Car Analysis

October 22, 2019

1 Cars features and price dataset

This is an analysis of the Car features and price dataset from Kaggle. My aims for the dataset are the following - Clean the dataset - Conduct Univariate and Bivariate analysis to understand what factors have an effect on pricing and fuel economy - Use Machine Learning algorithms to find - Predictive features for Fuel Economy - Regression model to predict MSRP

1.1 Import the necessary libraries and data file and perform initial data assessment

```
In [1]: # Import libraries necessary for this project
        import numpy as np
        import pandas as pd
        from time import time
        from IPython.display import display # Allows the use of display() for DataFrames
        import matplotlib.pyplot as plt
        import pandas_profiling
        import seaborn as sns
        # Pretty display for notebooks
        %matplotlib inline
        import visuals as vs
        # Load the Census dataset
        data = pd.read_csv("data.csv")
In [2]: #create a profile report
        data.profile_report(style={'full_width':True})
<IPython.core.display.HTML object>
Out[2]:
```

I really like using the profiling function, because it gives a lot of information in one like of code, and can help with the data wrangling and univariate analysis

Based on the report we can see - We have missing values in the dataset - We have duplicated values - Highway MPG and City MPG are highly correlated

Based on this information, we can begin the data wrangling process

1.2 Data Wrangling

In this step I will clean up the data 1. Deal with the null values 2. Deal with the outliers

In [3]: #Check if the dataset has any null values data.isnull().sum()

Out[3]:	Make	0
	Model	0
	Year	0
	Engine_Fuel_Type	3
	Engine_HP	69
	Engine_Cylinders	30
	Transmission_Type	0
	Driven_Wheels	0
	Number_of_Doors	6
	Market_Category	3742
	Vehicle_Size	0
	Vehicle_Style	0
	highway_MPG	0
	city_mpg	0
	Popularity	0
	MSRP	0
	dtype: int64	

In [4]: #Check if there is anything specific that stands out about the null values in the Mark data[data['Market_Category'].isnull()]

\

Out[4]:	Make	Model	Year	Engine_Fuel_Type	${\tt Engine_HP}$	١
87	Nissan	200SX	1996	regular unleaded	115.0	
88	Nissan	200SX	1996	regular unleaded	115.0	
91	Nissan	200SX	1997	regular unleaded	115.0	
92	Nissan	200SX	1997	regular unleaded	115.0	
93	Nissan	200SX	1998	regular unleaded	115.0	
94	Nissan	200SX	1998	regular unleaded	115.0	
203	Chrysler	300	2015	regular unleaded	300.0	
204	Chrysler	300	2015	regular unleaded	292.0	
205	Chrysler	300	2015	regular unleaded	292.0	
206	Chrysler	300	2015	regular unleaded	292.0	
209	Chrysler	300	2015	regular unleaded	292.0	
210	Chrysler	300	2015	regular unleaded	292.0	
211	Chrysler	300	2016	regular unleaded	300.0	
213	Chrysler	300	2016	regular unleaded	292.0	
214	Chrysler	300	2016	regular unleaded	292.0	
215	Chrysler	300	2016	regular unleaded	292.0	
216	Chrysler	300	2016	regular unleaded	292.0	
219	Chrysler	300	2016	regular unleaded	292.0	
220	Chrysler	300	2016	regular unleaded	292.0	
221	Chrysler	300	2016	regular unleaded	300.0	

222	Chrysler	300	2016	regular unleaded 292.0
223	Chrysler	300	2017	regular unleaded 292.0
224	Chrysler	300	2017	regular unleaded 292.0
225	Chrysler	300	2017	regular unleaded 300.0
228	Chrysler	300	2017	regular unleaded 300.0
229	Chrysler	300	2017	regular unleaded 292.0
231	Chrysler	300	2017	regular unleaded 292.0
360	Mazda	3	2015	regular unleaded 155.0
361	Mazda	3	2015	regular unleaded 155.0
362	Mazda	3	2015	regular unleaded 155.0
				· ·
1168	 36 Suzuki	XL-7		regular unleaded 185.0
1168		XL-7		regular unleaded 185.0
1174		Xterra		regular unleaded 261.0
1174		Xterra		<u> </u>
				9
1174		Xterra		regular unleaded 261.0
1174		Xterra		regular unleaded 261.0
1174		Xterra		regular unleaded 261.0
1174		Xterra		regular unleaded 261.0
1175		Xterra		regular unleaded 261.0
1175		Xterra		regular unleaded 261.0
1175		Xterra		regular unleaded 261.0
1175	3 Nissan	Xterra		regular unleaded 261.0
1175	54 Nissan	Xterra	2014	regular unleaded 261.0
1175	55 Nissan	Xterra	2014	regular unleaded 261.0
1175	66 Nissan	Xterra	2014	regular unleaded 261.0
1175	7 Nissan	Xterra	2014	regular unleaded 261.0
1175	8 Nissan	Xterra	2015	regular unleaded 261.0
1175	59 Nissan	Xterra	2015	regular unleaded 261.0
1176	0 Nissan	Xterra	2015	regular unleaded 261.0
1176	81 Nissan	Xterra	2015	regular unleaded 261.0
1176	32 Nissan	Xterra		regular unleaded 261.0
1176		Xterra	2015	regular unleaded 261.0
1176		Xterra	2015	regular unleaded 261.0
1179		XT	1991	regular unleaded 97.0
1179		XT	1991	regular unleaded 145.0
1179		XT	1991	regular unleaded 145.0
1180		Yaris iA	2017	regular unleaded 106.0
1181	v	Yaris iA	2017	regular unleaded 106.0
1186	•	Yukon	2017	premium unleaded (recommended) 420.0
				-
1186	S8 GMC	Yukon	2015	premium unleaded (recommended) 420.0
	п . а	m		
07	Engine_Cy	linders Tr	ansmis	- *•
87		4.0		MANUAL front wheel drive 2.0
88		4.0		MANUAL front wheel drive 2.0
91		4.0		MANUAL front wheel drive 2.0
92		4.0		MANUAL front wheel drive 2.0
93		4.0		MANUAL front wheel drive 2.0

94	4.0	MANUAL	front	wheel	drive	2.0
203	6.0	AUTOMATIC	all	wheel	drive	4.0
204	6.0	AUTOMATIC	rear	wheel	drive	4.0
205	6.0	AUTOMATIC	rear	wheel	drive	4.0
206	6.0	AUTOMATIC	all	wheel	drive	4.0
209	6.0	AUTOMATIC	all	wheel	drive	4.0
210	6.0	AUTOMATIC	all	wheel	drive	4.0
211	6.0	AUTOMATIC	all	wheel	drive	4.0
213	6.0	AUTOMATIC	all	wheel	drive	4.0
214	6.0	AUTOMATIC	rear	wheel	drive	4.0
215	6.0	AUTOMATIC	all	wheel	drive	4.0
216	6.0	AUTOMATIC	all	wheel	drive	4.0
219	6.0	AUTOMATIC	rear	wheel	drive	4.0
220	6.0	AUTOMATIC	rear	wheel	drive	4.0
221	6.0	AUTOMATIC	all	wheel	drive	4.0
222	6.0	AUTOMATIC	all	wheel	drive	4.0
223	6.0	AUTOMATIC	all	wheel	drive	4.0
224	6.0	AUTOMATIC	all	wheel	drive	4.0
225	6.0	AUTOMATIC	all	wheel	drive	4.0
228	6.0	AUTOMATIC	all	wheel	drive	4.0
229	6.0	AUTOMATIC	rear	wheel	drive	4.0
231	6.0	AUTOMATIC	all	wheel	drive	4.0
360	4.0	AUTOMATIC	front	wheel	drive	4.0
361	4.0	MANUAL	front	wheel	drive	4.0
362	4.0	MANUAL	front	wheel	drive	4.0
• • •					• • •	
11686	6.0	AUTOMATIC	rear	wheel	drive	4.0
11687	6.0	AUTOMATIC	rear	wheel	drive	4.0
11744	6.0	AUTOMATIC	four	wheel	drive	4.0
11745	6.0	MANUAL	four	wheel	drive	4.0
11746	6.0	MANUAL	four	wheel	drive	4.0
11747	6.0	AUTOMATIC	four	wheel	drive	4.0
11748	6.0	AUTOMATIC	rear	wheel	drive	4.0
11749	6.0	AUTOMATIC	four	wheel	drive	4.0
11750	6.0	AUTOMATIC	rear	wheel	drive	4.0
11751	6.0	AUTOMATIC	four	wheel	drive	4.0
11752	6.0	AUTOMATIC		wheel		4.0
11753	6.0	AUTOMATIC		wheel		4.0
11754	6.0	AUTOMATIC		wheel		4.0
11755	6.0	MANUAL		wheel		4.0
11756	6.0	AUTOMATIC	rear	wheel	drive	4.0
11757	6.0	MANUAL	four	wheel	drive	4.0
11758	6.0	MANUAL		wheel		4.0
11759	6.0	AUTOMATIC		wheel		4.0
11760	6.0	AUTOMATIC		wheel		4.0
11761	6.0	MANUAL		wheel		4.0
11762	6.0	AUTOMATIC		wheel		4.0
11763	6.0	AUTOMATIC	four	wheel	drive	4.0

