

Tema 5. Sistemas de Información y Descubrimiento de Recursos en Entornos Grid

Conceptos de la Computación en Grid y Cloud

Objetivos

- Describir la Forma en que Se Publica el Estado de los trabajos y las Características de los Recursos en un Entorno Grid.
- Describir el proceso de Seleccionar un Recurso Compatible y Adecuado en una Infraestructura Grid.
- Definir la Arquitectura del Sistema de Monitorización y Descubrimiento de Recursos (MDS) de Globus toolkit.

Contenidos Teóricos

- Sistemas de Información y Descubrimiento de Recursos en Entornos Grid
 - Necesidades de Sistemas de Información en Grid.
 - Arquitecturas.
- Soluciones Propuestas por Globus Toolkit
 - Monitoring and Discovery Service (MDS).
 - Arquitectura MDS.
 - Integración MDS en la Arquitectura de Globus toolkit.
 - Grid Laboratory Uniform Environment (GLUE) Schema
 - Consulta de Información en el MDS

Sistemas de Información y Descubrimiento de Recursos en Entornos Grid Necesidades

Para el Usuario:

Obtiene Información de los Recursos Grid y su Estado (colas etc..).

Obtiene Información del Estado de los Trabajos.

Para el Desarrollador de Middleware

Gestor de Carga:

Adecuar los Requerimientos de los Trabajos y de los Recursos del Grid.

Monitorización:

Recuperación de Información del Estado y Disponibilidad de los Recursos.

Para el Administrador de un Site o un Servicio

Publicar la Información Relativa a las Capacidades de un Site o Servicio.

Sistemas de Información y Descubrimiento de Recursos en Entornos Grid Arquitecturas – Representación Jerárquica

- Representación Jerárquica
 - Estructura en Árbol (Cada Hijo Tiene Sólo un Padre).
 - Escalable a una Identificación Única Global (p.e. Basada en el DNS)
 - Modelado Natural de Datos Físicos (p.e. Países, Instituciones, Recursos,...)
 - Acceso a Datos Rápido y Eficiente.

Sistemas de Información y Descubrimiento de Recursos en Entornos Grid Arquitecturas – Representación Relacional

- Representación Relacional
 - Modelo de Datos Más Rico Con Relaciones Más Complejas.
 - Soporte de Búsquedas Complejas y Eficientes (SQL), Información Agregada, etc.
 - Diseñado Para Actualizaciones Frecuentes y Soporte de Transacciones.
 - No Maneja Tipos de Datos Complejos.

Sistemas de Información y Descubrimiento de Recursos en Entornos Grid Arquitecturas – Representación Relacional

"Select a ComputingElement with at least 1 free CPU that also has a CloseStorageElement with at least 1000 MB of free space"

SELECT DISTINCT ComputingElement.CEId FROM

ComputingElement, CloseStorageElement,StorageElementStatus WHERE

ComputingElement.FreeCPUs > 0 AND

(ComputingElement.CEId = CloseStorageElement.CEId AND

CloseStorageElement.CloseSE = StorageElementStatus.SEId AND

StorageElementStatus.SEfreespace > 1000)

Contenidos Teóricos

- Sistemas de Información y Descubrimiento de Recursos en Entornos Grid
 - Necesidades de Sistemas de Información en Grid.
 - Arquitecturas.

Soluciones Propuestas por Globus Toolkit

- Monitoring and Discovery Service (MDS).
- Arquitectura MDS.
- Integración MDS en la Arquitectura de Globus toolkit.
- Grid Laboratory Uniform Environment (GLUE) Schema
- Consulta de Información en el MDS

Soluciones Propuestas por Globus Toolkit Monitoring and Discovery Service (MDS)

- MDS es el Sistema de Información Para los Recursos en un Grid Desarrollado para Globus.
- Corresponde con una arquitectura Jerárquica.
- MDS a Grandes Rasgos Realiza Cuatro Tareas:
 - Obtener la Información Actualizada de cada Recurso.
 - Integrar esa Información en una Base de Datos General.
 - Permitir el Acceso Remoto a Esta Información.
 - Estructurar la Información Disponible.
- MDS es También el Sistema de Información de Otros Middlewares Utilizados en infraestructuras Avanzadas Grid como gLite.
- MDS se implementa a través de servicios LDAP.

Soluciones Propuestas por Globus Toolkit Monitoring and Discovery Service (MDS) - LDAP

- LDAP Proporciona un Modelo Estándar Para el Almacenamiento y Recuperación de los Datos Con Estructura de Directorio en Árbol (Directory Information Tree - DIT).
- LDAP Establece el Formato de los Mensajes que un Cliente Utilizará para Acceder a un Directorio (LDIF).
- LDAP Se Utiliza en Diversos Tipos de Bases de Datos.

Grid Laboratory Uniform Environment (GLUE) Schema Conceptos Generales - LDAP

- El Modelo de Información LDAP está Basado en Entradas.
- Las Entradas son Colecciones de Atributos Definidas por un Nombre Distintivo (DN) Único y Global.
- La Información se Organiza en Forma de Árbol.
 - Existe un Atributo Especial (objectclass) que Permite Definir el Árbol Correspondiente a Cada Entrada.
 - La Información Puede Filtrarse Atendiendo a la Posición en el Árbol.
- La Información se Importa y se Exporta desde y hacia el Servidor LDAP Mediante Ficheros LDIF.

Grid Laboratory Uniform Environment (GLUE) Schema Conceptos Generales - LDAP

Soluciones Propuestas por Globus Toolkit Arquitectura MDS

- MDS se Compone de Tres Elementos Principales:
 - Proveedores de Información (Information Providers ó IP)
 - Se Ejecutan en Cada Recurso y Obtienen la Información del Estado del Mismo.
 - Grid Resource Information Service (GRIS)
 - Registra la Información Obtenida por los Diferentes IP para su Consulta.
 - Grid Index Information Service (GIIS)
 - Agrega la Información Publicada por Diferentes Servicios GRIS.

Soluciones Propuestas por Globus Toolkit Arquitectura MDS

Soluciones Propuestas por Globus Toolkit Arquitectura MDS – Information Providers (IPs)

Existen Dos Tipos de Information Providers

- Core Ips:
 - Proporcionan Información Básica del Sistema
 - Tipo de Plataforma y Arquitectura
 - Nombre y Versión del Sistema Operativo
 - Número, Versión, Velocidad, Caché, etc. de la CPU.
 - Tamaño, Espacio Libre, etc. de la Memoria (Física y Virtual).
 - Nombre de la Máquina e IP.
 - Tamaño, Espacio Libre, etc. del Almacenamiento Secundario.
 - Existen Versiones de los IP Para Diferentes Plataformas
- Custom Ips
 - Proporcionan la Información que el Usuario Considere Oportuna.
- Los IPs Pueden Proporcionar la Información Atendiendo al MDS core schema.

Soluciones Propuestas por Globus Toolkit Arquitectura MDS – GRIS

- Los IPs se Registran en el GRIS que Periódicamente les Solicita Información Actualizada.
- La Información la Publica en unos Ficheros en Formato LDIF (LDAP).
- Los GRIS Contienen la Información de un Sólo Recurso y Pueden ser Consultados Directamente por el Usuario.

Soluciones Propuestas por Globus Toolkit Arquitectura MDS – GIIS

- De Forma Análoga, los GRIS se Registran en los GIIS, Quienes Periódicamente les Requieren Información Actualizada.
- Los GIIS Actúan como "Caché" de la Información de los GRIS Consolidando la Información de Varios Recursos.
- De Esta Forma, es Posible Consultar Toda la Información de un Grid con un solo Comando.
- Los GIIS a su Vez Pueden Organizarse Jerárquicamente Aislando Diferentes Centros, Federaciones o Secciones de un Grid.
- También Pueden Configurarse de Forma Redundante,
 Permitiendo que un GRIS se Registre en Varios GIIS.

Soluciones Propuestas por Globus Toolkit Arquitectura MDS

Soluciones Propuestas por Globus Toolkit Integración MDS en la Arquitectura de Globus toolkit

- El MDS Tiene en Cuenta la Arquitectura de Seguridad del GSI, con lo que Necesita de un Proxy Válido para la Ejecución de Comandos.
- El GRAM No Consulta el MDS Para la Selección de Recursos, Debería Hacerlo un Recurso de Planificación de Nivel Superior (o el Propio Usuario).
- Sin Embargo, Componentes del GRAM Interactúan con los IP para Proporcionar Información de Estado.

