Décima lista de exercícios de Análise Real: Sequências e Séries de funções

- 1. Mostre que a sequência de funções $f_n:[0,+\infty)\to\mathbb{R}$, definidas por $f_n(x)=x^n/(1+x^n)$, converge pontualmente. Determine a função limite e mostre que a convergência não é uniforme.
- 2. Demonstre que a série $\sum_{n\geq 1} x^n (1-x^n)$ converge quando $x\in (-1,1]$, e que a convergência é uniforme em todos os intervalos do tipo $[-1+\delta,1-\delta]$, com $0<\delta<1/2$.
- 3. Demonstre o critério de Cauchy: a sequência de funções $f_n: X \to \mathbb{R}$ converge uniformemente se, e somente se, para todo $\varepsilon > 0$ dado, existir $n_0 \in \mathbb{N}$ tal que se $m, n > n_0$, então $|f_m(x) f_n(x)| < \varepsilon$ qualquer que seja $x \in X$.
- 4. Se a sequência de funções $f_n: X \to \mathbb{R}$ é tal que $f_1 \ge f_2 \ge \cdots \ge f_n \ge \cdots$ e $f_n \to 0$ uniformemente em X, demonstre que a série $\sum (-1)^n f_n$ converge uniformemente em X.
- 5. Se $f_n \to f$ e $g_n \to g$ uniformemente no conjunto X, demonstre que:
 - (a) $f_n + g_n \to f + g$ uniformemente em X;
 - (b) se f e g forem limitadas, então $f_n \cdot g_n \to f \cdot g$ uniformemente em X;
 - (c) se existir c > 0 tal que $|g(x)| \ge c$ para todo $x \in X$, então $1/g_n \to 1/g$ uniformemente em X.
- 6. Mostre que a sequência de funções $g_n(x) = x + x^n/n$ converge uniformemente em [0,1] para uma função derivável g e que a sequência das derivadas g'_n converge pontualmente em [0,1] mas $g' \neq \lim g'_n$.
- 7. Sejam X compacto, U aberto e $f: X \to \mathbb{R}$ contínua tal que $f(X) \subset U$. Se uma sequência de funções $f_n: X \to \mathbb{R}$ converge uniformemente para f, demonstre que existe $n_0 \in \mathbb{N}$ tal que se $n > n_0$, então $f_n(X) \subset U$.

- 8. Se uma sequência de funções contínuas $f_n: X \to \mathbb{R}$ converge uniformemente em um conjunto denso $D \subset X$, prove que (f_n) converge uniformemente em X.
- 9. Dada uma sequência de funções $f_n: X \to \mathbb{R}$, suponha que exista $c \in \mathbb{R}$ tal que $\sqrt[n]{|f_n(x)|} \le c < 1$ para todo $x \in X$ e todo $n \in \mathbb{N}$ suficientemente grande. Demonstre que $\sum |f_n(x)|$ e $\sum f_n(x)$ convergem uniformemente em X.
- 10. Se lim $\sqrt[n]{|a_n|} = L$, prove que as séries de potências

$$\sum_{n\geq 0} a_n x^{2n} \qquad \sum_{n\geq 0} a_n x^{2n+1}$$

têm ambas raio de convergência igual a $1/\sqrt{L}$.

- 11. Seja $\sum_{n\geq 0} a_n x^n$ uma série de potências cujos coeficientes são determinados pelas igualdades $a_0=a_1=1$ e $a_{n+1}=a_n+a_{n-1}$. Mostre que o raio de convergência desta série é igual a $(-1+\sqrt{5})/2$.
- 12. Prove que a função

$$f(x) = \sum_{n \ge 0} (-1)^n \frac{1}{(n!)^2} (\frac{x}{2})^{2n}$$

está bem definida para todo $x \in \mathbb{R}$ e que $f'' + \frac{f'}{x} + f = 0$ para todo $x \neq 0$.