

TECNICATURA SUPERIOR EN

Telecomunicaciones

Espacio: Sistemas de Control y Servicios - 2024

Alumno: Dario Arriola

Profesor: Gonzalo Vera

Objetivos del Proyecto:

- 1. <u>Automatización de la Domótica:</u> Implementar tecnologías que permitan la automatización y control remoto de dispositivos del hogar para mejorar la comodidad y la eficiencia energética.
- 2. <u>Interacción Hombre-Máquina</u>: Desarrollar una interfaz intuitiva que facilite la interacción de los usuarios con el sistema mediante comandos de voz y aplicaciones móviles.
- 3. <u>Integración de Sistemas y Tecnologías IoT</u>: Asegurar la compatibilidad y la integración efectiva de diferentes dispositivos y tecnologías dentro del ecosistema del hogar inteligente.
- 4. <u>Educación y Desarrollo Profesional</u>: Proporcionar a los estudiantes experiencia práctica en el diseño y desarrollo de sistemas IoT aplicados a la domótica, preparándolos para enfrentar desafíos tecnológicos en entornos profesionales.

Proyecto ABP #13: Asistente Virtual para el Hogar

3- La Familia de ESP32:

La familia ESP32 de Espressif Systems ofrece una gama de microcontroladores potentes y económicos, ideales para el desarrollo de aplicaciones de domótica. Con sus características como Wi-Fi, Bluetooth, bajo consumo de energía y una amplia variedad de opciones de memoria y pines, los ESP32 se han convertido en una opción popular entre los entusiastas del bricolaje y los profesionales.

Dentro de la familia ESP32, encontramos modelos como el ESP32 Wroom, S3, S2, C6, C3 y H2, cada uno con sus propias ventajas y desventajas. El ESP32 Wroom destaca por su bajo costo, mientras que el ESP32 S3 ofrece un alto rendimiento. El ESP32 S2 combina un bajo consumo de energía con un buen rendimiento, mientras que el ESP32 C6 ofrece un bajo consumo de energía y una memoria flash limitada. El ESP32 C3 es una opción económica con bajo consumo de energía y menor rendimiento, y el ESP32 H2 se destaca por su alto rendimiento y Wi-Fi 6, pero con un mayor costo y consumo de energía.

ESP32-WROOM-32 Pinout

ESP32-S2-DevKitM-1

с6

C3

ESP32-C3-DevKitM-1

ESP32-C3 Specs
32-bit RISC-V single-core @160MHz
di-Fi IEEE 802.11 b/g/n 2.4GHz
3Luetooth LE 5
400 KB SRAM (16 KB for cache)
384 KB ROM
22 GPIOs, 3x SPI, 2x UART, I2C,
I2S, RMT, LED PNM, USB Serial/JTAG,
JDMA, TWAI®, 12-bit ADC

RTC Power Domain (VDD3P3_RTC)
GND Ground
PWD Power Rails (3Y3 and 5V)

UPU: USS Weak Pull-up
WPU: Week Pull-up (internal)
WPD: Week Pull-up (internal)
It : Input Enable (After Reset)
It : Input Enable (Depends of PVSE) DIS, PAL (After Reset)
It : Input Enable (After Reset)
OE: Output Enable (After Reset)
OD: Output Disabled (After Reset)

H2

La elección del modelo ESP32 adecuado para un proyecto de domótica dependerá de las necesidades específicas del mismo, como el presupuesto, el consumo de energía, el rendimiento y las funcionalidades requeridas. Es importante verificar la disponibilidad de módulos y bibliotecas para cada modelo antes de tomar una decisión.

ISPC / Tecnicatura Superior en Telecomunicaciones

En general, la familia ESP32 ofrece una solución flexible y escalable para el desarrollo de aplicaciones de domótica, desde proyectos simples hasta sistemas complejos. Su bajo costo, amplio conjunto de características y comunidad activa la convierten en una opción atractiva para una amplia gama de aplicaciones.

Modelo	Procesador	Velocidad CPU	Conectividad	Memoria RAM	Memoria Flash	Consumo de Energía	Otras Características y Ventajas
ESP32 Wroom	Dual-Core Xtensa LX6 a 240 MHz	Hasta 600 DMIPS	Wi-Fi, Bluetooth Classic y Bluetooth Low Energy	520 KB	Hasta 4 MB	Bajo consumo de energía	Ampliamente disponible, soporte comunitario, tamaño compacto
ESP32 S3	Dual-Core Xtensa LX7 a 240 MHz	Hasta 600 DMIPS	Wi-Fi 6, Bluetooth 5.2, Bluetooth Low Energy	384 KB	Hasta 16 MB	Eficiencia energética mejorada	Mayor capacidad de memoria Flash, mejoras en conectividad Wi-Fi y Bluetooth
ESP32 S2	Xtensa LX7 a 240 MHz	Hasta 600 DMIPS	Wi-Fi, Bluetooth Low Energy	320 KB	Hasta 4 MB	Eficiencia energética mejorada	Integrado con más periféricos, soporte para USB OTG
ESP32 C6	Dual-Core Xtensa LX6 a 240 MHz	Hasta 600 DMIPS	Wi-Fi 6, Bluetooth 5.2, Bluetooth Low Energy	400 KB	Hasta 16 MB	Eficiencia energética mejorada	Mejoras en conectividad Wi-Fi y Bluetooth, soporte para Wi-Fi 6
ESP32 C3	RISC-V Single-Core a 160 MHz	Hasta 160 DMIPS	Wi-Fi, Bluetooth Low Energy	400 KB	Hasta 16 MB	Ultra bajo consumo de energía	Ideal para dispositivos de bajo consumo, tamaño compacto
ESP32 H2	RISC-V Single-Core a 160 MHz	Hasta 160 DMIPS	Wi-Fi, Bluetooth Low Energy	400 KB	Hasta 16 MB	Ultra bajo consumo de energía	Diseñado para aplicaciones de sensores y batería, tamaño compacto