Summer 2019

Joe Hesse-Withbroe 7/25/2019

Outline

- Background
 - Electronics & Photonics
 - Electro-optics
 - Computational Chemistry
 - Quantitative Structure-Property Relationships (QSPR)
- Datasets and Studies
- Future Work

Electronics

- Fundamentally, devices that use electrons to process and transmit data
- Hence, <u>electronics</u>
- Ex: computers/calculators
- Size: ~ 10s of nanometers
- Speed:
- Energy Cost:

Photonics

- Fundamentally, devices that use photons to process and transmit data
- Hence, <u>photonics</u>
- Ex: fiber-optic cables
- Size: ~ Xs of __meters
- Speed:
- Energy Cost:

Electro-optics

- Nonlinear Optical Effects
 - Generally: Polarization density P responds non-linearly to electric field |E| of incident light
 - Pockels Effect: Nonlinear electro-optic effect in which an applied electric field changes the index of refraction of a material $\Delta n = \frac{n^3 r_{33} |E|}{2}$
 - |*E*|: Magnitude of applied electric field
 - r_{33} : Electro-optic coefficient. $r_{33} \propto N\beta \langle \cos^3 \theta \rangle$ (Want to maximize!)
 - *N*: Chromophore concentration
 - β : Molecular hyperpolarizability
 - $\langle cos^3\theta \rangle$: Acentric order parameter

Properties of importance!

Electro-optics

- How to encode 0s and 1s on a wave of light?
 - Operation of a Mach-Zehnder Modulator:
 - 1. Inputted light is split equally into two arms of equal length
 - 2. In the modifying arm of length L, an applied voltage V changes the index of refraction of the OEO material by Δn (according to the Pockels effect), which changes the speed of the wave as it travels through the arm
 - 3. In the reference arm of the same length, light travels through the same OEO material, but without an applied voltage, so n is unchanged
 - 4. Waves from the arms recombine. The modulator is set up such that, with an applied field, waves combine 180° out of phase, resulting in complete destructive interference (binary 0). Without the field, waves have equal speed, combining in-phase (binary 1)

Electro-optics

- Goal: Chip-scale modulators working at typical electronics voltages
 - $V_{\pi}L$: Voltage-length product, i.e. the waveguide length required for a 180° phase shift in the period of the light at a given voltage
 - We want to minimize $V_{\pi}L$
 - Recall the Pockels effect: $\Delta n = \frac{n^3 r_{33} |E|}{2}, \quad r_{33} \propto N\beta \langle \cos^3 \theta \rangle$
 - So we want to maximize N, β , and $\langle cos^3\theta \rangle$!

- Applying approximations to allow for mathematical calculations of molecular energies, properties, e.t.c.
- Molecular Orbital Theory
 - Delocalized description of chemical bonding
 - Linear Combination of Atomic Orbitals (LCAO)
 - Approximation that describes molecular orbitals as linear combinations of atomic orbitals, which are typically described as linear combinations of Gaussians

- Atomic Orbital Approximations
 - Slater Type Orbitals: Accurate but expensive
 - Direct physical interpretation
 - Obey necessary conditions (Cusp condition & exponential decay)
 - Integrals are computationally expensive
 - Gaussian Orbitals: Cheap but inaccurate
 - No physical interpretation
 - No cusp condition, incorrect decay
 - Integrals are orders of magnitude cheaper due to the simplicity of the Gaussian function

- How can we get the benefits of Slater-like orbitals without their painful integrals?
 - Answer: Linear Combinations of GTOs to approximate STOs

Basis Sets

- Sets of basis functions used to determine electron density in a molecule
- Many sets exist, varying in size and complexity (and thus computational cost)
- Example basis sets:
 - STO-nG: Minimal basis set, represents each AO as an STO approximated by *n* Gaussians
 - X-YZG: Pople basis sets, "split-valence", represents each inner/non-valence AO with 1 STO approximated by X Gaussians, represents each valence AO with 2 STOs approximated by Y and Z Gaussians respectively

• Basis sets may also contain:

- Diffuse functions: Provide more flexibility for "tail" of atomic orbital (far from nucleus)
- Polarization functions: Unoccupied *d* orbitals are included to better represent polarization of atoms

D polarization function added to P orbital

- Methods in Computational Chemistry
 - HF: Hartree-Fock
 - Does not account for specific electron-electron repulsions (electron correlation), instead relies on an average field of electron correlation
 - Many-electron wavefunction takes form of a determinant of a matrix of single-electron wavefunctions (Slater Determinant)
 - DFT: Density Functional Theory
 - Energy as a functional of electron density. An exact functional is theorized to exist, but is currently unknown
 - Functionals used in my work: B3LYP, CAM-B3LYP, M062X, WB97X
 - MPn: Møller-Plesset Theory
 - Similar to HF, but specifically accounts for *n*th order electron correlations
 - MP2 is better than DFT, but ~1 order of magnitude more expensive
 - MP2 is occasionally used in my work

Can we do better with MP2?

- Hybrid DFT can do well for relative hyperpolarizabilities, but structure remains concern
- MP2 tractable on academic systems – appears nearly quantitative using Shelton CHCl₃ β_{HRS} of 0.16
- Still substantial scatter would like to try CCSD or CCSD(T) and larger basis
- YLD-124 BLA: 0.06 (nearly identical to M062X), MBLD
 0.02 (much less...)

Correlation between MP2 and HRS data

Damped TLM – fit dispersion as Lorentzian with 0.1 eV linewidth

Calculations: MP2/aug-cc-pVDZ//MP2/cc-pVDZ

Quantitative Structure-Property Relationship (QSPR)

- QSPR models relate predictor variables (i.e. structure of a molecule, presence of functional groups/moieties) to a change in the magnitude of a chemical property
- Examples of predictors
 - Length of the conjugated backbone of a chromophore
 - Donor and acceptor used
- Examples of responses
 - Hyperpolarizability
 - Dipole moment

Initial Dataset

Initial Dataset - Overview

- Set of 26 molecules
- Primarily legacy chromophores
- Variety in sizes, structures, properties
 - Chain lengths range from 2 to 12 carbons
 - Some diversity in donor/acceptor groups
- Primarily used to compare different computational methods

Example molecules from set. SHJ1, EZFTC, YLD124

Data

Example: Comparing hyperpolarizability values for DFT methods against MP2

A slope of 1 represents perfect agreement between methods. Y=x is plotted in black for reference

Initial Dataset – Method Property Comparisons

Correlations (R^2), larger is better

		Alph	a_iso		
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP		0.867	0.767	0.885	0.903
CAM-B3LY			0.994	0.877	0.993
M062X				0.901	0.993
WB97X					0.991
MP2					

		Beta	_hrs		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.419	0.426	0.422	0.723
CAM-B3LY			0.995	0.905	0.988
M062X				0.908	0.98
WB97X					0.952
MP2		CLC.			

		Mı	u_Z		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.728	0.726	0.378	0.637
CAM-B3L	Υ		0.97	0.565	0.853
M062X				0.577	0.874
WB97X					0.969
MP2					

		Alph	a_zz		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.809	0.738	0.799	0.475
CAM-B3L	Y		0.917	0.825	0.443
M062X				0.822	0.566
WB97X					0.38
MP2					

		Beta	a_zzz		
Method	B3LYP	CAM-B3LY	/ M062X	WB97X	MP2
B3LYP		0.372	0.369	0.363	0.619
CAM-B3L	Υ		0.989	0.877	0.977
M062X				0.884	0.979
WB97X					0.956
MP2					

		Lambo	la_max		
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP		0.829	0.841	0.611	
CAM-B3L	Y		0.995	0.763	
M062X				0.743	
WB97X					
MP2					

		Alpha	Ratio		
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP		0.703	0.749	0.652	0.601
CAM-B3L	Υ		0.988	0.712	0.952
M062X				0.709	0.952
WB97X					0.824
MP2					

		Beta	Ratio		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.49	0.489	0.477	
CAM-B3LY			0.89	0.721	0.34
M062X				0.722	0.515
WB97X					0.642
MP2					

Initial Dataset – Method Property Comparisons

Agreements (Slope), closer to 1 is better

		Mu	ı_z		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.756	0.7285	0.612	1.548
CAM-B3L	Y		0.959	0.817	1.231
M062X				0.851	1.192
WB97X					1.078
MP2		2-2			2-2

		Lambd	la_max		
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP	2-2	0.833	0.848	0.702	
CAM-B3L	Υ		1.011	0.849	
M062X	222			0.837	
WB97X	2-2				
MP2	2-2				

		Alpha	a_iso		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.769	0.768	0.598	1.245
CAM-B3L	(0.993	0.773	0.944
M062X				0.778	0.942
WB97X					0.792
MP2					

