CODE No.: 16BT10201 SVEC-16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

I B.Tech I Semester (SVEC-16) Regular/Supplementary Examinations December - 2018 ELECTRICAL CIRCUITS

[Electrical and Electronics Engineering]

Time: 3 hours Max. Marks: 70

Answer One Question from each Unit All questions carry equal marks

UNIT-I

1 a) Compute the voltage across 10Ω resistor V_1 , using nodal analysis for the circuit 7 Marks shown in figure

b) Use a series of source transformations to find the voltage V in the circuit shown 7 Marks in figure.

2 a) For the circuit shown in figure, use a series of source transformations to find the 7 Marks power associated with 6V source.

b) Compute the voltage across the 7Ω resistor, using mesh analysis for the circuit 7 Marks shown in figure

3 a) An RLC series circuit has $R = 4\Omega$ and L = 25mH.

- 7 Marks
- i) Calculate the value of C that will produce a quality factor of 50.
- ii) Find ω_1 and ω_2 .
- iii) Determine the average power dissipated at $\omega = \omega_0, \omega_1, \omega_2$.

Take $V_m = 100 \text{ V}$.

b) If $i_s = 20 \sin (10t+15^0)$ A in the circuit shown in figure, compute the current passing through capacitor i_0 .

4 a) In the parallel RLC circuit of figure, let $R = 8k\Omega$, L = 0.2mH and $C = 8\mu F$.

7 Marks

- i) Calculate **ω**₀, Q and Band width.
- ii) Find ω_1 and ω_2
- iii) Determine the power dissipated at ω_0, ω_1 and ω_2 .

b) Compute the circuit impedance and current in all the elements of circuit shown 7 Marks in figure.

5 a) State and explain Millman's theorem.

7 Marks

b) Find the current through load resistance R_L and also find the voltage drop across 7 Marks load using Millman's theorem as shown in figure.

6 a) State and explain maximum power transfer theorem and derive the necessary

conditions for maximum power transfer for a DC excitations.

b) Find the current **i** in the circuit shown in figure using superposition theorem.

8 Marks

7 a) Derive the relation between line and phase voltages of **wye** connected polyphase system.

6 Marks

b) Obtain the line currents in the three-phase circuit of figure.

8 Marks

8 a) Derive the relationship between line and phase quantities (both voltages and 7 Marks currents) in balanced ∇ - ∇ polyphase systems with the phasor diagram.

7 Marks

b) Refer to the unbalanced circuit shown in figure, calculate: (i) the line currents (ii) the real power, reactive power and apparent power absorbed by the load.

9 a) For the circuit shown in figure, find the loop currents for the coupled circuits.

7 Marks

b) Determine the phasor currents I₁ and I₂ in the circuit of the figure.

7 Marks

10 a) Compute the mesh currents shown in figure and also find the voltage across $j8\Omega$ 7 Marks inductor.

b) Write the mesh equations for the network shown in figure and determine the 7 Marks current through 5Ω resistor.

