82. Sejam D um domínio de integridade e $a,b \in D \setminus \{0_D\}$. Diz-se que $m \in D$ é mínimo múltiplo comum de a e b (abreviadamente, m é $\mathrm{m.m.c.}(a,b)$) se

i.
$$a \mid m \in b \mid m$$
;

ii. $a \mid t \in b \mid t \Rightarrow m \mid t$, para todo $t \in D$.

Se existe um m.m.c.(a,b), representa-se o conjunto de todos os m.m.c.(a,b) por [a,b].

Mostre que

- (a) se m é m.m.c.(a,b) então $[a,b] = m \mathcal{U}_D$;
- (b) se existe m.m.c.(a, b), $a \in a'$ são associados e $b \in b'$ são associados, então, existe m.m.c. $(a', b') \in [a', b'] = [a, b]$;
- (c) $a \mid b$ se e só se $[a, b] = b \mathcal{U}_D$;
- 83. Sejam D um domínio de integridade e $a,b,m\in D$ tais que m é $\mathrm{m.m.c.}(a,b)$.
 - (a) Mostre que existe $d \in D$ tal que md = ab.
 - (b) Mostre que o elemento d determinado em (a) é um m.d.c.(a,b).
 - (c) Conclua que, se $d' \in [a, b]$, então existe $u \in \mathcal{U}_D$ tal que md' = abu.
- 84. Mostre que, no anel $\mathbb{Z}[\sqrt{-3}]$, existe m.d.c. de 2 e $1+\sqrt{-3}$ mas não existe m.m.c. de 2 e $1+\sqrt{-3}$.
- 85. Mostre que $\mathbb{Z}[\sqrt{-7}]$ não é um domínio de fatorização única.
- 86. Sejam D um domínio de ideais principais e $a,b \in D \setminus \{0_D\}$. Mostre que:
 - (a) $d \in \text{m.d.c.}(a, b)$ se e só se (d) = (a) + (b);
 - (b) $m \in \text{m.m.c.}(a, b)$ se e só se $(m) = (a) \cap (b)$.
- 87. Seja D um domínio euclidiano com valoração $\delta.$ Mostre que:
 - (a) $\delta(1_D) \leq \delta(a)$, para todo $a \in D \setminus \{0_D\}$;
 - (b) $\delta(a) = \delta(1_D)$ se e só se $a \in \mathcal{U}_D$;
 - (c) elementos associados têm a mesma valoração.
- 88. Mostre que $\mathbb{Z}[\sqrt{-2}]$ é um domínio euclidiano com valoração δ definida por $\delta(a+b\sqrt{-2})=a^2+2b^2$, para todos $a,b\in\mathbb{Z}$.
- 89. Construa o corpo de frações do domínio de integridade $\mathbb{Z}[-2]$.