Grid Laboratory Uniform Environment (GLUE) Schema Conceptos Generales – Modelo de Datos

- Grid Laboratory Uniform Environment (GLUE) Describe la Información de los Recursos del Grid.
- Sigue la Estructura Jerárquica del Directory Information tree (DIT) para las objectclasses y los atributos:
- Top
 - GlueTop
 - 1. GlueGeneralTop
 - 1. ObjectClasses
 - » 1. GlueSchemaVersion
 - » 2. GlueCESEBindGroup
 - » 3. GlueCESEBind
 - » 4. GlueKey
 - » 5. GlueInformationService
 - 2. Attributes
 - » 1. Attributes for GlueSchemaVersion
 - »
 - » 5. Attributes for GlueInformationService
 - 2. GlueCETop

Grid Laboratory Uniform Environment (GLUE) Schema Conceptos Generales – Modelo de Datos

Grid Laboratory Uniform Environment (GLUE) SchemaConceptos Generales – Modelo de Datos – Computing Element

- Unique ID
- Name
- Info (Requerido)
 - Name of local resource management system, GRAM version, host name, gatekeeper port, total CPUs
- State (Opcional)
 - Running jobs, total jobs, status (queuing, production, closed, draining), waiting jobs, worst response time, estimated response time, free CPUs
- Policy (Opcional)
 - MaxWallClockTime, MaxCPUTime, MaxTotalJobs, MaxRunningJobs, Priority
- Job (Opcional)
 - owner local username, owner GSI subject name, job local id, job global id, job status (submitted, waiting, ready, scheduled, running, aborted, done, cleared, checkpointed), scheduler specific info
- AccessControlBase (Opcional)
 - Authorisation rule based on VO, X.509 certificate, etc.

Grid Laboratory Uniform Environment (GLUE) SchemaInformation Providers

- Los IPs se Integran a Partir del Fichero de Configuración Idif.
- En Este Fichero se Indican los Ejecutables que Obtienen la Información y Producen una Salida en el Modelo de Datos del LDAP.
- Los Ips son Programas que se Instalan en el Directorio \$GLOBUS_LOCATION/libexec, Dependientes de la Plataforma y la Arquitectura, que Cuando se Ejecutan Imprimen la Información Correspondiente.
- Es Posible Añadir Nuevos Providers.

Grid Laboratory Uniform Environment (GLUE) SchemaInformation Providers - Ejemplo

\$GLOBUS_LOCATION/libexec/grid-info-mem-linux

dn:

objectclass: MdsMemoryRamTotal

objectclass: MdsMemoryVmTotal

Mds-Memory-Ram-Total-sizeMB: 4054

Mds-Memory-Ram-Total-freeMB: 3474

Mds-Memory-Vm-Total-sizeMB: 1992

Mds-Memory-Vm-Total-freeMB: 1992

Mds-Memory-Ram-sizeMB: 4054

Mds-Memory-Ram-freeMB: 3474

Mds-Memory-Vm-sizeMB: 1992

Mds-Memory-Vm-freeMB: 1992

dn: Mds-Device-Group-name=memory,

objectclass: MdsMemoryRamTotal

objectclass: MdsMemoryVmTotal

objectclass: MdsDeviceGroup

Mds-Device-Group-name: memory

Mds-validfrom: 20060504175446Z

Mds-validto: 20060504175446Z

Mds-keepto: 20060504175446Z

Mds-Memory-Ram-Total-sizeMB: 4054

Mds-Memory-Ram-Total-freeMB: 3474

Mds-Memory-Vm-Total-sizeMB: 1992

Mds-Memory-Vm-Total-freeMB: 1992

Mds-Memory-Ram-sizeMB: 4054

Mds-Memory-Ram-freeMB: 3474

Mds-Memory-Vm-sizeMB: 1992

Mds-Memory-Vm-freeMB: 1992

Soluciones Propuestas por Globus Toolkit Consulta de Información en el MDS

- En un Centro, el GIIS Recopila la Información Proporcionada por los GRISs
 - Idapsearch -x -h <hostname> -p 2135 -b "mds-vo-name=<name>,o=grid"
- Los GRISs Locales Extraen la Información de los IPs y Reportan Dinámicamente Esta Información
 - Idapsearch -x -h <hostname> -p 2135 -b "mds-vo-name=local,o=grid"

Soluciones Propuestas por Globus Toolkit Consulta de Información en el MDS

- Comando Idapsearch
 - -x Autenticación Simple.
 - -H ldap://grid017.ct.infn.it:2170 Uniform Resource Identifier (URI).
 - -b DN Base para las búsquedas
 - '(objectclass=XXX)' Criterio de Filtrado
 - nombre_atributo, Atributos a Retornar
- Idapsearch -x
 - –H ldap://ngiescream.i3m.upv.es:2170
 - -b o=grid
 - '(objectClass=GlueCE)' GlueCEInfoContactString