

Quad Low Power, Precision Comparator

CMP04

FEATURES

High Gain: 200 V/mV typ

Single or Dual Supply Operation

Input Voltage Range Includes Ground

Low Power Consumption (1.5 mW/Comparator)

Low Input Bias Current: 100 nA max Low Input Offset Current: 10 nA max Low Offset Voltage: 1 mV max

Low Output Saturation Voltage: 250 mV @ 4 mA

Logic Output Compatible with TTL, DTL, ECL, MOS and

CMOS

Directly Replaces LM139/239/339 Comparators

Available in Die Form

PIN CONNECTIONS

14-Lead Cerdip 14-Lead Plastic DIP 14-Lead SOIC

GENERAL DESCRIPTION

Four precision independent comparators comprise the CMP04. Performance highlights include a very low offset voltage, low output saturation voltage and high gain in a single supply design. The input voltage range includes ground for single supply operation and V– for split supplies. A low power supply current of 2 mA, which is independent of supply voltage, makes this the preferred comparator for precision applications requiring minimal power consumption. Maximum logic interface flexibility is offered by the open-collector TTL output.

Figure 1. Simplified Schematic (1/4 CMP04)

TYPICAL INTERFACE

Figure 2a. Driving CMOS

Figure 2b. Driving TTL

CMP04—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ V+ = +5 V, $T_A = +25 °C$, unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Offset Voltage	V _{OS}	$R_S = 0 \Omega, R_L = 5.1 \text{ k}\Omega, V_O = 1.4 \text{ V}^1$		0.4	1	mV
Input Offset Current	I _{OS}	$I_{IN}(+) - I_{IN}(-), R_L = 5.1 \text{ k}\Omega, V_O = 1.4 \text{ V}$		2	10	nA
Input Bias Current	I_{B}	$I_{IN}(+)$ or $I_{IN}(-)$		25	100	nA
Voltage Gain	A_{V}	$R_{L} \ge 15 \text{ k}\Omega, V + = 15 \text{ V}^2$	80	200		V/mV
Large-Signal Response Time	t _r	V_{IN} = TTL Logic Swing, V_{REF} = 1.4 V^3				
		$V_{RL} = 5 \text{ V}, R_{L} = 5.1 \text{ k}\Omega$		300		ns
Small-Signal Response Time	t _r	$V_{IN} = 100 \text{ mV Step}^3$, 5 mV Overdrive				
		$V_{RL} = 5 \text{ V}, R_{L} = 5.1 \text{ k}\Omega$		1.3		μs
Input Voltage Range	CMVR	(Note 4)	0		V + -1.5	V
Common-Mode Rejection Ratio	CMRR	(Notes 2, 5)	80	100		dB
Power Supply Rejection Ratio	PSRR	$V+ = +5 V \text{ to } +18 V^2$	80	100		dB
Saturation Voltage	V_{OL}	$V_{IN}(-) \ge 1 \text{ V}, V_{IN}(+) = 0, I_{SINK} \le 4 \text{ mA}$		250	400	mV
Output Sink Current	I _{SINK}	$V_{IN}(-) \ge 1 \text{ V}, V_{IN}(+) = 0, V_{O} \le 1.5 \text{ V}$	6	16		mA
Output Leakage Current	I_{LEAK}	$V_{IN}(+) \ge 1 \text{ V}, V_{IN}(-) = 0, V_O = 30 \text{ V}$		0.1	100	nA
Supply Current	I+	$R_L = \infty$, All Comps V+ = 30 V		0.8	2.0	mA

NOTES

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage
Differential Input Voltage
Input Voltage0.3 V to +36 V
Operating Temperature Range
CMP04BY55°C to +125°C
CMP04FP, FS40°C to +85°C
Junction Temperature (T_J)65°C to +150°C
Storage Temperature Range65°C to +150°C
(P Suffix)65°C to +125°C
Input Current ($V_{IN} < -3.0 \text{ V}$) 50 mA
Output Short-Circuit to GNDContinuous
Lead Temperature (Soldering, 60 sec)+300°C

Package Type	θ_{JA}^{2}	$\theta_{ m JC}$	Units
14-Lead Hermetic DIP (Y)	94	10	°C/W
14-Lead Plastic DIP (P)	83	39	°C/W
14-Lead SOIC	120	36	°C/W

NOTES

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING GUIDE

Model	$T_A = +25^{\circ}C$	Temperature	Package	Package
	V_{OS}	Ranges	Descriptions	Options
CMP04BY/883C	1 mV	-55°C to +125°C	14-Lead Cerdip	Q-14
CMP04FP	1 mV	-40°C to +85°C	14-Lead Plastic DIP	N-14
CMP04FS	1 mV	-40°C to +85°C	14-Lead SOIC	R-14/SO-14

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the CMP04 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

-2- REV. C

 $^{^{1}}$ At output switch point, $V_{O} = 1.4 \text{ V}$, $R_{S} = 0 \Omega$ with V+ from 5 V; and over the full input common-mode range (0 V to V+ -1.5 V).

