Virtual Trackball: Quaternions

3 March 2009 CMPT370 Dr. Sean Ho Trinity Western University

Review last time

- Math for 3D graphics: homogeneous coordinates
 - 4x4 transform matrices
 - Translate, scale, rotate
- Viewing: (see RedBook ch3)
 - Positioning the camera: model-view matrix
 - Selecting a lens: projection matrix

Clipping: setting the view volume

$$T = \begin{vmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$S = \begin{vmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

OpenGL vertex arrays

- Stores a vertex list in the graphics hardware
 - Six types of arrays: vertices, colours, colour indices, normals, texture coords, edge flags
- Our vertex list in C:
 - \bullet GLfloat verts[][3] = {{0.0, 0.0, 0.0}, $\{0.1, 0.0, 0.0\}, \dots\}$
- Load into hardware:
 - glEnableClientState(GL VERTEX ARRAY);
 - glVertexPointer(3, GL FLOAT, 0, verts);
 - 3: 3D vertices
 - GL FLOAT: array is of GLfloat-s
 - **0**: contiguous data
 - verts: pointer to data

Using OpenGL vertex arrays

- Use glDrawElements instead of glVertex
- Polygon list references indices in the stored vertex array
 - ◆ GLubyte cubeIndices[24] = {0,3,2,1, 2,3,7,6, 0,4,7,3, 1,2,6,5, 4,5,6,7, 0,1,5,4};
 - Each group of four indices is one quad
- Draw a whole object in one function call:
 - glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, cubeIndices);

OpenGL display lists

- Take a group of OpenGL commands (e.g., defining an object) and store in hardware
- Can change OpenGL state, camera view, etc. without redefining this stored object
- Creating a display list:

```
GLuint cubeDL = glGenLists(1);
```

- glNewList(cubeDL, GL_COMPILE);
 - glBegin(...);; glEnd();
- glEndList();
- Using a stored display list:

See RedBook ch7

glCallList(cubeDL);

Rotations in 3D

- Euler angles: angles about x, y, z axes
 - Needs an order: e.g., first x, then y, then z
 - User interface to specify three angles clunky
- Virtual trackball: like an upside-down mouse
 - Motion in 2D determines rotation of trackball

Gimbal lock

One naïve way to do get a rotation from 2D mouse motion is:

- Vertical motion --> elevation (latitude)
- Horizontal --> azimuth (longitude)
- Problem: gimbal lock!
 - At the North/South poles, longitude has no meaning
 - Lose a degree of freedom

Virtual trackball

- Let the mouse position be in x-z plane
- Project up to the hemisphere of radius r:

•
$$y = sqrt(r^2 - x^2 - z^2)$$

Mouse motion corresponds to moving from p₁ to p₂ on the hemisphere

- This determines the rotation
- Update in the event handler: every mouse-move yields a small rotation

Axis and angle of rotation

- The axis of rotation is found by the cross-product of p₁ and p₂
- The angle between p_1 and p_2 is found by: $|\sin \theta| = |n| / (|p_1| * |p_2|)$

- If the mouse is moved slowly enough and we sample frequently, $\sin \theta \approx \theta$
- \blacksquare glRotatef(θ , n_1 , n_2 , n_3): angle+axis
- Problem: how to compose two rotations? Convert axis+angle to a quaternion.

Quaternions

- Extension of complex numbers from 2D to 4D
 - (an example of a Clifford Algebra)
 - One real, three imaginary components i, j, k:
 - b = $q_0 + q_1 i + q_2 j + q_3 k = (q_0, q)$
 - $\mathbf{q} = \mathbf{q_1} \mathbf{i} + \mathbf{q_2} \mathbf{j} + \mathbf{q_3} \mathbf{k}$ is the pure quaternion part
- Properties:
 - a + b = $(p_0 + q_0, p + q)$
 - $\bullet i^2 = i^2 = k^2 = -1$
 - ◆ ij = k, ji = -k, jk = i, kj = -i, ki = j, ik = -j
 - $|\mathbf{b}|^2 = q_0^2 + q_1^2 + q_2^2 + q_3^2$ (magnitude)

Multiplying quaternions

- **a** $x b = (p_0 q_0 p*q), q_0 p + p_0 q + pxq)$
 - p*q: dot-product (treat p, q as 3D vectors)
 - pxq: cross-product (yields a quaternion)
- Order matters: multiplication is not commutative!
 - \bullet a x b \neq b x a
- We'll represent composing multiple rotations by multiplication of the corresponding quaternions

Properties of quaternions

- Conjugate: $b(conj) = (q_0, -q)$
- Negative: - $\mathbf{b} = (-q_0, -q)$
- Multiplicative inverse: b⁻¹ = b(conj) / |b|²
- Unit quaternions: $|\mathbf{b}|=1$, so $\mathbf{b}^{-1}=\mathbf{b}(\text{conj})$
 - We'll represent rotations with unit quaternions

Rotations with quaternions

- From the axis-angle form:
 - Rotate about the unit vector u by angle θ:
 - $\mathbf{q} = (\cos(\theta/2), \mathbf{u} \sin(\theta/2))$
- A point P in 3D space is represented by the quaternion p = (0, P)
- The rotated point P' is represented by the quaternion p':
 - $p' = q * p * q^{-1}$
- These are quaternion multiplications; convert to matrix notation:

Converting to 4x4 matrix

- Rotate P by q: $p' = q * p * q^{-1}$
- Left-multiplication of a point $P = (x_p, y_p, z_p)$ by a rotation quaternion

q = (x, y, z, w):

• q * P:

 $\begin{vmatrix} w_{q} & -z_{q} & y_{q} & x_{q} \\ z_{q} & w_{q} & -x_{q} & y_{q} \\ -y_{q} & x_{q} & w_{q} & z_{q} \\ -x_{q} & -y_{q} & -z_{q} & w_{q} \end{vmatrix} \begin{vmatrix} x_{p} \\ y_{p} \\ z_{p} \\ 0 \end{vmatrix}$

- Followed by right-multiplication by q⁻¹:
 - P * q⁻¹:

$$\begin{vmatrix} w_{q} & -z_{q} & y_{q} & -x_{q} \\ z_{q} & w_{q} & -x_{q} & -y_{q} \\ -y_{q} & x_{q} & w_{q} & -z_{q} \\ x_{q} & y_{q} & z_{q} & w_{q} \end{vmatrix} \begin{vmatrix} x_{p} \\ y_{p} \\ z_{p} \\ 0 \end{vmatrix}$$

Putting it all together

Hence, rotating a point P by a quaternion q = (x, y, z, w) is equivalent to multiplying by a 4x4 matrix:

