Equation of state for Electron Positron plasma

Cheng Tao Yang a , Andrew Steinmetz a , Johann Rafelski a a Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA (Dated: April 3, 2023)

I. PARTITION FUNCTION

Considering the partition function of e^{\pm} plasma in Boltzmann approximation, we have

$$\ln \mathcal{Z}_{tot} = \frac{g_e}{(2\pi)^2} T^3 V \left[2 \cosh\left(\mu_e(T)/T\right) \right] \left(\frac{m_e}{T}\right)^2 K_2(m_e/T). \tag{1}$$

where $g_e = 2$ is the spin degeneracy, K_2 is the 2nd Bessel function and $\mu_e(T)$ is the chemical potential of e^{\pm} which is also a function of temperature.

• Chemical potential:

Giving the partition function, we canuse charge neutrality to calculate the chemical potential as follow:

$$(n_e - n_{\bar{e}}) = \frac{T}{V} \frac{\partial}{\partial \mu_e} \ln \mathcal{Z}_{tot} = n_p$$
 (2)

where n_p is the number density of proton. and the net number density of electron can be written as

$$(n_e - n_{\bar{e}}) = \frac{g_e T^3}{(2\pi)^2} \left[2\sinh(\mu_e/T) \right] \left(\frac{m_e}{T} \right)^2 K_2(m_e/T). \tag{3}$$

Then the charge neutrality becomes:

$$n_p = \frac{g_e T^3}{(2\pi)^2} \left[2\sinh\left(\mu_e/T\right) \right] \left(\frac{m_e}{T}\right)^2 K_2(m_e/T). \tag{4}$$

In Fig.(1) we plot the chemical potential μ_e/T and derivative of chemical potential $d\mu_e/dT$ of electron as a function of temperature 200 > T > 20 keV.

FIG. 1: On left: chemical potential μ_e/T of electron as a function of temperature 200 > T > 20 keV. On right: the derivative of chemical potential with respect to temperature $d\mu_e/dT$ as a function of temperature.

• Pressure:

By definition, the pressure of electron-positron is given by

$$P = \frac{1}{\beta} \frac{\partial \ln \mathcal{Z}_{tot}}{\partial V} = \frac{g_e}{2\pi^2} T^4 \left[2 \cosh \left(\mu_e / T \right) \right] \left(\frac{m_e}{T} \right)^2 K_2(m_e / T), \tag{5}$$

where $\beta = 1/T$. In Fig.(2) we plot the pressure of electron-positron as a function of temperature(blue solid line) 200 > T > 20 keV. For comparison we also show the pressure for the case $\mu_e = 0$ (blue dashed line).

FIG. 2: On left: the energy density (red solid line) and pressure (blue solid line) as a function of temperature 200 > T > 20 keV. For comparison, the dashed lines represent the case $\mu_e = 0$. On right: the equation of state $w = P/\rho$ as a function of temperature 200 > T > 20 keV.

• Energy Density:

Giving the partition function, energy density can be obtained via the following definition:

$$\rho = \frac{E}{V} = \frac{1}{V} \left(\frac{\partial \ln \mathcal{Z}_{tot}}{\partial \beta} \right) = \frac{1}{V} \left(T^2 \frac{\partial \ln \mathcal{Z}_{tot}}{\partial T} \right)$$

$$= \frac{g_e}{2\pi^2} T^2 \left\{ \left[2\cosh\left(\mu_e/T\right) \right] \left(\frac{\partial}{\partial T} T^3 \left(\frac{m_e}{T} \right)^2 K_2(m_e/T) \right) + T^3 \left(\frac{m_e}{T} \right)^2 K_2(m_e/T) 2 \frac{\partial \cosh\left(\mu_e/T\right)}{\partial T} \right\}$$
(6)

It can be written as

$$\rho = \frac{g_e}{2\pi^2} T^4 \left\{ \left[2\cosh\left(\mu_e/T\right) \right] \left(\frac{m_e}{T} \right)^3 K_1(m_e/T) + \left[3 + \left(\frac{\partial \mu_e}{T} - \frac{\mu_e}{T} \right) \tanh(\mu_e/T) \right] \left[2\cosh\left(\mu_e/T\right) \right] \left(\frac{m_e}{T} \right)^2 K_2(m_e/T) \right\}$$

$$= \frac{g_e}{2\pi^2} T^4 \left[2\cosh\left(\mu_e/T\right) \right] \left(\frac{m_e}{T} \right)^2 K_2(m_e/T) \left\{ \left(\frac{m_e}{T} \right) \frac{K_1(m_e/T)}{K_2(m_e/T)} + \left[3 + \left(\frac{\partial \mu_e}{T} - \frac{\mu_e}{T} \right) \tanh(\mu_e/T) \right] \right\}$$
(8)

In Fig.(2) we plot the energy density of electron-positron as a function of temperature (red solid line) 200 > T > 20 keV, we also plot the energy density for the case $\mu_e = 0$ (red dashed line).

Substituting the Eq.(5) we obtain

$$\rho = P\left\{ \left(\frac{m_e}{T}\right) \frac{K_1(m_e/T)}{K_2(m_e/T)} + \left[3 + \left(\frac{\partial \mu_e}{T} - \frac{\mu_e}{T}\right) \tanh(\mu_e/T) \right] \right\}$$
(9)

then the equation of state w is given by

$$w = \frac{P}{\rho} = \frac{1}{\left(\frac{m_e}{T}\right) \frac{K_1(m_e/T)}{K_2(m_e/T)} + \left[3 + \left(\frac{\partial \mu_e}{T} - \frac{\mu_e}{T}\right) \tanh(\mu_e/T)\right]}$$
(10)

In Fig.(2) on the right, we show the equation of state $w=P/\rho$ as a function of temperature(green solid line) and for the case $\mu_e=0$ (green dashed line) from 200>T>20 keV .