Serial In Serial Out (SISO)

- Data enters serially and exits serially.
- Simplest type of shift register.

Serial In Parallel Out (SIPO)

- Data enters serially but is read out parallelly.
- Used when parallel output is needed.

Parallel In Serial Out (PISO)

- Data is loaded in parallel and exits serially.
- Suitable for serial communication systems.

Parallel In Parallel Out (PIPO)

- Data is loaded and retrieved in parallel.
- Fastest data transfer method.

Pin Diagram of Dual D flip-flop IC-4013

1. Serial-In Serial-Out Shift Register (SISO)

Clock	Serial Data Input(D)	Serial Data Output(Q)			
0					
1					
2					
3					
4					

2. Serial-In Parallel-Outshift Register (SIPO)

Clock	Serial Data Input(D)	Parallel Data Output					
		Q.	Qu	Qt	Qu		
0							
1							
2							
3							
4							

3. Parallel-In Serial-Out Shift Register (PISO)

Clork	Parallel Data Input				Serial Data Output		
	A	В	C	D			
9							
I							
2							
3							
1							

4. Parallel-In Parallel-Out Shift Register (PIPO)

Clock	Parallel Data Input			Parallel Data Output				
	A	В	C	D	Qu	Qı	Q ₂	Qı
0								
1								
2								
3								
4								

Basic structure of VHDL

Two input OR GATE

- VHDL Code for OR gate
- Header file declaration

library IEEE; use IEEE_std_logic_1164.all;

Entity declaration

port(A: in std logic: - OR gate input
B: in std logic: - OR gate input
Y: out std logic: - OR gate output
end orGate;

- Dataflow Modelling Style
- Architecture definition

end orLogic;

architecture or Logic of or Gate is begin
Y <= A OR B: