Architecture: Cloud Aware Application Development Ecosystem

Common_Cloud_Core

Table of contents

Overview

Use Cases

Build Project

Define Agents

Define Pipeline

Define Stages

Run Build

Create Application

Create MicroService

Create Project

Debug Application

Debug MicroService

Deploy Application

Deploy MicroService

Modify Code

Publish Application

Publish MicroService

Test Application

Test MicroService

Actors

Developer

Solution

Services

Continuous Integration & Delivery

Registry

Clouds

Local Cloud

Dev Cloud

Test Cloud

Production Cloud

Overview

Architectural Overview

Description

Users

• <u>Developer</u>

High level Use Cases

- Create Application
- Create MicroService
- Create Project
- Debug Application
- Debug MicroService
- Deploy Application
- Deploy MicroService
- Modify Code
- Publish Application
- Publish MicroService
- Test Application
- Test MicroService

Figure: UseCases UseCases

Logical Architecture

Developers need to focus on the developement of applications. When code is modified and checked into a code repository like github. A CI/CD system will automatically build, test and deploy the application, microservice or project. Multiple environments that have been created in the Common Cloud Core will be used by CAADE and the CI/CD to promote applications across the different environments.

Figure: design Architecture

• Common Cloud Core - External

- CI/CD
- DevCloud
- LocalCloud
- ProductionCloud
- Registry
- SCM
- Test Cloud

Process Architecture

This diagram shows how a developer interacts with CAADE to develop, test, and deploy cloud aware applications.

Figure: Solution Process

Deployment model

CAADE is made up a of a set of services and microservices to deliver capabilities to the Developer. The Service architect shown in the deployment model is an example of an implementation of a CAADE architecture.

Figure: Solution Deployment

Physical Architecture

The physical architecture of CAADE is an example of a minimal hardware configuration that CAADE can be deployed.

Figure: Solution Physical

Use Cases

Use Cases for caade

High level use cases for the CAADE architecture.

Use Cases

- Build Project
- Create Application
- Create MicroService
- Create Project
- Debug Application
- Debug MicroService
- Deploy Application
- <u>Deploy MicroService</u>
- Modify Code
- Publish Application
- Publish MicroService
- <u>Test Application</u>
- Test MicroService

Architecture: Cloud Aware Application Development Ecosystem

Figure: UseCases UseCases

Build Project

Build-Project

Description

Actors

Actors

Activities

Figure: Build-Project Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Define Agents

Scenario Define-Agents

Figure: Build-Project Define-Agents

Define Pipeline

Scenario Define-Pipeline

Figure: Build-Project Define-Pipeline

Define Stages

Scenario Define-Stages

Figure: Build-Project Define-Stages

Run Build

Scenario Run-Build

Description

Figure: Build-Project Run-Build

Create Application

Create-Application

Description

Actors

Actors

Activities

Figure: Create-Application Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Create MicroService

Create-MicroService

Description

Actors

Actors

Activities

Figure: Create-MicroService Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Create Project

Create-Project

Description

Actors

Actors

Activities

Figure: Create-Project Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Debug Application

Debug-Application

Description

Actors

Actors

Activities

Figure: Debug-Application Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Debug MicroService

Debug-MicroService

Description

Actors

Actors

Activities

Figure: Debug-MicroService Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Deploy Application

Deploy-Application

Description

Actors

Actors

Activities

Figure: Deploy-Application Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Deploy MicroService

Deploy-MicroService

Description

Actors

Actors

Activities

Figure: Deploy-MicroService Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Modify Code

Modify-Code

Description

Actors

Actors

Activities

Figure: Modify-Code Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Publish Application

Publish-Application

Description

Actors

Actors

Activities

Figure: Publish-Application Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Publish MicroService

Publish-MircoService

Description

Actors

Actors

Activities

Figure: Publish-MicroService Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Test Application

Test-Application

Description

Actors

Actors

Activities

Figure: Test-Application Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Test MicroService

Test-MicroService

Description

Actors

Actors

Activities

Figure: Test-MicroService Activities

• Activities

Detail Scenarios

• Scenarios

Systems Involved

Actors

Actors

• <u>Developer</u>

Figure: UseCases UseCases

Developer

Developer

Description

Use Cases

• UseCases

Figure: Developer UseCases

Activities

description

Figure: Developer Activity

Workflow

Figure: Developer Workflow

User Interface

TBD

Command Line Interface

TBD

Solution

Architectural Overview

Description

Users

Actor

High level Use Cases

UseCases

Figure: UseCases UseCases

Logical Architecture

Figure: Solution Logical

Systems

Process Architecture

Figure: Solution Process

Deployment model

Description

Figure: Solution Deployment

Physical Architecture

Description

Figure: Solution Physical

Systems

Deployment_

This is a Reference Architecture for the CAADE solution using Salt, Docker, Jenkins, and Gluster

Salt Stack

Install Salt Master on Node 0

Architecture: Cloud Aware Application Development Ecosystem

```
node0# sudo apt-get install salt-api
node0# sudo apt-get install salt-master
node0# sudo apt-get install salt-minion
```

Now that you have salt installed on node0 (master node). Go to the master configuration file /etc/salt/master and add these lines.

```
file_roots:
    base:
        - /srv/salt/
pillar_roots:
    base:
        - /srv/pillar
```

There should be several things that are in the /etc/salt/master file commented out.

Get the fingerprint of the master node

```
node0# sudo salt-key -f master.pub
```

Save this string it will be used in the configuration of the minions.

Install Salt Minion on Node[0-4]

```
node1# sudo apt-get install salt-minion
```

Now edit the /etc/salt/minion file to contain the following

```
master: node0
master_finger: "Put output of 'alt-key -f master.pub' here"
```

Get things running

On node0 start the salt master as root in the foreground

```
node0# sudo salt-master
```

or in the background

```
node0# sudo salt-master -d
```

On node[0-4] start the salt-minions

```
node1# sudo salt-minion
```

or in the background with the -d flag

```
nodel# sudo salt-minion -d
```

now go back to node0 and accept the minions into the salt stack

```
node0# sudo salt-key -A
```

Now you can test and see if salt can see all of the nodes

```
node0# salt "*" test.ping
node0:
    True
node1:
    True
node2:
    True
node3:
    True
node4:
    True
```

- 1. Configure Salt states
- 2. Configure Salt Pillar
- 3. Download Salt Formula for CAADE

Install Gluster

Install Gluster on each of the nodes (node[0-4])

```
node0# sudo apt-get update
```

Install GlusterFS package using the following command.

```
node0# sudo apt-get install -y glusterfs-server
```

Start the glusterfs-server service on all gluster nodes.

```
\verb|node0# sudo service glusterfs-server start|\\
```

Create Volumes for Gluster to use

Architecture: Cloud Aware Application Development Ecosystem

This assumes that you already have drives that have been mounted.

```
sudo mkdir -p /data/gluster
sudo mount /dev/sdb1 /data/gluster
```

Add an entry to /etc/fstab for keeping the mount persistent across reboot.

```
echo "/dev/sdb1 /data/gluster ext4 defaults 0 0" | sudo tee --append /etc/fstab
```

Now attach all of the nodes to each other. Go to node0 and type the following.

```
node0# sudo gluster peer probe node1
node0# sudo gluster peer probe node2
node0# sudo gluster peer probe node3
node0# sudo gluster peer probe node4
```

Now you can add volumes to the gluster cluster

```
node0# salt "*" cmd.run "mkdir -d /data/gluster/gvol0"
node0# sudo gluster volume create gvol0 replica 2 node1:/data/gluster/gvol0 node2:/data/gluster/gvol0
node0# sudo gluster volume start gvol0
node0# sudo gluster volume info gvol0
```

Mount Gluster Volumes on all of the nodes.

Now you have created a volume and now you can access it on all of the nodes by mounting it.

```
node0# mkdir /mnt/glusterfs
node0# mount -t glusterfs node1:/gvol0 /mnt/glusterfs
```

To make the mount permanent across reboots you need to add it to the fstab

```
\verb|node0#| echo "node1:/gvol0 /mnt/glusterfs glusterfs defaults, \_netdev 0 0" | echo tee --append /etc/fstab| | echo tee --ap
```

Additional information can be found here

Docker Swarm

There is a great blog on how to generically set this up here.

- 1. Using Salt Stack install
- 2. Test Docker Swarm Installation

Continuous Integration & Delivery

CICD

CICD is a subsystem of caade that is implemented by an existing CI/CD service that is available today. Examples of CICD systems that can be used are Jenkins, Bamboo, TravisCI, etc...

Use Cases

- Test Application
- Test MicroService

Figure: CICD UseCases

Actors

Users

• <u>Developer</u>

Figure: CICD UserInteraction

Uses

- CICD
- Dev Cloud
- Local Cloud
- Production Cloud
- Test Cloud

Interface

- CLI Command Line Interface
- REST-API
- Portal Web Portal

Logical Artifacts

- Agent Agent running in the different clouds that perform builds for a Project
- Build Build Stages of a pipeline for a project.
- Pipeline Pipeline that defineds how a project is built, test, and deployed
- Project Project that contains the application and microservices

• Stage - Stage of builds defined in the pipeline.

Figure: CICD Logical

Figure: CICD Process

Figure: CICD Deployment

Figure: CICD Physical

Registry

Registry

Registry is a subsystem of caade ...

Use Cases

Figure: Registry UseCases

Actors

Users

• <u>User</u>

Figure: Registry UserInteraction

- SubSystem
- •

- CLI Command Line Interface
- REST-API -
- Portal Web Portal

Logical Artifacts

.

Figure: Registry Logical

Figure: Registry Process

Figure: Registry Deployment

Figure: Registry Physical

Local Cloud

LocalCloud

LocalCloud is a subsystem of caade ...

Use Cases

Figure: LocalCloud UseCases

Actors

Users

• <u>User</u>

Figure: LocalCloud UserInteraction

- SubSystem
- •

- CLI Command Line Interface
- REST-API -
- Portal Web Portal

Logical Artifacts

.

Figure: LocalCloud Logical

Figure: LocalCloud Process

Figure: LocalCloud Deployment

Figure: LocalCloud Physical

Dev Cloud

DevCloud

DevCloud is a subsystem of caade ...

Use Cases

Figure: DevCloud UseCases

Actors

Users

• <u>User</u>

Figure: DevCloud UserInteraction

- SubSystem
- •

- CLI Command Line Interface
- REST-API -
- Portal Web Portal

Logical Artifacts

.

Figure: DevCloud Logical

Figure: DevCloud Process

Figure: DevCloud Deployment

Figure: DevCloud Physical

Test Cloud

TestCloud

TestCloud is a subsystem of caade ...

Use Cases

Figure: TestCloud UseCases

Actors

Users

• <u>User</u>

Figure: TestCloud UserInteraction

- SubSystem
- •

- CLI Command Line Interface
- REST-API -
- Portal Web Portal

Logical Artifacts

.

Figure: TestCloud Logical

Figure: TestCloud Process

Figure: TestCloud Deployment

Figure: TestCloud Physical

Production Cloud

ProductionCloud

ProductionCloud is a subsystem of caade ...

Use Cases

Figure: ProductionCloud UseCases

Actors

Users

• <u>User</u>

Figure: ProductionCloud UserInteraction

- SubSystem
- •

- CLI Command Line Interface
- REST-API -
- Portal Web Portal

Logical Artifacts

.

Figure: ProductionCloud Logical

Figure: ProductionCloud Process

Figure: ProductionCloud Deployment

Figure: ProductionCloud Physical