REVOX

B126/B226-S

Serviceanleitung Service Instructions Instructions de service

REVOX

B 226-S · COMPACT DISC PLAYER

SERVICEANLEITUNG REVOX B126/B226-S - COMPACT DISC PLAYER

DEUTSCH	1	ALLGEMEINES	D 1/1
SERVICEANLEITUNG	2	DEMONTAGE-ANLEITUNG	D 2/1
REVOX B126/B226-S COMPACT DISC SPIELER	3	FUNKTIONSBESCHREIBUNG	D 3/1
	4	ABGLEICHANLEITUNG	D 4/1
		CENEDAL	E 1/1
ENGLISH	1	GENERAL	E 2/1
SERVICE INSTRUCTIONS REVOX B126/B226-S	2		E 3/1
COMPACT DISC PLAYER	-	FUNCTIONAL DESCRIPTION	E 4/1
	4	ALIGNMENT INSTRUCTIONS	=======
	1	GÉNÉRALITÉS	F 1/1
FRANÇAIS	2	PROCÉDÉ DE DÉMONTAGE / MONTAGE	F 2/1
INSTRUCTIONS DE SERVICE REVOX B126/B226-S	-	TONG OU FONCTIONNEMENT	F 3/
LECTEUR CD	3 4	DE DECLACE	F 4/
		SCHEMATA	5/
	5	DIAGRAMS	5/
		SCHÉMAS	5/
		ERSATZTEILE	6/
	ć		. 6/
		PIECES DE RECHANGE	6/
		TECHNISCHE DATEN	7/
		7 TECHNICAL SPECIFICATIONS	7/
		CARACTÉRISTIQUES TECHNIQUES	7/

Behandlung von MOS-Bauteilen

MOS-Bausteine sind besonders empfindlich auf elektrostatische Ladungen. Folgendes ist daher zu beachten:

- Elektrostatisch empfindliche Bauteile werden in Schutzverpackungen gelagert und transportiert. Auf der Packung wird obiges Etikett angebracht.
- Jeder Kontakt der Elementanschlüsse mit elektrostatisch aufladbaren Materialien ist unbedingt zu vermeiden.
- Anschlüsse dürfen nur berührt werden wenn das Handgelenk geerdet ist.
- Als Arbeitsunterlage ist eine geerdete, leitende Matte zu verwenden.
- Printkarten nicht unter Spannung herausziehen oder einstecken.

Handling MOS components

MOS components are extremely sensitive to static charges. Please observe therefore the following regulations:

- Components sensitive to static charges are stored and shipped in protective packagings. On the package you find the above-mentioned symbol.
- Avoid any contact of connector pins with foam packages and -foil made of similar chargeable package material.
- Don't touch the connector pins, when your wrist is not grounded with a conducting wristlet.
- Use a grounded conducting mat when working with sensitive components.
- Never plug or unplug PCBs containing sensitive components when the set is switched on.

Manipulation des composantes MOS

Les composantes MOS sont extrêmement sensibles à l'électricité statique. Veuillez donc suivre les conseils:

- Les composants MOS sont stockés et transportés dans des emballages protecteurs avec le symbole susmentionné. ■ Evitez tout contact entre les brom
- Evitez tout contact entre les broches des cicuits et matériau susceptible de porter une charge électrostatique.
- Ne touchez pas les broches des circuits si votre poignet n'est pas relié à la terre par un braclet conducteur.
- * Utilisez un tapis conducteur relié à la terre quand vous travaillez avec des composants sensibles.
- Ne jamais enficher ou retirer des circuits imprimés si l'appareil est sous tension.

Prepared and edited by STUDER REVOX TECHNICAL DOCUMENTATION Althardstrasse 10 CH-8105 Regensdorf-Zürich Switzerland

We reserve the right to make alterations

Copyright by WILLI STUDER AG Printed in Switzerland

Order No.: 10.30.1190 (Ed. 0789)

REVOX is a registered trade mark of WILLI STUDER AG Regensdorf

DEUTSCH

	Seite	
1.	ALLGEMEINES	D 1/2
1.1	BEDIENUNGSELEMENTE	D 1/2
1.2	ANSCHLUSSFELD	D 1/3
2.	DEMONTAGE-ANLEITUNG	D 2/1
2.1	ALLGEMEINE HINWEISE	D 2/1
2.2	GEHÄUSE	D 2/2
2.3	BEDIENUNGSEINHEIT	D 2/3
2.4	LAUFWERK	D 2/4
2.5	ELEKTRISCHE BAUGRUPPEN	D 2/5
3.	FUNKTIONSBESCHREIBUNG	D 3/1
3.1	DECODER PCB 1.769.421/422	0 3/2
3.2	MICROPROCESSOR PCB 1.769.402/404	D 3/4
3.3	SERVO PCB	D 3/6
4.	ABGLEICHANLEITUNG	D 4/1
4.1	ALLGEMEINE HINWEISE	D 4/1
4.2	MESSPUNKTE	D 4/2
4.3	EINSTELLUNGEN	D 4/8
4.4	MESSEN DER AUDIO-DATEN	D 4/11
5.	SCHEMATA	5/1
6.	ERSATZTEILE	6/1
7.	TECHNISCHE DATEN	7/1

ALLGEMEINES

BEDIENUNGSELEMENTE

= Mit diesen Tasten kann das Gerät direkt eingeschaltet werden.

Die Taste PLAY/NEXT [4] schaltet das Gerät in den Abspielmodus; eine eingelegte Disc wird ab dem ersten TRACK abgespielt.

Die Taste STOP [16] schaltet das Gerät nur ein; die Tasten PAUSE und LOCATE schalten das Gerät am Beginn des ersten TRACK auf Pause.

Drücken der Taste PLAY/NEXT [4] startet den Abspielvorgang; wenn mit einer Zahlentaste [1] und PLAY/NEXT [4] eingeschaltet wurde, so wird ab dem vorgewählten TRACK

abgespielt.

Bedienungselement Funktion

[1]# Tasten 0 - 9 Ziffern-Eingabetasten für die direkte Anwahl eines Stückes (TRACK oder INDEX) in Verbindung mit der Taste

PLAY/NEXT [4] resp. INDEX [5].

[2] Disc-Schublade

> Diese Schublade führt die Compact Disc dem Laser-Laufwerk zu. Sie wird durch Drücken der Taste LOAD [6] aus- und

eingefahren.

[3]# PAUSE Mit dieser Taste kann der Abspielvorgang jederzeit unterbrochen werden.

Drücken der Taste PLAY/NEXT [4] setzt den Abspielvorgang an der unterbroche-

nen Stelle wieder fort.

[4]# PLAY/NEXT Abspieltaste. Erneutes Drücken lässt das nächste Stück abspielen. Drücken nach dem Betätigen der Ziffern-Ein-

gabetasten [1] lässt das ausgewählte

Stück abspielen.

[5] INDEX Indextaste. Erneutes Drücken lässt das Stück ab dem nächsten Index abspielen.

Drücken nach dem Betätigen der Ziffern-Eingabetasten [1] lässt den ausgewählten Index abspielen. Ist die CD nicht mit Index versehen, so wird beim

Betätigen dieser Taste immer nächsten TRACK gesprungen.

[6]# LOAD Durch Betätigen dieser Taste fährt die

Disc-Schublade [2] aus resp. ein.

[7]# POWER Mit dieser Taste kann das Gerät einausgeschaltet werden. Gewisse und Teile des Gerätes bleiben allerdings immer eingeschaltet (STAND BY).

Mit dieser Taste kann der Eingabemodus **PROGRAM** ein- und ausgeschaltet werden.

[9] IR-SENSOR Infrarot-Empfängerfenster

Displays.

[10] CURSOR Mit dem CURSOR kann jede Stelle in der Anzeige angefahren und danach bei Bedarf editiert werden. Beim B226-S blinken editierbare Teile des

[11] PROGRAMSTEP +/-

Diese Tasten erlauben während Programmierens das Aufwärts- [+] resp. Abwärts- [-] Blättern im Programm.

[12] TRACK/TIME

Mit dieser Taste kann während des Programmierens die Anzeige von TRACK-(Stück-) auf TIME- (Zeit) Eingabe umgeschaltet werden.

[13] MARK

Im Programmiermodus kann mit dieser Taste während des Abhörens eine Startund/oder Stoppmarke gesetzt werden. (Nur DISC-TIME).

[14] STORE

Speicherlade-Taste, muss nach jeder Programmschritt-Eingabe gedrückt werden.

[15] LOOP

Diese Taste lässt eine CD oder ein Programm immer wieder abspieLen. Endlosbetrieb.

[16]# STOP

Drücken dieser Taste unterbricht den Abspielvorgang und lässt den Laser-Abtaster in die Anfangsposition zurückkehren. (Unterbricht auch ein laufendes Programm).

[17] DISPLAY

Schaltet die Zeitanzeige TIME im Feld [C] um. Vier unterschiedliche Zeitanzeigen sind möglich:

a) DISC-TIME (Zeit seit CD-Anfang)

b) TRACK-TIME (Zeit seit TRACK-(Stück) Anfang.

c) TRACK-REMAINING-TIME (Zeit bis zum Ende des TRACKS (Stückes).

d) DISC-REMAINING-TIME (Zeit bis zum Ende der CD).

[18] AUTOSTOP

Diese Taste unterbricht den Abspielvorgang am Ende des gerade laufemden Stückes oder Programm-Schrittes (PAUSE). Drücken der Taste PLAY/#EXT [4] setzt den Abspielvorgang fort.

[19] <

Mit dieser Taste kann in einem Stück jede Stelle gegen den Anfang hin angefahren werden. (Gedrückt halten = kontinuierlicher Rücklauf).

[20] VOLUME +/-

Mit diesen Tasten werden die Pegel des Kopfhörer-Ausgangs wie auch des Ausgangs VARIABLE OUTPUT verändert. Pegelanzeige erscheint bei Betätigung dieser Tasten für kurze Zeit im Segment [G] des Displays (nur beim B226-S).

[21] >

Mit dieser Taste kann in einem Stück jede Stelle gegen das Ende hin angefahren werden. (Gedrückt halten = kon-tinuierlicher Vorlauf).

[22] PHONES

Klinkenbuchse für Kopfhörer 200 ... 600 Q (nur B226−S).

[23]# LOCATE

Betätigen Locator-Funktion. Beim dieser Taste wird der Abspielvorgang unterbrochen und das Gerät an der Stelle des letzten PLAY/NEXT-Befehls auf PAUSE geschaltet.

ANZEIGEFELD

[A] STEP

Nummer des aktuellen Programmschrittes; im Programmiermodus blinkt der Schriftzug STEP; im normalen Abspielist diese Anzeige nicht modus sichtbar.

(B) TRACK TIME INDEX

In diesem Feld wird in der ersten und zweiten Stelle das spielende Stück (TRACK) und in der dritten und vierten Stelle der zugehörende INDEX (wenn vorhanden) angezeigt.

Im Programm-Mode des B226-S kann hier auch eine Anfangs-Zeit (Min. und Sek.) stehen.

[C] TRACK TIME INDEX

In diesem Feld steht die aktuelle Stück- (TRACK-) Zeit (seit Stückbeginn) oder CD-Zeit (seit CD-Anfang). Im Programm-Mode können hier auch eine Endzeit, ein End-Stück oder -Index stehen.

[D] AUTOSTOP

AUTOSTOP-Sichtbar bei aktiviertem Betrieb.

[E] PAUSE

Anzeige der PAUSE-Funktion.

FF1 LOOP

Sichtbar bei aktivierter LOOP-Funktion (Endlosbetrieb).

[G]

fehlende Punkte Inhaltsverzeichnis; links = bereits abgespielte Stücke, totale Anzahl Punkte = Anzahl der Stücke auf der eingelegten CD.

Lautstärkenanzeige (nur B226-S); während der Einstellung der Kopfhörerlautstärke bzw. des variablen Ausgangs wird kurzzeitig der Pegel angezeigt (Auflösung ca. 2 dB/Segment).

ANSCHLUSSFELD 1.2

B126

Anschluss

Funktion

[1] FIXED OUTPUT

Normpegel-Ausgang: Umax.: 2,5 V_{eff}, Ri: <500 Q, kurzschlussfest.

[2] VARIABLE OUTPUT Ausgang mit variablem Pegel:

U: 0,0 ... 2,5 V_{eff}, Ri: <500 Q, kurzschlussfest.

B226-S

[3] DIGITAL OUTPUT 2 gleichwertige Digital-Ausgänge: Vollständige serielle Information der CD; linker Kanal, rechter Kanal, und Subcodes. Umax.: 0,50 Vpp, Ri: 75 Q.

[4] SERIAL LINK

Serieller Steueranschluss für den Anschluss eines externen IR-Empfängers B206 oder des Controllers B200. Ueber diese Buchse kann auch der interne IR-Empfänger ausgeschaltet werden (Pin1 mit Pin2 und Pin4 mit Pin5 verbinden).

DEMONTAGE ANLEITUNG

INHALT		Seite
2.	DEMONTAGE-ANLEITUNG	D 2/1
2.1.1	ALLGEMEINE HINWEISE Benötigtes Werkzeug Zusammenbau	D 2/1 D 2/1 D 2/1
2.2.1	GEHÄUSE Oberes Deckblech Seitenblenden	D 2/2 D 2/2 D 2/2
2.3.1	BEDIENUNGSEINHEIT LC-Display Keyboard-Print, Kontaktmatten, Tasten Kopfhörerbuchse B226-S	D 2/3 D 2/3 D 2/3 D 2/3
2.4.1	LAUFWERK Laufwerk austauschen CD-Schublade Schubladen-Motor	D 2/4 D 2/4 D 2/4 D 2/4
2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	ELEKTRISCHE BAUGRUPPEN Transformator PCB MICROPROCESSOR PCB DECODER PCB LC-DISPLAY PCB ILLUMINATION PCB B126 SERVO PCB Primär-Sicherung	D 2/5 D 2/5 D 2/5 D 2/5 D 2/6 D 2/6 D 2/6

2.1 ALLGEMEINE HINWEISE

ACHTUNG: Vor dem Entfernen von Gehäuseteilen und elektronischen Baugruppen muss das Gerät vom Netzanschluss getrennt werden!

Hinweise:

- Bei Aus- und Einbauarbeiten elektronischer Komponenten sind die eingangs dieser Service-Anleitung aufgeführten Richtlinien zur Behandlung von MOS-Bauteilen zu be-
- Um Beschädigungen an gelösten Kabelverbindungen und Steckern bei Ein- und Ausbauarbeiten zu verhindern, sind diese in den dafür vorgesehenen Aussparungen an Gehäuseund Montageteilen zu versorgen.

2.1.1 Benötigtes Werkzeug

Kreuzschlitz-Schraubendreher Grösse 0
Kreuzschlitz-Schraubendreher Grösse 1
Kreuzschlitz-Schraubendreher Grösse 2
Schraubendreher Grösse 2
Schraubendreher Grösse 3
Flachzange
Pinzette
Innensechskant-Schlüssel "Inbus" Grösse 2
Innensechskant-Schlüssel "Inbus" Grösse 3
Innensechskant-Schlüssel "Inbus" Grösse 4
Innensechskant-Schlüssel "Torx" Grösse T 8
Innensechskant-Schlüssel "Torx" Grösse T10
Gabelschlüssel Schlüsselweite 11
"ESE"-Arbeitsplatzausrüstung Best.Nr.: 46200

Empfehlung: Arbeitsplatz mit einem Baumwolltuch auslegen, um Kratzspuren am Gerät zu vermeiden.

2.1.2 Zusammenbau

Der Zusammenbau erfolgt sinngemäss in umgekehrter Reihenfolge der nachstehend beschriebenen Ausbau-Anleitungen unter Beachtung der angeführten Montage-Hinweise.

2.2 GEHÄUSE

2.2.1 Oberes Deckblech

-> Fig. 2.1

 An der Geräte-Rückseite 5 Schrauben [1] lösen während die Abdeckung hinten leicht nach unten gehalten wird. (Das Abdeckblech wurde werkseitig leicht vorgespannt).

Montagehinweis:

Abdeckblech erst in die Nut der Frontleiste schieben und anschliessend hinten nach unten drücken und die. Schrauben festdrehen.

2.2.2 Seitenblenden

-> Fig. 2.2

■ Je 2 Schrauben [2] lösen.

B126:

Fig. 2.1

Fig. 2.2

B226-S:

REDIENUNGSEINHEIT 2.3

-> Fig. 2.3 / Fig. 2.4

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Seitenblenden entfernen (Abschnitt 2.2.2).
- Von Geräte-Unterseite:
 - 4 Schrauben [3] lösen.
- Von Geräte-Oberseite:
- 2 Schrauben [4] mit Fächerscheibe und Masse-Kontaktfeder lösen.
- 2 Schrauben [5] lösen.
- Bedienungseinheit nach vorne vom Gehäuse abheben.
- Kabelverbindungen lösen:
 - Verb.-Kabel [6] KEYBOARD LEFT -> MICROPROCESSOR PCB Verb.-Kabel [7] KEYBOARD RIGHT -> MICROPROCESSOR PCB
- Verb.-Kabel [8] LC-DISPLAY -> MICROPROCESSOR PCB
- Verb.-Kabel [9] Kopfhörerbuchse -> DECODER PCB (nur B226-S)

2.3.1 LC-Display

- Bedienungseinheit entfernen (Abschnitt 2.3).
- Beidseitig je eine Schnappklammer [10] unter angemessenem Kraftaufwand aus der Einraststellung biegen und das LC-Display aus der Bedienungseinheit heben.

2.3.2 Keyboard-Print • Kontaktmatten • Tasten

-> Fig. 2.4 / Fig. 2.5

- Bedienungseinheit entfernen (Abschnitt 2.3).
- Auf den Keyboard-Prints je 2 Schrauben [11] lösen.
- Schnappklammern sukzessive, von einer Seite beginnend, aus ihren Eingriffstellungen biegen und währenddessen den Keyboard-Print [12] vorsichtig nach oben abheben.

- Berührung der Gold-Schaltkontakte vermeiden.
- Bedienungseinheit nicht wenden: die Tasten können herausfallen.

demontiertem Keyboard-Print [12] können die Kontaktmatten [13] und Tasten [14] nach oben entfernt werden. Die Tasten [15] der oberen Tastenreihe mit Alu-Kappen können mit leichtem Druck nach vorne aus der Halterung gedrückt werden.

Montagehinweise:

- Vor der Montage Partien wie Kontaktflächen an Keyboard und Schaltmatte, Display und Displayfenster mit fusselfreiem, sauberem Lappen von Staubansatz befreien.
- Vor dem Einsetzen des Keyboard-Prints die Kontaktmatten exakt in die Zentrierstifte und zwischen die Schnappklammern ausrichten.
- Sicherstellen, dass alle Schnappklammern über dem Print eingegriffen haben.

2.3.3 Kopfhörerbuchse (nur B226-S)

- Bedienungseinheit entfernen (Abschnitt 2.3).
- Sicherungsfeder aus Bronze entfernen.
- Schnappklammern aus ihrer Einraststellung drücken und die Buchse aus der Halterung ziehen.

Fig. 2.3

Fig. 2.4

Fig. 2.5

2.4 LAUFWERK

2.4.1 Laufwerk austauschen

-> Fig. 2.6

- Oberes Deckblech entfernen (Abschnitt 2.2.1)
- Disk-Schublade ausfahren
- Den Kabelstrang [17] (Fig. 2.6) freilegen.
- Gerät umdrehen und auf die Oberseite legen.
- 4 Schrauben [18] lösen und das Laufwerk mit dem Laufwerkkorb vorsichtig herausheben. Das Laufwerk kann in seiner Betriebslage abgelegt werden, ohne beschädigt zu werden
- Kabelverbindungen [17] auftrennen.
- die 4 Schrauben [19] der 2 Laufwerkträger lösen. Das Laufwerk austauschen.

Montagehinweis:

 Streift nach der Montage die CD am Schubladen-Gehäuse, so ist das Laufwerk entsprechend zu justieren.

Fig. 2.6

2.4.2 CD-Schublade

-> Fig. 2.7

- Laufwerk und Laufwerkkorb nicht entfernen! Zumindest den Laufwerkkorb immer am ausgebauten Schubladengehäuse belassen. (Mechanische Stabilität; die Schubladenmechanik wurde werkseitig mit engen Toleranzen eingestellt).
- MICROPROCESSOR PCB entfernen (Abschnitt 2.5.2).
- DECODER PCB entfernen (Abschnitt 2.5.3).
- 6 Schrauben [20] lösen. Die ganze CD-Schublade mit Laufwerk kann nach hinten oben aus dem Gerät gehoben werden.

Fig. 2.7

2.4.3 Schubladen-Motor

-> Fig. 2.8

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Linke Seitenblende entfernen (Abschnitt 2.2.2).
- Kabelverbindung lösen:
 - Kabelverb. [21] MICROPROCESSOR PCB -> Schubladen-Motor
- Den Schwingungsbegrenzer [22] lösen.
- 3 Schrauben [23] lösen. Den Schubladen-Motor entfernen.

Montagehinweis:

 Den Schwingungsbegrenzer am Gewinde wieder mit Loctite sichern.

Fig. 2.8

ELEKTRISCHE BAUGRUPPEN 2.5

2.5.1 Transformator PCB 1.769.450/451/452

-> Fig. 2.9 / Fig. 2.10

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Verbindungskabel [25] Transformator PCB -> DECODER PCB
- Netzkabelzugentlastung [27] lösen.
- Die 4 Schrauben [28] lösen; der Transformator PCB kann nach hinten aus dem Gerät gezogen werden.

