Module 20: FDR Correction

Issues with FWER

- Methods that control the FWER (Bonferroni, RFT, Permutation Tests) provide a strong control over the number of false positives.
- While this is appealing the resulting thresholds often lead to tests that suffer from low power.
- Power is critical in fMRI applications because the most interesting effects are usually at the edge of detection.

False Discovery Rate

- The false discovery rate (FDR) is a recent development in multiple comparison problems due to Benjamini and Hochberg (1995).
- While the FWER controls the probability of any false positives, the FDR controls the proportion of false positives among all rejected tests.

Notation

Suppose we perform tests on m voxels.

	Declared Inactive	Declared Active	
Truly inactive	U (V	m_0
Truly active	Т	S	m-m ₀
	m-R	R	m

U, V, T and S are unobservable random variables.

R is an observable random variable.

Definitions

In this notation:

$$FWER = P(V \ge 1)$$

False discovery rate:

$$FDR = E\left(\frac{V}{R}\right)$$

The FDR is defined to be 0 if R=0.

Properties

- A procedure controlling the FDR ensures that on average the FDR is no bigger than a prespecified rate q which lies between 0 and 1.
- However, for any given data set the FDR need not be below the bound.

 An FDR-controlling technique guarantee controls of the FDR in the sense that FDR ≤ q.

BH Procedure

- 1. Select desired limit *q* on FDR (e.g., 0.05)
- 2. Rank p-values, $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$
- 3. Let r be largest i such that $p_{(i)} \le i/m \times q$
- 4. Reject all hypotheses corresponding to $p_{(1)}, \dots, p_{(r)}$.

Comments

- If all null hypothesis are true, the FDR is equivalent to the FWER.
- Any procedure that controls the FWER also controls the FDR. A procedure that controls the FDR only can be less stringent and lead to a gain in power.
- Since FDR controlling procedures work only on the p-values and not on the actual test statistics, it can be applied to any valid statistical test.

End of Module

