Algebraic Topology

November 12, 2019

1 Introduction

The fundamental problem of topology is to establish whether or not there exist continuous functions f, g going from a topological space X to another space Y and back again. For example, in the case of this torus and double-torus, we know from Geometry that such functions cannot exist by considering the Euler characteristic, but in general this is a hard problem.

If such f,g continuous functions exist, then we say the two spaces are homeomorphic. Basic idea of algebraic topology is that we want to associate to any topological space X a group G(X), and for every continuous function $f: X \to Y$ a group homomorphism $G(f): G(X) \to G(Y)$ with $G(\mathrm{id}) = \mathrm{id}$ and $G(f \circ g) = G(f) \circ G(g)$. Thus if $f: X \to Y$ is a homeomorphism with inverse $g: Y \to X$, then $G(g) \circ G(f) = \mathrm{id}$, $G(f) \circ G(g) = \mathrm{id}$, so G(f) is an is an isomorphism.

Extension problem: Let X be a topological space, $A \subseteq X$ a subspace, and $f: A \to Y$ a continuous function. Does there exist a continuous function $F: X \to Y$ with $F|_A = f$

Theorem 1.1. There is no continuous function

$$f: D^n \to S^{n-1}$$
 with $f|_{S^{n-1}} = \mathrm{id}$

By hand, we can see why this fails for e.g. n=1,2, but it gets hard to generalise. Eventually, we will construct G with $G(D^n)=0$, $G(S^{n-1})=\mathbb{Z}$. Then, if we have $S^{n-1}\to D^n\to S^{n-1}$ with composition being the identity, then we have maps $\mathbb{Z}\to 0\to \mathbb{Z}$ being the identity.

Here, the green and red loops are the "same" loop, whilst the blue one is distinct

Conventions

A topological space will be referred to as a **space** A continuous function $f: X \to Y$ will be called a **map**

2 The Fundamental Group

The idea here is that, if X is a space, $x_0 \in X$ a fixed point, called the **basepoint**, we consider loops based at x_0 , i.e. maps $\gamma : [0,1] \to X$ with $\gamma(0) = \gamma(1) = x_0$.

For example, if we let our space $X = \mathbb{R}^2 \setminus \{0\}$

Then the **fundamental group** $\pi_1(X) = \pi_1(X, x_0)$ is defined to be the set of loops based at x_0 modulo "deforming loops". Multiplication in this group $\gamma_1 \cdot \gamma_2$ is given by first traversing γ_1 and then γ_2 . But what do we mean by "deforming" a loop?

Let $f_0, f_1: X \to Y$ be maps. A **homotopy** between f_0 and f_1 is a map

$$F: X \times I \to Y$$
 where $I = [0, 1]$ and $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$

We often write $f_{\tau}(x) = F(x, \tau), f_{\tau} : X \to Y$.

If such F exists, we say f_0 and f_1 are **homotopic**.

Example: Let $Y \subseteq \mathbb{R}^2$ be a convex set. Then any $f_0, f_1 : X \to Y$ are homotopic, via $F(x,t) = \overline{tf_1(x) + (1-t)f_0(x)} \in Y$ by convexity.

If f_0 is homotopic to f_1 , we write $f_0 \simeq f_1$, or $f_0 \simeq_F f_1$ if we want to be explicit about the homotopy we are using.

Suppose $f_0 \simeq_F f_1$, both functions $X \to Y$. If $Z \subseteq X$ and $f_0(z) = F(z,t) = f_1(z) \forall z \in Z, t \in I$, then we say f_0 is homotopic to f_1 relative to Z.

Lemma 2.1. Let $Z \subseteq X, Y$ be spaces. Then \simeq relative to Z is an equivalence relation on the set of maps $X \to Y$.

Proof.

• Reflexive: $f_0 \simeq f_0$ via $F(x,t) = f_0(x) \forall x, t$

• Symmetric: Given $f_0 \simeq_F f_1$, then $f_1 \simeq f_0$ via F'(x,t) = f(x,1-t)

• Transitive: If $f_0 \simeq_{F_0} f_1$, $f_1 \simeq_{F_1} f_2$, then $f_0 \simeq_F f_2$ with:

$$F(x,t) = \begin{cases} F_0(x,2t) & t \le 1/2 \\ F_1(x,2t-1) & t \ge 1/2 \end{cases}$$

All homotopies are relative to Z.

A homotopy equivalence $f: X \to Y$ is a map with a homotopy inverse $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y, g \circ f = \mathrm{id}_X$. We then write $X \simeq Y$.

Remark: Most (all?) invariants in the course are homotopy invariants

Examples:

- 1. Let * be the one point space, $f: \mathbb{R}^n \to *$ be the constant map, and let $g: * \to \mathbb{R}^n; x \mapsto \mathbf{0}$. Then $f \circ g = \mathrm{id}_*$, and $g \circ f(x) = 0 \forall x \in \mathbb{R}^n$. Now $g \circ f \simeq \mathrm{id}_{\mathbb{R}^n}$ via F(x,t) = tx.
- 2. Let $f: S^{n-1} \hookrightarrow \mathbb{R}^n \setminus \{0\}$ be the inclusion map, and $g: \mathbb{R}^n \setminus \{0\} \to S^{n-1}; x \mapsto \frac{x}{|x|}$ (i.e. map x to the intersection of $\overrightarrow{\mathbf{0}x}$ with S^{n-1}). Then $g \circ f = \mathrm{id}_{S^{n-1}}$ and $f \circ g \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$ via $F(x,t) = (1-t)x + t \cdot \frac{x}{|x|}$

If $X \simeq *$, then we say X is **contractible**.

Let $f: X \to Y, g: Y \to X$ be maps. If $g \circ f = \mathrm{id}_X$, then we say X is a **retract** of Y, and g is a **retraction**. If in addition $f \circ g \simeq \mathrm{id}_Y$ relative to f(X), then we say X is a **deformation retract** of Y. Hence, in example 2, we see that S^{n-1} is a deformation retract of \mathbb{R}^n .

Lemma 2.2. Homotopy equivalence of spaces is an equivalence relation.

Proof. Reflexivity and symmetry are trivial from the definition.

Suppose $X \simeq Y, Y \simeq Z$ via:

We want to show $f' \circ f$, $g \circ g'$ induces a homotopy equivalence

Now $(g \circ g') \circ (f' \circ f) = g \circ (g' \circ f') \circ f$. We know already that $g' \circ f' \simeq_{F'} \mathrm{id}_Y$, and so:

$$(x,t) \mapsto g(F'(f(x),t)) = \begin{cases} g(g'(f'(f(x)))) & t = 0\\ g(f(x)) & t = 1 \end{cases}$$

is a homotopy, as $g \circ (g' \circ f') \circ f \simeq g \circ f$, and since $X \simeq Y$, $g \circ f \simeq \operatorname{id}_X$. Hence $(g \circ g') \circ (f' \circ f) \simeq \operatorname{id}_X$ via transitivity of homotopy equivalence for maps. Similarly $(f' \circ f) \circ (g \circ g') \simeq \operatorname{id}_Z$

Loops and π_1

If X is a space, a **path** in X is a map $\gamma: I \to X$, where $I = [0,1] \subseteq \mathbb{R}$. If $\gamma(0) = x_0, \gamma(1) = x_1$ then we say γ is a path **from** x_0 **to** x_1 .

We say γ_1 and γ_2 are **homotopic** if $\gamma_1 \simeq \gamma_2$ relative to $\{0,1\}$, and we write $[\gamma]$ for the homotopy equivalence class of γ .

If X is a space with points $x, y, z \in X$, and γ_1 is a path from x to y, γ_2 is a path from y to z, then:

• The *concatenation* of γ_1 and γ_2 is the path from x to z given by

$$(\gamma_1 \cdot \gamma_2)(s) = \begin{cases} \gamma_1(2s) & 0 \le s \le 1/2\\ \gamma_2(2s-1) & 1/2 \le s \le 1 \end{cases}$$

- The constant path at x is the path $c_x(s) = x \forall s \in I$
- The *inverse of* γ_1 is $\overline{\gamma_1}(s) = \gamma_1(1-s)$, a path from y to x.

Theorem 2.3. Let X be space, and $x_0 \in X$. Let $\pi_1(X, x_0)$ be the set of homotopy classes of loops in X with endpoint x_0 (we say they are **based** at x_0). Then $\pi_1(X, x_0)$ forms a group under the product $[\gamma_1][\gamma_2] = [\gamma_1 \cdot \gamma_2]$, with identity c_{x_0} and inverses $[\gamma_1]^{-1} = [\overline{\gamma_1}]$.

This group is called the fundamental group of X (based at x_0).

To prove this, we will need the following lemmas:

Lemma 2.4. If $\gamma_0 \simeq \gamma_1$ to y and $\delta_0 \simeq \delta_1$ from y, then $\gamma_0 \cdot \delta_0 \simeq \gamma_1 \cdot \delta_1$ and $\overline{\gamma_0} \simeq \overline{\gamma_1}$

Proof. Suppose $\gamma_0 \simeq_F \gamma_1$, and $\delta_0 \simeq_G \delta_1$. Set:

$$H(s,t) = \begin{cases} F(2s,t) & 0 \le s \le 1/2 \\ G(2s-1,t) & 1/2 \le s \le 1 \end{cases}$$

Then $\gamma_0 \cdot \delta_0 \simeq_H \gamma_1 \cdot \delta_1$

Let
$$F'(s,t) = F(1-s,t)$$
. Then $\overline{\gamma_0} \simeq_{F'} \overline{\gamma_1}$.

Lemma 2.5. Let α, β, γ be paths from w to x to y to z in X.

Then:

- 1. $(\alpha \cdot \beta) \cdot \gamma \simeq \alpha \beta \cdot \gamma$
- 2. $\alpha \cdot c_x \simeq \alpha \simeq c_w \cdot \alpha$
- 3. $\alpha \cdot \overline{\alpha} \simeq c_w$

Proof. First, given a path $\delta: I \to X$, a **reparametrization** of δ is a path $\delta \circ \phi$ where $\phi: I \to I$ is a map with $\phi(0) = 0, \phi(1) = 1$. Note that ϕ needn't be monotonic, and that $\delta \simeq \delta \circ \phi$ via $F(s,t) = \delta(t\phi(s) + (1-t)s)$, and this homotopy is relative to $\{0,1\}$.

1. Now we reparametrize $(\alpha \cdot \beta) \cdot \gamma$ via the function ϕ whose plot is:

Note that $((\alpha \cdot \beta) \cdot \gamma) \circ \phi = \alpha \cdot (\beta \cdot \gamma)$, so $(\alpha \cdot \beta) \cdot \gamma \simeq \alpha \cdot (\beta \cdot \gamma)$.

2. Reparametrize α via:

i.e. do c_w for the first half of the time, then do α , so $\alpha \simeq c_w \cdot \alpha$. Likewise, we can get $\alpha \simeq \alpha \cdot c_x$ using the reparametrization

3. use the homotopy:

$$F(s,t) = \begin{cases} \alpha(2s) & 0 \le s \le t/2\\ \alpha(t) & t/2 \le s \le 1 - t/2\\ \alpha(2 - 2s) & 1 - t/2 \le s \le 1 \end{cases}$$

So $c_w \simeq \alpha \cdot \bar{\alpha}$, as we have c_w at t = 0 and $\alpha \cdot \bar{\alpha}$ at t = 1.

Then theorem 1.3 giving the existence of $\pi_1(X, x_0)$ follows from the previous two lemmas.

Example: $X = \mathbb{R}^n$, $x_0 = 0$. If γ is a loop based at 0, then $\gamma \simeq c_0$ via the straight line homotopy, and so $\pi_1(\mathbb{R}^n, 0) = 0$.

Formal Properties of π_1

Lemma 2.6. Let $f: X \to Y$ be a map with $f(x_0) = y_0$. Then there is a homomorphism $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ given by $f_*([\gamma]) = [f \circ \gamma]$.

Furthermore:

- 1. If $f \simeq f'$ relative to x_0 , then $f'_* = f_*$.
- 2. If $g: Y \to Z$ with $g(y_0) = z_0$, then $g_* \circ f_* = (g \circ f)_*$
- 3. $(\mathrm{id}_X)_* = \mathrm{id}_{\pi_1(X,x_0)}$

Proof. f_* is well-defined: if $\gamma_1 \simeq_F \gamma_2$, then $f \circ \gamma_1 \simeq_{f \circ F} f \circ \gamma_2$. Then $f \circ (\gamma_1 \cdot \gamma_2) = (f \circ \gamma_1) \cdot (f \circ \gamma_2)$ by definition, and so we have a group homomorphism.

1. If $f \simeq_F f'$ relative to x_0 , then for γ a loop based at x_0 , $(s,t) \mapsto F(\gamma(s),t)$ is a homotopy between $f \circ \gamma$ and $f' \circ \gamma$.

2. and 3. are immediate by definition.

Lemma 2.7. let X be a space, $x_0, x_1 \in X$ and α a path from x_0 to x_1 . Then there is a group isomorphism $\alpha_\# : \pi_1(X, x_0) \to \pi_1(X, x_1)$ via $\alpha_\#([\gamma]) = [\bar{\alpha} \cdot \gamma \cdot \alpha]$.

Furthermore,

- 1. If $\alpha \simeq \alpha'$ relative to $\{0,1\}$, then $\alpha_{\#} = \alpha'_{\#}$.
- 2. $(c_{x_0})_{\#} = \mathrm{id}_{\pi_1(X,x_0)}$
- 3. If β is a path from x_2 to x_2 , then $(\alpha \cdot \beta)_{\#} = \beta_{\#} \circ \alpha_{\#}$
- 4. If $f: X \to Y$ and $y_1 = f(x_1)$, then $(f \circ \alpha)_{\#} \circ f_* = f_* \circ \alpha_{\#}$.

Proof. Well-defined: If $\gamma_1 \simeq_F \gamma_2$ then $\bar{\alpha} \cdot \gamma_1 \cdot \alpha \simeq \bar{\alpha} \cdot \gamma_2 \cdot \alpha$ via:

	$\overline{\alpha}$	γ_2	α
t	Trivial Homotopy	F	Trivial Homotopy
	\overline{lpha}	γ_1	α
	\xrightarrow{s}		

This is indeed a group homomorphism: for loops γ , δ based at x_0 ,

$$\bar{\alpha} \cdot \gamma \cdot \alpha) \cdot (\bar{\alpha} \cdot \delta \cdot \alpha) \simeq (\bar{\alpha} \cdot \gamma) \cdot (\alpha \cdot \bar{\alpha}) \cdot (\delta \cdot \alpha)$$

$$\simeq (\bar{\alpha} \cdot \gamma)(c_{x_0})(\delta \cdot \alpha)$$

$$\simeq (\bar{\alpha} \cdot \gamma) \cdot (\delta \cdot \alpha)$$

$$\simeq \bar{\alpha} \cdot (\gamma \cdot \delta) \cdot \alpha$$

Thus $\alpha_{\#}(\gamma \cdot \delta) = \alpha_{\#}(\gamma) \cdot \alpha_{\#}(\delta)$. Also $\bar{\alpha_{\#}} = (\alpha_{\#})^{-1}$ - this is easy to check. Thus $\alpha_{\#}$ is a group isomorphism.

1. If $\alpha \simeq_F \alpha'$

gives $\alpha_{\#}(\gamma) \simeq \alpha'_{\#}(\gamma)$

2. Immediate since c_{x_0} is the identity in $\pi_1(X, x_0)$.

3.

$$(\alpha \cdot \beta)_{\#}(\gamma) = \alpha \cdot \beta \cdot \gamma \cdot \alpha \cdot \beta$$
$$= \bar{\beta} \cdot (\bar{\alpha} \cdot \gamma \cdot \alpha \cdot \beta)$$
$$= \bar{\beta} \cdot \alpha_{\#}(\gamma) \cdot \beta$$
$$= \beta_{\#}(\alpha_{\#}(\gamma))$$

4.

$$((f \circ \alpha)_{\#} \cdot f_{*})(\gamma) = (f \circ \alpha)_{\#}(f \cdot \gamma)$$

$$= (f \circ \alpha)_{\#}(f \cdot \gamma)$$

$$= \overline{f \cdot \alpha} \cdot (f \circ \gamma) \cdot (f \circ \alpha)$$

$$= f \circ (\bar{\alpha} \cdot \gamma \cdot \alpha)$$

$$= f_{*}(\alpha_{\#}(\gamma))$$

A path connected space X is **simply connected** if $\pi_1(x, x_0) = 0$ for any, and hence all, $x_0 \in X$.

Our aim here is to prove that π_1 is a **homotopy invariant**, i.e. that homotopy equivalent spaces have the same fundamental group. We will start with the following lemma:

Lemma 2.8. Let $x_0 \in X$ and $f, g: X \to Y$ with $f \simeq_F g$. Set $x(t) = F(x_0, t)$ so that $\alpha(0) = f(x_0)$ and $\alpha(1) = g(x_0)$. Then the diagram:

commutes, i.e. we have $\alpha_{\#} \circ f_* = g_*$.

Proof. We need to check that, for a loop γ based at x_0 , $\overline{\alpha} \cdot (f \circ \gamma) \cdot \alpha \simeq g \circ \gamma$.

Let $G: I \times I \to Y$ defined by $G(s,t) = F(\gamma(s),t)$. For t = 0, this is $f \circ \gamma$, and for t = 1, this is $g \circ \gamma$. Now consider two paths in $I \times I$:

$$a(t) = (t, 1); b = b_1 \cdot b_2 \cdot b_3$$
 where:
 $b_1(t) = (0, 1 - t), b_2(t) = (t, 0), b_3(t) = (1, t)$

Then $(G \circ a)(s) = G(s,1) = g \circ \gamma(s)$, whilst $G \circ b = \overline{\alpha} \cdot (f \circ \gamma) \cdot \alpha$.

Now, since $I \times I$ is convex, we have that $a \simeq_H b$, and so $G \circ H$ is the desired homotopy between $g \circ \gamma$ and $\overline{\alpha} \cdot (f \circ \gamma) \cdot \alpha$.

Theorem 2.9. If $f: X \to Y$ is a homotopy equivalence, then $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is a homomorphism for any $x_0 \in X$.

Proof. We'll show that f_* is a bijection:

Let $g: Y \to X$ be a homotopic inverse to f, with $\mathrm{id}_X \simeq_F g \circ f$. Let $\alpha: I \to X$ given by $\alpha(t) = F(x_0, t)$.

Note that $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0)); g: \pi_1(Y, f(x_0)) \to \pi_1(X, g(f(x_0)))$

Then $g_* \circ f_* = (g \circ f)_* = \alpha_\# \circ (\mathrm{id}_X)_* = \alpha_\#$. $\alpha_\#$ is an isomorphism, and so f_* is injective.

If $\operatorname{id}_Y \simeq_G f \circ g$ let $\beta(t) = G(f(x_0), t)$ Then $f_* \circ g_* = (g \circ f)_* = \beta_\# \circ (\operatorname{id}_Y)_* = \beta_\#$, an isomorphism, and hence f_* is surjective.

Corollary 2.10. Contractible spaces are simple connected.

Proof. If X is contractible, there exists some $x_0 \in X$ and a homotopy F between id_X and $X \to \{x_0\}$. So $F(x,\cdot)$ is a path from any $x \in X$ to x_0 , so X is path connected. Since X is homotopic to $\{x_0\}$, $\pi_1(X,x_0) \cong \pi_1(\{x_0\},x_0) = 0$.

