GATE

Previous Year Questions

G. V. V. Sharma

Copyright ©2024 by G. V. V. Sharma.

https://creative commons.org/licenses/by-sa/3.0/

 $\quad \text{and} \quad$

 $\rm https://www.gnu.org/licenses/fdl-1.3.en.html$

Contents

Int	production	iii
1	2007	1
2	2008	3
3	2009	5
CE	E	5
4	2010	9
CE	E	9
5	2011	13
6	2012	15
M	E	15
7	2013	19
8	2014	21
EE	E	21
9	2015	29
10	2016	31

11 2017	33
12 2018	35
13 2019	37
14 2020	39
15 2021	41
16 2022	43
17 2023	45
18 2024	47

Introduction

This book contains a typed GATE question set.

2009

CE

3.1 A square matrix **B** is skew-symmetric if (2009-CE)

- (a) ${\bf B}^{\top} = -{\bf B}$ (b) ${\bf B}^{\top} = {\bf B}$ (c) ${\bf B}^{-1} = {\bf B}$
- 3.2 For a scalar function $f(x, y, z) = x^2 + 3y^2 + 3z^2$, the gradient at the point P(1, 2, -1) (2009-CE)
 - (a) $2\overrightarrow{i} + 6\overrightarrow{j} + 4\overrightarrow{k}$ (b) $2\overrightarrow{i} + 6\overrightarrow{j} 4\overrightarrow{k}$ (c) $2\overrightarrow{i} + 12\overrightarrow{j} + 4\overrightarrow{k}$ (d) $\sqrt{56}$
- 3.3 The analytic function $f(z) = \frac{z-1}{z^2+1}$ has singularities at (2009-CE)
 - (a) 1 and -1
- (b) 1 and i
- (c) 1 and -i (d) i and -i
- 3.4 A thin walled cylindrical pressure vessel having a radius of 0.5 m and wall thickness of 25 mm is subjected to an internal pressure of 700 kPa. The hoop stress developed (2009-CE)is
 - (a) 14 MPa
- (b) 1.4 MPa
- (c) 0.14 MPa
- (d) 0.014 MPa
- 3.5 The modulus of rupture of concrete in terms of its characteristic cube compressive strength (f_{ck}) in MPa according to IS 456:2000 is (2009-CE)

	(a) $5000f_{ck}$	(b) $0.7f_{ck}$	(c) $5000\sqrt{f_{ck}}$	(d) $0.7\sqrt{f_{ck}}$
3.6	In the theory of plas	stic bending of beams	, the ratio of plastic	moment to yield moment
	is called	Ü	, <u>.</u>	(2009-CE)
	(a) shape factor		(c) modulus of res	silience
	(b) plastic section	modulus	(d) rigidity modul	us
3.7	For limit state of co	ollapse, the partial sa	ftey factors recomme	ended by IS 456:2000 for
	estimating design st	rength of concrete ar	nd reinforcing steel a	re respectively(2009-CE)
	(a) 1.15 and 1.5	(b) 1.0 and 1.0	(c) 1.5 and 1.15	(d) 1.5 and 1.0
3.8	The point within th	ne cross sectional pla	ne of a beam throug	gh which the resultant of
	the external loading	on the beam has to	pass through to ensu	re pure bending without
	twisting of the cross	s-section of beam is o	called	(2009-CE)
	(a) moment centre	e (b) centroid	(c) shear centre	(d) elastic centre
3.9	The square root of	the ratio of momen	t of inertia of the o	cross section to its cross
	sectional area is cal	led		(2009-CE)
	(a) second momen	t of area	(c) section module	us
	(b) slenderness rat	io	(d) radius of gyraf	tion
3.10	Deposit with floccu	lated structure is for	med when	(2009-CE)
	(a) clay particles s	settle on sea bed	bed	
	(b) clay particles s	settle on fresh water l	lake) sand particles	settle on river bed

	(d)	sand particles settle on sea bed	
3.11	Dila	tancy correction is required when a strate	a is (2009-CE)
	(a)	cohesive and saturated and also has (N)	saturated slit/fine sand and N value of
		value	$\mathrm{SPT} > 15$ after the overburden correc-
		of STP > 15	tion
	(b)	saturated slit/fine sand and N value $(\!o\!f\!)$	coarse sand under dry condition and N
		SPT	value of SPT < 10 after the overburden

< 10 after the overburden correction

3.12 A precast concrete pile is driven with a 50 kN hammer falling through a height of 1.0 m with an efficiency of 0.6. The set value observed is 4 mm per blow and the combined temporary compression of the pile, cushion and the ground is 6mm. As per Modified Hiley Formula, the ultimate resistance of the pile is (2009-CE)

correction

(a) 3000 kN (b) 4285.7 kN (c) 8333 kN (d) 11905 kN

4.1 The $\lim_{x\to 0} \frac{\sin\left[\frac{2}{3}x\right]}{x}$

(a) 3 and 2

(a) $\frac{2}{3}$

2010

CE

4.2	Two coins are sim appearing is	ultaneously tossed.	The probabilit	y of two heads sim	ultaneously (2010-CE)
	(a) $\frac{1}{8}$	(b) $\frac{1}{6}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$	
4.3	The order and degr	ree of the differentia	al equation $\frac{d^3y}{dx^3}$	$+4\sqrt{\left(\frac{dy}{dx}\right)^3+y^2}=0$	(2010-CE)

(c) $\frac{3}{2}$

(b) 1

(2010-CE)

(d) ∞

(d) 3 and 1

4.4 Two people weighing W each are sitting on a plank of length L floating on water at $\frac{L}{4}$ from either end. Neglecting the weight of the plank. The bending moment at the centre of the plank is (2010-CE)

(c) 3 and 3

- (a) $\frac{WL}{8}$ (b) $\frac{WL}{16}$ (c) $\frac{WL}{32}$ (d) zero
- 4.5 For the truss shown in figure, the force in member QR is

(b) 2 and 3

(2010-CE)

- (a) zero (b) $\frac{P}{\sqrt{2}}$ (c) P (d) $\sqrt{2}P$
- 4.6 The major and minor principal stresses at a point 3 MPa and -3 MPa respectively.

 The maximum shear stress at the point is (2010-CE)
 - (a) zero (b) 3 MPa (c) 6 MPa (d) 9
- 4.7 The number of independent elastic constants for a linear elastic isotropic and homogeneous material is (2010-CE)
 - (a) 4 (b) 3 (c) 2 (d) 1
- 4.8 The effective length of a column of length L fixed against rotation and translation at one end and free at the other end is (2010-CE)
 - (a) 0.5 L (b) 0.7 L (c) 1.414 L (d) 2 L
- 4.9 As per Indian standard code for practice for prestressed concrete (IS:1343-1980) the minimum grades of concerte to be used for post-tensioned and pre-tensioned structural elements are respectively (2010-CE)

	is G . The angle of twist at the free end is				(2			(2010-CI	Ξ)
	(a)	$\frac{16TL}{\pi d^4G}$	(b) $\frac{32TL}{\pi d^4G}$	(c)	$\frac{64TL}{\pi d^4G}$	(d)	$\frac{128TL}{\pi d^4G}$		
4.11	In a	compaction test,	G, w, S and e repres	ent t	he specific gravit	y, wa	ater cont	tent, degr	ee
	of sa	aturation and vo	id ratio of the soil sa	mpl	e, respectively. I	f γ_w	represer	nts the un	it
	weig	ht of water and	γ_d represents the dry	unit	weight of the so	il, th	ne equat	ion for ze	ro
	air v	voids line is						(2010-CI	Ξ)
	(a)	$\gamma_d = \frac{G\gamma_w}{1+Se}$	(b) $\gamma_d = \frac{G\gamma_w}{1+Gw}$	(c)	$\gamma_d = \frac{Gw}{1 + S\gamma_w}$	(d)	$\gamma_d = \frac{C}{1+C}$	$\frac{Gw}{-Se}$	
4.12	A fin	ne grained soil h	as liquid limit of 60	and	plastic limit of 2	0. A	s per th	e plastici	ty
	char	t, according to I	S classification, the se	oil is	represented by t	he le	etter syn	nbols(201)	0-
	CE)								
	(a)	CL	(b) CI	(c)	СН	(d)	CL-ML		
4.13	Quio	ck sand condition	n occurs when					(2010-CI	Ξ)
	(a)	the void ratio o	f the soil becomes 1.	0	becomes equal	to t	the satu	ırated un	it
	(b)	the upward seep	page pressure in soil		weight of the so	oil			
		becomes zero		(d)	the upward se	epag	e press	ure in so	oil
					becomes equal	to t	he subn	nerged un	it
	(c)	the upward se	epage pressure in	soil	weight of the soi	1			

4.10 A solid circular shaft of diameter d and length L is fixed at one end and free at the

other end. A torque T is applied at the free end. The shear modulus of the material

(b) M40 and M30 $\,$ (c) M15 and M20 $\,$ (d) M30 and M40 $\,$

(a) M20 for both

2012

ME

6.1 In abrasive jet machining, as the distance between the nozzle tip and the work surface increases, the material removal rate (2012-ME)

(a) increases continuously

creases

(b) decreases continuously

(d) increases, becomes stable and then de-

(c) decreases, becomes stable and then in- creases

6.2 Match the following metal forming processes with their associated stresses in the workpiece (2012-ME)

Metal Forming Process	Type of Stress
1. Coining	S. Compressive
2. Wire Drawing	P. Tensile
3. Blanking	Q. Shear
4. Deep Drawing	R. Tensile and Compressive

(a) 1-S, 2-P, 3-Q, 4-R

(c) 1-P, 2-Q, 3-S, 4-R

(b) 1-S, 2-P, 3-R, 4-Q

(d) 1-P, 2-R, 3-Q, 4-S

6.3	+0.030			mm mate with holes crons) in the assembly	
	(a) 40	(b) 30	(c) 20	(d) 10	
6.4	During normaliz	ing process of steel, th	e specimen is heate	d (2012-MI	E)
	(a) between the	upper and lower critic	al temperature and	cooled in still air.	
	(b) above the up	oper critical temperatu	re and cooled in fu	rnace.	
	(c) above the up	oper critical temperatu	re and cooled in sti	ll air	
	(d) between the	upper and lower critic	al temperature and	cooled in furnace.	
6.5	Oil flows through	a 200 mm diameter l	norizontal cast iron	pipe (friction factor, f	=
	0.0225) of length	500 m. The volumetri	c flow rate is $0.2 \ m$	$^{3}/s$. The head loss (in n	n)
	due to friction is	(assume $g = 9.81 \ m/s$	$^{2})$	(2012-M)	Ξ)
	(a) 116.18	(b) 0.116	(c) 18.22	(d) 232.36	
6.6	For an opaque su	urface, the absorptivity	$y(\alpha)$, transmissivity	$r(\tau)$ and reflectivity (ρ) a	re
	related by the equ	ıation		(2012-MI	E)
	(a) $\rho + \alpha = \tau$	(b) $\rho + \alpha + \tau = 0$	(c) $\rho + \alpha = 1$	(d) $\rho + \alpha = 0$	
6.7	Steam enters an a	diabatic turbine opera	ting at steady state	with an enthalpy of 3251	.0
	kJ/kg and leaves	as a saturated mixture	at 15 k Pa with qua	lity (dryness fraction) 0.	9.
	The enthalpies of	the saturated liquid	and vapor at 15 k P	$P_{a} \ { m are} \ h_{f} = 225.94 \ kJ/R_{o}$	kg
	and $h_g = 2598.3$	kJ/kg respectively. The	e mass flow rate of	steam is 10 kg/s . Kinet	ic

is

and potential energy changes are negligible. The power output of the turbine in ${\cal MW}$

(2012-ME)

	If the input speed is	If the input speed is 1440 rpm, the output speed in rpm is (2012)		
	(a) 1200	(b) 900	(c) 875	(d) 720
6.9			ude of the acceleration	on of the point of contact (2012-ME)
	(a) zero	(b) $r\alpha$	(c) $\sqrt{r\alpha^2 + (r\omega^2)^2}$	(d) $r\omega^2$
6.10	the shell is increase	d by 1% and the th	ickness is reduced by	ressure. If the radius of y 1%, with the internal circumferential (hoop) (2012-ME) (d) 2.02
6.11	The area enclosed by plane is $(a) \frac{1}{6}$	etween the straight li (b) $\frac{1}{4}$		rabola $y=x^2$ in the x-y (2012-ME)
6.12			-	At the point $x = 0, f(x)$ $(2012-ME)$

(b) 8.9

(c) 9.1

6.8 The following are the data for two crossed helical gears used for speed reduction:

Gear I : Pitch circle diameter in the plane of rotation 80 mm and helix angle 30°

Gear II : Pitch circle diameter in the plane of rotation 120 mm and helix angle 22.5°

(d) 27.0

(a) 6.5

	(a) continuous and differentiable.	(c) continuous and non-differentiable.
	(b) non-continuous and differentiable.	(d) neither continuous nor differentiable.
6.13	Which one of the following is \mathbf{NOT} a dec	ision taken during the aggregate production
	planning stage?	(2012-ME)
	(a) Scheduling of machines	pen
	(b) Amount of labour to be committed	(d) Inventory to be carried forward
	(c) Rate at which production should h	ар-

2014

EE

8.1 The overcurrent relays for the line protection and loads connected at the buses are shown in the figure (2014-EE)

The relays are IDMT in nature having the characteristic

$$t_{op} = \frac{0.14 * TimeMultiplierSetting}{(PlugSettingMultiplier)^{0.02} - 1}$$

The maximum and minimum fault currents at bus B are 2000 A and 500 A respectively. Assuming the time multiplier setting and plug setting for relay RB to be 0.1 and 5A respectively, the operating time of RB (in seconds) is ______.

8.2 For the given system, it is desired that the system be stable. The minimum value of α for this condition is . (2014-EE)

8.3 The Bode magnitude plot of the transfer function $G(s) = \frac{K(1+0.5s)(1+\alpha s)}{s\left(1+\frac{s}{8}\right)(1+bs)\left(1+\frac{s}{36}\right)}$ is shown below: Note that -6 dB/octave = - 20 dB/decade. The value of $\frac{a}{bK}$ ______. (2014-EE)

8.4 A system matrix is given as follows.

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -6 & -11 & 6 \\ -6 & -11 & 5 \end{bmatrix}$$

The absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue is (2014-EE)

8.5 The reading of the voltmeter (rms) in volts, for the circuit shown in the figure is
(2014-EE)

8.6 The dc current flowing in a circuit is measured by two ammeters, one PMMC and another electrodynamometer type, connected in series. The PMMC meter contains 100 turns in the coil, the flux density in the air gap is $0.2 \ Wb/m^2$, and the area of the coil is $80 \ mm^2$. The electrodynamometer ammeter has a change in mutual inductance with respect to deflection of $0.5 \ mH/deg$. The spring constants of both the meters are equal. The value of current, at which the deflections of the two meters are same, is _______.

8.7 Given that the op-amps in the figure are ideal, the output voltage V_0 is

(a)
$$(V_1 - V_2)$$

(c)
$$2(V_1-V_2)$$

(b)
$$(V_1 - V_2)/2$$

(d)
$$(V_1 + V_2)$$

8.8 Which of the following logic circuits is a realization of the function F whose Karnaugh map is shown in figure (2014-EE)

8.9 In the figure shown, assume the op-amp to be ideal. Which of the alternatives gives the correct Bode plots for the transfer function $\frac{V_0(\omega)}{V_i(\omega)}$ (2014-EE)

8.10 An output device is interfaced with 8-bit microprocessor 8085A. The interfacing circuit is shown in figure

The interfacing circuit makes use of 3 Line to 8 Line decoder having 3 enable lines $E_1, \overline{E_2}, \overline{E_3}$. The address of the device is (2014-EE)

- (a) 50_H
- (b) 5000_H
- (c) $A0_H$
- (d) $A000_H$
- 8.11 The figure shows the circuit diagram of a rectifier. The load consists of a resistance $10~\Omega$ and an inductance 0.05~H connected in series. Assuming ideal thyristor and ideal diode, the thyristor firing angle (in degree) needed to obtain an average load voltage of 70~V is ______ (2014-EE)

8.12 Figure (i) shows the circuit diagram of a chopper. The switch S in circuit in figure

(i) is switched such that the voltage v_D across the diode has the wave shape as shown in figure (ii). The capacitance C is large so that the voltage across it is constant. If switch S and the diode are ideal, the peak to peak ripple(in A) in the inductor current is ______ (2014-EE)

8.13 The figure shows one period of the output voltage of an inverter. α should be chosen such that $60^{\circ} < \alpha < 90^{\circ}$. If the rms value of fundamental component is 50 V, then α in degree is ______ (2014-EE)

Figure(ii)

