Tóm tắt công thức LT Xác Suất - Thống Kê

- I. Phần Xác Suất
 - 1. Xác suất cổ điển
 - Công thức cộng xác suất: P(A+B)=P(A)+P(B)-P(AB).
 - A_1, A_2, \dots, A_n xung khắc từng đôi $\Leftrightarrow P(A_1 + A_2 + \dots + A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$.
 - Ta có
 - o A, B xung khắc \Leftrightarrow P(A+B)=P(A)+P(B).
 - o A, B, C xung khắc từng đôi \Leftrightarrow P(A+B+C)=P(A)+P(B)+P(C).
 - $\circ P(\overline{A}) = 1 P(A)$.
 - Công thức xác suất có điều kiện: $P(A/B) = \frac{P(AB)}{P(B)}$, $P(B/A) = \frac{P(AB)}{P(A)}$.
 - Công thức nhân xác suất: P(AB)=P(A).P(B/A)=P(B).P(A/B).
 - $A_1, A_2, ..., A_n$ độc lập với nhau $\Leftrightarrow P(A_1.A_2...A_n) = P(A_1).P(A_2)....P(A_n)$.
 - Ta có
 - o A, B độc lập \Leftrightarrow P(AB)=P(A).P(B).
 - o A, B, C độc lập với nhau \Leftrightarrow P(A.B.C)=P(A).P(B).P(C).
 - Công thức Bernoulli: $B(k; n; p) = C_n^k p^k q^{n-k}$, với p=P(A): xác suất để biến cố A xảy ra ở mỗi phép thử và q=1-p.
 - Công thức xác suất đầy đủ Công thức Bayes
 - Hệ biến cố gồm n phần tử A₁, A₂,..., A_n được gọi là một phép phân

hoạch của
$$\Omega \iff \begin{cases} A_i.A_j = \Phi, \, \forall i \neq j; i,j \in \overline{1,n} \\ A_1 + A_2 + ... + A_n = \Omega \end{cases}$$

Công thức xác suất đầy đủ:

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B \mid A_i) = P(A_1) \cdot P(B \mid A_1) + P(A_2) \cdot P(B \mid A_2) + \dots + P(A_n) \cdot P(B \mid A_n)$$

o Công thức Bayes:

$$P(A_i / B) = \frac{P(A_i).P(B / A_i)}{P(B)}$$

với
$$P(B) = P(A_1).P(B \mid A_1) + P(A_2).P(B \mid A_2) + ... + P(A_n).P(B \mid A_n)$$

- 2. Biến ngẫu nhiên
 - a. Biến ngẫu nhiên rời rạc
 - Luât phân phối xác suất

X	\mathbf{x}_1	X2	 Xn
P	p_1	p_2	 p_n

với
$$p_i = P(X = x_i), i = \overline{1, n}.$$

Ta có:

$$\sum_{i=1}^{n} p_i = 1 \text{ và } P\{a \le f(X) \le b\} = \sum_{a \le f(x_i) \le b} p_i$$

Hàm phân phối xác suất

$$F_X(x) = P(X \le x) = \sum_{x_i \le x} p_i$$

 $ModX = x_k \Leftrightarrow p_k = max\{p_i : i = \overline{1, n}\}$

Median

$$MedX = x_k \Leftrightarrow \begin{cases} P(X < x_k) \le 0.5 \\ P(X > x_k) \le 0.5 \end{cases} \Leftrightarrow \begin{cases} \sum_{x_i < x_k} p_i \le 0.5 \\ \sum_{x_i > x_k} p_i \le 0.5 \end{cases}$$

Kỳ vọng

$$EX = \sum_{i=1}^{n} (x_i . p_i) = x_1 . p_1 + x_2 . p_2 + \dots + x_n . p_n$$

$$E(\varphi(X)) = \sum_{i=1}^{n} (\varphi(x_i) . p_i) = \varphi(x_1) . p_1 + \varphi(x_2) . p_2 + \dots + \varphi(x_n) . p_n$$

Phương sai

$$VarX = E(X^2) - (EX)^2$$

với $E(X^2) = \sum_{i=1}^{n} (x_i^2 . p_i) = x_1^2 . p_1 + x_2^2 . p_2 + ... + x_n^2 . p_n$

- b. Biến ngẫu nhiên liên tục.
 - f(x) là hàm mật độ xác suất của $X \Rightarrow \int_{-\infty}^{+\infty} f(x)dx = 1$,

$$P\{a \le X \le b\} = \int_{a}^{b} f(x).dx$$

• Hàm phân phối xác suất

$$F_X(x) = P(X \le x) = \int_{0}^{x} f(t)dt$$

 $ModX = x_0 \Leftrightarrow \text{Hàm mật độ xác suất } f(x)$ của X đạt cực đại tại x_0 .

