Chapel Language Specification 0.6.0 Draft Edition for Internal Release

Cray Inc 411 First Ave S, Suite 600 Seattle, WA 98104

Chapel Language Specification

iv					Chap	el La	ngua	ge Sp	ecifica	tion
	12.3.1 Ex	xplicit Naming	 	 	 					62

Scope 1

1 Scope

Chapel is a new parallel programming language that is under d

Notation 3

2 Not

formal formal Organization 5

3 Organization

This specification is organized as follows:

• Section 1, Scope, describes the scope of this specification.

• Section 2, Notation, introduces the notation that is used th

5.1.2 Locality Aware Programming

Locality-aware programming, in the style of HPF and ZPL, provides without requiring a fragmentation of control structure. Th

Language Overview 11

Language Overview 13

5.2.4 Statements and Expressions

Egamples ofp

Statement	Example	
For Loop		

Language Overview 15

Expression	1	Example		
------------	---	---------	--	--

Lexical Structure 21

braces	use
()	

Types 23

7 Types

Types 25

7.1.6 The String Type

Strings are a primitive type designated by the symbol string. Their length is unbounded.

7.1.7 Primitive Type Literals

Bool literals are designated by the following syntax:

bool-literal:

Note that real literals require that a digit follow the decim

Conversions 33

9 Conversions

9.1.3 Implicit Class Conversions

An expression of class tyoe

A *call-expression* is resolved to a particular function according to the algorithm for function resolution described in §13.8.

A named-

```
def *(a: real(128), b: real(128)): real(128)
def *(a: imag(32), b: imag(32)): real(32)
def *(a: imag(64), b: imag(64)): real(64)
def *(a: imag(128), b: imag(128)): real(128)
def *(a: complex(64), b:
```

def /(a: complex

10.9.8 Exponentiation Operators

For each of these definitions that return a value, the result is computed by applying the AND operation to the bios of the operands.

It is a compile-time error to apply the bitwise and opeandtor t

def <<(a: int(32), b): int(32)

10.13 Relational Operators

Statements 55

Values of one primitive or enumerated type can be assigned to another primitive or enumerated type if an

Statements 57

11.8 The For Loop

11.8.3 Parameter For Loops

Parameter for loops are unrolled by the compile so that the i ndex variable is a paaeteraherhan a variable. The syntax for a paaeter for loop statement is gi ven by:

```
param-for-staemen :
  for param identifier in
```

Modules 61

Functions 65

arity	operators
unary	+ - ! ~
binary	+ - * / % ** && ! == <= >= < > << >> & ^ #

The arity and precedence of the operator must be maintained when it is overloaded. Operator resolution follows the same algorithm as function resolution.

13.8 Function Resolution

Given a function call, the function that the call resolves to is determined according to the following algorithm:

•

• If

Functions

Classes 77

14.4.1 Class Method Declarations

Classes 79

Records 81

Unions 83

16 Unions

This section is forthcoming.

Tuples 87

 $17.4.4TR373\ 9\ 0\ 0341\ 3(.) - lcparing. 4T34.737(H) - .6\ 244(o) - 2.94496(m) \\ 1.89551(o) - 2.94496(g) - 2.94496(l) \\ 0.965521(n) \\ 1.931m\ [louulous content of the c$

18.5 Iteration over Sequences

Sequences 91

18.7.2 Sequence Indexing by Tuples

If s is a sequence and t is a tuple of integers of size k, then the expression s(t) indexes into the sequence s k times using the integers in the tuple. In this case, s must be a sequence whose rank is at least as great as the size of t. If s has rank less than the size of the tuple, then the result is a sequence.

If the integers in tuple t en t60 Tf 9.6 0 Td[(.)-304.069(I)-4.2603(f)-4.2603]TJ /R374575-242.549(s)3.84.9602 0 Td [(s)-2.24962-242.549(s)3.84.9602 0 Td [(s)-2.24962-242.549(s)3.94.9602 0 Td [(s)-2.24962-242.549(s)3.94.9602 0 Td [(s)-2.24962-242.549(s)3.94.9602 0 Td [(s)-2.24962-242.949(s)3.94.9602 0 Td [(s)-2.24962-242.949(s)3.94.9602 0 Td [(s)-2.24962-242.949(s)3.94.9602 0 Td [(s)-2.24962-242.949(s)3.94.9402 0 Td [(s)-2.24962-242.949(s)3.9402 0 Td [(s)-2.24962-242.949(s)3.9402 0

 $mut6008.347(i)0.9(d) - 5.8912Td[(.) - 304.069(I) - 4.2603(f) - 4.1 - 5.8887(e) - 25992\ 0\ Td\ [(m)0.965521(i)0.99(t6008.347(i)0.99(i$

Sequences 93

18.10.1 Sequences in Select Statements

When a sequence expression is used as a top-level expression in the condition of a select statement, there are two interpretations. If the condition in the when expression is itself a sequence, the equality operator is used to compare the sequences and then an implicit && reduction is applied to produce a single bool alue. If the condition in the when expression is a scalar, the equality operat521(o)-5.88993(n)-234.75.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.75.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.75.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)-234.753(i)0.9732626(s)3.56067(c)-6.88993(n)

18.12.3 The

19.1.2 Index Types

Domains and Arrays 103

Efiample. The efipression [1..5, 1..5] defines a

Domains and Arrays 105

19.6 Opaque Domains and Arrays

This section is forthcoming.

19.6.1 Opaque Domain and Array Types

This section is forthcoming.

19.6.2 Opaque Domain Index Types

This section is forthcoming.

19.6.3 Adding Indices to Opaque Domains

This section is forthcoming.

19.6.4 Removing Indices from Opaque Domains

This section is forthcoming.

19.7 Enumerated Domains and Arrays

This section is forthcoming.

19.7.1 Enumerated Domain and Array Types

This section is forthcoming.

19.7.2 Enumerated Domain Index Types

This section is forthcoming.

19.8 Association of Arrays to Domains

This section is forthcoming.

Iterators 107

20 Iterators

An iterator is a function that conceptually returns a sequence of values rather than simply a single value.

Generics 109

21 Generics

Chapel supports generic functions and types that are parameterizable over both types and parameters. The generic functions and types look similar to non-generic functions and types already discussed.

21.1 Generic Functions

A function is generic if any of the following conditions hold:

- Some form1.66516(n)6l 1.66516(n)6rgument is specified evoithe ancient of
- Some form1.66516(n)6l 1.66516(n)6rgument has no specified type and no default valu
- Some form1.66516(n)6l 1.66516(n)6rgument is specified with a queried type.
- The type of some form 1.66516(n)61 1.66516(n)6 rgument is except energy e.g.,

•

Generics 111

Generics 113

21.3.3 Fields without Types

21.4 fihere Expressions

22.1.2 Forall Expressions

var

Locality and Distribution 123

23 Locality and Distribution

forall d in D {

Reductions and Scans

Input and Output 129

25 Input and Output

This section is forthcoming.

Index

```
&, 46
&&, 48
&&=, 54
&=, 54
(/,89
*,43
* tuples, 87
* * * 4 9
**<del>,=</del>454
₹=543,13<del>8</del>=
+, 42, 51
+ (unary), 41
+=, 54
-, 42
- (unary), 41
-=, 54
/, 44
/=, 54
<, 49
<<, 47
<<=, 54
<=, 49
=, 54
==, 50
```

<, 49

Standard Modules 135