Forecasting Solar Power Intermittency Using Ground-Based Cloud Imaging

Vijai Thottathil Jayadevan Vincent P A Lonij Jeffrey J Rodriguez Alexander D Cronin

The Problem of Intermittency

Clear Sky

Intermittency

Countering Intermittency

- Interconnecting geographically dispersed Photovoltaic systems
- Using dispatch-able spinning reserves like hydroelectric power to fill gaps
- Energy storage
- >> Smart Grid
- Forecasting intermittency due to clouds

The System

The MATLAB ALGORITHM

• We use a technique called "Block Based Motion Compensation".

Frame 1

t = -30 s

Frame 2

t = 0 s

Block based Motion Compensation

Steps Involved:

- Divide the frame for which motion is to be estimated into square blocks.
- For Each block in Frame 2, find the position of best match in Frame 1.

Frame 1 Frame 2

Motion Vectors

Motion of clouds far away is under estimated

Geometric Correction

- Apply a Geometric transformation to convert pixel coordinates to real world coordinates.
- Convert the cloud velocity in pixels/second to meters/second.

Without Geometric Correction

With Geometric Correction

Results

10 – Minute Ahead Prediction

Results

Multiple clouds are tracked. However, in this case two of the clouds disappear before reaching the sun.

Future Work

Make PV Power Predictions

- Track cloud regions instead of individual blocks
- Attach a confidence window to the prediction

Thank you