IIC2223 - Teoría de Autómatas y Lenguajes Formales - 2' 2024
 IIC2224 - Autómatas y Compiladores

Tarea 5

Pregunta 1

Para cada uno de los siguientes lenguajes, determine si es libre de contexto o no. Demuestre su respuesta.

1.
$$L_1 = \{a^i b^j \mid 0 < i < j < 2i\}$$

2.
$$L_2 = \{a^i b^j c^k \mid 0 < i \cdot j = k\}$$

Solución

Problema 1.a El lenguaje **es libre de contexto**. Para esto, se debe dar una gramática libre de contexto. Un ejemplo es la siguiente gramática G:

$$S \rightarrow a \ X \ bb$$

 $X \rightarrow a \ X \ bb \mid Y$
 $Y \rightarrow a \ Y \ b \mid ab$

De la definición de G uno puede ver que las derivaciones de G serán de la forma:

$$S \Rightarrow aXbb \overset{*}{\Rightarrow} a^kYb^{2k} \overset{*}{\Rightarrow} a^ka^{l-1}Yb^{l-1}b^{2k} \Rightarrow a^{k+l}b^{2k+l}.$$

Con k > 0 y l > 0. Es fácil ver que:

$$0< k+l< 2k+l< 2k+2l$$

Si definimos i = k + l y j = 2k + l tenemos que 0 < i < j < 2i. Por lo tanto, $\mathcal{L}(G) \subseteq L_1$. Para demostrar el otro sentido, consideremos una palabra cualquiera $a^i b^j \in L_1$ tal que 0 < i < j < 2i. Defina k = j - i y l = 2i - j. Entonces:

$$k+l=i$$

$$2k+l=2j-2i+2i-j=j$$

Por lo tanto, $a^i b^j = a^{k+l} b^{2k+l} \in \mathcal{L}(G)$.

Distribución de puntaje

- $\bullet\,$ 1 punto por decir que el lenguaje es libre de contexto
- 1 punto por plantear la gramática
- 1 punto por demostrar un sentido
- 1 punto por demostrar el otro sentido

Problema 1.b El lenguaje **no es libre de contexto**. Para demostrar esto, usamos el lema del bombeo de lenguajes libres de contexto. Sea N > 0. Definimos:

$$z = a^{N^2} b^N c^{N^3}.$$

Considere una partición cualquiera uvwxy = z tal que: $vx \neq \varepsilon$ y $|vwx| \leq N$. Como $|vwx| \leq N$, se tiene que (1) $vwx \in \mathcal{L}(a^*b^*)$ o (2) $vwx \in \mathcal{L}(b^*c^*)$. A continuación analizaremos ambos casos:

Caso (1): Sin pérdida de generalidad, suponemos que $v \in \mathcal{L}(a^*)$ y $x \in \mathcal{L}(b^*)$ (de no ser así, al bombear la palabra estará claramente fuera del lenguaje). Entonces, se tiene:

$$\underbrace{a^k}_u\underbrace{a^l}_v\underbrace{a^mb^{m'}}_w\underbrace{b^n}_x\underbrace{b^oc^p}_z$$

Para algún $k, l, m, m', n, o, p \in \mathbb{N}$ tal que $k + l + m = N^2$, m' + n + o = N, $p = N^3$ y l > 0 o n > 0. Si escogemos i = 2, tenemos:

$$u v^2 w x^2 z = a^{k+2l+m} b^{m'+2n+o} c^p$$

Así, se tiene:

$$(k+2l+m) \cdot (m'+2n+o) = (k+l+m+l) \cdot (m'+n+o+n)$$

= $(N^2+l) \cdot (N+n)$
= $N^3 + N \cdot l + N^2 \cdot n + l$.

Como $l \neq 0$ o $n \neq 0$, entonces $N^3 + N \cdot l + N^2 \cdot n + l \cdot n > N^3$. Por lo tanto, $uv^2wx^2z \notin L_2$.

