Árboles y grafos Conceptos básicos

José Antonio Álvarez

23 de febrero de 2018

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018 1 / 40

Índice

- 1 Historia de la teoría de grafos
- Q Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Recorrido histórico

• 1736: Euler resuelve el problema de los puentes de Königsberg.

Recorrido histórico

- 1736: Euler resuelve el problema de los puentes de Königsberg.
- 1847: Gustav Kirchhoff los utiliza para crear las leyes que llevan su nobre.

Recorrido histórico

- 1736: Euler resuelve el problema de los puentes de Königsberg.
- 1847: Gustav Kirchhoff los utiliza para crear las leyes que llevan su nobre.
- 1852: Francis Guthrie planteó el problema de los cuatro colores (resuelto en 1976).

Recorrido histórico

- 1736: Euler resuelve el problema de los puentes de Königsberg.
- 1847: Gustav Kirchhoff los utiliza para crear las leyes que llevan su nobre.
- 1852: Francis Guthrie planteó el problema de los cuatro colores (resuelto en 1976).
- 1857: Arthur Cayley estudió y resolvió el problema de enumeración de los isómeros, compuestos químicos con idéntica composición (fórmula) pero diferente estructura molecular.

Recorrido histórico

- 1736: Euler resuelve el problema de los puentes de Königsberg.
- 1847: Gustav Kirchhoff los utiliza para crear las leyes que llevan su nobre.
- 1852: Francis Guthrie planteó el problema de los cuatro colores (resuelto en 1976).
- 1857: Arthur Cayley estudió y resolvió el problema de enumeración de los isómeros, compuestos químicos con idéntica composición (fórmula) pero diferente estructura molecular.
- El primer libro sobre teoría de grafos fue escrito por Dénes Kőnig y publicado en 1936

Puentes de Königsberg

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- 3 Árboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Definición y tipos

Definición de grafo

Definición y tipos

Definición de grafo

Un **grafo** G es una terna $G = (V, E, \gamma_G)$, donde:

- V es un conjunto de vértices o nodos,
- E es un conjunto de aristas, arcos o lados; y
- $\gamma_G : E \rightarrow VxV$ es la aplicación de incidencia.

Definición y tipos

Definición de grafo

Un **grafo** G es una terna $G = (V, E, \gamma_G)$, donde:

- V es un conjunto de vértices o nodos,
- E es un conjunto de aristas, arcos o lados; y
- $\gamma_G : E \rightarrow VxV$ es la aplicación de incidencia.

Orden y tipos de grafos

- **Orden**: número de vértices, |V|.
- Grafo simple: grafo que tiene como mucho una arista entre cada par vértices.
- Grafo completo: grafo simple en el que cada par de vértices están conectados por una arista. Se denota por K_n el grafo completo con n vértices.

Grafos completos

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018 8 / 40

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Caminos

Un **camino**: es una sucesión de n+1 vértices, vértices y n lados, $\{v_0, v_1, ..., v_n, e_1, e_2, ..., e_n\}, e_i \in E, v_i \in V, \forall i$, cumpliendo que:

$$\gamma(e_i) = \{v_{i-1}, v_i\}$$

Caminos

Un **camino**: es una sucesión de n+1 vértices, vértices y n lados, $\{v_0, v_1, ..., v_n, e_1, e_2, ..., e_n\}, e_i \in E, v_i \in V, \forall i$, cumpliendo que:

$$\gamma(e_i) = \{v_{i-1}, v_i\}$$

Se dice que un camino es cerrado si el vértice final e inicial coinciden.

10 / 40

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018

Caminos

Un **camino**: es una sucesión de n+1 vértices, vértices y n lados, $\{v_0, v_1, ..., v_n, e_1, e_2, ..., e_n\}, e_i \in E, v_i \in V, \forall i$, cumpliendo que:

$$\gamma(e_i) = \{v_{i-1}, v_i\}$$

Se dice que un camino es cerrado si el vértice final e inicial coinciden.

Recorridos y circuitos

Caminos

Un **camino**: es una sucesión de n+1 vértices, vértices y n lados, $\{v_0, v_1, ..., v_n, e_1, e_2, ..., e_n\}, e_i \in E, v_i \in V, \forall i$, cumpliendo que:

$$\gamma(e_i) = \{v_{i-1}, v_i\}$$

Se dice que un camino es cerrado si el vértice final e inicial coinciden.

Recorridos y circuitos

Recorrido: Se dice que un camino es un recorrido cuando todos sus lados son distintos.

Caminos

Un **camino**: es una sucesión de n+1 vértices, vértices y n lados, $\{v_0, v_1, ..., v_n, e_1, e_2, ..., e_n\}, e_i \in E, v_i \in V, \forall i$, cumpliendo que:

$$\gamma(e_i) = \{v_{i-1}, v_i\}$$

Se dice que un camino es cerrado si el vértice final e inicial coinciden.

Recorridos y circuitos

Recorrido: Se dice que un camino es un recorrido cuando todos sus lados son distintos.

Circuito: Se dice que un camino es un circuito cuando es cerrado y es un recorrido.

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Grado
Sucesión gráfica

Grado

El **grado** de un vértice es el número de incidencias sobre él. Se denota por gr(v).

Sucesión gráfica

Grado

El **grado** de un vértice es el número de incidencias sobre él. Se denota por gr(v).

Sucesión gráfica

Una **sucesión gráfica** es una sucesión finita de numeros naturales que cumple que existe un grafo simple en el que los grados de sus vértices son los elementos de la sucesión.

Ejemplos

• 0,0,0

- 0,0,0
- 1,1

Ejemplos

- 0,0,0
- **1**, 1
- 1, 1, 1, 1

Ejemplos

- 0,0,0
- **●** 1, 1
- 1, 1, 1, 1
- 2, 2, 2

- 0,0,0
- 1, 1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2

- 0,0,0
- 1, 1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1

- 0,0,0
- 1, 1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1 **?**

- 0,0,0
- 1,1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1 **?**
- 5, 4, 3, 2, 2 **?**

- 0,0,0
- 1,1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1 **?**
- 5, 4, 3, 2, 2 **?**
- 5, 4, 4, 2, 2, 1 **?**

Ejemplos

- 0,0,0
- 1,1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1 **?**
- 5, 4, 3, 2, 2 **?**
- 5, 4, 4, 2, 2, 1 **?**

Condiciones necesarias

13 / 40

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018

Ejemplos

- 0,0,0
- 1, 1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1 **?**
- 5, 4, 3, 2, 2 **?**
- 5, 4, 4, 2, 2, 1 **?**

Condiciones necesarias

• La suma de los elementos de la serie ha de ser par.

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018

Ejemplos

- 0,0,0
- 1,1
- 1, 1, 1, 1
- 2, 2, 2
- 2, 2, 2, ..., 2
- 4, 3, 3, 2, 2, 1 **?**
- 5, 4, 3, 2, 2 **?**
- 5, 4, 4, 2, 2, 1 **?**

Condiciones necesarias

- La suma de los elementos de la serie ha de ser par.
- ullet El grado de todos los vértices ha de ser menor que |V|

Teorema de Havel-Hakimi

Teorema de Havel-Hakimi

Dado un grafo simple, existe otro grafo simple que tiene la misma sucesión gráfica. Además, este segundo tiene la propiedad de que el vértice de mayor grado es adyacente a los vértices de mayor grado y al suprimir los lados que lo hacen adyacente, el grafo resultante sigue teniendo esa propiedad.

Teorema de Havel-Hakimi

Dado un grafo simple, existe otro grafo simple que tiene la misma sucesión gráfica. Además, este segundo tiene la propiedad de que el vértice de mayor grado es adyacente a los vértices de mayor grado y al suprimir los lados que lo hacen adyacente, el grafo resultante sigue teniendo esa propiedad.

Algoritmo de demolición

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018

Teorema de Havel-Hakimi

Dado un grafo simple, existe otro grafo simple que tiene la misma sucesión gráfica. Además, este segundo tiene la propiedad de que el vértice de mayor grado es adyacente a los vértices de mayor grado y al suprimir los lados que lo hacen adyacente, el grafo resultante sigue teniendo esa propiedad.

Algoritmo de demolición

Dada una sucesión finita de números naturales, para saber si es gráfica:

- Se toma el vértice de mayor grado (k) y se reducen sus lados a 0.
- ② A los *k* vértices de mayor grado se les reduce una unidad.
- Se repiten los pasos anteriores hasta se conozca si la sucesión obtenida es o no gráfica. En cuyo caso, la sucesión inicial es gráfica si y sólo si la final lo es.

Algoritmo de reconstrucción

Algoritmo de reconstrucción

Tras aplicar el algoritmo de demolición, se itera por por la sucesiones obtenidas en sentido inverso reconstruyendo el grafo.

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Grafo conexo

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Un **camino de Euler** es un camino que incluye todos los lados del grafo una y sólo una vez.

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Un **camino de Euler** es un camino que incluye todos los lados del grafo una y sólo una vez.

Un circuito de Euler es un camino cerrado que incluye todos los lados del grafo una y sólo una vez.

Grafo conexo

Se dice que un grafo es conexo si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Un camino de Euler es un camino que incluye todos los lados del grafo una v sólo una vez.

Un circuito de Euler es un camino cerrado que incluye todos los lados del grafo una y sólo una vez.

Se dice que un grafo es euleriano o de Euler si admite un circuito de Euler.

Grafo conexo

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Un **camino de Euler** es un camino que incluye todos los lados del grafo una y sólo una vez.

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Un **camino de Euler** es un camino que incluye todos los lados del grafo una y sólo una vez.

Un circuito de Euler es un camino cerrado que incluye todos los lados del grafo una y sólo una vez.

Grafo conexo

Se dice que un grafo es **conexo** si para dos vértices dados hay un camino que los une.

Caminos y circuitos de Euler

Un **camino de Euler** es un camino que incluye todos los lados del grafo una y sólo una vez.

Un circuito de Euler es un camino cerrado que incluye todos los lados del grafo una y sólo una vez.

Se dice que un grafo es **euleriano** o de Euler si admite un circuito de Euler.

Proposición sobre caminos de Euler

Proposición sobre caminos de Euler

Un grafo conexo tiene un camino de Euler si y solamente si tiene cero o dos vértices de grado impar.

Proposición sobre caminos de Euler

Un grafo conexo tiene un camino de Euler si y solamente si tiene cero o dos vértices de grado impar.

Proposición sobre circuitos de Euler

Proposición sobre caminos de Euler

Un grafo conexo tiene un camino de Euler si y solamente si tiene cero o dos vértices de grado impar.

Proposición sobre circuitos de Euler

Si un grafo admite un circuito de Euler (es decir, es un grafo euleriano), todos sus vértices tienen grado par.

Ejemplos

Ejemplos

Camino de Euler: Todos.

Circuito de Euler: Sólo el segundo.

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Grafo bipartido

Se dice que un grafo es **bipartido** si el conjunto de vértices V se puede escribir como unión de dos subconjuntos no vacíos y disjuntos. Esto es:

$$V = V_1 \cup V_2$$
; $V_1, V_2 \neq \emptyset$; $V_1 \cap V_2 \neq \emptyset$

Y cuyos lados siempre inciden en conjuntos distintos.

Grafo bipartido

Se dice que un grafo es **bipartido** si el conjunto de vértices V se puede escribir como unión de dos subconjuntos no vacíos y disjuntos. Esto es:

$$V = V_1 \cup V_2$$
; $V_1, V_2 \neq \emptyset$; $V_1 \cap V_2 \neq \emptyset$

Y cuyos lados siempre inciden en conjuntos distintos.

Grafo bipartido completo

Grafo bipartido

Se dice que un grafo es **bipartido** si el conjunto de vértices V se puede escribir como unión de dos subconjuntos no vacíos y disjuntos. Esto es:

$$V = V_1 \cup V_2$$
; $V_1, V_2 \neq \emptyset$; $V_1 \cap V_2 \neq \emptyset$

Y cuyos lados siempre inciden en conjuntos distintos.

Grafo bipartido completo

Un grafo bipartido es **completo** si todo vértice $v \in V_1$ es adyacente a todo vértice $v' \in V_2$.

Grafo bipartido

Se dice que un grafo es **bipartido** si el conjunto de vértices V se puede escribir como unión de dos subconjuntos no vacíos y disjuntos. Esto es:

$$V = V_1 \cup V_2$$
; $V_1, V_2 \neq \emptyset$; $V_1 \cap V_2 \neq \emptyset$

Y cuyos lados siempre inciden en conjuntos distintos.

Grafo bipartido completo

Un grafo bipartido es **completo** si todo vértice $v \in V_1$ es adyacente a todo vértice $v' \in V_2$.

Proposición

Grafo bipartido

Se dice que un grafo es **bipartido** si el conjunto de vértices V se puede escribir como unión de dos subconjuntos no vacíos y disjuntos. Esto es:

$$V = V_1 \cup V_2$$
; $V_1, V_2 \neq \emptyset$; $V_1 \cap V_2 \neq \emptyset$

Y cuyos lados siempre inciden en conjuntos distintos.

Grafo bipartido completo

Un grafo bipartido es **completo** si todo vértice $v \in V_1$ es adyacente a todo vértice $v' \in V_2$.

Proposición

Un grafo conexo es bipartido si y sólo si todos sus ciclos son de longitud par.

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018 22 / 40

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Grafo plano

Grafo plano

Se dice que un grafo es **plano** si existen sendas aplicaciones $V \to \mathbb{R}^2$; $E \to CJ$ cumpliendo que las curvas de Jordan no son secantes.

Grafos planos l'

Grafo plano

Se dice que un grafo es **plano** si existen sendas aplicaciones $V \to \mathbb{R}^2$; $E \to CJ$ cumpliendo que las curvas de Jordan no son secantes.

Teorema de Euler

Grafo plano

Se dice que un grafo es **plano** si existen sendas aplicaciones $V \to \mathbb{R}^2$; $E \to CJ$ cumpliendo que las curvas de Jordan no son secantes.

Teorema de Euler

Sea G un grafo plano y conexo donde I es el número de lados, v el número de vértices y c el número de caras. Entonces:

$$v - I + c = 2$$

Contracción

Contracción

Una **contracción** es una operación que fusiona dos vértices adyacentes en uno, eliminando la arista que los une.

Contracción

Una **contracción** es una operación que fusiona dos vértices adyacentes en uno, eliminando la arista que los une.

Teorema de Kuratowski

Contracción

Una **contracción** es una operación que fusiona dos vértices adyacentes en uno, eliminando la arista que los une.

Teorema de Kuratowski

Un grafo es plano si y solamente si no se puede contraer a K_5 o $K_{3,3}$.

Índice

- Historia de la teoría de grafos
- 2 Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- 3 Árboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Definición de árbol

Definición de árbol

Caracterización de árbol

Definición de árbol

Caracterización de árbol

Proposición

Definición de árbol

Un árbol es un grafo acíclico y conexo.

Caracterización de árbol

Proposición

Definición de árbol

Un árbol es un grafo acíclico y conexo.

Caracterización de árbol

Sea G = (V, E) un grafo con |V| = n. Entonces son equivalentes:

- G es un árbol
- ② G es acíclico y tiene n-1 lados.
- G es conexo pero quitándolo una arista deja de serlo.
- Para dos vértices dados existe un único camino simple que los une.
- G es acíclico, pero sería cíclico al añadirle otra arista.

Proposición

Definición de árbol

Un árbol es un grafo acíclico y conexo.

Caracterización de árbol

Sea G = (V, E) un grafo con |V| = n. Entonces son equivalentes:

- G es un árbol
- ② G es acíclico y tiene n-1 lados.
- G es conexo pero quitándolo una arista deja de serlo.
- Para dos vértices dados existe un único camino simple que los une.
- G es acíclico, pero sería cíclico al añadirle otra arista.

Proposición

Todo árbol tiene al menos dos vértices de grado 1.

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Árbol generador

Árbol generador

Dado un grado conexo se llama **árbol generador** del grafo a un subgrafo de él que tiene todos los vértices y es un árbol.

Árbol generador

Dado un grado conexo se llama **árbol generador** del grafo a un subgrafo de él que tiene todos los vértices y es un árbol.

Estrategias para encontrar un árbol generador

Árbol generador

Dado un grado conexo se llama **árbol generador** del grafo a un subgrafo de él que tiene todos los vértices y es un árbol.

Estrategias para encontrar un árbol generador

- Building-up
- Cutting-down
- Prim

Utilidad del árbol generador

Utilidad del árbol generador

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Building-up

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Building-up

Realizamos n-1 iteraciones, elegiendo una arista en cada iteración sin que forme ningún ciclo y añadiéndola al conjunto de aristas.

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Building-up

Realizamos n-1 iteraciones, elegiendo una arista en cada iteración sin que forme ningún ciclo y añadiéndola al conjunto de aristas.

Cutting-down

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Building-up

Realizamos n-1 iteraciones, elegiendo una arista en cada iteración sin que forme ningún ciclo y añadiéndola al conjunto de aristas.

Cutting-down

Comezando con todas las aristas, realizamos l-n+1 iteraciones, eligiendo una arista que forme parte de un ciclo y eliminándola del conjunto de aristas.

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Building-up

Realizamos n-1 iteraciones, elegiendo una arista en cada iteración sin que forme ningún ciclo y añadiéndola al conjunto de aristas.

Cutting-down

Comezando con todas las aristas, realizamos l-n+1 iteraciones, eligiendo una arista que forme parte de un ciclo y eliminándola del conjunto de aristas.

Corolario

Notación

Sea n el número de vértices del grafo y l el número de aristas.

Building-up

Realizamos n-1 iteraciones, elegiendo una arista en cada iteración sin que forme ningún ciclo y añadiéndola al conjunto de aristas.

Cutting-down

Comezando con todas las aristas, realizamos l-n+1 iteraciones, eligiendo una arista que forme parte de un ciclo y eliminándola del conjunto de aristas.

Corolario

El segundo método es mejor cuando l > 2n - 2.

ロト 4回 ト 4 重 ト 4 重 ト 1 重 の 9 0

Algoritmo de Prim

Sea G = (V, E) el grafo de partida. Buscamos el árbol generador A = (V', E'). Partiendo de un vértice aleatorio $v \in V$, comenzamos con $V' = \{v\}$ y $E' = \emptyset$.

Se repite n-1 veces: buscamos la arista incidente en algún vértice de V', con menor peso y que no forme ciclo. La añadimos a E' y añadimos el nuevo vértice a V'.

34 / 40

José Antonio Álvarez Árboles y grafos 23 de febrero de 2018

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Árboles con raíz

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

36 / 40

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

• Hoja: vértices de grado uno que no son una raíz.

36 / 40

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

- Hoja: vértices de grado uno que no son una raíz.
- Nivel: distancia de la raíz al vértice.

36 / 40

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

- Hoja: vértices de grado uno que no son una raíz.
- Nivel: distancia de la raíz al vértice.
- Altura de un árbol: mayor nivel de sus nodos.

36 / 40

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

- **Hoja**: vértices de grado uno que no son una raíz.
- Nivel: distancia de la raíz al vértice.
- Altura de un árbol: mayor nivel de sus nodos.
- Altura de un nodo: altura del subárbol que toma dicho nodo como raíz.

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

- Hoja: vértices de grado uno que no son una raíz.
- Nivel: distancia de la raíz al vértice.
- Altura de un árbol: mayor nivel de sus nodos.
- Altura de un nodo: altura del subárbol que toma dicho nodo como raíz.
- Hijos de un nodo: nodos adyacentes de nivel mayor.

36 / 40

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

- Hoja: vértices de grado uno que no son una raíz.
- Nivel: distancia de la raíz al vértice.
- Altura de un árbol: mayor nivel de sus nodos.
- Altura de un nodo: altura del subárbol que toma dicho nodo como raíz.
- Hijos de un nodo: nodos adyacentes de nivel mayor.
- Descendientes de un nodo: él mismo, sus hijos y los descendientes de sus hijos.

Árboles con raíz

Un **árbol con raíz** es un árbol que tiene un nodo distinguido llamado raíz.

Terminología

- Hoja: vértices de grado uno que no son una raíz.
- Nivel: distancia de la raíz al vértice.
- Altura de un árbol: mayor nivel de sus nodos.
- Altura de un nodo: altura del subárbol que toma dicho nodo como raíz.
- Hijos de un nodo: nodos adyacentes de nivel mayor.
- **Descendientes** de un nodo: él mismo, sus hijos y los descendientes de sus hijos.
- Ariedad de un árbol: número máximo de hijos por nodo.

Índice

- Historia de la teoría de grafos
- ② Grafos
 - Definición y terminología
 - Caminos, recorridos y circuitos
 - Sucesión de grados
 - Grafos eulerianos
 - Grafos bipartidos
 - Grafos planos
- Arboles
 - Definición y caracterización
 - Árbol generador
 - Árboles con raíz
 - Recorridos en árboles

Recorridos

- Pre-order
- Post-order
- In-order
- Top-down
- Bottom-up.

Recorridos

- Pre-order
- Post-order
- In-order
- Top-down
- Bottom-up.

Pre-order

Recorridos

- Pre-order
- Post-order
- In-order
- Top-down
- Bottom-up.

Pre-order

Se visita la raíz y se recorren en pre-order los subárboles de sus hijos en rango ascendente (de izquierda a derecha).

39 / 40

Post-order

Post-order

Se visitan los hijos de la raíz en post-order y rango ascendente, y después la raíz.

Post-order

Se visitan los hijos de la raíz en post-order y rango ascendente, y después la raíz.

In-order

Post-order

Se visitan los hijos de la raíz en post-order y rango ascendente, y después la raíz.

In-order

Se visita un hijo, la raíz y el resto de sus hijos en rango ascendente.

Se suele utilizar en árboles binarios (de ariedad 2).

40 / 40

Top-down

Top-down

Se visitan en orden creciente de nivel y, a un mismo nivel, en orden ascendente.

Top-down

Se visitan en orden creciente de nivel y, a un mismo nivel, en orden ascendente.

Bottom-up

Top-down

Se visitan en orden creciente de nivel y, a un mismo nivel, en orden ascendente.

Bottom-up

Se visitan en orden creciente de altura. A misma altura, en orden creciente de profundidad y, a misma profundidad, orden ascendente.