Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

1942 H2073

UNITED STATES DEPARTMENT OF AGRICULTURE Agricultural Marketing Service

EP 16 1940

COMPUTATIONAL TABLES FOR USE IN STUDIES OF ARTIFICIAL DAYLIGHTING

By Dorothy Nickerson, Color Technologist

The tables in this report are those used in artificial daylighting studies made during the last several years in the color measurements laboratory of the Agricultural Marketing Service. Two reports on this work have been published 1/2 and a third report, prepared for presentation to the Illuminating Engineering Society, has been accepted for publication. 3/

The practical result has been the installation of Macbeth 7500K units of artificial daylighting in the larger cotton classing rooms of this Service, units similar to the one shown in figure 1. Smaller units of this sort are being used for other color grading purposes, as in the grading of flour color in bread and macaroni, figure 2, and lamps of the same type, but without diffusing glass, figure 3, are used when needed for grading canned fruits and vegetables in the laboratories of this Service.

These tables are published, not only to make available the data upon which our own conclusions were based but in order that other workers who may be interested in illuminants not included in this study, or in products not studied, may be able to use much of the same basic data in calculations involved in their own studies. By such use they can save themselves much work by being able, upon completion of their computations, to compare their results with those already obtained for the illuminants and standards used in studies made by the author. Sources of original data for these illuminants are given in an early publication.

Nickerson, Dorothy. Artificial Daylighting for Color Grading of Agricultural Products. Jour. Optical Soc. Amer. 29: 1-9. Jan. 1939.

^{2/ -----} Artificial Daylighting Studies. Illum. Eng. Soc. Trans. 34: 1233-1253. Dec. 1939.

The Illuminant in Color Matching and Discrimination. How Good a Substitute is One Illuminant for Another. Illum. Eng. 35: (For Sept. 1940 issue).

Figure 1. — Macbeth artificial daylight unit developed for use in cotton classification. This unit is ventilated by forced draft.

Figure 2. - Smaller unit similar in quality of light to that produced by the unit in figure 1.

Figure 3. — Lamps similar in quality of light to that of units shown.

Certain of the symbols used in these tables are intended to follow the usage of Judd $\frac{4}{5}$ in his paper describing the 1931 ICI standard observer and of Hardy $\frac{5}{5}$ in his Handbook of Colorimetry.

The following statements may help to clarify the relations of the several symbols:

- Symbols X, Y, Z are used to represent any tristimulus specifications which are based on the 1931 ICI standard observer.
- Symbols x, y, z refer to a specialized case of X, Y, Z. They should be used only to refer to <u>distribution coefficients</u> for equal energy stimulus for the 1931 ICI standard observer. They are the tristimulus values for one unit of spectrally homogeneous radiant energy of wavelength A.
- Symbols x, y, z represent fractional values which may refer either to the special case x, y, z, or the more inclusive X, Y, Z values. Although these symbols are often referred to as trichromatic coefficients, they more properly could be, and often are called trilinear coordinates. Regardless of the values assigned to X, Y, Z, the values for x, y, z must always total 1.0. They are the values used for plotting on an ICI diagram.

Symbols for x, y, z subscripts:

 x_w , y_w , z_w , as used by both Judd and Hardy refer to x, y, z values for an illuminant.

Other subscripts are not used generally, but may be used in specific instances. In such cases their meaning should be explained clearly in the text, as has been done by Hardy in x_1 , y_1 , z_1 to refer to x, y, z values of the spectrum locus when reference to x, y, z values of an illuminant (x_w, y_w, z_w) and of a test sample (x_s, y_s, z_s) in the same text would have been confusing without the use of subscripts.

For the information of those who would like to have the determinations of the tristimulus values in mathematical terms, reference should be made to the Hardy handbook. 5 Briefly:

$$X = \int_{0}^{\infty} ER\overline{x} d\lambda$$

$$Y = \int_{0}^{\infty} ER\overline{y} d\lambda$$

$$Z = \int_{0}^{\infty} ER\overline{z} d\lambda$$

^{4/} Judd, Deane B. 1931 ICI Standard Observer and Coordinate System for Colorimetry. Jour. Optical Soc. Amer. 23: 359-374. 1933.

^{5/} Hardy, A. C. Handbook of Colorimetry. Cambridge, Mass., Technology Press, 1936. 87 pp.

and this is approximated by summing for $\Delta\lambda$ intervals (either at equal wavelength intervals or for selected intervals) the values of ERX, ERY, ERZ, when Z represents the energy of the illuminant, R the reflectance or transmittance factor of the material under test, and \bar{x} , \bar{y} , \bar{z} , the tristimulus values of the ICI standard observer (as defined above).

Since 1931, it has become the usual practice to use the above symbols in referring to the ICI standard observer and coordinate system. 4

Symbols R, G. B When coordinate systems other than ICI are used, it is general practice to use R, G, B (or r, g, b used as equivalent) for the tristimulus specifications.

Symbols r, g, b represent fractional values of R, G, B; -- the trilinear coordinates for R, G. B.

These, for example, are the symbols used by Judd in referring to his uniform chromaticity scale (UCS) system. When several coordinate systems are referred to they can be distinguished by subscripts, as R_u, G_u, B_u for tristimulus values for the UCS system; R_o, G_o, B_o for tristimulus values for the OSA system (widely used in this country prior to 1931); etc.

TABLES

The tables are listed below by title with whatever explanation has seemed necessary in order to understand their meaning. This report has been prepared as a companion to the author's recent study on illuminants 2 and therefore reference to the text of that study should be made whenever it may seem that there is insufficient explanation in this report. The 12 figures and 2 tables in that study are based upon data given in the tables found at the end of this text.

Table 1: Illuminants and standards used in artificial day- Page 11.
lighting studies.

It should perhaps be noted, in order to avoid any possible misinterpretation, that the use of an illuminant to represent the mercury lines has nothing at all to do with the fluorescent light from which the data were taken except insofar as the computations are involved. Because computations made for fluorescent light included data for mercury lines and for a smooth curve low in both the red and blue ends of the spectrum, it was very little extra work to make the summations necessary to include illuminants representing the mercury tubes of peculiar color characteristics, with which

See footnote 4, p. 3.

See footnote 3, p. 1.

most every one is acquainted, and an illuminant of the characteristic curve that would be found by using the smooth portion of the fluorescent curve for 7650K. Every one is familiar with the marked color changes in the daylight color of materials seen under a mercury light. Therefore, the presentation of figures representing comparisons of samples under mercury illumination with samples under daylight illumination is included in order to provide an extreme case of expected color change. The smooth portion of the fluorescenttype curve is used for a similar reason, the curve in this case being low in both red and blue. The results for the mercury lines and for the curve portion of the fluorescent data, when they are used to represent separate illuminants, have nothing to do with results for fluorescent-type illumination.

The series of curves called "Gibson" in this paper and in the author's report on color matching and discrimination 2 represent curves described by Gibson at the 1939 take Placid meeting of the Optical Society of America. Each curve represents a different proportion of skylight (calculated by the use of the inverse λ^4 scattering relation) and sun-outside-the-atmosphere (Abbot data). The parenthetical subscripts refer to the proportions of skylight and Abbot daylight in each curve. For example, Gibson $1/\lambda^4$ (.3+.7) represents a curve made up of .3 skylight and .7 Abbot sun-outside-the-atmosphere.

The 18 illuminants in this table are listed according to micro-reciprocal degrees of color temperature (urd's, or mireds). This seems a more useful way of reporting them than by color temperature itself, especially if one will remember that different phases of blue sky range from 0-100, "C" illuminant is about 150, "B" illuminant about 200, and "A" illuminant about 350.

Table 2: Spectral energy distribution data for standards and illuminants listed in table 1, with certain supplementary data.

Pages 12-13.

These data are adjusted relative to 100 for wavelength 560 my. They are given for 10 my intervals, plus data for the 4 wavelengths representing the wavelength position of the mercury lines (to the nearest my).

See footenote 3, p. 1.

Table 3: Computational table for ICI Illuminants "B" and "C" Page. 14.

The data in this table are taken from the report of the "1931 ICI Observer and Coordinate System for Colorimetry." 4

In addition to totals for 380-770 mu given in the Judd paper, those for 400-700 mu are given here. The Y values for 400-700 mu data may be adjusted so they can be used to represent 100 percent reflectance by multiplying by the reciprocal of the Y totals for 400-700 mu.

In tables 4-11 the values are totaled so as to give this figure directly. This has been done because 400-700 mm is the wavelength range generally used on the G.E. recording spectrophotometer, and the bulk of spectrophotometric measurements today are obtained on that type of instrument. The ICI "B" and "C" curves have been kept as reported by Judd in order that there be no confusion of slightly different figures. Obviously, data should be calculated to 380-770 mm limits whenever they are available. Computational data for equal energy and for ICI "A" are included in the Judd report noted above.

It will be noted that the number of places to which computational data are carried varies for different tables (3 through 11). The figures in these tables should be carried far enough so that there will be no numerical difference in the last place deemed significant for the trilinear coordinates. Because many of the differences with which we are dealing in these computations are very small, they were set up, insofar as possible, to provide data that could be carried to a fifth decimal place. Certain of the data are carried more than enough places for that. Had we known when this work was begun all we do about it now, or had we then expected to publish these computational tables, all work would have been handled in the same manner, and carried to the same number of places. But since they actually were carried to a different number of places in the course of our computations, they are reported that way. Thus, any future calculations made with these figures should be comparable with our results. If one uses a calculator, it is generally no more difficult, except in the additions, to carry the figures an extra place or two. If trilinear coordinates are needed only to three or four decimal places, then fewer places need be used in computation. But work cannot be done with an ordinary slide rule, except to arrive at a very approximate result. Work of this sort should be done carefully and accurately, and carried to a sufficient number of decimal places.

Table 4: Computational table for Carbon Arc and Fluorescent 6500K. Page 15.

The values given in this table at the mercury lines are adjusted so that multiplications can be used for data at the wavelength indicated, yet be added to the totals for the smoothed portion of the curve which has been summed for intervals of 10 mm. The numbers for the mercury lines refer to energy (in a 10 mm interval centered on each mercury line) which is in addition to that included in the smoothed curve.

Table 5: Computational table for Carbon Dioxide, CO₂ (25 mm), Page 16.

Table 6: Computational table for Fluorescent_{7650K} and Page 17.
Fluorescent_{13000K}.

Refer to discussion under table 4.

Table 7: Computational table for Macbeth 800K and Macbeth 7500K. Page 18.

Table 8: Computational table for Abbot Daylight and Gibson $1/\lambda^4$ (.1+.9).

Page 20.

Refer to discussion of table 1 in the text for explanation of Gibson curves.

Table 9: Computational table for Gibson $1/\lambda^4$ (.15+.85) and (.2+.8).

Refer to discussion of table 1 in the text for explanation of Gibson curves.

Table 10: Computational table for Gibson $1/\lambda^4$ (.3+.7) and (1.0+0). Page 21.

Refer to discussion of table 1 in the text for explanation of Gibson curves.

Table 11: Computational table for Planckian 7000K and 8000K Page 22.

Table 12: Table of equivalents: Color temperature in degrees K Page 23. and in micro-reciprocal degrees (mireds or prd).

For a discussion of the use of micro-reciprocal degrees of color temperature for specifying the chromaticity of various phases of daylight, reference should be made to Irwin G. Priest's article, Proposed Scale for Use in Specifying the Chromaticity of Incandescent Illuminants and Various Phases of Daylight, Jour. Opt. Soc. Am. 23: 41 (1933). If the proposal made by Priest were followed the use of micro-reciprocal degrees of color temperature would become more general than the use of color temperature.

Table 13: Spectral apparent reflectance data for 8 pairs of samples selected for use in studying various illuminants.

These include 4 pairs of samples selected for study by Judd. Curves representing the 8 pairs of colors are shown in figures 5, 7, and 11 of the paper on "The Illuminant in Color Matching and Discrimination." 3

Table 14: Spectral apparent reflectance for 30 cotton samples Page 23. selected for use in studying various illuminants.

Of these samples nine were selected for use in pairs. They are: Pair 1, numbers 401 and 402; Pair 2, numbers 411 and 412; Pair 3, numbers 808 and 809; Pair 4, numbers 430 and 530; Pair 5, numbers 430 and 630. Curves for these pairs are shown in figure 9 of The Illuminant in Color Matching and Discrimination. 3/

For the spectral apparent reflectance curves of these cotton colors, as well as 4 of the colors used in table 13 we wish to thank Walter C. Granville of the Interchemical Corporation Laboratories. On many color problems, the cooperation given us by the laboratories of the Interchemical Corporation has been invaluable.

Table 15: Formulas for converting ICI values for X, y, z to Page 24. UCS values for r, g, 5.

By these formulas the 1931 ICI standard coordinate system dinate system may be converted to a coordinate system found by Judd on trial and error to yield the best agreement with chromaticity sensibility. For convenience the new coordinate system proposed by Judd is referred to as a uniform-chromaticity-scale (UCS system). The formulas appear in a paper by Deane B. Judd, A Maxwell Triangle Yielding Uniform Chromaticity Scales, Jour. Opt. Soc. Am. 25: 24 (1935).

Table 16: Differences in reflectance (ICI - Y values) and Page 25. chromaticity (in UCS units of r, g, and b) for 4 pairs of colors selected by Judd, as calculated for 15 illuminants.

A chart of these differences, arranged inversely according to the color temperature of the illuminants, is contained in figure 6 of "The Illuminant in Color Matching and Discrimination," 3 and curves of spectral reflectance of the pairs used are contained in figure 5

of the same report. 3/ The O point from which the differences in figure 6 3/ are plotted is taken at or near the low value for each column of figures in this table.

Table 17: Differences in reflectance (ICI - Y value) and chromaticity (in UCS units of r, g, and b) for 2 pairs of colors selected for calculation under 10 illuminants.

Page 25.

A chart of these differences is contained in figure 8 3 and curves of spectral reflectance for the pairs used are contained in figure 7. 3 The 0 point from which the differences are plotted in figure 8 3 is the low point of each column in this table 17.

Table 18: Differences in reflectance (ICI - Y value) and chromaticity (in UCS units of r, g, and b) for pairs of tobacco and coffee colors calculated for 4 illuminants.

Page 25.

A chart of these differences is contained in figure 12 3 and curves of spectral reflectance for these pairs are contained in figure 11. 3 The 0 point from which the differences are plotted is at or near the low point of each column in this table.

Table 19: Differences in reflectance (ICI = Y value) and chromaticity (in UCS units of r, g, and b) for 5 pairs of cotton colors.

Page 26.

These pairs are selected from the 30 cotton colors listed in table 14. The pairs are listed in the discussion of that table in the text. A chart of these differences is contained in figure 10 3 and curves of spectral reflectance for these pairs are contained in figure 9. 3 The 0 point from which the differences are plotted is the low point of each column in this table.

Table 20: Mean differences, caused by changing from one to another of 17 illuminants, for reflectance (ICI = (5 pages) Y value) and chromaticity (in UCS units of r, g, and b) for 30 cotton colors. The standard deviation is shown with each mean.

Pages 27-31.

If one illuminant is a perfect substitute for another the mean differences for a representative set of colors would be 0, with 0 variation (as represented by the standard deviation). If an illuminant shifts

all colors in exactly the same relation, the means might differ, but the variation, as represented by the standard deviation, would remain 0. Table 2 of the study on "The Illuminant in Color Matching and Discrimination" has been prepared from the standard deviations shown in this table 20. The standard deviations of these differences about the mean have been used an an inverse measure of the degree of duplication between any trial illuminant and a standard illuminant.

See footnote 3, p. 1.

If the reader finds any error in these tables it will be much appreciated if he will immediately notify the author at Agricultural Marketing Service, Washington, D. C.

Table 1. Illuminants and Standards Used in Artificial Daylighting Studies. (Same as table 1 in (3))

Order	Identification	Approximate color temperature in µrd	ICI trichro coefficie based on IC for equal	nts I values
-			x	y
1	Mercury lines of Fluorescent 7650K	Beyond 0	0.2190	0.2288
2	Fluorescent	77	.2679	.2760
3	CO ₂ (25mm)	110	.2820	.3104
4	Gibson $1/\lambda^4$ (.3+.7)	110	.2854	.2912
5	Gibson $1/\lambda^4$ (.2 + .8)	125	.2959	•3029
6	Planckian _{8000K}	125	.2952	.3051
7	Fluorescent 7650K	131	.2979	.3063
8	Macbeth7500K	133	.2996	.3123
9	Gibson $1/\lambda^4$ (.15 + .85)	135	.3016	.3092
10	Gibson $1/\lambda^4$ (.1 + .9)	143	.3076	.3158
11	Planckian _{7000K}	143	.3063	.3168
12	Macbeth 6800K	147	.3081	.3231
13	ICI "C"	149	.3101	•3163
14	Curve portion of Fluorescent 7650	K 151	.3115	.3197
15	Fluorescent 6500K	153	.3129	•3209
16	Carbon Arc	157	.3152	.3321
17	Abbot Daylight	165	.3204	.3301
18	ICI "B"	208	.3485	.3518

Table 2. Spectral energy distribution data reduced to 100 at wavelength 560 mm for standards and illuminants listed in table 1, with certain supplementary data.

Wavelength my 360 70 80 2	208 18 ICI "B" 21.79 30.45	Daylight	167 Carbon Arc	153 15 Fluorescent 6500K	149 13 ICI "C"	147 12 Macbeth	8	131 7ª/	3		77 2
Description Wavelength mu 360 70 80	ICI "B"	Abbot Daylight	Carbon	Fluorescent	ICI			7ª/	3		2
Wavelength my 360 70 80	"B" 21.79	Daylight		Fluorescent 6500K	ICI	Macheth					
360 70 80						6800K	Macbeth 7500K	Fluorescent 7650k	CO ₂ (25mm)	CO ₂ (20mm)	Fluorescent 13000K
70 80 2		'									
80 2		60.0									
		63.8									
		62.0 63.9	101.7 125.9		31.34 45.02						
	40.18	73.4	127.6	35.1	60.12	72.6	83.3	51.2	92.90	90.7	90.5
	50.68	91.5	125.9	50.6	76.55	86.7	100.0	70.4	113.51	117.2	117.9
	61.48	97.0	120.7	67.5	93.17	96.6	109.6	90.4	116.30	115.5	144.1
	71.11	96.9 102.9	106.9	83.1 100.0	106.75 115.39	103.9 105.4	116.4 118.1	107.7 122.9	110.45 124.93	110.6 123.2	163.5 178.4
450 8	83.08	109.6	101.7	115.6	117.76	108.2	119.5	135.6	141.09	135.9	187.4
	85.90	112.0	100.0	124.7	116.91	107.9	117.0	144.4	111.70	109.3	190.2
70 8	89.50	113.5	100.0	128.6	117.57	106.4	113.9	147.2	111.14	111.3	188.0
	92.61	113.6	101.7	127.3	117.67	103.7	109.7	143.9	139.00	140.8	179.1
90 9	93.88	112.1	103.4	123.4	114.63	102.3	106.5	139.2	117.69	126.1	169.8
500	91.64	110.7	105.2	119.5	106.46	100.8	104.6	132.9	107.52	111.5	157.8
	88.23	108.5	106.9	116.9	97.15	98.5	101.6	127.0	121.17	126.8	146.0
	87.07	105.9	106.9	113.0	92.03	94.7	96.9	121.5	120.9	120.6	137.0
	89.69 94.17	103.4	106.9	110.4 106.5	93 .07 96 . 96	90.0 88.5	90.7 83.0	115.7 109.2	106.0 98.6	108.7	126.8 115.7
550	98.25	100.9	103.4	101.3	99.91	93.7	91.8	103.5	90.5	94.1	106.7
	00.00	100.0	100.0	100.0	100.00	100.0	100.0	100.0	100.0	100.0	100.0
70 9	99.81	99.1	98.3	103.9	97.15	103.8	104.8	102.4	94.0	102.5	99.0
80 9	98.25	98.6	94.8	110.4	92.88	96.3	99.5	107.2	71.4	78.9	100.1
90	96.50	98.3	91.4	116.9	88.51	85.1	85.4	113.6	67.8	71.5	103.8
	95.33	97.4	87.9	122.1	85.19	79.7	76.8	116.9	95.7	96.9	105.2
	95.82	95.2	86.2	119.5	83.95	78.1	76.2	114.9	47.1	93.0	101.9
	96.99	93.1 91.0	84.5	113.0	83.67	75.0	73.0	109.1	54.6	58.0	96.3
	98.25	89.3	82.8 81.0	101.3 89.6	83.57 83.38	69.6 62.4	68.2 59.7	99•9 87 . 6	52.6 75.6	60.3 80.6	87.4 76.5
650 10	01.07	87.5	81.0	76.6	83.76	61.0	56.7	73.7	105.6	100.3	64.1
	02.14	86.0	81.0	64.9	83.48	63.2	58.6	61.1	87.5	90.4	53.2
	02.05	84.6	82.8	51.9	81.96	70.4	67.6	50.4	48.5	42.5	44.0
	01.07	83.3 81.4	82.8	42.9	79.77	79.9	76.8	40.5	49.9	57.0	35.4
			84.5	33.8	76.17	85.5	85.1	32.1	48.5	54.2	28.3
	96.40	79.1 76.8	84.5	26.0	72.46	84.6	87.4	24.3	64.1	71.5	21.8
10 9	93.58	74.4	86.2 86.2		68.76				40.0	36.3	
30 8	90.37	72.2	80.2		64.86 61.16				57.4	53.2	
40 8	84.54	70.2			58.41						
750 8	82.88	68.2			56.22						
60 8	82.40				55.18						
	83.08				55.27 56.13						
ercury Lines								00.			0/ 0
436 546				83.8				88.1 208.9			96.3 238.9
546				200.4 116.6				121.2			133.1
578				28.8				27.1			28.7

a/ Also 1 and 14.

Table 2. Cont'd.

