

C interfaces to GALAHAD SHA

Jari Fowkes and Nick Gould STFC Rutherford Appleton Laboratory Thu Jun 22 2023

I GALAHAD C package sha	1
1.1 Introduction	1
1.1.1 Purpose	1
1.1.2 Authors	1
1.1.3 Originally released	1
2 File Index	3
2.1 File List	3
3 File Documentation	5
3.1 galahad_sha.h File Reference	5
3.1.1 Data Structure Documentation	5
3.1.1.1 struct sha_control_type	5
3.1.1.2 struct sha_inform_type	6
3.1.2 Function Documentation	6
3.1.2.1 sha_initialize()	6
3.1.2.2 sha_information()	7
3.1.2.3 sha_terminate()	7

Chapter 1

GALAHAD C package sha

1.1 Introduction

1.1.1 Purpose

Find an approximation to a sparse Hessian using componentwise secant approximation.

Currently, only the control and inform parameters are exposed; these are provided and used by other GALAHAD packages with C interfaces.

1.1.2 Authors

N. I. M. Gould, STFC-Rutherford Appleton Laboratory, England.

C interface, additionally J. Fowkes, STFC-Rutherford Appleton Laboratory.

Julia interface, additionally A. Montoison and D. Orban, Polytechnique Montréal.

1.1.3 Originally released

April 2013, C interface January 2022.

Chapter 2

File Index

2 1	Fi	le	li	et
Z . I	ГΙ	ıe	L	31

Here is a list of all files with brief descriptions:	
galahad_sha.h	 5

4 File Index

Chapter 3

File Documentation

3.1 galahad_sha.h File Reference

```
#include <stdbool.h>
#include <stdint.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
```

Data Structures

- struct sha_control_type
- struct sha_inform_type

Functions

- void sha_initialize (void **data, struct sha_control_type *control, int *status)
- void sha_information (void **data, struct sha_inform_type *inform, int *status)
- void sha_terminate (void **data, struct sha_control_type *control, struct sha_inform_type *inform)

3.1.1 Data Structure Documentation

3.1.1.1 struct sha_control_type

control derived type as a C struct

Data Fields

bool	f_indexing	use C or Fortran sparse matrix indexing
int	error	error and warning diagnostics occur on stream error
int	out	general output occurs on stream out
int	print_level	the level of output required. $<=0$ gives no output, $=1$ gives a one-line summary for every iteration, $=2$ gives a summary of the inner iteration for each iteration, $>=3$ gives increasingly verbose (debugging) output

File Documentation

Data Fields

int	approximation_algorithm	which approximation algorithm should be used?
		0 : unsymmetric (alg 2.1 in paper)
		• 1 : symmetric (alg 2.2 in paper)
		2 : composite (alg 2.3 in paper)
		• 3 : composite 2 (alg 2.2/3 in paper)
int	dense_linear_solver	which dense linear equation solver should be used?
		1 : Gaussian elimination
		2 : QR factorization
		3 : singular-value decomposition
		4 : singular-value decomposition with divide-and-conquer
int	max_sparse_degree	the maximum sparse degree if the combined version is used
int	extra_differences	if available use an addition extra_differences differences
bool	space_critical	if space is critical, ensure allocated arrays are no bigger than needed
bool	deallocate_error_fatal	exit if any deallocation fails
char	prefix[31]	all output lines will be prefixed by .prefix(2:LEN(TRIM(.prefix))-1) where .prefix contains the required string enclosed in quotes, e.g. "string" or 'string'

3.1.1.2 struct sha_inform_type

inform derived type as a C struct

Data Fields

int	status	return status. See SHA_solve for details
int	alloc_status	the status of the last attempted allocation/deallocation.
int	max_degree	the maximum degree in the adgacency graph.
int	differences_needed	the number of differences that will be needed.
int	max_reduced_degree	the maximum reduced degree in the adgacency graph.
int	bad_row	a failure occured when forming the bad_row-th row (0 = no failure).
char	bad_alloc[81]	the name of the array for which an allocation/deallocation error occurred.

3.1.2 Function Documentation

3.1.2.1 sha_initialize()

```
void sha_initialize (
     void ** data,
```

```
struct sha_control_type * control,
int * status )
```

Set default control values and initialize private data

Parameters

in,out	data	holds private internal data
out	control	is a struct containing control information (see sha_control_type)
out	status	is a scalar variable of type int, that gives the exit status from the package. Possible values are (currently):
		0. The initialization was succesful.

3.1.2.2 sha_information()

Provides output information

Parameters

in,out	data	holds private internal data
out	inform	is a struct containing output information (see sha_inform_type)
out	status	is a scalar variable of type int, that gives the exit status from the package. Possible values are (currently):
		0. The values were recorded succesfully

3.1.2.3 sha_terminate()

Deallocate all internal private storage

Parameters

in,out	data	holds private internal data
out	control	is a struct containing control information (see sha_control_type)
out	inform	is a struct containing output information (see sha_inform_type)

C interfaces to GALAHAD SHA GALAHAD 4.0

8 File Documentation