

第三节・任意項級数 ▷ 基本概念

Δ 3/:

V

第三节·任意項級数 ▷ 交错级数及其审敛法

Δ 4/

交错级数

正负项相间的级数称为交错级数,即

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$
或者

$$\sum_{n=1}^{\infty} (-1)^n u_n = -u_1 + u_2 - u_3 + u_4 + \cdots$$

其中 $u_n > 0$, $n = 1, 2, 3, \cdots$

莱布尼兹判别法

定理 1 如果交错级数 $\sum\limits_{-}^{\infty} (-1)^{n+1} u_n$ 满足条件

 $u_n > u_{n+1}, n = 1, 2, 3, \cdots$

 $\lim_{n\to\infty}u_n=0;$

则级数收敛,且其和 $S \leq u_1$,余项满足 $|R_n| \leq u_{n+1}$.

例1 判断交错级数 $\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \cdots$

是否收敛.

解

$$u_n = \frac{1}{2^n} > \frac{1}{2^{n+1}} = u_{n+1};$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{2^n} = 0.$$

所以交错等比级数收敛, 其和是 $S = \frac{1}{1-(-1/2)} \le u_1 = 1$. 并且, 如 果取前 n 项和 S_n 作为 S 的近似值, 则误差 $R_n \leq \frac{1}{2n+1}$.

例り

验证下列级数的敛散性

(1)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
;

(3)
$$\sum_{n=1}^{\infty} (-$$

(2)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n!}$$
;

(3)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{10^n}$$

第三节·任意项级数 ▷ 交错级数及其审敛法

解
$$(1)$$
 $\sum\limits_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 该交错级数满足条件

1
$$u_n = \frac{1}{n} > \frac{1}{n+1} = u_{n+1};$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n} = 0.$$

所以级数收敛.

正项调和级数发散, 交错的调和级数收敛,

 $u_n = \frac{1}{n!} > \frac{1}{n+1!} = u_{n+1};$

 $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n!} = 0.$

所以级数收敛.

绝对值级数

解 (2) $\sum_{i=1}^{\infty} (-1)^{n-1} \frac{1}{n!}$ 该交错级数满足条件

解 (3) $\sum_{1}^{\infty} (-1)^{n-1} \frac{n}{10^n}$ 该交错级数满足条件

$$u_n = \frac{n}{10^n} > \frac{n+1}{10^{n+1}} = u_{n+1};$$

$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{n}{10^n} = 0.$$

所以级数收敛.

定义 若有任意项级数

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \ldots + u_n + \cdots$$

其各项取绝对值后组成的正项级数

$$\sum_{n=1}^{\infty} |u_n| = |u_1| + |u_2| + |u_3| + \ldots + |u_n| + \cdots$$

称为绝对值级数.

第三节·任意项级数 ▷ 交错级数及其审敛法

第三节·任意项级数 ▷ 交错级数及其审敛法

例2中的收敛级数各项取绝对值后所成的绝对值级数是否收 敛?

解 (2) 原级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n!}$, 绝对值级数 $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{1}{n!}| = \sum_{n=1}^{\infty} \frac{1}{n!}$;

 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n}} = \frac{1}{n+1} < 1$ 收敛.

绝对值级数 $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{1}{n}| = \sum_{n=1}^{\infty} \frac{1}{n}$; 发散.

(3) 原级数 $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{n}{10^n}$, $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{n}{10^n}| = \sum_{n=1}^{\infty} \frac{n}{10^n};$

绝对值级数 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{\frac{n+1}{10^{n+1}}}{\frac{n}{n}} = \frac{1}{10} \cdot \frac{n+1}{n} < 1$ 收敛.

说明 收敛级数的绝对值级数不一定收敛

解 (1) 原级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$,

条件收敛与绝对收敛

3.3 绝对收敛与条件收敛

定义 3 对任意项级数 $\sum_{n=1}^{\infty} u_n$

II 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 但 $\sum_{n=1}^{\infty} |u_n|$ 发散, 称 $\sum_{n=1}^{\infty} u_n$ 条件收敛;

2 若 $\sum_{n=0}^{\infty} u_n$ 和 $\sum_{n=0}^{\infty} |u_n|$ 都收敛, 称 $\sum_{n=0}^{\infty} u_n$ 绝对收敛.

第三节・任意項級数 ▶ 绝对收敛与条件收敛

例如 由例3所得.

(1) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 收敛; $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散, 所以原级数条件收敛.

(2) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n!}$ 收敛; $\sum_{n=1}^{\infty} \frac{1}{n!}$ 收敛, 所以原级数绝对收敛.

(3) $\sum\limits_{10}^{\infty}(-1)^{n-1}\frac{n}{10^n}$ 收敛; $\sum\limits_{10}^{\infty}\frac{n}{10^n}$ 收敛, 所以原级数绝对收敛.

问题 $\sum_{n=0}^{\infty} |u_n|$ 收敛 $\Rightarrow \sum_{n=0}^{\infty} u_n$ 收敛, 发散?

 $\sum_{n=1}^{\infty} u_n$ 收敛 $\Rightarrow \begin{cases} \sum_{n=1}^{\infty} |u_n|$ 收敛 $\sum_{n=1}^{\infty} |u_n|$ 发散

 $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u} \right| = \rho$ $\lim_{n\to\infty} \sqrt[n]{|u_n|} = \rho$.

绝对收敛判别法

定理 2 若 $\sum_{n=1}^{\infty} |u_n|$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 也收敛.

注

■ 绝对收敛的级数, 原级数一定收敛,

绝对收敛的级数—定收敛

定理 3 若任意项级数 $\sum_{n=1}^{\infty}u_{n}$, 满足条件

当 ρ < 1 时, 级数绝对收敛;
</p>

当 ρ > 1 时, 级数发散; 3 当 $\rho = 1$ 时, 无法判断

注 若由比值 (根值) 判别法判定 $\sum\limits_{n=1}^{\infty}|u_n|$ 发散, 则可以断定 $\sum\limits_{n=1}^{\infty}u_n$

发散.

验证下列级数绝对收敛

$$(1) \sum_{n=1}^{\infty} \frac{\sin n\alpha}{n^4};$$

(2) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n^2}{e^n}$;

证明

(1) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$;

(1) $: |u_n| = \left| \frac{\sin n\alpha}{n^4} \right| \le \frac{1}{n^4}$, 而 $\sum_{n=1}^{\infty} \frac{1}{n^4}$ 收敛

 $\therefore \sum_{n=1}^{\infty} |\frac{\sin n\alpha}{n^4}|$ 收敛.

因此由定理 $2\sum_{n=1}^{\infty}\frac{\sin n\alpha}{n^4}$ 绝对收敛.

例 5 验证下列级数绝对收敛

$$(2) \sum_{n=1}^{\infty} n! x^n \quad (x \neq 0).$$

(1) $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \frac{\frac{|x|^{n+1}}{(n+1)!}}{\frac{|x|^n}{|x|^n}} = \lim_{n \to \infty} \frac{|x|}{(n+1)} = 0.$: 原级数 (绝对) 收敛.

(2) $\sum_{n=0}^{\infty} n! x^n (x \neq 0)$, $\mathfrak{U}_n = n! x^n$,

 $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)! |x|^{n+1}}{n! |x|^n} = \lim_{n \to \infty} (n+1) |x| = \infty.$: 原级数发散.

第三节·任意项级数 ▷ 绝对收敛与条件收敛

(2) $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{n^2}{e^n}$, 设 $u_n = \frac{n^2}{e^n}$,

 $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n \frac{(n+1)^n}{e^{n+1}}}{(-1)^{n-1} \frac{n^2}{e^n}} \right|$

例 6 判定级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n$ 的敛散性.

 $\therefore \sum_{n=0}^{\infty} |(-1)^n \frac{n^2}{n^n}|$ 收敛. 因此级数绝对收敛.

 $= \lim_{n \to \infty} \frac{1}{\rho} \left(\frac{n+1}{n} \right)^2 = \frac{1}{\rho} < 1.$

 $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^n}{n+1} |x|^{n+1}}{\frac{(-1)^{n-1}}{(-1)^{n-1}} |x|^n} \right| = \lim_{n \to \infty} \frac{n}{n+1} |x| = |x|$

|x| < 1 时, 级数绝对收敛;

■ |x| > 1 时, 级数发散;

■ |x| = 1 时, 见下页...

■
$$x = 1$$
 Ff, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$,

例2, 已证 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ 收敛, 由例3得其绝对值级数发散, 所以 原级数条件收敛:

■
$$x = -1$$
 时, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n = \sum_{n=1}^{\infty} \frac{-1}{n}$, 级数发散.

综试:

|x| = 1:

当 |x| < 1 时,级数绝对收敛:

当
$$x = 1$$
 时, 级数条件收敛;
当 $|x| > 1$ 或 $x = -1$ 时, 级数发散.

当 p>0 时, $\sum_{n=0}^{\infty}\frac{(-1)^{n-1}}{n^p}$ 是一个交错级数,且满足条件

1
$$u_n = \frac{1}{n^p} > \frac{1}{(n+1)^p} = u_{n+1}$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n^p} = 0$$

所以级数收敛。

又因为

$$\begin{split} \sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^p} \right| &= \sum_{n=1}^{\infty} \frac{1}{n^p} \\ &= \left\{ \begin{array}{l} \mathbf{\pm} p > 1 \mathbf{F} \mathbf{I}, \, \mathbf{X} \mathbf{X} \mathbf{y} \mathbf{v} \mathbf{x} \mathbf{x}; \\ \mathbf{\pm} p \leq 1 \mathbf{F} \mathbf{I}, \, \mathbf{X} \mathbf{X} \mathbf{y} \mathbf{x} \mathbf{x} \mathbf{t}. \end{array} \right. \end{split}$$

例 7 讨论级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ 的敛散性.

解 当
$$p < 0$$
 时, $\lim_{n \to \infty} n^p = 0$, $\lim_{n \to \infty} \frac{1}{n^p} \neq 0$;

当 p=0 时, $n^p=1$, 级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p} = \sum_{n=1}^{\infty} (-1)^{n-1}$. 根据 7.1 定理, 收敛必要条件, $\lim_{n\to\infty} u_n \neq 0$. 所以当 p < 0 时. 级数发散.

结论 关于交错 p 级数

$$\sum_{n=1}^{\infty} rac{(-1)^{n-1}}{n^p} \left\{ egin{array}{ll} rac{ extbf{j}p > 1 extbf{h}, 绝对收敛}{ extbf{j}d} \ & extbf{j} \leq 0 extbf{h}, 条件收敛. \ & extbf{j} \leq 0 extbf{h}, 级数发散 \end{array}
ight.$$

▶ 绝对收敛与条件收敛 第三节・任意項級数

3.4 绝对收敛的性质

性质 1 若级数 $\sum\limits_{n=1}^{\infty}u_n$ 绝对收敛, 和为 S, 则任意交换此级数的各项顺序后所得级数也收敛, 且和不变.

性质 2 若级数 $\sum\limits_{n=1}^{\infty}u_n$ 与 $\sum\limits_{n=1}^{\infty}v_n$ 都绝对收敛,和分别为 S 和 W,

则它们乘积 $\sum_{i=1}^{\infty} u_i v_i$ 也绝对收敛, 其和为 $S \cdot W$.

第三节·任意項級數 ▶ 绕对收敛的件

33 ⊽

第三节·任意项级数 ▷ 绝对收敛的性质

△ 30/33 ▽

内容小结

任意项级数

3.5 内容小结

- 交错级数: 莱布尼兹判别法, 定理1
- 绝对收敛, 条件收敛概念, 概念3
- 绝对收敛的级数一定收敛, 若比值判别法判定发散, 则原级数 发散, 定理3
- 判别一般级数敛散性的方法与步骤? (作业)

第三节・任意項級数 ▷ 内容-

Δ 31/33 ∇

第三节・任意項級数 ▷ 内容小结

Δ 32/33 ♥

本节完!

第三节·任意项级数 ▷ 内容小结

∆ 33/33 ♥