Федеральное государственное автономное учреждение высшего образования

Московский физико-технический институт (национальный исследовательский университет)

МЕРА И ИНТЕГРАЛ ЛЕБЕГА

IV CEMECTP

Физтех-школа: $\Phi\Pi M M$ Направления: $\Pi M \Phi$

Лектор: Гусев Николай Анатольевич

Автор: Максим Иванов

Содержание

1 Лекция 1: Различные системы множеств.

3

Лекция 1: Различные системы множеств.

В этом курсе имеется дело с функциями, аргументами которых являются множества.

Определение 1.1. Мерой на множестве X называется функция $\mu: \mathcal{F} \to [0, \infty]$, где \mathcal{F} — семейство подмножеств X.

На \mathcal{F} нужно наложить некоторые ограничения, потому как если, к примеру, определена мера для двух множеств, то логично было бы, чтобы была определена мера и на их сумме, пересечении, объеденении. Отсюда вытекают такие понятия как:

Определение 1.2. Семейство \mathcal{F} подмножеств множества X (далее используется обозначение $\mathcal{F} \subset \mathcal{P}(X) \equiv 2^X$, где $\mathcal{P}(X)$ — множество всех подмножеств множества X) называется σ -алгеброй, если

 1° . $\varnothing \in \mathcal{F}$.

2°.
$$\forall A, B \in \mathcal{F} : A \cap B \in \mathcal{F}, A \cup B \in \mathcal{F}, A \setminus B \equiv A \cap B^C \in \mathcal{F},$$
 где $B^C = X \setminus B$.

 3° . $X \in \mathcal{F}$.

4°.
$$\forall \{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}$$
 выполнено, что $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F},\bigcap_{n=1}^{\infty}A_n\in\mathcal{F}.$

Определение 1.3. \mathcal{F} — кольцо если выполняются условия 1° и 2°.

Определение 1.4. \mathcal{F} — алгебра если выполняются условия 1°, 2° и $\overline{3}$ °.

Замечание. Пусть $\mathcal{F}-\sigma$ -алгебра, тогда $\forall A\in\mathcal{F}:\ A^C=X\setminus A\in\mathcal{F}.$ Тогда

$$\bigcup_{n=1}^{\infty} A_n = \left(\bigcup_{n=1}^{\infty} A_n\right)^{CC} = \left(\bigcap_{n=1}^{\infty} A_n^C\right)^{C}.$$

Поэтому можно сказать, что вторая часть в условии 4° избыточно. Абсолютно аналогично и в обратную сторону, то есть эти два требования равносильны.

Замечание. Пусть \mathcal{F} — кольцо, тогда $A \cap B = A \cap (B^{CC}) = A \setminus B^C = A \setminus (X \setminus B) = A \setminus (A \setminus B)$. То есть требование замкнутости по пересечению в свойстве 2° избыточно.

Пример 1.5. Пусть \mathcal{F} — семейство всех ограниченных подмножеств множества \mathbb{R} . Тогда \mathcal{F} — кольцо, но не алгебра.

Определение 1.6. Кольцо ${\cal F}$ называется

- а) σ -кольцом, если $\forall \{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$ выполнено, что $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.
- b) δ-кольцом, если $\forall \{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$ выполнено, что $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Замечание. Любое σ -кольцо является δ -кольцом, но обратное неверно.

Определение 1.7. Множество $I \subset \mathbb{R}$ называется промежутком, если $\forall a, b \in I$: $[a, b] \subset I$. Промежуток I называется конечным, если он ограничен. Например, [a, b], (a, b), [a, b), (a, b) — промежутки.

Пусть K_1 — семейство всех конечных промежутков на прямой. Легко заметить, что это не кольцо (объединение промежутков — не всегда промежуток). Отсюда вытекает новая структура:

Определение 1.8. Семейство $\mathcal{F} \subset \mathcal{P}(X)$ называется полукольцом, если

- 1°. $\varnothing \in \mathcal{F}$.
- 2°. $\forall A, B \in \mathcal{F}: A \cap B \in \mathcal{F}$, а $A \setminus B$ представимо в виде конечного дизъюнктного объединения элементов \mathcal{F} , то есть

$$\exists n \in \mathbb{N} : \exists A_1, A_2, \dots, A_n \in \mathcal{F} : A \setminus B = \bigcup_{i=1}^n A_i, A_i \cap A_j = \emptyset, \forall i, j : i \neq j.$$

Если множества попарно не пересекаются, то вводиться обозначение:

$$A_1 \cup A_2 \cup \ldots \cup A_n = A_1 \sqcup A_2 \sqcup \ldots \sqcup A_n$$
.

Замечание. Для любого семейства множеств \mathcal{F} под $FDU(\mathcal{F})$ будем понимать семейство всех конечных дизъюнктных объединений элементов \mathcal{F} (FDU — finite disjoint union).

Утверждение 1.9. $K_1 - nолукольцо.$

Определение 1.10. $K_d = \{I_1 \times I_2 \times ... \times I_d, \text{ где } I_l \in K_1 \quad \forall l = \overline{1..d}\}, \ d \in \mathbb{N}$ — семейство клеток в \mathbb{R}^d .

Утверждение 1.11. $K_d - nолукольцо.$

Определение 1.12. Пусть \mathcal{F} — семейство подмножеств множества X. Введем обозначение:

$$\mathcal{R}(\mathcal{F}) := \bigcap \{\mathcal{G}: \ \mathcal{G} - \text{кольцо}, \ \mathcal{F} \in \mathcal{G}\} := \bigcap M.$$

 $\mathcal{R}(\mathcal{F})$ называется кольцом порожденным \mathcal{F} .

Теорема 1.13. $\mathcal{R}(\mathcal{F})$ является кольцом и $\mathcal{F} \subset \mathcal{R}(\mathcal{F})$. При этом $\mathcal{R}(\mathcal{F})$ — наименьшее по вложению кольцо \mathcal{S} , такое что $\mathcal{F} \subset \mathcal{S}$.

Начало доказательства

Шаг 1. \mathcal{R} — кольцо, так как

- 1. $\varnothing \in \mathcal{R}$: $\forall \mathcal{G}$ выполнено $\varnothing \in \mathcal{G}$.
- 2. $\forall A, B$ верно, что $A, B \in \mathcal{G}$, но \mathcal{G} кольцо, поэтому $A \cup B \in \mathcal{G}$ и $A \setminus B \in \mathcal{G}$. Таким образом и пересечению данные множества принадлежат.

IIIae 2. Ecru S — кольцо и $F \subset S$, то $R \subset S$, так как $S \in M \Rightarrow \bigcap M \subset S$.

------ Конец доказательства ⊳

Замечание. Доказательство основано на том факте, что если \mathcal{F} и \mathcal{G} — кольца, то $\mathcal{F} \cap \mathcal{G}$ — тоже кольцо.

Опишем структуру кольца, порожденного полукольцом.

Теорема 1.14. Пусть S — полукольцо. Тогда

$$\mathcal{R}(\mathcal{S}) = \left\{ \bigsqcup_{l=1}^{n} A_{l} : n \in \mathbb{N}, A_{1}, \dots, A_{n} \in \mathcal{S}, A_{i} \cap A_{j} = \emptyset : i \neq j \right\} = \mathrm{FDU}(\mathcal{S}).$$

Лемма 1.15. Ослабим условие теоремы выше. Тогда все равно:

$$\mathcal{R}(\mathcal{S}) = \left\{ \bigcup_{l=1}^{n} A_{l} : n \in \mathbb{N}, A_{i} \in \mathcal{S} : \forall i = \overline{1..n} \right\} \cup \{\emptyset\}.$$

Пусть $R = \{\bigcup_{l=1}^n A_l : n \in \mathbb{N}, A_i \in \mathcal{S} : \forall i = \overline{1..n}\}$. Ясно, что $R \subset \mathcal{R}(\mathcal{S})$. Докажем в обратную сторону. Для этого достаточно доказать, что R — кольцо, тогда сразу выполнится $\mathcal{R}(\mathcal{S}) \subset R$.

Пустое множество очевидно лежит в $R \cup \{\emptyset\}$.

Пусть
$$P = \bigcup_{k=1}^{n} A_k, A_k \in \mathcal{S} \ u \ Q = \bigcup_{l=1}^{m} B_l, B_l \in \mathcal{S}.$$
 Тогда, во-первых,

$$P \cup Q = A_1 \cup A_2 \cup \ldots \cup A_n \cup B_1 \cup B_2 \cup \ldots \cup B_m \in R.$$

Во-вторых,

$$P \setminus Q = \bigcup_{k=1}^{n} \left(A_k \setminus \bigcup_{l=1}^{m} B_l \right) = \bigcup_{k=1}^{n} \left(A_k \cap \left(\bigcup_{l=1}^{m} B_l \right)^C \right) =$$

$$= \bigcup_{k=1}^{n} \left(A_k \cap \left(\bigcap_{l=1}^{m} B_l^C \right) \right) = \bigcup_{k=1}^{n} \bigcap_{l=1}^{m} A_k \cap B_l^C = \bigcup_{k=1}^{n} \bigcap_{l=1}^{m} A_k \setminus B_l.$$

Далее имеем
$$A_k, B_l \in \mathcal{S} \Rightarrow A_k \setminus B_l \in \mathrm{FDU}(\mathcal{S}) \Rightarrow A_k \setminus B_l = \bigsqcup_{i=1}^{N_{k,l}} S_i \Rightarrow \bigcap_{l=1}^m A_k \setminus B_l \in \mathrm{FDU}(\mathcal{S}).$$

— - - - - - Конец доказательства ⊳