Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Techniques like Code refactoring can enhance readability. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Also, specific user environment and usage history can make it difficult to reproduce the problem. Following a consistent programming style often helps readability. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Scripting and breakpointing is also part of this process. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages.