ر ای

Spatial operations

Key al an chuni.

Spatial operations

$$g(x,y) = T(f(x,y))$$

Fundamentals of spatial filtering

Filtering:

- 1) Pixel neighborhood, e.g. a small rectangle
- 2) Operation, e.g., linear or nonlinear

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Spatial filters, masks, kernels, templates, windows

Averaging

120	190	140	150	200
17	21	30	8	27
89	123	150	73	56
10	178	140	150	18
190	14	76	69	87

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

X

	98		

Correlation with impulse

Correlation

Convolution

0 0 0 1 0 0 0 0 (j)

8 2 4 2 1

Starting position alignment

0 0 0 0 0 1 0 0 0 0 0 0 (1)

8 2 4 2 1

Position after 1 shift

0 0 0 0 0 1 0 0 0 0 0 0 (m)

8 2 4 2 1

Position after 3 shifts

Convolution with impulse

(p)

0 0 0 0 1 0 0 0 0 0 0 (n)

8 2 4 2 1

Final position —

Correlation result

Convolution result

Extended (full) correlation result

Extended (full) convolution result

Correlation with impulse

Correlation result

(d)

Convolution result

Full correlation result

U	U	U	U	U	U	U
0	0	0	0	0	0	0
0	0	9	8	7	0	0
0	0	6	5	4	0	0
0	0	3	2	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
			(e)			

4

Rotated w

0 0 0

0 0 0

 $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

0 0 0

0 4 5 6

0 0 0 0

F

Full convolution result

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **1 2 3** 0 0

0 0 7 8 9 0 0

0 0 0 0 0 0

(h)

(g)

Convolution

with impulse

(f)

Spatial correlation and convolution

Correlation:

$$w(x,y) \approx f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Convolution:

$$w(x,y) \star f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

Vector representation of linear filtering

$$R = w_1 z_1 + w_2 z_2 + \ldots + w_{mn} z_{mn}$$

$$= \sum_{k=1}^{mn} w_k z_k$$
$$= w^T z$$

$$R = w_1 z_1 + w_2 z_2 + \ldots + w_9 z_9$$

$$=\sum_{k=1}^{9}w_kz_k$$

$$= w^T z$$

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Generating spatial filter masks

$$R = \frac{1}{9} \sum_{i=1}^{9} z_i$$

2D Gaussian:
$$h(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

 3×3 mask:
 $w_1 = h(-1,-1)$
 $w_2 = h(-1,0)$
 \vdots
 $w_9 = h(1,1)$

لا جی حانای آبری نزر لترباشد دان تسیدهای ست ما گرفته ی ک رسی کا رسی ک

Smoothing filters: Averaging masks

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

Averaging (box filter)

	1	2	1
$\frac{1}{16}$ ×	2	4	2
المات المات	1	2	1

Weighted averaging

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

Choosing the size of the mask

Original

$$n=3$$

n=5

n=9

n=15

n = 35

Choosing the size of the mask

Original: Hubble telescope image

Filtered by: 15x15 aver. mask

Thresholding

۴، آ طه معای او چی بیالی اطرانسون حیزت عیشونر

Nonlinear filters: Order statistics filters

0th percentile: minimum the darkest pixels

50th percentile: median eliminate impulse noise

100th percentile: maximum the brightest pixels

Nonlinear filters: Max filter

3	3	2	1	0			
0	0	1	3	1	3.0	3.0	3.0
3	1	2	2	3	3.0	3.0	3.0
2	0	0	2	2	3.0	2.0	3.0
2	0	0	0	1			

Nonlinear filters: Median filter

Input Image				median						Filtered Img					
7	8	4	5	5	5	5	7	8	8	9	9	9	9		8
5	9	4	3	8											
5	2	7	2	2											
6	1	9	2	4											
3	2	6	9	4											

In this example:

On the image borders, the median is found after mirroring the section under the window with respect to the central element

Original: X-ray image of a circuit board

Filtered by: 3x3 aver. mask

Filtered by: 3x3 median filter

Salt and pepper noise

Sharpening filters

Smoothing: averaging → integration

Sharpening → differentiation

-1st derivative:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

-2nd derivative:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

Sharpening filters

Implementation of second-order derivative

Laplacian: Simplest isotropic filter

$$\Delta f = \nabla^2 f = \nabla \cdot \nabla f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$$

Implementation of second-order derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

$$\nabla^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Laplacian masks

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

Negative difference equations used→

0	-1	0		
-1	4	-1		
0	-1	0		

Isotropic for 90-degree increments 45-degree increments

Isotropic for

Sharpening: $g(x,y) = f(x,y) + c[\nabla^2 f(x,y)]$

Image sharpening

این فعلوای Scaled Laplacian

Simplification

$$g(x,y) = f(x,y) - \nabla^2 f(x,y)$$

= $f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] + 4f(x,y)$
= $5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

Scanning Electron Image C

Shorp problem > To

Without Diagonal Elements

With Diagonal Elements

Unsharp masking and high-boost filtering

$$g_{mask}(x,y) = f(x,y) - \bar{f}(x,y)$$

Blurred

Sharpened

$$\rightarrow$$
 $g(x,y) = f(x,y) + k * g_{mask}(x,y)$

ر کی ایک جاماسون
$$k > 0$$
 $k = 1$ Unsharp masking

$$k > 1 \leftarrow \text{High-boost filtering}$$

$$k < 1$$
 \leftarrow Deemphasize mask

Unsharp masking

First-order derivatives

Gradient:
$$\nabla f = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Gradient image:
$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2}$$

$$M(x,y) \approx |g_x| + |g_y|$$

Gradient masks

Roberts cross-gradient operators:

$$g_x = z_9 - z_5$$

$$g_y = z_8 - z_6$$

$$M(x,y) = [(z_9 - z_5)^2 + (z_8 - z_6)^2]^{1/2}$$

$$M(x,y) \approx |z_9 - z_5| + |z_8 - z_6|$$

z_1	z_2	Z ₃
74	Z ₅	Z6
Z ₇	Z ₈	Z ₉

-1	0	0	-1
0	1	1	0

Gradient masks

Sobel operators:

$$g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$
$$g_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

z ₁	z_2	Z ₃
Z ₄	Z ₅	Z6
z ₇	Z ₈	Z ₉

$$M(x,y) \approx |(z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)| + |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$$

		-2	
→ حرراسای ہ	0	0	0
	1	2	1

-1	0	1
-2	0	2
-1	0	1

Gradient application

Industrial inspection:

Contact lens

Sobel operators used to highlight defects

+ CVShord

(e) Smoothingof (d) by5x5 averaging

(f) Product of (c) and (e)

(g) Sum of (a) and (f)

(g) power-law transformation of (g)