В общем случае необходимо учитывать диффузию каждого из компонентов. Более подробное рассмотрение показывает  $^1$ , что для бинарной смеси формула (2) сохраняется, если 1) под  $\lambda$  понимать величину  $\lambda = \frac{1}{n_\Sigma \sigma}$ , где  $n_\Sigma = n_{\mathrm{He}} + n_{\mathrm{B}} = \frac{P}{k_B T}$  — полная концентрация частиц, и 2) под  $\bar{v}$  понимать среднюю относительную скорость частиц разных сортов  $^2$ .

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе  $D \propto \frac{1}{P}$ , и не зависит от пропорций компонентов, что и предлагается проверить в работе экспериментально.

**Схема эксперимента.** Для исследования взаимной диффузии газов и измерения коэффициента взаимной диффузии D используется два сосуда объёмами  $V_1$  и  $V_2$  ( $V_1{\approx}V_2{\equiv}V$ ), соединенные трубкой длины L и сечения S (рис. 1). Предполагается, что сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии, проходящей в соединительной трубке, концентрации компонентов в сосудах с течением времени выравниваются.

Важно отметить, что диффузия — относительно медленный процесс, и для его наблюдения необходимо отсутствие конвекции, т. е. макроскопических течений газа. Для этого необходимо обеспечить равенство давлений и температур в сосудах до начала измерений.

В общем случае концентрации компонентов n(t,x) зависят от как от координаты, так и времени. Задача упрощается, если объём соединительной трубки мал по сравнению с объёмами сосудов — тогда концентрации газов  $n_1(t)$  и  $n_2(t)$  внутри каждого сосуда можно считать постоянными по всему объёму сосуда, и принять, что процесс выравнивания концентраций происходит благодаря диффузии в трубке.

Рассмотрим подзадачу о диффузии в соединительной трубке. Предположим сперва, что концентрации примеси (гелия) на её торцах поддерживаются постоянными и равными  $n_1$  и  $n_2$  соответственно. Тогда через некоторое время (оценку этого времени см. ниже ф-лу (9)) в трубке установится стационарный поток частиц, одинаковый в



каждом сечении трубки (в противном случае, если бы поток зависел от x, частицы бы накапливались в трубке, и процесс перестал бы быть стационарным). Применяя закон Фика в трубке, получим

<sup>1</sup> См., напр., *Сивухин Д.В.* «Общий курс физики», Т. 2, §92, или *Попов П.В.* «Диффузия. Часть І. Элементарная теория», п. 3.2.

<sup>2</sup> Для бинарной смеси  $\bar{v}\!=\!\sqrt{\frac{8k_{_{\rm B}}T}{\pi\bar{m}}}$ , где  $\bar{m}$  — приведённая масса частиц смеси.