

Estruturas de Dados Avançadas- INF1010

Introdução Grafos Busca em profundidade e busca em largura

Introdução aos Grafos

- São estruturas matemáticas que podemos **implementar** através de estruturas de dados.
- Primeira aplicação conhecida: Sete pontes de Königsberg (1736)
 - saindo de um ponto de Königsberg, é possível atravessar todas as pontes exatamente uma vez e retornar ao ponto inicial?
 - O problema foi resolvido por Leonhard Euler

Introdução aos Grafos

 Discutia-se nas ruas da cidade de Königsberg(atual Kaliningrado) a possibilidade de atravessar todas as sete pontes sem repetir nenhuma.

- Euler transformou os caminhos em linhas e suas intersecções em pontos
 - Foi a primeira representação de um grafo

Introdução aos Grafos

 Discutia-se nas ruas da cidade de Königsberg (atual Kaliningrado) a possibilidade de atravessar todas as sete pontes sem repetir nenhuma.

- Euler transformou os caminhos em linhas e suas intersecções em pontos
 - Foi a primeira representação de um grafo

- Ele provou que não existia caminho que possibilitasse tais restrições
 - Só seria possível se houvesse exatamente zero ou dois pontos de onde saísse um número ímpar de caminhos (inicio e fim do percurso).

Aplicações de Grafos

Aplicações de Grafos

Aplicações de Grafos

Grafo	Vértices	Arestas
Cronograma	tarefas	restrições de preferência
Malha viária	interseções de ruas	ruas
Rede de água (telefônica,)	edificações (telefones,)	canos (cabos,)
Redes de computadores	computadores	conexões
Software	funções	chamadas de função
Web	páginas Web	links
Redes Sociais	pessoas	relacionamentos
	•••	

Problemas comuns

Achar o caminho mínimo (mais curto, com menor custo, ...)

• Determinar a ordem de execução de tarefas interdependentes

Determinar o fluxo máximo de uma rede

Grafo Não Dirigido

- Par G = (V,E), onde
 - V é um conjunto de n nós ou vértices
 - E é um conjunto de m arestas (conexões entre dois vértices)

vértices: $V = \{0,1,2,3\}$ arestas: $E = \{\{0,1\},\{0,2\},\{0,3\},$ $\{1,2\},\{1,3\},\{2,3\}\}$

vértices : $V = \{0,1,2,3,4,5,6\}$ arestas: $E = \{\{0,1\},\{0,2\},\{1,3\},$ $\{1,4\},\{2,5\},\{2,6\}\}$

Grafo Dirigido (Orientado, Digrafo)

- Par G = (V,E), onde
 - V é um conjunto de n nós ou vértices
 - E é um conjunto de m arcos (conexões direcionadas entre dois vértices)

vértices: V = {0,1,2,3} arestas: E = {{0,0},{0,1},{0,2}, {1,3},{2,3}}

Grafo Ponderado

- Tripla G = (V,E,p), onde
 - V é um conjunto de n nós ou vértices
 - E é um conjunto de m arcos
 - p é uma função que atribui um peso a cada arco

Vértices Adjacentes

Vértices conectados por arestas

Subgrafo

Subgrafo

Grafo Completo

 Um grafo não direcionado é completo sse cada vértice está conectado a cada um dos outros vértices

- Notação: K_n
- Um grafo completo de n vértices possui n(n-1)/2 arestas

Grafo Bipartido

• Um grafo é chamado **bipartido** (bipartite) se o seu conjunto de vértices puder ser particionado em dois <u>subconjuntos</u> X e Y, tal que cada aresta tenha uma extremidade em X e a outra em Y.

Grafo Bipartido Completo

• Em um grafo **bipartido completo**, todos os vértices de X estão ligados a todos os vértices de Y (por meio de uma única aresta para cada par de vértices).

