Transformer Model

Shusen Wang

Transformer Model

 Original paper: Vaswani et al. Attention Is All You Need. In NIPS, 2017.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformer Model

- Transformer is a Seq2Seq model.
- Transformer is not RNN.
- Purely based attention and fully-connected layers.

- Much more computations than RNNs.
- Higher performance than RNNs on large datasets.

Attention beyond RNNs

Attention in Transformer

Multi-head attention:

- Multiple single-head attentions, each has its own parameter matrices.
- Concatenate the outputs.

Attention in Transformer

Multi-head attention:

- Multiple single-head attentions, each has its own parameter matrices.
- Concatenate the outputs.

Single-head attention:

•
$$C = Attn(Q, K, V)$$
.

query key value

Attention in Transformer

Multi-head attention:

- Multiple single-head attentions, each has its own parameter matrices.
- Concatenate the outputs.

Single-head attention:

- $\mathbf{C} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}).$
- \mathbf{Q} and \mathbf{C} have t columns.
- t: sequence length.
- **K** and **V** have r columns (r is arbitrary).

Single-Head Attention:

$$\mathbf{C} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}).$$

$$\mathbf{\tilde{Q}} = \begin{bmatrix} \mathbf{\tilde{Q}} & \cdots & \mathbf{\tilde{Q}} \\ \mathbf{\tilde{Q}} & \cdots & \mathbf{\tilde{Q}} \end{bmatrix}, \text{ where } \mathbf{c}_i = \mathbf{\tilde{V}} \cdot \operatorname{softmax}(\mathbf{\tilde{K}}^T \mathbf{\tilde{q}}_i)$$

$$\mathbf{\tilde{K}} = \begin{bmatrix} \mathbf{\tilde{Q}} & \cdots & \mathbf{\tilde{Q}} \\ \mathbf{\tilde{K}}_1 & \mathbf{\tilde{K}}_2 & \mathbf{\tilde{K}}_3 & \mathbf{\tilde{K}}_4 & \mathbf{\tilde{K}}_5 \end{bmatrix} \mathbf{\tilde{V}} = \begin{bmatrix} \mathbf{\tilde{Q}} & \mathbf{\tilde{Q}}_1 & \mathbf{\tilde{Q}}_2 & \mathbf{\tilde{Q}}_3 & \mathbf{\tilde{Q}}_4 & \mathbf{\tilde{V}}_5 \end{bmatrix} \mathbf{\tilde{V}}$$

$$\mathbf{W}_q \qquad \mathbf{W}_k \qquad \mathbf{W}_v$$

$$\mathbf{Q} = \begin{bmatrix} \mathbf{W} & \mathbf{W}_v & \mathbf{W}_v & \mathbf{W}_v \end{bmatrix} \mathbf{V} = \begin{bmatrix} \mathbf{W} & \mathbf{W}_v & \mathbf{W}_v & \mathbf{W}_v & \mathbf{W}_v \end{bmatrix} \mathbf{V} = \begin{bmatrix} \mathbf{W} & \mathbf{W}_v & \mathbf{W}_v & \mathbf{W}_v & \mathbf{W}_v & \mathbf{W}_v \end{bmatrix} \mathbf{V} = \begin{bmatrix} \mathbf{W} & \mathbf{W}_v & \mathbf{$$

 $\mathbf{k}_1 \mathbf{k}_2 \mathbf{k}_3 \mathbf{k}_4 \mathbf{k}_5$

 $\mathbf{q}_1 \, \mathbf{q}_2 \, \mathbf{q}_3$

Linear maps:

- $\widetilde{\mathbf{Q}} = \mathbf{W}_q \mathbf{Q}$,
- $\widetilde{\mathbf{K}} = \mathbf{W}_k^{\mathsf{T}} \mathbf{K}$,
- $\widetilde{\mathbf{V}} = \mathbf{W}_{v}\mathbf{V}$.

Trainable parameters:

• \mathbf{W}_q , \mathbf{W}_k , \mathbf{W}_v .

