Chapter 7 Notes - LA

John Yang

April 29, 2022

Contents

7	Dist	ance and Approximation	1
	7.1	Inner Product Spaces	1
	7.2	Norms and Distance Functions	6
		Least Squares Approximation	
		The Singular Value Decomposition	
		Applications	

7 Distance and Approximation

7.1 Inner Product Spaces

- An inner product on a vector space V is an operation that assigns to every pair of vectors \mathbf{u} and \mathbf{v} in V a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ such that the following properties hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and all scalars c:
 - $-\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ $-\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ $-\langle c\mathbf{u}, \mathbf{v} \rangle = c\langle \mathbf{u}, \mathbf{v} \rangle$ $-\langle \mathbf{u}, \mathbf{u} \rangle > 0 \text{ and } \langle \mathbf{u}, \mathbf{u} \rangle = 0 \text{ IFF } \mathbf{u} = \mathbf{0}$
- A vector space with an inner product is called an inner product space.
- Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in an inner product space V and let c be a scalar.
 - $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v} + \mathbf{w} \rangle$ $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$ $\langle \mathbf{u}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{v} \rangle = 0$
- Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V.
 - The length (or norm) of \mathbf{v} is $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
 - The distance between \mathbf{u} and \mathbf{v} is $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$
 - \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- ullet Pythagoras' Theorem: Let old u and old v be vectors in an inner product space V. Then old u and old v are orthogonal IFF

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

ullet The Cauchy-Schwarz Inequality: Let ${f u}$ and ${f v}$ be vectors in an inner product space V. Then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}||\mathbf{v}||$$

with equality holding IFF \mathbf{u} and \mathbf{v} are scalar multiples of each other.

• The triangle inequality: Let \mathbf{u} and \mathbf{v} be vectors in an inner product space V. Then

$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

7.2 Norms and Distance Functions

- A norm on a vector space V is a mapping that associates with each vector \mathbf{v} a real number $\|\mathbf{v}\|$, called the norm of \mathbf{v} , such that the following properties are satisfied for all vectors \mathbf{u} and \mathbf{v} and all scalars c:
 - $\|\mathbf{v}\| \ge 0$, and $\|\mathbf{v}\| = 0$ IFF $\mathbf{v} = \mathbf{0}$
 - $\|c\mathbf{v}\| = |c|||\mathbf{v}||$
 - $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$
- A vector space with a norm is called a normed vector space.
- We define a distance function for any norm as:

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

- Let d be a distance function defined on a normed linear space V. The following properties hold for all vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in V:
 - $-d(\mathbf{u}, \mathbf{v}) \ge 0$, and $d(\mathbf{u}, \mathbf{v}) = 0$ IFF $\mathbf{u} = \mathbf{v}$
 - $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
 - $-d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$
- A matrix norm on M_{nn} is a mapping that associates with each $n \times n$ matrix A a real number ||A||, called the norm of A, such that the following properties are satisfied for all $n \times n$ matrices A and B and all scalars c.
 - $\|A\| \ge 0$ and $\|A\| = 0$ IFF A = O.
 - $\|cA\| = |c\||A\|$
 - $\|A + B\| \le \|A\| + \|B\|$
 - $\|AB\| \le \|A\| \|B\|$
- A matrix norm on M_{nn} is said to be compatible with a vector norm on $\|\mathbf{x}\|$ on \mathbb{R}^n if, for all $n \times n$ matrices A and all vectors \mathbf{x} in \mathbb{R}^n , we have

$$||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||$$

• The Frobenius norm is given by

$$||A||_F = \sqrt{\sum_{i,j=1}^n a_{ij}^2}$$

- If $\|\mathbf{x}\|$ is a vector norm on \mathbb{R}^n , then $\|A\| = \max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$ defines a matrix norm on M_{nn} that is compatible with the vector norm that induces it.
- The matrix norm ||A|| in the previous is called the operator norm induced by the vector norm $||\mathbf{x}||$

