HELMHOLTZ MUNICI)

Rare variant association tests

Ozvan Bocher November 28th, 2023

Rare variant association tests (RVAT)

- 1. Introduction
- 2. Types of RVAT
- 3. Grouping of variants
- 4. Selection of variants
- 5. RVAT in practice

1 Introduction

GWAS – rare variants

Homozygous 0/0

Heterozygous 0/1

Homozygous 1/1

Common variants

Controls

Rare variants

Controls

GWAS – statistical power

Power to detect associations of different effect size (odds ratio, OR) are compared for common variants (MAF ¼ 0.2, panel A) and rare variants (MAF ¼ 0.01, panel B). Effective sample sizes of several key studies are indicated along the x-axis, to reflect the power of the GWAS studies (blue), meta-analyses (green) and Immunochip-based studies (yellow) [93].

HELMHOLTZ MUNICI

GWAS – rare variants

Rare variant association tests (RVAT)

- Issue: Lack of power to detect rare variants with low and intermediate effect sizes
- Hypothesis: Different rare variants can be observed in different individuals but with a similar effect on a given genomic region

RVAT (Rare Variant Association Tests)

Association between all rare variants and the trait

- Rare variants
- Common variants: single-point associations in GWAS

2

Rare Variant Association Tests (RVAT)

Burden tests

Hypotheses:

- All RV in the genomic region influence the phenotype
- The effect is similar between the variants

Computation of a burden score for each individual in each region

Comparison of the score's distributions with regression models:

$$Y = \beta_{Cov} X_{Cov} + \beta_G X_G$$

 X_G : matrix of genetic score

 X_{Cov} : matrix of covariates

Y can be binary, continuous or categorial

Burden tests – types of scores

ID	Phenotype	RV1	RV2	RV3	RV4	RV5	CAST	X_{G}
1	Case	0	0	1	0	1	1	2
2	Case	1	2	0	1	0	1	4
3	Case	1	1	0	1	1	1	4
4	Control	1	0	1	0	0	1	2
5	Control	0	0	1	0	0	1	1
6	Control	0	0	0	0	0	0	0

- CAST score (Morgenthaler et Thilly, 2007, Mutat Res):
 - Binary score: present of at least one rare allele
- Sum of alleles (here X_G) (Li and Leal, 2008, AJHG)
- WSS score (Madsen et Browning, 2009, Plos Genetics):
 - Hypothesis that rarer variants have stronger effects $w_i = \frac{1}{\sqrt{n_i \cdot q_i \cdot (1-q_i)}}$ with q_i representing the frequency

Burden tests – limitations

Lack of power when variants with different directions and non-causal variants are present

→ Variance-component RVAT to model mixed effects of RV

Variance-based RVAT: SKAT

SKAT: Sequence Kernel Association Tests

Hypothesis: RV in a genomic region have a mixture of null, protective and deleterious effects

→ Statistics based on the dispersion of the genetic effects

$$Y = \beta_{Cov} X_{Cov} + Zu$$

Z: matrix of weighted genotypes

$$u \sim MVN(0, \tau I)$$

• **H0**: $\tau = 0 \rightarrow All RV$ have a null genetic effect

Variance-based RVAT: SKAT

ID	Phenotype	RV1	RV2	RV3	RV4	RV5
1	Case	1	0	0	0	1
2	Case	0	0	1	1	0
3	Case	0	2	0	1	0
4	Case	1	0	0	0	1
5	Control	0	1	0	1	1
6	Control	1	0	0	1	0
7	Control	0	1	1	0	0
8	Control	1	0	1	0	0
		0	0	-1	0	1

ID	Phenotype	RV1	RV2	RV3	RV4	RV5
1	Case	1	1	0	0	0
2	Case	0	0	1	1	0
3	Case	0	2	0	1	0
4	Case	1	1	0	1	0
5	Control	0	0	0	1	0
6	Control	1	0	0	0	1
7	Control	0	0	1	0	1
8	Control	1	0	1	0	1
		0	4	-1	2	-3

Variance=0.5

Variance=2.5

RVAT

Burden tests

- Easy to interpret
- OR estimates
- Sensitive to variant selection ++

Variance-component tests

- Can incorporate mixed-effects variants
- Harder to interpret

→ SKAT-Optimal

$$S_{SKAT-O} = \boldsymbol{\rho} \cdot S_{SKAT} + (1 - \boldsymbol{\rho}) \cdot S_{Burden}$$

- Finds optimal ρ that minimizes the p-value
- Needs permutations to compute the p-value
- Can also be hard to interpret

3

Aggregation of rare variants

WES vs WGS

- WES: access to coding regions of the genome
- → Positions of genes often used to define genomic regions
- → Approximately 20,000 RVAT performed

- WGS: access to the whole-genome
- → RVAT very often limited to coding parts of the genome

RVAT outside the coding genome

- Use of defined elements (TADs, enhancers, silencers, ...)
- → Can be of limited size and gather a limited number of variants
- → Not covering the whole-genome

HELMHOLTZ MUNICI

Gene 2

Gene 1

Enhancer

RVAT outside the coding genome

- Use of defined elements (TADs, enhancers, silencers, ...)
- → Can be of limited size and gather a limited number of variants
- → Not covering the whole-genome

- Use of sliding windows (WGScan², ScanG³)
- → Covers the whole genome
- → No biological information used
- → Results in a high number of tests, needs permutations
- Alternative method: RAVA-FIRST⁴
- → Definition of regions in the non-coding genome based on genomic constraint

Gene 1

Enhancer

HELMHOLTZ MUNICI

Gene 2

4

Selection of qualifying RV

Importance of selecting variants

WES vs WGS

Variant Location	Transcript Map	Transcript Product	Transcript description	Potential Outcome	
Coding (standard interpretation)	+		Synonymous/ Missense/ Nonsense	Homeostasis/ Altered Product/ Loss of function	
Isoform specific/ Noncoding regulatory	······································)	Isoform loss/alteration Altered translation	Aberrant expression patterns	
Promoter/Enhancer/ Looping/cis-regulatory IncRNA	······································		Over/ Under expression	Aberrant expression patterns	
Splice Donor/Acceptor Branchpoint	······································		Skipped exon/ Retained intron	Altered product Nonsense Mediated Decay	

Fig. 2 How coding and noncoding variation can impact gene function. Variants (arrows) at a hypothetical locus are shown along with potential functional impacts

Selection in the coding genome – Annotation tools

In the coding genome, focus on the consequences on the proteins

Commonly applied filtering = variants with a consequence of at least mis-sense

→ Impact on the protein

Available tools: VEP

HELMHOLTZ MUNICI

Selection in the non-coding genome – scores

- In the non-coding genome: no direct consequence on the proteins
- Variants that regulate gene expression → harder to class them in categories of variants
- Development of pathogenic scores
 - → Can also be used in the coding genome
 - → Performance highly dependent on training set and type of variants

Selection in the non-coding genome – CADD scores

- CADD Combined Annotation Dependent Depletion
- Define for every position and allele for SNPs and possible INDEL annotation
- Commonly used in RVAT

HELMHOLTZ MUNICI

Alternative of hard filtering

- Include all variants and weight them according to the scores
- Include multiple annotation scores and select the best combination:
 - Annotation scores capture complementary information
 - Examples: STAAR (Li et al. 2020, Nat. Gen.), FunSPU (Ma et al. 2019)
 - Bayesian methods: DoEstRare (Persyn 2017, Plos One), BeviMed (Greene 2017, AJHG)

