

Universidade de Brasília Departamento de Estatística

Interpretação de redes neurais

Davi Guerra Alves

Projeto apresentado para o Departamento de Estatística da Universidade de Brasília como parte dos requisitos necessários para obtenção do grau de Bacharel em Estatística.

Davi Guerra Alves

Interpretação de redes neurais

Orientador(a): Thais Carvalho Valadares Rodrigues

Projeto apresentado para o Departamento de Estatística da Universidade de Brasília como parte dos requisitos necessários para obtenção do grau de Bacharel em Estatística.

Sumário 3

Sumário

4 Metodologia

1 Metodologia

A metodologia adotada nesta pesquisa se fundamenta na análise do conjunto de dados "Loan Data for Dummy", visando a compreensão e modelagem de padrões associados a operações de empréstimos. Dois métodos distintos, Regressão Logística e Redes Neurais, serão empregados para investigar as relações existentes nos dados e aprimorar as previsões. A implementação desses modelos será realizada utilizando tanto a linguagem de programação R quanto Python, permitindo uma abordagem comparativa e uma compreensão abrangente das nuances de cada implementação. Além disso, a técnica SHAP (Shapley Additive Explanations) será integrada para proporcionar uma interpretação aprofundada dos modelos, ampliando a transparência nas decisões preditivas. Essa abordagem multidimensional busca fornecer insights valiosos sobre o comportamento do conjunto de dados, enriquecendo a compreensão dos resultados obtidos com diferentes técnicas de modelagem.

1.1 Conjunto de dados

O banco de dados "Loan Data for Dummy" é uma base de dados do Kaggle, projetada para simular informações relacionadas a operações de empréstimos. Desenvolvido para fins educacionais e de pesquisa, esse conjunto tem sua origem de um modelo de banco "peer to peer" sediado na Irlanda, no qual o banco disponibiliza recursos a potenciais clientes, obtendo lucros com base no risco que assume. Os dados disponíveis no Kaggle representam uma versão fictícia de uma situação real, com a maior parte dos dados manipulados ou criados sinteticamente para preservar as informações dos clientes originais.

A variável que será foco do estudo é a "loan condition". Essa variável oferece insights cruciais, uma vez que reflete a condição do empréstimo, desempenhando um papel central na análise. Através dessa variável, é possível discernir se um empréstimo foi classificado como "bom"ou "mau", proporcionando uma avaliação da qualidade e risco associados a cada transação. No contexto deste conjunto de dados, presume-se que a "loan condition"seja uma variável binária, onde, por exemplo, "0"poderia indicar um empréstimo em boas condições e "1"indicaria o contrário. A compreensão aprofundada dessa variável é essencial para a construção e interpretação adequada dos modelos subsequentes, como a regressão logística e redes neurais, permitindo uma análise mais precisa e informada do risco associado aos empréstimos.

Para se avaliar a variável "loan condition" foi utilizada algumas variáveis presentes na base de dados, como:

Metodologia 5

1. **Tempo de emprego**: Representa o tempo de emprego do solicitante expresso numericamente. Um valor de 5 indicaria que o indivíduo está empregado há 5 anos.

- 2. **Tipo de residência**: Indica o status de moradia do solicitante, como proprietário, inquilino ou outra forma de ocupação residencial.
- 3. **Renda anual**: Reflete a renda anual do solicitante, uma medida crucial para avaliar a capacidade de pagamento do empréstimo. Pode ser expressa numericamente, por exemplo, 50,000.
- Valor do empréstimo: Representa o valor do empréstimo solicitado pelo requerente, geralmente expresso em termos monetários, como 10,000.
- 5. **Prazo**: Indica o prazo do empréstimo, especificando o período de tempo durante o qual o empréstimo deve ser reembolsado. Pode ser, por exemplo, 36 meses.
- 6. **Tipo de aplicação**: Refere-se ao tipo de aplicação, indicando se é uma aplicação individual ou conjunta.
- 7. **Finalidade**: Descreve a finalidade do empréstimo, como consolidação de dívidas, compra de casa, educação, entre outros.
- 8. **Tipo do juros**: Indica a natureza dos pagamentos de juros, se são fixos ou variáveis.
- 9. **Taxa de juros**: Representa a taxa de juros associada ao empréstimo, geralmente expressa como uma porcentagem, como 10.
- 10. **Grau**: Refere-se à classificação de risco do tomador de empréstimo atribuída pela instituição financeira, como A, B, C, etc.
- 11. **DTI**: Significa "Debt-to-Income" (Dívida-para-Renda) e representa a proporção entre as dívidas mensais e a renda mensal do requerente, proporcionando uma medida da capacidade de pagamento.
- 12. **pagamento_bruto**: Representa o valor total pago, incluindo o principal e os juros, ao final do empréstimo.
- 13. **pagamento_liquido**: Indica o total de principal (quantia inicial do empréstimo) recuperado até o momento.
- 14. **Valor recuperado**: Representa o valor recuperado em caso de inadimplência ou perda.
- 15. Parcelas: Refere-se à parcela mensal que o requerente do empréstimo deve pagar, incluindo tanto o principal quanto os juros.
- 16. Região: Indica a região geográfica associada ao requerente do empréstimo.

 $egin{aligned} Metodologia \end{aligned}$

1.2 Métodos

Falar da regressão logística aplicada na base de dados, como será feito a preparação do modelo, normalização etc

Falar do modelo de redes neurais utilizado, arquitetura base

Detalhar o porquê de se interpretar os modelos e as maneiras que é feito isso
(testes, coefs, shap)

O intuito é ser a ponte entre referencial teório e resultados

2 Resultados

Análise descritiva

Figura 1: Variáveis explicativas em relação à condição do empréstimo

Figura 2: Variáveis explicativas em relação à condição do empréstimo

Figura 3: Variáveis explicativas em relação à condição do empréstimo

Figura 4: Variáveis explicativas em relação à condição do empréstimo

Covariáveis	Coeficiente de correlação		
Tempo de trabalho	-0.02		
Renda anual	-0.03		
Valor do empréstimo	0.00		
Taxa de juros	0.18		
DTI	0.01		
Valor bruto pago	-0.04		
Valor liquido pago	-0.10		
Parcela	-0.01		

Tabela 1: Valores do coeficiente de Pearson entre as covariáveis e a variável resposta

Covariáveis	Coeficiente de contingência
Tipo de residência	0.04
Tipo de aplicação	0.01
Finalidade	0.03
Tipo de juros	0.14
Risco	0.15
Região	0.01

Tabela 2: Valores do coeficiente de contingência entre as covariáveis e a variável resposta

Modelagem da regressão logística

Falar do modelo utilizado, a normalização dos dados, os resultados métricas de avaliação e interpretação dos coeficientes

Covariáveis	Coeficientes	Erro padrão
Valor líquido pago	-4.733	0.034
Valor bruto pago	3.321	0.028
Tipo de aplicação	-1.848	0.106
Taxa de juros	1.412	1.412
Valor do empréstimo	-1.406	0.039
Risco	-1.049	0.014
Tipo de juros	-0.462	-0.462
Prazo	-0.203	0.028
Renda anual	-0.195	0.010
DTI	-0.151	0.011
Categoria renda	-0.111	0.015
Duração do empréstimo	-0.061	0.009
Região	0.0378	0.003
Duração do empréstimo em dias	0.033	0.009
Tipo de residência	0.019	0.003
Finalidade	0.019	0.002
Parcela	0.005	0.000

Tabela 3: Estimativa dos coeficientes do modelo logístico e o erro padrão associado

	Precisão	Recall	F1-Score	Tamanho da amostra
0	0.928081	0.995603	0.960657	163990
1	0.536334	0.0618419	0.110897	13486
Média macro	0.732208	0.528723	0.535777	177476
Média ponderada	0.898313	0.924649	0.896086	177476
Acurácia			0.924649	

Tabela 4: Report do modelo logístico

Figura 5: Matrix de confusão do modelo logístico

Modelagem da rede neural

Falar sobre Arquitetura inicial, suas variações junto com os resultados avaliativos e por fim falar qual modelo foi utilizado e porque

Interpretação de rede neural

- mostrar gráfico da média dos shap vs regressao logistica

Figura 6: Média absoluta dos valores de shap

 $\,$ - mostrar o grafico de dependencia entre valor da variável com resultado do modelo variando ela

Figura 7: Relação entre a variável X com o resultado modelo quando a mesma varia

- mostrar 2 gráficos de shap especificos de 2 observações (pra mau pagador e pra bom pagador)

Figura 8: aloalo

- mostrar o gráfico com todos as amostras de shap(shap.plots.beeswarm)

Figura 9: Valores de shap para as 80 observações utilizadas

- mostrar o gráfico de força pra apenas uma observaçã

Figura 10: Gráfico de força em uma observação

- mostrar o gráfico de força para todas as observações

Benchmark entre redes neurais e regressão logística

16 Conclusão

3 Conclusão

Anexo 17

4 Anexo