Chapter 14 Suites de nombres réels et complexes

Exercice 1 (14.1)

Soit (u_n) une suite réelle. Traduire à l'aide de quantificateurs

- 1. La suite (u_n) est constante à partir d'un certain rang.
- **2.** La suite (u_n) est croissante à partir d'un certain rang.
- **3.** La suite (u_n) ne converge pas vers 0.
- **4.** La suite (u_n) n'est pas croissante à partir d'un certain rang.

Exercice 2 (14.1)

Montrer que la suite de terme général $u_n = \sum_{k=0}^n \frac{1}{n+k}$, $n \ge 1$, est décroissante.

Exercice 3 (14.2)

En revenant à la définition de la limite, montrer que la suite de terme général $u_n = \frac{n+1}{2n+3}$ a pour limite 1/2.

Exercice 4 (14.2)

Démontrer, en utilisant la définition que la suite (v_n) définie par $v_n = \frac{n^2 - 1}{2n^2 + 3}$ est convergente.

Exercice 5 (14.2)

Soit (u_n) la suite définie par $u_n = \frac{3n}{2n^2 - 1}$.

Trouver $N_1 \in \mathbb{N}$ tel que pour tout $n \ge N_1$, $|u_n| \le 10^{-4}$.

Puis trouver $N_2 \in \mathbb{N}$ tel que pour tout $n \ge N_2$, $|u_n| \le \epsilon$ avec $\epsilon > 0$ donné.

Exercice 6 (14.2)

Démontrer, en utilisant la définition que la suite (u_n) définie par $u_n = 3n - 17$ tend vers $+\infty$.

Exercice 7 (14.2)

Démontrer, en utilisant la définition que la suite (u_n) définie par $u_n = 3n^2 - 9n + 7$ tend vers $+\infty$.

Exercice 8 (14.2)

Soit (u_n) une suite numérique et ℓ un nombre. Montrer que les assertions suivantes sont équivalentes.

- **1.** (u_n) converge vers ℓ .
- **2.** $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies |u_n \ell| \leq 2022\epsilon$.
- $\textbf{3. } \forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \left| u_n \ell \right| < \epsilon.$
- **4.** $\forall \epsilon \in]0, 1[, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies |u_n \ell| \le \epsilon.$
- 5. $\forall k \in \mathbb{N}^{*}, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \left| u_n \ell \right| < \frac{1}{k}.$

Exercice 9 (14.2)

Montrer qu'une suite convergente d'entiers est une suite stationnaire.

Exercice 10 (14.3)

Pour tout $n \in \mathbb{N}^*$, on pose

$$a_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
 $b_n = \sum_{k=1}^{2n} \frac{n}{n^2 + k}$ $c_n = \sum_{k=1}^{n^2} \frac{n}{n^2 + k}$

1. Établir que, pour tout $n \in \mathbb{N}^*$,

$$\frac{n^2}{n^2+n} \le a_n \le \frac{n^2}{n^2+1}.$$

En déduire que la suite $(a_n)_{n\in\mathbb{N}^*}$ converge et calculer sa limite.

2. En s'inspirant de la question précédente, établir que $\lim_{n\to\infty}b_n=2$ et $\lim_{n\to\infty}c_n=+\infty$.

Exercice 11 (14.3)

Étudier la suite de terme général

$$u_n = \sum_{k=1}^n \sqrt{k}.$$

Exercice 12 (14.3)

Étudier la suite de terme général

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}.$$

Exercice 13 (14.3)

Soit $x \in \mathbb{R}$. On désigne par |x| la partie entière de x. Déterminer

$$\lim_{n \to +\infty} \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor nx \rfloor}{n^2}.$$

Exercice 14 (14.3)

Étudier la convergence de la suite (u_n) définie pour $n \in \mathbb{N}^*$ par

$$u_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}.$$

Exercice 15 (14.3)

Soit (u_n) une suite telle que $u_0 > 0$ et pour tout entier $n, u_{n+1} \ge ku_n$; k désignant un nombre donné, k > 1. Montrer que $\lim_{n \to +\infty} u_n = +\infty$.

Exercice 16 (14.3)

Soit (u_n) une suite possédant la propriété suivante: il existe un entier naturel α et une nombre k, 0 < k < 1, tels que, pour tout entier $n \ge \alpha$, on ait $|u_{n+1}| \le k|u_n|$. Montrer que $\lim_{n \to +\infty} u_n = 0$.

Exercice 17 (14.3)

Soit (u_n) une suite telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell$, où $-1<\ell<1$. Montrer que $\lim_{n\to+\infty}u_n=0$.

Exercice 18 (14.3)

Soit u et v deux suites du segment [0, 1] telles que

$$u_n v_n \xrightarrow[n \to +\infty]{} 1.$$

Montrer

$$u_n \xrightarrow[n \to +\infty]{} 1$$
 et $v_n \xrightarrow[n \to +\infty]{} 1$.

Exercice 19 (14.4)

Étudier la suite de terme général

$$u_n = \frac{1+3+5+\dots+(2n-1)}{1+2+\dots+n}.$$

Exercice 20 (14.4)

Étudier la convergence des suites suivantes, données par leurs termes généraux.

1.
$$u_n = \frac{\sin n}{n}$$
;
2. $u_n = \frac{n^2}{n(n-1)} + (0.7)^n$;
3. $u_n = n^3 + 2n^2 - 5n + 1$;
4. $u_n = 3^n - n^2 2^n$;
5. $u_n = (-1)^n$;
6. $u_n = \sqrt{n^2 + n} - \sqrt{n}$.

Exercice 21 (14.4)

Soit (u_n) une suite géométrique telle que

$$u_0 = 90$$
 et $\lim_{n \to +\infty} (u_0 + u_1 + \dots + u_n) = 150$.

Quelle est sa raison?

Exercice 22 (14.4)

On considère la suite positive (u_n) définie par

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1}^2 = 2u_n,$$

et (v_n) la suite définie par $v_n = \ln u_n - \ln 2$.

- 1. Montrer que (v_n) est une suite géométrique.
- **2.** Calculer la limite de la suite (v_n) , puis celle de (u_n) .

Problème 23 (14.4) Théorème de Cesàro, banque PT 2003

Pour toute suite réelle $(u_n)_{n\in\mathbb{N}^*}$, on note $a_n=\frac{u_1+u_2+\cdots+u_n}{n}$ la moyenne arithmétique de ses n premiers termes.

- **1.** On se propose de montrer que si la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers le réel ℓ , alors la suite $(a_n)_{n\in\mathbb{N}^*}$ converge vers ℓ . Soit $\epsilon>0$.
 - (a) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que, pour tout $n \in \mathbb{N}$, $n > n_0$ entraı̂ne $|u_n \ell| < \frac{\epsilon}{2}$.

(b) Montrer que pour tout entier $n > n_0$ on a

$$|a_n-\ell|\leq \frac{|u_1-\ell|+|u_2-\ell|+\cdots+|u_{n_0}-\ell|}{n}+\frac{|u_{n_0+1}-\ell|+\cdots+|u_n-\ell|}{n}.$$

(c) Montrer qu'il existe un entier $n_1 > n_0$ tel que, pour tout $n \in \mathbb{N}$, $n > n_1$ entraîne

$$\frac{|u_1-\ell|+|u_2-\ell|+\cdots+|u_{n_0}-\ell|}{n}<\frac{\epsilon}{2}.$$

- (d) Conclure.
- **2.** On suppose ici que la suite $(a_n)_{n\in\mathbb{N}^*}$ converge vers le réel ℓ . On se propose d'étudier une réciproque du résultat précédent.
 - (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ n'est pas nécessairement convergente. On pourra considérer la suite de terme général $(-1)^n$.
 - (b) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ n'est pas nécessairement bornée.

On pourra considérer la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\begin{cases} p & \text{si } n=p^3\\ 0 & \text{sinon.} \end{cases}$

(c) On suppose en outre que la suite $(u_n)_{n\in\mathbb{N}^*}$ est monotone ; on pourra considérer, par exemple, qu'elle est croissante.

Montrer alors par l'absurde que la suite $(u_n)_{n\in\mathbb{N}^*}$ est majorée par ℓ . Conclure.

Exercice 24 (14.4)

- **1.** Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $\lim_{n\to\infty}(u_{n+1}-u_n)=\ell$, avec $\ell\in[-\infty,+\infty]$. Montrer que $\lim_{n\to\infty}\frac{u_n}{n}=\ell$.
- **2.** Soit $(x_n)_{n\in\mathbb{N}}$ une suite strictement positive.
 - (a) Montrer que si $\lim_{n\to\infty} \frac{x_{n+1}}{x_n} = \ell$ avec $\ell \in [0, +\infty]$, alors

$$\lim_{n\to\infty} x_n^{1/n} = \ell.$$

(b) Montrer par un exemple que la réciproque de (2.a) est fausse.

Exercice 25 (14.5)

Démontrer que la suite de terme général $u_n = (1 + (-1)^n)/n$ pour $n \ge 1$ est positive ou nulle et tend vers zéro, mais n'est pas décroissante.

Exercice 26 (14.5)

Soit $(u_n)_{n>0}$ la suite réelle définie pour n>0 par

$$u_n = \sum_{k=1}^n \frac{1}{k!}.$$

- 1. Montrer que $(u_n)_{n>0}$ est croissante.
- **2.** Montrer que, pour tout $n \in \mathbb{N}^*$, $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$.
- 3. En déduire que $(u_n)_{n>0}$ est convergente.

Exercice 27 (14.5)

Soit (u_n) une suite croissante de limite $\ell \in \mathbb{R}$. Pour tout $n \ge 1$, on pose

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

- 1. Montrer que la suite (v_n) est croissante.
- 2. Montrer que (v_n) est majorée et en déduire que (v_n) est convergente vers un réel $L \leq \ell$.
- **3.** Établir que pour tout $n \ge 1$, $v_{2n} \ge \frac{u_n + v_n}{2}$.
- **4.** En déduire que $\ell = L$.

La suite (v_n) s'appelle la suite des moyennes de Cesàro de la suite (u_n) et on vient de prouver le théorème de Cesàro dans le cas particulier où la suite (u_n) est croissante.

Exercice 28 (14.5)

Soit A une partie non vide, majorée de \mathbb{R} et M un *majorant* de A. Montrer que les assertions suivantes sont équivalentes.

- (i) M est la borne supérieure de A.
- (ii) Il existe une suite d'éléments de A convergente vers M.
- (iii) Il existe une suite croissante d'éléments de A convergente vers M.

On a une propriété analogue pour les bornes inférieures.

Exercice 29 (14.5)

Montrer qu'une suite monotone dont une suite extraite converge est convergente.

Exercice 30 (14.5)

Montrer que les suites $(u_n)_{n>2}$ et $(v_n)_{n>2}$ définies ci-dessous sont adjacentes.

$$\forall n \ge 2, u_n = \sum_{k=1}^{n-1} \frac{1}{k^2(k+1)^2} \text{ et } v_n = u_n + \frac{1}{3n^2}.$$

Exercice 31 (14.5)

Montrer que les suites (u_n) , (v_n) et (w_n) définies par

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
 $v_n = u_n + \frac{1}{n!}$ $w_n = u_n + \frac{1}{n \cdot n!}$

sont convergentes et ont même limite.

Exercice 32 (14.5)

Soient a_0 et b_0 deux réels fixés. On définit par récurrence les suites (a_n) et (b_n) par

$$a_{n+1} = \frac{2a_n + b_n}{3}$$
 et $b_{n+1} = \frac{a_n + 2b_n}{3}$.

176

- 1. Montrer que ces deux suites sont adjacentes.
- **2.** En calculant $a_{n+1} + b_{n+1}$, montrer que (a_n) et (b_n) convergent vers $\frac{a_0 + b_0}{2}$.

Exercice 33 (14.5)

Soient a, b deux réels vérifiant 0 < a < b. On considère les deux suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par $u_0 = a$, $v_0 = b$ et pour tout $n \in \mathbb{N}$

$$u_{n+1} = \frac{2u_n v_n}{u_n + v_n};$$
 $v_{n+1} = \frac{u_n + v_n}{2}.$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, on a $v_n > u_n$.
- **2.** Montrer que pour tout $n \in \mathbb{N}$, on a $v_{n+1} u_{n+1} < \frac{1}{2}(v_n u_n)$.
- **3.** Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes, on note ℓ leur limite commune.
- **4.** Calculer $u_n v_n$. En déduire ℓ en fonction de a et b.

Problème 34 (14.5) Suites de Cauchy

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle qui vérifie la propriété

$$\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall (n, p) \in \mathbb{N}^2, \left(n \ge n_0 \text{ et } p \ge n_0 \implies \left| u_n - u_p \right| \le \epsilon \right). \tag{1}$$

- 1. Montrer que la suite est bornée.
- 2. Montrer qu'elle est convergente.

Exercice 35 (14.6)

1. Montrer que pour tout x, y réels, on a

$$0 < x < y \implies x < \sqrt{xy} < \frac{x+y}{2} < y.$$

2. Soit a et b réels tels que 0 < a < b. On considère les suites récurrentes définies par

$$u_0=a, \qquad \qquad v_0=b \qquad \qquad \text{et} \qquad \qquad \forall n \in \mathbb{N}, \left\{ \begin{array}{ll} u_{n+1} &= \sqrt{u_n v_n}, \\ v_{n+1} &= \frac{u_n + v_n}{2}. \end{array} \right.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est croissante, $(v_n)_{n\in\mathbb{N}}$ décroissante et que $u_n < v_n$ pour tout $n\in\mathbb{N}$.

- 3. En déduire que les suites (u_n) et (v_n) sont convergentes.
- **4.** Montrer que les suites (u_n) et (v_n) ont même limite.

Remarque. Cette limite commune s'appelle la *moyenne arithmético-géométrique de a et b*, mais on ne sait pas la calculer en général.

Exercice 36 (14.6)

Montrer que la suite de terme général $u_n = n \sin^2\left(\frac{n\pi}{10}\right)$ diverge, et que la suite de terme général $v_n = \left(1 + \frac{1}{2}\sin(n)\right)^{1/n}$ converge.

Exercice 37 (14.6)

Montrer que la suite $(\tan(n))_{n\in\mathbb{N}}$ est divergente.

Exercice 38 (14.6)

Soit $v = (v_n)$ la suite définie, pour $n \ge 1$, par

$$v_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. Montrer que : $\forall n \ge 1, v_{2n} v_n \ge \frac{1}{2}$.
- **2.** En déduire que v diverge et qu'elle admet $+\infty$ pour limite.

Exercice 39 (14.6)

Soit (x_n) une suite réelle bornée divergente. Montrer que l'on peut trouver deux suites extraites de (x_n) convergeant vers des limites distinctes.

Suites récurrentes

Exercice 40 (14.7)

Étudier la suite (x_n) définie par récurrence par : $\begin{cases} x_0 = 1/2 \\ x_{n+1} = \frac{3}{16} + x_n^2 \end{cases}$

- 1. Étudier la fonction définie par $f(x) = \frac{3}{16} + x^2$.
- **2.** Quelle limite finie est possible pour (x_n) ?
- 3. La suite (x_n) est-elle minorée ? Majorée ? Monotone ?
- **4.** Discuter de la convergence de (x_n) .

Problème 41 (14.7)

On considère les suites (u_n) et (v_n) définies par

$$u_0 = v_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{3 - v_n}$ et $v_{n+1} = \sqrt{3 + u_n}$.

- **1.** Justifier que (u_n) et (v_n) sont bien définies.
- 2. Montrer

$$\forall n \in \mathbb{N}, |u_{n+1} - 1| \le |v_n - 2| \text{ et } |v_{n+1} - 2| \le \frac{1}{2}|u_n - 1|.$$

3. Déduire

$$\forall n \in \mathbb{N}, |u_{n+2} - 1| \le \frac{1}{2} |u_n - 1|.$$

- **4.** Montrer que (u_n) est convergente.
- **5.** Montrer que (v_n) est convergente.

Exercice 42 (14.7)

Soit (u_n) définie par $u_0 = 0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{12 - u_n}.$$

- **1.** La suite (u_n) est-elle monotone?
- **2.** Prouver que les suites (u_{2n}) et (u_{2n+1}) sont monotones.
- 3. Prouver

$$\forall n \in \mathbb{N}, u_{2n} \le u_{2n+1} \le u_1 \le 4.$$

4. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\left|u_{2n+1} - u_{2n}\right| \le \frac{1}{4\sqrt{2}} \left|u_{2n} - u_{2n-1}\right| \text{ et } \left|u_{2n+1} - u_{2n}\right| \le \left(\frac{1}{4\sqrt{2}}\right)^{2n} \times 4.$$

5. Que dire des suites (u_{2n}) et (u_{2n+1}) ? Conclure que (u_n) est convergente.

Exercice 43 (14.7)

Soit $a \in \mathbb{R}$. On considère la suite (u_n) définie par

$$u_0 = a$$

$$\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2.$$

- **1.** Étudier rapidement la fonction $f: \mathbb{R} \to \mathbb{R}$. $x \mapsto x x^2$
- **2.** Étudier la suite (u_n) dans les cas suivants : a = 0 et a = 1.
- 3. Étudier le sens de variation de la suite (u_n) .
- **4.** Étudier la convergence de (u_n) dans chacun des cas : a < 0, a > 1, $a \in]0, 1[$. Dans chacun des cas, si (u_n) admet une limite, on la précisera.

Exercice 44 (14.7)

On considère la suite (u_n) définie par

$$u_0 \in \left[0, \frac{4}{3}\right] \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1}{3}(4 - u_n^2).$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in \left[0, \frac{4}{3}\right]$.
- **2.** Si (u_n) était convergente, quelle serait sa limite ℓ ?
- **3.** Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} \ell| \le \frac{7}{9} |u_n \ell|$.
- 4. Conclure.

Problème 45 (14.7)

On considère une suite réelle (p_n) satisfaisant à la relation de récurrence

$$p_{n+4} = \frac{1}{4} \left(p_{n+3} + p_{n+2} + p_{n+1} + p_n \right). \tag{1}$$

On lui associe les deux suites (m_n) et (M_n) définies par :

$$m_n = \min(p_n, p_{n+1}, p_{n+2}, p_{n+3});$$
 $M_n = \max(p_n, p_{n+1}, p_{n+2}, p_{n+3}).$

 $(m_n$ et M_n sont donc le plus petit et le plus grand des nombres réels $p_n, p_{n+1}, p_{n+2}, p_{n+3}$.)

- **1.** Dans cette question, on établit la convergence des suites (m_n) et (M_n) .
 - (a) Montrer que m_n est inférieur ou égal aux nombres $p_{n+1}, p_{n+2}, p_{n+3}, p_{n+4}$. En déduire que la suite (m_n) est croissante. Établir de même que la suite (M_n) est décroissante.
 - (b) Prouver que, pour tout nombre entier naturel *n* :

$$m_0 \leqslant m_n \leqslant p_n \leqslant M_n \leqslant M_0$$
.

(c) Prouver que les suites (m_n) et (M_n) sont convergentes et que leurs limites respectives, notées m et M, vérifient :

$$m \leq M$$
.

- **2.** Dans cette question, on établit la convergence de la suite (p_n) .
 - (a) Montrer que, pour tout nombre entier naturel n:

$$p_{n+4} \leqslant \frac{3}{4}M_n + \frac{1}{4}m_n.$$

$$p_{n+4} \leqslant \frac{3}{4}M_n + \frac{1}{4}m.$$

En appliquant la dernière inégalité à $p_{n+5}, p_{n+6}, p_{n+7}$, montrer que :

$$M_{n+4} \leqslant \frac{3}{4}M_n + \frac{1}{4}m.$$

- (b) En déduire que $M \le m$, puis que M = m.
- (c) Établir la convergence de la suite (p_n) .

Exercice 46 (14.7)

On considère la suite u définie par $\begin{cases} u_0 = 10 \\ \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{2} + \frac{1}{u_n} \end{cases}.$

- 1. Étudier les variations de la fonction f définie par $f(x) = \frac{x}{2} + \frac{1}{x}$.
- **2.** Déterminer un intervalle I stable par f (c'est-à-dire tel que $f(I) \subset I$) et contenant u_0 . En déduire que la suite u est bien définie et que : $\forall n \in \mathbb{N}, u_n \in I$.
- **3.** Étudier la monotonie de *u*.
- **4.** Montrer que *u* converge et donner sa limite.

Exercice 47 (14.7)

On considère la suite $u = (u_n)_{n \in \mathbb{N}}$ définie par

$$u_0 = \frac{1}{2} \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{e^{u_n}}{u_n + 2}.$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$. En déduire que la suite u est bien définie.
- 2. Montrer qu'il existe un unique réel $\alpha \in [0, 1]$ solution de l'équation $\frac{e^x}{x+2} = x$.
- 3. Déduire de l'inégalité des accroissements finis que

$$\forall n \in \mathbb{N}, \left| u_{n+1} - \alpha \right| \leq \frac{2}{3} \left| u_n - \alpha \right|.$$

4. Majorer la différence $|u_n - \alpha|$ puis montrer que

$$\lim_{n\to+\infty}u_n=\alpha.$$

Exercice 48 (14.7)

On considère la fonction f définie par

$$\forall x \in \mathbb{R}, f(x) = \cos(x).$$

Soit $u = (u_n)$ la suite réelle donnée par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- **1.** Montrer que f admet un unique point fixe α et que $\alpha \in [0, 1]$.
- 2. Représenter graphiquement les premiers termes de la suite u.
- **3.** Montrer: $\forall n \in \mathbb{N}, u_n \in [0, 1]$.
- **4.** Première méthode. Pour tout $n \in \mathbb{N}$, on note $x_n = u_{2n}$ et $y_n = u_{2n+1}$. On pose également $g = f \circ f$.
 - (a) Vérifier que α est l'unique point fixe de g et donner le sens de variation de g sur [0, 1].
 - (b) Montrer que les suites (x_n) et (y_n) sont monotones, de monotonies opposées et qu'elles convergent vers α .
 - (c) Conclure sur la convergence de la suite u.
 - (d) Écrire une suite d'instructions Python qui permette de calculer une valeur approchée de α à 10^{-5} près.
- 5. Seconde méthode.
 - (a) Montrer

$$\forall n \in \mathbb{N}, |u_n - \alpha| \le (\sin 1)^n.$$

Retrouver ainsi le fait que la suite u converge vers α .

(b) En déduire une suite d'instructions Python qui permette de calculer une valeur approchée de α à 10^{-5} près.