SKILLFACTORY

<u>Курс</u> > <u>Блок 1. Знакомств...</u> > <u>РҮТНОN-12. Продв...</u> > 4. Сводные таблицы

4. Сводные таблицы

△ Сводные таблицы — это распространённый инструмент для агрегации данных.

→ Сводная таблица принимает на вход данные из отдельных столбцов и группирует их. В результате получается новая таблица, которая позволяет увидеть многомерное обобщение данных. Таким образом, благодаря сводным таблицам мы можем оценить зависимость между двумя и более признаками данных.

Мы чаще сталкиваемся со сводными таблицами, чем с обычными, **в плоском виде**, так как сводные таблицы удобнее для анализа и быстрых выводов, а также позволяют увидеть более общие зависимости между признаками, нежели простая группировка данных.

Под «плоским видом» подразумевается, что индексами являются номера строк, а столбцами — имена столбцов.

Инструмент сводных таблиц также широко популярен среди тех, кто использует *Excel* или какие-либо *Bl*-системы.

МЕТОД GROUPBY КАК СПОСОБ ПОСТРОЕНИЯ СВОДНЫХ ТАБЛИЦ

На самом деле мы с вами уже строили простейшие одномерные сводные

Стр. 1 из 14 25.04.2022, 22:15

таблицы с помощью метода groupby — мы рассматривали сводную таблицу в контексте группировки по одному признаку.

Например, мы уже умеем строить таблицу, которая показывает зависимость медианной цены и площади здания от числа комнат:

melb_df.groupby('Rooms')[['Price', 'BuildingArea']].median()

	Price	Building Area
Rooms		
1	385000.0	107.0
2	690000.0	126.0
3	950000.0	126.0
4	1285000.0	142.0
5	1660000.0	176.0
6	1800000.0	126.0
7	1496000.0	216.5
8	1515000.0	126.0
10	900000.0	126.0

Также можно построить таблицу, в которой мы будем учитывать не только число комнат, но и тип здания (Туре). Для этого в параметрах метода groupby() укажем список из нескольких интересующих нас столбцов.

melb_df.groupby(['Rooms', 'Type'])['Price'].mean()

25.04.2022, 22:15 Стр. 2 из 14

Rooms	Туре	
1	house	8.668655e+05
	townhouse	5.927045e+05
	unit	3.899289e+05
2	house	1.017238e+06
	townhouse	7.101585e+05
	unit	6.104905e+05
3	house	1.109233e+06
	townhouse	9.847087e+05
	unit	8.505963e+05
4	house	1.462283e+06
	townhouse	1.217092e+06
	unit	1.037476e+06
5	house	1.877327e+06
	townhouse	1.035000e+06
	unit	NaN
6	house	1.869508e+06
	townhouse	NaN
	unit	5.200000e+05
7	house	1.920700e+06
	townhouse	NaN
	unit	NaN
8	house	1.510286e+06
	townhouse	NaN
	unit	2.250000e+06
10	house	9.000000e+05
	townhouse	NaN
	unit	NaN
Name:	Price, dtype:	float64

В результате выполнения такого кода мы получаем *Series*, которая обладает несколькими уровнями индексов: первый уровень — число комнат, второй уровень — тип здания. Такая организация индексов называется **иерархической**. Вычисление параметра (средней цены) происходит во всех возможных комбинациях признаков.

Для того, чтобы финальный результат был представлен в виде сводной таблицы (первый группировочный признак по строкам, а второй — по столбцам), а не в виде Series с иерархическими индексами, к результату чаще всего применяют метод <u>unstack()</u>, который позволяет переопределить вложенный индекс в виде столбцов таблицы:

melb_df.groupby(['Rooms', 'Type'])['Price'].mean().unstack()

Стр. 3 из 14 25.04.2022, 22:15

Туре	house	townhouse	unit
Rooms			
1	8.668655e+05	5.927045e+05	3.899289e+05
2	1.017238e+06	7.101585e+05	6.104905e+05
3	1.109233e+06	9.847087e+05	8.505963e+05
4	1.462283e+06	1.217092e+06	1.037476e+06
5	1.877327e+06	1.035000e+06	NaN
6	1.869508e+06	NaN	5.200000e+05
7	1.920700e+06	NaN	NaN
8	1.510286e+06	NaN	2.250000e+06
10	9.000000e+05	NaN	NaN

В результате мы получаем сводную таблицу, столбцы в которой представляют типы домов (*house*, *townhouse*, *unit*), строки — число комнат, а на пересечении строк и столбцов находится средняя стоимость объекта с такими показателями.

