Министерство образования и науки РФ Санкт-Петербургский Политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Работа №1 по дисциплине «Сети и телекоммуникации»

> Выполнил студент гр. 5130904/10101 Абраамян А. М.

> > Преподаватель Медведев Б. М.

Оглавление

Цель работы	3
Подготовка к работе	
Порядок выполнения работы	
Обработка результатов	
Полученные результаты	
Мощность принимаемого сигнала	
Результаты оценки статистики подключения к сети между 2G, 3G, 4G	
Расстояние до базовых станций	6
Измерение скорости передачи данных	
Расчет ожидаемой мощности сигнала	
Сравнение ожидаемых и полученных значений мощности	
Определение вероятности нахождения телефона в зоне уверенного приема	
Определение средней скорости передачи и диапазона изменения скорости	
Определение средней задержки (ping) передачи и диапазона изменения задержки	
Вывод	10

Цель работы

Изучить характеристики и свойства радиолиний связи, параметры сигналов сетей 2G, 3G, 4G, Wi-Fi (мощность, статистику подключения, скорость передачи данных, задержку) на ограниченной территории исследования.

Подготовка к работе

- 1. Установить программное обеспечение Network Cell Info Lite
- 2. Изучить руководство пользователя

Порядок выполнения работы

- 1. Измерить мощность принимаемого сигнала (RSRP для 4G или RSSI для 3G, 2G, WiFi) в 3 местах (в пределах помещения или в диапазоне 10 метров на улице)
- 2. Записать результаты оценки статистики подключения к сети между 2G, 3G, 4G для контроля включения соответствующего режима работы сети.
- 3. Измерить расстояние до базовой станции по карте
- 4. Измерить скорость передачи данных, задержку (ping) и вариацию задержки (jitter) для одного места измерения мощности сигнала 5 раз с интервалом 2 минуты

Обработка результатов

- 1. Рассчитать ожидаемую мощность сигнала по применимым моделям для 2G, 3G, 4G при следующих параметрах:
 - Частота сигнала определяется как середина используемого в эксперименте диапазона частот Downlink.
 - Мощность передатчика базовой станции сотовой сети 43 дБм.
 - Коэффициент усиления антенны базовой станции 15 дБ, сотового телефона 0 дБ.
 - При отсутствии возможности оценить высоту установки антенны базовой станции использовать типовое значение для макросоты или микросоты
- 2. Рассчитать ожидаемую мощность сигнала для WiFi при следующих параметрах:
 - Мощность передатчика точки доступа WiFi 20 дБм.
 - Коэффициент усиления антенны точки доступа и WiFi телефона 0 дБ.
- 3. Сравнить результаты расчета мощности сигнала на входе приемника с измерениями.
- 4. Определить вероятность нахождения телефона в зоне уверенного приема при условии:
 - измеренные значения мощности сигнала являются средними значениями случайной величины с нормальным законом распределения и стандартным отклонением, определенным в моделях для 2G, 3G, 4G;
 - мощность сигнала на входе приемника должна быть больше 100 дБм типового значения чувствительности приёмника, при котором достигается вероятность приема кадра без ошибки не менее 90%.
- 5. Определить среднюю скорость передачи и диапазон изменения скорости для всех режимов работы. Сравнить с максимальной достижимой скоростью передачи и с типовыми значениями из табл. 1.9.
- 6. Определить среднюю задержку (ping) передачи и диапазон изменения задержки для всех режимов работы. Сравнить с типовыми значениями из табл. 1.10. Рассчитать задержку сигнала в радиолинии и определить долю этой величины в общей задержке передачи кадров.

Полученные результаты

Мощность принимаемого сигнала

Для выполнения работы были проведены измерения в трех местах в общежитии №17. В таблице приведены значения после завершения интервала усреднения.

Между тремя местоположениями расстояние приблизительно 10 метров.

Режим работы сети	Мощность		
	№1	№ 2	№ 3
2G	-71	-71	-76
3G	-85	-79	-83
4G	-102	-96	-90
Wi-Fi	-42	-73	-83

Результаты оценки статистики подключения к сети между 2G, 3G, 4G

Расстояние до базовых станций

С помощью Network Cell Info Lite мы вычислили расположение вышки к которой подключился телефон, расстояние посчитали с помощью сторонних навигационных приложений. Подключались мы к одной и той же вышке, расстояние до которой приблизительно 350 метров.

Измерение скорости передачи данных

Режим работы	Измерение					
сети	1	2	3	4	5	
2G	□ Type □ Ping ✓ Jitter 2G 162ms 115ms □ Download □ Upload 142.2κb/s 57.0κb/s	1 Type	Введ □ Ping ✓ Jitter 2G 126ms 15ms ± Скачать ± Загрузить 224,8кь/з 19,1кь/s	Введ □ Ping ✓ Jitter 2G 113ms 20ms в Скачать в Загрузить 211,3кы/s 19,1кы/s	Введ □ Ping ~ Jitter 2G 127 _{ms} 7 _{ms} в Скачать в Загрузить 227,3кь/s 19,1кь/s	
3G	If Type ☐ Ping ✓ Jitter 3G 194ms 211ms Download ± Upload 4.6Mb/s 3.7Mb/s	✓ Type ☐ Ping ✓ Jitter 3G 75ms 6ms Download ± Upload 4.5mb/s 3.7mb/s	☐ Type ☐ Ping ✓ Jitter 3G 63ms 275ms Download ± Upload 1.6mb/s 2.7mb/s	☐ Type ☐ Ping ✓ Utter 3G 69ms 98ms Download ± Upload 5.4mb/s 3.4mb/s	If Type ☐ Ring ✓ Jitter 3G 67ms 8ms Download ± Upload 6.5mb/s 3.9mb/s	
4G	I Type ☐ Ping ✓ Jitter LTE+ 71 ms 13 ms Download ± Upload 2.2 Mb/s 7.2 Mb/s	✓ Type ☐ Ping ✓ Jitter LTE 73ms 17ms Download Dupload 1.3mb/s 7.2mb/s	If Type ☐ Ping ✓ Jitter LTE+ 70ms 168ms Download ± Upload 646.3kb/s 2.5mb/s	I Type I Ping ✓ Jitter LTE+ 83ms 37ms ♣ Download ♣ Upload 929.8mb/s 5.7mb/s	I Type	

Расчет ожидаемой мощности сигнала

Расчет затуханий

1. 2G

$$PL(d) = 46,3 + 33.9 \cdot \lg(f_c) - 13,82 \cdot \lg(h_{te}) - a(h_{re}) +$$

 $+(44,9-6,55 \cdot \lg(h_{te})) \cdot \lg(d) + C_m$ (1.15)

где $a(h_{re})$ определяется формулой (11),

 $C_{m}=0$ дБ для городов средних размеров и пригородов со средней плотностью деревьев,

 $C_m = 3$ дБ для крупных городов.

Допустимые границы параметров в (15):

f_c: 1500...2000 МГц,

h_{te}: 30...200 м,

 $h_{re}: 1...10 M$

d: 1..20 км.

Корректирующий фактор для эффективной высоты мобильной антенны для крупных

$$a(h_{\rm re})=3.2\cdot(\lg(11.75\cdot h_{\rm re}))^2-4.97\,$$
 дБ (для $\rm f_c{>}400~M\Gamma _{II})~~(1.12)$ городов

$$h_{te} = 50$$
 $h_{\Re} = 5$ $f_c = 50$

2. 3G

Так как базовая станция находится в соседнем здании выберем следующую модель:

Модель потерь для пешеходной среды:

$$PL(d) = 40 \lg(d) + 30 \lg(f) + 49$$
 дБ, (1.17)

где:

d — расстояние от базовой станции (BTS) до мобильной станции (MS) в км,

f – частота сигнала в МГц (не должна отклоняться далеко от 2 ГГц).

 $f = 1800 M\Gamma$ ц

d = 0.3 km

стандартное отклонение на уровне 12 Дб

3. 4G

$$PL_{3D\text{-}UMa\text{-}NLOS} = 161.04 - 7.1 \lg(W) + 7.5 \lg(h) - (24.37 - 3.7(h/h_{BS})^2)$$

 $\lg(h_{BS}) + (43.42 - 3.1 \lg(h_{BS})) (\lg(d_{3D}) - 3) + 20 \lg(f_c) -$
 $(3.2 (\lg(17.625))^2 - 4.97) - 0.6(h_{UT} - 1.5) \text{ дБ}, \qquad (1.23)$

где расстояние d_{3D} измеряется в метрах, частота сигнала f_c – в ГГц, h – средняя высота зданий в диапазоне 5 м < h < 50 м, типовое значение h = 20 м,

W- ширина улицы в диапазоне 5 м < W < 50 м, типовое значение W 20 м,

типовое значение $h_{BS} = 25$ м и 10 м $< h_{BS} < 150$ м, 1.5 м $\le h_{UT} \le 22.5$ м,

25

 f_c =2.14 $\Gamma \Gamma u_i$ - середина для LTE band 1 диапозона Downlink, h_{ut} =1.5 для уровня земли. Отклонение затухания сигнала возьмем 6 дБ

4. Wi-Fi

Для расстояния до точки Wi-Fi < 5м

$$PL(d) = PL_{FS}(d) + x$$
 дБ, при $d \le d_{BP}$

Иначе

 $PL(d) = PL_{FS}(d_{BP}) + 3.5 * 10 log 10(d/d_{BP}) + x дБ, при d > d_{BP}$, (1.25) где d – расстояние между передатчиком и приемником в метрах,

 PL_{FS} (d) — затухание сигнала в свободном пространстве (см. формулу (5)),

 d_{BP} – расстояние до точки разрыва (breakpoint distance), которое зависит от типа помещения (см. табл. 1.8),

х – случайная величина, имеющая нормальный закон распределения с нулевым средним значением и стандартным отклонением σ (в дБ).

Затухание сигнала найдем по формуле

$$PL(d) = -20 \cdot \lg \left[\frac{\lambda}{4\pi d}\right] - G_t(дБ) - G_r(дБ) \quad (1.5)$$

Коэффициенты усиления антены точки доступа и Wi-Fi телефона 0 дБ, скорость света с = 299 792 458 м/с, f_c = 5 $\Gamma\Gamma q$

Применяется модель В

• Модель В: сеть малого размера (домашний сценарий), располагается в комнате и между комнатами.

Модель	d_{BP}	ст. отклонение	ст. отклонение
помещения	(M)	σ д $\overline{\mathrm{B}}$ до d_{BP}	σ д $\overline{\mathrm{B}}$ после d_{BP}
		(LOS)	(NLOS)

B 5 3 4

Мощность сигнала можно рассчитать по формуле

$$P_r = P_t - PL(d)$$

где мощность сигнала на выходе передатчика равна 43 дБм

Сравнение ожидаемых и полученных значений мощности

Режим	№ 1		N <u>o</u> 2		Nº3	
работы	Измерение,	Расчет,	Измерение,	Расчет,	Измерение,	Расчет,
сети	дБм	дБм	дБм	дБм	дБм	дБм
2G	-71	-78	-71	-78	-76	-78
3G	-85	-85	-79	-83	-83	-82
4G	-102	-86	-96	-85	-90	-84
Wi-Fi	-41	-44	-73	-44	-83	-44

При сравнении было обнаружено, что измеренные уровни мощности принимаемых сигналов отличаются от расчетных значений. Это можно объяснить наличием погрешностей вычислений, а также различными препятствиями на пути распространения сигнала, которые ухудшают его качество, включая рассеивание и дифракцию. Кроме того, для расчетов использовались типовые значения некоторых параметров из-за нехватки точной информации о станциях, что могло привести к отклонению расчетных данных.

Определение вероятности нахождения телефона в зоне уверенного приема

Значение стандартного отклонения используемого при расчете = 12дБ для 2G, 3G и 6дБ для 4G. Мощность сигнала на входе приемника должна быть больше –100дБм – типового значения чувствительности приёмника, при котором достигается вероятность приема кадра без ошибки не менее 90%.

	Местоположение	Вероятность	
2G	N <u>∘</u> 1	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 71}{12}\right) = 0.9995$	
	Nº2	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 71}{12}\right) = 0.9998$	
	Nº3	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 76}{12}\right) = 0.9999$	
3G	Nº1	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 85}{12}\right) = 0.9921$	
	Nº2	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 79}{12}\right) = 0.9995$	
	Nº3	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 83}{12}\right) = 0.9997$	
4G	Nº1	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 102}{6}\right) = 0.9977$	
	Nº2	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 96}{6}\right) = 0.9999$	
	N <u>∘</u> 3	$P(X_{\sigma} < 100) = \Phi\left(\frac{100 - 83}{6}\right) = 0.9999$	

Определение средней скорости передачи и диапазона изменения скорости

Режим работы	Диапазон	Средняя	Максимальная	Типовая
сети	изменения	скорость	скорость	скорость
	скорости,	загрузки,	загрузки,	загрузки,
	Мб/с	Мб/с	Мб/с	Мб/с
2G EDGE	0 - 0,154	0,188	0,227	0,1
3G HSPA+	1.6 - 6.5	4.52	6.5	4
4G LTE+	0.5 — 2.2	1.34	2.2	15

Анализируя полученные результаты, нетрудно заметить, что для 3G средняя скорость загрузки оказалась гораздо выше чем типовая, и чем средняя скорость для 4G. Это может быть связано с тем, что препятствия оказывают более сильное воздействие на 3G чем на 4G. Также это может быть связано с тем, что нагрузка на сеть 4G на тот момент была повышенна, поскольку это самая современная технология

Определение средней задержки (ping) передачи и диапазона изменения задержки

Проведено сравнение полученных значений средней задержки с типовыми значениями

Режим	Режим Диапазон изменения		Типовое значение,
работы сети	задержки, мс	задержка, мс	MC
2G EDGE	113 –168	139.2	500
3G HSPA+	63 – 194	93.6	100
4G LTE+	70 – 83	73.6	50

Задержку сигнала можно рассчитать поделив расстояние до вышки на скорость света

Режим	Расстояние, м	Задержка сигнала в
работы сети		радиолинии, мс
2G EDGE	350	0.001167474333
3G HSPA+	320	0.001067405105
4G LTE+	300	0.001000692286

Задержка в радиолинии представляет собой совершенно незначительное значение по сравнению с задержкой которая возникает со стороны операторов сотовой связи

Вывод

В процессе работы были измерены уровни мощности принимаемых сигналов в сетях 2G, 3G, 4G и Wi-Fi, а также получены данные о скорости передачи данных, задержке и джиттере с помощью программы Network Cell Info Lite на устройстве. Для оценки ожидаемой мощности сигнала в сетях использовались теоретические формулы, а также для определения средней задержки, средней скорости передачи данных и вероятности нахождения мобильного устройства в зоне с хорошим приемом сигнала.

Результаты исследования показали, что расчетные значения мощности сигнала для всех сетей не совпадают с измеренными данными. Различия между ожидаемыми и фактическими результатами можно объяснить использованием стандартных значений расстояний до базовых станций из-за недостатка информации о конкретных станциях, ошибками в расчетах и измерениях, применением моделей, которые хотя и подходят для

используемых данных, но не полностью отражают реальные условия измерений, а также наличием неучтенных препятствий, дифракцией и рассеиванием сигналов.

Кроме того, было установлено, что измерения проводились в зоне с хорошим приемом сигнала, что подтверждается высокой вероятностью нахождения мобильного устройства в этой зоне.