GMSE: an R package for generalised management strategy evaluation

Supporting Information 4

A. Bradley Duthie¹³, Jeremy J. Cusack¹, Isabel L. Jones¹, Erlend B. Nilsen², Rocío A. Pozo¹, O. Sarobidy Rakotonarivo¹, Bram Van Moorter², and Nils Bunnefeld¹

[1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2] Norwegian Institute for Nature Research, Trondheim, Norway [3] alexander.duthie@stir.ac.uk

Fine-tuning simulation conditions using gmse_apply

Here we demonstrate how simulations in GMSE can be more fine-tuned to specific empirical situations through the use of gmse_apply. To do this, we use the same scenario described in Supporting Information 3; we first recreate the basic scenario run in gmse using gmse_apply, and then build in additional modelling details including (1) custom placement of user land, (2) parameterisation of individual user budgets, and (3) density-dependent movement of resources. We emphasise that these simulations are provided only to demonstrate the use of GMSE, and specifically to show the flexibility of the gmse_apply function, not to accurately recreate the dynamics of a specific system or make management recommendations.

We reconsider the case of a protected waterfowl population that exploits agricultural land (e.g., Fox and Madsen, 2017; Mason et al., 2017; Tulloch et al., 2017; Cusack et al., 2018). The manager attempts to keep the watefowl at a target abundance, while users (farmers) attempt to maximise agricultural yield on the land that they own. We again parameterise our model using demographic information from the Taiga Bean Goose (Anser fabalis fabalis), as reported by Johnson et al. (2018) and AEWA (2016). Relevant parameter values are listed in the table below.

Table 1: GMSE simulation parameter values inspired by Johnson et al. (2018) and AEWA (2016)

Parameter	Value	Description
remove_pr	0.122	Goose density-independent mortality probability
lambda	0.275	Expected offspring production per time step
res_death_K	93870	Goose carrying capacity (on adult mortality)
RESOURCE_ini	35000	Initial goose abundance
manage_target	70000	Manager's target goose abundance
res_death_type	3	Mortality (density and density-indepent sources)

Additionally, we continue to use the following values for consistency.

Table 2: Non-default GMSE parameter values chosen by authors

Parameter	Value	Description
manager_budget	10000	Manager's budget for setting policy options
user_budget	10000	Users' budgets for actions
<pre>public_land</pre>	0.4	Proportion of the landscape that is public
stakeholders	80	Number of stakeholders
land_ownership	TRUE	Users own landscape cells
res_consume	0.02	Landscape cell output consumed by a resource

Parameter	Value	Description
observe_type agent_view	3 1	Observation model type (survey) Cells managers can see when conducting a survey

All other values are set to GMSE defaults, except where specifically noted otherwise.

References

- AEWA (2016). International single species action plan for the conservation of the Taiga Bean Goose (Anser fabalis fabalis).
- Cusack, J. J., Duthie, A. B., Rakotonarivo, S., Pozo, R. A., Mason, T. H. E., Månsson, J., Nilsson, L., Tombre, I. M., Eythórsson, E., Madsen, J., Tulloch, A., Hearn, R. D., Redpath, S., and Bunnefeld, N. (2018). Time series analysis reveals synchrony and asynchrony between conflict management effort and increasing large grazing bird populations in northern Europe. *Conservation Letters*, page e12450.
- Fox, A. D. and Madsen, J. (2017). Threatened species to super-abundance: The unexpected international implications of successful goose conservation. *Ambio*, 46(s2):179–187.
- Johnson, F. A., Alhainen, M., Fox, A. D., Madsen, J., and Guillemain, M. (2018). Making do with less: Must sparse data preclude informed harvest strategies for European waterbirds. *Ecological Applications*, 28(2):427–441.
- Mason, T. H., Keane, A., Redpath, S. M., and Bunnefeld, N. (2017). The changing environment of conservation conflict: geese and farming in Scotland. *Journal of Applied Ecology*, pages 1–12.
- Tulloch, A. I. T., Nicol, S., and Bunnefeld, N. (2017). Quantifying the expected value of uncertain management choices for over-abundant Greylag Geese. *Biological Conservation*, 214:147–155.