Portfolio

Park Minchul

Contents

- Intro
- Kakao- 2016.09 ~ Now
 - Web frontend using react
 - IU user info management server
- Hanwha Techwin 2014.01 ~ 2016.09
 - ejabberd & Tsung XMPP Signaling
 - Gaia Cloud VSaaS
 - S Cube NVR Platform
- Soongsil University 2007.03 ~ 2014.02
 - uC-OS II ARM Porting
- Samsung Software Membership 2013.12 ~ 2014.01
 - Network Camera Video Conference
 - DPY Do Performance Yourself

Intro

- Park Minchul
 - **-** 1989.02.20
- Technical skill
 - Functional Programming
 - Concurrent Programming
 - Cloud
 - Micro Service
- career
 - Kakao
 - 2014. 09 ~ now
 - Hanwha Techwin
 - 2014. 01 ~ 2016. 9
- Blog: http://project-ktz.tistory.com/
- Github: https://github.com/knightpop

kakao

Web frontend using react

- Programming Environments
 - Language: javascript es6
 - Framework: React, Redux
- Project Goal
 - Develop Web App frontend for kakao commerce(gift)
 - Renewal page to replace legacy code(Angular JS 1) with React
- Project Result
 - Best tab page
 - Develop new Best Tab web page to launch new service
 - Renewal Order Project
 - Develop new Item Detail page to enhance UX
- Project Feature
 - Use React, Redux, es6 to Develop modularized front page

Page Views

Item Detail Page

Gift Best Tab

IU – User Info Management Server

Programming Environments

OS: CentOS 7.2Language: ScalaFramework: FinatraProtocol: finagle-thrift

Project Goal

- CRUD and mange user information in kakao commerce(gift)
- Gradually replace legacy Monolithic Service with Micro Service
 - Develop Micro Service using Finatra

Project Result

- Replace Monolithic Service Feature with Micro Service Server
- Introduce finagle-thrift to team
- Introduce Zookeeper to team

Project Feature

- Develop Micro Service Using Finatra
- Server Cluster Management using Zookeeper
- Fast response calling api and comfortable Integration with finagle-thrift

IU Server Architecture

XMPP Signaling

EJABBERD & TSUNG

ejabberd & Tsung

Programming Environments

OS: AWS(Ubuntu 14.04 LTS)

language : erlang, Scala

- Framework: OTP, Akka

base open source solution - ejabberd

Project Goal

- Develop solution which replace old Samsung SmartCam XMPP Server solution.
- upgrade and additional development Open Source Solution, ejabberd to meet service plan
- Develop Load Test Program to verify Signaling Server which can control millions camera
 - upgrade and additional development Tsung Open source Load Test Program to meet service plan
 - Develop new Load Test Program using Scala & Akka

Project Result

- Upgrade and additional development ejabberd to meet service plan 30,000 TCP Connection per 1 instance(AWS c4.large)
- Upgrade and additional development Tsung to meet service plan 60,000 TCP Connection per 1 instance(AWS r4.large)
- Develop new XMPP Load Test Program to meet service plan base on Akka 20,000 TCP Connection per 1 instance(AWS c4.large)

Project Feature

- Occur massive TCP traffice using erlang / OPT
- System & erlang VM Configuration to accept massive TCP traffic and obtain resilliance
- Experience of massive traffic and handling.

ejabberd & Tsung

- Development Role
 - ejabberd
 Open Source Solution
 - Can maintain 30,000 TCP Connection per instance.
 - Develop system by 20 instance can handle 60,000 TCP Connection
 - Develop and change Tsung Open Source Load Test Program
 - Make 60,000 TCP Connection per 1 instance
 - Can occur 200 TCP Connection per second
 - Develop New Load Test Program Using Scala & Akka
 - Make 20,000 TCP Connection per 1 instance
 - Can occur 800 TCP Connection per second

XMPP Load Test Architecture

Cloud VSaaS

GAIA

Gaia - Cloud VSaaS

Programming Environments

OS: AWS(Ubuntu 14.04 LTS) & Azure(Ubuntu 15.10)

Language : Scala, JavaFramework : Play, Akka

Project Goal

- VSaaS Live Video Streaming on AWS Cloud
- Playback Server Accept RTSP Stream and store video

Project Result

- Implement Auto Scaling and we can playback fluently even serviced in 3g data communication. It's Prototype
- Develop playback server accept RTSP Video Stream and convert to mpeg-dash and send.

Project feature

- Service Signaling server using ejabberd.
- Make EC2 Cluster Concurrent Server by Akka, Play
- WebRTC Adaptive Steaming with Kurento Media Server

Gaia - Cloud VSaaS

- Development Role
 - Design and implement Live Streaming Server(POC)
 - Design and implement RTSP to WebRTC Transcoding, live streaming server using Kurento Media Server
 - Design and implement AWS Instance Cluster(POC)
 Management and Business Logic Server
 - Design and implement Auto Scaling Instance management and Business Logic Server using Play Framework
 - Design and implement RTSP Endpoint server to playback RTSP Camera Video(POC)
 - Design and implement RTSP Endpoint using gStreamer
 - Design and implement Playback Server(POC)
 - Design and implement Playback Server connected with AWS S3 by change Open Source eDash-Packager

Streaming Server Architecture

Playback Architecture

NVR/DVR Common

S - CUBE PROJECT

S – Cube Project

- Programming Environments
 - OS: Ubuntu 12.04 LTS
 - Language : C++
- Project Goal
 - Make new generation NVR Platform To substitute existing Samsung Techwin NVR Platform, Sejong
- Project Result
 - Re-Design to concrete abstract Layer in exist architecture, and export hardware specific feature by XML to implement One Source Multiple Use
- Project feature
 - Collaboration with SRIB, India(Develop in India, in the field)
 - Aim One Source, Multiple Model

S – Cube Project

- Development Role
 - Camera Manager
 - Design and implement Network Camera management and PTZ control in same network using protocol ONVIF and open source gSoap
 - Log Service
 - Design and implement module to manage, store and search all logs made by NVR using SQLite and open source Kompex Wrapper
 - Code Coverage Test Case and Management
 - Code Test code to process Test Driven Development using Gcov, CPPUnit

S - Cube Project

Camera Service UML

S – Cube Project

Log Service UML

ARM Porting

UC - II OS

uC - II OS ARM Porting

- Programming Environments
 - OS: Ubuntu 12.04 LTS
 - Language : C / ARM Assembly
 - Target Board : Odroid 7
- Project Goal
 - Port one of the RTOS operated in Window, uC II OS to ARM Chip.
- Project Result
 - Make uC-OS II only operated in Power PC and Intel Chip to operate in ARM Architecture
 - Implement Dynamic scheduling like linux nice value. Before, it burden to engineer
- Develop Environment
 - Use s5pc110 Chip, used in Samsung Galaxy S
 - Use ARM-none-eabi Cross Compiler

□ uC - II OS ARM Porting

- Develop Role
 - Revise U-Boot and make it to load uC OS Kernel image in s5pc110 chip
 - Write uC OS II chip dependent hardware setting code by ARM Assembly to enter main entry
 - Code chip dependent driver like U-ART
 - Write interrupt code to context switch
 - Change uC-OS II Scheduler to use nice value like linux
- Performance Test
 - Using Timer inside Board to Performance Test

uC - II OS ARM Porting

uC - OS II Porting Kernel Operation

S A M S U N G S O F T W A R E MEMBERSHIP

Samsung Techwin

NETWORK CAMERA VIDEO CONFERENCE

Network Camera Video Conference

- Programming Environments
 - OS: Window 7
 - Language : C#(WPF)
- Project Goal
 - Develop Program which support existed Samsung Techwin CCTV to use Video Conference
- Project Result
 - Video Conference multiple people using CCTV and RTSP
- Project Feature
 - Re-Use Existed CCTV

Network Camera Video Conference

- Project Role
 - Program View and Business Logic
 - Design and implement Program View using WPF and All the Model Controller, Business Logic Module
 - Chatting Module
 - Design and implement to manage member, chatting room in chatting server
 - Design and implement Openfire chatting client using XMPP Library, AGS-XMPP
 - Vote Module
 - Design and implement vote module to vote specific subject in Video conference

Network Camera Video
Conference
Chatting Module Block Diagram

Network Camera Video Conference

UI Design

Do Performance Yourself

DPY

DPY - Do Performance

- Yourself
 Programming Environments
 - OS: Window 7
 - Language : C#(Unity3D)
- Project Goal
 - Develop Interaction Media Performance Content using Kinect
- Project Result
 - Develop interactive digital art React to user behavior
- Project Feature
 - User motion Capture using Machine Learning
 - Character Follow User by Unity 3D

DPY - Do Performance Yourself

- Project Role
 - Implement 3D Interactive Interface
 - Implement user UI, 3D motion, effect using Unity 3D
 - Implement module interact user and character
 - Implement interact module by Kinect and Zigfu
 - Implement Business Logic combine with other module
 - Combine machine Learning Module and DSP Module

DPY - Do PerformanceYourself

Side Project