1058 - Parallelogram Counting

There are **n** distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {**A**, **B**, **C**, **D**} such that **AB** | | **CD**, and **BC** | | **AD**. No four points are in a straight line.

Input

Input starts with an integer $T \leq 15$, denoting the number of test cases.

The first line of each test case contains an integer n ($1 \le n \le 1000$). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

Output

For each case, print the case number and the number of parallelograms that can be formed.

Sample Input	Output for Sample Input
2	Case 1: 5
6	Case 2: 6
0 0	
2 0	
4 0	
1 1	
3 1	
5 1	
7	
-2 -1	
8 9	
5 7	
1 1	
4 8	
2 0	
9 8	