.

Artificial Intelligence (AI) for Engineering

COS40007

Dr. Afzal Azeem Chowdhary

Lecturer, SoCET, Swinburne University of Technology

Seminar 9: 29th April 2025

Overview

- Basics of Recommendation Engines
- > Types of Recommender
- Collaborative Filtering
- ➤ *K*-Nearest Neighbour
- Content-based Filtering
- Predictive Analytics as Recommender
- Prescriptive Analytics as Recommender

At the end of this you should be able to

- Understand about the recommendation engine
- Understand about the data for the recommendation engine
- Understand different recommendation system
- Understand applications of recommendation system

Recommender Systems

Recommender/Recommendation Engine

- A recommendation engine, a recommender, is an AI system that suggests items to a user. Recommendation systems rely on data-driven analytics and ML algorithms to find patterns in user behaviour data and recommend relevant items based on those patterns.
- Recommendation engines help users discover content, products or services they might not have found on their own
- The suggestions created by recommendation systems also play a vital role in personalising user experiences.
- Examples: video to watch, a similar song to listen to, relevant search results or a product that complements a particular order.

Recommendation Engine examples

- Facebook—"People You May Know"
- Netflix—"Other Movies You May Enjoy"
- LinkedIn-"Jobs You May Be Interested In"
- Amazon—"Customer who bought this item also bought ..."
- YouTube—"Recommended Videos"
- Google—"Search results adjusted"
- Pinterest—"Recommended Images"

How Recommendation Engine works

Collect Data: User activities, products, demographics, psychographics (interests or lifestyle)

Data Storage:

- A data warehouse can aggregate data from different sources to support data analysis and machine learning.
- A data lakehouse combines the best aspects of data warehouses and data lakes into a single . . data management solution

Analysis: ML algorithms trained on large datasets detect patterns, identify correlations and weigh the strength of those patterns and correlations.

Filtering:

- Showing the most relevant items
- Apply specific mathematical rules and formulas to the data depending on the type of recommendation engine used.

Refining: Regularly assess the outputs of a recommendation system and further optimise the model

Types of Recommendation Engines

Collaborative Filtering

- Filter suggestions are based on a particular user's likeness to others.
- Assume that users with comparable preferences will likely be interested in the same items .
- Example: Amazon product recommendations, Spotify recommendations
- **Limitation:** cold start problem, which happens when the system has limited historical data to draw from, especially for new users.

Content-based Filtering

- Filters recommendations based on an item's features.
- Assume that if a user likes a particular item, they will also like another similar item
- Example: Recommending a movie with similar genres, actors, or directors to movies a user has previously watched and enjoyed

Hybrid Recommendation System

- Merges collaborative filtering and content-based filtering.
- A hybrid approach can greatly enhance a recommendation engine's performance but requires advanced architectures and intensive computational power.
- **Example:** Netflix

Memory-based

Represent users and items as a matrix. They are an extension of the k-nearest neighbours (kNN) algorithm because they aim to find their "nearest neighbours," which can be similar users or items. There are two types:

- ✓ User-based filtering computes similarities between a particular user and all other users in the matrix
- Item-based filtering computes item similarity through user behaviour (how users interact with items, not item features). No ML models are used.

Model-based

- Create a predictive machine learning model of the data.
- The user-item matrix serves as the training data set for the model, which then yields predictions for missing values, that is, items that a user has not yet found and will, therefore, be recommended.
- Use matrix factorisation
- A more advanced implementation of matrix factorisation harnesses deep learning neural networks. Other model-based systems employ machine learning algorithms such as Bayes classifiers, clustering and decision trees.

Item - What the system recommends to the user (CD, news, books, movies...)

User preferences - ratings for products

User actions - user browsing history

The task of a CF algorithm is to find the item likeness of two forms:

- 1. Prediction a numerical value expressing the predicted likelihood of an item for the active user
- 2. Recommendation a list of N items that the active user will like the most

k-Nearest Neighbour Algorithm

Tell me about your friends(who your neighbours are), and I will tell you who you are.

- A distance measure is needed to determine the "closeness" of instances
- Classify an instance by finding its nearest neighbours and picking the most popular class among the neighbours
- > Simple to implement and use
- ➤ Comprehensible easy to explain the prediction
- > Robust to noisy data by averaging k-nearest neighbours

KNN approach

- An object (a new instance) is classified by a majority vote for its neighbour classes.
- The object is assigned to the most common class amongst its *K* nearest neighbours (*measured by a distance function*)

Distance between neighbours

- Calculate the distance between the new example (E) and all examples in the training set.
- Euclidean distance between two examples,

$$-X = [x_1, x_2, x_3, ..., x_n]$$

$$-Y = [y_1, y_2, y_3, ..., y_n]$$

- The Euclidean distance between X and Y is defined as:

$$D(X,Y) = \sqrt{\sum_{k=1}^{n} (x_i - y_i)^2}$$

K- Nearest Neighbour Algorithm

- All the instances correspond to points in an *n*-dimensional feature space.
- Each instance is represented with a set of numerical attributes.
- Each training data consists of vectors and a class label associated with each vector.
- Classification is done by comparing feature vectors of different *K* nearest points.
- Select the *K*-nearest examples to *E* in the training set.
- Assign E to the most common class among its *K*-nearest neighbours.

How to choose *K*

If *K* is too small, it is sensitive to noise points.

Larger K works well. But too large K may include majority points from

other classes.

The rule of thumb is K < sqrt(n), and n is a number of examples.

How to choose K

K-nearest neighbours of a record x are data points that have the k smallest distances to x

KNN Feature Weighting

• Scale each feature by its importance for classification,

$$D(a,b) = \sqrt{\sum_{k} w_k (a_k - b_k)^2}$$

- Can use our prior knowledge about which features are more important
- Can learn the weights $\mathbf{w_k}$ using **cross-validation** (to be covered later)

KNN Feature Normalisation

- The distance between neighbours could be dominated by some attributes with relatively large numbers, e.g., the income of customers in our previous example.
- Arises when two features are on different scales.
- It is important to normalise those features.
 - Mapping values to numbers between 0 and 1.

KNN Classification

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	N	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Υ	0.6669
0.5	0.22	Υ	0.4437
1	0.41	Υ	0.3650
0.7	1.00	Υ	0.3861
0.325	0.65	Y	0.3771
		Į,	
0.7	0.61	?	

$$X_{s} = \frac{X - Min}{Max - Min}$$

Collaborative Filtering Steps

- How do you determine which users or items are similar to one another?
- Given that you know which users are similar, how do you determine the rating that a user would give to an item based on the ratings of similar users?
- How do you measure the accuracy of the ratings you calculate?

Find Similar Users on the Basis of Ratings

• Users A, B, C, and D, who have rated two movies

Ratings by A are [1.0, 2.0]. Ratings by B are [2.0, 4.0]. Ratings by C are [2.5, 4.0]. Ratings by D are [4.5, 5.0].

Compute Similarity

```
from scipy import spatial

a = [1, 2]
b = [2, 4]
c = [2.5, 4]
d = [4.5, 5]

spatial.distance.euclidean(c, a)
2.5

spatial.distance.euclidean(c, b)
0.5

spatial.distance.euclidean(c, d)
2.23606797749979
```


Compute Rating

After determining a list of users similar to user U, you need to calculate the rating R that U would give to a certain item I,

$$R_U = \frac{\sum_{u=1}^n R_u}{n}$$
 . .

- User-based: For a user U, with a set of similar users determined based on rating vectors consisting of given item ratings, the rating for an item I, which hasn't been rated, is found by picking out N users from the similarity list who have rated the item I and calculating the rating based on these N ratings.
- **Item-based:** For an item *I*, with a set of similar items determined based on rating vectors consisting of received user ratings, the rating by a user *U*, who hasn't rated it, is found by picking out *N* items from the similarity list that *U* has rated and calculating the rating based on these *N* ratings.

Python Program for Collaborative Filtering

```
# load data.py
import pandas as pd
from surprise import Dataset
from surprise import Reader
# This is the same data that was plotted for similarity earlier
# with one new user "E" who has rated only movie 1
ratings_dict = {
"item": [1, 2, 1, 2, 1, 2, 1],
"user": ['A', 'A', 'B', 'B', 'C', 'C', 'D', 'D', 'E'],
"rating": [1, 2, 2, 4, 2.5, 4, 4.5, 5, 3],
df = pd.DataFrame(ratings_dict)
reader = Reader(rating_scale=(1, 5))
# Loads Pandas dataframe
data = Dataset.load_from_df(df[["user", "item", "rating"]], reader)
#Loads the built-in Movielens-100k data
movielens = Dataset.load_builtin('ml-100k')
```


Using KNN

```
# recommender.py
from surprise import KNNWithMeans
# To use item-based cosine similarity
sim_options = {
   "name": "cosine",
   "user_based": False, # Compute similarities between items
algo = KNNWithMeans(sim options=sim options)
from load_data import data
from recommender import algo
trainingSet = data.build_full_trainset()
algo.fit(trainingSet)
# Computing the cosine similarity matrix...
# Done computing similarity matrix.
# <surprise.prediction algorithms.knns.KNNWithMeans object at 0x7f04fec56898>
prediction = algo.predict('E', 2)
>>> prediction.est 4.15
```


Content-Based Filtering

Benefits:

- Independent of other user data · · · ·
- Tailored to user preferences aligning recommendations with the user's interests and preferences.
- Transparency in recommendations is directly tied to the user's actions.
- Simplicity in creation and data science- focus primarily on classifying items based on attributes, leveraging techniques such as vector space models and term frequency analysis.
- Overcoming the "cold start" problem -only initial user inputs deliver quality recommendations.

Challenges:

- Limited novelty and diversity may suggest overly familiar options and limit users' diversity of possibilities.
- Scalability and attributes—Adding a new item, product, service, or content piece necessitates defining and tagging its attributes.
- Accuracy and attribute assignment the precision and uniformity in assigning attributes significantly affect its success.
- Over-reliance on content quality and availability- highly dependent on item metadata or descriptions' quality, assurately and availability.

Difference Between Content-Based Filtering and Collaborative Filtering

Aspect	Content-Based Filtering	Collaborative Filtering	•	
Focus	Item attributes	User Behaviour		
Recommendation	Items similar to what the user likes	Items liked by similar users to the user		
Data required	Information about the item	User behavior data, such as ratings or purchases		
Advantage	Doesn't require user data	Can recommend niche or new items		
Disadvantage	May miss out on new interests	Needs sufficient user data to be effective		

Prescriptive Analytics-based Recommendation

- **Descriptive analytics** Answers what has already happened
- **Diagnostic analytics** Answers why did this happen
- **Predictive analytics** Answers what could/might happen
- **Prescriptive analytics** Answers what should happen/what should we do next

Prescriptive analytics is analysing data to identify patterns, which can be used to make predictions and determine optimal courses of action.

- Its focus is predicting future outcomes and recommending actions or decisions to achieve desired outcomes or prevent undesirable ones.
- Prescriptive analytics adds a recommendation layer on top of predictive analytics.
- **Example:** An e-commerce platform can use prescriptive analytics to analyse customers' actions, such as browsing and buying habits, to give the most spot-on product recommendations.
- **Example:** Using prescriptive analytics to dive into transaction patterns and customer behaviour, they can spot fraud and leverage insights to implement more effective protection measures.

How Prescriptive Analytics-based Recommendation Works ·

How it works:

1. Data Collection and Analysis:

Prescriptive analytics uses various data sources to analyse patterns, trends, and relationships.

2. Model Building:

Mathematical models and algorithms are used to simulate different scenarios and evaluate potential outcomes.

3. Scenario Simulation:

The models explore various possibilities and consider constraints and objectives to determine the most effective course of action.

4. Recommendation Generation:

Based on the analysis and simulation, prescriptive analytics provides specific recommendations for decision-makers.

Learn, Practice and Enjoy the AI journey

