Université de Montpellier - Faculté des Sciences

Année Universitaire 2022-2023

HAX506X - Théorie des probabilités

Examen terminal - 03/01/2023

Durée : 2h.

Les documents et appareils électroniques ne sont pas autorisés.

Rappels.

1. La fonction caractéristique d'une variable aléatoire X de loi normale centrée réduite vaut

$$\varphi_X(t) = \mathbb{E}[e^{itX}] = e^{-t^2/2}, \quad t \in \mathbb{R}.$$

- 2. La fonction $x \mapsto \frac{x}{\ln(1+x)}$ est croissante sur $[0, \infty[$.
- 3. Critère de Bertrand. La série à termes positifs

$$\sum_{n>2} \frac{1}{n^{\alpha} (\ln n)^{\beta}}$$

converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

Exercice 1 - Questions de cours.

- 1. Énoncer la loi forte des grands nombres.
- 2. Donner la définition de la convergence en loi.

EXERCICE 2 Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes de même loi $\mathcal{N}(0,1)$. On souhaite étudier le comportement asymptotique de la suite $(Y_n)_{n\geq 1}$ définie par

$$Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k \,, \quad n \ge 1 \,.$$

- 1. Expliquer pourquoi on ne peut pas appliquer la loi forte des grands nombres.
- 2. Pour tout $k \ge 1$, donner la loi de $\sqrt{k}X_k$.
- 3. En déduire la loi de Y_n , puis la fonction caractéristique φ_{Y_n} de Y_n .
- 4. Montrer que $(Y_n)_{n\geq 1}$ converge en loi vers une variable aléatoire Y de loi à préciser.

EXERCICE 3 Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées de loi uniforme sur $\{-1,0,1\}$. On pose $S_n=X_1+\cdots+X_n$.

- 1. Calculer l'espérance et la variance de S_n .
- 2. En déduire que

$$\sqrt{\frac{3}{2n}} S_n \xrightarrow[n \to \infty]{\mathcal{L}} Z,$$

où Z est une variable aléatoire de loi à préciser.

3. Déterminer $\lim_{n\to\infty} \mathbb{P}(S_n \leq 0)$.

EXERCICE 4 Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes telle que pour tout $n\geq 1$, la variable aléatoire X_n a pour loi

$$\mathbb{P}(X_n = n) = \mathbb{P}(X_n = -n) = \frac{1}{2n\ln(n+1)}$$
 et $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n\ln(n+1)}$.

On pose $S_n = X_1 + \cdots + X_n$.

- 1. Calculer $\mathbb{E}[X_n]$ et $Var(X_n)$.
- 2. Montrer que

$$\mathbb{E}[S_n] = 0$$
 et $\mathbb{E}[S_n^2] = \sum_{k=1}^n \frac{k}{\ln(k+1)}$.

- 3. En déduire que $\frac{S_n}{n} \xrightarrow[n \to \infty]{L^2} 0$, puis que $\frac{S_n}{n} \xrightarrow[n \to \infty]{\mathbb{P}} 0$.
- 4. On souhaite montrer que, presque sûrement, la suite $(S_n/n)_{n\geq 1}$ ne converge pas.
 - (a) On considère les événements $A_n = \{X_n \geq n\}$, pour $n \geq 1$. Montrer que

$$\mathbb{P}\big(\limsup_{n\to\infty} A_n\big) = 1.$$

(b) Montrer l'inclusion d'événements

$$\left\{ (S_n/n)_{n\geq 1} \text{ converge} \right\} \subset \left\{ \frac{S_n}{n} - \frac{S_{n+1}}{n+1} \xrightarrow[n\to\infty]{} 0 \right\} \bigcap \left\{ \frac{S_n}{n(n+1)} \xrightarrow[n\to\infty]{} 0 \right\}.$$

(c) En simplifiant la différence $\frac{S_n}{n} - \frac{S_{n+1}}{n+1},$ montrez que

$$\{(S_n/n)_{n\geq 1} \text{ converge}\} \subset \left\{\frac{X_n}{n} \xrightarrow[n\to\infty]{} 0\right\}.$$

(d) Conclure que, presque sûrement, la suite $(S_n/n)_{n\geq 1}$ ne converge pas.

2