

COURSE NO: ENG 1450 PAGE NO.: 1 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

INSTRUCTIONS:

- ➤ Do not remove the staple.
- Closed-book exam. No books/notes allowed.
- Electronic devices (such as calculators, PDAs, iPods, etc.) are NOT allowed.
- This is a multiple choice examination and consists of 30 questions.
- Mark your answer in pencil on the bubble sheet provided.
- Return both this booklet and the bubble sheet at the end of the examination.
- No marks will be given for working on this booklet.
- Each correct answer has one mark and each wrong answer has zero marks.
- No negative marks for wrong answer.
- ➤ A formula sheet is provided on the last page.

STUDEN	NT NUMBER
PRINT YOUR NAME	E IN FULL ON THIS LINE
Sign	NATURE
A01 (Prof. Gole)	A02 (Prof. Major)
CIRCLE Y	OUR SECTION
FR Kenne	dy Brown Gym
	IINATION CENTRE
SEAT	Number

Mark

Out of

30

Course No: ENG 1450 Page No.: 2 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

1 Consider a circuit consisting of one -10 V dc voltage source connected to a network of 5 resistors. Which of the following is <u>correct</u>?

- A) The source absorbs power because it has a negative voltage.
- B) There is at least one resistor that generates power (i.e. absorbs *negative* power).
- C) The sum of the powers absorbed by the 5 resistors equals the power delivered by the source.
- D) All of the above.
- E) None of the above.

2 A DC circuit shown below has been connected for a long time. Which of the following is incorrect?

- A) The capacitor does not store any energy.
- B) The voltage of the resistor is not equal to zero.
- C) The power is absorbed by the resistor.
- D) The current of the resistor is not equal to zero.
- E) None of the above.

3 Which of the following is correct?

A)
$$i_1 + i_2 = -3 A$$

B)
$$i_1 + i_2 = 0$$
 A

C)
$$i_1 + i_2 = 2 A$$

D)
$$i_1 + i_2 = -2A$$

E) None of the above.

4 What is the value of $v_x + v_z$ in the circuit shown below?

A)
$$+2 V$$

$$B)-2V$$

$$C) +3 V$$

$$D) - 3V$$

21st April 2011 at 09:00 DEPARTMENT: Electrical & Computer Engineering DATE & TIME:

3 of 9 COURSE NO: ENG 1450 PAGE No.:

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours A.M. Gole/A. Major **EXAMINERS:**

5 The total power delivered by the 5 V source is:

- A) 5 W
- B) 30 W
- C) 15 W
- D) 10 W
- E) Not enough information is provided.

6 What is the equivalent resistance at terminals **ab**?

- A) 18/7 Ω
- B) 3.5 Ω
- C) $3/4 \Omega$
- D) $20/11 \Omega$
- E) 2 Ω

7 If the power *into* the component shown below is 12 W, then the current i is:

- A) +2 A
- B) -2.5 A
- C) +4 A
- D) -12 AE) -2 A

8 Which of the following is <u>correct</u> for the circuit shown below?

- A) The power absorbed by any of the 2- Ω resistors is 0.5 W
- B) The current I, as shown, is -0.5 A.
- C) The voltage v_x is +4.5 V.
- D) All three voltage sources deliver power.
- E) None of the above.

21st April 2011 at 09:00 DEPARTMENT: Electrical & Computer Engineering Date & Time:

4 of 9 Course No: ENG 1450 PAGE NO.:

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours A.M. Gole/A. Major **EXAMINERS:**

9 What is the power absorbed by the $3-\Omega$ resistor in the circuit shown below?

- A) 0 W
- B) 6 W
- C) 9 W
- D) 12 W
- E) 18 W

10 What are I and I_x , respectively?

- $A) + 1 A_{1} + 0.5 A_{2}$
- B) + 1 A, -2 A
- C) -1 A, +0.5 A
- D) -0.5 A, -0.25 A
- E) None of the above.

11 The resistors in the circuit below have values R and 2R as shown below, where R is not given. The value of the current source *I* is:

- A) + 6 A
- B)-5A
- C) + 4A
- D) -4 A
- E) None of the above.

12 In the circuit given below P_i is the power absorbed by the resistor R_i . It is given that

 $P_3 = 2P_2 = 3P_1$. If $R_1 = 6 \Omega$, then R_2 is equal to...

- A) 12 Ω
- B) 9Ω
- C) 18 Ω
- D) 24 Ω
- E) None of the above.

13 What is the voltage V across the 2 Ω resistor in the circuit shown below?

- A) 3V
- B) + 4V
- C) 2V
- D) + 2 V
- E) None of the above.

Course No: ENG 1450 Page No.: 5 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

14 What is the voltage v_x in the circuit shown below?

- A) -2.4 V
- (B) + 2.4V
- C)-6V
- \overrightarrow{D}) + 3 V
- E)-3V

All resistors in the circuit shown below are indentical and have a value R. If the equivalent resistance at terminals ab is 3 Ω , the value of each resistor R is...

- Α) 25 Ω
- Β) 9 Ω
- C) 1 Ω
- D) 3 Ω
- E) 2Ω

16 What is the equivalent resistance between terminals *ab* in the circuit shown below?

- Α) 8 Ω
- B) 2 Ω
- C) 6 Ω
- D) 1Ω
- E) None of the above.

Three identical capacitors are connected in *series*, resulting in an equivalent capacitance of $I \mu F$. If the same three capacitors are now connected in *parallel* their equivalent capacitance becomes:

- A) 3 μ F.
- B) 9 μF.
- C) 6 µF.
- D) 20 μF.
- E) $-4 \mu F$.

