1 Overview of key modules

- constants: Global module holding the invariants, e.g. V
 - thresh(n): $\alpha_n = \left(\frac{1}{2}\right)^n \frac{4}{5}$
 - Version: Enum of "version" being studied. A version is defined by V (restrictions on x, y, z), the positive state, negative state (i.e. subtracted from $f(pos_state)$), and name of the data directory.

E.g. Version XYZ studies f(x, y, z) - f(y, x, z) (i.e. Theorem 3). So:

- * restriction: $V = \{x, y, z : x > 0, x < y, y < z\}$
- * pos_state: (x, y, z)
- * neg_state: (y, x, z)
- * data_dir: "xy/"
- The constant VERSION defines the version being studied.
- Inside the data directory, we have a cache for $h_n(pos_state)$ and $h_n(neg_state)$.
 - E.g. $h_n(x,y,z)$ is a cache for $h_n(x,y,z)$, in csv format, where each row is in the form (n, constant, indicator constraints).
- gen_h: Contains main logic for calculating $h_n(\cdot)$, which is stored as a constant (from indicator constraints that must be true under V), and a set of indicator constraints.
- write_h: Writes the output of gen_h to the corresponding cache (see write(n,a,b,c,filename)).
- verification: Calculates $h(\cdot)$, $\Delta(\cdot)$, using real-valued states
 - h_R(n,a,b,c): $h_n(a,b,c)$
 - dh_R(n,a,b,c): $h_n(\text{pos_state}(a,b,c)) h_n(\text{neg_state}(a,b,c))$
- mip: MIP (Mixed Integer Programming) models to find lower-bounds on $\Delta_n(\cdot)$ and $h_n(\text{pos_state}) h_n(\text{neg_state})$
 - delta_mip(n): lower bounds

$$\Delta_n(\text{version}) - \alpha_n = \sum_{i=1}^n h_n(\text{pos_state}) - \sum_{i=1}^n h_n(\text{neg_state}) - \alpha_n$$

- dh_mip(n): lower bounds $h_n(pos_state) h_n(neg_state)$
- relax: Parameter to the MIP models whether to run a relaxation on the model after analysing the model.

(For intuition only; not to be used in proofs.)

• plot: Generates plots of (x, y, z) coordinates for which $\Delta_n(x, y, z) > \alpha_n$ (see plot_ns).

2 Overview of helper modules

- gen_coords: Generates coordinates for the plot.
- li_handler: Handles logic of linear inequalities (i.e. test redundancy, feasibility, equivalence, etc).
- simulation: Simulates the game, for intuition.

3 Rough outline of studying a proof

E.g. To study a part of Theorem 3, i.e. for 0 < x < y < z, f(x, y, z) > f(y, x, z):

- 1. Define a new version in constants.
- 2. VERSION := the version just defined.
- 3. Run write_h to generate the caches for h_n 's (typically, first run n = 1...5).
- 4. Run delta_mip(n-1) and dh_mip(n) starting from n=2.
 - Check the objective values.
 - If $\Delta_{n-1} + dh_n + \alpha_n > 0$, stop. We've found the *n* for which $\Delta_n > \alpha_n$, as required.
 - \bullet Else, return to step 3 and proceed with larger n values.