파이앤 기반 머인러닝

추천 /// 스템

추천 / 기스템의 중요생

- 아마존 등과 같은 전자상거래 업체부터 넷플릭스, 유튜브 등 콘텐츠 포털까지 추천 /기스템을 통해 /가용자의 취향을 이해하고, 맞춤 상품과 콘텐츠를 제공하고 있다.
- 이에 따라 쪼금이라도 오랫동안 //비스에 고객을 오래 머무르게 하기 위해 전력을 기울이고 있다.

추천 엔낀의 필요생

- 아마쫀 및 넷플릭스 같은 강품 콘텐츠 개비스를 제공하는 측에게는 너무나 많은 강품이 존재한다.
- 이에 따라 / 가용자는 어떤 상품을 골라야 할지 선택의 압박이 생기게 된다.
- 수천 엔진은 /\\Partial \text{ 가용\text{N}} \text{ 구선 엔진은 \text{ /\text{N}-B}\text{ \text{N}} \text{ \text{ \text{P}} \text{ \text{C}} \text{ \text{L}} \text{ \text{L}} \text{ \text{L}} \text{ \text{L}} \text{L} \t

추천 / 기스템 방식

추천 / 기스템 방식

- 수천 /I)스템은 크게 콘텐츠 기반 필터링(Content Based Filtering), 협업 필터링(Collaborative Filtering) 두 가지 방식으로 나뉘게 된다.
 - 콘텐츠 기반 필터링은 상품의 속성에 개인의 취향을 반영하여 / 사용/ 자에게 콘텐츠가 가지고 있는 여러 요소이 / 사용/ 자에게 어울리겠구나 라는 것을 판별해/ 제공한다. 예를 들어 어떤 / 사용/ 자가 특정 영화 감독의 영화를 좋아한다면 이 영화 감독이 참여한 영화를 중점적으로 추천하는 경우를 들 수 있다.
 - 협업 필터링은 나와 비슷한 /바람이 갠택한 상품을 갠택한다는 개념으로/ 에를 들어 A라는 /바람과 B라는 /바람의 쇼핑 목록이 비슷할 때 A가 /바고, B가 /바지 않은 물건을 B에게 추천해 주는 경우를 들 수 있다.
- 추천 / 기스템은 이들 방식 중 1가지를 갠택하거나 이들을 결합하여 하이브리드 방식으로 / 가용한다.

컨텐츠 기반 필터링

- 콘텐츠 기반 필터링을 수행하기 위해게 반드게 실수 형식의 데이터만 필요하지는 않음
- 예를 들어 영화의 경우 감독, 배우, 영화 갤명, 장르 등 영화를 구생하는 다양한 콘텐츠들을 텍스트 기반 문개 유가도로 비교하여 추천할 수도 있음

- 콘텐츠 기반 필터링을 수행하기 위해서 반드시 실수 형식의 데이터만 필요하지는 않음
- 예를 들어 영화의 경우 감독, 배우, 영화 갤명, 장르 등 영화를 구생하는 다양한 콘텐츠들을 텍스트 기반 문개 유/아도로 비교하여 추천할 수도 있음

콘텐츠 71반 필터링 실습 (TMDB 5000)

- 미국의 유명한 영화 평점 /h이트인 IMDB 데이터 /베트를 캐글에/내 다운 받기
 - https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/code
- 콘텐츠 기반 필터링은 다음과 같은 프로/네스에 의해 구현함
 - 1. 콘텐츠에 대한 여러 텍스트 정보들을 피처 벡터화
 - 2. 코/아인 유/아도로 콘텐츠별 유/아도 계산
 - 3. 콘텐츠 별로 가중 평점을 계산
 - 4. 유/나도가 높은 콘텐츠 중에 평점이 좋은 콘텐츠 운으로 추천

협업 필터링

협업 필터링 (Collaborative Filtering)

- 이번에 개봉하는 영화를 볼까 말까 고민할 때 그 영화를 봤었던 친구에게 물어보고자 한다.
 - 이 때 주의 할 점은 취향이 비슷한 친구에게 물어봐야 한다는 것!

