Using only the definition of a derivative, find the derivative of: $f(x) = \sqrt{5x+1}$, for $x > \frac{1}{5}$.

Solution

(1) =
$$\lim_{h \to 0} (\sqrt{5(x+h)+1} - \sqrt{5x+1})(\sqrt{5(x+h)+1} + \sqrt{5x+1})$$

ranonalise
$$h o 0$$

$$h \left(\frac{5(x+h)+1}{5(x+h)+1} + \frac{1}{5(x+1)} \right)$$

$$= \lim_{h o 0} \frac{5(x+h)+1}{h} + \frac{1}{5(x+h)+1} + \frac{1}{5(x+1)}$$

$$= \lim_{h o 0} \frac{5h}{\sqrt{5(x+h)+1} + 15x+1} = \lim_{h o 0} \frac{5}{\sqrt{5(x+h)+1} + 15x+1}$$
Calculation

calculations

(b) Evaluate the right limit: lim 1x x→0+ sin(1x)

$$\lim_{x\to 0^+} \frac{\sqrt{x}}{\sin(\sqrt{x})}$$

END [3 marks]

Solution

Qim
$$\sqrt{x}$$
 $\frac{1}{2}$ $\frac{1$

Smarcs

END

Gercise seen in class

Let real-valued function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $: f(x,y) = e^x \sin y$ (i) Find the second derivative of the function

Sol
$$f''(x,y) = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} e^x \sin y & e^x \cos y \\ e^x \cos y & -e^x \sin y \end{pmatrix}$$
 $fx = e^x \sin y$
 $f_{xx} = e^x \sin y$
 $f_{xy} = e^x \cos y$
 $f_{xy} = e^x \sin y$

(ii) Write down the quadratic Taylor approximation at the point $(x_1y)=(1,0)$

Sol
$$f(x,y) = f(x,0) + f'(x,0) (x-0) + \frac{1}{3}(x-1,y)f''(x,0) (x-1)$$

$$= (0 e) (x-1) + \frac{1}{3} (x-1 y) (0 e) (x-1)$$

$$= ey + \frac{1}{3} (x-1 y) (ey - 1)$$

$$= ey + \frac{1}{3} (ey - 1) + ey (x-1)$$

$$= ey + ey (x-1)$$

$$= ey (x+x-x)$$

$$= ey x$$

Consider the differential equation y=x+2y, with initial condition y(0) = 2.

Use the method of Taylor series (about the point x=0) to find the first five terms of the Taylor series of y about that point.

Solution

The Taylor series of y about the point o has the form

(1)
$$y(x) = y(0) + y'(0)(x-0) + \frac{y''(0)}{2!}(x-0)^2 + \frac{y'''}{3!}(x-0)^3 + \frac{y^{(4)}}{4!}(x-0)^4$$

The initial condition y(01=2, and the differential equation

(1) give that:
for
$$x=0$$
: $y'(0) = 2y(0) = 4$

By repeatedly differentiating, the differential equation, we can find the higher derivatives:

$$y'' = 2y' = (= 2(x + 2y) = 2x + 4y) = y''(0) = 2y'(0) = 8$$

$$y''' = 2y'' \Rightarrow y''' = 2 \times 8 = 16$$

$$y^{(4)} = 2y''' = 2 \times 16 = 32$$

Therefore the first five terms of the Taylor series of y about 1 are: $2 + 4x + \frac{8}{21}x^2 + \frac{16}{21}x^3 + \frac{32}{21}x^4$

(5.)

At time t=0 a ball of mass alog is dropped from the top of a 150 m high building. Let yet be the height of the ball at time t, with y=0

being ground level.

The force of air resistance is four times the speed of the ball let the acceleration of gravity to be:

Q=9.8 m/s. 3.

What are the differential equation and initial conditions for 4(4)?

For full marks you must provide brief reasoning [5 marks] You do not have to solve the differential equation.

Answer

1. Due to Newton's second law:

ma = F

m = akgr

a = 19 the acceleration F: sum of forces

We have 2 forces: - gravity: Fgrav = mg.

negative direction in our coordinate system

since y=0 is ground level

- air resistance: Fdiag= \$4y

minus sign comes from the fact that the drag force is opposed to the direction of motion

Putting everything together:

$$ma = -mq - 4\dot{y} \rightarrow 2\ddot{y} + 4\dot{y} + 2g = 0$$

I the initial conditions are y(0) = 150 - initially the ball is on the

y(0)=0-the ball is dropped with no initial velocity

(6) Consider the following differential equation

$$Ax^2 \frac{d^2y}{dx^2} + Bx \frac{dy}{dx} + Cy = 0 \quad (*x)$$

for A,B,C : constants.

Backwork (a) By substituting x=et and using the chain rule, show that: $\frac{dy}{dt} = x \frac{dy}{dx} \text{ and } \frac{d^2y}{dt^2} = x \frac{dy}{dx} + x^2 \frac{d^2y}{dx^2} [3 \text{ marks}]$

$$\frac{\frac{\partial y}{\partial t}}{\frac{\partial y}{\partial t}} = \frac{\frac{\partial y}{\partial x}}{\frac{\partial x}{\partial t}} = \frac{\frac{\partial y}{\partial x}}{\frac{\partial x}{\partial x}} = \frac{\frac{\partial y}{\partial x}}{\frac{\partial y}{\partial x}}$$

$$\frac{d^{2}y}{dt^{2}} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dt} \left(\times \frac{dy}{dx} \right) = \frac{d}{dx} \left(\times \frac{dy}{dx} \right) \frac{dx}{dt}$$

$$= \left(\frac{dy}{dx} + \times \frac{d^{2}y}{dx^{2}} \right) e^{t} = \left(\frac{dy}{dx} + \times \frac{d^{2}y}{dx^{2}} \right) \times$$

$$= \times \frac{dy}{dx} + x^{2} \frac{d^{2}y}{dx^{2}}$$

(b) Show that the above variable substitution turns the original differential equation into one with constant coefficients. You do not have to solve the equation [2 marks]

Sol: Because of (1) and (2)

$$\left(A \frac{d^2y}{dt^2} - Ax \frac{dy}{dx}\right) + B \frac{dy}{dt} + Cy = 0$$

$$A \frac{d^2y}{dt^2} - A \frac{dy}{dt} + B \frac{dy}{dt} + Cy = 0$$

$$A \frac{d^2y}{dt^2} + (B-A) \frac{dy}{dt} + Cy = 0$$

Swotowski (p.341/Question 19)

The number of baderia in a certain culture increases from 5,000 to 15,000 in 10 hours. Assuming that the rate of increase is proportiona to the number of bacteria present, find a formula for the number of bacteria in the culture at any time t. Estimate the number this the end of 20 hours. When will the number be 50,000?

Answer

NCH) number of bacteria at time t then:

(2)
$$\frac{dn}{dt} = cn = \frac{1}{n} dn = cdt = 2nn = ct = n(t) = Ae^{ct}$$

(1) for extra explanation

Using the provided information:

(1)
$$N(0) = 5,000 = Ae^{C.0} - A = 5,000 (1)$$

(1)
$$N(0) = 5,000 = Ae^{C.0} \Rightarrow A = 5,000 (1)$$

(1) $N(\lambda 0) = 15,000 = Ae^{C.0} \Rightarrow e^{\lambda 0.0} = \frac{15,000}{5,000} = 3$

The number will be 50,000 when:

$$50,000 = 5,000 = \frac{1}{10} (\ln 3) t$$

$$\Rightarrow 10 = e^{\frac{1}{10} (\ln 3) t}$$

(1)
$$\Rightarrow$$
 ln10= $\frac{1}{10}$ ln3 t \Rightarrow t= $\frac{10 \ln 10}{200}$ $\approx 200,959$ hours

Bookwork

(a) Show using only the definitions of
$$\cosh x$$
 and $\sinh x$ that $\cosh^2 x - \sinh^2 x = 1$

(b) Show that
$$\arctan x = \frac{1}{2} \ln \left(\frac{x+1}{1-x} \right)$$
 for $-1 < x < 1$ [3]

$$\frac{Proof}{(a)} \text{ for } cosh x = \frac{e^{x} + e^{-x}}{a^{2}}$$

$$\sinh x = \frac{e^{x} - e^{-x}}{a^{2}}$$

$$... \text{ where } cosh^{2}x - sinh^{2}x = \frac{1}{4} \left(e^{x} + e^{-x}\right)^{2} - \frac{1}{4} \left(e^{x} - e^{-x}\right)^{2}$$

$$= \frac{1}{4} \left(\left(e^{x} + 2 + e^{-3x}\right) - \left(e^{3x} - 2 + e^{3x}\right)\right)$$

$$= \frac{1}{4} 4 = 1$$

(b) let
$$x = touchy = \frac{3}{69A+1}$$

$$\Rightarrow 3A = \frac{3}{60A+1}$$

$$\Rightarrow 3A = touchy = \frac{3}{60A+1}$$

$$\Rightarrow 3A = \frac{3}{60A+1}$$

$$\Rightarrow 3A = touchy = \frac$$

SECTION B

- (9) (a) Let UER² and f:U->IR be a function
 - (i) Define the terms: "stationary point of f'', "local maximum of f'', "global minimum of f'' and
 - (ii) boundary point (0,6) of U.

[4]

(, Bookwork

- (i) (a,b) \in U is called a stationary point of fif the tangent plane at (a,b) is horizontal.
- (ii) $(a,b) \in U$ is called a local minimum if $f(x,y) \geqslant f(a,b)$ for all (x,y) in some small enough disk around (a,b)
- (iii) (a,b) $\in U$ is a global minimum of if $f(a,b) \leq f(x,y)$ for all $(x,y) \in U$.
- (in Ca,b) \in U is a boundary point of U if every disk around the point, no matter how small, contains both points in U and outside U.

SECTION B

- (9) (a) Let USIR2 and f: U-> IR be a function
 - (1) Define the terms: "stationary point of f", "local maximum of f", "global minimum of f"
 - (ii) boundary point of U.

[4]

4 Bookwork

- (b) let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function $f(x,y) = x^3 + x^2y y^2$
 - (in Write down the partial derivatives fx, fy, fxx, fyy and fxy

$$f_{x} = 3x^{2} + 2xy$$
, $f_{xx} = 6x + 2y$
 $f_{y} = x^{2} - 2y$ $f_{yy} = -2$
 $f_{xy} = 2x = f_{yx}$

(ii) Find and classify the stationary points of f. If the Hessian giver you no information about a stationary point you do not have to investigate that point further

in (2):

$$\Delta = \left(\frac{f_{XX}}{f_{YX}} \frac{f_{YY}}{f_{YY}} \right) \left(\frac{f_{YX}}{f_{YY}} \right) \left(\frac{f$$

$$\Delta = (f_{xx} f_{xy}) (-3, 9) = (-9, -6) \Rightarrow \Delta = -18 < 0$$

 $f_{yx} f_{yy}) (-3, 9) = (-6, -2) \Rightarrow (-3, 9) = saddle +$

(c) Let
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 with $f(x,y) = x^2 - 3y^2$

(1) Mormal vector to the tangent plane, P, to the graph of f at point
$$\begin{pmatrix} 2 & 1 & 1 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$
 for $f_X = 2x$, $f_Y = -6y$ (1)

(ii) cartesian equation of the tangent plane P to the graph f at the point (2,1,1)

$$= 2 - f(a, 1) = f_{x}(a, 1)(x-2) + f_{y}(a, 1)(y-1)$$

$$= 2 - 1 = 4(x-2) - 6(y-1)$$

(iii) directional derivative of f at tW point (0,1) in tW direction $\binom{3}{4}$

$$Sol: fu = \frac{1}{5} \nabla f(a,1) \left(\frac{3}{4}\right) = \frac{1}{5} \left(\frac{4}{-6}\right) \left(\frac{3}{4}\right) = -\frac{12}{5}$$
 (2)

(iv) Find the direction in which f is decreasing most rapidly as we move away from the point (a,1)

$$\underline{Ans}: -\nabla f(a, h) = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

END

(b) Consider the differential equation. $\frac{dy}{dx} = x + y^2$

$$\frac{dx}{dx} = x + y^2$$

with initial condition y(n=0. Using Euler's method with step length h= 0.5, eshmate y(a).

Solution

(without proof) (a) State Value theorem of existence and uniqueness of solutions of first order differential equation. (Bookwork)

Statement

Consider the 1st order differential equation: y'= m(x1y).

- 1 Suppose that & M and and are continuous in some region R of the (x,y)-plane.
- 1 Then there exists one and only one solution y=gcx) which
- 1 passes through any given point in 2.

(c) Consider the differential equation
$$\frac{d^2y}{dx^2} + 3x \frac{dy}{dx} - 3y = x^2 - 4x + 2$$
 (t)

(1) consider Find the numbers & such that x is the solution to the homogeneous part of the given equation

$$\frac{dx^{2}}{dx} = k(k-1)x^{2}$$

$$\frac{dy}{dx} = k \times k-1$$

$$x^{2} k(k-1)x^{k-2} + 3xkx^{k-1} - 3x^{k} = 0$$
=) $(k-1)k+3k-3=0$

$$\frac{1}{2} + \frac{1}{2} = 0$$

[3 marks]

(ii) By considering the substitution y = vx, change the given differential equation into:

$$\frac{3}{d}\frac{d^2u}{dx^2} + \frac{5x}{2}\frac{du}{dx} = \left(x^2 - 4x + 2\right)$$

Since
$$y = vx \Rightarrow \frac{dv}{dx} = v + x \frac{dv}{dx}$$

[3 marts]
$$\frac{d^2 y}{dx^2} = \frac{dy}{dx} + x \frac{d^2 y}{dx^2} + \frac{dy}{dx}$$
 (1)

Hence
$$\left(\frac{d^2 y}{dx^2}\right) + x^3 \frac{d^2 y}{dx^2} + x^3 \frac{d^2 y}{dx^2} + 3x^3 \frac{dy}{dx} - 3yx$$

$$\frac{d^{2}}{dx^{2}} + 5x^{2} \frac{du}{dx} = x^{2} - 4x + 2$$

Oversion to (continue)

(iii) Solve the differential equation
$$x^3 \frac{d^2v}{dx^2} + 5x^2 \frac{dv}{dx} = x^2 - 4x + 2$$
 and therefore find the general solution of the original equation $x^2 \frac{d^2v}{dx^2} + 3x \frac{dv}{dx} - 3v = x^2 - 4x + 2$ [6]

(1) Let
$$w = \frac{dv}{dx}$$
 then $\frac{dw}{dx} = \frac{d^2v}{dx^2}$ and we may obtain $x^3 \frac{dw}{dx} + 5x^2 w = x^2 - 4x + 2$ which is linear equation with respect to w

(1)
$$\Rightarrow \frac{dw}{dx} + \frac{s}{x}w = \frac{1}{x^3}(x^2-4x+2)$$

$$p(x) \qquad Q(x)$$

with solution $w = \frac{1}{\mu(x)} \int \mu(x) O(x) dx = \frac{1}{x^{5}} \int \frac{x^{5}}{x^{3}} (x^{2} - 4x + a) dx$ $= \frac{1}{x^{5}} \int x^{2} (x^{2} - 4x + a) dx = \frac{1}{x^{5}} (\frac{x^{5}}{x^{5}} - \frac{4x^{4}}{4} + 2\frac{x^{3}}{3} + 2\frac{1}{x^{5}}) dx$ $= \frac{1}{x^{5}} \int x^{2} (x^{2} - 4x + a) dx = \frac{1}{x^{5}} (\frac{x^{5}}{x^{5}} - \frac{4x^{4}}{4} + 2\frac{x^{3}}{3} + 2\frac{1}{x^{5}}) dx$ $= \frac{1}{x^{5}} \int \frac{1}{x^{5}} dx = \frac{1}{x^{5}} \int \frac{1}{x^{$

Therefore
$$w = \frac{dv}{dx}$$
 = $v = \int w dx$

$$\Rightarrow v = \frac{1}{5}x - \ln x - \frac{9}{3}\frac{1}{x} - 4\frac{c}{x^4} + \frac{1}{x^4}$$
C, E: Constant

(1) Finally:
$$y = vx = \frac{1}{5} = x \ln x - \frac{2}{3} - \frac{4c}{x^3} + kx$$
, c.k:constant

[5]

Sol: (Need to change the order)

$$\int_0^4 \int_{yy}^2 y \cos(x^s) dx dy = \int_0^2 \int_0^x y \cos(x^s) dy dx$$

$$\begin{cases}
4 \int_{0}^{2} y \cos(x^{5}) dx dy = \int_{0}^{2} \int_{0}^{x} y \cos(x^{5}) dy dy \\
x=Vy
\end{cases}$$

$$= \int_{0}^{2} \left[\frac{y^{2}}{2} \right]_{0}^{x^{2}} \cos(x^{5}) dx$$

$$= \int_{0}^{2} \frac{x^{4}}{2} \cos(x^{5}) dx$$

$$= \int_{0}^{2} \frac{x^{4}}{2} \cos(x^{5}) dx$$

$$= \int_{0}^{2} \frac{\sin(x^{5})}{2} = \int_{0}^{2} \sin(32) \approx 0.055$$

(b) Consider the integral:
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} e^{\sqrt{x^2+y^2}} dy dx$$

- (i) Assume the change of variables x=rcos(0) and y=rsin(0). Show that the Jacobian of this change of variables is (Bookwork, p.78/notes) [2]
- (11) Use polar coordinates to evaluate the integral T4 J Sol [1 [$1-x^2$ $e^{\sqrt{x^2+4^2}}$ dydx = [n/2] reddo $= \int_{0}^{\pi} \int_{0}^{\pi} \left(\left[\operatorname{re}^{r} \right]_{0}^{1} - \int_{0}^{1} \operatorname{e}^{r} dr \right) d\theta$ $= (u_{|S|} (e - (e - 7)) q_0 = [\theta]_{u_{|S|}}^b = \frac{a}{v}$

(iii Show that
$$\Gamma(x) = (x-1)\Gamma(x-1)$$
, x>1

Bookwork
$$T(x) = \int_0^\infty t^{x-1} e^{-t} dt, x>0$$

$$\frac{\text{Proof}: \Gamma(x+y) > \Gamma(x)\Gamma(y)}{\Rightarrow} \Rightarrow 1 > \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, x,y > 1$$

$$\Rightarrow 1 > \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt, x,y$$

[8]

The last statement is true because for $0 \le t \le 1$, x-1>0 and y-1>0 $0 \le t^{\chi-1} (1-t)^{\chi-1} < 1$

Example: We have
$$\Gamma(\frac{1}{3}) = \sqrt{n}$$
 and $\Gamma(1) = 0! = 1$

Hence for $\frac{1}{3} < 1$
 $\Gamma(\frac{1}{3}) > \Gamma(1)$

(1) (b)(i)

Proof
$$\frac{\partial(x_1y)}{\partial(r_1\theta)} = \det\left(\frac{\partial x}{\partial r} \frac{\partial x}{\partial \theta}\right) = \det\left(\frac{\cos\theta - r\sin\theta}{\sin\theta}\right)$$

sine $\frac{\partial x}{\partial r} = \frac{\partial x}{\partial \theta}$

$$= \Gamma \left(\cos^2 \Theta + \sin^2 \Theta \right) = \Gamma$$

(c) (ii)
$$\Gamma(x) = (x-1)\Gamma(x-1)$$
 for $x>1$

Proof: We use integration by parts. Set
$$u = t^{x-1}$$
 and $\frac{dv}{dt} = e^{-t}$
Then $\frac{du}{dt} = (x-1)t^{x-2}$ and $v = -e^{-t}$

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$

$$= \left[-t^{x-1} e^{-t} \right]_{0}^{\infty} + \int_{0}^{\infty} (x-1) t^{x-2} e^{-t} dt$$

$$= 0 + (x-1) \int_{0}^{\infty} t^{(x-1)-1} e^{-t} dt$$

$$= (x-1) \Gamma(x-1)$$

(a) Let USIR and five IR be Functions of one variable.

Bookwork (i) State the definition of the derivative of f at XEV.

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$
 if the limit exists. [1]

(ii) Assume that f,g' exist at x. Using only the definition of a derivative, show that (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).

$$\frac{1}{1} \left(\frac{f(x)g(x)}{f(x)} \right)' = \lim_{h \to 0} \frac{f(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) g(x+h) - f(x+h) g(x) + f(x+h)g(x) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) g(x+h) - g(x)}{h} + \frac{f(x+h) - f(x)}{h} g(x) \frac{f(x+h) - f(x)}{h}$$

= Qim f(x+h) Qim g(x+h)-g(x) + lim f(x+h)-f(x) Qim g(x h >0 h h >0

[4]

=) If
$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = 0$$
 or $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$ exists then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

(ii) Find the value of the limit:

Solution

We have
$$\lim_{x\to 0} \sqrt{\frac{x^2+1}{x}} - e^x$$

We have $\lim_{x\to 0} \sqrt{\frac{x^2+1}{x}} - e^x$

Use L'Hôpital

$$\lim_{x\to 0} \sqrt{\frac{x^2+1}{x}} - e^x$$

(c) Consider the differential equation:

$$y(9x+4y)+6x(x+y)\frac{dy}{dx}=0$$

(i) Is the equation exact? Justify your answer. [2]

Following the notation used in class
$$M(x_1y) = 9xy + 4y^2$$

 $M(x_1y) = 6x^2 + 6xy$

Hence
$$\frac{\partial m}{\partial y} = 9x + 8y$$

$$\frac{\partial m}{\partial y} = \frac{9x + 8y}{\frac{\partial m}{\partial y}} = \frac{1}{9} \frac{1}{9x} = \frac{1}{9} \frac{1$$

Question 12 (continue)

(ii) Show that $\mu(x,y) = xy$ is an integrating factor for this differential equation, and find its general solution

Li(x,y) = xy will be an integrating factor if by multiplying the squation with it than the new equation becomes exact

We have
$$9x^2y^2 + 4xy^3 = 6x^3y + 6x^2y^2$$

 $xy^2(9x + 4y) + 6x^2y(x+y) \frac{dy}{dx} = 0$
 $m(x,y) = m(x,y)$

This time $\frac{\partial m}{\partial y} = 18x^2y + 12xy^2$ equal and therefore the $\frac{\partial n}{\partial x} = 18x^2y + 12xy^2$ assumption is correct

1 [The general solution of the equation will be a function of the equation will be a function of such that f(x,y) = C with $\int \frac{\partial f}{\partial x} = M(x,y) = 9x^2y^2 + 4xy^3$ and $\int \frac{\partial f}{\partial y} = N(x,y) = 6x^3y + 6x^2y^3$

In fact
$$f(x_1y) = \int (9x^2y^3 + 4xy^3) dx = 9\frac{x^3}{3}y^2 + 4\frac{x^2}{3}y^3 + 9(y)$$

$$= 3x^3y^3 + 3x^2y^3 + 9(y)$$

I and
$$\frac{\partial f}{\partial y}(x,y) = 6x^3y + 6x^2y^2 + g'(y)$$
 => $g'(y) = 0$
= $6x^3y + 6x^2y^2$
or $g(y) = constant$

Finally the general solution of the equation will be $1(x_1u) = 3x^3u^2 + 2x^2u^3 = constant$

END