Clase 8 Series de Tiempo

Felipe Elorrieta Lopez

Universidad de Santiago de Chile

May 15, 2025

Conceptos Previos

► Proceso Lineal General

Conceptos Previos

- Proceso Lineal General
- Proceso Autoregresivo

Conceptos Previos

- Proceso Lineal General
- Proceso Autoregresivo
- Proceso de Medias Móviles

Sea un proceso estocástico $\{Y_t\}, t \in T$ definido por la ecuación

$$Y_t - \phi_1 Y_{t-1} - \dots - \phi_p Y_{t-p} = \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_q \epsilon_{t-q}$$
 (1)

el cual es una combinación de un proceso AR(p) y un proceso MA(q) se conoce como "Modelo Autoregressivo de medias móviles" (ARMA),

donde $\{\epsilon_t\} \sim RB$ y $\phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q$ son coeficientes fijos (a estimar).

▶ El modelo (1) se puede denotar como $Y_t \sim ARMA(p, q)$.

- ▶ El modelo (1) se puede denotar como $Y_t \sim ARMA(p,q)$.
- ► Equivalentemente, se puede definir el proceso ARMA(q) a partir de los operadores de rezago como:

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B) \tag{2}$$

donde $\Phi_p(B) = 1 - \phi_1 B - \ldots - \phi_p B^p$ y $\Theta_q(B) = 1 + \theta_1 B + \ldots + \theta_q B^q$ son los polinomios autoregressivos y de medias móviles respectivamente.

Nota: $Y_t \sim ARMA(p,q)$ será causal e invertible, si las raices de $\Phi_p(B) = 0$ y $\Theta_q(B) = 0$ están fuera del circulo unitario.

- Nota: $Y_t \sim ARMA(p,q)$ será causal e invertible, si las raices de $\Phi_p(B) = 0$ y $\Theta_q(B) = 0$ están fuera del circulo unitario.
- Nota 2: Se puede identificar el proceso ARMA apropiado para nuestros datos usando la ACF y la PACF bajo la siguiente estructura,

Modelo	ACF	PACF
AR(p)	Decaim. Exp	$0 \ \forall k > p$
MA(q)	$0 \forall k > q$	Decaim. Exp
ARMA(p,q)	Decaim Exp	Decaim. Exp

Si las raices de $\Phi_p(B) = 0$ están fuera del circulo unitaria, el proceso $Y_t \sim ARMA(p,q)$ será causal, luego,

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B)$$

 $Y_t = \epsilon_t \frac{\Theta_q(B)}{\Phi_p(B)}$

Si las raices de $\Phi_p(B) = 0$ están fuera del circulo unitaria, el proceso $Y_t \sim ARMA(p,q)$ será causal, luego,

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B)$$

 $Y_t = \epsilon_t \frac{\Theta_q(B)}{\Phi_p(B)}$

Podemos definir,

$$\Psi_{\infty}(B) = \frac{\Theta_q(B)}{\Phi_p(B)} \tag{3}$$

 $ightharpoonup \Psi_{\infty}(B)$ es el polinomio de la representación de Wold del proceso ARMA.

- $ightharpoonup \Psi_{\infty}(B)$ es el polinomio de la representación de Wold del proceso ARMA.
- ightharpoonup El polinomio $\Psi_{\infty}(B)$ se define como

$$\Psi_{\infty}(B) = \sum_{j=0}^{\infty} \psi_j B^j \tag{4}$$

- $ightharpoonup \Psi_{\infty}(B)$ es el polinomio de la representación de Wold del proceso ARMA.
- ightharpoonup El polinomio $\Psi_{\infty}(B)$ se define como

$$\Psi_{\infty}(B) = \sum_{j=0}^{\infty} \psi_j B^j \tag{4}$$

lacktriangle Luego, la representación de Wold (o $MA(\infty)$) se define como

$$Y_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j} \tag{5}$$

► **Ejemplo:** Encuentre la representación de Wold de un proceso ARMA(1,1)

Por otro lado podemos encontrar la representación $AR(\infty)$ de un proceso ARMA.

- Por otro lado podemos encontrar la representación $AR(\infty)$ de un proceso ARMA.
- Sea $Y_t \sim ARMA(p,q)$. Si las raices del polinomio $\Theta_q(B) = 0$ están fuera del circulo unitario, se dice que el proceso es invertible. Luego,

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B)$$

 $Y_t \frac{\Phi_p(B)}{\Theta_q(B)} = \epsilon_t$

- Por otro lado podemos encontrar la representación $AR(\infty)$ de un proceso ARMA.
- Sea $Y_t \sim ARMA(p,q)$. Si las raices del polinomio $\Theta_q(B) = 0$ están fuera del circulo unitario, se dice que el proceso es invertible. Luego,

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B)$$

 $Y_t \frac{\Phi_p(B)}{\Theta_q(B)} = \epsilon_t$

Podemos definir,

$$\Pi_{\infty}(B) = \frac{\Phi_p(B)}{\Theta_q(B)} \tag{6}$$

▶ $\Pi_{\infty}(B)$) es el polinomio de la representación $AR(\infty)$ del proceso ARMA.

