Elementos de Estimação

1. Estimação de Parâmetros

Considere um conjunto de observações $\mathbf{X} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)}\}$, as quais dependem de um (ou mais) parâmetro(s) desconhecido(s) $\mathbf{\theta}$. O desafio em estimação de parâmetros consiste em determinar o valor de $\mathbf{\theta}$ a partir das amostras disponíveis. Para isto, é preciso construir um *estimador*, o qual pode ser visto como uma regra (função) que designa um valor para o parâmetro $\mathbf{\theta}$, denotado por $\mathbf{\hat{\theta}}$, para cada realização dos dados (\mathbf{X}). Ou seja, a estimativa $\mathbf{\hat{\theta}}$ é dada por:

$$\widehat{\boldsymbol{\theta}} = \mathbf{g}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)})$$

Por simplicidade, considera-se que os dados $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)}$ são independentes e identicamente distribuídos (i.i.d.).

Como um estimador é uma função dos dados observados, os quais são obtidos a partir de um processo aleatório, o próprio estimador também possui um caráter estocástico. Por isso, sua caracterização – para fins de análise de desempenho, por exemplo – deve ser feita com base em medidas estatísticas.

1.1. Polarização (Bias)

O viés (polarização ou bias) de um estimador é dado por*:

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

sendo $E(\cdot)$ o operador esperança (que diz respeito à estrutura probabilística dos dados). Um estimador não-polarizado (unbiased) tem viés igual a zero. Um estimador assintoticamente não-polarizado (asymptotically unbiased) é aquele para o qual vale:

$$\lim_{m\to\infty}bias(\hat{\theta})=0$$

^{*} Por simplicidade, faremos a exposição das propriedades de um estimador tendo em vista o caso escalar.

1.2. Variância

A variância de um estimador $\hat{\theta}$ é dada por:

$$\operatorname{var}(\widehat{\theta}) = E\left(\left[\widehat{\theta} - E(\widehat{\theta})\right]^2\right)$$

Naturalmente, seria interessante encontrar estimadores com a menor polarização e a menor variância possível.

Exemplos:

Consideremos uma função de massa de probabilidade Bernoulli. A variável pode assumir valores X=1 (com probabilidade p) e X=0 (com probabilidade p) (GOODFELLOW ET AL., 2016). Naturalmente,

$$E(X) = 0(1 - p) + p = p$$

É comum expressar a função de massa da seguinte forma:

$$P(x,p) = p^x (1-p)^{1-x}$$

Consideremos o seguinte estimador de média:

$$\hat{p} = \frac{1}{m} \sum_{k=1}^{m} x_k$$

Analisemos seu viés:

$$bias(\hat{p}) = E[\hat{p}] - p$$

Então,

$$bias(\hat{p}) = E\left[\frac{1}{m}\sum_{k=1}^{m} x_k\right] - p = \frac{1}{m}\sum_{k=1}^{m} E[x_k] - p = p - p = 0$$

Isso significa que o estimador é não-polarizado.

Consideremos agora uma densidade de probabilidade gaussiana:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$

Utilizemos o mesmo estimador de média:

$$\hat{\mu} = \frac{1}{m} \sum_{k=1}^{m} x_k$$

Então,

$$bias(\hat{\mu}) = E\left[\frac{1}{m} \sum_{k=1}^{m} x_k\right] - \mu = \frac{1}{m} \sum_{k=1}^{m} E[x_k] - \mu = \mu - \mu = 0$$

Portanto, o estimador também é não-polarizado.

Consideremos agora o seguinte estimador de variância da gaussiana (que utiliza o estimador de média mostrado anteriormente):

$$\hat{\sigma}^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \hat{\mu})^2$$

É possível mostrar que esse estimador é polarizado:

$$E[\hat{\sigma}^2] = \frac{m-1}{m} \sigma^2 \to bias(\hat{\sigma}^2) \neq 0$$

Um estimador não-polarizado para a variância seria:

$$\hat{\sigma}^2 = \frac{1}{m-1} \sum_{k=1}^{m} (x_k - \hat{\mu})^2$$

Após termos considerado esse estimador de variância, analisemos a variância de um estimador. Retomemos o estimador de média da variável Bernoulli.

$$\hat{p} = \frac{1}{m} \sum_{k=1}^{m} x_k$$

A variância do estimador seria:

$$Var(\hat{p}) = \frac{1}{m}p(1-p)$$

A variância diminui com o aumento do número de amostras, o que indica, grosso modo, que ter mais dados leva a estimativas mais "concentradas" em torno do valor correto.

2. Técnicas de Estimação

2.1. Estimação por Máxima Verossimilhança (ML)

Consideremos que seja nosso desejo estimar um conjunto de parâmetros $\boldsymbol{\theta}$ a partir de um conjunto de m exemplos i.i.d. $\mathbf{X} = \{\mathbf{x}^{(1)} \ ... \ \mathbf{x}^{(m)}\}$. Havendo um modelo probabilístico, pode-se definir a verossimilhança $\mathcal{L}(\boldsymbol{\theta}) = p(\mathbf{X}|\boldsymbol{\theta})$. O processo de estimação por máxima verossimilhança (ML, do inglês maximum-likelihood) tem por base a maximização de $\mathcal{L}(\boldsymbol{\theta})$ com respeito a $\boldsymbol{\theta}$.

$$\mathbf{\theta}_{\mathrm{ML}} = \arg\max_{\mathbf{\theta}} p(\mathbf{X}|\mathbf{\theta}) = \arg\max_{\mathbf{\theta}} \left(\prod_{k=1}^{m} p(\mathbf{x}^{(k)}; \mathbf{\theta}) \right)$$

Como a função logaritmo é monotonicamente crescente, é possível trabalhar com o logaritmo da verossimilhança (*log-likelihood*) no processo de otimização. Isso leva ao seguinte critério:

$$\theta_{\text{ML}} = \arg \max_{\mathbf{\theta}} \log p(\mathbf{X}|\mathbf{\theta}) = \arg \max_{\mathbf{\theta}} \left(\sum_{k=1}^{m} \log p(\mathbf{x}^{(k)}; \mathbf{\theta}) \right)$$

2.2. Estimação MAP (Máximo a Posteriori)

Outra abordagem possível é realizar a estimação a partir da densidade a posteriori. Nesse caso, os parâmetros também são considerados variáveis aleatórias. O problema se torna então:

$$\mathbf{\theta}_{\mathrm{MAP}} = \arg\max_{\mathbf{\theta}} p(\mathbf{\theta}|\mathbf{X})$$

Usando a regra de Bayes, aplicando o logaritmo e desconsiderando $p(\mathbf{X})$, que não depende de $\boldsymbol{\theta}$, temos o problema da seguinte forma:

$$\theta_{\text{MAP}} = \arg \max_{\mathbf{\theta}} \log[p(\mathbf{X}|\mathbf{\theta})] + \log[p(\mathbf{\theta})]$$

Percebe-se que a otimização inclui a *log-likelihood* e, também, a densidade associada ao parâmetro (*a priori*). Este ponto é o grande diferencial deste método de estimação: a possibilidade de incorporar informação *a priori*.

3. Referências bibliográficas

GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning, MIT Press, 2016.

KAY, S. M. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, Prentice Hall, 1993.