

<210> 3

SEQUENCE LISTING

```
Axxima Pharmaceuticals AG
      <110>
            Schubart, Daniel
. .5
            Habenberger, Peter
             Stein-Gerlach, Matthias
            Bevec, Dorian
     <120> Cellular Kinases Involved in Cytomegalovirus Infection and their
 10
     Inhibition
     <130> AXM-004.1 US
     <140> 09/981,397
 15
     <141> 2001-10-16
     <150> 60/240,750
      <151> 2000-10-16
 20
     <160> 22
     <170> PatentIn version 3.1
     <210> 1
 25
     <211>
            18
      <212> DNA
     <213> Artificial Sequence
     <220>
 30
     <223> synthetic polyT primer
     <220>
     <221> misc_feature
     <222>
            (18)..(18)
 35
     <223> n = a,c,g or t
      <220>
     <221> misc_feature <222> (17)..(17)
 40
      <223> v = a,g or c
     <400> 1
 45
     ttttttttt tttttvn
                                                                             18
     <210> 2
      <211>
            28
 50
      <212> DNA
     <213> Artificial Sequence
            cDNA probe for NIK-interacting kinase
     <223>
 55
      <400> 2
     gtcctggagg gctctttttg atgaaacc
                                                                             28
 60
```

```
4 <211> 30
     <212> DNA
    <213> Artificial Sequence
    <223> cDNA probe for cellular protein RIP
    <400> 3
    gtgctcaatg cagttgggcc ccttgtacac
                                                                          30
10
    <210> 4
    <211> 27
    <212> DNA
15
    <213> Artificial Sequence
     <223> cDNA probe for cellular protein kinase RICK
20
    <400> 4
    gtcgagcagc ggagtgtgga tgtgcag
                                                                          27
    <210> 5
25
    <211> 23
     <212> PRT
    <213> Artificial Sequence
30
    <223> NIK peptide immunogen
    <400> 5
    Cys Asn Pro Thr Asn Thr Arg Pro Gln Ser Asp Thr Pro Glu Ile Arg
35
                                        10
    Lys Tyr Lys Lys Arg Phe Asn
                20
40
     <210> 6
     <211> 34
    <212> DNA
45
    <213> Artificial Sequence
    <223> loxP sequence for recombination vector
50
    <400> 6
    ataacttcgt atagcataca ttatacgaag ttat
                                                                          34
    <210> 7
55
    <211> 31
    <212> DNA
    <213> Artificial Sequence
    <220>
60
    <223> primer US-10(200900)SpeI
```

e , 15. ~ .*.		
	• .	
	<400> 7	
	gctcactagt ggcctagcct ggctcatggc c	31
5		
	<210> 8	
	<211> 33 <212> DNA	
	<213> Artificial Sequence	
10	.000	
	<220> <223> primer US-10(198918)PacI	
15	<400> 8 gtccttaatt aagacgtggt tgtggtcacc gaa	33
	gooddaac angadgaga cycyycana yaa	
	<210> 9	
•	<211> 33	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> primer US-9-3'PmeI	
	<400> 9	
	ctcggtttaa acgacgtgag gcgctccgtc acc	33
30	<210> 10 <211> 31	
	<211> 31 <212> DNA	
	<213> Artificial Sequence	
35	<220>	
	<223> primer US-5'CLAI	
	<400> 10	
. 40	ttgcatcgat acggtgtgag ataccacgat g	31
40		
	<210> 11	
	<211> 20 <212> DNA	
45	<212> DNA <213> Artificial Sequence	
	222	
	<220> <223> primer US-9(198789)	
50		
30	<400> 11 tgacgcgagt attacgtgtc	20
	<210> 12	
55	<211> 19	
	<212> DNA <213> Artificial Sequence	
60	<220> <223> primer US-10(199100)	
00	/223/ DIIMET OB-IO(ISSIOO)	

	<400> 12 ctcctcctga	tatgcggtt		•1			19	
5	<210> 13 <211> 250 <212> DNA <213> Hom							
10	<400> 13	tctagaaaag	aagtcagctc	tqqttcqqaq	aaqcaqcqqc	tggcgtgggc	60	
		atgggcgccc					120	
15		caggggcgta					180	
20		ggcacacccg					240	
20	tctgcagcgc	cctgcccacc	attccctacc	acaaactcgc	cgacctgcgc	tacctgagcc	300	
	gcggcgcctc	tggcactgtg	tegteegeee	gccacgcaga	ctggcgcgtc	caggtggccg	360	
25	tgaagcacct	gcacatccac	actccgctgc	tcgacagtga	aagaaaggat	gtcttaagag	420	
	aagctgaaat	tttacacaaa	gctagattta	gttacattct	tccaattttg	ggaatttgca	480	
	atgagcctga	atttttggga	atagttactg	aatacatgcc	aaatggatca	ttaaatgaac	540	
30	tcctacatag	gaaaactgaa	tatcctgatg	ttgcttggcc	attgagattt	cgcatcctgc	600	
	atgaaattgo	ccttggtgta	aattacctgc	acaatatgac	tcctccttta	cttcatcatg	660	
35	acttgaagac	tcagaatatc	ttattggaca	atgaatttca	tgttaagatt	gcagattttg	720	
33	gtttatcaaa	gtggcgcatg	atgtccctct	cacagtcacg	aagtagcaaa	tctgcaccag	780	
	aaggagggac	aattatctat	atgccacctg	aaaactatga	acctggacaa	aaatcaaggg	840	
40	ccagtatcaa	gcacgatata	tatagctatg	cagttatcac	atgggaagtg	ttatccagaa	900	
	aacagccttt	tgaagatgtc	accaatcctt	tgcagataat	gtatagtgtg	tcacaaggac	960	
45	atcgacctgt	tattaatgaa	gaaagtttgc	catatgatat	acctcaccga	gcacgtatga	1020	
73	tctctctaat	agaaagtgga	tgggcacaaa	atccagatga	aagaccatct	ttcttaaaat	1080	
	gtttaataga	acttgaacca	gttttgagaa	catttgaaga	gataactttt	cttgaagctg	1140	
50	ttattcagct	aaagaaaaca	aagttacaga	gtgtttcaag	tgccattcac	ctatgtgaca	1200	
	agaagaaaat	ggaattatct	ctgaacatac	ctgtaaatca	tggtccacaa	gaggaatcat	1260	
55	gtggatcctc	tcagctccat	gaaaatagtg	gttctcctga	aacttcaagg	tccctgccag	1320	
33	ctcctcaaga	caatgatttt	ttatctagaa	aagctcaaga	ctgttatttt	atgaagctgc	1380	
	atcactgtcc	tggaaatcac	agttgggata	gcaccatttc	tggttctcaa	agggctgcat	1440	
60	tctgtgatca	caagaccact	ccatgctctt	cagcaataat	aaatccactc	tcaactgcag	1500	

	·	
	gaaactcaga acgtctgcag cctggtatag cccagcagtg gatccagagc aaaagggaag	1560
5	acattgtgaa ccaaatgaca gaagcctgcc ttaaccagtc gctagatgcc cttctgtcca	1620
5	gggacttgat catgaaagag gactatgaac ttgttagtac caagcctaca aggacctcaa	1680
	aagtcagaca attactagac actactgaca tccaaggaga agaatttgcc aaagttatag	1740
10	tacaaaaatt gaaagataac aaacaaatgg gtcttcagcc ttacccggaa atacttgtgg	1800
	tttctagatc accatcttta aatttacttc aaaataaaag catgtaagtg actgtttttc	1860
15	aagaagaaat gtgtttcata aaaggatatt tatatctctg ttgctttgac tttttttata	1920
	taaaatccgt gagtattaaa gctttattga aggttctttg ggtaaatatt agtctccctc	1980
	catgacactg cagtatttt tttaattaat acaagtaaaa agttgaattt ggttgaattt	2040
20	gctacatagt tcaattttta tgtctctttt gttaacagaa accactttta aaggatagta	2100
	attattcttg tttataacag tgccttaagg tatgatgtat ttctgatgga agccattttc	2160
25	acattcatgt tcttcatgga ttatttgtta cttgtctaag atgcaatttg attttatgaa	2220
	gtatataccc tttacccacc agagacagta cagaatccct gccctaaaat cccaggctta	2280
	attgccctac aaagggttat taatttaaaa ctccattatt aggattacat tttaaagttt	2340
30	tatttatgaa ttccctttaa aaatgatatt tcaaaggtaa aacaatacaa tataaagaaa	2400
	aaaataaata tattaatacc ggcttcctgt ccccattttt aacctcagcc ttccctactg	2460
35	tcaccaacaa ccaagctaaa taaagtcaac agcctgatgt g	2501
40	<210> 14 <211> 540 <212> PRT <213> Homo sapiens	
	<400> 14	
45	Met Asn Gly Glu Ala Ile Cys Ser Ala Leu Pro Thr Ile Pro Tyr His 1 5 10 15	
50	Lys Leu Ala Asp Leu Arg Tyr Leu Ser Arg Gly Ala Ser Gly Thr Val 20 25 30	
	Ser Ser Ala Arg His Ala Asp Trp Arg Val Gln Val Ala Val Lys His 35 40 45	
55	Leu His Ile His Thr Pro Leu Leu Asp Ser Glu Arg Lys Asp Val Leu 50 55 60	

Arg Glu Ala Glu Ile Leu His Lys Ala Arg Phe Ser Tyr Ile Leu Pro

Ile Leu Gly Ile Cys Asn Glu Pro Glu Phe Leu Gly Ile Val Thr Glu Tyr Met Pro Asn Gly Ser Leu Asn Glu Leu Leu His Arg Lys Thr Glu Tyr Pro Asp Val Ala Trp Pro Leu Arg Phe Arg Ile Leu His Glu Ile Ala Leu Gly Val Asn Tyr Leu His Asn Met Thr Pro Pro Leu Leu His His Asp Leu Lys Thr Gln Asn Ile Leu Leu Asp Asn Glu Phe His Val Lys Ile Ala Asp Phe Gly Leu Ser Lys Trp Arg Met Met Ser Leu Ser Gln Ser Arg Ser Ser Lys Ser Ala Pro Glu Gly Gly Thr Ile Ile Tyr Met Pro Pro Glu Asn Tyr Glu Pro Gly Gln Lys Ser Arg Ala Ser Ile Lys His Asp Ile Tyr Ser Tyr Ala Val Ile Thr Trp Glu Val Leu Ser Arg Lys Gln Pro Phe Glu Asp Val Thr Asn Pro Leu Gln Ile Met Tyr Ser Val Ser Gln Gly His Arg Pro Val Ile Asn Glu Glu Ser Leu Pro Tyr Asp Ile Pro His Arg Ala Arg Met Ile Ser Leu Ile Glu Ser Gly Trp Ala Gln Asn Pro Asp Glu Arg Pro Ser Phe Leu Lys Cys Leu Ile Glu Leu Glu Pro Val Leu Arg Thr Phe Glu Glu Ile Thr Phe Leu Glu

Ala Val Ile Gln Leu Lys Lys Thr Lys Leu Gln Ser Val Ser Ser Ala

											,					
	305					310			•		315					320
5	Ile	His	Leu	Cys	Asp 325	Lys	Lys	Lys	Met	Glu 330	Leu	Ser	Leu	Asn	Ile 335	Pro
10	Val	Asn	His	Gly 340	Pro	Gln	Glu	Glu	Ser 345	Cys	Gly	Ser	Ser	Gln 350	Leu	His
	Glu	Asn	Ser 355	Gly	Ser	Pro	Glu	Thr 360	Ser	Arg	Ser	Leu	Pro 365	Ala	Pro	Gln
15	Asp	Asn 370	Asp	Phe	Leu	Ser	A rg 375	Lys	Ala	Gln	Asp	Cys 380	Tyr	Phe	Met	Lys
20	Leu 385	His	His	Суѕ	Pro	Gly 390	Asn	His	Ser	Trp	Asp 395	Ser	Thr	Ile	Ser	Gly 400
25	Ser	Gln	Arg	Ala	Ala 405	Phe	Cys	Asp	His	Lys 410	Thr	Thr	Pro	Cys	Ser 415	Ser
30	Ala	Ile	Ile	Asn 420	Pro	Leu	Ser	Thr	Ala 425	Gly	Asn	Ser	Glu	Arg 430	Leu	Gln
	Pro	Gly	Ile 435	Ala	Gln	Gln	Trp	Ile 440	Gln	Ser	Lys	Arg	Glu 445	Asp	Ile	Val
35	Asn	Gln 450	Met	Thr	Glu	Ala	Cys 455	Leu	Asn	Gln	Ser	Leu 460	Asp	Ala	Leu	Leu
40	Ser 465	Arg	Asp	Leu	Ile	Met 470	Lys	Glu	Asp	Tyr	Glu 475	Leu	Val	Ser	Thr	Lys 480
45	Pro	Thr	Arg	Thr	Ser 485	Lys	Val	Arg	Gln	Leu 490	Leu	Asp	Thr	Thr	Asp 495	Ile
50	Gln	Gly	Glu	Glu 500	Phe	Ala	Lys	Val	Ile 505	Val	Gln	Lys	Leu	Lys 510	Asp	Asn
	Lys	Gln	Met 515	Gly	Leu	Gln	Pro	Tyr 520	Pro	Glu	Ile	Leu	Val 525	Val	Ser	Arg
55	Ser	Pro 530	Ser	Leu	Asn	Leu	Leu 535	Gln	Asn	Lys	Ser	Met 540				
60	<210	0> :	15													

```
<211>
           2617
     <212>
           DNA
     <213>
           Homo sapiens
5
    <220>
     <221>
           misc feature
     <222>
           (2141)..(2141)
     <223> n = a,c,g or t
10
     <220>
     <221> misc feature
     <222>
           (2311)..(2311)
     <223> n = a,c,g or t
15
     <220>
     <221> misc_feature
     <222>
           (2452)..(2452)
20
     <223> n = a,c,g or t
     <220>
     <221>
           misc_feature
25
     <222>
           (2496)..(2496)
     <223>
           n = a, c, g \text{ or } t
     <400> 15
30
    atgcaaccag acatgtcctt gaatgtcatt aagatgaaat ccagtgactt cctggagagt
                                                                             60
    gcagaactgg acagcggagg ctttgggaag gtgtctctgt gtttccacag aacccaggga
                                                                            120
    ctcatgatca tgaaaacagt gtacaagggg cccaactgca ttgagcacaa cgaggccctc
                                                                            180
35
    ttggaggagg cgaagatgat gaacagactg agacacagcc gggtggtgaa gctcctgggc
                                                                            240
    gtcatcatag aggaagggaa gtactccctg gtgatggagt acatggagaa gggcaacctg
                                                                            300
40
    atgcacgtgc tgaaagccga gatgagtact ccgctttctg taaaaggaag gataattttg
                                                                            360
    gaaatcattg aaggaatgtg ctacttacat ggaaaaggcg tgatacacaa ggacctgaag
                                                                            420
     cctgaaaata tccttgttga taatgacttc cacattaaga tcgcagacct cggccttgcc
                                                                            480
45
     tcctttaaga tgtggagcaa actgaataat gaagagcaca atgagctgag ggaagtggac
                                                                            540
    ggcaccgcta agaagaatgg cggcaccctc tactacatgg cgcccgagca cctgaatgac
                                                                            600
50
    gtcaacgcaa agcccacaga gaagtcggat gtgtacagct ttgctgtagt actctgggcg
                                                                            660
    atatttgcaa ataaggagcc atatgaaaat gctatctgtg agcagcagtt gataatgtgc
                                                                            720
    ataaaatctg ggaacaggcc agatgtggat gacatcactg agtactgccc aagagaaatt
                                                                            780
55
    atcagtetea tgaagetetg etgggaageg aatceggaag eteggeegae attteetgge
                                                                            840
    attgaagaaa aatttaggcc tttttattta agtcaattag aagaaagtgt agaagaggac
                                                                            900
60
    gtgaagagtt taaagaaaga gtattcaaac gaaaatgcag ttgtgaagag aatgcagtct
                                                                            960
```

	cttcaacttg	attgtgtggc	agtaccttca	agccggtcaa	attcagccac	agaacagcct	1020
5	ggttcactgc	acagttccca	gggacttggg	atgggtcctg	tggaggagtc	ctggtttgct	1080
J	ccttccctgg	agcacccaca	agaagagaat	gagcccagcc	tgcagagtaa	actccaagac	1140
	gaagccaact	accatcttta	tggcagccgc	atggacaggc	agacgaaaca	gcagcccaga	1200
10	cagaatgtgg	cttacaacag	agaggaggaa	aggagacgca	gggtctccca	tgaccctttt	1260
	gcacagcaaa	gaccttacga	gaattttcag	aatacagagg	gaaaaggcac	tgtttattcc	1320
15	agtgcagcca	gtcatggtaa	tgcagtgcac	cagccctcag	ggctcaccag	ccaacctcaa	1380
10	gtactgtatc	agaacaatgg	attatatagc	tcacatggct	ttggaacaag	accactggat	1440
	ccaggaacag	caggtcccag	agtttggtac	aggccaattc	caagtcatat	gcctagtctg	1500
20	cataatatcc	cagtgcctga	gaccaactat	ctaggaaata	cacccaccat	gccattcagc	1560
	tccttgccac	caacagatga	atctataaaa	tataccatat	acaatagtac	tggcattcag	1620
25	attggagcct	acaattatat	ggagattggt	gggacgagtt	catcactact	agacagcaca	1680
	aatacgaact	tcaaagaaga	gccagctgct	aagtaccaag	ctatctttga	taataccact	1740
	agtctgacgg	ataaacacct	ggacccaatc	agggaaaatc	tgggaaagca	ctggaaaaac	1800
30	tgtgcccgta	aactgggctt	cacacagtct	cagattgatg	aaattgacca	tgactatgag	1860
	cgagatggac	tgaaagaaaa	ggtttaccag	atgctccaaa	agtgggtgat	gagggaaggc	1920
35	ataaagggag	ccacggtggg	gaagctggcc	caggcgctcc	accagtgttc	caggatcgac	1980
	cttctgagca	gcttgattta	cgtcagccag	aactaaccct	ggatgggcta	cggcagctga	2040
	agtggacgcc	tcacttagcg	gataacccca	gaaagttggc	tgcctcagag	cattcagaat	2100
40	tctgtcctca	ctgatagggg	ttctgtgtct	gcagaaattt	ngtttcctgt	acttcatagc	2160
	tggagaatgg	ggaaagaaat	ctgcagcaaa	ggggtctcac	tctgttgcca	ggctggtctc	2220
45	aaacttctgg	actcaagtga	tcctcccgcc	tcggccttcc	aaagtgctgg	gatatcaggc	2280
	actgagccac	tgcgcccagt	caacaatccg	ntctgaggaa	agcgtaagca	ggaagacctc	2340
	ttaatggcat	agcaccaata	aaaaaatgac	tcctagttgt	gtttggaaag	ggagagaaga	2400
50	gatgtctgag	gaaggtcatg	ttctttcagc	ttatggcatt	tcctagagtt	tngttgaagc	2460
	aagaagaaaa	actcagagaa	tataaaatca	actttnaaaa	ttgtgtgctc	tcttcttcac	2520
55	gtaggctcct	gttaaaaaca	aagtgcagtc	agattctaag	ccctgttcag	agacttcgcg	2580
	gatcacagct	gcagctcacc	gccacatcac	aggatcc			2617

<210> 16 <211> 671

•	<212 <213		PRT Homo	sapi	iens						•					
<u>ب</u>	<400	0 > :	16													
5	Met 1	Gln	Pro	Asp	Met 5	Ser	Leu	Asn	Val	Ile 10	Lys	Met	Lys	Ser	Ser 15	Asp
10	Phe	Leu	Glu	Ser 20	Ala	Glu	Leu	Asp	Ser 25	Gly	Gly	Phe	Gly	Lys 30	Val	Ser
15	Leu	Сув	Phe 35	His	Arg	Thr	Gln	Gly 40	Leu	Met	Ile	Met	Lys 45	Thr	Val	Tyr
20	Lys	Gly 50	Pro	Asn	Сув	Ile	Glu 55	His	Asn	Glu	Ala	Leu 60	Leu	Glu	Glu	Ala
	Lys 65	Met	Met	Asn	Arg	Leu 70	Arg	His	Ser	Arg	Val 75	Val	Lys	Leu	Leu	Gly 80
25	Val	Ile	Ile	Glu	Glu 85	Gly	Lys	Tyr	Ser	Leu 90	Val	Met	Glu	Tyr	Met 95	Glu
30	Lys	Gly	Asn	Leu 100	Met	His	Val	Leu	Lys 105	Ala	Glu	Met	Ser	Thr 110	Pro	Leu
35	Ser	Val	Lys 115	Gly	Arg	Ile	Ile	Leu 120	Glu	Ile	Ile	Glu	Gly 125	Met	Сув	Tyr
40	Leu	His 130	Gly	Lys	Gly	Val	Ile 135	His	Lys	Asp	Leu	Lys 140	Pro	Glu	Asn	Ile
	Leu 145	Val	Asp	Asn	Asp	Phe 150	His	Ile	Lys	Ile	Ala 155	Asp	Leu	Gly	Leu	Ala 160
45	Ser	Phe	Lys	Met	Trp 165	Ser	Lys	Leu	Asn	Asn 170	Glu	Glu	His	Asn	Glu 175	Leu
50	Arg	Glu	Val	Asp 180	Gly	Thr	Ala	Lys	Lys 185	Asn	Gly	Gly	Thr	Leu 190	Tyr	Tyr
55	Met	Ala	Pro 195	Glu	His	Leu	Asn	Asp 200	Val	Asn	Ala	Lys	Pro 205	Thr	Glu	Lys
60	Ser	Asp 210	Val	Tyr	Ser	Phe	Ala 215	Val	Val	Leu	Trp	Ala 220	Ile	Phe	Ala	Asn

	Lys 225	Glu	Pro	Tyr	Glu	Asn 230	Ala	Ile	Cys	Glu	Gln 235	Gln	Leu	Ile	Met	Cys 240
5	Ile	Lys	Ser	Gly	Asn 245	Arg	Pro	Asp	Val	Asp 250	Asp	Ile	Thr	Glu	Tyr 255	Cys
10	Pro	Arg	Glu	Ile 260	Ile	Ser	Leu	Met	Lys 265	Leu	Cys	Trp	Glu	Ala 270	Asn	Pro
15	Glu	Ala	Arg 275	Pro	Thr	Phe	Pro	Gly 280	Ile	Glu	Glu	Lys	Phe 285	Arg	Pro	Phe
20	Tyr	Leu 290	Ser	Gln	Leu	Glu	Glu 295	Ser	Val	Glu	Glu	Asp 300	Val	Lys	Ser	Leu
	Lys 305	Lys	Glu	Tyr	Ser	Asn 310	Glu	Asn	Ala	Val	Val 315	Lys	Arg	Met	Gln	Ser 320
25	Leu	Gln	Leu	Asp	Cys 325	Val	Ala	Val	Pro	Ser 330	Ser	Arg	Ser	Asn	Ser 335	Ala
30	Thr	Glu	Gln	Pro 340	Gly	Ser	Leu	His	Ser 345	Ser	Gln	Gly	Leu	Gly 350	Met	Gly
35	Pro	Val	Glu 355	Glu	Ser	Trp	Phe	Ala 360	Pro	Ser	Leu	Glu	His 365	Pro	Gln	Glu
40	Glu	Asn 370	Glu	Pro	Ser	Leu	Gln 375	Ser	Lys	Leu	Gln	Asp 380	Glu	Ala	Asn	Tyr
	His 385	Leu	Tyr	Gly	Ser	Arg 390	Met	Asp	Arg	Gln	Thr 395	Lys	Gln	Gln	Pro	Arg 400
45	Gln	Asn	Val	Ala	Tyr 405	Asn	Arg	Glu	Glu	Glu 410	Arg	Arg	Arg	Arg	Val 415	Ser
50	His	Asp	Pro	Phe 420	Ala	Gln	Gln	Arg	Pro 425	Tyr	Glu	Asn	Phe	Gln 430	Asn	Thr
55	Glu	Gly	Lys 435	Gly	Thr	Val	Tyr	Ser 440	Ser	Ala	Ala	Ser	His 445	Gly	Asn	Ala
60	Val	His 450	Gln	Pro	Ser	Gly	Leu 455	Thr	Ser	Gln	Pro	Gln 460	Val	Leu	Tyr	Gln

Asn Asn Gly Leu Tyr Ser Ser His Gly Phe Gly Thr Arg Pro Leu Asp 470 475 5 Pro Gly Thr Ala Gly Pro Arg Val Trp Tyr Arg Pro Ile Pro Ser His 490 Met Pro Ser Leu His Asn Ile Pro Val Pro Glu Thr Asn Tyr Leu Gly 10 500 505 Asn Thr Pro Thr Met Pro Phe Ser Ser Leu Pro Pro Thr Asp Glu Ser 15 515 520 Ile Lys Tyr Thr Ile Tyr Asn Ser Thr Gly Ile Gln Ile Gly Ala Tyr 530 535 20 Asn Tyr Met Glu Ile Gly Gly Thr Ser Ser Leu Leu Asp Ser Thr 25 Asn Thr Asn Phe Lys Glu Glu Pro Ala Ala Lys Tyr Gln Ala Ile Phe 565 570 30 Asp Asn Thr Thr Ser Leu Thr Asp Lys His Leu Asp Pro Ile Arg Glu 580 585 Asn Leu Gly Lys His Trp Lys Asn Cys Ala Arg Lys Leu Gly Phe Thr 35 595 Gln Ser Gln Ile Asp Glu Ile Asp His Asp Tyr Glu Arg Asp Gly Leu 610 40 Lys Glu Lys Val Tyr Gln Met Leu Gln Lys Trp Val Met Arg Glu Gly 45 Ile Lys Gly Ala Thr Val Gly Lys Leu Ala Gln Ala Leu His Gln Cys 50 Ser Arg Ile Asp Leu Leu Ser Ser Leu Ile Tyr Val Ser Gln Asn <210> 17 <211> 4596 55 <212> DNA <213> Homo sapiens <400> 17

60

aageggggga ctgtgeegtg tggaaegtgt agetgttgag aggtggaete tgttaceatt 60

gaggatgttt ggaggatgag tatgtgtggc agaggcacac ataaacaggc agagaccctt 120 tgcccctgcc tttctccccc aacccaaggc tgacctgtgt tctcccaggt ctgggattct 180 5 aagtgacctg ctctgtgttt ggtctctctc aggatgagca caagcctggg agatggcagt 240 gatggaaatg gcctgcccag gtgcccctgg ctcagcagtg gggcagcaga aggaactccc 300 10 caagccaaag gagaagacgc cgccactggg gaagaaacag agctccgtct acaagcttga 360 ggccgtggag aagagccctg tgttctgcgg aaagtgggag atcctgaatg acgtgattac 420 caagggcaca gccaaggaag gctccgaggc agggccagct gccatctcta tcatcgccca 480 15 ggctgagtgt gagaatagcc aagagttcag ccccaccttt tcagaacgca ttttcatcgc 540 tgggtccaaa cagtacagcc agtccgagag tcttgatcag atccccaaca atgtggccca 600 20 tgctacagag ggcaaaatgg cccgtgtgtg ttggaaggga aagcgtcgca gcaaagcccg 660 gaagaaacgg aagaagaaga gctcaaagtc cctggctcat gcaggagtgg ccttggccaa 720 accectecce aggaeccetg ageaggagag etgeaceate ceagtgeagg aggatgagte 780 25 tecactegge gececatatg ttagaaacae eeegeagtte accaageete tgaaggaace 840 aggeettggg caactetgtt ttaagcaget tggegaggge ctaeggeegg etetgeeteg 900 30 atcagaactc cacaaactga tcagcccctt gcaatgtctg aaccacgtgt ggaaactgca 960 ccaccccag gacggaggcc ccctgccct gcccacgcac cccttcccct atagcagact 1020 geeteateee tteeeattee acceteteea geeetggaaa ceteaceete tggagteett 1080 35 cctgggcaaa ctggcctgtg tagacagcca gaaacccttg cctgacccac acctgagcaa 1140 actggcctgt gtagacagtc caaagcccct gcctggccca cacctggagc ccagctgcct 1200 40 gtctcgtggt gcccatgaga agttttctgt ggaggaatac ctagtgcatg ctctgcaagg 1260 cagegtgage teaagecagg cecacageet gaccageetg gecaagaeet gggeageaeg 1320 gggctccaga tcccgggagc ccagccccaa aactgaggac aacgagggtg tcctgctcac 1380 45 tgagaaactc aagccagtgg attatgagta ccgagaagaa gtccactggg ccacgcacca 1440 gctccgcctg ggcagaggct ccttcggaga ggtgcacagg atggaggaca agcagactgg 1500 50 cttccagtgc gctgtcaaaa aggtgcggct ggaagtattt cgggcagagg agctgatggc 1560 atgtgcagga ttgacctcac ccagaattgt ccctttgtat ggagctgtga gagaagggcc 1620 ttgggtcaac atcttcatgg agctgctgga aggtggctcc ctgggccagc tggtcaagga 1680 55 gcagggctgt ctcccagagg accgggccct gtactacctg ggccaggccc tggagggtct 1740 ggaatacctc cactcacgaa ggattctgca tggggacgtc aaagctgaca acgtgctcct 1800 60 gtccagcgat gggagccacg cagccctctg tgactttggc catgctgtgt gtcttcaacc 1860

	tgatggcctg	ggaaagtcct	tgctcacagg	ggactacatc	cctggcacag	agacccacat	1920
5	ggctccggag	gtggtgctgg	gcaggagctg	cgacgccaag	gtggatgtct	ggagcagctg	1980
J	ctgtatgatg	ctgcacatgc	tcaacggctg	ccacccctgg	actcagttct	tccgagggcc	2040
	gctctgcctc	aagattgcca	gcgagcctcc	gcctgtgagg	gagatcccac	cctcctgcgc	2100
10	ccctctcaca	gcccaggcca	tccaagaggg	gctgaggaaa	gagcccatcc	accgcgtgtc	2160
	tgcagcggag	ctgggaggga	aggtgaaccg	ggcactacag	caagtgggag	gtctgaagag	2220
15	cccttggagg	ggagaatata	aagaaccaag	acatccaccg	ccaaatcaag	ccaattacca	2280
13	ccagaccctc	catgcccagc	cgagagagct	ttcgccaagg	gccccagggc	cccggccagc	2340
	tgaggagaca	acaggcagag	cccctaagct	ccagcctcct	ctcccaccag	agcccccaga	2400
20	gccaaacaag	tetectecet	tgactttgag	caaggaggag	tctgggatgt	gggaaccctt	2460
	acctctgtcc	tccctggagc	cagcccctgc	cagaaacccc	agctcaccag	agcggaaagc	2520
25	aaccgtcccg	gagcaggaac	tgcagcagct	ggaaatagaa	ttattcctca	acagcctgtc	2580
23	ccagccattt	tctctggagg	agcaggagca	aattctctcg	tgcctcagca	tcgacagcct	2640
	ctccctgtcg	gatgacagtg	agaagaaccc	atcaaaggcc	tctcaaagct	cgcgggacac	2700
30	cctgagctca	ggcgtacact	cctggagcag	ccaggccgag	gctcgaagct	ccagctggaa	2760
	catggtgctg	gcccgggggc	ggcccaccga	caccccaagc	tatttcaatg	gtgtgaaagt	2820
35	ccaaatacag	tctcttaatg	gtgaacacct	gcacatccgg	gagttccacc	gggtcaaagt	2880
33	gggagacatc	gccactggca	tcagcagcca	gatcccagct	gcagccttca	gcttggtcac	2940
	caaagacggg	cagcctgttc	gctacgacat	ggaggtgcca	gactcgggca	tcgacctgca	3000
40	gtgcacactg	gcccctgatg	gcagcttcgc	ctggagctgg	agggtcaagc	atggccagct	3060
	ggagaacagg	ccctaaccct	gccctccacc	gccggctcca	cactgccgga	aagcagcctt	3120
45	cctgctcggt	gcacgatgct	gccctgaaaa	cacaggctca	gccgttccca	ggggattgcc	3180
40	agccccccgg	ctcacagtgg	gaaccagggc	ctcgcagcag	caaggtgggg	gcaagcagaa	3240
	tgcctcccag	gatttcacac	ctgagccctg	ccccaccctg	ctgaaaaaac	atccgccacg	3300
50	tgaagagaca	gaaggaggat	ggcaggagtt	acctggggaa	acaaaacagg	gatctttttc	3360
	tgcccctgct	ccagtcgagt	tggcctgacc	cgcttggatc	agtgaccatt	tgttggcaga	3420
55	caggggagag	cagcttccag	cctgggtcag	aaggggtggg	cgagcccttc	ggcccctcac	3480
<i>)</i>)	cctccaggct	gctgtgagag	tgtcaagtgt	gtaagggccc	aaactcaggt	tcagtgcaga	3540
	accaggtcag	caggtatgcc	cgcccgtagg	ttaagggggc	cctctaaacc	ccttgcctgg	3600
60	cctcacctgg	ccagctcacc	ccttttgggt	gtaggggaaa	agaatgcctg	accctgggaa	3660

qqctccctgg tagaatacac cacacttttc aggttgttgc aacacaggtc ctgagttgac 3720 ctctggttca gccaaggacc aaagaaggtg tgtaagtgaa gtggttctca gtccccagac 3780 5 atgtgeeeet ttgetgetgg etaceaetet teeceagage ageaggeeee gageeeette 3840 aggeceagea etgeeceaga etegetggea eteagtteee teatetgtaa aggtgaaggg 3900 10 tgatgcagga tatgcctgac aggaacagtc tgtggatgga catgatcagt gctaaggaaa 3960 qcaqcaqaqa qaqacqtccq qcqccccaqc cccactatca qtqtccaqcq tqctqqttcc 4020 ccaqaqcaca qctcaqcatc acactqacac tcaccctqcc ctqcccctqq ccaqaqqqta 4080 15 ctgccgacgg cactttgcac tctgatgacc tcaaagcact ttcatggctg ccctctggca 4140 gggcagggca gggcagtgac actgtaggag catagcaagc caggagatgg ggtgaaggga 4200 20 cacagtettg agetgtecae atgeatgtga etecteaaac etettecaga tttetetaag 4260 aatagcaccc ccttccccat tgccccagct tagcctcttc tcccagggga gctactcagg 4320 acteacgtag cattaaatea getgtgaate gteagggggt gtetgetage eteaacetee 4380 25 tggggcaggg gacgccgaga ctccgtggga qaagctcatt cccacatctt qccaaqacaq 4440 cctttgtcca gctgtccaca ttgagtcaga ctgctcccgg ggagagagcc ccggccccca 4500 30 gcacataaag aactgcagcc ttggtactgc agagtctggg ttgtagagaa ctctttgtaa 4560 gcaataaagt ttggggtgat gacaaatgtt aaaaaa 4596 35 <210> 18 <211> 947 <212> PRT Homo sapiens <213> 40 <400> 18 Met Ala Val Met Glu Met Ala Cys Pro Gly Ala Pro Gly Ser Ala Val 45 Gly Gln Gln Lys Glu Leu Pro Lys Pro Lys Glu Lys Thr Pro Pro Leu 20 50 Gly Lys Lys Gln Ser Ser Val Tyr Lys Leu Glu Ala Val Glu Lys Ser 35 Pro Val Phe Cys Gly Lys Trp Glu Ile Leu Asn Asp Val Ile Thr Lys 55 50

Gly Thr Ala Lys Glu Gly Ser Glu Ala Gly Pro Ala Ala Ile Ser Ile

70

Ile Ala Gln Ala Glu Cys Glu Asn Ser Gln Glu Phe Ser Pro Thr Phe Ser Glu Arg Ile Phe Ile Ala Gly Ser Lys Gln Tyr Ser Gln Ser Glu Ser Leu Asp Gln Ile Pro Asn Asn Val Ala His Ala Thr Glu Gly Lys Met Ala Arg Val Cys Trp Lys Gly Lys Arg Arg Ser Lys Ala Arg Lys Lys Arg Lys Lys Ser Ser Lys Ser Leu Ala His Ala Gly Val Ala Leu Ala Lys Pro Leu Pro Arg Thr Pro Glu Glu Ser Cys Thr Ile Pro Val Gln Glu Asp Glu Ser Pro Leu Gly Ala Pro Tyr Val Arg Asn Thr Pro Gln Phe Thr Lys Pro Leu Lys Glu Pro Gly Leu Gly Gln Leu Cys Phe Lys Gln Leu Gly Glu Gly Leu Arg Pro Ala Leu Pro Arg Ser Glu Leu His Lys Leu Ile Ser Pro Leu Gln Cys Leu Asn His Val Trp Lys Leu His His Pro Gln Asp Gly Gly Pro Leu Pro Leu Pro Thr His Pro Phe Pro Tyr Ser Arg Leu Pro His Pro Phe Pro Phe His Pro Leu Gln Pro Trp Lys Pro His Pro Leu Glu Ser Phe Leu Gly Lys Leu Ala Cys Val Asp Ser Gln Lys Pro Leu Pro Asp Pro His Leu Ser Lys Leu Ala Cys Val Asp Ser Pro Lys Pro Leu Pro Gly Pro His Leu Glu Pro 305 310 315

Ser Cys Leu Ser Arg Gly Ala His Glu Lys Phe Ser Val Glu Glu Tyr Leu Val His Ala Leu Gln Gly Ser Val Ser Ser Ser Gln Ala His Ser Leu Thr Ser Leu Ala Lys Thr Trp Ala Ala Arg Gly Ser Arg Ser Arg Glu Pro Ser Pro Lys Thr Glu Asp Asn Glu Gly Val Leu Leu Thr Glu Lys Leu Lys Pro Val Asp Tyr Glu Tyr Arg Glu Glu Val His Trp Ala Thr His Gln Leu Arg Leu Gly Arg Gly Ser Phe Gly Glu Val His Arg Met Glu Asp Lys Gln Thr Gly Phe Gln Cys Ala Val Lys Lys Val Arg Leu Glu Val Phe Arg Ala Glu Glu Leu Met Ala Cys Ala Gly Leu Thr Ser Pro Arg Ile Val Pro Leu Tyr Gly Ala Val Arg Glu Gly Pro Trp Val Asn Ile Phe Met Glu Leu Leu Glu Gly Gly Ser Leu Gly Gln Leu Val Lys Glu Gln Gly Cys Leu Pro Glu Asp Arg Ala Leu Tyr Tyr Leu Gly Gln Ala Leu Glu Gly Leu Glu Tyr Leu His Ser Arg Arg Ile Leu His Gly Asp Val Lys Ala Asp Asn Val Leu Leu Ser Ser Asp Gly Ser His Ala Ala Leu Cys Asp Phe Gly His Ala Val Cys Leu Gln Pro Asp Gly Leu Gly Lys Ser Leu Leu Thr Gly Asp Tyr Ile Pro Gly Thr Glu

