PRACTICAL NO 4

Aim: Demonstration of Hypothesis testing.

Theory: Explain Hypothesis testing.

Code:

Step 1: First we have to create Excel file and Enter the 28 values so that we can fine deviation, Square of deviation, population, differentiate of mean, T-value, and system calculate standard deviation and save as .CSV file.

Output:

	Α	В	С		D		Е	
1		C1	Deviation		Deviation s	ar	_	
2		1 85	5.3 -12.2214	2857		533163		
3		86	5.9 -10.6214	2857	112.81	147449		
4		96	5.8 -0.72142	8571	0.5204	459184		
5		108	3.5 10.9785	7143	120.52	290306		
6		113	3.8 16.2785	7143	264.99	918878		
7		87	7.7 -9.82142	8571	96.460	045918		
8		94	4.5 -3.02142	8571	9.1290	030612		
9			9.9 2.37857			502041		
10	92.9			-4.621428571		21.35760204		
11			7.3 -30.2214			347449		
12			0.6 -6.92142			517347		
13		129				906173		
14			3.9 -48.6214			043316		
15		117				433163		
16 17		100	0.8 3.27857 4.5 -3.02142			903061 030612		
18			1.4 -3.12142			316327		
19		_	3.9 1.37857			459184		
20			96 -1.52142			744898		
21			9.4 1.87857			030612		
22			9.1 -18.4214			190306		
23		108				290306		
24		84	4.6 -12.9214	2857	166.96	533163		
25		117	7.5 19.9785	19.97857143		399.1433163		
26		70	-27.52142857		757.4290306			
27		104.4	6.878571429		47.3147449			
28		127.1	29.57857143		874.8918878			
29		135	37.47857143		1404.643316			
30		97.52143	calculate varianc	1	346.242398			
31						t value		-0.69214
32	populatio	oopulatio 100				system	calculate stdev	18.94904
33	Diff in me	-2.47857						
34								

Step 2: Now we have to import Excel file (onetest.csv) type bellow command.

#datanew=read.csv("D:/onettest.csv")

#datanew

Output:

Step 3: After importing onetest.csv file we will plot Boxplot diagram type bellow command.

#boxplot(datanew)

Output:

Step 4: After that find mean of respective data.

```
# m1=mean(datanew$C1)
#m1
```

Output:

```
> m1=mean(datanew$C1)
> m1
[1] 97.52143
```

Step 5: Now calculate the standard deviation.

```
#sd1=sd(datanew$C1)
#sd1
```

Output:

```
> sd1=sd(datanew$C1)
> sd1
[1] 18.94904
> mean1=mean(datanew$C1)
> mean1
[1] 97.52143
```

Step 6:Plot bell curve.

```
# plot(datanew$C1)
```

Output:

Step 7: At the end find T-Test value type following command.

#t.test(datanew\$C1,alternative="greater",mu=100)

Output:

CONCLUSION: Thus we have implemented Hypothesis testing of a Single Population means successfully