Série 3 (Corrigé)

L'exercise 1 sera discuté pendant le cours le lundi 10 octobre. L'exercice 4 (\star) peut être rendu le jeudi 13 octobre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a)

(b)

cice 1 - QCM
Determiner si les énoncés proposés sont vrais ou faux. • Étant donné un entier n , on définit
$K_n[t] := \{ p = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n \mid \alpha_0, \dots, \alpha_n \in K \},$
l'ensemble des pôlynomes de degré inférieur ou égal à n . Alors $(K_n[t], \cdot)$, où $(p \cdot q)(t) := p(t)q(t)$, est un monoïde.
○ vrai ○ faux
• Soit $G_{n\times n}(K)$ l'ensemble des matrices inversibles $n\times n$. Alors $(G_{n\times n}(K),+)$ est un groupe.
○ vrai ○ faux
• Soit $C_{n\times n}$ l'ensemble des matrices réelles $n\times n$ qui commutent avec toutes les matrices dans $M_{n\times n}(\mathbb{R})$. Donc $(C_{n\times n}^*,\cdot)$ est un groupe abélien.
○ vrai ○ faux
• Soit $A \in M_{n \times n}(\mathbb{R})$ et soit $C(A)$ l'ensemble des matrices qui commutent avec A . Donc $(C(A)^*, \cdot)$ est un groupe abélien.
○ vrai ○ faux
Determiner les énoncés corrects.
1. Soit $\mathrm{triu}_0(n)$ l'ensemble des matrices réelles triangulaires supérieures strictes $n \times n$, c-á-d l'ensemble des matrices triangulaires supérieures à coefficients diagonaux nuls. Lequelles des assertions suivantes sont correctes?
\bigcirc (triu ₀ (n) , +) est un monoïde.
\bigcirc (triu ₀ (n), +) est un groupe.
\bigcirc (triu ₀ $(n), \cdot$) est un monoïde.
\bigcirc (triu ₀ (n) , ·) est un groupe.
2. Soit $\operatorname{Sym}_{n\times n}(K)$ l'ensemble des matrices symétriques $n\times n$ et soit $f(A)=A+A^T$. Lequelles des assertions suivantes sont correctes?
\bigcirc f est un morphisme de $(M_{n\times n}(K),\cdot)$ dans $(\operatorname{Sym}_{n\times n}(K),\cdot)$.

 \bigcirc f est un isomorphisme entre $(M_{n\times n}(K),\cdot)$ et $(\operatorname{Sym}_{n\times n}(K),\cdot)$.

 \bigcirc f est un morphisme de $(M_{n\times n}(K),+)$ dans $(\operatorname{Sym}_{n\times n}(K),+)$. \bigcirc f est un isomorphisme entre $(M_{n\times n}(K),+)$ et $(\operatorname{Sym}_{n\times n}(K),+)$. Sol.:(a) Determiner si les énoncés proposés sont vrais ou faux. • Étant donné un entier n, on définit $K_n[t] := \{ p = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n \mid \alpha_0, \dots, \alpha_n \in K \},$ l'ensemble des pôlynomes de degré inférieur ou égal à n. Alors $(K_n[t], \cdot)$, où $(p \cdot q)(t) := p(t)q(t)$, est un monoïde. ○ vrai • faux • Soit $G_{n\times n}(K)$ l'ensemble des matrices inversibles $n\times n$. Alors $(G_{n\times n}(K),+)$ est un groupe. $\bigcirc vrai$ • faux • Soit $C_{n\times n}$ l'ensemble des matrices réelles $n\times n$ qui commutent avec toutes les matrices dans $M_{n\times n}(\mathbb{R})$. Donc $(C_{n\times n}^*,\cdot)$ est un groupe abélien. vrai \bigcirc faux • Soit $A \in M_{n \times n}(\mathbb{R})$ et soit C(A) l'ensemble des matrices qui commutent avec A. Donc $(C(A)^*, \cdot)$ est un groupe abélien. O vrai • faux (b) Determiner les énoncés corrects. 1. Soit $triu_0(n)$ l'ensemble des matrices réelles triangulaires supérieures strictes $n \times n$ n, c-á-d l'ensemble des matrices triangulaires supérieures à coefficients diagonaux nuls. Lequelles des assertions suivantes sont correctes? \bullet (triu₀(n), +) est un monoïde. $igoplus (\operatorname{triu}_0(n), +) \ est \ un \ groupe.$ \bigcirc (triu₀(n), ·) est un monoïde. \bigcirc (triu₀(n), ·) est un groupe. 2. Soit $\operatorname{Sym}_{n\times n}(K)$ l'ensemble des matrices symétriques $n\times n$ et soit $f(A)=A+A^T$. Lequelles des assertions suivantes sont correctes? \bigcirc f est un morphisme de $(M_{n\times n}(K),\cdot)$ dans $(\operatorname{Sym}_{n\times n}(K),\cdot)$. \bigcirc f est un isomorphisme entre $(M_{n\times n}(K),\cdot)$ et $(\operatorname{Sym}_{n\times n}(K),\cdot)$. lacktriangledown f est un morphisme de $(M_{n\times n}(K),+)$ dans $(\operatorname{Sym}_{n\times n}(K),+)$. \bigcirc f est un isomorphisme entre $(M_{n\times n}(K),+)$ et $(\operatorname{Sym}_{n\times n}(K),+)$.

