ESERCIZIO 1

Utilizzando i tre metodi dell'analisi ammortizzata, si determini il costo ammortizzato per operazione di una sequenza di n operazioni, ove il costo c_i dell'i-esima operazione sia dato da

$$c_i = \begin{cases} 4 \cdot i & \text{se } i \text{ è potenza esatta di 9} \\ \frac{3}{2} & \text{altrimenti} \,. \end{cases}$$

	$c_i = \frac{3}{2}$ altrin	menti.
METODO DECLAC	igrec azione	
$T(m) = \sum_{i=1}^{m} c_i$	= \(\sum_{i=1}^{\infty} \ci_{i} + \\ i \neq \(\text{N} \)	Ž c:
	$= \sum_{i=1}^{m} \frac{3}{2} + i \notin 9^{N}$	
		[Gan]
	$\leq \frac{3}{2}n +$	$4 \cdot \sum_{j=0}^{9^{j}} y^{j}$ $j=0$ $y = 0$
	$=\frac{3}{2}n+$	4 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
	$4 \frac{3}{2} n + $ $= 3 n + $	$\frac{1}{2} \cdot g \cdot g^{n+1}$ $\frac{9}{2} \cdot n$
	$= \frac{12}{2} \text{ H}$	2
2.	= 6 n	6n _ c
	n	n = 6

			ANTONAMENT	
<u>i</u>	Ci	टर		
<u>(1)</u>	4	4		
2	2	3/2+9/2	(su i=9)	
3	4 3/2 3/2	3/2 + 9/2	(su i=9)	
4	3	3/2+9/2		
5	32	3/2+9/2		
6	3	3/2+9/2		
7	3/2 3/2 3/2	3/2+9/2		
8	3 2	3/2+9/2	(su i=9)	
9		9/2		
10	43232	3/2+9/2	(sa i= 92)	81-9= 72 = 8
()	3	3/2 + 9/2	(84 c=92)	01 12 - 6
12	3	3/2+9/2		
		721 72	$(su = 9^2)$	
•	•		•	4.97
30	32	3/4-9/	(sa i= 92)	$\frac{\pi}{28.9} = \frac{9}{2}$
79	2 3 2	3/2+9/2		20.71
80		3/2 + 9/2	(8u c=92)	
16	4.92	%2		i=9k
32	32	3/2+9/2	(sa i= 9)	
83	3	3/2 + 9/2	(su ==9)	4.9k 4.9'
•	•	•	•	gk_gk-1 gk-1(9-
	•		3	
				= -9
		(4	fe i = 1	2
	7: = (9/2	se iegk,	1 i = 1
			ce :496	
		6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

9 (i - 9 [4])	20 Scisson
METODO DEC POTENZIACE	
Φ ₂ = 2	se i=0
$\frac{9}{2}(\bar{z}-9\frac{143i}{3})$	
ti pi > p=0, ivfdhi	Lyi1 ≤ 49 i 9 [4i] ≤ 9 [59 i = i
	-> &= 9(i -9 L/9il) >0 = 0
$E_1 = C_1 + \Phi_1 - \Phi_0$	
= 4 + 0 - 0	

$$i \in 9^{N} \land i \neq i$$

$$i = 9^{k} \longrightarrow 9^{k} = \frac{9^{k} i}{7^{k} i}$$

$$= 4 \cdot i + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= 4 \cdot i + \frac{9}{2} (i - i) - \frac{9}{2} (i - 1 - \frac{2}{9})$$

$$= 4 \cdot i - \frac{9}{2} i + \frac{1}{2} + \frac{9}{2}$$

$$= 4 \cdot i - \frac{9}{2} i + \frac{1}{2} + \frac{9}{2}$$

$$= 4 \cdot i - \frac{9}{2} i + \frac{1}{2} + \frac{9}{2}$$

$$= \frac{9}{2}$$

$$= \frac{9}{2}$$

$$= \frac{9}{2}$$

$$= \frac{9}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{3}{2} + \frac{9}{2} (i - 9^{k} i) - \frac{9}{2} (i - 1 - 9^{k} i)$$

$$= \frac{$$

ESERCIZIO 1

(a) Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni sullo splay tree a lato:

- SEARCH 20, 13
- Insert 17
- Delete 15

(b) Si descrivano le operazioni di zig-zag, zig-zig e zig, nonché l'operazione di assemblaggio finale, in un splay tree di

(Splay trees) ESERCIZIO 2

Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree la cui configurazione iniziale è quella di un albero binario completo contenente le 10 chiavi $\{4i: 1 \le i \le 10\}$:

- Search 20, 40
- Delete 24
- Insert 30

Nota bene: Si ricorda che un albero binario si dice completo quando tutti i suoi livelli, con al più l'eccezione dell'ultimo, sono

