UC Berkeley ICPC Team Notebook (2016-17)

Contents

1	Com	binatorial optimization 1		
	1.1	Dinitz's Algorithm		
	1.2	Min-cost Max-flow		
	1.3	Min-cost Matching		
	1.4	Max bipartite Matching		
	1.5	Global Min-cut		
2	Geometry 4			
	2.1	Convex Hull		
	2.2	Graham Scan		
	2.3	Intersecting Line Segments		
	2.4	Miscellaneous Geometry		
3	Numerical algorithms 7			
	3.1	Arbitrary Precision Arithmetic		
	3.2	Number Theory (modular, Chinese remainder, Linear Diophantine)		
	3.3	Systems of linear equations, Matrix Inverse, Determinant		
	3.4	Reduced row echelon form, Matrix rank		
	3.5	Fast Fourier Transform		
	3.6	Simplex Algorithm		
4	Graj	ph algorithms 12		
	4.1	Bellman-Ford shortest paths with negative edge weights (C++)		
	4.2	Floyd Warshall		
	4.3	Eulerian Path		
	4.4	Minimum Spanning Trees		
	4.5	Tarjan's Algorithm		
5	Data	structures 14		
	5.1	Adelson-Valskii Landis Tree		
6	Strin	14		
	6.1	Knuth-Morris-Pratt		
	6.2	Suffix Array		
	6.3	Suffix Array - DC3 Algorithm		
	6.4	Manacher's Algorithm		
	6.5	Z Algorithm		

1 Combinatorial optimization

1.1 Dinitz's Algorithm

```
#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
#define pb push_back

struct Edge {
   int u, v;
   LL cap, flow;
   Edge() {}
   Edge(int u, int v, LL cap): u(u), v(v), cap(cap), flow(0) {}
};

// Indexes of nodes are 0-indexed.
struct Dinic {
   int N;
   vector<Edge> E;
   vector<cint> > g;
   vector<int> d, pt;

   Dinic(int N_) : N(N_), E(0), g(N_), d(N_), pt(N_) {}
}
```

```
void add_edge(int u, int v, LL cap) {
          if (u != v) {
               E.pb(Edge(u, v, cap));
               g[u].pb((int)E.size() - 1);
               E.pb(Edge(v, u, 0));
               g[v].pb((int)E.size() - 1);
     bool bfs(int S, int T) {
          queue<int> q; q.push(S);
fill(d.begin(), d.end(), N + 1);
          d[S] = 0;
          while (!q.empty()) {
   int u = q.front(); q.pop();
               if (u == T) break;
               for (int i = 0; i < (int)g[u].size(); i++) {</pre>
                    int k = g[u][i];
                    Edge &e = E[k];
                    if (e.flow < e.cap && d[e.v] > d[e.u] + 1) {
    d[e.v] = d[e.u] + 1;
                         q.push(e.v);
          return d[T] != N + 1;
     LL dfs(int U, int T, LL flow = -1) {
   if (U == T || flow == 0) return flow;
          for (int &i = pt[U]; i < (int)g[U].size(); ++i) {</pre>
               Edge &e = E[g[U][i]];
Edge &oe = E[g[U][i] ^ 1];
               if (d[e.v] == d[e.u] + 1) {
   LL amt = e.cap - e.flow;
                    if (flow != -1 && amt > flow)
                         amt = flow;
                    if (LL pushed = dfs(e.v, T, amt)) {
                         e.flow += pushed;
oe.flow -= pushed;
                         return pushed;
          return 0;
     LL maxflow(int S, int T) {
          LL total = 0;
          while (bfs(S, T)) {
              fill(pt.begin(), pt.end(), 0);
while (LL flow = dfs(S, T))
   total += flow;
          return total;
};
// Solves SPOJ FASTFLOW
int main() {
     scanf("%d %d", &N, &E);
     Dinic dinic(N);
     for (int i = 0; i < E; i++) {
          int u, v;
          LL cap:
          scanf("%d %d %lld", &u, &v, &cap);
dinic.add_edge(u - 1, v - 1, cap);
dinic.add_edge(v - 1, u - 1, cap);
     printf("%11d\n", dinic.maxflow(0, N - 1));
     return 0;
```

1.2 Min-cost Max-flow

```
// Implementation of min cost max flow algorithm using adjacency // matrix (Edmonds and Karp 1972). This implementation keeps track of // forward and reverse edges separately (so you can set cap[i][j] != // cap[j][i]). For a regular max flow, set all edge costs to 0. // Running time, O(|V|^2) cost per augmentation // max flow: O(|V|^2) augmentations
```

```
min cost max flow: O(|V|^4 * MAX\_EDGE\_COST) augmentations
// INPUT:
       - graph, constructed using AddEdge()
       - source
// OUTPUT:
        - (maximum flow value, minimum cost value)
       - To obtain the actual flow, look at positive values only.
#include <bits/stdc++.h>
using namespace std:
typedef long long F;
typedef long long C;
#define F_INF 1e+9
#define C_INF 1e+9
#define NUM 10005
#define SIZE(x) ((int)x.size())
#define pb push_back
#define mp make_pair
#define fi first
#define se second
vector<F> cap;
vector<C> cost;
vector<int> to, prv;
C dist[NUM];
int last[NUM], path[NUM];
struct MinCostFlow {
  int V;
  MinCostFlow(int n) {
    cap.clear();
    cost.clear();
    to.clear();
    prv.clear();
    V = n;
    fill(last + 1, last + 1 + V, -1);
  void add_edge(int x, int y, F w, C c) {
  cap.pb(w); cost.pb(c); to.pb(y); prv.pb(last[x]); last[x] = SIZE(cap) - 1;
    cap.pb(0); cost.pb(-c); to.pb(x); prv.pb(last[y]); last[y] = SIZE(cap) - 1;
  pair<F, C> SPFA(int s, int t) {
    F ansf = 0;
    C ansc = 0:
    fill(dist + 1, dist + 1 + V, C_INF);
fill(path + 1, path + 1 + V, -1);
    deque<pair<C, int> > pq;
    dist[s] = 0;
path[s] = -1;
    pq.push_front(mp(0, s));
    while (!pq.empty()) {
      C d = pq.front().fi;
int p = pq.front().se;
pq.pop_front();
       if (dist[p] == d) {
        int e = last[p];
        while (e != -1) {
          if (cap[e] > 0) {
             C nd = dist[p] + cost[e];
if (nd < dist[to[e]]) {</pre>
              dist[to[e]] = nd;
               path[to[e]] = e;
               if (cost[e] <= 0) {
                 pq.push_front(mp(nd, to[e]));
                 pq.push_back(mp(nd, to[e]));
           e = prv[e];
    if (path[t] != -1) {
      ansf = F_INF;
      int e = path[t];
      while (e != -1) {
        ansf = min(ansf, cap[e]);
         e = path[to[e^1]];
```

```
e = path[t];
      while (e != -1) {
        ansc += cost[e] * ansf;
        cap[e^1] += ansf;
       cap[e] -= ansf;
        e = path[to[e^1]];
    return mp(ansf, ansc);
  pair<F, C> calc(int s, int t) {
   F ansf = 0;
    C ansc = 0:
    while (true) {
      pair<F, C> p = SPFA(s, t);
      if (path[t] == -1)
       break;
      ansf += p.fi;
      ansc += p.se;
    return mp(ansf, ansc);
};
int main() {
    return 0:
```

1.3 Min-cost Matching

```
// Min cost bipartite matching via shortest augmenting paths
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense // graphs. In practice, it solves 1000x1000 problems in around 1
// second.
     cost[i][j] = cost for pairing left node i with right node j
     Lmate[i] = index of right node that left node i pairs with
     Rmate[j] = index of left node that right node j pairs with
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
#include <bits/stdc++.h>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI:
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
  int n = int(cost.size());
  // construct dual feasible solution
  VD u(n);
  for (int i = 0; i < n; i++) {</pre>
    u[i] = cost[i][0];
    for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);</pre>
  for (int j = 0; j < n; j++) {
    or (int j = 0, j < n, j < n, j < n, v (j) = cost[0][j] - u[0];

for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
  // construct primal solution satisfying complementary slackness
  Lmate = VI(n, -1);
  Rmate = VI(n, -1);
  int mated = 0;
  for (int i = 0; i < n; i++) {</pre>
    for (int j = 0; j < n; j++) {
   if (Rmate[j] != -1) continue;</pre>
      if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {</pre>
    Lmate[i] = j;
    Rmate[j] = i;
    mated++;
    break:
  VD dist(n);
```

```
VI dad(n);
  VI seen(n);
  // repeat until primal solution is feasible
  while (mated < n) {
    // find an unmatched left node
    while (Lmate[s] != -1) s++;
    // initialize Dijkstra
    fill(dad.begin(), dad.end(), -1);
    fill(seen.begin(), seen.end(), 0);
    for (int k = 0; k < n; k++)
  dist[k] = cost[s][k] - u[s] - v[k];</pre>
    int j = 0;
    while (true) {
       // find closest
       \dot{j} = -1;
       for (int k = 0; k < n; k++) {
    if (seen[k]) continue;
    if (j == -1 || dist[k] < dist[j]) j = k;</pre>
       seen[j] = 1;
       // termination condition
      if (Rmate[j] == -1) break;
       // relax neighbors
       const int i = Rmate[j];
       for (int k = 0; k < n; k++) {
    if (seen[k]) continue;
    const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
    if (dist[k] > new_dist) {
      dist[k] = new_dist;
dad[k] = j;
    // update dual variables
    for (int k = 0; k < n; k++) {
  if (k == j || !seen[k]) continue;</pre>
       const int i = Rmate[k];
       v[k] += dist[k] - dist[j];
      u[i] -= dist[k] - dist[j];
    u[s] += dist[j];
     // augment along path
    while (dad[j] >= 0) {
  const int d = dad[j];
      Rmate[j] = Rmate[d];
      Lmate[Rmate[j]] = j;
      j = d;
    Rmate[j] = s;
    Lmate[s] = j;
    mated++;
  double value = 0;
for (int i = 0; i < n; i++)</pre>
    value += cost[i][Lmate[i]];
  return value;
int main() {
    return 0;
```

1.4 Max bipartite Matching

```
// Solves the Maximum Matching problem on a Bipartite Graph.
#include <bits/stdc++.h>
using namespace std;
const int MAXN1 = 50000;
const int MAXN2 = 50000;
const int MAXM2 = 150000;
```

```
int n1, n2, edges, last[MAXN1], prv[MAXM], head[MAXM];
int matching[MAXN2], dist[MAXN1], Q[MAXN1];
bool used[MAXN1], vis[MAXN1];
void init(int _n1, int _n2) {
        n1 = _n1;
n2 = _n2;
        edges = 0;
        fill(last, last + n1, -1);
// Nodes are 0-indexed
void addEdge(int u, int v) {
        head[edges] = v;
prv[edges] = last[u];
last[u] = edges++;
void bfs() {
        fill(dist, dist + n1, -1);
        int sizeQ = 0;
        for (int u = 0; u < n1; u++) {
                if (!used[u]) {
                         Q[sizeQ++] = u;
                         dist[u] = 0;
        for (int i = 0; i < sizeQ; i++) {
                 int u1 = Q[i];
                 for (int e = last[u1]; e >= 0; e = prv[e]) {
                         int u2 = matching[head[e]];
                         if (u2 >= 0 && dist[u2] < 0) {
                                 dist[u2] = dist[u1] + 1;
Q[sizeQ++] = u2;
bool dfs(int u1) {
        vis[u1] = true;
        for (int e = last[u1]; e >= 0; e = prv[e]) {
                int v = head[e];
                 int u2 = matching[v];
                if (u2 < 0 || (!vis[u2] && dist[u2] == dist[u1] + 1 && dfs(u2))) {
                         matching[v] = u1;
                         used[u1] = true;
                         return true;
        return false:
int maxMatching() {
        fill(used, used + n1, false);
        fill(matching, matching + n2, -1);
        for (int res = 0;;) {
                bfs();
                 fill(vis, vis + n1, false);
                 int f = 0;
                 for (int u = 0; u < n1; u++) {
                         if (!used[u] && dfs(u))
                 if (!f)
                         return res;
                res += f;
int main() {
    return 0;
```

1.5 Global Min-cut

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
//
Running time:
// O(|V|'3)
//
// INPUT:
// - graph, constructed using AddEdge()
//
// OUTPUT:
// - (min cut value, nodes in half of min cut)
#include <bits/stdc++.h>
```

```
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
  int N = weights.size();
  VI used(N), cut, best_cut;
  int best_weight = -1;
  for (int phase = N-1; phase >= 0; phase--) {
    VI w = weights[0];
    VI added = used;
    int prev, last = 0;
    for (int i = 0; i < phase; i++) {</pre>
      prev = last;
      last = -1;
      for (int j = 1; j < N; j++)</pre>
    if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
      if (i == phase-1) {
    for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j]; for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];
    used[last] = true;
    cut.push_back(last);
    if (best_weight == -1 || w[last] < best_weight) {</pre>
      best cut = cut:
      best_weight = w[last];
      } else {
    for (int j = 0; j < N; j++)
      w[j] += weights[last][j];
    added[last] = true;
  return make_pair(best_weight, best_cut);
// BEGIN CUT
// The following code solves UVA problem #10989: Bomb, Divide and Conquer
int main() {
 int N;
  cin >> N;
  for (int i = 0; i < N; i++) {
    int n, m;
    cin >> n >> m;
    VVI weights(n, VI(n));
    for (int j = 0; j < m; j++) {
     int a, b, c;
      cin >> a >> b >> c;
      weights[a-1][b-1] = weights[b-1][a-1] = c;
    pair<int, VI> res = GetMinCut(weights);
    cout << "Case #" << i+1 << ": " << res.first << endl;
```

2 Geometry

2.1 Convex Hull

```
/*
    * Graham-Andrew algorithm in O(N log N)
    */

#include <bits/stdc++.h>

using namespace std;

typedef pair<double, double> point;

bool cw(const point &a, const point &b, const point &c) {
    return (b.first - a.first) * (c.second - a.second) - (b.second - a.second) * (c.first - a.first) < 0;
}

vector<point> convexHull(vector<point> p) {
    int n = p.size();
    if (n <= 1)
        return p;
    int k = 0;</pre>
```

2.2 Graham Scan

```
#include <bits/stdc++.h>
using namespace std:
typedef pair<double, double> point;
bool cw(const point &a, const point &b, const point &c) {
    return (b.first - a.first) * (c.second - a.second) - (b.second - a.second) * (c.first - a.first) <
vector<point> convexHull(vector<point> p) {
   int n = p.size();
if (n <= 1)</pre>
       return p;
    int k = 0:
    sort(p.begin(), p.end());
    vector<point> q(n * 2);
    for (int i = 0; i < n; q[k++] = p[i++]) {
        for (; k \ge 2 && !cw(q[k-2], q[k-1], p[i]); --k) {
            continue;
    for (int i = n - 2, t = k; i >= 0; q[k++] = p[i--]) {
        for (; k > t && !cw(q[k-2], q[k-1], p[i]); --k) {
            continue;
    q.resize(k - 1 - (q[0] == q[1]));
    return q;
int main() {
    vector<point> points(4);
    points[0] = point(0, 0);
    points[1] = point(3, 0);
    points[2] = point(0, 3);
    points[3] = point(1, 1);
    vector<point> hull = convexHull(points);
    cout << (3 == hull.size()) << endl;
```

2.3 Intersecting Line Segments

```
#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> pii;
int cross(int ax, int ay, int bx, int by, int cx, int cy) {
    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax);
}
int cross(pii a, pii b, pii c) {
    return cross(a.first, a.second, b.first, b.second, c.first, c.second);
}
class segment {
```

```
public:
            pii a, b;
            int id;
            segment (pii a, pii b, int id) :
                       a(a), b(b), id(id) {
            bool operator<(const segment &o) const {
                       if (a.first < o.a.first) {</pre>
                                    int s = cross(a, b, o.a);
                                    return ((s > 0) || (s == 0 && a.second < o.a.second));</pre>
                        else (
                                   int s = cross(o.a, o.b, a);
return ((s < 0) || (s == 0 && a.second < o.a.second));</pre>
                       return a.second < o.a.second:
bool intersect(segment s1, segment s2) {
            int x1 = s1.a.first, y1 = s1.a.second, x2 = s1.b.first, y2 = s1.b.second;
            int x3 = s2.a. first, y3 = s2.a. second, x4 = s2. b. first, y4 = s2. b. second;
            if (\max(x1, x2) < \min(x3, x4) \mid | \max(x3, x4) < \min(x1, x2) \mid | \max(y1, y2) < \min(y3, y4) \mid | \max(y3, y4) \mid | \min(y3, y4) \mid | \max(y3, y4) \mid | \min(y3, y4) \mid | 
                                y4) < min(y1, y2)) {
                       return false:
          int z1 = (x3 - x1) * (y2 - y1) - (y3 - y1) * (x2 - x1);

int z2 = (x4 - x1) * (y2 - y1) - (y4 - y1) * (x2 - x1);

if ((z1 < 0 && z2 < 0) \mid \mid (z1 > 0 && z2 > 0)) {
                       return false;
           int z3 = (x1 - x3) * (y4 - y3) - (y1 - y3) * (x4 - x3);
int z4 = (x2 - x3) * (y4 - y3) - (y2 - y3) * (x4 - x3);
if ((z3 < 0 && z4 < 0) || (z3 > 0 && z4 > 0)) {
                       return false;
            return true;
class event {
            public:
            pii p;
            int id:
            int type:
           event(pii p, int id, int type) :
    p(p), id(id), type(type) {
            bool operator<(const event &o) const {
                       return (p.first < o.p.first) || (p.first == o.p.first && ((type > o.type || type == o.type) &&
    p.second < o.p.second));</pre>
1:
pii findIntersection(vector<segment> a) {
            int n = a size():
            vector<event> e:
            for (int i = 0; i < n; ++i) {
                       if (a[i].a > a[i].b)
                       swap(a[i].a, a[i].b);
e.push_back(event(a[i].a, i, 1));
e.push_back(event(a[i].b, i, -1));
            sort(e.begin(), e.end());
            set<segment> q;
            for (int i = 0; i < n * 2; ++i) {
   int id = e[i].id;</pre>
                       if (e[i].type == 1) {
                                   set<segment>::iterator it = q.lower_bound(a[id]);
if (it != q.end() && intersect(*it, a[id]))
                                    return make_pair(it->id, a[id].id);
if (it != q.begin() && intersect(*--it, a[id]))
                                              return make_pair(it->id, a[id].id);
                                    q.insert(a[id]);
                                     set<segment>::iterator it = q.lower_bound(a[id]), next = it, prev = it;
                                    if (it != q.begin() && it != --q.end()) {
                                                 ++next, --prev;
                                               if (intersect(*next, *prev))
                                                           return make_pair(next->id, prev->id);
                                    q.erase(it);
            return make pair(-1, -1);
int main() {
```

2.4 Miscellaneous Geometry

```
// C++ routines for computational geometry.
#include <bits/stdc++.h>
using namespace std;
double INF = 1e100:
double EPS = 1e-12:
struct PT {
  double x, y;
  PT() {}
  PT(double x, double y) : x(x), y(y) {}
   PT (const PT &p) : x(p.x), y(p.y)
   PT operator + (const PT &p) const { return PT(x+p.x, y+p.y);
   PT operator - (const PT &p) const { return PT(x-p.x, y-p.y);
   PT operator * (double c)
                                  const { return PT(x*c, y*c );
  PT operator / (double c)
                                  const { return PT(x/c, y/c );
double dot (PT p, PT q)
                            { return p.x*q.x+p.y*q.y; }
double dist2(PT p, PT q) { return dot(p-q.p-q); }
double cross(PT p, PT q) { return p.x*q.y*p.y*q.x; }
ostream &operator<<(ostream &os, const PT &p) {
    os << "(" << p.x << "," << p.y << ")";</pre>
  return os:
 // rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x);
PT RotateCW90 (PT p)
                         { return PT(p.y,-p.x); }
PT RotateCCW(PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// project point c onto line through a and b
 // assuming a != h
PT ProjectPointLine(PT a. PT b. PT c) {
  return a + (b-a) *dot(c-a, b-a) /dot(b-a, b-a);
 // project point c onto line segment through a and b
PT ProjectPointSegment(PT a, PT b, PT c) {
   double r = dot(b-a, b-a);
   if (fabs(r) < EPS) return a;</pre>
   r = dot(c-a, b-a)/r;
   if (r < 0) return a;</pre>
  if (r > 1) return b;
  return a + (b-a) *r;
// compute distance from c to segment between a and b double DistancePointSegment (PT a, PT b, PT c) {
  return sqrt(dist2(c, ProjectPointSegment(a, b, c)));
 // compute distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x, double y, double z,
                             double a, double b, double c, double d)
   return fabs(a*x+b*y+c*z-d)/sqrt(a*a+b*b+c*c);
 // determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a, PT b, PT c, PT d) {
  return fabs(cross(b-a, c-d)) < EPS;
bool LinesCollinear(PT a, PT b, PT c, PT d) {
  return LinesParallel(a, b, c, d)
       && fabs(cross(a-b, a-c)) < EPS
       && fabs(cross(c-d, c-a)) < EPS;
// determine if line segment from a to b intersects with
 // line segment from c to d
bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
  if (LinesCollinear(a, b, c, d)) {
     if (dist2(a, c) < EPS || dist2(a, d) < EPS ||</pre>
       dist2(b, c) < EPS || dist2(b, d) < EPS) return true;</pre>
     if (dot(c-a, c-b) > 0 && dot(d-a, d-b) > 0 && dot(c-b, d-b) > 0)
      return false;
     return true;
   if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
   if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
```

```
// compute intersection of line passing through a and b
// with line passing through c and d, assuming that unique
// intersection exists; for segment intersection, check if
// segments intersect first
PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
  b=b-a; d=c-d; c=c-a;
  assert (dot (b, b) > EPS && dot (d, d) > EPS);
  return a + b*cross(c, d)/cross(b, d);
// compute center of circle given three points
PT ComputeCircleCenter(PT a, PT b, PT c) {
  b = (a+b)/2;
  c = (a+c)/2;
  return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
// determine if point is in a possibly non-convex polygon (by William
// Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// \ {\tt integer} \ {\tt arithmetic} \ {\tt by} \ {\tt taking} \ {\tt care} \ {\tt of} \ {\tt the} \ {\tt division} \ {\tt appropriately}
// (making sure to deal with signs properly) and then by writing exact
// tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
  bool c = 0:
  for (int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) %p.size();
    q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
  return c;
// determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
  for (int i = 0; i < p.size(); i++)</pre>
    if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)</pre>
      return true;
    return false;
// compute intersection of line through points a and b with
// circle centered at c with radius r > 0
vector<PT> CircleLineIntersection(PT a, PT b, PT c, double r) {
  vector<PT> ret:
  b = b-a;
  a = a-c;
  double A = dot(b, b);
  double B = dot(a, b);
  double C = dot(a, a) - r*r;
  double D = B*B - A*C;
  if (D < -EPS) return ret;</pre>
  ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
  if (D > EPS)
    ret.push_back(c+a+b*(-B-sqrt(D))/A);
// compute intersection of circle centered at a with radius r
// with circle centered at b with radius R
vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
  vector<PT> ret;
  double d = sqrt(dist2(a, b));
  if (d > r+R || d+min(r, R) < max(r, R)) return ret;
double x = (d*d-R*R*r*r)/(2*d);</pre>
  double y = sqrt (r*r-x*x);
  PT v = (b-a)/d;
  ret.push_back(a+v*x + RotateCCW90(v)*y);
  if (y > 0)
    ret.push_back(a+v*x - RotateCCW90(v)*y);
  return ret;
// This code computes the area or centroid of a (possibly nonconvex)
\ensuremath{//} polygon, assuming that the coordinates are listed in a clockwise or
// counterclockwise fashion. Note that the centroid is often known as // the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
  double area = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area / 2.0:
```

return true;

```
double ComputeArea(const vector<PT> &p) {
  return fabs (ComputeSignedArea(p));
PT ComputeCentroid(const vector<PT> &p) {
  double scale = 6.0 * ComputeSignedArea(p);
  for (int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
  return c / scale;
// tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p) {
  for (int i = 0; i < p.size(); i++)
     for (int k = i+1; k < p.size(); k++) {</pre>
      int j = (i+1) % p.size();
int l = (k+1) % p.size();
       if (i == 1 \mid \mid j == k) continue;
      if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
         return false:
  return true:
 // computes the reflection of a vector about a normal
PT reflect (PT d. PT n) {
    return d - n * (dot(d, n) * 2.0);
int main() {
   // expected: (-5,2)
  cerr << RotateCCW90(PT(2,5)) << endl;</pre>
   // expected: (5,-2)
  cerr << RotateCW90(PT(2,5)) << endl;</pre>
   // expected: (-5,2)
  cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
   // expected: (5,2)
  cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;</pre>
   // expected: (5,2) (7.5,3) (2.5,1)
   cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << " "
        << ProjectPointSegment(PT(7.5,3), PT(10,4), PT(3,7)) << " "</pre>
        << ProjectPointSegment (PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;
   // expected: 6.78903
  cerr << DistancePointPlane(4,-4,3,2,-2,5,-8) << endl;</pre>
   // expected: 1 0 1
  cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
        << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
        << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
   // expected: 0 0 1
  cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "</pre>
        << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
        << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
   // expected: 1 1 1 0
  cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "
       << SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) << " "
<< SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) << " "</pre>
        << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
   // expected: (1,2)
  cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << endl;</pre>
   // expected: (1,1)
  cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;</pre>
   v.push_back(PT(0,0));
   v.push_back(PT(5,0));
  v.push_back(PT(5,5));
  v.push_back(PT(0,5));
   // expected: 1 1 1 0 0
  cerr << PointInPolygon(v, PT(2,2)) << " "</pre>
       << PointInPolygon(v, PT(2,0)) << " "
        << PointInPolygon(v, PT(0,2)) << " "
        << PointInPolygon(v, PT(5,2)) << " "
        << PointInPolygon(v, PT(2,5)) << endl;
   // expected: 0 1 1 1 1
   cerr << PointOnPolygon(v, PT(2,2)) << " "
```

```
<< PointOnPolygon(v, PT(2,0)) << " "
      << PointOnPolygon(v, PT(0,2)) << " "
      << PointOnPolygon(v, PT(5,2)) << " "
      << PointOnPolygon(v, PT(2,5)) << endl;
               (5,4) (4,5)
               blank line
               (4,5) (5,4)
               blank line
               (4,5) (5,4)
u = CircleLineIntersection(PT(0,9), PT(9,0), PT(1,1), 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
     CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)/2.0);
for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;</pre>
 u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0); \\  for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl; 
// area should be 5.0
// centroid should be (1.166666, 1.166666)
PT pa[] = { PT(0,0), PT(5,0), PT(1,1), PT(0,5) };
vector<PT> p(pa, pa+4);
PT c = ComputeCentroid(p);
cerr << "Area: " << ComputeArea(p) << endl;
cerr << "Centroid: " << c << endl;</pre>
return 0;
```

3 Numerical algorithms

3.1 Arbitrary Precision Arithmetic

```
* https://sites.google.com/site/indy256/algo_cpp/bigint
#include <bits/stdc++.h>
using namespace std;
// base and base_digits must be consistent
const int base = 1000000000;
const int base_digits = 9;
struct bigint {
    vector<int> a:
    int sign;
    bigint():
       sign(1) {
    bigint(long long v) {
    bigint(const string &s) {
        read(s):
    void operator=(const bigint &v) {
        sign = v.sign:
        a = v.a:
    void operator=(long long v) {
        if (v < 0)
            sign = -1, v = -v;
        for (; v > 0; v = v / base)
            a.push_back(v % base);
    bigint operator+(const bigint &v) const {
        if (sign == v.sign) {
            bigint res = v;
            for (int i = 0, carry = 0; i < (int) max(a.size(), v.a.size()) || carry; ++i) {</pre>
```

```
if (i == (int) res.a.size())
                res.a.push_back(0);
            res.a[i] += carry + (i < (int) a.size() ? a[i] : 0);
            carry = res.a[i] >= base;
                res.a[i] -= base;
        return res;
    return *this - (-v);
bigint operator-(const bigint &v) const {
    if (sign == v.sign) {
        if (abs() >= v.abs()) {
    bigint res = *this;
            for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {</pre>
                res.a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
                 carry = res.a[i] < 0;</pre>
                 if (carry)
                     res.a[i] += base;
            res.trim();
            return res:
        return - (v - *this);
    return *this + (-v):
void operator*=(int v) {
    if (v < 0)
    for (int i = 0, carry = 0; i < (int) a.size() || carry; ++i) {</pre>
        if (i == (int) a.size())
            a.push_back(0);
        long long cur = a[i] * (long long) v + carry;
        carry = (int) (cur / base);
a[i] = (int) (cur / base);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
    trim():
bigint operator*(int v) const
    bigint res = *this;
    return res;
friend pair<bigint, bigint> divmod(const bigint &a1, const bigint &b1) {
    int norm = base / (b1.a.back() + 1);
    bigint a = a1.abs() * norm;
    bigint b = b1.abs() * norm;
    bigint q, r;
    q.a.resize(a.a.size());
    for (int i = a.a.size() - 1; i >= 0; i--) {
        r *= base;
        r += a.a[i];
        int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];</pre>
        int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];</pre>
        int d = ((long long) base * s1 + s2) / b.a.back();
         -= b * d;
        while (r < 0)
        q.a[i] = d;
    g.sign = al.sign * bl.sign;
    r.sign = al.sign;
    q.trim();
    r.trim();
    return make_pair(q, r / norm);
bigint operator/(const bigint &v) const {
    return divmod(*this, v).first;
bigint operator%(const bigint &v) const {
    return divmod(*this, v).second;
void operator/=(int v) {
    if(v < 0)
    for (int i = (int) a.size() - 1, rem = 0; i >= 0; --i) {
        long long cur = a[i] + rem * (long long) base;
        a[i] = (int) (cur / v);
        rem = (int) (cur % v);
```

```
trim();
bigint operator/(int v) const {
    bigint res = *this;
    res /= v;
    return res;
int operator% (int v) const {
    if (v < 0)
        v = -v;
    int m = 0;
    for (int i = a.size() - 1; i >= 0; --i)
        m = (a[i] + m * (long long) base) % v;
    return m * sign;
void operator+=(const bigint &v) {
     *this = *this + v;
void operator-=(const bigint &v) {
     *this = *this - v;
void operator*=(const bigint &v) {
    *this = *this * v:
void operator/=(const bigint &v) {
    *this = *this / v:
bool operator<(const bigint &v) const {</pre>
    if (sign != v.sign)
        return sign < v.sign;
    if (a.size() != v.a.size())
        return a.size() * sign < v.a.size() * v.sign;</pre>
    for (int i = a.size() - 1; i >= 0; i--)
   if (a[i] != v.a[i])
            return a[i] * sign < v.a[i] * sign;</pre>
    return false;
bool operator>(const bigint &v) const {
    return v < *this;
bool operator<=(const bigint &v) const {</pre>
    return ! (v < *this);
bool operator>=(const bigint &v) const {
    return ! (*this < v);
bool operator==(const bigint &v) const {
    return ! (*this < v) && ! (v < *this);
bool operator!=(const bigint &v) const {
    return *this < v || v < *this:
void trim() {
    while (!a.empty() && !a.back())
        a.pop_back();
    if (a.empty())
        sign = 1;
bool isZero() const {
    return a.empty() || (a.size() == 1 && !a[0]);
bigint operator-() const {
    bigint res = *this;
    res.sign = -sign;
    return res;
bigint abs() const {
    bigint res = *this;
    res.sign *= res.sign;
    return res;
long longValue() const {
    long long res = 0;
for (int i = a.size() - 1; i >= 0; i--)
        res = res * base + a[i];
    return res * sign:
friend bigint gcd(const bigint &a, const bigint &b) {
    return b.isZero() ? a : gcd(b, a % b);
friend bigint lcm(const bigint &a, const bigint &b) {
```

```
return a / gcd(a, b) * b;
void read(const string &s) {
    sign = 1;
    a.clear();
    int pos = 0;
    while (pos < (int) s.size() && (s[pos] == '-' || s[pos] == '+')) {</pre>
        if (s[pos] == '-')
            sign = -sign;
        ++pos;
    for (int i = s.size() - 1; i >= pos; i -= base_digits) {
        int x = 0:
        for (int j = max(pos, i - base_digits + 1); j <= i; j++) 
 <math>x = x * 10 + s[j] - '0';
        a.push_back(x);
    trim();
friend istream& operator>>(istream &stream, bigint &v) {
    stream >> s:
    v.read(s):
    return stream:
friend ostream& operator<<(ostream &stream, const bigint &v) {</pre>
   if (v.sign == -1)
        stream << '-';
   stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int) v.a.size() - 2; i >= 0; --i)
        stream << setw(base_digits) << setfill('0') << v.a[i];</pre>
    return stream;
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
    vector<long long> p(max(old_digits, new_digits) + 1);
    p[0] = 1;
    for (int i = 1; i < (int) p.size(); i++)</pre>
        p[i] = p[i - 1] * 10;
    vector<int> res;
    long long cur = 0;
    int cur_digits = 0;
    for (int i = 0; i < (int) a.size(); i++) {
        cur += a[i] * p[cur_digits];
           r_digits += old_digits;
        while (cur_digits >= new_digits) {
            res.push_back(int(cur % p[new_digits]));
             cur /= p[new_digits];
             cur_digits -= new_digits;
    res.push back((int) cur);
    while (!res.empty() && !res.back())
        res.pop back():
    return res;
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
    int n = a.size();
    vll res(n + n);
    if (n <= 32) {
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
    res[i + j] += a[i] * b[j];</pre>
        return res;
    int k = n \gg 1;
    vll al(a.begin(), a.begin() + k);
    vll a2(a.begin() + k, a.end());
    vll b1(b.begin(), b.begin() + k);
    vll b2(b.begin() + k, b.end());
    vll a1b1 = karatsubaMultiply(a1, b1);
    vll a2b2 = karatsubaMultiply(a2, b2);
    for (int i = 0; i < k; i++)
        a2[i] += a1[i];
    for (int i = 0; i < k; i++)
        b2[i] += b1[i];
    vll r = karatsubaMultiply(a2, b2);
    for (int i = 0; i < (int) alb1.size(); i++)
        r[i] -= a1b1[i];
    for (int i = 0; i < (int) a2b2.size(); i++)</pre>
        r[i] -= a2b2[i];
```

```
for (int i = 0; i < (int) r.size(); i++)</pre>
            res[i + k] += r[i];
        for (int i = 0; i < (int) alb1.size(); i++)</pre>
            res[i] += a1b1[i];
        for (int i = 0; i < (int) a2b2.size(); i++)</pre>
           res[i + n] += a2b2[i];
        return res;
    bigint operator*(const bigint &v) const {
        vector<int> a6 = convert_base(this->a, base_digits, 6);
vector<int> b6 = convert_base(v.a, base_digits, 6);
        vll a(a6.begin(), a6.end());
       vll b(b6.begin(), b6.end());
while (a.size() < b.size())</pre>
            a.push_back(0);
        while (b.size() < a.size())</pre>
            b.push_back(0);
        while (a.size() & (a.size() - 1))
           a.push_back(0), b.push_back(0);
        vll c = karatsubaMultiply(a, b);
        bigint res;
       res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int) c.size(); i++) {
    long long cur = c[i] + carry;
    res.a.push_back((int) (cur % 1000000));</pre>
            carry = (int) (cur / 1000000);
        res.a = convert_base(res.a, 6, base_digits);
        res.trim():
        return res;
int main() {
          ");
bigint b("
         cout << a * b << endl;
   cout << a / b << endl;
   string sa, sb;
for (int i = 0; i < 100000; i++)
        sa += i % 10 + '0';
    for (int i = 0; i < 20000; i++)
       sb += i % 10 + '0';
    a = bigint(sa);
    b = bigint(sb);
    clock_t start = clock();
    bigint c = a / b;
    fprintf(stderr, "time=%.3lfsec\n", 0.001 * (clock() - start));
```

Number Theory (modular, Chinese remainder, Linear Diophantine)

```
#include <bits/stdc++.h>
using namespace std;
typedef vector<int> VI;
typedef pair<int, int> pii;
typedef pair<int, pii> piii;
typedef pair<int, int> PII:
// return smallest positive number equiv to a % b
int mod(int a, int b) {
 return ((a%b) + b) % b;
// return the gcd of a and b
int gcd(int a, int b) {
  while (b) {
    int t = a % b;
    a = b;
   b = t;
  return a;
// lcm(a, b)
int lcm(int a, int b) {
 return a/gcd(a,b)*b;
```

```
while (b)
   if (b & 1) p = mod(p*a, m);
    a = mod(a*a, m);
   b >>= 1;
  return p;
// returns a tuple of 3 ints containing d, x, y s.t. d = a * x + b * y
piii eqcd(int a, int b) {
  int \bar{x}, xx, y, yy;
  xx = y = 0; yy = x = 1;
  while (b) {
   int q = a / b;
    int t = b; b = a % b; a = t;
    t = xx; xx = x - q*xx; x = t;
   t = yy; yy = y - q*yy; y = t;
  return piii(a, pii(x, y));
// returns all solutions to ax = b (mod n)
VI mod solve(int a, int b, int n) {
  VI ret:
  int g,x;
  piii egcd_ret = egcd(a, n);
  g = egcd_ret.first;
   x = egcd_ret.second.first;
  if (!(b%g)) {
    x = mod(x*(b/g), n);
    for (int i = 0; i < g; i++)
  return ret;
// modular inverse of a mod n, or -1 if gcd(a, n) != 1
int minv(int a, int n) {
 int g,x;
 piii egcd ret = egcd(a, n);
  g = egcd_ret.first;
  x = egcd_ret.second.first;
  if (g > 1) return -1;
  return mod(x, n);
PII crt(int m1, int r1, int m2, int r2) {
 int g, s, t;
  piii egcd_ret = egcd(m1, m2);
  g = egcd_ret.first;
  s = egcd_ret.second.first;
  t = egcd ret.second.second:
  if (r1 % g != r2 % g) return PII(0, -1);
  return PII (mod(s*r2*m1 + t*r1*m2, m1*m2)/q, m1*m2/q);
PII crt (const VI &m, const VI &r) {
 PII ret = PII(r[0], m[0]);
  for (int i = 1; i < m.size(); i++) {</pre>
    ret = crt(ret.second, ret.first, m[i], r[i]);
   if (ret.second == -1) break;
  return ret;
Multiplying nCr quickly:
Lucas's Theorem reduces nCr % M to
(n0Cr0 % M) (n1Cr1 % M) ... (nkCrk % M)
(nknk-1...n0) is the base M representation of n
(rkrk-1...r0) is the base M representation of r
Pick's Theorem:
Area of a polygon: B/2 + I - 1
int main() {
 cout << "expect 2" << endl;
 cout << gcd(14, 30) << endl;
  int g, x, y;
 piii egcd_ret = egcd(14, 30);
  g = egcd_ret.first;
  x = egcd_ret.second.first;
```

// a^b mod m via successive squaring

int pmod(int a, int b, int m) {

```
y = egcd_ret.second.second;
cout << "expect 2 -2 1" << endl;
cout << g << " " << x << " " << y << endl;

VI sols = mod_solve(14, 30, 100);
cout << "expect 95 45" << endl;
for (int i = 0; i < (int)sols.size(); i++) {
    cout << sols[i] << " ";
}
cout << endl;
cout << endl;
cout << endl;
cout << endl;
vector<int> v!;
vl.push_back(3); vl.push_back(5); vl.push_back(7);
vector<int> v2;
v2.push_back(2); v2.push_back(3); v2.push_back(2);
PII ret = crt(v1, v2);
cout << "expect 23 105" << endl;
cout << ret.first << " " << ret.second << endl;</pre>
```

3.3 Systems of linear equations, Matrix Inverse, Determinant

```
// Gauss-Jordan elimination with full pivoting.
// Uses:
    (1) solving systems of linear equations (AX=B)
     (2) inverting matrices (AX=I)
     (3) computing determinants of square matrices
// Running time: O(n^3)
// INPUT:
              a[][] = an nxn matrix
              b[][] = an nxm matrix
// OUTPUT: X
                     = an nxm matrix (stored in b[][])
              A^{-1} = an nxn matrix (stored in a[][])
              returns determinant of a[][]
#include <bits/stdc++.h>
using namespace std;
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T Gauss Jordan (VVT &a. VVT &b) {
  const int n = a.size();
  const int m = b[0].size();
  VI irow(n), icol(n), ipiv(n);
  T \det = 1;
  for (int i = 0; i < n; i++) {</pre>
    int pj = -1, pk = -1;
for (int j = 0; j < n; j++) if (!ipiv[j])</pre>
      for (int k = 0; k < n; k++) if (!ipiv[k])</pre>
    if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; }</pre>
    ipiv[pk]++;
    swap(a[pj], a[pk]);
    swap(b[pj], b[pk]);
    if (pj != pk) det *= -1;
    irow[i] = pj;
    icol[i] = pk;
    T c = 1.0 / a[pk][pk];
    det *= a[pk][pk];
    a[pk][pk] = 1.0;
    for (int p = 0; p < n; p++) a[pk][p] *= c;
    for (int p = 0; p < m; p++) b[pk][p] *= c;
    for (int p = 0; p < n; p++) if (p != pk) {
      c = a[p][pk];
       a[p][pk] = 0;
      for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;</pre>
  for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
```

```
for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
  return det;
int main() {
  const int n = 4;
  const int m = 2;
  double A[n][n] = \{ \{1,2,3,4\}, \{1,0,1,0\}, \{5,3,2,4\}, \{6,1,4,6\} \}; double B[n][m] = \{ \{1,2\}, \{4,3\}, \{5,6\}, \{8,7\} \};
  VVT a(n), b(n);
  for (int i = 0; i < n; i++) {
    a[i] = VT(A[i], A[i] + n);
b[i] = VT(B[i], B[i] + m);
  double det = GaussJordan(a, b);
  // expected: 60
  cout << "Determinant: " << det << endl;
  // expected: -0.233333 0.166667 0.133333 0.0666667
                 0.166667 0.166667 0.333333 -0.333333
                 0.233333 0.833333 -0.133333 -0.0666667
                 0.05 -0.75 -0.1 0.2
  cout << "Inverse: " << endl:
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
      cout << a[i][j] << ' ';
    cout << endl;
  // expected: 1.63333 1.3
                 -0.166667 0.5
                 2.36667 1.7
                 -1.85 -1.35
  cout << "Solution: " << endl;
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < m; j++)
  cout << b[i][j] << ' ';</pre>
    cout << endl;
```

3.4 Reduced row echelon form, Matrix rank

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
// Running time: O(n^3)
// INPUT: a[][] = an nxm matrix
// OUTPUT: rref[][] = an nxm matrix (stored in a[][])
             returns rank of a[][]
#include <bits/stdc++.h>
using namespace std;
const double EPSILON = 1e-10;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
int rref(VVT &a)
 int n = a.size();
  int m = a[0].size();
  int r = 0;
  for (int c = 0; c < m && r < n; c++) {
    for (int i = r + 1; i < n; i++)
      if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
    if (fabs(a[j][c]) < EPSILON) continue;</pre>
    swap(a[j], a[r]);
    T s = 1.0 / a[r][c];
    for (int j = 0; j < m; j++) a[r][j] *= s; for (int i = 0; i < n; i++) if (i != r) {
      T t = a[i][c];
      for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];
    r++;
```

```
return r;
int main() {
  const int n = 5, m = 4;
  double A[n][m] = {
    {16, 2, 3, 13},
     { 5, 11, 10, 8},
     { 9, 7, 6, 12},
     { 4, 14, 15, 1},
    {13, 21, 21, 13}};
  VVT a(n);
  for (int i = 0; i < n; i++)
a[i] = VT(A[i], A[i] + m);
  int rank = rref(a);
  // expected: 3
  cout << "Rank: " << rank << endl;
  // expected: 1 0 0 1
                  0 1 0 3
                  0 0 1 -3
                  0 0 0 3.10862e-15
                  0 0 0 2 22045e-15
  cout << "rref: " << endl;
  cout << "rrer: " << enal;
for (int i = 0; i < 5; i++) {
  for (int j = 0; j < 4; j++)
    cout << a[i][j] << ' ';</pre>
    cout << endl:
```

3.5 Fast Fourier Transform

```
\ensuremath{//} Convolution using the fast Fourier transform (FFT).
// INPIIT.
       a[1...n]
      b[1...m]
// OUTPUT:
      c[1...n+m-1] such that c[k] = sum_{i=0}^{n} k a[i] b[k-i]
// Alternatively, you can use the DFT() routine directly, which will
// zero-pad your input to the next largest power of 2 and compute the
#include <bits/stdc++.h>
using namespace std;
typedef double DOUBLE;
typedef complex<DOUBLE> COMPLEX;
typedef vector<DOUBLE> VD;
typedef vector<COMPLEX> VC;
const double PI = acos(-1.0);
struct FFT {
  int n, L;
  int ReverseBits(int k) {
   int ret = 0;
    for (int i = 0; i < L; i++) {
      ret = (ret << 1) | (k & 1);
      k >>= 1:
    return ret:
  void BitReverseCopy(const VC &a) {
    for (n = 1, L = 0; n < a.size(); n <<= 1, L++);
    A.resize(n);
    for (int k = 0; k < n; k++)
      A[ReverseBits(k)] = a[k];
  VC DFT(const VC &a, bool inverse) {
    BitReverseCopy(a);
    for (int s = 1; s <= L; s++) {
      int m = 1 << s;
COMPLEX wm = exp(COMPLEX(0, 2.0 * PI / m));
if (inverse) wm = COMPLEX(1, 0) / wm;</pre>
      for (int k = 0; k < n; k += m) {
        COMPLEX w = 1;
        for (int j = 0; j < m/2; j++) {
```

```
COMPLEX t = w * A[k + j + m/2];
           COMPLEX u = A[k + j];
           A[k + j] = u + t;
          A[k + j + m/2] = u - t;
          w = w * wm;
    if (inverse) for (int i = 0; i < n; i++) A[i] /= n;</pre>
    return A;
  // c[k] = sum_{i=0}^k a[i] b[k-i]
VD Convolution(const VD &a, const VD &b) {
    int L = 1:
    while ((1 << L) < a.size()) L++;
    while ((1 << L) < b.size()) L++;
    int n = 1 << (L+1);
    for (size_t i = 0; i < n; i++) aa.push_back(i < a.size() ? COMPLEX(a[i], 0) : 0);</pre>
    for (size_t i = 0; i < n; i++) bb.push_back(i < b.size() ? COMPLEX(b[i], 0) : 0);</pre>
    VC AA = DFT(aa, false);
    VC BB = DFT(bb, false);
    VC CC:
    for (size_t i = 0; i < AA.size(); i++) CC.push_back(AA[i] * BB[i]);</pre>
    VC cc = DFT(CC, true);
    for (int i = 0; i < a.size() + b.size() - 1; i++) c.push_back(cc[i].real());</pre>
    return c;
};
int n, m, a, b;
double arr[200005];
FFT fft:
bool flag[200005];
const double EPS = 1e-5;
int main() {
 arr[0] = 1.0;
  cin >> n;
  for (int i = 1; i <= n; i++) {</pre>
    cin >> a;
    arr[a] = 1.0;
  VD vv(arr, arr + 200001);
  VD c = fft.Convolution(vv, vv);
  cin >> m;
int ans = 0;
  for (int i = 1; i <= m; i++) {</pre>
    cin >> b:
    if (c[b] > EPS) {
     ++ans:
  cout << ans << endl;
  return 0;
```

3.6 Simplex Algorithm

```
#include <bits/stdc++.h>
using namespace std;

typedef long double DOUBLE;
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD,
typedef vector<Int> VI;

const DOUBLE EPS = 1e-9;

struct LPSolver {
   int m, n;
   VI B, N;
   VVD D;

LPSolver(const VVD &A, const VD &b, const VD &c):
        m(b.size()), n(c.size()), N(n + 1), B(m), D(m + 2, VD(n + 2)) {
        for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j];
        for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; D[i][n + 1] = b[i]; }
        for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
</pre>
```

```
N[n] = -1; D[m + 1][n] = 1;
  void Pivot(int r, int s)
    double inv = 1.0 / D[r][s];
    for (int i = 0; i < m + 2; i++) if (i != r)
      for (int j = 0; j < n + 2; j++) if (j != s)
        D[i][j] = D[r][j] * D[i][s] * inv;
    for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
for (int i = 0; i < m + 2; i++) if (i != r) D[i][s] *= -inv;</pre>
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool Simplex(int phase) {
    int x = phase == 1 ? m + 1 : m;
    while (true) {
      int s = -1;
      for (int j = 0; j \le n; j++) {
        if (phase == 2 && N[j] == -1) continue;
         \textbf{if} \ (s == -1 \ || \ D[x][j] < D[x][s] \ || \ D[x][j] == D[x][s] \ \&\& \ N[j] < N[s]) \ s = j; \\ 
      if (D[x][s] > -EPS) return true;
      int r = -1;
      for (int i = 0; i < m; i++) {
        if (D[i][s] < EPS) continue;</pre>
        if (r = -1 || D[i][n + 1] / D[i][s] < D[r][n + 1] / D[r][s] ||
  (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / D[r][s]) && B[i] < B[r]) r = i;</pre>
      if (r == -1) return false;
      Pivot(r, s);
  DOUBLE Solve(VD &x) {
    int r = 0;
    for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) r = i;
    if (D[r][n + 1] < -EPS) {
      int s = -1;
        int s = -1,
for (int j = 0; j <= n; j++)
if (s == -1 || D[i][j] < D[i][s] || D[i][j] == D[i][s] && N[j] < N[s]) s = j;</pre>
        Pivot(i, s);
    if (!Simplex(2)) return numeric_limits<DOUBLE>::infinity();
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n + 1];</pre>
    return D[m][n + 1];
};
int main() {
  const int m = 4:
  const int n = 3;
  DOUBLE A[m][n] = {
    { 6, -1, 0 },
    \{-1, -5, 0\},
    { 1, 5, 1 },
    { -1, -5, -1 }
  DOUBLE _b[m] = { 10, -4, 5, -5 };

DOUBLE _c[n] = { 1, -1, 0 };
  VVD A(m);
  VD b(\underline{b}, \underline{b} + m);
  VD c(_c, _c + n);
  for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);</pre>
  LPSolver solver(A, b, c);
  VD x:
  DOUBLE value = solver.Solve(x);
  cerr << "VALUE: " << value << endl; // VALUE: 1.29032
  cerr << "SOLUTION:"; // SOLUTION: 1.74194 0.451613 1
  for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
  cerr << endl;
  return 0;
```

4 Graph algorithms

4.1 Bellman-Ford shortest paths with negative edge weights (C++)

```
// Runs Bellman-Ford for Single-Source Shortest Paths with
// negative edge weights.
// Running time : O(|V| ^ 3)
// INPUT: start, w[i][j] = edge cost from i to j.
   OUTPUT: dist[i] = min cost path from start to i.
            prev[i] = previous node of i on best path from start node.
#include <bits/stdc++.h>
using namespace std;
const int INF = 1000 * 1000 * 1000;
typedef vector<int> VI;
typedef vector<vector<int> > VVI;
bool BellmanFord(const VVI &w, VI &dist, VI &prev, int start) {
    int n = static_cast<int>(w.size());
    prev = VI(n, -1);
    dist = VI(n, INF);
    dist[start] = 0;
    // Iterate (n - 1) times for algorithm,
    // and once to check for negative cycles.
    for (int k = 0; k < n; k++) {
        for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) {
    if (dist[j] > dist[i] + w[i][j]) {
                     if (k == n - 1)
                        return false:
                     dist[j] = dist[i] + w[i][j];;
prev[j] = i;
    return true;
```

4.2 Floyd Warshall

```
#include <bits/stdc++.h>
using namespace std;
const int INF = 1000 * 1000 * 1000;
#define mp make_pair
#define pb push_back
typedef vector<vector<int> > VVI;
typedef vector<int> VI;
typedef pair<int, int> PII;
// Floyd-Warshall algorithm for All-Pairs Shortest paths.
// Also handles negative edge weights. Returns true if a negative
// weight cycle is found.
// Running time: O(|V| ^ 3)
// INPUT: w[i][j] = weight of edge from i to j
// OUTPUT: w[i][j] = shortest path weight from i to j
            prev[i][j] = node before j on the best path starting at i
bool FloydWarshall(VVI &w, VVI &prev) {
   int n = (int)w.size();
    prev = VVI(n, VI(n, -1));
    for (int k = 0; k < n; k++) {
        for (int i = 0; i < n; i++) {
```

```
for (int j = 0; j < n; j++) {
        if (w[i][j] > w[i][k] + w[k][j]) {
            w[i][j] = w[i][k] + w[k][j];
            prev[i][j] = k;
        }
    }
}

// Check for negative weight cycles.
for (int i = 0; i < n; i++)
    if (w[i][i] < 0) return false;
return true;
}

int main() {
    return 0;
}</pre>
```

4.3 Eulerian Path

```
#include <bits/stdc++.h>
using namespace std:
struct Edge:
typedef list<Edge>::iterator iter;
struct Edge
    int next_vertex;
    iter reverse_edge;
    Edge(int next_vertex)
        :next_vertex(next_vertex)
const int max_vertices = 100005;
int num vertices;
list<Edge> adj[max_vertices];
                                    // adjacency list
vector<int> path;
void find_path(int v)
    while(adj[v].size() > 0)
        int vn = adj[v].front().next_vertex;
        adj[vn].erase(adj[v].front().reverse_edge);
        adj[v].pop_front();
        find_path(vn);
    path.push_back(v);
void add_edge(int a, int b)
    adj[a].push_front(Edge(b));
    iter ita = adj[a].begin();
    adj[b].push_front(Edge(a));
    iter itb = adj[b].begin();
    ita->reverse_edge = itb;
    itb->reverse_edge = ita;
```

4.4 Minimum Spanning Trees

```
// Runs Prim's algorithm for constructing MSTs.
//
Running time: O(|V| ^ 2)
//
// INPUT: w[i][j] = cost of edge from i to j
// (Make sure that w[i][j] is nonnegative and
symmetric. Missing edges should be given -1
// weight.)
// OUTPUT: edges = list of pair<int, int> in MST
return total weight of tree
#include <bits/stdc++.h>
using namespace std;
```

```
typedef pair<int, int> pii;
typedef vector<vector<pii>> Graph;
long long prim(Graph &g, vector<int> &pred) {
    int n = g.size();
    pred.assign(n, -1);
     vector<bool> vis(n);
    vector<int> prio(n, INT_MAX);
    prio[0] = 0;
    priority_queue<pii, vector<pii> , greater<pii> > q;
    q.push(make_pair(0, 0));
    long long res = 0;
    while (!q.empty()) {
   int d = q.top().first;
         int u = q.top().second;
         q.pop();
         if (vis[u])
             continue;
         vis[u] = true;
         for (int i = 0; i < (int) g[u].size(); i++) {</pre>
             int v = g[u][i].first;
             if (vis[v])
                  continue;
             int nprio = g[u][i].second;
if (prio[v] > nprio) {
   prio[v] = nprio;
   pred[v] = u;
                  q.push(make_pair(nprio, v));
    return res;
int main() {
    Graph g(3);
    g[0].push_back(make_pair(1, 10));
    g[1].push_back(make_pair(0, 10));
    g[1].push_back(make_pair(2, 10));
    g[2].push_back(make_pair(1, 10));
    g[2].push_back(make_pair(0, 5));
    g[0].push_back(make_pair(2, 5));
    vector<int> prio;
    long long res = prim(g, prio);
cout << res << endl;</pre>
```

4.5 Tarjan's Algorithm

```
/* Complexity: O(E + V)
* Tarjan's algorithm for finding strongly connected
components.
\star d[i] = Discovery time of node i. (Initialize to -1)
 * low[i] = Lowest discovery time reachable from node i. (Doesn't need to be initialized)
 * scc[i] = Strongly connected component of node i. (Doesn't need to be initialized)
 * s = Stack used by the algorithm (Initialize to an empty stack)
 * stacked[i] = True if i was pushed into s. (Initialize to false)
 * ticks = Clock used for discovery times (Initialize to 0)
 * current_scc = ID of the current_scc being discovered (Initialize to 0)
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 100005;
vector<int> g[MAXN];
int d[MAXN], low[MAXN], scc[MAXN];
bool stacked[MAXN];
stack<int> s;
int ticks, current_scc;
void tarjan(int u) {
  d[u] = low[u] = ticks++;
  s.push(u);
  stacked[u] = true;
  const vector<int> &out = g[u];
  for (int k=0, m=out.size(); k<m; ++k){</pre>
    const int &v = out[k];
if (d[v] == -1) {
  tarjan(v);
      low[u] = min(low[u], low[v]);
    }else if (stacked[v]){
      low[u] = min(low[u], low[v]);
```

```
}
if (d[u] == low[u]) {
  int v;
do {
    v = s.top();
    s.pop();
    stacked[v] = false;
    scc[v] = current_scc;
}while (u != v);
current_scc++;
}
```

5 Data structures

5.1 Adelson-Valskii Landis Tree

```
// Balanced Binary Search Tree implementation.
#include <bits/stdc++.h>
using namespace std;
struct node {
        int height, value, size;
        node *1, *r;
};
struct AVL {
        node *root;
        AVL() : root(NULL) {}
        int height(node *cur) {
                if (cur == NULL) return 0;
                return cur->height;
       int size(node *cur) {
    if (cur == NULL) return 0;
                return cur->size:
        int size() {
                return size(root);
        void update(node *cur) {
                if (cur == NULL) return;
                cur->height = max(height(cur->1), height(cur->r));
                cur->size = 1 + size(cur->1) + size(cur->r);
        node *left_rotate(node *cur) {
                node *tmp = cur->1;
                cur->1 = tmp->r;
tmp->r = cur;
                update(cur);
                update(tmp);
                return tmp;
        node *right_rotate(node *cur) {
                node *tmp = cur->r;
                cur->r = tmp->1;
                tmp->1 = cur;
                update(cur);
                update(tmp);
                return tmp;
        node *balance(node *cur) {
                if (cur == NULL) return cur;
                if (height(cur->1) - height(cur->r) == 2) {
                        node *tmp = cur->1;
                        if (height(tmp->1) - height(tmp->r) == -1) {
                                cur->1 = right_rotate(tmp);
                        return left_rotate(cur);
                if (height(cur->1) - height(cur->r) == -2) {
                         node *tmp = cur->r;
                        if (height(tmp->1) - height(tmp->r) == 1) {
                                cur->r = left_rotate(tmp);
                        return right_rotate(cur);
                update(cur);
                return cur:
        node *insert(node *cur, int k) {
                if (cur == NULL) {
                        cur = new node;
```

```
cur->1 = cur->r = NULL;
                          cur->height = 1;
                          cur->value = k;
                          cur->size = 1;
                          return balance(cur);
                          if (k < cur->value) {
                                  cur > 1 = insert(cur > 1, k);
                          } else if (k > cur->value) {
                                  cur->r = insert(cur->r, k);
                          return balance(cur);
        void insert(int k) {
                 root = insert(root, k);
        node *erase(node *cur, int k) {
                 if (cur == NULL) return cur;
                 if (cur->value == k) {
                         if (cur->1 == NULL || cur->r == NULL) {
                                  node *tmp = cur->1;
if (tmp == NULL) tmp = cur->r;
                                  delete cur;
                                  return balance(tmp);
                          l else (
                                  node *tmp = cur->r;
                                  while (tmp->1) tmp = tmp->1;
                                  cur->value = tmp->value;
                                  cur->r = erase(cur->r, tmp->value);
                                  return balance(cur);
                 } else if (cur->value > k) {
                         cur->1 = erase(cur->1, k);
                 } else if (cur->value < k) {
                         cur->r = erase(cur->r, k);
                 return balance(cur);
        void erase(int k) {
                 root = erase(root, k);
        int rank(node *cur, int k) {
                 if (cur == NULL) return 0;
                 if (cur->value <= k)</pre>
                          return size(cur->1) + 1 + rank(cur->r, k);
                          return rank(cur->1, k);
        int rank(int k) {
                 return rank(root, k);
        int kth(node *cur, int k) {
                if (size(cur->1) >= k) return kth(cur->1, k);
if (size(cur->1) + 1 == k) return cur->value;
                 return kth(cur->r, k - size(cur->l) - 1);
        int kth(int k) {
                 return kth(root, k);
};
```

6 Strings

6.1 Knuth-Morris-Pratt

```
// Knuth-Morris-Pratt Algorithm for searching a substring s
// inside another string w (of length k). Returns the 0-based
// index of the first match (k if no match is found).
//
// Running Time: O(k)

#include <bits/stdc++.h>
using namespace std;

typedef vector<int> VI;

void precompute_kmp(string &w, VI &t) {
    t = VI((int)w.length());
    int i = 2, j = 0;
    t[0] = -1; t[1] = 0;

while (i < (int)w.length()) {
    if (w[i-1] == w[j]) { t[i] = j + 1; i++, j++; }</pre>
```

```
else if (j > 0) j = t[j];
        else { t[i] = 0; i++; }
int KMP(string &s, string &w) {
    int m = 0, i = 0;
    precompute_kmp(w, t);
    while (m + i < (int)s.length()) {
   if (w[i] == s[m + i]) {</pre>
            i++:
            if (i == (int)w.length()) return m;
        else (
            m += (i - t[i]);
            if (i > 0) i = t[i];
    return (int)s.length();
int main()
  string a = (string) "The example above illustrates the general technique for assembling "+
    "the table with a minimum of fuss. The principle is that of the overall search: "+
    "most of the work was already done in getting to the current position, so very "+
    "little needs to be done in leaving it. The only minor complication is that the "+
    "logic which is correct late in the string erroneously gives non-proper "+
    "substrings at the beginning. This necessitates some initialization code.";
  int p = KMP(a, b);
cout << p << ": " << a.substr(p, b.length()) << " " << b << endl;</pre>
```

6.2 Suffix Array

```
Suffix array O(n lg^2 n)
LCP table O(n)
#include <bits/stdc++.h>
using namespace std:
const int MAXN = 1 << 21;</pre>
char * S;
int sa[MAXN], pos[MAXN], tmp[MAXN], lcp[MAXN];
bool sufCmp(int i, int j)
    if (pos[i] != pos[i])
        return pos[i] < pos[j];</pre>
    i += gap;
    return (i < N && j < N) ? pos[i] < pos[j] : i > j;
void buildSA()
    N = strlen(S);
    for (int i = 0; i < N; i++)
    sa[i] = i, pos[i] = S[i];</pre>
    for (gap = 1;; gap *= 2)
         sort(sa, sa + N, sufCmp);
        for (int i = 0; i < N - 1; i++)
             tmp[i + 1] = tmp[i] + sufCmp(sa[i], sa[i + 1]);
         for (int i = 0; i < N; i++)
        pos[sa[i]] = tmp[i];

if (tmp[N - 1] == N - 1) break;
void buildLCP()
    for (int i = 0, k = 0; i < N; ++i) if (pos[i] != N - 1)
        for (int j = sa[pos[i] + 1]; S[i + k] == S[j + k];)
         lcp[pos[i]] = k;
        if (k) --k;
```

```
Suffix array O(n lg n)
int m, SA [MAXN], LCP [MAXN];
int x [MAXN], y [MAXN], w [MAXN], c [MAXN];
inline bool cmp (const int a, const int b, const int 1) { return (y [a] == y [b] && y [a + 1] == y [b
void Sort () {
    for (int i = 0; i < m; ++i) w [i] = 0;
for (int i = 0; i < N; ++i) ++w [x [y [i]]];
for (int i = 0; i < m - 1; ++i) w [i + 1] += w [i];
    for (int i = N - 1; i >= 0; --i) SA [--w [x [y [i]]]] = y [i];
void DA () {
    for (int i = 0; i < N; ++i) x [i] = str [i], y[i] = i;
    for (int i, j = 1, p = 1; p < N; j <<= 1, m = p) {
        for (p = 0, i = N - j; i < N; i++) y [p++] = i;
        for (int k = 0; k < N; ++k) if (SA [k] >= j) y [p++] = SA [k] - j;
        Sort ();
        void kasaiLCP () {
    for (int i = 0; i < N; i++) c [SA [i]] = i;
for (int i = 0, j, k = 0; i < N; LCP [c [i++]] = k)
        if (c [i] > 0) for (k ? k-- : 0, j = SA [c [i] - 1]; str [i + k] == str [j + k]; k++);
        else k = 0;
void suffixArray () {
    m = 256;
    N = strlen (str);
    DA ();
    kasaiLCP ():
```

6.3 Suffix Array - DC3 Algorithm

```
* https://sites.google.com/site/indy256/algo_cpp/suffix_array_lcp
#include <bits/stdc++.h>
using namespace std;
unsigned char mask[] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; #define tget(i) ( (t[(i)/8]\&mask[(i)\&8]) ? 1 : 0 )
#define tset(i, b) t[(i)/8]=(b) ? (mask[(i)%8])t[(i)/8]) : ((~mask[(i)%8])&t[(i)/8])
#define chr(i) (cs==sizeof(int)?((int*)s)[i]:((unsigned char *)s)[i])
#define isLMS(i) (i>0 && tget(i) && !tget(i-1))
// find the start or end of each bucket
void getBuckets(unsigned char *s, int *bkt, int n, int K, int cs, bool end) {
    int i, sum = 0;
     for (i = 0; i \le K; i++)
    \begin{array}{lll} bkt[i] = 0; \ /\!/ \ clear \ all \ buckets \\ \textbf{for} \ (i = 0; \ i < n; \ i++) \end{array}
         bkt[chr(i)]++; // compute the size of each bucket
    for (i = 0; i <= K; i++) {
         sum += bkt[i]:
         bkt[i] = end ? sum : sum - bkt[i];
// compute SA1
void induceSAl (unsigned char *t, int *SA, unsigned char *s, int *bkt, int n, int K, int cs, bool end)
     getBuckets(s, bkt, n, K, cs, end); // find starts of buckets
     for (i = 0; i < n; i++) {
          j = SA[i] - 1;
         if (j >= 0 && !tget(j))
             SA[bkt[chr(j)]++] = j;
// compute SAs
void induceSAs (unsigned char *t, int *SA, unsigned char *s, int *bkt, int n, int K, int cs, bool end)
    int i, j;
```

```
getBuckets(s, bkt, n, K, cs, end); // find ends of buckets
    for (i = n - 1; i >= 0; i--) {
         j = SA[i] - 1;
        if (j >= 0 && tget(j))
            SA[--bkt[chr(j)]] = j;
// find the suffix array SA of s[0..n-1] in {1..K} \hat{\ }n
// require s[n-1]=0 (the sentinel!), n>=2
// use a working space (excluding s and SA) of at most 2.25n+O(1) for a constant alphabet
void SA_IS(unsigned char *s, int *SA, int n, int K, int cs) {
    int i, j;
    unsigned char *t = (unsigned char *) malloc(n / 8 + 1); // LS-type array in bits
    // Classify the type of each character
    tset (n-2, 0);
    tset (n-1, 1); // the sentinel must be in s1, important!!!
    for (i = n - 3; i >= 0; i--)
        tset(i, (chr(i) < chr(i+1) || (chr(i) == chr(i+1) && tget(i+1) == 1))?1:0);
    // stage 1: reduce the problem by at least 1/2
     // sort all the S-substrings
    int *bkt = (int *) malloc(sizeof(int) * (K + 1)); // bucket array
    getBuckets(s, bkt, n, K, cs, true); // find ends of buckets
    for (i = 0; i < n; i++)
        SA[i] = -1;
    for (i = 1; i < n; i++)
        if (isLMS(i))
            SA[--bkt[chr(i)]] = i;
    induceSAl(t, SA, s, bkt, n, K, cs, false);
induceSAs(t, SA, s, bkt, n, K, cs, true);
    // compact all the sorted substrings into the first n1 items of SA
     // 2*n1 must be not larger than n (proveable)
    int n1 = 0;
    for (i = 0; i < n; i++)
        if (isLMS(SA[i]))
            SA[n1++] = SA[i];
    // find the lexicographic names of all substrings
    for (i = n1; i < n; i++)</pre>
        SA[i] = -1; // init the name array buffer
    int name = 0, prev = -1;
    for (i = 0; i < n1; i++) {
   int pos = SA[i];</pre>
        bool diff = false;
        for (int d = 0; d < n; d++)
            if (prev == -1 || chr(pos+d) != chr(prev+d) || tget(pos+d) != tget(prev+d)) {
             } else if (d > 0 && (isLMS(pos+d) || isLMS(prev+d)))
                break;
        if (diff) {
            name++:
            prev = pos;
        pos = (pos % 2 == 0) ? pos / 2 : (pos - 1) / 2;
        SA[n1 + pos] = name - 1;
    for (i = n - 1, j = n - 1; i >= n1; i--)
        if (SA[i] >= 0)
           SA[j--] = SA[i];
    // stage 2: solve the reduced problem
     // recurse if names are not yet unique
    int *SA1 = SA, *s1 = SA + n - n1;
    if (name < n1)</pre>
        SA_IS((unsigned char*) s1, SA1, n1, name - 1, sizeof(int));
    else
         // generate the suffix array of s1 directly
        for (i = 0; i < n1; i++)
    SA1[s1[i]] = i;</pre>
    // stage 3: induce the result for the original problem
    bkt = (int *) malloc(sizeof(int) * (K + 1)); // bucket array
    // put all left-most S characters into their buckets
    getBuckets(s, bkt, n, K, cs, true); // find ends of buckets
    for (i = 1, j = 0; i < n; i++)
        if (isLMS(i))
            s1[j++] = i; // get p1
    for (i = 0; i < n1; i++)
        SA1[i] = s1[SA1[i]]; // get index in s
    for (i = n1; i < n; i++)
    SA[i] = -1; // init SA[n1..n-1]
for (i = n1 - 1; i >= 0; i--) {
         j = SA[i];
        SA[i] = -1:
        SA[--bkt[chr(j)]] = j;
    induceSAl(t, SA, s, bkt, n, K, cs, false);
    induceSAs(t, SA, s, bkt, n, K, cs, true);
    free (bkt);
    free(t);
```

const int maxn = 200000;

```
int sa[maxn];
int lcp[maxn];
unsigned char *s;
int n;
void calc_lcp() {
    for (int i = 0; i < n; i++)
        rank[sa[i]] = i;
    for (int i = 0, h = 0; i < n; i++) {
   if (rank[i] < n - 1) {</pre>
            for (int j = sa[rank[i] + 1]; s[i + h] == s[j + h]; ++h)
             lcp[rank[i]] = h;
            if (h > 0)
                 --h;
int main() {
    string str = "abcab";
    n = str.size():
    s = (unsigned char*) str.c_str();
    SA_{IS}(s, sa, n + 1, 256, 1);
    calc lcp():
    for (int i = 0; i < n; i++) {
        cout << str.substr(sa[i + 1]);</pre>
        if (i < n - 1)
            cout << " " << lcp[i + 1];
        cout << endl;
```

6.4 Manacher's Algorithm

```
// Runs Manacher's algorithm to compute the longest palindrome
// in a string in linear time.
#include <bits/stdc++.h>
using namespace std;
string preprocess(string &s) {
    int n = (int)s.length();
    if (n == 0) return "^$";
    for (int i = 0; i < n; i++) {
    ret += "#" + s.substr(i, 1);</pre>
    ret += "#$":
    return ret;
string longestPalindrome(string &s) {
    string T = preprocess(s);
    int n = (int) T.length();
    vector<int> P(n, 0);
    int c = 0, r = 0;
    for (int i = 1; i < n - 1; i++) {
        int i_mirror = 2 * c - i;
        P[i] = (r > i) ? min(r - i, P[i_mirror]) : 0;
        // Attempt to expand palindrome centered at i
        while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
        // If palindrome cenetered at i expands past r,
         // adjust center based on expanded palindrome.
        if (i + P[i] > r) {
            c = i;
            r = i + P[i],
    // Find the maximum element in P.
    int maxlen = 0;
    int centerIndex = 0:
    for (int i = 1; i < n - 1; i++) {
        if (P[i] > maxlen) {
   maxlen = P[i];
            centerIndex = i;
    return s.substr((centerIndex - 1 - maxlen) / 2, maxlen);
```

```
int main() {
    return 0;
}
```

6.5 Z Algorithm

```
// Given a string s of length n, the Z-Algorithm produces an array
// Z where Z[i] is the length of the longest substring starting from
// S[i] which is also a prefix of S.
#include <bits/stdc++.h>
using namespace std;
void z_algo(const string &s, vector<int> &z) {
```

```
int n = (int)s.length();
int l = 0, r = 0;
for (int i = 1; i <= n; i++) {
    if (i > r) {
        l = r = i;
        while (r < n && s[r - 1] == s[r]) r++;
        z[i] = r - 1; r--;
    } else {
        int k = i - 1;
        if (z[k] < r - i + 1) z[i] = z[k];
        else {
            l = i;
            while (r < n && s[r - 1] == s[r]) r++;
        z[i] = r - 1; r--;
    }
}</pre>
```