

COMPUTER GRAPHICS & MULTIMEDIA SYSTEMS- SCS1302

UNIT III - Part I

14-11-2021

3D object representation methods Polygon Surfaces, Polygon Tables

- Boundary Representations (B-reps) It describes a 3D object as a set of surfaces that separates the object interior from the environment.
- Space-partitioning representations It is used to describe interior properties, by partitioning the spatial region containing an object into a set of small, non-overlapping, contiguous solids (usually cubes).
- Each vertex stores x, y, and z coordinate information which is represented in the table as v_1 : x_1 , y_1 , z_1 .
- The Edge table is used to store the edge information of polygon. In the following figure, edge E_1 lies between vertex v_1 and v_2 which is represented in the table as E_1 : v_1 , v_2 .
- Polygon surface table stores the number of surfaces present in the polygon. From the following figure, surface S_1 is covered by edges E_1 , E_2 and E_3 which can be represented in the polygon surface table as S_1 : E_1 , E_2 , and E_3 .

Polygon Tables

VERTEX TABLE

 $V_1: X_1, Y_1, Z_1$ $V_2: X_2, Y_2, Z_2$ $V_3: X_3, Y_3, Z_3$ $V_4: X_4, Y_4, Z_4$ $V_5: X_5, Y_5, Z_5$

EDGE TABLE

 E_1 : V_1 , V_2 E_2 : V_2 , V_3 E_3 : V_3 , V_1 E_4 : V_3 , V_4 E_5 : V_4 , V_5 E_6 : V_5 , V_1

POLYGON-SURFACE TABLE

 S_1 : E_1, E_2, E_3 S_2 : E_3, E_4, E_5, E_6

https://www.youtube.com/watch?v=sXbRT439vRI

3D object representation methods

Plane Equations

The equation for plane surface can be expressed as:

$$Ax + By + Cz + D = 0$$

Where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are constants describing the spatial properties of the plane. We can obtain the values of A, B, C, and D by solving a set of three plane equations using the coordinate values for three non collinear points in the plane. Let us assume that three vertices of the plane are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) .

Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You get the values of A, B, C, and D.

$$(A/D) x_1 + (B/D) y_1 + (C/D) z_1 = -1$$

$$(A/D) x_2 + (B/D) y_2 + (C/D) z_2 = -1$$

$$(A/D) x_3 + (B/D) y_3 + (C/D) z_3 = -1$$

To obtain the above equations in determinant form, apply Cramer's rule to the above equations.

$$A = egin{bmatrix} 1 & y_1 & z_1 \ 1 & y_2 & z_2 \ 1 & y_3 & z_3 \end{bmatrix} B = egin{bmatrix} x_1 & 1 & z_1 \ x_2 & 1 & z_2 \ x_3 & 1 & z_3 \end{bmatrix} C = egin{bmatrix} x_1 & y_1 & 1 \ x_2 & y_2 & 1 \ x_3 & y_3 & 1 \end{bmatrix}$$

$$D = - egin{bmatrix} x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \ x_3 & y_3 & z_3 \end{bmatrix}$$

For any point (x, y, z) with parameters A, B, C, and D, we can say that -

- Ax +By+Cz+D? 0 means the point is not on the plane.
- Ax +By+Cz+D < 0 means the point is inside the surface.
- Ax +By+Cz+D>0 means the point is outside the surface.

3D object representation methods

B-Rep:

- B-Rep stands for Boundary Representation.
- It is an extension to the wire frame model.
- B-Rep describes the solid in terms of its surface boundaries: Vertices, edges and faces
 as shown below.

- It is a method for representing shapes using the limits.
- A solid is represented as a collection of connected surface elements, the boundary between solid and non-solid.
- There are 2 types of information in a B rep topological and geometric.
- Topological information provides the relationships among vertices, edges and faces similar to that used in a wireframe model.
- In addition to connectivity, topological information also includes orientation of edges and faces.
- Geometric information is usually equations of the edges and faces.

 The B-rep of 2 manifolds that have faces with holes satisfies the generalized Euler's formula:

$$V-E+F-H=2(C-G)$$

Where, V = Number of vertices, E = Number of edges, F = Number of faces. H = Number of holes in the faces, C is the number of separate components (parts).G is the genus (for a torus G = 1)

Geometric Modeling - Boundary Representations (BREP)

Loop A	Loop E
in => C	in => -1
next => B	next => -1
Loop B	Loop F

Loop B Loop F in => F in => G next =>-1

Loop C Loop G in => D in => -1 next => E next => H

Loop D Loop H in => -1 in => -1 next => -1 next => -1

Object Modeling with B-rep

Both polyhedra and curved objects can be modeled using the following primitives

- Vertex: A unique point (ordered triplet) in space.
- Edge :A finite, non-selfintersecting directed space curve bounded by two vertices that are not necessarily distinct.
- Face :Finite, connected, non-selfintersecting region of a closed, orientable surface bounded by one or more loops.
- Loop :An ordered alternating sequence of vertices and edges. A loop defines non-self intersecting piecewise closed space curve which may be a boundary of a face.
- Body :An independent solid. Sometimes called a shell has a set of faces that bound single connected closed volume. A minimum body is a point (vortex) which topologically has one face one vortex and no edges. A point is therefore called a seminal or singular body.
- Genus :Hole or handle.

Boundary Representation

Modified objects

Euler-Poincare Law

 Euler (1752) a Swiss mathematician proved that polyhedra that are homomorphic to a sphere are topologically valid if they satisfy the equation:

$$F - E + V - L = 2(B - G)$$
 General
 $F - E + V = 2$ Simple Solids
 $F - E + V - L = B - G$ Open Objects

Euler Operations

- A connected structure of vertices, edges and faces that always satisfies Euler's formula is known as Euler object.
- The process that adds and deletes these boundary components is called an Euler operation

Applicability of Euler formula to solid objects:

- At least three edges must meet at each vertex.
- Each edge must share two and only two faces
- All faces must be simply connected (homomorphic to disk) with no holes and bounded by single ring of edges.
- The solid must be simply connected with no through holes

Validity Checking for Simple Solids

$$F - E + V = 2$$
 Simple Solids

$$6-10+6=2$$

$$E = 12$$

$$V = 8$$

$$F = 6$$

$$6-12+8=2$$

$$E = 8$$

$$V = 5$$

$$F = 5$$

$$5 - 8 + 5 = 2$$

$$E = 24$$

$$V = 16$$

$$F = 10$$

10 - 24 + 16 = 2

Validity Checking for Simple Solids

$$F - E + V = 2$$
 Simple Solids

$$E = 3$$

$$V = 2$$

$$F = 3$$

$$3-3+2=2$$

$$E = 2$$

$$V = 2$$

$$F = 2$$

$$2-2+2=2$$

$$E=2$$

$$V = 2$$

$$F = 2$$

$$2-2+2=2$$

Loops (rings), Genus & Bodies

Genus zero

Genus one

Genus two

One inner loop

Validity Checking for Polyhedra with inner loops

$$F - E + V - L = 2(B - G)$$
 General

$$E = 36$$

$$F = 16$$

$$V = 24$$

$$L=2$$

$$B = 1$$

$$G = 0$$

$$16-36+24-2=2(1-0)=2$$

Validity Checking for Polyhedra with holes

$$F - E + V - L = 2(B - G)$$
 General

$$E = 24$$

$$F = 12$$

V = 16

L = 0

$$B = 2$$

$$G = 0$$

$$12-24+16-0=2(2-0)=4$$

$$E = 24$$

$$F = 11$$

Filled, separate components

$$V = 16$$

$$L=1$$

$$B = 1$$

$$B=1$$
 $G=0$

$$11-24+16-1=2(1-0)=2$$

Validity Checking for Polyhedra with through holes (handles)

$$F - E + V - L = 2(B - G)$$
 General

$$E = 24$$

$$F = 10$$

$$V = 16$$

$$L=2$$

$$B=1$$

$$G = 1$$

$$10-24+16-2=2(1-1)=0$$

Sweep

Translational sweep:

- i. Define a shape as a polygon vertex table as shown in figure 2 (a).
- ii. Define a sweep path as a sequence of translation vectors figure 2 (b).
- iii. Translate the shape; continue building a vertex table figure 2 (c).
- iv. Define a surface table figure 2 (d).

Rotational sweep:

- i. Define a shape as a polygon vertex table as shown in figure 3 (a).
- ii. Define a sweep path as a sequence of rotations.
- iii. Rotate the shape; continue building a vertex table as shown in figure 3 (b).
- iv. Define a surface table as shown in figure 3 (c).

SWEEP REPRESENTATIONS

https://www.youtube.com/watch?v=k_3IISNgkAo

https://www.youtube.com/watch?v=021P5-Vxl2o

http://www.dailyfreecode.com/code/creats-3d-solid-object-translational-654.aspx

Voxels

8

- Uniform Grid of Volumetric Samples
 - Acquired from CAT, MRI, etc.

Sweep Representations:

Sweep representations are used to construct 3D object from 2D shape that have some kind of symmetry.

• CSG:

- CSG stands for Constructive Solid Geometry.
- It is based on set of 3D solid primitives and regularized set theoretic operations.
- Traditional primitives are: Block, cones, sphere, cylinder and torus.
- Operations: union, intersection, difference + translation and rotation.
- A complex solid is represented using with a binary tree usually called as CSG tree.
- CSG tree is shown below.

CSG

Hierarchy of Boolean Set Operations (Union, Difference, Intersect)
 Applied to Simple Shapes

CSG

Hierarchy of Boolean Set Operations (Union, Difference, Intersect)
 Applied to Simple Shapes

Used 1) Primitives Set operations. B- [CUD] A - E)U [B - CCUD]

Sweep

Solid Swept by Curve Along Trajectory

Genus, Torus

