Normal Forms (Chomsky, Greibach) for CFGs

(A) Eliminate useless symbols

Definition

A symbol $X \in V \cup T$ is called:

- generating if $X \Rightarrow^* z$ for some $z \in T^*$
- reachable if $S \Rightarrow^* \alpha X \beta$ for some $\alpha, \beta \in (V \cup T)^*$
- useful if it is both generating and reachable

Example

$$S \rightarrow AB \mid a ; B \rightarrow b ; C \rightarrow cD \mid b$$

A is non-generating; C is non-reachable;

D is both non-reachable and non-generating

Algorithm for eliminating useless symbols

Given a CFG G = (V, T, R, S)

(1) Eliminate all **non-generating** symbols to end up in the CFG : $G1 = (V_1, T_1, R_1, S)$.

Do this by the following inductive method:

Basis: Elements of **T** are **generating** by definition of zero step derivation.

Induction: If for a production $A \rightarrow \alpha$ all the elements of α are **generating** or $\alpha = e$ then A is generating.

If X is non-generating then remove all productions of the form $X \to \alpha$ and $C \to \alpha X \beta$

(2) Eliminate all **non-reachable** symbols to end up in the CFG : $G2 = (V_2, T_2, R_2, S)$.

Basis: S is reachable by definition.

<u>Induction</u>: If within a production $A \to \alpha$, A is reachable then all the elements of α are reachable If X is non-reachable then remove all productions of the form $X \to \alpha$

Fact: After **first** removing all productions involving **nongenerating** variables on its LHS or RHS and **then** removing productions involving **unreachable** symbols (terminals and nonterminals) all remaining symbols are useful; i.e. both **reachable** and **generating**!

Consider the productions

$$S \rightarrow AB \mid a$$

$$B \rightarrow b$$

then all A,B, a and b are reachable.

But at the next step of generability A is **non-generating**, hence the new grammar has the productions:

$$S \rightarrow a$$

$$B \rightarrow b$$

But then **B** is **non-reachable** which is missed out in the first step.

Hence the **correct** algorithmic method is: (1) Eliminate **non-generating** symbols and productions first and (2) Eliminate the **non-reachable** symbols out of the remaining symbols and productions

Applied to the example above first eliminate the **non-generating** variable A and the associated production $S \rightarrow AB$ and then eliminate the **non-reachable** symbol B and the associated production $B \rightarrow b$

The CFG G2 generated by the algorithm above has the property:

(1) Every non-terminal and terminal variable of G2 is useful in G,

i.e. it is both generating and reachable in G

$$(2) L_G = L_{G2}$$

Proof Exercise: **Prove** (1)

We prove (2) in two steps: (i) $L_G \subseteq L_{G2}$ and (ii) $L_{G2} \subseteq L_G$

(i) $w \in L_G$ and $S \Rightarrow_G \ldots \Rightarrow_G \alpha_j \ldots \Rightarrow_G w$, be a derivation of w in G then

 $S \Rightarrow_{G2} \ldots \Rightarrow_{G2} \alpha_j \ldots \Rightarrow_{G2} w$, since each α_j consists only of useful

terms by definition

(ii) is trivially true since G2 is a sub-grammar of G

(B) Eliminate e (epsilon) productions : $A \rightarrow e$

Definition

A is called **nullable** if $A \Rightarrow *e$

Compute all nullable variables inductively

Basis: A is nullable if $A \rightarrow e$;

Induction: If $B \rightarrow C_1C_2 \dots C_n$ and each C_i is nullable

then **B** is nullable

Algorithm to eliminate e-productions

Construct a new grammar G'=(V,T,R',S) from G=(V,T,R,S)

Productions in R are of the form $A \rightarrow B_1B_2...B_m$ where $k \le m$ of the B_j

non-terminal variables are nullable

Include in R', 2^k productions where each nullable B_j is present or absent (except when m=k avoid the $A \to e$ case that corresponds to absence of all terms); also **remove** all productions of the form $A \to e$

Theorem $L_{G'} = L_G - \{e\}$

Proof: For any production used in a derivation use the version where the eventually nullified variables are absent!

(C) Eliminating unit productions: $A \rightarrow B$, $B \in V$

Definition

A production of the form $A \rightarrow B$ is called a unit production

Call (A,B) with $A,B \in V$ a unit pair if $A \Rightarrow *B$ where only unit productions are used in the derivation

- Algorithm to determine unit pairs

Construct a digraph D where variables are the nodes and there is a directed edge from A to B iff there is a unit production $A \rightarrow B$.

Then (A,B) is a unit pair iff there is a path from A to B in D or A=B.

- Algorithm for computing unit production-free G' = (V, T, R', S) from G
- (1) Compute all unit pairs of G
- (2) Include all <u>non-unit productions</u> of R in R' and in addition for each unit pair (A,B) add to R' the production $A \rightarrow \alpha$ if $B \rightarrow \alpha$ is a non-unit production in R

Theorem $L_{G} = L_{G}$

Example for elimination of **null** productions

$$S \rightarrow ABC \mid e; A \rightarrow aAb \mid e; B \rightarrow bCc \mid e; C \rightarrow c \mid e$$

S,A,B,C are all *nullable*, hence productions of the new grammar **G'** are

$$S \rightarrow ABC \mid AB \mid AC \mid BC \mid A \mid B \mid C; A \rightarrow aAb \mid ab; B \rightarrow bCc \mid bc; C \rightarrow c$$

Example for elimination of **unit** productions

$$S \rightarrow A \mid Ba ; A \rightarrow B \mid aC ; B \rightarrow C \mid bA ; C \rightarrow B \mid c$$

Unit pairs are : (S,A), (S,B), (S,C), (A,B), (A,C), (B,C), (C,B)

hence productions of the new grammar G' are

$$S \rightarrow Ba \mid aC \mid bA \mid c ; A \rightarrow aC \mid bA \mid c ; B \rightarrow bA \mid c ; C \rightarrow c \mid bA$$

Chomsky Normal Form (CNF)

2 kinds of productions are allowed and there are no useless symbols:

- (1) $A \rightarrow BC$, $B,C \in V$
- (2) $A \rightarrow a$, $a \in T$

Algorithm for computing the CNF

- (i) eliminate (a) epsilon productions; (b) unit productions; (c) useless symbols (first nongenerating then nonreachable)
- (ii)For every production of the form $W \to X_1 X_2 ... X_n$, if $X_i \in T$ then replace X_i with a new variable Λ_i in this production and add the new production $\Lambda_i \to X_i$
- (iii) Replace every production of the type $A \rightarrow B_1 B_2 \dots B_n$ for $n \geq 3$ with the productions: $A \rightarrow B_1 C_1$, $C_1 \rightarrow B_2 C_2$, ..., $C_{n-2} \rightarrow B_{n-1} B_n$ where C_i , i = 1, ..., n-2 are new variables.

Example (Chomsky Normal Form) (Start symbol is E)

 $J \rightarrow 0J |1J| |0|1$

$$E \rightarrow T \mid E+T$$

$$T \rightarrow F \mid T^*F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow 0 \mid 1J \mid x0 \mid x1J \mid$$

$$J \rightarrow 0J \mid 1J \mid e$$

Eliminate null production
$$J \rightarrow e$$

$$E \rightarrow T \mid E+T$$

$$T \rightarrow F \mid T^*F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow 0 \mid I \mid 1J \mid x0 \mid x1 \mid x1J$$

Eliminate unit pairs

/ →)

 $one \rightarrow 1$

 $plus \rightarrow +$

Example (Chomsky Normal Form, continued)

```
E \rightarrow 0 |I| \text{ one } J |X \text{ zero } |A J |X \text{ one } |B J |CF |DT A \rightarrow X \text{ one} T \rightarrow 0 |I| \text{ one } J |X \text{ zero } |A J |X \text{ one } |B J |CF B \rightarrow [E F \rightarrow 0 |I| \text{ one } J |X \text{ zero } |A J |X \text{ one } |B J C \rightarrow T \text{ mult} J \rightarrow \text{ zero } J |\text{ one } J |0|1 D \rightarrow E \text{ add} zero \rightarrow 0
```

 $mult \rightarrow *$

 $add \rightarrow +$

 $one \rightarrow 1$

 $X \rightarrow x$

∫→(

/→)

The Pumping Lemma for CFGs

The structure of a *Parse Tree* of a *CFG* (= binary tree if in *CNF*)

Let m := |V| and choose a word z of length $|z| = k \ge 2^{m+1}$ then if d is the depth of the parse tree for z then $2^{m+1} \le |z| = k \le 2^d$ hence $m+1 \le d$; and thus at least one variable in V occurs repeated on the longest path!

12

$$A \Rightarrow^* v A x \text{ and } A \Rightarrow^* w \text{ hence } A \Rightarrow^* v^i w x^i, i = 0,1...$$

$$hence S \Rightarrow^* u A y \Rightarrow^* u v^i w x^i y,$$

$$i = 0,1,... \text{ where } |vwx| \le n \text{ and } |v x| > 0$$

Pumping Lemma for CFGs

Let **L** be a CFL. Then there exists a constant **n** such that for any string

 $z \in L$ with $|z| \ge n$, z can be written as z = u v w x y where:

- $(1) |vwx| \le n$
- (2) |vx| > 0
- (3) $u v^i w x^i y \in L$ for all $i \ge 0$

Applications of the Pumping Lemma

The following are examples of non-CF languages

$$1 - L = \{ a^k b^k c^k \mid k \ge 1 \} \subseteq \{a, b, c\}^*$$

$$2 - L = \{ a^k b^m c^k d^m \mid k, m \ge 1 \} \subseteq \{ a, b, c, d \}^*$$

$$3 - L = \{ t t \mid t \in \{a, b\}^* \}$$

1 – Let n be as in Pumping Lemma and choose $z = a^n b^n c^n ∈ L$. Then by PL $a^n b^n c^n = uvwxy$ and we show that uwy ∉ L, a contradiction to PL.

Since by $PL|vwx| \le n$ either: (i) $vwx = a^k$ or $= b^k$ or $= c^k$ where $0 \le k \le n$

 $or: (ii) \ vwx = a^i \ b^j \ or = b^i \ c^j \ where \ 0 < i+j \le n$

moreover again by PL, p := |vx| > 0, hence:

If (i) holds then $uwy = a^{n-p}b^nc^n$ or $= a^nb^{n-p}c^n$ or $= a^nb^nc^{n-p}$

If (ii) holds then $uwy = a^m b^k c^n$ or $= a^n b^m c^k$ where m+k = 2n - p < 2n

for all cases $uwy \not\in L$ and the result follows.

2 – Let **n** be as in Pumping Lemma (PL) and choose $z=a^nb^nc^nd^n∈L$. Then by PL $a^nb^nc^nd^n=uvwxy$ and we show that $uwy\not\in L$, a contradiction to PL.

Since $|vwx| \le n$, either vwx covers (i) one symbol among a,b,c and d or (ii) contains two adjacent symbols

If (i) holds then $vwx=a^k$ or $=b^k$ or $=c^k$ or $=d^k$ where $0 \le k \le n$

If (ii) holds then $vwx=a^ib^j$ or $=b^ic^j$ or $=c^id^j$ where $0 < i+j \le n$ moreover by PL, p := |vx| > 0, hence:

If (i) holds then $uwy = a^{n-p}b^nc^n d^n or = a^nb^{n-p}c^nd^n or = a^nb^nc^{n-p}d^n$ $or = a^nb^nc^n d^{n-p}$

If (ii) holds then $uwy = a^m b^k c^n d^n$ or $= a^n b^m c^k d^n$ or $= a^n b^n c^m d^k$ where $m,k \le n$, m+k = 2n-p < .

In all cases $uwy \not\in L$ and the result follows.

3 - Let **n** be as in Pumping Lemma (PL) and choose $z=a^nb^na^nb^n \in L$. Then by PL $a^nb^na^nb^n = uvwxy$. We show that $uwy \not\in L$, a contradiction to PL. Since by PL $|vwx| \le n$, either; (i) $vwx = a^k$ or $vwx = b^k$; $0 \le k \le n$, or: (ii) $vwx = a^rb^q \text{ or } ; vwx = b^ra^q ; 0 < r+q \le n, \text{ and by } PL p := |vx| > 0$. If (i) holds then $uwy = a^{n-p}b^na^nb^n$ or $= a^nb^na^{n-p}b^n$; or $uwy = a^n b^{n-p} a^n b^n$ or $= a^n b^n a^n b^{n-p}$ where p is as above hence clearly $uwy \not\in L$. If (ii) holds then $uwy = a^i b^j a^n b^n$; or $uwy = a^n b^j a^i b^n$; or $uwy = a^n b^n a^i b^j$ with $i,j \le n$ and i+j = 2n-p < 2n where again p is as above. in all cases above $uwy \not\in L$.

CS 302 Fall 2017 18

Properties of Context Free Languages

Theorem 1 (Substitution)

Let L be a CFL over an alphabet Σ and for each $a \in \Sigma$ let L(a) be a CFL over an alphabet Σ_a . Then the language:

$$L_s := \{ u \in \Sigma^* \mid u = l(a_1).l(a_2) ... l(a_n) ; a_1.a_2 ... a_n \in L ; l(a_k) \in L(a_k) \}$$

for k = 1, ..., n is a CFL over the alphabet $U_{a \in \Sigma} \Sigma_a$

Proof: Let $G = (V, \Sigma, R, S)$ generate L and let each

 $G_a = (V_a, \Sigma_a, R_a, S_a)$ generate L_a then the grammar G' that replaces each 'a' in the productions of G by S_a and incorporate all the variables and productions of G_a 's in G' generates L_s ...

