General strategy for solving problems:

- Find a procedure / algorithm which generates each possibility exactly once. Then use the rule of products.
- Use the sum rule (i.e. "case analysis") and "counting the complement."
- 1. An *n*-element DNA sequence is a string of *n* letters from the set $\{A, C, G, T\}$. (For example, ATCTT and GACCC are 5-element DNA sequences.) How many 5-element DNA sequences ...
 - (a) ... start with A and end with T? $A...T = 4*4*4 = 4^3 = 64$
 - (b) ... do not contain C? = 3^5 = 243
- 2. A test consists of six true-false questions. In how many different ways can a student answer the questions on the test if ...
 - (a) ... the student answers every question? $2^6 = 64$
 - (b) ... the student can leave answers blank?
 - (c) ... the student leaves exactly one question blank and answers the remaining questions? $2^5 + 2^5$
- 3. A PIN is a string of four digits (e.g. 0118 or 9035). There are $10^4 = 10000$ PINs total. How many PINs ...
 - (a) ... contain four different digits? [0...9][0...9-1][0...9-2][0...9-3] = 10*9*8*7 = 5040
 - (b) ... contain at least one repeated digit? (e.g. 0103 or 7055) = Total no digit repeated = 10,000 5,040 = 4,960
 - (c) ... have exactly three digits which are 7's? (e.g. 7877) = 777x + 77x7 + 7x77 + x777 = 9 + 9 + 9 + 9 = 36
 - (d) ... have exactly three digits that are the same? (e.g. 0333 or 5525) = (c) * [0...9] = 36*10 = 360
 - (e) ... have at least three digits that are the same? 4 digits repeated (e.g: 1111, 2222) = 10 (d) + 10 = 360 + 10 = 370
- 4. There are five students in a class. At the end of the semester, the professor will assign each student a grade of A, B, or C. In how many ways can she do this if ...
 - (a) ... exactly one person gets a C, exactly one person gets a B, and the remaining students get As?
 - (b) ... not everyone gets the same grade?
 - (c) ... at least one student will receive an A?
 - (d) ... at most one student gets an A?
- 5. A family consists of a mom, a dad, two sons, and a daughter. How many can the members of the family be lined up in a row for a family portrait if ...
 - (a) ... the two sons must be next to each other?
 - (b) ... the mom must be somewhere to the left of dad?
 - 4. (a) Pick 1 out of 5 students to assign $1C \Rightarrow C(5,1) = 5$; Pick 1 out of 4 students to assign $1B \Rightarrow C(4,1) = 4$ Pick remaining 3 students to assign $3C's \Rightarrow C(3,3) = 1 \Rightarrow Ans. = 5*4*1 = 20$ ways
 - (b) Meaning 3 out of 5 students will be graded, remaining 2 will NOT be graded=> C(5,3) =

Answers:

- 1. (a) 64
 - (b) 243
- 2. (a) 64
 - (b) 729
 - (c) 192
- 3. (a) 5040
 - (b) 4960
 - (c) 36
 - (d) 360
 - (e) 370
- 4. (a) 20
 - (b) 240
 - (c) 211
 - (d) 112
- 5. (a) 48
 - (b) 60