

Agenda

10.1 Data Preparation

10.2 LSTM Model Training and Testing

10.3 LSTM Performance Measurement

LIBRARIES

	import numpy as np
2	• import pandas as pd
3	import matplotlib.pyplot as plt
4	from sklearn.preprocessing import StandardScaler
3	from sklearn.model_selection import train_test_split, cross_val_score, StratifiedKFold
E	from sklearn.svm import SVC
7	from sklearn import metrics
8	from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
9	• from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
I	• import glob
1	from scipy import stats
	import datetime as dt

10.1 Data Preparation

Data Exploration and Cleaning / Transform / Feature Selection /Train-Test-Split

10.1.1 Data Preparation (9.1.1)

- # ----- Prepare same as 9.1.1 (8.1 (a) (e))-----
 - # acceleration.txt, heartrate.txt, labeled_sleep.txt
 - # Rounding ACC (Rounding to 1 sec)
 - # ACC Average rounding duplicated time
 - # Rounding Heart Rate (Rounding to 1 sec)
 - # Resampling every 1s with median with ffill
 - # Rounding Sleep Label (Rounding to 1 sec)
 - # Resampling every 1s with median with ffill
 - # After all above steps, we get
 - # df_feature
 - # df_label

10.1.2 Simple Moving Average (SMA) and Create 2D feature

Labels = stats.mode(df_label (t : t+slidingW , 'label'))

df label new.append(Labels)

	ACC_X	ACC_Y	ACC_Z	HeartR	label
	1	1	1	1	
	2	2	2	2	
	3	3	3	3	
	4	4	4	4	
set#1	5	5	5	5	L1
	6	6	6	6	majority(L1:10)
	7	7	7	7	
	8	8	8	8	
	9	9	9	9	
	10	10	10	10	
	5	5	5	5	
	6	6	6	6	
	7	7	7	7	
	8	8	8	8	
set#2	9	9	9	9	L2
	10	10	10	10	majority(L5:14)
	11	11	11	11	
	12	12	12	12	
	13	13	13	13	
	14	14	14	14	
	10	10	10	10	
	11	11	11	11	
	12	12	12	12	
	13	13	13	13	
set#3	14	14	14	14	L3
	15	15	15	15	majority(L10:19)
	16	16	16	16	
	17	17	17	17	
	18	18	18	18	
	19	19	19	19	

10.1.3 Train Test Split

Option#1: no transpose input shape=(timesteps, n features)

• # ----- Train-Test-Split 2D features -----

• x_train, x_test, y_train, y_test = train_test_split(df_feature2D, df_label)

• # ----- Train-Test-Split 2D features -----

• x_train, x_test, y_train, y_test = train_test_split(df_feature2D_T, df_label)

5

Option#2: with transpose input_shape=(n_features, timesteps)

	ACC_X	1	2	3	4	5	6	7	8	9	10	
set#1	ACC_Y	1	2	3	4	5	6	7	8	9	10	L1
	ACC_Z	1	2	3	4	5	6	7	8	9	10	majority(L1:10)
	HeartR	1	2	3	4	5	6	7	8	9	10	
	ACC_X	5	6	7	8	9	10	11	12	13	14	
set#2	ACC_Y	5	6	7	8	9	10	11	12	13	14	L2
	ACC_Z	5	6	7	8	9	10	11	12	13	14	majority(L5:14)
	HeartR	5	6	7	8	9	10	11	12	13	14	
	ACC_X	10	11	12	13	14	15	16	17	18	19	
set#3	ACC_Y	10	11	12	13	14	15	16	17	18	19	L3
	ACC_Z	10	11	12	13	14	15	16	17	18	19	majority(L10:19)
	HeartR	10	11	12	13	14	15	16	17	18	19	

10.2 LSTM Model Training and Testing

Option#1: no transpose input_shape=(timesteps, n_features)

Option#2: with transpose input_shape=(n_features, timesteps)

LSTM Model Architecture

LSTM _ 1: (None, Input.shape[2], L1_Nodes)

Dropout: (None, Input.shape[2], L1_Nodes)

LSTM _ 2: (None, L2_Nodes)

Dropout _ 2: (None, L2_Nodes)

Dense(None, n_classes)

10.2.1 LSTM Model Parameters

- # ----- LSTM Architecture parameter ------
- # Nlayer (LSTM, dense), Nnode, Activation
 - LSTM_L1 = 100 # try 200, 300, 400, 500, 1000
 - LSTM_L2 = 50 # try 50, 100, 150, 200, 250, 300
 - dropRate_L1 = 0.25
 - dropRate L2 = 0.5
 - D out = 5
 - Activation = "Softmax"
 - n_classes = 5
 - Input_shape = (inRow, inCol)
 - # try
 - #Option #1:
 - inRow = N_features
 - inCol = Sliding windows
 - # Option #2
 - inRow = Sliding_windows
 - inCol = Sliding_windows

Option#1: no transpose input_shape=(timesteps, n_features)

Option#2: with transpose input_shape=(n_features, timesteps)

10.2.2 LSTM Model Train Test

- # ----- Create LSTM Model -----
 - model = Sequential()
 - model.add(LSTM (LSTM_L1, return_sequences=True,
 - input_shape=Input_shape))
 - model.add(Dropout(dropRate_L1))
 - model.add(LSTM(LSTM_L2))
- model.add(Dropout(dropRate_L12))
 - model.add(Dense(n_classes, activation='softmax'))
 - model.summary()

10.2.3 LSTM Model Train Test

3

• # ----- Create Optimizer -----

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=["acc"])

- # Training the model
- EP = 50
- batch_size = 60 # try 20, 40, 60, 80, 100

Option#1: no transpose input_shape=(timesteps, n_features)

Option#2: with transpose input_shape=(n_features, timesteps)

• history = model.fit(X_train, y_train, # try Option #1 une Option #2 batch_size = batch_size, validation_data=(X_test, y_test), epochs=EP)

10.3 LSTM Performance Measurement

10.3 Performnace of LSTM Model

plt.plot(history.history['val loss'])

 #LSTM prediction for Option #1 and Option #2 LSTM_pred = model.predict(X_test) Get classID from max prob(LSTM pred) Option#1: no transpose df pred = pd.DataFrame(LSTM pred) input_shape=(timesteps, n_features) • df class => use dataframe -> idxmax(axis=1) Option#2: with transpose input shape=(n features, timesteps) • # ------ View Confusion Matrix, Classification Report -----• # ----- View History Graph -----• # View Accuracy Graph, Loss Graph plt.plot(history.history['acc']) plt.plot(history.history['val acc']) plt.plot(history.history['loss'])

History Graph (Accuracy, Loss)

Option#1: no transpose input_shape=(timesteps, n_features)

Option#2: with transpose input_shape=(n_features, timesteps)

