SI221 : Bases de l'Apprentissage

Modèles de Markov Cachés Mars 2022

Laurence Likforman-Sulem Telecom Paris/IP-Paris

likforman@telecom-paristech.fr

1

Plan

- Chaînes de Markov
 - modèles stochastiques
 - Paramètres
 - Génération de séquences états
- Modèles de Markov Cachés
 - discrets/continus
 - apprentissage
 - □ décodage

Laurence Likforman-Telecom ParisTech

applications

HMMs

- Reconnaissance de la parole (speech recognition)
- Reconnaissance de l'écriture (handwriting recognition)
- Reconnaissance d'objets, de visages dans les videos
- Traitement de la langue-Natural Language Processing-NLP: étiquetage grammatical, correction orthographique

THE→ TGE

Laurence Likforman-Telecom ParisTech

3

3

Modèle stochastique

- processus aléatoire à temps discret
 - ensemble de variables aléatoires q₁, q₂,, q_T
 - indexées aux instants entiers t=1, 2,T

notation

- q_t: variable aléatoire d'état observé au temps t
 - □ notée q(t) ou q_t
 - □ q(t) prend ses valeurs dans espace fini d'états S S={1,2,Q}
- P(q_t=i): probabilité d'observer l'état i au temps t

exemple état: pollution (indice), météo: beau, pluie, nuageux, NLP: fonction des mots d'un texte (verbe,nom, pronom;....)

Laurence Likforman-Telecom ParisTech

4

Modèle stochastique

- évolution du processus
 - état initial q1
 - suite (chaîne) de transitions entre états

$$q_1 \rightarrow q_2 \dots \rightarrow q_t \quad t <= T$$

calcul probabilité d'une séquence d'états

$$P(q_1, q_2, ...q_T) = P(q_T | q_1, q_2, ...q_{T-1}) P(q_1, q_2, ...q_{T-1})$$

$$= P(q_T | q_1, q_2, ...q_{T-1}) P(q_{T-1} | q_1, q_2, ...q_{T-2}) P(q_1, q_2, ...q_{T-2})$$

$$= P(q_1) P(q_2 | q_1) P(q_3 | q_1, q_2) P(q_T | q_1, q_2, ...q_{T-1})$$

 modèle: connaître la probabilité de chaque transition+proba initiale P(q₁)

5

5

Chaîne de Markov à temps discret

- propriété de Markov d'ordre k : dépendance limitée
 - $P(q_t | q_1, q_2, ...q_{t-1}) = P(q_t | q_{t-k} ...q_{t-1})$
 - k=1 ou 2 en pratique
- □ cas k=1 (bi-grams)
 - $P(q_t | q_1, q_2, ...q_{t-1}) = P(q_t | q_{t-1})$
 - $P(q_1, q_2, ...q_T) = P(q_1)P(q_2 | q_1)P(q_3 | q_2) P(q_T | q_{T-1})$
 - → probabilités de transition entre états

Laurence Likforman-Telecom ParisTech

6

Chaîne de Markov stationnaire

- probabilités de transition ne dépendent pas du temps
 - P($q_t = j \mid q_{t-1} = i$) = P($q_{t+k} = j \mid q_{t+k-1} = i$) = a_{ij}
 - a_{ii}= probabilité de passer de l'état i à l'état j
- définition: modèle d'une chaîne de Markov stationnaire
 - matrice des probabilités de transitions
 - A=[a_{ij}]

- vecteur des probabilités initiales
- $\blacksquare \quad \Pi = [\pi_i]$

- $= \pi_i = P(q_1 = i)$
- □ contraintes : $0 <= \pi_i <= 1$ $0 <= a_{ij} <= 1$

$$\sum_{i=1}^{Q} \pi_{i} = 1$$

$$\sum_{j=1}^{Q} a_{ij} = 1$$

Laurence Likforman-Telecom ParisTech

7

topologie du modèle: ergodique / gauche droite

modèle ergodique (sans contrainte)

A=
$$\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

□ modèle gauche droite (contrainte: transitions i → j ≥ i)

A= \[\begin{pmatrix} 0.4 & 0.6 & 0 \\ 0 & 0.8 & 0.2 \\ 0 & 0 & 1 \end{pmatrix} \]

8

Chaîne de Markov stationnaire: mini TD

- Soit une chaîne à 3 états
 - 1: pluie (r), 2: nuages (c), 3: soleil (s)
- □ on observe q₁= s , quelle est la probabilité d'observer pendant les 7 jours suivants les temps (états)

s ssrrscs

t=1 t=2

modèle ergodique

$$A = \begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

9

9

générer une séquence d'états: mini-TD

- on donne
- générer séquence d'états de longueur T=5 suivant chaîne de Markov (matrice A)

 $\pi = [0.35 \ 0.65]$

$$A = \begin{bmatrix} 0.35 & 0.65 \\ 0.2 & 0.8 \end{bmatrix}$$

- on tire les nombres aléatoires suivants:
- u1 = 0.92 (q1)
- u2=0.31
- u3 = 0.1
- □ u4=0.4
- □ u5=0.01

Laurence Likforman-Telecom ParisTech

13

13

Modèles de Markov Cachés

- une classe c de forme
 - modèle λ_c
- combinaison de 2 processus stochastiques
 - un observé
 - un caché
- on n'observe pas la séquence d'états

 $q = q_1 q_2 ... q_T$

 on observe la séquence d'observations

 $0=O_1 \ O_2 \ ...O_T$

 les observations sont générées (émises) par les états

Laurence Likforman-Telecom ParisTech

HMMs discrets

- ensemble de Q états discrets {1,2,..Q}
- ensemble de N symboles discrets

□
$$\{s_1, s_2, s_3,s_N\} \rightarrow \{1,2,3,...,N\}$$

on observe o=o₁ o₂ o₁...o_T

 $\circ = s_8 s_3 s_{13} s_6 s_8 s_5 s_{10} s_1$

o = 8 3 13 6 8 5 10 1

 q correspond à séquence d'états (cachés)

 $q=q_1 q_2 q_1...q_T$

q=1122233

Q=3, N=16,

8 3 ...

10 1

15

HMMs discrets

- HMM λ discret est défini par
 - π vecteur probabilités initiales
 - A: matrice transition
 - B : matrice des probabilités discrètes d'observation des symboles (dans les états)

$$\pi = (\pi_1, \pi_2, ... \pi_Q)$$
 $\pi_i = P(q_1 = i)$

$$A = \{a_{ij}\} = P(q_t = j | q_{t-1} = i)$$

$$B = \{b_{ki}\} = P(o_{t} = s_{k} | q_{t} = i)$$

Laurence Likforman-Telecom ParisTech

modèles de Markov cachés continus

- HMM λ continu défini par :
- π vecteur de probabilités initiales
- A: matrice de transition entre états
- b_i(o_t): densité de probabilité des observations dans état i, i=1,..Q
- → gaussienne ou mélange gaussiennes

ŲŲ

L. Likforman - Telecom ParisTech

17

17

mélange de gaussiennes

$$b_i(o_t) = \sum_{k=1}^{M} c_{ik} \mathcal{N}(o_t; \Sigma_{ik}, \mu_{ik}) \quad \forall i = 1, ...Q.$$

observations continues (scalaires ou vectorielles)

c_{ik}: poids de la kième loi gausssienne du mélange de M gaussiennes, associée à l'état i

modèle λ : inclut c_{ik} , μ_{ik} et Σ_{ik} , i=1,2,3 et k=1,..M

L. Likforman - Telecom ParisTech

19

19

hypothèses fondamentales

 indépendance des observations conditionnellement aux états

 chaîne de Markov stationnaire (transitions entre états)

$$P(q_{1}, q_{2}, ..., q_{T}) = P(q_{1})P(q_{2} | q_{1})P(q_{3} | q_{2}) P(q_{T} | q_{T-1})$$

$$a_{q2 q3}$$

Laurence Likforman-Telecom ParisTech

hypothèses fondamentales

 probabilité jointe pour une séquence d'observations et un chemin d'états

$$\begin{split} P(o_{1},..o_{t}...o_{T},q_{1}...q_{t}...q_{T} \, \big| \, \lambda) &= \pi_{q_{1}}b_{q_{1}}(o_{1}) \prod_{t=2}^{T} a_{q_{t-1},q_{t}} \, P(o_{t} \, \big| q_{t}\,, \lambda) \\ &= \pi_{q_{1}}b_{q_{1}}(o_{1}) \prod_{t=2}^{T} a_{q_{t-1},q_{t}} \, b_{q_{t}}(o_{t}) \\ &= P(o_{1},..o_{t}...o_{T} \, \big| q_{1}...q_{t}...q_{T}\,, \lambda) P(q_{1}...q_{t}...q_{T}) \end{split}$$

Laurence Likforman-Telecom ParisTech

21

21

HMM / réseau bayésien

- un HMM est un cas particulier de réseau Bayésien
- les variables d'observations sont indépendantes connaissant leur variable parent (état)

Laurence Likforman-Telecom ParisTech

22

HMM= cas particulier de réseau bayésien dynamique

- HMM: Hidden Markov Model
- RBD: réseau Bayésien Dynamique de type arbre
- 1 variable état + 1 variable observation à chaque t
 - $(Q_{t})_{1 \leq t \leq T}$: state variable (hidden)
 - $(O_{\scriptscriptstyle t})_{\scriptscriptstyle 1 \leq t \leq T}$: observation variable generated by state variable

23

23

générer une séquence d'observations

- générer la séquence d'états q1,....qT, puis générer la séquence observations à partir de chaque état
- ou générer q1 puis o1 (q1→ o1); générer q2 à partir de q1 (q1→ q2), puis o2 (q2→ o2), etc...

L. Likforman - Telecom ParisTech

24

étape 2 : générer des observations (discretes)

- séquence états
 - □ q1= 1; q₂= 1; q₃= 1; q₄= 2; q₅=2; q₆=3;......
- générer l'observation à t=4

états

N=5 (nombre de symboles) Q=4 (nombre d'états)

0.1 0.2 0.7 0.2 0.1 B=

observations

0.1 0.2 0.3

25

HMM pour la reconnaissance des formes

- chaque clase m est modélisée par un modèle λ_m
- calcul de la vraisemblance du modèle λ_m pour une séquence d'observations o=o₁.....o_T extraite d'une forme

$$P(o_1,..o_t...o_T | \lambda_m)$$

attribution de la forme à la classe \hat{m} telle que :

$$\hat{m} = \underset{m}{\operatorname{arg\,max}} P(o_{1},...o_{t}...o_{T} | \lambda_{m})$$

HMM pour étiquetage morpho-syntaxique

- observations: mots
- séquence d'observation : suite de mots
- états cachés: Nom, pronom, verbe, etc....
- modèle
 - probabilités de transitions entre éléments grammaticaux, bi-grams (tags)
 - probabilités d'observer les mots pour un élément grammatical donné (tag)
 - □ P(« le » I verbe), P(« le » I pronom) etc....

27

27

algorithme de décodage de Viterbi

- calcul de la vraisemblance du modèle λ
- séquence observation o=o₁,...o_T

$$P(o \mid \lambda) = \sum_{q} P(o, q \mid \lambda)$$

 au lieu de sommer sur toutes les séquences d'états, recherche de la séquence optimale :

$$\hat{q} = \arg\max_{q} P(q, o | \lambda)$$

puis estimer la vraisemblance du modèle λ par :

$$P(o \mid \lambda) \approx P(o, \hat{q} \mid \lambda)$$

Laurence Likforman-Telecom

2

29

décodage : algorithme de Viterbi

 δ_t(i): proba. (jointe) meilleure séquence partielle d'états aboutissant à l'état i au temps t et correspondant à la séquence partielle d'observations o₁...o_t.

$$\delta_{t}(i) = \max_{q_{1}q_{2}...q_{t-1}} P(q_{1}q_{2}...q_{t} = i, o_{1}o_{2}...o_{t} | \lambda)$$

récurrence

$$\begin{split} &P(q_1q_2...q_t=i,q_{t+1}=j,o_1o_2...o_to_{t+1}\big|\lambda)\\ &=P(o_{t+1},q_{t+1}=j\big|o_1...o_t,q_1...q_t=i,\lambda)P(o_1...o_t,q_1...q_t=i\big|\lambda)\\ &=P(o_{t+1}\big|q_{t+1}=j,\lambda)P(q_{t+1}=j\big|q_t=i,\lambda)P(o_1...o_t,q_1...q_t=i\big|\lambda)\\ &\max_i P(q_1q_2...q_t=i,q_{t+1}=j,o_1o_2...o_to_{t+1}\big|\lambda) = \max_i b_j(o_{t+1})a_{ij}P(q_1q_2...q_t=i,o_1o_2...o_t\big|\lambda) \end{split}$$

$$\delta_{t+1}(j) = \max_{i} b_{j}(o_{t+1}) a_{ij} \delta_{t}(i) = b_{j}(o_{t+1}) \max_{i} a_{ij} \delta_{t}(i)$$

$$P(o,\hat{q}) = \max_{j} \delta_{T}(j)$$
Laurence Likforman-Telecom Paris Tech

algorithme de décodage de Viterbi

1ere colonne: Initialisation

$$\delta_1(i) = P(q_1 = i, o_1) = b_i(o_1)\pi_i$$
 $i = 1,...Q$

colonnes 2 à T : récursion

$$\delta_{t+1}(j) = b_j(o_{t+1}) \max_i a_{ij} \delta_t(i)$$
 $t = 1,...T-1, j = 1,...Q$

 $\varphi_{\text{t+1}}(j) = rg \max_{i} a_{ij} \delta_{t}(i)$ sauvegarde meilleur chemin (état précédent)

• terminaison
$$P(o, \hat{q}) = \max_{j} \delta_{T}(j)$$

$$\hat{q}_{\scriptscriptstyle T} = \arg\max_{\scriptscriptstyle j} \delta_{\scriptscriptstyle T}(j)$$

backtrack

$$\hat{q}_{t} = \varphi(\hat{q}_{t+1})$$
 $t = T - 1, T - 2, ... 1$

Laurence Likforman-Telecom ParisTech

31

33

références

- M. Sigelle, Bases de la Reconnaissance des Formes: Chaînes de Markov et Modèles de Markov Cachés, chapitre 7, Polycopié Telecom ParisTech, 2012.
- L. Likforman-Sulem, E. Barney Smith, Reconnaissance des Formes: théorie et pratique sous matlab, Ellipses, TechnoSup, 2013.
- L. Rabiner, A tutorial on Hidden Markov Models and selected applications in Speech Recognition, proc. of the IEEE, 1989.

Laurence Likforman-Telecom Paris Tech