### **QUERY 2 – INTERVENÇÃO NO BANCO DE DADOS**

#### Consulta

#### Plano de Consulta:

| 4  | QUERY PLAN<br>text                                               |  |  |
|----|------------------------------------------------------------------|--|--|
| 1  | Aggregate (cost=873.18873.19 rows=1 width=160)                   |  |  |
| 2  | -> Merge Left Join (cost=242.03645.77 rows=11370 width=144)      |  |  |
| 3  | Merge Cond: (e.idt_employee = a.idt_employee)                    |  |  |
| 4  | -> Merge Left Join (cost=214.34430.80 rows=6688 width=112)       |  |  |
| 5  | Merge Cond: (e.idt_employee = es.idt_employee)                   |  |  |
| 6  | -> Merge Left Join (cost=186.64292.95 rows=3934 width=76)        |  |  |
| 7  | Merge Cond: (e.idt_employee = m.idt_employee)                    |  |  |
| 8  | -> Merge Left Join (cost=158.94200.46 rows=2314 width=40)        |  |  |
| 9  | Merge Cond: (e.idt_employee = d.idt_employee)                    |  |  |
| 10 | -> Sort (cost=131.25134.65 rows=1361 width=4)                    |  |  |
| 11 | Sort Key: e.idt_employee                                         |  |  |
| 12 | -> Append (cost=0.0060.41 rows=1361 width=4)                     |  |  |
| 13 | -> Seq Scan on employee e (cost=0.000.00 rows=1 width=4)         |  |  |
| 14 | -> Seq Scan on director e_1 (cost=0.0013.40 rows=340 width=4)    |  |  |
| 15 | -> Seq Scan on manager e_2 (cost=0.0013.40 rows=340 width=4      |  |  |
| 16 | -> Seq Scan on especialist e_3 (cost=0.0013.40 rows=340 width:   |  |  |
| 17 | -> Seq Scan on analyst e_4 (cost=0.0013.40 rows=340 width=4)     |  |  |
| 18 | -> Sort (cost=27.7028.55 rows=340 width=36)                      |  |  |
| 19 | Sort Key: d.idt_employee                                         |  |  |
| 20 | -> Seq Scan on director d (cost=0.0013.40 rows=340 width=36)     |  |  |
| 21 | -> Sort (cost=27.7028.55 rows=340 width=36)                      |  |  |
| 22 | Sort Key: m.idt_employee                                         |  |  |
| 23 | → Seq Scan on manager m (cost=0.0013.40 rows=340 width=36)       |  |  |
| 24 | -> Sort (cost=27.7028.55 rows=340 width=36)                      |  |  |
| 25 | Sort Key: es.idt_employee                                        |  |  |
| 26 | -> Seq Scan on especialist es (cost=0.0013.40 rows=340 width=36) |  |  |
| 27 | -> Sort (cost=27.7028.55 rows=340 width=36)                      |  |  |
| 28 | Sort Key: a.idt_employee                                         |  |  |
| 29 | -> Seg Scan on analyst a (cost=0.0013.40 rows=340 width=36)      |  |  |

### Árvore de Consulta:



# **QUERY 2: CRIAÇÃO DE ÍNDICES**

CREATE INDEX indicesegundaQuery ON director (idt\_employee);

CREATE INDEX indicesegundaQueryManager ON manager (idt\_employee);

CREATE INDEX indicesegundaQueryEspecialist ON especialist (idt\_employee);

CREATE INDEX indicesegundaQueryAnalyst ON analyst (idt\_employee);

### Relatório do plano de consulta a partir do comando explain do Postgress

| 1  | Aggregate (cost=10.1910.20 rows=1 width=160)              |                 |
|----|-----------------------------------------------------------|-----------------|
| 2  | -> Hash Left Join (cost=4.589.64 rows=27 width=144)       |                 |
| 3  | Hash Cond: (e.idt_employee = a.idt_employee)              |                 |
| 4  | -> Hash Left Join (cost=3.258.06 rows=27 width=112)       |                 |
| 5  | Hash Cond: (e.idt_employee = es.idt_employee)             |                 |
| 6  | -> Hash Left Join (cost=2.136.79 rows=27 width=76)        |                 |
| 7  | Hash Cond: (e.idt_employee = m.idt_employee)              |                 |
| 8  | -> Hash Left Join (cost=1.025.53 rows=27 width=40)        |                 |
| 9  | Hash Cond: (e.idt_employee = d.idt_employee)              |                 |
| 10 | -> Append (cost=0.004.39 rows=27 width=4)                 |                 |
| 11 | -> Seq Scan on employee e (cost=0.000.00 row              | s=1 width=4)    |
| 12 | -> Seq Scan on director e_1 (cost=0.001.01 row            | vs=1 width=4)   |
| 13 | -> Seq Scan on manager e_2 (cost=0.001.05 rows=5 width=4) |                 |
| 14 | -> Seq Scan on especialist e_3 (cost=0.001.05             | rows=5 width=4) |
| 15 | -> Seq Scan on analyst e_4 (cost=0.001.15 row             | s=15 width=4)   |
| 16 | -> Hash (cost=1.011.01 rows=1 width=36)                   |                 |
| 17 | -> Seq Scan on director d (cost=0.001.01 rows=            | 1 width=36)     |
| 18 | -> Hash (cost=1.051.05 rows=5 width=36)                   |                 |
| 19 | -> Seq Scan on manager m (cost=0.001.05 rows=5            | width=36)       |
| 20 | -> Hash (cost=1.051.05 rows=5 width=36)                   |                 |
| 21 | -> Seq Scan on especialist es (cost=0.001.05 rows=5 v     | vidth=36)       |
| 22 | -> Hash (cost=1.151.15 rows=15 width=36)                  |                 |
| 23 | -> Seq Scan on analyst a (cost=0.001.15 rows=15 width=3   | 6)              |

# Árvore do plano de consulta a partir do comando explain do Postgress:



### Comparação antes e depois da alteração

A consulta realizada demonstra a média salárial de cada tipo de funcionário da empresa, seus managers, directors, analysts e especialists, assim como sua quantidade.

Analisando o relatório antes da inclusão dos índices vemos através do comando explain a progressão da consulta, seguindo a mesma progressão da primeira query analisada no artefato C vemos que há um grande custo, tanto do aggregate quanto da soma dos vários sorts presentes, com vários merges extremamente custosos, necessitando então de uma melhor saída, tendo em vista a longevidade da consulta, que provavelmente não seria sustentável em buscas de larga escala em grandes quantidades de dados.

Portanto, houve a criação de quatro índices, "indicesegundaQuery", "indicesegundaQueryManager", "indicesegundaQueryEspecialist" e "indicesegundaQueryAnalyst" que "indexam" o atributo idt\_employee nas tables de director, manager, especialist e analyst, respectivamente, o que nos leva ao segundo resultado exposto com o comando explain. Percebe-se com grande facilidade que houve uma grande diminuição no custo da iteração, logo na primeira linha há uma diminuição de quase 100% no custo e logo depois segue-se o mesmo padrão, não há mais merges, sendo todos substituídos por hashes, todos com valor em custo ínfimo, mostrando-se muito eficaz, evidenciando que a mudança foi essencial e necessária

Por fim, conclui-se que após a inclusão dos índices que consultas com maior carga de dados não seria um problema, já que o custo foi reduzido em níveis muito altos, permitindo assim maior inclusão de funcionários e seus salários, assim como o contínuo cálculo de suas respectivas médias salariais.