• Median

$$MedX = x_e \Leftrightarrow F_X(x_e) = \frac{1}{2} \Leftrightarrow \int_{-\infty}^{x_e} f(x)dx = \frac{1}{2}.$$

Kỳ vọng

$$EX = \int_{-\infty}^{+\infty} x. f(x) dx.$$

$$EX = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

$$E(\varphi(X)) = \int_{-\infty}^{+\infty} \varphi(x) \cdot f(x) dx$$

• Phương sai

$$VarX = E(X^2) - (EX)^2$$
 với $EX^2 = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx$.

- c. Tính chất
 - E(C) = C, Var(C) = 0, C là một hằng số.
 - $E(kX) = kEX, Var(kX) = k^2 VarX$
 - E(aX + bY) = aEX + bEY
 - Nếu X, Y độc lập thì $E(XY) = EX.EY, Var(aX + bY) = a^2VarX + b^2VarY$
 - $\sigma(X) = \sqrt{VarX}$: Độ lệch chuẩn của X, có cùng thứ nguyên với X và EX.
- 3. Luật phân phối xác suất
 - a. Phân phối Chuẩn (Normal Distribution) $(X \sim N(\mu; \sigma^2))$
 - $X(\Omega) = \mathbb{R}$, EX=ModX=MedX= μ , $VarX = \sigma^2$
 - Hàm mđxs $f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - Với $\mu = 0, \sigma = 1$: $X \sim N(0,1)$ (Standard Normal Distribution) có hàm mđxs $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ (Hàm Gauss)
 - $P(a \le X \le b) = \varphi(\frac{b-\mu}{\sigma}) \varphi(\frac{a-\mu}{\sigma})$ với $\varphi(x) = \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ (Hàm Laplace)

 Cách sử dụng máy tính bỏ túi để tính giá trị hàm Laplace, hàm phân phối xác suất của phân phối chuẩn chuẩn tắc

Tác vụ	Máy 570MS	Máy 570ES	Máy 570 ES Plus
Khởi động gói Thống kê	Mode Mode	Mode STAT 1-Var	Mode STAT 1-Var
	SD	AC	AC
Tính			
$\varphi(z) = \int_{0}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$	Shift 3 2 z) =	Shift 1 7 2 z) =	Shift 1 5 2 z) =
$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$	Shift 3 1 z) =	Shift 1 7 1 z) =	Shift 1 5 1 z) =
Thoát gói Thống kê	Mode 1	Mode 1	Mode 1

Luu \dot{y} : $F(z) = 0, 5 + \varphi(z)$

Excel:

$$\begin{split} f(x,\mu,\sigma) &= NormDist(x,\mu,\sigma,0) \\ f(x,0,1) &= NormDist(x,0,1,0) \\ \phi(x) &= P(0 \leq X \leq x) = NormDist(x,0,1,1) - 0.5 = NormSDist(x) - 0.5 \\ P(a \leq X \leq b) &= NormDist(b,0,1,1) - NormDist(a,0,1,1) = NormSDist(b) - NormSDist(a) \\ \phi^{-1}(z) &= NormInv(z+0.5,0,1) = NormSInv(z+0.5) \end{split}$$

- b. Phân phối Poisson (Poisson Distribution) $(X \sim P(\lambda))$
 - $X(\Omega) = \mathbb{N}$, $EX = VarX = \lambda$. $ModX = k \Leftrightarrow \lambda 1 \leq k \leq \lambda$
 - $P(X=k)=e^{-\lambda}\frac{\lambda^k}{k!}, k \in \mathbb{N}$

Excel:

 $P(X = k) = Poisson(k, \lambda, 0)$

$$P(X \le k) = Poisson(k, \lambda, 1)$$

 $P(a < X \le b) = Poisson(b, \lambda, 1) - Poisson(a, \lambda, 1)$

- c. Phân phối Nhị thức (Binomial Distribution) $(X \sim B(n; p))$
 - $X(\Omega) = \{0..n\}$, EX=np, VarX=npq, ModX=k \Leftrightarrow $(n+1)p-1 \le k \le (n+1)p$
 - $P(X=k)=C_n^k.p^k.q^{n-k}, q=1-p, 0 \le k \le n, k \in \mathbb{N}$
 - Nếu $(n \ge 30; 0, 1 thì <math>X \sim B(n; p) \approx N(\mu; \sigma^2)$ với $\mu = n.p, \sigma = \sqrt{npq}$
 - $P(X=k) \approx \frac{1}{\sigma} f(\frac{k-\mu}{\sigma}), \ 0 \le k \le n, \ k \in \mathbb{N}$
 - $P(a \le X \le b) \approx \varphi(\frac{b-\mu}{G}) \varphi(\frac{a-\mu}{G})$
 - Nếu $(n \ge 30, p \le 0, 1, np < 5)$ thì $X \sim B(n; p) \approx P(\lambda)$ với $\lambda = np$
 - $P(X=k) \approx e^{-\lambda} \frac{\lambda^k}{k!}, \ k \in \mathbb{N}$
 - Nếu $(n \ge 30, p \ge 0, 9, nq < 5)$

$$P(X=k) \approx e^{-\lambda} \frac{\lambda^{n-k}}{(n-k)!}, k \in \mathbb{R} \text{ v\'oi } \lambda = nq$$

