http://www.rgpvonline.com

[4]

- a) What decides the sizes of flexibility and stiffness matrices for a structure.
 - b) Discuss why the released structure which minimizes the magnitudes of redundants generally leads to the maximum accuracy.

http://www.rgpvonline.com

Total No. of Questions: 8]

[Total No. of Printed Pages: 4

Roll No

MVSE - 103

M.E./M.Tech., I Semester

Examination, June 2016

Advance Structural Analysis

Time: Three Hours

Maximum Marks: 70

Attempt any five questions. Note: i)

- Each questions carry equal marks.
- Assume missing data suitable.
- What is meant by degree of freedom. Give some examples.
 - Compute the flexibility matrix considering axial and flexural deformations for the beam shown in figure 1.

Figure 1

2. Analyse the frame as shown in figure 2 by the force method

Figure 2

http://www.rgpvonline.com [2]

3. Analyse the pin-jointed frame of figure 3 by the force method.

The axial flexibility. $\frac{1}{AE}$ is the same for all the members.

The numbers in parentheses are the cross sectional areas of the members in cm².

Figure 3

4: Using the displacement method, analyse the frame shown in figure 4.

5. Analyse the conditions beam of figure 5 by displacement method. The beam rests on elastic supports at B and C. The flexibilities of supports B and C in KN-m are $\frac{100}{EI}$ and $\frac{300}{EI}$ respectively.

http://www.rgpvonline.com

 Analyse the space frame shown in figure 6 by the displacement method. EI is the same for all the members and GK = 0.6 EI.

7. Analyse the structure shown in figure 7 using stiffness method. The members are 350 mm in width and 700 mm in depth. Take $E = 1200 \text{ kN/cm}^2$ and $G = 600 \text{ kN/cm}^2$.

Figure 7

MVSE-103

http://www.rgpvonline.com

http://www.rgpvonline.com