Modeling Natural Mortality (M)

Basic Population Dynamics

By Numbers

$$N_{t+1} = N_t + Births_t - Deaths_t$$

By Biomass

$$Biomass_{t+1} = Biomass_t + Births_t + Growth_t - Deaths_t$$

Fishing impact

$$Biom_{t+1} = Biom_t + Births_t + Growth_t - NatMort_t - Catch_t$$

Continuous Case by numbers

$$\frac{dN}{dt} = b(t) - (M(t) + F(t))N(t)$$

Basic Population Dynamics

By Numbers, age-structured

$$N_{a,t+1} = N_{a,t} + Births_{a,t} - Deaths_{a,t}$$

Noting that Births is zero except when a is zero

Continuous Case

$$\frac{dN}{dt} = r(N, t) - (M + F)N$$

Noting, within a year, particularly for a>0:

$$\frac{dN_a}{dt} = -(M+F)N_a$$

Noting also that this means M and F can be confounded in modeling and estimation

- Key parameter in population dynamics
- M is continuous/instantaneous rate of mortality from causes other than fishing (F is rate of fishing mortality)
- We often model M as constant not only within year and age, but across ages.
 - This is a simplification M is typically higher for younger and smaller fish, as well as for the oldest fish.

- In fact, Natural Mortality varies by:
 - Age
 - Sex
 - Time
 - Density
 - Environmental drivers
 - Predation
 - Prey availability
 - Disease/parasites
 - Competition
 - Temperature
 - Etc...

- However, we often model M in our assessments as:
 - M = constant,
 - or
 - $-M_{female} = C_1; M_{male} = C_2$

 For species that mature and show up in fisheries closer to maximum size, this can be reasonable

- To restate, We often model M as:
 - M = constant, even though there is evidence for M being inversely related to length (on average) (e.g. Lorenzen 2022; Lorenzen et al. 2022)

- However, we often model M as:
 - M = constant: looks more reasonable with M at age

- However, we often model M as:
 - M = constant: looks more reasonable with M at age

- However, we often model M as:
 - M = constant: looks more reasonable with M at age
 - (even with senescence)

- However, we often model M as:
 - M = constant: looks more reasonable with M at age
 - (even with senescence)

Natural mortality

- Constant M at age OK
 - We won't accurately model numbers at age for youngest fish, but we aren't catching them either, so all wrapped up in recruitment values
 - Maybe we are overestimating the impact of fishing on the youngest fish – but for long-lived fish, F is small, so not a large error
 - Sensitivity analyses could include a Lorenzen relationship between length and M

Natural mortality

- How do we estimate *M*?
 - Directly from data or in assessment (rare)
 - From meta-analyses with other life history parameters (e.g.:
 - maximum age (longevity),
 - growth rate,
 - size,
 - environmental temperature,
 - etc.)

How to estimate M?

- Beverton and Holt (1957):
 - Catch curve analysis
 - Ratio of abundance or catch of a single year class in successive years (with very low F)
 - Ratio abundance or catch of adjacent age groups in a sample
 - Mark-Recapture
 - Great, if can get adequate (lots) and reliable data
 - Biases due to change in fish behavior/survival/capture due to marking, incomplete reporting by fishermen, migration.

How do we estimate M?

Ideally, one has a nice catch curve...

M = 0.359

But...

- This never happens
- There are issues with:
- Ageing error
- Selectivity
- recruitment variability
- age and time varying parameters
- etc.

Natural mortality

- How do we estimate *M*?
 - Directly from data or in assessment (rare)
 - From meta-analyses with other life history parameters (e.g. maximum age (longevity))

Then et al. 2015 Data Set

M vs. Maximum Age

Then et al. 2015 Data Set

M vs. 1/Maximum Age

Hamel and Cope 2022

Prior/point estimate

- $M = \frac{5.40}{A_{max}}$ (we usually fix this in assessment)
 - Value above is median (= log space mean)
 - Risk neutral (half of probability density above, half below)
 - In contrast to using mean for e.g. weight at length

For Prior:

- log-space sd =0.31
- This is an improvement over previous work (e.g. Hamel 2015, Then et al. 2015)

Prior on M (for max age = 10)

References

- Cope, J.M. and Hamel, O.S. 2022. Upgrading from M version 0.2: An application-based method for practical estimation, evaluation and uncertainty characterization of natural mortality. Fisheries Research 256, 106493.
- Hamel, O.S., 2015. A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES J. Mar. Sci. 72, 62–69.
- Hamel, O.S. and Cope, J.M. 2022. Development and considerations for application of a longevity-based prior for the natural mortality rate. Fisheries Research 256, 106477.
- Lorenzen, K., 2022. Size- and age-dependent natural mortality in fish populations: biology, models, implications, and a generalized length-inverse mortality paradigm. Fisheries Research 255, 106454.
- Lorenzen, K., Camp, E.V., Garlock, T.M., 2022. Natural mortality and body size in fish populations. Fisheries Research 252, 106327.
- Maunder, M.N., Hamel, O.S., Lee, H.-H., Piner, K.R., Cope, J.M., Punt, A.E., Ianelli, J.N., Castillo-Jordán, C., Kapur, M., and Methot, R.D. 2023. A review of estimation methods for natural mortality and their performance in the context of fishery stock assessment. Fisheries Research 257, 106489.
- Punt, A. E., Castillo-Jordan, C., Hamel, O.S., Cope, J.M., Maunder, M.N., and Ianelli, J.N. 2021. Consequences of error in natural mortality and its estimation in stock assessment models. Fisheries Research 233: 105759.
- Then, A.Y., Hoenig, J.M., Hall, N.G., Hewitt, D.A., 2015. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. Mar. Sci. 72, 82–92