Summary of Generalized Partial Credit Model

July 17, 2018

1 Checking Assumptions

Table 1: Goodness of fit statistics related to the test of unidimensionality in the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the first empirical study

data	df	chisq	AGFI	TLI	CFI	DETECT	ASSI	RATIO
Pre-test	27	27.576	0.969	0.981	0.986	33.264	0.056	0.508
Post-test	14	16.087	0.997	0.875	0.917	27.559	0.333	0.528

df: degree of freedom; AGFI: Adjusted Goodness of Fit Index; CFI: Comparative Fit Index; TLI: Tucker-Lewis

Table 2: Item residual correlation statistics related to the test of local independencein the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the first empirical study

data	max.chisq	maxaQ3	MADaQ3	SRMSR	p.value
Pre-test	51.415	0.370	0.126	0.251	0.176
Post-test	90.705	0.326	0.125	0.166	0.345

aQ3: adjusted correlation of item residuals; maxaQ3: maximum aQ3; MADaQ3: Median Absolute Deviation of aQ3:

Table 3: Test of monotonicity in the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the first empirical study

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Pre-test.Un1	0.19	6	0	0	0	0	0	0	0	0
Pre-test.Un2	0.36	3	0	0	0	0	0	0	0	0
Pre-test.Ap1	0.43	0	0		0	0		0	0	0
Pre-test.Ap2	0.30	1	0	0	0	0	0	0	0	0
Pre-test.Ap3	0.43	4	0	0	0	0	0	0	0	0
Pre-test.An3	0.36	9	0	0	0	0	0	0	0	0
Pre-test.Ev1	0.39	12	0	0	0	0	0	0	0	0
Pre-test.Ev2	0.10	10	0	0	0	0	0	0	0	0

Table 3: (continued)

data	ItemH	ac	vi	vi/ac	maxvi	sum	sum/ac	zmax	zsig	crit
Pre-test.P1s2	0.33	2	0	0	0	0	0	0	0	0
Post-test.ReB	0.24	0	0		0	0		0	0	0
Post-test.UnB	0.05	0	0		0	0		0	0	0
Post-test.ApB	0.14	0	0		0	0		0	0	0
Post-test.ApC	0.14	0	0		0	0		0	0	0
Post-test.AnC	0.47	0	0		0	0		0	0	0
Post-test.EvA	0.28	0	0		0	0		0	0	0
Post-test.PAs3	-0.12	0	0		0	0		0	0	0

vi: numer of violations; vi/ac: proportion of active pairs; maxvi: maximum violations; sum: sum of all violations; zmax: maximum z-value; zsig: number of significant z-values; crit: Critical value

2 Estimating Item Parameters

Table 4: Estimated parameters in the GPCM-based instrument for measuring the Pre-test $\,$

estimated	An3	Ap1	Ap2	АрЗ	Ev1	Ev2	P1s2	Un1	Un2
xsi.item	-0.224	-0.662	-0.573	-0.196	-0.177	-0.054	-12.260	-6.086	-0.093
B.Cat0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	0.000	2.000	2.000	2.000	2.000	2.000	2.000
B.Cat3	3.000	3.000	0.000	3.000	3.000	3.000	3.000	3.000	3.000
B.Cat4	4.000	4.000	0.000	4.000	4.000	4.000	0.000	4.000	4.000
B.Cat5	5.000	5.000	0.000	5.000	5.000	5.000	0.000	5.000	5.000
B.Cat6	6.000	6.000	0.000	6.000	6.000	6.000	0.000	6.000	6.000
B.Cat7	7.000	0.000	0.000	7.000	7.000	7.000	0.000	7.000	0.000
B.Cat8	8.000	0.000	0.000	8.000	8.000	8.000	0.000	8.000	0.000
B.Cat9	9.000	0.000	0.000	0.000	9.000	9.000	0.000	9.000	0.000
B.Cat10	10.000	0.000	0.000	0.000	10.000	10.000	0.000	10.000	0.000
B.Cat11	11.000	0.000	0.000	0.000	11.000	0.000	0.000	11.000	0.000
B.Cat12	12.000	0.000	0.000	0.000	12.000	0.000	0.000	12.000	0.000
B.Cat13	13.000	0.000	0.000	0.000	0.000	0.000	0.000	13.000	0.000
B.Cat14	14.000	0.000	0.000	0.000	0.000	0.000	0.000	14.000	0.000
B.Cat15	15.000	0.000	0.000	0.000	0.000	0.000	0.000	15.000	0.000
B.Cat16	16.000	0.000	0.000	0.000	0.000	0.000	0.000	16.000	0.000
B.Cat17	0.000	0.000	0.000	0.000	0.000	0.000	0.000	17.000	0.000
B.Cat18	0.000	0.000	0.000	0.000	0.000	0.000	0.000	18.000	0.000
AXsi.Cat0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AXsi.Cat1	-7.050	-5.831	0.573	-7.073	-5.761	-7.447	36.897	7.836	-2.079
AXsi.Cat2	-8.618	1.387		-6.930	-5.680	-8.616	36.897	17.905	-1.386
AXsi.Cat3	-8.489	1.096		0.587	-0.523	-7.518	36.779	31.574	1.417
AXsi.Cat4	-7.076	-4.816		1.526	-5.619	-0.337		45.698	-1.386
AXsi.Cat5	0.000	-4.747		-6.317	-7.055	-0.075		67.220	-2.079
AXsi.Cat6	0.001	3.970		-7.534	-7.059	-7.256		108.163	0.560
AXsi.Cat7	1.387			-6.345	-5.544	-8.887		100.994	
AXsi.Cat8	1.097			1.568	0.782	-8.856		99.267	
AXsi.Cat9	-5.125				-4.940	-7.238		99.338	
AXsi.Cat10	-6.509				-6.290	0.539		101.019	
AXsi.Cat11	-6.499				-4.913			109.081	
AXsi.Cat12	-5.251				2.124			110.243	
AXsi.Cat13	-0.007							103.017	
AXsi.Cat14	1.099							101.713	
AXsi.Cat15	2.197							102.736	
AXsi.Cat16	3.584							107.459	
AXsi.Cat17								110.838	
AXsi.Cat18								109.550	
max.Outfit	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.000

Table 4: (continued)

estimated	An3	Ap1	Ap2	Ap3	Ev1	Ev2	P1s2	Un1	Un2
max.Infit	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.000

Table 5: Estimated parameters in the GPCM-based instrument for measuring the Post-test $\,$

	1 0	1 D			D.1.0	D. D.	TT D
estimated	AnC	ApB	ApC	EvA	PAs3	ReB	UnB
xsi.item	-0.264	-40.922	-0.412	-0.659	-26.881	-7.149	-0.415
B.Cat0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
B.Cat1	1.000	1.000	1.000	1.000	1.000	1.000	1.000
B.Cat2	2.000	2.000	2.000	2.000	2.000	2.000	2.000
B.Cat3	3.000	3.000	3.000	3.000	3.000	3.000	3.000
B.Cat4	4.000	4.000	4.000	4.000	4.000	4.000	4.000
B.Cat5	5.000	5.000	5.000	5.000	0.000	5.000	0.000
B.Cat6	6.000	6.000	6.000	6.000	0.000	6.000	0.000
B.Cat7	7.000	7.000	7.000	0.000	0.000	7.000	0.000
B.Cat8	8.000	8.000	8.000	0.000	0.000	8.000	0.000
B.Cat9	9.000	9.000	0.000	0.000	0.000	9.000	0.000
B.Cat10	10.000	10.000	0.000	0.000	0.000	10.000	0.000
B.Cat11	11.000	11.000	0.000	0.000	0.000	11.000	0.000
B.Cat12	12.000	12.000	0.000	0.000	0.000	12.000	0.000
B.Cat13	13.000	0.000	0.000	0.000	0.000	13.000	0.000
B.Cat14	14.000	0.000	0.000	0.000	0.000	14.000	0.000
B.Cat15	0.000	0.000	0.000	0.000	0.000	15.000	0.000
B.Cat16	0.000	0.000	0.000	0.000	0.000	16.000	0.000
B.Cat17	0.000	0.000	0.000	0.000	0.000	17.000	0.000
B.Cat18	0.000	0.000	0.000	0.000	0.000	18.000	0.000
B.Cat19	0.000	0.000	0.000	0.000	0.000	19.000	0.000
B.Cat20	0.000	0.000	0.000	0.000	0.000	20.000	0.000
B.Cat21	0.000	0.000	0.000	0.000	0.000	21.000	0.000
B.Cat22	0.000	0.000	0.000	0.000	0.000	22.000	0.000
B.Cat23	0.000	0.000	0.000	0.000	0.000	23.000	0.000
B.Cat24	0.000	0.000	0.000	0.000	0.000	24.000	0.000
B.Cat25	0.000	0.000	0.000	0.000	0.000	25.000	0.000
B.Cat26	0.000	0.000	0.000	0.000	0.000	26.000	0.000
B.Cat27	0.000	0.000	0.000	0.000	0.000	27.000	0.000
B.Cat28	0.000	0.000	0.000	0.000	0.000	28.000	0.000
B.Cat29	0.000	0.000	0.000	0.000	0.000	29.000	0.000
B.Cat30	0.000	0.000	0.000	0.000	0.000	30.000	0.000
B.Cat31	0.000	0.000	0.000	0.000	0.000	31.000	0.000
B.Cat32	0.000	0.000	0.000	0.000	0.000	32.000	0.000
B.Cat33	0.000	0.000	0.000	0.000	0.000	33.000	0.000
B.Cat34	0.000	0.000	0.000	0.000	0.000	34.000	0.000
B.Cat35	0.000	0.000	0.000	0.000	0.000	35.000	0.000
B.Cat36	0.000	0.000	0.000	0.000	0.000	36.000	0.000
B.Cat37	0.000	0.000	0.000	0.000	0.000	37.000	0.000
B.Cat38	0.000	0.000	0.000	0.000	0.000	38.000	0.000

Table 5: (continued)

estimated	AnC	ApB	ApC	EvA	PAs3	ReB	UnB
B.Cat39	0.000	0.000	0.000	0.000	0.000	39.000	0.000
B.Cat40	0.000	0.000	0.000	0.000	0.000	40.000	0.000
AXsi.Cat0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AXsi.Cat1	-6.026	63.868	-6.583	-5.856	107.842	9.246	-6.877
AXsi.Cat2	-7.906	127.595	-6.455	1.386	107.523	18.531	-7.055
AXsi.Cat3	-8.366	191.328	2.080	-5.439	107.390	27.833	-0.135
AXsi.Cat4	-7.959	258.331	3.044	-6.371	107.523	37.145	1.658
AXsi.Cat5	-6.265	329.662	-4.344	-5.216		46.459	
AXsi.Cat6	1.104	402.199	-5.207	3.951		55.736	
AXsi.Cat7	-0.006	487.428	-4.150			64.998	
AXsi.Cat8	-4.810	488.815	3.295			74.299	
AXsi.Cat9	-6.196	488.527				83.592	
AXsi.Cat10	-6.451	487.428				93.532	
AXsi.Cat11	-6.376	489.731				103.808	
AXsi.Cat12	-4.726	491.066				114.022	
AXsi.Cat13	2.491					124.364	
AXsi.Cat14	3.696					136.479	
AXsi.Cat15						146.873	
AXsi.Cat16						159.515	
AXsi.Cat17						171.435	
AXsi.Cat18						182.746	
AXsi.Cat19						196.735	
AXsi.Cat20						217.437	
AXsi.Cat21						241.704	
AXsi.Cat22						282.662	
AXsi.Cat23						282.649	
AXsi.Cat24						281.939	
AXsi.Cat25						277.050	
AXsi.Cat26						275.453	
AXsi.Cat27						274.899	
AXsi.Cat28						274.735	
AXsi.Cat29						275.542	
AXsi.Cat30						277.779	
AXsi.Cat31						283.146	
AXsi.Cat32						284.024	
AXsi.Cat33						278.717	
AXsi.Cat34						276.796	
AXsi.Cat35						276.101	
AXsi.Cat36						275.699	
AXsi.Cat37						276.319	

Table 5: (continued)

estimated	AnC	ApB	ApC	EvA	PAs3	ReB	UnB
AXsi.Cat38						278.569	
AXsi.Cat39						282.075	
AXsi.Cat40						285.947	
max.Outfit	1.007	1.000	1.000	1.000	1.000	0.000	1.000
max.Infit	1.007	1.000	1.000	1.000	1.000	0.000	1.000

3 Latent Trait Estimates

Table 6: Latent trait estimates and person model fit of the GPCM-based instrument for measuring gains in the skills and knowledge of participants in the first empirical study

Post-test.Infit	0.243	0.121	0.222	0.651	0.256	0.571	0.189	0.171	0.462	0.533	0.704	0.243	0.171	0.189	0.249	0.540	0.557	0.171	0.331	0.617	1.053	0.337	0.331	0.354	0.582	0.294	0.354	0.560	0.153	0.335	0.629	0.331	0.171	0.108	0.513	0.222	0.548
Post-test.Outfit	0.285	0.182	0.172	0.445	0.267	1.125	0.511	0.114	1.015	0.625	1.462	0.210	0.114	0.511	0.114	1.102	1.090	0.114	0.423	1.381	0.645	0.428	0.423	0.391	1.337	0.545	0.391	1.017	0.168	0.403	1.354	0.423	0.114	0.425	0.384	0.172	1.130
Post-test.error	0.103	0.108	0.300	0.105	0.160	0.121	0.110	0.387	0.119	0.117	0.179	0.245	0.387	0.110	0.727	0.147	0.147	0.387	0.138	0.160	0.107	0.216	0.138	0.131	0.138	0.117	0.131	0.119	0.211	0.131	0.126	0.138	0.387	0.105	0.103	0.300	0.147
Post-test.theta	-0.181	-0.121	0.235	-0.207	0.016	-0.065	-0.105	0.322	-0.074	-0.076	0.048	0.134	0.322	-0.105	0.844	-0.007	-0.007	0.322	-0.025	0.016	-0.123	0.104	-0.025	-0.040	-0.025	-0.076	-0.040	-0.074	-0.635	-0.040	-0.053	-0.025	0.322	-0.138	-0.172	0.235	-0.007
Pre-test.Infit	1.069	0.855	0.843	0.547	0.242	0.238	1.774	0.957	0.271	1.003	0.510	1.235	0.868	0.760	1.299	0.302	0.636	0.578	0.428	0.986	0.629	0.278	0.530	0.257	0.578	0.440	0.774	0.872	0.444	0.693	0.742	0.564	0.738	0.899	0.362	0.883	0.756
Pre-test.Outfit	1.010	1.271	0.913	0.403	0.219	0.596	2.367	0.658	0.270	1.014	0.637	0.859	0.857	0.706	1.107	0.429	0.730	0.455	0.492	0.884	0.437	0.355	0.942	0.456	1.178	0.657	0.883	0.637	0.785	1.075	0.559	0.873	0.702	1.296	0.298	0.584	0.629
Pre-test.error	0.116	0.112	0.100	0.112	0.240	0.108	0.126	0.133	0.133	0.100	0.154	0.122	0.125	0.104	0.211	0.195	0.100	0.216	0.105	0.132	0.108	0.107	0.138	0.100	0.119	0.154	0.162	0.103	0.134	0.240	0.162	0.104	0.119	0.108	0.273	0.184	0.164
Pre-test.theta	-0.039	-0.063	-0.170	-0.063	0.335	-0.084	-0.397	0.034	0.034	-0.170	0.115	-0.012	0.002	-0.115	0.277	0.234	-0.215	0.281	-0.105	0.035	-0.085	-0.095	0.052	-0.205	-0.026	0.115	0.140	-0.124	-0.040	0.335	0.140	-0.116	-0.026	-0.084	0.404	0.200	0.140
	10169	10170	10171	10174	10175	10176	10178	10179	10181	10183	10184	10185	10186	10187	10188	10189	10190	10191	10192	10193	10195	10196	10197	10198	10199	10200	10201	10202	10203	10204	10206	10208	10209	10210	10212	10213	10214

Table 6: (continued)

Post-test.Infit	0.313	0.249	0.222
Post-test.Outfit	0.440	0.114	0.172
Post-test.error	0.179	0.727	0.300
Post-test.theta	0.048	0.844	0.235
Pre-test.Infit	0.311	0.655	0.816
Pre-test.Outfit	0.264	0.490	0.792
Pre-test.error	0.116	0.119	0.119
Pre-test.theta	-0.038	-0.026	-0.025
	10215	10216	10217

Table 6: (continued)