협업 필터링의 유형

- 최근접 이웃 기반(Nearest Neighbor)
 - 사용자 기반(User-user CF)
 - 아이템 기반(Item-item CF)
 - 내가 건호하는 아이템 A와 비슷한 다른 아이템들을 찾는 것
- 잠째 요인 기반(Latent Factor)
 - 행렬 분해 기반(Matrix Factorization)

협업 필터링의 특징

- 유저의 행동(User behavior 상품 구매 이력, 영화 평점 이력 등)에만 기반하여 추천 알고리즘 들을 전반적으로 지칭
- 상품, 영화 등 /\\Parting)을 예측하는 것이 주요 역할

	iteml	item2	item3	•••	Item M
User 1	3		3		?
User 2	4	2			3
User 3		1	2		2
User 4	1				
•••		3	1		
User N	4	2			5

User1은 item1, 3에 대한 평가 자료만 존재한다. Item M에 대한 평가를 예측 할 수 있을까?

협업 필터링의 특징

- 유저의 행동(User behavior 상품 구매 이력, 영화 평점 이력 등)에만 기반하여 추천 알고리즘 들을 전반적으로 지칭
- 상품, 영화 등 /\\Parting)을 예측하는 것이 주요 역할

	iteml	item2	item3	•••	Item M
User 1	3		3		?
User 2	4	2			3
User 3		1	2		2
User 4	1				
•••		3	1		
User N	4	2			5

결국은 평가하지 않은 데이터에 대한 예측을 하게 된다. 추천은 평점이 높으면 추천, 평점이 높지 않으면 추천을 해준다.

협업 필터링을 위한 데이터 세트 만들기 - //사용까 행/아이템 열

일반적인 ///용///-아이템 평점 데이터

User ID	Item ID	Rating
User 1	ltem 1	m
User 1	Item 3	Э
User 2	ltem 1	4
User 2	Item 2	1
User 3	Item 4	5

/ 아이템이 열로 구갱된 / 아이템 평점 데이터

	item1	item2	item3	Item 4
User 1	3		3	
User 2	4	1		
User 3				5

사용자 기반과 아이템 기반 협업 필터링 이해

/사용자 기반 (User – User)

- 특정 / 마용/ 마와 비슷한 고객들을 기반으로 이 비슷한 고객들이 갠호하는 다른 상품을 추천
- 특정 / 가용까와 비슷한 상품을 구매해온 고객들은 비슷한 고객으로 간주

당신과 비슷한 고객들도 다음 상품도 구매했습니다.

	item1	item2	item3	Item 4
User 1	5	4	4	?
User 2	4	4	5	5
User 3	1	1	1	3

User 101 높은 평점을 준 상품들과 비슷한 User2가 5점을 부여한 Item4를 User 1에게 추천할 수 있다.

/ 가용자 기반과 아이템 기반 협업 필터링 이해

아이템 기반 (Item - Item)

- 특정 상품과 유/ 한 좋은 평가를 받은 다른 비슷한 상품을 추천
- 사용자들로 부터 특정 상품과 비슷한 평가를 받은 상품들은 비슷한 상품으로 간꾸

이 상품을 선택한 다른 고객들은 다음 상품도 구매했습니다.

	User 1	User 2	User 3	User 4
Item 1	5	4	4	5
Item 2	4	4	5	5
Item 3	1	1	1	3

Item 1과 Item2의 평점이 매우 비슷하다. Item1과 Item2의 벡터 유/N도가 비슷하기 때문에 Item1을 구매한 /N용/자에게 Item2도 추천할 수 있다.

/ 사용/ 자기반 협업 필터링

• / 가용/ 자 A에게 추천될 영화는 프로메테우스 일까? 스타워즈 일까?

	다크 나이트	인터스텔라	엣지(오브 투모로우	프로메테우스	스타워즈
/사용/자 A	5	4	4		
/N용/Th B	5	3	4	5	3
/사용/사 C	4	3	3	2	5

사용자 기반 협업 필터링

• / 가용자 A에게 추천될 영화는 프로메테우스 일까? 스타워즈 일까?

		다크 나이트	인터스텔라	엣지(오브 투모로우	프로메테우스	스타워즈
상호간	/사용/자 A	5	4	4		
유/아도가 높다	/사용/자 B	5	3	4	5	3
	\사용\\\ C	4	3	Э	2	5

- / 가용/ 지용/ 지용/ 다보다 / 가용/ 다 B와 영화 평점 측면에게 유/ 가도가 높다.
- 따라게 까용까 A에게는 까용까 B가 재미있게 본(평점을 높게 준) 프로메테우스를 추천 하는 것이 좋다.

아이템 기반 협업 필터링

• / 가용자 D가 다크나이트를 재미있게 보았다. 다크나이트와 유/가한 영화를 추천하려고 하는데, 어떤 영화가 어울릴까?

	/가용/Th A	/가용/가 B	/사용/사 C	나용사 D	사용사 E
다크나이트	5	4	5	5	5
프로메테우스	5	4	4		5
스타워즈	4	3	3		4

아이템 기반 협업 필터링

• / 가용자 D가 다크나이트를 재미있게 보았다. 다크나이트와 유/ 가한 영화를 추천하려고 하는데, 어떤 영화가 어울릴까?

		/사용/자 A	/사용/사 B	\J\용\J\ C	/사용/Tr D	/사용/사 E
상호간	다크나이트	5	4	5	5	5
유/아도가 높다	프로메테우스	5	4	4		5
	스타워즈	4	3	3		4

- 여러 / 가용자들의 평점을 기준으로 볼 때 다크나이트와 가장 유/가한 영화는 프로메테우스이다.

/ 가용자 기반 VS 아이템 기반

- 일반적으로 / 가용자 기반 보다 아이템 기반 방식이 더 갠호된다.
- / 사람간의 특성은 상대적으로 다양한 요오들에 기반하기 때문이다.
 - 단순하게 동일한 상품을 구입하였다고 유/ 한 / 사람이라고 판단하기 어려운 경우가 더 많기 때문이다.

협업 필터링을 위한 코//인 유///도

기준 행			
0	1	7	2
1	1	2	4
2	0	8	3
3	2	0	3

비교 대상 기준행	0	1	2	3
0	1	0.68 (0-1유/사도)	0.99 (0 - 2 유/나도)	0.3 (0-3 유小도)
1	0.68 (1 - 0 유/나도)	1	0.72 (1-2 유/사도)	0.85 (1 – 3 유/나도)
2	0.99 (2-0 유/나도)	0.72 (2-1 유/トト도)	1	0.29 (2-3 유小도)
3	0.3 (3 - 0 유/ 나 도)	0.85 (3 - 1 유/사도)	0.29 (3 - 2 유 까 도)	1

- 아이템 기반의 협업 필터링에/개 개인화된 평점 예측은 Weighted Rating sum 방식을 이용한다.
 - N / N용자 N 이 아이템 N 이 대한 평점 예측을 / N용자 N 가 아이템 N 가 아이템 N 가 아이템들 (N 개의 다른 아이템)의 합으로 계산하되, 아이템 N 다른 아이템들 간의 유/ N도를 반영한 합으로 계산한다.

$$\widehat{R}_{u,i} = \sum (S_{i,N} \times R_{u,N}) / \sum (|S_{i,N}|)$$

- $\hat{R}_{u,i}$: /마용자 u, 아이템 i의 개인화된 예측 평점 값
- $S_{i,N}$: 아이템 i와 가짱 유/아도가 높은 Top-N개 아이템의 유/아도 벡터
- $R_{u,N}$: / 가용/ 자 u의 아이템 i와 가장 유/가도가 높은 Top-N개 아이템에 대한 길제 평점 벡터

l가용자 l가 아이템 l에 대해 몇 점의 평점을 줄까?를 예측 해보자.

- 아이템 기반의 협업 필터링에/개 개인화된 평점 예측은 Weighted Rating sum 방식을 이용한다.
 - N 사용N N N 아이템 N 대한 평점 예측을 N용N N 아이템 N 아이템 N 아이템들 N 가의 다른 아이템)의 합으로 계산하되, 아이템 N 다른 아이템들 간의 유가도를 반영한 합으로 계산한다.

$$\hat{R}_{u,i} = \sum (S_{i,N} \times R_{u,N}) / \sum (|S_{i,N}|)$$

ltem j	ltem k	Item l	Item m	Item n
5	4	1	3	2

· 강품 i와 비슷한 5개 강품에 대한 점수

- 아이템 기반의 협업 필터링에게 개인화된 평점 예측은 Weighted Rating sum 방식을 이용한다.
 - N 사용N N N 아이템 N 대한 평점 예측을 N용N N 아이템 N 아이템 N 아이템들 N 가의 다른 아이템)의 합으로 계산하되, 아이템 N 다른 아이템들 간의 유가도를 반영한 합으로 계산한다.

$$\hat{R}_{u,i} = \sum (S_{i,N} \times R_{u,N}) / \sum (|S_{i,N}|)$$

N 용자 u의 상품 평점 $R_{u,N}$

Item j	Item k	ltem l	Item m	Item n
5	4	1	3	2

상품 i와 비슷한 상품들의 유/N도

_	sim(i,j)	sim(i,k)	sim(i, l)	sim(i,m)	sim(i,n)	- ↑
E	0.2	0.1	0.4	0.1	0,2	

- 아이템 기반의 협업 필터링에게 개인화된 평점 예측은 Weighted Rating sum 방식을 이용한다.

$$\widehat{R}_{u,i} = \sum (S_{i,N} \times R_{u,N}) / \sum (|S_{i,N}|)$$

\cap 사용자 u의 상품 평점 $R_{u,N}$

ltem j	Item k	ltem l	Item m	Item n
5	4	1	m	2

상품 i와 비슷한 상품들의 유/N도

sim(i,j)	sim(i,k)	sim(i, l)	sim(i,m)	sim(i,n)
0.2	0.1	0.4	0.1	0.2

$$5 \times 0.2 + 4 \times 0.1 + 1 \times 0.4 + 3 \times 0.1 + 2 \times 0.2 = 2.5$$

- 아이템 기반의 협업 필터링에게 개인화된 평점 예측은 Weighted Rating sum 방식을 이용한다.
 - N 사용N N N 아이템 N 대한 평점 예측을 N용N N 아이템 N 아이템 N 아이템들 N 가의 다른 아이템)의 합으로 계산하되, 아이템 N 다른 아이템들 간의 유가도를 반영한 합으로 계산한다.

$$\hat{R}_{u,i} = \sum (S_{i,N} \times R_{u,N}) / \sum (|S_{i,N}|)$$

N 용자 u의 상품 평점 $R_{u,N}$

Item j	Item k	ltem l	Item m	Item n
5	4	1	3	2

상품 i와 비슷한 상품들의 유/N도

sim(i,j)	sim(i,k)	sim(i,l)	sim(i,m)	sim(i,n)
2.0	0.1	0.4	0.1	0.2

Item j	Item k	Item l	Item m	Item n
5	4	1	3	2

0.2	sim(i,k)
0.1	sim(i,k)
0.4	sim(i, l)
0.1	sim(i,m)
0.2	sim(i,n)

아이템 기반 협업 필터링 실습 (IMDB)

- 미국의 유명한 영화 평점 /h이트인 IMDB 데이터 /베트를 캐글에/H 다운 받기
 - https://files.grouplens.org/datasets/movielens/ml-latest-small.zip
- 아이템 기반 협업 필터링은 다음과 같은 프로/네스에 의해 구현함
 - 1. / 가용/ 자-아이템 행렬 데이터를 아이템-/ 가용/ 자 행렬 데이터로 변환
 - 2. 아이템 간의 코/아인 유/아도로 아이템 유/아도 계산
 - 3. / 사용자가 관람(구매)하지 않은 아이템들 중에게 아이템간 유/사도를 반영한 예측 점수 계산
 - 4. 예측 점수가 가장 높은 순으로 아이템 추천

깜째 요인 협업 필터링 개요

- 잠깨(Latent) 요인 협업 필터링은 /가용까-아이템 평점 행렬 속에 숨어 있는 잠깨 요인을 추출해 추천 예측을 /기도
- 대규모 다차원 행렬을 SVD와 같은 행렬 분해(Matrix Factorization) 기법으로 분해하는 과정에게 잠재 요인 추출

깜째 요인 협업 필터링 이해

- 잠깨 요인 협업 필터링은 /가용/자-아이템 평점 행렬 옥에 숨어 있는 잠깨 요인을 추출해 추천 예측을 할 수 있게 한다.
 - 잠째 요인 자체를 정확하게 무엇이다 라고 정의 하기는 힘들다.

 - 따라게 가용자 레벨의 잠재 요인을 장르라고 생각하면, 아이템 레벨의 잠재 요인도 장르라고 생각한다.

사용자 레벨의 잠재 요인

Super Hero : 0.7Action : 0.6Adventure : 0.5

– Sci–Fi : 0,3 – Fantasy : 0,5 – Drama : 0,3

- Romance : 0.1

아이템 레벨의 깜째 요인

– Super Hero : 0.8

- Action : 0.7

- Adventure : 0.6

- Sci-Fi : 0.5

– Fantasy : 0.4 – Drama : 0.4

- Romance : 0.0

행렬 분해를 통한 깜깨 요인 협업 필터링

 잠깨 요인 협업 필터링의 행렬 분해 목표는 회소 행렬 형태의 //사용/자-아이템 평점 행렬을 밀집(Dense) 행렬 형태의 //사용/자-깜깨 요인 행렬과 깜깨 요인-아이템 행렬로 분해 한 뒤 이를 깨 결합하여 밀집 행렬 형태의 //사용/자-아이템 평점 행렬을 생성하여 //사용/자에게 //내로운 아이템을 추천하는 것이다.

행렬 분해를 통한 깜깨 요인 협업 필터링

원본 / 가용/ 자-아이템 평점 행렬 (회소 행렬)

	item1	item2	item3	item4	item5
User 1	4			2	
User 2		5		3	
User 3			3	4	4
User 4	5	2	1	2	

 \approx

/ 가용자-깜깨 요인 행렬

	factorl	factor2
Ul	0.94	0.96
U2	2.14	0.08
U3	1.93	1.79
и4	0.58	1.56

깜깨 요인-아이템 행렬

	item1	item2	item3	Item4	item5
factorl	1.7	2.3	1.41	1,36	0.41
factor2	2.49	0.41	0.14	0.75	1.77

원본 /\\용\T\-아이템 행렬이 /\\\용\T\-\T\T\T\ 요인 행렬과 잠\T\ 요인-아이템 행렬로 분해되었다. 이를 내적/11키면 원래 모양의 밀집 행렬이 만들어 진다.

행렬 분해를 통한 깜깨 요인 협업 필터링

/ 가용자-깜깨 요인 행렬

	factor1 factor	
Ul	0.94	0.96
UZ	2.14	0.08
U3	1.93 1.79	
и4	0.58	1.56

깜째 요인-아이템 행렬

	item1	item2	item3	Item4	item5
factorl	1.7	2.3	1.41	1.36	0.41
factor2	2.49	0.41	0.14	0.75	1.77

	item1	item2	item3	item4	item5
User 1	3.98	2.56	1.46	2	2.08
User 2	3.82	4.96	3.02	2.97	1.02
User 3	5	5	2.96	3.97	4.95
User 4	4.95	1.99	1.04	1.99	3.05

행렬 분해를 통한 깜깨 요인 협업 필터링 예계

/\\Partile Instruction 10 장르 선호도 행렬 P와 영화 1의 장르 요소 행렬 Q.T를 내적했더니 원본 데이터 행렬의 값인 4와 유/\\Pot 값이 나왔다. 이를 이용해 영화 2에 대한 선호도를 구해보자

행렬 분해를 통한 깜째 요인 협업 필터링 예계

행렬 분해 이유

	iteml	item2	item3	•••	Item M
User 1	3	?	3	?	?
User 2	4	2	?	?	3
User 3	?	1	2	?	2
User 4	1	?	?	?	?
	•••	•••	•••	•••	•••
User N	4	2	?	?	5

- 희오 행렬은 값 자체가 많이 들어있지 않은 행렬이다.
- 따라게 까용까-영화 평점 행렬도 값이 매우 희오한 행렬이다.
- SVD는 값이 모두 들어 있어야 수행할 수 있기 때문에 행렬 P와 행렬 Q를 일반적인 방법으로는 분해할 수가 없다.

P와 Q를 모르는데 어떻게 R을 예측 할 수 있을까?

행렬 분해 이유

	item1	item2	item3	•••	Item M
User 1	3	?	В	?	?
User 2	4	2	?	?	3
User 3	?	1	2	?	2
User 4	1	?	?	?	?
•••	•••	•••	•••	•••	•••
User N	4	2	?	?	5

- 희오 행렬은 값 자체가 많이 들어있지 않은 행렬이다.
- 따라게 ///용///-영화 평점 행렬도 값이 매우 희오한 행렬이다.
- SVD는 값이 모두 들어 있어야 수행할 수 있기 때문에 행렬 P와 행렬 Q를 일반적인 방법으로는 분해할 수가 없다.

경/) 하강법을 이용하면 된다!

• 경/ 하강법을 이용하여 P와 Q에 기반한 예측 R 값이 길제 R 값과 가장 최소의 오류를 가질 수 있도록 비용함수 최적화를 통해 P와 Q를 최적화 할 수 있도록 유추한다.

