Понятие электричества

Гидравлическая система

Под действием давления насоса,	Паскаль
по трубам и клапанам разного сечения,	1/cm ²
из области высокого давления	
в область низкого давления	
переносится объём жидкости,	M ³
формируя поток определённой силы,	м³/сек
который совершает полезную работу,	Джоуль
передавая энергию турбине с некой скоростью.	Ватт

Электрическая цепь

Под действием напряжения источника питания,	U	Вольт
по проводникам и компонентам разного сопротивления,	R	Ом
от высокого потенциала,	+	«плюс»
к низкому потенциалу	-	«минус»
переносится заряд,	Q	Кулон
формируя электрический ток определённой силы,	I	Ампер
который совершает полезную работу,	W	Джоуль
превращаясь в другую энергию с некой скоростью.	P	Ватт

Принципиальные схемы

Чтобы изобразить на бумаге как должна выглядеть та или иная электрическая цепь используют *схемы*. Схемы бывают разных видов со своими преимуществами и недостатками. Ниже приведена одна и та же электрическая схема, изображённая по-разному, в четырёх вариациях.

Рисованная схема

Красиво, но громоздко и непрактично:

Принципиальная схема

Компактно и наглядно:

- То, что соединено линией, в реальности должно быть соединено проводником
- то, что не соединено линией, в реальности должно быть электрически изолировано

Принципиальная схема без явного источника питания

Источник питания зачастую не рисуют в явном виде, а используют отдельные символы для плюса и минуса. Такая схема ещё более компактна.

Принципиальная схема с отдельными контурами

Часто для удобства одну цепь на схемах разбивают на отдельные части. В сложных проектах так добиваются наглядности и делят зоны ответственности между несколькими инженерамиразработчиками.

Основные законы электричества

Закон Ома

Закон Ома — главный закон электричества

Мощность

Мощность — мера скорости трансформации электрической энергии в другую форму

Зная закон Ома, можно заметить, что мощность можно рассчитать иначе:

$$P = I^2 \times R = \frac{U^2}{R}$$

Мир не идеален и часть электроэнергии непременно трансформируется в тепло. Из-за этого и греются компьютеры, телефоны, телевизоры и другая электроника.

Короткое замыкание

Соединение плюса с минусом напрямую, по закону Ома, приводит к очень большому току, следовательно, к очень большой мощности нагрева, что в итоге приводит к возгоранию.

Это называется *коротким замыканием* или в просторечии просто «козой». Никогда не допускайте его, ни при каких обстоятельствах!

Последовательное подключение

При последовательном подключении сила тока в каждом потребителе — одна и та же, различается напряжение: в каждом компоненте $na\partial aem$ его часть.

Параллельное подключение

При параллельном подключении напряжение вокруг каждого потребителя — одно и то же, различается сила тока: каждый потребляет ток в соответствии с собственным сопротивлением.

Управление электричеством

Если постоянно и монотонно трансформировать электроэнергию в другую форму, область применения электричества будет сильно ограничена. Огромный мир разнообразных полезных устройств открывается, если научиться контролировать и взаимодействовать с электричеством. Для этого существует несколько способов.

Управление вручную

Автоматическое управление

Замыкать и размыкать цепь, измерять напряжение также можно, не вручную, а автоматически, по заданному алгоритму при помощи запрограммированного микроконтроллера.

Существуют «сырые» микроконтроллеры, выполненные в виде одной микросхемы. Они дёшевы при массовом производстве, но их программирование и правильное подключение — нетривиальная задача для новичка.

Чтобы решить эту проблему, существуют готовые платы или, как ещё говорят, вычислительные платформы. Они делают процесс взаимодействия с микроконтроллером очень простым. Типичным представителем этого семейства являются платы Arduino.

Быстрая сборка схем

Для надёжной сборки устройств создаются индивидуальные печатные платы. Если делать их самостоятельно, это займёт много времени и заставит повозиться с химикатами и паяльником. Индивидуальные платы с промышленным монтажом на заказ крайне дороги при малом тираже.

Для быстрой сборки электрических схем без пайки и без проблем существует макетная плата. Её же называют макетной доской, макеткой или breadboard'ом.

Принцип работы

Под слоем пластика скрываются медные пластины-рельсы, выложенные по незамысловатому принципу:

Пример использования

Одну и ту же схему на макетной доске можно собрать множеством способов. Пример одной из конфигураций разберём для такой схемы:

На макетной доске её физическое воплощение может быть сделано таким способом:

На что стоит обратить внимание:

- Цвета проводов, конечно же, значения не имеют. Однако хорошим тоном является использование красных проводов для линии питания и чёрных или синих для линии земли
- Мы подключили источник питания к длинным боковым рельсам. Это позволяет не тянуть к нему самому большое количество проводов с разных участков схемы, а задача по его замене или перемещению сильно упрощается
- Положение всей схемы на макетной доске не так важно. Важно *взаимное* положение компонентов друг относительно друга
- Схема по горизонтали побита на отдельные участки, которые легко воспринимать и изменять по отдельности

Конденсатор

Конденсатор — крошечный аккумулятор, который очень быстро заряжается и очень быстро разряжается.

Основные характеристики

Ёмкость (номинал)	C	Фарад
Точность (допуск)	±	%
Максимальное напряжение	V	Вольт

Кодирование номинала

Номинал в п Φ записан на корпусе. Первые 2 цифры — основание, 3-я — множитель. Например:

- 220 = 22 × 10⁰ пФ = 22 пФ
- 471 = 47 × 10¹ пФ = 470 пФ
- 103 = 10 × 10³ пФ = 10 000 пФ = 10 нФ
- 104 = 10 × 10⁴ пФ = 100 000 пФ = 100 нФ

Поведение

- Если подаваемое напряжение больше внутреннего накопленного, конденсатор будет заряжаться.
- Если внешнее напряжение меньше внутреннего, конденсатор будет отдавать заряд.

Время заряда и разряда

Для связывания уровня заряда конденсатора с временем используют понятие «постоянной времени τ »:

$$\tau = R \times C$$

- За *т* секунд конденсатор заряжается или разряжается на 63%
- За 5×т секунд конденсатор заряжается или разряжается на 99%
- Если резистора в схеме нет, его роль исполняет паразитное сопротивление проводов, разъёмов, дорожек, составляющее доли Ома

Резистор

Резистор — искусственное «препятствие» для тока. *Сопротивление* в чистом виде. Резистор ограничивает силу тока, переводя часть электроэнергии в тепло.

Основные характеристики

Сопротивление (номинал)	R	Ом
Точность (допуск)	±	%
Мощность	Ρ	Ватт

Цветовая кодировка резисторов

Наносить номинал резистора на корпус числами — дорого и непрактично: они получаются очень мелкими. Поэтому номинал и допуск кодируют цветными полосками.

Разные серии резисторов содержат разное количество полос, но принцип расшифровки одинаков.

Цвет корпуса резистора может быть бежевым, голубым, белым. Это не играет роли.

Если не уверены в том, что правильно прочитали полосы, можете проверить себя с помощью мультиметра.

Диод

Диод — это электрический «ниппель». У него есть 2 полюса: анод и катод. Ток пропускается только от анода к катоду.

Основные характеристики

Падение прямого напряжения	V _F	Вольт
Максимальное сдерживаемое обратное напряжение	V _{DC}	Вольт
Максимальный прямой ток	I _F	Ампер

Вольт-амперная характеристика

После того, как напряжение в прямом направлении превысит небольшой порог V_F диод *открывается* и начинает практически беспрепятственно пропускать ток, который создаётся оставшимся напряжением.

Если напряжение подаётся в обратном направлении, диод сдерживает ток вплоть до некоторого большого напряжения V_{DC} после чего *пробивается* и работает также, как в прямом направлении.

Виды диодов

Выпрямительный диод

Также известен как защитный, кремниевый

- $V_F = 0.7 B$
- V_{DC} сотни или тысячи вольт
- Открывается медленно
- Восстанавливается после пробоя обратным током

Диод Шоттки

Шоттки — фамилия его изобретателя. Также известен как сигнальный, германиевый.

- $V_F = 0.3 B$
- V_{DC} десятки вольт
- Открывается быстро
- Сгорает после пробоя обратным током

Диод Зеннера

Зеннер — фамилия его изобретателя. Также известен как стабилитрон

- V_F = 1 B
- V_{DC} фиксированное значение на выбор
- Умышленно используется в обратном направлении как источник фиксированного напряжения

Светодиод

Светодиод (англ. Light Emitting Diode или просто LED) — энергоэффективная, надёжная, долговечная «лампочка»

Светодиод — вид <u>диода</u>, который светится, когда через него проходит ток от анода (+) к катоду (-).

Основные характеристики

Падение напряжения	V _F	Вольт
Номинальный ток	I	Ампер
Интенсивность (яркость)	I _V	Кандела
Длина волны (цвет)	λ	Нанометр

Восприятие световых волн человеком

Типовая схема включения

Собственное сопротивление светодиода после насыщения очень мало, и без резистора, ограничивающего ток через светодиод, он перегорит

Порядок: «резистор до» или «резистор после» — не важен

Поиск подходящего резистора

Рассчитаем какой резистор R в приведённой схеме нам нужно взять, чтобы получить оптимальный результат. Предположим, что у нас такой светодиод и источник питания:

$$V_F = 2.3 \,\mathrm{B}$$

 $I = 20 \,\mathrm{mA}$
 $V_{CC} = 5 \,\mathrm{B}$

Найдём оптимальное сопротивление R и минимально допустимую мощность резистора P_R . Сначала поймём какое напряжение должен взять на себя резистор:

$$U_R = V_{CC} - V_F = 5 B - 2.3 B = 2.7 B$$

По закону Ома найдём значение сопротивления, которое обеспечит такое падение:

$$R = \frac{U_R}{I} = \frac{2.7 \,\mathrm{B}}{0.02 \,\mathrm{A}} = 135 \,\mathrm{Om}$$

Таким образом:

- при сопротивлении более 135 Ом яркость будет ниже заявленной
- при сопротивлении менее 135 Ом срок жизни светодиода будет меньше Теперь найдём мощность, которую при этом резистору придётся рассеивать:

$$P_R = I^2 \times R = 0.02^2 \text{ A} \times 135 \text{ Om} = 0.054 \text{ Bt}$$

Это означает, что при мощности резистора менее 54 мВт резистор перегорит.

Простое правило

Чтобы не заниматься расчётами резистора каждый раз во время проведения экспериментов, можно просто запомнить правило для самого типичного сценария.

Для питания 1 светодиода на 20 мА от 5 В используйте резистор от 150 до 360 Ом.

Кнопка

Тактовая кнопка — простой, всем известный механизм, замыкающий цепь пока есть давление на толкатель.

Кнопки с 4 контактами стоит рассматривать, как 2 пары рельс, которые соединяются при нажатии.

При замыкании и размыкании между пластинами кнопки возникают микроискры, провоцирующие до десятка переключений за несколько миллисекунд. Явление называется дребезгом (англ. bounce). Это нужно учитывать, если необходимо фиксировать «клики».

Схема подключения

Напрашивается подключение напрямую. Но это наивный, неверный способ.

Пока кнопка нажата, выходное напряжение Vout = Vcc, но пока она отпущена, Vout ≠ 0. Кнопка и провода в этом случае работают как антенна, и Vout будет «шуметь», принимая случайные значения «из воздуха».

Пока соединения нет, необходимо дать резервный, слабый путь, делающий напряжение определённым. Для этого используют один из двух вариантов.

Схема со стягивающим резистором

• Есть нажатие: Vout = Vcc

■ Heт нажатия: Vout = 0

Схема с подтягивающим резистором

Есть нажатие: Vout = 0

■ Heт нажатия: Vout = Vcc

Светодиодные сборки

Многие компоненты, используемые для индикации, представляют собой несколько отдельных светодиодов в одном корпусе.

Светодиодная шкала

Светодиодная шкала — это десяток отдельных светодиодов, каждый со своим анодом и катодом.

Семисегментный индикатор

Семисегментный индикатор — это восемь светодиодов в одном корпусе: 7 сегментов + точка. Анод у каждого светодиода отдельный, а катод у всех общий, на ноге 3 или 8.

Установка на макетную плату

Для подключения на breadboard'е используйте канавку в центре, чтобы не замкнуть ноги на противоположных сторонах.

Токоограничивающие резисторы

Используйте *отдельный* резистор для каждого светодиода, иначе при разном количестве включенных сегментов их яркость будет «скакать».

Даже в случае, когда все светодиоды включаются и выключаются синхронно, лучше придерживаться этого правила. Светодиоды могут чуть отличаться своей вольт-амперной характеристикой друг от друга. Первый открывшийся пропустит через себя ток, предназначенный для всех. Из-за чего он может выйти из строя, и «эстафета» перейдёт к следующему.

Широтно-импульсная модуляция

Микроконтроллеры обычно не могут выдавать произвольное напряжение. Они могут выдать либо напряжение питания (например, 5 B), либо землю (т.е. 0 B)

Но уровнем напряжения управляется многое: например, яркость светодиода или скорость вращения мотора. Для симуляции неполного напряжения используется *ШИМ* (Широтно-Импульсная Модуляция, англ. Pulse Width Modulation или просто *PWM*)

Применение

Выход микроконтроллера переключается между землёй и Vcc тысячи раз в секунду. Или, как ещё говорят, имеет частоту в тысячи герц. Глаз не замечает мерцания более 50 Гц, поэтому нам кажется, что светодиод не мерцает, а горит в вполсилы.

Аналогично, разогнанный мотор не может остановить вал за миллисекунды, поэтому ШИМ-сигнал заставит вращаться его в неполную силу.

Скважность

Отношение времени включения и выключения называют скважностью (англ. duty cycle).

Рассмотрим несколько сценариев при напряжении питания Vcc равным 5 вольтам. 50% — эквивалент 2,5 В

10% - эквивалент 0,5 В

90% - эквивалент 4,5 В

Делитель напряжения

Последовательно подключённые резисторы делят поступающее на них напряжение в определённой пропорции.

Расчёт пропорции

Сила тока, протекающая через резисторы одинакова, т.к. они соединены последовательно, и по закону Ома может быть рассчитана как:

$$I = \frac{V_{CC}}{R_1 + R_2}$$

По тому же закону Ома можно вычислить напряжение $V_{\it out}$, которое падает на резисторе R_2 : $V_{\it out}=U_2=I\times R_2=rac{R_2\cdot V_{\it CC}}{R_1+R_2}$

Из полученной формулы видно, что чем больше R_2 относительно R_1 , тем большее напряжение падает на нём.

Считывание резистивных сенсоров

Если вместо R_2 использовать не постоянный резистор, а датчик, который меняет своё сопротивление, V_{out} будет зависеть от измеряемого значения.

Микроконтроллер умеет измерять напряжение. Таким образом, мы можем использовать свойства делителя напряжения для получения показаний от сенсора.

Примеры резистивных датчиков

Термистор

Термистор изменяет своё сопротивление в зависимости от собственной температуры Фоторезистор

Фоторезистор (англ. Light Dependent Resistor или сокращённо LDR) изменяет своё сопротивление в зависимости от силы света, попадающего на его керамическую «змейку»

Потенциометр

Потенциометр ещё называют переменным резистором, триммером. Это делитель из двух резисторов в одном корпусе. Поэтому у него 3 ноги: питание, выход, земля.

Соотношение R_1 и R_2 меняется поворотом ручки. От 100% в пользу R_1 до 100% в пользу R_2 .

Биполярный транзистор

Транзистор — это электронная кнопка. На кнопку нажимают пальцем, а на биполярный транзистор — током.

Транзисторы используют для управления мощными нагрузками при помощи слабых сигналов с микроконтроллера.

- Нога, выполняющая роль «кнопки» называется база (англ. base)
- Пока через базу течёт небольшой ток, транзистор открыт:
 - о Большой ток может втекать в *коллектор* (англ. collector)
 - о и вытекать из *эмиттера* (англ. emitter)

Основные характеристики

Макс. напряжение коллектор-эмиттер	V _{CE}	Вольт
Максимальный ток через коллектор	Ic	Ампер
Коэффициент усиления	h _{fe}	

Типовая схема подключения

Транзистор усиливает максимально допустимый ток в h_{fe} раз:

$$I_{CE} = I_{BE} \times h_{fe}$$

Пример расчёта

Если управляющий сигнал на базе транзистора с h_{fe} и резистором номиналом 1 кОм составляет 5 вольт:

- Какой максимальный ток сможет пропустить через себя транзистор?
- Каким по величине будет управляющий ток?

