Problem 1

Design an NFA for the following languages over their respective alphabets:

- $L = \{w | w \text{ has } 3m \text{ or } 4m \text{ } a's \text{ for some } m \in \mathbb{N}\}$. L is over the alphabet $\Sigma = \{a, b\}$. [Tug22]
- $L = \{lab, cab, dab\}$. L is over the alphabet $\Sigma = \{a, b, c, d, l\}$ [HMU01]
- $L = \{1101, 101, 111\}$. L is over the alphabet $\Sigma = \{0, 1\}$. [HMU01]
- $L = \{w|w \text{ ends with } 00\}$. L is over the alphabet $\Sigma = \{0,1\}$. (For this one, your NFA can only have 3 states.) [Sip96]

Problem 2

In the previous problem, you defined an N such that $L(N) = \{w | w \text{ ends with } 00\}$, Convert this NFA into a DFA.

$$\begin{array}{c|c|c|c} \Delta & 0 & 1 \\ \hline \rightarrow p & \{p,q\} & \{p\} \\ q & \emptyset & \{r\} \\ *r & \{p,r\} & \{q\} \\ \hline \end{array}$$

Table 1: NFA

Problem 3

Convert the NFA defined in Table 1 to a DFA. [HMU01]

Problem 4

In class we used the following lemma based on our definition of $\hat{\Delta}$. Prove it by induction on |y|. For any $x,y\in \Sigma^*$ and $A\subseteq Q$,

$$\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$$

References

- [HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages, and computation. *Acm Sigact News*, 32(1):60–65, 2001.
- [Sip96] Michael Sipser. Introduction to the theory of computation. *ACM Sigact News*, 27(1):27–29, 1996.
- [Tug22] Randal Tuggle. Homework problem for comp 455. HW2, 2022.