- ? Какие интересные выводы можно сделать из этой таблицы?
- Пропуски в сводной таблице (*NaN*) говорят о том, что в наших данных нет соответствующих комбинаций признаков. Например, у нас нет информации о ценах на таунхаусы, где количество комнат больше пяти.
- 2 Наибольшей средней стоимостью (2,25 млн. австралийских долларов) обладают объекты типа *unit* с восемью жилыми комнатами. Наименьшая средняя стоимость у однокомнатных домов типа *unit* (чуть меньше 400 тыс. австралийских долларов).
- **3** Сколько бы комнат ни было в доме, цена на объекты типа *unit* всегда ниже других (за исключением восьмикомнатных объектов).

МЕТОД PIVOT_TABLE ДЛЯ ПОСТРОЕНИЯ СВОДНЫХ ТАБЛИЦ

На самом деле метод groupby редко используется при двух параметрах, так как для построения сводных таблиц существует специальный и более простой метод — pivot_table().

Стр. 4 из 14 25.04.2022, 22:15

Кликните на плашку, чтобы увидеть информацию ↓

Основные параметры метода pivot_table()

- values имя столбца, по которому необходимо получить сводные данные, применяя агрегирующую функцию;
- index имя столбца, значения которого станут строками сводной таблицы;
- columns имя столбца, значения которого станут столбцами сводной таблицы;
- aggfunc имя или список имён агрегирующих функций (по умолчанию — подсчёт среднего, 'mean');
- fill_value значение, которым необходимо заполнить пропуски (по умолчанию пропуски не заполняются).

Давайте построим ту же самую таблицу, но уже с использованием метода pivot_table. В качестве параметра values укажем столбец *Price*, в качестве индексов сводной таблицы возьмём *Rooms*, а в качестве столбцов — *Type*. Агрегирующую функцию оставим по умолчанию (среднее). Дополнительно заменим пропуски в таблице на значение 0. Финальный результат для наглядности вывода округлим с помощью метода round() до целых.

```
melb_df.pivot_table(
  values='Price',
  index='Rooms',
  columns='Type',
  fill value=0
).round()
```

25.04.2022, 22:15 Стр. 5 из 14

Туре	house	townhouse	unit
Rooms			
1	866866.0	592705.0	389929.0
2	1017238.0	710158.0	610491.0
3	1109233.0	984709.0	850596.0
4	1462283.0	1217092.0	1037476.0
5	1877327.0	1035000.0	0.0
6	1869508.0	0.0	520000.0
7	1920700.0	0.0	0.0
8	1510286.0	0.0	2250000.0
10	900000.0	0.0	0.0

Несложно понять, что метод pivot_table() имеет преимущество перед группировкой по нескольким критериям. Оно заключается в наличии специальных аргументов для строк и столбцов сводной таблицы, благодаря чему уменьшается вероятность запутаться при построении более сложных (многомерных) сводных таблиц, о которых мы поговорим далее.

