### P8160 - Project 3

P8160 Group Project 3 Baysian modeling of hurricane trajectories

Jingchen Chai, Yi Huang, Zining Qi, Ziyi Wang, Ruihan Zhang

Columbia University

2023-05-01

#### **Content**

- Introduction
- 4 Hierarchical Bayesian Model
- EDA
- Results
- Discussion and Conclusion

#### Introduction

- Hurricanes cause fatalities and property damage
- there is a growing need to accurately predict hurricane behavior, including location and speed
- This project aims to forecast wind speeds by modeling hurricane trajectories using a Hierarchical Bayesian Model.

#### **Dataset**

- Hurrican703 dataset: 22038 observations × 8 variables
  - 702 hurricanes in the North Atlantic area since 1950

## **EDA-Count of Hurricanes in each Month**



### **EDA-Count of Hurricanes in each Year**



# Show hurricance tracks by month

Atlantic named Windstorm Trajectories by Month (1950 - 2013)



# **Bayesian Model**

The suggested Bayesian model is  $Y_i(t+6) = \beta_{0,i} + \beta_{1,i} Y_i(t) + \beta_{2,i} \Delta_{i,1}(t) + \beta_{3,i} \Delta_{i,2}(t) + \beta_{4,i} \Delta_{i,3}(t) + X_i \gamma + \epsilon_i(t)$ 

- where  $Y_i(t)$  the wind speed at time t (i.e. 6 hours earlier),  $\Delta_{i,1}(t)$ ,  $\Delta_{i,2}(t)$  and  $\Delta_{i,3}(t)$  are the changes of latitude, longitude and wind speed between t and t-6, and  $\epsilon_{i,t}$  follows a normal distributions with mean zero and variance  $\sigma^2$ , independent across t.
- $\beta_i=(\beta_{0,i},\beta_{1,i},...,\beta_{5,i})$ , we assume that  $\beta_i\sim N(\mu,\Sigma)$ , where d is dimension of  $\beta_i$ .

#### **Priors**

$$P(\mu) = \frac{1}{\sqrt{2\pi}|V|^{\frac{1}{2}}} \exp\{-\frac{1}{2}\mu^\top V^{-1}\mu\} \propto |V|^{-\frac{1}{2}} \exp\{-\frac{1}{2}\mu^\top V^{-1}\mu\}$$

where V is a variance-covariance matrix

$$P(\Sigma) \propto |\Sigma|^{-\frac{(\nu+d+1)}{2}} \exp(-\frac{1}{2} tr(S\Sigma^{-1}))$$

$$P(\gamma) \propto exp(-\frac{\gamma^2}{2*(0.05)^2}) = e^{-200\gamma^2}$$

$$P(\sigma) = \frac{2\alpha}{\pi + \alpha^2} \propto \frac{1}{\sigma^2 + \alpha^2}$$

#### **Posterior**

Let  $\mathbf{B} = (\beta_1^\top,...,\beta_n^\top)^\top$ , derive the posterior distribution of the parameters  $\Theta = (\mathbf{B}^\top,\mu^\top,\sigma^2,\Sigma,\gamma)$ .

Let

$$\boldsymbol{Z}_{i}(t)\boldsymbol{\beta}_{i}^{\top} = \boldsymbol{\beta}_{0,i} + \boldsymbol{\beta}_{1,i}\boldsymbol{Y}_{i}(t) + \boldsymbol{\beta}_{2,i}\boldsymbol{\Delta}_{i,1}(t) + \boldsymbol{\beta}_{3,i}\boldsymbol{\Delta}_{i,2}(t) + \boldsymbol{\beta}_{4,i}\boldsymbol{\Delta}_{i,3}(t) + \boldsymbol{X}_{i}\boldsymbol{\gamma} + \boldsymbol{\epsilon}_{i}(t)$$

We can find that

$$Y_i \sim MVN(Z_i\beta_i, \sigma^2 I)$$

The likelihood for our data is

$$f(Y\mid B,\mu,\sigma^2,\Sigma,\gamma) =$$

$$\begin{split} \prod_{i=1}^{N} f(Y_i|B,\mu,\Sigma,\sigma^2) &= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2}(y_i - Z_i\beta_i - X_i\gamma_i)^\top (\sigma^2 I)^{-1}(y_i - Z_i\beta_i - X_i\gamma_i)\} \\ &\propto &(2\pi\sigma^2)^{-\frac{N}{2}} \prod_{i=1}^{n} \exp\{-\frac{1}{2}(Y_i - Z_i\beta_i - X_i\gamma_i)^\top (\sigma^2 I)^{-1}(Y_i - Z_i\beta_i - X_i\gamma_i)\} \end{split}$$

where N is the total number of hurricanes. ## Joint Posterior

#### **Conditional Distributions**

Generate  $B_t$  from  $f(B_t, \sigma_{t-1}, \mu_{t-1}, \Sigma_{t-1}^{-1})$ 

$$\begin{split} f(B^\top|\sigma^2,\mu,\Sigma) &\propto \prod_{i=1}^n \exp\{-\frac{(Y_j-Z_j\beta_j-X_j\gamma)^\top(Y_jZ_j\beta_j-X_j\gamma)}{2\sigma^2} - \frac{(\beta_j-\mu)^\top\Sigma^{-1}(\beta_j-\mu)}{2}\}\\ &\propto \prod_{i=1}^n \exp(-\frac{1}{2}(\beta_j^\top(\frac{Z_j^\top Z_j}{\sigma^2}+\Sigma^{-1})\beta_j-2(\frac{Y_j^\top Z_j-X_j^\top Z_j\gamma}{\sigma^2}+\mu^\top\Sigma^{-1})\beta_j))\\ &\propto \prod_{i=1}^n \exp\{-\frac{1}{2}(\beta_j-(\frac{Z_j^\top Z_j}{\sigma^2}+\Sigma^{-1})(\beta_j-(\frac{Z_j^\top Z_j}{\sigma^2}+\Sigma^{-1})^{-1}(\frac{Y_j^\top Z_j-X_j^\top Z_j\gamma}{\sigma^2}+\Sigma^{-1})^{-1}(\frac{Y_j^\top Z_j-X$$

$$MVN_d((\frac{Z_j^\top Z_j}{\sigma^2} + \Sigma^{-1})^{-1}(\frac{Y_j^\top Z_j^\top - X_j^\top Z_j\gamma}{\sigma^2} + \mu^\top \Sigma^{-1})^\top, \frac{Z_j^\top Z_j}{\sigma^2} + \Sigma^{-1})^{-1})$$

