Université de Lille L3 MIASHS

Statistiques décisionnelles : TD 5

Pour effectuer le test d'homogénéité de Kolmogorov-Smirnov, on utilisera ks.test(X,Y) où X et Y sont des vecteurs contentant les observations. Attention, si vous faites ks.test(X,"F") où X est un vecteur et F est une fonction, vous effectuerez un test d'ajustement de Kolmogorov-Smirnov.

Exercice 1. On mesure les temps de course au 80 mètres de deux groupes d'athlètes français et belges. Les temps mesurés sont donnés ci-dessous :

français: 9.07 9.06 10.7 9.56 10.46 9.3 9.08 11.94 12.28 9.84

belges: 10.52 9.6 11.0 10.67 12.24 10.86 9.74.

Ces deux groupes sont-ils homogènes, au niveau 5\%?

Exercice 2. On a mesure les températures moyenne en Janvier tous les ans à Lille entre 2000 et 2010 et à Zurich entre 2011 et 2020. Toutes les données sont réelles.

Lille: 4.2 3.6 4.1 4 5.3 2 7.4 6.5 0.7 0.2

Zurich: 1.2 2 0.6 3.2 1.9 2.8 -3 4.7 0.1 2.6.

Ces deux groupes sont-ils homogènes, au niveau 0.05? Quand vous aurez traité l'exercice 4, vous pourrez refaire cet exercice en vous demandant s'il fait meilleur en janvier à Lille ou à Zurich.

Exercice 3. On a mesuré la vitesse moyenne du vent toutes les semaines pendant les deux derniers mois au cap blanc nez et au cap gris nez, exprimé en $km.h^{-1}$

Blanc-nez: 34 49 2.7 53 81 61 41 150

Gris-nez: 40 52 5 47 90 64 39 173

Peut-on dire que ces relevés ont la même loi?

Exercice 4 (Test d'homogénéité Kolmogorov-Smirnov unilatéral ou « one sided »). Le but de cet exercice est d'introduire une variante du test d'homogénéité de Kolmogorov-Smirnov avec une hypothèse alternative différente de celle vue en cours. Pour deux variables aléatoires X et Y, on dit que Y domine X si $\forall t \in \mathbb{R}$, $F_Y(t) \leq F_X(t)$. On le note $Y \succ X$. Cela signifie que Y a tendance à prendre des valeurs plus grandes que X. Cela ne veut pas dire que Y prend toujours des valeurs plus grandes que X! Les question ci-dessous ont pour but de vous familiariser avec cette notion.

- 1. Montrer que si X est uniforme sur [0,1] et Y uniforme sur [2,3], alors $Y \succ X$.
- 2. Montrer que si X est uniforme sur [0,1] et Y est uniforme sur [0,2] alors $Y \succ X$.
- 3. Montrer que si X est uniforme sur [0,1[et $Y \sim \mathcal{N}(0,1)$ alors Y ne domine pas X, et X ne domine pas Y.

Cette notion de domination est utile pour comparer deux variables aléatoires en statistiques. Par exemple, si on teste l'efficacité d'un médicament, on peut vouloir prendre H_0 "le médicament ne fait pas d'effet" contre H_1 "le médicament a un effet positif" (l'hypothèse usuelle serait "le médicament a un effet").

On dispose de deux échantillons indépendants des variables i.i.d. (X_1, \ldots, X_n) et (Y_1, \ldots, Y_m) . On cherche à construire un test pour :

- $H_0: X_1$ et Y_1 ont même loi, c'est à dire $F_{X_1} = F_{Y_1}$.
- $H_1: X_1$ et Y_1 n'ont pas la même loi, et $Y_1 \succ X_1$.

On introduit la statistique de test

$$T_{n,m} = \sup_{t \in \mathbb{R}} F_n(t) - G_m(t)$$

où F_n est la fonction de répartition empirique des X_i et G_m est la fonction de répartition empirique des Y_i .

Les questions suivantes ont pour but de vous aider à vous poser quelques questions sur cette statistique de test, j'attends de vous que vous compariez cette statistique de test au test d'homogénéité de Kolmogorov-Smirnov fait en cours pour vous familiariser avec ces deux objets.

- 4. Sous H_0 , la loi de $T_{n,m}$ dépend-elle de la loi des X_i ?
- 5. Sous H_1 , si n et m tendent vers l'infini, quelle est la limite de $T_{n,m}$? Quel est son signe?
- 6. Construire un test de niveau α pour le test de H_0 contre H_1 .

Application : On teste l'effet d'un somnifère sur deux groupes indépendants de 11 personnes. Le groupe contrôle a reçu un produit inactif (I), alors que le groupe test a reçu le somifère (S). Les temps de sommeil moyens pour ces individus, exprimés en minutes, sont présentés dans le tableau ci-dessous.

	560	•						,			
I	590	530	435	360	430	570	490	480	380	400	350

Si on note X_i les durées de sommeil du groupe contrôle et Y_i les durées de sommeil du groupe test, traduire l'efficacité du somnifère en terme de domination de variables aléatoires. Déterminer si, au niveau 5%, ce produit est efficace.

Super Bonus: Construisez une variante du test d'ajustement de Kolmogorov-Smirnov pour un échantillon i.i.d. X_1, \ldots, X_n et une fonction de répartition cible F et les hypothèses $H_0: F_{X_1} = F$ et $H_1: F_{X_1} \neq F$ et $F_{X_1} \leq F$.

Exercice 5. Neufs parcelles ont été cultivées dans une région A et sept parcelles dans une région B. On vous donne les rendements constatés :

- 1. Les deux régions sont-elles aussi fertiles?
- 2. La région A est-elle plus fertile que la B?