

Description

The VSM2006Y uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =20V,I_D =6A

 $R_{DS(ON)}$ <13m Ω @ V_{GS} =4.5V (Typ:10.5m Ω)

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =2.5V (Typ:15m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Load switching
- Uninterruptible power supply

SOT-23-3

Schematic Diagram

Package Marking and Ordering Information

	<u> </u>				
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM2006Y-S2	VSM2006Y	SOT-23-3	Ø180mm	8mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V _G s	±12	V
Drain Current-Continuous	I _D	6	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	4.2	А
Pulsed Drain Current	I _{DM}	24	А
Maximum Power Dissipation	P _D	1.5	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ heta JA}$	83.3	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V		

Shenzhen VSEEI Semiconductor Co., Ltd

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5	0.7	1.2	V
Drain-Source On-State Resistance	В	V _{GS} =4.5V, I _D =6A	-	10.5	13	mΩ
ani-Source Off-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =5A		15	18	
Dynamic Characteristics (Note4)	·					
Input Capacitance	C _{lss}	\/ -40\/\/ -0\/		620		PF
Output Capacitance	C _{oss}	$V_{DS}=10V, V_{GS}=0V,$		125		PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz		64		PF
Switching Characteristics (Note 4)	•					
Turn-on Delay Time	t _{d(on)}		-	4.5	-	nS
Turn-on Rise Time	t _r	V _{GS} =10V,V _{DS} =10V	-	9.2	-	nS
Turn-Off Delay Time	t _{d(off)}	R _L =0. 5 Ω ,R _G =3 Ω	-	18.7	-	nS
Turn-Off Fall Time	t _f		-	3.3	-	nS
Total Gate Charge	Qg			15		nC
Gate-Source Charge	Q _{gs}	V _{GS} =10V,V _{DS} =10V,I _D =6A		1.8		nC
Gate-Drain Charge	Q _{gd}			2.8		nC
Drain-Source Diode Characteristics	•		•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =6A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	6	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test circuit

1) Gate charge test Circuit:

2) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

1E+02 1E+01 Reverse Drain Current (A) 1E+00 125° 1E-01 1E-02 25° C 1E-03 1E-04 1E-05 1E-06 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance