Geometría de la traza del movimiento de un electron expuesto a un campo electromagnético externo

Pablo Brianese

1 de agosto de 2021

Ley 1. La ecuación del movimiento para una partícula de masa m, carga q, expuesta a un campo electromagnético externo es

$$m\vec{a} = q\vec{E} + q\vec{v} \times \vec{B} \tag{1}$$

En unidades SI.

Si derivamos esta ley con respecto al tiempo, asumiendo que los campos eléctrico y magnético son constantes, obtenemos una ecuación para la aceleración

$$m\vec{j} = q\vec{a} \times \vec{B} \tag{2}$$

donde $\vec{j}=d\vec{a}/dt$ es la llamada sobreaceleración de la partícula.

Teorema 1. El producto punto, $\vec{a} \cdot \vec{B}$, es constante.

Demostración. Partimos de la ecuación $m\vec{j}=q\vec{a}\times\vec{B}$. Multiplicamos por el campo magnético para obtener $m\vec{j}\cdot\vec{B}=q\vec{a}\times\vec{B}\cdot\vec{B}$. Porque el producto cruz $\vec{v}\times\vec{B}$ es ortogonal a \vec{B} , el lado derecho de la ecuación es nulo. Resulta $\vec{j}\cdot\vec{B}=0$. Pero el producto punto es lineal, luego conmuta con la derivación. Por lo tanto $\frac{d}{dt}(\vec{a}\cdot\vec{B})=0$.

Teorema 2. El módulo de la aceleración, a, es constante.

 $\begin{array}{ll} \textit{Demostraci\'on.} \text{ Partimos de la ecuaci\'on } \vec{mj} = q\vec{a} \times \vec{B}. \text{ Multiplicamos por la} \\ \text{aceleraci\'on para obtener } \vec{mj} \cdot \vec{a} = q(\vec{a} \times \vec{B}) \cdot \vec{a}. \text{ Porque el producto cruz } \vec{a} \times \vec{B} \\ \text{es ortogonal a } \vec{a}, \text{ el lado derecho de la ecuaci\'on es nulo. Resulta } \vec{j} \cdot \vec{a} = 0. \text{ Esto} \\ \text{nos permite calcular } \frac{d}{dt}a^2 = 2\vec{a} \cdot \frac{d\vec{a}}{dt} = 2\vec{a} \cdot \vec{j} = 0. \end{array}$

Fijemos una base ortonormal $\{\bar{b}_1, \bar{b}_2\}$ del plano ortogonal a \vec{B} . Esto nos permite definir dos escalares $\alpha = \vec{v} \cdot \bar{b}_1$, $\beta = \vec{v} \cdot \bar{b}_2$ que describen a la proyección ortogonal de \vec{v} sobre dicho plano. Sin mayor esfuerzo $\{\bar{b}_1, \bar{b}_2, \bar{B} = \vec{B}/B\}$ es una base ortonormal de \mathbb{R}^3 . Pediremos además que $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$ esté orientada

positivamente. Con mayor claridad, lo que pedimos es que se verifiquen las ecuaciones $\bar{b}_1 \times \bar{b}_2 = \bar{B}$, $\bar{b}_2 \times \bar{B} = \bar{b}_1$, $\bar{B} \times \bar{b}_1 = \bar{b}_2$. Eso nos ayudará a calcular productos cruz. La siguientes propiedades se derivan de esta construcción

Teorema 3. Las variables α , β nos proveen las identidades

$$\vec{v} = \alpha \bar{b}_1 + \beta \bar{b}_2 + (\vec{v}_0 \cdot \bar{B})\bar{B} \tag{3}$$

$$v_0^2 = \alpha^2 + \beta^2 + (\vec{v}_0 \cdot \bar{B})^2 \tag{4}$$

$$\vec{v} \times \vec{B} = B(-\alpha \bar{b}_2 + \beta \bar{b}_1) \tag{5}$$

$$\vec{a} = \frac{d\alpha}{dt}\vec{b}_1 + \frac{d\beta}{dt}\vec{b}_2 \tag{6}$$

Demostración. (3) es consecuencia de la ortonormalidad de la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$. La fórmula $\vec{v} \cdot \bar{B} = \vec{v}_0 \cdot \bar{B}$ se debe al teorema 1.

- (4) se debe a la ortonormalidad de la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$ y a la ecuación (3). La igualdad $v^2 = v_0^2$ se debe al teorema 2.
- (5) se debe a la orientación positiva de la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$. Esta hace que $\bar{b}_1 \times \bar{b}_2 = \bar{B}, \ \bar{b}_2 \times \bar{B} = \bar{b}_1, \ \bar{B} \times \bar{b}_1 = \bar{b}_2$. Y a la ecuación (3).
 - (6) se debe a la ecuación (3) y a la linealidad de la derivada. □

Teorema 4. Las funciones α , β satisfacen el sistema de ecuaciones diferenciales

$$\begin{cases} \frac{d\alpha}{dt} = \frac{qB}{m}\beta\\ \frac{d\beta}{dt} = -\frac{qB}{m}\alpha \end{cases}$$
 (7)

Demostración. Partimos de la ecuación $m\vec{a} = q\vec{v} \times \vec{B}$. Reemplazamos $\vec{a}, \vec{v} \times \vec{B}$ por sus fórmulas (6), (5) en función de α , β . Obtenemos

$$\frac{d\alpha}{dt}\bar{b}_1 + \frac{d\beta}{dt}\bar{b}_2 = \frac{qB}{m}(\beta\bar{b}_1 - \alpha\bar{b}_2)$$
(8)

El sistema (7) se deduce usando que \bar{b}_1 , \bar{b}_2 son vectores linealmente independientes.

Teorema 5. Si la velocidad inicial, \vec{v}_0 , es paralela al campo magnético, \vec{B} , entonces la velocidad \vec{v} es constante.

Demostración. Partimos de la ecuación (4), que dice $v_0^2=\alpha^2+\beta^2+(\vec{v}_0\cdot\bar{B})^2$. Si \vec{v}_0 es paralelo a \vec{B} , entonces $\vec{v}_0=(\vec{v}_0\cdot\bar{B})\bar{B}$ y $v_0^2=(\vec{v}_0\cdot\bar{B})^2$. Junto a la primera ecuación, estas implican $\alpha=\beta=0$. Por la ecuación (3), se sigue $\vec{v}=(\vec{v}_0\cdot\bar{B})\bar{B}=\vec{v}_0$

En lo que sigue vamos a ignorar este caso degenerado, en el cual la velocidad inicial y el campo magnético son paralelos, y supondremos $\vec{v}_0 \neq (\vec{v}_0 \cdot \bar{B})\bar{B}$. Esto nos permite proyectar el vector \vec{v}_0 sobre el plano ortogonal al campo magnético

 \vec{B} . El resultado es el vector proyección $\vec{\pi}_0 = \vec{v}_0 - (\vec{v}_0 \cdot \bar{B})\bar{B}$. Que tiene módulo positivo $\pi_0 = (v_0^2 - (\vec{v}_0 \cdot \bar{B})^2)^{1/2}$, y por eso puede ser regularizado $\bar{\pi}_0 = \vec{\pi}_0/\pi_0$. Este vector es importante, y en el siguiente teorema lo vemos por primera vez.

Teorema 6. Existe un ángulo $\theta = \theta(t)$ tal que $\alpha = \pi_0 \cos \theta$, $\beta = \pi_0 \sin \theta$.

Demostración. La ecuación 4 nos dice que $\pi_0^2 = v_0^2 - (\vec{v}_0 \cdot \bar{B})^2 = \alpha^2 + \beta^2$. Se deduce la ecuación de una circunferencia $\alpha^2 + \beta^2 = \pi_0^2$ de radio π_0 . Luego, para cada tiempo t existe un ángulo $\theta = \theta(t)$ tal que $\alpha = \pi_0 \cos \theta$ y $\beta = \pi_0 \sin \theta$. \square

Teorema 7. La velocidad angular $\omega = \frac{d\theta}{dt}$ es $\omega = \frac{qB}{m}$.

Demostración. Partimos del sistema de ecuaciones diferenciales (7). Reemplazando $\alpha = \pi_0 \cos \theta$, $\beta = \pi_0 \sin \theta$, y usando la regla de la cadena, obtenemos

$$\begin{cases}
(\pi_0 \sin \theta) \frac{d\theta}{dt} = \frac{qB}{m} (\pi_0 \sin \theta) \\
(-\pi_0 \cos \theta) \frac{d\theta}{dt} = \frac{qB}{m} (-\pi_0 \cos \theta)
\end{cases} \tag{9}$$

Conjuntamente, estas dos ecuaciones implican $\omega = \frac{qB}{m}$.

Esta es la segunda vez que aparece el vector proyección \vec{pi} . Aquí es importante que sea nonulo, porque nos permite usarlo para entender los vectores que viven en el plano ortogonal a \vec{B} .

