电

电磁学

© LePtC (萌狸)

笔记项目主页: http://leptc.github.io/lenote

署名・非商用・相同方式共享

精

赵凯华. 电磁学 (第三版). 高等教育出版社

□或: 赵凯华. 新概念物理教程—电磁学 (第二版). 高等教育出版社 (上面那本的精简版)

Purcell. Electricity and Magnetism (2nd ed). McGraw-Hili (高斯单位制的)

└中译: 南开大学物理系. 电磁学. 科学出版社

参

Feynman. Feynman's Lectures on Physics - Volume 2

□中译:桑兹. 费曼物理学讲义-第二卷. 上海科学技术出版社

符号约定

国际单位制, 电子电荷量为 -e, 电量 q 可正可负, φ 为电势, U 为电势差

上标,表示极化,下标₀表示自由,除注明 \overrightarrow{p} 为动量外均指电偶极矩,除注明 \overrightarrow{M} 为力矩外均指磁化强度

相关笔记

电路见〈电路〉〈模电〉〈数电〉 电表见〈实验〉 凶残的数理方法见〈电动〉 相对论见〈狭相〉

(Last compiled on 2015/09/30 at 00:54:00)

positive triboelectrification vitreous resinous negative repel

摩擦起电 丝绸摩擦过的光滑玻璃棒带正电荷, 毛皮摩擦过的橡胶棒带负电荷, 同性相斥, 异性相吸 '正负的区别就是负数的平方是与之反号的正数, 但电荷之积不是电荷, 故对电荷正负的命名是任意的) electrostatic induction

静电感应 用带电体感应起电, 金属棒先接触后分开, 带等量异号的电 中和 正负电荷完全抵消 性质 带电导体 A 靠近孤立不带电导体 N , 则 N_+ 的电场线都终止于无穷远而不能终止于自己的 N_- 否则沿此电场线积分 N 不等势 $\mid \rightarrow$ 电势 N 升 A 降, $\varphi_{N} < \varphi_{A}$, N 感应出的电荷量小于 A 所带电量

导体 电荷能迅速传导, <mark>绝缘体</mark> 电荷束缚在产生的地方, 绝缘体可被 击穿 成导体 $(空气 \approx 3 \times 10^6 \text{ V/m})$ coulomb elementary charge Millikan oil-drop experiment

|**电荷量**| q 单位 C(库仑) |元电荷| e≈1.602×10⁻¹⁹ C (密立根油滴实验 1909)(夸克, 准粒子可带分数电荷) global conservation of charge

全局电荷守恒 孤立系统的总电荷量不变(正负电荷总成对产灭)(电荷量是洛伦兹不变量) action at a distance action through medium ether

电磁力非 超距作用 (不需要媒介或时间) 也非 近距作用 (接触作用,弹性媒质以太),是通过场来 作用的, 电磁场 可以脱离电荷和电流独立存在, 和物质一样具有能量, 动量等属性 〈场论〉

静源动电荷 施力电荷 q_1 相对观察者静止,则 q_2 受力 F_2 可用库仑定律 $(F_1,F_2$ 非作用和反作用力) Coulomb's law

库仑定律 (1785) 真空中静源 q_1 给 q_2 的力 $\overrightarrow{F_2} = k_e \frac{q_1 q_2}{r^2} \overrightarrow{e_{r_{21}}}$, 库仑常数 $k_e = \frac{1}{4\pi\varepsilon_0} \approx 8.99 \times 10^9 \text{ Nm}^2/\text{C}^2$ $(\overrightarrow{r_{21}} \equiv \overrightarrow{r_2} - \overrightarrow{r_1} \ \text{从 1 指向 2})$ (电荷自己产生的场不能对自己有作用, 否则违背牛三)

库仑平方反比精确成立 ⇔ 光子静质量严格为零 ⇔ 光在真空无色散 ⇔ 光速不变 〈 电动 〉

例 若 $\vec{F} = k_e \frac{q_1 q_2}{r^2} \left(1 + \frac{r}{\lambda} \right) e^{-r/\lambda} \vec{e_r}$ 则点电荷 $\varphi(r) = k_e \frac{q}{r} e^{-r/\lambda}$ 高斯定理 $\oint_{\mathcal{C}} \vec{E} \cdot d\vec{S} + \frac{1}{\lambda^2} \iiint_{\mathcal{C}} \varphi dV = \frac{q_{(S \bowtie 1)}}{\varepsilon}$

point charge

test charge

点电荷 带电体间距离远大于其尺寸, 其形状大小可忽略 试探电荷 电量和线度足够小, 不影响原在电场 electric field intensity

对于电场中的固定点, 试探电荷受力与电荷量的比值不变 → 电场强度 superposition principle

场强叠加原理 各电荷同时存在产生的场强, 等于单独存在时的场强的矢量叠加 → **虚构补偿法**

点电荷 $\vec{E} = k_e \frac{q}{r^2} \vec{e_r}$ 例 两同号电荷在中垂线上 $E = \frac{2k_e q}{(l/\cos\theta)^2} \sin\theta$

 $\cos^2\theta\sin\theta$ 在 $\tan\theta = \frac{\sqrt{2}}{2}$, $\theta \approx 35.3$ ° 时取最大值 $\frac{2}{3\sqrt{3}} \approx 0.385$

例 (不稳定) 平衡 $\lceil \frac{b}{(l_1+l_2)^2} = \frac{c}{l_1^2}, \frac{a}{(l_1+l_2)^2} = \frac{c}{l_2^2} \rfloor a : c : b = l_2^{-2} : (l_1+l_2)^{-2} : l_1^{-2}$

electric dipole

电偶极子 等量异号电荷 $\pm q$ 相距 l , electric dipole moment

 \vec{l} 由负指向正 电偶极矩 $\vec{p} \equiv q \vec{l}$

 \rightarrow 力偶矩 $\overrightarrow{M} = \overrightarrow{p} \times \overrightarrow{E} + \overrightarrow{r} \times \overrightarrow{F}$

(非均匀电场中受净力 产) 〈静电能〉

设场点 $r \gg l$, 延长线和中垂线上的解 $E_{\parallel} = k_e q \left[\left(r - \frac{l}{2} \right)^{-2} - \left(r + \frac{l}{2} \right)^{-2} \right] \approx k_e \frac{2p}{r^3}$

 $E_{\perp}\!=\!2k_{e}\frac{q}{r^{2}\!+\!l^{2}/4}\frac{l/2}{\sqrt{r^{2}\!+\!l^{2}/4}}\!\approx\!k_{e}\frac{p}{r^{3}}$

electric quadrupole

|电四极子| 偶极矩为零 「デ 可矢量叠加 | 〈 电动 〉

正方型, $E \approx k_e \frac{3ql^2}{r^4}$

共线型, 延长线上 $E=2k_eqa\left[\left(r-\frac{a}{2}\right)^{-3}-\left(r+\frac{a}{2}\right)^{-3}\right]\approx k_e\frac{6qa^2}{r^4}$, 定义 <mark>电四极矩</mark> $Q=2qa^2$

(矢量场图是在每个点处画有大小和方向的小箭头, 场线图只能从疏密反映场强大小)

电场线 曲线每一点的切线方向和该点场强方向一致, 任一点电场线的数密度与该点场强大小成正比 性质 静电场的电场线起自正电荷或无穷远, 结束于负电荷或无穷远, 不会在没有电荷处中断

电场线不会相交,除非该处场强为零,静电场线不会闭合,涡旋电场线闭合 electric flux

电通量 $\Phi_E = \vec{E} \cdot \vec{S}$ 对于闭合曲面, 取外法线矢量方向为正 [1] 库仑定律算包围点电荷同心球面 2. 球面通量等于同立体角任意曲面 3. 不包围电荷通量为零 4. 场强叠加原理 | →

Gauss theorem

电场高斯定理 通过任意闭合曲面 $\Phi_E = \iint_S \vec{E} \cdot \mathbf{d} \vec{S} = \frac{q_{(S \nmid h)}}{\varepsilon}$ (适用于任何平方反比场)(适用于运动电荷)Earnshaw's theorem

(前例三体平衡点是鞍点) (亦适用于硬磁铁 〈 静磁 〉) linear charge density

(宏观上可视电荷为连续分布) **电荷线密度** $dq = \eta_e dl$ **电荷面密度** $dq = \sigma_e dS$ **电荷体密度** $dq = \rho_e dV$

例 无限大平板 $E=\frac{\sigma_e}{2\varepsilon_0}$ **例** 均匀带电球壳, 内部 E=0 , 外部 \equiv 点电荷 \rightarrow 均匀带电球体 $E_{\rm h}=\frac{Q}{4\pi\varepsilon_0}\frac{r}{R^3}$ $\lceil E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A}}=E_{\dot{\mathbb{A}}}=E_{\dot{\mathbb{A$

 $E_{\pm c}$ 在小面处连续」面电荷元受其它部分的力用 $E_{\pm c} = E_{\pm h} + \frac{\sigma_e}{2\varepsilon_0} = E_{\pm h} - \frac{\sigma_e}{2\varepsilon_0} = \frac{1}{2}(E_{\pm h} + E_{\pm h})$ 来求

「可等效为圆弧」 无限长均匀带电细棒 $E=\frac{\eta_e}{2\pi\varepsilon_0 r}$ (同二维空间),有限长细棒中垂面 $E=\frac{\eta_e}{2\pi\varepsilon_0}\frac{l}{r\sqrt{r^2+l^2}}$

例 $\vec{E}=(ax,0,0)$ 得全空间电荷密度为常数 $\rho_e\equiv\varepsilon_0 a\to$ 给出电荷分布不一定能确定电场 (用库仑定律的 话积分发散) (微分方程需要结合边界条件才能定解) (以前我们潜意识加了无穷远为零或对称性等) 无对称性则无法只靠高斯定理得出场强分布 (高斯定理对静电场的描述不完备)

circuital theorem of electrostatic field

〈矢分〉静电场力做功与路径无关(保守力场) \Leftrightarrow **静电场环路定理** 沿任意闭合环路 $\oint \vec{E} \cdot \mathbf{d} \ \vec{l} = 0$ 「亥姆霍兹定理」散度 + 旋度 + 无穷远趋于零边界条件 ⇔库仑定律

electric potential energy electric potential difference 电势能 试探电荷从 $\overrightarrow{r_1}$ 搬到 $\overrightarrow{r_2}$, 静电场力做的功 $W_{12} = q \int_{r_1}^{r_2} \overrightarrow{E} \cdot \mathbf{d} \overrightarrow{l} =$ 电势能减少,电势差 $U_{12} = \frac{W_{12}}{q}$ volt $= \varphi_1 - \varphi_2$ (绝对),单位 V(伏特)=J/C 取无穷远电势为零 \rightarrow 电势 $\varphi \equiv U_{r\infty} = \int_r^{\infty} \overrightarrow{E} \cdot \mathbf{d} \overrightarrow{l}$ (相对) (零势点不能选在电荷上 分布于天空运动分中世》,

(零势点不能选在电荷上,分布于无穷远的净电荷为零才能选无穷远为零势点,如单根无限长带电直线, 零势点不能取在直线上也不能取在无穷远,一对无限长异号带电直线,零势点可取在中垂面或无穷远)

例 点电荷 $\varphi=k_e\frac{q}{r}$, 无限长带电细棒 $\varphi=\frac{\eta_e}{2\pi\varepsilon_0}\ln\left(\frac{1}{r}\right)+$ 常数 (同二维空间点电荷) superposition principle of electric potential

电势叠加原理 各电荷同时存在产生的电势, 等于单独存在时的电势的代数和

等势面 和电场线处处正交, 疏密反映场强大小, $\vec{E} = -\nabla \varphi$, 任意方向上 $E_l = -\partial_l \varphi$

例 电偶极子
$$r\gg l$$
, $\varphi\approx k_e q\left(\frac{1}{r-\frac{l}{2}\cos\theta}-\frac{1}{r+\frac{l}{2}\cos\theta}\right)\approx k_e q\frac{l\cos\theta}{r^2-(\frac{l}{2}\cos\theta)^2}\approx k_e \frac{p\cos\theta}{r^2}$

$$E_r = -\frac{\partial}{\partial r}\varphi = k_e \frac{2p\cos\theta}{r^3}, \ E_\theta = -\frac{1}{r}\frac{\partial}{\partial \theta}\varphi = k_e \frac{p\sin\theta}{r^3}, \ E_\phi = -\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}\varphi = 0$$

带电圆环轴线上 $\varphi = \frac{\eta_e}{2\varepsilon_0} \frac{R}{\sqrt{R^2 + z^2}}$ (标量和), $E_z = \frac{\eta_e}{2\varepsilon_0} \frac{Rz}{(R^2 + z^2)^{\frac{3}{2}}}$ (矢量加)

均匀带电圆盘 (无限薄单电荷层) 轴线上 $\varphi_z = \frac{\sigma_e}{2\varepsilon_0} (\sqrt{R^2 + z^2} - z), E_z = \frac{\sigma_e}{2\varepsilon_0} \left(1 - \frac{z}{\sqrt{R^2 + z^2}}\right)$

dipole layer

电偶极层 厚度为 l 的均匀曲面, 两面带相反电荷 $\pm \sigma_e$

 $\left[\varphi = \frac{1}{4\pi\varepsilon_0} \iint_S \sigma_e \left(\frac{1}{r_2} - \frac{1}{r_1}\right) dS, r_2 \approx r_1 + \cos\theta, \frac{1}{r_2} - \frac{1}{r_1} \approx -\frac{l\cos\theta}{r^2}, \frac{\cos\theta dS}{r^2} = 立体角 d\Omega, 两侧立体角跃变 4\pi \right]$ $\varphi = -\frac{\sigma_e l}{4\pi\varepsilon_0}\Omega, \vec{E} = \frac{\sigma_e l}{4\pi\varepsilon_0}\nabla\Omega$, 电偶极层的 E 和 φ 只和它对场点所张立体角有关, 两侧有电势跃变 $\frac{\sigma_e l}{\varepsilon_0}$ (电势总连续, 电势跃变意味着有 δ 一样的场强)

静电能

electrostatic energy

静电能 W_e 把带电体系拆成无限分散的状态静电力做的总功 (与次序或路径无关)

对于多个带电体, W_e 等于各带电体的 自能 (聚成单个带电体) 加带电体间的 互能 (移带电体整体)

例 两个点电荷 $W_{\bar{a}}=k_e\frac{q_1q_2}{r_{12}}$, n 个点电荷: 所有配对求和 $W_{\bar{a}}=k_e\sum_{i\neq i}^{C_n^2}\frac{q_iq_j}{r_{ij}}=\frac{k_e}{2}\sum_{i=1}^n\sum_{j\neq i}^n\frac{q_iq_j}{r_{ij}}=\frac{1}{2}\sum_{i=1}^n\varphi_iq_i$

其中 φ_i 是除 q_i 之外其余电荷在 q_i 的位置产生的电势 〈 固体 〉

对于连续分布 「没有 δ 的电荷, $\varphi_{\sharp \hat{\pi}} = \varphi_{\hat{e}}$ 」 $W_e = \frac{1}{2} \int \varphi \, \mathrm{d}q \, \left(\mathrm{d}q \, \, \mathrm{f} \, \, \mathrm{3} \, \, \mathrm{种密度的表示} \right)$ 例 均匀带电球壳 $W_{\hat{e}} = k_e \frac{q^2}{2R}$,球体 $W_{\hat{e}} = k_e \frac{3q^2}{5R} \, \left(\mathbb{A} \left\langle \, \mathrm{e} \, \mathrm{e} \, \, \right\rangle \right)$ 算更简便)

型 electron classical radius 把电子设想为带电球,取 $m_ec^2=k_e\frac{e^2}{r}$,得 $r_c\approx 2.8~{\rm fm}$ 称为 电子经典半径 (别当真)

囫 电偶极子与匀强电场相互作用 $W_{\mathrm{int}}\!=\!-\overrightarrow{p}\cdot\overrightarrow{E}$, 受力矩 $L_{\theta}\!=\!-\partial_{\theta}W\!=\!pE\sin{\theta}$ 在非均匀电场中, 受净力 $\vec{F} = -\nabla W = \nabla (\vec{p} \cdot \vec{E}) \xrightarrow{p \land \nabla} (\vec{p} \cdot \nabla) \vec{E}$ (这种记法的含义是 $F_x = \vec{p} \cdot \nabla E_x$, y, z 分量同理) 〈矢分〉

→ 摩擦起电后, 碎片被极化, 电场力沿梯度方向, 拉向电场较强区域

田容

Isolated conductor capacitance farad ① 孤立导体 电势随电量等比增加,电容 $C\equiv \frac{q}{\varphi}$,单位 $F(\dot{k}\dot{t})=C/V$ 例 孤立导体球(売) $C=4\pi\varepsilon_0 R$...

② 两靠近的导体, 表面各带电 $\pm q$ (自由电荷), 「叠加原理」电容 $C \equiv \frac{q}{U} > 0$, 两导体称为 电容器 的 极板

 \succeq 充介质后 $C = \varepsilon_r C_0$, 导体相当于 $\varepsilon = \infty$ 〈电介质〉 $\bigcirc M$ 平行板电容器(忽略边缘效应) $C = \frac{\varepsilon S}{d} \left[\frac{\sigma_e S}{Ed} \right]$ ightarrow 串联电容「相当于合 d」 $C^{-1}=C_1^{-1}+C_2^{-1}$,并联电容「相当于合 S」 $C=C_1+C_2$ 〈 电路 〉 同轴圆柱 $C=\frac{2\pi\varepsilon l}{\ln R_2-\ln R_1}$ 「 $\frac{\eta_e l}{\frac{\eta_e}{2\pi\varepsilon}\int \frac{1}{r}}$ 」 同心球 $C=4\pi\varepsilon \frac{R_1R_2}{R_2-R_1}$ 「 $\frac{1}{k_e\Delta\frac{1}{r}}$ 」

公式 电容器储静电能 $W_e = \int_0^q \frac{q}{C} \mathbf{d}q = \frac{q^2}{2C} = \frac{1}{2}CU^2 = \frac{1}{2}Uq = \frac{1}{2}Ed\sigma_e S = \frac{1}{2}ED_nV = \frac{1}{2}\varepsilon E^2V$ 〈 电介质 〉

例 平行板电容,将电介质层向外拉 $\frac{dx}{dx}$,则静电力会将它往里拉 $\frac{dx}{dx}$,难以计算) 可用虚功原理,设 $\frac{dC}{dx}$,则 $\frac{dC}{dx}$, $\frac{dC}{dx}$, $\frac{dW_e}{dx}$ $\frac{1}{2}$ $\frac{d^2}{C^2}$ $\frac{dC}{dx}$ $\frac{dC}{dx}$ $\frac{dC}{dx}$

(用恒电荷的公式而不是恒电压,因为那样还有电源做功 $U \frac{d}{dq} = U^2 \frac{dC}{dC}$ 恰为两倍,最终计算结果相同) electric field energy electric energy density 电场能 占有体积的电场储藏着电能(不依赖于电荷) 电能密度 $\omega_e = \frac{dW_e}{dV} = \frac{1}{2}\varepsilon E^2$,体积分得电场能

 \mathbf{E} 对于各向异性 \vec{E} , \vec{D} 不平行的情况, 一般形式为 $w_e = \frac{1}{2} \vec{E}$. \vec{D} 推导见 \langle 电动 \rangle

例 导体球(売) $W_e = \frac{\varepsilon_0}{2} \int_R^\infty \left(k_e \frac{q}{r^2}\right)^2 4\pi r^2 dr = \frac{q^2}{8\pi\varepsilon_0 R} = \frac{q^2}{2C} \xrightarrow{R \to 0}$ 点电荷的静电能发散

注 电场能恒正, 静电能可能为负 (例如电偶极子) 是因为未算单个点电荷无穷大的电场能

性质 电场能不遵从叠加原理 (所有电荷加倍, 电场能变为 4 倍), 电场能变化与静电能一致

例 收缩带电球壳做功 $dW = \left(\frac{\sigma_e^2}{2\varepsilon_0}\right) dS dr$ 等于新增电场的电能 $\frac{1}{2}\varepsilon_0 \left(\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}\right)^2 dV$

囫 均匀带电球体, 同理 $\frac{\varepsilon_0}{2}k_e^2\Big[\int_0^\kappa \Big(\frac{qr}{R^3}\Big)^2 + \int_{\rm D}^\infty \Big(\frac{q}{r^2}\Big)^2\Big]4\pi r^2 {
m d}r$, 第一项是第二项的 $\frac{1}{5}$ → 球壳乘 $\frac{6}{5}$ 即可

uniqueness theorem

--性定理| 边界条件可将电场的恒定分布唯一确定 → 若静电屏蔽接地, 则内对外, 外对内均无影响 electrostatic equilibrium

静电平衡 自由电荷静止, 电场分布不随时间变化 「必要性: 反证法, 充分性: 唯一性定理〈电动〉 | 均匀(质料, 温度等) 导体 **静电平衡条件** $\vec{E}_{\text{p}} \equiv 0 \Leftrightarrow$ 感应电荷产生的电场 $\vec{E'} = -\vec{E_0} \overset{\text{gh}}{\Leftrightarrow} q_{\text{p}} \equiv 0 \Leftrightarrow \vec{E} = \frac{\sigma_e}{c_0}$ (电场线垂直于表面) ⇔平方反比精确成立 结论 导体是等势体,表面是等势面,电荷只分布于导体表面

 \overline{M} 将带电导体球与不带电导体球用细导线链接,「两球等势|得电荷的重新分配为 $q_1:q_2=R_1:R_2$

注 自由动力学体系总寻找使电势能最小的分布 例 均匀带电球电场能大于带电球壳

静电平衡导体的 σ_e 一般难以求解析解 公式 椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的 $\sigma_e = \frac{q}{4\pi abc} \left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)$ 「代入椭球方程消z, c=0, 乘2 因为两面」导体圆盘 $\sigma_e(r)=\frac{q}{2\pi R}\frac{1}{\sqrt{R^2-r^2}}$,导体线段 $\eta_e(x)=\frac{q}{2a}$ (常数)

(二维和一维下的带电导体, 电荷并非只分布在边界)

electrostatic screening / shielding

静电屏蔽 ① 导体壳内部电场不受外界影响 (无论导体是否带电或接地), 电势有影响 ② 内部带电体位置不影响腔外 (电量会感应到外表面), 若外壳接地则完全不影响腔外 Van de Graaff generator

|**范德格拉夫起电机|**| 电势低的导体可不断接触高电势导体壳内部使其电势不断升高 point discharge

导体表面尖端 (曲率较大) 处 σ_e 较大, 凹处 (曲率为负) σ_e 更小 \rightarrow **尖端放电** \rightarrow electric wind

|电风| 尖端的强电场电离空气, 吸引同号离子中和, 异号离子受排斥远离 → |电晕|

离子与空气分子碰撞产生光辐射,消耗电能 (高压电线不能太细,高压电极要极光滑)

若电晕放电电压恒定, 电流会做周期性脉冲(阴极 10^4 Hz, 阳极 10^6 Hz) \rightarrow 静电放电 lightning rod

|避雷针| 在建筑物上安装尖端导体并良好接地, 带电云层接近时通过避雷针持续放电 electrostatic lens

静电透镜 带孔金属板, 可聚焦电子束

Trichel

→ 特里切尔脉冲 ElectroStatic Discharge ElectroMagnetic Pulse

电流

current charge carrier

电流 电荷 (载流子) 的定向运动, 规定为正电荷移动方向, 导体中电流方向同电场方向, 高电势向低电势 (电子平均漂移速率 $\sim 10^{-5}~{
m m/s}$,电子热运动速率 $\sim 10^5~{
m m/s}$,电场传播速率为光速 $\sim 3 \times 10^8~{
m m/s}$) current intensity

电流强度 单位时间通过导体任一横截面的电荷量 $I \equiv \frac{dq}{dt}$ A(安培)=C/s,标量〈电路〉

linear charge density

线电流密度 $\vec{I} \equiv \eta_e \vec{v}$,大小等于 I 面电流密度 单位宽度电流强度 $\vec{i} \equiv \frac{\mathrm{d} I}{\mathrm{d} L} = \sigma_e \vec{v}$

 $\frac{\mathrm{d}I}{\mathrm{d}S_{\perp}} = \rho_e \vec{v} \ \mathrm{A/m^2}$,电流场是矢量场,I 是其通量 $I = \iint_S \vec{j} \cdot \mathbf{d}\vec{S}$

 $(\sum q \overrightarrow{v} = \int \overrightarrow{I} dl = \int \overrightarrow{i} dS = \int \overrightarrow{j} dV)$

local conservation of charge equation of continuity 同域电荷守恒 的数学表述: 电流连续性方程 $\iint_S \vec{j} \cdot d\vec{S} = -\frac{dq}{dt}$,流出闭合面的通量等于电荷减少 [代入 $q(t) = \int_V \rho_e(\vec{r},t) \, dV \rightarrow \int_V \nabla \cdot \vec{j} \, dV = -\int_V \partial_t \rho_e \, dV$ 对任意 V 都成立」 微分形式 $\nabla \cdot \vec{j} = -\partial_t \rho_e$ criterion of steadiness

criterion of steadiness **电流恒定条件** \Leftrightarrow 环路定理 $\iint_{c} \vec{j} \cdot d\vec{S} = 0$, 电流线不会中断, 恒定电路必然闭合 \to 故可引入 电压 U

欧姆定律 (1827) 宏观: $I = \frac{U}{R} = \frac{El}{\rho l/S} \rightarrow \vec{j} = \sigma \vec{E}$ 微观: 载流子速度和受力正比, 说明存在阻力〈固体〉

 $\rightarrow \vec{j} = \sigma \vec{f} = \sigma (\vec{E} + \vec{v} \times \vec{B})$ (导线中 v 很小可忽略, 等离子体不可) **理想导体** $\sigma = \infty$, 内部 $\vec{E} = \vec{j}/\sigma = 0$

resistance ohm conductance siemens resistivity 电阻 $R \equiv \frac{U}{I} \Omega$ (欧姆) 电导 $G \equiv \frac{1}{R} S$ (西门子) 电阻率 (恒温) $R = \rho \frac{l}{S} \Omega \cdot m$ 电导率 $\sigma \equiv \frac{1}{\rho} S/m$

 $\rho_{\rm fl} \approx 1.59 \times 10^{-8}, \; \rho_{\rm fl} \approx 1.68 \times 10^{-8}, \; \rho_{\rm \Lambda fl} \approx 9.6 \times 10^{-7}, \; \rho_{\rm \pi Z} \approx 1.4 \times 10^{-5}, \; \rho_{\rm fln \pm \Lambda} \approx 4.4 \times 10^{-2}, \; \rho_{\rm fln + 10^{-2}} \approx 2.5 \times 10^{-5}, \; \rho_{\rm fln + 10^{-2}} \approx 1.4 \times 10^{-5}, \; \rho_{\rm fln + 10^{-2}} \approx$

 \rightarrow 串联电阻「相当于合 l」 $R=R_1+R_2$,并联电阻「相当于合 S」 $R^{-1}=R_1^{-1}+R_2^{-1}$ 〈 电路 〉

例 同轴圆柱间的电阻 $I = \int \vec{j} \cdot \mathbf{d} \vec{S} = \sigma \int \vec{E} \cdot \mathbf{d} \vec{S} = \sigma \frac{\eta_e L}{\varepsilon_0}, \ U = -\int_a^b \vec{E} \cdot \mathbf{d} \vec{l} = \frac{\eta_e}{2\pi\varepsilon_0} \ln\left(\frac{b}{a}\right) \rightarrow R = \frac{\ln\left(b/a\right)}{2\pi\sigma L}$

推论 「电高斯」 $I=\sigma \frac{q}{\varepsilon_0}=\frac{\sigma}{\varepsilon_0}CIR$ \rightarrow 把导体嵌在均匀电阻材料中,有 $R=\frac{\varepsilon_0}{\sigma C}$

Ø 同心球间的电阻 $R = \frac{1}{4\pi\sigma} \left(\frac{1}{a} - \frac{1}{b}\right)$, 当 $b \gg a$ 时电阻与大球无关, 即主要的电阻都源于小球附近

性质 横截面保持不变的均匀电阻器,内部电势线性变化「拉普拉斯方程,满足边界条件,唯一性定理」

ightarrow 若导线有电阻, 内部为匀强电场 $\overrightarrow{E} = rac{I
ho}{S} \overrightarrow{e_i}$, 外部电场取决于如何使电路完整 (Merzbacher 难题)

|伏安特性 (曲线)| I- U 图 | 非线性元件 | 伏安特性不为线性 | 电阻温度系数 | $\rho = \rho_0(1+\alpha t)$, 纯金属 $\alpha \approx 0.004$ thermal power electric power

电功率 电场单位时间做功 $P=UI\geqslant P_{\frac{1}{2}}$ (W) **热功率** $P_{\frac{1}{2}}=I^2R=\frac{U^2}{R}=\sigma E^2\Delta V$ 〈 电路 〉

thermal power density

热功率密度 单位体积热功率 $p=\overrightarrow{j}\cdot\overrightarrow{E}$ \Leftrightarrow **焦耳定律** (1841) $p=\frac{\jmath^2}{\overline{z}}=\sigma E^2$

申源

电场力沿闭合回路做功为零,只有静电场不能维持恒定电流 (除了超导体) → 必须有 <mark>非静电力</mark> 出功

电源 提供非静电力的装置,记非静电力场强为 \vec{K} ,方向由f000 (低电势) 指向f100 f100 f100

记 $\vec{E}_{\not k} = \vec{K} + \vec{E}$, **电动势** $\mathscr{E} \equiv \oint \vec{K} \cdot \mathbf{d} \vec{l} = \oint \vec{E}_{\not k} \cdot \mathbf{d} \vec{l}$ (V) (标量) (静电场 $\oint \vec{E} \cdot \mathbf{d} \vec{l} = 0$, 注意边缘电场, 没有永动机) 等于把单位正电荷从负极通过电源内部移到正极时非静电力做的功

对于闭合电路, 电源外部 $\vec{K}=0$, 公式可写成 $\mathscr{E}=\int^+ \vec{K} \cdot d\vec{l}$,

欧姆定律改为 $\overrightarrow{j} = \sigma \overrightarrow{E}_{\&}$ internal resistance terminal voltage

实际电源有 内阻 r, 路端电压 $U=\mathcal{E} \mp Ir$, 放电取减充电取加

 $P_{\stackrel{\otimes}{=}} = \mathscr{E}I = \overline{\mathbb{E}^{1}} = \overline{\mathbb{E}^{1}} = \overline{\mathbb{E}^{2}}$,电源内消耗 $P_{\stackrel{\otimes}{=}} = I^{2}r$

impedance matching

<u>阻抗匹配</u> 当 R=r 时电源输出功率最大 $P_{\text{max}} = \frac{c}{4r}$

电流源等见 (电路)

Thomson effect

汤姆孙效应 金属棒两端温度不等,则加电流时 (除了产生焦耳热外) 冷 菜菜 热 放

汤姆孙电动势 汤姆孙系数 $\sigma(T)$, 热扩散力 $\overrightarrow{K}_T = \sigma(T) \frac{dT}{dt}$, $\mathscr{E}(T_1, T_2) = \int_{T_1}^{T_2} \sigma(T) \frac{dT}{dt}$

 $\boxed{\mathbf{m尔捷效应}}$ 外加电流通过不同金属接触面时, $\overrightarrow{K}_{\mathrm{D}}$ 与 I 同向吸热反向放热, 电动势 $\Pi_{AB}(T)$, 半导体较强 thermoelectric effect thermocouple

温差电效应 (塞贝克 1821) 同时存在温度和电子数密度梯度,故不违反热二 温差电偶 用电势测温度

north pole south pole

称小磁针指北一端为 **北极** N, 指南为 南极 S (故地磁 N 极位于地理南极附近) 铁磁性 〈凝态〉 magnetic charge / monopole

 $\overline{ }$ 吉尔伯特模型 历史上先以为有 $\overline{ }$ 磁荷 $\overline{ }$ 磁单极子 $\overline{ }$, 后面和电场同理 $\frac{1}{4\pi\mu_0} \frac{1}{r^2}$ oersted

magnetic field intensity \vec{F} oersteu inagnetic field intensity \vec{F} $= -\nabla \varphi_m$ A/m= $4\pi \times 10^{-3}$ Oe(奥斯特) 引入 **磁标势** 的前提: 只能在没有自由电

流分布的单连通区域内定义 (否则势函数不单值) (分子电流可以,永磁体全空间都可以)

例 无限长直导线的磁标势 $\varphi_m = -\frac{\mu_0 I \phi}{2\pi}$, 限制 $0 \leqslant \phi < 2\pi$

磁偶极子 $\overrightarrow{p_m} = q_m \overrightarrow{l}$ (S 指向 N) 磁偶极子受力矩 $\overrightarrow{M} = \overrightarrow{p_m} \times \overrightarrow{H}$, 磁偶极层 $\overrightarrow{H} = \frac{\sigma_m l}{4\pi \mu_0} \nabla \Omega$ 电流环受力矩 $\overrightarrow{M} = \overrightarrow{m} \times \overrightarrow{B}$, $W_{\text{int}} = -\overrightarrow{m} \cdot \overrightarrow{B}$, 受力 $\overrightarrow{F} = \nabla (\overrightarrow{m} \cdot \overrightarrow{B}) = (\overrightarrow{m} \cdot \nabla) \overrightarrow{B} + \mu_0 (\overrightarrow{m} \times \overrightarrow{j})$

magnetic moment **磁矩** $\vec{m} \equiv IS\vec{e_n}$ (故小磁针 \vec{m} 总要转向 \vec{B} 的方向)

例 均匀带电旋转圆盘 $m=Svq=\int_0^R (\pi r^2)(\omega r)(\sigma_e dr)=\frac{1}{4}\pi\sigma_e\omega R^4$

gyromagnetic ratio 例 均匀带电旋转圆环, 质量记作 m_0 「 $\vec{m} = \frac{q\omega}{2\pi}\pi R^2 \vec{e_z}$, $\vec{L} = m_0 v R \vec{e_z}$ 」 **旋磁比** 磁矩除以角动量 $g = \frac{q}{2m_0}$

(和电的区别源于 $\nabla \times \overrightarrow{B} \neq 0$)

「结果与R无关」同样结果适用于任何旋转体〈量子〉电子自旋 $\frac{\hbar}{2}$ 磁矩 $\mu_{\rm B}=\frac{e\hbar}{2m_e}$ 比正常大2倍

「安培力」任意形状载流线圈在均匀磁场中受力矩 $\overrightarrow{M} = IS(\overrightarrow{e_n} \times \overrightarrow{B})$, $\overrightarrow{e_n}$ 为右手定则法向

电流环磁场公式 $\vec{B} = \frac{\mu_0 I}{4\pi} \nabla \Omega$, Ω 为线圈对场点所张立体角

「使磁偶极层和电流环等价」 \rightarrow \vec{B} = $\mu_0 \vec{H}$, $\vec{p_m}$ = $\mu_0 \vec{m}$ \langle 磁介质 \rangle geomagnetic field

地磁场 来源于地核外核铁镍流体的涡电流, 强度约 0.25∼0.65 Gs

可近似看作位于地心磁偶极子产生的 →

已知纬度 45° 的地磁水平分量约 0.23 Oe

 $\lceil H_{\theta} = k_m \frac{p_m \sin \theta}{r^3} = \frac{1}{4\pi} \frac{m \sin \theta}{r^3} \rfloor \rightarrow$ 地球的磁矩约 $8.4 \times 10^{22} \text{ Am}^2$ (相当于赤道上 $6.6 \times 10^8 \text{ A 电流}$)

Oersted experiment

|<mark>奥斯特实验</mark>| (1820.07) 载流导线能偏转小磁针 \rightarrow 电荷总有库仑作用, 但只有运动电荷才有磁相互作用 (安培 1820.09) 同向载流导线相吸引, 反向载流导线相排斥 (故有转到同向趋势), 插金属板不能屏蔽 pinch effect

|收缩效应|| 等离子体柱受自身电流的磁场的作用有向中心收缩的趋势 (导线中此效应极弱)

Ampère law

安培定律 (1820.12) 稳恒线电流元 I_1 给 I_2 的力

 $\overrightarrow{dF_2} = k_m \frac{I_2 d\overline{l_2} \times (I_1 d\overline{l_1} \times \overrightarrow{e_{r_{21}}})}{r^2}$ 大小 = $k_m \frac{I_1 dl_1 \sin \theta_1 I_2 dl_2 \sin \theta_2}{r^2}$ $k_m \equiv \frac{\mu_0}{4\pi}$, 取 $\mu_0 = 4\pi \times 10^{-7}$ 〈磁介质〉,然后定义 A〈实验〉 (不满足牛三,闭合回路积分才满足)「安培定律拆开」→

Biot-Savart law

Biot-Savart law 上字文字 (1820.10) $\overrightarrow{dB} = k_m \frac{I \overrightarrow{dl} \times \overrightarrow{e_r}}{r^2}$ ($\overrightarrow{e_r}$ 由电流元指向场点),另有 $I \overrightarrow{dl} = \overrightarrow{ldl} = \overrightarrow{idl} = \overrightarrow{idl$

| 磁感应强度 | $\vec{B} = \oint_L d\vec{B}$ T(特斯拉)=Wb/m²=N/(Am)=10⁴Gs(高斯) 电流集合有磁的 | 场强叠加原理

安培力 $d\vec{F}_2 = I_2 d\vec{l}_2 \times d\vec{B}$,另有 $\vec{F} = \int \vec{v} \times \vec{B} dq = \int \vec{I} \times \vec{B} dl = \iint \vec{i} \times \vec{B} dS = \iiint \vec{i} \times \vec{B} dV$

(均匀磁场中, 安培力只与起点终点有关) 推论 安培力冲量 $m\Delta v = F\Delta t = BIl\Delta t = Bl\Delta q$

 $\boxed{\textbf{M}}$ 两根平行的无限长均匀带电直线 (不是导线,导线中性) ,以 v 沿线方向运动,要使单位长度 磁吸引力 $\frac{\mu_0 \eta_e^2 v^2}{2\pi d}$ 和电排斥力 $\frac{\eta_e^2}{2\pi \varepsilon_0 d}$ 平衡, 得 v 为光速 $(\eta_e$ 和 v 均在实验室系测, 不必考虑相对论)

囫 运动电荷磁场(非稳恒电流,此为近似推导) $\vec{B} = \frac{\mu_0}{4\pi} \frac{q \vec{v} \times \vec{e_r}}{r^2} = \mu_0 \varepsilon_0 \vec{v} \times \frac{k_e q \vec{e_r}}{r^2} = \frac{1}{c^2} \vec{v} \times \vec{E} \langle e \vec{v} \rangle$ Lorentz force

 $[Id\vec{l} \rightarrow q\vec{v} \mid$ **洛伦茲力** $\vec{F} = q\vec{v} \times \vec{B}$ (总与带电粒子速度方向垂直, 故不对粒子做功)

(洛伦兹力的作用是传递, 宏观导体上的安培力可以做功, 原因是自由电子的冲量传递给了金属晶格)

 \overline{M} 圆形区域中心对称的磁场 $\overrightarrow{B}(r)$, 若总磁通量为零, 则从圆心出发的粒子(若能脱离磁场区)必沿径向射 出, 反之, 瞄准圆心的入射粒子最后必击中圆心 「粒子获得总角动量 $\vec{L} = \int \vec{r} \times \vec{F} dt = q \int \vec{r} \times (d\vec{l} \times \vec{B}) =$ $q\left[\int (\vec{r} \cdot \vec{B}) d\vec{l} - \int \vec{B} (\vec{r} \cdot d\vec{l})\right], \ \vec{\pi} \ \vec{r} \cdot \vec{B} = 0, \ \vec{r} \cdot d\vec{l} = \vec{r} \cdot d\vec{r} = rdr, \ \vec{R} \ \vec{L} = -\frac{q}{2\pi} \int_{-\pi}^{R} \vec{B} 2\pi r dr = -\frac{q}{2\pi} \Phi_{B}$

velocity selector

M agneto H y D rodynamic generator

速度选择器 $Eq=qvB \rightarrow \overline{\mathbf{c}}$ 磁流体发电机 等离子体通过平行板电极, $\mathscr{E}=Bvd$ mass spectrometer

质谱仪 先平衡后断电, 由回旋半径得荷质比 $\frac{q}{m} = \frac{E_{\pm}}{rB_{\pm}B_{\pm}}$ (非相对论)

相同电流 (同时改变电性和速度方向) 一般结论相同, 霍尔效应 是例外 (固体)

cyclotron frequency cyclotron 回旋加速器 每圈的半径 $\propto \sqrt{n}$, $v_{\max} = \omega R$ 回旋频率 $\omega =$

 \mathbf{M} 静止粒子放在正交的电场磁场中, 记 $R \equiv E/\omega B$

〈 微几 〉解得运动轨迹为圆摆线 $(y-R\omega t)^2+(z-R)^2=R^2 \rightarrow v=E/B$

磁场越强半径越小,磁矩不变 $|\vec{m}| = IS = \frac{q}{T} \pi r^2 = \frac{m v_{\perp}^2}{2R} = \frac{E_{k\perp}}{R}$ magnetic mirror

磁镜 带电粒子由弱磁场向强磁场运动, v_\perp 增加导致 $v_\#$ 减小乃至反弹

以及地磁场约束会形成范艾伦辐射带

line of magnetic induction

磁感线 磁铁外部从 N 走向 S, 磁铁内部从 S 走回 N, 不相交

稳恒电流 $\partial_t \rho_e = 0$, \vec{j} 无散, 电流闭合或为无限场 (永磁体满足)

静磁场安培环路定理 通过任意闭合环路 $\oint ec{B} \, \mathrm{d} \, ec{l} = \mu_0 I_{(L \mid h)}$

穿过回路面的电流与回路右手定则方向同向为正. 反向为负 (\overrightarrow{B}) 为全空间电流产生的磁场,不通过 L 的电流的环路积分为零)

囫 载流直导线对磁场的贡献, $l=R\cot\theta$, $\frac{\mathrm{d}l}{\mathrm{d}\theta} = \frac{R}{\sin^2\theta}$, $B=\frac{\mu_0 I}{4\pi}$ $\frac{\mathrm{d} l \sin \theta}{(R/\sin \theta)^2} = \frac{\mu_0 I}{4\pi R} (\cos \theta_1 - \cos \theta_2), \xrightarrow{\text{无限长}} \frac{\mu_0 I}{2\pi R}, \text{方向右手螺旋}$

均匀带电球面自转, $\lceil \mathbf{d}I = \frac{q}{T} = \sigma_e \omega r \mathbf{d}x \rfloor$ 转轴上, 球内 $B_z = \frac{2}{3} \mu_0 \sigma_e \omega R$ (匀强), 外 $B_z = \frac{2}{3} \mu_0 \sigma_e \omega \frac{R^4}{r^3}$ (偶极) 载流圆线圈在轴线, 记 $r = \sqrt{R^2 + x^2}$, $B = \frac{\mu_0 I}{4\pi} \int \frac{\mathrm{d}l}{r^2} \frac{R}{r} = \frac{\mu_0 I R^2}{2r^3}$, $\xrightarrow{x=0} B = \frac{\mu_0 I}{2R}$, $\xrightarrow{x \gg R} \overrightarrow{B} = \frac{\mu_0 \overrightarrow{m}}{2\pi r^3}$ Helmholtz coils

