Jacobi, Gauß-Seidel und SOR Proseminar Numerische Mathematik

Alexander Oldemeier

8.7.2017

Problemstellung

- Ax = b, $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $a \in \mathbb{R}^n$, $n \in \mathbb{N}$ soll gelöst werden.
- Iterative Verfahren vs direkte Verfahren.
- Kriterien: Geschwindigkeit, Einsatzmöglichkeiten, Stabilität.

Problemstellung

- Ax = b, $A \in \mathbb{R}^{n \times n}$, $x \in \mathbb{R}^n$, $a \in \mathbb{R}^n$, $n \in \mathbb{N}$ soll gelöst werden.
- Iterative Verfahren vs direkte Verfahren.
- Kriterien: Geschwindigkeit, Einsatzmöglichkeiten, Stabilität.

Splitting

• Wähle invertierbare Matrix B.

•
$$A = B + (A - B)$$

•
$$Ax = b \iff x = (I_n - B^{-1}A)x + B^{-1}b$$

Splitting

• Wähle invertierbare Matrix B.

•
$$A = B + (A - B)$$

•
$$Ax = b \iff x = (I_n - B^{-1}A)x + B^{-1}b$$

Splitting

• Wähle invertierbare Matrix B.

•
$$A = B + (A - B)$$

•
$$Ax = b \iff x = (I_n - B^{-1}A)x + B^{-1}b$$

Fixpunktgleichung

- Fixpunktgleichung: $x = (I_n B^{-1}A)x + B^{-1}b$
- Fixpunktiteration: $x_{k+1} := Mx_k + c$ mit $M := (I_n B^{-1}A)$, $c := B^{-1}b$.

Fixpunktgleichung

- Fixpunktgleichung: $x = (I_n B^{-1}A)x + B^{-1}b$
- Fixpunktiteration: $x_{k+1} := Mx_k + c$ mit $M := (I_n B^{-1}A)$, $c := B^{-1}b$.

Splitting-Verfahren

- Wir werden sehen: Unter gewissen Bedingungen konvergiert die Fixpunktiteration gegen die Lösung des LGS.
- Numerische Verfahren dieser Art nennt man Splitting-Verfahren.
- Iterative Verfahren vs. direkte Verfahren.

Splitting-Verfahren

- Wir werden sehen: Unter gewissen Bedingungen konvergiert die Fixpunktiteration gegen die Lösung des LGS.
- Numerische Verfahren dieser Art nennt man Splitting-Verfahren.
- Iterative Verfahren vs. direkte Verfahren.

Splitting-Verfahren

- Wir werden sehen: Unter gewissen Bedingungen konvergiert die Fixpunktiteration gegen die Lösung des LGS.
- Numerische Verfahren dieser Art nennt man Splitting-Verfahren.
- Iterative Verfahren vs. direkte Verfahren.

Der Banachsche Fixpunktsatz

Satz

Sei $(\mathcal{K}, \|.\|)$ ein vollständiger metrischer Raum und $\Phi: \mathcal{K} \to \mathcal{K}$ eine Kontraktion, d.h. eine Abbildung, die für ein $q < 1, q \in \mathbb{R}$ die Eigenschaft

$$\| \Phi(x) - \Phi(z) \| \le q \| x - z \| \forall x, z \in \mathcal{K}$$

erfüllt. Dann hat die Fixpunktgleichung $x = \Phi(x)$ genau eine Lösung $\hat{x} \in \mathcal{K}$ und für die Fixpunktiteration $x_{k+1} := \Phi(x_k)$ gilt $\lim_{k \to \infty} x_k = \hat{x}$.

Konvergenz und Matrixnorm

Lemma

Sei $\| \| \cdot \| \|$ eine Matrixnorm in $\mathbb{R}^{n \times n}$, die mit einer Vektornorm $\| \cdot \| \|$ verträglich ist. Die Fixpunktiteration konvergiert gegen $\hat{x} = A^{-1}b$, wenn $\| \| M \| < 1$.

Konvergenz und Spektralradius

Satz

Das Fixpunktverfahren konvergiert genau dann wenn $\rho(M) < 1$.