Fig. 2.9

Fig. 2.10

2.5.2 MICROPROCESSOR PCB 1.769.402/404

-> Fig. 2.11

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Kabelverbindungen lösen:
 Flachkabelverb. [29] MICROPROCESSOR PCB -> DECODER PCB
 - Kabelverb. [30] MICROPROCESSOR PCB -> KEYBOARD LEFT
 - Kabelverb. [31] MICROPROCESSOR PCB -> KEYBOARD RIGHT
 - Kabelverb. [32] MICROPROCESSOR PCB -> LC-DISPLAY
 - Kabelverb. [33] MICROPROCESSOR PCB -> Schubladen-Motor
 - Kabelverb. [34] MICROPROCESSOR PCB -> Laufwerk (siehe Abschnitt 2.4.1).
- 1 Schraube [35] lösen und die Mitnehmerlasche entfernen.
- 4 Schrauben [36] Lösen und den MICROPROCESSOR PCB
- ca. 10 mm nach hinten ziehen.

 Kabelverbindung [34] MICROPROCESSOR PCB -> Laufwerk durch die öffnung im Schubladen-Gehäuse ziehen und flach über den Print legen.
- Den MICROPROCESSOR PCB vorsichtig nach hinten aus dem Gerät ziehen bis die Kerbe [37] mit der Gehäuserückwand bündig ist.
- Der Print kann nun aufgestellt und aus dem Gerät entfernt werden.

Fig. 2.11

2.5.3 DECODER PCB 1.769.421/422

-> Fig. 2.10 / Fig. 2.12

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Kabelverbindungen lösen:
 - Flachkabelverb. [38] DECODER PCB -> MICROPROCESSOR PCB
 - Verbindungskabel [25] Transformator PCB -> DECODER PCB
 - Kabelverb. [39] DECODER PCB -> Kopfhörerbuchse B226-S
 - Kabelverb. [40] DECODER PCB -> ILLUMINATION BOARD B126
- 8 Schrauben [41] Lösen und den DECODER PCB nach oben aus dem Gerät ziehen.

Fig. 2.12

2.5.4 LC-DISPLAY PCB 1.769.255/455

-> Fia. 2.13

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Seitenblenden entfernen (Abschnitt 2.2.2).
- Bedienungseinheit entfernen (Abschnitt 2.3).
- 3 Schrauben [42] lösen und den Print oben anheben und aus den Führungen ziehen.

Montagehinweis:

■ LC-DISPLAY mit einem fusselfreien und trockenen Lappen ohne Druck abwischen. Staubfrei einbauen.

2.5.5 ILLUMINATION PCB 1.769.565 (nur B126)

-> Fig. 2.12 / Fig. 2.13

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Seitenblenden entfernen (Abschnitt 2.2.2).
- Bedienungseinheit entfernen (Abschnitt 2.3)
- Kabelverbindung [40] ILLUMINATION PCB -> DECODER PCB lösen.
- 2 Schrauben [43] lösen.

2.5.6 SERVO PCB

-> Fig. 2.14 / Fig. 2.15

- Nach Abschnitt 2.4.1 vorgehen
- Das Laufwerk hochkant aufstellen, <u>nie</u> auf die Achse des Disc-Motors oder die Laser-Optik legen!
- Mit der einen Hand das Laufwerk halten, mit der anderen Hand die 4 Schrauben [44] lösen. (Werkzeug dazu -> Abschnitt 2.1.1).
- Die beiden Kabelverbindungen [45] und [46] lösen.

2.5.7 Primär-Sicherung

- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Die Primär-Sicherung ist von oben zugänglich.

Sicherungstyp:

110 VAC = T 400 mA/250 V (SLOW)

220/240 VAC = T 200 mA/250 V (SLOW)

Montagehinweis:

Sicherungswechsel ist der ■ Nach einem Berührungsschutz der Sicherung unbedingt wieder montieren.

Fig. 2.13

Fig. 2.14

Fig. 2.15

3. FUNKTIONSBESCHREIBUNG

INHALT		Seite
3.	FUNKTIONSBESCHREIBUNG	D 3/1
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Digitale Signalverarbeitung Digitale Filterung Digital/Analog Wandlung	D 3/2 D 3/2 D 3/2 D 3/2 D 3/3 D 3/3
3.2 3.2.1 3.2.2 3.2.3 3.2.4	Mikroprozessor-System Schubladenmotor-System IR-Empfänger	D 3/4 D 3/4 D 3/5 D 3/5 D 3/5
3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	Laserstrom-Steuerung Signal-Prozessor Fokus-Regelung Radial-Regelung Automatic Gain Control (AGC)	D 3/6 D 3/6 D 3/6 D 3/6 D 3/6 D 3/6

3.1 DECODER PCB 1.769.421/422

Auf dem DECODER BOARD sind die folgenden Schaltungen untergebracht:

- Stabilisierung der Speisespannungen.
- Digitale Signalverarbeitung.
- Digitale Filterung.
- Digital/Analog Wandlung.
- Pegeleinstellung und Kopfhörerverstärkung.

3.1.1 Stabilisierung der Speisespannungen

-> Fig. 3.1 Die Speisespannungen (+5 V, -5 V, +5 VSTBY, -10 VSTBY, +12 V, -15 V) werden durch Spannungsregter (IC1 ... IC5) stabilisiert. Die +10 V- und -10 V-Speisespannungen für den Disc-Motor werden vor den 5 V-Stabilisatoren abgegriffen.

Die Spannungen +5 VSTBY und -10 VSTBY sind auch in ausgeschaltetem Zustand vorhanden. Sie versorgen das Mikroprozessorsystem und den IR-Empfänger im Stand by-Betrieb mit Strom. Alle übrigen Speisespannungen werden durch den Mikroprozessor mit dem Signal PSON ein- resp. ausgeschaltet. Zum Einschalten legt der Mikroprozessor das Signal PSON auf +5 V, dadurch werden die Transistoren Q4, Q3 und Q2 leitend, die Längstransistoren Q1, Q5, Q6 und Q7 werden ebenfalls leitend.

Die Dioden D6, D8, D14 und D16 verhindern beim Ausschalten einen Polaritätswechsel der Speisespannungen.

Das mit D1, D2, R22 und C1 gebildete Signal SENSE überwacht die Sekundärspannung des Transformators. Fällt dieses Signal unter 4,3 V ab (Netzausfall), so werden die Transistoren Q11 und Q13 leitend, die Transistoren Q14 und Q15 werden sperrend, das Relais K1 fällt ab und schliesst die Audioausgänge nach Masse kurz (MUTE).

Fig. 3.

3.1.2 Digitale Signalverarbeitung

-> Fig. 3.2

Das durch einen Bandpass (R45, C34, C35) gefilterte

Signal HF wird in IC8 in Audiodaten und Subcodedaten aufgeteilt. Ein integrierter PLL (R36, R49, R53, R54, C24,
C25, Q16) regeneriert den Clock für die Audiodaten.

Weiter ist IC8 für die Fehlererkennung und Fehlerkorrektur
verantwortlich, das RAM (IC9) dient dabei als Zwischenspeicher.

Die Subcodedaten (QDA, QRA, QCL) und der Word Select (SWAB/SSM) werden dem Mikroprozessor zugeführt. Das Signal DEEM erkennt eine Disc mit Preemphasis und schaltet die Höhenabsenkung der Analogverstärker entsprechend.

3.1.3 Digitale Filterung

-> Fig. 3.2 IC10 enthält neben der Hauptzeitbasis (Y1, 11,2896 MHz) Schaltungen zur linearen Interpolation von bis zu 8 unkorrigierbaren Abtastwerten, der Pegelabschwächung und der digitalen Filterung.

Aus den Daten von IC8 (SDAB, SCAB, EFAB, DAAB, CLAB, WSAB und XSYS) werden das serielle Ausgangs-Signal I2S (DABD, CLBD, WSBD) und das digitale Ausgangssignal (DOBM) generiert.

Durch eine Auflösung von 16 Bit mit Vierfach-Oversampling und anschliessender digitaler Filterung wird eine effiziente Unterdrückung von Störfrequenzen oberhalb 20 kHz erreicht.

Der Mikroprozessor senkt mit dem Signal ATSB (aktiv "L") während des Suchlaufs den Ausgangspegel um 12 dB. Mit dem Signal MUSB (aktiv "L") wird der Ausgang langsam stummgeschaltet (soft muting).

Fig. 3.2

3.1.4 Digital/Analog Wandlung

-> Fig. 3.2 IC11 decodiert den seriellen I²S-Datenstrom (DATA), ordnet die 16 Bit-Worte kanalweise und wandelt die Daten des linken und rechten Kanals gleichzeitig (kein Zeit-multiplex-Verfahren) in analoge Werte. Die analogen Ausgänge (R-OUT, L-OUT) gelangen über ein phasenlineares Bessel-Tiefpassfilter mit umschaltbarer Charakteristik (Signal DEEM, für CD's mit/ohne Preemphasis) zum Leitungstreiber.

3.1.5 Pegeleinstellung und Kopfhörerverstärkung B226-S

Die vom Mikroprozessor über die Datenleitung ausgegebenen Sollwerte der Volumen-Steuerung werden in IC6 (Schieberegister / Latch) zwischengespeichert und steuern parallel einen Dual Digital/Analog-Wandler (IC7). Die analogen Ausgänge dienen als Abschwächer vor den Operations-Verstärkern (IC102, IC202), deren Verstärkung fest eingestellt ist.

Für spezifische Anwendungen kann die fest eingestellte maximale Ausgangsspannung (2 V_{eff}) erhöht werden. Dazu ist der Widerstand R108 (bzw. R208) zu vergrössern. Das Verhältnis R_{alt} zu R_{neu} ist ein Mass für die Erhöhung der Verstärkung (z.B. R108 = 24 kQ -> +6 dB); die maximale Aussteuerung der Operations-Verstärker ist zu berücksichtigen (Clipping!).

Um Ein- und Ausschaltknackse zu verhindern, werden alle Ausgänge im ausgeschalteten Zustand über das Relais K1 nach Masse kurzgeschlossen. Der Mikroprozessor steuert das Relais mit dem Signal PSON. Beim Einschalten wird PSON "H" und Q12 und Q13 sperren. Der Kondensator C19 wird über R27 langsam aufgeladen und nach ca. 2 Sekunden werden Q14 und Q15 leitend, das Relais K1 zieht an. Beim Ausschalten wird PSON "L", Q12 und Q13 leiten, der Kondensator C19 wird entladen, Q14 und Q15 sperren und das Relais K1 fällt sofort ab.

Fig. 3.3

3.2 MICROPROCESSOR PCB 1.769.402/404

Auf dem MICROPROCESSOR PCB sind die folgenden Schaltungen untergebracht:

- Mikroprozessor-System
- Schubladenmotor-Steuerung
- IR-Empfänger
- Serial Link

3.2.1 Mikroprozessor-System

-> Fig. 3.4

Verwendet wird der Mikroprozessor MC6303Y (IC18).

Externe Speicher sind IC16 (ROM 32K x 8) und IC15 (RAM 2K x 8). Die Adressen-Kontroller (IC11, IC8, IC12) decodieren gemeinsam die sechs höchstwertigen Bits (A10 ... A15) des Addressen-Bus und generieren die Select-Signale (SEL-ROM, SEL-RAM, SEL-PORT, EPORT1 ... EPORT4).

Mit IC17 ist eine Reset-Schaltung realisiert. Sie startet den Mikroprozessor beim Anlegen der Netzspannung mit einem RESET.

Das ganze Mikroprozessorsystem und die I/O-Ports sind über die +5 VSTBY Speisespannung immer mit Spannung versorgt, auch wenn das Gerät mit der Taste POWER ausgeschaltet wurde. Dadurch ist es möglich, dass der Mikroprozessor die Speisespannungen der restlichen Baugruppen mit dem Signal PSON ein- und ausschaltet.

Interne I/O Ports

Durch Drücken der Taste "LOAD" entsteht an Pin8 ein NMI-Impuls, dieser initialisiert den Mikroprozessor, so dass das Mikroprozessorsystem bei einem undefinierten Zustand mit der Taste LOAD neu gestartet werden kann.

Über die Ports BIBUSIN und BIBUSOUT kann der Mikroprozessor mit einem an der Buchse SERIAL LINK angeschlossenen REVOX-Controller B200 oder mit einem B206 IR-Empfänger kommunizieren.

Die Signale DRAW-B (eingefahren) und DRAW-F (ausgefahren) geben die Position der CD-Schublade an. Mit den Signalen DRAWIN und DRAWOUT fährt der Mikroprozessor die Schublade ein resp. aus. Das Signal DRAWSENSE überwacht den Strom des Schubladen-Motors, bei zu grossem Strom (Hindernis) wechselt der Mikroprozessor die Drehrichtung des Motors. Mit dem Signal RF-FII zählt der Mikroprozessor im Suchlauf

Mit dem Signal RE-FIL zählt der Mikroprozessor im Suchlauf die Spuren, und das Signal TL-LAT ist "L", wenn sich der Laser-Abtaster nicht mehr in der Spur befindet.

Über die Eingänge QDATA, QCL, QRA und SWAB/SSM liest der Mikroprozessor den Subcode der Disc, und mit dem Ausgang MUTE schaltet er bei CD-ROM-Platten die Analogausgänge stumm. Der Digital-Ausgang bleibt aktiviert, so dass darüber Daten von CD-ROM-Platten ausgegeben werden können.

Externe I/O Ports

Über die Ausgänge PO ... P5 und die Eingänge P1O ... P14 (IC5, IC7) fragt der Mikroprozessor die Tastatur ab.

Die Signate $R\bar{E}$, RP und $T\bar{L}$ informieren über die Position des Laser-Abtasters. Mit SI bewirkt der Mikroprozessor eine Start-up-Prozedur, die Laser-Diode und der Fokus-Regelkreis werden aktiviert.

Die Ausgänge BO ... B3 (IC14) steuern den Radial-Regelkreis, das Signal MUSB schaltet im Suchlauf alle Ausgänge stumm und mit ATSB wird der Ausgangspegel um 12 dB gesenkt.

IR-REC wird für ca. 1 Sekunde auf "H" geschaltet, wenn der Mikroprozessor einen IR-Befehl empfangen hat.

IC4 steuert mit seinen Ausgängen (DLEN-1, DLEN-2, DATA und CLK) die Treiberbausteine des LC-Displays.

Fig. 3.4

3.2.2 Schubladenmotor-System

-> Fig. 3.5

Der Schubladenmotor-Verstärker (IC14, Q1, Q2) wird vom Mikroprozessor mit den Signalen DRAWIN und DRAWOUT angesteuert. Wird die Schublade während des Ein- oder Ausfahrens blockiert, so steigen der Motorstrom und die Motorspannung. Das Signal DRAW SENSE wird daraufhin "L", und der Mikroprozessor ändert die Richtung der Schubladen-Bewegung.

Fig. 3.5

3.2.3 IR-Empfänger

-> Fig. 3.6

Mit der IR-Empfängerdiode (DP1) empfangene IR-Befehle werden im Decoder (IC1) decodiert und über die Leitung BIBUSIN zum Mikroprozessor gesendet. Dieser quittiert den Empfang mit IR-REC, die rote LED (DL1) im IR-Empfängerfenster leuchtet für ca. 1 Sekunde auf.

3.2.4 Serial Link

-> Fig. 3.6

Über die Buchse SERIAL LINK können Steuerbefehle empfangen und Status-Rückmeldungen gesendet werden. An ihr können die REVOX-Geräte B200 Audio/Video Controller oder B206 als IR-Empfänger angeschlossen werden.

Anschluss 3 der Buchse führt das serielle Datensignal, Anschluss 1 Masse und Anschluss 5 die Speisespannung +5 VSTBY.

Der interne IR-Empfänger kann mit einer Spannung von 5 V zwischen den Anschlüssen 4 und 2 ausgeschaltet werden. Dies kann auch mit der auf die Buchse geführten Speisespannung geschehen: Anschluss 1 mit Anschluss 2 und Anschluss 4 mit Anschluss 5 verbinden.

Fig. 3.6

3.3 SERVO PCB

-> Fig. 3.7

Auf dem SERVO PCB sind die folgenden Schaltungen untergebracht:

- Laserstrom-Steuerung
- Signal Prozessor
- Fokus Regelung
- Radial Regelung
- Automatic Gain Control (AGC)
- Disc Motor Regelung

3.3.1 Laserstrom-Steuerung

Das Signal LO steuert über den Transistor Q 6108 den Strom durch die Laserdiode. Die Monitordiode gibt eine der Intensität des Lasers proportionale Spannung (LM) für den Laserstrom-Regelkreis in IC 6101 (TDA 5708) ab. Mit dem Trimmpotentiometer R 3106 lässt sich die Laser-Intensität einstellen.

3.3.2 Signal-Prozessor

Der Signal-Prozessor IC 6101 (TDA 5708) bildet aus den vier Fotodioden-Strömen (D1 ... D4) die Radialfehler-Signale RE1 und RE2 für die Radialfehler-Regelung in IC 6102 (TDA 5709), sowie die Regelsignale FE und FE_{LAG} für die Fokusregelung.

Fig. 3.7

3.3.3 Fokus-Regetung

Die in IC 6101 (TDA 5708) aus den Strömen der Empfängerdioden D1 bis D4 gebildeten Fokus-Regelsignale FE und FE $_{\rm LAG}$ werden im als LEAD/LAG-Verstärker geschalteten Leistungsverstärker IC 6104 Pin 1,7,8 (TCA 0372) verstärkt und steuern den Antrieb der Fokus-Linse.

3.3.4 Radial-Regelung

Um der Spur auf der Disc folgen zu können ist der Laser-Abtaster in einem Dreharm montiert, dessen Antrieb ähnlich dem eines Drehspul-Instrumentes konzipiert ist. Die beiden Radialfehler-Signale RE1 und RE2 werden in IC 6102 (TDA 5709) verstärkt und ausgewertet. Der nachgeschaltete LEAD/LAG-Leistungsverstärker IC 6104 Pin 3,5,6 (TCA 0372) steuert den Radialmotor.

3.3.5 Automatic Gain Control (AGC)

Eine in IC 6102 (TDA 5709) realisierte Schaltung hält die Bandbreite und damit auch die Verstärkung des Radialregelkreises konstant.
Ein 650 Hz-Sinussignal (C 2150, C 2151, R 3150) wird in den Radialregelkreis eingespiesen. Verändert sich die Verstärkung, so verändert sich auch die Phasenlage des zurückkehrenden Signals gegenüber dem eingespeisten Signal. Ein integrierter Phasendetektor vergleicht die beiden Signale und bestimmt so den Verstärkungsfaktor.

3.3.6 Discmotor-Regelung

Um den Datenstrom von der Compact Disc möglichst konstant zu halten, wird die Drehzahl der Disc geregelt. Abhängig von der Position des Laser-Abtasters wird die Umfangsgeschwindigkeit eingestellt. Das Drehzahl-Korrektursignal MSC wird im Decoder (IC8 auf DECODER BOARD 1.769.421/422) gebildet. Dieses pulsbreitenmodulierte Signal hat im Abspielmodus eine Einschaltdauer von etwa 50%, während der Startphase (Hochdrehen der Disc) für ca. 0,2 Sekunden 98%. In IC 6103 wird das Signal in einem Verstärker zum Discmotor-Regelsignal VC geformt.

				-
			,	
				-
				-
				;
				-
				-
				- 1
				:
	·			Manager
				The state of the s
				+ 1
was to be a control of the control o				

4. ABGLEICHANLEITUNG

INHALT		Seite
4.	ABGLEICHANLEITUNG	D 4/1
4.1	ALLGEMEINE HINWEISE	D 4/1
4.1.1		D 4/1
4.2	MESSPUNKTE	D 4/2
4.2.1	Vorbereitungen	D 4/2
	DECODER PCB 1.769.421/422	D 4/2
4.2.3	MICROPROCESSOR PCB 1.769.402/404	D 4/6
4.3	EINSTELLUNGEN	D 4/8
4.3.1		D 4/8
4.3.2	,	D 4/8
	Laserstrom einstellen	D 4/9
	Focus-Offset Abgleich	D 4/9
4.3.5		D 4/10
4.4	MESSEN DER AUDIO-DATEN	D 4/11
4.4.1	Klirrfaktor	D 4/11
4.4.2	Ausgangspegel und Kanalgleichheit	D 4/11
4.4.3		D 4/1
4.4.4	,	D 4/1
4.4.5	Fremdspannungsabstand	D 4/1
	Geräuschspannungsabstand	D 4/12
	Phasenlinearität	D 4/12
	Akustische Beurteilung	D 4/12

4.1 ALLGEMEINE HINWEISE

VORSICHT: Elektrisierungsgefahr bei geöffnetem Gerät! Teile im Gerät führen Netzspannung.

Von STUDER REVOX angelieferte Module können ohne Abgleicharbeiten in das Gerät eingesetzt werden.

4.1.1 Benötigte Messgeräte

 Kathodenstrahl-Oszilloskop Digitalvoltmeter Test-CD Nr.3 Test-CD Nr.5A Glas-CD für Optikeinstellungen NF-Voltmeter autom. Klirrfaktormessbrücke Messfilter (für Klirrfaktormessung) Tiefpassfilter 30 kHz A-Bewertungsfilter Abgleichschraubendreher	Best.	Nr.:46240 Nr.:46241 Nr.:46242
"ESE"-Arbeitsplatzausrüstung	Best.	Nr.:46200

MESSPUNKTE 4.2

4.2.1 Vorbereitungen

- Netzstecker ziehen.
- Oberes Deckblech entfernen (Abschnitt 2.2.1).
- Gerät wieder ans Netz anschliessen.

Bezeichnungen:

In den nachfolgenden Tabellen sind die Signalnamen oder Anschlüsse von Bauelementen aufgeführt. Dabei bedeuten:

- = Kollektor von Transistor Q1 = Basis von Transistor Q1
- B.Q1
- = Emitter von Transistor Q1 E.Q1
- R111/112 = gemeinsames Potential der Widerstände R111 und R112.

