A 5.0 mL sample of a hydrocarbon (with molecular formula C_6H_{14}) has a mass of 3.2745 g (measured on a balance). What is the density?

- Listed are 4 hydrocarbons that all have the formula C₆H₁₄, but they differ in how all the C and H atoms are connected (isomers). All are liquids at room temperature but have slightly different densities.
- Can you identify the liquid?

Hydrocarbon (C ₆ H ₁₄)	Density (g/mL)
n-hexane (A)	0.6600
2,3-dimethylbutane (B)	0.6616
2,2-dimethylbutane (C)	0.6485
2-methylpentane (D)	0.6645

Hydrocarbon (C ₆ H ₁₄)	Density (g/mL)
n-hexane (A)	0.6600
2,3-dimethylbutane (B)	0.6616
2,2-dimethylbutane (C)	0.6485
2-methylpentane (D)	0.6645

Example 1 Part 2: What if you used a more precise graduated cylinder and determined the volume to be 4.93 mL?

Steps for Dimensional Analysis Problems

- 1. Sort information (given, find)
- 2. Plan a "map" for unit conversion
- 3. Set up begin with given quantity and unit
- 4. Multiply by the conversion factor(s) needed to cancel unwanted units and leave unit required for the desired solution
- 5. Check yourself!

Density as a Conversion Factor- helps convert between mass and volume of the same substance

Ex. 2: Mercury is one of the most dense liquids at room temperature. How much does a 1.2 L sample weigh in grams if the density is 13.56 g/mL.

Ex. 3: Units raised to a power?

Typical pressure for optimal performance of automobile tires is 32 lb/inch². What is this pressure in kg/m²?

$$1 \text{ lb} = 453.59 \text{ g}$$
 $1 \text{ inch} = 2.54 \text{ cm}$

Ex. 4:

Imagine a large number of sulfur atoms placed end to end like beads on a string. Each atom has a diameter of 206 pm and 1.00×10^{19} sulfur atoms have a mass of 5.3×10^{-4} g. Calculate the mass of the sulfur atoms (in kg) that would stretch from the earth to the sun, a distance of 1.496×10^{8} km.

Chapter 1

I. Chemistry is the study of **matter**...

A. Atom vs. Molecule

Atom: the basic particles that compose ordinary matter

Molecules: more than one atom bound together in a specific geometrical arrangement.

Water molecule

B. <u>Substance</u>- form of matter that has a definite (constant) composition

Types of substances

- Elements- a substance that cannot be separated into any simpler substances (only one type of atom)
 - Ex: argon (Ar), nitrogen (N₂)
- Compounds- substance made up of more than one type of element/atom, but only one substance
 - Cannot be separated further by physical means
 - Ex: H₂O

C. Mixtures- combination of two or more substances

• CAN be separated by physical means

Types of Mixtures

 Homogeneous mixturecomposition of mixture is uniform, constant throughout

 Heterogeneous mixturecomposition is not uniform

D. States of Matter

 States of matter- substances can exist as a solid, liquid or gas

E. Properties of Matter

1. Physical Vs. Chemical Properties

Physical- can be observed or measured with out changing the identity of a substance ex. measuring the mp of a

ex. measuring the mp of a substance

Chemical- must carry out a chemical change to observe

Ex. Hydrogen burns in oxygen gas to form water

E. Properties of Matter

2. Extensive vs. Intensive properties

Extensive- depends on the amount or size of substance, these properties are additive Ex. Mass, length

Intensive- independent of the amount of substance, remains the same regardless of sample size, can be used to identify substances

Ex. Melting point, boiling point, density