Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky

Semestrální práce č. 1

OPERAČNÍ ANALÝZA ZKRATKA KATEDRY/ZKRATKA PŘEDMĚTU (KKY/OA)

Obsah

1	Zadání					
2	Vypracování 2.1 Údaje ze zadání	5				
	· , , p · · · · · p · · · · · · · · · ·	5				
	2.3 Získaná kompletní tabulka	6				
	2.5 Výpočet pravděpodobnosti špatného rozhodnutí					
3	3 Závěr					
A	Zdrojový kód z Matlabu					

1 Zadání

Zápočtová práce 1

Jméno a přijmení: Jan Fakulta, ročník: FAV4

Rozhodování podle maximální aposteriorní pravděpodobnosti

Zadaní:

Uvažujeme diskrétní systém v čase, mající 4 stavové hodnoty x_1, x_2, x_3 a x_4 . Z dlouhodobějšího pozorování víme, že pravděpodobnost výskytu jednotlivých hodnot stavové proměnné X jsou známé a dány hodnotami $P(x_1) = \mathbf{0.34}, P(x_2) = \mathbf{0.21}, P(x_3) = \mathbf{0.05}$ a $P(x_4) = \mathbf{0.40}$. Na systému je možno pozorovat binární výstup Y s hodnotami 0 či I. Předpokládáme, že v průběhu pozorování se v okamžicích $t_0, ..., t_{k-1}, t_k, ...$ hodnota stavové proměnné X nemění. Tedy, že

$$x(t_{k+1}) = x(t_k) = x(t_0) = x$$

Předpokládáme dále, že hodnoty y výstupní proměnné Y jsou v jednotlivých okamžicích t_k závislé jen na hodnotě stavové proměnné X systému, nikoli na minulých hodnotách výstupu $y(t_k)$. Platí

$$P(y(t_k)=0 \mid x, y(t_{k-1}), \dots, y(t_0))=P(y(t_k) \mid x) \quad \forall k$$

Považujeme tyto pravděpodobnosti za známé, přičemž $P(y(t_k)=0|X=x_k)=**,$ pro k=1,2,3,4 viz tabulka

$p(y(t_k = 0 \mid x_1))$	$p(y(t_k = 0 \mid x_2))$	$p(y(t_k=0\mid x_3))$	$p(y(t_k = 0 \mid x_4))$
0.15	0.34	0.28	0.23

Úkoly

- 1. Metodou maximální aposteriorní pravděpodobnosti (Bayssovský přístup) určete optimální rozhodovací pravidlo pro odhad neznámé hodnoty x stavové proměnné X systému ze tří po sobě jdoucích pozorování hodnot $y(t_0)$, $y(t_1)$ a $y(t_2)$ výstupní proměnné Y.
- 2. Stanovte pravděpodobnost správného a chybného rozhodnutí.}

Pomůcky:

Platí

$$P(y(t_0), y(t_1), y(t_2) | x) =$$

$$= P(y(t_2) | y(t_1), y(t_0), x) P(y(t_1) | y(t_0), x) P(y(t_0) | x)$$

$$P(y(t_0), y(t_1), y(t_2) | x) = P(y(t_2) | x) P(y(t_1) | x) P(y(t_0) | x)$$

Zadání vygenerované systémem "OA2000"

2 Vypracování

Semestrální práce byla řešena v programovém prostředí Matlab.

2.1 Údaje ze zadání

Známé hodnoty pravděpodobností (ze zadání):

$$P(X_1) = 0.34$$

$$P(X_2) = 0,21$$

$$P(X_3) = 0.05$$

$$P(X_4) = 0,40$$

Dále je ze zadání známa výstupní relace, která může být zapsána pomocí následujících podmíněných pravděpodobností pro jednotlivé stavové hodnoty X_1, X_2, X_3, X_4 :

$$X_1: P(0|X_1) = 0.15; P(1|X_1) = 0.85$$

$$X_2: P(0|X_2) = 0.34; P(1|X_1) = 0.66$$

$$X_3: P(0|X_3) = 0.28; P(1|X_1) = 0.72$$

$$X_4: P(0|X_4) = 0.23; P(1|X_1) = 0.77$$

Jelikož naším cílem je pozorování tří po sobě jdoucích hodnot $y(t_0), y(t_1)$ $y(t_2)$, pak na výstupu Y pozorujeme následující hodnoty: 111, 110, 101, 011, 100, 010, 001, 000.

2.2 Výpočet pravděpodobností

Pro každý výstup Y byla pomocí Bayesova vztahu vypočtena pravděpodobnost, že systém byl ve stavu X_i .

Pro výpočet jednotlivých pravděpodobností byl použit Bayesův vzorec v tomto tvaru:

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i} P(A|B_i)P(B_i)} = \frac{P(A|B_k)P(B_k)}{P(A)}$$
(1)

Po dosazení do vzorce 1 byla nejprve vypočtena hodnota podmíněné pravděpodobnosti $P(X_1|111)$:

$$P(X_1|111) = \frac{P(111|X_1)P(X_1)}{P(111)} = \frac{P(111|X_1)P(X_1)}{\sum_{i=1}^4 P(X_i)P(111|X_i)} = \frac{0,85^3 \cdot 0,34}{0,34 \cdot 0,85^3 + 0,21 \cdot 0,66^3 + 0,05 \cdot 0,72^3 + 0,40 \cdot 0,77^3} = \frac{0,4438}{100}$$

Jako příklad uvedu ještě, jak by vypadal výpočet pravděpodobnosti např. $P(X_1|101)$

$$\begin{split} \bar{P}(X_1|101) &= \frac{P(101|X_1)P(X_1)}{P(101)} = \frac{P(101|X_1)P(X_1)}{\sum_{i=1}^4 P(X_i)P(101|X_i)} = \\ &= \frac{0,85^2 \cdot 0,15 \cdot 0,34}{0,34 \cdot 0,85^2 \cdot 0,15 + 0,21 \cdot 0,66^2 \cdot 0,34 + 0,05 \cdot 0,72^2 \cdot 0,28 + 0,40 \cdot 0,77^2 \cdot 0,23} = \\ &= 0.2840 \end{split}$$

Obdobně bylo postupováno i u výpočtů ostatních pravděpodobností.

2.3 Získaná kompletní tabulka

Jednotlivé získané pravděpodobnosti byly zaneseny do tabulky:

Y	$P(X_l Y)$	$P(X_2 Y)$	$P(X_3 Y)$	P(X4 Y)
111	0,4438	0,1283	0,0397	0,3882
110	0,284	0,2397	0,0559	0,4204
101	0,284	0,2397	0,0559	0,4204
011	0,284	0,2397	0,0559	0,4204
100	0,1562	0,3848	0,0678	0,3913
010	0,1562	0,3848	0,0678	0,3913
001	0,1562	0,3848	0,0678	0,3913
000	0,0747	0,5372	0,0714	0,3167

Tučně zvýrazněné hodnoty reprezentují hodnoty s největší aposteriorní pravděpodobností pro daný výstup.

2.4 Výpočet pravděpodobnosti správného rozhodnutí

Pravděpodobnost správného rozhodnutí byla vypočtena na základě tohoto vzorce:

$$P_{sprav} = P(111) \cdot P(X_1|111) + 3 \cdot P(110) \cdot P(X_4|110) + 3 \cdot P(100) \cdot P(X_4|100) + P(000) \cdot P(X_2|000) = 0,4273$$

2.5 Výpočet pravděpodobnosti špatného rozhodnutí

Pravděpodobnost špatného rozhodnutí byla vypočtena následovně:

$$P_{spat} = 1 - P_{sprav} = 1 - 0,4273 = 0,5727$$

3 Závěr

Optimální rozhodovací pravidlo pro odhad neznámé hodnoty x stavové proměnné X, získané pomocí metody aposteriorní pravděpodobnosti je tedy následující:

 $111 \to X_1$ $110 \to X_4$

 $101 \rightarrow X_4$

 $011 \rightarrow X_4$

 $100 \rightarrow X_4$

 $010 \rightarrow X_4$

 $001 \rightarrow X_4$

 $000 \rightarrow X_2$

Pravděpodobnost správného rozhodnutí je rovna 0,4273 a pravděpodobnost špatného rozhodnutí je rovna 0,5727.

A Zdrojový kód z Matlabu

```
clc
         clear all
         close all
        % Ukol 1
       M Pravdepodobnosti vyskytu jednotlivych hodnot stavove promenne X
        pX = [0.34 \ 0.21 \ 0.05 \ 0.40];
        % Vystup je dan nasledujicimi stochastickymi zavislostmi
      Px1 0 = 0.15;
Px2_0 = 0.34;
      Px3_0 = 0.28;
     Px4_0 = 0.23;
       Px1_1 = 1 - Px1_0;
      Px2_1 = 1 - Px2_0;
      Px3_1 = 1 - Px3_0;
       Px4_1 = 1 - Px4_0;
        PX 0 = [Px1 \ 0 \ Px2 \ 0 \ Px3 \ 0 \ Px4 \ 0]; \% P(0|x \ 1, ..., x \ 4)
        PX_1 = [Px1_1 Px2_1 Px3_1 Px4_1]; \% P(1|x_1,...,x_4)
        % Na vystupu Y pozorujeme tyto hodnoty:
        % 111, 110, 101, 011, 100, 010, 001, 000
^{24}
25
        W Bayesovy vztahy pro vypocet pravdepodobnosti, ze system byl ve stavu
                    Xi
27
        % 111
        veta\_uplna\_ppst\_1 = pX(1) * (PX\_1(1)^3) + pX(2) * (PX\_1(2)^3) + pX(3) * (PX\_1(2)^3) + 
                    PX_1(3)^3 + pX(4) * (PX_1(4)^3);
        P1 = (pX(1) * (PX_1(1)^3)) / veta_uplna_ppst_1;
        P2 = (pX(2) * (PX_1(2)^3)) / veta_uplna_ppst_1;
        P3 = (pX(3) * (PX_1(3)^3)) / veta_uplna_ppst_1;
        P4 = (pX(4) * (PX_1(4)^3)) / veta_uplna_ppst_1;
        % 110, 101, 011 -> pro tyto tri kombinace dostanu stejny vysledek
        veta\_uplna\_ppst\_2 = (pX(1) * (PX\_1(1)^2 * PX\_0(1))) + (pX(2) * (PX\_1(2)^2)
                        * PX_0(2)) + (pX(3) * (PX_1(3)^2 * PX_0(3)) + (pX(4) * (PX_1(4)^2 *
                        PX 0(4));
        P5 = (pX(1) * (PX_1(1)^2 * PX_0(1))) / veta_uplna_ppst_2;
        P6 = (pX(2) * (PX_1(2)^2 * PX_0(2))) / veta\_uplna\_ppst\_2;
       P7 = (pX(3) * (PX_1(3)^2 * PX_0(3))) / veta_uplna_ppst_2;
        P8 = (pX(4) * (PX_1(4)^2 * PX_0(4))) / veta_uplna_ppst_2;
43 % 100, 010, 001 -> pro tyto tri kombinace dostanu stejny vysledek
        veta uplna ppst 3 = (pX(1) * (PX 1(1) * PX 0(1)^2)) + (pX(2) * (PX 1(2) *
                       PX_0(2)^2) + (pX(3) * (PX_1(3) * PX_0(3)^2)) + (pX(4) * (PX_1(4) * PX_1(4) * PX_1(4)
                    PX 0(4)^2);
_{45} P9 = (pX(1) * (PX_1(1) * PX_0(1)^2)) / veta_uplna_ppst_3;
```

```
P10 = (pX(2) * (PX_1(2) * PX_0(2)^2)) / veta_uplna_ppst_3;
      P11 = (pX(3) * (PX_1(3) * PX_0(3)^2)) / veta_uplna_ppst_3;
      P12 = (pX(4) * (PX_1(4) * PX_0(4)^2)) / veta_uplna_ppst_3;
49
      % 000
      veta_uplna_ppst_4 = pX(1) * (PX_0(1)^3) + pX(2) * (PX_0(2)^3) + pX(3) * (PX_0(2)^3) + pX(2) * (PX_0(2)^3) + pX(2)^3 * (P
                PX \ 0(3)^3 + pX(4) * (PX \ 0(4)^3);
      P13 = (pX(1) * (PX_0(1)^3)) / veta_uplna_ppst_4;
      P14 = (pX(2) * (PX_0(2)^3)) / veta_uplna_ppst_4;
      P15 = (pX(3) * (PX_0(3)^3)) / veta_uplna_ppst_4;
      P16 = (pX(4) * (PX_0(4)^3)) / veta_uplna_ppst_4;
      % Vysledna tabulka
57
       result_table = [P1 P2 P3 P4;
58
                                  P5 P6 P7 P8;
59
                                 P5 P6 P7 P8;
60
                                  P5 P6 P7 P8;
61
                                  P9 P10 P11 P12;
                                  P9 P10 P11 P12;
63
                                  P9 P10 P11 P12;
                                  P13 P14 P15 P16;
65
66
      maxima = max(result_table')
67
68
      % Vysledek:
69
                 % 111 -> X_1
70
                 % 110 -> X 4
71
                 \% 101 -> X 4
72
                 \% 011 -> X_4
73
                 \% 100 -> X 4
74
                 \% 010 -> X 4
                 \% 001 -> X 4
76
                 \% 000 -> X_2
77
      % Ukol 2
      M Pravdepodobnosti spravneho a spatneho rozhodnuti
      P_111 = veta_uplna_ppst_1;
      P_110 = veta_uplna_ppst_2; % = P 011, P 101
      P_{100} = veta\_uplna\_ppst_3; \% = P_{001}, P_{010}
      P 000 = veta uplna ppst 4;
84
      % Pravdepodobnost spravneho rozhodnuti
      P_{prav_roz} = P_{111} * maxima(1) + 3 * P_{110} * maxima(2) + 3 * P_{100} *
87
                maxima(5) + P_000 * maxima(6)
      % Pravdepodobnost spatneho rozhodnuti
      P_spat_roz = 1 - P_sprav_roz
```