Atom, Chemical Element, & Chemical Compound Nguyên Tử, Nguyên Tố Hóa Học, & Hợp Chất Hóa Học

Nguyễn Quản Bá Hồng*

Ngày 23 tháng 12 năm 2022

Tóm tắt nội dung

[EN] This text is a collection of problems, from easy to advanced, about atom, chemical element, & chemical compound. This text is also a supplementary material for my lecture note on Elementary Chemistry, which is stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 8/lecture¹. The latest version of this text has been stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 8/atom².

[VI] Tài liệu này là 1 bộ sưu tập các bài tập chọn lọc từ cơ bản đến nâng cao về nguyên tử, nguyên tố hóa học, & hợp chất hóa học. Tài liệu này là phần bài tập bổ sung cho tài liệu chính – bài giảng GitHub/NQBH/hobby/elementary chemistry/grade 8/lecture của tác giả viết cho Hóa Học Sơ Cấp. Phiên bản mới nhất của tài liệu này được lưu trữ & có thể tải xuống ở link sau: GitHub/NQBH/hobby/elementary chemistry/grade 8/atom.

Mục lục

1	Atom – Nguyên Tử
2	Công Thức Hóa Học
Tà	ii liêu

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

¹URL: https://github.com/NQBH/hobby/blob/master/elementary_chemistry/grade_8/NQBH_elementary_chemistry_grade_8.pdf.

 $^{^2 \}verb|URL: https://github.com/NQBH/hobby/blob/master/elementary_chemistry/atom/NQBH_atom.pdf.$

Sect. 2 Tài liệu

Abbreviation, Convention, & Notation – Viết Tắt, Quy Ước, & Ký Hiệu

Notation – Ký Hiệu

- $\%m_{A|A_xB_y}$: % khối lượng của nguyên tố A trong hợp chất A_xB_y , & được tính bởi công thức $\%m_{A|A_xB_y}\coloneqq \frac{xM_A}{xM_A+yM_B}$.
- $m_{A|A_xB_y}$: khối lượng của nguyên tố A trong hợp chất A_xB_y , & được tính bởi công thức $m_{A|A_xB_y} \coloneqq m_{A_xB_y} \cdot \% m_{A|A_xB_y} = m_{A_xB_y} \cdot \% m_{A|A_xB_y} = m_{A_xB_y} \cdot \% m_{A|A_xB_y}$.

1 Atom – Nguyên Tử

2 Công Thức Hóa Học

Dạng toán 1. Từ lượng chất tính lượng nguyên tố.

Bài toán 1 (Tuấn, 2022, p. 70). Tính khối lượng Fe & khối lượng oxi có trong 20g Fe₂(SO₄)₃.

$$Gi\acute{a}i. \ \ M_{\mathrm{Fe_2(SO_4)_3}} = 2 \cdot 56 + 3(32 + 4 \cdot 16) = 400 \ \text{g/mol} \\ \Rightarrow \ m_{\mathrm{Fe|Fe_2(SO_4)_3}} = \% \\ m_{\mathrm{Fe|Fe_2(SO_4)_3}} \cdot m_{\mathrm{Fe_2(SO_4)_3}} = \frac{2 \cdot 56}{2 \cdot 56 + 3(32 + 4 \cdot 16)} \cdot 20 = 5.6 \\ \Rightarrow \ m_{\mathrm{O|Fe_2(SO_4)_3}} = m_{\mathrm{Fe_2(SO_4)_3}} \cdot \% \\ m_{\mathrm{O|Fe_2(SO_4)_3}} = 20 \cdot \frac{12 \cdot 16}{2 \cdot 56 + 3(32 + 4 \cdot 16)} = 9.6 \\ \text{g.} \qquad \Box$$

Dễ dàng tính được khối lượng S trong 20
g $\mathrm{Fe_2(SO_4)_3}$ theo 2 cách: Cách 1. Tính theo tỷ lệ % khối lượng của S trong
 $\mathrm{Fe_2(SO_4)_3}$ tương tự lời giải trên: $m_{\mathrm{S|Fe_2(SO_4)_3}} = m_{\mathrm{Fe_2(SO_4)_3}} \cdot \% m_{\mathrm{S|Fe_2(SO_4)_3}} = 20 \cdot \frac{3 \cdot 32}{2 \cdot 56 + 3(32 + 4 \cdot 16)} = 4.8$ g. Cách 2. Sử dụng khối lượng của hợp chất bằng tổng khối lượng của các thành phần: $m_{\mathrm{S|Fe_2(SO_4)_3}} = m_{\mathrm{Fe_2(SO_4)_3}} - m_{\mathrm{Fe|Fe_2(SO_4)_3}} - m_{\mathrm{O|Fe_2(SO_4)_3}} = 20 - 5.6 - 9.6 = 4.8$ g. Dễ thấy Cách 2 tiện hơn sau khi đã biết khối lượng của Fe & O trong $\mathrm{Fe_2(SO_4)_3}$.

Dạng toán 2. Từ lượng nguyên tố tính lượng chất.

Bài toán 2 (Tuấn, 2022, p. 71). Cần bao nhiêu kg ure (NH₂)₂CO để có 5.6kg đạm (nito)?

$$Gi\mathring{a}i. \ m_{(\mathrm{NH_2})_2\mathrm{CO}} = \frac{m_{\mathrm{N}|(\mathrm{NH_2})_2\mathrm{CO}}}{\%m_{\mathrm{N}|(\mathrm{NH_2})_2\mathrm{CO}}} = \frac{5.6\cdot(2(14+2)+12+16)}{2\cdot14} = 12\mathrm{kg}.$$

Dạng toán 3. Từ lượng nguyên tố này tính lượng nguyên tố kia

Bài toán 3 (Tuấn, 2022, p. 71). Trong supephotphat kép thường có bao nhiều kg canxi ứng với 49.6kg photpho?

Dạng toán 4. Tính % khối lượng các nguyên tố trong hợp chất.

Bài toán 4 (Tuấn, 2022, p. 71). Tính % khối lượng các nguyên tố trong hợp chất sắt(III) sunfat.

```
Giải. CTHH của sắt(III) sunfat: \text{Fe}_2(\text{SO}_4)_3 \Rightarrow \% m_{\text{Fe}} : \% m_{\text{S}} : \% m_{\text{O}} = (2 \cdot 56) : (3 \cdot 32) : (12 \cdot 16) = 112 : 96 : 192 = 7 : 6 : 12 = 28\% : 24\% : 48\%.
```

Dạng toán 5. Tìm nguyên tố.

Bài toán 5 (Tuấn, 2022, p. 71). Nguyên tố X trong bảng tuần hoàn có oxit cao nhất dạng X₂O₅. Hợp chất khí với hydro của X chứa 8.82% khối lượng hydro. X là nguyên tố nào?

Giải. Nếu oxit cao nhất là X_2O_5 thì hợp chất kí với hydro là XH_3 . $M_X = \frac{3}{8.82} \cdot 91.18 = 31 \Rightarrow X$: P.

Tài liệu

Tuấn, Vũ Anh (2022). Bồi Dưỡng Hóa Học Trung Học Cơ Sở. Tái bản lần thứ 12. Nhà Xuất Bản Giáo Dục Việt Nam, p. 302.