

Dealing with Specific Pirate Attacks in Collusion-Resistant Traitor Tracing

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Guangzhou, China (November 20, 2013)

Outline

Collusion-resistant traitor tracing

Score-based construction

Fighting against specific attacks

Results

Conclusion

Collusion-resistant traitor tracing

Illegal redistribution

User	C	ору	rigl	hte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Collusion-resistant traitor tracing

Illegal redistribution

User	C	эру	rigl	nte	d c	ont	ent	:									
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Boris	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Caroline	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
David	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Eve	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Fred	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Gábor	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	
Сору	0	1	1	1	0	0	1	1	1	0	1	1	0	0	1	0	

Collusion-resistant traitor tracing

User	C	эру	rig	hte	d c	ont	en	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

TU/e

User	C	ору	rigl	nte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	ору	rigl	nte	d c	ont	ent	t (f	ng	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

TU/e

User	C	эру	rigl	hte	d c	ont	ent	(f	ing	erp	rint	ed))				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	

Collusion-resistant traitor tracing

Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	

Collusion-resistant traitor tracing

Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ng	erp	rint	ted)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Collusion-resistant traitor tracing

Collusion attacks

User	C	ору	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ed)				
Antonino	0	1	1	1	0	0	1	1	1	0	1	1	0	1	0	0	
Boris	0	1	1	1	0	1	0	1	1	0	1	1	1	1	1	0	
Caroline	0	1	0	1	0	1	0	1	1	0	0	1	1	0	1	0	
David	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	
Eve	0	1	0	1	0	1	0	1	1	0	1	1	1	0	0	0	
Fred	0	1	0	1	0	0	1	1	1	0	0	1	0	1	0	0	
Gábor	0	1	1	1	0	1	1	1	1	0	1	1	0	0	1	0	
Henry	0	1	0	1	0	1	1	1	1	0	0	1	0	1	1	0	
Сору	0	1	1	1	0	1	0	1	1	0	1	1	0	1	0	0	

Collusion-resistant traitor tracing

User	C	ору	rig	hte	d c	ont	en	t (f	ng	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

Collusion-resistant traitor tracing

Schemes resistant against collusion attacks

User	C	эру	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted)				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

1. An algorithm to construct collusion-resistant codes

Collusion-resistant traitor tracing

User	C	эру	rig	hte	d c	ont	ent	t (f	ing	erp	rint	ted))				
Antonino	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Boris	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Caroline	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
David	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Eve	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Fred	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Gábor	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Henry	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	
Сору	0	1	?	1	0	?	?	1	1	0	?	1	?	?	?	0	

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Collusion-resistant traitor tracing

User	Copyrighted content (fingerprinted)									
Antonino	?	? ?	?	? ?	?					
Boris	?	? ?	?	? ?	?					
Caroline	?	? ?	?	? ?	?					
David	?	? ?	?	? ?	?					
Eve	?	? ?	?	? ?	?					
Fred	?	? ?	?	? ?	?					
Gábor	?	? ?	?	? ?	?					
Henry	?	? ?	?	? ?	<mark>?</mark>					
Сору	?	? ?	?	? ?	?					

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

User	Copyrighted content (fingerprinted)								
Antonino									
Boris									
Caroline									
David	$X \in \{0,1\}^{n imes \ell}$								
Eve	$\land \in \{0,1\}$								
Fred									
Gábor									
Henry									
Сору	$y \in \{0,1\}^\ell$								

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Collusion-resistant traitor tracing

- 1. An algorithm to construct collusion-resistant codes
- 2. An algorithm to trace pirate copies to colluders

Schemes resistant against collusion attacks

1. An algorithm to construct collusion-resistant codes

2. An algorithm to trace pirate copies to colluders

Score-based construction Overview

1. An algorithm to construct collusion-resistant codes

2. An algorithm to trace pirate copies to colluders

Score-based construction Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ▶ Hide choice of p_i from pirates.
- 2. An algorithm to trace pirate copies to colluders

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - Hide choice of p_i from pirates.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - Hide choice of p_i from pirates.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{i,i}| \gg 0)$ for rare events.

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ightharpoonup Hide choice of p_i from pirates.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{j,i}| \gg 0)$ for rare events.
 - 2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

Score-based construction

Codewords

p _i	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	 <i>p</i> ₁₂₀₈
Antonino	$X_{1,1}$	$X_{1,2}$	$X_{1,3}$	$X_{1,4}$	$X_{1,5}$	 X _{1,1208}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1208}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1208}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1208}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1208}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1208}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1208}$
Henry	$X_{8,1}$	X _{8,2}	X _{8,3}	$X_{8,4}$	$X_{8,5}$	 X _{8,1208}
Сору	<i>y</i> 1	y 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	 <i>y</i> 1208

Score-based construction

Codewords

1a. For each segment *i*, generate $p_i \sim F$.

	505	101110 7,	80	200 P ₁		
p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	$X_{1,1}$	$X_{1,2}$	X _{1,3}	X _{1,4}	$X_{1,5}$	 X _{1,1208}
Boris	$X_{2,1}$	$X_{2,2}$	$X_{2,3}$	$X_{2,4}$	$X_{2,5}$	 $X_{2,1208}$
Caroline	$X_{3,1}$	$X_{3,2}$	$X_{3,3}$	$X_{3,4}$	$X_{3,5}$	 $X_{3,1208}$
David	$X_{4,1}$	$X_{4,2}$	$X_{4,3}$	$X_{4,4}$	$X_{4,5}$	 $X_{4,1208}$
Eve	$X_{5,1}$	$X_{5,2}$	$X_{5,3}$	$X_{5,4}$	$X_{5,5}$	 $X_{5,1208}$
Fred	$X_{6,1}$	$X_{6,2}$	$X_{6,3}$	$X_{6,4}$	$X_{6,5}$	 $X_{6,1208}$
Gábor	$X_{7,1}$	$X_{7,2}$	$X_{7,3}$	$X_{7,4}$	$X_{7,5}$	 $X_{7,1208}$
Henry	$X_{8,1}$	<i>X</i> _{8,2}	$X_{8,3}$	X _{8,4}	$X_{8,5}$	 X _{8,1208}
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	 <i>y</i> 1208

Score-based construction

Codewords

1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Caroline	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	1	0	0	0	1	 0
Сору	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	 <i>Y</i> 1208

Coalition

Pirates get their versions, ...

p _i			•			
Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						 _
Henry	1	0	0	0	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	 <i>y</i> ₁₂₀₈

Coalition

Pirates get their versions, compare them ...

p _i					-	
Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David	•					
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₄	<i>y</i> 5	 <i>y</i> 1208

Coalition

Pirates get their versions, compare them and make a copy.

p _i			-	-	-	
Antonino						
Boris						
Caroline	1	0	0	1	0	 0
David						
Eve	0	0	1	0	1	 0
Fred						
Gábor						
Henry	1	0	0	0	1	 0
Сору	0	0	0	1	1	 0

TU/e

Score-based construction

Scores

The copy is distributed and detected by the tracer.

p _i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	0	0	1	1	1	 0
Boris	1	0	1	1	1	 1
Caroline	1	0	0	1	0	 0
David	0	0	1	1	1	 0
Eve	0	0	1	0	1	 0
Fred	1	0	1	0	1	 0
Gábor	0	0	1	0	1	 0
Henry	1	0	0	0	1	 0
Сору	0	0	0	1	1	 0

Score-based construction

Scores

2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

p_i	0.20	0.05	0.88	0.79	0.98	 0.18
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5
Сору	0	0	0	1	1	 0

Score-based construction

Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

p _i	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_{i} S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	0
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	0
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	0
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	0
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	0
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	0
Сору	0	0	0	1	1	 0	

Score-based construction

Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{j,i}$ is "large".

p _i	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_{i} S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	

Score-based construction

Scores

2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

p _i	0.20	0.05	0.88	0.79	0.98	 0.18	$\sum_{i} S_{j,i}$
Antonino	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+14
Boris	-2.0	+0.2	-0.4	+0.5	+0.1	 -2.1	-19
Caroline	-2.0	+0.2	+2.7	+0.5	-7.2	 +0.5	+291
David	+0.5	+0.2	-0.4	+0.5	+0.1	 +0.5	+29
Eve	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	+292
Fred	-2.0	+0.2	-0.4	-1.9	+0.1	 +0.5	-53
Gábor	+0.5	+0.2	-0.4	-1.9	+0.1	 +0.5	-42
Henry	-2.0	+0.2	+2.7	-1.9	+0.1	 +0.5	+269
Сору	0	0	0	1	1	 0	

 $\begin{aligned} & \mathsf{Coalition} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\} \\ & \mathsf{Accused} = \{\mathsf{Caroline}, \mathsf{Eve}, \mathsf{Henry}\} \end{aligned}$

Score-based construction

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ▶ Hide choice of p_i from pirates.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{i,i} = g(X_{i,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{i,i}| \gg 0)$ for rare events.
 - 2b. For each user j, accuse user j iff $\sum_{i} S_{i,i}$ is "large".

Score-based construction

Overview

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F$.
 - ▶ Many values of p_i close to 0 and 1.
 - ▶ Hide choice of p_i from pirates.
 - **1b**. For each segment *i*, user *j*, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.
 - ▶ Positive scores $(S_{j,i} > 0)$ for matches $(X_{j,i} = y_i)$.
 - ▶ Negative scores $(S_{j,i} < 0)$ for differences $(X_{j,i} \neq y_i)$.
 - ▶ Large scores $(|S_{j,i}| \gg 0)$ for rare events.
 - 2b. For each user j, accuse user j iff $\sum_i S_{j,i}$ is "large".

What does the code length become when we optimize F and g?

Fighting against specific attacks

Arbitrary attacks

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p/(1-p) & (X_{j,i}, y_i) = (0,0) \\ -1 & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p)/p & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c^2 \ln n$$

Fighting against specific attacks

The interleaving attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p/(1-p) & (X_{j,i}, y_i) = (0,0) \\ -1 & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p)/p & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c^2 \ln n$$

Fighting against specific attacks

The all-1 attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$.
 - 1b. For each segment i, user j, choose $X_{i,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p/(1-p) & (X_{j,i}, y_i) = (0,0) \\ -p(1-p)^{c-1}/(1-(1-p)^c) & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p)^c/(1-(1-p)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell = O(c^{1.5} \ln n)$$

Fighting against specific attacks

The all-1 attack

- 1. An algorithm to construct collusion-resistant codes
 - **1a**. For each segment *i*, generate $p_i \equiv p = O(1/c)$.
 - 1b. For each segment i, user j, choose $X_{i,j} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +p/(1-p) & (X_{j,i}, y_i) = (0,0) \\ -p(1-p)^{c-1}/(1-(1-p)^c) & (X_{j,i}, y_i) = (0,1) \\ -\infty & (X_{j,i}, y_i) = (1,0) \\ +(1-p)^c/(1-(1-p)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c \ln n$$

Fighting against specific attacks

The minority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) \approx egin{cases} + \dots & (X_{j,i}, y_i) = (0,0) \\ - \dots & (X_{j,i}, y_i) = (0,1) \\ - \dots & (X_{j,i}, y_i) = (1,0) \\ + \dots & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell = O(c^{1.5} \ln n)$$

Fighting against specific attacks

The minority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - **1a**. For each segment *i*, generate $p_i \equiv p = O(1/c)$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) \approx \begin{cases} +p/(1-p) & (X_{j,i}, y_i) = (0,0) \\ -p(1-p)^{c-1}/(1-(1-p)^c) & (X_{j,i}, y_i) = (0,1) \\ -1 & (X_{j,i}, y_i) = (1,0) \\ +(1-p)^c/(1-(1-p)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 2c \ln n$$

Fighting against specific attacks

The majority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment i, generate $p_i \sim F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} + \dots & (X_{j,i}, y_i) = (0,0) \\ - \dots & (X_{j,i}, y_i) = (0,1) \\ - \dots & (X_{j,i}, y_i) = (1,0) \\ + \dots & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell = O(c^{1.5} \ln n)$$

Fighting against specific attacks

The majority voting attack

- 1. An algorithm to construct collusion-resistant codes
 - **1a**. For each segment *i*, generate $p_i \equiv p = 1/2$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = \begin{cases} +1 & (X_{j,i}, y_i) = (0, 0) \\ -1 & (X_{j,i}, y_i) = (0, 1) \\ -1 & (X_{j,i}, y_i) = (1, 0) \\ +1 & (X_{j,i}, y_i) = (1, 1) \end{cases}$$

$$\ell \sim \pi c \ln n$$

Fighting against specific attacks

The coin-flip attack

- 1. An algorithm to construct collusion-resistant codes
 - 1a. For each segment *i*, generate $p_i \sim F(p_i) = \frac{2}{\pi} \arcsin \sqrt{p_i}$.
 - **1b.** For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = (p^{c-1} + (1-p)^{c-1})$$

$$\times \begin{cases} +p/(1-p^c + (1-p)^c) & (X_{j,i}, y_i) = (0,0) \\ -p/(1+p^c - (1-p)^c) & (X_{j,i}, y_i) = (0,1) \\ -(1-p)/(1-p^c + (1-p)^c) & (X_{j,i}, y_i) = (1,0) \\ +(1-p)/(1+p^c - (1-p)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell = O(c^{1.5} \ln n)$$

Fighting against specific attacks

The coin-flip attack

- 1. An algorithm to construct collusion-resistant codes
 - **1a**. For each segment *i*, generate $p_i \equiv p = O(1/c)$.
 - 1b. For each segment i, user j, choose $X_{j,i} = 1$ with prob. p_i .
- 2. An algorithm to trace pirate copies to colluders
 - 2a. For each segment i, user j, calculate $S_{j,i} = g(X_{j,i}, y_i, p_i)$.

$$g(X_{j,i}, y_i, p_i) = (p^{c-1} + (1-p)^{c-1})$$

$$\times \begin{cases} +p/(1-p^c + (1-p)^c) & (X_{j,i}, y_i) = (0,0) \\ -p/(1+p^c - (1-p)^c) & (X_{j,i}, y_i) = (0,1) \\ -(1-p)/(1-p^c + (1-p)^c) & (X_{j,i}, y_i) = (1,0) \\ +(1-p)/(1+p^c - (1-p)^c) & (X_{j,i}, y_i) = (1,1) \end{cases}$$

$$\ell \sim 4c \ln n$$

Results

The Tardos scheme

	Efficient constr.		Lower bounds	
Arbitrary attacks	$100c^{2}$	[Tar'03]	$\Omega(c^2)$	[Tar'03]
Interleaving attack	$100c^{2}$	[Tar'03]	$\Omega(c)$	
All-1 attack	$100c^{2}$	[Tar'03]	$\Omega(c)$	
Minority voting	$100c^{2}$	[Tar'03]	$\Omega(c)$	
Majority voting	$100c^{2}$	[Tar'03]	$\Omega(c)$	
Coin-flip attack	$100c^{2}$	[Tar'03]	$\Omega(c)$	

Results

Improvements of the Tardos scheme

	Efficient constr.		Lower bounds	
Arbitrary attacks	$2c^{2}$	[ODS'13]	$2c^{2}$	[HM'12]
Interleaving attack	$2c^{2}$	[ODS'13]	$2c^{2}$	[HM'12]
All-1 attack	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	
Minority voting	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	
Majority voting	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	
Coin-flip attack	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	

Results
Results from group testing

	Efficient constr.		Lower bounds	
Arbitrary attacks	$2c^{2}$	[ODS'13]	$2c^{2}$	[HM'12]
Interleaving attack	$2c^{2}$	[ODS'13]	$2c^{2}$	[HM'12]
All-1 attack	ec	[C+'11]	$\log_2(e)c$	[Seb'85]
Minority voting	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	
Majority voting	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	
Coin-flip attack	$O(c^{1.5})$	[ODS'13]	$\Omega(c)$	

Results Contributions

	Efficient constr.		Lower bounds	
Arbitrary attacks	$2c^{2}$	[ODS'13]	$2c^{2}$	[HM'12]
Interleaving attack	$2c^{2}$	[ODS'13]	$2c^{2}$	[HM'12]
All-1 attack	2 <i>c</i>	[Laa'13]	$\log_2(e)c$	[Seb'85]
Minority voting	2 <i>c</i>	[Laa'13]	$\Omega(c)$	
Majority voting	πc	[Laa'13]	$\Omega(c)$	
Coin-flip attack	4 <i>c</i>	[Laa'13]	$\Omega(c)$	

Conclusion

If you do know the pirate strategy...

- ...you can find pirates much faster!
- Trick: Optimize g, then optimize and fix p
- Code length often linear in c, decreases linearly in q
- Applications to group testing

If you don't know the pirate strategy...

- ...use the interleaving defense, also dynamically!
- Statically optimal, dynamically possibly optimal(?)
- Seems to work well in practice (simulations)

Questions?