First-Order Theorem Proving

Peter Baumgartner

NICTA

Peter.Baumgartner@nicta.com.au

http://users.rsise.anu.edu.au/~baumgart/

Slides partially based on material by Alexander Fuchs, Harald Ganzinger, John Slaney, Viorica Sofronie-Stockermans and Uwe Waldmann

Purpose of This Lecture

Provide an overview about FOTP:

"What" Part

- Automatically analyzing problems stated in first-order logic
- Context: other disciplines in Automated Deduction

"How" Part - Important Techniques

- Normal forms of formulas
- Herbrand interpretations
- Resolution calculus, unification
- Instance-based method
- Model computation

Context: First-Order Theorem Proving in Relation to ...

... Calculation: Compute function value at given point:

Problem: $2^2 = ?$ $3^2 = ?$ $4^2 = ?$

"Easy" (often polynomial)

... Constraint Solving: Given:

- ightharpoonup Problem: $x^2 = a$ where $x \in [1 \dots b]$ (x variable, a, b parameters)
- ightharpoonup Instance: a=16, b=10

Find values for variables such that problem instance is satisfied "Difficult" (often exponential, but restriction to finite domains)

First-Order Theorem Proving: Given:

Problem: $\exists x \ (x^2 = a \land x \in [1 \dots b])$

Is it satisfiable? unsatisfiable? valid?

"Very difficult" (often undecidable)

Logical Analysis Example: Three Coloring Problem

Problem: Given a map. Can it be colored using only three colors, where neighbouring countries are colored differently?

Three Coloring Problem - Graph Theory Abstraction

Problem Instance

Problem Specification

The Rôle of Theorem Proving?

Three Coloring Problem - Formalization

Every node has at least one color

$$\forall N \text{ (red(}N) \lor \text{green(}N) \lor \text{blue(}N))$$

Every node has at most one color

$$\forall N \; ((\operatorname{red}(N) \to \neg \operatorname{green}(N)) \land (\operatorname{red}(N) \to \neg \operatorname{blue}(N)) \land (\operatorname{blue}(N) \to \neg \operatorname{green}(N)))$$

Adjacent nodes have different color

$$\forall M, N \text{ (edge}(M, N) \rightarrow (\neg(\text{red}(M) \land \text{red}(N)) \land \neg(\text{green}(M) \land \text{green}(N)) \land \neg(\text{blue}(M) \land \text{blue}(N))))$$

Three Coloring Problem - Solving Problem Instances ...

... with a constraint solver:

Let constraint solver find value(s) for variable(s) such that problem instance is satisfied

Here: Variables: Colors of nodes in graph

Values: Red, green or blue

Problem instance: Specific graph to be colored

... with a theorem prover

Let the theorem prover prove that the three coloring formula (see previous slide) + specific graph (as a formula) is satisfiable

- To solve problem instances a constraint solver is usually much more efficient than a theorem prover (e.g. use a SAT solver)
- Theorem provers are not even guaranteed to terminate, in general

Other tasks where theorem proving is more appropriate?

Three Coloring Problem: The Rôle of Theorem Proving

Functional dependency

Blue coloring depends functionally on the red and green coloring

Blue coloring does not functionally depend on the red coloring

Theorem proving: Prove a formula is valid. Here:

Is "the blue coloring is functionally dependent on the red/red and green coloring" (as a formula) valid, i.e. holds for all possible graphs?

I.e. analysis wrt. all instances \Rightarrow theorem proving is adequate

Theorem Prover Demo

How to Build a (First-Order) Theorem Prover

- 1. Fix an **input language** for formulas
- 2. Fix a **semantics** to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- 4. Design a **calculus** for the logic and the services

 Calculus: high-level description of the "logical analysis" algorithm

 This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Go through the red issues in the rest of this talk

How to Build a (First-Order) Theorem Prover

- 1. Fix an **input language** for formulas
- 2. Fix a **semantics** to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- 4. Design a **calculus** for the logic and the services

 Calculus: high-level description of the "logical analysis" algorithm

 This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Languages and Services — Propositional SAT

Formula: Propositional logic formula ϕ

Question: Is ϕ satisfiable?

(Minimal model? Maximal consistent subsets?)

Theorem Prover: Based on BDD, DPLL, or stochastic local search

Issue: the formula ϕ can be **BIG**

See lecture by Anbulagan on methods for SAT

Languages and Services — Description Logics

Formula: Description Logic TBox + ABox (restricted FOL)

TBox: Terminology

ABox: Assertions

Professor \sqcap \exists supervises . Student \sqsubseteq BusyPerson

p: Professor (p, s): supervises

Question: Is TBox + ABox satisfiable?

(Does C subsume D?, Concept hierarchy?)

Theorem Prover: Tableaux algorithms (predominantly)

Issue: Push expressivity of DLs while preserving decidability See lecture by Prof. Baader on Description Logics

Languages and Services — Satisfiability Modulo Theories (SI

Formula: Usually variable-free first-order logic formula ϕ Equality \doteq , combination of theories, free symbols

Question: Is ϕ valid? (satisfiable? entailed by another formula?)

$$\models_{\mathbb{N} \cup \mathbb{L}} \forall I \ (c = 5 \rightarrow \mathsf{car}(\mathsf{cons}(3 + c, I)) \stackrel{.}{=} 8)$$

Theorem Prover: DPLL(T), translation into SAT, first-order provers

Issue: essentially undecidable for non-variable free fragment

$$P(0) \wedge (\forall x \ P(x) \rightarrow P(x+1)) \models_{\mathbb{N}} \forall x \ P(x)$$

Design a "good" prover anyways (ongoing research)

Languages and Services — "Full" First-Order Logic

Formula: First-order logic formula ϕ (e.g. the three-coloring spec above) Usually with equality \doteq

Question: Is ϕ formula valid? (satisfiable?, entailed by another formula?)

Theorem Prover: Superposition (Resolution), Instance-based methods

Issues

- Efficient treatment of equality
- Decision procedure for sub-languages or useful reductions?
 Can do e.g. DL reasoning? Model checking? Logic programming?
- Built-in inference rules for arrays, lists, arithmetics (still open research)

How to Build a (First-Order) Theorem Prover

- 1. Fix an **input language** for formulas
- 2. Fix a **semantics** to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- 4. Design a **calculus** for the logic and the services

 Calculus: high-level description of the "logical analysis" algorithm

 This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Semantics

"The function f is continuous", expressed in (first-order) predicate logic:

$$\forall \varepsilon (0 < \varepsilon \rightarrow \forall a \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$$

Underlying Language

Variables ε , a, δ , x

Function symbols $0, |_{-}|, _{-} -_{-}, f(_{-})$

Terms are well-formed expressions over variables and function symbols

Predicate symbols $_ < _$, $_ = _$

Atoms are applications of predicate symbols to terms

Boolean connectives \land , \lor , \rightarrow , \neg

Quantifiers \forall , \exists

The function symbols and predicate symbols comprise a signature Σ

Semantics

"The function f is continuous", expressed in (first-order) predicate logic:

$$\forall \varepsilon (0 < \varepsilon \rightarrow \forall a \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$$

"Meaning" of Language Elements – Σ -Algebras

Universe (aka Domain): Set *U*

Variables \mapsto values in U (mapping is called "assignment")

Function symbols \mapsto (total) functions over U

Predicate symbols \mapsto relations over U

Boolean connectives \mapsto the usual boolean functions

Quantifiers → "for all ... holds", "there is a ..., such that"

Terms \mapsto values in U

Formulas → Boolean (Truth-) values

Semantics - ∑-Algebra Example

Let Σ_{PA} be the standard signature of Peano Arithmetic The standard interpretation \mathbb{N} for Peano Arithmetic then is:

```
egin{array}{lll} U_{\mathbb{N}} &=& \{0,1,2,\ldots\} \ 0_{\mathbb{N}} &=& 0 \ & s_{\mathbb{N}} &:& n\mapsto n+1 \ & +_{\mathbb{N}} &:& (n,m)\mapsto n+m \ & *_{\mathbb{N}} &:& (n,m)\mapsto n*m \ & \leq_{\mathbb{N}} &=& \{(n,m)\mid n \ \mbox{less than or equal to} \ m\} \ & <_{\mathbb{N}} &=& \{(n,m)\mid n \ \mbox{less than} \ m\} \end{array}
```

Note that \mathbb{N} is just one out of **many possible** Σ_{PA} -interpretations

Semantics - ∑-Algebra Example

Evaluation of terms and formulas

Under the interpretation $\mathbb N$ and the assignment $\beta: x \mapsto 1$, $y \mapsto 3$ we obtain

$$(\mathbb{N}, \beta)(s(x) + s(0)) = 3$$

 $(\mathbb{N}, \beta)(x + y = s(y)) = True$
 $(\mathbb{N}, \beta)(\forall z \ z \le y) = False$
 $(\mathbb{N}, \beta)(\forall x \exists y \ x < y) = True$
 $\mathbb{N}(\forall x \exists y \ x < y) = True$ (Short notation when β irrelevant)

Important Basic Notion: Model

If ϕ is a closed formula, then, instead of $I(\phi) = True$ one writes

$$I \models \phi$$
 ("I is a model of ϕ ")

E.g.
$$\mathbb{N} \models \forall x \exists y \ x < y$$

Standard reasoning services can now be expressed semantically p.19

Services Semantically

```
E.g. "entailment":
```

Axioms over $\mathbb{R} \wedge \text{continuous}(f) \wedge \text{continuous}(g) \models \text{continuous}(f+g)$?

Services

```
\mathsf{Model}(I,\phi): I \models \phi? (Is I a model for \phi?)
```

Validity(ϕ): $\models \phi$? ($I \models \phi$ for every interpretation?)

Satisfiability(ϕ): ϕ satisfiable? ($I \models \phi$ for some interpretation?)

Entailment(ϕ , ψ): $\phi \models \psi$? (does ϕ entail ψ ?, i.e.

for every interpretation I: if $I \models \phi$ then $I \models \psi$?)

Solve(I, ϕ): find an assignment β such that $I, \beta \models \phi$

Solve(ϕ): find an interpretation and assignment β such that I, $\beta \models \phi$

Additional complication: fix interpretation of some symbols (as in \mathbb{N} above)

What if theorem prover's native service is only "Is ϕ unsatisfiable?" ?

Semantics - Reduction to Unsatisfiability

- Suppose we want to prove an entailment $\phi \models \psi$
- Equivalently, prove $\models \phi \rightarrow \psi$, i.e. that $\phi \rightarrow \psi$ is valid
- Equivalently, prove that $\neg(\phi \rightarrow \psi)$ is not satisfiable (unsatisfiable)
- Equivalently, prove that $\phi \wedge \neg \psi$ is unsatisfiable

Basis for (predominant) refutational theorem proving

Dual problem, much harder: to disprove an entailment $\phi \models \psi$ find a model of $\phi \land \neg \psi$

One motivation for (finite) model generation procedures

How to Build a (First-Order) Theorem Prover

- 1. Fix an **input language** for formulas
- 2. Fix a **semantics** to define what the formulas mean Will be always "classical" here
- 3. Determine the desired **services** from the theorem prover (The questions we would like the prover be able to answer)
- 4. Design a **calculus** for the logic and the services

 Calculus: high-level description of the "logical analysis" algorithm

 This includes redundancy criteria for formulas and inferences
- 5. Prove the calculus is **correct** (sound and complete) wrt. the logic and the services, if possible
- 6. Design a **proof procedure** for the calculus
- 7. Implement the proof procedure (research topic of its own)

Calculus - Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

- Reduction of logical concepts (operators, quantifiers)
- Reduction of syntactical structure (nesting of subformulas)
- Can be exploited for efficient data structures and control

Translation into Clause Normal Form

Prop: the given formula and its clause normal form are equi-satisfiable

Prenex Normal Form

Prenex formulas have the form

$$Q_1x_1\ldots Q_nx_n F$$
,

where *F* is quantifier-free and $Q_i \in \{ \forall, \exists \}$

Computing prenex normal form by the rewrite relation \Rightarrow_P :

$$(F \leftrightarrow G) \Rightarrow_{P} (F \rightarrow G) \land (G \rightarrow F)$$

$$\neg QxF \Rightarrow_{P} \overline{Q}x\neg F \qquad (\neg Q)$$

$$(QxF \rho G) \Rightarrow_{P} Qy(F[y/x] \rho G), y \text{ fresh}, \rho \in \{\land, \lor\}$$

$$(QxF \rightarrow G) \Rightarrow_{P} \overline{Q}y(F[y/x] \rightarrow G), y \text{ fresh}$$

$$(F \rho QxG) \Rightarrow_{P} Qy(F \rho G[y/x]), y \text{ fresh}, \rho \in \{\land, \lor, \rightarrow\}$$

Here \overline{Q} denotes the quantifier **dual** to Q, i.e., $\overline{\forall} = \exists$ and $\overline{\exists} = \forall$.

In the Example

$$\forall \varepsilon (0 < \varepsilon \rightarrow \forall a \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon))))$$

$$\Rightarrow_{P}$$

$$\forall \varepsilon \forall a (0 < \varepsilon \rightarrow \exists \delta (0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon))))$$

$$\Rightarrow_{P}$$

$$\forall \varepsilon \forall a \exists \delta (0 < \varepsilon \rightarrow 0 < \delta \land \forall x (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$$

$$\Rightarrow_{P}$$

$$\forall \varepsilon \forall a \exists \delta (0 < \varepsilon \rightarrow \forall x (0 < \delta \land |x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$$

$$\Rightarrow_{P}$$

$$\forall \varepsilon \forall a \exists \delta \forall x (0 < \varepsilon \rightarrow (0 < \delta \land (|x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon)))$$

Skolem Normal Form

Intuition: replacement of $\exists y$ by a concrete choice function computing y from all the arguments y depends on.

Transformation \Rightarrow_S

$$\forall x_1, \ldots, x_n \exists y \ F \Rightarrow_S \ \forall x_1, \ldots, x_n \ F[f(x_1, \ldots, x_n)/y]$$

where f/n is a new function symbol (Skolem function).

In the Example

$$\forall \varepsilon \forall a \exists \delta \forall x (0 < \varepsilon \to 0 < \delta \land (|x - a| < \delta \to |f(x) - f(a)| < \varepsilon))$$

$$\Rightarrow_{S}$$

$$\forall \varepsilon \forall a \forall x (0 < \varepsilon \to 0 < d(\varepsilon, a) \land (|x - a| < d(\varepsilon, a) \to |f(x) - f(a)| < \varepsilon))$$

Clausal Normal Form (Conjunctive Normal Form)

Rules to convert the matrix of the formula in Skolem normal form into a conjunction of disjunctions:

$$(F \leftrightarrow G) \Rightarrow_{K} (F \rightarrow G) \land (G \rightarrow F)$$

$$(F \rightarrow G) \Rightarrow_{K} (\neg F \lor G)$$

$$\neg (F \lor G) \Rightarrow_{K} (\neg F \land \neg G)$$

$$\neg (F \land G) \Rightarrow_{K} (\neg F \lor \neg G)$$

$$\neg \neg F \Rightarrow_{K} F$$

$$(F \land G) \lor H \Rightarrow_{K} (F \lor H) \land (G \lor H)$$

$$(F \land \top) \Rightarrow_{K} F$$

$$(F \land \bot) \Rightarrow_{K} \bot$$

$$(F \lor \top) \Rightarrow_{K} \top$$

$$(F \lor \bot) \Rightarrow_{K} F$$

They are to be applied modulo associativity and commutativity of \land and \lor

In the Example

$$\forall \varepsilon \forall a \forall x (0 < \varepsilon \to 0 < d(\varepsilon, a) \land (|x - a| < d(\varepsilon, a) \to |f(x) - f(a)| < \varepsilon))$$
 $\Rightarrow_{\mathcal{K}}$

$$0 < d(\varepsilon, a) \lor \neg (0 < \varepsilon)$$
$$\neg (|x - a| < d(\varepsilon, a)) \lor |f(x) - f(a)| < \varepsilon \lor \neg (0 < \varepsilon)$$

Note: The universal quantifiers for the variables ε , a and x, as well as the conjunction symbol \wedge between the clauses are not written, for convenience

The Complete Picture

$$F \Rightarrow_{P}^{*} Q_{1}y_{1} \dots Q_{n}y_{n} G \qquad (G \text{ quantifier-free})$$

$$\Rightarrow_{S}^{*} \forall x_{1}, \dots, x_{m} H \qquad (m \leq n, H \text{ quantifier-free})$$

$$\Rightarrow_{K}^{*} \underbrace{\forall x_{1}, \dots, x_{m}}_{\text{leave out}} \bigwedge_{i=1}^{k} \underbrace{\bigvee_{j=1}^{n_{i}} L_{ij}}_{\text{clauses } C_{i}}$$

 $N = \{C_1, \ldots, C_k\}$ is called the **clausal (normal) form** (CNF) of F

Note: the variables in the clauses are implicitly universally quantified

Instead of showing that F is unsatisfiable, the proof problem from now is to show that N is unsatisfiable

Can do better than "searching through all interpretations"

Theorem: N is satisfiable iff it has a Herbrand model

Herbrand Interpretations

A **Herbrand interpretation** (over a given signature Σ) is a Σ -algebra \mathcal{A} such that

Provide the set T_{Σ} of ground terms over Σ (a **ground term** is a term without any variables):

$$U_{\mathcal{A}} = \mathsf{T}_{\mathsf{\Sigma}}$$

ightharpoonup Every function symbol from Σ is "mapped to itself":

 $f_{\mathcal{A}}:(s_1,\ldots,s_n)\mapsto f(s_1,\ldots,s_n)$, where f is n-ary function symbol in Σ

Example

- $All_{Pres} = (\{0/0, s/1, +/2\}, \{</2, \le/2\})$
- $\mathcal{L}_{A} = \{0, s(0), s(s(0)), \ldots, 0+0, s(0)+0, \ldots, s(0+0), s(s(0)+0), \ldots\}$
- $m{\smile} 0 \mapsto 0, s(0) \mapsto s(0), s(s(0)) \mapsto s(s(0)), \ldots, 0 + 0 \mapsto 0 + 0, \ldots$

Herbrand Interpretations

Only interpretations p_A of predicate symbols $p \in \Sigma$ is undetermined in a Herbrand interpretation

 ρ_A represented as the set of ground atoms

$$\{p(s_1,\ldots,s_n)\mid (s_1,\ldots,s_n)\in p_{\mathcal{A}} \text{ where } p\in\Sigma \text{ is } n\text{-ary predicate symbol}\}$$

ightharpoonup Whole interpretation represented as $\bigcup_{p\in\Sigma} p_{\mathcal{A}}$

Example

- $\Sigma_{Pres} = (\{0/0, s/1, +/2\}, \{</2, \le/2\})$ (from above)
- $oldsymbol{\wp}$ N as Herbrand interpretation over Σ_{Pres}

$$I = \{ 0 \le 0, \ 0 \le s(0), \ 0 \le s(s(0)), \ \ldots, \ 0 + 0 \le 0, \ 0 + 0 \le s(0), \ \ldots, \ \ldots, \ (s(0) + 0) + s(0) \le s(0) + (s(0) + s(0)), \ldots \}$$

Herbrand's Theorem

Proposition

A Skolem normal form $\forall \phi$ is unsatisfiable iff it has no Herbrand model

Theorem (Skolem-Herbrand-Theorem)

 $\forall \phi$ has no Herbrand model iff some finite set of ground instances $\{\phi\gamma_1,\ldots,\phi\gamma_n\}$ is unsatisfiable

Applied to clause logic:

Theorem (Skolem-Herbrand-Theorem)

A set N of Σ -clauses is unsatisfiable iff some finite set of ground instances of clauses from N is unsatisfiable

Leads immediately to theorem prover "Gilmore's Method"

Outer loop: Grounding

Inner loop: Propositional Method

Inner loop:Propositional
Method

Inner loop:

Propositional Method

Gilmore's Method - Based on Herbrand's Theorem

Calculi for First-Order Logic Theorem Proving

- Gilmore's method reduces proof search in first-order logic to propositional logic unsatisfiability problems
- Main problem is the unguided generation of (very many) ground clauses
- All modern calculi address this problem in one way or another, e.g.
 - Guidance: Instance-Based Methods are similar to Gilmore's method but generate ground instances in a guided way
 - Avoidance: Resolution calculi need not generate the ground instances at all
 - Resolution inferences operate directly on clauses, not on their ground instances

Next: propositional Resolution, lifting, first-order Resolution

The Propositional Resolution Calculus Res

Modern versions of the first-order version of the resolution calculus [Robinson 1965] are (still) the most important calculi for FOTP today.

Propositional resolution inference rule:

$$\frac{C \vee A \qquad \neg A \vee D}{C \vee D}$$

Terminology: $C \lor D$: resolvent; A: resolved atom

Propositional (positive) factorisation inference rule:

$$\frac{C \vee A \vee A}{C \vee A}$$

These are **schematic inference rules**:

C and D – propositional clauses

A – propositional atom

"V" is considered associative and commutative

Sample Proof

1.	$\neg A \lor \neg A \lor B$	(given)
2.	$A \vee B$	(given)
3.	$\neg C \lor \neg B$	(given)
4.	C	(given)
5.	$\neg A \lor B \lor B$	(Res. 2. into 1.)
6.	$\neg A \lor B$	(Fact. 5.)
7.	$B \vee B$	(Res. 2. into 6.)
8.	В	(Fact. 7.)
9.	$\neg C$	(Res. 8. into 3.)
10.		(Res. 4. into 9.)

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let $I \in \Sigma$ -Alg. To be shown:

- 1. for resolution: $I \models C \lor A$, $I \models D \lor \neg A \Rightarrow I \models C \lor D$
- 2. for factorization: $I \models C \lor A \lor A \Rightarrow I \models C \lor A$
- Ad (i): Assume premises are valid in 1. Two cases need to be considered:
- (a) A is valid in I, or (b) $\neg A$ is valid in I.

a)
$$I \models A \Rightarrow I \models D \Rightarrow I \models C \lor D$$

b)
$$I \models \neg A \Rightarrow I \models C \Rightarrow I \models C \lor D$$

Ad (ii): even simpler

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

- $oldsymbol{\wp}$ That is, if a propositional clause set is unsatisfiable, then Resolution will derive the empty clause $oldsymbol{\bot}$ eventually
- Arr More precisely: If a clause set is unsatisfiable and closed under the application of the Resolution and Factorization inference rules, then it contains the empty clause \bot
- Perhaps easiest proof: semantic tree proof technique (see blackboard)
- This result can be considerably strengthened, some strengthenings come for free from the proof

Propositional resolution is not suitable for first-order clause sets

Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses	Ground instances			
P(f(x), y)	$\{P(f(a), a), \ldots, P(f(f(a)), f(f(a))), \ldots\}$			
$\neg P(z,z)$	$\{\neg P(a), \ldots, \neg P(f(f(a)), f(f(a))), \ldots\}$			

Only common instances of P(f(x), y) and P(z, z) give rise to inference:

$$\frac{P(f(f(a)), f(f(a))) \qquad \neg P(f(f(a)), f(f(a)))}{\bot}$$

Unification

All common instances of P(f(x), y) and P(z, z) are instances of P(f(x), f(x)) P(f(x), f(x)) is computed deterministically by **unification**

First-order resolution

$$\frac{P(f(x),y) \qquad \neg P(z,z)}{\bot}$$

Justified by existence of P(f(x), f(x))

Substitutions and Unifiers

P(z,z)

 $m{\wp}$ A **substitution** σ is a mapping from variables to terms which is the identity almost everywhere

Example:
$$\sigma = [y \mapsto f(x), z \mapsto f(x)]$$

- A substitution can be **applied** to a term or atom t, written as $t\sigma$ Example, where σ is from above: $P(f(x), y)\sigma = P(f(x), f(x))$
- A substitution γ is a **unifier** of s and t iff $s\gamma = t\gamma$ Example: $\gamma = [x \mapsto a, y \mapsto f(a), z \mapsto f(a)]$ is a unifier of P(f(x), y) and
- A unifier σ of s is **most general** iff for every unifier γ of s and t there is a substitution δ such that $\gamma = \sigma \circ \delta$; notation: $\sigma = \text{mgu}(s, t)$

Example:
$$\sigma = [y \mapsto f(x), z \mapsto f(x)] = \text{mgu}(P(f(x), y), P(z, z))$$

There are (linear) algorithms to compute mgu's or return "fail"

Resolution for First-Order Clauses

$$\frac{C \vee A \qquad D \vee \neg B}{(C \vee D)\sigma} \quad \text{if } \sigma = \text{mgu}(A, B) \qquad \text{[resolution]}$$

$$\frac{C \vee A \vee B}{(C \vee A)\sigma} \qquad \text{if } \sigma = \text{mgu}(A, B) \quad [factorization]$$

In both cases, A and B have to be renamed apart (made variable disjoint).

Example

$$\frac{Q(z) \vee P(z,z) \quad \neg P(x,y)}{Q(x)} \quad \text{where } \sigma = [z \mapsto x, y \mapsto x] \qquad \text{[resolution]}$$

$$\frac{Q(z) \vee P(z, a) \vee P(a, y)}{Q(a) \vee P(a, a)} \quad \text{where } \sigma = [z \mapsto a, y \mapsto a] \quad [\text{factorization}]$$

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

- $oldsymbol{\wp}$ That is, if a clause set is unsatisfiable, then Resolution will derive the empty clause \bot eventually
- Arr More precisely: If a clause set is unsatisfiable and closed under the application of the Resolution and Factorization inference rules, then it contains the empty clause \bot
- Perhaps easiest proof: Herbrand Theorem + completeness of propositional resolution + Lifting Theorem (see blackboard)
 - **Lifting Theorem:** the conclusion of any propositional inference on ground instances of first-order clauses can be obtained by instantiating the conclusion of a first-order inference on the first-order clauses
- Closure can be achieved by the "Given Clause Loop"

The "Given Clause Loop"

As used in the Otter theorem prover:

Lists of clauses maintained by the algorithm: usable and sos. Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

- 1. Let given_clause be the 'lightest' clause in sos;
- 2. Move given_clause from sos to usable;
- 3. Infer and process new clauses using the inference rules in effect; each new clause must have the given_clause as one of its parents and members of usable as its other parents; new clauses that pass the retention tests are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as "depth + length" of clause.

The "Given Clause Loop" - Graphically

Calculi for First-Order Logic Theorem Proving

Recall:

- Gilmore's method reduces proof search in first-order logic to propositional logic unsatisfiability problems
- Main problem is the unguided generation of (very many) ground clauses
- All modern calculi address this problem in one way or another, e.g.
 - Guidance: Instance-Based Methods are similar to Gilmore's method but generate ground instances in a guided way
 - Avoidance: Resolution calculi need not generate the ground instances at all
 - Resolution inferences operate directly on clauses, not on their ground instances

Next: Instance-Based Method "Inst-Gen"

Inst-Gen [Ganzinger&Korovin 2003]

Idea: "semantic" guidance: add only instances that are falsified by a "candidate model"

Eventually, all repairs will be made or there is no more candidate model **Important notation:** \bot denotes both a unique constant and a substitution that maps every variable to \bot

Example (*S* is "current clause set"):

$$S: P(x,y) \lor P(y,x)$$
 $S\bot: P(\bot,\bot) \lor P(\bot,\bot)$ $\neg P(x,x)$ $\neg P(\bot,\bot)$

Analyze $S \perp$:

Case 1: SAT detects unsatisfiability of $S\perp$ Then Conclude S is unsatisfiable

But what if $S\perp$ is satisfied by some model, denoted by I_{\perp} ?

Inst-Gen

Main idea: associate to model I_{\perp} of S_{\perp} a candidate model I_S of S. Calculus goal: add instances to S so that I_S becomes a model of S

Example:

$$S: \underline{P(x)} \lor Q(x)$$
 $S\bot : \underline{P(\bot)} \lor Q(\bot)$ $\underline{\neg P(a)}$

Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), \neg P(a)\}$ of S_{\perp}

Case 2.1: candidate model $I_S = {\neg P(a)}$ derived from literals <u>selected</u> in S by I_{\perp} is not a model of S

Add "problematic" instance $P(a) \vee Q(a)$ to S to refine I_S

Inst-Gen

Clause set after adding $P(a) \vee Q(a)$

$$S: \underline{P(x)} \lor Q(x)$$
 $S\bot : \underline{P(\bot)} \lor Q(\bot)$ $P(a) \lor \underline{Q(a)}$ $P(a) \lor \underline{Q(a)}$ $P(a)$

Analyze $S \perp$:

Case 2: SAT detects model $I_{\perp} = \{P(\perp), Q(a), \neg P(a)\}$ of S_{\perp}

Case 2.2: candidate model $I_S = \{Q(a), \neg P(a)\}$ derived from literals <u>selected</u> in S by I_\perp is a model of S

Then conclude *S* is satisfiable

How to derive candidate model I_S ?

Inst-Gen - Model Construction

It provides (partial) interpretation for S_{qround} for given clause set S_{qround}

$$S: \underline{P(x)} \lor Q(x)$$
 $\Sigma = \{a, b\}, S_{ground}: \underline{P(b)} \lor Q(b)$ $P(a) \lor \underline{Q(a)}$ $P(a) \lor \underline{Q(a)}$ $\underline{P(a)}$

- For each $C_{ground} \in S_{ground}$ find most specific $C \in S$ that can be instantiated to C_{ground}
- Select literal in C_{qround} corresponding to selected literal in that C
- \triangle Add <u>selected literal</u> of that C_{ground} to I_S if not in conflict with I_S

Thus,
$$I_S = \{P(b), Q(a), \neg P(a)\}$$

Model Generation

Scenario: no "theorem" to prove, or disprove a "theorem" A model provides further information then Why compute models?

Planning: Can be formalised as propositional satisfiability problem. [Kautz& Selman, AAAI96; Dimopolous et al, ECP97]

Diagnosis: Minimal models of abnormal literals (circumscription). [Reiter, Al87]

Databases: View materialisation, View Updates, Integrity Constraints.

Nonmonotonic reasoning: Various semantics (GCWA, Well-founded, Perfect, Stable,...), all based on minimal models. [Inoue et al, CADE 92]

Software Verification: Counterexamples to conjectured theorems.

Theorem proving: Counterexamples to conjectured theorems.

Finite models of quasigroups, (MGTP/G). [Fujita et al, IJCAI 93]

Model Generation

Why compute models (cont'd)?

Natural Language Processing:

 \triangle Maintain models $\mathcal{I}_1, \ldots, \mathcal{I}_n$ as different readings of discourses:

 $J_i \models BG\text{-}Knowledge \cup Discourse_so_far$

Example - Group Theory

The following axioms specify a group

$$\forall x, y, z$$
 : $(x * y) * z = x * (y * z)$ (associativity)
 $\forall x$: $e * x = x$ (left – identity)

$$\forall x$$
 : $i(x) * x = e$ (left – inverse)

Does

$$\forall x, y : x * y = y * x$$
 (commutat.)

follow?

No, it does not

Example - Group Theory

Counterexample: a group with finite domain of size 6, where the elements 2 and 3 are not commutative: Domain: $\{1, 2, 3, 4, 5, 6\}$

e:1

		1	2	3	4	5	6
•	1	1	2 1 5 6 3 4	3	4	5	6
	2	2	1	4	3	6	5
*:	3	3	5	1	6	2	4
	4	4	6	2	5	1	3
	5	5	3	6	1	4	2
	6	6	4	5	2	3	1

Finite Model Finders - Idea

- \triangle Assume a fixed domain size n.
- Arr Use a tool to decide if there exists a model with domain size n for a given problem.
- ightharpoonup Do this starting with n=1 with increasing n until a model is found.
- ightharpoonup Note: domain of size n will consist of $\{1, \ldots, n\}$.

1. Approach: SEM-style

- Tools: SEM, Finder, Mace4
- Specialized constraint solvers.
- For a given domain generate all ground instances of the clause.
- Example: For domain size 2 and clause p(a, g(x)) the instances are p(a, g(1)) and p(a, g(2)).

1. Approach: SEM-style

- Set up multiplication tables for all symbols with the whole domain as cell values.
- Example: For domain size 2 and function symbol g with arity 1 the cells are $g(1) = \{1, 2\}$ and $g(2) = \{1, 2\}$.
- Try to restrict each cell to exactly 1 value.
- The clauses are the constraints guiding the search and propagation.
- Solution Example: if the cell of a contains $\{1\}$, the clause a=b forces the cell of b to be $\{1\}$ as well.

2. Approach: Mace-style

- Tools: Mace2, Paradox
- For given domain size n transform first-order clause set into equisatisfiable propositional clause set.
- Arr Original problem has a model of domain size n iff the transformed problem is satisfiable.
- Run SAT solver on transformed problem and translate model back.

Paradox - Example

Domain: $\{1, 2\}$

Clauses: $\{p(a) \lor f(x) = a\}$

Flattened: $p(y) \lor f(x) = y \lor a \neq y$

Instances: $p(1) \lor f(1) = 1 \lor a \neq 1$

 $p(2) \lor f(1) = 1 \lor a \neq 2$

 $p(1) \vee f(2) = 1 \vee a \neq 1$

 $p(2) \lor f(2) = 1 \lor a \neq 2$

Totality: $a = 1 \lor a = 2$

 $f(1) = 1 \lor f(1) = 2$

 $f(2) = 1 \lor f(2) = 2$

Functionality: $a \neq 1 \lor a \neq 2$

 $f(1) \neq 1 \vee f(1) \neq 2$

 $f(2) \neq 1 \lor f(2) \neq 2$

A model is obtained by setting the blue literals true

Conclusions

- Talked about the role of First-Order Theorem proving
- Talked about some standard techniques (Normal forms of formulas, Resolution calculus, unification, Instance-based method, Model computation)

Further Topics

- Resolution variants and other calculi, e.g. Model Elimination
- Redundancy elimination, efficient equality reasoning, adding arithmetics (open problem)
- FOTP methods as decision procedures in special cases
 E.g. reducing planning problems and temporal logic model checking
 problems to function-free clause logic and using an instance-based method as
 a decision procedure
- Implementation techniques
- Competition CASC and TPTP problem library
- Instance-based methods (a lot to do here, cf. my home page)
 Attractive because of complementary features to more established methods