Bachelor of Software Engineering - Game Programming

GD2P02 – Physics Programming

Harmonic Motion and Springs

Overview

- Harmonic Motion and Springs
 - Springs
 - Hooke's Law
 - Simple Harmonic Motion
 - Pendulum
 - Simple and Physical

Springs

- Springs are valuable in physics programming.
- Rigid bodies are good for representing collision detection and friction.

- Springs are good for absorbing.
 - Requires tuning
 - Stiffness could be a problem

Springs: Hooke's Law

- When a spring is stretched or compressed, it reacts with a force in the opposite direction.
- Hooke's Law

$$F = -kx$$

- Where:
 - *k* is the spring constant
 - The coefficient of elasticity

Fig 1: Spring with attached weight.

- x is the displacement from equilibrium
- Units:
 - F is in kgms⁻² or N
 - x is in metres
 - k is in kgs⁻² or kg/s²

Springs: Hooke's Law continued...

• F = -k (L - r), where r is the resting length(at equilibrium) and L is the stretched or compressed length of the spring.

Fig 2: Illustration of Hooke's Law.

Springs: Simple Harmonic Motion

- Motion of a mass on a spring is an oscillation and follows a sinusoidal path.
 - Has a period $T = 2\pi \sqrt{m/k}$, T = 1/f. (f is in Hz)

Fig 3: Springs and simple harmonic motion.

Simple Harmonic Motion: Pendulum

 A point mass suspended from a string with a negligible mass is a simple pendulum.

•
$$T = 2\pi \sqrt{L/g}$$

• $\omega = \sqrt{g/L}$

•
$$\omega = \sqrt{g/L}$$

•
$$F_{net} = ma = mg \sin \theta$$

Simple Harmonic Motion: Physical Pendulum

Fig 5: Simple and Physical Pendulum.

Springs and Objects

- When a rigid body is attached to a spring,
 - the spring stretches or squashes when the body moves.
 - the spring applies a force to the attached point of the rigid body.
 - If the attached point is off-centre, the force does not pass through the body's centre of mass.
 - Linear and angular forces will be generated.

Damping

- A damping force will prevent the spring from oscillating forever.
- The damping force has a direction that is the opposite of the velocity.
- Think of it as friction...

Summary

- Harmonic Motion and Springs
 - Springs
 - Hooke's Law
 - Simple Harmonic Motion
 - Pendulum
 - Simple and Physical

