TRS-80° Model 4

Technical Reference Manual

Radio Shack

The biggest name in little computers

CUSTOM MANUFACTURED IN THE USA BY RADIO SHACK, A DIVISION OF TANDY CORPORATION

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY

I. CUSTOMER OBLIGATIONS

- A CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER
- B CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software are to function, and for its installation

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

- For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED LOCATION The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been subjected to improper or abnormal use If a manufacturing defect is discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair expendable items.
- B RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer along with the sales document.
- C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf of RADIO SHACK
- D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- E Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER

III. LIMITATION OF LIABILITY

- A EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE"
 - NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
- B RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software
- C No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever first occurs
- D Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not apply to CUSTOMER

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following provisions:

- A Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software
- B Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to the Software
- CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
 function.
- D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on **one** computer and as is specifically provided in this Software License Customer is expressly prohibited from disassembling the Software CUSTOMER is permitted to make additional copies of the Software **only** for backup or archival purposes or if additional copies are required in
- CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.
- F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from CUSTOMER.
- G. All copyright notices shall be retained on all copies of the Software

V. APPLICABILITY OF WARRANTY

- A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to CUSTOMER
- B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from state to state

		(
		(

TRS-80® MODEL 4 TECHNICAL REFERENCE MANUAL

TRSDOS® Version 6 Operating System:
© 1983 Logical Systems.
Licensed to Tandy Corporation.
All Rights Reserved.

Model 4 Technical Reference Manual; Hardware Part:
© 1983 Tandy Corporation.
All Rights Reserved.

Model 4 Technical Reference Manual; Software Part:
© 1983 Tandy Corporation and Logical Systems.
All Rights Reserved.
Revised to include TRSDOS 6.01 enhancements.

Reproduction or use, without express written permission from Tandy Corporation, of any portion of this manual is prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the information contained herein.

TRSDOS is a registered trademark of Tandy Corporation.

IMPORTANT NOTICE

This Technical Reference Manual is written for owners of the TRS-80 Model 4 Computer, who have a thorough understanding of electronics and computer circuitry. It is not written to the beginner's level of comprehension.

This manual contains detailed schematics and theories of operation for each major part of the Model 4. These tools will aid you with designing interfaces for your computer, repairing your own computer after its warranty has expired, or simply obtaining practical knowledge of your TRS-80 Model 4 operation.

Radio Shack will not be liable for any damage caused, or alleged to be caused, by the customer or any other person using this technical manual to repair, modify, or alter the TRS-80 Model 4 Computer in any manner.

Many parts of the computer electronics are very sensitive and can be easily damaged by improper servicing. We strongly suggest that for proper servicing, the computer be returned to Radio Shack.

Because of the sensitivity of computer equipment and the potential problems which can result from improper servicing, the following limitations apply to services offered by Radio Shack:

- 1. If any of the warranty seals on any Radio Shack computer product are broken, Radio Shack reserves the right to refuse to service the equipment or to void any remaining warranty on the equipment.
- 2. If any Radio Shack computer product has been modified so that it is not within manufacturer's specifications, including, but not limited to, the installation of any non-Radio Shack parts, components, or replacement boards, then Radio Shack reserves the right to refuse to service the equipment, void any remaining warranty, remove and replace any non-Radio Shack part found in the equipment, and perform whatever modifications are necessary to return the equipment to original factory specifications.
- 3. The cost for the labor and parts required to return the Radio Shack computer equipment to its original specifications will be charged to the customer in addition to the normal repair charges.

TABLE OF CONTENTS

Part 1 / Hardware

SECTION I	Introduction
1.1	System Overview
1.2	Block Diagram
1.3	Jumper Options
	_
SECTION II	Disassembly/Assembly
2.1	Disassembly
2.1.1	Case
2.1.2	CPU Board
2.1.3	FDC Board (Optional)
2.1.4	RS-232 Board (Optional)
2.1.5	Main Power Supplies
2.1.6	Disk Drives (Optional)
2.1.7	Video Monitor (CRT) and Video Board
2.2	Assembly
2.2.1	RS-232 Board (Optional)
2.2.2	FDC Board (Optional)
2.2.3	CPU Board
2.2.4	Power Supply
2.2.5	Disk Drive (Optional)
2.2.6	Disk Drive (Optional)
2.2.7	Video Monitor (CRT) and Video Board
	Case
2.2.8	Case
SECTION III	CPU Circuit Board
3.1	Model 4 Theory Of Operation
3.1.1	Introduction
3.1.1 3.1.2	CPU and Timing
3.1.2 3.1.3	Buffering
	Address Decoding
3.1.4	ROM
3.1.5	RAM
3.1.6	
3.1.7	Keyboard
3.1.8	Video
3.1.9	Real Time Clock
3.1.10	Cassette Circuitry
3.1.11	Printer Circuitry
3.1.12	I/O Connectors
3.1.13	Sound Option
	20
3.2	Model 4 I/O BUS
0.0	Port Bits
3.3	Port Bits
	Schematic 8000173, 64K Version CPU PCB 8858090
	CPU Component Layout
	Circuit Trace, CPU Component Side
	Circuit Trace, CPU Component Side
	Parts List CPU PCB 67ØØ1Ø4AA34
	Parts List CPU PCB 8858090
	Parts list upu pub 8858434

SECTION IV	Floppy Disk Interface	.57
4.1	Model 4 FDC PCB #8858Ø6Ø	. 59
4.1.1	Control and Data Buffering	
4.1.2	Nonmaskable Interrupt Logic	. 59
4.1.3	Drive Select Latch and Motor ON Logic	
4.1.4	Wait State Generation and WAITIMOUT Logic	
4.1.5	Clock Generation Logic	
4.1.6	Disk Bus Selector Logic	.60
4.1.7	Read/Write Data Pulse Shaping Logic	
4.1.8	Disk Bus Output Drivers	. 60
4.1.9	Write Precompensation and Clock Recovery Logic	. 60
4.1.10	Floppy Disk Controller Chip	.61
4.1.11	Adjustments and Jumper Options	. 61
	FDC Board to CPU Board Signal Description	. 62
	Schematic 8000095, FDC Controller 8858060	. 63
	Component Location/Circuit Trace, Component Side	. 65
	Circuit Trace, FDC PCB, Solder Side	
	Parts List, FDC PCB #8858Ø6Ø	. 67
4.2	Model 4 FDC PCB #885816Ø	. 69
4.2.1	Control and Data Buffering	
4.2.2	Nonmaskable Interrupt Logic	
4.2.3	Drive Select Latch and Motor ON Logic	
4.2.4	Wait State Generation and WAITIMOUT Logic	
4.2.5	Clock Generation Logic	
4.2.6	Disk Bus Selector Logic	
4.2.7	Disk Bus Output Drivers	
4.2.8	Write Precompensation and Write Data Pulse Shaping Logic	
4.2.9	Clock and Read Data Recovery Logic	. 70
4.2.10	Floppy Disk Controller Chip	.72
	Schematic 8000168, FDC PCB #8858160	. 73
	Component Layout, FDC PCB #885816Ø	. 75
	Circuit Trace, FDC PCB #885816Ø, Circuit Side	. 76
	Circuit Trace, FDC PCB #885816Ø, Solder Side	.77
	Parts List, FDC PCB #88516Ø	. 78
SECTION V	Mini-Disk Drive	.79
5.1	Mini-Disk Drive #879Ø112 (TPI)	. 81
5.1.1	Physical Description	
5.1.2	Functional Description	
5.1.3	Interface Connections	
5.1.4	Physical Checkout	
5.1.5	Mounting The Disk Drive	
5.1.6	Flat Ribbon Cable Assembly	
5.1.7	Resistor Termination	
		. 55
5.2	Theory Of Operation	
5.2.1	Introduction	.84
5.2.2	Organization Of The Disk Drive	9 <u>4</u>
5.2.3	Functional Block Diagram Description	9 <u>/</u> 1
5.2.4	INDEX	. 04 0/

5.2.5	Write Protect
5.2.6	Track ØØ Switch
5.2.7	Spindle Drive
5.2.8	Positioner Control
5.2.9	Data Electronics
5.2.10	Data Recording86
5.2.11	Data Reproduction
5.3	Operation
5.3.1	Introduction
5.3.2	Interface Electronics Specifications
5.3.3	Input Control Lines
5.3.4	Select Lines (DS1*-DS4*)
5.3.5	Drive Motor Enable
5.3.6	Direction and Step (DIR*) (STEP*)
5.3.7	Compensated Write Data (CWD)
5.3.8	Write Gate (WG*)
5.3.9	Output Status
5.3.10	Index Pulse (IP*)
5.3.11	Track ØØ (TRKØ*)
5.3.12	Write Protect (WPRT*)
	Read Data (RD*)
5.3.13	nead Data (nD*)
5 4	
5.4	Maintenance
5.4.1	Physical Description of the PC Board
5.4.2	Circuit Board Test Points
5.4.3	Option Select
5.4.4	Preventive Maintenance
5.4.5	Cleaning the Head
5.5	Alignment And Adjustment
5.5.1	Drive Motor Maintenance
5.5.2	Carriage Movement Check93
5.5.3	Head Radial Alignment/CE Alignment
5.5.4	Track ØØ Alignment99
5.5.5	Write Protect Switch
5.5.6	Index Sector Adjustment
5.5.7	Head Amplitude/Compliance Check
5.5.8	Final Check
	Schematic Diagram, Mini Disk Drive #879Ø112
	Component Location, Logic/Servo PCB #995Ø5ØØØ1
	Parts List, Logic/Servo PCB #995Ø5ØØØ1
	Exploded View, Mini Disk Drive #879Ø112
	Parts List, Mini Disk Drive #879Ø112
SECTION VI	Power Supplies
6.1	Power Supply #8790021, 38W (ASTEC #AA11320)
6.1.1	General
6.1.2	Theory of Operation
	Schematic Diagram, Power Supply #879ØØ21110
	Parts List, Power Supply #8790021

6.2	Power Supply #8790043, 65W (ASTEC #AA12090)		
6.2.1	Test Set-Up		
6.2.2	Visual Inspection	1	12
6.2.3	Start-Up	1	12
6.2.4	No Output	1	12
6.2.5	Low Outputs	1	13
6.2.6	Crowbar	1	13
6.2.7	Performance Test	1	14
	Schematic Diagram, Power Supply #8790043		
	Component Layout #1700218, Power Supply #8790043	1	16
	Circuit Trace, Power Supply #8790043, Solder Side		
	Parts List, Power Supply #8790043		
6.3	Power Supply #8790049, 65W (Tandy)	1	21
6.3.1	System Description		
6.3.2	Technical Specifications		
6.3.3	Theory of Operation		
6.3.4	Troubleshooting Chart		
6.3.5	Testing and Adjustments		
0.5.5	Schematic #8000164, Power Supply #8790049		
	Component Layout, Power Supply #8790049		
	Circuit Trace, Power Supply #8790049, Solder Side		
	Parts List, Power Supply #879ØØ49		39
CECTIONIA	Video Monitor	1 /	40
	Video Monitor		
7.1	Video Monitor #8492002 (Manufacturer-RCA)		
7.1.1	Functional Specifications		
7.1.2	Service Adjustments		
	Schematic #8000187, RCA Video Monitor		
	Component Location/Circuit Trace		
	Parts List, Video Monitor #8492002	1	50
7.2	Video Monitor #879Ø6Ø7 (Manufacturer-TCE)		
	Schematic #8000186, TCE Video Monitor		
	Parts List, Video Monitor #879Ø6Ø7	1	57
SECTION VII	I Exploded View/Parts List		
	Exploded View, Model 4 Computer, Catalog #26-1067/8/9		
	Parts List, Model 4 Computer, Catalog #26-1Ø67/8/9	10	65
SECTION IX	RS-232C Circuit Board		
9.1	RS-232C Technical Description	1	69
9.2	Pinout Listing	1	70
9.3	Port And Bit Assignments		
	RS232 Board to CPU Board Signal Description	1	73
	Schematic #8000076, RS232C Printed Circuit Board	1	75
	Component Location/Circuit Trace, RS232C PC Board, Component Side	1	77
	Circuit Trace, RS232C PC Board, Solder Side		
	Parts List, RS232C PC Board		

LIST OF FIGURES

Fig. No.	Description	Page No
1-1	TRS-8Ø Model 4 Interconnection Diagram	
3-1	Model 4 Block Diagram	16
3-2	RAM Memory	20
3-3	Timing of U3 and CPU	23
3-4	Timing of U4	
3-5	CPU Video Access Timing	
3.6	I/O Bus Timing Diagram	
4-1	Write Precompensation Timing	
5-1	Cable Assembly—Connector Pin Removal Chart	
5-2	Resistor Termination	
5-3	Disk Drive Functional Block Diagram	
5-4	FM Recording	
5-5	Write Timing Diagram	
5-6	Read Timing Diagram	
5-7	Interface Configuration	
5-8	Logic/Servo PC Board Test Points/Connector Locations	
5-9	"Cat Eyes" Pattern	
5-1Ø	Radial Adjustment	
5-11	Track ØØ Switch Adjustment	
5-12	Index Sector Timing	
5-13	Index Adjustment	
5-14	Upper Arm and Carriage	
6-1	Test Set-Up	
6-2	Q2 Collector Waveform	
6-3	Q2 Base Waveform.	
6-4	Basic Flyback Converter	
6-5	Waveforms for Figure 6-4	
6-6	Block Diagram, Power Supply 879ØØ49	
6-7	Input AC Supply	
6-8	Kick-Start Latch	
6-9	Oscillator, Pulse Generator Waveforms.	
6-10	Control Section.	
6-11	Base Drive Circuit	
6-12	Q7 Base Voltage Waveform	
6-13	Primary Side Protection	
6-14	Feedback Signal Development	
6-15	Overvoltage Crowbar	
6-16	Power Chain	
6-17	Control Chain Simplified Schematic	
7-1 <i>7</i>	Deflection Yoke Assembly	
7.1	Deficution FORE Magerials	140

Part 2 / Software

1/	Disk Organization
	Single Density Floppy Diskette
	Double Density Floppy Diskette
	5" 5-Meg Hard Disk
	Disk Space Available to the User
	Unit of Allocation
	Ont of Anocation.
2/	Disk Files
۷,	Methods of File Allocation
	Dynamic Allocation
	·
	Pre-Allocation
	Record Length
	Record Processing Capabilities
	Record Numbers
3/	TRSDOS File Descriptions
	System Files (/SYS)
	Utility Programs
	Device Driver Programs
	Filter Programs
	Creating a Minimum Configuration Disk
4/	Device Access
	Device Control Block (DCB)
	Memory Header
- /	Drive Access
5/	
	Drive Code Table (DCT)
	Disk I/O Table
	Directory Records
	Granule Allocation Table (GAT)
	Hash Index Table (HIT)
o /	
0/	File Control
	File Control Block (FCB)
7/	TRSDOS Version 6 Programming Guidelines
• /	Converting to TRSDOS Version 6
	Programming With Restart Vectors
	KFLAG\$ (BREAK)((PAUSE), and (ENTER) Interfacing
	Interfacing to @ICNFG
	Interfacing to @KITSK
	Interfacing to the Task Processor
	Interfacing RAM Banks 1 and 2
	Device Driver and Filter Templates
	@CTL Interfacing to Device Drivers

8/ Using the S	upervisor Calls
	Calling Procedure
	Program Entry and Return Conditions
	Supervisor Calls
	Numerical List of SVCs
	Alphabetical List of SVCs
	Sample Programs
9/ Technical I	nformation on TRSDOS Commands and Utilities
Appendix A/	TRSDOS Error Messages
Appendix B/	Memory Map
Appendix C/	Character Codes
Appendix D/	Keyboard Code Map
Index	

HARDWARE HARDWARE

PART I HARDWARE

SECTION I

INTRODUCTION

INTRODUCTION

1.1 SYSTEM OVERVIEW

The Radio Shack TRS-80 Model 4 Microcomputer is an enhanced version of Radio Shack's popular TRS-80 Model III Microcomputer. The TRS-80 Model 4 is software compatible with the Model III so that owners of either system can take advantage of the large number of programs available.

Features of the TRS-80 Model 4 which are common to the TRS-80 Model III include:

- Availability of Level I or Level II BASIC in ROM
- Full size typewriter style keyboard
- A 12-inch video display
- Built-in cassette interface
- Character display of 16 lines of 64 characters
- Graphics under control of BASIC (128 H x 48 V)
- UL recognized construction
- 12-key numeric keypad for rapid entry of numbers
- Rugged cabinet housing keyboard, electronics, video display, and power supply
- Direct drive video monitor for improved resolution
- Internal power supply
- Parallel printer port for use with Radio Shack printers

Other features available when Level II BASIC is used are: real time clock, upper and lower case characters, RAM internally expandable to 128K bytes, I/O port for peripheral expansion, and cassette interface available with 500 and 1500 baud rates.

Optional peripherals for the TRS-80 Model 4 include disk drives (two built-in, two external) with double density for increased storage capacity, and a built-in RS-232 serial interface for communications and peripheral interface.

1.2 BLOCK DIAGRAM

The Block Diagram (Figure 1-1) shows the various internal components and connections of the Model 4 Microcomputer.

FIGURE 1-1. TRS-80 MODEL 4 INTERCONNECTION DIAGRAM

1.3 JUMPER OPTIONS

1.3.1 16K to 64K

- 1. Remove U77 U84
- 2. Move E5-E6 to E5-E4 Move E1-E2 to E2-E3 Move E12-E13 to E12-E11
- 3. Add E7-E8 and eight Tandy #8040665 ICs in locations U77-U84.
- 4. Remove capacitors C68, C72, C76, C80, C84, C88, C92 and C96.

1.3.2 64K to 128K

- 1. Remove shunt at U72 and add IC Tandy #8075468 in its place.
- 2. Add eight Tandy #8040665 ICs in locations U85-U92.

1.3.3 Graphics Board

- 1. Remove E14-E15 (and screws near U65 and U71).
- 2. Plug in Graphics Board
- 3. Replace mounting screws at U65 and U71.

1.3.4 E9-E10 are not used at this time

SECTION II DISASSEMBLY/ASSEMBLY

DISASSEMBLY/ASSEMBLY

2.1 DISASSEMBLY

2.1.1 Case

- Remove all cables from the bottom and rear of the Computer. Position the Computer on its rear panel to provide easy access to the case bottom. Remove the ten screws from the case bottom. Notice the different types and lengths of screws and note their positions. Set them aside in groups.
- Position the Computer upright and remove the #6 screw and washer from the top of the back panel of the case.
- Very carefully remove case top, lifting straight up and setting it aside to the left (if facing video screen). Be careful not to exceed the length of the video cable.
- 4. Remove screws from the chassis shield and the ground connectors and remove the shield. **

2.1.2 CPU Board

- Remove the six screws which attach the RFI Rear Shield to the metal CPU mounting bracket. This bracket is also held in place with tape at the lower part of the bracket. Carefully peel the tape away from the shield so that it may be reused.
- Remove all cables connecting the CPU Board (power supply cable, video, keyboard, and cassette cables, and if applicable, the RS-232, sound board, and FDC interconnect cables).
- Remove the eight screws fastening the CPU PCB (three at the top and bottom and one on either side of the board in the middle.
- 4. Make sure all cables to the CPU Board have been disconnected then remove the Board. (If your unit uses plastic spacer mounts to hold the Board, press the small tabs on the mounts through the mounting holes in the PCB and gently pull the CPU Board off.)

2.1.3 FDC Board (optional)

NOTE: The CPU Board must be removed before removing the FDC Board.

- 1. Be sure to disconnect all cables to the FDC Board.
- 2. Remove the screws holding the FDC Board to the metal chassis and remove the Board.

2.1.4 RS-232 Board (optional)

NOTE: The CPU Board must be removed before removing the RS-232 Board

- 1 Be sure to remove all cables connecting the RS-232 Board.
- Remove the screws connecting the PC Board to the chassis and remove the Board.

2.1.5 Main Power Supplies

Three different power supplies are used on the Model 4 Computer, depending on the initial configuration of the unit. If the unit is supplied with 16K RAM and cassette input, Power Supply Assembly #8790021 is supplied to provide DC voltages required to power the computer. It is mounted on the front side of the main CPU mounting bracket at the rear of the unit. If disk drive(s) are added to this computer, a second power supply is mounted to the LH disk drive mounting bracket.

If the computer is supplied with 64K RAM and a single or dual disk drive, then power supply #8790043 or #8790049 is supplied to power the unit. This power supply is mounted at the left side of the LH disk drive mounting bracket. It is attached to the CPU mounting bracket by screws through the heat sink bracket of the power supply.

- Remove all interconnecting cables to the board(s). These
 include the power supply cable, video, keyboard, and
 cassette cable. If applicable, also remove the RS-232
 and FDC power connectors and the disk ribbon cable.
- 2. Note the position of the ground tab and remove it.
- 3. Remove the screws which attach the power supply to its mounting support (four for the 38W power supply and two for the 65W power supplies). Spacers separate the 38W power supply from its mounting bracket. The 65W power supply is provided with insulated standoffs to prevent shorting the power supply against the metal disk drive shield bracket.
- 4. Carefully lift the power supply out of the computer. If the unit is one which has been upgraded to include a disk drive and is equipped with two power supplies, it may be necessary to remove the Main CPU mounting bracket to provide access to the mounting screws of one of the power supplies.

2.1.6 Disk Drives (optional)

1 To remove the Disk Drive in the top position, carefully remove the FDC inter-connect cable connected to the rear of the Drive

^{**}Not applicable to all units.

- Remove the four screws and washers (two on each side) which connect the Drive to the Disk Mounting Bracket. Remove the RFI shield which covers the top drive.
- Disconnect the power supply connector from the bottom of the top board in the Disk Drive and also remove the ground wire from the rear of the Drive
- To remove the Disk Drive in the bottom position, you
 must first remove the Power Supply attached to the
 LH Disk Mounting bracket to gain access to the Disk
 Drive mounting screws.
- After removing the Power Supply, remove the FDC inter-connect cable from the rear of the Drive.
- 6. Remove the four screws and washers (two on each side) which connect the Drive to the Disk Mounting Bracket.
- 7. Disconnect the power supply connector from the bottom of the top board in the Disk Drive and also remove the ground wire from the rear of the Drive.

2.1.7 Video Monitor (CRT) and Video Board

- 1. Disconnect the four color coded wires with spade lugs from the CRT yoke. (Be sure to note their positions.)
- 2. Disconnect the connector on the rear of the CRT neck.

WARNING

There may be a high voltage charge on the high voltage anode. To discharge, connect one end of a wire to a

known good ground and connect the other end of the wire to the blade of a common screwdriver. Insert the screwdriver blade under the suction cup and touch it to the clip holding the wire to the CRT.

- Insert a common screwdriver under the suction cup on the high-voltage anode wire on the side of the CRT. Use the screwdriver to compress the clip holding the wire to the tube and pull the wire free.
- Remove the ground wire fastened directly to the Video Board.
- Remove the upper right and lower left nuts and washers which hold the CRT in place.

CAUTION

If dropped, the CRT may implode. To avoid this kind of accident, support the CRT while performing the next step.

- 6. Remove the remaining lower right and upper left nuts, and washers and carefully remove the CRT.
- Disconnect the CPU cable connector from the Video Board.
- 8. Remove the two screws fastening the Video Board to the Case Top and carefully lift out Board.

2.2 ASSEMBLY

2.2.1 RS-232 Board (optional)

- Install the PC Board using #6 x 1/4" screws. If applicable, press the PC Board onto the plastic spacer mounts then fasten with the screws.
- 2. Reconnect all cables to the RS-232 Board.

2.2.2 FDC Board (optional)

- 1. Install the PC Board using #6 x 1/4" screws and the plastic spacer mounts, if used.
- 2. Reconnect all cables to the FDC Board.

2.2.3 CPU Board

- 1. Make sure good insulating washers are attached to the CPU Board then fasten the Board using #6 \times 1/2" screws.
- Reconnect all cables to the CPU Board (power supply cable, video, keyboard, and cassette cables, and if applicable, RS-232, sound board, and FDC inter-connect cables).
- Attach the small PCB Mount Bracket (if used) to the metal chassis bracket with two #6 x 1/4" screws.

2.2.4 Power Supply

- 1. Fasten the Power Supply to the CPU chassis bracket using #6 \times 1/4" screws. Be sure the ground tab is fastened back in place.
- 2. Reconnect all cables (power supply, video, keyboard, and cassette cables, and RS-232 and FDC power cables and Disk ribbon cable if necessary).

2.2.5 Disk Drive (optional)

- 1. Place the Disk Drive in the bottom position and reconnect the ground wire and power supply connector.
- 2. Fasten the Drive with four #6-32 \times 1/2" screws and four flat washers (two on each side).
- Reconnect the FDC inter-connect cable to the rear of the Drive.
- 4. Position the second Disk Drive in the top position and reconnect the ground wire and power supply connector.
- 5. Fasten with four screws and washers (two on each side).
- Reconnect the FDC inter-connect cable to the rear of the Drive.

2.2.6 Disk Drive Power Supply (optional)

- Before installing the Power Supply, be sure that the bottom Disk Drive is mounted in place and the Disk Shield is in position on the Disk Mounting Bracket.
- 2. Reconnect all cables and wires to the Power Supply.
- 3. Fasten the Power Supply with four #6 x 3/8" screws. Be sure the ground tab is fastened back in place

2.2.7 Video Monitor (CRT) and Video Board

- 1. Position the CRT in the Case Top and install the upper left and lower right #10 washers and nuts.
- Install the upper right and lower left #10 washers and nuts. Be sure to reconnect the ground wire from the CPU cable. It will require two nuts to fasten it.
- 3. Install the Video Board into the Case and fasten with two #6 \times 3/8" screws.
- 4. Connect the ground wire with solder lug back to the Video Board.
- 5. Install the plug on the rear of the CRT neck.
- Install the four color coded wires with spade lugs to their associated terminals (as determined by a colored dot on the yoke near each terminal).
- 7. Install the high-voltage anode wire on the side of the CRT. Use a screwdriver to compress the clip and insert it into the CRT. Press down on the suction cup to secure.

2.2.8 Case

- 1. Double-check to be sure all wires are connected correctly and all Boards are properly fastened.
- 2. Attach the chassis shield (if used) with #6 x 1/4" screws and reconnect the ground connectors.
- Carefully place the Case Top over the Case Bottom.
 Do not hit the CRT neck. It could implode or break off.
- 4. Install the #6 x 3/8" sheet metal screw and flat washer in the top rear panel of the Case.
- 5. Carefully rest the Computer on its rear panel and replace the ten #8 screws; five 1" sheet metal toward rear, three 7/8" machine head along front, and two 1" machine head in remaining positions.

SECTION III CPU CIRCUIT BOARD

CPU CIRCUIT BOARD

3.1 MODEL 4 THEORY OF OPERATION

3.1.1 Introduction

The TRS-80 Model 4 Microcomputer is a self-contained desktop microcomputer designed not only to be completely software compatible with the TRS-80 Model III, but to provide many enhancements and features. System distinctions which enable the Model 4 to be Model III compatible include: a Z80 CPU capable of running at a 4 MHz clock rate, BASIC operating system in ROM (14K), memory-mapped keyboard, 64-character by 16-line memory-mapped video display, up to 128K Random Access Memory, cassette circuitry able to operate at 500 or 1500 baud, and the ability to accept a variety of options. These options include: one to four 5-1/4 inch double density floppy disk drives, one to four five megabyte hard disk drives, an RS-232 Serial Communications Interface, and a 640 by 240 pixel high resolution graphics board.

3.1.2 CPU and Timing

The central processing unit of the Model 4 microcomputer is the Z80-A microprocessor — capable of running at either a two (2.02752) or four (4.05504) MHz clock rate. The main CPU timing comes from the 20 MHz (20.2752 MHz) crystal-controlled oscillator, Y1 and Q1. There is an additional 12 MHz (12.672 MHz) oscillator, Y2 and Q2, which is necessary for the 80 by 24 mode of video operation. The oscillator outputs are sent to two Programmable Array Logic (PAL) circuits, U3 and U4, for frequency division and routing of appropriate timing signals.

PAL U3 divides the 20 MHz signal by five for 4 MHz CPU operation, by ten for a 2 MHz rate, and slows the 4 MHz clock for the M1 Cycle (See Figure 3-3). U3 also divides the master clock by four to obtain a 5 MHz clock to be sent to the RS-232 option connector as a reference for the baud rate generator. PAL U4 selects an appropriate 10 MHz or 12 MHz clock for the video shift clock, and using divider U5 provides additional timing signals to the video display circuitry (See Fig. 3-4).

Hex latch U18 is clocked from the 20 MHz clock, and is used to provide MUX and CAS timing for the dynamic

memory circuits. Also, with additional gates from U16, U19, U20, U31, and U32, this chip provides the wait circuitry necessary to prevent the CPU from accessing video RAM during the active portion of the display. This is done by latching the data for the video RAM and simultaneously forcing the Z80 CPU into a "WAIT" state and is necessary to eliminate undesirable "hashing" of the video display (See Fig. 3-4).

3.1.3 Buffering

Low level signals from and to the CPU need to be buffered, or current amplified in order to drive many other circuits. The 16 address lines are buffered by U55 and U56, which are unidirectional buffers that are permanently enabled. The eight data lines are buffered by U71. Since data must flow both to and from the CPU, U71 is a bi-directional buffer which can go into a three-state condition when not in use. Both direction and enable controls come from the address decoding section.

The clock signal to the CPU (from PAL U3) is buffered by active pullup circuit Q3 RESET and WAIT inputs to the CPU are buffered by U17 and U46. Control outputs from the Z80 (M1*, RD*, WR*, MREQ*, and IORQ*) are sent to PAL U58, which combines these into other appropriate control signals consistent with Model 4's architecture. Other than MREQ*, which is buffered by part of U38, the raw control signals go to no other components, and hence require no additional buffering.

3.1.4 Address Decoding

The address decoding section is divided into two subsections: Port address decoding and Memory address decoding.

In port address decoding, low order address lines (some combined through a portion of U32) are sent to the address and enable inputs of U48, U49, and U50. U48 is also enabled by the IN* signal, which means that is decodes port input signals, while U49 decodes port output signals. A table of the resulting port map is shown below:

Port Addr. (Hex)	Read Function	Write Function	
FC - FF	Cassette In, Mode Read	Cassette Out, resets cassette data latch	
F8 - FB	Read Printer Status	Output to Printer	
(1) F4 - F7	- reserved -	Drive Select latch	
(1) F3	FDC Data Reg.	FDC Data Reg.	
(1) F2	FDC Sector Reg.	FDC Sector Reg.	
(1) F1	FDC Track Reg.	FDC Track Reg.	

(1) FØ	FDC Status Reg.	FDC Command Reg.
EC - EF	Resets RTC Int.	Mode Output latch
(2) EB	Rcvr Holding Reg.	Xmit Holding Reg.
(2) EA	UART Status Reg.	UART/Modem control
(2) E9	- reserved -	Baud Rate Register
(2) E8	Modem Status	Master Reset/Enable
		UART control reg.
E4 - E7	Read NMI Status	Write NMI Mask reg.
E0 - E3	Read INT Status	Write INT Mask reg.
(3) CF	HD Status	HD Command
(3) CE	HD Size/Drv/Hd	HD Size/Drv/Hd
(3) CD	HD Cylinder high	HD Cylinder high
(3) CC	HD Cylinder low	HD Cylinder low
(3) CB	HD Sector Number	HD Sector Number
(3) CA	HD Sector Count	HD Sector Count
(3) C9	HD Error Reg.	HD Write Precomp.
(3) C8	HD Data Reg.	HD Data Reg.
(3) C7	HD CTC channel 3	HD CTC channel 3
(3) C6	HD CTC channel 2	HD CTC channel 2
(3) C5	HD CTC channel 1	HD CTC channel 1
(3) C4	HD CTC channel 0	HD CTC channel 0
(3) C2 - C3	HD Device ID Reg.	- reserved -
(3) C1	HD Control Reg.	HD Control Reg.
(3) CO	HD Wr. Prot. Reg.	- reserved -
94 · 9F	- reserved -	- reserved -
(4) 90 - 93	- reserved -	Sound Option
(5) 8C - 8F	Graphics Sel. 2	Graphics Sel. 2
8B	CRTC Data Reg.	CRTC Data Reg.
8A	CRTC Control Reg.	CRTC Control Reg.
89	CRTC Data Reg.	CRTC Data Reg.
88	CRTC Control Reg.	CRTC Control Reg.
84 - 87	- reserved -	Options Register
(5) 83	- reserved -	Gra. X Reg. Write
(5) 82	- reserved -	Gra. Y Reg. Write
(5) 81	Graphics Ram Rd.	Graphics Ram Wr.
(5) 80	- reserved -	Gra. Options Reg. Wr

Notes: (1) Valid only if FDC option is installed

(2) Valid only if RS-232 option is installed

(3) Valid only if Hard Disk option is installed

(4) Valid only if sound option is installed

(5) Valid only if High Resolution Graphics option is installed

Following is a Bit Map of the appropriate ports in the Model 4. Note that this is an "internal" bit map only. For bit maps of the optional devices, refer to the appropriate section of the desired manual.

Model 4 Port Bit Map

Port	D7	D6	D5	D4	D3	D2	D1	D0
FC · FF	Cass							Cassette
(READ)	data 500 bd		(MIF	RRORofP	ORT EC)			data 1500 bd
FC - FF	(Note, also resets cassette data latch)						cass.	cassette
(WRITE)	×	x	×	×	×	×	out	data out
F8 - FB (READ)	Prntr BUSY	Prntr Paper	Prntr Select	Prntr Fault	x x	x x	x x	x x
F8 - FB (WRITE)	Prntr D7	Prntr D6	Prntr D5	Prntr D4	Prntr D3	Prntr D2	Prntr D1	Prntr D0
EC - EF			(Any Read	causes reset of	Real Time Cloc	k Interrupt)		
EC - EF (WRITE)	x x	CPU Fast	x x	Enable EX I/O	Enable Altset	Mode Select	Cass Mot On	x x
E0 - E3 (READ)	x x	Receive Error	Receive Data	Xmit Empty	10 Bus Int	RTC Int	C Fall Int	C Rise Int
E0 - E3 (WRITE)	x x	Enable Rec Err	Enable Rec Data	Enable Xmit Emp	Enable 10 Int	Enable RT Int	Enable CF Int	Enable CR Int
90 - 93 (WRITE)	x x	x x	x x	x x	x x	x x	x x	Sound Bit
84 - 87 (WRITE)	Page	Fix Upr Memory	Memory Bit 1	Memory Bit 0	Invert Video	80/64	Select Bit 1	Select Bit 0

Memory mapping is accomplished by PAL U59 in the Basic 16K or 64K computer. In a 128K system, PAL U72, along with the select and memory bits of the options register, also enter into the memory mapping function.

Four memory maps are listed below. Memory Map I is compatible with the Model III. Note that there are two 32K banks in the 64K system, which can be interchanged with either position of the upper two banks of a 128K system. The 128K system has four moveable 32K banks. Also note, in the Model III mode, that decoding for the printer status read (37E8 and 37E9 hexadecimal) is accomplished by U93 and leftover gates from U40, U46, U51, U54, U60, and U62.

Memory Map I - Model III Mode

	0000 - 1FFF	ROM A (8K)
	2000 - 2FFF	ROM B (4K)
	3000 37FF	ROM C (2K) — Less 37E8 - 37E9
	37E8 - 37E9	Printer Status Port
	3800 - 3BFF	Keyboard
	3C00 - 3FFF	Video RAM (Page bit selects 1K of 2K)
*	4000 – 7FFF	RAM (16K system)
*	4000 - FEFF	RAM (64K system)

Memory Map II

0000 - 37FF 3800 - 3BFF 3C00 - 3FFF 4000 - 7FFF	RAM (14K) Keyboard Video RAM RAM (16K)	End of one 32K Bank			
8000 – FFFF	RAM (32K)	Second 32K Bank			
Memory Map III					
0000 – 7FFFF	RAM (32K)	End of One 32K Bank			
8000 — F3FF F400 — F7FF F800 — FFFF	RAM (29K) Keyboard Video RAM	Second 32K Bank			
	Memory Map IV				
0000 – 7FFF 8000 – FFFF	RAM (32K) RAM (32K)	One 32K Bank Second 32K Bank			

(See Figure 3-2 for 128K Maps)

3.1.5 ROM

The Model 4 Microcomputer contains 14K of Read Only Memory (ROM), which is divided into an 8K ROM (U68), a 4K ROM (U69), and a 2K ROM (U70). ROMs used have three-state outputs which are disabled if the ROMs are deselected. As a result, ROM data outputs are connected directly to the CPU data bus and do not use data buffer U71, which is disabled during a ROM access.

ROMs are Model III compatible and contain a BASIC operating system, as well as a floppy disk boot routine. The enable inputs to the ROMs are provided by the address decoding section, and are present only in the Model III mode of operation.

3.1.6 RAM

Three configurations of Random Access Memory are available on the Model 4: 16K, 64K, and 128K. The 16K option uses 4116 type, 16K by 1 dynamic RAMs, which require three supply voltages (+12 volts, +5 volts, and -5 volts). The 64K and 128K options use 6665 type, 64K by 1 dynamic RAMs, which require only a single supply voltage (+5 volts). The proper voltage for each option is provided by jumpers.

Dynamic RAMs require multiplexed incoming address lines. This is accomplished by ICs U63 and U76. Output data from RAMs is buffered by U64. With the 128K option, there are two rows of the 64K by 1 RAM ICs. The proper row is selected by the CAS* signal from PAL U72.

3.1.7 Keyboard

The Model 4 Keyboard is a 70-key sculptured keyboard, scanned by the microprocessor. Each key is identified by its column and row position. Columns are defined by address lines A0 - A7, which are buffered by open-collector drivers U29 and U30. Data lines D0 - D7 define the rows and are buffered by CMOS buffers U44 and U45. Row inputs to the buffers are pulled up by resistor pack RP 1, unless a key in the current column being scanned is depressed. Then, the row for that key goes low.

3.1.8 Video

The heart of the video display circuitry in the Model 4 is the 68045 Cathode Ray Tube Controller. The CRTC allows two screen formats: 64 by 16 and 80 by 24. Since the 80 by 24 screen requires 1,920 screen memory locations, a 2K by 8 static RAM is used for the Video RAM. The 64 by 16 mode has a two-page screen display and a bit in the options register for determining which page is active for the CPU. Offset the start address of the CRTC to gain access to the second page in the 64 by 16 mode.

Addresses to the video RAM are provided by the 68045 when refreshing the screen and by the CPU when updating the data. These two sets of addresses are multiplexed by U33, U34, and U35. Data between the CPU and Video RAM is latched by U6 for a write, and buffered by U7 for a read operation.

During screen refresh, the data outputs of the Video RAM (ASCII character codes) are latched by U8 and become the addresses for the character generator ROM (U23). In cases of low resolution graphics, a dual 1 of 4 data selector (U9) is the cell generator, with additional buffering from U10

The shift register U11 inputs are the latched data outputs of the character or cell generator. The shift clock input comes from the PAL U4, and is 10.1376 MHz for the 64 by 16 mode and 12.672 MHz for 80 by 24 operation. The serial output from the shift register later becomes actual video dot information.

Special timing in the video circuit is handled by hex latch U2. This includes blanking (originating from CRTC) and shift register loading (originating from U4). Additional video control and timing functions, such as sync buffering, inversion selection, dot clock chopping, and graphics disable of normal video, are handled by miscellaneous gates in U12, U13, U14, U22, U24, and U26.

3.1.9 Real Time Clock

The Real Time Clock circuit in the Model 4 provides a 30 Hz (in the 2 MHz CPU Mode) or 60 Hz (in the 4 MHz CPU Mode) interrupt to the CPU. By counting the number of interrupts that have occured, the CPU can keep track of the time. The 60 Hz vertical sync signal from the video circuitry is divided by two (2 MHz Mode) by U53, and the 30 Hz at pin 1 of U51 is used to generate the interrupts. In the 4 MHz mode, signal FAST places a logic low at pin 1 of U51, causing signal VSYNC to trigger the interrupts at the 60 Hz rate. Note that any time interrupts are disabled, the accuracy of the clock suffers.

3.1.10 Cassette Circuitry

The cassette write circuitry latches the two LSBs (D0 and D1) for any output to port FF (hex). The outputs of these latches (U27) are then resistor summed to provide three discrete voltage levels (500 Baud only). The firmware toggles the bits to provide an output signal of the desired frequency at the summing node.

There are two types of cassette Read circuits — 500 baud and 1500 baud. The 500 baud circuit is compatible with both Model 1 and III. The input signal is amplified and filtered by Op amps (U43 and U28. Part of U15 then forms a Zero Crossing Detector, the output of which sets the latch U40. A read of Port FF enables buffer U41, which allows the CPU to determine whether the latch has been set, and simultaneously resets the latch. The firmware determines by the timing between settings of the latch whether a logic "one" or "zero" was read in from the tape.

The 1500 baud cassette read circuit is compatible with the Model III cassette system. The incoming signal is compared to a threshold by part of U15. U15's output will then be either high or low and clock about one-half of U39, depending on whether it is a rising edge or a falling edge. If interrupts are enabled, the setting of either latch will generate an interrupt. As in the 500 baud circuit, the firmware decodes the interrupts into the appropriate data.

For any cassette read or write operation, the cassette relay must be closed in order to start the motor of the cassette deck. A write to port EC hex with bit one set will set latch U42, which turns on transistor Q4 and energizes the relay K1. A subsequent write to this port with bit one clear will clear the latch and de-energize the relay.

3.1.11 Printer Circuitry

The printer status lines are read by the CPU by enabling buffer U67. This buffer will be enabled for any input from port F8 or F9, or any memory read from location 37E8 or 37E9 when in the Model III mode. For a listing of bit status, refer to the bit map.

After the printer driver software determines that the printer is ready to receive another character (by reading the status), the character to be printed is output to port F8. This latches the character into U66, and simultaneouly fires the one-shot U65 to provide the appropriate strobe to the printer.

3.1.12 I/O Connectors

Two 20-pin single inline connectors, J7 and J8, are provided for the connection of a Floppy Disk Controller and an RS-232 Communications Interface, respectively. All eight data lines and the two least significant address lines are routed to these connectors. In addition, connections are provided for device or board selection, interrupt enable, interrupt status read, interrupt acknowledge, RESET, and the CPU WAIT signal.

The graphics connector, J10, contains all of the above interface signals, plus CRTCLK, the dotclock signal, a graphics enable input, and other timing clocks which synchronize the graphics board with the CRTC.

The I/O bus connector, J2, contains connections for all eight data lines (buffered by U74), the low order address lines (buffered by U73), and the control lines (buffered by U75) IN*, OUT*, RESET*, M1*, and IORQ*. In addition, the I/O bus connector has inputs to allow the device(s), connected to generate CPU WAIT states and interrupts.

The sound connector, J11, contains only four connections: sound enable (any output to port 90 hex), data bit D0, Vcc, and ground.

3.1.13 Sound Option

The Model 4 sound option, available as standard equipment on the disk drive versions, is a software intensive device. Data is sent out to port 90H, alternately setting and clearing data bit D0. The state of this bit is latched by sound board U1 and amplified by sound board Q1, which drives a piezoelectric sound transducer. The speed of the software loop determines the frequency, and thus, the pitch of the resulting tone.

COMPONENT LOCATION/CIRCUIT TRACE, SOUND BOARD #8858121

SCHEMATIC 8000188, SOUND BOARD #8858121

3.2 MODEL 4 I/O BUS

The Model 4 Bus is designed to allow easy and convenient interfacing of I/O devices to the Model 4. The I/O Bus supports all the signals necessary to implement a device compatible with the Z-80s I/O structure. That is:

Addresses:

AØ to A7 allow selection of up to 256[†] input and 256 output devices if external I/O is enabled.

[†]Ports 8ØH to ØFFH are reserved for System use.

Data:

DBØ to DB7 allow transfer of 8-bit data onto the processor data bus if external I/O is enabled.

Control Lines:

- a. $IN^* Z.80$ signal specifying that an input is in progress. Gated with IORQ.
- b. OUT* Z-80 signal specifying that an output is in progress. Gated with IORQ.
- c. RESET* system reset signal.
- d. IOBUSINT* input to the CPU signaling an interrupt from an I/O Bus device if I/O Bus interrupts are enabled.
- e. IOBUSWAIT* input to the CPU wait line allowing I/O Bus device to force wait states on the Z-80 if external I/O is enabled.
- f. EXTIOSEL* input to CPU which switches the I/O Bus data bus transceiver and allows an INPUT instruction to read I/O Bus data.
- g. $M1^*$ and $IORQ^*$ standard Z-80 signals

The address line, data line, and control lines a to c and e to g are enabled only when the ENEXIO bit in EC is set to a one.

To enable I/O interrupts, the ENIOBUSINT bit in the CPU IOPORT EØ (output port) must be a one. However, even if it is disabled from generating interrupts, the status of the IOBUSINT* line can still read on the appropriate bit of CPU IOPORT EØ (input port).

See Model 4 Port Bit assignment for port \emptyset FF, \emptyset EC, and \emptyset EØ on pages 28 and 29.

The Model 4 CPU board is fully protected from "foreign I/O devices" in that all the I/O Bus signals are buffered and can be disabled under software control. To attach and use an I/O device on the I/O Bus, certain requirements (both hardware and software) must be met.

For input port device use, you must enable external I/O devices by writing to port ØECH with bit 4 on in the user software. This will enable the data bus address lines and control signals to the I/O Bus edge connector. When the input device is selected, the hardware will acknowlege by asserting EXTIOSEL* low. This switches the data bus transceiver and allows the CPU to read the contents of the I/O Bus data lines. See Figure 3.6 for the timing. EXTIOSEL* can be generated by NANDing IN and the I/O port address.

Output port device use is the same as the input port device in use, in that the external I/O devices must be enabled by writing to port ØECH with bit 4 on in the user software — in the same fashion.

For either input or output devices, the IOBUSWAIT* control line can be used in the normal way for synchronizing slow devices to the CPU. Note that since dynamic memories are used in the Model 4, the wait line should be used with caution. Holding the CPU in a wait state for 2 msec or more may cause loss of memory contents since refresh is inhibited during this time. It is recommended that the IOBUSWAIT* line be held active no more than 500 µsec with a 25% duty cycle.

The Model 4 will support Z-80 mode 1 interrupts. A RAM jump table is supported by the LEVEL II BASIC ROMs and the user must supply the address of his interrupt service routine by writing this address to locations 403E and 403F. When an interrupt occurs, the program will be vectored to the user supplied address if I/O Bus interrupts have been enabled. To enable I/O Bus interrupts, the user must set bit 3 of Port 0E0H.

Input or Output Cycles.

Inserted by Z80 CPU

Input or Output Cycles with Wait States.

"Inserted by Z80 CPU

†Coincident with IORQ* only on INPUT cycle

FIGURE 3-6. I/O BUS TIMING DIAGRAM

3.3 MODEL 4 PORT BITS

Name: WRNMIMASKREG*

Port Address: ØE4H

Access: WRITE ONLY

Bit 7 = ENINTRQ; Ø disables Disk INTRQ from generating

an NMI.

1 enables above.

Bit 6 = ENDRQ; ∅ disables Disk DRQ from generating an

NMI.

1 enables above.

Name: RDNMISTATUS*

Port Address: ØE4H

Access: READ ONLY

Bit 7 = Status of Disk INTRQ; 1 = False, Ø = True

Bit 6 = Status of Disk DRQ; 1 = False, Ø = True

Bit 5 = Reset* Status; 1 = False, Ø = True

Name: MOD OUT
Port Address: ØECH

Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = Undefined

Bit 5 = DISWAIT; Ø disables video waits, 1 enables

Bit 4 = ENEXTIO; ∅ disables external IO Bus, 1 enables

Bit 3 = ENALTSET; \emptyset disables alternate character set,

1 enables alternate video character set.

Bit 2 = MODSEL; Ø enables 64 character mode,

1 enables 32 character mode.

Bit 1 = CASMOTORON; Ø turns cassette motor off,

1 turns cassette motor on.

Bit Ø = Undefined

Name: RDINTSTATUS*

Port Address: ØEØH

Access: READ ONLY

NOTE: A Ø indicates the device is interrupting.

Bit 7 = Undefined

Bit 6 = RS-232 ERROR INT

Bit 5 = RS-232 RCV INT

Bit 4 = RS-232 XMIT INT

Bit 3 = IOBUS INT

Bit 2 = RTC INT

Bit 1 = CASSETTE (1500 Baud) INT F

Bit Ø = CASSETTE (1500 Baud) INT R

Name: CASOUT*
Port Address: ØFFH

Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = Undefined

Bit 5 = Undefined

Bit 4 = Undefined

Bit 3 = Undfined

Bit 2 = Undefined

Bit 1 = Cassette output level

Bit Ø = Cassette output level

Name: WRINTMASKREG*

Port Address: ØEØH

Access: WRITEONLY

Bit 7 = Undefined

Bit 6 = ENERRORINT; 1 enables RS-232 interrupts on parity error, framing error, or data overrun error.

Ø disable above.

Bit 5 = ENRCVINT; 1 enables RS-232 receive data register full interrupts, Ø disables above.

Bit 4 = ENXMITINT; 1 enables RS-232 transmitter holding register empty interrupts, Ø disables above.

Bit 3 = ENIOBUSINT; 1 enables I/O Bus interrupts, Ø disables the above.

Bit 2 = ENRTC; 1 enables real time clock interrupt, Ø disables above.

Bit 1 = ENCASINTF; 1 enables 1500 Baud falling edge interrupt,

Ø disables above.

Bit Ø = ENCASINTR; 1 enables 1500 Baud rising edge interrupt, Ø disables above.

Name: CAS IN*
Port Address: ØFFH

Access: READ ONLY

Bit 7 = 500 Baud Cassette bit

Bit 6 = Undefined

Bit 5 = DISWAIT (See Port ØECH definition)

Bit 4 = ENEXTIO (See Port ØECH definition)

Bit 3 = ENALTSET (See Port ØECH definition)

Bit 2 = MODSEL (See Port ØECH definition)

Bit 1 = CASMOTORON (See Port ØECH definition)

Bit Ø = 1500 Baud Cassette bit

NOTE: Reading Port ØFFH clears the 1500 Baud Cassette interrupts.

Name: DRVSEL*
Port Address: ØF4H

Access: WRITE ONLY

Bit 7 = FM*/MFM; Ø selects single density, 1 selects double density.

Bit 6 = WSGEN; Ø = no wait states generated, 1 = wait states generated.

Bit 5 = PRECOMP; Ø = no write precompensation, 1 = write precompensation enabled.

Bit 4 = SDSEL; Ø selects side Ø of diskette, 1 selects side 1 of diskette.

Bit 3 = Drive select 4

Bit 2 = Drive select 3

Bit 1 = Drive select 2

Bit Ø = Drive select 1

Parts List, CPU PCB #6700104AA3 Model 4 16K, Cassette Input Catalog number 26-1067

===== Item	Qty	Description M	fgr's Part No.
1	4	Cap, 100 pfd 50V C. Disk (Cl,99,101, 103)	
2	3	Cap, 10 ufd 35V Elec. Rad (C2-4)	8326103
3	74	Cap, 0.1 ufd 50V Mono Axial	8374104
		(C5,11-18,23,26-29,31,33-37,39-41, 43,47-55,57-97)	
4	1	Cap, 56 pfd 50V C. Disk NPO (C6)	8300563
5	2	Cap, 47 pfd 50V C. Disk NPO (C7,9)	8300472
6	2	Cap, 56 pfd 50V C. Disk (C8,24)	8300564
7	1	Cap. 100 pfd 50V C. Disk (C10)	8301103
8	1	Cap01 ufd 50V C. Disk (C19)	8303104
9	1	Cap, 22 ufd 16V Elec. Rad(C20)	8326221
10	4	Cap, .022 ufd 50V C. Disk (C21,32,	8303224
		44,108)	
11	1	Cap. 33 pfd 50V C. Disk (C22)	8300334
12	ī	Cap, .0047 ufd 50V C. Disk (C30)	8302474
13	1	Cap, .0022 ufd 50V C. Disk (C42)	8302224
14	2	Cap, .001 ufd 50V Mono Axial (C45,46)	8372104
15	1		8301204
16	ī	Cap. 10 ufd 10V Tant. (C98)	8336101
17	5	Cap, 150 pfd 50V C. Disk (C100,102 104,107,109)	8301154
18	1	Cap, 100 ufd 10V Tant. (C106)	8337101
19	2	Connector, 4-Pin Right Angle (J4,Jll)	8519079
20	1	Connector, 5-Pin Right Angle (J3)	8519091
21	1	Connector, 6-Pin Right Angle (J5)	8519103
22	1	Connector, Dual 10 Rt. Angle Header (J6)	8519107
23	2	Connector, 20-Pin Flat Flex Cable (J7,8)	8519101
24	1	Connector, 17-Pin Dual Header (J10)	8519169
25	8	Diode, 1N4148 Zener 75V (CR1-7,10)	8150148
26	1	Ferrite Bead (FB1)	8419014
27 28	1	Inductor, 47uH (L1) Inductor, .68uH (L2)	8419028 8419029
29	1	IC, 74LS175 Quad Flip-Flop (U2)	8020175
30	ī	IC, PAL16R6A (U3)	8075166
31	ī	IC, PAL16L8 (U4)	8075268
32	ī	IC, 74LS161 Binary Counter (U5)	8020161

Parts List, CPU PCB #6700104AA3 Model 4 16K, Cassette Input Catalog number 26-1067

Item	Qty	Des	======================================	Mfgr's Part No.
33		IC,	74LS244 Quad Tranceiver (U6,10,	8020244
34	1	IC,	41,55,56,64,67,74) 74LS373 Octal Latch (U7) 74LS273 Octal Flip-Flop (U8,37) 74LS153 Dual Multiplexer (U9) 74LS166 Shift Register (U11) 74LS51 AND OR Invert (U12,20) 74LS00 Quad 2-IN NAND (U13,14) LM339 Comparator (U15) 74LS32 Quad 2-IN OR (U16,22,51) 74LS14 Hex Inverter (U17) 74LS174 Flip-Flop (U18,36,42) 74S04 (U19)	8020373
35	2	IC,	74LS273 Octal Flip-Flop (U8,37)	8020273
36	1	IC,	74LS153 Dual Multiplexer (U9)	8020153
37	1	IC,	74LS166 Shift Register (Ull)	8020166
38	2	IC,	74LS51 AND OR Invert (U12,20)	8020051
39	2	IC,	74LS00 Quad 2-IN NAND (Ul3,14)	8020000
40	1	IC,	LM339 Comparator (Ul5)	8050339
41	3	IC,	74LS32 Quad 2-IN OR (U16,22,51)	8020032
42	1	IC,	74LS14 Hex Inverter (U17)	8020014
43	3	IC,	74LS174 Flip-Flop (U18,36,42)	8020174
44	1			
45	1	IC,	4016 200NS RAM 2K X 8 Static (U21)	8040116
46	1	IC,	MCM68A316E Character Generator (U23) 8044316
47	1	IC,	74LS86 Quad 2-IN OR (U24)	8020086
48	1	IC,	74LS04 Hex Inverter (U25)	8020004
49	3	IC,	74LS08 Quad 2-IN AND (U26,46,52)	8020008
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	5	IC,	74LS86 Quad 2-IN OR (U24) 74LS04 Hex Inverter (U25) 74LS08 Quad 2-IN AND (U26,46,52) 74LS74 Dual Flip-Flop (U27,31,39 40,53)	8020074
51	1	IC,	MOTATO OD AMB (MOO)	8050458
52	2	IC,	7406 Hex Inverter (U29,30) 74LS10 Triple 3-IN NAND (U32) 74LS157 Quad Multiplexer (U33-35)	8000006
52 53 54 55 56	1	IC,	74LS10 Triple 3-IN NAND (U32)	8020010
54	3	IC,	74LS157 Quad Multiplexer (U33-35)	8020157
55	2	LU,	/4L536/ MeMOLY (U36,/3)	8020367
56	1	IC,	MC1741 OP-AMP (U43)	8050741
57	2	IC,	MC14502 B CMOS Driver (U44,45)	8030502
58	1	IC,	MC14502 B CMOS Driver (U44,45) SY68045 CTC 60HZ (U47)	8040045
59	3	IC,	SY68045 CTC 60HZ (U47) 74LS138 Decoder (U48-50)	8040045 8020138
60	2	IC,	74LS240 Octal Buffer (U54,60)	8020240
61	1	IC,	Z80A CPU (U57)	8047880
62	1	IC,	PAL10L8 (U58)	8075208
63	1	IC,	PAL16L8 (U59)	8075368
64	1	IC,	7405 O.C. Buffer (U61)	8000005
65	1	IC,	74LS02 Quad 2-IN NOR (U62)	8020002
66	2	IC,	74157 Quad Multiplexer (U63,76)	8000157
67	1	IC,	MC1741 OP-AMP (U43) MC14502 B CMOS Driver (U44,45) SY68045 CTC 60HZ (U47) 74LS138 Decoder (U48-50) 74LS240 Octal Buffer (U54,60) Z80A CPU (U57) PAL10L8 (U58) PAL16L8 (U59) 7405 O.C. Buffer (U61) 74LS02 Quad 2-IN NOR (U62) 74157 Quad Multiplexer (U63,76) 74LS123 Dual Multivibrator (U65) 74LS374 Octal Flip-Flop (U66) MCM68A364 ROM A (U68)	8020123
68	1	IC,	74LS374 Octal Flip-Flop (U66)	8020374
69	1	IC,	MCM68A364 ROM A (U68)	8041364
70	1	IC,	MCM68A332 ROM B (U69)	8040332
71	1		MCM68A316 ROM C (U70)	8048316
72	2	IC,	74LS245 Octal Tranceiver (U71,73)	8020245

Parts List, CPU PCB #6700104AA3 Model 4 16K, Cassette Input Catalog number 26-1067

	=====		
		Description	Mfgr's Part No.
73	1	IC, DIP Shunt 4-POS. (U72) IC, MCM4116 16K RAM 200NS (U77-84) IC. 74LS30 Positive NAND (U93)	8489057
74	8	TC. MCM4116 16K RAM 200NS (U77-84)	8042016
75	i	IC, 74LS30 Positive NAND (U93)	8020030
, ,	_		
76	1	- ·	8429105
77	2	Res, 510 ohm, 5% 1/4W (R1,59) Res, 12K ohm, 5% 1/4W (R2) Res, 6.2K ohm, 1/4W (R3) Res, 470 ohm, 5% 1/4W (R4,23) Res, 10K ohm, 5% 1/4W (R5,9,14,16) Res, 3.6K ohm, 5% 1/4W (R6) Res, 91 ohm, 5% (R7)	8207151
	1	Res, 12K ohm, 5% 1/4W (R2)	8207312
79	1	Res, 6.2K ohm, 1/4W (R3)	8207262
80	2	Res. 470 ohm, 5% 1/4W (R4,23)	8207147
81	4	Res. 10K ohm, 5% 1/4W (R5,9,14,16)	8207310
82	i	Res, 3.6K ohm, 5% 1/4W (R6)	8207236
83	ī	Res. 91 ohm, 5% (R7)	8207091
84	13	Res, 4./K onm, 5% 1/4w (R8,20,30,	0207247
		43-49,52,54,60) Res, 620K ohm, 5% 1/4W (R10) Res, 1.5M ohm, 5% 1/4W (R11)	0007460
85		Res, 620K ohm, 5% 1/4W (R10)	820/462
86	1	Res, 1.5M ohm, $5\% 1/4W$ (R11)	820/515
87	2	Res, $56K$ ohm, $5%$ $1/4W$ (R12,17)	8207356
88	2	Res, $15K$ ohm, $5%$ $1/4W$ (R13)	8207315
89	1	Res, 51K ohm, 5% $1/4W$ (R15)	8207351
90	1	Res, 1.5M ohm, 5% 1/4W (R11) Res, 56K ohm, 5% 1/4W (R12,17) Res, 15K ohm, 5% 1/4W (R13) Res, 51K ohm, 5% 1/4W (R15) Res, 6.8K ohm, 5% 1/4W (R18) Res, 8.2K ohm, 5% 1/4W (R19) Res, 220 ohm, 5% 1/4W (R20,27,37) Res, 680 ohm, 5% 1/4W (R21)	8207268
91	1	Res, 8.2K ohm, 5% $1/4W$ (R19)	8207282
92	3	Res, 220 ohm, 5% $1/4$ W (R20,27,37)	8207122
93	1	Res, 680 ohm, 5% $1/4W$ (R21)	8207168
94			
0.5	1	40,42) Res, 750 ohm, 5% 1/4W (R24) Res, 1.2K ohm, 5% 1/4W (R25,34) Res, 22 ohm, 5% 1/4W (R26) Res, 220K ohm, 5% 1/4W (R29) Res, 7.5K ohm, 5% 1/4W (R35) Res, 82K ohm, 5% 1/4W (R38) Res, 39K ohm, 5% 1/4W (R39) Res, 75K ohm, 5% 1/4W (R41) Res, 20K ohm, 5% 1/4W (R50)	8207175
		Res, 750 onm, 58 $1/4W$ (R247	8207212
96		Res, 1.2k Offin, 56 1/4W (R25)547	8207022
97		Res, 22 Onn, 56 1/4W (R20)	8207422
98		Res, 220K Offin, 36 1/4W (R23)	8207275
99		Res, 7.5k Omm, 56 1/4W (R35)	8207382
	1.	Res, 62K Ollil, 56 1/4W (R56)	8207332
	1	Res, 39K Onm, 36 1/4W (R39)	9207335
102	1	Res, /5K onm, 5% 1/4W (K41)	8207373
103	1		
104	4	Res, 150 ohm, 5% 1/4W (R51,53,55,56)	8207150
105	1	Res, 1K ohm, 5% 1/4W (R57)	8207210
106	1	Res, 56 ohm, 5% 1/4W (R58)	8207056
107	1	Res Pak, 820 ohm, SIP 10-PIN (RP1)	8290182
108	1	Res Pak, 4.7K ohm, SIP 8-PIN (RP2)	8292246
109	1	Res Pak, 27 ohm, DIP 16-PIN (RP4)	8290027
		•	

Parts List, CPU PCB #6700104AA3 Model 4 16K, Cassette Input Catalog number 26-1067

Item Q	ty Description	Mfgr's Part No.			
110 1 111 2 112 1		8110918 8100906 8110222			
MISCELLANEOUS					
113 1 114 1 115 3 116 1 117 1 118 7 119 5 120 2 121 1 122 1	Crystal, 12.672 MHz (Y2) Jumper Wire 20 Gauge (W1-3) PCB Logic Board, Rev. PP3 Regulator, 79LO5, -5V (Q5) Socket, 20-Pin DIP (U3,4,58,59,71-73) Socket, 24-Pin DIP (U21,23,68-70) Socket, 40-Pin DIP (U47,57) Socket, 16-Pin DIP (U77-84,85-92)	8409031 8409030 *NOTE 8709296 8051905 8509009 8509001 8509002 8509003 8529014			

Note: W1,W3 are 4-1/2" long, W2 is 6" long

Parts List, CPU PCB 8858090 Model 4 64K, Single or Double Drive Catalog Number 26-1068 or 26-1069

		Description M	Ifgr's Part No.
=====	=	Description M	essessessessessessessessessesses
1	4	Cap, 100 PFD 50V C. Disk (C1,99,101, 103)	8301104
2	3	Cap, 10 MFD 35V ELEC. RAD (C2-4) Cap, 0.1MFD 50V MONO AXIAL	8326103
3	58		8374104
		(C5,11-18,23,26-29,31,33-37,39-41, 43,47-55,57-65,67,69,71,73,75,77,79 81,83,85,87,89,91,93,95,97)	
4	1	Cap, 56 PFD 50V C. DISK NPO (C6)	8300563
5	2	Cap, 47 PFD 50V C. DISK NPO (C7,9)	8300472
6	2	Cap, 56 PFD 50V C. DISK (C8,24)	8300564
7	1	Cap, 100 PFD 50V C. DISK (C10)	8301103
8	1	Cap, .01 MFD 50V C. DISK (C19)	8303104
9	1	Cap, 22 MFD 16V ELEC. RAD(C20)	8326221
10	4	Cap, 56 PFD 50V C. DISK NPO (C6) Cap, 47 PFD 50V C. DISK NPO (C7,9) Cap, 56 PFD 50V C. DISK (C8,24) Cap, 100 PFD 50V C. DISK (C10) Cap, .01 MFD 50V C. DISK (C19) Cap, 22 MFD 16V ELEC. RAD(C20) Cap, .022 MFD 50V C. DISK (C21,32,44,108)	
11	1	Cap, 33 PFD 50V C. DISK (C22) Cap, .0047 MFD 50V C. DISK (C30)	8300334
12	1	Cap, .0047 MFD 50V C. DISK (C30)	8302474
13	1	Cap, .0022 MFD 50V C. DISK (C42) Cap, .001 MFD 50V MONO AXIAL (C45,46)	8302224
14	2	Cap, .001 MFD 50V MONO AXIAL (C45,46)	8372104
15	1		
16	1	Cap, 10 MFD 10V TANT. (C98)	8336101
17	5	Cap, 150 PFD 50V C. DISK (C100,102 104,107,109)	8301154
18	1	Cap, 100 MFD 10V TANT. (C106)	8337101
19	2	Connector, 4-Pin Right Angle (J4,Jll)	8519079
20	1	Connector, 5-Pin Right Angle (J3)	
21	1	Connector, 6-Pin Right Angle (J5)	8519103
22	1	Connector, Dual 10 Rt. Angl. Header (J6)	8519107
23	2	Connector, 20-Pin Flat Flex Cable (J7,8)	
24	ī	Connector, 17-Pin Dual Header (J10)	
25	8	Diode, 1N4148 Zener 75V (CR1-7,10)	8150148
26	1	Ferrite Bead (FBl)	8419014
27	1	Inductor, 47uH (L1)	8419028
28	1	Inductor, .68uH (L2)	8419029
29	1	IC, 74LS175 Quad Flip-Flop (U2)	8020175
30	ī	IC, PAL16R6A (U3)	8075166
31	ī	IC, PAL16L8 (U4)	8075268
J-	-	10, 111110110 (04)	0070200

Parts List, CPU PCB 8858090 Model 4 64K, Single or Double Drive Catalog number 26-1068 or 26-1069

Item		Des		Mfgr's Part No.
32				
33		IC,	74LS161 Binary Counter (U5) 74LS244 Quad Tranceiver (U6,10,	8020244
			41,55,56,64,67,74)	
34	1	IC,	74LS373 Octal Latch (U7) 74LS273 Octal Flip-Flop (U8,37)	8020373
35	2	IC,	74LS273 Octal Flip-Flop (U8,37)	8020273
36	1	IC,	74LS153 Dual Multiplexer (U9)	8020153
37	1 1 2 2 1 3 1 3 1	IC,	74LS166 Shift Register (Ull)	8020166
38	2	TC	74T.SS1 AND OR Thyort (III) 20)	8020051
39	2	IC,	74LS00 Quad 2-In NAND (U13,14) LM339 Comparator (U15) 74LS32 Quad 2-In OR (U16,22,51) 74LS14 Hex Inverter (U17) 74LS174 Flip-Flop (U18,36,42)	8020000
40	1	ĪĊ,	LM339 Comparator (U15)	8050339
41	3	IC.	74LS32 Ouad 2-In OR (U16,22,51)	8020032
42	ī	IC.	74LS14 Hex Inverter (U17)	8020014
43	3	IC.	74LS174 Flip-Flop (U18,36,42)	8020174
44	1	IC.	74SO4 (U19)	8010004
45	1		4016 200NS RAM 2K X 8 Static (U21)	
46	1		MCM68A316E Character Generator (U23	
47	ī			
48	1	IC.	74LS86 Quad 2-In OR (U24) 74LS Hex Inverter (U25) 74LS08 Quad 2-In AND (U26,46,52)	8020004
49	3	IC.	74LS08 Ouad 2-In AND (U26,46,52)	8020008
50		IC.	74LS74 Dual Flip-Flop (U27,31,39	8020074
-	_	,	40,53)	
51	1	IC.	MC1458 OP-AMP (U28)	8050458
52	2	TC	7406 Hex Inverter (U29,30)	8000006
53	ī	IC.	7406 Hex Inverter (U29,30) 74LS10 Triple 3-In NAND (U32) 74LS157 Quad Multiplexer (U33-35)	8020010
54	3	IC.	74LS157 Quad Multiplexer (U33-35)	8020157
55	2	IC.	74LS367 Memory (U38,75)	8020367
56	ī	IC.	$MC1741 \Omega D - \lambda MD (1142)$	80507 <i>4</i> 1
57	2	TC.	MC14502 B CMOS Driver (U44.45)	8030502
58	ī	IC.	MC141 OF AMF (043) MC14502 B CMOS Driver (U44,45) SY68045 CTC 50Hz Version (U47)	8041045
59	1 3 2 1 2 1 3 2	IC.	74LS138 Decoder (U48-50)	8020138
60	2	IC.	74LS138 Decoder (U48-50) 74LS240 Octal Buffer (U54,60)	8020240
61	ī	TC.	Z80A CPU (U57)	8047880
62	ī	TC.	PAL10L8 (U58)	8075208
63	ī		PAL16L8 (U59)	8075368
64	ĩ		7405 O.C. Buffer (U61)	8000005
65	ī		74LS02 Quad 2-In NOR (U62)	8020002
66	2		74157 Quad Multiplexer (U63,76)	8000157
67	ī		74LS123 Dual Multivibrator (U65)	8020123
68	ī		74LS374 Octal Flip-Flop (U66)	8020374
69	ī		MCM68A364 ROM A (U68)	8048364
70	ī		MCM68A332 ROM B (U69)	8040332
71	i		MCM68A316 ROM C (U70)	8042316
	-		10110 11011 0 (0/0/	J

Parts List CPU PCB 8858090 Model 4 64K, Single or Double Drive Catalog number 26-1068 and 26-1069

Item	_	Description	Mfgr's Part No.
72	2	IC, 74LS245 Octal Tranceiver (U71,73)	8020245
73		IC, DIP Shunt 4-Pos. (U72)	8489057
74	8	IC, DIP Shunt 4-Pos. (U72) IC, MCM6665 64K RAM 200NS (U85-92)	8040665
75	1	IC, 74LS30 Positive NAND (U93)	8020030
76	1	Relay, 12V 2 Amp (Kl)	8429105
77	2		8207151
78	1		8207312
79	1		8207262
80	2	Res, 470 ohm, $5% 1/4W (R4,23)$	8207147
81	4	Res, $10K$ ohm, $5%$ $1/4W$ ($R5,9,14,16$)	8207310
82	1	Res, 10K ohm, 5% $1/4W$ (R5,9,14,16) Res, 3.6K ohm, 5% $1/4W$ (R6)	8207236
83	1	Res, 91 ohm, 5% (R7)	8207091
84	13	Res, 4.7K ohm, 5% 1/4W (R8,28,36, 43-49,52,54,60)	8207247
85	1		8207462
86	ī	Res, 1.5Meg ohm, 5% 1/4W (R11)	
87	2	Res, 56K ohm, 5% 1/4W (R12,17)	
88	2		8207315
89	1		8207351
90	1		8207268
91	1		8207282
92	3	Res, 220 ohm, 5% 1/4W (R20,27,37)	8207122
93	1		8207168
94	7	Res, 100K ohm, 5% 1/4W (R22,30-33, 40,42)	8207410
95	1	Res, 750 ohm, 5% 1/4W (R24)	8207175
96	2		8207212
97	ī	Res, 22 ohm, 5% 1/4W (R26)	8207022
98	ī		8207422
99	ī		8207275
100	1		8207382
101	1	Res, 39K ohm, 5% 1/4W (R39)	8207339
102	1	Res, 75K ohm, 5% 1/4W (R41)	8207375
103	ī	Res, 20K ohm, 5% 1/4W (R50)	8207320
104	4	Res, 150 ohm, 5% 1/4W (R51,53,55,56)	8207150
105	i	Res, 1K ohm, 5% 1/4W (R57)	8207210
106	ī	Res, 56 ohm, 5% 1/4W (R58)	8207056
107	1	Res Pak, 820 ohm, SIP 10-Pin (RP1)	8290182
108	1	Res Pak, 4.7K ohm, SIP 8-Pin (RP2)	8292246
109	1	Res Pak, 27 ohm, DIP 16-Pin (RP4)	8290027

Parts List CPU PCB 8858090 Model 4 64K, Single or Double Drive Catalog number 26-1068 and 26-1069

===== Item	Qty	Description	Mfgr's Part No.
=====	=====		
110	1	Transistor, 2N918 (Q1)	8110918
		Transistor, 2N3906 PNP (Q2,3)	8100906
		Transistor, 2N2222 (Q4)	8110222
		MISCELLANEOUS	
113	1	Crystal, 20.2752 MHz (Y1)	8409031
	1	Crystal, 12.672 MHz (Y2)	8409030
115	3	Jumper Wire, 20 Gauge (Wl-3)	*NOTE
116	ĺ	PCB, Logic Board Rev. PP3	8709296
	7	Socket, 20-Pin DIP (U3,4,58,59,71-73)	8509009
118	5	Socket, 24-Pin DIP (U21,23,68-70)	8509001
119	2	Socket, 40-Pin DIP (U47,57)	8509002
	16	Socket, 16-Pin DIP (U77-84,85,-92)	8509003
121	10	Staking Pin (E1-8,11-15)	8529014

SECTION IV FLOPPY DISK INTERFACE

FLOPPY DISK INTERFACE

4.1 MODEL 4 FDC PCB #8858060

The TRS-80 Model 4 Floppy Disk interface Board is an optional board which if incorporated provides a standard five inch floppy disk controller. The Floppy Disk Interface Board supports both single and double density encoding schemes. This feature, along with a special software package, allows the transfer of Model I disk files to the Model 4 system. Write precompensation can be software enabled or disabled beginning at any track, although the system software enables write precompensation for all tracks greater than twenty-one. The amount of write precompensation is continuously variable from Ønsec to more than 500 nsec. The write precompensation is factory adjusted to 200 nsec. The data clock recovery logic incorporates a phaselocked loop oscillator which achieves state-of-the-art reliability. One to four drives may be controlled by the interface (two internal drives and two external). All data transfers are accomplished by CPU data requests. In double density operation, data transfers are synchronized to the CPU by forcing a wait to the CPU and clearing the wait by a data request from the FDC chip. The end of the data transfer is indicated by generating a non-maskable interrupt from the interrupt request output of the FDC chip. A hardware watchdog timer insures that error conditions will not hang the wait line to the CPU for a period long enough to destroy RAM contents.

4.1.1 Control and Data Buffering

Refer to the Schematic Diagram 8000095.

The Floppy Disk Controller Board is an I/O port mapped device which utilizes ports E4H, F0H, F1H, F2H, F3H, and F4H. The decoding logic is implemented on the CPU board. (See the Decoding Logic section of the CPU discussion.) U4 of the Floppy Disk Controller Board is a non-inverting octal buffer which isolates and buffers the required control signals. Table 4-1 and Table 4-2 summarize the port and bit allocation for the Floppy Controller Board. U2 of the Floppy Disk Controller Board is a bi-directional, 8-bit transceiver used to buffer data to and from the Floppy Controller Board. The direction of data transfer is controlled by the combination of control signals DISKIN* and RDNMIMASKREG*. If either signal is active (logic low), U2 is enabled to drive data onto the CPU board data bus. If both signals are inactive (logic high), U2 is enabled to receive data from the CPU data bus.

4.1.2 Nonmaskable Interrupt Logic

A dual "D" flip-flop (U5) is used to latch data bits D6 and D7 on the rising edge of the control signal WRNMIMAS-REG*. The outputs of U5 control the conditions which will generate a non-maskable interrupt to the CPU. The NMI interrupt conditions are programmed by doing an OUT instruction to port E4H with the appropriate bits set. If data

bit 7 is set, an NMI will be generated by an FDC interrupt request. If data bit 7 is reset, interrupt requests from the FDC are disabled. If data bit 6 is set, an NMI will be generated by Motor Time Out. If data bit 6 is reset, interrupts on Motor Time Out are disabled. An IN instruction from port E4H enables the CPU to question the Floppy Disk Controller Board to determine the source of the non-maskable interrupt. Data bit 7 indicates the status of FDC interrupt request (0 = true, 1 = false). Data bit 6 indicates the status of Motor Time Out (0 = true, 1 = false). Data bit 5 indicates the status of the front panel reset (0 = true, 1 = false). The control signal RDNMIMASKREG* when active (logic 0), gates this status onto the CPU data bus.

4.1.3 Drive Select Latch and Motor On Logic

Selecting a drive prior to a disk I/O operation is accomplished by doing an OUT instruction to port F4H with the proper bit set. The following table describes the bit allocation of the Drive Select Latch.

DATA BIT	FUNCTION'
D0	Selects Drive 0 when set *
D1	Selects Drive 1 when set *
D2	Selects Drive 2 when set *
D3	Selects Drive 3 when set *
D4	Side 0 selected when reset,
	Side 1 selected if set
D5	Write Precom. engaged when set,
	disabled if reset
D6	Generate waits if set,
	no waits if reset
D7	Selects MFM mode if set,
•	FM mode if reset

^{*}Only one of these bits should be set per output.

Table 4.1. Port F4H Bit Allocation

A hex "D" flip-flop (U6) latches the drive select bits, side select and FM*/MFM bits on the rising edge of the control signal IDRVSEL*. A dual "D" flip-flop (U18) is used to latch the Wait Enable and Precompensation enable bits on the rising edge of IDRVSEL*. The rising edge of IDRVSEL* also triggers a one-shot (1/2 of U15) which produces a Motor On to the disk drives. The duration of the Motor On signal is approximately two seconds. The spindle motors are not designed for continuous operation, therefore the inactive state of the Motor On signal is used to clear the Drive Select Latch, which de-selects any drives which were previously selected. The Motor On one-shot is retriggerable by simply executing an OUT instruction to the Drive Select Latch.

4.1.4 Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be initiated by an output to the Drive Select Latch with D6 set. Pin 5 of U18 will go high after this operation. This signal is inverted by 1/6 of U1 and is routed to the CPU board where it forces the Z-80 into a wait state. The Z-80 will remain in the wait state as long as WAIT* is low. Once initiated, the wait state will remain until one of four conditions are satisfied. One half of U10 (a five input NOR gate) is used to perform this function. INTRQ, DRQ, RESET, and WAITIMOUT are the inputs to the NOR gate. If any one of these inputs are active (logic high), the output of the NOR gate (U10 pin 6) will go low. This output is tied to the clear input of the wait latch. This signal, when low, will clear the Q output (U18 pin 5) and set the Q* output (U18 pin 6). This condition causes WAIT* to go high and allows the Z-80 to exit the wait state. U20 is a 12-bit binary counter which serves as a watchdog timer to insure that a wait condition will not persist long enough to destroy dynamic RAM contents. The counter is clocked by a 1MHz signal and is enabled to count when its reset pin is low (U20 pin 11). A logic high on U20 pin 11 resets the counter ouputs. U20 pin 15 is the divide by 1024 output and is used to generate the signal WAITIMOUT. This watchdog timer logic will limit the duration of a wait to 1024µsec, even if the FDC chip fails to generate a data request or an interrupt request.

4.1.5 Clock Generation Logic

A 4MHz crystal oscillator and a divide by 2 and divide by 4 counter generate the clock signals required by the FDC board. The basic 4MHz oscillator is implemented with two invertors (1/3 of U25) and a quartz crystal (Y1). One half of U24 is used to divide the basic 4MHz clock by 2 to produce a 2MHz output at U24 pin 6. This output is again divided by 2 using the remaining half of U24 to produce a 1MHz output at U24 pin 8. The 1MHz clock is used to drive the clock input of the 1793 FDC chip and the clock input of the watchdog time (U20).

4.1.6 Disk Bus Selector Logic

As mentioned previously, the Model 4 Floppy Disk Board supports up to four drives (two internal, two external). This function is implemented by using two disk drive interface buses, one for the internal drives and one for the external drives. J4 is the edge connector used for the internal drives and J1 is the edge connector for the external drives. U22 (a quad 2 to 1 data selector) is used to select which set of inputs from the disk drive buses are routed to the 1793 FDC chip. U22 pin 1 is the control pin for the data selector. If U22 pin 1 is low, the external inputs are selected, otherwise the internal inputs are selected. This control signal (labeled EXTSEL*) is derived from the outputs of the Drive Select Latch. If Drive 2 or Drive 3 is selected, U17 pin 1

will go low indicating that an external drive is selected. One half of U10 (a five input NOR gate) is used to detect when one of the four drives is selected. The output of this NOR gate (U10 pin 5) is inverted and is used as the head load timing and ready signal for the 1793 FDC chip. Therefore if any drive is selected, the head is assumed to be loaded and the selected drive is assumed to be ready.

4.1.7 Read/Write Data Pulse Shaping Logic

Two one-shots (1/2 of U15 and 1/2 of U23) are used to insure that the read and write data pulses are approximately 450nsec in duration.

4.1.8 Disk Bus Output Drivers

High current open collector drivers (U21, U9, and U1) are used to buffer the output signals from the Drive Select Latch and the FDC chip to the floppy disk drives. Note from the schematic that each output signal to the drives has two buffers associated with each signal, one set is used for the internal drive bus and the other set is used for the external bus. No select logic is required for these output signals since the drive select bits define which drive is active.

4.1.9 Write Precompensation and Clock Recovery Logic

The Write Precompensation and Read Clock Recovery logic is comprised of U11 (WD1691), U13 (WD2143) and U14 (LS629), along with a few passive components. The WD1691 is an LSI device which minimizes the external logic required to interface the 1793 FDC chip to a disk drive. With the use of an external VCO, U14, the WD1691 will derive the RCLK signal for the 1793, while providing an adjustment signal for the VCO, to keep the RCLK synchronous with the read data from the drive. Write precompensation control signals are also provided by the WD1691 to interface directly to the WD2143 (U13) clock generator. The Read Clock Recovery section of the WD1691 has five inputs: DDEN*, VCO, RDD*, WG, and VFOE*/WF. It also has three outputs: PU, PD*, and RCLK. The inputs VFOE*/WF and WG when both are low, enable the Clock Recovery logic. When WG is high, a write operation is in progress and the Clock Recovery circuits are disabled regardless of the state of any other inputs.

The Write Precompensation section of the WD1691 was designed to be used with the WD2143 clock generator. Write Precompensation is not used in single density mode and the signal DDEN* when high indicates this condition. In double density mode (DDEN* = 0), the signals EARLY and LATE are used to select a phase input (01 - 04) on the leading edge of WDIN. The STB line is latched high when this occurs, causing the WD2143 to start its pulse generation.

02 is used as the write data pulse on nominal (EARLY = 0 LATE = 0), 01 is used for the early, and 03 is used for the late. The leading edge of 04 resets the STB line in anticipation of the next write data pulse. When TG43 = 0 or DDEN* = 1, precompensation is disabled and any transitions on the WDIN line will appear on the WDOUT line.

When VFOE*/WF and WG are low, the Clock Recovery circuits are enabled. When the RDD* line goes low, the PU or PD* signals will become active. If the RDD* has made its transition in the beginning of the RCLK window, PU will go from a high impedence state to a logic one, requesting an increase in VCO frequency. If the RDD* line has made it transition at the end of the RCLK window, PU will remain in the high impedence state while PD* will go to a logic zero, requesting a decrease in the VCO frequency. When the leading edge of RDD* occurs in the center of the RCLK window, both PU and PD* will remain in the high impedence state, indicating that no adjustment of the VCO frequency is required. By tying PU and PD* together, an adjustment signal is created which will be forced low for a decrease in VCO frequency and forced high for an increase in VCO frequency. To speed up rise times and stabilize the output voltage, a resistor divider using R7, R10, and R9 is used to adjust the tri-state level at approximately 1.4V. This adjustment results in a worst case voltage swing of plus or minus 1V, which is acceptable for the frequency control input of the VCO (U14). This signal derived from the combination of PU and PD* will eventually correct the VCO input to exactly the same frequency multiple as the FDD* signal. The leading edge of the RDD* signal will then occur in the exact center of the RCLK window, an ideal condition for the 1793 internal recovery circuits.

4.1.10 Floppy Disk Controller Chip

The 1793 is an MOS LSI device which performs the functions of a floppy disk formatter/controller in a single chip implementation. The 1793 is functionally identical to the 1791 used on the Model II FDC Printer Interface Board, except that the data bus is true as opposed to inverted. Refer to the appendix section for more information on the FD1793. The Model II Technical Reference Manual also contains a good presentation of the 1791 FDC chip as well as a discussion on Write Precompensation. The following port addresses are assigned to the internal registers of the 1793 FDC chip.

PORT #	FUNCTION
F0H	Command/Status Register
F1H	Track Register
F2H	Sector Register
F3H	Data Register

Table 4.2 Port Allocation

4.1.11 Adjustments and Jumper Options

The Data Separator must be adjusted with the 1793 in an idle condition (no command currently in operation). Adjust R7 potentiometer for a 1.4V level on pin 2 of U14. Then adjust R6 potentiometer to yield a 2MHz square wave at pin 16 of U11.

The Write Precompensation must be adjusted while executing a continuous write command on a track greater than twenty-one. Adjust R5 potentiometer to yield 200nsec wide pulses at pin 4 of U11. This results in a write precompensation value of 200nsec.

There are four jumper options on the Floppy Disk Controller Board. They are designated on the PC Board silkscreen and are referenced on the Schematic Diagram. The jumpers should be installed as described below.

JUMPER CONNECTIONS

A to B E to G L to M H to J

FDC BOARD TO CPU BOARD SIGNAL DESCRIPTION

SCHEMATIC 8000095E, FLOPPY DISK CONTROLLER #8858060

COMPONENT LOCATION/CIRCUIT TRACE FLOPPY DISK INTERFACE PC BOARD — COMPONENT SIDE

CIRCUIT TRACE, FLOPPY DISK INTERFACE PC BOARD - SOLDER SIDE

PARTS LIST, FLOPPY DISK INTERFACE PC BOARD #8858060

	#000000	J	
SYMBOL	DESCRIPTION	MANUFACTURER'S PART NUMBER	RADIO SHACK PART NUMBER
	INTEGRATED CI	RCUITS (cont'd)	
U6	74LS174, Quad "D" Flip-Flop	802-0174	AMX3565
U7	WD1793	850-9002	AXX3041
U8	74LS38, NAND Buffer	802-0038	AMX4328
U9	7416, Hex Inverter/Buffer	800-0016	
U10	74LS260, Dual NOR gate	802-0260	Marine Soldest beauty survivor solvent marine objects deposit souther newsy
U11	WD1691	850-9009	AMX4471
U12	MC140733, AND gate	803-0073	
U13	WD2143-01	850-9006	AMX4472
U14	74LS629. VCO	802-0629	AMX4663
U15	74LS123, Mono Multivibrator	802-0123	AMX3803
	74LS367, Hex Buffer	802-0367	AMX3567
U16		802-0002	AMX3551
U17	74LS02, NAND gate 74LS74, Dual "D" Flip-Flop	802-0074	AMX3558
U18	, , ,		AMX3568
U19	74LS368, Hex Inverter/Buffer	802-0368	
U20	MC14040B, Binary Counter	803-0040	AMX4666
U21	7416, Hex Inverter/Buffer	800-0016	
U22	74LS157, Quad Multiplexer	802 0157	AMX3563
U23	74LS123, Mono Multiplexer	802-0123	AMX3803
U24	74LS74, Dual "D" Flip-Flop	802-0074	AMX3558
U25	74LS04, Hex Inverter	802-0004	AMX3552
	RESIST	ORS	
R1	2.2K, 1/4W, 5%	820-7222	AN0216EEC
R2	150 ohm, 1/4W, 5%	820-7115	AN0142EEC
R3	150 ohm, 6 pin resistor network	829-0012	ARX0241
R4	2.2K, 1/4W, 5%	820-7222	AN0216EEC
R5	1K, Trim Pot	827-9210	AP0835
R6	50K, Trim Pot	827-9350	AP7168
R7	100K, Trim Pot	827-9410	where your arrival billion some some same bear bear about
R8	10K, 1/4W, 5%	820-7310	AN0281EEC
R9	47K, 1/4W, 5%	820-7347	AN0340EEC
R10	47K, 1/4W, 5%	820-7347	AN0340EEC
	10K, 1/4W, 5%	820-7310	AN0281EEC
R11	10K, 1/4W, 5%	820-7310	AN0281EEC
R12	•	820-7047	AN0099EEC
R13	47 ohm, 1/4W, 5%	820-7427	ANOUSSEEC
R14	270K, 1/4W, 5%		A DV0242
R15	150 ohm, 10 pin resistor network	829-0013	ARX0242
R16	10K, 1/4W, 5%	820-7310	AN0281EEC
R17	910 ohm, 1/4W, 5%	820-7191	AN0192EEC
R18	910 ohm, 1/4W, 5%	820-7191	AN0192EEC
R19	2.2K, 1/4W, 5%	820-7222	AN0216EEC
R20	22K, 1/4W, 5%	820-7322	Color Street States States where these street states street
	MISCELLA	NEOUS	
	Socket, 18 pin	850-9006	AJ6701
	Socket, 20 pin	850-9009	AJ6760
	Socket, 40 pin	850-9002	AJ6580
	FDC Board, complete assembly		AXX0510
	FDC Board, without major chips		AXX0509
	,		

PARTS LIST, FLOPPY DISK INTERFACE PC BOARD #8858060

SYMBOL	DESCRIPTION	MANUFACTURER'S PART NUMBER	RADIO SHACK PART NUMBER
	CAPAC	ITORS	
C1	$0.1 \mu \text{F}$, 50V , monolithic , radial	838-4104	ACC104QJAP
C2	0.1μ F, 50 V, monolithic, radial	838-4104	ACC104QJAP
C3	$0.1 \mu F$, $50 V$, monolithic , radial	838 4104	ACC104QJAP
C4	$0.1 \mu F$, $50 V$, monolithic, radial	838-4104	ACC104QJAP
C5	$0.1\mu\text{F}$, 50V , monolithic , radial	838-4104	ACC104QJAP
C6	$0.1 \mu F$, $50 V$, monolithic , radial	838-4104	ACC104QJAP
C7	75pF, 50V, ceramic disc	830-0754	
C8	$33\mu\text{F}$, 16V , electrolytic, radial	839-6331	ACC336QDAP
C9	100pF, 50V, ceramic disc	830-1104	ACC101QJCP
C10	$0.1\mu\text{F}$, 50V , monolithic, radial	838-4104	ACC104QJAP
C11	$0.47 \mu F$, $16 V$, mylar	835-4471	
C12	$0.1\mu\text{F}$, 50V , monolithic, radial	838-4104	ACC104QJAP
C13	$0.1\mu F$, 50V, monolithic, radial	838-4104	ACC104QJAP
C14	100pF, 50V, ceramic disc	830-1104	ACC101QJCP
C15	0.1μ F, 50V, monolithic, radial	838-4104	ACC104QJAP
C16	470pF, 50V, ceramic disc	830-1474	ACC471QJCP
C17	10μ F, 16V, electrolytic, radial	832-6101	ACC106QDAP
C18	10μF, 16V, electrolytic, radial	832-6101	ACC106QDAP
C19	$0.01\mu F$, 16V, ceramic disc	830-3104	ACC103QJCP
C20	0.022μF, 50V, ceramic disc	830-3224	ACC223QJCP
			\
C23	0.022μF, 50V, ceramic disc	830-3224	ACC223QJCP
C24	180pF, ceramic disc	830-1184	AND THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRE
C25	180pF, ceramic disc	830-1184	THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED ADDRESS O
C26	180pF, ceramic disc	830-1184	
C27	0.022μF, ceramic disc	830-3224	ACC223QJCP
C28	180pF, ceramic disc	830-1184	
C29	0.022μF, ceramic disc	830-3224	ACC223QJCP
C30	100pF, ceramic disc	830-1104	ACC101QJCP
	CONNE	CTORS	
J2	20 pos. right angle	851-9078	
J3	4 pin right angle header	851-9079	AJ6977
	CRYS	TAL	
Y1	4 MHz	840-9010	AMX2804
	DIO		
	DIOI	JE2	
CR1	MZ4682	815-0682	ADX1518
	INTEGRATE	D CIRCUITS	
111	7416 How Inventor / Duff	000 004 0	
U1 U2	7416, Hex Inverter/Buffer 74LS245	800-0016	A A A A A A A A A A A A A A A A A A A
U3	74LS245 74LS00, NAND gate	802-0245	AMX4470
U4	74LS244, Octal Buffer	802-0000 802-0244	AMX3550
U5	74LS74, Octal Buffer 74LS74, Dual "D" Flip-Flop	802-0244 802-0074	AMX3864 AMX3558
-	, 160/1, 544 5 Filp Flop	002-0074	MIMV 2000

4.2 MODEL 4 FDC PCB #8858160

The TRS-80 Model III/4 Floppy Disk Interface Board is an optional board which, if incorporated, provides a standard 5-1/4" floppy disk controller. The Floppy Disk Interface Board supports both single and double density encoding schemes. Write precompensation can be software enabled or disabled beginning at any track, although the system software enables write precompensation for all tracks greater than twenty-one. The amount of write precompensation provided is 250 nsec and is not adjustable. The data clock recovery logic incoporates a digital data separator which achieves state-of-the-art reliability. One to four drives may be controlled by the interface (two internal drives and two external). All data transfers are accomplished by CPU data requests. In double density operation, data transfers are synchronized to the CPU by forcing a wait to the CPU and clearing the wait by a data request from the FDC chip. The end of the data transfer is indicated by generation of a non-maskable interrupt from the interrupt request output of the FDC chip. A hardware watchdog timer insures that any error condition will not hang the wait line to the CPU for a period long enough to destroy RAM contents.

4.2.1 Control and Data Buffering

Refer to Schematic Diagram 8000168

The Floppy Disk Controller Board is an I/O port mapped device which utilizes ports E4H, F0H, F1H, F2H, F3H, and F4H. The decoding logic is implemented on the CPU board. (Refer to Paragraph 3.1.4 Decoding Logic of the CPU operation). U4 is a non-inverting octal buffer which isolates and buffers the required control signals from the CPU board to the FDC board. U2 is a bi-directional, 8-bit transceiver used to buffer data to and from the FDC board. The direction of data transfer is controlled by the combination of control signals DISKIN* and RDNMISTATUS*. If either signal is active (logic low), U2 is enabled to drive data onto the CPU board data bus. If both signals are inactive (logic high), U2 is enabled to receive data from the CPU board data bus.

4.2.2 Nonmaskable Interrupt Logic

A dual D flip-flop (U12) is used to latch data bits D6 and D7 on the rising edge of the control signal WRNMIMASKREG*. The outputs of U12 enable the conditions which will generate a non-maskable interrupt to the CPU. The NMI interrupt conditions are programmed by doing an OUT instruction to port E4H with the appropriate bits set. If data bit 7 is set, an FDC interrupt request is enabled to generate an NMI interrupt. If data bit 7 is reset, interrupt requests from the FDC are disabled. If data bit 6 is set, a Motor Time Out is enabled to generate a NMI interrupt. If data bit 6 is reset, interrupts on Motor Time Out are disabled. An IN instruction from port E4H enables the CPU to check the FDC

board to determine the source of the non-maskable interrupt. Data bit 7 indicates the status of FDC interrupt request (0 = true, 1 = false). Data bit 6 indicates the status of Motor Time Out (0 = true, 1 = false). Data bit 5 indicates the status of the Reset signal from the CPU board (0 = true, 1 = false). The control signal RDNMISTATUS* gates this status onto the CPU data bus when active (logic low).

4.2.3 Drive Select Latch and Motor ON Logic

Selecting a drive prior to a disk I/O operation is accomplished by doing an OUT instruction to port F4H with the proper bit set. The following table described the bit allocation of the Drive Select Latch:

Data Bit	Function
D0	Selects Drive 0 when set*
D1	Selects Drive 1 when set*
D2	Selects Drive 2 when set*
D3	Selects Drive 3 when set*
D4	Selects Side 0 when reset
	Selects Side 1 when set
D5	Write precompensation enabled
	when set, disabled when reset
D6	Generates WAIT if set
D7	Selects MFM mode if set
	Selects FM mode if reset

^{*}Only one of these bits should be set per output

A hex D flip-flop (U5) latches the drive select bits, side select and FM*/MFM bits on the rising edge of the control signal IDRVSEL*. A dual D flip-flop (U15) is used to latch the Wait Enable and Write precompensation enable bits on the rising edge of IDRVSEL*. The rising edge of IDRVSEL* also triggers a one-shot (1/2 of U13) which produces a Motor On to the disk drives. The duration of the Motor On signal is approximately two seconds. The spindle motors are not designed for continuous operation, therefore the inactive state of the Motor On signal is used to clear the Drive Select Latch, which de-selects any drives which were previously selected. The Motor On one-shot is retriggerable by simply executing another OUT instruction to the Drive Select Latch.

4.2.4 Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be initiated by an OUT to the Drive Select Latch with D6 set. Pin 5 of U15 will go high after this operation. This signal is inverted by 1/6 of U1 and is routed to the CPU board where it forces the Z-80 into a wait state. The Z-80 will remain in the wait state as long as WAIT* is low. Once initiated, the WAIT* will remain low until one of four

conditions is satisfied. One half of U9 (a five input NOR gate) is used to perform this function, INTQ, DRQ, RESET, and WAITIMOUT are the inputs to the NOR gate. If any one of these inputs is active (logic high), the output of the NOR gate (U9 pin 6) will go low. This output is tied to the clear input of the wait latch. When this signal goes low, it will clear the Q output (U18 pin 5) and set the Q* output (U15 pin 6). This condition causes WAIT* to go high which allows the Z-80 to exit the wait state. U3 is a 12-bit binary counter which serves as a watchdog timer to insure that a wait condition will not persist long enough to destroy dynamic RAM contents. The counter is clocked by a 1 MHz clock and is enabled to count when its reset pin is low (U3 pin 11). A logic high on U3 pin 11 resets the counter outputs. U3 pin 15 is a divide-by-1024 output and is used to generate the signal WAITIMOUT. This watchdog timer logic will limit the duration of a wait to 1024 µsec, even if the FDC chip should fail to generate a DRQ or a INTRQ.

4.2.5 Clock Generation Logic

A 4 MHz crystal oscillator and a 4-bit binary counter are used to generate the clock signals required by the FDC board. The 4 MHz oscillator is implemented with two inverters (1/3 of U22) and a quartz crystal (Y1). The output of the oscillator is inverted and buffered by 1/6 of U22 to generate a TTL level square wave signal. U21 is a 4-bit binary counter which is divided into a divide-by-2 and a divide-by-8 section. The divide-by-2 section is used to generate the 2MHz output at pin 12. The 2 MHz is NANDED with a MHz by 1/4 of U17 and the output is used to clock the divide-by-8 section of U21. A 1 MHz clock is generated at pin 9 of U21 which is 90 degrees phase-shifted from the 2 MHz clock. This phase relationship is used to gate the guaranty Write Data Pulse (WD) to the Write precompensation circuit. The 4 MHz is used to clock the digital data separator U11 and the Write precompensation shift register U10. The 1 MHz clock is used to drive the clock input of the FDC chip (U6) and the clock input of the watchdog timer (U3).

4.2.6 Disk Bus Selector Logic

As mentioned previously, the Floppy Disk Controller board supports up to four drives (two internal and two external). This function is implemented by using two disk drive interface buses, one for the internal drives and one for the external drives. J1 is the edge connector used to drive the internal disk drives and J4 is the edge connector used to drive the external drives. U19 (a quad 2 to 1 data selector) is used to select which set of inputs is routed from the disk drive buses to the FDC chip. U19 pin 1 is the control pin for the data selector. If pin 1 is low, the external inputs are selected, otherwise the internal inputs are selected. This control signal EXTSEL* is generated from the outputs of

the Drive Select Latch. If Drive 2 or 3 is selected, U20 pin 1 will go low indicating that an external drive is selected. One half of U9 (a five-input NOR gate) is used to detect when any of the four drives is selected.

The output of the NOR gate (U9 pin 5) is inverted and is used as the head load timing (HLT) and ready (RDY) signal for the FDC chip. Therefore, if any drive is selected, the head is assumed to be loaded and the selected drive is assumed to be ready.

4.2.7 Disk Bus Output Drivers

High current open collector drivers (U18, U8, and U1) are used to buffer the output signals from the FDC board to the disk drives. Note from the schematic that each output signal to the drives has two buffers associated with each signal. One set is used for the internal drive bus and the other set is used for the external drive bus. No select logic is required for these output signals since the drive select bits define which drive is active.

4.2.8 Write Precompensation and Write Data Pulse Shaping Logic

The Write Precompensation logic is comprised of U10 (74LS195), 1/4 of U17, 1/4 of U20, and 1/2 of U15. U10 is a parallel in, serial out shift register and is clocked by 4 MHz which generates a precompensation value of 250 nsec. The output signals EARLY and LATE of the FDC chip (U6) are input to P0 and P2 of the shift register. A third signal is generated by 1/4 of U20 when neither EARLY nor LATE is active low and is input to P1 of U10. WD of the FDC chip is NANDed with 2 MHz to gate the guaranteed Write Data Pulse to U10 for the parallel load signal SHFT/LD. When U10 pin 9 is active low, the signals preset at P1-P3 are clocked in on the rising edge of the 4 MHz clock. After U10 pin 9 goes high, the data is shifted out at a 250 nsec rate. EARLY will generate a 250 nsec delay, NOT EARLY AND NOT LATE will generate a 500 nsec delay, and LATE will generate a 750 nsec delay. This provides the necessary precompensation for the write data. As mentioned previously. Write Precompensation is enabled through software by an OUT to the Drive Select Latch with bit 5 set. This sets the Q output of the 74LS74 (U15 pin 9) which disables the shift register U10. This signal also enables U20 to allow the write data (WD) to bypass the Write Precompensation circuit. The Write Date (WD) pulse is shaped by a one-shot (1/2 of U3) which stretches the data pulses to approximately 500 nsec.

4.2.9 Clock and Read Data Recovery Logic

The Clock and Read Data Recovery Logic is comprised of

FIGURE 4-1. WRITE PRECOMPENSATION TIMING

one chip, the FDC9216. The FDC9216 is a Floppy Disk Data Separator (FDDS) which converts a single stream of pulses from the disk drive into separate clock and data pulses for input to the FDC chip. The FDDS consists of a clock divider, a long-term timing corrector, a short-term timing corrector, and reclocking circuitry. The reference clock (REFCLK) is 4 MHz and is divided by the internal clock divider. CD0 and CD1 of the FDDS chip control the divisor which divides REFCLK. With CD1 grounded (logic low), CD0 (when a logic low) generates a divide-by-1 for MFM mode and when logic high generates a divide-by-2 for FM mode, CD0 is controlled by the signal DDEN* which is Double Density Enable or MFM enable. The FDDS detects the leading edges of RD* pulses and adjusts the phase of the internal clock to genearte the separated clock (SEPCLK) to the FDC chip. The separate long and short term timing correctors assure the clock separation to be accurate. The separated Data (SEPD*) is used as the RDD* input to the FDC chip.

4.2.10 Floppy Disk Controller Chip

The 1793 is an MOS LSI device which performs the functions of a floppy disk formatter/controller in a single chip implementation. The 1793 is functionally identical to the 1791 used on the Model II FDC Printer Interface Board except that the data bus is true as opposed to inverted. Refer to the appendix section for more information on the FD1793. The Model II Technical Reference Manual also contains a good presentation of the 1791 FDC chip as well as a discussion on Write precompensation. The following port addresses are assigned to the internal registers of the 1793 FDC chip:

Port #	Function
F0H	Command/Status Register
F1H	Track Register
F2H	Sector Register
F3H	Data Register

CIRCUIT TRACE #1700223C, FLOPPY DISK CONTROLLER 8858160 CIRCUIT SIDE

CIRCUIT TRACE #1700223C, FLOPPY DISK CONTROLLER #8858160 SOLDER SIDE

		Description	Mfgr's Part No.
1	1		
1	1	Printed Circuit Board	8709380
2	9 1	Staking Pin (TP1-9)	8529014 8519078
4	1	Connector, 20-Pin Rt. Angle (J2) Connector, 4-Pin Rt. Angle (J3)	8519079
5	1	Socket, 8-Pin (Ull)	8509011
6	i	Socket, 40-Pin (U6)	8509002
7	ī	Resistor, 150 ohm 1/4W 5% (R1)	8207115
8	ī	Resistor Pak, 150 ohm 6-Pin (R2)	8290012
9	3	Resistor, 10K ohm $1/4W$ 5% (R3-5)	8297310
10	ĭ	Resistor, 270K ohm 1/4W 5% (RS 5)	8207427
11	ī	Resistor Pak, 150 ohm 10-Pin (R7)	8290013
12	ī	Resistor, 470 ohm 1/4W 5% (R8)	8207147
13	2		8207191
14	ĩ		8297222
15	11	Capacitor, 0.1 ufd 50V (C1,5,7-9,11,13- C17,18)	
16	2	Capacitor, 10 ufd 16V Elec. (C2,3)	8326101
17	4	Capacitor, .022 ufd 50V (C4,6,22,23)	8303224
18	4	Capacitor, 180 pfd 50V C. Disk (Cl0,19-	
19	2	Capacitor, 100 pfd 50V C. Disk (C12,25)	
20	ī	Capacitor, 33 ufd 16V Elec. (C16)	8396331
21	1	Capacitor, 470 pfd 50V C. Disk (C24)	8301474
22	1	Crystal, 4.000 MHz (Y1)	8409010
23	3	IC, 7416 Hex Inverter Buffer (Ul,8,18)	8000016
24	1	IC, 74LS245 Octal Bus Tranceiver (U2)	8020245
25	1	IC, MC14040 Binary Counter (U3)	8030040
26	1	IC, 74LS244 Octal Buffer (U4)	8020244
27	1	IC, 74LS174 Flip Flop (U5)	8020174
28	1	IC, 1793 FDC (U6)	8030793
29	1	IC, 74LS38 NAND Buffer (U7)	8020038
30	1	IC, 74LS260 5-In NOR Gate (U9)	8020260
31	1	IC, 74LS195 Shift Register (U10)	8020195
32	1	IC, 9216 Data Separator (Ull)	8040216
33	2	IC, 74LS74 Flip Flop (U12,15)	8020074
34	1	IC, 74LS123 Mono Multiplier (U13)	8020123
35	1	IC, 74LS367 Hex Buffer (Ul4)	8020367
36	1	IC, 74LS368 Hex Inv. Buffer (U16)	8020368
37	1	IC, 74LS00 NAND Gate (U17)	8020000
38	1	IC, 74LS157 Quad Multiplier (U19)	8020157
39	1	IC, 74LS02 NOR Gate (U20)	8020002
40	1	IC, 74LS93 4-Bit Counter (U21)	8020093
41	1	IC, 74LS04 Hex Inverter (U22)	8020004

SECTION V MINI DISK DRIVE

MINI-DISK DRIVES

5.1 MINI-DISK DRIVE #8790112 (T.P.I 01-0053-001)

5.1.1 Physical Description

The electronic components of the Mini-Disk Drive are mounted on the Logic/Servo Board. This board is located above the chassis, and the power and interface signals are connected directly to it.

The spindle is belt driven by a DC motor with an integral tachometer. The servo control circuit, pulleys and the tachometer control the speed of the spindle. The read/write/erase head assembly is positioned by means of a stepper motor, split band and a pulley.

5.1.2 Functional Description

The Disk Drive is fully self-contained. It consists of a spindle drive system, a head positioning system, and read/write/erase system.

When the front latch is opened, access is provided for the insertion of a 5% inch (133.4 mm) standard diskette. The diskette is positioned in place by plastic guides, the front latch and a back stop.

Closing the front latch activates the cone/clamp system which centers and clamps the diskette to the drive hub. The drive hub is driven at a constant speed of 300 rpm by a servo controlled DC motor. In operation, the magnetic head is loaded into contact with the recording medium whenever the front latch is closed.

A 4-phase stepper motor/band assembly and its associated electronics position the magnetic head over the desired track. This positioner employs a one-step rotation to cause a 1-track linear movement. When a write-protected diskette is inserted into the Drive, the write-protect sensor disables the write electronics of the Drive and an appropriate signal is applied to the interface. (When performing a write operation, a 0.013-inch (0.33 mm) [nominal] data track is recorded.)

Data recovery electronics include a low-level read amplifier, differentiator, zero-crossing detector and digitizing circuits. No data decoding facilities are provided in the basic Drive.

The Drive is also supplied with the following sensor systems;

- A track ØØ switch which senses when the Head/ Carriage assembly is positioned at Track ØØ.
- The index sensor (an LED light source and a phototransistor) is positioned so that when an index hole is detected, a digital signal is generated. The index sensor used is a high resolution device which can distinguish holes placed close together, i.e., index-sector holes in a hard sectored diskette.
- The write-protect sensor disables the Disk Drive electronics whenever a write-protect tab is applied to the diskette.

5.1.3 Interface Connections

Signal connections for the external Disk Drive are made via a user-supplied 34-pin flat ribbon connector. The internal Drive uses a Radio Shack connector, Part Number AW2535. Both of these connectors mate directly with the PC Board connector J2 at the rear of the Drive. The DC power connector is a four - pin connector J4 on the PC Board on the top rear of the Drive.

The signal connector harness should be of the flat ribbon or twisted pair type with the following characteristics:

- 1. Maximum length of 10 feet (3 M).
- 2. 22 24 gauge conductor compatible with the connector to be used.

Power connections for external Drives should be made with 18 AWG cable. Internal Drives use the Disk DC Power Harness, Radio Shack Part Number AW2532.

5.1.4 Physical Checkout

Before applying power to the unit, the following inspection should be performed:

- 1 Front latch. Check that the front latch opens and closes. Note that when the door is opened, the head arm raises.
- 2. Ensure that the front panel is secure.
- Manually rotate the drive hub. The hub should rotate freely.
- 4. Check that the PC board is secure. Check that the connectors are firmly seated.

Media	Industry-compatible 5-1/4 inch (133.4 mm) diskette
Tracks per inch	48
Number of Tracks	40
Read/Write Track Width	.020 inches (5.08 mm)
Dimensions	
Height	3.38 inches (85.85 mm)
Width	5.87 inches (149.10 mm)
Depth	8.0 inches (203.2 mm) 4.5 lbs (2.04 Kg
Weight	4.5 IDS (2.U4 Ng
Temperature	
(Exclusive of Media)	4000 : 4000 (5005 : 44005)
Operating	10 ^o C to 43 ^o C (50 ^o F to 110 ^o F) -40 ^o C to 71 ^o C (-40 ^o F to 160 ^o F)
Non-operating	-40°C to /1°C (-40°F to 160°F)
Relative Humidity	
(Exclusive of Media)	
Operating	20% to 80%
Non-operating	5% to 95% (non-condensing)
Vibration	6 to 600 Hz 0.5g peak
Seek Time	5 msec track to track
Head Settling Time	15 msec (last track addressed)
Error Rate	1 per 10 ⁹ recoverable
	1 per 10 ¹² non-recoverable
Head Life	20,000 hours (normal use)
Media Life	3 million passes on a single track
Disk Speed	300 rpm ±1.5% (long term)
Instantaneous Speed Variation	±3.0%
Start/Stop Time	250 msec (maximum)
Transfer Rate	125/250K bits/sec
Bits/Disk (unformatted)	1.75 million (FM)
Recording Modes (typical)	FM, MFM, MMFM
Power	$+12 \text{ V dc} \pm 0.6 \text{ V}, 900 \text{ ma maximum}$
·	5 V dc ±0.25 V, 600 ma maximum

TABLE 5-1. MINI-DISK DRIVE MECHANICAL AND ELECTRICAL SPECIFICATIONS.

- Check for debris or foreign material between the heads and remove same.
- Check plastics for broken or cracked pieces, e.g., write protect lever, guide rails, etc.

NOTE: To ensure proper operation of the Drive, the chassis should be connected to earth ground. The 3/16-inch (4.76 mm) male QC lug, located at the rear of the chassis, is provided for this connection.

5.1.5 Mounting The Disk Drive

The Drive can be mounted in any plane, i.e., upright, horizontal or vertical. However, when it is mounted horizontally, the Logic PC board side of the chassis must be the uppermost side. Tapped holes are provided in various locations for the attachment of user-supplied hardware.

5.1.6 Flat Ribbon Cable Assembly

The Flat Ribbon Cable Assembly that is used is the same one used in the Model I and III Computers. Pins must be removed from Drive connectors on the Cable Assembly as noted below:

- Connector for the first internal drive (Drive 0) and the first external drive (Drive 2) pins 12, 14 and 32.
- Connector for the second internal drive (Drive 1) and the second external drive (Drive 3), pins 10, 14 and 32

INTERNAL DRIVES

DRIVE NUMBER ZERO	DRIVE NUMBER ONE
12	10
14	14
32	32

EXTERNAL DRIVES

DRIVE NUMBER TWO	DRIVE NUMBER THREE
12	10
14	14
32	32

FIGURE 5-1. CABLE ASSEMBLY — CONNECTOR PIN REMOVAL CHART

5.1.7 Resistor Termination

The Resistor Termination in the SIP socket (R51) is used only in the last drive in the system. Remove all other Resistor Terminations.

NOTE: The internal Drives in the Model 4 Computer are not terminated.

FIGURE 5-2. RESISTOR TERMINATION

5.2 THEORY OF OPERATION

5.2.1 Introduction

The Disk Drive consists of the mechanical and electrical components necessary to record and read digital data on a diskette. DC power at $\pm 12V$ and $\pm 5V$ (provided by the user for the external drives) is required for operation.

5.2.2 Organization of The Disk Drive

All electrical subassemblies in the Disk Drive are constructed with leads which terminate in 4 or 5 pin connectors, enabling the individual assemblies to be removed.

The magnetic head is connected to the PC board via a cable terminating in a 5-pin female connector and its associated male socket which is located in close proximity to the read/write data electronics.

Interface signals and power are provided via connectors at the rear of the Drive. A detailed description of these signals is presented in Section 5.3 of this manual.

5.2.3 Functional Block Diagram Description

Figure 5-3 is a functional block diagram of the Disk Drive and should be referred to in conjunction with the following discussion:

The Disk Drive consists of the following functional groups:

- ★ Index Pulse Shaper
- **★** Write Protect Sensor
- * Track ØØ Sensor
- * Spindle Drive Control
- ★ Carriage Position Control
- ★ Write/Erase Control
- * Read Amplifier and Digitizer

5.2.4 INDEX

An index pulse is provided to the user system via the INDEX PULSE interface line. The index circuitry consists of an Index LED, Index Phototransistor and a Pulse Shaping Network. As the index hole in the disk passes the Index LED/Phototransistor combination, light from the LED

strikes the Index Phototransistor, causing it to conduct. The signal from the Index Phototransistor is then passed to the Pulse Shaping Network which produces a pulse for each hole detected. This pulse is presented to the user on the INDEX PULSE interface line.

5.2.5 Write Protect

A Write Protect signal is provided to the user system via the WRITE PROTECT interface line. The write protect circuitry consists of a Write Protect Sensor and circuitry to route the signal produced.

When a write protected diskette is inserted in the drive, the sensor is activated and the logic disables the write electronics and supplies the status signal to the Interface.

5.2.6 Track 00 Switch

The level on the TRACK 00 interface line is a function of the position of the magnetic head assembly. When the head is positioned at Track 00 and the stepper motor is at the home position, a true level is generated and sent to the user

5.2.7 Spindle Drive

The Spindle Drive system consists of a spindle assembly driven by a DC motor-tachometer combination through a drive belt.

Associated with the spindle drive motor are the servo electronics required for control.

The control circuitry also includes a current limiter and an interface control line. When the DRIVE MOTOR ENABLE interface line is true, the drive motor is allowed to come up to speed. When the current through the drive motor exceeds 1.3 A, the current limit circuitry disables the motor drive.

5.2.8 Positioner Control

The Head Positioning system utilizes a four-phase stepper motor drive which changes one phase for each track advancement of the Read/Write carriage. In addition to the logic necessary for motion control, a gate is provided as an element for inhibiting positioner motion during a write operation.

FIGURE 5-3. FUNCTIONAL BLOCK DIAGRAM

5.2.9 Data Electronics

Information can be recorded on the diskette using a double-frequency code. Figure 5-4 illustrates the magnetization profiles in each bit cell for the number sequence shown.

The erase gaps provide an erased guard band on either side of the recorded track. This accommodates the tolerances in track positioning.

All signals required to control the data electronics are provided by the user system and are shown in the Block Diagram (Figure 5-3). These control signals are:

- * SELECT
- **★ WRITE ENABLE**
- * WRITE DATA

The READ DATA composite signal is sent to the user system via the interface.

FIGURE 5-4, FM RECORDING

5.2.10 Data Recording

Referring to Drawing 8790112 (page 97) it can be seen that the Write Electronics consists of a Write/Erase Current Source and Write Waveform Generator, Erase Current Source and Trim Erase Control Logic.

The read/write winding on the magnetic head is centertapped. During a write operation, current from the Write Current Source flows in alternate halves of the winding under control of the Write Waveform Generator.

Before recording can begin, certain conditions must be satisfied. The conditions required for recording (i.e., unit ready) must be established by the user system as follows:

- (1) Drive speed stabilization. This condition will exist 250 mSec after starting the drive motor.
- (2) Subsequent to any step operation, the positioner must be allowed to settle. This requires 20 mSec total after the last step pulse is initiated, i.e., 5 mSec for the step motion and 15 mSec for settling.

NOTE: All of the foregoing operations can be overlapped, if required.

Figure 5-5 shows the relevant timing diagram for a write operation. When t=0, the unit is ready and the WRITE ENABLE interface line goes true, thus enabling the Write Current Source.

Since the trim erase gaps are behind the read/write gap, TRIM ERASE control goes true $390\mu \text{Sec}$ after the WRITE ENABLE interface line. It should be noted that this value is optimized between the requirements at Track 00 and Track 40 so that the effect of the trim erase gaps on previous information is minimized.

Figure 5-5 also shows the information on the WRITE DATA interface line and the output of the Write Waveform Generator which toggles on the leading edge of every WRITE DATA pulse.

Note that a minimum of 4 μ Sec and a maximum of 8 μ Sec between WRITE ENABLE going true and the first WRITE DATA pulse is only required if faithful reproduction of the first WRITE DATA transition is significant.

At the end of recording, at least one additional pulse on the WRITE DATA line must be inserted after the last significant WRITE DATA pulse to avoid excessive peak shift effects.

The TRIM ERASE signal must remain true for $800\mu\text{Sec}$ after the termination of WRITE ENABLE to ensure that all recorded data are trim erased. This value is again optimized between the requirements at Tracks 00 and 40.

The duration of a write operation is from the true-going edge of WRITE ENABLE to the false-going edge of TRIM ERASE. This is indicated by the internal WRITE BUSY waveform shown.

5.2.11 Data Reproduction

The Read Electronics consists of the following:

- * Read Switch
- * Read Amplifier
- ★ Filter
- ★ Differentiator
- * Comparator and Digitizer

The Read Switch consists of two FETs that are used to isolate the Read Amplifier from electrical signals across the magnetic head during a Write operation.

The remaining functions of the Read circuitry are contained in the MC3470 IC.

Before reading can begin, the Drive must be in a ready condition. As with the data recording operation, this ready condition must be established by the user system. In addition to the requirements established in Paragraph 5.2.10, DATA RECORDING, a 100 $\mu \rm Sec$ delay must exist from the trailing edge of the TRIM ERASE signal to allow the Read Amplifier to settle after the transient caused by the Read Switch returning to the Read mode.

Referring to Figure 5-6, the output signal from the read/write head is amplified by a read amplifier and filtered to remove noise by a Linear Phase Filter. The linear output from the Filter is passed to the Differentiator which generates a waveform whose zero crossovers correspond to the peaks of the read signal. This signal is then fed to the Comparator and Digitizer circuit. Variable resistor R22 is used to balance the Comparator and Differentiator by adjusting out any circuit imbalances and reducing peak shift.

The Comparator and Digitizer circuitry generates a 1 μ Sec READ DATA pulse corresponding to each peak of the read signal. This Composite Read Data signal is then sent to the user system via the READ DATA interface line.

FIGURE 5-5. WRITE TIMING DIAGRAM

t = 0 = 250 MILLISECONDS AFTER DRIVE MOTOR STARTS, OR 20 MILLISECONDS AFTER STEP COMMAND, OR 100 µSECONDS AFTER TERMINATION OF WRITE BUSY (WHICHEVER IS THE LATEST TIME)

FIGURE 5-6. READ TIMING DIAGRAM

5.3 OPERATION

5.3.1 Introduction

This section contains the interface description and the electrical adjustments necessary for the Disk Drive.

5.3.2 Interface Electronics Specifications

All interface signals are TTL compatible. Logic true (low) is + 0.4 V (maximum). Logic false (high) is +2.4 V (minimum). Figure 5-7 illustrates the interface configuration.

FIGURE 5-7. INTERFACE CONFIGURATION

It is recommended that the interface cable be a flat ribbon cable, with a characteristic impedance of 100 ohms (or equivalent twisted pairs). Maximum interface cable length is 10 feet (3 M).

5.3.3 Input Control Lines

Interface connector pin assignments and power connector pin assignments are given in Table 5-2 and Table 5-3.

5.3.4 Select Lines (DSI* - DS4*)

The SELECT lines provide a means of selecting and deselecting a Disk Drive. These four lines (DS1* - DS4*) select one of the four Disk Drives attached to the controller. When the signal logic level is true (low), the Disk Drive electronics are activated and the Drive is conditioned to respond to step or read/write commands. When the logic level is false (high) the input control lines and output status lines are disabled.

A SELECT line must remain stable in the true (low) state until the execution of a step or read/write command is completed.

The Disk Drive address is determined by SELECT lines 1 through 4 on the PC board. These lines provide a means of daisy-chaining a maximum of four Disk Drives to a controller. Only one line can be true (low) at a time. An undefined operation might result if two or more units are assigned the same address or if two or more SELECT lines are in the true (low) state simultaneously.

5.3.5 Drive Motor Enable

When this signal line logic level goes true (low), the drive motor accelerates to its nominal speed of 300 rpm and stabilizes in less than 250 mSec. When the logic level goes false (high), the Disk Drive stops.

5.3.6 Direction and Step (DIR*) (STEP*)

When the Disk Drive is selected, a true (low) pulse with a time duration greater than 200 nSec on the STEP line initiates the access motion. The direction of motion is determined by the logic state of the DIRECTION line when a STEP pulse is issued. The motion is towards the center of the disk if the DIRECTION line is in the true (low) state when a STEP pulse is issued. The direction of motion is away from the center of the disk if the DIRECTION line is in the false (high) state when a STEP pulse is issued. To ensure proper positioning, the DIRECTION line should be stable 0.1 μ Sec (minimum) before the trailing edge of the corresponding STEP pulse and remain stable until 0.1 μ Sec after the trailing edge of the STEP pulse. The access motion is initiated on the trailing edge of the STEP pulse.

5.3.7 Compensated Write Data (CWD)

When the Disk Drive is selected, this interface line provides the bit-serial WRITE DATA pulses that control the switching of the write current in the head. The write electronics must be conditioned for writing by the WRITE ENABLE line (refer to the WRITE ENABLE paragraph below).

For each high-to-low transition on the WRITE DATA line, a flux change is produced at the head write gap. This causes a flux change to be stored on the disk.

When the double-frequency type encoding technique is used (in which data and clock form the combined Write Data signal), it is recommended that when writing all zeroes, the repetition rate of the high-to-low transitions be equal to the nominal data rate, $\pm 0.1\%$. The repetition rate of the high-to-low transitions, when writing all ones, should be equal to twice the nominal data rate, $\pm 0.1\%$.

5.3.8 Write Gate (WG*)

When this signal is true (low), the write electronics are prepared for writing data (read electronics disabled). This signal turns on write current in the read/write head. Data is written under control of the WRITE DATA input line. It is generally recommended that changes of state on the WRITE ENABLE line occur before the first WRITE DATA pulse. However, the separation between the leading edge of WRITE ENABLE and the first significant WRITE DATA pulse should not be less than 4 $\mu \rm Sec$ and not greater than 8 $\mu \rm Sec$. The same restrictions exist for the relationship between the least significant WRITE DATA pulse and the

Controller-to-Disk Drive		
Ground	Signal	Description (Mnemonic)
1	2	Connector clamp
3	4	(Spare)
5	6	(Spare)
9	10	SELECT 1 (NDS1)
11	12	SELECT 2 (NDS2)
13	14	SELECT 3 (NDS3)
15	16	DRIVE-MOTOR ENABLE (NMOTORON)
17	18	DIRECTION
19	20	STEP (NSTEP)
21	22	WRITE DATA (NWRITEDATA)
23	24	WRITE GATE (NWRITEGATE)
31	32	SELECT 4 (NDS4)

Disk Drive-to-Controller		
Ground	Signal	Description (Mnemonic)
7	8	INDEX (NINDEX/SECTOR)
25	26	TRACK ØØ (NTRKØØ)
27	28	WRITE PROTECT (NWRITEPROTECT)
29	30	READ DATA (NREADDATA)
33	34	Connector Clamp

TABLE 5-2. DISK DRIVE EDGE CARD PIN ASSIGNMENTS - J2.

Pin	Supply Voltage
1	+12 V DC
2	Return (+12 V DC)
3	Return (+5 V DC)
4	+5 V DC

TABLE 5-3. POWER CONNECTOR PIN ASSIGNMENTS

termination of the WRITE ENABLE signal. When the WRITE ENABLE line is false (high), all write electronics are disabled.

When a write protected diskette is installed in a Disk Drive, the write electronics are disabled regardless of the state of the WRITE ENABLE line.

5.3.9 Output Status

(See Table 5-2)

5,3,10 Index Pulse (IP*)

The INDEX PULSE signal is provided once each revolution (200 mSec, nominal) to indicate to the controller the beginning of a track. The INDEX PULSE line remains in the true (low) state for the duration of the INDEX PULSE (The duration of an INDEX PULSE is nominally 4.0 mSec).

The leading edge of an INDEX PULSE must always be used to ensure diskette interchangeability between Disk Drives.

5.3.11 Track ØØ (TRKØ*)

When the Disk Drive is selected, the TRACK 00 interface signal indicates to the controller that the read/write head is positioned at Track 00. The Track 00 remains true (low) until the head is moved away from Track 00.

5.3.12 Write Protect (WPRT*)

When the Disk Drive is selected, this signal line logic level goes true (low) when the diskette is write protected. The write electronics are internally disabled when the diskette is write protected.

NOTE: It is recommended that the write data line be inactive whenever Write Enable is false (i.e., read state).

When the level on this line is false (high), the write electronics are enabled and the write operation can be performed. It is recommended that the controller not issue a write command when the WRITE PROTECT signal is true (low).

5.3.13 Read Data (RD*)

This interface line transmits the readback data to the controller when the Drive is selected. It provides a pulse for each flux transition recorded on the medium. The READ DATA output line goes true (low) for a duration of 1 μ Sec for each flux change recorded.

The leading edge of the READ DATA output pulse represents the true positions for the flux transitions on the diskette surface.

5.4. MAINTENANCE

5.4.1 Physical Description Of The PC Board

The Logic PC board is approximately 6 inches (152 mm) long by 5.5 inches (139 mm) wide. Figure 5-8 illustrates the placement of test points and connectors.

INSTALLATION

To replace the Logic P.C. Board and the Servo P.C. Board with the newer Logic/Servo P.C. Board, the following steps should be taken:

- Discard the jumper cable that goes from P13 on the Logic P.C. Board to P20 on the Servo P.C. Board
- 2. Disconnect all cables that connect the two Boards.
- 3. Remove both the Logic and the Servo P.C. Boards and the Servo P.C. Board mounting hardware.
- 4. Connect all cables except the Drive Motor Cable that was connected to P21 on the Servo P.C. Board.
- 5. Connect the Drive Motor Cable to P13 on the Logic/Servo P.C. Board.
- Go through the maintenance checks again. Pay particular attention to 5.5.1, DRIVE MOTOR MAINTENANCE and 5.5.8, PEAK SHIFT COM-PENSATION ADJUSTMENT.

5.4.2 Circuit Board Test Points

The following test point description assumes that the Logic and Servo P.C. boards are installed in the Drive and that the Drive is in an operational mode with a diskette installed:

Analog Ground (TP1)

The analog ground reference point is provided for measuring read/write waveforms.

Amplified Read Signal (TP2, TP3)

These test points are provided to observe the differential output of the first stage of read signal amplification.

Logic Ground (TP4)

Digital Logic ground is referenced at TP4.

Track ØØ (TP5)

This signal is low (true) when the carriage is positioned at track $\emptyset\emptyset$ and the step motor phase is correct.

Step Pulse (TP6)

When stepping in or out, the signal is a high - going pulse for each step of the carriage.

Read Data One Shot (TP7)

The output of the one shot used in the read section is nominally 1.0 μ sec for each flux transition detected.

Write Protect Switch (TP8)

When a write protected diskette is installed in the Drive, the signal is low (true).

Index Pulse (TP9)

With a standard soft sectored diskette installed, the signal is a high going - pulse, nominally 4.0 msec in duration every 200 msec.

Motor On (TP11)

This signal is low (true) for the Motor On condition.

5.4.3 Option Select

Input Line Terminations

The Disk Drive has been provided with the capability of terminating the input lines listed below:

- ★ Motor On
- **★** Direction Select
- ★ Step
- ★ Write Data
- ★ Write Gate

These lines are terminated through a 150 ohm resistor pack that is installed in a SIP socket (R51), located adjacent to J2.

In a multiple drive system, only the last drive on the interface is to be terminated. All other drives on the interface must have the resistor pack removed. Catalog Numbers 26-1160 and 26-1164 are shipped with the termination resistor installed. Catalog Numbers 26-1161/1162/1163 are shipped without a resistor pack.

FIGURE 5-8. LOGIC/SERVO PC BOARD TEST POINTS AND CONNECTOR LOCATIONS

5.4.4 Preventive Maintenance

To ensure that the Disk Drive operates at its design potential, the only scheduled preventive maintenance required is periodic cleaning of the magnetic recording head.

Mechanical and electrical adjustment details are provided for further service as a result of disassembly or repair.

5.4.5 Cleaning The Head

To clean the magnetic head, we recommend using Radio Shack's Universal Disk Drive Head Cleaning Kit, catalog number 26-407. This kit comes with complete instructions for safely cleaning the disk drive heads.

CAUTION: Rough or abrasive cloth should not be used to clean the magnetic recording head. Use of cleaning solvents other than 91% Isopropyl alcohol may damage the head.

Extreme care must be exercised to prevent the heads from being damaged (i.e., scratching, banging together, etc.).

5.5 ALIGNMENT AND ADJUSTMENT

To perform the alignment and adjustment procedures, you will require the following equipment:

- ★ 30 MHz Dual Trace Triggered Sweep Scope
- ★ 5 1/4" Alignment Diskette
- * 5 1/4" Blank "scratch" Diskette

5.5.1 Drive Motor Maintenance

Long Term Motor Speed Adjustment

- 1. Check power to unit. (+12 VDC \pm Ø.6V, and +5 VDC \pm Ø.25V.)
- 2. Insert a blank diskette and activate the drive.
- Under fluorescent lighting, observe the speed disk on the spindle pulley. For 60 Hz operation, the outer ring on the speed disk should appear stationary. For 50 Hz operation, the inner ring should appear stationary.
- 4. If the speed disk does not seem to be motionless, adjust R54 (located in the upper right corner of the PC Board) for the desired effect.
- 5. If motor speed cannot be adjusted, repair Servo PCB or motor as required.

Instantaneous Speed Variation Check/RAW Data Check

- 1. With a blank diskette inserted, write a 2F pattern on any track.
- 2. Connect scope to TP 7 with:

Vert. to 2 volts/div. Time Base to 1 μ sec/div. Trigger internal/positive

3. Observe the waveform. Measure jitter on the leading edge of the third pulse. The leading edge of the pulse should start 8 μ sec ± 240 nsec from the trigger pulse. The third pulse jitter should be less than 480 nsec (edge to edge).

4. If jitter is excessive, repair or replace the drive belt, the motor, the Servo PC Board, or the spindle as necessary.

5.5.2 Carriage Movement Check

- 1. Step between tracks 00 and 34/40.
- Check carriage movement. Be certain that carriage is moving freely and not binding at any point. Repair if necessary.

5.5.3 Head Radial Alignment/CE Alignment

- 1. Insert a 5 1/4" alignment diskette.
- 2. Connect Scope:

Channel A to TP 2 Channel B to TP 3 Ground to TP 1 Ext. Sync to TP 9

Set mode to add (A + B) Invert B Vert, to 50 mV/div Trigger external - loosely.

3. Read track 16 and verify the "cat eyes" pattern as shown in Figure 5-9. The smaller of the two "eyes" should not be less than 75% amplitude of the other. % = (small lobe/larger lobe) x 100.

FIGURE 5-9. "CAT EYES" PATTERN

- 4. Step to track $\emptyset\emptyset$. Return to track 16 and re-verify the pattern.
- 5. Step to track 34/40 and return to track 16. Reverify the "cat eyes" pattern.

If Radial Needs Adjustment:

- Loosen the two retaining screws on back of the unit and the retaining screw on the carriage assembly.
- b. Turn the Adjustment Cam until the "cat eyes" pattern is within 75%. If the pattern does not come within spec, loosen the hex head screw on the collar of the stepper motor and rotate the stepper motor shaft until the "eyes" are to the 75% level. Tighten the hex head screw and return to step a.
- c. Tighten all screws and recheck adjustment.

FIGURE 5-10. RADIAL ADJUSTMENT

5.5.4 Track ØØ Alignment

Track ØØ Switch Setting

This switch is set at the factory and glued into position so this will not be a routine adjustment. It will require adjustment only after switch replacement. The switch should be positioned at the front of the adjustment slot and the front screw tightened. Position the head at Track Ø 2. Raise the rear of the switch until the switch contact is closed, then tighten the rear screw. Add a drop of Locktight 42Ø to lock the adjustment into place. Check it for the following conditions: the switch should make (signal low) at Track Ø1, and be off (signal high) at track Ø3. This may be checked at Plug 11, pin 1.

Track ØØ Stop

A Track $\emptyset \emptyset$ stop is incorporated into the bracket which attaches the guide rods at the rear of the Disk Drive assembly. This stop is not adjustable.

FIGURE 5-11. TRACK ØØ SWITCH ADJUSTMENT

5.5.5 Write Protect Switch

The write protect switch is a field-adjustable setting. The switch is located on the front right-hand corner of the drive. The two screws holding this switch are located on the outside of the chassis. To adjust the switch, loosen the rear screw and place a .010" shim at the top and inside of the rail slot. Lift the switch until contact is made with the shim, then tighten the rear screw. Check with a write-protected diskette for write protect action, and a non write-protected diskette to verify that the write protect switch is properly functioning. Attach the meter to Plug 8, pin 1. The level should be low for a write-protected diskette and high for a non write-protected diskette.

5.5.6 Index Sector Adjustment

1. Set Scope:

Vert. at Ø2 volts/div, Time Base 5Ø μsec/div.

- Insert alignment diskette and read track Ø1. Scope display should show Ø volts AC trace for 200 μsec ±50 μsec. If the waveform is outside of spec., loosen the index sector light mounting screw and adjust to spec.
- Open and close the Drive door and re-verify the index sector timing.

TIME SCALE = 50µsec/DIV

FIGURE 5-12. INDEX SECTOR TIMING

FIGURE 5-13. INDEX ADJUSTMENT

5.5.7 Head Amplitude/Compliance Check

- 1. Insert a blank diskette and write a pattern to track 34.
- 2. Set Scope:

Time Base to $10\mu sec/div$. Read the amplitude.

- 3. Apply an additional 15 grams of pressure to the head load arm. (15 grams is approximately equal to the weight of a 25 cent piece.)
- 4. Observe the amplitude. If it increases more than 10%, the compliance needs to be adjusted.
- 5. To adjust the compliance, loosen the two nuts that hold the head load arm in place. While monitoring the amplitude, move the arm until output is highest. Hold the arm in this position and tighten the nuts.
- 6. Re-verify compliance. If compliance cannot be adjusted properly, replace the head load arm.

PEAK SHIFT COMPENSATION ADJUSTMENT

R22 is adjusted as follows:

- 1. With a blank diskette inserted, write a 2F pattern on the innermost track (track 39).
- 2. Connect the 'scope to TP7 with:

Vert. to 2 volts/div. Time Base to 1 µsec/div Trigger internal/positive

3. The waveform should look like this:

 Adjust R22 to center the second pulse between the first and third pulses with a maximum jitter of 240 nanoseconds.

5.5.8 Final Check

- Use the drive to format and backup a blank diskette.
- 2. Check the diskette in a known good drive.

FIGURE 5-14. UPPER ARM AND CARRIAGE

LOGIC BOARD (COMPONENT SIDE)

COMPONENT LOCATION, LOGIC/SERVO PC BOARD #995050001

PARTS LIST Logic/Servo Controller Board #995050001

Symbol	Description	Manufacturer's Part Number	Radio Shack Part Number
	PC Board (Rev C)		105050 -001
	CAPACITORS	3	
C1	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610 250001-233
C2	$0.1 \mu F$, 100 VDC, Polyester $0.1 \mu F$, 100 VDC, Polyester	ACC302KLGP	250001-233
C3 C4	Not Used	ACC302KLGP	2500017255
C5	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C6	0.47 µF, 50 V, Z5U, Radial	ACC474ZJCP	250001-647
C7	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C8	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C9	0.47μ F, 50V , Z5U , Radial	ACC474ZJCP	250001 - 647
C10	68 pF, 50 V, Radial	ACC680KJCP	250001-068
C11	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C12	$0.1\mu\text{F}$, 50V , $Z5U$, Radial	ACC104ZJCF	250002-610
C13	330 pF, 50 V, Radial	ACC331KJCP	250001-133
C14	$0.47~\mu\text{F}$, $50~ extsf{V}$, $Z5U$, Radial	ACC474ZJCP	250001 - 647
C15	10 μ F, 16 V, Electrolytic, Axial	ACC106WDAA	261002-410
C16	10 μ F, 16 V, Electrolytic, Axial	ACC106WDAA	261002-410
C17	470 pF, 50 V, Radial	ACC471KJCP	250001-147
C18	3300 pF, 100 V, Polyester	ACC302KLGP	250001-233
C19	10 μ F, 16 V, Electrolytic, Axial	ACC106WDAA	261002-410
C20	10 μ F, 16 V, Electrolytic, Axial	ACC106WDAA	251002-410
C21	470 pF, 50 V, Radial	ACC471KJCP	250001 - 147
C22	$0.01 \mu\text{F}$, 63 V, Axial	ACC103KJHA	250102-210
C23	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C24	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C25	10 μF, 16 V, Electrolytic, Axial	ACC106WDAA	261002-410
C26 C27	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C27 C28	10 μ F, 16 V, Electrolytic, Axial	ACC106WDAA ACC223KJCA	261002-410 250002-722
C29	$0.022 \mu\text{F}$, 50 V, Axial $0.1 \mu\text{F}$, 100 VDC, Polyester	ACC104JLGP	251002-722
C30	10 μF, 16 V, Electrolytic, Axial	ACC1043LGF ACC106WDAA	261002-410
C31	$0.1 \mu F$, 50 V , Z5U, Radial	ACC100VDAA	250002-410
C32	$0.1 \mu\text{F}$, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C33	10 μF, 16 V, Electrolytic, Axial	ACC106WDAA	261002-410
C34	0.1 μF, 50 V, Z5U, Radial	ACC104ZJCF	250002-610
C35	100 μF, 16 V, Electrolytic, Axial	ACC107WDAA	261002-310
C36	$100 \mu F$, $16 V$, Electrolytic, Axial	ACC107WDAA	261002-310
C37	10 μF, 16 V, Electrolytic, Axial	ACC106WDAA	261002-410
C38	$0.1\mu\text{F}$, 50V , $Z5U$, Radial	ACC104ZJCF	250002-610
C39	330 pF, 50 V, Radial	ACC331KJCP	250001 - 133
	CONNECTORS	S	
14			0.1.00=======
J1	Header, 5-pin, Right Angle	AJ6815	312000-005
J2	On PC Board	A 17040	210000 000
J3	Header, 23-pin Right Angle	AJ7049	312000-023
J4 15	Housing, 4-pin, PC Mount, Power	ART2738	313000-004
J5	Header, 5-pin, Right Angle	AJ6815	312000-005

PARTS LIST (Cont'd) Logic/Servo Controller Board #995050001

Symbol	Description	Manufacturer's Part Number	Radio Shack Part Number
	DIODE		
CR1	1N5240B, 10%, Zener	ADX1582	600008-001
	INDUCTORS		
L.1 L2 L3 L4	390 μ H, 10%, Axial 390 μ H, 10%, Axial 5.6 μ H, 10%, Axial 5.6 μ H, Axial	ACA8058 ACA8058 ACA8194 ACA8194	461391-010 461391-010 461506-010 461506-010
	INTEGRATED CIRCU	IITS	
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11	74LS123 MC3470 74LS74 74LS26 7438 74LS11 74LS86 LM2917 74LS14 74LS14 74LS74 ULN2003A	AMX3803 AMX4467 AMX3558 AMX4522 AMX3683 AMX3554 AMX3701 AMX4181 AMX3716 AMX3716 AMX3716 AMX3558 AMX3558	610002-123 610010-470 610002-074 610002-026 610002-038 610002-011 610002-086 610020-917 610002-014 610002-014 610002-074 610010-413
	RESISTORS		
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14	62 ohms, 1/2 W, 5% 11 K, 1/4 W, 2% 24 K, 1/4 W, 2% 10 K, 1/4 W, 5% 2.2 K, 1/4 W, 5% 2.2 K, 1/4 W, 5% 4.7 K, 1/4 W, 5% 475 ohms, 1/4 W, 1% 330 ohms, 1/4 W, 2% 475 ohms, 1/4 W, 1% 768 ohms, 1/4 W, 1% 768 ohms, 1/4 W, 1% Not Used 1 K, 1/4 W, 5%	AN0110EFC AN0285CEE AN0526CEE AN0281EEC AN0216EEC AN0216EEC AN0247EEC AN0627BEE AN0159CEE AN0627BEE AN0572BEE AN0572BEE AN0572BEE	550003-062 540300-113 540300-243 550001-310 550001-222 550001-227 540104-750 540303-303 540104-750 540107-680 540107-680
R17 R18 R19 R20 R21 R22 R23	1 K, 1/4 W, 5% 470 ohms, 1/4 W, 5% 470 ohms, 1/4 W, 5% 1 K, 1/4 W, 5% 1.8 K, 1/4 W, 2% 50 K, Trimmer, 20% 10 K, 1/4 W, 5%	AN0196EEC AN0169EEC AN0169EEC AN0196EEC AN0210CEE AP7211 AN0281EEC	550001 - 210 550001 - 147 550001 - 147 550001 - 210 540300 - 182 560150 - 302 550001 - 310

PARTS LIST (Cont'd) Logic/Servo Controller Board #995050001

Symbol	Description	Manufacturer's Part Number	Radio Shack Part Number
R24	Not Used	***************************************	
R25	10 K, 1/4 W, 5%	AN0281EEC	550001-310
R26	240 ohms, 1/4 W, 5%	AN0151EEC	550001-124
R27	240 ohms, 1/4 W, 5%	AN0151EEC	550001-124
R28	Not Used	A	
R29	1 K, 1/4 W, 5%	AN0196EEC	550001-210
R30	1 K, 1/4 W, 5%	AN0196EEC	550001-210
R31	1 K, 1/4 W, 5%	AN0196EEC	550001-210
R32	0 ohms	AJ6814	550000-001
R33	3.3 K, 1/4 W, 2%	AN0230CEE	540300-332
R34	1 K, 1/4 W, 5%	AN0196EEC	550001 - 210
R35	150 K, 1/4 W, 2%	AN0384CEE	540301-503
R36	470 ohms, 1/4 W, 5%	AN0169EEC	550001-147
R37	1 M, 1/4 W, 5%	AN0445EEC	550001-510
R38	3.3 K, 1/4 W, 2%	AN0230CEE	540300-332
R39	470 ohms, 1/4 W, 5%	AN0169EEC	550001-147
R40	1 M, 1/4 W, 5%	AN0445EEC	550001-510
R41	10 K, 1/4 W, 5%	AN0281EEC	550001-310
R42	1.5 K, 1/4 W, 5%	AN0206EEC	550001-215
R43	150 ohms, 1/4 W, 5%	AN0384CEE	540301-503
R44	10 ohms, 1/4 W, 5%	AN0063EEC	550001-010
R45	1 ohm, 1/2 W, 5%	AN0022EFC	550003-001
R46	1 K, 1/4 W, 5%	AN0196EEC	550001-210
R47	1 K, 1/4 W, 5%	AN0196EEC	550001-210
R48	2.2 K, 1/4 W, 5%	AN0216EEC	550001-222
R49	1 K, 1/4 W, 5%	AN0196EEC	550001-210
R50	20 K, 1/4 W, 5%	AN0306EEC	550001-320
R51	150 ohms, 6-pin SIP	ARX0241	570004-001
R52	56 ohms, 1/4 W, 5%	AN0013EEC	550001-056
R53	150 ohms, 1/4 W, 5%	AN0142EEC	550001 -151
R54	1 K, Trimmer, 10%	AP7210	561501 - 301
R55	2.2 K, 1/4 W, 5%	AN0216EEC	550001-222
R56	150 ohms, 1/4 W, 5%	AN0142EEC	550001-151
	TRANSISTO	ORS	
Q1	MPS3906	AMX3584	630007-001
Q2	MPS3906	AMX3584	630007 -001
Q3	MPS3906	AMX3584	630007 -001
Q4	MPS2907	AMX4187	630008-907
Q5	2N5460, FET	AMX4782	630006-001
Q6	2N5460, FET	AMX4782	630006-001
Q7	TIP110, Power	AMX4331	630003 110
Q8	2N4124	AMX4178	630002-001
Q9	2N4124	AMX4178	630002-001
			333302 331

PARTS LIST (Cont'd) Logic/Servo Controller Board #995050001

Symbol	Description	Manufacturer's Part Number	Radio Shack Part Number
	MISCELLANEOUS	5	
TP1	Staking Pin	AHB9682	310024-001
TP2	Staking Pin	AHB9682	310024-001
TP3	Not Used	***************************************	
TP4	Not Used		
TP5	Staking Pin	AHB9682	310024-001
TP11	Staking Pin	AHB9682	310024-001
(Q7)	Heat Sink, TO220		405351-001
(Q7)	Screw, 4-40 x 3/8", Phillips	AHD2249	411351-406
(Q7)	Nut, 4-40	AHD7227	410020-001
(R51)	Socket, 6-pin, SIP	AJ7048	311500-006

Parts List, Mini-Disk Drive Assembly #8790112 (TPI #01-0053-001)

			= = = = = = = = = = = = = = = = = = =	name was water water water
Item	Quan	Mfg.Part No.	Description	RS PN
1	1	995010603	Front Panel Assembly	
2	ī	105310001	Carriage Module	
3	ī	995015003	Left Hand Guide Rail Assembly	
4	1	105157001	Right Hand Guide	8852023
5	ī	400007001	Nut Plate, #2-56	
6	ī	995223003	Write Protect Switch Assembly	8852017
7	ī	995103011	Index Assembly (two parts)	
8	ī	995111003	Timing Pulley Assembly	
9	ī	105324001	Spring, Module Bias	
10	ī	105166001	Cone, Thrust	
11	ī	105626001	Spring, Cone Release	
12	l	105155001	Expander	
13	1	450007001	Belt, Drive	8852018
14	1	995102003	Drive Motor Assembly	8852015
15	1	450004001	Bearing, Cone	
16	1	105626002	Spring, Cone	
17	1	105304001	Spacer, Cone	
18	1	400009001	Washer, Shoulder	
19	1	995222003	Track 00 Switch Assembly	8852016
20	2	105333001	Shaft, Carriage	8852065
21		400014001	Washer, Nylon	
22	1.	105355001	Chassis	
23	1	995101003	Hub & Shaft Assembly	
24	1	105331001	Cone, Shaft	0050050
25	1	400006001	E-Ring, .147" Shaft	8852050
26	1		Latch Plate Assembly	
	1	105002001	. Latch Plate	
	1	105027001	. Hinge, Latch Plate	
	1	105320001	. Latch Inhibitor	
	1	105360001	. Brass Pin	0052062
27	1	105901001	Foam Tape Strip	8852063
28	2	105322001	Spring, Cone Lever	
29	1	105356001	Lever, Cone	
30	5	310016001	Connector, 4-Hole Molex	
	1	310015001	Connector, 5-Hole Molex	0052046
	_	310017001	. Terminal Pin	8852046
31	1	995324001	Upper Arm Assembly	8852044
32	1	995234001	Head Carriage Assembly	8852031 8852032
33	1	105330001	Drive Band	8852064
34	1	105336001	Clamp, Shaft	0032004
35	1	105312001	Pulley, Stepper	8852047
36	1	105313001	Collar	000204/
37	1	105335001	Track 00 Stop Clamp	8852058
38	1	105314001	Cam Screw, Carriage Module	0032030
39	1	995050001	Logic/Servo PCB Assembly	

Parts List, Mini-Disk Drive Assembly #8790112
(TPI #01-0053-001)

		Mfg.Part No.	-	RS PN
	2		Rivet, Plastic	
41	2	409545632	Clip, Tinnerman	
42	1	995304001	Stepper Motor Assembly	
43	1	995304001 310018001 410002007 410024001 410038001	Ground Lug	
44	3	410002007	Screw, $\#6-32 \times .375$ "	
45	3	410024001	Washer, #6 Flat	
46	1	410038001	Screw, #2-56 x 7/16"	
47	4	410024001	Washer, #2 Flat	
48	1 3	410009001	Screw, #6-32 x 3/8"	
49	3	417323208	Screw, #2-56 x 1/2"	
50	2	400001004 410008001	Screw, #6 Hex Head	
51	4	410008001	Screw, $\#6-32 \times 1/4"$	
52	1	400011001	E-Ring, Cam Screw	
53	1	410012001	Screw, $\#8-32 \times 1/4"$	8852056
54	1	410006042	Washer, #8 Split Lock	
55	2	410008001	Screw, $\#6-32 \times 1/4"$	
56	2	419351605	Screw, $\#6-32 \times 5/16$ "	
57	2	410013001	Screw, $#4-40 \times 3/16$ "	
58		410021001	Nut, #2-56	
59	2	414310605	Screw, #6-32 x .312"	
60		400188225	Washer, #2 Flat	
61	2	410001007	Screw, #2-56 x .312"	
62	2 2	404351001	Washer, #4 Starlock	
63	2	410020001	Nut, #4 x .245" AF	
64	2	410011001	Screw, $\#6-32 \times 3/16$ "	

. .

SECTION VI POWER SUPPLY

6.1 POWER SUPPLY #8790021, 38W (ASTEC #AA11320)

6.1.1 General

One of the power supplies used in the Model 4 is a 38W switching mode power supply utilizing the flyback method of power conversion. This supply has built-in EMI filter and has over-voltage and over-current protection as well as regulation over line and load variations.

6.1.2 Theory Of Operation

PRIMARY

Power is taken from a 115 volt AC line. A UL approved fusable resistor, R25, limits inrush current as well as acting as a system fuse. The AC current is taken through an EMI filter which suppresses power supply and system noise that would otherwise be reflected back into the power lines.

After the EMI filter, the signal goes to a full-wave bridge rectifier (DB1) then into a capacitive input filter. The combination of these last two items produces a 165 volt DC B+ line from which a DC-DC converter is run.

The DC-DC converter consists of a transistor (Q2) which is used to chop the B+ line at approximately 20 kHz. D2, R9, C8, C9, and D3 are all part of a snubber network designed to protect Q2 as well as suppress ringing which would contribute to line conducted EMI.

SECONDARY

When the power transistor (Q2) is 'ON', energy is stored in the core of the power transformer (T2). The secondary windings are polarized so that the output rectifiers do not conduct while Q2 is ON. When Q2 turns 'OFF', it causes the transformer to 'flyback' which causes the polarity on the output windings of T2 to reverse, allowing the output rectifiers to conduct and deliver energy to the output and output capacitors.

A pi filter consisting of capacitors on either side of a series filter choke is used to smooth the output waveform, deliver energy during the ON time, and reduce ripple.

FEEDBACK AND CONTROL

On this power supply the only regulated voltage is the +5 volt output. The +12 volt and -12 volt outputs are simply additional secondary windings stacked on top of the +5 volt winding. They track the +5 voltage close enough to provide sufficient regulation to run the circuitry requiring +12 or -12 volts.

The +5 volt output is fed into an error amplifier which compares it to a reference voltage. The output of this amplifier is fed into a control circuit which is magnetically coupled through T1 to the turn-off circuit. This output also controls the ON time of Q2 providing voltage regulation by variations of the duty-cycle.

OVERVOLTAGE PROTECTION

If a failure in the power supply causes the outputs to rise uncontrolled past a specified voltage limit, the power supply will automatically shut down. This is done by sensing the +5 volt output via a Zener diode. When the voltage limit is reached, the SCR is triggered and shorts the +12 volt output to ground. A short on any output will cause the supply to foldback and shut down.

PARTS LIST, POWER SUPPLY #8790021 (ASTEC #AA11320)

SYMBOL	DESCRIPTION		
	CAPACITORS		INTEGRATED CIRCUIT
C1	2200pF, 250VAC, metallized paper	IC1	Regulator
C2	0.01µF, 1KV, ceramic		DECICTORS
C3	2200pF, 250VAC, metallized paper		RESISTORS
C4	0.22μ F, 100V, polyester	R1	47 ohm, 5%, metal oxide film
C5 C6	47μF, 250V, electrolytic 100μF, 250V, electrolytic	R2	150K, 5%, carbon film
C7	$220\mu\text{F}$, 10V , electrolytic	R3	1K, 5%, carbon film
C8	4500pF, 1KV, ceramic	R4	Not used
C9	0.01μF, 1KV, ceramic	R5	82 ohm, 5%, carbon film
C10	$0.22\mu\text{F}$, 100V, polyester	R6	27 ohm, 5%, carbon film
C11	1000µF, 25V, electrolytic	R7	3.3 ohm, 5%, carbon film
C12	$1000\mu\text{F}$, 25V, electrolytic	R8	10 ohm, 5%, carbon film
C13	$1000\mu\text{F}$, 25V, electrolytic	R9	27 ohm, 5%, metal oxide film
C14	330μF, 16V, electrolytic	R10	75 ohm, 5%, 1W, metal film
C15	2200μF, 16V, electrolytic	R11	270 ohm, 5%, carbon film
C16	330μF, 16V, electrolytic	R12	82 ohm, 5%, carbon film
C17	$470\mu\text{F}$, 25V , electrolytic	R13	270 ohm, 5%, carbon film
C18	$0.022\mu\text{F}$, 50V , polyester	R14	8.2 ohm, 5%, carbon film
C19	$0.22\mu\text{F}$, 100V , polyester	R15	560 ohm, 5%, carbon film
C20	3900pF, 400VAC, ceramic	R16	56 ohm, 5%, carbon film
C21	0.1μ F, 250V AC, metallized	R17	56 ohm, 5%, carbon film
		R18	12K, 5%, carbon film
	DIODES	R19	12 ohm, 5%, carbon film
		R20	470 ohm, 5%, carbon film
D1	RGP10A, rectifier	R21	2.7K, 2%, metal film
D2	RGP10D, rectifier	R22	2.7K, 2%, metal film
D3	RGP10J, rectifier	R23	68K, 5%, carbon film
D4	Rectifier assembly	R24	220 ohm, 5%, 1W, metal oxide film
D5	Rectifier assembly	R25	2 ohm, 5%, fusing metal film
D6	Rectifier assembly	R26	22K, 5%, carbon film
D7	RGP15B, rectifier	SCR1	SCR C122F
D8	1N4606, silicon		TD 441050 D14500
D9	1N4606, silicon		TRANSFORMERS
D10	1N4606, silicon		
DB1	W06, bridge rectifier	T1	Control assembly
Z1	5.6V , 5% , 1W , zener	Т2	Power assembly
	INDUCTORS		TRANSISTORS
L1	Common mode choke assembly	Q1	PE8050B
L2	Base choke	Ω2	Transistor assembly
L3	1.5mH, choke	Q3	PE8550B
L4	Choke coil assembly		
L5	Choke coil assembly		
L6	Choke coil		

6.2 Power Supply #8790043, 65 Watt (Astec AA12090)

6.2.1 Test Set-Up

A. Equipment Needed

- Isolation Transformer (minimum of 500 VA rating).
 Dangerously high voltages are present in this power supply. So, for the safety of the individual doing the testing, please use an isolation transformer. The 500 VA rating is needed to keep the AC waveform from being clipped off at the peaks. These power supplies have peak charging capacitors and draw full power at the peak of the AC waveform.
- 0-140 V Variable Transformer (Variac). Used to vary input voltage. Recommend 10 amp. 1.4 KVA rating minimum.
- Voltage meter Needed to measure DC voltages to 50 VDC and AC voltages to 200 VAC. Recommend two digital multimeters.
- 4. Oscilloscope Need x10 and x100 probes.
- Load board with connectors See Table 6-1 for values of loads required. The entry on the table for safe load power is the minimum power rating for the load resistors used.
- 6. Ohmmeter.

B. Set-Up Procedure

Set up test equipment as shown in Figure 1. You will want to monitor the input voltage and the output voltage of the regulated bus, which is the +5V output, with DVM's. Also monitor the +5V output with the oscilloscope using 50mv/div sensitivity. The DVM monitoring the +5V output can also be used to check the other outputs. See the **No Output** section for test points within power supply.

Figure 6-1. Test Set-Up

6.2.2 Visual Inspection

Check power supply for any broken, burned, or obviously damaged components. Visually check fuse, if any question check with ohmmeter.

6.2.3 Start-Up

Load power supply with minimum load as specified in Table I. Bring power up slowly with variable Transformer while monitoring +5V output with scope and DVM. Supply should start with approximately 40-60 VAC applied and should regulate when 90 VAC is reached. If output has reached +5 volts, refer to the **Performance Test** section. If there is no output, refer to the **No Output** section.

6.2.4 No Output

General

If the power supply does not produce an output with the AC input applied to the L and N connections and the power switch ON, one or more components have failed. A no-output-fault condition is most likely caused by a shorted/open component on the primary side but may also be caused by a short on the secondary. To determine this, follow the steps below.

A. Check Fuse:

If fuse is blown, replace but do not apply power until cause of failure is found.

B. Preliminary Check on Major Primary Components:

Check Diode Bridge (DB1), Power Transistor (Q2) and Catch Diode (D3) for shorted junctions. If any component is found shorted, replace.

C. Primary Check on Major Secondary Components

Using Ohmmeter from output common to each output, with output loads disconnected, check for shorted rectifiers or capacitors. If +12V output is shorted, also check crowbar SCR (SCRI).

D. Check B+ with the Fuse Intact

Connect power supply as in Figure 1 and attach x100 scope probe ground to the anode of D1. Slowly turn up power and check for B+ on end of R14 nearest the transformer. With input at 95 VAC, this point should be between 260 and 270 VDC. If this is not correct, check resistor and DB1.

If R14 is open it was most likely caused by a shorted component that is fed power by R14. Check the following components for proper operation (Q2, Q1, D1, D3).

E. Check Q2 Waveforms

Using x100 probe on Q2 heat sink, check collector waveform. Transistor should be switching, correct waveform is shown in Figure 2.

If this is not present check for open junctions on Ω 2. If Ω 2 is ok, check to see if base voltage is being supplied to Ω 2, it should be 0.7 volts. If it is not present, check components (L3, Ω 1, D1, and R4).

6.2.5 Low Outputs

A. All outputs are Low

If all outputs are low at the same time, check to ensure that the voltage selection jumper is in the proper position.

B. +5V and +12V (V3) Outputs

The power supply regulates off of the +5V and +12V (V3) outputs. If these outputs are low, it could cause the others to be low. If so, adjust +5V and +12V (V3) outputs by removing or adding R27 and R28.

C. Rectifier Check

If any one output is not present, first check the rectifier associated with that output and then the rest of the components in the circuit and the solder joints on the PCB.

6.2.6 Crowbar

If the crowbar is not operating, check Z1 and SCR1. If the crowbar is not triggering within the specified limits, change Z1.

50 V/DIV 5 μsec/DIV

Input - 120VAC Loads - +5 @ 2A +12 @ 1A -12 @ 0.1A 1.0 V/DIV 5 *µ*sec/DIV

Input and Loads same as above.

Figure 6-2. Q2 Collector Waveform

Figure 5-3. Q2 Base Waveform

6.2.7 Performance Test

Each of these test conditions should be set up and noted to be within the limits specified in Table 6-2.

Step	Input	+5V Load	+12V(V2)	+12V(V3)	-12V
1	90VAC	Max	Max	Max	Max
2	132	Max	Max	Max	Max
3	120	Max	Min	Min	Min
4	120	Min	Min	Max	Min
5	132	Min	Min	Min	Min
6	Te	st Crowbar	Limits.		

If the power supply does not pass the above tests, refer to Section 6.2.4 and 6.2.5.

Table 6-1. Load Board Values

			Safe			
Output	Min Load	Load Resistance	Load Power	Max Load	Load Resistance	Load Power
+5V	1.35A	3.7 ohms	12.5W	4.0A	1.25 ohms	50W
+12V-V2	2 0.40A	30 ohms	10 W	2.1A	5.7 ohms	50W
+12V-V3	0.60A	20 ohms	15 W	1.5A	8 ohms	35W
-12V	ОА	1K ohms	1 W	0.1A	120 ohms	3W

Table 6-2. Voltage and Ripple Specifications

1 415	Table 0-2. Voltage and Tripple Specifications			
Output	Min	Max	Ripple (Max RP)	
+5V	5V	5.25	50 MV	
+12V	11.40V	12.60V	120 MV	
+12V	11.40V	12.60V	120 MV	
-12V	-11.40V	-12.60V	120 MV	
Pin Assignr	nents			
AC Input:				
TB1				
Pin 1	Line			
Pin 2	Neutral			
DC Output:				
TB2		Pin 7	V3 +12V	
Pin 1	Common	Pin 8	V1 +5V	
Pin 2	V2 +12V	Pin 9	V1 +5V	
Pin 3	Key	Pin 10	V1 +5V	
Pin 4	V4 - 12\	/ Pin 11	Common	
Pin 5	V3 +12V	Pin 12	Common	

Mating Connectors are:

V3

Pin 6

Molex Japan Co. Ltd. AC Input (housing) 5239-09 DC Output (housing) 5265-12 Pin 5167

+12V

Pin 13 Common

Parts List, Power Supply #8790043, (Astec AA12090)

Item	n Sym	Description	Mfgr's Part No.
		Capacitors	
1	Cl	0.01 ufd, $+/-$ 20%, 250VAC, MPR	068-10300010-220
2	C2	0.1 ufd, +/- 20%, 250VAC, MPR	068-10400010-220
3	C3	4700 pfd, +/- 20%, 400VAC, Ceramic	055-47220001-189
4	C4	4700 pfd, +/- 20%, 400VAC, Ceramic	055-47220001-189
5	C5	100 ufd, +/- 20%, 250V, Electro.	057-10120170-141
6	C6	47 ufd, +/- 20%, 250V, Electro.	057-47020040-192
7	C7	100 ufd, +/- 20%, 250V, Electro.	007-10120170-141
8	C8	47 ufd, +/- 20%, 250V, Electro.	057-47020040-192
9	C9	220 ufd, +/- 20%, 10V, Electro.	057-22110300-190
10 11	C10	0.01 ufd, +/- 20%, 100V, Ceramic	055-10382125-111
12	C11 C12	470 pfd, $+/-$ 20%, 3kV, Ceramic 0.01 ufd, $+/-$ 20%, 1kV, Ceramic	055-47167728-111 055-10368925-111
13	C12	0.01 ufd, +/- 20%, 1kV, Ceramic 0.01 ufd, +/- 20%, 250VAC, MPR	068-10300010-220
14	C13	0.22 ufd, +/- 10%, 100V, Polyester	058-22400240-189
15	C15	0.022 ufd, +/- 20%, 100V, Polyester	058-22300080-220
16	C16	0.22 ufd, +/- 10%, 100V, Polyester	058-22400240-189
17	C17	1000 ufd, +/- 20%, 16V, Electro.	057-10220100-192
18	C18	1000 ufd, $+/-20%$, 16V, Electro.	057-10220100-192
19	C19	1000 ufd, +/-20%, 16V, Electro.	057-10220100-192
20	C20	1000 ufd, +/- 20%, 16V, Electro.	057-10220100-192
21	C21	330 ufd, +/- 20%, 16V, Electro.	057-33120120-192
22	C22	2200 ufd, $+/-20%$, 16V, Electro.	057-22220070-192
23	C23	2200 ufd, $+/-20%$, 16V, Electro.	057-22220070-192
24	C24	2200 ufd, +/- 20%, 16V, Electro.	057-22220070-192
25	C25	330 ufd, $+/-20%$, 16V, Electro.	057-33120120-192
		Diodes	
26	Dl	RGP10B	226-10400070-118
27	D2	RGP10J	226-10400060-118
28	D3	RGP10M	226-10400100-118
29	D4	RGP15B	226-10100040-118
30	D5	1 N 4 6 0 6	212-10700210-158
31 32	D6	Heatsink Assembly	853-60200650-000
3 2 3 3	D7 D8	Heatsink Assembly Heatsink Assembly	853-60200650-000 853-60200650-000
3 4	D8	RGP10B	226-10400070-118
35	D10	1N4606	212-10700210-158
36	D11	1N4606	212-10700210-158
37	D12	1N4001GP	226-10400080-118
38	z_1	Zener, 5.6V, +/-5% @ 40mA	222-56086002-148
39	DBl	Bridge Rectifier KBP10	226-30500010-118
		Fuse	
40	F1	Fuse 2.5A, 250V, 3AG	084-00200060-217

Parts List, Power Supply #8790043, (Astec AAl2090)

Item	Sym	Description	Mfgr's Part No.	
		Inductors		
41	Ll	Toroid	024-00000110-484	
42	L2	Toroid	124-00000110-484	
43	L3	Base Choke 2.2 uH	328-00100030-124	
44	L4	Choke 1.5 mH	328-00100010-124	
45	L5	Choke Coil	852-20100180-264	
46	L6	Choke Coil	852-20100180-264	
47	L7	Filter Choke Coil	852-10100370-264	
		Resistors		
48	Rl	4 ohm, $+/-$ 10%, Thermister	258-40970015-152	
49	R2	4 ohm, +/- 10%, Thermister	258-40970015-152	
50	R3	100K ohm, +/- 5%, lW, Metal Film	247-10036054-156	
51	R4	100K ohm, +/-5%, lW, Metal Film	247-10036054-156 248-33006063-189	
52 53	R5	33 ohm, +/-5%, 2W, Metal Oxide Film 820 ohm, +/-5%, l/4W, Carbon Film	240-82106022-152	
54	R6 R7	5.6 ohm, $+/-5%$, $1/4W$, Carbon Film	240-56906022-152	
55	R8	47 ohm, +/- 5%, 1/4W, Carbon Film	240-47006022-152	
56	R9	5.6 ohm, +/- 5%, 1/4W, Carbon Film	240-56906022-152	
57	R10	10 ohm, \pm 5%, \pm 1/4W, Carbon Film	240-10006022-152	
58	Rll	0.47 ohm, +/-5%, lW, Metal Film	247-04786054-156	
59	R12	5.6 ohm, $+/-$ 5%, $1/4$ W, Carbon Film	240-56906022-152	
60	R13	120 ohm, $+/-5%$, lW, Metal Oxide Film	248-12106052-189	
61	R14	l ohm, +/- 5%, lW, Metal Film	247-10086054-156	
62	R15	39 ohm, +/-5%, 1/4W, Carbon Film	240-39006022-152	
63	R16	270 ohm, +/-5%, 1/2W, Carbon Film	240-27106033-152 240-27106033-152	
64 65	R17 R18	270 ohm, $+/-5%$, $1/2W$, Carbon Film 8.2 ohm, $+/-5%$, $1/4W$, Carbon Film	240-27100033-132	
66	R19	330 ohm, +/-5%, 1/4W, Carbon Film	240-33106022-152	
67	R20	56 ohm, +/-5%, 1/4W, Carbon Film	240-56006022-152	
68	R21	56 ohm, $\pm \sqrt{-5}$ %, $\pm \sqrt{4}$ W, Carbon Film	240-56006022-152	
69	R22	12K ohm, $+/-5%$, $1/4W$, Carbon Film	240-12306022-152	
70	R23	470 ohm, $\pm/-5\%$, $1/4\%$, Carbon Film	240-47106022-152	
71	R24	4.7K ohm, $+/-2%$, $1/4W$, Metal Film	247-47015022-189	
72	R25	22K ohm, $+/-2%$, $1/4W$, Metal Film	247-22025022-189	
73	R26	2.7K ohm, $+/-1$ %, $1/4$ W, Metal Film	247-27014022-189	
74	R27		240-10406022-152	
75	R28	100K ohm, +/-5%, 1/4W, Carbon Film	240-10406022-152	
76	R29	12 ohm, $+/-5%$, $1/4W$, Carbon Film	240-12006022-152	
Transformers				
77	T1	Common Mode	852-20200120-264	
78	T2	Power	852-10201340-000	
79	Т3	Control	852-10201510-000	

Parts List, Power Supply #8790043, (Astec AA12090)

Item	ı Sym	Description	Mfgr's Part No.	
Transistors				
80	Ql	NPN, SD467	209-11700460-120	
81	Q2	NPN, 2SC1358	209-30200020-143	
82	Q3	PNP, SB561	210-11700350-120	
83	Q4	Intergrated Circuit, TL431CLP	211-10800100-176	

6.3 Power Supply #8790049, 65 Watt

6.3.1 System Description

Basic Principle

A switching power supply circuit employs a high-speed semiconductor switch to control the storage and release of electrical energy in an inductor and provide regulated DC output voltages with a minimum loss of energy in heat-dissipating elements. There are several schemes for achieving this result which differ primarily in the arrangement of the basic circuit elements. These elements include a switch, an inductor, a rectifier, a capacitor and a DC voltage source.

An arrangement well-suited for economical power supplies with rated power outputs under 100 watts is the FLYBACK CONVERTER shown in Figure 6-4. The waveforms in Figure 6-5 are used to describe the operation of the Flyback Converter circuit. For the purpose of this discussion we will assume that the duration of the "ON" time equals the duration of the "OFF" time.

Figure 6-4. Basic Flyback Converter

When the switch is closed (ON) at time ta, Vin is impressed across the primary winding of inductor L and the current Isw increases linearly from zero until the switch opens (OFF) at time tb. Note that Isec is zero while the switch is closed. This is because Vsec is negative with respect to Vo thus reverse-biasing diode D. Note that Vsw is also zero while the switch is closed.

When the switch opens at time tb, the magnetic field of L instantly collapses and reverses polarity. At this moment, Vsw is equal to Vin plus the voltage across L just before the switch opened (also equal to Vin). Therefore, at the instant the magnetic field reverses polarity, Vsw = 2Vin.

During the interval when the switch is open (tb to tc), the secondary voltage, Vsec, is a replica of the primary voltage Vsw. Diode D is now forward biased due to the polarity of the inductor windings and because the turns ratio, n, is such that:

Vsec x n > Vo

This biasing replenishes the charge in capacitor C that was delivered to the load R during the ta-tb interval. This is the "flyback" interval and is so named because the inductor releases the energy stored in its magnetic field while the switch is OFF.

Several other facts are illustrated by the waveforms of Figure 6-5. First, the voltage across the switch Vsw decays exponentially from 2Vin to Vin during the "OFF" interval. This is because the inductor and the switch timing are adjusted to transfer all of the energy that was stored in the inductor while the switch was ON, into the secondary while the switch is OFF. (Observe that Isec DECREASES linearly with time to zero at the end of the "OFF" time period.) This is known as resetting the core. Thus, at time to when the switch is ready to turn on again, the DC input voltage Vin is again available to charge the inductor. Also at this time, all currents in the inductor are zero.

Second, since we have assumed that Isw increases linearly with time and that the ON and OFF time periods are equal (50% duty cycle), the average current in the primary, Isw (av), is 1/4 the peak current Isw. Also, the average current in the secondary, which is equal to the load current Io, is 1/4 the peak current in the secondary.

Third, the turns ratio is set by the ratio of the average primary voltage (Vsw) over a full cycle at its lowest value to the maximum permissible output voltage, Vo. The lowest Vsw value occurs at low AC line and maximum output load. In practice, the actual turns ratio, the ratio of peak-to-average voltages and currents, and the duty cycle may be adjusted to compensate for circuit losses.

Fourth, notice the ringing or oscillation that appears on the peak portion of Vsw and Vsec. This oscillation occurs at the resonant frequency of the leakage inductance of the inductor L and the parasitic capacitance of the circuit. The parasitic capacitance includes the interwinding capacitance of the inductor and stray capacitance of the switch. If this oscillation is not damped by a suitable means, the peak voltages may easily exceed the breakdown rating of the switch or the insulation in the inductor.

Figure 6-5. Waveforms for Figure 6-4.

Block Diagram

The basic circuit illustrated in Figure 6-4 can be divided into three functional blocks: Input DC supply, primary, and secondary. To make use of this model, we need to expand it to provide control for the switch timing and to include sufficient circuitry to satisfy performance and reliability specifications. The complete block diagram is shown in Figure 6-6.

Figure 6-6. Block Diagram

The other blocks provide additional output voltages, add safety or protective features, reduce circuit noise, and develop signals for use by the control section. The control section continuously operates the bipolar transistor switch and varies the proportion of ON time to OFF time in response to changes in AC input line voltage or output load current. This is accomplished by feeding back a signal from the output terminals that instructs the control section to increase or decrease the ON time to compensate for a change in the output voltage.

The DC voltage supply to the control section is controlled by the latch circuit when AC power is first applied to the power supply. A built-in timing circuit allows the input DC supply filter capacitor to become fully charged before power is applied to the control section. After the control section circuit starts and secondary voltages reach their regulated output levels, the auxiliary power supply provides the required DC voltage to operate the control section. The latch is reset when the current limit or under-voltage sensors operate, thus removing DC voltage to the Control IC.

There are four secondary or output voltages in addition to the auxiliary supply: +5.05 volt, +12 volt CRT, +12 volt Disk, and -12 volt. The +5.05 and +12 DISK voltages are regulated by the control circuit response to the frequency compensated feedback control signal which comes from the load sense section. Since the load sensing occurs on the secondary side, an optional coupler circuit is necessary to provide safety isolation between the primary side common ground and the secondary side common ground.

All the secondary voltages, including the auxiliary +12 voltage, share the same magnetic flux linkage in the transformer core and are controlled by the flyback inductor. Any change in secondary load currents cause a change in the shared magnetic flux. This change in the flux of the inductor sets up an EMF (electromotive force) which causes a flux in opposition to the one which resulted from the change in load current. Thus, the original change tends to be counteracted and the current delivered to the load remains constant.

The output filters reduce the remaining ripple voltage components of the AC line and switching frequencies to levels low enough to prevent interference with the circuits operated by the supply. Switching frequency components that could be conducted out the AC input terminals are suppressed by the EMI filter to avoid interference with other equipment connected to the power line.

The overvoltage crowbar senses an abnormal rise in the +5.1 volt output and short-circuits the voltage line to the common secondary ground, thus tripping the current limiting circuit which finally shuts down the supply.

The surge limiter at the AC line input prevents the input filter capacitor in-rush current surge from exceeding component ratings or unnecessarily tripping external fuses.

6.3.2 Technical Specifications

Environment

Temperature; Operating	0° to 50° C (32° to 122° F)
Storage	-40° to 85° C (-40° to 185° F)
Humidity; Operating	85% r.h. @ 35 C (95° F) max.
Storage	95% r.h. @ 55 C (131° F) max.

Input Voltage:

90 to 135 VAC rms, 47 to 63 Hz

Input Surge Current:

48 amps max.

Efficiency:

70% min. at full load with 115 VAC rms input

Output Voltages:

V1, +5.05 VDC

V2, +12 VDC CRT

V3, +12 VDC DISK

V4, -12 VDC

Output Power:

continuous 65 watts max.

Output Current:

		Load	
	Output	Min.	Max.
	V1	1.35 A	4.0 A
Condition 1	V2	0.60 A	1.5 A
(Model III use)	V3	0.40 A	2.1 A
	V4	0.005 A	0.10 A

Condition 2	V1	2.5 A	5.0 A
(Hard Disk use)	V3	0.75 A	2.0 A*
	V/A	0 005 A	0 10 Δ

*NOTE: V2 and V3 connect in parallel to provide the V3 output. The V3 output will support a 5.0 A peak load which decays to 1.0 A in approx. 8 seconds. V1 and V3 must be within specified regulation when this surge decays to 4.0 A.

Output Ripple Voltage:

V1	(5.05 VDC)	50mV p-p
V2	(+12 VDC)	150mV p-p
V3	(+12 VDC)	150mV p-p
V4	(_12 VDC)	150mV p-p

NOTE: Ripple is the composite 100/120 Hz ripple due to the line, plus the high frequency ripple due to the power oscillator. Common mode noise which may be observed due to oscilloscope connections should be ignored.

Output Voltage Regulation:

After initially setting V1, output voltage tolerances under all conditions of rated line, load, and temperature should remain within the following limits:

V1	(+5.05 VDC)	+/- 3%
V2	(+12 VDC)	see *NOTE
V3	(+12 VDC)	+/- 5%
V4	(-12 VDC)	+25%, -8.3%

*NOTE:

- a) The initial value of V2 must not change by more than +/- 100mV under the following load conditions of V3:
 - A step increase in output current from 0.6 A (initial condition) to 2.4 A, decaying within 60 msec to 2.1 A.
 - A step decrease in output current from
 2.1 A (initial condition) to 0.6 A.
- b) V2 output voltage may vary +/- 5% under all other conditions of rated line, load, and temperature as defined in the specification.

Over-Current Protection:

Power supply will shut down before total power exceeds the point where damage would result. No damage will result when any output is short circuited continuously with 100 milliohms or less.

Over-Voltage Protection:

The +5.05 VDC circuit is protected with a "crowbar" circuit with a trip range of 5.8 to 6.8 VDC.

Hold-Up Time at Continuous Max Load:

Nominal Line	16 mSec minimum
Low Line	10 mSec minimum

6.3.3 Theory of Operation

The basic operating principles of a flyback converter and the necessary functional blocks to form a complete power supply were reviewed in the System Description section. In this part, the operation of each section of the circuit will be analyzed and later these sections will be connected to illustrate the signal flow in the power supply.

AC INPUT

A conventional bridge rectifier and a filter capacitor are connected directly across the AC line to provide the DC input voltage to the power supply.

An EMI filter consisting of capacitors C30-C33 and choke T2 are inserted at the input to the rectifier. This filter circuit keeps the high frequency signals generated in the power supply from being conducted into the AC power line. C30 and C31 provide a low impedance to the earth ground terminal for signals common to both hot and neutral sides of the AC line. C32 provides a low impedance dissipative path for the RF signal energy which appears across the line. T2 blocks RF signals common to both sides of the line and reflects them back toward the lower impedance elements near the rectifier. T2 also helps block differential (across the line) signals by using the EMF set up by the signal current on one side of the line to oppose the signal current flowing in the other side. C33 serves as a transient bypass capacitor to protect the power supply from large transient voltages that appear on the AC power line. C33 also improves the efficiency of the RFI filter choke T2 by terminating the line in a low impedance to absorb and dissipate any remaining differential RF energy.

R38 is a negative-temperature-coefficient-themistor which limits the turn-on surge current of the power supply filter capacitor C29. The resistance of this thermistor when "cold" is approximately 10 ohms. As the filter capacitor charges toward the peak value of the AC input voltage, it draws less current from the line. At the same time, the heating effect of the current flowing in the thermistor causes its resistance to decrease until it reaches its rated "hot" resistance of less than 1 ohm. As you can see, the thermistor dissipates very little power when the power supply is in operation. The thermistor is designed to cool rapidly enough, during power loss or turn-off, to limit the turn-on surge after only a few seconds cool-down.

The fuse, a fast acting 3.0 amp unit, is selected to ignore the short term turn-on surges, but open quickly in the event of an abnormally high current that would result from a component failure in the DC input supply or current limiting circuits.

Auxiliary Power Supply

The auxiliary power supply is operational when the main supply is on and not in a shut-down condition. This power supply consists of winding 2-3 on T1, half-wave rectifier CR4, and filter capacitor C14. The voltage output is approximately +15 volts under normal conditions but momentarily reaches about +31 volts during start-up.

Kick Start Latch

Start up of the circuit is initiated by the kick start latch. This latch is shown in simplified form in Figure 5a along with the accompanying waveforms in Figure 5b. When power is applied, C14 charges toward Vin = +160 volts through R26 with a time constant of approximately RC or 37.5 seconds. However, as we'll see, the kick start latch turns on in 2 or 3 seconds, the time required for the voltage across C14 to reach 30 + Vbe4 = 30.7 volts. At this point Q4 turns on and develops a bias across R21 which turns on Q5.

Figure 6-7. Input AC Supply

tl: Power applied t2: Latch turns ON

t3: C1 peak charge
t4: C1 voltage at loaded value

Vin = 160 volts

Figure 6-8. Kick-Start Latch

Referring to Figure 6-8b, as C14 dumps its charge into C1 beginning at time t2, the voltage across C14 starts to decrease toward a level that will be determined by the load composed of U1 and the base drive circuit. Notice that the voltage across C1 momentarily approaches the full 31 volts at time t3 before it drops down under load to about +15 volts at time t4.

With C1 charging rapidly through the low resistance of a saturated Q4 via Vbe5, the reference supply inside U1 develops its 5.0 volt output when the voltage across C1 exceeds about 8 volts. At this point, the supply has not quite yet started, but U1 has a DC supply at pin 10. All that remains is to start up the pulse generator so that the supply operates and replenishes the charge in C14 on each cycle, thus maintaining a DC source for U1 of about +15 volts. Completion of the start-up sequence occurs when the soft start circuit, described in the next section, has started the pulse generator.

Control Section

The control section consists of the control IC, the primary half of the feedback optocoupler U2, and the base drive circuit for the switching transistor. The control circuit IC has three major parts: an internal regulator, a pulse generator, and an error amplifier section.

The internal reference is a regulated +5.0 DC voltage. This voltage provides the reference voltages for the comparators used in the pulse generator as well as the DC supply voltage for the feedback optical coupler and the internal circuits of U1 except for its output transistors.

The pulse generator section of the control IC has four major parts: (a) sawtooth oscillator; (b) wave-shaping and output circuit; (c) regulating comparator; (d) dead-time comparator. Figure 6 illustrates the sawtooth oscillator and output circuit waveforms and the approximate levels of the DC control voltages applied by the comparators to the wave-shaping logic. The oscillator frequency is set by the values of R3 and C7 shown in Figure 7.

The amplitude of the sawtooth is set at 3.0 volts (approximately 60% of the 5.0 volt reference voltage). Whenever the sawtooth voltage, Vosc, exceeds both of the DC control voltages, Vreg and Vdt, the output circuit will be in the ON condition.

The DC control voltage, Vreg, set at a quiescent value by R6 and R9, varies in response to changes in the supply's DC output voltages as sensed by U3 and coupled through U2. Notice that these voltages will vary because of changes in output loading, AC input voltage, and also because of the residual 120 Hz ripple component from the main DC supply.

The dead-time control voltage, Vdt, is set at a constant value by R4 and R5 and ensures that the pulse generator "OFF" time will be at least 50% of the sawtooth period. This allows adequate time for the complete transfer of stored energy from the primary to the secondary of transformer T1 as discussed in the section on basic principles.

A concept known as duty cycle was introduced in earlier paragraphs. Duty cycle is defined as the ratio of the "ON" time of the sawtooth cycle to the total length of the sawtooth period. Since the sawtooth has a linear ramp characteristic, the duty cycle is also equal to:

duty cycle d =
$$\frac{\text{Vosc. pk} - \text{Vreg}}{\text{Vosc. pk}} = \frac{\text{ton}}{\text{T period}}$$

There are three possible conditions of the duty cycle:

d = 0 which occurs when either control voltage Vreg or Vdt exceeds the peak value of the sawtooth waveform Vosc

d = 50% which occurs when Vreg is less than Vdt. This happens when the loading on the output of the supply is heaviest and the AC input voltage is at its lowest permitted level (see specifications)

0 d 50% which occurs during normal operation.

The dead-time control voltage is used in one other important way. Notice the 4.7 µfd capacitor, C2, connected across R4 in Figure 6-10. When power is first applied to the supply, the voltage across the capacitor is zero. Therefore, Vdt = Vref = 5.0 volts and no pulses appear at the output because Vdt is greater than Vosc,pk. As C2 charges, Vdt decreases toward 1/2 (Vosc,pk) in a time determined by R5 and C2 as t = 5x15kohm X 4.7 μ fd = 1/3 second. As Vdt decreases past Vosc, pk, very narrow pulses begin appearing at pin 8 of U1. The pulses become successively wider until Vdt is less than Vreg. C2 continues charging until Vdt reaches the final correct value of about 1.5 volts. This action provides the soft start feature of the power supply and allows sufficient time for the DC input supply and latch to reach normal operating conditions before the supply is started. In effect, the load is connected to the supply gradually by the soft start circuit.

Frequency stability of the sawtooth oscillator is provided by the 2% tolerance and polyester construction of the timing capacitor, C7, and the 100 parts-per-million temperature stability and 1% tolerance of R3. Voltage stability of the DC control voltages is provided by the \pm 1/2 percent stability of the 5.0 volt reference.

The control section consists of two error amplifiers in U1, the primary half of U2, and associated circuitry shown in Figure 6-10. One of the error amplifiers serves as a regulator or pulsewidth modulator which derives the DC control voltage, Vreg, from the signal voltage developed across R7 by the current in U2.

Figure 6-9. Oscillator, Pulse Generator Waveforms

Figure 6-10. Control Section

This current is a replica of the current developed by U3 in response to the condition of the output voltage at the +5.1v and +12v outputs. This amplifier has a gain of about 10 determined by:

$$A = \frac{R8}{R9 \parallel R6} = \frac{22k \text{ ohm}}{2.35k \text{ ohm}} = 10$$

The other error amplifier in U1 serves as a shut-down comparator. The positive terminal, pin 14, is set at the +5.0 volt reference and pin 13, the negative terminal or shut-down pin, is tied to the current limit latch. The output of this error amplifier (equal to Vreg since both error amplifier outputs are tied to the wave-shaping logic) will rapidly increase toward the +5.0 volt reference when pin 13 drops below 5.0 volts. Recall that if Vreg exceeds the peak sawtooth voltage, pulses are inhibited and the power supply shuts-down.

Base Drive

Figure 6-11 illustrates the BASE DRIVE circuitry which turns switching transistor Q7 on and off in response to the output of the pulse generator portion of U1. The "ON" circuit is shown in Figure 6-11a and the "OFF" circuit is shown in Figure 6-11b. Waveforms for these circuits appear in Figure 6-12.

The output transistor of U1 combined with Q3 forms a Darlington pair. This circuit provides the relatively large current necessary (through coupling capacitor C8) to turn on Q7. R23 limits this base current to a value large enough to turn on Q7 quickly, but not so large that it will exceed the ratings of Q3, C8, or the base emitter junction of Q7, or so large that the turn-off time of Q7 is excessive.

Figure 6-11. Base Drive Circuit

Figure 6-12. Q7 Base Voltage Waveform

As Q3 turns on, C8 charges to approximately +5 volts and Q7 is driven into saturation. Energy is stored in the primary winding of T1 as the collector current of Q7 increases or "ramps up" at a rate determined by the inductance of the transformer primary winding.

When the output transistor of U1 turns off, the emitters of Q1 and Q2 are initially at the +6 volt level determined by the charge on C8, the Vbe drop of Q7, and the drop across R37. Both base-emitter junctions of the Q1-Q2 Darlington pair are biased ON and the positive terminal of C8 is clamped to near-ground by the saturating Q1. At this point, C8 still has most of its charge and the base voltage of Q7 is approximately —4.5 volts with respect to ground.

With the strong reverse polarity provided by C8 across the base emitter junction of Ω 7, the "forward" charge stored in the junction capacitance is quickly swept out and Ω 7 is turned off. C8 continues to discharge through R24 to prepare for the next "ON" cycle. R19 limits the initial discharge of C8 while Ω 7 is turning off.

Notice the symmetry in the base drive circuit and the key role played by C8 in both the turn-on and turn-off sequences. Because of this crucial role in the circuit, this capacitor is specified as a high temperature, low-equivalent-series-resistance component.

Primary Circuit and Current Limit Shutdown

The Primary Circuit

The Primary circuit, shown in Figure 6-13a functions exactly as described earlier in the "Basic Principle" section. That is, the switch (Q7) is controlled by the base drive waveform developed by the control section.

The Snubber Circuit

Practical transformers cannot couple 100% of the stored energy from the primary to the secondary since all of the flux from the primary fails to link all the secondary turns. A circuit using this practical transformer behaves as though a small fraction of the primary inductance was not wound on the core of the transformer, but instead placed apart from the primary and in series with it. This small, separately-acting inductance does not participate in the transformer action and is called the leakage inductance.

If the resonant circuit, consisting of this leakage inductance and the stray capacitance in the adjacent circuit, has sufficient Ω (relatively low resistance losses), a damped oscillation will occur in this resonant circuit when the transistor switch opens. The peak value of this oscillation will add to the Vce = 2 x Vin which appears across the transistor switch just after turn-off.

Figure 6-13. Primary Side Protection

The combined peak Vce may exceed the transistor breakdown rating if not damped out by the action of a snubber circuit.

When Q7 turns off, the energy stored in the leakage inductance is transferred to the electric field of the total capacitance of C37 plus stray capacitance. (Since C37 capacitance is much larger than the strays, it dominates in this action and tends to limit the peak value of the Q7 turn-off voltage.) If there were no resistance in this series connection of C37-plus-parasitics and leakage inductance, they would exchange this energy back and forth indefinitely. R40 is used to damp this oscillation without excessively slowing the turn-off of Q7, thus effectively snubbing the turn-off voltage spike at the collector of Q7.

Current Limit Circuit and the Shut-Down Sequence

The current limit circuit forces the voltage level at a control pin of U1 to change to a near-zero value very quickly when the current in the transistor switch exceeds a predetermined point. It also removes the supply voltage from the control circuit and resets the kick start latch and soft-start circuits.

The current limit circuit shown in Figure 6-13c has three parts: a control bus, a detector, and a latch. The control bus supplies the operating DC voltage to the current limit circuit. It also conducts the current limit signal to control pin 13 and to the reset-point in the kick start latch circuit. Diodes CR2 and CR3 steer this signal.

The normal maximum peak current in switching transistor Q7 is 3 amps. The detector transistor Q8 is biased to turn on by the divider action of R35 and R36 whenever the Q7 peak current through R37 exceeds 4 amps. A low-pass filter, formed by R35 and C22, prevents false detections on transient signals that don't represent an over-current condition.

As soon as Q9 turns on, its collector current develops the turn-on bias for Q8 across R33, and the Q8-Q9 pair "latches" in the "ON" state until the DC source for the latch is removed. Removal of this DC source occurs when C1 discharges through CR1, thus removing DC voltage from the control IC. Notice also that the kick start latch, Q4 and Q5, is still in the "ON" state and thus provides a discharge path for C14. When the decreasing voltage across C14 is less than approximately one volt, the Q4-Q5 latch also switches off.

At this point in time, all circuits are in an OFF condition except the input DC supply. C14 now begins to re-charge toward the input DC supply to restart the power supply. If a fault remains, the kick start and current limit circuits will continue to shut-down and re-start the power supply several times per second until the fault is removed or AC power to the supply is turned-off.

Under-Voltage Lockout

The Under-Voltage Lockout, UVL, shuts down the supply whenever the AC input voltage drops below about 90 volts. This occurs when the voltage at pin 13, set by the divider action of R27 and R25, diminishes to a level below the internal reference supply of the control IC. Pulses are inhibited immediately and because the DC supply to the Control IC is no longer replenished by the auxiliary supply, it discharges toward zero.

Why is it important to shut down the supply if the input AC line drops below 90 volts? The answer will become clear when an inherent characteristic of the circuit is discussed, namely, its negative input resistance.

Imagine the situation where the supply is delivering full power to its load and the AC input voltage drops five or ten volts. The supply control circuit responds by increasing the "ON" time of the switching transistor thus increasing the average current in the primary winding. The only way the DC supply can deliver more current is to draw it from the AC line. So the negative change in AC input voltage was accompanied by a positive change in AC input current.

Another way to describe this characteristic is that the supply is a constant power device, that is:

$Pin = Vin \times Iin = constant.$

Thus if V decreases, I will increase, and vice versa. The supply will thus draw more and more current from the AC line if the AC voltage continues to decrease. In order to limit the average current to a safe value, the control circuit senses the input voltage and shuts down the supply before the AC voltage level becomes too low or the AC current input becomes too high.

Secondary Outputs

Each of the secondary windings consist of a half-wave rectifier followed by a pi filter. The input capacitor of the filter stores the charge delivered to it when the rectifier is biased ON by the polarity of the transformer winding. The inductor and the output capacitor form a low-pass filter which removes the switching frequency ripple component.

The current output of the -12 volt supply is much smaller than that of the positive voltage outputs. Because of this, the current limit circuit response is not sufficiently effective to prevent damage to the -12 volt circuit. Therefore, a three terminal regulator with its own current limiting circuit is used to protect the -12 volt output.

All of the 12 volt rectifiers are fast recovery types and the +5 volt rectifier is a Schottky type. These diodes feature high switching speeds during turn-off. Their low forward voltage drop minimizes dissipation resulting in maximum efficiency. Each of the positive outputs has a bleeder resistor.

The reason for two separate +12 volt outputs is to provide sufficient isolation between different types of loads. It is easier to regulate the +12 volts if the load which contains the DC motors in the disk drives is separated from the rest of the loads. In addition, the +12 volt "Disk" output (V3) is included in the load sense network in order to minimize the load transients which occur when the disk drives turn on and off. The supply is then better able to regulate the other +12 volt output (V2) during the severe V3 transitions.

Load Sense and Feedback Signal Development

The circuit of Figure 6-14 has three parts. In part (a), the IC's U2 and U3 are biased ON by resistors R11 and R22. These resistors also sense the changes in AC line input voltage to provide line regulation. U2A is the LED half of an optocoupler which serves to isolate the DC ground circuits of primary and secondary while coupling the AC feedback signal via optical coupling. U3 serves as both a stable DC reference voltage which the output voltages are compared against and as an error amplifier which provides the gain necessary for adequate sensitivity of the control IC to load changes.

Each of the passive components in the load sensing network is a high stability (+/-- 100ppm) part to assure stability of the network over the operating temperature range of the power supply.

Part (b) of Figure 6-14 includes the network which tailors the frequency response of the error amplifier so that it responds to low frequency change only. This network, consisting of R14/C5 and R13/C4, also determines the stability of the power supply by ensuring that the power supply control circuit has no tendency to oscillate.

Part (c) illustrates the load sensing network. Equal currents through R15 are supplied from the +12V DISK and +5.05V outputs by R29 and R30. In addition, a portion of the

transient signal occurring on the +12V CRT output (when the motors turn on or off) is fed to R15 by C17. The wiper of R15 feeds a control signal which represents the status of the current loads to the error amplifier U3. U3 amplifies and compensates it then U2 couples that control signal to U1 where it is used to vary the switching transistor (Q7) ON time to adjust the output voltages as necessary. R15 is adjustable to provide the initial set-up of the +5.05V output when it is installed in a computer.

Overvoltage Crowbar

Some of the circuits supplied by the +5 volt output are quite sensitive to voltages in excess of 7 volts. Since some circuits require both +5 and +12 volts, a failure in those circuits could apply +12 volts to the +5 volt bus and thus damage some of the +5 volt circuits. To prevent the +5 volt bus from exceeding a safe level, an SCR, Q6, is used to "crowbar" or short-circuit the +5.05-volt output to the secondary ground bus. This short circuit triggers the current limiting circuit and the supply shuts down until it tries to restart.

Referring to Figure 6-15, VR2 sets the turn-on point of the SCR and R17 develops the gate signal when VR2's Zener breakdown voltage of 5.6 volts is exceeded. C6 and R17 provide current limiting for VR2 and filter the gate signal so $\Omega6$ won't respond to transient signals.

Power Chain

In a sense we have already analyzed the power chain in the section on basic principle of operation. The base drive causes the switching transistor to turn on and off at a prescribed rate. This action alternately stores energy from the DC input in the primary inductance and releases it into the secondary through the flyback transformer action. The energy is then stored in the input filter capacitor at a voltage determined by the

Figure 6-14. Feedback Signal Development

Figure 6-15 Overvoltage Crowbar

transformer turns ratio. Notice that the turns ratio determines the ratio of collector voltage to secondary voltage, both of which are alternating voltages. The ratio of input-to-output DC voltage is determined by the duty cycle and the turns ratio together.

For example, lets look at the +5 volt output of Figure 6-16 at normal loading and approximately 120 VAC input. Under these conditions, the DC input voltage is 168 VDC and the duty cycle is approximately 40%. Thus, our average DC voltage at the switching transistor collector (or across the primary) is 40% of 168 or 67.5 volts. Dividing this average DC voltage by the turns ratio for the 5 volt secondary (54: 4 = 13.5) gives us 5.0 volts.

Figure 6-16. Power Chain

Control Chain

Imagine the load end of the feedback path disconnected from the +5.1 volt output terminal and unfolded so that the load sense network is now at the "input". The secondary rectifier (CR5) and filter (C10/C11, L1, C12) remain as the output. The circuit as it now appears, redrawn in simplified form in Figure 6-17 is known as the control chain. To see how the regulation action occurs, assume a small negative voltage change at the "input" of the feedback network and follow it through the control chain.

This negative voltage change, which would correspond to a slightly heavier load current, appears at pin 1 of U3 as a decreasing voltage. The error amplifier in U3 inverts and amplifies this signal. The positive-going output voltage of U3 at pin 3 causes less current to flow in the internal LED of U2A. A replica of this smaller current, optically coupled and induced in the phototransistor of U2B, develops a reduced voltage across R7 at the non-inverting input of the regulator error amplifier in U1.

The regulator error amplifier in U1 does not invert the signal, but further amplifies it, improving the sensitivity of the control chain to small changes at the power supply output. The regulator error amplifier output is Vreg. Since we established earlier that a negative-going Vreg increases the length of the base drive pulse, Q7 is turned on a little sooner so that it can store more energy from the AC line in the primary inductance. Finally, this increased energy is stored in the filter capacitor C10/C11 during the flyback interval and supplies the increased demand for current that resulted in the original reduction in the output voltage.

