大学物理习题册

(上册)

电子科技大学物理电子学院

	片区	选课号	姓名	
习题一 质点运动的	苗述(一)			
1. 一质点在平面上	运动,已知质点位	"置矢量的表示式为		

$$\vec{r} = at^2\vec{i} + bt^2\vec{j}$$
 (其中 a 、 b 为常量)

则该质点作

(A) 匀速直线运动.

(B) 变速直线运动.

(C) 抛物线运动.

- (D) 一般曲线运动. [
- 2. 质点作半径为R的变速圆周运动时的加速度大小为(v表示任一时刻质点的速率)
- (A) $\frac{\mathrm{d}v}{\mathrm{d}t}$.

(B) $\frac{v^2}{R}$.

(C) $\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v^2}{R}$.

(D) $\left[\left(\frac{\mathrm{d} v}{\mathrm{d} t} \right)^2 + \left(\frac{v^4}{R^2} \right) \right]^{1/2}.$

3. 已知质点运动方程为

$$\vec{r} = (5 + 2t - \frac{1}{2}t^2)\vec{i} + (4t + \frac{1}{3}t^3)\vec{j}$$
 (SI)

当 t=2s 时, $\vec{a}=$ ______.

- 4. 一质点沿x轴作直线运动,它的运动学方程为 $x=3+5t+6t^2-t^3$ (SI)
- 则(1)质点在t=0时刻的速度 $\vec{v}_0=$ _______.
 - (2) 加速度为零时,该质点的速度 $\bar{v}_{=}$ ______.

5. 一物体悬挂在弹簧上作竖直振动,其加速度为a=-ky,式中k为常量,y是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标 y_0 处的速度为 v_0 ,试求速度 v 与坐标 y 的函数关系式.

6. 有一质点沿 x 轴作直线运动, t 时刻的坐标为

$$x = 4.5t^2 - 2t^3$$
 (SI)

- (1) 第2秒内的平均速度;
- (2) 第2秒末的瞬时速度;
- (3) 第2秒内的路程.

1

习题一 质点运动的描述 (二)

- 1. 对于沿曲线运动的物体,以下几种说法中哪一种是正确的:
 - (A) 切向加速度必不为零.
 - (B) 法向加速度必不为零(拐点处除外).
 - (C) 由于速度沿切线方向, 法向分速度必为零, 因此法向加速度必为零.
 - (D) 若物体作匀速率运动, 其总加速度必为零.
 - (E) 若物体的加速度 \bar{a} 为恒矢量,它一定作匀变速率运动.

]

- 2. 一质点在平面上作一般曲线运动,其瞬时速度为 \bar{v} ,瞬时速率为v,其一时间内的平均速度为 \bar{v} ,平均速率为 \bar{v} ,它们之间的关系必定有:
 - (A) $|\vec{v}| = v, |\vec{v}| = \vec{v}$.

(B) $|\vec{v}| \neq v, |\vec{v}| = \overline{v}$.

(C) $|\vec{v}| \neq v, |\vec{v}| \neq \overline{v}$.

- (D) $|\vec{v}| = v, |\vec{v}| \neq \vec{v}$.
- 3. 一质点沿半径为R的圆周运动,其路程S随时间t变化的规律为

$$S = bt - \frac{1}{2}ct^2 \qquad (SI)$$

其中 b、c 为大于零的常数,且 $b^2 > Rc$.

- 4. 以一定初速度斜向上抛出一个物体,若忽略空气阻力,当该物体的速度 \bar{v} 与水平的夹角为 θ 时,它的切向加速度 a_n 的大小为______,法向加速度 a_n 的大小为_____

- 5. (1) 对于在 xy 平面内,以原点 O 为圆心作匀速圆周运动的质点,试用半径 r、角速度 ω 和单位矢量i、j表示其 t 时刻的位置矢量.已知在t=0时,y=0,x=r,角速度 ω 如图所示;
 - (2) 由 (1) 导出速度 \bar{v} 与加速度 \bar{a} 的矢量表达式:
 - (3) 试证加速度指向圆心.

6. 如图所示,质点 P 在水平面内沿一半径为 R=2m 的圆轨道转动,转动的角速度 ω 与时间 t 的函数关系为 $\omega=kt^2$ (k 为常量).已知 t=2s 时,质点 P 的速度值为 32m/s.试求 t=1s 时,质点 P 的速度与加速度的大小.

片区_____选课号______姓名

习题三 质点运动的描述 (三)

1. 某物体的运动规律为 $dv/dt = -kv^2t$,式中的 k 为大于零的常数. 当 t=0 时,初速为 v_0 ,则速度 v 与时间 t 的函数关系是

- (A) $v = \frac{1}{2}kt^2 + v_0$.
- (B) $v = -\frac{1}{2}kt^2 + v_0$.
- (C) $\frac{1}{v} = \frac{kt^2}{2} + \frac{1}{v_0}$.

(D) $\frac{1}{v} = \frac{-kt^2}{2} + \frac{1}{v_0}$.

2. 在相对地面静止的坐标系内,A、B 二船都以 $2m \cdot s^{-1}$ 的速率匀速行驶,A 船沿 x 轴正向,B 船沿 y 轴正向。今在 A 船上设置与静止坐标系方向相同的坐标系(x、y 方向单位矢用 \bar{i} 、 \bar{j} 表示),那么在 A 船上的坐标系中,B 船的速度(以 $m \cdot s^{-1}$ 为单位)为

(A) $2\vec{i} + 2\vec{j}$.

(B) $-2\vec{i}+2\vec{j}$.

(C) $-2\vec{i}-2\vec{j}$.

(D) $2\vec{i}-2\vec{j}$.

3. 设质点的运动学方程为 $\vec{r} = R\cos\omega t \vec{i} + R\sin\omega t \vec{j}$ (式中R、 ω 皆为常量)则质点的 $\vec{v} =$, dv/dt = .

4. 如图所示,小船以相对于水的速度 \bar{v} 与水流方成 α 角开行,若水流速度为 \bar{u} ,则小船相对于岸的速度的大小为_____,与水流方向的夹角为_____.

5. 河水自西向东流动,速度为10km/h,一轮船在水中航行,船相对于河水的船向为北偏西 30°,相对于河水的航速为 20km/h. 此时风向为正西,风速为 10km/h,试求在船上观察到的烟囱冒出的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)

6. 一飞机驾驶员想往正北方向航行,而风以 60km/h 的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为 180km/h,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明。

片区	选课号	姓名

习题四 质点运动的描述(四)

- 一、选择题(共6分)
- 1. (本题 3 分) 0614

在电梯中用弹簧秤称物体的重量. 当电梯静止时, 称得一个物体重量为 500N. 当电梯作匀速变速运动时, 称得其重量为 400N, 则该电梯的加速度是

- (A) 大小为 0.2g, 方向向上.
- (B) 大小为 0.8g, 方向向上.
- (C) 大小为 0.2g, 方向向下.
- (D) 大小为 0.8g, 方向向下.

- 2. 光滑的水平桌面上放有两块相互接触的滑块,质量分别为 m_1 和 m_2 ,且 $m_1 < m_2$. 今 对两滑块施加相同的水平作用力,如图所示. 设在运动过程中,两滑块不离开,则两滑块之间的相互作用力 N 应有
 - (A) N = 0.
- (B) 0 < N < F.
- (C) F < N < 2F.

二、填空题(共6分)

(D) N > 2F.

3. 沿水平方向的外力 F 将物体 A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为 f_0 ,若外力增至 2F,则此时物体所受静摩擦力为 ______.

4. (本题 3 分) 0526

倾角为 30° 的一个斜面体放置在水平桌面上,一个质量为 2kg 的物体沿斜面下滑,下滑的加速度为 $3.0mm/s^2$ 。若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力 f=

5. 一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为 m_1 的物体,在另一侧有一质量为 m_2 的环,求当环相对于绳对于绳以恒定的加速度 a_2 沿绳向下滑动时,物体和环相对地面的加速度各是多少? 环与绳间的摩擦力多大?

- 6. 质量为 m 的子弹以速度 v_0 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为 K,忽略子弹的重力,求:
 - (1) 子弹射入沙土后,速度随时间变化的函数式.
 - (2) 子弹进入沙土的最大深度.

片区	选课号	姓名	
/ -	人三 //ト ノ	<u>√</u> ΤΓ.∏	

习题五 质点运动的描述(五)

1. 在作匀速转动的水平转台上,与转轴相距 R 处有一体积很小的工作 A,如图所 示. 设工件与转台间静摩擦系数为 μ 。, 若使工件在转台上无滑动,则转台的角速度 ω 应 满足

(A)
$$\omega \leq \sqrt{\frac{\mu_s g}{R}}$$

(A)
$$\omega \le \sqrt{\frac{\mu_s g}{R}}$$
. (B) $\omega \le \sqrt{\frac{3\mu_s g}{2R}}$.

(C)
$$\omega \leq \sqrt{\frac{3\mu_s g}{R}}$$

(C)
$$\omega \le \sqrt{\frac{3\mu_s g}{R}}$$
. (D) $\omega \le 2\sqrt{\frac{\mu_s g}{R}}$. [

2. (本题 3 分) 0024

一光滑的内表面半径为 10cm 的半球形碗, 以匀角速度 ω 绕其对称轴 OC 旋转. 已知放在碗内表面上的一个小球P相对 于碗静止,其位置高于碗底 4cm,则由此可推知碗旋转的角 速度约为

- (A) 13 rad/s.
- (A) 17 rad/s.
- (C) 10 rad/s.
- (D) 18 rad/s.

3. (本题 3 分) 0351

一圆锥摆摆长为 l、摆锤质量为 m, 在水平面上作匀速圆周 运动,摆线与铅直线夹角 θ ,则

- (1) 摆线的张力 T= ;
- (2) 摆锤的速率 v=
- 4. 质量分别为 m_1 、 m_2 、 m_3 的三个物体 A、B、C,用一根 细绳和两根轻弹簧连接并悬于固定点 O,如图. 取向下为 x 轴正 向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时, 物体 B 的加速度 $\bar{a}_{R} =$; 物体 A 的加速度 $\bar{a}_{A} =$.

5. (本题 5 分) 0028

一水平放置的飞轮可绕通过中心的竖直轴转动,飞轮的辐条上装有一个小滑块,它 可在辐条上无摩擦地滑动. 一轻弹簧一端固定在飞轮转轴上, 另一端与滑块联接. 当飞 轮以角速度 ω 旋转时,弹簧的长度为原来的f倍,已知 $\omega = \omega$ 。时,f = f。,求 ω 与f的函 数关系.

- 6. 质量为m的物体系长度为R的绳子的一个端点上,在竖直平面内绕绳子另一端 点(固定)作圆周运动.设t时刻物体瞬时速度的大小为v,绳子与竖直向上的方向成 θ 角,如图所示.
 - (1) 求 t 时刻绳中的张力 T 和物体的切向加速度 a_t ;
 - (2) 说明在物体运动过程中 a_t 的大小和方向如何变化?

习题六 能量守恒(一)

- 1. 对功的概念有以下几种说法:
- (1) 保守力作正功时,系统内相应的势能增加.
- (2) 质点运动经一闭合路径,保守力对质点作的功为零.
- (3) 作用力和反作用力大小相等、方向相反, 所以两者所作功的代数和必为零. 在 上述说法中:
 - (A)(1)、(2)是正确.

- (B)(2)、(3)是正确的.
- (C) 只有(2) 是正确的.
- (D) 只有(3) 是正确的.

- 2. (本题
- 一个质点同时在几个力作用下的位移为:

$$\Delta \vec{r} = 4\vec{i} - 5\vec{j} + 6\vec{k}$$
 (SI)

其中一个力为恒为 $\vec{F} = -3\vec{i} - 5\vec{j} + 9\vec{k}$ (S,则此力在该位移过程中所作的功为

- (A) 67J. (B) 91J.
- (C) 17J.
- (D) -67 J.
- 3. 小球 A 和 B 的质量相同,B 球原来静止,A 以速度 u 与 B 作对心碰撞. 这两球碰 撞后的速度 v1 和 v2 的可能值是
 - (A) -u, 2u.
- (B) u/4, 3u/4. (C) -u/4, 5u/4.
- (D) $\frac{1}{2}u, -u\sqrt{3}/2.$

4. (本题 3 分) 5022

一弹簧原长 $l_D=0.1$ m,倔强系数 k=50N/m,其一端固定在半径为 R=0.1m 的半圆环 的端点 A,另一端与另一套在半圆环上的小环相连. 在把小环由半圆环中点 B 移到另一 端 C 的过程中,弹簧的拉力对小环所作的功为

- 1. (本题 10 分) 0422
- 一质量为 m 的质点在 XOY 平面上运动, 其位置矢量为

$$\vec{r} = a\cos\omega t\vec{i} + b\sin\omega t\vec{j}$$
 (SI)

式中a、b、 ω 是正信常数, 且a>b.

- (1) 求质点在 A 点 (a, 0) 时和 B 点 (0, b) 时的动能;
- (2) 求质点所受的作用车 \vec{F} 以及当质点从A 点运动到B 点的过程中 \vec{F} 的分力 F_x 和 F_x 分别作的功.

2. (本题 10分) 0183

两个质量分别为 m_1 和 m_2 的木块 A 和 B,用一个质量忽略不计、倔强系数为 k 的弹 簧联接起来,放置在光滑水平面上,使 A 紧靠墙壁,如图所示,用力推木块 B 使弹簧压 缩 x_0 ,然后释放. 已知 $m_1=m$, $m_2=3m$,求:

- (1) 释放后, A、B 两木块速度相等时的瞬时速度的大小;
- (2) 释放后,弹簧的最大伸长量.

片区	选课号	姓名	
----	-----	----	--

习题七 能量守恒(二)

- 1. 有一劲度系数为 k 的轻弹簧,原长为 l_0 ,将它吊在天花板上. 当它下端挂一托盘 平衡时,其长度变为 l_1 . 然后在托盘中放一重物,弹簧长度变为 l_2 ,则由 l_1 伸长至 l_2 的过程中,弹性力所作的功为
 - $(\mathbf{A}) \int_{l_1}^{l_2} kx \, \mathrm{d} x.$
- (B) $\int_{l_1}^{l_2} kx \, \mathrm{d}x$.
- (C) $-\int_{l_1-l_0}^{l_2-l_0} kx \, dx$.
- (D) $\int_{l_1-l_0}^{l_2-l_0} kx \, dx$.
- 2. (本题 3 分) 5408

关于机械能守恒条件和动量守恒条件有以下几种说法, 其中正确的是

- (A) 不受外力作用的系统, 其动量和机械能必然同时守恒.
- (B) 所受合外力为零,内力都是保守力的系统,其机械能必然守恒.
- (C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒.
- (D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒.
- 3. (本题 5 分) 0415

 $v_{\scriptscriptstyle R} =$

4. 如图所示,质量为 m 的小球系在劲度系数为 k 的轻弹簧一端,弹簧的另一端固定在 O 点. 开始时弹簧在水平位置 A,处于自然状态,原长为 l_0 . 小球由位置 A 释放,下落到 O 点正下方位置 B 时,弹簧的长度为 l,则小球到达 B 点时的速度大小为

- 5. 一链条总长为 l,质量为 m,放在桌面上,并使其部分下垂,下垂一段的长度为 a. 设链条与桌面之间的滑动摩擦系数为 μ . 令链条由静止开始运动,则
 - (1) 到链条刚离开桌面的过程中,摩擦力对链条作了多少功?
 - (2) 链条刚离开桌面时的速率是多少?

6. (本题 10分) 0194

在光滑的水平桌面上,平放有如图所示的固定半圆形屏障. 质量为 m 的滑块以初速度 \bar{v}_0 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为 μ . 试证明当滑块从屏障另一端滑出时,摩擦力所作的功为

$$W = \frac{1}{2} m v_0^2 (e^{-2\mu\pi} - 1)$$

片区	选课号	姓名	
厅区	选课号	姓名	

习题八 动量守恒(一)

1. (本题 3 分) 0384

质量为 20g 的子弹,以 400m/s 的速率沿图示方向射入一原来静止的质量为 980g 的摆球中,摆线长度不可绅缩.子弹射入后与摆球一起运动的速率为

- (A) 4m/s.
- (B) 8m/s.
- (C) 2m.s.
- (D) 7m/s.

[]

2. 质量为 20g 的子弹沿 *X* 轴正向以 500m/s 的速率射入一木块后,与木块一起仍沿 *X* 轴正向以 50m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9*N*·*s*. (B) -9*N*·*s*. (C) 10*N*·*s*. (D) -10*N*·*s*.

[]

3. 一质量为 m 的物体,原来以速率 v 向北运动,它突然受到外力打击,变为向西运动,速率仍为 v,则外力的冲量大小为______,方向为______.

4. (本题 5 分) 0062

两块并排的木块 A 和 B,质量分别为 m_1 和 m_2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为 Δt_1 和 Δt_2 ,木块对子弹的阻力为恒力 F,则子弹穿出后,木块 A 的速度大小为______,木块 B 的速度大小为______

5. (本题 5 分) 0376

一质点的运动轨迹如图所示. 已知质点的质量为 20g,在 A、B 二位置处的速率都为 20m/s, \bar{v}_A 与 x 轴成 45°角, \bar{v}_B 垂直于 y 轴,求质点由 A 点到 B 点这段时间内,作用在质点上外力的总冲量.

6. (本题 10分) 0186

如图所示,一辆质量为 M 的平顶小车在光滑水平轨道上以速度 v_0 作匀速直线运动. 今在车顶的前部边缘 A 处轻轻放上一质量为 m 的小物体,物体相对地面的速度为零. 设物体与车顶之间的摩擦系数为 μ ,为使物体不致于从顶上滑出去,问车顶的长度 L 最短应为多少?

片区 选课号 姓名

习题九 动量守恒(二)

1. (本题 3 分) 0379

在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对 于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)

- (A) 总动量守恒.
- (B) 总动量在炮身前进的方向上的分量守恒, 其它方向动量不守恒.
- (C) 总动量在水平面上任意方向的分量守恒, 竖直方向分量不守恒.
- (D) 总动量在任何方向的分量均不守恒.
- 2. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为

(B)
$$\sqrt{(2mv)^2 + (mg\pi R/v)^2}$$
.

- (C) $\pi Rmg/v$.
- (D) 0.

- 3. (本题 5 分) 0371
- 一颗子弹在枪筒里前进时所受的合力大小为

$$F = 400 - \frac{4 \times 10^5}{3} t \tag{SI}$$

子弹从枪口射出时的速率为 $300\,m\cdot s^{-1}$. 假设子弹离开枪口时合力刚好为零,则

- (1) 子弹走完枪筒全长所用的时间 t=
- (2) 子弹在枪筒中所受力的冲量 I=_______,
- (3) 子弹的质量 *m*= .
- 4. 一质量为m的物体,以初速 \bar{v}_0 从地面抛出,抛射角 $\theta=30$ °,如忽略空气阻力,则从抛出到刚要接触地面的过程中
 - (1)物体动量增量的大小为_____,
 - (2) 物体动量增量的方向为 .

5. (本题 5 分) 0395

质量为M的木块在光滑的固定斜面上,由A点从静止开始下滑,当经过路程l运动到B点时,木块被一颗水平飞来的子弹射中,子弹立即陷入木块内. 设子弹的质量为m,速度为 \bar{v} ,求子弹射中木块后,子弹与木块的共同速度.

- 6. 质量为 M 半径为 R 的 1/4 圆周的光滑弧形滑块,静止在光滑桌面上,今有质量为 m 的物体由弧的上端 A 点静止滑下,试求当 m 滑到最低点 B 时,
 - (1) m 相对于 M 的速度 v 及 M 对地的速度 V;
 - (2) M 对 m 的作用力 N.

习题十 角动量守恒(一)

- 1. (本题 3 分) 0193
- 一人造地球卫星到地球中心的最大距离和最小距离分别是 R_A 和 R_B , 设卫星对应的 角动量分别是 L_A 、 L_B , 动能分别是 E_{KA} 、 E_{KB} , 则应有

 - (A) $L_R > L_A, E_{KR} > E_{KA}$. (B) $L_R > L_A, E_{KR} = E_{KA}$.
 - (C) $L_B = L_A, E_{KB} = E_{KA}.$ (D) $L_B < L_A, E_{KB} = E_{KA}.$
 - (E) $L_{R} = L_{A}, E_{KR} > E_{KA}$.
 - 2. (本题 3 分) 0172
- 一力学系统由两个质点组成,它们之间只有引力作用. 若两质点所受外力的矢量和 为零,则此系统
 - (A) 动量、机械能以及对一轴的角动量都守恒.
 - (B) 动量、机械能守恒,但角动量是否守恒不能断定.
 - (C) 动量守恒, 但机械能和角动量守恒与否不能断定.
 - (D) 动量和角动量守恒,但机械能是否守恒不能断定.
 - 3. (本题 3 分) 5638

质量为m的质点以速度 \bar{v} 沿一直线运动,则它对直线外垂直距离为d的一点角动量 大小是 .

4. (本题 3 分) 0404

地球的质量为 m,太阳的质量为 M,地心与日心的距离为 R,引力常数为 G,则地 球绕太阳作圆周运动的轨道角动量为L=

5. (本题 5 分) 0724

一质量为 m 的质点沿着一条空间曲线运动,该曲线在直角坐标系下的定义式为 $\vec{r} = a\cos\omega t \vec{i} + b\sin\omega t \vec{j}$, 其中 $a \times b \times \omega$ 皆为常数,则此质点所受的对原点的力矩

6. (本题 5 分) 0320

在一光滑水平面上,有一轻弹簧,一端固定,一端连接一质量m=1kg的滑块,如 图所示. 弹簧自然长度 $l_0 = 0.2$ m, 倔强系数 $k = 100 N \cdot m^{-1}$ 设 t = 0 时, 弹簧长度为 l_0 , 滑 块速度 $v_0 = 5m \cdot s^{-1}$,方向与弹簧垂直.在某一时刻,弹簧位于与初始位置垂直的位置, 长度l=0.5m. 求该时刻滑块速度 \bar{v} 的大小和方向.

7. 小球 A,自地球的北极点以速度 \bar{v}_0 在质量为 M、半径为 R 的地球表面水平切向 向右飞出,如图所示,地心参考系中轴OO'与 \bar{v}_0 平行,小球A的运动轨道与轴OO'相交 于距 O 为 3R 的 C 点. 不考虑空气阻力, 求小球 A 在 C 点的速度莎 \bar{v} 与 \bar{v} 。之间的夹角 θ .

片区______选课号______姓名 ____

习题十一 角动量守恒(二)

1. (本题 3 分) 0289

关于刚体对轴的转动惯量,下列说法中正确的是

- (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关。
- (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关。
- (C) 取决于刚体的质量、质量的空阂分布和轴的位置.
- (D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2. 如图所示,A、B 为两个相同的绕着轻绳的定滑轮. A 滑轮挂一质量为 M 的物体,B 滑轮受拉力 F,而且 F=Mg. 设 A、B 两滑轮的角加速度分别为 β_A 和 β_B ,不计滑轮轴的摩擦,则有

- (A) $\beta_A = \beta_R$.
- (B) $\beta_{\scriptscriptstyle A} > \beta_{\scriptscriptstyle R}$.
- (C) $\beta_A < \beta_B$.
- (D) 开始时 $\beta_A = \beta_B$, 以后 $\beta_A < \beta_B$.

- 4. (本题 3 分) 0240
- 一飞轮以 600rev/min 的转速旋转,转动惯量为 2.5kg m²,现加一恒定的制动车矩使飞轮在 1s 内停止转动,则该恒定制动力矩的大小 M=

5. (本题 5 分) 0783

一质量 m=6.00kg、k=1.00m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量 $J=ml^2/12$. t=0 时棒的角速度 $\omega_0=10.0\,\mathrm{rad\cdot s^{-1}}$. 由于受到恒定的阻力矩的作用, $t=20\mathrm{s}$ 时,棒停止运动. 求:

- (1) 棒的角加速度的大小:
- (2) 棒所受阻力矩的大小;
- (3) 从 t=0 到 t=10s 时间内棒转过的角度.

- 6. 质量为 M_1 = 24kg 的圆轮,可绕水平光滑固定轴转动,一轻绳绕于轮上,另一端通过质量为 M_2 =5kg 的圆盘形定滑轮悬有m=10kg 的物体. 求当重物由静止开始下降了h=0.5m 时,
 - (1) 物体的速度;
 - (2) 绳中张力.

(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为 $J_1 = \frac{1}{2} M_1 R^2$, $J_2 = \frac{1}{2} M_2 r^2$)

m=0.01kg、速率为v=400 m/s 的子弹并嵌入杆内,则杆的角速度为 $\omega=$

习题十二 角动量守恒(三)

1. (本题 3 分) 0294

刚体角动量守恒的充分而必要的条件是

- (A) 刚体不受外力矩的作用.
- (B) 刚体所受合外力矩为零.
- (C) 刚体所受的合外力和合外力矩均为零.
- (D) 刚体的转动惯量和角速度均保持不变.

2. 如图所示,一静止的均匀细棒,长为L、质量为M,可绕通过棒的端点且垂直于 棒长的光滑固定轴 O 在水平面内转动,转动惯量为 $\frac{1}{3}ML^2$. 一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 1/2 v, 则此时棒的角速度应为

- (B) $\frac{3mv}{2ML}$.

- (C) $\frac{5mv}{3ML}$. (D) $\frac{7mv}{4ML}$.
- 3. (本题 3 分) 0681

两个质量都为 100kg 的人, 站在一质量为 200kg、半径为 3m 的水平转台的直径两 端. 转台的固定转轴通过其中心且垂直于台面. 初始时, 转台每 5s 转一圈. 当这两人以 相同的快慢走到转台的中心时,转台的角速度 ω = . (已知转台对转轴 的转动惯量 $J = \frac{1}{2}MR^2$, 计算时忽略转台在转轴处的摩擦).

- 4. (本题 3 分) 0125
- 一飞轮以角速度 ω 。绕轴旋转,飞轮对轴的转动惯量为 J_1 ;另一静止飞轮突然被啮合 到同一个轴上,该飞轮对轴的转动惯量为前者的二倍. 啮合后整个系统的角速度 ω
- 5.一杆长 l=50cm,可绕通过其上端的水平光滑固定轴 O 在竖直平面内转动,相对于 O 轴的转动惯量 J=5 kg m². 原来杆静止并自然下垂. 若在杆的下端水平射入质量

习题十三 振动 (一)

1. 一质点沿x轴作简谐振动,振动方程为

$$x = 4 \times 10^{-2} \cos(2\pi t + \frac{1}{3}\pi)$$
 (SI)

从t=0时刻起,到质点位置在x=-2cm处,且向x轴正方向运动的最短时间间隔为

- (A) 1/8s.
- (B) 1/4s.
- (C) 1/2s.
- (D) 1/3s.
- (E) 1/6s.

2. 一简谐振动曲线如图所示,则振动周期是

- (A) 2.62s. (B) 2.40s.
- (C) 0.42s.
- (D) 0.382s.

3. 一物体作简谐振动, 其振动方程为

$$x = 0.04\cos(5\pi t / 3 - \frac{1}{2}\pi)$$
 (SI)

- (1) 此简谐振动的周期 T=_
- (2) 当 t=0.6s 时物体的速度 v=

4. 一简谐振动曲线如图所示,试由图确定在 t=2 秒时刻质点的位移

- 5. 一物体作简谐振动, 其速度最大值 $v_m = 3 \times 10^{-2} \,\mathrm{m/s}$, 其振幅 $A = 2 \times 10^{-2} \,\mathrm{m}$. 若 t = 0时,物体位于平衡位置且向 x 轴的负方向运动. 求:
 - (1) 振动周期 T;
 - (2) 加速度的最大值 a_m ;
 - (3) 振动方程的数值式.

- 6. 一轻弹簧在 60N 的拉力下伸长 30cm. 现把质量为 4kg 的物体悬挂在该弹簧的下 端并使之静止,再把物体向下拉 10cm,然后由静止释放并开始计时.求
 - (1) 物体的振动方程,
 - (2) 物体在平衡位置上方 5cm 时弹簧对物体的拉力,
 - (3) 物体从第一次越过平衡位置时刻起到它运动到上方 5cm 处所需要的最短时间.

习题十四 振动 (二)

1. 一质点在x轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置取作坐标原 点. 若 t=0 时刻质点第一次通过 x=-2 cm 处,且向 x 轴负方向运动,则质点第二次通过 $x = -2 \, \text{cm}$ 处的时刻为

- (A) 1s. (B) (2/3)s.
- (C) (4/3)s.
- (D) 2s.

2. 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为

- $(A) kA^2$
- (B) $\frac{1}{2}kA^2$.
- (C) $(1/4)kA^2$.
- (D) 0.

3. 一质点作简谐振动,速度最大值 $U_m = 5 \text{cm/s}$,振幅A=2cm. 若令速度具有正最 大值的那一时刻为t=0,则振动表达式为

4. 一简谐振动用余弦函数表示, 其振动曲线如图所示, 则此简谐振动的三个特征 量为 A= ; ω=_____; φ=_____

5. 如图,有一水平弹簧振子,弹簧的倔强系数 k = 24N/m,重物的质量 m = 6kg, 重物静止在平衡位置上。设以一水平恒力F=10N 向左作用于物体(不计摩擦),使之由 平衡位置向左运动了 0.05m, 此时撤去力 F. 当重物运动到左方最远位置时开始计时, 求 物体的运动方程.

6. (本题 10分) 0321

一定滑轮的半径为 R,转动惯量为 J,绳的一端系一质量为 m 的物体,另一端与一固定的轻弹簧相连,如图所示. 设弹簧的倔强 系数为k,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力. 现将 物体 m 从平衡位置拉下一微小距离后放手,证明物体作简谐振动, 并求出其角频率.

习题十五 振动 (三)

1. 一质点作简谐振动。其运动速度与时间的曲线如图所示. 若质点的振动规律用余 弦函数描述. 则其初位相应为

(A) $\pi/6$.

(B) $5\pi/6$.

(C) $-5\pi/6$. (D) $-\pi/6$. (E) $-2\pi/3$.

2. 图中所画的是两个简谐振动的振动曲线. 若这两个简谐振动可叠加,则合成的余 弦振动的初相为

(A) $\frac{1}{2}\pi$. (B) π . (C) $\frac{3}{2}\pi$. (D) 0.

3. 一物体同时参与同一直线上的两个简谐振动:

$$x_1 = 0.05\cos(4\pi t + \frac{1}{3}\pi)$$
 (SI)

$$x_2 = 0.03\cos(4\pi t - 2\pi/3)$$
 (SI)

合成振动的振幅为_____m.

4. 一质点同时参与了三个简谐振动,它们的振动方程分别为

 $x_1 = A\cos(\omega t + \pi/3)$

 $x_2 = A\cos(\omega t + 5\pi/3)$

 $x_3 = A\cos(\omega t + \pi)$

其合成运动的运动方程为 x=

- 5. 一个轻弹簧在 60N 的拉力作用下可伸长 30cm. 现将一物体悬挂在弹簧的下端并 在它上面放一小物体,它们的总质量为4kg. 待其静止后再把物体向下拉10cm,然后释 放,问:
 - (1) 此小物体是停在振动物体上面还是离开它?
- (2) 如果使放在振动物体上的小物体与振动物体分离,则振幅 A 需满足何条件? 二者在何位置开始分离?

6. 两个同方向简谐振动的振动方程分别为

$$x_1 = 5 \times 10^{-2} \cos(10t + 3\pi/4)$$
 (SI)

$$x_2 = 6 \times 10^{-2} \cos(10t + \pi/4)$$
 (SI)

求合振动方程.

片区 选课号	姓名
--------	----

习题十六 相对论(一)

1. (本题 3 分) 5613

关于同时性有人提出以下一些结论,其中哪个是正确的?

- (A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生.
- (B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生.
- (C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.
- (D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生.

[

2. (本题 3 分) 4184

在狭义相对论中,下列说法中哪些是正确的?

- (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.
- (2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的.
- (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.
- (4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.
 - (A) (1), (3), (4).
 - (B) (1), (2), (4).
 - (C) (1), (2), (3).
 - (D) (2), (3), (4).

[]

3. (本题 3 分) 4362

静止时边长为 50cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度 $2.4 \times 10^8 \, m \cdot s^{-1}$ 运动时,在地面上测得它的体积是______.

4. (本题 3 分) 5616

一列高速火车以速度 u 驶过车站时,停在站台上的观察者观察到固定在站台上相距 1m 的两只机械手在车厢上同时划出两个痕迹,则车厢上的观察者应测出这两个痕迹之间的距离为 .