8		Alph	na_zz		
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP		0.694	0.738	0.49	1.119
CAM-B3L	Y		1.019	0.686	0.722
M062X				0.664	0.764
WB97X					0.546
MP2					

>		Alpha	Ratio		
Method	B3LYP	CAM-B3LY	M062X	WB97X	MP2
B3LYP		0.931	0.934	0.845	1.087
CAM-B3L	Y		1.001	0.908	1.006
M062X				0.906	1.008
WB97X					0.94
MP2		222			

		Beta	_hrs		9
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP		0.954	1.066	0.472	0.852
CAM-B3LY			1.106	0.49	0.732
M062X				0.443	0.8
WB97X		1222			0.407
MP2	222	1222			

		Beta	a_zzz		
Method	B3LYP	CAM-B3LY	′M062X	WB97X	MP2
B3LYP		0.959	1.115	0.486	0.749
CAM-B3L	Y	1-1	1.14	0.503	0.675
M062X		2-2		0.441	0.761
WB97X	222	222			0.378
MP2	222	122		222	222

		Beta	Ratio		
Method	B3LYP	CAM-B3LY	/ M062X	WB97X	MP2
B3LYP		0.449	0.431	0.436	1.121
CAM-B3L	Y	1222	0.973	0.995	1.074
M062X			222	1.022	1.047
WB97X			2-2	222	1.072
MP2	222	2-2	222		

Initial Dataset – Method Property Comparisons

• Findings:

- Weak agreement between DFT functionals and MP2
 - Systematic differences in calculations --- weak agreement expected, not concerning
- All methods except B3LYP correlate well with each other for properties
 - Helpful --- weak agreements can be reliably corrected if correlations are strong
- Weaker correlations between methods for alpha & beta ratios
 - More deviation between methods in the minor components of (hyper)polarizabilities

Initial Dataset – Method Structure Comparisons

Initial Dataset – Method Structure Comparisons

• Findings:

- Weak correlation & agreement between methods for BLA, yet strong correlation & agreement for MBLD
- Weak correlation & agreement between methods for BOA
 - Electronic properties have greater variation by method than geometric properties

Other Studies & Sets

Most still in progress

YLD-124 Variants Set

YLD Variants - Overview

- All have identical backbone
- R1 and R2 are substituted
- 21 molecules

YLD124 - Studies

- Hammett Parameters & Molecular Properties Correlation
 - Comparison between Hammett parameters of donor groups and molecular properties

Example: Hammett/Taft F parameter vs beta

YLD124 Variants – Hammett Parameters vs Molecular Properties

- More validation needed. Two outliers significantly skewed results
- Weak to no correlation including two outliers

SigP	Mu_z	betaZZZ	Lambda	F	Mu_z	betaZZZ	Lambda
Correlatio	0.0734	0.0078	0.00757	Correlation	0.247	0.289	0.236
SigM	Mu_z	betaZZZ	Lambda	R	Mu_z	betaZZZ	Lambda
Correlation	0.228	0.172	0.143	Correlation	~0	0.0488	0.037

Much stronger correlations excluding outliers

SigP	Mu_z	betaZZZ	Lambda	F	Mu_z	betaZZZ	Lambda
Correlatio	0.289	0.675	0.483	Correlatio	0.479	0.659	0.653
SigM	Mu_z	betaZZZ	Lambda	R	Mu_z	betaZZZ	Lambda
Correlation	0.4128	0.721	0.615	Correlation	0.12	0.477	0.254

Thanks!

Chain Length Dataset

(Everything here was backup for final presentation 7/25/2019, but was ultimately not presented on)

Lengths Dataset - Overview

- Set of 8 molecules
- Donor/Acceptor Constant
- Chain size varied

Lengths Dataset – Studies

Slope: 0.30263 Y-int: 22.1447 R²: 0.72966

Molecule Properties vs Length

	Mu_z	alpha_iso	alpha_zz	alphaRatio	betaHRS	betaZZZ	betaRatio
Correlatio	0.729	0.948	0.121	0.0176	0.959	0.967	0.442
Slope	0.303	5.227	2.858	1.672	24.502	53.282	-0.00326
Intercept	22.145	66.793	125.082	0.652	39.801	63.78	0.534

Example: Examining dipole moment as a function of chain length

Lengths Dataset – Properties vs Length

• Similar diminishments with increasing length