Excel:

P(X = k) = BinomDist(k, n, p, 0)

 $P(X \le b) = BinomDist(b, n, p, 1)$

 $P(a < X \le b) = BinomDist(b, n, p, 1) - BinomDist(a, n, p, 1)$

- d. Phân phối Siêu bội (HyperGeometric Distribution) $(X \sim H(N; N_4; n))$
 - $X(\Omega) = \{ \max\{0; n (N N_A)\} ... \min\{n; N_A\} \}$

• EX=np, VarX=npq
$$\frac{N-n}{N-1}$$
 với $p = \frac{N_A}{N}$, q=1-p.

$$\bullet \quad ModX = k \Leftrightarrow \frac{(N_{\scriptscriptstyle A} + 1)(n+1) + 2}{N+2} - 1 \leq k \leq \frac{(N_{\scriptscriptstyle A} + 1)(n+1) + 2}{N+2} \; .$$

•
$$P(X=k)=\frac{C_{N_A}^k C_{N-N_A}^{n-k}}{C_N^n}, \ k \in X(\Omega)$$

$$\begin{split} \bullet \quad & \text{N\'eu} \ \frac{N}{n} > 20 \ \text{thì} \ X \sim H(N; N_A; n) \approx B(n; p) \ \text{v\'oi} \ \ p = \frac{N_A}{N} \ . \\ & P(X = \mathbf{k}) \approx \mathbf{C}_n^k \cdot p^k \cdot q^{n-k}, \ k \in X(\Omega), \ q = 1 - p \ . \end{split}$$

Excel:

$$P(X = k) = HypGeomDist(k, n, N, N_A)$$

Sơ đồ tóm tắt các dạng phân phối xác suất thông dụng:

II. Phần Thống Kê.

- 1. Lý thuyết mẫu.
 - a. Các công thức cơ bản.

Các giá trị đặc trưng	Mẫu ngẫu nhiên	Mẫu cụ thể
Giá trị trung bình	$\overline{X} = \frac{X_1 + \dots + X_n}{n}$	$\overline{x} = \frac{x_1 + \dots + x_n}{n}$
Phương sai không hiệu chính	$\hat{S}_X^2 = \frac{(X_1 - \bar{X})^2 + \dots + (X_n - \bar{X})^2}{n}$	$\hat{s}_{x}^{2} = \frac{(x_{1} - \overline{x})^{2} + + (x_{n} - \overline{x})^{2}}{n}$
Phương sai hiệu chỉnh	$S_X^2 = \frac{(X_1 - \overline{X})^2 + + (X_n - \overline{X})^2}{n-1}$	$s_x^2 = \frac{(x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}$

b. Để dễ xử lý ta viết số liệu của mẫu cụ thể dưới dạng tần số như sau:

\mathcal{X}_{i}	x_1	x_2	•••	x_k
n_{i}	n_1	n_2	•••	n_{k}

Khi đó

Các giá trị đặc trưng	Mẫu cụ thể
Giá trị trung bình	$\overline{x} = \frac{x_1 n_1 + \dots + x_k n_k}{n}$
Phương sai không hiệu chỉnh	$\hat{s}_{x}^{2} = \frac{(x_{1} - \overline{x})^{2} n_{1} + \dots + (x_{k} - \overline{x})^{2} n_{k}}{n}$
Phương sai hiệu chỉnh	$s_x^2 = \frac{(x_1 - \overline{x})^2 n_1 + \dots + (x_k - \overline{x})^2 n_k}{n - 1}$

- c. Phân tổ thống kê
- Việc phân tổ thống kê chủ yếu dựa vào phân tích và kinh nghiệm. Tuy nhiên thông nếu kích thước mẫu khảo sát là n thì ta có thể phân làm k tổ với

$$k = \left\lceil \sqrt[3]{2n} \right\rceil + 1$$
, với $\left\lfloor x \right\rfloor$ là phần nguyên của x.

- Trường hợp phân tổ đều ta được khoảng cách mỗi tổ là $h=rac{x_{
 m max}-x_{
 m min}}{k}$.
- d. Sử dụng máy tính bỏ túi để tính các giá trị đặc trưng mẫu
- Nếu số liệu thống kê thu thập theo miền [a;b) hay (a;b] thì ta sử dụng giá trị đại diện cho miền đó là $\frac{a+b}{2}$ để tính toán.

