrt{tr(\mathbf{A}^T \mathbf{A})}$$
 [5 marks]

(f)
$$\frac{1}{\sqrt{m}} \|\mathbf{A}\|_1 \le \|\mathbf{A}\|_2 \le \sqrt{n} \|\mathbf{A}\|_1$$
 [5 marks]

(g)
$$\|\mathbf{A}\|_{2} \le \sqrt{\|\mathbf{A}\|_{1} \|\mathbf{A}\|_{\infty}}$$
 [5 marks]

Give an example of a non-zero vector or matrix for which equality is achieved in the above inequalities.

Problem 5 [10 marks]

Induced matrix norm is defined as $\|\mathbf{A}\|^{(m,n)} = \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|^{(m)}$, where $\mathbf{x} \in \mathbb{R}^n$ and is a unit vector. $\|.\|$ corresponds to p-norm $(1 \le p < \infty)$. For this exercise, let us consider p to be a natural number.

Using MATLAB/Octave/Python programming environment, create a matrix using " $\mathbf{A} = randn(100,2)$ ". Subsequently, create random unit vectors \mathbf{x} using "temp = randn(2,1)" and normalize \mathbf{x} using " $\mathbf{x} = temp/norm(temp)$ ". Check for multiple random vectors \mathbf{x} (use a loop, and check for about 1000 random vectors \mathbf{x}) using " $norm_of_Ax = norm(\mathbf{A}\mathbf{x},p)$ " for $p=1,2,3,4,5,6,\infty$. What is the maximum value of p-norm for the vector $\mathbf{A}\mathbf{x}$? Now calculate p-norm of \mathbf{A} using " $norm_of_A = norm(\mathbf{A},p)$ " for $p=1,2,\infty$ within the same programming environment you used before. Verify the equality $\|\mathbf{A}\|^{(m,n)} = \max_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|^{(m)}$ for $p=1,2,\infty$. Note that this equality is true for other values of p as well but you are restricting to $p=1,2,\infty$ in this exercise.