

wherein

at least one of G_1 , G_2 , G_3 and G_4 is N and the remaining are independently CH or N;

X is CH or N;

Y is N;

Z_1 is a group represented by the formula $-SO_2-$;

Z_2 is a single bond;

Q is an aryl group being unsubstituted or substituted with 1 to 4 substituents selected from the group consisting of the Group B or a lower alkyl group that may be substituted by a desired number of substituents of Group B, wherein Group B is:

a halogen atom,

a trifluoromethyl group,

a trifluoromethanesulfonyl group,

a carbamoyl group,

an amino group,

a cyano group,

a nitro group,

a lower alkanoyl group,

a lower alkoxy group,
a lower alkoxycarbonyl group,
a mono- or di-substituted lower alkylamino group,
a lower alkanoylamino group,
a cyclic amino group,
a mercapto group,
a lower alkylthio group,
a lower alkylsulfonyl group,
a hydroxyl group or a mono- or di-substituted lower alkylaminocarbonyl group,
an amidino group,
F1
a group of the formula -NHCR₁₃-NHR₁₄
wherein R₁₃ is an optionally cyano-substituted imino group or a group =CHNO₂;
R₁₄ is a hydrogen atom or a methyl group,
a phenyl group,
a heteroaryl group,
a heteroaryloxy group, or
or a group represented by heteroaryl-S(O)_t,
wherein t is an integer of 0 - 2,
the heteroaryl group of group B is a 5- or 6-membered aromatic monocyclic group containing not more than four oxygen atoms, sulfur atoms or nitrogen atoms, provided that

all aromatic rings of Group B may be mono-, di-, or tri-substituted by any substituent of Group C,
wherein Group C is

a halogen atom,
a hydroxyl group,
an amino group,
a mono- or di-substituted lower alkylamino group,
a cyclic amino group,
a mono- or di-substituted lower alkylaminocarbonyl group,

F₁

a lower alkyl group,
a lower alkoxy group or

R₁ is any substituent selected from group A

wherein Group A is

a hydrogen atom,
a halogen atom,
a trifluoromethyl group,
a carbamoyl group,
an amino group,
a cyano group,
a nitro group,
a lower alkanoyl group,
a lower alkoxy group,
a lower alkoxycarbonyl group,

a mono- or di-substituted lower alkylamino group,
a cyclic amino group,
a lower alkanoylamino group,
a phenyl group,
a benzoyl group,
a mercapto group,
a lower alkylthio group,
a hydroxyl group or
a mono- or di-substituted lower alkylamino- carbonyl
group, R₁ may also be an oxygen atom that forms a N-oxide
group with N in any one of G₁ - G₄, or a lower alkyl group,
a lower alkoxy group or a lower alkenyl group that may be
substituted with a desired number of substituents
selected from
a hydrogen atom,
a halogen atom,
an amino group,
a cyano group,
a lower alkoxy group,
a mono- or di-substituted lower alkylamino group,
a lower alkanoylamino group, or
a hydroxyl group;
one of R₂, R₃, R₄, R₅ is hydrogen and the remaining are
selected from a lower alkoxy carbonyl group, an optionally

mono- or di-lower alkyl substituted carbamoyl group, an N-phenylcarbamoyl group or a group represented by the formula -CONH(CH₂)_pS(O)_qR₁₀ or -CONH(CH₂)_rNR₁₁R₁₂, or a lower alkyl group that may be substituted by R₁₅;

R₆ forms a carbonyl group with the carbon atom on the ring to which it is attached;

each of R₇, R₈ and R₉ is a hydrogen atom, a lower alkoxy carbonyl group, an optionally mono- or di-lower alkyl substituted carbamoyl group, an N-phenylcarbamoyl group or a group represented by the formula -CONH(CH₂)_pS(O)_qR₁₀ or -CONH(CH₂)_rNR₁₁R₁₂, or a lower alkyl group that may be substituted by R₁₅;

each of R₁₀, R₁₁ and R₁₂ independently represents a hydrogen atom, a lower alkyl group, a phenyl group or a lower alkylphenyl group;

R₁₅ is a carboxyl group, a hydroxyl group, or an amino group;

m and n are independently an integer of 0-3,

p is an integer of 0-4,

q is an integer of 0-2, and

r is an integer of 1-4;

provided that if any one of the substituents R₂, R₃, R₄, R₅, R₇, R₈, or R₉ includes a cyclic group, such cyclic group may be substituted by one or two lower alkyl groups.

21. (New) A compound according to claim 20, wherein Q is an aryl group optionally substituted with a halogen atom.

22. (New) A compound according to claim 20, wherein n is an integer of 1-3.

23. (New) A compound according to claim 20, wherein X is CH.

F1
24. (New) A compound, which is
4-(6-chloronaphthalene-2-sulfonyl)-1-[1-(4-pyridyl)piperidin-4-ylmethyl]-2-piperazinone, or a salt thereof.

25. (New) A method for
(a) producing the compound as claimed in claim 20 or a salt thereof by reacting a compound of the formula:

wherein

W is a halogen atom, and
Z₁, Z₂ and Q are as defined in claim 20 or a salt thereof;

with a compound of the formula:

wherein

X, Y, R₁-R₉, G₁-G₄, m and n are as defined in claim 20; or a salt thereof;

(b) producing the compound as claimed in claim 20 or a salt thereof by reacting a compound or a salt thereof represented by the formula:

wherein R₆-R₉, Z₁, Z₂, and Q are as defined in claim 20; with a compound or a salt thereof represented by the formula:

wherein W' is a halogen atom, or a methanesulfonyloxy group or a p-toluenesulfonyloxy group, or an exchangeable substituent selected from an alcohol and alkoxy group, and X, R₁-R₅, G₁-G₄, m and n are as defined in claim 20;

(c) producing a compound or a salt thereof as claimed in claim 20 represented by the formula:

wherein Z₁, Z₂, Q, X, R₁-R₅, R₇-R₉, G₁-G₄, m and n are as defined in claim 20,

by subjecting a compound or a salt thereof represented by the formula:

wherein,

W' is a halogen atom, or a methanesulfonyloxy group or a p-toluenesulfonyloxy group, or an exchangeable substituent selected from an alcohol and alkoxy group, and

Z_1 , Z_2 , Q , X , R_1-R_5 , R_7-R_9 , G_1-G_4 , m and n are as defined above, to ring closure reaction; or

(d) producing the compound as claimed in claim 20 or a salt thereof by reacting a compound or a salt thereof represented by the formula:

wherein Q , Z_1 , Z_2 , X , R_2-R_9 , and n are as defined in claim 20,

F1
with a compound or a salt thereof represented by the formula:

wherein W' is a halogen atom, or a methanesulfonyloxy group or a p-toluenesulfonyloxy group, or an exchangeable substituent selected from an alcohol and alkoxy group, and R_1 , G_1-G_4 , and m are as defined in claim 20.

* * *

26. (New) A pharmaceutical composition comprising the compound as claimed in claim 20 or a salt thereof;

and a binder, a disintegrating agent, a lubricant, or a sweetener.

27. (New) A composition of claim 26, which is an anti-coagulant.

28. (New) A composition of claim 26, which is an inhibitor of activated coagulation factor X.

29. (New) A composition of claim 26, which is for the treatment of myocardial infarction, cerebral thrombosis or deep vein thrombosis.

30. (New) A pharmaceutical composition comprising a compound of claim 24 or a salt thereof; and a binder, a disintegrating agent, a lubricant, or a sweetener.

31. (New) A method of using the compound as claimed in claim 20 or a salt thereof for manufacturing an anti-coagulant.

32. (New) A method of using the compound as claimed in claim 20 or a salt thereof for manufacturing an inhibitor of activated coagulation factor X.

33. (New) A method of using the compound as claimed in claim 20 or a salt thereof for manufacturing a pharmaceutical composition for the treatment of myocardial infarction, cerebral thrombosis or deep vein thrombosis.

34. (New) A method for inhibiting coagulation in a mammal which comprises administering to said mammal an effective amount of the compound as claimed in claim 20 or a salt thereof.

35. (New) A method for inhibiting activated coagulation factor X in a mammal which comprises administering to said mammal an effective amount of the compound as claimed in claim 20 or a salt thereof.

36. (New) A method for treating myocardial infarction, cerebral thrombosis or deep vein thrombosis in a mammal comprising administering to said mammal an effective amount of the compound as claimed in claim 20 or a salt thereof.

37. (New) A method of using a compound of claim 24 or a salt thereof for manufacturing an anti-coagulant.

38. (New) A method of using a compound of claim 24 or a salt thereof for manufacturing an inhibitor of activated coagulation factor X.

39. (New) A method of using a compound of claim 24 or a salt thereof for manufacturing a pharmaceutical composition for the treatment of myocardial infarction, cerebral thrombosis or deep vein thrombosis.

f1

40. (New) A method for inhibiting coagulation in a mammal which comprises administering to said mammal an effective amount of a compound of claim 24 or a salt thereof.

41. (New) A method for inhibiting activated coagulation factor X in a mammal which comprises administering to said mammal an effective amount of a compound of claim 24 or a salt thereof.

42. (New) A method for treating myocardial infarction, cerebral thrombosis or deep vein thrombosis in a mammal comprising administering to said mammal an effective amount of a compound as claimed in claim 24 or a salt thereof.--