	Thr	His	Met	Ala	Pro 565	Glu	Val	Val	Leu	Gly 570	Arg	Ser	Cys	Asp	Ala 575	Lys
5	Val	Asp	Val	Trp 580	Ser	Ser	Cys	Cys	Met 585	Met	Leu	His	Met	Leu 590	Asn	Gly
10	Cys	His	Pro 595	Trp	Thr	Gln	Phe	Phe 600	Arg	Gly	Pro	Leu	Cys 605	Leu	Lys	Ile
15	Ala	Ser 610	Glu	Pro	Pro	Pro	Val 615	Arg	Glu	Ile	Pro	Pro 620	Ser	Cys	Ala	Pro
20	Leu 625	Thr	Ala	Gln	Ala	Ile 630	Gln	Glu	Gly	Leu	Arg 635	Lys	Glu	Pro	Ile	His 640
	Arg	Val	Ser	Ala	Ala 645	Glu	Leu	Gly	Gly	Lys 650	Val	Asn	Arg	Ala	Leu 655	Gln
25	Gln	Val	Gly	Gly 660	Leu	Lys	Ser	Pro	Trp 665	Arg	Gly	Glu	Tyr	Lys 670	Glu	Pro
30	Arg	His	Pro 675	Pro	Pro	Asn	Gln	Ala 680	Asn	Tyr	His	Gln	Thr 685	Leu	His	Ala
35	Gln	Pro 690	Arg	Glu	Leu	Ser	Pro 695	Arg	Ala	Pro	Gly	Pro 700	Arg	Pro	Ala	Glu
40	Glu 705	Thr	Thr	Gly	Arg	Ala 710	Pro	Lys	Leu	Gln	Pro 715	Pro	Leu	Pro	Pro	Glu 720
	Pro	Pro	Glu	Pro	Asn 725	Lys	Ser	Pro	Pro	Leu 730	Thr	Leu	Ser	Lys	Glu 735	Glu
45	Ser	Gly	Met	Trp 740	Glu	Pro	Leu	Pro	Leu 745	Ser	Ser	Leu	Glu	Pro 750	Ala	Pro
50	Ala	Arg	Asn 755	Pro	Ser	Ser	Pro	Glu 760	Arg	Lys	Ala	Thr	Val 765	Pro	Glu	Gln
55	Glu	Leu 770	Gln	Gln	Leu	Glu	Ile 775	Glu	Leu	Phe	Leu	Asn 780	Ser	Leu	Ser	Gln
60	Pro 785	Phe	Ser	Leu	Glu	Glu 790	Gln	Glu	Gln	Ile	Leu 795	Ser	Сув	Leu	Ser	Ile 800

	Asp	Ser	Leu	Ser	Leu 805	Ser	Asp	Asp	Ser	Glu 810	Lys	Asn	Pro	Ser	Lys 815	Ala	
5	Ser	Gln	Ser	Ser 820	Arg	Asp	Thr	Leu	Ser 825	Ser	Gly	Val	His	Ser 830	Trp	Ser	
10	Ser	Gln	Ala 835	Glu	Ala	Arg	Ser	Ser 840	Ser	Trp	Asn	Met	Val 845	Leu	Ala	Arg	
15	Gly	Arg 850	Pro	Thr	Asp	Thr	Pro 855	Ser	Tyr	Phe	Asn	Gly 860	Val	Lys	Val	Gln	
20	Ile 865	Gln	Ser	Leu	Asn	Gly 870	Glu	His	Leu	His	Ile 875	Arg	Glu	Phe	His	Arg 880	
	Val	Lys	Val	Gly	Asp 885	Ile	Ala	Thr	Gly	Ile 890	Ser	Ser	Gln	Ile	Pro 895	Ala	
25	Ala	Ala	Phe	Ser 900	Leu	Val	Thr	Lys	Asp 905	Gly	Gln	Pro	Val	Arg 910	Tyr	Asp	
30	Met	Glu	Val 915	Pro	Asp	Ser	Gly	Ile 920	Asp	Leu	Gln	Cys	Thr 925	Leu	Ala	Pro	
35	Asp	Gly 930	Ser	Phe	Ala	Trp	Ser 935	Trp	Arg	Val	Lys	His 940	Gly	Gln	Leu	Glu	
40	Asn 945	Arg	Pro														
45	<210 <210 <210	1 > 2 2 > I	19 2030 DNA														
45	< 40		Homo	sap	iens												
				tggc	cttg	ct ga	acct	cgag	c cgg	ggcc	cacg	tgg	ggac	ctt 1	cgga	gcacag	60
50	ccta	acgat	tcc 1	tggt	gcaag	gg co	eggt	ggat	g cag	gagg	ccag	tcca	atata	acc a	accca	aggcct	120
							•									agaggc	180
55																gaacc	240
																ggcagg	300
																acccaa	360
60	CCC	caca	ccc (cccc	ggaad	cc to	ggact	tacaq	g gad	cctt	catc	acca	attg	gag a	acaga	aaactt	420

	tgaggtggag	gctgatgact	tggtgaccat	ctcagaactg	ggccgtggag	cctatggggt	480
5	ggtagagaag	gtgcggcacg	cccagagcgg	caccatcatg	gccgtgaagc	ggatccgggc	540
J	caccgtgaac	tcacaggagc	agaagcggct	gctcatggac	ctggacatca	acatgcgcac	600
	ggtcgactgt	ttctacactg	tcaccttcta	cggggcacta	ttcagagagg	gagacgtgtg	660
10	gatctgcatg	gagctcatgg	acacatcctt	ggacaagttc	taccggaagg	tgctggataa	720
	aaacatgaca	attccagagg	acatccttgg	ggagattgct	gtgtctatcg	tgcgggccct	780
15	ggagcatctg	cacagcaagc	tgtcggtgat	ccacagagat	gtgaagccct	ccaatgtcct	840
13	tatcaacaag	gagggccatg	tgaagatgtg	tgactttggc	atcagtggct	acttggtgga	900
	ctctgtggcc	aagacgatgg	atgccggctg	caagccctac	atggcccctg	agaggatcaa	960
20	cccagagctg	aaccagaagg	gctacaatgt	caagtccgac	gtctggagcc	tgggcatcac	1020
	catgattgag	atggccatcc	tgcggttccc	ttacgagtcc	tgggggaccc	cgttccagca	1080
25	gctgaagcag	gtggtggagg	agccgtcccc	ccagctccca	gccgaccgtt	tctcccccga	1140
23	gtttgtggac	ttcactgctc	agtgcctgag	gaagaacccc	gcagagcgta	tgagctacct	1200
	ggagctgatg	gagcacccct	tcttcacctt	gcacaaaacc	aagaagacgg	acattgctgc	1260
30	cttcgtgaag	aagatcctgg	gagaagactc	ataggggctg	ggcctcggac	cccactccgg	1320
	ccctccagag	ccccacagcc	ccatctgcgg	gggcagtgct	cacccacacc	ataagctact	1380
35	gccatcctgg	cccagggcat	ctgggaggaa	ccgagggggc	tgctcccacc	tggctctgtg	1440
33	gcgagccatt	tgtcccaagt	gccaaagaag	cagaccattg	gggctcccag	ccaggccctt	1500
	gtcggcccca	ccagtgcctc	tccctgctgc	tcctaggacc	cgtctccagc	tgctgagatc	1560
40	ctggactgag	ggggcctgga	tgccccctgt	ggatgctgct	gcccctgcac	agcaggctgc	1620
	cagtgcctgg	gtggatgggc	caccgccttg	cccagcctgg	atgccatcca	agttgtatat	1680
45	ttttttaatc	tctcgactga	atggactttg	cacactttgg	cccagggtgg	ccacacctct	1740
73	atcccggctt	tggtgcgggg	tacacaagag	gggatgagtt	gtgtgaatac	cccaagactc	1800
	ccatgaggga	gatgccatga	gccgcccaag	gccttcccct	ggcactggca	aacagggcct	1860
50	ctgcggagca	cactggctca	cccagtcctg	cccgccaccg	ttatcggtgt	cattcacctt	1920
	tcgtgttttt	tttaatttat	cctctgttga	ttttttcttt	tgctttatgg	gtttggcttg	1980
55	tttttcttgc	atggtttgga	gctgatcgct	tctccccac	cccctagggg		2030
60	<210> 20 <211> 318 <212> PRT <213> Home	o sapiens					

<400> 20

5	Met 1	Ser	Lys	Pro	Pro 5	Ala	Pro	Asn	Pro	Thr 10	Pro	Pro	Arg	Asn	Leu 15	Asp
10	Ser	Arg	Thr	Phe 20	Ile	Thr	Ile	Gly	Asp 25	Arg	Asn	Phe	Glu	Val 30	Glu	Ala
	Asp	Asp	Leu 35	Val	Thr	Ile	Ser	Glu 40	Leu	Gly	Arg	Gly	Ala 45	Tyr	Gly	Val
15	Val	Glu 50	Lys	Val	Arg	His	Ala 55	Gln	Ser	Gly	Thr	Ile 60	Met	Ala	Val	Lys
20	Arg 65	Ile	Arg	Ala	Thr	Val 70	Asn	Ser	Gln	Glu	Gln 75	Lys	Arg	Leu	Leu	Met 80
25	Asp	Leu	Asp	Ile	Asn 85	Met	Arg	Thr	Val	Asp 90	Cys	Phe	Tyr	Thr	Val 95	Thr
30	Phe	Tyr	Gly	Ala 100	Leu	Phe	Arg	Glu	Gly 105	Asp	Val	Trp	Ile	Cys 110	Met	Glu
2.5	Leu	Met	Asp 115	Thr	Ser	Leu	Asp	Lys 120	Phe	Tyr	Arg	Lys	Val 125	Leu	Asp	Lys
35	Asn	Met 130	Thr	Ile	Pro	Glu	Asp 135	Ile	Leu	Gly	Glu	Ile 140	Ala	Val	Ser	Ile
40	Val 145	Arg	Ala	Leu	Glu	His 150	Leu	His	Ser	Lys	Leu 155	Ser	Val	Ile	His	Arg 160
45	Asp	Val	Lys	Pro	Ser 165	Asn	Val	Leu	Ile	Asn 170	Lys	Glu	Gly	His	Val 175	Lys
50	Met	Cys	Asp	Phe 180	Gly	Ile	Ser	Gly	Tyr 185	Leu	Val	Asp	Ser	Val 190	Ala	Lys
	Thr	Met	Asp 195	Ala	Gly	Cys	Lys	Pro 200	Tyr	Met	Ala	Pro	Glu 205	Arg	Ile	Asn
55	Pro	Glu 210	Leu	Asn	Gln	Lys	Gly 215	Tyr	Asn	Val	Lys	Ser 220	Asp	Val	Trp	Ser
60	T	01	T1.	mb	Mat	T1.	C1.	Mot	ת - 1 מ	T1 c	T 01:	7 ×-	Dhe	Dwc	Т	Clv

	225	230 .	235 240
5	Ser Trp Gly Thr Pro	_	ys Gln Val Val Glu Glu Pro 50 255
10	Ser Pro Gln Leu Pro 260	o Ala Asp Arg Phe Se 265	er Pro Glu Phe Val Asp Phe 270
	Thr Ala Gln Cys Let 275	u Arg Lys Asn Pro Al 280	la Glu Arg Met Ser Tyr Leu 285
15	Glu Leu Met Glu His 290	s Pro Phe Phe Thr Le 295	eu His Lys Thr Lys Lys Thr 300
20	Asp Ile Ala Ala Phe 305	e Val Lys Lys Ile Le 310	eu Gly Glu Asp Ser 315
25	<210> 21 <211> 3745 <212> DNA <213> Homo sapiens	s	
30	<400> 21 gaattcggca cgaggcca	att gaatcccagt cctaa	acagaa gtactgcgaa tcttgtggcc 60
	tcattctgaa caaaaggg	gat tagagaagaa aaatc	ctcttg atataaggct tgaaagcaag 120
	ggcaggcaat cttggttg	gtg aatattttct gattt	tttcca gaaatcaagc agaagattga 180
35	gctgctgatg tcagttaa	act ctgagaagtc gtcct	tettea gaaaggeegg ageeteaaca 240
	gaaagctcct ttagttco	ctc ctcctccacc gccac	ccacca ccaccaccgc cacctttgcc 300
40	agaccccaca cccccgga	agc cagaggagga gatcc	ctggga tcagatgatg aggagcaaga 360
	ggaccctgcg gactactg	gca aaggtggata tcatc	ccagtg aaaattggag acctcttcaa 420
45	tggccggtat catgttat	cta gaaagcttgg atggg	gggcac ttctctactg tctggctgtg 480
43	ctgggatatg caggggaa	aaa gatttgttgc aatga	aaagtt gtaaaaagtg cccagcatta 540
	tacggagaca gccttgga	atg aaataaaatt gctca	aaatgt gttcgagaaa gtgatcccag 600
50	tgacccaaac aaagacat	tgg tggtccagct cattg	gacgac ttcaagattt caggcatgaa 660
	tgggatacat gtctgcat	tgg tettegaagt aettg	ggccac catctcctca agtggatcat 720
55	caaatccaac tatcaagg	gcc teceagtacg ttgtg	gtgaag agtatcattc gacaggtcct 780
	tcaagggtta gattactt	tac acagtaagtg caaga	atcatt catactgaca taaagccgga 840
	aaatatcttg atgtgtgt	tgg atgatgcata tgtga	agaaga atggcagctg agcctgagtg 900
60	gcagaaagca ggtgctco	etc ctccttcagg gtctg	gcagtg agtacggctc cacagcagaa 960

acctatagga aaaatatcta aaaacaaaaa gaaaaaactg aaaaagaaac agaagaggca 1020 ggctgagtta ttggagaagc gcctgcagga gatagaagaa ttggagcgag aagctgaaag 1080 5 gaaaataata gaagaaaaca tcacctcagc tgcaccttcc aatgaccagg atggcgaata 1140 1200 ctgcccagag gtgaaactaa aaacaacagg attagaggag gcggctgagg cagagactgc 10 aaaggacaat ggtgaagctg aggaccagga agagaaagaa gatgctgaga aagaaaacat 1260 tgaaaaagat gaagatgatg tagatcagga acttgcgaac atagacccta cgtggataga 1320 atcacctaaa accaatggcc atattgagaa tggcccattc tcactggagc agcaactgga 1380 15 cgatgaagat gatgatgaag aagactgccc aaatcctgag gaatataatc ttgatgagcc 1440 aaatgcagaa agtgattaca catatagcag ctcctatgaa caattcaatg gtgaattgcc 1500 20 aaatggacga cataaaattc ccgagtcaca gttcccagag ttttccacct cgttgttctc 1560 tggatectta gaacetgtgg cetgeggete tgtgetttet gagggateae caettaetga 1620 gcaagaggag agcagtccat cccatgacag aagcagaacg gtttcagcct ccagtactgg 1680 25 ggatttgcca aaagcaaaaa cccgggcagc tgacttgttg gtgaatcccc tggatccgcg 1740 gaatcgagat aaaattagag taaaaattgc tgacctggga aatgcttgtt gggtgcataa 1800 30 acacttcacg gaagacatcc agacgcgtca gtaccgctcc atagaggttt taataggagc 1860 ggggtacagc acccctgcgg acatctggag cacggcgtgt atggcatttg agctggcaac 1920 gggagattat ttgtttgaac cacattctgg ggaagactat tccagagacg aagaccacat 1980 35 agcccacatc atagagctgc taggcagtat tccaaggcac tttgctctat ctggaaaata 2040 ttctcgggaa ttcttcaatc gcagaggaga actgcgacac atcaccaagc tgaagccctg 2100 40 gageetettt gatgtaettg tggaaaagta tggetggeee catgaagatg etgeaeagtt 2160 tacagatttc ctgatcccga tgttagaaat ggttccagaa aaacgagcct cagctggcga 2220 atgteggeat cettggttga attettagea aattetacea atattgeatt etgagetage 2280 45 aaatgttccc agtacattgg acctaaacgg tgactctcat tctttaacag gattacaagt 2340 2400 gagetggett cateeteaga cetttatttt getttgaggt aetgttgttt gacattttge 50 tttttgtgca ctgtgatcct ggggaagggt agtcttttgt cttcagctaa gtagtttact 2460 gaccattttc ttctggaaac aataacatgt ctctaagcat tgtttcttgt gttgtgtgac 2520 attcaaatgt catttttttg aatgaaaaat actttcccct ttgtgtttttg gcaggttttg 2580 55 taactattta tgaagaaata ttttagctga gtactatata atttacaatc ttaagaaatt 2640 atcaagttgg aaccaagaaa tagcaaggaa atgtacaatt ttatcttctg gcaaagggac 2700 60 atcattcctg tattatagtg tatgtaaatg caccctgtaa atgttacttt ccattaaata 2760

•		
	tgggagggg actcaaattt cagaaaagct accaagtctt gagtgctttg tagcctatgt	2820
5	tgcatgtagc ggactttaac tgctccaagg agttgtgcaa acttttcatt ccataacagt	2880
	cttttcacat tggattttaa acaaagtggc tctgggttat aagatgtcat tctctatatg	2940
	gcactttaaa ggaagaaaag atatgtttct cattctaaaa tatgcattat aatttagcag	3000
10	tcccatttgt gattttgcat atttttaaaa gtacttttaa agaagagcaa tttcccttta	3060
	aaaatgtgat ggctcagtac catgtcatgt tgcctcctct gggcgctgta agttaagctc	3120
15	tacatagatt aaattggaga aacgtgttaa ttgtgtggaa tgaaaaaata catatatttt	3180
13	tggaaaagca tgatcatgct tgtctagaac acaaggtatg gtatatacaa tttgcagtgc	3240
	agtgggcaga atacttctca cagctcaaag ataacagtga tcacattcat tccataggta	3300
20	gctttacgtg tggctacaac aaattttact agctttttca ttgtctttcc atgaaacgaa	3360
	gttgagaaaa tgattttccc tttgcaggtt gcacacagtt ttgtttatgc atttccttaa	3420
25	aattaattgt agactccagg atacaaacca tagtaggcaa tacaatttag aatgtaatat	3480
23	atagaggtat attagcctct ttagaagtca gtggattgaa tgtcttttta ttttaaattt	3540
	tacattcatt aaggtgcctc gtttttgact ttgtccatta acatttatcc atatgccttt	3600
30	gcaataacta gattgtgaaa agctaacaag tgttgtaaca ataatccatt gtttgaggtg	3660
	cttgcagttg tcttaaaaat taaagtgttt tggttttttt ttttccagaa aaaaaaaaa	3720
35	aaaaaaaaa aaaaaaaatt cctgc	3745
40	<210> 22 <211> 686 <212> PRT <213> Homo sapiens	
	<400> 22	
45	Met Ser Val Asn Ser Glu Lys Ser Ser Ser Ser Glu Arg Pro Glu Pro 1 5 10 15	
50	Gln Gln Lys Ala Pro Leu Val Pro	
	Pro Pro Pro Pro Leu Pro Asp Pro Thr Pro Pro Glu Pro Glu Glu Glu 35 40 45	
55	Ile Leu Gly Ser Asp Asp Glu Glu Glu Glu Asp Pro Ala Asp Tyr Cys 50 55 60	

Lys Gly Gly Tyr His Pro Val Lys Ile Gly Asp Leu Phe Asn Gly Arg

Tyr His Val Ile Arg Lys Leu Gly Trp Gly His Phe Ser Thr Val Trp Leu Cys Trp Asp Met Gln Gly Lys Arg Phe Val Ala Met Lys Val Val Lys Ser Ala Gln His Tyr Thr Glu Thr Ala Leu Asp Glu Ile Lys Leu Leu Lys Cys Val Arg Glu Ser Asp Pro Ser Asp Pro Asn Lys Asp Met Val Val Gln Leu Ile Asp Asp Phe Lys Ile Ser Gly Met Asn Gly Ile His Val Cys Met Val Phe Glu Val Leu Gly His His Leu Leu Lys Trp Ile Ile Lys Ser Asn Tyr Gln Gly Leu Pro Val Arg Cys Val Lys Ser Ile Ile Arg Gln Val Leu Gln Gly Leu Asp Tyr Leu His Ser Lys Cys Lys Ile Ile His Thr Asp Ile Lys Pro Glu Asn Ile Leu Met Cys Val Asp Asp Ala Tyr Val Arg Arg Met Ala Ala Glu Pro Glu Trp Gln Lys Ala Gly Ala Pro Pro Pro Ser Gly Ser Ala Val Ser Thr Ala Pro Gln Gln Lys Pro Ile Gly Lys Ile Ser Lys Asn Lys Lys Lys Leu Lys Lys Lys Gln Lys Arg Gln Ala Glu Leu Leu Glu Lys Arg Leu Gln Glu Ile Glu Glu Leu Glu Arg Glu Ala Glu Arg Lys Ile Ile Glu Glu Asn

Ile Thr Ser Ala Ala Pro Ser Asn Asp Gln Asp Gly Glu Tyr Cys Pro

•	305					310					315					320
5	Glu	Val	Lys	Leu	Lys 325	Thr	Thr	Gly	Leu	Glu 330	Glu	Ala	Ala	Glu	Ala 335	Glu
10	Thr	Ala	Lys	Asp 340	Asn	Gly	Glu	Ala	Glu 345	Asp	Gln	Glu	Glu	Lys 350	Glu	Asp
	Ala	Glu	Lys 355	Glu	Asn	Ile	Glu	Lys 360	Asp	Glu	Asp	Asp	Val 365	Asp	Gln	Glu
15	Leu	Ala 370	Asn	Ile	Asp	Pro	Thr 375	Trp	Ile	Glu	Ser	Pro 380	Lys	Thr	Asn	Gly
20	His 385	Ile	Glu	Asn	Gly	Pro 390	Phe	Ser	Leu	Glu	Gln 395	Gln	Leu	Asp	Asp	Glu 400
25	Asp	Asp	Asp	Glu	Glu 405	Asp	Cys	Pro	Asn	Pro 410	Glu	Glu	Tyr	Asn	Leu 415	Asp
30	Glu	Pro	Asn	Ala 420	Glu	Ser	Asp	Tyr	Thr 425	Tyr	Ser	Ser	Ser	Tyr 430	Glu	Gln
	Phe	Asn	Gly 435	Glu	Leu	Pro	Asn	Gly 440	Arg	His	Lys	Ile	Pro 445	Glu	Ser	Gln
35	Phe	Pro 450	Glu	Phe	Ser	Thr	Ser 455	Leu	Phe	Ser	Gly	Ser 460	Leu	Glu	Pro	Val
40	Ala 465	Cys	Gly	Ser	Val	Leu 470	Ser	Glu	Gly	Ser	Pro 475	Leu	Thr	Glu	Gln	Glu 480
45	Glu	Ser	Ser	Pro	Ser 485	His	Asp	Arg	Ser	Arg 490	Thr	Val	Ser	Ala	Ser 495	Ser
50	Thr	Gly	Asp	Leu 500	Pro	Lys	Ala	Lys	Thr 505	Arg	Ala	Ala	Asp	Leu 510	Leu	Val
	Asn	Pro	Leu 515	Asp	Pro	Arg	Asn	Arg 520	Asp	Lys	Ile	Arg	Val 525	Lys	Ile	Ala
55	Asp	Leu 530	Gly	Asn	Ala	Cys	Trp 535	Val	His	Lys	His	Phe 540	Thr	Glu	Asp	Ile
60	Gln	Thr	Arg	Gln	Tyr	Arg	Ser	Ile	Glu	Val	Leu	Ile	Gly	Ala	Gly	Tyr

•	545					550					555					560
5	Ser	Thr	Pro	Ala	Asp 565	Ile	Trp	Ser	Thr	Ala 570	Cys	Met	Ala	Phe	Glu 575	Leu
10	Ala	Thr	Gly	Asp 580	Tyr	Leu	Phe	Glu	Pro 585	His	Ser	Gly	Glu	Asp 590	Tyr	Ser
	Arg	Asp	Glu 595	Asp	His	Ile	Ala	His 600	Ile	Ile	Glu	Leu	Leu 605	Gly	Ser	Ile
15	Pro	Arg 610	His	Phe	Ala	Leu	Ser 615	Gly	Lys	Tyr	Ser	Arg 620	Glu	Phe	Phe	Asn
20	Arg 625	Arg	Gly	Glu	Leu	Arg 630	His	Ile	Thr	Lys	Leu 635	Lys	Pro	Trp	Ser	Leu 640
25	Phe	Asp	Val	Leu	Val 645	Glu	Lys	Tyr	Gly	Trp 650	Pro	His	Glu	Asp	Ala 655	Ala
30	Gln	Phe	Thr	Asp 660	Phe	Leu	Ile	Pro	Met 665	Leu	Glu	Met	Val	Pro 670	Glu	Lys
	Arg	Ala	Ser 675	Ala	Gly	Glu	Cys	Arg 680	His	Pro	Trp	Leu	Asn 685	Ser		