А теперь давайте проанализируем продажи в каждом из регионов в зависимости от того, будний был день или выходной. Для этого построим сводную таблицу, в которой строками будут являться названия регионов (*Regionname*), а в столбцах будет располагаться наш «признак-мигалка» выходного дня (*Weekend*), который равен 1, если день был выходным, и 0 — в противном случае. В качестве значений сводной таблицы возьмём количество продаж.

```
melb_df.pivot_table(
values='Price',
index='Regionname',
columns='Weekend',
aggfunc='count',
)
```

Стр. 6 из 14 25.04.2022, 22:15

Weekend	0	1
Regionname		
Eastern Metropolitan	447	1024
Eastern Victoria	13	40
Northern Metropolitan	1258	2632
Northern Victoria	11	30
South-Eastern Metropolitan	123	327
Southern Metropolitan	1534	3161
Western Metropolitan	960	1988
Western Victoria	8	24

Из результирующей таблицы можно сделать два вывода:

- Число продаж резко возрастает в выходные вне зависимости от региона (приблизительно в 2-3 раза). То есть вероятность того, что дом продадут в выходные, гораздо выше вероятности, что его продадут в будний день.
- B отдалённых регионах (*Victoria*) коэффициент роста числа продаж выше, чем в центральных. Если в центральных регионах *Metropolitan* продажи по выходным в 2-2.5 раза выше, чем по будням, то в регионах *Victoria* число продаж в выходные вырастает примерно в 3 раза.

Такой рост можно даже попытаться объяснить логически: в выходные дни у людей появляется свободное время, чтобы доехать до отдалённых пригородов с целью покупки дома.

Разберём ещё один пример: найдём, как зависит средняя и медианная площадь участка (*Landsize*) от типа объекта (*Type*) и его региона (*Regionname*). Чтобы посмотреть несколько статистических параметров, нужно передать в аргумент aggfunc список из агрегирующих функций. Построим такую сводную таблицу, где пропущенные значения заменим на 0:

Стр. 7 из 14 25.04.2022, 22:15

```
melb_df.pivot_table(
values='Landsize',
index='Regionname',
columns='Type',
aggfunc=['median', 'mean'],
fill_value=0
)
```

		m	edian			mean
Туре	house	townhouse	unit	house	townhouse	unit
Regionname						
Eastern Metropolitan	674.0	233.5	203	717.422847	269.440678	330.444444
Eastern Victoria	843.0	0.0	230	3108.960000	0.000000	295.333333
Northern Metropolitan	459.5	134.0	0	619.249092	317.325733	495.026538
Northern Victoria	724.0	0.0	0	3355.463415	0.000000	0.000000
South-Eastern Metropolitan	630.5	240.0	199	664.306701	212.160000	357.864865
Southern Metropolitan	586.0	246.0	0	569.643881	278.858824	466.380245
Western Metropolitan	531.0	198.0	62	507.883406	244.560669	557.637232
Western Victoria	599.5	0.0	0	655.500000	0.000000	0.000000

Обратите внимание на добавление дополнительных индексов столбцов *median* и *mean*. Здесь медианное и среднее значения рассчитаны отдельно для каждой комбинации признаков.

Здесь в глаза бросаются объекты типа house в регионах Eastern Victoria и Northern Victoria — в них среднее и медиана отличаются более чем в три раза. Вероятно, это связано с тем, что в этих районах очень большой разброс цен: есть несколько объектов с гигантской площадью, а остальные объекты имеют небольшую площадь. Из-за этого среднее значение искажается, в то время как медиана нечувствительна к такому разбросу и не искажает результат.

МНОГОМЕРНЫЕ СВОДНЫЕ ТАБЛИЦЫ

До этого мы рассматривали, как некоторый статистический показатель может зависеть от двух признаков. Однако, как уже упоминалось, сводные таблицы позволяют наблюдать зависимость и от большего числа признаков. Такие сводные таблицы называются **многомерными**.

Стр. 8 из 14 25.04.2022, 22:15

Для того чтобы исследовать зависимость от большего числа признаков, можно передать список признаков в параметр index или параметр columns.

Давайте построим таблицу, в которой по индексам будут располагаться признаки метода продажи (*Method*) и типа объекта (*Type*), по столбцам — наименование региона (*Regionname*), а на пересечении строк и столбцов будет стоять медианная цена объекта (*Price*):

```
melb_df.pivot_table(
values='Price',
index=['Method','Type'],
columns='Regionname',
aggfunc='median',
fill_value=0
)
```

	Regionname	Eastern Metropolitan	Eastern Victoria	Northern Metropolitan	Northern Victoria	South-Eastern Metropolitan	Southern Metropolitan	Western Metropolitan	Western Victoria
Method	Type								
PI	house	1244000	780000	900000	500000	865000	1725000	870000	630000
	townhouse	760000	0	632500	0	1190000	1055000	670000	0
	unit	650000	0	410000	0	525000	571250	360000	0
s	house	1127000	675000	920000	555000	883300	1611000	870000	397500
	townhouse	828000	0	750000	0	875000	1135000	729000	0
	unit	645750	492000	525500	0	606000	655000	489000	0
SA	house	932500	950000	817500	540000	880000	1390000	772500	0
	townhouse	807500	0	425000	0	0	1141000	467500	0
	unit	0	0	616000	0	0	580000	571000	0
SP	house	1050000	672500	900000	521000	770000	1521750	865000	360000
	townhouse	910000	0	690000	0	800000	1162500	702500	0
	unit	515000	400000	470000	0	601000	550000	460000	0
VB	house	1100000	712500	1050000	690000	850000	1800000	880000	0
	townhouse	892500	0	640000	0	0	1250000	689500	0
	unit	500000	0	450000	0	700000	500000	420000	0

Первым индексом в таблице идёт метод продажи здания, далее для метода указывается тип недвижимости. По столбцам расположены регионы. В ячейках таблицы указана медианная цена для каждой такой комбинации.

Такие таблицы уже сложнее читать, однако с помощью них можно более глубоко исследовать закономерности. Например, можно видеть, что вне зависимости от метода продажи и региона цена на объекты типа *house* практически всегда выше, чем на объекты другого типа.

ДОСТУП К ДАННЫМ В СВОДНОЙ ТАБЛИЦЕ

Как получить доступ к данным или произвести фильтрацию в сложной сводной

Стр. 9 из 14 25.04.2022, 22:15

таблице, где есть дополнительные индексы?

Давайте рассмотрим, что собой представляют столбцы сложной сводной таблицы.

Запишем сводную таблицу, которую мы создавали ранее в переменную pivot:

```
pivot = melb_df.pivot_table(
  values='Landsize',
  index='Regionname',
  columns='Type',
  aggfunc=['median', 'mean'],
  fill value=0
```

Выведем её столбцы с помощью атрибута columns:

```
pivot.columns
```

```
MultiIndex([('median', 'house'),
               ('median', 'townhouse'),
               ('median', 'unit'),
( 'mean', 'house'),
( 'mean', 'townhouse'),
               ( 'mean', 'unit')],
             names=[None, 'Type'])
```

В результате мы получаем объект MultiIndex. Этот объект хранит в себе шесть комбинаций пар столбцов (два статистических параметра и три типа здания), то есть есть шесть возможных вариантов обращения к столбцам таблицы.

Мультииндексы раскрываются подобно вложенным словарям — по очереди, как матрёшка. Чтобы получить доступ к определённому столбцу, вы должны сначала обратиться к столбцу, который находится уровнем выше.

Так, из таблицы pivot мы можем получить средние значения площадей участков для типа здания *unit*, просто последовательно обратившись по имени столбце

Стр. 10 из 14 25.04.2022, 22:15

display(pivot['mean']['unit'])

Regionname

Eastern Metropolitan 330.444444
Eastern Victoria 295.333333
Northern Metropolitan 495.026538
Northern Victoria 0.000000
South-Eastern Metropolitan 357.864865
Southern Metropolitan 466.380245
Western Metropolitan 557.637232
Western Victoria 0.000000

Name: unit, dtype: float64

Аналогично производится и фильтрация данных. Например, если нам нужны регионы, в которых средняя площадь здания для домов типа *house* меньше их медианной площади, то мы можем найти их следующим образом:

mask = pivot['mean']['house'] < pivot['median']['house']
filtered_pivot = pivot[mask]
display(filtered_pivot)</pre>

		me	edian			mean
Туре	house	townhouse	unit	house	townhouse	unit
Regionname						
Southern Metropolitan	586.0	246.0	0	569.643881	278.858824	466.380245
Western Metropolitan	531.0	198.0	62	507.883406	244.560669	557.637232

Чтобы получить индексы отфильтрованной таблицы, можно воспользоваться атрибутом index и обернуть результат в список:

print(list(filtered_pivot.index))
['Southern Metropolitan', 'Western Metropolitan']

△ Таким образом, сводные таблицы изначально кажутся сложной структурой, но на самом деле это обычные *DataFrame* со вложенными индексами строк или столбцов.

Умение читать и анализировать сложные сводные таблицы — это важный навык, который помогает проводить углублённый анализ данных.

Примечание. На самом деле мультииндексные таблицы можно создавать

Стр. 11 из 14 25.04.2022, 22:15

вручную. Давайте посмотрим на синтаксис данной конструкции:

```
import numpy as np
mser = pd.Series(
  np.random.rand(8),
    index=[['white','white','blue','blue','red','red','red'],
      ['up','down','right','up','down','up','down','left']])
display(mser)
```

```
white up
             0.708366
     down
            0.364817
     right
            0.615734
blue up
            0.766448
     down 0.734864
red up
           0.148334
     down 0.317675
     left
            0.646968
dtype: float64
```

В данном примере мы создаём объект Series со вложенными индексами. Мы передаём в качестве индексов *Series* вложенный список, где первый список задаёт внешний уровень вложенности, а второй список — внутренний уровень вложенности. Значения Series — случайные числа от 0 до 1, сгенерированные функцией np.random.rand() (ваши значения могут отличаться).

Если посмотреть на индексы Series, можно увидеть, что они являются мультииндексами:

```
print(mser.index)
```

```
MultiIndex([('white',
              'white', 'down'),
             ('white', 'right'),
             ('blue',
             ( 'blue', 'down'),
                'red',
                           'up'),
             ( 'red', 'down'),
( 'red', 'left')],
```

Аналогично создаются *DataFrame* со вложенными признаками (вложенными столбцами) — для этого вложенный список передаётся в параметр columns при инициализации таблицы:

Стр. 12 из 14 25.04.2022, 22:15

Давайте немного **потренируемся в составлении и чтении сводных таблиц** ↓

Задание 4.1

1 point possible (graded)

Какой параметр метода pivot_table() отвечает за признак, по которому будут рассчитаны агрегирующие функции?

Неlp center Политика конфиденциальности Пользовательское соглашение

O values	
O index	SKILLFAGTORY
Oaggfunc	Built on ed by RACCOONGANG
O columns	

Отправить

Стр. 13 из 14 25.04.2022, 22:15

Задание 4.2

1 point possible (graded)

Составьте сводную таблицу, которая показывает зависимость медианной площади (BuildingArea) здания от типа объекта недвижимости (Type) и количества

Задание 4.3 П point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого агентства.	здания наибольшая? В качестве ответа запишите :	эту комбинацию (тип здания, число комнат) через
Задание 4.3 1 point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	запятую, без пробелов.	
Задание 4.3 1 point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого		
Задание 4.3 1 point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого		
 1 point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	Отправить	
 1 point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	·	
 1 point possible (graded) Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого		
Составьте сводную таблицу, которая показывает зависимость средней цены объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для зданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	Задание 4.3	
объекта недвижимости (<i>Price</i>) от риелторского агентства (<i>SellerG</i>) и типа здани (<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого		
(<i>Type</i>). Во вновь созданной таблице найдите агентство, у которого средняя цена для вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	-	·
вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	• •	y or priemoperor of an ermenda (demend) in irmia diffamilia.
вданий типа <i>unit</i> максимальна. В качестве ответа запишите название этого	Во вновь созданной таблице	найлите агентство, у которого средняя цена для
агентства.		·
	эгентства.	

© Все права защищены

Стр. 14 из 14 25.04.2022, 22:15