Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей Кафедра электронных вычислительных машин Дисциплина: Схемотехника

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту на тему

ТАНК НА ВСЕНАПРАВЛЕННЫХ КОЛЕСАХ

БГУИР КП 1-40 02 01 428 ПЗ

Студент: группы 150504, Шалаш А. С.

Руководитель: ассистент каф. ЭВМ, Калютчик А. А.

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

УТВ	ЕРЖДА	Ю
Завед	цующий	кафедрой ЭВМ
		(подпись)
‹ ‹	>>	2023 г.

ЗАДАНИЕ по курсовому проектированию

Студенту Шалаш Анне Сергеевне
(фамилия, имя, отчество)
1. Тема проекта Танк на всенаправленных колесах
2. Срок сдачи студентом законченного проекта с 06.12.2023 по 09.12.2023
3. Исходные данные к проекту:
1. Микроконтроллер – тактовая частота не менее 16 МГц, не менее 14 входов/выходов.
2. Источник питания – напряжение 5 В, максимальный выходной ток не менее 3 А.
3. Модуль радиопередачи – напряжение питания 3.3 – 5 В, скорость передачи не менее 9 Кб/с.
4. Драйвер моторов – напряжение питания 5 В, возможность подключения до 4х моторов.
5. Мотор-редукторы – напряжение питания 3.3 – 5 В, передаточное число 1:48.
6. Контроллер с камерой – напряжение питания 3.3 – 5 В
7. Светодиоды – напряжение питания 2 – 3.4 В
4. Содержание расчетно-пояснительной записки (перечень подлежащих разработке вопро сов) Введение
1.Обзор литературы.
2. Разработка структуры танка на всенаправленных колесах.
3.Обоснование выбора узлов, элементов функциональной схемы устройства.
4. Разработка принципиальной электрической схемы устройства.
5. Разработка программного обеспечения.
Заключение

Литература.
5. Перечень графического материала (с точным указанием обязательных чертежей)
1. Структурная схема танка на всенаправленных колесах (формат А4)
2
2. Функциональная электрическая схема танка на всенаправленных колесах (формат А4)
3. Принципиальная электрическая схема танка на всенаправленных колесах (формат А5)
6. Консультант по проекту (с назначением разделов проекта)_А.А. Калютчик

7. Дата выдачи задания 10.09.2021
8. Календарный график работы над проектом на весь период проектирования (с назначением сроков
исполнения и трудоемкости отдельных этапов):
разделы 1,2 к 24.09 — 20 %;
раздел 3 к 15.10 – 20 %;
раздел 4 к 05.11 – 25 %;
раздел 5 к 19.11 – 20 %;
оформление пояснительной записки и графического материала к $06.12-15~\%;$
защита курсового проекта с 07.12 по 14.12
РУКОВОДИТЕЛЬ А. А. Калютчик
(подпись)
(
Задание принял к исполнению 10.09.2021 А. С. Шалаш
(дата и подпись студента)

СОДЕРЖАНИЕ

Bl	ВЕДЕ:	НИЕ	5
		ОР ЛИТЕРАТУРЫ	
		Состав устройства	
	1.2	Микроконтроллеры	7
		Модули радиопередачи	
		Драйверы моторов	
		Мотор-редукторы	
		amepa	
		ветодиоды	

ВВЕДЕНИЕ

Данный курсовой проект посвящен разработке танка на всенаправленных колесах, что представляет собой исследование в области мобильной робототехники и схемотехники. Основываясь на этой обширной теме, ставится задачу сделать проект более конкретным и целенаправленным.

Одним из первостепенных шагов в этом процессе является установление спецификаций для нашего мобильного устройства. Для эффективного управления танком, будет использовано радиоуправление. Это позволит удаленно контролировать движение танка и его башню, делая его гибким средством для различных задач.

С учетом темы проекта, особое внимание будет уделено башне танка. Она будет оснащена механизмом, обеспечивающим ее подвижность, что позволит управлять направлением обзора и цели танка. Это важное дополнение к функциональности устройства, особенно в контексте различных приложений, включая исследовательские миссии и развлечения.

Таким образом, проект объединяет современные технологии, инженерное искусство и креативный дизайн, создавая возможность для разработки уникального и многофункционального мобильного танка на всенаправленных колесах.

Стоит отметить особенность проекта — передвижение танка на всенаправленных колесах. Всенаправленные колеса — это инновационная концепция колесного движения, которая позволяет объекту перемещаться в любом направлении без необходимости поворота. Они состоят из нескольких роликов, установленных под углами к основной оси колеса, и позволяют объекту двигаться вперед, назад, вбок и даже поворачивать на месте. Всенаправленные колеса нашли широкое применение в различных областях, включая мобильную робототехнику, транспортные системы и материально-техническое обеспечение. Их уникальная способность обеспечивать максимальную маневренность и точное управление делает их незаменимыми для современных автономных и управляемых транспортных средств, а также в роботах и механизированных системах.

В рамках проекта будет предусмотрена интеграция дополнительных компонентов для дополнительных функциональных возможностей танка на всенаправленных колесах. Одним из ключевых элементов будет контроллер, оборудованный камерой, способной передавать видеоизображение по Wi-Fi и Bluetooth. Это позволит не только контролировать движение танка, но и получать в реальном времени видеопоток с его "глазами". Такая система станет незаменимой для наблюдения в труднодоступных местах или для дистанционного исследования окружающей среды.

Дополнительно, также планируется использовать светодиоды, которые будут предназначены для обеспечения работы камеры в условиях пониженной видимости, таких как ночное время или места с недостаточной освещенностью. Эти светодиоды помогут улучшить качество видеозаписи и расширить

спектр применения танка, делая его более универсальным средством для наблюдения и исследования.

Кроме того, следует отметить, что камера будет размещена на специальной подвижной башне танка вместо боевого механизма. Это дизайнерское решение позволит максимально обеспечить обзорность и маневренность танка, что особенно важно для эффективного использования машины в различных ситуациях, включая исследования, мониторинг и развлечения.

В качестве основного вычислительного элемента устройства будет использована плата Arduino UNO на базе микроконтроллера ATmega328. Выбор в сторону данного контроллера был произведен в связи с наличием таких плат и основных элементов для их работы, а также опыта разработки программного обеспечения для данного типа микроконтроллеров. Разработка программного обеспечения будет происходить в интегрированной среде разработки для Windows Arduino IDE 1.8.16. В данной среде есть все необходимое для написания программного обеспечения с последующей загрузки на плату.

Разработка курсового проекта будет происходить поэтапно. В первую очередь необходимо подобрать элементы устройства, учитывая их надежность, стоимость, функциональность и размеры. Затем необходимо собрать устройство и разработать программное обеспечение для корректной обработки информации и поддержания связи между элементами схемы. В конце устройство подлежит тестированию, чтобы проверить правильность сборки и исключить сбои при эксплуатации.

1 ОБЗОР ЛИТЕРАТУРЫ

1.1 Состав устройства

Как уже было упомянуто ранее, проект представляет собой мобильное устройство в форме танка, оснащенное всенаправленными колесами и способное выполнять разнообразные функции. Это включает в себя передвижение, управление которым осуществляется посредством радиосигнала, видеозапись с использованием встроенной камеры, а также обеспечение подсветки для работы в условиях пониженной видимости.

Для успешной реализации этих функций, устройство должно включать в себя ряд ключевых компонентов:

- микроконтроллер
- модуль радиопередачи
- драйвер моторов с моторами
- контроллер с камерой
- светодиоды

1.2 Микроконтроллеры

Существует огромное разнообразие плат с разными микроконтроллерами. Все они отличаются размерами, параметрами, предустановленными интерфейсами и выполняемыми задачами. Для сравнения была выбрана плата Arduino UNO и аналоги других производителей. Результаты сравнения приведены в таблице 1.1.

Таблица 1.1 — Сравнение микроконтроллеров

Параметры сравнения	Arduino UNO	Raspberry PI 2	OLIMEXINO- STM32
Микроконтроллер	ATmega328	ARM Cortex-A7	stm32f103rbt6
Входное напряжение	$6-20~\mathrm{B}$	$6-28~\mathrm{B}$	9 – 30 B
Флэш-память	32 Кб	порт для microCD	128 Кб
ОЗУ	2 Кб	1024 Мб	20 Кб
Тактовая частота	16 МГц	900 МГц	72 МГц
Разрядность	8 бит	32 бит	12 бит
Цифровые входы/выходы	14 шт	26 шт	15 шт
Аналоговые входы/выходы	6 шт	0 шт	6 шт
Выходное напряжение	3.3B, 5 B	3.3B, 5 B	3.3B, 5 B
Рабочая температура	от -25 до +85 °C	от -40 до +85 °C	от -25 до +85 °C
Встроенный видеочип	нету	есть	нету

Размеры	69 mm × 53 mm	85.6 mm × 56.5 mm	$101.6 \text{ mm} \times 86 \text{ mm}$
	0, 1,11,1	00.00.000.000	

1.3 Модули радиопередачи

Существуют модули с однонаправленной и двунаправленной передачей радиосигнала. Для сравнения был выбран радио модуль NRF24L01 с двунаправленной передачей и передатчик MX-05V с приёмником XD-RF-5V, связь между которыми проходит от передатчика к приёмнику соответственно. Ниже, в таблице 1.2, приведены их сравнительные характеристики.

Таблица 1.2 — Сравнение модулей радиопередачи

Параметры сравнения	NRF24L01	передатчик MX-05V	приёмник XD-RF-5V
Частота радиосигнала	2.4 ГГц	433 МГц	433 МГц
Напряжение питания	1.9 – 3.6 B	3.5 – 12 B	5 B
Потребляемый ток	до 14 мА	до 28 мА	до 6 мА
Рабочая температура	от -40 до +85 °C	от -20 до +85 °C	от -20 до +85 °C
Скорость приёма/передачи данных	до 2 Мб/с	до 10 Кб/с	9.6 Кб/с
Расстояние приёма/передачи	до 100 м	до 200 м	до 200 м

1.4 Драйверы моторов

Драйвера моторов являются неотъемлемой частью при проектировании передвижных устройств. Благодаря драйверам регулируется питание, поступающее на моторы, скорость и направление их вращения.

