Let Me Know You

Sentiment analysis and age gender classfication with neural network

Kun Liang, Harry Qi, Bohan Wu, Naiqiao Ye

CONTENT

Introductio

Problem Statement Motivation & Goals Datasets

Methods

Baseline Model ResNet Model VGG Model

Results

Introduction

Problem Statement

Sentiment Analysis

• (In progress.) Age and Gender Prediction

Convolutional Neural Network!

Multi-Classification

- ☐ Problem: Can machine learn human faces and expressions from images?
- Emotions affect decision
 - lacktriangle "Emotions provide embodied information about the costs and benefits of anticipated action \dots " [1]
- Age affects decision processing
 - "Older people rely more on emotions and experience and less on reason than do younger people"[2]

- Interested in related research of how emotion/age/gender impact decision making
- Connecting machine learning to sociology
- Experience in-depth computer vision model design and tunning

Datasets — Sentiment Analysis

FER 2013 (Facial Expression Recognition 2013)

Training set: 28709 examples

Validation set: 3589 examples

Test set: 3589 examples

Angry: 3995

Disgust: 436

Fear: 4097

Training set Happy: 7215

Sad: 4830

Surprise: 3171

Neutral: 4965

Datasets — Sentiment Analysis

FER 2013 (Facial Expression Recognition 2013)

0=Angry 1=Disgust

2=Fear 3=Happy

4=Sad 5=Surprise

6=Neutral

• Resolution: 48 × 48 × 3

Fear

Datasets — Age and Gender

Age And Gender Classification on Adience Gender

- Total number of pictures:
 - 19370 pictures

- Resolution:
 - o 600 × 600 × 3

- Gender:
 - o female: 9372
 - o male: 8120

Picture website:

 $https://www.researchgate.net/figure/Adience-sample-Sample-of-each-age-group-and-gender-from-the-fourth-fold-of-the-Adience_fig1_318084198$

Datasets — Age and Gender

Age And Gender Classification on Adience Gender

- Age groups:
 - (0-2),(4-6),(8-12),(15-20),(25-32),(38-43),(48-53)(60+)
- Re-define age groups:
 - attach labels to different age groups
- Two models:
 - age prediction
 - gender prediction

Picture website:

https://www.researchgate.net/figure/Adience-sample-Sample-of-each-age-group-and-gender-from-the-fourth-fold-of-the-Adience_fig1_318084198

Datasets — FER2013 & Adience

Data Preprocessing

- Data Normalization
 - Rescaling
- Data Augmentation
 - Rotation
 - Zoom
 - Horizontal Flip

Deliverables

- Must Accomplish (before presentation):
 - Data Processing for FER2013 & Adience(Interim Goal)
 - Baseline Model for sentiment analysis(Interim Goal)
 - ResNet Model for sentiment analysis
 - Hyper-tuned Baseline Model for sentiment analysis
 - Research previous work on FER2013 and implement one model as comparison (VGG16)

- Must Accomplish (before presentation):
 - Data Processing for FER2013 & Adience(Interim Goal)
 - Baseline Model for sentiment analysis(Interim Goal)
 - ResNet Model for sentiment analysis
 - Hyper-tuned Baseline Model for sentiment analysis
 - Research previous work on FER2013 and implement one model as comparison (VGG16)

All Accomplished!

- Expect to Accomplish (before code submission):
 - Create baseline model for Adience dataset
 - 60%+ Validation Accuracy on our best model for sentiment analysis (best effort)
 - Finish implementing model for Adience
 - Fine tune Adience datasets and achieve maximum accuracy (85%+)

Methods

FER2013 for sentiment analysis

- Baseline Model
- Baseline CNN Model With Mega Tunning
- VGG16
- ResNet
- VGG16 + Attention
- Evaluation based on (Cross Entropy) Loss and Accuracy

Baseline Model

- A Simple Convolutional Neural Network
- 3 convolution layers
- 2 fully connected linear layers
- Maxpool as pooling layer
- ReLU as activation functions
- Softmax as output layer activation function

Baseline CNN Model With Mega Tunning

- One more convolution layer
 - Filter size tunning
- BatchNorm layer
- Dropout layer
- Flatten
- Regularizer

VGG16 Model

- VGG16: (Visual Geometry Group)
 - 13 convolutional layers + RELU
 - layers with parameters, W
 - 5 max pooling layers
 - no parameters
 - 3 fully connected layers
 - layers with parameters, W
- **16** layers with tunable parameters:
 - 13 convolutional layers
 - 3 fully connected layers
- Advantages / Disadvantages
 - simple structures
 - huge amount of parameters

picture from

https://medium.com/mlearning-ai/an-overview-of-vgg16-and-nin-models-96e4bf398484 the paper link: https://arxiv.org/pdf/1409.1556.pdf [4]

ResNet Model

A regular block (Left)

A residual block (right)

- Residual Neural Network (ResNet)
- ResNet models are implemented with double- or triple- layer skips
 - Nonlinearities (e.g. ReLU) and BatchNorm in between
 - An additional weight matrix may be used to learn the skip weights
- Why skip?

More at https://doi.org/10.48550/arXiv.1512.03385

Results

- Baseline Model
 - Highest Train/Valid Accuracy: 0.48/0.42
- Baseline Model with mega-tuning
 - Highest Train/Valid Accuracy: 0.73/0.65
- VGG16
 - Highest Train/Valid Accuracy: 0.84/0.51
- ResNet
 - Highest Train/Valid Accuracy: 0.71/0.61

- Baseline Model (Regular CNN)
 - 10 epchos, batch size 512
 - Train Acc: 0.48
 - Val_Acc: 0.42
 - Action: Use dropout layer and Regularizer (L2) in tunning the model

Baseline Model With Mega Tunning

40 epchos, batch size 128

Train_Acc: 0.73

Val_Acc: 0.65

VGG16

- 20 epchos, batch size 64
- Learning rate 0.0005
- No drop-out stages
- Adding drop-out stages reduces overall performance (Train ACC:0.67 / Val ACC: 0.43)
- VGG16 improves the accuracy comparing to baseline, but suffers from over-fitting

<Figure size 432x288 with 0 Axes>

ResNet

- 20 epchos, batch size 64
- Exceeds baseline performance
- Suffers from over-fitting
- Adding drop-out stages
 reduces overall performance

Future Deliverables

Deliverables

- Would like to accomplish (future plans)
 - Implement real-time video-feed prediction
 - Merge all three models
 - sentiment, gender, and age prediction in real-time
 - Face alignment in real-time video
 - 0 ...

- What Surprised us?
 - Pytorch vs. Tensorflow
 - Hyperparameter/Mega Tuning
- Takeway
 - Stick with one framework
 - Research

- [1] Zadra, Jonathan R, and Gerald L Clore. "Emotion and perception: the role of affective information." Wiley interdisciplinary reviews. Cognitive science vol. 2,6 (2011): 676-685. doi:10.1002/wcs.147
- [2] Peters E, Hess TM, Västfjäll D, Auman C. Adult age differences in dual information processes: Implications for the role of affective and deliberative processes in older adults' decision making. Perspectives on Psychological Science. 2007;2(1):1–23. doi: 10.1111/j.1745-6916.2007.00025.x.
- [3] Goodfellow, Ian J., et al. "Challenges in Representation Learning: A Report on Three Machine Learning Contests." Neural Networks, vol. 64, 2015, pp. 59–63., https://doi.org/10.1016/j.neunet.2014.09.005.
- [4] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

THANKS!

Kun Liang Yanjie Qi Bohan Wu Naiqiao Ye