COMP2012 Object-Oriented Programming and Data Structures

Hashing (Supplementary Notes)

Quadratic Probing: Example:

- hash(k) = k mod 10
- f(i) = i²
- $h_i(k) = (k \mod 10 + i^2) \mod 10$

- $h_0(89) = (89 \mod 10 + 0^2) \mod 10 = 9 (OK)$
- $h_0(18) = (18 \mod 10 + 0^2) \mod 10 = 8 (OK)$
- h₀(49) = (49 mod 10 + 0²) mod 10 = 9 (Collision occurs)
 h₁(49) = (49 mod 10 + 1²) mod 10 = 0 (OK)
- h₀(58) = (58 mod 10 + 0²) mod 10 = 8 (Collision occurs)
 h₁(58) = (58 mod 10 + 1²) mod 10 = 9 (Collision occurs)
- $h_2(58) = (58 \text{ mod } 10 + 2^2) \text{ mod } 10 = 2 \text{ (OK)}$ $h_1(69) = (69 \text{ mod } 10 + 0^2) \text{ mod } 10 = 9 \text{ (Collision of the collision of the collision$
- h₀(69) = (69 mod 10 + 0²) mod 10 = 9 (Collision occurs)
 h₁(69) = (69 mod 10 + 1²) mod 10 = 0 (Collision occurs)
 h₂(69) = (69 mod 10 + 2²) mod 10 = 3 (OK)

Table Index	Insert 89	Insert 18	Insert 49	Insert 58	Insert 69
0			49	49	49
1					
2				58	58
3					69
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

Linear Probing: Example

- hash(k) = k mod 10
- f(i) = i
- $h_i(k) = (k \mod 10 + i) \mod 10$

- $h_0(89) = (89 \mod 10 + 0) \mod 10 = 9 (OK)$
- $h_0(18) = (18 \mod 10 + 0) \mod 10 = 8 (OK)$
- h₀(49) = (49 mod 10 + 0) mod 10 = 9 (Collision occurs)
 h₁(49) = (49 mod 10 + 1) mod 10 = 0 (OK)
- h₀(58) = (58 mod 10 + 0) mod 10 = 8 (Collision occurs)
 h₁(58) = (58 mod 10 + 1) mod 10 = 9 (Collision occurs)
 h₂(58) = (58 mod 10 + 2) mod 10 = 0 (Collision occurs)
 h₃(58) = (58 mod 10 + 3) mod 10 = 1 (OK)
- h₀(69) = (69 mod 10 + 0) mod 10 = 9 (Collision occurs)
 h₁(69) = (69 mod 10 + 1) mod 10 = 0 (Collision occurs)
 h₂(69) = (69 mod 10 + 2) mod 10 = 1 (Collision occurs)
 h₃(69) = (69 mod 10 + 3) mod 10 = 2 (OK)

Table Index	Insert 89	Insert 18	Insert 49	Insert 58	Insert 69
0			49	49	49
1				58	58
2					69
3					
4					
5					
6					
7					
8		18	18	18	18
9	89	89	89	89	89

Double Hashing: Example

hash(k) = k mod 10
 hash₂(k) = 7 - (k mod 7)

IIIPIE • $h_i(k) = (k \mod 10 + i \times (7 - (k \mod 7))) \mod 10$

- $h_0(89) = (89 \mod 10 + 0 \times (7 (89 \mod 7))) \mod 10 = 9 (OK)$
- $h_0(18) = (18 \mod 10 + 0 \times (7 (18 \mod 7))) \mod 10 = 8 (OK)$
- h₀(49) = (49 mod 10 + 0 x (7 (49 mod 7))) mod 10 = 9 (Collision occurs)
 h₁(49) = (49 mod 10 + 1 x (7 (49 mod 7))) mod 10 = 6 (OK)
- $h_0(58) = (58 \mod 10 + 0 \times (7 (58 \mod 7))) \mod 10 = 8 \text{ (Collision occurs)}$
- $h_1(58) = (58 \mod 10 + 1 \times (7 (58 \mod 7))) \mod 10 = 3 (OK)$
- h₀(69) = (69 mod 10 + 0 x (7 (69 mod 7))) mod 10 = 9 (Collision occurs) h₁(69) = (69 mod 10 + 1 x (7 – (69 mod 7))) mod 10 = 0 (OK)

Table Index	Insert 89	Insert 18	Insert 49	Insert 58	Insert 69
0					69
1					
2					
3				58	58
4					
5					
6			49	49	49
7					
8		18	18	18	18
9	89	89	89	89	89