

EL EXAMEN SE APRUEBA CON 3 EJERCICIOS CORRECTAMENTE RESUELTOS

Apellido:	 ${\bf Nombres}:$	

Padrón:

- 1. Se sabe que la función $f(x) = e^x + x$ tiene un cero doble en el intervalo [-1,0]. Usar tres iteraciones del método de Newton Raphson modificado para raíces múltiples, para estimar dicho cero. Usar como semilla $x_0 = -1$ y trabajar con tres decimales y redondeo.
- 2. El siguiente conjunto de datos exhibe la cantidad de material (en metros cuadrados) requerido en la fabricación de un cilindro circular recto con altura de 4 metros y radio k (en metros).

k	0 1		2	3	4	
A(k)	0	31.4159	75.3982	131.9469	201.0619	

Se sabe que el comportamiento es del tipo cuadrático. Determinar el área requerida para la fabricación de un cilindro circular recto de radio k = 3.5 metros usando cuadrados mínimos.

- 3. La velocidad de un objeto en movimiento está dado por la función $s(t) = \frac{t^3 e^t}{(t^2+1)^2}$ determinar el cambio de posición en el intervalo de tiempo [1, 2]. Utilizar el método de Simpson $\frac{1}{3}$, tomar una partición de 10 intervalos.
- 4. Se puede utilizar la conservación del calor para desarrollar un balance de calor para una barra larga y delgada . Si la barra no está aislada en toda su longitud y el sistema se encuentra en estado estacionario, la ecuación resultante es: $\frac{d^2T}{dx^2} + h(T_a T) = 0$. donde h es un coeficiente de transferencia de calor (m^{-2}) que parametriza la velocidad con que se disipa el

calor en el medio ambiente, y T_a es la temperatura del medio ambiente (° C). Utilizar el método de diferencias finitas para aproximar la temperatura cada dos metros de la barra. La longitud de la barra es de 10 metros, $h = 0.01m^{-2}$, $T_a = 20$ y las condiciones de frontera T(0) = 40 y T(10) = 200.

5. Cierto material de forma cúbica, con una masa de M=0.5 kg se pone en el extremo inferior de un resorte sin masa. El extremo superior se fija a una estructura en reposo. El cubo recibe una resistencia de $R=-B\frac{dy}{dt}$ del aire, donde B es una constante de amortiguamiento. La ecuación de movimiento es:

 $M\frac{d^{2}y}{dt^{2}} + B\frac{dy}{dt} + ky = 0, y(0) = 1, y'(0) = 0.$

donde y es el desplazamiento desde la posición estática, $k=100\frac{kg}{seg^2}$ es la constante del resorte y $B=10\frac{kg}{seg}$. Calcular y(t) para 0 < t < 0.05 mediante dos iteraciones del método Runge Kutta del punto medio.

0

NOTA

RAMIRO	106876	HOJA Nº 2/4		
MINELDIN	42395245	FECHA 19/01/25		
3) SE PIDE CAL	CUCAR			
5, s(t) dt	CON S(t) = T3 et (t2+1)2			
UTILIZANDO EL M	1E7000 DE SIMPSON 1			
So F(x) dx = .	5 = F(a) + F(b) + 4 ≥ F(x2k+1) + 2 ≥ F	- (×2K)]		
h= b-a				
EN ESTE CASO h	$=\frac{2-1}{40}=0.1$			
ti S(ti) 1 0,67957	S ₁ S(t) de €			
1,1 0,81869	$= \frac{0,1}{3} \left[S(1) + S(2) + 4 \sum_{k=0}^{4} S(t_{2k+1}) + 2 \sum_{k=0}^{4} S(t_{2k+1}) \right]$	- S(tzu)]		
1,3 1,1141	= 0,033333 [3,0441+4(S(t,)+S(t3)+S(ts)+S(ta):15(tal)		
1,4 1,27	1/ 2(36)	8)/_1		
1,5 1,4320	= 0,033333 [3,0441 + 4x 7,2998 + 2 x 5,=	7970]		
1,7 1,7772	=) $\int_{1}^{2} S(\tau) = 1.4612$ UTILIZANDO 5 CIFI			
1,8 1,9625	=)), S(E) = 1,4612 UTILIZANDO 5 CIFI + REDDANDED	ras Significa tivos		
1,9 2,1578				
2 2,3645				
NOTA				

HOJA Nº 3/4 105876 RAMIRO 42375245 FECHA 19/02/20 MINE WIN 4) $\frac{3^2T}{dx^2} + h(Ta-7) = 0$ h=0,01m-2, Ta=20 T(0) = 40 T(10) = 200 REESCRIBO LA ECVACION TII - 0,01T = -0,01 × 20 T"-0,017=-0,2 SE PIDG UTILIZA EL METODO DE DIFERCACIAS FINITAS PARA APROXIMAN LA TEMPERATURA CADA 2 METROS OG LA BARNA EN EME CASO P(x) = 0, Q(x) = -0,01, f(x)=2-0,2 1 = 2 , ×2 = 4, ×3 = 6, ×4 = 8 -> PUNTOS MACCA PLANTED EL SISTEMA DE GENACIONES COM y= Ti (1+ P(xx)h) gray + (-2+ h2 x(xx) gx + (1-P(xx)h) gx-4 = h2 f(xx) y2 + (-2,04) g, + y0 = -0,8 93+(-2,04) 82+41 = -0,8 gy+ (-2,09) g3+ y2 = -0,8 95 + (-2,04) 84 + 83 = -9,8

1

0

0

0

000

しんとしんりし

REE MPLAZ	ando yo	+ 45	NO)	DVE DA				124 745 14
gr 4 -	2,04 91	= -4	0,8				4	
93 - 2	108 42	+ 91 -	= -	0,8				
gy -= 2	,04 43	+ y ~ =	= - 0	, 8	4.7		0.00.5	
- 2,04 8	4 + 43 =	- 7 6	00,8			6	. 10-15-13	
						-		31-
-2,04	1	0		0	1 41		40,8	7 -
1	-2,04	1		0	1 4.	= -	0,8	
0	1	-2,	04	1	43		- 0,8	
0	0	1	6	-2,04	(4,/		200,8	
iaciendo							19 10	
F2 + F1 ×	1 1	Lue G2	F ₃ +	F ₂ × 1	y Pon V	irins fy	+ 1	F3
	2104			1,51	98	4-6-4	77/14	
os que an		s / M.A	×11					
			1	0	1 , 0 0			
- 210		-429	0	0	- 40,8	111 2		-
D	- 1	5498	1		-20,8			
0	б		-1,39	V2 A	-14,2	211		
0	0		0	-1,3231	- 210	9957		11.0
=) 84 =	159,4	707	3) 4 ₂ = +1	ilonoph tu	CAGEG	930	7722
=) \(\rangle_3 =	208120	86		u .	remonse t			
	1241528	1		01= }	CEPHBAR	65,0	9668	

Scanned with
CS CamScanner

FECHA 19/02/75

y= 1 , Ma = 0

NOTA

PRIMER ITERACION

$$\begin{pmatrix} 91 \\ 11 \end{pmatrix} = \begin{pmatrix} 90 \\ 10 \end{pmatrix} + 0.025 \begin{pmatrix} M_2 \\ k_1 \end{pmatrix}$$

the responseries

$$\begin{pmatrix} G_{1} \\ H_{1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + O_{1} > 25 \begin{pmatrix} -2.5 \\ -150 \end{pmatrix} = \begin{pmatrix} 0.19375 \\ -3.75 \end{pmatrix}$$

SEGUNDA ITERACION

$$M_2 = U_1 + K_1 4 = -3,75 + -412,5 \times 0,020 = -5,1563$$