Electric Circuits I ELCT 301

Assignment I

You will be asked to solve one of the assigned problems during your tutorial in the week of 24-30 October 2022

5 dution

-	
Name:	
I.D. Number	
Tutorial:	
TA Name	

Problem I:

Use KCL and KVL to find i_{Φ} and v_{\perp} in the circuit shown below.

$$\frac{\text{KVL 2}}{-1250 \text{ id} - U_{\Delta} + 500\text{ s. id} + 1\text{Ks.}(0.012 \text{ G} - \text{id}) = 0}$$
 $-1750 \text{ id} + 11U_{\Delta} = 0 - \sqrt{2}$
Solving (1 & (2)

$$J_{\Delta} = 4.36V \#$$
 $i_{\phi} = 0.027A$
 $= 27mA \#$

Problem II

Use KCL and KVL to calculate the power supplied or absorbed by the 200 mA source.

$$P = V \times I$$

$$= -V \times 200 \text{ mA}$$

$$200 - 250 \times 200 \times$$

$$\frac{\text{KVL2:} -20V + U_1 - 0.4U_0 + 200 N \left(0.003U_2 - 200 m + \frac{V_2}{500}\right)}{+ 100 N \left(\frac{U_0}{250} + 0.003V_2 - 200 m\right) = 0 \rightarrow U_1 + 0.5U_2 = 80}{-3(2)}$$

$$\frac{K_{VL3}}{-0.4V_{a}} = \frac{-0.4V_{a}}{-0.6V_{b}} = \frac{-0.4V_{a}}{-0.6V_{b}} = \frac{-0.4V_{a}}{-0.4V_{b}} = 0 \rightarrow 3$$

$$P = U_1 \times 2000 A = 12$$

Problem III

For the circuit shown in Fig. 3, calculate (a) i_{Δ} and (b) v_{o} show that the power developed equals

the power absorbed

KVL 1

Figure 3

$$\frac{\text{KVL2}}{-\text{SoV} - 20i_0 + 18n_{\dot{i}} = 0 \rightarrow 2}$$

$$i_{\Delta} = 2A$$

$$V_{o} = 80V$$

$$i_{\Delta} = 5A$$

Problem IV

Using KVL & KCL Prove that the total power supplied is equal to the absorbed power in the circuit shown in Fig. 4

Figure 4

KUL in LOOP 1:

-420 + 2(-50-20) + 10=0

-250 - 620 + 10=0

$$50 = -320 + 5 \longrightarrow 0$$

KUL in LOOP 2:

-4(1-50-2i) - 420 + 2i = 0

HVO - 420 + 52i = 4

Sub with Eqn 0

-1620 + 5i, = -16

i,= -16+1620 -2

FUL in Loop 3
-4 (1-05.21) +
$$\sqrt{0}$$
 + $412_0 = 0$
5 $\sqrt{0}$ + $412_0 = 4$
5 $\sqrt{0}$ + $412_0 = 4$
5 $\sqrt{0}$ = $412_0 = 4$
 $20 = -41.56$ A
 $20 = -41.56$ A
 $20 = 18.67$ $\sqrt{0}$
 $21 = -17.792$ A

LUL in Loop D: - Ux + 41 (1-50-21) = 0 UX = 0.41885

KULIN LOOPS) - 2, + 4/0 = 0 Vy = 0.448v

P42, U-vo-i)	= 4(1-50-21)2 = 0.0595wath	Pun, 20	= 4 (20)2 = 83.1744 Weth	
Pia, vx	= -Ux (1) = -0:4188 wall	P2/2, -Vo-20	= 2: (-U0-20)2 = 398-1842 Wat	
Puio, (250-21)	=400 (250-21) =-1005.607 walt	Plou, (-Us-is)	= 10 (-vo-io) = -141.1 with	
Pin, i,	= 1(21)2 = 316.556 woll	Z Psupplied =	1163.9 walt	
P.n., 50	= 1 (Va)2 = 348.56	≥ Pals sorbed	d= 1146.53 Wett	
Pauonry	= -2 Vo (Vy) = -16-778 Watt			

Problem V

Find the voltage difference between the nodes a and b in the circuit shown below

Figure 5

$$2o(I_1-I_2) + 2oI_1 - 2o = 0$$

 $2I_1 - I_2 = 1$
 $I_2 = 2I_1 - 1 = 0$

$$-20I_1 + 30I_3 = -20-10$$

$$I_3 = \frac{2}{3}I_1 - 1 - \frac{2}{3}I_2$$

$$-10(T_3 - T_2 + 5) - 20(T_1 - T_2) + 10T_2 = 0$$

$$-20T_1 + 410T_2 - 10T_3 = 50$$

$$= 500 \text{ with } 890 \text{ } 29$$

$$= T_1(-20 + 80 - \frac{20}{20}) = 50 - 10 + 40$$

$$I_{1s} = 1.5 A$$

$$I_{2s} = 2 A$$

$$I_{3s} = 0 A$$

$$Va = -10 I_3 + 30 = 30v$$
 $Vb = 10I_2 = 20v$
 $Vab = 30 - 20 = 10v$

Problem VI

Use KCL and KVL to Find V_{\Delta} in the circuit shown below in Fig. 6

Figure 6

$$Y_{VL}i_{L}Loop 1$$
:

 $Y_{VL}i_{L}Loop 1$:

Subin Eqn (1) 0.54 VA + 4.08 \hat{i}_1 - 4/08 ($\frac{-3}{2}$ \hat{z}_1 - 110) = 0 0.54 VA + 10.2 \hat{z}_1 = -448.8 $VA = -10.2 \hat{z}_1$ - 448.8 $VA = -18.8 \hat{z}_1 - 831.1 - 4$

5 mb in Eq n 3 & 4) in Eq. (2)

 $7i_{1} + 9 \left(-\frac{3}{2}i_{1} - 110\right) + 41.5 \left(-18.8i_{1} - 831.1\right) = 0$ $i_{1} \left(7 + 9 + -\frac{3}{2} + 41.5 + -18.8\right) = 9 * 110 + 831.1 * 4.5$ $i_{1} = -51.92 \text{ A}$ $i_{2} = -32.119 \text{ A}$ $V_{\Delta} = 144.996 \text{ V}$

Problem VII

Use KCL and KVL to calculate the power supplied or absorbed by the dependent (Controlled) sources.

For 80A => Vo: 80+320

KUL in Loop 1:
-100 + 102, +20(
$$\dot{z}_1$$
- \dot{z}_0) + 450 = 0
SWO With Eqn D
-100 + 102, +20(\dot{z}_1 - \dot{z}_0) + 96020= 0
95020 + 302, = 100
 \dot{z}_1 = 100 - 95820 - 0

 -720io + 633.3io + 620 = 120 + 200 20 = -2.313 A 50 = -555.14 21 = 76.57 A

For 220 TX Pro= - (210) (VX)
= - 2568.077 Wall

For Puros (LIVO) (2, -20)
= -175, 164 Kwall