

Hotel Revenue Analysis Project

By Om Shanker Sahay

Link to GitHub Repository Page:

Github Repository Page

Problem Statement

 Goal: A business manager of a chain of hotel would like to request help from the data analytics team to develop a dashboard to analyze & visualize hotel booking data

- The business manager is interested if there's any patterns/ seasonality with respect to:
 - 1. Guests
 - 2. Revenue

Requirement: Build a Dashboard using PowerBI to provide at-a-glance information about features that are relevant to revenue

Dataset Background

- The dataset used in this analysis can be found in my GitHub Repository:
 - Github Repository Page
- This data set contains booking information for a city hotel and a resort hotel

• In the following slide, further elaboration into the fieldname, as well as the definition of each field will be shown.

Dataset glossary in final SQL query [1/4]

Original Columns Present in Dataset

Field Name	Description
Hotel	Hotel (H1 = Resort Hotel or H2 = City Hotel)
is_canceled	Value indicating if the booking was canceled (1) or not (0)
lead_time	Number of days that elapsed between the entering date of the booking into the PMS and the arrival date
Arrival_date_year	Year of arrival date
Arrival_date_month	Month of arrival date
Arrival_date_week_number	Week number of year for arrival date
Arrival_date_day_of_month	Day of arrival date
Stays_in_weekend_nights	Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel
Stays_in_week_nights	Number of week nights (Monday to Friday) the guest stayed or booked to stay at the hotel
Adults	Number of adults
Children	Number of children
Babies	Number of babies
Cost	Cost incurred by the hotel company related to the associated meal package provided to the customer
Meal	Type of meal booked. Categories are presented in standard hospitality meal packages: Undefined/SC – no meal package; BB – Bed & Breakfast; HB – Half board (breakfast and one other meal – usually dinner); FB – Full board (breakfast, lunch and dinner)
country	Country of origin. Categories are represented in the ISO 3155–3:2013 format

Dataset glossary in final SQL query [2/4]

Original Columns Present in Dataset

Field Name	Description
Market_segment	Market segment designation. In categories, the term "TA" means "Travel Agents" and "TO" means "Tour Operators"
Distribution_channel	Booking distribution channel. The term "TA" means "Travel Agents" and "TO" means "Tour Operators"
Is_repeated_guest	Value indicating if the booking name was from a repeated guest (1) or not (0)
Previous_cancellations	Number of previous bookings that were cancelled by the customer prior to the current booking
Previous_bookings_not_cancelled	Number of previous bookings not cancelled by the customer prior to the current booking
Reserved_room_type	Code of room type reserved. Code is presented instead of designation for anonymity reasons.
Assigned_room_type	Code for the type of room assigned to the booking. Sometimes the assigned room type differs from the reserved room type due to hotel operation reasons (e.g. overbooking) or by customer request. Code is presented instead of designation for anonymity reasons.
Booking_changes	Number of changes/amendments made to the booking from the moment the booking was entered on the PMS until the moment of check-in or cancellation
Deposit_type	Indication on if the customer made a deposit to guarantee the booking. This variable can assume three categories: No Deposit – no deposit was made; Non Refund – a deposit was made in the value of the total stay cost; Refundable – a deposit was made with a value under the total cost of stay.
Agent	ID of the travel agency that made the booking
Company	ID of the company/entity that made the booking or responsible for paying the booking. ID is presented instead of designation for anonymity reasons

Dataset glossary in final SQL query [3/4]

Original Columns Present in Dataset

Field Name	Description
days_in_waiting_list	Number of days the booking was in the waiting list before it was confirmed to the customer
Customer_type	Type of booking, assuming one of four categories: Contract - when the booking has an allotment or other type of contract associated to it; Group – when the booking is associated to a group; Transient – when the booking is not part of a group or contract, and is not associated to other transient booking; Transient-party – when the booking is transient, but is associated to at least other transient booking
Adr	Average Daily Rate as defined by dividing the sum of all lodging transactions by the total number of staying nights
Required_car_parking_spaces	Number of car parking spaces required by the customer
total_of_special_requests	Number of special requests made by the customer (e.g. twin bed or high floor)
reservation_status	Reservation last status, assuming one of three categories: Canceled – booking was canceled by the customer; Check-Out – customer has checked in but already departed; No-Show – customer did not check-in and did inform the hotel of the reason why
Reservation_status_date	Date at which the last status was set. This variable can be used in conjunction with the ReservationStatus to understand when was the booking canceled or when did the customer checked-out of the hotel
Discount	Float value ranging from 0 to 1. Contains the associated discount provided to the customer belonging to the market_segment
Market_segment	Type of market_segment that the customer belongs to. Can be classified as: Undefined, Direct, Groups, Corporate, Aviation, Offline TA/TO, Online TA, Complementary

Dataset glossary in final SQL query [4/4]

Self-Calculated Columns

Field Name	Description
Revenue	 Self-Calculated column based on the factors: Stays_in_week_nights Stays_in_weekend_nights ADR Cost Discount
	 Self-Calculated column based on the factors: # of adults # of children # of babies
Guest_type	To categorize guest type into 4 categories: Single, Couple, Group, Family
Region	Self-Calculated column based on the guest's country code, which is represented in the ISO 3155–3:2013 format
Seasons	Self-Calculated column based on the 'arrival_date_month' of guests
Day_of_week	Self-Calculated column based on the 'arrival_date_day_of_month', 'arrival_date_month', 'arrival_date_year' of guests

Dataset Preparation in SQL [1/7]

Creation of Baseline Query

- Raw .csv file is ingested into Microsoft SQL Server Management Studio (SSMS) and SQL queries were iteratively built upon the baseline query below to obtain the final query to import into SSMS
- The baseline query utilizes UNION ALL, CTE & LEFT JOINs to aggregate all sheets within the excel spreadsheet

```
Baseline Query to consolidate data across all tables

-- Given that we'd like to analyze trends, revenue growth across each year, and that the names of columns remain the same across each year. UNION ALL was performed across all years to consolidate data. We'll use CTE and refer to the consolidated table as Hotel. At the same time, the foreign keys market segment, meal was used to JOIN market segment$ & meal cost$ tables together:

WITH hotels AS (

SELECT * FROM Hotel_Revenue_Dataset.dbo.['2018$']

UNION ALL

SELECT * FROM Hotel_Revenue_Dataset.dbo.['2019$']

UNION ALL

SELECT * FROM Hotel_Revenue_Dataset.dbo.['2020$']

)

SELECT *

FROM hotels as h

LEFT JOIN Hotel_Revenue_Dataset.dbo.market_segment$ AS m ON h.market_segment = m.market_segment

LEFT JOIN Hotel_Revenue_Dataset.dbo.meal_cost$ AS c ON h.meal = c.meal
```

 Following which, SQL queries were iteratively built upon for the creation of revenue & categorical columns

Dataset Preparation in SQL [2/7]

Creation of 'guest_type' column

One of the requirements was to investigate if there's any guest-related seasonality or trends

Noticing that in the dataset, there are 'adults', 'children' & 'babies' information for each booking made

- I want to create a single column that categorizes each booking by the type of guests, they fall into 4 categories
 - Single
 - Couple
 - Group
 - Family

```
This countries of the second o
```

Dataset Preparation in SQL [3/7]

Creation of 'region' column

Next, I noticed that the countries in which the guests belong to are stored in a three letter country code format.

I'd like to create a categorical column called 'region' to see if we can get any insights related to the data with regards to the customer's region

• The somewhat lengthy SQL code below utilizes multiple CASE WHEN and IN statements to return the corresponding regions of the guests

```
. .
        SELECT * FROM Hotel_Neverue_Dataset.dbo.{ 'Print'
        SHARCT * FROM State | Revenue_Dataset.dbo.(720234)
        SELECT # FROM Hotel, Sevenue Dataset. Sbo. [ 128295.]
               MEN SHORT IN CIDES, JOHN CLOSE, CARL, CARL, CHAP, 1989, 1989, 1987, 1981, 1981, 1987, 1981, 1981, 1981, 1981,
   SOF, TLY, YOU, SOY, HIS, HAD, SAF, THEY, THEY, THE WIS, WIS, SHE, SHE, SET, SET, SHE, SHE SHILL
                 WHEN country TH CHEAT, TONY , THEY, THEY TOTAL I THEN THOUGH Assertion
                 MEEN COUNTRY TH CHOIN', THAC , THAC ,
                WHEN COUNTRY THE CHARGE AND ADD TON THERE CONTROL AND
                  Men country IN ( 1980 ) THEN MODELS COUNTRIES!
                 WHEN country IN ( 'GEO') THEN CONCRESS
                WHEN country IN ( MER', W.L., P.W., PYF , UMI ) THEN DESCRIPT
WHEN COUNTRY IN ( MED', 1965 , 1965 ) THEN East Africa
                 WHEN country IN ( WHE! ) THEN THE NAME.
               WES COUNTY IN COME, COME
       #MD AS region
```

