Prova 1 del 11_06_20 "Chimica e materiali" 1a_prova in itinere

Test a risposte chiuse; 15 domande.

Durante questo test potete utilizzare solo la vostra tavola periodica ed una calcolatrice non programmabile..

Una sola delle 4 risposte proposte per ogni domanda è corretta.

Il punteggio indicato (3 punti) verrà attribuito per ogni risposta corretta. Se una risposta data è sbagliata il punteggio attribuito è -1. Sarà invece 0 nel caso in cui non venga data risposta: non è infatti obbligatorio rispondere a nessuna domanda.

Tempo a disposizione: 30 minuti (2 minuti a domanda)

"Punteggio reale" minimo per l'ammissione alla Prova 2 : 13/30 cioè, (approssimativamente, 19/45. Ottenete il vostro "punteggio reale" sottraendo al punteggio che vi dà la correzione automatica il numero di domande per cui avete indicato una risposta errata.

Convenzioni utilizzate:

Viene utilizzato il punto e non la virgola come separatore tra interi e decimali (come sulle calcolatrici e in tutte le slides del Corso)

Se apici e pedici non sono rappresentabili, in formule matematiche e chimiche usiamo il simbolo "_" per i pedici, il simbolo ^ per gli apici.

Usiamo le parentesi nel caso ci siano due o più caratteri ad apice o pedice, o se ci possono essere ambiguità interpretative.

Ad esempio, lo ione solfato può essere scritto: SO_4^(2-).

Scriviamo la freccia per una reazione: --->. Per un equilibrio: <==>.

In altri casi usiamo una notazione "ragionevole": ad esempio: sin(pigreco/2)=1

oppure: v_media = Delta (x)/Delta (t)

oppure: Delta (x)*Delta (p) > h/(4 pigreco)

Questo modulo registrerà il tuo nome, inserire il nome.

1.	Un atomo ha configurazione elettronica 1s^2, 2s^2, 2p^6, 3s^2. Quali saranno gli elettroni che sentono la carica nucleare efficace più elevata, e che valore (in unità di carica elettronica) avrà approssimativamente? (3 punti)
	Gli elettroni nell'obitale 3s, che sentono una Z_eff di circa +4
	Gli elettroni nell'obitale 1s, che sentono una Z_eff di circa +10.
	Gli elettroni negli obitale 2s, che sentono una Z_eff di circa +8.
	Gli elettroni nell'obitale 1s, che sentono una Z_eff di poco meno di +12
2	Quale sarà l'ordine decrescente (in valore assoluto) giusto delle energie reticolari di MgS, di MgO e di LiF? (3 punti)
	○ MgO > LiF > MgS
	○ MgO > MgS > LiF
	○ LiF > MgO > MgS
	○ LiF > MgS > MgO
3	. Qual è l'ordine decrescente giusto per le affinità elettroniche dei seguenti atomi? (3 punti)
	Ar > Cl > Be > Li
	○ Ar > Cl > Li > Be
	○ Cl > Li > Be > Ar
	○ Cl > Be > Ll > Ar

4. Un campione di 1.00 g di un composto gassoso costitui pressione di 1.00 atm e alla temperatura di 2.0°C. Stabil composti si tratta. (3 punti)	•
$\bigcirc B_4H_{10}$	
$\bigcirc BH_3$	
$\bigcirc B_3H_{12}$	
$\bigcirc B_2H_6$	
5. Quali delle seguenti sequenze di ioni isoelettronici a No crescente? (3 punti)	e è in ordine di raggio ionico
Mg(2+); F^-; Na^+	
○ N^(3-); F-; O^(2-)	
Mg(2+); F^-; N^(3-)	
Mg(2+);O^(2-); F^-;	
6. La temperatura di ebollizione di F_2 a P = 1 atm è nettaralia stessa pressione perché: (3 punti)	mente minore di quella di HF
○ HF ha una massa più piccola di F_2 e quindi temperatura di ebc	ıllizione più elevata.
○ Il legame di HF è molto più forte di quello di F_2.	
HF è molto più polare di F_2 e forma legami a idrogeno.	
F_2 è molto meno polarizzabile di HF e quindi le forze intermole	ecolari sono più deboli per F_2.

7. In una lega Ag/Cu ci sono 30 atomi di Cu per ogni 100 atomi di Ag. La percentuale in peso di Ag nella lega è: (3 punti)
O 76.9%
O 85.0 %
89.4%
8. Quali delle seguenti terne contiene almeno un simbolo che non corrisponde ad un orbitale atomico ammissibile? (3 punti)
5f,2d,4p
O 6p,4d,1s
○ 6s,4f, 2p
7s,5p,6d
9. Quale delle seguenti specie è sicuramente instabile, considerando i diagrammi degli orbitali molecolari pertinenti? (3 punti)
\bigcirc H_2^-
\bigcirc He_2^{2+}
\bigcirc HHe^-
\bigcirc HHe^+

10. Che geometria molecolare possiamo prevedere per la specie I_3^(-)? Che assetto elettronico e quale ibridazione possiamo ipotizzare per l'atomo di iodio centrale? (3 punti)
Lineare, AX_(2)E_(3), sp^(3)d
☐ Lineare, AX_(2)E_(2), sp
Angolata, AX_(2)E_(2), sp^(3)
Angolata, AX_(2)E, sp^(2)
11. Il pentano ha formula C_5H_12. Quanti isomeri possiamo individuare per questo idrocarburo? (3 punti)
O 1
○ 4
○ 3
O 2
12. Quali prodotti da la reazione K(s) + H_2O (l)> ? opportunamente completata? Che tipo di reazione è? (3 punti)
○ K(s) + H_2O (l)> KO(s) + H_2(g), reazione redox
2K(s) + 2H_2O (l)> 2K^+(aq) + H_2(g) +2OH^-(aq), reazione redox)
K(s) + 2H_2O (l)> K^+(aq)) + OH^-(aq) +H_3O^+ reazione acido-base
K(s) + 2H_2O (l)> K^+(aq) + H_2(g) +2OH^-(aq), reazione acido-base

(3 punti)
Perchè i legami nel diamante sono molto meno localizzati che nel silicio
Perchè è più facile drogare il silicio del carbonio.
Perchè scendendo lungo il XIV° gruppo diminuisce il carattere metallico.
Perchè il band-gap nel silicio è molto minore che nel diamante
14. In base alla meccanica quantistica, l'energia dell'elettrone in un dato atomo idrogenoide può assumere i valori dati dall'espressione (n intero, positivo):(3 punti)
○ E = - cost * n
<pre>E = - cost * (n^2)</pre>
○ E = - cost/n
$\bigcirc E = - \cos t/(n^2)$
15. In un recipiente chiuso a 250°C sono contenute N_2(g) (3 moli), O_2(g) (2 moli) e Ar (4 moli) e la pressione totale è 3.0 bar. Quali sono le pressioni parziali dei 3 gas? (3 punti)
N_2(g), 1.00 bar, O_2(g) 0.67 bar, e Ar 1.33 bar.
N_2(g), 0.90 bar, O_2(g) 0.80 bar, e Ar 1.30 bar.
N_2(g), 1.00 bar, O_2(g) 0.80 bar, e Ar 1.30 bar.
N_2(g), 1.00 bar, O_2(g) 0.60 bar, e Ar 1.40 bar.

Questo contenuto non è stato creato né approvato da Microsoft. I dati che invii verranno recapitati al proprietario del modulo.

Microsoft Forms