Maccabi Home Task – DS position

Predictive model to rank patients developing a hypertensive disorder

Simple (EDA)

Dataset Overview

•10,000 rows × 143 columns (142 numeric + 1 text).

•Target column: y.

•Prevalence: ~4.3% positive cases (imbalanced dataset).

Missing Data

- •57 columns (>10% missing values) important to handle before modeling.
- •Some columns with >99% missing: dropped as raw features, but retained as is_missing flags to capture clinical decision signal.
- •Missingness itself may indicate **clinical suspicion** (e.g., certain labs ordered only when risk suspected).

Leakage Risk Check — Single-Feature

Early detector for **data leakage**. Any single feature with very high AUC likely encodes post-prediction information and must be excluded for a week-15 model.

match_diag_141 has $AUC \approx 0.832$ (red bar) + . _*sum variables suspected as data leakage columns.

Conclusion:

- •Treat match_diag_141 (and any similar match_* and _*sum variables tied to later diagnosis/registries) as leakage → drop from training.
- •Keep BP features—strong, plausible, and clinically valid predictors at week 15.

Text (EDA)

- •Clinical notes column: "clinical_sheet".
- •Parsed into 7 canonical sections: complaints, risk factors,

findings, labs/imaging, medications, vitals, recommendations.

•Stopwords removed: Hebrew fillers ("ללא", "כן", "לא", "מתלוננת") and section headers.

Sentence splitting

•Top n-grams per section (positives only):

•Keyword checks: found strong clinical notes:

" סיכון קל לרעלת היריון עקב תוצאות "

	ngram	count	canon
0	עייפות מוגברת	216	complaints
1	כאבי ראש	166	complaints
2	עייפות מוגברת ובחילות	86	complaints
3	מוגברת ובחילות	86	complaints
4	תחושת עייפות	84	complaints
5	ראש קלים	84	complaints
6	כאבי ראש קלים	76	complaints
7	שיפור בבחילות	73	complaints
8	מדי פעם	73	complaints
9	עייפות מתמשכת	65	complaints

Table 1:1-3 grams for "complication" section

Feature Engineering (tabular features)

- •Lab normalization: build function to correct inconsistent units as needed for laboratory Results columns.
- •Binary flags: created *low/high* abnormality indicators based on known limits for laboratory tests (HGB, HCT, WBC, PLT, etc.).

Exploration for *Risk Factors* and creation a new features based on them:

- •Age risk: added flag for age > 38 years.
- •Derived ratios:
- •NLR = neutrophils / lymphocytes
- •PLR = platelets / lymphocytes
- •Blood pressure: derived pulse pressure and MAP (mean arterial pressure).
- •History aggregates: counts of diagnoses in last 4m vs 24m, ratio 4/24, flag for "new vs chronic".

NLP Feature Extraction

- •Regex-based feature extraction: Built Hebrew keyword lexicon for key risk factors (e.g., diabetes, IVF, family history).
- •Feature engineering: Created binary indicators (kw_*) and earliest-week variables (kw_*_week) per patient.
- •Aggregate signals: Derived summary flags such as any risk factor present and minimum week of risk factor appearance.

Model Evaluation

1. Tabular only

- •ROC-AUC = 0.636, PR-AUC = 0.087
- •That's only a bit better than random (baseline PR \approx prevalence \sim 0.04).
- 2. Text only (complications + risk factor section)
- •ROC-AUC = 0.972, PR-AUC = 0.696
- •Extremely strong! This means that the way complications/risk factors are documented carries very predictive signal.
- •Risk: still may contain semi-leaky phrasing (doctors often write things very close to diagnosis).

3. Fused (tab + text)

- •ROC-AUC = 0.896, PR-AUC = 0.521
- •The performance drops vs text-only. Common when:
 - The text dominates and tabular adds noise.
 - fusion method isn't optimal (I did weight 50/50).
- •Still: the fused model is very strong, PR-AUC ~0.52 is ~12× baseline

Budget-Constrained Evaluation

*Used test cost = 120 USD for this section

- •AUC= $0.896 \rightarrow$ strong separation between sick and healthy.
- •At 10-20% false positives, we capture $\sim 70-80\%$ of true cases.
- •This can be a **clinical sweet spot**, but the exact threshold should be chosen based on **risk tolerance and testing budget**.

- •In the test population, baseline prevalence for hypertensive disorder is only ~4%.
- •Random selection of 100 women would detect ~4 true hypertensive cases.
- •Model-guided selection of 100 women detects ~20 true cases a 5× improvement in yield.
- •This demonstrates that the model **concentrates scarce testing resources** on the women most likely to benefit, turning limited budget into much higher detection efficiency.

- •As budget increases, recall rises quickly at first.
- •After \sim \$100K, gains flatten \rightarrow diminishing returns.

General conclusion:

- •A moderate budget (\approx \$50K) already detects most cases (\sim 75%).
- •Beyond \$100K, extra spending adds little benefit.

- •Too low budget (<\$2k): very high PPV, but you miss most true cases. Not practical clinically With very low budget \rightarrow PPV is high, but recall is low \rightarrow only a few true cases are actually detected.
- •Moderate budget (\$8k–12k): PPV ~50–60%, still much higher than baseline 4%, and recall is already substantial.
- •Above \$15k: PPV drops below ~40%, so efficiency per test starts falling faster.

Next Steps:

- •Model benchmarking: compare different models results.
- •FE check for more robust featue change limits to get more sever high risk for example age > 40 instead > 38
- •LLM for text features: Extract features and set class risk factors (present / negated / not mentioned) using LLM's.
- •External validation: test on independent cohort to ensure robustness.

This project shows how data science with advance AI tools can transform week-15 pregnancy data into a practical screening tool — one that not only predicts risk, but also helps allocate limited testing resources far more efficiently.