

Assignment # 12 Hope To Skills

Free Artificial Intelligence Course

Instructor: Irfan Malik, Dr. Sheraz

Submission:

- Make a Google Collab notebook to implement this assignment.
- In case you face difficulty in creating the Google Collab Notebook Follow these **Steps**
- Submit a .ipynb file names as HTS_Assignment_12.ipynb
- Deadline for this Assignment is Tuesday 29-08-2023
- Also mention your name in the Assignment.
- Make Submission in the **Assignment-12** in google form and press the submit button.
- To access the submission portal click here

Train Convolutional Neural Network on Fashion MNIST dataset

1. Dataset

- a. You are provided with the fashion MNIST dataset
- **b.** Read the description of dataset here
- 2. Split the data into x train, y train, x test and y test.
 - a. Display the sample images from x train
 - **b.** Display the shape of **x** train and **y** train

3. Flatten the images

a. Reshape the images from 28x28 to 28x28x1.

4. Scale the data

- a. Convert the data into float 32 type
- b. Scale the data by dividing x train and y train by 255
- **c.** Display the shape of **x_train** and **y_train** after scaling.

5. Define the hyper parameters for the neural networks

- a. No. of Epochs
- b. Batch size
- **c.** Input_size of image (Img_height, Img_width, No of channels)
- d. No of convolutional layers
- **e.** Output size (output layers depending upon the number of classes)

XevenSkills

6. Define the structure of your neural network

- a. No of Convolutional layers
- **b.** Activation function for each convolutional layer
- **c.** Flatten the 2D vectors into 1D vector for FCN
- **d.** Number of output layer neurons and activation function
- e. Compile the model and provide following arguments
 - i. Loss function
 - ii. Optimizer
 - iii. Metric
- f. Display the summary of the model

7. Train the Neural Network

- **a.** Fit the Model
- **b.** Train the Model for 15 epochs and report the training accuracy.

8. Test the model

- **a.** Find the testing accuracy of the model
- **b.** Compare the training and testing accuracy and write you observation in the comments
- **c.** Display the predicted labels along the input image.