Component response rate variation drives stability in large complex systems

Supporting information

Brad Duthie

Code and simulations underlying Fig. 1

The sample M used for the eigenvalue distributions in Fig. 1 of the text is available on GitHub, and was produced with by running the following function.

```
find_bgamma <- function(S = 200, C = 0.05, Osd = 0.4, iters = 10000){
    while(iters > 0){
        A_dat <- rnorm(n = S * S, mean = 0, sd = Osd);
        A_mat <- matrix(data = A_dat, nrow = S);</pre>
        C_{dat} \leftarrow rbinom(n = S * S, size = 1, prob = C);
        C_mat <- matrix(data = C_dat, nrow = S, ncol = S);</pre>
        A_mat <- A_mat * C_mat;
        gammas \leftarrow c(rep(1.95, S/2), rep(0.05, S/2))
        mu_gam <- mean(gammas);</pre>
        diag(A_mat) <- -1;</pre>
                <- gammas * A_mat;
        ΑO
                <- mu_gam * A_mat;
        A0_e
                <- eigen(A0)$values;
        AO_r
                <- Re(A0_e);
        AO_i
                \leftarrow Im(A0_e);
        A1_e
                <- eigen(A1)$values;
                <- Re(A1_e);
        A1_r
        A1_i
               <- Im(A1_e);
        if(max(A0_r) >= 0 \& max(A1_r) < 0){
             return(list(A0 = A0, A1 = A1));
             break;
        print(iters);
        iters <- iters - 1;
    }
```

- The above function terminates when a matrix M is found that is not stable when all component response rates are set to $\gamma=1$, but is stable when half of component response rates are 1.95 and half are 0.05. The function is used to illustrate the concept of how a fast versus slow component responses can cause a system to become stable. Simulations were run for iter = 1000000, but terminated once an acceptable A0 and A1 were found. The code below plots the eigenvalue distributions of A0 and A1 in panels a and b, respectively.
- The plot itself can be recreated with the code below.

```
text(x = -3.5, y = 2.25, labels = "a", cex = 2);
points(x = A0x0, y = A0y0, type = "1", 1wd = 3, col = "grey");
points(AO_r, AO_i, pch = 4, cex = 0.7);
plot(A1_r, A1_i, xlim = c(-3.7, 0.3), ylim = c(-2, 2), pch = 4, cex = 0.7,
     xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1,
     col = "black", yaxt = "n");
vl \leftarrow seq(from = 0, to = 2*pi, by = 0.001);
A0x1a \leftarrow sqrt(100) * sd(A1vec[fhalf]) * cos(vl) + mean(diag(A1)[1:100]);
A0y1a <- sqrt(100) * sd(A1vec[fhalf]) * sin(vl);
points(x = A0x1a, y = A0y1a, type = "1", lwd = 3, col = "grey");
A0x1b <- sqrt(100) * sd(A1vec[shalf]) * cos(vl) + mean(diag(A1)[101:200]);
A0y1b <- sqrt(100) * sd(A1vec[shalf]) * sin(vl);
points(x = A0x1b, y = A0y1b, type = "1", lwd = 3, col = "grey");
points(A1_r[1:100], A1_i[1:100], pch = 4, cex = 0.7);
text(x = -3.5, y = 2.25, labels = "b", cex = 2);
mtext(side = 1, "Real", outer = TRUE, line = 3, cex = 2);
mtext(side = 2, "Imaginary", outer = TRUE, line = 2.5, cex = 2);
```


To find out how frequently M was stable given that all $\gamma = 1$ versus $\gamma = \{1.95, 0.05\}$, the function below was

```
A1_count <- 0;
    while(iters > 0){
        A_dat <- rnorm(n = S * S, mean = 0, sd = Osd);
        A_mat <- matrix(data = A_dat, nrow = S);
        C_{dat} \leftarrow rbinom(n = S * S, size = 1, prob = C);
        C_mat <- matrix(data = C_dat, nrow = S, ncol = S);</pre>
        A_mat <- A_mat * C_mat;
        gammas \leftarrow c(rep(1.95, S/2), rep(0.05, S/2))
        mu gam <- mean(gammas);</pre>
        diag(A_mat) < -1;
        Α1
                <- gammas * A_mat;
        ΑO
                <- mu_gam * A_mat;
        A0_e
                <- eigen(A0)$values;
        AO_r
                \leftarrow Re(A0_e);
        AO_i
               <-Im(A0_e);
        A1 e
               <- eigen(A1)$values;
        A1_r
                <- Re(A1_e);
        A1 i
               <- Im(A1_e);
        if(max(A0_r) < 0){
            ress[iters, 1] <- 1;
                             <- A0_count + 1;
             A0 count
        if(max(A1_r) < 0){
             ress[iters, 2] <- 1;</pre>
             A1_count
                             <- A1_count + 1;
        print(c(iters, A0_count, A1_count));
        iters <- iters - 1;</pre>
    return(ress);
}
```

The function above was run for iters = 1000000, and the resulting matrix ress was returned. Each row of ress represents a single M given $\gamma=1$ (column 1) versus $\gamma=\{1.95,0.05\}$ (column 2). Values of 0 indicate that M was found to be unstable (at least one real component of its eigenvalues greater than or equal to zero), whereas values of 1 indicate that M was found to be stable (all real components of eigenvalues are negative). The frequencies of stable M were 0 given $\gamma=1$ and 0 given $\gamma=\{1.95,0.05\}$, as reported in the main text and legend of Fig. 1.

3 Code and simulations underlying Fig. 2

Figure 2 of the main text shows how eigenvalue distributions in a system where S = 1000, C = 1, and $\sigma = 0.4$. Eigenvalues can be reproduced using the code below for when $\gamma = 1$ (panel a) and $\gamma \sim \mathcal{U}(0,2)$ (panel b).

```
<- gammas * A_mat;
A1
ΑO
       <- mu_gam * A_mat;
      <- eigen(A0)$values;
A0 e
AO r
      <- Re(A0_e);
      <- Im(A0_e);
AO i
A1 e
      <- eigen(A1)$values;
A1_r \leftarrow Re(A1_e);
A1_i \leftarrow Im(A1_e);
            <- A0;
AO_{vm}
diag(AO_vm) <- NA;</pre>
A0vec
            <- as.vector(A0_vm);
A0vec
            <- A0vec[is.na(A0vec) == FALSE];
A1_vm
            <- A1;
diag(A1_vm) <- NA;</pre>
A1vec
            <- as.vector(A1_vm);
            <- Alvec[is.na(Alvec) == FALSE];
A1vec
```

26 The code below reproduces the figure itself.

```
par(mfrow = c(1, 2), mar = c(0.5, 0.5, 0.5, 0.5), oma = c(5, 5, 0, 0));
plot(AO_r, AO_i, xlim = c(-16.5, 15.5), ylim = c(-16.5, 15.5), pch = 4, cex = 0.7,
     xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1);
v1 \leftarrow seq(from = 0, to = 2*pi, by = 0.001);
x0 \leftarrow sqrt(1000) * sd(A0vec) * cos(vl) + mean(diag(A0));
y0 <- sqrt(1000) * sd(A0vec) * sin(vl);
x1 <- sqrt(1000) * sd(A1vec) * cos(vl) + mean(diag(A1));</pre>
y1 <- sqrt(1000) * sd(A1vec) * sin(vl);</pre>
text(x = -15.5, y = 19, labels = "a", cex = 2);
points(x = x0, y = y0, type = "1", 1wd = 3);
points(x = x1, y = y1, type = "1", col = "red", lwd = 3, lty = "dashed");
plot(A1_r, A1_i, xlim = c(-16.5, 15.5), ylim = c(-16.5, 15.5), pch = 4, cex = 0.7,
     xlab = "", ylab = "", cex.lab = 1.5, cex.axis = 1.5, asp = 1, col = "red",
     yaxt = "n");
text(x = -15.5, y = 19, labels = "b", cex = 2);
points(x = x1, y = y1, type = "1", col = "red", lwd = 3)
points(x = x0, y = y0, type = "1", lwd = 3, lty = "dashed");
mtext(side = 1, "Real", outer = TRUE, line = 3, cex = 2);
mtext(side = 2, "Imaginary", outer = TRUE, line = 2.5, cex = 2);
```


²⁸ Stability across increasing S

```
dat <- read.csv(file = "sim_results/C_1/random_all.csv");
dat <- dat[,-1];</pre>
```

The table below shows the results for all simulations of random M matrices at $\sigma=0.4$ and C=1 given a range of S from 2 to 32. In this table, the AO refers to matrices when $\gamma=1$, while A1 refers to matrices after $Var(\gamma)$ is added and $\gamma \sim \mathcal{U}(0,2)$. Each row summarises data for a given S over 1 million randomly simulated M (AO and A1). The column AO_unstable shows the number of AO matrices that are unstable, and the column AO_stable shows the number of AO matrices that are stable (these two columns sum to 1 million). Similarly, the column A1_unstable shows the number of A1 matrices that are unstable and A1_stable shows the number that are stable. The columns A1_stabilised and A1_destabilised show how many AO matrices were stabilised or destabilised, respectively, by $Var(\gamma)$.

S	$A0$ _unstable	$A0_stable$	$A1$ _unstable	$A1_stable$	$A1$ _stabilised	A1_destabilised
2	293	999707	293	999707	0	0
3	3602	996398	3609	996391	0	7
4	14937	985063	15008	984992	0	71
5	39289	960711	39783	960217	36	530
6	78845	921155	80207	919793	389	1751
7	133764	866236	136904	863096	1679	4819
8	204112	795888	208241	791759	5391	9520
9	288041	711959	291775	708225	12619	16353
10	384024	615976	384931	615069	23153	24060
11	485975	514025	481019	518981	35681	30725

S	A0_unstable	A0_stable	A1_unstable	A1_stable	A1_stabilised	A1_destabilised
12	590453	409547	577439	422561	48302	35288
13	689643	310357	669440	330560	57194	36991
14	777496	222504	751433	248567	60959	34896
15	850159	149841	821613	178387	58567	30021
16	905057	94943	877481	122519	51255	23679
17	943192	56808	919536	80464	40854	17198
18	969018	30982	949944	50056	30102	11028
19	984301	15699	970703	29297	20065	6467
20	992601	7399	983507	16493	12587	3493
21	996765	3235	991532	8468	7030	1797
22	998693	1307	995567	4433	3884	758
23	999503	497	997941	2059	1883	321
24	999861	139	999059	941	899	97
25	999964	36	999617	383	380	33
26	999993	7	999878	122	121	6
27	999995	5	999946	54	53	4
28	1000000	0	999975	25	25	0
29	1000000	0	999997	3	3	0
30	1000000	0	999999	1	1	0
31	1000000	0	999999	1	1	0
32	1000000	0	1000000	0	0	0
33	1000000	0	1000000	0	0	0
34	1000000	0	1000000	0	0	0
35	1000000	0	1000000	0	0	0
36	1000000	0	1000000	0	0	0
37	1000000	0	1000000	0	0	0
38	1000000	0	1000000	0	0	0
39	1000000	0	1000000	0	0	0
40	1000000	0	1000000	0	0	0
41	1000000	0	1000000	0	0	0
42	1000000	0	1000000	0	0	0
43	1000000	0	1000000	0	0	0
44	1000000	0	1000000	0	0	0
45	1000000	0	1000000	0	0	0
46	1000000	0	1000000	0	0	0
47	1000000	0	1000000	0	0	0
48	1000000	0	1000000	0	0	0
49	1000000	0	1000000	0	0	0
50	1000000	0	1000000	0	0	0

 $_{37}$ The results underlying this table were produced with the rand_gen_var function below.

```
<- matrix(data = A0_dat, nrow = i, ncol = i);</pre>
            ΑO
            ΑO
                      <- species_interactions(mat = A0, type = int_type);</pre>
            C_{dat}
                      <- rbinom(n = i * i, size = 1, prob = C);
            C_{\mathtt{mat}}
                      <- matrix(data = C_dat, nrow = i, ncol = i);
            ΑO
                      <- A0 * C_mat;
            diag(A0) <- -1;
            gam1
                      <- runif(n = i, min = 0, max = 2);
            Α1
                      <- A0 * gam1;
                      <- A0 * mean(gam1);
            ΑO
            AO stb
                     <- max(Re(eigen(A0)$values)) < 0;
                     <- max(Re(eigen(A1)$values)) < 0;
            A1_stb
            A0_fea <-\min(-1*solve(A0) %*% r_vec) > 0;
            A1_fea \leftarrow min(-1*solve(A1) %*% r_vec) > 0;
            if(A0_stb == TRUE){
                 tot_res[[i-1]][iter, 1] <- 1;
            if(A1_stb == TRUE){
                tot_res[[i-1]][iter, 2] <- 1;
            if(A0_fea == TRUE){
                 fea_res[[i-1]][iter, 1] <- 1;
            if(A1 fea == TRUE){
                 fea_res[[i-1]][iter, 2] <- 1;
            iter
                     <- iter - 1;
        print(i);
    all_res <- summarise_randmat(tot_res = tot_res, fea_res = fea_res);</pre>
    return(all_res);
}
```

The above function calls the two functions species_interactions and summarise_randmat, which are provided below.

```
summarise_randmat <- function(tot_res, fea_res){</pre>
          <- length(tot_res);
    all res <- matrix(data = 0, nrow = sims, ncol = 13);
    for(i in 1:sims){
        all_res[i, 1] <- i + 1;
        # Stable and unstable
        all_res[i, 2] <- sum(tot_res[[i]][,1] == FALSE);</pre>
        all res[i, 3] <- sum(tot res[[i]][,1] == TRUE);
        all_res[i, 4] <- sum(tot_res[[i]][,2] == FALSE);</pre>
        all_res[i, 5] <- sum(tot_res[[i]][,2] == TRUE);
        # Stabilised and destabilised
        all_res[i, 6] <- sum(tot_res[[i]][,1] == FALSE &
                                   tot_res[[i]][,2] == TRUE);
        all_res[i, 7] <- sum(tot_res[[i]][,1] == TRUE &</pre>
                                   tot_res[[i]][,2] == FALSE);
        # Feasible and infeasible
        all_res[i, 8] <- sum(fea_res[[i]][,1] == FALSE);</pre>
        all_res[i, 9] <- sum(fea_res[[i]][,1] == TRUE);
        all_res[i, 10] <- sum(fea_res[[i]][,2] == FALSE);
        all_res[i, 11] <- sum(fea_res[[i]][,2] == TRUE);
        # Feased and defeased
        all_res[i, 12] <- sum(fea_res[[i]][,1] == FALSE &
                                   fea_res[[i]][,2] == TRUE);
        all_res[i, 13] <- sum(fea_res[[i]][,1] == TRUE &
                                   fea_res[[i]][,2] == FALSE);
    }
    cnames <- c("N", "A0_unstable", "A0_stable", "A1_unstable", "A1_stable",</pre>
                "A1_stabilised", "A1_destabilised", "A0_infeasible",
                "A0_feasible", "A1_infeasible", "A1_feasible",
                "A1_made_feasible", "A1_made_infeasible");
    colnames(all_res) <- cnames;</pre>
    return(all_res);
}
```

40 Note that feasibility results were ommitted for the table above, but are shown below.