

Completely Randomized Designs (CRD)
One-Way ANOVA

Example: Meat Storage Study (Kuehl, 2000, Example 2.1)

- A researcher wants to investigate the effect of packaging on bacterial growth of stored meat.
- Some studies suggested controlled gas atmospheres as alternatives to existing packaging.
- Different treatments (= packaging types)

```
    Commercial plastic wrap (ambient air)
    Vacuum package
    1% CO, 40% O<sub>2</sub>, 59% N
    New techniques
```

- Experimental units: 12 beef steaks (about 75g each).
- Measure effectiveness of packaging by measuring how successful they are in suppressing bacterial growth.

Example: Meat Storage Study

- Three beef steaks were randomly assigned to each of the packaging conditions.
- Each steak was packaged separately in its assigned condition.
- Response: (logarithm of the) number of bacteria per square centimeter.
- The number of bacteria was measured after nine days of storage at 4 degrees
 Celsius in a standard meat storage facility.

First Step (Always): Exploratory Data Analysis

- If very few observations: Plot all data points.
- With more observations: Use boxplots (side-by-side).
- Alternatively: Violin-plots, histogram side-by-side, ...
- See examples in R: 02_meat_storage.R

Such plots typically give you the same (or even more) information as a formal analysis (see later).

Side Remark: Factors

- Categorical variables are also called factors.
- The different values of a factor are called levels.
- Factors can be nominal or ordinal (= ordered).

```
Hair color: {black, blond, ...} nominalGender: {male, female} nominal
```

- Treatment: {commercial, vacuum, mixed, CO₂} nominal
- Income: {<50k, 50-100k, >100k}
- Useful functions in R:
 - factor
 - as.factor
 - levels

Completely Randomized Design: Formal Setup

- Compare g treatments.
- Available resources: N experimental units
- Need to **assign** the N experimental units to g different **treatments** (**groups**) having n_i observations each, i=1,...,g (of course: $n_1+n_2+...+n_g=N$).
- Use randomization:
 - Choose n₁ units at random to get treatment 1,
 - n_2 units **at random** to get treatment 2,
 - · ...
- The optimal choice of $n_1, ..., n_g$ depends on the primary research question (if $n_1 = n_2 = \cdots = n_g$ the design is called **balanced**).
- This randomization produces a so called completely randomized design (CRD).

Setting up the Model

- Remember the research question: "Is there an effect of packaging on bacterial growth of stored meat?"
- Need to set up a model in order to do statistical inference.
- Good message: The problem looks rather easy.
- Bad message: Some complications ahead regarding parametrization.

Remember: Two Sample t-Test for Unpaired Data

Model

- X_i i. i. d. $\sim N(\mu_X, \sigma^2), i = 1, ..., n$
- Y_j i. i. d. $\sim N(\mu_Y, \sigma^2), j = 1, ..., m$
- X_i , Y_j independent

t-Test

- $H_0: \mu_X = \mu_Y$
- H_A : $\mu_X \neq \mu_Y$ (or one-sided)

$$T = \frac{(\bar{X}_n - \bar{Y}_m)}{S_{pool}\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2} \text{ under } H_0$$

- the true (unknown) difference $\mu_X \mu_V$.
- Note: Both groups have their "individual" expected value but they share a common variance (can be extended to more general situations).

From Two to More Groups

- In the meat storage example we had 4 groups.
- Hence, the t-test is **not** directly applicable anymore.
- Could try to construct something using only pairs of groups (e.g., doing all pairwise comparisons).
- Will do so later. Now we want to **extend** the model that we used for the two sample t-test to the more general situation of g > 2 groups.
- As we might run out of letters, we use a **common letter** (say *Y*) for all groups and put the grouping and replication information in the **index**.

Cell Means Model

- We need two indices to distinguish between the different treatments (groups) and the different observations.
- Let Y_{ij} be the jth observation in the ith treatment group, $i = 1, ..., g; j = 1, ..., n_i$.
- Cell means model: Every group (treatment) has its own expected value, i.e.

- Also called separate means model.
- Note: Variance is constant across groups (as for standard two-sample t-test!)

Illustration of Cell Means Model

- See R-Code: 02 model illustration.R
- Or visit https://gallery.shinyapps.io/anova shiny rstudio/
- Why cell means? Have a look at the meat storage data:

Commercial	Vacuum	Mixed	CO ₂	
7.66 6.98 7.80	5.26 5.44 5.80	7.41 7.33 7.04	3.51 2.91 3.66	
cell				

Cell Means Model: Alternative Representation

- We can "extract" the deterministic part in $Y_{ij} \sim N(\mu_i, \sigma^2)$.
- Leads to

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

with ϵ_{ij} i. i. d. $\sim N(0, \sigma^2)$.

- The ϵ_{ii} 's are random "errors" that fluctuate around zero.
- In the regression context:
 - *Y* is the **response**.
 - Treatment is a categorical predictor (a factor).
 - Hence, this is nothing else than a regression model with a categorical predictor!

Yet Another Representation (!)

- We can also write $\mu_i = \mu + \alpha_i$, i = 1, ..., g.
- E.g., think of μ as a "global mean" and α_i as the corresponding deviation from the global mean.
- α_i is also called the *i*th **treatment effect**.
- This looks like a needless complication now, but will be very useful later (with so called factorial treatment structure).
- Unfortunately this model is not identifiable anymore.
- Reason: g+1 parameters $(\mu,\alpha_1,...,\alpha_g)$ for g different means $(\mu_1,...,\mu_g)$.

Ensuring Identifiability

- Need side constraint: Many options available.
- Sum of the treatment effects is zero, i.e.

$$\alpha_g = -(\alpha_1 + \dots + \alpha_{g-1}).$$
(R: contr.sum)

• Only g-1 elements of the treatment effects are allowed to vary freely. We also say that the treatment effect has g-1 degrees of freedom (df).

Encoding Scheme of Factors

- The encoding scheme (i.e., the side constraint being used) of a factor is called contrast in R.
- To summarize: We have a total of g parameters $\mu, \alpha_1, ..., \alpha_{g-1}$ to parametrize the g group means $\mu_1, ..., \mu_g$.
- The interpretation of the parameters μ , α_1 , ..., α_{g-1} strongly depends on the parametrization that is being used.
- We will re-discover the word "contrast" in a different way later...

Parameter Estimation

- Choose **parameter estimates** $\hat{\mu}$, $\hat{\alpha}_1$, ..., $\hat{\alpha}_{g-1}$ such that the model fits the data "well".
- Criterion: Choose parameter estimates such that

observed value fitted value
$$\sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \hat{\mu} - \hat{\alpha}_i)^2$$

is minimal (so called least squares criterion, exactly as in regression).

 The predicted values per treatment group (or: estimated cell means) are simply

$$\hat{\mu}_i = \hat{\mu} + \hat{\alpha}_i$$

Illustration of Goodness of Fit

See blackboard (incl. definition of residual).

Some Notation

Symbol	Meaning	Formula
y_i .	Sum of all values in group i	$y_{i\cdot} = \sum_{j=1}^{n_i} y_{ij}$
$ar{y}_i$.	Mean of group i	$\bar{y}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij} = \frac{1}{n_i} y_i.$
<i>y</i>	Sum of all observations	$y_{} = \sum_{i=1}^{g} \sum_{j=1}^{n_i} y_{ij}$
<i>y</i>	Overall (or grand) mean	$\bar{y}_{\cdot \cdot} = \frac{y_{\cdot \cdot}}{N}$

Rule: If we replace an index with a **dot** ("·") it means that we are **summing up** the values over that index.

Parameter Estimates, the Other Way Round

- "Obviously", the $\hat{\mu}_i$'s that minimize the least squares criterion are $\hat{\mu}_i = \bar{y}_i$.
- Means: Expectation of group i is estimated by sample mean of group i.
- The $\alpha_i's$ are then simply estimated by applying the corresponding parametrization, i.e.

$$\hat{\alpha}_i = \hat{\mu}_i - \hat{\mu} = \bar{y}_i - \bar{y}_{..}$$

for the sum of weighted treatment effects constraint.

