Universität Duisburg-Essen Lehrstuhl für Ökonometrie Prof. Dr. Christoph Hanck M.Sc. Karolina Gliszczynska

Methoden der Ökonometrie - Übung 1

(Übung am 12.10.2022)

Aufgabe 1:

a) Seien

$$\mathbf{A} = \begin{pmatrix} 1 & 6 \\ 2 & 5 \\ 3 & 4 \end{pmatrix}$$

und

$$\boldsymbol{B} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Berechnen Sie das Matrixprodukt AB. Warum lässt sich BA nicht berechnen?

b) Sei

$$m{A} = egin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix},$$

sowie

$$B = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}.$$

Berechnen Sie AB und BA. Sie haben damit gezeigt, dass $AB \neq BA$ im Allgemeinen.

c) Kennen Sie ein Beispiel quadratischer Matrizen A und B, bei denen AB = BA doch gilt?

Aufgabe 2:

a) Seien $\boldsymbol{A}(m \times n)$, $\boldsymbol{B}(n \times p)$ Matrizen. Zeigen Sie: $(\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T\boldsymbol{A}^T$. Hinweis: Es reicht $\left(\boldsymbol{B}^T\boldsymbol{A}^T\right)_{ij} = \left((\boldsymbol{A}\boldsymbol{B})^T\right)_{ij}$ für beliebige $i=1,\ldots,p,\,j=1,\ldots,m$ zu zeigen, wobei $(\boldsymbol{C})_{ij}$ den Eintrag in der i-ten Zeile und j-ten Spalte der Matrix \boldsymbol{C} bezeichnet.

- b) Sei $A(m \times m)$ eine idempotente Matrix und $\lambda \in \mathbb{R}$ ein Eigenwert von A. Zeigen Sie: $\lambda = 0$ oder $\lambda = 1$.
- c) Sei $A(m \times m)$ eine symmetrische, idempotente Matrix. Zeigen Sie: Die Matrizen A und $I_m - A$ sind positiv semidefinit.
- d) Sei \boldsymbol{A} $(m \times m)$ eine orthogonale Matrix und $\lambda \in \mathbb{R}$ ein Eigenwert von \boldsymbol{A} . Zeigen Sie: $\lambda = -1$ oder $\lambda = 1$. Hinweis: Betrachten Sie $(\boldsymbol{A}\boldsymbol{v})^T(\boldsymbol{A}\boldsymbol{v})$ für den Eigenvektor $\boldsymbol{v} \in \mathbb{R}^m$ zum Eigenwert λ .
- e) Seien $A, B (m \times m)$ Matrizen. Zeigen Sie: tr(AB) = tr(BA).
- f) Sei $\mathbf{A}(m \times m)$ eine beliebige Matrix. Zeigen Sie: $\mathbf{A} + \mathbf{A}^T$ ist symmetrisch.
- g) Sei $A(m \times n)$ eine Matrix. Zeigen Sie: $A^T A$ und $A A^T$ sind symmetrische, positiv semidefinite Matrizen.

Aufgabe 3:

a) Bestimmen Sie die Determinanten, sowie gegebenenfalls die Inversen folgender Matrizen:

(i)
$$\mathbf{A} = \begin{pmatrix} 1 & 4 \\ -4 & 7 \end{pmatrix}$$
,

(ii)
$$\mathbf{B} = \begin{pmatrix} 1 & -1 & 0 \\ 5 & 1 & 3 \\ 0 & 1 & -1 \end{pmatrix}$$
.

b) Für welche $c \in \mathbb{R}$ ist die Matrix $\begin{pmatrix} -1 & c \\ 1 & 5 \end{pmatrix}$ invertierbar? Bestimmen Sie für diese c das Inverse der Matrix.

Aufgabe 4:

a) Berechnen Sie die Eigenwerte von

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

und die dazugehörigen Eigenvektoren.

b) Bestimmen Sie den Rang folgender Matrizen

(i)
$$\begin{pmatrix} 1 & 0 & -2 & -1 \\ 2 & 0 & -4 & -2 \\ 2 & 1 & 1 & 1 \\ 2 & 2 & 0 & 0 \end{pmatrix}$$

(ii)
$$\begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & x_n^3 \end{pmatrix}$$