الراجة النبائية

(الريافييات

(الصف (الثاني (الثانوي الثاني (الثاني الثاني

منترئ ترجيه (الرياضيات أ ا عاول إورار

. ملخص أهم توانين الصف الثاني الثانوي الفصل الرراسي الثاني ١٠١٩ (١٠) منتري توجيه الرياضيات ١٠ عاول اووار

أولاً : الجبر

المتتابعة

هي دالة مجالها مجموعة الأعداد الصحيحة الموجبة - و مجالها المقابل مجموعة الأعداد الحقيقية - (د: - - - - - - -)

المتتابعة المنتهية و المتتابعة غير المنتهية

- ⊕ تكون المتتابعة منتهية إذا كان عدد حدودها منتهياً (أى يمكن حصره أو عده)
- ⊕ تكون غير منتهية إذا كان عدد حدودها غير منته (عدد لا نهائي من العناصر)

 المتتابعة الترايدية والمتتابعة التناقصية و المتتابعة الثابتة

 المتتابعة الترايدية والمتتابعة التناقصية و المتتابعة الثابتة

 المتتابعة الترايدية والمتتابعة التناقصية و المتتابعة الثابتة

 المتتابعة الترايدية والمتتابعة التناقصية و المتتابعة الثابتة التناقصية و المتتابعة الثابتة الترايدية و المتتابعة الترايدية و المتتابعة الترايدية و المتتابعة التناقصية و المتتابعة الثابتة التناقصية و المتتابعة الثابتة الترايدية و المتتابعة الترايدية و المتتابعة التناقصية و المتتابعة الترايدية و المتتابعة الترايدية و المتتابعة التناقصية و المتتابعة الترايدية و المتتابعة و المتتابعة الترايدية و المتتابعة و المتابعة و المتتابعة و المتابعة و المتتابعة و المتتابعة و المتابعة و المتابعة
 - € المتتابعة التزايدية: ع ١٠٠٠ ع ١٠ > الصفر
 - € المتتابعة التناقصية: ع ٠٠٠ ع ١٠٠ < الصفر
 - ⊕ المتتابعة الثابتة : ع ب٠٠٠ ع = الصفر

المتسلسلات و رمز التجميع

الخواص الجبرية للتجميع

اذا کانت (\mathcal{S}_{\sim}) ، (\mathcal{S}_{e}) متتابعتین ، $\omega \in \mathcal{S}_{\sim}^{+}$ ، حو \mathcal{S}_{e} فإن:

$$\mathcal{Z} \sum_{n=1}^{\infty} (\mathcal{Z}_n \pm \mathcal{Z}_n) = \sum_{n=1}^{\infty} \mathcal{Z}_n \pm \sum_{n=1}^{\infty} \mathcal{Z}_n$$

$$\frac{\sqrt{2}}{3}$$
 قانون مجموع الأعداد الصحيحة : $\sqrt{2}$

(1+
$$\nu$$
1)(1+ ν 1) $= \frac{\nu(\nu+1)(1+\nu+1)}{2}$

ملخص أهم توانين الصف الثاني الثانوي الفصل البرراسي الثاني ٢٠١٩ (٢) منتري توجيه البرياضيات ١/ عاول اووار

المتتابعات الحسابية و الهندسية

المتتابعة الهندسية	المتتابعة الحسابية	
تكون المنتابعة (\mathcal{S}_{κ}) هندسية إذا كان: $\frac{\mathcal{S}_{\kappa+1}}{\mathcal{S}_{\kappa}} = $ ثابت (الأساس)	تكون المتتابعة (ع ر) حسابية إذا كان: ع رب - ع ر = ثابت (الأساس)	التعريف
اي حــد م = الحد السابق له مباشرة	5 = أي حد - الحد السابق له مباشرة	الأسلس
(35)= (4,4~,4~,	C4 T D (CT D (D)	الصورة العامة
1-2~P=22		العام
مدسي دان : ت يدون وسط مدسي بين q ، ح ويكون : q	إذا كان : ٩ ، ، و في تتابع حسابي فإن : يكون وسط حسابي بين ، و ويكون :	الأوساط
$1 \neq \sqrt{\frac{(1-\sqrt{3})^{3}}{1-\sqrt{3}}} = \sqrt{3}$ $1 \neq \sqrt{\frac{9-\sqrt{3}}{1-\sqrt{3}}} = \sqrt{3}$	$(0+\beta)\frac{\nu}{\gamma} = _{\nu} >$ $[s(1-\nu)+\beta \gamma]\frac{\nu}{\gamma} = _{\nu} >$	المجموع

ملاحظات على المتتابعات الحسابية

- € لإيجاد رتبة أول حد موجب: نضع ع رح صفر أي: ٩+ (١٠-١) > صفر
 - لإيجاد رتبة أول حد سالب: نضع $\frac{9}{3}$ < صفر أي : $9+(\omega-1)$ < صفر
- لإيجاد أكبر مجموع نوجد عدد الحدود الموجبة بوضع $3_0 > 0$ لإيجاد قيمة 0
- ♦ المعر مجموع نوجد عدد الحدود السالبة بوضع ع رح٠ الإيجاد قيمة نه
- ◄ المتتابعة بدَّء من حد معين نوجد قيمة هذا الحد ونعوض عنه بدلاً من ◄
- ◊ إيجاد قيمة نه التي تجعل المجموع موجباً نضع حرر>٠ أي: ١٩٢ (ن٠-١)٥>٠
- الإيجاد قيمة نه التي يتلاشى عندها المجموع نضع حرر = ٠ أي: ٢٢+(ن٠-١)٥=٠

. ملخص أهم توانين الصف الثاني الثانوي الفصل الرراسي الثاني ٢٠١٩ (٣) منتري توجيه الرياضيات [/ عاول اووار

ملاحظات على المتتابعات الهندسية

يمكن إيجاد مجموع عدد غير منته من حدود متتابعة هندسية إذا وفقط إذا كان:

 $\frac{1}{|x|} < 1$ اي : - 1 < x < 1 ويكون : $x < \infty = \frac{1}{|x|}$

العلاقة بين الوسطين الحسابي والهندسي

نظریة : الوسط الحسابی لعددین حقیقین موجبین مختلفین أکبر من وسطهما الهندسی. أی انه لأی عددین س م حیث س ، ص $= 9^+$ ، س $\neq 0$

يكون: ٢٠٠٥ > ١٠٠٠ م

أي أن الوسط الحسابي أكبر من الوسط الهندسي الموجب ، ولما كان الوسط الهندسي الموجب أكبر من الوسط الهندسي (على الإطلاق).

ملاحظات

رویکون: $0 > \sqrt{-0.5}$ ویکون: $0 > \sqrt{-0.5}$ ویکون: $0 < \sqrt{-0.5}$

مبدأ العد - التباديل - التوافيق

مبدأ العد

إذا أمكن إجراء عمل ما بطرق عددها م ، و عمل آخر بطرق عددها له ، فإنه يمكن إجراء العملين معاً بطرق عددها م × له

مضروب العدد

مضروب العدد الصحيح الموجب م يكتب بالصورة : إم هو يساوي حاصل ضرب جميع الأعداد الصحيحة الأقل من أو تساوي م

 $1 \times 7 \times 7 \times \dots \times (r-1)(r-1)(r-1)(r-1)$ اي آن : اي $r = r \times 7 \times 7 \times 7 \times 1$

- ② عدد عوامل ان يساوي به عامل أكبر ها به و أصغر ها الواحد الصحيح.
- © [= الصفر = ١ و العكس صحيح إذا كان : إس = ١ فإن س = ١١٠١
 - ۞ يمكن استخدام الحاسبة العلمية لحساب مضروب العدد فمثلا لحساب: □

نكتب : $[5] \frac{x^{-1}}{x^{-1}}$ يظهر لنا على الشاشة "5" ثم بالضغط على $[5] = x^{-1}$ نجد أن الناتج يساوي $x^{-1} \cdot x^{-1} \cdot x^{-1}$

. ملخص أهم قوانين الصف الثاني الثانوي الفصل الرراسي الثاني ٢٠١٩ (٤) منتري توجيه الرياضيات [/ عاول اووار

- ② عدد طرق ترتیب به من الأشیاء فی صف = ابه
- \bigcirc عدد طرق ترتیب م من الأشیاء في دائرة = $|(\mathbf{v} \mathbf{l})|$

التباديل

یر مز لعدد سمن التبادیل المتمایزة مأخوذ منها سم من العناصر في کل مرة بالر مز $^{\prime\prime}$ ل س حیث : $^{\prime\prime}$ ل س = $^{\prime\prime}$ ل س - $^{\prime\prime}$ ل س -

ملاحظات

- أي أن : ⁴ ل رتعنى حاصل ضرب الأعداد الصحيحة الموجبة التي عددها م و أكبر ها م ، و أصغرها (م م + 1)
 - <u>العلم</u> = <u>العلم</u> = رائعلم الدليل ضحاب الدليل
 - ⊙ يمكن استخدام الحاسبة العلمية لحساب التباديل فمثلا لحساب: ^ل -

التوافيق

هي كل مجموعة يمكن تكوينها من مجموعة من الأشياء بأخذ بعضها أو كلها بصر ف النظر عن ترتيبها .

أي أن : $^{\prime\prime}$ و عدد التوافيق المكون كل منها من ر من الأشياء المختارة من بين ن من العناصر حيث ، $\sim \leq 0$ ، ~ 0 ط ، ~ 0 و ط ، ~ 0

ملاحظات

- $\frac{|v|}{|v| \cdot (|v| v|)} = \frac{|v|}{|v|} = |v| \cdot |v|$
- \odot $^{\prime\prime}$ $^{\prime\prime}$
- \bigcirc إذا كان : $^{\prime\prime}$ و العلم = $^{\prime\prime}$ فإن : $^{\prime\prime}$ = $^{\prime\prime}$ أ، $^{\prime\prime}$ العلم = العلم الدليل فإن إما : الدليل = الدليل أ، مجموع الدليلين = العلم"
 - ۞ يمكن استخدام الحاسبة العلمية لحساب التوافيق فمثلا لحساب : ݖ • •

نكتب : 7 $\frac{1}{shift}$ $\frac{1}{2}$ يظهر لنا على الشاشة " 7C2 " ثم بالضغط على $\frac{1}{2}$ نجد أن الناتج يساوي ٢٦ ($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ نجد

ثانياً: النفاضل و النكامل

التغير

إذا كانت: ص=د(س) وتغيرت س من س إلى س+ ه فإن ص تتغيراً تبعاً لذلك من د(س) إلى د(س+ ه) وعلى ذلك فإن التغير في ص يكون د(س+ ه) - د(س) والذي يرمز له بالرمز $\Gamma(a)$ أي أن :

$$\odot$$
 دالة متوسط التغير $\gamma(a) = \frac{\overline{r}(a)}{a} = \frac{c(-v+a)-c(-v)}{a}$

$$\odot$$
 clip asch litisty $c(-\omega) = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} = \frac{1}$

تذكر أن

(۱) مساحة الدائرة $\pi = \pi$ نق π ، محیط الدائرة $\pi = \pi$ نق

(Y) مساحة المربع = b^Y ، محيطه = 3b

(٣) مساحة المستطيل = الطول × العرض ، محيطه = ٢ (الطول + العرض)

 7 ل مساحة المكعب الكلية = 7 ل ، المساحة الجانبية = 3 ل ، حجم المكعب = 7

(٥) مساحة الكرة =
$$\pi$$
 نق π ، حجم الكرة = π خم π .

(٦) مساحة المثلث = نصف حاصل ضرب طولي ضلعين × جيب الزاوية المحصورة بينهما

الإشتقاق:

إذا كانت ص= د(س)

المشتقة الأولى للدالة د بالنسبة إلى س يرمز لها بأحد الرموز الآتية:

$$((--)^{\frac{2}{2}})^{\frac{2}{2}} = (--)^{\frac{2}{2}} ((--)^{\frac{2}{2}})^{\frac{2}{2}}$$

ملاحظة هامة:

المشتقة الأولى لدالة عند نقطة = ميل المماس لمنحنى الدالة عند هذه النقطة = ظل الزاوية الموجبة التي يصنعها المماس لمنحنى الدالة عند هذه النقطة = معدل تغير الدالة عند هذه النقطة .

ملخص أهم توانین الصف الثانی الثانوی الفصل الدراسی الثانی ۲۰۱۹ (۲) منتری توجیه الریاضیات 🖊 عاول اووار

قابلية الإشتقاق:

يقال أن الدالة " د " قابلة للإشتقاق عند - = 4 حيث $4 \in A$ الدالة " د : إذا و فقط إذا كانت : $\frac{(4+A)-c(4)}{A}$ (لها وجود)

قابلية للإشتقاق للدالة متعددة التعريف (المشتقة اليمني واليسري)

$$c(q^{+}) = \frac{1}{4} \frac{c(q+a)-c(q)}{a} = c(q+b) = \frac{1}{4} \frac{c(q+a)-c(q)}{a}$$

فإذا كان: دَ (٩+)= دَ (٩-) فإن الدالة د تكون قابلة للإشتقاق عند س=٩ ملاحظات:

- (١) كل دالة غير متصلة عند نقطة تكون غير قابلة للإشتقاق عند نفس النقطة .
- (٢) الدالة المتصلة عند نقطة ليس من الضروري أن تكون قابلة للإشتقاق عند نفس النقطة .أي أن اتصال الدالة عند نقطة شرط ضروري و لكنه غير كاف لقابلية اشتقاق الدالة عند ذات النقطة.
 - (٣) كل دالة قابلة للإشتقاق عند نقطة تكون متصله عند نفس النقطة.
- (٤) إذا كانت الدالة غير قابلة للإشتقاق عند نقطة فإنه ليس من الضروري أن تكون متصلة عند نفس النقطة.

هام جداً:

إذا كانت الدالة د قابلة للإشتقاق عند س= م فإن :

$$(7)^{2}(7)^{-1}=(7)^{2}(7)^{-1}$$

♦ قواعد الاشتقاق

$$(7)$$
إذا كانت $w = 9 - 0^{3}$ فإن $\frac{50}{500} = 9 \times 10^{3}$

(ص
$$\pm \upsilon$$
) = $\frac{2\upsilon}{2\upsilon}$ (مشتقة مجموع دالتين)

. ملخص أهم توانين الصف الثاني الثانوي الفصل الرراسي الثاني ٢٠١٩ (٧) منتري توجيه الرياضيات 1/ عاول اووار

البنت
$$\omega = \sqrt{c(\omega)}$$
 فإن $\frac{2\omega}{2\omega} = \frac{\text{مشتقة ما تحت الجذر}}{\text{الجذر}}$

(ه)إذا كانت
$$w = c(w)$$
. $v(w)$ فإن $\frac{2w}{2w} = c$. $v + c$. v

أي أن مشتقة حاصل ضرب دالتين = مشتقة الأولى × الثانية + الأولى × مشتقة الثانية

$$\frac{c(-\upsilon)}{r} = \frac{c(-\upsilon)}{\upsilon(-\upsilon)} = \frac{c(-\upsilon)}{c(-\upsilon)} = \frac{c(-\upsilon)}{c(-\upsilon)} = \frac{c(-\upsilon)}{c(-\upsilon)} = \frac{c(-\upsilon)}{r}$$

أي أن مشتقة خارج قسمة دالتين

= (مشتقة البسط × المقام - مشتقة المقام × البسط) ÷ مربع المقام

أي أن مشتقة (قوس) $\sim = 0$ (القوس) $\sim \times \times$ مشتقة ما بداخل القوس

$$(^{\wedge})$$
اذا كانت : $= = = [(^{(})])$ فان : $= (^{(}) \times \times) \times = (^{(}) \times \times)$

$$(٩)$$
اذا كانت : $ص = جتا[د(س)] فإن : $\frac{20}{2-4} = 2(-1) \times -4[(-1)]$$

$$\frac{25}{8} \times \frac{20}{8} = \frac{20}{8}$$
 فإن $\frac{20}{8} = \frac{20}{8} \times \frac{20}{8} = \frac{20}{8} \times \frac{20$

ميل الخط المستقيم:

🗷 ميل المستقيم الموازي لمحور السينات = صفر

◄ ميل المستقيم الموازي لمحور الصادات غير معرف = صفر

◄ إذا كان : ل ١// ل و فإن : ٢٠ = ٢٠

۱-=, ۲×, ۲: فإن : ۲ , ك , ك إذا كان : ٢

≥ للحصول على نقط تقاطع المنحنى مع محور السينات: بوضع ص = •

☑ للحصول على نقط تقاطع المنحنى مع محور الصادات: بوضع س = •

☑ للحصول على نقط تقاطع منحنين: نقوم بحل معادليتهما جبرياً

ملخص أهم توانین الصف الثانی الثانوی الفصل الرراسی الثانی ۲۰۱۹ (۸) منتری توجیه الریاضیات 🖊 عاول اووار

معادلة المماس و العمودي عليه لمنحنى الدالة:

$$\frac{\sigma-\sigma_1}{\sigma}=\gamma$$
 حيث $(-\sigma_1,\sigma_2)$ نقطه على المماس $\frac{\sigma-\sigma_1}{\sigma}=\gamma$ حيث $(-\sigma_1,\sigma_2)$ نقطه على المماس $\frac{\sigma-\sigma_1}{\sigma}=\gamma$

التكامل

ثالثاً : حساب المثلثات

تذكر أن:

العلاقات الأساسية بين النسب المثلثية

$$heta^{1}$$
 $heta^{2}$ $heta^{3}$ $heta^{4}$ he

مقلوبات النسب المثلثية الأساسية:

$$\frac{1}{\theta}$$
قا θ ظتا θ قتا θ قتا

 $heta^{\mathsf{Y}}$ ا $heta = \theta$ قتاheta + 1

-ملخص أهم توانين الصف الثاني الثانوي الفصل البرراسي الثاني ٢٠١٩ (٩) منترى توجيه البرياضيات [١/ عاول اووالر

إشارات الدوال المثلثية

انظر الشكل التالى:

الدوال المثلثية لمجموع و الفرق بين قياسى زاويتين

جا(۹+۰)=جام جتاب + جتام جاب
جا(۹-۰)=جام جتاب - جتام جاب
جتا(۹+۰)=جتام جتاب - جام جاب
جتا(۹-۰)=جتام جتاب + جام جاب
ظا(۹+۰)=
$$\frac{\text{ظا} q+\text{ظا} +}{\text{الطال الطال المال المال$$

ملخص أهم توانين الصف الثاني الثانوي الفصل الرراسي الثاني ١٠١٩ (٠٠) منتري توجيه الرياضيات ١/ عاول اووار

الدوال المثلثية لضعف قياس الزاوية

جا٢٩ = ٢ جام جتام

۹۲۱۲۹ = جنا۲ ۹ - جا۲ ۹ = ۲ جنا۲ ۹ − ۱ = ۱ − ۲ جا۲ ۹

ظا٢٩ = ١ = ظا٢٩

وكذلك يمكن اثبات أن:

جا٤ س=٢ جا٢ س جتا٢ س

، جنا ٦ د = جنا ٣ د - جا ٣ د = ٢ جنا ٣ د - ١ = ١ - ٢ جا ٣ ح

٢ ظاه ٥ ، ظا٠١ه=١-ظ١٠٥

الدوال المثلثية لنصف قياس الزاوية

صيغة هيرون لحساب مساحة المثلث في المثلث م بح : إذا كان نصف محيط المثلث م بح

و تكون مساحة المثلث م ب ح

 $\Delta = \sqrt{3(3-1)(3-2)(3-2)}$

طول نصف قطر الدائرة المرسومة داخل المثلث

تذكر ان الدائرة الداخلة لمثلث هي الدائرة التي تمس أضلاع المثلث، و مركزها هو نقطة تقاطع منصفات زواية الداخلة.

إذا كأن إذا كان " ع " نصف محيط المثلث م ب ح

- ، " △ " مساحة المثلث ١ ب ح
- ، نور طول نصف قطر الدائرة الداخلة للمثلث م بح فإن:

$$\frac{\Delta}{e} = 3$$

