Evidence of Chemical Change

Your Tasks (Mark these off as you go)
☐ Define key vocabulary
☐ Classify a reaction given a laboratory description
□ Balance reactions
Observe evidence of chemical reactions
☐ Write reactions to describe laboratory situations
Receive credit for this lab
□ Define kov vesebulary
□ Define key vocabulary
Single replacement reaction
Double replacement reaction
Synthesis reaction
Decomposition reaction
Combustion reaction
Draginitata
Precipitate

☐ Classify a reaction given a laboratory description

We learned previously that there are several different ways of classifying chemical reactions. The classification schemes described here provides useful guidelines for predicting reaction types. The types of reactions described are synthesis, decomposition, single-replacement, double-replacement, and combustion.

Reaction Type	Description	Examples
Synthesis	two or more substances combine to	$Mg(s) + O_2(g) \rightarrow MgO(s)$
	form a new compound	$NaO(s) + H_2O(I) \rightarrow NaOH(aq)$
Decomposition	A single compound separates to	$HgO(s) \rightarrow Hg(I) + O_2(g)$
	produce two or more simpler	$KCIO_3(s) \rightarrow KCI(s) + O_2(g)$
	substances.	
Single replacement	One element replaces a similar	$Na(s) + H2O(I) \rightarrow NaOH(aq) + H2(g)$
	element in a compound	$Cl_2(g) + KBr(aq) \rightarrow KCl(aq) + Br_2(l)$
Double replacement	The ions of two compounds	$Pb(NO_3)_2(aq) + KI(aq) \rightarrow PbI_2(s) + KNO_3(aq)$
	exchange places to form two new	$HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H2O(l)$
	compounds	
Combustion	A substance made up of carbon and	$C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
	hydrogen reacts with oxygen to	$C_{12}H_{22}O_{11}(s) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
	produce carbon dioxide and water.	

For each of the laboratory situations described below, (a) Write the corresponding reaction (b) Classify the
reaction as one of the 5 types described above
1. When powdered barium hydroxide (Ba(OH) ₂) is mixed with a solution of silver nitrate (AgNO ₃), aqueous
barium nitrate (Ba(NO ₃) ₂) is produced and silver hydroxide (AgOH) precipitates
(a)
(b)
2. When zinc (Zn) metal is placed in a solution of silver nitrate (AgNO ₃), aqueous zinc nitrate (Zn(NO ₃) ₂ is
produced and silver (Ag) precipitates.
(a)
(b)
3. When liquid methanol (CH ₃ OH) is burned, carbon dioxide (CO ₂) gas and water (H ₂ O) vapor are produced.
(a)
(b)
4. When powdered potassium chlorate (KClO ₃) is heated, solid potassium chloride (KCl) and oxygen gas (O ₂)
are produced.
(a)
(b)
5. When powdered iron(II) sulfide (FeS) is mixed with a solution of hydrochloric acid (HCl), hydrogen sulfide
gas (H ₂ S) and aqueous iron(II) chloride are produced.
(a)
(b)

6.	When sodium oxide (Na ₂ O) is placed in water (H ₂ O), aqueous sodium hydroxide (NaOH) is produced
(a)	
(b)	

□ Balance reactions

Conservation of mass states the mass is neither created nor destroyed, therefore everything that appears on the left of a reaction must appear on the right. Consider the balanced reaction shown below,

Substance	2Al + 3ZnCl ₂	\rightarrow	3Zn + 2AlCl ₃
Al	2		2
Zn	3		3
CI	6		6

Notice above that there are equal numbers of each element on each side of the arrow. The reaction is therefore said to be "balanced".

There is no one-way to balance a chemical equation, but the following guidelines are useful,

- Balance the atoms that appear only once on each side of the equation first
- Balance polyatomic ions that appear on both sides of the equation as single units
- Balance H atoms and O atoms last
- If water appears in the reaction, write it as HOH. Balance H and OH separately.

Paste a screen shot of your results in the below.

☐ Observe evidence of chemical reactions

Procedure

Step 1.

Place about 150 mL of water into a 400 mL beaker, then heat until boiling

Step 2.

While the beaker of water heats up, measure out between 0.60 and 0.65 g of copper.

Transfer the copper in a 150 mL beaker.

Describe the appearance of your copper in the data table below.

Step 3.

This step MUST be done in the fume hood. Deadly gases are released during this step!

Nitric acid is extremely corrosive and will cause severe chemical burns.

Very carefully measure out 3 mL of nitric acid in a 10 mL graduated cylinder. Then pour the nitric acid into the beaker containing the copper.

Allow the copper to completely react.

Once the copper has completely reacted, measure out 7 mL of water in a graduated cylinder and add this to the beaker.

Record your observations and evidence of chemical change in the data table below.

Step 4.

Obtain a test tube and using a ruler make three marks on it about 1 cm apart.

Step 5.

Pour the solution in your beaker into the test tube up to the first mark. Discard any remaining solution in the waste bucket.

Step 6.

Add 1.0 M Sodium hydroxide up to the second mark on the test tube.

Slightly mix the solutions by tapping the tube gently on the palm of your hand.

Record your observations and evidence of chemical change in the data table below.

Step 7.

Put the test tube into the water bath you prepared in step 1. Heat it until no more changes occur.

Record your observations and evidence of chemical change in the data table below.

Step 8.

Remove the test tube from the hot water bath. Turn off the hot plate. Cool the test tube for 2 minutes in a beaker with room temperature water. Then add 3.0 M HCl to the 3rd , mark.

Record your observations and evidence of chemical change in the data table below.

Step 9.

Place a 12 cm piece of aluminum wire in the test tube. Leave it until no reaction is observed.

Record your observations and evidence of chemical change in the data table below.

Step 10.

Remove the wire from the test tube and place it on a paper towel. Compare the copper formed to the original sample.

Record how the copper you recovered at the end compares to the original sample in the data table below.

- Rinse the aluminum wire and return it to the used aluminum wire container
- Discard all additional waste in the designated waste bucket
- Rinse your supplies in the sink and return them to the supply cart

Data Table 1. Observations of chemical change

	- Caraci sanono en anomoni anungo
Step 2	
Step 3	
Step 6	
Step 7	

Step 8		
Step 9		
Step 10		

□ Write reactions to describe laboratory conditions

The reactions that took place in steps 3, 6, 7, 8, and 9 are described below. For each reaction, (1) Write a chemical reaction using the appropriate symbols. (2) Balance the reaction (3) Identify the type of reaction

reaction using t	the appropriate symbols. (2) Balance the reaction (5) Identity the type of reaction
Step 3	
	trated nitric acid (HNO ₃) is added to copper (Cu), aqueous copper(II) nitrate (Cu(NO ₃) ₂), nitrogen
dioxide (NO ₂)	gas, and water (H₂O) is produced.
Balanced	
reaction	
Type of	
reaction	
Step 6	
•	s copper (II) nitrate (HNO₃) and aqueous sodium hydroxide (NaOH) are mixed, copper (II)
hydroxide (Cu	(OH)₂) precipitates and aqueous sodium nitrate (NaNO₃) is produced.
Balanced	
reaction	
Type of	
reaction	
Step 7	
	II) hydroxide (Cu(OH) ₂), when heated, produces solid copper (II) oxide (CuO) and water (H ₂ O)
Balanced	
reaction	
Type of	
reaction	
Step 8	
Aqueous hydr (CuCl ₂) and wa	ochloric acid (HCI) reacts with solid copper (II) oxide (CuO) to produce aqueous copper(II) chloride ater (H ₂ O)
Balanced	
reaction	
Type of	
reaction	
Step 9 (There	are two reactions here)
Aqueous copp	per (II) chloride (CuCl ₂) and aluminum (AI) metal react to produce copper (Cu) metal and aqueous
aluminum chl	oride (AICI3)
Balanced	
reaction	
Type of	
reaction	
) metal reacts with aqueous hydrochloric acid (HCI) to produce hydrogen (H ₂) gas and aqueous
aluminum chl	pride (AICI₃)
Balanced	
reaction	
Type of	
reaction	

□ Receive Credit for this lab

Submit your completed lab to receive credit.