µrd	333	167	154	143	125	111	100	83	143	135	125	110	Beyond 0
No. on Table 1				11	6				10	9	5	4	
Description		Plan	ckian dat	a from F	rehafer-	Snow tab	les				bson Dat		
Wavelength mpu	3000К	6000K	65000K	7000K	8000K	9000K	10000к	12000K	(.1+.9)	(.15+.85) (,2+.8)	(,3+.7)	(1.0+.0)
360 70 80 90									85.04 84.67	96.56 95.06	108.08	131.13 126.22	292.42 271.64
400 10 20 30 40	17.7 20.9 24.4 28.3 32.5	96.37 98.58 100.5 102.0 103.3	109.4 110.6 111.5 112.2 112.5	121.9 122.2 122.1 121.8 121.2	145.0 143.1 140.9 138.5 136.0	165.3 161.2 157.2 152.9 148.6	182.9 177.0 170.9 165.1 159.2	212.4 202.7 193.6 184.6 176.0	94.26 114.19 117.96 115.08 119.61		115.11 136.89 138.91 133.27 136.32	159.58	281.97 318.45 306.57 278.74 270.00
450 60 70 80 90	37.0 41.8 46.8 52.1 57.5	104.1 104.8 105.1 105.5 105.3	112.4 112.2 111.7 111.0 110.0	120.1 119.0 117.6 116.1 114.3	133.4 130.5 127.5 124.5 121.5	144.3 140.0 135.7 131.4 127.2	153.4 147.7 142.3 136.8 131.7	167.9 160.0 152.7 145.6 138.7	125.40		138.80 136.55 132.97	155.58 152.20 148.07 142.66 135.84	262.85 246.00 228.75 210.46 191.24
500 10 20 30 40	63.2 69.1 75.1 81.2 87.4	105.0 104.5 103.9 103.1 102.2	109.0 107.7 106.3 104.8 103.4	112.6 110.6 108.7 106.5 104.5	118.3 115.3 112.1 109.0 106.0	123.0 119.0 115.0 111.1 107.2	126.7 121.8 117.0 112.5 108.1	132.3 126.2 120.4 114.9 109.6	117.05 113.42 109.55 105.95 103.29	120.22 115.88 111.38 107.22 104.09	123.40 118.34 113.21 108.50 104.89	129.75 123.27 116.86 111.04 106.48	174.19 157.73 142.45 128.88 117.63
550 60 70 80 90	93.7 100.0 106.3 112.7 119.0	101.1 100.0 98.77 97.51 96.03	101.7 100.0 98.20 96.41 94.51	102.3 100.0 97.75 95.60 93.28	103.0 100.0 97.05 94.14 91.36	103.6 100.0 96.53 93.14 89.92	104.0 100.0 95.98 92.31 88.75	104.7 100.0 95.46 91.19 87.16	101.65 100.00 98.42 97.31 96.45	102.03 100.00 98.08 96.66 95.52	102.41 100.00 97.74 96.02 94.60	103.16 100.00 97.07 94.72 92.74	108.44 100.00 92.32 85.68 79.78
600 10 20 30 40	125.3 131.5 137.5 143.4 149.3	94.62 93.09 91.63 90.02 88.40	92.58 90.75 88.80 86.94 84.96	91.05 88.84 86.73 84.50 82.37	88.50 85.87 83.24 80.68 78.18	86.76 83.66 80.71 77.90 75.21	85.21 82.02 78.91 75.78 72.93	83.34 79.73 76.20 72.97 69.78	95.05 92.44 89.99 87.58 85.60	93.88 91.06 88.43 85.87 83.76	92.70 89.68 86.87 84.16 81.91	90.35 86.93 83.76 80.74 78.21	73.91 67.62 61.97 56.81 52.35
650 60 70 80 90	155.0 160.5 166.0 171.2 176.3	86.71 85.09 83.43 81.83 80.17	83.05 81.20 79.33 77.44 75.59	80.21 78.15 76.05 74.04 72.11	75.73 73.36 71.12 68.83 66.73	72.54 69.99 67.55 65.20 62.93	70.10 67.51 64.90 62.49 60.12	66.83 64.02 61.33 58.77 56.38	83.57 81.86 80.27 78.80 76.79	81.61 79.79 78.10 76.55 74.49	79.64 77.71 75.94 74.30 72.18	75.71 73.57 71.61 69.81 67.58	48.20 44.57 41.29 38.32 35.32
700 10 20 30 40	181.2 185.8 190.1	78.47 76.82 75.20	73.80 72.07 70.29	70.16 68.30 66.43	64.68 62.67 60.70	60.75 58.65 56.62	57.87 55.76 53.70	54.09 51.89 49.77	74.43 72.09 69.68 67.48 65.48	72.09 69.74 67.32 65.12 63.12	69.76 67.38 64.97 62.76 60.77	65.09 62.68 60.25 58.04 56.05	32.40 29.72 27.23 25.00 23.03
750 60 70 80													

Table 3. Computational table for ICI illuminants "B" and "C" ...

Ill	uminant "B"		Wave-	Ill	uminant "C"	
že	ŷE	ŽE	length in mu	žЕ	ӯЕ	ŽE
3 13		14 60	380 90	4 19		20 89
56 217 812 1983 2689	2 6 24 81 178	268 1033 3899 9678 13489	400 10 20 30 40	85 329 1238 2997 3975	2 9 37 122 262	404 1570 5949 14628 19938
2744 2454 1718 870 295	310 506 800 1265 1918	14462 14085 11319 7396 4290	450 60 70 80 90	3915 3362 2272 1112 363	443 694 1058 1618 2358	20638 19299 14972 9461 5274
44 81 541 1458 2689	2908 4360 6072 7594 8834	2449 1371 669 372 188	500 10 20 30 40	52 89 576 1523 2785	3401 4833 6462 7934 9149	2864 1520 712 388 195
4183 5840 7472 8843 9728	9603 9774 9334 8396 7176	84 38 21 16 10	550 60 70 80 90	4282 5880 7322 8417 8984	9832 9841 9147 7992 6627	86 39 20 16 10
9948 9436 8140 6200 4374	5909 4734 3630 2558 1709	7 3 2	600 10 20 30 40	8949 8325 7070 5309 3693	5316 4176 3153 2190 1443	7 2 2
2815 1655 876 465 220	1062 612 321 169 80		650 60 70 80 90	2349 1361 708 369 171	886 504 259 134 62	
108 53 26 12 6	39 19 9 4 2		700 10 20 30 40	82 39 19 8 4	29 14 6 3 2	
2 2 1	1		750 60 70	2 1 1	1	
99072 0.34848	100000 0.35175	85223 0.29 97 7	Sums a/	980 1 1 0.31012	100000 0.31631	118103 0.37357
98954	99964	85149	Sums a/ 400-700	97944	99973	117994
0.34835	0.35190	0.29975	x_{w}, y_{w}, z_{w}	0.31004	0.31646	0.37350

a/ See text

Table 4. Computational table for Carbon Arc and Fluorescent 6500K°

	Carbon Arc		Wave- length	Fluor	escent _{6500K}	
žЕ	ўЕ	ZE	in mu	х́Е	ӯE	ŽE
136 505	12	631 2412	380 90			
1740 5222 15469 28943 34362	49 145 460 1182 2269	8263 24895 74309 141256 172364	400 10 20 30 40	383 1680 6923 18004 26581	11 47 206 736 1755	1819 8009 33257 87872 133331
32616 27733 18635 9274 3157	3686 5722 8679 13485 20521	171917 159190 122797 78872 45895	450 60 70 80 90	29660 27674 19177 9288 3014	3353 5710 8931 13504 19588	156337 158851 126367 78983 43810
492 949 6454 16872 29127	32397 51279 72382 87877 95688	27282 16127 7972 4301 2036	500 10 20 30 40	447 830 5459 13944 23603	29456 44874 61228 72626 77539	24806 14114 6744 3556 1650
42758 56697 71428 82866 89439	98164 94892 89226 78679 65970	858 372 197 155 95	550 60 70 80 90	33505 45370 60428 77201 91559	76922 75934 75486 73300 67534	672 298 166 143 98
89074 82428 68840 50702 34614	52915 41354 30697 20915 13524	67 25 16	600 10 20 30 40	98978 91435 73681 49662 30627	58797 45872 32856 20486 11966	75 27 18
21908 12743 6898 3693 1828	8269 4714 2526 1342 661		650 60 70 80 90	16573 8167 3462 1532 585	6255 3021 1268 556 211	
919 477 238	331 173 82		700 10 20	226	82	
			Mercury Lines 8	y		
			405 436 546 578	1484 50836 33280 19511	38 2753 87560 19539	7048 251841 1094 35
949 236 0.31517	1000267 0.33212	1062304 0.35271	Sums xw, yw, zw	974769 0.31285	1000000	1141021
947880 0.31521	1000000 0.33254	1059261 0.35225	Sums ₄₀₀₋₇₀₀ x _w , y _w , z _w			
			Sums(excl. H	g) 869658 0.32932	890110 0.33706	881003 0.33362
			Sums(Hg only) 105111 0.22128	109890 0.23134	260018 0.54738

Table 5. Computational table for Carbon Dioxide, CO2 (25mm), CO2, (20mm).

	CO ₂ (251	m)	Wave-		CO ₂ (20mm)	
ŘΕ	ӯE	žE	length in mu	ŽE.	ўЕ	Z E
			380 90			
135 503 1592 3195 4430	4 14 48 130 292	643 2397 7646 15592 22222	400 10 20 30 40	124 488 1485 3004 4106	4 13 44 122 271	589 2326 7135 14663 20594
4831 3308 2211 1353 384	546 682 1030 1968 2493	25464 18988 14568 11509 5576	450 60 70 80 90	4372 3041 2081 1288 387	494 628 969 1872 2510	2304 3 17456 13712 10953 5613
54 115 779 1786 2916	3536 6208 8742 9305 9579	2978 1952 962 455 204	500 10 20 30 40	53 113 730 1721 2935	3445 6103 8193 8965 9639	2902 1919 902 439 205
3994 6054 7296 6662 7 08 6	9171 10132 9113 6326 5226	80 40 20 12 7	550 60 70 80 90	3902 5688 7475 6918 7021	8959 9519 9337 6568 5179	78 37 21 12 8
10352 4809 4751 3441 3448	6150 2413 2118 1420 1347	8 1 1	600 10 20 30 40	9848 8921 4742 3707 3454	5850 4476 2115 1529 1349	8 3 1
3049 1470 432 238 112	1151 544 158 87 41		650 60 70 80 90	2721 1427 355 255 118	1027 527 130 93 42	
74 23 17	26 8 6		700 10 20	78 20 14	28 8 5	
90900	100015	131325	Sums	92592	100014	122619
,28209	0.31037	0.40754	xw, yw, zw	0.29373	0.31728	0.38899
90860 .28201	100000 0,31038	131325 0.40761	Sums ₄₀₀₋₇₀₀ x _w , y _w , z _w	9255 8 0.29367	100000 0.31728	122619 0.38905

Table 6. Computational table for Fluorescent_{7650K} and Fluorescent_{13000K}.

	Fluorescent	OK	Wave- - length		Fluorescent 130	OOK
žΕ	ӯЕ	ŽE	in mp	₹ E	ў́Е	ŽE
			380 90			-
54914	1536	260744	400	94209	2635	447329
229687 911260	6336	1095106	10	373347	10299	1780048
2293274	27121 93702	4377304	20	1409848	41960	6772307
3210555	212009	11192533 16104396	30	3379032	138065	16491674
J~20JJJ	212009	10104590	40	4523321	298698	22689333
3419261	386472	18022819	450	4586447	518397	24175025
3149462	649820	18077999	60	4026373	830751	23111493
2157283	1004671	14215547	70	2674185	1245399	17621705
1031795	1500204	8774576	80	1246415	1812256	10599741
334090	2171588	4856839	90	395546	2571048	5750247
48842	3219603	2711244	500	56288	3710382	2104520
88585	4791224	1506902	10	98843	5346012	3124532 1681390
576839	6470077	712620	20	631297	7080893	779896
1436171	7480238	366202	30	1527659	7956749	389530
2378450	7813502	166262	40	2445902	8035091	170977
3364372	7723928	67536	550	3366375	7728524	60001
4458888	7462733	29251	60	4327738	7243228	67576 28391
5853110	7311588	16129	70	5492326	6860903	15134
7367282	6995018	13668	80	6676992	6339609	12388
8744348	6449841	9372	90	7754982	5720083	8312
9313129	5532465	7014	600	8134505	4832304	6127
8640175	4334738	2585	10	7437226	3731224	2225
6991346	3117630	1637	20	5989584	2670917	1402
4813332	1985574		30	4087202	1686034	1402
2942795	1149786		40	2494317	974560	
1567095	591461		650	1322879	499288	
755678	279541		60	638618	236238	
330382	120964		70	279945	102497	
142159	51639		80	120603	43809	
54652	19742		90	46765	16893	
20777	7472		700	18091	6507	
			Mercury Lines	B/		•
153299	3965	728169	405	162639	4206	777522
5208039	282024	25800476	436	5780778	313039	772533 28637806
3399766	8944839	111810	546	3623755	9534156	119177
1804306	1806949	3252	578	1854630	1857346	3343
7245398	100000000	129231992	Sums	97078662	100000000	165259641
				0.26792		0.45609
29786	0.30630	0.39584	x _w , y _w , z _w	0.20/92	0.27599	
679988	88962223	102588285	Sums (excl.Hg)	85656860	88291253	135726782
31154	0.31974	0.36872	xw, yw, zw	0.27660	0.28511	0.43829
565410	11037777	26643707	Sums (Hg only)	11421802	11708747	29532859
21898	0.22878	0.55224	(uk oura)	0.21688	0.22233	0.56079
I . KTOZO	0.220/0	0.77224	x_w, y_w, z_w	0.KT000	い。たたたり)	0.0077

Table 7. Computational table for Macbeth 6800K and Macbeth 7500K.

	Wacbeth 6800	OK .	Wave-		Macbeth 7400K	
хE	ўЕ	ZE	in mu	ŔΈ	ӯE	žE
			380 90			
10664 38751 133311 302898 376937	299 1069 3968 12376 24891	50634 184758 640366 1478319 1890742	400 10 20 30 40	12158 44434 150423 337728 420248	340 1226 4477 13799 27751	57730 211853 722565 1648314 2107997
373425 322188 213377 101766 33625	42208 66476 99372 147966 218562	1968311 1849367 1406057 865439 488822	450 60 70 80 90	410377 347541 227337 107105 34811	46384 71708 105873 155728 226268	2163084 1994897 1498053 910843 506056
5070 9409 61559 153049 263759	334234 508874 690477 797152 866481	281460 160047 76050 39025 18437	500 10 20 30 40	5237 9652 62640 153347 260990	345213 522039 702600 798703 857386	290706 164188 77385 39101 18244
417010 610539 811872 906577 897335	957370 1021844 1014174 860769 661875	8371 4005 2237 1682 962	550 60 70 80 90	406192 607265 816166 923100 895131	932535 1016365 1019538 884419 660250	8154 3984 2249 1728 959
869379 804478 658088 458861 287161	516455 403603 293459 189287 112198	655 241 154	600 10 20 30 40	834048 780455 637255 447940 273203	495466 - 391551 284169 184782 106744	628 233 149
177777 107058 63238 38424 19928	67097 39596 23154 13958 7198		650 60 70 80 90	164066 98802 60328 36711 19736	61922 36549 22088 13335 7129	
9899	3560		700	10186	3663	
9537412	10000000	11416141	Sums X. V. Z	9594612	10000000	12429100
0.30812	0.32306	0.36882	Xw, yw, zw	0.29961	0.31227	0.38812

Table 8. Computational table for Abbot Daylight and Gibson $1/\lambda^4$ (.1 + .9)

	Abbot Dayl	ight	Wave-	G	ibson $1/\lambda^4$ (.1+.9)
₹E	ўЕ	žE	length in mu	х̄Е	ӯ́Е	ŽE
8		25	380	1100		5106
25	1	37 119	90	3284	79	15719
98	3	463	400	12449	348	59113
370	10	1766	10	45878	1265	218736
1213	36	5826	20	146425	4358	703366
2560	104	12492	30	301750	12329	1472720
3335	221	16728	40	384773	25408	1930047
3429	387	18071	450	387925	43846	2044738
3030	625	17395	60	336802	69491	1933253
2064	961	13598	70	225625	105076	1486768
1010	1469	8594	80	108860	158280	925766
334	2170	4852	90	35469	230549	515632
50	3327	2802	500	5297	349186	294051
94	5078	1597	10	9742	526915	165721
623	6996	770	20	64047	718379	79123
1592 2748	8293 9028	406 192	30 40	161950 277037	843511 910101	41295 19366
2140	9020	192	40	211051	910101	19300
4069	9342	82	550	406892	934144	8168
5532	9258	36	60	549079	918979	3602
7027	8778	20	70	692753	865372	1909
8407	7981	16	80	823527	781915	1528
9387	6924	10	90	914238	674342	980
9626	5719	7	600	932483	553942	702
8881	4456	3 2	10	855993	429448	256
7401 5439	3300 2244	2	20 30	710131 519629	316666 21:4355	166
3722	1454		40	354109	138355	
2308	871		650	218820	82588	
1319	489		60	124674	46120	
688	252		70	64796	23724	
363 172	132 62		80 90	34060 16099	12373 5816	
112	UZ.		90	10099	9810	
84	30		700	7837	2819	
42	15		10	3862	1398	
20	-3		20	1867	644	
9	15		30	873	311 181	
9 5	2		40	423	ToT	
2	1		750			
parti			Sums	9740558	10002612	11927831
97086 0.32042	100029	105884 0.34945	xw, yw, zw	0.30755	0.31583	0.37662
96975	100000	105728	Sums400-700	9729149	10000000	1190 7 006 0.37638
0.32037	0.33035	0.34928		0.30753	0.31609	0 2014 20

Table 9. Computational table for Gibson $1/\lambda^4$ (.15 +.85) and (.2 +.8)

Gi	.bson 1/X4 (.1	5 + .85)	Wave-	.0	Sibson $1/\lambda^4$ (.	2 + .8)
žΕ	ўЕ	ŽE	- length - in mp	χE	ўЕ	žE
1244 3674	87	5775 17578	3 8 0 90	13 87 4061	96	6441 19432
13776 50252 158847 324413 410118	386 1386 4728 13255 27082	65412 239592 763035 1583325 2057181	400 10 20 30 40	15092 54593 171163 346877 435302	422 1506 5094 14173 28746	71658 260290 822195 1692964 2183509
410194 353491 235169 112717 36504	46363 72935 109521 163888 237280	2162119 2029045 1549659 958566 530685	450 60 70 80 90	432292 370050 244621 116543 37532	48861 76352 113922 169451 243957	2278603 2124102 1611945 991110 545619
5421 9917 64878 163288 278154	357322 536361 727690 850479 913773	300902 168692 80148 41636 19444	500 10 20 30 40	5544 10090 65700 164629 279260	365422 545729 736921 857461 917403	307724 171639 81165 41978 19522
406909 547057 687818 815014 902089	934181 915596 859208 773832 665381	8169 3589 1896 1512 967	550 60 70 80 90	406920 545041 682908 806634 890109	934207 912222 853074 765876 656545	8169 3576 1882 1496 954
917614 840110 695251 507607 345222	545109 421479 310031 209396 134882	691 251 163	600 10 20 30 40	902741 824330 680469 495666 336353	536274 413562 303440 204470 131417	681 247 160
212900 121074 62812 32966 15560	80354 44788 22998 11975 5621		650 60 70 80 90	206996 117483 60850 31879 15022	78126 43459 22279 11580 5427	
7562 3722 1796 839 407	2720 1348 619 300 174		700 10 20 30 40	7291 3583 1727 806 390	2622 1297 596 288 167	
9756386	10002529	12590032	Sums	9771934	10002444	13247061
0.30160	0.30921	0.38919	xw, yw, zw	0.29593	0.30291	0.40116
9744704 0.30159	10000000	12566679	Sums ₄₀₀₋₇₀₀	97 5 9 9 80 0 . 29593	10000000	13221188

Table 10. Computational table for Gibson $1/\lambda^4$ (.3 + .7) and (1.0+0)

Gi	bson $1/\lambda^4$ (.3	3 + .7)	Wave- length	Gibson	1/x4 (1.0 + 0))
хE	ўЕ	žE	in ma	žE	ўЕ	ŽE
1671		7757	380	3545		16459
4825	115	23090	90	9880	236	47282
17697	495	84028	400	34917	977	165795
63179	1743	301228	10	119958	3309	571938
195557	5820	939373	20	356802	1.0619	1713926
391330	15989	1909918	30	685273	28000	3344537
485107	32034	2433335	40	814359	53776	4084890
476057	53807	2509283	450	765252	86495	4033621
402826	83114	2312228	60	619482	127816	3555841
263330	122636	1735224	70	387066	180260	2550592
124127	180478	1055603	80	174232	253328	1481696
39563	257157	575142	90	52994	344462	770401
5787	381432	321206	500	7391	487220	410290
10434	564330	177489	10	12703	687039	216083
67325	755148	83173	20	78085	875830	96465
167257	871153	42648	30	184706	962037	47097
281431	924536	19673	40	295811	971774	20678
406919	934206	8168	550	406984	934354	8169
541078	905588	3550	60	514814	861632	3377
673293	841065	1855	70	609266	761082	1679
789927	750013	1465	80	679855	645502	1262
866262	638956	928	90	709034	522985	760
873458	518877	658	600	679843	403860	512
793241	397965	238	10	587086	294539	176
651336	290449	153	20	458503	204459	107
472065 318824	194734 124569		30 40	316030 203047	130367 79333	
195350	73730		650	118331	44661	
110415	40845		60	63645	23544	
56963 29735	20856 10802		70 80	31250	11442 5641	
13962	5044		90	15530 6943	2508	
6753	2429		700	3199	1150	
3308	1198		10			
1590	548		20	1493 684	540 236	
740	264		30	·	108	
357	153		40	303 139	60	
9803079	10002278	14547413	Sums	10008435	10001180	23143633
0.28537	0.29116	0.42347	X _W , y _W , z _W	0.23193	0.23176	0.53631
9790588	10000000	14516566	Sums400-700	9992391	10000000	23079892
0.28538	0,29148	0.42314		0.23199	0.23217	
-42000	0427140	U-442)14	x_w, y_w, z_w	しゅんフェファ	UORDELI	0.53584

Table 11. Computational table for Planckian 7000K and 8000K

P	lanckian ₇₀₀₀	OK	Wave- length	P	lanckian ₈₀₀₀	K
žE	ӯE	ŽE	in mu	ΣE	ӯE	ŽE
			380 9 0			
1636	46	7767	400	194	5	919
4986	137	23776	10	581	16	2769
15396	459	73954	20	1768	53	8493
32422	1325	158237	30	3669	150	17908
39593	2615	198602	40	4421	292	22177
37865	4280	199583	450	4185	473	22057
32472	6700	186388	60	3543	731	20335
21545	10034	141975	70	2326	1083	15324
10408	15132	88505	80	1111	1616	9447
3433	22316	49911	90	363	2358	5274
517	34117	28730	500	54	3566	3003
965	52205	16420	10	100	5412	1702
6453	72384	7972	20	662	7427	818
16539	86145	4217	30	1683	8767	429
28463	93502	1990	40	2872	9433	200
41606	95518	835	550	4168	9568	84
55770	93341	366	60	5550	9288	37
69893	87309	193	70	6900	8619	19
82190	78037	152	80	8054	7647	15
89812	66245	96	90	8749	6453	9
90723 83553 69513 50927 34610	53894 41918 30998 21008 13522	68 25 17	600 10 20 30 40	8772 8033 6636 4837 3268	5211 4031 2959 1995 1276	7 3 2
21331 12090 6236 3251 1536	8051 4473 2283 1181 555		650 60 70 80 90	2003 1129 580 301 142	756 418 212 109 51	
750 372 181	270 135 62		700 10 20	69 34 16	25 12 6	
967037	1000197	1189779	Sums x_w , y_w , z_w	96773	100018	131002
0.30631	0.31682	0.37687		0.29523	0.30512	0.39965
966484	1000000	1189779	Sums ₄₀₀₋₇₀₀	96723	100000	131002
0.30621		0.37696	x _w , y _w , z _w	0.29513	0.30514	0.39973

Table 12. Table of equivalents: Color temperature in degrees K and in micro-reciprocal degrees (mireds or µrd).

