ZESTAW ZADAŃ V

Zadanie 1

(a) W oparciu o definicję oblicz pochodną funkcji $f(x) = 2x^2 + 3x + 4$ w punkcie $x_0 = -1$, zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$,

(b) W oparciu o definicję wyprowadź wzór na pochodną funkcji $f(x) = \frac{x}{2x+3}$.

Zadanie 2 Oblicz pochodne:

(a)
$$(x^6 - 3x^4 + 5x^3 - 6x - 5)'$$
, (b) $(\frac{1}{x^4} - \sqrt[4]{x^3} + \frac{10}{\sqrt[5]{x^3}})'$, (c) $(\frac{x^3 + 1}{x^3 - 1})'$, (d) $(3^x \operatorname{arctg} x)'$,

(a)
$$(x^6 - 3x^4 + 5x^3 - 6x - 5)'$$
, (b) $(\frac{1}{x^4} - \sqrt[4]{x^3} + \frac{10}{\sqrt[5]{x^3}})'$, (c) $(\frac{x^3 + 1}{x^3 - 1})'$, (d) $(3^x \operatorname{arctg} x)'$, (e) $(\frac{x^5 \operatorname{tg} x}{\operatorname{arcsin} x})'$, (f) $(\sqrt{x^2 + 1})'$, (g) $(\sin(5x))'$, (h) $(\operatorname{ctg} x^3)'$, (i) $(\operatorname{arctg}^3 x)'$, (j) $(2^{x^2 \sin x})'$, (k) $(\sin^5(x^3))'$, (l) $(\ln \frac{3x - 2}{2x + 3})'$, (m) $(x^2 \operatorname{arcsin}^2 (\frac{2x}{x + 1})')$, (n) $(x^{\frac{1}{x}})'$

(k)
$$(\sin^5(x^3))'$$
, (l) $(\ln \frac{3x-2}{2x+3})'$, (m) $(x^2 \arcsin^2 (\frac{2x}{x+1})')$, (n) $(x^{\frac{1}{x}})'$

Zadanie 3 Zapisz równanie stycznej do wykresu funkcji $f(x) = \frac{x^2}{x^2-5}$ w punkcie P(2,-4), w oparciu o równanie stycznej oblicz przybliżone wartości f(1) oraz f(2,1), porównaj otrzymane wartości z wartościami dokładnymi.

Zadanie 4 Oblicz dwie pierwsze pochodne podanych funkcji:

(a)
$$y = e^{2x}\cos(3x)$$
, (b) $y = \ln(x^2 - 3x + 4)$, (c) $y = \sin^3 x$, (d) $y = x \arctan x^2$.