TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN TOÁN ỨNG DỤNG & TIN HỌC

Bài giảng

KIẾN TRÚC MÁY TÍNH

Giảng viên: Phạm Huyền Linh

Bộ môn : Toán Tin

Kiến trúc máy tính

CHUONG 2

HỆ ĐẾM & LOGIC SỐ

(Number Systems & Digital Logic)

Giảng viên: Phạm Huyền Linh

Nội dung

- 2.1. Các hệ đếm cơ bản (Number Systems)
- 2.2. Đại số Boole (Boolean Algebra)
- 2.3. Cổng Logic (Logic Gate)
- 2.4. Mạch tổ hợp (Combinational Circuits)
- 2.5. Mạch tuần tự (Sequential Circuits)

2.1. Các hệ đếm cơ bản

- Hệ thập phân (Decimal system)
- Hệ nhị phân (Binary system)
- Chuyển đổi giữa số nhị phân và số thập phân
 (Converting between Binary and Decimal)
- Hệ mười sáu (Hexadecimal system)

Hệ thập phân

- Cơ số 10
- 10 chữ số: 0,1,2,3,4,5,6,7,8,9
- Dùng n chữ số thập phân -> biểu diễn 10^n giá trị

$$\underbrace{00...00}_{n} = 0$$

$$99...99 = 10^n - 1$$

- 1 chữ số: 0-> 9 10 giá trị
- 2 chữ số: 0 > 99 $100 = 10^2$ giá trị
- 3 chữ số: 0 > 999 $1000 = 10^3$ giá trị

Hệ thập phân

Biểu diễn số thập phân

$$X = x_n x_{n-1} \dots x_1 x_0, x_{-1} x_{-2} \dots x_{-m}$$

Giá trị

$$X = x_n 10^n + x_{n-1} 10^{n-1} + \dots + x_1 10^1 + x_0 10^0 + x_{-1} 10^{-1} + \dots + x_{-m} 10^{-m}$$
$$X = \sum_{i=1}^{n} x_i 10^i$$

$$356.23 = 3.10^2 + 5.10^1 + 6.10^0 + 2.10^{-1} + 3.10^{-2}$$

Hệ thập phân

$$356.23 = 3.10^2 + 5.10^1 + 6.10^0 + 2.10^{-1} + 3.10^{-2}$$

Phần nguyên 356

• 356 : 10 = 35 du 6

• 35 : 10 = 3 du 5

• 3 : 10 = 0 du 3

Phần lẻ .23

- 0.23 * 10 = 2.3 -> phần nguyên là 2
- 0.3 * 10 = 3 -> phần nguyên là 3

Hệ nhị phân

- Cơ số 2
- Chữ số: 0, 1
- Được sử dụng trong máy tính
- Chữ số nhị phân: Bit (binary digit) đơn vị thông tin nhỏ nhất
- Dùng n bit số (n chiều dài bit của số): 2ⁿ giá trị

$$\underbrace{00...00}_{n} = 0$$

$$\underbrace{11...11}_{n} = 2^{n} - 1$$

Hệ nhị phân

	Hệ đếm cơ số 2				
1 – bit	2 – bit	3 – bit	4 – bit	thập phân	
0	00	000	0000	0	
1	01	001	0001	1	
	10	010	0010	2	
	11	011	0011	3	
		100	0100	4	
		101	0101	5	
		110	0110	6	
		111	0111	7	
			1000	8	
			1001	9	
			1010	10	
			1011	11	
			1100	12	
			1101	13	
			1110	14	
			1111	15	

Hệ nhị phân

Tổng quát

$$X_{(2)} = x_n ... x_1 x_0, x_{-1} ... x_{-m}$$
 $x_i \in \{0,1\}$

Giá trị thập phân

$$X = x_n 2^n + x_{n-1} 2^{n-1} + \dots + x_1 2^1 + x_0 2^0 + x_{-1} 2^{-1} + \dots + x_{-m} 2^{-m}$$

$$X = \sum_{i=-m}^{n} x_i 2^i$$

Ví dụ

$$1101.01_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
$$= 13.25_{10}$$

Chuyển đổi số nguyên thập phân sang nhị phân

Phương pháp 1

Chia dần cho 2 rồi lấy phần dư

<u>Ví dụ:</u> 37₁₀

$$37: 2 = 18$$
 du 1
 $18: 2 = 9$ du 0
 $9: 2 = 4$ du 1
 $4: 2 = 2$ du 0
 $2: 2 = 1$ du 0
 $1: 2 = 1$ du 1

Biểu diễn số dư theo chiều mũi tên

Kết quả:
$$37_{10} = 100101_2$$

* BẠI HỌC

Chuyển đổi số nguyên thập phân sang nhị phân

Phương pháp 2

Phân tích thành tổng của các số 2ⁱ gần nhất

```
Ví dụ:
   37<sub>(10)</sub>
           37=32+4+1
               =2^5+2^2+2^0
               =100101
   101<sub>(10)</sub>
          101=64+32+4+1
               =2^6+2^5+2^2+2^0
              =1100101
   1132<sub>(10)</sub>
      1132 = 1024 + 64 + 32 + 8 + 4
              = 2^{10} + 2^{6} + 2^{5} + 2^{3} + 2^{2}
              =10001101100
```

* BAI HOC

Chuyển đổi số lẻ thập phân sang nhị phân

Phương pháp

Nhân phần lẻ ở hệ cơ số 10 với 2

- Phần nguyên đưa vào hệ nhị phân
- Phần dư nhân tiếp với 2, làm như vậy cho tới khi bằng 0 thì dừng
- Có trường hợp kết quả không thể bằng 0 thì ta dừng ở độ chính xác nào đó.

Ý tưởng PP

$$0.b_{-1}b_{-2}b_{-3}\dots$$
 $b_i = 0 \text{ or } 1$
 $(b_{-1} \times 2^{-1}) + (b_{-2} \times 2^{-2}) + (b_{-3} \times 2^{-3}) \cdots$
 $F = 2^{-1} \times (b_{-1} + 2^{-1} \times (b_{-2} + 2^{-1} \times (b_{-3} + \cdots + 2^{-1} \times (b_{-3} + 2^{-1} \times$

Chuyển đổi số lẻ thập phân sang nhị phân

$\underline{\text{Ví dụ 1:}} 0.6875_{(10)}$ phần nguyên = 0.6875 * 2 = 1.3750.375 * 2 = 0.750.75 * 2 = 1.5 0.5 * 2 = 1.0 **Kết quả:** $0.6875_{(10)} = 0.1011_{(2)}$ $\underline{\text{Ví dụ 2:}} 0.76_{(10)}$ 0.76 * 2 = 1.52 phần nguyên = 0.52 * 2 = 1.040.04 * 2 = 0.080 0.08 * 2 = 0.160.16 * 2 = 0.320 0.32 *2 = 0.640 0.64 * 2 = 1.281

 $\mathbf{K\tilde{e}t} \ \mathbf{qu}$ a: $0.76_{(10)} = 0.110001_{(2)}$

Biểu diễn

theo chiều

mũi tên

Hệ mười sáu (HEXA)

- Cơ số 16
- Biểu diễn: 0...9, A, B, C, D, E, F
- Dùng n chữ số hệ 16, biểu diễn 16ⁿ giá trị

$$\underbrace{00...00}_{n} = 0$$

$$FF...FF = 16^{n} - 1$$

- VD: 1 chữ số: 0,1,...,F
 16¹
- 2 chữ số: 00,01,...,FF 16²
- Viết gọn cho số nhị phân: cứ nhóm 4 bit lại rồi đổi sang hệ 16

• VD
$$A = 0111 \ 1011_2$$

= $7B_h$

Hệ mười sáu

Decimal (base 10)	Binary (base 2)	Hexadecimal (base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	0001 0000	10
17	0001 0001	11
18	0001 0010	12

B= 0010 1101 1001 1011 ₂ = 2D9B₁₆ C=1111 1010 1011 0100₂ =FAB4₁₆

Chuyển đổi số nguyên thập phân sang hệ 16

- PP1: Chuyển sang số nhị phân, nhóm 4 bit lại rồi đổi sang hệ 16
- PP2: Lấy số cơ số 10 chia cho 16
 - Số dư đưa vào kết quả
 - Số nguyên đem chia tiếp cho 16
 - Quá trình lặp lại cho đến khi số nguyên bằng 0
- VD: 123₁₀

```
123 : 16 = 7 dư 11 (B)
7 : 16 = 0 dư 7
Kết quả: 123_{10} = 7B_h
```

Biểu diễn theo chiều mũi tên

```
2763<sub>10</sub>

2763: 16 =172 dw 11(B)

172: 16 =10 dw 12(C)

12:16 =0 dw 10(A)
```

2.1. Đại số Boole

- Đại số Boole sử dụng các biến Logic và phép toán Logic
- Giá trị biến Logic :0(True, Thấp, Mở, Tối)

1(False, Cao, Đóng, Sáng)

- Năm 1938 Claude Shannon: Dùng các quy tắc logic do George Boole đưa ra để thiết kế mạch điện
- Mạch điện hoạt động được xác định bởi một hàm Boole chỉ rõ giá Input và Output

Các phép toán cơ bản

 Các phép toán Logic cơ bản AND, OR và NOT

• A AND B A.B hay AB

• A OR B A + B

• NOT A \bar{A} hay A'

Thứ tự ưu tiên: NOT > AND > OR

Ngoài ra

NAND, NOR, XOR

• A NAND B: $\overline{A \cdot B}$

• A NOR B: $\overline{A+B}$

• A XOR B: $A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$

Các phép toán cơ bản

P	Q	NOT P (P)	P AND Q (P·Q)	P OR Q (P + Q)	P NAND Q (P·Q)	$\frac{P \text{ NOR } Q}{(\overline{P} + \overline{Q})}$	P XOR Q (P \oplus Q)
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

Operation	Expression	Output = 1 if
AND	A · B ·	All of the set {A, B,} are 1.
OR	A + B +	Any of the set {A, B,} are 1.
NAND	A • B •	Any of the set {A, B,} are 0.
NOR	A + B +	All of the set {A, B,} are 0.
XOR	A ⊕ B ⊕	The set {A, B,} contains an odd number of ones.

Các đồng nhất thức

Basic Postulates				
$A \cdot B = B \cdot A$	A + B = B + A	Commutative Laws		
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive Laws		
$1 \cdot A = A$	0 + A = A	Identity Elements		
$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$	$A + \overline{A} = 1$	Inverse Elements		
	Other Identities			
$0 \cdot \mathbf{A} = 0$	1 + A = 1			
$A \cdot A = A$	A + A = A			
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Associative Laws		
$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	DeMorgan's Theorem		

2.3. Cổng LOGIC

- Thực hiện các hàm logic
- Một hoặc một vài đầu vào (Input), duy nhất 1 đầu ra Output
- Một đầu vào: NOT
- Hai đầu vào: AND, OR, NAND, NOR, XOR
- Nhiều đầu vào: Kết hợp các hàm logic cơ bản trên

2.3. Cổng AND

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A F	$F = A \bullet B$ or $F = AB$	AB F 0000 010 100 1111

2.3. Cổng OR

Name	Graphical Symbol	Algebraic Function	Truth Table
OR	A F	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1

2.3. Cổng NOT

Name	Graphical Symbol	Algebraic Function	Truth Table
NOT	A F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0