Table 13. Spectral apparent reflectance data for 8 pairs of samples selected for use in studying various illuminants \mathbb{R}^{f}

prd	Color temperature	Color temperature	µrd
10	100,000	4,800	208
50	20,000	4,900	204
100	10,000	5,000	200
125	8,000	5,100	196
130	7,692	5,200	192
131	7,634	5,300	189
132	7,576	5,400	185
133	7,519	5,500	182
134	7,463	5,600	179
135	7,407	5,700	175
136	7,353	5,800	172
137	7,299	5,900	169
138	7,246	6,000	167
139	7,194	6,100	164
140	7,143	6,200	161
1/1	7,092	6,300	159
142	7,042	6,400	156
143	6,993	6,500	154
144	6,944	6,600	152
145	6,897	6,700	149
146	6,849	6,800	147
147	6,803	6,900	145
148	6,757	7,000	143
149	6,711	7,100	141
150	6,667	7,200	139
151	6,622	7,300	137
152	6,579	7,400	135
153	6,536	7,500	133
154	6,494	7,600	.132
155	6,452	7,700	130
L56	6,410	7,800	128
157	6,369	7,900	127
158	6,329	8,000	125
159	6,289	8,500	118
.6ó	6,250	9,000	111
161	6,211	9,500	105
162	6,173	10,000	100
163	6,135	11,000	91
164	6,098	12,000	83
165	6,061	13,000	77
75	5,714	14,000	71
200	5,000	15,000	67
205	4,878	20,000	50
210	4,762	25,000	40
215	4,651	50,000	20
	7, 7,2	75,000	13

Wave-			Jı	add Pe	irs							Othe	r Pa	ira		
length	01:	Lve	Gre	9613	В:	lue	Br	OWIZ	Orang	p-Blu	Te:	llows	Co	ffee	Tob	acco
шји	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
400	.066	.029	.130	.066	٠419	.333	.043	-046	350	.400	070	.070	.029	-024	.035	-040
10	.066	.030	.131	.068						.430						
20	.065	.032	.130	.073						.470						
30	.063	.039	.128	,086	.406	.358	.043	.046	.230	.500	.080	.080	.030	.025	.037	.040
40										.530						
450	.058	.051	.125	.132	.380	.368	-043	.046	.200	.550	100	.100	.032	.026	.039	.044
60	.055	.054	.132	.163	.362	.371	-044	.047	-195	-570	110	.110	.032	.027	.040	.046
70										.585						
80										.590						
90	.042	.132	.215	.281	•309	.408	.044	.062	-195	.585	195	.195	•035	.030	.052	.056
500										.580						
10										•560						
20										.540						
30										•530						
40	.085	.065	.211	.213	.217	.183	-047	.052	-290	.510	-620	.480	-044	.038	.098	.086
550										-490						
60										.470						
70										.460						
80	124	.051	.083	.087	.163	.129	-065	.061	-560	.450	600	.600	.054	.047	.142	.120
90	1.115	.050	.064	.068	.153	.126	.077	.068	620	.440	- 580	.610	•057	.050	-155	.132
600										.425						
10										.415						
20										.400						
30										•390						
40	.053	.166	.024	.026	-120	.144	.101	.091	-740	.380	-495	.565	.078	.070	.226	.202
650										.375						
60										-375						
70										.375						
80										.380						
90	.220	-435	-079	.096	091	.462	-103	.342	750	.390	-390	.480	.108	.098	-330	.296
700	.280	.460	.116	.140	.090	.546	.100	.419	750	.400	370	.460	.114	.104	.370	.322

a/ See text

a/ See text

Table 14. Spectral apparent reflectance for 30 cotton samples selected for use in studying various illuminants &

												<u>. </u>																		
Mave- ength												Sau	ple 1	lumber																
**	401	402	403	404	405	406	407	408	409	410	411	412	801	802	803	803	804	805	806	807	808	809	810	811	812	330	330e	430	530	630
	• 560	.558	. 569	. 567	. 576	.574	.560	.594	.575		.515			.516	.521			.524	.486	.523	.518	.522	.499	.505	.470	.525	.51.2	.491	.515	.490
10	571	571	581	581	588	584	572	608	584	569	526	541	523		.531	547	502	533	495	534	525	530	510	517	480	537	526	506	530	501
20		592	600	602	808	606		629	607	591	546	562		543		565	517	549	509	553	533	542	526	531			546	527	550	51.8
30		613	620	625	629	625		648	629	612	566	584		560	570		533	566	523	572	552	556	542	548	514		566	548	570	534
40	630	632	638	644	646	643	636	666	648	633	585	604	567	576	589	603	549	580	537	589	566	569	560	564	531	598	587	568	588	551
450	.644	.649	ASS	. 660	- 661	. 658	.652	-681	.665	.650	.602	. 623	.580	.589	-604	.620	. 562	594	. 549	60.5	W76	500	57 s	570	E44	67.4	604	506	604	sen
60	659	662	670	677	678	674		697	681	668	620	641	591		620	634		607	560	620	587	590	590	591		631	621		621	582
70		678	684	692	692			712	698	682	637	658				647	590	620	571	635	598	500	604	603			639	624	638	599
80	689	692	699	708	706	702		726	713	699	652	674	616	628	647	660	602	633	581	648	608	609	618	616	586			641	654	
90	701	706	711	721	718	714	711	737	725	711	667	689	628	638	659	672		645			618			627	600		671	657	672	
500	.713	.718	.721	.732	.729	.726	.722	.747	.736	.724	.681	. 699	. 638	. 647	.671	. 684	.625	-656	-601	.672	-627	:627	639	. 638	. 614	.690	. 686	.673	. 688	639
10		728	730	147	101	130	101	100	140	1.04	033	103	0-90	002	007	695	633	665	611	681	634	634	646	646	624	702	699	686	702	650
20		737	737		743			760	752	741			657		690	704	640	673	619	687	638	639	652	654	633	710	708			660
30					748	751 756		765	757	749			664		699	711	646	680	625	692	641	643		659	641		715		725	
40	100	704	749	151	75%	750	LDT	103	102	104	123	120	017	003	100	720	653	687	631	698	646	648	661	665	648	725	721	718	735	680
550	.764	.761	.754	.761	.758	.764	.757	.772	.767	.760	.726	.724	. 678	.672	.714	.728	. 658	.692	. 636	.701	.649	. 653	- 665	.673	. 655	.730	.728	725	.744	. 690
60	771	767	759	766	762	769	763	776	771	765	731	728	683	676	720	734	663		641	706	653			676	662	736	733	733	752	699
70	777	773	764	771	767			780	776	770		732			727	740	669	704	646	711	657	658	675	680	668	742	739	740	760	708
80		779	769	776	771			784		776			695	686	733	748	674	710	651	716	660	662	679	685		748		749		716
90	790	785	776	781	776	784	779	789	785	780	751	742	701	690	739	753	679	715	657	720	665	666	684	690	681	756	750	756	775	734
600	.796	.790	.779	.785	.781	.789	.784	.792	.790	.785	.758	.748	.707	. 695	.745	.759	684	.721	. 662	.726	670	670	589	. 696	. ARA	-760	.756	763	.782	732
10	802	796	784	790	786	794	790	798	795				713	701	751			728			675			700				771		
20	809	801	791	797	793	800					774			709	758				676		681	681		708		773			798	
30		809	799	805	801	806	803	813	810		781			717	766	780	704	742	684	751	690	689	713	715	716			789	806	758
40	819	815	807	813	809	814	811	821	813	814	791	784	737	726	775	788						697	721	723	726	791	790	797	815	768
650	.825	.822	.814	.822	.819	.827	.819	.830	. 828	. 821	799	.796	-747	.735	.783												000	000	000	-
60	830		822		829	829	828	839	837		810	809		746	793	.795										.800	.800		823	
70	835	838	832		839			849	847	840	821		768	755	802			771		784		713			749	811	811	827	843	
80		844	840		846		844	856	855	848	830		777	766	811			781			725			749 757		830		836	851	
90	843	849	844	856	851	850	849	861	859	852	836	838	784	771	817		748		729	805 811			761	764				841	858	810
																041	754	191	735	811	133	130	101	.04		000		-		
700	.846	.854	.849	.860	.855	.855	.851	.865	.864	.856	.841	.842	•790	.777	.822	.833	.760	.802	.741	.816	.743	.740	.772	.768	.783	.841	.841	846	.863	815
										-																				

Table 15. Formulas for converting ICI values for x, y, z to UCS values for r, g, b

 $\bar{r} = 3.1956 \, \bar{x} + 2.4478 \, \bar{y} - 0.1434 \, \bar{z}$

 $\bar{g} = -2.5455 \, \bar{x} + 7.0492 \, \bar{y} + 0.9963 \, \bar{z}$

 $\bar{b} = 0.0000 \, \bar{x} + 0.0000 \, \bar{y} + 1.0000 \, \bar{z}$

and the reverse transformation:

 $\bar{x} = 0.24513 \,\bar{r} - 0.08512 \,\bar{g} + 0.11996 \,\bar{b}$

 $\bar{y} = 0.08852 \,\bar{r} + 0.11112 \,\bar{g} - 0.09802 \,\bar{b}$

 $\bar{z} = 0.00000 \, \bar{r} + 0.00000 \, \bar{g} + 1.00000 \, \bar{b}$

a/ See text

Table 16. Differences in reflectance (ICI - Y value) and chromaticity (in UCS units for r, g, and b) for pairs of colors selected by Judd, as calculated for 15 illuminants a

Illuminant	•				Diff	erence	s in Y	value	s, and	in UC	Sunit	3				
Description	Approx. color tempera-		Oliv	e Pair			Gree	n Pair			Blue	Pair		Brown	Pair	
Description	ture in	Y	r	g	ъ	Y	r	g	b	Y	r	g	b	Y r	g	ъ
		x10 ⁻³	#10 ⁻⁴	x10-4	x10 ⁻⁴	≥10 ⁻³	x10 ⁻⁴	×10-4	×10-4	x10-3	x10 ⁻⁴	x10 ⁻⁴	x10-4	x10 ⁻³ x10 ⁻⁴	x10 ⁻⁴	x10 -4
CI *B*	208	13	- 30	- 105	+ 135	9	- 31	+ 18	+ 13	5	- 42	+ 10	* 32	1 - 243 +	195	÷ 48
bbot Daylight	165	12	-177	- 41	+ 136	10	- 34	+ 29	+05	04	- 69	+ 47	+ 22	02 - 268 +	215	+ 53
Carbon Arc	157	13	- 164	- 48	+ 116	09	- 28	+ 40	-12	04	- 59	+ 45	+ 14	03 - 247 +	199	+ 48
Tuorescent Daylight	OK 153	17	- 242	- 101	+ 141	09	- 24	+ 44	-20	07	- 84	+ 54	+ 30	01 - 319 +	257	+ 62
CI *C*	149	13	- 275	- 132	+ 143	10	- 36	+ 33	+03	04	- 65	+ 42	+ 23	02 - 253 +	200	+ 53
lacbeth 6800K	147	15	- 246	- 97	+ 149	09	- 33	+ 35	- 02	05	- 77	+ 54	+ 23	02 - 249 +	198	+ 51
lanckian 7000K	143	12	- 202	- 78	+ 124	10	- 30	+ 40	-10	04	- 68	+ 54	+ 14	02 - 260 +	208	+ 52
ibson _{7900K}	143	11	- 209	- 78	+ 131	10	- 34	+ 36	-02	03	- 72	+ 57	+ 15	02 - 269 +	215	+ 54
ibson 7500K	135	11	- 225	- 96	+ 129	10	- 34	+ 40	-06	03	- 73	+ 60	+ 13	02 - 270 +	215	+ 55
acbeth 7500K	133	14	- 269	- 119	+ 150	10	- 33	+ 40	-07	04	- 7 9	+ 59	+ 20	02 - 247 +	196	+ 51
Tuorescent + Blue	131	15	- 275	- 138	+ 137	09	- 26	+ 50	-24	06	- 86	+ 64	+ 22	01 - 286 +	235	+ 51
ibson 8000K	125	10	- 240	- 114	+ 126	10	- 34	+ 42	-08	03	- 73	+ 65	+ 08	02 - 269 +	215	+ 54
ibson 9000K	110	10	- 268	- 148	+ 120	11	- 34	+ 49	-15	01	- 76	+ 73	+ 03	02 - 268 +	213	+ 55
20 ₂ (25mm)	110	08	- 230	- 114	+ 116	10	- 36	+ 41	- 05	01	-127	+121	+ 06	03 - 229 +	187	+ 42
Tuorescent + Blue	不 77	14	- 399	- 255	+ 144	10	- 25	+ 58	-33	05	- 33	+ 22	+ 11	02 - 314 +	231	+ 83

a/ See text

Table 17. Differences in reflectance (ICI - I value) and chromaticity (in UCS units for r, g, and b) for 2 pairs of colors selected for calculation under 10 illuminants 9/

