Elementary Graph Algorithms

Contents

Graphs

- Graph basics
- Graph representation

Searching a graph

- Breadth-first search
- Depth-first search

Applications of depth-first search

Topological sort

- A graph G is a pair (V, E)
 where V is a vertex set and E is an edge set.
- A vertex (node)
 - a circle.
- An edge (link).
 - an arrow or a line.

A directed graph

An undirected graph

3

Directed graph (or digraph)

- The blue edge *leaves* vertex 2 and *enters* vertex 4.
- The blue edge is incident from vertex 2 and incident to vertex 4.
- The red edge is a self-loop. (an edge from a vertex to itself)

Undirected graph.

- Edges have no directions
- No Self-loops

Adjacency

- If (u,v) is an edge, vertex v is **adjacent** to vertex u.
- In an undirected graph, adjacency relation is symmetric.
 - If u is adjacent to v, v is adjacent to u.
- In a directed graph, it is not symmetric.
 - Vertex 2 is adjacent to 1.
 - But vertex 1 is not adjacent to 2.

Degree

- The *out-degree* of vertex 2 is 3.
- The *in-degree* of vertex 2 is 2.
- degree = out-degree + in-degree.

Degree

- In an undirected graph,
 - The **degree** of vertex 2 is 3.

Path

- A sequence of consecutive edges
 - <1, 2>, <2, 4>, <4, 5> is a path.
 - <1, 2, 4, 5> for short
 - <1, 2, 4, 1, 2> is a path.
 - <1, 2, 4, 2> is not a path.

Path

- The length of a path is the number of edges in the path.
 - The length of a path <1, 2, 4, 5> is 3.
 - If there is a path from vertex u to vertex v,
 - v is called **reachable** from u.
 - Vertex 5 is reachable from vertex 1.
 - Vertex 3 is not reachable from vertex 1.

Simple path

- A path is simple if all vertices in the path are distinct.
- A path <1, 2, 4, 5> is a simple path.
- A path <1, 2, 4, 1, 2> is not a simple path.

Cycle and simple cycle

- A path $\langle v_0, v_1, v_2, ..., v_k \rangle$ is a cycle if $v_0 = v_k$
- A cycle $\langle v_0, v_1, v_2, ..., v_k \rangle$ is simple if $v_1, v_2, ..., v_k$ are distinct.
- A path <1, 2, 4, 5, 4, 1> is a cycle but it is not a simple cycle.
- A path <1, 2, 4, 1> is a simple cycle.

An acyclic graph

A graph without cycles

A connected graph

An undirected graph is connected
 if every pair of vertices is connected by a path.

Connected components

Maximally connected subsets of vertices of an undirected graph.

13

Strongly connected

A directed graph is strongly connected
 if every pair of vertices is reachable from each other.

Strongly connected components

Maximally strongly connected subsets of vertices in a directed graph.

A complete graph

An undirected graph in which every pair of vertices is adjacent.

The number of edges with n vertices?

A bipartite graph

An undirected graph G = (V,E) in which V can be partitioned into two sets V_1 and V_2 such that for each edge (u,v), either $u \in V_1$ and $v \in V_2$, or $u \in V_2$ and $v \in V_1$.

Forest

- An acyclic, undirected graph

• Tree

- A connected forest
- A connected, acyclic, undirected graph

Is a connected component of a forest a tree?

Dag

A directed acyclic graph

Handshaking lemma

- If G = (V, E) is an undirected graph

$$\sum_{v \in V} \text{degree}(v) = 2|E|$$

Tree: connected, acyclic, and undirected graph

- Any two vertices are connected by a unique simple path.
- If any edge is removed, the resulting graph is disconnected.
- If any edge is added, the resulting graph contains a cycle.
- |E| = |V| 1

19

• G is a tree.

- = G is a connected, acyclic, and undirected graph
- = In G, any two vertices are connected by a unique simple path.
- = *G* is connected, and if any edge is removed, the resulting graph is disconnected.
- = G is connected, |E| = |V| 1.
- = G is acyclic, |E| = |V| 1.
- = *G* is acyclic, but if any edge is added, the resulting graph contains a cycle.

20

The number of edges

- Directed graph
 - $|E| \leq |V|^2$
- Undirected graph
 - $|E| \le |V| (|V| 1) / 2$

Contents

- Graphs
 - Graphs basics
 - Graph representation
- Searching a graph
 - Breadth-first search
 - Depth-first search
- Applications of depth-first search
 - Topological sort

22

Representations of graphs

- Adjacency-list representation
- Adjacency-matrix representation

Adjacency-list representation

- An array of |V| lists, one for each vertex.
- For vertex u, its adjacency list contains all vertices adjacent to u.

A directed graph

Adjacency-list representation

- For an undirected graph, its directed version is stored.

An undirected graph

- $\Theta(V+E)$ space

Adjacency-matrix representation

- $|V| \times |V|$ matrix: $\Theta(V^2)$ space
- Entry (i,j) is 1 if there is an edge and 0 otherwise.

A directed graph

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Adjacency-matrix representation

- $|V| \times |V|$ matrix
- Entry (i,j) is 1 if there is an edge and 0 otherwise.

An undirected graph

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

27

Adjacency-matrix representation

- For an undirected graph, there is a symmetry along the main diagonal of its adjacency matrix.
- Storing the lower matrix is enough.

An undirected graph

1	2	3	4	5
0	1	0	0	1
1	0	1	1	1
0	1	0	1	0
0	1	1	0	1
1	1	0	1	0

Comparison of adjacency list an adjacency matrix

- Storage
 - If G is sparse, adjacency list is better.
 - because $|E| < |V|^2$.
 - If G is dense, adjacency matrix is better.
 - because adjacency matrix uses only one bit for an entry.
- Edge present test: does an edge (i, j) exist?
 - Adjacency matrix: Θ(1) time.
 - Adjacency list: O(V) time.

Comparison of adjacency list and adjacency matrix

- Listing or visiting all edges
 - Adjacency matrix: $\Theta(V^2)$ time.
 - Adjacency list: $\Theta(V + E)$ time.

Weighted graph

Edges have weights.

Weighted graph representation

adjacency list

32

Weighted graph representation

- adjacency matrix
 - $\Theta(V^2)$ space

	a	b	c	d	e
a	0	2	4	8	8
b	2	0	5	2	5
c	4	5	0	1	8
d	8	2	1	0	3
e	8	5	8	3	0

Transpose of a matrix

- The *transpose* of a matrix $A = (a_{ij})$ is
- $A^T = (a_{ij}^T)$ where $a_{ij}^T = a_{ji}$
- An undirected graph is its own transpose: $A = A^T$.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

Self-study

• Exercise 22.1-3

The transpose of a directed graph

Exercise 22.1-4

- Removing duplicate edges in a multigraph in O(V+E) time.

Exercise 22.1-6

– Universal sink detection in O(V) time.

Contents

Graphs

- Graphs basics
- Graph representation

Searching a graph

- Breadth-first search
- Depth-first search

Applications of depth-first search

Topological sort

Searching a tree

- Breadth-first search
- Depth-first search

Distance

- Distance from u to v
 - The number of edges in the shortest path from u to v.
 - The distance from s to v is 2.

38 Hanyang Univ.

Breadth-first search

- Given a graph G = (V, E) and a **source** vertex s, it explores the edges of G to "discover" every reachable vertex from s.
- It discovers vertices in the increasing order of distance from the source. It first discovers all vertices at distance 1, then 2, and etc.

39 Hanyang Univ.

Breadth-first search

- Given a graph G = (V, E) and a **source** vertex s, it explores the edges of G to "discover" every reachable vertex from s.
- It discovers vertices in the increasing order of distance from the source. It first discovers all vertices at distance 1, then 2, and etc.

Breadth-first search

- Given a graph G = (V, E) and a **source** vertex s, it explores the edges of G to "discover" every reachable vertex from s.
- It discovers vertices in the increasing order of distance from the source. It first discovers all vertices at distance 1, then 2, and etc.

Breadth-first search

- Given a graph G = (V, E) and a **source** vertex s, it explores the edges of G to "discover" every reachable vertex from s.
- It discovers vertices in the increasing order of distance from the source. It first discovers all vertices at distance 1, then 2, and etc.

Breadth-first search

- It also computes
 - the distance of vertices from the source: u.d = 3
 - the predecessor of vertices: $u.\pi = t$

• The *predecessor subgraph* of G as $G_{\pi} = (V_{\pi}, E_{\pi})$,

$$- V_{\pi} = \{ v \in V \mid v.\pi \neq \text{NIL} \} \cup \{ s \}$$

$$- E_{\pi} = \{ (v.\pi, v) \mid v \in V_{\pi} - \{s\} \}.$$

- The predecessor subgraph G_{π} is a **breadth-first tree**.
 - since it is connected and $|E_{\pi}| = |V_{\pi}|$ -1.
 - The edges in E_{π} are called **tree edges**.


```
BFS(G, s)
   for each vertex u \in G.V - \{s\}
      u.color = WHITE
3 	 u.d = \infty
    u.\pi = NIL
5 s.color = GRAY
6 s.d = 0
7 s.\pi = NIL
8 Q = \emptyset
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset
      u = DEQUEUE(Q)
11
   for each v \in G.Adj[u]
13
           if v.color == WHITE
14
               v.color = GRAY
15
               v.d = u.d + 1
16
               v.\pi = u
17
               ENQUEUE(Q, v)
18
       u.color = BLACK
```


- white: not discovered (not entered the Q)
- gray: discovered (in the Q)
- black: finished (out of the Q)

113


```
BFS(G, s)
   for each vertex u \in G.V - \{s\}
       u.color = WHITE
  u.d = \infty
    u.\pi = NIL
5 s.color = GRAY
6 s.d = 0
7 s.\pi = NIL
8 Q = \emptyset
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset
       u = DEQUEUE(Q)
11
12 for each v \in G.Adj[u]
13
           if v.color == WHITE
14
               v.color = GRAY
               v.d = u.d + 1
15
16
               v.\pi = u
17
               ENQUEUE(Q, v)
18
       u.color = BLACK
```



```
BFS(G, s)
   for each vertex u \in G.V - \{s\}
        u.color = WHITE
  u.d = \infty
       u.\pi = NIL
5 s.color = GRAY
                                                      Initialization
6 s.d = 0
7 s.\pi = NIL
                                                           \Theta(V)
8 Q = \emptyset
  ENQUEUE(Q, s)
10 while Q \neq \emptyset
11
       u = DEQUEUE(Q)
       for each v \in G.Adj[u]
                                                    Graph Exploration
13
           if v.color == WHITE
14
               v.color = GRAY
                                                          O(V+E)
15
               v.d = u.d + 1
16
               v.\pi = u
17
               ENQUEUE(Q, v)
18
       u.color = BLACK
```

Running time

- Initialization: $\Theta(V)$
- Exploring the graph: O(V+E)
 - A vertex is examined at most once.
 - An edge is explored at most twice.
- Overall: O(V+E)

Self-study

- Exercise 22.2-4 (22.2-3 in the 2nd ed.)
 - The running time of BFS
 with adjacency matrix representation.
- Exercise 22.2-6 (22.2-5 in the 2nd ed.)
 - Impossible breadth-first trees.
- Exercise 22.2-7 (22.2-6 in the 2nd ed.)
 - Rivalry

Contents

- Graphs
 - Graphs basics
 - Graph representation
- Searching a graph
 - Breadth-first search
 - Depth-first search
- Applications of depth-first search
 - Topological sort

Colors of vertices

- Each vertex is initially white. (not discovered)
- The vertex is grayed when it is discovered.
- The vertex is blackened when it is finished, that is, when its
 adjacency list has been examined completely.

Timestamps

- Each vertex v has two timestamps.
 - *v.d*: *discovery time* (when *v* is grayed)
 - *v.f. finishing time* (when *v* is blacken)

Hanyang Univ.


```
DFS(G)
   for each vertex u \in G.V
      u.color = WHITE
  u.\pi = NIL
4 time = 0
  for each vertex u \in G.V
6
      if u.color == WHITE
         DFS-VISIT(G,u)
DFS-VISIT(G,u)
   time = time + 1
  u.d = time
  u.color = GRAY
 for each v \in G.Adj[u]
      if v.color == WHITE
         v.\pi = u
         DFS-VISIT(G,v)
  u.color = BLACK
  time = time + 1
10 u.f = time
```

```
DFS(G)
                                                     Initialization
   for each vertex u \in G.V
      u.color = WHITE
                                                         \Theta(V)
    u.\pi = NIL
 time = 0
                                                    Graph Exploration
   for each vertex u \in G.V
6
      if u.color == WHITE
                                                          \Theta(V+E)
         DFS-VISIT(G,u)
DFS-VISIT(G,u)
   time = time + 1
  u.d = time
  u.color = GRAY
                                                     DFS-VISIT
  for each v \in G.Adj[u]
      if v.color == WHITE
                                                         \Theta(E)
         v.\pi = u
         DFS-VISIT(G,v)
  u.color = BLACK
   time = time + 1
10 u.f = time
```

137

• The *predecessor subgraph* is a *depth-first forest*.

- Parenthesis theorem (for gray interval)
 - Inclusion: The ancestor's includes the descendants'.
 - *Disjoint*: Otherwise.

Classification of edges

- Tree edges
- Back edges
- Forward edges
- Cross edges

- Tree edges

Edges in a depth-first tree.

Back edges (cycle)

Edges from descendants to ancestors or self-loops

Forward edges:

Non-tree edges from ancestors to descendants

– Cross edges:

 All other edges, which are between vertices such that one vertex is not an ancestor of the other.

Classification by the DFS algorithm

- Each edge (u, v) can be classified by the color of the vertex v that is reached when the edge is first explored:
 - white indicates a tree edge,
 - gray indicates a back edge, and
 - black indicates a forward or cross edge.
- Forward and cross edges are classified by the inclusion of gray intervals of u and v.

Depth-first search

Hanyang Univ.

Depth-first search

Hanyang Univ.

Depth-first search

 In a depth-first search of an undirected graph, every edge of G is either a tree edge or a back edge.

- Forward edge?
- Cross edge?

- Running Time
 - $\Theta(V+E)$

Self-study

- Exercise 22.3-5 (22.3-4 in the 2nd ed.)
 - Edge classification
- Problem 22-2 a-d
 - Articulation points

Contents

- Graphs
 - Graphs basics
 - Graph representation
- Searching a graph
 - Breadth-first search
 - Depth-first search
- Applications of depth-first search
 - Topological sort

Definition

 Given a DAG (directed acyclic graph), generate a linear ordering of all its vertices such that all edges go from left to right.

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
0	0	1	3	0	0	2	1	2

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
0	0	1	3	0	0	2	1	2

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
0	0	1	3	0	0	2	1	2

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	0	1	3	0	0	2	1	2

155

socks

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	0	1	3	0	0	2	1	2

socks

156

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	0	1	3 → 2	0	0	2	1	2

socks

157

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	0	1	2	0	0	2	1	2

socks

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	0	1	2	0	0	2	1	2

socks

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	0	1	2	0	0	2	1	2

socks

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	1	2	0	0	2	1	2

161

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	1	2	0	0	2	1	2

socks under shorts

watch

Hanyang Univ.

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	1 → 0	2	0	0	2	1	2

163

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	0	2	0	0	2	1	2

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	0	2	0	0	2	1	2

165

watch

Hanyang Univ.

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	0	2 → 1	0	0	2	1	2

socks under shorts

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	0	1	0	0	2	1	2

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	0	1	0	0	2	1	2

socks under shorts

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	0	1	0	0	2	1	2

socks under shorts

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	1	0	0	2	1	2

socks under shorts pants

watch

Hanyang Univ.

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	1 → 0	0	0	2 → 1	1	2

171

socks under shorts pants

shoes

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	0	0	0	1	1	2

socks under shorts pants

watch

shoes

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	0	0	0	1	1	2

socks under shorts pants

shoes

shirt

tie

jacket

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	0	0	0	1	1	2

socks under shorts pants

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	0	0	1	1	2

socks under shorts pants shoes

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	0	0	1	1	2

socks under shorts pants shoes

watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	0	0	1	1	2

socks under shorts pants shoes

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	0	1	1	2

socks under shorts pants shoes watch

Indegree Array

SO	cks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
	-1	-1	-1	-1	-1	0	1	1	2

socks under shorts pants shoes watch

Indegree Array

SO	cks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
	-1	-1	-1	-1	-1	0	1	1	2

socks under shorts pants shoes watch

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	1	1	2

socks under shorts pants shoes watch shirt

Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	1 → 0	1 → 0	2

socks under shorts pants shoes watch shirt

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	0	0	2

socks under shorts pants shoes watch shirt

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	0	0	2

socks under shorts pants shoes watch shirt

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	0	0	2

socks under shorts pants shoes watch shirt

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	0	2

socks under shorts pants shoes watch shirt belt

Indegree Array

sock	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	0	2 → 1

socks under shorts pants shoes watch shirt belt

Indegree Array

SO	cks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
	-1	-1	-1	-1	-1	-1	-1	0	1

socks under shorts pants shoes watch shirt belt

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	0	1

socks under shorts pants shoes watch shirt belt

189

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket	
-1	-1	-1	-1	-1	-1	-1	0	1	

socks under shorts pants shoes watch shirt belt

190

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	1

socks under shorts pants shoes watch shirt belt tie

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	1 → 0

socks under shorts pants shoes watch shirt belt tie

jacket

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	0

193

socks under shorts pants shoes watch shirt belt tie

jacket

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	0

194

socks under shorts pants shoes watch shirt belt tie

jacket

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	0

195

socks under shorts pants shoes watch shirt belt tie

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	-1

socks under shorts pants shoes watch shirt belt itie jacket

Indegree Array

socks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
-1	-1	-1	-1	-1	-1	-1	-1	-1

socks under shorts pants shoes watch shirt belt if jacket

Time Complexity = $O(V^2)$

Indegree Array

SC	ocks	under shorts	pants	shoes	watch	shirt	belt	tie	jacket
	-1	-1	-1	-1	-1	-1	-1	-1	-1

socks under shorts pants shoes watch shirt belt ie jacket

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	3	0	0	2	1	2

watch

Indegree stack

socks	0
under shorts	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	3	0	0	2	1	2

watch

Indegree stack

socks	0
under shorts	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	3	0	0	2	1	2

watch

Indegree stack

under shorts	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	3	0	0	2	1	2

watch

Indegree stack

under shorts	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	3 → 2	0	0	2	1	2

watch

Indegree stack

under shorts	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	2	0	0	2	1	2

watch

Indegree stack

under shorts	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	2	0	0	2	1	2

watch

Indegree stack

watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1	2	0	0	2	1	2

watch

Indegree stack

watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	1 → 0	2	0	0	2	1	2

watch

Indegree stack

pants	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	2	0	0	2	1	2

watch

Indegree stack

pants	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	2 → 1	0	0	2	1	2

watch

Indegree stack

pants	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	1	0	0	2	1	2

watch

Indegree stack

pants	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	1	0	0	2	1	2

socks under shorts

watch

Indegree stack

watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	1	0	0	2	1	2

socks under shorts pants

watch

Indegree stack

watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	1 → 0	0	0	2 → 1	1	2

socks under shorts pants

shirt tie jacket watch

shoes

Indegree stack

shoes	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks under shorts pants

shirt tie jacket watch

shoes

Indegree stack

shoes	0
watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks under shorts pants

watch

Indegree stack

watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks under shorts pants shoes

watch

Indegree stack

watch	0
shirt	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks under shorts pants shoes

Indegree stack

shirt 0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks] [under shorts] [

pants

shoes

watch

Indegree stack

shirt 0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks under shorts pants shoes watch

Indegree stack

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1	1	2

socks

under shorts

pants

shoes

watch

Indegree stack

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	1 → 0	1 → 0	2

socks

under shorts

pants

shoes

watch

Indegree stack

belt	0
tie	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	2

socks

under shorts

pants

shoes

watch

Indegree stack

belt	0
tie	0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	2

socks | une

under shorts

pants

shoes

watch

Indegree stack

tie 0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	2

socks

under shorts

pants

shoes

watch

shirt

belt

Indegree stack

tie 0

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket	
0	0	0	0	0	0	0	0	2 → 1	

socks

under shorts

pants

shoes

watch

shirt

belt

Indegree stack

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	1

socks | under shorts

pants

shoes

watch

shirt

belt

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	1

jacket

socks under shorts pants shoes watch shirt belt

227

0

Indegree stack

Indegree stack

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	1

socks under shorts pants shoes watch shirt belt tie

Indegree stack

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	$1 \rightarrow 0$

socks under shorts pants shoes watch shirt belt tie

Indegree stack

jacket 0

jacket

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	0

230

socks under shorts pants shoes watch shirt belt tie

Indegree stack

jacket 0

jacket

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	0

socks under shorts pants shoes watch shirt belt tie

Indegree stack

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	0

socks

under shorts

pants

shoes

watch

shirt

belt

tie

jacket

Time Complexity = O(V+E)

Indegree Array

shirt	watch	pants	shoes	under shorts	socks	belt	tie	jacket
0	0	0	0	0	0	0	0	0

socks under shorts pants shoes watch shirt belt tie jacket

Correctness

- If there is an edge from u to v, then $v \cdot f < u \cdot f$.
- A directed graph G is acyclic if and only if a depth-first search of G yields no back edges.

Main ideas

- Successively place a node from the left with 0 in-degree.
- Successively place a node from the *right* with 0 *out-degree*.
- Run DFS on G and place the nodes from the *right* in the *increasing order of the finishing time*.
- $\Theta(V+E)$ time

Self-study

Exercise 22.4-2

Computing the number of simple paths from s to t in linear time.

Exercise 22.4-3

Cycle detection in an undirected graph.

Exercise 22.4-5

Another topological sort algorithm.

237

Programming Assignment

Depth-first search and its applications

- Exercise 22.3-10 (22.3-9, 2nd ed.) (#1)
 - Depth-first search with edge classification
- Exercise 22.3-12 (22.3-11, 2nd ed.) (#2)
 - Connected component identification
- Topological sort (#3)
 - The program should detect whether the input is a DAG or not.