Problem 1

a) if a > b then that means a - b > 0. Since c > 0 this means that its positive, we then get c(a - b) > c(0). From this we get ac - bc > 0 then ac > bc

b) if a > b then that means a - b > 0. Since c < 0 this means that its negative, we then get c(a - b) < c(0). From this we get ac - bc < 0 then ac < bc

c) assume that if a>0 then $a^{-1}<0$. if so then that would mean that $a\cdot a^{-1}<0$. This is a contradiction because we know that $a\cdot a^{-1}=1$ and that 1<0 is not true. This means that if a>0 then $a^{-1}>0$

d)

$$0 < a < b$$

$$(0)a^{-1} < a \cdot a^{-1} < b \cdot a^{-1}$$

$$0 < 1 < b \cdot a^{-1}$$

$$(0)b^{-1} < (1)b^{-1} < b \cdot b^{-1} \cdot a^{-1}$$

$$0 < b^{-1} < a^{-1}$$

Problem 2

Problem 3

$$\lim_{n \to \infty} \frac{4n^2 - 3n + 1}{7n^3 - n^2 + 2n + 9} = \frac{\infty}{\infty}$$

$$\lim_{n \to \infty} \frac{8n - 3}{21n^2 - 2n + 2} = \frac{\infty}{\infty}$$

$$\lim_{n \to \infty} \frac{8}{42n - 2} = \frac{8}{\infty} = 0$$

The sequence a_n converges to L=0

Problem 4

a) if $0 \le a_n \le b_n$ for any limit L. if $b_n \to 0$ as $n \to \infty$. Then that means $|b_n - L| < \epsilon$. If L = 0 then $b_n < 0$ (We can remove the absolute as b_n is positive). We can then say that $a_n < b_n < \epsilon$. This means that $a_n < \epsilon$. So if L = 0 then $|a_n - 0| < \epsilon$ so $|a_n - L| < \epsilon$. This proves that as $n \to \infty$. if $b_n \to 0$ then $a_n \to 0$ is also true.

b) Since both a_n and c_n converge toward L. We can say that $|a_n - L| < \epsilon$ and $|c_n - L| < \epsilon$ We can then say that $|a_n - L| < |c_n - L| < \epsilon$.

$$|a_n - L| < |c_n - L| < \epsilon$$
$$a_n < c_n < \epsilon + L$$

Since we know that $a_n \leq b_v \leq c_n$

$$a_n < b_n < c_n < \epsilon + L$$

 $b_n < \epsilon + L$
 $|b_n - L| < \epsilon$

THis proves that if a_n and c_n both converge towards the limit L. Then so does b_n

Problem 5

Proof. prove that $(1+h)^n \ge 1 + nh$ base case: n = 0

$$(1+h)^0 \ge 1 + h(0)$$
$$1 \ge 1$$
$$1 = 1$$

inductive step: assume that $(1+h)^n \ge 1 + nh$ is true. prove for n+1

$$(1+h)^{n+1} \ge 1 + (n+1)h$$
$$(1+h)^n \cdot (1+h) \ge 1 + nh + h$$
$$h+1 \ge h$$

Following our assumption all we needed to do was prove the rest of the equation which was $h+1 \ge h$ which is true.

if 0 < r < 1. Then $r = \frac{1}{h+1}$ such that h > 0. If we substitute r we will get

$$\lim_{n \to \infty} \left(\frac{1}{h+1}\right)^n = \frac{1}{(h+1)^n} = 0$$