Zadanie 1.

Załóżmy, że X_1,X_2,X_3 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie normalnym $N(\mu,\sigma^2)$. Niech $S^2=\frac{1}{2}\sum_{i=1}^3 \left(X_i-\overline{X}\right)^2$ będzie nieobciążonym estymatorem wariancji.

Oblicz $Pr(S^2 \leq \sigma^2)$.

(A)
$$Pr(S^2 \le \sigma^2) = 0.36788$$

(B)
$$\Pr(S^2 \le \sigma^2) = 0.5$$

(C)
$$\Pr(S^2 \le \sigma^2) = 0.63212$$

(D)
$$Pr(S^2 \le \sigma^2) = 0.66667$$

(E)
$$\Pr(S^2 \le \sigma^2) = 0.33333$$

Zadanie 2.

W urnie znajduje się 10 kul, ponumerowanych liczbami 1,2,...,10. Losujemy *ze zwracaniem* 4-krotnie po jednej kuli. Niech S oznacza sumę numerów wylosowanych kul. Umawiamy się przy tym, że każdy wylosowany numer występuje w sumie tylko raz, (np. jeśli wylosowaliśmy kule o numerach 3,1,5,3, to S = 3 + 1 + 5 = 9).

Obliczyć wartość oczekiwaną zmiennej losowej S.

- (A) E(S) = 11.
- (B) E(S) = 15.5556
- (C) E(S) = 20.
- (D) E(S) = 22.
- (E) E(S) = 18.9145

Zadanie 3.

Wiadomo, że zmienna losowa X ma wykładniczy rozkład prawdopodobieństwa o gęstości $f(x) = e^{-x}$ (x > 0), zaś Y jest taką zmienną losową, że dla każdego x > 0,

$$E(Y|X>x)=x+2\,,$$

oraz iż moment drugiego rzędu zmiennej Y istnieje i jest liczbą skończoną.

Stąd wynika, że:

(A)
$$Cov(X,Y) = 1/\sqrt{2} \text{ i } Corr(X,Y) = 1/\sqrt{2}$$

(B)
$$Cov(X,Y) = -\sqrt{2} \text{ i } Corr(X,Y) = -1/\sqrt{2}$$

(C)
$$Cov(X,Y) = \sqrt{2} \text{ i } Corr(X,Y) = 1/2$$

- (D) Podane informacje nie wystarczają do obliczenia ani kowariancji, ani współczynnika korelacji.
- (E) Cov(X,Y) = 1, zaś podane informacje nie wystarczają do obliczenia współczynnika korelacji.

Wskazówka: zastanów się czy można obliczyć E(Y|X=x).

Zadanie 4.

Dana jest próbka $X_1,...,X_{10}$ z rozkładu normalnego $N(\mu,\sigma^2)$ z nieznanymi parametrami μ i σ^2 . Rozważamy problem testowania hipotezy $H_0:\mu=0$ przeciw alternatywie $H_1:\mu\neq 0$. Używamy testu, który odrzuca H_0 jeśli $|\overline{X}/V|>c$, gdzie

$$V^{2} = \frac{1}{10} \sum_{i=1}^{10} X_{i}^{2}.$$

Dobierz stałą c tak, żeby prawdopodobieństwo błędu I rodzaju tego testu było równe $\alpha=0.05$.

- (A) c = 0.2622
- (B) c = 0.6021
- (C) c = 0.7046
- (D) c = 0.7427
- (E) Prawdopodobieństwo błędu I rodzaju tego testu zależy od nieznanego parametru σ^2 i nie istnieje liczba c dla której byłoby stale równe 0.05.

Zadanie 5.

Rozważamy łańcuch Markowa X_1, X_2, \dots na przestrzeni stanów $\{1,2,3\}$ o macierzy przejścia

$$P = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ \beta & 0 & 1 - \beta \\ 0 & 1 & 0 \end{bmatrix},$$

(gdzie $P_{ij}=\Pr(X_{n+1}=j\mid X_n=i)$ dla i,j=1,2,3). Załóżmy, że rozkład początkowy łańcucha jest wektorem

$$\pi = \left[\frac{\beta}{\beta + 2\alpha - \alpha\beta}, \frac{\alpha}{\beta + 2\alpha - \alpha\beta}, \frac{\alpha - \alpha\beta}{\beta + 2\alpha - \alpha\beta} \right],$$

(gdzie $\pi_i = \Pr(X_1 = i) \text{ dla } i = 1,2,3$).

Oblicz $p = \Pr(X_3 = 1 | X_2 \neq 1, X_1 \neq 1)$.

- (A) $p = \beta/(2-\beta)$
- (B) $p = \beta / 2$
- (C) $p = \beta$
- (D) $p = \beta \alpha / (\beta + 2\alpha \alpha \beta)$
- (E) $p = \beta(1-\beta)\alpha/(\beta+2\alpha-\alpha\beta)$

Zadanie 6.

Na podstawie próbki $X_1,...,X_n$ z rozkładu wykładniczego o gęstości $f(x) = \theta e^{-\theta x}$ (x > 0), estymujemy parametr θ . Niech $\hat{\theta} = 1/\overline{X}$.

Wyznaczyć w przybliżeniu rozmiar próbki n taki, żeby

$$\Pr\left(\frac{|\hat{\theta} - \theta|}{\theta} \le 0.01\right) \approx 0.95.$$

Posłużyć się aproksymacją rozkładem normalnym.

- (A) $n \approx 400$
- (B) $n \approx 10000$
- (C) $n \approx 40000$
- (D) $n \approx 2000$
- (E) $n \approx 27000$

Zadanie 7.

Załóżmy, że $X_1,...,X_n$ jest próbką z rozkładu prawdopodobieństwa o dystrybuancie

$$F_{\theta}(x) = \Pr(X_i \le x) = \begin{cases} 1 - e^{-x} & dla \quad x \ge \theta; \\ 0 & dla \quad x < \theta; \end{cases}$$

gdzie $\theta > 0$ jest nieznanym parametrem. Rozważmy następujący estymator:

$$\hat{\theta} = \min(X_1, ..., X_n).$$

Oblicz funkcję ryzyka tego estymatora:

$$R(\theta) = E_{\theta} (\hat{\theta} - \theta)^{2}.$$

(A)
$$R(\theta) = \frac{1}{n} (1 - e^{-\theta})^n$$

(B)
$$R(\theta) = \frac{1}{n}e^{-n\theta}$$

(B)
$$R(\theta) = \frac{1}{n}e^{-n\theta}$$

(C) $R(\theta) = \frac{1}{n^2}e^{-n\theta}$

(D)
$$R(\theta) = \frac{2}{n^2} e^{-n\theta}$$

(E)
$$R(\theta) = \frac{2}{n^2}$$

Zadanie 8.

Załóżmy, że X_1,X_2,X_3 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 5.

Obliczyć $v = \text{var}(X_2 + X_3 \mid X_1 + X_2 = 5)$.

- (A) v = 10
- (B) v = 5
- (C) v = 7.5
- (D) v = 6.25
- (E) v = 15

Zadanie 9.

Zmienna losowa X ma rozkład wykładniczy o gęstości $f(x) = \lambda e^{-\lambda x}$ (x > 0). Niech, dla dowolnej liczby a:

- $\lfloor a \rfloor$ oznacza największą liczbę całkowitą niewiększą niż a;
- $\langle a \rangle = a \lfloor a \rfloor$ oznacza "część ułamkową" liczby a .

Obliczyć $u = E(\langle X \rangle)$ w zależności od $c = E(\lfloor X \rfloor)$.

(A)
$$u = (\ln(c+1) - \ln c)^{-1} - c$$

(B)
$$u = c/(2c+1)$$

(C)
$$u = c - (\ln(c+1) - \ln c)^{-1}$$

(D)
$$u = c/(c + \ln c)$$

(E)
$$u = 1/2$$

Zadanie 10.

Niech $X_1,...,X_{10}$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie prawdopodobieństwa:

$$Pr(X_i = 1) = 2/3 i Pr(X_i = -1) = 1/3.$$

Niech
$$S_k = \sum_{i=1}^k X_i$$
 dla $k = 1, 2, ..., 10$.

Oblicz

$$r = \Pr(S_{10} = 2 \ i \ S_1 \le 5, S_2 \le 5, ..., S_{10} \le 5).$$

- (A) r = 0.1275
- (B) r = 0.3128
- (C) r = 0.2201
- (D) r = 0.2276
- (E) r = 0.2265

Egzamin dla Aktuariuszy z 24 marca 2001 r.

Prawdopodobieństwo i Statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko	KLUCZ	ODPOWIEDZI	
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	С	
2	Е	
3	Е	
4	В	
5	В	
6	C	
7	D	
8	D	
9	A	
10	Е	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.