5. (本题 10分) 5359

观测者甲和乙分别静止于两个惯性参照系 K 和 K'中,甲测得在同一地点发生的两个事件的时间间隔为 4s,而乙测得这两个事件的时间间隔为 5s,求:

- (1) K'相对于 K 的运动速度.
- (2) 乙测得这两个事件发生的地点的距离.

6. (本题 5 分) 5358

观测者甲和乙分别静止于两个惯性系 K 和 K'(K' 系相对于 K 系作平行于 X 轴的匀速运动)中,甲测得在 X 轴上两点发生的两个事件的空间间隔和时间间隔分别为 500m 和 2×10^{-7} s ,而乙测得这两个事件是同时发生的,问:K' 系相对于 K 系以多大速度运动?

		片区	选课号	姓名	
习题十七	相对论(二	_)			
1. (本	题 3 分)4724				
•			为静止质量的 3 倍时	,其动能为静止	能量的
(A) 2	2倍. (B)	3倍. (C)	4倍. (D) 5倍	立	[]
2. (本	题 3 分) 4725				
把一个	静止质量为 m	10的粒子,由静山	上加速到 $v = 0.6c$ (c	为真空中光速)	需作的功
等于					
	$0.18 \text{ m}_0 \text{c}^2$.	(B)			
(C) ($0.36 \text{ m}_0\text{c}^2$.	(D)	$1,25 \text{ m}_0\text{c}^2$.		
• ()	FF 2 // \ \ \ \				[]
•	题 3 分)4167 一种基本粒子		静止的坐标系中测得	見甘寿命为。- 2	∨10 ⁻⁶ a ±⊓
•		· ·	为真空中光速),则在	0	
	1 地外印建汉	/y v = 0.988c (c /	为 兵工于几处万 附在	.地外主你不干饭	лшн л
•			0,当它沿棒长方向作	高速的匀速直线	运动时,
			v=		
$E_k = \underline{\hspace{1cm}}$					
•	题 3 分)8015				
	种说法 :		t belo IA II		
		勿体基本规律都是 5 法		T V.	
			区、光源的运动状态。		
(3) 1	上1十11111611年系月	4. 光什基学甲光	5仟何方向的传播谏	皮都和间 其甲肼	3些"况法是

正确的?

(A) 只有(1)、(2) 是正确的.(B) 只有(1)、(3) 是正确的.(C) 只有(2)、(3) 是正确的.

(D) 三种说法都是正确的.

5. (本题 5 分) 4170

一体积为 v_0 ,质量为 m_0 的立方体沿其一棱的方向相对于观察者A以速度v运动. 求: 观察者A测得其密度是多少?

6. (本题 5 分) 4603

某一宇宙射线中的介子的动能 $E_k = 7M_0c^2$,其中 M_0 是介子的静止质量. 试求在实验室中观察到它的寿命是它的固有寿命的多少倍.

习题十八 相对论(三)

1. 本题(3分)4173

设某微观粒子的总能量是它的静止能量的 K 倍,则其运动速度的大小为(以 c 表示 真空中的光速)

- (A) $\frac{c}{K-1}$. (B) $\frac{c}{K}\sqrt{1-K^2}$.
- (C) $\frac{c}{K}\sqrt{K^2-1}$. (D) $\frac{c}{K+1}\sqrt{K(K+2)}$.
- 2. (本题3分)4376

在参照 S 中,有两个静止质量都是 m_0 的粒子 A 和 B,分别以速度 v 沿同一直线相向 运动,相碰后合在一起成为一个粒子,则其静止质量 M_0 的值为

- (A) $2m_0$.
- (B) $2m_0\sqrt{1-(v/c)^2}$.
- (C) $\frac{m_0}{2}\sqrt{1-(v/c)^2}$.
- (D) $\frac{2m_0}{\sqrt{1-(v/c)^2}}$. (c 表示真空中光速)

3. (本题 3 分) 4172

一宇宙飞船相对地球以 0.8c (c 表示真空中光速)的速度飞行. 一光脉冲从船尾传到 船头. 飞船上的观察者测得飞船长为 90m, 地球上的观察者测得光脉冲从船尾发出和到 达船头两个事件的空间间隔为

- (A) 90m.
- (B) 54m.
- (C) 270m.
- (D) 150m.

4. (本题 3 分) 4171

两个惯性系中的观察者 O 和 O'以 0.6c(c 表示真空中光速)的相对速度互相接近. 如 果 O 测得两者的初始距离是 20m. 则 O 测得两者经过时间 $\Delta t =$ s 后相遇

5. (本题 5 分) 5230

要使电子的速度从 $v_1 = 1.2 \times 10^8 \text{ m/s}$ 增加到 $v_2 = 2.4 \times 10^8 \text{ m/s}$ 必须对它作多少功?

(电子静止质量 $m_0 = 9.11 \times 10^{-31} \text{ kg}$)

6. (本题 5 分) 4245

由于相对论效应,如果粒子的能量增加,粒子在磁场中的回旋周期将随能量的增加 而增大, 计算动能为 10⁴Mev 的质子在磁感应强度为1T 的磁场中的回旋周期.

(质子的静止质量为 1.67×10^{-27} kg, lev = $1.6 \times 10^{-18} J$)

[]

片区	选课号	姓名	
----	-----	----	--

习题十九 波动(一)

1. 一沿 x 轴负方向传播的平面简谐波在 t = 2s 时的波形曲线如图所示,则原点 O 的 振动方程为

(A)
$$y = 0.50\cos(\pi t + \frac{\pi}{2}),$$

(SI). (B)
$$y = 0.50\cos(\frac{\pi}{2}t - \frac{\pi}{2})$$
, (SI).

(C)
$$y = 0.50\cos(\frac{\pi}{2}t + \frac{\pi}{2}),$$

(C)
$$y = 0.50\cos(\frac{\pi}{2}t + \frac{\pi}{2})$$
, (SI). (D) $y = 0.50\cos(\frac{\pi}{4}t + \frac{\pi}{2})$,

(SI).

2. 横波以波速 u 沿 x 轴负方向传播. t 时刻波形曲线如图. 则该时刻

- (A) A 点振动速度大于零.
- (B) B点静止不动.

(C) C点向下运动.

(D) D点振动速度小于零.

3. 一平面简谐波沿 x 轴负方向传播. 已知 x = -1 m 处质点的振动方程为 $y = A\cos(\omega t + \phi)$, 若波速为 u, 则此波的波动方程为

4. 图示一平面简谐波在t=2s 时刻的波形图,波的振幅为 0.2m,周期为 4s,则图 中 p 点处质点的振动方程为_

5. 一平面简谐波沿 Ox 轴的负方向传播,波长为 λ , P 处质点的振动规律如图所示.

- (1) 求 P 处质点的振动方程;
- (2) 求此波的波动方程;

(3) 若图中 $d = \frac{1}{2}\lambda$, 求 O 处质点的振动方程.

6. 一简谐波沿 Ox 轴正方向传播, 波长 $\lambda = 4m$, 周期 T = 4s, 已知 x = 0 处质点的振 动曲线如图所示,

- (1) 写出 x=0 处质点的振动方程;
- (2) 写出波的表达式;
- (3) 画出t=1s 时刻的波形曲线.

习题二十 波动(二)

- 1. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:
 - (A) 它的动能转换成势能.
 - (B) 它的势能转换成动能.
 - (C) 它从相邻的一段质元获得能量其能量逐渐增大.
 - (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.

[]

- 2. 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是
 - (A) 动能为零,势能最大.
- (B) 动能为零, 势能为零.
- (C) 动能最大,势能最大.
- (D) 动能最大,势能为零.

[]

- 4. 在截面积为 S 的圆管中,有一列平面简谐波在传播,其波的表达式为 $y = A\cos(\omega t 2\pi x/\lambda)$,管中波的平均能量密度是 w,则通过截面积 S 的平均能源 是

5. 如图为一平面简谐波在 t=0 时刻的波形图,试画出 P 处质点与 Q 处质点的振动曲线,然后写出相应的振动方程. 其中波速 $u=20\,\mathrm{m/s}$.

6. (本题 10分) 5201

一平面简谐波在介质中以速度 c=20m/s 自左向右传播. 已知在传播路径上的某点 A 的振动方程为

$$y = 3\cos(4\pi t - \pi) \tag{SI}$$

另一点 D 在 A 点右方 9 米处.

- (1) 若取 x 轴方向向左,并以 A 为坐标原点,试写出波动方程,并求出 D 点的振动方程.
- (2) 若取 x 轴方向向右,以 A 点左方 5 米处的 O 点为 x 轴原点,重新写出波动方程 D 点的振动方程.

习题二一 波动 (三)

1. 如图所示, S_1 和 S_2 为两相干波源,它们的振动方向均垂直于图面,发出波长为 λ 的简谐波,P点是两列波相遇区域中的一点,已知 $\overline{S_1P}=2\lambda$, $\overline{S_2P}=2.2\lambda$,两列波在P点 发生相消干涉. 若 S_1 的振动方程为 $y_1 = A\cos(2\pi t + \frac{1}{2})$,则 S_2 的振动方程为

- (A) $y_2 = A\cos(2\pi t \frac{1}{2}\pi)$. (B) $y_2 = A\cos(2\pi t \pi)$.
- (C) $y_2 = A\cos(2\pi t + \frac{1}{2}\pi)$. (D) $y_2 = A\cos(2\pi t 0.1\pi)$.

2. S_1 和 S_2 是波长均为 λ 的两个相干波的波源,相距 $3\lambda/4$, S_1 的位相比 S_2 超前 $\frac{1}{2}\pi$. 若两波单独传播时,在过 S_1 和 S_2 的直线上各点的强度相同,不随距离变化,且两波的 强度都是 I_0 ,则在 S_1 、 S_2 连线上 S_1 外侧和 S_2 外侧各点,合成波的强度分别是

- (A) $4I_0$, $4I_0$. (B) 0, 0. (C) 0, $4I_0$. (D) $4I_0$, 0.

3. 两个相干点波源 S_1 和 S_2 ,它们的振动方程分别是 $y_1 = A\cos(\omega t + \frac{1}{2}\pi)$ 和 $y_2 = A\cos(\omega t - \frac{1}{2}\pi)$. 波从 S_1 传到 P 点经过的路程等于 2 个波的路程等于 7/2 个波长. 设 两波波速相同, 在传播过程中振动幅不衰减, 则两波传到 P 点的振动的合振幅

4. 在简谐驻波中,同一个波节两侧的两个媒质元(在距该波节二分之一波长的范 围内)的振动相位差是_____.

5. 两列余弦波沿 Ox 轴传播,波动方程分别为

$$y_1 = 0.06\cos\left[\frac{1}{2}\pi(0.02x - 8.0t)\right]$$
 (SI)

$$y_2 = 0.06\cos\left[\frac{1}{2}\pi(0.02x + 8.0t)\right]$$
 (SI)

试确定 Ox 轴上合振幅为 0.06m 的那些点的位置.

6. (本题 5 分) 3437

如图所示,两列相干波在P点相遇.一列波在B点引起的振动是

$$y_{10} = 3 \times 10^{-3} \cos 2\pi t$$
 (SI);另一列波在 C 点引起的振动是

 $y_{20} = 3 \times 10^{-3} \cos(2\pi t + \frac{1}{2}\pi)$ (SI) $\overline{BP} = 0.45 \,\text{m}$, $\overline{CP} = 0.30 \,\text{m}$,两波的传播速度 u=0.20m/s,不考虑传播途中振幅的减小,求 P 点的合振动的振动方程.

片区_____选课号_____姓名 ____

习题二二 波动(四)

1. 某时刻驻波波形曲线如图所示,则 a、b 两点的位相差是

(A)
$$\pi$$
. (B) $\frac{1}{2}\pi$. (C) $5\pi/4$. (D) 0.

2. 若在弦线上的驻波表达式是 $y = 0.20\sin 2\pi \times \cos 20\pi t$ (SI). 则形成该驻波的两个反向进行的行波为:

(A)
$$y_1 = 0.10\cos[2\pi(10t - x) + \frac{1}{2}\pi]$$

$$y_2 = 0.10\cos[2\pi(10t + x) + \frac{1}{2}\pi]$$
 (SI)

(B)
$$y_1 = 0.10\cos[2\pi(10t - x) - 0.25\pi]$$

 $y_2 = 0.10\cos[2\pi(10t + x) + 0.75\pi]$ (SI)

(C)
$$y_1 = 0.10\cos[2\pi(10t - x) + \frac{1}{2}\pi]$$

$$y_2 = 0.10\cos[2\pi(10t + x) - \frac{1}{2}\pi]$$
 (SI)

(D)
$$y_1 = 0.10\cos[2\pi(10t - x) + 0.75\pi]$$

$$y_2 = 0.10\cos[2\pi(10t + x) + 0.75\pi]$$
 (SI)

3. 已知一平面简谐波的表达式为 $y = A\cos(Dt - Ex)$,式中 $A \times D \times E$ 为正值恒量,则在传播方向上相距为 a 的两点的位相差为

4. 设平面简谐波沿 x 轴传播时在 x=0 处发生反射,反射波的表达式为

$$y_2 = A\cos[2\pi(vt - x/\lambda) + \frac{1}{2}\pi]$$

已知反射点为一自由端,则由入射波和反射波形成的驻波的波节位置的坐标 为

- 5. 一列横波在绳索上传播,其表达式为 $y_1 = 0.05\cos[2\pi(\frac{t}{0.05} \frac{x}{4})]$ [SI]
- (1) 现有另一列横波(振幅也是 0.05m)与上述已知横波在绳索上形成驻波. 设这一横波在 *x*=0 处与已知横波同位相,写出该波的方程.
- (2)写出绳索上的驻波方程;各出各波节的位置坐标表达式;并写出离原点最近的四个波节的坐标数值.

习题二十三 光的偏振(一)

1. (本题 3 分) 3369

三个偏振片 P_1 , P_2 与 P_3 堆叠在一起, P_1 与 P_3 的偏振化方向相互垂直, P_2 与 P_1 的 偏振化方向的夹角为 30° . 强度为 I_0 的自然光垂直入射于偏振片 P_1 , 并依次透过偏振片 P_1 、 P_2 与 P_3 ,若不考虑偏振片的吸收和反射,则通过三个偏振片后的光强为

(A)
$$I_0/4$$
. (B) $3I_0/8$. (C) $3I_0/32$. (D) $I_0/16$.

- 2. (本题 3 分) 3544
- 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角 io,则在界 面 2 的反射光
 - (A) 是自然光.
 - (B) 是完全偏振光且光矢量的振动方向垂直于入射面.
 - (C) 是完全偏振光且光矢量的振动方向平行于入射面.
 - (D) 是部分偏振光.

3. (本题 3 分) 3367

(垂直于纸面)上时,画出图中反射光和折射光的光矢量振 动方程.

4. (本题 5 分) 3236

一束平行的自然光,以60°角入射到平玻璃表面上,若反射光束是完全偏振的,则 透射光束的折射角是; 玻璃的折射率

5. (本题 10 分) 3231

将三个偏振光叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方 向成 45°和 90°角.

- (1) 强度为 Io的自然光垂直入射到这一块偏振片上,试求经每一偏振片后的光强 和偏振状态.
 - (2) 如果将第二个偏振片抽走,情况又如何?

6. (本题 5 分) 3645

两个偏振片叠在一起,在它们的偏振化方向成 $\alpha_1 = 30$ °时,观测一束单色自然光.又 在 $\alpha_2 = 45$ °时,观测另一束单色自然光. 若两次所测得的透射光强度相等,求两次入射 自然光的强度之比.

片区	选课号	姓名
/ K	たがっ	XL11

习题二十四 光的偏振 (二)

- 1. (本题 3 分) 3246
- 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光为轴旋转偏振片,测得透射光强度最大值是最小值的 5 倍,那么入射光束中自然光与线偏振光的光强比值为

(A) 1/2. (B) 1/5. (C) 1/3. (D) 2/3. []

2. (本题 3 分) 5330

ABCD 为一块方解解的一个截面,AB 为垂直于纸面的晶体平面与纸面的交线. 光轴方向在纸面内且与 AB 成一锐角 θ ,如图所示. 一束平行的单色自然光垂直于 AB 端面入射. 在方解石内折射光分解为 o 光和 e 光,

o光和e光的

- (A) 传播方向相同, 电场强度的振动方向互相垂直.
- (B) 传播方向相同, 电场强度的振动方向不互相垂直.
- (C) 传播方向不同, 电场强度的振动方向互相垂直.
- (D) 传播方向不同, 电场强度的振动方向不互相垂直.

[]

- 3. (本题 3 分) 3548
- 一束自然光通过两个偏振片,若两偏振片的偏振化方向间夹角由 α_1 转到 α_2 ,且不考虑吸收,则转动前后透射光强度之比为 .
 - 4. (本题 3 分) 3649

5. (本题 3 分) 3250

假设某一介质对于空气的临界角是 45°,则光从空气射向此介质时的布儒斯特角是

6. (本题 10 分) 3776

由两个偏振片(其偏振化方向分别烟 P_1 和 P_2)叠在一起, P_1 与 P_2 的夹角为 α . 一束线偏振光垂直入射在偏振片上. 已知入射光的光矢量振动方向与 P_2 的夹角为 A(取锐角),A 角保持不变,如图. 现转动 P_1 ,但保持 P_1 与 \bar{E} 、 P_2 的夹角都不超过 A(即 P_1 夹在 \bar{E} 和 P_2 之间,见图). 求 α 等于何值时出射光强为极值;此极值是极大还是极小?

7. (本题 5 分) 3232

有三个偏振光堆叠在一起,第一块与第三块的偏振化方向相互垂直,第二块和第一块的偏振化方向相互平行,然后第二块偏振片以恒定角速度 ω 绕光传播的方向旋转,如图所示. 设入射自然光的光强为 I_0 . 试证明: 此自然光通过这一系统后,出射光的光强为 $I = I_0(1-\cos 4\omega t)/16$.

习题二十五 光的干涉 (一)

1. (本题 3 分) 3611

如图, S_1 、 S_2 是两个相干光源,它们到P点的距离分别为 r_1 和 r_2 。路径 S_1 P垂直穿过一块厚度为 t_1 ,折射率为 t_2 的分质板,路径 t_2 t_3 0分一个质板,其余部分可看作真空,这两条路径的光程差等于

- (A) $(r_2 + n_2 t_2) (r_1 + n_1 t_1)$
- (B) $[r_2 + (n_2 1)t_2] [r_1 + (n_1 1)t_1]$
- (C) $(r_2 n_2 t_2) (r_1 n_1 t_1)$

(D)
$$n_2t_2 - n_1t_1$$

2. (本题 3 分) 3162

在真空中波长为 λ 的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B两点位相差为 3π ,则此路径 AB的光程为

(A)
$$1.5\lambda$$
. (B) $1.5n\lambda$. (C) 3λ . (D) 1.5λ .

3. (本题 3 分) 3619

波长为 λ 的单色光垂直照射如图所示的透明薄膜. 膜厚度为 e, 两束反射光的光程差 δ =

4. (本题 3 分) 3378

光强均为 I_0 的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是

5. (本题 10分) 3613

在图示的双缝干涉实验中,若用薄玻璃片(折射率 n_1 = 1.4)覆盖缝 S_1 ,用同样厚度的玻璃片(但折射率 n_2 =1.7)覆盖缝 S_2 ,将使屏上原来未放玻璃时的中央明条纹所在处O 变为第五级明纹. 设单色光波长 λ = 4800 Å,求玻璃片的厚度 d(可认为光线垂直穿过玻璃片).

6. (本题 5 分) 3181

白色平行光垂直入射到间距为 a=0.25mm 的双缝上,距缝 50cm 处放置屏幕,分别 求第一级和第五级明纹彩色带的宽度. (设白光的波长范围是从 4000 Å 到 7600 Å). 这 里说的"彩色带宽度"指两个极端波长的同级明纹中心之间的距离.)

习题二十六 光的干涉 (二)

1. (本题 3 分) 3498

在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大 2.5λ,则屏上原来的明纹处

- (A) 仍为明条纹:
- (B) 变为暗条纹:
- (C) 既非明纹也非暗纹; (D) 无法确定是明纹, 还是暗纹.
- 2. (本题 3 分) 3174

在双缝干涉实验中,屏幕 E 上的 P 点处是明条纹. 若将缝 S_2 盖住,并在 S_1 S_2 连线的垂直平分面处放一反射镜 M,如图所示,则此时

- (A) P 点处仍为明条纹.
- (B) 不能确定 P 点处是明条纹还是暗条纹.
- (C) P 点处为暗条纹.
- (D) 无干涉条纹.
- 3. (本题 3 分) 3177

4. (本题 5 分) 3167

如图所示,假设有两个同相的相干点光源 S_1 和 S_2 ,发出波长为 λ 的光. A 是它们连线的中垂直线上的一点. 若在 S_1 与 A 之间插入厚度为 e、折射率为 n 的薄玻璃片,则两光源发出的光在 A 点的位相差 $\Delta \phi =$ _______. 若已知 $\lambda = 5000$ $\overset{\circ}{A}$, n=1.5 , A 点恰为第四级明纹中心,则 e= $\overset{\circ}{A}$

5. (本题 10 分) 3658

白光垂直照射到空气中一厚度为 e=3800 Å 的肥皂膜上, 肥皂膜的折射率 n=1.33, 在可见光的范围内(4000 Å -7600 Å), 哪些波长的光在反射中增强?

6. (本题 10分) 3182

在双缝干涉实验中,波长 $\lambda = 5500$ Å 的单色平行光垂直入射到缝间距 $a = 2 \times 10^{-4}$ 的 双缝上,屏到双缝的距离 D=2m. 求:

- (1) 中央明纹两侧的两条第 10 级明纹中心的间距:
- (2) 用一厚度为 $e = 6.6 \times 10^{-6}$ m、折射率为n=1.58 的云母片覆盖一缝后,零级明纹将移到原来的第几级明纹处?

习题二十七 光的干涉 (三)

1. (本题 3 分) 5208

在玻璃 (折射率 n_3 = 1.60) 表面镀一层 $\mathrm{MgF_2}$ (折射率 n_2 = 1.38) 薄膜作为增透膜. 为了使波长为 5000 Å 的光从空气 (n_1 = 1.00) 正入射时尽可能少反射, $\mathrm{MgF_2}$ 薄膜的最少厚度应是

(A) 1250 Å. (B) 1810 Å (C) 2500 Å. (D) 781 Å

(E) 906Å[]

2. (本题 3 分) 3508

如图 a 所示,一光学平板玻璃 A 与待测工件 B 之间形成空气劈尖,用波长 $\lambda = 500 \, \text{nm}$ ($1 \, \text{nm} = 10^{-9} \, \text{m}$) 的单色光垂直照射. 看到的反射光的干涉条纹如图 b 所示. 有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切. 则工件的上表面缺陷是

- (A) 不平处为凸起纹,最大高度为 500nm.
- (B) 不平处为凸起纹,最大高度为 250nm.
- (C) 不平处为凹槽,最大深度为500nm.

(D) 不平处为凹槽,最大深度为 250nm.

3. (本题 3 分) 3621

用波长为 λ 的单色光垂直照射如图所示的、折射率为 n_2 的劈尖薄膜 $(n_1 > n_2, n_3 > n_2)$,观测反射光干涉. 从劈尖顶开始,第 2 条明条纹对应的膜厚度为 e =______.

4. (本题 3 分) 3511

用波长为 λ 的单色光垂直照射到空气劈尖上,从反射光中观察干涉条纹,距顶点为L处是暗条纹. 使劈尖角 θ 连续变大,直到该点处再次出现暗条纹为止. 劈尖角的改变量 $\Delta\theta$ 是

5. (本题 5 分) 3707

波长为 λ 的单色光垂直照射到折射率为 n_2 的劈尖薄膜上,如图所示,图中 $n_1 < n_2 < n_3$,观察反射光形成的干涉条纹.

- (1) 从劈尖顶部 $_{0}$ 开始向右数起,第五条暗纹中心所对应的薄膜厚度 $_{c_{5}}$ 是多少?
- (2) 相邻的二明纹所对应的薄膜厚度之差是多少?

6. (本题 10 分) 3349

用波长为 $\lambda=600\,\mathrm{nm}\,(1\,\mathrm{nm}=10^{-9}\,\mathrm{m})$ 的光垂直照射由两块平玻璃板构成的空气劈尖薄膜,劈尖角 $\theta=2\times10^{-4}\,\mathrm{rad}$. 改变劈尖角,相邻两明条纹间距缩小了 $\Delta l=1.0\,\mathrm{mm}$,求壁尖角的改变量 $\Delta\theta$.

习题二十八 光的干涉 (四)

1. (本题 3 分) 3507

如图所示, 平板玻璃和凸透镜构成牛顿环装置, 全部浸入n=1.60的液体中, 凸透 镜可沿 OO'移动,用波长 $\lambda = 500 \, \text{nm}$ 的单色光垂直入射. 从上向下观察,看到中心是一 个暗斑, 此时凸透镜顶点距平板玻璃的距离最少是

(A) 78.1nm

(B) 74.4nm

(C) 156.3nm

(D) 148.8nm

[]

(E) 0

2. (本题 3 分) 3185

在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干 涉条纹,则在接触点P处形成的圆斑为

(A) 全明.

(B) 全暗.

(C) 右半部明, 左半部暗. (D) 右半部暗, 左半部明.

3. (本题 3 分) 3201

若在迈克耳孙干涉仪的可动反射镜 M 移动 0.620nm 的过程中, 观察到干涉条纹移动 了 2300 条,则所用光波的波为 A.

4. (本题 3 分) 3517

在迈克耳孙干涉仪的一支光路上,垂直于光路放入折射率为 n、厚度为 h 的透明介 质薄膜. 与未放入此薄膜时相比较,两光束光程差的改变量为

5. (本题 10分) 3197

在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率 $n_1 = 150$) 之间的空气 (n, = 100) 改换成水 (n', = 1.33), 求第 k 个暗环半径的相对改变量 $(r_k - r'_k)/r_k$.

6. (本题 10 分) 5211

一平凸透镜放在一平晶上,以波长为 $\lambda = 5893 \text{ Å}$ 的单色光垂直照射于其上,测量反 射光的牛顿环. 测得从中央数起第 k 个暗环的弦长为 $l_k = 3.00 \, \mathrm{mm}$, 第 (k+5) 个暗环的 弦长为 l_{k+5} = 4.6 mm,如图所示.求平凸透镜的球面的曲率半径 R.

		片区		_选课号		_姓名 _		
习	题二十九 光的衍	射(一)						
	1. (本题 3 分) 33 在单缝夫琅和费彻		《长为λ的』	单色光垂直	入射在宽	度为 a=4λ	的单缝	上,
对户	应于衍射角为 30°的	的方向,,单组	处波阵面	可分成的半	波带数目	为		
	$(A) \ 2 \uparrow.$	B) 4个.	(C) 6个	(D)	8个.		[]
	2. (本题 3 分) 35	520						
	根据惠更斯-菲涅耳	耳原理,若已	知光在某时	刻的波阵面	面为 S, 则	S 的前方某	点 P 自	内光
强力	度决定于波阵面 s 上	所有面积元为	支出的子波	各自传到P	点的			
	(A) 振动振幅之	和.	(B) 光强	虽之和.				
	(C) 振动振幅之	和的平方.	(D) 振翠	力的相干叠点	DI.		[]
	3. (本题 5 分) 32	207						
	在单缝的夫琅和费	衍射实验中,	屏上第三	级暗纹对应	的单缝处	上波面可划分	为	
		个半波带,若	将缝宽缩。	小一半,原	来第三级	暗纹处将是_		
		纹。						
	4. (本题 3 分) 35							
	平行单色光垂直入	射在缝宽为。	1=0.15mm	的单缝上. 约	逢后有焦.	距为 <i>f</i> =400n	nm 的占	占透
镜,	在其焦平面上放置	观察屏幕. 现	L测得屏幕.	上中央明条	纹两侧的	两个第三级	暗纹之	间

5. (本题 5 分) 3743

如图所示,设波长为 λ 的平面波沿与单缝平面法线成 θ 角的方向入射,单缝 AB 的宽度为 a,观察夫琅和费衍射. 试求出各极小值(即各暗条纹)的衍射角 Φ .

6. (本题 5 分) 3359

波长为 600nm(1nm= 10^{-9} m)的单色光垂直入射到宽度为 a=0.10 mm的单缝上,观察夫琅和费衍射图样,透镜焦距 f=1.0m,屏在透镜的焦平面处. 求:

- (1) 中央衍射明条纹的宽度 Δx_0 ;
- (2) 第二级暗纹离透镜焦点的距离 x_2 .

习题三十 光的衍射(二)

1. (本题 3 分) 5649

在如图所示的夫琅和费衍射装置中,将单缝宽度 a 稍 稍变窄,同时使会聚透镜 L 沿 y 轴正方向作微小位移,则 屏幕C上的中央衍射条纹将

- (A)变宽,同时向上移动.
- (B) 变宽,同时向下移动.
- (C)变宽,不移动.
- (D) 变窄,同时向上移动.
- (E) 变窄, 不移动.

- 2. (本题 3 分) 3212
- 一束平行单色光垂直入射在光栅上,当光栅常数 (a+b) 为下列哪种情况时 (a) 代表 每条缝的宽度),k=3、6、9 等级次的主极大均不出现?
 - (A) a+b=2a.
- (B) a+b=3a. (C) a+b=4a.
- (D) a+b=6a.

3. (本题 3 分) 5219

波长为λ=4800Å的平行光垂直照射到宽度为 a=0.40mm 的单缝上,单缝后透镜的焦距为 f=60cm, 当单缝两边缘点A、B射向P点的两条光线在P点的 相位差为 π 时,P点离透镜焦点O的距离等

4. (本题 3 分) 3362

某单色光垂直入射到一个每毫米有800条刻线的光栅上,如果第一级谱线的衍射角 为 30°,则入射光的波长应为

5. (本题 10 分) 5535

波长范围在 450~650nm 之间的复色平行光垂直照射在每厘米有 5000 条刻线的光栅 上,屏幕放在透镜的焦面处,屏上第二级光谱各色光在屏上所占范围的宽度为 35.1cm. 求 透镜的焦距 f.

$$(1nm = 10^{-9} m)$$

6. (本题 10分) 3531

将一束波长λ=5890A的平行钠光垂直入射在1厘米有5000条刻痕的平面衍射光栅 上, 光栅的透光缝宽度 a 与其间距 b 相等, 求:

- (1) 光线垂直入射时,能看到几条谱线?是哪几级?
- (2) 若光线以与光栅平面法线的夹角 $\theta=30$ °的方向入射时,能看到几条谱线? 是 哪几级?

习题三一 光的衍射	射(三)				
1. (本题 3 分):	3636				
波长λ=5500Å j	的单色光垂直入	.射于光栅常数 d	= 2×10 ⁻⁴ cm 的平面衍射光	栅上,	可
能观察到的光谱线的	最大级次为				
(A) 2.	(B) 3.	(C) 4.	(D) 5.	[]
2. (本题 3 分)	5534				
设光栅平面、透	镜均与屏蔽平行	厅. 则当入射的平	行单色光从垂直于光栅平	面入射	变
为斜入射时, 能观察	到的光谱线的最	是高级数 k			
(A) 变小.	(B) 变大.	(C) 不变.	(D) 的改变无法确定.	[]
3. (本题 3 分):	3638				
波长为 5000 Å 的	的单色光垂直入身	射到光栅常数为	1.0×10 ⁻⁴ cm 的平面衍射光机	⊪上,	第
一级衍射主极大所对	应的衍射角 ∅ =		<u>_</u> .		
4. (本题 5 分):	3217				
一束单色光垂直	入射在光栅上,	衍射光谱中共出	出现5条明纹. 若已知此光	栅缝宽	度
与不透明部分宽度相	等,那么在中央	已明纹一侧的两条	条明纹分别是第	:	级
和第	级谱线.				

5. (本题 10分) 3211

- (1) 在单缝夫琅和费衍射实验中,垂直入射的光有两种波长, $\lambda_1 = 4000 \, \text{Å}$, $\lambda_2 = 7600 \, \text{Å}$. 已知单缝宽度 $a = 1.0 \times 10^{-2} \, \text{cm}$,透镜焦距 $f = 50 \, \text{cm}$.求两种光第一级衍射明纹中心之间的距离.
- (2) 若用光栅常数 $d = 1.0 \times 10^{-3}$ cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.

6. (本题 10 分) 3221

一束平行光垂直入射到某个光栅上,该光束有两种波长的光,, $\lambda = 4400 \, {\rm \AA}$, $\lambda = 6600 \, {\rm \AA}$ 。 实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角 $\Phi = 60 \, {\rm \%}$ 的方向上。求此光栅的光栅常数 d.