In[1]:= ClearAll["Global`*"]

\$Assumptions = (a ∈ Reals && a > 0 && (*Bohr radius*)

e ∈ Reals && e > 0 && (*elementary charge*)

me ∈ Reals && me > 0 && (*mass of electron*)

ϵ0 ∈ Reals && ϵ0 > 0 && (*vacuum permittivity*)

ħ∈ Reals && ħ > 0 && (*Planck's reducedconstant*)

c ∈ Reals && c > 0);(*speed of light*)

(*Write down analytical solutions to the hydrogen SE*) Z = 1;

R10[r_] := 2
$$e^{-\frac{r}{a}} \left(\frac{Z}{-}\right)^{3/2}$$

R20[r_] :=
$$\frac{e^{-\frac{r}{2a}} \left(\frac{Z}{a}\right)^{3/2} \left(2 - \frac{rZ}{2}\right)}{2\sqrt{2}}$$

$$R21[r_{]} := \frac{e^{-\frac{r}{2a}} r \left(\frac{Z}{a}\right)^{3/2}}{2 \sqrt{6} a}$$

$$Y00[\theta_, \varphi_] := \frac{1}{\sqrt{4 \pi}}$$

Y10[
$$\theta$$
_, φ _] := $\frac{1}{2}\sqrt{\frac{3}{\pi}}$ Cos[θ]

$$Y11[\theta_{-}, \varphi_{-}] := -e^{i\varphi} \sqrt{\frac{3}{8\pi}} \operatorname{Sin}[\theta]$$

$$Y1m1[\theta_-, \varphi_-] := e^{-i\varphi} \sqrt{\frac{3}{8\pi}} Sin[\theta]$$

In[11]:= (*Define some factors appearing in the integrand in Fermi's golden rule*) dipole[r_, θ _, φ _] := -e r (Sin[θ] Cos[φ] + Sin[θ] Sin[φ] + Cos[θ]) (*-d·1_ ϵ *) jacobian[r_, θ _, φ _] := r² Sin[θ](*Spherical coordinates Jacobian*)

$$\rho[\omega_{-}] := \frac{\omega^{2}}{c^{3} \pi^{2}} \text{(*Density of states*)}$$

```
(*Loop through different possible decays and calculate their transition rates*)
uiList = \{R21[r] \times Y10[\theta, \varphi],
     R21[r] × Y10[\theta, \varphi],
     R21[r] \times Y10[\theta, \varphi],
     R21[r] \times Y10[\theta, \varphi],
     R21[r] \times Y11[\theta, \varphi],
     R21[r] \times Y11[\theta, \varphi],
     R21[r] \times Y11[\theta, \varphi],
     R21[r] \times Y11[\theta, \varphi],
     R21[r] \times Y1m1[\theta, \varphi],
     R21[r] × Y1m1[\theta, \varphi],
     R21[r] \times Y1m1[\theta, \varphi],
     R21[r] × Y1m1[\theta, \varphi]};
nlmInitialList = \{\{2, 1, 0\},\
     {2, 1, 0},
     {2, 1, 0},
     {2, 1, 0},
     {2, 1, 1},
     {2, 1, 1},
     {2, 1, 1},
     \{2, 1, 1\},\
     \{2, 1, -1\},\
     {2, 1, -1},
     \{2, 1, -1\},\
     {2, 1, -1};
ufList = \{R10[r] \times Y00[\theta, \varphi],
     R20[r] \times Y00[\theta, \varphi],
     R21[r] \times Y11[\theta, \varphi],
     R21[r] \times Y1m1[\theta, \varphi],
     R10[r] × Y00[\theta, \varphi],
     R20[r] × Y00[\theta, \varphi],
     R21[r] \times Y10[\theta, \varphi],
     R21[r] × Y1m1[\theta, \varphi],
     R10[r] \times Y00[\theta, \varphi],
     R20[r] × Y00[\theta, \varphi],
     R21[r] × Y10[\theta, \varphi],
     R21[r] × Y11[\theta, \varphi]};
nlmFinalList = \{\{1, 0, 0\},
     {2, 0, 0},
     {2, 1, 1},
     {2, 1, -1},
     {1,0,0},
     {2,0,0},
```

```
{2, 1, 0},
    \{2, 1, -1\},\
    {1, 0, 0},
    {2,0,0},
    {2, 1, 0},
    {2, 1, 1}};
FList = Range[Length[uiList]];(*Initiate*)
For[i = 1, i <= Length[uiList], i++,</pre>
 (*Define initial and final wavefunctions*)
 ui[r_, \theta_, \varphi] = uiList[[i]];
 nlmInitial = nlmInitialList[[i]];
 nInitial = nlmInitial[[1]];
 Ei = -\frac{e^4 \text{ me}}{2 (4 \pi \epsilon 0)^2 \hbar^2 \text{ nInitial}^2}; (*energy of initial state*)
 uf[r_{,\theta_{,\phi_{,i}}} = ufList[[i]];
 nlmFinal = nlmFinalList[[i]];
 nFinal = nlmFinal[[1]];
 Ef = -\frac{e^4 \text{ me}}{2 (4 \pi \epsilon 0)^2 \hbar^2} \frac{1}{\text{nFinal}^2}; (*energy of final state*)
 \omega = (Ei - Ef) / \hbar;
 (*Calculate the braket appearing in Fermi's golden rule*)
 integrand[r_, \theta_, \varphi_] := uf[r, \theta, \varphi] × dipole[r, \theta, \varphi] × ui[r, \theta, \varphi];
 braket = Integrate[
    Integrate[
      Integrate[
        integrand[r, \theta, \varphi] × jacobian[r, \theta, \varphi],
       \{\varphi, 0, 2\pi\}],
      \{\theta, 0, \pi\}],
    {r, 0, Infinity}];
 (*Calculate and print transition rates*)
 \Gamma = \frac{1}{\omega} \omega \frac{2 \pi}{\Delta \sin[\text{braket}]^2 \rho[\omega]};
       4 π ε 0 ħ
 \GammaList[[i]] = \Gamma;
 Print["from |ui>=|", nlmInitial[[1]], nlmInitial[[2]], nlmInitial[[3]],
   "> to |uf>=|", nlmFinal[[1]], nlmFinal[[2]], nlmFinal[[3]], ">, F=", FullSimplify[F]]
```

1

from |ui>=|210> to |uf>=|100>,
$$\Gamma = \frac{a^2 e^{14} me^3}{279\,936\,c^3\,\pi^8\,\epsilon^0^7\,\hbar^{10}}$$
 from |ui>=|210> to |uf>=|200>, $\Gamma = 0$ from |ui>=|210> to |uf>=|211>, $\Gamma = 0$ from |ui>=|210> to |uf>=|211>, $\Gamma = 0$ from |ui>=|211> to |uf>=|210>, $\Gamma = \frac{a^2 e^{14} me^3}{279\,936\,c^3\,\pi^8\,\epsilon^0^7\,\hbar^{10}}$ from |ui>=|211> to |uf>=|200>, $\Gamma = \frac{a^2 e^{14} me^3}{279\,936\,c^3\,\pi^8\,\epsilon^0^7\,\hbar^{10}}$ from |ui>=|211> to |uf>=|210>, $\Gamma = 0$ from |ui>=|211> to |uf>=|210>, $\Gamma = 0$ from |ui>=|211> to |uf>=|210>, $\Gamma = 0$ from |ui>=|21-1> to |uf>=|200>, $\Gamma = 0$ from |ui>=|21-1> to |uf>=|210>, $\Gamma = 0$ from |ui>=|21-1> to |uf>=|210>, $\Gamma = 0$ from |ui>=|21-1> to |uf>=|210>, $\Gamma = 0$ from |ui>=|21-1> to |uf>=|211>, $\Gamma = 0$ from |ui>=|21-1> to |uf>=|210>, $\Gamma = 0$ from |ui>=|210>, $\Gamma = 0$ from |ui>=|210>, $\Gamma = 0$ from |ui>=|210>, $\Gamma = 0$