Security of Networks, Services, and Systems TLS - Transport Layer Security

Ricardo Morla

FEUP – SSR/M.EEC, SR/M.EIC

Overview

- RFC 5246 (TLS 1.2), RFC 8446 (TLS 1.3)
- Secures end-to-end communications between web client and web server on top of TCP
- Provides confidentiality, web server authentication, and data integrity
 - Authentication 1
 - The server sends certificate to client, client validates certificate
 - The server then can use its public key to sign any new information it wants to send and the client will be able to authenticate it
 - Session data confidentiality
 - The client and server encrypt data with shared keys for efficiency
 - They must agree on shared key for each session
 - Session data integrity 2
 - Compute MAC and concatenate to message

Confidentiality and Encryption Keys

- Pre-master secret
 - randomly generated or result of DH key exchange
- Master secret
 - generated from a pseudo-random function (RFC 5246, section 5)
 - on the pre-master secret and client/server "Hello" random values (RFC 5246, section 8.1)
- Session keys
 - used to actually encrypt the data with symmetric cipher
 - generated from master key and client/server random values (RFC 5246, section 6.3)
 - generates client/server write keys for MAC, encryption, and Initialization Vectors

Perfect Forward Secrecy

https://en.wikipedia.org/wiki/Forward_secrecy

- Pre-master keys required to decrypt session data
- Vulnerable if:
 - Pre-master keys encrypted with the server's public key are vulnerable to attack in the future
 - Pre-master keys exchanged using static DH parameters
- Ephemeral (used only once) DH parameters can be used, which generate unique private/public keys for each session
- If the attacker only has access to your private key and not to the ephemeral keys, it will not be able to decrypt your data
- This is called perfect forward secrecy

Algorithms

https://en.wikipedia.org/wiki/Transport_Layer_Security

- TLS supports may different algorithms
- Key exchange
 - RSA, DHE-RSA, ECDHE-RSA, ...
- Ciphers (symmetric encryption)
 - AES with different modes of operation, Camellia, 3DES;
 - ChaCha20-Poly135 stream cipher

TLS Records

- TLS Record Protocol runs on top of TCP
 - Application
 - Handshake
 - Change Cipher
 - Alert
- TLS Record fragments
 - With up to 2¹⁴ bytes per fragment
 - Compressed, small records may be larger than original
 - A Message Authentication Code is added to the end of the compressed fragment
 - Message are encrypted with session key
 - TLS Record header and MAC added

Handshake

- TCP syn/ack
- ClientHello
 - Client random number, available ciphers and key exchange algorithms, SNI server name
- ServerHello
 - Server random number, chosen cipher
 - Optionally the server can request for the client to authenticate itself
- Server certificate
- KeyExchange (client/server)
 - either RSA or DH
 - pre-master secret setup at both ends
- Change Cipher Spec
 - Session key computed, ok to start sending encrypted data
- At any time Alert messages can be sent

https://www.thesslstore.com/blog/explaining-ssl-handshake/

Application Layer Protocol Negotiation

- TLS end-to-end encrypted tunnel obfuscates the type of data from proxies
- Browsers may request server capabilities regarding HTTP protocols supported and vice-versa
 - HTTP/1.0, HTTP/1.1, HTTP/2.0, SPDY/3.1
- TLS Extension to handshake allows browser to tell which protocols it supports
- Server inspects list and returns the chosen application layer protocol
- This is done in plaintext

HTTPS

- Specifies port number, URL format, URL to certificate mapping
- HTTP/1.1 (RFC 2818)
- HTTP/2.0 (RFC 7540)
- A good discussion about TLS, HTTP2, and security in general
 - https://daniel.haxx.se/blog/2015/03/06/tls-in-http2/

Security of Networks, Services, and Systems TLS - Transport Layer Security

Ricardo Morla

FEUP – SSR/M.EEC, SR/M.EIC