Climate Policy Interactions + Energy Efficiency Paradox

Jacob Bradt Section 11 ECON 1661 / API-135: Spring 2022

April 15, 2022

Announcements

- Office hours today from 3:00-5:00pm EDT
- Problem set #5 due Wednesday, April 27 at 12:00pm EDT
- Final exam: Saturday, May 7 from 9:00am 12:00pm EDT in Science Center D
- Review session for final exam: Friday, April 29 from 1:30-2:30pm EDT in Belfer 200
 - ightarrow Will start reviewing quantitative concepts from first half of the course next week

Outline

Sub-national Climate Policies

Climate Policy Interactions

Complementary Policies: Energy Efficiency

Outline

Sub-national Climate Policies

Climate Policy Interactions

Complementary Policies: Energy Efficiency

- Reminder (from midterm!): CO_2 is a global, stock pollutant \Longrightarrow global commons problem

- Reminder (from midterm!): CO_2 is a global, stock pollutant \Longrightarrow global commons problem
 - For any jurisdiction, the benefits of its climate policy will be (much) less than costs incurred
 - Leakage likely to be greater for smaller jurisdictions

- Reminder (from midterm!): CO_2 is a global, stock pollutant \Longrightarrow global commons problem
 - For any jurisdiction, the benefits of its climate policy will be (much) less than costs incurred
 - Leakage likely to be greater for smaller jurisdictions
- ⇒ Why worry about sub-national policies?

- Reminder (from midterm!): CO_2 is a global, stock pollutant \Longrightarrow global commons problem
 - For any jurisdiction, the benefits of its climate policy will be (much) less than costs incurred
 - Leakage likely to be greater for smaller jurisdictions
- ⇒ Why worry about sub-national policies?
 - National government not taking action
 - National policies insufficient

- Reminder (from midterm!): CO_2 is a global, stock pollutant \Longrightarrow global commons problem
 - For any jurisdiction, the benefits of its climate policy will be (much) less than costs incurred
 - Leakage likely to be greater for smaller jurisdictions
- ⇒ Why worry about sub-national policies?
 - National government not taking action
 - National policies insufficient
 - 2 relevant examples of sub-national climate policies:
 - Regional Greenhouse Gas Initiative
 - California's AB-32

Regional Greenhouse Gas Initiative (RGGI)

- Launched in 2009 by CT,
 DE, ME, MD, MA, NH, NJ,
 NY, RI, and VT
- Downstream cap-and-trade program covering power sector emissions
- Initial permits allocated via auction → revenues used for consumer rebate programs
- Modest, but increasing stringency

Regional Greenhouse Gas Initiative (RGGI): Modest success¹

- 2019 CRS report:
 - Program covers 19% of emissions from RGGI states
 - RGGI states represent only 7% of US emissions
- Emissions are falling, but unclear how much RGGI contributed
 - Modest targets
 - Low natural gas prices
 - Great Recession
 - Energy conservation

¹Ramseur, J.L. 2019. "The Regional Greenhouse Gas Initiative: Background, Impacts, and Selected Issues." Congressional Research Service R41836.

Leakage under RGGI: Fell and Maniloff (2018)²

- Use electricity market data for U.S. to examine impact of RGGI on generation
- Do attribute some reductions in RGGI states coal-fired generation to the program
 - ↓ CO₂ emissions in RGGI states by 8.8 million tons/year
 - ↑ CO₂ emissions in RGGI-surrounding areas by 4.5 million tons/year
- Leakage to Ohio and Pennsylvania led to nearly 50% leakage rate

²Fell, H. and P. Maniloff. 2018. "Leakage in regional environmental policy: The case of the regional greenhouse gas initiative." *Journal of Environmental Economics and Management*, 87: 1-23.

California Global Warming Solutions Act (AB-32 & AB-398)

- AB-32 (2006): requires CA to reduce GHG emissions to return to 1990 levels by 2020
 - Cap-and-trade system covering $\sim 85\%$ of state economy
 - Includes energy efficiency standards, RPS, low carbon fuel standard
- Linked with Quebec's CAT program since 2014
- AB-398 (2017): Extends program with steeper allowance cap to 2030
 - Reduction of 40% of 1990 levels
 - Institutes price ceiling, other price containment mechanisms

Effect of AB-32 CAT: Hernandez-Cortes and Meng (2021)³

- Statewide emissions declined 5.3% from 2013 to 2017
- Hernandez-Cortes and Meng (2021): estimate that CAT program reduced regulated facilities' emissions by 9% annually from 2012 to 2017

³Hernandez-Cortes, D. and K.C. Meng. 2021. "Do Environmental Markets Cause Environmental Injustice? Evidence from California's Carbon Market." NBER Working Paper No. 27205.

Outline

Sub-national Climate Policies

Climate Policy Interactions

Complementary Policies: Energy Efficiency

- Observe major climate policies in sub-national jurisdictions

- Observe major climate policies in sub-national jurisdictions
- Have also learned why carbon pricing is necessary, but not sufficient ⇒ other market failures
 - Principal-agent problems (e.g., renter-occupied properties \rightarrow building codes)
 - Public good nature of information (e.g., R&D spillovers \rightarrow government funding for R&D)

- Observe major climate policies in sub-national jurisdictions
- Have also learned why carbon pricing is necessary, but not sufficient ⇒ other market failures
 - Principal-agent problems (e.g., renter-occupied properties \rightarrow building codes)
 - Public good nature of information (e.g., R&D spillovers \rightarrow government funding for R&D)
 - ⇒ Need for complementary policies

- Observe major climate policies in sub-national jurisdictions
- Have also learned why carbon pricing is necessary, but not sufficient ⇒ other market failures
 - Principal-agent problems (e.g., renter-occupied properties \rightarrow building codes)
 - Public good nature of information (e.g., R&D spillovers → government funding for R&D)
 - ⇒ Need for complementary policies
- But often justification for "complementary" policies not rooted in separate market failures

- Observe major climate policies in sub-national jurisdictions
- Have also learned why carbon pricing is necessary, but not sufficient ⇒ other market failures
 - Principal-agent problems (e.g., renter-occupied properties \rightarrow building codes)
 - Public good nature of information (e.g., R&D spillovers \rightarrow government funding for R&D)
 - ⇒ Need for complementary policies
- But often justification for "complementary" policies not rooted in separate market failures
- In practice, high likelihood of overlapping policies, giving rise to natural question of how the policies interact?
- We focused on cases of nesting climate policies (e.g., national and sub-national policies)

Problematic interactions

- If a national policy limits emissions quantities or uses nationwide averaging of performance...

Problematic interactions

- If a national policy limits emissions quantities or uses nationwide averaging of performance...
- ...then a binding (more stringent) sub-national policy will lead to:
 - 1. 100% leakage
 - 2. Loss of national cost-effectiveness

Problematic interactions

- If a national policy limits emissions quantities or uses nationwide averaging of performance...
- ...then a binding (more stringent) sub-national policy will lead to:
 - 1. 100% leakage
 - 2. Loss of national cost-effectiveness
- Why?
 - Emissions reductions accomplished by "green" sub-national jurisdiction reduce pressure on other sub-national jurisdictions
 - This encourages (e.g., through lower allowance price) emission increases in other states

- National CAT program with two representative firms:
 - 1. Firms in sub-national jurisdiction with MC_{sub}
 - 2. All other firms with MCother
- Sub-national jurisdiction puts in place more stringent CAT policy
 ⇒ their abatement ↑
- These firms still subject to national CAT ⇒ demand for national permits ↓, other firms abatement, ↓
- Overall abatement costs increase!

- National CAT program with two representative firms:
 - Firms in sub-national jurisdiction with MC_{sub}
 - 2. All other firms with MC_{other}
- Sub-national jurisdiction puts in place more stringent CAT policy
 ⇒ their abatement ↑
- These firms still subject to national CAT ⇒ demand for national permits ↓, other firms abatement, ↓
- Overall abatement costs increase!

- National CAT program with two representative firms:
 - 1. Firms in sub-national jurisdiction with MC_{sub}
 - 2. All other firms with MCother
- Sub-national jurisdiction puts in place more stringent CAT policy
 ⇒ their abatement ↑
- These firms still subject to national CAT ⇒ demand for national permits ↓, other firms abatement, ↓
- Overall abatement costs increase!

- National CAT program with two representative firms:
 - 1. Firms in sub-national jurisdiction with MC_{sub}
 - 2. All other firms with MC_{other}
- Sub-national jurisdiction puts in place more stringent CAT policy
 ⇒ their abatement ↑
- These firms still subject to national CAT ⇒ demand for national permits ↓, other firms abatement, ↓
- Overall abatement costs increase!

Example of problematic interaction: US CAFE and CA Pavley Standards

- "Pavley" standards: Coalition of 14 states led by CA established limits on GHG emissions per mile from light-duty autos starting in 2009
 - Two phases: Pavley I (2009-2016) and Pavley II (2017-onward)
- Direct interaction with federal Corporate Average Fuel Economy (CAFE) standards
 - Both (effectively) require manufacturers to meet average fuel economy targets for new sales
- 2009: Obama Admin agrees to tighten Bush CAFE standards through 2016 (right above)

- Two main leakage issues:
 - 1. Leakage to non-Pavley states (\sim 58.5% of sales)
 - Leakage to used car market
- Calibrate a model of supply and demand in US used/new car markets
- State-federal cooperation avoids 74% leakage in first phase, potentially 65% in second phase

⁴Goulder, L.H., M.R. Jacobsen and A.A. van Benthem. 2012. "Unintended consquences from nested state and federal regulations: The case of the Pavley greenhouse-gase-per-mile limits." *Journal of Environmental Economics and Management*, 63: 187-207.

- Two main leakage issues:
 - 1. Leakage to non-Pavley states (\sim 58.5% of sales)
 - Leakage to used car market
- Calibrate a model of supply and demand in US used/new car markets
- State-federal cooperation avoids 74% leakage in first phase, potentially 65% in second phase

⁴Goulder, L.H., M.R. Jacobsen and A.A. van Benthem. 2012. "Unintended consquences from nested state and federal regulations: The case of the Pavley greenhouse-gase-per-mile limits." *Journal of Environmental Economics and Management*, 63: 187-207.

- Two main leakage issues:
 - 1. Leakage to non-Pavley states (\sim 58.5% of sales)
 - 2. Leakage to used car market
- Calibrate a model of supply and demand in US used/new car markets
- State-federal cooperation avoids 74% leakage in first phase, potentially 65% in second phase

⁴Goulder, L.H., M.R. Jacobsen and A.A. van Benthem. 2012. "Unintended consquences from nested state and federal regulations: The case of the Pavley greenhouse-gase-per-mile limits." *Journal of Environmental Economics and Management*, 63: 187-207.

- Two main leakage issues:
 - 1. Leakage to non-Pavley states (\sim 58.5% of sales)
 - Leakage to used car market
- Calibrate a model of supply and demand in US used/new car markets
- State-federal cooperation avoids 74% leakage in first phase, potentially 65% in second phase

⁴Goulder, L.H., M.R. Jacobsen and A.A. van Benthem. 2012. "Unintended consquences from nested state and federal regulations: The case of the Pavley greenhouse-gase-per-mile limits." *Journal of Environmental Economics and Management*, 63: 187-207.

Benign interactions

- Two main cases of benign interactions:
 - 1. National policy limits emissions quantities or uses nationwide averaging of performance and the sub-national policy is not binding
 - Example: RGGI and potential Federal climate policy
 - 2. National policy sets prices rather than limiting emissions quantities
 - A carbon tax, or a binding price collar in cap-and-trade
 - More stringent actions in green states do not lead to offsetting emissions since there is no change in carbon price
 - Importantly, still lose cost-effectiveness

Positive interactions

- Sub-national jurisdictions can address market failures not addressed by a national carbon-pricing policy
 - E.g., state/local building codes for energy-efficiency principal-agent problems
- Sub-national jurisdictions as laboratories for policy design
- Sub-national jurisdictions can create pressure for more stringent national policy
 - E.g., Pavley-CAFE standards? Example of both a negative interaction and—as a result—a positive interaction since it led to more stringent Obama CAFE standards