Dataset Preparation in SQL [4/7]

Creation of 'seasons' column

Given that the month of arrival of guests are provided in the dataset, I'd like to categorize them by seasons:

```
.
WITH hotels AS (
    SELECT * FROM Hotel_Revenue_Dataset.dbo.['2018$']
    UNION ALL
    SELECT * FROM Hotel Revenue Dataset.dbo.['2019$']
    UNION ALL
    SELECT * FROM Hotel Revenue Dataset.dbo.['2020$']
hotel all columns with seasons AS (
SELECT arrival date month,
        CASE
                WHEN arrival date month IN ('December', 'January', 'February') THEN 'Winter'
                WHEN arrival_date_month IN ('March', 'April', 'May') THEN 'Spring'
               WHEN arrival_date_month IN ('June', 'July', 'August') THEN 'Summer'
                WHEN arrival_date_month IN ('September', 'October', 'November') THEN 'Autumn'
        END AS seasons
FROM hotels AS h
LEFT JOIN Hotel_Revenue_Dataset.dbo.market_segment$ AS m ON h.market_segment = m.market_segment
LEFT JOIN Hotel Revenue Dataset.dbo.meal cost$ AS c ON h.meal = c.meal
SELECT *
FROM hotel all columns with seasons
```

Dataset Preparation in SQL [5/7]

Creation of 'day_of_week' column

• The SQL query below utilizes DATEPART & CASE WHEN statements, as well as converting and concatenating each columns from the arrival date to extract out the corresponding day of the week in which the guests arrive in.

```
. .
WITH hotels AS (
   SELECT * FROM Hotel_Revenue_Dataset.dbo.['2018$']
    UNION ALL
   SELECT * FROM Hotel Revenue Dataset.dbo.['2019$']
    UNION ALL
   SELECT * FROM Hotel_Revenue_Dataset.dbo.['2020$']
SELECT
    arrival date day of month,
   arrival_date_month,
    arrival_date_year,
   CONVERT(DATE, CONVERT(VARCHAR, arrival_date_day_of_month) + ' ' + arrival_date_month + ' ' +
CONVERT(VARCHAR, arrival_date_year)) AS arrival_date, -- concat and convert year, month, day of month
   CASE DATEPART(dw, CONVERT(DATE, CONVERT(VARCHAR, arrival date day of month) + 1 + 1 +
arrival_date_month + ' ' + CONVERT(VARCHAR, arrival_date_year))) - DATEPART(dw, ... | extracts day
       WHEN 1 THEN 'Sunday'
        WHEN 2 THEN Monday
        WHEN 3 THEN 'Tuesday'
        WHEN 4 THEN 'Wednesday'
        WHEN 5 THEN 'Thursday
        WHEN 6 THEN 'Friday'
       WHEN 7 THEN 'Saturday'
   END AS day of week
FROM hotels;
```

Dataset Preparation in SQL [6/7]

Creation of 'revenue' column

```
. .
   SELECT * FROM Hotel_Revenue_Dataset.dbo.[ 20185 ]
   SELECT * FROM Hotel Revenue Dataset.dbo.['20195']
   UNION ALL
   SELECT * FROM Hotel_Revenue_Dataset.dbo.['20205']
hotel_all_columns_with_revenue AS (
SELECT reservation_status, adr, discount, c.Cost,
(stays in week nights + stays in weekend nights) AS Number of Rooms Sold,
       CASE
               WHEN reservation_status = 'Canceled' THEN 0 - Validated it's 0. Here we assume that
               WHEN ADR < 0 THEN 8 -- Validated it's 0. As concluded martin. For ADR < 0, it's
               WHEN (reservation status = 'Check-Out' OR reservation status = 'No-Show') AND (adr =
OR adr < D) THEN D Validated it's D. If a customer has checked but or no show, ADR should not
               ELSE
               ( ((stays in week nights + stays in weekend nights) * (adr) * (1 - Discount)) -
c.Cost )
           END AS revenue
FROM hotels AS h
LEFT JOIN Hotel_Revenue_Dataset.dbo.market_segment$ AS m ON h.market_segment = m.market_segment
LEFT JOIN Hotel Revenue Dataset.dbo.meal cost$ AS c ON h.meal = c.meal
SELECT *
FROM hotel all columns with revenue
```


Since we're given the:

- 1. ADR value
- 2. # of weekdays and weekends stayed from a particular booking
- 3. % Discount corresponding for guests belong to a particular market segment
- 4. Meal Cost of food provided to the guest

We can manipulate the ADR formula to obtain the corresponding revenue generated by each booking, this is given by:

Revenue per booking

= $[(stays\ in\ week\ nights + stays\ in\ weekend\ nights) \times ADR \times (1 - Discount)] - Meal\ Cost$

Assumptions:

- 1. We assume that customers who canceled booking did so within the full return window
- Customers that have made the booking, did not cancel in time, or show up on the appointment date, will still be charged and thus generate revenue

Dataset Preparation in SQL [7/7]

Amalgating all previous queries into a single giant query in SSMS to export into PowerBI

After validating the calculations of each individual query created, we now combine all queries into a single giant query to bring in the necessary columns and features for data analysis and visualization

PowerBI Data Pre-Processing [1/3]

Combining "arrival_date_year", "arrival_date_month", "arrival_date_day_of_month" into a single column for continuous time axis plotting with hierarchical sorting

The dataset ported into PowerBI has separate columns for arrival information for guests, given by:

- "arrival_date_year",
- "arrival_date_month",
- "arrival_date_day_of_month"

This makes it difficult to hierarchically display arrival date information of guests in a continuous time axis

A custom column named "arrival_DD_MM_YYYY" was created in PowerBI with the formula below:

```
Text.From([arrival_date_day_of_month]) & "/" & Text.From([arrival_date_month]) & "/" & Text.From([arrival_date_year])
```

The new column was converted to DateTime Format:

PowerBI Data Pre-Processing [2/3]

Combining "arrival_date_year", "arrival_date_month", "arrival_date_day_of_month" into a single column for continuous time axis plotting with hierarchical sorting

- With the new "arrival_DD_MM_YYYY" column, we can finally display guests' arrival time & date details in a hierarchical format:
 - By Year
 - By Quarter
 - By Month
 - By Day

PowerBI Data Pre-Processing [3/3]

Creating 'WeekdayNumericTable' to sort guests booking by day of week

PowerBI sorts days of the week in alphabetical order by default

To logically sort 'day_of_week', we create a table with the same column name 'day_of_week'

• Now, 'day_of_week' from the original query is able to act as a foreign key and establish a relationship with

'day_of_week'

• Finally, 'day_of_week' was assigned to sort by column, using the 'WeekdayNumeric' column, to obtain the weekday-sorted plot

Regarding when "reservation_status_date" & "arrival_DD_MM_YYYY" is used during visualization

Field Name	Description		
reservation_status	Reservation last status, assuming one of three categories: Canceled – booking was canceled by the customer; Check-Out – customer has checked in but already departed; No-Show – customer did not check-in and did inform the hotel of the reason why		
Reservation_status_date	Date at which the last status was set. This variable can be used in conjunction with the ReservationStatus to understand when was the booking canceled or when did the customer checked-out of the hote		

- If we want to answer revenue-related questions with plots, we'll use "reservation_status_date" as the x-axis. This is because as defined in our SQL query, revenue is only generated when reservation_status is either "Check-Out" or "No-Show" having an adr >= 0.
 - For a revenue generating entry, since the "reservation_status_date" date value will always update to the latest date in which the customer has "check-out" or "No-Show", it is a more accurate representation of when revenue is generated as compared to using "arrival DD MM YYYY" as the x-axis
 - Conversely, this also assumes that the hotel's revenue is generated when the guests physically check-out from the hotel itself
 - This also means that we assume that all revenue in this data analysis is not generated from online booking

