Ajay Shankar Sriram

Irvine, CA | +1 (949)279-6318 | ajayshankar.sriram@uci.edu | Linkedin

EDUCATION

University of California, Irvine

09/2023 - 01/2025 (Expected)

MS Electrical Engineering

GPA: 3.78

Courses: Micro Sensors and Actuators, Micro-System Design, Autonomous Systems, Control & ML,Al Power Electronics, Linear Systems, Digital Communications

National Institute of Technology Tiruchirappalli, India

07/2017 - 05/2021

B. Tech Instrumentation and Control Engineering; Minor: Computer Science

GPA: 8.63 (Cum Laude)

Courses: Sensors and Transducers, Medical and Optical Instrumentation, Control Systems, Industrial and Process Control, Product Design and Development, Internet of Things, Data Structures and Algorithms, Neural Networks and Fuzzy Logic

TECHNICAL SKILLS AND TOOL-SETS

Development Tools: CoventorWare, L-Edit, MatLab, Simulink, LabVIEW, Code Composer Studio, Tina-Ti, Android Studio

Programming Languages: Ladder Logic (PLC programming), Python, C/C++, Kotlin, ROS (beginner)

Product Development Frameworks: Agile, Advanced product quality planning(APQP), Failure Mode and Effect Analysis(FMEA)

EXPERIENCE

AIRBUS - Qualification Engineer

07/2021 - 08/2023

Electrical & Optical System Standard Parts

Bengaluru, India

- Led a **cross-functional** international team towards the global effort to **design**, **develop**, **and qualify safe**, **standardized electrical parts** for all aircraft systems and the maintenance and updating of technical documentation
- Practiced a Lean framework(APQP) to validate Root Cause Analysis, FMEA, testing requirements & reports
- Communicated closely with major manufacturers in the **electro-mechanical component** (switch, relay, proximity sensor) space to ensure the reliability and compliance of their design with international and company standards
- Validated 2 qualification test plans and validated respective supplier\manufacturer test reports in compliance with European Union Aviation Safety Agency Part 21 Design Organization Approval and DO-160 requirements
- Was the driving force for **proof of concept** development of multiple business-critical **process automation tools** using Python, which led to **a 20% reduction in efforts** for the team and thus produced business savings
- Received 2 Spot Awards highlighting significant contributions at Airbus. The first for playing a key role in enhancing
 knowledge management and improving access to crucial information for 600+ employees. The second in recognition
 of efforts in presenting department achievements to Airbus' CTO in a tight timeframe

PROJECTS

Design and Construction of a Boost Converter | SIMULINK, powerGUI, Hardware

03/2024

- Implemented a power system with an input voltage range of 30VDC 40VDC, outputting 70VDC at 20W with less than 1% ripple, operating at 200kHz switching frequency, and utilizing Continuous Conduction Mode (CCM) at 20W, adaptable to Discontinuous Conduction Mode (DCM) at lower powers.
- Verified system performance through simulation and experimental validation, with results showing output voltage ripple within specified limits and high system efficiency of about 93% 94%

A Parametric study of Magnetohydrodynamics (MHD) for Micro thrusters | COMSOL, MATLAB

03/2024

- Demonstrated a comprehensive investigation into a micro MHD thruster's design, lumped element modelling, and COM-SOL simulation.
- · Proposed a feasible microfabrication method of the MHD thruster using anodic bonding, etching, and electroplating

Design and Simulation of 10Khz MEMS Resonator | L-Edit, CoventorWare, COMSOL, PolyMUMPS

12/2023

- Designed a micro-resonator to be manufactured using the **PolyMUMPS** process with **closed loop** electronics operated at 5V to maintain the oscillation frequency at the desired value of 10Khz with an error of **0.4%**
- Studies were conducted using **Simulink** to show the effect of temperature, manufacturing tolerances, Brownian and Johnson Noise and also to identify the vacuum packing requirements

Design and simulation of intelligent controllers - B.Tech Thesis | Intelligent Control, Modelling

04/2021

- Designed and simulated **intelligent control strategy** for a two-wheeled differential drive robot that is operating in a hostile, obstacle-filled environment. The mathematical model was derived based on first principles
- Conducted a comparative analysis of **fuzzy logic-based and intelligent PID-tuned controllers** in a SIMULINK environment. Simultaneous experiments were performed with load torques of varying degrees of strength to model obstacles