Konvergenzgeschwindigkeit

Satz

Für das Fixpunktverfahren mit Iterationsmatrix M, ρ (M) < 1 und Lösung \hat{x} gilt:

$$\rho(M) = \alpha := \sup_{x_0} \limsup_{k \to \infty} \left(\|x^k - \hat{x}\| \right)^{\frac{1}{k}}$$

Split:

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ 0 & & \ddots & 0 & \vdots \\ \vdots & & 0 & & \ddots & \vdots \\ 0 & & \cdots & & a_{nn} \end{pmatrix} - \begin{pmatrix} 0 & 0 & \cdots & 0 \\ & \ddots & & & \vdots \\ -a_{21} & & \ddots & 0 & \vdots \\ \vdots & \ddots & & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & 0 \end{pmatrix} - \begin{pmatrix} -a_{11} & -a_{12} & \cdots & -a_{1n} \\ & \ddots & & \ddots & \vdots \\ 0 & & \ddots & \ddots & \vdots \\ \vdots & & 0 & & \ddots & \vdots \\ 0 & & \cdots & & \cdots & 0 \end{pmatrix}$$

$$\vdots = R$$

• Jacobi-Verfahren: B = D, $x_{k+1} := D^{-1} (L+R) x_k + D^{-1}_{:=c_J} b$

$$b_i - \sum_{\substack{j=1\\ i \neq i}}^n a_{ij} x_j$$

• Herleitung über komponentenweise Darstellung: $x_i = \frac{1}{j \neq i} \frac{1}{a_{ii}}$

Split:

$$A = \begin{pmatrix} a_{\mathbf{1}\mathbf{1}} & 0 & \dots & 0 \\ & \ddots & & & \vdots \\ 0 & & \ddots & 0 & \vdots \\ \vdots & & 0 & & \ddots & \vdots \\ 0 & & \dots & & a_{nn} \end{pmatrix} - \begin{pmatrix} 0 & 0 & \dots & 0 \\ & \ddots & & & \ddots \\ & -a_{2}\mathbf{1} & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n}\mathbf{1} & -a_{n}\mathbf{2} & \dots & 0 \end{pmatrix} - \begin{pmatrix} -a_{1}\mathbf{1} & -a_{1}\mathbf{2} & \dots - & a_{1n} \\ 0 & \ddots & \ddots & \ddots \\ 0 & \ddots & \ddots & \ddots \\ \vdots & 0 & \ddots & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix}$$

$$\vdots = R$$

• Jacobi-Verfahren: B = D, $x_{k+1} := D^{-1} (L + R) x_k + D^{-1} b_{:=C_J}$

$$b_i - \sum_{\substack{j=1\\i\neq i}}^n a_{ij} x_j$$

ullet Herleitung über komponentenweise Darstellung: $x_i = rac{j_{
eq i}}{a_{ii}}$

Split:

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ & \ddots & & & \vdots \\ 0 & & \ddots & 0 & \vdots \\ \vdots & & 0 & & \ddots & \vdots \\ 0 & & \dots & & a_{nn} \end{pmatrix} - \begin{pmatrix} 0 & 0 & \dots & 0 \\ & \ddots & & & \ddots & \vdots \\ & -a_{21} & & \ddots & 0 & \vdots \\ \vdots & \ddots & & \ddots & \vdots \\ -a_{n1} & -a_{n2} & & \dots & 0 \end{pmatrix} - \begin{pmatrix} -a_{11} & -a_{12} & \dots - & a_{1n} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & \ddots & \vdots \\ 0 & & \dots & & \dots & 0 \end{pmatrix}$$

$$\vdots = R$$

• Jacobi-Verfahren: B = D, $x_{k+1} := D^{-1} (L + R) x_k + D^{-1}_{:=c_I} b$

$$b_i - \sum_{\substack{j=1\\i \neq i}}^n a_{ij} x_j$$

 $b_i - \sum_{\substack{j=1 \\ j \neq i}}^n a_{ij} x_j$ • Herleitung über komponentenweise Darstellung: $x_i = \frac{b_i - \sum_{\substack{j=1 \\ j \neq i}}^n a_{ij} x_j}{a_{ij} x_j}$

$$b_i - \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j$$

- $b_i \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j$ Herleitung über komponentenweise Darstellung: $x_i = \frac{b_i \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j}{a_{ii}}$
- Das Verfahren ist vollständig parallelisierbar (Gesamtschrittverfahren).

$$b_i - \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j$$

- Herleitung über komponentenweise Darstellung: $x_i = \frac{\sum\limits_{j=1}^{j=1}}{\sum\limits_{j \neq i}^{j=1}}$
- Das Verfahren ist vollständig parallelisierbar (Gesamtschrittverfahren).

Konvergenz für diagonaldominante Matrizen

Satz

Das Jacobi-Verfahren konvergiert für alle strikt diagonaldominanten

Matrizen
$$A \in \mathbb{R}^{n \times n}$$
, d.h. wenn $|a_{ii}| > \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{ij}| \ \forall i \in \{1,...,n\}$.

• Idee: Konvergenzbeschleunigung durch Verwendung der neuen Werte:

$$x_{i}^{(k+1)} = \frac{b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}}{a_{ii}}$$

• Gauß-Seidel:
$$B = D - L$$
, $x_{k+1} = (D - L)^{-1} Rx_k + (D - L)^{-1} b$
 $= c_{GS}$

• Idee: Konvergenzbeschleunigung durch Verwendung der neuen Werte:

$$x_i^{(k+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}}$$

• Gauß-Seidel:
$$B = D - L$$
, $x_{k+1} = (D - L)^{-1} Rx_k + (D - L)^{-1} b$
 $= c_{GS}$

Konvergenz für diagonaldominante Matrizen

Satz

Das Gauß-Seidel-Verfahren konvergiert für alle strikt diagonaldominanten Matrizen.

• Wenn das Verfahren konvergiert, konvergiert es schneller als das Jacobi-Verfahren $(\rho(M_{GS}) = \rho(M_J)^2)$.

Konvergenz für diagonaldominante Matrizen

Satz

Das Gauß-Seidel-Verfahren konvergiert für alle strikt diagonaldominanten Matrizen.

• Wenn das Verfahren konvergiert, konvergiert es schneller als das Jacobi-Verfahren $(\rho(M_{GS}) = \rho(M_J)^2)$.

Successive-Over-Relaxation (SOR)

• Idee: Konvergenzbeschleunigung durch Gewichtung der neuen Werte:

$$x_{i}^{(k+1)} := x_{i}^{(k)} + \omega \left(\frac{b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}}{a_{ii}} - x_{i}^{(k)} \right)$$

• SOR:
$$B = \frac{1}{\omega}D - L$$
,
 $x_{k+1} = (D - \omega L)^{-1} [(1 - \omega)D + \omega R]x_k + \omega (D - L)^{-1}b_{:=R_{SOR}}$

• Idee: Konvergenzbeschleunigung durch Gewichtung der neuen Werte:

$$x_i^{(k+1)} := x_i^{(k)} + \omega \left(\frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}}{a_{ii}} - x_i^{(k)} \right)$$

• SOR:
$$B = \frac{1}{\omega}D - L$$
,
 $x_{k+1} = (D - \omega L)^{-1} [(1 - \omega)D + \omega R]x_k + \omega (D - L)^{-1}b$
 $= M_{SOR}$

Konvergenzbeschleunigung Der Satz von Ostrowski und Reich

Satz

Das SOR-Verfahren konvergiert für positiv definitive symmetrische Matrizen genau dann wenn $\omega \in]0,2[$.

- Problem: Finde optimales ω .
- ullet Zur Lösung des Problems muss man die Eigenwerte von M_{SOR} kennen.

Konvergenzbeschleunigung Der Satz von Ostrowski und Reich

Satz

Das SOR-Verfahren konvergiert für positiv definitive symmetrische Matrizen genau dann wenn $\omega \in]0,2[$.

- Problem: Finde optimales ω .
- ullet Zur Lösung des Problems muss man die Eigenwerte von M_{SOR} kennen.

Konvergenzbeschleunigung Der Satz von Ostrowski und Reich

Satz

Das SOR-Verfahren konvergiert für positiv definitive symmetrische Matrizen genau dann wenn $\omega \in]0,2[$.

- Problem: Finde optimales ω .
- \bullet Zur Lösung des Problems muss man die Eigenwerte von M_{SOR} kennen.

- Idee: Konvergenzbeschleunigung durch Linearkombination der bisherigen Iterationen $y_k = \sum_{i=0}^k \alpha_{ki} x_k$
- Minimiere Fehler $y_k \hat{x} := d_k$
- Stelle d_k dar als $P_k(M) d_0$ mit $P_K(M)$ Matrixpolynom.
- Minimiere $||P_k(M)||_2$ mit Hilfe der Theorie der Tschebyscheff-Polynome.

- Idee: Konvergenzbeschleunigung durch Linearkombination der bisherigen Iterationen $y_k = \sum_{i=0}^k \alpha_{ki} x_k$
- Minimiere Fehler $y_k \hat{x} := d_k$
- Stelle d_k dar als $P_k(M) d_0$ mit $P_K(M)$ Matrixpolynom.
- Minimiere $||P_k(M)||_2$ mit Hilfe der Theorie der Tschebyscheff-Polynome.

- Idee: Konvergenzbeschleunigung durch Linearkombination der bisherigen Iterationen $y_k = \sum_{i=0}^k \alpha_{ki} x_k$
- Minimiere Fehler $y_k \hat{x} := d_k$
- Stelle d_k dar als $P_k(M) d_0$ mit $P_K(M)$ Matrixpolynom.
- Minimiere $||P_k(M)||_2$ mit Hilfe der Theorie der Tschebyscheff-Polynome.

- Idee: Konvergenzbeschleunigung durch Linearkombination der bisherigen Iterationen $y_k = \sum_{i=0}^k \alpha_{ki} x_k$
- Minimiere Fehler $y_k \hat{x} := d_k$
- Stelle d_k dar als $P_k(M) d_0$ mit $P_K(M)$ Matrixpolynom.
- Minimiere |||P_k (M) |||₂ mit Hilfe der Theorie der Tschebyscheff-Polynome.

Implementierung und Vergleich

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} x = \begin{pmatrix} 19 \\ 45 \\ 0 \end{pmatrix}$$

Approximationsfehler

	Jacobi	GS	SOR(1.02)	SSOR(1.27)	Tschebyscheff
0	71.1573959613	71.1573959613	71.1573959613	71.1573959613	71.1573959613
1	50.091166886	40.875	40.1234173916	20.7480263934	10.5658983625
2	35.4198037826	20.4375	19.2730510986	8.49053949052	2.37506100576
3	25.045583443	10.21875	9.23819526619	3.4925737569	0.199798972825
4	17.7099018913	5.109375	4.42848563671	1.43932086628	0.0412576349189
5	12.5227917215	2.5546875	2.12286325483	0.593848341951	0.00325115046078
6	8.85495094566	1.27734375	1.01762754611	0.245198554277	0.000748112360541
7	6.26139586075	0.638671875	0.487815602233	0.101290942402	5.6822856305e-05
8	4.42747547283	0.3193359375	0.233842001176	0.0418563672888	1.25540186679e-05
9	3.13069793037	0.15966796875	0.112095802724	0.0172999420843	1.04542906106e-06
10	2.21373773641	0.079833984375	0.0537348676675	0.0071513865992	2.17127675838e-07
11	1.56534896519	0.0399169921875	0.0257586451329	0.00295650703879	1.7189934335e-08
12	1.10686886821	0.0199584960937	0.0123478074457	0.00122235602233	3.92121418636e-09
13	0.782674482594	0.00997924804687	0.0059191136774	0.000505403135294	3.00650520098e-10
14	0.553434434104	0.00498962402344	0.00283741926491	0.000208974634498	6.64637576901e-11
15	0.391337241297	0.00249481201172	0.00136016108555	8.64092957337e-05	5.43316794448e-12