Zadanie 1. Ilość szkód dla pewnego jednorodnego portfela ma rozkład Poissona, a wartość szkody ma rozkład określony na zbiorze $\{1,2,3,4\}$. $E[(S-k)_+]$, tzn. składka netto za nadwyżkę łącznej wartości szkód ponad k wynosi:

k	3	4	5	6
$E[(S-k)_{+}]$	0.165	0.089	0.038	0.017

Prawdopodobieństwo, iż łączna wartość szkód wyniesie 4 lub 5 wynosi:

- (A) 0.038
- (B) 0.055
- (C) 0.059
- (D) 0.076
- (E) brakuje danych do udzielenia jednoznacznej odpowiedzi

Zadanie 2. Dla pewnego ryzyka ilość szkód ma rozkład Poissona z wartością oczekiwaną 0.1 i rozkład wartości pojedynczej szkody dany gęstością:

$$f(x) = \begin{cases} \frac{3000}{(10+x)^4} & x > 0\\ 0 & x \le 0 \end{cases}$$

Składka netto za pokrycie każdej szkody z tego ryzyka do wysokości 5 ponad pierwsze10 wynosi:

- (A) 0.450
- (B) 0.125
- (C) 0.080
- (D) 0.045
- (E) żadna z powyższych odpowiedzi

Zadanie 3. Wartość szkody ma rozkład wykładniczy ze średnią 2. O ile procent wzrośnie składka netto za nadwyżkę szkody do wysokości (d_2-d_1) ponad wartość d_1 , jeśli dolny i górny limit są niezmienne i wynoszą $d_1=2\ln 2$, $d_2=4\ln 2$, natomiast ceny, w jakich wyrażona jest szkoda, wzrosły dwukrotnie (o 100%)?

- (A) 65%
- (B) 80%
- (C) 100%
- (D) 125%
- (E) 155%

Zadanie 4. Ilość szkód *N* ma rozkład dany rekurencyjnie:

$$\Pr(N=0) = 0.25,$$

$$\frac{\Pr(N=k)}{\Pr(N=k-1)} = \frac{\ln 2}{k}, \qquad k=2,3,....$$

Stosunek wariancji do wartości oczekiwanej zmiennej N wynosi:

- (A) $\frac{\ln 2}{2}$
- (B) ln 2
- (C) $1 \frac{\ln 2}{2}$
- (D) 2 ln 2
- (E) $2 \ln 2$

Zadanie 5. X_1 i X_2 to dwa niezależne ryzyka o zbiorze możliwych wartości $\{0,1,2,\ldots\}$. Znamy wartości dystrybuanty $F_1(x) = \Pr(X_1 \le x)$ oraz $F_S(x) = \Pr(X_1 + X_2 \le x)$:

х	$F_1(x)$	$F_{s}(x)$
0	0.6	0.12
1	0.8	0.46
2	0.9	0.58
3	1	0.83

 $Pr(X_2 = 2)$ wynosi:

- (A) 0
- (B) 0.1
- (C) 0.2
- (D) 0.3
- (E) 0.4

Zadanie 6. Zmienna X_1 ma rozkład wykładniczy o wartości oczekiwanej 1, a niezależna od niej zmienna X_2 ma rozkład jednostajny na przedziale (0,1). $\Pr(X_1 + X_2 \le 2)$ wynosi:

- (A) e^{-1}
- (B) $1 e^{-1}$
- (C) $e^{-1} e^{-2}$
- (C) $1 e^{-1} + e^{-2}$
- (E) żadna z powyższych odpowiedzi nie jest prawidłowa

Zadanie 7. Rezerwa szkodowa na koniec roku 1994 wyniosła 100. Wartość szkód zaistniałych w roku 1995 wyniosła 300, a w ciągu tego roku narastała w sposób dobrze dający się aproksymować funkcją:

$$S(1994,1994+t) = 250t+50t^2, t \in (0,1).$$

Nie ma inflacji. Odszkodowania wypłaca się z opóźnieniem, które ma rozkład wykładniczy o wartości oczekiwanej równej pół roku. Rezerwa szkodowa na koniec roku 1995 wynosi:

- (A) $300-150e^{-2}$
- (B) $250-100e^{-2}$
- (C) $200-50e^{-2}$
- (D) 150
- (E) $100 + 50e^{-2}$

Zadanie 8. Łączna wartość odszkodowań z portfela ryzyk ma rozkład o funkcji generującej momenty postaci:

$$M_s(t) = \exp\left[\frac{4t(10-t)}{(5-t)^2}\right], \quad t < 5.$$

W portfelu tym ilość roszczeń ma rozkład Poissona ze średnią 5. Pojawiające się roszczenie z prawdopodobieństwem p jest oddalone, a z prawdopodobieństwem q=1-p odpowiadające mu odszkodowanie ma pewien rozkład ciągły na dodatniej półosi. Prawdopodobieństwo oddalenia roszczenia p wynosi:

- (A) $\frac{1}{5}$
- (B) $\frac{2}{5}$
- (C) $\frac{1}{2}$
- (D) $\frac{3}{4}$
- (E) $\frac{4}{5}$

Zadanie 9. Proces nadwyżki jest złożonym procesem Poissona, z zerową nadwyżką początkową, ze stosunkowym narzutem bezpieczeństwa $\Theta = 20\%$, oraz z rozkładem wartości szkody jednostajnym na przedziale (0,10). Wartość oczekiwana deficytu w momencie ruiny (o ile do ruiny dojdzie) jest równa:

- (A) 4
- (B) 2.5
- (C) $2\frac{2}{3}$
- (D) 3
- (E) $3\frac{1}{3}$

Zadanie 10. W momencie t_0 wiemy o pewnym ryzyku, iż generuje ono szkody zgodnie z procesem Poissona (λt) , a o parametrze λ zakładamy a priori iż jest realizacją zmiennej losowej Λ o rozkładzie Gamma (3,15). Uwzględniwszy informację, iż od momentu t_0 czekaliśmy na pierwszą szkodę do momentu $t_1 = t_0 + 4$, możemy wyliczyć wartość oczekiwaną (warunkową) zmiennej Λ . Wynosi ona:

- (A) $\frac{3}{17}$
- (B) $\frac{7}{38}$
- (C) $\frac{4}{19}$
- (D) $\frac{4}{21}$
- (E) $\frac{4}{23}$

Egzamin dla Aktuariuszy z 16 listopada 1996 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pesel	

Zadanie nr	Odpowiedź	Punktacja*
1	В	
2	D	
3	A	
4	C	
5	A	
6	D	
7	D	
8	A	
9	Е	
10	С	

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.