$$\beta_1 > 0$$
 $\beta_2 \in (-\beta_{11} 0)$ 
 $\beta_3 \in (\beta_{21} 0)$ 

20. W. a. reg logwage education educ\_2 educ\_3 educ\_4 educ\_5 educ\_6, r

Linear regression

|           |           | Robust    |        |       |            |           |
|-----------|-----------|-----------|--------|-------|------------|-----------|
| logwage   | Coef.     | Std. Err. | t      | P> t  | [95% Conf. | Interval] |
| education | 1.125813  | 1.625832  | 0.69   | 0.489 | -2.060835  | 4.312461  |
| educ_2    | -2.773794 | 13.81887  | -0.20  | 0.841 | -29.85892  | 24.31134  |
| educ_3    | -20.67584 | 46.28692  | -0.45  | 0.655 | -111.3987  | 70.04703  |
| educ_4    | 91.36617  | 74.59538  | 1.22   | 0.221 | -54.84157  | 237.5739  |
| educ_5    | -111.5427 | 58.07495  | -1.92  | 0.055 | -225.3703  | 2.2848    |
| educ_6    | 43.91998  | 17.54971  | 2.50   | 0.012 | 9.522364   | 78.3176   |
| cons      | 10.16774  | .0518213  | 196.21 | 0.000 | 10.06617   | 10.26931  |





## 20.15.a.





50

100

150

| 20.15. c. |         | AIC       |
|-----------|---------|-----------|
|           | 0 knot  | 1249.774  |
|           | 1 knot  | 1248.711  |
|           | 2-Kenot | 1248 1088 |

Since the 2 knot spline has the smallest Alc, this is the preferred specification.

Lagged Debt

20.15.d. All of the models show a drop off in growth with high (90+) values of lagged debt, however this drop off is more pronounced in the models with splines.

21.1 The conditional ATE D' for D= 18x5c3 would be θ'= m(c-) - m(c+)

The treatment effects that can be identified 21.2

are at c, cr.  $\bar{\theta}_i = m(c+) - m(c-)$ 

 $\tilde{\theta}_2 = m(c_2 -) - m(c_2 +)$ 21.3 Y= Yo 1 { x < c} + Y1 1 { x ≥ c} E[Y| X=x] = E[Y. 1 { X < c } | X = x] + E[Y. 1 { X ≥ c } | X = x]

m(x) = mo(x) \ { X < C } + m (x) | } X ≥ c { consider a vectangular kernel with bandwidth 2h and  $F(x-c/h) = 121x-c/h^3$ . Then the U objective 21.4 function is:

 $J = \sum_{i=1}^{n} (y_i - B_0 - B_1 x_i - B_2 (x_i - c) D_i - \theta D_i)^2 k \left(\frac{x - c}{n}\right)$