Baseball Data Salary

1.

(a) In this section, I have chosen a Stepwise Procedure:

Forward Addition

```
> fit.forward$anova
     Step Df Deviance Resid. Df Resid. Dev

        Step Df
        Deviance Resid. Df Resid. Dev
        AIC

        1
        NA
        336 0.52547467 -2176.212

        2 + x2 -1 0.3413313278
        335 0.18414334 -2527.586

        3 + x9 -1 0.0309893461
        334 0.15315400 -2587.685

        4 + x4 -1 0.0842436539
        333 0.06891034 -2854.826

        5 + x10 -1 0.0009680921
        332 0.06794225 -2857.594

        6 + x13 -1 0.0006421774
        331 0.06730007 -2858.794

        7 + x8 -1 0.00004417272
        329 0.06624896 -2860.099

> summary(fit.forward)
lm(formula = x1 \sim x2 + x9 + x4 + x10 + x13 + x8 + x15, data = dat)
Residuals:
                                                                             Max
          Min
                            1Q
                                      Median
                                                              30
-0.064046 -0.005495 -0.000792 0.005048 0.073422
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.061e-03 6.646e-03
                                                          0.762 0.44687
                     7.805e-01 2.183e-02 35.757 < 2e-16 ***
                    -1.049e-03 5.841e-05 -17.964 < 2e-16 ***
                    4.404e-04 3.071e-05 14.341 < 2e-16 ***
-1.125e-04 3.812e-05 -2.951 0.00339 **
x4
                    -4.616e-03 1.931e-03 -2.391 0.01737 *
x13
                    1.053e-04 5.818e-05 1.811 0.07110.
-3.404e-03 2.298e-03 -1.481 0.13954
x8
x15
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.01419 on 329 degrees of freedom
Multiple R-squared: 0.8739, Adjusted R-squared: 0.8712
F-statistic: 325.8 on 7 and 329 DF, p-value: < 2.2e-16
```

- Based on low values of AIC, one can conclude that forward addition model will provide a parsimonious model of the data.

- (b). R^2: .87 this means that 87% of the data is represented by the best model in this situation.
- Looking at the summary of parameter estimates, it shows that most of the predictors are meaningful addition to the model, except for x8 and x15 due to the fact that the p-values here are higher than .05.
- 1. (a)

i.

Shapiro-Wilk normality test

data: r.jack
W = 0.8749, p-value = 6.591e-16

- -When looking at the histogram, we can see that there is a bell shaped curve, which looks relatively normal, however, there are a few outliers which are influencing the data on both ends of the curve.
- The Q-Q plot shows us that there are quantities outside of the bounds, which can cause concern when it comes to normality. These points are outliers.

-Shapiro-Wilk test shows that the p-value = 6.59e-16, which indicates that this value is smaller than .05. In this case we reject Normality.

ii.

Based on this graph, both lines should be straight, but there is actually a curve towards the end of this graph. This indicates that there is a violation on equal variance. After running the program, there is a suggested power transformation which will allow for a better fit.

```
Suggested power transformation: 1.444162
> par(mfrow=c(1,1),mar=c(4, 4, 4, 4))
> spreadLevelPlot(fit, pch=20, cex=0.5, col="green4",
+ main="Best Fit Model on Baseball Salary: Homoscedasticity")
```

iii.

- When running the Durbin Watson test, one gets a value of:

.888.

.888 > .05, hence this value justifies independence.

iv.

- When analyzing these partial residual plots, we can see that the smooth line is mostly in line with our model, therefore linearity is justified. The lines are mostly straight in all of the plots except for plot two, the line is a bit curved, but for the most part all of the lines are aligned with the blue line.

2b.

	lm(f	omula	a = fit.f	orwar	d):								
đ	fb.1_	dfb.x2	dfb.	e9 dfb	.x4 dfl	x10 d	fb.x13	dfb.x8	dfb.x1	5 dffit	cov.r	cook	d hat
7	0.39	-0.43	0.45	-0.01	-0.16	-0.34	0.01	-0.06	-0.62_	* 0.74_	* 0.05	0.03	
21	0.01	-0.03	0.13	0.04	0.16	-0.10	-0.16	-0.05	0.30	1.08_*	0.01	0.07_	*
52	0.03	-0.02	0.17	-0.15	-0.15	-0.07	0.17	0.08	0.30	1.10_*	0.01	0.09_	*
102	0.02	0.06	-0.07	-0.05	-0.02	-0.07	-0.01	-0.07	0.30	0.86_	* 0.01	0.01	
115	0.02	-0.05	0.27	0.22	-0.01	0.02	-0.33	-0.03	0.46	1.06	0.03	0.08_*	
122	0.06	0.00	-0.02	-0.06	-0.05	-0.07	0.03	-0.06	0.24	0.92_	* 0.01	0.01	
124	0.11	-0.21	-0.10	0.15	-0.10	0.15	0.17	0.08	-0.56	* 0.67	_* 0.0	4 0.02	2
134	0.95	-1.15	* 0.5	5 0.3	6 -0.1	9 0.0	2 -0.0	6 0.0	2 -1.29	9_* 0.6	53_* 0	.20 0.	07
151	-0.10	0.09	-0.05	0.01	0.04	0.02	-0.01	0.02	-0.10	1.09_	* 0.00	0.06	
176	0.14	-0.08	-0.02	0.00	-0.08	-0.09	0.02	-0.09	0.27	0.89_	* 0.01	0.01	
179	-1.34	* 1.5	7_* -0	.82 -0	.37 0	.24 -0	.03 0	.12 -0	.04 1.	69_* ().61_*	0.33	0.10_*
192	0.00	0.00	0.00	-0.02	0.01	0.00	0.03	0.00	0.05	1.08_*	0.00	0.05	
196	0.00	-0.01	0.10	-0.17	0.21	0.07	-0.04	0.05	0.33	1.11_	* 0.01	0.10_	*
201	0.00	0.00	0.01	0.00	-0.02	0.01	0.00	0.01	-0.02	1.07_	* 0.00	0.05	
217	-0.42	0.61	-0.32	-0.29	0.01	-0.09	0.10	-0.08	0.90	* 0.52	_* 0.0	9 0.0	3
230	0.04	0.10	-0.05	-0.17	-0.15	-0.12	0.10	-0.11	0.52	* 0.68	_* 0.0	3 0.0	1
234	-0.01	0.00	-0.01	0.01	0.02	0.01	-0.02	0.00	0.03	1.08_	* 0.00	0.05	
251	-0.02	-0.06	-0.01	0.10	0.03	0.09	0.01	0.07	-0.32	0.85_	* 0.01	0.01	
261	0.01	-0.02	0.45	-0.14	-0.16	-0.32	0.11	-0.17	0.64	* 1.03	0.05	0.09	*
303	0.38	-0.36	0.17	-0.01	-0.15	0.08	0.03	0.01	0.40	1.17_	* 0.02	0.14_	*
333	-0.03	0.02	-0.01	0.00	0.01	0.01	0.00	0.00	-0.03	1.10_	* 0.00	0.07	
337	0.43	-0.56	0.24	0.26	-0.06	0.07	-0.08	0.05	-0.71_	* 0.76	_* 0.0	6 0.04	1

Important outliers:

> infl.sum																			
dfb.1	_	dfb.x2	dfb	.x9	dfb.x4	dfb.x1) df	b.x13	dfb.x	8 df b.x1	5 (lffit	cov.r	cook.	d				
7 0.38999	5723 -	0.426435	5569	0.44	46562148 -	0.0145343	3166 -0).1611	32777 -0.	344951274	0.011	23530	5 -0.0595	71883 -	0.62085	185 0.	7438331	4.6280	49e-02
21 0.00849	3499	-0.02873	39538	0.1	32495836	0.035086	0699 0	0.1578	62100 -0	100487903	-0.163	337156	3 -0.053	863049	0.29689	704 1	0764519	1.1014	77e-02
52 0.02952	5529	-0.02388	68411	0.1	69603891	-0.151035	2822 -	0.1450	19986 -0	.069866393	0.16	872920	02 0.075	835682	0.29868	060 1	0992552	1.1154	01e-02
102 0.0182	53719	0.05694	00212	2 -0.0	066145727	-0.045309	93165 -	-0.016	659885 -(0.07424853	7 -0.00)59737	37 -0.07	1666958	0.3010	1265 (0.8594099	1.109	751e-02
115 0.0194	59671	-0.05267	1113	5 0.2	270221030	0.215940	9337 -	0.0082	284744 0	.01811349	1 -0.32	77260	08 -0.033	615670	0.45692	766 1	.0559968	2.599	403e-02
122 0.0597	53476	0.00157	67282	2 -0.0	017842059	-0.057460	02416 -	-0.0526	646434 -(0.06532942	9 0.02	94288	00 -0.061	1067425	0.23684	279 (.9241216	6.932	806e-03
124 0.1104	01130	-0.21329	0240	3 -0.	099938374	0.14952	74280 -	-0.097	191016(.14707951	2 0.16	71714	86 0.084	667515	-0.55723	352 0	.6661960	3.681	692e-02
134 0.9466	86175	-1.14602	0459	4 0.5	548529842	0.358379	6492 -	0.1902	243106 0	.024702228	3 -0.06	19608	37 0.021	796167	-1.29365	147 0	.6340432	1.959	052e-01
151 -0.0990	95563	0.08968	35707	1 -0.	045835347	0.005956	66716	0.0433	359851 0	.019795675	5 -0.01	26168	21 0.016	860728	-0.10163	219 1	.0896829	1.294	470e-03
176 0.1409	26851	-0.08128	4205	1 -0.	016807022	0.003155	54311 -	-0.076	310601 -	0.09132018	9 0.01	82249	61 -0.094	1079683	0.27354	088 (.8905306	9.204	903e-03
179 -1.3447	68055	1.56785	0873	7 -0.	815038266	-0.365440	02449	0.2422	251704 -(0.02719898	8 0.11	82584	47 -0.040	393616	1.69448	3223 (.6060888	3.328	625e-01
192 -0.0032	95289	0.00074	0421	4 -0.	003848104	-0.02288	38575	0.0100	024679 (.00385883	0.02	92936	93 -0.002	883989	0.04546	873 1	.0769015	2.591	821e-04
196 -0.0033	15265	-0.01103	30553	2 0.	099203785	-0.17382	80788	0.2090	030824 (.06815629	2 -0.03	56437	62 0.053	903723	0.33194	235 1	.1116741	1.377	367e-02
201 0.0034	54739	-0.00227	1697	3 0.0	010381717	-0.000226	53683 -	-0.015	546038 (.00819501	0.00	31438	24 0.007	113748	-0.02403	3142 1	.0749664	7.240	618e-05
217 -0.4180	73625	0.61290	3922	2 -0.	319267055	-0.29065	28217	0.0069	973057 -(0.08895643	9 0.09	75040	37 -0.084	271468	0.89745	260 ().5235272	9.254	604e-02
230 0.0378	56778	0.09938	9180	4 -0.0	053828533	-0.165932	29843 -	-0.1469	952457 -(0.11617304	6 0.10	28286	95 -0.106	5095060	0.51637	893 ().6755073	3.167	814e-02
234 -0.0070	27221	0.00382	3701	0 -0.	007732400	0.014089	96067	0.0181	157344 0	.005959760	0.01	68862	90 -0.001	342567	0.02521	361 1	.0801569	7.970	521e-05
251 -0.0222	80598	-0.05759	93235	3 -0.	014743511	0.09756	18844	0.028	809650 (.08795575	1 0.00	96143	24 0.068	127398	-0.31660	327 0	.8469752	1.225	408e-02
261 0.0127	47480	-0.01726	9853	4 0.4	453283675	-0.142268	88029 -	-0.1592	260702 -0	0.32482520	6 0.10	75006	63 -0.174	1548763	0.64297	190 1	.0259622	5.120	931e-02
303 0.3779	03583	-0.36455	4760	6 0.1	167245354	-0.014941	14794 -	-0.151	119785 (.07988297	2 0.02	80565	40 0.012	849551	0.40345	062 1	.1652648	2.034	735e-02
333 -0.0265	59207	0.02426	9940	8 -0.	012387069	0.001057	77188	0.0110	096607 0	.00511270	7 -0.00	27229	24 0.004	362686	-0.02707	477 1	.1008184	9.190	700e-05
337 0.4276	24696	-0.56151	4401	9 0.2	242786065	0.257224	8766 -	0.0606	510012 0	.06521545	7 -0.07	83051	32 0.047	155675	-0.71059	747 0	.7624009	6.074	204e-02

Edna Diaz Computer Project II 80396667 Stats 4385

7 0.02586285 21 0.07352117 52 0.08849620 102 0.01151800 115 0.08275233 122 0.01167317 124 0.01621161 134 0.06697686
52 0.08849620 102 0.01151800 115 0.08275233 122 0.01167317 124 0.01621161
102 0.01151800 115 0.08275233 122 0.01167317 124 0.01621161
115 0.08275233 122 0.01167317 124 0.01621161
122 0.01167317 124 0.01621161
124 0.01621161
134 0.06697686
151 0.06318368
176 0.01174491
179 0.09695241
192 0.04944026
196 0.10022057
201 0.04707716
217 0.02622397
230 0.01446676
234 0.05165585
251 0.01179228 261 0.09362491
303 0.14155675
333 0.06941372
337 0.03512142

rstudent una	djusted p-valı	ie Bonferroni p
217 5.468798	8.9974e-08	3.0321e-05
179 5.171458	4.0494e-07	1.3647e-04
134 -4.828376	2.1147e-06	7.1267e-04
124 -4.340852	1.8932e-05	6.3800e-03
230 4.262049	2.6509e-05	8.9334e-03

> # Cook's Distance							
[1] 3.428251e-03 2.481798e-08	8 4.789807e-04	2.541485e-07 7.	128498e-07 1.66	60096e-03 4.62	8049e-02 1.182988	Be-05 7.328436e-	04 3.623249e-04
[11] 4.321672e-03 2.143798e-0	3 9.575290e-05	1.668970e-02 2	.012447e-04 1.9	34399e-04 2.06	56900e-04 1.94846	0e-04 3.049215e	-03 6.060846e-05
[21] 1.101477e-02 4.051989e-0	4 2.200583e-03	1.390030e-02 2	.819766e-03 1.8	60651e-05 1.11	15596e-04 5.68281	1e-04 1.151797e	-03 8.110243e-05
[31] 2.185384e-08 1.415936e-0	4 2.276641e-03	4.417753e-03 1	297592e-04 6.1	70737e-05 1.04	14773e-05 7.16243	7e-03 4.916026e	-03 4.692957e-05
[41] 7.610083e-04 1.610731e-0	5 9.979372e-04	7.422803e-06 2	.030649e-03 1.7	14701e-03 2.13	30398e-03 6.55432	1e-03 1.188880e	-04 1.394549e-04
[51] 5.280179e-05 1.115401e-0	2 2.993721e-04	4.664407e-05 2	313736e-04 3.2	25186e-04 1.21	17999e-04 8.64365	2e-05 2.039750e	-04 1.835116e-05
[61] 3.110138e-03 2.083221e-0	3 3.044664e-08	1.514156e-02 5	.562295e-03 7.5	47050e-05 1.97	79002e-04 4.17800	0e-04 6.362479e	-04 1.385289e-03
[71] 7.690182e-05 1.140687e-0	5 8.690381e-04	5.040992e-07 1	216183e-04 1.4	20685e-04 3.48	39237e-03 7.29939	8e-04 1.704087e	-04 4.871876e-04
[81] 5.315334e-05 1.393957e-0	4 4.533872e-04	1.945185e-03 3	209389e-04 3.7	16076e-04 3.51	13061e-04 6.01713	0e-05 4.746942e	-04 1.199965e-03
[91] 8.232436e-05 4.531868e-0	5 1.217393e-04	2.453838e-04 1	.101937e-03 2.1	53299e-04 8.61	11619e-06 1.05870	9e-04 1.170284e	-04 1.253610e-04
[101] 7.316698e-06 1.109751e-0	02 5.748774e-04	6.427017e-05 3	.237819e-04 9.5	35880e-05 1.8	55902e-06 7.25213	32e-03 5.617621	e-05 6.441428e-04
[111] 2.191370e-03 5.850574e-0	03 6.337661e-04	3.172601e-03 2	.599403e-02 9.4	97698e-05 1.1	78377e-03 2.69975	55e-05 1.743121e	e-06 1.371558e-04
[121] 2.369439e-03 6.932806e-0	03 1.945869e-03	3.681692e-02 8	3.775536e-03 1.0	67404e-03 3.0	37528e-05 1.08908	31e-04 8.255154	e-05 1.557733e-04
[131] 7.553663e-03 5.177491e-0	04 3.988195e-04	1.959052e-01 1	.001008e-04 7.1	46617e-03 5.9	30847e-03 3.19806	59e-05 2.098361e	e-04 3.718852e-04
[141] 1.276205e-03 3.765677e-0	05 4.894603e-06	1.198385e-03 1	.657074e-05 5.0	23486e-05 3.9	95610e-06 1.52740	06e-02 4.956714e	e-03 7.611639e-05
[151] 1.294470e-03 2.014951e-0	02 1.941662e-03	6.714554e-03 7	.854733e-05 1.2	.92575e-03 5.7	74596e-05 9.34338	86e-04 1.799285e	e-03 1.416536e-05
[161] 3.429379e-03 2.086357e-0	05 1.477952e-05	1.070518e-03 1	.619679e-03 9.5	45779e-04 2.7	92318e-03 3.74700)1e-05 8.824365e	e-03 1.156553e-04
[171] 5.116703e-05 3.073223e-0	04 6.297294e-04	1.671036e-04 1	.746086e-03 9.2	.04903e-03 1.0	06275e-05 2.12212	29e-04 3.328625	e-01 1.783623e-05
[181] 8.181923e-04 3.069742e-0	05 1.497456e-05	1.982388e-03 1	.195032e-05 3.6	14812e-05 3.3	18697e-03 1.93645	50e-03 7.052122e	e-04 9.527009e-06
[191] 8.659887e-04 2.591821e-0	04 4.737324e-03	2.811022e-04 1	.404238e-03 1.3	77367e-02 9.0	95602e-04 7.08044	l8e-05 4.179762€	e-03 2.195191e-03
[201] 7.240618e-05 6.344668e-0	05 2.698050e-03	1.988798e-03 3	.911801e-03 1.1	70721e-04 2.1	02019e-07 8.67716	58e-05 4.736738e	e-06 1.191446e-04
[211] 1.493537e-06 8.722601e-0	06 5.217655e-05	1.543391e-04 3	.216406e-04 1.4	36451e-04 9.2	54604e-02 1.66698	34e-03 5.056771e	e-04 1.416832e-04
[221] 3.158635e-04 1.111328e-0	04 1.075427e-05	6.841249e-04 4	.943655e-04 9.8	00860e-05 5.7	81315e-05 1.00528	34e-06 7.331811e	e-04 3.167814e-02
[231] 1.449000e-03 6.510105e-0	05 2.282379e-04	7.970521e-05 1	.093156e-04 6.3	43210e-04 2.0	83607e-03 1.59980	9e-03 4.199374	e-03 1.736035e-03
[241] 5.315661e-04 5.238665e-0	05 7.308174e-04	7.834138e-04 6	i.612895e-05 6.1	.87331e-05 3.1	66388e-04 1.21394	13e-04 2.594375e	e-04 9.949821e-04
[251] 1.225408e-02 1.457806e-0	03 6.210506e-04	4.319977e-03 6	5.009819e-04 4.4	51961e-07 1.5	12839e-04 4.38758	88e-04 3.401960	e-05 9.726536e-05
[261] 5.120931e-02 2.627321e-0	03 7.658791e-04	1.219903e-03 1	.522231e-03 2.9	50603e-03 3.0	13276e-03 1.39562	24e-02 4.092455	e-05 1.477634e-04
[271] 1.792710e-04 1.287597e-0	03 3.141972e-04	4.501672e-03 3	.023288e-04 1.9	42800e-04 1.8	89718e-03 2.05689	97e-06 1.549983	e-03 3.937179e-03
[281] 4.994443e-04 8.823175e-0	08 1.552935e-07	4.669797e-04 2	.387253e-05 2.6	i44244e-03 3.2	71656e-03 1.17710)5e-04 2.998526	e-04 4.461541e-04
[291] 3.511973e-05 8.498584e-0	05 2.082669e-03	1.186530e-03 3	.488432e-04 1.9	89187e-03 8.9	03605e-04 1.83356	59e-04 2.718209e	e-04 2.840674e-06
[301] 7.889183e-05 4.698860e-0	04 2.034735e-02	1.070434e-05 8	3.549526e-06 2.2	33192e-04 9.8	27976e-03 8.65049	94e-04 2.206026	e-06 2.638270e-03
[311] 3.486841e-04 2.728600e-0	04 8.994041e-06	3.237919e-03 1	.365135e-03 3.3	59904e-04 7.0	32374e-03 2.82836	55e-04 6.407341e	e-04 6.547888e-04
[321] 6.251743e-04 9.390103e-0	06 6.113018e-04	1.251517e-04 9	.947106e-05 6.5	52539e-05 2.3	75062e-04 6.26520	04e-05 1.762888	e-03 1.996794e-04
[331] 2.149555e-03 3.435186e-0	03 9.190700e-05	1.684836e-04 5	.306631e-03 4.5	10433e-03 6.0	74204e-02		

Based on these values and the graph generated we see that our biggest outliers are 134, 179 and 217. These points are also highly influential on the data. The number 363 has the greatest leverage in this graph and the outliers under and over the bands are also considered outliers. Two of our greatest influencers also have high leverage as well.

2C.

```
> fitUpdate <- update(fit, ~. -1, data = dat);
> kappa(lm(fitUpdate, x=TRUE)$x);
[1] 632.4887
```

632.4887 > 100

-Based on this answer, we can see that the number we got is larger than the cut-off point of 100. It is actually a very serious concern in this case based on this number, as it is very big. There may be predictors that may be collinear with other predictors in this case.

```
> vif(fit)
x2 x9 x4 x10 x13 x8 x15
1.766046 3.513289 4.237453 2.775130 1.493984 4.935015 1.376195
```

-When we look at VIF, we can see that all of our numbers are below ten, so there may not be an issue with multicollinearity.

3.

-Based on my best fit model, we can assume that there is a 95% chance the salary of this baseball player with the same stats as Andre Dawson, will fall between [.2538479, .3109589] in thousands of dollars.

Index

```
1. Set-up:
   library(car)
   baseball <- read.table(file=
                  "http://www.amstat.org/publications/jse/datasets/baseball.dat.txt", header
   = F,
                 col.names=c("salary", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9",
   "x10", "x11", "x12", "x13", "x14", "x15", "x16", "ID"))
   baseball$logsalary <- log(baseball$salary);</pre>
   baseball <- baseball[, -c(1, 18)] # REMOVE salary AND ID dim(baseball);
   head(baseball)
   dat <- baseball
   logsalary <- baseball$logsalary
   fit.null <- lm(x1 \sim 1, data = dat)
   fit.whole<- lm(baseball, data = dat, x = TRUE, y = TRUE)
   n <- NROW(dat);
   p <- length(coef(fit))-1 # NUMBER OF SLOPES
   (a). #SELECTING STEPWISE PROCEDURE: BACKWARD DELETION
   fit.forward <- step(fit.null, scope=list(lower=fit.null, upper=fit.whole),
                direction="forward", k = 2)
   fit.forward$anova
   summary(fit.forward)
   fit <- lm(fit.forward)</pre>
   2.
    #CHECKING NORMALITY: SHAPIRO, HISTOGRAM AND JACK RESIDUALS
   r.jack <- rstudent(fit)
   par(mfrow=c(1,2),mar=c(8,4,8,4))
```

```
# The first plot: Histogram
hist(r.jack, xlab="Jackknife Residual", col="green4",
   main="(a) Histogram")
# FUNCION
qqPlot() in {car}: A fancier qq plot for studentized jackknife residuals
qqPlot(fit, pch=19, cex=.8, col="orange", main="(b) Q-Q Plot")
# ?qqPlot
shapiro.test(r.jack)
(aii).
#HOMOSCEDASTICITY
# Plot Absolute Jackknife Residuals vs. Fitted values
# Power Box-Cox Transformation on the response Y is suggested
# library(car)
par(mfrow=c(1,1),mar=c(4, 4, 4, 4))
spreadLevelPlot(fit, pch=20, cex=0.5, col="green4",
         main="Best Fit Model on Baseball Salary: Homoscedasticity")
# IF THE LINES ARE FLAT, THEN EQUAL VARIANCE IS JUSTIFIED
(aiii).
#INDEPENDENCE
durbinWatsonTest(fit)
# LARGE P-VALUE (>0.05) JUSTIFIES INDEPENDENCE
(aiv).
#LINEARITY
crPlots(fit, main="Partial Residual Plots")
2B.
infl <- influence.measures(fit);</pre>
infl.mat <- as.data.frame(infl$infmat)</pre>
infl.sum <- summary(influence.measures(fit));</pre>
infl.sum
write.csv(infl.sum, file="Infleunce-Mat.csv", row.names=TRUE)
# Cook's Distance
cook.d <- infl.mat$cook.d; cook.d
# library(car)
outlierTest(fit) # Bonferonni p-value for most extreme obs
# Plot of Cook's Distance
```

```
cutoff < -4/(n-p-2)
plot(fit, which=4, cook.levels=cutoff, col="gray65", lwd=1.5)
points(1:n, cook.d, pch=1, cex=1, col="blue")
# EXTRACT INFLUETIAL POINTS
baseball[cook.d > 0.05, ] # HIGH COOK'S DISTANCE
# Interactive Plot for Identifying Influential Points
# Press ESC to stop when you are done with identification
influencePlot(fit, id=list(method="identify"),
        col="blue",
        main="Influence Plot",
        sub="Circle size is proportial to Cook's d")
2C.
# CONDITION NUMBER (> 15, 30, 100?);
#WITH INTERCEPT
fitIntercept <- lm(fit, x=TRUE)
kappa(fitIntercept$x);
# WITHOUT INTERCEPT
fitUpdate <- update(fit, ~. -1, data = dat);
kappa(lm(fitUpdate, x=TRUE)$x);
# COMPUTE VIF USING FUNCTION vif DIRECTLY (> 10?)
vif(fit)
3.
##95% interval
player.new <- baseball[1, ]</pre>
predict(fit, newdata=data.frame(player.new), se.fit=TRUE,interval="prediction",
level=0.95);
```