Catching The Star

Analyzing Yelp Coffee Shop Dataset

Veronica Hui Feb 2017 **Goal:** Predicting the customer sentiment for coffee shops on Yelp

Motivation: Understand the driver of user sentiment of a coffee shop on Yelp

The Dataset

- •5 Files on business, user, checkins, tips, and review
- •100k+ Rows
- •100+ Columns

First Attempt - Price and Bias

Hypothesis 1: Based on the data set for coffee shops between 2004-10-12 and 2016-07-19, the higher the price, the higher expectation (star of the business - star by the user) compared to its average rating

Observation:

- At a lower price range, there's a wider variation of user expectation; the higher the range is, the narrower the variation, and the expectation is concentrated on the positive side, where individual rating is lower than the average business rating
- There are way more reviews for coffee shops in the \$ - \$\$ price range, and most meets the expectation

Price and Bias - Analysis

```
In [57]: from sklearn.metrics import mean absolute error
          mean absolute error(y true = y test, y pred=y pred)
Out[57]: 0.8743576860566995
In [54]: clf.best estimator .coef
Out[54]: array([-0.])
In [118]: %matplotlib inline
          plt.scatter(x = y_test, y=y_pred)
Out[118]: <matplotlib.collections.PathCollection at 0x13145d250>
            0.010
            0.005
            0.000
           -0.005
           -0.010
           -0.015
           -0.020
```


Price and Bias - Analysis

```
In [57]: from sklearn.metrics import mean absolute error
          mean absolute error(y true = y test, y pred=y pred)
Out[57]: 0.8743576860566995
In [54]: clf.best estimator .coef
Out[54]: array([-0.])
In [118]: %matplotlib inline
          plt.scatter(x = y_test, y=y_pred)
Out[118]: <matplotlib.collections.PathCollection at 0x13145d250>
            0.010
            0.005
            0.000
           -0.005
           -0.010
           -0.015
           -0.020
```


User Engagement and Amenities

Hypothesis 2: The more engaged the business keeps the customer, using review, checkin, etc, the higher rating it gets

Model: Linear regression

Evaluation: Accuracy

	Coefficient_LR	Feature
14	0.177949	Total_Votes
5	0.153703	review_count
13	0.115564	attributes.Free-Wi-Fi
2	0.095881	attributes.Parking.street
11	0.092031	longitude
1	0.062554	attributes.Parking.lot
10	0.046424	latitude
0	0.030276	attributes.Outdoor Seating
12	0.016218	attributes.Parking.validated
16	0.014489	Total_Likes
7	-0.005735	attributes.Parking.valet
6	-0.025628	attributes.Accepts Credit Cards
4	-0.028289	attributes.Parking.garage
9	-0.059142	open
17	-0.080591	Total_Checkin
3	-0.085925	attributes.Price Range
8	-0.164597	attributes.Wi-Fi
15	-0.183266	Total_Tips

- Predicting sentiment instead of stars
- Models: Logistic regression & Random Forest
- Evaluation: accuracy, f1 and AUC

Total_Votes

review_count

attributes.Free-Wi-Fi

attributes.Parking.street

longitude

latitude

attributes.Outdoor Seating

attributes.Parking.lot

Total_Likes

attributes.Parking.validated

attributes.Parking.valet

attributes.Accepts Credit Cards

attributes.Parking.garage

open

attributes.Price Range

attributes.Wi-Fi

Total_Checkin

Total_Tips

Feature	Coefficient_LgReg
Total_Votes	1.132725
review_count	0.658793
attributes.Free-Wi-Fi	0.466701
attributes.Parking.street	0.246041
longitude	0.188361
latitude	0.145114
attributes.Outdoor Seating	0.087756
attributes.Parking.lot	0.082555
Total_Likes	0.077926
attributes.Parking.validated	0.029697
attributes.Parking.valet	-0.037266
attributes.Accepts Credit Cards	-0.054014
attributes.Parking.garage	-0.094747
open	-0.125446
attributes.Price Range	-0.183227
attributes.Wi-Fi	-0.548491
Total_Checkin	-0.587731
Total_Tips	-0.608664

Feature	Coefficient_LgReg
Total_Votes	1.132725
review_count	0.658793
attributes.Free-Wi-Fi	0.466701
attributes.Parking.street	0.246041
longitude	0.188361
latitude	0.145114
attributes.Outdoor Seating	0.087756
attributes.Parking.lot	0.082555
Total_Likes	0.077926
attributes.Parking.validated	0.029697
attributes.Parking.valet	-0.037266
attributes.Accepts Credit Cards	-0.054014
attributes.Parking.garage	-0.094747
open	-0.125446
attributes.Price Range	-0.183227
attributes.Wi-Fi	-0.548491
Total_Checkin	-0.587731
Total_Tips	-0.608664

Feature	Importance Score_RF
longitude	0.166892
latitude	0.145369
Total_Checkin	0.144488
review_count	0.141140
Total_Votes	0.140113
Total_Tips	0.093265
attributes.Price Range	0.035448
open	0.022624
attributes.Outdoor Seating	0.019595
attributes.Parking.street	0.019550
Total_Likes	0.012985
attributes.Parking.lot	0.012613
attributes.Accepts Credit Cards	0.012320
attributes.Wi-Fi	0.011858
attributes.Free-Wi-Fi	0.011379
attributes.Parking.garage	0.008666
attributes.Parking.valet	0.001253
attributes.Parking.validated	0.000442

```
In [171]: f1 = pd.DataFrame({'F1 RF': f1 rf, 'F1 LogReg': f1 lgreg},index=np.arange(1))
Out[171]:
             F1_LogReg F1_RF
             0.632231
                       0.674464
In [172]: auc = pd.DataFrame({'AUC RF':auc rf.mean(), 'AUC LogReg':auc lgreg.mean()},index=np.arange(1))
           auc
Out[172]:
             AUC_LogReg AUC_RF
           0 0.664576
                         0.687554
In [173]: accuracy = pd.DataFrame({'Accuracy RF':accuracy rf, 'Accuracy LogReg':accuracy lgreg},index=np.arange(1))
           accuracy
Out[173]:
             Accuracy_LogReg | Accuracy_RF
           0 0.627615
                             0.650628
```


	Coefficient_LR	Feature	Coefficient_LgReg	Importance Score_RF
1	1 0.092031	longitude	0.188361	0.166892
1	0 0.046424	latitude	0.145114	0.145369
1	7 -0.080591	Total_Checkin	-0.587731	0.144488
5	0.153703	review_count	0.658793	0.141140
1	4 0.177949	Total_Votes	1.132725	0.140113
1	5 -0.183266	Total_Tips	-0.608664	0.093265
3	-0.085925	attributes.Price Range	-0.183227	0.035448
g	-0.059142	open	-0.125446	0.022624
C	0.030276	attributes.Outdoor Seating	0.087756	0.019595
2	0.095881	attributes.Parking.street	0.246041	0.019550
1	6 0.014489	Total_Likes	0.077926	0.012985
1	0.062554	attributes.Parking.lot	0.082555	0.012613
6	-0.025628	attributes.Accepts Credit Cards	-0.054014	0.012320
8	-0.164597	attributes.Wi-Fi	-0.548491	0.011858
1	3 0.115564	attributes.Free-Wi-Fi	0.466701	0.011379
4	-0.028289	attributes.Parking.garage	-0.094747	0.008666
7	-0.005735	attributes.Parking.valet	-0.037266	0.001253
1	2 0.016218	attributes.Parking.validated	0.029697	0.000442
_		•		

	Feature	Importance Score_RF	Coefficient_LgReg
1	Total_Votes	0.263134	1.108487
2	review_count	0.222015	0.873157
5	attributes.Free-Wi-Fi	0.029270	-0.083926
4	attributes.Price Range	0.047260	-0.163040
0	Total_Checkin	0.293045	-0.628683
3	Total_Tips	0.145275	-0.778291


```
In [171]: f1 = pd.DataFrame({'F1 RF': f1 rf, 'F1 LogReg': f1 lgreg},index=np.arange(1))
Out[171]:
             F1_LogReg F1_RF
           0 0.632231
                       0.674464
In [172]: auc = pd.DataFrame({'AUC RF':auc rf.mean(), 'AUC LogReg':auc lgreg.mean()},index=np.arange(1))
Out[172]:
             AUC LogReg AUC RF
           0 0.664576
                         0.687554
In [173]: accuracy = pd.DataFrame({'Accuracy RF':accuracy rf, 'Accuracy LogReg':accuracy lgreg}, index=np.arange(1))
          accuracy
Out[173]:
             Accuracy_LogReg | Accuracy_RF
           0 0.627615
                             0.650628
                                      In [223]: f1 = pd.DataFrame({'F1_RF': f1_rf, 'F1_LogReg': f1_lgreg},index=np.arange(1))
                                                 f1
                                      Out[223]:
                                                   F1_LogReg F1_RF
                                                 0 0.640145
                                                             0.579365
                                      In [224]: auc = pd.DataFrame({'AUC RF':auc rf.mean(), 'AUC LogReg':auc lgreg.mean()},index=np.arange(1))
                                      Out[224]:
                                                   AUC_LogReg AUC_RF
                                                 0 0.640489
                                                               0.635434
                                      In [225]: accuracy = pd.DataFrame({'Accuracy RF':accuracy rf, 'Accuracy LogReg':accuracy lgreg}, index=np.arange(1))
                                                 accuracy
                                      Out[225]:
                                                   Accuracy_LogReg | Accuracy_RF
                                                 0 0.583682
                                                                   0.556485
```


User Engagement - Feature Engineering

Interaction: Price and Star

```
In [227]: ## star/price - higher, the better, i.e. for each dollar spent how much do you like this place?
    data['value'] = data['stars'].divide(data['attributes.Price Range'])
```

Ratios: Vote, Tip and Checkin taking into account the total number of review

```
In [228]: ## vote/review: the higher the better
data['vote_review'] = data.Total_Votes.divide(data.review_count)
## tip/review
data['tip_review'] = data.Total_Tips.divide(data.review_count)
## checkin/review
data['checkin_review'] = data.Total_Checkin.divide(data.review_count)
```

	Feature	Importance Score_RF	Coefficient_LgReg
0	value	0.634440	0.004822
2	review_count	0.085757	0.001492
3	vote_review	0.077127	0.000521
5	attributes.Free-Wi-Fi	0.013213	-0.000393
4	tip_review	0.065663	-0.001033
1	checkin_review	0.123800	-0.001738

User Engagement - Feature Engineering

Conclusion

- Value plays a critical role in consumer sentiment for coffee shops
- The more review, the more favorable the coffee shops are
- If the reviews are in high quality, and voted by other users, it's more likely to be a favorable coffee shop

Action

- Coffee Shop: Encourage customers to "rate us on Yelp" and provide such reward
- Yelp: Establish a more robust social network to engage users and provide more meaningful activities

Further Studies

Clustering and KNN: Customer clustering, predicting customer's rating for a specific business

NLP: employ NLP techniques to further digest consumer sentiment