Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN					

Fifth Semester B.E. Degree Examination AUTOMATA THEORY AND COMPUTABILITY

TIME: 03 Hours Max. Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

		Module – 1				
	(a)	Define the following with example. i). Alphabet ii). Power of an alphabet. iii). Concatenation iv). Language	5			
Q.1	(b)	Define DFSM. Draw a DFSM to accepts i) decimal strings which are divisible by three. ii) L = {w / w ∈ {a,b}* is the string with even no. of a's and odd no. of b's} iii) L = {w/ w ∈ {a,b}* is the string of a's and b's and end with the sub string abb}				
	(c)	With a neat diagram, explain a hierarchy of language classes in Automata Theory	5			
	I	OR	T			
	(a)	Convert the following NDFSM to its equivalent DFSM. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8			
	(b)	Write a note on finite state transducers.	4			
Q.2	(c)	Minimize the following DFSM. $ \begin{array}{c cccc} & 0 & 1 \\ & \rightarrow A & B & A \\ \hline B & A & C \\ \hline C & D & B \\ *D & D & A \\ \hline E & D & F \\ \hline F & G & E \\ \hline G & F & G \\ \hline H & G & D \end{array} $	8			
		Module – 2				
0.3	(a)	Define Regular expression. Write RE for the following Languages i) L = {a ²ⁿ b ^{2m} n>=0, m>=0} ii) L = {w : w mod 3 = 0 where w ∈ {a,b}*} iii) Language of all strings of 0's and 1's that has at least one pair of consecutive 0's	8			
Q.3	(b)	State and prove the Pumping Lemma Theorem for Regular languages.				
	(c)	Write the Applications of Regular Expressions.	4			
		OR				
	(a)	Using Kleen's theorem, prove that any language that can be defined with a Regular Expression can be accepted by some FSM.	8			
	(b)	Prove that the Regular Languages are Closed Under Complementation and Intersection.	6			

Q.4	(c)	Obtain NDFSM for the Regular expression (a+b)* abb and (a* + ab) aab*	6
	1 ` ′	Module – 3	
Q.5	(a)	Define Context Free Grammer. Write the CFG for the following Languages. i) $L=\{a^n\ b^n\ c^m:\ n,\ m>=0\}$ ii) $L=\{a^n\ b^{n+2}:\ n>=0\}$ iii) $L=\{w\in\{a,b\}^*:\ n_a(w)=n_b(w)\}$	8
	(b)	Define the following with example i) Leftmost Derivation ii) Rightmost Derivation iii) Parse Tree	6
	(c)	Define Ambiguous Grammar. Show that following grammar is Ambiguous. S→ iCtS iCtSeS a C→ b	6
		OR	
Q.6	(a)	Discuss Chomsky normal form and Greibach normal form. Convert the following Grammar to Chomsky Normal form. $S \rightarrow aACa$ $A \rightarrow B \mid a$ $B \rightarrow C \mid c$ $C \rightarrow cC \mid \epsilon$	`10
	(b)	Define NPDA. Write NPDA for the following languages i) $L = \{wcw^R \mid w \in \{a, b\}^*\}$ ii) $L = \{a^n b^n \mid n > = 0\}$	10
	1	Module – 4	10
Q.7	(a)	With a neat diagram, explain variants of Turing Machines.	10
	(b)	Explain Language Acceptability and Design of Turing Machines.	10
		OR	
Q.8	(a)	Define Turing Machine Model. Explain the representation of Turing Machines.	10
	(b)	Explain the Model of Linear bound Automation.	10
	•	Module - 5	
Q.9	(a)	Explain the following with example, i) Decidability ii) Decidable languages iii) Undecidable languages.	10
	(b)	Discuss Halting problem and post correspondence problem with respect to TM.	10
	•	OR	I
Q.10	(a)	Write Short notes on i) Growth rate of Function ii) Classes of P and NP iii) Quantum Computers iv) Church Turing Thesis	20

Ta	ble s	howing the Bloom's Tax	onomy Lo Outco	·	come and Programme		
Question		Bloom's Taxonomy I attached	Level	Course Outcome	Programme Outcome		
Q.1	(a)	L1		CO1	PO1,PO2,PO3,PO4,PO12		
	(b)	L2		CO1	PO1,PO2,PO3,PO4,PO12		
	(c)	L1		CO1	PO1, PO2,PO3,PO4,PO12		
Q.2	(a)	L3		CO1	PO1, PO2,PO3,PO4,PO12		
•	(b)	L1		CO1	PO1, PO2,PO3,PO4,PO12		
	(c)	L3		CO1	PO1, PO2, PO3, PO4, PO12		
Q.3	(a)	L2		CO2	PO1, PO2,PO3,PO4,PO12		
•	(b)	L1		CO2	PO1,PO2,PO3,PO4,PO12		
	(c)	L1		CO2	PO1, PO2,PO3,PO4,PO12		
Q.4	(a)	L1		CO2	PO1, PO2, PO3, PO4, PO12		
•	(b)	L1		CO2	PO1, PO2,PO3,PO4,PO12		
	(c)	L2		CO2	PO1, PO2, PO3, PO4, PO12		
Q.5	(a)	L2		CO3	PO1, PO2,PO3,PO4,PO12		
	(b)	L1		CO3	PO1, PO2, PO3, PO4, PO12		
	(c)	L3	A PIST	CO3	PO1, PO2,PO3,PO4, PO12		
Q.6	(a)	L3		CO3	PO1, PO2, PO3, PO4		
_	(b)	L2		CO3	PO1, PO2, PO3, PO4		
Q.7	(a)	L2		CO4	PO1, PO2, PO3, PO4		
_	(b)	L2		CO4	PO1, PO2, PO3, PO4		
Q.8	(a)	L2		CO4	PO1, PO2, PO3, PO4		
_	(b)	L2		CO4	PO1, PO2, PO3, PO4		
Q.9	(a)	L2		CO5	PO1, PO2, PO3, PO4		
	(b)	LI		CO5	PO1, PO2, PO3, PO4		
Q.10	(a)	L1		CO5	PO1, PO2, PO3, PO4		
1		44 T		•	•		
				order thinking skill			
Bloom's		Remembering(Understa		Applying (Application):		
Taxono Levels	my	knowledge): L_1		ension): L ₂ order thinking skill	L ₃		
LCVCIS	F	Analyzing (Analysis): L ₄		g (Evaluation): L_5	Creating (Synthesis): L_6		