Tác vụ	570MS	570	DES	
Bật chế độ nhập tần số	Không cần	Shift Mo	de ↓ 4 1	
Khởi động gói Thống kê	Mode Mode SD	Mode ST	AT 1-Var	
Nhập số liệu	x_1 Shift, n_1 M+ \vdots x_k Shift, n_k M+ \vdots $X_1 = \vdots$ \vdots $X_k = \vdots$		FREQ $n_1 = \\ \vdots \\ n_k =$	
Xóa màn hình hiển thị	AC	AC		
Xác định: • Kích thước mẫu (n) • Giá trị trung bình	Shift 1 3 =	Shift 1 5 1 =		
(\overline{x})	Shift 2 1 =	Shift 1 5 2 =		
• Độ lệch chuẩn không hiệu chỉnh (\hat{s}_x)	Shift 2 2 =	Shift 1 5 3 =		
• Độ lệch chuẩn hiệu chỉnh (s_x)	Shift 2 3 =	Shift 1 5 4 =		
Thoát khỏi gói Thống kê	Mode 1	Mod	de 1	

2. Khoảng tin cậy.

a) Khoảng tin cậy cho giá trị trung bình của tổng thể.

Trường hợp 1. (σ đã biết)

• Khoảng tin cậy đối xứng.

$$\varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} \to z_{\underline{\alpha}} \Longrightarrow \varepsilon = z_{\underline{\alpha}} \cdot \frac{\sigma}{\sqrt{n}} \Longrightarrow (\overline{x} - \varepsilon; \overline{x} + \varepsilon)$$

• Khoảng tin cậy bên trái.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \Rightarrow (-\infty; \overline{x} + \varepsilon)$$

• Khoảng tin cậy bên phải.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \to z_{\alpha} \Longrightarrow \varepsilon = z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \Longrightarrow (\overline{x} - \varepsilon; +\infty)$$

<u>Trường hợp 2</u>. (σ chưa biết, $n \ge 30$)

• Khoảng tin cậy đối xứng.

$$\varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} \to z_{\underline{\alpha}} \Rightarrow \varepsilon = z_{\underline{\alpha}} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; \overline{x} + \varepsilon)$$

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{s}{\sqrt{n}} \Rightarrow (-\infty; \overline{x} + \varepsilon)$$

- 9 -

• Khoảng tin cậy bên phải.

Khoảng tin cậy bên trái.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; +\infty)$$

<u>Trường hợp 3</u>. (σ chưa biết, n<30)

Khoảng tin cậy đối xứng.

$$1-\alpha \to \frac{\alpha}{2} \to t_{(n-1;\frac{\alpha}{2})} \Longrightarrow \varepsilon = t_{(n-1;\frac{\alpha}{2})} \cdot \frac{s}{\sqrt{n}} \Longrightarrow (\overline{x} - \varepsilon; \overline{x} + \varepsilon)$$

• Khoảng tin cậy bên trái.

$$1-\alpha \to \alpha \to t_{(n-1;\alpha)} \Rightarrow \varepsilon = t_{(n-1;\alpha)} \cdot \frac{s}{\sqrt{n}} \Rightarrow (-\infty; \overline{x} + \varepsilon)$$

• Khoảng tin cậy bên phải.

$$1-\alpha \to \alpha \to t_{(n-1;\alpha)} \Rightarrow \varepsilon = t_{(n-1;\alpha)} \cdot \frac{s}{\sqrt{n}} \Rightarrow (\overline{x} - \varepsilon; +\infty)$$

- b) Khoảng tin cậy cho tỉ lệ của tổng thể.
 - Khoảng tin cậy đối xứng.

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}} \Rightarrow \varepsilon = z_{\frac{\alpha}{2}} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (f-\varepsilon; f+\varepsilon)$$

• Khoảng tin cậy bên trái.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \to z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (0; f + \varepsilon)$$

• Khoảng tin cậy bên phải.

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha} \Rightarrow \varepsilon = z_{\alpha} \cdot \frac{\sqrt{f(1-f)}}{\sqrt{n}} \Rightarrow (f - \varepsilon; 1)$$

c) Khoảng tin cậy cho phương sai của tổng thể.

