Gromov–Hausdorff distance between clouds of special type

Calculating distance to cloud of bounded metric spaces

M. V. Lomonosov Moscow State University

Author: Boris Nesterov

2025

Gromov-Hausdorff distance

1

Clouds

The Gromov–Hausdorff distance is a generalized pseudometric on the class of all metric spaces. Example: $d_{GH}(\Delta_1, \mathbb{R}) = \infty$.

Clouds: all metric spaces that are at a finite distance from each other. [X] — cloud containing X.

Cloud of bounded metric spaces

$$|X,\Delta_1|=rac{1}{2}\operatorname{diam} X$$

Cloud $[\Delta_1]$ — cloud of all <u>bounded</u> metric spaces. Ultrametric inequality:

$$|X, Y| \leq \max\{|X, \Delta_1|, |Y, \Delta_1|\}$$

Geodesic:

$$|\lambda X, \mu X| = |\lambda - \mu||X, \Delta_1|$$

Cloud of bounded metric spaces

Stabilizer group

Multiplying spaces by $\lambda > 0$ can produce interesting results. The distance $|X, \lambda X|$ can be infinite. For example, if X is a geometric progression.

Stabilizer group: all $\lambda > 0$ such that $[X] = [\lambda X]$.

Trivial: St $([X]) = \{1\}.$

Center: metric space X, such that $X = \lambda X$

for all $\lambda \in St([X])$.

Gromov-Hausdorff distance between clouds

Metric spaces are <u>sets</u> by definition. Clouds are not sets, they are <u>proper classes</u>. They contain sets of arbitrary cardinality. Definition of Gromov–Hausdorff distance is modified.

Center image Theorem

Clouds [M], $[\Delta_1]$, [M] has a nontrivial stabilizer and M — center. R — correspondence between them, dis $R = \epsilon < \infty$. Then $|R(\Delta_1), M| \le 2\epsilon$.

Center image Theorem

Center image Theorem

Distance theorem

A cloud has a <u>nontrivial</u> stabilizer, and there are two spaces which break the ultrametric inequality. Then it's distance to $[\Delta_1]$ is <u>infinite</u>.

M is the center of [M], Y_1 and Y_2 are such metric spaces that

$$|Y_1, M| \le \rho,$$

 $|Y_1, M| \le \rho,$
 $|Y_1, Y_2| > \rho.$

Distance Theorem

$$X_1 = R^{-1}(Y_1), X_2 = R^{-1}(Y_2)$$
 X_1
 X_2
 X_2
 X_3
 X_4
 X_4
 X_5
 X_6