CSE 431/531: Algorithm Analysis and Design (Fall 2024) Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

29	82	75	64	38	45	94	69	25	76	15	92	37	17	85	
----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	--

• In-Place Sorting Algorithm: an algorithm that only uses "small" extra space.

ullet To partition the array into two parts, we only need O(1) extra space.

$\mathsf{partition}(A,\ell,r)$

- 1: $p \leftarrow \text{random integer between } \ell \text{ and } r$, swap A[p] and $A[\ell]$
- 2: $i \leftarrow \ell, j \leftarrow r$
- 3: while true do
- 4: while i < j and A[i] < A[j] do $j \leftarrow j 1$
- 5: **if** i = j **then** break
- 6: swap A[i] and A[j]; $i \leftarrow i + 1$
- 7: while i < j and A[i] < A[j] do $i \leftarrow i + 1$
- 8: **if** i = j **then** break
- 9: swap A[i] and A[j]; $j \leftarrow j 1$
- 10: return i

In-Place Implementation of Quick-Sort

$\mathsf{quicksort}(A,\ell,r)$

- 1: if $\ell > r$ then return
- 2: $m \leftarrow \mathsf{patition}(A, \ell, r)$
- 3: quicksort $(A, \ell, m-1)$
- 4: quicksort(A, m + 1, r)
- To sort an array A of size n, call quicksort(A, 1, n).

Note: We pass the array A by reference, instead of by copying.

 To merge two arrays, we need a third array with size equaling the total size of two arrays

3

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

Q: Can we do better than $O(n \log n)$ for sorting?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use "internal structures" of the elements

• Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

 ${\bf Q}$: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \dots, N\}$.
- You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \dots, n\}$ in his hand.
- You can ask Bob "yes/no" questions about π .

Q: How many questions do you need to ask in order to get the permutation π ?

A:
$$\log_2 n! = \Theta(n \lg n)$$

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3,\cdots,n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3,\cdots,n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1,2,3,\cdots,n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π ?"

Q: How many questions do you need to ask in order to get the permutation π ?

A: At least $\log_2 n! = \Theta(n \lg n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Computing *n*-th Fibonacci Number
- 7 Other Classic Algorithms using Divide-and-Conquer

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the i-th smallest number in A

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the i-th smallest number in A

• Sorting solves the problem in time $O(n \lg n)$.

Selection Problem

Input: a set A of n numbers, and $1 \le i \le n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: O(n) running time

Recall: Quicksort with Median Finder

quicksort(A, n)

- 1: if n < 1 then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x Divide
- 5: $B_L \leftarrow \mathsf{quicksort}(A_L, A_L.\mathsf{size})$
- 6: $B_R \leftarrow \mathsf{quicksort}(A_R, A_R.\mathsf{size})$
- 7: $t \leftarrow$ number of times x appear A
- 8: **return** the array obtained by concatenating B_L , the array containing t copies of x, and B_R

▷ Divide

Selection Algorithm with Median Finder

10:

return x

```
selection(A, n, i)
 1: if n=1 then return A
 2: x \leftarrow \text{lower median of } A
 3: A_L \leftarrow elements in A that are less than x
                                                                ▷ Divide
 4: A_R \leftarrow elements in A that are greater than x
                                                                ▷ Divide
 5: if i < A_L.size then
       return selection(A_L, A_L.size, i)
                                                             7: else if i > n - A_R.size then
        return selection(A_R, A_R.size, i - (n - A_R.size))
                                                             8:
 9: else
```

Selection Algorithm with Median Finder

```
selection(A, n, i)
 1: if n=1 then return A
 2: x \leftarrow \text{lower median of } A
 3: A_L \leftarrow elements in A that are less than x
                                                               ▷ Divide
 4: A_R \leftarrow elements in A that are greater than x
                                                               ▷ Divide
 5: if i < A_L.size then
   return selection(A_L, A_L. size, i)
                                                             7: else if i > n - A_R.size then
       return selection(A_R, A_R.size, i - (n - A_R.size))
                                                             9: else
10:
       return x
```

• Recurrence for selection: T(n) = T(n/2) + O(n)

Selection Algorithm with Median Finder

selection(A, n, i)

- 1: if n=1 then return A
- 2: $x \leftarrow \text{lower median of } A$
- 3: $A_L \leftarrow$ elements in A that are less than x
- 4: $A_R \leftarrow$ elements in A that are greater than x
- 5: **if** $i \leq A_L$.size **then**
- 6: **return** selection $(A_L, A_L. size, i)$
- 7: **else if** $i > n A_R$ size **then**
- 8: **return** selection(A_R , A_R .size, $i (n A_R$.size))
- 9: else
- 10: return x
- Recurrence for selection: T(n) = T(n/2) + O(n)
- Solving recurrence: T(n) = O(n)

▷ Divide

▷ Divide

Randomized Selection Algorithm

10:

return x

```
selection(A, n, i)
 1: if n=1 then return A
 2: x \leftarrow \text{random element of } A \text{ (called pivot)}
                                                                 Divide
 3: A_L \leftarrow elements in A that are less than x
 4: A_R \leftarrow elements in A that are greater than x
                                                                 ▷ Divide
 5: if i < A_L.size then
       return selection(A_L, A_L.size, i)
                                                              7: else if i > n - A_R.size then
        return selection(A_R, A_R.size, i - (n - A_R.size))
                                                              8:
 9: else
```

Randomized Selection Algorithm

```
selection(A, n, i)
 1: if n=1 thenreturn A
 2: x \leftarrow \text{random element of } A \text{ (called pivot)}
                                                                Divide
 3: A_L \leftarrow elements in A that are less than x
 4: A_R \leftarrow elements in A that are greater than x
                                                                ▷ Divide
 5: if i < A_L.size then
    return selection(A_L, A_L. size, i)
                                                              7: else if i > n - A_R.size then
       return selection(A_R, A_R.size, i - (n - A_R.size))
                                                              9: else
10:
        return x
```

• expected running time = O(n)