Бутстрап

повторные выборки и децильные методы оценки А/Б тестов

Что узнаем?

- Что такое бутстрап?
- Оценка среднего и медианы
- Проверка гипотез с помощью бутстрапа

Что такое бутстрап?

Интернет-магазин продуктов

На графике покупки (заказы) и их сумма

Номер заказа	Сумма, руб
1	2438.86
80	1168.33
85	432.22
37	7971.52
16	31092.87
•••	•••

Как лучше оценить?

Что здесь лучше будет отражать центральную тенденцию? – Медиана

Можем ли использовать ЦПТ, чтобы построить ДИ для медианы? – Нет. Тогда как?

Бутстрап

Суть

Обладая только данными по имеющейся выборке, существует возможность оценить любой ее параметр, построив эмпирическое распределение параметра.

В контексте нашей задачи с медианой – получить распределение медиан и далее по ним вычислить доверительный интервал.

Давайте разберемся как это делается

Выборка

2.11

3.12

9.4

17.9

8.6

4.1

Повторная бут-выборка

2.11

3.12

9.4

17.9

8.6

4.1

Выборка	Повторная бут-выборка
2.11	3.12
3.12	
9.4	
17.9	
8.6	

4.1

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
17.9	
8.6	
4.1	

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
9.4	
17.9	
8.6	
4.1	

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
	9.4
17.9	
8.6	
4.1	

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
9.4	9.4
17.9	
8.6	
4.1	

Выборка	Повторная бут-выборка
	3.12
3.12	9.4
9.4	9.4
17.9	2.11
8.6	
4.1	

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
9.4	9.4
17.9	2.11
8.6	4.1

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
9.4	9.4
17.9	2.11
8.6	4.1
4.1	

Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
9.4	9.4
17.9	2.11
	4.1
4.1	8.6

Медиана	Медиана
6.35	6.35
Выборка	Повторная бут-выборка
2.11	3.12
3.12	9.4
9.4	9.4
17.9	2.11
8.6	4.1
4.1	8.6

Медиана	Медиана	Медиана	Медиана	Медиана
6.35	6.35	5.86	6.35	3.61
Выборка	Повторная бут-выборка	Повторная бут-выборка	Повторная бут-выборка	Повторная бут-выборка ···
2.11	3.12	3.12	8.60	4.10
3.12	9.4	9.40	9.40	9.40
9.4	9.4	9.40	8.60	3.12
17.9	2.11	3.12	2.11	2.11
8.6	4.1	3.12	4.10	8.60
4.1	8.6	8.60	3.12	2.11

Бутстрап распределение медиан

6.35 5.86 6.35 3.61

→ считаем доверительный интервал

получаем эмпирическую оценку параметра распределения (медианы)

Демонстрация

Распределение медиан (медиана = 3268.88)

Bootstrap

Распределение медиан (медиана = 3268.88)

95% доверительный интервал [2448.51, 4249.82]

Перцентильный метод ДИ:

Берем 95% площади распределения (для 95% уровня значимости):

- 1. Ищем перцентиль 2,5 в бут-распределении $\frac{\alpha}{2}$
- 2. Ищем перцентиль 97,5 в бут-распределении $\frac{1-\alpha}{2}$

Это и будет ДИ

Демонстрация python

Другие способы расчета ДИ:

https://arch.readthedocs.io/en/latest/bootstrap/confidence-intervals.html

- Percentile CI
- Normal CI
- Basic CI
- BCA

Проверка гипотез с помощью бутстрапа

Контроль

Основное меню Корзина Футер Тест

Интернет магазин продуктов

Добавили новую витрину «Ваши прошлые покупки» на чекаут.

По классике, бизнесу интересно узнать как изменился средний чек

Как оценить влияние эксперимента на прибыль?

Average $revenue_{control} = 5253$

Avg revenue control

Average $revenue_{test} = 5486$

Avg revenue test

Что нам мешает просто использовать классический критерий?

Что нам мешает просто использовать классический критерий?

- Манна-Уитни лучшего всего подойдет для задачи. Он дает ответ на вопрос, значимо ли различаются распределения или нет. Хотелось бы понимать **где именно** эта разница
- К тому же, у каждого критерия свое аналитическое решение, которое требует придерживаться ряда допущений (например, одинаковая дисперсия/ одинаковый размер выборки/одинаковая форма распределений и т.п). Такая возможность не всегда имеется

Мы можем пойти дальше и проверить каждую дециль распределения

Как проверяются гипотезы с помощью бутстрапа?

- 1. Строите бутстрап-распределения параметра в А и Б
- 2. Вычисляете их разницу
- 3. В получившемся распределении разницы считаете доверительный интервал
- 4. Смотрите, попадает ли доверительный интервал в 0. И если да, то нулевая гипотеза на заданном уровне значимости принимается

Результаты для эксперимента с добавлением блока с прошлыми покупками

Демонстрация python

Рекомендации, ограничения и выводы

Выводы

- Бутстрап позволяет строить доверительный интервал для любого параметра распределения, не применяя для этого аналитическую формулу
- Основное преимущество Бутстрап проверять гипотезы для любых параметров распределения или моделей: Перцентили/Квантили/Децили и т.п.
- Бутстрап проверяет статистические гипотезы без опоры на определенное теоретическое распределение данных (в отличие от классических стат. критериев)
- Бутстрап позволяет сделать оценку любого «сложного» параметра путем нахождения доверительных интервалов для него. А для проверки гипотез путем вычисления их разницы

Ограничения

- Бутстрап не требует соблюдать предположения, но ему все еще требуется достаточно репрезентативная выборка
- Чем выше количество бутстрап итераций, тем дольше придется ждать результат расчета
- Чем исходная выборка, тем дольше придется ждать результат расчета

Также бутстрап

- Не способ нормализации выборки
- Не способ получения большего количества наблюдений
- Не дает больше получить больше информации об исходной выборке

Можно ли нормализовать распределение метрики с помощью бутстрапа, а потом использовать критерий?

Assumptions [edit]

Most test statistics have the form $t = \frac{Z}{s}$, where Z and s are functions of the data.

Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of t to be determined.

As an example, in the one-sample t-test

$$t=rac{Z}{s}=rac{ar{X}-\mu}{\widehat{\sigma}/\sqrt{n}}$$

where \overline{X} is the sample mean from a sample $X_1, X_2, ..., X_n$, of size n, s is the standard error of the mean, $\widehat{\sigma}$ is the estimate of the standard deviation of the population, and μ is the population mean.

The assumptions underlying a t-test in its simplest form are that

- \overline{X} follows a normal distribution with mean μ and variance $\frac{\sigma^2}{n}$
- s^2 follows a χ^2 distribution with n-1 degrees of freedom. This assumption is met when the observations used for estimating s^2 come from a normal distribution (and i.i.d for each group).
- Z and s are independent.

Для применения параметрических критериев (напр., t-критерий Стьюдент), требуется соблюдать предположение о независимости выборок.

Механизм бутстрапа так построен, что одно наблюдение может встретиться много-много раз в одном и том же распределении

Мирмахмадов Искандер