Field Name	Description	
Arrival_date_year	Year of arrival date	
Arrival_date_month	Month of arrival date	
Arrival_date_week_number	Week number of year for arrival date	
Arrival_date_day_of_month	Day of arrival date	

• Conversely, if we want to answer questions such as "Which are the most busy month?" & parking-related questions, We'll use "arrival_DD_MM_YYYY" column as it'll be a more accurate time representation of when the guests have physically "checked-in" into the hotel

Elaborating on 'reservation_status_date'

- For "Check-Out", we see that "reservation_status_date" is >= arrival date.
 - This means that the date listed in reservation_status_date is updated at the same time when the customer has checked out and thus the revenue is generated

reservation_status =	reservation_status_date =	arrival_Concat =	revenue
Check-Out	12/9/2019	5July2019	6813.01
Check-Dut	30/9/2018	1August2018	5949.01
Check-Out	30/9/2019	1August2019	5949.01
Check-Dut	29/8/2020	15August2020	3993.81
Check-Out	14/8/2018	1August2018	3462.76
Check-Out	14/8/2019	1August2019	3462.76
Check-Out	11/11/2019	19October2019	3310.51
Check-Out	13/8/2020	3August2020	3294.91
Check-Out	20/8/2020	6August2020	3150.028
Check-Out	27/6/2020	16June 2020	3134.328
Check-Dut	13/7/2019	21uly2019	3116.31
Check-Out	31/7/2020	1July2020	3087.01
Check-Dut	9/8/2020	1August2020	3069

 For "No-Show", we see that that "reservation_status_date" = arrival date

Takeaway reminder:

Reservation_status_date IS NOT THE DATE where the customer has reserved the booking prior to arriving at the hotel

reservation_status -	reservation_status_date =	arrival_Contat .	revenue *
No-Show	30/6/2019	30/une2019	3066.828
No-Show	2/12/2018	2December 2018	2870.61
No-Show	2/12/2019	2December 2019	2870.61
No-Show	12/5/2019	12May2019	2286.465
No-Show	3/2/2019	3February2019	2164.794
No-Show	13/2/2019	13February2019	2085.624
No-Show	9/5/2019	9May2019	1985.955
No-Show	3/9/2019	35eptember2019	1916.728
No-Show	12/1/2019	12Jenuary2019	1902.21
No-Show	30/3/2019	30March2019	1869.492
No-Show	30/6/2019	30/une2019	1851.684
No-Show	25/3/2019	25March2019	1773.6
No-Show	22/11/2018	22November2018	1744.899
No-Show	22/11/2019	22November2019	1744.899
No-Show	15/3/2020	15March2020	1700.61
No-Show	4/7/2019	4July2019	1514.97
No-Show	3/3/2019	3March2019	1510.532
No-Show	12/2/2019	12February2019	1503.91
No-Show	25/2/2019	25February2019	1498.835
No-Show	1774/2020	17April2020	1485.51

Hotel Revenue Dashboard

It provides at-a-glance information about features that are relevant to revenue generation

It also provides a comparison of revenue generated by different hotels, and parking space utilization information

Hotel guest-related seasonality EDA

This section will mainly focus on relevant visualizations that will aid in answering the following questions:

- "Which are the busiest months?"
- "On average, how long do guests stay at the hotel?"
- "Which day of the week do different types of guests, typically like to book on?"

Breakdown on the type of guests that are booking the hotel will be provided Relevant recommendations will be provided for the hotel manager to improve staffing allocation based on guest booking arrival data

Hotel guest-related seasonality EDA

"Which are the busiest months?"

On average, how long do guests stay at the hotel?

- From the line chart, we observe that the busiest months across all years are:
 - July & August for Resort Hotels
 - July to October for City Hotels

Recommendation: The hotel manager should take note to plan service staff shift accordingly to allocate more hotel staffing during those critical high volume months

 On average, guests stay <u>about 3.42</u> <u>nights</u> for both hotels

Hotel guest-related seasonality EDA

"Which day of the week do different types of guests, typically like to book on?"

