安徽大学 2019—2020 学年第 1 学期

《 数字信号处理 》期末考试试卷 (A卷) (闭卷 时间 120 分钟)

考场登记表序号

题号	_	=	Ξ	四	五	总分
得 分						
阅卷人						

一、单项选择题 (每小题1分,共10分)

从给定的选项中,选择一个最合适的答案,填于下表中。

1	4	
10	11	

题目	1	2	3	4	5	6	7	8	9	10
答案										

- 1. 以下关于离散傅里叶变换 DFT 的描述中正确的是(
 - A. 时域为离散序列, 频域为连续信号
 - B. 时域为离散周期序列, 频域也为离散周期序列
 - C. 时域为离散无限长序列, 频域为连续周期信号
 - D. 时域为离散有限长序列, 频域也为离散有限长序列
- 2. 下列关于 $R_N(n)$ 的关系式中不成立的是 ()

A.
$$R_N(n) = u(n) - u(n-N)$$

A.
$$R_N(n) = u(n) - u(n-N)$$
 B. $R_N(n) = \sum_{m=0}^{N-1} \delta(n-m)$

C.
$$R_N(n) = \sum_{k=-\infty}^n \delta(k)$$

D.
$$R_N(n) = R_N(n) \cdot u(n)$$

- 3. 以下给出的单位抽样响应所代表的线性移不变系统是因果稳定的是()
 - A. h(n) = u(n)

B.
$$h(n) = u(n-1)$$

C. $h(n) = R_5(n)$

D.
$$h(n) = R_5(n+1)$$

- 4. 设两有限长序列的长度分别是M与N,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少 应取()
 - A. M+N

B. M+N-1

C. M+N+1

- D. 2(M+N-1)
- 5. 若序列的长度为 M, 要能够由频域抽样信号 X(k)恢复原序列, 而不发生时域混叠现象, 则频域抽样

点数 N 需满足的条件是 ()		
A. $N \ge M$ B. $N \le M$	C. N≥2M D. N≤2M	
6. 离散傅里叶变换 (DFT) 表达式中有	W. W 1/2 to (
A1 B. 1		
7. 采用模拟—数字转换法设计数字滤流	C.0 D.j 支器时, S平面的虚轴必须映射到 Z 平面的 (,
A. 单位圆内部	B、单位圆上	
C. 单位圆外部	D. 实轴上	
8. $y(n) = 3x(n)^2$ 所代表的系统是 ()	
A. 线性移不变系统	B. 非线性移不变系统	
C. 线性移变系统	D. 非线性移变系统	
9. 一个线性移不变离散系统稳定的充要	条件是其系统函数 $H(z)$ 的收敛域包括()
A. 实轴	B. 原点	
C. 单位圆	D. 虚轴	
10. 以下哪一个性质不是 IIR 系统必须。	具备的性质 ()	
A. 所有极点在单位圆以内	B. h(n)为无限长序列	
C. 在有限 z 平面内有极点	D. 具有输出到输入的反馈	
	$\Lambda_{n}(n) \odot h(n)$:	
二、填空题 (每空1分,共10	分)	得 分
1. 对于正弦序列 $\sin(\omega_0 n)$, 当 $\omega_0 = 3\pi$	/5时其周期为; 当 ω_0 满足	
情况时,该正弦序列不是周期序列。		
2. 已知序列 x(n)={1,2,3,4},	$0 \le n \le 3$, \mathbb{Q} $x((-n)) \le R \le (n) =$,
$x((n-2))_{5}R_{5}(n)=$		
3. 三个离散线性时不变系统按照右图所	示的方式连接后, 今输	$h_2(n)$
	-4	•
入信号为 $x(n)$,则系统输出 $y(n)$ 可表示	$x(n)$ $h_3(n)$	y(n)
<i>y</i> (<i>n</i>)=		
	N=16 点 DFT,共需要级蝶形,每	
	进制数 10 倒位序后对应的十进制数为	
	R数字滤波器时,滤波器的阻带最小衰	戚仅与 窗 函 数 的
		W = 1 A= 140 =
6. 已知序列 $x(n)$ 的离散时间傅里叶变换	$(DTFT)$ 是 $X(e^{j\omega})$,则序列 $x(n-2)$ 的离情	攻时间傅里叶变换
是。		

戮

答题为

得分

画出 4 点按时间抽取的基-2 FFT 算法的运算流图 (输入倒位序,输出自然顺序),并简述使用 FFT 实现 IFFT 的计算过程。

四、计算题 (每小题 10 分, 共 40 分)

得分

1. 分别求出有限长序列 $x(n) = R_5(n)$ 的 DTFT 和 16 点 DFT。

2. 已知 $X(z) = \frac{5z^{-1}}{1+z^{-1}-6z^{-2}}$, |z| > 3, 用部分分式展开法求它的 Z 反变换 x(n)。

- 3. 己知两序列 x(n) = [1,3,2,4], h(n) = [2,1,3],
 - (1) 求线性卷积 $y_l(n) = x(n) * h(n)$;
 - (2) 并求 4 点的圆周卷积和 $y_c(n) = x(n)$ ④ h(n);
 - (3) 简述或画出用 DFT 法求线性卷积的流程。

4. 已知一模拟滤波器的系统函数为 $H_a(s)=\frac{3s+2}{2s^2+3s+1}$,设采样周期 T=2s ,用冲激响应不变法将 $H_a(s)$ 转变为数字系统函数 H(z) 。

五、综合题 (每小题 15 分, 共 30 分)

得分

- 1. 将一数字信号处理器作谱分析之用,抽样点数必须为 2 的整数幂,假定不采用任何特殊数据处理措施,设抽样频率为 $f_s=5$ kHz,要求频率分辨率为 $F_0\le 5$ Hz 。试确定:
 - (1) 最小记录长度 To:
 - (2) 允许处理的信号最高频率 f_h :
 - (3) 在一个记录中的最少抽样点数 N;
 - (4) 在抽样频率不变的情况下,如何将频率分辨率提高一倍,使 $F_0 = 2.5 \mathrm{Hz}$ 。

- 2. 设一阶系统的差分方程为: y(n) = x(n) + 0.8y(n-1)。
 - (1) 求其系统函数 H(z);
 - (2) 若该系统为因果系统,求其单位抽样响应h(n);
 - (3) 利用零极点分布粗略画出其幅频特性图,并说明此系统具有何种滤波特性;
 - (4) 若希望将该系统调整为高通滤波器,应如何调整其极点和差分方程。