L11. *ggplot* (5)

More functionality

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

- 1. Labels
- 2 II. Legend
- III. Scale
- 4 IV. Theme

Overview

- Labels
- 2 Legend
- Scale: Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.
- Theme

Section 1

I. Labels

- 각 Aesthetics(x,y,color,size…)에 대해 label을 넣음
- 전체 그래픽(Title, Subtitle, Caption)에 대해 label을 넣음
- annotate() 함수를 이용해 임의의 geometric object를 추가

```
fig <- ggplot(mpg, aes(cty, hwy, color=drv)) + geom_point() +
    labs(x = "X axis label",
        y = "Y axis label",
        color = "Driving wheel",
        title = "A title",
        subtitle = "A subtitle",
        caption = "A caption (source)") +
    annotate(geom = "label", x = 15, y = 22, label = "My car!")</pre>
```


Section 2

II. Legend

theme(legend.position=): move legends around

A caption (source)

guides(AES = "none"): remove the legend of the AES

Customizing legend labels

- scale AES type()
 - name=<legend name>
 - ▶ label=<each label>
- AES
- type
- name
- label

Section 3

III. Scale

- 데이터 값을 aesthetic에 매핑하는 역할을 함
- Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.

```
fig <- ggplot(mpg, aes(x=f1, fill = f1)) + geom_bar() +
    scale_fill_discrete(
    name = "Fuel Type",
    labels = c("natural gas", "diesel", "ethanol", "premium", "regular")) +
    scale_x_discrete(
    labels = c("natural gas", "diesel", "ethanol", "premium", "regular"))</pre>
```



```
Scales map data values to the visual values of an
 aesthetic. To change a mapping, add a new scale.
         (n <- d + geom_bar(aes(fill = fl)))
                            prepackaged
                   aesthetic
           + scale fill manual(
          values = c("skyblue", "royalblue", "blue", "navy"),
          limits = c("d", "e", "p", "r"), breaks =c("d", "e", "p", "r"),
          name = "fuel", labels = c("D", "E", "P", "R"))
fig1 <- ggplot(mpg, aes(x=drv, fill=drv)) +</pre>
  geom bar()
fig2 <- fig1 +
  scale fill manual(
     values = c("royalblue", "skyblue"),
     limits = c("f", "r"), # you may filter
     breaks = c("f", "r"),
     name = "FWD vs RWD",
    labels = c("Forward", "Rear"))
```


fig2에서 '4'는 왜 안 없어지고 빈칸일까?

General Purpose scales (use with most aesthetics)

- fig2에서 '4'는 왜 안 없어지고 빈칸일까?
- Aesthetic x에서 limits를 걸어주면 된다!

- scale_*_continuous()
 - map cont' values to visual ones
- scale_*_discrete()
 - map discrete values to visual ones
- scale_*_identity()
 - use data values as visual ones
- scale * manual(values = c())
 - map discrete values to manually chosen visual ones
- scale_*_date(date_labels = "%m/%d", date_breaks = "2 weeks")
 - treat data values as dates.
- scale * datetime()
 - treat data x values as date times.
 - Use same arguments as scale_x_date().
 - ► See ?strptime for label formats.

Dataset *gapminder*

- Excerpt of the Gapminder data on
- life expectancy, GDP per capita, and population by country.

```
set.seed(123) # fix random seed
library(gapminder)
gapminder_2007 <- gapminder %>%
  filter(year==2007) %>%
  select(year, country, continent, gdpPercap, lifeExp, pop)
gapminder_2007_table <- gapminder_2007 %>% sample_n(3)
```

Rmarkdown tabular – a momentary digression

```
gapminder 2007 table
## # A tibble: 3 x 6
##
     year country
                          continent gdpPercap lifeExp
                                                         pop
    <int> <fct>
##
                          <fct>
                                       <dbl> <dbl>
                                                     <int>
     2007 Equatorial Guinea Africa
                                      12154. 51.6
                                                      551201
                                   9787. 74.0 10150265
     2007 Serbia
## 2
                          Europe
     2007 Tceland
                          Furone
                                      36181. 81.8
                                                      301931
kable() for quick tabular
```

library(kableExtra)

kable(gapminder 2007 table)

year	country	continent	gdpPercap	lifeExp	pop
2007	Equatorial Guinea	Africa	12154.090	51.579	551201
2007	Equatorial Guillea	Affica	12134.090	31.379	331201
2007	Serbia	Europe	9786.535	74.002	10150265
2007	Iceland	Europe	36180.789	81.757	301931

xtable() for generating latex source

library(xtable)

```
xtable(gapminder 2007 table)
## % latex table generated in R 3.5.3 by xtable 1.8-4 package
## % Sat Apr 11 13:44:57 2020
## \begin{table}[ht]
## \centering
  \begin{tabular}{rrllrrr}
##
     \hline
##
    & year & country & continent & gdpPercap & lifeExp & pop \\
##
     \hline
  1 & 2007 & Equatorial Guinea & Africa & 12154.09 & 51.58 & 551201 \\
##
     2 & 2007 & Serbia & Europe & 9786.53 & 74.00 & 10150265 \\
##
     3 & 2007 & Iceland & Europe & 36180.79 & 81.76 & 301931 \\
     \hline
##
  \end{tabular}
## \end{table}
                                                                   lifeExp
                                       continent
                                                     gdpPercap
                 country
                                                                                    pop
                 Equatorial Guinea
                                        Africa
    1
         2007
                                                      12154.09
                                                                    51.58
                                                                                551201
                 Serbia
         2007
                                        Europe
                                                       9786.53
                                                                    74.00
                                                                              10150265
    3
         2007
                 Iceland
                                        Europe
                                                      36180.79
                                                                    81.76
                                                                                301931
```

X and Y location scales (use with x or y aesthetics)

- scale x log10(): Plot x on log10 scale
- scale x reverse(): Reverse direction of x axis
- scale x sqrt(): Plot x on square root scale

scale x log10()

- x 축을 log(x)로 변환하여
- exponential growth를 visualize 한다.

오래 살고 싶으면 어떻게 해야하는가??

```
fig +
  scale x log10() +
  geom_smooth(aes(group=continent, color=continent), method="lm")
   80 -
                                                                                                                     continent
                                                                                                                         Africa
                                                                                                                         Americas
   70 -
                                                                                                                         Asia
                                                                                                                         Europe
                                                                                                                         Oceania
lifeExp
60 -
                                                                                                                         2.50e+08
                                                                                                                         5.00e+08
                                                                                                                          7.50e+08
   50 -
                                                                                                                          1.00e+09
                                                                                                                          1.25e+09
   40 -
                                 1000
                                                      3000
                                                                             10000
           300
                                                                                                 30000
```

qdpPercap

Color and fill scales (Discrete)

For more palette choices.

RColorBrewer::display.brewer.all()

Color and fill scales (Continuous)

scale_fill_gradient()

scale_fill_gradient2()

- SEE Also:
 - heat.colors()
 - terrain.colors()
 - cm.colors()
 - RColorBrewer::brewer.pal()

Shape and size scales

Shape and size scales

```
p <- e + geom_point(aes(shape = fl, size = cyl))
```


- p + scale_shape() + scale_size()
- p + scale_shape_manual(values = c(3:7))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

scale_shape() + scale_size() are
implicitly applied.

scale_shape() overriden

scale_size() overriden

Section 4

IV. Theme

Theme

- A powerful way to customize the non-data components of your plots
- i.e. titles, labels, fonts, background, gridlines, and legends.
- Allows plots to have a consistent customized look.

theme_STYLE() - Broadly applied

theme gray()

• Grey background (default theme)

theme bw()

• White background with grid lines

theme_dark()

Dark for contrast

theme_minimal()

Minimal themes

theme_void()

Empty theme

```
fig + theme_void()
```


theme_classic()

theme_light()

Inheritance

- Theme elements inherit properties from other theme elements heirarchically.
 - For example, axis.title.x.bottom inherits from axis.title.x which inherits from axis.title, which in turn inherits from text.
 - ▶ All text elements inherit directly or indirectly from text;
 - all lines inherit from line, and
 - all rectangular objects inherit from rect.
- This means that you can modify the appearance of multiple elements by setting a single high–level component.

Arguments

https://github.com/aceMKSim/teaching/blob/master/Data%20 Visualization/MISC/them.e.md

"Tantum videmus quantum scimus."

[1] "Tantum videmus quantum scimus."