Algebra de Boole y simplificación de funciones lógicas

Contenido

- 1. Expresiones y operaciones Booleanas
- 2. Propiedades y Reglas del Algebra de Boole
- 3. Teoremas de DeMorgan
- 4. Análisis booleano de circuitos lógicos
- 5. Simplificación mediante el álgebra de Boole
- 6. Formas estándar de las expresiones booleanas
- 7. Mapas de Karnaugh
- 8. Simplificación de una SOPs mediante el mapa de Karnaugh
- 9. Simplificación de un POSs mediante el mapa de Karnaugh

Expresiones y operaciones Booleanas

- Variable: Símbolo que representa magnitudes lógicas. (0 ó 1).
- Complemento: Inverso de la variable. Se representa
 A Ó A′
- **Literal**: Es una variable o el complemento de una variable.

Expresiones y operaciones Booleanas

Suma booleana ≡ OR

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

- Conmutativa
- Asociativa
- Distributiva

Propiedad conmutativa de la suma:

$$A + B = B + A$$

Propiedad conmutativa del producto:

$$A \bullet B = B \bullet A$$

$$\begin{array}{c|c}
A & \\
B & \\
\end{array}
\qquad AB \equiv \begin{array}{c|c}
B & \\
A & \\
\end{array}
\qquad BA$$

Asociativa de la suma:

$$A + (B + C) = (A + B) + C$$

Asociativa del producto:

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

Distributiva:

$$A(B+C) = AB + AC$$

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A \cdot 0 = 0$$

4.
$$A \cdot 1 = A$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \cdot A = A$$

8.
$$A \cdot A = 0$$

9.
$$\overline{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

• Regla 1

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

• Regla 2

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

Regla 3

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 4

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 5

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

Regla 6

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

OR Truth Table

Regla 7

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

Regla 8

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

AND Truth Table

• Regla 9

• Regla 10: A + AB = A

A	В	AB	A + AB	$A \rightarrow \bigcirc$
0	0	0	0	4
0	1	0	0	$B \longrightarrow B$
1	0	0	1	
1	1	1	1	A straight connection

$$A + AB = A (1+B)$$
 Ley distributiva
= $A \cdot 1$ Regla 2: $(1+B)=1$
= A Regla 4: $A \cdot 1=A$

Α	В	Х	Α	В	Χ
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

AND Truth Table

OR Truth Table

• Regla 11: $A + \overline{A}B = A + B$

Α	В	ĀB	A + AB	A + B	$A \longrightarrow$
0	0	0	0	0	
0	1	1	1	1	
1	0	0	1	1	A
1	1	0	1	1	$\stackrel{\cap}{B}$
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	В
			L eqi	ıal ——	

$$A + \overline{A}B = (A + AB) + \overline{A}B$$

$$= (AA + AB) + \overline{A}B$$

$$= (AA + AB) + \overline{A}B$$

$$= AA + AB + \overline{A}A + \overline{A}B$$

$$= (A + \overline{A})(A + B)$$

$$= AB + AB + \overline{A}A + \overline{A}B$$

$$= AB + AB + \overline{A}B + \overline{A}B$$

$$= AB + AB + \overline{A}B$$

$$= AB +$$

= A + B

R4: A.1 = A

Α	В	Х	Α	В	Χ
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

OR Truth Table

AND Truth Table

• Regla 12: (A + B)(A + C) = A + BC

A	В	C	A + B	A + C	(A + B)(A + C)	ВС	A + BC	ATT
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	$C \longrightarrow C$
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	↓
1	0	1	1	1	1	0	1	$A \longrightarrow \bigcap$
1	1	0	1	1	1	0	1	$B \longrightarrow C$
1	1	1	1	1	1	1	1	c
					<u>†</u>	equal ——		

$$(A+B).(A+C) = AA + AC + AB + BC$$
 distributiva
 $= A + AC + AB + BC$ R7: A.A = A
 $= A(1+C) + AB + BC$ factor común
 $= A.1 + AB + BC$ R2:1+C=1
 $= A(1+B) + BC$ factor común
 $= A.1 + BC$ R2:1+B=1
 $= A+BC$ R4: A.1= A

Α	В	Χ	Α	В	Χ
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

OR Truth Table

AND Truth Table

Teoremas de DeMorgan

Teorema 1

$$\overline{XY} = \overline{X} + \overline{Y}$$

• Teorema 2

$$\overline{X+Y} = \overline{X}\overline{Y}$$

Recuerda:

"Parte la barra, cambia la operación"

Analisis booleano de Circuitos

Expresion booleana y tabla de verdad de un circuito lógico

<u>A</u>	В	С	D -	→ A(B+CD)
0	0	0	0	0
		0		0
0	0	1	0	0
•••	•			••••
1	0	1	0	0
1	0	1	1	1
1	1	0	_	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Ejemplo

Ejemplo: Extracción de la expresión booleana de un sistema a partir de su diagrama lógico

A partir del siguiente circuito lógico se nos pide que obtengamos su expresión booleana equivalente.

Ejemplo: Construcción de la Tabla de Verdad a partir de la expresión booleana

- Un circuito lógico puede describirse mediante una tabla de verdad.
- Evaluar la expresión booleana para todas las posibles combinaciones de valores de las variables de entrada

Row	Х	Y	Z	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

Ejemplo

A partir de la siguiente expresión Booleana se nos pide que obtengamos su diagrama lógico equivalente.

$$C = A.B + \overline{\overline{A.B}} + (A + B)$$

Formas estándar de las expresiones booleanas

Suma de productos (SOP)
 Ejemplo: X = AB + BCD + AC

Producto de sumas (POS) Ejemplo: X = (A+B)(B+C+D)(A+C)

- Para cualquier expresión lógica existe una forma estándar SOP y POS equivalente
- Se denominan formas canónica o estándar a las SOP y POS en las que todas las variables aparecen en cada uno de los terminos:

Ejemplo:

$$\overline{A}\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}\overline{D}$$

Conversión SOPs y POS - Tablas de Verdad

Suma de Productos

```
A B C X Producto
0 0 0 0
0 0 1 1 A'B'C
0 1 0 0
0 1 1 0
1 0 0 1 AB'C'
1 0 1 0
1 1 0 0
1 1 1 1 ABC

X = A'B'C + AB'C' + ABC
```

Producto de sumas

```
A B C X Suma

0 0 0 0 (A+B+C)

0 0 1 1

0 1 0 0 (A+B'+C)

0 1 1 0 (A+B'+C')

1 0 0 1

1 0 1 0 (A'+B+C')

1 1 0 0 (A'+B+C')

1 1 1 1

X = (A+B+C) (A+B'+C) (A+B'+C')

(A'+B+C') (A'+B'+C)
```

Forma estándar o canónica

 Cualquier función Booleana se puede expresar como suma de miniterminos (minterms) o como producto de maxiterminos (maxterms) y a estas formas se les dice que están en forma estándar o canónica (el conjunto completo de variables del dominio está representado en cada término).

\boldsymbol{A}	\boldsymbol{B}	C	D	minterms
0	0	0	0	
0	0	1	1	$ar{A}ar{B}C$
0	1	0	0	
0	1	l	0	
1	0	0	1	$Aar{\mathcal{B}}ar{\mathcal{C}}$
1	0	1	0	
1	1	0	0	
1	1	1	1	ABC

A	\boldsymbol{B}	C	D	Maxiterms
0	0	0	0	A + B+ C
0	0	1	1	Λ. Β. Ο
0	1	0	0	A + B'+ C
Ò	1	l	0	A +B'+ C'
1	0	0	1	
1	0	1	0	A'+ B + C'
1	1	0	0	A'+ B' + C
1	1	1	1	

Forma canónica y normalizada

- Se llama término canónico de una función lógica a todo producto o suma de literales en los cuales aparecen todas la variables en su forma directa o complementada.
- Los términos canónicos producto reciben el nombre de "minitérminos"
- Los términos canónicos suma reciben el nombre de "maxitérminos"
- Una función de BOOLE está en forma canónica cuando se expresa como suma de minitérminos o producto de maxotérminos.
- Dos funciones lógicas son equivalentes si, y solo si, sus formas canónicas son idénticas.
- La expresión algebraica en suma de productos o productos de sumas en la que no todos los términos son canónicos recibe el nombre de normalizada

Ejemplos:

$$F_{0} = XY + X'YZ'$$

$$F_{1}(X, Y, Z) = XY + X'YZ'$$

$$F_2(X, Y, Z) = (X' + Y' + Z)(X + Y' + Z)(X + Y + Z)$$
Forma canónica

Forma canónica de la suma de productos

- La metodología empleada en la transformación de una suma de productos a su forma canónica se basa en la regla 6, que establece que una variable sumada con su complemento es siempre igual a 1; A + A' = 1. Los pasos son los siguientes:
 - Los términos producto que no contengan la(s) variable(s) del dominio, multiplicarlos por un término formado por dicha variable más el complemento de la misma (regla 6).
 - Repetir el paso 1 para todos los términos de la expresión que no contengan todas las variables (o sus complementos) del dominio. Resolver los términos intervenidos.
- Ejemplo
 - Convertir la expresión booleana ABC' + BC + A' a su forma canónica.
 - El dominio de la expresión es el conjunto de variables A, B y C. Se observa la falta de formato estándar para el segundo y tercer término producto. Sobre ellos se aplicará el procedimiento, para luego volver a agrupar toda la expresión:
 - Término BC
 - BC = BC \cdot (A+A') = ABC + A'BC
 - Término A'
 - A' = A'(C+C') = A'C+A'C'; la expresión aún no tiene el formato canónico, entonces multiplicamos cada término por (B+B')
 A'C(B+B') +A'C'(B+B') = A'BC + A'B'C + A'BC' + A'B'C'