18 The circuit shown below has been connected for a long time. What is the energy stored in the capacitor?

- A) 2 J
- B) 0 J
- C) 4 J
- D) 1.5 J
- E) None of the above.

Course No: ENG 1450 Page No.: 6 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

Assume a source frequency $\omega = 100$ rad/s. The equivalent impedance 7 seen by the source (between terminals a and b) is:

- B) $(10-j0.1)\Omega$
- C) $-j0.1 \Omega$
- D) $j10 \Omega$
- E) None of the above

20 The current i(t) in the circuit shown below is:

- A) $i(t) = 5\sin(2t 60^{\circ})$ A
- B) $i(t) = \frac{10\sin(2t 30^{\circ})}{10\sin(2t 30^{\circ})}$ A
- C) $i(t) = 5\sin(2t+120^{\circ})$ A
- D) $i(t) = 20\sin(2t+120^{\circ})$ A
- E) None of the above.

21 What is the binary representation of $(ABC1)_{16}$?

- A) 1011011011110110
- B) 0101010110100001
- C) 0001101010011001
- D) 1010101111000001
- E) 1011010010000001

22 What is the 2's complement binary representation of $(85)_{10}$ using 8 bits?

- A) 00011101
- B) 10101010
- C) 01010101
- D) 10111011
- E) 11011100

23 The 6-bit binary representation of $(-25)_{10}$ using 2's complement is given by...

- A) 100111
- B) 100110
- C) 011010
- D) 101111
- E) 011001

An 8-bit computer that uses 2's complement is used to evaluate (-35)+(+23). Which of the following is calculated by the computer as the answer?

- A) 00001100
- B) 11110101
- C) 01111110
- D) 11110100

Course No: ENG 1450 Page No.: 7 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

- E) None of the above.
- 25 The largest *unsigned* number that can be represented using a 7 bit representation is:
 - A) 16
 - B) 127
 - C) 63
 - D) 129
 - E) 255
- 26 Which of the following does show the truth table for z=x'+yx?

A)	х	У	Z
	0	0	0
	0	1	1
	1	0	1
	1	1	1

B)	x	у	Z
	0	0	1
	0	1	0
	1	0	0
	1	1	1

C)	x	У	Z
	0	0	1
	0	1	0
	1	0	0
	1	1	0

D)	х	у	Z
	0	0	0
	0	1	0
	1	0	0
	1	1	1

E)	$\frac{x}{x}$	y	<mark>z</mark>
	0	0	1
	0	1	1
	1	0	0
	1	1	1

27 Which of the following statements is correct?

- A) Digital circuits 1 and 4 are equivalent (i.e., provide the same output given the same input).
- B) Digital circuits 2 and 3 are equivalent.
- C) Digital circuits 1 and 2 are equivalent.
- D) Digital circuits 1 and 5 are equivalent.
- E) Digital circuits 2 and 5 are equivalent.

Course No: ENG 1450 Page No.: 8 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

28 Which of the following describes the following digital circuit?

A)
$$z=(x'\cdot y+x)\cdot x'$$

B)
$$z = (x' \cdot y + x \cdot x)'$$

C)
$$z=x'\cdot y+x\cdot x'$$

D)
$$z = [(x' \cdot y + x) \cdot x]'$$

E) None of the above.

29 Which of the following statements is *false* for the circuit shown below?

A) If
$$x=0$$
 and $y=0$, then $f=1$

B) If
$$x=0$$
 and $y=1$, then $f=1$

C) If
$$x=1$$
 and $y=0$, then $f=1$

D) If
$$x=1$$
 and $y=1$, then $f=1$

E) If
$$x=1$$
 and $y = 1$, then $f=0$

A simple combination lock is to be designed. The user selects a number between 0 and 7 by operating three binary switches a, b and c. For example, if the user presses a=0, b=0, c=0; it means "000" or that the user has keyed in the number "0"; and if a=1, b=1, c=0 are pressed, it means "110" or the number "6" has been keyed in, and so on. The lock opens if and only if the user keys in either a "2" or a "5". Select the correct logical function to implement the "lock open" command "L" (i.e. L = 1 means "open the lock").

A)
$$L = a + b'c'a$$

B)
$$L = a'b'c' + abc + abc'$$

C)
$$\underline{L} = ab + c'd$$

$$D) L = a'bc' + ab'c$$

E)
$$L = ac$$

COURSE NO: ENG 1450 PAGE NO.: 9 of 9

COURSE TITLE: Intro. Electrical & Computer Eng. EXAMINATION: Final (50%)

DURATION: 2 Hours Examiners: A.M. Gole/A. Major

Formula Sheet

Ohm's law: V = RI

Power: P = VI

Voltage division: $V_k = \frac{R_k}{\sum R_i} V_S$

Current division: $I_k = \frac{\frac{1}{R_k}}{\sum \frac{1}{R_k}} I_s$

Resistors in series: $R_{eq} = \sum R_i$

Resistors in parallel: $\frac{1}{R_{eq}} = \sum \frac{1}{R_i}$

Capacitors in series: $\frac{1}{C_{eq}} = \sum \frac{1}{C_i}$

Capacitors in parallel: $C_{eq} = \sum C_i$

Inductors in series: $L_{eq} = \sum L_i$

Inductors in parallel: $\frac{1}{L_{eq}} = \sum \frac{1}{L_i}$

Energy stored in a capacitor: $W = \frac{1}{2}CV^2$

Energy stored in an inductor: $W = \frac{1}{2}LI^2$

Impedance of a capacitor: $Z_C = \frac{1}{j\omega C}$, where $\omega = 2\pi f$

Impedance of an inductor: $Z_L = j\omega L$, where $\omega = 2\pi f$

α	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	8	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0