我們將以最普通被使用,由六個電晶體所形成的 SRAM 作例子,來介紹 SRAM 的結構、操作、及其特性。圖 11-4 顯示一個以 6 個 MOS 電晶體所構成的 SRAM 的電路結構圖。

圖 11-4 SRAM 的電路結構圖

圖裡編號 Q_2 及 Q_4 的兩個 PMOS 電晶體為負載(Load): Q_1 及 Q_3 為 NMOS 電晶體,作為訊號電壓拉下至 Vss 用(Pull down);而 Q_5 及 Q_6 這另外兩個 NMOS 電晶體則做為 SRAM 內資料的存取(Access, Pass gate)之用,且這兩個 NMOS 的閘極都由同一個橫列的導線所控制,這條導線便是所謂的字元線,而 與 Q_5 及 Q_6 另一端相接的縱向導線便是位元線。我們接著從 SRAM 如何存入資料開始談起,就以存入「1」做例子。

SRAM 的負載是由 PMOS 電晶體所組成的,使來自 V_d 的電流可以流經 Q_2