Bài 6. Phương trình mặt phẳng

A. Các bài toán về các thông số liên quan

Ví dụ 1. Cho mặt phẳng (P): 3x-z+2=0. Véctơ nào là một véctơ pháp tuyến của (P)?

a)
$$\overrightarrow{n}_1 = (-1; 0; -1)$$
.

b)
$$\overrightarrow{n}_1 = (3; -1; 2)$$
.

c)
$$\overrightarrow{n}_3 = (3; -1; 0)$$
.

d)
$$\overrightarrow{n}_2 = (3; 0; -1).$$

Câu 1. Cho mặt phẳng (P): -3x + 2z - 1 = 0. Véctơ nào là véctơ pháp tuyến của (P)?

a)
$$\vec{n} = (-3; 2; -1)$$
.

b)
$$\vec{n} = (3; 2; -1).$$

c)
$$\vec{n} = (-3; 0; 2)$$
.

d)
$$\vec{n} = (3; 0; 2)$$
.

Ví dụ 2. Trong không gian Oxyz, véctơ nào sau đây là một véctơ pháp tuyến của (P). Biết $\overrightarrow{u} = (1; -2; 0)$, $\overrightarrow{v} = (0; 2; -1)$ là cặp véctơ chỉ phương của (P).

a)
$$\vec{n} = (1; 2; 0)$$
.

b)
$$\vec{n} = (2; 1; 2)$$
.

c)
$$\vec{n} = (0; 1; 2)$$
.

d)
$$\overrightarrow{n} = (2; 1; -2)$$
.

Câu 2. Tìm một VTPT của mặt phẳng (P) khi biết cặp vécto chỉ phương là $\overrightarrow{u} = (2;1;2)$, $\overrightarrow{v} = (3;2;-1)$.

a)
$$\vec{n} = (-5; 8; 1)$$
.

b)
$$\vec{n} = (5; -8; 1)$$
.

c)
$$\vec{n} = (1; 1; -3)$$
.

d)
$$\overrightarrow{n} = (-5; 8; -1).$$

Ví dụ 3. Cho mặt phẳng (P): x-2y+z=5. Điểm nào dưới đây thuộc (P)?

a)
$$Q(2; -1; 5)$$
.

b)
$$P(0; 0; -5)$$
.

c)
$$N(-5;0;0)$$
.

d)
$$M(1;1;6)$$
.

Câu 3. Tìm m để điểm M(m;1;6) thuộc mặt phẳng (P): x-2y+z-5=0.

a)
$$m = 1$$
.

b)
$$m = -1$$
.

c)
$$m = 3$$
.

d)
$$m = 2$$
.

Câu 4. Tìm m để điểm A(m; m-1; 1+2m) thuộc mặt phẳng (P): 2x-y-z+1=0.

a)
$$m = -1$$
.

b)
$$m = 1$$
.

c)
$$m = -2$$
.

d)
$$m = 2$$
.

Ví dụ 4. Khoảng cách từ điểm A(1; -2; 3) đến mặt phẳng (P): 3x + 4y + 2z + 4 = 0 bằng

a)
$$\frac{5}{9}$$
.

b)
$$\frac{5}{29}$$
.

c)
$$\frac{5\sqrt{29}}{29}$$
.

d)
$$\frac{\sqrt{5}}{3}$$
.

Câu 5. Khoảng các bằng	ch từ điểm $M(1;2)$	2;-3) đến mặt phẳng (F	P(x) : x + 2y - 2z - 2 = 0	
a) 1.	b) 3.	c) $\frac{\sqrt{13}}{3}$.	d) $\frac{11}{3}$.	
Ví dụ 5. Gọi H là hình chiếu của điểm $A(2;-1;-1)$ lên mặt $(P):16x-12y-15z-4=0$. Độ dài của đoạn AH bằng				
a) 55.		b) $\frac{11}{5}$.		
c) $\frac{11}{25}$.		d) $\frac{22}{5}$.		
Câu 6. Gọi H là hình chiếu của điểm $A(1;-2;-3)$ lên mặt phẳng $(P):x+2y-2z+3=0$. Độ dài đoạn thẳng AH bằng				
a) 1.	b) 2.	c) 2/3.	d) 1/3.	
Câu 7. Gọi B là điểm đối xứng với $A(1;-2;-1)$ qua mặt phẳng $(P):2x+2y-z+3=0$. Độ dài đoạn thẳng AB bằng				
a) 16/3.	b) 20/3.	c) 4/3.	d) 8/3.	
Câu 8. Gọi B là điểm đối xứng với $A(2;3;-1)$ qua mặt phẳng $(P):2x+2y+z+5=0$. Độ dài đoạn thẳng AB bằng				
a) 28/3.	b) 5.	c) 6.	d) 32/3.	
Ví dụ 6. Cho mặt phẳng $(P): x+2y-2z+3=0$ và mặt phẳng $(Q): x+2y-2z-1=0$. Khoảng cách giữa (P) và (Q) bằng				
a) 4/9.	b) 4/3.	c) 2/3.	d) 4.	
Câu 9. Cho mặt phẳng $(P): 2x+2y+z-3=0$ và mặt phẳng $(Q): 2x+2y+z+5=0$. Khoảng cách giữa (P) và (Q) bằng				
a) 5/3.	b) 8/3.	c) 11/2.	d) 14/5.	
Câu 10. Cho mặt p Khoảng cách giữ		z+5=0 và mặt phẳng (Q): 2x + 2y - 2z + 3 = 0.	
a) $\frac{2}{\sqrt{3}}$.		b) 2.		
c) $\frac{7}{2\sqrt{3}}$.		d) $\frac{7}{\sqrt{3}}$.		
Ví dụ 7. Cho $(P): x + 2y + 2z + m = 0$ và $A(1;1;1)$. Có hai giá trị của m là m_1, m_2 thỏa mãn $d(A,(P)) = 1$. Giá trị $m_1 m_2 m_1 + m_2 $ bằng				

c) -6.

d) 264.

b) −96.

a) 160.

	$M(0;0;m) \in Oz$ vàng các giá trị m bằ		-y-2z-2=0 thỏa mã	ın
a) 1.	b) -2.	c) 0.	d) 2.	
	2x + 3y + z - 17 = 0 oảng cách từ M đ		thỏa khoảng cách từ l	M
a) $(0;0;1)$.		b) (0; 0; 2).		
c) $(0;0;3)$.		d) (0; 0; 7).		
Ví dụ 8. Tính góc g	giữa mặt $(P):x-S$	2y - z + 2 = 0 và (Q) :	2x - y + z + 1 = 0.	
a) 60°.	b) 90°.	c) 30°.	d) 120°.	
Câu 13. Tính góc g	giữa mặt $(P): x+2$	2y - z + 1 = 0 và (Q) :	x - y + 2z + 1 = 0.	
a) 30°.	b) 90°.	c) 60°.	d) 45°.	
Câu 14. Tính góc g	giữa mặt $(P):x+x$	z-4=0 và mặt phả:	ng(Oxy).	
a) 30°.	b) 90°.	c) 60°.	d) 45°.	
Ví dụ 9. Cho hai m song nhau. Tính		+y+mz-2=0 và (Q)	(x+ny+2z+8=0 son)	ıg
a) $m + n = 4,25$) .	b) $m + n = 4$,	5.	
c) $m + n = 2, 5$.		d) $m + n = 2, 3$	25.	
Câu 15. Cho hai m $m \stackrel{\circ}{\text{de}} (P)$ song so		2y - z - 1 = 0 và (Q) :	2x + 4y - mz - 2 = 0. The	m
a) $m = 1$.		b) $m = 2$.		
c) $m = -2$.		d) Không tồn	n tại m .	
Câu 16. Tìm m để l nhau.	hai mặt phẳng (P)):2x+2y-z=0 và (Q): x + y + mz + 1 = 0 Ca	ắt
a) $m \neq -\frac{1}{2}$.		b) $m \neq \frac{1}{2}$.		
c) $m \neq -1$.		d) $m = \frac{1}{2}$.		
			$x-y+(m^2-2)z+2=0$ v. hực. Tìm m để $(\alpha)\perp(\beta)$	

a) m = 1. b) $m = \sqrt{2}$. c) $m = \sqrt{3}$. d) m = 2.

B. Các bài toán về viết phương trình mặt phẳng

Ví dụ 10. Phương trình mặt phẳng (P) đi qua điểm A(1;0;-2) và có VTPT $\overrightarrow{n}=(1;-1;2)$ là

a)
$$(P): x - y + 2z + 3 = 0$$
.

b)
$$(P): x + y + 2z + 3 = 0.$$

c)
$$(P): x - y - 2z + 3 = 0$$
.

d)
$$(P): x - y + 2z - 3 = 0.$$

Câu 1. Phương trình mặt phẳng đi qua A(1;-1;2) và có vécto pháp tuyến $\overrightarrow{n}=(4;2;-6)$ là

a)
$$4x + 2y - 6z + 5 = 0$$
.

b)
$$2x + y - 3z + 5 = 0$$
.

c)
$$2x + y - 3z + 2 = 0$$
.

d)
$$2x + y - 3z - 5 = 0$$
.

Câu 2. Phương trình mặt phẳng đi qua M(3; 9; -1) và vuông góc với trục Ox là

a)
$$x - 3 = 0$$
.

b)
$$y + z - 8 = 0$$
.

c)
$$x + y + z = 11$$
.

d)
$$x + 3 = 0$$
.

Ví dụ 11. Cho A(0;1;1) và B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

a)
$$(P): x + y + 2z - 3 = 0$$
.

b)
$$(P): x + y + 2z - 6 = 0.$$

c)
$$(P): x + 3y + 4z - 7 = 0$$
.

d)
$$(P): x + 3y + 4z - 26 = 0.$$

Câu 3. Cho A(2;-1;1), B(1;0;3), C(0;-2;-1). Viết phương trình mặt phẳng (P) qua trọng tâm G của $\triangle ABC$ và vuông góc với BC.

a)
$$(P): x - y + z + 2 = 0$$
.

b)
$$(P): x + 2y + 4z + 2 = 0.$$

c)
$$(P): x - y - z + 2 = 0$$
.

d)
$$(P): x + 2y + 4z - 3 = 0.$$

Ví dụ 12. Viết phương trình mặt phẳng (P) qua A(0;1;3) và $(P) \parallel (Q):2x-3z+1=0.$

a)
$$(P): 2x - 3z + 9 = 0$$
.

b)
$$(P): 2x - 3z - 9 = 0.$$

c)
$$(P): 2x - 3z + 3 = 0$$
.

d)
$$(P): 2x - 3z + 3 = 0.$$

Câu 4. Phương trình mặt phẳng (P) qua A(2;-1;2) và $(P) \parallel (Q):2x-y+3z+2=0$ là

a)
$$2x - y + 3z - 9 = 0$$
.

b)
$$2x - y + 3z + 11 = 0$$
.

c)
$$2x - y - 3z + 11 = 0$$
.

d)
$$2x - y + 3z - 11 = 0$$
.

Câu 5. Viết phương trình mặt phẳng (P) qua A(3;2;3) và $(P) \parallel (Oxy)$.

a)
$$(P): z-3=0$$
.

b)
$$(P): x-3=0.$$

c)
$$(P): y-2=0$$
.

d)
$$(P): x + y = 5.$$

Ví dụ 13. Viết phương trình mặt phẳng trung trực (P) của đoạn AB với A(2;0;1), B(0;-2;3).

a)
$$(P): x - y - z + 2 = 0$$
.

b)
$$(P): x + y - z + 2 = 0.$$

c)
$$(P): x + y + z - 2 = 0$$
.

d)
$$(P): x + y - z - 2 = 0.$$

Câu 6. Phương trình mặt phẳng trung trực của đoạn AB với A(3;1;2), B(1;5;4) là

a)
$$x - 2y - z + 7 = 0$$
.

b)
$$x + y + z - 8 = 0$$
.

c)
$$x + y - z - 2 = 0$$
.

d)
$$2x + y - z - 3 = 0$$
.

Ví dụ 14. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;-3) và có cặp vécto chỉ phương là $\overrightarrow{a}=(2;1;2), \overrightarrow{b}=(3;2;-1).$

a)
$$(P): 5x - 8y - z + 8 = 0$$
.

b)
$$(P): 5x - 8y - z - 8 = 0.$$

c)
$$(P): 5x + 8y - z + 8 = 0$$
.

d)
$$(P): 5x + 8y - z - 8 = 0.$$

Câu 7. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;-3) và có cặp vécto chỉ phương là $\overrightarrow{a}=(2;1;2), \overrightarrow{b}=(3;2;-1).$

a)
$$5x + 8y - z + 8 = 0$$
.

b)
$$5x - 8y - z + 8 = 0$$
.

c)
$$5x - 8y + z - 8 = 0$$
.

d)
$$5x + 8y + z - 8 = 0$$
.

Ví dụ 15. Phương trình mặt phẳng đi qua ba điểm A(1;0;2), B(1;1;1), C(2;3;0) là

a)
$$x + y - z + 1 = 0$$
.

b)
$$x - y - z + 1 = 0$$
.

c)
$$x + y + z - 3 = 0$$
.

d)
$$x + y - 2z - 3 = 0$$
.

Câu 8. Phương trình mặt phẳng đi qua ba điểm M(3;-1;2), N(4;-1;-1), P(2;0;2) là

a)
$$3x + 3y - z + 8 = 0$$
.

b)
$$3x - 2y + z - 8 = 0$$
.

c)
$$3x + 3y + z - 8 = 0$$
.

d)
$$3x + 3y - z - 8 = 0$$
.

Ví dụ 16. Phương trình mặt phẳng (P) đi qua điểm M(2;-2;3) và chứa trục Ox có dạng

a)
$$3y + 2z - 1 = 0$$
.

b)
$$3y - 2z = 0$$
.

c)
$$3y + 2z = 0$$
.

d)
$$3u - 2z - 1 = 0$$
.

Câu 9. Phương trình mặt phẳng (P) đi qua điểm M(2;2;-3) và chứa trục Oy có dạng

a)
$$(P): 3x - 2z = 0$$
.

b)
$$(P): 3x + 2z = 0.$$

c)
$$(P): 3x + 2z + 2 = 0$$
.

d)
$$(P): 3x - 2z + 2 = 0.$$

Ví dụ 17. Viết phương trình mặt phẳng (P) đi qua hai điểm A(1;0;1) và B(-1;2;2), đồng thời song song với trục Ox.

a) (P): x + y - z = 0.

b) (P): 2y - z + 1 = 0.

c) (P): y-2z+2=0.

d) (P): x + 2z - 3 = 0.

Câu 10. Viết phương trình mặt phẳng (P) chứa đường thẳng AB, đồng thời song song với trục tung, với A(-1;0;0) và B(0;0;1).

a) (P): x-z+1=0.

b) (P): x - y - 2z = 0.

c) (P): x-2z+1=0.

d) (P): x - 2y + 2 = 0.

Ví dụ 18. Cho A(1;1;0), B(0;2;1), C(1;0;2), D(1;1;1). Viết phương trình mặt phẳng (P) đi qua A, B và (P) song song với đường CD.

a) (P): x + y + z - 3 = 0.

- **b)** (P): 2x y + z 2 = 0.
- c) (P): 2x + y + z 3 = 0.
- **d)** (P): x + y 2 = 0.

Câu 11. Cho A(-1;1;-2), B(1;2;-1), C(1;1;2) và D(-1;-1;2). Viết phương trình mặt phẳng (P) chứa đường AB và song song CD.

a) (P): x - y - z = 0.

- **b)** (P): x y z + 2 = 0.
- c) (P): 2x + y + z + 3 = 0.
- **d)** (P): x 2y 2z 1 = 0.

Ví dụ 19. Viết phương trình mặt phẳng (P) đi qua hai điểm A(1;2;-2), B(2;-1;4) và vuông góc với mặt phẳng (Q): x-2y-z+1=0.

a) 15x + 7y + z - 27 = 0.

b) 15x + 7y + z + 27 = 0.

c) 15x - 7y + z - 27 = 0.

d) 15x - 7y + z + 27 = 0.

Câu 12. Viết phương trình mặt phẳng (P) đi qua hai điểm A(-1;2;3), B(1;4;2) và vuông góc với mặt phẳng (Q): x-y+2z+1=0.

a) 3x - y - 2z + 11 = 0.

b) 5x - 3y - 4z + 23 = 0.

c) 3x + 5y + z - 10 = 0.

d) 3x - 5y - 4z + 25 = 0.

Câu 13. Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa trục Ox và vuông góc với mặt phẳng (Q): x-2y-z+7=0.

a) (P): y + 2z = 0.

b) (P): y-2z=0.

c) (P): x-2y-z=0.

d) (P): y - z = 0.

Ví dụ 20. Cho các mặt $(P_1): x + 2y + 3z + 4 = 0$ và $(P_2): 3x + 2y - z + 1 = 0$. Viết phương trình mặt phẳng (P) đi qua điểm A(1;1;1), vuông góc hai mặt phẳng (P_1) và (P_2) .

- a) (P): 4x 5y + 2z 1 = 0.
- **b)** (P): 4x + 5y 2z 1 = 0.
- c) (P): 4x 5y 2z + 1 = 0.
- d) (P): 4x + 5y + 2z + 1 = 0.

Câu 14. Cho các mặt $(P_1): 2x+y-3z-4=0$ và $(P_2): x+y-z-1=0$. Viết phương trình mặt phẳng (P) đi qua điểm M(1;-5;3), vuông góc hai mặt phẳng (P_1) và (P_2) .

a) (P): 2x + y + z = 0.

- **b)** (P): 2x + y + z 1 = 0.
- c) (P): 2x y + z + 10 = 0.
- **d)** (P): 2x y + z 10 = 0.

