TERMODINÁMICA

Examen Intersemestral

Nombre		Grupo
--------	--	-------

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -1 (6 puntos)

Se dispone de un cilindro rígido en posición horizontal cuyo interior está dividido en 2 cámaras por un pistón adiabático que puede deslizar libremente sin rozamiento. Ambas cámaras contienen aire (R = 287 J/kg-K; $\gamma = 1,4$). La superficie lateral del cilindro está aislada térmicamente, así como la tapa de la cámara A, mientras que la tapa de la cámara B es diaterma. El cilindro está inmerso en un ambiente a $20 \,^{\circ}\text{C}$ y 95 kPa. En el estado inicial, de equilibrio, el gas de la cámara A se encuentra a $200 \,^{\circ}\text{C}$ ocupando $200 \,^{\circ}\text{dm}^3$, mientras que el gas de la cámara B se encuentra a $5 \,^{\circ}$ bar ocupando $500 \,^{\circ}\text{dm}^3$.

Instantáneamente se retira el aislamiento de la tapa de la cámara A y se acopla un sólido incompresible (C = 500 J/kg-K; ρ = 7800 kg/m^3) de 10 kg de masa que se encuentra a 500 °C. El sólido sólo puede intercambiar calor con la tapa de la cámara A. Se verifica un proceso cuasiestático hasta alcanzar el equilibrio.

Determinar:

- a) Calor intercambiado por la cámara B con el ambiente.
- b) Temperatura final del sólido.
- c) Presión final de la cámara A.

Proceso y estado final

R = 0.787 KJ/Ky-K Y = 1, 4 0,287 = Cv(r-1) La (v = 0, 717 K) Cs = 0.5 KJ/Ky-K P= 7800 Ky/m3 ms = 10 kg T'S = LONG

Estado inicial

PA = PB, al ser un proceso manshition este condición se verifice en todo el proceso.

$$m_{A} = \frac{500 \times 0.2}{0.287 \times 473} = 0.7366 \text{ ky}$$

$$m_{B} = \frac{500 \times 0.5}{0.287 \times 293} = 2.973 \text{ ky} \quad (T_{i}^{B} = To,) \text{ del (er.)}$$

mus pared disternes)

Estado Final y proceso

El posers se conacterita proque el volumen del ciliado es rigides. Por hauto:

$$V_T = V_i^A + V_i^B = 0.2 + 0.7 = 0.7 m^2$$

Adeura, hay una vivica presión (P2) y la TB coincide siempre con d'audiente, al ser prouve avanghitico y pared disternue (tape de B).

$$0.7 = \frac{0.7366 \times 0.287 \times T_z^A}{P_2} + \frac{2.973 \times 0.287 \times T_0}{P_2}$$

Despejando:

$$P_2(KPa) = 0.3020 T_2^A(K) + 357,1465$$

$$L \Rightarrow T_2^A = 3.3113P_2 - 1182,6043$$

Aplicando el PP al conjunto cilindo - solido:

$$m_{A}c_{S}(T_{2}^{S}-T_{1}^{S}) + m_{A}c_{V}(T_{2}^{A}-T_{1}^{A}) + m_{B}(v(T_{2}^{R}-T_{1}^{R}) = 0$$

$$= 0$$

En monte à temperaturs:

$$T_2^{B} = T_1^{B} = T_0$$

$$T_2^{A} = T_2^{S} = T_2$$

Por la que respecto al diz, tourando com sistema R:

$$Q_{12}^{B} - W_{12}^{B} = M_{B} C_{V} (T_{z}^{B} - T_{1}^{B}) = 0$$

$$Q_{12}^{B} = W_{12}^{B} = \int_{P_{B}}^{2} dV_{B} = M_{B} R T_{0} L (\frac{V_{2}^{B}}{V_{1}^{R}}) = 0$$

$$= M_{B} R T_{0} L (\frac{P_{1}^{B}}{P_{2}^{B}}) = 2,973 \times 0,287 \times 293 L (\frac{500}{P_{2}})$$

$$= 1553,6678 - 250,0025 L (P_{2})$$

= 1553,6678 - 250, W25 L (P2)

Combinando todo le intrumaian:

$$= 1773,6678 - 250,0025 L(P2)$$

Finalmente:

finalmente:

$$f(Pr) = 520' \text{ onset } \Gamma(bs) + 18' 300 + bs - 15506' 9495 = 0$$

$$bs = 520' \text{ onset } \Gamma(bs) + 18' 300 + bs = 0$$

	t (bs)	
bs (Kba)		_
	3765	
- 6 W	2245,66	
700	-1499,67	
200	1,866	
280	-91,83	
2-52	-1,78	T-200 KO
579.8	-0,0070	Pz = 579,9 KPe
579,9		

$$T_2^A = 3,3113 \times 579,9 - 1182,6043 = 737,62K = 464,62°C$$

TERMODINÁMICA

Examen Intersemestral

	Nombre	Grup	00	
--	--------	------	----	--

No está permitido el empleo de calculadoras programables ni la consulta de libro, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

