Untitled

April 17, 2024

```
[106]: # 1
       # (a) If the Bayes decision boundary is linear, we would expect LDA to perform
        better on the training set due to its simplicity and avoidance of i
        →overfitting. However, on the test set, where generalization is crucial, QDA
        might perform better if the true boundary is not strictly linear, as it has it
        →more flexibility to capture complex relationships.
       # (b) If the Bayes decision boundary is non-linear, QDA is likely to outperform
        LDA on both the training and test sets because QDA can model non-linear
        ⇔boundaries more accurately.
       \# (c) As the sample size n increases, we anticipate the test prediction \sqcup
        accuracy of QDA relative to LDA to improve. With a larger sample size, the
        →variance of QDA is better managed, allowing it to exploit its flexibility ⊔
        ofor better fitting the data while avoiding overfitting.
       # (d) False. Even if the Bayes decision boundary for a given problem is linear,
        →using QDA rather than LDA might not lead to a superior test error rate. ⊔
        →QDA's increased flexibility could lead to overfitting, especially with a
        smaller sample size, resulting in a higher test error rate compared to LDA.
```

```
[107]: import math

# 2

def logistic_regression(hours_studied, GPA):
    # Estimated coefficients
    beta0 = -6
    beta1 = 0.05
    beta2 = 1

    linear_combination = beta0 + beta1 * hours_studied + beta2 * GPA

    probability = 1 / (1 + math.exp(-linear_combination))

    return probability
```

```
# (a) Predict the probability that a student who studies for 40 hours and has—
an undergrad GPA of 3.5 gets an A
hours_studied_a = 40
GPA_a = 3.5
probability_a = logistic_regression(hours_studied_a, GPA_a)
print("Probability of getting an A (a):", probability_a)

# (b) How many hours would the student in the previous question need to study—
to have a 50% chance of getting an A?
def find_hours_for_50_percent_chance(GPA):
    hours_studied_b = (0 - (-6) - 1 * GPA) / 0.05
    return hours_studied_b
hours_studied_b = find_hours_for_50_percent_chance(GPA_a)
print("Hours needed for 50% chance of getting an A (b):", hours_studied_b)
```

Probability of getting an A (a): 0.3775406687981454 Hours needed for 50% chance of getting an A (b): 50.0

```
[108]: # 3
       mean_dividend = 10
      mean_no_dividend = 0
       variance = 36
       probability_dividend = 0.80
       probability_no_dividend = 1 - probability_dividend
      X = 4
       def pdf(mean, variance, x):
          return (1 / (math.sqrt(2 * math.pi * variance))) * math.exp(-(x - mean)**2 /
        → (2 * variance))
       # Calculate P(X = 4 | D)
       px_4_given_dividend = pdf(mean_dividend, variance, X)
       # Calculate P(X = 4 / \sim D)
       px_4_given_no_dividend = pdf(mean_no_dividend, variance, X)
       # Calculate P(D \mid X = 4) using Bayes' theorem
       probability_dividend_given_x = (px_4_given_dividend * probability_dividend) / u
        →(px_4_given_dividend * probability_dividend + px_4_given_no_dividend *_
        →probability_no_dividend)
       print("Probability of issuing a dividend given X = 4:", u
        →probability_dividend_given_x)
```

