plobability mass dunction P(Xx) = P(X=Xx), for X=1,2,3,... Px(xx) = 51 x + (x) ormial Distribution: P.(E) = nCk PK (1-P)n-k mean = nP varienc= nP2 Px(K)= exx x=np=mean=varience commulative Distribution function (CDF) $P(acxeb) = F(b) - F(a) = \int_{a}^{b} f(x) dx$ FG) = cummulative distributive 10bability Density Junction.

1(x) = F'(x) = d F(x) F Js6) dx=1 (x)= M= Jx+(x)dx (an(x)=02= (e(x2)-(e(x2)) layes Theorem P(h/D) = P(D/h) P(h)
p(D)

```
Principle Component Analysis 3 4

Example 1 2 3 7

XI 4 8 13 7

XI 4 9 5 14
              X = (4+2+13+4)4 = 8
Steel calculate Mean
              FL=(11+4+5+14)/4 = 8.5
Green Calculation of the Covariance matrix
  COVOD (XI,XI)= TI A (XIE-XI)
                  = 1 ((48)2+ (8-8)2+ (13-8)2+ (7-8)2)
   (OVON (X1, X2) = 1 = (X1K-X1) (R2K-X2)
           = 1 ((u-8)(11-8.5)+(8-8)(u-8.5) + (13-8)(5-8.5)
                                    + (7-8) (14-8.5)
    COVOR (Xxx) = COVOR (X, X2) = -11.
    (ovan (xxx)= 1 & (xxx-x)2
                    = \frac{1}{3}((11-8.5)^2 + (4-8.5)^2 + (5-3.5)^2 + (14-9.5)^2)
    Show S = \left[ \text{Cov}(a,a) \quad \text{Cov}(a,b) \right] = \left[ \text{in} - \text{ii} \right]
\left[ \text{Cov}(b,a) \quad \text{Cov}(b,b) \right] = \left[ -\text{ii} \quad 23 \right]
   step i calculate eigin values, eign vectors, Normalized
             eign vectors.
             det (5-XI) =0
            \det\left(\begin{bmatrix} 1u-11\\ -11 & 23 \end{bmatrix} = \begin{bmatrix} 76\\ 0 \end{pmatrix} \right) = 0 \Rightarrow \begin{bmatrix} 1u-2 & -11\\ -11 & 23-7 \end{bmatrix} = 0
```

+ convex optimization is a powerful tool for solving optimization problems in various dields such as dinance, engineering and machine learning. *In a convex optimi cation problem, the goal is to find a point that maximizes the objective junction. * Linear functions are convex, so linear programming problems are convex problems. * A convex function is a function whose graph is always curved upwards, which mean the the line gegment connecting any two points of graph is always above or on the graph itself. S(x) => S'(x) =0 => S'(x) >0 Gradient-Based optimization 1) & = learning rate for 160 is Not given " xn = xn - x + d (f(xn-1)) Dm = -2 & X; (y; -9) Dc = -2 & (y:-y) mo=0 co=0 y=0 d=0.01 (depate1+) × 1 2 348 4 2 3 45 x | y | y - y | x (y - y) 2 2 61 3 3 4 12

20

$$m_1 = m_0 - x \ Om_0$$
 $m_1 = 0 - (0.01) * (-\frac{2}{4}(40)) = \frac{200.2}{4}$
 $m_1 = 0 - (0.01) * (-\frac{2}{4} \times 14) = 0.07$
 $m_2 = 0 - (0.01) * (-\frac{2}{4} \times 14) = 0.07$
 $m_3 = 0.2 \times 1.73 = 1.73$
 $m_4 = 0.2 \times 1.73 = 1.73$
 $m_5 = 0.89 = 0.13 = 16.52$
 $m_7 = 0.2 - (0.01) * (-\frac{2}{4} * 33.3)$
 $m_7 = 0.2 - (0.01) * (-\frac{2}{4} * 33.3)$
 $m_7 = 0.2 - (0.01) * (-\frac{2}{4} * 11.92)$
 $m_7 = 0.1286$
 $m_7 = 0.1286$
 $m_7 = 0.1286$
 $m_7 = 0.1286$
 $m_7 = 0.1286$

2° itration.

 $3(x)=x^2-5x+15$ $x_0=3$ x=0.25cor is given : xn=xn-1 - a (d(+(xn-1))) $d(f(x_0)) = 2x-5 = 2(3)-5 = 0$:, x, = 3 - (0.25)(1) (1-1) = 3-0.25 = 2.45 TIP 828 40.0 18 1 :, x2 = x, - d (df(x1)) = 2.75-0.25 (2.75 × 2 -5) -295-0.25 x0.5 801 0 + 0 30 0 0 0 0 42 = 2.625 (18 + 1 + 16 + 16) x (16 6) 2 3 1. *3 = x2 - d (df (x2)) df(+2) = 2.625 - 0.25 × 0.25 2 (2:625) -5 = 2.625 - 0.625 +3-2 and the state

logistic regression

B= 1+e-x

parulate the probability of pass for the student who ndied 33 hours.

Hours stordy Possli)/Fail(0)

290

19 W perking p

(i) z = -64+2+33 = -64+66=2

 $P = \frac{1}{1+e^{-2}} = \frac{1}{1+e^{-2}} = 0.88$

109(odds) = 7 = -64 + 2 + rours 1

if the studies 13 lars, then there is \$87. plance.

I A took Lown hours g-dents show study that make WINI PRIS per course with the pr move than 95%.

2=294 => log (odds) = = -64 + 2 + hours

Z+64 = Lowns = 33.4 A Hours

1 ister > 2 = mx+c => P= 1 1+e-2 (remember --)

Pithe => P= 1=> find 2 => 2= mx+C find x

	Step to rives one table dataset, and asks to find the value of a last coloumn based on criven other value
	Step Find Dislance
The state of the s	pistance = $\int (x-a)^2 + (y-b)^2$ $b = Given data Sets volume x = finding values$
No. of Lot, House, etc.,	y-finding valvus.
	stind all distances from Given values.
1	Rank the rest distance by least is 1. (Soit in asterd
1	sep3 find the nearest neighbors.
Complete September	the should be done
Street, Square,	DON LON
	Step 1: Compute au class means of dependent vouvables
1	$\mathcal{U}_{1} = \frac{1}{N_{1}} \underbrace{\mathcal{L}_{1}}_{2} \times \underbrace{\mathcal{L}_{2}}_{1}$
1	Step? Compute the within class contrar matrix of the class vaniable.
A THE PERSON	sky Compute the within class - scatter matrix (S) (5,15) sky u compute the setween class scatter matrix SB = (M,-M,) (M,-M)
	SB=(M-M)(M-M2)"

compute the figer values and eigen vectors from the within class and between dass slatter matrix Sw SBW = XW steps sort the values of eigen values and solect the uer top K values stept find the eigen vectors corresponding to the top k eigen values. [5, 58-XI] [WI] =0 stept oblain the LOA by taking the dot product of eign vectors & original data. (a) x,= {(4,2),(2,4),(2,3),(3,6),(4,4)} X2= { (9,10), (6,8), (9,5), (8,7), (10,8)} 1°5 M= 1 2 2 = 1 [(4) + (2) + (3) + (3) + (4)] = (3) M= J Z X - [(9)(6)+(8)+(8)+(8) + (10) = (84) 7.6) (1 - (2) - [(vonce: [xxu) = 1.8.8 0,4.0.6 24 0.4]

$$S_{1} = S_{1}^{1} (3-M_{1})(3-M_{2})^{T}$$

$$= \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3.8 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \end{pmatrix} \right] \left[\begin{pmatrix} 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

Ind eign values.

50'
$$S_{B} \omega = \lambda \omega$$

[3.3 -63]-' [19.16 20.52] - λ [1 0] -0

[0.3045 0.0106] [29.16 20.52] - λ [1 0] -0

[0.3045 0.0106] [29.16 20.52] - λ [1 0] -0

[0.106 0.1827] [2.52 14.44] - λ [0 1] =0

[0.113- λ 6489

[4.213- λ 6489

[4.213- λ (2.9294- λ) - 6.489 × 4.2339=0

[5.213- λ) (2.9294- λ) - 6.489 × 4.2339=0

[5.213- λ) (2.9294- λ) - 6.489 × 4.2339=0

[5.250- λ] [ω]

[5.250- λ] [ω]

[5.260- λ] [ω]

[5.270- λ] [ω]

mer ENON-linear 10 solve classification & engression かっか.えーち す。(人はないなり) はくり、= ーム、十人2 + 人3=0 Introduction to ANN (ASTA) con sewo setupy) Transluction Basic Architecture single perephon Build 3050 1 torget =1 14 200 2 10 200 -1 Osingle parcotion

y: 1+602 = 0.5498 = 0.1x1 + 0.4x1 + (-0.3x0) +0.4x1 = 0.1+0.4 +04 = 0.9 " te-0.9 = 0.711 = 0.5498 x (-0.3) + (0.711 x 0.2) = -0.02274 y3= 1+e-02274= 0.4943 : E = 0.5 - 0.494 = 0.005 684755 20.006

10 8 6 (SIM + 60) 2 68 4 0 10 - 3 2 08

Suppose a day you wire looked was sunny. The next day the core tapes carried an umbrella into the room. He would like to know that the what the what the what the what the what he was like this second day.