Exercice 2

Soit $A \in M_{n \times n}(\mathbb{R})$ la matrice donnée par

$$A = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ & & \ddots & \lambda & 1 \\ 0 & & \dots & 0 & \lambda \end{pmatrix}$$

Calculer l'inverse de A (s'il existe).

Indice : résoudre le problème pour n=2 et n=3 pour obtenir une idée de la formule générale.

Sol.: On résout d'abord le problème pour les petits n et puis on "devine" la formule générale pour A^{-1} pour n quelconque. Pour n=2 on trouve que A est inversible ssi $\lambda \neq 0$ et

$$A^{-1} = \begin{pmatrix} 1/\lambda & -1/\lambda^2 \\ 0 & 1/\lambda \end{pmatrix}.$$

Pour n=3 on cherche une matrice $B \in M_{3\times 3}(\mathbb{R})$ avec $B=(b_{ij})_{1\leq i\leq 3,1\leq j\leq 3}$ telle que

$$AB = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

On peut écrire $n^2 = 9$ équations et essayer de les résoudre. Nous allons résoudre les équations systématiquement à partir du bas. On a

$$(AB)_{31} = \lambda b_{31} = 0
(AB)_{32} = \lambda b_{32} = 0
(AB)_{33} = \lambda b_{33} = 1
(AB)_{21} = \lambda b_{21} + b_{31} = \lambda b_{21} = 0
(AB)_{22} = \lambda b_{22} + b_{32} = \lambda b_{22} = 1
(AB)_{23} = \lambda b_{23} + b_{33} = \lambda b_{23} + 1/\lambda = 0
(AB)_{11} = \lambda b_{11} + b_{21} = \lambda b_{11} = 1
(AB)_{12} = \lambda b_{12} + b_{22} = \lambda b_{12} + 1/\lambda = 0
(AB)_{13} = \lambda b_{13} + b_{23} = \lambda b_{13} - 1/\lambda^{2} = 0
$$\Rightarrow b_{31} = 0,
\Rightarrow b_{32} = 0,
(\lambda \neq 0),
$$\Rightarrow b_{21} = 0,
\Rightarrow b_{21} = 0,
$$\Rightarrow b_{22} = 1/\lambda,
\Rightarrow b_{23} = -1/\lambda^{2},
\Rightarrow b_{21} = 1/\lambda,
\Rightarrow b_{21$$$$$$$$

Alors, la matrice A est inversible pour n = 3 ssi $\lambda \neq 0$ et on a

$$A^{-1} = \begin{pmatrix} 1/\lambda & -1/\lambda^2 & 1/\lambda^3 \\ 0 & 1/\lambda & -1/\lambda^2 \\ 0 & 0 & 1/\lambda \end{pmatrix}.$$