<u>Trường hợp 1</u>. (μ chưa biết)

- Nếu đề bài chưa cho s mà cho mẫu cụ thể thì phải xác định s² (bằng máy tính bỏ túi).
 - Khoảng tin cậy 2 phía.

$$\alpha \to \chi_1^2 = \chi^2_{(n-1;1-\frac{\alpha}{2})}, \ \chi_2^2 = \chi^2_{(n-1;\frac{\alpha}{2})}$$
$$\Rightarrow (\frac{(n-1)s^2}{\chi_2^2}; \frac{(n-1)s^2}{\chi_1^2})$$

• Khoảng tin cậy bên trái.

$$\alpha \rightarrow \chi_1^2 = \chi^2_{(n-1;1-\alpha)} \Rightarrow (0;\frac{(n-1)s^2}{\chi_1^2})$$

• Khoảng tin cậy bên phải.

$$\alpha \to \chi_2^2 = \chi_{(n-1;\alpha)}^2 \Rightarrow (\frac{(n-1)s^2}{\chi_2^2}; +\infty)$$

Trường hợp 2. (µ đã biết)

- Tính
$$(n-1)s^2 = \sum_{i=1}^k n_i \cdot (x_i - \mu)^2$$

• Khoảng tin cậy 2 phía.

$$\alpha \to \chi_2^2 = \chi^2_{(n;\frac{\alpha}{2})}, \ \chi_1^2 = \chi^2_{(n;1-\frac{\alpha}{2})}$$
$$\Rightarrow (\frac{(n-1)s^2}{\chi_2^2}; \frac{(n-1)s^2}{\chi_1^2})$$

• Khoảng tin cậy bên trái.

$$\alpha \rightarrow \chi_1^2 = \chi_{(n;1-\alpha)}^2 \Rightarrow (0;\frac{(n-1)s^2}{\chi_1^2})$$

• Khoảng tin cậy bên phải.

$$\alpha \to \chi_2^2 = \chi_{(n;\alpha)}^2 \Rightarrow (\frac{(n-1)s^2}{\chi_2^2}; +\infty)$$

3. Kiểm định giả thuyết thống kê.

a) Kiểm định giả thuyết thống kê về giá trị trung bình của tổng thể. Trường hợp 1. (σ đã biết)

 $H_o: \mu = \mu_o, H_1: \mu \neq \mu_o$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, z = \frac{\overline{x} - \mu_o}{\sigma}.\sqrt{n}$$

- Nếu
$$|z| > z_{\frac{\alpha}{2}}$$
: Bác bỏ H_o.

- Nếu
$$|z| \le z_{\frac{\alpha}{2}}$$
: Chấp nhận H_0 .

• $H_o: \mu = \mu_o, H_1: \mu < \mu_o$

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha}, z = \frac{\overline{x} - \mu_{o}}{\sigma}.\sqrt{n}$$

- Nếu
$$z < -z_{\alpha}$$
: Bác bỏ H_{o} .

- Nếu
$$z \ge -z_{\alpha}$$
: Chấp nhận H_0 .

• $H_o: \mu = \mu_o, H_1: \mu > \mu_o$

$$\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha}, z = \frac{\overline{x} - \mu_{o}}{\sigma}.\sqrt{n}$$

- Nếu
$$z > z_{\alpha}$$
: Bác bỏ H_o.

- Nếu
$$z \le z_{\alpha}$$
: Chấp nhận H_0 .

Trường hợp 2. (σ chưa biết, $n \ge 30$)

•
$$H_o: \mu = \mu_o, H_1: \mu \neq \mu_o$$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \rightarrow z_{\frac{\alpha}{2}}, z = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$$
- Nếu $|z| > z_{\frac{\alpha}{2}}$: Bác bỏ H_o .
- Nếu $|z| \le z_{\frac{\alpha}{2}}$: Chấp nhận H_o .

$$\begin{split} \bullet & \quad H_o: \mu = \mu_o, H_1: \mu < \mu_o \\ \varphi(z_\alpha) &= 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x} - \mu_o}{s}.\sqrt{n} \\ - & \quad \text{N\'eu } z < -z_\alpha: \text{B\'ac b\'o H}_o. \\ - & \quad \text{N\'eu } z \geq -z_\alpha: \text{Ch\'ap nhận H}_o. \end{split}$$

•
$$H_o: \mu = \mu_o, H_1: \mu > \mu_o$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$$
 - Nếu $z > z_\alpha$: Bác bỏ H_o .
- Nếu $z \le z_\alpha$: Chấp nhận H_o .

Trường hợp 3. (σ chưa biết, n<30)

•
$$H_o: \mu = \mu_o, H_1: \mu \neq \mu_o$$

$$\alpha \to \frac{\alpha}{2} \to t_{(n-1;\frac{\alpha}{2})}, t = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$$
• Nếu $|t| > t_{(n-1;\frac{\alpha}{2})}$: Bác bỏ H_o .
• Nếu $|t| \le t_{(n-1;\frac{\alpha}{2})}$: Chấp nhận H_o .

•
$$H_o: \mu = \mu_o, H_1: \mu < \mu_o$$

$$\alpha \rightarrow t_{(n-1;\alpha)}, t = \frac{\overline{x} - \mu_o}{s}.\sqrt{n}$$
- Nếu $t < -t_{(n-1;\alpha)}$: Bác bỏ H_o .
- Nếu $t \ge -t_{(n-1;\alpha)}$: Chấp nhận H_o .

$$\begin{split} \bullet & \quad H_o: \mu = \mu_o, H_1: \mu > \mu_o \\ & \quad \alpha \to t_{(n-1;\alpha)}, t = \frac{\overline{x} - \mu_o}{s}.\sqrt{n} \\ & \quad - \text{N\'eu } t > t_{(n-1;\alpha)}: \text{B\'ac b\'o H}_o. \\ & \quad - \text{N\'eu } t \leq t_{(n-1;\alpha)}: \text{Ch\'ap nhận H}_o. \end{split}$$

b) Kiểm định giả thuyết thống kê về tỉ lệ của tổng thể.

$$\begin{split} \bullet & \quad H_o: p = p_o, H_1: p \neq p_o \\ \varphi(z_{\underline{\alpha}}) = \frac{1-\alpha}{2} & \rightarrow z_{\underline{\alpha}}, f = \frac{k}{n}, z = \frac{f-p_o}{\sqrt{p_o(1-p_o)}}.\sqrt{n} \\ - & \quad \text{N\'eu} \ |z| > z_{\underline{\alpha}}: \text{B\'ac b\'o} \ \text{H}_o. \end{split}$$

- Nếu $\left|z\right| \le z_{\frac{\alpha}{2}}$: Chấp nhận H_{o} .

•
$$H_o: p = p_o, H_1: p < p_o$$

 $\varphi(z_\alpha) = 0.5 - \alpha \rightarrow z_\alpha, f = \frac{k}{n}, z = \frac{f - p_o}{\sqrt{p_o(1 - p_o)}}.\sqrt{n}$

- Nếu $z < -z_{\alpha}$: Bác bỏ H_{o} .

- Nếu $z \ge -z_{\alpha}$: Chấp nhận H_o.

•
$$H_o: p = p_o, H_1: p > p_o$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, f = \frac{k}{n}, z = \frac{f - p_o}{\sqrt{p_o(1 - p_o)}}.\sqrt{n}$$

- Nếu $z > z_{\alpha}$: Bác bỏ H_o.

- Nếu $z \le z_{\alpha}$: Chấp nhận H_{o} .

c) Kiểm định giả thuyết thống kê về phương sai của tổng thể.

Trường hợp 1. (μ chưa biết)

- Nếu đề chưa cho s mà cho mẫu cụ thể thì phải sử dụng máy tính để xác định s.

•
$$H_o: \sigma^2 = \sigma_o^2, H_1: \sigma^2 \neq \sigma_o^2$$

$$\alpha \to \chi_1^2 = \chi^2_{(n-1;1-\frac{\alpha}{2})}, \ \chi_2^2 = \chi^2_{(n-1;\frac{\alpha}{2})}, \ \chi^2 = \frac{(n-1)s^2}{\sigma_o^2}$$
- Nếu $\begin{bmatrix} \chi^2 > \chi_2^2 \\ \chi^2 < \chi_1^2 \end{bmatrix}$: Bác bỏ H_0 .
- Nếu $\chi_1^2 \le \chi^2 \le \chi_2^2$: Chấp nhân H_0 .

•
$$H_o: \sigma^2 = \sigma_o^2, H_1: \sigma^2 < \sigma_o^2$$

 $\alpha \to \chi_1^2 = \chi_{(n-1;1-\alpha)}^2, \ \chi^2 = \frac{(n-1)s^2}{\sigma_o^2}$

- Nếu $\chi^2 < \chi_1^2$: Bác bỏ H_0 .

- Nếu $\chi^2 \ge \chi_1^2$: Chấp nhân H_0 .

•
$$H_o: \sigma^2 = \sigma_o^2, H_1: \sigma^2 > \sigma_o^2$$

 $\alpha \to \chi_2^2 = \chi_{(n-1;\alpha)}^2, \ \chi^2 = \frac{(n-1)s^2}{\sigma_o^2}$

- Nếu
$$\chi^2 > \chi_2^2$$
: Bác bỏ H_0 .

- Nếu
$$\chi^2 \le \chi_2^2$$
: Chấp nhận H_o .

4. Kiểm định giả thuyết thống kê: So sánh tham số của 2 tổng thể.

a) Kiểm định giả thuyết thống kê: So sánh giá trị trung bình của 2 tổng thể. Trường hợp 1. (σ_1 , σ_2 đã biết)

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Nếu
$$z > z_{\frac{\alpha}{2}}$$
: Bác bỏ H_o.

- Nếu
$$\left|z\right| \leq z_{\frac{\alpha}{2}}$$
: Chấp nhận H_{o} .

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Nếu
$$z < -z_{\alpha}$$
: Bác bỏ H_{o} .

- Nếu
$$z \ge -z_{\alpha}$$
: Chấp nhận H_o.

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- Nếu
$$z > z_{\alpha}$$
: Bác bỏ H_o.

