Tema 10 – Garantía de calidad del software Ingeniería del Software

Héctor Gómez Gauchía

Dep. Ingeniería del Software e Inteligencia Artificial

Facultad de Informática

Universidad Complutense Madrid

Trabajando con Rubén Fuentes, Antonio Navarro, Juan Pavón y Pablo Gervás

Contenidos

- Introducción
 - Problemática
- Conceptos de calidad
- Verificación y Validación
 - IEEE Std. 1012-2004
- Revisiones del software
 - IEEE Std. 1028-2008
- Garantía de calidad del software
- Fiabilidad del software
- Plan de Aseguramiento de la Calidad del Software
- ISO 9000

Introducción

- Uno de los objetivos principales de la Ingeniería del Software (IS) es construir software de calidad.
- ¿Cómo medimos la calidad del software?
 - Con medidas indirectas.
 - No hay un atributo que represente la calidad.
 - Podemos definir calidad en base a características o atributos de elementos del producto o proceso.
- Dificultad clave:
 - En ingeniería, el aseguramiento de calidad se centra en el control de variación entre muestras.
 - En IS, la variación entre muestras no tiene sentido.
 - Cada proyecto es único.

Calidad

- Definimos calidad como concordancia con:
 - Los requisitos funcionales y de rendimiento explícitamente establecidos
 - Los estándares de desarrollo explícitamente documentados
 - Las características implícitas de todo software desarrollado profesionalmente
- El IEEE Std. 610.12 [IEEE C/S2ESC Software & Systems Engineering Standards Committee, 1990] define calidad como:
 - Grado en que un sistema, componente o proceso cumple las especificaciones
 - Grado en que un sistema, componente o proceso cumple las necesidades o deseos de clientes y usuarios
- Discusión: ¿Difieren ambas definiciones?

Tipos de calidad

Calidad de diseño

- Se basa en las características especificadas para un elemento.
- Típicamente a través de la Especificación de Requisitos Software (Software Requirements Specification, SRS) y el Diseño.

Calidad de concordancia

- Se centra en el grado de cumplimento de las especificaciones de diseño durante su realización.
- Se mide en la implementación del software.

Obtención de calidad

- En IS hay dos formas de conseguir calidad:
 - Haciendo SRS, diseños e implementaciones correctos desde un punto de vista técnico.
 - Introduciendo en el modelo de proceso una serie de actividades que garanticen que todas las entregas resultantes de una actividad de trabajo sean correctas.
- Las técnicas de IS para conseguir calidad en el software se denominan Garantía de Calidad del Software (*Software Quality Assurance*, SQA).

Garantía de calidad

- La garantía de calidad es el establecimiento de un marco de procedimientos organizativos que llevan a conseguir una alta calidad del software.
- El control de calidad es una serie de inspecciones, revisiones y pruebas utilizados a lo largo del proceso del software para asegurar que cada producto cumple con los requisitos que le han sido asignados.
- Incluyen bucles de realimentación.

Aspectos de la SQA

- Enfoque de gestión de calidad
- Tecnologías de IS
 - Métodos y herramientas
- Revisiones Técnicas Formales
- Estrategia de pruebas
- Control de la documentación y de cambios
- Procedimientos que aseguren ajustes a los estándares de IS
- Mecanismos de medición y generación de informes

Actividades del grupo SQA

- Establecer el plan SQA para el proyecto
- Participar en el desarrollo de la descripción del proceso de software
- Revisar las actividades de IS para verificar su ajuste al proceso del software
- Auditar los productos de software designados para verificar el ajuste con los definidos como parte del proceso de software
- Asegurar que las desviaciones del trabajo y los productos del software se documentan y se manejan de acuerdo con un procedimiento establecido
- Registrar lo que no se ajuste a los requisitos e informar a sus superiores
- Coordinar el control y la gestión de cambios
- Analizar las métricas del software

Coste de calidad

- El coste de calidad incluye todos los costes que se derivan de la búsqueda de la calidad o en las actividades relacionadas con la obtención de la calidad.
- Hay tres tipos de costes de calidad:
 - De prevención
 - De evaluación
 - De fallos

Tipos de costes de calidad

- Costes de prevención
 - Planificación de calidad
 - Revisiones Técnicas Formales (RTFs)
 - Equipo de pruebas
 - Formación
- Costes de evaluación
 - Inspección en el proceso y entre procesos
 - Calibrado y mantenimiento del equipo
 - Pruebas
- Costes de fallos
 - Internos
 - Externos

Fallos internos

- Los *fallos internos* se producen cuando se detecta un error antes de la entrega al cliente.
- Los costes asociados a fallos internos incluyen:
 - Revisión
 - Reparación
 - Análisis de fallos

Fallos externos

- Los fallos externos se producen cuando se detecta un error después de la entrega al cliente.
- Los costes asociados a fallos externos incluyen:
 - Costes de los internos
 - Resolución de quejas
 - Devolución y sustitución de productos
 - Soporte de línea de ayuda
 - Trabajo de garantía

Coste del retraso

 Evidentemente, cuanto más tardemos en resolver un fallo, más costosa será su resolución.

