$\blacksquare A = U \Sigma V^{T}$ - example: Users to Movies

$\blacksquare A = U \Sigma V^{T}$ - example: Users to Movies

$$\begin{array}{c|cccc}
\mathbf{X} & \begin{bmatrix}
\mathbf{12.4} & 0 & 0 \\
0 & \mathbf{9.5} & 0 \\
0 & 0 & \mathbf{1.3}
\end{bmatrix} \quad \mathbf{X}$$

$\blacksquare A = U \Sigma V^{T}$ - example: Users to Movies

-0.80 0.40

0.09

$\blacksquare A = U \Sigma V^T$ - example: *U* is "user-to-concept"

U is "user-to-concept" similarity matrix

0.12 -0.02 0.12 **-0.69 -0.69** 0.40 **-0.80** 0.40 0.09 0.09

$\blacksquare A = U \Sigma V^{T}$ - example:

"strength" of the SciFi-concept

(2.4) 0 0
0 9.5 0
0 0 1.3

$\blacksquare A = U \Sigma V^T$ - example:

SciFi-concept

-0.80

0.40

0.09

- 'movies', 'users' and 'concepts':
- U: user-to-concept similarity matrix
- V: movie-to-concept similarity matrix
- Σ: its diagonal elements: 'strength' of each concept

$\blacksquare A = U \Sigma V^{\mathsf{T}}$ - example:

- V: "movie-to-concept" matrix
- U: "user-to-concept" matrix

$A = U \Sigma V^{T}$ - example:

U Σ: Gives the coordinates of the points in the projection axis

Projection of users on the "Sci-Fi" axis $(U \Sigma)^T$:

	_	
1.61	0.19	-0.01
5.08	0.66	-0.03
6.82	0.85	-0.05
8.43	1.04	-0.06
1.86	-5.60	0.84
0.86	-6.93	-0.87
0.86	-2.75	0.41

More details

Q: How exactly is dim. reduction done?

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.3 \\ \hline 0.56 & 0.59 & 0.65 \\ 0.12 & -0.02 & 0.65 \\ 0$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{0.13} & 0.02 & -0.01 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.41} & 0.07 & -0.03 \\ \mathbf{0.68} & 0.11 & -0.05 \\ 0.15 & -0.59 & \mathbf{0.65} \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & \mathbf{0.32} \end{bmatrix} \times \begin{bmatrix} \mathbf{12.4} & 0 & 0 \\ 0 & \mathbf{9.5} & 0 \\ 0 & 0 & \mathbf{1.3} \\ 0.12 & 0.02 & 0 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.13 & 0.02 & -0.01 \\ 0.41 & 0.07 & -0.03 \\ 0.55 & 0.09 & -0.04 \\ 0.68 & 0.11 & -0.05 \\ 0.15 & -0.59 & 0.65 \\ 0.07 & -0.73 & -0.67 \\ 0.07 & -0.29 & 0.32 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \times \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} \times \begin{bmatrix} 0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\ 0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\ 0.40 & -0.80 & 0.40 & 0.09 & 0.09 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

ſ						1			-	•					
	1	1	1	0	0		0.13	0.02	-0.01						
	3	3	3	0	0		0.41	0.07	-0.03		_		_		
	4	4	4	0	0		0.55	0.09	-0.04		12.4	0	0		
	5	5	5	0	0	~	0.68	0.11	-0.05	X	0	9.5	0	X	
				4				-0.59				0	1/3		
	0	0	0	5	5		0.07	-0.73	-0.67		_	•	`		
	0	1	0	2	2		0.07	-0.29	0.32		0.56	0.59	0.56	0.09	0.09
L						J	L		/ 1	J	0.12	-0.02	0.12	-0.69	-0.69
											0.40	-0.80	0.40	-0.09	0.09

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \approx \begin{bmatrix} 0.92 & 0.95 & 0.92 & 0.01 & 0.01 \\ 2.91 & 3.01 & 2.91 & -0.01 & -0.01 \\ 3.90 & 4.04 & 3.90 & 0.01 & 0.01 \\ 4.82 & 5.00 & 4.82 & 0.03 & 0.03 \\ 0.70 & 0.53 & 0.70 & 4.11 & 4.11 \\ -0.69 & 1.34 & -0.69 & 4.78 & 4.78 \\ 0.32 & 0.23 & 0.32 & 2.01 & 2.01 \end{bmatrix}$$

Frobenius norm:

$$\|\mathbf{M}\|_{\mathrm{F}} = \sqrt{\sum_{ij} \mathbf{M}_{ij}}^2$$

$$\|\mathbf{A} - \mathbf{B}\|_F = \sqrt{\sum_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^2}$$
 is "small"

SVD – Best Low Rank Approx.

