Perfect type of *n*-tensors

Toshio Sumi^{*}, Toshio Sakata[†], and Mitsuhiro Miyazaki[‡] August 9, 2010

Abstract

In various application fields, tensor type data are used recently and then a typical rank is important. Although there may be more than one typical ranks over the real number field, a generic rank over the complex number field is the minimum number of them. The set of n-tensors of type $p_1 \times p_2 \times \cdots \times p_n$ is called perfect, if it has a typical rank $\max(p_1, \ldots, p_n)$. In this paper, we determine perfect types of n-tensor.

1 Introduction

An $p_1 \times p_2 \times \cdots \times p_n$ tensor over a field \mathbb{F} is an element of the tensor product of n vector spaces $\mathbb{F}^{p_1}, \mathbb{F}^{p_2}, \dots, \mathbb{F}^{p_n}$. Thus every tensor can be expressed as a sum of tensors of the form $\mathbf{a}_1 \otimes \mathbf{a}_2 \otimes \cdots \otimes \mathbf{a}_n$ for $\mathbf{a}_i \in \mathbb{F}^{p_i}, i = 1, 2, \dots, n$. The rank rank \mathbb{F}^T of a tensor T means that the minimum number r of rank one tensors which express T as a sum. The rank depends on the field.

The set $T(p_1, \ldots, p_n; \mathbb{F})$ of all $p_1 \times \cdots \times p_n$ tensors is $\mathbb{F}^{p_1} \times \cdots \times \mathbb{F}^{p_n}$ as a set. We consider the Euclidean topology on $\mathbb{F}^{p_1} \times \cdots \times \mathbb{F}^{p_n} = \mathbb{F}^{p_1 \cdots p_n}$ as a topology on the set $T(p_1, \ldots, p_n; \mathbb{F})$.

Now let \mathbb{F} be the real number field \mathbb{R} or the complex number field \mathbb{C} . A typical rank, denoted by typical_rank $\mathbb{F}(p_1,\ldots,p_n)$, of $T(p_1,\ldots,p_n;\mathbb{F})$ is defined as the set of integers r such that the set of rank r tensors has a positive Lebesgue measure in $T(p_1,\ldots,p_n;\mathbb{F})$. A typical rank of tensors is one of important tools for experimental simulation. We know a typical rank of 3-tensors of special types. ten Berge obtained that the typical rank of $m \times n \times 2$ tensors is $\min(n,2m)$ if $2 \le m < n$ and $\{\min(n,2m),\min(n+1,2m)\}$ if $2 \le m = n$ [7], and the minimum number of the typical rank of $m \times n \times p$ tensors with $3 \le m \le n$ is just $\min(p,mn)$ if $p \ge (m-1)n$ [6] over the real number field. In [4] we considered a generic form of $m \times n \times 3$

^{*}Kyushu University, Faculty of Design, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, JAPAN, e-mail: sumi@design.kyushu-u.ac.jp

[†]Kyushu University, Faculty of Design, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, JAPAN, e-mail: sakata@design.kyushu-u.ac.jp

[‡]Kyoto University of Education, Department of Mathematics, 1 Fujinomoricho, Fukakusa, Fushimi-ku, Kyoto, 612-8522, JAPAN, e-mail: g53448@kyokyo-u.ac.jp

tensors. Recently, Comon et al. [2] studied the minimum number of the typical rank of 3-tensors by using the Jacobian of the map

$$\{\boldsymbol{a}(r), \boldsymbol{b}(r), \boldsymbol{c}(r)\} \to T = \sum_{r=1}^{R} \boldsymbol{a}(r) \odot \boldsymbol{b}(r) \odot \boldsymbol{c}(r).$$

In contrast to that there may be more than one typical ranks over the real number field, we remark that a typical rank of n-tensors over the complex number field consists of just one number and thus it is called a generic rank. In this paper, we consider the smallest typical rank of n-tensors over the real number field. It is equal to the unique typical rank of n-tensors over the complex number field (cf. [5]).

A format (p_1, \ldots, p_n) is called "perfect" if $\max(p_1, \ldots, p_n)$ is a typical rank of $T(p_1, \ldots, p_n; \mathbb{R})$. Suppose that $2 \leq p_1 \leq p_2 \leq p_3$. In [6], $p_1 \times p_2 \times p_3$ tensor is called "tall" if $p_1p_2 - p_2 < p_3 < p_1p_2$ and tall $p_1 \times p_2 \times p_3$ tensors have a unique typical rank p_3 . Thus (p_1, p_2, p_3) is perfect if $p_1p_2 - p_2 < p_3 \leq p_1p_2$. More generally, if $p_1p_2 - p_1 - p_2 + 2 \leq p_3 \leq p_1p_2$ then (p_1, p_2, p_3) is perfect (see [1, exercise 20.6, page 535]). We extend this result for n-tensors. Our main theorem is as follows.

Theorem 1.1 Suppose that $n \geq 2$ and $2 \leq p_1 \leq \cdots \leq p_n$. Let $q = p_1 \cdots p_n - (p_1 + \cdots + p_n) + n$. If $q \leq p_{n+1} \leq p_1 \cdots p_n$ then p_{n+1} is the smallest typical rank of $p_1 \times \cdots \times p_{n+1}$ tensors and (p_1, \ldots, p_{n+1}) is perfect. Conversely if (p_1, \ldots, p_{n+1}) is perfect then $q \leq p_{n+1} \leq p_1 \cdots p_n$.

We show the theorem in the next section.

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1. First we give a range of typical ranks.

Lemma 2.1 Let $2 \le p_1 \le p_2 \le \cdots \le p_{n+1} \le p_1 \cdots p_n$. A typical rank of $p_1 \times \cdots \times p_{n+1}$ tensors is greater than or equal to p_{n+1} and less than or equal to $p_1p_2\cdots p_n$.

Proof Let $A = (A_1; \dots; A_{p_{n+1}})$ be an $p_1 \times \dots \times p_{n+1}$ tensor, where A_j is a $p_1 \times \dots \times p_n$ tensor for $j = 1, \dots, p_{n+1}$. Let consider the vector space V spanned by $A_1, \dots, A_{p_{n+1}}$. We denote by $f(A_j)$ a column vector given by flattening of A_j . Note that

$$rank(A) \ge rank(f(A_1), \dots, f(A_{p_{n+1}})) = \dim V.$$

If dim $V < p_{n+1}$ then all p_{n+1} -minors of the matrix $(f(A_1) \cdots, f(A_{p_{n+1}}))$ are zero. Thus $\{(X_1; \cdots; X_{p_{n+1}}) \mid \dim\langle X_1, \ldots, X_{p_{n+1}}\rangle = p_{n+1}\}$ is a Zariski open set in $T(p_1, \ldots, p_{n+1}) \cong \mathbb{F}^{p_1 \cdots p_{n+1}}$. Thus a typical rank is greater than or equal to p_{n+1} .

In general $A = (a_{i_1 i_2 \dots i_n i_{n+1}})$ is described as a sum of $p_1 \cdots p_n$ rank one tensors

$$e_{i_1}^{(1)} \odot \cdots \odot e_{i_n}^{(n)} \odot (a_{i_1...i_n1}, \ldots, a_{i_1...i_np_{n+1}}),$$

where $e_i^{(j)}$ is the *i*-th row vector of the $p_j \times p_j$ identity matrix. Thus rank $(A) \leq p_1 \cdots p_n$.

Let $\varphi_1 \colon \mathbb{R}^{p_1 + \dots + p_n} \to T(p_1, \dots, p_n)$ be a map defined by

$$\varphi_1(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=\boldsymbol{a}_1\odot\cdots\odot\boldsymbol{a}_n$$

and $\varphi \colon \mathbb{R}^{(p_1 + \dots + p_n)r} \to T(p_1, \dots, p_n)$ be a map defined by

$$\varphi(\boldsymbol{a}_1^{(1)},\ldots,\boldsymbol{a}_n^{(1)},\ldots,\boldsymbol{a}_1^{(r)},\ldots,\boldsymbol{a}_n^{(r)}) = \sum_{h=1}^r \varphi_1(\boldsymbol{a}_1^{(h)},\ldots,\boldsymbol{a}_n^{(h)}).$$

Put

$$\phi_{1}(\boldsymbol{a}_{1},\ldots,\boldsymbol{a}_{n}) := \begin{pmatrix} E_{p_{1}} \otimes \boldsymbol{a}_{2} \otimes \cdots \otimes \boldsymbol{a}_{n} \\ \boldsymbol{a}_{1} \otimes E_{p_{2}} \otimes \cdots \otimes \boldsymbol{a}_{n} \\ \vdots \\ \boldsymbol{a}_{1} \otimes \cdots \otimes \boldsymbol{a}_{p_{n-1}} \otimes E_{p_{n}} \end{pmatrix}$$
(2.2)

for $a_1 \in \mathbb{R}^{p_1}, \ldots, a_n \in \mathbb{R}^{p_n}$. Then the Jacobian $J(\varphi)$ of φ at

$$(m{a}_1^{(1)},\ldots,m{a}_n^{(1)},\ldots,m{a}_1^{(r)},\ldots,m{a}_n^{(r)})$$

is given by

$$\begin{pmatrix} \phi_1(\boldsymbol{a}_1^{(1)},\ldots,\boldsymbol{a}_n^{(1)}) \\ \vdots \\ \phi_1(\boldsymbol{a}_1^{(r)},\ldots,\boldsymbol{a}_n^{(r)}) \end{pmatrix}$$
.

If r is a typical rank of $T(p_1, p_2, p_3)$ then

$$\frac{p_1 p_2 p_3}{p_1 + p_2 + p_3 - 2} \le r \le \min(p_1 p_2, p_1 p_3, p_2 p_3)$$

[3, 1]. This result also holds for *n*-tensors.

Proposition 2.3 A typical rank of $p_1 \times \cdots \times p_n$ tensors is greater than or equal to

$$\frac{p_1p_2\cdots p_n}{p_1+p_2+\cdots+p_n-n+1}$$

and less than or equal to

$$\min(p_2p_3\cdots p_n, p_1p_3\cdots p_n, \dots, p_1p_2\cdots p_{n-1}).$$

Proof Let consider the Segre embedding which is a map of projective spaces

$$RP^{p_1-1} \times \cdots \times RP^{p_n-1} \to RP^{p_1\cdots p_n-1}$$

induced by the tensor product map φ_1 . The image $\operatorname{im}(\varphi_1)$ has dimension $p_1 + p_2 + \cdots + p_n - n$. Since $\{a_1 \odot \ldots \odot a_n \mid a_j \in \mathbb{R}^{p_j}\}$ is the affine cone of $\operatorname{im}(\varphi_1)$, it's dimension is $p_1 + p_2 + \cdots + p_n - n + 1$. If r is a typical rank of $T(p_1, \ldots, p_n)$, then $\dim T(p_1, \ldots, p_n) \leq r \dim(\operatorname{im}(\varphi_1))$ and thus

$$r \ge \frac{p_1 \cdots p_n}{p_1 + p_2 + \dots + p_n - n + 1}.$$

From now on, let $2 \le p_1 \le p_2 \le \cdots \le p_n$ and put $q = p_1 p_2 \cdots p_n - (p_1 + p_2 + \cdots + p_n) + n$. Suppose that $q \le p_{n+1} \le p_1 p_2 \cdots p_n$. By Lemma 2.1 it suffices to show that the Jacobian $J(\varphi)$ has full rank at some point.

Let S be a subset of

$$\{(k_1,\ldots,k_n) \mid 1 \le k_j \le p_j, \ j=1,\ldots n\}$$

with cardinality p_{n+1} which contains

$$S_0 = \{(k_1, \dots, k_n) \mid 1 \le k_j \le p_j, \ \#\{j \mid k_j = p_j\} \ne n - 1\}$$

and let $f: S \to \{1, 2, \dots, p_{n+1}\}$ be a bijection.

We define maps u_1, u_2, \ldots, u_n by $u_j(x_1, \ldots, x_n) = 0$ if $x_j = p_j, u_j(x_1, \ldots, x_n) = 1$ if $x_s = p_s$ for some $s \neq j$ and otherwise $u_j(x_1, \ldots, x_n) = x_j + 1$, for $j = 1, \ldots, n$.

We denote by e_j the jth row vector of the identity matrix. We put $a_k^{(h)} \in \mathbb{R}^{p_h}$, $h = 1, \ldots, n+1$, as

$$a_{f(k_1,...,k_n)}^{(h)} = e_{k_h} + u_h(k_1,...,k_n)e_{p_h}, \quad 1 \le h \le n$$
 $a_{f(k_1,...,k_n)}^{(n+1)} = e_{f(k_1,...,k_n)}$

for all $(k_1, \ldots, k_n) \in S$.

We denote the row vector \boldsymbol{x} as $(x(k_1,\ldots,k_{n+1}))$ if

$$x = \sum_{k_1,\dots,k_{n+1}} x(k_1,\dots,k_{n+1}) e_{k_1} \otimes \dots \otimes e_{k_{n+1}}.$$

Let $g: \mathbb{R}^{p_1 \cdots p_{n+1}} \to \mathbb{R}[x(1,\ldots,1),\ldots,x(p_1,\ldots,p_{n+1})]$ be a map defined by

$$g(\sum_{k_1,\ldots,k_{n+1}} h_{k_1,\ldots,k_{n+1}} e_{k_1} \otimes \cdots \otimes e_{k_{n+1}}) = \sum_{k_1,\ldots,k_{n+1}} h_{k_1,\ldots,k_{n+1}} x(k_1,\ldots,k_{n+1}).$$

Note that g is linear, that is, it holds that

$$g(s_1 \mathbf{y}_1 + s_2 \mathbf{y}_2) = s_1 g(\mathbf{y}_1) + s_2 g(\mathbf{y}_2)$$

for $s_1, s_2 \in \mathbb{R}$ and $\mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^{p_1 \cdots p_{n+1}}$. We abbreviate $\mathbf{e}_{i_1} \otimes \cdots \otimes \mathbf{e}_{i_n}$ to $\mathbf{e}(i_1, \ldots, i_n)$, $u_j(k_1, \ldots, k_n)$ to u_j , and $u_j(i'_1, \ldots, i'_n)$ to v_j . Then $x(i_1, \ldots, i_n) = g(\mathbf{e}(i_1, \ldots, i_n))$. Put

$$m{z} = (m{a}_1^{(1)}, \dots, m{a}_1^{(n+1)}, \dots, m{a}_{p_{n+1}}^{(1)}, \dots, m{a}_{p_{n+1}}^{(n+1)}).$$

We prepare three lemmas to show that the equation $J(\varphi(z))x^T = 0$ has no nonzero solution.

Lemma 2.4 Let $n \geq 2$. Suppose that

$$g((\boldsymbol{e}_{k_1} + \boldsymbol{e}_{p_1}) \otimes \cdots \otimes (\boldsymbol{e}_{k_n} + \boldsymbol{e}_{p_n})) = 0$$

for any $(k_1, \ldots, k_n) \in S_0 \setminus \{(p_1, \ldots, p_n)\}$. Then it holds that

$$x(k_1, k_2, \dots, k_n) = (-1)^{n-1} (x(k_1, p_2, p_3, \dots, p_n) + x(p_1, k_2, p_3, \dots, p_n) + \dots + x(p_1, p_2, \dots, p_{n-1}, k_n) + (n-1)x(p_1, p_2, \dots, p_n)).$$

Proof We show the assertion by induction on n. If n=2 then the assertion

$$g(\boldsymbol{e}_{k_1} \otimes \boldsymbol{e}_{k_2}) = -g(\boldsymbol{e}_{k_1} \otimes \boldsymbol{e}_{p_2} + \boldsymbol{e}_{p_1} \otimes \boldsymbol{e}_{k_2}) - g(\boldsymbol{e}_{p_1} \otimes \boldsymbol{e}_{p_2})$$

follows from

$$(m{e}_{k_1} + m{e}_{p_1}) \otimes (m{e}_{k_2} + m{e}_{p_2}) = m{e}_{k_1} \otimes m{e}_{k_2} + (m{e}_{k_1} \otimes m{e}_{p_2} m{e}_{p_1} \otimes m{e}_{k_2}) + m{e}_{p_1} \otimes m{e}_{p_2}.$$

Put

$$W_n = e(k_1, p_2, \dots, e_{p_n}) + e(p_1, k_2, p_3, \dots, e_{p_n}) + \dots + e(p_1, \dots, e_{p_{n-1}}, e_{k_n})$$

for short. We have

$$(W_n + n\mathbf{e}(p_1, \dots, p_n)) \otimes (\mathbf{e}_{k_{n+1}} + \mathbf{e}_{p_{n+1}})$$

$$= \sum_{h=1}^n (\mathbf{e}(p_1, \dots, p_{h-1}, k_h, p_{h+1}, \dots, p_n, k_{n+1})$$

$$+ \mathbf{e}(p_1, \dots, p_n) \otimes (\mathbf{e}_{k_{n+1}} + \mathbf{e}_{p_{n+1}})) + W_n \otimes \mathbf{e}_{p_{n+1}}$$

$$= 0.$$

As the induction assumption, we assume that

$$g((\boldsymbol{e}_{k_1} + \boldsymbol{e}_{p_1}) \otimes \cdots \otimes (\boldsymbol{e}_{k_n} + \boldsymbol{e}_{p_n})) = 0$$

implies

$$g(\mathbf{e}(k_1,\ldots,k_n)) = (-1)^{n-1}g(W_n + (n-1)\mathbf{e}(p_1,\ldots,p_n))$$

for any (k_1, \ldots, k_n) and any (p_1, \ldots, p_n) . Then we have

$$0 = g((\boldsymbol{e}_{k_{1}} + \boldsymbol{e}_{p_{1}}) \otimes \cdots \otimes (\boldsymbol{e}_{k_{n}} + \boldsymbol{e}_{p_{n}}) \otimes (\boldsymbol{e}_{k_{n+1}} + \boldsymbol{e}_{p_{n+1}}))$$

$$= g((\boldsymbol{e}(k_{1}, \dots, k_{n}) + (-1)^{n}(W_{n} + (n-1)\boldsymbol{e}(p_{1}, \dots, p_{n}))) \otimes (\boldsymbol{e}_{k_{n+1}} + \boldsymbol{e}_{p_{n+1}}))$$

$$= g((\boldsymbol{e}(k_{1}, \dots, k_{n}) - (-1)^{n}\boldsymbol{e}(p_{1}, \dots, p_{n})) \otimes (\boldsymbol{e}_{k_{n+1}} + \boldsymbol{e}_{p_{n+1}}))$$

$$= g(\boldsymbol{e}(k_{1}, \dots, k_{n+1}) + (-1)^{n-1}(W_{n} + (n-1)\boldsymbol{e}(p_{1}, \dots, p_{n})) \otimes \boldsymbol{e}_{p_{n+1}}$$

$$- (-1)^{n}\boldsymbol{e}(p_{1}, \dots, p_{n}) \otimes (\boldsymbol{e}_{k_{n+1}} + \boldsymbol{e}_{p_{n+1}}))$$

$$= g(\boldsymbol{e}(k_{1}, \dots, k_{n+1}) - (-1)^{n}[W_{n+1} + n\boldsymbol{e}(p_{1}, \dots, p_{n+1})])$$

Therefore the assertion holds for n+1.

Lemma 2.5 We suppose that $v_1 = 1$ if n = 1. If

$$g((\boldsymbol{e}_{i'_1} + v_1 \boldsymbol{e}_{p_1}) \cdots (e_{i'_n} + v_n \boldsymbol{e}_{p_n})) = 0$$

for any $1 \leq i'_j \leq p_j$, $j = 1, \ldots, n$ such that $(i'_1, \ldots, i'_n) \neq (p_1, \ldots, p_n)$ then

$$g((e_{k_1} + u_1 \mathbf{e}_{p_1}) \cdots (e_{k_n} + v_n \mathbf{e}_{p_n})) = (u_1 - 1) \cdots (u_k - 1) x(p_1, \dots, p_n).$$

Proof We show the assertion by induction on n. If n = 1 then

$$g(e_{k_1} + u_1 \mathbf{e}_{p_1}) = g((e_{k_1} + u_1 \mathbf{e}_{p_1}) - (e_{k_1} + v_1 \mathbf{e}_{p_1}))$$

= $(u_1 - 1)x(p_1)$.

As the induction assumption, we assume that the assertion holds for n and any p_1, \ldots, p_n . Putting $\beta = u_1(i_1, i_2, \ldots, k_{n+1})$, we have

$$g((e_{k_1} + u_1 e_{p_1}) \otimes \cdots \otimes (e_{k_{n+1}} + v_{n+1} e_{p_{n+1}}))$$

$$= g((e_{k_1} + u_1 e_{p_1}) \otimes \cdots \otimes (e_{k_n} + v_n e_{p_n}) \otimes (e_{k_{n+1}} + \beta e_{p_{n+1}}))$$

$$+ (u_{n+1} - \beta)g((e_{k_1} + u_1 e_{p_1}) \otimes \cdots \otimes (e_{k_n} + u_n e_{p_n}) \otimes e_{p_{n+1}}))$$

$$= (u_1 - 1) \cdots (u_n - 1)g(e(p_1, \dots, p_n) \otimes (e_{k_{n+1}} + \beta e_{p_{n+1}})))$$

$$+ (u_1 - 1) \cdots (u_n - 1)(u_{n+1} - \beta)g(e(p_1, \dots, p_n) \otimes e_{p_{n+1}})$$

$$= (u_1 - 1) \cdots (u_n - 1)g(e(p_1, \dots, p_n) \otimes e_{k_{n+1}})$$

$$+ (u_1 - 1) \cdots (u_n - 1)u_{n+1}g(e(p_1, p_2, \dots, p_{n+1}))$$

$$= -1(u_1 - 1) \cdots (u_n - 1)u_{n+1}x(p_1, p_2, \dots, p_{n+1})$$

$$+ (u_1 - 1) \cdots (u_{n+1} - 1)x(p_1, p_2, \dots, p_{n+1})$$

$$= (u_1 - 1) \cdots (u_{n+1} - 1)x(p_1, p_2, \dots, p_{n+1}).$$

We complete the proof.

Lemma 2.6 Suppose that n = 2, $2 \le p_1 \le p_2 \le p_3$, $p_1p_2 - p_1 - p_2 + 3 \le p_3 \le p_1p_2$. Then the equation $J(\varphi(z))x^T = 0$ implies x = 0.

Proof The equation $J(\varphi(z))x^T = 0$ indicate

$$x(i'_{1}, k_{2}, f(k_{1}, k_{2})) + u_{2}x(i'_{1}, p_{2}, f(k_{1}, k_{2})) = 0, \quad (2.7)$$

$$x(k_{2}, i'_{2}, f(k_{1}, k_{2})) + u_{1}x(p_{1}, i'_{2}, f(k_{1}, k_{2})) = 0, \quad (2.8)$$

$$x(i_{1}, i_{2}, f(k_{1}, k_{2})) + v_{1}x(p_{1}, i_{2}, f(k_{1}, k_{2})) + v_{2}x(i_{1}, p_{2}, f(k_{1}, k_{2})) + v_{1}x(p_{1}, i_{2}, f(k_{1}, k_{2})) = 0, \quad (2.9)$$

for $1 \le i'_1 \le p_1$, $1 \le i'_2 \le p_2$, and $(i_1, i_2), (k_1, k_2) \in S$. The equation (2.9) for $(i'_1, i'_2) = (p_1, p_2)$ is

$$x(p_1, p_2, f(k_1, k_2)) = 0,$$
 (2.10)

Thus by (2.10), the equations (2.7) for $i'_1 = p_1$ and (2.8) for $i'_2 = p_2$ and (2.9) are

$$x(p_1, k_2, f(k_1, k_2)) = 0$$
 (2.11)

$$x(k_1, p_2, f(k_1, k_2)) = 0 \quad (2.12)$$

$$x(i_1, i_2, f(k_1, k_2)) + v_1 x(p_1, i_2, f(k_1, k_2)) + v_2 x(i_1, p_2, f(k_1, k_2)) = 0$$
 (2.13)

for
$$1 \le i_1 < p_1$$
, $1 \le i_2 < p_2$ and $(i_1, i_2), (k_1, k_2) \in S$. If $(k_1, k_2) = (p_1, p_2)$ then

$$x(i_1, i_2, f(p_1, p_2)) = 0$$

for $1 \le i_1 < p_1$ and $1 \le i_2 < p_2$ by (2.11), (2.12) and (2.13). Put together with (2.10), (2.11) and (2.12), we get

$$x(i_1', i_2', f(p_1, p_2)) = 0$$

for $1 \le i_1' \le p_1$ and $1 \le i_2' \le p_2$.

Now we show that $x(i'_1, i'_2, f(k_1, k_2)) = 0$ for $1 \le i'_1 \le p_1$, $1 \le i'_2 \le p_2$, $(k_1, k_2) \in S$ and $(k_1, k_2) \ne (p_1, p_2)$. Suppose that $(k_1, k_2) \ne (p_1, p_2)$. It follows from $(k_1, k_2) \in S$ that $k_1 < p_1$ and $k_2 < p_2$. By combining (2.7) for $i'_1 = i_1$, (2.11) and (2.13) for $i_2 = k_2$, we have

$$(u_2(i_1, k_2) - u_2(k_1, k_2))x(i_1, p_2, f(k_1, k_2)) = 0$$

for $1 \leq i_1 < p_1$. Thus

$$x(i_1, p_2, f(k_1, k_2)) = 0$$

for $1 \le i_1 < p_1$, $i_1 \ne k_1$. Therefore $x(i'_1, p_2, f(k_1, k_2)) = 0$ for $1 \le i'_1 \le p_1$ by (2.10) and (2.12). Similarly by combining (2.8) for $i'_2 = i_2$, (2.12) and (2.13) for $i_1 = k_1$, we have

$$(u_1(k_1, i_2) - u_1(k_1, k_2))x(p_1, i_2, f(k_1, k_2)) = 0$$

which induces

$$x(p_1, i_2, f(k_1, k_2)) = 0$$

for $1 \leq i_2 < p_2$, $j \neq k_2$, and thus $x(p_1, i'_2, f(k_1, k_2)) = 0$ for $1 \leq i'_2 \leq p_2$ and $(k_1, k_2) \in S$ by (2.10) and (2.11). Thus by (2.13) again, we get $x(i_1, i_2, f(k_1, k_2)) = 0$ for $1 \leq i_1 < p_1$, $1 \leq i_2 < p_2$. Therefore $x(i'_1, i'_2, f(k_1, k_2)) = 0$ for $1 \leq i'_1 \leq p_1$, $1 \leq i'_2 \leq p_2$. Consequently we get x = 0.

Theorem 2.14 The equation $J(\varphi(z))x^T = 0$ implies x = 0 under the assumption in Theorem 1.1.

Proof We consider the linear equation $J(\varphi(z))x^T = 0$. This equation is equivalent to

$$\psi_1(\boldsymbol{a}_k^{(1)}, \dots, \boldsymbol{a}_k^{(n+1)}) \boldsymbol{x}^T = \mathbf{0}, \ 1 \le k \le p_n.$$

By (2.2), these equations indicate the following:

$$g(\boldsymbol{e}_{i'_{1}} \otimes \boldsymbol{a}_{k}^{(2)} \otimes \boldsymbol{a}_{k}^{(3)} \otimes \cdots \otimes \boldsymbol{a}_{k}^{(n+1)}) = 0,$$

$$g(\boldsymbol{a}_{k}^{(1)} \otimes \boldsymbol{e}_{i'_{2}} \otimes \boldsymbol{a}_{k}^{(3)} \otimes \cdots \otimes \boldsymbol{a}_{k}^{(n+1)}) = 0,$$

$$\vdots$$

$$g(\boldsymbol{a}_{k}^{(1)} \otimes \cdots \otimes \boldsymbol{a}_{k}^{(n-1)} \otimes \boldsymbol{e}_{i'_{n}} \otimes \boldsymbol{a}_{k}^{(n+1)}) = 0,$$

$$g(\boldsymbol{a}_{k}^{(1)} \otimes \cdots \otimes \boldsymbol{a}_{k}^{(n-1)} \otimes \boldsymbol{a}_{k}^{(n)} \otimes \boldsymbol{e}_{i'_{n+1}}) = 0.$$

for $1 \le k \le p_n$. In this proof, we always assume that i'_j is taken over $1, 2, \ldots, p_j$ for each $j = 1, \ldots, n$. Thus

$$g((\boldsymbol{e}_{i'_{1}} \otimes (\boldsymbol{e}_{k_{2}} + u_{2}\boldsymbol{e}_{p_{2}}) \otimes \cdots \otimes (\boldsymbol{e}_{k_{n}} + u_{n}\boldsymbol{e}_{p_{n}}) \otimes \boldsymbol{e}_{f(k_{1},\dots,k_{n})}) = 0, (2.15)$$

$$g((\boldsymbol{e}_{k_{1}} + u_{1}\boldsymbol{e}_{p_{1}}) \otimes \boldsymbol{e}_{i'_{2}} \otimes (\boldsymbol{e}_{k_{3}} + u_{3}\boldsymbol{e}_{p_{3}}) \otimes \cdots \otimes \boldsymbol{e}_{f(k_{1},\dots,k_{n})}) = 0, (2.16)$$

$$\vdots$$

$$g((\boldsymbol{e}_{k_1} + u_1 \boldsymbol{e}_{p_1}) \otimes \cdots \otimes (\boldsymbol{e}_{k_{n-1}} + u_{n-1} \boldsymbol{e}_{p_{n-1}}) \otimes \boldsymbol{e}_{i'_n} \otimes \boldsymbol{e}_{f(k_1,\dots,k_n)}) = 0, (2.17)$$

$$g((\boldsymbol{e}_{i_1} + v_1 \boldsymbol{e}_{p_1}) \otimes \cdots \otimes (\boldsymbol{e}_{i_n} + v_n \boldsymbol{e}_{p_n}) \otimes \boldsymbol{e}_{f(k_1,\dots,k_n)}) = 0. (2.18)$$

for any $(i_1, ..., i_n), (k_1, ..., k_n) \in S$.