Notação: K_{n,m}

Exemplo de grafo bipartido completo: K_{2,2}

Exemplos Grafo Bipartido Completo

bipartido completo: K_{3,4}

bipartido completo: K_{2,3}

Grafo Conectado

 Um grafo não direcionado é conectado ou conexo sse existe um caminho entre quaisquer dois vértices

- componentes **conexos** de um grafo

Grau

• Um vértice v possui grau $\delta(v) = n$ se há exatamente n arestas nele incidentes

- grau do vértice 1: $\delta(1) = 3$
- grau de entrada do vértice 1: $\delta^-(1) = 1$ grau de saída do vértice 1: $\delta^+(1) = 2$

Caminhos

- caminho de comprimento 1 entre A e C
- caminho de comprimento 2 entre B e G, passando por H
- caminho de comprimento 2 entre B e G, passando por F
- caminho de comprimento 3 entre A e F

Grafo Euleriano

- Um caminho euleriano em um grafo G é um passeio fechado que contém todas as arestas de G, uma de cada vez.
 - Um grafo conexo G admite caminho euleriano sse todos os seus vértices forem de grau par.

Grafo é chamado de euleriano pois possui caminho euleriano, exemplo: abcdeca

Não é um grafo euleriano Há vértices que têm grau ímpar

Caminho Euleriano

- Um caminho euleriano em um grafo G é um passeio fechado que contém todas as arestas de G, uma de cada vez.
 - Um grafo conexo G admite caminho euleriano aberto sse existirem dois vértices de grau ímpar.

Há 2 vértices de grau ímpar ou seja há um caminho euleriano aberto.

NÃO é um grafo euleriano, pois contém vértices de grau ímpar abcdec é um exemplo de caminho euleriano aberto

Ciclos

- Um ciclo é um caminho de um vértice a ele mesmo
 - grafo cíclico contem um ou mais ciclos
 - grafo acíclico não contem ciclos

$$B-F-G-B$$

Grafo Hamiltoniano

• Um ciclo hamiltoniano em um grafo G é um ciclo que contém todos os vértices de G e cada vértice aparece apenas uma vez.

Grafo é chamado de hamiltoniano pois possui ciclo hamiltoniano, exemplo: abcdefa

Não é um grafo hamiltoniano Não possui ciclo hamiltoniano

Grafo Hamiltoniano

- Se G é um grafo simples e $(n_{v\'ertices} \ge 3)$ e $(\delta(G) \ge n_{v\'ertices}/2)$ então G é hamiltoniano.
 - Onde $\delta(G)$ é o grau mínimo do grafo G

Grafo é hamiltoniano pois $n_{v\'ertices} = 5$, $\delta(G) = 3$ e $3 \ge 2.5$

Árvore Geradora

 Subgrafo acíclico que contem todos os vértices, com caminhos entre quaisquer dois vértices

Representações de Grafos

- Matriz de adjacências $(V \times V)$
 - cada elemento m[i][j] representa uma aresta de v_i a v_i
 - espaço O(V^2): grafos densos ($E \sim V^2$)

- Lista de adjacências
 - vetor de vértices, cada vértice tem lista de arestas
 - espaço O(V+E): grafos esparsos ($E\ll V^2$)

$$mat[i][j] = \begin{cases} 1, \text{ se houver uma aresta do nó i para o nó j} \\ 0, \text{ caso contrário} \end{cases}$$

• matrizes simétricas para grafos não direcionados

	0	1	2	3	4	5	6
0	0	1	1	0	0	0	0
1	1	0	0	1	1	0	0
2	1	0	0	0	0	1	1
3	0	1	0	0	0	0	0
4	0	1	0	0	0	0	0
5	0	0	1	0	0	0	0
6	0 1 1 0 0 0	0	1	0	0	0	0

	0	1	2	3	4	5	6	7
0	0	1	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0
2	1	0	0	1	0	0	0	0
3	0	1	1	0	0	0	0	0
4	0	0	0	0	0	1	0	0
5	0	0	0	0	1	0	1	0
6	0	0	0	0	0	1	0	1
7	0	0	0	0	0	0	1	0

Listas de Adjacências


```
typedef struct _viz Viz;
struct _viz {
   int noj;
   float peso;
   Viz* prox;
};
```

Criando um Grafo

```
static Viz* criaViz(Viz* head, int noj, float peso) {
/* insere vizinho no inicio da lista */
  Viz* no = (Viz*) malloc(sizeof(Viz));
  assert(no);
  no->noj = noj;
  no->peso = peso;
  no->prox = head;
  return no;
Grafo* grafoCria(int nv, int na) {
  int i;
  Grafo* q = (Grafo *) malloc(sizeof(Grafo));
  q->nv = nv;
  q->na = na;
  q->viz = (Viz **) malloc(sizeof(Viz *) * nv);
  for (i = 0; i < nv; i++)
     q - viz[i] = NULL;
   return q;
grafo->viz[no1] = criaViz(grafo->viz[no1], no2, peso);
grafo->viz[no2] = criaViz(grafo->viz[no2], no1, peso);
```

