Interpreting machine learning models

or how to turn a random forest into a white box

Ando Saabas

About me

- Senior applied scientist at Microsoft,
 - Using ML and statistics to improve call quality in Skype
 - Various projects on user engagement modelling, Skype user graph analysis, call reliability modelling, traffic shaping detection

Previously, working on programming logics with Tarmo Uustalu

Machine learning and model interpretation

- Machine learning studies algorithms that learn from data and make predictions
- Learning algorithms are about correlations in the data

- In contrast, in data science and data mining, understanding causality is essential
- Applying domain knowledge requires understanding and interpreting models

Usefulness of model interpretation

 Often, we need to understand individual predictions a model is making.

For example a model may

- Recommend a treatment for a patient or estimate a disease to be likely. The **doctor** needs to understand the reasoning.
- Classify a user as a scammer, but the user disputes it. The **fraud** analyst needs to understand why the model made the classification.
- Predict that a video call will be graded poorly by the user. The
 engineer needs to understand why this type of call was considered
 problematic.

Usefulness of model interpretation cont.

- Understanding differences on a dataset level.
 - Why is a new software release receiving poorer feedback from customers when compared to the previous one?
 - Why are grain yields in one region higher than the other?

 Debugging models. A model that worked earlier is giving unexpected results on newer data.

Algorithmic transparency

- Algorithmic transparency becoming a requirement in many fields
- French Conseil d'Etat (State Council's) recommendation in "Digital technology and fundamental rights"(2014): *Impose to algorithm-based decisions a transparency requirement, on personal data used by the algorithm, and the general reasoning it followed*.
- Federal Trade Commission (FTC) Chair Edith Ramirez: The agency is concerned about 'algorithmic transparency /../' (Oct 2015).
 FTC Office of Technology Research and Investigation started in March 2015 to tackle algorithmic transparency among other issues

Interpretable models

- Traditionally, two types of (mainstream) models considered when interpretability is required
- Linear models (linear and logistic regression)
 - $\bullet \ Y = a + b_1 x_1 + \dots + b_n x_n$
 - heart_disease = 0.08*tobacco + 0.043*age + 0.939*famhist + ...
 (from Elements of Statistical Learning)
- Decision trees

Example: heart disease risk prediction

CORONARY DISEASE RISK PREDICTION SCORE SHEET FOR MEN BASED ON TOTAL CHOLESTEROL LEVEL

S	t	e	p	1

Age	
Years	Points
30-34	-1
35-39	0
40-44	1
45-49	2
50-54	3
55-59	4
60-64	5
65-69	6
70-74	7

Total Cholester	ol	
(mg/dl)	(mmol/L)	Points
<160	≤4.14	-3
160-199	4.15-5.17	0
200-239	5.18-6.21	1
240-279	6.22-7.24	2
≥280	≥7.25	3

Key	
Color	Risk
green	Very low
white	Low
yellow	Moderate
rose	High
uo d	Manus Interior

Step 3

HDL - Cholesterol		
(mg/dl)	(mmol/L)	Points
<35	≤0.90	2
35-44	0.91-1.16	1
45-49	1.17-1.29	0
50-59	1.30-1.55	0
≥60	≥1.56	-2

2	τe	р	4	
=				Ξ

siood Pressure		
Systolic	Diastolic	

Step 7 (sum from steps 1-6)

Adding up the points		
Age		
Total Cholesterol		
HDL Cholesterol		
Blood Pressure		
Diabetes		
Smoker		
Point Total		

Step 8 (determine CHD risk from point total)

CHD Risk	
Point Total	10 Yr CHD Risk
≤-1	2%
0	3%
1	3%
2	4%
3	5%
4	7%
5	8%
6	10%
7	13%
8	16%
9	20%
10	25%
11	31%
12	37%
13	45%
≥14	≥53%

- Essentially a linear model with integer coefficients
- Easy for a doctor to follow and explain

From National Heart, Lung and Blood Institute.

Linear models have drawbacks

• Underlying data is often non-linear

Equal

- Mean
- Variance
- Correlation
- Linear regression model y = 3.00 + 0.500x

Tackling non-linearity

- Feature binning: create new variables for various intervals of input features
 - For example, instead of feature x, you might have
 - x_between_0_and_1
 - x_between_1_and_2
 - x_between_2_and_4 etc
 - Potentially massive increase in number of features
- Basis expansion (non-linear transformations of underlying features)

$$Y = 2x_1 + x_2 - 3x_3$$
vs
$$Y = 2x_1^2 - 3x_1 - \log(x_2) + \sqrt{x_2}x_3 + \dots$$

In both cases performance is traded for interpretability

Decision trees

- Decision trees can fit to non-linear data
- They work well with both categorical and continuous data, classification and regression
- Easy to understand

Decision trees

- Decision trees are understandable only when they are (very) small
 - Tree of depth *n* has up 2ⁿ leaves and 2ⁿ -1 internal nodes. With depth 20, a tree can have up to 1048576 leaves
 - Previous slide had <200 nodes
- Additionally decision trees are high variance method low generalization, tend to overfit

Random forests

- Can learn non-linear relationships in the data well
- Robust to outliers
- Can deal with both continuous and categorical data
- Require very little input preparation (see previous three points)
- Fast to train and test, trivially parallelizable
- High accuracy even with minimal meta-optimization

• Considered to be a **black box** that is difficult or impossible to interpret

Random forests as a black box

- Consist of a large number of decision trees (often 100s to 1000s)
- Trained on bootstrapped data (sampling with replacement)
- Using random feature selection

Random forests as a black box

- "Black box models such as random forests can't quantify the impact of each predictor to the predictions of the complex model", in PRICAI 2014: Trends in Artificial Intelligence
- "Unfortunately, the random forest algorithm is a black box when it comes to evaluating the impact of a single feature on the overall performance". In Advances in Natural Language Processing 2014
- "(Random forest model) is close to a black box in the sense that it uses 810 features /../ reduction in the number of features would allow an operator to study individual decisions to have a rough idea how the global decision could have been made". In Advances in Data Mining: Applications and Theoretical Aspects: 2014

Understanding the model vs the predictions

- Keep in mind, we want to understand why a particular decision was made. Not necessarily every detail of the full model
- As an analogy, we don't need to understand how a brain works to understand why a person made a particular a decision: simple explanation can be sufficient
- Ultimately, as ML models get more complex and powerful, hoping to understand the models themselves is doomed to failure
- We should strive to make models explain their decisions

Turning the black box into a white box

 In fact, random forest predictions can be explained and interpreted, by decomposing predictions into mathematically exact feature contributions

- Independently of the
 - number of features
 - number of trees
 - depth of the trees

Revisiting decision trees

• Classical definition (from *Elements of statistical learning*)

$$dt(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

• Tree divides the feature space into M regions R_m (one for each leaf)

• Prediction for feature vector x is the constant c_m associated with region R_m the vector x belongs to

Example decision tree – predicting apartment prices

Assume an apartment [2 rooms; Built in 2010; Neighborhood crime rate: 5] We walk the tree to obtain the price

[2 rooms; Built in 2010; Neighborhood crime rate: 5]

[2 rooms; **Built in 2010**; Neighborhood crime rate: 5]

[2 rooms; Built in 2010; Neighborhood crime rate: 5]

Prediction: 35,000 Path taken: Rooms < 3, Built_year > 2008, Crime_rate < 3

Operational view

• Classical definition ignores the operational aspect of the tree.

- There is a decision path through the tree
- All nodes (not just the leaves) have a value associated with them

All internal nodes have a value assocated with them

48,000

- At depth 0, prediction would simply be the dataset mean (assuming we want to minimize squared loss)
- When training the tree, we keep expanding it, obtaining new values

Operational view

- All nodes (not just the leaves) have a value associated with them
- Each decision along the path contributes something to the final outcome
- A feature is associated with every decision
- We can compute the final outcome in terms of feature contributions

Estimating apartment prices revisited

Price = 48,000

Price = 48,000 – 15,000(Rooms)
[2 rooms]

 $Price = 48,000 - 15,000(Rooms) + 7,000(Built_year)$

[Built 2010]

