Analiza danych ankietowych Raport 1

Klaudia Janicka 262268, Natalia Iwańska 262270

2023-04-10

Część I Tablice liczności dla zmiennej A1

A1	n	prop
-2	14	0.070
-1	17	0.085
0	40	0.200
1	100	0.500
2	29	0.145

A1	n	prop
-2	5	0.1219512
-1	6	0.1463415
0	8	0.1951220
1	19	0.4634146
2	3	0.0731707

Tab. 1: Tablica liczności dla A1.

Tab. 2: Tablica liczności dla A1 ze względu na Wyk=1.

A1	n	prop
-2	5	0.0357143
-1	10	0.0714286
0	26	0.1857143
1	75	0.5357143
2	24	0.1714286

A1	n	prop
-2	4	0.2105263
-1	1	0.0526316
0	6	0.3157895
1	6	0.3157895
2	2	0.1052632

Tab. 3: Tablica liczności dla A1 ze względu na Wyk=2Tab. 4: Tablica liczności dla A1 ze względu na Wyk=3.

A1	n	prop
-2	2	0.0645161
-1	2	0.0645161
0	5	0.1612903
1	19	0.6129032
2	3	0.0967742

A1	n	prop
-2	9	0.0918367
-1	10	0.1020408
0	17	0.1734694
1	51	0.5204082
2	11	0.1122449

Tab. 5: Tablica liczności dla A1 ze względu na D=Z. Tab. 6: Tablica liczności dla A1 ze względu na D=P.

A1	n	prop
-2	3	0.0666667
-1	3	0.0666667
0	14	0.3111111
1	15	0.3333333
2	10	0.2222222

A1	n	prop
-1	2	0.0769231
0	4	0.1538462
1	15	0.5769231
2	5	0.1923077

Tab. 7: Tablica liczności dla A1 ze względu na D=S. ^Tab. 8: Tablica liczności dla A1 ze względu na D=O.

A1	n	prop
-2	3	0.0422535
-1	7	0.0985915
0	14	0.1971831
1	36	0.5070423
2	11	0.1549296

A1	n	prop
-2	11	0.0852713
-1	10	0.0775194
0	26	0.2015504
1	64	0.4961240
2	18	0.1395349

Tab. 9: Tablica liczności dla A1 ze względu na P=k. Tab. 10: Tablica liczności dla A1 ze względu na P=m.

Tablice liczności dla zmiennnej W1

A1	n	prop
-2	14	0.070
-1	17	0.085
0	40	0.200
1	100	0.500
2	29	0.145

A1 prop -2 5 0.12195126 -1 0.14634150 8 0.195122019 1 0.46341463 0.0731707

Tab. 11: Tablica liczności dla W1.

Tab. 12: Tablica liczności dla W1 ze względu na $\mbox{Wyk}{=}1.$

A1	n	prop
-2	5	0.0357143
-1	10	0.0714286
0	26	0.1857143
1	75	0.5357143
2	24	0.1714286

A1	n	prop
-2	4	0.2105263
-1	1	0.0526316
0	6	0.3157895
1	6	0.3157895
2	2	0.1052632

Tab. 13: Tablica liczności dla W1 ze względu na
Tab. 14: Tablica liczności dla W1 ze względu na Wyk=2. Wyk=3.

A1	n	prop
-2	2	0.0645161
-1	2	0.0645161
0	5	0.1612903
1	19	0.6129032
2	3	0.0967742

A1	n	prop
-2	9	0.0918367
-1	10	0.1020408
0	17	0.1734694
1	51	0.5204082
2	11	0.1122449

Tab. 15: Tablica liczności dla W1 ze względu na D=Z.Tab. 16: Tablica liczności dla W1 ze względu na D=P.

A1	n	prop
-2	3	0.0666667
-1	3	0.0666667
0	14	0.3111111
1	15	0.3333333
2	10	0.2222222

A1	n	prop
-1	2	0.0769231
0	4	0.1538462
1	15	0.5769231
2	5	0.1923077

Tab. 17: Tablica liczności dla W1 ze względu na D=S. Tab. 18: Tablica liczności dla W1 ze względu na D=O.

A1	n	prop
-2	3	0.0422535
-1	7	0.0985915
0	14	0.1971831
1	36	0.5070423
2	11	0.1549296

A1	n	prop
-2	11	0.0852713
-1	10	0.0775194
0	26	0.2015504
1	64	0.4961240
2	18	0.1395349

Tab. 19: Tablica liczności dla W1 ze względu na P=k.Tab. 20: Tablica liczności dla W1 ze względu na P=m.

Tabele wielodzielcze

Tab. 21: Tabela wielodzielcza uzwlgędniająca zmienną W1 i P.

	-2	-1	1	2	Sum
K	25	10	1	35	71
M	49	10	1	69	129
Sum	74	20	2	104	200

Tab. 22: Tabela wielodzielcza uzwlgędniająca zmienną W1 i S.

	-2	-1	1	2	Sum
0	64	18	0	91	173
1	10	2	2	13	27
Sum	74	20	2	104	200

Tab. 23: Tabela wielodzielcza uzwlgędniająca zmienną A1 i D.

	-2	-1	0	1	2	Sum
О	0	2	4	15	5	26
P	9	10	17	51	11	98
S	3	3	14	15	10	45
Z	2	2	5	19	3	31
Sum	14	17	40	100	29	200

Wykres słupkowy

```
daneW1 <- personel %>% count(W1) %>% data.frame()

ggplot(daneW1, aes(x=W1, y=n)) +
    geom_bar(stat = "identity", fill="hotpink") +
    ggtitle("Wykres słupkowy dla oceny wykształcenia przed wyjazdem") +
    xlab('Ocena wynagrodzenia przed wyjazdem') +
    ylab('ilość')
```

Wykres slupkowy dla oceny wyksztalcenia przed wyjazdem

Jakieś dwa zdanie tak jak mówiła, ale jej nie słuchałam, więc nie wiem.

Wykres kołowy

```
ggplot(daneW1, aes(x="", y=n, fill=W1)) +
    geom_bar(stat="identity", width=1) +
    coord_polar("y", start=0) +
    theme_void() +
    scale_fill_brewer(palette="RdPu") +
    ggtitle("Wykres kołowy dla oceny wynagrodzenia przed wyjazdem")
```

Wykres kolowy dla oceny wynagrodzenia przed wyjazdem

Wykres kolowy dla oceny wynagrodzenia po wyjezdzie

Wykresy mozaikowe

mosaic(~D+A1, personel,labeling = vcd::labeling_border(rot_labels = c(90, 90)))

Część II

Funkcja losująca ze zwracaniem i bez

1 Atmosfera przed wyjazdem 28.5

ylab("Procent")

```
f <- function(x='bez'){</pre>
  if (x=='zwracanie'){
    s <- sample(1:nrow(mtcars),3,replace=TRUE)</pre>
    s <- sample(1:nrow(mtcars),3)</pre>
  }
  mtcars[s, ]
f('zwracanie')
                mpg cyl disp hp drat
                                       wt qsec vs am gear carb
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0
                                                                  4
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0
                                                                  3
Funkcja likert
df <- data.frame(personel$`Atmosfera przed wyjazdem`,personel$`Atmosfera po wyjeździe`)</pre>
colnames(df) <- c('Atmosfera przed wyjazdem', 'Atmosfera po wyjeździe')</pre>
likt_atmo <- likert(df)</pre>
summary(likt_atmo)
##
                         Item low neutral high mean
## 2 Atmosfera po wyjeździe 27.0 6 67.0 3.830 1.456609
```

7 64.5 3.775 1.447359 likert.bar.plot(likt_atmo) + guides(fill=guide_legend(nrow=2,byrow=TRUE,title='Odpowiedź')) + theme(axi

plot(likt_atmo,type='heat') + theme(axis.text.x=element_text(angle=90,hjust=1),axis.text.y=element_text

likert.density.plot(likt_atmo)

Podgrupa ze względu na dział

```
##
                       Group
                                                 Item
                                                           low
                                                                 neutral
                                                                             high
## 1 Obsługa kadrowo-płacowa Atmosfera przed wyjazdem 23.07692
                                                                0.000000 76.92308
## 2 Obsługa kadrowo-płacowa
                               Atmosfera po wyjeździe 23.07692
                                                                0.000000 76.92308
## 3
                   Produkcja Atmosfera przed wyjazdem 27.55102
                                                                9.183673 63.26531
## 4
                   Produkcja
                               Atmosfera po wyjeździe 24.48980 10.204082 65.30612
## 5
                    Sprzedaż Atmosfera przed wyjazdem 37.77778 6.666667 55.55556
## 6
                               Atmosfera po wyjeździe 33.33333 4.444444 62.22222
                    Sprzedaż
## 7
                Zaopatrzenia Atmosfera przed wyjazdem 22.58065
                                                                6.451613 70.96774
## 8
                               Atmosfera po wyjeździe 29.03226 0.000000 70.96774
                Zaopatrzenia
##
         mean
## 1 4.038462 1.399450
## 2 4.076923 1.324329
## 3 3.775510 1.482062
## 4 3.836735 1.476230
## 5 3.444444 1.407053
## 6 3.622222 1.466116
## 7 4.032258 1.401996
## 8 3.903226 1.513381
```


Podgrupa ze względu na płeć

Group Item low neutral high mean ## 1 Kobieta Atmosfera przed wyjazdem 29.57746 4.225352 66.19718 3.774648

```
## 2 Kobieta Atmosfera po wyjeździe 26.76056 4.225352 69.01408 3.873239
## 3 Mężczyzna Atmosfera przed wyjazdem 27.90698 8.527132 63.56589 3.775194
## 4 Mężczyzna Atmosfera po wyjeździe 27.13178 6.976744 65.89147 3.806202
## sd
## 1 1.485138
## 2 1.472894
## 3 1.432002
## 4 1.452786
```


Przedział ufności Cloppera-Pearsona

```
p.lower <- function(x, n, a){</pre>
  if(x == 0){
    return(0)
  }
  else{
    return(qbeta(a/2,x,n-x+1))
}
p.upper <- function(x, n, a){</pre>
  if(x == n){
    return(1)
  }
  else{
    return(qbeta(1-a/2, x+1, n-x))
  }
}
clopper_pearson_ci <- function(x, n=NULL, a=0.05){</pre>
  if(is.null(n)){
    n <- length(x)
    x \leftarrow sum(x==1)
    return(c(p.lower(x, n, a), p.upper(x, n, a)))
  }
```

Przykład użycia

```
• funkcja wbudowana
```

```
## method x n mean lower upper ## 1 exact 8 20 0.4 0.1911901 0.6394574
```

ullet funkcja clopper_pearcon_ci

```
## x n lower upper
## 1 8 20 0.1911901 0.6394574
```

Zadowolenie z wynagrodzenia w całej badanej grupie

```
• funkcja clopper_pearson_ci
```

```
## x n lower upper
## 1 106 200 0.4583305 0.6007671
```

• funkcja wbudowana

```
## method x n mean lower upper
## 1 exact 106 200 0.53 0.4583305 0.6007671
```

Zadowolenie z wynagrodzenia ze względu na dział

• funkcja clopper_pearson_ci

```
## x n lower upper
## 1 14 26 0.3337082 0.7341288
## 2 50 98 0.4071736 0.6126014
## 3 23 45 0.3577404 0.6629663
## 4 19 31 0.4218696 0.7815004
```

• funkcja wbudowana

```
## method x n mean lower upper
## 1 exact 14 26 0.5384615 0.3337082 0.7341288
## 2 exact 50 98 0.5102041 0.4071736 0.6126014
## 3 exact 23 45 0.5111111 0.3577404 0.6629663
## 4 exact 19 31 0.6129032 0.4218696 0.7815004
```

Zadowolenie z wynagrodzenia ze względu na stanowisko

```
• funkcja clopper_pearson_ci
##
      X
        n
                lower
## 1 91 173 0.4488278 0.6022889
## 2 15 27 0.3532642 0.7452012

    funkcja wbudowana

##
     method x
                 n
                        mean
                                  lower
                                            upper
     exact 91 173 0.5260116 0.4488278 0.6022889
     exact 15 27 0.5555556 0.3532642 0.7452012
```

Część III

Generowanie rozkładu dwumianowego

Do wygenerowania liczb z rozkładu dwumianowego wykorzystamy poniższy algorytm:

- 1. Ustal n i p.
- 2. Generuj Y_i z rozkładu $P(Y_i = 1) = p = 1 P(Y_i = 0)$.
- 3. Powtórz krok 2. n razy.
- 4. Wstaw $X = \sum_{i=1}^{n} Y_i$.
- 5. Powtórz kroki 2-4 N razy.

Korzystamy z faktu, że suma zmiennych losowych z rozkładu Bernoulliego jest zmienną z rozkładu dwumianowego.

Aby to udowodnić, użyjemy funkcji charakterystycznych obu rozkładów.

Niech X będzie zmienną losową z rozkładu dwumianowego z parametrami n i p, a Y_i zmienną z rozkładu Bernoulliego $(P(Y_i = 1) = p = 1 - P(Y_i = 0))$.

Funkcja charakterystyczna rozkładu Bernoulliego dana jest wzorem $\phi_{Y_i}(t) = \mathbb{E}(e^{itY_i}) = 1 - p + pe^{it}$.

Możemy zapisać funkcję charakterystyczna jako:

$$\phi_{\sum Y_i}^n(t) = \mathbb{E}(e^{it\sum_i^n Y_i}) = \mathbb{E}(e^{it(Y_1 + Y_2 + \dots + Y_n)}) = \mathbb{E}(e^{itY_1}e^{itY_2} \dots e^{itY_n}).$$

Korzystając z niezależności zmiennych:

$$\phi_{\sum_{i}^{n}Y_{i}}(t) = \mathbb{E}(e^{itY_{1}})\mathbb{E}(e^{itY_{2}})\dots\mathbb{E}(e^{itY_{n}}) = (\mathbb{E}e^{itY_{1}})^{n} = (1-p+pe^{it})^{n}.$$

Otrzymamy wynik jest funkcją charakterystyczną rozkładu dwumianowego, co kończy dowód.

```
generuj_dwumianowy <- function(n, p, N){
    X <- rep(NA, N)
    for(i in 1:N){
        Y <- rep(NA, n)
        for(j in 1:n){
            Y[j] <- sample(c(0,1), size=1, prob=c(1-p,p))
        }
        X[i] <- sum(Y)
    }
    return(X)
}</pre>
```

Porównanie funkcji

Tab. 24: Wartości statystyk

funkcja	średnia	wariancja
rbinom	12.055	4.906882
generuj_dwumianowy	11.972	4.645862

Prawdopodobieństwo pokrycia

Opis symulacji

Coś, że Monte Carlo itp.

Algorytm

- 1. Ustal n i p.
- 2. Generuj realizację zmiennej losowej z rozkładu $\mathcal{B}(n,p)$.
- 3. Wyznacz przedział ufności dla parametru p wybraną metodą.
- 4. Sprzwdź czy $p \in$ przedziału ufności. Wyznacz długość przedziału.
- 5. Powtórz 2-4 N razy.
- 6. Wyznacz procent pokrycia i średnią długość przedziału.

```
simulation <- function(n, method, name){</pre>
  N <- 1000
  p \leftarrow seq(0, 1, 0.01)
  for(j in 1:length(p)){
    len <- rep(NA, N)</pre>
    counter <- 0
      for(i in 1:N){
        x <- rbinom(1, n, p[j])
        interval <- binom.confint(x, n, conf.level = 0.95, methods = method)</pre>
        TL <- interval$lower
        TU <- interval$upper
        if(between(p[j], TL, TU)){
           counter <- counter + 1</pre>
        }
        len[i] <- TU - TL</pre>
      p.cover <- counter/N
      p.len <- mean(len)</pre>
      df <- data.frame('p' = p[j], 'pokrycie' = p.cover, 'dlugosc' = p.len)</pre>
      write.table(df, name,
           append = TRUE,
           sep = ",",
           col.names = FALSE,
           row.names = FALSE,
           quote = FALSE)
  }
  }
```


Procent pokrycia dla n = 30

