

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesores: Constanza del Campo, Camilo Sánchez

AYUDANTES: AGUSTÍN GILBERT, MARTINA RUZ,

SANTIAGO MARCANO, OMAR NEYRA

Introducción al Álgebra y Geometría - MAT1207 Ayudantía 6

16 de Abril, 2024

Ejercicio 1: Determine el valor de c para que el polinomio $q(x) = x^2 + c$ divida al polinomio $p(x) = x^2 + c$ $2x^3 - x^2 + 6x - 3$

Ejercicio 2: Dado $p(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ determine el resto al dividir p(x) por el polinomio q(x):

a)
$$q(x) = x^2 - 2x + 3$$

b)
$$q(x) = x - 1$$

c)
$$q(x) = x - 3$$

Ejercicio 3: Factorice $x^6 - 1$ en irreducibles en $\mathbb{R}[X]$

Ejercicio 4: Decida si el polinomio $p(x) = x^4 - 7x^3 + 5x^2 - 3x + 2$ es reducible en $\mathbb{Q}[X]$

Ejercicio 5: Relacione cada polinomio con una de las gráficas:

(a)
$$x(x^2 - 4)$$

(b)
$$\frac{1}{2}x^6 - 2x^4$$

(c)
$$-x^2(x^2-4)$$

(a)
$$x(x^2 - 4)$$
 (b) $\frac{1}{2}x^6 - 2x^4$ (c) $-x^2(x^2 - 4)$ (d) $-x^5 + 5x^3 - 4x$ (e) $x^4 + 2x^3$ (f) $-x^3 + 2x^2$

$$(e)x^4 + 2x^3$$

(f)
$$-x^3 + 2x^2$$

Ejercicio 6: Si $z=i\in\mathbb{C}$ es raiz de la ecuación

$$x^5 - x^4 - x + 1 = 0$$

determine las otras raíces

Ejercicio 7: (Propuesto) Considere a, b, c reales positivos. ¿Es posible que $p(x) = ax^2 + bx + c$, $q(x) = bx^2 + cx + a$ y $r(x) = cx^2 + ax + b$ tengan solo raíces reales?

Ejercicio 8: (Propuesto) Factorizar los polinomios

a)
$$q(x) = x^{12} - 1$$
 en $\mathbb{R}[X]$ y $\mathbb{Q}[X]$

b)
$$q(x) = x^4 - 1$$
 en $\mathbb{R}[X]$ y $\mathbb{C}[X]$

c)
$$q(x) = x^4 + 1$$
 en $\mathbb{R}[X]$ y $\mathbb{C}[X]$

d)
$$q(x) = x^4 - 2$$
 en $\mathbb{R}[X]$ y $\mathbb{Q}[X]$