基本データ型上の関数

胡 振江 東京大学 計数工学科 2006年度

Copyright © 2006 Zhenjiang Hu, All Right Reserved.

内容

- 数型(整数型と浮動小数点数型)とその上の関数
- 論理型とその上の関数
- 文字型とその上の関数
- 文字列型とその上の関数

整数型とその上の関数

整数型 (Int) はすべての整数から構成されている.

 $0, 45, -3453, 214748091, \dots$

算術演算子	使用例			
+ (加算)	$2+3 \Rightarrow 5$			
- (減算)	$2-3 \Rightarrow -1$			
* (乗算)	$2*3 \Rightarrow 6$			
/ (除算)	$3/2 \Rightarrow 1.5$			
^ (ベキ乗算)	$2^3 \Rightarrow 8$			
div (整数除算)	$div\ 3\ 2\Rightarrow 1$			
	$3 \text{ 'div' } 2 \Rightarrow 1$			
mod (整数除余)	$\mod 5 \ 3 \Rightarrow 2$			
	$5 \text{ `mod` } 3 \Rightarrow 2$			

結合順位

二項算術演算子の結合順位は次のようになる (結合順位の高いものから順にしめしてある .)

べき乗算演算子へ

乗除演算子 * / 'div' 'mod'

加減演算子 + -

注:関数適用の結合は他のどの演算子よりも強い

例:

$$3^4 * 5 + 2 = ((3^4 * 5) + 2)$$

 $\mathsf{square}\ 3*4 \quad = \quad (\mathsf{square}\ 3)*4$

演算子とセクション

• セクション:括弧でくくられた演算子

$$(+) \qquad :: \quad \mathsf{Int} \to \mathsf{Int} \to \mathsf{int}$$

$$(+) \ x \ y = x + y$$

括弧でくくられた演算子が普通の prefixed 関数のように引数を適用することができる. また,引数として関数に渡したりすることができる.

both
$$f x = f x x$$

と定義すると,

both
$$(+)$$
 3 \Rightarrow $(+)$ 3 3 \Rightarrow 3+3 \Rightarrow 6

● 更に拡張: 引数を演算子とともに括弧でくくる.

$$(x \oplus) y = x \oplus y$$

$$(\oplus y) \ x = x \oplus y$$

例:

(*2): 2倍する関数

(1/): 逆数を求める関数

(/2): 2分する関数

(+1): つぎの値を得る関数

浮動小数点数型とその上の関数

浮動小数点数型 (Float) はすべての浮動小数点数から構成されている.

 $0.0, 4.5, -34.53, 2147.48091, \dots$

演算子	使用例		
+ (加算)	$2.3 + 3.3 \Rightarrow 5.6$		
- (減算)	$2.5 - 3 \Rightarrow -0.5$		
* (乗算)	$2.5 * 2.5 \Rightarrow 6.25$		
/ (除算)	$3.2/2 \Rightarrow 1.6$		

数型上の関数の定義

例: 数の絶対値を返す関数 abs.

```
abs :: Num a \Rightarrow a \rightarrow a abs x = if x < 0 then -x else x
```

読みやすいために,次のように書いてもよい.

$$\begin{array}{cccc} \mathsf{abs}\; x & \mid x < 0 & = -x \\ & \mid \mathbf{otherwise} & = x \end{array}$$

整数の符号を計算する関数 sign.

論理型とその上の関数

論理型 (Bool) は True と False だけを含む.

比較演算子	例
== (等しい)	1 == 1
/ = (等しくない <i>≠</i>)	True/=False
< (より小さい)	4 < 5
> (より大きい)	5 > 4
<=(より小さいかまたは等しい <)	$4 \le 5$
>= (より大きいかまたは等しい ≥)	4 >= 5

論理演算子	例
&&	論理積 🖯
	論理和 🗸
not	論理否定 ¬

論理型上の関数の定義

xor:

 $\mathsf{xor} \quad :: \quad \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}$

 $\mathsf{xor}\ p\ q \quad = \quad (p \land \neg q) \lor (\neg p \land q)$

imply:

imply :: $Bool \rightarrow Bool \rightarrow Bool$

 $\mathsf{imply}\ p\ q \quad = \quad \neg p \lor q$

leap: 閏年を判定する関数.

 $\mathsf{leap} \quad :: \quad \mathsf{Int} \to \mathsf{Bool}$

 $\mathsf{leap}\ y = y \mathsf{`mod`}\ 4 == 0 \land$

imply (y 'mod' 100 == 0) (y 'mod' 400 == 0)

文字型とその上の関数

文字型 (Char) は ASCII (American Standard Code for Information Interchange) 文字の集まりである.

ートは、/Lツト CUUUUUUU~1111111(∠進致)の128のコートをUXUU~UX/ト(10進数) C衣配し (い

上位3ビット→	0	1	2	3	4	5	6	7
↓下位4ビット	0	1		3	4	3	U	,
0	NUL	DLE	SP	0	@	Р	`	р
1	SOH	DC1	!	1	Α	Q	a	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3	#	3	С	s	С	5
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAC	%	5	E	U	е	u
6	ACK	SYN	&	6	F	٧	f	v
7	BEL	ETB	•	7	G	W	g	w
8	BS	CAN	(8	Н	Х	h	х
9	НТ	EM)	9	I	Υ	i	У
Α	LF/NL	SUB	*	:	J	Z	j	z
В	VT	ESC	+	;	К	[k	{
С	FF	FS	,	<	L	١	- 1	I
D	CR	GS	-	=	М]	m	}
E	50	RS		>	N	^	n	~
F	SI	US	/	?	0	_	0	DEL

関数

● ord :: Char → Int: 文字を対応する ASCII 符号の整数に変換する.

ord
$$b' \Rightarrow 98$$

● chr:: Int → Char: ASCII 符号の整数を対応する文字に変換する.

$$chr 98 \Rightarrow 'b'$$

• 関係演算子:文字の間は比較できる...

文字型上の関数の定義

• idDigit: 文字が数字であることを判定する関数.

```
isDigit :: Char \rightarrow Bool isDigit x = '0' \le x \land x \le '9'
```

● capitalise: 小文字を大文字に変える関数 .

```
captalise :: Char \rightarrow Char capitalise x | isLower x = \text{chr}(\text{offset} + \text{ord } x) | otherwise = x where offset = \text{ord } 'A' - \text{ord } 'a'
```

文字列型とその上の関数

文字列型 (String) は文字の列の集まりである.

```
"", "hello", "This is a string."
```

• show :: $a \rightarrow String$: 任意の型のデータを文字列に変換する.

```
show 100 \Rightarrow "100"
show True \Rightarrow "True"
show (show 100) \Rightarrow "\"100\""
```

● # :: String → String → String: 二つの文字列をつなぐ連接演算子.

```
"hello" ++ " " ++ "world" \Rightarrow "hello world"
```

● 比較演算子:文字列の比較は通常の辞書式順に従う.

練習問題

- Hugs システムを使って,基本型上の関数をテストする.
- 教科書の 2.1-2.3 を読み, 教科書中の練習問題を考える.