

Eletrónica

Curso Técnico Superior Profissional de Sistemas Eletrónicos e Computadores

Trabalho de Laboratório nº 3:

Curvas características do transístor de junção bipolar (NPN)

Nome: André Antunes Número: 190204003 Nome: Diogo Silva Número: 190204007 Nome: João Quintiliano Número: 190204013 Docente: Vítor Antunes e Raul Correia

Turma: SEC

Ano Letivo 2019-2020

Índice

I INTRODUÇÃO	2
II CORPO DO RELATÓRIO	
Tabela 1	9
Tabela 2	
Tabela 3	10
Tabela 4	11
Tabela 5	11
III CONCLUSÕES	12
IV BIBLIOGRAFIA	
V ANEXOS	

I INTRODUÇÃO

São vários os objetivos para o presente trabalho, especialmente, provar, traçando as curvas de modo que IC = f(VCE) e IB = f(VBE) de um transístor de junção bipolar (NPN), a partir das medidas efetuadas, calcular o ganho de corrente (βF), obter um valor aproximado da tensão de Early a partir das curvas traçadas e identificar as regiões de funcionamento do transístor. As curvas características obter-se-ão a partir de pares de valores dos quais são VCE e IC, para diferentes valores de IB, e (VBE, IB) para um dado valor de VCE, utilizando-se a montagem em emissor comum representada na figura 1.

ESQUEMA

II CORPO DO RELATÓRIO

II - A tensão de Early foi descoberta por James M. Early

O Efeito de Early é a descrição um fenómeno que acontece nos transístores de junção bipolar (BJT).

O B_f é a relação entre I_C e I_B . Uma forma do B_f ser maior é aumentar a tensão V_{CE} , ou seja, aumentar a tensão no Coletor, mas, ao aumentar a tensão no Coletor existirá uma menor perda para a Base, acabando por complicar os cálculos.

Com o aumento da polarização inversa aumenta também a região do Coletor onde não há cargas, ou seja, significa que com uma base mais estreita, há menos cargas a perderem-se, comprova-se assim, que B_f aumenta.

Na família dos Transístores MOSFETs também se aplica o efeito de Early.

A figura abaixo ilustra a curva característica do efeito de Early.

Figura 1- Curva característica do efeito de Early

II - Resultados obtidos por via analítica

1- Após a analise feita as características do transístor estimamos que o valor de VBEon será de 0.6V, no caso de VCEsat o valor vai variar entre 0.3 e 1V esta variação vai depender de Ib, finalmente para o βF o valor entre 30 e 325 isto deve-se a variação de valor da corrente Ic.

2- Ver tabela 1

Eletrónica **ESTSetúbal**

5- Os cálculos realizados encontram-se na Tabela 2.

7-

Preto – zona ativa direta Vermelho – zona de saturação Azul – zona de cort <u>ESTSetúbal</u> Eletrónica

IV – Resultados obtidos por simulação

- 1- Resposta a esta questão encontra-se na tabela 3.
- **2-** Resposta a esta questão encontra-se na tabela 4.

3-

5- Ao observar o gráfico conseguimos perceber que á medida que o VCE aumenta que o nosso IC vai aumentar também. Uma vez que que sabemos que para calcular o βf usamos a fórmula βf =IC/IB percebemos que quando o IC aumenta o ganho vai diminuir. Comprovamos isto a partir dos resultados da tabela 4.

Como já foi falado anteriormente sabemos que a tensão de Early é o prolongamento da reta para a parte negativa de VCE intersetando eventualmente num ponto do eixo VCE, pois temos então que VCE=-VA, sendo VA o valor da tensão de Early.

Ao verificar o valor mais alto da tensão VCE á tabela 3, VCE=9.82V, concluímos que o valor da tensão de Early será aproximadamente 9.82V.

6- Resposta a esta questão encontra-se na tabela 5.

7-

9- Os resultados obtidos por via analítica comparados com os resultados obtidos através da simulação são bastante semelhantes. Contudo na tabela 1 e na tabela 3 vemos que á uma discrepância nos valores de VCE sendo que na tabela 1 temos valores de VCE negativos. Considerámos que neste caso não foi ignorada o efeito de Early sendo que esses valores negativos, em análise teórica, serão um resultado da consideração do efeito de Early.

