### Homework-3 Solutions

## Question 1



The above neural network has two inputs. It computes a selection between the two alternatives A, B in terms of two probability outputs.  $p_1$  is the probability that A occurs, and  $p_2$  is the probability that B occurs. The node  $V_0$  is implemented with ReLU. The nodes  $V_1, V_2$  are linear (ADALINE), and they are not connected to a bias. The probabilities  $p_1, p_2$  are computed from the values of  $V_1, V_2$  using softmax.

**A.1:** Compute the values of all nodes in forward propagation when the network is given the input  $x_1 = 2$ ,  $x_2 = 7$ , the current weight values are:  $w_0 = 0$ ,  $w_1 = 0.2$ ,  $w_2 = 0.1$ ,  $w_3 = 0.1$ ,  $w_4 = 1$ , with the desired selection being **A** Use training rate  $\epsilon = 0.1$ . Your answer should be explicit numeric values for each node.

#### Answer

$$V_0 = w_0 + 2w_1 + 7w_2 = 0.4 + 0.7 = 1.1$$

$$V_1 = w_3 V_0 = 0.11$$

$$V_2 = w_4 V_0 = 1.1$$

$$p_1 = e^{V_1}/(e^{V_1} + e^{V_2}) = 0.27$$

$$p_2 = e^{V_2}/(e^{V_1} + e^{V_2}) = 0.73$$
(Z = 4.12)

# Question 2

Consider a deep neural net applied to decide between the following four categories:

cat, tiger, human face, lion

The neural net uses a softmax unit at the output layer. Consider the case where the values fed into the output layer are:

 $\begin{array}{ccc} \text{cat} & 0.5 \\ \text{tiger} & 0.8 \\ \text{human face} & -3 \\ \text{lion} & 0.6 \end{array}$ 

The softmax converts these values into a probability vector.

1. Compute the probability vector.

Answer:

$$e^{0.5} = 1.64872$$
,  $e^{0.8} = 2.22554$ ,  $e^{-3} = 0.0497871$ ,  $e^{0.6} = 1.82212$ ,  $e^{0.5} + e^{0.8} + e^{-3} + e^{0.6} = 5.74617$   
 $p = (0.286925, 0.387309, 0.00866439, 0.317102)$ 

2. Which outcome is the most likely?

Answer: tiger

**3.** Which outcome is the least likely?

Answer: human face

**4.** What is the result of cross-entropy cost function if the target output is lion?

Answer:

$$E = \ln(1/0.317102) = 1.14853$$

## Question 3

In the table below cases 3,4 are distributions, and cases 1, 2 can be converted into distributions.

| case | A   | В   | С   | D   |
|------|-----|-----|-----|-----|
| 1    | 1   | -2  | 3   | -4  |
| 2    | 1   | 2   | -3  | 0   |
| 3    | 1   | 0   | 0   | 0   |
| 4    | 1/4 | 1/4 | 1/4 | 1/4 |

Converting 1 into a probability distribution using softmax:

$$\begin{split} V &= \{1, -2, 3, -4\} \\ q &= \{2.71828, 0.135335, 20.0855, 0.0183156\} \\ Z &= 22.9575 \\ p &= \{0.118405, 0.00589504, 0.874902, 0.000797807\} \end{split}$$

Converting 2 into a probability distribution using softmax:

$$\begin{split} V &= \{1,2,-3,0\} \\ q &= \{2.71828,7.38906,0.0497871,1\} \\ Z &= 11.1571 \\ p &= \{0.243636,0.662272,0.00446236,0.0896288\} \end{split}$$

1. Use cross entropy to determine which distribution among 1,2,3 is most similar to 4. Show your computations.

| case | A        | В          | $^{\rm C}$ | D           | cross entropy of $p_4$ with candidate: |
|------|----------|------------|------------|-------------|----------------------------------------|
| 1    | 0.118405 | 0.00589504 | 0.874902   | 0.000797807 | 5.24224                                |
| 2    | 0.243636 | 0.662272   | 0.00446236 | 0.0896288   | 3.47989                                |
| 3    | 1        | 0          | 0          | 0           | infinity                               |
| 4    | 1/4      | 1/4        | 1/4        | 1/4         | 2                                      |

**Answer:** 1 / 2 / 3

2. Use cross entropy to determine which distribution among 1,2,4 is most similar to 3. Show your computations.

| case | A        | В          | $\mathbf{C}$ | D           | cross entropy of $p_3$ with candidate: |
|------|----------|------------|--------------|-------------|----------------------------------------|
| 1    | 0.118405 | 0.00589504 | 0.874902     | 0.000797807 | 3.0782                                 |
| 2    | 0.243636 | 0.662272   | 0.00446236   | 0.0896288   | 2.0372                                 |
| 3    | 1        | 0          | 0            | 0           | 0                                      |
| 4    | 1/4      | 1/4        | 1/4          | 1/4         | 2                                      |

**Answer:** 1 / 2 / 4

## Question 4

In this question, if you need to compute logarithms use natural basis logarithm (ln).

Consider a deep neural net applied to decide between the following three categories: A, B, C.

#### 1.

**1.1** What is the one-hot encoding of the category A?

**Answer:** (1,0,0)

**1.2** What is the one-hot encoding of the category B?

**Answer:** (0,1,0)

**1.3** What is the one-hot encoding of the category C?

**Answer:** (0,0,1)

#### 2.

Consider the deep learning network output specified by the vector z = (1.0, 2.0, 3.0). Using softmax and the cross entropy criterion is z closer to A, to B, or to C (in their one-hot encoding)?

#### Answer:

A / B / C

#### 3.

Find a bias value x (it can be either positive or negative) such that the vector  $z_x = (1.0 + x, 2.0 + x, 3.0 + x)$  would be considered by the network as closer to A than to B or to C.

#### Answer.

no such value exist

#### 4.

Find a bias value x (it can be either positive or negative) such that the vector  $z_x = (1.0 + x, 2.0 + x, 3.0 + x)$  would be considered by the network as closer to B than to A or to C.

## Answer.

No such value exist.

## **5**.

Find a bias value x (it can be either positive or negative) such that the vector  $z_x = (1.0 + x, 2.0 + x, 3.0 + x)$  would be considered by the network as closer to C than to A or to B.

### Answer.

any value.

## **Details**

The cross entropy of the vector p with the vector q is  $H(p,q) = \sum_j p_j \log(1/q_j)$ . When p is obtained from one-hot encoding with the hot coordinate being j, the result is:  $H(p,q) = \log(1/q_j)$ . Therefore H(p,q) is smallest when  $q_j$  is largest. Regardless of which value is assigned to x the softmax value associated with 3+x will always be the largest of the three coordinates. To see this observe that after softmax the value of  $q_j$  is  $\frac{e^{j+x}}{e^{1+x}+e^{2+x}+e^{3+x}}$  for j=1,2,3. This reduces to  $\frac{e^j}{e^1+e^2+e^3}$  for j=1,2,3, which is independent of x.