Problem statement

The number of books sold by a bookseller per day is given in 'bookseller.csv'. Let X = Number of books sold by a bookseller per day X is a Discrete Random variable (because it represents the book count). Let's see the distribution of X and answer the below questions.

- 1. Find the probability that more than (or equal to) 96 books will be sold on a given day
- 2. Find the probability that less than (or equal to) 92 books will be sold on a given day

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read csv('/content/bookseller (2).csv')
```

df.	head()

→		S.No	Date	Number of Books Sold	
	0	1	01-01-2020	90	11.
	1	2	02-01-2020	100	
	2	3	03-01-2020	100	
	3	4	04-01-2020	97	
	4	5	05-01-2020	93	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

df.tail()

	S.No	Date	Number of	Books	Sold
361	362	27-12-2020			91
362	363	28-12-2020			90
363	364	29-12-2020			92
364	365	30-12-2020			92
365	366	31-12-2020			99

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 366 entries, 0 to 365
 Data columns (total 3 columns):

Column	Non-Null Count	Dtype
S.No	366 non-null	int64
Date	366 non-null	object
Number of Books Sold	366 non-null	int64
	S.No Date	S.No 366 non-null

dtypes: int64(2), object(1)

memory usage: 8.7+ KB

df.describe()

$\overline{\Rightarrow}$		S.No	Number of Books Sold	Ħ
	count	366.000000	366.000000	ılı
	mean	183.500000	94.961749	
	std	105.799338	3.178465	
	min	1.000000	90.000000	
	25%	92.250000	92.000000	
	50%	183.500000	95.000000	
	75%	274.750000	98.000000	
	max	366.000000	100.000000	

	S.No	Number of Books Sold
count	366.000000	366.000000
mean	183.500000	94.961749
std	105.799338	3.178465
min	1.000000	90.000000
25%	92.250000	92.000000
50%	183.500000	95.000000
75%	274.750000	98.000000
max	366.000000	100.000000

```
book_distribution = df['Number of Books Sold'].value_counts().sort_index()
prob_distribution = book_distribution / book_distribution.sum()
prob_distribution
```

count

Number of Books Sold

90	0.087432
91	0.095628
92	0.092896
93	0.117486
94	0.068306
95	0.087432
96	0.087432
97	0.084699
98	0.087432
99	0.112022
100	0.079235

dtype: float64

	count
Number of Books Sold	
90	0.087432
91	0.095628
92	0.092896
93	0.117486
94	0.068306
95	0.087432
96	0.087432
97	0.084699
98	0.087432
99	0.112022
100	0.079235
dtype: float64	

```
prob_more_equal_96 = prob_distribution[prob_distribution.index >=
96].sum()
print(f"Probability of selling is >= 96 books: {prob_more_equal_96}")

Probability of selling is >= 96 books: 0.4508196721311476
```

Probability of selling is >= 96 books: 0.4508196721311476

```
prob_less_equal_92 = prob_distribution[prob_distribution.index <=
92].sum()
print(f"Probability of selling <= 92 books: {prob_less_equal_92}")

Probability of selling <= 92 books: 0.27595628415300544

Probability of selling <= 92 books: 0.27595628415300544</pre>
```

```
prob_distribution.plot(kind='bar')
plt.title('Probability Distribution of Number of Books Sold per Day')
plt.xlabel('Number of Books Sold')
plt.ylabel('Probability')
plt.show()
```


Problem statement

IT industry records the amount of time a software engineer needs to fix a bug in the initial phase of software development in 'debugging.csv'.

Let

X = Time needed to fix bugs

X is a continuous random variable. Let's see the distribution of X and answer the below questions.

- 1. Find the probability that a randomly selected software debugging requires less than three hours
- 2. Find the probability that a randomly selected software debugging requires more than two hours
- 3. Find the 50th percentile of the software debugging tire

import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

df = pd.read_csv('/Users/raj/Desktop/CSV files/Debugging.csv')

df.head()

_		Bug ID	Time	Taken	to	fix	the	bu
	0	12986						2.42
	1	12987						2.03
	2	12988						2.74
	3	12989						3.2
	4	12990						3.40

Bug ID Time Taken to fix the bug

0	12986	2.4	2
1	12987	2.0	3
2	12988	2.7	4
3	12989	3.2	21
4	12990	3.4	0

df.tail()

_ *		Bug ID	Time Taken	to fix the bug
	2093	15079		4.17
	2094	15080		1.05
	2095	15081		2.50
	2096	15082		2.85
	2097	15083		2.64

Bug ID Time Taken to fix the bug

2093	15079	4.17
2094	15080	1.05
2095	15081	2.50
2096	15082	2.85
2097	15083	2.64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2098 entries, 0 to 2097
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- --- 0 Bug ID 2098 non-null int64
1 Time Taken to fix the bug 2098 non-null float64

dtypes: float64(1), int64(1)
memory usage: 32.9 KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2098 entries, 0 to 2097
Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype
0	Bug ID	2098 non-null	int64
1	Time Taken to fix the bug	2098 non-null	float64

dtypes: float64(1), int64(1)

memory usage: 32.9 KB

df.describe()

₹		Bug ID	Time Taken to fix the bug
	count	2098.000000	2098.000000
	mean	14034.500000	3.012531
	std	605.784753	1.147148
	min	12986.000000	1.010000
	25%	13510.250000	2.010000
	50%	14034.500000	3.005000
	75%	14558.750000	4.030000
	max	15083.000000	5.000000

Bug ID Time Taken to fix the bug

2098.000000	2098.000000
14034.500000	3.012531
605.784753	1.147148
12986.000000	1.010000
13510.250000	2.010000
14034.500000	3.005000
14558.750000	4.030000
15083.000000	5.000000
	14034.500000 605.784753 12986.000000 13510.250000 14034.500000 14558.750000

Check the Distribution of 'Time Taken to Fix the Bug'

```
# Plot a histogram to visualize the distribution
plt.hist(df['Time Taken to fix the bug'], bins=30, edgecolor='k', alpha=0.7)
plt.title('Distribution of Time Taken to Fix Bugs')
plt.xlabel('Time (hours)')
plt.ylabel('Frequency')
plt.show()
```


Calculate the Mean and Standard Deviation

```
mean_time = df['Time Taken to fix the bug'].mean()
std_time = df['Time Taken to fix the bug'].std()
print(f"Mean Time to Fix: {mean_time}")
print(f"Standard Deviation of Time to Fix: {std_time}")

→ Mean Time to Fix: 3.012530981887512
Standard Deviation of Time to Fix: 1.1471482047102495
```

Mean Time to Fix: 3.012530981887512 Standard Deviation of Time to Fix: 1.1471482047102495

Find the probability that Time Taken to Fix is less than 3 hours

```
prob_less_than_3 = stats.norm.cdf(3, loc=mean_time, scale=std_time)
print(f"Probability that debugging requires less than 3 hours: {prob_less_than_3}")

Probability that debugging requires less than 3 hours: 0.4956422029421937
```

Probability that debugging requires less than 3 hours: 0.4956422029421937