More simply stated, the control chain uses an amplified version of the output voltage CHANGE to adjust the width of the base drive pulse through the action of a control voltage at a comparator input.

Figure 6-17. Control Chain Simplified Schematic

6.3.4 Troubleshooting Chart for Power Supply #8790049, 65 Watt

Trouble	Cause	Remedy	shorted snubber capacitor or	check C37, R40
		,	resistor	
open fuse	shorted line input	check and/or replace	100.0101	
	filter capacitor	C33, C32, C31, C30	open opto-coupler	check U2
	shorted bridge	check BR1	shorted supply	check computer for
			output	short on +5V, +12V
	shorted filter	check C29, C26, R39		CRT, +12V DISK, -12V
	capacitor			outputs and clear
				shorted condition
	shorted switching	check Q7, C37,		
	transistor	R40, C26, T1 pri.,	shorted output	check CR5, CR6, CR7,
		Q3, Q1, R37	rectifier	CR8
Current	single rectifier	check and/or replace	open or shorted	check C16, C18, C25,
limit cycle	open in bridge	BR1	output	C23, C10, C11, C12,
			filter capacitor	C19, C20
	open filter	check C29	·	·
	capacitor		defective crowbar	check Q6

no pulses at pin 8 of U1, (i.e., supply shut down)	no aux. DC supply	check and/or replace CR4, C14, T1 aux.	 Apply +35 volts DC through a 120K ohm resistor and a normally closed SPST switch to U1 pin 13. Operate the switch and observe Q8 base (TP1) for loss of base drive pulses.
	no "kick start"	check R26, Q4, Q5, VR1, CR1, C1	
	no base drive	check U1, Q3, R23, C8, R24	Operational, Checks T2, U1, U2
	dead-time control	check C2, R4, R5,	APPLY AC POWER
	divider malfunction	U1 (for V ref.)	1. Apply rated maximum loading for condition 1 (Model III
	under-voltage protect	check R27, R25, C9,	use) or condition 2 (5 $1/4$ " Hard Disk use).

PWM feedback check and/or replace malfunction U1, U2, C3

09

divider malfunction

- 2. Apply 120 VAC input voltage and observe Q7 current (via loop on PCB) and voltage (at TP2). Supply should start in two to four seconds.
- 3. Observe the +5.05 volt output and adjust R15 until the output is exactly +5.05 volts DC.
- 4. Measure +12V and -12V outputs.
- 5. Check all outputs at Vin = 90 VAC and 135 VAC at:
 - (a) minimum and maximum loads
 - (b) check +12V CRT when +12V DISK varies in transient test.
- 6. Measure ripple. See Measurement Techniques below.
- 7. Measure efficiency. See Measurement Techniques below.
- 8. Test operation of current limit and over-voltage protection circuits by applying +7.0 volts to the +5 volt output.

6.3.5 Testing and Adjustments

The following tests should be performed to guarantee correct operation of the power supply after repairs have been made. The first test checks the primary circuits and is to be made without AC power applied. The second test is a complete operational test with AC power applied.

Primary, Checks T2, U1

NO AC POWER APPLIED

- Apply +35 volts DC via 3900 ohm resistor from Q5 emitter to primary side ground. Observe the voltage across C5 as it charges. As it reaches a value near +31 volts (about 2 seconds), it should drop to near +15 volts as Q5 turns on.
- Check U1 pin 8 and/or Q8 base for a base drive pulse: a 40 kHz square wave of 8 volts/4 volts amplitude respectively.

Measurement Techniques

- Ripple Unit connected to full load at low line. One end
 of 50 ohm coaxial cable connected to output terminals.
 Other end of cable (terminated with 0.01uF ceramic cap
 in series with 51 ohm resistor) connected to scope using
 BNC T-fitting. Two components at 120 Hz and 40 kHz.
- 2. Efficiency Use Diego Systems Series 200 power monitor. Efficiency = Power Out

 Power In

CIRCUIT TRACE, POWER SUPPLY PCB #8790049, SOLDER SIDE 65W (TANDY)

Parts List, Power Supply #8790049 (Tandy 65W)

		Description M.	fgr's Part No.
1	Cl	Capacitor, 10 ufd, 35V Elect Radial	8326103
2	C2	Capacitor, 4.7 ufd, 25V Elect Radial	8325470
3	C3	Capacitor, 0.047 ufd, 50/63V	8393474
4	C4	Capacitor, 0.47 ufd, 50/63V	8394474
5	C5	Capacitor, 0.068 ufd, 50/63V	8393684
6	C6	Capacitor, 1 ufd, 50V, Elect Radial	8325014
7	C7	Capacitor, 0.001 ufd, 63V	8392104
8	C8	Capacitor, 47 ufd, 25V, Elect Radial	8326472
9	C9	Capacitor, 1 ufd, 50V, Elect Radial	8325014
10	C10	Capacitor, 2200 ufd, 10V, Elect Radial	
11	Cll	Capacitor, 2200 ufd, 10V, Elect Radial	
12	C12	Capacitor, 2200 ufd, 6.3V, Elect Radial	8328220
13	C13	Capacitor, 0.01 ufd, 50/63V Capacitor, 100 ufd, 35V, Elect Radial	8393104
14	Cl4	Capacitor, 100 ufd, 35V, Elect Radial	8327103
15	C15	Capacitor, 1000 pfd, 100V, Ceramic Disk	8302106
16	C16	Capacitor, 2200 ufd, 16V, Elect Radial	8328221
17	C17	Capacitor, 0.1 ufd, 50/63V	8304104
18	C18	Capacitor, 3300 ufd, 16V, Elect Radial	8328331
19	C1.9	Capacitor, 100 ufd, 25V, Elect Radial	8327102
20	C20	Capacitor, 100 ufd, 25V, Elect Radial	8327102
21	C21	Capacitor, 0.01 ufd, 50/63V	8393104
22	C22	Capacitor, 0.01 ufd, 50/63V	8393104
23	C23	Capacitor, 470 ufd, 16V, Elect Radial	8327461
24	C24	Capacitor, 0.1 ufd, 250V	8328221
25	C25	Capacitor, 2200 ufd, 16V, Elect Radial	8327226
26 27	C26 C27	Capacitor, 220 ufd, 200V, Elect Radial Not Used	0327220
28	C27	Capacitor, 0.01 ufd, 250 VAC	8393106
29 29	C29	Capacitor, 220 ufd, 200V, Elect Radial	8327226
30	C30	Capacitor, 4700 pfd, 125VAC, Ceramic Dis	
31	C31	Capacitor, 4700 pfd, 125VAC, Ceramic Dis	
32	C32	Capacitor, 0.1 ufd, 250VAC	8394106
33	CRI	Diode, 1N4148, Switching	8150148
34	CR2	Diode, 1N4001, 1A/50PIV	8150001
35		Diode, 1N4001, 1A/50PIC	8150001
36	CR4	Diode, 1N4939, 1A/100PIC	8150934
37	CR5	Diode, MBR1035, 8/10A, 35V, TO-220	8150035
38	CR6	Diode, MUR810, 8A/100PIV, TO-220	8150810
39	CR7	Diode, 1N4934, 1A/100PIV	8150934
40	CR8	Diode, MUR810, 8A/100PIV, TO-220	8150810
41	BRl	Dioide Bridge, 2A,600PIV	8160402
42	VRl	Zener Diode, 1N5232B, 5.6V	8150232
43	VR2	Zener Diode, 1N5256B, 30V	8150256
44	VR3	Diode, A79Ml2	

Parts List, Power Supply #8790049 (Tandy 65W)

Item	Svm	Description	Mfgr's Part No.
==== 45	==== Fl	Fuse, 3A, AGC Inductor, 5.0h,m 10A Inductor, 30h, 5A Not Used Inductor, 30h, 5A Inductor, 100h, 2A IC, MC34060, Switching Regulator	8479104
46	L1	Inductor, 5.0h,m 10A	8419006
47	L2	Inductor, 30h, 5A	8419008
48	L3	Not Used	
49	L4	Inductor, 30h, 5A	8419008
50	L5	Inductor, 100h, 2A	8419009
51	Ul	IC, MC34060, Switching Regulator	8060060
3		uA/TL494 Switching Regulator	8060494
		IC, 4N35, Opto-Isolator	8170428
54	Rl	Resistor, 1 kohm, 1/4W 5%	8207210
55	R2	Resistor, 68 ohm, 1/4W 5%	8207068
56	R3	Resistor, 28 kohm, 1/4W 1%	8200328
57	R4	Resistor, 39 kohm, 1/4W 5%	8207339
58	R5	Resistor, 15 kohm, 1/4W 5%	8207315
59	R6	Resistor, 4.7 kohm, 1/4W 5%	8207247
60	R7		8207247
61	R8	Resistor, 22 kohm, 1/4W 5%	8207322
62	R9	Resistor, 4.7 kohm, 1/4W 5%	8207247
	R10	Resistor, 4.7 kohm, 1/4W 5%	8207247
	Rll	Resistor, 100 ohm, 1/4W 5%	8207110
	R12	Resistor, 620 ohm, $1/4W$ 5% Resistor, 18 kohm, $1/4Q$ 5%	0207210
	R13	Resistor, 18 Konm, 1/40 5%	8207318
	R14	Resistor, 330 ohm, 1/4W 5%	8207133 8275211
68	R15	Potentiometer, 1 kohm, 20%, Linear	8200232
69 70	R16 R17	Resistor, 3.31 kohm, 1/4W 1%	8207110
70 71	R17	Resistor, 100 ohm, $1/4W$ 5% Resistor, 10 ohm, $1/4W$ 5%	8207010
72	R19	Resistor, 1 ohm, 1/4W 5%	8207001
	R20	Resistor, 4.7 kohm, 1/4W 5%	8207247
	R21	Resistor, 220 ohm, 1/4W 5%	8207122
	R22	Resistor, 330 ohm, 1/4W 5%	8207133
	R23	Resistor, 27 ohm, 2W 10%	8248127
			8217022
7. 78	R25	Resistor, 22 kohm, 1/4W 5%	8207322
		Resistor, 75 kohm, 1W 10%	8248127
80	R27	Resistor, 430 kohm, 1/4W 5%	8207443
81	R28	Resistor, 22 ohm, 1/4W 5%	8207022
82	R29	Resistor, 28 kohm, 1/4W 1%	8200328
83	R30	Resistor, 6.65 kohm, 1/4W 1%	8200266
84	R31	Resistor, 1 kohm, 1/4W 5%	8207210
85	R32	Resistor, 1 kohm, 1/4W 5%	8207210
86	R33	Resistor, 470 ohm, 1/4W 5%	8207470
87	R34	Resistor, 1 kohm, 1/4W 5%	8207210
88	R35	Resistor, 470 ohm, 1/4W 5%	8207470

Parts List, Power Supply #8790049 (Tandy 65W)

Item	Sym	Description	Mfgr's	Part	No.
		=======================================			
89	R36	Resistor, 1 kohm, 1/4W 5%	820	7210	
90	R37	Resistor, 0.22 ohm, 2W 10%	824	18022	
91	R38	Thermistor	829	8016	
92	R39	Resistor, 75 kohm, 1W 10%	824	18375	
93	R40	Resistor, 82 kohm, 5W 10%	824	18268	
94	Ql	Transistor, MPSU51A, PNP, TO-202	810	00051	
95	Õ2	Transistor, MPSA55, PNP, TO-92	810	00055	
96	Q̃3	Transistor, MPSU01A, NPN, TO-202	813	1001	
97	$\tilde{Q}4$	Transistor, MPSU51A, PNP, TO-202	810	00051	
98	Õ5	Transistor, MPSU01A, NPN, TO-202	81	L1001	
99	\tilde{Q} 6	SCR, 8A/50PIV, TO-220	814	10122	
100	Õ7	Transistor, MJE13006, NPN, 8A, 400V	813	L0006	
101	õ8	Transistor, MPSA55, PNP, TO-92	810	00055	
102	õ9	Transistor, MPSA05, NPN, TO-92	81	L0005	
103	$ ilde{ ext{Tl}}$	Transformer, Power, Ferrite Core	879	90046	
104	т2	Transformer, Line Choke, 5.5 mH/side,	2A 879	90045	

SECTION VII VIDEO MONITOR

VIDEO MONITOR

7.1 VIDEO MONITOR #8492002 (RCA VERSION)

7.1.1 Functional Specifications

The video monitor is a 12-inch solid state monitor designed for display of alphanumeric dot characters. The monitor is designed for a 12-volt DC power input with an average power consumption of 12 watts. The monitor accepts separate video, and vertical drive TTL level inputs.

SPECIFICATIONS

Cathode Ray Tube: 12" diagonal, 900 deflection angle, 4 x 5 aspect ratio, P4 phosphor,

integral implosion protection.

Environment: Operating Temperature: 41°F to 131°F (5°C to 55°C) ambient

Humidity: 95% non-condensing at 41°F to 104°F (5°C to 40°C)

Operating Altitude: 10,000 ft. (3046 meters) maximum

Power Input: +12 VDC at 1 amp nominal

TTL Level 4 volts ± 1.5 volts

Input Signals: Horizontal: 4 to $25\mu \text{sec}$, positive going

Vertical: 100 to 1400µsec, negative going

Video: positive white

Video Response: Bandwidth: 15 MHz, 3 dB

Pulse rise time less than 30nsec

Scanning Frequency: Horizontal: 15,600 Hz + 500 Hz

Vertical: 50/60 Hz

Horizontal Retrace: 10.5µsec maximum

Vertical Retrace: 850µsec maximum

7.1.2 Service Adjustments

NOTE: Measurements should be made using 12.0 VDC input. Measurements with kine (CRT) attached will require the ground strap from kine be connected to chassis to prevent transistor failures in the event of kine arcing.

FOCUS

Adjust focus control F524 for best overall focus.

VERTICAL SIZE

Adjust vertical size control R617 to produce vertical scan of approximately 6 inches.

HORIZONTAL LINEARITY

Loosen deflection yoke clamp and slide linearity sleeve forward or backward to equalize character spacing on left side to match character spacing on right side of screen (See Figure 7-1 for location of linearity sleeve.)

WIDTH

Note: Check horizontal linearity prior to width adjustment. Adjust width control to produce horizontal scan of approximately 8 inches.

CENTERING

Adjust centering rings on deflection yoke assembly to center display on screen top to bottom and left to right.

HORIZONTAL HOLD

Horizontal Hold is accomplished by adjustment of the horizontal oscillator coil.

FIGURE 7-1. DEFLECTION YOKE ASSEMBLY

COMPONENT LAYOUT/CIRCUIT TRACE, VIDEO MONITOR PCB #8492002 (RCA)

Video Monitor Assembly #8492002 (RCA #KTR131B & C)

Item	-	Description	Mfgr's		No.
1.	1	Board, Mounting			
2	1	Kine Socket Assembly			
3	7	Bead, Ferrite (FB501-506,601)			
4	1	Bead Choke Assembly (L502)			
5	1	Coil, (Peaking) 39uH (L301)			
6	1	Coil, (Peaking) 22uH (L302)			
7 8	1 1	Coil, Horiz. Hold (L501) Coil, (L504)			
0	_	COII, (1304)			
9	1	Cap, .1 ufd 100V 10% Polyester (C301)			
10 11	1 3	Cap, 680 pfd 50V 10% Cer (C302) Cap, .01 ufd 1000V 20% Cer (C303,513,5	5071		
12	1	Cap, 2700 pfd 50V 10% Cer (C501)	521)		
13	3	Cap, 1000 pfd 50V 20% Cer (C502,512,60)3)		
14	3	Cap, .033 ufd 100V 10% Polyester (C503		4)	
15	1	Cap, .018 ufd 200V 10% Polyester (C504	1)		
16	1	Cap, 5.6 ufd 20V +100-10% Elec (C506)			
17 18	1 1	Cap, .015 ufd 100V 10% Polyester (C508 Cap, .022 ufd 200V 10% Polyester (C509			
19	ĺ	Cap, .01 ufd 200V 10% Polyester (C510)			
20	ī	Cap, .47 ufd 200V 10% Polyester (C511)			
21	2	Cap, 470 pfd 1000V 10% Cer (C514,516)			
22	1	Cap, 180 pfd 10% 1000V Cer (C515)			
23	1	Cap, 1 ufd 150V Elec (C517)			
24	1	Cap, 10 ufd 150V Elec (C518)			
25 26	1	Cap, 1 ufd 350V Elec (C519)			
20 27	1 1	Cap, 390 pfd 500V 10% Cer (C520) Cap, 56 ufd 50V +100-10% 50V Elec (C52	21)		
28	ī	Cap, 1000 pfd 500V 10% Cer (C522,525)	-1,		
29	1	Cap, 470 ufd 25V +100-10% Elec (C523)			
30	1	Cap, 330 ufd 25V +100-10% Elec (C524)			
31	1	Cap, 4.7 ufd 50V +100-10% Elec (C528)			
32	1	Cap, .0039 ufd 5600 250V Cer (C529)	5061		
33 34	2 1	Cap, 220 ufd 15V +100-10% Elec (C605, Cap, 5600 pfd 200V 10% Polyester (C60)			
35	1	Cap, 47 ufd 6V +100-10% Elec (C608)	<i>i i</i>		
36	ī	Cap, .1 ufd 100V 10% Polyester (C609)			
37	1	Cap, .68 ufd 80V 20% Elec (C610)			
38	1	Cap, 3300 pfd 500V 10% Cer (C611)			
39	1	Cap, 270 pfd 50V 10% Cer (C702)			

```
Mfgr's Part No.
Item Qty Description
_______
      2
40
           Diode (CR501,502)
           Diode (CR504-506)
41
      3
42
      4
           Diode (CR607-610)
43
           Res, 100K ohm 1/4W 5% (R301,619)
      2
44
      1
           Res. 220K ohm 1/4W 5% (R302)
45
      1
           Res, 2.2K ohm 3W 5% Fixed Metal Film PRF (R303)
      1
           Res, 68 ohm 1/4W 5% (R305)
46
47
      1
           Res, 680 ohm 1/4W 5% (R306)
48
      1
           Res, 47 ohm 1/4W 5% (R307)
           Res. 270 ohm 1/4W 5% (R308)
49
      1
      1
           Res, 1500 ohm 1/4W 5% (R501)
50
51
           Res, 4700 \text{ ohm } 1/4W 5\% \text{ (R502)}
      1
52
      1
           Res, 12K ohm 1/4W 5% (R503)
53
      1
           Res, 56K ohm 1/4W 5% (R504)
      2
           Res, 10K ohm 1/4W 5% (R506,615)
54
      1
           Res. 1500 ohm 1/4W 5% (R507)
55
      7
           Res. 2200 ohm 1/4W 5% (R508)
56
           Res, 560 ohm 1/4W 5% (R509)
57
      1
58
      1
           Res, 47K ohm 1/4W 5% (R510)
59
      2
           Res, 330 ohm 1/4W 5% (R511,513)
60
           Res, 33 ohm 1/4W 5% (R512)
      1
      1
           Res, 470 \text{ ohm } 1/4W 5\% \text{ (R514)}
61
      1
           Res, 1.0M ohm 1W 5% (R516)
62
63
      1
           Res. 470 ohm 1/2W 5% (R517)
           Res, 470 \text{K} ohm 1/2 \text{W} 5% (R518)
64
      1
65
      1
           Res, 3.3 ohm 1/2W 5% Flameproof (R519)
           Res, 10 ohm 1/2W 5% Flameproof (R520, R527)
66
      2
67
      1
           Res. 6.8 ohm 1/2W 5% Flameproof (R522)
68
      1
           Res, 1.0M ohm 1/4W 5% (R523)
69
      1
           Res, 2.5M ohm Focus Cont. Variable (R524)
70
      1
           Res, 1500 ohm 1W 5% (R525)
71
      1
           Res, 2.0 ohm 2W 5% (R526)
72
           Res, 1.5K ohm 1/4W 5% (R601)
      1
73
      1
           Res, 470 \text{ ohm } 1/4\text{W} 5\% \text{ (R602)}
74
           Res, 15K ohm 1/4W 5% (R603)
      1
75
      2
           Res, 3900 ohm 1/4W 5% (R604,704)
           Res, 270 \text{K} ohm 1/4 \text{W} 5% (R606)
76
      1
77
      1
           Res, 220K ohm 1/4W 5% (R607)
      1
           Res, 82K ohm 1/4W 5% (R608)
78
           Res, 33 ohm 1/2W 5% Flameproof (R609)
79
      1
80
      1
           Res, 6800 \text{ ohm } 1/4\text{W} 5\% \text{ (R610)}
```

```
______
                                                   Mfgr's Part No.
Item Oty Description
______
81
           Res, 82K ohm 1/4W 5% (R611)
82
      1
           Res, 200K ohm Vert. Hold Variable (R612)
      2
           Res, 3.9M ohm 1/4W 5% (R613,616)
83
84
      1
           Res, 15K ohm 1/4W 5% (R614)
           Res, 750K ohm Variable (R617)
85
      1
86
      1
           Res, 820 \text{K} ohm 1/4 \text{W} 5% (R618)
      1
           Res, 150 \text{ ohm } 1/4W 5\% \text{ (R621)}
87
88
      1
           Res, 120 ohm 1/4W 5% (R622)
89
      1
           Res, 16K ohm 1/2W 5% (R624)
90
           Res, 180 \text{K} ohm 1/4 \text{W} 5% (R625)
      1
           Res, 1.0M ohm 1/2W 5% (R626)
91
      1
      1
           Res, 5.6 ohm 1/2W 5% (R627)
92
93
      1
           Res, 220 ohm 1/4W 5% (R629)
      1
           Res, 1.5M ohm 1/4W 10% (R703)
94
           Res, 33K ohm 1/4W 5% (R705)
95
      1
96
      1
           Transformer, Horiz drive (T502)
97
      1
           Transformer Rectifier Assy ( )
98
      1
           Transistor, 7362-3, Video Out (Q302)
           Transistor, 7346-3, Horiz Osc (0501)
99
      1
100
      1
           Transistor, 7346-3, Horiz Driver (Q502)
101
      1
           Transistor, 7335-1, Horiz Out (Q503)
102
           Transistor, 7306-8, Vert Int (Q601)
      Τ
           Transistor, 1112-8, Vert Osc (Q602)
103
      1
104
      1
           Transistor, 1112-8, Pre Amp (Q603)
      1
105
           Transistor, 7318-2, Vert Driver (Q604)
           Transistor, 7349-2, NPN Vert Out (Q606)
106
      1
           Transistor, 7303-1, PNP Vert Out (Q607)
107
      1
108
      1
           Transistor, 7306-7, Horiz Sep (Q701)
109
      2
           Buss Wire (.025 \times 1.00) (JW1,7)
110
      3
           Buss Wire (.025 \times .800) (JW, 2, 3, 5)
      1
111
           Buss Wire (.025 x 1.200) (JW4)
           Buss Wire (.025 \times .900) (JW6,9)
112
      2
113
      1
           Wire, Electrical Hook-up (RED) 7"LG (JW8)
114
      1
           Buss Wire (.025 \times 1.100) (JW10)
115
      1
           Wire, Electrical Hook-up (BLK) 1.65LG (JWll)
116
      1
           Wire, Electrical Hook-up (BRN) 5"LG (JW12)
117
      1
           Buss Wire (.025 \times 1.000) (JW13)
118
      1
           Wire, Electrical Hook-up (BLK) 2.75LG (JW14)
119
      1
           Wire, Electrical Hook-up (BLK) 3.00LG (JW15)
120
           Wire, Electrical Hook-up (BLK) 4.50LG (JW16)
      1
121
           Wire, Electrical Hook-up (BLK) 1.87LG ( , )
```

Video Monitor Assembly #8492002 (RCA #KTR131B & C)

==== Item	Qty	Description	Mfgr's Part No.
122 123 124 125 126 127	1 1 1 1 3 1	Miscellaneous Cable Assy (BRN) Cable Assy (GRN) Cable Assy (RED) Cable Assy (YEL) Eyelet - Rolled Flange Fuse, 2 Ampere (F101)	

Video Monitor Assembly #8790607 (TCE)

Item	===== Qty	Description	Mfgr's Part No.
		Deflection PCB unit	
		w/o Trans Flyback, Heat Sink and Fuse	U-30001
1	1	Cap, 390 pfd 50V 10% Cer (C101)	CC45SL1H391KY
2	3	Cap, 390 pfd 50V 10% Cer (C101) Cap, 0.1 ufd 50V 10% Mylar (C102,305,	CQ92M1H104K
		308)	
3	1	Cap, 22 ufd 100V 20% Elec (Cl03)	CE04C226M
4	2	Cap, 0.022 ufd 50V 10% Mylar (C201,202) CQ92M1H223K
5	3	Cap, 0.01 ufd 50V 10% Mylar (C203,303 307)	CQ92M1H103K
6	1	Cap, 0.33 ufd 50V 10% Elec (C204)	CE04(RB)334K
7	2	Cap, 4.7 ufd 50V 20% Elec (C205,206)	CE04(RB)475M
		- used up to 3000 unit -	
8	2	Cap, 4.7 ufd 35V 20% Tant (C205,206) - from 3001 unit-	CS15E475M
9	2	Cap, 33 ufd 16V 20% Elec (C207,208)	CE04C336M
10	1	Cap, 1000 ufd 16V 20% Elec (C209)	CE04Cl08M
11	1	Cap, 0.033 ufd 50V 10% Mylar (C210)	CQ92MlH333K
12	1	Cap, 220 ufd 16V 20% Elec (C211)	CE04C227M
13	1	Cap, 100 ufd 16V 20% Elec (C212)	CE04C107M
14	1	Cap, 470 pfd 50V 10% Cer (C301)	CC45SLlH471KY
15	2	Cap, 1000 pfd 50V 2% Polyst (C302,306)	
16	1	Cap, 0.001 ufd 50V 10% Mylar (C304)	CQ92M1H102K
1.7	1	Cap, 0.68 ufd 100V 10% Met Plas (C309)	
48	1	Cap, 0.033 ufd 400V 5% Poly (C311)	CQ92P2G 333J
19	1	Cap, 470 ufd 35V 20% Elec (C312)	CE04C477M
20	1	Cap, 0.047 ufd 400V 10% Poly (C313)	CQ92P2G 473K
21	1	Cap, 1 ufd 250V 20% Elec (C314)	CE04Cl05M
22	2	Cap, 0.01 ufd 630V 10% Poly (C315,316)	
23	1	Cap, 2200 pfd 1000V +100-0% Cer (C317)	
24	1	Cap, 4700 pfd 1000V +100-0% Cer (C318)	
25	3	Cap, 2200 pfd 500V +100-0% Cer (C319, 320,322)	CK45E2H222PY
26	1	Cap, 15 ufd 25V 20% Elec (C321)	CE04(RP)159M
27	1	Cap, 220 ufd 16V 20% Elec (C401)	CE04C228M
28	1	Coil, Linearity (L301)	143410020A
29	ī	Coil, Width (L302)	143310140A
	_		
30	2	Diode, 1N4002 (D101,201)	101-E
31	2 2 3 1	Diode, VD1221 (D202,203)	VD1221
32	3	Diode, 1N4148 (D301,302,304)	lN4148
33	1	Diode, RGP250 (D303)	RGP25D
34	4	Diode, 1N4936 (D306-309)	ln4936
35	1	Diode, MR818 (D310)	MR818

Video Monitor Assembly #8790607 (TCE)

Item	Qty =====	Description	Mfgr's Part No.		
36	1	IC, AN5763 V-Process (IC201)	AN5763		
37	2	IC, NE555P Timer (IC301,302)	NE555P		
38	1	Res, 220 ohm $1/4W$ 5% Car (R101)	RD1/4MZ(S)221J		
39	2	Res, 47 ohm 1/4W 5% Car (R102,312)	RD1/4MZ(S)470J		
40	1	Res, 18 ohm 1/4W 5% Car (R103)	RD1/4MZ(S)180J		
41	1	Res, 33 ohm 1/4W 5% Car (R104)	RD1/4MZ(S)330J		
42	1	Res, 47K ohm 1/4W 5% Car (R105)	RD1/4MZ(S)473J		
43	2	Res, 1K ohm 1/4W 5% Car (R106,107)	RD1/4MZ(S)102J		
44	1 3	Res, 820 ohm 5W 5% Cement (R108)	RT5P 821J RD1/4MZ(S)472J		
45	3	Res, 4.7K ohm 1/4W 5% Car (R201,202 207)	KD1/4M2(5)4/20		
46	2	Res, $100 \text{ ohm } 1/4\text{W} 5\% \text{ Car } (203,309)$	RD1/4MZ(S)101J		
47	2	Res, $56K$ ohm $1/4W$ $5%$ Car (R204,212)	RD1/4MZ(S)563J		
48	1	Res, $6.8 \text{ ohm } 1/4\text{W} 5\% \text{ Car } (\text{R}205)$	RD1/4MZ(S)6R8J		
49	1	Res, 1.2 ohm $1/2W$ 5% Car (R206)	RD1/2MZ(S)1R2J		
50	3	Res, 220K ohm $1/4$ W 5% Car (208,314 319)	RD1/4MZ(S)224J		
51	1	Res, 8.2 ohm 1/4W 5% Car (R210)	RD1/4MZ(S)8R2J		
52	2	Res, 10K ohm 1/4W 5% Car (R211,302)	RD1/4MZ(S)103JZ		
53	1	Res, 68K ohm 1/4W 5% Car (R212) - Used from 3001 unit -	RD1/4MZ(S)683J		
54	1	Res, 1 ohm 1/2W 5% Car (R213)	RD1/2MZ(S)1R0J		
55	1	Res, 6.8K ohm 1/4W 5% Car (R301)	RD1/4MZ(S)682J		
56	3	Res, 5.6K ohm 1/4W 5% Car (R303,305 310)	RD1/4MZ(S)562J		
57	1	Res, 560 ohm 1/4W 5% Car (R304)	RD1/4MZ(S)561J		
58	1	Res, 33K ohm 1/2W 2% Car (R306)	RD1/2MZ(S)333G		
59	1	Res, 6.2K ohm 1/2W 2% Car (R307)	RD1/2MZ(S)622G		
60	1	Res, 39K ohm 1/4W 5% Car (R308)	RD1/4MZ(S)393J		
61	1	Res, $100 \text{ ohm } 1/2\text{W} 5\% \text{ Car } (\text{R311})$	RD1/2MZ(S)101J		
62	1	Res, 56 ohm 2W 5% Metal Oxide (R313)	RSM2P560J		
63	1	Res, $82K$ ohm $1/2W$ 5% Car (R315)	RD1/2MZ(S)823J		
64	1	Res, 150 K ohm $1/2$ W 5% Car (R316)	RD1/2MZ(S)154J		
65	1	Res, 220K ohm $1/2W$ 5% Car (R317)	RD1/2MZ(S)224J		
66	1	Res, 1 M ohm $1/4$ W 5% Car (R318)	RD1/4MZ(S)105J		
67	1	Res, $2.7M$ ohm $1/2W$ 5% Car (R320)	RD1/2MZ(S)275J		
68	2	Res, 150 ohm $1/4W$ 5% Car (R321,322)			
69	1	Res, 100 K ohm $1/4$ W 5% Car (R323)	RD1/4MZ(S)104J		
70	1	Transistor, NPN (TR101)	2SC1313(G)		
71	1	Transistor, NPN (TR102)	2SC2228Y(E)		
72	1	Transistor, NPN (TR301)	2SC536(F)		
73	1	Transistor, PNP (TR302)	2SA733(P)		
74	1	Transistor, (TR303)	BU806		

Video Monitor Assembly #8790607 (TCE)

		Description	Mfgr's Part No.				
75	2 1 1 1	Variable Res, 100K ohm (VR201,203) Variable Res, 10K ohm (VR202) Variable Res, 200K ohm (VR203) Variable Res, 2M ohm (VR302)	176910250A 176910220A 176910260A 176910400A 176910270A				
Miscellaneous							
80 81	2 1	Clip, Fuse Connector 4 Pin	197303080A 194110780A				
End of Deflection Unit							
82 83 84 85 86 87	1 1 2 2 1	Cap, 1000 pfd 1000V +100-0% Cer (C501) Cathode Ray Tube (VT501) Fuse, 2A @ 250V (FU401) Res, 470 ohm 1/2W 10% (R502,503) Res, 100K ohm 1/2W 10% (R504,505) Transformer, Flyback (T301)	559010020A 251000790A RC1/2GF471K				
Miscellaneous							
88 89 90 91	1 1 1	Socket, Cylindrical Socket, 4 Pin Spring Tension, Wire Ground Wire, Ground Terminal	196310010A 194010370A 434010020A 3160100608				

SECTION VIII ILLUSTRATED PARTS CATALOG

Parts List, Model 4 Computer, #26-1067/8/9

	Qty	Description	Mfgr's PN F	RS Part No
1	1	Case Top	8719104	
2	1	Base	8719265	
3	4	Feet, Case	8590098	
4	1	Keyboard	8790524	
5	1	Keyboard Bezel	8719164	
6*	1	Bracket, Disk Mounting (LH)	8719106	
7*	1	Bracket, Disk Mounting (RH)		
8*	1	Shield, Disk (RH side)	8729093	
9	1	Power Supply Assy.(on 26-1067)	8790021	AXX5019
		(on 26-1068/1069)	8790043 or	
		,	8790049	
10	1	Toroid	8419030	
$\overline{11}$	ī	Bracket, Connector	8729039	ART3082
12	ī		8709412	
13	ī		8858073	
14	ī	Main Logic PCB Assembly	6700104	
	-	(on 26-1067)	0,00201	
		(on 26-1068/1069)	8858090	
15	1	Shield, Chassis	8729049	
16*		Shield, Disk (LH side)	8729041	
17	ī	Cable Assembly, Cassette	8709372	
18		Cable, Flat	8709381	
19	1.	Video Display, CRT (RCA)	8492002	AXX8010
17	-1 .,	Video Display, CRT (RCA) Video Display, CRT (TCE)	8790607	AMMOOTO
20	1	Bracket, Pot Mounting	8729155	
21	ì	Pot, 500 ohms (Contrast)	0127133	
4. L	.1.	(part of Item 36)		
22	1	Pot, 500K ohms (Brightness)		
22	±	(part of Item 36)		
23	2	Knob, Thumbwheel	8719112	AK4298
24*	ī	Sound PCB Assembly	8858121	in in
.	_	(26-1068/1069 only)	0000111	
25	1	Label, RAM size (16K)	8789261	AHC0321
	-	(64K)	8789800	111100001
26	1	Name Plate	8719266	
27	6	Screw, #6 x 3/8"	8569047	
28	4	Nut, #10-24 Hex	8579021	
29	4	Washer, #8 Flat	8589016	
30	2	Screw, #6 x 3/8"	8569047	
31	8	Screw, #6-32 x 1/2"	8569046	
32	1	Cable, Keyboard Ground	8709275	
J4	1	cante, velocata ground	0/092/3	

^{*}Not used on Model #26-1067

Parts List, Model 4 Computer, #26-1067/8/9

====	=====			
Item	Qty	Description	Mfgr's PN	RS Part No
	1	Cable, Ground	9709193	
	ī	Ground, Main	8709193 8709161	
35	i	Clip, Tinnerman	8559031	
36	1 1	Cable Assembly, CRT	8709369	
30		for Models 26-1068/1069	0709309	
		for Model 26-1067	8709286	
37	5	Clip, Tinnerman	0/09200	
	1	Bracket, Support	8729055	
20	1	Strain Relief, Power Cord		
39 40*				
40"	1	FDC PCB Assembly	8858060	
47 +	1	Blot Coble Assemble	or 8858160	
41* 42*	1 1	Flat Cable Assembly	8459020	
42"	1	Cable Assembly, Disk Drive		
43	1	Shield, CRT PCB Assembly	8539014	
44	2		8529020	
45	1	Shield, Disk Drive Top (used on 26-1069 only)	8729175	
46	1	Shield, Mylar	8539015	
47	1	Cable Assembly, DC Power	8709367	
		for 26-1068/9		
		for 26-1067	8709178	
48	3	Screw, #8-32 x 3/4" PPH Blk	8569047	
49	8	Screw, $\#6-32 \times 1/2"$ PPH	8569046	
50	4	Screw, #6 x 1/4" Plastite		
51	6	Screw, $\#8-32 \times 1/2"$	8569140	
52	4	Screw, $\#6-32 \times 1/4$ "	8569098	
53*	12	Screw, #6 x 3/8" Washer	8569128	
54	4	Screw, Chassis Mounting	8569077	
55	5	Screw, #8 x l"	8569095	
56	2		8569084	
57	2	Screw, #6 x 3/8"	8569047	
58*	2**	Disk Drive Assembly	8790112	
59	2	Screw, $\#6-32 \times 1/4$ "	8569098	
60	1	Washer, #6 Internal Star	8589043	
61		Nut, #6 Hex	8579014	
62*	3	Standoff, Power Supply		
63	1	Switch, DPST (ON-OFF)	8489030	

^{*} Not Used On 26-1067 Computer ** Qty Of 1 On 26-1068 Computer

SECTION IX RS-232C CIRCUIT BOARD

RS-232C CIRCUIT BOARD

9.1 RS-232C TECHNICAL DESCRIPTION

The RS-232C option board for the Model 4 computer supports asynchronous serial transmissions and conforms to the EIA RS-232C standards at the input - output interface (P1). The heart of the board is the TR1602 Asynchronous Receiver/Transmitter. It performs the job of converting the parallel byte date from the CPU to a serial data stream including start, stop, and parity bits. For a more detailed description of how this LSI circuit performs these functions, refer to the TR1602 data sheets and application notes. The transmit and receive clock rates that the TR1602 needs are supplied by the Baud rate generator (BR19411). This circuit takes the 5.0688 MHz supplied by the CPU board and the programmed information received from the CPU over the data bus and divides the basic clock rate to provide two clocks. The rates available from the BRG go from 50 Baud to 19200 Baud. See the BRG table for the complete list.

BRG PROGRAMMING TABLE

NIBBLE LOADED	TRANSMIT OR RECEIVE BAUD RATE	16X CLOCK FREQUENCY	SUPPORTED BY SETCOM
ØH	50	0.8 kHz	yes
1H	75	1.2 kHz	yes
2H	110	1.76 kHz	yes
3H	134.5	2.1523 kHz	yes
4H	150	2.4 kHz	yes
5H	300	4.8 kHz	yes
6H	600	9.6 kHz	yes
7H	1200	19.2 kHz	yes
8H	1800	28.8 kHz	yes
9H	2000	32.081 kHz	yes
AH	2400	38.4 kHz	yes
ВН	3600	57.6 kHz	yes
CH	4800	76.8 kHz	yes
DH	7200	115.2 kHz	yes
EH	9600	153,6 kHz	yes
FH	19,200	307.2 kHz	yes

The RS-232C board is a port mapped device and the ports used are E8 to EB. Following is a description of each port on both input and output.

PORT	INPUT	OUTPUT
E8	Modem status	Master Reset, enables UART control register load
EA	UART status	UART control register load and modem control
E9	Not Used	Baud rate register load enable bit
ЕВ	Receiver Holding register	Transmitter Holding register

Interrupts are supported on the RS-232C option board by the Interrupt mask register (U10) and the Status register (U9) which allows the CPU to see which kind of interrupt has occurred. Interrupts can be generated on receiver data register full, transmitter register empty, and any one of the errors — parity, framing, or data overun. This allows a minimum of CPU overhead in transferring data to or from the UART. The interrupt mask register is port EØ (write) and the interrupt status register is port EØ (read). Refer to the IO Port description for a full breakdown of all interrupts and their bit positions.

The Model 4 RS-232C board is functionally identical to the Model I RS-232 board with the following exceptions: Interrupts are supported, there are no sense switches for configuring the interface, there is no COM/TERM switch for reversing the function of pins 2 and 3 on the DB-25, and the DC to DC converter is not required since +12V and -12V are provided by the internal power supply. Other differences include three additional interface outputs and no crystal for the BRG. All Model I software written for the RS-232 interface is compatable with the Model 4 RS-232C option board. provided that the software does not use the sense switches to configure the interface. The programmer can get around this problem by directly programming the BRG and UART for the desired configuration or by using the SETCOM command of the disk operating system to configure the interface. The TRS-80 RS-232C Interface hardware manual has a good discussion of the RS-232C standard and specific programming examples (Catalog Number 26-1145).

9.2 PINOUT LISTING

The following list is a pinout description of the DB-25 connector (P1).

PIN#	SIGNAL
1	PGND (Protective Ground)
2	TD (Transmit Data)
3	RD (Receive Data)
4	RTS (Request To Send)
5	CTS (Clear To Send)
6	DSR (Data Set Ready)
7	SGND (Signal Ground)
8	CD (Carrier Detect)
20	DTR (Data Terminal Ready)
22	RI (Ring Indicate)

9.3 PORT AND BIT ASSIGNMENTS

PORT E8H

OUTPUT: MASTER RESET

INPUT: MODEM STATUS REGISTER

An output to this port (and data), performs a master reset to the UART and enables the control register load enable bit. The following table details the bit definitions for an input from port E8H.

DATA BIT	FUNCTION
D7	Clear To Send, Pin 5 DB-25
D6	Data Set Ready, Pin 6 DB-25
D5	Carrier Detect, Pin 8 DB-25
D4	Ring Indicator, Pin 22 DB-25
D3	Not Used
D2	Not Used
D1	Not Used
DØ	Receiver Input, UART Pin 20 DB-25

PORT E9H

OUTPUT: BAUD RATE LOAD

INPUT: NOT USED

An output to this port loads the Baud rate generator with a code which corresponds to the desired receive and transmit Baud rate as outlined in the BRG Programming Table. The low order nibble of the data output to this port determines the receiver Baud rate, while the high order nibble determines the transmit Baud rate.

PORT EAH

OUTPUT: UART AND MODEM CONTROL

INPUT: UART STATUS

An output to this port loads the UART Control register if the enable bit for this function is set (D1 port E8H = 1). The UART Control register is five bits wide (D7 - D3) leaving three bits for modem control (D2 - DØ). Three more modem control bits were added by allowing software to enable or disable the UART Control register. The tables below summarize the bit allocations with the UART Control register enabled and disabled.

PORT EAH OUTPUT BITS WITH UART CONTROL REGISTER ENABLED

DATA BIT	FUNCTION
D7	Even Parity Enable, 1 = even, ∅ = odd
D6	Word Length Select 1
D5	Word Length Select 2
D4	Stop Bit Select, $1 = two stop bits$, $\emptyset = one stop bit$
D3	Parity Inhibit, 1 = disable parity
D2	Break \emptyset = disable transmit data (continuous space)
D1	Data Terminal Ready, Pin 20 DB-25
DØ	Request To Send, Pin 4 DB-25

PORT EAH OUTPUT BITS WITH UART CONTROL REGISTER DISABLED

DATA BIT	FUNCTION
D7	Not Used
D6	Not Used
D5	Secondary unassigned, Pin 18 DB-25
D4	Secondary Transmit Data, Pin 14 DB-25
D3	Secondary Request To Send, Pin 19 DB-25
D2	Break ∅ = disable Transmit Data (continuous space)
D1	Data Terminal Ready, Pin 20 DB-25
DØ	Request To Send, Pin 4 DB-25

PORT EAH INPUT BITS

DATA BITS	FUNCTION
D7	Data Received, 1 = condition true
D6	Transmitter Holding register empty, 1 = condition true
D5	Overrun error, 1 = condition true
D4	Framing error, 1 = condition true
D3	Parity error, 1 = condition true
D2	Not Used
D1	Not Used
DØ	Not Used

PORT EBH

OUTPUT: TRANSMITTER HOLDING REGISTER INPUT: RECEIVER HOLDING REGISTER

An output to this port loads the UART Transmitter Holding register with a word to be transmitted, as soon as the last word loaded in the holding register is transmitted. This register should never be loaded until the Transmitter Holding register empty bit (port EAH) is true. An input from this port reads the last word received from the UART received data holding register. This register should not be read until the data received bit (port EAH) is true.

RS-232 BOARD TO CPU BOARD SIGNAL DESCRIPTION

SCHEMATIC DIAGRAM #8000076, RS232C, CHNG B

COMPONENT LOCATION/CIRCUIT TRACE, RS-232C PC BOARD — COMPONENT SIDE

CIRCUIT TRACE, RS-232C PC BOARD - SOLDER SIDE

PARTS LIST RS-232C PC BOARD

SYMBOL	DESCRIPTION	MANUFACTURER'S PART NUMBER	RADIO SHACK PART NUMBER
	CAPACIT	ORS	
C1 C2	$10\mu\text{F}$, 16V , radial (optional) $10\mu\text{F}$, 16V , radial (optional)	832-6101 832-6101	ACC106QDAP ACC106QDAP
C3	$0.1\mu\text{F}$, 50V , monolithic , radial	838-4104	ACC104QJAP
C4	$0.1\mu\text{F}$, 50V , monolithic , radial	838-4104	ACC104QJAP
C5	0.1μ F, 50 V, monolithic, radial	838-4104	ACC104QJAP
C6	$0.1\mu\text{F}$, 50V , monolithic, radial	838-4104	ACC104QJAP
C7	$0.1\mu F$, $50V$, monolithic , radial	838-4104	ACC104QJAP
C8	$10\mu F$, $16V$, radial	832-6101	ACC106QDAP
C9	10μ F, 16 V, radial	832-6101	ACC106QDAP
	CONNEC	TORS	
P1	DB-25 Connector	851-9030	AND TAXA
P2	20 pos. right angle	851-9078	which were seen and their brief brief and many them.
Р3	4 pos. right angle	851-9079	AJ6977
	INTEGRATED	CIRCUITS	
U1	BR1941-L, Dual Baud C	804-6941	AMX3921
U2	TR1602B, UART	804-5602	AMX3865
U3	74LS244, Octal Buffer	802-0244	AMX3864
U4	74LS367, Hex Buffer	802-0367	AMX3567
U5	74LS367, Hex Buffer	802-0367	AMX3567
U6	74LS174, Quad "D" Flip-Flop	802-0174	AMX3565
U7	7404, Hex Inverter		AMX3655
U8	74LS139, Dual Decoder	802-0139	AMX3800
U9	74LS368, Hex Buffer	802-0368	AMX3568
U10	74LS174, Quad "D" Flip-Flop	802-0174	AMX3565
U11	MC1489, Quad Line Driver	805-0189	AMX3868
U12	MC1488, Quad Line Driver	805-0188	AMX3867
U13	74LS27, NOR gate	802-0027	make years were more more than the second second second second second second
U14	74LS38, NAND Buffer	802-0038	AMX4328
U15	MC1489, Quad Line Driver	805-0189	AMX3868
U16	MC1488, Quad Line Driver	805-0188	AMX3867
	RESIST	ORS	
R1	4.7K, 1/4W, 5%	820-7247	AN0247EEC
R2	4.7K, 1/4W, 5% (optional)	820-7247	AN0247EEC
R3	6.2K, 1/4W, 5% (optional)		AMX4658
R4	4.7K, 1/4W, 5%	820-7247	AN0247EEC
	MISCELLA	NEOUS	
	Cable, 20 pos., 4.5'', flat	845-9020	AW2631
	Socket, 18 pin	850-9006	AJ6701
	Socket, 40 pin	850-9002	AJ6580
	55 5.70 t/ 10 pm		

SOFTWARE SOFTWARE SOFTWARE SOFTWARE SOFTWARE SOFTWARE SOFTWARE SOFTWARE

SOFTWARE SOFTWARE SOFTWARE

PART II SOFTWARE

181

1/Disk Organization

TRSDOS Version 6 can be used with 51/4" single-sided floppy diskettes and with hard disk. Floppy diskettes can be either single- or double-density. See the charts below for the number of sectors per track, number of cylinders, and so on for each type of disk. (Sectors and cylinders are numbered starting with 0.)

Single-Density Floppy Diskette

Bytes per Sector	Sectors per Granule	Sectors per Track*	Granules per Track	Tracks per Cylinder	Cylinders per Drive	Total Bytes
256						256
	5					1,280
	•	(10)	2			2,560
		(/		1		2,560
					40	102,400
256	5	(10)	2	1	40	102,400
	_	(/				(100K)**

Double-Density Floppy Diskette

Bytes per Sector	Sectors per Granule	Sectors per Track*	Granules per Track	Tracks per Cylinder	Cylinders per Drive	Total Bytes
256					~~~~	256
	6					1,536
		(18)	3			4,608
		, ,		1		4,608
					40	184,320
256	6	(18)	3	1	40	184,320
		, ,				(180K)**

^{*}The number of sectors per track is not included in the calculation because it is equal to the number of sectors per granule times the number of granules per track. $(5 \times 2 = 10 \text{ for single density}, 6 \times 3 = 18 \text{ for double density, and } 16 \times 2 = 32 \text{ for hard disk.})$

^{**}Note that this figure is the total amount of space in the given format. Keep in mind that an entire cylinder is used for the directory and at least one granule is used for the bootstrap code. This leaves 96.25K available for use on a single-density data disk and 174K on a double-density data disk.

5" 5-Meg Hard Disk

Note: Because of continual advancements in hard disk technology, the number of tracks and the number of tracks per cylinder may change. Therfore, any information that comes with your hard disk drive(s) supersedes the information in the table below.

Bytes per Sector	Sectors per Granule	Sectors per Track*	Granules per Track	Tracks per Cylinder	Cylinders per Drive	Total Bytes
256						256
	16					4,096
		(32)	2	***************************************		8,192
				4		32,768
					153	5,013,504
256	16	(32)	2	4	153	5,013,504 (4,896K)

^{*}The number of sectors per track is not included in the calculation because it is equal to the number of sectors per granule times the number of granules per track. $(5 \times 2 = 10 \text{ for single density, } 6 \times 3 = 18 \text{ for double density, and } 16 \times 2 = 32 \text{ for hard disk.})$

Disk Space Available to the User

One granule on cylinder \emptyset of each disk is reserved for the system. It contains information about where the directory is located on that disk. If the disk contains an operating system, then all of cylinder \emptyset is reserved. This area contains information used to load TRSDOS when you press the reset button.

One complete cylinder is reserved for the directory, the granule allocation table (GAT), and the hash index table (HIT). (On single-sided diskettes, one cylinder is the same as one track.) The number of this cylinder varies, depending on the size and type of disk. Also, if any portion of the cylinder normally used for the directory is flawed, TRSDOS uses another cylinder for the directory. You can find out where the FORMAT utility has placed the directory by using the Free :drive command.

On hard disks, an additional cylinder (cylinder 1) is reserved for use in case your disk drive requires service. This provides an area for the technician to write on the disk without harming any data. (If you bring your hard disk in for service, you should try to back up the contents of the disk first, just to be safe.)

Unit of Allocation

The smallest unit of disk space that the system can allocate to a file is a granule. A granule is made up of a set of sectors that are adjacent to one another on the disk. The number of sectors in a granule depends on the type and size of the disk. See the charts on the previous two pages for some typical sizes.

Methods of File Allocation

TRSDOS provides two ways to allocate disk space for files: dynamic allocation and pre-allocation.

Dynamic Allocation

With dynamic allocation, TRSDOS allocates granules only at the time of write. For example, when a file is first opened for output, no space is allocated. The first allocation of space is done at the first write. Additional space is added as required by further writes.

With dynamically allocated files, unused granules are de-allocated (recovered) when the file is closed.

Unless you execute the CREATE system command, TRSDOS uses dynamic allocation.

Pre-Allocation

With pre-allocation, the file is allocated a specified number of granules when it is created. Pre-allocated files can be created only by the system command CREATE. (See the *Disk System Owner's Manual* for more information on CREATE.)

TRSDOS automatically extends a pre-allocated file as needed. However, it does not de-allocate unused granules when a pre-allocated file is closed. To reduce the size of a pre-allocated file, you must copy it to a dynamically allocated file. The COPY (CLONE = N) system command does this automatically.

Files that have been pre-allocated have a 'C' by their names in a directory listing.

Record Length

TRSDOS transfers data to and from disks one sector at a time. These sectors are 256-byte blocks, and are also called the system's "physical" records.

You deal with records that are 256 bytes in length or smaller, depending on what size record you want to work with. These are known as "logical" records.

You set the size of the logical records in a file when you open the file for the first time. The size is the number of bytes to be kept in each record. There may be from 1 to 256 bytes per logical record.

The operating system automatically accumulates your logical records and stores them in physical records. Since physical records are always 256 bytes in length, there may be one or more logical records stored in each physical record. When the records are read back from disk, the system automatically returns one logical record at a time. These actions are known as "blocking" and "deblocking," or "spanning."

For example, if the logical record length is 200, sectors 1 and 2 look like this:

Since they are completely handled by the operating system, you do not need to concern yourself with physical records, sectors, granules, tracks, and so on. This is to your benefit, as the number of sectors per granule varies from disk to disk. Also, physical record lengths may change in future versions of TRSDOS, but the concept of logical records will not.

Note: All files are fixed-length record files with TRSDOS Version 6.

Record Processing Capabilities

TRSDOS allows both direct and sequential file access.

Direct access (sometimes called "random access") lets you process records in any sequence you specify.

Sequential access allows you to process records in sequence: record n, n+1, n+2, and so on. With sequential access, you do not specify a record number. Instead, TRSDOS accesses the record that follows the last record processed, starting with record \emptyset .

With sequential access files, use the @READ supervisor call to read the next record, and the @WRITE or @VER supervisor call to write the next record. (When the file is first opened, processing starts at record 0. You can use @PEOF to position to the end of file.)

To read or write to a direct access file, use the @POSN supervisor call to position to a specified record. Then use @READ, @WRITE, or @VER as desired. Once @POSN has been used, the End of File (EOF) marker will not move, unless the file is extended by writing past the current EOF position.

Record Numbers

Using direct (random) access, you can access up to 65,536 records. Record numbers start at 0 and go to 65535.

Using a file sequentially, you can access up to 16,777,216 bytes. To calculate the number of records you can access sequentially, use the formula:

16,777,216 ÷ logical record length = number of sequential records allowed

Below are some examples.

If the LRL = 256, then: $16,777,216 \ \div \ 256 = 65,536 \ records$ If the LRL = 128, then: $16,777,216 \ \div \ 128 = 131,072 \ records$ If the LRL = 50, then: $16,777,216 \ \div \ 50 = 335,544 \ records$ If the LRL = 1, then: $16,777,216 \ \div \ 1 = 16,777,216 \ records$

3/TRSDOS File Descriptions

This section describes four types of files found on your TRSDOS master diskette (system files, utilities, driver programs, and filter programs) and explains their functions. It also describes how to construct a minimum system disk for running applications packages.

System Files (/SYS)

TRSDOS Version 6 would occupy considerable memory space if all of it were resident in memory at any one time. To minimize the amount of memory reserved for system use, TRSDOS uses overlays.

Using an overlay-driven system involves some compromise. While a user's application is in progress, different overlays may need to be loaded to perform certain activities requested of the system. This could cause the system to run slightly slower than a system which has more of its file access routines always resident in memory.

The use of overlays also requires that a SYSTEM disk usually be available in Drive 0 (the system drive). Since the disk containing the operating system and its utilities leaves little space available to the user, you may want to remove certain parts of the system software not needed while a particular application is running. You may in fact discover that your day-to-day operations need only a minimal TRSDOS configuration. The greater the number of system functions unnecessary for your application, the more space you can have available for a "working" system disk. Use the PURGE or REMOVE library command to eliminate unneeded system files from the disk.

The following paragraphs describe the functions performed by each system overlay. (In the display produced by the DIR (SYS) library command, the system overlays are identified by the file extension /SYS.)

Note: Two system files are put on the disk during formatting. They are DIR/SYS and BOOT/SYS. These files should *never* be copied from one disk to another or REMOVEd. TRSDOS automatically updates any information necessary when performing a backup.

SYS0/SYS

This is not an overlay. It contains the resident part of the operating system (SYSRES). It is also needed to dynamically allocate file space used when writing files. Any disk used for booting the system *must* contain SYS0. It can be purged from disks not used for booting.

SYS1/SYS

This overlay contains the TRSDOS command interpreter and the routines for processing the @CMNDI, @CMNDR, @FEXT, @FSPEC, and @PARAM system vectors. This overlay must be available on all SYSTEM disks.

SYS2/SYS

This overlay is used for opening or initializing disk files and logical devices. It also contains routines for processing the @CKDRV, @GTDCB, and @RENAM system vectors, and routines for hashing file specifications and passwords. This overlay must be available on all SYSTEM disks.

SYS3/SYS

This overlay contains all of the system routines needed to close files and logical devices. It also contains the routines needed to service the @FNAME system vector. This overlay must not be removed from the disk.

SYS4/SYS

This overlay contains the system error dictionary. It is needed to issue such messages as "File not found," "Directory read error," etc. If you decide to remove this overlay from your working SYSTEM disk, all system errors will produce the error message "SYS ERROR." It is recommended that you not remove this overlay, especially since it occupies only one granule of space.

SYS5/SYS

This is the "ghost" debugger. It is needed if you intend to test out machine language application software by using the TRSDOS DEBUG library command. If your operation will not require this debugging tool, you may purge this overlay.

SYS6/SYS

This overlay contains all of the routines necessary to service the library commands identified as "Library A" by the LIB command. This represents the primary library functions. Only very limited use can be made of TRSDOS if this overlay is removed from your working SYSTEM disk.

SYS7/SYS

This overlay contains all of the routines necessary to service the library commands identified as "Library B" by the LIB command. A great deal of use can be made of TRSDOS even without this overlay. It performs specialized functions that may not be needed in the operation of specific applications. You can purge this overlay if you decide it is not needed on a working SYSTEM disk.

SYS8/SYS

This overlay contains all of the routines necessary to service the library commands identified as "Library C" by the LIB command. A great deal of use can be made of TRSDOS even without this overlay. It performs specialized functions that may not be needed in the operation of specific applications. You can purge this overlay if you decide it is not needed on a working SYSTEM disk.

SYS9/SYS

This overlay contains the routines necessary to service the extended DEBUG commands available after a DEBUG (EXT) is performed. This overlay may be purged if you will not need the extended DEBUG commands while running your application. If you remove SYS5/SYS, then you may as well remove SYS9/SYS, as it would serve no useful purpose.

SYS10/SYS

This system overlay contains the procedures necessary to service the request to remove a file. It should remain on your working SYSTEM disks.

SYS11/SYS

This overlay contains all of the procedures necessary to perform the Job Control Language execution phase. You may remove this overlay from your working disks if you do not intend to execute any JCL functions. If SYS6/SYS (which contains the DO command) has been removed, keeping this overlay would serve no purpose.

SYS12/SYS

This system overlay contains the routines that service the @DODIR, @GTMOD, and @RAMDIR system vectors. It should remain on your disks.

SYS13/SYS

This overlay is reserved for future system use. It contains no code and takes up no space on the disk. You may remove this overlay if you wish to free up its directory slot.

Utility Programs

BACKUP — Used to duplicate data from one disk to another.

COMM — A communications package for use with the RS-232C hardware.

CONV — Used to copy files from Model III TRSDOS to TRSDOS Version 6.

FORMAT — Used to put track, sector, and directory information on a disk.

 LOG — Used to log in a double-sided diskette in Drive Ø. Also updates the Drive Code Table information as with the DEVICE library

command.

PATCH — Used to make changes to existing files.

REPAIR — Used to correct certain information on non-TRSDOS formatted diskettes.

TAPE100 — A disk/tape, tape/disk utility for cassette tape operations with the TRS-80 Model 100.

Device Driver Programs

COM/DVR — The RS-232C communications driver.

FLOPPY/DCT — Configures floppy drives in the system. Not needed with a

floppy-only system.

JL/DVR — The Joblog driver program.

MEMDISK/DCT — Used to establish a pseudo floppy drive in memory.

Filter Programs

CLICK/FLT — Produces a short tone as each key is pressed.

FORMS/FLT — Used to select printer parameters and perform character

translation.

KSM/FLT — The Keystroke Multiply feature, which allows the assigning

of user-determined phrases to alphabetic keys.

Creating a Minimum Configuration Disk

All files except certain /SYS files may be purged from your Drive 0 disk. Additionally, if you place the needed /SYS files in high memory with the SYSTEM (SYSRES) command, it will be possible to run with a minimum configuration disk in Drive 0 after booting the system. Keep the following points in mind when purging system files:

- For operation, SYS files 1, 2, 3, 4, 10, and 12 should remain on the Drive 0 disk or be resident in memory.
- SYS2 must be on the system disk if a configuration file is to be loaded.

- SYS11 must be present only if any JCL files will be used.
- All three libraries (SYS files 6, 7, and 8) may be purged if no library command will be used.
- SYS5 and SYS9 may be purged if the system DEBUG package is not needed.
- SYS0 may be removed from any disk not used for booting.
- SYS11 (the JCL processor) and SYS6 (containing the DO library command) must both be on the disk if the DO command is to be used. Also, if you remove SYS6, you may as well remove SYS11.
- SYS13 (reserved for future use) may be removed to free up an additional directory slot.

The presence of any utility, driver, or filter program is dependent upon your individual needs. You can save most of the TRSDOS features in a configuration file using the SYSTEM (SYSGEN) command, so the driver and filter programs will not be needed in run time applications.

The owner (update) passwords for TRSDOS files are as follows:

File Type	Extension	Owner Password
System files	(/SYS)	LSIDOS
Filter files	(/FLT)	FILTER
Driver files	(/DVŔ)	DRIVER
Utility files	(Ì/CMD)	UTILITY
BASÍC	,	BASIC
BASIC overlays	(/OV\$)	BASIC
CONFIG/SYS	(+)	CCC
Drive Code Table Initializer	(/DCT)	UTILITY

Device Control Block (DCB)

The Device Control Block (DCB) is an area of memory that contains information used to interface the operating system with various logical devices. These devices include the keyboard (*KI), the video display (*DO), a printer (*PR), a communications line (*CL), and other devices that you may define.

The following information describes each assigned DCB byte.

DCB+0 (TYPE Byte)

- Bit 7 If set to "1," the Device Control Block is actually a File Control Block (FCB) with the file open. Since DCBs and FCBs are similar, and devices may be routed to files, a "device" with this bit set indicates a routing to a file.
- Bit 6 If set to "1," the device defined by the DCB is filtered or is a device filter.
- Bit 5 If set to "1," the device defined by the DCB is linked.
- Bit 4 If set to "1," the device defined by the DCB is routed.
- Bit 3 If set to "1," the device defined by the DCB is a NIL device. Any output directed to the device is discarded. For any input request, the character returned is a null (ASCII value 0).
- Bit 2—If set to "1," the device defined by the DCB can handle requests generated by the @CTL supervisor call. See the section on Supervisor Calls for more information.
- Bit 1 If set to "1," the device defined by the DCB can handle output requests which normally come from the @PUT supervisor call.
- Bit 0 If set to "1," the device defined by the DCB can handle requests for input which normally come from the @GET supervisor call.

DCB+1 and DCB+2

Contain the address of the driver routine that supports the hardware assigned to this DCB. (In the case of a routed or linked device, the vector may point to another DCB.)

DCB+3 through DCB+5

Reserved for system use.

DCB+6 and DCB+7

These locations normally contain the two alphabetic characters of the devspec. The system uses the devspec as a reference in searching the device control block tables.

Memory Header

Modules that TRSDOS loads into memory (filters, drivers, and other memory modules such as a SPOOL buffer or the extended DEBUG code) are identified by a standard front-end header:

```
JR
BEGIN:
            START
                          Go to actual code
                          ;besinnins
        DEFW END-1
                          Contains the highest byte
                          iof memory
                          Jused by the module
                          Length of name, 1-15
        DEFB 10
                          icharacters;
                          $bits 4-7 reserved for
                          isystem use
        DEFM 'NAMESTRING' JUP to 15 alphanumeric
                          icharacters, with the first
                          icharacter A-Z. This should
                          The a unique name to
                          spositively identify the
                          imodule.
MODDCB: DEFW $-$
                          FDCB pointing to this
                          #module (if applicable)
        DEFW Ø
                          Spare system pointer _
                          #RESERVED
i
        Any additional data storage goes here
START:
       Start of actual program code
       EQU $
END:
```

As explained under the @GTMOD SVC in the "Supervisor Call" section, the location of a specific header can be found provided all modules that are put into memory use this header structure. You can locate the data area for a module by using @GTMOD to find the start of the header and then indexing in to the data area.

Drive Code Table (DCT)

TRSDOS uses a Drive Code Table (DCT) to interface the operating system with specific disk driver routines. Note especially the fields that specify the allocation scheme for a given drive. This data is essential in the allocation and accessibility of file records.

The DCT contains eight 10-byte positions — one for each logical drive designated 0-7. TRSDOS supports a standard configuration of four floppy drives. This is the default initialization when TRSDOS is loaded.

Here is the Drive Code Table layout:

DCT+0

This is the first byte of a 3-byte vector to the disk I/O driver routines. This byte is normally X'C3. If the drive is disabled or has not been configured (see the SYSTEM command in the *Disk System Owner's Manual*), this byte is a RET instruction (X'C9').

DCT+1 and DCT+2

Contain the entry address of the routines that drive the physical hardware.

DCT + 3

Contains a series of flags for drive specifications.

- Bit 7—Set to "1" if the drive is software write protected, "0" if it is not. (See the SYSTEM command in the *Disk System Owner's Manual*.)
- Bit 6 Set to "1" for DDEN (double density), or "0" for SDEN (single density).
- Bit 5—Set to "1" if the drive is an 8" drive. Set to "0" if it is a 51/4" drive.
- Bit 4—A "1" causes the selection of the disk's second side. The first side is selected if this bit is "0." This bit value matches the side indicator bit in the sector header written by the Floppy Disk Controller (FDC).
- Bit 3—A "1" indicates a hard drive (Winchester). A "0" denotes a floppy drive (51/4" or 8").
- Bit 2—Indicates the time delay between selection of a 51/4" drive and the first poll of the status register. A "1" value indicates 0.5 second and a "0" indicates 1.0 second. See the SYSTEM command in the *Disk System Owner's Manual* for more details.
 - If the drive is a hard drive, this bit indicates either a fixed or removable disk: "1" = fixed, "0" = removable.
- Bits 1 and 0 Contain the step rate specification for the Floppy Disk Controller. (See the SYSTEM command in the *Disk System Owner's Manual.*) In the case of a hard drive, this field may indicate the drive address (0-3).

DCT+4

Contains additional drive specifications.

- Bit 7 Reserved for future use. In order to maintain compatibility with future releases of TRSDOS, do not use this bit.
- Bit 6—If "1," the controller is capable of double-density mode.

Bit 5—"1" indicates that this is a 2-sided floppy diskette; "0" indicates a 1-sided floppy disk. Do not confuse this bit with Bit 4 of DCT+3. This bit shows if the disk is double-sided; Bit 4 of DCT+3 tells the controller what side the current I/O is to be on.

If the hard drive bit (DCT+3, Bit 3) is set, a "1" denotes double the cylinder count stored in DCT+6. (This implies that a logical cylinder is made up of two physical cylinders.)

Bit 4—If "1," indicates an alien (non-standard) disk controller.

Bits 0-3—Contain the physical drive address by bit selection (0001, 0010, 0100, and 1000 equal logical Drives 0, 1, 2, and 3, respectively, in a default system). The system supports a translation only where no more than one bit can be set.

If the alien bit (Bit 4) is set, these bits may indicate the starting head number.

DCT+5

Contains the current cylinder position of the drive. It normally stores a copy of the Floppy Disk Controller's track register contents whenever the FDC is selected for access to this drive. It can then be used to reload the track register whenever the FDC is reselected.

If the alien bit (DCT + 4, Bit 4) is set, DCT + 5 may contain the drive select code for the alien controller.

DCT+6

Contains the highest numbered cylinder on the drive. Since cylinders are numbered from zero, a 35-track drive is recorded as X'22, a 40-track drive as X'27, and an 80-track drive as X'4F. If the hard drive bit (DCT + 3, Bit 3) is set, the true cylinder count depends on DCT + 4, Bit 5. If that bit is a "1," DCT + 6 contains only half of the true cylinder count.

DCT+7

Contains allocation information.

- Bits 5-7 Contain the number of heads for a hard drive.
- Bits 0-4 Contain the highest numbered sector relative to zero. A 10-sector-per-track drive would show X'09'. If DCT+4, Bit 5 indicates 2-sided operation, the sectors per cylinder equals twice this number.

DCT+8

Contains additional allocation information.

- Bits 5-7 Contain the number of granules per track allocated in the formatting process. If DCT + 4, Bit 5 indicates 2-sided operation, the granules per cylinder equals twice this number. For a hard drive, this number is the total granules per cylinder.
- Bits 0-4 Contain the number of sectors per granule that was used in the formatting operation.

DCT+9

Contains the number of the cylinder where the directory is located. For any directory access, the system first attempts to use this value to read the directory. If this operation is unsuccessful, the system examines the BOOT granule (cylinder 0) directory address byte.

Bytes DCT + 6, DCT + 7, and DCT + 8 must relate without conflicts. That is, the highest numbered sector (+1) divided by the number of sectors per granule (+1) must equal the number of granules per track (+1).

Disk I/O Table

TRSDOS interfaces with hardware peripherals by means of software drivers. The drivers are, in general, coupled to the operating system through data parameters stored in the system's many tables. In this way, hardware not currently supported by TRSDOS can easily be supported by generating driver software and updating the system tables.

Disk drive sub-systems (such as controllers for 51/4" drives, 8" drives, and hard disk drives) have many parameters addressed in the Drive Code Table (DCT). Besides those operating parameters, controllers also require various commands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to control the physical devices. TRSDOS has defined command conventions to deal with most commands available on standard Disk Controllers.

The function value (hexadecimal or decimal) you wish to pass to the driver should go in register B. The available functions are:

Hex	Dec	Function	Operation Performed
X,00,	Ø	DCSTAT	Test to see if drive is assigned in DCT
X'01'	1	SELECT	Select a new drive and return status
X'02'	2	DCINIT	Set to cylinder 0, restore, set side 0
X'03'	3	DCRES	Reset the Floppy Disk Controller
X'04'	4	RSTOR	Issue FDC RESTORE command
X'05'	5	STEPI	Issue FDC STEP IN command
X'06'	6	SEEK	Seek a cylinder
X'07'	7	TSTBSY	Test to see if requested drive is busy
X'08'	8	RDHDR	Read sector header information
X'09'	9	RDSEC	Read sector
X'ØA'	10	VRSEC	Verify if the sector is readable
X'0B'	11	RDTRK	Issue an FDC track read command
X'ØC'	12	HDFMT	Format the device
X,0D,	13	WRSEC	Write a sector
X'0E'	14	WRSYS	Write a system sector (for example, directory)
X'0F'	15	WRTRK	Issue an FDC track write command

Function codes X'10' to X'FF' are reserved for future use.

Directory Records (DIREC)

The directory contains information needed to access all files on the disk. The directory records section is limited to a maximum of 32 sectors because of physical limitations in the Hash Index Table. Two additional sectors in the directory cylinder are used by the system for the Granule Allocation Table and the Hash Index Table. The directory is contained on one cylinder. Thus, a 10-sector-per-cylinder formatted disk has, at most, eight directory sectors. See the section on the Hash Index Table for the formula to calculate the number of directory sectors.

A directory record is 32 bytes in length. Each directory sector contains eight directory records (256/32=8). On system disks, the first two directory records of the first eight directory sectors are reserved for system overlays. The total

number of files possible on a disk equals the number of directory sectors times eight (since 256/32 = 8). The number available for use is reduced by 16 on system disks to account for those record slots reserved for the operating system. The following table shows the directory record capacity (file capacity) of each format type. The dash suffix (-1 or -2) on the items in the density column represents the number of sides formatted (for example, SDEN-1 means single density, 1-sided).

	Sectors		User Files	User
	per	Directory	on Data	Files on
	Cylinder	Sectors	Disk**	SYS Disk
5" SDEN-1	10	8	62	48
5" SDEN-2	20	18	142	128
5" DDEN-1	18	16	126	112
5" DDEN-2	36	32	254	240
8" SDEN-1	16	14	110	96
8" SDEN-2	32	30	238	224
8" DDEN-1	30	28	222	208
8" DDEN-2	60	32	254	240
5-MFG HARD*				

^{*}Hard drive format depends on the drive size and type, as well as the user's division of the physical drive into logical drives. After setting up and formatting the drive, you can use the FREE library command to see the available files.

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible operating systems in its directory format. The data contained in the directory has been extended. An SVC is included to either display an abbreviated directory or place its data in a user-defined buffer area. For detailed information, see the @DODIR and @RAMDIR SVCs.

The following information describes the contents of each directory field:

DIR+0

Contains all attributes of the designated file.

- Bit 7—If "0," this flag indicates that the directory record is the file's primary directory entry (FPDE). If "1," the directory record is one of the file's extended directory entries (FXDE). Since a directory entry can contain information on up to four extents (see notes on the extent fields, beginning with DIR+22), a file that is fractured into more than four extents requires additional directory records.
- Bit 6 Specifies a SYStem file if "1," a nonsystem file if "0."
- Bit 5 If set to "1," indicates a Partition Data Set (PDS) file.
- Bit 4—Indicates whether the directory record is in use or not. If set to "1," the record is in use. If "0," the directory record is not active, although it may appear to contain directory information. In contrast to some operating systems that zero out the directory record when you remove a file, TRSDOS only resets this bit to zero.
- Bit 3—Specifies the visibility. If "1," the file is INVisible to a directory display or other library function where visibility is a parameter. If a "0," then the file is VISible. (The file can be referenced if specified by name by an @INIT or @OPEN SVC.)
- Bits 0-2—Contain the USER protection level of the file. The 3-bit binary value is one of the following:

```
\emptyset = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE
1 = REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS
```

^{**}Note: Two directory records are reserved for BOOT/SYS and DIR/SYS, and are not included in the figures for this column.

DIR+1

Contains various file flags and the month field of the packed date of last modification.

- Bit 7—Set to "1" if the file was "CREATEd" (see CREATE library command in the *Disk System Owner's Manual*). Since the CREATE command can reference a file that is currently existing but non-CREATEd, it can turn a non-CREATEd file into a CREATEd one. You can achieve the same effect by changing this bit to a "1."
- Bit 6— If set to "1," the file has not been backed up since its last modification. The BACKUP utility is the only TRSDOS facility that resets this flag. It is set during the close operation if the File Control Block (FCB $+ \emptyset$, Bit 2) shows a modification of file data.
- Bit 5—If set to "1," indicates a file in an open condition with UPDATE access or greater.
- Bit 4 If the file was modified during a session where the system date was not maintained, this bit is set to "1." This specifies that the packed date of modification (if any) stored in the next three fields is not the actual date the modification occurred. If this bit is "1," the directory command displays plus signs (+) between the date fields if you request the (A) option.
- Bits 0-3—Contain the binary month of the last modification date. If this field is a zero, DATE was not set when the file was established or since if it was updated.

DIR + 2

Contains the remaining date of modification fields.

- Bits 3-7 Contain the binary day of last modification.
- Bits 0-2 Contain the binary year minus 80. For example, 1980 is coded as 000, 1981 as 001, 1982 as 010, and so on.

DIR+3

Contains the end-of-file offset byte. This byte and the ending record number (ERN) form a pointer to the byte position that follows the last byte written. This assumes that programmers, interfacing in machine language, properly maintain the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was generated or when it was later changed with a CLONE parameter.

DIR+5 through DIR+12

Contain the name field of the filespec. The filename is left justified and padded with trailing blanks.

DIR+13 through DIR+15

Contain the extension field of the filespec. It is left justified and padded with trailing blanks.

DIR + 16 and DIR + 17

Contain the OWNER password hash code.

DIR + 18 and DIR + 19

Contain the USER password hash code. The protection level in DIR \pm 0 is associated with this password.

DIR+20 and DIR+21

Contain the ending record number (ERN), which is based on full sectors. If the ERN is zero, it indicates that no writing has taken place (or that the file was not closed properly). If the LRL is not 256, the ERN represents the sector where the EOF occurs. You should use ERN minus 1 to account for a value relative to sector \emptyset of the file.

DIR+22 and DIR+23

This is the first extent field. Its contents indicate which cylinder stores the first granule of the extent, which relative granule it is, and how many contiguous grans are in use in the extent.

- DIR+22—Contains the cylinder value for the starting gran of that extent.
- DIR + 23, Bits 5-7 Contain the number of the granule in the cylinder indicated by DIR + 22 which is the first granule of the file for that extent. This value is relative to zero ("0" denotes the first gran, "1" denotes the second, and so on).
- DIR + 23, Bits 0-4 Contain the number of contiguous granules, relative to 0 ("0" denotes one gran, "1" denotes two, and so on). Since the field is five bits, it contains a maximum of X'1F' or 31, which represents 32 contiguous grans.

DIR+24 and DIR+25

Contain the fields for the second extent. The format is identical to that for Extent 1.

DIR+26 and DIR+27

Contain the fields for the third extent. The format is identical to that for Extent 1.

DIR+28 and DIR+29

Contain the fields for the fourth extent. The format is identical to that for Extent 1.

DIR + 30

This is a flag noting whether or not a link exists to an extended directory record. If no further directory records are linked, the byte contains X'FF.' A value of X'FE' in this byte establishes a link to an extended directory entry. (See "Extended Directory Records" below.)

DIR+31

This is the link to the extended directory entry noted by the previous byte. The link code is the Directory Entry Code (DEC) of the extended directory record. The DEC is actually the position of the Hash Index Table byte mapped to the directory record. For more information, see the section "Hash Index Table."

Extended Directory Records

Extended directory records (FXDE) have the same format as primary directory records, except that only Bytes 0, 1, and 21-31 are utilized. Within Byte 0, only Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of which this is an extension. An extended directory record may point to yet another directory record, so a file may contain an "unlimited" number of extents (limited only by the total number of directory records available).

Granule Allocation Table (GAT)

The Granule Allocation Table (GAT) contains information on the free and assigned space on the disk. The GAT also contains data about the formatting used on the disk.

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a specified number of sectors. A group of sectors is allocated whenever additional space is needed. This group is called a granule. The number of sectors per granule depends on the total number of sectors available on a logical drive. The GAT provides for a maximum of eight granules per cylinder.

In the GAT bytes, each bit set to "1" indicates a corresponding granule in use (or locked out). Each bit reset to "0" indicates a granule free to be used. In a GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the second relative granule, bit 2 the third, and so on. A 51/4" single density diskette is formatted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder. Thus, that configuration uses only bits 0 and 1 of the GAT byte. The remainder of the GAT byte contains all 1's, denoting unavailable granules. Other formatting conventions are as follows:

	Sectors per Cylinder	Sectors per Granule	Granules per Cylinder	Maximum No. of Cylinders
5" SDEN	10	5	2	80
5" DDEN	18	6	3	80
8" SDEN	16	8	2	77
8" DDEN	30	10	3	77
5-MEG HARD*	32	16	8	153

^{*}Hard drive format depends on the drive size and type, as well as the user's division of the drive into logical drives. These values assume that one physical hard disk is treated as one logical drive.

The above table is valid for single-sided disks. TRSDOS supports double-sided operation if the hardware interfacing the physical drives to the CPU allows it. A two-headed drive functions as a single logical drive, with the second side as a cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table (DCT \pm 4, Bit 5) indicates one-sided or two-sided drive configuration.

A Winchester-type hard disk can be divided by heads into multiple logical drives. Details are supplied with Radio Shack drives.

The Granule Allocation Table is the first relative sector of the directory cylinder. The following information describes the layout and contents of the GAT.

GAT + X'00' through GAT + X'5F'

Contains the free/assigned table information. GAT + 0 corresponds to cylinder 0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so on. As noted above, bit 0 of each byte corresponds to the first granule on the cylinder, bit 1 to the second granule, and so on. A value of "1" indicates the granule is not available for use.

GAT + X'60' through GAT + X'BF'

Contains the available/locked out table information. It corresponds cylinder for cylinder in the same way as the free/assigned table. It is used during mirror-image backups to determine if the destination diskette has the proper capacity to effect a backup of the source diskette. This table does not exist for hard disks; for this reason, mirror-image backups cannot be performed on hard disk.

GAT + X'C0' through GAT + X'CA'

Used in hard drive configurations; extends the free/assigned table from X'00' through X'CA'. Hard drive capacity up to 203 (0-202) logical or 406 physical cylinders is supported.

GAT + X'CB'

Contains the operating system version that was used in formatting the disk. For example, disks formatted under TRSDOS 6.1 have a value of X'61' contained in this byte. It is used to determine whether or not the disk contains all of the parameters needed for TRSDOS operation.

GAT + X'CC'

Contains the number of cylinders in excess of 35. It is used to minimize the time required to compute the highest numbered cylinder formatted on the disk. It is excess 35 to provide compatibility with alien systems not maintaining this byte. If you have a disk that was formatted on an alien system for other than 35 cylinders, this byte can be automatically configured by using the REPAIR utility. (See the section on the REPAIR utility in the *Disk System Owner's Manual*.)

GAT + X'CD'

Contains data about the formatting of the disk.

- Bit 7 If set to "1," the disk is a data disk. If "0," the disk is a system disk.
- Bit 6—If set to "1," indicates double-density formatting. If "0," indicates single-density formatting.
- Bit 5 If set to "1," indicates 2-sided disk. If "0," indicates 1-sided disk.
- Bits 3-4 Reserved.
- Bits 0-2 Contain the number of granules per cylinder minus 1.

GAT + X'CE' and GAT + X'CF'

Contain the 16-bit hash code of the disk master password. The code is stored in standard low-order, high-order format.

GAT + X'D0' through GAT + X'D7'

Contain the disk name. This is the name displayed during a FREE or DIR operation. The disk name is assigned during formatting or during an ATTRIB disk renaming operation. The name is left justified and padded with blanks.

GAT + X'D8' through GAT + X'DF'

Contain the date that the diskette was formatted or the date that it was used as the destination in a mirror image backup operation in the format mm/dd/yy.

GAT + X'E0' through GAT + X'FF'

Reserved for system use.

Hash Index Table (HIT)

The Hash Index Table is the key to addressing any file in the directory. It pinpoints the location of a file's directory with a minimum of disk accesses, keeping overhead low and providing rapid file access.

The system's procedure is to construct an 11-byte filename/extension field. The filename is left-justified and padded with blanks. The file extension is then inserted and padded with blanks; it occupies the three least significant bytes of the 11-byte field. This field is processed through a hashing algorithm which produces a single byte value in the range X'01' through X'FF. (A hash value of X'00' indicates a spare HIT position.)

The system then stores the hash code in the Hash Index Table (HIT) at a position corresponding to the directory record that contains the file's directory. Since more than one 11-byte string can hash to identical codes, the opportunity for "collisions" exists. For this reason, the search algorithm scans the HIT for a matching code entry, reads the directory record corresponding to the matching HIT position, and compares the filename/extension stored in the directory with that provided in the file specification. If both match, the directory has been found. If the two fields do not match, the HIT entry was a collision and the algorithm continues its search from the next HIT entry.

The position of the HIT entry in the hash table is called the Directory Entry Code (DEC) of the file. All files have at least one DEC. Files that are extended beyond

four extents have a DEC for each extended directory entry and use more than one filename slot. To maximize the number of file slots available, you should keep your files below five extents where possible.

Each HIT entry is mapped to the directory sectors by the DEC's position in the HIT. Think of the HIT as eight rows of 32-byte fields. Each row is mapped to one of the directory records in a directory sector: The first HIT row is mapped to the first directory record, the second HIT row to the second directory record, and so on. Each column of the HIT field (\emptyset -31) is mapped to a directory sector. The first column is mapped to the first directory sector in the directory cylinder (not including the GAT and HIT). Therefore, the first column corresponds to sector 2, the second column to sector 3, and so on. The maximum number of HIT columns used depends on the disk formatting according to the formula: N = number of sectors per cylinder minus two, up to 32.

The following chart shows the correlation of the Hash Index Table to the directory records. Each byte value shown represents the position in the HIT. This position value is the DEC. The actual contents of each byte is either a $X(\emptyset\emptyset)$ indicating a spare slot, or the 1-byte hash code of the file that occupies the corresponding directory record.

						Columns										
Row 1	00	Ø1	02	03	04	05	06	07	Ø8	Ø9	ØA	0B	ØC	0D	0E	0F
	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
Row 2	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F
Row 3	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
Row 4	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
	70	71	72	73	74	75	.76	77	78	79	7A	7B	7C	7D	7E	7F
Row 5	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
	90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F
Row 6	AØ	A1	A2	A3	A4	A5	A6	A7	A8	A9	AA	AB	AC	AD	AE	AF
	BØ	B1	B2	B3	B4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF
Row 7	D0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF
	C0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF
Row 8	EØ	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF
	FØ	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF

A 51/4″ single density disk has 10 sectors per cylinder, two of which are reserved for the GAT and HIT. Since only eight directory sectors are possible, only the first eight positions of each HIT row are used. Other formats use more columns of the HIT, depending on the number of sectors per cylinder in the formatting scheme.

The eight directory records for sector 2 of the directory cylinder correspond to assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. On system disks, the following positions are reserved for system overlays. On data disks, these positions (except for 00 and 01) are available to the user.

00 — BOOT/SYS	20 — SYS6/SYS
01 — DIR/SYS	21 — SYS7/SYS
02 — SYS0/SYS	22 — SYS8/SYS
03 — SYS1/SYS	23 SYS9/SYS
04 SYS2/SYS	24 — SYS10/SYS
05 — SYS3/SYS	25 — SYS11/SYS
06 — SYS4/SYS	26 — SYS12/SYS
07 SYS5/SYS	27 — SYS13/SYS

These entry positions correspond to the first two rows of each directory sector for the first eight directory sectors. Since the operating system accesses these overlays by position in the HIT rather than by filename, these positions are reserved on system disks.

The design of the Hash Index Table limits the number of files on any one drive to a maximum of 256.

Locating a Directory Record

Because of the coding scheme used on the entries in the HIT table, you can locate a directory record with only a few instructions. The instructions are:

> AND 1FH ADD A .2

> > (calculates the sector)

and

AND ØEØH

(calculates the offset in that sector)

For example, if you have a Directory Entry Code (DEC) of X'84', the following occurs when these instructions are performed:

Value of accumulator

A = X'84'

AND 1FH

A = X'04'

ADD A,2

A = X'06'

The record is in the seventh sector of the directory cylinder

(0-6)

Using the Directory Entry Code (DEC) again, you can find the offset into the sector that was found using the above instructions by executing one instruction:

Value of accumulator

A = X'84'

AND ØEØH

A = X'80'

The directory record is X'80' (128)

bytes from the beginning of

the sector

If the record containing the sector is loaded on a 256-byte boundary (LSB of the address is X'00') and HL points to the starting address of the sector, then you can use the above value to calculate the actual address of the directory record by executing the instruction:

L.D

When executed after the calculation of the offset, this causes HL to point to the record. For example:

A = X'80'

LD HL ,4200H :Where sector is loaded LD

:Replace LSB with offset

HL now contains 4280H, which is the address of the directory record you wanted.

If you cannot place the sector on a 256-byte boundary, then you can use the following instructions:

A = X'80'

LD HL ,4256H ;Where sector is loaded L.D E,A ;Put offset in E (LSB) LD D . Ø ;Put a zero in D (MSB) ADD HL , DE ;Add two values together

HL now contains 42D6H, which is the address of the directory record.

Note that the first DEC found with a matching hash code may be the file's extended directory entry (FXDE). Therefore, if you are going to write system code to deal with this directory scheme, you must properly deal with the FPDE/FXDE entries. See Directory Records for more information.

File Control Block (FCB)

The File Control Block (FCB) is a 32-byte memory area. Before the file is opened, this space holds the file's filespec. After an @OPEN or @INIT supervisor call is performed, the system uses this area to interface with the file, and replaces the filespec with other information. When the file is closed, the filespec (without any specified password) is returned to the FCB.

While a file is open, the contents of the FCB are dynamic. As records are written to or read from the disk file, specific fields in the FCB are modified. Avoid changing the contents of the FCB during the time a file is open, unless you are sure that the change will not affect the integrity of the file.

During most system access of the FCB, the IX index register is used to reference each field of data. Register pair DE is used mainly for the initial reference to the FCB address. The information contained in each field of the FCB is as follows:

FCB+0

Contains the TYPE code of the control block.

- Bit 7—If set to "1," indicates that the file is in an open condition; if "0," the file is assumed closed. This bit can be tested to determine the "open" or "closed" status of an FCB.
- Bit 6—Is set to "1" if the file was opened with UPDATE access or higher.
- Bit 5 -- Indicates a Partition Data Set (PDS) type file.
- Bits 4-3 Reserved for future use.
- Bit 2—Is set to "1" if the system performed any WRITE operation on this file. It is used to update the MOD flag in the directory record when the file is closed.
- Bits 1-0 Reserved for future use.

FCB+1

Contains status flag bits used in read/write operations by the system.

- Bit 7— If set to "1," indicates that I/O operations will be either full sector operations or byte operations of logical record length (LRL) less than 256. If "0," only sector operations will be performed. If you are going to use only full-sector I/O, you can reduce system overhead by specifying the LRL at open time as 0 (indicating 256). An LRL of other than 256 sets bit 7 to "1" on open.
- Bit 6—If set to "1," indicates that the end of file (EOF) is to be set to ending record number (ERN) only if next record number (NRN) exceeds the current value of EOF. This is the case if random access is to be used. During random access, the EOF is not disturbed unless you extend the file beyond the last record slot. Any time the position routine (@POSN) is called, bit 6 is automatically set. If bit 6 is "0," then EOF will be updated on every WRITE operation.
- Bit 5—If "0," then the disk I/O buffer contains the current sector denoted by NRN. If set to "1," then the buffer does not contain the current sector. During byte I/O, bit 5 is set when the last byte of the sector is read. A sector read resets the bit, showing the buffer to be current.

- Bit 4 If set to "1," indicates that the buffer contents have been changed since the buffer was read from the file. It is used by the system to determine whether the buffer must be written back to the file before reading another record. If "0," then the buffer contents were not changed.
- Bit 3—Used to specify that the directory record is to be updated each time the NRN exceeds the EOF. (The normal operation is to update the directory only when an FCB is closed.) Some unattended operations may use this extra measure of file protection. It is specified by adding an exclamation mark ("!") to the end of a filespec when the filespec is requested at open time.
- Bits 2-0 Contain the user (access) protection level as retrieved from the directory of the file. The 3-bit binary value is one of the following:

```
0=FULL 2=RENAME 4=UPDATE 6=EXECUTE
1=REMOVE 3=WRITE 5=READ 7=NO ACCESS
```

FCB+2

Used by Partition Data Set (PDS) files.

FCB+3 and FCB+4

Contain the buffer address in low-order, high-order format. This is the buffer address specified in register pair HL when the @INIT or @OPEN SVC is performed.

FCB+5

Contains the relative byte offset within the current buffer for the next I/O operation. If this byte has a zero value, then FCB + 1, Bit 5 must be examined to see if the first byte in the current buffer is the target position or if it is the first byte of the next record. If you are performing sector I/O of byte data (that is, maintaining your own buffering), then it is important to maintain this byte when you close the file if the true end of file is not at a sector boundary.

FCB+6

Bits 3-7 — Reserved for system use.

Bits 0-2 — Contain the logical drive number in binary of the drive containing the file. Do not modify this byte; altering this value may damage other files. This byte and FCB+7 are the only links to the file's directory information.

FCB+7

Contains the directory entry code (DEC) for the file. This code is the offset in the Hash Index Table where the hash code for the file appears. Do not modify this byte; altering this value may damage other files. This byte and FCB \pm 6 are the only links to the directory information for the file.

FCB+8

Contains the end-of-file byte offset. This byte is similar to FCB+5 except that it pertains to the end of file rather than to the next record number.

FCB+9

Contains the logical record length that was in effect when the file was opened. This may not be the same LRL that exists in the directory. The directory LRL is generated at the file creation and never changes unless the file is overwritten.

FCB+10 and FCB+11

Contain the next record number (NRN), which is a pointer for the next I/O operation. When a file is opened, NRN is zero, indicating a pointer to the beginning. Each sequential sector I/O advances NRN by one.

FCB + 12 and FCB + 13

Contain the ending record number (ERN) of the file. This is a pointer to the sector that contains the end-of-file indicator. In a null file (one with no records), ERN equals 0. If one sector has been written, ERN equals 1.

FCB + 14 and FCB + 15

Contain the same information as the first extent of the directory. This represents the starting cylinder of the file (FCB + 14) and the starting relative granule within the starting cylinder (FCB + 15). FCB + 15 also contains the number of contiguous granules allocated in the extent. These bytes are used as a pointer to the beginning of the file referenced by the FCB.

FCB + 16 through FCB + 19

This 4-byte entry contains granule allocation information for an extent of the file. Relative bytes 0 and 1 contain the total number of granules allocated to the file up to but not including the extent referenced by this field. Relative byte 2 contains the starting cylinder of this extent. Relative byte 3 contains the starting relative granule for the extent and the number of contiguous granules.

FCB + 20 through FCB + 23

Contain information similar to the above but for a second extent of the file.

FCB+24 through FCB+27

Contain information similar to the above but for a third extent of the file.

FCB+28 through FCB+31

Contain information similar to the above but for a fourth extent of the file.

The file control block contains information on only four extents at one time. If the file has more than four extents, additional directory accessing is done to shift the 4-byte entries in order to make space for the new extent information.

Although the system can handle a file of any number of extents, you should keep the number of extents small. The most efficient file is one with a single extent. The number of extents can be reduced by copying the file to a disk that contains a large amount of free space.

7/TRSDOS Version 6 Programming Guidelines

Converting to TRSDOS Version 6

This section provides suggestions on writing programs effectively with TRSDOS Version 6, and on converting programs created with TRSDOS 1.3 and LDOS 5.1 operating systems for use with TRSDOS Version 6. This information is by no means complete, but presents some important concepts to keep in mind when using TRSDOS Version 6.

When programming in assembly language, you can use TRSDOS Version 6 routines for commonly used operations. These are accessed through the supervisor calls (SVCs) instead of absolute call addresses. Nothing in the system can be accessed via any absolute address reference (except Z-80 RST and NMI jump vectors).

IMPORTANT NOTE: TRSDOS provides all functions and storage through supervisor calls. No address or entry point below 3000H is documented or supported by Radio Shack.

The keyboard is not accessible via "peeking," and the video RAM cannot be "poked." The keyboard and video are accessible only through the appropriate SVCs.

Another distinction is that TRSDOS Version 6 handling of logical byte I/O devices (keyboard, video, printer, communications line) completely supports error status feedback. A FLAG convention is uniform throughout these device drivers as well as physical byte I/O associated with files. The device handling in TRSDOS Version 6 is completely independent. That means that byte I/O, both logical and physical, can be routed, filtered, and linked. Therefore, it is important to test status return codes in all applications using byte I/O regardless of the device that the application expects to be used, since re-direction to some other device is possible at the TRSDOS level. Appropriate action must be taken when errors are detected.

Modules loaded into memory and protected by lowering HIGH\$ must include the standard header, as described earlier under "Memory Header." The @GTMOD supervisor call requires that this header be present in every resident module for proper operation.

The file password protection terms of UPDATE and ACCESS have been changed in TRSDOS Version 6 to OWNER and USER, respectively. The additional file protection level of UPDATE has been added. A file with UPDATE protection level can be read or written to, but its end of file cannot be extended. This protection can be useful in a random access fixed-size file or in a file where shared access is to take place.

Files opened with UPDATE or greater access are indicated as open in their directory. Attempting to open the file again forces a change to READ access protection and a "File already open" error code. It is therefore important for applications to CLOSE files that are opened.

For the convenience of applications that access files only for reading, you can inhibit the "file open bit." If you set bit 0 of the system flag SFLAG\$ (see the @FLAGS supervisor call), the file open bit is not set in the file's directory. Once set, the next @OPEN or @INIT SVC automatically resets bit 0 of SFLAG\$. Note that you cannot use this procedure for files being written to, since it inhibits the CLOSE process.

Some application programs need access to certain system parameters and variables. A number of flags, variables, and port images can be accessed relative to a flag pointer obtained via the @FLAGS supervisor call. These parameters are only accessible relative to this pointer, as the pointer's location may change. (See the explanation of the @FLAGS SVC.)

All applications must honor the contents of HIGH\$. This pointer contains the highest RAM address usable by any program. You can retrieve and change HIGH\$ by using the @HIGH\$ SVC.

TRSDOS Version 6 library commands and utilities supply a return code (RC) at completion. The RC is returned in register pair HL. The value returned is either zero (indicating no error), a number from one through 62 (indicating an error as noted in Appendix A, TRSDOS Error Messages), or X'FFFF' (indicating an extended error which is currently not assigned an error number). TRSDOS Version 6 Job Control Language (JCL) aborts on any program terminating with a non-zero RC value. Applications should therefore properly set the return code register pair HL before exiting.

TRSDOS Version 6 library commands are also invokable via the @CMNDR SVC which executes the command. Library commands properly maintain the Stack Pointer (SP) and exit via a RET instruction. In this manner, control is returned to the invoking program with the RC present for testing. For commands invoked with the @CMNDI SVC or prompted for via the @EXIT SVC, the SP is restored to the system stack. The top of the stack will contain an address suitable for simulating an @EXIT SVC; thus, if your application program properly maintains the integrity of the stack pointer, it can exit after setting the RC via a RET instruction instead of an @EXIT SVC.

TRSDOS Version 6 diskette and file structure is identical to that used in LDOS 5.1. This includes formatting, directory structure, and data address mark conventions. TRSDOS Version 6 system diskettes, however, use the entire BOOT track (track 0). This compatibility means that data files may be used interchangeably between LDOS 5.1 equipped machines and TRSDOS Version 6 equipped machines; the diskettes themselves are readable and writable across both operating systems.

The methods of internal handling of device linking and filtering have been changed from LDOS 5.1. (It is beyond the scope of this manual to explain the internal functioning of TRSDOS Version 6.) Device filters must adhere to a strict protocol of linkage in order to function properly. See the section on "Device Driver and Filter Templates" for information on device driver and filter protocol.

Stack Handling Restrictions*

Interrupt tasks and filters that deal with the keyboard or video must not place the stack pointer above X'F3FF. This is because any operation that requires the keyboard or video RAM switches in the 3K bank at X'F400' and suppresses the stack until it is switched out again. If the system accesses the stack at any time during this period, the integrity of the stack is destroyed.

^{*}In TRSDOS 6.0.0, the stack cannot be placed above X'F3FF' for any reason.

Programming With Restart Vectors

The Restart instruction (RST) provides the assembly language programmer with the ability to call a subroutine with a one-byte call. If a routine is called many times by a program, the amount of space that is saved by using the RST instruction (instead of a three-byte CALL) can be significant.

In TRSDOS a RST instruction is also used to interface to the operating system. The system uses RST 28H for supervisor calls. RSTS 00H, 30H, and 38H are for the system's internal use.

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some programs, such as BASIC, may use some of these RSTs.

Each RST instruction calls the address given in the operand field of the instruction. For example, RST 18H causes the system to push the current program counter address onto the stack and then set the program counter to address 0018H. RST 20H causes a jump to location 0020H, and so on.

Each RST has three bytes reserved for the subroutine to use. If the subroutine will not fit in three bytes, then you should code a jump instruction (JP) to where the subroutine is located. At the end of the subroutine, code a return instruction (RET). Control is then transferred to the instruction that follows the RST.

For example, suppose you want to use RST 18H to call a subroutine named "ROUTINE." The following routine loads the restart vector with a jump instruction and saves the old contents of the restart vector for later use.

SETRST:	LD	IX,0018H	Restart area address
	LD	IY,RDATA	¡Data area address
	LD	B +3	Number of bytes to move
LOOP:	LD	A + (IX)	iRead a byte from
			irestart area
	LD	C + (IY)	Read a byte from data
			;area
	LD	(IX) +C	Store this byte in
			;restart area
	LD	(IY) +A	Store this byte in data
			area
	INC	ΙX	Increment restart area
			;pointer
	INC	ΙY	;Increment data area
			; pointer
	DJNZ	LOOP	¡Loop till 3 bytes moved
	RET		Return when done
RDATA:	DEFB	ØСЗН	Jump instruction (JP)
	DEFW	ROUTINE	Operand (name of
			;subroutine)

Before exiting the program, calling the above routine again puts the original contents of the restart vector back in place.

KFLAG\$ (BREAK), (PAUSE), and (ENTER) Interfacing

KFLAG\$ contains three bits associated with the keyboard functions of BREAK, PAUSE (SHIFT) @), and ENTER. A task processor interrupt routine (called the KFLAG\$ scanner) examines the physical keyboard and sets the appropriate KFLAG\$ bit if any of the conditions are observed. Similarly, the RS-232C driver routine also sets the KFLAG\$ bits if it detects the matching conditions being received.

Many applications need to detect a PAUSE or BREAK while they are running. BASIC checks for these conditions after each logical statement is executed (that is, at the end of a line or at a ":"). That is how, in BASIC, you can stop a program with the (BREAK) key or pause a listing.

One method of detecting the condition in previous TRSDOS operating systems was to issue the @KBD supervisor call to check for BREAK or PAUSE (SHIFT)@), ignoring all other keys. Unfortunately, this caused keyboard type-ahead to be ineffective; the @KBD SVC flushed out the type-ahead buffer if any other keystrokes were stacked up.

Another method was to scan the keyboard, physically examining the keyboard matrix. An undesirable side effect of this method was that type-ahead stored up the keyboard depression for some future unexpected input request. Examining the keyboard directly also inhibits remote terminals from passing the BREAK or PAUSE condition.

In TRSDOS Version 6, the KFLAG\$ scanner examines the keyboard for the BREAK, PAUSE, and ENTER functions. If any of these conditions are detected, appropriate bits in the KFLAG\$ are set (bits 0, 1, and 2 respectively).

Note that the KFLAG\$ scanner only sets the bits. It does not reset them because the "events" would occur too fast for your program to detect. Think of the KFLAG\$ bits as a latch. Once a condition is detected (latched), it remains latched until something examines the latch and resets it—a function to be performed by your KFLAG\$ detection routine.

For illustration, the following example routine uses the BREAK and PAUSE conditions:

```
KFLAG$
         EQU
               10
@FLAGS
         EQU
               101
@KBD
         EQU
               8
@KEY
         EQU
               1
@PAUSE
         EQU
               16
CKPAWS
               A,@FLAGS
         LD
                              Get Flags Pointer
         RST
               28H
                              into register IY
         LD
               A, (IY+KFLAG$) ; Get the KFLAG$
         RRCA
                              Bit 0 to carry
         JP
               C + GOTBRK
                              Go on BREAK
         RRCA
                              Bit 1 to carry
         RET
               NC
                              Return if no pause
         CALL
               RESKFL
                              Reset the flag
         PUSH
               DE
FLUSH
         LD
               A,@KBD
                              Flush type-ahead
         RST
               28H
                              #buffer while
         JR
               Z,FLUSH
                              ignoring errors
         POP
               DE
PROMPT
         PUSH
              DE
         LD
               A,@KEY
                              Wait on Key entry
         RST
               28H
         POP
               DE
         CP
               80H
                              SAbort on BREAK
         JP
               Z,GÖTBRK
         CP
               GØH
                              ¡Ianore PAUSE;
        JR
               Z,PROMPT
                              Felse . .
RESKFL
         PUSH
              HL
                              Freset KFLAG$
         PUSH
              AF
        LD
               A,@FLAGS
                              Get flags pointer
        RST
               28H
                              into register IY
RESKFL1 LD
               A,(IY+KFLAG$) (Get the flag
        AND
               0F8H
                              Strip ENTER,
        LD
               (IY+KFLAG$),A ;PAUSE, BREAK
        PUSH
              BC
        LD
              B + 16
```

```
A •@PAUSE
                    Pause a while
LD
RST
     28H
POP
     BC
     A,(IY+KFLAG$) $Check if finger is
LD
                    istill on Key
AND
     3
                    Reset it again
JR
     NZ, RESKFL1
POP
                    Restore registers
     ΑF
POP
     HL
                    and exit
RET
```

The best way to explain this KFLAG\$ detection routine is to take it apart and discuss each subroutine. The first piece reads the KFLAG\$ contents:

KFLAG\$	EQU	10	
CKPAWS	LD	A,@FLAGS	Get Flags pointer
	RST	28H	into register IY
	LD	A,(IY+KFLAG\$)	Get the KFLAG\$
	RRCA		Bit 0 to carry
	JP	C,GOTBRK	;Go on BREAK
	RRCA		Bit 1 to carry
	RET	NC	Return if no pause

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your application uses the IY index register, you should save and restore it within the CKPAWS routine. (Alternatively, you could use @FLAGS to calculate the location of KFLAG\$, use register HL instead of IY, and place the address into the LD instructions of CKPAWS at the beginning of your application.)

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a BREAK condition is in effect, the subroutine branches to "GOTBRK," which is your BREAK handling routine.

If there is no BREAK condition, the second rotate places what was originally in the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine returns to the caller.

This sequence of code gives a higher priority to BREAK (that is, if both BREAK and PAUSE conditions are pending, the BREAK condition has precedence). Note that the GOTBRK routine needs to clear the KFLAG\$ bits after it services the BREAK condition. This is easily done via a call to RESKFL.

The next part of the routine is executed on a PAUSE condition:

	CALL	RESKFL	Reset the flag
	PUSH	DE	
FLUSH	LD	A •@KBD	;Flush type-ahead
	RST	28H	;buffer while
	JR	Z,FLUSH	ignoring errors
	POP	DF	

First the KFLAG\$ bits are reset via the call to RESKFL. Next, the routine takes care of the possibility that type-ahead is active. If it is, the PAUSE key was probably detected by the type-ahead routine and so is stacked in the type-ahead buffer also. To flush out (remove all stored characters from) the type-ahead buffer, @KBD is called until no characters remain (an NZ is returned).

Now that a PAUSEd state exists and the type-ahead buffer is cleared, the routine waits for a key input:

PROMPT	PUSH	DE	
	LD	A,@KEY	Wait on Key entry
	RST	28H	
	POP	DE	
	CP	8 0 H	;Abort on (BREAK)
	JP	Z,GOTBRK	
	CP	6 0 H	;Ignore PAUSE;
	JR	Z,PROMPT	;else ⋅ ⋅ ⋅

The PROMPT routine accepts a BREAK and branches to your BREAK handling routine. It ignores repeated PAUSE (the 60H). Any other character causes it to fall through to the following routine which clears the KFLAG\$:

```
RESKFL
         PUSH
                              ireset KFLAG$
         PUSH
              ΑF
               A,@FLAGS
        LD
                              Get flags pointer
         RST
               28H
                              finto register IY
RESKFL1 LD
               A, (IY+KFLAG$) ; Get the flag
         AND
               ØF8H
                              Strip ENTER,
         LD
               (IY+KFLAG$), A ; PAUSE, BREAK
         PHSH
              ВC
        LD
               B + 16
               A +@PAUSE
        LD
                              ¡Pause a while
         RST
               28H
         POP
               BC.
        LD
               A, (IY+KFLAG$) ; Check if finger is
         AND
                              istill on Key
         JR
               NZ, RESKFL1
                              Reset it again
         POP
               ΑF
                              Restore registers
         POP
               HL
                              land exit
         RET
```

The RESKFL subroutine should be called when you first enter your application. This is necessary to clear the flag bits that were probably in a "set" condition. This "primes" the detection. The routine should also be called once a BREAK, PAUSE, or ENTER condition is detected and handled. (You need to deal with the flag bits for only the conditions you are using.)

Interfacing to @ICNFG

With the TRSDOS library command SYSGEN, many users may wish to SYSGEN the RS-232C driver. Before doing that, the RS-232C hardware (UART, Baud Rate Generator, etc.) must be initialized. Simply using the SYSGEN command with the RS-232C driver resident is not enough; some initialization routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is included in TRSDOS to provide a way to invoke a routine to initialize the RS-232C driver when the system is booted. It also provides a way to initialize the hard disk controller at power-up (required by the Radio Shack hard disk system).

The final stages of the booting process loads the configuration file CONFIG/SYS if it exists. After the configuration file is loaded, an initialization subroutine CALLs the @ICNFG vector. Thus, any initialization routine that is part of a memory configuration can be invoked by chaining into @ICNFG.

If you need to configure your own routine that requires initialization at power-up, you can chain into @ICNFG. The following procedure illustrates this link. The first thing to do is to move the contents of the @ICNFG vector into your initialization routine:

LD	A,@FLAGS	Get flags pointer
RST	28H	into register IY
LD	A,(IY+28)	¡Get orcode
LD	(LINK),A	
LD	L,(IY+29)	Get address LOW
LD	H,(IY+30)	Get address HIGH
L.D	(LINK+1),HL	

This subroutine does this by transferring the 3-byte vector to your routine. You then need to relocate your routine to its execution memory address. Once this is done, transfer the relocated initialization entry point to the @ICNFG vector as a jump instruction:

```
LD HL, INIT ; Get (relocated)
LD (IY+29), L ; init address
LD (IY+30), H
LD A, 0C3H ; Set JP instruction
LD (IY+28), A
```

If you need to invoke the initialization routine at this point, then you can use:

```
CALL ROUTINE ;Invoke your routine
```

Your initialization routine would be unique to the function it was to perform, but an overall design would look like this:

```
INIT CALL ROUTINE Start of init LINK DEFS 3 Continue on ROUTINE .

your initialization routine

RET
```

After linking in your routine, perform the SYSGEN. If you have followed these procedures, your routine will be invoked every time you start up TRSDOS.

Interfacing to @KITSK

Background tasks can be invoked in one of two ways. For tasks that do not require disk I/O, you can use the RTC (Real Time Clock) interrupt and one of the 12 task slots (or other external interrupt). For tasks that require disk I/O, you can use the keyboard task process.

At the beginning of the TRSDOS keyboard driver is a call to @KITSK. This means that any time that @KBD is called, the @KITSK vector is also called. (The type-ahead task, however, bypasses this entry so that @KITSK is not called from the type-ahead routine.) Therefore, if you want to interface a background routine that does disk I/O, you must chain into @KITSK.

The interfacing procedure to @KITSK is identical to that shown in the section "Interfacing to @ICNFG," except that IY + 31 through IY + 33 is used to reference the @KITSK vector. You may want to start your background routine with:

```
START CALL ROUTINE ;Invoke task
LINK DEFS 3 ;For @KITSK hook
ROUTINE EQU $ ;Start of the task
```

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and @CMNDR (which is in SYS1/SYS). This invocation is from the @KEYIN call, which fetches the next command line after issuing the "TRSDOS Ready" message. If your background task executes and opens or closes a file (or does anything to cause the execution of a system overlay other than SYS1), then SYS1 is overwritten by SYS2 or SYS3. When your routine finishes, the @KEYIN handler tries to return to what called it—SYS1, which is no longer resident. Therefore, any task chained to @KITSK which causes a resident SYS1 to be overwritten must reload SYS1 before returning.

You can use the following code to reload SYS1 if SYS1 was resident prior to your task's execution:

```
ROUTINE LD A,@FLAGS ;Get flags pointer
RST 28H ;into register IY
LD A,(IY-1) ;Get resident over-
AND 8FH ;lay and remove
LD (OLDSYS+1),A ;the entry code
```

rest of your task

EXIT	EQU	\$	
OLDSYS	LD	A + Ø	Get old overlay #
	CP	83H	Was it SYS1?
	RET	NZ	Return if not; else;
	RST	28H	Get SYS1 per res. A
			;(no RET needed)

Interfacing to the Task Processor

This section explains how to integrate interrupt tasks into your applications.

One of the hardware interrupts in the TRS-80 is the real time clock (RTC). The RTC is synchronized to the AC line frequency and pulses at 60 pulses per second, or once every 16.67 milliseconds. (Computers operating with 50 Hz AC use a 50 pulses per second RTC interrupt. In this case, all time relationships discussed in this section should be adjusted to the 50 Hz base.)

A software task processor manages the RTC interrupt in performing background tasks necessary to specific functions of TRSDOS (such as the time clock, blinking cursor, and so on). The task processor allows up to 12 individual tasks to be performed on a "time-sharing" basis.

These tasks are assigned to "task slots" numbered from 0 to 11. Slots 0-7 are considered "low priority" tasks (executing every 266.67 milliseconds). Slots 8-10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 is a high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33 milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, respectively.

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains 12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor calls that manage the task vectors. The five SVCs and their functions are:

@CKTSK	Checks to see whether a task slot is unused or active
@ADTSK	Adds a task to the TCBVT
@RMTSK	Removes a task from the TCBVT
@KLTSK	Removes the currently executing task
@RPTSK	Replaces the TCB address for the current task

The TRSDOS Task Control Block Vector Table contains vector pointers. Each TCBVT vector points to an address in memory, which in turn contains the address of the task. Thus, the tasks themselves are indirectly addressed.

When you are programming a task to be called by the task processor, the entry point of the routine needs to be stored in memory. If you make this storage location the beginning of a Task Control Block (TCB), the reason for indirect vectoring of interrupt tasks will become more clear. Consider an example TCB:

```
MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFS 1
MYTASK RET
```

This is a useless task, since the only thing it does is return from the interrupt. However, note that a TCB location has been defined as "MYTCB" and that this location contains the address of the task. A few more data bytes immediately following the task address storage have also been defined.

Upon entry to a service routine, index register IX contains the address of the TCB. You can therefore address any TCB data using index instructions. For example, you could use the instruction "DEC (IX+2)" to decrement the value contained in COUNTER in the above routine.

Here is the routine expanded slightly:

```
MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFB 0
MYTASK DEC (IX+2)
RET NZ
LD (IX+2),15
RET
```

This version makes use of the counter. Each time the task executes, the counter is decremented. When the count reaches zero, the counter is restored to its original value.

In order to be executed, all tasks must be added to the TCBVT. The @ADTSK supervisor call does this. For the above routine, assume the task slot chosen is low-priority slot 2. You can ascertain that slot 2 is available for use by using the @CKTSK SVC as follows:

```
LD C,2 ;Reference slot 2
LD A,28 ;Set for @CKTSK SVC
RST 28H ;An "NZ" indication
JP NZ,INUSE ;says that the slot is
;being used.
```

Once you determine that the slot is available (that is, not being used by some other task), you can add your task routine. The following code adds this task to the TCBVT:

LD	DE,MYTCB	\$Point to the TCB
LD	C,2	Reference slot 2
LD	A,29	;Set for @ADTSK SVC
RST	28H	ilssue the SVC

The above program lines point register DE to the TCB, load the task slot number into register C, and then issue the @ADTSK supervisor call. If you want this task to run regardless of what is in memory, you can place it in high memory (of bank 0) and protect it by moving HIGH\$ below it via the @HIGH\$ supervisor call.

Once a task has been activated, it is sometimes necessary to deactivate it. You can do this in two ways. The most common way is to use the @RMTSK supervisor call:

You identify the task slot to remove by placing a value in register C, and then you issue the supervisor call.

You can use another method if you want to remove the task while it is being executed. Examine the routine modified as follows:

```
MYTCB
         DEFW MYTASK
COUNTER DEFB
               10
TEMPY
         DEFB
               (7)
         DEC
               (IX+2)
MYTASK
               ΝZ
         RET
                               ;Set for @KLTSK SVC
         LD
               A +32
         RST
               28H
                               fissue the SVC
```

The @KLTSK supervisor call removes the currently executing task from the TCBVT. The system does not return to your routine, but continues as if you had executed a RET instruction. For this reason, the @KLTSK SVC should be the last instruction you want executed. In this example, MYTASK decrements the counter by one on each entry to the task. When the counter reaches zero, the task is removed from slot 2.

The last task processor supervisor call is @RPTSK. The @RPTSK function updates the TCB storage vector (the vector address in your Task Control Block) to be the address immediately following the @RPTSK SVC instruction. As with @KLTSK, the system does not return to your service routine after the SVC is made, but continues on with the task processor. The following example illustrates how @RPTSK can be used in a program:

@ADTSK @RPTSK @RMTSK @EXIT @VDCTL BEGIN	ORG EQU EQU EQU EQU EQU	9000H 29 31 30 22 15 DE,TCB	Point to TCB
	LD LD RST LD	C ∙Ø A ∙@ADTSK 28H A •@EXIT	<pre>;and add the task ;to slot Ø ;Exit to TRSDOS</pre>
тсв	RST DEFW	28H TASK	TEXTO OF TRODOG
COUNTER	DEFB	15	
TASKA	LD RST	A ∤@RPTSK 28H	Replace current
TASK	LD LD LD RST	28H BC,027CH HL,004FH A,@VDCTL 28H	itask with TASKA iPut a character iat Row Ø, Col, 79
	DEC RET LD LD RST	(IX+2) NZ (IX+2),15 A,@RPTSK 28H	Decrement the counter and return if not expired; else reset Replace the previous task with TASKB
TASKB	LD LD RST DEC RET LD JR END	BC,022DH HL,004FH A,@VDCTL 28H (IX+2) NZ (IX+2),15 TASKA BEGIN	¡Put a character ;at Row Ø→ Col→ 79

This task routine contains no method of relocating it to protected RAM. The statements starting at the label BEGIN add the task to TCBVT slot 0 and return to TRSDOS Ready. The task contains a four-second down counter and a routine to put a character in video RAM (80th character of Row 0). At four-second intervals, the character toggles between '|' and '-'. This is done by using the @RPTSK SVC to toggle the execution of two separate routines which perform the character display.

TRSDOS uses bank-switched memory. In order to properly control and manage this additional memory, certain restrictions are placed on tasks. All tasks must be placed either in low memory (addresses X'0000' through X'7FFF') or in bank zero of high memory (addresses X'8000' through X'FFFF'). The task processor always enables bank zero when performing background tasks. The assembly language programmer must ensure that tasks are placed in the correct memory area.

Interfacing RAM Banks 1 and 2

The proper use of the RAM bank transfer techniques described here requires a high degree of skill in assembly language programming. This section on bank switching is intended for the professional.

The TRS-80 Model 4 can optionally support a second set of 64K RAM, bringing the total RAM to 128K. TRSDOS designates this extra 64K RAM as two banks of 32K RAM each, which are banks 1 and 2 of bank-switched RAM. The upper 32K of standard RAM is designated bank 0. At any one time, only one of the banks is resident. The resident bank is always addressed at X'8000' through X'FFFF.' When a bank transfer is performed, the specified bank becomes addressable and the previous bank is no longer available. Since memory refresh is performed on all banks at all times, nothing in the previously resident bank is altered during whatever time it is not addressable (that is, not resident).

You can access this additional RAM by means of the @BANK supervisor call (SVC 102). When you power up your computer or press reset, TRSDOS looks to see which banks of RAM are installed in your machine. TRSDOS maintains a bit map in one byte of storage, with each bit representing one of the banks of RAM. This byte is called "Bank Available RAM" (BAR), and its information is set when you boot TRSDOS. Bit 0 corresponds to bank 0, bit 1 corresponds to bank 1, and so on up to bit 7. From a hardware standpoint, the Model 4 has a maximum of three banks. You have either bank 0 only (a 64K machine), or banks 0-2 (a 128K machine).

Another bit map is used to indicate whether a bank is reserved or available for use. This byte is called the "Bank Used RAM" (BUR). Again, bit 0 corresponds to bank 0, bit 1 to bank 1, and so on. TRSDOS design supports the use of banks 1 and 2 primarily for data storage (for example, a spool buffer, Memdisk, etc.). The management of any memory space within a particular bank of RAM (excluding bank 0) is the responsibility of the application program "reserving" a particular bank.

TRSDOS requires that any device driver or filter that is relocated to high memory (X'8000' through X'FFFF') reside in bank 0. The TRSDOS device handler always invokes bank 0 upon execution of any byte I/O service request (@PUT, @GET, @CTL, as well as other byte I/O SVCs that use @PUT/@GET/@CTL). This ensures that any filter or driver attached to the device in question will be available. If a RAM bank other than 0 was resident, it is restored upon return from the device handler. This ensures that device I/O is never impacted by bank switching.

TRSDOS also requires that all interrupt tasks reside in bank \emptyset or low memory (X'0000' through X'7FFF'). The interrupt task processor always enables bank \emptyset and restores whatever bank was previously resident. An interrupt task may perform a bank transfer from \emptyset to another bank provided the necessary linkage and stack area is used. This is discussed in more detail later.

All bank transfer requests must be performed using the @BANK SVC. This SVC provides four functions, three of which are interrogatory and one of which performs the actual bank switching.

As mentioned previously, the contents of banks other than 0 are managed by the application, not by TRSDOS. Therefore, the application needs a way of finding out if any given bank is available. For example, if an application wants to reserve use of bank 1, it must first check to see if bank 1 is free to use. This is done by using function 2 as follows:

```
LD C,1 ;Specify bank 1
LD B,2 ;Check BUR if bank in use
LD A,@BANK ;Set @BANK SVC (102)
RST 28H
JR NZ,INUSE ;NZ if bank already in use
```

Note that the return condition (NZ or Z) shows whether or not you can use the specified bank (it may not even be installed).

If the specified bank is available, you then need to reserve it. Do this by using function 3 as follows:

```
LD C,1 Specify bank 1
LD B,3 Set BUR to show "in use"
```

LD	A,@BANK	;Set	@BANK	SVC	(102)
RST	28H				
ID	NZIERRAR				

You must check for an error by examining the Z flag. In general (discounting a system error), an NZ condition returned means that the specified bank is already in use. If you had performed a function 2 (testing to see if the bank was available) and got a not-in-use indication, but got an NZ condition on function 3, then the @BANK SVC routine has been altered and is probably unusable.

When an application no longer requires a memory bank, it can return the bank to a "free" state by using function 1 as follows:

LD	C + 1	iSpec	ify	bа	n K	1	
LD	B + 1	:Set	BUR	tο	s h	0 W	free
LD	A,@BANK	;Set	@BAN	ΙK	SVC	(1	02)
RST	28H						

No error condition is checked, as none is returned by TRSDOS. If you should mistakenly use function 1 with a bank that is nonexistent, an error is returned if you try to invoke the nonexistent bank.

To find out which bank is resident at any time, use function 4 as follows:

LD	B ,4	Which bank is	resident?
LD	A,@BANK	iSet @BANK SVC	(102)
PST	28H		

The current bank number is returned in register A.

To exchange the current bank with the specified bank, use function 0. Since a memory transfer takes place in the address range X'8000' through X'FFFF, the transfer cannot proceed correctly if the stack pointer (SP) contains a value that places the stack in that range. @BANK inhibits function 0 and returns an SVC error if the stack pointer violates this condition.

A bank can be used purely as a data storage buffer. The application's routines for invoking and indexing the bank switching probably reside in the user range X'3000' through X'7FFF.' As an example, the following code invokes a previously tested and reserved bank (via functions 2 and 3), accesses the buffer, and then restores the previous bank:

```
C , 1
LD
                     Specify bank 1
LD
       B . Ø
                     Bring up bank
       A,@BANK
                     Set @BANK SVC (102)
L.D
RST
       28H
       NZ, ERROR
                     Error trap
JR
PUSH
       BC
                     Save old bank data
your code to access the buffer region
POP
       BC
                     Recover old bank data
                     Set @BANK SVC (102)
LD
       A . @BANK
RST
       28H
JR
       NZ , ERROR
                     Error trap
```

Note that the @BANK function \emptyset conveniently returns a zero in register B to effect a function \emptyset later, as well as provides the old bank number in register C. This means that you only have to save register pair BC, pop it when you want to restore the previous bank, and then issue the @BANK SVC.

Suppose you want to transfer to another bank from a routine that is executing in high memory. (Recall that the only limitation is that the stack must not be in high memory.) The @BANK SVC function 0 provides a technique for automatically transferring to an address in the new bank. This technique is called the transfer function. It relies on the assumption that since you are managing the entire 32K bank 1 or 2, your application should know exactly where it needs to transfer (that is, where the application originally placed the code to execute).

The code to perform a bank transfer is similar to the above example. Register pair HL is loaded with the transfer address. Register C, which contains the number of the bank to invoke, must have its high order bit (bit 7) set. After the specified bank is enabled, control is passed to the transfer address that is in HL. Upon entry to your routine in the new bank (referred to here as "PROGB"), register HL will contain the old return address so that PROGB will know where to return transfer. Register C will also contain the old bank number with bit 7 set and register B will contain a zero. This register set-up provides for an easy return to the routine in the old bank that invoked the bank transfer. An illustration of the transfer code follows:

	LD LD LD	C 11 B 10 HL 1(TRAADR)	;Specify bank 1 ;Bring up bank Ø ;Set the transfer
	SET	7 , C	iaddress iand denote a
RETADR	LD RST JR	A •@BANK 28H NZ •ERROR	itransfer iSet @BANK SVC (10/2)

Control is returned to "RETADR" under either of two conditions. If there was an error in executing the bank transfer (for example, if an invalid bank number was specified or the stack pointer is in high memory), the returned condition is NZ. If the transfer took place and PROGB transferred back, the returned condition is Z. Thus, the Z flag shows whether or not there was a problem with the transfer.

If PROGB needs to provide a return code, it must be done by using register pair DE, IX, or IY, as registers AF, BC, and HL are used to perform the transfer. (Or, some other technique can be used, such as altering the return transfer address to a known error trapping routine.)

PROGB should contain code that is similar to that shown earlier. For example, PROGB could be:

PROGB	PUSH PUSH	BC HL	Save old bank data Save the RET address
		ROGB routines	
	POP	HL	¡Recover transfer ¡address
	POP	BC	Get bank transfer
	L.D RST	A,102 28H	;Set @BANK SVC
	JR	NZ, ERROR	Error trap

PROGB saves the bank data (register BC). Don't forget that a transfer was effected and register C has bit 7 already set when PROGB is entered. PROGB also saves the address it needs to transfer back (which is in HL). It then performs whatever routines it has been coded for, recovers the transfer data, and issues the bank transfer request. As explained earlier, an NZ return condition from the @BANK SVC indicates that the bank transfer was not performed. You should verify that your application has not violated the integrity of the stack where the transfer data was stored.

Never place disk drivers, device drivers, device filters, or interrupt service routines in banks other than bank \emptyset . It is possible to segment one of the above modules and place segments in bank 1 or 2, provided the segment containing the primary entry is placed in bank \emptyset . You can transfer between segments by using the bank transfer techniques discussed above.

Device Driver and Filter Templates

Device independence has its roots in "byte I/O." Byte I/O is any I/O passed through a device channel one byte at a time.

Three primitive routines are available at the assembly language level for byte I/O. These byte I/O primitives can be used to build larger routines. The three primitives are the TRSDOS supervisor calls @GET, @PUT, and @CTL. @GET is used to input a byte from a device or file. @PUT is used to output a byte to a device or file. @CTL is used to communicate with the driver routine servicing the device or file.

Other supervisor calls perform byte I/O, such as @KBD (scan the keyboard and return the key code if a key is down), @DSP (display a character on the video screen), and @PRT (output a character to the line printer). These functions operate by first loading register pair DE with a pointer to a specific Device Control Block (DCB) assigned for use by the device, then issuing a @GET or @PUT SVC for input or output requests.

When TRSDOS passes control over to the device driver routine, the Z-80 flag conditions are unique for each different primitive. This enables the driver to establish which primitive was used to access the routine, so it can turn over the I/O request to the proper driver or filter subroutine according to the type of request — input, output, or control.

The following table shows the FLAG register conditions upon entry to a driver or filter:

```
C,NZ = @GET primitive
Z,NC = @PUT primitive
NZ,NC = @CTL primitive
```

Register B contains the I/O direction code: 1 = @GET, 2 = @PUT, 4 = @CTL. Register C contains the character code that was passed in the @PUT or @CTL supervisor call. Register IX points to the TYPE byte (DCB+0) of the Device Control Block. Registers BC, DE, HL, and IX have been saved on the stack and are available for use. Register AF is not saved; if you want it preserved, your program must do so.

Your driver must start with a standard front-end header (see "Memory Header"):

BEGIN	JR	START	Go to actual code
	DEFW	MODEND-1	<pre>;beginning ;Last byte used by</pre>
	DEFB DEFM	7 'MODNAME'	imodule iLength of name iName
MODDCB	DEFW	\$-\$	DCB Ptr. for this
	DEFW	Ø	Reserved by TRSDOS

At the start of the actual module code, test the condition of the F register flags for @GET, @PUT, and @CTL:

```
START EQU $

i Actual module code start

JR C,WASGET iGo if @GET request

JR Z,WASPUT iGo if @PUT request

i Was @CTL request
```

At the label START, a test is made on the carry flag. If the carry was set, then the disk primitive must have been an input request (@GET). An input request could be directed to a part of the driver which only handles input from the device.

If the request was not from the @GET primitive, the carry will not be set. The next test checks to see if the zero flag is set. The zero condition is preset when a @PUT primitive was the initial request. The jump to WASPUT can go to a part of the driver that deals specifically with output to the device.

If neither the zero nor carry flags are set, the routine falls through to the next instruction (not shown), which would begin the part of the driver that handles @CTL calls. For example, you may want to have an RS-232C driver handle a BREAK by issuing a @CTL call so that the RS-232C driver emits a true modem break, but a CONTROL C would @PUT a X'03'.

Some drivers are written to assume that @CTL requests are to be handled exactly like @PUT requests. This is entirely up to the author and the function of the driver.

Note that when a device is routed to a disk file, TRSDOS ignores @CTL requests. That is, the @CTL codes are not written to the disk file.

On @GET requests, the character input should be placed in the accumulator. On output requests (either @PUT or @CTL), the character is obtained from register C. It is important for drivers and filters to observe return codes. Specifically, if the request is @GET and no byte is available, the driver returns an NZ condition and the accumulator contains a zero (that is, OR 1 : LD A,0 : RET). If a byte is available, the byte is placed in the accumulator and the Z flag is set (that is, LD A,CHAR : CP A : RET). If there is an input error, the error code is returned in the accumulator and the Z flag is reset (that is, LD A,ERRNUM : OR A : RET). On output requests, the accumulator will contain the byte output with the Z flag set if no error occurred. In the case of an output error, the accumulator must be loaded with the error code and the Z flag reset as shown above.

A filter module is inserted between the DCB and driver routine (or between the DCB and the current filter when it is applied to a DCB already filtered). The insertion is performed by the TRSDOS FILTER command once the filter module is resident and attached to a phantom DCB. The usual linkage for a filter is to access the chained module by calling the @CHNIO supervisor call with specific linkage data in registers IX and BC. Register IX is loaded with the filter's DCB pointer obtained from the memory header MODDCB pointer. Register B must contain the I/O direction code (1 = @GET, 2 = @PUT, 4 = @CTL). This code is already in register B when the filter is entered. You can either keep register B undisturbed or load it with the proper direction code. Also, output requests expect the output byte to be in register C.

The DCB pointer obtained from MODDCB is passed in register DE by the SET command and is loaded into MODDCB by your filter initialization routine. The initialization routine needs to relocate the filter to high memory and attach itself to the DCB assigned by the SET command. If the initialization front end had transferred the DCB pointer from DE to IX, then the following code could be used to establish the TYPE byte and vector for the filter:

```
LD (IX),47H ;Init DCB type to
LD (IX+1),E ;FILTER, G/P/C I/O,
LD (IX+2),D ;& stuff vector
```

A filter module can operate on input, output, control, or any combination based on the author's design. The memory header provides a region for user data storage conveniently indexed by the module.

An illustration of a filter follows. The purpose of this filter is to add a linefeed on output whenever a carriage return is to be sent. Although the filter requires no data storage, the technique for accessing data storage is shown.

```
BEGIN
          JR
                 START
                                Branch to start
          DEFW
                 FLTEND-1
                                FLast byte used
          DEFB
                                Name length
                  'SAMPLE'
          DEFM
                                :Name
MODDCB
          DEFW
                 (2)
                                #Link to DCB
          DEFW
                 7
                                Reserved
9
          Data storage area for your filter
CR
          EQU
                 ØDH.
          EQU
LF
                 ØAH.
DATA$
          EQU
DATA1
          EQU
                 $-DATA$
          DEFB
                 (7)
                                Data storage
          EQU
DATA2
                 $-DATA$
          DEFB
                 Ø
                                ¡Data storage
          Start of filter
START
                 Z + GOTPUT
                                Go if @PUT
ŝ
          @GET and @CTL requests are chained to
ÿ
          the next module attached to the device.
          This is accomplished by falling through
ş
          to the @CHNIO call. Note that the sample
          filter does not affect the B resister,
          so the filter does not have to load it
          with the direction code.
FLTPUT
          PUSH
                 TΧ
                                Save your data
                                $pointer
                  IX, (MODDCB)
          LD
RXØ1
          EQU
                 $-2
                                Grab the DCB vector
          LD
                 A +@CHNIO
                                fand chain to it
          RST
                 28H
          POP
                 IX
          RET
          Filter code
GOTPUT
                 IX, PFDATA$
                                Base register is
          LD
RXØ2
          EQU
                 $-2
                                fused to index data
          LD
                 A + C
                                iGet character to
                                itest
          CP
                 CR
                                If not CR, put it
                 NZ, FLTPUT
          JR
                 FLTPUT
          CALL
                                Belse put it
RXØ3
          EQU
                 $-2
          RET
                 NZ
                                Back on error
                                Add linefeed
          LD
                 C,LF
          JR
                 FLTPUT
FLTEND
          EQU
ş
          Relocation table
RELTAB
          DEFW
                 RXØ1 , RXØ2 , RXØ3
TABLEN
          EQU
                 $-RELTAB/2
```

The relocation table, RELTAB, would be used by the filter initialization relocation routine.

@CTL Interfacing to Device Drivers

This section discusses the @CTL functions supported by the system device drivers. To invoke a @CTL function, point register pair DE to the Device Control Block (DCB), load the function code into register C, and issue the @CTL supervisor call. You can locate the DCB address by either 1) using the @GTDCB SVC, or 2) using the @OPEN SVC to open a File Control Block containing the device specification and using the FCB address. See the @CTL supervisor call for a list of the function codes and their meanings.

The @CTL functions are listed below for each driver.

Keyboard Driver (resident driver assigned to *KI)

A function value of X'03' clears the type-ahead buffer. This serves the same purpose as repeated calls to @KBD until no character is available.

A function value of X'FF' is reserved for system use.

All other function values are treated as @GET requests.

The module name assigned to this driver is "\$KI".

Video Driver (resident driver assigned to *DO)

All @CTL requests are treated as if they were @PUT requests.

The module name assigned to this driver is "\$DO".

Printer Driver (resident driver assigned to *PR)

The printer driver is transparent to all code values when requested by the @PUT SVC. That means that all values from X'00' through X'FF' (0-255) can be sent to the printer. If the FORMS filter is attached to the *PR device, then various codes are trapped and used by the filter according to parameters specified with the FORMS library command, as follows:

- X'0D' Generates a carriage return and optionally a linefeed (ADDLF). Generates form feeds as required.
- X'ØA' Treated the same way as X'ØD.
- X'0C' Generates form feeds (via repeated line feeds if soft form feed). (FFHARD = OFF)
- X'09' Advances to next tab column.
- X'06' Sets top-of-form by resetting the internal line counter to zero.

Other character codes may be altered if the user translation option of the FORMS command (XLATE) is set.

The printer driver accepts a function value of X'00' via the @CTL request to return the printer status. If the printer is available, the Z flag will be set and register A will contain X'30'. If the Z flag is reset, register A will contain the four highorder bits of the parallel printer port (bits 4-7).

The module name assigned to the printer driver is "\$PR". The module name of the FORMS filter is "\$FF".

COM Driver (non-resident driver for the RS-232C)

This driver handles the interfacing between the RS-232C hardware and byte I/O (usually the *CL device).

A @CTL function value of X'00' returns an image of the RS-232 status register in the accumulator. The Z flag will be set if the RS-232 is available for "sending" (that is, if the transmit holding register is empty and the flag conditions match as specified by SETCOM).

A function value of X'01' transmits a "modem break" until the next character is @PUT to the driver.

A function value of X'02' re-initializes the UART to the values last established by SETCOM.

A function value of X'04' enables or disables the WAKEUP feature.

All other function values are ignored and the driver returns with register A containing a zero value and the Z flag set.

The WAKEUP feature is useful for application software specializing in communications. The RS-232 hardware can generate a machine interrupt under any of three conditions: when the transmit holding register is empty, when a received character is available, or when an error condition has been detected (framing error, parity error, and so on). The COM driver makes use of the

"received character available" interrupt to take control when a fully formed character is in the holding register. The COM driver services the interrupt by reading the character and storing it in a one-character buffer. COM then normally returns from the interrupt.

An application can request that, instead of returning, control be passed to the application for immediate attention. Note that this action would occur during interrupt handling, and any processing by the application must be kept to a minimum before control is returned to COM via a RET instruction.

If you use a @CTL function value of X'04, then register IY must contain the address of the handling routine in your application. Upon return from the @CTL request, register IY contains the address of the previous WAKEUP vector. This should be restored when your application is finished with the WAKEUP feature.

When control is passed to your WAKEUP vector upon detection of a "receive character available" interrupt, certain information is immediately available. Register A contains an image of the UART status register. The Z flag is set if a valid character is actually available. The character, if any, is in the C register.

Since system overhead takes a small amount of time in the @GET supervisor call, you may need to @GET the character via standard device interfacing. This ensures that any filtering or linking in the *CL device chain will be honored. If, on the other hand, your application is attempting to transfer data at a very high rate (9600 baud or higher), you may need to bypass the @GET SVC and use the character immediately available in the C register. Note that this procedure bypasses the normal device chain (device routing and linking).

The module name of the COM driver is "\$CL".

8/Using the Supervisor Calls

Supervisor Calls (SVCs) are operating system routines that are available to assembly language programs. These routines alter certain system functions and conditions, provide file access, and perform various computations. They also perform I/O to the keyboard, video display, and printer.

Each SVC has a number which you specify to invoke it. These numbers range from 0 to 104.

Calling Procedure

To call a TRSDOS SVC:

- Load the SVC number for the desired SVC into register A. Also load any other registers which are needed by the SVC, as detailed under Supervisor Calls.
- 2. Execute a RST 28H instruction.

Note: If the SVC number supplied in register A is invalid, the system prints the message "System Error xx", where xx is usually 2B. It then returns you to TRSDOS Ready (*not* to the program that made the invalid SVC call).

The alternate register set (AF, BC, DE, HL) is not used by the operating system.

Program Entry and Return Conditions

When a program executed from the @CMNDI SVC is entered, the system return address is placed on the top of the stack. Register HL will point to the first non-blank character following the command name. Register BC will point to the first byte of the command line buffer.

Three methods of return from a program back to the system are available: the @ABORT SVC, the @EXIT SVC, and the RET instruction. For application programs and utilities, the normal return method is the @EXIT SVC. If no error condition is to be passed back, the HL register pair must contain a zero value. Any non-zero value in HL causes an active JCL to abort.

The @ABORT SVC can be used as an error return back to the system; it automatically aborts any active JCL processing. This is done by loading the value X'FFFF' into the HL register pair and internally executing an @EXIT SVC.

If stack integrity is maintained, a RET instruction can be used since the system return address is put on the stack by @CMNDI. This allows a return if the program was called with @CMNDR.

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation specified was successful. When an operation fails or encounters an error, the Z flag is reset (also known as NZ flag set) and a TRSDOS error code is placed in the A register. The remaining SVCs use the Z/NZ flag in differing ways, so you should refer to the description of the SVCs you are using to determine the exit conditions.

Supervisor Calls

The TRSDOS Supervisor Calls are:

The Theboo depervisor dails are.	
Keyboard SVCs	Byte I/O SVCs
@KBD @KEY @KEYIN	@CTL @GET @PUT
Printer and Video SVCs	File Control SVCs
@DSP @DSPLY @LOGER @LOGOT @MSG @PRT @PRINT @VDCTL	@CLOSE @FEXT @FNAME @FSPEC @INIT @REMOV @OPEN @RENAM
Disk SVCs	Disk File Handler SVCs
@DCINIT @DCRES @DCSTAT @RDSEC @RDSSC @RSLCT @RSTOR @SEEK @SLCT @STEPI @VRSEC @WRSEC @WRSEC @WRSSC @WRTRK	@BKSP @CKEOF @LOC @LOF @PEOF @POSN @READ @REW @RREAD @RWRIT @SEEKSC @SKIP @VER @WEOF @WRITE
System Control SVCs	TRSDOS Task Control SVCs
@ABORT @BREAK @CMNDI @CMNDR @EXIT @FLAGS @HIGH\$ @IPL @LOAD @RUN	@ADTSK @CKTSK @KLTSK @RMTSK @RPTSK
Special Purpose Disk SVCs	Special Overlay SVCs
@DIRRD @DIRWR @GTDCT @HDFMT @RDHDR @RDTRK	@CKDRV @DEBUG @DODIR @ERROR @PARAM @RAMDIR

Miscellaneous SVCs

Special Purpose SVCs

@CHNIO @GTDCB

@GTMOD

- @BANK
- @DATE
- @DECHEX
- @DIV8
- @DIV16
- @HEXDEC
- @HEX8
- @HEX16
- @MUL8
- @MUL16
- @PAUSE @SOUND
- @TIME
- @WHERE

See the pages that follow for a detailed description of each supervisor call.

Abort Program

Loads HL with an X'FFFF' error code and exits through the @EXIT supervisor call. Any active JCL processing is aborted.

Entry Conditions:

A = 21 (X'15')

General:

This SVC does not return.

Example:

See the example for @EXIT in Sample Program B, lines 206-207.

Add an Interrupt Level Task

Adds an interrupt level task to the real time clock task table. The task slot number can be 0-11; however, some slots are already assigned to certain functions in TRSDOS. Slot assignments 0-7 are low priority tasks executing every 266.67 milliseconds. Slots 8-10 are medium priority tasks executing every 33.33 milliseconds. Slot 11 is a high priority task, executing every 16.66 milliseconds High Speed or 33.33 milliseconds Low Speed. The system uses task slots 3, 7, 9, and 10 for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, respectively.

It is a good practice to remove an existing task (using the @RMTSK or @KLTSK SVC) before installing a new task in the same task slot.

Entry Conditions:

A = 29 (X'1D')

DE = pointer to Task Control Block (TCB)

C = task slot assignment (0-11)

Exit Conditions:

Success always.

HL and AF are altered by this SVC.

The Task Control Block, or TCB, is a 2-byte block of RAM which contains the address of the task driver entry point. If your task is prefixed with the memory header described earlier under "Device Access," then the TCB can be stored in the memory header data storage area. If the task is not a driver or filter, the TCB can be stored in the memory header location MODDCB. Upon entry to your task routine, the IX register contains the TCB address.

Example:

See Sample Program F, lines 109-120.

Memory Bank Use

Controls 32K memory bank operation. The top half of the main 64K block is bank 0, and the alternate 64K block is divided into banks 1 and 2. The system maintains two locations to perform bank management. These areas are known as "bank available RAM" (BAR) and "bank in use RAM" (BUR).

If the Stack Pointer is not X'7FFE' or lower, the SVC aborts with an Error 43 only if $B = \emptyset$.

```
Entry Conditions:
A = 102 (X'66')
```

B selects one of the following functions:

If $B=\emptyset$, the specified bank is selected and is made addressable. The 32K bank starts at X'8000' and ends at X'FFFF.

C = bank number to be selected (0-2)

If bit 7 is set, then execution will resume in the newly loaded bank at the address specified.

HL = address to start execution in the new bank

If B = 1, reset BUR and show the bank not in use.

C=bank number to be selected (0-2)

If B=2, test BUR if bank is in use.

C=bank number to be selected (0-2)

If B = 3, set BUR to show bank in use.

C=bank number to be selected (0-2)

If B = 4, return number of bank currently selected.

Exit Conditions:

If $B = \emptyset$:

Success, Z flag set.

C = the bank number that was replaced. If bit 7 was set in register C on entry, it is also set on exit.

HL = SVC return address. By keeping the contents of C and HL, you can later return to the instruction following the first @BANK SVC. See "Interfacing RAM Banks 1 and 2" for more information.

Failure, NZ flag set. Bank not present or parameter error.

A = error number

If B = 1:

Success, Z flag set. Bank available for use.

Failure, NZ flag set. Bank not present.

If B=2

Success always.

If Z flag is set, then the bank is available for use.

If NZ flag is set, then test register A:

If $A \neq X'2B'$, then the bank is either in use or it does not exist on your machine. Banks 1 and 2 produce this error on a 64K machine.

If A = X'2B, then an entry parameter is out of range.

If B=3:

Success, Z flag set. Bank is now reserved for your use.

Failure, NZ flag set. Test register A:

If A \neq X'2B, then the bank is already in use or does not exist. Banks 1 and 2 produce this error on a 64K machine.

If A = X'2B, then an entry parameter is out of range.

If B=4:

Success always.

A = number of the bank which is currently resident

General:

AF is altered for all functions. BC is altered if the SVC is successful.

See the section "Interfacing RAM Banks 1 and 2."

Backspace One Logical Record

Performs a backspace of one logical record.

Entry Conditions:

A = 61 (X'3D')

DE = pointer to FCB of the file to backspace

Exit Conditions

If the Z flag is set or if A = X'1C' or X'1D', then the operation was successful. The LOC pointer to the file was backspaced one record. Otherwise, $A = error\ number$.

If A = X'1C' is returned, the file pointer is positioned at the end of the file. Any Appending operations would be performed here.

If $A = X' \cdot 1D'$ is returned, the file pointer is positioned beyond the end of the file.

General:

Only AF is altered by this SVC.

If the LOC pointer was at record 0 when the call was executed, the results are indeterminate.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Set Break Vector

Sets a user or system break vector. The BREAK vector is an abort mechanism; there is no return.

The BREAK vector executes whenever the following conditions occur at the same time: 1) the Program Counter is greater than X'2400,' 2) the BREAK key is pressed, and 3) a real time clock interrupt which executes 30 times per second occurs.

After executing this SVC, you must reset bit 4 of SFLAG\$. The BREAK flag in KFLAG\$ (bit 0) requires the setting of SFLAG\$ bit 4 and a delay of 0.1 to 0.5 second to clear any other interrupts that may be pending. Then you can enter your BREAK key handler (in which the BREAK key bit in SFLAG\$ is reset). See KFLAG\$ and SFLAG\$ in the section about the @FLAGS SVC for more information.

Entry Conditions:

A = 103 (X'67')

HL = user break vector

HL = 0 (sets system break vector)

Exit Conditions:

Success always.

HL = existing break vector (if user break vector was set)

Note: @EXIT and @CMNDI automatically restore BREAK to the system handler. @CMNDR does not do this.

Pass Control to Next Module in Device Chain

Passes control to the next module in the device chain.

Entry Conditions:

A = 20 (X'14')

IX = contents of DCB in the header block

B = GET/PUT/CTL direction code (1/2/4)

C = character (if output request)

General

IX is not checked for validity.

Example:

See the section "Device Driver and Filter Templates."

Check Drive

Checks a drive reference to ensure that the drive is in the system and a TRSDOS Version 6 or LDOS 5.1.3 (Model III Hard Disk Operating System) formatted disk is in place.

Entry Conditions:

A = 33 (X'21')

C=logical drive number (0-7)

Exit Conditions:

Success always.

If Z flag is set, the drive is ready.

If CF is set, the disk is write protected.

If NZ flag is set, the drive is not ready. The user may examine DCT + 0 to see if the drive is disabled.

Example:

See Sample Program D, lines 35-55.

Check for End-Of-File

Checks for the end of file at the current logical record number.

Entry Conditions:

A = 62 (X'3E')

DE = pointer to the FCB of the file to check

Exit Conditions:

Success always.

If Z flag is set, LOC does not point at the end of file (LOC < LOF). If NZ flag is set, test A for error number:

If A = X'1C, LOC points at the end of the file (LOC = LOF). If A = X'1D, LOC points beyond the end of the file (LOC > LOF). If $A \neq X'1C$ or X'1D, then A = error number.

General:

Only AF is altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 300-311 and 352-353. (A substantial part of this code could be replaced with the @CKEOF SVC.)

Check if Task Slot in Use

Checks to see if the specified task slot is in use.

Entry Conditions:

A = 28 (X'1C')

C=task slot to check (0-11)

Exit Conditions:

Success always.

If Z flag is set, the task slot is available for use. If NZ flag is set, the task slot is already in use.

General:

AF and HL are altered by this SVC.

Example:

See Sample Program F, lines 70-73.

Close a File or Device

Terminates output to a file or device. Any unsaved data in the buffer area is saved to disk and the directory is updated. All files that have been written to must be closed, as well as all files opened with UPDATE or higher access.

Entry Conditions:

A = 60 (X'3C')

DE = pointer to FCB or DCB to close

Exit Conditions:

Success, Z flag set. The file or device was closed. The filespec (excluding the password) or the devspec is returned to the FCB or DCB.

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program C, lines 355-363.

Execute Command with Return to System

Passes a command string to TRSDOS for execution. After execution is complete, control returns to TRSDOS Ready. If the command gets an error, it still returns to TRSDOS Ready.

Entry Conditions:

A = 24 (X'18')

HL = pointer to buffer containing command string terminated with X'0D' (up to 80 bytes, including the X'0D')

General:

This SVC does not return.

Example:

See Sample Program E, lines 43-58.

Execute Command

Executes a command or program and returns to the calling program. The executed program should maintain the Stack Pointer and exit via a RET instruction. All TRSDOS library commands comply with this requirement.

If bit 4 of CFLAG\$ is set (see the @FLAGS SVC), then @CMNDR executes only system library commands.

Entry Conditions:

A = 25 (X'19')

HL = pointer to buffer containing command string terminated with X'0D' (up to 80 bytes, including the X'0D')

Exit Conditions:

Success always.

HL = return code (See the section "Converting to TRSDOS Version 6" for information on return codes.)

Registers AF, BC, DE, IX, and IY are altered by the command or program executed by this SVC.

If the command invokes a user program which uses the alternate registers, they are modified also.

Example:

See Sample Program E, lines 18-29.

Output a Control Byte

Outputs a control byte to a logical device. The DCB TYPE byte (DCB $+ \emptyset$, Bit 2) must permit CTL operation. See the section "@CTL Interfacing to Device Drivers" for information on which of the functions listed below are supported by the system device drivers.

```
Entry Conditions:
```

A = 5 (X'05')

DE = pointer to DCB to control output

C selects one of the following functions:

If $C = \emptyset$, the status of the specified device will be returned.

If C = 1, the driver is requested to send a BREAK or force an interrupt.

If C=2, the initialization code of the driver is to be executed.

If C=3, all buffers in the driver are to be reset. This causes all pending I/O to be cleared.

If C=4, the wakeup vector for an interrupt-driven driver is specified by the caller.

IY = address to vector when leaving driver. If IY = 0, then the wakeup vector function is disabled.

If C=8, the next character to be read will be returned. This allows data to be "previewed" before the actual @GET returns the character.

Exit Conditions:

If $C = \emptyset$.

Z flag set, device is ready

NZ flag set, device is busy

A = status image, if applicable

Note: This is a hardware dependent image.

If C = 1.

Success, Z flag set. BREAK or interrupt generated.

Failure, NZ flag set

A = error number

If C = 2,

Success, Z flag set. Driver initialized.

Failure, NZ flag set

A = error number

If C=3,

Success, Z flag set. Buffers cleared.

Failure, NZ flag set.

A = error number

If C = 4.

Success, Z flag set. Wakeup vector set or disabled.

IY = previous vector address

Failure, NZ flag set

A = error number

If C = 8

Success, Z flag set. Next character returned.

A = next character in buffer

Failure, NZ flag set. Test register A:

If $A = \emptyset$, no pending character is in buffer

If $A \neq \emptyset$, A contains *error number*. (TRSDOS driver returns Error 43.)

General:

BC, DE, HL, and IX are saved.

Function codes 5 to 7, 9 to 31, and 255 are reserved for the system. Function codes 32 to 254 are available for user definition.

Entry and exit conditions for user-defined functions are up to the design of the user-supplied driver.

Example:

See the section "Device Driver and Filter Templates."

Get Date

Returns today's date in display format (MM/DD/YY).

Entry Conditions:

A = 18 (X'12') HL = pointer to 8-byte buffer to receive date string

Exit Conditions:

Success always.

HL = pointer to the end of the buffer supplied + 1 DE=pointer to start of DATE\$ storage area in TRSDOS BC is altered by this SVC.

Example:

See Sample Program F, lines 252-253.

Initialize the FDC

Issues a disk controller initialization command. The floppy disk driver treats this the same as @RSTOR (SVC 44).

Entry Conditions:

A = 42 (X'2A') C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

See the example for @CKDRV in Sample Program D, lines 38-39.

Reset the FDC

Issues a disk controller reset command. The floppy disk driver treats this the same as @RSTOR (SVC 44).

Entry Conditions:

A = 43 (X'2B')

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

Example:

See the example for @CKDRV in Sample Program D, lines 38-39.

Test if Drive Assigned in DCT

Tests to determine whether a drive is defined in the Drive Code Table (DCT).

Entry Conditions:

A = 40 (X'28')

C=logical drive number (0-7)

Exit Conditions:

Success always.

If Z is set, the specified drive is already defined in the DCT. If NZ is set, the specified drive is not defined in the DCT.

General:

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 27-33.

Enter DEBUG

Forces the system to enter the DEBUG utility. Pressing ③ ENTER from the DEBUG monitor causes program execution to continue with the next instruction. If you want to use the functions in the extended debugger when DEBUG is entered in this fashion, you must issue the DEBUG (E) command (optionally with the @CMNDR SVC) before this SVC is executed.

Entry Conditions:

A = 27 (X'1B')

General:

This SVC does not return unless **(G)** is entered in DEBUG.

Example:

See Sample Program A, lines 54-60.

Convert Decimal ASCII to Binary

Converts a decimal ASCII string to a 16-bit binary number. Overflow is not trapped. Conversion stops on the first out-of-range character.

Entry Conditions:

A = 96 (X'60')

HL = pointer to decimal string

Exit Conditions:

Success always.

BC = binary conversion of ASCII string

HL = pointer to the terminating byte

AF is altered by this SVC.

Example:

See Sample Program B, lines 88-95.

Directory Record Read

Reads a directory sector that contains the directory entry for a specified Directory Entry Code (DEC). The sector is placed in the system buffer and the register pair HL points to the first byte of the directory entry specified by the DEC.

Entry Conditions:

A = 87 (X'57')

B = Directory Entry Code of the file

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

HL = pointer to directory entry specified by register B

Failure, NZ flag set.

A = error number

HL is altered.

General:

AF is always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting for formatted media to be placed in the drive. The programmer should perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may return with the Z flag set and HL pointing to a random address. Care should be taken to avoid using the wrong value for the DEC in this call.

Example:

See Sample Program C, lines 152-174.

Directory Record Write

Writes the system buffer back to the disk directory sector that contains the directory entry of the specified DEC.

Entry Conditions:

A = 88 (X'58')

B = Directory Entry Code of the file

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

HL = pointer to directory entry specified by register B

Failure, NZ flag set.

A = error number

HL is altered.

General:

AF is always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting for formatted media to be placed in the drive. The programmer should perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may return with the Z flag set and HL pointing to a random address. Care should be taken to avoid using the wrong value for the DEC in this call.

Example:

See the example for @DIRRD in Sample Program C, lines 152-174.

8-Bit Divide

Performs an 8-bit unsigned integer divide.

Entry Conditions:

A = 93 (X'5D') E = dividend

C=divisor

Exit Conditions:

Success always.

A = quotient

 $E = \dot{r}emainder$

No other registers are altered.

Example:

See Sample Program B, lines 61-64.

16-Bit by 8-Bit Divide

Performs a division of a 16-bit unsigned integer by an 8-bit unsigned integer.

Entry Conditions:

A = 94 (X'5E')

HL = dividend

C = divisor

Exit Conditions:

Success always.

HL = quotient

A = remainder

No other registers are altered.

Example:

See Sample Program B, lines 105-109.

Do Directory Display / Buffer

Reads files from a disk directory or finds the free space on a disk. The directory information is either displayed on the screen (in five-across format) or sent to a buffer. The directory information buffer consists of 18 bytes per active, visible file: the first 16 bytes of the directory record, plus the ERN (ending record number). An X'FF' marks the buffer end.

Entry Conditions:

A = 34 (X'22')

C=logical drive number (0-7)

B selects one of the following functions:

If B = 0, the directory of the visible, non-system files on the disk in the specified drive is displayed on the screen. The filenames are displayed in columns, 5 filenames per line.

If B = 1, the directory is written to memory.

HL = pointer to buffer to receive information

If B = 2, a directory of the files on the specified drive is displayed for files that are visible, non-system, and match the extension partspec pointed to by HL.

HL = partspec for the filename's extension

This field must contain a valid 3-character extension, padded with dollar signs (\$). For example, to display all visible, non-system files that have the letter 'C' as the first character of the extension, HL should point to the string "C\$\$".

If B = 3, a directory of the files on the specified drive is written to the buffer that is specified by HL for files that match the extension partspec pointed to by HL.

HL = pointer to the 3-byte partspec and to the buffer to receive the directory records (see general notes)

Keep in mind that the area pointed to by HL is shared. If you are using this buffer more than once, you have to re-create the partspec in the buffer before each call because the previous call will have erased the partspec by writing the directory records.

If B = 4, the disk name, original free space, and current free space on the disk is read.

HL = pointer to a 20-byte buffer to receive information

Exit Conditions:

Success, Z flag set.

If B = 1 or 3, the directory records have been stored.

HL = pointer to the beginning of the buffer

If $B = \emptyset$ or 2, the filenames or matching filenames are displayed with 5 filenames per line.

If B=4, the disk name and free space information are stored in the format:

Bytes 0-7 = Disk name. Disk name is padded on the right with blanks (X'20').

Bytes 8-15 = Creation date (the date the disk was formatted or was the target disk in a mirror image backup). The date is in the format MM/DD/YY.

Bytes 16-17 = Total K originally available in binary LSB-MSB format.

Bytes 18-19=Free K available now in binary LSB-MSB format.

HL = pointer to the beginning of the data area

Failure, NZ flag set.

A = error number

General:

AF is the only register altered by this SVC.

The size of the buffer to receive directory records must be large enough to hold directory entries for the maximum number of files allowed on the drive and disk you specify. For example, if the drive is a hard disk, you must be able to store 256 directory entries, and each entry requires 18 bytes of storage. For more information on calculating the amount of space needed for this buffer, see the tables under "Directory Records." They give the maximum number of entries allowed on a given type of disk. You must add 2 records to this value when B = 1 to store the directory entry for DIR/SYS and BOOT/SYS.

Example:

See Sample Program E, lines 32-40.

Display Character

Outputs a byte to the video display. The byte is displayed at the current cursor position.

Entry Conditions:

A = 2 (X'02')C = byte to display

Exit Conditions:

Success, Z flag set.

A = byte displayed
Failure, NZ flag set.

A = error number

General:

DE is altered by this SVC.

Example:

See Sample Program C, lines 219-221.

Display Message Line

Displays a message line, starting at the current cursor position. The line must be terminated with either a carriage return (X'0D') or an ETX (X'03'). If an ETX terminates the line, the cursor is positioned immediately after the last character displayed.

Entry Conditions:

A = 10 (X'0A')

HL = pointer to first byte of message

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF and DE are altered by this SVC.

Example:

See Sample Program C, lines 35-37.

Entry to Post an Error Message

Provides an entry to post an error message. If bit 7 of register C is set, the error message is displayed and return is made to the calling program. If bit 6 is not set, the extended error message is displayed.

If bit 6 is set, then only the "Error message string" is displayed. This bit is ignored if bit 6 of SFLAG\$ (the extended error message bit) is set. If bit 6 of CFLAG\$ is set, then no error message is displayed. If bit 7 of CFLAG\$ is set, then the "Error message string" is placed in a user buffer pointed to by register pair DE. See @FLAG\$ (SVC 101) for more information on SFLAG\$ and CFLAG\$.

Entry Conditions:

A = 26 (X'1A')

C = error number with bits 6 and 7 optionally set

Exit Conditions:

Success always.

General:

To avoid a looping condition that could result from the display device generating an error, do not check for errors after returning from @ERROR. If you do not set bit 6 of register C, then you should execute this SVC only after an error has actually occurred.

Example:

See Sample Program C, lines 374-384.

Exit to TRSDOS

This is the normal program exit and return to TRSDOS. An error exit can be done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error as described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL causes an active JCL to abort.)

Entry Conditions:

A = 22 (X'16') $HL = Return\ Code$ If $HL = \emptyset$, then no error on exit. If $HL \neq \emptyset$, then the @ABORT SVC returns X'FFFF' in HL automatically.

General:

This SVC does not return.

Example:

See Sample Program B, lines 206-207.

Set Up Default File Extension

Inserts a default file extension into the File Control Block if the file specification entered contains no extension. @FEXT must be done before the file is opened.

Entry Conditions:

A = 79 (X'4F')

DE=pointer to FCB

HL = pointer to default extension (3 characters; alphabetic characters must be upper case and first character must be a letter)

Exit Conditions:

Success always.

AF and BC are altered by this SVC.

If the default extension is used, HL is also altered.

Example

See Sample Program C, lines 111-132.

Point IY to System Flag Table

Points the IY register to the base of the system flag table. The status flags listed below can be referenced off IY. You can alter those bits marked with an asterisk (*). Bits without an asterisk are indicators of current conditions, or are unused or reserved.

Note: You may wish to save KFLAG\$ and SFLAG\$ if you intend to modify them in your program, and restore them on exit.

Entry Conditions:

A = 101 (X'65')

Exit Conditions:

Success always.

IY = pointer to the following system information:

IY – 1 Contains the overlay request number of the last system module resident in the system overlay region.

IY+2 = CFLAG\$

* bit 7 — If set, then @ERROR will transfer the "Error message string" to your buffer instead of displaying it. The message is terminated with X'0D."

* bit 6 — If set, do not display system error messages 0-62. See @ERROR (SVC 26) for more information.

* bit 4 — If set, then @CMNDR will execute only system library commands.

 bit 3 — If set, @RUN is requested from either the SET or SYSTEM (DRIVER =) commands.

bit 2 — If set, @KEYIN is executing due to a request from SYS1.

bit 1 — If set, @CMNDR is executing. This bit is reset by @EXIT and @CMNDI.

* bit 0 — If set, HIGH\$ cannot be changed using @HIGH\$ (SVC 100). This bit is reset by @EXIT and @CMNDI.

IY+3 = DFLAG\$ (device flag)

* bit 7 — "1" if GRAPHIC printer capability desired on screen print (CONTROL) : causes screen print. See the SYSTEM (GRAPHIC) command under "Technical Information on TRSDOS Commands and Utilities.")

bit 6 — "1" if KSM module is resident

bit 5 — Currently unused bit 4 — "1" if MemDisk active

bit 3 --- Reserved

bit 2 — "1" if Disk Verify is enabled

bit 1 — "1" if TYPE-AHEAD is active

bit 0 — "1" if SPOOL is active

IY + 5 = FEMSK\$ (mask for port $\emptyset FEH$)

IY+8 = IFLAG\$ (international flag)

* bit 7 — If "1," 7-bit printer filter is active

If "0," normal 8-bit filters are present

bit 6 — If "1," international character translation will be performed by printer driver

If "0," characters received by printer driver will be sent to the printer unchanged

bit 5 — Reserved for future languages

bit 4 — Reserved for future languages

bit 3 — Reserved for future languages

bit 2 — Reserved for future languages

bit 1 — If "1," German version of TRSDOS is present

```
If bits 5-0 are all zero, then USA version of TRSDOS is present.
IY + 10 = KFLAG$ (keyboard flag)
                — "1" if a character is present in the type-ahead buffer
        bit 7
                - Currently unused
        bit 6
                - "1" if CAPS lock is set
       * bit 5
                - Currently unused
         bit 4
                -- Currently unused
         bit 3
                - "1" if (ENTER) has been pressed
       * bit 2
       * bit 1
                - "1" if SHIFT @ has been pressed (PAUSE)
                — "1" if (BREAK) has been pressed
       * bit 0
         Note: To use bits 0-2, you must first reset them and then test to
         see if they become set.
IY + 12 = MODOUT (image of port ØECH)
IY + 14 = OPREG$ (memory management & video control image)
IY + 18 = SFLAG$ (system flag)
                   "1" if DEBUG is to be turned on
         bit 7
                - "1" if extended error messages desired (see
       * bit 6
                    @ERROR for message format); overrides the setting
                    of bit 6 of register C on @ERROR (SVC 26) and
                    should be used only when testing
                 - "1" if DO commands are being executed
         bit 5
        * bit 4
                 - "1" if BREAK disabled
                 -- "1" if the hardware is running at 4 mhz (SYSTEM
         bit 3
                    (FAST)). If "0," the hardware is running at 2 mhz (SYS-
                    TEM (SLOW)).
                 - "1" if LOAD called from RUN
        * bit 2
                 - "1" if running an EXECute only file
        * bit 1
                 - "1" specifies no check for matching LRL on file open
        * bit 0
                    and do not set file open bit in directory. This bit should
                    be set just before executing an @OPEN (SVC 59) if
                    you want to force the opened file to be READ only dur-
                    ing current I/O operations. As soon as either call is
                    executed, SFLAG$ bit 0 is reset. If you want to disable
                    LRL checking on another file, you must set SFLAG$
                    bit 0 again.
IY + 21 = VFLAG$
                 - Reserved for system use
         bit 7
                 - "1" selects solid cursor, "0" selects blinking cursor
        * bit 6
         bit 5
                 - Reserved for system use
                   - "1" if real time clock is displayed on the screen
         bits 0-3 — Reserved for system use
                          (mask for WRINTMASK port)
IY + 22 = WRINTMASK$
                           (pointer to the high order byte of the SVC table
IY + 26 = SVCTABPTR$
                          address; low order byte = 00)
                          (60H = TRSDOS \text{ version } 6.0.x.x,
IY + 27 = Version ID byte
                           61H = TRSDOS version 6.1.x.x, etc.)
IY - 47 = Operating system release number. Provides a third and fourth
            character (12H = TRSDOS version x.x.1.2)
1Y + 28
 IY + 30 = @ICNFG  vector
1Y + 31
 IY + 33 = @KITSK vector
```

— If "1," French version of TRSDOS is present

bit 0

Get Filename

Gets the filename and extension from the directory using the specified Directory Entry Code (DEC) for the file.

Entry Conditions:

A = 80 (X'50')

DE = pointer to 15-byte buffer to receive filename/extension:drive, followed by a X'0D' as a terminator

B = DEC of desired file

C = logical drive number of drive containing file (0-7)

Exit Conditions:

Success, Z flag set.

HL = pointer to directory entry specified by register B

Failure, NZ flag set.

A = error number

HL is altered.

General:

AF and BC are always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting for formatted media to be placed in the drive. The programmer should perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may return with the Z flag set and HL pointing to a random address. Care should be taken to avoid using the wrong value for the DEC in this call.

Example:

See Sample Program C, lines 274-286.

Assign File or Device Specification

Moves a file or device specification from an input buffer into a File Control Block (FCB). Conversion of lower case to upper case is made automatically.

Entry Conditions:

A = 78 (X'4E')

HL = pointer to buffer containing filespec or devspec

DE=pointer to 32-byte FCB or DCB

Exit Conditions:

Success always.

If the Z flag is set, the file specification is valid.

HL = pointer to terminating character

DE=pointer to start of FCB

If the NZ flag is set, a syntax error was found in the filespec.

HL = pointer to invalid character

DE=pointer to start of FCB

A = invalid character

General:

AF and BC are altered.

Example:

See Sample Program C, lines 53-65.

Get One Byte From Device or File

Gets a byte from a logical device or a file. The DCB TYPE byte (DCB $+ \emptyset$, Bit \emptyset) must permit a GET operation for this call to be successful.

Entry Conditions:

A = 3 (X'03') DE = pointer to DCB or FCB

Exit Conditions:

Success, Z flag set. $A = character\ read\ from\ the\ device\ or\ file$ Failure, NZ flag set. Test register A: If $A = \emptyset$, no character was available.

If $A \neq \emptyset$, A contains error number.

Example

See the section "Device Driver and Filter Templates."

Get Device Control Block Address

Finds the location of a Device Control Block (DCB). If $DE = \emptyset$ (no device name specified), HL returns the address of the first unused DCB found.

Entry Conditions:

A = 82 (X'52')

DE = 2-character device name (E = first character, D = second character)

Exit Conditions:

Success, Z flag set. DCB was found.

HL = pointer to start of DCB

Failure, NZ flag set. No DCB was available.

A = Error 8 (Device not available)

HL is altered.

General:

AF is always altered by this SVC.

Example:

See the section "Device Driver and Filter Templates."

Get Drive Code Table Address

Gets the address of the Drive Code Table for the requested drive.

Entry Conditions:

A = 81 (X'51')

C=logical drive number (0-7)

Exit Conditions:

Success always.

IY = pointer to the DCT entry for the specified drive AF is always altered by this SVC.

General:

If the drive number is out of range, the IY pointer will be invalid. This call does not return Z/NZ to indicate if the drive number specified is valid (0-7) or enabled.

Example:

See the example for @DCSTAT in Sample Program D, lines 27-33.

Get Memory Module Address

Locates a memory module, if the standard memory header is at the start of the module. The scanning starts with the system drivers in low memory, then moves to any high memory modules. If any routine is encountered that does not start with a proper header, scanning stops.

Entry Conditions:

A = 83 (X'53')

DE = pointer to memory module name in upper case, terminated with any character in the range 00-31

Exit Conditions:

Success always.

If the Z flag is set, the module was found.

HL = pointer to first byte of memory header

DE = pointer to first byte after module name

If the NZ flag is set, the module was not found.

HL is altered.

General

AF is always altered by this SVC.

Example:

See Sample Program F, lines 144-154.

Hard Disk Format

Passes a format drive command to a hard disk driver. If the hard disk controller accepts it as a valid command, then it formats the entire disk drive. If the hard disk controller does not accept it, then an error is returned. Radio Shack hardware does not currently support @HDFMT.

Entry Conditions:

A=52 (X'34') C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Convert Binary to Decimal ASCII

Converts a binary number in HL to decimal ASCII.

Entry Conditions:

A = 97 (X'61')

HL = number to convert

DE=pointer to 5-character buffer to hold converted number

Exit Conditions:

Success always.

DE = pointer to end of buffer + 1

AF, BC, and HL are altered by this SVC.

Example:

See Sample Program B, lines 73-76.

Convert 1 Byte to Hex ASCII

Converts a 1-byte number to hexadecimal ASCII.

Entry Conditions:

A = 98 (X'62')

C = number to convert

HL=pointer to a 2-character buffer to hold the converted number

Exit Conditions:

Success always.

HL = pointer to the end of buffer + 1 Only AF is altered by this SVC.

Example:

See Sample Program B, lines 236-246.

Convert 2 Bytes to Hex ASCII

Converts a 2-byte number to hexadecimal ASCII.

Entry Conditions:

A = 99 (X'63')

DE=number to convert

HL = pointer to 4-character buffer to hold converted number

Exit Conditions:

Success always.

HL = pointer to end of buffer + 1Only AF is altered by this SVC.

Example:

See Sample Program B, lines 248-258.

Get or Alter HIGH\$ or LOW\$

Provides the means to read or alter the HIGH\$ and LOW\$ values.

Note: HIGH\$ must be greater than LOW\$. LOW\$ is reset to X'2FFF' by @EXIT, @ABORT, and @CMNDI.

Entry Conditions:

A = 100 (X'64')

B selects HIGH\$ or LOW\$

If B = 0, SVC deals with HIGH\$

If $B \neq \emptyset$, SVC deals with LOW\$

HL selects one of the following functions:

If HL = 0, the current HIGH\$ or LOW\$ is returned

If $HL \neq \emptyset$, then HIGH\$ or LOW\$ is set to the value in HL

Exit Conditions:

Success, Z flag set.

HL = current HIGH\$ or LOW\$. If $HL \neq \emptyset$ on entry, then HIGH\\$ or LOW\$ is now set to that value.

Failure, NZ flag set.

A = error number

General:

If bit 0 of CFLAG\$ is set (see @FLAG\$), then HIGH\$ cannot be changed with this call. The call returns error 43, "SVC parameter error."

Example:

See Sample Program F, lines 75-86.

Open or Initialize File

Opens a file. If the file is not found, this SVC creates it according to the file specification.

Entry Conditions:

A = 58 (X'3A')

HL = pointer to 256-byte disk I/O buffer

DE=pointer to FCB containing the file specification

B = Logical Record Length to be used while file is open

Exit Conditions:

Success, Z flag set. File was opened or created.

The CF flag is set if a new file was created.

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

The file open bit is set in the directory if the access level is UPDATE or greater.

Example:

See Sample Program C, lines 260-272.

Reboot the System

Does a software reset. Floppy drive 0 must contain a system disk. @IPL uses the standard boot sequence, the same as for a hard reset (pressing the reset button). Memory locations X'41E5'-X'4225' and X'4300'-X'43FF' are altered during the boot of the machine.

Entry Conditions:

 $A = \emptyset (X'00')$

General:

This SVC does not return.

Scan Keyboard and Return

Scans the keyboard and returns a character if a key is pressed. If no key is pressed, a zero value is returned.

Entry Conditions:

A = 8 (X'08')

Exit Conditions:

Success, Z flag set.
A = character pressed

Failure, NZ set.

If $A = \emptyset$, no character was available. If $A \neq \emptyset$, then A contains error number.

General:

DE is altered by this SVC.

Example:

See Sample Program C, lines 198-200.

Scan *KI Device, Wait for Character

Scans the *KI device and returns with a character. It does not return until a character is input to the device.

Note: The system suspends execution of the program that issued the SVC until a character can be obtained. Background tasks will continue to run normally.

Entry Conditions:

A = 1 (X'01')

Exit Conditions:

Success, Z flag set.

A = character entered
Failure, NZ flag set.

A = error number

General:

DE is altered by this SVC.

Example:

See Sample Program B, lines 202-203.

Accept a Line of Input

Accepts a line of input until terminated by either an **ENTER** or a **BREAK**. Entries are displayed on the screen, starting at the current cursor position. Backspace, tab, and line delete are supported. If JCL is active, the line is fetched from the active JCL file.

Entry Conditions:

A = 9 (X'09')

HL = pointer to user line buffer of length B + 1

B = maximum number of characters to input

 $C = \emptyset$

Exit Conditions:

Success, Z flag set.

HL = pointer to start of buffer

B = actual number of characters input

CF is set if (BREAK) terminated the input.

Failure, NZ flag set.

A = error number

General:

DE and C are altered by this SVC.

Example:

See Sample Program C, lines 39-47.

Remove Currently Executing Task

When called by an executing task driver, removes the task assignment from the task table and returns to the foreground application that was interrupted.

Entry Conditions:

A = 32 (X'20')

General:

This SVC does not return.

Example:

See the example for @RMTSK in Sample Program F, lines 134-142.

Load Program File

Loads a program file. The file must be in load module format.

Entry Conditions:

A = 76 (X'4C')
DE = pointer to FCB containing filespec of the file to load

Exit Conditions:

Success, Z flag set.

HL = transfer address retrieved from file

Failure, NZ flag set.

A = error number

Example:

See Sample Program A, lines 50-56.

Calculate Current Logical Record Number

Returns the current logical record number.

Entry Conditions:

A = 63 (X'3F')

DE = pointer to the file's FCB

Exit Conditions:

Success, Z flag set.

BC = logical record number

Failure, NZ flag set.

A = error number

General:

AF is altered by this SVC.

Example:

See Sample Program C, lines 305-311.

Calculate the EOF Logical Record Number

Returns the EOF (End of File) logical record number.

Entry Conditions:

A = 64 (X'40')

DE = pointer to FCB for the file to check

Exit Conditions:

Success, Z flag set.

BC = the EOF logical record number

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Issue Log Message

Issues a log message to the Job Log. The message can be any character string terminating with a carriage return (X'0D').

Entry Conditions:

A = 11 (X'0B')

HL = pointer to first character in message line

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Example:

LD HL, TEXT ; Point at message to output LD A, GLOGER ; and output it to the Job ; Log RST 28H ; Call the GLOGER SVC ...

DEFM 'This is a message for the Job Log'

TEXT: DEFM 'This is a message for the Job Log'
DEFB ØDH ;Message must be terminated
;with an <ENTER>.

Display and Log Message

Displays and logs a message. Performs the same function as @DSPLY followed by @LOGER.

Entry Conditions:

A = 12 (X'0C')

HL = pointer to first character in message line

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

To avoid a looping condition that could result from the display device generating an error, no error checking should be done after returning from @LOGOT.

Example:

```
Point at message to output
      LD
            HL ,TEXT
                      and output it to the Job
       LD
             A #@LOGOT
                       Los AND the display
                       ;Call the @LOGOT SVC
       RST
       . . .
             'This message will be displayed both in'
TEXT:
      DEFM
             'the Job Log and on the display.'
       DEFM
                       Must terminate text with an
       DEFB
                       ; < ENTER > .
```


Send Message to Device

Sends a message line to any device or file.

Entry Conditions:

A = 13 (X'0D')

DE=pointer to DCB or FCB of device or file to receive output HL=pointer to message line terminated with X'0D' or X'03'

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Example:

LD 'HL ,TEXT Point at message to output DE , DCBP LD Point at the device control Fblock for our device LD A,@MSG Fand write this text to it RST 28H ;Call the @MSG SVC . . . 'D555-555<LOGIN USER>' Text to write to DEFM

TEXT: DEFM 'D555-555<LOGIN USER>' ;Text to write to ;this device. In this case, ;it is a dialing modem.

DEFB Ø3H ;Terminate the message

8-Bit Multiplication

Performs an 8-bit by 8-bit unsigned integer multiplication. The resultant product must fit into an 8-bit field.

Entry Conditions:

A = 90 (X'5A') C = multiplicand E = multiplier

Exit Conditions:

Success always.

A = product

DE is altered by this SVC.

Example:

See Sample Program B, lines 150-153.

16-Bit by 8-Bit Multiplication

Performs an unsigned integer multiplication of a 16-bit multiplicand by an 8-bit multiplier. The resultant product is stored in a 3-byte register field.

Entry Conditions:

A = 91 (X'5B') HL = multiplicand C = multiplier

Exit Conditions:

Success always.

HL=two high-order bytes of product A =low-order byte of product DE is altered by this SVC.

Example:

See Sample Program B, lines 183-187.

Open Existing File or Device

Opens an existing file or device.

Entry Conditions:

A = 59 (X'3B')

HL = pointer to 256-byte disk I/O buffer

DE=pointer to FCB or DCB containing filespec or devspec

B = logical record length for open file

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General:

AF is altered by this SVC.

The file open bit is set in the directory if the access level is UPDATE or greater.

Example:

See Sample Program C, lines 134-150.

Parse Parameter String

Parses an optional parameter string. Its primary function is to parse command parameters contained in a command line starting with a parenthesis. The acceptable parameter format is:

PARM = X'nnnn'....hexadecimal entry
PARM = nnnnndecimal entry
PARM = "string"alphanumeric entry
PARM = flagON, OFF, Y, N, YES, or NO
Note: Entering a parameter with no equal sign or value is the same as using PARM = ON. Entering PARM = with no value is the same as using PARM = OFF.

Entry Conditions:

A = 17 (X'11')

DE=pointer to beginning of your parameter table

HL = pointer to command line to parse (the parameter string is enclosed within parentheses)

Exit Conditions:

Success always.

If Z is set, either valid parameters or no parameters were found. If NZ is set, a bad parameter was found.

General:

NZ is not returned if parameter types other than those specified are entered. The application must check the validity of the response byte.

The valid parameters are contained in a user table which must be in one of the following formats. (Parameter names must consist of alphanumeric characters, the first of which is a letter.)

For use with TRSDOS Version 6, use this format:

The parameter table starts with a single byte X'80'. Each parameter is stored in a variable length field as described below.

1) Type Byte (Type and length byte)

Bit 7 — If set, accept numeric value

Bit 6 — If set, accept flag parameter

Bit 5 — If set, accept "string" value

Bit 4 — If set, accept first character of name as abbreviation

Bits 3-0 — Length of parameter name

- 2) Actual Parameter Name
- 3) Response byte (Type and length found)

Bit 7—Numeric value found

Bit 6 — Flag parameter found

Bit 5 — String parameter found

Bits 4-0 — Length of parameter entered. If length is 0 and the 2-byte vector points to a quotation mark (X'22'), then the parameter was a null string. Otherwise, a length of 0 indicates that the parameter was longer than 31 characters.

4) 2-byte address vector to receive the parsed parameter values.

The 2-byte memory area pointed to by the address field of your table receives the value of PARM if PARM is non-string. If a string is entered, the 2-byte memory area receives the address of the first byte of "string." The entries ON, YES, and Y return a value of X'FFFF'; OFF, NO, and N return X'0000.' If a parameter name is specified on the command line and is fol-

lowed by an equal sign and no value, then X'0000' or NO is returned. If a parameter name is used on the command line without the equal sign, then a value of X'FFFF' or ON is assumed. For any allowed parameter that is completely omitted on the command line, the 2-byte area remains unchanged and the response byte is \emptyset .

The parameter table is terminated with a single byte X'00."

For compatibility with LDOS 5.1.3, use this format:

A 6-character "word" left justified and padded with blanks followed by a 2-byte address to receive the parsed values. Repeat word and address for as many parameters as are necessary. You must place a byte of X'00' at the end of the table.

Example:

example:			
•	LD	HL +COMAND	Point at command buffer
	LD	DE, PARM	
			Parse the items on the
	LD	A,@PARAM	
			command line
	RST	28H	;Call the @PARAM SVC
	JR	NZ *ERROR	An error occurred (not
			;included here)
	LD	A,(RESP)	Get response code
	AND	Ø4ØH	¡Test response flags
		Z +BAD	User specified something
	JR	ZIDHU	
			flike UPDATE=X'1234' or
			;UPDATE="HELLO"
	LD	A,(VAL)	Get 1st byte of VAL word
	OR	Α	Test the value
	JR	Z,OFF	SUPDATE=OFF or UPDATE=NO was
			specified
	JR	ON	JUPDATE=ON or UPDATE=YES was
			;specified
COMAND:	DEFS	80	Area where command is
COHMIND :	<i>D</i> L I U	00	stored
DADM.	~p	8ØH	¡Table header code
PARM:	DEFB		
	DEFB	4ØH+6	;40 says we want a flas
			;(YES/NO). G is length of
			ithe parameter name
	DEFM	'UPDATE'	Parameter name
RESP:	DEFB	Ø	Response area
The WITH	DEFW	VAL	¡Vector to VAL
		Ø	End of Table code
	DEFB	_	· — · · — · · — · · — · · · · · · · · ·
VAL:	DEFS	2	Area to receive a parameter
			ivalue

Suspend Program Execution

Suspends program execution for a specified period of time and goes into a "holding" state. The delay is at least 14.3 microseconds per count.

Entry Conditions:

A = 16 (X'10')BC = delay count

Exit Conditions:

Success always.

Example:

LD BC,36A2H ;Wait for about 200 milliiseconds, 14.3 usecs * ;13986 is approx, 200 imsecs

LD A,@PAUSE ;Suspend execution RST 28H ;Call the @PAUSE SVC

Position to End Of File

Positions an open file to the End Record Number (ERN). An end-of-file-encountered error (X'1C') is returned if the operation is successful. Your program may ignore this error.

Entry Conditions:

A = 65 (X'41')

DE = pointer to FCB of the file to position

Exit Conditions:

NZ flag always set. If A = X'1C', then success. If $A \neq X'1C'$, then failure. $A = error\ number$

General:

AF is always altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Position File

Positions a file to a logical record. This is useful for positioning to records of a random access file.

When the @POSN routine is used, Bit 6 of FCB + 1 is automatically set. This ensures that the EOF (End Of File) is updated when the file is closed only if the NRN (Next Record Number) exceeds the current ERN (End Record Number).

Note that $@\mathsf{POSN}$ must be used for each write, even if two records are side by side.

Entry Conditions:

A = 66 (X'42')

DE = pointer to FCB for the file to position

BC = the logical record number

Exit Conditions:

If Z flag is set or A = X'1C' or X'1D', then success.

The file was positioned.

Otherwise, failure,

A = error number

General:

AF is always altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Prints Message Line

Outputs a message line to the printer. The line must be terminated with either a carriage return (X'0D') or an ETX (X'03').

Entry Conditions:

A = 14 (X'0E')

HL = pointer to message to be output

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF and DE are altered by this SVC.

Example:

```
LD
            HL ,TEXT
                      Text to be output to the
                      ;printer
            A,@PRINT
      LD
                      Write this message to the
                      Frinter device
                      ;Call the @PRINT SVC
      RST
            28H
TEXT:
      DEFB
            ØСН
                      Do a Top of Form
                                                Page '
      DEFM
            'Report continued
      DEFB
                      Terminate with a <ETX> or
                      ;an (ENTER)
```


Send Character to Printer

Outputs a byte to the line printer.

Entry Conditions:

A = 6 (X'06')

C=character to print

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF and DE are altered by this SVC.

If the line printer is attached but becomes unavailable (out of paper, out of ribbon, turned off, off-line, buffer full, etc.), the printer driver waits approximately ten seconds. If the printer is still not ready, a "Device not available" error is returned.

Example:

```
LD
            A + (PAGE)
                       Get the page number
       ADD
             A, 'Ø'
                       Make it ASCII
       LD
             C+A
                       Put the value here
       L.D
             A,@PRT
                       Write this character to the
                       Frinter
       RST
             28H
                       ;Call the @PRT SVC
PAGE:
      DEFB 2
                       Start with page 2
```


Write One Byte to Device or File

Outputs a byte to a logical device or file. The DCB TYPE byte (DCB + \emptyset , Bit 1) must permit PUT operation.

Entry Conditions:

A = 4 (X'04')

DE = pointer to DCB or FCB of the output device

C = byte to output

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General:

AF is always altered by this SVC.

Example:

See the section "Device Driver and Filter Templates."

Get Directory Record or Free Space

Reads the directory information of visible files from a disk directory, or gets the amount of free space on a disk.

Entry Conditions:

A = 35 (X'23')

HL = pointer to RAM buffer to receive information

B = logical drive number (0-7)

C selects one of the following functions:

If $C = \emptyset$, get directory records of all visible files.

If C = 255, get free space information.

If C = 1-254, get a single directory record (see below).

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

Each directory record requires 22 bytes of space in the buffer. If $C=\emptyset$, one additional byte is needed to mark the end of the buffer.

For single directory records, the number in the C register should be one less than the desired directory record. For example, if C=1, directory record 2 is fetched and put in the buffer. If a single record request is for an inactive record or an invisible file, the A register returns an error code 25 (File access denied).

The directory information is placed in the buffer as follows:

Byte Contents

00-14 filename/ext:d (left justified, padded with spaces)

15 protection level, 0 to 6

16 EOF offset byte

17 logical record length, 0 to 255

18-19 ERN of file

20-21 file size in K (1024-byte blocks)

22 LAST RECORD ONLY. Contains "+" to mark buffer end.

If C = 255, HL should point to a 4-byte buffer. Upon return, the buffer contains:

Bytes 00-01 Space in use in K, stored LSB, MSB

Bytes 02-03 Space available in K, stored LSB, MSB

Example:

See the example for @DODIR in Sample Program E, lines 32-40.

Read a Sector Header

Reads the next ID header when supported by the controller driver. The floppy disk driver supplied treats this as a @RDSEC (SVC 49).

Entry Conditions:

A = 48 (X'30')

HL = pointer to buffer to receive the data

D = cylinder to read

C = logical drive number

E = sector to read

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

Example:

See the example for @RDSEC in Sample Program D, lines 63-66.

Read Sector

Transfers a sector of data from the disk to your buffer.

Entry Conditions:

A = 49 (X'31')

HL = pointer to the buffer to receive the sector

D = cylinder to read

E = sector to read

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC

Example:

See Sample Program D, lines 63-66.

Read System Sector

Reads the specified system (directory) sector. If the cylinder number in register D is not the directory cylinder, the value in D is changed to reflect the real directory cylinder and the sector is then read.

Entry Conditions:

A = 85 (X'55')

HL = pointer to the buffer to receive the sector

D = cylinder to read

E = sector to read

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 78-92.

Read a Track

Reads an entire track when supported by the controller driver. The floppy disk driver supplied treats this as a @RDSEC (SVC 49) and does not do a track read.

Entry Conditions:

A = 51 (X'33')

HL = pointer to buffer to receive the sector

D = track to read

C = logical drive number

E = sector to read

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General

AF is altered by the supplied floppy disk driver.

Example:

See the example for @RDSEC in Sample Program D, lines 63-66.

Read a Record

Reads a logical record from a file. If the LRL defined at open time was 256 (specified by 0), then the NRN sector is transferred to the buffer established at open time. For LRL between 1 and 255, the next logical record is placed into a user record buffer, UREC. The 3-byte NRN is updated after the read operation.

Entry Conditions:

A = 67 (X'43')

DE=pointer to FCB for the file to read

HL = pointer to user record buffer UREC (needed if LRL = 1-255; unused if LRL = 256)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

See Sample Program C, lines 300-304.

Remove File or Device

Removes a file or device.

If a file is to be removed, the File Control Block must be in an open condition. When this SVC is performed, the file's directory is updated and the space occupied by the file is deallocated.

If a device was specified, the device is closed. To remove a device, use the REMOVE library command.

Entry Conditions:

A = 57 (X'39')

DE = pointer to FCB or DCB to remove

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

See Sample Program C, lines 223-231.

Rename File or Device

Changes a file's filename and/or extension.

Entry Conditions:

A = 56 (X'38')

DE=pointer to an FCB containing the file's current name This FCB must be in a closed state.

HL = pointer to new filename string terminated with a X'0D' or X'03. This filespec must be in upper case and must be a valid filespec. You can convert the filespec to upper case and check its validity by using the @FSPEC SVC before using @RENAM.

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

After the call is completed, the FCB pointed to by DE is altered. Only AF is altered by this SVC.

Example:

			and the same and the same of t
	L.D	DE,FCB	Point at a closed FCB
			scontaining the old
			filespec
	LD	HL,NEW	Point to the new filespec
			ito use
	LD	A,@RENAM	Change the name of the
			ifile
	RST	28H	Call the @RENAM SVC
	+ + +		
FCB:	DEFS	32	A File Control Block used
			iby the @RENAM SVC. In
			ithis example, it is
			jassumed that an @FSPEC
			;SVC has loaded a filespec
			into the FCB before the
			;@RENAM SVC is performed.
NEW:	DEFM	'NEWNAME/TXT'	The new filespec for the
			ifile
	DEFB	ØDH	Terminate the filespec

Rewind File to Beginning

Rewinds a file to its beginning and resets the 3-byte NRN to \emptyset . The next record to be read or written sequentially is the first record of the file.

Entry Conditions:

A = 68 (X'44')

DE = pointer to FCB for the file to rewind

Exit Conditions:

Success, Z flag set. File positioned to record number 0. Failure, NZ flag set.

A = error number

General:

AF is always altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Remove Interrupt Level Task

Removes an interrupt level task from the Task Control Block table.

Entry Conditions:

A=30 (X'1E') C=task slot assignment to remove (0-11)

Exit Conditions:

Success always.

HL and DE are altered by this SVC.

Example:

See Sample Program F, lines 134-142.

Replace Task Vector

Exits the task process executing and replaces the currently executing task's vector address in the Task Control Block table with the address following the SVC instruction. Return is made to the foreground application that was interrupted.

Entry Conditions:

A = 31 (X'1F')

General:

This SVC does not return.

Example:

LD A,RPTSK ;Replace this task with the jone located at the jone located at the jfollowing address:

RST 28H ;Call the @RPTSK SVC

NEWADD: DEFW Ø ;Address of the new task is jloaded here. This word jmust be immediately after jthe @RPTSK SVC. The label jNEWADD is present only to jallow the address to be

istored.

Reread Sector

Forces a reread of the current sector to occur before the next I/O request is performed. Its most probable use is in applications that reuse the disk I/O buffer for multiple files, to make sure that the buffer contains the proper file sector. This routine is valid only for byte I/O or blocked files. Do not use it when positioned at the start of a file.

Entry Conditions:

A = 69 (X'45')DE = pointer to FCB for the file to reread

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF is always altered by this SVC.

Example:

LD	DE,FCB	
		iof the file that requires
		ithe re-read
L.D	A,@RREAD	;Before next I/O, reload
		the current sector into
		ithe system buffer for
		ithis file
RST	28H	Call the @RREAD SVC

Test for Drive Busy

Performs a test of the last selected drive to see if it is in a busy state. If busy, it is re-selected until it is no longer busy.

Entry Conditions:

A = 47 (X'2F') C=logical drive number (0-7)

Exit Conditions:

Success always.
Only AF is altered by this SVC.

Example:

LD C,1 ;Test Drive 1 to see if it ;is busy

LD A,@RSLCT ;If it is, continue ;selecting it

RST 28H ;Call the @RSLCT SVC

Issue FDC RESTORE Command

Issues a disk controller RESTORE command.

Entry Conditions: A = 44 (X'2C') C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

See the example for @CKDRV in Sample Program D, lines 38-39.

Run Program

Loads and executes a program file. If an error occurs during the load, the system prints the appropriate message and returns.

Entry Conditions:

A = 77 (X'4D')

DE = pointer to FCB containing the filespec of the file to RUN

Note: The FCB must be located where the program being loaded will not overwrite it.

Exit Conditions:

Success, the new program is loaded and executed.

Failure, the error is displayed and return is made to your program.

HL = return code (See the section "Converting to TRSDOS Version 6" for information on return codes.)

General:

HL is returned unchanged if no error occurred and can be used as a pointer to a command line.

Example:

See Sample Program A, lines 62-74.

Rewrite Sector

Rewrites the current sector, following a write operation. The @WRITE function advances the NRN after the sector is written. @RWRIT decrements the NRN and writes the disk buffer again. Do not use @RWRIT when positioned to the start of a file.

Entry Conditions:

A = 70 (X'46')

DE = pointer to FCB for the file to rewrite

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

L.D	DE,FCB	Point to	the	File	Control
		;Block			
L_D	A,@RWRIT	¡Perform a	re-	writ	e of the
		icurrent s	ecto	r	
RST	28H	Call the	BRMR	IT S	VC

Seek a Cylinder

Seeks a specified cylinder and sector. @SEEK does not return an error if you specified a non-existent drive or an invalid cylinder. @SEEK performs no action if the specified drive is a hard disk.

Note: Seek of a sector is not supported by TRS-80 hardware. An implied seek is included in sector reads and writes.

Entry Conditions:

A = 46 (X'2E')

C=logical drive number

D=cylinder to seek

E = sector to seek

Exit Conditions:

Success always.

Only AF is altered by this SVC.

Seek Cylinder and Sector

Seeks the cylinder and sector corresponding to the next record of the specified file. (This is done by examining the NRN field of the FCB.) No error is returned on physical seek errors.

Entry Conditions:

A = 71 (X'47')

DE = pointer to the file's FCB

Exit Conditions:

Success always.

Example:

LD	DE +FCB	Point to the File Control	
		;Block	
LD	A,@SEEKSC	Cause the next sector to be	3
		SEEKed before it is	
		iactually needed	
RST	28H	Call the @SEEKSC SVC	

Skip a Record

Causes a skip past the next logical record. Only the record number contained in the FCB is changed; no physical I/O takes place.

Entry Conditions:

A = 72 (X'48')

DE = pointer to FCB for the file to skip

Exit Conditions:

If the Z flag is set or if A = X'1C' or X'1D', then the operation was successful. Otherwise, $A = error\ number$. If A = X'1C' is returned, the file pointer is positioned at the end of the file. Any Appending operations would be performed here. If A = X'1D' is returned, the file pointer is positioned beyond the end of the file.

General:

AF is altered by this SVC.

BC contains the current record number. This is the same value as that returned by the @LOC SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Select a New Drive

Selects a drive. The time delay specified in your configuration (SYSTEM (DELAY = Y/N)) is made if the drive selection requires it.

Entry Conditions:

A = 41 (X'29')

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Sound Generation

Generates sound using specified tone and duration codes. Interrupts are disabled during execution.

Entry Conditions:

A = 104 (X'68')

B = function code

bits 0-2: tone selection (0-7 with 0 = highest and 7 = lowest)

bits 3-7: tone duration (\emptyset -31 with \emptyset = shortest and 31 = longest)

Exit Conditions:

Success always.

Only AF is altered by this SVC.

Example:

See Sample Program B, lines 43-45.

Issue FDC STEP IN Command

Issues a disk controller STEP IN command. This moves the drive head to the next higher-numbered cylinder. @STEPI is intended for sequential read/write operations, such as disk formatting.

Entry Conditions:

A = 45 (X'2D') C=logical drive number

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Get Time

Gets the system time in display format (HH:MM:SS).

Entry Conditions:

A = 19 (X'13')

HL = pointer to buffer to receive the time string

Exit Conditions:

Success always.

HL = pointer to the end of buffer + 1

DE=pointer to start of TIME\$ storage area in TRSDOS

AF and BC are altered by this SVC.

Example:

See the example for @DATE in Sample Program F, lines 252-253.

Video Functions

Performs various functions related to the video display. The B register is used to pass the function number.

Entry Conditions:

A = 15 (X'0F')

B selects one of the following functions:

If B = 1, return the character at the screen position specified by HL.

 $H = row \ on \ the \ screen \ (0-23)$, where 0 is the top row

 $L = column \ on \ the \ screen \ (0-79)$, where 0 is the leftmost column

If B=2, display the specified character at the position specified by

C=character to be displayed

 $H=row\ on\ the\ screen\ (0-23)$, where 0 is the top row

 $L = column \ on \ the \ screen \ (0.79), \ where \ 0 \ is the leftmost column$

If B = 3, move the cursor to the position specified by HL. This is done even if the cursor is not currently displayed.

 $H=row\ on\ the\ screen\ (0-23),$ where 0 is the top row

 $L = column \ on \ the \ screen \ (0-79), \ where \ \emptyset \ is the leftmost column$

If B = 4, return the current position of the cursor.

If B = 5, move a 2048-byte (2K) block of data to video memory. Only 1920 bytes of this are displayed, but a 2K area should be maintained if you plan to read information back from the video using the same area of memory.

HL = pointer to 2K area to be moved to video memory HL must be in the range X'23FF' < HL < X'EC01'.

If B = 6, move a 2048-byte (2K) block of data from video memory to a buffer you supply. The first 1920 bytes contain the data that is on the screen in 80x24 display mode. The remaining bytes are the remainder of the video RAM area.

If B = 7, scroll protect the specified number of lines from the top of the screen.

C=number of lines to scroll protect (0-7). Once set, scroll protect can be removed only by executing @VDCTL with B=7 and $C=\emptyset$, or by resetting the system. Clearing the screen with SHIFT]CLEAR erases the data in the scroll protect area, but the scroll protect still exists.

If B = 8, change cursor character to specified character. If the cursor is currently not displayed, the character is accepted anyway and is used as the cursor character when it is turned back on.

C = character to use as the cursor character

Exit Conditions:

If B = 1:

Success, Z flag set.

A = character found at the location specified by HL

DE is altered.

Failure, NZ flag set.

A = error number

If B=2:

Success, Z flag set.

DE is altered.

Failure, NZ flag set.

A = error number

If B = 3:

Success, Z flag set.

DE and HL are altered.

Failure, NZ flag set.

A = error number

If B = 4:

Success always.

HL = row and column position of the cursor. H = row on the screen (0-23), where 0 is the top row; L = column on the screen (0-79), where 0 is the leftmost column.

If B = 5:

Success always.

HL = pointer to the last byte moved to the video + 1 BC and DE are altered.

If B = 6:

Success always.

BC, DE, and HL are altered.

If B = 7:

Success always.

BC and DE are altered.

If B = 8:

Success always.

A = previous cursor character

DE is altered.

General:

Functions 5, 6, and 7 do not do range checking on the entry parameters. If HL is not in the valid range in functions 5 and 6, the results may be unpredictable.

Only function 3 (B=3) moves the cursor.

If C is greater than 7 in function 7, it is treated as modulo 8.

AF and B are altered by this SVC.

Example:

See Sample Program F, lines 304-327.

Write and Verify a Record

Performs a @WRITE operation followed by a test read of the sector (if the write required physical I/O) to verify that it is readable.

If the logical record length is less than 256, then the logical record in the user buffer UREC is transferred to the file. If the LRL is equal to 256, a full sector write is made using the disk I/O buffer identified at file open time.

Entry Conditions:

A = 73 (X'49')DE = pointer to FCB for the file to verify

Exit Conditions:

Success, Z flag set.

HL = pointer to user buffer containing the logical record
Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program C, lines 338-346.

Verifies a sector without transferring any data from disk.

Entry Conditions:

A = 50 (X'32')

D = cylinder to verify

E = sector to verify

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set

A = error number

General:

AF is always altered by this SVC.

If the sector is a system sector, the sector is readable if an error 6 is returned; any other error number signifies an error has occurred.

Example:

See the example for @WRSEC in Sample Program D, lines 68-76.

Write End Of File

Forces the system to update the directory entry with the current end-of-file information.

Entry Conditions:

A = 74 (X'4A')

DE = pointer to the FCB for the file to WEOF

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General

AF is always altered by this SVC.

Example:

LD	DE,FCB	;Point at the File Control
		;Block
LD	A,@WEOF	Force the directory entry
		ito be urdated now,
		instead of when the file
		is closed
RST	28H	;Call the @WEOF SVC

Locate Origin of SVC

Used to resolve the relocation address of the calling routine.

Entry Conditions: A = 7 (X'07')

Exit Conditions:

Success always.

HL = pointer to address following RST 28H instruction AF is always altered by this SVC.

Example:

See Sample Program F, lines 36-60.

Write a Record

Causes a write to the next record identified in the File Control Block.

If the logical record length is less than 256, then the logical record in the user buffer UREC is transferred to the file. If the LRL is equal to 256, a full sector write is made using the disk I/O buffer identified at file open time.

Entry Conditions: A = 75 (X'4B')

HL = pointer to user record buffer UREC (unused if LRL = 256)

DE=pointer to FCB for the file to write

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF is always altered by this SVC.

Example:

See the example for @VER in Sample Program C, lines 338-346.

Write a Sector

Writes a sector to the disk.

Entry Conditions:

A = 53 (X'35')

HL = pointer to the buffer containing the sector of data

D = cylinder to write

E = sector to write

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 68-76.

Write a System Sector

Writes a system sector (used in directory cylinder).

Entry Conditions:

A = 54 (X'36')

HL = pointer to the buffer containing the sector of data

D = cylinder to write

E = sector to write

C = logical drive number

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 94-104.

Write a Track

Writes an entire track of properly formatted data. The data format must conform to that described in the disk controller's reference manual. @WRTRK must always be preceded by @SLCT.

Entry Conditions:

A = 55 (X'37') HL = pointer to format data

D = track to write

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Numerical List of SVCs

Following is a numerical list of the SVCs:

Dec	Hex	Label	Function
Ø	00	@IPL	Reboot the system
1	01	@KEY	Scan *KI device, wait for character
2	02	@DSP	Display character at cursor, advance cursor
3	Ø 3	@GET	Get one byte from a logical device
4	04	@PUT	Write one byte to a logical device
5	0 5	@CTL	Make a control request to a logical device
6	Ø6	@PRT	Send character to the line printer
7	07	@WHERE	Locate origin of CALL
8	Ø8 Ø9	@KBD @KEYIN	Scan keyboard and return Accept a line of input
9 10	09 0A	@DSPLY	Display a message line
11	ØB	@LOGER	Issue a log message
12	ØC	@LOGOT	Display and log a message
13	ØD	@MSG	Message line handler
14	ØΕ	@PRINT	Print a message line
15	ØF	@VDCTL	Position/locate cursor, get/put character at cursor
16	10	@PAUSE	Suspend program execution
17	11	@PARAM	Parse an optional parameter string
18	12	@DATE	Get system date in the format MM/ DD/YY
19	13	@TIME	Get system time in the format HH:MM:SS
20	14	@CHNIO	Pass control to the next module in a device chain
21	15	@ABORT	Load HL with X'FFFF' error and goto @ EXIT
22 23	16	@EXIT	Exit program and return to TRSDOS Reserved for future use
24	18	@CMNDI	Entry to command interpreter with return to the system
25	19	@CMNDR	Entry to command interpreter with return to the user
26	1A	@ERROR	Entry to post an error message
27	1B	$\stackrel{\smile}{@}DEBUG$	Enter DEBUG
28	1C	@CKTSK	Check if task slot in use
29	1D	@ADTSK	Add an interrupt level task
30	1E	@RMTSK	Remove an interrupt level task
31	1F	@RPTSK	Replace the currently executing task vector
32	20	@KLTSK	Remove the currently executing task
33	21	@CKDRV	Check for drive availability
34	22	@DODIR	Do a directory display/buffer
35	23	@RAMDIR	Get directory record(s) or free space into RAM
36-39	20	@DCSTAT	Reserved for future use Test if drive is assigned in DCT
40 41	28 29	@SLCT	Select a new drive
42	29 2A	@DCINIT	Initialize the FDC
43	2B	@DCRES	Reset the FDC
44	2C	@RSTOR	Issue FDC RESTORE command
45	2D	$\overset{\smile}{@}$ STEPI	Issue FDC STEP IN command

Dec	Нех	Label	Function
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F	@SEEK @RSLCT @RDHDR @RDSEC @VRSEC @VRSEC @HDFMT @WRSEC @WRTRK @RENAM @REMOV @INIT @OPEN @CLOSE @BKSP @CKEOF @LOC	Seek a cylinder Test if requested drive is busy Read a sector header Read a sector Verify a sector Read a track Hard disk format Write a sector Write a system sector Write a track Rename a file Remove a file or device Open or initialize a file or device Open an existing file or device Close a file or device Backspace one logical record Check for end of file Calculate the current logical record
64	40	@LOF	number Calculate the EOF logical record number
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83	41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 50 51 52 53	@PEOF @POSN @READ @REW @RREAD @RWRIT @SEEKSC @SKIP @VER @VER @WEOF @WRITE @LOAD @RUN @FSPEC @FXT @FNAME @GTDCT @GTDCB @GTMOD	Position to the end of file Position a file to a logical record Read a record from a file Rewind a file to its beginning Reread the current sector Rewrite the current sector Seek a specified cylinder and sector Skip the next record Write a record to a file and verify Write end of file Write a record to a file Load a program file Load and execute a program file Fetch a file or device specification Set up a default file extension Fetch filename/extension from directory Get Drive Code Table address Find specified or first free DCB Find specified memory module
84 85	55	@RDSSC	address Reserved for future use Read a system sector
86 87 88 89 90	57 58 5A	@DIRRD @DIRWR @MUL8	Reserved for future use Read directory record Write directory record Reserved for future use Multiply 8-bit unsigned integers
91 92 93 94	5B 5D 5E	@MUL16 @DIV8 @DIV16	Multiply 16-bit by 8-bit unsigned integers Reserved for future use Divide 8-bit unsigned integers Divide 16-bit by 8-bit unsigned integers
95 96	60	@DECHEX	Reserved for future use Convert decimal ASCII to 16-bit
97	61	@HEXDEC	binary value Convert a number in HL to decimal ASCII

Dec	Hex	Label	Function
98	62	@HEX8	Convert a 1-byte number to hex ASCII
99	63	@HEX16	Convert a 2-byte number to hex ASCII
100	64	@HIGH\$	Obtain or set the highest and lowest unused RAM addresses
101	65	@FLAGS	Point IY to the system flag table
102	66	@BANK	Check, set, or reset a 32K bank of memory
103	67	@BREAK	Set user or system break vector
104 105-127	68	@SOUND	Generate sound (tone and duration) Reserved for future use.

Alphabetical List of SVCs

Following is an alphabetical list of the SVC labels and numbers:

0 1		
Label	Dec	Hex
@ABORT	21	15
@ADTSK	29	1D
@BANK	102	66
@BKSP	61	3D
@BREAK	103	67
@CHNIO	20	14
@CKDRV	33	21
@CKEOF	62	3E
@CKTSK	28	1C
@CLOSE	60	3C
@CMNDI	24	18
@CMNDR	25	19
@CTL	5	5
@DATE @DCINIT	18 42	12
@DCRES	42 43	2A 2B
@DCSTAT	40	28
@DEBUG	27	1B
@DECHEX	96	60
@DIRRD	87	57
@DIRWR	88	58
@DIV8	93	5D
@DIV16	94	5E
@DODIR	34	22
@DSP	2	2
@DSPLY	10	0A
@ERROR @EXIT	26 22	1A
@FEXT	79	16 4F
@FLAGS	101	65
@FNAME	80	50
@FSPEC	78	4E
@GET	3	3
@GTDCB	82	52
@GTDCT	81	51
@GTMOD	83	53
@HDFMT	52	34
@HEXDEC	97	61
@HEX8 @HEX16	98	62
@HIGH\$	99 100	63 64
@INIT	58	3A
@IPL	0	0
@KBD	8	8
@KEY	1	1
@KEYIN	9	9
@KLTSK	32	20
@LOAD	76	4C
@LOC	63	3F
@LOF	64	40
@LOGER	11	0B
@LOGOT @MSG	12 13	ØC
@INIOG	13	ØD

Label	Dec	Hex
@MUL8	90	5A
@MUL16	91	5B
@OPEN	59	3B
@PARAM	17	11
@PAUSE	16 65	10 41
@PEOF @POSN	66	42
@PRINT	14	ØE
@PRT	6	6
@PUT	4	4
@RAMDIR	35	23
@RDHDR	48	30
@RDSEC	49	31 55
@RDSSC @RDTRK	85 51	33
@READ	67	43
@REMOV	57 57	39
@RENAM	56	38
@REW	68	44
@RMTSK	30	1E
@RPTSK	31	1F
@RREAD	69 47	45 2F
@RSLCT @RSTOR	44	2C
@RUN	77	4D
@RWRIT	70	46
@SEEK	46	2E
@SEEKSC	71	47
@SKIP	72	48
@SLCT	41	29
@SOUND	104 45	68 2D
@STEPI @TIME	45 19	13
@VDCTL	15	ØF
@VER	73	49
@VRSEC	50	32
@WEOF	74	4A
@WHERE	7	7
@WRITE	75 53	4B 35
@WRSEC @WRSSC	53 54	36
@WRTRK	55 55	37
(VALLETTI	00	3,

Sample Programs

The following sample programs use many of the supervisor calls described in this manual. These programs are not meant to be examples of the most efficient programming, but are designed to illustrate as many supervisor calls as possible.

Sample Program A

```
Ln #
                 Source Line
                 This program asks the user whether to run a program
øøøøl
                 or debug it and executes the SVCs required to perform
00002
         ;
                 the chosen action.
ØØØØ3
øøøø4
                                            ;The program begins at x'5000'
ØØØØ5
                 PSECT
                          5ØØØH
ØØØØ7
                 Define the equates for the SVCs that will be used.
øøøø8
øøøø9
                                            ;Enter the debugger (DEBUG)
                          27
ØØØ1Ø
         @DEBUG: EQU
                          1Ø
                                            ;Display a message
ØØØ11
         @DSPLY: EQU
                                            ; Verify a filespec or devspec and
øøø12
         @FSPEC: EQU
                          78
øøø13
                                            ;load it into a File Control Block
                                            Get a character from the keyboard
ØØØ14
                 EQU
         0KEY:
         @LOAD:
                                            ;Load a program into memory
                          76
ØØØ15
                 EQU
                                            ; Execute a program
ØØØ16
         @RUN:
                 EQU
                          77
øøø17
                          'Do you wish to RUN this Program or DEBUG it ?'
øøø18
         MESS1:
                 DEFM
                                            ;This moves the cursor to the next line
ØØØ19
                 DEFB
                          'Press <ENTER> to RUN or <BREAK> to DEBUG'
                 DEFM
øøø2ø
                                            :Terminate the message string
ØØØ21
                 DEFB
                          ØDH
ØØØ22
                                            ;Sample program to debug or execute
                          'DIREX/CMD'
         PROGRM: DEFM
ØØØ23
                          ØDH
                                            :Terminate the filespec
                 DEFB
øøø24
ØØØ25
                                            ;File Control Block for the program
ØØØ26
         FCB1:
                 DEFS
                          32
øøø27
                 Get the File Control Block for the program 'DIREX/CMD'.
ØØØ28
ØØØ29
øøø3ø
                          HL, PROGRM
                                            ; Point at the filespec we want to
         START:
                 T.D
                                            ; execute or load into memory
ØØØ31
                                            ;Point at the File Control Block
                          DE, FCB1
ØØØ32
                  LD
                                            ; Perform a validity check on the filespec
ØØØ33
                 LD
                          A.@FSPEC
                                            ; and copy the filespec into the FCB.
00034
                                            ;Call the @FSPEC svc
                          28H
øøø35
                  RST
ØØØ36
                                            ;Point at our prompting message
                          HL, MESSI
øøø37
                  LD
                          A, @DSPLY
                                            ;and print it on the display
øøø38
                  T.D
ØØØ39
                  RST
                           28H
                                            ;Call the @DSPLY svc
ØØØ4Ø
                                            ;Get the reply from the keyboard
ØØØ41
                  LD
                           A, @KEY
                                            ;Call the @KEY svc
ØØØ42
                  RST
                           28H
ØØØ43
                                            ; Was the character an <ENTER>?
                          ØDH
ØØØ44
                  CP
ØØØ45
                  JR
                          Z, RUNIT
                                            ; If Z was set, then run the program
ØØØ46
                  If it wasn't an <ENTER>, then we assume it was a <BREAK> and
ØØØ47
                  load the program and enter the debugger.
øøø48
ØØØ49
                                            ;Point at the File Control Block
ØØØ5Ø
                           DE, FCBl
                  LD
                                            ; and have this program loaded into memory
                           A,@LOAD
ØØØ51
                  LD
øøø52
                           28H
                                            ;Call the @LOAD svc
                  RST
ØØØ53
                  Note that this program must not be overwritten by the program
ØØØ54
         ;
                  we are loading. In this example, it is known that the program we are loading starts at x'3000' and ends below x'5000'.
ØØØ55
ØØØ56
         ;
øøø57
                           A,@DEBUG
                                            ; Now invoke the system debugger, DEBUG
øøø58
                  LD
                                            ;Call the @DEBUG svc
øøø59
                  RST
                           28H
                                            ; Note that @DEBUG does not return
øøø6ø
øøø61
ØØØ62
                  Execute the program
ØØØ63
                                            ;Point at the File Control Block
ØØØ64
         RUNIT:
                  LD
                           DE, FCB1
                                            ;Tell TRSDOS to load and execute the
                           A, @RUN
øøø65
                  LD
                                            ;program
ØØØ66
                                            ;Call the @RUN svc
ØØØ67
                  RST
                           28H
```

ØØØ68 ØØØ69 ØØØ7Ø		;Note that @RUN returns only if it can't ;find the program
99971 99972 99973 99974 99975	; ; ;	Note that the program that is loaded by the @RUN svc must not overwrite the File Control Block in this program. In this case, it is known that the program we are executing starts at x'3000' and ends below the starting point of this program, x'5000'.
ØØØ76		END START

Sample Program B

```
:This program accepts numbers from the keyboard
øøøø1
ØØØØ2
         ; and uses them to demonstrate the
ØØØØ3
         ; arithmetic and numeric conversion SVCs.
ØØØØ4
ØØØØ5
         ;It also uses the sound function to produce a tone at the
øøøø6
         ; beginning of the program.
øøøø7
øøøø8
                 PSECT
                          3ØØØH
øøø1ø
ØØØ11
                 These are the SVCs used in this program.
ØØØ12
ØØØ13
         @DECHEX: EOU
                          96
                                           ;Convert decimal ASCII to binary
                                           ;Perform 8-bit division
øøø14
         @DIV8:
                EQU
                          93
ØØØ15
         @DIV16: EQU
                          94
                                           ;Perform 16-bit division
ØØØ16
         @DSP:
                 EOU
                          2
                                           ;Display a character
                          1Ø
ØØØ17
         @DSPLY: EQU
                                           ;Display a message
ØØØ18
         @EXIT:
                 EQU
                          22
                                          ; Return to TRSDOS Ready or the caller
ØØØ19
         @HEX8:
                 EOU
                          98
                                           ;Convert an 8-bit value to hex ASCII
ØØØ2Ø
         @HEX16: EQU
                          99
                                           ;Convert a 16-bit value to hex ASCII
ØØØ21
                          97
                                          ;Convert a binary value to Decimal ASCII ;Read a character from *KI
         @HEXDEC:EQU
ØØØ22
         @KEY:
                          1
                 EOU
ØØØ23
         @KEYIN: EQU
                          9
                                          ;Accept an input line from *KI
00024
                          90
         @MUL8:
                 EQU
                                          ;Perform 8-bit multiplication
ØØØ25
         @MUL16: EQU
                          91
                                           ;Perform 16-bit multiplication
ØØØ26
         @SOUND: EQU
                          1Ø4
                                           ;Produce a tone
ØØØ27
ØØØ28
                 Other equates.
ØØØ29
ØØØ3Ø
        NUM5:
                 EOU
                          5
ØØØ31
        NUM4:
                 EQU
                          4
ØØØ32
        NUM3:
                          3
                 EQU
ØØØ33
        NUM2:
                 EOU
                          2
ØØØ34
        NUM1:
                 EQU
                          1
ØØØ35
        BRK:
                 EQU
                          8ØH
                                           ;Character code for <BREAK> key
ØØØ36
        CCC:
                 EQU
                          ØDH
                                           ;Next line position
ØØØ37
00038
         ;Perform a subroutine 2 times to display prompting messages, key in
øøø39
øøø4ø
         ; and display divisor and dividend, convert those numbers to
ØØØ41
         ; binary for the divide, and position the cursor.
ØØØ42
ØØØ43
        START: LD
                          B,5AH
                                           ; Make the longest, highest tone
ØØØ44
                 LD
                          A,@SOUND
                                           :Make the noise
ØØØ45
                 RST
                          28H
ØØØ46
                 CALL
                          KEYIN
                                           ;Perform keyin subroutine for dividend
ØØØ47
                 LD
                          A,C
ØØØ48
                          (DIVD1),A
                 LD
                                           ;Store the dividend in memory
ØØØ49
                 LD
                          HL, MESS9
                                           ;Address of hex message
øøø5ø
                 CALL
                          DSPLAY
                                           ;Display hex message
ØØØ51
                 T.D
                          A, (DIVD1)
                                           ;Get the divisor into C for conversion
ØØØ52
                 LD
                         C,A
                                           ;from binary to hex
ØØØ53
                 CALL
                          HEX8
                                           ;Convert the number to hex
ØØØ54
                 CALL
                          KEYIN
                                           ;Perform subroutine for divisor
ØØØ55
                 LD
                          A,C
ØØØ56
                 LD
                          (DIVR1),A
                                           ;Store the divisor in memory
ØØØ57
ØØØ58
        ; Now we are ready to perform the divide on the numbers entered.
ØØØ59
ØØØ6Ø
                         C,A
                 LD
                                           ;Put the divisor back for the @DIV8 SVC
ØØØ61
                 LD
                          A, (DIVD1)
                                           ;Get the dividend into E
ØØØ62
                                           ;for the @DIV8 SVC
                 LD
                          E,A
ØØØ63
                 LD
                          A,@DIV8
                                           ;Call the @DIV8 SVC
ØØØ64
                 RST
                          28H
ØØØ65
øøø66
        ; Now display the answer and the remainder in decimal.
øøø67
øøø68
                 LD
                          (ANS1),A
                                           ;Store the answer in memory
```

```
:Get the remainder
ØØØ69
                 LD
                          A.E
                                            ;Store the remainder in memory
øøø7ø
                  LD
                           (REM1),A
                          HL, MESS3
                                            ;Load address of answer message
ØØØ71
                  LD
                                            ;Display the message
00072
                  CALL
                          DSPLAY
                                            ;Get the answer into L for conversion
ØØØ73
                  LD
                          A, (ANS1)
                                            ;Number to convert
;Put a Ø in the MSB
                  LD
                          L,A
øøø74
ØØØ75
                  LD
                          H,Ø
                                            ;Perform subroutine to display decimal value
øøø76
                  CALL
                          HEXDEC
                                            ; Address of remainder message
øøø77
                          HL, MESS 4
                  LD
                                            ;Display remainder message
ØØØ78
                  CALL
                          DSPLAY
ØØØ79
                  LD
                          A, (REM1)
                                            ;Put remainder in A for hex conversion
                                            ; Number to convert
øøøøø
                  LD
                          L,A
                                            ;Put Ø in the MSB
ØØØ81
                  LD
                          H,Ø
                                            ;Display decimal value
øøø82
                  CALL
                          HEXDEC
ØØØ83
ØØØ84
         :Now divide with a 16-bit dividend.
ØØØ85
                          HL, MESS6
                                            ; Address of 2nd dividend message
øøø86
                  T.D
ØØØ87
                  CALL
                           DSPLAY
                                            ;Display next message
                                            ; Key in up to 5 digits
                          A, @KEYIN
ØØØ88
                  LD
ØØØ89
                  LD
                           HL, BUF6
                                             :Store the number
øøø9ø
                  LD
                           B, NUM5
                                            ;Maximum length of number
øøø91
                  LD
                           C,Ø
ØØØ92
                  RST
                           28H
øøø93
                  T.D
                           A,@DECHEX
                                             ;Convert the number to binary
                  RST
øøø94
                           28H
ØØØ95
                  LD
                           (DIVD2),BC
                                             ;Store the dividend
ØØØ96
                  LD
                           HL, MESS9
                                             ; Address of hex message
                                             ;Display hex message
øøø97
                  CALL
                           DSPLAY
                                            ;Put dividend into DE for conversion
00098
                  LD
                           DE, (DIVD2)
øøø99
                  CALL
                           HEX16
                                             ;Convert the number from binary to hex
                                            ;Key in divisor
;Put the divisor into A
ØØ1ØØ
                  CALL
                           KEYIN
ØØ1Ø1
                  LD
                           A.C
ØØ1Ø2
                  LD
                           (DIVR1),A
                                             ;Store the divisor in memory
                                            ; Address of answer message
ØØ1Ø3
                           HL, MESS 3
                  LD
ØØ1Ø4
                  CALL
                           DSPLAY
                                            ;Display the message
                                            ;Put dividend into HL
                  LD
                           HL, (DIVD2)
ØØ1Ø5
ØØ1Ø6
                  LD
                           A, (DIVR1)
                                            ;Get divisor into C
ØØ1Ø7
                  LD
                           C,A
                           A,@DIV16
ØØlØ8
                  LD
ØØ1Ø9
                  RST
                           28H
                                             ;Store the remainder
ØØ11Ø
                  T<sub>1</sub>D
                           (REM1),A
                           (ANS2),HL
                                             ; Put the answer into HL
ØØ111
                  LD
                                             ;Display answer in decimal
ØØ112
                  CALL
                           HEXDEC
                                             ; Address of remainder message
ØØ113
                  LD
                           HL, MESS 4
                                             ;Display remainder message
                  CALL
                           DSPLAY
ØØ114
                           A, (REM1)
                                             ;Get the remainder
ØØ115
                  LD
ØØ116
                  LD
                           L,A
                                             ;into L
                                             ;Put a Ø in MSB
ØØ117
                  LD
                           H,Ø
ØØ118
                  CALL
                           HEXDEC
                                             ;Convert the remainder to decimal
ØØ119
00120
         ; Now try some multiplication of 8 bits.
ØØ121
ØØ122
                                             ;Address of MUL8 message
                  T.D
                           HL, MESS8
                           DSPLAY
                                             ;Display first multiplicand message
ØØ123
                  CALL
                                             ;Key in a 2-digit number ;Put it here
ØØ124
                  LD
                           A, @KEYIN
ØØ125
                  LD
                           HL,BUF2
                                             ;Maximum number of characters
ØØ126
                  LD
                           B, NUM2
ØØ127
                  LD
                           C,Ø
                           28H
ØØ128
                  RST
                           A, @DECHEX
                                             ;Convert the number to binary for math
ØØ129
                  T.D
ØØ13Ø
                  RST
                           28H
ØØ131
                           (MCAND1),BC
                                             ;Store the multiplicand
                  T.D
ØØ132
                  LD
                           HL, MESS1Ø
                                             ;Address of MUL8 multiplier message
ØØ133
                           DSPLAY
                                             ;Display first multiplier message
                  CALL
ØØ134
                           A, @KEYIN
                                             ; Key in the multiplier
                  LD
                                             ;Put it here
ØØ135
                  LD
                           HL, BUF2
```

```
ØØ136
                 LD
                          B, NUM1
                                            :Maximum number of characters
ØØ137
                 LD
                          C,Ø
ØØ138
                 RST
                          28H
ØØ139
                 LD
                          A, @DECHEX
                                            ;Convert the multiplier to binary for math
ØØ14Ø
                 RST
                          28H
                                            ;Store multiplier in memory
ØØ141
                 LD
                          (MIER1),BC
ØØ142
                 LD
                          HL, MESS13
                                            ; Address of multiplier message
                          A, @DSPLY
                                            ;Display multiplier message
ØØ143
                 LD
ØØ144
                 RST
                          28H
ØØ145
ØØ146
         ; Now multiply the two numbers just entered.
ØØ147
                                            ;Get the multiplicand into C
ØØ148
                          A, (MCAND1)
                 LD
ØØ149
                 LD
                          C,A
ØØ15Ø
                 LD
                          A, (MIER1)
                                            ;Get the multiplier into E
ØØ151
                 T.D
                          E,A
ØØ152
                          A,@MUL8
                 LD
ØØ153
                 RST
                          28H
                                            ;Put the product into L
ØØ154
                 LD
                          L,A
ØØ155
                                            ;Put Ø in the MSB
                 LD
                          H,Ø
ØØ156
                          HEXDEC
                                            ;Convert the product to decimal
                 CALL
ØØ157
ØØ158
         ; Now multiply a 16-bit by an 8-bit.
ØØ159
                          HL, MESS11
                                            ; Address of multiplicand message
ØØ16Ø
                 LD
ØØ161
                 CALL
                          DSPLAY
                                            ;Display 2nd multiplicand message
ØØ162
                 LD
                          A, @KEYIN
                                            ;Enter larger multiplicand
ØØ163
                                            ;Put it here
                 LD
                          HL, BUF5
ØØ164
                                            :Maximum number of characters
                 LD
                          B, NUM4
ØØ165
                 LD
                          C,Ø
ØØ166
                 RST
                          28H
ØØ167
                          A, @DECHEX
                                            ;Convert the number to binary for math
                 LD
ØØ168
                 RST
                          28H
                                            ;Store the multiplicand in memory
ØØ169
                          (MCAND2),BC
                 T.D
ØØ17Ø
                          HL, MESS12
                                            ;Address of multiplier message
                 T<sub>1</sub>D
                          DSPLAY
ØØ171
                 CALL
                                            ;Display message
                                            ;Enter larger multiplier
ØØ172
                 LD
                          A, @KEYIN
ØØ173
                 LD
                          HL,BUF3
                                            ;Put it here
ØØ174
                 LD
                          B, NUM2
                                            ;Maximum number of characters
ØØ175
                 LD
                          C,Ø
ØØ176
                 RST
                          28H
ØØ177
                          A,@DECHEX
                                            ;Convert the number to binary for math
                 T<sub>1</sub>D
ØØ178
                 RST
                          28H
ØØ179
                 LD
                           (MIER1),BC
                                            ;Store the multiplier in memory
ØØ18Ø
                 LD
                          HL, MESS13
                                            ; Address of product message
                          A,@DSPLY
ØØ181
                                            ;Display the message
                 T.D
ØØ182
                 RST
                          28H
ØØ183
                 LD
                          HL, (MCAND2)
                                            ; Put multiplicand into HL
ØØ184
                          A, (MIER1)
                 LD
                                            ;Get the multiplier into C
ØØ185
                 LD
                          C, A
                          A,@MUL16
ØØ186
                 LD
                                            ; Multiply the two numbers
ØØ187
                          28H
                 RST
ØØ188
                                            ;Get the 2nd byte of the product into
                 LD
                          H,L
ØØ189
                                            ;H for conversion
ØØ19Ø
                 LD
                          L,A
                                            ;Get the LSB into L for conversion
ØØ191
                 LD
                          DE, BUF5
                                            ;Convert the high-order byte to decimal
ØØ192
                 LD
                          A,@HEXDEC
                                            ;for the display
ØØ193
                 RST
                          28H
ØØ194
                          A, CCC
                                            ;Tell the display when to stop
                 LD
ØØ195
                 LD
                          (DE),A
                          HL, BUF5
ØØ196
                 LD
ØØ197
                 LD
                          A,@DSPLY
                                            ;Display the product
ØØ198
                 RST
                          28H
ØØ199
                 LD
                          HL, MESS14
                                            ; Address of end message
øø2øø
                          A, @DSPLY
                                            ;Display end message
                 LD
                 RST
ØØ2Ø1
                          28H
ØØ2Ø2
                 T.D
                          A, @KEY
                                            ;Allow the user to enter any character
ØØ2Ø3
                 RST
                          28H
                                            ;or hit <BREAK>
```

```
ØØ2Ø4
                 CP
                          BRK
                                            :Is it <BREAK>?
ØØ2Ø5
                 JP
                          NZ, START
                                            ; Yes, go back to beginning
00206
                 LD
                          A.@EXIT
                                            ; No, exit the program
ØØ2Ø7
                 RST
                          28H
ØØ2Ø8
         :These are the subroutines used by the calls to
ØØ2Ø9
ØØ21Ø
         ; display a message, key in a 3-digit number, and convert it
         ; from decimal to binary.
ØØ211
ØØ212
ØØ213
         KEYIN:
                 LD
                          HL, MESS1
ØØ214
                 CALL
                          DSPLAY
                                            ;Display message
ØØ215
                 LD
                          HL, BUF 4
                                            ; Put the number here
ØØ216
                 LD
                          B, NUM3
                                            :Maximum number of characters
ØØ217
                 LD
                          C,Ø
ØØ218
                 T.D
                          A, @KEYIN
                                            ; Key in a number
ØØ219
                 RST
                          28H
ØØ22Ø
                 LD
                          A, @DECHEX
                                            ;Convert the number to binary
ØØ221
                 RST
                          28H
ØØ222
                 RET
                                            ;Return to next sequential instruction
ØØ223
ØØ224
         ;Display what was loaded into HL before the call.
ØØ225
ØØ226
        DSPLAY: LD
                          A,@DSPLY
                                       ;@DISPLAY SVC
ØØ227
                 RST
                          28H
ØØ228
                 DEC
                          HL
                                            ;Set HL back to blank byte
ØØ229
                 T.D
                          B, (HL)
                                            ;Load B with the number of bytes
                          C,' '
ØØ23Ø
        DSPLYLP:LD
                                            ;Put a blank into C
ØØ231
                          A,@DSP
                 LD
                                            ;Display the blank
ØØ232
                 RST
                          28H
                                            ;until the correct number
ØØ233
                 DJNZ
                          DSPLYLP
                                           ;of blanks have been displayed
ØØ234
                 RET
                                            ;Return to next instruction
ØØ235
ØØ236
         ;Convert 1 byte to hexadecimal.
ØØ237
ØØ238
        HEX8:
                 LD
                          A, @HEX8
                                           ;Convert 1 byte to hex ASCII
ØØ239
                 LD.
                          HL, BUF3
                                           ;Put the converted value here
ØØ24Ø
                 RST
                          28H
ØØ241
                 LD
                          A,CCC
                                           ;Tell display when to stop
ØØ242
                 LD
                          (HL),A
                                           ;Put CCC at end of buffer
ØØ243
                 LD
                          A, @DSPLY
                                           ;Display the hex value
ØØ244
                 LD
                          HL, BUF3
ØØ245
                 RST
                          28H
ØØ246
                 RET
                                           ;Return to next instruction
ØØ247
ØØ248
        ;Convert 2 bytes to hexadecimal.
ØØ249
ØØ25Ø
        HEX16:
                 LD
                          A,@HEX16
                                           ;Convert a 2-byte number to hex ASCII
ØØ251
                 T<sub>1</sub>D
                          HL, BUF6
                                           ;Put the converted value here
ØØ252
                 RST
                          28H
ØØ253
                 LD
                          A, CCC
                                           ;CCC at end of buffer so display
ØØ254
                 LD
                          (HL),A
                                           ; knows when to stop
ØØ255
                 LD
                          A,@DSPLY
                                           ;Display the converted value
ØØ256
                          HL, BUF6
                 LD
                                           ; Address of converted value
ØØ257
                 RST
                          28H
ØØ258
                 RET
                                           ; Return to next instruction
ØØ259
ØØ26Ø
        ;Convert from binary to decimal and display decimal value.
ØØ261
ØØ262
        HEXDEC: LD
                          A, @HEXDEC
                                           ;Convert from binary to decimal
ØØ263
                 LD
                          DE, BUF5
                                           ; Put converted value here
ØØ264
                 RST
                          28H
ØØ265
                 LD
                          A,CCC
                                           ;CCC at end of buffer so display
ØØ266
                 LD
                          (DE),A
                                           ; knows when to stop
                          A,@DSPLY
ØØ267
                 LD
                                           ;Display the hex value
ØØ268
                 LD
                          HL,BUF5
                                           ;It's here
ØØ269
                 RST
                          28H
øø27ø
                 RET
                                           ;Return to next instruction
ØØ271
```

```
;These are the storage declarations.
ØØ272
ØØ273
                 DEFS
ØØ274
        BUF6:
                 DEFS
                          5
ØØ275
        BUF5
                          4
ØØ276
        BUF4:
                 DEFS
                          3
                 DEFS
        BUF3:
ØØ277
ØØ278
        BUF2:
                 DEFS
                          2
                          ø
ØØ279
        DIVR1:
                 DEFB
                          Ø
        DIVD1:
                 DEFB
ØØ28Ø
                          Ø
                 DEFB
ØØ281
        ANS1:
                          ø
ØØ282
        REM1:
                 DEFB
        MCAND1: DEFB
                          Ø
ØØ283
                          Ø
        MIER1:
                 DEFB
ØØ284
                          Ø
ØØ285
        MCAND2: DEFW
                          Ø
                 DEFW
ØØ286
        DIVD2:
                          ø
                 DEFW
00287
        ANS2:
ØØ288
         ;Below are messages and prompting text used in the program.
ØØ289
ØØ29Ø
                                            ; Number of blanks to print after message 1
                 DEFB
ØØ291
                 DEFM
                          'Enter a number (1-255).'
ØØ292
         MESS1:
                                            ; Message-terminating character
                 DEFB
                          3
ØØ293
                                            ; Number of blanks to print after message 3
                          21
ØØ294
                 DEFB
                          'The answer is'
         MESS3:
                 DEFM
ØØ295
                                            :Terminating character
                 DEFB
ØØ296
                                            ;Blanks after message
                 DEFB
                          18
ØØ297
                          'The remainder is'
                 DEFM
ØØ298
         MESS4:
                                            ;Terminating character
ØØ299
                  DEFB
                                            ;Blanks after message
                  DEFR
øø3øø
                          'Enter a number (4369-65535).'
         MESS6:
                  DEFM
ØØ3Ø1
                                            ;Terminating character
                  DEFB
ØØ3Ø2
                                            ;Blanks after message
                  DEFB
ØØ3Ø3
                          'Enter a number (1-28).'
         MESS8:
                  DEFM
ØØ3Ø4
                                            ;Terminating character
ØØ3Ø5
                  DEFB
                          3
                          16
                                            ;Blanks after message
                  DEFB
ØØ3Ø6
                          'In hex ASCII, that is'
ØØ3Ø7
         MESS9:
                  DEFM
                                            ;Terminating character
ØØ3Ø8
                  DEFB
                                            ;Blanks after message
                          17
                  DEFB
ØØ3Ø9
                           'Enter a number (1-9).
ØØ31Ø
         MESS10: DEFM
                                            ;Terminating character
                          3
ØØ311
                  DEFB
                                            ;Blanks after message
                  DEFB
ØØ312
                           'Enter a number (1-4100).'
ØØ313
         MESS11: DEFM
                                            ;Terminating character
ØØ314
                  DEFB
                                            ;Blanks after message
                          15
ØØ315
                  DEFB
                           'Enter a number (1-15).'
         MESS12: DEFM
ØØ316
                                            Terminating character;
                  DEFB
ØØ317
                           'The product of those 2 numbers is '
ØØ318
         MESS13: DEFM
                                            ;Terminating character
                  DEFB
ØØ319
                           'Press <BREAK> to end or any other key to continue.'
         MESS14: DEFM
øø32ø
                                            ;Terminating character
                  DEFB
                           ØDH
ØØ321
ØØ322
                           START
                  END
ØØ323
```

Sample Program C

```
Ln #
                  Source Line
øøøø1
                  This program prompts for two filenames, opens the first
         ;
ØØØØ2
         ;
                  file, and creates the second. Then the data in the first
ØØØØ3
                  file is copied to the second file. While the Copy progresses,
gggg4
                  the current record number is displayed in parentheses.
         ;
øøøø5
ØØØØ6
                  PSECT
                          3000H
                                           ;This program starts at x'3000'
øøøø8
øøøø9
                  First, declare the equates for the SVCs we intend to use.
ØØØlØ
                 This is not mandatory, but it makes the program easier to follow.
øøø11
ØØØ12
         @CLOSE: EQU
                          6Ø
                                            ;Close a file or device
ØØØ13
         @DIRRD: EOU
                          87
                                            ;Read a directory record
ØØØ14
         @DSP:
                 EOU
                          2
                                           ;Display character at cursor
ØØØ15
                          10
         @DSPLY: EOU
                                           :Display a message
ØØØ16
         @ERROR: EQU
                          26
                                           ;Display an error message
ØØØ17
         @EXIT:
                 EOU
                          22
                                           ;Exit and return to TRSDOS or the caller
ØØØ18
                          79
         @FEXT:
                 EOU
                                           ;Add a default file extension
ØØØ19
         @FNAME: EQU
                          8Ø
                                           ;Fetch a filespec from the directory
ØØØ2Ø
         @FSPEC: EQU
                          78
                                           ; Verify and load a filespec into the FCB
ØØØ21
         @HEXDEC: EQU
                          97
                                           ;Convert a binary value to decimal ASCII
00022
         @TNTT:
                          58
                 EQU
                                           ;Open an existing file or create a new file
ØØØ23
         @KBD:
                          8
                 EQU
                                           ;Scan the keyboard for a character
ØØØ24
         @KEYIN: EQU
                          9
                                           ;Accept a line of text from the *KI device
ØØØ25
         @LOC:
                 EQU
                          63
                                           ;Return the current logical record number
ØØØ26
         @OPEN:
                          59
                 EOU
                                           ;Open an existing file
ØØØ27
         @READ:
                          67
                                           :Read a record from an open file
                 EQU
         @REMOV: EQU
ØØØ28
                          57
                                           ;Delete a file from disk
ØØØ29
         @VER:
                 EQU
                          73
                                           ;Write a record to disk. Does the same thing
øøø3ø
                                           ;as @WRITE (Svc 75), but it also makes sure
ØØØ31
                                           ; the written data is readable.
ØØØ32
ØØØ33
                 First, prompt for the source filespec using the @DSPLY svc.
ØØØ34
ØØØ35
        BEGIN:
                          HL, MESG1
                                           ;Get the first message
ØØØ36
                 T<sub>1</sub>D
                          A,@DSPLY
                                           ;Display a line on the screen
ØØØ37
                 RST
                          28H
                                           ;Call the @DSPLY svc
ØØØ38
ØØØ39
                 Now, read the filename from the keyboard using the @KEYIN svc.
ØØØ4Ø
00041
                                           ;Put the name of the 1st file here
                 LD
                          HL, FILE1
ØØØ42
                 LD
                          B,24
                                           ;Allow up to 24 characters
ØØØ43
                          C,Ø
                 LD
                                           ;A zero is required by the svc
ØØØ44
                                           ;Get a filename from the user
                 LD
                          A, @KEYIN
ØØØ45
                 RST
                          28H
                                           ;Call the @KEYIN svc
ØØØ46
                 C,QUIT
        JP
                                           ;The user pressed <Break>
ØØØ47
                 JP
                          NZ, ERR
                                           ;An Error occurred
ØØØ48
ØØØ49
                 LD
                          A,B
                                           ;Get the number of characters
øøø5ø
                 OR
                          A
                                           ;See if that value was zero
ØØØ51
                 JR
                          Z,BEGIN
                                           ; Nothing was entered, ask again
ØØØ52
ØØØ53
                 The user has typed something, so it must be checked for validity
ØØØ54
                 using the @FSPEC svc.
ØØØ55
ØØØ56
                          HL, FILE1
                                           ;Point at the text the user entered
ØØØ57
                 T<sub>1</sub>D
                          DE,FCB1
                                           ;Point at the File Control Block
ØØØ58
                                           ;that is to be used for the source file.
ØØØ59
                                           ;The @FSPEC svc will make sure the filename ;that is in buffer named "filel" is valid.
                 LD
                          A, @FSPEC
ØØØ6Ø
ØØØ61
                                           ; If it is, it is copied into the File
ØØØ62
                                           ;Control Block (FCB) to be used by the @OPEN
ØØØ63
                                           ;or @INIT svc later on.
ØØØ64
                 RST
                          28H
                                           ;Call the @FSPEC svc
ØØØ65
                 JR
                          Z,ASK2
                                           ;The name for file 1 is ok, so skip this
ØØØ66
ØØØ67
                 At this point the filename specified for file 1 has been found
```

```
øøø68
                                        to be in an invalid format. The following code will print the
ØØØ69
                                        error message.
ØØØ7Ø
ØØØ71
                                                            HL, BADFIL
                                                                                                    ; Point at the bad filename message
ØØØ72
                                        LD
                                                            A,@DSPLY
                                                                                                    ;Display it
ØØØ73
                                        RST
                                                            28H
                                                                                                    ;Call the @DSPLY svc
ØØØ74
                                        JR
                                                            BEGIN
                                                                                                    ;Start over
ØØØ75
ØØØ76
                                        At this point, the source filename appears to be valid.
                    ;
ØØØ77
                                        The code below asks for the second filename and checks it for
                    ;
øøø78
                                        validity also.
ØØØ79
øøø8ø
                    ASK2:
                                        T.D
                                                            HL, MESG2
                                                                                                    ;Prompt for the target filename
øøø81
                                        LD
                                                            A, @DSPLY
                                                                                                    ;Print that on the screen
øøø82
                                        RST
                                                            28H
                                                                                                    ;Call the @DSPLY svc
                                                                                                    ;Put the name of the 2nd file here
ØØØ83
                                        LD
                                                            HL, FILE2
                                                                                                    ;Allow up to 24 characters
ØØØ84
                                        LD
                                                            B,24
                                                            C,Ø
øøø85
                                        LD
                                                                                                    ;A zero is required by the svc
øøø86
                                        LD
                                                            A, @KEYIN
                                                                                                    ;Get a filename from the user
øøø87
                                        RST
                                                            28H
                                                                                                    ;Call the @KEYIN svc
øøø88
                                        JP
                                                            C,QUIT
                                                                                                    ;The user pressed <Break>
øøø89
                                        JΡ
                                                            NZ, ERR
                                                                                                    ;An Error occurred
øøø9ø
ØØØ91
                                        LD
                                                            A,B
                                                                                                     ;Get the number of characters
ØØØ92
                                        OR
                                                             A
                                                                                                     ;See if that value was zero.
ØØØ93
                                                             Z,ASK2
                                        .TR
                                                                                                     ;Nothing was entered, ask again
ØØØ94
ØØØ95
                                        The user has typed something, so it must be checked for validity
ØØØ96
                                        using the @FSPEC svc.
ØØØ97
øøø98
                                        LD
                                                             HL, FILE2
                                                                                                     ;Point at the text the user entered
øøø99
                                        T.D
                                                            DE,FCB2
                                                                                                     ;Point at the File Control Block
ØØ1ØØ
                                                                                                     :Check the name for validity
                                        LD
                                                            A.@FSPEC
                                                                                                     ;Call the @FSPEC svc
øø1ø1
                                        RST
                                                             28H
                                                             Z,F2OK
ØØ1Ø2
                                                                                                     ;The name for file 2 is ok, so skip this
                                        .TR
ØØ1Ø3
ØØlØ4
                                        The name for file 2 is invalid so print an error message
ØØ1Ø5
ØØlØ6
                                                             HL, BADFIL
                                                                                                     ;Point at the bad filename message
ØØ1Ø7
                                        LD
                                                             A,@DSPLY
                                                                                                     ;Display it
ØØ1Ø8
                                                                                                     ;Call the @DSPLY svc
                                        RST
                                                             28H
ØØ1Ø9
                                                             BEGIN
                                                                                                     ;Start over
 ØØ11Ø
ØØ111
                                         Now we will attempt to add an extension to the target file
                     ;
                                        if the user did not specify one. We use the extension that was specified on the source file. If it does  \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} 
ØØ112
                     ;
ØØ113
                     ;
                                        not have one, then we will not try to add one to the target file.
00114
ØØ115
ØØ116
                                                                                                     ;Point at the source filename
                     F2OK:
                                        LD
                                                             HL,FCBl+1
 ØØ117
                                                                                                     ;We start with the second character since
ØØ118
                                                                                                     ;the filename must be at least one character
 ØØ119
                                                                                                     ;Get a character from the filespec
                     FDIV:
                                        LD
                                                             A, (HL)
                                                             1/1
ØØ12Ø
                                         CP
                                                                                                     ; Is the character the extension prefix?
 ØØ121
                                         JR
                                                             Z, EXTN
                                                                                                     ; Yes, this will be our default extension
 ØØ122
                                         CP
                                                             ØDH
                                                                                                     ; Have we reached the end of the filespec?
 ØØ123
                                         JR
                                                             Z, NOEXT
                                                                                                     ;Yes, there is no extension so don't add one
 ØØ124
                                         CP
                                                             ØЗН
                                                                                                     ;Test both terminators
ØØ125
                                                             Z, NOEXT
                                         JR
ØØ126
                                         INC
                                                                                                     ; Advance the pointer to the next character
                                                             HL
ØØ127
                                         JR
                                                             FDIV
                                                                                                     ;Keep looking
 ØØ128
ØØ129
                     EXTN:
                                         INC
                                                                                                     ; Advance pointer to first byte of extension
                                                             HL
 ØØ13Ø
                                         LD
                                                             DE, FCB2
                                                                                                     ;Point at FCB for the target file (file 2)
                                                                                                     ; Add an extension if one is not present
 ØØ131
                                         LD
                                                             A.@FEXT
ØØ132
                                         RST
                                                             28H
                                                                                                     ;Call the @FEXT svc
 ØØ133
ØØ134
                                        Now we have two filenames. First we will open the source file
                                        to make sure it exists.
ØØ135
                     ;
```

```
ØØ136
ØØ137
         NOEXT:
                 LD
                          DE, FCB1
                                           ;Point at the File Control Block for filel
ØØ138
                  LD
                                           ;Point at the system buffer. This buffer
                          HL, BUF1
ØØ139
                                           ; is used by the system to block data that
ØØ14Ø
                                           ; is written to disk and de-block data that
ØØ141
                                           ; is read from disk when the Logical Record
ØØ142
                                           ;Length of the file is not 256. If it is
ØØ143
                                           ;256, then this buffer is not used.
ØØ144
                                           ;Use LRL 256 for now since we don't know
                 T.D
                          B,Ø
ØØ145
                                           ; what to use yet.
ØØ146
                 LD
                          A, @OPEN
                                           ;Open the file
ØØ147
                                           ;Call the @OPEN svc
                 RST
                          28H
ØØ148
                 JR
                          Z,SIZ
                                           ;The file opened and is LRL 256.
ØØ149
                 CP
                          42
                                           ; Was the error a LRL Open Fault?
ØØ15Ø
                 JP
                          NZ, ERR
                                           ; No, perhaps the file does not exist.
ØØ151
ØØ152
                 At this point, the file is open and we can now examine the
ØØ153
                 directory to find out what LRL it was created with so we can
ØØ154
                 use that value to make the copy.
         ;
ØØ155
ØØ156
         SIZ:
                 T.D
                          A, (FCB1+6)
                                           ;Get the byte in the FCB which contains
ØØ157
                                           ; the drive number the file is on
ØØ158
                          7
                 AND
                                           ; Erase all other information in that byte
ØØ159
                 LD
                          C,A
                                           ;Save that value here
ØØ16Ø
                 LD
                          A, (FCB1+7)
                                           ;This reads the Directory Entry Code (DEC)
ØØ161
                                           out of the FCB so we can use it
ØØ162
                 LD
                          B,A
                                           ;Store the DEC here
ØØ163
                 PUSH
                          BC
                                           ;Save that value for now
ØØ164
                 LD
                          A,@CLOSE
                                           ;We can close the source file for now
ØØ165
                 RST
                          28H
                                           ;Call the @CLOSE svc
ØØ166
ØØ167
                 POP
                          BC
                                           ;Get the DEC value back off the stack
ØØ168
                 T.D
                          A,@DIRRD
                                           ; Read the directory record for that file
ØØ169
                 RST
                          28H
                                           ;Call the @DIRRD svc
ØØ17Ø
ØØ171
                 LD
                          IX,HL
                                           ; Put the pointer to the directory record
ØØ172
                 LD
                          A,(IX+4)
                                           ;here and read the DIR+4 entry which
ØØ173
                                           contains the LRL of the source file.
ØØ174
                 LD
                          (LRL),A
                                           ;Save that value
ØØ175
ØØ176
                 Before we go any further, we should check to see if the target file
ØØ177
                 already exists.
ØØ178
ØØ179
                 LD
                          DE, COPY
                                           ; First, make a copy of the FCB
ØØ18Ø
                 LD
                          HL, FCB2
                                           ;in case we have to delete a file
ØØ181
                 LD
                          BC, 32
                                           ; Move the entire block
ØØ182
                 LDIR
ØØ183
ØØ184
                 LD
                                           ;Point at the target File Control Block
                         DE, FCB2
ØØ185
                 LD
                          HL,BUF2
                                           ;Use this as the buffer for now
ØØ186
                 LD
                          B,Ø
                                           ;Use LRL 256 for now
ØØ187
                 LD
                          A,@OPEN
                                           ;Open it and see if it is there
ØØ188
                 RST
                         28H
                                           ;Call the @OPEN svc
ØØ189
                 JR
                          Z, EXISTS
                                           ;The file already exists, better ask
ØØ19Ø
                 CP
                                           ;Was the error a LRL mismatch?
                          42
ØØ191
                 .TR
                         NZ, NOFILE
                                           ; No, so the file does not exist.
ØØ192
ØØ193
        EXISTS: LD
                         HL, FEXST
                                           ;Point at a prompt asking if it is ok
ØØ194
                                           ;to erase the file that already exists
ØØ195
                                           ;Print that message
                 LD
                         A, @DSPLY
ØØ196
                 RST
                         28H
                                           ;Call the @DSPLY svc
ØØ197
ØØ198
        WAIT:
                 LD
                         A, @KBD
                                          ;Wait for the user to type Y or N
ØØ199
                 RST
                         28H
                                           ;Call the @KBD svc
øø2øø
                 JR
                         NZ, WAIT
                                          ;Loop until something is typed
ØØ2Ø1
ØØ2Ø2
                         171
                 CP
                                          ;Was a 'Y' typed?
ØØ2Ø3
                 JR
                         Z,KILLIT
                                          ;Then kill the file
```

```
ØØ2Ø4
                 CP
                          'v'
                                           :Check for lowercase too
ØØ2Ø5
                 JR
                          Z, KILLIT
                                           ;Do they want to leave the file alone?
                          'N'
                 CP
ØØ2Ø6
                                           ; No, just close the file and quit
ØØ2Ø7
                 JR
                          Z.SHUT
                                           ;Was it a lowercase 'N'?
ØØ2Ø8
                 CP
                          'n'
                                           ; No, loop until we see something we like
ØØ2Ø9
                 JTR
                          NZ, WAIT
ØØ21Ø
ØØ211
        SHUT:
                 LD
                         DE, FCB2
                                           ;Close the target file
                 LD
                          A, @CLOSE
ØØ212
                          28H
                                           ;Call the @CLOSE svc
ØØ213
                 RST
                                           ;Exit to TRSDOS
ØØ214
                 JP
                         QUIT
ØØ215
                 At this point, we have been given the OK to delete the file
ØØ216
                 that has the same name as the target file.
ØØ217
        ;
ØØ218
                                           ;First move display to a new line
ØØ219
        KILLIT: LD
                          C,ØDH
                          A,@DSP
                                           ;Display an <Enter>
ØØ22Ø
                 LD
                                           ;Call the @DSP svc
ØØ221
                 RST
                          28H
ØØ222
                          DE,FCB2
                                           ;Point at the target file's FCB
ØØ223
                 LD
ØØ224
                 T,D
                          A,@REMOV
                                           ;Delete the file from disk
ØØ225
                                           ; Call the @REMOV svc. (This is the same
                 RST
                          28H
ØØ226
                                           ;as the @KILL call on other TRSDOS systems.)
                                           ;An error occurred, print it and quit
ØØ227
                 JΡ
                          NZ, ERR
ØØ228
                                           ; Note that after a @REMOV succeeds,
ØØ229
                                           ; the filespec is removed from the FCB.
ØØ23Ø
                                           ;So we have to keep a copy around
ØØ231
                                           ;in case we need it.
ØØ232
                 LD
                          HL, COPY
                                           ;Get the copy
                                           ;Put it here
ØØ233
                 LD
                         DE, FCB2
ØØ234
                 LD
                          BC,32
                                           ; Move up to 32 bytes
ØØ235
                                           ;Copy the FCB so we can continue
                 LDTR
ØØ236
ØØ237
                 Now we know what Logical Record Length (LRL) to use in the
         ;
ØØ238
                 copy, so we can open the source file and create the target file
        ;
                 with the correct record lengths.
ØØ239
ØØ24Ø
                                           ;Point at the filename in the FCB
ØØ241
        NOFILE: LD
                          HL, FCB1
                          A,@DSPLY
                                           ;Print that name
ØØ242
                 LD
ØØ243
                 RST
                          28H
                                           ;Call the @DSPLY svc
                                           ;Point at some spaces
ØØ244
                 LD
                          HL, SPACES
ØØ245
                 LD
                          A.@DSPLY
                                           ;Space over a few places on the screen
ØØ246
                 RST
                          28H
                                           ;Call the @DSPLY svc
ØØ247
                          DE,FCB1
                                           ;Point at File Control Block for source file
ØØ248
                 T.D
ØØ249
                 LD
                         HL, BUF1
                                           ;Put data in this
ØØ25Ø
                                           ; Read the Logical Record Length
                 LD
                         A, (LRL)
ØØ251
                                           ;Load the Logical Record Length
                 T.D
                         B,A
ØØ252
                 LD
                         A,@OPEN
                                           ;Open the source file
                                           ;Call the @OPEN svc
ØØ253
                 RST
                          28H
ØØ254
                         NZ, ERR
                                           ;Open failed
                 JP
ØØ255
ØØ256
                 LD
                         HL, ARROW
                                           ;Point at the arrow text
ØØ257
                                           ;Print that to show the direction of copy
                 LD
                         A,@DSPLY
                 RST
ØØ258
                          28H
                                           ;Call the @DSPLY svc
ØØ259
ØØ26Ø
                         DE, FCB2
                                           ; Point at File Control Block for target file
                 LD
                                           ;Get the Logical Record Length
ØØ261
                 LD
                         A, (LRL)
                                           ; Is the LRL 256?
ØØ262
                 CP
                          Z,LRL256
                                           ;Then we do something special
ØØ263
                 JR
ØØ264
                 LD
                          HL, BUF2
                                           ;Use a different buffer for target file
                         LRLCOM
                                           ;Jump to common code
ØØ265
                 JR
ØØ266
        LRL256: LD
                         HL, BUF1
                                           ;We use the same buffer when the LRL is 256
                                           ; since there is no need to block and de-block
ØØ267
                                           ;the data.
ØØ268
ØØ269
                                           ;Load the Logical Record Length
        LRLCOM: LD
                         B,A
ØØ27Ø
                 LD
                         A,@INIT
                                           ;Open the target file
```

```
ØØ271
                 RST
                          28H
                                           ;Call the @INIT svc
ØØ272
                 JR
                          NZ, ERR
                                           :Init failed
ØØ273
ØØ274
                 LD
                          DE, FILE2
                                           ;We are going to get the filename for
                                           ;the target file from the system
ØØ275
ØØ276
                                           ; instead of using the one we have.
ØØ277
                                           ;reason for this is that the system will
ØØ278
                                           ;append the drive number to the filename
ØØ279
                                           ; if one was not specified.
ØØ28Ø
                 LD
                          A, (FCB2+7)
                                           ;Get the Directory Entry Code for the file
                                           :Put the DEC here
ØØ281
                 LD
                          B,A
ØØ282
                 LD
                          A, (FCB2+6)
                                           ;Get the Drive Number from the FCB
ØØ283
                 AND
                                           ;Lose all data except the drive number
ØØ284
                 LD
                          C,A
                                           ;Store drive number here
ØØ285
                 LD
                          A, @FNAME
                                           ; Have the system produce a filespec
ØØ286
                 RST
                                           ;Call the @FNAME svc
                          28H
ØØ287
                 LD
                          HL, FILE2
                                           ; Now point at the filespec produced
ØØ288
                 LD
                          A,@DSPLY
                                           ;and print it out
ØØ289
                 RST
                                           ;Call the @DSPLY svc
                          28H
ØØ29Ø
ØØ291
                 LD
                                           ;Space over a few more places
                          HL, SPACES
ØØ292
                 LD
                          A,@DSPLY
                                           ;so the display will look neat
ØØ293
                 RST
                                           ;Call the @DSPLY svc
                          28H
ØØ294
ØØ295
                 At this point, both files are open and ready to be used.
ØØ296
                 The following code reads a record from the source file
ØØ297
                 and writes it to the target file. This is done until an
ØØ298
                 end of file is encountered.
ØØ299
øø3øø
        LOOP:
                         DE,FCB1
                 LD
                                           ;Point at file 1 (source file)
ØØ3Ø1
                 LD
                         HL, BUFFER
                                           ;Put data here
ØØ3Ø2
                 LD
                          A, @READ
                                           ; Read a record from the source file
ØØ3Ø3
                 RST
                                           ;Call the @READ svc
                          28H
ØØ3Ø4
                         NZ,EOF
                 .TR
                                           ;Jump if the eof has been reached
ØØ3Ø5
                 T.D
                         DE,FCB2
                                           ;Point at file 2 (target file)
ØØ3Ø6
ØØ3Ø7
                 Before writing the record, display the record number, which
ØØ3Ø8
                 is obtained from the @LOC svc.
ØØ3Ø9
ØØ31Ø
                 LD
                          A.@LOC
                                           ;Get the current record number
ØØ311
                 RST
                          28H
                                           ;Call the @LOC svc
00312
ØØ313
                 PUSH
                         BC
                                           ;Get the current record number
ØØ314
                                           ;and put it in register HL
                 POP
                         HL
ØØ315
                 LD
                         DE, LOCMSG+1
                                           ;Store the result here.
ØØ316
                 T.D
                         A,@HEXDEC
                                           ;Convert binary to ASCII in decimal format
ØØ317
                 RST
                         28H
                                           ;Call the @HEXDEC svc
ØØ318
ØØ319
                         A, ' '
                 T.D
                                           ;Get a blank
ØØ32Ø
                 LD
                         HL, LOCMSG
                                           ;Look at the front of the buffer
ØØ321
        EDIT:
                 CP
                         (HL)
                                           ; Is the character a blank?
00322
                 JR
                         NZ, NUMBR
                                           ; A number has been found
ØØ323
                                           ;Advance the pointer
                 INC
                         HI.
ØØ324
                 JR
                         EDIT
                                           ;Loop until we find a number
ØØ325
ØØ326
        NUMBR:
                 DEC
                         HL
                                           ;Back up one position
                         A, 1(1
ØØ327
                 LD
                                           ;Get the character we want to insert
ØØ328
                         (HL),A
                 LD
                                           ;Store that character.
ØØ329
                                           :The buffer now contains
ØØ33Ø
                                           ; <none or more spaces> (record number)
ØØ331
                                           ;<7 left-cursor characters><etx>
ØØ332
                 LD
                         HL, LOCMSG
                                           ;Point at this text
ØØ333
                         A,@DSPLY
                 T.D
                                           ;and display it on the screen
ØØ334
                 RST
                         28H
                                           ;Call the @DSPLY svc
ØØ335
ØØ336
                 Now write the record to the target file.
        ;
ØØ337
ØØ338
                                           ;Point at the FCB for the target file
                 LD
                         DE, FCB2
```

```
;Point at the data read from file 1
ØØ339
                 LD
                         HL, BUFFER
                                           ;Write a record to the target file
                         A,@VER
ØØ34Ø
                 LD
                                          ;The @VER does the same thing as the
ØØ341
                                          ;@WRITE svc, only it also checks the
ØØ342
                                           ;data to make sure it is readable.
ØØ343
                                           ;Call the @VER svc
ØØ344
                 RST
                         28H
                                           ;An error occurred on write; possibly
ØØ345
                 JR
                         NZ, ERR
                                           ;the disk is full.
ØØ346
                                           ;Loop until an error occurs.
ØØ347
                         LOOP
                 TR
ØØ348
                 This code checks the error to make sure it was an end of file
ØØ349
                 condition and, if so, closes the source & target files.
ØØ35Ø
ØØ351
                                           ; Was it an end of file encountered?
ØØ352
        EOF:
                 CP
                          28
                         NZ, ERR
                                           ;It was some other type of error - Abort
ØØ353
                 JR
ØØ354
ØØ355
                 LD
                         DE, FCB1
                                           ;Point at file 1 (source file)
ØØ356
                         A, @CLOSE
                                           ;Close the file
                 LD
                                           ;Call the @CLOSE svc
ØØ357
                         28H
                 RST
                         NZ, ERR
                                           ;An error occurred, abort
ØØ358
                 JTR
ØØ359
                                           ;Point at file 2 (target file)
ØØ36Ø
                 LID
                         DE, FCB2
                                           ;Close it also
ØØ361
                 T.D
                         A,@CLOSE
ØØ362
                 RST
                         28H
                                           ;Call the @CLOSE svc
ØØ363
                 JR
                         NZ, ERR
                                           ;An error occurred, abort
ØØ364
                                           ;Print a message saying the copy is done
ØØ365
                 LD
                         HL,OK
ØØ366
                 LD
                         A, @DSPLY
ØØ367
                                           ;Call the @DSPLY svc
                 RST
                         28H
ØØ368
                                           ; Exit to TRSDOS or the calling program
                         A,@EXIT
ØØ369
        OUIT:
                 LD
ØØ37Ø
                                           ;Call the @EXIT svc
                 RST
                         28H
ØØ371
                 The @EXIT svc does not return.
ØØ372
ØØ373
ØØ374
        ERR:
                         Ø4ØH
                                           ;Turn on bit 6, which
                 OR
                                           ; will cause the @ERROR svc to print
ØØ375
                                           the short error message. Bit 7
ØØ376
ØØ377
                                           ; is not set, which instructs the @ERROR
                                           ; to abort this program and return to
ØØ378
ØØ379
                                           :TRSDOS Ready.
ØØ38Ø
                 LD
                         C,A
                                           ;Put error code & flags in register C
                         A,@ERROR
                                           ;Call the system error displayer
ØØ381
                 LD
ØØ382
                 RST
                          28H
                                           ;Call the @ERROR svc
ØØ383
ØØ384
                 Because bit 7 is not set, the @ERROR svc will not return.
ØØ385
ØØ386
                 Storage Declaration
ØØ387
                                           ;ASCII Space characters for display formatting
ØØ388
        SPACES: DEFM
ØØ389
                 DEFB
                          ·=>
øø39ø
        ARROW:
                 DEFM
                                           ; Arrow for display to indicate data direction
ØØ391
                 DEFB
ØØ392
                          1Ø%25
                                           ;Advance cursor 10 spaces without erasing
         OK:
                 DEFB
ØØ393
                 DEFM
                          '[Ok]'
                                           ;Used to indicate the Copy is complete
                                           ;Terminated with an <Enter>
ØØ394
                 DEFB
                          Ø DH
                          'Copy Filespec >
ØØ395
         MESG1:
                 DEFM
ØØ396
                 DEFB
ØØ397
         MESG2:
                 DEFM
                          'To Filespec >'
ØØ398
                 DEFB
                          'Destination File Already Exists - Ok to Delete it (Y/N) ?'
ØØ399
         FEXST:
                 DEFM
ØØ4ØØ
                 DEFB
                          'Invalid Filename - Try Again'
ØØ4Ø1
         BADFIL: DEFM
ØØ4Ø2
                 DEFB
                          ØDН
ØØ4Ø3
         LOCMSG: DEFM
                          12345)
                                           ;This will be used in building the LOC
                                           ;display which will appear as (d) to (ddddd).
ØØ4Ø4
ØØ 4Ø 5
                 DEFB
                          7824
                                           ;Backspace without erasing
```

stop	
k	
k	
es here	
The Logical Record Length of the source	

Sample Program D

```
Ln #
                  Source Line
gggg1
                  This program will read a sector from the disk in Drive Ø
                  and will write it to a disk in Drive 1. The disk in Drive 1 must be formatted, but should not have anything important on
øøøø2
         ;
øøøø3
         ï
øøøø4
                  it. This program makes an assumption that the directory is
         ;
                  located on cylinder 20 (x'14').
øøøø5
øøøø6
                                             ; This program begins at x'3000'.
                           зøøøн
øøøø7
                  PSECT
øøøø9
                  Define the equates for the SVCs that will be used.
ØØØ1Ø
øøø11
                                             ;Abort and return to TRSDOS
ØØØ12
         @ABORT: EOU
                           21
                                             :Test to see if a drive is ready
øøø13
         @CKDRV: EQU
                           33
                           4Ø
                                             ; Verify that a drive is defined in the DCT
         @DCSTAT: EQU
øøø14
         @ERROR: EQU
                           26
                                             ;Display an error message
ØØØ15
                                             ; Return to TRSDOS or the calling program
                           22
øøø16
         @EXIT: EQU
                                             ;Read a sector
         @RDSEC: EQU
                           49
ØØØ17
                                             ;Read a system sector
00018
         @RDSSC: EOU
                           85
                           53
                                             ;Write a sector
øøø19
         @WRSEC: EQU
                           54
                                             ;Write a system sector
øøø2ø
         @WRSSC: EQU
ØØØ21
ØØØ22
                  Other Equates
ØØØ23
ØØØ24
         SYSSEC: EOU
                           1400H
                                             ;The system sector is Cylinder 2\emptyset, Sector \emptyset
                                             ;The regular sector is Cylinder \emptyset, Sector \emptyset
ØØØ25
         USRSEC: EOU
                           øøøøн
øøø26
                  First, test the target drive and make sure it is defined.
ØØØ27
ØØØ28
                                              ;Select Drive 1
ØØØ29
                           C.1
         START:
                  LD
                                             ; Ask if the drive is listed in the DCT
øøø3ø
                  LD
                           A, @DCSTAT
                                              ;Call the @DCSTAT svc
øøø31
                  RST
                           28H
                           NZ, ERROR
                                              ; If NZ, then the drive is not defined
øøø32
                  TR.
                                              ;and we will abort execution.
øøø33
øøø34
                  Now, test and make sure the target drive contains a formatted
ØØØ35
ØØØ36
                  disk and is write-enabled.
ØØØ37
                           C,1
                                              ;Select Drive 1
øøø38
                  T<sub>1</sub>D
                           A, @CKDRV
                                              ;Test to see if the disk is formatted
ØØØ39
                  LD
                                              ; and is write-enabled. Note that the
ØØØ4Ø
                                              ; disk must be formatted by TRSDOS 6.x
ØØØ41
                                              ;or by LDOS 5.1.x to be considered
ØØØ42
                                              ;"formatted" by this svc.
ØØØ43
                                              ;Call the @CKDRV svc
                  RST
                           28H
ØØØ44
                                              ;This will become the error number if the
ØØØ45
                  LD
                           A.8
                                              ;drive was not ready. This is done
00046
                                              ; because the @CKDRV svc does not return error
øøø47
øøø48
                                              ; codes.
                                              ;The drive is not ready
00049
                           NZ, ERROR
                  .TR
                                              ;This will become the error number if the
øøø5ø
                  LD
                           A, 15
                                             ;drive is ready and is write-protected.;As above, this is done because @CKDRV does
ØØØ51
ØØØ52
                                              :not return error messages.
ØØØ53
ØØØ54
                  JR
                           C, ERROR
                                              ; The disk is formatted, but it is
                                              ;write-protected. In either case, abort.
ØØØ55
ØØØ56
                  Now that we know the target drive is ready, read a sector
ØØØ57
         ;
                  from the source drive and write it to the target drive (Drive 1).
øøø58
ØØØ59
                                              ;Select Drive Ø
ØØØ6Ø
                  LD
                                              ; Read the first sector on the disk,
                           DE, USRSEC
øøø61
                  LD
                                              ;Cylinder \emptyset, Sector \emptyset.
;Point to a buffer which will hold the sector
øøø62
ØØØ63
                  LD
                           HL, BUFF
                           A,@RDSEC
                                              :Read a non-system sector
øøø64
                  LD
                                              ;Call the @RDSEC svc
ØØØ65
                  RST
                           28H
                                              ; If NZ, an error occurred, so abort
                           NZ, ERROR
øøø66
                  JR
```

