Lab 1 - Linear Regression

Import necessary libraries

In [1]:

1. Loading dataset from csv file

In [2]:

1.1 Inspecting the dataset

In [3]:

Out[3]:		AGE	SEX	вмі	ВР	S1	S2	S3	S4	S 5	S6	Υ
	0	59.0	F	32.1	NaN	157.0	93.2	38.0	4.0	4.8598	87.0	151
	1	48.0	М	21.6	87.0	183.0	103.2	70.0	NaN	3.8918	69.0	75
	2	NaN	NaN	30.5	93.0	156.0	93.6	41.0	NaN	4.6728	85.0	141
	3	24.0	М	NaN	84.0	198.0	131.4	40.0	5.0	4.8903	89.0	206
	4	NaN	М	23.0	101.0	192.0	125.4	52.0	4.0	4.2905	80.0	135

In [4]:

Summary statistics:

Out[4]:

	AGE	ВМІ	ВР	S1	S2	S3	S4	S5	S6	Υ
count	409.000000	405.000000	407.000000	408.000000	406.000000	408.000000	415.000000	411.000000	416.000000	454.000000
mean	48.322738	26.446173	94.266929	188.909314	115.142365	49.756127	4.038000	4.632813	91.257212	153.988987
std	13.149722	4.416022	13.855572	34.450393	30.170183	13.145004	1.267534	0.520792	11.612361	78.006636
min	19.000000	18.100000	62.000000	97.000000	43.400000	22.000000	2.000000	3.258100	58.000000	25.000000
25%	38.000000	23.300000	84.000000	164.750000	95.100000	40.000000	3.000000	4.269700	83.000000	88.000000
50%	50.000000	25.700000	92.330000	186.000000	112.900000	48.000000	4.000000	4.605200	91.000000	142.000000
75%	59.000000	29.300000	104.500000	209.000000	135.200000	58.000000	5.000000	4.997200	98.000000	214.000000
max	79.000000	42.200000	133.000000	301.000000	242.400000	99.000000	9.090000	6.107000	124.000000	346.000000

In [5]:

Data dimensions: (454, 11)

Column names: Index(['AGE', 'SEX', 'BMI', 'BP', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'Y'], dtype='object')

Data types: float64 AGE SEX object BMI float64 ВР float64 float64 float64 float64 float64 S1 S2 S3 S4 S5 S6 float64 float64 int64 dtype: object

2. Data preprocessing

2.1. Dealing with Missing Values

Missing Values indicator

In [6]: Out[6]: AGE SEX вмі ВР S1 S2 S3 S4 S5 S6 0 False True False False False True False False False False True False False False False False False 449 False False

True False

454 rows × 11 columns

Number of missing values for each feature

True False

Mean Imputation for AGE

In [8]:

The mean age is: 48.32273838630807

In [9]: # Show the imputation result for the Missing Values in AGE

Out[9]:


```
In [10]: # Show the imputation result for the Missing Values in AGE
Out[10]: AGE
           SEX
                  43
          BMI
BP
                  49
                  47
          S1
S2
S3
S4
S5
                  46
                  48
                  46
                  39
                  43
           S6
                  38
                    0
           dtype: int64
           Mode Imputation for SEX
In [11]:
          Mode sex : M
In [12]: # Show the imputation result for the Missing Values in SEX
Out[12]:
                  AGE SEX BMI
                                   ВР
                                         S1
                                               S2
                                                    S3
                                                                S5
                                                                     S6
           o 59.000000
                            32.1
                                  NaN
                                       157.0
                                              93.2 38.0
                                                        4.00
                                                            4.8598
           1 48.000000
                         M 21.6
                                  87.0 183.0 103.2 70.0 NaN 3.8918 69.0
           2 48.322738
                         M 30.5
                                  93.0 156.0
                                              93.6 41.0 NaN 4.6728 85.0
                                                                        141
           3 24.000000
                                  84.0 198.0
                                             131.4 40.0 5.00 4.8903 89.0
           4 48.322738
                         M 23.0 101.0 192.0 125.4 52.0 4.00 4.2905 80.0
                         M 22.6
           5 23.000000
                                  89.0 139.0
                                             64.8 61.0 2.00 4.1897 68.0
                         F 22.0
                                  NaN
                                       160.0
                                              99.6 50.0 3.00 3.9512 82.0
           7 66.000000
                         M 26.2
                                 114.0 255.0 185.0 56.0 4.55 4.2485 92.0
           8 48.322738
                         F 32.1
                                  83.0
                                        NaN 119.4 42.0 NaN 4.4773 NaN
             29.000000
                                  85.0 180.0
                                              93.4 43.0 4.00 5.3845 88.0 310
           Dealing with Missing Values in the othe Columns
In [13]:
In [14]: # Show the result of the Missing Values imputation
Out[14]: AGE
           SEX
                  0
          BMI
                  0
          BP
S1
S2
S3
S4
S5
                  0
                  0
                  0
                  0
                  0
                  0
           S6
                  0
                  0
          dtype: int64
In [15]: # Show the result of the Missing Values imputation
Out[15]:
                  AGE SEX
                                 вмі
                                            BP
                                                       S1
                                                             S2
                                                                 S3
                                                                        S4
                                                                              S5
                                                                                        S6
           0 59.000000
                         F 32.100000
                                       94.266929 157.000000
                                                            93.2 38.0 4.000 4.8598
                                                                                  87.000000
                                                                                           151
           1 48.000000
                         M 21.600000
                                       87.000000 183.000000 103.2 70.0
                                                                     4.038 3.8918
                                                                                  69.000000
           2 48.322738
                         M 30.500000
                                       93.000000 156.000000
                                                           93.6 41.0 4.038 4.6728 85.000000 141
           3 24.000000
                                       84.000000 198.000000 131.4 40.0 5.000 4.8903 89.000000 206
                         M 26.446173
                         M 23.000000 101.000000 192.000000 125.4 52.0 4.000 4.2905 80.000000 135
           5 23.000000
                         M 22.600000
                                       89.000000 139.000000 64.8 61.0 2.000 4.1897 68.000000
           6 36.000000
                         F 22.000000
                                       94.266929 160.000000
                                                          99.6 50.0 3.000 3.9512 82.000000 138
             66.000000
                         M 26.200000 114.000000 255.000000 185.0 56.0 4.550 4.2485 92.000000
           8 48.322738
                         F 32.100000
                                       83.000000 188.909314 119.4 42.0 4.038 4.4773 91.257212 110
           9 29.000000
                         M 26.446173 85.000000 180.000000 93.4 43.0 4.000 5.3845 88.000000 310
```

2.2. Data Encoding

In [122]: # Plot outputs

In []: