Binary classification of breast cancer data Project 4 - Statistical learning MT7049

August Jonasson & Martin Löfström

2025-01-14

Introduction and data

- Breast cancer data: 30 covariates 10 cell nucleus base features
 - mean, standard deviation and worst occurence
- Binary response: Benign or malign
- Tree-based methods: GBM and random forests

Feature	Description
Radius	Mean of distances from center to points on the perimeter
Texture	Standard deviation of gray-scale values
Perimeter	Total distance around the cell nucleus
Area	Total area enclosed within the cell nucleus
Smoothness	Local variation in radius lengths
Compactness	(perimeter ² / area) - 1
Concavity	Severity of concave portions of the contour
Concave points	Number of concave portions of the contour
Symmetry	Symmetry of the cell nucleus
Fractal dimension	Coastline approximation minus 1

Exploratory analysis

- colinearity: several covariates / base feature
 - Does not influence model
 - may influence variable importance

Model selection GBM

Hyperparameters:

- (i) learning rate (shrinkage) (ν),
- (ii) subsampling fraction (η) ,
- (iii) number of leaves per tree (N), and
- (iv) number of trees (M).
 - Full 4-dim grid-search optimal but too computationally expensive
 - Settle for naive approach of tuning one at a time while following heuristics to fix others

Model selection GBM

(i) learning rate (ν) ,

Model selection

(ii) subsampling fraction (η)

Model selection

(iii) number of leaves per tree (N)

Model selection

Tuned GBM model vs standard random forest

Analysis and interpretation

- Worst occurence most important
- ullet false negatives/positives \sim split data

Possible improvements

- Generalisation error
- No inherent way of addressing interaction effects (as opposed to SVM)
 - would have to be added manually into the covariates
- exists models that generally performs better on prediction tasks (such as SVM)