Homeomorphisms

Matteo Paz, Dylan Rupel February 20th, 2024

Definition 1 A continuous bijective function $f: X \to Y$ is a homeomorphism if f^{-1} is also continuous. X and Y are homeomorphic if there exists a homeomorphism between them.

Example 1 Consider the function $e^x : \mathbb{R} \to \mathbb{R}_{\geq 0}$. This is continuous, surjective (onto positive reals), and injective. Equally the inverse $\ln(x)$ is continuous injective and surjective. Thus \mathbb{R} and $\mathbb{R}_{\geq 0}$ are homeomorphic. Thus they are homeomorphic topological spaces.

Example 2 Consider the spaces $[0,2\pi)\subset\mathbb{R}$ and $S'\in\mathbb{C}$ (the complex unit circle). We have the function $f(x)=e^{ix}$ between them. If our open sets in S' are just arcs from angle a to b, then our preimage is (a,b) in $[0,2\pi)$. If the arc contains 0, we just take the disjoint union $[0,a)\sqcup(b,2\pi)$. These are open sets from f^{-1} , thus f is continuous. However, f^{-1} is not continuous, because [0,a) is open on $[0,2\pi)$, but under the action of $f=f^{-1}$, it generates the non-open arc containing its endpoint 0. Thus we cannot say that $[0,2\pi)$ and S' are homeomorphic.