Bibliography

- [1] H. Fritzsch, M. Gell-Mann, and H. Leutwyler, "Advantages of the Color Octet Gluon Picture," *Phys. Lett. B*, vol. 47, pp. 365–368, 1973.
- [2] D. J. Gross and F. Wilczek, "Ultraviolet Behavior of Nonabelian Gauge Theories," *Phys. Rev. Lett.*, vol. 30, pp. 1343–1346, 1973.
- [3] H. Politzer, "Reliable Perturbative Results for Strong Interactions?," *Phys. Rev. Lett.*, vol. 30, pp. 1346–1349, 1973.
- [4] M. e. a. Tanabashi, "Review of particle physics," Phys. Rev. D, vol. 98, p. 030001, Aug 2018.
- [5] K. G. Wilson, "Confinement of Quarks," Phys. Rev. D, pp. 45–59, 2 1974.
- [6] J. Fallica, "Lambda Baryon Spectroscopy and Pion-Pion Scattering with Partial Wave Mixing in Lattice QCD," 9 2018.
- [7] C. Morningstar, J. Bulava, J. Foley, K. J. Juge, D. Lenkner, M. Peardon, and C. H. Wong, "Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD," *Phys. Rev. D*, vol. 83, p. 114505, 2011.
- [8] M. Gell-Mann, "Symmetries of baryons and mesons," Phys. Rev., vol. 125, pp. 1067– 1084, 1962.
- [9] K. G. Wilson, "Quarks and Strings on a Lattice," in 13th International School of Subnuclear Physics: New Phenomena in Subnuclear Physics, p. 99, 11 1975.
- [10] C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice, vol. 788. Berlin: Springer, 2010.
- [11] H. B. Nielsen and M. Ninomiya, "No Go Theorem for Regularizing Chiral Fermions," *Phys. Lett. B*, vol. 105, pp. 219–223, 1981.

- [12] K. Symanzik, "Continuum Limit and Improved Action in Lattice Theories. 1. Principles and ϕ^4 Theory," Nucl. Phys. B, vol. 226, pp. 187–204, 1983.
- [13] B. Sheikholeslami and R. Wohlert, "Improved Continuum Limit Lattice Action for QCD with Wilson Fermions," *Nucl. Phys. B*, vol. 259, p. 572, 1985.
- [14] G. Lepage and P. B. Mackenzie, "On the viability of lattice perturbation theory," Phys. Rev. D, vol. 48, pp. 2250–2264, 1993.
- [15] R. G. Edwards, B. Joo, and H.-W. Lin, "Tuning for Three-flavors of Anisotropic Clover Fermions with Stout-link Smearing," *Phys. Rev. D*, vol. 78, p. 054501, 2008.
- [16] H.-W. Lin *et al.*, "First results from 2+1 dynamical quark flavors on an anisotropic lattice: Light-hadron spectroscopy and setting the strange-quark mass," *Phys. Rev. D*, vol. 79, p. 034502, 2009.
- [17] M. Luscher and P. Weisz, "On-Shell Improved Lattice Gauge Theories," Commun. Math. Phys., vol. 97, p. 59, 1985. [Erratum: Commun.Math.Phys. 98, 433 (1985)].
- [18] M. Luscher and P. Weisz, "Computation of the Action for On-Shell Improved Lattice Gauge Theories at Weak Coupling," *Phys. Lett. B*, vol. 158, pp. 250–254, 1985.
- [19] C. J. Morningstar and M. J. Peardon, "Efficient glueball simulations on anisotropic lattices," *Phys. Rev. D*, vol. 56, pp. 4043–4061, 1997.
- [20] C. J. Morningstar and M. J. Peardon, "The Glueball spectrum from an anisotropic lattice study," *Phys. Rev. D*, vol. 60, p. 034509, 1999.
- [21] C. Morningstar and M. J. Peardon, "Analytic smearing of SU(3) link variables in lattice QCD," *Phys. Rev. D*, vol. 69, p. 054501, 2004.
- [22] T. R. Klassen, "The Anisotropic Wilson gauge action," Nucl. Phys. B, vol. 533, pp. 557–575, 1998.
- [23] C. Morningstar, "The Monte Carlo method in quantum field theory," in 21st Annual Hampton University Graduate Studies Program (HUGS 2006), 2 2007.
- [24] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of state calculations by fast computing machines," J. Chem. Phys., vol. 21, pp. 1087–1092, 1953.
- [25] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth, "Hybrid Monte Carlo," Phys. Lett. B, vol. 195, pp. 216–222, 1987.

- [26] M. Clark, "The Rational Hybrid Monte Carlo Algorithm," PoS, vol. LAT2006, p. 004, 2006.
- [27] M. Peardon, J. Bulava, J. Foley, C. Morningstar, J. Dudek, R. G. Edwards, B. Joo, H.-W. Lin, D. G. Richards, and K. J. Juge, "A Novel quark-field creation operator construction for hadronic physics in lattice QCD," *Phys. Rev. D*, vol. 80, p. 054506, 2009.
- [28] C. Morningstar, "Hadron Spectroscopy in Lattice QCD (private notes),"
- [29] S. Basak, R. Edwards, G. Fleming, U. Heller, C. Morningstar, D. Richards, I. Sato, and S. Wallace, "Group-theoretical construction of extended baryon operators in lattice QCD," Phys. Rev. D, vol. 72, p. 094506, 2005.
- [30] C. Morningstar, J. Bulava, B. Fahy, J. Foley, Y. Jhang, K. Juge, D. Lenkner, and C. Wong, "Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD," *Phys. Rev. D*, vol. 88, no. 1, p. 014511, 2013.
- [31] A. D. Hanlon, "The ρ meson spectrum and $k\pi$ scattering with partial wave mixing in lattice QCD." January 2018.
- [32] M. Luscher and U. Wolff, "How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation," *Nucl. Phys. B*, vol. 339, pp. 222–252, 1990.
- [33] J. Foley, K. Jimmy Juge, A. O'Cais, M. Peardon, S. M. Ryan, and J.-I. Skullerud, "Practical all-to-all propagators for lattice QCD," *Comput. Phys. Commun.*, vol. 172, pp. 145–162, 2005.
- [34] S. Bernardson, P. McCarty, and C. Thron, "Monte Carlo methods for estimating linear combinations of inverse matrix entries in lattice QCD," *Comput. Phys. Commun.*, vol. 78, pp. 256–264, 1993.
- [35] W. Wilcox, "Noise methods for flavor singlet quantities," in *Interdisciplinary Workshop on Numerical Challenges in Lattice QCD*, pp. 127–141, 8 1999.
- [36] G. Lepage, "The Analysis of Algorithms for Lattice Field Theory," pp. 97–120, 6 1989.
- [37] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and R. Sommer, "On the generalized eigenvalue method for energies and matrix elements in lattice field theory," *JHEP*, vol. 04, p. 094, 2009.

- [38] B. Efron, The jackknife, the bootstrap, and other resampling plans, vol. 38. Siam, 1982.
- [39] R. Jaffe, "Exotica," Nucl. Phys. B Proc. Suppl., vol. 142, pp. 343–355, 2005.
- [40] C. Amsler and N. Tornqvist, "Mesons beyond the naive quark model," *Phys. Rept.*, vol. 389, pp. 61–117, 2004.
- [41] F. E. Close and N. A. Tornqvist, "Scalar mesons above and below 1-GeV," J. Phys. G, vol. 28, pp. R249–R267, 2002.
- [42] L. Maiani, F. Piccinini, A. Polosa, and V. Riquer, "A New look at scalar mesons," Phys. Rev. Lett., vol. 93, p. 212002, 2004.
- [43] S. Prelovsek, T. Draper, C. B. Lang, M. Limmer, K.-F. Liu, N. Mathur, and D. Mohler, "Lattice study of light scalar tetraquarks with I=0,2,1/2,3/2: Are σ and κ tetraquarks?," *Phys. Rev. D*, vol. 82, p. 094507, 2010.
- [44] C. Alexandrou, J. O. Daldrop, M. Dalla Brida, M. Gravina, L. Scorzato, C. Urbach, and M. Wagner, "Lattice investigation of the scalar mesons $a_0(980)$ and κ using four-quark operators," *JHEP*, vol. 04, p. 137, 2013.
- [45] C. Alexandrou, J. Berlin, M. Dalla Brida, J. Finkenrath, T. Leontiou, and M. Wagner, "Lattice QCD investigation of the structure of the $a_0(980)$ meson," *Phys. Rev. D*, vol. 97, no. 3, p. 034506, 2018.
- [46] F.-K. Guo, L. Liu, U.-G. Meissner, and P. Wang, "Tetraquarks, hadronic molecules, meson-meson scattering and disconnected contributions in lattice QCD," *Phys. Rev. D*, vol. 88, p. 074506, 2013.
- [47] R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Hörz, and C. Morningstar, "Determination of s- and p-wave I=1/2 $K\pi$ scattering amplitudes in $N_{\rm f}=2+1$ lattice QCD," Nucl. Phys. B, vol. 932, pp. 29–51, 2018.
- [48] J. Bulava, B. Fahy, B. Hörz, K. J. Juge, C. Morningstar, and C. H. Wong, "I=1 and I=2 $\pi-\pi$ scattering phase shifts from $N_{\rm f}=2+1$ lattice QCD," Nucl. Phys. B, vol. 910, pp. 842–867, 2016.
- [49] J. J. Dudek, R. G. Edwards, and C. E. Thomas, "Energy dependence of the ρ resonance in $\pi\pi$ elastic scattering from lattice QCD," *Phys. Rev. D*, vol. 87, no. 3, p. 034505, 2013. [Erratum: Phys.Rev.D 90, 099902 (2014)].

- [50] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, "Coupled $\pi\pi, K\bar{K}$ scattering in P-wave and the ρ resonance from lattice QCD," Phys.~Rev.~D, vol. 92, no. 9, p. 094502, 2015.
- [51] C. Morningstar, J. Bulava, B. Singha, R. Brett, J. Fallica, A. Hanlon, and B. Hörz, "Estimating the two-particle K-matrix for multiple partial waves and decay channels from finite-volume energies," *Nucl. Phys. B*, vol. 924, pp. 477–507, 2017.
- [52] J. J. Dudek, R. G. Edwards, and D. J. Wilson, "An a_0 resonance in strongly coupled $\pi \eta$, $K\overline{K}$ scattering from lattice QCD," *Phys. Rev. D*, vol. 93, no. 9, p. 094506, 2016.
- [53] R. G. Edwards, N. Mathur, D. G. Richards, and S. J. Wallace, "Flavor structure of the excited baryon spectra from lattice QCD," *Phys. Rev. D*, vol. 87, no. 5, p. 054506, 2013.
- [54] J. M. Bulava *et al.*, "Excited State Nucleon Spectrum with Two Flavors of Dynamical Fermions," *Phys. Rev. D*, vol. 79, p. 034505, 2009.
- [55] J. Bulava, R. Edwards, E. Engelson, B. Joo, H.-W. Lin, C. Morningstar, D. Richards, and S. Wallace, "Nucleon, Δ and Ω excited states in $N_f = 2 + 1$ lattice QCD," *Phys. Rev. D*, vol. 82, p. 014507, 2010.
- [56] R. G. Edwards, J. J. Dudek, D. G. Richards, and S. J. Wallace, "Excited state baryon spectroscopy from lattice QCD," *Phys. Rev. D*, vol. 84, p. 074508, 2011.
- [57] R. Koniuk and N. Isgur, "Where Have All the Resonances Gone? An Analysis of Baryon Couplings in a Quark Model With Chromodynamics," *Phys. Rev. Lett.*, vol. 44, p. 845, 1980.