Probability of issuing a dividend given X = 4: 0.7518524532975261

```
[109]: # 4
       # (a)
       import pandas as pd
       df_auto = pd.read_csv('/Users/rouren/Desktop/24S ML/HW/hw3/Data-Auto.csv')
       mpg_median = df_auto['mpg'].median()
       df_auto['mpg01'] = (df_auto['mpg'] > mpg_median).astype(int)
      print(df_auto.head())
         Unnamed: 0
                      mpg cylinders displacement horsepower weight \
      0
                  1 18.0
                                              307.0
                                                                   3504
                                   8
                                                            130
                  2 15.0
                                              350.0
                                                                   3693
      1
                                   8
                                                            165
      2
                  3 18.0
                                   8
                                              318.0
                                                            150
                                                                   3436
                  4 16.0
      3
                                   8
                                              304.0
                                                            150
                                                                   3433
      4
                  5 17.0
                                              302.0
                                                            140
                                                                   3449
         acceleration year origin
                                                           name mpg01
      0
                 12.0
                         70
                                   1 chevrolet chevelle malibu
                 11.5
                         70
                                              buick skylark 320
                                                                     0
      1
                                  1
      2
                 11.0
                         70
                                  1
                                             plymouth satellite
                                                                     0
      3
                 12.0
                         70
                                                  amc rebel sst
                                                                     0
                                   1
      4
                 10.5
                                   1
                                                    ford torino
                                                                     0
                         70
[110]: # (b)
       import seaborn as sns
       import matplotlib.pyplot as plt
       import matplotlib.pyplot as plt
       plt.subplots(2, 4, figsize=(12, 8))
       # Boxplot for mpg vs. mpg01
       plt.subplot(2, 4, 1)
       plt.boxplot([df_auto['mpg'][df_auto['mpg01'] == 0],__

→df_auto['mpg'][df_auto['mpg01'] == 1]])
       plt.xlabel('mpg01')
       plt.ylabel('mpg')
       plt.title('mpg vs. mpg01')
       # Boxplot for cylinders vs. mpg01
       plt.subplot(2, 4, 2)
```

```
plt.boxplot([df_auto['cylinders'][df_auto['mpg01'] == 0],__

df_auto['cylinders'][df_auto['mpg01'] == 1]])
plt.xlabel('mpg01')
plt.ylabel('cylinders')
plt.title('cylinders vs. mpg01')
# Boxplot for displacement vs. mpg01
plt.subplot(2, 4, 3)
plt.boxplot([df_auto['displacement'][df_auto['mpg01'] == 0],__

df_auto['displacement'][df_auto['mpg01'] == 1]])
plt.xlabel('mpg01')
plt.ylabel('displacement')
plt.title('displacement vs. mpg01')
# Boxplot for horsepower vs. mpg01
plt.subplot(2, 4, 4)
plt.boxplot([df_auto['horsepower'][df_auto['mpg01'] == 0],__

→df_auto['horsepower'][df_auto['mpg01'] == 1]])
plt.xlabel('mpg01')
plt.ylabel('horsepower')
plt.title('horsepower vs. mpg01')
# Boxplot for weight vs. mpq01
plt.subplot(2, 4, 5)
plt.boxplot([df_auto['weight'][df_auto['mpg01'] == 0],__

df_auto['weight'][df_auto['mpg01'] == 1]])
plt.xlabel('mpg01')
plt.ylabel('weight')
plt.title('weight vs. mpg01')
# Boxplot for acceleration vs. mpq01
plt.subplot(2, 4, 6)
plt.boxplot([df_auto['acceleration'][df_auto['mpg01'] == 0],__

df_auto['acceleration'][df_auto['mpg01'] == 1]])
plt.xlabel('mpg01')
plt.ylabel('acceleration')
plt.title('acceleration vs. mpg01')
# Boxplot for origin vs. mpq01
plt.subplot(2, 4, 7)
plt.boxplot([df_auto['origin'][df_auto['mpg01'] == 0],__

df_auto['origin'][df_auto['mpg01'] == 1]])
plt.xlabel('mpg01')
plt.ylabel('origin')
plt.title('origin vs. mpg01')
```



```
[111]: plt.subplots(3, 2, figsize=(12, 12))

# Scatterplot for cylinders vs. mpg01
plt.subplot(3, 2, 1)
plt.scatter(df_auto['cylinders'], df_auto['mpg01'])
plt.xlabel('Cylinders')
plt.ylabel('mpg01')
plt.title('Cylinders vs. mpg01')

# Scatterplot for displacement vs. mpg01
plt.subplot(3, 2, 2)
plt.scatter(df_auto['displacement'], df_auto['mpg01'])
```

```
plt.xlabel('Displacement')
plt.ylabel('mpg01')
plt.title('Displacement vs. mpg01')
# Scatterplot for horsepower vs. mpg01
plt.subplot(3, 2, 3)
plt.scatter(df_auto['horsepower'], df_auto['mpg01'])
plt.xlabel('Horsepower')
plt.ylabel('mpg01')
plt.title('Horsepower vs. mpg01')
# Scatterplot for weight vs. mpg01
plt.subplot(3, 2, 4)
plt.scatter(df_auto['weight'], df_auto['mpg01'])
plt.xlabel('Weight')
plt.ylabel('mpg01')
plt.title('Weight vs. mpg01')
# Scatterplot for acceleration vs. mpg01
plt.subplot(3, 2, 5)
plt.scatter(df_auto['acceleration'], df_auto['mpg01'])
plt.xlabel('Acceleration')
plt.ylabel('mpg01')
plt.title('Acceleration vs. mpg01')
# Scatterplot for year vs. mpg01
plt.subplot(3, 2, 6)
plt.scatter(df_auto['year'], df_auto['mpg01'])
plt.xlabel('Year')
plt.ylabel('mpg01')
plt.title('Year vs. mpg01')
plt.tight_layout()
plt.show()
```


[112]: # Comparing distributions between features with above-median and below-median properties of the former, particularly with values exceeding those of four-cylinder engines. Cars with above-median mpg typically feature smaller engine capacities compared to those with below-median mpg, which holds true for factors like horsepower and weight. However, there isn't a significant difference in acceleration and year. Notably, cylinders, displacement, horsepower, and weight contribute significantly to predicting mpg01.

```
# In contrast, scatterplots demonstrate clearer distinctions between features_\
\( \text{with above-median and below-median mpg. Key influencing factors include_\( \text{horsepower, acceleration, and weight, where values show less overlap_\( \text{weight} \)
\( \text{compared to other predictors.} \)
```

```
[113]: # (c)
       from sklearn.model_selection import train_test_split
       import numpy as np
       np.random.seed(1)
       train, test = train_test_split(df_auto, test_size=0.5, random_state=22)
       print(test.head())
           Unnamed: 0
                        mpg cylinders displacement horsepower
                                                                   weight \
      280
                  283 22.3
                                               140.0
                                                                     2890
                                     4
                                                               88
      57
                   59 25.0
                                     4
                                                97.5
                                                               80
                                                                     2126
                   48 19.0
                                     6
                                               250.0
                                                              100
                                                                     3282
      46
                  226 17.5
                                     6
                                               250.0
                                                              110
                                                                     3520
      223
      303
                  306 28.4
                                                151.0
                                                               90
                                                                     2670
           acceleration year origin
                                                        name mpg01
      280
                   17.3
                           79
                                             ford fairmont 4
      57
                   17.0
                           72
                                    1
                                          dodge colt hardtop
                                                                   1
                   15.0
                           71
                                            pontiac firebird
      46
                                    1
                                                                   0
      223
                   16.4
                           77
                                    1
                                          chevrolet concours
      303
                   16.0
                           79
                                    1 buick skylark limited
                                                                   1
[114]: # (d)
       from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
       from sklearn.metrics import confusion_matrix, accuracy_score
       predictors = ['cylinders', 'weight', 'displacement', 'horsepower']
       # Fit LDA model
       lda_model = LinearDiscriminantAnalysis()
       lda_model.fit(train[predictors], train['mpg01'])
       lda_pred = lda_model.predict(test[predictors])
       conf_matrix_d = confusion_matrix(test['mpg01'], lda_pred)
       test_error_d = 1 - accuracy_score(test['mpg01'], lda_pred)
       print("Confusion Matrix:")
       print(conf_matrix_d)
```

```
print("Test Error:", test_error_d)
      Confusion Matrix:
      [[87 14]
       [ 7 88]]
      Test Error: 0.1071428571428571
[115]: # (e)
       from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
       # Fit QDA model
       qda_model = QuadraticDiscriminantAnalysis()
       qda_model.fit(train[predictors], train['mpg01'])
       qda_pred = qda_model.predict(test[predictors])
       conf_matrix_e = confusion_matrix(test['mpg01'], qda_pred)
       test_error_e = 1 - accuracy_score(test['mpg01'], qda_pred)
       print("Confusion Matrix:")
       print(conf_matrix_e)
       print("Test Error:", test_error_e)
      Confusion Matrix:
      [[89 12]
       [ 9 86]]
      Test Error: 0.1071428571428571
[116]: # (f)
       from sklearn.linear_model import LogisticRegression
       # Fit logistic regression model
       glm_model = LogisticRegression(max_iter=1000)
       glm_model.fit(train[predictors], train['mpg01'])
       # Predict probabilities for test data
       probs = glm_model.predict_proba(test[predictors])[:, 1]
       # Assign class labels based on probability threshold of 0.5
       pred_glm = (probs > 0.5).astype(int)
       # Compute confusion matrix
       conf_matrix_f = confusion_matrix(test['mpg01'], pred_glm)
       # Compute test error
```

```
test_error_f = 1 - accuracy_score(test['mpg01'], pred_glm)
       print("Confusion Matrix:")
       print(conf_matrix_f)
       print("Test Error:", test_error_f)
      Confusion Matrix:
      [[92 9]
       [ 8 87]]
      Test Error: 0.08673469387755106
[117]: # (g)
       from sklearn.naive_bayes import GaussianNB
       # Fit Naive Bayes model
       nb_model = GaussianNB()
       nb_model.fit(train[predictors], train['mpg01'])
       nb_pred = nb_model.predict(test[predictors])
       conf_matrix_g = confusion_matrix(test['mpg01'], nb_pred)
       test_error_g = 1 - accuracy_score(test['mpg01'], nb_pred)
       print("Confusion Matrix:")
       print(conf_matrix_g)
       print("Test Error:", test_error_g)
      Confusion Matrix:
      [[88 13]
       [ 8 87]]
      Test Error: 0.1071428571428571
[118]: # 5
       # (a)
       import statsmodels.api as sm
       df_de = pd.read_csv('/Users/rouren/Desktop/24S ML/HW/hw3/Data-Default.csv')
       np.random.seed(1)
       X = df_de[['income', 'balance']]
       y = df_de['default']
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

```
log_reg = LogisticRegression()
       log_reg.fit(X_train, y_train)
       print("Coefficients:", log_reg.coef_)
       print("Intercept:", log_reg.intercept_)
      Coefficients: [[-0.0001229
                                    0.00040355]]
      Intercept: [-1.12688016e-06]
\lceil 119 \rceil : \# (b)
       X_train, X_val, y_train, y_val = train_test_split(df_de[['income', 'balance']],_

df_de['default'], test_size=0.5)
       log_reg = LogisticRegression()
       log_reg.fit(X_train, y_train)
       y_pred = log_reg.predict(X_val)
       validation_error = np.mean(y_pred != y_val)
       print("Validation Error:", validation_error)
      Validation Error: 0.0244
[154]: # (c)
       num repetitions = 3
       validation_errors_without_student = []
       for i in range(num_repetitions):
           X_train, X_val, y_train, y_val = train_test_split(df_de[['income',_
        ⇔'balance']], df_de['default'], test_size=0.5)
           log reg = LogisticRegression()
           log_reg.fit(X_train, y_train)
           y_pred = log_reg.predict(X_val)
           validation_error = np.mean(y_pred != y_val)
           validation_errors_without_student.append(validation_error)
           print(f"Validation error for repetition {i+1}: {validation_error}")
       print("Validation errors for all repetitions:", 
        ⇒validation_errors_without_student)
```

Validation error for repetition 1: 0.0314 Validation error for repetition 2: 0.0326

→that the model generalizes well and is robust.

Although there is some variability, all errors are relatively low, indicating \Box consistent model performance across different data splits. This suggests

Validation error for repetition 3: 0.0348 Validation errors for all repetitions: [0.0314, 0.0326, 0.0348]

```
[121]: # (d)
       X = df_de[['income', 'balance', 'student']]
       y = df_de['default']
       encoder = OneHotEncoder(drop='first')
       X_encoded = pd.DataFrame(encoder.fit_transform(X[['student']]).toarray(),__
        ⇔columns=['student'])
       X = X.drop(columns=['student'])
       X = pd.concat([X, X_encoded], axis=1)
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
       log_reg_with_student = LogisticRegression()
       log_reg_with_student.fit(X_train, y_train)
       y_pred_with_student = log_reg_with_student.predict(X_test)
       validation_error_with_student = np.mean(y_pred_with_student != y_test)
       print("Validation Error with student variable:", validation error with student)
       avg_validation_errors = np.mean(validation_errors_without_student)
       print("Validation Error without student variable:", avg_validation_errors)
       if validation_error_with_student < avg_validation_errors:</pre>
           print("Including the dummy variable for student leads to a reduction in the \Box
        ⇔test error rate.")
       else:
           print("Including the dummy variable for student does not lead to a_{\sqcup}
        oreduction in the test error rate.")
```

Validation Error with student variable: 0.0346
Validation Error without student variable: 0.032
Including the dummy variable for student does not lead to a reduction in the test error rate.