- Nếu
$$z \le z_{\alpha}$$
: Chấp nhận H_o .

<u>Trường hợp 2</u>. $(\sigma_1, \sigma_2 \text{ chưa biết}, n_1, n_2 \ge 30)$

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Nếu
$$\left|z\right|>z_{\frac{\alpha}{2}}$$
: Bác bỏ H_o.

- Nếu
$$|z| \le z_{\frac{\alpha}{2}}$$
: Chấp nhận H_0 .

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Nếu $z < -z_{\alpha}$: Bác bỏ H_0 .

- Nếu $z \ge -z_{\alpha}$: Chấp nhận H_o.

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$$

$$\varphi(z_\alpha) = 0, 5 - \alpha \rightarrow z_\alpha, z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- Nếu $z > z_{\alpha}$: Bác bỏ H_o.

- Nếu $z \le z_{\alpha}$: Chấp nhận H_o.

<u>Trường họp 3</u>. ($\sigma_1 = \sigma_2$ chưa biết, $n_1, n_2 < 30$)

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$$

$$\alpha \to \frac{\alpha}{2} \to t_{(n_1 + n_2 - 2; \frac{\alpha}{2})}, t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ v\'oi } s^2 = \frac{(n_1 - 1).s_1^2 + (n_2 - 1).s_2^2}{n_1 + n_2 - 2}$$

- Nếu
$$\left|t\right| > t_{(n_1+n_2-2;\frac{\alpha}{2})}$$
: Bác bỏ $\mathbf{H}_{\mathbf{0}}$.

- Nếu
$$|t| \le t$$
 $(n_1 + n_2 - 2; \frac{\alpha}{2})$: Chấp nhận H_0 .

•
$$H_o: \mu_1 = \mu_2, H_1: \mu_1 < \mu_2$$

$$\alpha \to t_{(n_1+n_2-2;\alpha)}, t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ v\'oi } s^2 = \frac{(n_1 - 1).s_1^2 + (n_2 - 1).s_2^2}{n_1 + n_2 - 2}$$

- Nếu
$$t < -t_{(n_1+n_2-2;\frac{\alpha}{2})}$$
: Bác bỏ H_0 .

- Nếu
$$t \ge -t$$
 $(n_1+n_2-2;\frac{\alpha}{2})$: Chấp nhận H_0 .

•
$$H_0: \mu_1 = \mu_2, H_1: \mu_1 > \mu_2$$

$$\alpha \to t_{(n_1+n_2-2;\alpha)}, t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2(\frac{1}{n_1} + \frac{1}{n_2})}}, \text{ v\'oi } s^2 = \frac{(n_1 - 1).s_1^2 + (n_2 - 1).s_2^2}{n_1 + n_2 - 2}$$

- Nếu
$$t > t$$
 : Bác bỏ H_o .

- Nếu
$$t \le t$$
 Chấp nhận H_o .

b) Kiểm định giả thuyết thống kê: So sánh tỉ lệ của 2 tổng thể.

$$f_1 = \frac{k_1}{n_1}, f_2 = \frac{k_2}{n_2}, f = \frac{k_1 + k_2}{n_1 + n_2}$$

• $H_o: p_1 = p_2, H_1: p_1 \neq p_2$

$$\varphi(z_{\frac{\alpha}{2}}) = \frac{1-\alpha}{2} \to z_{\frac{\alpha}{2}}, \quad z = \frac{f_1 - f_2}{\sqrt{f(1-f).(\frac{1}{n_1} + \frac{1}{n_2})}}$$

- Nếu $|z| > z_{\frac{\alpha}{2}}$: Bác bỏ H_o.
- Nếu $|z| \le z_{\frac{\alpha}{2}}$: Chấp nhận $H_{0.}$
- $H_o: p_1 = p_2, H_1: p_1 < p_2$ $\varphi(z_\alpha) = 0, 5 - \alpha \to z_\alpha, z = \frac{f_1 - f_2}{\sqrt{f(1 - f).(\frac{1}{p_1} + \frac{1}{p_2})}}$
 - Nếu $z < -z_{\alpha}$: Bác bỏ H_0 .
 - Nếu $z \ge -z_{\alpha}$: Chấp nhận H_o.
- $H_o: p_1 = p_2, H_1: p_1 > p_2$ $\varphi(z_{\alpha}) = 0, 5 - \alpha \rightarrow z_{\alpha}, z = \frac{f_1 - f_2}{\sqrt{f(1 - f).(\frac{1}{p_1} + \frac{1}{p_2})}}$
 - Nếu $z > z_{\alpha}$: Bác bỏ H_o.
 - Nếu $z \le z_{\alpha}$: Chấp nhận H_0 .
- c. Kiểm định giả thuyết thống kê: So sánh phương sai của 2 tổng thể.
 - μ_1, μ_2 chưa biết nên tính s_1 và s_2 từ mẫu (sử dụng máy tính) nếu đề bài chưa cho.

•
$$H_o: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$$

• $F = \frac{s_1^2}{s_2^2}, F_1 = F(n_1 - 1; n_2 - 1; 1 - \frac{\alpha}{2}), F_2 = F(n_1 - 1; n_2 - 1; \frac{\alpha}{2})$
• Nếu $\begin{bmatrix} F < F_1 \\ F > F_2 \end{bmatrix}$: Bác bỏ H_o .

- Nếu $F_1 \le F \le F_2$: Chấp nhận H_0 .
- $H_o: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 < \sigma_2^2$ • $F = \frac{s_1^2}{s_2^2}, F_1 = F(n_1 - 1; n_2 - 1; 1 - \alpha)$
 - Nếu $F < F_1$: Bác bỏ H_0 .
 - Nếu $F_1 \le F$: Chấp nhận H_0 .

•
$$H_o: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$$

- $F = \frac{s_1^2}{s_2^2}, F_2 = F(n_1 - 1; n_2 - 1; \alpha)$
- Nếu $F > F_2$: Bác bỏ H_o .
- Nếu $F \le F_2$: Chấp nhận H_o .

5. Hệ số tương quan mẫu và phương trình hồi quy tuyến tính mẫu.

a. Hệ số tương quan mẫu:
$$r = \frac{n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sqrt{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \sqrt{n\sum_{i=1}^{n} y_{i}^{2} - (\sum_{i=1}^{n} y_{i})^{2}}}$$

Phương trình hồi quy tuyến tính mẫu: $\hat{y} = A + Bx$

với
$$B = \frac{n\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$
 và $A = \frac{\sum_{i=1}^{n} y_i - B \cdot \sum_{i=1}^{n} x_i}{n}$.

b. Trong trường hợp sử dụng bảng tần số:

\mathcal{X}_{i}	x_1	x_2		x_k
\mathcal{Y}_i	\mathcal{Y}_1	\mathcal{Y}_2	•••	${\mathcal Y}_k$
n_{i}	n_1	n_2		n_k

Ta tính theo công thức thu gọn như sau:

Hệ số tương quan mẫu:
$$r = \frac{n \sum_{i=1}^k n_i x_i y_i - \sum_{i=1}^k n_i x_i \sum_{i=1}^k n_i y_i}{\sqrt{n \sum_{i=1}^k n_i x_i^2 - (\sum_{i=1}^k n_i x_i)^2} \sqrt{n \sum_{i=1}^k n_i y_i^2 - (\sum_{i=1}^k n_i y_i)^2}}$$

Phương trình hồi quy tuyến tính mẫu: $\hat{y} = A + B\mathbf{x}$ với

Phương trình hoi quy tuyên tinh mau:
$$y = A + Bx$$
 với
$$B = \frac{n\sum_{i=1}^{k} n_i x_i y_i - \sum_{i=1}^{k} n_i x_i \sum_{i=1}^{k} n_i y_i}{n\sum_{i=1}^{k} n_i x_i^2 - (\sum_{i=1}^{k} n_i x_i)^2} \text{ và } A = \frac{\sum_{i=1}^{k} n_i y_i - B \cdot \sum_{i=1}^{k} n_i x_i}{n}.$$

c. Sử dụng máy tính bỏ túi để tính hệ số tương quan mẫu và phương trình hồi quy tuyến tính mẫu:

Tác vụ	CASIO 5	70MS	CA	CASIO 570ES		
Bật chế độ nhập tần số	Không	cần	Shift Mode ↓ 4 1		↓ 41	
Khởi động gói Hồi quy tuyến tính	Mode Mode Reg Lin		Mode STAT A+BX			
Nhập số liệu	x_1 , y_1 Shift, n_1 M+ \vdots x_k , y_k Shift, n_k M+ $n_i = 1$ thì chỉ cần nhấn		$\begin{array}{c c} X \\ x_1 = \\ \vdots \\ x_k = \end{array}$	$\begin{array}{c c} Y \\ y_1 = \\ \vdots \\ y_k = \end{array}$	FREQ $n_1 = \vdots \\ n_k = \dots$	
	x_i , y_i M+					
Xóa màn hình hiển thị	AC		AC			
Xác định: • Hệ số tương quan mẫu (r)	Shift 2	3 =	Shift 1 7 3 =		3 =	
 Hệ số hàng: A Hệ số ẩn (x): B 	Shift 2	1 =	Shift 1 7 1 = Shift 1 7 2 =			
	Shift 2	2 =				
Thoát khỏi gói Hồi quy	Mode	1	Mode 1			

Lwu ý: Máy ES nếu đã kích hoạt chế độ nhập tần số ở phần Lý thuyết mẫu rồi thì không cần kích hoạt nữa.

.....