FOLHA DE REGISTOS

Tabela 1

	$V_{BB}(\mathrm{V})$	1.07	1.54	2.48	3.42	4.36	5.3
	$I_B(\square A)$	10	20	40	60	80	100
	$I_C(mA)$	1	2	4	6	8	10
$V_{CC}(V)$							
0.5	$V_{CE}(V)$	0.32	0.14	-0.22	-0.58	-0.94	-1.3
0,5	$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6
	$V_{CE}(V)$	0.82	0.64	0.28	-0.08	-0.44	-0.8
1	$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6
	$V_{CE}(V)$	1.82	1.64	1.28	0.92	0.56	0.2
2	$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6
	$V_{CE}(V)$	3.82	3.64	3.28	2.92	2.56	2.2
4	$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6
	$V_{CE}(V)$	5.82	5.64	5.28	4.92	4.56	4.2
6	$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6
	$V_{CE}(V)$	9.82	9.64	9.28	8.92	8.56	8.2
10	$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6

Tabela 2

V_{CE}	2V	2V	2V	2V	2V	2V
$I_B(\Box A)$	10	20	40	60	80	100
Vcc(V)	2.18	2.36	2.72	3.08	3.44	3.8
$V_{BE}(V)$	0.6	0.6	0.6	0.6	0.6	0.6

Tabela 3

	$V_{BB}(V)$	1.25	1.73	2.7	3.62	4.6	5.5
	$I_B(\Box A)$	10	20	40	60	80	100
$V_{CC}(V)$							
0.7	$V_{CE}(V)$	0.317	0.17	0.122	0.1	0.096	0.089
0,5	$V_{BE}(V)$	0.7	0.7	0.7	0.7	0.7	0.7
	$V_{CE}(V)$	0.817	0.64	0.28	0.15	0.13	0.119
1	$V_{BE}(V)$	0.7	0.7	0.8	0.8	0.8	0.8
	$V_{CE}(V)$	1.818	1.64	1.28	0.9	0.55	0.23
2	$V_{BE}(V)$	0.7	0.7	0.8	0.8	0.8	0.8
,	$V_{CE}(V)$	3.818	3.64	3.28	2.9	2.55	2.21
4	$V_{BE}(V)$	0.7	0.7	0.8	0.8	0.8	0.8
	$V_{CE}(V)$	5.818	5.64	5.28	4.92	4.55	4.21
6	$V_{BE}(V)$	0.7	0.7	0.8	0.8	0.8	0.8
1.0	$V_{CE}(V)$	9.82	9.64	9.28	8.92	8.55	8.21
10	$V_{BE}(V)$	0.7	0.7	0.8	0.8	0.8	0.8

<u>ESTSetúbal</u> Eletrónica

Tabela 4

	$I_B(\Box A)$	10	20	40	60	80	100
$V_{CC}(V)$							
0.5	IC (mA)	1.01	1.83	2.1	2.2	2.24	2.28
0,5	β_F	101	91.5	52.5	36.7	28	22.8
4	Ic (mA)	1	2	4	4.7	4.8	4.89
1	β_F	100	100	100	78.3	60	48.9
	Ic (mA)	1	2	4	6.1	8	9.8
2	β_F	100	100	100	101	0.1	98
	Ic (mA)	1	2	4	6.1	8	9.9
4	β_F	100	100	100	101.6	100	99
	IC (mA)	1	2	4	6	8	9.9
6	β_F	100	100	100	100	100	99
1.0	IC (mA)	1	2	4	6	8	9.9
10	β_F	100	100	100	100	100	99

Tabela 5

V_{CE}	2V	2V	2V	2V	2V	2V
$I_B(\Box A)$	10	20	40	60	80	100
Vcc(V)	2.2	2.4	2.8	3.1	3.5	3.9
$V_{BE}(V)$	0.7	0.7	0.8	0.8	0.8	0.8

III CONCLUSÕES

Com este trabalho aprendemos que o Transístor pode-se encontrar em 3 zonas de operação, que são elas, Zona de Corte, Zona de Saturação e Zona Linear, também calculamos o Ganho de Corrente, aprendemos o que é o Efeito de Early e as suas curvas característica bem como os seus cálculos.

IV BIBLIOGRAFIA

https://en.wikipedia.org/wiki/Early_effect

https://pt.qwe.wiki/wiki/Early_effect

V ANEXOS

Valores e tabelas retirados do DataSheet fornecido pelo Professor Doutor para os compatíveis com os seguintes modelos de Transístor Bipolar NPN (2N2221A, 2N2222A JAN, 2N2221AL, 2N2222AL JANTX, 2N2221AUA, 2N2222AUA JANTXV, 2N2221AUB, 2N2222AUB JANS, 2N2221AUBC e 2N2222AUBC).

É necessário para a questão III.1

ABSOLUTE MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	50	Vdc
Collector-Base Voltage	V_{CBO}	75	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current	I_C	800	mAdc
Total Power Dissipation @ T _A = +25°C	P _T	0.5	W
Operating & Storage Junction Temperature Range	T _{op} , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Parameters / Test Conditions		Symbol	Max.	Unit
Thermal Resistance, June	ction-to-Ambient			
2N2221A, L	2N2222A, L	$R_{\theta JA}$	325	°C/W
2N2221AUA	2N2222AUA	- 40A	210	
2N2221AUB, UBC	2N2222AUB, UBC		325	

Note: Consult 19500/255 for thermal performance curves.

Derate linearly 3.08mW/°C above T_A > +37.5°C

Derate linearly 4.76mW/°C above T_A > +63.5°C

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERTICS	•		•	
Collector-Emitter Breakdown Voltage I _C = 10mAdc	V _{(BR)CEO}	50		Vdc
Collector-Base Cutoff Current V _{CB} = 75Vdc V _{CB} = 60Vdc	I_{CBO}		10 10	μAdc ηAdc
Emitter-Base Cutoff Current $V_{EB} = 6.0 Vdc$ $V_{EB} = 4.0 Vdc$	I _{EBO}		10 10	μAdc ηAdc
Collector-Emitter Cutoff Current $V_{CE} = 50Vdc$	I _{CES}		50	ηAdc

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)					
Forward-Current Transfer Ratio					
$I_C = 0.1 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC		30 50		
$I_C = 1.0 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC		35 75	150 325	
$I_{C}=10mAdc,V_{CE}=10Vdc$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC	h_{FE}	40 100		
$I_C = 150 \text{mAde}, V_{CE} = 10 \text{Vde}$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC		40 100	120 300	
$I_C = 500 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC		20 30		
Collector-Emitter Saturation Voltage					
$\begin{split} &I_{C}=150\text{mAdc},I_{B}=15\text{mAdc}\\ &I_{C}=500\text{mAdc},I_{B}=50\text{mAdc} \end{split}$		V _{CE(sat)}		0.3 1.0	Vdc
Base-Emitter Voltage $I_C = 150 \text{mAdc}, I_B = 15 \text{mAdc}$ $I_C = 500 \text{mAdc}, I_B = 50 \text{mAdc}$		$V_{BE(sat)}$	0.6	1.2 2.0	Vdc

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current T $I_C = 1.0 \text{mAdc}, \ V_{CE} = 10 \text{Vdc}, \ f = 1.0 \text{kHz}$	ransfer Ratio 2N2221A, L, UA, UB, UBC 2N2222A, L, UA, UB, UBC	\mathbf{h}_{fe}	30 50		
Magnitude of Small–Signal Short-Circuit Forward Current Transfer Ratio $I_{C}=20 mAdc,V_{CE}=20 Vdc,f=100 MHz$		$ \mathbf{h}_{\mathrm{fe}} $	2.5		
Output Capacitance $V_{CB} = 10 V dc, \ I_E = 0, \ 100 kHz \le f \le 1.0 MHz$		C_{obo}		8.0	pF
Input Capacitance $V_{EB}=0.5Vdc,I_{C}=0,100kHz\leq f\leq 1.0MHz$		C _{ibo}		25	pF

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time See figure 8 of MIL-PRF-19500/255	t _{on}		35	ηs
Turn-Off Time See Figure 9 of MIL-PRF-19500/255	$t_{\rm off}$		300	ηs

⁽²⁾ Pulse Test: Pulse Width = $300\mu s,$ Duty Cycle $\leq 2.0\%.$