Based on the data, we infer that:

- Couples and single guests typically account for the majority of bookings made for both hotels
- There are significantly more bookings made by Couple & Single guests for City Hotels as compared to Resort Hotels
- The number of City Hotel bookings made by group guests are about ten-fold for every day of the week as compared to Resort Hotels

<u>Recommendation:</u> Management could look into designing attractive packages tailored towards Couple & Single guests for both hotels, given that they represent the majority of the customers

Count of guests booking by day_of_week and hotel

 For both hotels, the count of guests arriving for each day of the week appears to be quite evenly distributed

Hotel Revenue EDA

This section will mainly focus on relevant visualizations that will aid in answering the following questions:

- "Which type of guests are likely to generate more revenue by hotel?"
- "Give a revenue breakdown by region. What are the top 5 countries that has generated the greatest revenue?"
- "Is our hotel revenue growing by year? If so, which hotel brings in greater revenue? Is there any observed seasonality with respect to revenue?"

Hotel Revenue EDA

"Which type of guests are likely to generate more revenue by hotel?"

Sum of revenue and Count_of_guest_type by guest_type and hotel

- Couples and family guests tend to generate more revenue in resort hotels as compared to city hotels. While single and group guests tend to generate more revenue in city hotels.
- The revenue difference is marginal between hotels for couples. This is in spite of there being almost twice the number of couples who booked for city hotel (as indicated in the stacked bar plot to the right)
 - This marginal difference in revenue despite fewer bookings in resort hotels may be due to the
 presence of more expensive amenities (such as pools & spa services) packaged for couples and
 families in resort hotels
- On the other hand, more revenue has been generated in city hotels for single and group hotel guests
 - This is likely attributed by city hotel having more bookings for single and group guests as compared to resort hotels
 - This is in-line with what was previously mentioned, that couples and families are likely to have bundled extra amenities when they had booked for resort hotels hence attributing to a higher revenue despite fewer bookings

guest type

itel Revenue EDA: Give a revenue breakdown by region. What are the top 5 countries that has generated the greatest revenue?

Hotel Revenue EDA

"Give a revenue breakdown by region. What are the top 5 countries that has generated the greatest revenue?"

 The main bulk of revenue generated were from guests in the European region from 2018-2020

- The corresponding top 5 countries by revenue are:
 - 1. PRT Portugal, \$5.49M
 - 2. GBR United Kingdom, \$3.28M
 - 3. FRA France, \$2.42M
 - 4. ESP Spain, \$2.02M
 - 5. DEU Germany, \$1.51M

The top 5 countries by revenue are all situated in the European region.

This may suggest that the location of the hotels may likely to be situated in the European region

Hotel Revenue EDA

"Is our hotel revenue growing by year? If so, which hotel brings in greater revenue? Is there any observed seasonality with respect to revenue?"

(52,58%)

City Hotel
 Resort Hotel

- Yes, our overall hotel revenue is growing by year and there is an upwards growth trend as depicted in the trendline
 - Revenue trended up, resulting in a 127.20% increase between 2018 and 2020.
 - <u>2019</u> had the **highest combined revenue recorded at \$11.7M**, which is 254.18% higher than 2018, which had the lowest revenue recorded at \$3.2M
- From 2019 to 2020, we see a decrease in revenue from \$11.7M to \$7.2M.
 - This may be due to the influence of COVID-19 pandemic which may have impacted the hotel industry [first recorded case of COVID-19 death in Portugal was recorded on 16 MAR 2020]
- **City Hotel brings in greater revenue** [52.56% of total revenue] as compared to Resort Hotel [47.44% of total revenue]

Seasonality trend based on limited dataset from 2018-2020:

 Across all years, it was observed that revenue typically starts to pick up from the end of Q2 (June), cumulating in a maximum in the month of August

Limitations of dataset

Limited data on 2018 & 2020 may paint an incorrection conclusion for revenue & guest-related seasonality reporting

• More complete dataset containing information from **2018 Q1,Q2 & 2020 Q4** is required for the seasonality analysis to be more accurate

