	ID I	D_F FUENTE	ID_D DUP	TITULO AUTORES	RESUMEN	AÑO CLAVES	DTRAS CLAVES ARCHIVO IDIOMA	Α
1	101	1 SCOPUS	1 0	Developing Computational Thinking: [Wang D.; Luo L.; Luo J.; Lin S.; Ren	G. As research progresses, integrating co	2022 computational thinking; design-based learning; graphical	- 01_applsci-12-11033.pdf	0
2	102	1 SCOPUS	2 0	Robot programming versus block play Yang W.; Ng D.T.K.; Gao H.	Programmable robotics is recently use	2022 block play; computational thinking; robot programming; s	Curricula; Der 02_Brit J Educational Tec	0
3	103	1 SCOPUS	3 0	A simple interactive robot to promote Funk M.; Cascalho J.; Santos A.I.; F	edr This paper described the functionaliti	2022 computational thinking; educational robotics; PeCOT; play	- 03_fcomp-04-1022778.p	0
4	104	1 SCOPUS	4 0	Computational Thinking Development Budiyanto C.W.; Fenyvesi K.; Lathi	ah The delivery of science, technology, e	2022 Computational thinking; educational robotics; hands-on a	- 04_EU-JER_11_4_1997.p	0
5	105	1 SCOPUS		Effects of a Pair Programming Educati Hsu TC.; Chang C.; Wu LK.; Looi		2022 educational robots; interdisciplinary activities; language le	- 05_fpsyg-13-888215.pdf	0
6	106	1 SCOPUS	6 0	Computer Literacy in Early Childhood Berciano-Alcaraz A.; Salgado-Som	oza Objective. In this work, we analyze th	2022 computer literacy; difficulties; Early childhood education;	- 06_13677-Article Text-71	1
7	107	1 SCOPUS	7 0	Computational Thinking and Educatio Pou A.V.; Canaleta X.; Fonseca D.	In the context of the science, technological	2022 computational thinking; educational robotics; project-bas	Educational rd07_sensors-22-03746.pd	0
8	108	1 SCOPUS	8 0	Primary Mathematics Teachers' Unde Nordby S.K.; Bjerke A.H.; Mifsud L	Computational thinking (CT) is often r	2022 Artificial intelligence; Computational thinking; Mathemati	Artificial intel 08_s13218-021-00750-6.	0
9	109	1 SCOPUS	9 0	Exploring Measurement through Codi Welch L.E.; Shumway J.F.; Clarke-	Aid Programming activities have the pote	2022 Coding toys; Computational thinking; Early childhood; Line	- 09_education-12-00143.	0
10	110	1 SCOPUS	10 0	Coding with Block Programming Lang Moraiti I.; Fotoglou A.; Drigas A.	The purpose of the article is to highlig	2022 Block-based programming; Coding; Critical thinking; Curri	- 10_59_Coding+with+Bloo	0
11	111	1 SCOPUS	11 0	Variables in early algebra: exploring d Kilhamn C.; Bråting K.; Helenius O	; M In this paper we consider implications	2022 Early algebra; Logos; Praxis; Programming; Scratch; Variak	- 11_s11858-022-01384-0.	0
12	112	1 SCOPUS	12 0	The Elements of Computational Think Hanid M.F.A.; Mohamad Said M.N	.H.; Augmented Reality (AR) technology h	2022 Augmented reality; computational thinking elements; geo	- 12_28_The+Elements+of	0
13	113	1 SCOPUS	13 0	Developing computational thinking te Araya R.; Isoda M.; Moris J.M.	COVID-19 has been extremely difficul	2021 Computational modeling; Computational thinking; COVID-	COVID-19; Cu 13_ijerph-18-12520-v2.p	0
14	114	1 SCOPUS	14 0	Coding to learn Mathematics in 5th gr Moreno-León J.; Román-González	M. This article presents an investigation t	2021 Basic education; Computational thinking; Computer-assist	- 14_485441-Texto del arti	1
15	115	1 SCOPUS	15 0	Enriching elementary school mathem Araya R.	The steepest descent (or ascent) algo	2021 Computational thinking; Elementary mathematics; Mathe	- 15_mathematics-09-011	0
16	116	1 SCOPUS	16 0	Programming as a language for young Goldenberg E.P.; Carter C.J.	Natural language helps express mathe	2021 activity-based learning; coding; constructionism; mathem	Computer prd 16_Brit J Educational Tec	0
17	117	1 SCOPUS	17 0	Elementary students' first approach t Kjällander S.; Mannila L.; Åkerfeld	A. Digital competence and programming	2021 Computational thinking; Design; K-12 education; Learning	- 17_education-11-00080-	0
