

Incremental Delaunay Algorithm

- Complexity analysis
- In average:

163

- Complexity dependent on the strategy used to locate the triangle containing the point to be

Location strategies • Exhaustive search among all the triangles O(n)O. Devillers 164

Location strategies • Search from a first randomly selected triangle Straight line walk 3n elements of areas distributed in the bounding box squrt(3n) elements encountered on $O(\sqrt{n})$ on average average on a straight line 165

164 165

Location strategies

- Search from a first randomly selected triangle
 - Straight walk
 - Requires a predicate of segments intersection

Visibility march

Location strategies

- Some minor deviations from the straight line walk

• Search from a first randomly selected

triangle

Location strategies • Search from a first randomly selected triangle - Some minor deviations from the straight line walk Visibility march 168

Location strategies

- Search from a first randomly selected triangle
 - Visibility walking
 - Only requires an orientation predicate to find the next triangle to walk in

169

168

169

Delaunay and proximity in space

- Delaunay triangulation allows to model the notion of proximity between points
- Each point is thus connected to nearby points around it
- Be careful, they are not all the closest!

170

171

Voronoi diagram

Voronoi's cell
 of a site P_i is the set
 of points closer to this
 site than to other sites

 $V_i = \{P \in \mathbb{R}^k \text{ t. que } PP_i < PP_j \ pour \text{ tout } j \neq i\}$

Voronoi diagram

• Given a set E of points in \mathbb{R}^k , the partitioning of \mathbb{R}^k into cells composed of points having the same nearest neighbour in E is called a Voronoi diagram of E

Voronoi diagram

- Possible construction:
 - V_i : intersection of half-spaces $h_{ij}{}^i$ where h_{ij} is the mediator of segment P_iP_j and $h_{ij}{}^i$ is the half-space delimited by h_{ij} containing P_i

In practice we will proceed differently!

173

172

170

Duality between Voronoi and Delaunay

- Each Voronoi vertex is located at the center of the circumscribed circle of a Delaunay triangle
- Two Voronoi vertices are connected if they are associated with adjacent triangles

175

174

175

Coordinates of the centre of the circle circumscribed to a triangle ABC

- Useful for displaying the Voronoi diagram
- 1st possibility:
 - Write the equation of the mediator for each edge
 - ex: For the edge AB, set of points M such that $MA^2=MB^2$
 - Solving a system of 2 equations with 2 unknowns (it is enough to take 2 mediators)
 - Numerically unstable

176

Coordinates of the centre of the circle circumscribed to a triangle ABC

- ^{2nd} possibility:
 - Let's consider the angles

$$\hat{A} = \widehat{CAB} \ \hat{B} = \widehat{ABC} \ \hat{C} = \widehat{BCA}$$

 Then the barycentric coordinates of the center H of the circumscribed circle with respect to A, B and C are elegantly expressed:

$$Barycenter(A(\tan \hat{B} + \tan \hat{C}),$$

 $B(\tan \hat{C} + \tan \hat{A}),$
 $C(\tan \hat{A} + \tan \hat{B}))$

177

176

177

Coordinates of the centre of the circle circumscribed to a triangle ABC

 $H = Barycenter((A, \tan \hat{B} + \tan \hat{C}), (B, \tan \hat{C} + \tan \hat{A}), (C, \tan \hat{A} + \tan \hat{B})$

- 2 Reminders:

$$\tan(\widehat{ABC}) = \frac{\sin(\widehat{ABC})}{\cos(\widehat{ABC})} = sign((\overrightarrow{BC} \times \overrightarrow{BA}) \cdot \overrightarrow{k}) \frac{\left\| \overrightarrow{BC} \times \overrightarrow{BA} \right\|}{\overrightarrow{BC} \cdot \overrightarrow{BA}}$$

$$\begin{split} Barycenter((A, \alpha a), (B, \alpha b), (C, \alpha c)) \\ &= Barycenter((A, a), (B, b), (C, c)) \end{split}$$

 Ensure to have no more denominators in the expression of your barycentric coordinates (normalization performed afterwards)

178

Duality between Voronoi and Delaunay

- Each Delaunay vertex is dual to one Voronoi cell
- Each Delaunay edge is dual to a Voronoi edge
- Each Voronoi vertex is dual to a Delaunay triangle
- What about Delaunay, Voronoi and their duality in 3D?

179

178

Duality between Voronoi and Delaunay

- Which data structure for Voronoi?
 - Walking around a Voronoi face is performed by walking through the faces/edges incident at a Delaunay vertex.
 - To move from one Voronoi cell to an adjacent cell is like moving from a Delaunay vertex to an adjacent vertex.

180

Delaunay:
Divide and conquer algorithm

180 181

Non incremental Delaunay

- Divide and Conquer
 - 2D algorithm
 - • Split the set of points into 2 subsets ${\tt L}$ and ${\tt R}$ using their median by ascending ${\tt x}$
 - if the 2 resulting subsets have more than 2 points
 - Delaunay Triangulation $\mathtt{Del}\,(\mathbf{L})$ of \mathbf{L}
 - Delaunay Triangulation Del(R) of R
 - Merge Del (L) and Del (R)
 - » Removal of some Del(L) (resp. Del(R)) edges
 - » Adding edges joining points of ${\tt L}$ to points of ${\tt R}$
 - » No addition of edges joining points of ${\tt L}$ (resp. ${\tt R})$

182

Delaunay Fusion

- Determination of the common lower (or upper) tangent
 - Edge joining a vertex of the left (resp. right) convex hull to a vertex of the right (resp left) convex hull
 - Leaving all the others points above (resp. below)

Lee and Schachter

182 183

Delaunay Fusion • First merge Convex Hulls • Find the upper and lower extreme tangents of the 2 polygons

Convex Hull

• Merger

• Starting from a segment lr

• Find the lower extreme tangent of the 2 polygons by moving l down

186

Convex Hull

- Merger
 - Find the upper and lower extreme tangents of the 2 polygons
 - Extreme lower tangent
 - Segment 1r initialized with 1=right (L) and r=left (R)
 - Move 1 down (resp. r) to the adjacent vertex positioned lower on L (resp. R) as long as it can be seen from r (resp. 1)
 - Repeat alternately on ${f L}$ and ${f R}$
 - Complexity
 - Fusion in O(n)

188

Delaunay Fusion

 Build a sequence of « LR edges » starting from the common lower tangent of LR

 The merge is done by incremental sewing between the two triangulations, until it reaches the upper tangent

188 189

Delaunay Fusion

- Idea behind the construction of the edge sequence
 - We inflate a ball passing through the vertices of the last LR edge, until we meet a point on L or R, and we start again...

Delaunay Fusion

- Idea behind the construction of the edge sequence
 - A ball is inflated while remaining centered on the LR edge mediator, until it meets a point on L or R
 - Depending on the reached point, some edges of Del (L) and Del (R) will be removed

190 191

Delaunay Fusion

- Construction of the next LR edge from a previously constructed LR edge
 - Let denote R_1 , R_2 , R_3 ... the vertices adjacent to R in del (R), clockwise around R
 - The vertices \mathbb{L}_1 , \mathbb{L}_2 , \mathbb{L}_3 adjacent to \mathbb{L} in $\text{del}(\mathbf{L})$ counterclokwise around \mathbb{L}

192

Delaunay Fusion

- Construction of the next LR edge from a previously constructed LR edge
 - Initialization i=1
 - As long as there is no RRi edge to be kept
 - The edge $\mathtt{RR}_{\underline{i}}$ is removed if \mathtt{L} conflicts with triangle $\mathtt{RR}_{\underline{i}+1}\mathtt{R}_{\underline{i}}$ (ie. \mathtt{L} inside its circumcircle)
 - Symmetric process of edge removal in Del (L)
 - An LL_i edge is deleted if $\ _R$ conflicts with triangle $\ _{LL_iL_{i+1}}$

193

192

193

Delaunay Fusion

 Suppressed edges in dotted lines

• Once the edges have been deleted, we look which of the two edges RL; and LR;

Delaunay Fusion

is Delaunay

• And we repeat the process by starting from the chosen edge

195

194

195

Delaunay Fusion

- Fusion in O(n)
- If the split is well balanced (by using the median): algorithm in O(nlog(n))

196

Division

196

Delaunay Divide and Conquer Using a kd-tree

- Easily derecursified algorithm :
 - The construction of the connectivity is only performed at the recursive ascent (« Remontée récursive »)
 - The recursive split can be replaced by a prior
- The split can be performed on x and y alternately using a kd-tree

206

206

Division 207

Division

208 209

