Analyse Numérique Exercices – Série 2

26 septembre 2019 Exercices marqués de \star à rendre le 3 octobre 2019

1. * (Différences divisées)

(a) Soient (x_i, y_i) , i = 0, ..., n des points d'abscisses $x_0, ..., x_n$ distincts deux-à-deux. En utilisant la formule de Newton, montrer que la différence divisée $\delta^n y[x_0, ..., x_n]$ est une fonction symétrique, c'est-à-dire que pour chaque permutation σ de $\{0, 1, ..., n\}$ on a

$$\delta^n y[x_{\sigma(0)}, x_{\sigma(1)}, \dots, x_{\sigma(n)}] = \delta^n y[x_0, x_1, \dots, x_n].$$

Indication: identifier le coefficient de x^n lorsqu'on décompose dans la base canonique $(1, x, ..., x^n)$ de \mathbb{P}_n le polynôme d'interpolation de degré inférieur ou égal à n passant par les points $(x_i, y_i), i = 0, ..., n$.

(b) Pour approcher la dérivée $f'(x_0)$ en x_0 d'une fonction f régulière, une approximation possible est donnée par la première différence divisée

$$f'(x_0) \simeq \delta f[x_0, x_1] := \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \quad \text{avec } x_1 = x_0 + h.$$

Montrer, à l'aide d'un développement de Taylor, que $f'(x_0) - \frac{f(x_1) - f(x_0)}{x_1 - x_0} = O(h)$.

2. (Erreur d'interpolation) On verra en cours le Théorème 1.5 concernant l'erreur d'interpolation. Dans cet exercice, on considère une fonction f deux fois dérivable sur [-1,1] et p son polynôme d'interpolation passant par (a, f(a)), (b, f(b)) (a et b distincts et $a, b \in [-1, 1]$). Alors pour tout $x \in [-1, 1]$, il existe $\xi(x) \in [-1, 1]$ tel que

$$f(x) - p(x) = (x - a)(x - b)\frac{f''(\xi(x))}{2}.$$

- (a) Déterminer explicitement la fonction $\xi(x)$ dans le cas où $f(x) = \frac{1}{x-5}$.
- (b) L'erreur d'interpolation est un produit de $f''(\xi(x))/2$ et de l'expression (x-a)(x-b). Cette dernière expression ne dépend que du choix des points d'interpolation a et b. Un choix raisonnable serait alors $a, b \in [-1, 1]$ tels que la quantité

$$\max_{x \in [-1,1]} |(x-a)(x-b)|$$

soit minimisée par rapport aux a, b. C'est ce qu'on va faire dans cette partie de l'exercice.

i. Trouver les maxima (locaux et globaux) de la fonction |(x-a)(x-b)| pour $x \in [-1,1]$. Vous devriez parvenir au problème d'optimisation suivant :

$$\min_{a,b \in [-1,1]} \max \left\{ \frac{1}{4} (a-b)^2, (1+a)(1+b), (1-a)(1-b) \right\}.$$
 (1)

ii. Les fonctions $\frac{1}{4}(a-b)^2$, (1+a)(1+b), (1-a)(1-b) sur le carré $[-1,1]^2 \in \mathbb{R}^2$ sont visualisées dans la Figure 1. Résolvez le problème d'optimisation (1) à l'aide de cette figure.

Figure 1 – Les trois fonctions $\frac{1}{4}(a-b)^2$, (1+a)(1+b), (1-a)(1-b).

(c) Calculer l'erreur d'interpolation $||f(x) - p(x)||_{\infty}$, $x \in [-1, 1]$, avec f(x) et p(x) comme au point (a). Considérez les deux choix suivants pour les points d'interpolation : b = -a = 1/2 et $b = -a = \sqrt{2}/2$. Pour faire ce calcul, vous aurez besoin d'un outil numérique, par exemple MATLAB, Mathematica, Maple. Qu'est-ce que vous observez?