Ejemplo: coste del retraso

- Un análisis del trabajo de IBM en Rochester indica:
 - 7053 horas de RTFs de 200000 LDC (Líneas De Código)
 - 3112 errores descubiertos
 - Coste programador 40 \$/h
 - Coste eliminación defectos: 282120 \$ (91 \$/defecto)
- Supongamos que en vez de RTFs somos muy cuidadosos.
 - Supongamos que hay 1 defecto por 1000 LDC.
 - Tenemos unos 200 defectos.
 - Con un coste de 25000 \$ por reparación
 - Coste reparación de 5 millones de dólares.
 - Es decir, 18 veces más caro que el coste de prevención.

VERIFICACIÓN Y VALIDACIÓN

Introducción

- Verificación y Validación (V&V) son los procesos que determinan si los productos desarrollados de una actividad dada se ajustan a los requisitos de esa actividad, y si el software satisface su uso deseado y las necesidades del usuario.
- En términos de Boehm:
 - La verificación se encarga de comprobar si estamos construyendo el producto correctamente.
 - La validación se encarga de comprobar si estamos construyendo el producto correcto.

IEEE Std. 1012-2004

- El IEEE Std. 1012-2004 [IEEE 1012 WG, 2004] define los procesos de V&V en términos de actividades específicas y tareas relacionadas.
 - También define los contenidos del plan de V&V del software, incluyendo un ejemplo de formato.
- Identifica 6 procesos a los cuales se puede aplicar V&V:
 - Gestión
 - Adquisición
 - Suministro
 - Desarrollo
 - Operación
 - Mantenimiento

IEEE Std. 1012-2004: niveles de integridad

- Un nivel de integridad es un conjunto de características del proyecto que determinan el grado de rigor a la hora de aplicar las actividades de V&V.
- Los niveles de integridad se asocian a requisitos, funciones, grupos de funciones, componentes o subsistemas.
- El estándar identifica 4 niveles de integridad.
 - Nivel 4 → Consecuencias graves e irreparables en caso de fallo.
 - Nivel $3 \rightarrow$ Consecuencias serias en caso de fallo.
 - Nivel 2 \rightarrow Consecuencias menores en caso de fallo.
 - Nivel 1 → Consecuencias insignificantes en caso de fallo.

REVISIONES DEL SOFTWARE

Introducción

- Las revisiones del software son un filtro para el proceso de IS.
 - Se aplican en varias etapas del desarrollo del software.
 - Purifican las actividades estructurales.
- Hay diversos tipos de revisiones de mayor o menor formalidad y/o valía.
 - Aquí nos centraremos en las Revisiones Técnicas Formales (RTFs) o Inspecciones Formales.
 - El objetivo básico de las RTFs es detectar errores antes de que se conviertan en defectos.

Modelo de amplificación de defectos

- Una RTF [Office of Safety and Mission Assurance, NASA, 1993] es una actividad de garantía de calidad del software llevada a cabo por los desarrolladores.
- Los objetivos de la RTF son:
 - Descubrir errores
 - Verificar que el software alcanza sus requisitos
 - Garantizar que el software se desarrolla de acuerdo a ciertos estándares predefinidos
 - Conseguir un software desarrollado de manera uniforme
 - Hacer que los proyectos sean más manejables

Reunión de revisión: principios básicos

- La RTF se instrumenta mediante una reunión, que debe ser convenientemente planificada.
- Normas de la reunión:
 - Deben convocarse para la reunión 3-5 personas.
 - Se debe preparar por adelantado, pero sin que requiera más de 2 horas de trabajo por persona.
 - La duración debe ser menor de 2 horas.
- Evidentemente, la RTF se centra en partes específicas del software.
 - Se deben revisar los productos resultantes de las tareas de trabajo.

Reunión de revisión: previo

El procedimiento es:

- El responsable del producto (productor) informa al jefe del proyecto del fin de un trabajo.
- El jefe del proyecto contacta con el jefe de revisión que distribuye el producto a 2-3 revisores.
- Cada revisor, incluido el jefe de revisión, revisa el producto durante 1-2 horas.
- El jefe de revisión establece una agenda y planifica una reunión.
 - Normalmente para el día siguiente.