18	118	1 SCOPUS	18 0	Formation of Computational Thinking Soboleva E.V.; Sabirova E.G.; Babi	va The research is relevant as education	2021 algorithm; challenges of the future; digital technologies; e	- 18_formation-of-comput	0
19	119	1 SCOPUS	19 0	A pilot experience with software prog Arroyo A.C.; Montes M.R.; Quilis J	D.S Software programming is one of the k	2021 Cloud comp	- 19_app11010341.pdf	0
20	120	1 SCOPUS		Exploring the intersection of algebraid Bråting K.; Kilhamn C.	This article investigates how the recei	2021 Algebraic thinking; computational thinking; mathematics		0
21	121	1 SCOPUS		Generic tasks for algorithms Milicic G.; Wetzel S.; Ludwig M.	Due to its links to computer science (2020 Algorithms; Computational thinking; Generic tasks; K-12;	i	0
22	122	1 SCOPUS		On teaching programming fundament Piedade J.; Dorotea N.; Pedro A.; I	- i	2020 Computational thinking; Educational robotics; Pre-service		0
23	123	1 SCOPUS	 	Investigating Preschool Educators' Im Otterborn A.; Schönborn K.J.; Hult	- i	2020 Digital tablets; iPads; Programming; Science education; Sv		0
24	124	1 SCOPUS	 	Integrating Computational Thinking in Waterman K.P.; Goldsmith L.; Pas		2020 Computational thinking; Data; Elementary; Models; Science		0
25	125	1 SCOPUS		Improving computational thinking in sMontes-León H.; Hijón-Neira R.; P		2020 Computational thinking Secondary education Programmir		1
26	126	1 SCOPUS		The cognitive benefits of learning com Scherer R.; Siddiq F.; Viveros B.S.	Does computer programming teach st	2019 Cognitive skills; Computational thinking; Computer progra	i 	0
27	127	1 SCOPUS		The effect of unplugged coding activit Tonbuloğlu B.; Tonbuloğlu I.	The purpose of the study is to examin	2019 Coding class in primary education; Computational thinking		0
28	128	1 SCOPUS	+ + + + + + + + + + + + + + + + + + + +	Systematic design and rapid developn Altanis I.; Retalis S.; Petropoulou (2018 Formative evaluation; Game-based learning; Kinect; Seco	 	0
29	129	1 SCOPUS		Programming approaches to computa Kynigos C.; Grizioti M.	During the last decade, coding has co	2018 3D graphics; Computational thinking; Dynamic manipulati	i	0
30	202	2 WOS	+	Evaluation of Computational Thinking Paucar-Curasma, R; Villalba-Condo		2022 Educational Robotics; Programming; Computational Think		1
31	207	2 WOS		Robotics and computational thinking Ybarra, LAC; Soares, M	This article presents the experience re	2022 blended teaching; computational thinking; creative learning	 	2
32	208	2 WOS		Reflections about a didactic sequence Stock, BS; Basso, MVD	This article presents a didactic sequer	2022 mathematics education; Scratch; Doodle; computational t	 	2
33	210	2 WOS	+	Educational Robotics Intervention to Gerosa, A; Koleszar, V; Tejera, G; G		2022 computational thinking; robotics; task engagement; cogni		0
34	221	2 WOS		Coding in Primary Grades Boosts Child Arfe, B; Vardanega, T; Montuori, C		2019 coding; computational thinking; programming; executive		0
35	228	2 WOS		Comparing learners' knowledge, beha Sun, D; Ouyang, F; Li, Y; Zhu, CF	Background Unplugged programming			0
36	229	2 WOS		Discovering Concepts of Geometry th Kim, YR; Park, MS; Tjoe, H	In recent years, mathematics classroo	2021 Educational robotics; Programming; STEM integration; Ma		0
37	230	2 WOS		Teacher-student interaction supportir Olsson, J; Granberg, C	Studies have shown that learning mat	2022 Programming; Scratch; mathematics education; Problem-		0
38	232	2 WOS		Developing an Interactive Environmer Munoz, L; Villarreal, V; Morales, I;		2020 educational robotics; mathematics; primary education; te		0
39	234	2 WOS	+	Conceptual development in early-yea Kallia, M; Cutts, Q	Background and Context: Since the su	2022 Grounded cognition; computing education; unplugged cor	 	0
