Résultats de l'ancien contrôle 4

1a.
$$v = -\frac{1}{2} \frac{d[O_3]}{dt} = \frac{1}{3} \frac{d[O_2]}{dt}$$

$$k = 2.7 \cdot 10^{-4} M^{-1} s^{-1}$$

1b

$$K_c = \frac{\left[\text{NO}_2\right]^2}{\left[\text{N}_2\text{O}_4\right]} = \frac{(0.014)^2}{0.043} = \underline{4.6 \cdot 10^{-3} \text{ M}^{-1}}$$
2.

3.

modification	déplacement vers (la droite ou la gauche)	explication
Augmentation de <i>T</i>	gauche	T favorise la réaction endothermique
Diminution de p	gauche	plus de <i>n</i> à l'état gazeux
Retrait de H ₂ O (<i>l</i>)	Aucun déplacement	Les concentrations des espèces à l'état liquide n'influencent pas l'équilibre
Retrait du O ₂ (g)	gauche	Pour garder K_c constante, plus de formation de $[O_2]$.
Ajout de $CO_2(g)$	gauche	Pour garder K_c constante, diminution de $[CO_2]$
Diminution du volume	droite	Augmentation de <i>p</i> , moins de <i>n</i> à l'état gazeux.

4a.
$$K_{\rm p} = \frac{p_{\rm NO_2}^2}{p_{\rm NO}^2 p_{\rm O_2}}$$
 atm

b.
$$K_{\rm p} = \underline{K_{c}(RT)^{-1}}$$

$$K_{\rm c} = 5.38 \ 10^{13} \ {\rm M}^{-1}$$

5.
$$\underline{s = 10^{-2} \text{ g/}100\text{ml}}$$

6a. et b. cf. polycopié

7. <u>BH</u>₃

La règle de l'octet n'est pas respectée, car il y a une lacune électronique sur le bore. Les 3 liaisons covalentes avec 3 atomes d'hydrogène entourent le bore avec 6 électrons au lieu de 8.

8.
$$[OH^-] = 3.98 \times 10^{-13} M$$

Bon travail!