We show the assertion by induction on n. The assertion for n=2 holds by Lemma 2.6. We suppose that $n\geq 3$ and the assertion holds for n-1 as the induction assumption.

By putting $(i'_1, \ldots, i'_n) = (p_1, \ldots, p_n)$, we get

$$x(p_1, \dots, p_n, f(k_1, \dots, k_n)) = 0$$
 (2.19)

for any $(k_1, \ldots, k_n) \in S$. Now let $k_n = p_n$. Put $f_1 = f(k_1, \ldots, k_{n-1}, p_n)$ for short. Then $u_1 = \cdots = u_{n-1} = 1$ and $u_n = 0$. By the *n* equations (2.15)-(2.17), the induction assumption yields us

$$x(i'_1, \dots, i'_{n-1}, p_n, f_1) = 0 (2.20)$$

for any $(k_1, \ldots, k_{n-1}, p_n) \in S$ and any i'_1, \ldots, i'_{n-1} . Then, by (2.18) we get

$$g((e_{i_1} + v_1 e_{p_1}) \otimes \cdots \otimes (e_{i_{n-1}} + v_{n-1} e_{p_{n-1}}) \otimes e_{i_n} \otimes e_{f_1}) = 0$$
 (2.21)

for all $(i_1, \ldots, i_n) \in S$. This equation and (2.17) indicate

$$x(p_1, \dots, p_{n-1}, i_n, f_1) = 0 (2.22)$$

by Lemma 2.5 if $i_n < p_n$. Suppose that $i_n < p_n$. In the equation (2.21) we put $i_j = p_j$ for n-2 numbers j's with j < n and get

$$x(i_1, p_2, \dots, p_{n-1}, i_n, f_1) = \dots = x(p_1, \dots, p_{n-2}, i_{n-1}, i_n, f_1) = 0$$

for $1 \le i_i < p_i$, $j = 1, \ldots, n$, and thus

$$x(i'_1, p_2, \dots, p_{n-1}, i_n, f_1) = \dots = x(p_1, \dots, p_{n-2}, i'_{n-1}, i_n, f_1) = 0$$
 (2.23)

for any i'_1, \ldots, i'_n by (2.22). In the equation (2.21) we put $i_j = p_j$ for n-3 numbers j's and get

$$x(i_1, i_2, p_3, \dots, p_{n-1}, i_n, f_1) = \dots = x(p_1, \dots, p_{n-3}, i_{n-2}, i_{n-1}, i_n, f_1) = 0$$

for $1 \le i_j < p_j$, $j = 1, \ldots, n$, and thus

$$x(i'_1, i'_2, p_3, \dots, p_{n-1}, i_n, f_1) = \dots = x(p_1, \dots, p_{n-3}, i'_{n-2}, i'_{n-1}, i_n, f_1) = 0$$

by (2.23). And go on, finally we get

$$x(i'_1,\ldots,i'_{n-1},i_n,f_1)=0$$

for any i'_1, \ldots, i'_{n-1} and any $1 \le i_n < p_n$ and then by (2.20)

$$x(i'_1,\ldots,i'_{n-1},i'_n,f_1)=0$$

for any i'_1, \ldots, i'_n . If we consider the similar argument for j instead of n, we have

$$x(i'_1,\ldots,i'_n,f(k_1,\ldots,k_n))=0$$

for any i'_1, \ldots, i'_n and any $(k_1, \ldots, k_n) \in S$ with $k_j = p_j$ for some j. To complete the proof, it suffices to show that

$$x(i'_1,\ldots,i'_n,f(k_1,\ldots,k_n))=0$$

for any i'_1, \ldots, i'_n and any $(k_1, \ldots, k_n) \in S$ with $k_j < p_j$ for each j. Let $f_2 = f(k_1, \ldots, k_n)$ for short. By putting $i_n = p_n$ in (2.18), we get

$$g((\boldsymbol{e}_{i_1} + \boldsymbol{e}_{p_1}) \otimes \cdots \otimes (\boldsymbol{e}_{i_{n-1}} + \boldsymbol{e}_{p_{n-1}}) \otimes \boldsymbol{e}_{p_n} \otimes \boldsymbol{e}_{f_2}) = 0$$

for $(i_1, \ldots, i_{n-1}, p_n) \in S$. By Lemma 2.4, we have

$$0 = g((\mathbf{e}(i_1, p_2, \dots, p_{n-1}) + \dots + \mathbf{e}(p_1, \dots, p_{n-2}, i_{n-1}) + (n-2)\mathbf{e}(p_1, \dots, p_{n-1})) \otimes \mathbf{e}(p_n, f_2))$$

= $g((\mathbf{e}(i_1, p_2, \dots, p_{n-1}) + \dots + \mathbf{e}(p_1, \dots, p_{n-2}, i_{n-1})) \otimes \mathbf{e}(p_n, f_2)).$

Thus

$$g((e(i_1, p_2, \dots, p_n) + \dots + e(p_1, \dots, p_{n-2}, i_{n-1}, p_n)) \otimes e_{f_2}) = 0.$$

Similarly, for each j = 1, ..., n - 1, by putting $i_j = p_j$ in (2.18), we get

$$g((\boldsymbol{e}(p_1, i_2, p_3, \dots, p_n) + \dots + \boldsymbol{e}(p_1, \dots, p_{n-1}, i_n)) \otimes \boldsymbol{e}_{f_2}) = 0,$$

$$\vdots$$

$$g((e(i_1, p_2, \dots, p_n) + \dots + e(p_1, \dots, p_{p-3}, p_{i-2}, p_{n-1}, p_n) + e(p_1, \dots, p_{n-1}, i_n)) \otimes e_{f_2}) = 0.$$

Since

$$\begin{vmatrix} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix} - E_n = (-1)^{n-2}(n-1),$$

we have

$$x(i_1, p_2, \dots, p_n, f_2) = \dots = x(p_1, \dots, p_{n-1}, i_n, f_2) = 0$$

for $1 \le i_j < p_j$, j = 1, ..., n, and then

$$x(i'_1, p_2, \dots, p_n, f_2) = \dots = x(p_1, \dots, p_{n-1}, i'_n, f_2) = 0$$

for all i'_1, \ldots, i'_n , since $x(p_1, p_2, \ldots, p_n, f_2) = 0$. By putting $i'_j = p_j$ for n-2 numbers j's in the equation (2.18) we get

$$x(i_1, i_2, p_3, \dots, p_n, f_2) = \dots = x(p_1, \dots, p_{n-2}, i_{n-1}, i_n, f_2) = 0$$

for $1 \leq i_j < p_j$, $j = 1, \ldots, n$, and then

$$x(i'_1, i'_2, p_3, \dots, p_n, f_2) = \dots = x(p_1, \dots, p_{n-2}, i'_{n-1}, i'_n, f_2) = 0$$

for all i'_1, \ldots, i'_n . And so on, we finally get

$$x(i'_1,\ldots,i'_n,f_2)=0$$

for all i'_1, \ldots, i'_n . We complete the proof.

Now we show Theorem 1.1.

Proof of Theorem 1.1 Let r be a typical rank of $p_1 \times \cdots \times p_{n+1}$ tensors. Then $p_{n+1} \leq r \leq p_1 p_2 \cdots p_n$ by Lemma 2.1. In particular, note that any integer less than p_{n+1} is not a typical rank. Since $p_{n+1} \geq q$, it holds that p_{n+1} is a typical rank by Theorem 2.14.

Conversely suppose that p_{n+1} is a typical rank of $p_1 \times \cdots \times p_{n+1}$ tensors. By Proposition 2.3,

$$p_{n+1} \ge \frac{p_1 \cdots p_{n+1}}{p_1 + \cdots + p_{n+1} - n}$$

which implies that $p_{n+1} \ge q$, and also, a typical rank is less than or equal to $p_1 \cdots p_n$. Thus $p_{n+1} \le p_1 \cdots p_n$. We complete the proof.

References

- [1] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi, *Algebraic complexity theory*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of Thomas Lickteig. MR MR1440179 (99c:68002)
- [2] P. Comon, J. M. F. ten Berge, L. De Lathauwer, and J. Castaing, Generic and typical ranks of multi-way arrays, Linear Algebra Appl. 430 (2009), no. 11-12, 2997–3007. MR MR2517853
- [3] Thomas D. Howell, Global properties of tensor rank, Linear Algebra Appl. 22 (1978), 9–23. MR MR0506380 (58 #22133)
- [4] M. Miyazaki, T. Sumi, and T. Sakata, Tensor rank determination problem, International conference Non Linear Theory and its Applications 2009, Proceedings CD, 2009, pp. 391–394.
- [5] D. G. Northcott, Affine sets and affine groups, London Mathematical Society Lecture Note Series, vol. 39, Cambridge University Press, Cambridge, 1980. MR MR569353 (82c:14002)

- [6] Jos M. F. ten Berge, *The typical rank of tall three-way arrays*, Psychometrika **65** (2000), no. 4, 525–532. MR MR1818596
- [7] Jos M. F. ten Berge and Henk A. L. Kiers, Simplicity of core arrays in three-way principal component analysis and the typical rank of $p \times q \times 2$ arrays, Linear Algebra Appl. **294** (1999), no. 1-3, 169–179. MR MR1693919 (2000f:62146)