Curso:

Evaluación de Dinámica de la Partícula y Sistemas de Partículas

Nombre y apellido:

	Entregar en formato de texto, pdf, doc, docx.
1.	
	I. La cantidad de movimiento de cierto objeto se hace cuatro veces más grande en magnitud. ¿En qué factor cambió su energía cinética?
	(a) 16 (b) 8 (c) 4 (d) 2 (e) 1
	 II. La energía cinética de un objeto se hace cuatro veces mayor. ¿En qué factor cambió la magnitud de su cantidad de movimiento? (a) 16 (b) 8 (c) 4 (d) 2 (e) 1
2.	Sobre un pasajero que se encuentra en reposo dentro de un ascensor, el piso ejerce una fuerza cuyo
	módulo es cuatro quintos del peso del hombre ($\frac{4}{5}P_H$). En estas condiciones el ascensor puede
	estar: $ au$
	a) Ascendiendo y frenando con una aceleración de $\frac{4}{5}g$
	b) Descendiendo y frenando con una aceleración de $\frac{g}{5}$
	c) Moviéndose con velocidad constante
	d) Ascendiendo y frenando con una aceleración de $\frac{g}{5}$
	e) En caída libre
	f) Descendiendo y frenando con una aceleración de $\frac{4}{5}g$

3. El empleado de una empresa de mudanzas desea transportar un mueble. Calcule el valor y el signo del trabajo entregado por el hombre al mueble en las situaciones que siguen. En cada una realice un

esquema de la misma y el correspondiente diagrama de cuerpo libre.

a) Lo empuja con una fuerza de 1000 N , paralela al piso a lo largo de 8 m

- b) Tira del mueble con una fuerza 1000 N por medio de una soga que forma un ángulo de 30° con la horizontal a lo largo de 8 m
- c) El mueble se venía moviendo por un plano horizontal y el empleado lo detiene aplicándole una fuerza de 1000 N, paralela al piso a lo largo de 8 m
- d) Camina horizontalmente, con velocidad constante, cargando el mueble sobe sus hombros a lo largo de 8 *m*
- 4. El profesor de Física I quiere probar que $\vec{F} \cdot t = \Delta \vec{p}$ con el salto de bungee. Se deja caer desde un acantilado alto y tiene una caída libre durante 3s. Entonces la cuerda del bungee comienza a estirarse y reduce su rapidez a cero en 2s. Por fortuna, la cuerda se estira hasta lo máximo a muy corta distancia del suelo. Si la masa del profesor es de $80 \, kg$ y la gravedad es de $10 \, \frac{m}{s^2}$:
 - a) ¿Cuál es la variación de la cantidad de movimiento durante los primeros 3 s?
 - b) ¿Cuál es la variación de la cantidad de movimiento durante el intervalo de desaceleración de 2 s ?
 - c) ¿Cuál es el impulso durante los primeros 3s?
 - d) ¿Cuál es el impulso durante el intervalo de desaceleración de 2s?
 - e) ¿Cuál es la fuerza media que ejerce la fuerza durante el intervalo de desaceleración de 2s ?
 - f) ¿Cuál es el trabajo realizado por la cuerda?
 - g) ¿Cuál es el trabajo total realizado?

5. Una bala de masa m se introduce en un bloque de madera de masa M que está unido a un resorte de constante K; por el impacto se comprime el resorte de una longitud x. Sabiendo que el coeficiente de rozamiento entre el bloque y el suelo es μ , calcular en función de esos datos la velocidad de la bala antes del choque. M