Covering Spaces

Let $p: \widehat{X} \to X$ be a map. An open set $U \subseteq X$ is **evenly covered** if there exists a set Δ_U with the discrete topology and there is a homeomorphism:

$$p^{-1}(U) \xrightarrow{\cong} U \times \Delta_U$$

such that the following diagram commutes:

$$p^{-1}(U) \xrightarrow{\cong} U \times \Delta_U$$

$$\downarrow p \qquad \downarrow U \qquad (x, \delta) \mapsto x$$

We write, for $\delta \in \Delta_0$, $U_{\delta} = U \times \{\delta\}$ and $p_{\delta} = p|_{U_{\delta}}$. So $p_{\delta} : U_{\delta} \to U$ is a homeomorphism.

Note that we can canonically identify Δ_U with $p^{-1}(x)$ for any $x \in U$, Note also that $p^{-1}(U) \cong \coprod_{\delta \in \Delta_U} U_{\delta}$, where \coprod denotes disjoint union.

If every point of X has an open neighbourhood which is evenly covered, then we say that p is a **covering map** and \widehat{X} is a **covering space** of X.

Examples:

- 1. $\widehat{X} = X \times \Delta$ for Δ a set with the discrete topology, e.g. $\widehat{I} = I \times \{1, 2, 3\}$. Then \widehat{X} is a covering space of X, the identity map on the first element is a covering map.
- 2. $\widehat{X} = \mathbb{R}, X = S^1 \subseteq \mathbb{C}$, the unit circle, with $p : \mathbb{R} \to S^1$ and $p(t) = \exp(2\pi i \cdot t)$. Them p is a covering map:

let $U = S \setminus \{p\}$. We can define a branch of the logarithm $\log : \mathbb{C} \setminus \{rp : r \geq 0\} \to \mathbb{C}$. Then every point $\widehat{z} \in p^{-1}(U)$ can be written uniquely as $\widehat{z} = k + \frac{\log z}{2\pi i}$ for some $k \in \mathbb{Z}$.

Thus $p^{-1}(U) \cong U \times \mathbb{Z}$, via $\widehat{z} \mapsto \left(\frac{\log z}{2\pi \mathrm{i}}, k\right)$, and so each proper subset of S^1 is evenly covered, however S^1 as a whole is not evenly covered, since $p^{-1}(S^1)$ is not a union of copies of S^1 .

- 3. $\widehat{X} = X = S^1 \subseteq \mathbb{C}$, the unit circle, with $p(z) = z^n$.
 - p is a covering map by choosing a branch of the nth root on proper open subsets of S^1
- 4. Let $\widehat{X} = S^2$, and let $G = \mathbb{Z}/2\mathbb{Z}$ act on S^2 by the antipodal map $z \mapsto -z$. Then let $X = \widehat{X}/G = \widehat{X}/\sim$, where $x \sim y \iff x = \pm y$.

Then X is \mathbb{RP}^2 , the real projective plane. If $x \in X$, let U be an open neighbourhood of x disjoint from its negation. Then the image of U in X is evenly covered.

We say a covering map $p: \widehat{X} \to X$ is **n-sheeted** if $\#p^{-1}(x) = n$ for all $x \in X$, and call n the **degree** of p.

Lifting Properties

Let $p: \widehat{X} \to X$ be a covering map, and $f: Y \to X$ b a mp. A **lift** of f to \widehat{X} is a map $\widehat{f}: Y \to \widehat{X}$ such that the following diagram commutes:

A space X is **locally path connected** if for every $x \in X$ and $U \subseteq X$ open neighbourhood of x, there exists a neighbourhood $V \subseteq U$ of x which is path connected.

Lemma 2.11 (Uniqueness of Lifting). Let $p: \widehat{X} \to X$ be a covering map and $\widehat{f}_1, \widehat{f}_2: Y \to \widehat{X}$ be two lifts of $f: Y \to X$ with Y connected and locally path connected.

If there exists some $x_0 \in Y$ with $\widehat{f}_1(x_0) = \widehat{f}_2(x_0)$, then $\widehat{f}_1 = \widehat{f}_2$.

Proof. We will show that the set $S := \{y \in Y : \widehat{f}_1(y) = \widehat{f}_2(y)\}$ is both open and closed. By assumption we have $x_0 \in S$, so $S \neq \emptyset$. Since Y is connected, we must have then that S = Y as otherwise S and $Y \setminus S$ would disconnect Y.

Let $y_1 \in Y$ be an arbitrary point, and let $U \subseteq X$ be an open neighbourhood of $f(y_1)$ which is evenly covered by p. Let $V \subseteq f^{-1}(U)$ be an open neighbourhood of y_1 which is path connected. We then want to show that, if $y_1 \in S$ then all of $V \subseteq S$, and otherwise $V \subseteq Y \setminus S$.

Let $y \in V$ be arbitrary and let α be a path from $y_1 \to y$. Then $\widehat{f_i} \circ \alpha$ is a path from $\widehat{f_i}(y_1) \to \widehat{f_i}(y)$ for i = 1, 2.

Note that $p \circ \widehat{f_1} \circ \alpha(t) = f(\alpha(t)) \in U$, and so $\widehat{f_i}(y)$ and $\widehat{f_i}(y_1)$ lie in the same component of $p^{-1}(U)$, say U_{δ_i}

If $y_1 \in S$, then $\widehat{f}_1(y_1) = \widehat{f}_2(y_1)$, so $\delta_1 = \delta_2$, and so $\widehat{f}_1(y) = p_{\delta_1}^{-1}(f(y)) = p_{\delta_2}^{-1}(f(y)) = \widehat{f}_2(y)$, so $y \in S$, and hence all of $V \subseteq S$.

Otherwise $y_1 \notin S$, then $\widehat{f}_1(y_1) \neq \widehat{f}_2(y_1)$. Each U_{δ_i} contains a unique point of $p^{-1}(\{f(y_1)\})$, and we must have $\delta_1 \neq \delta_2$.

So $\widehat{f}_1(y) \neq \widehat{f}_2(y)$, so $y \notin S$, and in general $V \subseteq Y \setminus S$.

Hence S is open, $Y \setminus S$ is open, and we are done

Let $\gamma: I \to X$ be a path from $x_0 \in X$ and $p: \widehat{X} \to X$ be a covering map. A lift of γ at (or from) $\widehat{x_0}$ is a lift $\widehat{\gamma}$ of γ with $\widehat{x_0} = \widehat{\gamma}(0)$. In particular, $p(\widehat{x_0}) = p(\widehat{\gamma}(0)) = \gamma(0) = x_0$.

Lemma 2.12 (Path Lifting Lemma). Let $p: \widehat{X} \to X$ be a covering map, and let $\gamma: I \to X$ be a path from x_0 . Then for any choice of $\widehat{x_0} \in p^{-1}(x_0)$, there exists a unique lift $\widehat{\gamma}$ of γ from $\widehat{x_0}$.

Proof. Uniqueness follows from the previous lemma showing uniqueness of lifts. For existence, let $S = \{t \in I | \gamma|_{[0,t]} \text{ lifts to path from } \widehat{x_0} \text{ in } \widehat{X}\}$. Note $o \in S$. If we show that S is open and closed, then since I is connected, S = I. Note that if $t \in S$, then $[0,t] \subseteq S$.

Let $t_0 \in I$, and let U be an evenly covered neighbourhood of $\gamma(t_0)$. Let $V \subseteq \gamma^{-1}(U)$ be an open interval containing t_0 . Let $t \in V$ and suppose first that $t_0 \in S$. If $t \leq t_0$, then $t \in S$, so instead assume that $t > t_0$. Since $\gamma|_{[0,t_0]}$ has a lift $\widehat{\gamma} : [0,t_0] \to \widehat{X}$, and we have $\widehat{\gamma}(t_0) \in U_\delta$ for some $\delta \in \Delta_U$.

Recall that we have a homeomorphism $p_{\delta}: U_{\delta} \to U$ where $p_{\delta} = p|_{U_{\delta}}$. Hence the path:

$$s \mapsto \begin{cases} \widehat{\gamma}(s) & 0 \le s \le t_0 \\ p_{\delta}^{-1} \circ \gamma & t_0 \le s \le t \end{cases}$$

is a lift of $\gamma|_{[0,t]}$. Hence $t \in S$, and so $V \subseteq S$, and so S is open.

If $t_0 \notin S$, $t \in V$, $t \ge t_0$ and $t \in S$, contradicting $t_0 \notin S$. If $t < t_0$ by the previous argument above we have a contradiction as then $t_0 \in S$. So $V \subseteq I \setminus S$, and hence S must also be closed.

Corollary 2.13. Let $p: \widehat{X} \to X$ be a covering map with X path connected. Then p is n-sheeted for some $n \in \mathbb{N} \cup \{\infty\}$. In fact, $p^{-1}(x)$ and $p^{-1}(y)$ have the same cardinality for all pairs $x, y \in X$.

Proof. Let γ be a path from x to y in X. If $\widehat{x} \in p^{-1}(x)$, let $\widehat{\gamma}_{\widehat{x}}$ be the lift of γ from x. Then map \widehat{x} to $\widehat{\gamma}_{\widehat{x}}(1)$. The path $\overline{\gamma}$ similarly gives a map $p^{-1}(y) \to p^{-1}(x)$, inverse to the first map.

For example to show that the composition $p^{-1}(x) \to p^{-1}(y) \to p^{-1}(x)$ is the identity, we need to show that, for $\widehat{x} \in p^{-1}(x)$, $(\widehat{\overline{\gamma}})_{\widehat{\gamma}_{\widehat{x}}(1)}(1) = \widehat{x}$. But $\widehat{\gamma}_{\widehat{x}} \cdot (\widehat{\overline{\gamma}})_{\overline{\gamma}_{\widehat{x}}(1)}$ is a lift of $\gamma \cdot \overline{\gamma}$, and $\widehat{\gamma}_{\widehat{x}} \cdot (\widehat{\overline{\gamma}})_{\widehat{\gamma}_{\widehat{x}}(1)} = \widehat{\overline{\gamma}}_{\widehat{x}}$. Hence $(\widehat{\overline{\gamma}})_{\widehat{\gamma}_{\widehat{x}}(1)}(1) = \widehat{\overline{\gamma}}_{\widehat{x}}(1) = \widehat{\gamma}_{\widehat{x}}(0) = \widehat{x}$.

Lemma 2.14 (Homotopy Lifting Lemma). Let $p: \widehat{X} \to X$ be a covering map and $g_0: Y \to X$ a map with Y locally path connected. Let $F: Y \times I \to X$ be a homotopy with $F(y,0) = f_0(y)$ for all $y \in Y$. Let $\widehat{f_0}: Y \to \widehat{X}$ be a lift of Y. Then there is a unique lift \widehat{F} of F to \widehat{X} so that $\widehat{F}(y,0) = \widehat{f_0}(y)$.

Proof. For each $y \in Y$, we obtain a path γ_y given by $\gamma_y(t) = F(y,t)$ from $f_0(y)$. By the path lifting lemma, each γ_y lifts uniquely to a path $\widehat{\gamma}_y$ from $\widehat{f}_0(y)$. Now define:

$$\widehat{F}(y,t) = \widehat{\gamma}_y(t)$$

This clearly is a lift of F in the sense that

$$(p \circ \widehat{F})(y,t) = p(\widehat{\gamma}_{y}(t)) = \gamma_{y}(t) = F(y,t)$$

but is \widehat{F} continuous?

We will construct a different map $\widetilde{F}: Y \times I \to \widehat{X}$ which is continuous by construction, and then we will show that $\widehat{F} = \widetilde{F}$.

Fix $y_0 \in Y$. The for each $t \in I$ we have an evenly covered neighbourhood U_t of $F(y_0, t) \in X$. Then $F^{-1}(U_t) \subseteq Y \times I$ is an open neighbourhood of (y_0, t) . We can find an open neighbourhood of (y_0, t) in $F^{-1}(U_t)$ of the form $V_t \times (t - \epsilon_t, t + \epsilon_t)$ with V_t path connected.

Note that these neighbourhoods cover $Y \times I$, and as $\{y_0\} \times I$ is compact, there is a finite subcover $\{J_i\}$ of $\{(t-\epsilon_t,t+\epsilon_t)|t\in I\}$. Then, if $J_i=(t_i-\epsilon_{t_i},t_i+\epsilon_{t_i})$, we can find a path connected subset $V\subseteq \cap_i V_{t_i}$ containing y_0 . Hence we may assume there is a path-connected neighbourhood V of y_0 in Y, and a finite number of intervals J_i covering I such that $F(V\times J_i)$ is contained in an evenly covered neighbourhood U of X.

Let $\delta_i \in \Delta_U$ be the unique index such that:

$$\widehat{F}(\{y_0\} \times J_i) \subseteq U_{\delta_i}$$

Now for $(y,t) \in V \times J_i$, we can define $\widetilde{F}(y,t) := p_{\delta_i}^{-1} \circ F(y,t)$ for $(y,t) \in V \times J_i$.

These maps agree on overlaps, i.e. when $(V \times J_i) \cap (V \times J_j) = V \times (J_i \cap J_j) \neq V \times \emptyset$ - to see this, suppose that $t \in J_i \cap J_j$, and let α be a path in V from y_0 to y in V, and let $\alpha_t(s) = F(\alpha(s), t)$.

Then $p_{\delta_i}^{-1} \circ \alpha_t$ is a lift of α_t from $p_{\delta_i}^{-1} \circ \alpha_t(0)$, and likewise for $p_{\delta_i}^{-1} \circ \alpha$.

But $p_{delta_i}^{-1} \circ \alpha_t(0) = p_{\delta_i}^{-1} \circ F(y_0, t) = \widehat{F}(y_0, t) = \widehat{\gamma}_{y_0}(t)$ as defined on J_i , and $p_{\delta_j}^{-1} \circ \alpha_t(0) = p_{\delta_j}^{-1} \circ F(y_0, t) = \widehat{F}(y_0, t) = \widehat{\gamma}_{y_0}(t)$ as defined on J_j . Hence $p_{\delta_i}^{-1} \circ \alpha_t$ and $p_{\delta_j}^{-1} \circ \alpha_t$ have the same initial end point, and they are both lifts of α_t , and hence they must agree by **2.11** uniqueness of lifting.

Hence $p_{\delta_j}^{-1} \circ F(y,t) = p_{\delta_j}^{-1} \circ \alpha_t(1) = p_{\delta_i}^{-1} \circ \alpha_t(1) = p_{\delta_i}^{-1} \circ F(y,t)$, and so the two definitions of \widetilde{F} on $V \times J_i$ and $V \times J_j$ agree on the overlap $V \times (J_1 \cap J_j)$.

Thus we have a well-defined continuous lifting:

$$\widetilde{F}: V \times I \to \widehat{X} \text{ of } F_{V \times I} \to X$$

But by construction, $\widetilde{F}(y_0,0) = \widehat{f}_0(y_0)$, and so $\widetilde{F}(y,0)$ is a lift of $f_0(y)$ for all $y \in V$, and $\widetilde{F}(y_0,0) = \widehat{f}_0(y_0)$. Hence by **2.11** uniqueness of lifting, $\widetilde{F}(\cdot,0)$ is \widehat{f}_0 on V.

For each $y \in V$, $\widetilde{F}(y,\cdot)$ is a lift of γ_y from $\widehat{f}_0(y)$. By uniqueness of lifts of paths, we must have $\widetilde{F}(y,t) = \widehat{\gamma}_y(t)$, and $\widetilde{F}(y,t)$ hence agrees with $\widehat{F}(y,t)$.

Corollary 2.15. Let $p: \widehat{X} \to X$ be a covering map and let $F: I \times I \to X$ be a homotopy of paths. Then any lift \widehat{F} of F to \widehat{X} is also a homotopy of paths.

Proof. Let \widehat{F} be a lift of F, so that $\widehat{F}: I \times I \to \widehat{X}$. We need to check that \widehat{F} is a homotopy relative to $\{0,1\}$. But $\widehat{F}(0,\cdot)$ and $\widehat{F}(1,\cdot)$ are paths in \widehat{X} . Since F is a homotopy of paths, $F(0,\cdot)$

and $F(1,\cdot)$ are constant. Thus $\widehat{F}(0,\cdot)$ and $\widehat{F}(1,\cdot)$ are paths in $p^{-1}(x_0)$ and $p^{-1}(x_1)$ respectively, with $x_0 = F(0,\cdot)$, $x_1 = F(1,\cdot)$ and hence $\widehat{F}(0,\cdot)$, $\widehat{F}(1,\cdot)$ are constant since $p^{-1}(x_0)$, $p^{-1}(x_1)$ are discrete.

Applications to π_1

Lemma 2.16. Let $p: \widehat{X} \to X$ be a covering map with $p(\widehat{X}) = X$. Then the induced map:

$$p_*: \pi_1(\widehat{X}, \widehat{x}) \to \pi_1(X, x)$$

is injective.

Proof. Suppose $[\widehat{\gamma}]$ is in the kernel of p_* , i.e. $p \circ \widehat{\gamma} = \gamma \simeq_F c_x$. But then there is a lift \widehat{F} of F to \widehat{X} with the property that $\widehat{\gamma} \simeq_{\widehat{F}} \widehat{c_x} = c_{\widehat{x}}$. Hence $\ker p_* = \{[c_{\widehat{x}}]\} = \{\mathbb{1}_{\pi_1(\widehat{X},\widehat{x})}\}$, and so p_* is injective.

Observe that, if, $[\gamma] \in \pi_1(X, x)$, we get a map $p^{-1}(X) \to p^{-1}(X)$ via $\widehat{x} \mapsto \widehat{\gamma}_{\widehat{x}}(1)$, where $\widehat{\gamma}_{\widehat{x}}$ is a lift of γ with $\widehat{\gamma}_{\widehat{x}}(0) = \widehat{x}$.

For example, let $p: \mathbb{R} \to S^1$, with $p(t) = e^{2\pi i t}$

This gives an action of $\pi_1(X,x)$ on $p^{-1}(X)$. This is a **right action**, i.e. for $\widehat{x} \in p^{-1}(X)$, $[\gamma] \in \pi_1(X,x)$, and we write $x \cdot \gamma = \widehat{\gamma}_{\widehat{x}}(1)$, and then $x \cdot \gamma) \cdot \delta = x \cdot (\gamma \cdot \delta)$.

Lemma 2.17. Let $p: \widehat{X} \to X$ be a covering map, and suppose \widehat{X} is path connected. Let $x \in X$. Then the map:

$$p_*(\pi_1(\widehat{X},\widehat{x}))\backslash \pi_1(X,x)\to p^{-1}(x)$$

where $G \setminus H$ is the set of right cosets of H in G, given by $p_*(\pi_1(\widehat{X},\widehat{x})) \cdot [\gamma] \mapsto \widehat{x} \cdot \gamma$, is a bijection for any choice of $\widehat{x} \in p^{-1}(x)$.

Furthermore, this bijection satisfies:

$$p_*(\pi_1(\widehat{X},\widehat{x})) \cdot ([\gamma] \cdot [\delta]) \mapsto \widehat{x} \cdot (\gamma \circ \delta)$$

Example: $p: \mathbb{R} \to S^1$. We know $\pi_1(\mathbb{R}, \widehat{x}) = 0$ since \mathbb{R} is contractible, so the lemma gives a bijection $\pi_1(S^1, x) \to p^{-1}(x)$.

Proof. We want to apply the orbit stablizer theorem to the right action of $\pi_1(X,x)$ on $p^{-1}(x)$.