亥姆霍茲线圈 间距等于半径的一对共轴载流圆线圈 「设间距 2d , 记 $r_{\pm} = \sqrt{R^2 + (x \pm d)^2}$, 则 (由于偶函数, 奇次导亦都为零) 可方便地获得均匀磁场, $B = \frac{8\mu_0 I}{5\sqrt{5}R}$

载流 **螺线管**在轴线 $B=\mu_0 n I \frac{\cos \theta_2 - \cos \theta_1}{2}$, 方向右手螺旋, n 为单位长度匝数

无限长密绕螺线管在轴线 $B=\frac{\mu_0IR^2}{2}\int_{-\infty}^{\infty}\frac{n\,\mathrm{d}x}{r^3}=\mu_0nI$ gs $\overline{B}=\frac{\mu_0NI}{2\pi R}$ $\overline{e_{\phi}}$ (任意形状截面均适用)

性质 整个螺线管内部磁场都是均匀的「矩形安培环路, 另一边在无限远」, 管外 B=0

magnetic flux

weber

磁通量 $\Phi_B = \vec{B} \cdot \vec{S}$ Wb(韦伯)=Vs=C Ω **磁场高斯定理** 通过任意闭合曲面 $\Phi_B = \bigoplus_{\vec{S}} \vec{B} \, d\vec{S} = 0$

无旋场是某标量场的梯度 $\nabla \times (\nabla \varphi) = 0$, 无散场是某矢量场的旋度 $\nabla \cdot (\nabla \times \overrightarrow{A}) = 0$ 〈 矢分 〉

磁矢势 $\vec{B} = \nabla \times \vec{A}$, 即 $\iint_S \vec{B} \cdot d\vec{S} = \oint_L \vec{A} \cdot d\vec{l} = \Phi_B$ (很像 $\oint_L \vec{B} \cdot d\vec{l} = \mu_0 I$, 故 \vec{B} 生成 \vec{A} 就像 \vec{j} 生成 \vec{B}) 电势可以加个任意无梯度场(常数) 而不影响 \vec{E} , 矢势可以加个任意无旋场(梯度) 而不影响 \vec{B}

库仑规范 取矢势散度为零 $\rightarrow \nabla^2 \vec{A} = -\mu_0 \vec{j} \langle e \vec{a} \rangle$

例 对于匀强磁场 $\vec{B} = B\vec{e_z} \left[B\pi r^2 = 2\pi rA \right] \vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$

 $\overrightarrow{A} \cdot \overrightarrow{p} = \begin{bmatrix} \frac{1}{2} (\overrightarrow{B} \times \overrightarrow{r}) \cdot \overrightarrow{p} = \frac{1}{2} \overrightarrow{B} \cdot (\overrightarrow{r} \times \overrightarrow{p}) = \end{bmatrix} \frac{1}{2} B L_z$

 \overline{M} 无限长载流直导线, \overline{A} 与导线平行, Γ 取长为 l 的矩形环路,

 $\Delta A_z l = \Phi_B = l \frac{\mu_0 I}{2\pi} \int \frac{\mathrm{d}r}{r} \int A_z(r) = \frac{\mu_0 I}{2\pi} \ln \frac{1}{r} + \mathring{\mathbf{g}} \mathring{\mathbf{g}}$

(零势点不能取在无穷远)

囫 无限长密绕螺线管, 矢势和电流同向, 只有 A_{φ} 分量, $A_{\varphi}(r)=\mu_0 n I \frac{r}{2}(r < R)$, $=\mu_0 n I \frac{R^2}{2r}(r > R)$

Faraday's law of electromagnetic induction

法拉第电磁感应定律 (法拉第 1831 实验发现, 诺埃曼 1845 给出公式) $\mathscr{E}=-\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$ [磁通链] $\Psi=N\Phi_B$

标量的正负是相对于标定方向而言的: 若 Φ_B 与 $\overrightarrow{e_n}$ 同向并增大,则感应电动势逆着右手定则方向 \rightarrow

楞次定律 (1834) 感应电流的效果总是反抗激发感应电流的原因 (产生焦耳热要付出功,符合能量守恒)

注 因 B 无散, 故同一边界用任意面求通量都可以, 对变化的磁场适用静磁学的范围: 准静态, 类空间隔

例 用感应电动势驱动有负载的回路, $\Delta \Phi_B = \mathcal{E} \Delta t = \frac{I \Delta t}{D} = \Delta q R$

例 均匀磁场中的滑动矩形导线框 $\mathscr{E}=Blv$, 绕一端旋转的棒 $\mathscr{E}=\frac{1}{2}Bl^2\omega$ motional e.m.f. $[\overrightarrow{K}=\frac{\overrightarrow{F}_{\frac{k}{-e}}}{-e}=\overrightarrow{v}\times\overrightarrow{B}]$ **动生电动势** 导体切割磁感线 $\mathscr{E}_{12}=\int_1^2\overrightarrow{v}\times\overrightarrow{B}\cdot d\overrightarrow{l}=U_{12}$ alternating current generator (alternator)

交流发电机 $\mathscr{E} = 2Blv\sin\theta = -\frac{d}{dt}(BS\cos\omega t) = BS\omega\sin\omega t$

涡旋电场

induced e.m.f.

vortex electric field

实验发现感生电动势 与导体的性质无关 → 即使不存在导体, 变化的磁场也会激发出 涡旋电场

总电场 $\vec{E} = -\nabla \varphi - \partial_t \vec{A}$ (\vec{l} 与 \vec{S} 以右手定则为正)

磁通量 $\Phi_B = \alpha t$,则 $I = \frac{\alpha}{R_1 + R_2}$, $U_1 = IR_1$, $U_2 = IR_2$,高低如图

两(理想) 电压表读数不等, 即使连在相同点上

 $oxed{oxed{e}}$ 电子感应加速器 用 E_{k} 加速回旋电子, 由 mv = Bqr , 只要 $B \propto p$ 就可维持电子在固定轨道运动 $\frac{\mathbf{d}(mv)}{\mathbf{d}t} = -eE_{\tilde{k}} = \frac{e}{2\pi r} \frac{\mathbf{d}\Phi_B}{\mathbf{d}t} ,$ 左边 v 和右边 Φ_B 均从零开始积分,得 $mv = \frac{e}{2\pi r}\Phi_B$,而 $\Phi_B = \pi r^2 \overline{B}$ 」

条件: 轨道上的 $B(r)=\frac{1}{2}\overline{B}$ (轨道內平均感强的一半),加速不受相对论限制,受同步辐射限制 eddy current

<mark>涡流</mark> 金属内部的感应涡电流 \rightarrow 变压器采用多片与磁感线平行的硅钢片, 高频交流电可用于冶炼金属 electromagnetic damping

电磁阻尼阻碍相对运动, 可用于让电磁仪表指针快速稳定, 亦可用于驱动, 如转速表, 感应式异步电机

mutual inductance

mutual induction e.m.f.

mutual induction e.m.f. 互感 $\Psi_{12} = M_{12}I_1$, $\Psi_{21} = M_{21}I_2$ 互感电动势 $\mathcal{E}_2 = -M_{12}\frac{\mathrm{d}I_1}{\mathrm{d}t}$ (负号表示反抗电流变化) Neumann Neumann $M_{12} = M_{21} = k_m \oint \frac{\vec{l}_1 \, \mathrm{d} \, \vec{l}_1}{r}$ 」 <mark>纽曼公式</mark> $M_{12} = M_{21} = k_m \oint_{L_1} \oint_{L_2} \frac{\mathrm{d} \, \vec{l}_1 \cdot \mathrm{d} \, \vec{l}_2}{r_{12}} \equiv M$

 $\lceil M = \frac{N_2 \Phi_1}{I_1} = \frac{N_1 \Phi_2}{I_2} \rfloor M \leqslant \sqrt{L_1 L_2} , \, 无漏磁时取等号$ **例** $嵌套螺线管 <math>B = \mu_0 \frac{N_1 I_1}{l}, \, M = \frac{\Psi_{12}}{I_1} = \mu_0 \frac{N_1 N_2 S}{l}$

例 相距 d 共轴平行的一大一小载流圆环, 记 $r=\sqrt{d^2+R_2^2}$, 大对小, 近似匀场 $\Phi_B=\frac{\mu_0IR_2^2}{2r^3}\pi R_1^2$, 小对大,

近似偶极子, 选球冠做积分 $\Phi_B = k_m \frac{I\pi R_1^2}{r^3} \int_0^{\sin^{-1}(d/r)} (2\cos\theta)(r^2 2\pi\sin\theta \,\mathrm{d}\theta)$, 而 $\sin^2\theta \big|_0^{\sin^{-1}} = \frac{R_2^2}{r^2}$, 两结果一致 self inductance inductance

自感 $\Psi = LI$ 电感L > 0 H(亨利)=Vs/A 与回路形状有关 (若有铁芯还和 I 有关) 自感电动势 $\mathscr{E} = -L \frac{\mathrm{d}I}{\mathrm{d}t}$

例 螺线管或螺绕环 $B=\mu_0 nI$, $L=NBS/I=\mu_0 n^2 V$, 其中 V=lS **注** 充介质后 $L=\mu_r L_0$, magnetic circuit

磁路 由铁芯构成磁感应管可类比电路, $I o \Phi_B$, $\sigma o \mu$, $\mathscr{E} o \mathscr{E}_m = NI_0$, $R o R_m = \frac{l}{\mu S}$

空气高磁阻 \rightarrow 在铁芯上开一条缝, 电感大幅下降, 但可提高 Q 值 \langle 电路 \rangle

串联电感的总自感, 其中的互感顺接取加反接取减, 如图 自感磁能 $W_L = \int_0^I LI \frac{dI}{dI} = \frac{1}{2}LI^2$, 互感磁能 $W_{12} = M_{12}I_1I_2$ 总磁能 $W_m = \frac{1}{2} \sum_i L_i I_i^2 + \frac{1}{2} \sum_{i \neq j} M_{ij} I_i I_j$

 $\begin{bmatrix} LI = \Phi_B = \oint \overrightarrow{A} \cdot \overrightarrow{d} \overrightarrow{l} \end{bmatrix} \rightarrow W_m = \frac{1}{2} \int \overrightarrow{A} \cdot (I \cdot \overrightarrow{d} \overrightarrow{l})$

用 w_m 计算两线圈总磁能: $w_m = \frac{1}{2}(\vec{B}_1 + \vec{B}_2) \cdot (\vec{H}_1 + \vec{H}_2) = \frac{1}{2}\mu(H_1^2 + H_2^2 + 2\vec{H}_1 \cdot \vec{H}_2) \rightarrow w_{\parallel} \geqslant 0, w_{\underline{u}}$ 可正可负 公式 电感储静磁能 $W_m = \frac{1}{2}\mu n^2 V I^2 = \frac{1}{2}BH_tV = \frac{1}{2}\mu H^2V$,一般形式为 $w_m = \frac{1}{2}\overrightarrow{H} \cdot \overrightarrow{B}$ 〈 电动 〉

总结: L 可用磁能 $=\frac{1}{2}LI^2$ 求或 Ψ/I 求, Ψ 可用平均磁链 $\iint I \, d\Phi/I$ 或 $\iint \Phi \, dI/I$ 求

囫 反向平行载流直导线,设粗细为 r (否则导线外 Φ_B 无穷大),间距 $d\gg r$,则单位长度 l 的自感为 $\lceil \Phi_B = \int Bl \, \mathrm{d}r = \int_r^{d-r} \frac{\mu_0 I}{2\pi} \Big[\frac{1}{r} + \frac{1}{d-r} \Big] l \, \mathrm{d}r = \frac{\mu_0 I l}{2\pi} \Big[\ln r - \ln (d-r) \Big] \Big|_r^{d-r} \approx \left(\frac{\mu_0 l}{\pi} \ln \frac{d}{r} \right) I \, \right] \, L = \frac{\mu_0 l}{\pi} \ln \frac{d}{r}$

将导线拉远磁能增加, 它加上磁场做的功 (导线相斥), 等于电源维持电流恒定做的功 (感应电流反抗)

dielectric

电介质 绝缘介质, 无 自由电荷 q_0 (以下用下标 $_0$ 表示与极化无关) , 因 极化 产生 束缚电荷 q' displacement polarization orientation polarization

无极性分子为电子的| 位移极化|, 极性分子还有| 取向极化|, 效应比前者强 (但高频电场下仅前者能跟上) 「视电子云为均匀分布, 其偏离原子核 d 产生的电场 $E_e=k_e\frac{qd}{R^3}$ 与外场 E 平衡, 得 $qd=4\pi\varepsilon_0R^3E$] atomic polarizability

原子极化率 $\vec{p} = \alpha \vec{E}$,初阶近似 $\alpha = 3\varepsilon_0 V$ (预测氢原子 $k_e \alpha \approx 0.12 \times 10^{-30}$ m³,实验值 0.67×10^{-30}) polarizability tensor

对于分子 α_{ij} 为 极化张量 (碳原子 $k_e \alpha \approx 1.76 \times 10^{-30}, \, \mathrm{CO_2}$ 分子轴向 $4.0 \times 10^{-30}, \, \mathrm{垂}\, \mathrm{直}$ 于轴 1.8×10^{-30}) polar molecules

极性分子 例如水分子, 无需外电场就有 固有电偶极矩 $\vec{p_0} \approx 6.17 \times 10^{-30}~\mathrm{Cm}$ (很大, 所以是个好溶剂)

electric polarization intensity $\overrightarrow{p}_{\overrightarrow{A}}$ = $nq\overrightarrow{l}$ C/m², 分子数体密度 $n=\frac{N}{V}$ 「 $q_{\overrightarrow{n}}$ = $nq\overrightarrow{l}$ C/m², 分子数体密度 $n=\frac{N}{V}$ 「 $q_{\overrightarrow{n}}$ = $nq\overrightarrow{l}$ C/m², 分子数体密度 $n=\frac{N}{V}$ 「 $q_{\overrightarrow{n}}$ = $nq\overrightarrow{l}$ = $nq\overrightarrow{l}$ C/m², 分子数体密度 $n=\frac{N}{V}$ 「 $q_{\overrightarrow{n}}$ = $nq\overrightarrow{l}$ = $[q_{\mathfrak{N}} = qnl \, dS \cos \theta = \overrightarrow{P} \cdot d\overrightarrow{S}]$

 $ightarrow q_{
m I\!\!I}$ 仅存在于界面或自由电荷附近,均匀极化 ho_e $^{\prime}$ = $^{\prime}$ 0,总束缚电荷为零 depolarization field

极化电荷面密度 $\sigma_e' = \frac{q_{\widehat{n}}}{dS} = \overrightarrow{P} \cdot \overrightarrow{e_n} \equiv P_n$ 退极化场 σ_e' 产生的 E'

囫 平行板电介质, 均匀极化 \overrightarrow{P} , 则 $\pm \sigma_e' = \pm P$, $E' = P/\varepsilon_0$ 方向与 P 相反

——电极化率-

总电场 $\vec{E} = \vec{E}_0 + \vec{E}$ '(注: 对一般形状, \vec{E} ' 不一定总严格和 \vec{E}_0 反向, 即使介质和 E_0 都均匀) electric susceptibility

对各向同性线性介质, $\vec{P} = \chi_e \varepsilon_0 \vec{E}$ (不是 \vec{E}_0) 成正比 **电极化率** χ_e , 量纲为 1

对各向异性材料(如晶体) χ_e 为二阶张量, 高强光场下为非线性 $\overrightarrow{P} = \varepsilon_0 \left(\chi^{(1)} \overrightarrow{E} + \chi^{(2)} \overrightarrow{E}^2 + \ldots\right)$ 〈 现光 〉

例 均匀极化的电介质球, 表面 $\sigma_e^2 = P \cos \theta$ [由叠加原理, 可视为两个各带正负电的球错开 l 距离

$$\begin{split} \overrightarrow{P} &= \rho_e \overrightarrow{l} \,,\, \overrightarrow{p}_{\, \dot{\aleph}} = \overrightarrow{P} V,\, V\,\, \, \text{为球体积 } \langle \,\, \textbf{电动} \,\, \rangle \\ E_{\, \dot{\upbeta}} \,\, \text{和处于球心偶极子的外电场完全相同} \\ q &= \frac{4}{3} \pi R^3 \rho_e,\, E_{\, \dot{\upbeta}} = k_e \frac{qr}{R^3},\, E^{\, \prime} = \frac{\rho_e}{3\varepsilon_0} (-l) = -\frac{P}{3\varepsilon_0} \\ \overrightarrow{E} &= \overrightarrow{E}_0 - \frac{\chi_e}{3} \overrightarrow{E} \rightarrow \overrightarrow{E}_{\, \dot{\upbeta}} = \left(1 + \frac{\chi_e}{3}\right)^{-1} \overrightarrow{E}_0 \end{split}$$

Clausius-Mossotti

Lorentz-Lorenz

若介质由原子(或非极性分子) 组成 $\vec{P}=n\vec{p}$,有 $\boxed{\textbf{克劳修斯-莫索提公式}}$ 光学称 $\boxed{\textbf{洛仑茲-洛伦茨方程}}$ (用 $\chi_e=n\alpha/\varepsilon_0$ 不够精确,因为 $\vec{p}=\alpha\vec{E}$ 中的电场是除原子自身的 $\vec{E}_{\pm le}$, $\vec{P}=\chi_e\varepsilon_0\vec{E}$ 中是总的宏观电场) $\lceil \vec{E}_{\parallel} = -\frac{\vec{p}}{4\pi\varepsilon_0R^3} \rightarrow \vec{E} = \left(1-\frac{n\alpha}{3\varepsilon_0}\right)\vec{E}_{\pm le} \rightarrow \chi_e = \frac{n\alpha/\varepsilon_0}{1-n\alpha/3\varepsilon_0} \rfloor \alpha = \frac{3\varepsilon_0}{n}\frac{\varepsilon_r-1}{\varepsilon_r+2} \text{ (最适合气体, } \varepsilon_r\approx 1\text{ 回到原式)}$ 对于极性分子 \vec{p}_0 「分子在电场中势能 $U=-\vec{p}_0\cdot\vec{E}$,接玻耳兹曼分布,分子有能量 u 的概率 $\propto e^{-u\beta}$,故平均能量 $\langle u \rangle = \frac{\int_{-pE}^{pE} u \, e^{-u\beta} \, \mathrm{d}u}{\int_{-pE}^{pE} e^{-u\beta} \, \mathrm{d}u} = k_\mathrm{B}T - p_0 E \coth\left(\frac{p_0 E}{k_\mathrm{B}T}\right)$, $\vec{P}=n\langle p_0\cos\theta\rangle$ $\vec{e_E}=n(-\langle u \rangle)\frac{\vec{e_E}}{E}$,高温弱场下 Langevin

 $\frac{1}{x} \approx \frac{x}{3} \quad \boxed{\text{B之万方程}} \quad \chi_e = \frac{np_0^2}{3\varepsilon_0 k_{\mathrm{B}} T} \rightarrow$ 实验分别测定气体的两类极化 $\chi_e \approx \frac{n}{\varepsilon_0} \left(\alpha + \frac{p_0^2}{3k_{\mathrm{B}} T}\right)$

 $\vec{E}_0 \to \vec{P}_0 = \varepsilon_0 \chi_e E_0 \to \sigma_e' \to \vec{E}_1' = -\frac{\chi_e}{3} \vec{E}_0 \to \vec{P}_1 = \varepsilon_0 \chi_e E_1 \to \vec{E}_2' = -\frac{\chi_e}{3} \vec{E}_1 \to \dots$ 求级数和 $\vec{E} = \sum_{n=0}^{\infty} \left(-\frac{\chi_e}{3} \right)^n E_0$

↓引入 7 可避免无限递推地求总电场

electric displacement

dielectric constant / electric permittivity

电位移矢量 / 电感应强度 $\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon \vec{E}$, 介质的 $\boxed{\Omega}$ 电常量 / 电容率 $\varepsilon = \varepsilon_r \varepsilon_0$

例 介质中的点电荷 $\vec{E} = \frac{1}{4\pi\varepsilon} \frac{q}{r^2} \vec{e_r} = k_e \frac{q/\varepsilon_r}{r^2} \vec{e_r}$ (介质能部分屏蔽, 导体则完全抵消)

vacuum

relative

真空介电常量 $\varepsilon_0 = (\mu_0 c^2)^{-1} \approx 8.85 \times 10^{-12} \text{ F/m}$ 相对介电常量 $\varepsilon_r = 1 + \chi_e, 20 \text{ °C}$ 下 $\varepsilon_{r, \pm 1} \approx 1.0005$ $\varepsilon_{r, \star} \approx 80$ 「 \vec{E}_0 和 \vec{D} 散度相同,若旋度也相同,即 $\nabla \times \vec{D} = 0 + \nabla \times \vec{P}$ 为零的话」 $\rightarrow \vec{D} = \varepsilon_0 \vec{E}_0 \rightarrow \vec{E} = \vec{E}_0 / \varepsilon_r \rightarrow C = \varepsilon_r C_0$

 \overrightarrow{E} 不能认为 \overrightarrow{D} 和 q' 无关, 上式成立的条件: 均匀电介质充满电场所在空间, 或表面沿等势面填充

例 带电导体球外包裹一层电介质壳, 球内 $\vec{E}, \vec{P}, \vec{D} = 0$, 球外 $\vec{D}_{r>a} = \frac{q}{4\pi r^2} \vec{e_r} \rightarrow \vec{E}_{a\sim b} = \vec{D}/\varepsilon$, $\vec{E}_{r>b} = \vec{D}/\varepsilon_0$, $\vec{P} = \varepsilon_0 \chi_e \vec{E}$, $\rho_e = 0$, $\sigma_e = P_n$ 记 $k = \frac{1-\varepsilon_r^{-1}}{4\pi}$, 内表面 $\sigma_e = -k\frac{q}{a^2}$ 外表面 $\sigma_e = k\frac{q}{b^2}$ 总感应电荷 $\sigma_e' = \frac{\chi_e}{\varepsilon_r} q$ $W_e = \frac{1}{2} \int ED \, dV = \left(\frac{q}{4\pi}\right)^2 \frac{4\pi}{2} \left(\varepsilon^{-1} \int_{0}^{b} + \varepsilon_0^{-1} \int_{0}^{\infty}\right) \frac{r^2 \, dr}{r^4} = \frac{q^2}{8\pi\varepsilon} \left(\frac{1}{a} + \frac{\chi_e}{b}\right)$

磁介质

Ampère molecular current hypothesis

magnetization current

安培分子电流假说 分子环流定向排列形成宏观 **磁化电流 / 束缚电流** (无热效应) magnetizing current magnetizing field magnetic medium magnetized 外加 **励磁电流** 产生 **磁化场** \vec{B}_0 将 **磁介质** (如铁芯) **磁化** 被磁化后 \vec{B}_0 与 \vec{B}_0 同向, 故铁芯能使线圈的磁通增加

① 环流观点: 定义 $\overrightarrow{\mathbf{magnetization}}$ $\overrightarrow{\mathbf{m}}$ $\equiv \frac{\overrightarrow{m}_{\mathcal{H}}}{\mathrm{d}V} = nI\overrightarrow{S}$ A/m, 环流体密度 $n = \frac{N}{V}$ $\lceil I_{\mathbb{H}} = InS \, \mathrm{d} l \sin \theta = \overrightarrow{M} \cdot \mathrm{d} \overrightarrow{l} \rceil$

magnetization current density $\oint_L \overrightarrow{M} \cdot \frac{d}{l} = I'_{(L \bowtie)} \rightarrow$ <u>磁化电流密度</u> $\overrightarrow{j}' = \nabla \times \overrightarrow{M}$

 $\stackrel{\cdot}{
ightarrow} I_{rak{N}}$ 仅存在于界面或自由电流附近, 均匀磁化 $\stackrel{
ightarrow}{j}$ '=0

面磁化电流密度 \vec{i} '= $\frac{I_{\mathbb{N}}}{\mathrm{d}l}$ = $\vec{M} \times \vec{e_n} \equiv M_t$ 总磁场 $\vec{B} = \vec{B}_0 + \vec{B}$ ' \downarrow [$\oint_L \vec{B} \cdot \mathrm{d} \vec{l} = \mu_0 (I_0 + I')_{(Lh)}$,联立 \vec{M} 的环路定理消去 $I' \downarrow \rightarrow \oint_I \vec{H} \cdot \mathrm{d} \vec{l} = I_{0(Lh)}$

 \vec{B}_0 和 \vec{H} 旋度相同, 若散度也相同, 即 $\nabla \cdot \vec{H} = 0 - \nabla \cdot \vec{M}$ 为零的话 \rightarrow 若充满磁介质, $\vec{H} = \mu_0^{-1} \vec{B}_0$, $\overrightarrow{B} = \mu_0(\overrightarrow{H} + \overrightarrow{M}) = B_0 + \mu_0 M$ (即使是线性介质, 分界面处 \overrightarrow{M} 的散度可以为无穷大) 泊松方程 $\nabla^2 \varphi_m = \nabla \cdot \overrightarrow{M}$

magnetic polarization intensity ② 磁荷观点: 定义 $\overline{$ $\overline{ w}$ \overline{w} $\overline{ w}$ $\overline{ w$

退磁场 σ_m 产生的 H', 总 $\vec{H} = \vec{H}_0 - \vec{H}'$, $\vec{P_m} = \chi_m \mu_0 \vec{H}$

辅助矢量 | 磁感应强度 | $\overrightarrow{B} = \mu_0 \overrightarrow{H} + \overrightarrow{P_m} = \mu_0 (1 + \chi_m) \overrightarrow{H} \equiv \mu \overrightarrow{H}$

magnetic susceptibility magnetic permeability

③ 两种观点计算结果相同, 联系 (各向同性线性介质) $\overrightarrow{P_m} = \mu_0 \overrightarrow{M}$, $\overrightarrow{M} = \chi_m \overrightarrow{H} \rightarrow \overrightarrow{j}' = \chi_m \overrightarrow{j_0}$

囫 均匀磁化介质球的磁场, 取 \overrightarrow{e}_{i} 与 \overrightarrow{M} 同向, 体内电流 \overrightarrow{i} '= $\nabla \times \overrightarrow{M}$ =0,

表面束缚电流 $\vec{i}' = \vec{M} \times \vec{e_n} = M \sin \theta \vec{e_\phi}$, 形同均匀带电旋转球壳 $\vec{i} = \sigma_e \vec{v} = \sigma_e \omega R \sin \theta \vec{e_\phi}$ 故球内为均匀磁场 $\vec{B} = \frac{2}{3}\mu_0 \vec{M}$, 球外同纯磁偶极子 $\vec{m} = \vec{M}V$

注 无自由电流的静磁问题可直接从无自由电荷静电问题类比 $\vec{D} \rightarrow \vec{B}, \ \varepsilon_0 \vec{E} \rightarrow \mu_0 \vec{H}, \ \vec{P} \rightarrow \mu_0 \vec{M}$

paramagnetic substance

弱磁质 $B' \ll B_0$,同向为 顺磁质 源于力矩将磁偶极子拽向平行于外场方向, 因电子 一般成对自旋反平行排列, 故通常出现在奇数电子的原子或分子中 (铜, 氢是例外) diamagnetic substance

反向为 抗磁质 (定性解释) 源于诱导轨道磁矩和磁场方向相反 最弱,只能在没有顺磁性的偶数电子的原子中才能观察到

ferromagnetic substance hysteresis loop

强磁质 $B' \gg B_0$,自旋平行的为 铁磁质 ,有磁滞回线 $\overrightarrow{M} \times \overrightarrow{H}$

|磁滞损耗| 因磁滞消耗的能量, $W = \oint H \frac{d}{d}B = 磁滞回线包围面积$ coercive force

矫顽力 H_C 使介质完全退磁所需反向磁化场大小, 小的叫soft magnetic material hard magnetic materia hard magnetic material

|**软磁材料**| (纯铁, 铁氧体 $\sim 1 \text{ A/m}$) 大的叫| **硬磁材料**| , 即 permanent magnet

永磁体| (钕铁硼合金 ~10^{4~6} A/m)

$B=\mu_0(H+M)$ $(M\gg H)$ ~1T 永磁 ~10² A/m *H*∝*I*

magnetic domain

|磁睛|| 无外磁场铁磁质中, 自旋磁矩的小范围自发磁化区 $(\mu m \sim mm)$ | Curie point

|**居里点|** 铁磁顺磁相变点, 高于此温度磁畴瓦解 (铁 770°C 钴 1131°C)

小磁针会因相吸同向排列,但真正导致铁磁性的是量子的交换力 antiferromagnetism

自旋反平行,且磁矩等强为 | **反铁磁性** | (FeO),不等强为 | **亚铁磁性** | (Fe₃O₄) | 凝态 |gyromagnetic material magnetic material with rectangular hysteresis loop

矩磁材料 磁滞回线接近矩形, 适合做信息存取 **旋磁材料** 微波技术中用于抑制反射波

|磁致伸缩| 铁磁质磁畴磁化方向改变引起晶格间距改变 (~10⁻⁵)

 B_0

ferroelectrics

铁电体 \vec{P}, \vec{E} 间有电滞效应, 类似磁滞, 有很强的极化和压电效应 (如石英, 酒石酸钾钠, 钛酸钡)

|驻极体|| 在极化后能将极化冻结起来, 类似永磁体 (如石蜡) piezoelectric effect

压电效应 晶体发生机械形变时会极化, 在相对两面产生异号极化电荷 → 话筒, 晶体振荡器

逆压电效应 晶体上加电场会发生机械形变 → 耳机, 超声波发生 magnetostatic shielding

静磁屏蔽 用高磁导率的铁磁材料做成屏蔽罩以屏蔽外磁场 (效果不如静电屏蔽,可采用多层铁壳屏蔽)

 $\overline{{f p}}$ 内部磁场恒定 $\partial_t ec{B} = abla imes ec{E} = 0$,通过理想导体回路的磁通量恒定 $\lceil rac{{f d} arPhi_B}{{f d} t} = - \oint ec{E} \cdot {f d} \ ec{l}
ceil$

superconductor

Meissner effect

|**超导体**| 除电导无穷外还有 | **迈斯纳效应 / 完全抗磁性**| 内部 $\overrightarrow{B} \equiv 0$, $\chi_m = -1$ 〈 凝态 〉 超导体电流只存在于表面 $\begin{bmatrix} \vec{j} = \mu_0^{-1} \nabla \times \vec{B} - 0 = 0 \end{bmatrix}$

边界条件

 \vec{E} 线终止于电荷, \vec{D} 线终止于自由电荷, 介质分界面上各分量的连续性: 若无自由电荷, $\bigoplus_{S} \vec{D} \cdot d\vec{S} = (D_{2n} - D_{1n})S = 0$, $\oint_{L} \vec{E} \cdot d\vec{l} = (E_{2t} - E_{1t})l = 0$ 若无传导电流, $\bigoplus_{S} \vec{B} \cdot d\vec{S} = (B_{2n} - B_{1n})S = 0$, $\oint_{L} \vec{H} \cdot d\vec{l} = (H_{2t} - H_{1t})l = 0$ $D=\varepsilon E \rightarrow$ 电场线折射 $\frac{\tan \theta_1}{\tan \theta_2} = \frac{\varepsilon_1}{\varepsilon_2}$, $B=\mu H \rightarrow$ 磁感应线折射 $\frac{\tan \theta_1}{\tan \theta_2} = \frac{\mu_1}{\mu_2}$ 与光线相反 (电介质凸透镜会使电场线发散)

有自由电荷 $\Delta D_n = q_0/S = \sigma_0$, 电势在边界连续, 电势的梯度继承了 E_n 的不连续 有传导电流 $\Delta H_t = I_0/l = i_0$, 磁矢势在边界连续, 矢势的旋度继承 B_t 的不连续 (矢势散度取决于规范)

全电流

(麦克斯韦 1861) $\nabla \cdot (\nabla \times \vec{H}) = \nabla \cdot \vec{j}$, 等式左边须为零, 但对非稳恒电流 \vec{j} 并非无散

称新增项为 位移电流密度 $\overrightarrow{j_D} \equiv \partial_t \overrightarrow{D}$,包括了 $\mu_0^{-1} \nabla \times \overrightarrow{B} = \overrightarrow{j_0} + \nabla \times \overrightarrow{M} + \partial_t \overrightarrow{P} + \varepsilon_0 \partial_t \overrightarrow{E}$ 中的最后两项 conducting current total current conducting current total current m上 传导电流 $\vec{j_0}$ 称为全电流 $\vec{j} = \vec{j_0} + \vec{j_D}$ 在所有情况下连续

Linear Isotropic Homogeneous constitutive relations

对于 | 线性各向同性均匀介质| , | 结构方程| $\vec{D} = \varepsilon \vec{E}$, $\vec{B} = \mu \vec{H}$, | 欧姆定律| $\vec{j_0} = \sigma \vec{E}$

麦方程组	积分形式 (强调散度旋度)	微分形式 (场由电荷电流产生)	边界条件
电高斯	$\oiint_{S} \vec{D} \cdot \mathbf{d} \vec{S} = q_0$	$\nabla \cdot \vec{D} = \rho_0$	$\Delta D_n = \sigma_0$
非静电环路	$\oint_{L} \vec{E} \cdot \mathbf{d} \vec{l} = -\iint \partial_{t} \vec{B} \cdot \mathbf{d} \vec{S}$	$\nabla \times \vec{E} + \partial_t \vec{B} = 0 - \vec{j_m}$	$\Delta E_t = 0$
磁高斯		$\nabla \cdot \vec{B} = 0 + \rho_m$	$\Delta B_n = 0$
非静磁环路	$\oint_{L} \overrightarrow{H} \cdot \mathbf{d} \overrightarrow{l} = I_{0} + \iint \partial_{t} \overrightarrow{D} \cdot \mathbf{d} \overrightarrow{S}$	$\nabla \times \vec{H} - \partial_t \vec{D} = \vec{j_0}$	$\Delta H_t = \overrightarrow{i_0}$

Maxwell equations

麦克斯韦方程组 (1864) (绿色为若存在磁单极子) 以及洛伦兹力公式 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) + q_m(\vec{H} - \vec{v} \times \vec{D})$ 构成电动力学基本方程 (连续性方程 $\nabla \cdot \vec{j} = -\partial_t \rho_e$, $\nabla \cdot \vec{j_m} = -\partial_t \rho_m$ 可以推出来) (对于微分形式还需边 界条件才能定解) 加上牛二律, 构成完整的带电粒子和电磁场相互作用的经典描述

|电磁波|

在 ρ_e 和 $\vec{j}=0$ 的空间, 电磁波能够独立存在, 并以 v_p 传播 (赫兹 1888 实验证实) $\forall \nabla \times \vec{E} = -\frac{\partial_t \vec{B}}{\partial t}$ 两边取 $\nabla \times$, 左边 $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\nabla^2 \vec{E}$, 右边 $-\frac{\partial_t (\nabla \times \vec{B})}{\partial t} = -\mu \varepsilon \frac{\partial_t^2 \vec{E}}{\partial t}$ 得波动方程 $\nabla^2 \vec{E} = v_p^{-2} \frac{\partial^2 \vec{E}}{\partial t}$, 对 \vec{H} 相同, 基本解是 $\omega = \frac{2\pi}{T}$, $k = \frac{2\pi}{\lambda}$ 的平面波, 相速度 $v_p = \frac{\lambda}{T} = \frac{\omega}{k} = \frac{\omega}{\lambda}$

电磁波是横波,假定 $E_z, H_z = 0$, \langle 光学 \rangle 设线偏振 $E_y = 0$, 得 $\partial_t H_x$, $\partial_z H_x = 0$, 故只剩 H_y , 有 $\partial_z E_x = -\mu \partial_t H_y$, $\partial_z H_y = -\varepsilon \partial_t E_x$ 解可写作 $E_x(z,t) = E_0 \cos(kz - \omega t + \theta)$, $H_y(z,t) = H_0 \cos(kz - \omega t + \theta)$ 结论 \overrightarrow{EHk} 右手正交,电场磁场同相位, $\sqrt{\mu}H_0 = \sqrt{\varepsilon}E_0 \rightarrow E_0 = ZH_0$ 由折射率定义 $n = \frac{c}{v_p}$ 知 $n = \sqrt{\varepsilon_r \mu_r}^{\sharp \, \text{three}} \sqrt{\varepsilon_r}$ (需测光频下的 ε) wave impedance characteristic impedance of vacuum 波阻抗 $Z = \sqrt{\frac{\mu}{\varepsilon}}$, 自由空间的 **真空特征阻抗** $Z_0 \approx Z |n| \approx 377 \Omega$

对于线性介质 「全微分的一半」 电磁场的 能量密度 为 $w=\frac{1}{2}(\vec{E}\cdot\vec{D}+\vec{H}\cdot\vec{B})=w_e+w_m$ 电磁场总能量 $W=\frac{1}{2}\iiint_{\infty}(\vec{E}\cdot\vec{D}+\vec{H}\cdot\vec{B})\,\mathrm{d}V=\frac{1}{2}\iiint_{\infty}(\rho\varphi+\vec{j}\cdot\vec{A})\,\mathrm{d}V$

(前者认为能量存储在电场里,后者认为能量存储在电荷里,两者结果相等,一般不认为后者是能量密度) 由 **洛伦兹力** (体) 密度 $\vec{f} = \rho_e \vec{E} + \vec{j} \times \vec{B}$, 得电磁场做功的 **功率密度** $P_{\eta_t} = \vec{f} \cdot \vec{v} \stackrel{\text{磁力不做功}}{=====} \rho_e \vec{E} \cdot \vec{v} = \vec{E} \cdot \vec{j}$ 目标: 用场量 \vec{E}, \vec{H} 来表示 P_{η_t} (不含 ρ_e, \vec{j}) \rightarrow 用非静磁环路换掉 \vec{j} 得 $P_{\eta_t} = \vec{E} \cdot \nabla \times \vec{H} - \vec{E} \cdot \partial_t \vec{D}$, 矢分公式 $\vec{E} \cdot \nabla \times \vec{H} = -\nabla \cdot (\vec{E} \times \vec{H}) + \vec{H} \cdot (\nabla \times \vec{E})$, 用非静电环路换 $\nabla \times \vec{E} = -\partial_t \vec{B}$ 最终得 $P_{\eta_t} = \vec{E} \cdot \nabla \cdot \vec{H} = -\nabla \cdot (\vec{E} \times \vec{H}) + \vec{H} \cdot (\nabla \times \vec{E})$, 用非静电环路换

 $-\nabla \cdot (\vec{E} \times \vec{H}) - (\vec{E} \cdot \partial_t \vec{D} + \vec{H} \cdot \partial_t \vec{B}) \equiv -\nabla \cdot \vec{S} - \partial_t w$,记 $P_{th} = \partial_t w_{th}$,有能量守恒公式 $\partial_t (w_{th} + w) = -\nabla \cdot \vec{S}$ 例 用电阻线连接正负电荷,电流产生 \vec{B} , $\vec{E} \times \vec{B}$ 垂直指向电阻,即电磁能是从侧面空间输入电阻的 Poynting vector / energy-flux density

坡印廷矢量 / 能流密度矢量 $\vec{S} \equiv \vec{E} \times \vec{H}$

其大小 $S = \frac{1}{Z}E^2 \ {
m W/m^2}$, 对于电磁波 $S = wv_p$ light intensity

光强 $I = \frac{1}{t} \int_t S(t) dt \quad (t \gg T)$ 对于单色平面波 $I = \frac{1}{2Z} E_0^2$ **仞** 非相对论加速带电粒子的辐射(匀速不发射电磁波)

$$\lceil \tan \alpha = \frac{c\tau}{vt\sin\theta} = \frac{c}{at\sin\theta} \rfloor E_{\theta} = k_e \frac{qa\sin\theta}{c^2r} \to S \propto \frac{a^2}{r^2}\sin^2\theta$$

对于偶极子, 位移 $\propto \cos \omega t$, 则 $a \propto \omega^2 \cos \omega t \rightarrow S \propto \omega^4 \langle e d d \rangle$

——动量

momentum density

ight pressure

 \vec{t} 可以 $\vec{t} = \frac{\partial_t \vec{g}_{\mathfrak{N}}}{\partial_t}$ (机械动量(体)密度),有 **动量守恒公式** $\frac{\partial_t (\vec{g}_{\mathfrak{N}} + \vec{g})}{\partial_t (\vec{g}_{\mathfrak{N}} + \vec{g})} = \vec{\nabla} \cdot \vec{T} \rightarrow -\vec{T}$ 表示 **动量流密度** Maxwell's stress tensor

麦克斯韦应力张量 $\overrightarrow{T} \equiv \overrightarrow{ED} + \overrightarrow{HB} - w\overrightarrow{I}$,分量形式 $T_{ij} = E_i D_j + H_i B_j - \frac{1}{2} \delta_{ij} \sum_k^3 (E_k D_k + H_k B_k)$ 表示电磁场作用在单位表面积上的应力, 对角元为压力, 非对角元为剪切力

 $\boxed{\textbf{M}}$ 费曼圆盘佯谬: 悬空圆盘上固定有通电线圈和带电小球, 则断电时涡旋电场会驱动小球让盘转起来 $\boxed{\textbf{S}}$ [断电前 $\boxed{\textbf{M}}$] 沿涡旋向, 电磁场具有角动量 $\boxed{\textbf{M}}$] $\boxed{\textbf{M}}$ $\boxed{\textbf{M}$ $\boxed{\textbf{M}}$ $\boxed{\textbf{$

带电粒子在电磁场中 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) = -q[\nabla \varphi + \frac{\partial}{\partial t} \vec{A} - \vec{v} \times (\nabla \times \vec{A})] = -q[\nabla \varphi + \frac{\partial}{\partial t} \vec{A} - \nabla (\vec{v} \cdot \vec{A})] = \frac{\partial}{\partial t} (m\vec{v})$ 注: $\frac{\partial}{\partial t} \vec{A} (\vec{r}, t) = \frac{\partial}{\partial t} \vec{A} + (\vec{v} \cdot \nabla) \vec{A}$,若沿粒子轨道 \vec{A} 不变则后项为零,矢分 $\vec{v} \times (\nabla \times \vec{A}) = \nabla (\vec{v} \cdot \vec{A}) - (\vec{v} \cdot \nabla) \vec{A}$

 $\nabla U=0$ 时 正则动量 $\vec{p}=m\vec{v}+q\vec{A}$ 守恒 (满足正则对易关系) 而 $m\vec{v}$ 改叫作 **动力学动量** $\vec{\Pi}=\vec{p}-q\vec{A}$ 例 仅有 E_{g} 时能量守恒 $H=\frac{1}{2}mv^2+q\varphi=$ 常数,仅有 E_{g} 时正则动量守恒 $\lceil \frac{d}{dt}(mv)=qE_{g}=-q\frac{d}{dt}A \rceil$