Métodos de Estatística Aplicada com Python Aula 2

Carlos Góes¹

¹Pós-Graduação em Ciência de Dados Instituto de Educação Superior de Brasília

2017

Sumário

- Como dados estão organizados?
 - Conceitos fundamentais
 - Tipos de organização de dados
- Estatísticas descritivas
 - Média e medianas
 - Quantis
- Introdução ao pandas
 - Comandos básicos
 - Como importar um arquivo?
 - Como extrair estatísticas descritivas?

Sumário

- Como dados estão organizados?
 - Conceitos fundamentais
 - Tipos de organização de dados
- Estatísticas descritivas
 - Média e medianas
 - Quantis
- Introdução ao pandas
 - Comandos básicos
 - Como importar um arquivo?
 - Como extrair estatísticas descritivas?

Definições

Dados

- Dados são coleções de observações específicas sobre indivíduos, domicílio, países, máquinas, fábricas, etc.
- Exemplo. A Pesquisa Nacional de Amostra de Domicílios, realizada pelo IBGE anualmente, coleta uma série de informações sobre características de domicílios brasileiros:
 - Domicílio 1: {UF: DF; Município: Brasília; Número de habitantes: 3; Número de cômodos: 2; Tem geladeira: Sim; Tem TV a Cores: Sim; Tem máquina de lavar: Sim; Renda familiar habitual no mês: R\$ 18.000,00; etc.};
 - Domicílio 2: {UF: MA; Município: São Luís; Número de habitantes: 5;
 Número de cômodos: 2; Tem geladeira: Sim; Tem TV a Cores: Sim;
 Tem máquina de lavar: Não; Renda familiar habitual no mês: R\$
 2.000,00; etc.;
 - etc...

Básico

 Todos já estamos acostumados a ver dados organizados no nosso dia a dia. Ex.:

Figura: Ex. Tabela 1: Tabela do Campeonato Brasileiro de 2017 em

Básico

 Todos já estamos acostumados a ver dados organizados no nosso dia a dia. Ex.:

UF	MUN.	CARG.	NOME	CODINOME L	CAL	FUNÇÃO	PARTIDO	BBY	ЕТН	ODT	OR	FOZ	OTP	INFRA	VALOR TOTAL
Ur	more.	Cruto.		AVIÃO (1)	AC	CAP	PCdoB	X	EIR	001	On	TOL		×	300,00
22	Porto Alegre	PREF.	Manuela D'Avila	AVIAO (1)	DA	CAP	PDT	×	\rightarrow	_				×	300,00
			José Fortunati	(2)	DA	COR	PTB	^						×	100,00
	Historico	858	(Sergio Zambiasi)	(2)	VB	CAP	PDT		-					×	500,00
£	Curitiba	PREF.	Luciano Ducci	72	NB NB	CAP	PSC	_	\rightarrow	_				×	250,00
	Contract		Ratinho Junior	(4)		CAP	PSD	_	-	_	_		_	×	100.00
×	Lajes	PREF.	Antonio Ceron	(8)	AJ AO	CAP	PRB	×	\rightarrow	_	×			×	500.00
	São Paulo -	PREF.	Celso Russomano	6		CAP	PDT	×	\rightarrow	_	×			×	500,00
		2	Paulinho da Força	8	ÃO ÃO	SAR	PCdoB	^	-	_	<u> </u>			×	150,0
			(indicação PC do B)	(2/	ÃO	SAR	PCdoB	×	-		-		-	×	200.00
8			(indicação do PV)	(6)			PTB	×	-		-		-		500.0
	Santo André	PREF.	Aidan Ravin	(4)	AD	CAP		-	-	_	_	-	-		1,00
	Guarulhos	PREF.	Jovino Cândido	(6)	UA MA	CAP	PV	-	-	_	×	-	-	×	300.0
	Campinas	PREF.	Pedro Serafin	(24	SA	SAR	PDT	-	-		×	-	-	×	300,0
	Salvador	CAM.	Dep Est Marcelo Nilo	Rio 2	SA	SAR	PTB	-	-		Ŷ	_	_	×	150,0
			Edvaldo Brito	Candomble	SA SA	SAR	PCdoB	-	-	_	x	_		×	150,0
			Dep Federal Daniel Almeida	Comuna (1)	SA	SAR	PTN	-	-	_	- ×	-	_	×	80.0
			Geraldo Junior		SA	SAR	PSC	-		_	×	-	_	×	80,0
\$			Paulo Magalhães	Goleiro (4)			PR	×		-	<u> </u>	_	_	-	50,0
	Candelas	PREF.	Tonha Magalhães	(4)	AN	CAP	PR	×		-	-	-	-		100.0
	Camaçari	PREF.	Maurício Bacelar		вMÇ		PSD	×	-	-	-	+	_	_	50.0
	Simões Filho	PREF.	Eduardo Alencar	(2)	SFI	CAP	PTC	- *	-	-	-	-		×	50.0
	Belo Horizonte	3	Pablito				PSD	-	-	-	-	×	×	×	500,0
N.	Vale do Aco (1)	Pref.	Sec. Alexandre Silveira	(8)	'AA	COR		+	-	-	-	+ ^	+^	×	50,0
-	Vale do Aço (1)	CAM.	Coronel Teachini	(2)	'AA		PSD	+	_	-	-	-	-	×	100,0
8	Vitoria	96	Luciano Resende		VIX REC	CAP SAR	PPS	-	-	-	-	×	×	×	100.0
	Recife	86	Raul Jungmann	Bruto				+	-	-	-	1^	-	X	1.000.0
	Campos dos Goytacazes	PREF.	Rosinha Garotinho	GA	:GZ	CAP	PR	-	-	-	-	+	-	X	1.000,
	Macae	PREF.	Dr Aluizio	6	ИCE	CAP	PV	_	-	_	-	X	-		500,
	Rio das Ostras	PREF.	Sabino	(4)	tos	CAP	PSC					X	_	X	
	Niteroi		Sergio Sveiter	(1)	NIT	CAP	PSD					\perp	_	X	150, 8.111,

Figura: Ex. Tabela 2: Tabela de doações ilegais da: Odebrecht: >

Carlos Góes (IESB) Métodos Estatísticos: Aula 2 2017 6 / 44

Notação

- Tabelas devem organizar informações específicas sobre indivíduos.
- Imagine que temos informações sobre N indivíduos. O conjunto de indivíduos, portanto, é:

$$I = \{1, 2, \dots, N\} \tag{1}$$

Notação

- Imagine que temos organizamos as informações em duas variáveis, sua renda (r) e a cidade (c) onde ela/e mora.
- Como cada variável corresponde ao um indivíduo específico (que chamamos genericamente de indivíduo i), usamos um subscripto para identificá-lo:
 - c_i é a cidade em que o indivíduo i mora e r_i sua renda
- Os conjuntos de renda (r) e cidade (c), portanto, são:

$$r = \{r_1, r_2, \dots, r_N\} \tag{2}$$

$$c = \{c_1, c_2, \dots, c_N\} \tag{3}$$

Notação

 Note que há pelo menos duas maneiras de organizar o universo de dados:

Figura: Dados: organizados por variáveis.

Notação

 Note que há pelo menos duas maneiras de organizar o universo de dados:

Figura: Dados: organizados por indivíduos.

- Há três tipos básicos de organização de dados sobre indivíduos:
 - Organização de dados sobre indivíduos diferentes no mesmo período no tempo (corte transversal ou cross-section).
 - Organização de dados sobre um só indivíduo no em períodos diferentes (séries temporais ou time series).
 - Organização de dados sobre os mesmos indivíduos no em períodos diferentes (dados em paineis ou panel data).

Corte transversal ou cross-section

- Organização de dados sobre indivíduos diferentes no mesmo período no tempo.
- ullet Variáveis diferentes relativos a N indivíduos diferentes $[1,2,\ldots,N]'$:
 - Variável $x: \{x_1, x_2, ..., x_N\}$
 - Variável y: $\{y_1, y_2, \dots, y_N\}$
 - Indivíduo i: x_i, y_i

Corte transversal ou cross-section

v	V0104	V0105	V0106	V0201	V0202	V0203	V0204	V0205	V0206	V0207	V0208
1	1	3	2	1	2	1	1	3	1	3	376
2	1	2	2	1	2	2	1	6	1	1	
3	1	1	1	1	2	1	1	3	1	1	
4	1	5	5	1	2	1	1	12	4	1	
5	1	4	4	1	2	1	1	5	3	1	
6	1	2	2	1	2	1	1	5	1	1	
7	1	5	5	1	2	1	1	7	3	1	
8	1	3	2	1	2	2	1	5	2	5	
9	5										
10	1	2	2	1	2	1	1	6	1	1	
11	1	5	5	1	2	2	1	7	2	1	
12	1	7	6	1	2	1	1	S	2	1	
13	1	3	2	1	2	1	1	6	1	3	
14	1	2	2	1	2	1	1	3	2	3	350
15	1	3	3	1	2	1	1	6	2	1	
16	6										
17	1	5	5	1	2	1	1	6	3	1	
18	1	3	3	1	2	1	1	6	2	1	
19	1	3	2	1	2	2	1	4	2	1	
20	1	1	1	1	2	1	1	2	1	3	270
21	1	3	3	1	2	1	1	6	2	1	
22	1	2	2	1	2	1	1	6	2	1	
23	1	2	2	1	2	1	1	6	2	1	
24	1	2	2	1	2	1	1	8	1	1	
25	1	1	1	1	2	1	1	3	1	3	320
26	1	3	3	1	2	1	1	5	2	3	600
27	1	3	2	1	2	1	1	5	2	1	
28	1	2	2	1	2	2	1	3	1	3	300
29	1	2	2	1	2	1	1	7	2	1	
30	1	3	2	1	2	1	1	8	1	3	700

Figura: Tabela: corte transversal.

Séries temporais ou time series

- Organização de dados sobre um só indivíduo no em períodos diferentes (séries temporais ou time series).
- Variáveis diferentes relativos a um só indivíduo para T períodos diferentes [1, 2, ..., T]':
 - Variável $x: \{x_1, x_2, ..., x_T\}$
 - Variável $y: \{y_1, y_2, ..., y_T\}$
 - Período $t: x_t, y_t$

Séries temporais ou time series

date	cds	imvol	mexembi	g embig	spread	policy	vix
1/1/2000	6.592	8.8	362	648	-286		24.21
1/4/2000	6.497	10	386	669	-283	17.07	27.01
1/5/2000	6.594	10.5	379	667	-288	17.13	26.41
1/6/2000	6.524		393	677	-284	17.07	25.73
1/7/2000	6.515	10.7	393	670	-277	17.23	21.72
1/10/2000	6.552	10.3	388	665	-277	16.69	21.71
1/11/2000	6.657	10.3	397	676	-279	16.77	22.5
1/12/2000	6.703	11.7	407	681	-274	16.52	22.84
1/13/2000	6.63	10.7	406	679	-273	16.63	21.71
1/14/2000	6.679	10	404	673	-269	17.13	19.66
1/17/2000	6.681	9.5				17.03	
1/18/2000	6.748	9	402	670	-268	17.96	21.5
1/19/2000	6.732	9.1	391	670	-279	17.74	21.72
1/20/2000	6.788		389	669	-280	18.52	21.75
1/21/2000	6.765	9	381	666	-285	19.07	20.82
1/24/2000	6.685	10	389	668	-279	18.44	24.07
1/25/2000	6.692	10.3	391	672	-281	18.39	23.02
1/26/2000	6.664	9.5	396	675	-279	18.39	23.03
1/27/2000	6.692	10	399	680	-281	18.37	23.54
1/28/2000	6.658	11.5	423	699	-276	19.19	26.14
1/31/2000	6.665		433	707	-274	19.25	24.95

Figura: Tabela: série temporal.

Paneis de dados ou panel data

- Organização de dados sobre os mesmos indivíduos no em períodos diferentes (dados em paineis ou panel data).
- Variáveis diferentes relativos N indivíduos [1, 2, ..., N]' para T períodos diferentes [1, 2, ..., T]':
 - Variável x no período 1: $\{x_{1,1}, x_{2,1}, \dots, x_{N,1}\}$
 - Variável x no período 2: $\{x_{1,2}, x_{2,2}, \dots, x_{N,2}\}$
 - •
 - Variável x no período T: $\{x_{1,T}, x_{2,T}, \dots, x_{N,T}\}$
- Representação da observação da variável x para o indivíduo i no período t: x_{i,t}

Paneis de dados ou panel data

	country	year	top10	top5	top1	short	
0	Australia	1980	25.39	15.31	4.79	10.667500	
1	Australia	1981	25.31	15.15	4.61	13.250833	
2	Australia	1982	25.82	15.44	4.67	14.642497	
3	Australia	1983	25.32	15.16	4.68	12.225000	
4	Australia	1984	25.50	15.25	4.75	10.985000	
5	Australia	1985	25.93	15.63 5.02		15.336663	
6	Australia	1986	26.61	16.17	5.39	15.386665	
7	Australia	1987	28.66	17.94	6.67	12.798332	
8	Australia	1988	30.28	19.84	8.41	15.400000	
9	Australia	1989	27.64	17.46	6.43	17.550000	
550	United States	1983	33.69	21.79	8.59	8.944167	
551	United States	1984	33.95	22.10	8.89	9.897500	
552	United States	1985	34.25	22.38	9.09	7.730833	
553	United States	1986	34.57	22.59	9.13	6.155000	
554	United States	1987	36.48	24.49	10.75	5.962500	

17 / 44

Sumário

- Como dados estão organizados?
 - Conceitos fundamentais
 - Tipos de organização de dados
- Estatísticas descritivas
 - Média e medianas
 - Quantis
- Introdução ao pandas
 - Comandos básicos
 - Como importar um arquivo?
 - Como extrair estatísticas descritivas?

Notação

Você já sabe o que é uma média:

$$m\acute{e}dia = \frac{soma \quad das \quad observac\~{o}es}{total \quad de \quad observac\~{o}es} \tag{4}$$

- Mas vamos entender um pouco mais da notação de médias?
- A média (ou valor esperado) da variável x, que tem N observações, se define por:

$$E[x] = \bar{x} = \frac{x_1 + \ldots + x_n}{N} = \frac{\sum_{i=1}^{N} x_i}{N}$$
 (5)

Exemplo

• Tome a seguinte amostra:

$$x = \{1, 4, 8, 9, 12, 15, 20\} \tag{6}$$

• Qual é a média dessa amostra?

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{1+4+8+9+12+15+20}{7}$$
 $\bar{x} \approx 9,85$ (7)

◆ロト ◆部 ト ◆差 ト ◆差 と ● からで

Aplicação em Python

• Declare a seguinte variável, em forma de list:

$$x = [1, 4, 8, 9, 12, 15, 20]$$

Vamos criar uma função para calcular a média:

```
def media(amostra):
   numerador = sum(amostra)
   denominador = len(amostra)
   return numerador / denominador
```

E aplicar essa função a x:

media(x)

Aplicação em Python

- Podemos também utilizar os extensões que trazem funções adicionais para Python.
- Primeiro, temos que importar o pacote:

```
import scipy
import numpy as np
```

• Depois, chamar o pacote e aplicá-lo a x:

```
scipy.mean(x)
np.mean(x)
```

Mediana

Notação

- Ao contrário da média, a mediana é o valor que está no meio da distribuição.
- A mediana é o valor que divide a amostra ao meio: 50% está acima desse valor e 50% está abaixo dele.

$$x = \{1, 4, 8, 9, 12, 15, 20\} \tag{8}$$

- Qual a mediana de x?
 - 9

$$y = \{1, 4, 8, 9, 11, 12, 15, 20\} \tag{9}$$

- E qual é a mediana de y?
 - A média de 9 e 11: 10

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Mediana

Aplicação em Python

• Primeiro, temos que importar o pacote:

import numpy as np

• Depois, chamar o pacote e aplicá-lo a x:

np.median(x)

Mediana

Aplicação em Python

 Escrever nosso próprio programa é um pouquinho mais complicado, mas possível:

```
def mediana(amostra):
   amostra_ordenada = sorted(amostra)
   resto = len(amostra_ordenada) % 2

if (resto == 0):
   metade = len(amostra_ordenada) / 2
   n1 = int(metade - 0.5)
   n2 = int(metade + 0.5)
   return (amostra_ordenada[n1] + amostra_ordenada[n2]) / 2

else:
   metade = int(len(amostra_ordenada) / 2)
   return amostra_ordenada[metade]
```

Médias e medianas: quando usar qual?

Exemplo teórico

• Imagine essas duas amostras diferentes:

$$x = [1, 1, 1, 1, 1, 19] (10)$$

$$y = [4, 4, 4, 4, 4, 4] (11)$$

• Quais suas médias?

$$\bar{x} = \frac{\sum_{i=1}^{N_x} x_i}{N_x} = \frac{5 \cdot 1 + 19}{6} = \frac{24}{6} = 4$$
 (12)

$$\bar{y} = \frac{\sum_{i=1}^{N_y} y_i}{N_y} = \frac{6 \cdot 4}{6} = 4$$
 (13)

• $\bar{x} = \bar{y}$, mas, obviamente, essas amostras são bem diferentes.

Médias e medianas: quando usar qual?

Exemplo real

Quando a distribuição é desigual, médias enganam.

Figura: Brasil: Distribuição da população por renda familiar mensal.

4□ > 4□ > 4 = > 4 = > = 9 < 0

Quantis Básico

- Quando faz sentido resumir um conjunto de dados por um único número?
 - Muito raramente!
- Qual a solução? Fazer cálculo de quantis.
- Quantis s\u00e3o indicadores similares \u00e0 mediana, mas que fazem cortes em outras partes da amostra.
- Os quantis mais comuns são quartis e pecentis.

Quartis

 Em quartis, divide-se a amostra em quatro partes com o mesmo número de observações. Tome a amostra abaixo.

$$y = \{1, 4, 8, 9, 11, 12, 16, 20\} \tag{14}$$

- Primeiro, encontra-se a mediana: 9 + 11/2 = 10.
- Depois, encontra a mediana dos dois grupos que estão acima e abaixo da mediana calculada.
- A mediana da metade inferior, também chamado de primeiro quartil é 4+8/2=6
- A mediana da metade inferior, também chamado de terceiro quartil é 12+16/2=14

Quartis

• Portanto, dada a amostra:

$$y = \{1, 4, 8, 9, 11, 12, 16, 20\} \tag{15}$$

Quartil	Valor	Pct da amostra \leq valor
Primeiro (Q1)	6	25%
Segundo ($Q2 = mediana$)	10	50%
Terceiro (Q3)	14	75%
Terceiro (Q4)	20	100%

Quartis

• Exemplo de utilização de quartis:

Brazil: Overrepresentation of Top Quartile in Public Universities, 2014

(Share of overall population and public unversity population which belong to each quartile of household income per capita)

Sources: PNAD microdata; and IMF staff calculations.

- 4 ロ ト 4 周 ト 4 重 ト 4 重 ・ 夕 Q (^)

Quartis

- Intervalo interquartil (IQR): os 50% da amostra que estão entre o primeiro (Q1) e o terceiro (Q3) quartis
- Exemplo de utilização de IQR:

Carlos Góes (IESB) Métodos Estatísticos: Aula 2

Percentis

- Percentis são como quartis, mas dividem a amostra em 100 partes!
- Exemplo de utilização de percentis:

Brazil: Real Income Per Capita Growth, by Region and Quantile, 2004–2014 (Average real income growth per year, average across states per quantile; adjusted for spatial-

Sources: PNAD microdata; and IMF staff calculations.

Sumário

- Como dados estão organizados?
 - Conceitos fundamentais
 - Tipos de organização de dados
- 2 Estatísticas descritivas
 - Média e medianas
 - Quantis
- Introdução ao pandas
 - Comandos básicos
 - Como importar um arquivo?
 - Como extrair estatísticas descritivas?

Importando o pandas

- O pandas precisa estar instalado!
- Depois disso, podemos simplesmente importá-lo:

import pandas as pd

 O pandas tem duas estruturas básicas: Series e DataFrames, sendo que estas são coleções daquelas.

Series

Series são construídas a partir de outros objetos:

```
x = np.linspace(1,10, 5)
rotulo = ["a","b","c","d","e"]
serie1 = pd.Series(x, name="Série1", index=rotulo
print(serie1)
```

 Como lists, você pode acessar um elemento de uma Serie utilizando seu index:

```
print(serie1["a"])
print(serie1["d"])
```

Series

 Se você construir suas Series de dictionaries, elas já vêm com indexadores:

```
matricula = {
    'Carlos Goes': '06/99209',
    "Nicolas Powidayko": '10/22290',
    "Alexander Rabbat": '08/21346',
    "Dani Alaino": '07/20345',
    "Lya Nikate": '09/23567',
    "Niz Borroz": '11/22035',
    "Tom Rundal": "98/20145"
}
serie2 = pd.Series(matricula)
print(serie2)
```

DataFrames

• DataFrames são conjuntos de Series:

```
x = np.linspace(1,10, 5)
y = np.linspace(1,20, 5)
rotulo = ["a","b","c","d","e"]
serie1 = pd.Series(x, name="Série1", index=rotulo
serie2 = pd.Series(y, name="Série2", index=rotulo
df = pd.DataFrame(data=[serie1, serie2])
```

Você pode estrair tanto colunas quanto linhas:

```
print(df["a"])
print(df.loc["Série1"])
```

E transpor (inverter) os dados:

```
print(df.T)
```


DataFrames

- Você também pode retirar um elemento específico dentro de uma coluna: print(df["a"]["Série1"])
- Ou chamar uma primeiro a linha e depois a coluna: print(df.loc["Série1"]["a"])

DataFrames

Vamos criar um DataFrame com vários atributos:

```
matricula = pd.Series(matricula)
curso = pd.Series({
        'Carlos Goes': 'Economia',
        "Nicolas Powidayko": 'Economia',
        "Alexander Rabbat": 'Ciência da Computação',
        "Dani Alaino": 'Ciência da Computação',
        "Lya Nikate": 'Ciência da Computação',
        "Niz Borroz": 'Estatística'.
        "Tom Rundal": "Ciência da Computação"
        })
ira = pd.Series({
        'Carlos Goes': 5.0.
        "Nicolas Powidayko": 4.8,
        "Alexander Rabbat": 3.8,
        "Dani Alaino": 4.4,
        "Lva Nikate": 4.3.
        "Niz Borroz": 4.0,
        "Tom Rundal": 4.0
        1)
lista = [matricula, curso, ira]
df = pd.DataFrame(lista, index=['matricula', 'curso', 'ira']).T
```

DataFrames

- Como extrair os atributos de Carlos Goes? df.loc["Carlos Goes"]
- Como extrair todas as matrículas? df ["matricula"]
- Como extrair os dados de todos os estudantes de Ciência da Computação?
 - Boolean masking!
 - Tente: print(df["curso"] == "Ciência da Computação")
 - E agora assim: print(df[df["curso"] == "Ciência da Computação"])
 - O que aconteceu?

Como importar um arquivo?

- Resposta: depende do tipo de arquivo que você está importando.
- Tipos de arquivo:
 - Planilha: .xls, .xlsx, etc...
 - Texto: .txt, .csv, .tsv, etc.
 - Json ou SQL: .json, .sql
 - Outras...

Como importar um arquivo?

- Aqui nós vamos trabalhar com um arquivo de texto, que é bem comum na análise de dados.
- Visite esse website e veja como os dados estão organizados: https://raw.githubusercontent.com/omercadopopular/cgoes/master/piketty/fdatabasetax.csv
- Agora vamos importá-lo:

```
url = "https://raw.githubusercontent.com/
    omercadopopular/cgoes/master/piketty/
    fdatabasetax.csv"

piketty = pd.read_csv(url)
print(piketty.head())
```

Importando o pandas

Média, mediana e quartis

```
estd = pd.DataFrame([piketty.mean(),
                    piketty.min(),
                    piketty.quantile(0.25),
                    piketty.median(),
                    piketty.quantile(0.75)
                    piketty.max()],
                     index=['média', 'min',
                            'Q1', 'mediana,
                            'Q3', 'max'])
print(estd)
```

Ou:

piketty.describe()