2.3. Cổng NAND

Name	Graphical Symbol	Algebraic Function	Truth Table
NAND	A F	$F = \overline{AB}$	AB F 00 1 01 1 10 1 11 0

2.3. Cổng NOR

Name	Graphical Symbol	Algebraic Function	Truth Table
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0

2.3. Cổng XOR

Name	Graphical Symbol	Algebraic Function	Truth Table
XOR	A B F	$\mathbf{F} = \mathbf{A} \oplus \mathbf{B}$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Cổng LOGIC

Name	Graphical Symbol	Algebraic Function	Truth Table
AND	A F	$F = A \bullet B$ or $F = AB$	AB F 0000 010 100 1111
OR	A F	F = A + B	AB F 0000 011 101 1111
NOT	A F	$F = \overline{A}$ or $F = A'$	A F 0 1 1 0
NAND	A B F	$F = \overline{AB}$	AB F 0011 011 101 110
NOR	A B F	$F = \overline{A + B}$	A B F 0 0 1 0 1 0 1 0 0 1 1 0
XOR	A B	$F = A \oplus B$	A B F 0 0 0 0 1 1 1 0 1 1 1 0

Tập đầy đủ

- Tập đầy đủ (complete): Là tập các cổng có thể thực hiện được bất kỳ hàm logic nào tử các cổng của tập đó. (NAND, NOR)
- Ví dụ:
 - {AND, OR, NOT}
 - {AND, NOT}
 - {OR, NOT}
 - {NAND}
 - {NOR}

$$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$$

$$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$$

Sử dụng cổng NAND

Sử dụng cổng NOR

2.4. Mạch tổ hợp

- Mạch logic bao gồm:
 - Các đầu vào (Inputs)
 - Đầu ra (Outputs)
 - Đặc tả chức năng hoạt động (Functional specification)
 - Đặc tả thời gian (Timing specification)
- Các kiểu mạch logic:
 - Mạch tổ hợp (Combinational Circuits
 - Mạch dãy (Sequentail Circuits)

Ví dụ mạch LOGIC

Mạch tổ hợp

- Gồm một tập các cổng logic kết nối với nhau
- Tại một thời điểm đầu ra là hàm nhị phân của các đầu vào
- 3 cách xác định:
 - Bảng chân lý (Truth Table)
 - Sơ đồ
 - Phương trình Boole

Ví dụ mạch tổ hợp

$$F = \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C}$$

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Ví dụ đơn giản mạch

$$F = \overline{A}B + B\overline{C}$$
$$F = B(\overline{A} + \overline{C})$$

Ví dụ đơn giản mạch

- F=AB(C+C')+A'C
- F=AB+A'C

MULTIPLEXER - MUX

- Bộ chọn kênh
 - 2ⁿ dữ liệu đầu vào
 - n đầu vào chọn
 - 1 đầu ra dữ liệu
 - Chức năng: Chọn 1 tín hiệu trong nhiều tín hiệu đầu vào để đưa ra đầu ra

Ví dụ bộ chọn 4 kênh

$$F = D_0 \overline{S_2} \overline{S_1} + D_1 \overline{S_2} S_1 + D_2 S_2 \overline{S_1} + D_3 S_2 S_1$$

Đầu và	Đầu vào chọn	
S2	S1	F
0	0	D0
0	1	D1
1	0	D2
1	1	D3

DECODER – Bộ giải mã

- Bộ giải mã:
 - n đầu vảo , tối đa 2^n đầu ra
 - Mạch có n đầu vào, m đầu ra gọi là mạch giải mã n x m hoặc n-m
 - Chỉ có 1 đầu ra mang giá trị 1 trong số 2^n đầu ra

		Y ₃			Y_0
0	0	0 0 0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

DECODER – Bộ giải mã

Bộ giải mã 3 ra 8

ADDER – Bộ cộng

- Bộ cộng bán phần 1-bit (Half-adder)
 - Cộng hai bit tạo ra bit tổng và bit nhớ ra
- Bộ cộng toàn phần 1-bt (Full-adder):
 - Cộng 3 bit
 - Cho phép xây dựng N-bit