Price = 48,000 – 15,000(Rooms) + 7,000(Built_year) – 5,000(Crime_rate)

[Crime rate 5]

 $Price = 48,000 - 15,000(Rooms) + 7,000(Built_year) - 5,000(Crime_rate) = 35,000$

Decomposition for decision trees

 We can define the the decision tree in term of the bias and contribution from each feature.

$$dt(x) = \sum_{m=1}^{M} c_m I(x \in R_m) \quad \Longrightarrow \quad dt(x) = bias + \sum_{i=1}^{N} contr(i, x))$$

- Similar to linear regression (prediction = bias + feature₁contribution + ... + feature_ncontribution), but on a prediction level, not model level
- Does not depend on the size of the tree or number of features
- Works equally well for
 - Regression and classification trees
 - Multivalued and multilabel data

Deeper inspections

- We can have more fine grained definition in addition to pure feature contributions
 - Separate negative and positive contributions
 - Contribution from decisions (floor = $1 \rightarrow -15000$)
 - Contribution from interactions (floor == 1 & has_terrace → 3000)
 - etc

Number of features typically not a concern because of the long tail.
 In practice, top 10 features contribute the vast majority of the overall deviation from the mean

From decision trees to random forests

 Prediction of a random forest is the average of the predictions of individual trees

$$RF(x) = \frac{1}{J} \sum_{j=1}^{J} dt_j(x)$$

 From distributivity of multiplication and associativity of addition, random forest prediction can be defined as the average of bias term of individual trees + sum of averages of each feature contribution from individual trees

$$RF(x) = \frac{1}{J} \sum_{j=1}^{J} bias_{j}(x) + (\frac{1}{J} \sum_{j=1}^{J} contr_{j}(1, x) + \dots + \frac{1}{J} \sum_{j=1}^{J} contr_{j}(n, x))$$

• prediction = bias + feature₁contribution + ... + feature_ncontribution

Random forest interpretation in Scikit-Learn

- Path walking in general no supported by ML libraries
- Scikit-Learn: one of the most popular Python (and overall) ML libraries
- Patch since 0.17 (released Nov 8 2015) to include values/predictions at each node: allows walking the tree paths and collecting values along the way
- Treeintepreter library for decomposing the predictions
 - https://github.com/andosa/treeinterpreter
 - pip install treeinterpreter
 - Supports both decision tree and random forest classes, regression and classification

Using treeinterpreter

Decomposing predictions is a one-liner

```
from treeinterpreter import treeinterpreter as ti

rf = RandomForestRegressor()

rf.fit(trainX,trainY)

prediction, bias, contributions = ti.predict(rf, testX)

#instead of prediction = rf.predict(testX)

#prediction == bias + contributions
assert(numpy.allclose(prediction, bias + np.sum(contributions, axis=1)))
```

Decomposing a prediction – boston housing data

```
prediction, bias, contributions = ti.predict(rf, boston.data)
>> prediction[0]
30.69
>> bias[0]
25.588
>> sorted(zip(contributions[0], boston.feature names),
>>
              kev=lambda x: -abs(x[0])
[(4.3387165697195558, 'RM'),
 (-1.0771391053864874, 'TAX'),
 (1.0207116129073213, 'LSTAT'),
 (0.38890774812797702, 'AGE'),
 (0.38381481481481539, 'ZN'),
 (-0.10397222222222205, 'CRIM'),
 (-0.091520697167756987, 'NOX')
```

Caveats

- The method assumes that fetures are actually interpretable in the first place.
 - This does not always hold: e.g. pixels in image classification
 - Can be overcome via postprocessing
- In presence of strong correlations in the input data, true causal features can be buried under non-causal but correlated features. Domain knowledge and feature tuning required in this case

Conclusions

- Model interpretation can be very beneficial for ML and data science practitioners in many tasks
- No need to understand the full model in many/most cases: explanation of decisions sufficient
- Random forests can be turned from black box into a white box
 - Each prediction can decomposed into bias and feature contribution terms
- Python library available for scikit-learn at https://github.com/andosa/treeinterpreter
 or pip install treeinterpreter