### **MCMC Algorithm**

$$\beta_i \sim MVN_d(N^{-1}M^\top,N^{-1})$$
 where  $N = \frac{Z_j^\top Z_j}{\sigma^2} + \Sigma^{-1}$  and  $M = \frac{Y_j^\top Z_j^\top - X_j^\top Z_j \gamma}{\sigma^2} + \mu^\top \Sigma^{-1}$  
$$\mu_t \sim MVN_d(N^{-1}M^\top,N^{-1})$$

where  $N=NA+\frac{1}{v}$  and  $M=\sum_{i}^{n}\beta_{j}A$ , and v is the degree of freedom.

$$\Sigma \sim w^{-1} (S + \sum_{i=1}^{n} (\beta_i - \mu)(\beta_i - \mu)^{\top}, n + v)$$

$$\gamma \sim MVN(N^{-1}M^\top,N^{-1})$$

where 
$$N=\frac{X_j^\top X_j}{\sigma^2}+400I$$
 and  $M=\sum_i^n Y_j^\top X_j - \sum_i^n X_j Z_j \beta_j$ 

## MCMC Algorithm - Metropolis-Hastings

#### \*Target distribution is

$$\begin{split} \pi(\sigma|Y, \mathbf{B}^\top, \mu^\top, \Sigma, \gamma) &\propto \frac{1}{\sigma^N(\sigma^2 + 10^2)} \\ &\times \prod_{i=1}^n \exp\big\{ -\frac{1}{2(\sigma^2 I)} (\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i)^\top (\boldsymbol{Y}_i - \boldsymbol{Z}_i \boldsymbol{\beta}_i - \boldsymbol{X}_i \boldsymbol{\gamma}_i) \big\} \end{split}$$

- Choose a random walk with step size distributed as a uniform random variable
- The conditional density is  $q(x|y) = \frac{1}{2a} 1_{[y-a,y+a]}(x)$
- Proposed q is symmetric, thus the acceptance rate is only depend on  $P(\sigma|B,\mu,A,\gamma,Y)$

### MCMC Algorithm - Metropolis-Hastings

- The acceptance rate  $\alpha_{XY} = \min(1, \frac{P(X|B,\mu,A,\gamma,Y)}{P(Y|B,\mu,A,\gamma,Y)})$
- $\bullet \ \, \text{Accept X if} \,\, U < \alpha_{XY}$
- Iterate over 1000 times
- New  $\sigma$  is the mean of last 200 values in the chain

### MCMC Algorithm - Gibbs Sampling

We apply a MCMC algorithm consisting of Gibb Samping and Metropolis-Hastings steps.

Parameters are updated component-wise for each k=1,...,N,N=5000:

- Generate  $\beta_{ij}, j=0,1,2,3,4$  for  $i^{th}$  hurricane from  $\pi(\mathbf{B}|Y,\mu_{k-1}^{\intercal},\sigma_{k-1},\Sigma_{k-1},\gamma_{k-1})$
- Generate  $\mu_j, j=0,1,2,3,4$  from  $\pi(\mu|Y,\mathbf{B}_k,\sigma_{k-1},\Sigma_{k-1},\gamma_{k-1})$
- ullet Generate  $\sigma_k$  from the Metropolis-Hastings steps
- $\bullet$  Generate  $\Sigma_k$  from  $\pi(\Sigma|Y,\mathbf{B}_k,\mu_k,\sigma_k,\gamma_{k-1})$
- $\bullet$  Generate  $\gamma_k$  from  $\pi(\gamma|Y,\mathbf{B}_k,\mu_k,\sigma_k,\Sigma_k)$

### MCMC Algorithm - Initial Values

We first fit a Generalize Linear Mixed Models(GLMM)

- ullet  $eta_i^{(0)}$ : The random effect for  $i^{th}$  hurricane from GLMM as start values
- ullet  $\mu^{(0)}$ : Average over  $eta_i^{(0)}$
- $\bullet$   $\sigma^{(0)}$ : Residuals from the GLMM
- ullet  $\Sigma^{(0)}$ : Variance-Covariance matrix of  $eta_i^{(0)}$
- ullet  $\gamma^{(0)}$ : Fixed effects from the GLMM

#### **MCMC** Results - Details

- 5000 iterations
- Estimates and inferences based on 5000 MCMC samples

#### **MCMC** Results - Beta Plots 1



-Trace plots of variance parameters, based on 5000 MCMC sample.

#### **MCMC** Results - Beta Plots 2



-Trace plots of variance parameters, based on 5000 MCMC sample.

### MCMC Results - sigma<sup>2</sup> Plots 1



## MCMC Results - sigma<sup>2</sup> Plots 2





#### MCMC Results - Gamma Plots 1



#### **MCMC** Results - Gamma Plots 2



## MCMC Results - Sigma Inverse Plots 1



### MCMC Results - Sigma Inverse Plots 2

