Homework 4

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

Due date: October 4, 2019

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.
- 1. Prove that T is a linear transformation, find bases for $\mathcal{N}(T)$ and $\mathcal{R}(T)$, and compute $\dim(\mathcal{N}(T))$ and $\dim(\mathcal{R}(T))$.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x y, 2z).
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x+y,0,2x-y).
 - (c) $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ defined by T(f(x)) = xf(x) + f'(x). (Here, $\mathcal{P}_n(\mathbb{R})$ is the set of all polynomials p(x) with real coefficients with $\deg(p(x)) \leq n$.)

Solution:

(a) We have T(0,0,0) = (0,0). Let $c \in \mathbb{R}$ and $(x_1,y_1,z_1), (x_2,y_2,z_2) \in \mathbb{R}^3$, then

$$T(c(x_1, y_1, z_1) + (x_2, y_2, z_2)) = ((cx_1 + x_2) - (cy_1 + y_2), 2(cz_1 + z_2))$$

$$= c(x_1 - y_1, 2z_1) + (x_2 - y_2, 2z_2)$$

$$= cT(x_1, y_1, z_1) + T(x_2, y_2, z_2).$$

Thus, T is linear. If T(x, y, z) = (x - y, 2z) = (0, 0), then x = y and z = 0. Thus,

$$\mathcal{N}(T) = \{(t, t, 0) : t \in \mathbb{R}\}.$$

Let $\beta = \{(1,1,0)\}$, then β spans $\mathcal{N}(T)$ and β is linearly independent (because β consists of a nonzero vector). So, β is a basis for $\mathcal{N}(T)$ and $\dim(\mathcal{N}(T)) = 1$. By Dimension theorem $\dim(\mathcal{R}(T)) = 2 = \dim(\mathbb{R}^2)$. Since $\mathcal{R}(T) \leq \mathbb{R}^2$, we have $\mathcal{R}(T) = \mathbb{R}^2$. The standard basis for \mathbb{R}^2 is also a basis for $\mathcal{R}(T)$.

(b) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x+y,0,2x-y).

We have T(0,0) = (0,0,0). Let $c \in \mathbb{R}$ and $(x_1,y_1), (x_2,y_2) \in \mathbb{R}^2$, then

$$T(c(x_1, y_1) + (x_2, y_2)) = ((cx_1 + x_2) + (cy_1 + y_2), 0, 2(cx_1 + x_2) - (cy_1 + y_2))$$

$$= c(x_1 + y_1, 0, 2x_1 - y_1) + (x_2 + y_2, 0, 2x_2 - y_2)$$

$$= cT(x_1, y_1) + T(x_2, y_2).$$

Thus, T is linear. If T(x,y) = (x+y,0,2x-y) = (0,0,0), then x+y=0 and 2x-y=0. Thus, x=y=0 and

$$\mathcal{N}(T) = \{(0,0)\}.$$

So, $\beta = \emptyset$ is a basis for $\mathcal{N}(T)$ and $\dim(\mathcal{N}(T)) = 0$. We claim that

$$\mathcal{R}(T) = \{(t, 0, s) : t, s \in \mathbb{R}\}.$$

It is obvious that $\mathcal{R}(T) \subseteq \{(t,0,s): t,s \in \mathbb{R}\}$. Let $t,s \in \mathbb{R}$. Define $x = \frac{1}{3}(t+s)$ and $y = \frac{1}{3}(2t-s)$, then

$$(t,0,s) = (\frac{1}{3}(t+s) + \frac{1}{3}(2t-s), 0, \frac{2}{3}(t+s) - \frac{1}{3}(2t-s)) = (x+y,0,2x-y) \in \mathcal{R}(T).$$

Thus we obtain $\mathcal{R}(T) = \{(t,0,s) : t,s \in \mathbb{R}\}$. Let $\gamma = \{(1,0,0),(0,0,1)\}$, then γ is linearly independent because it is a subset of the standard basis for \mathbb{R}^3 . Since $\mathcal{R}(T) = \{(t,0,s) : t,s \in \mathbb{R}\}$, it is obvious that γ spans $\mathcal{R}(T)$. Thus, γ is a basis for $\mathcal{R}(T)$ and $\dim(\mathcal{R}(T)) = 2$.

(c) We have T(0) = 0. Let $c \in \mathbb{R}$ and $p(x), q(x) \in \mathcal{P}_2(\mathbb{R})$. Then,

$$T(cp(x) + q(x)) = x(cp(x) + q(x)) + (cp(x) + q(x))'$$

= $c(xp(x) + p'(x)) + (xq(x) + q'(x))$
= $cT(p(x)) + T(q(x))$.

Thus, T is linear. Let $p(x) = ax^2 + bx + c$ and T(p) = 0, then

$$T(p) = xp(x) + p'(x) = ax^3 + bx^2 + cx + 2ax + b = ax^3 + bx^2 + (2a + c)x + b = 0.$$

So, we have a = b = c = 0, that is, $\mathcal{N}(T) = \{0\}$. Thus, \emptyset is a basis for $\mathcal{N}(T)$ and $\dim(\mathcal{N}(T)) = 0$.

Let $p(x) = ax^2 + bx + c$, then

$$T(p) = xp(x) + p'(x)$$

= $ax^3 + bx^2 + cx + 2ax + b$
= $a(x^3 + 2x) + b(x^2 + 1) + cx$.

Let $\beta = \{x, x^2 + 1, x^3 + 2x\}$, then β spans $\mathcal{R}(T)$. By Dimension Theorem, $\dim(\mathcal{R}(T)) = \dim(\mathcal{P}_2(\mathbb{R})) = 3$. Since $|\beta| = 3$, we conclude that β is a basis for $\mathcal{R}(T)$.

- 2. Let V and W be vector spaces over \mathbb{R} and $T: V \to W$ linear.
 - (a) Let $\{w_1, \dots, w_k\}$ be a linearly independent subset of $\mathcal{R}(T)$. Prove that if $S = \{v_1, \dots, v_k\}$ is chosen so that $T(v_i) = w_i$ for $i = 1, 2, \dots, k$, then S is linearly independent.
 - (b) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.

Solution:

(a) Let $a_1v_1 + \cdots + a_kv_k = 0$, then

$$T(a_1v_1 + \dots + a_kv_k) = a_1T(v_1) + \dots + a_kT(v_k) = a_1w_1 + \dots + a_kw_k = 0,$$

which implies that $a_1 = \cdots = a_k = 0$. Thus, S is linearly independent.

(b) Suppose T is one-to-one. Let $S = \{v_1, \dots, v_k\}$ be a linearly independent subset of V. Let $a_1T(v_1) + \dots + a_kT(v_k) = 0$, then

$$a_1T(v_1) + \dots + a_kT(v_k) = T(a_1v_1 + \dots + a_kv_k) = 0.$$

Since $\mathcal{N}(T) = \{0\}$, we have $a_1v_1 + \cdots + a_kv_k = 0$. Since S is linearly independent, we conclude that $a_1 = \cdots = a_k = 0$ as desired.

Suppose that T carries linearly independent subsets of V onto linearly independent subsets of W and T is not one-to-one. Then, there exist $x \in V$ such that T(x) = 0 and $x \neq 0$. Since $\{x\}$ is linearly independent and $\{T(x)\}$ is not, this is a contradiction. Thus, T is one-to-one.

- 3. Let V and W be finite dimensional vector spaces over \mathbb{R} and $T:V\to W$ linear.
 - (a) Prove that if $\dim(V) < \dim(W)$, then T cannot be onto.
 - (b) Prove that if $\dim(V) > \dim(W)$, then T cannot be one-to-one.

Solution:

- (a) Suppose $\dim(V) < \dim(W)$ and T is onto. By Dimension Theorem, $\dim(W) = \dim(\mathcal{R}(T)) = \dim(V) \dim(\mathcal{N}(T)) \le \dim(V)$, which is a contradiction.
- (b) Suppose $\dim(V) > \dim(W)$ and T is one-to-one. Since $\mathcal{N}(T) = \{0\}$ and $\mathcal{R}(T) \leq W$, it follows from Dimension Theorem that $\dim(W) \geq \dim(\mathcal{R}(T)) = \dim(V)$, which is a contradiction.
- 4. (a) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\mathcal{N}(T) = \mathcal{R}(T)$.
 - (b) Give an example of two distinct linear transformations U and T such that $\mathcal{N}(U) = \mathcal{N}(T)$ and $\mathcal{R}(U) = \mathcal{R}(T)$.

Solution:

(a) Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x,y) = (0,x), then

$$\mathcal{N}(T) = \mathcal{R}(T) = \{(0, t) : t \in \mathbb{R}\}.$$

(b) Define $T, U: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x,y) = (0,x) and U(x,y) = (0,2x). Then,

$$\mathcal{N}(T) = \mathcal{R}(T) = \mathcal{N}(U) = \mathcal{R}(U) = \{(0, t) : t \in \mathbb{R}\}$$

but $T \neq U$.

5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transform. Show that there exist $a, b, c, d \in \mathbb{R}$ such that T(x, y) = (ax + by, cx + dy).

Solution: Choose $a, b, c, d \in \mathbb{R}$ by T(1,0) = (a,c) and T(0,1) = (b,d). Then, for any $(x,y) \in \mathbb{R}^2$, we have

$$T(x,y) = xT(1,0) + yT(0,1) = x(a,c) + y(b,d) = (ax+by,cx+dy).$$

- 6. Let V be a vector space and $T:V\to V$ linear. A subspace $W\leq V$ is called T-invariant if $T(x)\subseteq W$ for all $x\in W$.
 - (a) Show that the subspaces $\{0\}, V, \mathcal{N}(T), \mathcal{R}(T)$ are T-invariant.
 - (b) Suppose that V is finite dimensional and $W \leq V$ is T-invariant. Show that if $V = \mathcal{R}(T) \oplus W$ then $W = \mathcal{N}(T)$.

Solution:

- (a) Since T(0) = 0, $\{0\}$ is T-invariant. Since $T(x) \in V$ for all $x \in V$, V is T-invariant. Since $T(x) = 0 \in \mathcal{N}(T)$ for all $x \in \mathcal{N}(T)$, $\mathcal{N}(T)$ is T-invariant. Since $T(x) \in \mathcal{R}(T)$ for all $x \in V$ (so for $x \in \mathcal{R}(T)$), $\mathcal{R}(T)$ is T-invariant.
- (b) Since W is T-invariant and $\mathcal{R}(T) \cap W = \{0\}$, if $y \in W$, then $T(y) \in W \cap \mathcal{R}(T)$. This implies T(y) = 0 and $y \in \mathcal{N}(T)$. That is, $W \subseteq \mathcal{N}(T)$. Note that $V = \mathcal{R}(T) \oplus W$ implies $\dim(V) = \dim(\mathcal{R}(T)) + \dim(W)$. By Dimension theorem, we have

$$\dim(\mathcal{N}(T)) = \dim(V) - \dim(\mathcal{R}(T)) = \dim(W),$$

which yields $W = \mathcal{N}(T)$.