The stabilizer of \widehat{x} is the set of loops $[\gamma]$ based at x such that $\widehat{\gamma}_{\widehat{x}}(1) = \widehat{x}$, i.e. the set of loops based at \widehat{x} , i.e. we have that $[\widehat{\gamma}_{\widehat{x}}] \in \pi_1(\widehat{X}, \widehat{x})$. Thus the stabilizer is precisely $p_*(\pi_1(\widehat{X}, \widehat{x}))$. Hence we just need to show this action is transitive, but this follows from path connectedness:

If \widehat{x} , $\widehat{x}' \in p^{-1}(x)$, we have a path $\widehat{\gamma}$ from \widehat{x} to \widehat{x}' in \widehat{X} . We let $\gamma = p \circ \widehat{\gamma}$, so that γ is a loop based at x and $\widehat{x} \cdot \gamma = \widehat{x}'$ since $\widehat{\gamma}_{\widehat{x}} = \widehat{\gamma}$.

So the orbit stabilizer theorem gives this bijection.

Note that the degree of $p: \widehat{X} \to X$ is just the index of the subgroup $p_*(\pi_1(\widehat{X}, \widehat{x}))$ in $\pi_1(X, x)$, i.e.

$$\deg p = [\pi_1(X, x) : p_* \pi_1(\widehat{X}, \widehat{x})]$$

Thus, since we have covers $\mathbb{R} \to S^1$ of degree ∞ and $S^1 \to S^1$ of degree n for all n > 0, and hence $\pi_1(S^1, 1)$ must be an infinite group with subgroups of every possible index.

If $\widehat{X} \to X$ is a covering map with X path connected and \widehat{X} simply connected, then we say \widehat{X} is a *universal cover* of X.

Corollary 2.18. If $p: \widehat{X} \to X$ is a universal cover, then any choice of base point $\widehat{x} \in p^{-1}(x)$ defines a bijection from $\pi_1(X,x) \to p^{-1}(x)$, and the group structure on $\pi_1(X,x)$ is determined by $\widehat{x} \cdot (\gamma \cdot \delta) = (\widehat{x} \cdot \gamma) \cdot \delta$.

Example: $p: \mathbb{R} \to S^1; t \mapsto e^{2\pi i t}$ is a universal cover, and so we get a bijection $\pi_1(S^1, 1) \to p^{-1}(1) = \mathbb{Z} \subseteq \mathbb{R}$. (Note that \mathbb{Z} here means the *set*, not group).

For $n \in \mathbb{Z}$, we can define $\widetilde{\gamma}_n(t) = nt$, a path from 0 to n in \mathbb{R} , and let $\gamma_n = p \circ \widetilde{\gamma}_n$, i.e. an n times wrapping around S^1 in the anticlockwise direction.

By the **2.18**, any loop in S^1 based at 1 must be homotopic to one of the γ_n , otherwise we would not have an injective map. In particular, the bijection of **2.18** is given by:

$$\pi_1(S^1, 1) \to p^{-1}(1) = \mathbb{Z}$$

$$[\gamma_n] \mapsto n = \widehat{(\gamma_n)}_0(1) = \widehat{\gamma}_n(1)$$

Note that for any $m \in \mathbb{Z}$, $m + \widehat{\gamma}_n$ is a path from m to m + n. So $0 \cdot (\gamma_m \cdot \gamma_n) = (0 \cdot \gamma_m) \cdot \gamma_n = m \cdot \gamma_n = (m + \widehat{\gamma}_n)(1) = m + n$, and so $\gamma_m \cdot \gamma_n = \gamma_{m+n}$ in $\pi_1(S^1, 1)$, and hence $\pi_1(S^1, 1) \cong (\mathbb{Z}, +)$.

Theorem 2.19. The identity map

$$id_{S^1}: S^1 \to S^1$$

does not extend to a map from the disc D^2 , i.e. there is no map $f: D^2 \to S^1$ with $f|_{S^1} = \mathrm{id}_{S^1}$, and in particular S^1 is not a retract of D^2 .

Proof. Suppose f does in fact exist, and let $\iota: S^1 \hookrightarrow D^2$ be the inclusion map. Then $(\mathrm{id}_{S^1})_* = f_* \circ \iota_* : \pi_1(S^1, 1) \to \pi_1(S^1, 1)$.

But $\pi_1(D^2, 1) = 0$ as D^2 contractible so we have a contradiction, as otherwise $f_*: 0 \to \mathbb{Z}$.

Theorem 2.20 (Brouwer's Fixed Point Theorem). Every map $f: D^2 \to D^2$ has a fixed point, i.e. some point $x \in D^2$ with f(x) = x.

Proof. Suppose not, and let $g: D^2 \to S^1$ be defined by projecting f(x) through x to the boundary of D^2 - note that this is well defined precisely because $f(x) \neq x$ for all $x \in D^2$.

Then g is continuous and g(x) = x for all $x \in S^1$, as $f(S^1) = S^1$. But this contradicts **2.19** \square

Theorem 2.21 (The Fundamental Theorem of Algebra). If f is a non-constant polynomial with coefficients in \mathbb{C} , then there is some $x \in \mathbb{C}$ with f(x) = 0.

Proof (Sketch). Let $r: \mathbb{C} \setminus \{0\} \to S^1$ be given by $r(z) = \frac{z}{|z|}$, and let $\lambda_R: S^1 \to \mathbb{C}; z \mapsto R \cdot z$ for some $R \in \mathbb{R}$.

Suppose f has no root. Then define:

$$f_R := r \circ f \circ \lambda_R; S^1 \to S^1$$

to be a map for any $R \ge 0$. Note that the straight line homotopy is a homotopy between λ_{R_1} and λ_{R_2} , and so f_{R_1}, f_{R_2} are homotopic. Then we have a well defined map:

$$(f_R)_* = g : \pi_1(S^1, 1) \to \pi_1(S^1, 1)$$

which is necessarily multiplication by some integer d. For R=0, we have that $(f_R)_*=0$. For R very large, the top degree term z^d dominates and g is given by multiplication by d. Hence d=0 since g is the same in both cases, and so f is constant.

We say a space X is *locally simply connected* if for all $x \in X$ and $U \subseteq X$ an open neighbourhood of x, there is some open neighbourhood $V \subseteq U$ of x with V simply connected.

Theorem 2.22 (Existence of Universal Covers). Let X be a path connected and locally simply connected. Then there exists a universal cover $p: \widehat{X} \to X$.

For example, if $X = \bigcup_{n=1}^{\infty} \{(x,y) : (x - \frac{1}{\sqrt{n}})^2 + y^2 = 1/n\} \subseteq \mathbb{R}^2$, the "Hawaiian Earring". Then X is not locally simply connected at (0,0).

Sketch proof, non-examinable. Fix $x_0 \in X$ and let $\chi = \{\gamma : I \to X | \gamma \text{ a path from } x_0\}$.

We then define $\widehat{X} = \chi/\simeq$, identifying paths which are homotopic, and then we have a covering map $[\gamma] \mapsto \gamma(1)$.

The Galois Correspondence

The goal of this course is to classify all covering spaces of a space X using subgroups of $\pi_1(X,x)$.

Let X be a path connected space and $p_1: \widehat{X}_1 \to X, p_2: \widehat{X}_2 \to X$ be covering spaces. Then an *isomorphism of covering spaces* is a homeomorphism $\phi: \widehat{X}_1 \to \widehat{X}_2$ with $p_{ij} \circ \phi = p$, i.e.:

Note that ϕ^{-1} is also an isomorphism of covering spaces. If \widehat{X}_i is equipped with a basepoint \widehat{x}_i and $\phi(\widehat{x}_1) = \widehat{x}_2$, then we say ϕ is **based**.

Note that ϕ is a lift p_1 to \widehat{X}_2 , and so if \widehat{X}_1 is path connected then ϕ is uniquely determined by $\phi(\widehat{x}_1)$ by uniqueness of lifting.

Theorem 2.23 (Galois Correspondence with Basepoints). Let X be path connected and locally simply connected, with basepoint x_0 . The map which associates a covering map $p: \widehat{X} \to X$ with basepoint $\widehat{x}_0 \in p^{-1}(x_0)$ to the subgroup $p_*(\pi_1(\widehat{X},\widehat{x}_0)) \leq \pi_1(X,x_0)$ induces a bijection between based isomorphism classes of path connected covering spaces and subgroups of $pi_1(X,x_0)$.

Proof. Omitted and non-examinable.

Example: as $\pi_1(S^1, 1) = \mathbb{Z}$ has subgroups $n\mathbb{Z}$ for n a non-negative integer, we 1 cover for each n. n = 0 gives the universal cover. For n > 0 we have $p_n : S^1 \to S^1, p_n(z) = z^n$. Hence every based covering space is based isomorphic to p or p_n .

Corollary 2.24. Let X be path connected and locally simply connected. Any two universal covers are (based) isomorphic.

Proof. Let $p_1: \widehat{X}_1 \to X, p_2: \widehat{X}_2 \to X$ be two universal covers. Pick $x \in X, \widehat{x}_1 \in p_1^{-1}(x), \widehat{x}_2 \in p_2^{-1}(x)$. Since $\pi_1(\widehat{X}_i, \widehat{x}_i) = 0$, these correspond to the 0 group in $\pi_1(X, x)$, and so by the Galois correspondence these two covering spaces are based isomorphic.

Corollary 2.25 (Galois Correspondence without Base Points). Let X be path connected and locally simply connected, with basepoint $x_0 \in X$. The map that sends a covering space $p: \widehat{X} \to X$ with a basepoint $\widehat{x}_0 \in p^{-1}(x_0)$ to the subgroup $p_*\pi_1(\widehat{X},\widehat{x}_0) \subseteq \pi_1(X,x_0)$ induces a bijection between isomorphism classes os path connected covering spaces without a base point and conjugace classes of subgroups of $\pi_1(X,x_0)$.

Proof. The map is surjective by the Galois correspondence with basepoints.

To see that this map is injective, we need to show that if, given $p_1: \widehat{X}_1 \to X, p_2: \widehat{X}_2 \to X, \widehat{x}_i \in p^{-1}(x_0)$ and if $p_{1*}\pi_1(\widehat{X}_1, \widehat{x}_1)$ is conjugate to $p_{2*}\pi_1(\widehat{X}_2, \widehat{x}_2)$, then p_1, p_2 are isomorphic covering spaces.

So suppose $p_{1*}\pi_1(\widehat{X}_1, \widehat{x}_1) = [\gamma](p_{2*}\pi_1(\widehat{X}_2, \widehat{x}_2))[\bar{\gamma}]$ for some $[\gamma] \in \pi_1(X, x_0)$.

Then let $\widehat{\overline{\gamma}}$ be the lift of $\overline{\gamma}$ from \widehat{x}_2 . In particular, $\widehat{\overline{\gamma}}$ is a path in \widehat{X}_2 . Let $\widehat{x}'_2 = \widehat{\overline{\gamma}}(1)$, so that $p_2(\widehat{x}'_2) = x_0$.

Then
$$[\gamma](p_{2*}\pi_1(\widehat{X}_2,\widehat{x}_2))[\bar{\gamma}] = ga\bar{m}ma_\# = p_{2*}(\widehat{\bar{\gamma}}_\#(\pi_1(\widehat{X}^2,\widehat{x}^2)) = p_{2*}(\pi_1(\widehat{X}_2,\widehat{x}_2')).$$

And so, by the Galois correspondence with base points there is a based isomorphism between \widehat{X}_1 and \widehat{X}_2 with basepoints $\widehat{x}_1, \widehat{x}'_2$. And so $\widehat{X}_1, \widehat{X}_2$ are isomorphic as covering spaces.

3 The Seifert - van Kampen Theorem

Presentation of a Group

Let D_{2n} be the dihedral group of order 2n. We can represent $D_{2n} = \langle r, s | r^n = 1, s^2 = 1, srs = r^{-1} \rangle$.

Let A be a set and F(A) a group, with $A \to F(A)$ a map of sets. We say that F(A) is **the free** group on A if it satisfies the following universal property:

For any group G and any set map $A \to G$ there exists a unique group homomorphism $f: F(A) \to G$, such that the following diagram commutes:

f is called the *canonical homomorphism* induced by $A \to G$

Example: Let $A = \{\alpha\}$, and $A \to \mathbb{Z}$ given by $\alpha \mapsto 1$. Given a map $A \to G$; $\alpha \mapsto g$ we can define a map $\mathbb{Z} \to G$ by $n \mapsto g^n$, and this is the unique such homomorphism that makes the diagram commute, and so \mathbb{Z} is the free group on $\{\alpha\}$.

Note that the universal property guarantees that $A \to F(A)$ is unique "up to unique isomorphism" if it exists. To see this, suppose $\phi: A \to F(A), \phi': A \to F'(A)$ both satisfy the universal property. Taking $A \to G$ to be ϕ or ϕ' , we end up with a function $f: F(A) \to F'(A)$ and $g: F'(A) \to F(A)$ homomorphisms. Then we get a diagram:

But note that this diagram also commutes with $f \circ g$ replaced by $\mathrm{id}_{F'(A)}$, and so by the uniqueness part of the definition, $g \circ f = \mathrm{id}_{F(A)}$, and so $f : F(A) \to F'(A)$ is a unique isomorphism such that this diagram commutes.

We don't know yet that F(A) exists, but if it does (and we'll see that it does) and |A| = r, we say that $F(A) = F_r$, the **free group of rank** r.

We can write **words** in A as strings of elements and their inverses, for instance $a, b \in A$, $abba^{-1}ba^{-1}b^{-1}b^{-1}$ is a word in $A = \{a, b\}$. These words then give an element in F(A) by applying phi to each symbol then multiplying those. Let G be the subgroup of F(A) generated by all words in A. This in fact the set of all elements of F(A) describable as words in F(A), and so we have a map $\phi: A \to G$. We can check that ϕ also satisfies the universal property, and hence G = F(A).

A **presentation** of a group is a set A and a subset of relations $R \subseteq F(A)$. It **presents** the group $\langle A|R \rangle \coloneqq F(A)/\langle \langle R \rangle \rangle$, where $\langle \langle R \rangle \rangle$ denotes the **normal closure** of R, i.e. the subgroup of F(A) generated by $\{srs^{-1} : r \in R, s \in F(A)\}$. The presentation is finite if A and R are both finite sets.

Lemma 3.1 (Universal Property of Presentations). Let $q: F(A) \to \langle A|R \rangle$ be the quotient map. Whenever $f: F(A) \to G$ is a group homomorphism such that $R \subseteq \ker f$ then there exists a unique homomorphism $g: \langle A|R \rangle \to G$ making the following diagram commute:

Proposition 3.2. As $\langle \langle R \rangle \rangle$ is generated by srs^{-1} and $f(srs^{-1}) = f(s)f(r)f(s)^{-1} = f(s)f(s)^{-1} = 1 \in G$, since $r \in \ker f$.

Hence $\langle\langle R\rangle\rangle\subseteq\ker f$, and so we obtain a well defined $q:F(A)/\langle\langle R\rangle\rangle\to G$, with $q(a\langle\langle R\rangle\rangle)=g(a)$. Examples:

- 1. $\langle a|a^n\rangle\cong\mathbb{Z}/n\mathbb{Z}$
- 2. $\langle r, s | r^n, s^2, rsrs \rangle \to D_{2n}$. This homomorphism exists by the universal property of the lemma, and is surjective. One can show that every element on the LHS can be written as $1, \ldots, r^{n-1}, s, sr, \ldots, sr^{n-1}$, which is 2n elements, and so the map is also injective, and hence an isomorphism.
- 3. Every group has a presentation. The identity set map $G \to G$ gives a group homomorphism $F(G) \to G$ with kernel R. Then $G \cong \langle G|R \rangle$.

Consider a commutative square of group homomorphisms:

This diagram is called a pushout if for every commutative square of groups

there is a unique map $\phi: \Gamma \to G$ making the diagram:

commute, i.e. $g = \phi \circ \ell, f = \phi \circ k$. If a pushout exists, we write $\Gamma = A \coprod_C B$, and it unique up to unique isomorphism.

If $C = \{1\}$ then $A \coprod_C B$ is written as A * B and is called the **free product** of A and B. If i, j are injective we write $A \coprod_C B = A *_C B$, the **free product with amalgamation**.

Lemma 3.3. For
$$i: C \to A$$
, $j: C \to \{1\} = B$, then $A \coprod_C B = A/\langle\langle i(C)\rangle\rangle$

Proof. Take q to be the quotient map. Since $f \circ i = g \circ j$, then necessarily $f(i(C)) = \{1\}$, and so $i(C) \subseteq \ker f$, Thus $\langle \langle i(C) \rangle \rangle \subseteq \ker f$ since $\ker f$ is normal. Thus we get a unique factorisation of f as $q: A \to A/\langle \langle i(C) \rangle \rangle$ composed with a map $A/\langle \langle i(C) \rangle \rangle \to C$, and so $A/\langle \langle i(C) \rangle \rangle$ satisfies the universal property.

Lemma 3.4. Let $A = \langle S_1 | R_1 \rangle$, $B = \langle S_2 | R_2 \rangle$, and T is a generating set for C. Let $\widetilde{i}: T \to F(S_1)$ be a lift of $i: T \to A$, and $\widetilde{j}: T \to F(S_2)$ be a lift of $j: T \to B$. Then:

$$\Gamma = \langle S_1 \coprod S_2 | R_1 \cup R_2 \cup \{ \widetilde{i}^{-1} \widetilde{j}(t) : t \in T \} \rangle$$

is a presentation for $A \coprod_C B$.

Proof.

This diagram is commutative. Note that $\widetilde{f}(R_1) = \{1\} = \widetilde{g}(R_1)$, and $\widetilde{f} \circ \widetilde{i}(t) = \widetilde{g} \circ \widetilde{j}(t)$ for $t \in T$ using the big outer square.

We have a map $S_1 \coprod S_2 \to G$ via $s_1 \in S_1 \mapsto \widetilde{f}(s_1); s_2 \in S_2 \mapsto \widetilde{g}(s_2)$. So it is sufficient to check that all relations for Γ map to 1 in G. R_1, R_2 map to 1 since $\widetilde{f}(R_1) = \{1\} = \widetilde{g}(R_2)$. Hence if we call the map $\Gamma \to G$ ϕ say, then $\phi(\widetilde{i}(t)^{-1}\widetilde{j}(1)) = \widetilde{f}(\widetilde{i}(t))^{-1}\widetilde{g}(\widetilde{j}(t)) = 1$.

Hence by the universal property of presentations, we get a unique map $\Gamma \to G$.

Seifert - vn Kampen theorem for Wedges

Let X, Y be spaces with $x_0 \in X, y_0 \in Y$ basepoints. Then the **wedge** of X and Y is $(X \coprod Y) / \sim$, where \sim is the smallest equivalence relation such that $x_0 \sim y_0$. We write this as $X \vee Y$, and call the equivalence class $\{x_0, y_0\}$ the wedge point.

Theorem 3.5. Suppose $X = Y_1 \vee Y_2$ with x_0 the wedge point, and y_i the basepoint in Y_i .

Then
$$\pi_1(X, x_0) = \pi_1(Y_1, y_1) * \pi_1(Y_2, y_2)$$

Sketch proof (non-examinable): We need to demonstrate the universal property. Suppose we have $f_i: pi_1(Y_i, y_i) \to G$. WE have inclusions $i_j: Y_j \hookrightarrow X$ with $i_j(y_j) = x_0$. This induces $i_{j*}: \pi_1(Y_j, y_j) \to \pi_1(X, x_0)$. Let γ be a lööp in X based at x_0 . We can write γ as a concatenation $\alpha_1\beta_1\alpha_2\beta_2\ldots$ with the α_i loops in Y_1 , and β_i loops in Y_2 .

Then we have no choice but to define $h: \pi_1(X, x_0) \to G$ by $h(\gamma) = f(\alpha_1)g(\beta_1)f(\alpha_2)g(\beta_2)\dots$

The technically difficult part is to show that this is well defined on homotopy classes. \Box

Examples:

- 1. $\pi_1(S_1 \vee S_1) = \mathbb{Z} * \mathbb{Z} = F(\{a, a'\}) = F_2$
- 2. $\pi_1(\vee_{[n]}S_1) = F([n])$, the free group on n symbols.

Theorem 3.6 (Generalised Seifert - van Kampen Theorem). Suppose $Y_1, Y_2 \subseteq X$ are open subsets with $X = Y_1 \vee Y_2$ and $Z = Y_1 \cap Y_2$ nonempty, with Y_1, Y_2, Z all path connected. Let $x_0 \in Z, i_k : Z \hookrightarrow Y_k, j_k : Y_k \to X$ be the inclusion maps. Then:

$$\pi_1(X, x_0) \xleftarrow{j_{2*}} \pi_1(Y_2, x_0)$$

$$\downarrow j_{1*} \qquad \qquad \uparrow i_{2*}$$

$$\pi_1(Y_1, x_0) \xleftarrow{i_{1*}} \pi_1(Z, x_0)$$

is a pushout diagram

Proof omitted. \Box

Example: Let $S^n \subseteq \mathbb{R}^{n+1}$ be the unit sphere, and $x_{\pm} = (\pm 1, 0, 0, \dots, 0) \in S^n$. Then let $U_{\pm} = \overline{S^n \setminus \{x_{\mp}\}}$, and $V = U_{+} \cap U_{-} = S^n \setminus \{x_{\pm}\}$. Then $S^n = U_{+} \cup U_{-}$. We know already that U_{+}, U_{-} are homeomorphic to \mathbb{R}^n via stereographic projection, and $V \cong (-1, 1) \times S^{n-1}$.

Then we have a map $(x_0, x_n) \mapsto (x_0, (x_1, \dots, x_n)/|(x_1, \dots, x_n)|)$. Then everything is the trivial group in the pushout diagram since \mathbb{R}^n is contractible, and so $\pi_1(S^n) = 1$.

We call a subset $Y \subseteq X$ a *neighbourhood retract* if $\exists V \subseteq X$ open with $Y \subseteq V$ and Y a deformation retract of V.

Theorem 3.7 (Siefert-van Kampen for Closed Sets). Suppose that $Y_1, Y_2 \subseteq X$ are closed subsets with $X = Y_1 \cup Y_2, Z = Y_1 \cap Y_2$. If Y_1, Y_2, Z are path connected and Z is a neighbourhood retract in both Y_1, Y_2 , then

$$\pi_1(X, x_0) \longleftarrow \pi_1(Y_2, x_0)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\pi_1(Y_1, x_0) \longleftarrow \pi_1(Z, x_0)$$

is a pushout diagram

Attaching Cells

Let X be a space and $\alpha: S^{n-1} \to X$ be a map. Define $X \cup_{\alpha} D^n$ to be the space $(X \coprod D^n)/\sim$, where \sim is the smallest equivalence relation containing $\alpha(x) \sim x$ for all $x \in S^{n-1} = \partial D^n$. We ask the question: "How does attaching an n-cell affect π_1 ?"

Lemma 3.8. If $n \geq 3$, then $i: X \hookrightarrow X \cup_{\alpha} D^n$ induces an isomorphism $i_*: \pi_1(X) \to \pi_1(X \cup_{\alpha} D^n)$

Proof. The **mapping cylinder** of α is the space $M_{\alpha} := (X \coprod (S^{n-1} \times I)) / \sim$, where $(\theta, 0) \in S^{n-1} \times \{0\} \subseteq S^{n-1} \times I$ is equivalent to $\alpha(\theta)$ for all $\theta \in S^{n-1}$.

We now identify the other end of the cylinder, $S^{n-1} \times \{1\}$ with S^{n-1} . Then we can see that S^{n-1} is a neighbourhood retract in both M_{α} and D^n , and hence $X \cup_{\alpha} D^n \cong M_{\alpha} \cup_{\mathrm{id}:S^{n-1} \to S^{n-1} \times \{1\}} D^n$.

So we can take $Y_1 = M_{\alpha}, Y_2 = D^n, Z = S^{n-1} \times \{1\}$. Then $S \vee K$ gives a pushout:

$$\pi_1(X \cup_{\alpha} D^n) \longleftarrow \pi_1(M_{\alpha})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\pi_1(D^n) \longleftarrow \pi_1(S^{n-1})$$

Note that $\mathbb{1} = \pi_1(D^n) = \pi_1(S^{n-1})$. Hence $\pi_1(X \cup_{\alpha} D^n) \cong \pi_1(M_{\alpha}) \cong \pi_1(X)$, as X is a deformation retract of M_{α} .

Lemma 3.9. Let $\alpha: S^1 \to X$ be a map with $x_0 = \alpha(1)$. Then $\pi_1(X \cup_{\alpha} D^2, x_0) \cong \pi_1(X, x_0) / \langle \langle \alpha \rangle \rangle$, and the inclusion map $i: X \hookrightarrow X \cup_{\alpha} D^2$ induces the quotient map $\pi_1(X) \to \pi_1(X) / \langle \langle \alpha \rangle \rangle$

Proof. As before, we have the pushout

$$\pi_1(X \cup_{\alpha} D^n) \longleftarrow \pi_1(M_{\alpha})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\pi_1(D^n) \longleftarrow \pi_1(S^{n-1})$$

Once more, $\pi_1(D^n) = 1$, but now $\pi_1(S^{n-1}) = \mathbb{Z}$. We can compute the map from $\pi_1(S^1) \to \pi_1(M_\alpha)$ as $1 \mapsto [\alpha]$, and so $\pi_1(X \cup_\alpha D^2) \cong \pi_1(X)/\langle\langle\alpha\rangle\rangle$ as required, and $\pi_1(X) \to \pi_1(X \cup_\alpha D^2)$ is the quotient map.

This theorem gives us a nice way to build up topological spaces to have desired fundamental groups:

Theorem 3.10. For any finitely presented group G there is a compact space with $\pi_1(X, x_0) = G$.

Proof. Let $G = \langle A|B\rangle$, and let $Y = \vee_A S^1$. Then $\pi_1(Y) = F(A)$. For any $r \in R$ let $\gamma_r : S^1 \to Y$ represent r. Then repeatedly attach D^2 to Y using all the elements of R.

So then let
$$X = ((Y \cup_{\gamma_{r_1}} D^2) \cup_{\gamma_{r_2}} D^2) \dots$$

Then
$$\pi_1(X) = F(A)/\langle \langle r_1, \dots, r_n \rangle \rangle = G.$$

Classification of Spaces

An *n*-dimensional manifold is a Hausdorff space M such that every point $x \in M$ has an open neighbourhood homeomorphic to \mathbb{R}^n . A two dimensional manifold is called a surface. For instance, a figure 8 is not a manifold, whilst S^1 is a manifold.

Examples

1. Let $\alpha: S^1 \to *$. Then $* \cup_{\alpha} D^2 \cong S^2$.

2. Let $g \in \mathbb{Z}, g > 0$. Set $\Gamma_{2g} = \bigvee_{i=1}^{2g} S_i^1$ with S_i^1 being distinct circles. Now let $\alpha_i : I \to S_i^1; \beta_i : I \to S_{i+g}^1$ be loops generating $\pi_1(S^1)$.

Then let the loop $\rho_q = \alpha_1 \beta_1 \bar{\alpha_1} \bar{\beta_1} \dots \alpha_q \beta_q \bar{\alpha_q} \bar{\beta_q} : S^2 \to \Gamma_{2q}$.

Let $\Sigma_g = \Gamma_{2g} \cup_{\rho_q} D^2$. We claim then that Σ_g is a compact surface.

Proof. Compactness is immediate. Now if $x \in D^2 \setminus S^1$, then $D^2 \setminus S^1$ is an open neighbourhood of x in Σ_{2g} homeomorphic to an open subset of \mathbb{R}^2 . If x is on S_i^1 for some i, but is not the edge point we have an open neighbourhood.

Note that $\pi_1(\sigma_g) = \langle \alpha_1, \beta_i | \alpha_1 \beta_1 \alpha_1^{-1} \beta_1^{-1} \dots \alpha_g \beta_g \alpha_g^{-1} \beta_g^{-1} \rangle$. We call σ_g the **orientable surface of genus g**.

Example: Take $\Gamma_{q+1} = \bigvee_{i=0}^g S_i^1$, and let $\alpha_i : S^1 \to S_i^1$ be the identity. Take $\sigma_q = \alpha_0 \alpha_0 \alpha_1 \alpha_1 \dots \alpha_q \alpha_q$

Define $S_g = \Gamma_{g+1} \cup_{\sigma_g} D^2$. Then S_0 is $\mathbb{R}\P^2$, S_1 is the Klein bottle. We call S_g the **unorientable** surface of genus g. Then $\pi_1(S_G) = \langle \alpha_0 \dots \alpha_g | \alpha_0^2 \alpha_1^2 \dots \alpha_g^2 \rangle$

This leads us to a big theorem:

Theorem 3.11. Every compact surface is homeomorphic to either Σ_g or S_g for some g.

Are any of these surfaces homeomorphic?

Lemma 3.12. Let $g \in \mathbb{N}$. Then $\pi(\Sigma_g)$ surjects onto \mathbb{Z}^{2g} but not onto $\mathbb{Z}^{2g} \oplus (\mathbb{Z}/2\mathbb{Z})$.

 $\pi_1(\Sigma_q)$ surjects onto $\mathbb{Z}^g \oplus (\mathbb{Z}/2\mathbb{Z})$ but not onto \mathbb{Z}^{g+1}

Proof. Let $\{\bar{a}_i, \bar{b}_i : 1 \leq i \leq g\}$ be a basis for \mathbb{Z}^{2g} . Consider the map:

$$f: \pi_1(\Sigma_g) \to \mathbb{Z}^{2g}$$
$$\alpha_i \mapsto \bar{a_i}$$
$$\beta_i \mapsto \bar{b_i}$$

Then $\Pi_{i=1}^g \alpha_i \beta_i \alpha_i^{-1} \beta_i^{-1} \mapsto \sum_{i=1}^g a_i + b_i - a_i - b_i = 0$, and so f is surjective since $f(\alpha_i), f(\beta_i)$ generate \mathbb{Z}^{2g} .

Now suppose that $g: \pi_1(\Sigma_g) \to \mathbb{Z}^{2g} \oplus \mathbb{Z}/2\mathbb{Z}$ is surjective. Compose this map with the map $\mathbb{Z}^{2g} \oplus (\mathbb{Z}/2\mathbb{Z}) \twoheadrightarrow (\mathbb{Z}/2\mathbb{Z})^{2g+1}$ reducing mod 2, to get $\bar{g}: \pi_1(\Sigma_g) \twoheadrightarrow (\mathbb{Z}/2\mathbb{Z})^{2g+1}$. Hence $\bar{g}(\alpha_i), \bar{g}(\beta_i)$ form a generating set of $(\mathbb{Z}/2\mathbb{Z})^{2g+1}$, but there are not enough of them ξ .

Let $\bar{a}_1, \ldots, \bar{a}_g$ be generators for the \mathbb{Z}^g part of $\mathbb{Z}^g \oplus \mathbb{Z}/2\mathbb{Z}$, and let \bar{c}_0 be the generator of the $\mathbb{Z}/2\mathbb{Z}$ part.

Define:

$$\pi_1(S_g) \to \mathbb{Z}^g \oplus \mathbb{Z}/2\mathbb{Z}$$
 $\alpha_i \mapsto \bar{a}_i \ i \ge 1$
 $\alpha_0 \mapsto \bar{c}_0 - \sum_{i=1}^g \bar{a}_i$

This is a surjection onto $\mathbb{Z}^g \oplus \mathbb{Z}/2\mathbb{Z}$, and $\Pi \alpha_i^2 = 2\bar{c}_0 - \sum_{i=1}^g 2\bar{a}_i + \sum_{i=1}^g 2\bar{a}_i = 0$ If $f: \pi_1(S_g) \to \mathbb{Z}^{g+1}$ is surjective, then $f(\alpha_0), \dots, f(\alpha_g)$ generates \mathbb{Z}^{g+1} . But $2\sum_{i=0}^g f(\alpha_i) = 0$

4 Homology Theory

We want to find algebraic invariants that capture higher dimensional information that the very 1-dimensional scope of looking at homotopy classes of loops. We could think about homotopy classes of n-spheres embedded onto a surface, but it turns out this is very hard. Instead, we will define a **homology** theory for simplicial complex, which are obtained by gluing together simplices.

A finite set $V = \{v_0, \dots, v_n\} \subseteq \mathbb{R}^n$ is in **general position** if the smallest affine subspace of \mathbb{R}^m containing V is n-dimensional. E.g. 3 points in a triangle are in general position, since you need \mathbb{R}^2 to contain them, but if they lie in a line they are not since they can be contained by \mathbb{R}^1 .

Equivalently:

- 1. $\{v_1 v_0, \dots, v_n v_0\}$ are linearly independent.
- 2. For any $s_1, \ldots, s_n \in \mathbb{R}$, $\sum_{i=1}^n s_i(v_i v_0) = 0$ implies $s_i = 0$ for all i.
- 3. For any $t_0, \ldots, t_n \in \mathbb{R}$ with $\sum t_i = 0$, if $\sum_{i=0}^n t_i v_i = 0$ then $t_i = 0$.

The **span** or **convex hull** of $\{v_0, \ldots, v_n\} \subseteq \mathbb{R}^m$ is given by

$$\langle V \rangle = \left\{ \sum_{i=1}^{n} t_i v_i : \sum_{i=0}^{n} t_i = 1, t_i > 0 \right\}$$

In other words, this is the smallest convex subset of \mathbb{R}^m containing V. For instance, if V is 4 non-coplanar points, then $\langle V \rangle$ is a tetrahedron.

If V is a set in general position and $U \subseteq V$, we call $\langle U \rangle \subseteq \langle V \rangle$ a **face** of $\langle V \rangle$, and we write $\langle U \rangle \subseteq \langle V \rangle$. If $U \neq V$ we call $\langle U \rangle$ a **proper face** of $\langle V \rangle$.

A *simplicial complex* in \mathbb{R}^m is a finite set of simplices in \mathbb{R}^m , K, such that:

- 1. If $\sigma \in K$ and $\tau \leq \sigma$ then $\tau \in K$.
- 2. If $\sigma, \tau \in K$ then $\sigma \cap \tau$ is a face of both σ and τ (allowing empty faces).

We write dim K for the dimension of the largest dimensional simplex in K. We write $K_{(d)}$ for the set of all simplices in K of dimension $\leq d$, called the d skeleton of K.

Examples:

- 1. If σ is a simplex, take K to be the set of faces of σ . For instance if K is a triangle, then it has 7 faces.
- 2. The set of proper faces of a simplex is also a simplicial complex. Note that if σ is of dimension n, then this is the (n-1)-skeleton. This is also called the **boundary** of σ , written as $\partial \sigma$. The set of points of σ not contained in a simplex if $\partial \sigma$ is called the interior of σ , and is written as $\mathring{\sigma}$. If σ is a 0-simplex, then $\partial \sigma = \emptyset$, $\mathring{\sigma} = \sigma$.

The **realisation** of K, a simplicial complex, is denoted by $|K| := \bigcup_{\sigma \in K} \sigma \subseteq \mathbb{R}^m$, a topological space.

If X is a topological space, a **triangulation of X** is a simplicial complex K with a homeomorphism $X \to |K|$.

Examples:

- 1. Let σ be a *n*-simplex, and K the associated simplicial complex. Then $|K| = \sigma$ is homeomorphic to D^n for $n = \dim \sigma$. A space has many possible triangulations.
- 2. $\partial \sigma$ is a simplicial complex with $|\delta \sigma| \cong S^{n-1}$ if dim $\sigma = n$.

Let K, L be simplicial complexes. A **simplicial map** is a map $f: K \to L$ such that:

- 1. Each 0-simplex $v \in K$ has $f(\sigma) \in L$ a 0-simplex.
- 2. $f(\langle v_0, \ldots, v_n \rangle) = \langle f(v_0), \ldots, f(v_n) \rangle$, possibly removing repeats.

and the realisation of f is the continuous map $|f|:|K|\to |L|$ given, on a simplex $\sigma=\langle v_0,\ldots,v_n\rangle$, by $|f|(\Sigma t_i v_i)=\Sigma t_i f(v_i)$ where $\Sigma t_i=1$. It is easy to check that |f| is continuous. We often write f_{σ} for $|f||_{\sigma}$.

Example: Let $K = \partial \sigma$ for σ a 2-simplex. How many $f: K \to K$ are there? There are $3^3 = 27$ such maps, but a lot more interesting maps $S^1 \to S^1$.

5 Barycentric Subdivisions

Let $V = \{v_0, \dots, v_n\}$ be in general position, and let $\sigma = \langle V \rangle$. Then:

$$\widehat{\sigma} = \frac{1}{n+1} \sum_{i=0}^{n} v_i$$

is the **barycenter** of σ .

Let K be a simplicial complex. The **barycentric subdivision** K' of K is the complex such that:

- 1. The vertices in K' are the barycenters of elements in K.
- 2. The vertices $\widehat{\sigma_1}, \ldots, \widehat{\sigma_n}$ span a simplex in K' if and only if $\sigma_1 \leq \sigma_2 \leq \ldots \leq \sigma_n$ up to ordering of $\sigma_1, \ldots, \sigma_n$.

Lemma 5.1. Let K be a simplicial complex. Then K' is a simplicial complex and $|K'| = |K| \subseteq \mathbb{R}^m$.

Proof. The simplices of K' really are simplices, i.e. if $\sigma_1 \leq \ldots \leq \sigma_n$ with $\sigma_i \in K$ for all i, then $\widehat{\sigma_1}, \ldots, \widehat{\sigma_n}$ are in general position:

Suppose that $\sum t_i = 0$ and $\sum t_i \widehat{\sigma}_i = 0$. Let j be the largest i such that $t_i \neq 0$ Then $\sigma_j = -\sum_{i=1}^{j-1} \frac{t_i}{t_j} \widehat{\sigma}_i$, and so $\widehat{\sigma}_j$ is contained in a proper face of σ_j .

But $\widehat{\sigma}_j$ is in the interior of $\sigma_j \ \xi$.

K' is a simplicial complex: induction on dim K. We have a base case dim K=0 which is trivial since K'=K.

Certainly, K' satisfies the first condition to be a simplicial complex: if $\langle \widehat{\sigma_{i1}}, \dots \widehat{\sigma_{ij}} \rangle \subseteq \langle \widehat{\sigma_{1}}, \dots, \widehat{\sigma_{n}} \rangle$, then $\sigma_{i1} \leq \dots \leq \sigma_{ij}$, and so $\langle \widehat{\sigma_{i1}}, \dots \widehat{\sigma_{ij}} \rangle \in K'$.

Now consider two simplices $\langle \widehat{\sigma_1}, \dots, \widehat{\sigma_n} \rangle$, $\langle \widehat{\tau_1}, \dots, \widehat{\tau_m} \rangle$ in K'. If these intersect the intersection must lie in the common face $\sigma_n \cap \tau_m$, so it is enough to intersect both simplices with $\sigma_n \cap \tau_m$ and work on that common face. We can then reduce to the case where σ_n, τ_m are contained in a common face $\delta \in K$.

If either of the simplices does not contain $\hat{\delta}$ then the intersection must be contained in $\partial \delta$. If they both comtain $\hat{\delta}$, then the intersection must be $\operatorname{Span}(\hat{\delta} \cup (\sigma' \cap \delta) \cap (\tau' \cap \partial \delta))$ in either case. \square