Exercices supplémentaires

Ex 2.2.1

Les deux parties A et B ci-dessous sont indépendantes

Partie A

On a représenté ci-contre, dans un repère orthonormé $(0; \vec{i}; \vec{j})$, les courbes (C) et (Γ) , représentatives d'une fonction g définie sur \mathbb{R} et de sa fonction primitive h.

- 1) Reconnaître la courbe représentative de g et celle de h.
- 2) On suppose que la fonction h est définie sur \mathbb{R} par : $h(x) = (x+1)^2 e^{-x}$.

Déterminer l'aire \mathcal{A} de la partie du plan limitée par (C) et (Γ) .

Partie B

On considère la fonction f définie pour tout réel $x \neq -1$ par $f(x) = -1 + \frac{x-1}{x+1}e^x$; on désigne par (C) la courbe représentative de f dans un repère orthonormé $(0; \vec{t}; \vec{j})$.

- 1) a- Calculer $\lim_{x \to -1^{-}} f(x)$; $\lim_{x \to -1^{+}} f(x)$; En déduire une asymptote D.
 - b- Calculer $\lim_{x\to -\infty} f(x)$; $\lim_{x\to +\infty} f(x)$; En déduire une autre asymptote Δ .
 - c- Etudier la position de (C) par rapport à Δ .
- 2) Voici la courbe de f' (dérivée de f)
 - a- Montrer que f est strictement monotone sur $]-\infty;-1[$ et sur $]-1;+\infty[$ et construire son tableau des variations.
 - b- Montrer que f admet un point d'inflexion qu'on déterminera.

- 3) a- Montrer que l'équation f(x) = 0 admet dans $]-1; +\infty[$ une unique solution α et que $1,5 < \alpha < 1,6$.
 - b- Vérifier que $e^{\alpha} = \frac{\alpha+1}{\alpha-1}$ et que $f(-\alpha) = 0$.
- 4) Donner f(3) sous forme décimal et tracer (C).

Ex 2.2.2

Pour tout réel k strictement positif, on désigne par f_k la fonction définie et dérivable sur l'ensemble des nombres réels P telle que : $f_k(x) = kxe^{-kx}$.

On note C_k sa courbe représentative dans le plan muni d'un repère orthogonal $(O; \vec{i}, \vec{j})$.

Partie A : Étude du cas k = 1

On considère donc la fonction f_1 définie sur P par $f_1(x) = xe^{-x}$.

- 1. Déterminer les limites de la fonction f_1 en $-\infty$ et en $+\infty$. En déduire que la courbe C_1 admet une asymptote que l'on précisera.
- 2. Étudier les variations de f_1 sur P puis dresser son tableau de variation sur P.
- 3. Montrer que f admet un point d'inflexion I.
- 4. Montrer que la droite (d): $y = \frac{2}{e^2}$ coupe C_1 en deux points d'abscisses 2 et α tel que $0.4 < \alpha < 0.41$.

5. Tracer C_1 et (d).

Partie B: Propriétés graphiques

On a représenté sur le graphique ci-dessous les courbes C_2 , C_a et C_b où a et b sont des réels strictement positifs fixés et T la tangente à C_b au point O origine du repère.

- 1. Montrer que pour tout réel k strictement positif, les courbes C_k passent par un même point.
- 2. a. Justifier que, pour tout réel k strictement positif, f_k admet un maximum et calculer ce maximum.
 - b. En observant le graphique ci-dessus, comparer a et 2. Expliquer la démarche.
- 3. a. Écrire une équation de la tangente à C_k au point O origine du repère.
 - b. En remarquant que T passe par le point (0,1;0,3), calculer b.
- 4. Calculer, en unité d'aire, l'aire du domaine délimité par C₂ et C_b.
- 5. Montrer que la droite (d): $y = \frac{2}{e}$ coupe C_2 aux points d'abscisses 1 et $\frac{\alpha}{2}$.

Ex 2.2.3

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{3e^{4x} - 1}{e^{4x} + 1}$.

C est sa courbe représentative dans un repère orthonormé du plan (unité graphique 2 cm).

- 1. Calculer la limite de f en $-\infty$ et en $+\infty$ (on pourra montrer que $f(x) = \frac{3 e^{-4x}}{1 + e^{-4x}}$).
- 2. Etudier les variations de f et dresser son tableau de variations.
- 3. Montrer que le point de C d'abscisse 0 est un centre de symétrie. Ecrire l'équation de la tangente T à C en ce point.
- 4. Tracer la courbe C et sa tangente T.
- 5. Montrer que $f(x) = \frac{3e^{3x} e^{-x}}{e^{3x} + e^{-x}}$. En déduire l'aire du domaine limité par C et les axes des coordonnées.
- 6. a. Montrer que f admet une réciproque f^{-1} ;
 - b. Tracer la courbe (C') de f^{-1} (sur la figure précédente)
 - c. Déterminer $f^{-1}(x)$ en fonction de x en déduire la valeur exacte de $\int_0^1 \ln\left(\frac{1+x}{3-x}\right) dx$.

Ex 2.2.4

Partie A: Étude d'une fonction

On considère la fonction f définie sur l'ensemble \mathbb{R} des nombres réels par $f(x) = 2 - \frac{x-2}{5}e^x$.

On note C sa courbe représentative dans le plan rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité graphique 2 cm.

- 1. a. Calculer la limite de f(x) quand x tend vers $+\infty$.
 - b. Calculer la limite de f(x) quand x tend vers $-\infty$.
 - c. En déduire l'équation d'une droite D asymptote à la courbe C.
 - d. Calculer les coordonnées du point d'intersection A de la droite D et de la courbe C.
 - e. Déterminer la position relative de la courbe C par rapport à la droite D.
- 2. a. Calculer f'(x).
 - b. Étudier le signe de f'(x) et en déduire le tableau de variations de f sur \mathbb{R} .
- 3. Donner une équation de la tangente T à la courbe C au point d'abscisse 0.
- 4. Montrer que l'équation f(x) = 0 admet une solution x_0 sur [2; 3] et vérifier que 2,68 < x_0 < 2,69.
- 5. Tracer sur un même graphique la droite D, la tangente T et la courbe C.

Partie B: Calcul d'aire

1. On considère la fonction g définie sur \mathbb{R} par $g(x) = \frac{x-3}{5}e^x$.

Calculer g'(x). En déduire une primitive de f sur \mathbb{R} .

- 2. a. Hachurer sur le graphique le domaine délimité par la courbe C, l'axe des abscisses, l'axe des ordonnées et la droite d'équation x=2.
- b. Calculer l'aire de la partie hachurée. Donner la valeur exacte en cm², puis la valeur arrondie à 10^{-2} près.

Ex 2.2.5

Partie 1

Soit g la fonction définie sur $[0;+\infty[$ par $g(x)=e^x-xe^x+1$.

- 1. Déterminer la limite de g en $+\infty$.
- 2. Étudier les variations de la fonction g.
- 3. a. Démontrer que l'équation g(x)=0 admet sur $[0;+\infty[$ une unique solution α et vérifier que :

$$1,27 < \alpha < 1,28$$

- b. Démontrer que $e^{\alpha} = \frac{1}{\alpha 1}$.
- 4. Déterminer le signe de g(x) suivant les valeurs de x.

Partie 2

Soit *A* la fonction définie et dérivable sur $[0; +\infty[$ telle que $A(x) = \frac{4x}{e^x + 1}$.

- 1. Démontrer que pour tout réel x positif ou nul, A'(x) a le même signe que g(x), où g est la fonction définie dans la partie 1.
- 2. En déduire les variations de la fonction A sur $[0; +\infty[$.

Partie 3

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{4}{e^x + 1}$. On note (C) sa courbe représentative dans

un repère orthonormé $(O;\vec{i},\vec{j})$. La figure est donnée ci-dessous.

Pour tout réel *x* positif ou nul, on note :

M le point de (C) de coordonnées (x; f(x)),

P le point de coordonnées (x; 0),

Q le point de coordonnées (0; f(x)).

- 1. Démontrer que l'aire du rectangle OPMQ est maximale lorsque M a pour abscisse α .
- 2. Le point M a pour abscisse α . La tangente (T) en M à la courbe (C) est-elle parallèle à la droite (PQ) ?

Ex 2.2.6

- A. On désigne par f la fonction définie sur \mathbb{R} par $f(x) = e^{\frac{x}{2}} e^x$ et on appelle \mathbb{C} la courbe représentative de f dans le repère orthonormal $(o; \vec{i}, \vec{j})$.
- 1. Étudier les variations de f. Préciser les limites de f en $-\infty$ et en $+\infty$.
- 2. Déterminer f(0) puis déterminer le signe de f(x) en fonction de x.
- B. Dans cette partie, on se propose d'étudier la fonction g définie sur \mathbb{R} $\{0\}$ par $g(x) = \ln \left| e^{\frac{x}{2}} e^{x} \right|$.

On note G la courbe représentative de g dans le repère $(o; \vec{i}, \vec{j})$.

- 1. Préciser les limites de g en $-\infty$, en $+\infty$ et en 0.
- 2. Calculer g'(x) et déterminer le signe de g'(x) en utilisant le signe de f'(x) et le signe de f(x). Dresser le tableau de variation de g.
- 3. a. Démonter que pour tout x réel strictement positif, $g(x) x = \ln\left(1 e^{-\frac{x}{2}}\right)$.
 - b. Montrer que la droite D d'équation y = x est asymptote à la courbe G.
 - c. Étudier la position de la courbe G par rapport à D pour tout x réel strictement positif.
- 4. a. Démontrer que pour tout x réel strictement négatif : $g(x) \frac{x}{2} = \ln\left(1 e^{\frac{x}{2}}\right)$.
 - b. Montrer que la droite d d'équation $y = \frac{x}{2}$ est asymptote à la courbe G.
 - c. Étudier la position de G par rapport à d pour tout x réel strictement négatif.
- 5. Construire G, D et d (on utilisera un graphique différent de celui de la partie A).

Ex 2.2.7 Lecture graphique

Partie A

On considère la fonction g définie sur \mathbb{R} par $g(x)=(2-x)e^x-2$; On a construit, ci-dessous, la courbe de g dans un repère orthonormé.

- 1) Construire le tableau des variations de g.
- 2) Calculer l'aire du domaine hachuré.
- 3) Cette courbe coupe l'axe des abscisses en un point d'abscisse α (α > 0) .
 - a- montrer que 1,59 $< \alpha <$ 1,6.
 - b- Etudier le signe de g(x).

Partie B

On considère la fonction f définie par $f(x) = \frac{e^x - 2}{e^x - 2x}$; on

admet que f est définie sur \mathbb{R} .

On désigne par (C) sa courbe dans un repère orthonormé direct $(O; \vec{\iota}, \vec{j})$ d'unité graphique $2 \ cm$.

- 1) Calculer les limites de f en $-\infty$ et en $+\infty$; déduire que (C) admet deux asymptotes.
- 2) Montrer que $f'(x) = \frac{2 g(x)}{\left(e^x 2x\right)^2}$.
- 3) Construire le tableau des variations de f
- 4) Tracer (C) en précisant les points d'intersection avec les droites d'équations : y = 0 et y = 1.
- 5) Calculer l'aire du domaine (D) limité par (C), l'axe $(O; \vec{t})$ et la droite d'équation x = 1.
- 6) On admet que la restriction de f sur $[0; \alpha]$ admet une réciproque f^{-1} ; tracer sa courbe (C') sur la figure précédente.

Déduire de ce qui précède la valeur de l'intégrale : $\int_0^1 f^{-1}(x) dx$.

Ex 2.2.8 Signe de f(x) - g(x)

Dans la figure ci-dessous, les courbes (C_1) et (C_2) représentent respectivement les fonctions u et v définies par :

$$u(x) = \frac{5}{4} - 2xe^{ax+b}$$
 et $v(x) = x^2e^{x-\frac{1}{2}}$.

b- Comparer $u\left(\frac{1}{2}\right)$ et $v\left(\frac{1}{2}\right)$, en déduire le signe de v(x) - u(x).

a- Vérifier que
$$f(x) = -\frac{5}{4}x + 1 + \frac{4}{\sqrt{e}}(0.5xe^{0.5x})^2$$
; en déduire la limite de $f(x)$ en $-\infty$.

b- Montrer que $\lim_{x \to +\infty} f(x) = +\infty$.

c-Montrer que f'(x) = v(x) - u(x), puis construire le tableau des variations de f.

d-Montrer que la droite (d): $y = -\frac{5}{4}x + 1$ est asymptote à (C) en $-\infty$ et étudier leur position relative.

e- Tracer (C) et (d).

orthonormé.