40	236	2 WOS	- t	Making programming part of teacher Humble, N; Mozelius, P	Purpose The conducted examination	2023 Programming; Lesson planning; Affordances; K-12 educati		0
41	237	2 WOS		Remaking and reinforcing mathemati Humble, N; Mozelius, P; Sallvin, L	Purpose The purpose of this study is t	2020 Teacher professional development; Programming; Textua		0
42	302	3 ERIC		Exploring Students' Computational Th Hansen, Nils Kristian; Hadjerrouit,		2021 Computer Science Education, Computer Software, Mathe	 	0
43	303	3 ERIC		Using Grey-Based Mathematical Equa How, Meng-Leong; Looi, Chee-Kit	Computational Thinking (CT) is pervas	2018 Mathematics Instruction, Equations (Mathematics), Scaffo	 	0
44	304	3 ERIC	 	A Systematic Review on Algebraic Thi Sibgatullin, Iskander R.; Korzhuev,		2022 Algebra, Thinking Skills, Mathematics Skills, Problem Solvi		0
45	305	3 ERIC		Relationships between Computationa Özgür, Hasan	The aim of this study is to determine t	2020 Thinking Skills, Information Technology, Measures (Individ		0
46	306	3 ERIC	+	Fear Not Early Childhood Teachers! Y Beisly, Amber; Davis, Jill; Lake, Vic	·	2020 Mathematics Instruction, Teacher Attitudes, Self Efficacy,	- 06_EJ1293146.pdf	0
47	307	3 ERIC		Computational Thinking in K-12: An A Reichert, Janice Teresinha; Barone	· · · · · · · · · · · · · · · · · · ·	2020 Foreign Countries, Computation, Thinking Skills, Mathema		0
48	308	3 ERIC		Can Music Support Calculation Skills? Korkmaz, Nurdan; Temur, Özlem I			i	0
49	309	3 ERIC		Mathematics and Coding: How Did Co Calder, Nigel	This paper reports on teachers' perce	2022 Elementary School Students, Mathematics Instruction, Co		0
50	310	3 ERIC	- t	The Impact of Mental Computation of Pourdavood, Roland; McCarthy, K		2020 Mathematics Instruction, Cognitive Processes, Computation		0
51	311	3 ERIC		Challenges and Strategies on the Con Metlí, Akin; Akis, Dinçer	Limited studies investigate the high so	2022 Barriers, Educational Strategies, Advanced Placement Pro		0
52	312	3 ERIC		The Use of Problem-Solving Heuristics Singh, Parmjit; Teoh, Sian Hoon; C				0
53	313	3 ERIC		The Preschool Teachers' Opinion on T Kesicioglu, Oguz Serdar; Mart, Me		2022 Preschool Teachers, Teacher Attitudes, Opinions, Mathem		0
54	314	3 ERIC	- t	Launching Kindergarten Math Clubs: Jacob, Robin; Erickison, Anna; Mar		2018 Urban Schools, Clubs, Kindergarten, Mathematics Instruct		0
55	315	3 ERIC	+	Content Analysis of Primary School M Singh, Parmjit; Yusoff, NurulHudh		2020 Foreign Countries, Educational Policy, Textbooks, Textboo		0
56	316	3 ERIC		Assessment of 'Scratch' Programming Quevedo Gutiérrez, Eduardo; Zapa	·	2021 Mathematics Instruction, Teaching Methods, Programmin		0
57	401	4 SCIELO		Conectando la educación matemática Alsina, Ángel, Acosta, Yeni	-	2022 -	- 01_2215-4132-rie-24-37-	1
58	402	4 SCIELO	+	Impacto del aula invertida con tecnol Martínez Villalobos, Gustavo, Ruiz	Rod-	2022 -	- 02 1405-6666-rmie-27-9	1
59	403	4 SCIELO		Desarrollo del pensamiento computa Cabra Páez, Mercy Liceth, Ramíre:		2022 -	- 03_44970-Texto del artic	1
60	404	4 SCIELO	+	Contexto Formativo de Invenção Rob Azevedo, Greiton Toledo de, Malt		2022 -	- 04_document.pdf	7
61	405	4 SCIELO		Tendencias actuales del desarrollo de Pérez Tamayo, Leandro Daniel, Bu		2021 -	- 05_2227-1899-rcci-15-04	1
62	406	4 SCIELO		Processo de Aprendizagem de Matem Azevedo, Greiton Toledo de, Malt		2020 -	- 06_document.pdf	2
63	601	6 FUNES		Computational thinking situations in r Oliveira, Cleia Dalcul da Silva; Ferr				<u></u>
	301	5 1 014L3	1 -1 0	100patational timinang situations in ipolivella, cicla balcal da silva, l'ell	and the seasy annie to analyze now textoq	2022 materialisas escolares / Scometila / Otras hociones de l	1 10±_onvendeleldcompatq	