ÁLGEBRA I. 2015/16

RELACIÓN 4

1. En anillos de restos de \mathbb{Z} .

Ejercicio 1: Resuelve las ecuaciones siguientes en los anillos que se indican:

- (1) 12x = 8 en el anillo \mathbb{Z}_{20} .
- (2) 19x = 42 en \mathbb{Z}_{50} .
- (3) 9x = 4 en \mathbb{Z}_{1453} .
- (4) $5^{30}x = 2 \text{ en } \mathbb{Z}_7.$
- (5) 20x = 984 en \mathbb{Z}_{1984} .
- (6) $4x = 9 \text{ en } \mathbb{Z}_{1453}$.
- (7) $15x = 1 \text{ en } \mathbb{Z}_{16}$.

Ejercicio 2: Determina cuántas unidades y cuántos divisores de cero tienen los anillos que se indican:

- (1) \mathbb{Z}_{125} .
- (2) \mathbb{Z}_{72} .
- (3) \mathbb{Z}_{88} .
- (4) \mathbb{Z}_{1000} .

Ejercicio 3: Determina si la igualdad a = b es cierta en los siguientes casos:

- (1) $a = 9^{55^9}$ y $b = 7^{70^{55}}$ en el anillo \mathbb{Z}_{21} . (2) $a = 2^{5^{70}}$ y $b = 5^{70^2}$ en el anillo \mathbb{Z}_{21} . (3) $a = 12^{55^{70}}$ y $b = 10^{70^{55}}$ en el anillo \mathbb{Z}_{22} . (4) $a = 5^{5^{70}} 11^{5^{70}}$ y $b = 10^{70^{22}}$ en el anillo \mathbb{Z}_{22} .

2. En anillos de restos de K[x].

Ejercicio 1: (1) Probar que un polinomio de grado 1 es irreducible en K[x].

(2) Probar que un polinomio de grado 2 o 3 en K[x] es irreducible si y solo si no tiene raíces en K (Ind. Recordar el Teorema de Ruffini).

Ejercicio 2: Sea $\mathbb{F}_9 = \mathbb{Z}_3[x]_{x^2+1}$ el anillo de restos del anillo $\mathbb{Z}_3[x]$ módulo x^2+1 .

- (1) Argumentar que \mathbb{F}_9 es un cuerpo.
- (2) Lista los diferentes elementos de \mathbb{F}_9 , ¿Cuántos elementos tiene?.
- (3) ¿Qué elemento de la lista se obtiene como resultado de hacer el cálculo siguiente:

$$(2+x)^3(2+x^2)^3 + (1-x)^2 + 2x + 2.$$

(4) ¿Que elemento de la lista es $(2-x)^{-1}$?.

Ejercicio 3: Sea $\mathbb{F}_8 = \mathbb{Z}_2[x]_{x^3+x+1}$.

- (1) Argumentar que \mathbb{F}_8 es un cuerpo.
- (2) Lista los diferentes elementos de \mathbb{F}_8 , ¿Cuántos elementos tiene?.
- (3) ¿Qué elemento de la lista se obtiene como resultado de hacer el cálculo siguiente:

$$(1+x)^3(1+x^2)^3 + (1-x)^2 + x + 1.$$

(4) ¿Que elemento de la lista es el inverso del elemento del apartado anterior?.

RELACIÓN 4 2

- **Ejercicio 4:** Sea $A = \mathbb{Z}_2[x]_{x^3+x^2+x+1}$. (1) Factorizar $x^3 + x^2 + x + 1$ como producto de polinomios de grado uno (Ind. Recordar el Teorema de Ruffini).
 - (2) Argumentar que A no es un cuerpo ni un dominio de integridad.
 - (3) Lista los diferentes elementos de K, ¿Cuántos elementos tiene?.
 - (4) ¿Qué elemento de la lista se obtiene como resultado de hacer el cálculo siguiente:

$$(1+x)^3(1+x^2)^3 + (1+x)^2 + 1.$$

- (5) ¿Qué elemento de A es el inverso del elemento obtenido en el apartado anterior?.
- (6) Tiene inverso en A el elemento $x^2 + 1$?
- (7) Razonar que un elemento de $f(x) \in A$ es un divisor de cero si y solo f(1) = 0, y es unidad si y solo si $f(1) \neq 0$.
- (8) Lista los elementos de A que tienen inversos y los que no.

- Ejercicio 5: Sea $A = \mathbb{Z}_3[x]_{x^2+2}$. (1) Factorizar $x^2 + 2$ como producto de polinomios de grado uno.
 - (2) Argumentar que A no es un cuerpo ni un dominio de integridad.
 - (3) Lista los diferentes elementos de K, ¿Cuántos elementos tiene?.
 - (4) ¿Qué elemento de la lista se obtiene como resultado de hacer el cálculo siguiente:

$$(1+2x)^3(2+x^2)^3 + (1-x)^2 + 2x + 2.$$

- (5) ¿Qué elemento de A es el inverso del elemento obtenido en el apartado anterior?.
- (6) ¿Tiene inverso en A el elemento x + 1?
- (7) Razonar que un elemento de $f(x) \in A$ es un divisor de cero si y solo f(1) = 0o f(2) = 0, y es unidad si y solo si $f(1) \neq 0 \neq f(2)$.
- (8) Lista los elementos de A que tienen inversos y los que no.