LEBESGUE INTEGRAL THEORY Measure Theory, Integration, and Hilbert spaces (modified) Jaeho Shin

Department of Mathematical Sciences, KAIST

Contents

1	Me	asure Theory		
	1.1	Preliminaries		
	1.2	The exterior measure		
	1.3	Measurable sets and the Lebesgue measure		
	1.4	Measurable functions		
	1.5	Exercises		
2	Inte	egration Theory		
	2.1	The Lebesgue integral: basic properties and convergence theorems		
	2.2	The space L^1 of integrable functions		
	2.3	Fubini's theorem		
	2.4	A Fourier inversion formula		
	2.5	Exercises		
3	Diff	Differentiation and Integration		
	3.1	Differentiation of the integral		
	3.2	Good kernels and approximations to the identity		
	3.3	Differentiability of functions		
	3.4	Rectifiable curves and the isoperimetric inequality		
	3.5	Exercises		
4	Sol	ution for exercises		
	4.1	Chapter 1		
	4.2	Section 2		

Measure Theory

The goal of this course, especially in this chapter, is to provide a notion of "size" for subsets of \mathbb{R}^d by constructing an appropriate function

$$m: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}^{\geq 0} \cup \{\infty\}$$

satisfying the following properties:

- $(1) \ m(\emptyset) = 0$
- (2) m([b,a]) = b a
- (3) If $E = \bigsqcup_{n=1}^{\infty} E_n$, then $m(E) = \sum_{n=1}^{\infty} m(E_n)$.
- (4) m(E+h) = m(E) for all $h \in \mathbb{R}$

The third and fourth properties are called **countable additivity** and **translation invariance**, respectively. By regarding m as a function that measures the size of sets, it seems very natural that m should satisfy the above properties. However, this is just our intuition! As a math student, the natural follow-up question is as follows:

Does m exist? If it does, is m unique?

In fact, such a function m does not exist. Then, what can we do next? One way to resolve this problem is to restrict the domain of m. By removing certain pathological sets, we can define a function m which satisfies some nice properties. This domain will be called "measurable sets" and the function m will be called the "Lebesgue measure".

1.1 Preliminaries

Recall that the collection $\{E_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of subsets in \mathbb{R}^d is said to be disjoint if $E_{\alpha}\cap E_{\beta}=\emptyset$ whenver $\alpha\neq\beta$. We define the slightly weaker concept "almost disjoint" as follows:

Definition 1.1.1

Let $\{E_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be a collection subsets in \mathbb{R}^d . Then $\{E_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is said to be **almost disjoint** if $\{\operatorname{Int}(E_{\alpha})\}_{{\alpha}\in\mathcal{A}}$ is disjoint.

Note that a (closed) **rectangle** R in \mathbb{R}^d is given by the product of d one-dimensional closed and bounded intervals

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d],$$

where $a_j \leq b_j$ are real numbers, j = 1, 2, ..., d. The **volume** of the rectangle R is denoted by |R|, and is defined to be

$$|R| = (b_1 - a_1) \cdots (b_d - a_d).$$

Also, a **cube** is a rectangle for which $b_1 - a_1 = b_2 - a_2 = \cdots = b_d - a_d$. So if $Q \subseteq \mathbb{R}^d$ is a cube of common side length l, then $|Q| = l^d$.

Lemma 1.1.1

If a rectangle is the almost disjoint union of finitely many other rectangles, say $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k|.$$

Proof. Consider the grid formed by extending indefinitely the sides of all rectangles R_1, \ldots, R_N . This gives finitely many rectangles $\tilde{R}_1, \ldots, \tilde{R}_M$, and a partition J_1, \ldots, J_N of integers between 1 and M such that

$$R = \bigcup_{j=1}^{M} \tilde{R}_j$$
 and $R_k = \bigcup_{j \in J_k} \tilde{R}_j$ for $1 \le k \le M$

are almost disjoint.

Figure 1.1: The grid formed by the rectangles R_k

For the rectangle R, it is clear that $|R| = \sum_{j=1}^{M} |\tilde{R}_{j}|$. By the same reason, we also have $|R_k| = \sum_{j \in J_k} |\tilde{R}_j|$. Therefore, one can obtain

$$|R| = \sum_{j=1}^{M} |\tilde{R}_j| = \sum_{k=1}^{N} \sum_{j \in J_k} |\tilde{R}_j| = \sum_{k=1}^{N} |R_k|.$$

Lemma 1.1.2

If R, R_1, \ldots, R_N are rectangles, and $R \subseteq \bigcup_{k=1}^N R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k|.$$

Proof. As we did in Lemma 1.1.1, we can find smaller rectangles $\tilde{R}_1, \ldots, \tilde{R}_M$. Note that there exist $J_0 \subseteq \{1, \ldots, M\}$ such that $R = \bigcup_{j \in J_0} \tilde{R}_j$. Let $R' := \bigcup_{j=1}^M \tilde{R}_j$. Again, we can find a partition J_1, \ldots, J_N of $\{1, \ldots, M\}$ such that

$$R_k = \bigcup_{j \in J_k} \tilde{R}_j$$
 for all $1 \le k \le N$.

Note that J_0, J_1, \ldots, J_N need not be disjoint. Since $R \subseteq \bigcup_{k=1}^N R_k$, we have $J_0 \subseteq \bigcup_{k=1}^N J_k$. Therefore, we can obtain

$$|R| = \sum_{j \in J_0} |\tilde{R}_j| \le \sum_{k=1}^N \sum_{j \in J_k} |\tilde{R}_j| = \sum_{k=1}^N |R_k|.$$

This completes the proof.

Theorem 1.1.3

Every open set $U \subseteq \mathbb{R}$ can be written uniquely as a countable union of disjoint open intervals.

Proof. For each $x \in U$, there exists an open interval, which contains x, contained in U. If $a_x = \inf\{a < x : (a, x) \subseteq U\}$ and $b_x = \sup\{b > x : (x, b) \subseteq U\}$, then

$$x \in I_x := (a_x, b_x) \subseteq U$$
.

Hence, we get $U = \bigcup_{x \in U} I_x$. Moreover, note that I_x is the largest open interval, which contains x, contained in U.

Suppose that two intervals I_x and I_y intersect. Then we have

$$x \in I_x \cup I_y \subseteq U;$$

by the maximality of I_x , we conclude that $(I_x \cup I_y) \subseteq I_x$. By the same argument, since $(I_x \cup I_y) \subseteq I_y$, we finally have $I_x = I_y$. Therefore, any two distinct intervals in $\mathcal{C} := \{I_x\}_{x \in U}$ is disjoint.

We claim that \mathcal{C} is countable, i.e., it has countably many disjoint open intervals. Since each I_x contains a rational number, any two distinct intervals must contain distinct rationals. Hence, the collection \mathcal{C} must be countable.

However, in \mathbb{R}^d for $d \geq 2$, the direct analogue of Theorem 1.1.3 is not valid (see Exercise 1.12). Instead, there is a substitute result as follows:

Theorem 1.1.4

Every open subset $\mathcal{O} \subseteq \mathbb{R}^d$, $d \geq 1$, can be written as a countable union of almost disjoint closed cubes.

Proof.

1.2 The exterior measure

1.3 Measurable sets and the Lebesgue measure

1.4 Measurable functions

1.5 Exercises

Integration Theory

- 2.1 The Lebesgue integral: basic properties and convergence theorems
- 2.2 The space L^1 of integrable functions
- 2.3 Fubini's theorem
- 2.4 A Fourier inversion formula
- 2.5 Exercises

Differentiation and Integration

- 3.1 Differentiation of the integral
- 3.2 Good kernels and approximations to the identity
- 3.3 Differentiability of functions
- 3.4 Rectifiable curves and the isoperimetric inequality
- 3.5 Exercises

Solution for exercises

MAS441: Lebesgue Intergral Theory Homework Problems

Solutions for the selected exercises

Jaeho Shin

Department of Mathematical Sciences, KAIST

4.1 Chapter 1

Exercise 1.5

Suppose E is a given set, and \mathcal{O}_n is the open set:

$$\mathcal{O}_n = \{x : d(x, E) < 1/n\}.$$

Show:

- (a) If E is compat, then $m(E) = \lim_{n \to \infty} m(\mathcal{O}_n)$.
- (b) However, the conclusion in (a) may be false for E closed and unbounded; or E open and bounded.

Proof. (a) We first prove that \mathcal{O}_n is open for all $n \in \mathbb{Z}^+$. For any $x \in \mathcal{O}_n$, since $d(x, E) < \frac{1}{n}$, there exists $\epsilon > 0$ such that $d(x, E) + \epsilon < \frac{1}{n}$. For any $y \in B_d(x, \epsilon)$, by the triangle inequality,

$$d(y, E) = \inf\{d(y, z) : z \in E\}$$

$$\leq \inf\{d(y, x) + d(x, z) : z \in E\}$$

$$< \epsilon + \inf\{d(x, z) : z \in E\}$$

$$= \epsilon + d(x, E) < \frac{1}{n}.$$

Therefore, we conclude that $x \in B_d(x, \epsilon) \subseteq \mathcal{O}_n$, that is, \mathcal{O}_n is open.

Recall that all open sets are measurable and the countable intersection of measurable sets is measurable. Then

$$\mathcal{O} := \bigcap_{n=1}^{\infty} \mathcal{O}_n = \{x : d(x, E) = 0\}$$

is measurable. It is clear that $E \subseteq \mathcal{O}$, by definition. However, since the compactness of E implies that $\bar{E} = E$, note that

$$d(x, E) = 0 \quad \iff \quad \forall \epsilon > 0, \ \exists y \neq x \text{ such that } y \in E \cap B_d(x, \epsilon)$$

$$\iff \quad x \in \bar{E}$$

$$\iff \quad x \in E \quad (\because E \text{ is compact.})$$

Thus, we get $\mathcal{O} = E$. Moreover, since $\mathcal{O}_n \supseteq \mathcal{O}_{n+1}$, for all $n \in \mathbb{Z}^+$, we have $\mathcal{O}_n \searrow \mathcal{O}$.

One more thing we need to check is whether $m(\mathcal{O}_1)$ is finite or not. Note that the compactness of E implies that it is bounded, i.e., there exists N > 0 such that $E \subseteq B_d(\mathbf{0}, N)$ where $\mathbf{0}$ is the origin. Then, the triangle inequality implies that $\mathcal{O}_1 \subseteq B_d(\mathbf{0}, N+1)$; therefore,

$$m(\mathcal{O}_1) \leq m(B_d(\mathbf{0}, N+1)) < \infty.$$

Then, by Corollary 1.3.3 in the Textbook, since $\{\mathcal{O}_n\}_{n=1}^{\infty}$ are the measurable sets satisfying $\mathcal{O}_n \searrow E$ and $m(\mathcal{O}_1) < \infty$, we conclude that

$$m(E) = \lim_{n \to \infty} m(\mathcal{O}_n).$$

(b) We first consider the case when E is closed and unbounded. Let $E = \mathbb{Z} \subseteq \mathbb{R}$, then it is closed but it is unbounded. Note that

$$\mathcal{O}_n = \bigcup_{x \in \mathbb{Z}} \left(x - \frac{1}{n}, x + \frac{1}{n} \right) \text{ for all } n \in \mathbb{Z}^+.$$

Although each interval (x - 1/n, x + 1/n) has length (or measure) 2/n, but since there are infinitely many integers, $m(\mathcal{O}_n)$ is infinite for all $n \in \mathbb{Z}^+$.

On the other hand, since \mathbb{Z} is the countable union of singletons, $\{x\}$ with $x \in \mathbb{Z}$, and since each singleton has measure zero, it follows that \mathbb{Z} is measurable. Moreover, since these singletons are disjoint measurable sets, we have

$$m(\mathbb{Z}) = m\left(\bigcup_{x \in \mathbb{Z}} \{x\}\right) = \sum_{x \in \mathbb{Z}} m(\{x\}) = 0.$$

Therefore, we can obtain $m(E) \neq \lim_{n\to\infty} m(\mathcal{O}_n)$, in this case.

Likewise, let's consider the case when E is open and bounded. Since $[0,1] \cap \mathbb{Q}$ contains countably many elements, let's label them r_i where $i \in \mathbb{Z}^+$ so that $\{r_1, r_2, \dots\} = [0, 1] \cap \mathbb{Q}$. Under this notation, define

$$E := \bigcup_{k=1}^{\infty} \left(r_k - \frac{1}{2^{k+2}}, r_k + \frac{1}{2^{k+2}} \right)$$

which is open by being countable union of open intervals.

Recall that $\mathcal{O}_n = \{x : d(x, E) < \frac{1}{n}\}$. Hence, we clearly have $\mathcal{O}_n \supseteq \mathcal{O}_{n+1}$ for all $n \in \mathbb{Z}^+$; moreover, each \mathcal{O}_n is measurable by being an open set. Let

$$\mathcal{O} := \bigcap_{n=1}^{\infty} \mathcal{O}_n = \{x : d(x, E) = 0\},$$

then, as we did before, we have

$$d(x, E) = 0 \iff \forall \epsilon > 0, \exists y \neq x \text{ such that } y \in E \cap B_d(x, \epsilon)$$

$$\iff x \in \bar{E}.$$

Hence, we conclude that $\mathcal{O} = \bar{E}$. This implies that $\mathcal{O}_n \searrow \bar{E}$ where $m(\mathcal{O}_1) < \infty$ (since E is bounded, so is \mathcal{O}_1); therefore, we get

$$\lim_{n\to\infty} m(\mathcal{O}_n) = m(\bar{E}).$$

Here, since \bar{E} is a well-defined closed set, so it is measurable. Hence, this proves the existence of $\lim_{n\to\infty} m(\mathcal{O}_n)$.

For any $x \in [0,1]$ and $n \geq 1$, if $x + \frac{1}{n} \leq 1$, then there exists $m \in \mathbb{Z}^+$ such that $r_m \in (x, x + \frac{1}{n})$ so that $x \in \mathcal{O}_n$; likewise, if $x + \frac{1}{n} > 1$, then there exists $m \in \mathbb{Z}^+$ such that $r_m \in (x - \frac{1}{n}, x)$ so that $x \in \mathcal{O}_n$. Hence, we have $[0, 1] \subseteq \mathcal{O}_n$ for all $n \in \mathbb{Z}^+$. Then the monotonicity gives

$$1 = m([0,1]) \le m(\mathcal{O}_n)$$
 for all $n \ge 1$.

Therefore, we conclude that $\lim_{n\to\infty} m(\mathcal{O}_n) \geq 1$.

However, from the definition of E, the countable subadditivity gives that

$$m(E) \le \sum_{k=1}^{\infty} m\left(\left(r_k - \frac{1}{2^{k+2}}, r_k + \frac{1}{2^{k+2}}\right)\right) = \sum_{k=1}^{\infty} \frac{1}{2^{k+1}} = \frac{1}{2}.$$

Hence, we proved that

$$m(E) \neq \lim_{n \to \infty} m(\mathcal{O}_n).$$

Exercise 1.8

Suppose L is a linear transformation on \mathbb{R}^d . Show that if E is measurable subset of \mathbb{R}^d , then so is L(E), by proceeding as follows:

- (a) Note that if E is compact, so is L(E). Hence if E is an F_{σ} set, so is L(E).
- (b) Because L automatically satisfies the inequality

$$|L(x) - L(x')| \le M|x - x'|$$

for some M, we can see that L maps any cube of side length l into a cube of side length c_dMl , with $c_d=2\sqrt{d}$. Now if m(E)=0, there is a collection of cubes $\{Q_j\}$ such that $E\subset \bigcup_j Q_j$, and $\sum_j m(Q_j)<\epsilon$. Thus $m_*(L(E))\leq c'\epsilon$, and hence m(L(E))=0. Finally, use Corollary 3.5.

