PROBLEM SET 3

DUE JANUARY 31

- (1) Let A and B be two (not necessarily finite) subsets of \mathbb{N} . Prove that there exists an injective function $g:A\to B$ if and only if there exists a surjective function $h:B\to A$.
- (2) 1.7.19
- (3) Find the inverse f^{-1} of the function f from Exercise 1.7.22.
- (4) 1.7.24 (ii) and (iv)
- (5) 1.7.25
- (6) 1.7.38
- (7) 1.8.12
- (8) Prove that the set of positive rational numbers \mathbb{Q} is countably infinite following the steps. The set \mathbb{Q}_+ is the set of positive rational numbers.
 - (a) Construct an injection $g: \mathbb{N} \to \mathbb{Q}_+$.
 - (b) Construct an injection $h: \mathbb{Q}_+ \to \mathbb{N} \times \mathbb{N}$.
 - (c) Use the above, Exercise 1.8.12, and the fact $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$ (proved in a video), to conclude that \mathbb{Q}_+ is countably infinite.
 - (d) We similarly show that the set of negative rational numbers is countable. Use Fact 1.8.25, to deduce that $\mathbb Q$ is countably infinite.

For other proofs that \mathbb{Q} is countably infinite, see Example 1.8.13.

- (9) Give an example of a bijection $f:(0,1)\to\mathbb{R}$. Explain, how this completes the proof that \mathbb{R} is not a contable set (using the fact from one of the videos that there does not exists a bijection $\mathbb{N}\to(0,1)$).
- (10) (Bonus question) Give an example of a bijection $f:[0,1)\to(0,1)$.