Метод сеток решения смешанной задачи для уравнения гиперболического типа Выполнил: Шведков П. Н.

Явный метод

```
\frac{\partial^2 U(x,t)}{\partial t^2} = \frac{\partial^2 U(x,t)}{\partial x^2}, 0 \le x \le 1, 0 \le t \le 1.
U(0,t) = \frac{1}{1+\alpha}, U(1,t) = \frac{1}{t+\alpha+1}
U(x,0) = \frac{1}{x+\alpha} = \alpha(x), \frac{\partial U(x,0)}{\partial t} = -\frac{1}{(x+\alpha)^2} = \beta(x)
In[1] := h = 0.1
\tau = 0.05
\alpha = 0.5 + 0.1 * 8
maxM = \frac{1}{h}
maxN = \frac{1}{r}
Out[1] = 0.1
Out[2] = 0.05
Out[3] = 1.3
Out[4] = 10.
Out[5] = 20.
In[51] := U = ConstantArray[0, \{11, 21\}];
```

In[52]:=
$$\gamma_0[t_{-}] := \frac{1}{1+\alpha}$$

$$\gamma_1[t_{-}] := \frac{1}{t+1+\alpha}$$

$$A[x_{-}] := \frac{1}{\alpha+x}$$

$$B[x_{-}] := \frac{-1}{(x+\alpha)^2}$$

$$s = \frac{\tau^2}{h^2};$$

$$\phi[x_{-}, t_{-}] := (-\alpha^2 t + 1) e^{-\alpha x}$$

In[58]:=
$$X = (\# h \& /@ Range[0, maxM])$$

 $T = (\# \tau \& /@ Range[0, maxN])$

Out[58]=

$$\{0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.\}$$

Out[59]=

$$In[60]:=$$
 $U[[1]] = (\gamma_0[\#] \& /@T)$
 $U[[maxM + 1]] = (\gamma_1[\#] \& /@T)$

Out[60]=

{0.434783, 0.434

Out[61]=

{0.434783, 0.425532, 0.416667, 0.408163, 0.4, 0.392157, 0.384615, 0.377358, 0.37037, 0.363636, 0.357143, 0.350877, 0.344828, 0.338983, 0.333333, 0.327869, 0.322581, 0.31746, 0.3125, 0.307692, 0.30303}

In[62]:=
$$U[[;;, 1]] = A[#] & I@X$$

U[[;;, maxN+1]] =
$$\left(A[\pm] + \tau * B[\pm] + \frac{\tau^2}{2} (A''[\pm])\right) \& /@X$$

Out[62]=

{0.769231, 0.714286, 0.666667, 0.625, 0.588235,

0.555556, 0.526316, 0.5, 0.47619, 0.454545, 0.434783}

Out[63]=

{0.740783, 0.689687, 0.645185, 0.606079, 0.571443,

0.540552, 0.51283, 0.487813, 0.465123, 0.44445, 0.425536}

In[64]:= U // MatrixForm

Out[64]//MatrixForm=

(0.769231	0.434783	0.434783	0.434783	0.434783	0.434783	0.434783	0.434783	0.434783
0.714286	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.666667	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.625	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.588235	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.555556	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.526316	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.47619	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.454545	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
0.434783	0.425532	0.416667	0.408163	0.4	0.392157	0.384615	0.377358	0.37037

In[65]:= For[i = 2, i ≤ maxM, i++,

For
$$[j = 1, j \le \max N, j++, U[[i][[j+1]] = s U[[i+1, j]] + 2 (1-s) U[[i, j]] + s U[[i-1, j]]]$$

In[66]:= U // MatrixForm

Out[66]//MatrixForm=

```
0.769231 0.434783 0.434783 0.434783 0.434783 0.434783 0.434783 0.434783 0.434783
0.714286 1.4304
                  2.2543
                           3.49015 5.34391
                                             8.12457
                                                      12.2955
                                                                18.552
                                                                        27.9367
0.666667 1.33482 2.35983 4.10332
                                    7.02752
                                             11.8773
                                                       19.847
                                                               32.8444
                                                                        53.9047
         1.25123 2.21054 3.90577
                                                               36.6039
 0.625
                                    6.88449
                                             12.0836
                                                      21.0947
                                                                        63.1169
0.588235 1.17749 2.07904
                          3.6712
                                    6.48325
                                             11.446
                                                      20.1899
                                                               35.5585
                                                                        62.4888
0.555556 1.11197 1.96233
                           3.46326 6.11268
                                             10.7898
                                                      19.0463
                                                               33.6169
                                                                        59.3149
0.526316 1.05336 1.85804
                           3.27764
                                    5.78227
                                             10.2016
                                                      17.9998
                                                               31.7613
                                                                        56.0462
                                                               30.0927
  0.5
         1.00063 1.76428
                           3.11093
                                    5.4858
                                             9.67427
                                                      17.0618
                                                                        53.0793
0.47619 0.952922 1.67954
                           2.96038
                                     5.2183
                                              9.1989
                                                      16.2169
                                                               28.5908
                                                                        50.4094
0.454545 0.909561 1.70896
                           3.08749
                                    5.47336 9.61462
                                                      16.8197
                                                               29.3799
                                                                        51.3119
0.434783 0.425532 0.416667 0.408163
                                      0.4
                                             0.392157 0.384615 0.377358 0.37037
```

In[67]:=

{U // Transpose}[[1][[2;;]]

Out[67]=

```
{{0.434783, 1.4304, 1.33482, 1.25123, 1.17749, 1.11197, 1.05336,
  1.00063, 0.952922, 0.909561, 0.425532}, {0.434783, 2.2543, 2.35983,
  2.21054, 2.07904, 1.96233, 1.85804, 1.76428, 1.67954, 1.70896, 0.416667},
 {0.434783, 3.49015, 4.10332, 3.90577, 3.6712, 3.46326, 3.27764,
  3.11093, 2.96038, 3.08749, 0.408163}, {0.434783, 5.34391, 7.02752,
  6.88449, 6.48325, 6.11268, 5.78227, 5.4858, 5.2183, 5.47336, 0.4},
 {0.434783, 8.12457, 11.8773, 12.0836, 11.446, 10.7898, 10.2016, 9.67427,
  9.1989, 9.61462, 0.392157}, {0.434783, 12.2955, 19.847, 21.0947,
  20.1899, 19.0463, 17.9998, 17.0618, 16.2169, 16.8197, 0.384615},
 {0.434783, 18.552, 32.8444, 36.6039, 35.5585, 33.6169, 31.7613, 30.0927,
  28.5908, 29.3799, 0.377358}, {0.434783, 27.9367, 53.9047, 63.1169,
  62.4888, 59.3149, 56.0462, 53.0793, 50.4094, 51.3119, 0.37037},
 {0.434783, 42.0138, 87.8412, 108.152, 109.512, 104.595, 98.898, 93.6305,
  88.884, 89.6629, 0.363636}, {0.434783, 63.1294, 142.265, 184.188,
  191.306, 184.27, 174.496, 165.17, 156.734, 156.806, 0.357143},
 {0.434783, 94.8027, 229.18, 311.848, 333.007, 324.232, 307.811, 291.379,
  276.393, 274.482, 0.350877}, {0.434783, 142.313, 367.471, 525.067,
  577.472, 569.599, 542.774, 514.022, 487.434, 480.909, 0.344828},
 {0.434783, 213.578, 586.785, 879.468, 997.474, 998.766, 956.561, 906.726,
  859.657, 843.308, 0.338983}, {0.434783, 320.476, 933.571, 1465.9,
  1716.08, 1747.52, 1684.53, 1599.23, 1516.17, 1479.96, 0.333333},
 {0.434783, 480.822, 1480.48, 2432.24, 2940.59, 3050.3, 2963.68, 2819.98,
  2674.06, 2599.07, 0.327869}, {0.434783, 721.342, 2340.92, 4018.48,
  5018.95, 5310.59, 5208.09, 4970.89, 4716.08, 4567.2, 0.322581},
 {0.434783, 1082.12, 3691.71, 6612.95, 8533.04, 9220.63, 9139.79, 8758.35,
  8316.84, 8029.9, 0.31746}, {0.434783, 1623.29, 5808.1, 10842.3,
  14452.8, 15964.2, 16014.8, 15422.5, 14664.9, 14124.1, 0.3125},
 {0.434783, 2435.04, 9117.98, 17715.5, 24389.8, 27559.5, 28013.3, 27137.4,
  25 852.9, 24 852.5, 0.307692}, {0.740783, 3652.68, 14 285.7, 28 852.8,
  41013.6, 47436.7, 48909.8, 47709.5, 45563.7, 43742., 0.425536}}
```

In[68]:= TableForm[$\texttt{Join}[\{\{"u^{n}_{0}",\,"u^{n}_{1}",\,"u^{n}_{2}",\,"u^{n}_{3}",\,"u^{n}_{4}",\,"u^{n}_{5}",\,"u^{n}_{6}",\,"u^{n}_{7}",\,"u^{n}_{8}",\,"u^{n}_{9}",\,"u^{n}_{10}"\}\},$ (U // Transpose)[2;;]]]

Out[68]//TableForm=

[00]//	abioi oiiii							
	u ⁿ ₀	u ⁿ ₁	u ⁿ ₂	u ⁿ ₃	u ⁿ ₄	u ⁿ 5	u ⁿ 6	u ⁿ ₇
	0.434783	1.4304	1.33482	1.25123	1.17749	1.11197	1.05336	1.00063
	0.434783	2.2543	2.35983	2.21054	2.07904	1.96233	1.85804	1.76428
	0.434783	3.49015	4.10332	3.90577	3.6712	3.46326	3.27764	3.11093
	0.434783	5.34391	7.02752	6.88449	6.48325	6.11268	5.78227	5.4858
	0.434783	8.12457	11.8773	12.0836	11.446	10.7898	10.2016	9.67427
	0.434783	12.2955	19.847	21.0947	20.1899	19.0463	17.9998	17.0618
	0.434783	18.552	32.8444	36.6039	35.5585	33.6169	31.7613	30.0927
	0.434783	27.9367	53.9047	63.1169	62.4888	59.3149	56.0462	53.0793
	0.434783	42.0138	87.8412	108.152	109.512	104.595	98.898	93.6305
	0.434783	63.1294	142.265	184.188	191.306	184.27	174.496	165.17
	0.434783	94.8027	229.18	311.848	333.007	324.232	307.811	291.379
	0.434783	142.313	367.471	525.067	577.472	569.599	542.774	514.022
	0.434783	213.578	586.785	879.468	997.474	998.766	956.561	906.726
	0.434783	320.476	933.571	1465.9	1716.08	1747.52	1684.53	1599.23
	0.434783	480.822	1480.48	2432.24	2940.59	3050.3	2963.68	2819.98
	0.434783	721.342	2340.92	4018.48	5018.95	5310.59	5208.09	4970.89
	0.434783	1082.12	3691.71	6612.95	8533.04	9220.63	9139.79	8758.35
	0.434783	1623.29	5808.1	10842.3	14452.8	15964.2	16014.8	15422.5
	0.434783	2435.04	9117.98	17715.5	24389.8	27559.5	28013.3	27137.4
	0.740783	3652.68	14285.7	28852.8	41013.6	47436.7	48909.8	47709.5