Phases of Matter

- Each physical state of matter is a **phase**, a physically distinct, homogeneous part of a system.
- The properties of each phase are determined by the balance between the potential and kinetic energy of the particles.
- The *potential* energy, in the form of *attractive forces*, tends to draw particles together.
- The kinetic energy associated with movement tends to disperse particles.

Attractive Forces

- Intramolecular or bonding forces are found within a
 molecule. The chemical behavior of each phase of matter is
 the same because the same constituent particle is present in
 each case.
 - H₂O molecules are present whether the substance is in the solid, liquid, or gas phase.
- Intermolecular or nonbonding forces are found between molecules. The physical behavior of each phase of matter is different because the strength of these forces differs from state to state.

Kinetic Molecular View of the Three States

	State	Attractive Forces vs. Kinetic Energy	Properties	
	Gas	Attractive forces are weak relative to kinetic energy.	Particles are far apart. A gas has no fixed shape or volume.	
	Liquid	Attractive forces are stronger because particles have less kinetic energy.	A liquid can flow and change shape, but has a fixed volume.	
		A solid has a fixed shape and volume.		

A Macroscopic Comparison of Gases, Liquids, and Solids

State	Shape and Volume	Compressibility	Ability to Flow
Gas	Conforms to shape and volume of container	High	High
Liquid	Conforms to shape of container; volume limited by surface	Very low	Moderate
Solid	Maintains its own shape and volume		Almost none

Types of Phase Changes and Their Enthalpies

- · Gas to liquid, and vice versa
 - Temperature drops (or pressure rises) → molecules in the gas phase come together and form a liquid = condensation
 - opposite process (liquid → gas) = vaporization.
- · Liquid to solid, and vice versa
 - $-\,$ Temperature drops further \to particles move more slowly and become fixed in position = ${\it freezing}$
 - opposite change = melting or fusion.
- Gas to solid, and vice versa
 - Solid to a gas (dry ice or solid CO₂ at room temp) = sublimation
 - opposite process (changing from a gas directly into a solid)
 deposition.

Two Familiar Phase Changes.

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or

A Deposition

B Vaporization

Figure 12.1

Quantitative Aspects of Phase Changes

- Within a phase, heat flow is accompanied by a change in temperature, since the average $E_{\rm k}$ of the particles changes.
 - $-q = (amount) \times (heat capacity) \times \Delta T$
- During a phase change, heat flow occurs at constant temperature, as the average distance between particles changes.
 - $-q = (amount)(\Delta H \text{ of phase change})$

Sample Problem 12.1 – Problem

Finding the Heat of a Phase Change Depicted by Molecular Scenes

 The scenes below represent a phase change of water. Use values for molar heat capacities and heats of phase changes from the text discussion to find the heat (in kJ) released or absorbed when 24.3 g of H₂O undergoes this change.

For Stage 1:			
$q = n \times C_{\text{water}(\hat{l})} \times DT$			
= (1.35 mol)(75.4 J/mol·2C)(100. – 85.02C)			
= 1527 J = 1.53 kJ			
For Stage 2:	Copyright © McGraw-Hill Education distribution without the prior with		
$q = n(DH_{vap}^2) = (1.35 \text{ mol})(40.7 \text{ kJ/mol}) = 54.9 \text{ kJ}$	Stage 1	Stage 2	Stage
For Stage 3:	0 117 - Canada 1		/
$q = n \times C_{water(g)} \times DT$	Columberation (C)	NOUND CA	GAS
= (1.35 mol)(33.1 J/mol·2C)(117 – 100.2C)	LIQUID	LIQUID-GA	5
= 759.6 J = 0.760 kJ	₽ 85 LIQUID		-
q _{total} = 1.53 + 54.9 + 0.760 kJ = 57.2 kJ	0 Hea	t absorbed—	-

Liquid-gas Equilibrium C Plot of pressure vs. time.

- In a closed flask, the system reaches a state of *dynamic* equilibrium, where molecules are leaving and entering the liquid at the same rate.
 - The *vapor pressure* is the pressure exerted by the vapor on the liquid. The pressure increases until equilibrium is reached; at equilibrium the vapor pressure is constant.

Figure 12.5

The Effect Of Temperature On The Distribution **Of Molecular Speeds** Figure 12.6

Factors Affecting Vapor Pressure

• As temperature *increases*, the fraction of molecules with enough energy to enter the vapor phase increases, and the vapor pressure increases.

higher $T \rightarrow$ higher P

• The weaker the intermolecular forces, the more easily particles enter the vapor phase, and the higher the vapor pressure.

weaker forces \rightarrow higher P

Vapor Pressure As A Function Of Temperature And Intermolecular Forces

• Vapor pressure *increases* as temperature *increases*.

 Vapor pressure decreases as the strength of the intermolecular forces increases.

Figure 12.7

The Clausius-Clapeyron Equation

• This equation relates vapor pressure to temperature.

$$\ln P = \frac{-\Delta H_{\text{vap}}}{R} \left(\frac{1}{T}\right) + C$$

• The two-point form is used when the vapor pressures at two different temperatures are known.

$$ln\frac{P_{1}}{P_{2}} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}}\right)$$

R = 8.314 J/mol·K

Linear Plots Of The Relationship Between Vapor Pressure And Temperature

yight C Micros-HII Education. All rights reserved. No reproduct without the prior written consent of Micros-HII Education What I Education without the prior written consent of Micros-HII Education. Water Diethyl ether

Figure 12.8

• slope = $\frac{-\Delta H_{\text{vap}}}{R}$

Vapor Pressure and Boiling Point

- The **boiling point** of a liquid is the temperature at which the vapor pressure equals the external pressure.
- The *normal boiling point* of a substance is observed at standard atmospheric pressure or 760 torr.
- As the external pressure on a liquid *increases*, the boiling point *increases*.

Phase Diagram For CO₂

Copyright 6 McGrav-Hell Education. All highs reserved. No reproduction or distribution without the prior written consent of McGrav-Hell Education.

Line has positive slope:
solid is denser than fiquid.

Critical point
(3°C, 73 atm)

Free zing

Vaporisylon

Convensation

Frigure 12.10

The Nature of Intermolecular Forces

- Intermolecular forces arise from the attraction between molecules with partial charges, or between ions and molecules.
- Intermolecular forces are relatively weak compared to bonding forces because they involve smaller charges that are farther apart.

Covalent and Van Der Waals Radii

- The van der Waals *distance* is the distance between two *nonbonded* atoms in *adjacent* molecules.
- The van der Waals radius is one-half the closest distance between the nuclei of two nonbonded atoms. The VDW radius is always larger than the covalent radius.
- Neutral

Periodic Trends In Covalent And Van Der Waals Radii

Neutral

Comparison of Bonding Forces

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Ionic		Cation–anion	400-4000	NaCl
Covalent	0,0	Nuclei– shared e ⁻ pair	150-1100	н–н
Metallic	223	Cations— delocalized electrons	75–1000	Fe

Comparison of Non-Bonding Forces

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Ion-dipole	o	lon charge— dipole charge	40–600	Na+O\(\frac{H}{H}\)
H bond	-A-H:B-	Polar bond to H-dipole charge (high EN of N, O, F)	10-40	:ö-н;ö-н
Dipole-dipole		Dipole charges	5-25	I–CI···I–CI
Ion-induced dipole	o	lon charge- polarizable e ⁻ cl oud	3–15	Fe ²⁺ ···O ₂
Dipole- induced dipole		Dipole charge— polarizable e-cl oud	2-10	H-Cl···Cl-Cl
Dispersion (London)		Polarizable e ⁻ clouds	0.05-40	F-F···F-F

Polar Molecules and Dipole-Dipole Forces

Figure 12.13

The Hydrogen Bond

- Hydrogen bonding is possible for molecules that have a hydrogen atom covalently bonded to a small, highly electronegative atom with lone electron pairs, specifically N, O, or F.
- An intermolecular hydrogen bond is the attraction between the H atom of one molecule and a lone pair of the N, O, or F atom of another molecule.

$$-\stackrel{}{\eta} : \cdots H - \stackrel{}{\eta} : \quad -\stackrel{}{E} : \cdots H - \stackrel{}{\Omega} : \quad -\stackrel{}{\eta} : \cdots H - \stackrel{}{\eta} : \quad -\stackrel{}{\eta} : \cdots H - \stackrel{}{\eta} : \quad$$

Hydrogen Bonding and Boiling Point Capyright 9 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Group 5A(14) Group 5A(14) Group 5A(15) Group 7A(17) H2 SbH3 GeH4 Figure 12.15

	_
Drawing Hydrogen Bonds Between Molecules of a Substance	
Which of these substances exhibits H bonding? Draw examples of the H bonds between two molecules of each substance that	
does. (a) C_2H_6 (b) CH_3OH (c) $\underset{CH_3C-NH_2}{\overset{0}{\bigcirc}}$	
Mildone will it denotes	
	1
Polarizability and Induced Dipoles • A nearby electric field can <i>induce</i> a distortion in the electron	
cloud of an atom, ion, or molecule. – For a nonpolar molecule, this induces a temporary dipole moment.	
 For a polar molecule, the field enhances the existing dipole moment. 	
 The polarizability of a particle is the ease with which its electron cloud is distorted. 	
Milders MT Aberton	
	1
Trends in Polarizability	
 Smaller particles are less polarizable than larger ones because their electrons are held more tightly. 	
 Polarizability increases down a group because atomic size increases and larger electron clouds distort more easily. 	
- Polarizability $\it decreases~across~a~period~because~of~increasing~~Z_{\rm eff}.$	
 Cations are smaller than their parent atoms and less polarizable; anions show the opposite trend. 	

Dispersion Forces Among Nonpolar Particles

- When atoms are far apart they do not influence one other.
- When atoms are close together, the instantaneous dipole in one atom induces a dipole in the other.
- The process occurs throughout the sample.

Dispersion (London) Forces

- Dispersion forces or London forces arise when an instantaneous dipole in one particle induces a dipole in another, resulting in an attraction between them.
- Dispersion forces exist between *all particles*, increasing the energy of attraction in all matter.
- Dispersion forces are stronger for more polarizable particles.
 - In general, larger particles experience stronger dispersion forces than smaller ones.

Molar Mass and Trends In Boiling Point

- Dispersion forces are stronger for larger, more polarizable particles.
- Polarizability correlates closely with molar mass for similar particles.

Figure 12.17

Identifying the Types of Intermolecular Forces

For each substance, identify the key bonding and/or intermolecular force(s), and predict which substance of the pair has the higher boiling point: (a) $MgCl_2$ or PCl_3 (b) CH_3NH_2 or CH_3F (c) CH_3OH or CH_3CH_2OH (d) Hexane $(CH_3CH_2CH_2CH_2CH_3)$ or 2,2-dimethylbutane

SOLUTION:

(a) MgCl $_2$ consists of Mg $^{2+}$ and Cl $^-$ ions held together by ionic bonding forces; PCl $_3$, with a trigonal pyramidal geometry, consists of polar molecules, so intermolecular dipoledipole forces are present. The forces in MgCl $_2$ are stronger, so it should have a higher boiling point.

(b) CH $_3$ NH $_2$ and CH $_3$ F both consist of polar molecules of about the same molar mass. CH $_3$ NH $_2$ has N $_2$ H bonds, so it can form H bonds. CH $_3$ F contains a C $_3$ F bond but no H $_3$ F bond, so dipole-dipole forces occur but not H bonds. Therefore, CH $_3$ NH $_2$ should have the higher boiling point.

(c) CH₃OH and CH₃CH₂OH molecules both contain an O-H bond, so they can form H bonds. CH₃CH₂OH has an additional -CH₂- group and thus a larger molar mass, which correlates with stronger dispersion forces; therefore, it should have a higher boiling point.

Busion without the pior written consect of McGrow-Hill Educat

(d) Hexane and 2,2-dimethylbutane are nonpolar molecules of the same molar mass but different molecular shapes. Cylindrical hexane molecules make more intermolecular contact than more compact 2,2-dimethylbutane molecules do, so hexane should have stronger dispersion forces and a higher boiling point.

The Molecular Basis Of Surface Tension

- A surface molecule experiences a net attraction downward. This causes a liquid surface to have the smallest area possible.
- An interior molecule is attracted by others on all sides.
- required to increase the surface area of a liquid. The *stronger* the forces between the particles the *higher* the surface tension.

Surface Tension, Viscosity, and Forces Between Particles

Substance	Formula	Surface Tension (J/m²) at 20°C	Viscosity (N·s/m²) at 20°C	Major Force(s)
Diethyl ether	CH ₃ CH ₂ OCH ₂ CH ₃	1.7×10 ⁻²	0.240×10 ⁻³	Dipole-dipole; dispersion
Ethanol	CH ₃ CH ₂ OH	2.3×10 ⁻²	1.20×10 ⁻³	H bonding
Butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	2.5×10 ⁻²	2.95×10 ⁻³	H bonding; dispersion
Water	H₂O	7.3×10 ⁻²	1.00×10 ⁻³	H bonding
Mercury	Hg	48×10 ⁻²	1.55×10 ⁻³	Metallic bonding

Capillary Action and the Shape Of The Water or Mercury Meniscus In Glass

> Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

A. Water displays a concave meniscus.

B. Mercury displays a convex meniscus.

Figure 12.21

Viscosity of Water at Several Temperatures

Temperature (°C)	Viscosity (N·s/m²)
20	1.00×10 ⁻³
40	0.65×10 ⁻³
60	0.47×10 ⁻³
80	0.35×10 ⁻³

H-bonding Ability of water Each H₂O molecule can form *four* H bonds to other molecules, resulting in a tetrahedral arrangement. Capying to McCase Hill Education. All right inversed to improduction of control the journ without the journ witho

The Hexagonal Structure Of Ice Ice has an open structure due to H-bonding. Ice is therefore less dense than liquid water. Croyoff & McCrow-Hill Education. All tight reserved the reproduction or definition without the prior written consent of McCrow-Hill Education.

