Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 EN3ES01 Basic Civil Engineering

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

N of Q

Note	: All	questions are compulsory. Int	ernal choices, if any, are indicated. Answe	ers
Q.1	(MCQ	s) should be written in full ins	stead of only a, b, c or d.	
Q.1	i.	Mixing ratio for M-20 Grade	concrete is-	1
		(a) 1:1:2 (b) 1:3:6	(c) 1:1.5:3 (d) 1:4:8	
	ii.	Innermost part of timber log	surrounding the pitch is called-	1
		(a) Sapwood	(b) Cambium layer	
		(c) Heart wood	(d) Pith	
	iii.	Closed Contours of decr	easing values towards their centre,	1
		represents-		
		(a) A Hill	(b) A depression	
		(c) A saddle or pass	(d) Plane	
	iv.	Reduced level of a point	having staff reading of 1.335 m with	1
		BS = 2.330 m and RL of BM	= 202.45 m.	
		(a) 203.545 m (b) 203.555 m	(c) 203.445 m (d) 203.645 m	
	v.	Which of the following is	not a load carrying component of a	1
		building?		
		(a) Column (b) Beam	(c) Wall (d) Slab	
	vi.	Foundation used in case of L	ow bearing capacity of soil.	1
		(a) Raft foundation	(b) Strap foundation	
		(c) Strip foundation	(d) None of these	
	vii.	Forces passing through a con	nmon point are known as-	1
		(a) Concurrent forces	(b) Balanced Forces	
		(c) Collinear forces	(d) Coplanar forces	
	viii.	The ratio of lateral strain to le		1
		(a) Poison's ratio	(b) Bulk modulus	
		(c) Young's modulus	(d) Shear modulus	
			D TL	\sim

P.T.O.

	ix.	. Shear force at any section includes-			1		
		(a) Vertical for	ces	(b)]	Horizontal for	rces	
		(c) Rotational f	orces	(d) A	All of these		
	х.	The point at w	hich the Ben	ding moment	diagram cha	inges its nature	1
		and the value o	f bending mo	ment is zero	is known as	_	
		(a) Point of inf	lexion	(b) l	Point of contr	aflexure	
		(c) Sagging		(d) l	Hogging		
Q.2	i.	Write four char	acteristics of	good brick.			2
	ii.	Describe any fo	our field test	of cement.			3
	iii.	Explain slump	cone test pro	cedure with d	iagram.		5
OR	iv.	Explain the fol	lowing terms	:			5
		(a) Workability	7	(b) l	Rapid hardeni	ing cement	
		(c) Segregation	of concrete	(d) I	Efflorescence	test	
		(e) Contour gra					
Q.3	i.	Define chain su	ırvey.				2
	ii.	Following readings were taken during a compass survey for the				8	
		_	•	•	-	fected by local	
		attraction or r	not? If yes,	correct all b	earings by	included angle	
		method.					
		LINE	AB	ВС	CD	DA	
		FB	120° 30'	77° 30'	306° 30'	207° 30'	
		BB	300° 30'	256° 00'	125° 15'	27° 45'	
OR	iii.	Calculate the reduced level of points and apply check by any of one					8
		method If following readings were taken on slopping ground 2.330,					
		1.550, 1.005, 2.200, 2.905, 1.110, 0.880, 1.550, 1.050, 2.555 and					
				3^{rd} ,6 th and 8 th	n reading take	e reduced level	
		of Benchmark	55 m.				
Q.4	i.	•		•	_	in brief enlist	3
				-	a building t	hat fall under	
		substructure an					
	ii.	=	_	oundation in	any structure	. Also enlist its	7
		broad classifica	ations.				

OR	iii.	Define floors and write it's components in details Explain any five types of flooring.			
Q.5	i.	Explain the following terms:	4		
		(a) Stress (b) Strain			
		(c) Modulus of elasticity (d) Modulus of rigidity			
	ii.	State and prove Lami's Theorem.	6		
)R	iii.	Resultant of two forces inclined at 90° is $\sqrt{15}$ N and if inclined at 60°	6		
		resultant is $\sqrt{18}$ N. Calculate the magnitude of forces.			
Q .6	i.	Define beam. Enlist its major types.	2		
	ii.	Draw shear force diagram and bending moment diagram for the beam given below:	8		
		30 kN 7.5 kN/m 45 kN B C D E			

OR iii. Draw shear force diagram and bending moment diagram for the beam given below:

Marking Scheme EN3ES01 Basic Civil Engineering

Q.1	i.	Mixing ratio for M-20 Grade concrete is- (c) 1:1.5:3	1				
	ii.	Innermost part of timber log surrounding the pitch is called-					
	iii.	(c) Heart wood Closed Contours of decreasing values towards their centre, represents- (b) A depression	1				
	iv.	Reduced level of a point having staff reading of 1.335 m with 1 BS = 2.330 m and RL of BM = 202.45 m. (c) 203.445 m					
	v.	Which of the following is not a load carrying component of a building? (c) Wall					
	vi.	Foundation used in case of Low bearing capacity of soil. 1 (a) Raft foundation					
	vii.	Forces passing through a common point are known as- (a) Concurrent forces					
	viii.	. The ratio of lateral strain to longitudinal strain is- (a) Poison's ratio					
	ix.	Shear force at any section includes- (a) Vertical forces					
	х.	The point at which the Bending moment diagram changes its nature and the value of bending moment is zero is known as (b) Point of contraflexure					
Q.2	i.	Four characteristics of good brick.	2				
	ii.	0.5 mark for each point (0.5 mark * 4) Any four field test of cement. 0.75 mark for each point (0.75 mark * 4)	3				
	iii.	Slump cone test procedure 4 marks Diagram 1 mark	5				
OR	iv.	(a) Workability1 mark(b) Rapid hardening cement1 mark(c) Segregation of concrete1 mark(d) Efflorescence test1 mark(e) Contour gradients1 mark	5				

Q.3	i. ii.	Definition of chain survey. Following readings were taken during a		2 8
OR	iii.	Calculate the reduced level of points and apply method 1 mark for each step	check by any of one	8
Q.4	i.	Substructure with major components Superstructure with major components	1.5 marks 1.5 marks	3
	ii.	Importance of foundation	2 marks	7
		Its broad classifications	5 mrks	
OR	iii.	Define floors	3 marks	7
		It's components any five types of flooring	4 marks	
Q.5	i.	(a) Stress	1 mark	4
		(b) Strain	1 mark	
		(c) Modulus of elasticity	1 mark	
		(d) Modulus of rigidity	1 mark	
	ii.	State and prove Lami's Theorem.		6
0.5		1 mark for each step		_
OR	iii.	Calculate the magnitude of forces		6
		1 mark for each step		
Q.6	i.	Definition of beam and its major types.		2
	ii.	Draw shear force diagram and bending moment	diagram for the beam	8
		1 mark for each step	C	
OR	iii.	Draw shear force diagram and bending moment	diagram for the beam	8
		1 mark for each step	_	
		.		

8 8 R.L Remark IS FS HI B.M 2.330 57.330 55 55.78 1.55 1.005 58,525 56.325 2.200 55.62 2.905 1.110 58,295 57.415 8 0.880 1.550 57.795 56.745 1.050 55.24 2.555 Cost R.L. 6.22 EBS-EFS 0.24 = 0.24

corrected included angles

 $LA = 92^{\circ}45' - 0^{\circ}37'30'' = 92^{\circ}97'30''$ $LB = 136^{\circ}22'30''$

LC = 49°52 30°

LO= 81°37′30″

- 2 marks

Line AB is free from local attraction corrected FB of AB = 120 30' corrected BB of AB = 300°30' corrected FB of BC = BB of AB - LB Now 300°30′+ 136° 22′30″ = 164° 71'30" 76° 52′ 30″ corrected BB of BBC= 76°52' 30" + 180° = 256° 52′ 30″ corrected &B of CD = BB of BC - TC = 256°52'30" + 5030 49°52'30" = 3070 2213011 306 45 100" corrected BB of CD = 306° 45' 00''- 180° = 127° 22130" 126° 45'00 corrected FB of DA = BB of CD & LD = 128°45' B0" - (-81°37'30') = 208° 22′ 30″ corrected BB of DA = 208°22' 30"- 180° = 28° 22' 30" 2) marks corrected Bearings BB FB line 30030 120301 AB 76° 52′30″ 256° 52′30″ 306°45′00″ 126°45′00 BC CD 208° 22′ 30″ 28° 22′ 30″ AQ

1) morks

