TUGAS PROBABILITAS

- 1. Misalkan X_1 dan X_2 merupakan variabel acak independen yang berdistribusi N(0,1). Jika didefinisikan $V=\frac{1}{\sqrt{2}}(X_1+X_2)$ dan $W=\frac{1}{\sqrt{2}}(X_1-X_2)$. Dapatkan *joint pdf* dari V dan W.
- 2. Y_n merupakan suatu statistik order ke-n. Suatu sampel random berdistribusi Uniform dengan pdf

$$g_n(y_n) = \begin{cases} n \frac{y^{n-1}}{\lambda^n} & , & 0 < y < \theta \\ 0 & , & selainnya \end{cases}$$

Suatu variabel random Z_n didefinisikan

$$Z_n = n(\lambda - Y_n).$$

Dapatkan distribusi limit dari Z_n dan apakah hasilnya merupakan degenerate function?

3. $X \sim N(\mu, \sigma^2)$

 X_1, X_2, \dots, X_n suatu sampel random.

Tunjukkan bahwa $\bar{S}_n = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ konvergen stokastik ke σ^2 .

4. Misalkan X_2, X_3, X_4 ... suatu barisan variabel random i.i.d. dengan CDF

$$F_{X_n}(x) = \begin{cases} 1 - \left(1 - \frac{1}{n}\right)^{nx}; & x > 0\\ 0 & ; selainnya \end{cases}$$

Tunjukkan bahwa X_n konvergen dalam distribusi ke Exponential (1).

5. Misalkan bahwa $Y_n \sim \text{POI}(n)$ dimana n adalah integer positif. Jika $Y_n = \sum_{i=1}^n X_i$, dengan X_1, X_2, \dots, X_n independen, $X_i \sim \text{POI}(1)$. Berdasarkan CLT, tunjukkan bahwa

$$Z_n = \frac{Y_n - n}{\sqrt{n}} \xrightarrow{d} Z \sim N(0,1)$$
, dengan $Y_n \sim N(n,n)$ untuk n yang besar.

Hitunglah $P(10 \le Y_{20} \le 30)$ jika n = 20.

6. Proses pembuatan tertentu menghasilkan tabung vakum yang masa pakainya dalam jam adalah variabel random independen dengan distribusi Eksponensial Negatif dengan rata-rata 1.500 jam. Berapa peluang umur total 50 tabung melebihi 60.000 jam? (Gunakan juga koreksi kontinuitas)