What the law of large numbers has to say

Portfolio: $a = (a_1, ..., a_m)$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$

$$\Delta_{n} = \frac{1}{n} [\log_{2}(S_{1}) + \log_{2}(S_{2}) + \dots + \log_{2}(S_{n})]$$

$$W_n = 2^{n \cdot \Delta_n}$$

Portfolio: $\alpha = (\alpha_1, ..., \alpha_m)$ Stock price relatives at close of day n: $X^{(n)} = (X_1^{(n)}, ..., X_m^{(n)})$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = \alpha_1 X_1^{(n)} + \cdots + \alpha_m X_m^{(n)}$

$$\Delta_{n} = \frac{1}{n} \left[\log_{2}(S_{1}) + \log_{2}(S_{2}) + \dots + \log_{2}(S_{n}) \right]$$

$$W_{n} = 2^{n \cdot \Delta_{n}}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $\mathbf{a} = (a_1, \dots, a_m)$

Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

$$\Delta_{n} = \frac{1}{n} [\log_{2}(S_{1}) + \log_{2}(S_{2}) + \dots + \log_{2}(S_{n})]$$

$$W_n = 2^{n \cdot \Delta_n}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $\mathbf{a} = (a_1, \dots, a_m)$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

generic stock price relative A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

$$log_2(S), log_2(S_1), log_2(S_2), \dots, log_2(S_n), \dots$$

$$\Delta_{n} = \frac{1}{n} \left[\log_{2}(S_{1}) + \log_{2}(S_{2}) + \dots + \log_{2}(S_{n}) \right]$$

$$W_n = 2^{n \cdot \Delta_n}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $a = (a_1, ..., a_m)$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

generic stock price relative A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

$$log_2(S), log_2(S_1), log_2(S_2), \dots, log_2(S_n), \dots$$

$$E[\log_2(S)] = E[\log_2(S(X))]$$

$$\Delta_{n} = \frac{1}{n} [\log_{2}(S_{1}) + \log_{2}(S_{2}) + \dots + \log_{2}(S_{n})]$$

$$W_n = 2^{n \cdot \Delta_n}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $a = (a_1, \dots, a_m)$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

generic stock price relative A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

$$log_2(S), log_2(S_1), log_2(S_2), \dots, log_2(S_n), \dots$$

$$E[\log_2(S)] = E[\log_2(S(X))] =: \Delta(\alpha)$$

$$\Delta_{n} = \frac{1}{n} \left[\log_{2}(S_{1}) + \log_{2}(S_{2}) + \dots + \log_{2}(S_{n}) \right]$$

$$W_n = 2^{n \cdot \Delta_n}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $a = (a_1, \dots, a_m)$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

generic stock price relative A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

$$log_2(S), log_2(S_1), log_2(S_2), \dots, log_2(S_n), \dots$$

$$E[\log_2(S)] = E[\log_2(S(X))] =: \Delta(\alpha)$$

$$\Delta_n = \frac{1}{n} \left[\log_2(S_1) + \log_2(S_2) + \dots + \log_2(S_n) \right] \text{ is concentrated at } \Delta(a)$$

$$W_n = 2^{n \cdot \Delta_n}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $a = (a_1, \dots, a_m)$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

generic stock price relative A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

$$log_2(S), log_2(S_1), log_2(S_2), \dots, log_2(S_n), \dots$$

$$E[\log_2(S)] = E[\log_2(S(X))] =: \Delta(\alpha)$$

$$\Delta_n = \frac{1}{n} \left[\log_2(S_1) + \log_2(S_2) + \dots + \log_2(S_n) \right] \text{ is concentrated at } \Delta(\alpha)$$
In short, we write: $\Delta_n \doteq \Delta(\alpha)$

$$W_n = 2^{n \cdot \Delta_n}$$

Stock price relatives at close of day n: $\mathbf{X}^{(n)} = (X_1^{(n)}, \dots, X_m^{(n)})$ Portfolio: $a = (a_1, ..., a_m)$ Wealth relative at close of day n: $S_n := S(X^{(n)}) = a_1 X_1^{(n)} + \cdots + a_m X_m^{(n)}$

generic stock price relative A stochastically stationary market: repeated independent trials $\mathbf{X}, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \dots, \mathbf{X}^{(n)}, \dots$

The sequence of log wealth relatives is independent with a common distribution!

$$log_2(S), log_2(S_1), log_2(S_2), \dots, log_2(S_n), \dots$$

 $E[\log_2(S)] = E[\log_2(S(X))] =: \Delta(\alpha)$ doubling rate for portfolio α

Negative $\Delta(a)$	-0.001	-0.1	-0.5
Positive $\Delta(a)$	0.001	0.1	0.5
# days to double (halve) wealth	1000	10	2

$$\Delta_n = \frac{1}{n} \left[\log_2(S_1) + \log_2(S_2) + \dots + \log_2(S_n) \right] \text{ is concentrated at } \Delta(\alpha)$$
In short, we write: $\Delta_n \doteq \Delta(\alpha)$

$$W_n = 2^{n \cdot \Delta_n}$$

Optimal portfolio selection

```
Portfolio: \mathfrak{a}=(\mathfrak{a}_1,\ldots,\mathfrak{a}_m) Stock price relatives at close of day n: X^{(n)}=(X_1^{(n)},\ldots,X_m^{(n)}) Wealth relative at close of day n: S_n:=S(X^{(n)})=\mathfrak{a}_1X_1^{(n)}+\cdots+\mathfrak{a}_mX_m^{(n)} Wealth at close of day n: W_n=2^{n\cdot\Delta_n} \Delta_n\doteq\Delta(\mathfrak{a})
```

Optimal portfolio selection

```
Portfolio: \mathfrak{a}=(\mathfrak{a}_1,\ldots,\mathfrak{a}_m) Stock price relatives at close of day \mathfrak{n}\colon X^{(\mathfrak{n})}=(X_1^{(\mathfrak{n})},\ldots,X_m^{(\mathfrak{n})}) Wealth relative at close of day \mathfrak{n}\colon S_\mathfrak{n}:=S(X^{(\mathfrak{n})})=\mathfrak{a}_1X_1^{(\mathfrak{n})}+\cdots+\mathfrak{a}_mX_m^{(\mathfrak{n})} Wealth at close of day \mathfrak{n}\colon W_\mathfrak{n}=2^{\mathfrak{n}\cdot\Delta_\mathfrak{n}} \Delta_\mathfrak{n}\doteq\Delta(\mathfrak{a})
```

Slogan

Select the portfolio \mathfrak{a}^* that maximises the doubling rate: $\mathfrak{a}^* := \arg\max_{\mathfrak{a}} \Delta(\mathfrak{a})$

Optimal portfolio selection

```
Portfolio: \mathfrak{a}=(\mathfrak{a}_1,\ldots,\mathfrak{a}_m) Stock price relatives at close of day \mathfrak{n}\colon X^{(\mathfrak{n})}=(X_1^{(\mathfrak{n})},\ldots,X_m^{(\mathfrak{n})}) Wealth relative at close of day \mathfrak{n}\colon S_\mathfrak{n}:=S(X^{(\mathfrak{n})})=\mathfrak{a}_1X_1^{(\mathfrak{n})}+\cdots+\mathfrak{a}_mX_m^{(\mathfrak{n})} Wealth at close of day \mathfrak{n}\colon W_\mathfrak{n}=2^{\mathfrak{n}\cdot\Delta_\mathfrak{n}} \Delta_\mathfrak{n}\doteq\Delta(\mathfrak{a})
```

Slogan

Select the portfolio \mathfrak{a}^* that maximises the doubling rate: $\mathfrak{a}^* := \arg\max_{\mathfrak{a}} \Delta(\mathfrak{a})$ $\Delta^* := \Delta(\mathfrak{a}^*) := \max_{\mathfrak{a}} \Delta(\mathfrak{a})$ optimal doubling rate of wealth