Illumina	nt		Differe	nces in	Y valu	es, and	in UCS 1	mits	
	Approx.		Tello	w Pair		0r	ange and	Blue H	air
Description	tempera-	I	r	g	ъ	Y	r,	g	ъ
	prd	×10-5	x10 ⁻⁵	x10 ⁻⁵	x10-5	x10-5	x10-5	x10 ⁻⁵	x10 ⁻⁵
Carbon Arc	157	4756	- 2369	+ 2511	- 142	6401	+12514	- 7592	- 4922
Fluorescent 500K	153	4783	- 2294	+ 2450	- 156	5890	+12238	- 6925	- 5313
ICI *C=	149	4461	- 2310	+ 2464	- 154	6011	+12842	- 7343	- 5499
Macbeth 6800K	147	4600	- 2195	+ 2347	- 152	6311	+12225	- 6934	- 5291
Planckian 7000K	143	4655	- 2338	+ 2498	- 160	6619	+12738	- 7379	- 5359
Macbeth 7500K	133	4620	- 2140	+ 2308	- 168	6674	+12173	- 6631	- 5542
Fluorescent 7650K	131	4952	- 2240	+ 2428	- 188	6948	+12277	- 6643	- 5634
Planckian _{8000K}	125	4769	- 2279	+ 2465	- 186	7325	+11663	- 7062	- 5601
CO ₂ (25mm)	110	5242	- 2195	+ 1411	- 216	9188	+12309	- 6873	- 5436
Fluorescent 13000K	777	5358	- 2056	+ 2333	- 277	9153	+11912	- 5735	- 6177

Table 18. Differences in reflectance (ICI - Y value) and chromaticity (in UCS units for r, g, and b) for one pair each of tobacco and coffee colors calculated for four illuminants \$\frac{a}{2}\sqrt{}\$

t		Differe	nces i	n Y va	Lues, a	nd in U	CS unit	8
Approx.		Tobacc	o Pair			Coff	ee Pair	
tempera-	Y	r	g	ъ	¥	r	g	b
	x10-5	x10 ⁻⁵	x10 ⁻⁵	x10-5	×10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵
149	1390	+ 820	+ 20	+ 840	603	- 427	+ 162	+ 265
135	1367	+ 891	+ 3	+ 888	600	- 428	+ 150	+ 278
133	1384	+ 873	+ 18	+ 891	600	- 401	+ 126	+ 275
131	1389	+ 921	+ 18	+ 903	602	- 414	+ 136	+ 278
	Approx. color temperature in jurd 149 135 133	Approx. color temperature in urd 149 1390 135 1367 133 1384	Approx. color temperature in urd x10 ⁻⁵ x10 ⁻⁵ 149 1390 + 820 135 1367 + 891 133 1384 + 873	Approx. color temperature in urd	Approx. color temperature in urd	Approx. color temperature in µrd	Approx. color temperature in ard 1390 + 820 + 20 + 840 603 - 427 133 1384 + 873 + 18 + 891 600 - 401	Approx. color temperature in ard 1390 + 820 + 20 + 840 603 - 427 + 162 133 1384 + 873 + 18 + 891 600 - 401 + 126

a/ See text

A/ See text

. Table 19. Differences in reflectance (ICI - Y value) and chromaticity (in UCS units of r, g, and b) for 5 pairs of cotton colors 8/

	Illuminant				II	Diffor	ongos i	n Y value		IICC		
	Identification	Approx.	1	values		Pair		II I VAIU	s and 1		air 2	-
		_ tempera-	Equal	Energy	Y	r	g	Ъ	Y	r	g	b
No.	Description	ture in µrd	х	У	x10 ⁻⁵	x10-5	x10-5	x10-5	x10- 5	x10-5		
1	ICI "B"	208	.3485	.3518	255	+ 85	- 39	- 46	71	+ 295	-112	- 183
2	Abbot Daylight	165	.3204	.3301	231	+ 88	- 36	- 52	05	+ 308	- 99	- 209
3	Carbon Arc	157	.3152	.3321	226	+ 84	- 34	- 50	15	+ 298	- 91	- 207
4	Fluorescent _{6500K}	153	.3129	.3209	222	+ 89	- 35	- 54	38	+ 299	- 75	- 224
5	Curve portion of Fluorescent 7650K	151	.3115	.3197	226	+ 94	- 39	- 55	32	+ 326	- 105	- 221
6	ICI "C"	149	.3101	.3163	228	+ 102	- 45	- 67	14	+ 311	- 86	- 225
7	Macbeth6800K	147	.3081	.3231	229	+ 85	- 31	- 54	10	+ 301	- 82	- 219
8	Planckian7000K	143	.3063	.3168	222	+ 89	- 35	- 54	34	+ 307	- 84	- 223
9	Gibson 1/)4 (.1+.9)	143	.3076	.3158	222	+ 89	- 35	- 54	35	+ 314	- 91	- 223
10	Gibson 1/1 (.15+.85)	135	.3016	.3092	217	+ 90	- 33	- 57	50	+ 315	- 84	- 231
11	Macbeth7500K	133	.2996	.3123	224	+ 86	- 29	- 57	26	+ 303	- 72	- 231
12	Fluorescent 7650K	131	.2979	.3063	216	+ 89	- 31	- 58	09	+ 304	- 65	- 239
13	Planckian _{8000K}	125	.2952	.3051	213	+ 88	- 31	- 57	63	+ 310	- 75	- 235
14	Gibson $1/\lambda^4$ (.2+.8)	125	-2959	.3029	212	+ 90	- 32	- 58	65	+ 317	- 81	- 236
15	Gibson 1/h4 (.3+.7)	110	.2854	.2912	203	+ 89	- 29	- 60	94	+ 318	- 69	- 249
16	CO ₂ (25mm)	110	.2820	.3104	187	+ 84	- 29	- 55	137	+ 288	- 69	- 219
17	Fluorescent _{13000K}	77	.2679	.2760	184	+ 87	- 24	-63	15	+ 282	- 14	- 268
18	Mercury lines of Fluorescent 7650K	Beyond 0	.2190	.2288	143	+ 28	+ 39	-67	177	+ 138	+217	- 355

	Illuminant				Dif	ference	s in Y v	alues a	nd UCS	units		-		
	Identification	Approx.		Pa	ir 3			•Pa:	ir 4			1	Pair 5	
		- tempera-	Y	r	g	ъ	Y	r	g	Ъ	Y	r	g	b
No.	Description	ture in µrd	x10-5	×10-5	x10-5	x10-5	x10-5	x10-5	x10-5	x10-5	x10-5	x10-5	x10 ⁻⁵	x10 ⁻⁵
1	ICI "B"	208	118	+ 33	- 06	- 27	1798	+ 04	+ 21	- 25	63	- 56	+ 127	- 71
2	Abbot Daylight	165	119	+ 25	- 05	- 20	1789	+ 15	+ 15	- 30	3376	- 53	+ 125	- 72
3	Carbon Arc	157	122	+ 25	- 04	- 21	1788	+ 17	+ 18	- 35	3390	- 50	+ 129	- 79
4	Fluorescent _{6500K}	153	126	+ 25	- 04	- 21	1796	+ 17	+ 20	- 37	3383	- 42	+ 123	- 81
5	Curve portion of Fluorescent 7650K	151	120	+ 24	- 03	- 21	1783	+ 11	+ 17	- 28	3372	- 51	+ 124	- 73
6	ICI "C"	149	121	+ 26	- 04	- 22	1789	+ 16	+ 17	- 33	3371	- 45	+ 124	- 79
7	Macbeth6800K	147	123	+ 24	- 03	- 21	1792	+ 14	+ 19	- 33	3377	- 42	+ 122	- 80
8	Planckian7000K	143	122	+ 25	- 03	- 22	1786	+ 17	+ 20	- 37	3383	- 44	+ 129	- 85
9	Gibson 1/λ ⁴ (.1+.9)	143	120	+ 26	- 04	- 22	1785	+ 15	+ 20	- 35	3377	- 47	+ 129	- 82
10	Gibson 1/h4 (.15+.85)	135	121	+ 27	- 03	- 24	1783	+ 17	+ 19	- 36	3378	- 43	+ 129	- 86
11	Macbeth 7500K	- 133	124	+ 24	- 01	- 23	1792	+ 17	+ 20	- 37	3375	- 37	+ 123	- 86
12	Fluorescent _{7650K}	131	127	+ 27	- 04	- 23	1790	+ 18	+ 23	- 41	3386	- 36	+ 127	- 91
13	Planckian _{8000K}	125	123	+ 26	- 02	- 24	1792	+ 17	+ 22	- 39	3383	- 38	+ 131	- 93
14	Gibson 1/h ⁴ (.2+.8)	125	121	+ 26	- 02	- 24	1782	+ 17	+ 22	- 39	3378	- 40	+ 131	- 91
15	Gibson 1/h ⁴ (.3+.7)	110	122	+ 25	- 01	- 26	1778	+ 16	+ 26	- 42	3379	- 35	+ 133	- 98
16	CO ₂ (25mm)	110	122	+ 22	- 01	- 23	1774	+ 13	+ 25	- 38	3398		+ 133	- 93
17	Fluorescent _{13000K}	77	130	+ 21	- 05	- 26	1779	+ 19	+ 33	- 52	3391	- 20	+ 134	-114
18	Mercury lines of Fluorescent _{7650K}	Beyond O	190	+ 12	+ 14	- 26	1842	+ 35	+ 85	-120	3492	+ 58	+ 154	- 212

Table 20. Mean differences, caused by changing from one to another of 17 illuminants, for reflectance (ICH - Y value) and chromaticity (in UCS units of r, g, and b) for 30 cotton colors. The standard deviation is shown with each mean a

µrd				208			10	65	
Illuminant			IC	I "B"			Abbot	Daylight	
	Approx.	Y	r	g	ъ	Y	r	g	ъ
Description	tempera- ture in µrd	x10 ⁻⁵	x10-5	x10 ⁻⁵	x10-5	x10 ⁻⁵	x10-5	x10 ⁻⁵	x10 ⁻⁵
ICI "B"	208					21 ± 4	+2169 ±10	- 842 ±16	
Abbot Daylight	165		Į.		+1328 ±21				
Carbon Arc	157		Į	1	+ 1321 ± 23	5 ±1			
Fluorescent6500K	153	24 ± 4	-2751 ± 10			3 ±2	- 582 ±8		
ICI "C"	149	27 ± 5	ł .	ì	+ 2079 ± 32	5 ±1		1	
Macbeth6800K	147	30 ± 5	-3261 ± 9	+ 1411 ± 30	+ 1850 ± 29	9 ±1	-1091 ±8	1	+ 522 ± 9
Planckian7000K	143	32 ±6	-3282 ± 11	+ 1159 ± 27	+ 2123 ± 34	11 ± 2	-1113 ±3	+ 317 ± 12	+796 ± 14
Gibson 1/x (.1+.9)	143	31 ±6	-3124 ± 13	+ 985 ± 24	+ 2139 ± 33	10 ±2	- 955 ±4	+143 ± 9	+812±13
Gibson 1/\(\lambda^4\) (.15+.85)	135	36 ±7	-3585 ± 14	+ 1054 ± 28	+ 2531 ± 39	15 ± 3	-1416 ±5	+213 ±14	+1204 ± 18
Macbeth7500K	133	36 ±6	-3889 ± 11	+ 1436 ± 37	+ 2453 ± 39	15 ±2	-1720 ±7	+ 595 ± 22	+1126 ± 18
Fluorescent _{7650K}	131	37 ±6	-3949 ± 12	+1233 ±42	+ 2717 ± 43	15 ±2	-1780 ±7	+ 391 ± 27	+1388 ± 25
Planckian 8000K	125		-4170 ± 13		1	20 ±3	-2001 ±5	+492 ± 21	+1509 ± 24
Gibson 1/1/2 (.2+.8)	125		-4036 ±15	}	1	20 ±4	-1867 ±7		+ 1586 ± 24
Gibson 1/14 (.3+.7)	110	50 ±10	-4906 ±16	+1252 ±41	+ 3654 ± 54	29 ± 5	-2737 ±9	+411 ± 8	+2326 ±33
CO ₂ (25mm)	110				+ 2926 ± 39	1	-3459 <u>+</u> 10		
Fluorescent _{13000K}	77	66 ±12	-6557 ±16	+ 1808 ± 66	+ 4750 ± 69	44 ±8	-4388 ±13	+966 ± 52	+3422 ±49
Mercury lines of Fluorescent 7650K	Beyond 0	75 ±11	-11958 ±103	+ 3848 ±237	+ 8110 ±151	53 ±8	-9789 ±108	+3006±223	+6782 ±133

μrd				157			153		
Illuminant				Carbon Ar	c		Fluoresce	nt _{6500K}	,
	Approx.	Y	r	g	ъ	Y	r	g	b
Description	tempera- ture in urd	x10 ⁻⁵	x10 ⁻⁵	x10-5	x10 ⁻⁵	×10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵
ICI "B"	208	26 5	+2741 ±8	-1420 ±22	-1321 ±23	24 ± 4	+2751 ±10	- 945 ±33	-1806 ±33
Abbot Daylight	165	5 ±1	- 572 ± 6	+ 578 ± 7	- 7 ±3	3 ± 2		1	- 478 ± 12
Carbon Arc	157					2 ± 2	+ 10 ±4	+ 475 ± 11	- 485 ± 11
Fluorescent _{6500K}	153		_	- 475 ± 11	_				
ICI "C"	149			- 616 ± 3		3 ± 2	- 132 ± 10	1	
Macbeth 6800K	147	4 ±1	- 520 ± 3	- 9±8	+ 528 ± 7	6 ± 2	- 510 ± 2	+ 466 ± 4	+ 44 ±4
Planckian 7000K	143	6 ±1	- 541 ±7	- 261 ±5	+802 ±12	8 ±3	- 531 ± 7	+213 ± 7	+318 ±3
Gibson 1/1/4 (.1+.9)	143	5 ±1	- 383 ±9	- 435 ±2	+818 ±11	7 ±3	- 373 ± 10	+ 40 ±10	+334 ±2
Gibson 1/N ⁴ (.15+.85)	135	10 ±2	- 845 ± 10	- 366 ±6	+1211 ±17	12 ±4	- 834 ± 10	+109 ± 6	+726 ±6
Macbeth 7500K	133	10 ±1	-1149 ±5	+ 16 ± 15	+1132 ±16	12 ±3	-1138 ± 3	+491 ± 6	+648 ±6
Fluorescent _{7650K}	131	11 ±1	-1208 ±6	- 187 ± 20	+1395 ±23	13 ±3	-1198 ± 3	+ 288 ± 10	+910 ±13
Planckian 8000K	125	15 ±3	-1429 ±8	- 86 ± 14	+1515 ± 21	18 ±4	-1419 ± 8	+ 388 ± 6	+1031 ±12
Gibson 1/X4 (.2+.8)	125	15 ±3	-1295 ±11	+ 298 ± 10	+1593 ± 22	17 ±5	-1285 ±11	+ 177 ± 5	+1108 ±11
Gibson 1/x4 (.3+.7)	110	1		- 167 ± 20		26 ±6	-2156 ±13	+ 308 ± 11	+1848 ± 21
CO ₂ (25mm)	110			1282 ± 19	1	1	-2877 ±4		
Fluorescent _{13000K}	77			+ 388 ± 45			-3806 ±8		1
Mercury lines of Fluorescent _{7650K}	Beyond 0	40 17	-)010 111	700 147)440 ±47		7500 10	294	

Table 20. Cont'd

µrd			1	49				147	
Illuminant	t		ICI	пСи			Macbe	th6800K	
	Approx. color tempera-	Y	r	g	ъ	Y	r	g	ъ
Description	ture in urd	x10-5	x10-5	x10-5	x10-5	x10-5	x10-5	x10-5	x10-5
ICI "B"	208	-	+2883±12		_	30 ± 5	+3261 ± 9	-1411 ±30	-1850 ±29
Abbot Daylight	165		+ 714 + 4			9 ± 1	+1091 ± 8	- 570 ±15	- 522 ± 9
Carbon Arc	157	1 1 1	+ 142 ± 9	+ 616 ± 3	- 758 ±10	4 ± 1	+ 520 ± 3	9 ± 8	- 528 ± 7
Fluorescent6500K	153	3 ± 2	+ 132 ±10	+ 141 ±10	- 274 ± 2	6 ± 2	+ 510 ± 2	- 466 ± 4	- 44 ± 4
ICI "C"	149					3 ± 1	+ 377 ±10	-607 ± 7	+ 230 ± 3
Macbeth 6800K	147	3 ± 1	- 377 ±10	+ 607 ± 7	- 230 ± 3				
Planckian7000K	143	5 ± 1	- 399 ± 4	+ 355 ± 5	+ 44 ± 3	2 ± 1	-21 ± 7	- 253 ± 4	+ 274 ± 5
Gibson 1/λ ⁴ (.1+.9)	143	4 ± 1	- 241 ± 3	+ 181 ± 3	+ 60 ± 2	1 ± 1	+ 136 ±10	- 426 ± 6	+ 290 ± 4
Gibson 1/ λ^4 (.15+.85)	135		- 702 ± 4			1 1			+ 682 ± 9
Macbeth7500K	133		-1006 ± 9			6 ± 1	- 629 ± 3	- 25 ± 7	+ 604 ± 9
Fluorescent _{7650K}	131		-1066 ± 9				1		+ 866 ±16
Planckian 8000K	125		-1287 ± 5						+ 987 ±15
Gibson 1/14 (.2+.8)	125		-1152 ± 5			ľ			+1064 ±15
Gibson 1/\(\lambda^4\) (.3+.7)	110		-2023 ± 8			1			+1804 ±25
CO ₂ (25mm)	110	_	-2744 ±12				1		+1076 ±11
Fluorescent _{13000K}	77		-3674 ±13						+2900 ±40
Mercury lines of Fluorescent/650K	Beyond		-9075± 109			JU - 1		57- 251	

μrd				143				143	
Illuminant	;		Plane	ckian _{7000K}			Gibson 1	/x ⁴ (.1+.9)
Description	Approx. color tempera-	Y	r	g	b	Ä	r	g	ъ
	ture in	x10-5	x10-5	x10 ⁻⁵	x10-5	x10-5	x10-5	x10 ⁻⁵	x10-5
ICI "B"	208	32 ± 6	+3282 ±11	-1159 ±27	-2123 ±34	31 ± 6	+3124 ±13	- 985 ±24	-2139 ±33
Abbot Daylight	165	11 ± 2	+1113 ± 3	- 317 ±12	- 796 ±14	10 ± 2	+ 955 ± 4	- 143 ± 9	- 812 ±13
Carbon Arc	157	6 ± 1	+ 541 ± 7	+ 261 ± 5	- 802 ±12	.5 ± 1	+ 383 ± 9	+ 435 ± 2	- 818 ±11
Fluorescent6500K	153	8 ± 3	+ 531 ± 7	- 213 ± 7	- 318 ± 3	7 ± 3	+ 373 ±10	- 40 ±10	- 334 ± 2
ICI "C"	149	5 ± 1	+ 399 ± 4	- 355 ± 5	- 44 ± 3	4 ± 1	+ 241 ± 3	- 181 ± 3	- 60 ± 2
Macbeth6800K	147		+ 21 ± 7					+ 426 ± 6	
Planckian7000K	143							+ 174 ± 4	
Gibson 1/x4 (.1+.9)	143	1 ± 1	+ 158 ± 3	- 174 ± 4	+ 16 + 2				
Gibson 1/\(\lambda^4\) (.15+.85)	135		- 304 + 4		_	5 ± 1	- 461 ± 1	+ 69 ± 5	+ 392 ± 6
Macbeth7500K	133		- 608 ± 6			1 .	_	+ 451 ±13	
Fluorescent7650K	131		- 667 ± 6		1	!		+ 248 ±19	1
Planckian _{8000K}	125	i	- 888 ± 2			}		+ 349 ±12	1
Gibson 1/14 (.2+.8)	125		- 754 ± 5		1	Į.		+ 137 ±10	
Gibson $1/\lambda^4$ (.3+.7)	110	-	-1625 ± 7	1	1	1		+ 268 ±18	
CO ₂ (25mm)	110		-2346 ±10					+1717 ±18	1
Fluorescent _{13000K}	77		-3275 ±11			1		+ 823 ±43	
Mercury lines of Fluorescent 7650K	Beyond		1		+ 5987 ±118			+ 2863 ±214	

prd	135				133				
Illuminant		Gibson l	/x ⁴ (.15+.8	35)	Macbeth 7500K				
	Approx.	Y	r	g	Ъ	Y	r	g	Ъ
Description	tempera- ture in prd	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10-5	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵
ICI "B"	208		+3585 ± 14			36 ± 6	_	1	-2453 ± 39
Abbot Daylight	165	15 ± 3	+1416 ± 5	- 213 ± 14	-1204 <u>+</u> 18				-1126 ± 18
Carbon Arc	157	10 ± 2	+ 845 ± 10	+ 366 ± 6	-1211 ± 17	10 ± 1	+1149 ± 5	- 16 ± 15	-1132 ±16
Fluorescent _{6500K}	153	12 ± 4	+ 834 ± 10	- 109 ± 6	- 726 ± 6	12 ± 3	+1138 ± 3	- 491 ± 6	- 648 ± 6
ICI "C"	149	9 ± 2	+ 702 ± 4	- 250 ± 6	- 452 ± 7	9 ± 1	+1006 ±9	- 632 ± 14	- 374 ± 7
Macbeth 6800K	147		+ 325 ± 11	1	1	6 ± 1	+ 629 ± 3	- 25 ± 7	- 604 ± 9
Planckian7000K	143	4 ± 1	+ 304 ± 4	+ 104 ± 1	- 408 [±] 5	4 ± 1	+ 608 ± 6	- 278 ±10	+ 330 ± 5
Gibson 1/14 (.1+.9)	143	5 ± 1	+ 461 ± 1	- 69 ± 5	- 392 ± 6	5 ± 1	+ 765 ± 9	- 451 ±13	- 314 ± 6
Gibson 1/14 (.15+.85)	135					1 ± 1	+ 304 ± 9	- 382 ± 9	+ 78 ± 1
Macbeth 7500K	133	1 ±1	- 304 ± 9	+ 382 ± 9	- 78 ± 1				
Fluorescent7650K	131	1 ±1	- 364 ± 8	+ 179 ±14	+ 185 ± 7	1 ± 1	-60 ± 2	- 203 ± 6	+ 263 ± 7
Planckiangoook	125	5 ± 1	- 584 ± 3	+ 280 ± 8	+ 305 ± 5	5 ± 2	- 281 ± 6	- 103 ± 3	+ 383 ± 6
Gibson 1/24 (.2+.8)	125	5 ±1	- 450 ± 1	+ 68 ± 4	+ 383 ± 5	5 ± 2	- 146 ± 10	- 314 ± 5	+ 461 ± 5
Gibson 1/14 (.3+.7)	110	14 ± 3	-1321 ± 4	+ 198 ±13	+1122 ±15	14 ± 3	-1017 ±11	- 183 ± 7	+1197 ±19
CO ₂ (25mm)	110		-2042 ±13	i .					+ 472 ± 3
Fluorescent _{13000K}	77		-2972 ±13						+ 2296 ± 31
Mercury lines of Fluorescent7650K	Beyond 0				+5579 = 113			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