Teorema 8. La base $\{\bar{b}_1, \bar{b}_2\}$ del plano ortogonal a \vec{B} , puede elegirse como

$$\bar{b}_1 = \bar{\pi}_0 \qquad \qquad \bar{b}_2 = \bar{B} \times \bar{\pi}_0 \tag{10}$$

Además, de este modo puede elegirse el valor inicial de θ como

$$\theta_0 = 0 \tag{11}$$

П

Demostración. En efecto. El vector $\bar{b}_1 = \bar{\pi}_0$ es unitario y ortogonal a \vec{B} . Un buen candidato. Por otro lado, el vector \bar{b}_2 queda inmediatamente determinado por la restricción que impusimos sobre la base $\{\bar{b}_1, \bar{b}_2, \bar{B}\}$ de \mathbb{R}^3 . Al especificar que esta tiene que estar orientada positivamente, se verifica $\bar{B} \times \bar{b}_1 = \bar{b}_2$. Y esta última ecuación define a \bar{b}_2 .

Por otro lado, si volvemos a la ecuación (3), para el instante t=0 dice $\vec{v}_0 = \alpha_0 \bar{b}_1 + \beta_0 \bar{b}_2 + (\vec{v}_0 \cdot \bar{B}) \bar{B}$. Reemplazando α , β por sus expresiones en función de θ , obtenemos

$$\vec{v}_0 = \pi_0 \cos \theta_0 \bar{b}_1 + \pi_0 \sin \theta_0 \bar{b}_2 + (\vec{v}_0 \cdot \bar{B}) \bar{B}$$
 (12)

Pero $\vec{\pi}_0 = \vec{v}_0 - (\vec{v}_0 \cdot \bar{B})\bar{B}$. Entonces $\bar{\pi}_0 = \cos\theta_0\bar{b}_1 + \sin\theta_0\bar{b}_2$. Aquí se aprecia que $\theta_0 = 0$ es una elección viable para el ángulo inicial.

Teorema 9. El ángulo es $\theta = \omega t$.

Demostración. Es una consecuencia trivial de 7 y 8.

Teorema 10. La solución \vec{r} a la ecuación $m\vec{a} = q\vec{v} \times \vec{B}$, donde el campo magnético es constante, está dada por

$$\vec{r} - \vec{r}_0 = -\frac{\sin \omega t}{\omega} \vec{\pi}_0 + \frac{\cos \omega t}{\omega} \vec{B} \times \vec{\pi}_0 + t(\vec{v}_0 \cdot \vec{B}) \vec{B}$$
 (13)

Demostración. Partimos de la ecuación (3)

$$\vec{v} = \alpha \bar{b}_1 + \beta \bar{b}_2 + (\vec{v}_0 \cdot \bar{B})\bar{B} \tag{14}$$

Reemplazamos \bar{b}_1 , \bar{b}_2 por los vectores que propusimos en 8

$$\vec{v} = \alpha \bar{\pi} + \beta \bar{B} \times \bar{\pi} + (\vec{v}_0 \cdot \bar{B}) \bar{B} \tag{15}$$

Reemplazamos α , β por las expresiones en función de θ que obtuvimos en 6

$$\vec{v} = (\pi_0 \cos \theta) \bar{\pi}_0 + (\pi_0 \sin \theta) \bar{B} \times \bar{\pi}_0 + (\vec{v}_0 \cdot \bar{B}) \bar{B}$$
(16)

$$= (\cos \theta)\vec{\pi}_0 + (\sin \theta)\bar{B} \times \vec{\pi}_0 + (\vec{v}_0 \cdot \bar{B})\bar{B}$$
(17)

Reemplazamos θ por ωt , usando el teorema 9

$$\vec{v} = (\cos \omega t)\vec{\pi}_0 + (\sin \omega t)\bar{B} \times \vec{\pi}_0 + (\vec{v}_0 \cdot \bar{B})\bar{B}$$
(18)

Integrando con respecto a t obtenemos el resultado que deseamos.

Observar que esta última fórmula también funciona en el caso en que \vec{v}_0 sea paralelo a \vec{B} . Allí, sencillamente $\vec{\pi}_0 = 0$.

Teorema 11. La solución \vec{r} a la ecuación $m\vec{a} = q\vec{E} + q\vec{v} \times \vec{B}$, donde el campo eléctrico \vec{E} y el campo magnético \vec{B} son constantes, es

$$\vec{r} - \vec{r}_0 = \left(\frac{q}{m}\vec{E}\frac{t^2}{2} + \vec{v}_0 t\right) + \left(-\frac{\sin \omega t}{\omega}\vec{\pi}_0 + \frac{\cos \omega t}{\omega}\vec{B} \times \vec{\pi}_0 + t(\vec{v}_0 \cdot \bar{B})\bar{B}\right)$$
(19)