Stylizowane fakty Gospodarka dynamiczna Model Solowa Wnioski Wyjście poza model Solowa Modelowanie postępu technologicznego

Modelowanie wzrostu gospodarczego

23 stycznia 2010

Plan wystąpienia

- Stylizowane fakty
- 2 Gospodarka dynamiczna
- Model Solowa
- Wnioski
- Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

Plan wystąpienia

- Stylizowane fakty
- Gospodarka dynamiczna
- Model Solowa
- Wnioski
- 5 Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

- PKB na mieszkańca rośnie, tempo wzrostu PKB pc nie wygasa
- wielkość kapitału rzeczowego rośnie
- stopa procentowa (zwrot z kapitału) jest stała
- stosunek kapitału do produktu jest stały
- udział pracy i kapitału w produkcie jest stały
- tempo wrtostu PKB na pracownika różni się pomiędzy krajami

- PKB na mieszkańca rośnie, tempo wzrostu PKB pc nie wygasa
- wielkość kapitału rzeczowego rośnie
- stopa procentowa (zwrot z kapitału) jest stała
- stosunek kapitału do produktu jest stały
- udział pracy i kapitału w produkcie jest stały
- tempo wrtostu PKB na pracownika różni się pomiędzy krajami

- PKB na mieszkańca rośnie, tempo wzrostu PKB pc nie wygasa
- wielkość kapitału rzeczowego rośnie
- stopa procentowa (zwrot z kapitału) jest stała
- stosunek kapitału do produktu jest stały
- udział pracy i kapitału w produkcie jest stały
- tempo wrtostu PKB na pracownika różni się pomiędzy krajami

- PKB na mieszkańca rośnie, tempo wzrostu PKB pc nie wygasa
- wielkość kapitału rzeczowego rośnie
- stopa procentowa (zwrot z kapitału) jest stała
- stosunek kapitału do produktu jest stały
- udział pracy i kapitału w produkcie jest stały
- tempo wrtostu PKB na pracownika różni się pomiędzy krajami

- PKB na mieszkańca rośnie, tempo wzrostu PKB pc nie wygasa
- wielkość kapitału rzeczowego rośnie
- stopa procentowa (zwrot z kapitału) jest stała
- stosunek kapitału do produktu jest stały
- udział pracy i kapitału w produkcie jest stały
- tempo wrtostu PKB na pracownika różni się pomiędzy krajami

- PKB na mieszkańca rośnie, tempo wzrostu PKB pc nie wygasa
- wielkość kapitału rzeczowego rośnie
- stopa procentowa (zwrot z kapitału) jest stała
- stosunek kapitału do produktu jest stały
- udział pracy i kapitału w produkcie jest stały
- tempo wrtostu PKB na pracownika różni się pomiędzy krajami

Plan wystąpienia

- Stylizowane fakty
- Gospodarka dynamiczna
- Model Solowa
- 4 Wnioski
- 5 Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

- reprezentatywne gospodarstwo domowe: maksymalizuje użyteczność z konsumpcji jednego dobra i czasu wolnego
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji o stałych korzyściach skali i malejących krańcowych produktywnościach, warunki Inady
- dynamika: oszczędności = inwestycje
- wyposażenie: początkowy nakład kapitału i jednostka czasu w każdym okresie

- reprezentatywne gospodarstwo domowe: maksymalizuje użyteczność z konsumpcji jednego dobra i czasu wolnego
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji o stałych korzyściach skali i malejących krańcowych produktywnościach, warunki Inady
- dynamika: oszczędnosci = inwestycje
- wyposażenie: początkowy nakład kapitału i jednostka czasu w każdym okresie

- reprezentatywne gospodarstwo domowe: maksymalizuje użyteczność z konsumpcji jednego dobra i czasu wolnego
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji o stałych korzyściach skali i malejących krańcowych produktywnościach, warunki Inady
- dynamika: oszczędnosci = inwestycje
- wyposażenie: początkowy nakład kapitału i jednostka czasu w każdym okresie