Bộ cộng bán phần

0	0	1	1
+0	+1	+0	+1
0	1	1	10

Đầu vào		Đầu ra	
Α	В	S	C _{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A \oplus B$$
$$C_{out} = AB$$

Bộ cộng toàn phần 1 bit

Đầu vào			Ð	iu ra
Cin	A	В	S C _{out}	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- $S = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$
- $C_{out} = AB + BC + CA$

Bộ cộng 4 bit & 32 bit

Đơn giản mạch

- F=AB(C+C')+A'C
- F=AB+A'C

- Dùng hình vẽ gọi là bản đồ Karnaugh hay bản đồ K
- Xuất phát từ bảng sự thật
 - · Mỗi tổ hợp biến trong bảng sự thật là một bộ trị
 - Mỗi bộ trị tương ứng là một hình vuông trong bản đồ K
 - N đầu vào, có 2ⁿ hình vuông
 - Giá trị 1 hay 0 được đặt vào hình vuông tương ứng

Qui tắc đặt

- Các ô liền kề chỉ có 1 bít khác nhau
- Ô đầu dòng và cuối dòng là liền kề
- Ô đầu cột và cuối cột là liền kề

(a) Two-variable map

(b) Three-variable map

(c) Four-variable map

Qui tắc đơn giản hàm

- · Đặt giá trị 1 vào ô vuông tương ứng
- Gom các nhóm ô lớn nhất có thể có trị 1 liền nhau, sao cho số ô trong mỗi nhóm là 1,2,4,8...
- Các nhóm phải có ít nhất 1 ô 1 không nằm trong nhóm khác
- Chọn ra số nhóm ít nhất mà chứa hết các ô 1
- Mỗi nhóm là một toán hạng AND
- Trong mỗi toán hạng AND loại biến có giá trị liên tiếp bù nhau

$$F = B\overline{C}D + ACD$$

Ví dụ

$$F(A, B, C, D) = \sum (0,1,2,6,8,9,10)$$

F=B'C'+B'D'+A'CD'

Bản đồ với bộ trị tùy chọn

$$F(A, B, C) = \sum (0,2,6)$$

$$d(A, B, C) = \sum (1,3,5)$$

 Bài tập: Cho sơ đồ K, xác định hàm và vẽ sơ đồ mạch

∖ CD				
AB	00	01	11	10
00	1		1	1
01			_	1
01			1	1
11	1	1		
10		1		

Bài tập

Để làm một bộ báo hiệu cho lái xe biết một số điều kiện, người ta thiết kế 1 mạch báo động như sau:

Tín hiệu từ:
Cửa lái: 1- cửa mở,
0 - cửa đóng;
Bộ phận đánh lửa:
1 - bật, 0 - tắt;
Đèn pha: 1 - bật, 0
- tắt.

Hãy thiết kế mạch logic với 3 đầu vào (cửa, bộ phận đánh lửa, đèn pha),1 đầu ra (báo động), sao cho bộ phận báo động sẽ hoạt động (báo động = 1) khi tồn tại một trong 2 trạng thái sau:

- Đèn pha sáng trong lúc bộ phận đánh lửa tắt
- Cửa mở trong lúc bộ phận đánh lửa hoạt động Lập bảng chân trị của hàm ra.

Đặt các ký hiệu tương ứng: Cửa lái - A; Bộ phận đánh lửa - B Đèn pha – C Báo động – f

$$f = C\overline{B} + AB$$

Bài tập

Bảng chân trị

A	В	C	AB	\overline{B}	$C\overline{B}$	f
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

$$f = C\overline{B} + AB$$

Bài tập

Construct a truth table for the following Boolean expressions:

- a. ABC + $\overline{A} \overline{B} \overline{C}$
- b. $ABC + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C}$
- c. $A(B\overline{C} + \overline{B}C)$
- d. $(A + B)(A + C)(\overline{A} + \overline{B})$

Simplify the following expressions according to the commutative law:

- a. $\overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{B} \cdot \overrightarrow{A} + \overrightarrow{C} \cdot \overrightarrow{D} \cdot \overrightarrow{E} + \overrightarrow{C} \cdot \overrightarrow{D} \cdot \overrightarrow{E} + \overrightarrow{E} \cdot \overrightarrow{C} \cdot \overrightarrow{D}$
- b. $A \cdot B + A \cdot C + B \cdot A$
- c. $(L \cdot M \cdot N)(A \cdot B)(C \cdot D \cdot E)(M \cdot N \cdot L)$
- d. $F \cdot (K + R) + S \cdot V + W \cdot \overline{X} + V \cdot S + \overline{X} \cdot W + (R + K) \cdot F$

Apply DeMorgan's theorem to the following equations: a. $F = \overline{V + A + L}$

a.
$$F = \overline{V + A + L}$$

b.
$$F = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

2.5. Mạch tuần tự

- Là mạch Logic trong đó đầu ra phụ thuộc giá trị đầu vào ở thời điểm hiện tại và đầu vào ở thời điểm quá khứ
- Là mạch có nhớ, được thực hiện bằng phần tử nhớ (Latch, Flip-Flop), có thể kết hợp với các cổng logic
- $Q_+ = f(Q, A, B, C \dots)$
- Phần tử cơ bản là Flip-Flop
- Chia làm 2 loại: Đồng bộ và không đồng bộ

FLIP - FLOP

- Là mạch dao động lưỡng ốn
- Thay đổi khi có xung đồng hồ
- Bao gồm:
 - Một hoặc hai đầu vào dữ liệu, và một đầu vào C_k
 - Hai dữ liệu ra là Q(đầu ra chính) và Q₊ (đầu ra phụ)
- Tạo nên từ các mạch chốt (latch)

S-R LATCH

- Chốt RS tác động ở mức cao
 - SR = "set-reset"
 - Bao gồm: 2 dữ liệu đầu vào S và R ở mức cao

R	S	Q+
0	0	Q
0	1	1
1	0	0
1	1	Cấm

S-R LATCH

- Chốt RS tác động ở mức thấp
 - SR = "set-reset"
 - Bao gồm: 2 dữ liệu đầu vào S và R ở mức cao

S	R	Q+
0	0	Cấm
0	1	1
1	0	0
1	1	Q

S-R LATCH

Chuyển RS tác động ở mức thấp->cao

Ký hiệu RS tác động ở mức cao và RS thấp

S-R FLIP FLOP

Sử dụng cổng NOR

Tác động ở mức cao

	Vào		
C_{K}	S	R	Q+
0	х	х	Q
1	0	0	Q
1	0	1	0
1	1	0	1
1	1	1	Cấm

Xung đồng hồ ở mức thấp

S-R FLIP FLOP

Sử dụng cổng NAND

Tác động ở mức cao

Vào			Ra
CK	S	R	Q+
0	х	х	Q
1	0	0	Q
1	0	1	0
1	1	0	1
1	1	1	Cấm

Xung đồng hồ ở mức thấp

D FLIP FLOP

D	Q_{n+1}
0	0
1	1

J-K FLIP FLOP

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Q_n

FLIP-FLOP CO' BẢN

Name	Graphical Symbol	Truth Table
S-R	S Q ———————————————————————————————————	S R Q _{n+1} 0 0 Q _n 0 1 0 1 0 1 1 1 -
Ј-К	J Q ———————————————————————————————	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
D	D Q	D Q _{n+1} 0 0 1 1

THANH GHI 8 BIT SONG SONG

THANH GHI DICH 5-BIT

HÉT CHƯƠNG 2