# Sumário

| 1.  | Março                                                              | 1  |
|-----|--------------------------------------------------------------------|----|
| 2.  | Abril                                                              | 2  |
| 7   | Гabela 1 – Modelos de baterias preliminar                          | 2  |
| 3.  | Maio                                                               | 3  |
| 7   | Γabela 2 – Modelos de baterias                                     | 3  |
| F   | Processo de escolha dos modelos das baterias preliminar            | 4  |
| F   | Placa shield                                                       | 4  |
| E   | Escolha da bateria ideal                                           | 5  |
|     | Consumo da placa ESP8266                                           | 5  |
|     | Tabela 3 – Resultados dos testes de consumo da placa WeMos D1 mini | 6  |
|     | Notas:                                                             | 9  |
|     | Equação da média ponderada                                         | 9  |
| 4.  | Junho                                                              | 10 |
| A   | Avaliação de consumo da placa WeMos                                | 10 |
|     | Tabela 4                                                           | 10 |
| 5.  | Julho                                                              | 11 |
|     | Calculo de autonomia entre os modos de operação                    | 11 |
|     | Tabela 5                                                           | 11 |
|     | Gráfico 1                                                          | 13 |
| F   | Resultado preliminar – Modelo de bateria em relação a autonomia    | 13 |
| 6.  | Agosto                                                             | 14 |
| 7.  | Setembro                                                           | 15 |
| 8.  | Outubro                                                            | 15 |
| 9.  | Novembro                                                           | 15 |
| 10. | Dezembro                                                           | 15 |
| RE  | CFERÊNCIAS                                                         | 16 |

# 1. Março

Mês dedicado à logística, capacitação e reconhecimento de todo o trabalho.

Foram realizadas diversas pesquisas quanto ao *chip* escolhido, o *ESP8266*, a fim de se ter o conhecimento mínimo para a realização dos primeiros experimentos. Neste momento, foi dado início à construção do primeiro programa simples para a realização de testes iniciais no *ESP*.

### 2. Abril

Mês dedicado à capacitação e a pesquisas referentes aos tipos de baterias.

Foi iniciada a construção, também, de uma placa a qual possui 8 LEDs indicativos para a realização de futuros testes com relação ao consumo. O código fonte<sup>1</sup>, referente ao controle dessa placa, foi desenvolvido com o intuito de autocapacitação.

As pesquisas referentes aos modelos de baterias também foram iniciadas.

Tabela 1 – Modelos de baterias preliminar

| Num      | Marca        | Modelo       | Dimensões(mm) |      |      | Preço     | Tensão de | mAh  |
|----------|--------------|--------------|---------------|------|------|-----------|-----------|------|
|          |              |              | С             | L    | A    |           | trabalho  |      |
| <u>A</u> | Rontek       | RT300AAAB4   | 11            | 45   | 11   | R\$ 3,50  | 1,2       | 600  |
| <u>B</u> | Energy Power | AA NI-Mh     | 14,5          | 50,5 | 14,5 | R\$ 8,90  | 1,2       | 800  |
| <u>C</u> | Energy Power | AA NI-Cd     | 14,5          | 50,5 | 14,5 | R\$ 9,50  | 1,2       | 1000 |
| D        | Rontek       | AA NI-Mh     | 15            | 50   | 15   | R\$ 7,50  | 1,2       | 2100 |
| <u>E</u> | Mox          | Aaa          | 14,5          | 50,5 | 14,5 | R\$ 3,8   | 1,2       | 2700 |
| <u>F</u> | Knup         | KP-BT9V      | 47            | 20   | 15   | R\$ 12    | 9         | 450  |
| <u>G</u> | FLEX         | FX-45B1      | 47            | 20   | 15   | R\$ 28    | 9         | 450  |
| <u>H</u> | FullyMax     | -            | 9,5           | 26   | 45   | R\$ 15,20 | 3,7       | 650  |
| J        | Rontek       | NP-20        | 50            | 40   | 32   | orçamento | 3,7       | 680  |
| <u>K</u> | Rontek       | 6RT1800SC-CX | 131           | 51   | 23   | orçamento | 7,2       | 1800 |
| <u>L</u> | Rontek       | 6RT3000SC-CX | 131           | 51   | 23   | orçamento | 7,2       | 3000 |
| <u>M</u> | Rontek       | 6LR61        | 48            | 26   | 16   | orçamento | 8,4       | 350  |

 $<sup>^1\,</sup>O\,c\'odigo\,fonte\,desenvolvido\,se\,encontra\,no\,perfil\,GitHub\,do\,autor\,do\,documento,\,referente\,a\,este\,link:\\ https://github.com/W8jonas/Internet-das-Vacas/blob/master/programacao/codigo_servidor_teste_consumo/codigo_servidor_teste_consumo.ino$ 

## 3. Maio

Mês dedicado à pesquisas referentes aos tipos e modelos de baterias. Foram produzidas várias tabelas com o intuito de representar de forma simplificada os mais diversos fatores técnicos envolvendo esses modelos de bateria.

Tabela 2 – Modelos de baterias

| Numeração | Marca        | Modelo       | Modelo      | Dim  | ensões(1 | mm)  | Modelo de | Preço     | Tensão         | mAh     | Wh        | Custo/wh  |
|-----------|--------------|--------------|-------------|------|----------|------|-----------|-----------|----------------|---------|-----------|-----------|
| Numeração | Marca        | Modelo       | químico     | С    | L        | Α    | tamanho   | Pieço     | de<br>trabalho | IIIAII  | WII       | Custo/wii |
| 01        | Rontek       | RT300AAAB4   | Ni-cd       | 11   | 44       | 11   | Aaa       | R\$4,98   | 1,20           | 300,00  | 360,00    | 0,009722  |
| 02        | Energy Power | AA Ni-mh     | Ni-mh       | 14,5 | 50,5     | 14,5 | Aa        | R\$8,90   | 1,20           | 800,00  | 960,00    | 0,009271  |
| 03        | Energy Power | AA Ni-cd     | Ni-cd       | 14,5 | 50,5     | 14,5 | Aa        | R\$9,50   | 1,20           | 1000,00 | 1.200,00  | 0,007917  |
| 04        | Rontek       | AA Ni-mh     | Ni-mh       | 14,5 | 50,5     | 14,5 | Aa        | R\$7,50   | 1,20           | 2100,00 | 2.520,00  | 0,002976  |
| 05        | Mox          | Aaa          | Ni-mh       | 14,5 | 50,5     | 14,5 | Aa        | R\$3,80   | 1,20           | 2700,00 | 3.240,00  | 0,001172  |
| 06        | Knup         | KP-BT9V      | Ni-mh       | 47   | 20       | 15   | Bat P     | R\$12,00  | 9,00           | 450,00  | 4.050,00  | 0,002963  |
| 07        | FLEX         | FX-45B1      | Ni-mh       | 47   | 20       | 15   | Bat P     | R\$28,00  | 9,00           | 450,00  | 4.050,00  | 0,008642  |
| 08        | FullyMax     | -            | LIPO        | 9,5  | 26       | 45   | Lipo M    | R\$15,20  | 3,70           | 650,00  | 2.405,00  | 0,006320  |
| 09        | Mox          | MO-086B      | Ni-cd       | 31,5 | 44       | 10,5 | Aaa       | R\$19,00  | 3,60           | 700,00  | 2.520,00  | 0,001428  |
| 10        | Rontek       | 6RT1800SC-CX | Ni-cd       | 131  | 51       | 23   | Bat. G    | R\$54,04  | 7,20           | 1800,00 | 12.960,00 | 0,004169  |
| 11        | Rontek       | 6RT3000SC-CX | Ni-mh       | 131  | 51       | 23   | Bat. G    | R\$100,14 | 7,20           | 3000,00 | 21.600,00 | XXXX      |
| 12        | Rontek       | 6LR61        | Ni-mh       | 48   | 26       | 16   | Bat. P    | R\$18,50  | 8,40           | 350,00  | 2.940,00  | XXXX      |
| 13        | Rontek       | -            | Ni-mh       | 2    | 16       | 16   | P. Botão  | R\$5,15   | 3,60           | 80,00   | 288,00    | XXXX      |
| 14        | Rontek       | -            | Ni-mh       | 42   | 14       | 47   | 4 * Aaa   | R\$9,86   | 3,60           | 1300,00 | 4.680,00  | XXXX      |
| 15        | Rontek       | -            | Ni-cd       | 17   | 51       | 57   | 3 * aa    | R\$36,85  | 7,20           | 600     | 4.320,00  | XXXX      |
| 16        | FullyMax     | -            | LIPO        | 7    | 20       | 36   | Lipo P    | R\$14,40  | 3,70           | 350,00  | 1.295,00  | 0,011119  |
| 17        | minamoto     | LFP803048    | LiFePO<br>4 | 8    | 30       | 50   | Lipo M    | Orçamento | 3,20           | 800     | 2.560,00  | XXXX      |
| 18        | minamoto     | LFP603450    | LiFePO<br>4 | 6    | 34       | 50   | Lipo M    | Orçamento | 3,20           | 700     | 2.240,00  | XXXX      |
| 19        | minamoto     | LFP101945HP  | LiFePO<br>4 | 10   | 19       | 45   | Lipo M    | Orçamento | 3,20           | 440     | 1.408,00  | XXXX      |
| 20        | minamoto     | LFP803048HP  | LiFePO<br>4 | 8    | 30       | 48   | Lipo M    | Orçamento | 3,20           | 800     | 2.560,00  | XXXX      |
| 21        | minamoto     | LFR26650E    | LiFePO<br>4 | 26   | 65       | 26   | D+        | Orçamento | 3,20           | 3300    | 10.560,00 | XXXX      |
| 22        | minamoto     | LFR18650E    | LiFePO<br>4 | 18,2 | 64,5     | 18,2 | D+        | Orçamento | 3,20           | 1500    | 4.800,00  | XXXX      |
| 23        | minamoto     | LFR18490E    | LiFePO<br>4 | 18,2 | 48,5     | 18,2 | Aa        | Orçamento | 3,20           | 1000    | 3.200,00  | XXXX      |
| 24        | minamoto     | LFR14500E    | LiFePO<br>4 | 14,1 | 48,5     | 14,1 | Aa        | Orçamento | 3,20           | 500     | 1.600,00  | XXXX      |
| 25        | minamoto     | LFR18650P    | LiFePO<br>4 | 18,2 | 64,5     | 18,2 | D+        | Orçamento | 3,20           | 1100    | 3.520,00  | XXXX      |
| 26        | minamoto     | LFR26650P    | LiFePO<br>4 | 26   | 65       | 26   | D+        | Orçamento | 3,20           | 2300    | 7.360,00  | XXXX      |
| 27        | minamoto     | LP104884     | LIPO        | 10   | 48       | 84   | -         | Orçamento | 3,7            | 5000    | 18.500,00 | XXXX      |
| 28        | minamoto     | LP805060     | LIPO        | 8    | 50       | 60   | -         | Orçamento | 3,7            | 2700    | 9.990,00  | XXXX      |
| 29        | minamoto     | LP605559     | LIPO        | 5,5  | 55       | 60   | -         | Orçamento | 3,7            | 2000    | 7.400,00  | XXXX      |
| 30        | minamoto     | LP704460     | LIPO        | 6,7  | 44       | 60   | -         | Orçamento | 3,7            | 2000    | 7.400,00  | XXXX      |
| 31        | minamoto     | LP103746     | LIPO        | 10   | 37       | 46   | -         | Orçamento | 3,7            | 1750    | 6.475,00  | XXXX      |
| 32        | minamoto     | LP804044     | LIPO        | 8    | 40       | 44   | -         | Orçamento | 3,7            | 1400    | 5.180,00  | XXXX      |
| 33        | minamoto     | LP803033     | LIPO        | 7,6  | 30       | 33   | -         | Orçamento | 3,7            | 730     | 2.701,00  | XXXX      |
| 34        | minamoto     | LP902535     | LIPO        | 8,8  | 25       | 35   | -         | Orçamento | 3,7            | 700     | 2.590,00  | XXXX      |
| 35        | minamoto     | LP683033     | LIPO        | 6,5  | 30       | 33   | -         | Orçamento | 3,7            | 600     | 2.220,00  | XXXX      |
| 36        | FullyMax     | -            | LIPO        | 10   | 26       | 45   | Lipo M    | 27,20     | 3,7            | 800     | 2.960,00  | 0,00125   |

## Processo de escolha dos modelos das baterias preliminar

Para a realização da seleção dos modelos mais propícios à adesão ao projeto, foi realizado um processo de eliminação dos modelos presentes na <u>Tabela 2</u>. Esses modelos foram avaliados em 3 diferentes etapas, a quais eram aprovados ou reprovados.

Primeiramente, foi analisado o valor referente à tensão de trabalho de cada bateria, a fim de eliminar aquelas que ultrapassem o valor máximo da placa WeMos D1 mini. Para obter este valor, foi consultado o esquemático da placa, encontrado na *wiki* da fabricante. Após a consulta, foi observado que o regulador de tensão da placa é o CI ME6211. De acordo com seu *Datasheet*, o valor máximo de tensão é de 6 volts. Logo, serão descartadas as baterias que apresentarem tensão nominal superior a 6 volts, portanto, os modelos 06, 07, 10, 11, 12 e 15 ficam fora de cogitação até o momento. Sendo a única forma possível para sua adesão, a implementação de um regulador de tensão externo ao circuito da placa WeMos.

Em segundo método, foram avaliadas as dimensões das baterias restantes, levando em consideração as associações necessárias para as baterias com tensão inferior a 3 volts. Nesse caso, os modelos 01, 02, 03, 04 e 05 precisam receber 3 associações em série com a finalidade de se alcançar a tensão de trabalho da placa. Todavia, dessa forma, ocupa-se um espaço 3 vezes maior, fato não presente nos modelos 08, 09, 13, 14 e 16. Em vista disso, esses modelos ganham preferência. No entanto, os modelos 09 e 14 já possuem em seu encapsulamento 3 pilhas em série, o que lhes garante o mesmo espaço aproximado dos modelos anteriores, sobrando, então, somente os modelos 08, 13 e 16.

Cabe então, dentre os três últimos modelos, aquele que possui a melhor autonomia por custo. Para tal análise, é preciso estimar um valor para o modelo 13, visto que seu preço não é acessível sem o contato com a distribuidora <u>sta-eletronica</u>. Para isso, foi estipulado, com base na média de valores do mercado, um custo de R\$12,00 reais, próximo aos demais modelos.

Nessa situação, cabe a escolha entre esses modelos. Observando que o modelo 08 apresenta as maiores dimensões físicas, mas possui maior mAh, garantindo maior autonomia. Em contrapartida, o modelo 13 garante menor tamanho, apesar de possuir, também, significativa diminuição na autonomia. Por fim, resta o modelo 16, que representa equilíbrio entre os dois anteriores, por possuir uma autonomia mais razoável, além de ser de menor tamanho e custo que o modelo 08.

#### Placa shield

Para se chegar a um valor confiável do melhor modelo de bateria, foram realizados diversos testes experimentais, todavia, para efetuar tais testes foi feita uma placa *shield* para a realização desses experimentos. Em relação ao ESP8266, foi projetado um circuito, cujo esquemático feito no *software Proteus* segue logo em seguida (ver figura 1). Este, possui 8 leds que estão ligados em *current source* com 8 pinos digitais da placa WeMos, que serão controlados por um código fonte<sup>2</sup> anteriormente programado. Há também um botão, cuja sua finalidade é orientar o programa para a escolha da função a ser executada pelo programa. Essas funções, presentes na tabela 3, são: Standby, Leds ligados, 100% uso do CPU e Leds e processador.

<sup>&</sup>lt;sup>2</sup> O novo código fonte utilizado na placa *shield* se encontra no mesmo repositório GitHub do autor do documento, referente a este link: <a href="https://github.com/W8jonas/Internet-das-Vacas/blob/master/programacao/codigo\_do\_servidor---consumov2/codigo\_do\_servidor---consumov2.ino">https://github.com/W8jonas/Internet-das-Vacas/blob/master/programacao/codigo\_do\_servidor---consumov2/codigo\_do\_servidor---consumov2.ino</a>



(Figura 1 – Esquemático da placa *shield*- modelo Proteus)

#### Escolha da bateria ideal

Para a escolha da bateria ideal, foram analisados novos fatores e, para a análise de cada fator, foram realizados diversos procedimentos práticos, a fim de escolher o modelo de melhor rendimento para o projeto. Neste momento, foi utilizada a *shield*, desenvolvida conjuntamente com 2 modelos de códigos de programa, com a intenção de realizar experimentos práticos para aferir o consumo da placa em seus diversos modos de funcionamento.

Inicialmente foi realizado o estudo de consumo da placa ESP8266, de acordo com seu datasheet, com o propósito de adquirir os valores de energia gastos para realizar determinadas funções. Foram analisados esses fatores em suas várias modalidades de funcionamento, tal como em suas funções de poupança de energia, e em suas funções ativas. Os valores de consumo foram medidos em laboratório, utilizando 2 equipamentos diferentes.

Paralelamente, para se chegar ao resultado final, será empregado uma sequência de cálculos utilizando uma média ponderada, atribuindo para cada característica da bateria um peso diferente. Quanto mais alto o valor final, melhor a classificação da bateria. A bateria que alcançar o maior valor será a bateria ideal para o projeto.

#### Consumo da placa ESP8266

A placa Esp8266 possui um avançado sistema de administração de energia, possuindo tecnologia voltada para projetos móveis e, principalmente, aplicações voltadas para o *Internet of Things*.

Sua arquitetura de baixo consumo opera em 3 diferentes modos: Active mode, sleep mode and Deep-sleep mode. No modo de Deep-sleep, o Wi-Fi é desligado, e os sensores da placa trabalham em períodos reduzidos, o consumo se encontra próximo dos 20 µA, quando alimentado com 2.5 Volts.

Em modo Sleep, o Wi-Fi switch é desativado, impedindo a transmissão de dados, seu consumo se aproxima de 0,9 mA. Por fim, há o Active mode, no qual o consumo elétrico depende das aplicações realizadas pelo Esp8266, todavia, seu consumo médio é 80mA. [20]

Para que sejam encontrados valores de referência para as aplicações no código fonte, foram realizados os experimentos com dois <u>códigos testes</u>, com o intuito de medir os valores de consumo para cada modo de operação. Todos os testes foram realizados com a mesma placa *shield* desenvolvida previamente.

Tabela 3 – Resultados dos testes de consumo da placa WeMos D1 mini

| Função em teste                  | VCC (V) | Mínimo (mA)         | Máximo (mA)  | Média (mA)    |  |
|----------------------------------|---------|---------------------|--------------|---------------|--|
|                                  |         | 74,4 <sup>(2)</sup> | 76,1         |               |  |
|                                  | 5       | 74,5 <sup>(3)</sup> | 75,6         | 75,3333333    |  |
|                                  |         | 75,2 <sup>(4)</sup> | 76,2         |               |  |
| 40                               |         | 74,8                | 76           |               |  |
| Standby <sup>(1)</sup>           | 4       | 74,3                | 77,6         | 75,5833333    |  |
| ·                                |         | 74,8                | 76           |               |  |
|                                  |         | 73,3                | 74,8         |               |  |
|                                  | 3,4     | 73,2                | 74,2         | 74,05         |  |
|                                  |         | 73,6                | 75,2         |               |  |
|                                  |         | 75,5                | 75,2         |               |  |
|                                  | 5       | 75,3                | 75,3         | 75,5833333    |  |
|                                  |         | 75,8                | 76,4         |               |  |
| (5)                              |         | 75,4                | 76,8         |               |  |
| 1 Led ligado <sup>(5)</sup>      | 4       | 75,2                | 76,5         | 76,15         |  |
|                                  |         | 75,8                | 77,2         |               |  |
|                                  | 2.4     | 73,8                | 74,8         |               |  |
|                                  | 3,4     | 73,3                | 74,6         | 74,3666667    |  |
|                                  |         | 73,9<br>78,6        | 75,8<br>80   |               |  |
|                                  | _       |                     |              | 70.2          |  |
|                                  | 5       | 78,3                | 80,1         | 79,3          |  |
|                                  |         | 78,8<br>78,6        | 80<br>79,5   |               |  |
| Todos os Lade ligados            | 4       | 78,2                |              | 79,0666667    |  |
| Todos os Leds ligados            | 4       | 78,2<br>78,8        | 79,3<br>80   | /9,000000/    |  |
|                                  | 3,4     | 76,2                | 78,1         | 77,1333333    |  |
|                                  |         | 75,9                | 77,2         |               |  |
|                                  |         | 76,5                | 78,9         |               |  |
|                                  |         | 76                  | 77,3         |               |  |
|                                  | 5       | 76                  | 76,3         | 76,9          |  |
|                                  | 3       | 76,6                | 79,2         | 7 0,5         |  |
|                                  |         | 75,5                | 76,6         |               |  |
| 100% uso do CPU <sup>(6)</sup>   | 4       | 75,3                | 76,6         | 76,2333333    |  |
| 100/0 450 40 21 2                | ·       | 75,9                | 77,5         | ,             |  |
|                                  |         | 74,8                | 75,5         |               |  |
|                                  | 3,4     | 74,4                | 75,2         | 75,1666667    |  |
|                                  |         | 74,9                | 76,2         |               |  |
|                                  |         | 76,8                | 78,1         |               |  |
|                                  | 5       | 76,4                | 77,7         | 77,7833333    |  |
|                                  |         | 78,2                | 79,5<br>77,6 |               |  |
|                                  |         | 76,8                | 77,6         |               |  |
| 1 Led ligado + 100% uso CPU      | 4       | 76,7                | 77,3         | 77,3833333    |  |
| -                                |         | 77,8                | 78,1         |               |  |
|                                  |         | 74,9                | 76,3         |               |  |
|                                  | 3,4     | 74,4                | 75,2         | 75,55         |  |
|                                  |         | 75,4                | 77,1         |               |  |
|                                  |         | 79,6                | 80,8         |               |  |
|                                  | 5       | 79,2                | 81,4         | 80,3333333    |  |
|                                  |         | 79,8                | 81,2         |               |  |
| T-1I-1-1-1 : 1000/               |         | 79                  | 80,5         | <b>5</b> 0.05 |  |
| Todos os Leds ligados + 100% uso | 4       | 79,1                | 80,1         | 79,85         |  |
|                                  |         | 79,9                | 80,5         |               |  |
|                                  | 2.4     | 76,4                | 78,2         | 77.55         |  |
|                                  | 3,4     | 76,6<br>76,7        | 78,2<br>79,2 | 77,55         |  |

| ESP em modo server | e cliente ligado  | 5               | 75,2<br>75,1<br>75,5 | 75,5<br>75,1<br>75,8   | 75,3666667             |
|--------------------|-------------------|-----------------|----------------------|------------------------|------------------------|
| LSI em modo server | e effente figado  | 4<br>3,4        |                      | lidade <sup>(7)</sup>  | ≈75                    |
|                    |                   |                 | 71,9                 | 72,1<br>71,8           | 71 0922222             |
| ESP only o         | client            | 5               | 71,4<br>72,1         | 71,8<br>72,6           | 71,9833333             |
|                    | ŀ                 | 3,4             | Instab               | ilidade                | ≈70                    |
|                    |                   |                 | 71,9                 | 72                     | 71 0222222             |
|                    |                   | 5               | 71,7<br>72<br>70,8   | 71,8<br>72,2           | 71,9333333             |
| Modom S            | Modem Sleep       |                 |                      | 71,4<br>71,1           | 71,2833333             |
| Modelli S          | Геер              | 4               | 71<br>71,4           | 72                     | 71,2833333             |
|                    |                   | 3,4             | 72,1<br>71,8         | 72,7<br>71,9           | 72,2333333             |
|                    |                   | 3,4             | 72,3                 | 72,6                   | 72,233333              |
|                    |                   | 5               | 16,2<br>16,2         | 16,4<br>16,7           | 16,4                   |
|                    |                   | 3               | 16,4                 | 16,5                   | 10,4                   |
| Light Sleep – C    | DII otivo         | 4               | 16,3<br>16,1         | 16,5<br>16,2           | 16,3                   |
| Light Steep – C    | PU aliva          | 4               | 16,3                 | 16,4                   | 10,5                   |
|                    |                   | 2.4             | 15,5                 | 15,6                   | 15.500007              |
|                    |                   | 3,4             | 15,5<br>15,6         | 15,5<br>15,7           | 15,5666667             |
|                    |                   | _               | 2,3                  | 2,4                    | 2 2222222              |
|                    |                   | 5               | 2,1<br>2,2           | 2,2<br>2,2             | 2,23333333             |
| T. I. GI. GDT      |                   |                 | 2,3                  | 2,3                    |                        |
| Light Sleep – CPU  | J desativada      | 4               | 2,1<br>2,3           | 2,1<br>2,2             | 2,21666667             |
|                    |                   |                 | 1,8                  | 1,9                    |                        |
|                    |                   | 3,4             | 1,7<br>1,8           | 1,7<br>1,8             | 1,78333333             |
|                    |                   |                 | 0,2                  | 0,1                    |                        |
|                    |                   | 5               | 0,1<br>0,1           | 0,2<br>0,1             | ≈0,13333333            |
|                    | ľ                 |                 | 0,02                 | 0,02                   |                        |
| D 01               |                   | 4               | 0,01<br>0,01         | 0,02<br>0,02           | ≈0,01666667            |
| Deep Sle           | eep               | 2.2             | 0,01                 | 0,02                   | -0.0117(8)             |
|                    |                   | 3,3             | 0,01<br>0,01         | 0,01<br>0,01           | ≈0,0116 <sup>(8)</sup> |
|                    |                   | 3.0             | 0,01<br>0            | 0,01<br>0,01           | ≈0,0066                |
|                    |                   | 3.0             | 0                    | 0,01                   | ~0,0000                |
|                    |                   | 5               | 74,6<br>74,7         | 75,8<br>75,2           | 75 222222              |
|                    | POUT = +20.5dBm   | 3               | 74,7                 | 75,2<br>76,3           | 75,2333333             |
|                    |                   | 3,4             | Muito in             | nstável <sup>(9)</sup> | -                      |
|                    |                   | 3,4             | 75,5                 | 76                     |                        |
|                    | POUT = +18.5dBm   | 5               | 76,2<br>76,3         | 78,9<br>77,3           | 76,7                   |
|                    | FOUT = +16.3dbiii | 4               |                      | instável               |                        |
| Transmit 802.11b   |                   | 3,4             |                      |                        | -                      |
| CCK = 1Mbps        |                   | 5               | 74,7<br>74,7         | 75,2<br>75             | 75,21666               |
| Ou                 | DOUT 164D         |                 | 75,6                 | 76,1                   |                        |
| CCK = 11Mbps       | POUT = +16dBm     | 4               | 75,8<br>76,6         | 77,7<br>77             | 77,1666667             |
|                    |                   | 2.4             | 77,6                 | 78,3                   |                        |
|                    |                   | 3,4             | 74,3                 | 75,2                   | -                      |
|                    |                   | 5               | 74,4                 | 75                     | 74,8666667             |
|                    | POUT = +14dBm     |                 | 74,8<br>75,5         | 75,5<br>77,6           |                        |
|                    | 1001 – Hubiii     | 4               | 75,4                 | 76,8                   | 76,75                  |
|                    |                   | 3,4             | 76,8<br>Muito        | 78,4<br>instável       | -                      |
|                    |                   | J, <del>4</del> | iviuito              | mstavei                |                        |

|                  |                 |                     | 72.5         | 74.2                | 1                                       |
|------------------|-----------------|---------------------|--------------|---------------------|-----------------------------------------|
|                  |                 | 5                   | 73,5<br>73,3 | 74,2<br>75          | 74.05                                   |
|                  | DOLUT . 20 5 ID | 3                   | 73,3<br>73,8 | 74,5                | 74,05                                   |
|                  | POUT = +20.5dBm | 4                   | /3,0         | 74,3                |                                         |
|                  |                 | 3,4                 | Muito        | instável            | -                                       |
|                  |                 | 3,4                 | 71.4         | 71,6                |                                         |
|                  |                 | _                   | 71,4         |                     | 71.71.6667                              |
|                  |                 | 5                   | 71,2         | 71,8                | 71,7166667                              |
|                  | DOLLER 10.51D   |                     | 72           | 72,3                |                                         |
|                  | POUT = +18.5dBm |                     | 71,3         | 71,5                |                                         |
|                  |                 | 4                   | 71,2         | 71,3                | 71,5166667                              |
|                  |                 |                     | 71,6         | 72,2                |                                         |
|                  |                 | 3,4                 |              |                     |                                         |
| Transmit 802.11g |                 |                     | 71           | 72                  |                                         |
|                  |                 | 5                   | 70,8         | 70,9                | 71,25                                   |
| OFDM 54Mbps      |                 |                     | 71,2         | 71,6                |                                         |
|                  |                 |                     | 70,9         | 71,2                |                                         |
|                  | POUT = +16dBm   | 4                   | 70,8         | 70,9                | 71,2333333                              |
|                  |                 |                     | 71,6         | 72                  | ·                                       |
|                  |                 |                     | 71,5         | 72                  |                                         |
|                  |                 | 3,4                 | 71,4         | 72,2                | 71,9833333                              |
|                  |                 | -,.                 | 71,7         | 73,1                | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                  |                 |                     | 70,8         | 71,2                |                                         |
|                  |                 | 5                   | 70,5         | 71,2                | 71,1166667                              |
|                  |                 | 3                   | 71,4         | 71,6                | 71,1100007                              |
|                  | POUT = +14dBm   |                     | 70,8         | 71,1                |                                         |
|                  | FOUT = +14dBill | 4                   | 70,8         | 71,1                | 71,1666667                              |
|                  |                 | 4                   |              | 71,8                | /1,100000/                              |
|                  |                 | 2.4                 | 71,5         | Instabilidade       |                                         |
|                  |                 | 3,4                 | 71,1         |                     | 1                                       |
|                  | POUT = +20.5dBm | -                   |              | 71,3                | 71 4222222                              |
|                  |                 | 5                   | 70,9         | 71,3                | 71,4333333                              |
|                  |                 |                     | 71,8         | 72,2                |                                         |
|                  |                 |                     | 71,1         | 71,2                |                                         |
|                  |                 | 4                   | 70,8         | 71                  | 71,3333333                              |
|                  |                 |                     | 71,8         | 72,1                |                                         |
|                  |                 | 3,4                 |              | Muita instabilidade |                                         |
|                  |                 |                     | 70,1         | 71,3                |                                         |
|                  |                 | 5                   | 70,5         | 71,1                | 71,1833333                              |
|                  |                 |                     | 71,6         | 72,5                |                                         |
|                  |                 |                     | 70,8         | 71,3                |                                         |
|                  | POUT = +18.5dBm | 4                   | 70,8         | 71,1                | 71,2833333                              |
|                  |                 |                     | 71,7         | 72                  |                                         |
|                  |                 |                     | 71,6         | 72                  |                                         |
| Transmit 802.11n |                 | 3,4(10)             | 71,6         | 72                  | 71,9666667                              |
|                  |                 |                     | 72,5         | 72,1                |                                         |
| MCS 7            |                 |                     | 70,9         | 71,1                |                                         |
|                  |                 | 5                   | 70,9         | 71                  | 71,1833333                              |
|                  |                 |                     | 71,5         | 71,7                | ·                                       |
|                  |                 |                     | 71           | 71,2                |                                         |
|                  | POUT = +16dBm   | 4                   | 70,8         | 71                  | 71,2166667                              |
|                  | 1001 11000111   |                     | 71,5         | 71,8                | ,=                                      |
|                  | l l             |                     | 71,7         | 72                  |                                         |
|                  |                 | 3,4(*10)            | 71,4         | 72,1                | 72,2                                    |
|                  |                 | 5,7                 | 72,7         | 73,3                | 12,2                                    |
|                  |                 |                     | 70,9         | 71,3                |                                         |
|                  |                 | _                   | 70,9<br>70,9 |                     | 71 216667                               |
|                  |                 | 5                   |              | 71,2<br>72          | 71,3166667                              |
|                  | DOLUT 144D      |                     | 71,6<br>71   |                     |                                         |
|                  | POUT = +14dBm   |                     |              | 71,1                | 71.05                                   |
|                  |                 | 4                   | 70,6         | 71                  | 71,25                                   |
|                  |                 | 2 ((1))             | 71,8         | 72                  |                                         |
|                  |                 | 3,4 <sup>(11)</sup> |              | Muita instabilidade |                                         |

#### Notas:

Existem três códigos distintos, para que seja feita uma análise mais bem elaborada. O primeiro código <sup>3</sup> tem como objetivo testar os modos operacionais do ESP, já o segundo<sup>4</sup>, possui como única finalidade testar os diferentes modos de transmissão de dados e os modos de baixo consumo elétrico. O primeiro código conta com o WIFI ligado, todavia, sem a transmissão de energia.

- (1) No modo *standby* o led onboard permanece ligado, sendo necessário caso queria desliga-lo, configurar via *software*.
- (2) O primeiro valor de medição foi realizado com o multímetro DT830B.
- (3) O segundo valor de medição foi realizado com o multímetro Imimipa ET-1002.
- (4) O terceiro valor de medição foi realizado com o multímetro
- (5) No modo '1 LED ligado' somente 1 do total de 8 LEDs é ligado, sendo a função seguinte ao 'standby'
- (6) O CPU executará uma série de operações aritméticas com a finalidade de por seu desempenho no máximo.
- (7) Foi apresentada certa instabilidade nas medições, ou por grandes variações em curtos períodos de tempo ou pelo desligamento do ESP por problemas de alimentação.
- (8) Como os valores medidos foram registrados por multímetros, estes não apresentam grande precisão para valores próximos a 0, sendo 0,01Volts o menor valor possível registrado antes do 0.
- (9) Aferição das medidas impossível, por desligamento ininterrupto do ESP.
- (10) Foram observados picos de tensão nas aferições que podem comprometer a autonomia. Além de observada certa instabilidade por parte do ESP.
- (11) ESP apresentou muita instabilidade em certos momentos.

## Equação da média ponderada

Para a obtenção do resultado final, será realizada uma média ponderada. Serão considerados 3 fatores na equação, sendo estes referentes a segunda tabela. Na ordem de pesos, temos tamanho, custo e mAh.

$$\text{Media ponderada} = \frac{\frac{1}{\textit{Tamanho}} \times \textit{peso1} + \frac{1}{\textit{Custo}} \times \textit{peso2} + \textit{mAh} \times \textit{peso3}}{\textit{peso1} + \textit{peso2} + \textit{peso3}} \tag{1}$$

Em que:

Tamanho = comprimento  $\times$  largura  $\times$  altura da bateria

peso1 = valor do peso1 aplicado ao tamanho

Custo = Valor unitário de custo

peso2 = valor do peso2 aplicado ao Custo

mAh = Corrente fornecida em 1 hora de uso pela bateria

peso3 = valor do peso3 aplicado ao mAh

<sup>&</sup>lt;sup>3</sup> O código referido pode ser acessado por este link do github: https://github.com/W8jonas/Internet-das-Vacas/blob/master/programacao/codigo\_modos\_de\_operacao/codigo\_modos\_de\_operacao.ino

<sup>&</sup>lt;sup>4</sup> O código referido pode ser acessado por este link do github: XXXXXXX

#### 4. Junho

## Avaliação de consumo da placa WeMos

Com os testes empíricos, pode-se constatar que o modelo de operação de maior consumo foi "*Todos os Leds ligados* + 100% uso", com consumo médio em 80 mA. Este resultado demonstra o esperado, pois são atribuídas 8 cargas para a placa, além do estresse na CPU proporcionada pelas operações aritméticas. Com este teste, pode-se chegar somente ao consumo máximo da placa, entretanto, esse modo de operação não possui maior significância para o sistema final de monitoramento das vacas.

Ademais, pode-se concluir, como esperado, que o modo de operação a qual possui menor consumo é o "Deep-sleep", com consumo entre 0,1 mA e 0,006 mA. Sendo esses valores, dependentes da tensão de alimentação da placa. Valores próximos de 3V aproximam o consumo a ≈0 mA.

Como um dos objetivos de todo o sistema é atingir uma maior autonomia, é esperado que os modos de funcionamento se alternem de formas diferentes, para um melhor desempenho com um menor consumo. Estas alternâncias constituem um determinado tempo X, de acordo com o qual a placa entrará em modo de economia de energia e um determinado tempo Y pelo qual a placa entrará em modo de funcionamento. Além desses dois modos, pode-se implementar um terceiro tempo W, em que a placa entrará em modo de transmissão de dados. Sendo cada um desses modos passíveis de alterações em suas configurações.

Abaixo, segue a tabela 4 a qual consiste no resumo da tabela 3.

Tabela 4

| Modo de operação             | Configurações do modo      | Consumo médio (mA) |
|------------------------------|----------------------------|--------------------|
| Standby                      | VCC = 5v                   | 75,333             |
| 1 Led ligado                 | VCC = 5v                   | 75,583             |
| Todos os Leds ligados        | VCC = 5v                   | 79,3               |
| 100% uso do CPU              | VCC = 5v                   | 76,9               |
| 1 Led ligado + 100% CPU      | VCC = 5v                   | 77,783             |
| Todos os Leds + 100% CPU     | VCC = 5v                   | 80,333             |
| ESP server e cliente ligado  | VCC = 5v                   | 75,366             |
| ESP only client              | VCC = 5v                   | 71,983             |
| Modem Sleep                  | VCC = 5v                   | 71,933             |
| Light Sleep – CPU ativa      | VCC = 5v                   | 16,4               |
| Light Sleep – CPU desativada | VCC = 5v                   | 2,23               |
| Door Cloop                   | VCC = 5v                   | 0,133              |
| Deep Sleep                   | VCC = 3.3v                 | 0,011              |
| Transmit 802.11b             | VCC = 5v e POUT = +20.5dBm | 75,233             |
| 11ansinit 802.110            | VCC = 5v e POUT = +14dBm   | 74,866             |
| Transmit 902 11 a            | VCC = 5v e POUT = +20.5dBm | 74,050             |
| Transmit 802.11g             | VCC = 5v e POUT = +14dBm   | 71,116             |
| Transmit 802.11n             | VCC = 5v e POUT = +20.5dBm | 71,433             |
| 11411511111 002.1111         | VCC = 5v e POUT = +14dBm   | 71,250             |

### 5. Julho

## Calculo de autonomia entre os modos de operação

Para efeitos comparativos de análises, serão atribuídos diferentes tempos e modos de operação para X, Y e W, seguindo um modelo que tenha boa performance nas características atribuídas.

Nos primeiros testes teóricos, serão atribuídos uma alimentação de 5 volts com uma bateria de 100 mAh. Os testes foram organizados na <u>tabela 5</u>, a qual visa demonstrar de forma direta o número de horas que o circuito poderá ser ligado pelo modelo de bateria escolhido.

Tabela 5

| Especific | ações do teste: | valor  | unidade |
|-----------|-----------------|--------|---------|
|           | bateria         | 100    | mAh     |
|           | bateria         | 360000 | mAsec   |

| Teste(n°) | Modo de       | Operação                          | Consumo | Tempo de operação | Consumo  | somatório<br>consumo | Consumo   | Número de ciclos | Duração<br>circ |         |
|-----------|---------------|-----------------------------------|---------|-------------------|----------|----------------------|-----------|------------------|-----------------|---------|
| ,         | funcionamento | ito                               | (mA)    | (s)               | (mAsec)  | por ciclo            | hora(mAh) | realizáveis      | Em horas        | Em dias |
|           | Valor X       | Deep Sleep                        | 0,133   | 3540,000          | 470,820  |                      |           |                  |                 |         |
| 1         | Valor Y       | -                                 | 0,000   | 0,000             | 0,000    | 4984,800             | 1,385     | 72,21955         | 72,21955        | 3,01    |
|           | Valor W       | Transmit 802.11b POUT = + 20.5dBm | 75,233  | 60,000            | 4513,980 |                      |           |                  | ·               | ·       |
|           | 77.1.77       | P GI                              |         | 2540.000          | 470.000  |                      |           |                  |                 |         |
|           | Valor X       | Deep Sleep                        | 0,133   | 3540,000          | 470,820  |                      |           |                  |                 |         |
| 2         | Valor Y       | -                                 | 0,000   | 0,000             | 0,000    | 4756,800             | 1,321     | 75,68113         | 75,68113        | 3,15    |
|           | Valor W       | Transmit 802.11n POUT = + 20.5dBm | 71,433  | 60,000            | 4285,980 |                      |           |                  |                 |         |
|           | I             |                                   |         |                   |          |                      | I         |                  |                 |         |
|           | Valor X       | Deep Sleep                        | 0,133   | 7190,000          | 956,270  |                      |           |                  | 430,98288       |         |
| 3         | Valor Y       | -                                 | 0,000   | 0,000             | 0,000    | 1670,600             | 0,232     | 215,49144        |                 | 17,96   |
|           | Valor W       | Transmit 802.11n POUT = + 20.5dBm | 71,433  | 10,000            | 714,330  |                      |           |                  |                 |         |
|           | T             |                                   |         |                   |          |                      | ı         |                  |                 |         |
|           | Valor X       | Deep Sleep                        | 0,133   | 7190,000          | 956,270  |                      | 3 0,163   | 306,30399        | 612,60798       | 25,53   |
| 4         | Valor Y       | Light Sleep - CPU ativa           | 16,400  | 9,000             | 147,600  | 1175,303             |           |                  |                 |         |
|           | Valor W       | Transmit 802.11n POUT = + 20.5dBm | 71,433  | 1,000             | 71,433   |                      |           |                  |                 |         |
|           | 1             |                                   |         |                   |          |                      |           |                  |                 |         |
|           | Valor X       | Deep Sleep                        | 0,133   | 3590,000          | 477,470  |                      |           |                  |                 |         |
| 5         | Valor Y       | Light Sleep - CPU ativa           | 16,400  | 9,000             | 147,600  | 696,503              | 0,193     | 516,86784        | 516,86784       | 21,54   |
|           | Valor W       | Transmit 802.11n POUT = + 20.5dBm | 71,433  | 1,000             | 71,433   | ·                    | ·         |                  | ·               | ·       |
|           |               |                                   |         |                   |          |                      |           |                  |                 |         |
|           | Valor X       | Deep Sleep                        | 0,133   | 3590,000          | 477,470  |                      |           | 290,08794        |                 | 12,09   |
| 6         | Valor Y       | 100% uso do CPU                   | 76,900  | 9,000             | 692,100  | 1241,003             | 0,345     |                  | 290,08794       |         |
|           | Valor W       | Transmit 802.11n POUT = + 20.5dBm | 71,433  | 1,000             | 71,433   |                      | 0,343     |                  | 2,0,00.7        | ,       |

Para a realização do cálculo de autonomia em horas, foram efetuadas diversas operações aritméticas. Inicialmente, convertia-se o valor de carga da bateria de mAh para mAsec. Para tal, basta multiplicar o primeiro valor por 3600. Após, define-se os modos de operação de X, Y e W, seus respectivos valores de consumo e seus períodos de operação.

