CS 680 PSet 1: Linear Algebra Self-Assessment Solutions

Upload a scanned or typed copy on Gradescope.

Question 1:

- (a) Given points $\mathbf{p}_1 = (1, 6, 5)$ and $\mathbf{p}_2 = (5, 3, -7)$, solve for \mathbf{v}_2 the vector from \mathbf{p}_1 to \mathbf{p}_2 . $\mathbf{v}_2 = (4, -3, -12)$
- (b) Given a third point $\mathbf{p}_3 = (1, 6, 4)$, solve for \mathbf{v}_3 the vector from \mathbf{p}_1 to \mathbf{p}_3 . $\mathbf{v}_3 = (0, 0, -1)$
- (c) Find the values for the magnitudes of \mathbf{v}_2 and \mathbf{v}_3 . $||\mathbf{v}_2|| = 13, ||\mathbf{v}_3|| = 1$
- (d) Solve for the unit vectors in the directions of \mathbf{v}_2 and \mathbf{v}_3 . $\frac{1}{13}(4, -3, -12), (0, 0, -1)$

Question 2:

- (a) Solve for the vector (cross) product $\mathbf{v}_2 \times \mathbf{v}_3$. (3, 4, 0)
- (b) Solve for $\mathbf{v}_3 \times \mathbf{v}_2$. (-3, -4, 0)
- (c) Solve for the scalar (dot) product $\mathbf{v}_3 \cdot \mathbf{v}_2$.

Question 3:

- (a) If two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are orthogonal, what is the value of their scalar (dot) product?
- (b) If two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are parallel, what is the value of their cross product?

Question 4:

Which of the following are unit vectors? (a) $(\frac{1}{2}, -\frac{1}{2}, 0)$ (b) (0, -1, 0) (c) $\frac{1}{7}(-2, 3, 6)$ (b), (c)

Question 5:

We are given two non-zero vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Assume the angle between \mathbf{u} and \mathbf{v} satisfies $0 < \theta < \frac{\pi}{2}$. Use dot products and/or cross products of \mathbf{u} and \mathbf{v} to give expressions for:

(a) $\cos \theta$ (b) $\sin \theta$ (c) A vector perpendicular to both **u** and **v**.

Norm notation:
$$||\mathbf{w}|| = \sqrt{\mathbf{w} \cdot \mathbf{w}}$$

 $\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||}$, $\frac{||\mathbf{u} \times \mathbf{v}||}{||\mathbf{u}|||||\mathbf{v}||}$, $\mathbf{u} \times \mathbf{v}$

Question 6:

Given three square matrices $\mathbf{Q}, \mathbf{R}, \mathbf{S} \in \mathbb{R}^{n \times n}$, which statements are true **in general**? If the statement is false, please correct it.

(a)
$$(\mathbf{QRS})^{-1} = \mathbf{Q}^{-1}\mathbf{R}^{-1}\mathbf{S}^{-1}, False, (\mathbf{QRS})^{-1} = \mathbf{S}^{-1}\mathbf{R}^{-1}\mathbf{Q}^{-1}$$

(b)
$$\mathbf{QR} = \mathbf{RQ}$$
, $False$, $\mathbf{QR} = \mathbf{QR}$, or $\mathbf{QR} = \mathbf{R}(\mathbf{R}^{-1}\mathbf{QR}) = (\mathbf{QRQ}^{-1})\mathbf{Q}$ if \mathbf{Q} , \mathbf{R} invertible

(c)
$$(\mathbf{QRS})^T = \mathbf{S}^T \mathbf{R}^T \mathbf{Q}^T, \frac{True}{T}$$

(d)
$$(\mathbf{R} + \mathbf{S})\mathbf{Q} = \mathbf{S}\mathbf{Q} + \mathbf{R}\mathbf{Q}, \frac{True}{}$$

Question 7:

Given a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ whose columns form an orthonormal basis:

- (a) What is the dot product of any pair of columns in **A**? 0, if the columns are distinct; 1, if they are the same.
- (b) What is the inverse of \mathbf{A} ? \mathbf{A}^T