HELMHOLTZ MUNICI

5

RVAT in practice

Available R packages

 Table 1 Examples of software to perform rare variant association tests

Software name	References	Methods	Phenotypes	URL
AssotesteR	Sanchez (2013)	Burden and quadratic tests	Binary	https://cran.r-project.org/web/packages/ AssotesteR/
BeviMed	Greene et al. (2017)	Bayesian variant selection procedure	Binary	https://cran.r-project.org/web/packages/ BeviMed/
bigQF	Lumley et al. 2018	Quadratic test	Binary, quantitative	https://github.com/tslumley/bigQF
BVS	Quintana et al. (2011)	Bayesian variant selection procedure	Binary	https://cran.r-project.org/web/packages/ BVS/
DoEstRare	Persyn et al. (2017)	Adaptative burden test	Binary	https://cran.r-project.org/web/packages/ DoEstRare/
FunSPU	Ma and Wei (2019)	Adaptive combined test	Binary, quantitative	https://github.com/sputnik1985/FunSPU/
Ravages	Bocher et al. (2019)	Burden and quadratic tests	Binary, multino- mial, quantitative	https://github.com/genostats/Ravages/
SCANG	Li et al. (2019)	Burden, quadratic and combined tests, sliding windows	Binary, quantitative	https://github.com/zilinli1988/SCANG
SKAT	Lee et al. (2012)	Burden, quadratic and combined tests	Binary, quantitative	https://cran.r-project.org/web/packages/ SKAT/
VAT	Wang et al. (2014)	Burden and quadratic tests	Binary, quantitative	https://varianttools.sourceforge.net/ Association/HomePage
WGScan	He et al. (2019)	Burden, quadratic and combined tests, sliding windows	Binary, quantitative	https://cran.r-project.org/web/packages/ WGScan/

Other tools

- RVTests (Zhan et al. 2016, Bioinformatics)
- SEQSpark (*Zhang et al. 2017, AJHG*)
- REGENIE (Mbatchou et al. 2021, Nat. Genet.)
- → Can deal with large sample sizes such as Biobank data but restricted to classical methods

Which tool to choose?

- → Depends on the desired statistical test
- → Depends on how to group and filter the variants
- → Depends on the size of data to analyze

Further considerations

Quality control

- Measures like HWE not adapted for RV
- Problem of stratification more important and at finer scale that common variants as RV have appeared more recently and are often specific to population
 - PCA is not capturing well stratification from RV
 - Including PCs as covariates do no always well correct
 - Still no clear answer on how to use PCA for RVAT
- Dedicated pipeline for RVAT is useful
 - Example: RAVAQ

Further considerations

Quality control

HELMHOLTZ MUNICI

Further considerations

Selection of controls

Method	External control data	Require internal control?	Require sequencing depth for cases and controls?	Method correcting for batch differences between case controls	Can the method adjust for covariates?	Test
RVS (Derkach et al., 2014)	Individual genotype likelihood	N	N	Modeling the effect of sequencing depth	N	Single variant based test, burden test and variance component based test
TASER (Hu et al., 2016)	Individual Bam files	N	N	Modeling the effect of sequencing depth	N	Burden test
Chen and Lin (Chen and Lin, 2020)	Individual genotype likelihood	N	N	Modeling the effect of sequencing depth	Y	Single common variant based tes
iECAT-Score (Li and Lee, 2021)	Individual genotypes	Y	N	Only use the external control if no batch effect exists	Y	Single variant based test for common and rare
iECAT-O (Lee et al., 2017)	Summary counts	Y	N	Only use the external control if no batch effect exists	N	A combination of burden test and variance component based test
ProxECAT (Hendricks et al., 2018)	Summary counts	N	N	Use non-functional variants as a baseline in the test	N	Burden test based on rare allele counts
TRAPD (Guo et al., 2018)	Summary counts	N	≥ 10 in 90% of samples	Adjusting filtering criteria	N	Burden test based on sample counts
RV- EXCALIBER (Lali et al., 2021)	Summary counts	Preferred	≥ 20 in 90% of samples	Adjust the expected counts sample-wise and gene-wise	N	Burden test based on rare allele counts
CoCoRV (Chen et al., 2022)	Summary counts	N	≥10 in 90% of samples	Consistent filtering to keep high quality variants	N	Burden test based on sample counts

• **Tissue-specific** annotations could empower RVAT by better predicting variant consequences

Conclusions

- Most studies are based on burden or variance-component tests
 - → Burden tests: easier to interpret
 - → Variance-component tests: less sensitive to selection of variants
- Definition of regions and qualifying variants
 - → Active area of research, especially in the non-coding genome
 - → Most of the WGS data are not currently used in the RV context

Rare variant aggregation tests

Meta-analysis possible but more challenging (aggregation of variants + stratification)

Conclusions

Thank you.