Zeppelin

Parking and Pollution DX III - O

Imported the packages

```
FINISHED A A HEFAULT
```

1 import org.apache.spark.sql.functions._
2 import org.joda.time.format.DateTimeFormat
3 import org.apache.spark.ml.regression.LinearRegression
4 import org.apache.spark.ml.regression.LinearRegression
5 import org.apache.spark.mllib.util.MLUtils

import org.apache.spark.sql.functions._
import org.joda.time.format.DateTimeFormat
import org.apache.spark.ml.regression.LinearRegression
import org.apache.spark.ml.regression.LinearRegression

Adjusted the path to the location of the data

import org.apache.spark.mllib.util.MLUtils

FINISHED ▷ ♯ 圓 �

```
1 // Load data - adjust the path to the location of your data
    2 val inputPath = "/Users/joannariascos/Desktop/algorithm/aarhus_parking.csv"
    3 val parkingdata = sqlContext.read
               .format("com.databricks.spark.csv")
               .option("header", "true") // Use first line of all files as header
    5
               .option("delimiter", ",")
    6
               .option("inferSchema", "true") // Automatically infer data types
    7
    8
               .load(inputPath)
    9
               parkingdata.registerTempTable("parkingdata")
inputPath: String = /Users/joannariascos/Desktop/algorithm/aarhus_parking.csv
parkingdata: org.apache.spark.sql.DataFrame = [vehiclecount: int, totalspaces: int ... 2 mo
re fields]
warning: there was one deprecation warning; re-run with -deprecation for details
```

Created the RDD pairs

FINISHED ▷ 💥 🗐 🕸

csv: org.apache.spark.rdd.RDD[String] = /Users/joannariascos/Desktop/algorithm/aarhus_parki
nq.csv MapPartitionsRDD[49] at textFile at <console>:42

header: String = vehiclecount, total spaces, garagecode, ozone

data: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[50] at filter at <console>:45
parsedData: org.apache.spark.rdd.RDD[org.apache.spark.mllib.regression.LabeledPoint] = MapP

artitionsRDD[51] at map at <console>:47

Loaded the parking dataset with spark

FINISHED ▷ 光 圓 ��

- 1 %spark.r
- 2 aarhus_parking <- read.csv("/Users/joannariascos/Desktop/algorithm/aarhus_parking.csv")</pre>
- 3 head(aarhus_parking)

vehiclecount totalspaces garagecode ozone 1 65 NORREPORT 0 101 2 0 512 SKOLEBAKKEN 106 3 869 1240 SCANDCENTER 107 4 22 953 **BRUUNS** 103 5 124 130 BUSGADEHUSET 105

6 106 400 MAGASIN 106

Fitted the model and ran a multiple regression analysis

FINISHED ▷ ♯ 圓 �

- 1 %r
- 2 model = lm(ozone~vehiclecount+totalspaces+garagecode, data = aarhus_parking)

Created the anova table

FINISHED ▷ 牂 圓 ۞

- 1 %r
- 2 modeltwo = lm(ozone~totalspaces, data = aarhus_parking)
- 3 anova(model, modeltwo)

Analysis of Variance Table

Plotted a residuals vs fitted graph

FINISHED ▷ ♯ ତ 🌣

- 1 %r
- 2 plot(model)

Theoretical Quantiles Im(ozone ~ vehiclecount + totalspaces + garagecode)

Scale-Location

Fitted values Im(ozone ~ vehiclecount + totalspaces + garagecode)

Residuals vs Leverage

Depicted the column names of the parking dataset

FINISHED ▷ 圓 ��

- 1 %r
- 2 colnames(aarhus_parking)
- [1] "vehiclecount" "totalspaces" "garagecode" "ozone"

Depicted the structure of the parking dataset

- 1 %r
- 2 str(aarhus_parking)

```
'data.frame': 55264 obs. of 4 variables:
$ vehiclecount: int 0 0 869 22 124 106 115 233 0 0 ...
$ totalspaces : int 65 512 1240 953 130 400 210 700 65 512 ...
$ garagecode : Factor w/ 8 levels "BRUUNS", "BUSGADEHUSET", ...: 5 8 7 1 2 4 3 6 5 8 ...
$ ozone : int 101 106 107 103 105 106 110 106 106 110 ...
```

Showed the summary of the parking datatset

FINISHED ▷ 兆 圓 ��

- 1 %r
- 2 summary(aarhus_parking)

```
vehiclecount
                                                      ozone<br />
               totalspaces
                                     garagecode
                Min. : 65.0
                                BRUUNS
                                                    Min. : 15.00<br />
Min. : 0.0
                                         : 6908
                1st Qu.: 190.0
                                BUSGADEHUSET: 6908
                                                    1st Qu.: 54.00<br />
1st Qu.: 32.0
Median: 96.0
                Median : 456.0
                                KALKVAERKSVEJ: 6908
                                                    Median : 87.00<br />
     : 192.2
                Mean : 526.2
                                                    Mean : 92.42<br />
Mean
                                MAGASIN
                                           : 6908
3rd Qu.: 296.0
                3rd Qu.: 763.2
                                NORREPORT
                                           : 6908
                                                    3rd Qu.:127.00<br />
Max. :1464.0
                Max. :1240.0
                                SALLING
                                            : 6908
                                                    Max.
                                                          :215.00<br />
                                (Other)
                                           :13816
                                                    NA's
                                                           :37696
```

Calling the Im function

FINISHED ▷ ତ 🕸

1

2 %r

3 summary(lm(ozone~vehiclecount+totalspaces+garagecode, data = aarhus_parking))

Call:

```
lm(formula = ozone ~ vehiclecount + totalspaces + garagecode,
    data = aarhus_parking)
```

Showing the model

FINISHED ▷ 圓 ��

1 %r

2 model

Call:

```
lm(formula = ozone ~ vehiclecount + totalspaces + garagecode,
    data = aarhus_parking)
```

Histogram depicting the vehicle count

FINISHED ▷ ♯ 圓 ��

1 %r

2 hist(aarhus_parking\$vehiclecount)

Histogram of aarhus_parking\$vehiclecount

Histogram depicting the ozone layer

FINISHED ▷ # Ⅲ ��

- 1 %i
- 2 hist(aarhus_parking\$ozone)

Histogram of aarhus_parking\$ozone

Histogram depicting the total spaces

FINISHED ▷ 圓 ��

- 1 %
- 2 hist(aarhus_parking\$totalspaces)

Histogram of aarhus_parking\$totalspaces

Ggplot depicting the vehicle count, total spaces, garage code, FINISHED \triangleright % and ozone layer

- 1 %r {"imageWidth":"400px}
- 2 library("ggplot2")
- 3 plot(aarhus_parking)

- 1 %spark.r
- 2 frequency(aarhus_parking)

[1] 1

FINISHED ▷ 圓 墩

Time series using the parking data set

FINISHED ▷ 牂 圓 贷

- 1 %r
- 2 modelone <- ts(aarhus_parking, frequency=12, start=c(1946,1))</pre>

	nting the ou 1 %r 2 modelone	itput for t	he the time	seri	ies	FINISHED >	7 X E	€Ş
Jan	1946	0	65	5	101			ı
	1946	0	512	8	106			
	1946	869	1240	7	107			
	1946	22	953	1	103			
=	1946	124	130	2	105			
-	1946	106	400	4	106			
Jul	1946	115	210	3	110			
Aug	1946	233	700	6	106			
Sep	1946	0	65	5	106			
0ct	1946	0	512	8	110			
Nov	1946	959	1240	7	115			
Dec	1946	22	953	1	114			
Jan	1947	124	130	2	118			
Feb	1947	119	400	4	113			
Mar	1947	121	210	3	114			
Apr	1947	282	700	6	115			
May	1947	0	65	5	115			

Q 17Ω

1 sc

10/17 מייו

FINISHED ▷ ♯ 圓 �

res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@5add6c08

Created some partitions from the dataset

FINISHED ▷ ♯ ତ 🌣

1 import org.apache.spark.mllib.util.LinearDataGenerator

512

- 2 val numRows = 10000
- 3 val numCols = 1000
- 4 val rawData = LinearDataGenerator.generateLinearRDD(sc, numRows, numCols, 1).toDF()
- 5 // Repartition into a more parallelism-friendly number of partitions
- 6 val data = rawData.repartition(64).cache()

import org.apache.spark.mllib.util.LinearDataGenerator

numRows: Int = 10000 numCols: Int = 1000

rawData: org.apache.spark.sql.DataFrame = [label: double, features: vector]

data: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [label: double, features: ve

ctor]

Prints out the coefficients from the model

FINISHED ▷ ¾ ■ ۞

- 1 %r
- 2 coefficients(model)

garagecodeBUSGADEHUSET garagecodeKALKVAERKSVEJ garagecodeMAGASIN
-2.191652364 0.238790550 -0.140165941
garagecodeNORREPORT garagecodeSALLING garagecodeSCANDCENTER
0.047225980 -0.504496446 -1.439290374
garagecodeSKOLEBAKKEN
NA

Calculated the 95% confidence interval

FINISHED ▷ ♯ 圓 ��

1 %r

2 confint(model, level=0.95)

(Intercept) 87.491821077 96.959928651 vehiclecount 0.010913491 0.019515627 totalspaces -0.009247282 0.003236974 garagecodeBUSGADEHUSET -6.649535257 2.266230530 garagecodeKALKVAERKSVEJ -3.766315284 4.243896385 garagecodeMAGASIN -3.274337972 2.994006090 garagecodeNORREPORT -4.711821775 4.806273736 garagecodeSALLING -2.884713945 1.875721053 garagecodeSCANDCENTER -5.393283802 2.514703053 garagecodeSKOLEBAKKEN NA NA

Fitted my model

FINISHED ▷ ♯ 圓 �

1 %r

2 fitted(model)

92.07777	90.68724	100.28165	89.69668	91.53016	92.49639	93.58326
8	9	10	11	12	13	14
93.16276	92.07777	90.68724	101.65096	89.69668	91.53016	92.69418
15	16	17	18	19	20	21
93.67454	93.90828	92.07777	90.68724	102.48776	89.69668	91.54537
22	23	24	25	26	27	28
93.18105	93.73540	95.23194	89.69668	92.07777	90.68724	102.95941
29	30	31	32	33	34	35
91.83445	93.72877	93.79626	96.41868	92.07777	90.68724	93.34381
36	37	38	39	40	41	42
89.69668	92.15395	94.01785	92.79210	93.45184	92.07777	90.68724
43	44	45	46	47	48	49
92.53743	89.69668	91.98659	93.80484	92.77689	92.72154	92.07777
50	51	52	53	54	55	56
90.68724	92.11143	89.69668	92.18438	93.34841	92.74646	92.35639
57	58	59	60	61	62	63
92.07777	90.68724	91.94407	89.69668	92.16917	93.16583	92.67038
61	65	66	67	۶۵	60	70

Printed the residuals of the model

FINISHED ▷ 💥 🗐 🕸

1 %r

2 residuals(model)

8.922234149	15.312763851	6.718354712 1	13.303316362	13.469842217
(5 7	8	9	10
13.503609360	0 16.416742630	12.837237043	13.922234149	19.312763851
13	L 12	13	14	15
13.349044437	7 24.303316362	26.469842217	20.305820098	20.325455279
16	5 17	18	19	20
21.091723673	L 22.922234149	29.312763851	17.512243713	25.303316362
21	L 22	23	24	25
18.454627659	9 14.818954223	13.264597044	6.768057071	11.303316362
26	5 27	28	29	30
11.922234149	9 10.312763851	-6.959407604	4.165551045	6.271230113
32	L 32	33	34	35
10.203738810	5.581321499	6.922234149	10.312763851	10.656193441
36	5 37	38	39	40
18.303316362	2 11.846045314	9.982153499	15.207899678	14.548160429
42	L 42	43	44	45
11.922234149	9.312763851	11.462565048	15.303316362	2 13.013405459
Λί	. 17	ЛΩ	10	50

Getting the analysis of the variance table

FINISHED ▷ 兆 圓 �

1 %r

2 anova(model)

Analysis of Variance Table

Calculated the variance-covariance of the model

FINISHED ▷ 💥 🗉 🕸

1 %r

```
2 vcov(model)
                        5.833246e+00 -6.449969e-05 -7.288449e-03
(Intercept)
vehiclecount
                        -6.449969e-05 4.815003e-06 -9.173920e-07
totalspaces
                        -7.288449e-03 -9.173920e-07 1.014167e-05
garagecodeBUSGADEHUSET -4.873959e+00 -6.963061e-04 6.137709e-03
garagecodeKALKVAERKSVEJ -4.299779e+00 4.120483e-05 5.199843e-03
garagecodeMAGASIN
                        -2.911121e+00 -7.214983e-05 3.327733e-03
garagecodeNORREPORT
                        -5.358439e+00 4.512334e-05 6.644293e-03
garagecodeSALLING
                        -7.188819e-01 -2.227684e-04 3.663671e-04
                         3.227003e+00 -4.830274e-04 -4.966160e-03
garagecodeSCANDCENTER
                        garagecodeBUSGADEHUSET garagecodeKALKVAERKSVEJ
(Intercept)
                                 -4.8739590503
                                                          -4.299779e+00
vehiclecount
                                 -0.0006963061
                                                          4.120483e-05
totalspaces
                                  0.0061377092
                                                           5.199843e-03
garagecodeBUSGADEHUSET
                                  5.1725089901
                                                           3.616269e+00
                                  3.6162686153
                                                           4.175149e+00
garagecodeKALKVAERKSVEJ
garagecodeMAGASIN
                                  2.4917027598
                                                           2.215533e+00
                                  4.4864332678
                                                           3.961114e+00
garagecodeNORREPORT
aanaaacadaCALLTNC
                                  A 7110700076
                                                           6 510357<sub>0</sub> 01
```

Checks for the quality of the regression fits

1 %r

\$hat

2 influence(model)

1 2 0.0004559825 0.0004832205 0.0010648366 0.0005230584 0.0004631889 0.0004553779 0.0004665068 0.0004589876 0.0004559825 0.0004832205 0.0012945228 0.0005230584 0.0004631889 0.0004558431 0.0004684927 17 18 19 0.0004732811 0.0004559825 0.0004832205 0.0014529287 0.0005230584 22 23 24 0.0004629252 0.0004602460 0.0004699072 0.0005254274 0.0005230584 26 27 28 29 0.0004559825 0.0004832205 0.0015482434 0.0004587750 0.0004707375 32 33 34 0.0004713940 0.0006012955 0.0004559825 0.0004832205 0.0004643620

38

12

0.0005230584 0.0004560883 0.0004786388 0.0004561188 0.0004632405

39

Shows the different plots

1 %r

2 layout(matrix(c(1,2,3,4),2,2))

37

3 plot(model)

36

FINISHED ▷ ※ 圓 ♡

Installed the Data Analysis and Graphics package

FINISHED ▷ 💥 🗊 🕸

- 1 %r
- 2 install.packages("DAAG", repos = "http://cran.us.r-project.org")

The downloaded binary packages are in /var/folders/ll/1mpcgfrd7nlgpz03y3z75t6w0000gn/T//RtmptTl8YT/downloaded_packages

The downloaded binary packages are in /var/folders/ll/1mpcgfrd7nlgpz03y3z75t6w0000gn/T//RtmptTl8YT/downloaded_packages

Defined the functions

FINISHED ▷ 兆 圓 ♡

- 1 %r
- 2 library(bootstrap)
- 3 theta.model <- function(x,y){lsmodel(x,y)}</pre>
- 4 theta.predict <- function(model,x){cbind(1,x)%*%model\$coef}

Converted the data frame to a numeric matrix

FINISHED ▷ 兆 圓 ��

- 1 %r
- 2 X <- as.matrix(model[c("ozone","vehiclecount","totalspaces")])</pre>
- 3 y <- as.matrix(model[c("garagecode")])</pre>

Installed the MASS package

FINISHED ▷ ♯ 圖 ♡

- 1 %r
- 2 install.packages("MASS", repos = "http://cran.us.r-project.org")

The downloaded binary packages are in /var/folders/ll/1mpcgfrd7nlgpz03y3z75t6w0000gn/T//RtmptTl8YT/downloaded_packages

Performed a stepwise model selection by AIC

FINISHED ▷ ♯ ତ 🕸

- 1 %r
- 2 library(MASS)
- 3 modelfit <- lm(ozone~vehiclecount+totalspaces+garagecode,data=aarhus_parking)</pre>
- 4 step <- stepAIC(model, direction="both")</pre>
- 5 step\$anova

Start: AIC=134634.2 ozone ~ vehiclecount + totalspaces + garagecode

Installed the leaps package

FINISHED ▷ 💥 🗐 🕸

- 1 %r
- 2 install.packages("leaps", repos = "http://cran.us.r-project.org")

There is a binary version available (and will be installed) but the source version is later:

binary source
leaps 2.9 3.0

Used the "leaps" function to get the best subsets of the variables

- 1 %r
- 2 library(leaps)
- 3 attach(aarhus_parking)
- 4 leaps<-regsubsets(ozone~vehiclecount+totalspaces+garagecode,data=aarhus_parking,nbest=

Printed the subset selection

FINISHED ▷ ♯ 圓 ��

1

```
1 %r
```

2 summary(leaps)

Subset selection object

Call: regsubsets.formula(ozone ~ vehiclecount + totalspaces + garagecode,
 data = aarhus_parking, nbest = 10)

9 Variables (and intercept)

	Forced in	Forced out
vehiclecount	FALSE	FALSE
totalspaces	FALSE	FALSE
garagecodeBUSGADEHUSET	FALSE	FALSE
$garage code {\tt KALKVAERKSVEJ}$	FALSE	FALSE
garagecodeMAGASIN	FALSE	FALSE
garagecodeNORREPORT	FALSE	FALSE
garagecodeSALLING	FALSE	FALSE
garagecodeSCANDCENTER	FALSE	FALSE
garagecodeSKOLEBAKKEN	FALSE	FALSE
10 subsets of each size	un +0 8	

10 subsets of each size up to 8 Selection Algorithm: exhaustive

vehiclecount totalspaces garagecodeBUSGADEHUSET

1 (1) "_om\" "" " " " hn /

Plotted the leaps model

FINISHED ▷ 💥 🗉 🕸

1 %r

2 plot(leaps,scale="r2")

Installed the car package and got the subsets

FINISHED ▷ 💥 🗉 🕸

- 1 %r
- 2 install.packages("car", repos = "http://cran.us.r-project.org")
- 3 library(car)
- 4 subsets(leaps, statistic="rsq")

The downloaded binary packages are in

/var/folders/ll/1mpcgfrd7nlgpz03y3z75t6w0000gn/T//RtmptTl8YT/downloaded_packages

Error in legend(if (!is.na(charmatch(legend[1], "interactive"))) locator(1) els e if (is.character(legend)) legend else if (is.numeric(legend) &&: invalid coordinate lengths

Error in legend(if (!is.na(charmatch(legend[1], "interactive"))) locator(1) els e if (is.character(legend)) legend else if (is.numeric(legend) &&: invalid coordinate lengths

Installed the caret package

FINISHED ▷ 💥 🗉 🕸

- 1 %r
- 2 library(caret)

- 1 %r
- 2 data(aarhus_parking)

1 %r

2 train_control <- trainControl(method="cv", number=10)</pre>

FINISHED ▷ ♯ 圓 ♡

FINISHED ▷ ¾ ■ ۞

1 %r

2 # fix the parameters of the algorithm

3 grid <- expand.grid(.fL=c(0), .usekernel=c(FALSE))</pre>

1 %r

2 install.packages("klaR", repos = "http://cran.us.r-project.org")

FINISHED ▷ 🖟 🗉 🅸

The downloaded binary packages are in /var/folders/ll/1mpcgfrd7nlgpz03y3z75t6w0000gn/T//RtmpgvXzmi/downloaded_packages

1 %spark.r

FINISHED ▷ 光 圓 ��

2 aarhus_parking <- read.csv("/Users/joannariascos/Desktop/algorithm/aarhus_parking.csv'</pre>

1 %r

FINISHED ▷ ♯ 圓 �

- 2 colnames(aarhus_parking)
- [1] "vehiclecount" "totalspaces" "garagecode" "ozone"

1 %r

2 na.omit(aarhus_parking)

FINISHED ▷ 💥 🗐 🕸

1	0	65	NORREPORT	101
2	0	512	SKOLEBAKKEN	106
3	869	1240	SCANDCENTER	107
4	22	953	BRUUNS	103
5	124	130	BUSGADEHUSET	105
6	106	400	MAGASIN	106
7	115	210	KALKVAERKSVEJ	110
8	233	700	SALLING	106
9	0	65	NORREPORT	106
10	0	512	SKOLEBAKKEN	110
11	959	1240	SCANDCENTER	115
12	22	953	BRUUNS	114
13	124	130	BUSGADEHUSET	118
14	119	400	MAGASIN	113
15	121	210	KALKVAERKSVEJ	114
16	282	700	SALLING	115
17	0	65	NORREPORT	115
1 Q	Ω	517	CKUI EBYKKEN	170

%r model <- train(ozone~vehiclecount, data=aarhus_parking, trControl=train_control, method="nl.exclude)

Error in train.default(x, y, weights = w, ...): wrong model type for regression

READY ▷ ¾ 및 ۞