Beyond the Storm

Climate Risk and Homeowners Insurance

Ankit Kalda, IU Kelley

Varun Sharma, IU Kelley

Vikas Soni, USF

Derek Wenning, IU Kelley

Maryland Juniors Conference, March 2025

Homeowners Insurance Markets Are In Dire Straights

- Home insurance markets have reported heavy losses in recent years (S&P Global)
 - In 2023: 110% industry-level combined loss ratio
- A variety of research has documented the fallout on several dimensions
 - Increasing ownership gaps (Keys & Mulder, 2024; Sastry et. al, 2025)
 - Mortgage delinquencies (Ge et. al, 2025; Sastry et al 2024)
 - Exits from risky states (Sastry et. al, 2024; various news sources)
- * Result: The industry is increasingly relying on state-run insurers of last resort
 - Non-profit, taxpayer-backed institutions that "insure the uninsurable"
 - Now exist in \sim 30 US states, including CA, LA, FL, TX, etc.

This Paper: An Exploration of Citizens Property Insurance Corporation

- Data: Information on every policy and every claim written by Citizens, 2002-2023
 - Premium, coverage, deductible, address, housing characteristics
 - Claim result, claim amount, subsequent litigation & appraisals
- Strategy: Stacked DiD using hurricanes as events
 - Treated counties: above median loss from event (SHELDUS)
 - Sample: all counties with losses above median at some point between 2002-2023
- Explore heterogeneity along time, location, and pass-through channel
 - Premiums (Oh et. al, 2024) vs. Claims Management (Jotikasthira et. al, 2025)
 - Low vs. high income areas
 - "Competitive" vs. "Uncompetitive" periods

Results: Citizens Uses Premiums and Claims to Pass Through Costs...

• ... but the results are very nuanced!

Premiums	Claims Rejections	
Affected + unaffected locations	Only unaffected locations	
Only high-income (unaff.) locations	Only low-income locations	
Only less competitive time periods	Only more competitive time periods	

Additional evidence of household response through litigation & appraisals

An Insurer of Last Resort's Decision Problem

• Minimize capital losses and hit price targets by choosing **premium** and **rejection** rates:

$$\max_{\{P_{\ell t}, \chi_{\ell t}\}_{\ell}} \overbrace{F(K_t, K_{t-1})}^{\text{cost of capital losses}} + \sum_{\ell \in \mathcal{L}} \overbrace{H(\textbf{\textit{P}}_{\ell t}, \widehat{P}_{\ell t})}^{\text{cost of deviating from price targets}}$$

An Insurer of Last Resort's Decision Problem

Minimize capital losses and hit price targets by choosing premium and rejection rates:

$$\max_{\{P_{\ell t},\chi_{\ell t}\}_{\ell}} \overbrace{F(K_t,K_{t-1})}^{\text{cost of capital losses}} + \sum_{\ell \in \mathcal{L}} \underbrace{H(P_{\ell t},\widehat{P}_{\ell t})}^{\text{cost of deviating from price targets}}_{H(P_{\ell t},\widehat{P}_{\ell t})}$$
 subject to
$$K_t = \underbrace{R_t^K K_{t-1}}_{\text{legacy returns}} + \sum_{\ell \in \mathcal{L}} \underbrace{(P_{\ell t} - V_{\ell t})Q_{\ell t}(P_{\ell t},\chi_{\ell t})}_{\text{local accounting profits}}$$

An Insurer of Last Resort's Decision Problem

• Minimize capital losses and hit price targets by choosing **premium** and **rejection** rates:

$$\max_{\{P_{\ell t},\chi_{\ell t}\}_{\ell}} F(K_{t},K_{t-1}) + \sum_{\ell \in \mathcal{L}} H(P_{\ell t},\widehat{P}_{\ell t})$$
subject to
$$K_{t} = \underbrace{R_{t}^{K}K_{t-1}}_{\text{legacy returns}} + \sum_{\ell \in \mathcal{L}} \underbrace{(P_{\ell t} - V_{\ell t})Q_{\ell t}(P_{\ell t},\chi_{\ell t})}_{\text{local accounting profits}}$$

$$R_{t}^{K}K_{t-1} = R_{t}A_{t-1} + \sum_{\ell \in \mathcal{L}} \underbrace{(R_{t}P_{\ell t-1} - (1 - \chi_{\ell t})C_{\ell t})Q_{\ell t-1}}_{\text{local realized losses}}$$

Result 1: Spillovers Occur During Periods with Capital Losses

• In periods in which $R_t^K \geq 1$: $P_{\ell t} = V_{\ell t} = \widehat{P}_{\ell t}$ and $\chi_{\ell t} = 0$

Result 1: Spillovers Occur During Periods with Capital Losses

- In periods in which $R_t^K \geq 1$: $P_{\ell t} = V_{\ell t} = \widehat{P}_{\ell t}$ and $\chi_{\ell t} = 0$
- In periods in which $R_t^K < 1$:

$$P_{\ell t} \in (V_{\ell t}, \mu_{\ell t} V_{\ell t}), \qquad \chi_{\ell t} = g \left(\frac{\mathsf{Losses}_{\ell t}}{\mathsf{Profits}_{\ell t}} \bigg|_{\chi_{\ell t} = 0} \right), \ g'(\cdot) > 0$$

Insight: Pricing spillovers \uparrow when $\mu_{\ell t} \uparrow$ (e.g. due to a distressed private market) Rejections \uparrow when local profits \downarrow (e.g. due to high demand elasticities)

Result 2: Heterogeneity in Spillovers Across Time, Locations, and Channels

- When are markups $\mu_{\ell t}$ high?
 - 1. When Citizens has a high market share (and/or: when private insurers are under distress)
 - 2. When demand elasticities are low (e.g. high income households)
 - → Pricing spillovers greater in periods of distress and for high-income areas

Result 2: Heterogeneity in Spillovers Across Time, Locations, and Channels

- When are markups $\mu_{\ell t}$ high?
 - 1. When Citizens has a high market share (and/or: when private insurers are under distress)
 - 2. When demand elasticities are low (e.g. high income households)
 - → Pricing spillovers greater in periods of distress and for high-income areas
- When are local profits low?
 - 1. When private markets are competitive (e.g. when when the market is financially stable)
 - 2. When demand elasticities are high (e.g. low income households)
 - ightarrow Rejection rates are greater in periods of stability and for low-income areas

Data Construction

- Citizens: Policy-level home insurance contracts and claims
 - All contracts and claims issued by Citizens from 2002 to September 2023
 - 18.6m policy-year observations, 4.1m properties
- SHELDUS: Climate event related loss data at county level
- IRS: Zip-code-level income data
- FEMA: Flood risk data from the Federal Emergency Management Agency
- Regulatory filings: Surplus, assets, and FL premiums for all private insurers

Citizens Property Insurance Corporation

- 1. Florida's largest provider of multi-peril home insurance policies
 - Market share: 23% at peak, 15% in 2023
- 2. **Insurer of Last Resort:** provides coverage to those "uninsurable" by private market (Conversations with Citizens agents suggest they also provide insurance to others)
- Despite this role, offers coverage at competitive premiums
 (CEO recently complained that they would like to raise prices more than they do)

Example: Premium for a \$300k Replacement Value Home Built in 2005

Company	Average Premium (\$)
Stillwater Property and Casualty	1601.87
Tower Hill Preferred	2302.63
First Protective	2802.78
Citizens	3595.43
State Farm Florida	3783.90
ASI Preferred	3861.19
Liberty Mutual	4143.36
People's Trust	4505.46
Florida Farm Bureau	4809.79
Southern Oak	6162.97

Validation: Premiums Have Increased Over Time for all Locations

(Note: Residualizes property fixed effects to account for compositional changes)

Identification Strategy: Stacked DiD around Hurricane Events

- Stacked DiD approach using hurricanes as treatment events
 - Helps address concerns regarding staggered DiD with 2WFE (Callaway and Sant'Anna, 2021; Cengiz et al., 2019; Goodman-Bacon, 2021; Gormley and Matsa, 2011; Sun and Abraham, 2021)
- Identify hurricane-affected counties using SHELDUS data
 - Cutoff: Hurricane-specific losses exceeding \$2m (sample median)
 - Similar results hold using distance from hurricane path (but fewer events 9 vs 16)
- Compare counties with relatively similar risk profiles
 - Only "ever-treated" counties mitigates concerns about diff's b/w treatment & control
 - Leverage variation in hurricane timing (earlier vs. later exposure)

Empirical Specification: Stacked DiD

$$Y_{pct} = \underbrace{\frac{\gamma Post_{ct}}{\text{Effect on}}}_{\begin{array}{c} \text{Effect on} \\ \text{Control Units} \end{array}} + \underbrace{\frac{\beta Post_{ct} \times Treated_{pc}}{\text{Relative Effect on}}}_{\begin{array}{c} \text{Relative Effect on} \\ \text{Treatment Units} \end{array}} + \alpha_{pc} + \varepsilon_{pct}$$

Y_{pct}	(Δ) Pricing and claims outcome variables
$Post_{ct}$	Indicator for post-hurricane event for cohort c
$\mathit{Treated}_{\mathit{pc}}$	Indicator for counties with $>$ \$2m in hurricane losses for cohort c
$\alpha_{\it pc}$	Policy-cohort fixed effect
	(within-policy variation to eliminate composition effects)

Empirical Specification: Stacked Event Study

$$Y_{pct} = \sum_{h=-2}^{3} \gamma_t D_{ct+h} + \alpha_{pc} + \varepsilon_{pct}$$
 $(h = -3 \text{ omitted})$

 Y_{pct} (Δ) Pricing and claims outcome variables D_{ct+h} Indicator for event for cohort c, h periods relative to hurricane event α_{pc} Policy-cohort fixed effect

Estimate regression separately for treated & untreated counties

Validating the Design: Claims (Losses) Spike only in Treated Counties

Citizens Pulls Price and Rejection Levers in Response to a Hurricane

Rejections Used During Stable Times, Price Spillovers During Distress

	Increasing Private Surplus		Decreasing Private Surplus	
	Δ In(Premium)	Rejection Rate	$\Delta In(Premium)$	Rejection Rate
	1	II	III	IV
$Post_t$	-0.027	0.039***	0.058***	-0.008
	(0.021)	(0.011)	(0.007)	(0.013)
$Post_t imes Treated_p$	0.101***	-0.038***	0.023**	-0.040**
	(0.021)	(0.013)	(0.011)	(0.019)
Observations	5,362,097	175,143	4,726,003	100,839
R-squared	0.27	0.50	0.31	0.51

 $^{(\}rightarrow {\sf Consistent\ with\ Citizens\ responding\ to\ private\ market\ competition})$

Low-Income Face More Rejections, High-Income Face Price Spillovers

	Low Income Zip Codes		High Income Zip Codes	
	Δ In(Premium)	Rejection Rate	$\Delta In(Premium)$	Rejection Rate
	1	II	III	IV
$Post_t$	-0.029*	0.039***	0.040***	-0.008
	(0.014)	(0.005)	(0.009)	(0.018)
$Post_t imes Treated_p$	0.113***	-0.047***	0.036***	-0.037*
	(0.016)	(0.012)	(0.013)	(0.020)
Observations	4,300,618	165,993	5,602,322	98,961
R-squared	0.25	0.49	0.35	0.51

 $^{(\}rightarrow$ Consistent with low-income having higher price elasticities)

Households Respond Through Litigation and Appraisals

	Low Income Zip Codes		High Income Zip Codes	
	Litigation Rate	Appraisal Rate	Litigation Rate	Appraisal Rate
$Post_t$	0.025**	0.042*	-0.011	0.002
	(0.012)	(0.023)	(0.007)	(0.012)
$Post_t \times Treated_p$	-0.004	0.015	-0.007	0.053***
,	(0.004)	(0.013)	(0.007)	(0.011)
Observations	165,993	165,993	98,961	98,961
R-squared	0.57	0.52	0.60	0.52

 $^{(\}rightarrow \mathsf{Appraisals} \ \mathsf{suggestive} \ \mathsf{of} \ \mathsf{another} \ \mathsf{Citizens'} \ \mathsf{lever} \colon \ \mathit{underestimating} \ \mathsf{damages})$

Conclusion

- We show that insurer(s) of last resort use multiple levers to address climate damages
 - Prices + claims management
 - Act similar to private insurers in the wake of a disaster
- Results are timely as private insurers continue to retreat from high risk markets
 - Important for policymakers to understand the mechanisms of these institutions!
 - Nuanced results should help guide where to look
- Stay Tuned: A quantitative model of Citizens with welfare analysis

Thank you!

dtwennin@iu.edu