Caso (2): De nuevo, sin pérdida de generalidad, suponemos que $v \in \mathcal{L}(b^*)$ y $x \in \mathcal{L}(c^*)$. Entonces, se tiene:

$$\underbrace{a^k b^l}_u \underbrace{b^m}_v \underbrace{b^n c^{n'}}_w \underbrace{c^o}_x \underbrace{c^p}_y$$

Para algún $k, l, m, m', n, o, p \in \mathbb{N}$ tal que $k = N^2$, l + m + n = N, $n' + o + p = N^3$ y m > 0 o o > 0. Notar que $|vwx| = m + n + n' + o \le N$. Por lo tanto, $o \le N$. Si escogemos i = 2, tenemos que $uv^2wx^2y = a^kb^{l+2m+n}c^{n'+2o+p}$. Si multiplicamos el número de letras a por el número de letras b, tenemos que:

$$k \cdot (l+m+n+m) = N^2 \cdot (N+m) = N^3 + N^2 \cdot m$$

Ahora, el número de letras c es $n'+o+p+o=N^3+o$, por lo que necesitamos demostrar que $N^2 \cdot m \neq o$. Para esto nos ponemos en dos casos: si $m \neq 0$ y si m = 0. Si $m \neq 0$, entonces $N^2 \cdot m > N \geq o$ y se cumple que $N^2 \cdot m \neq o$. En otro caso, si m = 0, se tiene o > 0 (por condición del lema de bombeo) y entonces $N^2 \cdot m = 0 < o$, esto es, $N^2 \cdot m \neq o$. En ambos casos, se tiene que:

$$k \cdot (l+2m+n) \neq n'+2o+p$$

Por lo tanto, se tiene que $uv^2wx^2y \notin L_2$.

Nota: Es importante destacar que si se elige $a^N b^N c^{N^2}$, el bombeo no funciona cuando $vwx \in \mathcal{L}(b^*c^*)$.

Distribución de puntaje

- 1 punto por decir que el lenguaje no es libre de contexto
- 1 punto por definir z de manera correcta
- $\bullet\,$ 1 punto por analizar el primer caso
- $\bullet\,$ 1 punto por analizar el segundo caso

Pregunta 2

Sea G una gramática en forma normal de Chomsky (CNF). Para un árbol de derivación T de G, se define depth(T) como el camino más largo de la raíz hasta una hoja. Inductivamente, si X(a) es un árbol con una variable X, entonces depth(X(a)) = 1 y si $X(t_1, t_2)$ es un árbol con X la variable en la raíz y t_1, t_2 sus subárboles, entonces depth $(X(t_1, t_2)) = \max \{ \text{depth}(t_1), \text{depth}(t_2) \} + 1$.

Problema:HIGHEST-DERIVATIONInput:Una gramática $G = (V, \Sigma, P, S)$ en CNF y $w = a_1 \dots a_n \in \Sigma^*$ Output: $\max\{\text{depth}(T) \mid T \text{ es un árbol de derivación de } G \text{ sobre } w\}$

Esto es, el problema HIGHEST-DERIVATION consiste en, dada una gramática G en forma normal de Chomsky y una palabra $w = a_1 \dots a_n$, calcular la mayor altura entre los árboles de derivación de G sobre w. En caso de que no existan árboles de derivación de G sobre w (es decir, $w \notin \mathcal{L}(G)$), el resultado debe ser 0.

Escriba un algoritmo que resuelva HIGHEST-DERIVATION en tiempo $\mathcal{O}(|G| \cdot |w|^3)$, donde |G| es el número de variables y producciones en G. Demuestre la correctitud de su algoritmo.

Solución

Sea $G = (V, \Sigma, P, S)$ una CFG en CNF y $w = a_1 \dots a_n$. El algoritmo es una extensión del algoritmo CKY donde los conjuntos C_{ij} ahora son una función **parcial**:

$$C_{ij}: V \to \mathbb{N}$$

tal que, si $X \in \text{dom}(C_{ij})$, entonces $C_{ij}(X) = h$ significa que hay un árbol de derivación de con raíz X y altura máxima h. Por otro lado, si $X \notin \text{dom}(C_{ij})$, entonces no hay ningún árbol de derivación con raíz X.

Notemos que cada conjunto C_{ij} se puede implementar como una tabla de hash que las llaves son V y cada acceso toma tiempo constante.

Ahora, al igual que en el algoritmo CKY, completamos las entradas $C_{i,i+k}$ iterando desde k = 0,...,n y i = 1,...,n-k. Lo hacemos de la siguiente manera:

- Caso base: Para k = 0, se define $C_{ij}(X) = 1$ si, y sólo si, existe $X \to a_i \in P$.
- Caso inductivo: Para k cualquiera, suponga que $C_{j,j+l}$ ya esta computado con j < i y l < k. Entonces para cada X, se calcula:

$$C_{i,i+k}(X) = \max_{X \to YZ \in P} \max_{i \le j < i+k} \left(\max\{C_{i,j}(Y), C_{j+1,i+k}(Z)\} + 1 \right)$$

donde si $C_{i,j}(Y)$ o $C_{j+1,i+k}(Z)$ no está definido, entonces no se calcula el último máximo (esto es, podemos suponer que su valor es $-\infty$). También si para ningún $X \to YZ \in P$ y ningún j < k está definido, entonces $C_{i,i+k}(X)$ no está definido.

La idea es la misma que CKY pero ahora, aparte de guardar la variable X en $C_{i,i+k}$, también guardamos la altura máxima como el máximo entre el hijo izquierdo e hijo derecho más 1.

- **Tiempo**: El tiempo es $\mathcal{O}(|w|^3|G|)$, dado que en el caso inductivo para por cada variable se tiene lo siguiente:
 - -k=0,...,|w|
 - -i=1,...,|w|-k
 - $-\operatorname{cada} X \to YZ \in P \text{ (a lo más } |P|)$
 - cada $i \le j < i + k$

Calculamos el máximo y obtenemos que el total es $\mathcal{O}(|w|^3|G|)$.

- Correctitud: Lo demostraremos con inducción sobre k e i, donde la hipótesis dice: " $C_{i,i+k}(X) = h$ si, y solo si, existe un árbol de derivación sobre $a_i...a_{i+k}$ con raíz X y el de altura máxima entre ellos es h."
 - Caso Base:

Es cierto para k = 0 e i = 1, ..., n, ya que el único árbol sobre a_i con raíz X tiene altura 1 si, y sólo si existe una producción $X \to a_i$.

- Caso Inductivo:

Suponemos que es cierto para k' < k y demostramos para k. Sea T el árbol más alto con raíz X sobre $a_i...a_{i+k}$. Suponga que $T = X(t_1, t_2)$ y $raiz(t_1) = Y$ y $raiz(t_1) = Z$, y t_1 es sobre $a_i...a_j$ y t_2 es sobre $a_{j+1}...a_{i+k}$. Entonces, $X \to YZ \in P$ y se cumple que t_1 es el árbol más alto para Y o t_2 es el árbol más alto para Z (si no, T no sería el más alto). Por lo tanto, por la definición de $C_{i,i+k}$ y la definición de altura, la hipótesis en k se cumple.

Distribución de puntaje

- 1 punto por definir la función parcial C_{ij} .
- 1 punto por el caso base de la definición de C_{ij} .
- 1 punto por el caso inductivo de la definición de C_{ij} .
- 1 punto por demostrar correctitud y tiempo

Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de 0, 1, 2, 3 o 4 puntos. Todas las preguntas tienen la misma ponderación en la nota final y cada item tiene la misma ponderación en cada pregunta.