Program Verification: Lecture 23

José Meseguer

University of Illinois at Urbana-Champaign

Model checking of invariants and LTL properties is very useful. But it has some limitations:

I Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.

- **1** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- 2 Even if an *equational abstraction* can be used to make the set of reachable states finite,

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.
- More generally, *state infinity* can block the use of explicit-state model checking in two different ways:

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.
- More generally, *state infinity* can block the use of explicit-state model checking in two different ways:
 - The number of states reachable from a given states is *infinite*.

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.
- More generally, *state infinity* can block the use of explicit-state model checking in two different ways:
 - The number of states reachable from a given states is *infinite*.
 - The number of initial states is *infinite*.

Model checking of invariants and LTL properties is very useful. But it has some limitations:

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.
- More generally, *state infinity* can block the use of explicit-state model checking in two different ways:
 - The number of states reachable from a given states is *infinite*.
 - The number of initial states is *infinite*.

This suggests two other options: (1) *symbolic model checking* (automatic)

Model checking of invariants and LTL properties is very useful. But it has some limitations:

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.
- More generally, *state infinity* can block the use of explicit-state model checking in two different ways:
 - The number of states reachable from a given states is *infinite*.
 - The number of initial states is *infinite*.

This suggests two other options: (1) symbolic model checking (automatic) and (2) deductive methods based on theorem proving (more general).

Model checking of invariants and LTL properties is very useful. But it has some limitations:

- **I** Explicit-state model checking algorithms can only deal with *finite* sets of reachable states.
- Even if an equational abstraction can be used to make the set of reachable states finite, the set of abstracted initial states of interest may be infinite.
- More generally, *state infinity* can block the use of explicit-state model checking in two different ways:
 - The number of states reachable from a given states is *infinite*.
 - The number of initial states is *infinite*.

This suggests two other options: (1) symbolic model checking (automatic) and (2) deductive methods based on theorem proving (more general). We will explore logics for option (2) in this lecture.

Suppose that a concurrent system has been specified by a rewrite theory $\mathcal{R}\text{,}$

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form:

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form: $\{A\} \mathcal{R} \{B\}$,

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form: $\{A\}$ \mathcal{R} $\{B\}$, where A and B are *formulas* on predicates Π defining *sets of states* $\llbracket A \rrbracket$ and $\llbracket B \rrbracket$.

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form: $\{A\}$ \mathcal{R} $\{B\}$, where A and B are *formulas* on predicates Π defining *sets of states* $\llbracket A \rrbracket$ and $\llbracket B \rrbracket$.

A is called the *precondition* and B the *postcondition*.

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form: $\{A\}$ \mathcal{R} $\{B\}$, where A and B are *formulas* on predicates Π defining *sets of states* $\llbracket A \rrbracket$ and $\llbracket B \rrbracket$.

A is called the *precondition* and B the *postcondition*. The Hoare triple $\{A\}$ \mathcal{R} $\{B\}$ is a *partial correctness assertion* about \mathcal{R} :

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form: $\{A\}$ \mathcal{R} $\{B\}$, where A and B are *formulas* on predicates Π defining *sets of states* $\llbracket A \rrbracket$ and $\llbracket B \rrbracket$.

A is called the *precondition* and B the *postcondition*. The Hoare triple $\{A\}$ \mathcal{R} $\{B\}$ is a *partial correctness assertion* about \mathcal{R} :

• for each state $[u_0] \in \mathcal{T}_{\mathcal{R},State}$, if $[u_0]$ satisfies the precondition A, then,

Suppose that a concurrent system has been specified by a rewrite theory \mathcal{R} , a top sort State of states has been chosen, and some state predicates Π have also been defined.

We can then define properties of \mathcal{R} in *Hoare Logic* by means of so-called *Hoare Triples* of the form: $\{A\}$ \mathcal{R} $\{B\}$, where A and B are *formulas* on predicates Π defining *sets of states* $\llbracket A \rrbracket$ and $\llbracket B \rrbracket$.

A is called the *precondition* and B the *postcondition*. The Hoare triple $\{A\}$ \mathcal{R} $\{B\}$ is a *partial correctness assertion* about \mathcal{R} :

- for each state $[u_0] \in \mathcal{T}_{\mathcal{R},State}$, if $[u_0]$ satisfies the precondition A, then,
- for each terminating sequence of transitions

$$[u_0] \to_{\mathcal{R}} [u_1] \dots [u_{n-1}] \to_{\mathcal{R}} [u_n]$$

the terminating state $[u_n]$ satisfies postcondition B.

What formulas A and B shall we use in a Hoare triple $\{A\} \mathcal{R} \{B\}$?

What formulas A and B shall we use in a Hoare triple $\{A\}$ \mathcal{R} $\{B\}$? Assuming $\mathcal{R}=(\Sigma,B,R)$ has constructors Ω , we can use *pattern predicates* of the form $u\mid \varphi$ where u is an Ω -term of sort State and φ is a Σ -condition.

What formulas A and B shall we use in a Hoare triple $\{A\}$ \mathcal{R} $\{B\}$? Assuming $\mathcal{R}=(\Sigma,B,R)$ has constructors Ω , we can use pattern predicates of the form $u\mid\varphi$ where u is an Ω -term of sort State and φ is a Σ -condition. Then $u\mid\varphi$ denotes the set of its ground instance states:

What formulas A and B shall we use in a Hoare triple $\{A\}$ \mathcal{R} $\{B\}$? Assuming $\mathcal{R}=(\Sigma,B,R)$ has constructors Ω , we can use *pattern predicates* of the form $u\mid\varphi$ where u is an Ω -term of sort State and φ is a Σ -condition. Then $u\mid\varphi$ denotes the set of its ground instance states:

$$\llbracket u \mid \varphi \rrbracket = \{ [u\rho]_B \mid \rho \in [X \to T_\Omega] \land E \cup B \models \varphi \rho \}.$$

What formulas A and B shall we use in a Hoare triple $\{A\}$ \mathcal{R} $\{B\}$? Assuming $\mathcal{R}=(\Sigma,B,R)$ has constructors Ω , we can use *pattern predicates* of the form $u\mid \varphi$ where u is an Ω -term of sort State and φ is a Σ -condition. Then $u\mid \varphi$ denotes the set of its ground instance states:

$$\llbracket u \mid \varphi \rrbracket = \{ [u\rho]_B \mid \rho \in [X \to T_{\Omega}] \land E \cup B \models \varphi \rho \}.$$

Let $Y = vars(A) \cap vars(B)$. Then we call Y the *parameters* of the Hoare triple $\{A\} \mathcal{R} \{B\}$.

What formulas A and B shall we use in a Hoare triple $\{A\}$ \mathcal{R} $\{B\}$? Assuming $\mathcal{R}=(\Sigma,B,R)$ has constructors Ω , we can use *pattern predicates* of the form $u\mid \varphi$ where u is an Ω -term of sort State and φ is a Σ -condition. Then $u\mid \varphi$ denotes the set of its ground instance states:

$$\llbracket u \mid \varphi \rrbracket = \{ [u\rho]_B \mid \rho \in [X \to T_{\Omega}] \land E \cup B \models \varphi \rho \}.$$

Let $Y = vars(A) \cap vars(B)$. Then we call Y the parameters of the Hoare triple $\{A\}$ \mathcal{R} $\{B\}$. Such a triple is in fact universally quantified on its parameters. That is, $\{A\}$ \mathcal{R} $\{B\}$ implicitly means: $(\forall Y)$ $\{A\}$ \mathcal{R} $\{B\}$.

What formulas A and B shall we use in a Hoare triple $\{A\}$ \mathcal{R} $\{B\}$? Assuming $\mathcal{R}=(\Sigma,B,R)$ has constructors Ω , we can use *pattern predicates* of the form $u\mid\varphi$ where u is an Ω -term of sort State and φ is a Σ -condition. Then $u\mid\varphi$ denotes the set of its ground instance states:

$$\llbracket u \mid \varphi \rrbracket = \{ [u\rho]_B \mid \rho \in [X \to T_\Omega] \land E \cup B \models \varphi \rho \}.$$

Let $Y = vars(A) \cap vars(B)$. Then we call Y the *parameters* of the Hoare triple $\{A\} \ \mathcal{R} \ \{B\}$. Such a triple is in fact *universally quantified* on its parameters. That is, $\{A\} \ \mathcal{R} \ \{B\}$ implicitly means: $(\forall Y) \ \{A\} \ \mathcal{R} \ \{B\}$.

Let us see an example of a parametric Hoare triple involving a slight modification of the CHOICE module in Lecture 16.

A Hoare Triple for the CHOICE Module

```
mod CHOICE is
protecting NAT .
sorts MSet State Pred .
subsorts Nat < MSet .
op __ : MSet MSet -> MSet [ctor assoc comm] .
op {_} : MSet -> State .
op tt : -> Pred [ctor] .
op _=C_ : MSet MSet -> Pred [ctor] . *** MSet containment
vars U V : MSet . var N : Nat .
eq U = C U = tt.
eq U = C U V = tt.
rl [choice] : {U V} => {U} .
endm
```

A Hoare Triple for the CHOICE Module

```
mod CHOICE is
protecting NAT .
sorts MSet State Pred .
subsorts Nat < MSet .
op __ : MSet MSet -> MSet [ctor assoc comm] .
op {_} : MSet -> State .
op tt : -> Pred [ctor] .
op _=C_ : MSet MSet -> Pred [ctor] . *** MSet containment
vars U V : MSet . var N : Nat .
eq U = C U = tt.
eq U = C U V = tt.
rl [choice] : {U V} => {U} .
endm
The Hoare triple: \{\{M\} \mid \top\} CHOICE \{\{N\} \mid N \subseteq M = tt\} is
parametric on M.
```

A Hoare Triple for the CHOICE Module

```
mod CHOICE is
protecting NAT .
sorts MSet State Pred .
subsorts Nat < MSet .
op __ : MSet MSet -> MSet [ctor assoc comm] .
op {_} : MSet -> State .
op tt : -> Pred [ctor] .
op _=C_ : MSet MSet -> Pred [ctor] . *** MSet containment
vars U V : MSet . var N : Nat .
eq U = C U = tt.
eq U = C U V = tt.
rl [choice] : {U V} => {U} .
endm
```

The Hoare triple: $\{\{M\} \mid \top\}$ CHOICE $\{\{N\} \mid N \subseteq M = tt\}$ is parametric on M. It states that for each M every final state reachable from $\{M\}$ is a singleton set $\{N\}$ with N in M.

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C.

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C. it is then written in the form $\{A\}$ p $\{B\}$.

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C. it is then written in the form $\{A\}$ p $\{B\}$. We shall see later in the course that this is just a special case of a Hoare triple of the form $\{A'(p)\}$ $\mathcal{R}_{\mathcal{L}}$ $\{B'\}$, where \mathcal{L} is the imperative programming language, and $\mathcal{R}_{\mathcal{L}}$ is the rewriting logic semantics of \mathcal{L} .

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C. it is then written in the form $\{A\}$ p $\{B\}$. We shall see later in the course that this is just a special case of a Hoare triple of the form $\{A'(p)\}$ $\mathcal{R}_{\mathcal{L}}$ $\{B'\}$, where \mathcal{L} is the imperative programming language, and $\mathcal{R}_{\mathcal{L}}$ is the rewriting logic semantics of \mathcal{L} .

A serious difficulty with traditional Hoare logic is that it is language-dependent. There is a Hoare logic for Java, another for C, and so on.

From Hoare Logic to Reachability Logic

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C. it is then written in the form $\{A\}$ p $\{B\}$. We shall see later in the course that this is just a special case of a Hoare triple of the form $\{A'(p)\}$ $\mathcal{R}_{\mathcal{L}}$ $\{B'\}$, where \mathcal{L} is the imperative programming language, and $\mathcal{R}_{\mathcal{L}}$ is the rewriting logic semantics of \mathcal{L} .

A serious difficulty with traditional Hoare logic is that it is language-dependent. There is a Hoare logic for Java, another for C, and so on. Furthermore for each language different inference rules must be defined and proved correct.

From Hoare Logic to Reachability Logic

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C. it is then written in the form $\{A\}$ p $\{B\}$. We shall see later in the course that this is just a special case of a Hoare triple of the form $\{A'(p)\}$ $\mathcal{R}_{\mathcal{L}}$ $\{B'\}$, where \mathcal{L} is the imperative programming language, and $\mathcal{R}_{\mathcal{L}}$ is the rewriting logic semantics of \mathcal{L} .

A serious difficulty with traditional Hoare logic is that it is *language-dependent*. There is a Hoare logic for Java, another for C, and so on. Furthermore for each language *different inference rules* must be defined and proved correct.

Roşu, Stefanescu et al. at UIUC have made Hoare logic programming-language-independent by generalizing it to reachability logic.

From Hoare Logic to Reachability Logic

Hoare logic is widely used to state and verify properties of an imperative program p in, say, Java or C. it is then written in the form $\{A\}$ p $\{B\}$. We shall see later in the course that this is just a special case of a Hoare triple of the form $\{A'(p)\}$ $\mathcal{R}_{\mathcal{L}}$ $\{B'\}$, where \mathcal{L} is the imperative programming language, and $\mathcal{R}_{\mathcal{L}}$ is the rewriting logic semantics of \mathcal{L} .

A serious difficulty with traditional Hoare logic is that it is *language-dependent*. There is a Hoare logic for Java, another for C, and so on. Furthermore for each language *different inference rules* must be defined and proved correct.

Roşu, Stefanescu et al. at UIUC have made Hoare logic programming-language-independent by generalizing it to reachability logic.

Skeirik, Stefanescu and Meseguer at UIUC have in turn made reachability logic *rewrite-theory-independent* by defining it for rewrite theories \mathcal{R} .

Introduction

Reachability Logic (RL) is:

Introduction

Reachability Logic (RL) is:

lacktriangle parameterized over an underlying *rewrite theory* ${\cal R}$

Introduction

Reachability Logic (RL) is:

- lacktriangle parameterized over an underlying *rewrite theory* ${\cal R}$
- considers formulas $A \longrightarrow^{\circledast} B$ where A is a pattern predicate, and B a disjunction of pattern predicates.

$$u \mid \varphi \longrightarrow^{\circledast} \bigvee_{i} v_{i} \mid \psi_{i}$$

Introduction

Reachability Logic (RL) is:

- lacksquare parameterized over an underlying *rewrite theory* ${\cal R}$
- considers formulas $A \longrightarrow^{\circledast} B$ where A is a pattern predicate, and B a disjunction of pattern predicates.

$$u \mid \varphi \longrightarrow^{\circledast} \bigvee_{i} v_{i} \mid \psi_{i}$$

■ a generalization of Hoare Logic partial correctness, i.e., $A \longrightarrow^{\circledast} B$ generalizes $\{A\}\mathcal{R}\{B\}$

Introduction

Reachability Logic (RL) is:

- lacksquare parameterized over an underlying *rewrite theory* ${\cal R}$
- considers formulas $A \longrightarrow^{\circledast} B$ where A is a pattern predicate, and B a disjunction of pattern predicates.

$$u \mid \varphi \longrightarrow^{\circledast} \bigvee_{i} v_{i} \mid \psi_{i}$$

- a generalization of Hoare Logic partial correctness, i.e., $A \longrightarrow^{\circledast} B$ generalizes $\{A\}\mathcal{R}\{B\}$
- directly captures *inductive reasoning* in *any* theory \mathcal{R} , unlike Hoare Logic, special rules for loops, etc, *unnecessary*

Sequents

Q: What does the relation $A \longrightarrow^{\circledast} B$ mean?

A: Suppose we have:

- (1) a rewrite theory \mathcal{R}
- (2) pattern fomulas A, B
- (3) and terminating states T

Then $A \longrightarrow^{\circledast} B$ means: for each state $[t] \in \llbracket A \rrbracket$ and rewrite path p from [t], either: (1) p crosses $\llbracket B \rrbracket$ or (2) p is infinite

- - indicates counterex.
- --- satisfies $A \to^{\circledast} B$
- --- vacuously satisfies

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states.

Precise Definition

Let $\mathcal{R}=(\Sigma, E\cup B, R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model.

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^\circledast B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

$$[u_0] \to_{\mathcal{C}_{\mathcal{R}}} [u_1] \dots [u_{n-1}] \to_{\mathcal{C}_{\mathcal{R}}} [u_n]$$

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

$$[u_0] \to_{\mathcal{C}_{\mathcal{R}}} [u_1] \dots [u_{n-1}] \to_{\mathcal{C}_{\mathcal{R}}} [u_n]$$

there exist j, $0 \le j \le n$ such that $[u_j] \in [B]$.

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

$$[u_0] \to_{\mathcal{C}_{\mathcal{R}}} [u_1] \dots [u_{n-1}] \to_{\mathcal{C}_{\mathcal{R}}} [u_n]$$

there exist j, $0 \le j \le n$ such that $[u_j] \in [\![B]\!]$.

If $Y \neq \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

$$[u_0] \to_{\mathcal{C}_{\mathcal{R}}} [u_1] \dots [u_{n-1}] \to_{\mathcal{C}_{\mathcal{R}}} [u_n]$$

there exist j, $0 \le j \le n$ such that $[u_j] \in [B]$.

If $Y \neq \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $\rho \in [Y \to T_{\Omega}]$ we have $\mathcal{R} \models A\rho \longrightarrow^{\circledast} B\rho$.

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

$$[u_0] \to_{\mathcal{C}_{\mathcal{R}}} [u_1] \dots [u_{n-1}] \to_{\mathcal{C}_{\mathcal{R}}} [u_n]$$

there exist j, $0 \le j \le n$ such that $[u_j] \in [B]$.

If $Y \neq \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $\rho \in [Y \to T_{\Omega}]$ we have $\mathcal{R} \models A\rho \longrightarrow^{\circledast} B\rho$.

That is, the parameters Y in $A \longrightarrow^{\circledast} B$ are universally quantified,

Precise Definition

Let $\mathcal{R}=(\Sigma,E\cup B,R)$ be a rewrite theory with good executability conditions, and having a subsignature Ω of constructors and a chosen top sort State of states. Let $\mathcal{C}_{\mathcal{R}}$ denote the canonical reachability model. For a reachability formula $A\longrightarrow^{\circledast} B$ call $Y=vars(A)\cap vars(B)$ its parameters.

If $Y = \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $[u_0] \in \mathcal{C}_{\mathcal{R},State}$ such that $[u_0] \in \llbracket A \rrbracket$ and each *terminating* sequence:

$$[u_0] \to_{\mathcal{C}_{\mathcal{R}}} [u_1] \dots [u_{n-1}] \to_{\mathcal{C}_{\mathcal{R}}} [u_n]$$

there exist j, $0 \le j \le n$ such that $[u_j] \in [\![B]\!]$.

If $Y \neq \emptyset$, then we write $\mathcal{R} \models A \longrightarrow^{\circledast} B$ iff for each $\rho \in [Y \to T_{\Omega}]$ we have $\mathcal{R} \models A\rho \longrightarrow^{\circledast} B\rho$.

That is, the parameters Y in $A \longrightarrow^{\circledast} B$ are universally quantified, so that $A \longrightarrow^{\circledast} B$ implicitly means: $(\forall Y) \ A \longrightarrow^{\circledast} B$.

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a reachability logic sequent $A \longrightarrow^{\circledast} B$ expressed in linear temporal logic?

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a reachability logic sequent $A \longrightarrow^{\circledast} B$ expressed in linear temporal logic?

A: as the LTL formula $A \to (\Box enabled) \lor \Diamond B$.

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a reachability logic sequent $A \longrightarrow^{\circledast} B$ expressed in linear temporal logic?

A: as the LTL formula $A \to (\Box enabled) \lor \Diamond B$.

Example. For CHOICE, the formula

$$\{M\} \mid \top \longrightarrow^{\circledast} \{M'\} \mid M' \subseteq M = tt$$

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a reachability logic sequent $A \longrightarrow^{\circledast} B$ expressed in linear temporal logic?

A: as the LTL formula $A \to (\Box enabled) \lor \Diamond B$.

Example. For CHOICE, the formula

$$\{M\} \mid \top \longrightarrow^{\circledast} \{M'\} \mid M' \subseteq M = tt$$

is parametric on M.

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a reachability logic sequent $A \longrightarrow^{\circledast} B$ expressed in linear temporal logic?

A: as the LTL formula $A \to (\Box enabled) \lor \Diamond B$.

Example. For CHOICE, the formula

$$\{M\} \mid \top \longrightarrow^{\circledast} \{M'\} \mid M' \subseteq M = tt$$

is parametric on M. It states that for each M every state reachable from $\{M\}$ is a submultiset M' of M.

Q: How is a Hoare triple $\{A\}\mathcal{R}\{B\}$ expressed in reachability logic?

A: as the formula $A \longrightarrow^{\circledast} (B \wedge T)$, with $[\![T]\!]$ the terminating states.

Q: How is a reachability logic sequent $A \longrightarrow^{\circledast} B$ expressed in linear temporal logic?

A: as the LTL formula $A \to (\Box enabled) \lor \Diamond B$.

Example. For CHOICE, the formula

$$\{M\} \mid \top \longrightarrow^{\circledast} \{M'\} \mid M' \subseteq M = tt$$

is parametric on M. It states that for each M every state reachable from $\{M\}$ is a submultiset M' of M. Note that this reachability property cannot be expressed by a Hoare triple.

Consider the readers and writers example (Lecture 18):

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

A: Since:

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

A: Since: (i) $A \longrightarrow^{\circledast} B$ just means $A \to (\Box enabled) \lor \Diamond B$, and

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

A: Since: (i) $A \longrightarrow^{\circledast} B$ just means $A \to (\Box enabled) \lor \Diamond B$, and (ii) READERS-WRITERS is a *never terminating* rewrite theory,

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

A: Since: (i) $A \longrightarrow^{\circledast} B$ just means $A \to (\Box enabled) \lor \Diamond B$, and (ii) READERS-WRITERS is a *never terminating* rewrite theory, *all* formulas $A \longrightarrow^{\circledast} B$ are satisfied!!

The Invariant Paradox

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

A: Since: (i) $A \longrightarrow^{\circledast} B$ just means $A \to (\Box enabled) \lor \Diamond B$, and (ii) READERS-WRITERS is a *never terminating* rewrite theory, *all* formulas $A \longrightarrow^{\circledast} B$ are satisfied!! So we *cannot*!!

The Invariant Paradox

Consider the readers and writers example (Lecture 18):

```
mod READERS-WRITERS is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] . --- readers/writers
vars R W : Nat .
rl < 0, 0 > => < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W > .
endm
```

Q: How can we express its *mutual exclusion* invariant as a reachability formula $A \longrightarrow^{\circledast} B$?

A: Since: (i) $A \longrightarrow^{\circledast} B$ just means $A \to (\Box enabled) \lor \lozenge B$, and (ii) READERS-WRITERS is a *never terminating* rewrite theory, *all* formulas $A \longrightarrow^{\circledast} B$ are satisfied!! So we *cannot*!! (Paradox!!).

Let us add a *stopwatch* to READERS-WRITERS as follows:

Let us add a *stopwatch* to READERS-WRITERS as follows:

```
mod READERS-WRITERS-stop is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] .
op [_,_] : Nat Nat -> State [ctor] .
vars R W : Nat .
rl < 0, 0 > \Rightarrow < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W >.
rl < R, W > \Rightarrow [R,W].
endm
```

Let us add a *stopwatch* to READERS-WRITERS as follows:

```
mod READERS-WRITERS-stop is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] .
op [_,_] : Nat Nat -> State [ctor] .
vars R W : Nat .
rl < 0, 0 > \Rightarrow < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W >.
rl < R, W > \Rightarrow [R,W].
endm
```

The rule $\langle R, W \rangle = \langle R, W \rangle$ can now *stop* any state and make it terminating.

Let us add a *stopwatch* to READERS-WRITERS as follows:

```
mod READERS-WRITERS-stop is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] .
op [_,_] : Nat Nat -> State [ctor] .
vars R W : Nat .
rl < 0, 0 > \Rightarrow < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > \Rightarrow < s(R), 0 > .
rl < s(R), W > => < R, W >.
rl < R, W > \Rightarrow [R,W].
endm
```

The rule < R, W > => [R,W] can now *stop* any state and make it terminating. For any pattern predicate $B = \langle u,v \rangle \mid \varphi$ let [B] denote the pattern predicate $[B] = [u,v] \mid \varphi$.

Let us add a *stopwatch* to READERS-WRITERS as follows:

```
mod READERS-WRITERS-stop is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] .
op [_,_] : Nat Nat -> State [ctor] .
vars R W : Nat .
rl < 0, 0 > \Rightarrow < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W >.
rl < R, W > => [R,W].
endm
```

The rule $\langle R, W \rangle = \rangle$ [R,W] can now *stop* any state and make it terminating. For any pattern predicate $B = \langle u, v \rangle \mid \varphi$ let [B] denote the pattern predicate $[B] = [u, v] \mid \varphi$.

Fact. B is an *invariant* from initial states S_0 in READERS-WRITERS iff

Let us add a *stopwatch* to READERS-WRITERS as follows:

```
mod READERS-WRITERS-stop is
protecting NAT .
sort State .
op <_,_> : Nat Nat -> State [ctor] .
op [_,_] : Nat Nat -> State [ctor] .
vars R W : Nat .
rl < 0, 0 > \Rightarrow < 0, s(0) > .
rl < R, s(W) > => < R, W > .
rl < R, 0 > => < s(R), 0 > .
rl < s(R), W > => < R, W >.
rl < R, W > => [R,W].
endm
```

The rule $\langle R, W \rangle = \rangle$ [R,W] can now *stop* any state and make it terminating. For any pattern predicate $B = \langle u, v \rangle \mid \varphi$ let [B] denote the pattern predicate $[B] = [u, v] \mid \varphi$.

Fact. B is an *invariant* from initial states S_0 in READERS-WRITERS iff $S_0 \longrightarrow^{\circledast} [B]$ holds in READERS-WRITERS-stop.

12 / 16

Suppose R is *never terminating* (has no terminating states),

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$,

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State.

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding:

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$.

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Suppose \mathcal{R} is never terminating (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Corollary

If $[S_0] \subseteq [B]$ and $B \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} , then B is an invariant for \mathcal{R} from initial sates S_0 .

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Corollary

If $[S_0] \subseteq [B]$ and $B \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} , then B is an invariant for \mathcal{R} from initial sates S_0 .

Example. Mutual exclusion from $\langle 0,0 \rangle$ in READERS-WRITERS is the predicate:

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Corollary

If $[S_0] \subseteq [B]$ and $B \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} , then B is an invariant for \mathcal{R} from initial sates S_0 .

Example. Mutual exclusion from $\langle 0,0 \rangle$ in READERS-WRITERS is the predicate: $Mutex = \langle R,W \rangle \mid W=0 \lor (W=1 \land R=0).$

Suppose \mathcal{R} is never terminating (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Corollary

If $[S_0] \subseteq [B]$ and $B \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} , then B is an invariant for \mathcal{R} from initial sates S_0 .

Example. Mutual exclusion from $\langle 0,0\rangle$ in READERS-WRITERS is the predicate: $Mutex=\langle R,W\rangle\mid W=0 \lor (W=1\land R=0).$ We can prove it by showing:

Suppose \mathcal{R} is never terminating (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Corollary

If $[S_0] \subseteq [B]$ and $B \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} , then B is an invariant for \mathcal{R} from initial sates S_0 .

Example. Mutual exclusion from $\langle 0,0 \rangle$ in READERS-WRITERS is the predicate: $Mutex = \langle R,W \rangle \mid W=0 \lor (W=1 \land R=0)$. We can prove it by showing: (i) $\langle 0,0 \rangle \in Mutex$ (easy), and

Suppose \mathcal{R} is *never terminating* (has no terminating states), State has a single constructor $\langle _, \ldots, _ \rangle : s_1 \ldots s_n \to State$, and all rules are between terms of sort State. Call \mathcal{R}_{stop} the rewrite theory extending \mathcal{R} by adding: (i) $[_, \ldots, _] : s_1 \ldots s_n \to State$, and (ii) a $stop\ rule\ \langle x_1, \ldots, x_n \rangle \to [x_1, \ldots, x_n]$. Then:

Theorem

B is an invariant for \mathcal{R} from initial sates S_0 iff $S_0 \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} .

Corollary

If $[S_0] \subseteq [B]$ and $B \longrightarrow^{\circledast} [B]$ holds in \mathcal{R}_{stop} , then B is an invariant for \mathcal{R} from initial sates S_0 .

Example. Mutual exclusion from $\langle 0,0 \rangle$ in READERS-WRITERS is the predicate: $Mutex = \langle R,W \rangle \mid W=0 \lor (W=1 \land R=0)$. We can prove it by showing: (i) $\langle 0,0 \rangle \in Mutex$ (easy), and (ii) $Mutex \longrightarrow^{\circledast} [Mutex]$ in READERS-WRITERS-stop.

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacktriangle A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of $\mathcal R$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are:

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are: (i) to prove $A \longrightarrow^{\circledast} B$ we may need some auxiliary lemmas.

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are: (i) to prove $A \longrightarrow^{\circledast} B$ we may need some auxiliary lemmas. Call $\mathcal C$ the formulas $A \longrightarrow^{\circledast} B$ plus these lemmas;

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are: (i) to prove $A \longrightarrow^{\circledast} B$ we may need some auxiliary lemmas. Call $\mathcal C$ the formulas $A \longrightarrow^{\circledast} B$ plus these lemmas; (ii) we start with labeled sequents of the form $[\emptyset,\ \mathcal C] \vdash_T u \mid \varphi \longrightarrow^{\circledast} \bigvee_i v_i \mid \psi_i$ for all formulas in $\mathcal C$;

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are: (i) to prove $A \longrightarrow^\circledast B$ we may need some auxiliary lemmas. Call $\mathcal C$ the formulas $A \longrightarrow^\circledast B$ plus these lemmas; (ii) we start with labeled sequents of the form $[\emptyset,\ \mathcal C] \vdash_T u \mid \varphi \longrightarrow^\circledast \bigvee_i v_i \mid \psi_i$ for all formulas in $\mathcal C$; (iii) the first component (\emptyset) are the formulas we can assume as axioms (none);

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are: (i) to prove $A \longrightarrow^\circledast B$ we may need some auxiliary lemmas. Call $\mathcal C$ the formulas $A \longrightarrow^\circledast B$ plus these lemmas; (ii) we start with labeled sequents of the form $[\emptyset,\ \mathcal C] \vdash_T u \mid \varphi \longrightarrow^\circledast \bigvee_i v_i \mid \psi_i$ for all formulas in $\mathcal C$; (iii) the first component (\emptyset) are the formulas we can assume as axioms (none); (iv) the second $(\mathcal C)$ the formulas we need to prove and cannot yet assume;

Proof Rules

Q: Then given RWL theory \mathcal{R} , how do we prove $A \longrightarrow^{\circledast} B$?

A: Perhaps surprisingly, two proof rules are enough

- lacksquare A rule that traces *rewrite steps* of *symbolic* states in $\mathcal R$
- lacksquare A rule that captures *circular behavior* of ${\mathcal R}$

We call these two rules *Step+Subsumption* and *Axiom* resp.

The key ideas are: (i) to prove $A \longrightarrow^\circledast B$ we may need some auxiliary lemmas. Call $\mathcal C$ the formulas $A \longrightarrow^\circledast B$ plus these lemmas; (ii) we start with labeled sequents of the form $[\emptyset,\ \mathcal C] \vdash_T u \mid \varphi \longrightarrow^\circledast \bigvee_i v_i \mid \psi_i$ for all formulas in $\mathcal C$; (iii) the first component (\emptyset) are the formulas we can assume as axioms (none); (iv) the second $(\mathcal C)$ the formulas we need to prove and cannot yet assume; (v) the Step+Subsumption rule allows us to inductively assume $\mathcal C$ after a rewrite step with rules $R=\{l_j\to r_j\ if\ \phi_j\}$.

Proof Rules

$$\frac{\bigwedge\limits_{(j,\alpha)\in \text{UNIFY}(u\mid\varphi',\ R)} [\mathcal{A}\cup\mathcal{C},\ \emptyset]\ \vdash_{T}\ (r_{j}\mid\varphi'\wedge\phi_{j})\alpha\longrightarrow^{\circledast}\bigvee\limits_{i}(v_{i}\mid\psi_{i})\alpha}{[\mathcal{A},\ \mathcal{C}]\ \vdash_{T}\ u\mid\varphi\longrightarrow^{\circledast}\bigvee\limits_{i}v_{i}\mid\psi_{i}}$$

$$\underbrace{\bigwedge_{j} [\{u' \mid \varphi' \longrightarrow^{\circledast} \bigvee_{j} v'_{j} \mid \psi'_{j}\} \cup \mathcal{A}, \; \emptyset] \; \vdash_{T} \; v'_{j} \alpha \mid \varphi \wedge \psi'_{j} \alpha \longrightarrow^{\circledast} \bigvee_{i} v_{i} \mid \psi_{i}}_{[\{u' \mid \varphi' \longrightarrow^{\circledast} \bigvee_{j} v'_{j} \mid \psi'_{j}\} \cup \mathcal{A}, \; \emptyset] \; \vdash_{T} \; u \mid \varphi \longrightarrow^{\circledast} \bigvee_{i} v_{i} \mid \psi_{i}}_{}$$

The Step+Subsumption and Axiom Rules

Q: So what work has been done already?

Q: So what work has been done already?

Q: So what work has been done already?

A: A substantial RL framework is already in place with:

full semantics for RL developed in terms of RWL

Q: So what work has been done already?

- full semantics for RL developed in terms of RWL
- soundness proof for proof system and semantics

Q: So what work has been done already?

- full semantics for RL developed in terms of RWL
- soundness proof for proof system and semantics
- Maude tool semi-automating the proof system

Q: So what work has been done already?

- full semantics for RL developed in terms of RWL
- soundness proof for proof system and semantics
- Maude tool semi-automating the proof system
- a collection of case studies.

Q: So what work has been done already?

A: A substantial RL framework is already in place with:

- full semantics for RL developed in terms of RWL
- soundness proof for proof system and semantics
- Maude tool semi-automating the proof system
- a collection of case studies.

Next lecture will illustrate the use of the Maude Reachability Logic tool by means of examples.