A partir deste ponto, calcula-se o somatório do consumo por ciclo, sendo o ciclo total o valor de todos os períodos dos modos de operação.

somatório consumo em um ciclo = 
$$(Cx \cdot Tx) + (Cy \cdot Ty) + (Cw \cdot Tw)$$
 (2)

Em que:

Cx = Consumo do modo X

Tx = Tempo de operação do modo X

Cy = Consumo do modo Y

Ty = Tempo de operação do modo Y

Cw = Consumo do modo W

Tw = Tempo de operação do modo W

Após o cálculo do somatório consumo, calcula-se o número de ciclos realizáveis com a determinada carga da bateria. Para isso, basta dividir a carga da bateria anteriormente calculada pelo resultado da equação 2.

Ciclos realizáveis = 
$$\frac{Carga\_bateria(mAsec)}{somatório\ consumo\ em\ um\ ciclo}$$
 (3)

Conhecido o número de ciclos realizáveis pela bateria, basta relaciona-lo ao tempo de sua execução total. Sendo assim, basta dividir o número de ciclos realizáveis pelo número de vezes que o ciclo se completa em 3600 segundos.

$$Autonomia = \frac{Ciclos realizáveis}{\frac{3600}{Tx + Ty + Tw}}$$
(4)

Agora que se obteve a equação responsável pelo calcula da autonomia, basta manipularmos as incógnitas e obter a equação simplificada. Assim temos:

$$Autonomia = \frac{Carga\_bateria}{(Cx*Tx) + (Cy*Ty) + (Cw*Tw)} * \frac{Tx + Ty + Tw}{3600}$$
 (5)

A seguir, o gráfico 1, a qual transcreve o valor de carga da bateria em consequência da passagem de tempo no qual o circuito permanece ligado. O eixo X representa em dezenas o valor total de horas que o modelo de teste consegue permanecer ligado e o eixo Y representa a carga da bateria.

#### Gráfico 1



A partir das análises preliminares do gráfico, é possível destacar a diferença entre a melhor curva e a pior curva de consumo, destacando, dessa forma, como a pouca diferença entre algumas variáveis altera o resultado final. De certo modo, é impossível que se tenha uma precisão de 100% no valor de autonomia, isso se deve a dois principais motivos.

O primeiro fator se deve a curva de descarga da bateria, a qual não é inteiramente linear, apresentando em seu início e fim curvas exponenciais, dificultando, dessa maneira, os cálculos precisos com relação a descarga da bateria. Essas curvas estão diretamente ligadas aos tipos de cada bateria e os diferentes modelos produzidos por cada empresa da área.

O segundo fator direciona-se ao fato que os próprios chips possuem variantes internos, estes que por sua vez variam naturalmente, além de serem susceptíveis a variações externas como temperatura. Logo, com variações externas, soma-se as variações resultantes do código fonte executado pelo ESP8266, de suas contas e de suas variações com o decorrer do tempo. Ademais, soma-se as variações de corrente consumida pelo chip em consequência das variações de tensão fornecida pela bateria, visto que esta, ao passar do tempo, tende a diminuir.

#### Resultado preliminar – Modelo de bateria em relação a autonomia

Os cálculos apresentados foram realizados com uma bateria de 100mAh que é considerada de baixa autonomia, todavia, com uma bateria de baixa autonomia foi possível alcançar um tempo de uso aproximado de 610 horas, equivalente a 25 dias e 10 horas. Caso use-se uma bateria de 1000mAh, ou seja, 10 vezes mais capacidade de carga, o resultado final seria de 250 dias, aproximadamente 8 meses e 9 dias.

Todos esses valores levando em conta as condições do teste 4, a qual pode ser ainda mais bem trabalhado possibilitando ainda menos consumo, todavia, essas alterações levam em conta a forma como o código será trabalhado posteriormente.

Dentre outra variável notável para as simulações dos resultados é o valor de tensão da bateria, pois este valor na placa WeMos tem como valor máximo 5,5 volts e valor mínimo sem que haja perda ou inconsistência de funcionamento da placa, 4 volts. Mas, caso o chip seja somente a placa ESP8266, os valores de funcionamento vão de 3,7 volts até 3 volts, possibilitando uma gama maior de modelos de bateria que devem ser estudadas.

## 6. Agosto

Início do desenvolvimento do circuito datalogger de tensão, no qual foi utilizado para a monitoramento de tensão nas baterias selecionadas para o teste. Inicialmente foram 'upados' mesmos códigos com suas adaptações tanto para o ESP32 quando para o ESP8266, no qual eram responsáveis por operar o protótipo de modo a seguir o padrão de consumo/funcionamento abaixo.

| Espe    | cificações: | valor   | unidade |  |
|---------|-------------|---------|---------|--|
| bateria |             | 750     | mAh     |  |
|         | bateria     | 2700000 | mAsec   |  |

| Teste | Atividade<br>em | Operação Consumo                     |               | Tempo de operação | Consumo  | consumo  | Consumo<br>por hora | Número de ciclos | Duração<br>do ciro |            |
|-------|-----------------|--------------------------------------|---------------|-------------------|----------|----------|---------------------|------------------|--------------------|------------|
| (n°)  | andamento       | Operação                             | (mA) operação |                   | (mAsec)  |          | (mAh)               | realizáveis      | Em<br>horas        | Em<br>dias |
|       | Valor X         | Deep Sleep                           | 0,133         | 100,00            | 13,30    |          |                     |                  |                    |            |
| 1     | Valor Y         | 100% uso do CPU                      | 76,900        | 20,00             | 1538,00  | 1908,46  | 15,26               | 1414,74          | 49,1               | 2,05       |
| 1     | Valor W         | Transmit 802.11n<br>POUT = + 20.5dBm | 71,433        | 5,00              | 357,16   | 1700,40  |                     |                  | 45,1               | 2,03       |
|       |                 |                                      |               |                   |          |          |                     |                  |                    |            |
|       | Valor X         | Deep Sleep                           | 0,133         | 100,00            | 13,30    |          |                     |                  |                    |            |
| 2     | Valor Y         | 100% uso do CPU                      | 76,900        | 200,00            | 15380,00 | 29679,90 | 59,36               | 90,97            | 12,6               | 0,53       |
| 2     | Valor W         | Transmit 802.11n<br>POUT = + 20.5dBm | 71,433        | 200,00            | 14286,60 | 27077,70 | 37,30               | 70,71            | 12,0               | 0,55       |

O circuito teve como centro o Arduino Mega, a qual serviu de ponte entre a leitura de tensão de cada bateria ligada à um diferente ESP e o armazenamento dessas leituras em um cartão de memória. Para a leitura e o registro serem feitos com sucesso e uma coerente exatidão, foram utilizados dois módulos ao Arduino Mega, o módulo 'Cartão SD' e o módulo 'RTC – Real Time Clock'.

Cada um dos módulos teve suas funções bem definidas. O 'Cartão SD' foi utilizado para armazenar todos os dados colhidos das leituras, contendo a data e hora da medida, que foram extraídos do RTC. As gravações foram feitas em um arquivo de nome "TENSOEX.SVC", onde 'X' representa o número do teste. Como por exemplo, o teste número 3 teve nome igual a: "TENSOE3.SVC".

Dentro desse arquivo, foram armazenados os dados separados por um caractere indicador, nos primeiros testes, foi escolhido o caractere ', ', porém, após algumas análises, o caractere escolhido foi substituído para '; '. Isso foi feito para que, após o termino das gravações, o arquivo possa ser aberto utilizando algum software para tabulações, o mais conhecido, e que foi utilizado é o Microsoft Excel. A partir dele, é possível abrir esse arquivo e colocar cada valor lido separado em uma célula para posteriormente trabalhar com alguma aplicação no Excel, como a construção de gráficos comparativos.

Os dados foram mantidos em uma hierarquização de ordem, em outras palavras, todos os dados foram sempre armazenados na mesma ordem, com a finalidade de se manter um padrão e facilitar a aplicabilidade em diversos programas de tabulação. A ordem escolhida para a escrita no cartão de memória foi: data, hora,

valor do sensor 1, valor do sensor 2, erro 1, erro 2, ||; Dessa forma, os dados foram gravados como demonstrado abaixo:

## 11.09.2018; 16:56:00; 3.51; 3.57; 4; 2; ||;

Logo, transcrevendo as informações, temos:

Data: 11.09.2018

Horas: 16:56:00

Valor do sensor 1: 3.51

Valor do sensor 2: 3.57

Erro 1: 4

Erro 2: 2

|| : Caractere sinalizador de fim de linha.

A cada nova leitura de tensão nas baterias, é escrito uma nova linha, logo abaixo do anterior, com a exata mesma sintaxe. Todavia, com seus dados atualizados com os novos valores referentes a leitura.

Além disso foi desenvolvido o resumo para a apresentação do evento 'Planeta Inovação', no qual este contém o resumo de todo o projeto desenvolvido até o atual momento. Ademais, o evento contou com a produção e a apresentação de um Banner, a qual apresenta as ideias principais do projeto de forma sucinta.

## 7. Setembro

#### 8. Outubro

#### 9. Novembro

## 10. Dezembro

## REFERÊNCIAS

- [1] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/rontek-recarregaveis-industrial/nicd/tamanho-aaa\_2. Acesso em 21 de abril de 2018.
- [2] GOLDPOWER. Pilhas e baterias Ni-mh. Disponível em: http://www.goldpower.com.br/aaa-800mah-1-2v.php. Acesso em 21 de abril de 2018.
- [3] GOLDPOWER. Pilhas e baterias Ni-mh. Disponível em: http://www.goldpower.com.br/aaa-1000mah-1-2v.php. Acesso em 21 de abril de 2018.
- [4] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/rontek-recarregaveis-consumidor/aa/12v-2100mah\_3. Acesso em 21 de abril de 2018.
- [5] MOXDOTCELL. Pilha recarregável MO-AA2700. Disponível em: http://www.moxdotcell.com.br/pilha-recarregavel-mo-aa2700-com-2-unidades-rtu.html. Acesso em 21 de abril de 2018.
- [6] COMP DISTRIBUIDORA. Bateria recarregável Knup. Disponível em: https://www.compdistribuidora.com.br/bateria-recarregavel-9v-knup-kp-bt9v.html. Acesso em 21 de abril de 2018.
- [7] FLEXGOLD. Flex X-cell. Disponível em: http://www.flexgold.com.br/produto/fx-9v45b1/. Acesso em 22 de abril de 2018
- [8] FULLYMAX. Bateria Fullymax SYMA. Disponível em: http://www.asaseletricas.com.br/loja/product\_info.php?products\_id=4448. Acesso em 15 de maio de 2018.
- [9] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-cameras/37v-680mah. Acesso em 23 de abril de 2018.
- [10] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-brinquedos-e-modelismo/72v-1800mah. Acesso em 23 de abril de 2018.

- [11] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-brinquedos-e-modelismo/72v-3000mah. Acesso em 23 de abril de 2018.
- [12] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-telefones-sem-fio-24v-36-48-e-6v/36v-1300mah. Acesso em 23 de abril de 2018.
- [13] MOXDOTCELL. Pilha recarregável MO-AA2700. Disponível em: http://www.moxdotcell.com.br/bateria-mo-086b-3aaa-3-6v-700-mah-para-talk-about.html. Acesso em 21 de abril de 2018.
- [14] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/pilhas-botao/36v-80mah. Acesso em 1 de maio de 2018.
- [15] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-telefones-sem-fio-24v-36-48-e-6v/36v-600mah. Acesso em 1 de maio de 2018.
- [16] STA-ELETRONICA. Pilhas e baterias Rontek. Disponível em: http://www.sta-eletronica.com.br/produtos/pilhas-e-baterias/recarregaveis/para-radios-de-comunicacao/72v-600mah. Acesso em 1 de maio de 2018.
- [17] WIKI WEMOS. Esquemático completo. Disponível em: https://wiki.wemos.cc/\_media/products:d1:sch\_d1\_mini\_v3.0.0.pdf. Acesso em 15 de maio de 2018.
- [18] DATASHEET ME6211. High Speed LDO Regulators, Low ESR Cap. Disponível em: https://datasheet.lcsc.com/szlcsc/ME6211C33M5G-N\_C82942.pdf. Acesso em 15 de maio de 2018.
- [19] FULLYMAX. Bateria Fullymax SYMA. Disponível em: <a href="http://www.asaseletricas.com.br/loja/product\_info.php?products\_id=4301">http://www.asaseletricas.com.br/loja/product\_info.php?products\_id=4301</a>. Acesso em 15 de maio de 2018.
- [20] DATASHEET ESP8266EX. Disponível em:

 $\label{lem:https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex\_datasheet\_en.pdf~.~Acesso~em~21~de~maio~de~2018.$ 

- [21] MINAMOTO. LiFePO4 Polymer MODELS. Disponível em: http://www.minamoto.com/lifepo4-polymer/ Acesso em 05 de Junho de 2018.
- [22] MINAMOTO. LiFePO4 Cylindrical MODELS. Disponível em: http://www.minamoto.com/lifepo4-cylindrical/ Acesso em 05 de Junho de 2018.
- [23] FULLYMAX. Bateria Fullymax SYMA. Disponível em: <a href="http://www.asaseletricas.com.br/loja/product\_info.php?products\_id=4449">http://www.asaseletricas.com.br/loja/product\_info.php?products\_id=4449</a>. Acesso em 11 de julho de 2018.