µrd	131					125					
Illumina	nt		Fluorescent _{7650K}				Planckian _{8000K}				
Description	Approx. color tempera- ture in prd	x10	-+	r x10 ⁻⁵	g x10 ⁻⁵	b x10 ⁻⁵	Y x10 ⁻⁵	r x10 ⁻⁵	g x10 ⁻⁵	b x10 ⁻⁵	
ICI "B"	208	37	<u>+</u> 6	+ 3949 ±12	-1233 ±42	-2717 ±43	42 ± 8	+4170 ±13	-1334 ± 36	-2836 ±44	
Abbot Daylight	165	15	± 2	+1780 ± 7	- 391 ±27	-1388 ±25	20 ± 3	+2001 ± 5	- 492 ± 21	-1509 ± 24	
Carbon Arc	157		_	_	+ 187 ± 20		15 ± 3	+1429 ± 8	+ 86 ± 14	-1515 ± 21	
Fluorescent6500K	153	13 :	±3	+1198 ± 3	- 288 ±10	- 910 ±13		+1419 ± 8			
ICI "C"	149	10 :	<u>+</u> 1	+1066 ± 9	- 429 ±19	- 637 ±13	15 ± 3	+1287 ± 5	- 530 ±13	- 757 ±12	
Macbeth6800K	147	7 :	±1	+ 688 ± 4	+ 178 ±13	- 866 ±16	11 ± 3	+ 909 ± 8	+ 78 ± 7	- 987 ±15	
Planckian7000K	143	5 :	±1	+ 667 ± 6	- 74 ±15	- 593 ±11	9 ± 2	+ 888 ± 2	- 175 ± 9	- 713 ±10	
Gibson 1/1/4 (.1+.9)	143	6	+1	+ 825 ± 8	- 248 ±19	- 577 ±12	10 ± 2	+1046 ± 3	- 349 ±12	- 697 ±11	
Gibson 1/h ⁴ (.15+.85)	135	1 :	±1	+ 364 ± 8	- 179 ±14	- 185 ± 7	5 ± 1	+ 584 ± 3	- 280 ± 8	- 305 ± 5	
Macbeth7500K	133	1	±1	+ 60 ± 2	+ 203 ± 6	- 263 ± 7	5 ± 2	+ 281 ± 6	+ 103 ± 3	- 383 ± 6	
Fluorescent _{7650K}	131						5 ± 2	+ 221 ± 6	+ 101 ± 7	+ 120 ± 2	
Planckiang000K	125	5	<u>+</u> 2	- 221 ± 6	+ 101 ± 7	+ 120 ± 2	+	+			
Gibson $1/\lambda^4$ (.2+.8)	125	4 1	2	-87 ± 9	- 111 ±10	+ 198 ± 2	1 ± 1	+ 134 ± 4	- 212 ± 3	+ 77 ± 1	
Gibson $1/\lambda^4$ (.3+.7)	110	14	±4	- 957 ±10	+ 19 ± 4	+ 938 ± 9	9 ± 2	- 737 ± 6	- 81 ± 6	+ 817 ±10	
CO ₂ (25mm)	110	22	±6	-1679 ± 6	+1469 ± 3	+ 210 ± 7	17 ± 4	-1458 ±10	+1369 ± 6	+ 89 ± 5	
Fluorescent _{13000K}	77	29	<u>+</u> 6	-2608 ± 7	+ 575 ±25	+ 2034 ± 24	24 ± 5	-2387 ±10	+ 474 ±31	+1913 ±25	
Mercury lines of Fluorescent 7650K	Beyand							-7788 ±108	1		

Table 20. Cont'd.

prd		12	25		110				
Illuminant	t		Gibson 1/7	14 (.2+.8)		Gibson 1/ λ^4 (.3+.7)			7)
Description	Approx. color tempera-	Y	r	g	Ъ	Y	r	g	b
•	ture in	x10 ⁻⁵	x10 ⁻⁵	x10-5	x10 ⁻⁵ .	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵
ICI "B"	208		+ 4036 ± 15			50 ± 10	+ 4906 ± 16		
Abbot Daylight	165		+ 1867 ± 7			1	+ 2737 ± 9		
Carbon Arc	157		+ 1295 ± 11			1	+ 2166 ± 13		-2333 ± 31
Fluorescent 6500K	153 .	1	+ 1285 ± 11			26 ± 6	+ 2156 ± 13	- 308 ± 11	-1848 ± 21
ICI "C"	149	14 ± 3	+ 1152 ± 5	- 318 ± 10	- 834 ± 12	24 ± 5	+ 2023 ± 8	- 449 ± 19	-1574 ± 22
Macbeth6800K	147	11 ± 3	+ 775 ± 12	+ 289 ± 4	-1064 ± 15	20 ± 4	+ 1646 <u>+</u> 13	+ 158 ± 13	-1804 ± 25
Planckian7000K	143	9 ± 2	+ 754 ± 5	+ 37 ± 6	- 790 ± 10	18 ± 4	+ 1625 ± 7	- 95 + 15	-1530 + 20
Gibson 1/h4 (.1+.9)	143	10 ± 2	+ 911 ± 3	- 137 ± 10	- 774 ± 11	1 - 1	+ 1782 ± 5	_	_
Gibson $1/\lambda^4$ (.15+.85)	135	5 ±1	+ 450 ± 1	- 68 ± 4	- 383 ± 5	14 ± 3	+ 1321 ± 4	- 198 ± 13	-1122 ± 15
Macbeth 7500K	133	5 ± 2	+ 146 ± 10	+ 314 ± 5	- 461 ± 5	14 ± 3	+ 1017 ± 11	+ 183 ± 7	-1197 ± 19
Fluorescent _{7650K}	131	4 ± 2	+ 87 ± 9	+ 111 ± 10	- 198 ± 2	14 ± 4	+ 957 ± 10	- 19 ± 4	- 938 ± 9
Planckiang OOOK	125	1 ±1	- 134 ± 4	+ 212 ± 3	- 77 ± 1	9 ± 2	+ 737 ± 6	+ 81 ± 6	- 817 ± 10
Gibson $1/\lambda^4$ (.2+.8)	125						+ 870 ± 2		i
Gibson 1/h4 (.3+.7)	110	9 ± 2	- 870 ± 2	+ 131 ± 9	+ 740 + 10	, , ,		-,-,,	
CO ₂ (25mm)	110		-1592 ± 14			8 ± 2	- 721 ± 16	+1449 ± 4	- 728 ± 15
Fluorescent _{13000K}	77		-2521 ± 13		i	Ī .	-1651 ± 12		
Mercury lines of Fluorescent 7650K	Beyond 0		-7922 ±111			1	-7052 ±111		

μrd			110		77				
Illuminant			CO ₂	(25mm)		Fluorescent _{13000K}			OK .
	Approx. color tempera-	Y	r	g	Ъ	Y	r	g	ъ
Description	ture in	x10-5	x10-5	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵
ICI "B"	208	59 ±12	+ 5638 ± 54	-2702 ±41	-2926 ± 39			-1808 ±66	-4750 ±69
Abbot Daylight	165	37 ± 7	+ 3459 ±10	-1861 ±27	-1598 ±19	44 ± 8	+4388 ±13	- 966 ±52	-3422 ±49
Carbon Arc	157	33 ± 6	+2887 ± 5	-1282 ±19	-1605 ±17	40 ± 7	+3816 ±11	- 388 ±45	-3428 ±47
Fluorescent _{6500K}	153	35 ± 8	+ 2877 ± 4	-1757 ±10	-1120 ± 8	42 ± 8	+3806 ± 8	- 862 ± 34	-2944 ±36
ICI "C"	149	32 ± 7	+2744 ±12	-1898 ±18	- 846 ± 9	39 ± 7	+3674 ±13	-1004 ±43	-2670 ±37
Macbeth 6800K	147		+2367 ± 3			36 ± 7	+3296 ± 9	- 396 ±37	-2900 ±40
Planckian7000K	143	27 ± 6	+2346 ±10	-1544 ±14	- 802 ± 6	34 ± 6	+3275 ±11	- 649 ±39	-2626 ±35
Gibson 1/\(\lambda^4\) (.1+.9)	143	28 ± 6	+2503 ±12	-1717 ±18	- 786 ± 7	35 ± 6	+3433 ±13	- 823 ±43	-2610 ±36
Gibson $1/\lambda^4$ (.15+.85)	135	23 ± 5	+2042 ±13	-1648 ±13	- 394 ± 3	30 ± 5	+2972 ±13	- 754 ±38	-2218 ±31
Macbeth 7500K	133	23 ± 5	+1738 ± 5	-1266 ± 5	- 472 ± 3	30 ± 6	+2668 ± 7	- 371 ±30	-2296 ±31
Fluorescent _{7650K}	131	22 ± 6	+1679 ± 6	-1469 ± 3	- 210 ± 7	29 ± 6	+2608 ± 7	- 575 ±25	-2034 ±24
Planckian 8000K	125	17 ± 4	+1458 ±10	-1369 ± 6	- 89 ± 5	24 ± 5	+2387 ±10	- 474 ±31	-1913 ±25
Gibson 1/h4 (.2+.8)	125	18 ± 4	+1592 ±14	-1580 ± 9	- 12 ± 5	25 ± 5	+2521 ±13	- 686 ±34	-1836 #25
Gibson $1/\lambda^4$ (.3+.7)	110	8 ± 2	+ 721 ±16	-1449 ± 4	- 728 ±15	16 ± 3	+1651 ±12	- 555 ±26	-1096 ±16
CO ₂ (25mm)	110					7 ± 3	+ 929 ± 8	895 ±26	-1824 ±30
Fluorescent _{13000K}	77	7 ± 3	- 929 ± 8	- 895 ±26	1824 ± 30				
Mercury lines of Fluorescent _{7650K}	Beyond								

Table 20. Cont'd

µrd			Ве	yond 0		,	
Illuminant		Mercury Fiuo	rescent 765	OK .			
	Approx.	Y	r	g	ь		
Description	tempera- ture in prd	x10 ⁻⁵	x10 ⁻⁵	x10 ⁻⁵	×10 ⁻⁵		
ICI "B" Abbot Daylight Carbon Arc Fluorescent7650K	208 165 157 153		+11958 ±103 + 9789 ±108				
ICI "C" MacbethAgook	149 147	48 ± 8	+ 9075 ±109	-3044 ±214	-6031 ±120		
Planckian _{7000K} Gibson 1/h ⁴ (.1+.9)	143 143	1	+ 8676 ±107 + 8834 ±110				
Gibson 1/ λ^4 (.15+.85) Macbeth _{7500K}	135 133	39 ± 8	+ 8373 ±111	-2794 ±209	-5579 ±113		
Fluorescent _{7650K} Planckian _{8000K}	13 1 125		+ 7788 ±108				
Gibson $1/\lambda^4$ (.2+.8) Gibson $1/\lambda^4$ (.3+.7)	125 110		+ 7922 ±111 + 7052 ±111				
CO ₂ (25mm) Fluorescent _{13000K} Mercury lines of Fluorescent _{7650K}	110 77 Beyond						

