

MOSFET

600V CoolMOS™ CFD7 Power Transistor

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. The latest CoolMOS™ CFD7 is the successor to the CoolMOS™ CFD2 series and is an optimized platform tailored to target soft switching applications such as phase-shift full-bridge (ZVS) and LLC. Resulting from reduced gate charge (Q_o), best-in-class reverse recovery charge (Q_r) and improved turn off behavior CoolMOS™ CFD7 offers highest efficiency in resonant topologies. As part of Infineon's fast body diode portfolio, this new product series blends all advantages of a fast switching technology together with superior hard commutation robustness, without sacrificing easy implementation in the design-in process.

Features

- Ultra-fast body diode
- Low gate charge
- Best-in-class reverse recovery charge (Q_{rr})
- Improved MOSFET reverse diode dv/dt and di_E/dt ruggedness
- Lowest FOM $R_{DS(on)}^*Q_g$ and $R_{DS(on)}^*E_{oss}^*$ Best-in-class $R_{DS(on)}^*$ in SMD and THD packages

Benefits

- Excellent hard commutation ruggedness
- Highest reliability for resonant topologies
- Highest efficiency with outstanding ease-of-use / performance tradeoff
- Enabling increased power density solutions

Suitable for Soft Switching topologies Optimized for phase-shift full-bridge (ZVS), LLC Applications – Server, Telecom, EV Charging

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: The source and sense source pins are not exchangeable. Their exchange might lead to malfunction. For paralleling 4pin MOSFET devices the placement of the gate resistor is generally recommended to be on the Driver Source instead of the Gate.

Table 1 Key performance parameters

Parameter	Value	Unit
V _{DS} @ T _{j,max}	650	V
R _{DS(on),max}	45	mΩ
$Q_{g,typ}$	79	nC
I _{D,pulse}	153	А
E _{oss} @ 400V	9.1	μЈ
Body diode di _F /dt	1300	A/μs

Part number	Package	Marking	Related links
IPT60R045CFD7	PG-HSOF-8	60R045F7	see Appendix A

Public

600V CoolMOS™ CFD7 Power Transistor IPT60R045CFD7

Table of contents

Description	
Maximum ratings	
Thermal characteristics	4
Electrical characteristics	5
Electrical characteristics diagrams	7
Test circuits	
Package outlines	
Appendix A	
Revision history	
Trademarks	
Disclaimer	17

1 Maximum ratings

at $T\hat{I} = 25^{\circ}C$, unless otherwise specified

Table 2 Maximum ratings

Parameter	Symbol	Values		l lmit	Note / Test condition		
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition	
Continuous drain current 1)	,			52	Α	T _c =25°C	
Continuous drain current	I_{D}	_	-	33		T _C =100°C	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	153	Α	T _C =25°C	
Avalanche energy, single pulse	E_{AS}			180	mı	1 -6 5A·V -50V: con table 10	
Avalanche energy, repetitive	E_{AR}]	-	0.90	mJ	I _D =6.5A; V _{DD} =50V; see table 10	
Avalanche current, single pulse	I _{AS}	-	-	6.5	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	120	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V_{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V_{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P_{tot}	-	-	272	W	T _C =25°C	
Storage temperature	$T_{\rm stg}$	-55		150	°C		
Operating junction temperature	$T_{\rm j}$	-55	_	150	°C	-	
Mounting torque	-	-		n.a.	Ncm		
Continuous diode forward current $^{1)}$	$I_{\rm S}$			52	A	<i>T_C</i> =25°C	
Diode pulse current ²⁾	I _{S,pulse}]		153		1 _C -23 C	
Reverse diode dv/dt ³⁾	dv/dt			70	V/ns	$V_{\rm DS}$ =0400V, $I_{\rm SD}$ ≤38A, $T_{\rm i}$ =25°C see	
Maximum diode commutation speed	di _F /dt]-	- -		A/μs	table 8	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, <i>t</i> =1min	

 $^{^{1)}}$ Limited by $T_{j \text{ max}}$.

Pulse width t_p limited by $T_{j,max}$

³⁾ Identical low side and high side switch with identical R_{G}

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			l lmit	Note / Test candition
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition
Thermal resistance, junction - case	$R_{\rm thJC}$	-	-	0.46	°C/W	-
Thermal resistance, junction - ambient	R_{thJA}	-	-	62	°C/W	device on PCB, minimal footprint
Thermal resistance, junction - ambient for SMD version	R_{thJA}	-	35	45	°C/W	Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thickness) copper area for drain connection and cooling. PCB is vertical without air stream cooling.
Soldering temperature, wave- & reflow soldering allowed	T_{sold}	-	-	260	°C	reflow MSL1

3 Electrical characteristics

at ΛÎ=25°C, unless otherwise specified

Table 4 Static characteristics

Parameter	Symbol	Values			Linit	Note / Test condition	
raiailletei	Syllibol	Min.	Тур.	Max.		Note / Test condition	
Drain-source breakdown voltage	$V_{(BR)DSS}$	600	-	-	٧	$V_{\rm GS}$ =0V, $I_{\rm D}$ =1mA	
Gate threshold voltage	$V_{\rm (GS)th}$	3.5	4	4.5	V	$V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 0.9 \mathrm{mA}$	
Zero gate voltage drain current	I _{DSS}	-	-	1	μΑ	$V_{\rm DS}$ =600V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =25°C	
Zero gate voltage drain current ⁴⁾	I _{DSS}	-	19	75	μΑ	$V_{\rm DS}$ =600V, $V_{\rm GS}$ =0V, $T_{\rm j}$ =125°C	
Gate-source leakage current	I _{GSS}	-	-	100	nA	$V_{\rm GS}$ =20V, $V_{\rm DS}$ =0V	
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	-	0.038	0.045	Ω	$V_{\rm GS}$ =10V, $I_{\rm D}$ =18.0A, $T_{\rm j}$ =25°C	
			0.086	-	1 22	$V_{\rm GS}$ =10V, $I_{\rm D}$ =18.0A, $T_{\rm j}$ =150°C	
Gate resistance	ance $R_{\rm G}$		5.8	-	Ω	<i>f</i> =1MHz, open drain	

⁴⁾ Maximum specification is defined by calculated six sigma upper confidence bound

Table 5 Dynamic characteristics

Parameter	Symbol	Values			11	Nata / Tast assidition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test condition
Input capacitance	C _{iss}		3194		nE	\/ -0\/ \/ -400\/ { 250kH ₇
Output capacitance	Coss]	62	-	pΓ	$V_{\rm GS}$ =0V, $V_{\rm DS}$ =400V, f =250kHz
Effective output capacitance, energy related ⁵⁾	$C_{o(er)}$	-	114	-	рF	V _{GS} =0V, V _{DS} =0400V
Effective output capacitance, time related ⁶⁾	$C_{\rm o(tr)}$	-	1166	-	рF	$I_{\rm D}$ =constant, $V_{\rm GS}$ =0V, $V_{\rm DS}$ =0400V
Turn-on delay time	$t_{d(on)}$		27			
Rise time	$t_{\rm r}$		19		nc	V_{DD} =400V, V_{GS} =10V, I_{D} =13.7A, R_{G} =3.
Turn-off delay time	$t_{\sf d(off)}$]-	101	-	ns	0Ω; see table 9
Fall time	$t_{\rm f}$		5			

 $^{^{5)}}$ $C_{\mathrm{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V

 $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 400V

Table 6 Gate charge characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
	Syllibot	Min.	Тур.	Max.		Note / Test condition
Gate to source charge	Q_{gs}		18		nC	
Gate to drain charge	Q_{gd}		28		nC	 /400\/_/_12.74_\/0+2.10\/
Gate charge total	$Q_{ m g}$	-	79	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =13.7A, $V_{\rm GS}$ =0 to 10V
Gate plateau voltage	$V_{ m plateau}$		5.5		V	

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
	Syllibol	Min.	Тур.	Max.		Note / Test condition
Diode forward voltage	$V_{\rm SD}$	-	1.0	-	V	$V_{\rm GS}$ =0V, $I_{\rm F}$ =18.0A, $T_{\rm j}$ =25°C
Reverse recovery time	t _{rr}		132	198	ns	
Reverse recovery charge	$Q_{\rm rr}$]-	0.68	1.37	I III.	V_R =400V, I_F =13.7A, dI_F/dt =100A/ μ s; see table 8
Peak reverse recovery current	I _{rrm}		8.8	-	Α	see table o

4 Electrical characteristics diagrams

5 Test circuits

Table 8 Diode characteristics

Table 9 Switching times (ss)

Table 10 Unclamped inductive load (ss)

6 Package outlines

PACKAGE - GROUP NUMBER:	PG-HSOF-8-U02						
DIMENSIONS	MILLIM	ETERS					
DIMENSIONS	MIN.	MAX.					
Α	2.20	2.40					
b	0.70	0.90					
b1	9.70	9.90					
b2	0.42	0.50					
С	0.40	0.60					
D	10.28	10.58					
D1	3.	30					
E	9.70	10.10					
E1	7.50						
E2	8.50						
E3	9.46						
е	1.20 (BSC)						
Н	11.48	11.88					
H1	6.55 6.95						
H2	7.15						
H3	3.59						
H4	3.26						
N	8						
K1	4.18						
L	1.40 1.80						
L1	0.50 0.90						
L2	0.50 0.70						
L3	1.00	1.30					
L4	2.62	2.81					

1) PARTIALLY COVERED WITH MOLD FLASH

Figure 1 Outline PG-HSOF-8, dimensions in mm

Figure 2 Footprint drawing PG-HSOF-8, dimensions in mm

Figure 3 Packaging variant PG-HSOF-8, dimensions in mm

7 Appendix A

Table 11 Related links

- IFX CoolMOS™ CFD7 Webpage
- IFX CoolMOS™ CFD7 application note
- IFX CoolMOS™ CFD7 simulation model
- IFX Design tools

Public

600V CoolMOS™ CFD7 Power Transistor IPT60R045CFD7

Revision history

IPT60R045CFD7

Revision 2025-02-03, Rev. 2.4

Previous revisions

110000		
Revision	Date	Subjects (major changes since last revision)
2.0	2020-04-22	Release of final version
2.1	2020-06-23	Changed diode commutation speed current
2.2	2020-08-28	Changed trr value
2.3	2020-11-11	Changed diagram 2, 3, 7, 8, 9; Changed typical static and dynamic parameters
2.4	2025-02-03	Implementation of standardized Infineon Umbrella-Templates for package drawings. H1 Extension from 6.75 to 6.95 MAX

Public

600V CoolMOS™ CFD7 Power Transistor IPT60R045CFD7

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Important notice

The products which may also include samples and may be comprised of hardware or software or both ("Product") are sold or provided and delivered by Infineon Technologies AG and its affiliates ("Infineon") subject to the terms and conditions of the frame supply contract or other written agreement(s) executed by a customer and Infineon or, in the absence of the foregoing, the applicable Sales Conditions of Infineon.

General terms and conditions of a customer or deviations from applicable Sales Conditions of Infineon shall only be binding for Infineon if and to the extent Infineon has given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of non-infringement of third-party rights and implied warranties such as warranties of fitness for a specific use/purpose or merchantability.

Infineon shall not be responsible for any information with respect to samples, the application or customer's specific use of any Product or for any examples or typical values given in this document.

The data contained in this document is exclusively intended for technically qualified and skilled customer representatives. It is the responsibility of the customer to evaluate the suitability of the Product for the intended application and the customer's specific use and to verify all relevant technical data contained in this document in the intended application and the customer's specific use. The customer is responsible for properly designing, programming, and testing the functionality and safety of the intended application, as well as complying with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products may not be used in any application where a failure of the Product or any consequences of the use thereof can reasonably be expected to result in personal injury. However, the foregoing shall not prevent the customer from using any Product in such fields of use that Infineon has explicitly designed and sold it for, provided that the overall responsibility for the application lies with the customer.

If the Product includes security features:

Because no computing device can be absolutely secure, and despite security measures implemented in the Product, Infineon does not guarantee that the Product will be free from intrusion, data theft or loss, or other breaches ("Security Breaches"), and Infineon shall have no liability arising out of any Security Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual property laws and treaties of the United States, Germany, and other countries worldwide. All rights reserved. Therefore, you may use the software only as provided in the software license agreement accompanying the software. If no software license agreement applies, Infineon hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) under its intellectual property rights in the software (a) for software provided in source code form, to modify and reproduce the software solely for use with Infineon hardware products, only internally within your organization, and (b) to distribute the software in binary code form externally to end users, solely for use on Infineon hardware products. Any other use, reproduction, modification, translation, or compilation of the software is prohibited.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).