Ví dụ 21. Viết phương trình mặt phẳng đi qua ba điểm A(1;0;0), B(0;-2;0), C(0;0;3).

a) 2x - 3y + 6z - 6 = 0.

b) 3x - 6y - 2z + 6 = 0.

c) 6x - 3y + 2z - 6 = 0.

d) 2x + 6y - 3z - 6 = 0.

Câu 15. Viết phương trình mặt phẳng đi qua ba điểm A(2;0;0), B(0;-3;0), C(0;0;5).

a) 15x - 10y + 6z = 0.

b) 15x - 10y + 6z - 30 = 0.

c) 2x - 3y + 5z = 1.

d) 2x - 3y + 5z = 0.

Câu 16. Cho điểm M(1;2;3). Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).

a) 3x + 2y + z - 6 = 0.

b) 2x + y + 3z - 6 = 0.

c) 6x + 3y + 2z - 6 = 0.

d) x + 2y + 3z - 6 = 0.

Ví dụ 22. Cho điểm M(-3; 2; 4). Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz. Tìm mặt phẳng song song với (ABC).

a) 4x - 6y - 3z + 12 = 0.

b) 3x - 6y - 4z + 12 = 0.

c) 4x - 6y - 3z - 12 = 0.

d) 6x - 4y - 3z - 12 = 0.

Câu 17. Cho điểm M(1;2;5). Mặt phẳng (P) đi qua điểm M và cắt trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Khi đó (P) có phương trình là

a) 2x + 5y + 10z = 0.

b) x + 5y + 10z - 10 = 0.

c) x + 2y + 5z - 30 = 0.

d) x + y + z - 8 = 0.

Câu 18. Phương trình mặt phẳng (P) đi qua M(3;2;1) và cắt các trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C sao cho M là trực tâm của tam giác ABC là

- a) (P): 3x + 2y + z 14 = 0.
- **b)** (P): x + y + z 6 = 0.
- c) (P): 2x + 3y + 6z 6 = 0.
- d) (P): 2x + 3y + 6z = 0.

Câu 19. Mặt phẳng (P) đi qua điểm G(2;-1;3) và cắt các trục tọa độ tại các điểm A, B, C (khác gốc tọa độ) sao cho G là trọng tâm của $\triangle ABC$. Tìm phương trình (P).

a) 3x - 6y + 2z - 18 = 0.

b) 2x + y - 3z - 14 = 0.

c) x + y + z = 0.

d) 3x + 6y - 2z - 6 = 0.

Ví dụ 23. Mặt phẳng qua M(1;2;3) cắt các trục tọa độ tại A, B, C sao cho M là trọng tâm $\triangle ABC$ có phương trình là 6x + 3y + 2z - 18 = 0.

\sim)	26
αı	-50.

d)
$$-72$$
.

Câu 20. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1;1;1) và B(0;2;2) đồng thời cắt các tia Ox,Oy lần lượt tại hai điểm M, N (không trùng với gốc toa đô O) sao cho OM = 2ON.

a)
$$(P): 2x + 3y - z - 4 = 0$$
.

b)
$$(P): x + 2y - z - 2 = 0.$$

c)
$$(P): 2x + y + z - 4 = 0$$
.

d)
$$(P): 3x + y + 2z - 6 = 0.$$

Ví dụ 24. Trong không gian Oxyz, mặt phẳng (P) qua M(1;3;-2), đồng thời cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho 4OA = 2OB = OC. Hỏi (P) là phương trình nào?

a)
$$2x - y - z - 1 = 0$$
.

b)
$$x + 2y + 4z + 1 = 0$$
.

c)
$$4x + 2y + z - 8 = 0$$
.

d)
$$4x + 2y + z + 1 = 0$$
.

Câu 21. Cho hai điểm C(0;0;3) và M(-1;3;2). Mặt phẳng (P) qua C, M, đồng thời chắn trên các nửa trục dương Ox, Oy các đoạn thẳng bằng nhau. Phương trình (P) là

a)
$$x + y + 2z - 1 = 0$$
.

b)
$$x + y + 2z - 6 = 0$$
.

c)
$$x + y + z - 6 = 0$$
.

d)
$$x + y + z - 3 = 0$$
.

Ví dụ 25. Viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt ba tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.

a)
$$6x + 3y + 2z + 18 = 0$$
.

b)
$$6x + 3y + 3z - 21 = 0$$
.

c)
$$6x + 3y + 3z + 21 = 0$$
.

d)
$$6x + 3y + 2z - 18 = 0$$
.

Câu 22. Mặt phẳng (P) đi qua M(2;1;1) đồng thời cắt các tia Ox, Oy, Oz lần lượt tai A, B, C sao cho tứ diên OABC có thể tích nhỏ nhất. Viết phương trình (P).

a)
$$(P): 2x + y + z - 7 = 0$$
.

b)
$$(P): x + 2y + 2z - 6 = 0$$
.

c)
$$(P): x + 2y + z - 1 = 0$$
.

d)
$$(P): 2x + y - 2z - 1 = 0$$
.

Câu 23. Mặt phẳng (P) đi qua M(1;1;4), đồng thời cắt các tia Ox,Oy,Oz lần lượt tại A, B, C sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó?

- a) 72.
- **b)** 108.
- c) 18.
- d) 36.

Câu 24. Mặt phẳng (P) đi qua M(1;2;3) và cắt các tia Ox,Oy,Oz lần lượt tại A, B, C sao cho $T=\frac{1}{OA^2}+\frac{1}{OB^2}+\frac{1}{OC^2}$ đạt giá trị nhỏ nhất dạng x+ay+bz+c=0. Tìm a+b+c.

- a) 19.
- b) 6.
- c) -9.
- d) -5.

Ví dụ 26. Viết phương trình mặt phẳng (P), biết $(P) \parallel (Q) : x + 2y - 2z + 1 = 0$ và (P) cách điểm M(1; -2; 1) một khoảng bằng 3.

- a) (P): x + 2y 2z 4 = 0 và (P): b) <math>(P): x + 2y 2z 2 = 0 và (P): x + 2y 2z 2 = 0x + 2y - 2z + 14 = 0. x + 2y - 2z + 11 = 0.
- c) (P): x + 2y 2z 4 = 0 và (P): d) (P): x + 2y + 2z 2 = 0 và (P): x + 2y + 2z + 14 = 0. x + 2y - 2z + 11 = 0.

Câu 25. Cho điểm M(1;0;3) và mặt phẳng (P): x + 2y + z - 10 = 0. Viết phương trình mặt phẳng (Q) song song với (P) và (Q) cách M một khoảng bằng $\sqrt{6}$.

- a) (Q): x + 2y + z 10 = 0 và (Q): x + 2y + z + 2 = 0.
- **b)** (Q): x + 2y + z + 10 = 0.
- c) (Q): x + 2y + z + 2 = 0.
- d) (Q): x + 2y + z 2 = 0 và (Q): x + 2y + z + 10 = 0.

Ví dụ 27. Viết phương trình mặt phẳng (P), biết $(P) \parallel (Q) : x - 2y - 2z - 3 = 0$ và d((P),(Q)) = 3.

- a) (P): x-2y-2z-3 = 0 và (P): b) <math>(P): x-2y-2z+6 = 0. x - 2y - 2z - 12 = 0.
- c) (P): x-2y-2z-12=0.
- d) (P): x 2y 2z + 6 = 0 và (P): x - 2y - 2z - 12 = 0.

Câu 26. Cho mặt phẳng (P): x-y-z-1=0. Hãy viết phương trình mặt phẳng (Q) song song (P) và cách (Q) một khoảng $\frac{11\sqrt{3}}{3}$.

- a) (Q): x-y-z+10=0 và (Q): x-y-z+10=0. y - z - 12 = 0.
- c) (Q): x-y-z-12=0.

d) (Q): x-y-z-10=0 và (Q): x-10=0y - z + 12 = 0.

Câu 27. Cho mặt phẳng (P): x-2y-2z-3=0. Hãy viết phương trình mặt phẳng (Q) song song (P) và cách (Q) một khoảng 3.

- a) (Q): x-2y-2z+6=0 và (Q): b) <math>(Q): x-2y-2z+6=0. x - 2y - 2z - 12 = 0.
- c) (Q): x-2y-2z-12=0.
- **d)** (Q): x-2y-2z-6=0 và (Q):x - 2y - 2z + 12 = 0.

Ví dụ 28. Viết phương trình mặt phẳng (P) vuông góc với $(\alpha): x+y+z-3=0$, $(\beta): x-y+z-1=0$ và đồng thời (P) cách gốc tọa độ O một khoảng bằng $\sqrt{2}$.

a) $(P): x-z\pm 2=0$.

b) $(P): x - z \pm 3 = 0.$

c) $(P): x - y \pm 3 = 0$.

d) $(P): y-z\pm 2=0.$

Câu 28. Viết phương trình mặt phẳng (P) vuông góc với $(\alpha): x-2y-3z+2=0$, $(\beta): x+y-2z=0$, đồng thời (P) cách M(0;1;0) một khoảng bằng $\sqrt{59}$.

- a) 7x y + 3z 60 = 0 và 7x y + 3z + 58 = 0.
- **b)** 7x y + 3z + 60 = 0.
- c) 7x y 3z 58 = 0.
- d) 7x y + 3z + 60 = 0 và 7x y + 3z 58 = 0.

Câu 29. Viết phương trình mặt (P) vuông góc với $(\alpha): x + 2y - z = 1$, $(\beta): x + y$

a) (P): x + z - 5 = 0.

b) (P): x+z+5 = 0 và (P): x+z+1 = 0.

c) (P): x+z-1=0.

d) (P): x+z-5 = 0 và (P): x+z-1 = 0.

Ví dụ 29. Viết phương trình mặt phẳng (P) qua M và qua giao tuyến hai mặt phẳng $(\alpha), (\beta)$.

- a) M(2;1;-1), $(\alpha): x-y+z-4=0$, $(\beta): 3x-y+z-1=0$.
- **b)** M(0;0;1), $(\alpha):5x-3y+2z-5=0$, $(\beta):2x-y-z-1=0$.
- c) M(1;2;-3), $(\alpha):2x-3y+z-5=0$, $(\beta):3x-2y+5z-1=0$.

Câu 30. Viết phương trình mặt phẳng (P) qua giao tuyến của hai mặt phẳng (α) và (β) , đồng thời (P) song song với mặt phẳng (γ) .

- a) $(\alpha): x 4y + 2z 5 = 0$, $(\beta): y + 4z 5 = 0$, $(\gamma): 2x y + 19 = 0$.
- **b)** $(\alpha): 3x y + z 2 = 0$, $(\beta): x + 4y 5 = 0$, $(\gamma): 2x z + 7 = 0$.

Câu 31. Viết phương trình mặt phẳng (P) qua giao tuyến của hai mặt phẳng (α) và (β) , đồng thời (P) vuông góc với mặt phẳng (γ) .

$$(\alpha): y+2z-4=0, \quad (\beta): x+y-z+3=0, \quad (\gamma): x+y+z-2=0$$

C. Tương giao mặt phẳng và mặt cầu

Ví dụ 30. Cho mặt cầu $(S): (x-1)^2 + (y+1)^2 + (z-3)^2 = 9$ và điểm M(2;1;1) thuộc mặt cầu. Lập phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại M.

- a) (P): x + 2y + z 5 = 0.
- **b)** (P): x + 2y 2z 2 = 0.
- c) (P): x + 2y 2z 8 = 0.
- **d)** (P): x + 2y + 2z 6 = 0.

Câu 1. Viết phương trình mặt phẳng (P) tiếp xúc với $(S): x^2 + y^2 + z^2 - 6x - 2y + 4z + 5 = 0 tại điểm <math>M(4;3;0)$.

- a) (P): x + 2y + 2z 10 = 0.
- **b)** (P): x + 2y 2z 8 = 0.
- c) (P): x + 2y + 2z + 10 = 0.
- **d)** (P): x + 2y 2z + 8 = 0.

Ví dụ 31. Trong không gian Oxyz, cho mặt cầu $(S): x^2+y^2+z^2-2x-4y-6z-11=0$ và mặt phẳng (P): 2x+2y-z-18=0. Tìm phương trình mặt phẳng (Q) song song với mặt phẳng (P) đồng thời (Q) tiếp xúc với mặt cầu (S).

- a) (Q): 2x + 2y z + 22 = 0.
- **b)** (Q): 2x + 2y z 28 = 0.
- c) (Q): 2x + 2y z 18 = 0.
- **d)** (Q): 2x + 2y z + 12 = 0.

Câu 2. Cho $(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 16$ và mặt phẳng (P): 4x+3y-12z-26 = 0. Tìm $(Q) \parallel (P)$, đồng thời (Q) tiếp xúc với (S).

a)
$$4x + 3y - 12z + 78 = 0$$
.

b)
$$4x + 3y - 12z - 26 = 0$$
.

c)
$$4x + 3y - 12z - 78 = 0$$
.

d)
$$4x + 3y - 12z + 26 = 0$$
.

Câu 3. Cho $(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 25$ và mặt phẳng (P): 2x+2y-z-18 = 0. Tìm $(Q) \parallel (P)$, đồng thời (Q) tiếp xúc với (S).

a)
$$(P): 2x - 2y - z - 18 = 0$$
.

b)
$$(P): 2x + 2y - z - 18 = 0.$$

c)
$$(Q): 2x + 2y - z + 12 = 0$$
.

d)
$$(Q): 2x - 2y - z + 12 = 0$$
.

Ví dụ 32. Cho hai mặt phẳng $(\alpha): 3x - y + 4z + 2 = 0$ và $(\beta): 3x - y + 4z + 8 = 0$. Phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng (α) và (β) là

a)
$$(P): 3x - y + 4z + 10 = 0$$
.

b)
$$(P): 3x - y + 4z + 5 = 0.$$

c)
$$(P): 3x - y + 4z - 10 = 0$$
.

d)
$$(P): 3x - y + 4z - 5 = 0.$$

Câu 4. Viết phương trình mặt phẳng (P), biết (P) song song với mặt (Q): 2x +2y - z + 17 = 0 và (P) cắt mặt cầu (S): $(x - 1)^2 + (y + 2)^2 + (z - 3)^2 = 25$ theo giao tuyến là một đường tròn có chu vi bằng 6π .

a)
$$(P): 2x + 2y - z - 7 = 0$$
.

b)
$$(P): 2x + 2y + z - 7 = 0.$$

c)
$$(P): 2x + 2y - z + 17 = 0$$
.

d)
$$(P): 2x + y + z + 17 = 0.$$

Câu 5. Viết phương trình mặt phẳng (P) đi qua hai điểm O(0;0;0), A(1;2;0), đồng thời khoảng cách từ B(0;4;0) đến (P) bằng khoảng cách từ C(0;0;3) đến (P).

a)
$$6x + 3y - 4z = 0$$
 và $6x - 3y + 4z = 0$. b) $6x - 3y - 4z = 0$.

b)
$$6x - 3y - 4z = 0$$
.

c)
$$6x - 3y + 4z = 0$$
.

d)
$$6x - 3y - 4z = 0$$
 và $6x - 3y + 4z = 0$.

Ví du 33. Cho mặt cầu (S) có tâm I(4;2;-2) và tiếp xúc với mặt phẳng (P):12x-5z - 19 = 0. Bán kính R của mặt cầu (S) bằng

a)
$$\frac{39}{2}$$
.

b)
$$\frac{\sqrt{39}}{5}$$
.

Câu 6. Cho mặt phẳng (P): 4x+3y-2z+1=0 và điểm I(0;-2;1). Bán kính R của hình cầu tâm I tiếp xúc với (P) bằng

a) 3.

b)
$$\frac{5\sqrt{29}}{29}$$
.

c)
$$\frac{3\sqrt{29}}{29}$$
.

d)
$$\frac{7\sqrt{29}}{29}$$
.

Ví dụ 34. Cho mặt cầu $(S): (x+1)^2 + (y-2)^2 + (z-3)^2 = 25$ và (P): 2x+y-2z+m=0, với m là tham số thực. Tìm các giá trị của m để (P) và (S) không có điểm chung.

- a) m < -9 hoặc m > 21.
- c) -9 < m < 21.

- b) -9 < m < 21.
- d) m < -9 hoặc m > 21.

Câu 7. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 + 2x - 4y - 6z + m - 3 = 0$ và mặt phẳng (P): 2x + 2y + z + 5 = 0. Tìm tham số m để (P) tiếp xúc với (S).

- a) $m = -\frac{53}{9}$.
- c) $m = -\frac{13}{3}$.

- b) $m = -\frac{12}{5}$.
- d) $m = -\frac{11}{2}$.

Câu 8. Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x - 2z - 7 = 0$ và mặt phẳng (P): 4x + 3y + m = 0. Tìm m để (P) cắt (S) theo giao tuyến là một đường tròn?

a) m < -19 hoặc m > 11.

b) -19 < m < 11.

c) -12 < m < 4.

d) m < -12 hoặc m > 4.

Câu 9. Cho mặt cầu $(S): x^2 + y^2 + z^2 + 2x - 4y + 6z + m = 0$. Tìm tham số m để (S)cắt mặt (P): 2x - y - 2z + 1 = 0 theo giao tuyến là đường tròn có diện tích bằng 4π .

- a) m = 9.
- b) m = 10.
- c) m = 3.
- d) m = -3.

Câu 10. Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1;1;1)và cắt mặt phẳng (P) có phương trình 2x + y + 2z + 4 = 0 theo một đường tròn có bán kính bằng r=4.

- a) $(S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 16$. b) $(S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 9$.
- c) $(S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 5$. d) $(S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 25$.