Mini Project: Investigating Pertussis Resurgence

Emily Rodriguez

Pertussis, or whooping cough, is a highly contagous lung infection caused by a bacteria B. pertussis.

The CDC tracks reported cases in the U.S. since the 1920s

```
cdc <- data.frame(</pre>
                                    Year = c(1922L, 1923L, 1924L, 1925L,
                                               1926L, 1927L, 1928L, 1929L, 1930L, 1931L,
                                               1932L,1933L,1934L,1935L,1936L,
                                               1937L,1938L,1939L,1940L,1941L,1942L,
                                               1943L,1944L,1945L,1946L,1947L,
                                               1948L, 1949L, 1950L, 1951L, 1952L,
                                               1953L,1954L,1955L,1956L,1957L,1958L,
                                               1959L, 1960L, 1961L, 1962L, 1963L,
                                               1964L, 1965L, 1966L, 1967L, 1968L, 1969L,
                                               1970L, 1971L, 1972L, 1973L, 1974L,
                                               1975L, 1976L, 1977L, 1978L, 1979L, 1980L,
                                               1981L, 1982L, 1983L, 1984L, 1985L,
                                               1986L, 1987L, 1988L, 1989L, 1990L,
                                               1991L, 1992L, 1993L, 1994L, 1995L, 1996L,
                                               1997L,1998L,1999L,2000L,2001L,
                                               2002L,2003L,2004L,2005L,2006L,2007L,
                                               2008L, 2009L, 2010L, 2011L, 2012L,
                                              2013L,2014L,2015L,2016L,2017L,2018L,
                                              2019L,2020L,2021L),
                                   Cases = c(107473, 164191, 165418, 152003,
                                              202210, 181411, 161799, 197371,
                                               166914, 172559, 215343, 179135, 265269,
                                               180518, 147237, 214652, 227319, 103188,
                                               183866,222202,191383,191890,109873,
```

```
133792,109860,156517,74715,69479,
120718,68687,45030,37129,60886,
62786,31732,28295,32148,40005,
14809,11468,17749,17135,13005,6799,
7717,9718,4810,3285,4249,3036,
3287,1759,2402,1738,1010,2177,2063,
1623,1730,1248,1895,2463,2276,
3589,4195,2823,3450,4157,4570,
2719,4083,6586,4617,5137,7796,6564,
7405,7298,7867,7580,9771,11647,
25827,25616,15632,10454,13278,
16858,27550,18719,48277,28639,32971,
20762,17972,18975,15609,18617,
6124,2116)
```

We can now plot the number of reported pertussis cases per year in the U.S.

```
library(ggplot2)

ggplot(cdc) +
  aes(Year, Cases) +
  geom_point() +
  geom_line()
```

)

The first big "whole-cell" pertussis vaccine program started in 1942.

```
ggplot(cdc) +
  aes(Year, Cases) +
  geom_point() +
  geom_line() +
  geom_vline(xintercept = 1942, color = "blue") +
  geom_vline(xintercept = 1980, color = "grey", linetype = 2) +
  geom_vline(xintercept = 1995, color = "red")
```


Somethinf big is happening with perussis cases and big outbreaks are once again a major public health concern!

One of the main hypothesis for the increasing case numbers is wanting vaccine efficiency with the newer aP vaccine.

Enter the CMI-PB project, which is studying this problem on large scale. Let's see what data they have.

Their data is available in JSON format ("key:value" pair style). We will use the "jsonlight" package to read their data.

```
library(jsonlite)
subject <- read_json("https://www.cmi-pb.org/api/subject", simplifyVector = TRUE)
head(subject)</pre>
```

	subject_id	infancy_vac	biological_sex			etl	nnicity	race
1	1	wP	Female	Not	${\tt Hispanic}$	or	${\tt Latino}$	White
2	2	wP	Female	Not	${\tt Hispanic}$	or	${\tt Latino}$	White
3	3	wP	Female			Ţ	Jnknown	White
4	4	wΡ	Male	Not	Hispanic	or	Latino	Asian
	-	**-			F			

```
6
           6
                      wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset
     1986-01-01
                   2016-09-12 2020_dataset
1
2
                   2019-01-28 2020_dataset
     1968-01-01
                   2016-10-10 2020_dataset
3
     1983-01-01
                   2016-08-29 2020_dataset
4
     1988-01-01
5
     1991-01-01
                   2016-08-29 2020_dataset
6
     1988-01-01
                   2016-10-10 2020_dataset
```

