Lab Assignment-3

PHY617/473-Computational Physics 23rd Jan, 2025

Explain the algorithm you are using for each question. Use for loop and function to make your code efficient.

Question 1. Write a python program that computes the sum of all the elements of a matric C, where C = AB. Here A and B are two matrices of size $N \times N$. The value of N should be taken as input from the keyboard and take N = 100. The elements of the matrices are defined as:

$$A[i,j] = i \star j/100$$

$$B[i,j] = (i+1) \star (j+1)/100.$$

Do the matrix multiplications using (a) the for loop and (b) using numpy.dot functions. [4+4 marks] Round up your answer up to three decimal places using numpy.round(x,3) function of python for both cases. Which method [(a) or (b)] is taking less time and why?[2 marks]

Question 2. Compute velocity and acceleration from 1D position data

Suppose we have recorded GPS coordinates $x_0,, x_n$ at times $t_0,, t_n$ while running or driving along a straight road. We want to compute the velocity v_i and acceleration a_i from these position coordinates. Using finite difference approximations, one can establish the formulas

$$v_i \approx \frac{x_{i+1} - x_{i-1}}{t_{i+1} - t_{i-1}},$$

$$a_i \approx 2(t_{i+1} - t_{i-1})^{-1} \left(\frac{x_{i+1} - x_i}{t_{i+1} - t_i} - \frac{x_i - x_{i-1}}{t_i - t_{i-1}} \right),$$

for i = 1, ..., n - 1 (v_i and a_i correspond to the velocity and acceleration at point x_i at time t_i , respectively)

- a) Write a Python function kinematics (i, x, t) for computing v_i and a_i , given the arrays x and t of position and time coordinates $(x_0,, x_n \text{ and } t_0,, t_n)$.[5 marks]
- b) Write a Python function test_kinematics() for testing the implementation in the case of constant velocity V. Take the dataset for position and time from the given datafile $GPS_data.txt$ using numpy loadtxt(). Call the kinematics function for the legal i values and calculate v_i and a_i .[5 marks]
- Question 3. a. Write a function count_pairs(dna, pair) that returns the number of occurrences of a pair of characters(pair) in a DNA string (dna). For example, calling the function with dna as 'ACT-GCTATCCATT' and pair as 'AT' will return 2. [5 marks]
- b. Count how many times a certain string appears in another string. For example, the function returns 3 when called with the DNA string 'ATCTTATCGAATC' and the substring 'ATC'. [5 marks]

Hint: For each match of the first character of the substring in the mainstring, check if the next n characters in the main string matches the substring, where n is the length of the substring. Use slices like s[3:9] to pick out a substring of s.

Question 4. Look at the datafile $planet_data.txt$ which has information about orbital period, semi major axis, radius and mass of a planet which is orbiting a star.

- (a) Read them using numpy loadtxt and verify Kepler's third law $(T^2 \propto a^3)$. [6 marks]
- (b)Also plot mass and radius of the planet using python plot function.[4 marks]