Candidate's Name	Random No.						Personal No.		
Signature:									
535/1									
PHYSICS									
Paper 1									
July 2022									
2¼ hours									

BUGANDA EXAMINATIONS COUNCIL MOCKS

Uganda Certificate of Education

PHYSICS

Paper 1

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Write your name, signature and personal number clearly in the spaces above.

Section A contains **40** objective type questions. You are required to write the correct answer **A**, **B**, **C**, or **D** against each question in the box on the right hand side.

Section B contains **10** structured questions. Answers are to be written in the spaces provided on the question paper.

Mathematics tables and silent non – programmable calculators may be used.

Assume where necessary:

Acceleration due to gravity = $10ms^{-2}$

Specific heat capacity of water = $4200 \text{ Jkg}^{-1} \text{ K}^{-1}$ Specific heat capacity of copper = $400 \text{ Jkg}^{-1} \text{ K}^{-1}$

For Examiner's Use Only

Q 41	Q 42	Q 43	Q 44	Q 45	Q 46	Q 47	Q 48	Q 49	Q 50	MCQ	Total

SECTION A: (40 MARKS)

Answer all questions from this section.

1.	The A.	rate at whi watts.	ch work B. powe			n as Joules	. D.	WO	rk done	
2.	Alcol A. D. C			easily.	В.	it has	a highe	r exp		
3.	Wha 0.8?	ece of meta t will be its	s weight	when fully	y imm	ersed	in a liqu	aid o	f relative	
	A.	1.2N	В.	0.48N	,	C.	0.68N	Д.	0.80N	
4.	In th A. B. C. D.		s the cond the carbon n electrol	ducting su on rod to t lyte.	ırface	of the		rod.		
5.	7.5 c	ngraduate m in pure t t is the ten -23.4°C	melting i	ce, 23.5 cn	n in s dy?	team a	ıt 100° <i>C</i>	and	l 5.5 cm i	
6.	The f A. B. C. D.	distingui vary the	he light i sh betwe distance	n, as appl ntensity fa en differe between t gth of the	alling nt col the le	on the ours. ns and	e retina.		ts ability	to
7.	 The leaf of a charged gold – leaf electroscope gradually collapse with tire to A. presence of charged particles of same sign of charge as on the electroscope. B. presence of magnetic field around it. C. leakage of charge to the surrounding. D. variation in atmospheric pressure. 									
8.	An element X has an atomic mass of 239 and atomic number of 92. It emits beta particle thus forming an element Q. The element Q can be represente by:									
	A.	$_{90}^{235}Q$	В.	$_{91}^{239}Q$	C.	$_{92}^{238}Q$]	D.	$_{93}^{239}Q$	

9.	distar	ice of		when	a liqui	d is po	ured i	nto tł	-	ed upwa: der to a d		f 19.4
	A.	0.32		В.	1.37		1.46		D.	2.13		
10.	Which of the following controls the brightness oscilloscope? The							ess of	the scre	een of the	e catho	de ray
	A. B.	anoc	le poter potenti			C. D.			nrough t sed circ	the filam uit.	ent.	
11.		ds a s Thei Thei Thei (i) as	ne followshallower wave ir velocitr frequent of (ii) on the first of the following the	end? length ity dec ency c	n decrea	ases.	c. D.	(ii)	and (iii (ii) and	=	eper en	d
12.	In the		ıit diag	ram s	hown i	n Figu	re 1, ca	alcula	ate the t	otal resis	stance (of the
				 I		2 Ω 2 Ω 2 Ω			Figur	e 1		
	A. 0.6						C.	3 Ω				
	B. 1.5	Ω					D.	6 Ω	2			
13.	The old the board.	bject ody st 10N	experie rikes tl B.	ences a he gro 70N	a frictiound.	onal for C.	ece of 3	30N. (Calculat D. 60	height of the form		
14.		-		•					ices n_1 ,		1 4	
	n_3 respectively, are separated by parallel boundaries. A ray of light passes through the media as shown in figure 2.											
			U	Y			n_1					
			V	\	¥		n	2	Fign	ire 2		

 n_3

W

3

	Whic	h of the f	collowing	g is the	ascendi	ng orde	er of thei	ir refr	active indic	es?
	A.	n_1 , n_2 ar	nd n_3	B. n_1 , r	n_3 and n_2	$\mathrm{C}.n_3$,	n_1 and n	D ₂ D.	n_3 , n_2 and r	i_1
15.		ne projec ction. Th			_			turn t	he point of	
	A.	100m	B. 37	5m (C. 1000)m	D.	1500r	n	
16.	The t	-	ure at w e tempe		the hea	at energ C.	gy is ren zero K		from a subs	stance is
	В.		nperatu			D.	zero C			
17.		l of cross- t is the bi			$10~\mathrm{cm}^2~\mathrm{r}$	ieeds a	tensile	force (of 2N to bre	ak it.
	A.		_		5 Nm ⁻²	C.	5 Nm ⁻	² D.	500 Nm ⁻²	
18.	A ray	of white	light is	inciden	t on yel	low filt	er as sh	own i	n Figure 3.	
		White	e ligh t	Yellow fi	:	Filte		dreen l	ight	
					Figur	e 3				
	If gre A.	een light i magent			r filter 2 cyan.	X, then C.	X is eitl red.	_	een or white.	
19.	objec is cor	t of mass	24g is l submerg	owered ged. If tl	carefull ne densi	y into t ty of th	the meas ne object	suring	ece of an irr g cylinder so cm ⁻³ , then t	that it
	A.	8.3 cm^3			n^3 C.			D.	$40~{ m cm}^3$	
20.	its ki	-	ergy is 6	-	_				particular i it has trave	
	A.	0.6m		3. 1.7m	C.	4m		D.	60m	
21.	What A. B.	t happens lose en expand	ergy.	molecul	es of bo	iling wa C. D.	becom	e ligh		
22.		electrical increas	resistar es when	temper	ature ri	condu	ctor		of the wire	·.

	(iii)	depends on	the	material fr	om w	hich the wi	re is m	ade.	
	A.	(i) and (iii)	В.	(ii) and (ii	i) C	(i) and (ii)	D. (i), (ii) and (iii)	
23.				_				es when a mass ne metre rule?	of
	A.	$0.048~\mathrm{kg}$	В.	$0.102~\mathrm{kg}$	C.	$0.20~\mathrm{kg}$	D.	$1.02~\mathrm{kg}$	
24.	Meta than	liagram in fig l X has a high metal Y. Whe ed, then its	er e	expansivity		tallic strip v	vound	on a flat spiral.	
	A.	curvature in further.	cre	ases as it c	oils		-x		
	В.	curvature de uncoils.	ecre	eases as it			Figure	2 4	
	C. D.	shape remai mass increa							
25.	In sou A. B. C. D.	und waves, th are stationa move along vibrate at ri vibrate in th	ry. witl ght	n the wave angles to t	he di	rection of th	ie wave	2 .	
26.	A sea A. B. C. D.	when cool as when warm during nigh when cool as	ir bl air t.	blows towa	ards t	he land.			
		27. 3	N '			→ 4 N	N		
		diagram abov 5 kg. Find th 1 m s ⁻²		=	_			ng on an object object.	of

 $2~\text{m s}^{\text{-}2}$ $10~\text{m s}^{\text{-}2}$

 $25~\mathrm{m~s^{-2}}$

В.

C. D.

28.	The energy transformation that takes place when an electrophorus is used to charge a metal is										
	A. electrical to mechanical. C. mechanical to heat.										
	B. mechanical to electrical. D. heat to mechanical.										
29.	In a four stroke internal combustion engine, the work required for initial induction and compression comes from A. spark plug. B. movement of steering wheel. C. rotational kinetic energy stored in the fly-wheel. D. separate starter motor.										
30.	A sound wave of frequency 200Hz is produced 300m away from a high wall. If an echo is received at the place of production of sound after 2s, the wavelength of the sound wave is										
	A. 1.2m B. 1.5m C. 2.4m D. 3m										
31.	A mass of 0.2 kg produces an extension of 5 cm of a spring on the earth's surface. What is the extension of the same spring when the same mass of 0.2 kg is on the moon's surface, if acceleration due to gravity on moon's surface is 1.6 ms ⁻² ?										
	A. 0.08 cm B. 0.8 cm C. 5 cm D. 31.25 cm										
32.	Figure 5 is a set up to demonstrate a step – down transformer.										
	Iron core Bulb Figure 5										
	The lamp would glow more brightly if the A. number of turns on the secondary is reduced. B. iron core is replaced by copper. C. number of turns on the primary coil is reduced. D. number of turns on the primary is increased.										
33.	Which one of the following devices produces direct current from alternating current?										
	A. Transformer B. Motor C. Heater D. Diode										
34.	The e.m.f. induced in a coil of wire which is rotating in a magnetic field does not depend on A. angular velocity of rotation.										
	B. resistance of the coil.										
	C. area of the coil.										
	D number of turns of the coil										

35.	The force which acts towards the centre and keeps a body in a circular called:									
	A. centrifugal force.	C. centripetal force.								
	B. gravitational force.	D. frictional force.								
36.	 Which of the following would cause A. Increasing the p.d. across the B. Increasing the filament currence C. Using a heavy metal as a tance D. Increasing the distance between 	ne tune. rent.								
37.	pressure is 10^5 Pa. The crushing for on the tank is	ated of air on a day when the atmospheric prediction of a second stress $18 \times 10^5 N$ D. $24 \times 10^5 N$	=							
38.	A. It has a sharp point at its tB. It must be insulated from tC. Its lower end is buried in t	the building.	true?							
39.	Two resistors are connected in par	allel as shown in Figure 6.								
	10	Ω								
	$\stackrel{I}{\longrightarrow}$	\longrightarrow I								
	5.9	Ω Figure 6								
	When current I is passes through the circuit, the power dissipated in the 5Ω resistor is 40W. What is the power dissipated in 10Ω resistor?									
	A. 80W B. 40W C.	-								
40.		lied to a body initially at rest on a snowing quantities will not change dur								

SECTION B

Write your answers in the spaces provided.

41(a)	State the principle of conservation of energy.	(1 mark)						
(b)	Dam							
	Figure 7							
	Turbines							
	The Figure 7 shows a hydroelectric generating system.							
	State the energy transformations that occur during the generation of							
	hydroelectric power in the correct order in which they occur.(2 marks)							
(c)	Explain briefly the shape of the dam.	(1 mark)						
42(a)	What is an electric field?	(1 mark)						
		•••••						
(b)	In the space below, sketch the electric field pattern between two	negative						
	point charges at a small distance apart.	(2 marks)						

(c)	Explain briefly why a dressing mirror may become more dusty if dry cloth on a warm dry day.	wiped with a
43(a)	Define wave length as applied to wave motion.	(1 mark)
	(b) The figure 8 represents a wave moving across the water so left to right.	arface from
	Figure 8 50cm	
(i)	Why does the height of the wave gets smaller as distance covered	d increases? (1 mark)
(ii)	If the frequency of the wave is 10Hz, how fast is it moving?	(2 marks)
44.(a)	(i)State the principle of conservation of liner momentum.	(1 mark)
(ii)	What is inertia?	(1 mark)
(b)	A trolley of mass 0.1 kg moves horizontally with a velocity of 3m mass 0.5 kg is dropped vertically at a speed of 2 ms ⁻¹ onto the trostrikes to the trolley. Calculate the final velocity of the trolley af	olley where it

is dropped.

(2 marks)

45.(a)	Define focal length of a lens?	(1 mark)
(b)	In the space below, draw a ray diagram showing how a lens may magnifying glass.	
(c)	If the focal length of the lens drawn in (b) above is 5 cm, calculat	(1 mark)
46(a)	State two factors which affect the strength of an electromagnet.	
(b)	Figure 9 shows a small bar magnet placed near an iron nail. Describe what happens to the bar magnet when the switch K is closed. (2 marks)	\K
	S	Figure 9
47(a)	Define specific heat capacity of a substance.	(1 mark)

(b)	rating	uminium block of mass 0.5 kg is heated by an electrical hog 40W embedded in it. In one minute the temperature of t 15°C to 19°C.	-
(i)		llate the specific heat capacity of the aluminium.	(2 marks)
(ii)		one assumption made in (a) (i) above.	(1 mark)
48(a)	What	are cathode rays?	(1 mark)
(b)		two properties of cathode rays.	(1 mark)
(c)		one application of radioactive tracers in: medicine	(1 mark)
			•••••
	(ii)	agriculture	(1 mark)
49.	vertic	re 10 shows a test tube floating eally in water with 1/3 of its volume erged. The total mass of the test and the mercury is 0.068kg. Mercury —-Water	Figure 10
(a)	Calcu	late the volume of the water displaced by the test tube.	(2 marks)
	•••••		

	olume of extra mercury which should be added intuity ally submerged; given that density of mercury is 1	
The circuit	in Figure 11 is set up to measure the value of res	sistor R.
	Figure	11
Explain br	iefly why the voltmeter Vis connected across R.	(1 mark
Explain br	iefly why the voltmeter Vis connected across R.	(1 mark
If the amn	neter reads 0.50A and the voltmeter read 2.8V, ca	
If the amn	neter reads 0.50A and the voltmeter read 2.8V, ca	lculate: