	В	С
1	Source Description	
2	-	
3	Phase II ID No.	760
4	EPA ID No.	TXD008079642
5	Facility Name	E.I. duPont de Nemours & Co., Inc.
6	Facility Location	
7	City	Orange
8	State	TX
9	Unit ID Name/No.	Boiler No. 8
10	Other Sister Facilities	None
11	Number of Sister Facilities	0
12	Combustor Class	Liquid-fired boiler
	Combustor Type	Liquid-fired
14	Combustor Characteristics	
15	Capacity (MMBtu/hr)	350
	Soot Blowing	
	APCS Detailed Acronym	None
	APCS General Class	
	APCS Characteristics	NA
	Hazardous Wastes	Liq
_	Haz Waste Description	NVR, HMD and Diamine liquid waste
	Supplemental Fuel	Natural gas
23		
	Stack Characteristics	
25	Diameter (ft)	10.0
26	J ()	152
27		19.7
28	Gas Temperature (°F)	
29		T: 10 (
30	Permitting Status	Tier IA for metals (except Cr) and chlorine
	HWC Burn Status (Date if	
31	Terminated)	

	В	С
1	Cond Description	
2		
3	760C1	
4		
	Report Name/Date	Source Emissions Survey of E.I. Dupont De Nemours & Company, Inc.
5		Sabine River Works
6	Report Prepar	METCO Environmental, Inc.
7	Testing Firm	METCO Environmental, Inc.
8	Testing Dates	June 15, 1995
9	Cond Dates	Jun-95
10	Cond Description	CoC; max temp, haz waste feed and prod rate
11	Content	PM, CO, Cr(+6)/Cr
12		
13	760C2	
14		
15	Report Name/Date	Source Emissions Survey of E.I. Dupont De Nemours & Company, Inc. Sabine River Works
16	Report Prepar	METCO Environmental, Inc.
17	Testing Firm	METCO Environmental, Inc.
18	Testing Dates	June 14, 1995
19	Cond Dates	Jun-95
20	Cond Description	CoC; min comb temp
21	Content	CO
22		
23	760C3	
24		
25	Report Name/Date	Source Emissions Survey of E.I. Dupont De Nemours & Company, Inc. Sabine River Works
26	Report Prepar	METCO Environmental, Inc.
27	Testing Firm	METCO Environmental, Inc.
28	Testing Dates	July 9, 14, 15, 16, 1998
29	Cond Dates	Jul-98
30	Cond Description	Trial burn; DRE
31	Content	PM, HCl, Cl2, DRE monochlorobenzene
32		
	760C4	
34		
35	Report Name/Date	Source Emissions Survey of E.I. Dupont De Nemours & Company, Inc. Sabine River Works
36	Report Prepar	METCO Environmental, Inc.
37	Testing Firm	METCO Environmental, Inc.
38	Testing Dates	July 20-24, 1998
39	Cond Dates	Jul-98
40	Cond Description	Risk burn
41	Content	PM, metals, PCDD/PCDF, other organics

	В	С	D	E	F	G	Н	1	J	K	L M N
1	Stack Gas Emissions				- 1			•	<u> </u>	., 1	<u> </u>
2	Oldon Gdo Ellilooiono										
3		Comments	Units	7% O	2						
4		Commonto	OTINO	. 70 0	_				soot	blowing	
5									0001	2.2g	
	760C1					R1		R2		R3	Cond Avg
7											
	PM (total)	E1	gr/dscf	у		0.0241		0.0246		0.0378	0.0288 total
	PM	E1	gr/dscf	y		0.0223		0.0195		0.0359	0.0259 front half
	CO (MHRA)	E1	ppmv	y		42.1		39.5		92.1	57.9
	CO (RA)	E1	ppmv	y		34.0		33.6		42.7	36.8
	Chromium (Hex)		lb/hr	,		0.011		0.009		0.015	0.012
13	Chromium		lb/hr			0.144		0.121		0.254	0.173
14								-			
15	Sampling Train	PM	E1								
16	Stack Gas Flowrate		dscfm			76240		78092		77453	77262
17	O2		%			7.0		6.8		6.8	6.9
18	Moisture		%			17.11		16.77		17.39	17.09
19	Temperature		°F			379		393		384	385.3
20											
	Chromium (Hex)	E1	µg/dscm	у		38.6		30.4		51.1	40.0
	Chromium	E1	µg/dscm	У		505.0		408.4		864.5	593.0
	LVM	E1	µg/dscm	У		505.0		408.4		864.5	593.0
24											
25											
	760C2					R1		R2		R3	Cond Avg
27											
	CO (MHRA)	E1	ppmv	у		30.8		40.9		29.2	33.6
29	CO (RA)	E1	ppmv	У		17.1		16.5		15.3	16.3
30											
	Sampling Train	CO	E1								
32	Stack Gas Flowrate		dscfm			55847		53240		48928	52672
33	O2		%			13.6		12.8		12.8	13.1
34	Moisture		%			12.00		13.04		13.34	12.8
35	Temperature		°F			285		286		286	285.7
36											
	760C3					R1		R2		R3	Cond Avg
38											
	PM	E1	gr/dscf	У		0.0119		0.008		0.0076	0.0092
40	HCI		ppmv	n		61.4		60		65.2	
	Cl2		ppmv	n	nd	0.2	nd	0.2	nd	0.2	
42											
43	POHC DRE	Monochlorobe	nzene								
44	Feedrate										
45	Emission Rate	E1	µg/dscm		nd	5.363	nd	8.197	nd	4.680	
	DRE	E1	%		>	99.998		99.997		99.998	
47											
	Sampling Train	PM, HCI/CI2	E1								
49	Stack Gas Flowrate		dscfm			59298		60000		59566	59621.3
50	O2		%			11.9		11.5		11.9	11.8
51	Moisture		%			18.34		18.12		17.83	18.10
52	Temperature		°F			330		328		322	326.67
53											
	HCI	E1	ppmv	у		94.5		88.4		100.3	94.4
	CI2	E1	ppmv	У		0.3		0.3		0.3	0.3
	Total Chlorine	E1	ppmv	У		95.1		89.0		100.9	95.0
57											
	760C4					R1		R2		R3	Cond Avg
59											
	PM	E1	•	У		0.0062	_	0.0040		0.0051	0.0051
	Antimony		µg/dscm		nd	38.9		13.8		5.9	
	Arsenic		µg/dscm		nd	141.9		40.7		45.0	
	Barium		µg/dscm		nd	138.8		36.7		34.8	
	Beryllium		µg/dscm		nd	2.9		0.8		0.7	
	Cadmium		μg/dscm		nd	2.9		0.8	nd	8.0	
66	Chromium		μg/dscm	n	nd	49.0	nd	51.5		63.0	

	В	С	D	Е	F	G	Н	ı	J	K	L	М	N
67	Lead		μg/dscm	n	nd	47.8	nd	19.5	nd	11.5			
68	Mercury		µg/dscm	n	nd	1.0	nd	0.9	nd	1.0			
69	Nickel		µg/dscm	n	nd	10.0	nd	7.9	nd	7.2			
70	Selenium		μg/dscm	n	nd	128.5	nd	39.6	nd	37.4			
71	Silver		μg/dscm	n	nd	3.8	nd	1.6	nd	1.5			
72	Thallium		μg/dscm	n	nd	470.2	nd	318.3	nd	299.4			
73	Zinc		µg/dscm	n		34.8		12.3		11.7			
74	Chromium (Hex)		g/s		nd	9.6E-05	nd	1.03E-04	nd	1.27E-04			
75													
76	Sampling Train	PM, metals	E1										
77	Stack Gas Flowrate		dscfm			59027		60347		61296		60223	
78	O2		%			12.4		12.3		13.0		12.6	
79	Moisture		%			14.41		14.07		13.87		14.12	
80	Temperature		°F			277		275		286		279	
81													
82	Antimony	E1	µg/dscm	у	nd	63.3	nd	22.2	nd	10.3	100	31.9	
83	Arsenic	E1	µg/dscm	у	nd	231.0	nd	65.5	nd	78.8	100	125.1	high nds?
84	Barium	E1	μg/dscm	у	nd	225.9	nd	59.0	nd	60.9	100	115.3	
85	Beryllium	E1	μg/dscm	у	nd	4.7	nd	1.3	nd	1.3	100	2.4	
86	Cadmium	E1	μg/dscm	у	nd	4.7	nd	1.3	nd	1.5	100	2.5	
87	Chromium	E1	μg/dscm	у	nd	79.8	nd	82.9		110.2	60	90.9	
88	Lead	E1	μg/dscm	у	nd	77.9	nd	31.4	nd	20.1	100	43.1	
89	Mercury	E1	μg/dscm	у	nd	1.6	nd	1.5	nd	1.8	100	1.6	
90	Nickel	E1	μg/dscm	у	nd	16.2	nd	12.8	nd	12.5	100	13.8	
91	Selenium	E1	µg/dscm	у	nd	209.1		63.8	nd	65.4	100	112.8	
92	Silver	E1	µg/dscm	у	nd	6.2	nd	2.6	nd	2.6	100	3.8	
93	Thallium	E1	µg/dscm	У	nd	765.4	nd	512.1	nd	523.9	100	600.5	
	Zinc	E1	µg/dscm	у		56.6		19.7		20.5		32.3	
	Chromium (Hex)	E1	µg/dscm	у	nd	5.6	nd	5.8	nd	7.7	100	6.4	
96													
_	SVM	E1	μg/dscm	у	100	82.6		32.6		21.6		45.6	
	LVM	E1	µg/dscm	у	100	315.5	100	149.6	42	190.3	83	218.5	
99													
	Particle Size Distribution	in microns											
	0.5-2.5		% wt			90.3		93.1		92			
	2.5-5		% wt			7.5		5.4		6.2			
	5-7.5		% wt			1.7		0.8		1.3			
	7.5-10		% wt			0.2		0.6		0.2			
105	>10		% wt			0.2		0.1		0.3			

Feed Colors		В	C D	Е	F	G	Н	П	J K		A N C) P (Q R	S T U	V W	Х	′ Z A	A AB AC
Targot Fig. Fig.	1		- 1					- I				T. I.				1		
Targot Fig. Fig.	2																	
Process																		
Proportion Pro		760C1			R1		R2		R3	Cond Avg	R1	R2	R3	Cond Avg	R1	R2	R3	Cond Avg
Food Class Light Light	5									_				_				_
Personal Disease	6	Feedstream Number			F1		F1		F1	F1	F2	F2	F2	F2				
Processes Proc	7	Feed Class			Liq HW		Liq HW		Liq HW	Liq HW	Liq HW	Liq HW	Liq HW	Liq HW				
The Name Chante Study St	8	Feed Class 2													HW	HW	HW	HW
The Residue Miles Miles	9	Feedstream Description			NVR		NVR		NVR	NVR	HMD	HMD	HMD	HMD				
12	10	Feed Rate	g/hr		8123976		8314488		8269128	8235864	1955016	1397088	1759968	1704024				
13 Sah ghr nd 4080 nd 4190 nd 4130 4117 977 698 879 851		Heat Content	Btu/lb		8031		8031		8031	8031	2027	2027	2027					
The Chichemism (Tri) ghr		Thermal Feedrate	MMBtu/hr		147		142		148	145.7	3.52	9.24	8.77	7.2	150.5	151.2	156.8	152.8
15 Octobries		Ash	g/hr	nd	4060	nd	4160	nd	4130	4117	977	698	879	851				
Total Name State		, ,	g/hr															
Table Tabl			g/hr	nd														
18 Bandium ghr nd 0.577 nd 0.395 0.6		•	•															
19 Beryllium 9hr			•			nd												
20 Cambrium Shr nd 0.198 0.197 0.198 0.2 2 2 2 2 2 2 2 2 2				nd														
21 Chromium ghr nd 238,89 nd 208,82 245,328 290,0		•	-					nd										
			•															
23 Mercury ginr nd 0.099 nd 0.014 2.449 nd 2.549			•															
All Silver Ghr			-															
Second Communication Second Communication			•															
28			-															
27 Slack Gas Flowrate dscfm 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 76240 78092 77453 77261.7 78092 77261.7 78092 77261.		inallium	g/nr	na	61.638	na	63.17	na	63.17	62.7								
28 C2		Ctack Cas Flaurata	do of m		76040		70000		77450	77064 7	76040	70000	77450	77064 7				
September Firing Rate MMBturbr September Sep																		
30					/		6.8		6.8	6.9	,	6.8	6.8	6.9				
September Tector Tector		Estimated Fining Rate	IVIIVIDIU/III															
SA Mg/dscm 100 31.4 100 30.9 100 31.0 100 31.1 7.5 5.2 6.6 6.4 100 38.9 100 36.1 100 37.6 100 37.5 30 30 30 30 30 30 30 3		Feedrate MTEC Calculation	nne															
33 Chromium (Tri) ug/dscm ug/dscm ug/dscm 100 7635.0 100 7338.8 100 7399.4 100 7457.7 35 Antimory ug/dscm 100 115.9 100 117.4 100 118.4 117.2 100 115.9 100 117.4 100 118.4 100 117.2 36 Arsenic ug/dscm u				100	31 /	100	30.0	100	31 0 10	n 31.1	7.5	5.2	6.6	6.4 100	38.0 100	36.1.10	00 376 10	00 37.5
Second Part			•	100		100		100			7.5	5.2	0.0	0.4 100	30.9 100	30.1 10	00 37.0 II	37.3
35		, ,	•	100		100		100						100	7635.0 100	7338 8 10	0 7399 4 1	00 7457 7
36			•															
37 Barium Ug/dscm 100 4.3 7.2 100 3.0 4.8 100 4.3 0 7.2 100 3.0 50 4.8 8 8 8 9 11 11 100 1.5 0 1.5 0 1.5 3.4 1.5 1		•																
38 Beryllium Ug/dscm 3.8 3.7 100 3.7 3.7 3.7 3.7 3.7 3.8 0 3.7 100 3.7 3.3 3.7 3.8 3.7 1.5			-															
39 Cadmium			-															
40 Chromium Ug/dscm 100 1845.3 100 1530.3 3188.5 2188.1 100 1845.3 100 1530.3 0 3188.5 51 2188.1 41 Lead Ug/dscm 100 122.2 100 117.4 100 118.4 119.3 42 Mercury Ug/dscm 100 0.8 100 0.7 100 0.7 0.7 43 Silver Ug/dscm 100 19.2 100 19.1 100		•	-	100										•				
41 Lead Ug/dscm 100 122.2 100 117.4 100 118.4 119.3 100 122.2 100 117.4 100 118.4 100 119.3 142 Mercury Ug/dscm 100 0.8 100 0.7 100 19.1 100			-			100												
Mercury			•					100										
43 Silver Ug/dscm 100 19.2 100 19.1 100			-															
Thallium Ug/dscm 100 476.1 100 469.7 100 473.6 100 473.1		•	-															
45 46 47 48 49 49 49 49 49 49 49	44		-															
46 SVM ug/dscm 123.7 118.9 119.9 120.8 100 123.7 99 118.9 99 119.9 99 120.8 149	45		-															
LVM		SVM	ug/dscm		123.7		118.9		119.9	120.8				100	123.7 99	118.9	9 119.9	99 120.8
48 49 760C2	47	LVM	•				1539.9		3198.1					100	1862.1 100	1539.9	0 3198.1	
The feed stream Description The feed Rate G/hr Global Park Glo	48																	
State Stat																		
Feed Stream Number F1 F1 F1 F1 F2 F2 F2 F2		760C2			R1		R2		R3	Cond Avg	R1	R2	R3	Cond Avg	R1	R2	R3	Cond Avg
Feed Class Liq HW																		
Feed Class 2					F1		F1		F1	F1	F2		F2					
55 Feedstream Description NVR NVR NVR NVR HMD HMD HMD waste 56 Feed Rate g/hr 910602 3204533 3205667 2300000 1737817 1738649 1787666 1700000 57 Heat Content Btu/lb 8000 8000 8000 2000 2000 2000					Liq HW		Liq HW		Liq HW	Liq HW	Liq HW	Liq HW	Liq HW	Liq HW				
56 Feed Rate g/hr 910602 3204533 3205667 2300000 1737817 1738649 1787666 1700000 57 Heat Content Btu/lb 8000 8000 8000 2000 2000 2000															HW	HW	HW	HW
57 Heat Content Btu/lb 8000 8000 8000 2000 2000 2000 2000																		
		Heat Content	Btu/lb		8000		8000		8000	8000	2000	2000	2000	2000				
	58																	

В	AD	ΑE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
1 Feedstreams	•														•
2															
3															
4 760C1	R1		R2		R3	Co	ond Avg		R1		R2		R3		Cond Avg
5															
6 Feedstream Number	F3		F3		F3		F3		F4		F4		F4		F4
7 Feed Class	Spike		Spike		Spike		Spike		Total		Total		Total		Total
8 Feed Class 2	Spike		Spike		Spike		Spike		Total		Total		Total		Total
9 Feedstream Description	Spike	е	Spik	е	Spik	е	Spike		Total		Total		Tota	al	Total
10 Feed Rate	4226	6	4293	8	4269	3	42632								
11 Heat Content															
12 Thermal Feedrate									150.5		151.2		156.	В	152.8
13 Ash	248	6	252	7	252	2	2511								
14 Chromium (Tri)	512.56	8	521.6	4	517.10	4	517								
15 Chlorine															
16 Antimony															
17 Arsenic															
18 Barium															
19 Beryllium															
20 Cadmium															
21 Chromium															
22 Lead															
23 Mercury															
24 Silver															
25 Thallium															
26															
27 Stack Gas Flowrate	7624	0	7809	2	7745	3	77261.7		76240		78092		7745	3	77261.7
28 O2		7	6.	8	6.	8	6.9		7		6.8		6.	В	6.9
29 Estimated Firing Rate									338.8		352.0		349.	2	346.7
30															
31 Feedrate MTEC Calculat	i														
32 Ash	19.	2	18.	8	18.	9	19.0	67	58.1	66	54.9	67	56.	5 66	56.5
33 Chromium (Tri)	3959.	4	3878.	5	3876.	5	3904.8	0	3959.4	0	3878.5	0	3876.	5 0	3904.8
34 Chlorine									7635.0			100	7399.		
35 Antimony								100	115.9		117.4	100	118.		
36 Arsenic								100		100	5.9	100	5.		
37 Barium								100	4.3	0	7.2	100	3.		
38 Beryllium								0	3.8	0	3.7	100	3.		
39 Cadmium								100	1.5	0	1.5	0	1.		
40 Chromium	3959.	4	3878.	5	3876.	5	3904.8		5804.8		5408.8	0	7065.		
41 Lead								100	122.2		117.4	100	118.		
42 Mercury								100		100	0.7	100	0.		
43 Silver								100		100	19.1	100	19.		
44 Thallium								100	476.1	100	469.7	100	473.	6 100	473.1
45															
46 SVM								100		99	118.9	99	119.		
47 LVM	3959.	4	3878.	5	3876.	5	3904.8	32	5821.6	28	5418.4	0	7074.	6 19	6104.9
48															
49															
50 760C2															
51															
52 Feedstream Number															
53 Feed Class															
54 Feed Class 2															
55 Feedstream Description															
56 Feed Rate															
57 Heat Content															
58															

В	D D	Е	F	G	Н	I J	K L M	N O	P Q	R S	S T U	v w	X Y	ZA	A AB AC
59 Stack Gas Flowrate	dscfm		55847		53240	48928	52671.7	55847	53240	48928	52671.7		•	•	
60 O2	%		13.6		12.8	12.8	13.1	13.6	12.8	12.8	13.1				
61 Thermal Feedrate	MMBtu/hr		16.0		56.5	56.5		7.7	7.7	7.9	7.5	23.7	64.1	64.4	50.7
62															
63 Estimated Firing Rate 64	MMBtu/hr											131	139	127	132.4
65 760C3			R1		R2	R3	Cond Avg	R1	R2	R3	Cond Avg	R1	R2	R3	Cond Avg
67 Feedstream Number			F1		F1	F1	F1	F2	F2	F2	F2				
68 Feed Class			Liq HW		Lig HW	Liq HW	Liq HW	Liq HW	Liq HW	Liq HW	Liq HW				
69 Feed Class 2			q		9	=.9	=.q	=.9	q	9	=19	HW	HW	HW	HW
70 Feedstream Description			NVR		NVR	NVF	NVR	Diamine	Diamine	Diamine	Diamine				
71 Feed Rate	lb/hr						?				?				
72 Density	ml/g?		1.058		1.057	1.063	1.058	0.9987	0.9972	0.9963	0.997				
73 Heat Content	Btu/lb		2967		2981	2829	2926	348	374	399	374				
74 Monochlorobenzene	ug/l	nd	120	nd	120	nd 120	120.0 nc	50.0 nd	5.0 nd	5.0	20.0				
75 Ash	ppmw		160		160	160	147.0 nc	13.0 nd	13.0 nd	13.0	13.0				
76 Chlorine	ppmw	nd	10	nd	10			I 10.0 nd	10.0 nd	10.0	10.0				
77 Antimony	ppmw	nd		nd	2				2.0 nd	2.0	2.0				
78 Arsenic	ppmw	nd		nd	2				2.0 nd	2.0	2.0				
79 Barium	ppmw	nd	40		40				40.0 nd	40.0	40.0				
80 Beryllium	ppmw	nd		nd	1		1.0 nc		1.0 nd	1.0	1.0				
81 Cadmium 82 Chromium	ppmw	nd	0.4	na	0.4				0.4 nd	0.4	0.4				
	ppmw	nd	30.6 0.6	nd	28.2 0.6	29.8 nd 0.6			1.0 nd 0.6 nd	1.0 0.6	1.0 0.6				
83 Lead 84 Mercury	ppmw ppmw	nd nd	0.03		0.03				0.0 nd	0.0	0.03				
85 Silver	ppmw	nd		nd	1				1.0 nd	1.0	1.0				
86 Thallium	ppmw	nd		nd	2				2.0 nd	2.0	2.0				
87	ppinw	Hu	2	IIu	2	iid 2	2.0 110	2.0 110	2.0 110	2.0	2.0				
88 Stack Gas Flowrate	dscfm		59298		60000	59566	59621.3								
89 O2	%		11.9		11.5	11.9									
90															
91 Thermal Feedrate	MMBtu/hr														
92 Estimated Firing Rate	MMBtu/hr											171	181	172	175
93 can't make MTEC calcs r	need total m	ass fee	edrates												
94															
95															
96 97 760C4			D4		Do	D0	On and Access	D4	DO.	Do	O = = = 1 A =	D4	Do	Do	O = == 1 A ==
98			R1		R2	R3	Cond Avg	R1	R2	R3	Cond Avg	R1	R2	R3	Cond Avg
99 Feedstream Number			F1		F1	F1	F1	F2	F2	F2	F2				
100 Feed Class			Liq HW		Lig HW	Liq HW	Liq HW	Liq HW	Liq HW	Liq HW	Liq HW				
101 Feed Class 2			Liq i i i i		Liq 1111	Liq i i i i	291111	Liqiiii	Liq 1111	Liq i iii	Elq IIII	HW	HW	HW	HW
102 Feedstream Description			NVR		NVR	NVF	NVR	Diamine	Diamine	Diamine	Diamine				
103 Feed Rate	lb/hr						?				?				
104 Density	ml/g?		1.08		1.075	1.079	1.078	0.9788	0.994	0.9946	0.9891				
105 Heat Content	Btu/lb		8703		8732	8717	8717	4046	936	923	1968				
106 Chlorine	ppmw	nd	15		14	13	14 nc	23	54	66	48				
107 Ash	%		0.021		0.019	0.02	0.02 nc	0.0015 nd	0.0014	0.0017	0.0015				
108 Antimony	ppmw	nd		nd	2				2.0 nd		2.0				
109 Arsenic	ppmw	nd		nd		nd 2			2.0 nd		2.0				
110 Barium	ppmw	nd		nd	40				40.0 nd		40.0				
111 Beryllium	ppmw	nd		nd	1				1.0 nd		1.0				
112 Cadmium 113 Chromium	ppmw	nd	0.4 45.2	na	0.4 45	nd 0.4 45.2			0.4 nd		0.40 1.0				
114 Lead	ppmw	nd	45.2 0.6	nd	45 0.6				1.0 nd 0.6 nd		0.63				
115 Mercury	ppmw ppmw	nd	0.033		0.033						0.033				
1	PP**		5.000	nd			8.0 no				8.0				

	В	AD	AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
59	Stack Gas Flowrate															
60																
	Thermal Feedrate															
62																
	Estimated Firing Rate															
64																
65	760C3															
66	N .															
60	Feedstream Number Feed Class															
	Feed Class 2															
	Feedstream Description															
	Feed Rate															
	Density															
	Heat Content															
	Monochlorobenzene															
75	Ash															
76	Chlorine															
	Antimony															
	Arsenic															
	Barium															
	Beryllium															
	Cadmium															
	Chromium															
	Lead Mercury															
	Silver															
	Thallium															
87	THAIIIUH															
	Stack Gas Flowrate															
89																
90																
91	Thermal Feedrate															
	Estimated Firing Rate															
	can't make MTEC calcs	•														
94																
95																
96	76004															
98	760C4															
	Feedstream Number															
	Feed Class															
	Feed Class 2															
102	Feedstream Description															
103	Feed Rate															
	Density															
	Heat Content															
	Chlorine															
107	Ash															
108	Antimony Arsenic															
110	Barium															
	Beryllium															
112	Cadmium															
	Chromium															
114	Lead															
115	Mercury															
116	Nickel															

В	C D	Е	F G	H I	J K	L M	N O	P Q	R S	Т	U	V	W	Χ	Υ	Z	AA	AB	AC
117 Selenium	ppmw		2.6	1.9	1.9	2.1	1.1 nd	1.0 nd	1.2	1.1									
118 Silver	ppmw	nd	1 nd	1 nd	1	1.0 nd	1.0 nd	1.0 nd	1.0	1.0									
119 Thallium	ppmw	nd	2 nd	2 nd	2	2.0 nd	2.0 nd	2.0 nd	2.0	2.0									
120 Zinc	ppmw	nd	4 nd	4.7 nd	4	4.4 nd	4.9 nd	4.2 nd	4.0	4.4									
121																			
122 Stack Gas Flowrate	dscfm		59027	60347	61296	60223													
123 O2 124	%		12.4	12.3	13	13													
124																			
125 Estimated Firing Rate	MMBtu/hr											161.2	2	166.7		155.7		161.	2
126 can't make MTEC calcs	need total m	ass fee	edrates																

	В	AD	AE	AF	AG	AH	ΑI	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
117	Selenium															
118	Silver															
119	Thallium															
120	Zinc															
121																
122	Stack Gas Flowrate															
123	O2															
124																
125	Estimated Firing Rate															
	can't make MTEC calcs	-														

	A	В	С	D	Е	F
1	Process Information					
2						
3		Units	Run	Run	Run	Avg
4			1	2	3	
5						
6	760C1					
7						
8	Burner Temp	°F	703	715	717	712
9	Production Rate	Mlb/hr	193	192	196	194
10						
11	760C2					
12						
13	Burner Temp	°F	572	569	562	568
14	Production Rate					

	В	С	D	Е	F	G	НІ	J	K	L	М	N	0	Р	Q	R
1	PCDD/PCDF	-1					· · · · · · · · · · · · · · · · · · ·					<u> </u>	•	I		
2	N															
-	Facility Name and ID:	DuPont C	Orange	TX, Boile	r No. 8											
4	Condition ID:	760C4	J	,												
-	Condition/Test Date:	Risk burr	, July 2	20-24, 199	98											
6																
7		I-TEF			Ru	n 2			Ru	n 3				Ru	n 4	
8		Wght Fac	t	Total	TEQ	Total	TEQ	Total	TEQ	Total	TEQ		Total	TEQ	Total	TEQ
9		•		Full ND	Full ND	1/2 ND	1/2 ND	Full ND	Full ND	1/2 ND	1/2 ND	F	Full ND	Full ND	1/2 ND	1/2 ND
10	Detected in sample volume (ng)		•													
11	2,3,7,8-TCDD	1	nd	0.0030	0.0030	0.0015	0.0015 nd	0.002	0.0020	0.0010	0.0010 nd		0.002	0.0020	0.0010	0.0010
12	1,2,3,7,8-PCDD	0.5	nd	0.0040	0.0020	0.0020	0.0010 nd	0.003	0.0015	0.0015	0.0008 nd		0.004	0.0020	0.0020	0.0010
13	1,2,3,4,7,8-HxCDD	0.1	nd	0.0050	0.0005	0.0025	0.0003 nd	0.006	0.0006	0.0030	0.0003 nd		0.004	0.0004	0.0020	0.0002
14	1,2,3,6,7,8-HxCDD	0.1	nd	0.0050	0.0005	0.0025	0.0003 nd	0.006	0.0006	0.0030	0.0003 nd		0.004	0.0004	0.0020	0.0002
15	1,2,3,7,8,9-HxCDD	0.1	nd	0.0040	0.0004	0.0020	0.0002 nd	0.005	0.0005	0.0025	0.0003 nd		0.004	0.0004	0.0020	0.0002
16	1,2,3,4,6,7,8-HpCDD	0.01	nd	0.0070	0.0001	0.0035	0.0000	0.005	0.0001	0.0050	0.0001 nd		0.006	0.0001	0.0030	0.0000
17	OCDD	0.001		0.0180	0.0000	0.0180	0.0000	0.019	0.0000	0.0190	0.0000		0.024	0.0000	0.0240	0.0000
18	2,3,7,8-TCDF	0.1	nd	0.0040	0.0004	0.0020	0.0002 nd	0.003	0.0003	0.0015	0.0002 nd		0.004	0.0004	0.0020	0.0002
19	1,2,3,7,8-PCDF	0.05	nd	0.0040	0.0002	0.0020	0.0001 nd	0.005	0.0003	0.0025	0.0001 nd		0.005	0.0003	0.0025	0.0001
20	2,3,4,7,8-PCDF	0.5	nd	0.0040	0.0020	0.0020	0.0010 nd	0.004	0.0020	0.0020	0.0010 nd		0.004	0.0020	0.0020	0.0010
21	1,2,3,4,7,8-HxCDF	0.1	nd	0.0040	0.0004	0.0020	0.0002 nd	0.004	0.0004	0.0020	0.0002 nd		0.004	0.0004	0.0020	0.0002
22	1,2,3,6,7,8-HxCDF	0.1	nd	0.0040	0.0004	0.0020	0.0002 nd	0.003	0.0003	0.0015	0.0002 nd		0.004	0.0004	0.0020	0.0002
23	2,3,4,6,7,8-HxCDF	0.1	nd	0.0040	0.0004	0.0020	0.0002 nd	0.004	0.0004	0.0020	0.0002 nd		0.004	0.0004	0.0020	0.0002
24	1,2,3,7,8,9-HxCDF	0.1	nd	0.0050	0.0005	0.0025	0.0003 nd	0.004	0.0004	0.0020	0.0002 nd		0.005	0.0005	0.0025	0.0003
25	1,2,3,4,6,7,8-HpCDF	0.01		0.0170	0.0002	0.0170	0.0002	0.017	0.0002	0.0170	0.0002		0.018	0.0002	0.0180	0.0002
26	1,2,3,4,7,8,9-HpCDF	0.01	nd	0.0040	0.0000	0.0020	0.0000 nd	0.004	0.0000	0.0020	0.0000 nd		0.006	0.0001	0.0030	0.0000
27	OCDF	0.001		0.0210	0.0000	0.0210	0.0000	0.015	0.0000	0.0150	0.0000		0.021	0.0000	0.0210	0.0000
28																
29	Gas sample volume (dscf)				132.535		132.535		127.168		127.168			133.522		133.522
30	O2 (%)				12.40		12.40		12.30		12.30			13.00		13.00
31																
32	PCDD/PCDF (ng in sample)				0.0110		0.0056		0.0095		0.0049			0.0099		0.0051
33	PCDD/PCDF (ng/dscm @ 7% (02)	98.1		0.0048		0.0024 97.3	3	0.0043		0.0022	97.7		0.0046		0.0023
34																
35	TEQ Cond Avg	0.00232														