Year	City Hotel	Resort Hotel	Total
□ 2018	\$1,323,071.40	\$1,843,214.99	\$3,166,286.40
⊕ Qtr 2	\$0.00	\$0.00	\$0.00
⊕ Qtr 3	\$673,004.79	\$1,405,697.04	\$2,078,701.83
⊕ Qtr 4	\$650,066.62	\$437,517.95	\$1,087,584.57
□ 2019	\$6,212,979.87	\$5,440,438.45	\$11,653,418.32
⊕ Qtr 1	\$824,685.11	\$482,909.39	\$1,307,594.50
⊕ Qtr 2	\$1,326,433.70	\$809,577.56	\$2,136,011.26
⊕ Qtr 3	\$2,299,979.11	\$3,127,562.34	\$5,427,541.45
⊕ Qtr 4	\$1,761,881.95	\$1,020,389.16	\$2,782,271.11
□ 2020	\$4,034,910.86	\$3,158,776.11	\$7,193,686.96
⊕ Qtr 1	\$985,558.64	\$506,782.76	\$1,492,341.40
⊕ Qtr 2	\$1,747,040.20	\$1,030,665.24	\$2,777,705.44
⊕ Qtr 3	\$1,302,312.02	\$1,621,328.11	\$2,923,640.13
Total	\$11,570,962.13	\$10,442,429.55	\$22,013,391.68

Year City Hotel		Resort Hotel	Total
⊕ 2018	13682	8314	21996
⊕ 2019	51913	27351	79264
⊕ 2020	27508	13179	40687
Total	93103	48844	141947

Limitations of dataset

More information about car parking spaces is required to be provided into the dataset to accurately calculate the parking percentage

- For example, a more accurate representation of the calculated 'Parking Percentage' should be obtained with a column containting 'total_car_parking_spaces_available', where:
 - Parking Percentage = $\frac{Required\ Car\ Parking\ Spaces}{Total\ Car\ Parking\ Spaces\ Available} \times 100\%$

Field Name	Description	
Required_car_parking_spaces	Number of car parking spaces required by the customer	

hotel	el City Hotel		Resort Hotel			
Year	Revenue	Required Car Parking Spaces	Parking Percentage	Revenue	Required Car Parking Spaces	Parking Percentage
⊕ 2018	\$1.32M	190.00	0.13%	\$1.84M	1,113.00	0.78%
⊕ 2019	\$6.21M	1,411.00	0.99%	\$5.44M	3,827.00	2.70%
⊕ 2020	\$4.03M	538.00	0.38%	\$3.16M	1,740.00	1.23%
Total	\$11.57M	2,139.00	1.51%	\$10.44M	6,680.00	4.71%

Currently, the Required Car Parking Spaces in the dashboard is calculated as such:

1 Parking Percentage = SUM('hotel_all_column_amalgated with 5 categorical columns'[required_car_parking_spaces])/SUM('Count of Reservation Status Made'[Count of Reservations made])

Parking Percentage = $\frac{Required\ Car\ Parking\ Spaces}{Count\ of\ Reservation\ Status\ made} \times 100\%$

The validity of the calculation can be further improved if we can obtain a 'total_car_parking_spaces_available' column for management to decide if a larger parking lot is required to be built.

Conclusion / Key-Takeaways

Based on the limited dataset provided, below are the key-takeaways from this project:

With respect to hotel guest-related seasonality:

- The hotel manager should ensure increased hotel staffing during these months for each hotels:
 - July & August for Resort Hotels
 - July to October for City Hotels
- Guests on average stay 3.42 nights for both hotels
- No particular trends can be observed as to which days are more popular for guests to book on
- Couples & single guests represent the majority of bookings made for both hotels, management can look into designing attractive packages tailored towards such guests

With respect to Hotel Revenue:

- Couples & Family guests tend to generate more revenue in resort hotels as compared to city hotels, while group guests generate more revenue in city hotels
- The main bulk of revenue generated was attributed to the European region
 - Portugal corresponded to the country with the highest revenue
- Hotel revenue displays an upwards trend and is growing by year
- City Hotel brings in greater revenue as compared to Resort Hotel
- Revenue revenue typically starts to pick up from the end of Q2 (June), cumulating in a maximum in the month of August

END OF PRESENTATION