SVD – Best Low Rank Approx.

Theorem:

Let $A = U \sum V^T$ and $B = U S V^T$ where

S = diagonal $r_{x}r$ matrix with $s_i = \sigma_i$ (i=1...k) else $s_i = 0$ then B is a best rank(B)=k approx. to A

What do we mean by "best":

■ B is a solution to $\min_{U} \|A - B\|_{F}$ where $\operatorname{rank}(B) = k$

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & & \\ \vdots & \vdots & \ddots & & \\ x_{m1} & & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & v_{1n} \\ \vdots & \ddots & & & \\ u_{m1} & & & v_{mn} \end{pmatrix} \begin{pmatrix} \sigma_{11} & 0 & \dots & \sigma_{1n} \\ \vdots & \ddots & & & \\ \vdots & \ddots & & & \\ m \times r & & & & r \times r \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & & & \\ \vdots & \ddots & & & \\ r \times r & & & & r \times r \end{pmatrix}$$

$$||A - B||_F = \sqrt{\sum_{ij} (A_{ij} - B_{ij})^2}$$
ets, http://www.mmds.org

Details!

SVD - Best Low Rank Approx.

- Theorem: Let $A = U \Sigma V^T$ $(\sigma_1 \ge \sigma_2 \ge ..., rank(A) = r)$ then $B = U S V^T$
 - **S** = diagonal $r \times r$ matrix where $s_i = \sigma_i$ (i = 1...k) else $s_i = 0$ is a best rank-k approximation to A:
 - B is a solution to $\min_{B} ||A-B||_{F}$ where $\operatorname{rank}(B)=k$

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & & \\ \vdots & \vdots & \ddots & & \\ x_{m1} & & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & & \\ \vdots & \ddots & & \\ u_{m1} & & & u_{mn} \end{pmatrix} \begin{pmatrix} \sigma_{11} & 0 & \dots & & \\ \vdots & \ddots & & & \\ \vdots & \ddots & & & \\ \vdots & \ddots & & & \\ m \times n \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & & & \\ \vdots & \ddots & & & \\ r \times n \end{pmatrix}$$

- We will need 2 facts:
 - $|M|_F = \sum_i (q_{ii})^2$ where M = PQR is SVD of M

Equivalent:

'spectral decomposition' of the matrix:

$$\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \end{bmatrix} \times \begin{bmatrix} \mathbf{\sigma}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{\sigma}_{2} \end{bmatrix} \times \begin{bmatrix} \mathbf{\sigma}_{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Equivalent:

'spectral decomposition' of the matrix

Why is setting small σ_i to 0 the right thing to do?

Vectors \mathbf{u}_i and \mathbf{v}_i are unit length, so $\mathbf{\sigma}_i$ scales them.

So, zeroing small σ_i introduces less error. J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Q: How many σs to keep?

A: Rule-of-a thumb:

keep 80-90% of 'energy' =
$$\sum_i \sigma_i^2$$

SVD - Complexity

- To compute SVD:
 - O(nm²) or O(n²m) (whichever is less)
- But:
 - Less work, if we just want singular values
 - or if we want first k singular vectors
 - or if the matrix is sparse
- Implemented in linear algebra packages like
 - Python, LINPACK, Matlab, SPlus, Mathematica ...

SVD - Conclusions so far

- **SVD:** $A = U \Sigma V^T$: unique
 - U: user-to-concept similarities
 - V: movie-to-concept similarities
 - Σ : strength of each concept
- Dimensionality reduction:
 - keep the few largest singular values (80-90% of 'energy')
 - SVD: picks up linear correlations

Examples of SVD

Case study 1: Recommend Movies

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Case study 1: Recommend Movies

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space: Inner product with each

'concept' vector **v**i

Case study 1: Recommend Movies

- Q: Find users that like 'Matrix'
- A: Map query into a 'concept space' how?

Project into concept space: Inner product with each 'concept' vector v_i

Case study: How to query?

Compactly, we have:

$$q_{concept} = q V$$

E.g.:

$$\mathbf{q} = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} \begin{bmatrix} 0.56 & 0.12 \\ 0.59 & -0.02 \\ 0.56 & 0.12 \\ 0.09 & -0.69 \\ 0.09 & -0.69 \end{bmatrix} = \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$

SciFi-concept
$$= \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$

$$\begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$
 V.T = $\begin{bmatrix} 1.64 & 1.64 & 1.64 & -0.162 & -0.162 \end{bmatrix}$

Case study: How to query?

How would the user d that rated ('Alien', 'Serenity') be handled?

$$d_{concept} = d V$$

E.g.:

$$d = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \end{bmatrix} \mathbf{x}$$

$$0.56 & 0.12 \\ 0.59 & -0.02 \\ 0.56 & 0.12 \\ 0.09 & -0.69 \end{bmatrix}$$

SciFi-concept
$$= \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$

movie-to-concept similarities (V)

Case study: How to query?

Observation: User d that rated ('Alien', 'Serenity') will be similar to user q that rated ('Matrix'), although d and q have zero ratings in common!

$$d = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \end{bmatrix} \xrightarrow{\text{SciFi-concept}} \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$

$$q = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Scimilarity}} \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$
Zero ratings in common

Latent Semantic Indexing (LSI) is a method for discovering hidden concepts in document data.

Suppose we have the following set of five documents

d1: Romeo and Juliet.

d2: Juliet: O happy dagger!

d3: Romeo died by dagger.

d4: "Live free or die", that's the New-Hampshire's motto.

d5: Did you know, New-Hampshire is in New-England.

a search query: dies, dagger. ==> d3 > d2, d4.

Q. How about d1 and d5? Should they be returned as possibly interesting results to this query?

Term-Document Matrix

	d1	d2	d3	d4	d5
Romeo	1	0	1	0	0
Juliet	1	1	0	0	0
Happy	0	1	0	0	0
Dagger	0	1	1	0	0
Live	0	0	0	1	0
Die	0	0	1	1	0
Free	0	0	0	1	0
New Hampshire	0	0	0	1	1

$$\Sigma = \left[\begin{array}{ccccc} 2.285 & 0 & 0 & 0 & 0 \\ 0 & 2.010 & 0 & 0 & 0 \\ 0 & 0 & 1.361 & 0 & 0 \\ 0 & 0 & 0 & 1.118 & 0 \\ 0 & 0 & 0 & 0.797 \end{array} \right]$$

$$\begin{bmatrix} -0.396 & 0.280 \\ -0.314 & 0.450 \\ -0.178 & 0.269 \\ -0.438 & 0.369 \\ -0.264 & -0.346 \\ -0.264 & -0.346 \\ -0.326 & -0.460 \end{bmatrix} \begin{bmatrix} 2.285 & 0 \\ 0 & 2.010 \end{bmatrix} \begin{bmatrix} -0.311 & -0.407 & -0.594 & -0.603 & -0.143 \\ 0.363 & 0.541 & 0.200 & -0.695 & -0.229 \end{bmatrix} \\ \sum_{2} V_{2}^{T}$$

-0.326 -0.460

$$U_2\Sigma_2$$

$$romeo = \left[\begin{array}{c} -0.905 \\ 0.563 \end{array} \right], \ juliet = \left[\begin{array}{c} -0.717 \\ 0.905 \end{array} \right], \ happy = \left[\begin{array}{c} -0.407 \\ 0.541 \end{array} \right], \ dagger = \left[\begin{array}{c} -1.001 \\ 0.742 \end{array} \right],$$

$$live = \left[\begin{array}{c} -0.603 \\ -0.695 \end{array} \right], \ die = \left[\begin{array}{c} -1.197 \\ -0.494 \end{array} \right], \ free = \left[\begin{array}{c} -0.603 \\ -0.695 \end{array} \right], \ new-hampshire = \left[\begin{array}{c} -0.745 \\ -0.925 \end{array} \right],$$

$$\Sigma_2 V_2^T$$

$$d_1 = \left[\begin{array}{c} -0.711 \\ 0.730 \end{array} \right], \ d_2 = \left[\begin{array}{c} -0.930 \\ 1.087 \end{array} \right], \ d_3 = \left[\begin{array}{c} -1.357 \\ 0.402 \end{array} \right], \ d_4 = \left[\begin{array}{c} -1.378 \\ -1.397 \end{array} \right], \ d_5 = \left[\begin{array}{c} -0.327 \\ -0.460 \end{array} \right]$$

The query is represented by a vector computed as the centroid of the vectors for its terms

$$q = \frac{\begin{bmatrix} -1.197 \\ -0.494 \end{bmatrix} + \begin{bmatrix} -1.001 \\ 0.742 \end{bmatrix}}{2} = \begin{bmatrix} -1.099 \\ 0.124 \end{bmatrix}$$

Cosine distance:

$$\frac{d_i \cdot q}{\|d_i\|_2 \|q\|_2}$$