øøø67

```
ØØØ68
                 Now, write the sector to the target drive.
         ;
ØØØ69
øøø7ø
                 LD
                          C,1
                                           :Select Drive 1
00071
                          DE, USRSEC
                 T.D
                                           ;Write the sector to Cylinder Ø, Sector Ø
ØØØ72
                                           on Drive 1
ØØØ73
                 LD
                          HL, BUFF
                                           ; Point to the buffer containing the sector
                          A, @WRSEC
ØØØ74
                 T.D
                                           ;Write the sector to disk
ØØØ75
                 RST
                          28H
                                           ;Call the @WRSEC svc
ØØØ76
                 JR
                          NZ, ERROR
                                           ; If NZ, an error occurred, so abort
ØØØ77
ØØØ78
                 Now we will read a system sector from Drive \emptyset and write it on
ØØØ79
                 drive 1. The difference between a system sector and a non-system
ØØØ8Ø
                 sector is that the Data Address Marks (DAM) are different. These
                 were written to the disk when it was formatted. TRSDOS 6.x uses
ØØØ81
ØØØ82
                 these as an extra check to make sure that a write of user data
ØØØ83
                 does not accidentally get placed over a sector containing system
                 data. All of the sectors in the directory cylinder are marked
ØØØ84
ØØØ85
                 as system sectors.
ØØØ86
øøø87
                 LD
                          C.Ø
                                           ;Select Drive Ø
øøø88
                 LD
                          DE, SYSSEC
                                           ;Read Cylinder 20, Sector 0
øøø89
                          HL, BUFF
                 LD
                                           ;Store the sector at this address
øøø9ø
                 LD
                          A,@RDSSC
                                           ;Read a system sector
øøø91
                 RST
                          28H
                                           ;Call the @RDSSC svc
ØØØ92
                 JR
                          NZ, ERROR
                                           ;An error occurred, so abort
ØØØ93
ØØØ94
                 Now write the sector to the target drive as a system sector.
ØØØ95
                 There is no requirement that a sector must be placed at the
ØØØ96
                 same cylinder and sector location as it was read from, but
        ;
øøø97
                 for simplicity, we are doing that.
ØØØ98
øøø99
                 T.D
                         C,1
                                           ;Select Drive 1
øøløø
                         DE, SYSSEC
                                           ;Write Cylinder 2\emptyset, Sector \emptyset
                 LD
ØØ1Ø1
                 LD
                         HL, BUFF
                                           ;Point to the data to be written
ØØ1Ø2
                 LD
                         A,@WRSSC
                                           ;Write a system sector
ØØ1Ø3
                 RST
                         28H
                                           :Call the @WRSSC svc
ØØ1Ø4
                 JR
                         NZ, ERROR
                                           ;An error occurred, so abort
ØØ1Ø5
ØØ1Ø6
                 LD
                         A,@EXIT
                                           ; Return to TRSDOS or the calling program
ØØ1Ø7
                 RST
                         28 H
                                           ;Call the @EXIT svc
øø1ø8
ØØ1Ø9
                 This routine displays an error message if anything goes wrong.
ØØ11Ø
                 Note that @CKDRV does not return an error message, so @ERROR
                 cannot be used for it without some manipulation.
ØØ111
        :
ØØ112
ØØ113
        ERROR:
                 OR
                         ØCØH
                                           ;Set bit 7
ØØ114
                                           ;Load error number into register C
                 T<sub>1</sub>D
                         C,A
ØØ115
                 LD
                         A, @ERROR
                                           ;This will display the error message
ØØ116
                                           ;and return to the calling program
ØØ117
                 RST
                         28H
                                           ;Call the @ERROR svc
ØØ118
ØØ119
                 LD
                         A, @ABORT
                                           ; Now, force an abort. This will return
ØØ12Ø
                                           ;to TRSDOS Ready and will abort any
ØØ121
                                           ;JCL file that is currently executing
ØØ122
                 RST
                         28H
                                           ;Call the @ABORT svc
ØØ123
ØØ124
        BUFF:
                 DEFS
                         256
                                           ;256-byte buffer to store the sector that
ØØ125
                                           ; is read and then written
ØØ126
ØØ127
                 END
                         START
```

Sample Program E

```
Source Line
Ln #
                 This program displays the filenames of the disk in
øøøø1
                 Drive Ø three different ways.
øøøø2
ØØØØ3
                                           ;Program begins at x'3000'
                 PSECT
                         3ØØØH
øøøø4
øøøø6
                 First, declare the equates for the SVCs we intend to use.
øøøø7
                 This is not mandatory, but it makes the program easier to follow.
øøøø8
øøøø9
                                           ; Execute a TRSDOS command and return
ØØØ1Ø
        @CMNDI: EQU
                         24
                                           ;to TRSDOS Ready
øøø11
                                           ; Execute a TRSDOS command and return
        @CMNDR: EQU
                          25
00012
                                           :to the calling program
øøø13
                                           ;Display visible filenames on the
øøø14
         @DODIR: EOU
                                           ;specified disk drive
ØØØ15
øøø16
øøø17
                 First, pass a "DIR :0" command to the system. TRSDOS will
øøø18
                 execute this command and then return to this program.
øøø19
øøø2ø
                                           ;Point at command we want to execute
                          HL, DIRØ
ØØØ21
         START:
                                           ; Execute the specified command and return
                          A.@CMNDR
                 T<sub>2</sub>D
ØØØ22
                                           ;Call the @CMNDR svc
                 RST
                          28H
ØØØ23
ØØØ24
                 You may have noticed that the DIR displayed the files, but that
ØØØ25
                 they were not sorted alphabetically. This is because the DIR
ØØØ26
                 command will not use memory above \bar{x}'3000' when it is invoked with
00027
         ;
                 a QCMNDR svc. This prevents the DIR command from performing a
øøø28
         ;
                 sort of the filenames.
øøø29
         ;
ØØØ3Ø
ØØØ31
                 Now do a directory command using the @DODIR svc.
ØØØ32
ØØØ33
                                           ;Use Function \emptyset which displays all
                          B,Ø
                 LD
ØØØ34
                                           :visible files in the directory.
øøø35
                                           ;Put source drive number in register C
                          C,Ø
øøø36
                 LD
                                            ;The filenames will be read from the
                          A,@DODIR
øøø37
                 LD
                                            ;directory and displayed in the
ØØØ38
                                            ; order they appear in the directory.
øøø39
                                           ;Call the @DODIR svc
øøø4ø
                 RST
                          28H
00041
ØØØ42
                  Now pass a "DIR :0" command to the system. This time
ØØØ43
                  the command will be executed and then TRSDOS will not return
00044
         ;
                  to this program, but will return to TRSDOS Ready.
 ØØØ45
 ØØØ46
                                            ;Point at the command we want performed
 ØØØ47
                          HL,DIRØ
                  LD
                                            ;and execute it, but don't return to
                          A, @CMNDI
 øøø48
                  LD
                                            ;this program.
 øøø49
                                            ;Call the @CMNDI svc
                          28H
 øøø5ø
                  RST
                                            This svc returns to TRSDOS Ready.
 ØØØ51
 ØØØ52
                  Note that when the library command DIR is performed this time,
 ØØØ53
                  the display of files is sorted. This is because DIR determines
 ØØØ54
         ;
                  that it was invoked with a @CMNDI svc, and it will not return
 ØØØ55
                  to the calling program. Therefore, DIR is free to use the
 ØØØ56
         ;
                  memory above \bar{x}'\bar{3}\emptyset\emptyset\bar{\emptyset}' to perform the sort of the filenames in
 øøø57
         ;
                  the directory.
 ØØØ58
 ØØØ59
 øøø6ø
 ØØØ61
                  Constants
 ØØØ62
                                            ;This command is passed to TRSDOS
                           'DIR :Ø'
 ØØØ63
                  DEFM
         DIRØ:
                                            ; via the @CMNDR and @CMNDI SVCs.
 øøø64
                                            ;It must be terminated with an <ENTER>.
                           ØDH
 øøø65
                  DEFB
 øøø66
                           START
 øøø67
                  END
```

Sample Program F

```
Ln #
                 Source Line
øøøø1
                 This program adds to the system task scheduler a task
ØØØØ2
        ;
                 which displays the date and a running count of the number
øøøø3
                 of times the task has been executed.
        ;
ØØØØ4
        ;
                 For simplicity, the program tries to use task slot \emptyset.
                If it is already in use, it assumes that the task using that slot is this program, and it kills the task. It then tries to
ØØØØ5
        ;
ØØØØ6
ØØØØ7
                recover the memory used by the task in high memory.
        ;
øøøø8
                 If the task slot is not in use, the task is placed in high memory,
øøøø9
                and the address of the task is passed to the task scheduler.
øøø1ø
                 The first time you run this program it adds the task, and the
        ;
øøø11
                next time you run this program, it removes the task.
ØØØ12
øøø13
                 PSECT
                         3000H
                                          ;This program starts at x'3000'
ØØØ15
ØØØ16
                 First, declare the equates for the SVCs we intend to use.
        ;
ØØØ17
                This is not mandatory, but it makes the program easier to follow.
ØØØ18
ØØØ19
        @ADTSK: EQU
                                          ;Add a task entry to the scheduler
        @CKTSK: EQU
                         28
øøø2ø
                                          ; Check to see if a task slot is in use
ØØØ21
        @DATE: EQU
                         18
                                          ;Return the date in ASCII format
ØØØ22
        @DSPLY: EOU
                         10
                                          ;Display a message
ØØØ23
                         22
                                          ; Return to TRSDOS Ready or the caller
        @EXIT:
                EQU
00024
        @GTMOD: EQU
                         83
                                          ;Locate a memory module
ØØØ25
        @HEXDEC: EQU
                         97
                                         ;Convert a binary value to decimal ASCII
ØØØ26
        @HIGH$: EQU
                         1ØØ
                                         ;Read or modify HIGH$ or LOW$
ØØØ27
        @RMTSK: EQU
                         3Ø
                                         ; Remove a task entry from the scheduler
ØØØ28
        @VDCTL: EQU
                         15
                                         ;Perform video operations
ØØØ29
        @WHERE: EQU
                         7
                                          ; Find out where the program counter is
øøø3ø
                                          ; when this SVC is executed. This is
ØØØ31
                                          ;useful in relocatable code that must
øøø32
                                          ; make absolute address references to
øøø33
                                          ; call subroutines or modify data.
ØØØ34
ØØØ35
ØØØ36
                Below we will define a macro to simulate a call relative
øøø37
                instruction. Since the task must be able to run no matter
øøø38
                where it is placed, it must use relative jumps and calls.
ØØØ39
                The Z8Ø instruction set has a jump relative (JR), but does
        ;
ØØØ4Ø
        ;
                not have a call relative instruction. This can be simulated
ØØØ41
                using the @WHERE SVC, which returns the address of the caller
ØØØ42
                in a register. This address can be adjusted and placed on
ØØØ43
                the stack as a return address. Then a jump relative can be used
ØØØ44
                to reach the subroutine.
ØØØ45
ØØØ 46
        CALLR: MACRO
                         #1
                                          ;#1 will be the address you want to call
øøø47
                PUSH
                         HL
                                          ;Save the registers we damage
ØØØ48
                PUSH
                         BC
                                          ;Save it
                                          ;Save it
ØØØ49
                PUSH
                         AF
ØØØ5Ø
                         A, @WHERE
                LD
                                         :Get our current address
øøø51
                RST
                                         ;Call the @WHERE svc
                         28H
ØØØ52
                LD
                         BC,3+1+1+1+1+2; Get the lengths of the instructions after
ØØØ53
                                          ; the SVC. This will allow the subroutine
                                          ;to return to the correct address.
ØØØ54
ØØØ55
                ADD
                         HL,BC
                                          ; Add that offset to where we are
ØØØ56
                POP
                         AF
                                         ;Put stack back
ØØØ57
                POP
                         BC.
                                         ;Restore registers
øøø58
                EX
                         (SP),HL
                                          ;Put return address on stack and restore HL
ØØØ59
                JR
                                          ;Jump to the subroutine
øøø6ø
                ENDM
                                          ;End of the macro
ØØØ61
ØØØ62
ØØØ63
                This is the main program. It loads at x'3000'. It decides
ØØØ64
                if it needs to add or remove the task in the scheduler tables.
        ;
ØØØ65
                If it adds the task, it moves a copy to the top of memory and
        ;
ØØØ66
                protects it, and adds a task entry to the scheduler.
ØØØ67
                If it is removing a task, it kills the entry in the scheduler
```

```
tables, and then attempts to recover the memory used by the task.
ØØØ68
ØØØ69
                                           ; First, we will test slot \emptyset
                          C,Ø
        BEGIN:
                 LD
øøø7ø
                                           ; to see if anyone is using it
ØØØ71
                 LD
                          A, @CKTSK
                                           ;Call the @CKTSK svc
                          28H
00072
                 RST
                                           ;There is a task using slot \emptyset, kill it
                 JR
                          NZ, KILLIT
ØØØ73
ØØØ74
                 At this point, we want to add a task to high memory.
ØØØ75
                 First we find the value for HIGH$ and put a copy of the
øøø76
                 task there. Then we protect the task by moving HIGH$ below
øøø77
        ;
ØØØ78
                 the new task.
ØØØ79
                                           ;First, get the value of HIGH$
                          HL,Ø
øøø8ø
                 T<sub>1</sub>D
                                           :Read HIGH$
                          В,Н
øøø81
                 LD
                 T.D
                          A.@HIGH$
ØØØ82
                                           ;Call the @HIGH$ svc
ØØØ83
                 RST
                          28H
                                           ;Save this value as the last address
                          (ENDADD), HL
ØØØ84
                 LD
                                           that the task will be stored in once it
ØØØ85
                                           ; is moved to high memory
ØØØ86
ØØØ87
                                           ;Put that value here
                          DE, HL
øøø88
                 LD
                                           ;Point at the end of the module
                          HL, MODEND-1
                 LD
ØØØ89
                          BC, MODEND-MODULE; Move the module from where it is
øøø9ø
                 LD
                                           ;right now to a position below HIGH$
øøø91
                 LDDR
                                           ;Do the copy
ØØØ92
ØØØ93
                                           ; Now protect the module using HIGH$
                          HL, DE
ØØØ94
                 LD
                          B,Ø
                                           ;Update HIGH$
ØØØ95
                 T.D
                          A,@HIGH$
ØØØ96
                 LD
                                           ;Call the @HIGH$ svc
ØØØ97
                 RST
                          28H
øøø98
                 Now we need to load the TCB entry in the module with the address
øøø99
                 of the first instruction to be executed.
øø1øø
ØØ1Ø1
ØØ1Ø2
                                           ;IX now points at memory header
                                                   ;Get the offset into the module
                          BC, ENTRY-MODULE+1
ØØ1Ø3
                 LD
                                                   ;of the first instruction
ØØ1Ø4
                                           ;HL now contains the actual starting address
ØØ1Ø5
                 ADD
                          (IX+(1+MODTCB-MODULE)),L
                                                          ;Store LSB of the address
ØØ1Ø6
                 LD
                                                          ;Store MSB of the address
ØØ1Ø7
                 LD
                          (IX+1+(1+MODTCB-MODULE)),H
øølø8
                 Now the task is ready to run. We now add the entry to the task
ØØ1Ø9
ØØ11Ø
                 scheduler table.
         ;
ØØ111
                          BC, MODTCB-MODULE+1
                                                   ;Get offset into the
ØØ112
                 LD
                                                   ;module of the TCB word
ØØ113
                                           ;Get a copy of the base address
ØØ114
                 PUSH
                          TX
                                           ; Put base address here
                 POP
                          _{
m HL}
ØØ115
                                           ; Now HL points at TCB address
                 ADD
                          HL,BC
ØØ116
                                           ;Put that value in DE
ØØ117
                 LD
                          DE, HL
                          C,Ø
                                           ;Add this entry to task slot Ø
ØØ118
                 LD
                                           ; Add this task, to be run every 266.67 msec
ØØ119
                 LD
                          A,@ADTSK
                                           ;Call the @ADTSK svc
ØØ12Ø
                 RST
                          28H
ØØ121
                 The main program has now done its work and can exit.
ØØ122
         ;
ØØ123
                                           ; Point at a message saying what was done
                          HL, ADDED
ØØ124
                 T.D
                          A,@DSPLY
                                            ;and print it
ØØ125
                 LD
ØØ126
                 RST
                          28H
                                            ;Call the @DSPLY svc
ØØ127
                          A, @EXIT
                                            ; Now exit
ØØ128
                 LD
                                            ;Call the @EXIT svc
ØØ129
                  RST
                          28H
øø13ø
ØØ131
                 This SVC does not return.
         ī
ØØ132
ØØ133
                  This part of the code removes the task from the scheduler
ØØ134
                  tables and then attempts to recover the memory that was used
ØØ135
```

```
ØØ136
                  by the task in high memory. If another high memory module
ØØ137
                  was added AFTER this task was added, then the memory that
         ;
ØØ138
                  was used by this task cannot be recovered.
ØØ139
ØØ14Ø
         KILLIT: LD
                          C,Ø
                                            ;We want to remove the task in slot \emptyset
ØØ141
                           A.@RMTSK
                  LD
ØØ142
                  RST
                           28H
                                            ;Call the @RMTSK svc
ØØ143
ØØ144
                  At this point, the task is no longer called by the operating
         ;
ØØ145
                  system. Now we want to determine if we can
ØØ146
                  reclaim the memory it was using.
ØØ147
ØØ148
                  LD
                                            ;Point at the name of the module
                          DE, MODNAM
ØØ149
                  LD
                          A,@GTMOD
                                            ;Look for a module with that name
ØØ15Ø
                  RST
                          28H
                                            ;Call the @GTMOD svc
ØØ151
                  JR
                          NZ, CANT
                                            ; If NZ is set, then we killed some other
ØØ152
                                            ; task that was using slot \emptyset. Oops.; In that case, just stop and don't do any
ØØ153
ØØ154
                                            ; more damage.
ØØ155
                  LD
                          IX, HL
                                            ;Set IX to point to the module.
ØØ156
                  LD
                          B,Ø
                                            ;Read the current value of HIGH$
ØØ157
                  LD
                          HL,Ø
                                            ;to see if this is the first program in
ØØ158
                                            ;high memory
ØØ159
                  LD
                          A,@HIGH$
                                            ; If it is, then we can recover the space
ØØ16Ø
                                            ;Call the @HIGH$ svc
                 RST
                          28H
ØØ161
                  INC
                          HT.
                                            ; Move HIGH$ up by one byte
ØØ162
                  PUSH
                                            ;Take the address of our module
                          IX
ØØ163
                 POP
                          DE
                                            ;and store it here
ØØ164
                 XOR
                          А
                                            ;Compare these
ØØ165
                 SBC
                          HL, DE
                                            ; Are they the same?
ØØ166
                 JR
                          NZ, CANT
                                            ; No, the high memory module can't be removed
ØØ167
ØØ168
                 At this point, we know it is ok to reclaim the memory used by the
ØØ169
                 high memory task.
         ;
ØØ17Ø
ØØ171
                 LD
                          HL,(IX+2)
                                            ; Read the end of module value out of the
ØØ172
                                            ;header information
ØØ173
                 LD
                          B,Ø
                                            ;Update the HIGH$ value
ØØ174
                 LD
                          A,@HIGH$
ØØ175
                 RST
                          28H
                                            ;Call the @HIGH$ svc
ØØ176
ØØ177
                 LD
                          HL,OK
                                           ;Point to a message saying all is well
ØØ178
                 T.D
                          A, @DSPLY
                                           ;and print it
ØØ179
                 RST
                          28H
                                            ;Call the @DSPLY svc
ØØ18Ø
ØØ181
                 LD
                          A,@EXIT
                                           ;Exit the main program
ØØ182
                 RST
                          28H
                                            ;Call the @EXIT svc
ØØ183
ØØ184
ØØ185
                 Here we will display a message saying we removed the task from
ØØ186
                 the scheduler table, but we cannot reclaim the memory that was
        ;
ØØ187
                 used.
ØØ188
ØØ189
        CANT:
                 LD
                          HL, RECLM
                                           ;Point to the message
ØØ19Ø
                                           ;and display it
                 LD
                          A,@DSPLY
ØØ191
                 RST
                          28H
                                           ;Call the @DSPLY svc
ØØ192
ØØ193
                 LD
                          A,@EXIT
                                           ;Now exit
ØØ194
                 RST
                          28H
                                           ;Call the @EXIT svc
ØØ195
ØØ196
ØØ197
                 Messages
ØØ198
ØØ199
        ADDED:
                 DEFM
                          'Task placed in high memory and scheduled.'
ØØ2ØØ
                 DEFB
ØØ2Ø1
        OK:
                          'Task removed from scheduler table and memory reclaimed.'
                 DEFM
ØØ2Ø2
                 DEFB
                          ØDH
ØØ2Ø3
        RECLM:
                 DEFM
                          'Task removed from scheduler table, but memory could not '
```

```
ØØ2Ø4
                 DEFM
                           'be recovered.'
ØØ2Ø5
                 DEFB
                          ØDH
ØØ2Ø6
ØØ2Ø7
                 The Task begins at this point. This part of the program loads
ØØ2Ø8
                 in low memory but is relocated to a point just below HIGH$.
ØØ2Ø9
ØØ21Ø
                 This is the Memory Header Block. This block of data allows
         ;
                 the system to locate this module in memory by name,
ØØ211
         ;
                 using the @GTMOD svc.
ØØ212
ØØ213
ØØ214
         MODULE: JR
                          ENTRY
                                            ;Jump (relative) to the starting address
00215
         ENDADD: DEFW
                                             ;The highest address in the program.
                          Ø
                                            ;This value is patched in before the program; is relocated. This will be used
ØØ216
ØØ217
ØØ218
                                            ; later in recovering the memory used by
ØØ219
                                            ;this task.
ØØ22Ø
                          MOD'TCB-MODNAM
                 DEFB
                                            ; Number of bytes in the name field below.
ØØ221
         MODNAM: DEFM
                           'UPTIME'
                                             ;This is the name of the module and is
                                             ;used to identify the module.
ØØ222
ØØ223
        MODTCB: DEFW
                                            :Actual address to start execution. This
ØØ224
                                            ; value is patched in after the program is
ØØ225
                                            ;relocated.
ØØ226
                 DEFW
                                            ;Spare system pointer - RESERVED
ØØ227
ØØ228
                 This area contains data used by the task. It is addressed using
                 the IX register which points to the task when it is executed.
ØØ229
ØØ23Ø
ØØ231
        COUNTER: DEFW
                          Ø
                                            ;Count of how many times we have run
ØØ232
        DATBUF: DEFS
                          9
                                            ;The date is stored here
ØØ233
ØØ234
                 This is the actual task.
                 On entry to the task, IX points at the Task Control Block (TCB), which in this program is the label 'MODTCB'. All data is
ØØ235
         ;
ØØ236
         ;
ØØ237
                 referenced by indexing from that address.
ØØ238
ØØ239
                                            ;Save this register. It is not saved by ;the Task Scheduler, and we use it.
ØØ24Ø
         ENTRY:
                 PUSH
                          ΙY
ØØ241
ØØ242
                                            ;Registers AF, BC, DE, and HL are saved
ØØ243
ØØ244
                 Now we will read the current date.
ØØ245
00246
                 LD
                          HL,IX
                                            ;Get a copy of the index pointer
                          BC, DATBUF-MODTCB; Get the offset needed to access the date
ØØ247
                  LD
                                            ; Now we have a pointer to the date
ØØ248
                 ADD
                          HL,BC
ØØ249
ØØ25Ø
                  PUSH
                          IX
                                            ;Save the pointer to the start of the task
ØØ251
                 PUSH
                                             ;Save a copy of that pointer
                          HL
ØØ252
                 LD
                          A,@DATE
                                            ; Ask the system what the date is
ØØ253
                 RST
                          28H
                                            ;Call the @DATE svc
00254
ØØ255
                           (HL),\emptyset
                                            ;Terminate the date string
                 LD
ØØ256
ØØ257
                  POP
                          DE.
                                             ;Put pointer to the date here
ØØ258
                  PUSH
                                             ;We will use this pointer later on
                          DE
ØØ259
                          HL,ØØ28H
                                            ; Put the cursor on the top line,
                  LD
ØØ26Ø
                                            ;specified in register HL
ØØ261
                                            ;at the 41st position on the screen
ØØ262
                 CALLR
                          WRITE
                                             ;Write the message at the position
+
                  PUSH
                          HL
                                             ;Save the registers we damage
+
                  PUSH
                          BC
                                             ;Save it
                                            ;Save it
+
                  PUSH
                          AF
                  T.D
                          A, @WHERE
                                            ;Get our current address
                  RST
                          28H
                                            ;Call the @WHERE svc
                 LD
                          BC,3+1+1+1+1+2
                                            ;Get the lengths of the instructions after
+
                                            ;the SVC. This will allow the subroutine
                                            ;to return to the correct address.
```

```
ADD
                          HL, BC
                                           ;Add that offset to where we are
+
                 POP
                          AF
                                           ;Put stack back
                 POP
                          BC
                                           ;Restore registers
+
                 EX
                          (SP),HL
                                           ;Put return address on stack and restore HL
                 JR
                          WRITE
                                           ;Jump to the subroutine
ØØ263
                                           ; Note that the above was actually a macro
ØØ264
                                           ; which performs a relative call.
ØØ265
ØØ266
                 This part of the task displays a count of the number of times
         ;
ØØ267
                 the task has been executed.
00268
ØØ269
                 POP
                          DE
                                           ;Get the pointer to DATBUF back
ØØ27Ø
                 POP
                          IX
                                           ;Get the pointer to the beginning of
ØØ271
                                           ;this task
ØØ272
                 PUSH
                                           ;Save the pointer to DATBUF again
ØØ273
                          BC, COUNTER-MODTCB
                 LD
                                                  ;Get the offset to our data
ØØ274
                                                  ;area
ØØ275
                 LD
                          HL, IX
                                           ; Put a copy of the base address in HL
ØØ276
                 ADD
                                           ; Add offset. Now HL points to COUNTER:
                          HL,BC
ØØ277
                 LD
                          IY, HL
                                           ; Put the pointer to COUNTER in IY
                                           ;Get LSB of the counter
ØØ278
                 LD
                          L,(IY)
ØØ279
                 LD
                          H,(IY+1)
                                           ;Get MSB of the counter
ØØ28Ø
                 INC
                          HL
                                           ; Increment the number of times we have run
ØØ281
                 LD
                          (IY),L
                                           ;Store the LSB of the counter
ØØ282
                 LD
                          (IY+1),H
                                           ;Store the MSB of the counter
ØØ283
ØØ284
                 LD
                          A,@HEXDEC
                                           ;Convert the count to decimal
ØØ285
                 RST
                          28H
                                           ;Call the @HEXDEC svc
ØØ286
ØØ287
                 XOR
                                           ;Get a zero
ØØ288
                 LD
                          (DE),A
                                           ;Terminate the count string
ØØ289
ØØ29Ø
                 POP
                                           ;Put pointer to date here
                          DE
ØØ291
                 LD
                          HL,ØØ36H
                                           ; Put the cursor on the top line,
ØØ292
                                           ;specified in register HL
ØØ293
                                           ;at the 55th position on the screen
ØØ294
                 CALLR
                          WRITE
                                           ;Write the message at the position
                 PUSH
                          HT.
                                           ;Save the registers we damage
+
                 PUSH
                          BC
                                           ;Save it
+
                 PUSH
                          AF
                                           ;Save it
+
                 LD
                          A, @WHERE
                                           ;Get our current address
+
                 RST
                          28H
                                           ;Call the @WHERE svc
                 T.D
                          BC,3+1+1+1+1+2
                                           ;Get the lengths of the instructions after
+
                                           ;the SVC. This will allow the subroutine
+
                                           ;to return to the correct address.
                 ADD
                         HL, BC
                                           ;Add that offset to where we are
+
                 POP
                         AF
                                           ;Put stack back
+
                 POP
                                           ;Restore registers
+
                 EX
                                           ;Put return address on stack and restore HL
                          (SP),HL
                 JR
                         WRITE
                                           ;Jump to the subroutine
ØØ295
                                           ; Note that the above was actually a macro
ØØ296
                                           ; which performs a relative call.
ØØ297
ØØ298
                 Now we restore the IY register and return to the task scheduler.
ØØ299
øø3øø
                 POP
                         IY
                                           ;Restore IY value
ØØ3Ø1
                 RET
                                           ;Return to the task scheduler
ØØ3Ø2
øø3ø3
ØØ3Ø4
                 This routine places characters on the display using the @VDCTL
ØØ3Ø5
                 svc instead of @DSP or @DSPLY. This allows the cursor to
        ;
ØØ3Ø6
        ;
                 remain at its current position when we write to the screen.
ØØ3Ø7
                 This routine must be called using the relocatable call macro
ØØ3Ø8
                 CALLR.
ØØ3Ø9
ØØ31Ø
        WRITE:
                 LD
                         B, 2
                                          ; Put character on the display
ØØ311
ØØ312
        TSKLP:
                         A, (DE)
                                          ;Get a character to display
```

ØØ313		OR	A	;Is it time to stop putting this on ;the display?
ØØ314		220	7	:Yes, return to the caller
ØØ315		RET	Z	
ØØ316		PUSH	$^{ m HL}$;Save the registers, as the SVC will
ØØ317		PUSH	DE	;alter the contents
ØØ318		PUSH	BC	
ØØ319		LD	C,A	;Put the character here
ØØ32Ø		LD	A, @VDCTL	; Put character on screen at specified position
ØØ321		RST	28H	;Call the @VDCTL svc
ØØ322		POP	BC	;Restore registers
ØØ323		POP	DE	
ØØ324		POP	HL	
ØØ325		INC	L	;Advance display position
ØØ326		INC	DE	;Point to next character to display
ØØ327		JR	TSKLP	;Loop till date is completely displayed
ØØ328				
ØØ329	MODEND:	END	BEGIN	;End of task and main program

9/Technical Information on TRSDOS Commands and Utilities

TRSDOS commands and utilities are covered extensively in the *Disk System Owner's Manual*. This section presents additional information of a technical nature on several of the commands and utilities.

Changing the Step Rate

The step rate is the rate at which the drive head moves from cylinder to cylinder. You can change the step rate for any drive by using one of the commands described below.

To set the step rate for a particular drive, use the following command:

```
SYSTEM (DRIVE = drive, STEP = number)
```

drive is any drive enabled in the system. *number* can be 0, 1, 2, or 3 and represents one of the following step rates in milliseconds:

0 = 6 milliseconds

1 = 12 milliseconds

2 = 20 milliseconds

3 = 30 milliseconds

Unless it is SYSGENed, the step value you select remains in effect for the specified drive only until the system is re-booted or turned off. If you use the SYSGEN command while the step value is in effect, then this step rate is written to the configuration file (CONFIG/SYS) on the disk in the drive specified by the SYSGEN command.

On a new TRSDOS disk, the step rate is set to 12 milliseconds.

To set the default bootstrap step rate used with the FORMAT utility, use the following command:

```
SYSTEM (BSTEP = number)
```

number is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds, respectively.

The value you select for *number* is stored in the system information sector on the disk in Drive 0. (On a new TRSDOS disk, the bootstrap step rate is set to 12 milliseconds.)

If you switch Drive 0 disks or change the logical Drive 0 with the SYSŢEM (SYSTEM) command, the default value is taken off the new Drive 0 disk if you format a disk.

You can change the bootstrap step rate for a particular FORMAT operation if you do not want to use the default. Specify the new value for STEP on the FORMAT command line as follows:

```
FORMAT : drive (STEP = number)
```

drive is the drive to be used for the FORMAT. *number* is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds, respectively.

The step rate is important only if you will be using the disk in Drive 0 to start up the system. Keep in mind that too low a step rate may keep the disk from booting.

Changing the WAIT Value

The WAIT parameter compensates for hardware incompatibility between certain disk drives. The only time you should use it is when *all* tracks above a certain point during a FORMAT operation are shown as locked out when the FORMAT is verified.

The value assigned to WAIT signifies the amount of time between the arrival of the drive head at the location for a read or write, and the actual start of the read or write.

If you want to change the WAIT value, specify the new value on the FORMAT command line as follows:

FORMAT : drive (WAIT = number)

number is a value between 5000 and 50000. The exact value depends on the particular disk drive you are using. We recommend that you use a value around 25000 at first. Adjust this value higher if tracks are still locked out, or lower until the bottom limit is determined.

Logging in a Diskette

LOG is a utility program that logs in the directory track, number of sides, and density of a diskette. The syntax is:

LOG: drive

drive is any drive currently enabled in the system.

The LOG utility provides a way to log in diskette information and update the drive's Drive Code Table (DCT). It performs the same log-in function as the DEVICE library command, except for a single drive rather than all drives. It also provides a way to swap the Drive 0 diskette for a double-sided diskette.

The LOG :0 command prompts you to switch the Drive 0 diskette. You must use this command when switching between double- and single-sided diskettes in Drive 0. Otherwise, it is not needed.

Example

If you want to switch disks in Drive 0, type:

LOG : Ø (ENTER)

The system prompts you with the message:

Exchange disks and hit (ENTER)

Remove the current disk from Drive 0 and insert the new system disk. When you press (ENTER), information about the new disk is entered to the system.

Printing Graphics Characters

If your printer is capable of directly reproducing the TRS-80 graphics characters, you can use the SYSTEM (GRAPHIC) command. Once you have issued this command, any graphics characters on the screen will be sent to the line printer during a screen print. (Pressing CTRL): causes the contents of the video display to be printed on the printer.)

Do not use this command unless your printer is capable of directly reproducing the TRS-80 graphics characters.

Changing the Clock Rate

The system normally runs at the fast clock rate of 4 megahertz.

A slow mode of 2 megahertz is available, and may be necessary for real timedependent programs. (This slow rate is the same as the Model III clock rate.)

To switch to the slow rate, enter the following command:

SYSTEM (SLOW)

To switch back to the fast rate, enter:

SYSTEM (FAST)

Appendix A/TRSDOS Error Messages

If the computer displays one of the messages listed in this appendix, an operating system error occurred. Any other error message may refer to an application program error, and you should check your application program manual for an explanation.

When an error message is displayed:

- · Try the operation several times.
- Look up operating system errors below and take any recommended actions. (See your application program manual for explanations of application program errors.)
- Try using other diskettes.
- Reset the computer and try the operation again.
- · Check all the power connections.
- Check all interconnections.
- Remove all diskettes from drives, turn off the computer, wait 15 seconds, and turn it on again.
- If you try all these remedies and still get an error message, contact a Radio Shack Service Center.

Note: If there is more than one thing wrong, the computer might wait until you correct the first error before displaying the second error message.

This list of error messages is alphabetical, with the binary and hexadecimal error numbers in parentheses. Following it is a quick reference list of the messages arranged in numerical order.

Attempted to read locked/deleted data record (Error 7, X'07')

In a system that supports a "deleted record" data address mark, an attempt was made to read a deleted sector. TRSDOS currently does not use the deleted sector data address mark. Check for an error in your application program.

Attempted to read system data record (Error 6, X'06')

An attempt was made to read a directory cylinder sector without using the directory read routines. Directory cylinder sectors are written with a data address mark that differs from the data sector's data address mark. Check for an error in your application program.

Data record not found during read (Error 5, X'05')

The sector number for the read operation is not on the cylinder being referenced. Either the disk is flawed, you requested an incorrect number, or the cylinder is improperly formatted. Try the operation again. If it fails, use another disk. Reformatting the old disk should lock out the flaw.

Data record not found during write (Error 13, X'0D')

The sector number requested for the write operation cannot be found on the cylinder being referenced. Either the disk is flawed, you requested an incorrect number, or the cylinder is improperly formatted. Try the operation again. If it fails, use another disk.

Device in use (Error 39, X'27')

A request was made to REMOVE a device (delete it from the Device Control Block tables) while it was in use. RESET the device in use before removing it.

Device not available (Error 8, X'08')

A reference was made for a logical device that cannot be found in the Device Control Block. Probably, your device specification was wrong or the device peripheral was not ready. Use the DEVICE command to display all devices available to the system.

Directory full — can't extend file (Error 30, X'1E')

A file has all extent fields of its last directory record in use and must find a spare directory slot but none is available. (See the "Directory Records" section.) Copy the disk's files to a newly formatted diskette to reduce file fragmentation. You may use backup by class or backup reconstruct to reduce fragmentation.

Directory read error (Error 17, X'11')

A disk error occurred during a directory read. The problem may be media, hardware, or program failure. Move the disk to another drive and try the operation again.

Directory write error (Error 18, X'12')

A disk error occurred during a directory write to disk. The directory may no longer be reliable. If the problem recurs, use a different diskette.

Disk space full (Error 27, X'1B')

While a file was being written, all available disk space was used. The disk contains only a partial copy of the file. Write the file to a diskette that has more available space. Then, REMOVE the partial copy to recover disk space.

End of file encountered (Error 28, X'1C')

You tried to read past the end of file pointer. Use the DIR command to check the size of the file. This error also occurs when you use the @PEOF supervisor call to successfully position to the end of a file. Check for an error in your application program.

Extended error (Error 63)

An error has occurred and the extended error code is in the HL register pair.

File access denied (Error 25, X'19')

You specified a password for a file that is not password protected or you specified the wrong password for a file that is password protected.

File already open (Error 41, X'29')

You tried to open a file for UPDATE level or higher, and the file already is open with this access level or higher. This forces a change to READ access protection. Use the RESET library command to close the file.

File not in directory (Error 24, X'18')

The specified filespec cannot be found in the directory. Check the spelling of the filespec.

File not open (Error 38, X'26')

You requested an I/O operation on an unopened file. Open the file before access.

GAT read error (Error 20, X'14')

A disk error occurred during the reading of the Granule Allocation Table. The problem may be media, hardware, or program failure. Move the diskette to another drive and try the operation again.

GAT write error (Error 21, X'15')

A disk error occurred during the writing of the Granule Allocation Table. The GAT may no longer be reliable. If the problem recurs, use a different drive or different diskette.

HIT read error (Error 22, X'16')

A disk error occurred during the reading of the Hash Index Table. The problem may be media, hardware, or program failure. Move the diskette to another drive and try the operation again.

HIT write error (Error 23, X'17')

A disk error occurred during the writing of the Hash Index Table. The HIT may no longer be reliable. If the problem recurs, use a different drive or different diskette.

Illegal access attempted to protected file (Error 37, X'25')

The USER password was given for access to a file, but the requested access required the OWNER password. (See the ATTRIB library command in your *Disk System Owner's Manual.*)

Illegal drive number (Error 32, X'20')

The specified disk drive is not included in your system or is not ready for access (no diskette, non-TRSDOS diskette, drive door open, and so on). See the DEVICE command in your *Disk System Owner's Manual*.)

Illegal file name (Error 19, X'13')

The specified filespec does not meet TRSDOS filespec requirements. See your *Disk System Owner's Manual* for proper filespec syntax.

Illegal logical file number (Error 16, X'10')

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB). This usually indicates that your program has altered the FCB improperly. Check for an error in your application program.

Load file format error (Error 34, X'22')

An attempt was made to load a file that cannot be loaded by the system loader. The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03')

During a sector read, the CPU did not accept a byte from the Floppy Disk Controller (FDC) data register in the time allotted. The byte was lost. This may indicate a hardware problem with the drive. Move the diskette to another drive and try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X'0B')

During a sector write, the CPU did not transfer a byte to the Floppy Disk Controller (FDC) in the time allotted. The byte was lost; it was not transferred to the disk. This may indicate a hardware problem with the drive. Move the diskette to another drive and try again. If the error recurs, try another diskette.

LRL open fault (Error 42, X'2A')

The logical record length specified when the file was opened is different than the LRL used when the file was created. COPY the file to another file that has the specified LRL.

No device space available (Error 33, X'21')

You tried to SET a driver or filter and all of the Device Control Blocks were in use. Use the DEVICE command to see if any non-system devices can be removed to provide more space. This error also occurs on a "global" request to initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X'1A')

You tried to open a new file and no space was left in the directory. Use a different disk or REMOVE some files that you no longer need.

No error (Error 0)

The @ERROR supervisor call was called without any error condition being detected. A return code of zero indicates no error. Check for an error in your application program.

Parity error during header read (Error 1, X'01')

During a sector I/O request, the system could not read the sector header successfully. If this error occurs repeatedly, the problem is probably media or hardware failure. Try the operation again, using a different drive or diskette.

Parity error during header write (Error 9, X'09')

During a sector write, the system could not write the sector header satisfactorily. If this error occurs repeatedly, the problem is probably media or hardware failure. Try the operation again, using a different drive or diskette.

Parity error during read (Error 4, X'04')

An error occurred during a sector read. Its probable cause is media failure or a dirty or faulty disk drive. Try the operation again, using a different drive or diskette.

Parity error during write (Error 12, X'0C')

An error occurred during a sector write operation. Its probable cause is media failure or a dirty or faulty disk drive. Try the operation again, using a different drive or diskette.

Program not found (Error 31, X'1F')

The file cannot be loaded because it is not in the directory. Either the filespec was misspelled or the disk that contains the file was not loaded.

Protected system device (Error 40, X'28')

You cannot REMOVE any of the following devices: *KI, *DO, *PR, *JL, *SI, *SO. If you try, you get this error message.

Record number out of range (Error 29, X'1D')

A request to read a record within a random access file (see the @POSN supervisor call) provided a record number that was beyond the end of the file. Correct the record number or try again using another copy of the file.

Seek error during read (Error 2, X'02')

During a read sector disk I/O request, the cylinder that should contain the sector was not found within the time allotted. (The time is set by the step rate specified in the Drive Code Table.) Either the cylinder is not formatted or it is no longer readable, or the step rate is too low for the hardware to respond. You can set an appropriate step rate using the SYSTEM library command. The problem may also be caused by media or hardware failure. In this case, try the operation again, using a different drive or diskette.

Seek error during write (Error 10, X'0A')

During a sector write, the cylinder that should contain the sector was not found within the time allotted. (The time is set by the step rate specified in the Drive Code Table.) Either the cylinder is not formatted or it is no longer readable, or the step rate is too low for the hardware to respond. You can set an appropriate step rate using the SYSTEM library command. The problem may also be caused by media or hardware failure. In this case, try the operation again, using a different drive or diskette.

— Unknown error code

The @ERROR supervisor call was called with an error number that is not defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X'0E')

An error occurred during a write operation. This probably indicates a hardware problem. Try a different diskette or drive. If the problem continues, contact a Radio Shack Service Center.

Write protected disk (Error 15, X'0F')

You tried to write to a drive that has a write-protected diskette or is software write-protected. Remove the write-protect tab, if the diskette has one. If it does not, use the DEVICE command to see if the drive is set as write protected. If it is, you can use the SYSTEM library command with the (WP = OFF) parameter to write enable the drive. If the problem recurs, use a different drive or different diskette.

Numerical List of Error Messages

Decimal	Hex	Message
Ø	X'00'	No Error
1	X'Ø1'	Parity error during header read
2	X'02'	Seek error during read
3	X'03'	Lost data during read
4	X'04'	Parity error during read
5	X'05'	Data record not found during read
6	X'06'	Attempted to read system data record
7	X'07'	Attempted to read locked/deleted data record
8	X'08'	Device not available
9	X'Ø9'	Parity error during header write
10	X'0A'	Seek error during write
11	X'ØB'	Lost data during write
12	X'ØC'	Parity error during write
13	X'0D'	Data record not found during write
14	X'ØE'	Write fault on disk drive
15	X'ØF'	Write protected disk
16	X'10'	Illegal logical file number
17	X'11'	Directory read error
18	X'12'	Directory write error
19	X'13'	Illegal file name
20	X'14'	GAT read error
21	X'15'	GAT write error
22	X'16'	HIT read error
23	X'17'	HIT write error
24 25	X'18'	File not in directory
25 26	X'19' X'1A'	File access denied
2 0 27	X 1A X'1B'	Full or write protected disk
28	X'1C'	Disk space full
26 29	X'1D'	End of file encountered Record number out of range
30	X'1E'	Directory Full — can't extend file
31	X'1F'	Program not found
32	X'20'	Illegal drive number
33	X'21'	No device space available
34	X'22'	Load file format error
37	X'25'	Illegal access attempted to protected file
38	X'26'	File not open
39	X'27'	Device in use
40	X'28'	Protected system device
41	X'29'	File already open
42	X'2A'	LRL open fault
43	X'2B'	SVC parameter error
63	X'3F'	Extended error
-		Unknown error code

Appendix B/Memory Map

All software must observe HIGH\$.

User software which does not allow TRSDOS library commands to be executed during run time may use memory from 2600H to HIGH\$.

User software which allows for library commands during execution must reside in and use memory only between 3000H and HIGH\$.

TRSDOS provides all functions and storage through supervisor calls. No address or entry point below 3000H is documented by Radio Shack.

·		

Appendix C/Character Codes

Text, control functions, and graphics are represented in the computer by codes. The character codes range from zero through 255.

Codes one through 31 normally represent certain control functions. For example, code 13 represents a carriage return or "end of line." These same codes also represent special characters. To display the special character that corresponds to a particular code (1-31), precede the code with a code zero.

Codes 32 through 127 represent the text characters — all those letters, numbers, and other characters that are commonly used to represent textual information.

Codes 128 through 191, when output to the video display, represent 64 graphics characters.

Codes 192 through 255, when output to the video display, represent either space compression codes or special characters, as determined by software.

ASCII Character Set

Co Dec. Ø	de Hex. 00	ASCII Abbrev. NUL	Keyboard CTRL @	Video Display Treat next character as displayable; if in the range 1-31, a special character is displayed (see list of special characters later in this
1	Ø 1	SOH	CTRL (A)	Appendix).
2	02	STX	CTRL B	
3	Ø 3	ETX	CTRL C	
4	04	EOT	CTRL D	
5	Ø5	ENQ	CTRLE	
6 7	06 07	ACK BEL	CTRL F	
8	07 08	BS	CTRL G	Dealerana
U	VO	טט	(TRL)H)	Backspace and erase
9	Ø 9	HT	() CTRL(I)	
10	ØA	LF	•	Move cursor to start of next
11	0B	VT	CTRL J	line
10	40	F-F-	CTRLK	
12 13	ØC ØD	FF CR	CTRLL	8.6
13	WD.	Ch	ENTER) CTRL (M)	Move cursor to start of next line
14	0E	SO	CTRLN	Turn cursor on
15	ØF	SI	CTRL O	Turn cursor off
16	10	DLE	CTRL P	Enable reverse video and
17	11	DC1	CTRL Q	set high bit routine on* Set reverse video high bit
10	10	DCO	(TT)	routine off*
18 19	12 13	DC2 DC3	CTRL (R)	
20	14	DC3 DC4	CTRL\S\ CTRL\T\	
21	15	NAK	CTRLU	Swap space compression/
			<u>GIIIL</u>	special characters
22	16	SYN	CTRL)(V)	Swap special/alternate characters
23	17	ETB	CTRL W	Set to 40 characters per line
24	18	CAN	SHIFT (1) CTRL(X)	Backspace without erasing
25	19	EM	SHIFT (*) CTRL (Y)	Advance cursor
26	1A	SUB	SHIFT TO CTRL Z	Move cursor down
27	1B	ESC	SHIFT (a) CTRL (7)	Move cursor up
28	1C	FS	CTRL (7)	Move cursor to upper left corner. Disable reverse video and set high bit rou-
				tine off.* Set to 80 characters per line.
29	1D	GS	CTRL ENTER	Erase line and start over
30	1E	RS	CTRL;	Erase to end of line

^{*}When the high bit routine is on, characters 128 through 191 are displayed as standard ASCII characters in reverse video.

Coo Dec.	de Hex.	ASCII Abbrev.	Keyboard	Video Display
31 32 33 34 35 36 37 38 39 41 423 445 467 48 49 51 52 53 45 55 55 56 61 22 61 62 62 62 62 62 62 62 62 62 62 62 62 62	1F 20 1 22 32 42 56 7 8 9 A B C D E F 30 1 23 34 35 66 7 8 9 A B C D E F 30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	VS SPA	SHIFT CLEAR SPACEBAR 1 7 # \$ 8 8 1 7 9 8 9 1 1 1 1 1 1 1 1 1 1 1 1	Erase to end of display (blank) # \$ % & , () * +, - • / 0 1 2 3 4 5 6 7 8 9 :; < = > ? @ABCDEFGHIJKLMNOPQRSTUVWXY

	de	ASCII		
Dec.	Hex.	Abbrev.	Keyboard	Video Display
90	5A		SHIFT (Z)	Z
91	5B		CLEAR ,	[
92	5C		CLEAR (7)	\
93	5D		CLEAR .]
94	5E		CLEAR ;	^
95	5F		CLEAR ENTER	
96	60		SHIFT @	
97	61		(A)	a
98	62		B	b
99	63		©	C
100	64 65		(d
101 102	65 66		E C	e f
102	67		F G	
103	68		H	g h
105	69		Ī	i
106	6A		J	j
107	6B		K	k
108	6C		Ū	1
109	6D		M	m
110	6E		N	n
111	6F		①	0
112	70		P	p
113	71		@	q
114	72		R	r
115	73		<u>\$</u>	s
116	74		<u> </u>	t
117	75 70		(1)	u
118	76 77		V W	V W
119 120	77 78		(X)	X
121	70 79		Y	ŷ
122	7A		(Z)	y Z
123	7B		CLEAR SHIFT (
124	7C		CLEAR SHIFT	{
125	7D		CLEAR SHIFT .	}
126	7E		CLEAR SHIFT ;	-
127	7F	DEL	CLEAR SHIFT ENTER	±

Extended (non-ASCII) Character Set

Co	de		
Dec.	Hex.	Keyboard	Video Display
128	80	(BREAK)	y
129	81	F1)	
		CLEAR CTRL (A)	
130	82	(F2)	
	-	CLEAR CTRL B	
131	83	F3	
	00	CLEAR CTRL C	
132	84	CLEAR CTRL D	
133	85	CLEAR CTRL (E)	
134	86	CLEAR CTRL F	
135	87	CLEAR CTRL G	
136	88	CLEAR CTRL H	
137	89	CLEAR CTRL I	
138	8A	CLEAR CTRL J	<u>.≚</u>
139	8B	CLEAR CTRL K	2
140	8C	CLEAR CTRL L	eg.
141	8D	CLEAR CTRL M	Ap
142	8E	CLEAR CTRL (N)	. <u>s</u>
143	8F	CLEAR CTRL (I)	₽
144	90	CLEAR CTRL P	.⊑
145	91	SHIFT F1	elc elc
145	91	CLEAR CTRL Q	tal
146	92	SHIFT (F2)	<u>ā</u>
140	32	CLEAR CTRL (R)	act T
147	93	SHIFT) (F3)	ara
177	30	CLEAR CTRL S	당
4.40	0.4		ပ္သ
148 149	94 95	CLEAR CTRL T	See graphics character table in this Appendix
150	96	CLEAR CTRL U CLEAR CTRL V	र्षे
151	90 97	CLEAR CTRL W	D 0
152	98	CLEAR CTRL X	ğ
153	99	CLEAR CTRL Y	0,
154	9A	CLEAR CTRL Z	
155	9B	CLEAR SHIFT	
156	9C	<u> </u>	
157	9D		
158	9E		
159	9F		
160	AØ	(CLEAR)(SPACE)	
161	A1	CLEAR SHIFT 1	
162	A2	CLEAR SHIFT 2	
163	A3	CLEAR SHIFT 3	
164	A4	CLEAR (SHIFT) (4)	
165	A5	(CLEAR)(SHIFT)(5)	
166	A6	CLEAR SHIFT 6	
167	A7	CLEAR SHIFT (7)	
168	A8	CLEAR SHIFT 8	
169	A9	CLEAR SHIFT (9)	
170	AA	CLEAR SHIFT :	
171	AB		
172	AC		
173	AD	CLEAR) (—)	
174	ΑE		
175	AF		
176	BØ	CLEAR @	
177	B1	CLEAR 1	
178	B2	CLEAR 2	

Code			
Dec.	Hex.	Keyboard	Video Display
179	B3	CLEAR 3	<u>ء</u>
180	B4	CLEAR 4	graphics character table in Appendix.
181	B5	CLEAR 5	gap
182	B6	CLEAR 6	7
183	B7	CLEAR (7)	zc zc
184 185	B8 B9	CLEAR 8	are
186	BA	CLEAR 9 CLEAR :	ر ن 5
187	BB	GLEAN .	SS Č
188	BC		graphics. Appendix
189	BD	CLEAR SHIFT (-)	jra \ρρ
190	BE		s /
191	BF		See (this /
192	CØ	CLEAR @*	
193	C1	CLEAR (A)**	
194	C2	CLEAR B **	
195	C3	CLEAR C **	
196 197	C4 C5	CLEAR D**	
198	C6	CLEAR E ** CLEAR F **	
199	C7	CLEAR G**	
200	C8	CLEAR (H)**	
201	C9	CLEAR (I)**	
202	CA	CLEAR J**	×
203	CB	CLEAR K)**	ndi
204	CC	CLEAR L**	be
205	CD	CLEAR M **	special characters in this Appendix
206 207	CE CF	CLEAR N **	is
207 208	DØ	CLEAR ()**	=======================================
209	D0 D1	CLEAR (P)** CLEAR (Q)**	<u></u>
210	D2	CLEAR R**	ğ
211	D3	CLEAR S**	ľać
212	D4	CLEAR T**	r.
213	D5	CLEAR U**	-
214	D6	CLEAR V**	<u>.</u>
215	D7	CLEAR W**	ďs
216	D8	CLEAR X **	₫
217 218	D9 DA	CLEAR (Y)**	ist
219	DB	CLEAR (Z)**	See list
220	DC		ഗ്ഗ്
221	DD		
222	DE		
223	DF		
224	ΕØ	CLEAR SHIFT @	
225	E1	CLEAR SHIFT (A)	
226	E2	CLEAR (SHIFT) B	
227	E3	CLEAR SHIFT C	
228	E4	CLEAR SHIFT D	
229 230	E5 E6	CLEAR SHIFT (E)	
230 231	E7	CLEAR SHIFT (F) CLEAR (SHIFT) (G)	
232	E8	CLEAR SHIFT (H)	
233	E9	CLEAR SHIFT (I)	
234	ĒΑ	CLEAR SHIFT J	

^{*}Empties the type-ahead buffer.
**Used by Keystroke Multiply, if KSM is active.

Code			
Dec.	Hex.	Keyboard	Video Display
235	EB	CLEAR SHIFT K	×
236	EC	CLEAR SHIFT L	₽
237	ED	CLEAR SHIFT M	e.
238	EE	CLEAR SHIFT N	dd.
239	EF	CLEAR SHIFT O	8
240	FØ	CLEAR SHIFT P	Ę
241	F1	CLEAR SHIFT Q	2.
242	F2	CLEAR SHIFT R	special characters in this Appendix
243	F3	CLEAR SHIFT S	o g
244	F4	CLEAR SHIFT T	ara E
245	F5	<u>CLEAR SHIFT</u> U	ů,
246	F6	CLEAR SHIFT V	_
247	F7	CLEAR SHIFT W	Ö.
248	F8	CLEAR SHIFT X	ğ
249	F9	CLEAR SHIFT Y	<u>5</u>
250	FA	CLEAR SHIFT (Z)	list of
253	FD		<u>≅</u>
254	FE		See
255	FF		U)

Graphics Characters (Codes 128-191)

Special Characters (0-31, 192-255) S I

Appendix D/Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for each key, in each of the modes: control, shift, unshift, clear and control, clear and shift, clear and unshift.

For example, pressing (CLEAR), (SHIFT), and (1) at the same time returns the code X'A1.'

A program executing under TRSDOS — for example, BASIC — may translate some of these codes into other values. Consult the program's documentation for details.

BREAK Key Handling

The **BREAK** key (X'80') is handled in different ways, depending on the settings of three system functions. The table below shows what happens for each combination of settings.

Dinalion of	semiys.		
Break Enabled	Break Vector Set	Type- Ahead Enabled	
Υ	N	Υ	If characters are in the type-ahead buffer, then the buffer is emptied.*
			If the type-ahead buffer is empty, then a BREAK character (X'80') is placed in the buffer.*
Υ	N	N	A BREAK character (X'80') is placed in the buffer.
Υ	Y	Υ	The type-ahead buffer is emptied of its contents (if any), and control is transferred to the address in the BREAK vector (see @BREAK SVC).*
Υ	Υ	N	Control is transferred to the address in the BREAK vector (see @BREAK SVC).
N	Х	Х	No action is taken and characters in the type- ahead buffer are not affected.

^{*}Because the (BREAK) key is checked for more frequently than other keys on the keyboard, it is possible for (BREAK) to be pressed after another key on the keyboard and yet be detected first.

Y means that the function is on or enabled

N means that the function is off or disabled

X means that the state of the function has no effect

Break is enabled with the SYSTEM (BREAK = ON) command (this is the default condition).

The break vector is set using the @BREAK SVC (normally off).

Type-ahead is enabled using the SYSTEM (TYPE = ON) command (this is the default condition).

Subject	Page	Subject	Page
@ABORT Access	230 191-192 193-203 186 15 93 61 231 194 93 185 194, 207 185 184 374-376 215-216 232-233 218-221 169 234 169 234 187 214, 235 235 5, 59, 69 222-224 93	@CMNDR Codes ASCII	374-376 373-382 369 -378, 380 .383-384 210 ,381-382 88 96 132 19 197 113, 124 10, 11 ,243-244 224-226 130 194 200 194 207 245 247 248 248
Carriage movement	93 29 28 21		188 249 250 15
Characters ASCII	374-376 373-382 378, 380 381-382 236 237 238 239 93 60, 70 363 240	Device access handling NIL Device Control Block (DCB) Device driver address COM @CTL interfacing to keyboard printer templates video Devspec	. 191-192 209 191 191 , 190, 195 191 . 225-226 . 224-226 225 225 225

Subject	Page	Subject	Page
Head positioning		@MSG	
@HEXDEC		@MUL8	
@HEX8		@MUL16	
@HEX16		Next Record Number (NRN)	
@HIGH\$		NIL device	
Hold-Up time, power supply	146	NMI logic	
Horizontal linearity		Oscillator	
@ICNFG, interfacing to		Overlays, system	
Index pulse		Over-Current protection	
Index sector timing		Over-Voltage protection	
Index sector tirming		PAL circuits	
@INIT		@PARAM	
Initialization configuration		Password	
vector	214-215	for TRSDOS files	190
Input line terminator		protection levels	
Interrupt tasks	216-218	@PAUSE	
Interrupts	59, 69, 170	PAUSE detection	
@IPL		@PEOF	293
Job Control Language (JCL)		Port address decoding	15
Jumper options		Port bit map	
@KBD		@POSN	294
@KEY	278	Power supplies	9, 10, 11,
Keyboard			109, 112, 121
Keyboard codes		Precompensation, write	
@KEYIN		Preventive maintenance	
KFLAG\$	3	@PRINT	
Kick start latch		Printer status	
@KITSK, interfacing to		Printing Graphics Characters .	
@KLTSK		Programming Guidelines	
Library commands		Protection Levels	
technical information on		@PRT	
@LOAD		@PUT	
Load board values, power supply		Radial Alignment, Head	
@LOC		RAM Banks	19, 20
LOG utility		switching	218-221
@LOGER		use of	
Logic board, disk drive		@RAMDIR	
Logical Record Length (LRL)		@RDHDR	
@LOGOT		RDINSTATUS*	
Low voltage outputs	113 130	RDNMISTATUS*	
Memory address decoding		@RDSEC	
Memory banks — see RAM banks		@RDSSC	
Memory header		@RDTRK	
Memory map		@READ	303
Minimum configuration disk		Read Data Pulse	
Modification date		Real Time Clock	21
MODOUT	28	Record	
Motor adjustment, disk drive	93	length 185	186, 197, 206

Subject	Page	Subject	Page
logical and physical		calling procedure	
numbers	1	lists of 228-229	, 331-333, 334-335
processing		program entry and return conditions.	227
spanning		sample programs using	
@REMOV	l l	using	
@RENAM		Surge limiter	
Resistor Termination		SYS files 187	-188. 189-190. 201
Restart Vectors (RSTs)	 	System	
Return Code (RC)		files 187	-188, 189-190, 201
@REW		overlays	
RFI Shield	9	Task	
Ripple Specifications		interrupt level, adding	231
@RMTSK		slots	216, 217, 231
ROM	í	Task Control Block (TCB)	216, 217, 231
@RPTSK	1	Vector Table (TCBVT)	
@RREAD	309	Task processor, interfacing	
RS-232	014	@TIME	
initializing		Timing, CPU	
RS-232 Board		Track 00 Switch	
@RSLCT		Trim erase	
@RSTOR		TRSDOS	
@RUN		converting to Version 6	â 209-210
@RWRIT	1	error messages and co	
Sample Programs		file descriptions	
A	337-338	technical information o	
В		commands and utilit	
<u>C</u>		TYPE code	
<u>D</u>		Under-Voltage Lockout	
<u> </u>		@VDCTL	
F	354-359	@VER	
Sectors per cylinder	106 201	Version, operating system Video Controller	
per cylinder		Video Monitor	
@SEEK		Visibility	
@SEEKSC	l l	Voltage Controlled Oscillato	
@SKIP		Voltage Regulation	
@SLCT		@VRŠEC	324
Snubber Circuit		Wait State	60, 69
@SOUND		WAIT value, changing	
Sound Option		@WEOF	
Special Character Codes . 378-37		@WHERE	
Spindle Drive		WRINTMASKREG*	
Stack handling		@WRITE	
Step rate		Write Enable	
changing		Write Gale	
Stepper motor		Write Protect	
Supervisor calls (SVCs)		WRNMIMASKREG*	
	•	, and the contract the comment of the contract	

Subject	Page	Subject	Page	
@WRSEC	328 329 330			

		6

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102 CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

91 KURRAJONG ROAD

BELGIUM

U.K.

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE MOUNT DRUITT, N.S.W. 2770 5140 NANINNE

BILSTON ROAD WEDNESBURY WEST MIDLANDS WS10 7JN