PART1.

HOMEWORK 1:

Prove equivalence 1. <=>4. of Proposition 2.3 in notes

Proposition 2.3: Let f be a function and let P be its graph. The following an equivalent

Of is convex: $f(tx + (n-t)y) \le t \cdot f(x) + (n-t)f(y)$

G For each $x_1 ... x_k \in D$ and $x_1, ... x_k \in [0,1]$, where $x_i = 1$ we have $f(x_i \times x_i) \leq x_i = x_i + x_i$

(=>4) Proof by induction:

DWe prove for a base case: L=2

FREEDER F($\alpha x_1 + \alpha_2 \cdot x_2$) $\leq \alpha_1 \cdot f(x_1) + \alpha_2 \cdot f(x_2) = \text{Because } \alpha_1 + \alpha_2 = 1$

 $f(\alpha_n \cdot x_1 + (n - \alpha_n)x_2) \leq \alpha_n \cdot f(x_n) + (n - \alpha_n) \cdot f(x_2)$

This is the Jefinition of a convex function so we proved for L=2.