- ULTIMATE MATHEMATIES -

BY: AJAY MITTAL: 9891067390

CHAPTER: SETS

(1) eg
$$A = \{2, -3, 0, q, b\}$$
 elements

(1)
$$n(A) = 5$$

(·)
$$A = \{2,3,4\}$$
 $n(A) = 3$
 $A = \{2,3,4\}$ $n(A) = 3$

Page No.

Date:

1(.) fixed sets N -> Set of all natural nambus N= { 1,2,3, ----Z - set of all integers Z = { --- - 2, -1, 0, 1, 2, 3, --- } R - set y all Real rumbers (3 Q - Set of Rahmal numbers Z* + Set y all trefal numder 5 Different fains of sets -(·) Roster form Set-builder form A= { 2, 4, 6, 8, 104 Rosty A= {x: x=2n, neN, n<6} (Set) (Us then 11 y

Page: 3 5675 Page No. ex 2 A-1 2, 4, 8, 16, 32, 6.7, 1284 Acfx: x = 2"; new, n = 74 eg 3 A= { 1,4,9,16,25, ---- 1004 A= 1 n: x= n ; new, n < 104 eg A = A = 1 1 2 3 4 --- 101/ A= { x: x= m ; n < 10 } Types of sels (1) Emply Set | void Set | Null Set \$ = phi φ = { y eg A= 1x: x<2 and x>54 A= 4 (2/ Equal Sets A= { 2,3,4.4 m(A)=3 B= { 3,2,44 m(B)=3 A=B)

SETS

payr. 4 Page No.

Date:

Egyivalent sets $A = \{2,3,4\}$ n(A) = 3B= 1 2,9, Cy n(B)=3 finite Set (4) Infinite Set Subsets] (6) A= 1,2,34 114, 124, 134, 41,24, {2,34, {1,34, {1,2,34, \$ of - is always a subset of any set. · denoit C eg A= 11,2,34 B= 11,2,3,4,54 ACB; B¢A Noy Subsits = 2n n - 1109 elements in the 91 cm

eg A= 12,3,5,64 nog subsels = 21-16

SETS

Page No.

Date:

A= { 1,3,4,54 nog Subsuk = 2 = 16

Suback (24, 134, 144, 154, 12,34, 12,44, 12,54, 13,44, 13,54, 14,54, 12,3,44, 12,3,44, 12,3,44, 12,3,44, 12,3,54, 12,54, 12

(*) Power Set -> Set 9 ald 54 bseps dendra by P(A)

eg A= 11,24

 $Sybsufs = 2^2 = y$

P(A)={ {15, {24, {1,24, \$}}}

29 A= {(1,2). !EA / 3 EA (X)

(1) CA 8

 $\phi \subset A \otimes$

\$ EAX

(IJEAX)

⟨1 Y ∈ P(A)

415 C.A

- ULTIMATE MATHEMADILES -

NORKSMEET NO: 1

SETS

ONS: 1 to which of the following are null sets

- (1) A= (x: x EN, x <2 and x >94
- (2) A= {x: x is a point common to two parallel lines }
- (3) A { set y even prime numbus}
- (4) A= 1 x: XEN, x2+5x+6=0}
- (s) $A = \{ x : x \in \mathbb{N}, x^2 25 = 0 \}$

Oar2 - Convert in to Set builder form

- (·) A= 1 5, 25, 125, 6254
- (2) A= { 3,6,9,12, --- }
- (91 A= 1-1,14
- (5) A= \ \frac{1}{2}, \frac{2}{5}, \frac{2}{3}, \frac{4}{7}, \frac{5}{9}
 - (6) A= { 4,9,16,25, --- 81}
- $(7) H = \left\{ \frac{1}{2}, \frac{2}{9}, \frac{3}{28}, \frac{4}{65}, \frac{6}{126}, \frac{6}{217} \right\}$

(SE15) Paye (2) WORKSHEET NO: 1 Date: Page No. (8) A= & set of all littles of the word TRIGONOMETRY (9) A= {1,3,5,7,9,11,---- 4 (10) A= 1 1,2,3,6,9,184 ON 3 > Convert in to Rober form (1) A= X: XEN; -1 < X < 9 (2) A= {x: xEZ; -4 < x < 64 (3) A= { x: x ∈ Z , x² ≤ 4 } (4) A= { n: x is a month of a year not having (5) $A = \begin{cases} x : x = n+1 \\ 2n+3 \end{cases}$ $n \in \mathbb{N}$, n = 4(8) A= 1 x: n is a two digit number such that sum y digits is 84 (7) A= {x: x is a peime number divisor of 60} (8) A= 1 x: NER; x2+25=04 (9) A= 1 x: xEZ; |x1=54 (10 / A= 4 x: x=04

WORKSHEET NO: 1 Page No. (SETS) Date: On. 4 > State how of False 91 un A= 4 1, 2, 434, 44 ICA 2 E A (3) LY4 CA (Y) 134 CA 134 E A (6) $\phi \in A$ & CA (7 12,34 CA 3 E A 114 EA 10

reg (3)