Percurso em Grafos

- Em profundidade (depth-first search dfs)
 - arestas que partem do vértice visitado por último
- Em largura (breadth-first search bfs)
 - arestas que partem do vértice visitado primeiro
- Guloso (greedy)
 - arestas de menor custo
 - tipicamente procurando caminho mínimo

dfs com recursão

dfs(0) dfs(1) dfs(2) dfs(6)

Estado fica na pilha de chamadas recursivas!

dfs com Pilha

dfs com Pilha

dfs com Pilha

dfs(0)	
empilha 0	[0]
desempilha 0	[]
visita 0	
empilha 5, 1	[15]
desempilha 1	[5]
visita 1	
empilha 6, 2	[2 6 5]
desempilha 2	[6 5]
visita 2	
desempilha 6	[5]
visita 6	
empilha 4, 3	[3 4 5]
desempilha 3	[4 5]
visita 3	
desempilha 4	[5]
visita 4	
desempilha 5	[]
visita 5	

```
/* grafo como matriz de adjacências */
int graph[MAX_VERTICES] [MAX_VERTICES];
int visited[MAX_VERTICES];

void dfs(int v) {
  int w;
  printf("%3d", v);
  visited[v] = 1;
  for (w = 0; w < MAX_VERTICES; w++)
    if (graph[v][w] && !visited[w]) dfs(w);
}</pre>
```

```
/* grafo como listas de adjacências */
typedef struct listNode ListNode;
struct listNode {
   int vertex;
  ListNode* link;
};
ListNode* graph[MAX VERTICES];
int visited[MAX VERTICES];
void dfs(int v) {
  ListNode* w;
   visited[v] = 1;
   printf("%3d", v);
   for (w = graph[v]; w != NULL; w = w->link)
      if (!visited[w->vertex]) dfs(w->vertex);
```

Percurso bfs


```
bfs(0)
visita 0
visita 1 → arestas de 0
visita 5

visita 2 → arestas de 1
visita 6

visita 4 → arestas de 5

visita 3 → arestas de 6
```

Como registrar os nós pendentes?

Percurso bfs


```
bfs(0)
visita 0
visita 1 → arestas de 0
visita 5

visita 2 → arestas de 1
visita 6

visita 4 → arestas de 5

visita 3 → arestas de 6
```

Como registrar os nós pendentes? **Fila** de nós

bfs com Fila Auxiliar

bfs(0) visita 0	
-> enfileira 1, 5	[1,5]
visita 1 -> enfileira 2, 6	[5,2,6]
visita 5 -> enfileira 4	[2,6,4]
visita 2	[6,4]
visita 6	[0,4]
-> enfileira 3	[4,3]
visita 4	[3]
visita 3	ادا

TAD Grafo

```
typedef struct graph Graph;
Graph* graph create(int initial size);
Graph* graph destroy(Graph* g);
int graph insert vertex (Graph* g, void* info);
void graph_insert_edge(Graph* g, int v1, int v2, int weight);
void* graph get vertex info(Graph* g, int idx);
void depth first(Graph* g, int idx, int max hops, void(*cb fn)(void*));
unsigned int graph shortest distance (Graph* g, int v1, int v2);
void graph print(Graph* g, void(*cb fn)(void*));
int graph num components(Graph* g);
```

Leitura Complementar

- Capítulo 22 Grafos
- Horowitz. E.; Sahni, S.; Anderson-Freed, S. **Fundamentals of Data Structures in C**, 2nd edition. Silicon Press, 2008.
 - Capítulo 6: Graphs
- Kruse, R.; Tondo, C.; Leung, B.; Mogalla, S.; **Data Structures and Program Design in C**, 2nd edition. Pearson, 1996.
 - Capítulo 11: Graphs
- ROCHA, A.; Estruturas De Dados E Algoritmos Em C, 3ª Edição, Ed. FCA, 2014
 - Capítulo 10: Grafos
- MORAES, C.; Estruturas De Dados E Algoritmos: Uma Abordagem Didática, Ed. Futura,
 2003
 - Capítulo 11: Grafos