44504			TOMA TIT O			4 0
11764				wheel drive		4.0
11792		. 0		wheel drive		2.0
11793				wheel drive		2.0
11794		.0		wheel drive		2.0
11809		.0		wheel drive		4.0
11810				wheel drive		4.0
11867				wheel drive		4.0
11868	8	. O AU	ΓΟΜΑΤΙC four	wheel drive		4.0
	Market_Category	-	_ •	0 0-	V - 10	\
87	NaN	Compact	Coupe		26	
88	NaN	Compact	Coupe		26	
91	NaN	Compact	Coupe		25	
92	NaN	Compact	Coupe		25	
93	NaN	Compact	Coupe		25	
94	NaN	Compact	Coupe	35	25	
203	NaN	Large	Sedan	. 27	18	
204	NaN	Large	Sedan	. 31	19	
205	NaN	Large	Sedan	. 31	19	
206	NaN	Large	Sedan	. 27	18	
209	NaN	Large	Sedan	. 27	18	
210	NaN	Large	Sedan	. 27	18	
211	NaN	Large	Sedan	. 27	18	
213	NaN	Large	Sedan	. 27	18	
214	NaN	Large	Sedan	31	19	
215	NaN	Large	Sedan	. 27	18	
216	NaN	Large	Sedan	. 27	18	
219	NaN	Large	Sedan	. 31	19	
220	NaN	Large	Sedan	31	19	
221	NaN	Large	Sedan		18	
222	NaN	Large	Sedan		18	
223	NaN	Large	Sedan		18	
224	NaN	Large	Sedan		18	
225	NaN	Large	Sedan		18	
228	NaN	Large	Sedan		18	
229	NaN	Large	Sedan		19	
231	NaN	Large	Sedan		18	
360	NaN	Compact	Sedan		30	
361	NaN	Compact	Sedan		29	
362	NaN	Compact	Sedan		29	
11686	NaN	Midsize	4dr SUV		16	
11687	NaN	Midsize	4dr SUV		16	
11744	NaN	Midsize	4dr SUV		15	
11745	NaN	Midsize	4dr SUV		16	
11746	NaN NaN	Midsize	4dr SUV		16	
11747	NaN NaN	Midsize	4dr SUV		15	
11748	NaN NaN	Midsize	4dr SUV		16	
TT1.40	Nan	HIGHTZE	tar 201	22	10	

11749	NaN	Midsize	4dr SUV	20	15
11750	NaN	Midsize	4dr SUV	22	16
11751	NaN	Midsize	4dr SUV	20	15
11752	NaN	Midsize	4dr SUV	22	16
11753	NaN	Midsize	4dr SUV	20	15
11754	NaN	Midsize	4dr SUV	20	15
11755	NaN	Midsize	4dr SUV	20	16
11756	NaN	Midsize	4dr SUV	22	16
11757	NaN	Midsize	4dr SUV	20	16
11758	NaN	Midsize	4dr SUV	20	15
11759	NaN	Midsize	4dr SUV	20	15
11760	NaN	Midsize	4dr SUV	20	15
11761	NaN	Midsize	4dr SUV	20	15
11762	NaN	Midsize	4dr SUV	22	16
11763	NaN	Midsize	4dr SUV	20	15
11764	NaN	Midsize	4dr SUV	22	16
11792	NaN	Compact	Coupe	29	22
11793	NaN	Compact	Coupe	26	18
11794	NaN	Compact	Coupe	23	16
11809	NaN	Compact	Sedan	39	30
11810	NaN	Compact	Sedan	40	32
11867	NaN	Large	4dr SUV	21	15
11868	NaN	Large	4dr SUV	21	14

	Popularity	MSRP
87	2009	2000
88	2009	2000
91	2009	2000
92	2009	2000
93	2009	2000
94	2009	2000
203	1013	37570
204	1013	31695
205	1013	38070
206	1013	44895
209	1013	34195
210	1013	40570
211	1013	38095
213	1013	45190
214	1013	32260
215	1013	37755
216	1013	41055
219	1013	38555
220	1013	35255
221	1013	38590
222	1013	34760
223	1013	41135
224	1013	45270

225	1013	38670
228	1013	38175
229	1013	32340
231	1013	34840
360	586	23795
361	586	19595
362	586	18445
11686	 481	 25499
11687	481	21999
11744	2009	26900
11744	2009	29440
11745	2009	25850
11747	2009	30490
11748	2009	24850
11749	2009	24990
11750	2009	22940
11751	2009	31370
11752	2009	25300
11753	2009	27350
11754	2009	25440
11755	2009	26300
11756	2009	23390
11757	2009	30320
11758	2009	26670
11759	2009	27720
11760	2009	25710
11761	2009	30590
11762	2009	23660
11763	2009	31640
11764	2009	25670
11792	640	2000
11793	640	2000
11794	640	2000
11809	2031	15950
11810	2031	17050
11867	549	64520
11868	549	67520

[3742 rows x 16 columns]

From the table above it seems that there is noting specific about the Nan's in the Market Category Column. Since, market category is not an independent characteristic (depends on other factors, like the make, model, style etc). Therefore, for downstream analysis, we can drop this column.

```
Out[5]: Make
                                0
        Model
                                0
        Year
                                0
        Engine_Fuel_Type
                                3
        Engine HP
                               69
        Engine_Cylinders
                               30
        Transmission Type
                                0
        Driven_Wheels
                                0
        Number_of_Doors
                                6
        Vehicle_Size
                                0
        Vehicle_Style
                                0
        highway_MPG
                                0
                                0
        city_mpg
                                0
        Popularity
                                0
        MSRP
        dtype: int64
```

1.2.1 Null Values

The two major sources of null values are horsepower and engine cylinders. We will look at both of them and see if we can add the missing values to these or would we have to drop them

Horsepower

```
In [6]: #Create a dataframe to further investigate the null values of Engine HP
        df_temp = data[data['Engine_HP'].isnull()]
In [7]: df_temp
Out [7]:
                        Make
                                     Model
                                            Year
                                                                   Engine_Fuel_Type
        539
                        FIAT
                                      500e
                                            2015
                                                                            electric
        540
                        FIAT
                                      500e
                                            2016
                                                                            electric
        541
                        FIAT
                                      500e
                                            2017
                                                                            electric
        2905
                     Lincoln
                             Continental
                                            2017
                                                     premium unleaded (recommended)
        2906
                     Lincoln Continental
                                            2017
                                                    premium unleaded (recommended)
                     Lincoln Continental
                                                    premium unleaded (recommended)
        2907
                                            2017
        2908
                     Lincoln Continental
                                            2017
                                                     premium unleaded (recommended)
        4203
                        Ford
                                   Escape
                                            2017
                                                                   regular unleaded
        4204
                        Ford
                                   Escape
                                            2017
                                                                   regular unleaded
        4205
                        Ford
                                            2017
                                                                   regular unleaded
                                   Escape
        4206
                        Ford
                                    Escape
                                            2017
                                                                   regular unleaded
        4705
                       Honda
                                   Fit EV
                                            2013
                                                                            electric
        4706
                       Honda
                                   Fit EV
                                            2014
                                                                            electric
        4785
                        Ford
                                     Focus
                                            2015
                                                                            electric
        4789
                        Ford
                                            2016
                                     Focus
                                                                            electric
        4798
                        Ford
                                     Focus
                                            2017
                                                                            electric
        4914
                        Ford
                                  Freestar
                                            2005
                                                                   regular unleaded
        4915
                        Ford
                                  Freestar
                                            2005
                                                                   regular unleaded
```

4916	Ford	Freestar	2005		regular unleaded
4917	Ford	Freestar	2005		regular unleaded
4918	Ford	Freestar	2005		regular unleaded
4919	Ford	Freestar	2005		regular unleaded
5778	Mitsubishi	i-MiEV	2014		electric
5825	Chevrolet	Impala	2015	flex-fuel	(unleaded/natural gas)
5830	Chevrolet	Impala	2015	flex-fuel	(unleaded/natural gas)
5831	Chevrolet	Impala	2016	flex-fuel	(unleaded/natural gas)
5833	Chevrolet	Impala	2016	flex-fuel	(unleaded/natural gas)
5839	Chevrolet	Impala	2017	flex-fuel	(unleaded/natural gas)
5840	Chevrolet	Impala	2017		(unleaded/natural gas)
6385	Nissan	Leaf	2014		electric
6578	Mercedes-Benz	M-Class	2015		diesel
6908	Lincoln	MKZ	2017		regular unleaded
6910	Lincoln	MKZ	2017		regular unleaded
6916	Lincoln	MKZ	2017		regular unleaded
6918	Lincoln	MKZ	2017		regular unleaded
					electric
6921	Tesla	Model S	2014		
6922	Tesla	Model S	2014		electric
6923	Tesla	Model S	2014		electric
6924	Tesla	Model S	2014		electric
6925	Tesla	Model S	2015		electric
6926	Tesla	Model S	2015		electric
6927	Tesla	Model S	2015		electric
6928	Tesla	Model S	2015		electric
6929	Tesla	Model S	2015		electric
6930	Tesla	Model S	2016		electric
6931	Tesla	Model S	2016		electric
6932	Tesla	Model S	2016		electric
6933	Tesla	Model S	2016		electric
6934	Tesla	Model S	2016		electric
6935	Tesla	Model S	2016		electric
6936	Tesla	Model S	2016		electric
6937	Tesla	Model S	2016		electric
6938	Tesla	Model S	2016		electric
8374	Toyota	RAV4 EV	2013		electric
8375	Toyota	RAV4 EV	2014		electric
9850	Kia	Soul EV	2015		electric
9851	Kia	Soul EV	2015		electric
9852	Kia	Soul EV	2016		electric
9853	Kia	Soul EV	2016		electric
9854	Kia	Soul EV	2016		electric
3004	ΝIα	DOUL EV	2010		electific
	Engine_HP Eng	ine Culindora	Tranc	emiggion Terr	oe Driven_Wheels \
539	NaN	0.0	11 all	DIRECT_DRI	
539 540		0.0		-	
	NaN NaN			DIRECT_DRIV	
541	NaN	0.0		DIRECT_DRIV	VE front wheel drive

0005						
2905	NaN	6.0	AUTOMATIC		wheel	
2906	NaN	6.0	AUTOMATIC		wheel	
2907	NaN	6.0	AUTOMATIC		wheel	
2908	NaN	6.0	AUTOMATIC		wheel	
4203	NaN	4.0	AUTOMATIC		wheel	
4204	NaN	4.0	AUTOMATIC		wheel	
4205	NaN	4.0	AUTOMATIC		wheel	
4206	NaN	4.0	AUTOMATIC		wheel	
4705	NaN	0.0	DIRECT_DRIVE	front	wheel	drive
4706	NaN	0.0	DIRECT_DRIVE	front	wheel	drive
4785	NaN	0.0	DIRECT_DRIVE	front	wheel	drive
4789	NaN	0.0	DIRECT_DRIVE	front	wheel	drive
4798	NaN	0.0	DIRECT_DRIVE	front	wheel	drive
4914	NaN	6.0	AUTOMATIC	front	wheel	drive
4915	NaN	6.0	AUTOMATIC	front	wheel	drive
4916	NaN	6.0	AUTOMATIC	front	wheel	drive
4917	NaN	6.0	AUTOMATIC	front	wheel	drive
4918	NaN	6.0	AUTOMATIC	front	wheel	drive
4919	NaN	6.0	AUTOMATIC	front	wheel	drive
5778	NaN	NaN	DIRECT_DRIVE	rear	wheel	drive
5825	NaN	6.0	AUTOMATIC	front	wheel	drive
5830	NaN	6.0	AUTOMATIC	front	wheel	drive
5831	NaN	6.0	AUTOMATIC	front	wheel	drive
5833	NaN	6.0	AUTOMATIC	front	wheel	drive
5839	NaN	6.0	AUTOMATIC	front	wheel	drive
5840	NaN	6.0	AUTOMATIC	front	wheel	drive
6385	NaN	0.0	DIRECT_DRIVE	front	wheel	drive
6578	NaN	4.0	AUTOMATIC	all	wheel	drive
6908	NaN	4.0	AUTOMATIC	front	wheel	drive
6910	NaN	4.0	AUTOMATIC	front	wheel	drive
6916	NaN	4.0	AUTOMATIC	front	wheel	drive
6918	NaN	4.0	AUTOMATIC	front	wheel	drive
6921	NaN	0.0	DIRECT_DRIVE	rear	wheel	drive
6922	NaN	0.0	DIRECT_DRIVE		wheel	
6923	NaN	0.0	DIRECT_DRIVE	all	wheel	drive
6924	NaN	0.0	DIRECT_DRIVE		wheel	
6925	NaN	0.0	DIRECT_DRIVE		wheel	
6926	NaN	0.0	DIRECT_DRIVE		wheel	
6927	NaN	0.0	DIRECT_DRIVE		wheel	
6928	NaN	0.0	DIRECT_DRIVE		wheel	
6929	NaN	0.0	DIRECT_DRIVE		wheel	
6930	NaN	0.0	DIRECT DRIVE		wheel	
6931	NaN	0.0	DIRECT_DRIVE		wheel	
6932	NaN	0.0	DIRECT_DRIVE		wheel	
6933	NaN	0.0	DIRECT_DRIVE		wheel	
6934	NaN	0.0	DIRECT_DRIVE		wheel	
6935	NaN	0.0	DIRECT_DRIVE		wheel	
0900	wan	0.0	DIMEOI DIMIAE	all	MITGET	at i se

6936	NaN	0.0	DIRECT_DRIVE	all wheel dr	ive
6937	NaN	0.0	DIRECT_DRIVE	all wheel dr	ive
6938	NaN	0.0	DIRECT_DRIVE 1	rear wheel dr	ive
8374	NaN	0.0	DIRECT_DRIVE fi	ront wheel dr	ive
8375	NaN	0.0	DIRECT_DRIVE fr	ront wheel dr	ive
9850	NaN	0.0	DIRECT_DRIVE fr	ront wheel dr	ive
9851	NaN	0.0	DIRECT_DRIVE fi	ront wheel dr	ive
9852	NaN	0.0	-	ront wheel dr	ive
9853	NaN	0.0	-	ront wheel dr	ive
9854	NaN	0.0	-	ront wheel dr	
			-		
	Number_of_Doors	Vehicle_Size	Vehicle_Style	highway_MPG	city_mpg \
539	2.0	Compact	2dr Hatchback	108	122
540	2.0	Compact	2dr Hatchback	103	121
541	2.0	Compact	2dr Hatchback	103	121
2905	4.0	Large	Sedan	25	17
2906	4.0	Large	Sedan	27	18
2907	4.0	Large	Sedan	27	18
2908	4.0	Large	Sedan	25	17
4203	4.0	Compact	4dr SUV	30	23
4204	4.0	Compact	4dr SUV	28	22
4205	4.0	Compact	4dr SUV	28	22
4206	4.0	Compact	4dr SUV	30	23
4705	4.0	Compact	4dr Hatchback	105	132
4706	4.0	Compact	4dr Hatchback	105	132
4785	4.0	Compact	4dr Hatchback	99	110
4789	4.0	Compact	4dr Hatchback	99	110
4798	4.0	Compact	4dr Hatchback	99	110
4914	4.0	Midsize	Passenger Minivan	22	16
4915	4.0	Midsize	Passenger Minivan	22	16
4916	4.0	Midsize	Cargo Minivan	22	16
4917	4.0	Midsize	•	22	16
			Passenger Minivan	21	16
4918	4.0	Midsize	Passenger Minivan		
4919	4.0	Midsize	Passenger Minivan	21	16
5778	4.0	Compact	4dr Hatchback	99	126
5825	4.0	Large	Sedan	25	17
5830	4.0	Large	Sedan	25	17
5831	4.0	Large	Sedan	25	17
5833	4.0	Large	Sedan	25	17
5839	4.0	Large	Sedan	25	17
5840	4.0	Large	Sedan	25	17
6385	4.0	Compact	4dr Hatchback	101	126
		 M: 1 :	4.1 0111		
6578	4.0	Midsize	4dr SUV	29	22
6908	4.0	Midsize	Sedan	38	41
6910	4.0	Midsize	Sedan	38	41
6916	4.0	Midsize	Sedan	38	41
6918	4.0	Midsize	Sedan	38	41

6921	4.0	Large	Sedan	90	88
6922	4.0	Large	Sedan	97	94
6923	4.0	Large	Sedan	94	86
6924	4.0	Large	Sedan	90	88
6925	4.0	Large	Sedan	97	94
6926	4.0	Large	Sedan	102	101
6927	4.0	Large	Sedan	102	95
6928	4.0	Large	Sedan	98	89
6929	4.0	Large	Sedan	90	88
6930	NaN	_	Sedan	105	102
		Large			
6931	NaN	Large	Sedan	101	98
6932	NaN	Large	Sedan	105	92
6933	NaN	Large	Sedan	100	97
6934	NaN	Large	Sedan	107	101
6935	4.0	Large	Sedan	102	101
6936	4.0	Large	Sedan	107	101
6937	4.0	Large	Sedan	100	91
6938	4.0	Large	Sedan	90	88
8374	4.0	Midsize	4dr SUV	74	78
8375	4.0	Midsize	4dr SUV	74	78
9850	4.0	Compact	Wagon	92	120
9851	4.0	Compact	Wagon	92	120
9852	4.0	Compact	Wagon	92	120
9853	4.0	Compact	Wagon	92	120
9854	4.0	Compact	Wagon	92	120
		_			

	Popularity	MSRP
539	819	31800
540	819	31800
541	819	31800
2905	61	55915
2906	61	62915
2907	61	53915
2908	61	64915
4203	5657	29100
4204	5657	30850
4205	5657	26850
4206	5657	25100
4705	2202	36625
4706	2202	36625
4785	5657	29170
4789	5657	29170
4798	5657	29120
4914	5657	28030
4915	5657	23930
4916	5657	21630
4917	5657	26530
4918	5657	29030

```
4919
             5657
                     32755
5778
              436
                     22995
5825
             1385
                     40660
             1385
5830
                     37535
5831
             1385
                     40810
             1385
5833
                     37570
5839
             1385
                     37675
5840
             1385
                     40915
             2009
                     35020
6385
                       . . .
              617
                     49800
6578
6908
               61
                     35010
6910
               61
                     39510
6916
               61
                     36760
6918
               61
                     47670
6921
             1391
                     79900
6922
             1391
                     69900
6923
             1391
                    104500
6924
             1391
                     93400
6925
             1391
                     69900
6926
             1391
                     75000
             1391
6927
                     85000
6928
             1391
                    105000
6929
             1391
                     80000
6930
             1391
                     79500
             1391
6931
                     66000
             1391
6932
                    134500
6933
             1391
                     74500
             1391
6934
                     71000
6935
             1391
                     75000
6936
             1391
                     89500
6937
             1391
                    112000
6938
             1391
                     70000
8374
             2031
                     49800
             2031
8375
                     49800
9850
             1720
                     35700
             1720
9851
                     33700
9852
             1720
                     33950
9853
             1720
                     31950
9854
             1720
                     35950
```

[69 rows x 15 columns]

There are some specific models of cars that are missing horsepower values. Let's check which models are these

```
In [8]: df_temp['Model'].unique()
Out[8]: array(['500e', 'Continental', 'Escape', 'Fit EV', 'Focus', 'Freestar',
```

```
'i-MiEV', 'Impala', 'Leaf', 'M-Class', 'MKZ', 'Model S', 'RAV4 EV', 'Soul EV'], dtype=object)
```

One maybe tempted to drop these values, but with a little help from Google, we can find the missing horsepower values and add them to the dataframe

```
In [9]: #First make a new copy of the dataframe to work with
        df = data.copy()
In [10]: #Here we add values of missing horsepower
         result = []
         for i in df['Model']:
             if i == '500e':
                 result.append(111)
             elif i == 'Continental':
                 result.append(400)
             elif i == 'Escape':
                 result.append(168)
             elif i == 'Fit EV':
                 result.append(123)
             elif i == 'Focus':
                 result.append(143)
             elif i == 'Freestar':
                 result.append(201)
             elif i == 'i-MiEV':
                 result.append(66)
             elif i == 'Impala':
                 result.append(305)
             elif i == 'Leaf':
                 result.append(107)
             elif i == 'M-Class':
                 result.append(201)
             elif i == 'MKZ':
                 result.append(245)
             elif i == 'Model S':
                 result.append(600)
             elif i == 'RAV4 EV':
                 result.append(154)
             elif i == 'Soul EV':
                 result.append(109)
             else:
                 result.append(" ")
         df["Result"] = result
In [11]: #Here I will replace the missing values with a blank space, so it will be easy to mel
         df["Engine_HP"] = df["Engine_HP"].fillna('')
In [12]: df.head()
```

```
Out[12]:
          Make
                      Model Year
                                              Engine_Fuel_Type Engine_HP \
           BMW
                 1 Series M 2011 premium unleaded (required)
                                                                     335
                                   premium unleaded (required)
         1
           BMW
                   1 Series 2011
                                                                     300
         2 BMW
                   1 Series 2011 premium unleaded (required)
                                                                     300
                   1 Series 2011
                                   premium unleaded (required)
         3 BMW
                                                                     230
                   1 Series 2011 premium unleaded (required)
                                                                     230
         4 BMW
            Engine_Cylinders Transmission_Type
                                                   Driven_Wheels Number_of_Doors \
         0
                         6.0
                                        MANUAL rear wheel drive
                                                                              2.0
                         6.0
                                        MANUAL rear wheel drive
                                                                              2.0
         1
         2
                         6.0
                                                                              2.0
                                        MANUAL rear wheel drive
         3
                         6.0
                                        MANUAL rear wheel drive
                                                                              2.0
                         6.0
                                                                              2.0
         4
                                        MANUAL rear wheel drive
           Vehicle_Size Vehicle_Style highway_MPG
                                                    city_mpg Popularity
                                                                           MSRP Result
         0
                Compact
                                Coupe
                                                26
                                                          19
                                                                    3916 46135
         1
                Compact
                          Convertible
                                                28
                                                          19
                                                                    3916 40650
         2
                Compact
                                Coupe
                                                28
                                                          20
                                                                    3916 36350
         3
                Compact
                                Coupe
                                                28
                                                          18
                                                                    3916 29450
                Compact
                          Convertible
                                                28
                                                          18
                                                                    3916 34500
```

