PONTIFICIA UNIVERSIDAD JAVERIANA

Análisis Matemático I ID 1074 Profesor: Humberto Rafeiro Primer Período de 2015

№1: Inducción matemática y propiedades básicas de los números reales.

Índice de ejercicios

Ejercicio 1 Inducción	1
Ejercicio 2 Binomio de Newton	2
Ejercicio 3 Suma parcial de Abel	2
Ejercicio 4 <i>Principio de inducción</i>	2
Ejercicio 5 <i>Cardinalidad de</i> $\mathcal{P}(X)$	2
Ejercicio 6 Cardinalidad de Y^X	3
Ejercicio 7 Suma geometrica	3
Ejercicio 8 Desigualdad de Cauchy-Schwarz	3

Ejercicio 1 Inducción

Demuestre que:

1.
$$\sum_{k=1}^{n} = \frac{n(n+1)}{2}$$
, para todo $n \in \mathbb{N}$.

2.
$$\sum_{k=1}^{n} (2k-1) = n^2$$
, para todo $n \in \mathbb{N}$.

3.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(n+2)}{6}$$
, para todo $n \in \mathbb{N}$.

4.
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$
, para todo $n \in \mathbb{N}$.

5.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$
, para todo $n \in \mathbb{N}$.

6.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
, para todo $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, donde $\binom{n}{k}$ son definidos por la ecuación (1).

Ejercicio 2 Binomio de Newton

Sea $\binom{n}{k}$ los coeficientes binomiales dados por

$$\binom{n}{k} = \frac{n(n-1)\cdot\ldots\cdot(n-k+1)}{1\cdot2\cdot\ldots\cdot k}.$$
 (1)

Pruebe:

1. La validad de la formula

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$
 (2)

2. Utilizando la formula (2), demuestre el binomio de Newton

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k,$$

para todo $n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}.$

Ejercicio 3 Suma parcial de Abel

Sean a_0, a_1, \ldots, a_n y $b_0, b_1, \ldots b_n$ números reales y

$$A_k := \sum_{i=0}^k a_i, \quad B_k := \sum_{i=0}^k b_i,$$

para k = 0, 1, ..., n. Pruebe la formula de la *suma parcial de Abel* dada por

$$\sum_{k=0}^{n} A_k b_k = A_n B_n - \sum_{k=0}^{n-1} a_{k+1} B_k.$$

Ejercicio 4 Principio de inducción

Pruebe que el *principio de inducción* se puede obtener del principio de buena ordenación.

Ejercicio 5 Cardinalidad de $\mathcal{P}(X)$

Sea $\mathscr{P}(X)$ el conjunto de las partes de X. Pruebe, utilizando el método de inducción, que si X es finito entonces $\#(\mathscr{P}(X)) = 2^{\#(X)}$, donde #(A) es la cardinalidad del conjunto A.

Ejercicio 6 Cardinalidad de Y^X

Denotemos por Y^X el conjunto de todas las funciones $f: X \longrightarrow Y$. Pruebe que si #(X) = m y #(Y) = n, entonces tenemos que $\#(Y^X) = n^m$. (Esto justifica la utilización de la notación Y^X para el conjunto de todas las funciones de X en Y.)

Ejercicio 7 Suma geometrica

Pruebe que

$$\frac{1 - x^{n+1}}{1 - x} = 1 + x + x^2 + \dots + x^n$$

para todo $n \in \mathbb{R} - \{1\}$.

Ejercicio 8 Desigualdad de Cauchy-Schwarz

Pruebe la desigualdad de Cauchy-Schwarz

$$\left(\sum_{k=1}^n x_k y_k\right)^2 \le \left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right).$$

Sugerencia: Utilizar el hecho que $\sum_{k=1}^{n} (x_k + \lambda y_k)^2 \ge 0$, para todo $\lambda \in \mathbb{R}$.