Harsh Gupta (1802713039) Operating System Page (PUT) (Section - A) (Answer-1) Interprocess Communication (IPC): - It is a mechanism which allows processes to communicate each other and synchronize their actions the communication between these process can be seen as a method of co-operation between them. Processes can communicate with each other using these two Context Switching: - It is a procedure that a computer's CPU (central processing unit) follows to change from one task (on process) to another while ensuring that the tasks do not conflict. (Answer -2) A kound is the central part of an os It manages the operations of the computer and the har dware, most notably memory and CPU time. A micro trevol which only contains basic functionality. A monotithic Rernel, which contains many device drives. (Answer-3) Batch processing is a technique in which an 08 collects the programs and data

Harish Gupta (1802713039)

together in a batch before processing starts An os does the same following activities Helated to batch processing - The OS defines a job which has predefined sequence of commands, programs and data as a single unit.

(Answer-4)

The major diff between program and precess is that program is a group of instruction to carry out a specified task whereas the process is a program in execution. While a process is an active entity, a program is considered to be a passive one.

Value of counting semaphone = 7 After 20P operations value of semaphone = 7-20 =-13

After 15P operations value of semaphone =

so The nesulting value of semaphone is 2.

(Answer -5)

A state is safe if the system can allocate all nessurces negrested by all processes (up to their stated maximum) without enturing a deadlock state.

If a safe sequence does not exist, then the system is an unsafe state, which may lead to deadlock.

Bryun

Date

(Answer-6)

Busy waiting means that the frocess is waiting for a condition to be satisfied in a tight loop, without relinquishing the processor Alternatively, a process could wait by relinquishing the processor, and block on a condition and wait to be awakened at some app. time in the future.

To avoid busy waiting, a semaphone may use an Ossociated greve of process that are waiting on the semaphone, allowing the semaphone to block the process and then water it wake it when the semaphone is incremented.

(Hoswer-7)

Logical memory 8 pages = 23

Size of world = 210

Total logical address space = 10 +3 = 13 bits

Physical memory 39 frames = 25 Size of world 1024 = 910

Total physical address space = 5+10 = 15 bits

(Hyswer - 8)

(i) Overlays allocation Storage:-

- · no internal fragmentation
- · less overhead and segment taskes only.

Housh Gupta (1802713039)

- (ii) Compaction: -· minimize the probability of external fragmenta.
 - Stone the bigger processes in the memory

(iii) Page table: of

- · Allocation memory is easy and cheap
- · more efficient swapping.

(iv) Segment table:-

- · It solves the problem of intornal fragmentation.

 · Segment table consume less space.

(Answer-9)

Seek time is the time taken in locating disk own own to a specified track where the read write nequest will be satisfied.

datency time: -

It is the time taken by the desired sector to notate itself to the position from where it can access nead purite heads.

(Answer-10)

Disadvantages of single contiguous memory allocation

- · longer memory access time
- · guarded page tables
- inverted page tables

(Sechon-B) (Answer-II) HIllocated Maximum Available. Process RI R2 R3 RI R2 R3 RI R2 R3 PI 2 2 3 3 6 8 7 7 10 P2 2 0 3 4 3 3 I 2 4 3 4 4 (i) Need Matrix = [Maximum] - RI R2 R3 [Allocated] I 4 5 P1 = [369] - [223] 2 3 0 = [145] 2 2 0 P2 = [433] - [203] = [2 3 0] P3 = [3 4 4] - [12 4] = [2 2 0] Need Matrix: - Process Need P1	Harsh Gupta (1802713039)										
## Available Process R1 R2 R3 R3 R3 R3 R3 R3 R3 R	(Section)	1-B)									
## Available Process R1 R2 R3 R1 R2 R3	(Ans	wer-11)									
Process RI R2 R3 RI R2 R3 RI R2 R3 PI 2 2 3 3 6 8 7 7 10 P2 2 0 3 4 3 3 P3 1 2 4 3 4 4 (i) Need Matrix = [Maximum] - R1 R2 R3 [Allocated]	The state of the s	Carlo Della La Maria La									
P1											
P3	P1 2 2 3	3 6 8 7 7 10									
(i) Need Matrix = [Maximum] - [Allocated] R1 R2 R3 [Allocated] 4 5 P1 = [368] - [223] 2 3 0 = [145] 2 2 0 P2 = [433] - [203] = [230] P3 = [344] - [124] = [220] Need Matrix:- Process Need P1	P2 2 0 3	4 3 3									
[Allocated] RI R2 R3 I 4 5 P1 = [368] - [223] 2 3 0 = [145] 2 2 0 P2 = [433] - [203] = [230] P3 = [344] - [124] = [220] Need Matrix:- Process Need P1	1 2 4	3 4 4									
[Allocated] RI R2 R3 I 4 5 P1 = [368] - [223] 2 3 0 = [145] 2 2 0 P2 = [433] - [203] = [230] P3 = [344] - [124] = [220] Need Matrix:- Process Need P1		Need									
[Allocated] P1 = [368] - [223] 2 3 0 = [145] P2 = [433] - [203] = [230] P3 = [344] - [124] = [220] Need Matrix:- Process Need P1		R1 R2 R3									
= [145] 2 2 0 P2 = [433] - [203] = [230] P3 = [344] - [124] = [220] Need Matrix: - Process Need P1		[Hilocatea] 1 4 5									
P ₂ = [433] - [203] = [230] P ₃ = [344] - [124] = [220] Need Matrix: - Process Need P ₁											
= [230] P3 = [344] - [124] = [220] Need Matrix: - Process Need P, 145 P2 230 P3 220 [ii) Safe sequence will be (P3, P2, P2)		destruction of the same and									
P3 = [344] - [124] = [220] Need Matrix: - Process Need P1	P2 = [433]	7-[203]									
= [2 2 0] Need Matrix: - Process Need P1 1 4 5 P2 2 3 0 P3 2 2 0 (ii) Safe sequence will be (P3, P2, P1)	= [230										
Need Matrix: - Process Need P. 1 4 5 P. 2 3 0 P. 2 2 0 Lii) Safe sequence will be (P. P. P	P3 = [344]]-[124]									
P ₁ 1 4 5 P ₂ 2 3 0 P ₃ 2 2 0 (ii) Safe sequence will be (P ₃ , P ₂ , P ₁)	= [22	0]									
P ₁ 1 4 5 P ₂ 2 3 0 P ₃ 2 2 0 (ii) Safe sequence will be (P ₃ , P ₂ , P ₁)	als de Madeira	Boson political gentle and the									
P_2 2 3 0 P_3 2 2 0 Lii) Safe sequence will be (P_3, P_2, P_1)	Need Statoux										
(ii) Safe sequence will be (P3, P2, P,)											
(ii) Safe sequence will be (P3, P2, P1) The system is in safe state where Safe state if system can		P3 2 2 0									
The system is in safe state where safe state if system can	(ii) Safe segvence will	te (P3, Po P)									
safe state if system can	The system is it	a sale state where									
Buk.	safe state it	system can									
	May .	Bry.									

Harsh Gupta (1802713039)

4. Interactive operating system:-

- · It allows the users to interact directly with the os whilst one on more programs are running
- · There will be an user interface to allow this to happer.

5. Network operating system:-

- · Network os runs on a server and provides the server the capability to manage data
- · Primary purpose is to allow strared files and printer access among multiple compiters.
- · eg: UNIX, LINUX.

6. Real time operating system:-

- · A neal time system is defined as data processing system in which the time interval nequired to process and nespond to inputs is to so small that it controls the environment.
- · The response time is very less
 eg:- In scientific experiments, robot
 control system etc.

Boken

Date

Page no..

Dining thilosophu's problem is a clossic synchronization problem. There is a dining table with 5 chairs, at each chair is a plate and tetween each plate is a chopstik, in middle is toward of rice

In order to eat, a philosophur must sit at the table and pick the left and right chopstick and eat the rice.

so we have to fix find a sol so that while one philosopher is eating other must not starve.

Solution:

we can say for one case, that first a philosphur must pick left chapstick first and then the right But in some case deadlock will occur.

Using Semaphones:
each philosphone is a process

one semaphone per fork:

fork: array [0 -- 4] of semaphones

-> initialization:

fork[i], count = 1

for i := 0--4

process P::
nepeat
think;

Horsh Gupta (1802713039) wait (fork [i]); wait (fork [li+1) mod 5]); signal (fork [i+1 mod 5]); signal [fork [i]); forever. -> Now to remove the deadlock situation, we may fix that the last philospher i.e. Sy must follow another i.e. first he should pick right fork and then left fork ie = wait (fork [i+1 mod 5]); wait (fork (i]); . Deadlock will get nemoved - Another solution can be:odd numbered philosophur picks up first the left and the right even numbered philosophur picks sight then left.

Harsh Gupta (1802713039) (Operating System) (Section - C) (Answer - 16 (a))

Thrashing: -

1. Thrashing occurs when a system spends more time in processing page faults than executing transcations

- 2. While processing page fault is necessary to be in order to appreciate the benefits of virtual memory thrashing has a negative effect on the system.
- 3. While the transactions in the system are waiting for the paging device. CPV utilization, system throughput and system response time decreases, nesulting in below optimal performance of a system.
- 4. Therefore to increase CPU utilization multiprogramming should be reduced.

Champe 1914

Causes: -

- 1. A system thrashes if physical memory is too small to hold the working sets of all the process running
- 2. The upshot of thrashing is that pages always spend their time waiting for the backing store to fetch their pages.
- 3. Usually there is a process phase transition from no thrashing to thrashing.
- 4. scheduler brought in new process whenever of

	Harish Grupta (1802713039)												
Date	Date Page no												
5. Evente become	5. Eventually the size of the working sets become larger than physical memory and												
processes	processes start to page.												
6. A prod time in	6. A process is thrashing if it is spending more time in paging than executing.												
K 8 2	15 15 15 15 15 15 15 15 15 15 15 15 15 1												
Detection	Detection of throsping:												
A syste	Detection of throsting:- # system can detect throsting by evaluation												
the level	the level of CPU utilization as compared to												
the level	of	mult	iprogram	nmin	9		-	100	1.4	5			
Ch :	1.	1 11	1. 2	2051	1800	200	127	-	-20 N				
The data	ron c	to the	e Solch	ina (and	sin	ale	assi	grum) —			
ert data	d m	ove	+rinci	ble	ena	bles	s e	limin	atio	n			
of cache	thro	shing	1 there	shin	9.	00-96	4 27	- /	8.1				
	of cache throshing throshing.												
4 2	1		1 1-	1.	- 47		Y	11.1	3.00.00				
1 2 1 2	(Answer-17(a))												
optimal	Lag	ne M	eplacem	ert	Algo	svith	m:-		31 3370				
Request	4	7	6	7	7	6	/	2	7	2			
Frame 3	7 5		6	6	6	6	8	2	2	2			
Frame 2		7	7	7	7	7	7	7	7	7			
Frame I	4	4	У	1	1	1	1	1	1	1			
Miss/Hit (M/H)	M	M	M	M		and the same of	H	M	Н	H			
Humber of Replacer	of po	ages algo	faults = 5	ino	plin	ral	to ag	je	b				

Harsy Gupta (1802713039)

FIFO	Page	Replacement	Algorithm:-
------	------	-------------	-------------

Request	4	17	6	1	7	6	1	2	7	2
Frame 3		bug	6	6	6	6	6	8	7	7
Frame 2		7	7	7	7	7	¥	2	2	2
Frame I	4	4	4	1	1	1	1	nd of	1	1
Miss/Hit (M/H)	M	M	M	M	Н	H	H	M	M	Н
1000			i a is	CT 80	de	3300		Yes	1	46

No of pages faults in FIFO page Replacement algorithm = 6

LRU page Replacement Algorithm:-

Request	4	7	6	1	7	6	,	2	17	2
Frame 3		400	6	6	6	6-	6	8	7	7
Frame 2		7	7	7	7	7	X	2	2	2
Frame I	4	4	4	1	,	1	1	1	1	1
Miss/ Hit (M/H)	M	m	M	m	H	Н	H	M	M	Н

No of page faults in LRV page Replacement algorithm = 6

Horsy Gupta (1802713039)

Erron handling: -

- · An operating system that uses protected memory can grand against many kinds of hardware and application errors, so that a complete system failure is not the usual result of each minor mechanical glitch.
- Devices and I/O transfers can fail in many ways, either for transient neasons as when a network becomes overloaded, on for "permanent" neasons, as when a disk controller becomes defective.
- · operating system can often compensate effectively for transient failures
- one bit of information about the status of the call, signifying either success or failure.

(Answer-19(b))

(i) FCFS scheduling:

- · The simplest form of disk scheduling is the First-come First Served (FCFS) Algorithm.
- · This algorithm is intrinsically fair, but it generally does not provide the fastest service.
- · eg:- Consider, a disk greve with requests for 1/0 to blocks on cyclinders
 98, 138, 37, 122, 14, 124, 65, 67 in that order
- · If the disk head is initially at cylinder 53, it will first move from 53 to 98, then to 183, 37, 122, 14, 124, 65 and finally to 67

Harish (1802713039)

(11) C-SCAN Scheduling: -

- · Circular STATA SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more uniform wait time.
- the disk to the other, servicing negrest along the
 - · When the head reaches the other side, however, it immediately returns to the beginning of the disk without servicing any requests on the return thip
 - · The C-SCAN scheduling algorithm essentially treats the cyclinder as a circular list that wraps around from final cylinder to the first one.

(Answer-20(a))

- · Dekker's solution is for two processes based solely on software
- · Each of these process loop indefinitely, repeately enturing and reentering its critical section.
- · A Process (Po & P.) that wishes to execute its critical section first enters the ighto and examines the blackboard.