The **fitted** values $\hat{\mu}_i$ (and the **residuals**) are **independent** of the parametrization, but the $\hat{\alpha}_i$'s **(heavily) depend** on it!

Parameter Estimation

• We denote the **residual** (or **error**) **sum of squares** by SS_E , that is

$$SS_E = \sum_{i=1}^g \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$
 empirical variance in group *i*

• Estimator for σ^2 is MS_E , mean squared error, i.e.

$$\hat{\sigma}^2 = MS_E = \frac{1}{N-g}SS_E = \frac{1}{N-g}\sum_{i=1}^g (n_i - 1)s_i^2$$

- This is an **unbiased estimator** for σ^2 (reason for N-g instead of N in the denominator).
- We also say that the error estimate has N-g degrees of freedom (N observations, g parameters) or

$$N - g = \sum_{i=1}^{g} (n_i - 1).$$

Estimation Accuracy

 Standard errors for the parameters (using the sum of weighted treatment effects constraint).

Parameter	Estimator	Standard Error
μ	$\bar{\mathcal{y}}_{\cdot \cdot}$	σ/\sqrt{N}
μ_i	$ar{y}_i$.	$\sigma/\sqrt{n_i}$
$lpha_i$	$\bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot}$	$\sigma \sqrt{\frac{1}{n_i} - \frac{1}{N}}$
$\mu_i - \mu_j = \alpha_i - \alpha_j$	$\bar{y}_{i\cdot} - \bar{y}_{j\cdot}$	$\sigma \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$

• Therefore, a 95% confidence interval for α_i is given by

Single Mean Model

- Extending the null hypothesis of the t-test to the situation where g > 2, we can (for example) use the (very strong) null hypothesis that there is **no** treatment effect at all on the response.
- In such a setting, all values (also across different treatments) fluctuate around the same "global" mean μ.
- Model reduces to: Y_{ij} i. i. d. $\sim N(\mu, \sigma^2)$
- Or equivalently: $Y_{ij} = \mu + \epsilon_{ij}$, ϵ_{ij} i. i. d. $\sim N(0, \sigma^2)$.
- This is the so called single mean model.

Comparison of Models

- Note: Models are "nested", the single mean model is a special case of the cell means model.
- Or: The cell means model is more flexible than the single mean model.
- Which one to choose? Let a statistical test decide.

Analysis of Variance (ANOVA)

- Classical approach: Decompose "variability" of response into different "sources" and compare them.
- More modern view: Compare (nested) models (model selection problem).
- In both approaches: Use statistical test with global null hypothesis

$$H_0: \mu_1 = \mu_2 = \dots = \mu_g$$

versus the alternative

$$H_A$$
: $\mu_k \neq \mu_l$ for at least one pair $k \neq l$

- H_0 says that the single mean model is sufficient to model the data.
- H_0 is equivalent to $\alpha_1 = \alpha_2 = ... = \alpha_g = 0$.

Decomposition of Total Variability

See blackboard.

Illustration of Different Sources of Variability

ANOVA Table

 Typically, different sources of variation are presented in a so called ANOVA table:

Source	df	Sum of squares (SS)	Mean Squares (MS)	F-ratio
Treatments	g-1	SS_{Trt}	$MS_{Trt} = \frac{SS_{Trt}}{g-1}$	$\frac{MS_{Trt}}{MS_E}$
Error	N-g	SS_E	$MS_E = \frac{SS_E}{N - g}$	

- Use F-ratio (last column) to construct a statistical test.
- Idea: Variation between groups should be substantially larger than variation within groups in order to reject H_0 .
- This is a so called one-way ANOVA.

because only **one** factor involved

More Details about the F-Ratio

- It can be shown that $E[MS_{Trt}] = \sigma^2 + \sum_{i=1}^g n_i \alpha_i^2/(g-1)$.
- Hence under H_0 : MS_{Trt} is also an estimator for σ^2 (contains **no** "**signal**" **just** "**error**").
- Therefore, under H_0 : $F = \frac{MS_{Trt}}{MS_E} \approx 1$.
- If we observe a value of F that is "much larger" than 1, we will reject H_0 .
- What does "much larger" mean here?
- We need to be more precise: We need the **distribution** of F under H_0 .

F-Distribution

- Under H_0 it holds that F follows a so called F-distribution with g-1 and N-g degrees of freedom: $F_{g-1,N-g}$.
- The F-distribution has two degrees of freedom parameters: One from the numerator and one from the denominator mean square (treatment and error).
- Technically: $F_{n,m} = \frac{\frac{1}{n}(X_1^2 + \dots + X_n^2)}{\frac{1}{m}(Y_1^2 + \dots + Y_m^2)}$ where X_i, Y_j are i.i.d. N(0,1).
- Illustration and behavior of quantiles: See R-Code.
- We reject H_0 if the corresponding **p-value** is small enough or if F is larger than the corresponding quantile (the F-test is always a **one-sided** test).

More on the *F*-Test

- It holds that $F_{1,n} = t_n^2$ (= the square of a t_n -distribution).
- It can be shown that the F-test for the g=2 case is nothing else than the squared t-test.
- The F-test is also called an omnibus test (Latin for "for all") as it compares all group means simultaneously.

Analysis of Meat Storage Data in R

- Use function aov to perform "analysis of variance".
- When calling summary on the fitted object, an ANOVA table is printed out.

Analysis of Meat Storage Data in R

Coefficients can be extracted using the function coef or dummy.coef.

$$\mu_{\text{CO}_2} = 5.9 - 2.54 = 3.36$$
 $\mu_{\text{Commercial}} = 5.9 + 1.58 = 7.48$
 $\mu_{\text{Mixed}} = 5.9 + 1.36 = 7.26$
 $\mu_{\text{Vacuum}} = 5.9 - 0.40 = 5.50$

Compare with fitted values (see R-Code).

ANOVA as Model Comparison

• Because $SS_T = SS_{Trt} + SS_E$, we can rewrite the numerator of the *F*-ratio as

- Or in other words, SS_{Trt} is the **reduction in residual sum of squares** when going from the single mean to the cell means model.
- If we reject the F-test, we conclude that we really need the more complex cell means model, hence the group means are different.

Checking Model Assumptions

- Statistical inference (e.g., F-test) is only valid if the model assumptions are fulfilled.
- Need to check:
 - Are the errors normally distributed?
 - Are the errors independent?
 - Is the error variance constant?
- We don't observe the errors but we have the residuals as proxy.
- Will use graphical assessments to check assumptions.
 - QQ-Plot
 - Tukey-Anscombe plot (TA plot)
 - Index plot
 - ...

QQ-Plot (is normal distribution good approximation?)

- Plot empirical quantiles of residuals vs. theoretical quantiles (of standard normal distribution).
- Points should lie more or less on a straight line if residuals are normally distributed.
- R: plot(fit, which = 2)
- If unsure, compare with (multiple) simulated versions from normal distribution with the same sample size

```
qqnorm(rnorm(nrow(data)))
```

Outliers can show up as isolated points in the "corners".

QQ-Plot (Meat Storage Data)

Tukey-Anscombe Plot (TA-Plot)

- Plot residuals vs. fitted values.
- Checks homogeneity of variance and systematic bias (here not relevant yet, why?)
- R: plot(fit, which = 1)
- "Stripes" are due to the data structure (g different groups).

Tukey-Anscombe Plot (Meat Storage Data)

Constant Variance?

Index Plot

- Plot residuals against time index to check for potential serial correlation (i.e., dependence with respect to time).
- Check if residuals close in time are too similar / dissimilar?
- Similarly for potential spatial dependence.

Fixing Problems

- **Transformation of response** (square root, logarithm, ...) to improve QQ-Plot and constant variance assumption.
- Carefully inspect potential outliers. These are very interesting and informative data points.
- Deviation from normality less problematic for large sample sizes (reason: central limit theorem).
- Extend model (e.g., allow for some dependency structure, different variances, etc.)
- Many more options...
- More details: Exercises and Oehlert (2000), Chapter 6.