Next, we will merge the new and the old horsepower columns to make a single column

```
In [13]: convert dict = {'Result': str, 'Engine HP': str}
         df = df.astype(convert_dict)
In [14]: df['Final_HP'] = df["Engine_HP"] + df["Result"]
In [15]: df['Final_HP'] = df['Final_HP'].astype(float)
In [16]: #Drop the old HP column
         df = df.drop(columns=['Engine_HP', 'Result'])
In [17]: #Recheck null values
         df.isnull().sum()
Out [17]: Make
                                0
         Model
                                0
         Year
                                0
         Engine_Fuel_Type
                                3
         Engine_Cylinders
                               30
         Transmission_Type
                                0
         Driven_Wheels
                                0
         Number_of_Doors
                                6
         Vehicle_Size
                                0
         Vehicle_Style
                                0
         highway_MPG
                                0
         city_mpg
                                0
         Popularity
                                0
```

MSRP 0 Final_HP 0

dtype: int64

Engine Cylinders

In [19]: df_temp

Out[19]:	Make	Model	Year	<pre>Engine_Fuel_Type \</pre>
1983	Chevrolet	Bolt EV	2017	electric
1984	Chevrolet	Bolt EV	2017	electric
3716	Volkswagen	e-Golf	2015	electric
3717	Volkswagen	e-Golf	2015	electric
3718	Volkswagen	e-Golf	2016	electric
3719	Volkswagen	e-Golf	2016	electric
5778	Mitsubishi	i-MiEV	2014	electric
5779	Mitsubishi	i-MiEV	2016	electric
5780	Mitsubishi	i-MiEV	2017	electric
8373	Toyota	RAV4 EV	2012	electric
8695	Mazda	RX-7	1993	regular unleaded
8696	Mazda	RX-7	1994	regular unleaded
8697	Mazda	RX-7	1995	regular unleaded
8698	Mazda	RX-8	2009	premium unleaded (required)
8699	Mazda	RX-8	2009	premium unleaded (required)
8700	Mazda	RX-8	2009	premium unleaded (required)
8701	Mazda	RX-8	2009	premium unleaded (required)
8702	Mazda	RX-8	2009	premium unleaded (required)
8703	Mazda	RX-8	2009	premium unleaded (required)
8704	Mazda	RX-8	2009	premium unleaded (required)
8705	Mazda	RX-8	2010	premium unleaded (required)
8706	Mazda	RX-8	2010	premium unleaded (required)
8707	Mazda	RX-8	2010	premium unleaded (required)
8708	Mazda	RX-8	2010	premium unleaded (required)
8709	Mazda	RX-8	2010	premium unleaded (required)
8710	Mazda	RX-8	2011	premium unleaded (required)
8711	Mazda	RX-8	2011	premium unleaded (required)
8712	Mazda	RX-8	2011	premium unleaded (required)
8713	Mazda	RX-8	2011	premium unleaded (required)
8714	Mazda	RX-8	2011	premium unleaded (required)
	Engine_Cyli	nders Tra	nsmiss	sion_Type Driven_Wheels Number_of_Doors \
1983		NaN	DIRE	CCT_DRIVE front wheel drive 4.0
1984		NaN	DIRE	CCT_DRIVE front wheel drive 4.0
3716		NaN	DIRE	CCT_DRIVE front wheel drive 4.0
3717		NaN	DIRE	CCT_DRIVE front wheel drive 4.0

3718		${\tt NaN}$	DIREC	T_DRIVE	front	wheel	drive		4.	. 0
3719		NaN	N DIRECT_DRIVE			wheel	drive		4.	. 0
5778		NaN	DIREC	T_DRIVE	rear	wheel	drive		4.	. 0
5779		NaN	DIREC	T_DRIVE	rear	wheel	drive		4.	. 0
5780		NaN	DIREC	T_DRIVE	rear	wheel	drive		4.	. 0
8373		NaN	DIREC	T_DRIVE	front	wheel	drive		4.	. 0
8695		NaN		MANUAL	rear	wheel	drive		2.	. 0
8696		NaN		rear	wheel	drive		2.	. 0	
8697		NaN		MANUAL	rear	wheel	drive		2.	. 0
8698		NaN		MANUAL	rear	wheel	drive		4.	. 0
8699		NaN	AU	TOMATIC	rear	wheel	drive		4.	. 0
8700		NaN		MANUAL	rear	wheel	drive		4.	
8701		NaN		MANUAL	rear	wheel	drive		4.	
8702		NaN		MANUAL	rear	wheel	drive		4.	
8703		NaN	AU	TOMATIC	rear	wheel	drive		4.	
8704		NaN		TOMATIC	rear	wheel	drive		4.	
8705		NaN		MANUAL		wheel			4.	
8706		NaN	AU	TOMATIC		wheel			4.	
8707		NaN	AU	TOMATIC	rear	wheel	drive		4.	
8708		NaN		MANUAL	rear	wheel	drive		4.	
8709		NaN		MANUAL	rear	wheel	drive		4.	. 0
8710		NaN	AU	TOMATIC	rear	wheel	drive		4.	
8711		NaN		MANUAL	rear	wheel	drive		4.	
8712		NaN		MANUAL	rear	wheel	drive		4.	. 0
8713		NaN		MANUAL	rear	wheel	drive		4.	. 0
8714		NaN	AU	TOMATIC	rear	wheel	drive		4.	. 0
	W-1-:-1- G:	17 - 1- ±	-1 - 0+1 -	1. 41	MDG		D		Madd	,
	Vehicle_Size		cle_Style	highway		city_mp	_	ularity 1385	MSRP	\
1983	Compact		Hatchback		110		28		40905	
1984	Compact		Hatchback		110		28	1385	36620	
3716	Compact		Hatchback		105		26 26	873	33450	
3717	Compact		Hatchback		105		26 26	873	35445	
3718	Compact		Hatchback		105		26	873	28995	
3719	Compact		Hatchback		105		26	873	35595	
5778	Compact		Hatchback		99		26	436	22995	
5779	Compact		Hatchback		99		26	436	22995	
5780	Compact	4ar	Hatchback		102		21	436	22995	
8373	Midsize		4dr SUV		74		78	2031	49800	
8695	Compact		Coupe		23		L5	586	7523	
8696	Compact		Coupe		23		L5	586	8147	
8697	Compact		Coupe		23		L5	586	8839	
8698	Compact		Coupe	22		16	586	31930		
8699	Compact		Coupe		23		16	586	26435	
8700	Compact		Coupe		22		l6	586	27860	
8701	Compact		Coupe		22		16	586	31000	
8702	Compact		Coupe		22		l6	586	26435	
8703	Compact		Coupe		23		l6	586	31700	
8704	Compact		Coupe		23]	16	586	28560	