Outline

Sub-national Climate Policies

Climate Policy Interactions

Complementary Policies: Energy Efficiency

Energy efficiency market failures

- Once again: carbon pricing is necessary, but might not be sufficient ⇒ other market failures warrant additional policy interventions
- Why might a carbon price not yield the socially optimal investment in energy efficient technologies?
 - Supply-side explanations: knowledge spillovers (positive externalities from R&D) \longrightarrow underinvestment
 - Demand-side explanations: frictions associated with diffusion of technologies

Energy efficiency gap/paradox

- Private gap / "energy paradox:" some energy efficient technologies that would pay off for adopters are not adopted
- Social gap / "energy efficiency gap:" some energy efficient technologies that would be socially efficient (i.e., pay off for society) are not adopted
- These concepts are focused on the diffusion/deployment component of RD&D: why are certain technologies not adopted?

Energy efficiency gap/paradox: Explanations

- We discussed three categories of explanations:
 - Market failure explanations (e.g., information asymmetries, externalities, liquidity constraints)
 - Behavioral explanations (e.g., salience, heuristics)
 - Model/measurement explanations (e.g., unobserved costs, unmeasured product attributes)
- If the EE gap is not a measurement problem, policy might improve social welfare
- Potential policies:
 - Subsidies for energy efficient technologies
 - Information provision
 - Regulations over/bans of non-efficient technologies
 - R&D investment

Subsidies for solar PV adoption: Hughes and Podolefsky (2015)⁵

- Can potentially address liquidity constraints through subsidies/loans
- Solar PV adoption heavily subsidized in US
- CA Solar Initiative: \$3.3 billion subsidy program for PV adoption
- Hughes and Podolefsky (2015) find that CSI rebates
 ↑ adoption by 53% from 2007-2012

⁵Hughes, J.E. and M. Podolefsky. 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative." *Journal of the Association of Environmental and Resource Economists*, 2(2): 235-275.

Subsidies for solar PV adoption: Hughes and Podolefsky (2015)⁵

- Can potentially address liquidity constraints through subsidies/loans
- Solar PV adoption heavily subsidized in US
- CA Solar Initiative: \$3.3 billion subsidy program for PV adoption
- Hughes and Podolefsky (2015) find that CSI rebates ↑ adoption by 53% from 2007-2012

⁵Hughes, J.E. and M. Podolefsky. 2015. "Getting Green with Solar Subsidies: Evidence from the California Solar Initiative." *Journal of the Association of Environmental and Resource Economists*, 2(2): 235-275.

Behavioral explanations: The case of energy efficient lightbulbs

- Would subsidizing or mandating the use of energy efficient lightbulbs be social-welfare-enhancing?
- Allcott and Taubinsky (2015): consider the market for compact flourescent (CFL) light bulbs
 - CFLs: more energy efficient, cheaper (in the long run) than traditional incandescent bulbs
 but uptake is low!
 - Now: LEDs more efficent than CFLs, but at the time of analysis, CFLs were main energy-efficient alternative
 - Ask: should the government offer a CFL subsidy or ban incandescents?

Energy efficient lightbulbs: Allcott and Taubinsky (2015)⁶

- Does the demand curve for CFLs reflect consumers true preferences?
- Recover true WTP when agents are debiased
- Use "true" WTP to estimate welfare effects from subsidy and ban
 - Optimal CFL subsidy: \$3
 - Ban reduces welfare by \$0.44/package
 - Losses from ban are 65% larger than gains from optimal subsidy

⁶Allcott, H. and D. Taubinsky. 2015. "Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market." American Economic Review, 105(8): 2501-2538.

Concluding thoughts

- Policy interactions important in-practice: for many reasons, see overlapping, nesting, and complementary policies
- We have provided a framework for understanding the reasons for such policies and evaluating the potential interactions between them
- But importantly, there are likely to be context-specific factors affecting our overall assessment of these interactions
 - ightarrow E.g., the Pavley-CAFE standards can be seen as having positive and negative interactions
- Multiple market failures likely necessitate multiple policies: both pricing and technology policies may be necessary, but neither is sufficient!
 - → Careful assessment of the drivers of the energy paradox in a given setting will help identify policy solutions