Problema -2 (4 puntos)

El dispositivo de compresión de equipos de refrigeración pequeños consta de un motor eléctrico que acciona un compresor refrigerado, estando ambos encerrados en una carcasa aislada térmicamente. El refrigerante (R290, ver tablas adjuntas) llega a la sección de entrada de la carcasa (1) a 5,5 bar y 10 °C, y experimenta un proceso en el que toma calor del motor eléctrico y del compresor hasta llegar a la entrada al compresor (2) a 5 bar. En el compresor experimenta un proceso politrópico, saliendo del mismo (3) a 15 bar y 60 °C. La sección de salida del compresor coincide con la de salida de la carcasa.

El motor eléctrico tiene un rendimiento del 95% (potencia en el eje frente a consumo eléctrico). El consumo eléctrico es de 5 kW y el calor disipado por el compresor es un 20% del trabajo aplicado a su eje.

Determinar:

- a) Gasto másico del refrigerante
- b) Temperatura del refrigerante a la entrada del compresor
- c) Potencia disipada por irreversibilidades internas en el compresor (2 a 3).

Tabla de saturación (líquido-vapor)

р	Т	Vf	Vg	Uf	Ug	h _f	hg	Sf	Sg
[bar]	[°C]	[m³/kg]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
1,0	-42,4	0,0017188	0,4188	99,17	483,6	99,34	525,5	0,6028	2,4495
0,9	-44,7	0,0017109	0,4618	93,91	481,1	94,06	522,7	0,5799	2,4564
3,0	-14,2	0,0018265	0,1496	164,51	513,8	165,05	558,7	0,8699	2,3897
4,0	-5,5	0,0018653	0,1138	185,58	523,1	186,33	568,6	0,9500	2,3779
5,0	1,7	0,0018999	0,0918	203,39	530,7	204,34	576,6	1,0157	2,3698
6,0	7,9	0,0019318	0,0768	219,01	537,2	220,16	583,3	1,0719	2,3638
7,0	13,4	0,0019618	0,0660	233,03	542,9	234,41	589,1	1,1214	2,3592
8,0	18,3	0,0019904	0,0578	245,86	547,9	247,45	594,1	1,1658	2,3554
9,0	22,8	0,0020181	0,0513	257,72	552,5	259,54	598,6	1,2063	2,3521
10,0	26,9	0,0020450	0,0461	268,81	556,6	270,85	602,6	1,2436	2,3493
11,0	30,8	0,0020714	0,0418	279,25	560,3	281,53	606,3	1,2783	2,3467
12,0	34,4	0,0020974	0,0381	289,14	563,8	291,66	609,5	1,3107	2,3443
13,0	37,8	0,0021232	0,0350	298,57	566,9	301,33	612,4	1,3413	2,3420
14,0	41,0	0,0021488	0,0323	307,59	569,8	310,60	615,1	1,3703	2,3398
15,0	44,0	0,0021745	0,0300	316,26	572,5	319,53	617,5	1,3979	2,3375

Tabla de vapor sobrecalentado										
p = 5 bar (T _{sat} = 1,7 °C)						$p = 6 \text{ bar } (T_{sat} = 7.9 ^{\circ}\text{C})$				
Т	V	u	h	s		Т	V	u	h	s
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]		[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
5	0,0934	535,8	582,5	2,3912		10	0,0777	540,5	587,2	2,3776
10	0,0958	543,5	591,4	2,4231		15	0,0799	548,5	596,4	2,4100
15	0,0982	551,3	600,4	2,4544		20	0,0819	556,5	605,7	2,4418
20	0,1006	559,1	609,3	2,4853		25	0,0839	564,5	614,9	2,4730
25	0,1029	566,9	618,3	2,5158		30	0,0859	572,6	624,1	2,5037
	p = 10	bar (T _{sat} :	= 26,9 °C)		p = 15 bar (T _{sat} = 44,0 °C))	
Т	V	u	h	s		Т	V	u	h	S
[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]		[°C]	[m³/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]
30	0,0470	562,0	609,0	2,3705		50	0,0314	584,5	631,6	2,3816
35	0,0485	570,9	619,3	2,4041		55	0,0325	594,3	643,0	2,4166
40	0,0499	579,7	629,5	2,4369		60	0,0336	603,9	654,3	2,4506
45	0,0512	588,4	639,6	2,4690		65	0,0346	613,5	665,3	2,4836
50	0,0525	597,2	649,8	2,5006		70	0,0356	623,0	676,4	2,5159

m h2 + Wc = dc + m h3

Wc = 0,95 x 5 = 4,75 KW; Qc = 0,2 x 4,75 = 0,95 KW W3 = 654,3 KJ/Ky

Process conjub

$$h_2 = 589.3 + \frac{0.95 + 0.25}{0.07692} = 604.9 \text{ KJ/KJ}$$

$$P_2 = 5 \text{ bor}$$