Exemples du cours du chapitre calcul intégral 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

25 mars 2020

Table des matières

- Exemple 1
- Exemple 2
- Exemple 3
- Exemple 4
- Exemple 5
- Exemple 6
- Exemple 7
- Exemple 8
- Exemple 9
- Exemple 10
- Exemple 11
- Exemple 12
- Exemple 13
- Exemple 14
- Exemple 15
- Exemple 16

Exemple 1 Partie 1

Soit f la fonction définie sur [0;2] par f(x)=2-x. La surface dont l'aire est égale à intégrale $I=\int_1^2 f(x) \ \mathrm{d}x$ est le triangle BCD rectangle isocèle en C dont l'aire est $\frac{1}{2} \times 1 \times 1 = \frac{1}{2}$.

Exemple 1 Partie 2

Soit f la fonction définie sur [0;2] par f(x) = 2-x. La surface dont l'aire est égale à intégrale $I = \int_0^1 f(x) \, dx$ est le trapèze OABC rectangle isocèle en O dont l'aire est $\frac{1}{2} \times (OA + BC) \times OC = \frac{3}{2}$.

Exemple 2 Question 1

Soit M(t) un point mobile sur un axe tel que à chaque instant $t \in [0; +\infty[$ (en secondes) on connaît sa vitesse instantanée v(t) en mètres par seconde.

A l'instant t = 0, le point mobile est à l'origine de l'axe et pour tout $t \in [0; +\infty[$, on a $v(t) = 3 \text{ m.s}^{-1}$.

• Question 1 La fonction v est constante donc dérivable donc continue sur [0; +∞[. ∫₀⁴ v(t)dt est l'aire du rectangle EFGH c'est-à-dire 4 × 3 = 12. On peut l'interpréter comme la distance parcourue par le mobile en 3 secondes. Notons que la dimension de l'intégrale est celle de v(t)dt : vitesse × temps = distance.

Exemple 2 Question 2

• Question 2 $\int_2^5 v(t) dt$ est égale à $(5-2) \times 3 = 9$. C'est la distance parcourue par le mobile entre les instants t=2 et t=5 à une vitesse de 3 m.s $^{-1}$. $\frac{1}{5-2} \int_2^5 v(t) dt$ est égale à $\frac{\text{distance}}{\text{temps}} = \frac{9}{3}$, c'est la vitesse moyenne du mobile entre les instants t=2 et t=5. Comme sa vitesse est constante, c'est sa vitesse instantanée à tout instant. On a un exemple, d'utilisation de l'intégrale dans un calcul de valeur moyenne. Notons que $\frac{1}{5-2} \int_2^5 v(t) dt$ a la même dimension que v(t), c'est une vitesse.

Exemple 2 Question 3

• Question 3 $g(t) = \int_0^t v(u) du$ est l'aire du rectangle *EFIJ* c'est-à-dire $t \times 3 = 3t$.

On peut l'interpréter comme la distance parcourue par le mobile en *t*3 secondes.

g est une fonction linéaire donc elle est dérivable sur $[0; +\infty[$ et g'(t) = 3. On remarque que g'(t) = v(t). On peut l'expliquer en prenant la limite du taux de variation $\frac{g(t+h)-g(t)}{h} = \frac{3(t+h)-3t}{h} = 3 \text{ quand } h \text{ tend vers } 0.$ $g(t) = \int_0^t v(u) \, \mathrm{d} u$ est une primitive de v.

Exemple 3

Voir Notebook et Corrigé (suivez les liens).

Exemple 4 Question 1

Soit f définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• f est dérivable sur $[0; +\infty[$ et $f'(t) = \frac{1}{\sqrt{2\pi}} \times (-t) \mathrm{e}^{-\frac{t'}{2}}$. Pour tout réel t > 0, on a f'(t) > 0 et f'(0) = 0. On en déduit que f est strictement décroissante sur $]0; +\infty[$. Puisque $\lim_{x \to -\infty} \mathrm{e}^x = 0$, on a par composition $\lim_{t \to +\infty} \mathrm{e}^{-\frac{t^2}{2}} = 0$.

Exemple 4 Questions 2 et 3

f est dérivable donc continue sur $[0; +\infty[$. De plus, pour tout $t \ge 0$, on a $f(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$ donc $f(t) \ge 0$. On peut appliquer le théorème fondamental, qui nous permet d'affirmer que $F: x \mapsto \int_0^x f(t) dt$ est définie et dérivable sur $[0; +\infty[$ et que pour tout réel $x \ge 0$, F'(x) = f(x). Notez qu'on utilise plutôt x pour F et t pour F' = f mais qu'on pourrait écrire : pour tout réel $t \ge 0$, F'(t) = f(t). Puisque f est strictement positive sur $[0; +\infty[$ et ne s'annule qu'en 0, on en déduit que F est strictement croissante sur $[0; +\infty[$. Page suivante un graphique qui permet de comprendre pourquoi F(x)aire sous la courbe de f entre 0 et x est croissante.

Exemple 4 Questions 2 et 3

Exemple 5 Question 1

Soient les fonctions f et F continues sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ définies par :

$$F(x) = \tan x - x$$
 et $f(x) = \tan^2 x$

F est dérivable sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ et pour tout réel $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[$, on a :

$$F'(x) = \frac{\cos(x) \times \cos(x) - \sin(x) \times (-\sin(x))}{\cos^2(x)} - 1 = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} - 1$$

$$F'x() = \frac{\sin^2(x)}{\cos^2(x)} = \tan^2 x$$

F est donc une primitive de f.

Exemple 5 Question 2 a)

Soient g et G les fonctions définies sur]0; $+\infty[$ par :

$$g(x) = \frac{1 + \ln x}{x}$$
 et $G(x) = \frac{1}{2} (\ln x)^2 + \ln x$

G est dérivable sur]0; $+\infty$ [, et pour tout réel x > 0, on a :

$$G'(x) = \frac{1}{2} \times \frac{1}{x} \times 2\ln(x) + \frac{1}{x} = \frac{1 + \ln x}{x}$$

 $G'(x) = g(x)$

G et donc une primitive de g.

Notons que M définie par M(x) = G(x) + 1, a même dérivée g que G donc c'est une aussi une primitive de g. On peut remplacer 1 par une constante k, toute fonction de la forme G(x) + k est une primitive de g.

Exemple 5 Question 2 b)

$$G(e) = \frac{1}{2} (\ln e)^2 + \ln e = \frac{3}{2}.$$

La fonction H définie par $H(x) = G(x) - G(e) = G(x) - \frac{3}{2}$, s'annule en e et a pour dérivée H' = G' = g donc c'est une primitive de g qui s'annule en e.

Supposons qu'il existe une autre primitive N de g qui s'annule en e, on a (H-N)'=H'-N'=g-g=0 donc H-N est constante. De plus , (H-N)(e)=0 donc H-N=0 donc H=N. H est donc l'unique primitive de g qui s'annule en e.

Exemple 6 Question 1) Partie 1

Chaque fonction f considérée est continue donc admet des primitives sur son intervalle de définition.

• f(x) = 4 admet pour primitives les fonctions de la forme :

$$F(x) = 4x + k$$
 avec k constante réelle

• f(x) = 0 admet pour primitives les fonctions de la forme :

$$F(x) = k$$
 avec k constante réelle

• $f(x) = \frac{1}{\sqrt{x}}$ admet pour primitives les fonctions de la forme :

$$F(x) = 2\sqrt{x} + k$$
 avec k constante réelle

• $f(x) = 3 + x + x^4$ admet pour primitives les fonctions de la forme :

$$F(x) = 3x + \frac{1}{2}x^2 + \frac{1}{5}x^5 + k$$
 avec k constante réelle

Exemple 6 Question 1) Partie 2

Chaque fonction f considérée est continue donc admet des primitives sur son intervalle de définition.

• $f(x) = \sin(2x)$ admet pour primitives les fonctions de la forme :

$$F(x) = -\frac{1}{2}\cos(2x) + k$$
 avec k constante réelle

• $f(x) = \cos(3x)$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{3}\sin(3x) + k \text{ avec } k \text{ constante réelle}$$

• $f(x) = \frac{1}{x^4}$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{-4+1}x^{-4+1} + k \text{ avec } k \text{ constante réelle}$$

Exemple 6 Question 1) Partie 3

Chaque fonction f considérée est continue donc admet des primitives sur son intervalle de définition.

• $f(x) = e^{-2x}$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{-2}e^{-2x} + k \text{ avec } k \text{ constante r\'eelle}$$

b $f(x) = \frac{-1}{x}$ admet pour primitives les fonctions de la forme :

$$F(x) = -\ln(|x|) + k = -\ln(-x) + k$$
 avec $-x > 0$ et k constante réelle

Exemple 6 Question 2)

Soit la fonction définie sur]0; $+\infty$ [par $F: x \mapsto x \ln x - x + 1$ Pour tout réel x > 0, on a,en appliquant la formule de dérivation d'un produit pour $x \ln(x)$:

$$F'(x) = x \times \frac{1}{x} + 1 \times \ln(x) - 1 = \ln(x)$$

F est donc une primitive de la fonction In. La primitive G de In qui s'annule en \sqrt{e} . est donc de la forme G(x) = F(x) + k. Il suffit de déterminer K en évaluant G en \sqrt{e} :

$$G(\sqrt{e}) = F(\sqrt{e}) + k = \frac{1}{2}\sqrt{e} - \sqrt{e} + 1 + k = 0 \Leftrightarrow k = \frac{1}{2}\sqrt{e} - 1$$

La primitive de ln qui s'annule en \sqrt{e} est donc $G(x) = x \ln x - x + \frac{1}{2} \sqrt{e}$.

Exemple 6 Question 2)

Soit la fonction définie sur]0; $+\infty$ [par $F: x \mapsto x \ln x - x + 1$ Pour tout réel x > 0, on a,en appliquant la formule de dérivation d'un produit pour $x \ln(x)$:

$$F'(x) = x \times \frac{1}{x} + 1 \times \ln(x) - 1 = \ln(x)$$

F est donc une primitive de la fonction In. La primitive G de In qui s'annule en \sqrt{e} . est donc de la forme G(x) = F(x) + k. Il suffit de déterminer K en évaluant G en \sqrt{e} :

$$G(\sqrt{e}) = F(\sqrt{e}) + k = \frac{1}{2}\sqrt{e} - \sqrt{e} + 1 + k = 0 \Leftrightarrow k = \frac{1}{2}\sqrt{e} - 1$$

La primitive de ln qui s'annule en \sqrt{e} est donc $G(x) = x \ln x - x + \frac{1}{2} \sqrt{e}$.

Exemple 7 Partie 1

• $f(x) = x^2 - 2x - 1 - \frac{1}{x^2} - \frac{1}{x} + e^x$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{x^3}{3} - x^2 - x + \frac{1}{x} - \ln(|x|) + e^x + k \text{ avec } k \text{ constante réelle}$$

2 $f(x) = \cos(4x-1) - 2\sin(2x)$ admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{4}\sin(4x - 1) + 2 \times \frac{1}{2}\cos(2x) + k \text{ avec } k \text{ constante r\'eelle}$$

(a) $f(x) = \frac{e^{731x}}{(e^{731x}+1)^2}$ est de la forme $\frac{1}{731}\frac{u'}{u^2}$ avec $u(x) = e^{731x} + 1$, donc admet pour primitives les fonctions de la forme :

$$F(x) = -\frac{1}{u(x)} + k = -\frac{1}{731} \frac{1}{e^{731x} + 1} + k = \text{ avec } k \text{ constante réelle}$$

Exemple 7 Partie 2

① $f(x) = \frac{e^{-x}}{e^{-x}+1}$ est de la forme $-\frac{u'}{u}$ avec $u(x) = e^{-x}+1$, donc admet pour primitives les fonctions de la forme :

$$F(x) = -\ln(|u(x)|) + k = -\ln(|e^{-x}+1|) + k = -\ln(e^{-x}+1) + k$$
, $k \in \mathbb{R}$

② $f(x) = \frac{x}{e^{x^2}} = xe^{-x^2}$ est de la forme $-\frac{1}{2}u'e^u$ avec $u(x) = -x^2$, donc admet pour primitives les fonctions de la forme :

$$F(x) = -\frac{1}{2}e^{u(x)} + k = -\frac{1}{2}e^{-x^2} + k$$
, $k \in \mathbb{R}$

Exemple 7 Partie 3

• $f(x) = \frac{1}{x \ln x} = \frac{\frac{1}{x}}{\ln(x)}$ est de la forme $\frac{u'}{u}$ avec $u(x) = \ln(x)$, donc admet pour primitives les fonctions de la forme :

$$F(x) = \ln(|u(x)|) + k = \ln(|\ln(x)|) + k , k \in \mathbb{R}$$

Sur]0; 1[, on a $\ln(x) < 0$ donc $F(x) = \ln(-\ln(x)) + k$. Sur]1; $+\infty$ [, on a $\ln(x) > 0$ donc $F(x) = \ln(\ln(x)) + k$.

② $f(x) = \cos(x)e^{\sin(x)}$ est de la forme $u'e^u$ avec $u(x) = \sin(x)$, donc admet pour primitives les fonctions de la forme :

$$F(x) = e^{u(x)} + k = e^{\sin(x)} + k , k \in \mathbb{R}$$

§ $f(x) = \frac{1}{x} \times (\ln x)^2$ est de la forme $u'u^2$ avec $u(x) = \ln(x)$, donc admet pour primitives les fonctions de la forme :

$$F(x) = \frac{1}{3}u^3(x) + k = \frac{1}{3}(\ln(x))^3 + k$$
, $k \in \mathbb{R}$

Exemple 8 Partie 1

On considère les courbes d'équations y = 1, y = x et $y = x^2$ sur l'intervalle [0; 1].

Pour tout réel $x \in [0; 1]$, on a :

$$0 \le x \le 1$$

on multiplie par $x \ge 0$

$$0 \le x^2 \le x \le 1$$

Exemple 8 Figure

Exemple 8 Partie 2

Puisque pour tout réel $x \in [0; 1]$, on a $0 \le x^2 \le x \le 1$, on en déduit que : la courbe d'équation $y = x^2$ est donc en dessous de la droite d'équation y = x, elle même en-dessous de la droite d'équation y = 1.

Par définition de l'intégrale d'une fonction continue positive comme aire du domaine « sous sa courbe » (délimité par sa courbe, l'axe des abscisses et les deux droites parallèles à l'axe des ordonnées passant par les bornes de l'intervalle), on en déduit que :

$$I = \int_0^1 x^2 dx \le K = \int_0^1 x dx \le J = \int_0^1 1 dx$$

Exemple 8 Partie 3

De plus, par additivité des aires, l'intégrale $L=\int_0^1 1-x^2 \ \mathrm{d}x$ représente l'aire du domaine entre la droite d'équation y=1 et la courbe d'équation $y=x^2$, de même $M=\int_0^1 x-x^2 \ \mathrm{d}x$ représente l'aire du domaine entre la droite d'équation y=x et la courbe d'équation $y=x^2$.

On peut noter que pour tout réel $x \in [0; 1]$, on a $0 \le x^2 \le x \le 1$, donc $0 \le x - x^2 \le 1 - x^2$ et donc $M \le L$.

Exemple 9 Partie 1

Calculer les intégrales suivantes :

②
$$\int_2^4 \frac{1}{(2x-1)^4} dx = \left[\frac{1}{2} \times \frac{1}{-4+1} (2x-1)^{-4+1}\right]_2^4$$

 $\int_2^4 \frac{1}{(2x-1)^4} dx = \frac{1}{2} \times \frac{1}{-4+1} (7)^{-4+1} - \frac{1}{2} \times \frac{1}{-4+1} (3)^{-4+1}$

$$\int_0^{2\pi} \cos(\theta) \ d\theta = [\sin(\theta)]_0^{2\pi} = 0 - 0 = 0;$$

$$\int_{-4}^{-2} (3x-1)^6 dx = \left[\frac{1}{3} \times \frac{1}{7} (3x-1)^7 \right]_{-4}^{-2} = \frac{1}{21} \left(-7^7 + 13^7 \right);$$

• $\int_0^x \sin^2(t) dt$. Il faut linéariser $\sin^2(t)$ avec les formules de duplication du sinus (voir chapitre sur les complexes Partie 2) : $\sin^2(t) = \frac{1-\cos(2t)}{2}$ donc : $\int_0^x \sin^2(t) dt = \int_0^x \frac{1-\cos(2t)}{2} dt = \left[\frac{t-0.5\sin(2t)}{2}\right]_0^x = \frac{x-0.5\sin(2x)}{2} - 0$

Exemple 9 Partie 2

Calculer les intégrales suivantes :

- ② $\int_0^x \frac{1}{1+e^t} dt$ lci il faut transformer l'expression pour faire apparaître une forme $\frac{u'}{u}$ (ici $-\frac{u'}{u}$). L'astuce classique avec l'exponentielle : $e^t \times e^{-t} = 1$. $\int_0^x \frac{1}{1+e^t} dt = \int_0^x \frac{e^{-t} \times 1}{e^{-t}(1+e^t)} dt = \int_0^x \frac{e^{-t} \times 1}{e^{-t}+1} dt$ Puis : $\int_0^x \frac{e^{-t}}{e^{-t}+1} dt = \left[-\ln(\left|e^{-t}+1\right|)\right]_0^x = -\ln(e^{-x}+1) + \ln(2)$

Exemple 10 Partie 1

Le demi-cercle Γ de rayon 1, représenté sur la figure ci-dessous, a pour équation $y = \sqrt{1-x^2}$.

La partie grisée est comprise entre l'axe des abscisses d'équation y=0 et la courbe \mathscr{C}_f de la fonction f définie sur [-1;1] par $f(x)=\frac{1}{2}(1-x)\sqrt{1-x^2}$.

Exemple 10 Partie 2

- $\int_{-1}^{1} \sqrt{1-x^2} dx$ est l'aire du demi-disque de rayon 1 donc c'est $\frac{1}{2} \times \pi \times 1^2 = \frac{\pi}{2}$.
- Pour tout réel $x \in [-1; 1]$, si on note $g(x) = x\sqrt{1-x^2}$, on ag(-x) = -g(x) donc par symétrie centrale de centre l'origine du repère $\int_{-1}^{0} g(x) dx$ est l'opposé de l'aire du domaine sous la courbe de g sur l'intervalle [0; 1].

On a donc
$$\int_{-1}^{0} g(x) dx = -\int_{0}^{1} g(x) dx \Leftrightarrow \int_{-1}^{0} x \sqrt{1 - x^{2}} dx = -\int_{0}^{1} x \sqrt{1 - x^{2}} dx.$$

Exemple 10 Partie 3

•
$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} \frac{1}{2} (1-x) \sqrt{1-x^2} dx = \frac{1}{2} \int_{-1}^{1} (1-x) \sqrt{1-x^2} dx$$
 par linéarité.

De nouveau par linéarité, on a

$$\int_{-1}^{1} f(x) dx = \frac{1}{2} \left(\int_{-1}^{1} \sqrt{1 - x^2} dx - \int_{-1}^{1} x \sqrt{1 - x^2} dx \right) = \frac{1}{2} \left(\frac{\pi}{2} - \int_{-1}^{1} x \sqrt{1 - x^2} dx \right).$$

En appliquant la relation de Chasles, on a

$$\int_{-1}^{1} x \sqrt{1 - x^2} dx = \int_{-1}^{0} x \sqrt{1 - x^2} dx + \int_{0}^{1} x \sqrt{1 - x^2} dx$$

D'après la propriété d'antisymétrie de la question 2), il vient $-\int_0^1 x\sqrt{1-x^2} dx + \int_0^1 x\sqrt{1-x^2} dx = 0$.

Finalement, on a
$$\int_{-1}^{1} f(x) dx = \frac{\pi}{4}.$$

Exemple 11

Soient f et g deux fonctions continues sur [1; 5], on donne :

$$I = \int_{1}^{2} f(x) dx = -3$$
 $J = \int_{5}^{2} f(x) dx = 2$ $K = \int_{1}^{5} g(x) dx = 12$

Calculer
$$L = \int_1^5 f(x) dx$$
, $M = \int_1^5 (f(x) + g(x)) dx$ puis $N = \int_1^5 (2f(x) - 3g(x)) dx$.

- On applique la relation de Chasles : $L = \int_1^5 f(x) dx = \int_1^2 f(x) dx + \int_2^5 f(x) dx =$ $\int_1^2 f(x) dx - \int_5^2 f(x) dx = I - J = -5$
- On applique la propriété de linéarité : $M = \int_1^5 (f(x) + g(x)) dx = \int_1^5 f(x) dx + \int_1^5 g(x) dx = I + K = -5 + 12 = 7$
- On applique la propriété de linéarité : $N = \int_{1}^{5} (2f(x) 3g(x)) dx = 2 \int_{1}^{5} f(x) dx 3 \int_{1}^{5} g(x) dx = 2 \times (-5) 3 \times (12) = -46$

Déterminer le signe des intégrales suivantes :

• $I = \int_{\frac{1}{2}}^{1} \ln x \, dx$ Pour tout réel $x \in \left[\frac{1}{2}; 1\right]$, on a :

Déterminer le signe des intégrales suivantes :

• $I = \int_{\frac{1}{2}}^{1} \ln x \, dx$

Pour tout réel $x \in \left[\frac{1}{2}; 1\right]$, on a :

$$0 \ge \ln(x)$$

donc par croissance de l'intégrale on a :

$$0 \ge \int_{\frac{1}{2}}^{1} \ln x \, \, \mathrm{d}x$$

Déterminer le signe des intégrales suivantes :

• $I = \int_1^0 x^2 dx$ Pour tout réel $x \in [0; 1]$, on a :

Déterminer le signe des intégrales suivantes :

• $I = \int_1^0 x^2 dx$ Pour tout réel $x \in [0; 1]$, on a :

$$0 \le x^2$$

donc par croissance de l'intégrale on a :

$$0 \le \int_0^1 x^2 \, \mathrm{d}x$$

donc par linéarité :

$$0 \ge -\int_0^1 x^2 dx$$
$$0 \ge \int_1^0 x^2 dx$$

Déterminer le signe des intégrales suivantes :

• $I = \int_1^{\frac{1}{e}} \ln x \, dx$ Pour tout réel $x \in \left[\frac{1}{e}; 1\right]$, on a :

Déterminer le signe des intégrales suivantes :

• $I = \int_{1}^{\frac{1}{e}} \ln x \, dx$ Pour tout réel $x \in \left[\frac{1}{e}; 1\right]$, on a : $0 \ge \ln x$

donc par croissance de l'intégrale on a :

$$0 \geqslant \int_{\frac{1}{e}}^{1} \ln x \, dx$$

donc par linéarité :

$$0 \le -\int_{\frac{1}{e}}^{1} \ln x \, dx$$
$$0 \le \int_{1}^{\frac{1}{e}} \ln x \, dx$$

Soit (u_n) la suite définie pour tout entier $n \ge 1$ par $u_n = \int_0^1 \ln \left(1 + x^n \right) \, \mathrm{d} x$ Pour étudier le sens de variation de la suite (u_n) , deux méthodes sont possibles :

Méthode 1 :On étudie le signe de $u_{n+1} - u_n$

Pour tout entier $n \ge 1$, on a :

Méthode 1 :On étudie le signe de $u_{n+1} - u_n$

Pour tout entier $n \ge 1$, on a :

$$u_{n+1} - u_n = \int_0^1 \ln(1 + x^{n+1}) dx - \int_0^1 \ln(1 + x^n) dx$$

donc par linéarité :

$$u_{n+1} - u_n = \int_0^1 \ln(1 + x^{n+1}) - \ln(1 + x^n) dx$$

Or pour tout entier $n \ge 1$ et tout réel $x \in [0;1]$, on a $0 \le x \le 1$ donc en multipliant tous les membres par $x^n \ge 0$, $0 \le x^{n+1} \le x^n$ puis par croissance de ln, $\ln(1) \le \ln(1+x^{n+1}) \le \ln(1+x^n)$ donc $\ln(1+x^{n+1}) - \ln(1+x^n) \le 0$ et par croissance de l'intégrale :

$$u_{n+1} - u_n = \int_0^1 \ln(1 + x^{n+1}) - \ln(1 + x^n) \, dx \le 0$$

On en déduit que la suite (u_n) est décroissante

Méthode 2 : $u_{n+1} \le u_n$ par croissance de l'intégrale

Le principe est de comparer les expressions sous le signe d'intégration et d'en déduire les inégalités sur les intégrales par croissance de l'intégrale. C'est similaire à la méthode précédente mais avec une rédaction plus légère. Pour tout entier $n \ge 1$, pour tout réel $x \in [0;1]$, on a :

Méthode 2 : $u_{n+1} \le u_n$ par croissance de l'intégrale

Le principe est de comparer les expressions sous le signe d'intégration et d'en déduire les inégalités sur les intégrales par croissance de l'intégrale. C'est similaire à la méthode précédente mais avec une rédaction plus légère. Pour tout entier $n \ge 1$, pour tout réel $x \in [0;1]$, on a :

$$x \le 1$$

on multiplie les deux membres par $x^n \ge 0$ puis on ajoute 1 et on compose par le ln qui est croissant, on en déduit que :

$$\ln\left(1+x^{n+1}\right) \le \ln\left(1+x^n\right)$$

Par croissance de l'intégrale, il vient :

$$\int_0^1 \ln(1+x^{n+1}) \, dx \le \int_0^1 \ln(1+x^n) \, dx$$

et donc $u_{n+1} \le u_n$ et la suite (u_n) est décroissante.

Démontrer que pour tout entier $n \ge 1$, on a $0 \le u_n \le \ln 2$ (début). On utilise la croissance de l'intégrale. Pour tout entier $n \ge 1$, pour tout réel $x \in [0; 1]$, on a $0 \le 1 + x^n \le 2$ donc par croissance de la fonction $\ln z$:

Démontrer que pour tout entier $n \ge 1$, on a $0 \le u_n \le \ln 2$ (début). On utilise la croissance de l'intégrale. Pour tout entier $n \ge 1$, pour tout réel $x \in [0; 1]$, on a $0 \le 1 + x^n \le 2$ donc par croissance de la fonction $\ln z$:

$$0 \le \ln\left(1 + x^n\right) \le \ln(2)$$

par croissance de l'intégrale :

$$\int_0^1 0 \, dx \le \int_0^1 \ln(1+x^n) \, dx \le \int_0^1 \ln(2) \, dx$$

par linéarité :

$$0 \times \int_0^1 1 \, dx \le \int_0^1 \ln(1 + x^n) \, dx \le \ln(2) \times \int_0^1 1 \, dx$$

Démontrer que pour tout entier $n \ge 1$, on a $0 \le u_n \le \ln 2$ (fin) :

Démontrer que pour tout entier $n \ge 1$, on a $0 \le u_n \le \ln 2$ (fin) :

par linéarité :

$$0 \times \int_0^1 1 \, dx \le \int_0^1 \ln(1 + x^n) \, dx \le \ln(2) \times \int_0^1 1 \, dx$$
$$0 \le \int_0^1 \ln(1 + x^n) \, dx \le \ln(2)$$
$$0 \le u_n \le \ln(2)$$

La suite (u_n) est donc minorée par 0, comme elle est décroissante (question précédente), elle converge d'après le théorème de convergence monotone.

Démontrer que pour tout entier $n \ge 1$, pour tout réel $x \in [0;1]$ on a : $0 \le \ln(1+x^n) \le x^n$. En déduire la limite de la suite (u_n) . On utilise encore la croissance de l'intégrale. Pour tout entier $n \ge 1$, pour tout réel $x \in [0;1]$: on a $\ln(1+x) \le x$ d'après une propriété de la fonction \ln (courbe de ln en-dessous de toutes ses tangentes et la droite d'équation y = x + 1 est sa tangente au point d'abscisse 0). On peut remplacer x par $x^n : 0 \le \ln(1+x^n) \le x^n$. Par croissance de l'intégrale, on a :

Démontrer que pour tout entier $n \ge 1$, pour tout réel $x \in [0; 1]$ on $a: 0 \le \ln(1+x^n) \le x^n$. En déduire la limite de la suite (u_n) .

On utilise encore la croissance de l'intégrale.

Pour tout entier $n \ge 1$, pour tout réel $x \in [0; 1]$:

on a $\ln(1+x) \le x$ d'après une propriété de la fonction ln (courbe de ln en-dessous de toutes ses tangentes et la droite d'équation y=x+1 est sa tangente au point d'abscisse 0). On peut remplacer x par $x^n: 0 \le \ln(1+x^n) \le x^n$. Par croissance de l'intégrale, on a :

$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \int_0^1 x^n \, dx$$
$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \left[\frac{x^{n+1}}{n+1}\right]_0^1$$
$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \frac{1}{n+1}$$

$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \int_0^1 x^n \, dx$$
$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \left[\frac{x^{n+1}}{n+1}\right]_0^1$$
$$0 \le \int_0^1 \ln(1+x^n) \, dx \le \frac{1}{n+1}$$
$$0 \le u_n \le \frac{1}{n+1}$$

On a $\lim_{n\to +\infty}\frac{1}{n+1}=0$ donc d'après le théorème des gendarmes, on a $\lim_{n\to +\infty}u_n=0$.

Soit
$$f$$
 définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• Démontrons que pour tout $t \in [2; +\infty[$ on a $0 \le f(t) \le \frac{1}{\sqrt{2\pi}}e^{-t}$. Pour tout $t \in [2; +\infty[$ on a :

Soit f définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• Démontrons que pour tout $t \in [2; +\infty[$ on a $0 \le f(t) \le \frac{1}{\sqrt{2\pi}}e^{-t}$. Pour tout $t \in [2; +\infty[$ on a :

$$2 \le t$$
$$2t \le t^{2}$$
$$-t \ge -\frac{t^{2}}{2}$$

par croissance de la fonction exponentielle :

$$e^{-t} \ge e^{-\frac{t^2}{2}}$$
$$\frac{1}{\sqrt{2\pi}}e^{-t} \ge \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$$

Soit f définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

Soit
$$f$$
 définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• Pour tout entier $n \ge 2$ on a :

Soit f définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

• Pour tout entier $n \ge 2$ on a :

$$0 \leqslant \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \leqslant \frac{1}{\sqrt{2\pi}} e^{-t}$$

donc par croissance de l'intégrale :

$$0 \le \int_{2}^{n} f(t) dt \le \int_{2}^{n} \frac{1}{\sqrt{2\pi}} e^{-t} dt$$

$$0 \le \int_{2}^{n} f(t) dt \le \left[-\frac{1}{\sqrt{2\pi}} e^{-t} \right]_{2}^{n}$$

$$0 \le \int_{2}^{n} f(t) dt \le \frac{1}{\sqrt{2\pi}} e^{-2} - \frac{1}{\sqrt{2\pi}} e^{-n}$$

$$0 \le \int_{2}^{n} f(t) dt \le \frac{1}{\sqrt{2\pi}} e^{-2}$$

Démontrons que la suite $(u_n) = (\int_2^n f(t) dt)_{n \ge 2}$ est croissante.

Pour tout entier $n \ge 2$:

Démontrons que la suite $(u_n) = (\int_2^n f(t) dt)_{n \ge 2}$ est croissante. Pour tout entier $n \ge 2$:

$$\int_{2}^{n+1} f(t) dt - \int_{2}^{n} f(t) dt = \int_{2}^{n+1} f(t) dt + \int_{n}^{2} f(t) dt$$

$$\int_{2}^{n+1} f(t) dt - \int_{2}^{n} f(t) dt = \int_{n}^{2} f(t) dt + \int_{2}^{n+1} f(t) dt$$

$$\int_{2}^{n+1} f(t) dt - \int_{2}^{n} f(t) dt = \int_{n}^{n+1} f(t) dt$$

Pour tout entier $n \ge 2$, on a $0 \le f(t)$ sur [n; n+1], donc par croissance de l'intégrale : $0 \le \int_n^{n+1} f(t) \, \mathrm{d}t$ Pour tout entier $n \ge 2$, on a donc $u_{n+1} - u_n \ge 0$ et donc la suite (u_n) est croissante. Comme elle est majorée par $\frac{1}{\sqrt{2\pi}} \mathrm{e}^{-2}$, elle converge d'après le théorème de convergence monotone.

On considère les fonctions f et g définies sur l'intervalle $\left[0\,;\,16\right]$ par

$$f(x) = \ln(x+1)$$
 et $g(x) = \ln(x+1) + 1 - \cos(x)$.

Dans un repère du plan $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$, on note \mathscr{C}_f et \mathscr{C}_g les courbes représentatives des fonctions f et g. Ces courbes sont données ci-dessous.


```
Pour tout x \in [0 \ ; \ 16], on a g(x) - f(x) = 1 - \cos(x).

Or 1 - \cos(x) \ge 0, donc g(x) - f(x) \ge 0.

De plus g(x) - f(x) = 0 \Leftrightarrow 1 = \cos(x) \Leftrightarrow x = k2\pi avec k \in \mathbb{Z}

Sur l'intervalle [0 \ ; \ 16], on a donc g(x) - f(x) = 0 \Leftrightarrow \begin{cases} x = 0 \\ x = 2\pi \\ x = 4\pi \end{cases}.
```

Le domaine hachuré sur le graphique est l'aire entre les courbes de f et de g sur [0; 16].

Sachant que $g \ge f$, cette aire est égale à l'intégrale :

Pour tout $x \in [0; 16]$, on a $g(x) - f(x) = 1 - \cos(x)$.

Or $1-\cos(x) \ge 0$, donc $g(x)-f(x) \ge 0$.

De plus $g(x) - f(x) = 0 \Leftrightarrow 1 = \cos(x) \Leftrightarrow x = k2\pi$ avec $k \in \mathbb{Z}$

Sur l'intervalle [0 ; 16], on a donc
$$g(x) - f(x) = 0 \Leftrightarrow \begin{cases} x = 0 \\ x = 2\pi \\ x = 4\pi \end{cases}$$

Le domaine hachuré sur le graphique est l'aire entre les courbes de f et de g sur [0; 16].

Sachant que $g \ge f$, cette aire est égale à l'intégrale :

$$\int_0^{4\pi} g(x) - f(x) dx = \int_0^{4\pi} 1 - \cos(x) dx$$
$$\int_0^{4\pi} g(x) - f(x) dx = [x + \sin(x)]_0^{4\pi} = 4\pi$$

Pour t > 0 la vitesse d'un mobile est $v(t) = \frac{1}{t^2} + \frac{1}{t}$ (en m.s⁻¹).

• La distance parcourue entre les instants t = 1 et $t = e^2$ (en s) est égale à :

$$\int_{1}^{e^{2}} v(t) dt = \int_{1}^{e^{2}} \frac{1}{t^{2}} + \frac{1}{t} dt$$

$$\int_{1}^{e^{2}} v(t) dt = \left[-\frac{1}{t} + \ln(t) \right]_{1}^{e^{2}}$$

$$\int_{1}^{e^{2}} v(t) dt = 2 - e^{-2} + 1 \text{mètres}$$

2 La vitesse moyenne du mobile entre les instants t = 1 et $t = e^2$ est égale à :

$$\int_1^{{
m e}^2} v(t) \ {
m d}t = \frac{1}{{
m e}^2-1} \int_1^{{
m e}^2} \frac{1}{t^2} + \frac{1}{t} \ {
m d}t = \frac{3-{
m e}^{-2}}{{
m e}^2-1} {
m m\`{e}tres}$$
 par seconde

• Valeur moyenne de la fonction g définie sur [-1;1] par $g(x) = e^{-x}$.

$$\frac{1}{2} \int_{-1}^{1} g(x) dx = \frac{1}{2} \left[-e^{-x} \right]_{1}^{2} = \frac{1}{2} \left(e^{-1} - e^{-2} \right)$$

② Soit f une fonction continue sur un intervalle [a;b]. On suppose que pour tout $x \in [a;b]$ on $a:m \le f(x) \le M$. Par croissance de l'intégrale :

$$m \int_{a}^{b} 1 \, dx \le \int_{a}^{b} f(x) \, dx \le M \int_{a}^{b} 1 \, dx$$
$$m(b-a) \le \int_{a}^{b} f(x) \, dx \le M(b-a)$$
$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le M$$

Soit f la fonction définie sur l'intervalle I = [-1; 1] par $f(x) = (x+1)e^{-x} + 1$

Pour tout réel x, on a $f'(x) = e^{-x} - e^{-x}(x+1) = -xe^{-x}$. f'(x) est donc du signe de -x sur [-1;1] donc positive sur [-1;0] puis négative sur [0;1], donc f est croissante sur [-1;0] puis décroissante sur [0;1]. De plus, f(-1) = 1 et $f(1) = 2e^{-1} + 1$, donc le minimum de f sur [0;1] est f(-1) et le maximum est f(0) = 2. D'après la propriété démontrée à la question précédente, la valeur moyenne de f sur [-1;1] est encadrée par f(-1) et f(0):

$$f(-1) \le \frac{1}{2} \int_{-1}^{1} f(x) \, dx \le f(0)$$