Pour trouver l'inverse pour un n quelconque, nous allons deviner la forme de A^{-1} et prouver que c'est effectivement un inverse. Posons $B \in M_{n \times n}(\mathbb{R})$ avec $B = (b_{ij})_{1 < i < n, 1 < j < n}$ on

définit (en supposant que $\lambda \neq 0$)

$$b_{ij} = \begin{cases} (-1)^{j-i}/\lambda^{j-i+1} & i \le j, \\ 0 & i > j, \end{cases}$$

c'est-à-dire

$$B = \begin{pmatrix} 1/\lambda & -1/\lambda^2 & 1/\lambda^3 & \cdots & (-1)^{n-1}/\lambda^n \\ 0 & 1/\lambda & -1/\lambda^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1/\lambda^3 \\ & & \ddots & 1/\lambda & -1/\lambda^2 \\ 0 & & \dots & 0 & 1/\lambda \end{pmatrix}.$$

On montre alors que $AB = I_n$:

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \begin{cases} \lambda b_{ij} + b_{i+1,j} & i < n, \\ \lambda b_{ij} & i = n \end{cases}$$

$$= \begin{cases} \lambda 0 + 0 = 0 & j < i < n, \\ \lambda (1/\lambda) + 0 = 1 & j = i < n, \\ \lambda (-1)^{j-i}/\lambda^{j-i+1} + (-1)^{j-(i+1)}/\lambda^{j-(i+1)+1} = 0 & i < n, i < j, \\ \lambda 0 = 0 & j < i = n, \\ \lambda (1/\lambda) = 1 & i = j = n. \end{cases}$$

Si $\lambda = 0$ la matrice A n'est pas inversible parce que $(AB)_{nn} = 0 \neq 1$ pour n'importe quelle $B \in M_{n \times n}(\mathbb{R})$.

Exercice 3

Determiner quel couple (G, \circ) est un groupe.

- a) $G = \mathbb{R}$ et $x \circ y := x + y xy$.
- b) $G = \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} : a \in \mathbb{R}, b \in \mathbb{R} \setminus \{0\} \right\}$ et \circ est la multiplication matricelle ordinaire.
- c) $G = \mathbb{R}$ et $x \circ y := (x^n + y^n)^{1/n}$ pour un nombre impair naturel n.
- d) $G = \mathbb{Z}$ et $x \circ y := (x+y)^2$.
- e) $G = \{A \in M_{n \times n}(\mathbb{R}); \text{ où } A \text{ est une matrice diagonale avec des éléments non nuls sur la diagonale}\}$ et \circ est la multiplication matricelle ordinaire.

Sol.:

- a) Ce couple n'est pas un groupe. On note que l'élément neutre est e=0. En fait $x \circ 0 = x + 0 0 = x$ et $0 \circ y = 0 + y 0 = y$. Pour $1 \in G$ il n'existe pas d'élément inverse $y \in G$, parce que l'équation $0 = 1 \circ y = 1 + y y = 1$ n'a pas de solution.
- b) Ce couple est un groupe. Pour $A_1, A_2 \in G$ on a

$$A_1 \circ A_2 = \begin{pmatrix} 1 & a_1 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} 1 & a_2 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} 1 & a_2 + a_1 b_2 \\ 0 & b_1 b_2 \end{pmatrix} \in G,$$

et donc la loi de composition est bien définie. L'élément neutre du groupe est la matrice identité I_2 . L'associativité résulte de l'associativité de la multiplication des matrices dans GL(2). L'inverse de $A \in G$ est

$$A^{-1} = \begin{pmatrix} 1 & -a/b \\ 0 & 1/b \end{pmatrix} \in G.$$

On notera que, si $b \in \mathbb{R} \setminus \{0\}$, 1/b existe toujours.

c) Ce couple est un groupe. La loi de composition est bien définie parce que $(x^n+y^n)^{1/n} \in G$ pour tout $x, y \in G$. L'élément neutre est e=0, parce que $(0+x^n)^{1/n}=(x^n+0)^{1/n}=x$. L'inverse de $x \in G$ est -x, parce que

$$((-x)^n + x^n)^{1/n} = (x^n + (-x)^n)^{1/n} = (x^n - x^n)^{1/n} = 0.$$

On remarque en fait que n est impair. L'associativité resulte de

$$(a \circ b) \circ c = (((a^n + b^n)^{1/n})^n + c^n)^{1/n}$$
$$= (a^n + b^n + c^n)^{1/n}$$
$$= (a^n + ((b^n + c^n)^{1/n})^n)^{1/n}$$
$$= a \circ (b \circ c).$$

d) Ce couple n'est pas un groupe. Bien que la loi de composition o soit bien définie, il n'y a aucun élément neutre (et donc on a pas de inversibilité). De plus l'associativité n'est pas définie. En fait, par exemple,

$$(2 \circ 0) \circ 0 = 16 \neq 4 = 2 \circ (0 \circ 0)$$
.

e) Ce couple est un groupe. Pour $A_1, A_2 \in G$ on a

$$A_1 \circ A_2 = \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & 0 \\ 0 & b_1 b_2 \end{pmatrix} \in G,$$

et donc la loi de composition est bien définie. L'élément neutre du groupe est la matrice identité I_2 . L'associativité resulte de l'associativité de la multiplication des matrices dans GL(2). L'inverse de

$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in G$$

est

$$A^{-1} = \begin{pmatrix} 1/a & 0\\ 0 & 1/b \end{pmatrix} \in G.$$

On note que, si $a, b \in \mathbb{R} \setminus \{0\}$, 1/a et 1/b existent toujours.

Exercice 4 (\star)

Soit SO(2) l'ensemble composé des matrices de rotations

$$SO(2) = \left\{ G(\vartheta) = \begin{pmatrix} \cos(\vartheta) & \sin(\vartheta) \\ -\sin(\vartheta) & \cos(\vartheta) \end{pmatrix} ; \vartheta \in \mathbb{R} \right\}.$$

Montrer que $(SO(2), \circ)$ est un sous-groupe de $(GL(2), \circ)$, ou \circ est la multiplication matricelle ordinaire.

Sol.: D'abord on montre que $S0(2) \subseteq GL(2)$. Soit $A \in SO(2)$. Dans l'exercice 6, Série 2, on a montré que l'inverse de A existe. Donc, $A \in GL(2)$.

Soit $\vartheta = 0$. Donc $I_2 \in SO(2) \Rightarrow SO(2)$ n'est pas vide. Pour $A_1, A_2 \in SO(2), A_1 = G(\alpha), A_2 = G(\beta)$ on a

$$A_1 \circ A_2 = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha+\beta) & \sin(\alpha+\beta) \\ -\sin(\alpha+\beta) & \cos(\alpha+\beta) \end{pmatrix} \in SO(2).$$

Enfin pour tout $A = G(\vartheta) \in SO(2)$ on a que

$$A^{-1} = \begin{pmatrix} \cos(\vartheta) & -\sin(\vartheta) \\ \sin(\vartheta) & \cos(\vartheta) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} \in SO(2),$$

ou $\alpha = -\vartheta \in \mathbb{R}$.

Exercice 5

Soit (G, \cdot) un groupe. Soit $f: G \to G$ l'application définie par $f(x) = x^{-1}$ (l'inverse de $x \in G$) et soit $h: G \to G$ l'application définie par $h(x) = x^2$.

- a) Montrer que f est un morphisme de groupes si et seulement si G est abélien.
- b) Montrer que h est un morphisme de groupes si et seulement si G est abélien.
- c) En déduire que si dans un groupe tout élément est son propre inverse, alors ce groupe est abélien.

