IN THE CLAIMS

1	1. (Original) A serial communications system comprising:
2	a scrambler for converting received data into scrambled data; and
3	an ECC encoder for converting said scrambled data into ECC-encoded data.
1	2. (Original) The system as recited in Claim 1, further comprising:
2	a serializer for converting said ECC-encoded data into serialized data;
3	wherein the ECC-encoded data includes frame alignment information; and
4	the system further comprises a receiver for receiving said serialized data and
5	converting the serialized data into data frames based upon the frame alignment information.
1	3. (Original) The system as recited in Claim 2, wherein the receiver
2	comprises:
3	a frame-recoverer for converting said serialized data into data frames;
4	an ECC decoder for converting said data frames into ECC-decoded data and
5	error indications; and
6	a scrambler for converting said ECC-decoded data into de-scrambled data.
1-	4. (Original) The system as recited in Claim 5, wherein said frame-
2	recoverer uses said error indications in converting said serialized data into data
3	frames.
1	5. (Original) The system as recited in Claim 1, wherein said ECC
2	encoder applies an error correction code in converting said scrambled data into
3	said ECC-encoded data.

1	6. (Original) A serial communications method, comprising the steps
2	of:
3	converting received data into scrambled data; and
4	converting said scrambled data into ECC-encoded data.
1	7. (Original) The method as recited in Claim 6, further comprising the
2	steps of:
3	generating a serial stream of the ECC-encoded data; and
4	transmitting said serial stream.
1	8. (Original) The method of Claim 7, wherein:
2	the ECC-encoded data includes frame alignment information; and
3	the method further comprises receiving said serialized data and converting
4	said serialized data into data frames based upon said frame alignment information.
1	9. (Original) The method of Claim 7, further comprising:
2	receiving said serialized data;
3	converting said serialized data into data frames;
4	converting said data frames into ECC-decoded data and error indications; and
5	converting said ECC-decoded data into de-scrambled data.
1	10. (Original) The method of Claim 9, wherein the step of converting
2	the serialized data comprises converting the serialized data into data frames
3	based upon said error indications.
1	11. (Withdrawn) A serial communications system comprising:
2	an ECC decoder for converting data frames into ECC-decoded data; and

3	a de-scrambler for converting said ECC-decoded data into de-scrambled data.
1	12. (Withdrawn) The system of Claim 11, further comprising a frame-
2	recoverer for converting serialized data into said data frames.
1	13. (Withdrawn) The system as recited in Claim 12, wherein:
2	said ECC decoder generates error indications; and
3	said frame-recoverer uses said error indications in converting said serialized
4	data into said data frames.
1	14. (Withdrawn) The system as recited in Claim 13, wherein said
2	frame-recoverer generates a frame clock that is shifted in phase based upon
3	said error indications, said frame-recoverer converting said serialized data into
4	said data frames using said frame clock.
1	15. (Withdrawn) The system as recited in Claim 14, wherein said
2	frame-recoverer shifts in phase said frame clock by a predetermined number
3	of periods of a bit clock based upon said error indications.
1	16. (Withdrawn) The system as recited in Claim 13, wherein said
2	frame-recoverer comprises:
3	a plurality of registers, each register being controlled to receive said serialized
4	data and form two or more frames of parallel data therefrom;
5	a selection control circuit for receiving said error indications and generating at
6	least one control signal; and
7	selection circuitry coupled to receive as inputs the output of said registers and
8	said control signal from said selection control circuit, and output a set of parallel data

- 9 appearing at the input of said selection circuitry, said number of bits in said set of parallel 10 data corresponding to the number of bits in a frame of data. 1 17. (Withdrawn) The system as recited in claim 16, wherein 2 the selection circuitry comprises a plurality of individual multiplexer circuits, 3 the number of multiplexer circuits corresponding to the number of bits n in a frame of data, •4 each multiplexer circuit being an n+1:1 multiplexer circuit. 1 18. (Withdrawn) The system as recited in Claim 13, wherein said 2 error indications are associated with errors in said data frames, said ECC-3 decoder correcting some of said errors. 1 19. (Withdrawn) A serial communications system comprising: 2 an ECC decoder for converting data frames into ECC-decoded data and error 3 indications; and
- said error indications.
 20. (Withdrawn) The system as recited in Claim 19, wherein said

a frame recoverer for converting serialized data into said data frames using

- frame-recoverer generates a frame clock that is shifted in phase based upon said error indications and converts said serialized data into said data frames using said frame clock.
- 5 21. (Withdrawn) The system as recited in Claim 20, wherein said 6 frame-recoverer shifts in phase said frame clock by a predetermined number 7 of periods of a bit clock based upon said error indications.

4

1	22. (Withdrawn) The system as recited in Claim 19, wherein said
2	frame-recoverer comprises:
3	a plurality of registers, each register being controlled to receive said serialized
4	data and form two or more frames of parallel data therefrom;
5	a selection control circuit for receiving said error indications and generating at
' 6	least one control signal; and
7	selection circuitry coupled to receive as inputs the output of said registers and
8	said control signal from said selection control circuit, and output a set of parallel data
9	appearing at the input of said selection circuitry, the number of bits in said parallel set of data
10	corresponding to the number of bits in a frame of data.
1	23. (Withdrawn) The system as recited in claim 22, wherein
2	the selection circuitry comprises a plurality of individual multiplexer circuits
3	the number of multiplexer circuits corresponding to the number of bits n in a frame of data
4	each multiplexer circuit being an n+1:1 multiplexer circuit.
5	24. (Withdrawn) The system as recited in Claim 19, wherein said
6	error indications are associated with errors in said data frames, said ECC-
7	decoder correcting some of said errors.
1	25. (Withdrawn) The system as recited in claim 19, further
2	comprising:
3	a de-scrambler for converting said ECC-decoded data into de-scrambled data.
1	26. (Original) A serial communications method comprising:

2	converting serialized data into data frames as a function of error indications;
3	and
4	converting said data frames into ECC-decoded data and said error indications.
1	27. (Withdrawn) The method as recited in Claim 26, further
2	comprising:
' 3	de-scrambling said ECC-decoded data into de-scrambled data.
1	28. (Withdrawn) The method as recited in Claim 26, wherein the step
2	of converting said serialized data comprises:
3	generating a frame clock that is shifted in phase based upon said error
4	indications; and
5	converting said serialized data into said data frames using said frame clock.
1	29. (Withdrawn) The method as recited in claim 26, wherein the step
2	of converting said serialized data comprises:
3	temporarily maintaining bits of said serialized data sufficient to form two or
4	more frames of parallel bits;
5	selecting a frame of data from said maintained bits based upon said error
6	indications, said frame of data being a frame of data in the data frames; and
7	repeating said steps of temporarily maintaining and selecting for generating
8	each data frame from said serialized data.
9	30. (Withdrawn) The method as recited in claim 26, further
10	comprising:
11	initially scrambling received data into scrambled data;
12	converting said scrambled data into ECC-encoded data; and

13	converting said ECC-encoded data into said serialized data.
1	31. (Withdrawn) A serial communications method comprising:
2	converting data frames into ECC-decoded data and error indications; and
3	de-scrambling said ECC-decoded data into de-scrambled data.
.1	32. (Withdrawn) The method as recited in Claim 31, further
2	comprising:
3	initially converting serialized data into said data frames as a function of said
4	error indications.
1	33. (Withdrawn) The method as recited in claim 31, further
2	comprising:
3	initially scrambling received data into scrambled data; and
4	performing an ECC encoding operation on said scrambled data to generate
5	said data frames.