Single-Head Attention:

$$\mathbf{C} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}).$$

$$\mathbf{C} = \begin{bmatrix} \mathbf{I} & \mathbf{I} & \cdots & \mathbf{I} \\ \mathbf{C}_1 & \mathbf{C}_2 & \mathbf{C}_3 & \mathbf{C}_t \end{bmatrix}, \text{ where } \mathbf{C}_i = \widetilde{\mathbf{V}} \cdot \operatorname{softmax}(\widetilde{\mathbf{K}}^T \widetilde{\mathbf{q}}_i)$$

$$\widetilde{\mathbf{K}} = \begin{bmatrix} \mathbf{I} & \mathbf{I} & \cdots & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I$$

Single-Head Attention: C = Attn(Q, K, V).

$$\mathbf{C} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}).$$

$$\mathbf{c} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \mathbf{c}_3 & \mathbf{c}_t \end{bmatrix}$$
 , where $\mathbf{c}_i = \widetilde{\mathbf{V}} \cdot \operatorname{softmax}(\widetilde{\mathbf{K}}^T \ \widetilde{\mathbf{q}}_i)$

For i from 1 to t:

- Weights: $\widetilde{\mathbf{\alpha}} = \widetilde{\mathbf{K}}^T \cdot \widetilde{\mathbf{q}}_i \in \mathbb{R}^r$.
 - $\tilde{\alpha}_p = \text{similarity}(\tilde{\mathbf{k}}_p, \tilde{\mathbf{q}}_i)$.
 - Here, it uses inner product to measure similarity.
- Normalized weights: $\alpha = \text{Softmax}(\widetilde{\alpha})$.
- Context vector: $\mathbf{c}_i = \widetilde{\mathbf{V}} \cdot \mathbf{\alpha} = \alpha_1 \widetilde{\mathbf{v}}_1 + \dots + \alpha_r \widetilde{\mathbf{v}}_r$.

Multi-Head Attention

Encoder of Transformer

Encoder Network

- Encoder has 6 blocks.
- 1 Block = Multi-head attention + Dense.
- 6 is the result of hyper-parameter tuning; nothing magical about 6.
- Other tricks:
 - Skip connection.
 - Normalization.

Multi-Head Attention + Dense Layer

Multi-Head Attention

Multi-Head Attention + Dense Layer

 $\tilde{\mathbf{C}}$'s number of columns, t, is determined by \mathbf{Q} .

Multi-Head Attention

Multi-Head Attention + Dense Layer

Concatenation

$$\mathbf{C}^{[1]} \in \mathbb{R}^{d_c \times t}$$

Attention w/ different parameter matrices.

$$\mathbf{C}^{[1]} \in \mathbb{R}^{d_c imes t}$$
 $\mathbf{C}^{[2]} \in \mathbb{R}^{d_c imes t}$ \cdots $\mathbf{C}^{[m]} \in \mathbb{R}^{d_c imes t}$ eter matrices.

Encoder Network: One Block

Ignore skip connection and normalization.

- Input: $\mathbf{X} \in \mathbb{R}^{512 \times t}$; (t is the seq length.)
- Set $\mathbf{Q} = \mathbf{K} = \mathbf{V} = \mathbf{X}$.

Similar to self-attention.

Encoder Network: One Block

Ignore skip connection and normalization.

- Input: $\mathbf{X} \in \mathbb{R}^{512 \times t}$; (t is the seq length.)
- Set Q = K = V = X.
- Repeat m = 8 times:

$$\mathbf{C}^{[i]} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \in \mathbb{R}^{64 \times t}.$$

• $\tilde{\mathbf{C}} = \text{Concatenate}(\mathbf{C}^{[1]}, \dots, \mathbf{C}^{[m]}) \in \mathbb{R}^{512 \times t}$.

- Make sure the input shape and output shape are the same.
- Otherwise, skip connection cannot be applied.

Encoder Network: One Block

Ignore skip connection and normalization.

- Input: $\mathbf{X} \in \mathbb{R}^{512 \times t}$; (t is the seq length.)
- Set Q = K = V = X.
- Repeat m = 8 times:

$$\mathbf{C}^{[i]} = \operatorname{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) \in \mathbb{R}^{64 \times t}.$$

- $\tilde{\mathbf{C}} = \text{Concatenate}(\mathbf{C}^{[1]}, \dots, \mathbf{C}^{[m]}) \in \mathbb{R}^{512 \times t}$.
- $\widetilde{\mathbf{U}} = \text{DenseLayer}(\widetilde{\mathbf{C}}) \in \mathbb{R}^{512 \times t}$.
- Output: $\widetilde{\mathbf{U}} \in \mathbb{R}^{512 \times t}$. (The same shape as \mathbf{X} .)

Encoder Network

Encoder Network

Encoder

Output

Decoder of Transformer

Decoder Network: One Block

Encoder

- Similar to encoder.
- Set $\mathbf{Q} = \mathbf{K} = \mathbf{V} = \mathbf{X}'$.

Output

Decoder Network: One Block

Encoder

- Set $\mathbf{Q} = \mathbf{Z}' \in \mathbb{R}^{512 \times T}$
- $\mathbf{K} = \mathbf{V} = \mathbf{X}_{(6)} \in \mathbb{R}^{512 \times t}$.
- Multi-head attention outputs a $512 \times T$ matrix.

- Similar to encoder.
- Set Q = K = V = X'.

Output

Decoder Network

Decoder Network

- Output a distribution over the vocabulary.
- Compare the distribution with the one-hot encode of the label.
- → Loss.
- Gradient.
- Dpdate model parameters.

Summary

Summary

- Transformer model is not RNN.
- Transformer is based on attention and self-attention.
- Upside: Outperform all the state-of-the-art RNN models.
- Downside: Much more expensive than RNN models.

- Read the original paper: Vaswani et al. Attention Is All You Need. In NIPS, 2017.
- Google "transformer model explained" and read the articles.

Key Concept: Multi-Head Attention

- Inputs: query Q, key K, and value V.
- Linear maps: $\widetilde{\mathbf{Q}} = \mathbf{W}_q \mathbf{Q}$, $\widetilde{\mathbf{K}} = \mathbf{W}_k \mathbf{K}$, and $\widetilde{\mathbf{V}} = \mathbf{W}_v \mathbf{V}$.
- Single-head attention:

$$\mathbf{C} = \operatorname{attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \widetilde{\mathbf{V}} \cdot \operatorname{softmax}(\widetilde{\mathbf{K}}^T \widetilde{\mathbf{Q}}).$$

Key Concept: Multi-Head Attention

- Inputs: query Q, key K, and value V.
- Linear maps: $\widetilde{\mathbf{Q}} = \mathbf{W}_q \mathbf{Q}$, $\widetilde{\mathbf{K}} = \mathbf{W}_k \mathbf{K}$, and $\widetilde{\mathbf{V}} = \mathbf{W}_v \mathbf{V}$.
- Single-head attention:

$$\mathbf{C} = \operatorname{attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \widetilde{\mathbf{V}} \cdot \operatorname{softmax}(\widetilde{\mathbf{K}}^T \widetilde{\mathbf{Q}}).$$

- Multi-head attention:
 - Repeat attn(\mathbb{Q} , \mathbb{K} , \mathbb{V}) using different parameters \mathbb{W}_q , \mathbb{W}_v , \mathbb{W}_v .
 - Get $\mathbf{C}^{[1]}$, $\mathbf{C}^{[2]}$, \cdots , $\mathbf{C}^{[m]} \in \mathbb{R}^{d_z \times t}$.
 - Concatenate the m matrices to get $\tilde{\mathbf{C}} \in \mathbb{R}^{md_z \times t}$.

Attention in the encoder:

• Q = K = V = encoder_input.

1st attention in the decoder:

• Q = K = V = decoder_input.

2nd attention in the decoder

- Q = decoder_input
- K = V = encoder output.

Attention in the encoder:

1st attention in the decoder:

 $ullet \mathbf{Q} = \mathbf{K} = \mathbf{V} = \mathtt{decoder}_\mathtt{input}.$

2nd attention in the decoder

- Q = decoder_input
- K = V = encoder_output.

Attention in the encoder:

1st attention in the decoder:

• Q = K = V = decoder_input.

2nd attention in the decoder

- Q = decoder input
- K = V = encoder_output.

