Álgebra I: Teoría de Grupos Examen parcial 1

Universidad de El Salvador. Ciclo impar 2018

Problema 1 (1 punto). Consideremos los grupos simétricos S_n y grupos alternantes A_n . ¿Para cuáles valores de n son abelianos? Cuando no son abelianos, encuentre un par de permutaciones específicas σ , τ tales que $\sigma \circ \tau \neq \tau \circ \sigma$.

Problema 2 (1 punto). Demuestre que un grupo G es abeliano si y solamente si para cualesquiera $g,h\in G$ se cumple

 $(gh)^2 = g^2 h^2.$

Problema 3 (2 puntos). Supongamos que $\sigma=(i_1 \cdots i_k)$ y $\tau=(j_1 \cdots j_\ell)$ son dos ciclos *disjuntos* en el grupo simétrico S_n ; es decir,

$$\{i_1,\ldots,i_k\}\cap\{j_1,\ldots,j_\ell\}=\emptyset.$$

Demuestre que el mínimo exponente $m=1,2,3,\ldots$ tal que $(\sigma\circ\tau)^m=$ id es igual a mcm (k,ℓ) .

Problema 4 (2 puntos). Para el grupo simétrico S_5 calcule cuántas diferentes permutaciones $\sigma \in S_5$ satisfacen la propiedad $\sigma \circ \sigma = \mathrm{id}$.

Problema 5 (2 puntos).

- 1) Para un grupo G demuestre que el centro Z(G) es un subgrupo de G.
- 2) Sea G un grupo y H su subgrupo. ¿Es cierto que Z(H) es un subgrupo de Z(G)? (Demuéstrelo o encuentre un contraejemplo.)

Problema 6 (2 puntos). Se dice que un número complejo $z \in \mathbb{C}$ es una raíz n-ésima de la unidad si $z^n = 1$.

- 1) Demuestre que todas las raíces n-ésimas de la unidad forman un grupo abeliano respecto a la multiplicación compleja. Denotémoslo por $\mu_n(\mathbb{C})$.
- 2) Demuestre que todas las raíces de la unidad

$$\mu_{\infty}(\mathbb{C}) := \bigcup_{n \ge 1} \mu_n(\mathbb{C})$$

también forman un grupo.