Для сравнения были выбраны модули L298N, L298P и более простой и новый модуль MX1508, спроектированный на базе модуля L298N. Результаты сравнения представлены в таблице 1.3.

Таблица 1.3 — Сравнение драйверов моторов

Параметры сравнения	L298N	L298P	MX1508
Напряжение питания логики	5 B	5 B	5 B
Потребляемый ток логики	до 36 мА	до 36 мА	до 36 мА
Напряжение питания приводов	5 – 35 B	5 – 25 B	2 – 10 B
Потребляемый ток приводов	до 3 А	до 2 А	до 2 А

Продолжение таблицы 1.3

Рабочая температура	от -25 до +135 °C	от -25 до +130 °C	от -40 до +80 °C
Размер	43.5 × 43.2 × 29.4 mm	58 × 56 × 19 mm	24.7 × 21 × 5 mm

1.5 Мотор-редукторы

Существует множество видов мотор-редукторов, которые отличаются по форме и характеристикам. По форме они разделяются на 4 типа: прямой одноосевой, прямой двухосевой, угловой одноосевой и угловой двухосевой.

Для сборки проекта будут использоваться прямые двухосевые моторредукторы с передаточным числом 1:48, которых на рынке представлено только два. Их сравнительные характеристики приведены в таблице 1.4.

Таблица 1.4 — Сравнение прямых двухосевых мотор-редукторов

Параметры сравнения	Мотор-редуктор 1:48 3-8V	Мотор-редуктор 1:48 6V
Напряжение питания	3 – 8 B	6 B
Потребляемый ток	до 700 мА	до 670 мА
Передаточное число	1:48	1:48
Скорость вращения без нагрузки	до 200 об/мин	до 180 об/мин
Крутящий момент	2 кг/см	2 кг/см

1.6 Камера

Камеры открывают перед разработчиками и инженерами множество возможностей для создания интересных и инновационных проектов. С их помощью можно осуществлять видеозапись, проводить анализ окружающей среды, создавать автономные системы и реализовывать различные видео- и фото-приложения.

Для сравнения были выбраны следующие модели: ESP32-CAM, OV7670, ArduCam Mini и Raspberry Pi Camera Module. Их сравнительные характеристики приведены в таблице 1.5.

Таблица 1.5 — Сравнение моделей камер

Параметры сравнения	ESP32-CAM	OV7670	ArduCam Mini	Raspberry Pi Camera Module
Разрешение	VGA (640x480), QVGA (320x240), QQVGA (160x120)	640x480	До 5 МП	До 12 МП

Продолжение таблицы 1.5

продолжение т				
Интерфейс	SPI для под-	Вывод видеосиг-	интерфейс І2С	интерфейс CSI
	ключения к	нала по парал-	или SPI	
	плате ESP32	лельному интер-		
		фейсу		
Скорость	60 кадров/с	до 30 кадров/с	Зависит от мо-	Зависит от мо-
съемки	_	_	дели, но обычно	дели, но обычно
			довольно высо-	до-вольно высо-
			кая	кая

1.7 Светодиоды

Светодиоды являются одними из наиболее популярных и важных компонентов в мире электроники и микроконтроллеров. Они предоставляют простой и эффективный способ создания визуальных индикаторов, сигнализации и декоративных эффектов. Светодиоды доступны в разнообразных моделях, цветах и конфигурациях, что делает их идеальным выбором для широкого спектра приложений.

Для сравнения были выбраны следующие типы: One-Color LEDs, RGB LEDs, Super Bright LEDs и PWM LEDs. Их сравнительные характеристики приведены в таблице 1.6.

Таблица 1.6 — Сравнение типов светодиодов

Параметры сравнения	One-Color LEDs	RGB LEDs	Super Bright LEDs	PWM LEDs
Цвет	в одном цвете	комбинации из	одноцветные	одноцветные
		красного, зеленого	или RGB	или RGB, поз-
		и синего элементов		воляют созда-
				вать эффекты
				плавного изме-
				нения яркости
Яркость	Стандарт	Стандартные и	высокая яркость	стандартные
		сверхяркие версии	и видимость на	или сверхяркие
			дистанции	
Напряжение	2-3 B	2-3 B	более высокое	разные значе-
			напряжение и	ния в зависи-
			ток по сравне-	мости от мо-
			нию с обычными	дели
			светодиодами	
Размер и	5 мм и 3 мм, в	Доступны в различ-	стандарт	Варьируется в
форма	миниатюрных	ных размерах		зависимости от
	и SMD-			типа
	корпусах			