Plants Tolerance To Heavy Metals (Cd, Ni, Pb) - Case Study Salix Sp.

Corneanu Mihaela1, Hernea Cornelia1, Butnariu Monica1, Corneanu Gabriel2, Sărac Ioan1, Hollerbach Wilhelm3, Neţoiu Constantin4, Petcov Andreea Adriana1

¹USAMVB Timisoara, Faculty of Horticulture and Forestry, Genetic Engineering Dept., Timisoara, Romania, e-mail: micorneanu@yahoo.com;

²University of Craiova, Faculty of Agriculture and Horticulture, Craiova, Romania;

³REBINA Agrar SRL; Timişoara, Romania
⁴ Forest Research and Management Institute Bucharest,

Introduction

- The species of *Salix* genus, constitute a promising source in the action of fighting against the environment degradation, and offer remedy for about two third from the all degradation types.
- The majority of the willow species, present a good adaptation to hypoxic conditions, feature which suggest that they manifest a preference for mineral nutrition in comparison with organic one.
- Thus, many of willow species can be developed on soils with a big amount of minerals and/or radionuclides, being both phytoremediatory species, as well as pioneer ones, contributing to the soil restoration.

- Thus, the willow species, posses the capacity for development in degraded areas, natural or anthropic, as swamps, abandoning crops areas, sandy dune, riparian sandy areas, gravels, a.o.
- In this paper are present some laboratory comparative tests of heavy metals tolerance on four *Salix* sp. genotypes

Material and Methods

- Biological material:
- clone 202 (Salix alba), hybrid 892 (Salix alba);
- Inger (Salix viminalis) and Gudrun (Salix viminalis).
- The genotypes of *Salix alba* are native from Romania, produced in the Forest Research and Management Institute Bucharest, while the genotypes of *Salix viminalis* are native from Sweden, but the plant material was produced under license in Romania by REBINA Agrar SRL.
- ▶ As plant material were used one-year-old cuttings (5-10 cm long), with 2-6 buds each.

Experimental design

There were ten experimental variants for each genotype: three concentrations of Cd, Ni, Pb and Control (tap water).

Metal	A (ppm/l)	B (ppm/l)	C (ppm/l)
Cd	1.0	3.0	6.0
Ni	50.0	150.0	450.0
Pb	50.0	150.0	450.0

Per genotype, per heavy metal and each of three concentration, five replication were used (5 cuttings/replication).

The cuttings were maintained in solutions for 17 days. In the days 7th and 17th, were performed biometrical observations on: the roots number and length, the shoots number and length, the leaves number/shoot, viability of the shoots.

Methods

Biometrical observations

The cuttings were maintained in solutions for 17 days. In the days 7th and 17th, were performed biometrical observations on: the roots number and length, the shoots number and length, the leaves number/shoot, viability of the shoots.

Cytological investigation

- Roots for cytological investigations (0.8-1cm length) were harvested after 24 hours of treatment with heavy metals solutions (a complete mitotic cycle) and analyzed by optical microscopy.
- The cytogenetic observations, on fresh slides, were performed to Olympus BO71 BH2RFCA optical microscope and the microphotographs were taken using Cell F imaging software.
- Mitotic index (MI) was calculated as the ratio between the number of cells in mitosis (prophase + metaphase + anaphase + telophase) and the total number of cells.

Statistics

- All statistical analyses were performed with commercially available software (STATISTICA 10).
- The data were analyzed one-way analysis of variance (ANOVA), Duncan test and correlation coefficient. The differences were considered significant at a probability level of 95% (0.05).

RESULTS AND DISSCUSIONS

Rhysogenesis process Cd

Analysis of Variance (exp Salix Cd) Marked effects are significant at p < ,05000 SS - Effect | df - Effect | MS - Effect | SS - Error | df - Error | MS - Error p roots no./cutting 10 days 3927.5 16.297 4,402810 0,004890 126.915 4836.0 20.067 6.324705 0.000381 roots no./cutting 20 days 380,746 1108,627 200569.0 241 832.237 1.332106 0.264532 roots length (mm) 10 days 3325,882 roots length (mm) 20 days 6311,518 2103.839 266742,1 241 1106,814 1.900807 0.130069

H 892

Cd stimulate roots meristems differentiation, and slightly the cell division and elongation

Shooting process

Cd

Analysis of Variance (expisally butasi MG Cd) Marked effects are significant at p < ,05000								
	SS - Effect	df - Effect	MS-Effect	SS - Error	df - Error	MS - Error	F	P
% active buds	6274,347	3	2091,449	15 152 2,6	241	628,725	3,326495	0,020358
no. shoots/bud	2,438	3	0,813	73,7	241	0,306	2,657760	0,048986
shoots length (cm)	5299,173	3	1766,391	31 169 3,4	241	1293,334	1,365766	0,253871
Leaves no./shoot	142,598	3	47,533	1534,3	241	6,366	7,466266	0,000084

Shoots growth and foliar organogenesis – Cd

Cd (1-3ppm/l) stimulate foliar organogenesis, in most genotypes.

Rhysogenesis process

Clone 202 and Inger are most sensitive to Ni.

Ni

Analysis of Variance (exp sallx NI) Marked effects are significant at p < ,05000								
	ss-Effect	df -Effect	MS - Effect	\$\$ -Error	df - Error	M\$ - Error	F	P
roots no./cutting 10 days	21,85	3	7,28	1690,6	237	7,1333	1,02110	0,383971
roots no./cutting 20 days	8,18	3	2,73	2082,5	237	8,7870	0,31021	0,818001
roots length (mm) 10 days	583,17	3	194,39	180767,8	237	762,7331	0,25486	0,857830
roots length (mm) 20 days	5234,98	3	17 44 ,99	207765,6	237	876,6480	1,99053	0,116072

Shooting process Ni

Analysis of Variance (exp sallx NI) Marked effects are significant at p < ,05000								
	ss - Effect	df - Effect	MS-Effect	SS - Error	df - Error	M\$-Error	F	P
% active buds	62,26	3	20,75	179494,3	237	757,3597	0,02740	0,993866
no. shoots/bud	1,05	3	0,35	57,0	237	0,2403	1,45903	0,226417
shoots length (cm)	33183,53	3	11061,18	225057,6	237	949,6100	11,64813	0,000000
Leaves no./shoot	224,41	3	74,80	1838,7	237	7,7582	9,64201	0,000005

Shoots growth and foliar organogenesis - Ni

Analysis of Variance (exp sailx Ni) Marked effects are significant at p < ,05000								
	SS - Effect	df - Effect	MS-Effect	SS - Error	df - Error	MS - Error	F	P
% active buds	62,26	3	20,75	179494,3	237	757,3597	0,02740	0,993866
no. shoots/bud	1,05	3	0,35	57,0	237	0,2403	1,45903	0,226417
shoots length (cm)	33183,53	3	11061,18	225057,6	237	949,6100	11,64813	0,000000
Leaves no./shoot	224,41	3	74,80	1838,7	237	7,7582	9,64201	0,000005

Ni inhibits shoots elongation, as well as the foliar organogenesis

Rhysogenesis process

Pb

C 202 Control

Pb 450 ppm/l

Plot of Means and Conf. Intervals (95,00%)

Shooting process

Analysis of Variance (exp salk: MG Pb) Marked effects are significant at p < ,05000								
	SS - Effect	df - Effect	MS-Effect	SS - Error	df - Error	MS - Error	F	P
% active buds	934,14	3	311,380	166560,7	236	705,766	0,441194	0,723756
no. shoots/bud	3,05	3	1,015	59,6	236	0,253	4,019907	0,008152
shoots length (cm)	24964,09	3	8321,364	276481,9	236	1171,533	7,102968	0,000137
Leaves no./shoot	183,60	3	61,200	1897,8	236	8,042	7,610496	0,000070

Shoots growth and foliar organogenesis – Pb

Analysis of Variance (exp salix MG Pb) Marked effects are significant at p < ,05000								
	SS - Effect	df - Effect	MS-Effect	SS - Error	df - Error	MS - Error	F	P
% active buds	934,14	3	311,380	166560,7	236	705,766	0,441194	0,723756
no. shoots/bud	3,05	3	1,015	59,6	236	0,253	4,019907	0,008152
shoots length (cm)	24964,09	3	8321,364	276481,9	236	1171,533	7,102968	0,000137
Leaves no./shoot	183,60	3	61,200	1897,8	236	8,042	7,610496	0,000070

Cytological investigations

Studies on cell division, can explain the effects of different types of experimental factors on the meristems, organogenesis and growth processes.

S. alba 2n = 76 *S. viminalis* 2n=38

Experimer	Mitotic index			
		(%)		
Metal	Concentration	Salix alba		
	ppm	H 892		
Control	0	5.07		
Cd-24 h	1	5.82		
	3	5.90		
	6	5.75		
Ni - 24 h	50	4.17		
	150	4.18		
	450	2.29		
Pb – 24 h	50	5.13		
	150	4.54		
	450	3.39		

CONCLUSIONS

- □There are significant differences, regarding the developmental behaviour among the genotypes
- ❖CLONE 202 tollerant; Ni > Pb > Cd
- ❖H 892- rezistant ; Cd > Ni > Pb
- **❖INGER-** tolerant Ni > Cd > Pb
- ❖GUDRUN- sensitive; Ni > Pb > Cd
- ☐ The cell division is normal in the first cycle; in the second cycle (48 h) Ni and Pb, as well as high concentration of Cd, are binding to the spindle fibers and produce its destruction(C-mitosis), or induce chromosomes agglutination and the division is stopped

BANAT'S UNIVERSITY OF AGRICULTURAL SCIENCES TIMISOARA

