Lógica Informática Resolución proposicional

Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Resolventes

Complementario de un literal:
$$L^c = \begin{cases} \neg p & \text{si } L = p \\ p & \text{si } L = \neg p \end{cases}$$

Sean C_1 y C_2 cláusulas y L literal tales que $L \in C_1$ y $L^c \in C_2$. La resolvente de C_1 y C_2 respecto de L es la cláusula

$$Res_L(C_1, C_2) = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$$

Es decir, es la cláusula que contiene todos los literales de C_1 y C_2 , salvo el literal L de C_1 y el literal L^c de C_2 .

$$\begin{aligned} & Res_q(\{p,\underline{q}\},\{\underline{\neg q},r\}) = \{p,r\} \\ & Res_q(\{q,\neg p\},\{p,\underline{\neg q},r\}) = \{\neg p,p,r\} \\ & Res_{\neg p}(\{q,\underline{\neg p}\},\{\underline{p},\neg q,r\}) = \{q,\neg q,r\} \\ & Res_{\neg p}(\{q,\underline{\neg p}\},\{q,\underline{p}\}) = \{q\} \\ & Res_p(\{p\},\{\neg p\}) = \Box \end{aligned}$$

Refutación por resolución

Un conjunto de cláusulas es inconsistente si y sólo si es posible obtener \square a partir del cálculo de resolventes entre las cláusulas del conjunto.

$$S = \{\{p,q\}_1, \{p, \neg q\}_2, \{\neg p, q\}_3, \{\neg p, \neg q\}_4\}$$
 es inconsistente:

$$Res_p(C_1, C_3) = \{q\}_5$$

 $Res_p(C_2, C_4) = \{\neg q\}_6$
 $Res_q(C_5, C_6) = \square$

Ejercicio Demostrar por resolución que:

$$\{p \to q, q \to (p \land r)\} \models p \to ((p \to q) \to r)$$

Resolución por saturación

Dado un conjunto de cláusulas, S, el conjunto de todas las resolventes que se pueden obtener a partir de S es:

$$Res(S) = \{Res_L(C_1, C_2) | C_1, C_2 \in S, L \in C_1, L^c \in C_2\}$$

Dato de partida: conjunto de cláusulas S Objetivo: determinar si S es consistente Procedimiento:

- 1. Repetir
 - 1.1 Calcular Res(S)
 - 1.2 Si $\square \in Res(S)$: parar y devolver inconsistente.
 - 1.3 Si $Res(S) \subseteq S$ (es decir, si las resolventes no proporcionan cláusulas nuevas): parar y devolver consistente.
 - 1.4 $S \Leftarrow S \cup Res(S)$

Ejemplo

 $S = \{ \{p, q, r\}_1, \{\neg p, q\}_2, \{\neg q, r\}_3, \{\neg r\}_4, \{p, r\}_5 \}$ es inconsistente

$$Res_{1}(S) = \begin{cases} Res_{p}(C_{1}, C_{2}) = \{q, r\}_{6} \\ Res_{q}(C_{1}, C_{3}) = \{p, r\} \\ Res_{r}(C_{1}, C_{4}) = \{p, q\}_{7} \\ Res_{q}(C_{2}, C_{5}) = \{q, r\} \\ Res_{r}(C_{3}, C_{4}) = \{\neg p\}_{9} \\ Res_{-r}(C_{4}, C_{5}) = \{p\}_{10} \end{cases} \qquad Res_{2}(S) = \begin{cases} Res_{p}(C_{1}, C_{8}) = \{q, r\} \\ Res_{-p}(C_{2}, C_{7}) = \{q\}_{11} \\ Res_{-p}(C_{2}, C_{10}) = \{q\} \\ Res_{-q}(C_{3}, C_{4}) = \{\neg p\}_{9} \\ Res_{-r}(C_{4}, C_{5}) = \{p\}_{10} \end{cases} \qquad Res_{2}(S) = \begin{cases} Res_{p}(C_{1}, C_{12}) = \{q, r\} \\ Res_{-r}(C_{4}, C_{6}) = \{q\} \\ Res_{-r}(C_{4}, C_{8}) = \{\neg p\} \\ Res_{-r}(C_{4}, C_{13}) = \Box \\ \dots \end{cases} \qquad \begin{cases} Res_{p}(C_{1}, C_{12}) = \{q, r\} \\ Res_{p}(C_{5}, C_{8}) = \{r\} \\ Res_{p}(C_{5}, C_{8}) = \{r\} \\ Res_{q}(C_{7}, C_{9}) = \{p\} \\ Res_{q}(C_{7}, C_{9}) = \{p\} \\ Res_{p}(C_{7}, C_{8}) = \{q, r\} \\ Res_{p}(C_{7}, C_{8}) = \{q, r\} \\ Res_{p}(C_{7}, C_{8}) = \{q, r\} \\ Res_{p}(C_{7}, C_{9}) = \{p\} \\ Res_{-p}(C_{8}, C_{10}) = \{r\} \end{cases}$$

Subsunción

Dados un conjunto de cláusulas, S, y $C \in S$ una tautología (una cláusula que contiene a un literal y a su complementario): S es consistente si y sólo si $S \setminus \{C\}$ es consistente.

Una cláusula, D, subsume a una cláusula, C, si $D \subsetneq C$ (es decir, $D \subseteq C$ y $D \neq C$).

Dados un conjunto de cláusulas, S, y dos cláusulas D y $C \in S$ tales que D subsume a C: S es consistente si y sólo si $S \setminus \{C\}$ es consistente.

Dado un conjunto de cláusulas, S, el simplificado de S se obtiene eliminando de S las tautologías y las cláusulas subsumidas por otras.

 $\textit{simplificado}(S) = S \backslash \{ \textit{C} \in \textit{S} | \textit{C} \text{ es tautolog\'a o existe } \textit{D} \in \textit{S} \text{ tal que } \textit{D} \subsetneq \textit{C} \}$

Resolución por saturación con simplificación

Dato de partida: conjunto de cláusulas *S* Objetivo: determinar si *S* es consistente Procedimiento:

1. Repetir

- 1.1 Calcular Res(S)
- 1.2 Si $\square \in Res(S)$: parar y devolver inconsistente.
- 1.3 en caso contrario, si $Res(S) \subseteq S$ (es decir, si las resolventes no proporcionan cláusulas nuevas): parar y devolver consistente.
- 1.4 $S \Leftarrow simplificado(S \cup Res(S))$

Ejemplo

$$S = \{\{p,q,r\}_1, \{p,q\}_2, \{q,r\}_3, \{\neg r\}_4, \{p,r\}_5\} \text{ es inconsistente}$$

$$Res_{1}(S) = \begin{cases} Res_{p}(C_{1}, C_{2}) = \{q, r\}_{6}^{2} C_{11} \subsetneq C_{6} \\ Res_{q}(C_{1}, C_{3}) = \{p, r\} \\ Res_{r}(C_{1}, C_{4}) = \{p, r\}_{7}^{2} C_{11} \subsetneq C_{7} \\ Res_{-p}(C_{2}, C_{5}) = \{q, r\} \\ Res_{q}(C_{2}, C_{5}) = \{q, r\} \\ Res_{r}(C_{3}, C_{4}) = \{\neg q\}_{9} \\ Res_{-r}(C_{4}, C_{5}) = \{p\}_{10} \end{cases} Res_{2}(S) = \begin{cases} Res_{\neg p}(C_{2}, C_{10}) = \{q\}_{11} \\ Res_{q}(C_{2}, C_{9}) = \{\neg p\}_{12} \\ Res_{\neg r}(C_{4}, C_{6}) = \{q\} \\ Res_{\neg r}(C_{4}, C_{8}) = \{\neg p\} \\ Res_{q}(C_{6}, C_{9}) = \{r\}_{13} \\ Res_{\neg p}(C_{8}, C_{10}) = \{r\} \end{cases}$$

$$Res_3(S) = \begin{cases} Res_{\neg r}(C_4, C_{13}) = \square \\ \dots \end{cases}$$

Ejemplo

$$S = \{\{p,q\}_1, \{c_9 \subseteq C_1\}, \{c_9 \subseteq C_2\}, \{c_9 \subseteq C_3\}, \{c$$

Modelo:
$$I(p) = 1$$
, $I(q) = 0$, $I(r) = I(s) = 1$

Ejercicios

- Indicar en cuáles de los siguientes casos se ha aplicado correctamente la regla de resolución proposicional. En los que no, escribir resolventes correctas (de existir).
 - $\{p, q, r, s\}$ es una resolvente de $\{p, q, r\}$ y $\{p, q, s\}$.
 - $\{p\}$ es una resolvente de $\{p,q\}$ y $\{p,\neg q\}$.
 - \square es una resolvente de $\{p, \neg q\}$ y $\{\neg p, q\}$.
 - $\{r, \neg r\}$ es una resolvente de $\{r, \neg r\}$ y $\{r, \neg r\}$.
- ② Demostrar que $S = \{ \{p, q, r\}, \{\neg p, q, r\}, \{\neg r, q\}, \{\neg q, p\}, \{\neg p, \neg q\} \}$ es inconsistente.
- 3 Dado $S = \{\{p, r, \neg s\}, \{\neg q, r\}, \{\neg p, \neg r, \neg s\}, \{\neg p, q, s\}, \{p, q, s\}, \{\neg q, \neg r\}, \{p, \neg r, \neg s\}\}$, demostrar que es consistente y obtener un modelo a partir de la resolución.
- $\textbf{ 4 Demostrar que } \{r \leftrightarrow p \lor q, s \rightarrow p, \neg s \land \neg r \rightarrow s \lor t\} \models \neg p \rightarrow q \lor t.$
- **6** Demostrar que $(p \to r) \to ((q \to r) \to ((p \lor q) \to r))$ es tautología.

Ejercicios

- Juan está matriculado en tres asignaturas: Álgebra, Lógica y Dibujo.
 Juan comenta que
 - Le gusta al menos una de las tres asignaturas.
 - Si le gustase el Álgebra (pero no el Dibujo), entonces le gustaría la Lógica.
 - O le gusta el Dibujo y la Lógica, o bien ninguna de las dos.
 - Si le gustase el Dibujo, entonces le gustaría el Álgebra.
 Decidir, mediante resolución, si los comentarios son consistentes y, en ese caso, determinar qué asignaturas le gustan.
- ② En una isla habitan dos tribus, A y B. Todos los miembros de la tribu A siempre dicen la verdad, mientras que todos los de la tribu B siempre mienten. Llegamos y le preguntamos a un habitante si allí hay oro, a lo que responde: Hay oro en la isla si y sólo si yo siempre digo la verdad. ¿Hay oro en la isla? ¿Podemos determinar a qué tribu pertenece el que nos respondió?
- 3 Consideremos la expresión: Cara, yo gano; cruz, tú pierdes. Demostrar que yo gano.

