INTERVALOS DE CONFIANZA. Para los ejercicios 1 al 9 de la serie ubicada en:

(Consultar la resolución del ejercicio 6 en: http://dcb.fi-c.unam.mx/profesores/irene/ArchivosClase/Fundamentos 19-2/11 ESD 53 041 SolucionProblema6.pdf) Leer los problemas e identificar y completar lo que se señala en esta tabla, además, resolver los problemas en su cuaderno. http://dcb.fi-c.unam.mx/profesores/irene/ArchivosClase/Fundamentos 19-2/11 ESD S3 041.pdf

Intervalo de confianza:	4 810 0/12	x1-x2-t空, cn2-2を1十十十 - M1-M2 - X1-x2+t空, n+n2-2 Sp 1十十十 x1+x2+t空, n+n2-2 Sp 1十十十	$n = \left(\frac{2}{x}\right)\left(\frac{\sigma^2}{x^2}\right)$	メーチを、ランとハイントを	x-29 Set Acx + 29 C	$\frac{2n\bar{\chi}}{\chi_{2n_{\frac{\alpha}{2}}}^2} < \frac{1}{\lambda} < \frac{2n\bar{\chi}}{\chi_{2n,1-\frac{\alpha}{2}}}$	1 Ki-xz-も全、n,+nz-23pは中山	(n-1/52 < G2 < (n-1/52 X2, n-1 X2, n-1 X2, n-1	210-19-6-10-10 10-10-10-10-10-10-10-10-10-10-10-10-10-1
Variable de apoyo (debe ser una función del parámetro y del estimador, no tener cantidades desconocidas y tomar en consideración las condiciones del problema)	$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$	T= X-x2-M1-N2	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N-X-T	44	$2\lambda n \bar{X} \sim \chi_{2n}^2$	T= x, -x2 (11-11)	1 2 1 2 (n-1) 52 C-2	100 of a 100
Otra Información conocida	σ =0.45 $\bar{\chi}$ =	1/4=.15 1/8 = .21	0 BO X-M=10	x = 198.9	18.5 - 18 - 1 18.5 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\bar{x} = 4.2$	XA = 65 Ye = 37 3.2 = 90 53 49	4 7 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 3 - H - 12 - 12 - 12 - 12 - 12 - 12 - 12
Tamaño de muestra n	n=16	NA = 35	n= 4 2	N=16	No	n=15	NA=12 NB=20	12=1	n = 197 9A=241 9A=241
Parámetro(s) Buscado(s)	μ=tensión de ruptura promedio	MM2 Dif del pro Fundidad de	N € núm donas	x = dolotes	N. vel de intervalos	$\mu = \frac{1}{\lambda}$	MM? d. f. de dura promedio	reso de trabajo	Pi-Ps difference
Forma de la distribución poblacional	Normal con varianza conocida X=Tensión de ruptura de los hilos	dezconida x=Difente pro	ACCORDING TO A STATE OF THE PARTY OF THE PAR	Normal con var descended	foblación namul con so concel de	Exponencial(k)	A-A2 = Difference	Vergnze de octonse de normal oct de vorionza de norma de norma de normas de nobajo	9792 = dife piopoi
No. Problema	1	7	m	4	Ŋ	9	-	∞	6