last	07172
	PAGE

AKSHAT GUPTA

2021515

ASSIGNMENT 1

X ~ lid from Expenential (1) $(An \lambda = 1, 2, 3, 4)$

$$\Rightarrow f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

and $\lambda > 0$

$$9 L(\lambda) = \prod_{i=1}^{n} f(x_i)$$

$$= \lambda^n \prod_{i=1}^n e^{-\lambda x_i}$$

$$\exists \log (L(\lambda)) = n \cdot \ln(\lambda) - \lambda (\tilde{\Sigma} \chi_{\tilde{\epsilon}})$$

7 To get MLE, take densrabre of log-likelihord and equate to 0

$$\frac{d(\log(L(\lambda)))}{d\lambda} = 0$$

$$\frac{5}{\lambda} - \frac{5}{161} \times i = 0$$

$$\lambda = 1 + \sum_{n=1}^{n} x_i$$

distribution

This is also the MoM estimate for \.

$$\Rightarrow \hat{\lambda}_{MLF} = \hat{\lambda}_{MoM} = \frac{1}{n} \sum_{l=1}^{n} x_{l}$$

$$\log (L(\lambda)) \left(\hat{\lambda}_{n \in \mathbb{N}} = n \cdot \ln \left(\frac{1}{n} \sum_{i=1}^{n} \chi_{i}^{i} \right) - \frac{1}{n} \left(\sum_{i=1}^{n} \chi_{i}^{i} \right)^{2}$$

(b) For
$$\lambda = 1$$

$$\lambda_{MLE} = 1.047623$$

For
$$\lambda = 2$$

$$\widehat{\lambda}_{MLE} = 2.005902$$

For
$$\lambda = 3$$

$$\hat{\lambda}_{MLE} = 3.057668$$

For
$$\lambda = 4$$

 $\hat{\lambda}_{MLE} = 4.186223$

The program defines a -ve log-likelihood function and numbrishes it using nlmmb (...)

call taking lower value of $\lambda = 0$, and upper = Inf

The graphs obtained for each corresponding value of lambda are as shown below:

For each value of lambda, the likelihood function takes the maximum value at estimated lambda \approx true lambda.

Q2.

Given that the data follows Normal Distribution, the MLE is given by:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$\Rightarrow L(u,\sigma^2) = \prod_{i=1}^n f(x_i)$$

=
$$(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{\infty} (x_i - \mu)^2\right)$$

$$\Rightarrow log(L(\mu,\sigma^2)) = ln(L(\mu,\sigma^2))$$

$$= -\frac{n \ln(2\pi) - n \ln(6^{2}) - 1}{2} = \frac{5(x_{1}-\mu)^{2}}{2}$$

$$\frac{1}{62}\sum_{i=1}^{n}(x_i-\mu)=0$$

$$\frac{2}{26^{2}}\left(\frac{1}{6^{2}}\frac{5}{(x_{1}-\mu)^{2}-n}\right)=0$$

$$\frac{1}{n} \frac{n}{(x_i - \mu)^2} = -2$$

$$(\hat{\mu}_{MLE}, \hat{\sigma}^2) = (\bar{x}, s^2)$$

Where
$$X = Sample Mean$$

$$S^2 = Sample Variance$$

The ML estimates obtained for (μ, σ) are:

 $\mu = 4000.044$

 $\sigma = 15.52671$

Now assuming the mean (μ) to be known, the likelihood function was plotted against the variance. The graph obtained is as shown below:

Log-Likelihood v/s Variance

This shows that the likelihood function takes the maximum value at $\sigma \approx 15$, which validates the value obtained as the MLE.

 $\exp(-\mu)$ is equivalent to defining an exponential distribution for λ = 1.

 \Rightarrow The MLE obtained for exp(- μ) was:

 $\lambda = 0.001005684$

(which is approximately 0)