Piotr Cięgotura rok II AiR gr. 1 Metody numeryczne, sprawozdanie z lab. 1 Rozwiązywanie równań nieliniowych.

Rozwiążę następujące równanie metodą Newtona Równanie nieliniowe:

> x+cos(x)=1 f=x+cos(x)-1df/dx=1+sin(x)

Wzór: x2=x1-(f(x1)/f'(x1)

na początku wybieram dokładność <= 0.01

Po wprowadzeniu danych do programu Matlab otrzymałem następujące wyniki:

· · · · · · · · · · · · · · · · · ·									
dokładność	0.01	0.001	0.0001	0.00001	0.000001	0.0000001			
wynik	0.095520793	0.095432981	0.095447592	0.095448413	0.095448277	0.095448269			
	645828	620589	415884	987613	363099	679757			
iteracja	5	6	8	9	11	12			

Po zaokrągleniu

dokładność	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
wynik	0.1	0.095	0.0954	0.09545	0.095448	0.0954483
iteracja	5	6	8	9	11	12

Wykres przedstawiający wzrost iteracji wraz ze wzrostem dokładności wyniku.

Wnioski:

Dzięki metodzie Newtona udało się uzyskać rozwiązanie równania, widzimy że jeśli chcemy uzyskać dokładność większą, iteracja rośnie.

Kod skryptu:

```
clear all
clc
x1 = 1
             % x1
tolerancja = 0.01 %tolerancja
     %zmienna potrzebna do korygowania błędu
while i>=tolerancja
    r=x1+cos(x1)-0.9; %rownanie
    dr=1+sin(x1);
                         %pochodna rownania
    ite=ite+1; %zmienna liczy ilość itercji
    x2=x1-(r/dr); %metoda newtona
    i=abs((x2-x1)/x1); %sprawdzenie czy uzyskaliœmy wymaganą
dokładność
    x1=x2;
          %wynik
end
              %petla do rozwi¹zania równania metod¹ newtona
```