2021 Fall MAS 101 Chapter 7: Transcendental Functions

Donghwan Kim

KAIST

Introduction

- Algebraic function: (analytic) function that can be defined as the root of a polynomial equation, e.g., $\frac{1}{x}$, \sqrt{x} , \cdots
- Transcendental function: (analytic) function that does not satisfy a
 polynomial equation, e.g., exponential function, logarithm, trigonometric
 functions
- A wide variety of phenomena of interest are best modeled by transcendental functions;
 - the growth of a biological population
 - the spread of a disease or of information throughout a human community
 - drug dosages
 - radioactive elements and their role in dating fossils
 - temperature changes
 - waves
 - electrical circuits
 - the vibrations in bridges
 - interest rates
 - probabilities

Chapter 7 1 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Inverse Functions

- A function that undoes (or inverts) the effect of a function f is called the inverse of f.
- The natural exponential function $y = e^x$
- The natural logarithm function $y = \ln x$

Chapter 7 2 / 66

One-to-One Functions

Definition 1

A function f(x) is **one-to-one** on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in D.

- $f(x) = \sqrt{x}$
- $g(x) = \sin x$
- The horizontal line test for one-to-one functions

Chapter 7 3 / 66

Inverse Functions

Definition 2

Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} (read "f inverse") is defined by

$$f^{-1}(b) = a$$
 if $f(a) = b$.

The domain of f^{-1} is R and the range of f^{-1} is D.

- $(f^{-1} \circ f)(x) = x$ for all x in
- $(f \circ f^{-1})(y) = y$ for all y in
- Can a function that is not one-to-one have an inverse?

Chapter 7 4/

Finding Inverses

- 1. Solve the equation y = f(x) for x. This gives a formula $x = f^{-1}(y)$ where x is expressed as a function of y.
- 2. Interchange x and y, obtaining a formula $y = f^{-1}(x)$ where f^{-1} is expressed in the conventional format with x as the independent variable and y as the dependent variable.
- $y = \frac{1}{2}x + 1$
- $y = x^2$, $x \ge 0$

Chapter 7 5 / 66

Derivatives of Inverses of Differentiable Functions

 \bullet The derivatives of $f(x)=\frac{1}{2}x+1$ and $f^{-1}(x)$

Chapter 7 6 / 66

Derivatives of Inverses of Differentiable Functions (cont'd)

Theorem 1 (The Derivative Rule for Inverses)

If f has an interval I as domain and f'(x) exists and is never zero on I, then f^{-1} is differentiable at every point in its domain (the range of f). The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f' at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$

or

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}.$$

Chapter 7 7 / 66

Derivatives of Inverses of Differentiable Functions (cont'd)

- $f(x) = x^2$, x > 0. Find the derivative of its inverse.
- $f(x) = x^3 2$, x > 0. Find the value of $\frac{df^{-1}}{dx}$ at x = 6 = f(2) without finding a formula for $f^{-1}(x)$.

Chapter 7 8 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Definition of the Natural Logarithm Function

Definition 3

The natural logarithm is the function given by

$$\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0.$$

Chapter 7 9 / 66

Definition of the Natural Logarithm Function (cont'd)

- $\ln 0.5 = -0.69$
- $\ln 1 = 0$
- $\ln 2 \approx 0.69$
- $\ln 3 \approx 1.10$
- $\ln 4 \approx 1.39$

Theorem 2 (The Intermediate Value Theorem for Continuous Functions)

If f is a continuous function on a closed interval [a,b], and if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a,b].

Chapter 7 10 / 66

Definition of the Natural Logarithm Function (cont'd)

Definition 4

The **number** e is that number in the domain of the natural logarithm satisfying

$$\ln e = \int_1^e \frac{1}{t} dt = 1.$$

Chapter 7 11 / 66

The Derivative of $y = \ln x$

• The derivative of $y = \ln x$

$$\frac{d}{dx}\ln x =$$

ullet If u is a differentiable function of x whose values are positive,

$$\frac{d}{dx}\ln u =$$

• Find the derivative $\frac{d}{dx} \ln(x^2 + 3) =$

Chapter 7 12 / 66

Properties of Logarithms

Theorem 3

For any numbers b>0 and x>0, the natural logarithm satisfies the following rules:

- Product rule: $\ln bx =$
- Quotient rule: $\ln \frac{b}{x} =$
- Reciprocal rule: $\ln \frac{1}{\pi} =$
- Power rule: $\ln x^r =$ (for rational r)

Chapter 7 13 / 66

4.2 The Mean Value Theorem

Theorem 4 (The Mean Value Theorem

Suppose y=f(x) is continuous over a closed interval [a,b] and differentiable on the interval's interior (a,b). Then there is at least one point c in (a,b) at which

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

Chapter 7 14 / 66

4.2 The Mean Value Theorem (cont'd)

Corollary 1

If f'(x) = 0 at each point x of an interval (a,b), then f(x) = C for all $x \in (a,b)$, where C is a constant.

Corollary 2

If f'(x) = g'(x) at each point x in an open interval (a,b), then there exists a constant C such that f(x) = g(x) + C for all $x \in (a,b)$. That is, f-g is a constant function on (a,b).

Chapter 7 15 / 66

The Graph and Range of $\ln x$

- $\lim_{x\to\infty} \ln x =$
- $\lim_{x\to 0^+} \ln x =$
- Domain of $\ln x$:
- ullet Range of $\ln x$:

Chapter 7 16 / 66

The Integral $\int (1/u)du$

ullet If u is a differentiable function that is never zero,

$$\int \frac{1}{u} du = \ln|u| + C.$$

$$\bullet \int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta =$$

Chapter 7 17 / 66

The Integrals of $\tan x$, $\cot x$, $\sec x$, and $\csc x$

- $\int \tan x dx =$
- $\int \cot x dx =$
- $\int \sec x dx =$
- $\int \csc x dx =$

Chapter 7 18 / 66

Logarithmic Differentiation

 \bullet Find $\frac{dy}{dx},$ where $y=\frac{(x^2+1)(x+3)^{1/2}}{x-1}$ for x>1.

Chapter 7 19 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

The Inverse of $\ln x$ and the Number e

- The function $\ln x$ has an inverse with domain $(-\infty, \infty)$ and range $(0, \infty)$.
- Let $\exp x$ denote the function $\ln^{-1} x$.
- Show that $\exp r = e^r$ for a rational r.
- How should we define e^x for a real number x?

20 / 66

The Inverse of $\ln x$ and the Number e (cont'd)

Definition 5

For every real number x, we define the **natural exponential function** to be $e^x = \exp x$.

- $e^{\ln x} = x$ for all x > 0
- $\bullet \ \ln(e^x) = x \text{ for all } x$

Chapter 7 21 / 66

The Derivative and Integral of e^x

• The natural exponential function is differentiable. Why?

$$\frac{d}{dx}e^x =$$

• If u is any differentiable function of x, then

$$\frac{d}{dx}e^u = e^u \frac{du}{dx}.$$

- $\frac{d}{dx} 5e^{-x} =$ $\int_0^{\ln 2} e^{3x} dx =$

22 / 66

Laws of Exponents

For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

- $e^{x_1}e^{x_2} = e^{x_1+x_2}$
- $e^{-x} = \frac{1}{e^x}$
- $e^{\frac{e^{x_1}}{e^{x_2}}} = e^{x_1 x_2}$
- \bullet $(e^{x_1})^r = e^{rx_1}$, if r is rational

Chapter 7 23 / 66

The General Exponential Function a^x

Definition 6

For any numbers a > 0 and x, the exponential function with base a is

$$a^x = e^{x \ln a}$$

Chapter 7 24 / 66

Proof of the Power Rule (General Version)

Definition 7

For any x > 0 and for any real number n,

$$x^n = e^{n \ln x}$$

Definition 8

For x > 0 and any real number n,

$$\frac{d}{dx}x^n = nx^{n-1}.$$

If $x \leq 0$, then the formula holds whenever the derivative, x^n , and x^{n-1} all exist.

Chapter 7 25 / 66

Proof of the Power Rule (General Version) (cont'd)

• Differentiate $f(x) = x^x$, x > 0

Chapter 7 26 / 66

The Number e Expressed as a Limit

Theorem 5

The number e can be calculated as the limit

$$e = \lim_{x \to 0} (1+x)^{1/x}$$

Chapter 7 27 / 66

The Derivative of a^u

• If a>0 and u is a differentiable function of x, then a^u is a differentiable function of x and

$$\frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}.$$

Chapter 7 28 / 66

Logarithms with Base a

Definition 9

For any positive number $a \neq 1$, $\log_a x$ is the inverse function of a^x .

Chapter 7 29 / 66

Derivatives and Integrals Involving $\log_a x$

•
$$\frac{d}{dx}(\log_a u) =$$

Chapter 7 30 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Exponential Change

- ullet Exponential change: in modeling many real-world situations, a quantity y increases or decreases at a rate proportional to its size at a given time t.
- Differential equation:
- Initial condition:

Chapter 7 31 / 66

Exponential Change

• The solution of the initial value problem

$$\frac{dy}{dt} = ky, \quad y(0) = y_0$$

is

$$y =$$

- k: rate constant of the change
- k > 0: exponential growth
- k < 0: exponential decay

Chapter 7 32 / 66

Separable Differential Equations

Differential equation

$$\frac{dy}{dx} = f(x, y)$$

• Separable differential equation

$$\frac{dy}{dx} = g(x)H(y) = \frac{g(x)}{h(y)}$$

• Solve the equation $y(x+1)\frac{dy}{dx} = x(y^2+1)$.

Chapter 7 33 / 66

Unlimited Population Growth

- Unlimited population growth: $\frac{dy}{dt} = ky$ for positive k
- The number of people cured is proportional to the number y that are infected with the disease. Suppose that the number of cases of a disease is reduced by 20% for any given year. If here are 10000 cases today, how many years will it take to reduce the number to 1000.

Chapter 7 34 / 66

Radioactivity

 At any given time, the rate at which a radioactive elements decays is approximately proportional to the number of radioactive nuclei present.

Half-life:

Chapter 7 35 / 66

Heat Transfer: Newton's Law of Cooling

ullet If H is the temperature of the object at time $t,\,H_S$ is the constant surrounding temperature, then the differential equation is

$$\frac{dH}{dt} = -k(H - H_S)$$

Chapter 7 36 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Indeterminate Form 0/0

• If the continuous functions f(x) and g(x) are both zero at x=a, then

$$\lim_{x \to a} \frac{f(x)}{g(x)}?$$

- Indeterminate forms: 0/0, ∞/∞ , $\infty \cdot 0$, $\infty \infty$, 0^0 an 1^∞ .
- $\lim_{x\to 0} \frac{\sin x}{x} =$

Chapter 7 37 / 66

L'Hôpital's Rule

Theorem 6 (L'Hôpital's Rule)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

assuming that the limit on the right side of this equation exists.

- Continue to differentiate f and g, until one or the other of these derivatives is nonzero at x = a.
- $\lim_{x\to 0} \frac{1-\cos x}{x+x^2} =$

Chapter 7 38 / 66

L'Hôpital's Rule (cont'd)

• Consider a special case for intuition: assume that f and g have continuous derivatives and satisfy $g'(a) \neq 0$.

Chapter 7 39 / 66

Proof of L'Hôpital's Rule

Theorem 7 (Cauchy's Mean Value Theorem)

Suppose functions f and g are continuous on [a,b] and differentiable throughout (a,b) and also suppose $g'(x) \neq 0$ throughout (a,b). Then there exists a number c in (a,b) at which

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Chapter 7 40 / 66

Indeterminate Forms ∞/∞ , $\infty \cdot 0$, $\infty - \infty$

• L'Hôpital's rule applies to the indeterminate form ∞/∞ : If $f(x) \to \pm \infty$ and $g(x) \to \pm \infty$ as $x \to a$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the limit on the right exists. a may be either finite or infinite.

- $\lim_{x\to\infty} \frac{\ln x}{2\sqrt{x}} =$
- $\lim_{x\to\infty} x \sin\frac{1}{x} =$
- $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x}\right) =$

Chapter 7 41 / 66

Indeterminate Powers

• If $\lim_{x\to a} \ln f(x) = L$, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^{L},$$

where a may be either finite and infinite.

• $\lim_{x\to 0^+} (1+x)^{1/x} =$

Chapter 7 42 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- **6** 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Defining the Inverses

•
$$y = \sin^{-1} x$$
 or $y = \arcsin x$
• $y = \cos^{-1} x$ or $y = \arccos x$

•
$$y = \tan^{-1} x$$
 or $y = \arctan x$

•
$$y = \cot^{-1} x$$
 or $y = \operatorname{arccot} x$

•
$$y = \sec^{-1} x$$
 or $y = \operatorname{arcsec} x$

•
$$y = \csc^{-1} x$$
 or $y = \operatorname{arccsc} x$

Chapter 7 43 / 66

The Arcsine and Arccosine Functions

Definition 10

- $y = \sin^{-1} x$ is the number in $[-\pi/2, \pi/2]$ for which $\sin y = x$.
- $y = \cos^{-1} x$ is the number in $[0, \pi]$ for which $\cos y = x$.
- $\sin^{-1}\left(\frac{1}{2}\right) =$
- $\bullet \cos^{-1}\left(-\frac{1}{2}\right) =$
- $\sin^{-1} x =$
- $\cos^{-1} x + \cos^{-1}(-x) =$
- $\sin^{-1} x + \cos^{-1} x =$

Chapter 7 44 / 66

Inverses of $\tan x$, $\cot x$, $\sec x$, and $\csc x$

Definition 11

- $y = \tan^{-1} x$ is the number in $(-\pi/2, \pi/2)$ for which $\tan y = x$.
- $y = \cot^{-1} x$ is the number in $(0, \pi)$ for which $\cot y = x$.
- $y = \sec^{-1} x$ is the number in $[0, \pi/2) \cup (\pi/2, \pi]$ for which $\sec y = x$.
- $y = \csc^{-1} x$ is the number in $[-\pi/2, 0) \cup (0, \pi/2]$ for which $\csc y = x$.

Chapter 7 45 / 66

The Derivative of $y = \sin^{-1} u$

• $y = \sin^{-1} x$ is differentiable in the interval and its derivative is

$$\frac{d}{dx}(\sin^{-1}x) =$$

• If u is a differentiable function of x with |u| < 1, we have

$$\frac{d}{dx}(\sin^{-1}u) =$$

Chapter 7 46 / 66

The Derivative of $y = \tan^{-1} u$

• The derivative of $\tan^{-1} x$ is

$$\frac{d}{dx}(\tan^{-1}x) =$$

• If u is a differentiable function of x, we have

$$\frac{d}{dx}(\tan^{-1}u) =$$

Chapter 7 47 / 66

The Derivative of $y = \sec^{-1} u$

• The derivative of $\sec^{-1} x$, |x| > 1, is

$$\frac{d}{dx}\sec^{-1}x =$$

• If u is a differentiable function of x with |u| > 1, we have

$$\frac{d}{dx}(\sec^{-1}u) =$$

• How about others?

Chapter 7 48 / 66

Derivatives of the Other Inverse Trigonometric Functions

- $\cos^{-1} x = \pi/2 \sin^{-1} x$
- $\cot^{-1} x = \pi/2 \tan^{-1} x$
- $\csc^{-1} x = \pi/2 \sec^{-1} x$
- $\frac{d}{dx}(\cos^{-1}u) =$
- $\frac{d}{dx}(\cot^{-1}u) =$
- $\frac{d}{dx}(\csc^{-1}u) =$

7 49 / 66

Integration Formulas

Chapter 7 50 / 66

Integration Formulas (cont'd)

$$\int \frac{du}{a^2 + u^2} =$$

•
$$\int \frac{du}{u\sqrt{u^2-a^2}} =$$

$$\int \frac{dx}{\sqrt{e^{2x}-6}} =$$

$$\bullet \int \frac{dx}{4x^2 + 4x + 2} =$$

Chapter 7 51 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Definitions and Identities

- The hyperbolic functions are formed by taking combinations of the two exponential functions e^x and e^{-x} .
- These simplify many mathematical expressions, and occur frequently in mathematical and engineering applications.

Chapter 7 52 / 66

Definitions and Identities (cont'd)

• The hyperbolic sine and hyperbolic cosine functions are defined as

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 and $\cosh x = \frac{e^x + e^{-x}}{2}$.

Similarly, define

$$\tanh x = \frac{\sinh x}{\cosh x}$$
 and $\coth x = \frac{\cosh x}{\sinh x}$
$$\operatorname{sech} x = \frac{1}{\cosh x}$$
 and $\operatorname{csch} x = \frac{1}{\sinh x}$

Chapter 7 53 / 66

Definitions and Identities (cont'd)

- $2 \sinh x \cosh x =$
- $\cosh^2 x \sinh^2 x = 1$

Chapter 7 54 / 66

Applications of Hyperbolic Functions

- Catenary shape
- Modeling ocean waves

Chapter 7 55 / 66

Derivatives and Integrals of Hyperbolic Functions

• The derivative formulas are derived from the derivative of e^u :

$$\frac{d}{dx}(\cosh u) = \frac{d}{dx}\left(\frac{e^u + e^{-u}}{2}\right) =$$

We also have

$$\frac{d}{dx}(\operatorname{sech} u) = \frac{d}{dx}\left(\frac{1}{\cosh u}\right) =$$

56 / 66

Derivatives and Integrals of Hyperbolic Functions (cont'd)

- $\int \sinh u du =$
- $\int du = -\operatorname{sech} u + C$

Chapter 7 57 / 66

Inverse Hyperbolic Functions

- $y = \sinh^{-1} x$
- $y = \cosh^{-1} x$
- $y = \tanh^{-1} x$
- $y = \coth^{-1} x$
- $y = \operatorname{sech}^{-1} x$
- $y = \operatorname{csch}^{-1} x$
- These will be useful in intergration (Chapter 8).

58 / 66

Useful Identities

• If $0 < x \le 1$,

$$\operatorname{sech}\left(\cosh^{-1}\left(\frac{1}{x}\right)\right) =$$

Chapter 7 59 / 66

Derivatives of Inverse Hyperbolic Functions

• If u is a differentiable function of x, then

$$\frac{d(\sinh^{-1}u)}{dx} =$$

• If u is a differentiable function of x with |u| < 1, then

$$\frac{d(\tanh^{-1}u)}{dx} =$$

Chapter 7 60 / 66

Derivatives of Inverse Hyperbolic Functions (cont'd)

• For a > 0,

$$\int \frac{du}{\sqrt{a^2 + u^2}} =$$

Evaluate

$$\int_0^1 \frac{2dx}{\sqrt{3+4x^2}} =$$

ter 7 61 / 66

- 1 7.1 Inverse Functions and Their Derivatives
- 2 7.2 Natural Logarithms
- 3 7.3 Exponential Functions
- 4 7.4 Exponential Change and Separable Differential Equations
- 5 7.5 Indeterminate Forms and L'Hôpital's Rule
- 6 7.6 Inverse Trigonometric Functions
- 7.7 Hyperbolic Functions
- 8 7.8 Relative Rates of Growth

Growth Rates of Functions

Chapter 7 62 / 66

Growth Rates of Functions (cont'd)

Definition 12

Let f(x) and g(x) be positive for x sufficiently large.

1. f grows faster than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

or, equivalently, if

$$\lim_{x \to \infty} \frac{g(x)}{f(x)} = 0.$$

We also say that g grows slower than f as $x \to \infty$.

2. f and g grow at the same rate as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

where L is finite and positive.

Chapter 7 63 / 66

Grow Rates of Functions (cont'd)

- \bullet x vs. 2x
- \bullet e^x vs. x^2
- x^2 vs. $\ln x$
- $\ln x$ vs. $x^{1/n}$

• If f grows at the same rate as g as $x\to\infty$, and g grows at the same rate as h as $x\to\infty$, then f grows the same rate as h as $x\to\infty$.

Chapter 7 64 / 66

Order and Oh-Notation

Definition 13

A function f is of smaller order than g as $x \to \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$. We indicate this by writing f = o(g) ("f is little-oh of g").

• $\ln x = o(?)$

Chapter 7 65 / 66

Order and Oh-Notation (cont'd)

Definition 14

Let f(x) and g(x) be positive for x sufficiently large. Then f is **of at most** the order of g as $x \to \infty$ if there is a positive integer M for which

$$\frac{f(x)}{g(x)} \le M,$$

for x sufficiently large. We indicate this by writing f = O(g) ("f is big-oh of g").

- $e^x + x^2 = O(?)$
- f = o(g) implies , for functions that are positive for x sufficiently large.
- If f and g grow at the same rate, then f = O(g) and

Chapter 7 66