南方冶金学院考试试题

考试科目	电子技术	考试日期		
班级	学号	姓名	成绩	

- 一、基本题; (每小题6分, 共计48分)
- 1、已知电路图中,E=5V,Ui=10sinwtv,二极管的正向压降忽略不计,试画出输出电压 U_0 的波形。

ロルかれ

2、有两个晶体管分别接在电路中,今测得它们管脚对"地"的电位分别如下表所列,试判别管子三个管脚 (C,B,E) , 是NPN型还是PNP型。

	体官I		
管脚	1	2	3
电位(V)	4	3.4	9

\Box	11人人人	TT
-	4小台	11
нн		

管脚	1	2	3
电位(V)	-6	-2.3	-2

3、已知图示晶体三极管输出特性曲线和静态工作点Q, 试定性画出直流负载线及交流负载线

4、指出图示两极放大电路中的交流反馈类型,反馈元件。

5、根据运算关系式,画出运算放大器电路图。

$$U_0=U_{i2}-U_{i1}$$
 (R_F=10k)

6、试用相位条件判断图示电路能否产生自振荡,并说明反馈电压Uf取自何处。

(2) 若为单向半波整流,带电容器滤波,二极管

8、化简逻辑式,并画出"与非"门逻辑门电路。

Y=AB+AB+AB

二、(10分)证明图示电路中 U_0 =2 U_1

三、(18分)在图示电路中, $Ucc=12^{v}$, $Rc=2^{k}$ Ω , $R_{E}=2^{k}$ Ω , $R_{B}=300$ k Ω , β=50,求:(1)静态工作点.(2)画 微变等效电路图.(3)电压放大倍数 A_{U1} , A_{U2} 。

四、(12分)求图示电路输出电压U₀的可调范围。

五、(12分)图示为主从型JK触发器组成的三位异步二进制加法计数器,试根据计数脉冲C、置零脉冲 \mathbb{R}_D ,画出 Q_0 , Q_1 , Q_2 波形。

答案

管脚2、B极 管脚3.E极,管脚1,C极,PNP型管.

3、

 T_1T_2 : 并联电流负反馈, 反馈元件 R_F , R_{E2} 2'

$$5 \cdot R_1 = R_2 = R_3 = R_F = 10^K$$

$$\begin{array}{ll} U_0 = & (1 + \frac{R_F}{R_1}) & \frac{R_5}{R_2 + R_3} U_{i2} + (-\frac{R_F}{R_1} U_{i1}) \\ & = & (1 + \frac{10}{10}) \\ & = & U_{i2} - U_{i1} \end{array}$$

6、根据相位条件,满足正反馈条件,该电路能产生自激振荡。 反馈电压U_f取自输出端C、R并联处,并引至第一级放大器输入端。

7. (1)
$$U_{DRM} = \sqrt{2} U_2 U_{DRM} = 2 \sqrt{2} U_2$$

4′

6'

8.
$$Y=A+\overline{B}=\overline{\overline{A+B}}=\overline{\overline{A}\cdot B}$$

$$U_{02} = \left(1 + \frac{R}{R}\right)U_{i2}$$

$$U_{0} = U_{01} = \left(1 + \frac{R}{R}\right)U_{i1} - \frac{R}{R}U_{02} = 2U_{i1} - 2U_{i2}$$

 $U_i=U_{i1}-U_{i2}$

$$U_0=2U_i$$

$$\Xi \cdot (1) I_{B} = \frac{U_{CC} - U_{BB}}{R_{B} + (1+\beta)R_{B}} = \frac{12 - 0.6}{300 + (1+50) \times 2} = 0.028 \text{mA}$$
 2'

 $I_E = I_C = I_B \times \beta = 0.028 \times 50 = 1.4 \text{mA}$

 $U_{CE}=U_{CC}-I_{C}(R_{C}+R_{E})=12-1.4\times(2+2)=6.4V$ 2'

(2)

四、 R_P 上调到顶,

$$U'_0 = (1 + \frac{R_p + R_2}{R_1}) \times 5 = (1 + \frac{5.1 + 4.7}{3}) \times 5 = 21.3V$$
 5

 R_P 下调至底:

$$U''_0 = (1 + \frac{R_2}{R_p + R_1}) \times 5 = (1 + \frac{4.7}{3}) \times 5 = 7.9V$$

输出电压U₀的可调范围7.9V~21.3V

2

五、

