Modelos Matemáticos II

Antonio Gámiz Delgado Universidad de Granada

20 de febrero de 2020

1. Cálculo de variaciones

1.1. Herramientas previas

Definición 1.1. Dado I intervalo, se llama espacio de funciones test al conjunto:

$$\mathcal{D} = \{ \phi \in C^{\infty}(a, b) : \exists J \subset (a, b) \text{ compacto: } \phi(x) = 0 \text{ si } x \in J \}$$

Lema 1.2. Dado $x_0 \in (a, b)$ $y \in > 0$ tal que $[x_0 - \varepsilon, x_0 + \varepsilon] \subset (a, b)$, existe $\phi \in \mathcal{D}(a, b)$ tal que $\phi(x) > 0$ si $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$ $y \phi(x) = 0$ en otro caso.

Teorema 1.3. Sea $f \in C[x_0, x_1]$ tal que

$$\int f(x)\phi(x)dx = 0 \qquad \forall \phi \in \mathcal{D}(x_0, x_1)$$

Entonces $f(x) = 0 \ \forall x \in [x_0, x_1].$

Demostración. Sea $\bar{x} \in (x_0, x_1)$ y supongamos por reducción al absurdo que $f(\bar{x}) \neq 0$. Podemos suponer $f(\bar{x}) > 0$. Aplicando el teorema de conservación del signo, obtenemos $\varepsilon > 0$ f(x) > 0 si $(\bar{x} - \varepsilon, \bar{x} + \varepsilon)$.

Por el lema 1.2, existe una función test ϕ tal que $\phi(x) > 0$ si $x \in (\bar{x} - \varepsilon, \bar{x} + \varepsilon)$ y 0 en otro caso. Luego:

$$0 = \int_{x_0}^{x_1} f(x)\phi(x)dx = \int_{\bar{x}-\varepsilon}^{\bar{x}+\varepsilon} f(x)\phi(x)dx > 0 \Rightarrow f(\bar{x}) = 0$$

Como \bar{x} era arbitrario, tenemos que $f(\bar{x}) = 0 \ \forall \bar{x} \in (x_0, x_1)$, y por la continuidad de f podemos extenderlo a los extremos también, es decir, $f(x_0) = f(x_1) = 0$.

1.2. Problema general del cálculo de variaciones

Sea $\Omega \subset \mathbb{R}^3$, definamos $F: \Omega \longrightarrow \mathbb{R}$ tal que $(x, y, p) \longmapsto F(x, y, p)$. Supongamos que $F \in C^1(\Omega)$ respecto de las dos últimas variables, es decir, existen $\frac{\partial F}{\partial y}$ y $\frac{\partial F}{\partial p}$, continuas. Usando la función anterior, podemos definir el siguiente funcional:

$$L(y) = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx$$
 (1)

Nuestro objetivo en este apartado será encontrar *extremales* de ese funcional, es decir, máximos o mínimos.

Notación 1.4. Normalmente, a las derivadas parciales las denotaremos por:

$$\frac{\partial F}{\partial x} = F_x$$

Los *extremales* los buscaremos entre los elementos de un conjunto de funciones cumpliendo ciertas propiedades:

Definición 1.5. Sea $\Omega \subset \mathbb{R}^3$ y $F : \Omega \longrightarrow \mathbb{R}$ funcional en las condiciones anteriores. Definimos entonces el siguiente conjunto:

$$D = \{ y \in C(x_0, x_1) \cap C^1[x_0, x_1] : \text{ se cumplen (a),(b) y (c)} \}$$
 (2)

- (a) $(x, y(x), y'(x)) \in \Omega \quad \forall x \in (x_0, x_1)$
- (b) $y(x_0) = y_0 e y(x_1) = y_1$ (Condición de contorno)

(c)
$$\int_{x_0}^x F(x, y(x), y'(x)) dx < +\infty \quad \forall x \in (x_0, x_1)$$

El siguiente teorema nos proporcionará una condición sobre las derivadas parciales de F, que nos ayudará a buscar *extremales*. Para su demostración necesitaremos el siguiente lema:

Lema 1.6. Sea $\{s_n\} \longrightarrow 0$ una sucesión de números reales, existe $n_0 \in \mathbb{N}$ tal que si $y \in D$, entonces $y + s_n \phi \in D$ $\forall n \geq n_0$.

Lo que nos asegura este lema es que podamos sumar una perturbación pequeña a nuestro extremal sin salirnos de D.

Teorema 1.7. Si $\bar{y} \in D$ es un extremal, entonces:

$$\int_{x_0}^{x_1} F_y(x, \bar{y}(x), \bar{y}'(x)) \phi(x) dx + \int_{x_0}^{x_1} F_p(x, \bar{y}(x), \bar{y}'(x)) \phi'(x) dx = 0 \quad \forall \phi \in \mathcal{D}(x_0, x_1)$$

 $A \bar{y}$ se le suele llamar función crítica.

Demostración. Sean $\bar{y} \in D$ extremal y $\phi \in \mathcal{D}(x_0, x_1)$. Definimos el funcional $g : \mathbb{R} \longrightarrow \mathbb{R}$ tal que $g(s) = L(\bar{y} + s\phi)$.

Por el lema anterior, existe $\varepsilon > 0$ tal que g está bien definida en $(-\varepsilon, \varepsilon)$.

Ahora queremos derivar g respecto de s, pero necesitamos que esté definida en un intervalo cerrado (por el teorema de derivación). Para ello, tomamos un intervalo cerrado J de forma que soporte $(\phi) \subset J$. (AQUI TENGO DUDAS MIRAR NOTAS CLASE)

Derivamos g respecto de s:

$$g'(s) = \left(\int_{[x_0, x_1] \setminus J} F(x, \bar{y}, \bar{y}') dx + \int_J F(x, \bar{y} + s\phi(x), \bar{y}' + s\phi'(x)) dx\right)' =$$

$$= \int_J \left(F_y(x, \bar{y} + s\phi(x), \bar{y}' + s\phi'(x))\phi(x) + F_p(x, \bar{y} + s\phi(x), \bar{y}' + s\phi'(x))\phi'(x)\right) dx =$$

$$\int_{[x_0, x_1]} \left(F_y(x, \bar{y} + s\phi(x), \bar{y}' + s\phi'(x))\phi(x) + F_p(x, \bar{y} + s\phi(x), \bar{y}' + s\phi'(x))\phi'(x)\right) dx$$

Si evaluamos ahora g' en 0, tenemos:

$$g'(0) = \int_{x_0}^{x_1} (F_y(x, \bar{y}, \bar{y}')\phi + F_p(x, \bar{y}, \bar{y}')\phi') dx = 0 \quad (\bar{y} \text{ extremal})$$

El teorema anterior da pie a la siguiente definición:

Definición 1.8. Sea $\Omega \subset X$ un abierto de un espacio de Banach, X. Sean $L: \Omega \longrightarrow \mathbb{R}$, $y \in \Omega$, $\phi \in X$, se define la derivada de Gateaux como:

$$Dg(L(\bar{y}))(\phi) = \frac{d}{ds}\Big|_{s=0} L(\bar{y} + s\phi)$$

1.2.1. Ecuación de Euler

Usando el teorema anterior vamos a llegar a una ecuación diferencial de segundo orden que nos ayudará a resolver este problema. Supongamos que tenemos $y \in C^2$, función crítica y $F \in C^2(\Omega)$, definimos $Z(x) = F_p(x, y(x), y'(x)) \in C^1(x_0, x_1)$. Para continuar necesitamos un lema previo:

Lema 1.9. Sea $Z \in C^1(x_0, x_1)$, entonces:

$$\int_{x_0}^{x_1} Z(x)\phi'(x)dx = -\int_{x_0}^{x_1} Z'(x)\phi(x)dx \quad \forall \phi \in \mathcal{D}(x_0, x_1)$$

Este lema nos permite «intercambiar la derivada de sitio».

Usando ahora el Teorema 1.7 (podemos usarlo porque y es función crítica) y el lema anterior, tenemos:

$$0 = \int_{x_0}^{x_1} F_y(x, y, y') \phi(x) dx + \int_{x_0}^{x_1} F_p(x, y, y') \phi'(x) dx =$$

$$= \int_{x_0}^{x_1} F_y(x, y, y') \phi(x) dx + \int_{x_0}^{x_1} Z(x) \phi'(x) dx =$$

$$= \int_{x_0}^{x_1} F_y(x, y, y') \phi(x) dx - \int_{x_0}^{x_1} Z'(x) \phi(x) dx =$$

$$= \int_{x_0}^{x_1} \left(F_y(x, y, y') - Z'(x) \right) \phi(x) dx = 0 \quad \forall \phi \in \mathcal{D}(x_0, x_1)$$

Y usando ahora el Teorema 1.3 nos queda:

$$F_y(x, y, y') - Z'(x) = 0 \quad \forall x \in (x_0, x_1)$$

Que denoteramos por:

$$\frac{d}{dx}F_p - F_y(x, y, y') = 0$$
 (Ecuación de Euler)

Las condiciones sobre F se pueden rebajar con el siguiente teorema:

Teorema 1.10. Si $F \in C^1_{yp}$, $y' \in C^1$, función crítica, entonces:

$$Z(x) = F_p(x, y(x), y'(x)) \in C^1$$

AHORA CREO QUE QUEREMOS RESOLVER LA ECUACION NO¿?¿?¿?

Lema 1.11. Sea $\phi \in \mathcal{D}(a,b)$, entonces:

$$\phi$$
 admite primitiva $\iff \int_a^b \phi(x) dx = 0$

Lema 1.12. Sea $f \in C(a,b)$ tal que $\int f\phi'(x)dx = 0 \quad \forall \phi \in \mathcal{D}(a,b) \Longrightarrow f$ es constante.