Q4. How may aP and wP infancy vaccinated subjects are in the dataset?

```
table(subject$infancy_vac)
```

aP wP 47 49

Q5. How many Male and Female subjects/patients are in the dataset?

```
table(subject$biological_sex)
```

Female Male 66 30

Q6. What is the breakdown of race and biological sex (e.g. number of Asian females, White males etc...)?

```
table(subject$race)
```

American Indian/Alaska Native

1
Asian
27
Black or African American
2
More Than One Race
10
Native Hawaiian or Other Pacific Islander

```
Unknown or Not Reported
14
White
40
```

table(subject\$race, subject\$biological_sex)

	Female	Male
American Indian/Alaska Native	0	1
Asian	18	9
Black or African American	2	0
More Than One Race	8	2
Native Hawaiian or Other Pacific Islander	1	1
Unknown or Not Reported	10	4
White	27	13

Now let's read some more database tables from CMI-PB:

```
specimen <- read_json("http://cmi-pb.org/api/specimen", simplifyVector = TRUE)
head(specimen)</pre>
```

	specimen_id	subject_id	actual _.	_day_relative_1	to_boost
1	1	1			-3
2	2	1			736
3	3	1			1
4	4	1			3
5	5	1			7
6	6	1			11
	planned_day_	_relative_to	_boost	specimen_type	visit
1			0	Blood	1
2			736	Blood	10
3			1	Blood	2
4			3	Blood	3
5			7	Blood	4
6			14	Blood	5

I want to "join" (a.k.a "merge"/link/etc.) the subject and specimen tables together. I will use the **dplyr** package for this.

library(dplyr)

```
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  meta <- inner_join(subject, specimen)</pre>
Joining with `by = join_by(subject_id)`
  head(meta)
  subject_id infancy_vac biological_sex
                                                       ethnicity race
           1
                      wP
                                  Female Not Hispanic or Latino White
1
2
           1
                       wP
                                  Female Not Hispanic or Latino White
3
           1
                      wP
                                  Female Not Hispanic or Latino White
4
           1
                                  Female Not Hispanic or Latino White
                       wP
5
           1
                      wP
                                  Female Not Hispanic or Latino White
                       wΡ
                                  Female Not Hispanic or Latino White
           1
  year_of_birth date_of_boost
                                    dataset specimen_id
1
     1986-01-01
                   2016-09-12 2020_dataset
2
     1986-01-01
                    2016-09-12 2020_dataset
                                                       2
                   2016-09-12 2020 dataset
                                                       3
3
     1986-01-01
     1986-01-01
4
                   2016-09-12 2020_dataset
                                                       4
5
                   2016-09-12 2020_dataset
                                                       5
     1986-01-01
     1986-01-01
                    2016-09-12 2020_dataset
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
1
                                                             0
                                                                        Blood
                            736
                                                           736
2
                                                                        Blood
3
                              1
                                                                        Blood
                                                              1
4
                              3
                                                              3
                                                                        Blood
```

```
5
                                7
                                                                 7
                                                                            Blood
6
                               11
                                                                14
                                                                            Blood
  visit
1
      1
2
     10
3
      2
4
      3
5
      4
6
      5
   ab <- read_json("http://cmi-pb.org/api/ab_titer", simplifyVector = TRUE)</pre>
  head(ab)
  specimen_id isotype is_antigen_specific antigen
                                                               MFI MFI_normalised
1
             1
                    IgE
                                        FALSE
                                                Total 1110.21154
                                                                          2.493425
2
             1
                                                Total 2708.91616
                                                                          2.493425
                    IgE
                                        FALSE
3
             1
                    IgG
                                         TRUE
                                                    PT
                                                         68.56614
                                                                          3.736992
4
             1
                    IgG
                                         TRUE
                                                   PRN
                                                        332.12718
                                                                          2.602350
5
             1
                    IgG
                                         TRUE
                                                   FHA 1887.12263
                                                                         34.050956
                    IgE
                                         TRUE
                                                   ACT
                                                          0.10000
                                                                          1.000000
   \verb"unit lower_limit_of_detection"
1 UG/ML
                          2.096133
2 IU/ML
                         29.170000
3 IU/ML
                          0.530000
4 IU/ML
                          6.205949
5 IU/ML
                          4.679535
6 IU/ML
                          2.816431
```

Now I can join the meta that we made above and contains all info about the subjects and specimens with this ab data

```
abdata <- inner_join(meta, ab)

Joining with `by = join_by(specimen_id)`
   dim(abdata)

[1] 32675 20</pre>
```

Q11. How many specimens (i.e. entries in abdata) do we have for each isotype?

table(abdata\$isotype)

```
IgE IgG IgG1 IgG2 IgG3 IgG4
6698 1413 6141 6141 6141 6141
```

. Q12. What do you notice about the number of visit 8 specimens compared to other visits?

```
table(abdata$visit)
```

```
1 2 3 4 5 6 7 8
5795 4640 4640 4640 4640 4320 3920 80
```

There are way less visit 8 specimens because the project is still ongoing and we do not have the data for all individuals yet.

Examine IgG1 Ab titer levels

We will use the filter function from dplyr to focus on just IgG1 isotype and visit 1 to 7 (i.e. exclude visit 8 as there are not many specimens there yet).

```
ig1 <- filter(abdata, isotype == "IgG1", visit!=8)
head(ig1)</pre>
```

```
subject_id infancy_vac biological_sex
                                                       ethnicity race
1
                      wP
                                  Female Not Hispanic or Latino White
2
           1
                       wP
                                  Female Not Hispanic or Latino White
3
           1
                                  Female Not Hispanic or Latino White
                       wP
4
           1
                       wP
                                  Female Not Hispanic or Latino White
                                  Female Not Hispanic or Latino White
5
           1
                      wΡ
           1
                       wP
                                  Female Not Hispanic or Latino White
 year_of_birth date_of_boost
                                    dataset specimen_id
     1986-01-01
                    2016-09-12 2020_dataset
                                                       1
1
2
                    2016-09-12 2020_dataset
                                                       1
     1986-01-01
3
     1986-01-01
                   2016-09-12 2020_dataset
                                                       1
4
     1986-01-01
                   2016-09-12 2020_dataset
                                                       1
5
     1986-01-01
                    2016-09-12 2020_dataset
                                                       1
```

```
2016-09-12 2020_dataset
6
     1986-01-01
  actual_day_relative_to_boost planned_day_relative_to_boost specimen_type
                             -3
                                                              0
                                                                        Blood
1
2
                             -3
                                                              0
                                                                        Blood
3
                             -3
                                                              0
                                                                        Blood
4
                             -3
                                                              0
                                                                        Blood
5
                             -3
                                                              0
                                                                        Blood
                             -3
                                                              0
                                                                        Blood
6
  visit isotype is_antigen_specific antigen
                                                     MFI MFI_normalised unit
                                TRUE
                                          ACT 274.355068
                                                               0.6928058 IU/ML
1
      1
           IgG1
2
      1
           IgG1
                                TRUE
                                          LOS
                                              10.974026
                                                               2.1645083 IU/ML
3
      1
           IgG1
                                TRUE
                                        FELD1
                                                1.448796
                                                               0.8080941 IU/ML
4
      1
                                TRUE
                                        BETV1
                                                0.100000
                                                               1.0000000 IU/ML
           IgG1
5
      1
           IgG1
                                TRUE
                                        LOLP1
                                                0.100000
                                                               1.0000000 IU/ML
           IgG1
                                TRUE Measles 36.277417
                                                               1.6638332 IU/ML
  lower_limit_of_detection
1
                   3.848750
2
                   4.357917
3
                   2.699944
4
                   1.734784
5
                   2.550606
6
                   4.438966
```

Box plot of antigen leves over time.

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot()
```


and facet by visit:

```
ggplot(ig1) +
  aes(MFI, antigen) +
  geom_boxplot() +
  facet_wrap(vars(visit), nrow=2)
```


Clearly FIM2/3 changes. This is "Fimbrial protein" that makes the bacteria pilus and is involved in cell adhesion.

PT Pertussis Toxin

FHA is Filamentous hemagglutinin surface associated adherence protein of bacteria pertussis, which is a component of some new acellular pertussis vaccines.

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(visit), nrow=2) +
  theme_bw()
```


Another version of this plot adding infanvy_vac to the faceting:

```
ggplot(ig1) +
  aes(MFI, antigen, col=infancy_vac ) +
  geom_boxplot(show.legend = FALSE) +
  facet_wrap(vars(infancy_vac, visit), nrow=2)
```


Measles antigen levels per visit (aP red, wP teal):

```
filter(ig1, antigen=="Measles") %>%
   ggplot() +
   aes(MFI, col=infancy_vac) +
   geom_boxplot(show.legend = FALSE) +
   facet_wrap(vars(visit)) +
   theme_bw()
```


FIM2/3 antigen levels per visit (aP red, wP teal):

```
filter(ig1, antigen== "FIM2/3") %>%
    ggplot() +
    aes(MFI, col=infancy_vac) +
    geom_boxplot(show.legend = FALSE) +
    facet_wrap(vars(visit)) +
    theme_bw()
```

