Zadanie 1. Obserwujemy działanie pewnego urządzenia w kolejnych chwilach $t=0,1,2,\ldots$. Działanie tego urządzenia zależy od pracy dwóch podzespołów A i B. Każdy z nich może ulec awarii w jednostce czasu z prawdopodobieństwem 0,1 niezależnie od drugiego. Jeżeli jeden z podzespołów ulega awarii, to urządzenie nie jest naprawiane i działa dalej wykorzystując drugi podzespół. Jeżeli oba podzespoły są niesprawne w chwili t, to następuje ich naprawa i w chwili t+1 oba są sprawne. Prawdopodobieństwo, że podzespół B jest sprawny w chwili t dąży, przy t dążącym do nieskończoności, do następującej liczby (t dokładnością do 0,001):

- (A) 0,635
- (B) 0,655
- (C) 0,345
- (D) 0,474
- (E) 0,602.

Zadanie 2. Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym o gęstości

$$f(x) = \begin{cases} \alpha e^{-\alpha x} & \text{gdy} \quad x > 0\\ 0 & \text{gdy} \quad x \le 0, \end{cases}$$

gdzie $\alpha > 0$ jest ustalonym parametrem.

Niech N będzie zmienną losową, niezależną od $X_1, X_2,, X_n, ...$, o rozkładzie ujemnym dwumianowym $P(N=n) = \binom{n+r-1}{n} p^r (1-p)^n$ dla n=0,1,2,...., gdzie r>0 i $p\in (0;1)$ są ustalonymi parametrami. Niech

$$Z_N = \begin{cases} \min(X_1, X_2, \dots, X_N) & gdy \ N > 0 \\ 0 & gdy \ N = 0. \end{cases}$$

Oblicz $E(NZ_N)$ i $Var(NZ_N)$.

(A)
$$E(NZ_N) = \frac{1}{\alpha} \text{ i } Var(NZ_N) = \frac{1}{\alpha^2}$$

(B)
$$E(NZ_N) = \frac{1-p^r}{\alpha}$$
 i $Var(NZ_N) = \frac{1-p^r}{\alpha^2}$

(C)
$$E(NZ_N) = \frac{1 - p^r}{\alpha}$$
 i $Var(NZ_N) = \frac{1 - p^{2r}}{\alpha^2}$

(D)
$$E(NZ_N) = \frac{r(1-p)}{p\alpha} \text{ i } Var(NZ_N) = \frac{r(1-p)}{p^2\alpha^2}$$

(E)
$$E(NZ_N) = \frac{1-p^r}{\alpha}$$
 i $Var(NZ_N) = \frac{1-p^{2r}}{\alpha}$.

Zadanie 3. Niech (X,Y) będzie dwuwymiarową zmienną losową o funkcji gęstości

$$f(x,y) = \begin{cases} e^{-x} & \text{gdy } x > 0 \text{ i } y \in (0;1) \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Niech Z = X + 2Y. Wtedy łączny rozkład zmiennych Z, X jest taki, że

- (A) zmienne Z i X są niezależne;
- (B) jego funkcja gęstości na zbiorze $\{(z,x): 0 < x < z < 2\}$ wyraża się wzorem $g(z,x) = \frac{1}{4}e^{-x}$;
- (C) E(Z | X = 2) = 4;
- (D) jego funkcja gęstości na zbiorze $\{(z,x): 0 < x < z < 2 + x\}$ wyraża się wzorem $g(z,x) = \frac{1}{2}e^{-x}$;
- (E) jego funkcja gęstości na zbiorze $\{(z,x): 0 < x < z < 1+x\}$ wyraża się wzorem $g(z,x) = e^{-x}$.

Zadanie 4. Dysponujemy N+1 (N>1) identycznymi urnami. Każda z nich zawiera N kul białych i czarnych. Liczba kul białych w i-tej urnie jest równa i-1, gdzie i=1,2,...,N+1.

Losujemy urnę, a następnie ciągniemy z niej jedną kulę i okazuje się, że otrzymana kula jest biała. Oblicz prawdopodobieństwo, że ciągnąc drugą kulę z tej samej urny (bez zwracania pierwszej) również otrzymamy kulę białą.

- $(A) \qquad \frac{N-1}{2(N+1)}$
- (B) $\frac{N}{2(N+1)}$
- (C) $\frac{N-1}{N+1}$
- (D) $\frac{2}{3}$
- (E) $\frac{1}{2}$.

Wskazówka: $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + ... + (N-1)N = \frac{(N-1)N(N+1)}{3}$.

Zadanie 5. Niech $X_1, X_2, ..., X_n$ będą niezależnymi zmiennymi losowymi z rozkładu Weibulla o gęstości

$$f_{\theta}(x) = \begin{cases} \frac{2}{\theta} x \exp(-\frac{x^2}{\theta}) & \text{gdy} \quad x > 0\\ 0 & \text{gdy} \quad x \le 0, \end{cases}$$

gdzie $\theta > 0$ jest nieznanym parametrem. Rozważamy nieobciążony estymator parametru θ postaci $T_n = aY$, gdzie $Y = \min(X_1^2, X_2^2, \dots, X_n^2)$ i a jest odpowiednio dobraną stałą (być może zależną od liczebności próby n). Badając zgodność estymatora T_n otrzymujemy

(A) $\forall \theta > 0 \quad \forall \varepsilon > 0 \quad \lim_{n \to \infty} P_{\theta} \{ | T_n - \theta | > \varepsilon \} = 0 ;$

(B)
$$\forall \theta > 0 \ \forall 0 < \varepsilon < \theta \ \lim_{n \to \infty} P_{\theta} \{ | T_n - \theta | > \varepsilon \} = 1 - \exp(-1) \left(\exp\left(\frac{\varepsilon}{\theta}\right) - \exp\left(-\frac{\varepsilon}{\theta}\right) \right);$$

(C)
$$\forall \theta > 0 \ \forall \varepsilon > 0 \ \lim_{n \to \infty} P_{\theta} \{ | T_n - \theta | > \varepsilon \} = 1 - \exp(-1) \left(\exp\left(\frac{\varepsilon}{\theta}\right) - \exp\left(-\frac{\varepsilon}{\theta}\right) \right);$$

(D)
$$\forall \theta > 0 \quad \forall 0 < \varepsilon < \theta \quad \lim_{n \to \infty} P_{\theta} \{ | T_n - \theta | > \varepsilon \} = \exp \left(-1 - \frac{\varepsilon}{\theta} \right);$$

(E)
$$\forall \theta > 0 \ \forall \varepsilon > 0 \ \lim_{n \to \infty} P_{\theta} \{ | T_n - \theta | > \varepsilon \} = 1.$$

Zadanie 6. Każda ze zmiennych losowych X_1, X_2, \dots, X_{100} ma rozkład normalny $N(\mu, \sigma^2)$ z nieznaną wartością oczekiwaną i znaną wariancją σ^2 . Założono, że zmienne są niezależne i wyznaczono (przy tych założeniach) test jednostajnie najmocniejszy dla testowania hipotezy $H_0: \mu = \mu_0$ przy alternatywie $H_1: \mu > \mu_0$ na poziomie istotności 0,05.

W rzeczywistości zmienne losowe $X_1, X_2, \ldots, X_{100}$ mają łączny rozkład normalny, ale są skorelowane i współczynnik korelacji $Corr(X_i, X_j) = \frac{1}{10}$ dla wszystkich $i \neq j$. Oblicz faktyczny błąd pierwszego rodzaju testu z dokładnością do 0,01.

- (A) 0,75
- (B) 0,25
- (C) 0,31
- (D) 0,69
- (E) 0,48

Zadanie 7. Niech X_1, X_2, X_3, X_4 będą niezależnymi zmiennymi losowymi, przy czym zmienna losowa X_i ma rozkład normalny o wartości oczekiwanej m i wariancji im^2 , i=1,2,3,4, gdzie $m \ne 0$ jest nieznanym parametrem. Rozważamy estymatory parametru m postaci

$$\hat{m} = a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4$$
.

Znaleźć współczynniki a_i , i = 1,2,3,4, dla których estymator ma najmniejszy błąd średniokwadratowy, czyli współczynniki minimalizujące funkcję $E_m(\hat{m}-m)^2$

(A)
$$a_1 = a_2 = a_3 = a_4 = \frac{1}{4}$$

(B)
$$a_1 = \frac{12}{25}, \ a_2 = \frac{6}{25}, \ a_3 = \frac{4}{25}, \ a_4 = \frac{3}{25}$$

(C)
$$a_1 = \frac{4}{10}, \ a_2 = \frac{3}{10}, \ a_3 = \frac{2}{10}, \ a_4 = \frac{1}{10}$$

(D)
$$a_1 = \frac{4}{12}$$
, $a_2 = \frac{3}{12}$, $a_3 = \frac{2}{12}$, $a_4 = \frac{1}{12}$

(E)
$$a_1 = \frac{12}{37}$$
, $a_2 = \frac{6}{37}$, $a_3 = \frac{4}{37}$, $a_4 = \frac{3}{37}$

Zadanie 8. Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o rozkładzie wykładniczym o wartości oczekiwanej 0,5 i niech N będzie zmienną losową niezależną od $X_1, X_2, \dots, X_n, \dots$, o rozkładzie Poissona z wartością oczekiwaną równą 3.

Niech

$$Y_i = \begin{cases} 0 & \text{gdy } X_i \leq d \\ X_i - d & \text{gdy } X_i > d, \end{cases}$$

gdzie d jest ustaloną liczbą dodatnią. Wyznaczyć funkcję tworzącą momenty zmiennej $Z = \sum_{i=1}^{N} Y_i$ w punkcie 1, a więc $E(e^Z)$. (A) $e^{3(2e^{-2d}-1)}$

- (B) $e^{3e^{-2d}}$
- (C) e^3
- (D) $(1+e^{-2d})^3$
- (E) $8e^{-6d}$.

Zadanie 9. Zmienne losowe X_1,X_2,\ldots,X_n są niezależne i mają jednakową wariancję σ^2 . Niech $U=3X_1+X_2+\ldots+X_n$ i $V=X_1+X_2+\ldots+X_{n-1}+2X_n$. Wyznaczyć współczynnik korelacji między U i V.

$$(A) \qquad \frac{1}{n+8}$$

(B)
$$\sqrt{\frac{n+3}{n+8}}$$

(C)
$$\frac{n+3}{\sqrt{(n+2)(n+1)}}$$

(D)
$$\frac{n+3}{n+8}$$

(E)
$$\frac{n+3}{(n+2)(n+1)}.$$

Zadanie 10. Niech X_1, X_2, X_3, X_4 będzie próbą z rozkładu jednostajnego o gęstości

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & \text{gdy } x \in (0; \theta) \\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Zakładamy, że nieznany parametr θ jest zmienną losową o rozkładzie z funkcją gęstości daną wzorem

$$\pi(\theta) = \begin{cases} \frac{4}{3} \theta^4 e^{-2\theta} & gdy \ \theta > 0 \\ 0 & gdy \ \theta \le 0. \end{cases}$$

Hipotezę $H_0: \theta \leq 3$ przy alternatywie $H_1: \theta > 3$ odrzucamy dla tych wartości (x_1, x_2, x_3, x_4) , dla których prawdopodobieństwo a posteriori zbioru $\{\theta: \theta > 3\}$ jest większe niż $\frac{1}{2}$. Niech $x_{4:4} = \max(x_1, x_2, x_3, x_4)$.

Obszar krytyczny jest zbiorem postaci

(A)
$$K = \{(x_1, x_2, x_3, x_4) : x_{4:4} > 3\}$$

(B)
$$K = \{(x_1, x_2, x_3, x_4) : x_{4:4} > 3\sqrt[4]{0.95} \}$$

(C)
$$K = \left\{ (x_1, x_2, x_3, x_4) : x_{4:4} > 3 - \frac{\ln 2}{2} \right\}$$

(D)
$$K = \left\{ (x_1, x_2, x_3, x_4) : x_{4:4} < \frac{3}{\sqrt[4]{2}} \right\}$$

(E) żadna z powyższych odpowiedzi nie jest poprawna.

Egzamin dla Aktuariuszy z 11 października 2004 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Pesel	

Zadanie nr	Odpowiedź	Punktacja⁴
1	A	
2	С	
3	D	
4	D	
5	В	
6	С	
7	Е	
8	В	
9	В	
10	С	
_		

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.