Дано

$$V_B = 5 \,\mathrm{B}$$

 $R = 1 \,\mathrm{\kappa}\mathrm{Om}$
 $h_{fe} = 50$

Найти

$$I_{CE}$$
, I_{BE}

Решение

$$I_{BE} = \frac{V_B}{R} = \frac{5 \text{ B}}{1000 \text{ Om}} = 5 \cdot 10^{-3} \text{ A}$$
 $I_{CE} = I_{BE} \times h_{fe} = 250 \cdot 10^{-3} \text{ A}$

Вывод

Если на базу подаётся 5 В через резистор в 1 кОм, транзистор откроется настолько, что будет способен пропустить до 250 мА. При этом управляющий ток составит всего 5 мА

•

Полевой транзистор

Полевой MOSFET-транзистор — ключ для управления большими токами при помощи небольшого μ напряжения.

- «Кнопка» называется *затвором* (англ. gate)
- Пока на затворе есть небольшое напряжение, транзистор открыт:
 - о Большой ток может втекать в *сток* (англ. drain)
 - о и вытекать из *истока* (англ. source)

В отличие от <u>биполярного транзистора</u> полевой контролируется именно напряжением, а не током. Т.е. в открытом состоянии ток через затвор не идёт.

Используйте MOSFET для управления большими токами, от сотен миллиампер, когда дешёвого биполярного транзистора уже не достаточно.

Основные характеристики

Максимальное напряжение сток-исток	V _{DS}	Вольт
Максимальный ток через сток	I _D	Ампер
Сопротивление сток-исток	R _{DSon}	Ом
Рассеиваемая мощность	PD	Ватт

Типовая схема подключения

Рассеивание тепла

Транзистор не идеален и часть пропускаемой мощности превращается в тепло.

$$P_H = I^2 \times R_{DSon}$$

Если P_{H} превысит P_{D} , без помощи дополнительного охлаждения транзистор сгорит.

Пьезодинамик

Пьезоизлучатель звука (англ. buzzer) переводит *переменное напряжение* в колебание мембраны, которая в свою очередь создаёт звуковую волну.

Иначе говоря, пьезодинамик — это конденсатор, который звучит при зарядке и разрядке.

Основные характеристики

Рекомендуемое (номинальное) напряжение	V	Вольт
Громкость (на заданном расстоянии)	P	Децибел
Пиковая частота	$f_{\scriptscriptstyle P}$	Герц
Ёмкость	с	Фарад

Амплитудно-частотная характеристика

Амплитудно-частотная характеристика (АЧХ) определяет громкость звука в зависимости от частоты управляющего сигнала, который и определяет высоту звучащей ноты.

Идеальная AYX — это прямая, т.е. одинаковая громкость вне зависимости от частоты. Но мир не идеален и разные виды излучателей имеют разные отклонения от идеала.

Подключение напрямую

Пьезодинамик потребляет всего пару мА, поэтому можно смело подключать его прямо к микроконтроллеру

Для звучания нужно подавать на динамик квадратную волну. Какой частоты будет волна, такой частоты будет и звук

Подключение с регулировкой громкости

Мотор

Мотор переводит электрическую энергию в механическую энергию вращения.

Самый простой вид мотора — коллекторный. При подаче напряжения в одном направлении вал крутится по часовой стрелке, в обратном направлении — против часовой

Основные характеристики

Рекомендуемое (номинальное) напряжение	V	Вольт
Потребляемый ток без нагрузки	I _F	Ампер
Потребляемый ток при блокировке	I s	Ампер
Скорость вращения без нагрузки	ω	C- ¹
Максимальный крутящий момент	τ	H×M

Крутящий момент

Крутящий момент определяет какая сила воздействует на точку рычага на заданном расстоянии от оси вращения.

$$\tau = F \times I$$

Силу иногда упрощённо измеряют в килограммах против гравитации Земли. А крутящий момент — в кг \times см. Американцы любят измерять крутящий момент в унциях на дюйм (англ. oz \times in).

Схема подключения без возможности реверса

Моторы — мощные потребители с рядом побочных эффектов. Для управления ими необходимы дополнительные компоненты.

Предельные характеристики

 I_{S} всегда много больше I_{F} и для хобби-моторов составляет до 2 А. Выбирайте транзистор и диод, способные выдержать этот ток или не допускайте блокировки мотора.