Using Stochiometry in Simple Chemistry Experiments

Kedar Mhaswade

November 2020

Practical Problem: It was decided to inflate a common latex balloon to 5cm radius by the hydrogen gas produced during a single-displacement reaction: $2 \operatorname{HCl}(aq) + \operatorname{Zn}(s) \longrightarrow \operatorname{ZnCl}_2(s) + \operatorname{H}_2(g)$ that uses an N/10 i.e. 0.1M HCl solution (available in many drugstores, typically in 200ml bottles). How much reactants are needed?

Solution: We need to inflate the balloon to about 5cm radius. Assuming the balloon to be a sphere gives us the volume of balloon, V_b , as: $V_b =$ $\frac{4}{3} \cdot \pi r^3 \text{cm}^3 = 523.599 \text{cm}^3.$

Assuming the density of hydrogen 1 at STP as 0.0000899 g $\rm cm^{-3}$, the mass of hydrogen is $523.599 \times 0.0000899g = 0.0471g$. Since 1 mol of H₂(g) has a mass of $2 \times 1.008g = 2.016g$, we need $\frac{0.0471}{2.016} \text{mol} = 0.0233 \text{mol H}_2(g)$. Balancing the reaction, $2 \text{ HCl}(aq) + \text{Zn}(s) \longrightarrow \text{ZnCl}_2(s) + \text{H}_2(g)$, we see

that to produce 1 mol $H_2(g)$ we need 2mol HCl(aq) and 1mol Zn(s).

This means that to produce 0.0233 mol $H_2(g)$ we need 2×0.0233 mol =0.0466 mol HCl(aq). We have a 0.1M HCl (aqueous) solution which means that $\frac{mol\ of\ solution}{litres\ of\ solution} =$ 0.1. Clearly, we need $\frac{0.0466}{0.1} = 0.466$ L or **466**ml **HCl**.

The amount of zinc needed = $0.0233 \times \text{molar mass of zinc} = 0.0233 \times$ 65.45g = 1.525g.

¹See https://ptable.com/#Properties/Weight

Author wishes to thank Apoorv Mhaswade for verifying the correctness of the calculations.