²Guaranteed by design.

³Sample tested.

 $^{^4}$ The input common-mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+ -1.5 V, but either or both inputs can go to +30 V without damage.

 $^{^5}R_{\rm L} \geq 15~\text{k}\Omega,~\text{V+} = 15~\text{V},~\text{V}_{\rm CM} = 1.5~\text{V}$ to 13.5 V.

Specifications subject to change without notice.

 $^{^2\}theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip and plastic DIP packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS (@ V+ = +5 V, -55° C \leq T_A \leq +125 $^{\circ}$ C for CMP04BY, -40° C \leq T_A \leq +85 $^{\circ}$ C for CMP04FP/FS, unless otherwise noted)

				CMP04B/F ¹		
Parameter	Symbol	Conditions	Min	Typ	Max	Units
Input Offset Voltage	V _{OS}	$R_S = 0 \Omega, R_L = 5.1 \text{ k}\Omega$ $V_O = 1.4 \text{ V}^2$		1 1	2 2	mV mV
Input Offset Current	I _{OS}	$ \begin{split} &I_{IN}(+) - I_{IN}(-) \\ &R_L = 5.1 \; k\Omega \\ &V_O = 1.4 \; V \end{split} $		4 4 4	20 20 20	nA nA nA
Input Bias Current	I_{B}	I _{IN} (+) or I _{IN} (-)		40	200	nA
Voltage Gain	A_{V}	$R_{\rm L} \ge 15 \text{ k}\Omega, V + = 15 \text{ V}^3$	70	125		V/mV
Large-Signal Response Time	t _r	V_{IN} = TTL Logic Swing V_{REF} = 1.4 V^4 V_{RL} = 5 V , R_L = 5.1 $k\Omega$		300 300 300		ns ns ns
Small-Signal Response Time	t _r	V_{IN} = 100 mV Step ⁴ 5 mV Overdrive V_{RL} = 5 V, R_L = 5.1 k Ω		1.3 1.3 1.3		μs μs μs
Input Voltage Range	CMVR	(Note 5)	0		V+ -1.5	V
Common-Mode Rejection Ratio	CMRR	(Notes 1, 3)	60	100		dB
Power Supply Rejection Ratio	PSRR	V+ = +5 V to +18 V	80	100		dB
Saturation Voltage	V _{OL}	$V_{\text{IN}}(-) \ge 1 \text{ V, } V_{\text{IN}}(+) = 0,$ $I_{\text{SINK}} \le 4 \text{ mA}$		250 250	700 700	mV mV
Output Sink Current	I _{SINK}	$V_{IN}(-) \ge 1 \text{ V},$ $V_{IN}(+) = 0, V_{O} \le 1.5 \text{ V}$	5 5	16 16		mA mA
Output Leakage Current	I _{LEAK}	$V_{IN}(+) \ge 1 \text{ V},$ $V_{IN}(-) = 0, V_{O} = 30 \text{ V}$		0.1 0.1	200 200	nA nA
Supply Current	I+	$R_L = \infty$, All Comps V+ = 30 V		1.2 1.2	3.0 3.0	mA mA

Specifications subject to change without notice.

Figure 3. Burn-In Circuit

REV. C -3-

 $^{{}^{1}}R_{L} \ge 15 \text{ k}\Omega$, V+ = 15 V, V_{CM} = 1.5 V to 13.5 V. ${}^{2}At$ output switch point, V_O = 1.4 V, R_S = 0 Ω with V+ from 5 V; and over the full input common-mode range (0 V to V+ -1.5 V).

³Guaranteed by design.

⁴Sample tested.

⁵The input common-mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+-1.5 V, but either or both inputs can go to +30 V without damage.

DICE CHARACTERISTICS

DIE SIZE 0.058×0.055 inch, 3190 sq. mils (1.47 × 1.40 mm, 2.058 sq. mm)

WAFER TEST LIMITS (@ V+=+5 V, $T_A=+25$ °C, unless otherwise noted)

Parameter	Symbol	Conditions	CMP04N Limit	CMP04G Limit	Units
Input Offset Voltage	V _{OS}	$R_S = 0 \Omega, R_L = 5.1 \text{ k}\Omega$ $V_O = 1.4 \text{ V}^1$	1	2	mV max
Input Offset Current	I _{OS}	$I_{\rm IN}(+) - I_{\rm IN}(-) \\ R_{\rm L} = 5.1 \ k\Omega \\ V_{\rm O} = 1.4 \ {\rm V}$	10	25	nA max
Input Bias Current	I_{B}	$I_{IN}(+)$ or $I_{IN}(-)^1$	100	100	nA max
Voltage Gain	$A_{ m V}$	$R_{\rm L} \ge 15 \text{ k}\Omega, \text{ V+} = 15 \text{ V}^3$	80	50	V/mV min
Input Voltage Range	CMVR	(Notes 2, 3)	V+ -1.5	V+ -1.5	V max
Common-Mode Rejection Ratio	CMRR	(Note 4)	80	80	dB min
Power Supply Rejection Ratio	PSRR	V+ = +5 V to +18 V	80	80	dB min
Saturation Voltage	V _{OL}	$V_{\rm IN}(-) \ge 1 \text{ V}, V_{\rm IN}(+) = 0,$ $I_{\rm SINK} \le 4 \text{ mA}$	400	400	mV max
Output Sink Current	I _{SINK}	$V_{IN}(-) \ge 1 \text{ V},$ $V_{IN}(+) = 0, V_O \le 1.5 \text{ V}$	6	6	mA min
Output Leakage Current	I _{LEAK}	$V_{IN}(+) \ge 1 \text{ V},$ $V_{IN}(-) = 0, V_O = 30 \text{ V}$	100	100	nA max
Supply Current	I+	$R_L = \infty$, All Comps V+ = 30 V	2	2	mA max

NOTES

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS (@ V+=+5 V, unless otherwise noted)

Parameter	Symbol	Conditions	CMP04N Typical	CMP04G Typical	Units
Large-Signal Response Time	t _r	$V_{\rm IN}$ = TTL Logic Swing $V_{\rm REF}$ = 1.4 V^5 $V_{\rm RL}$ = 5 V, $R_{\rm L}$ = 5.1 $k\Omega$	600	600	ns
Small-Signal Response Time	t _r	V_{IN} = 100 mV Step ⁵ 5 mV Overdrive V_{RL} = 5 V, R_L = 5.1 kΩ	1.3	1.3	μs

NOTES

REV. C

 $^{^1}At$ output switch point, V_0 = 1.4 V, R_S = 0 Ω with V+ from 5 V; and over the full input common-mode range (0 V to V+ –1.5 V).

 $^{^2}$ The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+ -1.5 V, but either or both inputs can go to +30 V without damage.

³Guaranteed by design.

 $^{{}^{4}}R_{L} \ge 15 \text{ k}\Omega. \text{ V}_{CM} = 1.5 \text{ V to } 13.5 \text{ V}.$

⁵Sample tested.

Specifications subject to change without notice.

CMP04

Typical Performance Characteristics

Figure 4. Offset Voltage vs. Temperature

Figure 5. Input Bias Current vs. V+ and Temperature

Figure 6. Input Offset Current vs. Temperature

Figure 7. Voltage Gain vs. Temperature

Figure 8. Supply Current vs. Supply Voltage

Figure 9. Output Voltage vs. Output Current and Temperature

Figure 10. Response Time for Various Input Overdrives—Negative Transition

Figure 11. Response Time for Various Input Overdrives—Positive Transition

REV. C _5_

CMP04

TYPICAL APPLICATIONS

Figure 12. Output Strobing

Figure 13. Limit Comparator

Figure 14. Noninverting Comparator with Hysteresis

Figure 15. Inverting Comparator with Hysteresis

Figure 16. Square Wave Oscillator

Figure 17. Comparing Input Voltages of Opposite Polarity

-6- REV. C

Figure 18. One-Shot Multivibrator

Figure 20. Pulse Generator

Figure 19. AND Gate

Figure 21. OR Gate

Figure 22. One-Shot Multivibrator with Input Lockout

REV. C -7-

CMP04

TYPICAL APPLICATIONS

Figure 23. Time Delay Generator

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

0.0099 (0.25)

0.0075 (0.19)

0.0500 (1.27)

0.0160 (0.41)

0.0192 (0.49)

0.0138 (0.35)

0.0500

SEATING PLANE