Your Classifier is Secretly an Energy Based model and You Should Treat it Like One

TL DR

- выучивает распределение данных
- $P_{\theta}(X, Y)$

- просто решает задачу классификации
- $\max_{\theta} P_{\theta}\left(Y|X\right)$

- на практике discriminative лучше классифицирует
- •но у generative есть много полезных свойств: есть распределение; устойчивость; OOD; semisupervised; calibration

TL DR

Способ превратить discriminative модель в generative, просто используя логиты

Energy Based Model

Способ выучить $P_{\theta}(X)$

. Любую pdf можно записать в виде: $p_{\theta}(x) = \frac{\exp\left(-E_{\theta}(x)\right)}{Z(\theta)}$

$$Z(\theta) = \int_{x} \exp\left(-E_{\theta}(x)\right)$$

• $E_{\theta}(x):\mathbb{R}^D o \mathbb{R}$ – energy function, чем меньше, тем больше pdf

Energy Based Model

Оптимизация

MLE

$$\frac{\partial \log p_{\theta}(x)}{\partial \theta} = E_{p_{\theta}(x')} \left[\frac{\partial E_{\theta}(x')}{\partial \theta} \right] - \frac{\partial E_{\theta}(x)}{\partial \theta}$$

• чтобы оценивать матожидание будем сэмплировать при помощи SGLD:

•
$$x_0 \sim p_0(x)$$
, $x_{i+1} = x_i - \frac{\alpha}{2} \frac{\partial E_{\theta}(x_i)}{\partial x_i} + \epsilon$, $\epsilon \sim \mathcal{N}(0, \alpha)$

What your classifier is hiding

Joint Energy Model

• Классификатор возвращает логиты $f_{\theta} \colon \mathbb{R}^D o \mathbb{R}^K$, где K – число классов

$$p_{\theta}(y \mid x) = \frac{\exp(f_{\theta}(x)[y])}{\sum_{y'} \exp(f_{\theta}(x)[y'])}$$

$$p_{\theta}(x,y) = \frac{\exp\left(f_{\theta}(x)[y]\right)}{Z(\theta)}, E_{\theta}(x,y) = -f_{\theta}(x)[y]$$

$$p_{\theta}(x) = \sum_{y} p_{\theta}(x, y) = \frac{\sum_{y} \exp\left(f_{\theta}(x)[y]\right)}{Z(\theta)}, E_{\theta}(x) = -\log\sum_{y} \exp\left(f_{\theta}(x)[y]\right)$$

Joint Energy Model

Train

- MLE
- $\log p_{\theta}(x, y) = \log p_{\theta}(x) + \log p_{\theta}(y \mid x)$
- Тренируем по отдельности, так как иначе можем получить biased модель $p_{\theta}(y \,|\, x)$
- $\log p_{\theta}(y \mid x)$ оптимизируем как обычную discriminative модель
- $\log p_{\theta}(x)$ оптимизируем как EBM

Joint Energy Model

Train

Algorithm 1 JEM training: Given network f_{θ} , SGLD step-size α , SGLD noise σ , replay buffer B, SGLD steps η , reinitialization frequency ρ

```
1: while not converged do
              Sample x and y from dataset
             L_{\rm clf}(\theta) = {\rm xent}(f_{\theta}({\bf x}), y)
              Sample \widehat{\mathbf{x}}_0 \sim B with probability 1 - \rho, else \widehat{\mathbf{x}}_0 \sim \mathcal{U}(-1, 1)
                                                                                                                                                       ▶ Initialize SGLD
             for t \in [1, 2, ..., \eta] do
                                                                                                                                                                        ⊳ SGLD
                    \widehat{\mathbf{x}}_{t} = \widehat{\mathbf{x}}_{t-1} + \alpha \cdot \frac{\partial \text{LogSumExp}_{y'}(f_{\theta}(\widehat{\mathbf{x}}_{t-1})[y'])}{\partial \widehat{\mathbf{x}}_{t-1}} + \sigma \cdot \mathcal{N}(0, I)
              end for
             L_{\text{gen}}(\theta) = \text{LogSumExp}_{y'}(f(\mathbf{x})[y']) - \text{LogSumExp}_{y'}(f(\widehat{\mathbf{x}}_t)[y'])
                                                                                                                                                  Surrogate for Eq 2
             L(\theta) = L_{\rm clf}(\theta) + L_{\rm gen}(\theta)
              Obtain gradients \frac{\partial L(\theta)}{\partial \theta} for training
10:
              Add \hat{\mathbf{x}}_t to B
11:
12: end while
```

Joint Energy Model

Результаты

- Обучили wide resnet на CIFAR-10
- Получилась сравнимая с discriminative моделями точность
- Плюс модель с хорошими генеративными качествами (IS Inseption Score, то, насколько уверенно Inception v3 классифицирует сгенерированные картинки)
- Семплы генерировались по аналогии с оптимизацией (SGLD)

Class	Model	Accuracy% ↑	IS↑	FID↓
	Residual Flow	70.3	3.6	46.4
	Glow	67.6	3.92	48.9
Hybrid	IGEBM	49.1	8.3	37.9
	JEM $p(\mathbf{x} y)$ factored	30.1	6.36	61.8
	JEM (Ours)	92.9	8.76	38.4
Disc.	Wide-Resnet	95.8	N/A	N/A
Gen.	SNGAN	N/A	8.59	25.5
Gen.	NCSN	N/A	8.91	25.32

Calibration

Calibration

- Скоры получились почти идеально откалиброванными
- Почему это может быть полезным?
- Устойчивость. Проще подбирать пороги при дисбалансе классов, меньше шума
- Пороги получаются более интерпретируемыми
- Можно что-то поверх этого считать и легче дальше использовать

Out-Of-Distribution Detection

• По скорам модели $p_{\theta}(x)$ понять, x вообще похож на данные обучения?

• Mass JEM:
$$s_{\theta}(x) = -\left| \frac{\partial \log p_{\theta}(x)}{\partial x} \right|_{2}$$

• Можно улавливать изменения в данных

Out-Of-Distribution Detection

• По скорам модели $p_{\theta}(x)$ понять, x вообще похож на данные обучения?

• Mass JEM:
$$s_{\theta}(x) = -\left|\frac{\partial \log p_{\theta}(x)}{\partial x}\right|_{2}$$

- Можно улавливать изменения в данных
- AUC-и:

$s_{ heta}(\mathbf{x})$	Model	SVHN	CIFAR10 Interp	CIFAR100	CelebA
$\log p(\mathbf{x})$	Unconditional Glow	.05	.51	.55	.57
	Class-Conditional Glow	.07	.45	.51	.53
	IGEBM	.63	.70	.50	.70
	JEM (Ours)	. 67	.65	.67	.75
$\max_y p(y \mathbf{x})$	Wide-ResNet	.93	.77	.85	.62
	Class-Conditional Glow	.64	.61	.65	.54
	IGEBM	.43	.69	.54	.69
	JEM (Ours)	.89	.75	.87	.79
$\left \left rac{\partial \log p(\mathbf{x})}{\partial \mathbf{x}} ight \right $	Unconditional Glow	.95	.27	.46	.29
	Class-Conditional Glow	.47	.01	.52	.59
	IGEBM	.84	.65	.55	.66
	JEM (Ours)	.83	.78	. 82	.79

Robustness

- $\tilde{x}=x+\delta, \ |\ |\tilde{x}-x|\ |_p < \varepsilon$ (можно давать доступ к градиенту)
- RandAdvSmooth SOTA в задаче robustness
- Adv Training аугментации в обучении
- JEM-0 (0 шагов SGLD)
- Больше шагов семплирования -> более устойчивая модель

Robustness

• Выдает высокий скор не совсем шуму

Figure 6: **Distal Adversarials.** Confidently classified images generated from noise, such that: $p(y = \text{``car''}|\mathbf{x}) > .9$.

Минусы

- Из-за того $Z(\theta)$ не посчитать, сложно понять, что модель вообще обучается
- Неусточивые оценки градиентов
- Модель постоянно расходилась и авторам приходилось перезапускать с меньшим Ir, добавлять регуляризации

Итог

- Можно получить модель с хорошим качеством распознавания + она была бы генеративной и более устойчивой
- Но такие модели пока довольно сложно обучать

Содержание:

- Рассматривается способ интерпретации логитов стандартного нейросетевого классификатора p(y|x) для определения energy based модели на p(x, y)
- Обученная таким образом модель показывает хорошие результаты в задачах классификации и генерации
- Классификатор обретает ряд бонусов (adversarial устойчивость, лучшая откалиброванность)
- Модель можно применять для OOD detection

Плюсы:

- Важный вклад в область применения energy based моделей
- Предложенный подход хорошо и подробно описан, статья отлично структурирована и легко читается
- Проведены обширные и хорошо поставленные эксперименты
- Код обучения и экспериментов выложен на гитхаб, что облегчает воспроизводимость
- Подход имеет большой потенциал для практического применения

Минусы:

- Утверждения о том, что подход может тягаться с SOTA для генерации или классификации слабо обоснованы
- Авторы отмечают сложность и нестабильность процедуры обучения как одну из важнейших проблем, при не уделяют ей и способам борьбы с ней в статье почти никакого внимания
- В псевдокоде процедуры обучения есть ошибка
- Не очень понятно, зачем было выкидывать BatchNorm из архитектуры WideResNet

NIPS-like mark: 8/10

NIPS-like confidence mark: 5/5

Статья получила Oral на ICLR 2020

Will Grathwohl, University of Toronto & Vector Institute, Google Research

- DeepMind, Research Scientist, Oct 2021 Present
- На момент написания статьи получал PhD в University of Toronto
- Новая статья на ICML 2021 получила Outstanding Paper Award Honorable Mention
- Все статьи автора после данной продолжают развитие темы, связанной с energy-based моделями

Kuan-Chieh Wang & Jorn-Henrik Jacobsen, University of Toronto & Vector Institute

- Currently post-doctoral research fellow at Stanford CS
- PhD student at University of Toronto во время написания статьи
- В основном является соавтором в статьях, связанных с invertible neural networks

- Senior Research Scientist at Apple
- Was a postdoc at University of Toronto во время написания статьи
- В основном является соавтором в статьях, связанных с Generative models

David Duvenaud, University of Toronto & Vector Institute

- Google Brain Toronto March 2020 present, Visiting Researcher (part time)
- University of Toronto July 2016 present, Assistant Professor, Computer Science and Statistical Sciences, Canada Research Chair in Generative Models
- Является автором статей по различным темам, среди которых например Neural ODEs, Automatic chemical design using generative models и проч
- В том числе является соавтором и в новых статьях первого автора.

Kevin Swersky & Mohammad Norouzi, Google Research

- Research scientist, Google Brain
- Тоже появляется соавтором первого автора в более свежих статьях.
- Помните, RMSProp был впервые сформулирован на курсе Coursera? Kevin Swersky был соведущим на этом курсе в этот момент.
- Тоже различные интересы: Bayesian optimization, Normalising flows и тд.

- Research scientist at Google Brain
- Научные интересы: self-supervised, semi-supervised learning, generative models

Most influential papers

LeCun, et al. A tutorial on energy-based learning.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.

Related prior work

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet.

Yunfu Song and Zhijian Ou. Learning neural random fields with inclusive auxiliary generators.

Кто цитирует эту статью?

Есть ли у нее продолжение?

В основном развитием Energy-based модели занимается первый автор Will Grathwohl. У него есть 5 новых статей посвященных этому. Одна из статей получила награду на ICML 2021.

Есть популярная статья под названием Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling

В основном эту работу цитируют в статьях по темам

- Out-of-distribution detection
- Continual learning. Изучается наличие "памяти" у модели, с помощью которой она долго помнит что учила при дообучении ее на новых данных или задаче. Например Supermasks in Superposition, Energy-Based Models for Continual Learning
- Применение Energy-based модели в сценариях обычной классификации: в задачах CV, в GANax и тд

Предложения по исследованию

Energy based модели по разному применяют в разных задачах: CV, GANs. Кроме того, что модель надо адаптировать под свой случай, интересно посмотреть на то, как влияет выбор марковской цепи в каждой конкретной задаче. Ведь у всех есть разные свойства, а распределения могут быть произвольно сложными (поэтому интереснее это изучать в GANax).

Вроде бы автор как раз этот вопрос и исследует. Однако он предлагает совсем отказаться от семплирования с помощью марковских цепей из-за того, что у них есть проблемы с переходом по модам. (Название статьи: No MCMC for me: Amortized sampling for fast and stable training of energy-based models и тд.)

Предложения по применению

В самой статье предложено много применений: Hybrid modeling, out-of-distribution detection и тд.

На данный момент EBMs нашли множество применений: text generation, molecule generation, anomaly detection, trajectory prediction, semi-supervised learning, etc.

For comprehensive review see CVPR 2021 Tutorial on EBMs: https://energy-based-models.github.io/