ÁLGEBRA SUPERIOR I Grupo 4020

Tarea Exámen: Relaciones de Equivalencia

ALUMNO:

Rosas Hernandez Oscar Andres PROFESOR:

Rodrígo Domínguez López

Tarea Exámen

Lunes 30 de Octubre

ÍNDICE

•				
T		1	•	
•	10	\sim	1	ce
•			•	\Box
_		\sim	-	\sim

1. Ejercicio 6	2
2. Ejercicio 7	2
3. Ejercicio 9	3

1. Ejercicio 6

Sea X un conjunto de $F: P(X) \to P(X)$ definida por F(A) = X - A

Demuestre que $F \circ F = Id_{P(X)}$

Demostración:

Veamos que F(F(A)) = X - (X - A)

Por lo tanto a cualquier elemento $A \in P(X)$ lo va a mapear a X - (X - A)

Veamos que dichos conjuntos son iguales por doble contención:

- Por un lado tenemos que: Sea a un elemento arbitrario de A con $A \subseteq X$, entonces tenemos que $a \in (X \land A)$ podemos decir entonces que: $a \in (\emptyset \lor (X \land A))$ por lo tanto podemos decir que $a \in \emptyset$ ó $a \in (X \land A)$, es decir $(a \in X \lor a \notin X)$ ó $(a \in X \lor a \land A)$, es decir $a \in X \lor (a \notin X)$ ó $a \in A$, por lo tanto $a \in X \lor a \notin A$, por definición de diferencia $a \in (X (X A))$
- Por otro lado tenemos que: Sea a un elemento arbitrario de (X (X A)), por definición de diferencia $a \in X$ y $a \notin (X A)$, es decir $a \in X$ y $(a \notin X \text{ ó } a \in A)$.

Es decir $(a \in X \text{ y } a \notin X)$ ó $(a \in X \text{ y } a \in A)$ y ya que la primera proposición entre parentesis es el vacío tenemos que: $a \in X \text{ y } a \in A$.

Ahora ya que sabemos que son ambos conjuntos iguales la regla de correspondencia nos dice que $(F \circ F)(A) = A$.

Podemos probar que:

- lacksquare F es inyectiva:
 - Supón que $A, B \in P(X)$ y que f(A) = f(B), entonces gracias a la regla de correspondencia tenemos que X A = X B. Ahora si X A = X B podemos por las propiedades que ya demostramos de la diferencia de conjuntos podemos decir que A = B.
- \blacksquare F es suprayectiva:

Sea B un elemento arbitrario de P(X), y sea $A = X - B \in P(X)$ entonces tenemos que $\forall b \in P(x), \ \exists A \in P(X)$ tal que f(A) = f(X - B) = X - (X - B) = B

Ahora ya que probamos que la composición de funciones suprayectivas es suprayectiva y que la composición de funciones inyectivas es inyectiva tenemos que $f \circ f$ es una biyección cuya regla de correspondencia es f(A) = A. Por lo tanto $f \circ f$ es la identidad de P(X).

2. Ejercicio 7

Sea $X = \{\ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\ \}$, de una función $f: X \to X$ tal que:

- $f^{-1}[\{1,2,3\}] = \emptyset$
- $f^{-1}[\{4,5\}] = \{1,3,7\}$
- $\bullet \ f^{-1}[\{\ 8,10\ \}] = \{\ 8,10\ \}$

Solución:

Sea
$$f = \{ (1,4), (2,9), (3,4), (4,9), (5,9), (6,9), (7,5), (8,8), (9,9), (10,10) \}$$

3. Ejercicio 9

Sea
$$\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \} \text{ y } f : \mathbb{R}^+ \to \mathbb{R}^+. \text{ dada por } f(x) = \frac{1}{1+x^2}.$$

Demuestre que f es inyectiva

Demostración:

Supón que $x, y \in \mathbb{R}^+$ y que f(x) = f(y)

Por lo tanto por la regla de correspondencia $\frac{1}{1+x^2}=\frac{1}{1+y^2}$, por lo tanto $1+x^2=1+y^2$, por lo tanto $x^2=y^2$ y al aplicar raíz cuadrada a ambos lados $+\sqrt{x^2}=+\sqrt{y^2}$ y ya que estamos en los reales positivos x=y

Encuentre dos funciones $g, h : \mathbb{R}^+ \to \mathbb{R}^+$ tal que $g \circ f = h \circ f = Id_{\mathbb{R}^+}$

Solución:

Sea
$$g(x) = \sqrt{\frac{1}{x} - 1}$$
, entonces

$$f(g(x)) = (f \circ g)(x)$$

$$= \frac{1}{1 + \sqrt{\frac{1}{x} - 1}^{2}}$$

$$= \frac{1}{1 + (\frac{1}{x} - 1)}$$

$$= \frac{1}{\frac{1}{x}}$$

$$= x$$

Sea
$$h(x) = \frac{\frac{1}{x} - 1}{\sqrt{\frac{1}{x} - 1}}$$
, entonces

$$h(f(x)) = (h \circ f)(x)$$

$$= \frac{\frac{1}{\frac{1}{1+x^2}} - 1}{\sqrt{\frac{1}{\frac{1}{1+x^2}} - 1}}$$

$$= \frac{(1+x^2) - 1}{\sqrt{\frac{1}{\frac{1}{1+x^2}} - 1}}$$

$$= \frac{x^2}{\sqrt{\frac{1}{\frac{1}{1+x^2}} - 1}}$$

$$= \frac{x^2}{x}$$

$$= x$$