Les redresseurs non commandés

Exercice 1:

Soit le montage du redresseur P_1 de la figure ci-contre, alimentant une charge R-L avec $R=10\Omega$, $V_{eff}=127V$ et $w=100\pi$ rad/s. La diode est passante pendant 15ms sur chaque période.

- 1) Représenter le plus précisément possible le courant dans la charge, la tension de charge, ainsi que la tension V_D(t).
- 2) Calculer Ich_may.
- 3) Si on insert une diode de roue libre, représenter le chronogramme des signaux $V_s(t)$, $i_{ch}(t)$. Que peut-on conclure?

 D_3

 $D_2 \overline{\wedge}$

 D_1

 $D_4 \overline{\Lambda}$

Exercice 2:

Soit le pont redresseur monophasé à diodes ci-contre. La charge peut être assimilée à une source de courant constant I_0 .

- 1) Définir la séquence de conduction des 4 diodes sur [0; T]
- 2) Tracer l'allure de la tension de sortie V_s(t).
- 3) Calculer la valeur moyenne de la tension de sortie <V_s>.
- 4) Calculer l'ondulation relative de la tension de sortie.
- 5) Tracer l'allure de la tension aux bornes de la diode D₁.
- 6) Tracer l'allure du courant dans la diode D_1 , du courant d'entrée $i_s(t)$

- 8) Faire la décomposition en série de Fourier du courant d'entrée is(t)
- 9) Calculer le taux de distorsion harmonique du courant d'entrée ainsi que de la tension d'entrée.
- **10)** Calculer le facteur de puissance du montage.

Exercice 3:

Soit le montage de la figure ci-contre. Le secondaire du transformateur triphasé délivre un système de tensions équilibrées de valeur efficace 127 V. La charge est une résistance $R=1\Omega$ en série avec une f e m F=k V_m (Prendre $k=\frac{1}{2}$: $k=\frac{1}{2}$)

série avec une f.e.m E= k.V_m (Prendre $k = \frac{1}{\sqrt{2}}$; $k = \frac{1}{4}$)

- 1) Compléter le schéma de montage?
- 2) Donner la forme de la tension redressée, du courant redressé et de la tension inverse aux bornes d'une diode.
- 3) Calculer la valeur moyenne de la tension redressée et la valeur moyenne du courant redressé.
- 4) Tracer la forme des courants secondaires et calculer leurs valeurs moyennes.

Les redresseurs commandés

Exercice 1:

Soit un redresseur monophasé commandé (à thyristor) débitant sur une charge résistive d'une valeur de 20Ω . La tension d'alimentation et sa fréquence aux bornes du secondaire d'un transformateur est de $V(t) = 200 \text{ Sin (wt) volts, } 50 \text{ hz. L'angle de retard à l'amorçage du thyristor est de } \alpha = \pi/3 \text{ rd.}$

- 1) Donner les formes d'ondes du courant de charge $I_{ch}(t)$; de la tension de charge $V_{ch}(t)$; et de la tension inverse aux bornes du thyristor $V_{TH}(t)$.
- 2) Calculer les valeurs moyennes : de la tension de charge et du courant de charge.
- 3) Ouelle est la valeur maximale de la tension inverse.

Exercice 2:

Soit un redresseur monophasé double alternance mixte connecté à une tension alternative 45V alimentant une charge R-L avec R=100 Ω et L=100 mH.

- 4) Analyse de fonctionnement de circuit.
- 5) Tracer l'allure de la tension et du courant de charge pour un angle d'amorçage α =60°.
- 6) Tracer les allures de la tension aux bornes de thyristor T2 et la diode D2.
- 7) Quelle est la tension supportable par la diode et le thyristor.
- 8) Déterminer la valeur du courant de charge.
- 9) Quelle est la différence entre le montage tout thyristor et montage mixte

Exercice 3:

Le pont PD3 mixte ci-contre est alimenté sous tension triphasée équilibrée de sens direct: $v_1(t)$, $v_2(t)$ et $v_3(t)$.

1) On suppose la conduction continue dans la Source <<ic>>>.

Représenter, sur la feuille jointe, les intervalles de conduction des différent interrupteurs, et la forme

d'onde de $v_A(t)$, $v_B(t)$ et $u_C(t)$ pour un angle de retard l'amorçage des thyristors $\psi = \pi/6$.

A partir d'une expression sous la forme d'une intégrale, calculer V_A moy en fonction de Vmax et $\cos(\psi)$ (pour $0 < \psi < \pi$). (On rappelle que cos (a+b)=cosa.cosb- sina.sinb)

En déduire les expressions de V_Bmoy et U_C moy en fonction de Vmax et cosy.

- 2) La source « ic» est telle que $ic(t)\approx I_0 = cte$. Exprimer la puissance active échangée dans la source «ic» en fonction de I_0 , Vmax et ψ .
- 3) On suppose toujours $ic(t) \approx Io = cte$.

Représenter, sur la feuille jointe, le graphe de $i_1(t)$ dans la phase 1 pour $y = \pi/6$. Représenter, sur la feuille jointe, le graphe de $i_1(t)$ dans la phase 1 pour $\psi = 5\pi/6$. En déduire $I_{1\text{-eff}}$ en fonction de I_0 et ψ .

