Positive Definite Matrices

Thursday, June 11, 2020 15:34

Symmetric Positive Definite S

In green: modification for tre SEMI-definite.

- \bigcirc All $\lambda_i > 0$
- ② Energy $\times^T S \times > 0$ (all $\times \neq 0$)
- (independent cols in A) (could be dep)
- (4) All leading determinants >0
- 3 All pivots in elimination >0

Essentially, PD matrices are symmetric matrices with the eigenvalues. If a matrix has any of the above 5 properties, it is PD and has all 5 properties.

 \rightarrow Recall that $\sum_{i} \lambda_{i} = \text{Trace}$ and $\prod_{i} \lambda_{i} = \text{determinant}$

connects 1 and 4

- → What does all leading determinants mean?

 It means determinant of all square sub-matrices with top left corner fixed. Total n such determinants if the matrix is nxn.
- \rightarrow Pivots. Eg. for $\begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix}$, pivots are 3, $\frac{2}{3}$
 - $\begin{bmatrix} 3 & 24 \\ 0 & 2/3 \end{bmatrix} \longrightarrow \text{All pivots +ve} \quad \text{Actually, 2}^{nd} \text{ pivot} = \frac{2 \times 2 \text{ det}}{1 \times 1 \text{ det}} = \frac{2}{3}$
- → Define Energy in a vector X for matrix $S = X^T S X$ e.g. $X = \begin{bmatrix} a \\ b \end{bmatrix}$, $S = \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix}$ This is a

 $f = x^T S x = 3a^2 + 6b^2 + 8ab$ If we plot this for (a,b):

 $f=x'Sx=3a^2+6b^2+8ab$ If we plot this for (a,b):
So energy >0
This is what deep learning is about, where something

like this energy could be a

loss function.

What if we have $x^TSx + x^TC = f$ The plot would Still be a bowl, but shifted.

In both the cases, f is convex, but that may not be true always. How to find the min? -> Start at some point.

Q: Good question to ask: Does this work well? How well? A: Not always (we see more of this later).

Eig. exercise: If S,T are PD, is S+T also PD?

→ We don't want to use the tre I test (1) as evalues of S≠T don't say much about evalues of S+T.

→ Look at the energy:

$$x^{T}(S+T)x = x^{T}Sx + x^{T}Tx \Rightarrow YES$$

+ve +ve +ve

24 S is PD, is $S^{-1} PD$? YES, as eigenvalues of S^{-1} are $\frac{1}{\lambda_i}$ for λ_i eigenvalues of S.

What about QTSQ?

Here Q is orthogonal and QTSQ is symmetric.

S is PD. $Q^T = Q^T$

:. M = Q¯'SQ is Similar to S ⇒ M and S have same eigenvalues ⇒ M is PD

Another way: energy. $x^T Q^T S Q x$. Let Q x = y $\Rightarrow y^T S y$ which is tre. So, $\underline{Y} \underline{E} S$

→ What is Positive SEMI-definite?

e.g. $\begin{bmatrix} 3 & 4 \\ 4 & \frac{16}{3} \end{bmatrix} \quad det = 0$ $\lambda_{1} > 0$

 \rightarrow Consider matrix $M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

rank $(M)=1 \Rightarrow$ there is only 1 non-0 eigenvalue \Rightarrow There are total 3, 2 of them are 0 \Rightarrow Trace tells us 3rd one is 3.

 $\lambda_i = 3,0,0.$

Express M as A^TA . Since M is rank-1, A^T will be just a vector. $A = [1 \ 1 \ 1]$.

We can also see $M = \lambda$, $q_1q_1^T + \lambda_2 q_2 q_2^T + \lambda_3 q_3 q_3^T$ $\lambda_1 = 3$, $\lambda_2 = \lambda_3 = 0$

M = 39,9,T $9,=\frac{1}{\sqrt{3}}$ [normalized eigenvector].