18MA101	Supplementary – July 2019				
Obtain the reduction formula	for $\int \cos^{x} x dx$. Hence				
	24				
evaluate $\int_{0}^{\frac{\pi}{2}} \cos^{n} x dx$.		7	L2	5	1
) i) Evaluate $\int_0^\infty x^6 e^{-1x} dx$ u	ising Gamma function				
ii) Evaluate $\int_{0}^{1} x^{3} (1-x)^{2} dx$	using Beta and Gamma functions.				
		6	L1	5	1
$r = a (1 + \cos \theta)$ about the in		7	L2	5	2
) Find the surface area of the	solid generated by revolving the	7	L2	5	1

pom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

18MA101

Supplementary - July 2019

c) Obtain the Maclaurin's expansion of $\log (1+z)$ upto three nonvanishing terms.

- Unit III
- 5. a) Find the extreme values of $y = x^2 + y^2 + 12x 6$

- 15
- b) i) If u is a homogeneous function of degree in x and y, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \pi u$
 - ii) If $U = log \left(\frac{x^4 + y^4}{x + y} \right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$

c) If $U=e^x \sin(yz)$, where $x=t^2$, y=t-1, $z=t^2$, find $\frac{du}{dt}$ at t=2.

- 6. a) Find the directional derivative of $\phi = z^2/z + 4z^2$ at the point (1,-2,-1) in the direction of vector 2i - j - 2i

b) Find the angle between the surfaces $\vec{x} - \vec{y} - \vec{z} = \vec{z}$ and $z = x^2 + y^2 + 1$ at (0.1.2)

- c) Establish the following identities:
 - (i) $\nabla \cdot \nabla \phi = \nabla^2 \phi$ ii) $\nabla \cdot \left[\nabla \times \vec{F} \right] = 0$

12

7. a) Evaluate $\iiint_{x}^{2} x^{2} yz \, dx \, dy \, dz$

- 11
- b) Change the order of integration and $\int_{0}^{\sqrt{1-x^2}} y^2 dy dx$

c) Find the area of _ the Cardioid $r = a (1 - \cos \theta)$

a) Evaluate $\int \int e^{\frac{1}{2}} dy dx$

- b) Show that the area between the $y^{2} = 4ax \text{ and } x^{2} = 4ay \text{ is } \frac{16}{3}a^{2}$
- c) By changing to $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2}+y^{2}) dx dy$ polar co-ordinates

Unit - V

a) Evaluate $\int \frac{1}{(1-x^2)^4} dx$

b) Prove that $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ with usual notations

NMAM INSTITUTE OF TECHNOLOGY, NITTENDE (An Autonomous Institution affiliated to VTU, Belagavi) Date:

First Semester B.E. (Credit System) Degree Examinations Supplementary Examinations – July 2019

18MA101 - ENGINEERING MATHEMATICS - I

ation: 3 Hours

Max. Marks: 100

Note: Answer Five full questions choosing One full question from each Un	tion from each Unit	auestion	One full	uestions choosing	full	Answer Five	Note
--	---------------------	----------	----------	-------------------	------	-------------	------

	Note: Answer Five full questions choosing One full question from	each	Unit		
a)	Unit – I	Marks		co•	PO*
No. of the last	$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \\ 3 & 2 & 2 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}$				
	$\begin{bmatrix} 3 & 2 & 2 & 3 \\ 0 & 1 & 1 & 0 \end{bmatrix}$	6	L*2	1	1
b)		Ü		,	·
	x + 4y + 9z = 6	7	L2	1	2
C)	Find the eigen values and eigen vectors of the following matrix				
	3 2	7	L1	1	1
a)	The same remains an arrangement to the same remains and the same remains a same remains a same remains and the same remains and the same remains a same r	. 6	L2	1	1
b)	Show that the transformation $y_1 = x_1 + x_2 + 3x_3$; $y_2 = x_1 + 3x_2 - 3x_3$; $y_3 = -2x_1 - 4x_2 - 4x_3$				
	represent a regular linear transformation. Find				
	the inverse of this transformation. [8 -4]	7	L1	1	2
c)	Diagonalize the matrix $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$	7	L2	1	1
	Unit – II				
a)	i)State Comparison test . ii) Test the convergence of the following series				
	$\frac{1}{1+\sqrt{2}} + \frac{2}{1+2\sqrt{3}} + \frac{3}{1+3\sqrt{4}} + \dots \dots$	6	5 L1	2	2
b)	State Cauchy's root test and test the convergence of the			-	_
	series $\sum \left(\frac{nx}{n+2}\right)^n x > 0$		7 L2		
C)	Obtain Taylor's series expansion of $\log x$ about $x = 1$ upto fourth		7 L2	2	1
	degree terms		7 L2	2 2	1
a)	State Rolle's theorem, & verify the theorem for $f(x) = \frac{\sin x}{e^x}$				
	in [0,π].		~	, ,	2
b)	State and prove Cauchy's mean value theorem .		5 L2 7 L2	2 2	1

	100				THE PERSON NAMED IN COLUMN	COLUMN TO THE
AVA	241	MA101 SEE - November - December 2019				
6, a))f	$y = f\left(\frac{y-x}{2}, \frac{z-x}{2}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$	E	3	L1	
/ n	E	xpand $x^2y + 3y - 2$ at the point $(1, -2)$ using Taylor's theorem		Ĭ.		(3)
	1 11	oto terms of 2 nd degree.	ì	7	L2	3
c)) т	be period of a simple pendulum is $T = 2\pi \sqrt{l/g}$. Find the				
X _{II}	n	naximum error in T due to the possible error upto 1% in I and 2.5%		7		
	ir	1 g.		13 m	L1	3
	4.91	Unit – IV				114
		$c1 \sqrt{x}$ (3.1.2) dada		iii	400	
		Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^3 + y^2) dx dy$		6	L1.	4
1	o) F	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple		7	L2	
	i	ntegral.		1	LZ	4
	c) l	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by changing the polar				
		coordinates.		7	L1	4
5" -						
8.	a)	Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz$		6	L1	4
	b)	Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the 1 st quadrant.		7	L2	
	c)	Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ by changing the order of integration.		7	L1	100
		Unit – V				Š
9.	a)	Find the volume of the solid generated by revolving one arch of the		i.		
٥.	u,	cycloid $x = a(\theta + \sin \theta)$, $y = a(1 + \cos \theta)$ about the X-axis.		6	L1	
	b)	Prove that $\beta(m,n) = \frac{\sqrt{m}\sqrt{n}}{\sqrt{m+n}}$ with usual notations.	· .	7	L1	
	c)	Obtain the reduction formula for $\int \sin^n x dx$ and hence evaluate				- 1
		$\int_0^{\pi/2} \sin^n x dx.$		7	L1	
10.	2)	$c^{\pi}/2$ $d\theta$ $c^{\pi}/2$ $\sqrt{\cdot\cdot\cdot\cdot}$			- 40	
10.	a)	Prove that $\int_0^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta = \pi$		6	L1	
	b)	Evaluate $\int_0^a x^4 \sqrt{a^2 - x^2} dx$ by using Beta & Gamma functions.		7	Li	
	c)	Find the surface area of the solid generated by the revolution of the			Li	
		cardioid $r = a(1 - \cos\theta)$ about the initial line.		7	1,43	

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

Juration: 3 Hours

		Note: Answer Five full questions choosing One full question from	om éáti	rllai	faxa S		
1.	a)	Unit – I Find the rank of the matrix using elementary row transformation.	Marks)*
1. 人長屋	b)	$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \end{bmatrix}$ Test for consistency and solve the system of equations by Gauss	6	L*1	1		1
	, o,	Test for consistency and solve the system of equations by Gauss elimination method.	-	L3	1		2
	c)	2x + y + 4z = 12, $4x + 11y - z = 33$, $8x - 3y + 2z = 20$. Diagonalize the matrix $\begin{array}{c} -19 & 7 \\ -42 & 16 \end{array}$	7	L2	1		2
2.	a)	Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \end{bmatrix}$					
		[2 -4 3]	7	L3	1		2
	b)	Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular. Find the inverse transformation.	7	- L1	1		1
	c)	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$ to the canonical form.	6	, L1	1		1
		Unit – II					
3.	a)	i) State D'Alembert's ratio test. ii) Test the convergence of the series $1 + \frac{2!}{2^2} + \frac{3!}{3^2} + \cdots \infty$	6 7	L3		2	1
	b)	State and prove Lagrange's mean value theorem. Expand $\log_e(1+x)$ by using Maclaurin's series upto 4 th degree	1	L1		2	1
	·	terms.	7	L1	i i	2	1
4.	l	Verify Cauchy's mean value theorem for the functions $f(x) = e^x$, $g(x) = e^{-x}$ in $\begin{bmatrix} a & b \end{bmatrix}$	e	S L	1	2	2
		Expand $tan^{-1}x$ at $x = 1$ upto 3 rd degree term.	7	L	1	2	1
	c)	Discuss the convergence of the series $\frac{x}{1.3} + \frac{x^2}{3.5} + \frac{x^3}{5.7} + \cdots$	7	7 L	3	2	
	ì	Unit – III					
5.	a)	If $\tan u = \frac{x^3 + y^3}{x - y}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$	ļ	6 L	.1	3	1
	D)	If $u = x + 3y^2$, $v = 4x^2yz$, $w = 2z^2 - xy$. Then find $J = \partial(u, v, w)/\partial(x, y, z)$ at $(1, -1, 0)$ A rectangular box open at the top is to have a volume of 32 cubic		7 L	.1	3	1
		units. What must be the dimensions of the box so that the tota surface area of the box is a minimum?	i	7 L	.3	3	2