Math 304 Homework 6

Your name goes here

DUE OCTOBER 26, 2018

Theorem K. Let R be a commutative ring with identity, and $I, J \subseteq R$ ideals.

1. The sum I + J of I and J is an ideal of R, where

$$I + J := \{x + y : x \in I, y \in J\}.$$

2. The product IJ of I and J is an ideal of R, where

$$IJ := \{x_1y_1 + x_2y_2 + \dots + x_ny_n : n \ge 0, x \in I, y \in J\}.$$

3. The *n*th power of I, I^n is an ideal of R, where

$$I^n = \underbrace{I \cdot I \cdots I}_{n \text{ times}}.$$

Proof. \Box

In the following theorem, fill in the blank, and then complete the proof.

Theorem L. Let $m, n \in \mathbb{Z}$. If a is _____, then $\langle a \rangle = \langle m \rangle + \langle n \rangle$.

Proof.