Name:	
	_

Chemistry 129 Spring 2017

General Chemistry

Examination #3:

Equations are provided.

You may use a calculator.

Show all your work!

page 1: ____/24

page 2: ____/30

page 3: ____/21

page 4: ____/25

Bonus: ____/2

Total: ____/100

1. (12%) (a) Find K for the following reaction:

$$2NO_{2(g)} \leftrightarrow N_{2(g)} + 2O_{2(g)}$$
 (1)

Use the following data to find the unknown K_C .

$${}^{1}2 N_{2(g)} + {}^{1}2 O_{2(g)} \leftrightarrow NO_{(g)}$$
 (2) $K = 4.8 \times 10^{-10}$

 $K_C = ?$

$$K = 4.8 \times 10^{-10}$$

$$NO_{(g)} + \frac{1}{2} O_{2(g)} \leftrightarrow NO_{2(g)}$$

$$K = 301$$

(b) When this reaction (1) comes to equilibrium, will the reaction mixture contain mostly reactant or mostly product? Why?

2. (12%) Classify the following salts as basic, acidic or neutral.

- (i) NH₄I
- (ii) CsNO₂
- (iii) Ba (ClO₃) ₂
- (iv) NaF
- (v) Cr (NO $_3$) $_3$
- (vi) KBr

3. (20%) Consider the ionization of pyridine:

$$C_5H_5N_{(aq)} + H_2O_{(1)} \leftrightarrow C_5H_5NH^+_{(aq)} + OH^-_{(aq)}$$

A 0.100M pyridine solution has a pH of 10.12. Determine the value of pyridine's base-ionization constant (K_b) and the equilibrium concentrations of C_5H_5N , $C_5H_5NH^+$, and OH^- .

4. (10%) (a) Which of the following acids has the larger pKa: HNO_3 or HNO_2 . Explain.

(b) What is the chemical formula of the conjugate base of each of the acids in (a). Which is the stronger base? Explain.

5. (14%) The following reaction is exothermic.

$$Cu_2S_{(s)} + O_{2(q)} \leftrightarrow 2Cu_{(s)} + SO_{2(q)}$$

- (a) Predict the effect (shift right, shift left, or no effect) of the following:
 - i. Adding more O_2 to the reaction mixture -
 - ii. Increasing the temperature of the reaction mixture -
 - iii. Adding more Cu to the reaction mixture
 - iv. Removing some SO₂ from the reaction mixture -
 - v. Compressing the vessel volume in half -
 - vi. Adding a catalyst to the reaction mixture -
- (b) Will the equilibrium constant of the reaction increase or decrease if the temperature is decreased? Why?

6. (7%) Two unknown acid samples are studied by titration with a 0.100 M NaOH solution. One sample is **aspirin** (acetylsalicylic acid, $pK_a = 3.52$), and the other is **vinegar** (acetic acid, $pK_a = 4.74$). Which titration curve corresponds to which acid? Briefly explain.

7. (25%) Consider the titration of 30.00mL of 0.250M benzoic acid ($C_6H_5CO_2H$), pK_a = 4.20, with 0.300M KOH. Determine the equivalence volume and the pH at the following volumes of KOH added: 0 mL, 18.0mL, equivalence volume and 30.0mL. Make sketch of the titration curve.

Bonus (2 pts):

Consider the following reaction:

$$2H_2O_{(g)} \leftrightarrow 2H_{2(g)} + O_{2(g)}$$

If the reaction shifts right when the temperature is increased, is the reaction endothermic or exothermic?