Sol.:

a) Comme la loi de groupe de G est \cdot , on écrit simplement xy au lieu de $x \cdot y$. Pour $x, y \in G$,

$$f(xy) = f(x)f(y) \Longleftrightarrow (xy)^{-1} = x^{-1}y^{-1} \Longleftrightarrow ((xy)^{-1})^{-1} = (x^{-1}y^{-1})^{-1} \Longleftrightarrow xy = yx,$$

car l'inverse d'un produit est le produit des inverses dans l'autre ordre. Par conséquent

$$f$$
 est un morphisme de groupes $\iff f(xy) = f(x)f(y) \ \forall x, y \in G$
 $\iff xy = yx \ \forall x, y \in G$
 $\iff G$ est abélien.

b) Pour $x, y \in G$,

$$h(xy) = h(x)h(y) \iff (xy)^2 = x^2y^2 \iff xyxy = xxyy \iff yx = xy$$

car dans un groupe on peut simplifier (ici simplifier x à gauche et simplifier y à droite). Par conséquent

h est un morphisme de groupes
$$\iff h(xy) = h(x)h(y) \ \forall x, y \in G$$

 $\iff xy = yx \ \forall x, y \in G$
 $\iff G \text{ est abélien}.$

c) Si $x = x^{-1}$ pour tout $x \in G$, alors l'application f est l'identité. Or l'application identité est bien sûr un morphisme de groupes. En appliquant alors la partie b), on en déduit que G est abélien.

On peut aussi raisonner en constatant que $x^2 = 1$, car $x = x^{-1}$ pour tout x. Il s'ensuit que l'application h est l'application constante h(x) = 1 pour tout x. Or il est clair que cette application constante est un morphisme de groupes, car $h(xy) = 1 = 1 \cdot 1 = h(x)h(y)$ $\forall x,y \in G$. Cela signifie donc que h est un morphisme de groupes. En appliquant alors la partie c), on en déduit que G est abélien.

Exercice 6

Soit $G = \{x \in \mathbb{R} \mid 0 \le x < 1\}$ muni de la loi de composition \star donnée par

$$x \star y := \left\{ \begin{array}{ll} x + y & \text{si } x + y < 1 \\ x + y - 1 & \text{si } x + y \ge 1 \end{array} \right.$$

- a) Montrer que (G, \star) est un groupe.
- b) Soit SO(2) le groupe des matrices de rotations. Montrer que l'application $f:G\to SO(2)$ définie par

$$f(x) = \begin{pmatrix} \cos(2\pi x) & \sin(2\pi x) \\ -\sin(2\pi x) & \cos(2\pi x) \end{pmatrix}$$

est un morphisme de groupes entre (G, \star) et $(SO(2), \circ)$, ou \circ est la multiplication matricelle ordinaire.

Sol.:

a) Soient $x, y, z \in G$. La loi consiste à additionner, sauf qu'il faut soustraire 1 si le résultat dépasse 1. Il s'ensuit qu'on trouve

$$(x \star y) \star z = \left\{ \begin{array}{ll} x + y + z & si & 0 \le x + y + z < 1 \\ x + y + z - 1 & si & 1 \le x + y + z < 2 \\ x + y + z - 2 & si & 2 \le x + y + z < 3 \end{array} \right.$$

et on trouve également le même résultat pour $x \star (y \star z)$. Donc la loi de composition \star est associative.

L'élément 0 est l'élément neutre, car $0 \star x = 0 + x = x$, vu que x < 1 pour tout $x \in G$, et de même, $x \star 0 = x + 0 = x$.

L'élément inverse de l'élément neutre 0 est 0, car 0+0=0 et 0<1. La situation est différente pour $x\in G$ si $x\neq 0$. L'élément inverse de x est alors 1-x car $x\star (1-x)=x+(1-x)-1$ vu que $x+(1-x)=1\geq 1$. On trouve bien $x\star (1-x)=x+(1-x)-1=0$, l'élément neutre. Pour la même raison, $(1-x)\star x=0$. Par conséquent 1-x est l'élément inverse de x.

b) Pour $x, y \in G$, si x + y < 1, alors $f(x \star y) = f(x + y)$ et si $x + y \ge 1$, alors $f(x \star y) = f(x + y - 1) = f(x + y)$, car deux angles qui diffèrent par un multiple entier de 2π définissent la même rotation. De plus $f(x + y) = f(x) \circ f(y)$ car la composée de deux rotations d'angles α et β donne une rotation d'angle $\alpha + \beta$. Donc dans tous les cas,

$$f(x \star y) = f(x + y) = f(x) \circ f(y),$$

ce qui montre que f est un morphisme de groupes.

Exercice 7

Montrer que l'ensemble des matrices réelles definies par blocs

$$A := \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix},$$

muni de la multiplication matricielle ordinaire, est un groupe. On suppose que A_{11} est une matrice inversible $n_1 \times n_1$, A_{12} une matrice $n_1 \times n_2$ et A_{22} est une matrice inversible $n_2 \times n_2$, avec $n_1, n_2 \in \mathbb{N}$. Calculer l'inverse de A.

Remarque : vous pouvez utiliser la règle pour la multiplication de matrices par blocs :

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} = \begin{pmatrix} X_{11}Y_{11} + X_{12}Y_{21} & X_{11}Y_{12} + X_{12}Y_{22} \\ X_{21}Y_{11} + X_{22}Y_{21} & X_{21}Y_{12} + X_{22}Y_{22} \end{pmatrix}.$$

Sol.:

Soit G l'ensemble de toutes les matrices avec les propriétés que dans l'exercice. De la remarque suit la stabilité du groupe sur la multiplication matricelle, c-à-d, $AB \in G$ pour $A, B \in G$. L'élément neutrale e est la matrice par blocs $e = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}$. C'est la matrice d'identité $(n_1 + n_2) \times (n_1 + n_2)$. L'associativité découle directement de l'associativité de la multiplication matricielle. Il faut vérifier l'existence de l'inverse $A^{-1} \in G$ pour chaque matrice $A \in G$. Considérons d'abord le cas particulier $n_1 = n_2 = 1$. L'inverse d'une matrice 2×2

$$C = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

est connue (voir Serie 2). Dans le cas de $a_{21} = 0$, on obtient

$$C^{-1} = \begin{pmatrix} \frac{1}{a_{11}} & \frac{-a_{12}}{a_{11}a_{22}} \\ 0 & \frac{1}{a_{22}} \end{pmatrix}.$$

Donc on cherche l'inverse de la matrice A par blocs de la forme

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{pmatrix}.$$

On vérifie que tel est bien l'inverse souhaité

$$\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\ 0 & A_{22}^{-1} \end{pmatrix} = e.$$

Donc, (G,\cdot) est un groupe.

Exercice 8

Soient $\pi, \sigma \in S_5$

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{pmatrix}.$$

- a) Calculer la composition $\pi \circ \sigma$.
- b) Trouver les inverses de π et $\pi \circ \sigma$.
- c) Montrer que $Card(S_n) = n!, n \in \mathbb{N}$, où $Card(S_n)$ est le nombre d'éléments de S_n .

Sol.:

a) La composition $\pi \circ \sigma$ est donné par :

$$\pi \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ \pi(\sigma(1)) & \pi(\sigma(2)) & \pi(\sigma(3)) & \pi(\sigma(4)) & \pi(\sigma(5)) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 3 & 5 \end{pmatrix}.$$

b) D'abord on calcule l'inverse de π . Comme $\pi(5)=1,\pi(3)=2,\pi(1)=3,\pi(2)=4$ et $\pi(4)=5,$ on obtient

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 2 & 4 \end{pmatrix}.$$

De même manière on trouve $(\pi \circ \sigma)^{-1}$

$$(\pi \circ \sigma)^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}.$$

c) Le problème du calcul de la cardinalité de S_n est le même que le problème du calcul du nombre de façons différentes les entiers $1, 2, \ldots, n-1, n$ peuvent être placée dans les blancs indiqués (chaque chiffre peut être utilisé une seule fois)

$$\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ - & - & \dots & - & - \end{pmatrix}.$$

En remplissant les blancs de la gauche, on voit que le première blanc peut être rempli en n façons différentes. Donc, le deuxième blanc peut être rempli en n-1 façons, le troisième en n-2 façons et ainsi de suite. Pour le derniere blanc on a seulement 1 possibilité. Ainsi, il y a $n(n-1)\cdots 2\cdot 1=n!$ façons de remplir les blancs. Donc, $\operatorname{card}(S_n)=n!$.