The (i) union, (ii) concatenation, (iii) Kleene ('*') and positive ('+') closure and (iv) string reversal of CFLs are context-free languages.

Proof: Use substitution theorem for (i)-(iii)!

(i)
$$L_1 \cup L_2 \rightarrow Choose \ L = \{a, b\} \ and \ L_a = L_1 \ and \ L_b = L_2$$

(ii)
$$L_1L_2 \rightarrow Choose L = \{ab\} \text{ and } L_a = L_1 \text{ and } L_b = L_2$$

(iii)
$$M^*(M^+) \rightarrow Choose L = \{a\}^* (L = \{a\}^+) \text{ and } L_a = M$$

(iv) Construct G_R by reversing each production in G.

Then each leftmost derivation of w in G has a symmetric rightmost derivation in G_R that generates w^R

If L is a CFL and R a regular language then $L \cap R$ is a CFL

Proof: Let the PDA P accept L and let the DFA A accept R.

Then the product automaton $P \times A$ which is a PDA accepts $L \cap R$

What is a product automaton $P \times A$?

Let δ_P and δ_A be the transition functions of P and A then:

 $((q',r'),\alpha) \in \delta_{P\times A}((q,r),a,X)$ iff

 $(q',\alpha) \in \delta_P(q,a,X)$ and : (i) if $a\neq e$ then $\delta_A(r,a)=r'$; (ii) if a=e then r'=r where q,q' and r,r' are elements of the state sets Q of P and R of A respectively.

The intersection and complementation of CFLs are not necessarily context-free

$$\{a^nb^nc^m \mid n, m \ge 0\} \cap \{a^mb^nc^n \mid n, m \ge 0\} = \{a^nb^nc^n \mid n \ge 0\}$$

$$CFL's \qquad not \ a \ CFL!$$

We prove (by contradiction) that complementation does not necessarily preserve the 'context free' ness property using De Morgan's formula:

$$A \cap B = (A^c \cup B^c)^c$$

Measuring Complexities

For $G = (V, \Sigma, R, S)$ measure of size is:

$$n := |V| + |\Sigma| + |R| \cdot K$$
, hence: $O(|V| + |\Sigma| + |R| \cdot K) = O(n)$

where \mathbf{K} is the maximum of length among all productions.

For $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ measure of size is:

$$n:=|Q|+|\Sigma|+|\Gamma|+|\delta|K$$
, hence: $O(|Q|+|\Sigma|+|\Gamma|+|\delta|K)=O(n)$

where \mathbf{K} is the maximum of length among all transitions.

Conversion from G to P is:

inputs

Size of
$$P = O(|\Sigma| + (|\Sigma| + |V|) + |\Sigma| + |R| \cdot K) = O(n)$$

input trans.

stack

stack transitions

Conversion from P to G is as follows: for each transition

$$(p, Y_1 Y_2 \dots Y_k) \in \delta(q, a, X)$$
 there are productions

$$[q X q_k] \rightarrow a[p Y_1 q_1] \dots [q_{k-1} Y_k q_k]$$
 for all q_1, \dots, q_k in Q

which sum up to $O(n^K) = O(n^n)$ where |Q| = O(n) and

$$K := max \{ length \ of \ all \ transitions \} = O(n) !$$

This is exponential in n!

But there is a solution:

Decompose each $(p, Y_1 Y_2 ... Y_k) \in \delta(q, a, X)$ as k-1 transitions:

$$\delta(q, a, X) = \{(p_{k-1}, Y_{k-1}, Y_k)\} \rightarrow push Y_{k-1}, Y_k$$

$$\delta(p_{k-1}, e, Y_{k-1}) = \{(p_{k-2}, Y_{k-2}, Y_{k-1})\} \rightarrow push Y_{k-2} Y_{k-1}, ...$$

$$\delta(p_2, e, Y_2) = \{(p, Y_1, Y_2)\} \text{ then } K = 2 \text{ and } |\delta|.K \rightarrow |\delta|.O(K) = O(n),$$

$$|Q| \rightarrow |Q| + |\delta| O(K) = O(n)$$
 hence total complexity is $O(n^3)$