• Let A be an $n \times n$ matrix with column vectors \mathbf{a}_i and row vectors \mathbf{A}_i for $i = 1, \ldots, n$.

a.
$$||A||_1 = \max_{j=1,\dots,n} \{||\mathbf{a}_j||_s\} = \max_{j=1,\dots,n} \left\{ \sum_{i=1}^n |a_{ij}| \right\}$$

b.
$$||A||_{\infty} = \max_{i=1,\dots,n} \{||\mathbf{A}_i||_s\} = \max_{i=1,\dots,n} \left\{ \sum_{j=1}^n |a_{ij}| \right\}$$

• A matrix A is ill-conditioned if small changes in its entries can produce large changes in the solutions to $A\mathbf{x} = \mathbf{b}$. If small changes in the entries of A produce only small changes in the solutions to $A\mathbf{x} = \mathbf{b}$, then A is called well-conditioned.

7.3 Least Squares Approximation

• If A is an $m \times n$ matrix and **b** is in \mathbb{R}^m , a least squares solution of $\overline{A}\overline{\mathbf{x}} = \mathbf{b}$ is a vector $\overline{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\overline{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all \mathbf{x} in \mathbb{R}^n .

- The Least Squares Theorem: Let A be an $m \times n$ matrix and let \mathbf{b} be in \mathbb{R}^m . Then $A\mathbf{x} = \mathbf{b}$ always has at least one least squares solution $\overline{\mathbf{x}}$. Moreover:
 - $-\overline{\mathbf{x}}$ is a least squares solution of $A\mathbf{x} = \mathbf{b}$ if and only if $\overline{\mathbf{x}}$ is a solution of the normal equations $A^T A \overline{\mathbf{x}} = A^T \mathbf{b}$.
 - A has linearly independent columns if and only if $A^T A$ is invertible. In this case, the least squares solution of $A\mathbf{x} = \mathbf{b}$ is unique and is given by

$$\overline{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

• Let A be an $m \times n$ matrix with linearly independent columns and let **b** be in \mathbb{R}^m . If A = QR is a QR factorization of A, then the unique least squares solution $\overline{\mathbf{x}}$ of $A\mathbf{x} = \mathbf{b}$ is

$$\overline{\mathbf{x}} = R^{-1} Q^T \mathbf{b}$$

• Let W be a subspace of \mathbb{R}^m and let A be an $m \times n$ matrix whose columns form a basis for W. If \mathbf{v} is any vector in \mathbb{R}^m , then the orthogonal projection of \mathbf{v} onto W is the vector

$$\operatorname{proj}_{W}(\mathbf{v}) = A \left(A^{T} A \right)^{-1} A^{T} \mathbf{v}$$

The linear transformation $P: \mathbb{R}^m \to \mathbb{R}^m$ that projects \mathbb{R}^m onto W has $A(A^TA)^{-1}A^T$ as its standard matrix.

• If A is a matrix with linearly independent columns, then the pseudoinverse of A is the matrix A^+ defined by

$$A^+ = \left(A^T A\right)^{-1} A^T$$

- Let A be a matrix with linearly independent columns. Then the pseudoinverse A^+ of A satisfies the following properties, called the Penrose conditions for A:
 - $-AA^{+}A = A$
 - $-A^{+}AA^{+}=A^{+}$
 - $-AA^{+}$ and $A^{+}A$ are symmetric.

7.4 The Singular Value Decomposition

- If A is an $m \times n$ matrix, the singular values of A are the square roots of the eigenvalues of $A^T A$ and are denoted by $\sigma_1, \ldots, \sigma_n$. It is conventional to arrange the singular values so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$.
- The Singular Value Decomposition: Let A be an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ and $\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_n = 0$. Then there exist an $m \times m$ orthogonal matrix U, and an $m \times n$ matrix Σ of the form shown in Equation (1) such that

$$A = U\Sigma V^T$$

• The Outer Product Form of the SVD: Let A be an $m \times n$ matrix with singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ and $\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_n = 0$. Let $\mathbf{u}_1, \ldots, \mathbf{u}_r$ be left singular vectors and let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be right singular vectors of A corresponding to these singular values. Then

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T$$

- Let $A = U\Sigma V^T$ be a singular value decomposition of an $m \times n$ matrix A. Let $\sigma_1, \ldots, \sigma_r$ be all the nonzero singular values of A. Then:
 - The rank of A is r.
 - $-\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ is an orthonormal basis for $\operatorname{col}(A)$.
 - $-\{\mathbf{u}_{r+1},\ldots,\mathbf{u}_m\}$ is an orthonormal basis for null (A^T) .
 - $-\{\mathbf{v}_1,\ldots,\mathbf{v}_r\}$ is an orthonormal basis for row(A).
 - $-\{\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\}$ is an orthonormal basis for null(A).
- Let A be an $m \times n$ matrix with rank r. Then the image of the unit sphere in \mathbb{R}^n under the matrix transformation that maps \mathbf{x} to $A\mathbf{x}$ is
 - the surface of an ellipsoid in \mathbb{R}^m if r=n.
 - a solid ellipsoid in \mathbb{R}^m if r < n.
- Let A be an $m \times n$ matrix and let $\sigma_1, \ldots, \sigma_r$ be all the nonzero singular values of A. Then

$$||A||_F = \sqrt{\sigma_1^2 + \dots + \sigma_r^2}$$

• If A is an $m \times n$ matrix and Q is an $m \times m$ orthogonal matrix, then

$$||QA||_F = ||A||_F$$

• Let $A = U\Sigma V^T$ be an SVD for an $m \times n$ matrix A, where $\Sigma = \begin{bmatrix} D & O \\ O & O \end{bmatrix}$ and D is an $r \times r$ diagonal matrix containing the nonzero singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ of A. The pseudoinverse (or Moore-Penrose inverse) of A is the $n \times m$ matrix A^+ defined by

$$A^+ = V \Sigma^+ U^T$$

where Σ^+ is the $n \times m$ matrix

$$\Sigma^{+} = \left[\begin{array}{cc} D^{-1} & O \\ O & O \end{array} \right]$$

• The least squares problem $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution $\overline{\mathbf{x}}$ of minimal length that is given by

$$\overline{\mathbf{x}} = A^{+}\mathbf{b}$$

• The Fundamental Theorem of invertible matrices: Final Version.

- A is invertible
- $-A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n
- $-A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- The reduced row echelon form of A is I_n .
- A is the product of elementary matrices.
- $-\operatorname{rank}(A) = n$
- nullity(A) = 0
- The column vectors of A are linearly independent
- The column vectors of A span \mathbb{R}^n
- The column vectors of A form a basis for \mathbb{R}^n
- The row vectors of A are linearly independent
- The row vectors of A span \mathbb{R}^n
- The row vectors of A form a basis for \mathbb{R}^n
- $-\det A \neq 0$
- 0 is not an eigenvalue of A
- T is invertible.
- -T is one-to-one.
- T is onto.
- $\ker(T) = \{\mathbf{0}\}\$
- $\operatorname{range}(T) = W$
- -0 is not a singular value of A.

7.5 Applications

- General problem of approximating functions can be stated as: Given a continuous function f on an interval [a, b] and a subspace W of $\mathscr{C}[a, b]$, find the function "closest" to f in W.
- The n'th order Fourier approximation to f on $[-\pi, \pi]$:

$$a_0 = \frac{\langle 1, f \rangle}{\langle 1, 1 \rangle} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{\langle \cos kx, f \rangle}{\langle \cos kx, \cos kx \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx$$

$$b_k = \frac{\langle \sin kx, f \rangle}{\langle \sin kx, \sin kx \rangle} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$