4.2.2 DECODER BOARD PCB 1.769.421/422

-> Fig. 4.1

					, 11g. 4.
	Name	POWER ON Umin.	Ripple	POWER OF	F Ripple
1 2 3 4 5	SENSE PSON DZ1 (+) DZ1 (-) C.Q1	+ 9.2 V + 4.4 V +10.4 V -11.4 V + 9.9 V	1.4 V 0.4 V 0.6 V 0.5 V	+11.2 V 0.0 V +13.2 V -15.8 V 0.0 V	2.0 V 0.1 V
6 7 8 9 10	B.Q1 C.Q2 B.Q2 C.Q3 B.Q3	+ 9.2 V 0.0 V - 0.7 V - 0.1 V + 0.7 V	0.5 V	+13.0 V +25.5 V 0.0 V -25.0 V + 0.9 V	0.1 V
11 12 13 14 15	C.Q4 B.Q4 C.Q5 B.Q5 E.Q6	0.1 V + 0.7 V -11.2 V -10.7 V +16.5 V	0.5 V 0.5 V 2.1 V	+ 3.0 V 0.0 V + 0.2 V -24.0 V +22.5 V	
16 17 18 19 20	C.Q6 E.Q7 C.Q7 +5 VSTBY +5 V	+17.0 V -22.0 V -21.5 V + 5.2 V + 5.2 V	2.1 V 0.6 V 0.6 V	+ 0.5 V -26.5 V 0.0 V + 5.2 V 0.0 V	
21 22 23	-5 V +12 V -15 V	- 5.2 V +12.0 V -15.0 V		0.0 V 0.0 V 0.0 V	

^{-&}gt; Fig. 4.2 -> Fig. 4.3

Fig. 4.2

Fig. 4.1

Fig. 4.3

	Name	POWER ON	POWER	OFF
24 25 26	c.q13 c.q14 c.q15	+ 0.7 V + 0.1 V +12.0 V	0.0 0.0 0.0	٧

	Name	PREEMPHASIS YES	PREEMPHASIS NO
27	DEEM	+ 4.0 V	0.0 V
28	C.Q9	+12.0 V	-15.0 V

- Test-CD Nr.3 einlegen und Track 4/8 (1 kHz, OdB) abspielen.
- Mit Kathodenstrahl-Oszilloskop messen.

	Name	Unom.	Umin.	FREQUENCY
29 30	IC 101: pin 1 pin 7	7.0 Vpp 7.0 Vpp	1.0 Vpp 1.0 Vpp	1 kHz, sine-wave 1 kHz, sine-wave
31	IC 102: pin 1	7.0 Vpp		1 kHz, sine-wave
32 33	IC 201: pin 1 pin 7		1.0 Vpp 1.0 Vpp	1 kHz, sine-wave 1 kHz, sine-wave
34 35 36 37 38	IC 202: pin 7 R111/112 R211/212 L-VAR R-VAR	7.0 Vpp 18.0 Vpp 18.0 Vpp 7.0 Vpp 7.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave
39 40 41 42	PH-L PH-R L-FIXED R-FIXED	18.0 Vpp 18.0 Vpp 7.0 Vpp 7.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave

	Name	Umin.	REFER TO:
43 44 45	MSC IC 8: pin 22 pin 24	+ 2.6 V + 1.6 V	Fig. 4.5
46	pin 25	DC: 1.6 V AC: 1.5 Vpp	
47 48 49	pin 29 pin 30 pin 31		Fig. 4.4 Fig. 4.4 Fig. 4.4
50	IC 10:		F5 / 4
51 52 53 54 55 56	pin 1 pin 2 pin 3 pin 4 pin 6 pin 7 pin 14		Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.7
57	IC 11:		Fig. 4.8
58 59 60	pin 2 pin 3 pin 4		Fig. 4.8 Fig. 4.8 Fig. 4.8

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Auswahlverfahren für R52 (Decoder PCB):

-> Fig.4.9...Fig.4.11

Die hier beschriebenen Schritte sollten an folgenden Prints durchgeführt werden:

- B126 bis Serienr. 7815: 1.769.421.00 - B226-S bis Serienr. 101669: 1.769.422.00

Voraehen:

Fig. 4.9

■ 2 Stecksockel 53.03.0218 auf den Print einlöten.

■ Beim Decoder IC 8 zwischen Pin 33 (SWAB/SSM) und Masse einen Kondensator C60 33pF 59.34.2330 auf der Rückseite anlöten.

In kaltem Zustand durchführen:

■ Test-CD Nr.5A einlegen.

■ Der Wert des Pull-up Widerstands R52 wird mit Hilfe eines Widerstandnetzwerkes und eines Drehschalters ermittelt, damit der positive Winkel des PLL-Fangbereichs bei 55° liegt.

■ Drehschalter S in Stecksockel für R52 einstecken, wobei das Verbindungskabel zwischen Print und Drehschalter

nicht mehr als 0,2 m lang sein sollte.

Den Schalter nach rechts drehen, bis EFAB-Pulse (Pin 36) vorhanden sind (ca. 5-10 sec in jeder Stellung Lassen).

Anhand der Skala des Drehschalters den Wert für R52 ab-

Mit der Test-CD Nr.5A (Track 9,17) überprüfen, ob EFAB-Pulse oder "Knackser" vorhanden sind.

Fig. 4.10

Fig. 4.11

4.2.3 MICROPROCESSOR PCB 1.769.402/404

-> Fig.4.12

Messbedingung: Abspielmodus mit Test-CD Nr.3, sofern nichts anderes vermerkt.

	Name	SIGNAL	PLAY	STOP	POWER OFF
1 2 3	IC 6: pin 1 pin 6 pin 9	RE RE-FIL TL	TTL 650Hz TTL 650Hz + 5.0 V		0.0 V + 5.0 V 0.0 V
4 5	IC 7: pin 12 pin 13	DODS SI	+ 5.0 v 0.0 v	+ 5.0 V + 5.0 V	+ 5.0 V + 5.0 V
6 7	IC 9: pin 9 pin 10	TL-LAT TL-RES	+ 5.0 V + 5.0 V	0.0 V + 5.0 V	+ 5.0 V + 5.0 V
8 9 10 11	IC 10: pin 13 pin 14 pin 15 pin 18	B0 B1 B2 B3	+ 5.0 V + 5.0 V + 5.0 V 0.0 V	0.0 V + 5.0 V + 5.0 V 0.0 V	0.0 V 0.0 V 0.0 V 0.0 V

	Name	DRAWER MOVES OUT	DRAWER MOVES IN
12 13	DRAW IN DRAW OUT IC 14:	0.0 V + 5.0 V	+ 5.0 V 0.0 V
14 15 16	pin 1 pin 7 E.Q1/Q2	- 4.3 V + 0.9 V - 4.2 V	+ 4.3 V - 0.9 V + 4.2 V

	Name	DRAWER BLOCKED	DRAWER UNBLOCKED
17	DRAWSENSE	0.0 V	+ 5.0 V

	Name	DI	RAWER POSITION	:
		IN	BETWEEN	OUT
18 19	DRAW F DRAW B	0.0 V + 5.0 V	0.0 V 0.0 V	+ 5.0 V 0.0 V

	Name	Signal	NO KEY PRESSED	CORRESPONDING KEY PRESSED
20 21 22 23 24	IC 5: pin 2 pin 3 pin 6 pin 4 pin 5	P10 P11 P12 P13 P14	+ 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V	TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL
25 26 27 28 29 30	IC 7: pin 15 pin 14 pin 16 pin 17 pin 18 pin 19	PO P1 P2 P3 P4 P5	+ 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V	TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL

Fig. 4.12

	Name	SIGNAL	PLAY	SEARCH	CUEING
31 32 33	IC 10: pin 16 pin 17 pin 19	ATSB MUSB PULSE	+ 5.0 V + 5.0 V 0.0 V	+ 5.0 V 0.0 V + 5.0 V	0.0 V + 5.0 V PULSES
34	IC 18: pin 27	MUTE	0.0 V + 5.0 V	a AUDIO CD a CD ROM	

	Name	Signal	WITHOUT IR SIGNAL	WITH IR SIGNAL
35	IC 10: pin 12	IR-REC	0.0 V	+ 5.0 V

	Name	Signal	POWER ON	REMARKS
36 37	IC 18: pin 6 pin 8	RES NMI	+ 5.0 V + 5.0 V	"LOAD": 0.0 V

	Name	SERIAL LINK NO CONNECTION	CONNECTOR SHORTED PINS: 1<->2; 4<->5
38	DL 7: pin 7	+ 0.3 V	+ 0.1 V
		NO CONNECTION	SHORTED PINS: 1<->2; 3<->5
39 40	DL 5: pin 5 c.q9	+ 5.0 V 0.0 V	0.0 V + 3.7 V

4.3 EINSTELLUNGEN

HINWEISE:

Der CD-Mechanismus ist ein optomechanisches Präzisions-Instrument und ist deshalb nur am Chassis anzufassen und keiner Staubeinwirkung auszusetzen.

Die Laser-Optik kann mit einem Luftpinsel gereinigt werden. Reinigungsmittel sind nicht zu verwenden, sie können beim Eindringen in den Fokussier-Mechanismus diesen zerstören.

Das CD-Laufwerk ist mit selbstschmierenden Lagern versehen und bedarf daher keiner Wartung.

Vorsicht:

Der Laserstrahl kann das menschliche Auge verletzen. Ein direkter Einblick in die Optik, das Verwenden eines Spiegels oder einer Lupe ist nicht empfehlenswert.

4.3.1 Kontrolle der Laser-Optik

-> Fig. 4.13 / Fig. 4.14

- Gerät ausschalten und Netzstecker ziehen.
- Laufwerk ausbauen (Abschnitt 2.4.1).
- Das ausgebaute Laufwerk (ohne Laufwerkkorb) unter eine Lichtquelle legen. Vor der Lichtquelle einen Faden oder Draht spannen, so dass dieser einen geraden, dünnen Schatten auf das Laufwerk wirft.
- Den kleinen Spiegel auf die Laserlinse und die Glas-CD (beides in Set Nr.:46242 enthalten) auf das Laufwerk legen.
- Den Laser-Abtastarm in Mittelstellung bringen und das Laufwerk so drehen, dass der Schatten der Lichtquelle im Zentrum des Abtastarms und parallel zu diesem verläuft.
- Beim Betrachten der beiden Schattenlinien auf der Glas-CD und auf dem Spiegel (Fig. 4.13) darf deren seitlicher Versatz nicht mehr als 2,5 mm betragen.
- Laufwerk so aufstellen, dass die Schattenlinie senkrecht zum Abtastarm, aber durchs Zentrum des Spiegels auf der Laser-Optik verläuft. (Fig. 4.14)
- Der seitliche Versatz der Schattenlinien darf auch hier nicht mehr als 2,5 mm betragen.

4.3.2 Korrektur der Laser-Optik

-> Fig. 4.15

- Kontrolle der Laser-Optik (Abschnitt 4.3.1).
- 2 Schrauben [A] lösen bis sich die Lagerplatte [B] verschieben lässt. (Fig. 4.15)
- Die Lage der Lagerplatte gemäss Fig. 4.15 korrigieren.
- Bei korrekter Lage die Schrauben [A] vorsichtig festdrehen.
- Einstellung der Laser-Optik erneut überprüfen (Abschnitt 4.3.1).
- Laufwerk wieder einbauen.

Fig. 4.13

Fig. 4.14

Fig. 4.15

4.3.3 Laserstrom einstellen

-> Fig. 4.16

- Das Laufwerk aus dem Gerät nehmen (Abschnitt 2.4.1).
- Den SERVO PCB abschrauben (Abschnitt 2.5.6).
- Den CD-Spieler auf den Kopf stellen und Laufwerk in Normalposition auf den Boden stellen.
- Test-CD Nr.3 (TRACK 1) abspielen.
- Mit Trimmpotentiometer R 3106 auf dem SERVO PCB eine Spannung von 50 mV DC ±5 mV über R 3102 (4k7) einstellen, NF-Voltmeter verwenden.

Fig. 4.16

4.3.4 Fokus-Offset Abgleich

-> Fig. 4.17

Das CD-Laufwerk muss in seiner üblichen Betriebslage sein. Zur Einstellung die Philips Test CD Nr.3 und ein Digital Voltmeter verwenden.

- Demontage wie in Abschnitt 4.3.3.
- Durch schrittweises Drehen des Trimmpotentiometers R 3146 des SERVO PCB's in die Positionen 1,2,3, etc. den CD-Mechanismus starten.
- Bei fokussiertem Laser das Potentiometer R 3146 so einstellen, dass der Spannungsabfall in Bezug auf Masse über C 2136 +400 mV DC beträgt.

Fig. 4.17

4.3.5 Test für die Hall Motor Steuerung

-> Fig. 4.18 / Fig. 4.19

- Unterbrechen des Vc-Anschlusses durch Ablöten der Verbindung 02-4 am Motor PCB.
- Ein Trimmpotentiometer von 22kQ in Serie mit einem Widerstand von 3,3kQ auf dem Motor PCB zwischen Anschlusspunkt 02-3 und der -6V Speisespannung anbringen.
- Trimmpotentiometer-Abgriff via Schalter S ■ Den Anschluss 02-4 (Vc) verbinden.
- Mit Hilfe eines Oszillographen zuerst parallel zu R 3094 und anschliessend über R 3093 messen. Der Oszillograph darf nicht gleichzeitig über beide widerstände angeschlossen werden, weil der Srom durch die +2 und -2 Anschlüsse gemessen wird.
- Das Trimmpotentiometer auf das Maximum stellen (dessen Schleifkontakt befindet sich dann am 3,3kQ Widerstand).
- Eine Disk einlegen.
- Den CD-Player in den SERVICE MODE schalten:
- Am ausgeschalteten Gerät beide Tasten PROGRAM STEP +/bzw. STEP +/- drücken und gleichzeitig durch Betätigen der POWER-Taste einschalten.
- In der Anzeige ist nun der blinkende Schriftzug STEP und darunter die Ziffer 1 sichtbar (SERVICE STEP 1).
- Den Schalter S schliessen, Trimmpotentiometer soweit zurückdrehen, bis 3 komplette Pulse pro 0,1 sec. sichtbar sind. Die Polarität des Oszillographen so wählen, dass die Pulse nach oben zeigen.
- DC-Voltmetermessung am Anschluss Ö2-4 (Vc):
 - Vc = -1,7 +/-0,5 V
 - Ueber R 3094 gemessen, Wert 1 = max. 56,4 mV

 - Ueber R 3093 gemessen, Wert 2 = max. 58,8 mV Differenz: Wert 1 Wert 2 = max. 6,0 mV
- Beträgt die Differenz mehr als 6 mV und die Maximalwerte 1 sowie 2 werden nicht überschritten, so ist der Motor defekt.
- Für ein einwandfreies Funktionieren müssen die Werte denjenigen von Fig. 4.19 oben entsprechen.
- Spitzenwert Top ist nicht spezifiziert (Wert 1 und Wert 2).
 - Spitzenwert-Abweichung
- Flanken-Abweichung
- < 36 mV
- Fusswert (FOOT) nicht spezifiziert
- Hinweis: Die Flankendifferenz bezieht sich auf einen asymmetrischen Puls und der Fusswert entspricht dem DC-Offset.
- Beispiele fehlerhafter Signalformen siehe Fig. 4.19 unten.
- Mit dem Trimmpotentiometer die Spannung am Messpunkt 02-4 (Vc) auf -0,9 V einstellen, der Motor muss weiterdrehen. Auch bei stark reduzierter Amplitude dürfen sich die Symmetrie und die Rundung des Signals nicht verändern.
- Durch Ausschalten des Gerätes oder Ziehen des Netzstekkers wird der SERVICE MODE verlassen. Der CD-Player ist nach dem nächsten Einschalten für den normalen Betrieb bereit.

Fig. 4.18

Fig. 4.19

4.4 MESSEN DER AUDIO-DATEN

- Klirrfaktor
- Ausgangspegel und Kanalgleichheit
- Frequenzgang
- Übersprechen
- Fremdspannungsabstand
- Geräuschspannungsabstand
- Phasenlinearität
- Akustische Beurteilung

4.4.1 Klirrfaktor

-> Fig. 4.20

- Messaufbau nach Fig. 4.20 mit Klirrfaktor-Messfilter am Ausgang VARIABLE OUTPUT [2].

 Mit der Taste VOLUME + [20] maximalen Ausgangspegel ein-
- stellen.
- Test-CD Nr.3 abspielen. Für die Messung des linken Kanals TRACK 4 und für die Messung des rechten Kanals TRACK 8.

Für alle Frequenzen des TRACK 4 oder TRACK 8 muss der Klirrfaktor kleiner als folgende Werte sein: 0.005% (B126)

0.004% (B226-S)

■ Die gleichen Messungen sind auch an den Ausgängen FIXED OUTPUT [1] vorzunehmen.

4.4.2 Ausgangspegel und Kanalgleichheit

- Mit der Taste VOLUME + [20] maximalen Ausgangspegel einstellen.
- Test-CD Nr.3 TRACK 2/3 abspielen.
- Mit einem NF-Voltmeter die Pegel der Ausgänge FIXED [1] und VARIABLE [2] messen.
- Der gemessene Wert muss 2,5 V RMS \pm 1 dB betragen. Kanalgleichheit: besser als 0,2 dB.

4.4.3 Frequenzgang

- Ausgangspegel kontrollieren (Abschnitt 4.4.2).
- Test-CD Nr.3 TRACK 2 (linker Kanal / 1 kHz) abspielen und die Pegelreferenz auf O dB einstellen.
- Test-CD Nr.3 TRACK 4 für den Linken Kanal und TRACK 8 für den rechten Kanal abspielen.
- Bei maximalem Ausgangpegel muss der Frequenzgang der Ausgänge FIXED [1] und VARIABLE [2] bei allen Test-Frequenzen (41 Hz, 101 Hz, 997 Hz, 3163 Hz, 6373 Hz, 10007 Hz, 16001 Hz, 19001 Hz, 19997 Hz) in der Toleranz von ± 0,1 dB liegen.

4.4.4 Übersprechen

- Mit der Taste VOLUME + [20] maximalen Ausgangspegel ein-
- Test-CD Nr.3 TRACK 2 (linker Kanal / 1 kHz) abspielen und die Pegelreferenz auf O dB einstellen.
- Über ein 30 kHz Tiefpassfilter sind beide Ausgänge zu

TRACK 4 für die Messung Übersprechen L zu R.

TRACK 8 für die Messung Übersprechen R zu L.

■ Die Übersprechdämpfung muss mindestens 90 dB betragen.

4.4.5 Fremdspannungsabstand

- Mit der Taste VOLUME + [20] maximalen Ausgangspegel ein-
- Test-CD Nr.3 TRACK 2 (linker Kanal / 1 kHz) abspielen und die Pegelreferenz auf O dB einstellen.
- Test-CD Nr.3 TRACK 18 (digitale Stille) abspielen. Über ein 30 kHz Tiefpassfilter sind die Ausgänge FIXED [1] und VARIABLE [2] zu messen.
- Der erreichte Wert muss beim B126 über 100 dB bzw. beim B226-S über 102 dB Liegen.

Fig. 4.20

4.4.6 Geräuschspannungsabstand

- Mit der Taste VOLUME + [20] maximalen Ausgangspegel einstellen.
- Über ein 30 kHz-Tiefpassfilter und ein A-Bewertungsfilter sind die Ausgänge FIXED [1] und VARIABLE [2] zu messen.
- Test-CD Nr.3 TRACK 2 (Linker Kanal / 1 kHz) abspielen und die Pegelreferenz auf O dB einstellen.
- Test-CD Nr.3 TRACK 18 (digitale Stille) abspielen.
- Die erreichten Werte müssen über den folgenden liegen: 106 dB (B126)

106 dB (B126) 108 dB (B226-S)

4.4.7 Phasenlinearität

-> Fig. 4.21

- Mit der Taste VOLUME + [20] maximalen Ausgangspegel einstellen.
- Test-CD Nr.3 TRACK 20 abspielen.
- Oszilloskop an einem Ausgang anschliessen und die Rechtecksignale bei 100 Hz, 400 Hz, 1002 Hz und 5512 Hz optisch beurteilen. Die Kurvenform muss symmetrisch sein. (Fig.4.21)

4.4.8 Akustische Beurteilung

- Test-CD Nr.5A abspielen und auf Abspielfehler (Unterbrüche) achten.
- Die Test-CD enthält die folgenden simulierten Fehler: Informationsunterbrüche von 400 ... 900 µm auf TRACK 5 -TRACK 9. Schwarze Punkte (Black Dots) von 300 ... 800 µm auf
 - TRACK 11 TRACK 17. Simulierter Fingerabdruck auf TRACK 18 und 19.
- Diese Beurteilung ist natürlich nur mit einer einwandfreien und sorgfältig behandelten Test-CD möglich. Zusätzliche Fehler können sich mit den simulierten Fehlern summieren und so zum Unterbrechen des Abspielvorganges führen.

Fig. 4.21

ENGLISH

GENERAL	E 1/2
OPERATING CONTROLS	E 1/2
CONNECTOR PANEL	E 1/3
DISASSEMBLY INSTRUCTIONS	E 2/1
GENERAL INFORMATION	E 2/1
HOUSING	E 2/2
PUSH BUTTON PANEL	E 2/3
PLAY MECHANISM	E 2/4
ELECTRICAL ASSEMBLIES	E 2/5
FUNCTIONAL DESCRIPTION	E 3/1
DECODER PCB 1.769.421/422	E 3/2
MICROPROCESSOR PCB 1.769.402/404	E 3/4
SERVO PCB	E 3/6
ALIGNMENT INSTRUCTIONS	E 4/1
GENERAL INFORMATION	E 4/1
TEST POINTS	E 4/2
ADJUSTMENTS	E 4/8
MEASURING THE AUDIO DATA	E 4/11
CIRCUIT DIAGRAMS	5/1
SPARE PARTS	6/1
TECHNICAL DATA	7/1
	CONNECTOR PANEL DISASSEMBLY INSTRUCTIONS GENERAL INFORMATION HOUSING PUSH BUTTON PANEL PLAY MECHANISM ELECTRICAL ASSEMBLIES FUNCTIONAL DESCRIPTION DECODER PCB 1.769.421/422 MICROPROCESSOR PCB 1.769.402/404 SERVO PCB ALIGNMENT INSTRUCTIONS GENERAL INFORMATION TEST POINTS ADJUSTMENTS MEASURING THE AUDIO DATA CIRCUIT DIAGRAMS SPARE PARTS

GENERAL

OPERATING CONTROLS

[3]# PAUSE

[5]

= The CD player can be switched on directly with these keys. PLAY/NEXT [4] switches the unit to PLAY mode, the inserted disc is played starting with the first track.