CS 302 Fall 2017 25

Complexity of conversion to Chomsky Normal Form

- (1) Elimination of non-generating and non-reachable symbols $O(n^3)$
- (2) Eliminating the unit productions $O(n^3)$; effective size of new grammar O(n): Why?
- (3) Elimination of the e-productions ((i) production size ≤ 2 , (ii) eliminate O(n)
- (4) Replacement of terminals by variables: O(n); size of new grammar O(n)
- (5) Breaking of bodies of size > 2 into 2 : O(n); size of new grammar O(n)

Result: Computational complexity of CNF reduction is $O(n^3)$

Divide X_{pm} as X_{pk} and X_{k+1m} and check for $A \rightarrow BC$ where $B \in X_{pk}$ and $C \in X_{k+1m}$

CS 302 Fall 2017 27

Example

$$S \rightarrow aSb \mid e$$

CNF:

$$S \rightarrow AC \mid AB$$
, $C \rightarrow SB$, $A \rightarrow a$, $B \rightarrow b$

Is aabb in L_G ?

$$X_{11} = X_{22} = \{A\}$$
; $X_{33} = X_{44} = \{B\}$ using $A \rightarrow a$, $B \rightarrow b$

$$X_{12} = X_{34} = \emptyset$$
; (X_{22}, X_{33}) generated by $S \rightarrow AB$ hence $X_{23} = \{S\}$

$$X_{13} = \emptyset$$
; (X_{23}, X_{44}) generated by $C \rightarrow SB$ hence $X_{24} = \{C\}$

$$(X_{11}, X_{24})$$
 generated by $S \rightarrow AC$ hence $X_{14} = \{S\}$

Hence $S \Rightarrow *aabb$

Determinism in PDA and Parsing

Simple Example for top down look – ahead parser

$$S \rightarrow a S b \mid e \quad leads to PDA below:$$

$$\delta(s, e, Z_{\theta}) = \{(s, SZ_{\theta}), (f, Z_{\theta})\}$$

$$\delta(s, x, x) = \{(s, e)\} \text{ for } x = a \text{ and } x = b$$

$$\delta(s, e, S) = \{(s, aSb), (s, e)\}$$

$$\delta(s, e, Z_0) = \{(f, SZ_1)\}$$
 accepts $e=empty$ string

$$\delta(f, a, S) = \{(q_a, S)\}$$

$$\delta(q_a, e, S) = \{(s, Sb)\} \leftarrow Look-ahead for input a$$

$$\delta(s, a, S) = \{(q_a, S)\}$$

$$\delta(s,b,S) = \{(q_b,S)\}$$

$$\delta(q_b, e, S) = \{(q_b, e)\}$$

$$\delta(q_b, e, b) = \{(s, e)\}$$

$$\delta(s, b, b) = \{(s, e)\}$$

$$\delta(s, e, Z_1) = \{(f, Z_0)\}$$

Non-determinism!!

Look-ahead for input b

(1) Top down parsing

Given a grammar G we elaborate on the productions before we apply a modified version of the PDA given in the proof of the theorem : from G to PDA

(i) If $A \to c \alpha_1 | \dots | c \alpha_n$ is a collection of productions of G where c is a terminal or a nonterminal then replace these productions by :

 $A \rightarrow cA'$ and $A' \rightarrow \alpha_1 | \dots | \alpha_n$ where A' is a new variable.

The resulting grammar G_1 yields the same language as G

(ii) (Left recursion) If $A \to A\alpha_1 | \dots | A\alpha_n$ and $A \to \beta_1 | \dots | \beta_m$ are productions where n,m > 0 and first element of each β_i is different from A then replace these productions by:

 $A \rightarrow \beta_1 B \mid \dots \mid \beta_m B \text{ and } B \rightarrow \alpha_1 B \mid \dots \mid \alpha_n B \mid e$.

The resulting grammar G_2 yields the same language as G

These arguments lead us to the Greibach Normal Form (GNF):

Each production is of the type $A \rightarrow a \alpha$ where a is a terminal.

Apply case (i) above and if necessary GNF repeatedly until for each production group $A \rightarrow a_1 \alpha_1 \mid ... \mid a_m \alpha_m$ the terminals a_j are all **distinct**;

and so the **lookahead** technique of **top down parsing** can be applied via a **DPDA** in the manner demonstrated by the example $L_G = \{a^nb^n\}$ done in class

CS 302 Fall 2017 31

Example

```
CFG is G = (V, T, R, E) where
V = \{E, T, F, I\}; T = \{+, *, (,), x, y, z\} (x, y, z) \text{ are either variables or function } I
letters)
R:
E \rightarrow E + T \mid T ; T \rightarrow T * F \mid F ; F \rightarrow I \mid (E) \mid I(E) ; I \rightarrow x \mid y \mid z
PDA: P = (\{q_0, s, f\}, T, V \cup T \cup \{Z_0\}, \delta, q_0, Z_0, \{s, f\})
\delta(q_0, e, Z_0) = \{(s, SZ_0)\}
\delta(s, t, t) = \{(s, e)\} \text{ for all } t \in T
\delta(s, e, E) = \{(s, E+T), (s, T)\}
\delta(s, e, T) = \{(s, T*F), (s, F)\}
\delta(s,e,F) = \{(s,I),(s,(E)),(s,I(E))\}
\delta(s, e, I) = \{ (s, x), (s, y), (s, z) \}
\delta(s, e, Z_0) = \{(f, Z_0)\}
```

CS 302 Fall 2017 32

(1) Fix left recursion:

replace
$$E \to E + T \mid T \text{ by } E \to TB$$
; $B \to +TB \mid e$
replace $T \to T * F \mid F \text{ by } T \to F \text{ } C$; $C \to * F \text{ } C \mid e$

(2) Fix common production start symbol:

replace
$$F \to I \mid (E) \mid I(E)$$
 by $F \to IA \mid (E)$ and $A \to (E) \mid e$

(3) Substitute until GNF-like structure prevails!! No need for **I** at the end

$$E \rightarrow x-y-zACB \mid (E)CB$$

$$B \rightarrow + TB \mid e$$

$$T \rightarrow x-y-zAC \mid (E)C$$

extra 7 states required

$$C \rightarrow *FC \mid e$$

$$F \rightarrow x-y-zA \mid (E)$$

look-ahead works for this GNF!

$$A \rightarrow (E) \mid e$$

33

The (DPDA?) for the grammar G defined above!

$$(q, e, Z_{\theta}) \rightarrow (s, EZ_{\theta})$$

$$(s, + - * - (-) - x - y - z, V) \rightarrow (q_{+} - q_{*} - q_{(-}q_{)} - q_{x} - q_{y} - q_{z}, V)$$

$$(q_{+}, e, C - A) \rightarrow (q_{+}, e)$$

$$(q_{+}, e, B) \rightarrow (s, TB)$$

$$(q_{*}, e, A - B) \rightarrow (q_{*}, e)$$

$$(q_{*}, e, C - B) \rightarrow (q_{(-}, e)$$

$$(q_{(-}, e, C - B) \rightarrow (q_{(-}, e))$$

$$(q_{(-}, e, A - F - T - E) \rightarrow (s, E) - E) - E)C - E)CB$$

$$(q_{(-}, e, C - A - B) \rightarrow (q_{(-}, e))$$

$$(q_{x}, e, E - T - F) \rightarrow (s, ACB - AC - A)$$

$$(q_{y}, e, E - T - F) \rightarrow (s, ACB - AC - A)$$

$$(q_{y}, e, E - T - F) \rightarrow (s, ACB - AC - A)$$

$$(s, input, input) \rightarrow (s, e)$$

$$(s, e, A - C - B) \rightarrow (s, e)$$

$$(s, e, Z_{\theta}) \rightarrow (f, Z_{\theta})$$

$$E \rightarrow x-y-zACB \mid (E) CB$$

$$B \rightarrow + TB \mid e$$

$$T \rightarrow x-y-zAC \mid (E) C$$

$$C \rightarrow *FC \mid e$$

$$F \rightarrow x-y-zA \mid (E)$$

 $A \rightarrow (E) \mid e$

34

```
Parse: x+(y*z(x)+x)
(s, x+(y*z(x)+x), EZ_0) | -(q_x, +(y*z(x)+x), EZ_0) |
|--(s,+(y*z(x)+x),ACBZ_{\theta})|--(q_+,(y*z(x)+x),ACBZ_{\theta})|
                                                                   E \rightarrow x-y-z ACB \mid (E) CB
|--(q_+, (y*z(x)+x), CBZ_0)|--(q_+, (y*z(x)+x), BZ_0)|
                                                                              B \rightarrow + TB \mid e
|--(s, (y*z(x) + x), TBZ_0)|--(q_0, y*z(x) + x), TBZ_0)|
                                                                      T \rightarrow x-y-z AC \mid (E) C
|--(s, y*z(x) + x), E)CBZ_0|--(q_y, *z(x) + x), E)CBZ_0|
                                                                             C \rightarrow *FC \mid e
|--(s,*z(x)+x),ACB)CBZ_{\theta}|--(q_*,z(x)+x),ACB)CBZ_{\theta}|
                                                                          F \rightarrow x-y-z A \mid (E)
|--(q_*, z(x)+x), CB) CBZ_0| |--(s, z(x)+x), FCB) CBZ_0|
                                                                              A \rightarrow (E) \mid e
|--(q_z, (x) + x), FCB) CBZ_0|--(s,(x) + x), ACB) CBZ_0| | | | | |
|-(q_{\ell},x)+x|, ACB | CB Z_{\theta} | |-(s,x)+x|, E)CB | CB Z_{\theta} |
|--(q_x, )+x), E)CB)CBZ_0|--(s, )+x), ACB)CB)CBZ_0|
|-(q_0, +x), ACB)CB)CBCB
\ldots \mid - (q_i, +x), CB \cap CB Z_0
|--(s, +x), CB) CBZ_{\theta} |--(q_+, x), CB) CBZ_{\theta}
|-(q_+,x),B) CBZ_0|-(s,x),TB) CBZ_0|-(q_x,),TB) CBZ_0|
|--(s,),ACB| CBZ_0|--(q,e,ACB)CBZ_0| \ldots |--(s,e,CBZ_0)|--\ldots
(s, e, Z_{\theta}) \mid --(s, f, Z_{\theta}) \text{ TOMBALA } !!!!!!!!
```

CS 302 Fall 2017 35

(2) Bottom up Parsing

First we generalize the new transition function as:

 $\delta_N: \mathbf{Q} \times (\mathbf{\Sigma} \cup \mathbf{e}) \times \mathbf{\Phi} \to 2^{\mathbf{Q} \times \Gamma^*}$ where $\mathbf{\Phi}$ is a finite subset of $\mathbf{\Gamma}^*$

This definition implies we can pop more than one symbol (or no symbol!) at the top of the stack and replace them as a function of what is popped.

It can easily be shown that this new **PDA** is equivalent to a conventional version given below:

For each $(p, \beta) \in \delta_N(q, a, X_1 X_2 ... X_n)$ introduce distinct and new intermediate states $r_1, ..., r_{n-1} \in Q$ such that:

 $(r_1, e) \in \delta(q, e, X_1), ..., (r_{n-1}, e) \in \delta(r_{n-2}, e, X_{n-1}), (p, \beta) \in \delta(r_{n-1}, a, X_n)$ where δ depicts the transition function of the conventional equivalent system

Now for a given grammar $G = (V, \Sigma, R, S)$ define a PDA with the following transition function:

 $(q,a) \in \delta_N (q,a,e), \forall a \in \Sigma (input shifting)$

 $(q, A) \in \delta_N (q, e, \beta)$ whenever $A \rightarrow \beta^R$ in R of G (stack reduction)

 $(f,e) \in \delta_N(q,e,S)$ final acceptance move!

Let the PDA P be defined as above for the grammar G then

If
$$(q, x, \gamma) \mid -- p^* (q, e, S)$$
 then $S \Rightarrow_{rm} \gamma^R x$ conversely

If
$$S \Rightarrow_{rm} {}^* \gamma^R x$$
 and $\gamma = \{e\} \cup V$. $(V \cup T) {}^* then$
 $(q, x, \gamma) \mid -- p^* (q, e, S)$
(Special case: $\gamma = e$)

Proof

(⇒) induction on PDA computation steps(⇐) induction on grammar derivation steps

Example for Bottom Up Parsing

$$E \to E+T \mid T+E....(1)$$
 $E \to T$ (2)
 $T \to T^*F \mid F^*T.....(3)$
 $T \to F$ (4)
 $F \to I$ (5)
 $F \to I(E)$ (6)
 $F \to (E)$ (7)
 $I \to x$ (8)
 $I \to y$ (9)
 $I \to z$ (10)

Input	Stack	Rule
x+(y*z(x)+x)	e	<i>input</i> 8+5+4+2
+(y*z(x)+x)	E	input
*z(x) +x	y(+E	9+5+4
*z(x) +x	T(+E	input+10
(x) + x	I*T(+E	input+8+5 +4+2
)+x)	E(I*T(+E	input 6+3 input
)	x+T(+E	8+5+4+2+1 input
e)E(+E	7+4+1
e	E	

```
Consider the PDA P = (Q, \Sigma, \Gamma, \delta, Z_0, q_0, F) and the DFA A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A).
 We define the product PDA P \times A := (Q \times Q_A, \Sigma, \Gamma, \delta_{P \times A}, Z_0, (q_0, q_{0A}), F \times F_A)
where the product transition function \delta_{P\times A} is defined as:
((q',r'),\gamma) \in \delta_{P\times A}((q,r),a,X) iff:
(i) (q', \gamma) \in \delta(q, a, X) \land r' = \delta_A(r, a), if a \in \Sigma, X \in \Gamma;
(ii) (q', \gamma) \in \delta(q, a, X) \land r'=r, if a=e, X \in \Gamma
                                                                            Prove that L(P \times A) = L(P) \cap L(A)
1- Show by induction on the length of string s
((q,r), s, \alpha) \mid --*_{(P\times A)} ((p,t),e,\theta) \text{ for } s \in \Sigma^*; \alpha, \theta \in \Gamma^* \text{ iff} :
(i) (q, s, \alpha) |--* _P (p, e, \theta)
(ii) t = \delta_A E(r, s)
where \delta_A E is the extended transition function of A.
For s=e let the top element of \alpha be X, and use the definition above with a=e
((q',r'),\gamma) \in \delta_{P\times A}((q,r),e,X) iff
(q', \gamma) \in \delta(q, e, X) \land r'=r
But ((q', r'), \gamma) \in \delta_{P \times A} ((q, r), e, X) iff ((q, r), e, X) \mid -- (P \times A) ((q', r'), e, \gamma) iff
(q', \gamma) \in \delta(q, e, X) \land r'=r iff (i) (q, e, X) \mid -- p (q', e, \gamma)
                                              (ii) \mathbf{r'} = \delta_A \mathbf{E} (\mathbf{r}, \mathbf{e}) = \mathbf{r}
                                                                                              which proves 1- for a=e
```

CS 302 Fall 2017 40

Now let s = u.a where $u \in \Sigma^*$ and $a \in \Sigma$

By induction hypothesis we have

$$((q, r), u, \alpha) \mid --^*_{(P \times A)} ((v, w), e, \beta)$$
 for $u \in \Sigma^*$; $\alpha, \beta \in \Gamma^* iff : \dots (*)$

- (i) $(q, u, \alpha) | -- *_P (v, e, \beta)$
- (ii) $w = \delta_A E(r, u) \dots (**)$

where $\delta_A E$ is the extended transition function of A.

Now let Y be top element of β that is, $\beta = Y \beta$, then again by definition

$$((p, t), \eta) \in \delta_{P \times A} ((v, w), a, Y) iff$$
:

$$(p, \eta) \in \delta(v, a, Y) \land t = \delta_A(w, a)$$

But
$$((p, t), \eta) \in \delta_{P \times A}$$
 $((v, w), a, Y)$ iff $((v, w), a, Y) \mid -- P \times A)$ $((p, t), e, \eta) \dots (*)$

and
$$(p, \eta) \in \delta(v, a, Y)$$
 $\land t = \delta_A(w, a)$ iff $(v, a, Y) \mid -- p(p, e, \eta)$ $\land t = \delta_A(w, a)$...(**)

Hence combining two (*) and (**) formulas

$$((q, r), u.a, \alpha) \mid -- *_{(P \times A)} ((v, w), a, Y \beta') \mid -- _{(P \times A)} ((p, t), e, \eta \beta') iff$$

$$(q, u.a, \alpha) \mid -- *_P (v, a, Y\beta') \mid --_P (p, e, \eta \beta') \wedge w = \delta_A E(r, u) \wedge t = \delta_A(w, a)$$

$$((q, r), s, \alpha) \mid -- *_{(P \times A)} ((p, t), e, \theta) \text{ (where } \theta := \eta \beta') \text{ iff}$$

$$(q, s, \alpha) \mid -- *_{P}(p, e, \theta) \land t = \delta_{A}E(r, s)$$
 which completes the proof

Hence

$$((q,r), s, \alpha) \mid -- *_{(P \times A)} ((p,t), e, \theta) \text{ for } s \in \Sigma^*; \alpha, \theta \in \Gamma^* \text{ iff} :$$

(i)
$$(q, s, \alpha)$$
 |--* $_P$ (p, e, θ)

(ii)
$$t = \delta_A E(r, s)$$

where $\delta_A E$ is the extended transition function of A.

We apply this result below

$$((q_0, q_{0A}), s, Z_0) \mid --*_{(P \times A)} ((p, t), e, \theta) \land (p, t) \in F_P \times F_A \text{ iff } s \in L(P \times A) \text{ iff}$$

(i)
$$(q_0, s, Z_0)$$
 |--* $_P$ (p, e, θ) $\land p \in F_P \land (ii) t = \delta_A E (q_{0A}, s) \land t \in F_A$ iff

(i)
$$s \in L(P)$$
 \land (ii) $s \in L(A)$ iff

$$s \in L(P) \cap L(A)$$

CS 302 Fall 2017 42