8705	Compact	Coupe	22	16	586	32140
8706	Compact	Coupe	23	16	586	26645
8707	Compact	Coupe	23	16	586	32810
8708	Compact	Coupe	22	16	586	26645
8709	Compact	Coupe	22	16	586	32110
8710	Compact	Coupe	23	16	586	32960
8711	Compact	Coupe	22	16	586	32260
8712	Compact	Coupe	22	16	586	32290
8713	Compact	Coupe	22	16	586	26795
8714	Compact	Coupe	23	16	586	26795

```
Final_HP
     200.0000
1983
1984
     200.0000
3716
     115.0000
3717
     115.0000
3718
     115.0000
3719
     115.0000
5778
       66.0000
5779
       66.0660
5780
       66.0660
8373
      154.0154
8695
     255.0000
8696
     255.0000
8697
     255.0000
8698 232.0000
8699 212.0000
8700
     232.0000
8701
     232.0000
8702 232.0000
8703 212.0000
8704 212.0000
8705 232.0000
8706 212.0000
8707 212.0000
8708 232.0000
8709 232.0000
8710 212.0000
8711 232.0000
8712 232.0000
8713 232.0000
8714 212.0000
```

These cars are either electric or Mazdas with a rotary engine. In either case, they did not have any cylinders, so we can safely replace the NaN with 0.

```
In [21]: df.isnull().sum()
Out [21]: Make
                              0
         Model
                              0
                              0
         Year
         Engine_Fuel_Type
                              3
         Engine_Cylinders
                              0
         Transmission_Type
                              0
         Driven_Wheels
                              0
         Number of Doors
                              6
         Vehicle_Size
                              0
         Vehicle_Style
                              0
         highway_MPG
                              0
                              0
         city_mpg
         Popularity
                              0
         MSRP
                              0
                              0
         Final_HP
         dtype: int64
Engine Fuel
In [22]: df_temp = df[df['Engine_Fuel_Type'].isnull()]
In [23]: df_temp
Out [23]:
                  Make
                         Model Year Engine_Fuel_Type Engine_Cylinders \
         11321 Suzuki Verona
                                2004
                                                                     6.0
                                                   NaN
         11322 Suzuki Verona 2004
                                                   NaN
                                                                     6.0
         11323 Suzuki Verona 2004
                                                   NaN
                                                                     6.0
               Transmission_Type
                                      Driven Wheels Number of Doors Vehicle Size \
         11321
                       AUTOMATIC front wheel drive
                                                                  4.0
                                                                           Midsize
                                                                  4.0
         11322
                       AUTOMATIC front wheel drive
                                                                           Midsize
         11323
                       AUTOMATIC front wheel drive
                                                                  4.0
                                                                           Midsize
               Vehicle_Style
                              highway_MPG city_mpg
                                                     Popularity
                                                                   MSRP
                                                                         Final_HP
         11321
                       Sedan
                                                             481
                                                                  17199
                                       25
                                                  17
                                                                            155.0
                       Sedan
         11322
                                        25
                                                  17
                                                             481
                                                                  20199
                                                                            155.0
                       Sedan
                                       25
                                                  17
         11323
                                                             481 18499
                                                                            155.0
In [24]: #Replace NaN with regular unleaded in the Engine Fuel Type Column
         df['Engine_Fuel_Type'].fillna('regular unleaded', inplace = True);
Number of doors
In [25]: df_temp = df[df['Number_of_Doors'].isnull()]
In [26]: df_temp
```

Out[26]:	Make	Model	Year	I	Engine_Fuel_T	Type Eng	gine_Cylinde	ers \
4666	Ferrari	FF	2013 p	remium unle	eaded (requir	red)	12	2.0
6930	Tesla	Model S	2016		elect	ric	(0.0
6931	Tesla	Model S	2016		elect	ric	(0.0
6932	Tesla	Model S	2016		elect	ric	(0.0
6933	Tesla	Model S	2016		elect	ric	(0.0
6934	Tesla	Model S	2016		elect	ric	(0.0
	Transmissi	on_Type	Driv	en_Wheels	Number_of_Do	ors Vehi	.cle_Size \	`
4666	AUTOMATED	_MANUAL	all wh	eel drive		NaN	Large	
6930	DIREC	T_DRIVE	all wh	eel drive		NaN	Large	
6931	DIREC	T_DRIVE	all wh	eel drive		NaN	Large	
6932	DIREC	T_DRIVE	all wh	eel drive		NaN	Large	
6933	DIREC	T_DRIVE	rear wh	eel drive		NaN	Large	
6934	DIREC	T_DRIVE	all wh	eel drive		NaN	Large	
	Vehicle_St	yle hig	hway_MPG	city_mpg	Popularity	MSRP	$Final_HP$	
4666	Co	upe	16	11	2774	295000	651.0	
6930	Se	dan	105	102	1391	79500	600.0	
6931	Se	dan	101	98	1391	66000	600.0	
6932	Se	dan	105	92	1391	134500	600.0	
6933	Se	dan	100	97	1391	74500	600.0	
6934	Se	dan	107	101	1391	71000	600.0	

In this case we see that there are two car models that don't have the number of doors. For all the Teslas we will have 4 doors, while the ferrari has 2 doors. First I will change the NaN to 4, and then deal with the ferrari later if needed.

```
In [27]: #Replace NaN with 4 in the Number of doors Column
         df['Number_of_Doors'].fillna(4, inplace = True);
In [28]: df.isnull().sum()
Out [28]: Make
                               0
         Model
                               0
         Year
                               0
         Engine_Fuel_Type
                               0
         Engine_Cylinders
                               0
         Transmission_Type
                               0
         Driven_Wheels
                               0
         Number_of_Doors
                               0
                               0
         Vehicle_Size
         Vehicle_Style
                               0
         highway_MPG
                               0
                               0
         city_mpg
         Popularity
                               0
         MSRP
                               0
         Final_HP
                               0
         dtype: int64
```

As we can see above, we have taken care of the null values Next up, we will look at duplicated values

1.2.2 Duplicated Values

431

```
In [29]: dup_rows = df[df.duplicated()]
```

In [30]: du	p_rows.head	1(20)		
0+ [20] .	M - 1	M - 1 - 7	Variation Final Times	
Out[30]:	Make	Model	0 = - 11	
14		1 Series	1	
18		100	S	
20		100	S	
24		100	<u>o</u>	
25		100	S	
88		200SX	S .	
92		200SX	<u>o</u>	
94		200SX	<u>o</u>	
10	9 Volvo	240	S	
12	6 BMW	3 Series Gran Turismo	2015 premium unleaded (required)	
13	7 BMW	3 Series	s 2015 premium unleaded (required)	
14	1 BMW	3 Series	s 2015 premium unleaded (required)	
25	2 Mazda	323	3 1992 regular unleaded	
41	3 BMW	4 Series Gran Coupe	e 2015 premium unleaded (required)	
41	4 BMW	4 Series Gran Coupe	e 2015 premium unleaded (required)	
43	1 BMW	4 Series	2015 premium unleaded (required)	
43	2 BMW	4 Series	2015 premium unleaded (required)	
43	5 BMW	4 Series	s 2015 premium unleaded (required)	
43	6 BMW	4 Series	2015 premium unleaded (required)	
67	7 Pontiac	6000	regular unleaded	
			-	
	Engine_C	$ ext{Sylinders Transmission}_{ ext{L}}$	Type Driven_Wheels Number_of_Doors	\
14		6.0 MA	NUAL rear wheel drive 2.0	
18		6.0 MA	NUAL front wheel drive 4.0	
20		6.0 MA	NUAL front wheel drive 4.0	
24		6.0 MA	NUAL front wheel drive 4.0	
25		6.0 MA	NUAL front wheel drive 4.0	
88		4.0 MA	NUAL front wheel drive 2.0	
92		4.0 MA	NUAL front wheel drive 2.0	
94		4.0 MA	NUAL front wheel drive 2.0	
10	9	4.0 MA	NUAL rear wheel drive 4.0	
12	6	4.0 AUTOM	MATIC all wheel drive 4.0	
13'		4.0 AUTOM		
14		4.0 AUTOM		
25:			NUAL front wheel drive 2.0	
41		4.0 AUTOM		
41		4.0 AUTOM		

AUTOMATIC all wheel drive

2.0

4.0

432		4.0 AUTOMATIC		all wheel drive			2.	0
435		4.0 AUTOMATIC		rear wheel drive			2.	0
436		4.0 AU	rea	r wheel dr	ive	2.0		
677		6.0 AU	TOMATIC	fron	t wheel dr	ive	4.	0
	Vehicle_Size	Vehicle_Style	_MPG	city_mpg	Popularity	MSRP	\	
14	Compact	Coupe		28	19	3916	31500	
18	Midsize	Sedan		24	17	3105	2000	
20	Midsize	Sedan		24	17	3105	2000	
24	Midsize	Sedan		24	17	3105	2000	
25	Midsize	Sedan		24	17	3105	2000	
88	Compact	Coupe		36	26	2009	2000	
92	Compact	Coupe		35	25	2009	2000	
94	Compact	Coupe	35	25	2009	2000		
109	Midsize	Sedan		26	19	870	2000	
126	Midsize	4dr Hatchback		33	22	3916	41850	
137	Midsize	Sedan		33	22	3916	39500	
141	Midsize	Sedan	35	23	3916	37500		
252	Compact	2dr Hatchback		33	25	586	2000	
413	Midsize	Sedan		34	23	3916	40300	
414	Midsize	Sedan		33	22	3916	42300	
431	Midsize	Coupe		33	22	3916	42750	
432	Midsize	Convertible		33	21	3916	50750	
435	Midsize	Convertible		34	23	3916	48750	
436	Midsize	Coupe		35	23	3916	40750	
677	Midsize	Wagon		27	17	210	2000	
	$Final_HP$							

14 230.0 18 172.0 20 172.0 24 172.0 25 172.0 115.0 88 92 115.0 94 115.0 114.0 109 126 240.0 137 240.0 240.0 141 252 82.0 240.0 413 414 240.0 431 240.0 432 240.0 435 240.0 436 240.0 140.0 677

We see that there are duplicated values, but it just could be multiple cars with the same attributes, and therefore, I will not drop them

1.2.3 Data exploration for outliers

Observations

- There are some outliers in the price. Even though it is true that there are cars that are USD 2M, they will completely skew the distribution, so we will drop any car >500K
- We will also limit highway MPG to 130.

Limit the values of price and highway MPG

```
In [32]: df_clean = df.copy()
In [33]: df_clean['MSRP'] = df_clean['MSRP'].clip(upper = 500000)
In [34]: df_clean['highway_MPG'] = df_clean['highway_MPG'].clip(upper = 130)
In [35]: df_clean.hist(column = ['highway_MPG','MSRP'],bins = 20,grid=True, figsize = (8,4), column = [lean.hist(column = [lean.
```


We can see that the data is still right skewed, and we will log transform this before applying ML algorithms

Now that we have cleaned up the data, we will generate a profile report

1.3 Univariate Data Exploration

univar('Make', 14, 5)

In [38]: #Engine fuel type
 univar('Engine_Fuel_Type', 5, 5)

In [39]: #Vehicle Size
 univar('Vehicle_Size', 5, 5)

In [40]: #Vehicle Style
 univar('Vehicle_Style',8,5)

In [41]: #Transmission
 univar('Transmission_Type',5,5)

In [42]: #Drive wheels
 univar('Driven_Wheels',5,5)

1.3.1 Univariate Data Exploration Summary

Most common categories - Brand: Chevy - Fuel: Regular unleaded - Type: Sedan - Transmission: Automatic - Drive: Front Wheel Drive

1.4 Bivariate Data Exploration

1.4.1 MSRP

1.4.2 Highway MPG

In [48]: #Let's check the effect of vehicle size on the Mileage
 plt.figure(figsize=[8, 5])
 sns.barplot(x = 'Vehicle_Style', y = 'highway_MPG', data = df_clean,palette="Greens")
 plt.xticks(rotation=90);

1.4.3 Bivariate Data Exploration Summary

MSRP

- Automated Manuals are most expensive (these are mostly exotic supercars)
- FWD are cheapest
- Coupes and Convertibles are most expensive
- There are three tiers based on brands
 - Tier 1 consists of ultra premium cars are Buggati, Maybach, Ferrari, etc
 - The second tier is BMW, Audi, Mercedes, Infiniti etc
 - Most mass market cars like Ford, Chevy form the third tier

MPG

- Direct drive has highest MPG (these electric cars)
- FWD cars have better MPG than rear wheel or AWD (these are more mass market cars, with less perfomance)
- 4DR Hatchbacks have best MPG (most electric cars fall in this category)
- Tesla as a brand has the best MPG (They only make electric cars)

1.5 Multivariate Exploration

```
plt.yscale('log')
plt.yticks([ 5000,20000, 100000, 500000], [ '5k' ,'20k', '100k', '500k']);
```


1.6 Building a classification model for Fuel Economy

In [84]: # Split the data into features and target label
 mileage_raw = df_class[['highway_MPG']]

```
In [83]: df_class = df_clean.copy()
```

1.6.1 Transform and scale the dataset

plt.tight_layout()

```
# in the features dataset, we will drop the highway_MPG, because that is the target
# We will also drop city_mpg because that is highly correlated to highway_MPG,
# and Engine_Cylinders, which are highly correlated to Horsepower
features_raw = df_class.drop(['highway_MPG','city_mpg','Engine_Cylinders'], axis = 1)

In [85]: # Log-transform the skewed features
skewed = ['MSRP', 'Final_HP']
features_log_transformed = pd.DataFrame(data = features_raw)
features_log_transformed[skewed] = features_raw[skewed].apply(lambda x: np.log(x + 1))

In [86]: features_log_transformed.hist(column = ['Final_HP', 'MSRP'],bins = 20,grid=False, figs
```



```
# Initialize a scaler, then apply it to the features
scaler = MinMaxScaler() # default=(0, 1)
numerical = ['Year', 'Number_of_Doors', 'Final_HP']
```

features_log_minmax_transform = pd.DataFrame(data = features_log_transformed)
features_log_minmax_transform[numerical] = scaler.fit_transform(features_log_transform)

Show an example of a record with scaling applied
display(features_log_minmax_transform.head(n = 10))

	Make	Model	Year	<pre>Engine_Fuel_Type Transmission_Type `</pre>	\
0	${\tt BMW}$	1 Series M	0.777778	premium unleaded (required) MANUAL	
1	\mathtt{BMW}	1 Series	0.777778	premium unleaded (required) MANUAL	
2	\mathtt{BMW}	1 Series	0.777778	premium unleaded (required) MANUAL	
3	${\tt BMW}$	1 Series	0.777778	premium unleaded (required) MANUAL	
4	${\tt BMW}$	1 Series	0.777778	premium unleaded (required) MANUAL	
5	${\tt BMW}$	1 Series	0.814815	premium unleaded (required) MANUAL	
6	${\tt BMW}$	1 Series	0.814815	premium unleaded (required) MANUAL	
7	\mathtt{BMW}	1 Series	0.814815	premium unleaded (required) MANUAL	
8	\mathtt{BMW}	1 Series	0.814815	premium unleaded (required) MANUAL	
9	\mathtt{BMW}	1 Series	0.851852	premium unleaded (required) MANUAL	
	D	riven_Wheels	Number_o	f_Doors Vehicle_Size Vehicle_Style Popularity `	\
0	rear	wheel drive		0.0 Compact Coupe 3916	
1	rear	wheel drive		0.0 Compact Convertible 3916	
2	rear	wheel drive		0.0 Compact Coupe 3916	

```
3 rear wheel drive
                                 0.0
                                          Compact
                                                           Coupe
                                                                        3916
4 rear wheel drive
                                 0.0
                                          Compact
                                                    {\tt Convertible}
                                                                        3916
5 rear wheel drive
                                 0.0
                                          Compact
                                                           Coupe
                                                                        3916
6 rear wheel drive
                                 0.0
                                          Compact
                                                    Convertible
                                                                        3916
7 rear wheel drive
                                 0.0
                                          Compact
                                                           Coupe
                                                                        3916
8 rear wheel drive
                                 0.0
                                                    Convertible
                                          Compact
                                                                        3916
9 rear wheel drive
                                 0.0
                                          Compact
                                                    Convertible
                                                                        3916
        MSRP
              Final_HP
0 10.739349
              0.621189
              0.583053
1
  10.612779
2
  10.500977
              0.583053
  10.290483
3
             0.491286
4 10.448744
              0.491286
  10.348205
5
              0.491286
6 10.694238
              0.583053
7
  10.579005
              0.583053
8 10.515994
              0.491286
  10.524091
              0.491286
In [89]: mileage_raw.head()
Out[89]:
            highway_MPG
                     26
         1
                     28
         2
                     28
```

In [90]: mileage_raw.hist();

28

28

3

4


```
In [93]: # One-hot encode the 'features_log_minmax_transform' data using pandas.get_dummies()
         features_final = pd.get_dummies(features_log_minmax_transform)
         # Print the number of features after one-hot encoding
         encoded = list(features_final.columns)
         print("{} total features after one-hot encoding.".format(len(encoded)))
         print (encoded)
1006 total features after one-hot encoding.
['Year', 'Number_of_Doors', 'Popularity', 'MSRP', 'Final_HP', 'Make_Acura', 'Make_Alfa Romeo',
In [94]: # Import train_test_split
         from sklearn.model_selection import train_test_split
         # Split the 'features' and 'income' data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(features_final,
                                                             mileage_raw,
                                                             test_size = 0.2,
                                                             random_state = 0)
         # Show the results of the split
         print("Training set has {} samples.".format(X_train.shape[0]))
         print("Testing set has {} samples.".format(X_test.shape[0]))
```

Training set has 9531 samples. Testing set has 2383 samples.

```
In [95]: #import necessary ML libraries
         from sklearn.model_selection import train_test_split
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoos
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
         from sklearn.metrics import make_scorer, confusion_matrix, fbeta_score
In [96]: #Pick three classifiers
         clf_A = LogisticRegression(random_state = 0)
         clf_B = GradientBoostingClassifier(random_state = 0)
         clf_C = RandomForestClassifier(random_state = 0)
         #Fit the data to the three classifiers and print results from them
         for clf in [clf_A, clf_B, clf_C]:
             learner = clf
             start = time() # Get start time
             learner = learner.fit(X_train, y_train)
             end = time() # Get start time
             train_time = end-start
             predictions_test = learner.predict(X_test)
             predictions_train = learner.predict(X_train)
             # Score our model
             print(clf.__class__.__name__)
             print('Accuracy score: ', format(accuracy_score(y_test, predictions_test)))
             print('Precision score: ', format(precision_score(y_test, predictions_test, average
            print('Recall score: ', format(recall_score(y_test, predictions_test, average='weig

             print('F1 score: ', format(f1_score(y_test, predictions_test,average='weighted'))
             print('Time: ', format(train_time))
             print('Confusion Matrix')
             print(confusion_matrix(y_test,predictions_test))
             print( )
LogisticRegression
Accuracy score: 0.9148132605958875
Precision score: 0.9145730678269199
Recall score: 0.9148132605958875
F1 score: 0.9144162757920861
Time: 0.36118006706237793
Confusion Matrix
[[ 969
       60
```

```
[ 64 1007
            27]
        52 204]]
     0
{\tt GradientBoostingClassifier}
Accuracy score: 0.9093579521611415
Precision score: 0.9103244617115024
Recall score: 0.9093579521611415
F1 score: 0.9092466847423099
Time: 41.488425970077515
Confusion Matrix
[[ 941
       88
[ 54 1019
             25]
        48 207]]
    1
RandomForestClassifier
Accuracy score: 0.9618128409567772
Precision score: 0.9617751299666105
Recall score: 0.9618128409567772
F1 score: 0.9617689108879187
Time: 0.35206103324890137
Confusion Matrix
[[1005
        24
Г 36 1048
             147
    0
        17 239]]
In [127]: from sklearn.model_selection import GridSearchCV
          #Do a GridSearch to optimize the best model from the previous step
          # build a classifier
          clf_rf = RandomForestClassifier(random_state = 0)
          # Set up the hyperparameter search
          parameters = {"n_estimators": [10,50,100] ,"max_depth": [5,50,250], "min_samples_spl
          # Run a randomized search over the hyperparameters
          random_search = GridSearchCV(clf_rf, parameters)
          # Fit the model on the training data
          grid_fit = random_search.fit(X_train, y_train)
          #Get the estimator
          best_clf = grid_fit.best_estimator_
```

#rf_preds = random_search.best_estimator_.predict(X_test)

Make predictions on the test data

```
predictions = (clf.fit(X_train, y_train)).predict(X_test)
          best_predictions = best_clf.predict(X_test)
          print('Accuracy score: ', format(accuracy_score(y_test, predictions)))
          print('Precision score: ', format(precision_score(y_test, predictions, average='weig')
          print('Recall score: ', format(recall_score(y_test, predictions, average='weighted')
          print('F1 score: ', format(f1_score(y_test, predictions,average='weighted')))
          print('\n\n')
          print('Confusion Matrix')
          print(confusion_matrix(y_test,predictions))
Accuracy score: 0.9618128409567772
Precision score: 0.9617751299666105
Recall score: 0.9618128409567772
F1 score: 0.9617689108879187
Confusion Matrix
ΓΓ1005
 [ 36 1048
             147
 Γ
    0
        17 239]]
In [128]: #Make a function to show the top features
          def feature_plot(importances, X_train, y_train):
              # Display the five most important features
              indices = np.argsort(importances)[::-1]
              columns = X_train.columns.values[indices[:8]]
              values = importances[indices][:8]
              # Creat the plot
              fig = plt.figure(figsize = (12,7))
              plt.title("Normalized Weights for First Five Most Predictive Features", fontsize
              plt.bar(np.arange(8), values, width = 0.6, align="center", color = '#00A000', \
                    label = "Feature Weight")
              plt.bar(np.arange(8) - 0.3, np.cumsum(values), width = 0.2, align = "center", co
                    label = "Cumulative Feature Weight")
              plt.xticks(np.arange(8), columns)
              plt.xlim((-0.5, 7.5))
              plt.ylabel("Weight", fontsize = 12)
              plt.xlabel("Feature", fontsize = 12)
              plt.xticks(rotation=45);
              plt.legend(loc = 'upper center')
              plt.tight_layout()
              plt.show()
In [129]: # Import a supervised learning model that has 'feature_importances_'
```

###Importing a new model is not necessary as the GradientBoostingClassifier already

 $\begin{tabular}{ll} \# \ Train \ the \ supervised \ model \ on \ the \ training \ set \ using \ .fit(X_train, \ y_train) \\ model \ = \ best_clf \end{tabular}$

Extract the feature importances using .feature_importances_
importances = model.feature_importances_

Plot feature_plot(importances, X_train, y_train)

We see that the Final_HP is the top predictive feature. This is similar to what we found in our previous bivariate analysis, where we saw that HP and MPG were inversely related

In []: