Chapter 4 General Vector Spaces

- 4.1. Real Vector Spaces
- 4.2. Subspaces
- 4.3. Spanning Sets
- 4.4. Linear Independence
- 4.5. Coordinates and Basis
- 4.6. Dimension
- 4.8. Row Space, Column Space, and Null Space
- 4.9. Rank, Nullity, and the Fundamental Matrix Spaces

Chapter 4.5

Coordinates and Basis

Coordinate Systems in Linear Algebra

Although rectangular coordinate systems are common, they are not essential.

Coordinates of *P* in a rectangular coordinate system in 2-space.

Coordinates of *P* in a rectangular coordinate system in 3-space.

Coordinate Systems in Linear Algebra

Although rectangular coordinate systems are common, they are not essential.

Coordinates of *P* in a nonrectangular coordinate system in 2-space.

Coordinates of *P* in a nonrectangular coordinate system in 3-space.

Coordinate Systems in Linear Algebra

$$\overrightarrow{OP} = a\mathbf{u}_1 + b\mathbf{u}_2$$
 and $\overrightarrow{OP} = a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$

Basis for a Vector Space

DEFINITION 1

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a set of vectors in a finite-dimensional vector space V, then S is called a *basis* for V if:

- (a) S is linearly independent.
- (b) S spans V.

The Standard Basis

EXAMPLE 1 The standard unit vectors

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

are call the *standard basis* for \mathbb{R}^n

EXAMPLE 2

 $S = \{1, x, x^2, \dots, x^n\}$ is a basis for the vector space P_n of polynomials

$$\mathbf{p}_0 = 1, \quad \mathbf{p}_1 = x, \quad \mathbf{p}_2 = x^2, \dots, \quad \mathbf{p}_n = x^n$$

are call the *standard basis* for P_n

Basis for R^3

EXAMPLE 3

Show that the vectors $\mathbf{v}_1 = (1, 2, 1), \mathbf{v}_2 = (2, 9, 0), \text{ and } \mathbf{v}_3 = (3, 3, 4)$ form a basis for \mathbb{R}^3 .

Solution

We must show that these vectors are $\bigcirc{1}$ linearly independent and $\bigcirc{2}$ span R^3 .

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{0}$$
has only the trivial solution;

EXAMPLE 3 Cont.

2 every vector $\mathbf{b} = (b_1, b_2, b_3)$ in R^3 can be expressed as $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = \mathbf{b}$

Thus
$$c_1 + 2c_2 + 3c_3 = 0$$
 $c_1 + 2c_2 + 3c_3 = b_1$ $c_1 + 9c_2 + 3c_3 = 0$ and $c_1 + 9c_2 + 3c_3 = b_2$ $c_1 + 4c_3 = 0$ $c_1 + 4c_3 = b_3$

coefficient matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 9 & 3 \\ 1 & 0 & 4 \end{bmatrix} \quad \det(A) = -1$$

 $det(A) \neq 0$ implies $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 form a basis for R^3 .

The Standard Basis for M_{mn}

EXAMPLE 4 Show that the matrices

$$M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

form a basis for the vector space M_{22} of 2×2 matrices.

Solution

1

We must show that the matrices are linearly independent and span M_{22} .

$$c_1 M_1 + c_2 M_2 + c_3 M_3 + c_4 M_4 = \mathbf{0}$$

has only the trivial solution, where **0** is the 2×2 zero matrix:

EXAMPLE 4 Cont.

every
$$2 \times 2$$
 matrix $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ can be expressed as $c_1 M_1 + c_2 M_2 + c_3 M_3 + c_4 M_4 = B$

$$\begin{array}{cc} \boxed{1} & c_1\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} + c_2\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix} + c_3\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix} + c_4\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix} = \begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}$$

$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

EXAMPLE 4 Cont.

$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Since the first equation has only the trivial solution

$$c_1 = c_2 = c_3 = c_4 = 0$$

the matrices are linearly independent, and since the second equation has the solution $c_1 = a$, $c_2 = b$, $c_3 = c$, $c_4 = d$ the matrices span M_{22} .

This proves that the matrices M_1 , M_2 , M_3 , M_4 form a basis for M_{22} .

They are call the *standard basis* for M_{mn}

Uniqueness of Basis Representation

THEOREM 4.5.1

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$$
 in exactly one way.

Proof suppose that some vector v can be written as

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

and also as
$$\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n$$

Proof (cont.)

Subtracting the second equation from the first gives

$$\mathbf{0} = (c_1 - k_1)\mathbf{v}_1 + (c_2 - k_2)\mathbf{v}_2 + \dots + (c_n - k_n)\mathbf{v}_n$$

the linear independence of S implies that

$$c_1 - k_1 = 0$$
, $c_2 - k_2 = 0$,..., $c_n - k_n = 0$

that is,
$$c_1 = k_1, c_2 = k_2, ..., c_n = k_n$$

Thus, the two expressions for \mathbf{v} are the same.

Coordinates Relative to a Basis

DEFINITION 2

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an ordered basis for a vector space V, and $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$ is the expression for a vector \mathbf{v} in terms of the basis S, then the scalars c_1, c_2, \ldots, c_n are called the *coordinates of* vrelative to the basis S. The vector (c_1, c_2, \ldots, c_n) in \mathbb{R}^n constructed from these coordinates is called the *coordinate* vector of v relative to S; it is denoted by $(\mathbf{v})_S = (c_1, c_2, \dots, c_n)$

Coordinates Relative to a Basis

 $(\mathbf{v})_S$ is a vector in \mathbb{R}^n , so that once an ordered basis S is given for a vector space V, Theorem 4.5.1 establishes a one-to-one correspondence between vectors in V and vectors in \mathbb{R}^n

A one-to-one correspondence

Conventionally, the order of the vectors in a basis S remains fixed.

Coordinates Relative to the Standard Bases

EXAMPLE 5

In the special case where $V = R^n$ and S is the *standard basis*, the coordinate vector $(\mathbf{v})_S$ and the vector \mathbf{v} are the same

$$\mathbf{v} = (\mathbf{v})_S$$

For example, in \mathbb{R}^3

$$\mathbf{v} = (a, b, c)$$
 standard basis $S = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$

$$\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$

the coordinate vector relative to this basis is $(\mathbf{v})_S = (a, b, c)$, which is the same as the vector \mathbf{v} .

Coordinates Relative to the Standard Bases

EXAMPLE 6

(a) Find the coordinate vector for the polynomial

$$\mathbf{p}(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

relative to the standard basis for the vector space P_n .

(b) Find the coordinate vector of

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

relative to the standard basis for M_{22} .

EXAMPLE 6 Cont.

Solution (a) The given formula for $\mathbf{p}(x)$ expresses this polynomial as linear combination of the standard basis vectors

$$S = \{1, x, x^2, \dots, x^n\}.$$

$$(\mathbf{p})_S = (c_0, c_1, c_2, \dots, c_n)$$

Solution (b)

We showed in Example 4 that the representation of a vector

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 as a linear combination of the standard basis vectors is

$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

so the coordinate vector of B relative to S is $(B)_S = (a, b, c, d)$

Coordinates Relative to an Arbitrary Basis

$$\mathbf{v}_1 = (1, 2, 1),$$

$$\mathbf{v}_2 = (2, 9, 0),$$

$$\mathbf{v}_3 = (3, 3, 4)$$

form a basis for R^3 .

Find the coordinate vector of $\mathbf{v} = (5, -1, 9)$ relative to the basis $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}.$

(b) Find the vector \mathbf{v} in \mathbb{R}^3 whose coordinate vector relative to S is $(\mathbf{v})_S = (-1, 3, 2)$.

EXAMPLE 7 Cont.

Solution (a)

To find $(\mathbf{v})_S$ we must first express \mathbf{v} as a linear combination of the

vectors in S;
$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

$$(5, -1, 9) = c_1(1, 2, 1) + c_2(2, 9, 0) + c_3(3, 3, 4)$$

$$c_1 + 2c_2 + 3c_3 = 5$$

 $2c_1 + 9c_2 + 3c_3 = -1$
 $c_1 + 4c_3 = 9$

Solving this system we obtain

$$c_1 = 1, c_2 = -1, c_3 = 2$$

Therefore,
$$(\mathbf{v})_S = (1, -1, 2)$$

Solution (b)

Using the definition of $(\mathbf{v})_S$, we obtain

$$\mathbf{v} = (-1)\mathbf{v}_1 + 3\mathbf{v}_2 + 2\mathbf{v}_3$$

= $(-1)(1, 2, 1) + 3(2, 9, 0) + 2(3, 3, 4) = (11, 31, 7)$

Chapter 4-5 Objectives

- Show that a set of vectors is a basis for a vector space.
- ☐ Find the coordinates of a vector relative to a basis.
- ☐ Find the coordinate vector of a vector relative to a basis.