

Figure 1: Schematic of the Urea cycle.

Solution 1 (a)

■ Table 1 Metabolite ID

#	Metabolite	Symbol	#	Metabolite	Symbol		
M.1	Arginine (arg)	$C_6H_{14}N_4O_2$	M.10	ATP	$C_{10}H_{16}N_5O_{13}P_3$		
M.2	Ornithine (orn)	$C_5H_{12}N_2O_2$	M.11	AMP	$C_{10}H_{14}N_5O_7P$		
M.3	Urea (u)	CH ₄ N ₂ O	M.12	Diphosphate (PPi)	H ₄ PO ₇		
M.4	Carbamoyl Phosphate (camp)	CH ₄ NO ₅ P	M.13	Orthophosphate	H ₃ PO ₄		
M.5	L-aspartate (asp)	C ₄ H ₇ NO ₄	M.14	NADPH	$C_{21}H_{30}N_7O_{17}P_3$		
M.6	Citrulline (cit)	$C_6H_{13}N_3O_3$	M.15	NADP	$C_{21}H_{29}N_7O_{17}P_3$		
M.7	Arginine succinate (arg_s)	C ₁₀ H ₁₈ N ₄ O ₆	M.16	Oxygen	O ₂		
M.8	Fumarate (fum)	C ₄ H ₄ O ₄	M.17	Nitric Oxide	NO		
M.9	Water	H ₂ O	M.18	H ⁺	Н		

• Reactions involved in the urea cycle (Source: <u>KEGG</u>)

E.C. 6.3.4.5

$$C_4H_7NO_4 + C_6H_{13}N_3O_3 + C_{10}H_{16}N_5O_{13}P_3 ===> C_{10}H_{18}N_4O_6 + C_{10}H_{14}N_5O_7P + H_4PO_7$$

 $asp + cit + ATP ===> arg_s + AMP + PPi$

E.C. 4.3.2.1

$$C_{10}H_{18}N_4O_6 ===> C_6H_{14}N_4O_2 + C_4H_4O_4$$

 $arg_s ===> arg + fum$

E.C. 3.5.3.1

$$C_6H_{14}N_4O_2 + H_2O ===> C_5H_{12}N_2O_2 + CH_4N_2O$$

arg + water ==> orn + urea

E.C. 2.1.3.3

$$C_5H_{12}N_2O_2 + CH_4NO_5P ===> C_6H_{13}N_3O_3 + H_3PO_4$$
 orn + camp ===> cit + orthophosphate

E.C. 1.14.13.39

$$2 \ C_6 H_{14} N_4 O_2 + 3 \ C_{21} H_{30} N_7 O_{17} P_3 + 3 \ H^+ + 4 \ O_2 <===> 2 \ C_6 H_{13} N_3 O_3 + 2 \ NO + 3 \ C_{21} H_{29} N_7 O_{17} P_3 \\ + 4 \ H_2 O \\ 2^* arg + 3^* NADPH + 3^* H + 4^* oxygen <==> 2^* cit + 2^* NO + 3^* NADP + 4^* H_2 O$$

■ Table 2 Reaction ID

#	Reaction	#	Reaction
\mathbf{v}_1	<i>e.c.6.3.4.5</i> asp>arg_s	b ₅	[]>ATP
\mathbf{v}_2	e.c.4.3.2.1 arg_s>arg	b ₆	AMP>[]
v ₃	e.c.3.5.3.1 arg>orn	b ₇	PPi>[]
V 4	e.c.2.1.3.3 orn>cit	b_8	H ₃ PO ₄ >[]
\mathbf{v}_5	e.c.1.14.13.39 arg>cit	b ₉	[]<>H ₂ O
\mathbf{v}_6	rev. v ₅ <i>e.c.1.14.13.39</i> cit>arg	b ₁₀	NADPH<>[]
b_1	[]>camp	b ₁₁	H<>[]
b_2	[]>asp	b_{12}	NADP<>[]
b ₃	fum>[]	b ₁₃	NO<>[]
b ₄	u>[]	b ₁₄	O ₂ <>[]

(answer) Table 3 Stoichiometric Matrix, S

	\mathbf{v}_1	\mathbf{v}_2	v ₃	V 4	v ₅	v ₆	\mathbf{b}_1	b ₂	b ₃	b ₄	b ₅	b ₆	b ₇	b ₈	b ₉	b ₁₀	b ₁₁	b ₁₂	b ₁₃	b ₁₄
M.1	0	1	-1	0	-2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M.2	0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
М.3	0	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0
M.4	0	0	0	-1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
M.5	-1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
M.6	-1	0	0	1	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M.7	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
М.8	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0
М.9	0	0	-1	0	4	-4	0	0	0	0	0	0	0	0	1	0	0	0	0	0
M.10	-1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
M.11	1	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0
M.12	1	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0
M.13	0	0	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0
M.14	0	0	0	0	-3	3	0	0	0	0	0	0	0	0	0	-1	0	0	0	0
M.15	0	0	0	0	3	-3	0	0	0	0	0	0	0	0	0	0	0	1	0	0
M.16	0	0	0	0	-4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	-1
M.17	0	0	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	0	0	1	0
M.18	0	0	0	0	-3	3	0	0	0	0	0	0	0	0	0	0	-1	0	0	0

(Convention for the reversible reaction v_5 has been assumed to be: cit ===> arg)

Solution 1 (b)

(answer) Table 4 Atom Matrix, A

	M.1	M.2	м.з	М.4	M.5	M.6	М.7	M.8	М.9	M.10	M.11	M.12	M.13	M.14	M.15	M.16	M.17	M.18
С	6	5	1	1	4	6	10	4	0	10	10	0	0	21	21	0	0	0
H	14	12	4	4	7	13	18	4	2	16	14	4	3	30	29	0	0	1
N	4	2	2	1	1	3	4	0	0	5	5	0	0	7	7	0	1	0
0	2	2	1	5	4	3	6	4	1	13	7	7	4	17	17	2	1	0
P	0	0	0	1	0	0	0	0	0	3	1	2	1	3	3	0	0	0

I have used the atom matrix for this part and the **epsilon = A*S** matrix can be generated by running the ("**S_and_epsilon_generator.jl**") file. Here, S is the stoichiometric matrix for reactions in the urea cycle only $(v_1 - v_6)$

• in julia console run include("a,b S_and_epsillon_generator.jl")

This will generate "atom_matrix.csv" and "epsilon.txt" files.

If the urea cycle reconstruction is elementally balanced, all components of the epsilon matrix should be zero, which is true in this case. (view "epsilon.txt")

If all elemental matrix components were not zero, then we would have to check the stoichiometry for the reactions corresponding to the non-zero columns in the matrix.

Solution 1 (c)

The code for solving the FBA problem is given in "c run.jl"

Upper bounds for the fluxes were calculated using:

$$v_{max,i} = k_{cat,i} \times E \times \prod_{i=1}^{n} \frac{C_i}{K_m + C_i}$$

• K_m values and metabolite concentration, C_i were obtained from Park et al Nat Chem Biol 12:482-9, 2016 and used to calculate:

For these values, the following order of preference was followed:

Homo sapiens > *Mus musculus* > *other organism*

Data for S. cerevisiae was used for the enzyme E.C.2.1.3.3

In the absence of enzyme and substrate specific data, it was assumed $C_i >> K_m$, which effectively gives $\frac{C_i}{K_m + C_i} = 1$

• in julia console run include("c run.jl")

Note: I have assumed the metabolites involved in reaction v_5 can be exchanged through the boundary (so there is a net positive flux in arg ==> cit direction [Table5]).

Deactivate lines 26, 27 and activate lines 30 and 31 in the "c run.jl" file to see optimum fluxes with **no boundary exchange of reaction v_5 metabolites** (in this case flux $v_5 = v_6 = 0.0$ mmol/gDW.hr to maximize urea)

(answer) Table 5 Optimum fluxes for maximum urea production

Flux ID	Reaction	LB	UB	Optimum value (mmol/gdW.hr)
v_1	<i>e.c.6.3.4.5</i> asp>arg_s	0	$v_{\text{max}1}$	1.242
V 2	e.c.4.3.2.1 arg_s>arg	0	v _{max2}	1.242
V 3	e.c.3.5.3.1 arg>orn	0	V _{max} 3	1.271095
V ₄	<i>e.c.2.1.3.3</i> orn>cit	0	V _{max4}	1.271095
\mathbf{v}_5	e.c.1.14.13.39 arg>cit	0	V _{max} 5	0.478652
V 6	rev. v ₅ <i>e.c.1.14.13.39</i> cit>arg	0	V _{max6}	0.4932
b_1	[]>camp	0	10	1.271095
b_2	[]>asp	0	10	1.242
b ₃	fum>[]	0	10	1.242
b ₄	u>[]	0	10	1.271095
b ₅	[]>ATP	0	10	1.242
b ₆	AMP>[]	0	10	1.242
b ₇	PPi>[]	0	10	1.242
b ₈	H ₃ PO ₄ >[]	0	10	1.271095
b ₉	[]<>H ₂ O	-10	10	1.329286
b ₁₀	NADPH<>[]	-10	10	0.043643
b ₁₁	H<>[]	-10	10	0.043643
b ₁₂	NADP<>[]	-10	10	0.043643
b ₁₃	NO<>[]	-10	10	0.029095
b ₁₄	O ₂ <>[]	-10	10	0.05819