PAUSE and LOCATE the start of the play mode; if the the numeric keys	With STOP [16] the CD player is only switched on; the PAUSE and LOCATE keys switch the CD player to PAUSE at the start of the first track. PLAY/NEXT [4] initiates play mode; if the CD player has been started with one of the numeric keys [1] and PLAY NEXT [4], playback starts with the preselected track.					
Control element	Function					
[1]# Keys 0 - 9	Numeric input keys. For direct addressing of a selection (TRACK or INDEX) in conjunction with PLAY/NEXT [4] or INDEX [5].					
[Ź] Disc drawer	This drawer carries the compact disc to the laser-based play mechanism. It can be opened and closed by pressing					

the L	OAD bu	tton	161.				
With	this	key	the	play	back	can	be
inter	rupted	at a	ny t	ime.	If F	LAY/N	IEXT
[4] i	s subs	equen	tly i	press	ed,	playb	ack
resum	es fro	n the	int	errup	ted (ocat i	on.

[4]# PLAY/NEXT Each time this key is pressed the next selection will be played. If it is pressed after a number has been entered with the numeric keys [1], the corresponding selection will be played. INDEX

Each time this key is pressed, the selection following the next index will be played. If it is pressed after a number has been entered with the numeric keys [1], the selected index will be played. If no indices are recorded on the CD, the next TRACK is selected when this key is pressed.

[6]# LOAD Actuation of this key moves the disc drawer [2] in or out. (7)# POWER

Switches the unit on or off. Certain components of the CD player always remain under voltage (STANDBY).

181 **PROGRAM** Switches the input mode on or off.

[9] IR SENSOR Infrared receiver window. [10] CURSOR

[18] AUTOSTOP

With the CURSOR key any position of the display can be accessed and subsequently edited. Editable parts of the B226-S display blink.

[11] PROGRAM STEP +/-These keys permit paging up (+) or down (-) within the program.

[12] TRACK/TIME Switches the display from TRACK indication to TIME indication in programming mode.

[13] MARK This key sets a start and/or stop mark (DISC TIME only) while listening in programming mode.

[14] STORE Memory load button, must be pressed upon completion of each program step input.

[15] LOOP Executes repeated playback of a CD or program.

[16]# STOP Interrupts PLAY mode and causes the laser pickup to return to the start position (also interrupts a running program).

[17] DISPLAY Changes over the TIME indication in field [C]. Four time display modes are possible:

a) DISC TIME (time elapsed since start of CD).

b) TRACK TIME (time since start of TRACK or selection).

c) TRACK REMAINING TIME (time remaining to the end of the TRACK or selection).

d) DISC REMAINING TIME (time remaining to the end of the CD).

This key interrupts the play mode upon completion of the selection or program step currently being played (PAUSE). Playback can be resumed by pressing PLAY/NEXT [4].

[19] <

Shifts the playback point towards the start of a selection for as long as

this key is pressed.

[20] VOLUME +/-

Varies the level of the headphones (PHONES) output and of the VARIABLE

OUTPUT.

[21] >

Shifts the playback point towards the end of a selection for as long as this

key is pressed.

[22] PHONES

Jack socket for headphones

200 ... 600 Ω.

[23]# LOCATE

Locator function. Interrupts play mode and the CD player is switched to PAUSE at the position of the last PLAY/NEXT

command.

DISPLAY PANEL

[A] STEP Number of the current program step; the word STEP flashes in programming mode; in normal play mode this display field is not visible.

[B] TRACK TIME INDEX

This field indicates in the first and second position the number of the selection being played, and in the third and fourth position the corresponding INDEX (if existing). In programming mode a start time (minutes and seconds) can be displayed here (B226-S).

TRACK TIME INDEX [0]

This field indicates the current selection (TRACK) time (since the start of the selection) or the DISC time (since the start of the CD).

In programming mode an end time, an end Selection (TRACK) or an end index can be displayed here (B226-S).

AUTOSTOP ED1

Visible when AUTOSTOP mode is active.

[F] PAUSE Visible when PAUSE function is active.

[F] LOOP Visible when LOOP function is active.

[G]

List of content; missing dots on the left = selections already played, total number of dots = total number of TRACKs existing on the mounted CD.

Volume indicator; While the headphones resp. the variable output is being adjusted, the level is momentarily indiapprox. (resolution cated here 2 dB/segment).

1.2 CONNECTOR PANEL

B126

B226-S

Terminal

Function

[1] FIXED OUTPUT

Standard-level output: Umax.: 2.5 V RMS

Ri: <500 Q, short-circuit proof.

[2] VARIABLE OUTPUT Output with variable level: U: 0.00 ... 2.5 V RMS Ri: <500 Q, short-circuit proof.

[3] DIGITAL OUTPUT 2 identical digital outputs:

complete serial information on the CD; teft-hand channel, right-hand channel, and subcodes.

Umax.: 0.50 Vpp,

Ri: 75Q.

[4] SERIAL LINK

Serial port for interconnection with the REVOX B200 Controller or an external IR Receiver B206.

The internal IR receiver can also be switched off via this socket (interconnect pin1 with pin2 and pin4 with

pin5.)

DISASSEMBLY INSTRUCTIONS

CONTEN	Page	
2.	DISASSEMBLY INSTRUCTIONS	E 2/1
2.1.1	GENERAL INFORMATION Required tools Reassembly	E 2/1 E 2/1 E 2/1
2.2.1	HOUSING Top cover Side panels	E 2/2 E 2/2 E 2/2
2.3.1 2.3.2	PUSH BUTTON PANEL LC display Keyboard PCB, switching mats, keys Headphones socket B226-S	E 2/3 E 2/3 E 2/3 E 2/3
2.4.1 2.4.2	PLAY MECHANISM Replacing the play mechanism CD drawer Drawer motor	E 2/4 E 2/4 E 2/4 E 2/4
2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	ELECTRIC ASSEMBLIES Transformer PCB MICRPROCESSOR PCB DECODER PCB LC DISPLAY PCB ILLUMINATION PCB B126 SERVO PCB Primary fuse	E 2/5 E 2/5 E 2/5 E 2/6 E 2/6 E 2/6 E 2/6

2.1 GENERAL INFORMATION

CAUTION: Before removing any housing parts and electronic assemblies, make sure that the unit is disconnected from the AC power source!

Important information:

- The MOS component handling recommendations found at the beginning of this manual should be followed whenever electronic components are removed or installed.
- To prevent damage to detached cables and connectors during removal/installation work, stow them away in the corresponding recesses of the housing parts and subassemblies.

2.1.1 Required tools

1	Phillips screwdriver	size O
1	Phillips screwdriver	size 1
1	Phillips screwdriver	size 2
1	Screwdriver	size 2
1	Screwdriver	size 3
	Flat-nose pliers	
	Tweezers	
1	Hexagon-socket-screw key "Inbus"	size 2
1	Hexagon-socket-screw key "Inbus"	size 3
1	Hexagon-socket-screw key "Inbus"	size 4
1	Hexagon-socket-screw key "Torx"	size T 8
1	Hexagon-socket-screw key "Torx"	size T10
1	Open-end wrench	size 11
1	"ESE" workbench kit Order N	o.: 462 00

Recommendation: Line the workbench with a cotton cloth to prevent scratches on the housing surface.

2.1.2 Reassembly

Reassemble the unit analogously in reverse order of the subsequently described disassembly instructions and follow the specific installation instructions.

2.2 HOUSING

2.2.1 Top cover

-> Fig. 2.1

■ Unfasten the five screws [1] on the rear of the unit while gently pressing down the cover. (The cover has been lightly pretensioned).

Installation instruction:
 First slide the cover into the groove on the front trim
 strip and then press down the back and tighten the screws.

2.2.2 Side panels

-> Fig. 2.2

■ Unfasten 2 screws [2] each.

B126:

Fig. 2.1

2.3 PUSH BUTTON PANEL

-> Fig. 2.3 / Fig. 2.4

- Remove top cover (Section 2.2.1).
- Remove side panels (Section 2.2.2).
- From the bottom of the unit: Unfasten 4 screws [3].
- From the top of the unit: Unfasten 2 screws [4] with serrated lock washer and ground contact spring.
- Unfasten 2 screws [5].
- Lift the push button panel off the housing towards the front.
- Separate the following cable connections:

 - Cable [6] KEYBOARD LEFT -> MICROPROCESSOR PCB Cable [7] KEYBOARD RIGHT -> MICROPROCESSOR PCB
 - Cable [8] LC DISPLAY -> MICROPROCESSOR PCB
 - Cable [9] Headphones socket -> DECODER PCB (B226-S)

2.3.1 LC display

-> Fig. 2.4

- Remove the push button panel (Section 2.3).
- Release one snap fastener [10] on each side by bending it out of the locked position with adequate force, then lift the LC display out of the push button panel.

2.3.2 Keyboard PCB · Switching mats · Keys

-> Fig. 2.4 / Fig. 2.5

- Remove the push button panel (Section 2.3).
- Unfasten 2 screws [11] each on the keyboard PCBs.
- Bend the snap fasteners out of their locked position one at a time, starting on one side while carefully lifting the keyboard PCB [12].

Caution:

- Avoid touching the gold-plated contacts.
- Do not turn over the push button panel: the buttons could drop out.

the disassembled PCB [12] the switching mats [13] and push buttons [14] can be removed towards the top. The keys [15] of the top row with aluminum caps can be pressed out of their mounting by pressing them lightly towards the front.

Installation instruction:

- Prior to reassembly use a piece of lint-free cloth to wipe off any dust on subassemblies such as the keyboard and switching mats, display and display window.
- Before inserting the keyboard PCBs align the switching mats exactly with the centering pins and between the snap fasteners.
- Make sure that all snap fasteners above the circuit board are locked.

2.3.3 Headphones socket (B226-S)

- Remove the push button panel (Section 2.3).
- Remove the bronze retaining spring.
- Press the snap fasteners out of their locked position and pull the socket out of the holder.

Fig. 2.3

Fig. 2.4

Fig. 2.5

PLAY MECHANISM

2.4.1 Exchange play mechanism

-> Fig. 2.6

- Remove the top cover (Section 2.2.1).
- Open the disk drawer.
- Expose the cable harness [17] (Fig. 2.6).
- Turn the unit upside down.
- Unfasten 4 screws [18] and carefully lift out the play mechanism of the case. The play mechanism can be set down in its normal operating position without becoming damaged.
- Separate the cable connections [17].
- Unfasten the 4 screws [19] of the 2 play mechanism supports. Exchange the play mechanism.

Reassembly instructions:

■ If the CD scrapes against the drawer housing, the play mechanism should be correspondingly adjusted.

Fig. 2.6

2.4.2 CD drawer

- -> Fig. 2.7
- Do not remove the play mechanism nor its case! Always leave the play mechanism case connected to the removed drawer housing. (Mechanical stability; the drawer mechanism has been factory-aligned to close tolerances.)

 • Remove the MICROPROCESSOR PCB (Section 2.5.2).
- Remove the DECODER PCB (Section 2.5.3).
- Unfasten the 6 screws [20]. The complete CD drawer with play mechanism can now be lifted out from the back of the unit.

Fig. 2.7

2.4.3 Drawer motor

-> Fig. 2.8

- lacktriangle Remove the top cover (Section 2.2.1).
- Remove Left-hand side panel (Section 2.2.2).
- Separate the following cable connection:
 - Cable [21] MICROPROCESSOR PCB -> drawer motor.
- Unfasten the vibration damper [22].
- # Unfasten the 3 screws [23]. Remove the drawer motor.

Installation instruction:

 Apply a drop of Loctite to the thread of the vibration damper.

Fig. 2.8

2.5 ELECTRICAL ASSEMBLIES

2.5.1 Transformer PCB 1.769.450/451/452

-> Fig. 2.9 / Fig. 2.10

■ Remove the top cover (Section 2.2.1)

- Separate the connecting cable [25] Transformer PCB → DECODER PCB.
- Unfasten the strain relief clamp of the power cord [27].
- Unfasten the 4 screws [28]; the transformer PCB can now be pulled out of the unit toward the back.

Fig. 2.9

Fig. 2.10

2.5.2 MICROPROCESSOR PCB 1.769.402/404

-> Fig. 2.11

- Remove top cover (Section 2.2.1).
- Separate the following cable connections:
 Cable [29] MICROPROCESSOR PCB -> DECODER PCB
- Cable [30] MICROPROCESSOR PCB -> DECODER PCB
 Cable [30] MICROPROCESSOR PCB -> KEYBOARD LEFT
- Cable [31] MICROPROCESSOR PCB -> KEYBOARD RIGHT
- Cable [32] MICROPROCESSOR PCB -> LC DISPLAY
- Cable [33] MICROPROCESSOR PCB -> Drawer motor
- Cable [34] MICROPROCESSOR PCB -> Play mechanism (see Section 2.4.1).
- Unfasten 1 screw [35] and remove the driving lug.
- Unfasten the 4 screws [36] and pull the MICROPROCESSOR PCB backward by approximately 10 mm.
- Pull the cable connection [34] MICROPROCESSOR PCB -> Play mechanism through the opening in the drawer housing and lay it flat across the circuit board.
- Carefully pull the MICROPROCESSOR PCB out of the unit towards the back until the notch [37] is aligned with the rear panel of the housing.
- The circuit board can now be set upright and removed from the unit.

Fig. 2.11

2.5.3 DECODER PCB 1.769.421/422

-> Fig. 2.9 / Fig. 2.12

- Remove top cover (Section 2.2.1).
- Separate the following cable connections:
 - Cable connect. [38] DECODER PCB -> MICROPROCESSOR PCB
 - Connecting cable [25] Transformer -> DECODER PCB
 - Cable connection [39] DECODER PCB -> headphones socket
- Cable connection [40] DECODER PCB -> ILLUMINATION PCB
- Unfasten 8 screws [41] and pull the DECODER PCB out towards the top.

Fig. 2.12

2.5.4 LC DISPLAY PCB 1.769.255/455

-> Fig. 2.13

- Remove top cover (Section 2.2.1).
- Remove side panel (Section 2.2.2).
- Remove push button panel (Section 2.3)
- Remove the three screws [42], lift the circuit board at the top and pull it out of the guide.

Installation instruction:

■ Wipe off the LC DISPLAY with a piece of lint-free and dry cloth. Reinstall once it is dust free.

2.5.5 ILLUMINATION PCB 1.769.565 (B126)

-> Fig. 2.12 / Fig. 2.13

- Remove top cover (Section 2.2.1).
- Remove side panels (Section 2.2.2).
- Remove push button unit (Section 2.3).
- Separate the cable connection [40] ILLUMINATION PCB -> DECODER PCB.
- Unfasten the two screws [43].

2.5.6 SERVO PCB

-> Fig. 2.14 / Fig. 2.15

- Proceed according to Section 2.4.1
- Turn the player mechanism upside down, but never on the shaft of the disc motor or the laser optical system!
- With one hand secure the play mechanism, and unfasten the 4 screws [44] with your other hand. (For required tools -> Section 2.1.1).
- Unfasten the two cable connections [45] and [46].

2.5.7 Primary fuse

- Remove top cover (Section 2.2.1).
- The primary fuse is accessible from the top Fuse ratings:

110 $VA\bar{c} = T 400 \text{ mA/250 V (SLOW)}$

220/240 VAC = T 200 mA/250 V (SLOW)

Installation instruction:

■ It is important to reinstall the plastic shock protection after replacement of the fuse.

Fig. 2.13

Fig. 2.14

Fig. 2.15

3. FUNCTIONAL DESCRIPTION

CONTEN	CONTENTS		
3.	FUNCTIONAL DESCRIPTION	E 3/1	
3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	Regulation of the supply voltages Digital signal processing Digital filtering Digital/analog conversion	E 3/2 E 3/2 E 3/2 E 3/2 E 3/3 E 3/3	
3.2.3		E 3/4 E 3/4 E 3/5 E 3/5	
3.3.2 3.3.3 3.3.4	Laser current control Signal processor Focus control Radial control Automatic gain control (AGC)	E 3/6 E 3/6 E 3/6 E 3/6 E 3/6 E 3/6	

3.1 DECODER PCB 1.769.421/422

The following circuits are implemented on the DECODER PCR -

- * Regulation of the supply voltages.
- Digital signal processing.
- Digital filtering.
- Digital/analog conversion.
- Level adjustment and headphones volume control.

3.1.1 Regulation of the supply voltages

-> Fig. 3.1

The supply voltages (+5 V, -5 V, +5 VSTBY, -10 VSTBY, +12 V, -15 V) are controlled by voltage regulators (IC1 to IC 5). The +10 V and -10 V supply for the disc motor are tapped before the ± 5 V regulators.

The +5 VSTBY and -10 VSTBY are also available when the unit is switched off. They supply the microprocessor system and the IR receiver in standby operation. All other supply voltages are switched on or off by the microprocessor with the PSON signal. For switching on, the microprocessor sets the PSON signal to +5 V which means that the transistors Q4, Q3, and Q2 become conductive; the series pass transistors Q1, Q5, Q6, and Q7 also become conductive.

The diodes D6, D8, D14, and D16 prevent a polarity change in the supply voltage when the unit is switched off.

The SENSE signal produced with D1, D2, R22 and C1 monitors the secondary voltage of the transformer. Should this signal drop below 4.3 V (power failure), transistors Q11 and Q13 become conductive, transistors Q14 and Q15 block, relay K1 drops out and short circuits the audio outputs to ground (MUTE).

Fig. 3.1

3.1.2 Digital signal processing

-> Fig. 3.2
The RF signal filtered by a band-pass (R45, C34, C35) is split by IC 8 into audio data and subcode data. An integrated PLL (R36, R49, R53, R54, C24, C25, Q16) regenerates the clock for the audio data.

In addition IC8 is responsible for error detection and error correction; the RAM (IC9) serves as a buffer.

The subcode data (QDA, QRA, QCL) and the word select (SWAB/SSM) are taken to the microprocessor. The DEEM signal recognizes a disc with preemphasis and correspondingly switches the treble de-emphasis of the analog amplifiers

3.1.3 Digital filtering

-> Fig. 3.2

In addition to the main time base (Y1, 11.2896 MHz), IC10 contains circuits for linear interpolation of up to 8 uncorrectable scanning values, the level attenuation, and the digital filtering.

The serial output signal I*S (DBAD, CLBD, WSBD) and the digital output signal (DOBM) are generated from the data of IC8 (SDAB, SCAB, EFAB, DAAB, CLAB, WSAB, and XSYS). Due to the 16-bit resolution with 4-times oversampling and

Due to the 16-bit resolution with 4-times oversampling and subsequent digital filtering parasitic frequencies above 20 kHz are effectively suppressed.

With the ATSB signal (active "L") the microprocessor attenuates the output level by 12 dB. The output is soft muted with the MUSB signal (active "L").

Fig. 3.2

3.1.4 Digital/analog conversion

-> Fig. 3.2

IC11 decodes the serial I*S data flow (DATA), orders the 16 bit words by channel, and simultaneously converts the data of the left-hand and right-hand channel to analog values (no time division multiplexing).

The analog outputs (R-OUT, L-OUT) are connected via a phase-linear Bessel low-pass filter with switchable characteristic (DEEM signal, for CDs with/without preemphasis) to the line driver.

3.1.5 Level adjustment and headphones volume control

-> Fig. 3.3

The reference values for the volume control (B226-S) by the microprocessor via the data lines are buffered in IC 6 (shift register / latch) and control in parallel a dual digital/analog converter (IC7). The analog outputs serve as attenuators before the opamps (IC102, IC202), which have a fixed gain setting

have a fixed gain setting. For specific applications the fixed maximum output voltage (2 V_{eff}) can be raised by using a larger resistor R108 (or R208 respectively). The ratio R_{old} to R_{new} is a measure of the gain increase (e.g. R108 = $24 \text{ kQ} \rightarrow +6 \text{ dB}$); the maximum output level of the opamps is to be taken into consideration (clipping!).

To prevent power-on/off switching clicks, all outputs are short-circuited to ground via relay K1 in their off condition. The microprocessor controls the relay the PSON signal. When the CD player is switched on, PSON changes to "H" and Q12 and Q13 block. Capacitor C19 is slowly charged via R27 and Q14 and Q15 become conductive after approx. 2 seconds, the relay pulls up. When switching off PSON becomes "L", Q12 and Q13 become conductive, capacitor C19 is discharged, Q14 and Q15 block, and relay K1 drops out without delay.

Fig. 3.3

3.2 MICROPROCESSOR PCB 1.769.402/404

The following circuits are implemented on the MICROPRO-CESSOR PCB:

- Microprocessor system
- Drawer motor control
- IR receiver
- Serial Link

3.2.1 Microprocessor system

-> Fig. 3.4 A microprocessor type MC6303Y (IC18) is used together with the external memories IC16 (ROM 32K x 8) and (RAM 2K x 8). The address controllers (IC11,IC8,IC12) together decode the five high-order bits (A10 ... A15) the address bus and generate the select signals (SEL-RAM, SEL-ROM, SEL-PORT, EPORT1 ... EPORT4).

A reset circuit is implemented with IC9 which starts the microprocessor with a RESET when line voltage is applied. The complete microprocessor system and the I/O ports are fed by the +5 VSTBY supply voltage, even when the CD player has been switched off with the POWER key. In this way the microprocessor can switch the remaining assemblies on and off by means of the PSON signal.