- reprezentatywne gospodarstwo domowe: maksymalizuje użyteczność z konsumpcji jednego dobra i czasu wolnego
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji o stałych korzyściach skali i malejących krańcowych produktywnościach, warunki Inady
- dynamika: oszczędnosci = inwestycje
- wyposażenie: początkowy nakład kapitału i jednostka czasu w każdym okresie

- reprezentatywne gospodarstwo domowe: $\max_{\{c_t, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 l_t)$, gdzie $u : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ jest rosnąca, ściśle wklęsła i dwuktornie ciągle rożniczkowalna, $0 < \beta < 1$;
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji $y_t = F(k_t, l_t)$, gdzie $F: \mathbb{R}_+ \times [0, 1] \to \mathbb{R}_+$ jest rosnąca, ściśle wklęsła z każdym argumentem i słabo wklęsła łącznie, dwuktornie ciągle rózniczkowalna, F(0, l) = 0, ma stałe korzyści skali, tj.

$$(\forall A > 0) F(Ak, Al) = AF(k, l),$$

oraz $\lim_{k\to 0} F_1'(k,h) = \infty$, $\lim_{k\to \infty} F_1'(k,h) = 0$;

- dynamika: $c_t + i_t = y_t$, $k_{t+1} = (1 \delta)k_t + i_t$, $0 < \delta \le 1$;
- wyposażenie: k₀ i jednostka czasu w każdym okresie.

- reprezentatywne gospodarstwo domowe: $\max_{\{c_t, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 l_t)$, gdzie $u : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ jest rosnąca, ściśle wklęsła i dwuktornie ciągle rożniczkowalna, $0 < \beta < 1$;
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji $y_t = F(k_t, l_t)$, gdzie $F: \mathbb{R}_+ \times [0, 1] \to \mathbb{R}_+$ jest rosnąca, ściśle wklęsła z każdym argumentem i słabo wklęsła łącznie, dwuktornie ciągle rózniczkowalna, F(0, l) = 0, ma stałe korzyści skali, tj.

$$(\forall A > 0) F(Ak, Al) = AF(k, l),$$

oraz $\lim_{k\to 0} F_1'(k,h) = \infty$, $\lim_{k\to \infty} F_1'(k,h) = 0$;

- dynamika: $c_t + i_t = y_t$, $k_{t+1} = (1 \delta)k_t + i_t$, $0 < \delta \le 1$;
- wyposażenie: k₀ i jednostka czasu w każdym okresie.

- reprezentatywne gospodarstwo domowe: $\max_{\{c_t, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 l_t)$, gdzie $u : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ jest rosnąca, ściśle wklęsła i dwuktornie ciągle rożniczkowalna, $0 < \beta < 1$;
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji $y_t = F(k_t, l_t)$, gdzie $F: \mathbb{R}_+ \times [0, 1] \to \mathbb{R}_+$ jest rosnąca, ściśle wklęsła z każdym argumentem i słabo wklęsła łącznie, dwuktornie ciągle rózniczkowalna, F(0, l) = 0, ma stałe korzyści skali, tj.

$$(\forall A>0) F(Ak,Al) = AF(k,l),$$

oraz
$$\lim_{k\to 0} F_1'(k,h) = \infty$$
, $\lim_{k\to \infty} F_1'(k,h) = 0$;

- dynamika: $c_t + i_t = y_t$, $k_{t+1} = (1 \delta)k_t + i_t$, $0 < \delta \le 1$;
- wyposażenie: k₀ i jednostka czasu w każdym okresie.

- reprezentatywne gospodarstwo domowe: $\max_{\{c_t, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 l_t)$, gdzie $u : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ jest rosnąca, ściśle wklęsła i dwuktornie ciągle rożniczkowalna, $0 < \beta < 1$;
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji $y_t = F(k_t, l_t)$, gdzie $F: \mathbb{R}_+ \times [0, 1] \to \mathbb{R}_+$ jest rosnąca, ściśle wklęsła z każdym argumentem i słabo wklęsła łącznie, dwuktornie ciągle rózniczkowalna, F(0, l) = 0, ma stałe korzyści skali, tj.

$$(\forall A>0) F(Ak,Al) = AF(k,l),$$

oraz
$$\lim_{k\to 0} F_1'(k,h) = \infty$$
, $\lim_{k\to \infty} F_1'(k,h) = 0$;

- dynamika: $c_t + i_t = y_t$, $k_{t+1} = (1 \delta)k_t + i_t$, $0 < \delta \le 1$;
- wyposażenie: k₀ i jednostka czasu w każdym okresie.

- reprezentatywne gospodarstwo domowe: $\max_{\{c_t, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 l_t)$, gdzie $u : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ jest rosnąca, ściśle wklęsła i dwuktornie ciągle rożniczkowalna, $0 < \beta < 1$;
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji $y_t = F(k_t, l_t)$, gdzie $F: \mathbb{R}_+ \times [0, 1] \to \mathbb{R}_+$ jest rosnąca, ściśle wklęsła z każdym argumentem i słabo wklęsła łącznie, dwuktornie ciągle rózniczkowalna, F(0, l) = 0, ma stałe korzyści skali, tj.

$$(\forall A>0) F(Ak,Al) = AF(k,l),$$

oraz $\lim_{k\to 0} F_1'(k,h) = \infty$, $\lim_{k\to \infty} F_1'(k,h) = 0$;

- dynamika: $c_t + i_t = y_t$, $k_{t+1} = (1 \delta)k_t + i_t$, $0 < \delta \le 1$;
- wyposażenie: k₀ i jednostka czasu w każdym okresie.

Plan wystąpienia

- Stylizowane fakty
- Gospodarka dynamiczna
- Model Solowa
- 4 Wnioski
- Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

Stylizowane fakty Gospodarka dynamiczna Model Solowa Wnioski Wyjście poza model Solowa Modelowanie postępu technologicznego

Decyzje ad hoc gospodarstwa domowego:

•
$$I_t = 1$$

•
$$i_t = sy_t$$
, gdzie $0 \le s \le 1$

Zdefiniujmy $f(k_t) = F(k_t, 1)$ oraz $g(k) = (1 - \delta)k + sf(k)$.

Theorem

Istnieją dwa rozwiązania równania g(k) = k: k = 0 oraz $k^{ss} > 0$. Jeżeli $k_0 > k^{ss}$ wtedy ciąg $\{k_t\}$ jest malejący i zbieżny do k^{ss} . Jeżeli $0 < k_0 < k^{ss}$ wtedy ciąg $\{k_t\}$ jest rosnący i zbieżny do k^{ss} . Jeżeli $k_0 = 0$ wtedy ciąg $\{k_t\}$ jest stały o wartościach 0. Jeżeli $k_0 = k^{ss}$ wtedy ciąg $\{k_t\}$ jest stały o wartościach k^{ss} .

Wartość k^{ss} nazywamy stanem ustalonym. Wartość ta spełnia równanie $sf(k^{ss}) = \delta k^{ss}$.

Zdefiniujmy
$$f(k_t) = F(k_t, 1)$$
 oraz $g(k) = (1 - \delta)k + sf(k)$.

Theorem

Istnieją dwa rozwiązania równania g(k) = k: k = 0 oraz $k^{ss} > 0$. Jeżeli $k_0 > k^{ss}$ wtedy ciąg $\{k_t\}$ jest malejący i zbieżny do k^{ss} . Jeżeli $0 < k_0 < k^{ss}$ wtedy ciąg $\{k_t\}$ jest rosnący i zbieżny do k^{ss} . Jeżeli $k_0 = 0$ wtedy ciąg $\{k_t\}$ jest stały o wartościach 0. Jeżeli $k_0 = k^{ss}$ wtedy ciąg $\{k_t\}$ jest stały o wartościach k^{ss} .

Wartość k^{ss} nazywamy stanem ustalonym. Wartość ta spełnia równanie $sf(k^{ss}) = \delta k^{ss}$.

Zdefiniujmy $f(k_t) = F(k_t, 1)$ oraz $g(k) = (1 - \delta)k + sf(k)$.

Theorem

Istnieją dwa rozwiązania równania g(k) = k: k = 0 oraz $k^{ss} > 0$. Jeżeli $k_0 > k^{ss}$ wtedy ciąg $\{k_t\}$ jest malejący i zbieżny do k^{ss} . Jeżeli $0 < k_0 < k^{ss}$ wtedy ciąg $\{k_t\}$ jest rosnący i zbieżny do k^{ss} . Jeżeli $k_0 = 0$ wtedy ciąg $\{k_t\}$ jest stały o wartościach 0. Jeżeli $k_0 = k^{ss}$ wtedy ciąg $\{k_t\}$ jest stały o wartościach k^{ss} .

Wartość k^{ss} nazywamy stanem ustalonym. Wartość ta spełnia równanie $sf(k^{ss}) = \delta k^{ss}$.

Dynamika

Dynamika kapitału

$$\gamma_t^k := \frac{k_{t+1} - k_t}{k_t} = s \frac{f(k_t)}{k_t} - \delta,$$

i produktu:

$$\gamma_t^{y} := \frac{y_{t+1} - y_t}{y_t} \simeq \gamma_t^{k} \frac{f'(k_t)k_t}{f(k_t)}$$

Zauważmy, że dynamika kapitału i produktu w stanie ustalonym jest stała i równa 0.

Dynamika

Dynamika kapitału

$$\gamma_t^k := \frac{k_{t+1} - k_t}{k_t} = s \frac{f(k_t)}{k_t} - \delta,$$

i produktu:

$$\gamma_t^{y} := \frac{y_{t+1} - y_t}{y_t} \simeq \gamma_t^{k} \frac{f'(k_t)k_t}{f(k_t)}.$$

Zauważmy, że dynamika kapitału i produktu w stanie ustalonym jest stała i równa 0.

Dynamika

Dynamika kapitału

$$\gamma_t^k := \frac{k_{t+1} - k_t}{k_t} = s \frac{f(k_t)}{k_t} - \delta,$$

i produktu:

$$\gamma_t^{y} := \frac{y_{t+1} - y_t}{y_t} \simeq \gamma_t^{k} \frac{f'(k_t)k_t}{f(k_t)}.$$

Zauważmy, że dynamika kapitału i produktu w stanie ustalonym jest stała i równa 0.

Stylizowane fakty Gospodarka dynamiczna **Model Solowa** Wnioski Wyjście poza model Solowa Modelowanie postępu technologicznego

Czy gospodarka ze stopą oszczędności s jest dynamicznie efektywna? Tak, jeżeli $s = s^{gr}$, gdzie s^{gr} rozwiązuje $\delta = f'(k^{ss}(s^{gr}))$.

Przykład:
$$Y = F(K, L) = AK^{\alpha}L^{1-\alpha}$$
, $\alpha = 0.33$, $\delta = 0.1$

$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1 - \alpha) \frac{\Delta L}{L},$$

gdy
$$\frac{\Delta L}{L} = \frac{\Delta A}{A} = 0$$
 to

$$\frac{\Delta Y}{Y} = \alpha \frac{\Delta K}{K}$$

$$\frac{\Delta Y}{Y} = \mathbf{0} = \alpha \frac{\Delta K}{K}.$$

Przykład:
$$Y = F(K, L) = AK^{\alpha}L^{1-\alpha}$$
, $\alpha = 0.33$, $\delta = 0.1$
$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1-\alpha)\frac{\Delta L}{L}$$

gdy
$$\frac{\Delta L}{L} = \frac{\Delta A}{A} = 0$$
 to $\frac{\Delta Y}{V} = \alpha \frac{\Delta K}{K}$

$$\frac{\Delta Y}{Y} = \mathbf{0} = \alpha \frac{\Delta K}{K}.$$

Przykład:
$$Y = F(K, L) = AK^{\alpha}L^{1-\alpha}$$
, $\alpha = 0.33$, $\delta = 0.1$
$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1-\alpha)\frac{\Delta L}{L}$$

gdy
$$\frac{\Delta L}{L} = \frac{\Delta A}{A} = 0$$
 to $\frac{\Delta Y}{Y} = \alpha \frac{\Delta K}{K}$

$$\frac{\Delta Y}{Y} = \mathbf{0} = \alpha \frac{\Delta K}{K}.$$

Przykład:
$$Y = F(K, L) = AK^{\alpha}L^{1-\alpha}$$
, $\alpha = 0.33$, $\delta = 0.1$
$$\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \alpha \frac{\Delta K}{K} + (1-\alpha)\frac{\Delta L}{L}$$

gdy
$$\frac{\Delta L}{L} = \frac{\Delta A}{A} = 0$$
 to $\frac{\Delta Y}{Y} = \alpha \frac{\Delta K}{K}$

$$\frac{\Delta Y}{Y} = \mathbf{0} = \alpha \frac{\Delta K}{K}.$$

Plan wystąpienia

- Stylizowane fakty
- Gospodarka dynamiczna
- Model Solowa
- Wnioski
- 5 Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

Wnioski

szybka konwergencja

- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

Wnioski

- szybka konwergencja
- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

Wnioski

- szybka konwergencja
- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

- szybka konwergencja
- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

- szybka konwergencja
- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

- szybka konwergencja
- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

- szybka konwergencja
- tempo wzrostu produktu pc w stanie ustalonym zależy tylko do (egzogeniczengo) postępu technologicznego,
- tempo wzrostu produktu w stanie ustalonym niezależne do parametrów modelu
- poziom produktu pc zależny od parametrów modelu (s, α, δ)
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa

Dekompozycja Solowa

$$\frac{\Delta \frac{Y}{L}}{\frac{Y}{L}} = \frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \left[\frac{\Delta K}{K} - \frac{\Delta L}{L} \right] + \mathbf{R}$$

Dekompozycja Solowa

$$\frac{\Delta \frac{Y}{L}}{\frac{Y}{L}} = \frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \left[\frac{\Delta K}{K} - \frac{\Delta L}{L} \right] + R$$

Dekompozycja Solowa

$$\frac{\Delta \frac{Y}{L}}{\frac{Y}{L}} = \frac{\Delta Y}{Y} - \frac{\Delta L}{L} = \alpha \left[\frac{\Delta K}{K} - \frac{\Delta L}{L} \right] + \mathbf{R}$$

- różnice w poziomie produktu i różnice w poziomie kapitału
- różnice w poziomie produktu i różnice w produktywności kapitału
- praca i wydajność pracy
- zbieżność: Baumol (1986) i de Long (1988)
- oszczędności i inwestycje: Feldstein i Horioka (1980)

- różnice w poziomie produktu i różnice w poziomie kapitału
- różnice w poziomie produktu i różnice w produktywności kapitału
- praca i wydajność pracy
- zbieżność: Baumol (1986) i de Long (1988)
- oszczędności i inwestycje: Feldstein i Horioka (1980)

- różnice w poziomie produktu i różnice w poziomie kapitału
- różnice w poziomie produktu i różnice w produktywności kapitału
- praca i wydajność pracy
- zbieżność: Baumol (1986) i de Long (1988)
- oszczędności i inwestycje: Feldstein i Horioka (1980)

- różnice w poziomie produktu i różnice w poziomie kapitału
- różnice w poziomie produktu i różnice w produktywności kapitału
- praca i wydajność pracy
- zbieżność: Baumol (1986) i de Long (1988)
- oszczędności i inwestycje: Feldstein i Horioka (1980)

- różnice w poziomie produktu i różnice w poziomie kapitału
- różnice w poziomie produktu i różnice w produktywności kapitału
- praca i wydajność pracy
- zbieżność: Baumol (1986) i de Long (1988)
- oszczędności i inwestycje: Feldstein i Horioka (1980)

Plan wystąpienia

- Stylizowane fakty
- Gospodarka dynamiczna
- Model Solowa
- 4 Wnioski
- 5 Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

- decyzje dynamicznie optymalne
- tempo wzrostu, stan ustalony i ścieżka wzrostu zrównoważonego
- dynamiczna efektywność, I i II twierdzenie ekonomii dobrobytu
- ekwiwalencja ricardiańska, Barro (1974) Are government bonds net wealth?

- decyzje dynamicznie optymalne
- tempo wzrostu, stan ustalony i ścieżka wzrostu zrównoważonego
- dynamiczna efektywność, I i II twierdzenie ekonomii dobrobytu
- ekwiwalencja ricardiańska, Barro (1974) Are government bonds net wealth?

- decyzje dynamicznie optymalne
- tempo wzrostu, stan ustalony i ścieżka wzrostu zrównoważonego
- dynamiczna efektywność, I i II twierdzenie ekonomii dobrobytu
- ekwiwalencja ricardiańska, Barro (1974) Are government bonds net wealth?

- decyzje dynamicznie optymalne
- tempo wzrostu, stan ustalony i ścieżka wzrostu zrównoważonego
- dynamiczna efektywność, I i II twierdzenie ekonomii dobrobytu
- ekwiwalencja ricardiańska, Barro (1974) Are government bonds net wealth?

- kilka generacji
- dynamiczna (nie) efektywność
- wielość stanów ustalonych rola rządu
- modelowanie systemów emerytalnych i redystrybucj dochodów

- kilka generacji
- dynamiczna (nie) efektywność
- wielość stanów ustalonych rola rządu
- modelowanie systemów emerytalnych i redystrybucj dochodów

- kilka generacji
- dynamiczna (nie) efektywność
- wielość stanów ustalonych rola rządu
- modelowanie systemów emerytalnych i redystrybucj dochodów

- kilka generacji
- dynamiczna (nie) efektywność
- wielość stanów ustalonych rola rządu
- modelowanie systemów emerytalnych i redystrybucji dochodów

Plan wystąpienia

- Stylizowane fakty
- Gospodarka dynamiczna
- Model Solowa
- 4 Wnioski
- 5 Wyjście poza model Solowa
- 6 Modelowanie postępu technologicznego

- wiedza jako dobro publiczne
- badania podstawowe
- prywatne bodźce do działalności B+R
- learning by doing, tacit knowledge, positive spillovers

- wiedza jako dobro publiczne
- badania podstawowe
- prywatne bodźce do działalności B+R
- learning by doing, tacit knowledge, positive spillovers

- wiedza jako dobro publiczne
- badania podstawowe
- prywatne bodźce do działalności B+R
- learning by doing, tacit knowledge, positive spillovers

- wiedza jako dobro publiczne
- badania podstawowe
- prywatne bodźce do działalności B+R
- learning by doing, tacit knowledge, positive spillovers

kapitał ludzki

- miary HC
- rola komplementarności
- implikacje dla wzrostu

kapitał ludzki

- miary HC
- rola komplementarności
- implikacje dla wzrostu

Stylizowane fakty Gospodarka dynamiczna Model Solowa Wnioski Wyjście poza model Solowa Modelowanie postępu technologicznego

kapitał ludzki

- miary HC
- rola komplementarności
- implikacje dla wzrostu