경/ 하강법 기반의 행렬 분해

- 경사 하강법을 이용한 행렬 분해 방법은 P와 Q 행렬로 계산된 예측행렬 R 행렬 값이 실제 R 행렬 값과 가장 최소의 오류를 가질 수 있도록 반복적인 비용 함수 최적화를 통해 P와 Q를 유추해 나가는 것이다.
 - 1. P와 Q를 임의의 값을 가진 행렬로 설정
 - 보통은 정규 분포 랜덤 값으로 없는 부분을 채운다.
 - 2. P와 Q.T 값을 곱해 예측 R 행렬을 계산하고 예측 R 행렬과 실제 R 행렬에 해당하는 오류 값을 계산
 - 3. 이 오류 값을 최소화 할 수 있도록 P와 Q 행렬을 적절한 값으로 각각 업데이트
 - 4. 만쪽할 만한 오류 값을 가질 때까지 2, 3번 작업을 반복하면서 P와 Q를 업데이트하여 근/사화한다.

경/ 하강법 기반의 행렬 분해

- 경사 하강법을 이용한 행렬 분해 방법은 P와 Q 행렬로 계산된 예측행렬 R 행렬 값이 실제 R 행렬 값과 가장 최소의 오류를 가질 수 있도록 반복적인 비용 함수 최적화를 통해 P와 Q를 유추해 나가는 것이다.
 - 1. P와 Q를 임의의 값을 가진 행렬로 설정
 - 보통은 정규 분포 랜덤 값으로 없는 부분을 채운다.
 - 2. P와 Q.T 값을 곱해 예측 R 행렬을 계산하고 예측 R 행렬과 실제 R 행렬에 해당하는 오류 값을 계산
 - 3. 이 오류 값을 최소화 할 수 있도록 P와 Q 행렬을 적절한 값으로 각각 업데이트
 - 4. 만쪽할 만한 오류 값을 가질 때까지 2, 3번 작업을 반복하면서 P와 Q를 업데이트하여 근/사화한다.

실제 값과 예측값의 오류 최소화와 L2 규제를 고려한 비용 함수 식

$$\min \sum (r_{u,i} - p_u q_i^t)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2)$$

경사 하강법 기반의 행렬 분해

- 경/ 아하강법을 이용한 행렬 분해 방법은 P와 Q 행렬로 계산된 예측행렬 R 행렬 값이 실제 R 행렬 값과 가장 최소의 오류를 가질 수 있도록 반복적인 비용 함수 최적화를 통해 P와 Q를 유추해 나가는 것이다.
 - 1. P와 Q를 임의의 값을 가진 행렬로 설정
 - 보통은 정규 분포 랜덤 값으로 없는 부분을 채운다.
 - 2. P와 Q.T 값을 곱해 예측 R 행렬을 계산하고 예측 R 행렬과 실제 R 행렬에 해당하는 오류 값을 계산
 - 3. 이 오류 값을 최소화 할 수 있도록 P와 Q 행렬을 적절한 값으로 각각 업데이트
 - 4. 만쪽할 만한 오류 값을 가질 때까지 2, 3번 작업을 반복하면서 P와 Q를 업데이트하여 근/ 화한다.

길제 값과 예측값의 오류 회소화와 L2 규제를 고려한 비용 함수 객

$$\min \sum (r_{u,i} - p_u q_i^t)^2 + \lambda (\|q_i\|^2 + \|p_u\|^2)$$

길제값과 예측값의 오류 회오화

과적합 개선을 위한 L2 규제

경/ 하강법 기반의 행렬 분해

• 실제 R 행렬 값과 예측 R 행렬 값의 차이를 최소화하는 방향생을 가지고 P 행렬과 Q 행렬에 업데이트 값을 반복적으로 수행하면게 최적화된 예측 R 행렬을 구하는 방식이 경/ 하하강법 기반의 행렬 분해이다.

비용 함수를 최소화하기 위해/배롭게 업데이트 되는 p_u' 와 q_i'

$$p_u' = p_u + \eta(e_{u,i} \cdot q_i - \lambda \cdot p_u)$$

$$q_i' = q_i + \eta(e_{u,i} \cdot p_u - \lambda \cdot q_i)$$

- p_u : P 행렬의 /가용/자 u행 벡터
- q_i^t : Q 행렬의 아이템 i행의 전치 벡터
- $e_{u,i}$: u행 i열에 위치한 실제 행렬 값과 예측 행렬 값의 차이 오류
 - $e_{u,i} = r_{u,i} \hat{r}_{u,i}$
 - $r_{u,i}$: R 행렬의 u행 i열의 값
 - $\hat{r}_{u,i}:p_u\cdot q_i^t$ 로 계산되며 u행 i열에 위치한 행렬의 예측값
- η: SGD 학습률
- λ : L2 규제(Regularization) 계수