One can show that $m(L(E)) = |\det L| m(E)$; see Problem 4 in the next chapter.

Proof. (a) Since we know that every linear transformation on \mathbb{R}^d is Lipschitz, thus L is a continuous map. Hence, it maps a compact set E to a compact set, that is, L(E) is compact.

Assume that E is an F_{σ} set, i.e. $E = \bigcup_{n=1}^{\infty} F_n$ where $\{F_n\}_{n=1}^{\infty}$ are closed sets in \mathbb{R}^d . We now claim that L(E) is also compact. To prove this, we first prove the following lemma:

Lemma. Every closed in \mathbb{R}^d is a countable union of compact sets.

Proof. Let F be a closed set in \mathbb{R}^d . For each $m \in \mathbb{Z}^+$, let

$$K_m := F \cap \overline{B_d(\mathbf{0}, m)}.$$

Since K_m is closed and bounded in \mathbb{R}^d , thus it is compact. Also, it is clear that

$$F = \bigcup_{m=1}^{\infty} K_m;$$

therefore, any closed set F can be written as a countable union of compact sets.

By lemma, each closed set F_n can be written as

$$F_n = \bigcup_{m=1}^{\infty} K_{n,m}$$

where each $K_{n,m}$ is compact. Thus we get

$$E = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} K_{n,m}.$$

Then, L(E) can be expressed as

$$L(E) = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} L(K_{n,m})$$

where each $L(K_{n,m})$ is compact, by the above conclusion. Therefore, this implies that L(E) is a countable union of compact sets (which are closed in \mathbb{R}^d) so that it is a F_{σ} set.

(b) If m(E) = 0, then there exist a collection of closed cubes $\{Q_j\}_{j=1}^{\infty}$ such that

$$E \subseteq \bigcup_{j=1}^{\infty} Q_j$$
 and $0 \le \sum_{j=1}^{\infty} |Q_j| < \epsilon$.

Let l_j be the side length of Q_j , for each j, then $L(Q_j)$ is contained in a cube Q'_j of side length $c_d M l_j$ where $c_d = 2\sqrt{d}$. Since

$$L(E) \subseteq \bigcup_{j=1}^{\infty} L(Q_j) \subseteq \bigcup_{j=1}^{\infty} Q'_j$$

thus

$$m_*(L(E)) \le \sum_{j=1}^{\infty} |Q_j'| = (c_d M)^d \sum_{j=1}^{\infty} l_j^d < \epsilon (c_d M)^d.$$

This proves that $m_*(L(E)) = 0$.

Note that since E is measurable, by Corollary 1.3.5, there exist an F_{σ} set F such that

$$m(E\triangle F)=0.$$

Then, by part (a), L(F) is also F_{σ} set and since we have

$$L(E)\triangle L(F) \subset L(E\triangle F)$$
,

in general, thus

$$0 \le m_* (L(E) \triangle L(F)) \le m_* (L(E \triangle F)).$$

Since $m(E\triangle F) = 0$ implies that $m_*(L(E\triangle F)) = 0$, we get

$$m_*(L(E)\triangle L(F)) = 0.$$

This implies that L(E) differs from an F_{σ} set L(F) by a set of measure zero; therefore, L(E) is measurable and we conclude that m(L(E)) = 0.

Exercise 1.11

Let A be the subset of [0,1] which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find m(A).

Proof. Let A_n denote the set

 $A_n := \{x \in [0,1] : \text{first } n \text{ digits of } x \text{ do not contain } 4\}.$

for all $n \in \mathbb{Z}^+$. Then $A_{n+1} \subseteq A_n$, for all n, and

$$A = \bigcap_{n=1}^{\infty} A_n.$$

This implies that $A_n \searrow A$.

Note that each A_n is a finite union of intervals. For instance, since A_1 is

$$A_1 = \left[0, \frac{4}{10}\right) \cup \left[\frac{5}{10}, 1\right],$$

thus it is measurable and has measure 9/10. Similarly, A_2 is obtained from A_1 by removing 9 subintervals of length 1/100, corresponding to numbers whose second digit is 4. Therefore, we get $m(A_2) = (9/10)^2$. By repeating this procedure, we have

$$m(A_n) = \left(\frac{9}{10}\right)^n$$
 for all $n \in \mathbb{Z}^+$.

By Corollary 1.3.3, since $\{A_n\}_{n=1}^{\infty}$ are measurable sets with $A_n \searrow A$ and $m(A_1) < \infty$, thus we have

$$m(A) = \lim_{n \to \infty} m(A_n) = \lim_{n \to \infty} \left(\frac{9}{10}\right)^n = 0.$$

Exercise 1.12

Theorem 1.3 states that every open set in \mathbb{R} is the disjoint of open intervals. The analogue in \mathbb{R}^d , $d \geq 2$, is generally false. Prove the following:

- (a) An open disc in \mathbb{R}^2 is not the disjoint union of open rectangles. [Hint: What happens to the boundary of any of these rectangles?]
- (b) An open connected set Ω is the disjoint union of open rectangles if and only if Ω is itself an open rectangle.

Proof. (a) Suppose not. Let \mathcal{C} be the collection of disjoint open rectangles whose union is an open disc in \mathbb{R}^2 . Consider $R \in \mathcal{C}$ and $x \in \mathrm{bd}(R)$ which does not lie on the boundary of disc. Since $x \in D$, where D denotes the disc, there exist $R' \in \mathcal{C}$ such that $x \in R'$. Hence, there exist a basis element B (which is an ϵ -ball centered at x) such that

$$x \in B \subseteq R'$$
.

Since $x \in \operatorname{bd}(R) = \overline{R} \cap (\mathbb{R}^d \setminus R)$ and B is a neighborhood of x, so B intersects R at some point y other than x. Since $y \in B \subseteq R'$ and $y \in R$, we have $R \cap R' = \emptyset$ which is a contradiction. Therefore, D cannot be the disjoint union of open rectangles.

(b) Suppose that $\Omega = \bigcup_{U \in \mathcal{C}} U$ where the elements of \mathcal{C} are disjoint open rectangles. Let $\emptyset \neq \mathcal{A} \subseteq \mathcal{C}$. Then

$$\Omega = \left(\bigcup_{U \in \mathcal{A}} U\right) \cup \left(\bigcup_{U \in \mathcal{C} \setminus \mathcal{A}} U\right)$$

gives a separation of Ω which contradicts to the connectedness of Ω . Therefore, such \mathcal{A} cannot exist, i.e., $|\mathcal{C}| = 1$ so that Ω is an open rectangle. The converse is trivial; hence, the proof is done.

Exercise 1.16

Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^d and that

$$\sum_{k=1}^{\infty} m(E_k) < \infty.$$

Let

$$E = \{x \in \mathbb{R}^d : x \in E_k, \text{ for infinitely many } k\}$$
$$= \lim_{k \to \infty} \sup_{k \to \infty} (E_k).$$

- (a) Show that E is measurable.
- (b) Prove m(E) = 0.

[Hint: Write $E = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k$.]

Proof. (a) Recall that $\limsup_{k\to\infty} (E_k)$ is obtained by

$$\limsup_{k \to \infty} (E_k) = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

This is because

$$x \in E_k$$
 for infinitely many $k \iff x \in \bigcup_{k=n}^{\infty} E_k$ for all $n \in \mathbb{Z}^+$

$$\iff x \in \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k.$$

Since each E_k is measurable, so is $\bigcup_{k=n}^{\infty} E_k$. Likewise, this implies that $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k$ is also measurable. Therefore, we conclude that E is measurable.

(b) $\sum_{k=1}^{\infty} m(E_k) < \infty$ implies that, for any $\epsilon > 0$, there exists N > 0 such that

$$\sum_{k=N}^{\infty} m(E_k) < \epsilon.$$

Then, by the countable subadditivity, we have

$$m\left(\bigcup_{k=N}^{\infty} E_k\right) \le \sum_{k=N}^{\infty} m(E_k) < \epsilon.$$

However, since the monotonicity implies that

$$m(E) = m\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k\right) \le m\left(\bigcup_{k=N}^{\infty} E_k\right) < \epsilon,$$

we conclude that m(E) = 0.

Exercise 1.17

Let $\{f_n\}$ be a sequence of measurable functions on [0,1] with $|f_n(x)| < \infty$ for a.e x. Show that there exists a sequence c_n of positive real numbers such that

$$\frac{f_n(x)}{c_n} \to 0$$
 a.e. x

[Hint: Pick c_n such that $m(\lbrace x: |f_n(x)/c_n| > 1/n\rbrace) < 2^{-n}$, and apply the Borel-Cantelli lemma.]

Proof. The fact that $|f_n(x)| < \infty$ for a.e x implies that

$$m({x:|f_n(x)| = \infty}) = 0.$$

Let A denote the set $\{x: |f(x)| = \infty\}$. If we let $A_k := \{x: |f_n(x)| > k/n\}$ for all $k \in \mathbb{Z}^+$, then we have $A_k \searrow A$ since

$$A_{k+1} \subseteq A_k$$
 for all $k \in \mathbb{Z}^+$

and

$$\bigcap_{k=1}^{\infty} A_k = \{x : |f_n(x)| = \infty\}.$$

Therefore, we get

$$\lim_{k \to \infty} m(A_k) = m(A) = 0.$$

This implies that there exists $c_n \in \mathbb{Z}^+$ such that $m(A_{c_n}) < 2^{-n}$, i.e.

$$m\left(\left\{x:|f_n(x)|>\frac{c_n}{n}\right\}\right)<2^{-n}.\tag{*}$$

Define, for all $n \in \mathbb{Z}^+$,

$$E_n = \left\{ x : \left| \frac{f_n(x)}{c_n} \right| > \frac{1}{n} \right\}.$$

Then (*) implies that $m(E_n) < 2^{-n}$ for all n. Note that $\{E_n\}_{n=1}^{\infty}$ is a countable family of measurable sets with

$$\sum_{n=1}^{\infty} m(E_n) < \sum_{n=1}^{\infty} \frac{1}{2^n} = 1 < \infty;$$

therefore, by the Borel-Cantelli lemma, we get m(E) = 0 where

$$E := \limsup_{n \to \infty} (E_n).$$

For any $x \in E^c$, there exists N > 0 such that $x \notin E_n$ for all $n \ge N$. This implies that

$$\lim_{n \to \infty} \left| \frac{f_n(x)}{c_n} \right| = 0 \quad \text{for all} \quad x \in E^c.$$

Therefore, m(E) = 0 implies that

$$\frac{f_n(x)}{c_n} \to 0$$
 a.e. x .

Exercise 1.20

Show that there exist closed sets A and B with m(A) = m(B) = 0, but m(A+B) > 0:

- (a) In \mathbb{R} , let $A = \mathcal{C}$ (the Cantor set), $B = \mathcal{C}/2$. Note that $A + B \supset [0, 1]$.
- (b) In \mathbb{R}^2 , observe that if $A = I \times \{0\}$ and $B = \{0\} \times I$ (where I = [0, 1]), then $A + B = I \times I$.

Proof. (a) It is clear that every number in [0, 1] has a ternary expansion

$$x = \sum_{k=1}^{\infty} a_k 3^{-k}$$
, where $a_k = 0, 1, \text{ or } 2$.

The algorithm for finding a_k is as following: If x = 1, then $a_k = 2$ for all $k \in \mathbb{Z}^+$; if x < 1, take $a_1 = \lfloor 3x \rfloor$ where $\lfloor \cdot \rfloor$ denotes the greatest integer less than or equal to x. Similarly, we take $a_2 = \lfloor 3(3x - a_1) \rfloor$ and by repeating this procedure, we have

$$a_n = \left| 3^n x - \sum_{k=1}^{n-1} a_k 3^{n-k} \right|$$
 for all $n \ge 2$.

Note that the ternary expansion is not unique since, for example, $1/3 = \sum_{k=2}^{\infty} 2/3^k$.

Since $A = \mathcal{C}$, the Cantor set, A consists of all numbers which have a ternary expansion with $a_k \in \{0, 2\}$ for all $k \in \mathbb{Z}^+$. By the same reason, since $B = \mathcal{C}$, it consists of all numbers which have a ternary expansion with $a_k \in \{0, 1\}$.

Now we claim that, for any $x \in [0, 1]$, there exist $a \in A$ and $b \in B$ such that x = a + b. Let $x = \sum_{k=1}^{\infty} a_k 3^{-k}$, where $a_k \in \{0, 1, 2\}$, be a ternary expansion of x. Likewise, let

$$a = \sum_{k=1}^{\infty} a_k 3^{-k}$$
 and $b = \sum_{k=1}^{\infty} b_k 3^{-k}$

be ternary expansions of a and b, respectively. By letting,

$$a_k = \begin{cases} 2, & \text{if } x_k = 2\\ 0, & \text{otherwise} \end{cases}$$
 and $b_k = \begin{cases} 1, & \text{if } x_k = 1\\ 0, & \text{otherwise} \end{cases}$

we clearly have x = a + b (since $x_k = a_k + b_k$ for all $k \in \mathbb{Z}^+$). Therefore,

$$[0,1] \subseteq A+B$$
.

(b) Let $x = (x_1, x_2) \in A + B$, then x = a + b for some $a \in A$ and $b \in B$. Since a and b are of the form a = (a', 0) and b = (0, b') where $a', b' \in I$. Then

$$(x_1, x_2) = (a', 0) + (0, b') \implies x_1 = a' \text{ and } x_2 = b';$$

therefore, $(x_1, x_2) \in I \times I$.

Conversely, assume that $x = (x_1, x_2) \in I \times I$. Since each x_1 and x_2 belongs to I, it is clear that $(x_1, 0) \in A$, $(0, x_2) \in B$, and

$$x = (x_1, 0) + (0, x_2) \in A + B.$$

Therefore, we get $I \times I \subseteq A + B$ and this completes the proof.

In part (a), note that both A and B are closed with measure zero, but A + B has positive measure since $A + B \supset [0,1]$. Likewise, note that A and B in part (b) are also closed with measure zero, but $A + B = I \times I$ has positive measure, obviously.

Exercise 1.21

Prove that there is a continuous function that maps a Lebesgue measurable set to a non-measurable set.

[Hint: Consider a non-measurable subset of [0,1], and its inverse image in \mathcal{C} by the function F in Exercise 2.]

Proof. Let \mathcal{C} denote the Cantor set. Define a map $f:\mathcal{C}\to [0,1]$ to because

$$f(x) = \sum_{k=1}^{\infty} \frac{b_k}{2^k}$$
 if $x = \sum_{k=1}^{\infty} a_k 3^{-k}$, where $b_k = a_k/2$.

In this definition, we choose the expansion of x in which $a_k = 0$ or 2. We first claim that f is well-defined and continuous on C, and moreover it is surjective.

(Well-definedness). Since we proved that every number in [0,1] has at least one ternary expansion, the only problem is that some numbers (such as 1/3) have more than one ternary expansions. However, such a number can have a unique ternary expansion that consists of all 0's and 2's, because the only problem arises when one representation terminates while the other doesn't. If a representation terminates, then it must end with 2 (if it contains only 0's and 2's). However, then the other expansion ends with $1222\cdots$; therefore, it contains 1 in its expansion. This proves that each element of \mathcal{C} has the unique ternary expansion consists of only 0's and 2's; hence, the map f is well-defined.

(Continuity). For any $\epsilon > 0$, there exists $n \in \mathbb{Z}^+$ such that $1/2^n < \epsilon$. Let $\delta = 1/3^n$, then for any $x, y \in \mathcal{C}$ with $|x - y| < \delta$, first n digits of their ternary expansion must be the same. Otherwise, one must contain 1 in its expansion or their difference must be greater than or equal to δ . Therefore, for such x and y, we have

$$|f(x) - f(y)| < \sum_{k=n+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^n} < \epsilon.$$

Therefore, we conclude that f is continuous.

(Surjectivity). As we did in Exercise 1.20, every number in [0, 1] also has a binary expansion

$$x = \sum_{k=1}^{\infty} b_k 2^{-k}$$
, where $b_k = 0$ or 1.

If x < 1, then $b_k = 1$ for all $k \in \mathbb{Z}^+$; if x < 1, then $b_1 = \lfloor 2x \rfloor$ and

$$b_n = \left| 2^n x - \sum_{k=1}^{n-1} a_k 2^{n-k} \right|$$
 for all $n \ge 2$.

Hence, for any $y \in [0, 1]$, it has a binary expression

$$y = \sum_{k=1}^{\infty} b_k 2^{-k}.$$

Let $a_k := 2b_k$ for all $k \in \mathbb{Z}^+$. Since a_k if either 0 or 2, for all k,

$$x \coloneqq \sum_{k=1}^{\infty} a_k 3^{-k}$$

belongs to \mathcal{C} . Moreover, it is clear that f(x) = y; therefore, f is surjective.

Note that the set \mathcal{N} defined in the Theorem 1.3.6 is non-measurable subset of [0,1]. Let $E := f^{-1}(\mathcal{N}) \subseteq \mathcal{C}$. Since E is a subset of the measure zero set \mathcal{C} , we have m(E) = 0. This implies that E is measurable. Therefore, f is a continuous function which maps the Lebesgue measurable set E to a non-measurable set \mathcal{N} .

Exercise 1.22

Let $\chi_{[0,1]}$ be the characteristic function of [0,1]. Show that there is no everywhere continuous function f on \mathbb{R} such that

$$f(x) = \chi_{[0,1]}(x)$$
 almost everywhere.

Proof. Suppose that such a continuous function f exists. We first claim that

$$f(x) = 0$$
 for all $x \in (-\infty, 0)$.

Assume that there exists $x_0 \in (-\infty, 0)$ such that $f(x_0) \neq 0$. Then, since f is continuous, for any $0 < \epsilon < |f(x_0)|$, there exists $\delta > 0$ such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon.$$

Then, for any $x \in (x_0 - \delta, x_0]$, the triangle inequality implies that

$$|f(x)| \ge |f(x_0)| - |f(x) - f(x_0)| > |f(x_0)| - \epsilon > 0.$$

Thus, $(x_0 - \delta, x_0] \subseteq \{x : f(x) \neq \chi_{[0,1]}(x)\}$ so that

$$m(\{x: f(x) \neq \chi_{[0,1]}(x)\}) \geq \delta > 0$$

which is a contradiction. Therefore, we have $f|_{(-\infty,0)} = 0$.

By the same argument, we can check that $f|_{(0,1)} = 1$. If there exists $x_0 \in (0,1)$ such that $f(x_0) \neq 1$, then for any $0 < \epsilon < |f(x_0) - 1|$, there exists $\delta > 0$ such that

$$B_d(x_0, \delta) \subseteq (0, 1)$$
 and $|f(x) - f(x_0)| < \epsilon$ for all $x \in B_d(x_0, \delta)$.

Therefore, for any $x \in B_d(x_0, \delta)$, the triangle inequality gives

$$|f(x)-1| \ge |f(x_0)-1|-|f(x)-f(x_0)| > |f(x_0)-1|-\epsilon > 0.$$

Thus, $B_d(x_0, \delta) \subseteq \{x : f(x) \neq \chi_{[0,1]}(x)\}$ so that

$$m(\{x: f(x) \neq \chi_{[0,1]}(x)\}) \ge 2\delta > 0$$

which is again a contradiction. Therefore, we conclude that $f|_{(0,1)} = 1$.

However, since $f|_{(-\infty,0)} = 0$ and $f|_{(0,1)} = 1$, it follows that f cannot be continuous at 0, no matter what value is assigned to f(0). This contradicts to the assumption that f is a continuous function on \mathbb{R} . Therefore, we conclude that there is no everywhere continuous function f on \mathbb{R} such that $f(x) = \chi_{[0,1]}(x)$ almost everywhere.

Exercise 1.26

Suppose $A \subset E \subset B$, where A and B are measurable sets of finite measure. Prove that if m(A) = m(B), then E is measurable.

Proof. Since A and B are measurable, so is $B \setminus A$. Note that A and $B \setminus A$ are disjoint measurable sets. Therefore, we have

$$m(B) = m(A \cup (B \setminus A)) = m(A) + m(B \setminus A),$$

and since m(A) = m(B), we get $m(B \setminus A) = 0$. Note that $E \setminus A \subseteq B \setminus A$, thus we have

$$m_*(E \setminus A) \le m_*(B \setminus A) = 0.$$

Since $m_*(E \setminus A) = 0$, it is measurable. Then, since $E = A \cup (E \setminus A)$ is a union of two measurable set, thus we conclude that E is also measurable.

$\overline{\text{Exercise}} \ 1.28$

Let E be a subset of \mathbb{R} with $m_*(E) > 0$. Prove that for each $0 < \alpha < 1$, there exists an open interval I so that

$$m_*(E \cap I) \ge \alpha m_*(I)$$
.

Loosely speaking, this estimate shows that E contains almost a whole interval. [Hint: Choose an open set \mathcal{O} that contains E, and such that $m_*(E) \geq \alpha m_*(\mathcal{O})$. Write \mathcal{O} as the countable union of disjoint open intervals, and show that one of these intervals must satisfy the desired property.]

Proof. For any $0 < \alpha < 1$, let \mathcal{O} be an open set containing E such that $m_*(E) \ge \alpha m_*(\mathcal{O})$. Note that \mathcal{O} can be written as a countable union of disjoint open intervals so that

$$E = \bigcup_{k=1}^{\infty} I_k$$

where $\{I_k\}_{k=1}^{\infty}$ are disjoint open intervals. Then we have

$$E = E \cap \mathcal{O} = \bigcup_{k=1}^{\infty} (E \cap I_k);$$

hence, by the countable subadditivity,

$$m_*(E) \le \sum_{k=1}^{\infty} m_*(E \cap I_k).$$

If there is no open interval I satisfying $m_*(E \cap I) \ge \alpha m_*(I)$, since $\{I_k\}_{k=1}^{\infty}$ are disjoint open sets, we have

$$m_*(E) < \alpha \sum_{k=1}^{\infty} m_*(I_k) = \alpha m_*(\mathcal{O}) \le m_*(E)$$

which is a contradiction. Therefore, there exist $k \in \mathbb{Z}^+$ such that

$$m_*(E \cap I_k) \ge \alpha m_*(I_k)$$

where I_k is an open interval in \mathbb{R} .

Exercise 1.30

If E and F are measurable, and m(E) > 0, m(F) > 0, prove that

$$E + F = \{x + y : x \in E, y \in F\}$$

contains an interval.

Proof. Note that $-F = \{-x : x \in F\}$ is also measurable with m(-F) > 0 since F is measurable. By the Exercise 1.28, for any $0 < \alpha < 1$, there exist open intervals I_1 and I_2 such that

$$m(E \cap I_1) \ge \alpha m(I_1)$$
 and $m(-F \cap I_2) \ge \alpha m(I_2)$.

Without loss of generality, assume that $m(I_2) \leq m(I_1)$. Then, since they are intervals, there exists $h \in \mathbb{R}$ such that $I_2 + h \subseteq I_1$. (Here, note that $I_2 + h := \{x + h : x \in I_2\}$.) For convenience, let $l = m(I_2) > 0$. Then, for any 0 < |r| < l, we have

$$m(I_1 \cap (I_2 + h + r)) \ge l - |r| > 0.$$

This implies that

$$I_1 \cap (I_2 + h + r) \neq \emptyset;$$

hence, there exist $e \in E$, $f \in F$ such that

$$e = -f + h + r.$$

In other words, for any 0 < |r| < l,

$$h + r = e + f$$

for some $e \in E$ and $f \in F$. Therefore, we conclude that

$$(h-l,h+l) \subseteq E+F,$$

that is, E + F contains an interval.

Exercise 1.37

Suppose Γ is a curve y = f(x) in \mathbb{R}^2 , where f is continuous. Show that $m(\Gamma) = 0$. [Hint: Cover Γ by rectangles, using the uniform continuity of f.]

Proof. For each $n \in \mathbb{Z}$, define

$$\Gamma_n := \{(x, f(x)) : x \in [n, n+1]\} \subseteq \mathbb{R}^2.$$

Since f is continuous and [n, n+1] is compact, thus f is uniformly continuous on [n, n+1]. This implies that, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Note that there exists $N \in \mathbb{Z}^+$ such that $1/N < \delta$. Let

$$I_i \coloneqq \left[n + \frac{i-1}{N}, n + \frac{i}{N} \right]$$

for each $1 \le i \le N$. Since, for any $x, y \in I_i$, we have $|f(x) - f(y)| < \epsilon$; thus

$$f(x) \in \left[f\left(n + \frac{i-1}{N}\right) - \epsilon, \ f\left(n + \frac{i-1}{N}\right) + \epsilon \right]$$

for all $x \in I_i$. Let

$$R_i := \left[f\left(n + \frac{i-1}{N}\right) - \epsilon, \ f\left(n + \frac{i-1}{N}\right) + \epsilon \right] \times I_i$$

for each $1 \leq i \leq N$. Then, we have

$$\Gamma_n \subseteq \bigcup_{i=1}^N R_i \implies m_*(\Gamma_n) \le \sum_{i=1}^N m_*(R_i) = N\left(2\epsilon \cdot \frac{1}{N}\right) = 2\epsilon.$$

Since $\epsilon > 0$ is chosen arbitrarily, we have $m_*(\Gamma_n) = 0$, that is, Γ_n is measurable and $m(\Gamma_n) = 0$. Finally, since we have

$$\Gamma = \bigcup_{n \in \mathbb{Z}^+} \Gamma_n,$$

 Γ is measurable and by countable subadditivity, we get

$$m(\Gamma) \le \sum_{n \in \mathbb{Z}} m(\Gamma_n) = 0$$

4.2. SECTION 2 33

4.2 Section 2