ECE 2260 - Fundamentals of Electrical Circuits: Lab 5 Hunter Van Horn February 19, 2025

Purpose

The purpose of this lab is to sumulate and measure the time constant of an RC Circuit

Preliminary

- 1. In Python, write an analytical solution for $v_o(t)$ (the voltage across the capacitor) assuming V_i is a 0 to 5V step function. Then use Python to graph the function from $t \in [0s, 5\tau]$
- 2. Using LTspice, create and simulate the RC circuit and use the cursors to identify τ
- 3. Using the breadboard, build the circuit RC circuit applying 0-5V across using a 100Hz square wave. Measure the time constant using the oscilloscope.

Equipment

- Breadboard
- Multimeter
- Power Supply
- Signal Generator
- Oscilloscope
- Resistor: $10k\Omega$
- Capacitor: 0.1µF

The Circuit

Python Code

Author: Hunter Van Horn, Dexter Ward

Date: 02/06/2025

Dependencies

```
[1]: import numpy as np import matplotlib.pyplot as plt
```

Voltage Across the Capacitor

```
[2]: def capacitorResponse(vf, vo, t, tau):
    return vf+(vo-vf)*np.exp(-t/tau)
```

This function is used to determine the voltage across the capacitor at any given time (t) provided the time constant (τ) and the inital (V_o) and final (V_f) voltage.

Calculating Tau

```
[3]: def calculateTau(r, c): return r*c
```

This function is used to determine the τ of an RC circuit given the resistor and capacitor values.

Finding Tau

```
[4]: def positionAtTau(yVal, vf, vo):
    return np.argmax(yVal > capacitorResponse(vf,vo,1,1))
```

This function can be used to find τ in a given array of voltage values across a capacitor provided V_o and V_f .

This function is able to determine the voltage at $t = \tau$ using the capacitor response function. From there the function utilizes the numpy argmax function to determine the first array position that exceeds the determined voltage.

Graphing

```
[]: def graphResponse():
    r = 10000
    c = .0000001
    tau = calculateTau(r,c)
    vf = 5
    vo = 0
    stepSize = .000001
    xVal = np.array([0])
    yVal = np.array([capacitorResponse(vf, vo, xVal[-1], tau)])
```

```
while(xVal[-1] < 5*tau):
    xVal = np.append(xVal, [xVal[-1]+stepSize])
    yVal = np.append(yVal, [capacitorResponse(vf, vo, xVal[-1], tau)])

xVal = xVal*1000

plt.plot(xVal,yVal)
    plt.scatter(xVal[positionAtTau(yVal, vf, vo)],yVal[positionAtTau(yVal, vf, u)])

plt.xlabel('Time (ms)')
    plt.ylabel('Voltage (V)')
    plt.title('Voltage Across the Capacitor')
    plt.grid()
    plt.show()

if __name__ == '__main__':
    graphResponse()</pre>
```


LTspice Simulation

Circuit Diagram

Settings

This sets the voltage source to a square wave from 0 to 5V with a period of 10ms, an on time of 5ms, and a rise/fall time of $1\mu s$

Configu	ıre Analysis				•		×
Transient	AC Analysis	DC sweep	Noise	DC Transfer	DC op pr	nt Transient Freque	ency Response
Perform a non-linear, time-domain simulation.							
Stop time:						20ms	
Time to start saving data: 0							
Maximum Timestep: 50us							
Start external DC supply voltages at 0V:							
Stop simulating if steady state is detected:							
Don't reset T=0 when steady state is detected:							
Step the load current source:							
Skip initial operating point solution:							
Syntax: .tran <tprint> <tstop> [<tstart> [<tmaxstep>]] [<option> [<option>]]</option></option></tmaxstep></tstart></tstop></tprint>							
.tran 0 20ms 0 50us							
						ОК	Cancel

This sets the oscilloscoope output to show two periods with a maximum step size of $50\mu s$

Oscilloscope Trace

Building the Circuit