- ▶ $\Pi_{\infty}(B)$) es el polinomio de la representación $AR(\infty)$ del proceso ARMA.
- ▶ El polinomio $\Pi_{\infty}(B)$ se define como

$$\Pi_{\infty}(B) = \sum_{j=0}^{\infty} \pi_j B^j \tag{7}$$

- ▶ $\Pi_{\infty}(B)$) es el polinomio de la representación $AR(\infty)$ del proceso ARMA.
- ▶ El polinomio $\Pi_{\infty}(B)$ se define como

$$\Pi_{\infty}(B) = \sum_{j=0}^{\infty} \pi_j B^j \tag{7}$$

lacktriangle Luego, la representación $AR(\infty)$ se define como

$$\sum_{j=0}^{\infty} \pi_j Y_{t-j} = \epsilon_t \tag{8}$$

Ejemplo 2: Considere el proceso $\{Y_t\} \sim ARMA(1,1)$ definido por:

$$Y_t + 0.6Y_{t-1} = \epsilon_t + 0.4\epsilon_{t-1} \tag{9}$$

Ejemplo 2: Considere el proceso $\{Y_t\} \sim ARMA(1,1)$ definido por:

$$Y_t + 0.6Y_{t-1} = \epsilon_t + 0.4\epsilon_{t-1} \tag{9}$$

1. Es el proceso causal e invertible?

Ejemplo 2: Considere el proceso $\{Y_t\} \sim ARMA(1,1)$ definido por:

$$Y_t + 0.6Y_{t-1} = \epsilon_t + 0.4\epsilon_{t-1} \tag{9}$$

- 1. Es el proceso causal e invertible?
- 2. Encuentre la representación de Wold del proceso.

Ejemplo 2: Considere el proceso $\{Y_t\} \sim ARMA(1,1)$ definido por:

$$Y_t + 0.6Y_{t-1} = \epsilon_t + 0.4\epsilon_{t-1} \tag{9}$$

- 1. Es el proceso causal e invertible?
- 2. Encuentre la representación de Wold del proceso.
- **3.** Encuentre la representación $AR(\infty)$ del proceso

Simplificación modelo ARMA

▶ Sea $Y_t \sim ARMA(p,q)$, entonces:

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B) \tag{10}$$
 donde $\Phi_p(B) = 1 - \phi_1 B - \ldots - \phi_p B^p$ y
$$\Theta_q(B) = 1 + \theta_1 B + \ldots + \theta_q B^q.$$

Simplificación modelo ARMA

▶ Sea $Y_t \sim ARMA(p,q)$, entonces:

$$Y_t \Phi_p(B) = \epsilon_t \Theta_q(B)$$

$$\text{donde } \Phi_p(B) = 1 - \phi_1 B - \dots - \phi_p B^p \text{ y}$$

$$\Theta_q(B) = 1 + \theta_1 B + \dots + \theta_q B^q.$$

$$(10)$$

Si los polinomios $\Phi_p(B)$ y $\Theta_q(B)$ tienen raices en común, significa que hay redundancia de parametros, lo que complica innecesariamente el análisis posterior del modelo. Entonces el modelo debería ser simplificado.

Simplificación modelo ARMA

► Ejemplo 3: Considere el siguiente modelo ARMA

$$Y_t = Y_{t-1} - 0.21Y_{t-2} + \epsilon_t - 0.7\epsilon_{t-1} \tag{11}$$

¿Se puede simplificar este modelo?

Modelo ARMA General

▶ Un proceso $\{X_t\}$ se dice ARMA(p,q) con media μ , si $X_t = Y_t - \mu$ es un proceso ARMA(p,q). Es decir puede ser escrito como,

$$(Y_t - \mu)\Phi_p(B) = \epsilon_t\Theta_q(B)$$

Modelo ARMA General

▶ Un proceso $\{X_t\}$ se dice ARMA(p,q) con media μ , si $X_t = Y_t - \mu$ es un proceso ARMA(p,q). Es decir puede ser escrito como,

$$(Y_t - \mu)\Phi_p(B) = \epsilon_t\Theta_q(B)$$

o bien,

$$(Y_t - \mu) - \phi_1(Y_{t-1} - \mu) - \ldots - \phi_p(Y_{t-p} - \mu) = \epsilon_t \Theta_q(B)$$

