

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA

DEP. DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO LABORATÓRIO DE SISTEMAS CONTROLE

Fábio Meneghetti Ugulino de Araújo (http://www.dca.ufrn.br/~meneghet)

ROTEIRO DE LABORATÓRIO

- 1. Número da Experiência: 03
- 2. *Titulo*: Controle de Sistemas Dinâmicos: Sistema de Segunda Ordem
- 3. *Objetivos*: Esta prática tem como objetivos:
- O aprimoramento das habilidades na utilização de microcomputadores para controle de sistemas;
- O reforço da conceituação das ações de controle proporcional (P), integral (I) e derivativa (D);
- Implementação de controladores P, PI, PD, PID e PI-D em sistemas de segunda ordem;
- Analisar sistemas de controle: Estabilidade, desempenho transitório, desempenho em regime permanente.
- 4. Equipamento Utilizado: São necessários para realização desta experiência:
- Dois microcomputadores PC(um servidor e um cliente);;
- Uma placa de aquisição de dados MultQ3 da Quanser;
- Um módulo de potência VoltPAQ-X1;
- Um sistema de tanques acoplados da Quanser (*Configuração 2*);
- 5. Introdução:
 - 5.1. Sistemas de Segunda Ordem

Considere a seguinte equação diferencial de segunda ordem:

$$ac(t)+bc(t)+dc(t)=er(t)$$

Definindo:

$$\frac{b}{a} = 2\mathcal{E}\omega_n$$
; $\frac{d}{a} = \omega_n^2$; $\frac{e}{a} = K$

onde ξ é o fator de amortecimento, $\omega_{\rm n}$ é a freqüência natural e K é o ganho do sistema, temos:

$$c(t) + 2\xi\omega_n c(t) + \omega_n^2 c(t) = Kr(t)$$

Aplicando Laplace com C.I. nulas:
$$\frac{C(s)}{R(s)} = \frac{K}{s^2 + 2\mathcal{E}\omega_n s + \omega_n^2}$$

Considerando
$$K = \omega_n^2$$
 :
$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Pólos do sistema:
$$s^2 + 2\mathcal{E}\omega_n s + \omega_n^2 = 0 \implies s = -\mathcal{E}\omega_n \pm \omega_n \sqrt{\mathcal{E}^2 - 1}$$

Exemplos de sistemas de 2ª ordem: circuito RLC, sistema massa-mola-atrito, servomecanismo de posição...

Temos três casos:

a) $0 < \xi < 1$: Caso <u>SUBAMORTECIDO</u>. O sistema tem dois pólos complexos conjugados e apresenta oscilações;

b) $\underline{\xi = 1}$: Caso <u>CRITICAMENTE AMORTECIDO</u>. Dois pólos reais e iguais. A partir deste valor de ξ o sistema passa a não ter mais oscilações;

c) $\underline{\xi > 1}$: Caso <u>SOBREAMORTECIDO</u>. Dois pólos reais e distintos. A medida que ξ aumenta, o comportamento do sistema se aproxima do comportamento de um sistema de 1ª ordem.

Resposta ao Degrau Unitário

a) Caso Subamortecido:
$$c(t) = 1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} sen \left(\omega_d t + t g^{-1} \frac{\sqrt{1 - \xi^2}}{\xi} \right)$$

onde: $\omega_d = \sqrt{1 - \xi^2}$ é a frequência natural amortecida.

Se
$$\xi = 0$$
, então: $c(t) = 1 - \cos \omega_n t$

b) Caso criticamente amortecido:
$$c(t) = 1 - e^{-\omega_n t} (1 + \omega_n t)$$

c) Caso sobreamortecido:
$$c(t) = 1 + \frac{\omega_n}{2\sqrt{\xi^2 - 1}} \left(\frac{e^{-s_1 t}}{s_1} - \frac{e^{-s_2 t}}{s_2} \right)$$

onde
$$s_1 = \left(\xi + \sqrt{\xi^2 - 1}\right)\omega_n$$
 e $s_2 = \left(\xi - \sqrt{\xi^2 - 1}\right)\omega_n$

Especificações de Resposta Transitória

Definições

a) Tempo de Subida, t_r: É o tempo necessário para que a saída atinja pela primeira vez o seu valor final

$$t_r = \frac{\pi - \beta}{\omega_d}$$
; onde $\beta = tg^{-1} \frac{\sqrt{1 - \xi^2}}{\xi}$

b) <u>Tempo de Pico</u>, t_p: É o instante de tempo em que a resposta atinge o primeiro pico do sobre-sinal.

$$t_p = \frac{\pi}{\omega_d}$$

c) Sobre-Sinal Máximo (Overshoot), Mp: É o valor máximo de pico da curva de resposta medido a partir do valor final.

$$M_p(\%) = \frac{c(t_p) - c(\infty)}{c(\infty)} x 100\%$$

$$c(t_p) = 1 + e^{-\left(\xi\pi/\sqrt{1-\xi^2}\right)}$$

logo:

$$M_p(\%) = 100e^{-\left(\xi\pi/\sqrt{1-\xi^2}\right)}$$

OBS: O sobre-sinal máximo depende somente do valor do coeficiente de amortecimento §.

d) Tempo de Acomodação (estabilização), t_s: É o tempo necessário para que a resposta alcance e permaneça dentro de uma faixa em torno do valor final. Esta faixa é especificada por uma porcentagem absoluta do valor final (2% ou 5%).

$$t_s = \frac{4}{\xi \omega_n}$$
 (critério de 2%)

$$t_s = \frac{3}{\xi \omega_n}$$
 (critério de 5%)

OBS: As curvas e especificações calculadas são válidas somente para sistemas de 2^a ordem, cuja função de transferência apresenta dois pólos e nenhum zero.

6. Desenvolvimento:

- 1°. Adapte o programa desenvolvido na prática anterior, para efetuar também o controle em malha fechada do sistema de tanques de segunda ordem (configuração 2). O programa, além das funções anteriormente implementadas, deve ainda:
 - a) Solicitar inicialmente, informações sobre qual configuração estará sendo controlada (isso define, automaticamente, em qual o canal deverá ser lido o sinal usado para fazer a realimentação, ou seja, a PV), para que possa fazer a leitura do sensor correto;
 - b) O programa deve fornecer ao usuário as mesmas opções de controle para o sistema de segunda ordem (configuração 2), que já eram oferecidas na versão anterior para o sistema de primeira ordem (Configuração 1).
 - c) O programa deve ter uma opção de análise da resposta do sistema, onde deverá fornecer (exclusivamente para as entradas do tipo degrau, onda quadrada e sinal aletório):
 - i. O tempo de subida de 0 à 100% (t_{r100}) ou de 5 à 95% (t_{r95}) ou de 10 à 90% (t_{r90});
 - ii. O máximo sobressinal percentual $(M_P\%)$ e o sobressinal em centímetros (M_P) ;
 - iii. O tempo de pico (t_P) ;
 - iv. O tempo de acomodação para as faixas de 2% (t_{S2}), 5% (t_{S5}) e 10% (t_{S10}) do degrau.
- 2°. Com base na análise da resposta do sistema, verifique e descreva em seu relatório a diferença no comportamento do sistema com cada um dos controladores.
- 3°. Para cada tipo de controlador, ainda com base na análise da resposta do sistema, verifique e descreva em seu relatório o comportamento do sistema para diferentes valores dos ganhos.