Reunión de revisión: realización

El procedimiento es:

- A la reunión asisten el productor, los revisores y el jefe de revisión.
- Uno de los revisores juega el papel de registrador.
- El productor expone su producto.
- Los revisores exponen sus problemas o reservas.
- Cuando se descubre un problema o error real, el registrador toma nota.

Reunión de revisión: cierre

- El procedimiento es:
 - Al final de la reunión se puede decidir:
 - Aceptar el producto sin modificaciones.
 - Rechazar el producto debido a los errores encontrados.
 - Aceptar el producto supuesto que se llevan a cabo algunas modificaciones, sin nueva RTF.
 - Asignar encargado del seguimiento de las modificaciones
 - La reunión se cierra con la firma del registro de revisión por los participantes.
 - Se indican los asistentes y su nivel de conformidad.

Reunión de revisión: registro e informe de revisión

- El registrador toma nota de todos los problemas identificados en la RTF.
- Al final de la reunión se genera una lista de problemas de revisión que resume todos los problemas.
 - Identifica las áreas problemáticas dentro de un producto.
 - Sirve como lista de comprobación de puntos de acción que guíe al productor para hacer las correcciones.
- Además se genera un informe sumario de la revisión.
 - Qué se revisó.
 - Quién lo revisó.
 - Qué se descubrió, y cuáles son las conclusiones.
- El informe es una página simple que se adjunta al registro histórico del proyecto.
 - Pueden añadírsele los anexos que se consideren necesarios.

Directrices de revisión

- Revisar el producto, no al productor.
- Fijar una agenda y mantenerla.
- Limitar el debate y las impugnaciones.
- Enunciar áreas de problemas, pero no intentar resolver cualquier problema que se ponga de manifiesto.
- Tomar notas escritas.
- Limitar el número de participantes e insistir en la preparación anticipada.
- Desarrollar una lista de comprobación para cada producto que vaya a ser revisado.
- Disponer de recursos y una agenda para la RTF.
- Entrenar a todos los revisores.
- Repasar las reuniones anteriores.

Recomendaciones para RTFs

- El "Software Formal Inspections Guidebook, NASA-GB-A302" [Office of Safety and Mission Assurance, NASA, 1993] incluye listas de comprobación de productos software.
- El IEEE Std. 1028-2008 [IEEE 1028 WG, 2008] identifica 37 productos software a revisar y da pautas para hacerlo.
 - Revisiones de gestión
 - Revisiones técnicas
 - Inspecciones
 - Ensayos
 - Auditorias

GARANTÍA DE CALIDAD ESTADÍSTICA

Introducción

- La garantía de calidad estadística de IS, no tiene nada que ver con la aplicación de técnicas estadísticas en el control de muestras.
- Como ya hemos comentado en el tema de métricas:
 - Se agrupa y clasifica la información sobre los fallos del software.
 - Se intenta encontrar la causa subyacente a cada fallo.
 - Se aplica el principio de Pareto.
 - Se actúa para corregir los fallos vitales.

Índice de errores

 El índice de errores permite cuantificar la magnitud de los fallos durante el proceso de desarrollo.

$$IE = \frac{\sum_{i \in fases} (i * IF_i)}{T}$$

- donde:
 - T es el tamaño del software (LDC, documentación, diseño...)

$$IF_i = \frac{p_g * g_i + p_m * m_i + p_l * l_i}{e_i}$$

- donde
 - $-\ g_i, m_i$ y l_i son el número de errores graves, moderados y leves en la etapa i-ésima respectivamente.
 - $-e_i$ es el número de errores en la etapa i-ésima.
 - $-\ p_g$, p_m y p_l son los pesos de los errores graves (10), moderados (3) y leves (1) respectivamente.

Fiabilidad del software

- Si de la construcción u operación del sistema se derivan riesgos para la salud, la SQA es primordial.
- En cualquier caso, siempre podemos medir la fiabilidad del software.
 - Probabilidad de Fallo Bajo Demanda (PFBD)
 - PFBD = #fallos / #peticiones
 - Frecuencia de Fallo (FF)
 - FF = #fallos / #unidades de tiempo
 - Tiempo Medio de Fallo (TMF)
 - TMF = #unidades de tiempo / #fallos
 - Disponibilidad
 - Disponibilidad = #tiempo disponible / #tiempo funcionando
- Fiabilidad del software = ausencia de fallos

PLAN DE SQA

IEEE Std. 730-2002

- El IEEE Std. 730-2002 [IEEE 730 WG, 2002] describe la preparación y contenidos de los planes SQA.
 - No toda la información listada tiene porque encontrarse en el documento.
- Un plan SQA sirve como guía de las actividades de SQA en el proyecto.
- Lo desarrolla el equipo SQA.

IEEE Std. 730-2002: índice del plan de SQA (1/2)

- 1. Propósito
- 2. Documentos de referencia
- 3. Gestión
- 4. Documentación
 - 4.1 Propósito
 - 4.2 Requisitos mínimos de documentación
 - 4.3 Otra documentación
- 5. Estándares, prácticas, convenciones y métricas
 - 5.1 Propósito
 - 5.2 Contenido
- 6. Revisiones del software
 - 6.1 Propósito

IEEE Std. 730-2002: índice del plan de SQA (2/2)

- 6.2 Requisitos mínimos
- 6.3 Otras revisiones y auditorias
- 7. Pruebas
- 8. Informe de errores y acciones correctoras
- 9. Herramientas, técnicas y metodologías
- 10. Control de medios
- 11. Control de proveedor
- 12. Colección de registros, mantenimiento y conservación
- 13. Formación
- 14. Gestión del riesgo
- 15. Glosario
- 16. Procedimiento de cambio e historial del plan de SQA

ISO 9000

ISO 9000

- La Organización Internacional para la Estandarización (ISO) tiene el enfoque ISO 9000 para la gestión de la calidad.
 - ISO 9000 es una familia de estándares genéricos.
 - De esta forma pueden aplicarse a distintos sectores productivos.
 - Ej. software, hardware, automoción o textil.
 - http://www.iso.org
- El enfoque ISO 9000 busca la gestión a través de la implantación de un Sistema de Gestión de la Calidad (*Quality Management System*, QMS).

ISO 9000: conceptos esenciales

- Calidad
 - Grado en el que un conjunto de características cumplen sus requisitos.
- Gestión de la calidad
 - Actividades coordinadas para dirigir y controlar una organización en lo concerniente a la calidad.
- Sistema de gestión de calidad
 - Conjunto de directrices e instrucciones cuyo objetivo es alcanzar unos niveles satisfactorios y constantes de calidad en productos y/o servicios.

ISO 9000: perspectiva y principios

- ISO 9000 es una herramienta para clientes que compran, más que para fabricantes que construyen.
- Se centra en qué, no en cómo.
 - El estándar define un conjunto de objetivos a cumplir, pero no dice como conseguirlo.
- Define elementos necesarios, pero no suficientes.

La familia ISO 9000 (1/2)

- ISO 9000:2005, Quality management systems Fundamentals and vocabulary
 - Determina un punto de partida para comprender la familia de estándares.
 - Define los términos y definiciones fundamentales utilizados en la familia ISO 9000.
- ISO 9001:2000, Quality management systems Requirements
 - Identifica los requisitos que una organización debe satisfacer para tener implementado un sistema de gestión de calidad ISO 9000.

La familia ISO 9000 (2/2)

- ISO 9004:2000, Quality management systems Guidelines for performance improvement
 - Guía para una mejora continua del proceso.
- ISO/IEC 90003:2004, Software engineering Guidelines for the application of ISO 9001:2000 to computer software
 - Es una guía de aplicación del estándar ISO 9001:2000 en organizaciones que se dediquen al desarrollo de software.
 - Norma española UNE-ISO/IEC 90003 de AENOR.

Diapositiva 44

No es una errata. 106

Guías sobre aspectos específicos del QMS

- ISO 10006 para gestión del proyecto
- ISO 10007 para gestión de la configuración
- ISO 10012 para sistemas de medidas
- ISO 10013 para documentación de calidad
- ISO/TR 10014 para gestionar la economía de la calidad
- ISO 10015 para formación
- ISO/TS 16949 para suministradores de automoción
- ISO 19011 para auditoría

Implementación ISO 9001:2000

- 1. Identificar los objetivos a alcanzar.
- 2. Identificar qué se espera por parte de los demás.
- 3. Obtener información acerca de la familia ISO 9000.
- 4. Aplicar la familia ISO 9000 de estándares al sistema de gestión.
- 5. Obtener guías sobre los aspectos específicos dentro del sistema de gestión de calidad.
- 6. Establecer el estado actual, y determinar las discrepancias entre el sistema de gestión de la calidad actual y las exigencias de ISO 9001:2000.
- 7. Determinar los procesos necesarios para suministrar productos a los clientes.
- 8. Desarrollar un plan para eliminar las discrepancias del paso 6 y desarrollar los procesos del paso 7.
- 9. Ejecutar el plan.
- 10. Realizar la evaluación periódica interna.
- 11. Si es necesario demostrar conformidad pasar a 12, si no pasar a 13.
- 12. Realizar auditorías externas.
- 13. Continuar con la mejora del negocio.

Relación de ISO 9000 y el CMM

• El CMM es el Modelo de Madurez de las Capacidades del software (*Capability Maturity Model*, CMM) del Instituto de Ingeniería del Software de la Universidad de Carnegie Mellon (*Software Engineering Institute, Carnegie Mellon University*, SEI-CMU).

Comparación:

- ISO 9001 es genérico, y CMM específico para la industria del software.
- CMM es más detallado y específico.
- ISO 9001 es binario, mientras que CMM permite cinco niveles.
- ISO 9001 se centra en la relación cliente-proveedor, mientras que CMM se centra en el desarrollo de software.

Relación de ISO 9000 con IEEE Std. 730

 EL IEEE Std. 730-2002 [IEEE 730 WG, 2002] es el estándar del IEEE que describe la preparación y contenidos de los planes SQA.

Comparación:

- IEEE Std. 730 se centra en el plan de garantía de calidad, y en como implementarlo.
- ISO 9001 busca una gestión global de la calidad centrada en auditorias externas.

CONCLUSIONES

Conclusiones

- La búsqueda de la calidad en los productos software se encuentra en la base de la IS.
 - Como en todas las ingenierías.
- Existen diferentes perspectivas sobre la calidad.
 - En su definición, calidad de diseño vs calidad de concordancia
 - En cómo obtenerla, estándares de IEEE e ISO y recomendaciones NASA
- Los costes de la garantía de calidad han de ser asumibles.
 - Beneficios obtenidos vs coste del sistema de garantía de calidad
- La certificación de la calidad implica la evaluación por un organismo externo reconocido a tal efecto.
 - En España, AENOR.

Glosario (1/2)

- AENOR = Asociación Española de NORmalización y certificación
- CMM = Capability Maturity Model
- FF = Frecuencia de Fallo
- IE = Índice de Errores
- IEC = International Electrotechnical Commission
- IEEE = Institute of Electrical and Electronics Engineers
- IS = Ingeniería del Software
- ISO = Organización Internacional para la Estandarización
- LDC = Líneas de Código
- NASA = National Aeronautics and Space Administration, EEUU

Glosario (2/2)

- PFBD = Probabilidad de Fallo Bajo Demanda
- QMS = Quality Management System
- RTF = Revisión Técnica Formal
- SEI-CMU = Software Engineering Institute, Carnegie Mellon -University
- SQA = Software Quality Assurance
- SRS = Software Requirements Specification
- TMF = Tiempo Medio de Fallo
- UNE = Una Norma Española
- V&V = Verificación y Validación
- WG = Working Group

Referencias (1/3)

- R. Pressman: Ingeniería del Software. Un enfoque práctico, 7ª edición. McGraw-Hill, 2010.
 - Capítulos 14-16
- I. Sommerville: Ingeniería del Software, 7ª edición. Addison Wesley, 2007.
 - Capítulo 27
- IEEE 1012 WG Std. for Software Verification and Validation Working Group: IEEE Std. 1012-2004, IEEE Standard for Software Verification and Validation. IEEE, 2004.

Referencias (2/3)

- IEEE 1028 WG Std. for Software Reviews Working Group: IEEE Std. 1028-2008, IEEE Standard for Software Reviews. IEEE, 2008.
- IEEE 730 WG Std. for Software Quality Assurance Plans Working Group: IEEE Std. 730-2002, IEEE Standard for Software Quality Assurance Plans. IEEE, 2002.
- IEEE C/S2ESC Software & Systems Engineering Standards
 Committee: IEEE Std. 610.12-1990, IEEE Standard Glosssary of Software Engineering Terminology. IEEE, 1990.

Referencias (3/3)

- ISO: ISO 9001:2000, Quality management systems Requirements. ISO, 2000.
- ISO: ISO 9004:2000, Quality management systems Guidelines for performance improvement. ISO 2000.
- ISO/IEC: ISO/IEC 90003:2004, Software engineering Guidelines for the application of ISO 9001:2000 to computer software. ISO, 2004
- ISO: ISO 9000:2005, Quality management systems Fundamentals and vocabulary. ISO, 2005.
- Office of Safety and Mission Assurance, NASA: Software Formal Inspections Guidebook. NASA-GB-A302, NASA, 1993.

