One Class to Rule Them All? A Study of TSL Languages Motivated by Typological Outliers

Aniello De Santo aniello.desanto@stonybrook.edu

Department of Linguistics, Stony Brook University

Introduction

Formal language theory can be used to describe the **complexity of linguistic processes**. Unbounded dependencies in phonotactics, morphology, and even syntax can all be captured by the class of **Tier-based Strictly Local languages** (TSL) [1]. However, some patterns have been **problematic** for this approach [2]. In this work:

- I review some of the limits of TSL
- I present extensions of TSL that can account for some problematic patters

The Subregular Hypothesis

- Phonology is subregular [3]
- Local phonotactic dependencies are strictly local

SL Example

Word-final devoicing in GERMAN: $*[+voice] \times$ $* \times r \ a \ d \times$ $ok \times r \ a \ t \times$

TSL Grammars

- Problem: unbounded dependencies cannot be captured by strictly local grammars
- Solution: select a subset of segments (a **tier**) and enforce local constraints only over it

Sibilant Harmony in Implawn Tashlhiyt [4]

Generalization:

- Sibilants must agree in anteriority and voicing
- Voiceless obstruents block agreement in voicing
- 1) Underlying causative prefix /s:-/
 Base Causative
- a. uga s:-uga "be evacuated"
- b. asitwa s-asitwa "settle, be levelled"
- 2) Sibilant harmony
 Base Causative
- a. fiaſr ʃ- fiaſr "be full of straw, of discord"
- b. nza z:-nza "be sold"
- 3) Sibilant voicing harmony blocked
 Base Causative
- a. ukz s:-ukz "recognize"
- b. qıuzıi J- quzii "be dislocated, broken"

SH in Imdlawn Tashlhiyt is not TSL

Multi-tier Strictly Local

• Allow for multiple tier-projections

Sibilant Harmony in SAMALA [5]

Generalization:

- Anticipatory sibilant harmony
- Palatalization to avoid local restriction
- Sibilant harmony overrides palatalization
- 1) Unbounded sibilant harmony
- a. /k-su-sojin/ ksusojin "I darken it"
- 2) $/s/\rightarrow [\int]$ when preceding (adjacent) [t, n, l]
- b. /s-nan?/ fnan? "he goes"
- 3) Long-distance harmony overides palatalization
- a. /s-net-us/ snetus "he does it to him"

SH in Samala is not TSL

Structure Sensitive TSL

• Tier-projection sensible to *n*-local properties

The Subregular Hierarchy

Conclusion

Tracing Back Our Steps

- Subregular hypothesis is a strong computational theory of language complexity
- Phonology is $SL + SP + TSL \dots$
- but there are patterns that are unaccounted for!

In This Poster

- TSL is not **exactly** the right fit, but close!
- Minor changes lead to interesting new classes

Future Work

- Further study of the TSL neighborhood
- Learning algorithms, AGL experiments ...

References

[1] Heinz J., C. Rawal, and H. Tanner. 2011. Tier-based strictly local constraints for phonology. In ACL 49th 2011. [2] McMullin, K. J. 2016. Tier-based locality in long-distance phonotactics?: learnability and typology. PhD thesis, University of British Columbia. [3] Heinz J. 2015. The computational nature of phonological generalizations. Ms., U. of Delaware. [4] Hansson G. Ó. 2010. Consonant harmony: long-distance interaction in phonology. UC Publications in Linguistics. [5] Applegate R.B. 1972. Ineseno Chumash grammar. PhD thesis, UC Berkeley.

Acknowledgements

Sincere thanks to Thomas Graf, Alëna Aksënova, and the participants at Stony Brook University Computational Phonology Workshop (2016) for insightful discussions.