ABC' + BC + A' = ABC + A'BC + A'BC + A'B'C + A'BC' + A'B'C'

Forma canónica del producto de sumas

- La metodología empleada en la transformaciones de un producto de sumas a su forma canónica se basa en la regla 8, que establece que una variable multiplicada por su complemento es siempre igual a 0; AA' = 0. Los pasos son los siguientes:
 - Los términos suma que no contengan la(s) variable(s) del dominio, sumarlos un término formado por dicha variable y su complemento según regla 8.
 - Aplicar la regla 12: A + BC = (A+B)(A+C)
 - Repetir el paso 1 para todos los términos de la expresión que no contengan todas las variables (o sus complementos) del dominio.
- Ejemplo
 - Convertir la expresión booleana (A+B'+C)(B'+C+D')(A+B'+C+D') a su forma canónica.
 - Término A+B'+C
 - A+B'+C = A+B'+C+DD' = (A+B'+C+D)(A+B'+C+D')
 - Término B'+C+D'
 - B'+C+D' = B'+C+D'+AA' = (A+B'+C+D')(A'+B'+C+D')

$$(A+B'+C)(B'+C+D')(A+B'+C+D') =$$

= $(A+B'+C+D)(A+B'+C+D')(A+B'+C+D')(A'+B'+C+D')$

Simplificación mediante algebra de Boole

La simplificación consiste en implementar una función con el menor número de puertas posible

- Proporcionan un Método sistemático de minimización de expresiones booleanas
- Adecuadamente aplicado proporciona expresiones mínimas SOP o POS
- Es una forma de representación equivalente a la tabla de verdad
- Es la "receta" que emplearemos habitualmente

Método de trabajo Mapas de Karnaugh

• Proporciona un **método sistemático de simplificación** de sentencias booleanas generando expresiones mínimas ('receta de simplificación')

CARACTERÍSTICAS

- Útiles para expresiones de dos, tres, cuatro y cinco variables
 Es una matriz de 2º celdas en la que cada una representa un valor binario de las variables de entrada.
- El orden de los valores en filas y columnas es tal que celdas adyacentes difieren únicamente en una varible
- La simplificación de una determinada expresión consiste en agrupar adecuadamente las celdas
- Un número mayor de variables exige el uso de un método llamado Quine-McClusky

PASOS A SEGUIR

- Obtener la función lógica en suma de productos canónica
- Representar en el mapa de Karnaugh la función algebraica o tabla de verdad que se desee representar
- Agrupar unos (maximizar el tamaño de los grupos minimizando el número es estos):
 - Un grupo tiene que contener 1, 2, 4, 8 o 16 celdas
 - Cada celda del grupo tiene que ser adyacente a una o mas celdas del grupo sin necesidad de que todas las celdas del grupo sean adyacentes entre sí.
 - Incluir siempre en cada grupo el mayor número posible de 1s
 - Cada 1 del mapa tiene que estar incluido en al menos un grupo. Los 1s que ya pertenezcan a un grupo pueden estar incluidos en otro, siempre que los grupos que se solapen contengan 1s no comunes.
- Simplificar:
 - Eliminar variables que aparecen complementadas y sin complementar dentro del mismo grupo

Ejemplo con 3 variables

Con 4 variables

Mapas de Karnaugh para SOPs no estandares

Simplificación de suma de productos mediante mapas de Karnaugh (I)

AB	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1
(d)				

Simplificación de suma de productos mediante mapas de Karnaugh (II)

- Cada grupo da lugar a un termino
- En el término no aparecen las variables que en la tabla aparecen complementadas y no complementadas

- a) AB + BC + A'B'C'
- b) B' + A'C' + AC
- c) A'B + A'C' + AB'D
- d) D' + AB'C + BC'

Simplificación de producto de sumas mediante mapas de Karnaugh (I)

Simplificación de producto de sumas mediante mapas de Karnaugh (II)

(a) Minimum POS: $(A + B + C)(\overline{B} + C + D)(B + C + \overline{D})$

(c) Minimum SOP: $AC + BC + BD + \overline{B}\overline{C}\overline{D}$

Conversión entre SOPs y POSs mediante el mapa de Karnaugh

Simplificación de suma de productos mediante mapas de Karnaugh con condiciones "indiferentes"

Inputs	Output
ABCD	Y
0 0 0 0	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	1
1 0 0 0	1
1 0 0 1	1
1 0 1 0	X
1 0 1 1	X
1 1 0 0	X
1 1 0 1	X
1 1 1 0	X
1111	X

Don't cares

AB = 00 = 01 = 11 = 10 O1 = 1 = 10 ABCD = BCD ABCD = ABCD ABCD = ABCD

(a) Truth table

(b) Without "don't cares" $Y = A\overline{B}\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD