Organic Computing 2

Lösungsvorschlag Blatt07

Lukas Huhn Qiang Chang Victor Gerling 30. Juni 2019

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Gliederung

1. Aufgabe 02

2. Aufgabe 03

3. Aufgabe 04

Aufgabe 02

Wie werden Lösungen binär kodiert?

- Anhand des Wertebereichs und der Schrittweite wird ein unsigned integer generiert.
- Dieser wird mittels Integer.toBinaryString(i) (Java Funktion) in einen Binär-String umgewandelt.
- String wird evtl. mit zusäzlichen Nullen aufgefüllt, um gewünschte Stringlänge zu erreichen.
- Beispiel: siehe Code.

Wie wird Population initialisiert?

 Jeder Wert des Eingabe-Tupels wird zufällig anhand des Wertebereichs initialisiert.

Wie werden Eltern ausgewählt?

- · Sortiere Population anhand des generierten Fitnesswertes.
- Erstelle so eine Rang-basierte Wahrscheinlichkeitsverteilung $\Rightarrow (1 - e^{-rank})/(sizepopulation)$
- · Ziehe mittels Roulette-Wheel Algortihmus n Eltern.
- · Siehe Code.

Wie wird Crossover durchgeführt?

- · Mittels uniform crossover.
- Entscheide bei jedem Bit zufällig, ob die Eltern ihr Bit vertauschen sollen.
- · Siehe Code.

Wie wird Mutation durchgeführt?

- · Setze Threshold für Mutation (0.05).
- Generiere bei jedem Bit Zufallszahl um zu entscheiden ob es zur Mutation kommt.
- Bitflip wenn Mutation.
- · Siehe Code.

2.2 Graycode

Wie wird Gray-Kodierung durchgeführt?

- Encoding: n xor (n » 1), z.B.: 2 xor (2 » 1) \Rightarrow 3 \Rightarrow (11)₂
- Decoding: p := n; while(n »= 1!= 0) do p := p xor n; return p;
- · Siehe Code.

Aufgabe 03

3 GA mit Fließkommazahlen

Implementieren Sie nun einen GA für die Blackboxen, der direkt auf den Fließkommazahlen-Vektoren arbeitet! Nutzen Sie dabei ...

- · Alles gleich wie A2 außer Mutation.
- Für Mutation: ziehe zufällige Zahl zwischen [-step, step] und addiere sie zum jeweiligen Wert hinzu!

Aufgabe 04

4 Auswertung

Erwarten Sie, dass der GA mit Fließkommazahlen auf den Blackboxen besser oder schlechter funktioniert? Warum?

- · Erwartung: Nein.
- Das modifizieren der Bits erlaubt eine feingranulare Anpassung der Werte.
- Eventuell langsamer um zu konvergieren, zum Ende hin jedoch potentiell präziser!

4 Auswertung

Entscheiden Sie sich bei jedem Verfahren für eine gute Parametrisierung und geben Sie diese, die Stelle des auf diese Weise beim Testen gefundenen Optimums sowie dessen Wert an!

- GA simple: Population: 600-1000, Parents: 40-80, Mutation-Thres: 0.05, step-size: 0.01-1
- · GA gray: gleich
- GA float: gleich bis auf Mutation; hier step-size: 0.01-5

Oben: Naives Verfahren, GA simple, GA gray, GA float Unten: HC, HC steepest, HC random restart, simulated annealing

⇒ bestes Verfahren: GA gray mit 0.19!

Oben: Naives Verfahren, GA simple, GA gray, GA float Unten: HC, HC steepest, HC random restart, simulated annealing

⇒ bestes Verfahren: GA gray mit -195!

Oben: Naives Verfahren, GA simple, GA gray, GA float Unten: HC, HC steepest, HC random restart, simulated annealing

⇒ bestes Verfahren: GA gray mit -106!

Oben: Naives Verfahren, GA simple, GA gray, GA float Unten: HC, HC steepest, HC random restart, simulated annealing

⇒ bestes Verfahren: GA gray mit 0!

Oben: Naives Verfahren, GA simple, GA gray, GA float Unten: HC, HC steepest, HC random restart, simulated annealing

⇒ bestes Verfahren: GA gray mit -960!

4 Auswertung

Wie könnte man sich vorab für ein Verfahren entscheiden, wenn man nicht die Möglichkeit hat, tausende Anfragen an die Blackbox zu stellen?

- Verfahren wie Genetic Algorithm oder Simulated Annealing erzielen gute Ergebnisse brauchen jedoch lange zum konvergieren.
- Hill Climbing oder auch das Zufalls-Model konvergieren schneller gegen einen guten Wert.
- Zum probing könnte es Sinn machen das Zufallsverfahren zu wählen, um sich so ein möglichst breites Bild zu generieren; besser man benutzt ein Verfahren wie HC mit random restart.