What does it mean that a matrix is "ill-conditioned"? How does ill conditioning affect a modeling problem? How are these questions related to the singular value decomposition of a matrix? Are there remedial steps that can ameliorate ill conditioning?

- (a) Consider the matrix $\mathbb{A} = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -1 \end{pmatrix}$ and the data vector $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Use your preferred computer algebra system or programming language to solve $\mathbb{A}\vec{x} = \vec{b}$.
- (b) Compare the "size" of \vec{x} to the size of \vec{b} or the columns of A. Anything surprising?
- (c) Add a small amount of *noise* to \vec{b} by adding $\vec{\epsilon} = \begin{pmatrix} 0.1 \\ -0.1 \end{pmatrix}$. Recompute \vec{x} and compare it to the previous \vec{x} . Discuss your results. Why does \vec{x} change so much?
- (d) Remember that \vec{x} acts on the columns of \mathbb{A} to combine them construct \vec{b} (it defines a linear combination of the columns of \mathbb{A}). Draw a picture to see why \vec{x} is so sensitive to changes in \vec{b} .
- (e) Compute the *condition number* of \mathbb{A} . For a matrix that is only 2×2 , a condition number this big is "bad".
- (f) Compute the singular values of A. How are they related to the condition number generally?
- (g) Compute the eigenvalues of $\mathbb{A}^{\dagger}\mathbb{A}$ and take their square roots. Compare to the singular values.
- (h) Try to answer all the questions posed when the problem was introduced. Write the answers in a way that helps yourself, not in the way you think the grader is expecting—you want to remember what you learned in this problem. It introduces core concepts. Own them.

FYI: the relationship between the error $\vec{\epsilon}$ in \vec{b} and the condition number κ , and the corresponding error in the inferred parameters \hat{x} is

$$\frac{\|\delta\hat{x}\|}{\|\hat{x}\|} \lesssim \kappa^2 \frac{\|\epsilon\|}{\|b\|}.$$

Did this relationship hold for your case?