or their salts, where:

 $A = R(COX)_t$ wherein t is an integer 0 or 1;

X = O, NH, NR_{1C} wherein R_{1C} is a linear or branched alkyl having from 1 to 10 C atoms;

R is chosen from the following groups:

Group IA), where t = 1,

antil a

where:

 R_{II5} is H, a linear C_1 - C_3 alkyl, or a branched C_1 - C_3 alkyl;

R_{II6} has the same structure as R_{II5},

 R_{II1} , R_{II2} and R_{II3} are each hydrogen, linear C_1 - C_6 alkyl, branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 , C_1 , or C_2 0 alkoxy, C_1 1, C_2 1, C_3 2, C_4 3, C_4 4, C_5 5, C_6 5, C_6 6, C_6 7, C_6 8, C_7 8, C_8 9, C_8

 R_{II4} has the same structure as R_{II1} or is bromine;

Group II A) chosen from the following:

where, when t = 1, R is

$$R_{1a} - \int_{R_{3a}}^{R_{2a}}$$

where R_{2a} and R_{3a} are H, a linear C_1 - C_{12} alkyl, a branched C_1 - C_{12} alkyl, or allyl, with the proviso that when one of the two is allyl the other is H;

 R_{1a} is chosen from the subgroup II Aa) consisting of

$$(xxy)$$

$$(xxy)$$

$$(xyzy)$$

, and

wherein:

in the residue of formula (IV):

 R_{III1} is H or SR_{III3} where R_{III3} contains from 1 to 4 linear or branched C atoms; and R_{III2} is H or hydroxy;

in the residue of formula (XXI):

 R_{xxio} is H, a linear alkyl having 1-6 carbon atoms, a branched alkyl having from 1 to 6 carbon atoms, a C_1 - C_6 alkoxy-carbonyl bound to a C_1 - C_6 carboxyalkyl, or a C_1 - C_6 alkanoyl, optionally substituted with halogen, benzyl or halobenzyl, benzoyl or halobenzoyl;

 R_{xxl} is H, halogen, hydroxy, CN, a C_1 - C_6 alkyl optionally containing OH groups, a C_1 - C_6 alkoxy, acetyl, benzyloxy, SR_{xxl2} where R_{xxl2} is a C_1 - C_6 alkyl; a perfluoroalkyl having a 1-3 C atoms, a C_1 - C_6 carboxyalkyl optionally containing OH groups, NO_2 , sulphamoyl, dialkyl sulphamoyl with the alkyl having from 1 to 6 C atoms, or difluoroalkylsulphonyl with the alkyl having from 1 to 3 C atoms;

 R_{xxil} is halogen, CN, a C_1 - C_6 alkyl optionally containing one or more OH groups, a C_1 - C_6 alkoxy, acetyl, acetamido, or benzyloxy,

SR_{III3} is as above defined, a perfluoroalkyl having from 1 to 3 C atoms, hydroxy, a carboxyalkyl having from 1 to 6 C atoms, hydroxy, a carboxyalkyl having from 1 to 6 C atoms, NO₂, amino, mono- or dialkylamino having from 1 to 6 C atoms, sulphamoyl, a 50340-1 5 (09/147,770)

Elipt

dialkyl sulphamoyl having from 1 to 6 C atoms, difluoroalkylsulphamoyl; or R_{xxi} together with R_{xxii} is an alkylene dioxy having from 1 to 6 C atoms;

In the residue of formula (XXXV):

Ar is phenyl, hydroxyphenyl optionally mono- or polysubstituted with halogen, an alkanoyl or alkoxy having from 1 to 6 C atoms, a trialalkyl having from 1-6 C atoms, cyclopentyl o-hexyl o-heptyl, thienyl, furyl, furyl containing OH, or pyridyl;

Subgroup II Ab) consisting of:

E grade

(IVXXX)

(XXXXII)

wherein:

when IIIa) contains -CH(CH₃)-COOH it is known as pranoprofen: α-methyl-5H-(1) benzopyran (2,3-b) pyridine-7-acetic acid;

when residue (XXX) contains -CH(CH₃) -COOH it is known as bermoprofen: dibenz (b,f) oxepin-2-acetic acid;

residue (XXXI) is known as CS-670: 2-(4-2(2-oxo-1-cyclohexylidenemethyl) phenyl) propionic acid, when the radical is -CH(CH₃) -COOH;

when residue (XXXII) contains group -CH₂COOH it is known as pemedolac;

when residue (XXXIII) is saturated with -CH₂COOH it is known as pyrazolac: 4-(4-chlorophenyl)-1-(4-fluorophenyl) 3-pyrazolyl acid derivatives;

when residue (XXXVI) is saturated with -CH(CH₃)-COO- it is known as zaltoprofen;

when residue (XXXVII) is CH₂-COOH it derives from the known mofezolac: 3,4-di p-methoxyphenyl) isoxazol-5-acetic acid;

Group IIIA), where t = 1,

wherein:

at least one of R_{lvd} and R_{lvd1} is H and the other a linear or branched C_1 - C_6 alkyl, or difluoroalkyl with the alkyl having from 1-6 C atoms, or R_{lvd} and R_{lvd} jointly form a methylene group;

 R_{IV} has the following structure:

<u>, or</u>

where:

in the residue of formula (II):

R_{IV-II} is selected from the group consisting of an alkyl having from 1 to 6 C atoms, a cycloalkyl having from 3 to 7 C atoms, an alkoxymethyl having from 1 to 7 C atoms, a trifluoroalkyl having from 1 to 3 C atoms, vinyl, ethynyl, halogen, an alkoxy having from 1 to 6 C atoms, a difluroalkoxy with the alkyl having from 1 to 7 C atoms, an alkoxymethyloxy having from 1 to 7 C atoms, an alkylmethylthio with the alkyl having from 1 to 7 C atoms, cyano, difluoromethylthio, a substituted phenyl-, and phenylalkyl with the alkyl having from 1 to 8 C atoms;

 $R_{\text{IV-III}}$ is a C_2 - C_5 alkyl, a C_2 or C_3 alkyloxy, allyloxy, phenoxy, phenylthio, a cycloalkyl having from 5 to 7 C atoms, optionally substituted at position 1 by a C_1 - C_2 alkyl; Group IV A)

Egy

where A = RCOO, t = 1,

Group V A) chosen from the following:

Subgroup V Aa) residues chosen from the following, where t = 1

(V Aa1)

(V Aa2)

(V Aa3)

(V Aa4)

subgroup V Ab), residue, where t = 1:

(V Ab1)

subgroup V Ac), residue, where t=0 and R is as follows:

(V Acl)

(V Ac2)

(V Ac3)

(V Ac4)

Ept

subgroup V Ad) residues, where t = 1 and R is as follows:

(V Adl)

(V Ad2)

(EDA V)

(V Ad4)

subgroup Ae) residues, where t = 1 and R is as follows:

Eju

wherein:

in compounds (V Ac1) Rvac1 attached to the oxygen atom in position 2 of the benzene ring of the N - (4-nitro-phenyl)methansulphonamide can be phenyl or cyclohexane, when Rvac1 is phenyl the residue is that of nimesulfide;

in compounds (V Ac2) the residue of 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-bezopyran-4-one has been shown;

in compounds (V Ac3) the atom X_4 that links the radical 2,4-difluorothiophenyl to position 6 of the indanone ring of the residue 5-methanesulfonamido-1-indanone can be sulfur or oxygen;

 X_1 in formula A- X_1 - NO_2 is a bivalent connecting bridge chosen from the following:

- YO

where Y is a linear or branched C₁-C₂₀ alkylene, or an optionally substituted cycloalkylene having from 5 to 7 carbon atoms;

where n₃ is an integer from 0 to 3;

Efel

Eff

where nf' is an integer from 1 to 6;

where R_{1f} = H or CH₃ and nf is an integer from 1 to 6.

62

11. (Amended) The method of claim 1, wherein in formula (Iaa) R_{II1} , R_{II2} and R_{II4} are

H, and

R_{II3} is chlorine and R_{II3} is in the ortho position to NH;

R_{II5} and R_{II6} are H,

X is equal to O, and

 X_1 is $(CH_2 - CH_2 - O)_2$.

12. (Amended) The method of Claim 11, wherein in formula $A = R(COX)_t R$ is chosen from group IA) X = O.

43

16. (Amended) The method of claim 1, wherein

X of $A=R(COX)_t$ is O and in group IIA):

in the residue R_{la} of formula (IV) R_{III1} and R_{III2} are H, R_{3a} is H, and R_{2a} is methyl; in the residue R_{1a} of formula (XXI) R_{xxio} is H, the connecting bridge X_1 is at position 2, R_{xxi} is H, R_{xxi1} is chlorine and is in the para position to nitrogen; R_{3a} is H, R_{2a}

in the residue R_{1a} of formula (XXXV) Ar is phenyl, R_{3a} is H, R_{2a} is methyl;

50340-1 (09/147,770)

is methyl;

£3

 R_{1a} is the residue of formula (II) $R_{3a} = H$, $R_{2a} = CH_3$;

 R_{1a} is the residue of formula (VI), R_{2a} is CH_3 or H, R_{3a} = CH_3 ;

 R_{1a} is the residue of formula (VIII), $R_{3a} = R_{2a} = H_{;}$

 R_{1a} is the residue of formula (VII), $R_{3a} = H$, $R_{2a} = CH_3$;

 R_{1a} is the residue of formula (III), $R_{3a} = R_{2a} = H$;

 R_{1a} is the residue of formula (X), $R_{3a} = R_{2a} = H$;

 R_{1a} is the residue of formula (IX), $R_{3a} = H$, $R_{2a} = CH_3$.

17. (Amended) The method of claim 1, wherein

X in $A=R(COX)_t$ is NH, O;

 X_1 is $(CH_2)_4$ or $(CH_2CH_2O)_2$;

and in group IIIA):

R_{IV} is the residue of formula (II) wherein R_{IV-II} is CH₃O, R_{IVd} is H and R_{IVd1} is CH₃;

 R_{IV} is the residue of formula (II) wherein R_{IVd} is H, R_{IVd1} is CH_3 , X = NH or O;

 R_{IV} is the residue of formula (III) wherein R_{IV-III} is

R_{Ivd} = H, R_{IVd1} is CH₃.