Internal I/O ports
When the LOAD key is pressed, an NMI pulse is produced on pin 8. This pulse initializes the microprocessor system so that the latter can be restarted from an undefined state by pressing the LOAD key.

Via the BIBUSIN and BIBUSOUT ports the microprocessor can communicate with a REVOX B200 Timer Controller or B206 Transceiver connected to the SERIAL LINK socket.

The signals DRAW-B (drawer closed) and DRAW-F (drawer open) indicate the position of the CD drawer. The microprocessor closes or opens the drawer by means of the DRAWIN and DRAWOUT signals. The DRAWSENSE signal monitors the current of the drawer motor. If the current becomes too high (obstruction), the microprocessor reverses the sense of rotation of the motor.

With the RE-FIL signal the microprocessor counts the tracks in search operations; the TL-LAT signal is "L" when

the laser pickup is no longer on the track.

Via the inputs QDATA, QCL, QRA, and SWAB/SSM the microprocessor reads the subcode of the disc, and with the MUTE output it mutes the analog outputs for CD ROMs. The digital output remains active which means that data of CD ROMs can be output.

External I/O ports

The microprocessor scans the keypad via the outputs PO...P5 and the inputs P10 ... P14 (IC15, IC7). The signals RE, RP, and TL provide information on the position of the Laser pickup. With SI the microprocessor initiates a start-up procedure, the Laser diode and the focus control the laser diode and the focus control circuit are activated.

The outputs BO ... B3 (IC14) control the radial control circuit, the MUSB signal mutes all circuits during search operations, and with ATSB the output level is decreased by

IR-REC is switched to "H" for approx. 1 second when the microprocessor has received an IR command.

With its outputs (DLEN-1, DLEN-1, DATA, and CLK) IC13 controls the driver chips of the LC display.

Fig. 3.4

3.2.2 Drawer motor system

-> Fig. 3.5

The drawer motor amplifier (IC14, Q1, Q2) is controlled by the microprocessor by means of the DRAWIN and DRAWOUT signals. If the drawer is blocked during the inward or outward movement, the motor currents and the motor voltage rise. The DRAW SENSE signal changes to "L", and the microprocessor changes the direction of the drawer movement.

Fig. 3.5

3.2.3 IR receiver

-> Fig. 3.6
The IR commands received by the IR receiver diode (DP1) are decoded in the decoder (IC1) and transmitted to the microprocessor via the BIBUSIN Line. The microprocessor acknowledges the input with IR-REC; the red LED (DL1) in the receiver window lights up for approximately 1 second.

3.2.4 Serial link

-> Fig. 3.6

Control commands can be received and status feedbacks transmitted via the SERIAL LINK socket to which a REVOX B200 Audio/Video Controller or B206 Transceiver can be connected.

Pin 3 of the socket carries the serial data signal, pin 1 is connected to ground, and pin 5 carries the supply voltage +5 VSTBY.

The internal IR receiver can be disabled by applying 5 V between pins 4 and 2. This can also be done with the supply voltage fed to the socket: interconnect pins 1 and 2, and pins 4 and 5.

Fig. 3.6

3.3 SERVO PCB

-> Fig. 3.7

The following circuits are implemented on the SERVO PCB:

- Laser current control
- Signal processor
- Focus control
- Radial control
- Automatic gain control (AGC)
- Disc motor control

3.3.1 Laser current control

Via transistor Q 6108, the LO signal controls the current through the laser diode. The monitor diode outputs for the laser current control circuit in IC 6101 (TDA 5708) a voltage (LM) that is proportional to the laser intensity.

The laser intensity can be adjusted with the trimmer

The laser intensity can be adjusted with the trim potentiometer R 3106.

3.3.2 Signal processor

From the four photo diode currents (D1 ... D4) the signal processor IC 6101 (TDA 5708) produces the radial error signals RE1 and RE2 for the radial error control in IC 6102 (TDA 5709), as well as the control signals FE and FE_{LAG} for the focus control.

Fig. 3.7

3.3.3 Focus control

The focus control signals FE and FE_{LAG} derived in IC 6101 (TDA 5708) from the currents of the receiver diodes D1 through D4 are amplified in the power amplifier wired as a LEAD/LAG amplifier IC 6104 Pin 1,7,8 (TCA 0372) and control the focus lens drive.

3.3.4 Radial control

To permit the laser pickup to follow the track on the disc, the pickup is mounted in a swivel arm whose drive is designed similarly to a moving-coil instrument. The two radial error signals RE1 and RE2 are amplified and evaluated in IC 6102 (TDA 5709). The subsequent LEAD/LAG power amplifier IC 6104 Pin 3,5,6 (TCA 0372) controls the radial motor.

3.3.5 Automatic gain control (AGC)

A circuit implemented in IC 6102 (TDA 5709) stabilizes the bandwidth and consequently the gain of the radial control circuit.

A 650 Hz sine wave signal (C 2150,C 2151,R 3150) is fed into the radial control circuit. If the gain varies, the phase relation of the returning signal also changes relative to the input signal. An integrated phase detector compares the two signals and determines the amplification factor.

3.3.6 Disc motor control

The disc speed is controlled to keep the data flow of the compact disc as steady as possible. Depending on the position of the laser pickup, the peripheral speed of the scanned track is set. The speed correction signal MSC is produced in the decoder (IC8 on the DECODER PCB). This pulse width modulated signal has a duty factor of approx. 50% in play mode; during the start phase (disc acceleration) the factor is 98% for approx. 0.2 seconds. In IC 6103 the signal is transformed into the disc motor control signal VC by an amplifier.

46240 46241 46242

46200

. ALIGNMENT INSTRUCTIONS

4.1 GENERAL INFORMATION

CAUTION: Shock hazard when the unit is open! Certain components carry power voltage.

Modules supplied by STUDER REVOX can be installed without prior alignment.

4.1.1 Required measuring instruments

	Cathode ray oscilloscope Digital voltmeter	·"	
		Order	No.:
_		Order	No ·
_	Glass CD for alignment of optical system		
		Order	No.:
_	AF voltmeter		
	Autom. distortion meter		
	Precision filter (for distortion measure	ment)	
•	30 kHz low-pass filter		
	A-weighting filter		
•	Alignment screwdriver		
	"ESE" workplace kit	Order	No.:
	•		

CONTEN	TS	Page
4.	ALIGNMENT INSTRUCTIONS	E 4/1
	GENERAL INFORMATION Required measuring instruments	E 4/1 E 4/1
4.2.1	TEST POINTS Preparatory steps DECODER PCB 1.769.421/422 MICROPROCESSOR PCB 1.769.402/404	E 4/2 E 4/2 E 4/2 E 4/6
4.3.1 4.3.2 4.3.3	Adjusting the laser current Focus offset adjustment	E 4/8 E 4/8 E 4/8 E 4/9 E 4/9
4.4.7	Harmonic distortion Output level and channel balance Frequency response Channel separation	E 4/11 E 4/11 E 4/11 E 4/11 E 4/11 E 4/12 E 4/12

4.2 TEST POINTS

4.2.1 Preparatory steps

- Detach the power plug.
- Remove top cover (Section 2.2.1).
- Reconnect the unit to the AC power source.

Designations:

The following table lists the signal names or pins of components. Interpretation:

- C.Q1 = Collector of transistor Q1
- B.Q1 = Base of transistor Q1 E.Q1 = Emitter of transistor Q1
- R111/112 = common potential of resistors R111 and R112.

4.2.2 DECODER BOARD PCB 1.769.421/422

	Name	POWER ON Umin.	Ripple	POWER OF	Ripple
1 2 3 4 5	SENSE PSON DZ1 (+) DZ1 (-) C.Q1	+ 9.2 V + 4.4 V +10.4 V -11.4 V + 9.9 V	1.4 V 0.4 V 0.6 V 0.5 V	+11.2 V 0.0 V +13.2 V -15.8 V 0.0 V	2.0 V 0.1 V
6 7 8 9 10	B.Q1 C.Q2 B.Q2 C.Q3 B.Q3	+ 9.2 V 0.0 V - 0.7 V - 0.1 V + 0.7 V	0.5 v	+13.0 V +25.5 V 0.0 V -25.0 V + 0.9 V	0.1 V
11 12 13 14 15	C.Q4 B.Q4 C.Q5 B.Q5 E.Q6	0.1 V + 0.7 V -11.2 V -10.7 V +16.5 V	0.5 V 0.5 V 2.1 V	+ 3.0 V 0.0 V + 0.2 V -24.0 V +22.5 V	
16 17 18 19 20	C.Q6 E.Q7 C.Q7 +5 VSTBY +5 V	+17.0 V -22.0 V -21.5 V + 5.2 V + 5.2 V	2.1 V 0.6 V 0.6 V	+ 0.5 V -26.5 V 0.0 V + 5.2 V 0.0 V	
21 22 23	-5 V +12 V -15 V	- 5.2 V +12.0 V -15.0 V		0.0 V 0.0 V 0.0 V	

-> Fig. 4.2 -> Fig. 4.3

Fig. 4.2

Fig. 4.1

Fig. 4.3

	Name	POWER ON	POWER OFF
24	C.Q13	+ 0.7 V	0.0 V
25	C.Q14	+ 0.1 V	0.0 V
26	C.Q15	+12.0 V	0.0 V

	Name	PREEMPHASIS YES	PREEMPHASIS NO
27	DEEM	+ 4.0 V	0.0 V
28	C.Q9	+12.0 V	-15.0 V

- Mount test CD No. 3 and play TRACK 4/8 (1 kHz, 0 dB). Measure with oscilloscope.

	Name	Unom.	Umin.	FREQUENCY
29	IC 101:	7 0 Voo	1.0 Vpp	1 kHz, sine-wave
30	pin 7		1.0 Vpp	1 kHz, sine-wave
31	IC 102: pin 1	7.0 Vpp		1 kHz, sine-wave
32	IC 201:	7.0.4	4.0.45	đ lilla sina
33	pin 1 pin 7		1.0 Vpp 1.0 Vpp	1 kHz, sine-wave 1 kHz, sine-wave
34	IC 202:			
	pin 7	7.0 Vpp		1 kHz, sine-wave
35	R111/112			1 kHz, sine-wave
36 37	R211/212	18.0 Vpp 7.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave
38	R-VAR	7.0 Vpp		1 kHz, sine-wave
39	PH-L	18.0 Vpp		1 kHz, sine-wave
40	PH-R	18.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave
41 42	R-FIXED	7.0 Vpp 7.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave

	Name	Umin.	REFER TO:
43 44 45 46 47 48 49	MSC IC 8: pin 22 pin 24 pin 25 pin 29 pin 30 pin 31	+ 2.6 V + 1.6 V DC: 1.6 V AC: 1.5 Vpp	Fig. 4.5 Fig. 4.4 Fig. 4.4 Fig. 4.4
50 51 52 53 54 55 56	IC 10: pin 1 pin 2 pin 3 pin 4 pin 6 pin 7 pin 14		Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.7
57 58 59 60	IC 11: pin 1 pin 2 pin 3 pin 4		Fig. 4.8 Fig. 4.8 Fig. 4.8 Fig. 4.8

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Selection procedure for R52 (Decoder PCB):

-> Fig. 4.9...Fig. 4.11
The steps described in this document should be performed on the following circuit boards:

- B126 up to serial number 7815: 1.769.421.00 - B226-S up to serial number 101669: 1.769.422.00

Procedure:

■ Solder 2 sockets 53.03.0218 to the circuit board.

 Solder a capacitor C60 33 pF 59.34.2330 to the back of the decoder IC 8 between pin 33 (SWAB/SSM) and ground.

To be performed in cold condition:

■ Insert test CD No. 5A.

- The rating of the pull-up resistor R52 is determined with the aid of a resistor network and a rotary switch so that the positive angle of the PLL capture range is at 55°.
- Insert the rotary switch S into the R52 socket. The connecting cable between the PCB and the rotary switch should not be longer than 0.2 m.
- Turn the switch clockwise until the EFAB pulses (pin 36) are available (leave the switch in each position for approx. 5-10 seconds).
- Based on the scale of the rotary switch, read off the rating for R52.
- With the test CD No. 5A (track 9,17) check whether EFAB pulsesor "clicks" are available.

Fig. 4.9

Fig. 4.10

Fig. 4.11

4.2.3 MICROPROCESSOR PCB 1.769.402/404

Measuring conditions: Play mode with test CD No. if nothing else is specified.

	Name	SIGNAL	PLAY	STOP	POWER OFF
1 2 3	IC 6: pin 1 pin 6 pin 9	RE RE-FIL TL	TTL 650Hz TTL 650Hz + 5.0 V	+ 5.0 V 0.0 V + 5.0 V	0.0 V + 5.0 V 0.0 V
4 5	IC 7: pin 12 pin 13	DODS SI	+ 5.0 V 0.0 V	+ 5.0 V + 5.0 V	+ 5.0 V + 5.0 V
6 7	IC 9: pin 9 pin 10	TL-LAT TL-RES	+ 5.0 V + 5.0 V	0.0 V + 5.0 V	+ 5.0 V + 5.0 V
8 9 10 11	IC 10: pin 13 pin 14 pin 15 pin 18	B0 B1 B2 B3	+ 5.0 V + 5.0 V + 5.0 V 0.0 V	0.0 V + 5.0 V + 5.0 V 0.0 V	0.0 V 0.0 V 0.0 V 0.0 V

	Name	DRAWER MOVES OUT	DRAWER MOVES IN
12	DRAW IN	0.0 V	+ 5.0 V
13		+ 5.0 V	0.0 V
14	IC 14:	- 4.3 V	+ 4.3 V
15	pin 7	+ 0.9 V	- 0.9 V
16	E.Q1/Q2	- 4.2 V	+ 4.2 V

	Name	DRAWER BLOCKED	DRAWER UNBLOCKED
17	DRAWSENSE	0.0 V	+ 5.0 V

	Name		DRAWER POSITION	:
1		IN	BETWEEN	OUT
18 19	DRAW F DRAW B	0.0 V + 5.0 V	0.0 V 0.0 V	+ 5.0 V 0.0 V

	Name	Signal	NO KEY PRESSED	CORRESPONDING KEY PRESSED
20 21 22 23 24	IC 5: pin 2 pin 3 pin 6 pin 4 pin 5	P10 P11 P12 P13 P14	+ 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V	TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL
25 26 27 28 29 30	IC 7: pin 15 pin 14 pin 16 pin 17 pin 18 pin 19	PO P1 P2 P3 P4 P5	+ 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V	TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL

Fig. 4.12

	Name	SIGNAL	PLAY	SEARCH	CUEING
31 32 33	IC 10: pin 16 pin 17 pin 19	ATSB MUSB PULSE	+ 5.0 V + 5.0 V 0.0 V	+ 5.0 V 0.0 V + 5.0 V	0.0 V + 5.0 V PULSES
34	IC 18: pin 27	MUTE	0.0 V + 5.0 V	a AUDIO CD a CD ROM	

	Name	Signal	WITHOUT IR SIGNAL	WITH IR SIGNAL
35	IC 10: pin 12	IR-REC	0.0 V	+ 5.0 V

	Name	Signal	POWER ON	REMARKS
36 37	IC 18: pin 6 pin 8	RES NMI	+ 5.0 V + 5.0 V	"LOAD": 0.0 V

	Name	SERIAL LINK	
		NO CONNECTION	SHORTED PINS: 1<->2; 4<->5
38	DL 7: pin 7	+ 0.3 V	+ 0.1 V
•		NO CONNECTION	SHORTED PINS: 1<->2; 3<->5
39 40	DL 5: pin 5 C.Q9	+ 5.0 V 0.0 V	0.0 V + 3.7 V

4.3 ADJUSTMENTS

NOTE:

The CD mechanism is an optomechanical precision instrument and should be touched only on the aluminum chassis and not be exposed to any dust.

The optical laser system can be cleaned with an air brush. Do not use any solvents because they could cause severe damage if they penetrate the focussing mechanism.

The CD play mechanism is equipped with self-lubricating bearings and consequently requires no maintenance.

SAFETY

The laser beam may damage the human eye. Avoid that people can look directly or indirectly (e.g. through mirrors or lenses) into the objective lense.

4.3.1 Checking the optical laser system

-> Fig. 4.13 / Fig. 4.14

- * Switch off the CD player and detach the power plug.
- Remove the play mechanism (Section 2.4.1).
- Set the detached die-cast play mechanism (without play mechanism case) under a light source. String a piece of thread or wire in front of the light source so that it casts a straight, thin shadow on the play mechanism.
- Put the small mirror on the laser lens, and the glass CD (both included in kit No.: 46242) on the play mechanism.
- Move the laser pickup arm to center position and turn the play mechanism in such a way that the shadow of the light source is in the center of the pickup arm and runs parallel to the latter.
- When observing the two shadow lines on the glass CD and on the mirror (Fig. 4.13), the lateral offset should not exceed 2.5 mm.
- Position the play mechanism in such a way that the shadow line runs perpendicular to the pickup arm but runs through the center of the mirror on the optical laser system (Fig. 4.14).
- The lateral offset of the shadow line should again not exceed 2.5 mm.

4.3.2 Correcting the optical laser system

-> Fig. 4.15

- Check the optical laser system (Section 4.3.1).
- Loosen the 2 screws [A] so that the bearing plate [B] can be shifted. (Fig. 4.15)
- Correct the position of the bearing plate according to Fig. 4.15.
- When the position is correct, carefully tighten the screws [A].
- Recheck the alignment of the optical laser system (Section 4.3.1).
- Reinstall the play mechanism.

Fig. 4.13

Fig. 4.14

Fig. 4.15

4.3.3 Adjusting the laser current

-> Fig. 4.16

- Remove the play mechanism from the unit (Section 2.4.1). Unscrew the SERVO PCB (Section 2.5.6).
- Turn the CD player upside down and place the play mechanism on the bench in normal operating position.
- Play the test CD No. 3 (track 1).
- With the trimmer potentiometer R 3106 on the SERVO PCB adjust the reading on the AF voltmeter to 50 mV DC q5 mV by means of R 3102 (4k7),

Fig. 4.16

4.3.4 Focus-offset adjustment

-> Fig. 4.17 The CD-drive chassis must be in its normal operating position. Use the Philips test cd no.3, for measuring take a digital voltmeter.

- Start the CD-drive by turning step by step the trimmpotentiometer R 3106 (SERVO PCB) from position
- 1,2,3,...etc. onwards.

 After the Laser is in focus adjust with R 3146 to achieve a voltage drop of +400 mV measured over C 2136.

Fig. 4.17

4.3.5 Check of the motor control (Hall control)

-> Fig. 4.18 / Fig. 4.19

- Interrupt the Vc connection by unsoldering the connector point 02-4 on the MOTOR PCB.
- Connect a trimming potentiometer of 22 kQ and a resistor of 3.3 kQ to the MOTOR PCB between 02-3 and -6V supply on the SERVO PCB
- Connect the slider with 2-4 (Vc) via switch S.
- Measure with an oscilloscope first across 3094 and hereafter across 3093.
 - Do not measure across both resistors at the same time, since the currents are measured the +2 lead and the -2lead.
- Put the trimming potentiometer in the maximum position The slider is then connected to the resistor of $3.3\ kQ$.
- Insert a disc into the drawer.
- Switch the cd player to the SERVICE MODE:
 With the unit switched off, press the keys PROGRAM STEP +/- resp. STEP +/- and simultaneously switch on the unit by pressing the POWER key.
- - The display now shows the flashing message STEP and the digit 1.
- Switch S on and adjust the trimming potentiometer back in such a way that three complete pulses are visible during 0.1 sec. The polarity of the oscilloscope must be chosen so that the top of the pulses are in upward
 The rotor magnet of the motor has 3 polespairs.
 Therefore the behaviour of the motor during one
 revolution with a speed of 600 r.p.m is visible.
- Measure with a DC-voltmeter on O2-4 (Vc):
 - Vc = -1.7 +/- 0.5 V
 - Measure across 3094, value 1 = maximum 56.4 mV.
 - Measure across 3093, value 2 = maximum 58.8 mV. Difference: (value 1 value 2) maximum 6 mV.
 - If the difference exceeds 6 mV, while value 1 and value 2 are below the maximum, the motor is then wrong!
- For a good functioning the signal has to meet the following values (Fig.4.19):

Top is not specified by value

Top difference:

Flank difference:

< 24 mV < 36 mV

is not specified

Foot:

- Flank difference is at one asymmetrical pulse.
- Foot is DC offset.
- Examples of the wave form faults see Fig. 4.19.
- \blacksquare Adjust the voltage on 02-4 (Vc) with the potentiometer back to -0.9 V. The motor must still turn. Although the top heigth is much lower now the wave form has to be symmetrical and rounded.
- The service mode can be terminated by switching off the unit or by pulling out the power cord. After the next power ON the CD player is ready for normal operation.

Fig. 4.18

Fig. 4.19

MEASURING THE AUDIO DATA 4.4

- Distortion
- Output level
- Frequency response
- **■** Channel separation
- Signal-to-noise ratio, linear
- Signal-to-noise ratio, weighted
- Phase linearity
- Listening test

4.4.1 Harmonic distortion

-> Fig. 4.20

- Measuring circuit according to Fig. 4.20 with distortion measurement filter on the VARIABLE OUTPUT [2].
- With the VOLUME + [20] key adjust for maximum output level.
- Play test CD No. 3. For measuring the Left-hand channel play TRACK 4, for the right-hand channel TRACK 8. For all frequencies on TRACK 4 and TRACK 8, the distortion should be: < 0.005% (B126) < 0.004% (B226-S)
- The same measurements have to be performed on the FIXED OUTPUT [1].

4.4.2 Output level and channel balance

- With the VOLUME + [20] key adjust for maximum output Level.
- Play test CD No. 3, TRACK 2/3.
- Measure the levels of the outputs FIXED [1] and VARIABLE [2] with an AF voltmeter.
- The measured value should be 2.5 V RMS ± 1dB. Channel balance: better than 0.2 dB.

4.4.3 Frequency response

- Check the output level (Section 4.4.2). Play test CD No. 3, TRACK 2 (left-hand channel, 1 kHz)
- and set the level reference to 0 dB. Play test CD No. 3, TRACK 4 for the left-hand channel and TRACK 8 for the right-hand channel.
- At maximum output level the frequency response of the outputs FIXED [1] and VARIABLE [2] must be within a tolerance of ± 0.1 dB at all the test frequencies (41 Hz, 101 Hz, 997 Hz, 3'163 Hz, 6'373 Hz, 10'007 Hz, 16'001 Hz, 19'001 Hz, 19997 Hz).

4.4.4 Channel separation

- With the VOLUME + [20] key adjust for maximum output
- Play test CD No. 3, TRACK 2 (left-hand channel, 1 kHz) and set the level reference to 0 dB.
- Measure both outputs via a 30 kHz low-pass filter: TRACK 4 for measuring the cross-talk L -> R TRACK 8 for measuring the cross-talk R -> L
- The channel separation should be at least 90 dB.

4.4.5 Signal-to-noise ratio, linear

- With the VOLUME + [20] key adjust for maximum output level.
- Play test CD No. 3, TRACK 2 (left-hand channel, 1 kHz) and set the level reference to 0 dB.
- Play test CD No. 3 TRACK 18 ("digital silence").
- Measure the outputs FIXED [1] and VARIABLE [2] via a 30 kHz low-pass filter.

The measured value should be: > 100 dB (B126)

> 102 dB (B226-S)

Fig. 4.20

4.4.6 Signal-to-noise ratio, weighted

- With the VOLUME + [20] key adjust for maximum output level.
- Measure the outputs FIXED [1] and VARIABLE [2] via a 30 kHz low-pass filter and an A-weighting filter.
- Play test CD No. 3, TRACK 2 (left-hand channel, 1 kHz) and set the Level reference to 0 dB.
- Play test CD No. 3 TRACK 18 ("digital silence").
- The measured value should be: > 106 dB (B126) > 108 dB (B226-S)

4.4.7 Phase linearity

-> Fig. 4.21

- With the VOLUME + [20] key adjust for maximum output level.
- Play test CD No. 3 TRACK 20.
- Connect oscilloscope to an output and visually assess the square-wave signals at 100 Hz, 400 Hz, 1002 Hz, and 5512 Hz. The curves should be shaped symmetrically. (Fig. 4.21)

4.4.8 Listening test

- Play CD No. 5A and listen for play errors (interruptions).
- \blacksquare The test CD contains the following simulated errors: information interruptions of 400 ... 900 μm on TRACKS 5 to 9.
 - Black dots of 300 \dots 800 μm on TRACKS 11 to 17. Simulated fingerprint on TRACKS 18 and 19.
- This listening test is possible only with a perfect and carefully handled test CD. Additional errors could be cumulative to the simulated errors and interrupt the play process.

Fig. 4.18

FRANÇAIS

TABLE	DES MATIERES	page
1	CANADAL TTAC	F 1/2
1.	GÉNÉRALITÉS	
	ÉLÉMENTS DE COMMANDE	F 1/2
1.2	PANNEAU DE RACCORDEMENT	F 1/3
2.	INSTRUCTIONS DE DÉMONTAGE	F 2/1
2.1	GENERALITES	F 2/1
2.2	BOITIER	F 2/2
2.3	UNITÉ DE COMMANDE	F 2/3
2.4	MÉCANISME	F 2/4
2.5	ENSEMBLES ÉLECTRIQUES	F 2/5
3.	DESCRIPTION DU FONCTIONNEMENT	F 3/1
3.1	DECODER PCB 1.769.421/422	F 3/2
3.2	MICROPROCESSOR PCB 1.769.402/404	F 3/4
3.3	SERVO PCB	F 3/6
4.	INSTRUCTIONS DE RÉGLAGE	F 4/1
4.1	GÉNÉRALITÉS	F 4/1
4.2	POINTS DE MESURE	F 4/2
4.3	RÉGLAGES	F 4/8
4.4	MESURE DES DONNÉES AUDIO	F 4/11
5.	SCHEMAS	5/1
6.	PIECES DE RECHANGE	6/1
7.	CARACTÉRISTIQUES TECHNIQUES	7/1

GÉNÉRAL TTÉS

ÉLÉMENTS DE COMMANDE

= Ces touches permettent la mise en fonction directe de l'appareil.

La touche PLAY/NEXT [4] enclenche l'appareil en mode de lecture; le premier morceau (TRACK) du disque placé est ioué.

La touche STOP [16] met seulement l'appareil en fonction; Les touches PAUSE et LOCATE enclenchent l'appareil en pause au premier morceau (TRACK).

La touche PLAY/NEXT [4] démarre la lecture; si une touche numerale [1] est pressée avant PLAY/NEXT [4], le morceau ainsi présélectionné démarre directement.

Éléments de commande Fonction

[1]# Touches 0 - 9 Touches d'introduction de chiffres. Pour la sélection directe d'un morceau de musique (TRACK ou INDEX) avec la touche PLAY/NEXT [4] respectivement INDEX [5].

[2] Tiroir à disque

Ce tiroir amène le disque compact à l'unité laser. Il est entré et sorti par pression sur la touche LOAD [6].

[3]# PAUSE

Cette touche permet d'interrompre la reproduction à tout moment. La touche PLAY/NEXT [4] fait poursuivre la reproduction à l'endroit de l'interruption.

[4]# PLAY/NEXT

Touche de reproduction. Une nouvelle pression fait jouer le prochain morceau. En la pressant après les touches d'introduction de chiffres [1], on fait jouer le morceau choisi.

151 INDEX Touche d'index. Une nouvelle pression fait jouer le morceau à partir du prochain index. En la pressant après avoir actionné les touches d'introduction des chiffres [1], on fait jouer l'index choisi. Si le disque n'est pas pourvu d'un index, cette touche fait toujours sauter au prochaine morceau (TRACK).

[6]# LOAD

En actionnant cette touche, on fait sortir et respectivement entrer le tiroir à disque [2].

[7]# POWER

Cette touche permet de mettre l'appareil sous tension et hors tension. Certaines parties de l'appareil restent cependant toujours sous tension (STANDBY).

Cette touche permet d'enclencher et de PROGRAM [8]

déclencher le mode d'introduction.

[9] IR-SENSOR Fenêtre du récepteur infrarouge

[10] CURSOR

Le CURSOR permet d'aller vers n'importe quelle position de l'affichage et de l'éditer si nécessaire. En version B226-S, les positions de l'affichage pouvant être éditées clignotent.

[11] PROGRAMSTEP +/-

Ces touches permettent de "feuilLeter" en haut [+] ou en bas [-] pendant la programmation.

[12] TRACK/TIME

Cette touche permet de commuter, pendant la programmation, l'affichage de l'introduction TRACK (morceau) à TIME (heure).

[13] MARK

En mode de programmation, cette touche permet de placer un repère de départ et/ou d'arrêt pendant l'écoute (seulement DISC-TIME).

[14] STORE

Touche d'enregistrement mémoire, à presser après chaque introduction de pas de programme.

[15] LOOP

Cette touche fait répéter sans cesse un disque ou un programme (service continu).

[16]# STOP

Cette touche interrompt la reproduction et ramène le lecteur à laser en position de départ (interrompt également un programme en cours).

[17] DISPLAY

Commutation de l'indication d'heure TIME dans la case (Cl. Quatre indications sont possibles:

- a) DISC-TIME (temps depuis le début du disque)
- b) TRACK-TIME (temps depuis le début du morceau (TRACK))
- c) TRACK-REMAINING-TIME (temps restant jusqu'à la fin du morceau (TR⊾CK))
- d) DISC-REMAINING-TIME (temps restant jusqu'à la fin du disque).

[18] AUTOSTOP

Cette touche interrompt la reproduction à la fin du morceau en cours ou du pas de programme en cours (PAUSE). En pressant la touche PLAY/NEX1 [4], la reproduction se poursuit.

[191 <

Cette touche permet d'aller vers n'importe quel point d'un morceau vers le début (en la maintenant enfoncée, on a un retour continu).

[20] VOLUME +/-

Ces touches modifient le niveau de la sortie casque ainsi que de la sortie VARIABLE OUTPUT.

[21] >

Cette touche permet d'aller vers n'importe quel point d'un morceau vers la fin (en la maintenant enfoncée, on a une avance contine).

[22] PHONES

Fiche pour casque 200 ... $600 \ \Omega$.

[23]# LOCATE

Fonction Locator. En actionnant cette touche, on interrompt la reproduction et l'on commute l'appareil sur PAUSE à l'endroit de la dernière instruction PLAY/NEXT.

PANNEAU D'AFFICHAGE

[A] STEP

Numéro du pas de programme actuel; mode programmation, le mot STEP clignote; en mode normal, cet affichage n'est pas visible.

[B] TRACK TIME INDEX

Il est affiché ici, au premier et au deuxième chiffre, le morceau (TRACK) actuel, au troisième et au quatrième chiffre l'index correspondant (s'il y en a un). En mode programme du B226-S, il peut également y avoir ici un temps de départ (min. et sec.).

TRACK TIME INDEX

On a ici l'affichage du temps en cours du morceau (TRACK) (depuis Le début du morceau) ou du disque (depuis le début du disque).

En mode programme du B226-S, on peut ici également avoir le temps de fin, un morceau de fin ou un index de fin.

[D] AUTOSTOP Visible lorsque le mode AUTOSTOP est activé.

(E) **PAUSE** Affichage de la fonction PAUSE.

[F] LOOP

Visible lorsque la fonction LOOP est activée (service continu).

[G]

Table des matières; points manquants à gauche = morceaux déjà joués, nombre total de points = nombre de morceaux sur le disque.

Volume est affiché brièvement pendent le réglage du volume casque ou du niveau de la sortie variable (résolution env. 2 dB/segment).

1.2 PANNEAU DE RACCORDEMENT

B126

B226-S

Raccord

Fonction

[1] FIXED OUTPUT

Sortie niveau standard:

Umax.: 2,00 V_{eff} Ri: <500 Q, protection contre les

courts-circuits

[2] VARIABLE OUTPUT Sortie à niveau variable:

U: $0.00 \dots 2.00 \text{ V}_{\text{eff}}$ Ri: <500 Ω , protection contre les

courts-circuits

[3] DIGITAL OUTPUT 2 sorties digitales équival≀rites: Information sérielle complete du CD; canal gauche, canal droit, et souscodes.

> Umax.: 0,50 Vcc Ri: 75 Q

[4] SERIAL LINK

Connecteur de commande sérielle permettant le raccordement d'un récepteur IR B206 externe ou d'un contrôleur B200 (B200-S).

Cette prise permet égalemen: de couper le récepteur IR interne relier la broche 1 à la broche 2 et ∣ broche 4 à la broche 5).

2. INSTRUCTIONS DE DÉMONTAGE

TABLE	DES MATIERES	page
2.	INSTRUCTIONS DE DÉMONTAGE	F 2/1
2.1.1	GÉNÉRALITÉS Outillage nécessaire Assemblage	F 2/1 F 2/1 F 2/1
2.2.1	BOITIER Couvercle supérieur Panneaux Latéraux	F 2/2 F 2/2 F 2/2
2.3.1 2.3.2	UNITÉ DE COMMANDE Affichage LC Keyboard Print - contacts - touches Prise casque B226-S	F 2/3 F 2/3 F 2/3 F 2/3
2.4.1 2.4.2	MÉCANISME Remplacement du mécanisme Tiroir CD Moteur du tiroir	F 2/4 F 2/4 F 2/4 F 2/4
2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	ENSEMBLES ÉLECTRIQUES Transformateur PCB MICROPROCESSOR PCB DECODER PCB LC-DISPLAY PCB ILLUMINATION PCB B126 SERVO PCB	F 2/5 F 2/5 F 2/5 F 2/5 F 2/6 F 2/6
	Fusible primaire	F 2/6

2.1 GÉNÉRALITÉS

ATTENTION: Avant de retirer des parties du boîtier et des ensembles électroniques, l'appareil doit être coupé du réseau!

Indications:

- Lors du montage et du démontage de composants électroniques, il convient de tenir compte des directives données au début du présent manuel sur la manipulation des composants MOS.
- Pour éviter d'endommager les câbles et connecteurs détachés lors des travaux de montage et de démontage, on les placera dans les ouvertures prévues à cet effet sur les parties du boîtier et de montage.

2.1.1 Outillage nécessaire

1 1 1 1	tournevis cruciforme	grandeur grandeur grandeur	1 2 2
1	pincette clé pour vis à six pans creux "Inbus"		
	clé pour vis à six pans creux "Inbus"		
	clé pour vis à six pans creux "Inbus"		
1	clé pour vis à six pans creux "Torx"	grandeur	
1	clé pour vis à six pans creux "Torx"	grandeur	T10
1	clé à fourche	grandeur	11
	équipement de poste de travail "ESE" no		

Recommandation: recouvrir le poste de travail de tissu en coton pour éviter d'égratigner l'appareil.

2.1.2 Assemblage

L'assemblage se fait dans l'ordre inverse des instructions de démontage, en tentant compte des indications spécifiques.

2.2 BOITIER

2.2.1 Couvercle supérieur

-> fig. 2.1

■ Desserrer 5 vis [1] à la face arrière de l'appareil tout en maintenant le couvercle légèrement abaissé à l'arrière. (Le couvercle est légèrement prétendu d'usine).

Indication de montage:

Glisser d'abord le couvercle dans la rainure du panneau avant puis presser ensuite l'arrière vers le bas et serrer les vis.

2.2.2 Panneaux latéraux

-> fig. 2.2

■ Desserrer chaque fois 2 vis [2].

B126:

Fig. 2.1

HNITE DE COMMANDE 2.3

-> fig. 2.3 / fig. 2.4

- Retirer le couvercle supérieur (section 2.2.1).
- Retirer les panneaux latéraux (section 2.2.2).
- Depuis le dessous de l'appareil: Desserrer 4 vis [3].
- Depuis le dessus de l'appareil:
- Desserrer 2 vis [4] avec rondelle élastique et ressort de contact de masse. Desserrer 2 vis [5]
- s Soulever l'unité de commande du boîtier en tirant vers l'avant.
- Défaire les connexions de câbles:
 - câble [6] KEYBOARD LEFT -> MICROPROCESSOR PCB
 - cable [7] KEYBOARD RIGHT -> MICROPROCESSOR PCB
 - cable [8] LC-DISPLAY -> MICROPROCESSOR PCB
 - cable [9] prise casque -> DECODER PCB (B226-S)

2.3.1 Affichage LC

-> fia. 2.4

- Retirer l'unité de commande (section 2.3)
- Sortir de chaque côté une clavette [10] en forçant suffisamment et sortir l'affichage LC de l'unité de com-

2.3.2 Keyboard Print - contacts - touches

-> fig. 2.4 / fig. 2.5

- Retirer l'unité de commande (section 2.3).
- Desserrer 2 vis [11] sur chacune des platines de clavier.
- Sortir les clavettes l'une après l'autre en commençant sur un côté de leurs positions d'encliquetage tout en soulevant soigneusement la platine de clavier (Keyboard-Print) [12].

- Eviter de toucher les contacts dorés.
- Ne pas retourner l'unité de commande: les touches pourraient tomber.

Une fois que le Keyboard-Print [12] est démonté, les contacts [13] et touches [14] peuvent être retirés vers le haut. Les touches [15] de la rangée supérieure avec les calottes en alu peuvent être sorties en avant en pressant légèrement.

Indications de montage:

- Avant le montage, nettoyer les surfaces de contact du clavier et de la membrane de commutation, l'affichage et la fenêtre d'affichage au moyen d'un chiffon propre et non pelucheux.
- Avant d'installer le Keyboard-Print, orienter avec précision les contacts dans les broches de centrage et entre les clavettes.
- Veiller à ce que toutes les clavettes s'accrochent sur la platine.

2.3.3 Prise casque (B226-S)

- Retirer l'unité de commande (section 2.3).
- Retirer le ressort de sûreté en bronze.
- Sortir les clavettes et tirer la prise de son support.

Fig. 2.3

Fig. 2.4

Fig. 2.5

2.4. MÉCANISME

2.4.1 Remplacement du mécanisme

-> fig. 2.6

- Déposer la plaque de recouvrement supérieure (paragraphe 2.2.1).
- · Sortir le tiroir à disque.
- Libérer les câbles [17] (Fig. 2.6).
- Retourner l'appareil.
- Dévisser 4 vis [18] et déposer avec précaution le mécanisme et sa corbeille. Le mécanisme peut reposer dans sa position de travail sans dommage.
- Séparer les câbles de raccordement [17].
- Dévisser les 4 vis [19] du support du deuxième mécanisme et procéder à l'échange des mécanismes.

Indication de montage:

 Veiller à ajuster le mécanisme si le CD frotte contre le bôitier du tiroir.

Fig. 2.6

2.4.2 Tiroir CD

-> fig. 2.7

- Ne pas retirer le mécanisme et le panier! Laisser toujours au moins le panier sur le boîtier démonté du tiroir (stabilité mécanique; le mécanisme du tiroir a été réglé à l'usine avec des tolérances serrées).
- Retirer Le MICROPROCESSOR PCB (section 2.5.2).
- Retirer le DECODER PCB (section 2.5.3).
- Desserrer 6 vis [20]. On peut alors retirer de l'appareil vers l'arrière tout le tiroir CD avec le mécanisme.

Fig. 2.7

2.4.3 Moteur du tiroir

-> fig. 2.8

- Retirer le couvercle supérieur (section 2.2.1).
- Retirer Le panneau Latéral gauche (section 2.2.2).
- Défaire la connexion à câble:
 - câble [21] MICROPROCESSOR PCB -> moteur de tiroir
- Retirer Le Limiteur d'oscillation [22].
- Desserrer 3 vis [23]. Retirer le moteur de tiroir.

Indication de montage:

 Assurer à nouveau au Loctite le limiteur d'oscillation sur le filet.

Fig. 2.8

2.5 ENSEMBLES ELECTRIQUES

2.5.1 Transformateur PCB 1.769.450/451/452

-> Fig. 2.9 / fig. 2.10

- Déposer la plaque de recouvrement supérieure (paragraphe 2.2.1).
- Débrancher le câble de raccordement [25] reliant le circuit du transformateur au circuit décodeur.
- Oter l'arrêt du câble sécteur [27].
- Desserrer les 4 vis [28]; le Transformer PCB peut être retiré par l'arrière de l'appareil.

Fig. 2.9

Fig. 2.10

2.5.2 MICROPROCESSOR PCB 1.769.402/404

-> fig. 2.11

- Retirer le couvercle supérieur (section 2.2.1).
- Défaire les connexions:
 - cable plat [29] MICROPROCESSOR PCB -> DECODER PCB
 - câble [30] MICROPROCESSOR PCB -> KEYBOARD LEFT
 - câble [31] MICROPROCESSOR PCB -> KEYBOARD RIGHT
 - câble [32] MICROPROCESSOR PCB -> LC-DISPLAY
 - câble [33] MICROPROCESSOR PCB -> moteur de tiroir
 - câble plat [34] MICROPROCESSOR PCB -> mécanisme (voir section 2.4.1).
- Desserrer 1 vis [35] et retirer la languette d'entraînement.
- Desserrer 4 vis [36] et retirer en arrière le MICROPRO-CESSOR PCB d'environ 10 mm.
- Poser le câble plat [34] MICROPROCESSOR PCB -> mécanisme à plat sur la platine après l'avoir fait passer par l'ouverture du boîtier du tiroir.
- Retirer avec soin le MICROPROCESSOR PCB vers l'arrière de l'appareil jusqu'à ce que l'encoche [37] soit à la hauteur du panneau arrière du boîtier.
- On peut alors poser la platine verticalement et la retirer de l'appareil.

Fig. 2.11

2.5.3 DECODER PCB 1.769.421/422

-> fig. 2.9 / fig. 2.12

- Retirer le couvercle supérieur (section 2.2.1).
- Défaire les connexions:
 - câble plat [38] DECODER PCB -> MICROPROCESSOR PCB
 - câble [25] transformateur -> DECODER PCB
- câble [39] DECODER PCB -> prise casque B226-S
- cable [40] DECODER PCB -> ILLUMINATION PCB B126
- Desserrer 8 vis [41] et retirer le DECODER PCB de l'appareil vers le haut.

Fig. 2.12

2.5.4 LC-DISPLAY PCB 1.769.255/455

-> fig. 2.13

- Retirer le couvercle supérieur (section 2.2.1).
- Retirer les panneaux latéraux (section 2.2.2).
- Retirer l'unité de commande (section 2.3).
- Desserrer 3 vis [42] et soulever la platine en haut pour la retirer des guidages.

Indication de montage:

 Nettoyer le LC-DISPLAY sans appuyer avec un chiffon sec et non pelucheux. Remonter en évitant les poussières.

2.5.5 ILLUMINATION PCB 1.769.565 B126

-> fig. 2.12 / fig. 2.13

- Retirer le couvercle supérieur (section 2.2.1).
- Retirer les panneaux latéraux (section 2.2.2).
- Retirer l'unité de commande (section 2.3).
- Détacher La connexion [40] ILLUMINATION PCB -> DECODER PCB.
- Desserrer 2 vis [43].

2.5.6 SERVO PCB

-> fig. 2.14 / fig. 2.15

- Passer le chapitre 2.4.1.
- Poser le mécanisme uniquement sur le champ, jamais sur l'axe du moteur ou du système optique !
- Maintenir d'une main le mécanisme et dévisser de l'autre les 4 vis [44].
- (Outillage spécial → paragraphe 2.1.1).
 Débrancher les deux câbles de raccordement [45] et [46].

2.5.7 Fusible primaire

- Retirer le couvercle supérieur (section 2.1.1).
- Le fusible primaire est accessible depuis le haut.

Type de fusible: 110 VAC = T 400 mA/250 V (SLOW)

220/240 VAC = T 200 mA/250 V (SLOW)

Indication de montage:

Après un remplacement du fusible, il faut absolument monter à nouveau la protection en matière synthétique du fusible.

Fig. 2.13

Fig. 2.14

Fig. 2.15

3. DESCRIPTION DU FONCTIONNEMENT

TABLE	DES MATIERES	page
3.	DESCRIPTION DU FONCTIONNEMENT	F 3/1
	Stabilisation des tensions d'alimentation Traitement numérique des signaux Filtrage numérique Conversion numérique/analogique	F 3/2 F 3/2 F 3/2 F 3/2 F 3/3 F 3/3
		F 3/4 F 3/4 F 3/5 F 3/5 F 3/5
3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6	Commande du courant laser Processeur de signaux Réglage focal Réglage radial Contrôle automatique de gain (CAG)	F 3/6 F 3/6 F 3/6 F 3/6 F 3/6 F 3/6

3.1 DECODER PCB 1.769.421/422

Le DECODER PCB porte les circuits suivants:

- Stabilisation des tensions d'alimentation.
- Traitement numérique des signaux.
- Filtrage numérique.
- Conversion numérique/analogique.
- Réglage de niveau et amplification pour casque.

3.1.1 Stabilisation des tensions d'alimentation

-> fig. 3.1

Les tensions d'alimentation (+5 V, -5 V, +5 VSTBY, -10 VSTBY, +12 V, -15 V) sont stabilisées par des régulateurs de tension (IC1 ... IC5). Les tensions d'alimentation +10 V et -10 V pour le moteur de disque sont prélevées avant les stabilisateurs 5 V.

Les tensions +5 VSTBY et -10 VSTBY sont présentes également à l'état hors tension. Elles alimentent le système microprocesseur et le récepteur IR en service de veille (Standby). Toutes les autres tensions d'alimentation sont enclenchées et déclenchées par le microprocesseur avec le signal PSON. Pour l'enclenchement, le microprocesseur met le signal PSON à +5 V, les transistors Q4, Q3 et Q2 sont conducteurs, les transistors série Q1, Q5, Q6 et Q7 sont également conducteurs.

Les diodes D6, D8, D14 et D16 empêchent à la coupure du courant le changement de polarité des tensions d'alimentation.

Le signal SENSE formé par D1, D2, R22 et C1 surveille la tension secondaire du transformateur. Si ce signal tombe au-dessous de 4,3 V (panne de réseau), les transistors Q11 et Q13 conduisent, les transistors Q14 et Q15 sont bloqués, le relais K1 retombe et court-circuite les sorties audio à la masse (MUTE).

Fig. 3.1

3.1.2 Traitement numérique des signaux

-> fig. 3.2 Le signal HF filtré par un passe-bande (R45, C34, C35)

est partagé par IC8 en données audio et sous-code. Un PLL intégré (R36, R49, R53, R54, C24, C25, Q16) régénère l'horloge pour les données audio.

l'horloge pour les données audio. IC8 assure l'identification d'erreur et la correction d'erreurs, la RAM (IC9) sert de mémoire intermédiaire.

Les données de sous-code (QDA, QRA, QCL) et le Word Select (SWAB/SSM) sont appliqués au microprocesseur. Le signal DEEM reconnaît un disque avec préaccentuation et commute en conséquence l'affaiblissement des aigus des amplificateurs analogiques.

3.1.3 Filtrage numérique

-> fig 3.2

IC1O contient, outre la base de temps principale (Y1, 11,2896 MHz), des circuits d'interpolation linéaire de jusqu'à 8 valeurs de lecture incorrigibles, de l'affaiblissement de niveau et du filtrage numérique. A partir des données de IC8 (SDAB, SCAB, EFAB, DAAB, CLAB,

A partir des données de IC8 (SDAB, SCAB, EFAB, DAAB, CLAB, WSAB et XSYS) il est généré le signal de sortie sériel I²S (DABD, CLBD, WSBD) et le signal de sortie numérique (DOBM)

Grâce à une résolution de 16 bits avec suréchantillonage quadruple suivi d'un filtrage numérique, on obtient un affaiblissement efficace des fréquences perturbatrices audessus de 20 kHz.

Le microprocesseur affaiblit le signal de sortie de 12 dB avec le signal ATSB ("L" actif) pendant la recherche. Avec le signal MUSB ("L" actif) la sortie est coupée lentement (soft muting).

Fig. 3.2

3.1.4 Conversion numérique/analogique

-> fig. 3.2

IC11 décode le courant binaire sériel I°S (DATA), arrange les mots de 16 bits par canal et convertit les données des canaux gauche et droit simultanément en valeurs analogiques (pas de multiplex dans le temps).

Les sorties analogiques (R-OUT, L-OUT) passent par un filtre passe-bas (Bessel) linéaire en phase avec caractéristique commutable (signal DEEM, pour CD avec/sans préemphasis) vers l'étage d'attaque de ligne.

3.1.5 Réglage du niveau et amplification casque (B226-S)

-> fig. 3.3

Les consignes de commande de volume qui sont sorties par le microprocesseur sur la ligne de données sont enregistrées en mémoire intermédiaire dans IC6 (registre à décalage / Latch) et commandent parallèlement un double convertisseur numérique/analogique (IC7). Les sorties analogiques servent d'atténuateurs avant les amplificateurs opérationnels (IC102, IC202), dont le gain est fixe. Pour les applications spéciales, la tension de sortie maximale fixe (2 Veff) peut être augmentée. Pour cela, il faut augmenter la résistance R108 (resp. R208). Le rapport Rancien à Rnouveau donne la mesure de l'augmentation du gain (par ex. R108 = 24 KQ \rightarrow +6 dB); la modulation maximale de l'amplificateur opérationnel doit être prise en considération (Clipping!).

Afin d'éviter des claquements à l'enclenchement et au déclenchement, toutes les sorties sont court-circuitées par le relais K1 à la masse à l'état coupé. Le microprocesseur commande le relais avec le signal PSON. A l'enclenchement, PSON devient "H" et Q12 et Q13 sont coupés. Le condensateur C19 se charge lentement à travers R27 et, après 2 secondes environ, Q14 et Q15 conduisent, le relais K1 attire. A la coupure, PSON devient "L", Q12 et Q13 conduisent, le condensateur C19 se décharge, Q14 et Q15 sont coupés et le relais K1 retombe immédiatement.

CONT. DOCUMENTS OF THE PARTY OF

Fig. 3.3

3.2 MICROPROCESSOR PCB 1.769.402/404

Le MICROPROCESSOR PCB porte les circuits suivants:

- Microprocesseur
- Commande de moteur de tiroir
- Récepteur IR
- Serial Link

3.2.1 Microprocesseur

-> fig. 3.4

Le microprocesseur utilisé est un MC6303Y (IC18). Les mémoires externes sont IC16 (ROM 326K x 8) et IC15 (RAM 2K x 8). Les contrôleurs d'adresses (IC11,IC8,IC12) décodent ensemble les cinq bits de valeur supérieure (A10 ... A15) du bus d'adresses et génèrent les signaux Select (SEL-RAM,SEL-ROM,SEL-PORT, EPORT1 ... EPORT4).

IC9 réalise un circuit Reset et initialise le microprocesseur avec un RESET lorsque la tension de réseau est appliquée.

Tout le système microprocesseur et les I/O-Ports sont toujours alimentés par la tension +5 VSTBY, même lorsque l'appareil est mis hors tension avec la touche POWER. Il est ainsi possible au microprocesseur d'enclencher et de déclencher les tensions d'alimentation des autres ensembles avec le signal PSON.

I/O Ports internes

En pressant la touche "LOAD", on a à la broche 8 une impulsion NMI initialisant le microprocesseur, de sorte que le système processeur peut être réinitialisé par la touche LOAD en cas d'état indéfini.

Par les Ports BIBUSIN et BIBUSOUT, le microprocesseur peut Acommuniquer avec un appareil REVOX B200 Controller ou un B206 • Transceiver raccordé à la prise SERIAL LINK.

Les signaux DRAW-B (entré) et DRAW-F (sorti) indiquent la position du tiroir CD. Avec les signaux DRAWIN et DRAWOUT, le microprocesseur entre le tiroir ou le sort respectivement. Le signal DRAWSENSE surveille du courant du moteur de tiroir, si le courant est trop élevé (obstacle) le microprocesseur change le sens de rotation du moteur. Avec le signal RE-FIL, le microprocesseur compte les pistes pendant la recherche et, le signal TL-LAT est "L" lorsque le lecteur à laser n'est plus dans la piste.

Par Les entrées QDATA, QCL, QRA et SWAB/SSM, le microprocesseur lit le sous-code du disque et, par la sortie MUTE, il commute pour les disques CD-ROM les sorties analogiques en position coupée. La sortie numérique reste activée, des données de disques CD-ROM peuvent être sorties par elle.

I/O Ports externes

Par les sorties PO ... P5 et les entrées P1O ... P14 (IC15, IC7) le microprocesseur interroge le clavier. Les signaux RE, RP et TL renseignent sur la position du lecteur à laser. Avec SI, le microprocesseur provoque une procédure de démarrage, la diode à laser et le circuit de réglage focal sont activés.

Les sorties BO ... B3 (IC14) commandent le circuit de réglage radial, le signal MUSB commute en recherche toutes les sorties à zéro et ATSB affaiblit le niveau de sortie de 12 dB.

IR-REC est commuté sur "H" pour 1 seconde environ lorsque le microprocesseur a reçu une instruction IR.

IC13 attaque par ses sorties (DLEN-1, DLEN-2, DATA et CLK) les composants d'attaque de l'affichage LC.

Fig. 3.4

3.2.2 Moteur du tiroir

-> fig. 3.5

L'amplificateur du moteur du tiroir (IC14, Q1, Q2) est commandé par le microprocesseur avec les signaux DRAWIN et DRAWOUT. Si le tiroir se bloque pendant l'entrée ou la sortie, le courant de moteur augmente de même que la tension de moteur. Le signal DRAW SENSE devient alors "L" et le microprocesseur change le sens du mouvement du tiroir.

Fig. 3.5

3.2.3 Récepteur IR

-> fig. 3.6

Les instructions IR reçues par la diode réceptrice IR (DP1) sont décodées dans le décodeur IC1 et envoyées au microprocesseur par la ligne BIBUSIN. Le microprocesseur quittance la réception par IR-REC, la LED rouge (DL1) dans la fenêtre de récepteur IR s'allume pendant 1 seconde environ.

3.2.4 Serial Link

-> fig. 3.6

Par la prise SERIAL LINK, les instructions de commande peuvent être reçues et les signaux en retour émis. Ici, on peut raccorder les appareils REVOX B203 Audio/Video Controller et B206 Transceiver.

Le raccord 3 de la prise porte le signal sériel de données, le raccord 1 la masse et le raccord 5 la tension d'alimentation +5 VSTBY.

Le récepteur IR interne peut être coupé par une tension de 5 V entre les raccords 4 et 2. Ceci peut également se faire avec la tension présente sur la prise: relier 1 à 2 et 4 à 5.

Fig. 3.6

3.3 SERVO PCB

-> fig. 3.7

Le SERVO PCB porte les circuits suivants:

- Commande de courant laser
- Processeur de signaux
- Réglage focal
- Réglage radial
- Contrôle automatique de gain (CAG)
- Réglage du moteur de disque

3.3.1 Commande du courant laser

Le signal LO commande par le transistor Q 6108 le courant circulant à travers la diode laser. La diode de moniteur donne une tension (LM) proportionnelle à l'intensité du laser pour le circuit de réglage du courant laser dans IC 6101 (TDA 5708). Le potentiomètre R 3106 permet de régler l'intensité du laser.

3.3.2 Processeur de signaux

Le processeur de signaux IC 6101 (TDA 5708) forme à partir des quatre courants des photodiodes (D1 ... D4) les signaux d'erreur radiale RE1 et RE2 pour le réglage d'erreur radiale dans IC 6102 (TDA 5709), de même que les signaux de réglage FE et FE_LAG pour le réglage focal.

Fig. 3.7

3.3.3 Réglage focal

Les signaux de réglage focal formés dans IC 6101 (TDA 5708) à partir des courants des diodes réceptrices 01 à D4, FE et FE_{LAG}, sont amplifiés par IC 6104 Pin 1,7,8 (TCA 0372) qui sert d'amplificateur LEAD/LAG et commandent l'entraînement de la lentille de convergence.

3.3.4 Réglage radial

Afin de pouvoir suivre la piste sur le disque, le lecteur à laser est monté dans un bras pivotant dont l'entraînement est conçu de manière analogue à celui d'un instrument à bobine mobile.

instrument à bobine mobile.
Les deux signaux d'erreur radiale RE1 et RE2 sont amplifiés et évalués dans IC 6102 (TDA 5709). L'amplificateur de puissance LEAD/LAG IC5 6104 Pin 3,5,6 (TCA0372) commande le moteur radial.

3.3.5 Contrôle automatique de gain (CAG)

Un circuit dans IC 6102 (TDA 5709) maintient constante la bande passante et ainsi le gain du circuit de réglage radial.

Un signal sinusoïdal 650 Hz (C 2150,C 2151,R 3150) est injecté dans le circuit de réglage radial. Si l'amplification change, la phase du signal de retour change également par rapport au signal injecté. Un détecteur intégré de phase compare les deux signaux et détermine le facteur d'amplification.

3.3.6 Réglage du moteur du disque

Afin de maintenir aussi constant que possible le courant de données du disque compact, la vitesse de rotation de celui-ci est réglée. En fonction de la position du lecteur à laser, la vitesse périphérique est réglée. Le signal de correction de vitesse MSC est formé dans le décodeur (IC8 sur DECODER PCB 1.769.421/422). Ce signal à modulation de largeur d'impulsions a en mode de reproduction une durée d'enclenchement d'environ 50%, pendant la phase de démarrage (accélération du disque) 98% pendant 0,2 s environ. Dans IC 6103, le signal est formé en signal de réglage du moteur du disque VC dans un amplificateur.

. INSTRUCTIONS DE REGLAGE

TABLE	DES MATIERES	pa	age
4.	INSTRUCTIONS DE RÉGLAGE	F	4/1
4.1	GENERALITES	F	4/1
4.1.1	Outillage de mesure nécessaires	F	4/1
4.2	POINTS DE MESURE	F	4/2
4.2.1	Préparatifs	F	4/2
4.2.2	DECODER PCB 1.769.421/422	F	4/2
4.2.3	MICROPROCESSOR PCB 1.769.402/404	F	4/6
4.3	RÉGLAGES	F	4/8
4.3.1	Contrôle de l'optique à laser	F	4/8
4.3.2	Correction de l'optique à laser	F	4/8
4.3.3	Ajustement du courant laser	-	4/9
4.3.4	Réglage de la précision du focus	-	4/9
4.3.5	Test de la commande de moteur à effet Hall	F	4/10
4.4	MESURE DES DONNÉES AUDIO	F	4/1
4.4.1	Facteur de distorsion	F	4/11
4.4.2	Niveau de sortie		4/1
4.4.3	Réponse en fréquence		4/1
4.4.4	Diaphonie		4/1
4.4.5	Écart signal/parasites		4/1
4.4.6	Écart signal/bruit	-	4/12
4.4.7	Linéarité de phase		4/17
4.4.8	Évaluation acoustique	F	4/17

4.1 GENERALITES

ATTENTION: Danger d'électrocution lorsque l'appareil est ouvert! Des parties de l'appareil sont portées à la tension du réseau.

Les modules livrés par STUDER REVOX peuvent être montés dans l'appareil sans réglage.

4.1.1 Outillage de mesure nécessaires

Oscilloscope	
 Voltmètre numérique 	
■ CD test no. 3	no. comm. 46240
■ CD test no. 5A	no. comm. 46241
■ CD de verre pour réglages optiques	no. comm. 46242
■ voltmètre BF	
 distorsiomètre automatique 	
■ filtre de mesure (pour mesure du facteur	de distorsion)
 filtre passe-bas 30 kHz 	
filtre avec courbe de pondération "A"	
■ tournevis de réglage	
■ équipement de poste de travail "ESE"	no. comm. 46200

4.2 POINTS DE MESURE

4.2.1 Préparatifs

- Retirer la fiche du réseau
- Retirer le couvercle supérieur (section 2.2.1).

 Raccorder l'appareil à nouveau au réseau.

Désignations:

Les tableaux suivants indiquent les noms des signaux ou les raccords pour les composants. Légende:

- C.Q1 = collecteur du transistor $Q\overline{1}$
- B.Q1 = base du transistor Q1 E.Q1 = émetteur du transistor Q1
- R111/112 = potentiel commun des résistances R111 et R112

4.2.2 DECODER PCB 1.769.421/422

		,		,	
	Name	POWER ON Umin.	Ripple	POWER OF	Ripple
1 2 3 4 5	SENSE PSON DZ1 (+) DZ1 (-) C.Q1	+ 9.2 V + 4.4 V +10.4 V -11.4 V + 9.9 V	1.4 V 0.4 V 0.6 V 0.5 V	+11.2 V 0.0 V +13.2 V -15.8 V 0.0 V	2.0 V 0.1 V
6 7 8 9 10	B.Q1 C.Q2 B.Q2 C.Q3 B.Q3	+ 9.2 V 0.0 V - 0.7 V - 0.1 V + 0.7 V	0.5 V	+13.0 V +25.5 V 0.0 V -25.0 V + 0.9 V	0.1 V
11 12 13 14 15	C.Q4 B.Q4 C.Q5 B.Q5 E.Q6	0.1 V + 0.7 V -11.2 V -10.7 V +16.5 V	0.5 V 0.5 V 2.1 V	+ 3.0 V 0.0 V + 0.2 V -24.0 V +22.5 V	
16 17 18 19 20	C.Q6 E.Q7 C.Q7 +5 VSTBY +5 V	+17.0 V -22.0 V -21.5 V + 5.2 V + 5.2 V	2.1 V 0.6 V 0.6 V	+ 0.5 V -26.5 V 0.0 V + 5.2 V 0.0 V	
21 22 23	-5 V +12 V -15 V	- 5.2 V +12.0 V -15.0 V		0.0 V 0.0 V 0.0 V	

Fig. 4.2

Fig. 4.1

Fig. 4.3

	Name	POWER ON	POWER OFF
24	C.Q13	+ 0.7 V	0.0 V
25	C.Q14	+ 0.1 V	0.0 V
26	C.Q15	+12.0 V	0.0 V

	Name	PREEMPHASIS YES	PREEMPHASIS NO
27	DEEM	+ 4.0 V	0.0 V
28	C.Q9	+12.0 V	-15.0 V

- Placer le CD test no. 3 et reproduire les pistes 4/8 (1 kHz, OdB)
- Mesurer à l'oscilloscope.

	Name	Unom.	Umin.	FREQUENCY
29 30	IC 101: pin 1 pin 7		1.0 Vpp 1.0 Vpp	1 kHz, sine-wave 1 kHz, sine-wave
31	IC 102: pin 1	7.0 Vpp		1 kHz, sine-wave
32 33	IC 201: pin 1 pin 7		1.0 Vpp 1.0 Vpp	1 kHz, sine-wave 1 kHz, sine-wave
34 35 36 37 38	IC 202: pin 7 R111/112 R211/212 L-VAR R-VAR	7.0 Vpp 18.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave
39 40 41 42	PH-L PH-R L-FIXED R-FIXED	18.0 Vpp 18.0 Vpp 7.0 Vpp 7.0 Vpp		1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave 1 kHz, sine-wave

	Name	Umin.	REFER TO:
43 44 45 46	MSC IC 8: pin 22 pin 24 pin 25	+ 2.6 V + 1.6 V DC: 1.6 V	Fig. 4.5
47 48 49	pin 29 pin 30 pin 31	AC: 1.5 Vpp	Fig. 4.4 Fig. 4.4 Fig. 4.4
50 51 52 53 54 55 56	IC 10: pin 1 pin 2 pin 3 pin 4 pin 6 pin 7 pin 14		Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.6 Fig. 4.7
57 58 59 60	IC 11: pin 1 pin 2 pin 3 pin 4		Fig. 4.8 Fig. 4.8 Fig. 4.8 Fig. 4.8

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Procédure pour R52 (circuit décodeur)

-> fig. 4.9...fig. 4.11 Les opérations décrites ici sont à effectuer sur les circuits suivants:

- jusqu'au No de série 7815: 1.769.421.00 - B126
- B226-S jusqu'au No de série 101669: 1.769.422.00

A effectuer:

■ Souder deux socles 53.03.0218 sur le circuit.

■ Souder sous le circuit imprimé, un condensateur C60 de 33pF, 59.34.2330 entre le point 33 (SWAB/SSM) de l'IC8

A éxécuter à froid:

- Placer le CD test No 5A.
- La valeur de la résistance Pull-up R52, se détermine à l'aide d'un réseau de résistances commutables, afin d'obtenir un angle positif de 55° de la plage de capture PII
- Connecter le commutateur rotatif S aux socles pour R52 en limitant la langueur du câble de liaison à 20 cm.
- Tourner le commutateur à droite, jusqu'à l'obtention des impulsions EFAB (point 36). Attendre 5 à 10 secondes entre chaque position. Lire sur l'échelle du commutateur la valeur pour la
- résistance R52.
- Contrôler avec le CD test No 5A (Track 9,17) si les impulsions EFAB ou "tocs" sont présents.

Fig. 4.9

Fig. 4.10

Fig. 4.11

4.2.3 MICROPROCESSOR PCB 1.769.402/404

■ Condition de mesure: mode de reproduction avec CD test no. 3, sauf indication contraire.

	Name	SIGNAL	PLAY	STOP	POWER OFF
1 2 3	IC 6: pin 1 pin 6 pin 9	RE RE-FIL TL	TTL 650Hz TTL 650Hz + 5.0 V	+ 5.0 V 0.0 V + 5.0 V	0.0 V + 5.0 V 0.0 V
4 5	IC 7: pin 12 pin 13	DODS SI	+ 5.0 V 0.0 V	+ 5.0 V + 5.0 V	+ 5.0 V + 5.0 V
6 7	IC 9: pin 9 pin 10	TL-LAT TL-RES	+ 5.0 V + 5.0 V	0.0 V + 5.0 V	+ 5.0 V + 5.0 V
8 9 10 11	IC 10: pin 13 pin 14 pin 15 pin 18	B0 B1 B2 B3	+ 5.0 V + 5.0 V + 5.0 V 0.0 V	0.0 V + 5.0 V + 5.0 V 0.0 V	0.0 V 0.0 V 0.0 V 0.0 V

	Name	DRAWER MOVES OUT	DRAWER MOVES IN
12 13	DRAW IN DRAW OUT IC 14:	0.0 V + 5.0 V	+ 5.0 V 0.0 V
14 15 16	pin 1 pin 7 E.Q1/Q2	- 4.3 V + 0.9 V - 4.2 V	+ 4.3 V - 0.9 V + 4.2 V

	Name	DRAWER BLOCKED	DRAWER UNBLOCKED
17	DRAWSENSE	0.0 V	+ 5.0 V

	Name	IN	DRAWER POSITION BETWEEN	I: OUT
11		0.0 V + 5.0 V	0.0 V 0.0 V	+ 5.0 V 0.0 V

	Name	Signal	NO KEY PRESSED	CORRESPONDING KEY PRESSED
20 21 22 23 24	IC 5: pin 2 pin 3 pin 6 pin 4 pin 5	P10 P11 P12 P13 P14	+ 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V	TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL
25 26 27 28 29 30	IC 7: pin 15 pin 14 pin 16 pin 17 pin 18 pin 19	PO P1 P2 P3 P4 P5	+ 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V + 5.0 V	TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL TTL SIGNAL

Fig. 4.12

	Name	SIGNAL	PLAY	SEARCH	CUEING		
31 32 33	IC 10: pin 16 pin 17 pin 19	ATSB MUSB PULSE	+ 5.0 V + 5.0 V 0.0 V	+ 5.0 V 0.0 V + 5.0 V	0.0 V + 5.0 V PULSES		
34	IC 18: pin 27	MUTE	O.O V a AUDIO CD + 5.O V a CD ROM				

	Name	Signal	WITHOUT IR SIGNAL	WITH IR SIGNAL	
35	IC 10: pin 12	IR-REC	0.0 V	+ 5.0 V	

	Name	Signal	POWER ON	REMARKS
36 37	IC 18: pin 6 pin 8	RES NMI	+ 5.0 V + 5.0 V	"LOAD": 0.0 V

Name		SERIAL LINK NO CONNECTION	CONNECTOR SHORTED PINS: 1<->2; 4<->5		
38	DL 7: pin 7	+ 0.3 V	+ 0.1 V		
		NO CONNECTION	SHORTED PINS: 1<->2; 3<->5		
39 40	DL 5: pin 5 C.Q9	+ 5.0 V 0.0 V	0.0 V + 3.7 V		

4.3 REGLAGES

INDICATIONS:

Le mécanisme CD est un instrument optomécanique de précision et ne doit donc être saisi qu'au châssis en aluminium et ne pas être exposé à la poussière.

L'optique à laser peut être nettoyée au moyen d'un pinceau à soufflet. Ne pas utiliser de nettoyants qui risqueraient de détruire le mécanisme de mise au point.

Le mécanisme CD est pourvu de paliers autograissants et ne nécessite aucun entretien.

ATTENTION

Le rayon laser peut blesser l'oeil humain. Une vision directe dans l'optique, l'utilisation d'un mirroir ou d'une loupe sont à éviter.

4.3.1 Contrôle de l'optique à laser

-> fig. 4.13 / fig. 4.14

- Mettre l'appareil hors tension et retirer la fiche du secteur.
- Sortir le mécanisme (section 2.4.1).
- Placer le mécanisme sorti (sans panier) sous une source de lumière. Tendre un fil devant la source de lumière de manière qu'il jette sur le mécanisme une ombre mince rectiligne.
- Poser le petit miroir sur la lentille laser et le disque de verre (tous deux dans le jeu no. 46242) sur le mécanisme
- Mettre le bras lecteur à laser en position médiane et tourner le mécanisme de manière que l'ombre de la source soit au centre du bras et parallèle à celui-ci.
- En observant les deux ombres sur le disque de verre et le miroir (fig. 4.13) on ne doit pas constater de décalage latéral de plus de 2,5 mm.
- Poser Le mécanisme de manière que la ligne d'ombre tombe perpendiculairement au bras mais en passant par le centre du miroir sur l'optique à laser (fig. 4.14).
- Le décalage latéral des lignes d'ombre ne doit pas dépasser 2,5 mm ici non plus.

4.3.2 Correction de l'optique à laser

-> fig. 4.15

- Contrôle de l'optique à laser (section 4.3.1).
- Desserrer 2 vis [A] jusqu'à ce que la plaque [B] puisse être déplacée (fig. 4.15).
- Corriger la position de la plaque selon fig. 4.15.
- Lorsque la position est correcte, serrer avec soin les vis [A].
- Contrôler à nouveau le réglage de l'optique à laser (section 4.3.1).
- Remonter le mécanisme.

Fig. 4.13

Fig. 4.14

Fig. 4.15

4.3.3 Ajustement du courant laser

-> fig. 4.16

- Déposer le mécanisme (paragraphe 2.4.1).
- Dévisser le SERVO PCB (paragraphe 2.5.6).
- Retourner le lecteur de CD et placer le mécanisme dans sa position normale.
- Jouer le CD test No 3 (Track 1).
- Ajuster Le potentiomètre R 3106 du SERVO PCB, pour obtenir une tension continue de 50 mV +/- 5mV aux bornes de R 3102 (4k7).

Fig. 4.16

4.3.4 Réglage de la précision du focus

-> fig. 4.16

Le chassis doit être dans une position normale de travail. Pour le réglage utiliser le disque CD No.3 de Philips, ainsi qu'un volt-mètre digital.

- Faire démarrer le chassis en actionnant progressivement
- le potentiomètre R 3146 1,2,3 etc. Le laser étant focusé, sur C 2136 obtenir à l'aide du potentiomètre R 3146 une chute de tension de +400 mV DC par rapport à la masse.

Fig. 4.17

4.3.5 Test de la commande de moteur à effet Hall

-> fig. 4.18 / fig. 4.19

- Interromore le raccord Vc en désoudant la connection 02-4 sur le MOTOR PCB.
- Installer un potentiomètre d'ajustage de 22 kQ en série avec une résistance de 3,3 kQ sur le MOTOR PCB entre le point de raccord 02-3 et l'alimentation de -6V.
- Raccorder le patin du potentiomètre d'ajustage travers de l'interrupteur S avec le raccord 02-4 (Vc).
- A l'aide de l'oscilloscope mesurer d'abord parallèlement à R 3094 et ensuite au travers de R 3093.
 - L'oscilloscope ne doit pas être raccordé en même temps sur les deux résistances, étant donné que le courant se mesure sur les raccords +2 et -2.
- Mettre le potentiomètre d'ajustage sur le maximum. (Son patin se trouve maintenant raccordé à la résistance de 3,3 kQ).
- Placer un disque dans le tiroir.
- Mettre le CD Player en MODE SERVICE:
 - Presser sur l'appareil déclenché les deux touches PROGRAM STEP +/- resp. STEP +/- et enclencher en même temps l'appareil en pressant la touche POWER.
 - A l'affichage, on ne voit plus que l'indication clignotante STEP et en dessous le chiffre 1.
- L'interrupteur S étant enclenché, tourner le potentiomètre d'ajustage afin d'obtenir 3 impulsions complètes par 0,1 seconde. Choisir la polarité de l'oscilloscope de façon à ce que les impulsions montrent vers l'haut. L'aimant du rotor du moteur à 3 paires de pôles, il est donc possible de mesurer une révolution lors d'une vitesse de rotation de 600 tours/min.
- Mesure à l'aide d'un voltmètre DC sur O2-4 (Vc):
 - Vc = -1,7 +/- 0,5V
 - Mesure au travers 3094, valeur 1 = max. 56,4 mV
 Mesure au travers 3093, valeur 2 = max. 58,8 mV
 Différence: Valeur 1 Valeur 2 = max. 6,0 mV

 - Si la différence excède 6 mV, alors que la valeur 1 et la valeur 2 en dessous du maximum, le moteur est défectueux.
- Pour un bon fonctionnement le signal doit avoir les valeurs suivantes (fig. 4.19):
 - La valeur maximale (TOP) n'est pas définie (valeur 1 et vateur 2).
 - Différence de pointe 24 mV
 - Différence de flanc 36 mV
 - Valeur de la base (FOOT) non définie

Remarque:

- La différence de flanc n'apparait que lors d'une impulsion asymmétrique. La valeur de base (FOOT) correspond à DC-Offset.
- Exemples de mauvais signaux voir fig. 4.19.
- A l'aide du potentiomètre d'ajustage, régler une tension de -0.9 V sur le point 02-4 (Vc); le moteur doit continuer de tourner. Même lors de signaux avec une amplitude minimale. La symmétrie et la forme du signal ne doivent pas changer.
- Le MODE SERVICE se déclenche en étaignant l'appareil ou en retirant la fiche secteur. Le lecteur CD est ainsi prêt pour le fonctionnement normal à la prochaine mise sous tension.

Fig. 4.18

4.4 MESURE DES DONNEES AUDIO

- Facteur de distorsion
- Niveau de sortie
- Réponse en fréquence
- Diaphonie
- Ecart signal/parasites
- Ecart signal/bruit
- Linéarité de phase
- Evaluation acoustique

4.4.1 Facteur de distorsion

-> fig. 4.20

- Montage selon fig. 4.20 avec filtre de mesure de distorsions à la sortie VARIABLE OUTPUT [2].
- Régler le niveau maximal de sortie avec la touche VOLUME + [20].
- Jouer le disque test no. 3. Pour la mesure du canal gauche TRACK 4, et pour la mesure du canal droit TRACK 8.

Pour tous les fréquences du TRACK 4 et du TRACK 8, facteur de distorsion doit être inférieur à 0,005% (B126) et 0,004% (B226-S)

■ Effectuer les mêmes mesures aussi aux sorties FIXED OUTPUT [1].

4.4.2 Niveau de sortie

- Régler le niveau maximal de sortie avec la touche VOLUME + [20]
- Jouer le CD test no. 3 TRACK 2/3.
- Mesurer au voltmètre BF les niveaux des sorties FIXED [1] et VARIABLE [2].
- La valeur mesurée doit être de 2,5 V RMS ±1 dB. Egalité des canaux: meilleure que 0,2 dB.

4.4.3 Réponse en fréquence

- Contrôler le niveau de sortie (section 4.4.2).
- Jouer Le CD test no. 3, TRACK 2 (canal gauche / 1 kHz) et régler la référence de niveau à 0 dB.
- Jouer le CD test no. 3, TRACK 4 pour le canal gauche et TRACK 8 pour le canal droit.
- Au niveau de sortie maximal, la réponse en fréquence des sorties FIXED [1] et VARIABLE [2] doit être dans la to-Lérance de ± 0,1 dB pour tous les fréquences (41 Hz, 101 Hz, 997 Hz, 3163 Hz, 6373 Hz, 10007 Hz, 16001 Hz, 19001 Hz, 19997 Hz).

4.4.4 Diaphonie

- Régler le niveau maximal de sortie avec la touche VOLUME + [20].
- Jouer le CD test no. 3, TRACK 2 (canal gauche / 1 kHz) et régler la référence de niveau à 0 dB.
- Mesurer les deux sorties par un filtre passe-bas 30 kHz: TRACK 4 pour la mesure de diaphonie L à R. TRACK 8 pour la mesure de diaphonie R à L.
- L'affaiblissement de diaphonie doit être d'au moins 90 dB.

4.4.5 Ecart signal/parasites

- Régler le niveau maximal de sortie avec la touche VOLUME + [20].
- Jouer le CD test no. 3, TRACK 2 (canal gauche / 1 kHz) et régler la référence de niveau à 0 dB. Jouer le CD test no. 3, TRACK 18 ("silence digitale").
- Mesurer les sorties FIXED [1] et VARIABLE [2] par un filtre passe-bas 30 kHz.
- La valeur obtenue doit être supérieure à 100 dB (B126) et 102 dB (B226-S).

4.4.6 Ecart signal/bruit

- Régler le niveau maximal de sortie avec la touche VOLUME + [20].
- Mesurer les sorties FIXED [1] et VARIABLE [2] par un filtre passe-bas et un filtre avec courbe de pondération "A".
- Jouer le CD test no. 3, TRACK 2 (canal gauche / 1 kHz) et régler la référence de niveau à 0 dB.
- Jouer le CD test no. 3, TRACK 18 ("silence digitale").
- La valeur obtenue doit être supérieure à 106 dB (B126) et 108 dB (B226-S).

4.4.7 Linéarité de phase

-> fig. 4.21

- Régler le niveau maximal de sortie avec la touche VOLUME + [20].
- Jouer le CD test no. 3, TRACK 20.
- Raccorder l'oscilloscope à une sortie et évaluer optiquement les signaux rectangulaires à 100 Hz, 400 Hz, 1002 Hz et 5512 Hz. La courbe doit être symétrique (fig. 4.20).

4.4.8 Evaluation acoustique

- Jouer le CD test no. 5A et surveiller les défauts de reproduction (interruptions).
- Le CD test contient les défauts simulés suivants: Interruptions d'information de 400...900 μm sur TRACK 5 - TRACK 9.
 - Points noirs (Black Dots) de 300 ... 800 μm sur TRACK 11 TRACK 17.
- Empreinte digitale simulée sur TRACK 18 et 19.
- Cette évaluation n'est évidemment possible qu'avec un CD test impeccable et manipulé avec soin. Des défauts supplémentaires peuvent s'ajouter aux défauts simulés et provoquer l'interruption de la reproduction.

Fig. 4.21

5.	SCHEMATA	SPARE	PARTS	PIECE D	E RECHANGE
INHAL	т.	CONTENTS	SOMMAIR	E .	Page
BLOCK	DIAGRAM B	126/B226-S			5/1
TRANS	SFORMER PCB		1.769.450.00		5/3
TRANS	SFORMER PCB		1.769.451.00		5/3
TRANS	SFORMER PCB		1.769.452.00		5/3
DECO	ER PCB	.	1.769.421.00	*	5/5
DECO	ER PCB	.	1.769.422.00	**	5/8
MICRO	OPROCESSOR	PCB 📥	1.769.402.20	*	5/12
MICRO	OPROCESSOR	PCB 📥	1.769.406.20	*	5/16
MICRO	OPROCESSOR -	PCB 📥	1.769.404.20	**	5/18
MICRO	OPROCESSOR	PCB 🛕	1.769.407.20	**	5/22
LCD-F	PCB		1.769.255.00	*	5/25
LCD-	PCB		1.769.455.00	**	5/25
KEYBO	DARD LEFT		1.769.215.00		5/27
KEYBO	DARD RIGHT		1.769.202.00		5/27
INTE	RCONNECTION	CABLE	1.769.457.00		5/29
ILLU	MINATION BO	ARD	1.769.565.00	*	5/29
CD-DI	RIVE E	A		*	5/30
CD-DI	RIVE E		1.769.118.00	**	5/30

- * B126 only ** B226S only
- All other components are used with both CD-Players.
- The CD-Drives 1.769.117/118.00 are delivered complete with SERVO PCB and MOTOR PCB !

ALL PCBs MARKED WITH THIS SIGN A CONTAIN COMPONENTS SENSITIVE TO STATIC CHARGES.

PLEASE, REFER TO PREFACE BEFORE YOU REMOVE THESE BOARDS.

ABBREVIATIONS COMPONENTS

В	bulb		
BA	battery, accumulator	M	motor
BR	optocoupler B->LDR	ME	meter
E	capacitor	MIC	microphone
D	diode, DIAC	MP	mechanical part
DL	LED light-emit.diode	Р	plug (male)
DLQ	optocoupler LED->QP	PU	pick up
DLR	optocoupler LED->DLR	Q	transistor
DLZ	LED array,7s.display	QP	phototransistor
DP	photodiode	QPZ	phototransistor array
DZ	rectifier	R	resistor
E	electronic part	RP	light depend, resist.
kpEF	headphones	RT	temp. sensit. resist.
F	fuse	RZ	resistor array
FL	filter	S	switch
Н	head (sound-/erase-)	T	transformator
HC	hybrid circuit	TL	delay line
HE	hall element	TP	test point
IC	integrated circuit	W	wire, stranded wire
j	jack (female)	X	socket, holder
JS	jumper	ХB	lamp socket
ĸ	relay, contactor	XF	fuse holder
ì	coil, inductance	XIC	IC socket
ĽC	LC Display	Y	quartz, piezoelement
LS	toudspeaker	ż	network, array
SPEC	IFICATIONS OF ELEMENTS	MP	Metal paper
		PCF	Carbonfilm
CC	Carbonfilm	-	Polyester
Cer	Ceramic	Pme	Metallised Polyester
	Cermet	PP	Polypropylen
Εl	Electrolytic	Si	Silizium
EL Mf	Electrolytic Metalfilm		
Mf	Metalfilm	Si Tri	Silizium Trimmer
Mf		Si Tri Ra	Silizium Trimmer Raytheon
MANUI	Metalfilm FACTURER OF COMPONENTS	Si Tri	Silizium Trimmer Raytheon Radio Corporation
MANUI ADI	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc.	Si Tri Ra RCA	Silizium Trimmer Raytheon
MANUE ADI AMP	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex	Si Tri Ra RCA SDS	Silizium Trimmer Raytheon Radio Corporation RIVA
MANUI ADI AMP Com	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex	Ra RCA SDS Sie	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens
MANUI ADI AMP Com	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic	Ra RCA SDS Sie SIG	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics
MANUI ADI AMP Com Dam Del	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan	Ra RCA SDS Sie SIG	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner
MANUI ADI AMP Com Dam Del Ex	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar	Ra RCA SDS Sie SIG	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko
MANUI ADI AMP Com Dam Det Ex GI	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar General Instrument	Ra RCA SDS Sie SIG	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko Studer
MANUI ADI AMP Com Dam Del Ex GI Ha	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar General Instrument Harris	Ra RCA SDS Sie SIG 	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko Studer Siliconix
MANUI ADI AMP Com Dam Del Ex GI Ha Hi	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar General Instrument Harris Hirschmann	Ra RCA SDS Sie SIG SIG St St Sx Ti	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko Studer Siliconix Texas Instruments
MANUI ADI AMP Com Dam Del Ex GI Ha Hi	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar General Instrument Harris Hirschmann Intermetal, Valvo	Ra RCA SDS Sie SIG 	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko Studer Siliconix Texas Instruments TDK
MANUI ADI AMP Com Dam Del Ex GI Ha Hi ITT Mot	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar General Instrument Harris Hirschmann Intermetal, Valvo Motorola	Ra RCA SDS Sie SIG St St St St	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko Studer Siliconix Texas Instruments TDK Toko
MANUI ADI AMP Com Dam Del Ex GI Ha Hi	Metalfilm FACTURER OF COMPONENTS Analog Devices Inc. Ampex Componex Dam Electronic Delevan Exar General Instrument Harris Hirschmann Intermetal, Valvo	Ra RCA SDS Sie SIG St SX Ti	Silizium Trimmer Raytheon Radio Corporation RIVA Siemens Signetics Stetner Stocko Studer Siliconix Texas Instruments TDK

POWERS OF TEN

Milli- Mikro- Nano- Pico- Femto- Tera- Giga- Mega-	. v
$\begin{bmatrix} m \\ 10^{-3} & 10^{-6} & 10^{-9} & 10^{-12} & 10^{-15} & 10^{12} & 10^{9} & 10^{6} \end{bmatrix}$	103

CODE LETTERS AND COLORS

CAPACITORS

The tolerance category is some-	D =	0,5%	J = 5%
times specified by a letter af-	F =	1%	K = 10%
ter the rated capacitance.	G =	2%	M = 20%

MOLDED RF COILS

A wide silver-colored ring and 4 thin, differently colored rings identify molded RF coils. The wide silver ring indicates the start of the counting direction. The second, third, and fourth ring indicate the inductance in micro Henry (μ H), where two of the three rings represent the numeric value, the third one either a multiplier or the decimal point. In the latter case it has a golden color. The fifth ring identifies the tolerance in percent (\pm).

NOTE:

Some of the order numbers contained in the following lists are used for production purposes only. The reference numbers may deviate for service purposes.

Electrical components such as resistors, capacitors, transistors, IC's etc. having no special unit-specific number and not being identified respectively should be purchased locally.

				•
				·
				-
				J

TRANSFORMER BOARDS 1.769.450/451/452.00 B126/226-S

(i) 22	2,03,88	S.Wicki	0	0	Ю		0
_		Roth	B126/226-	S CD-PLAYER			PAGE / OF /
STUDER TRANSFORMER-BOAT		MER-BOARD-11	0 V	SC	1,769,451,00		

(1) 22,0888 S.Wick	(1) 24.10.88 S Wikki ()	0		0
Lot	B126/226-S CD-PLAYER			PAGE 1 OF 1
STUDER	TRANSFORMER-BOARD-240V		SC	1.769.452.00

@ 220388 S.Wicki	1) 24,10,88 S. Wicki () ()	0
I ILA	B126/226-S CD-PLAYER		PAGE A OF 1
1 1 1 1 1 1 1	TRANSFORMER-BOARD-220V	SC	1.769.450.00

TRANSFORMER BOARDS 1.769.450/451/452.00 B126/226-S

IND.	P05-N0-	PART 40.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.
(02)	cı	59.14.0472	4.7 n	NOISE SUPPRESSION CAPACITOR	
	F1	51.01.0119		T 200 mA 5 = 20	
(00)	L i	62.03.0109		CHOKE	
(02)	L1			not used	
(00)	MP1	1.769.450.11		TRANSFORMER-PCB	St
(01)	MP1	1.769.450.12		TRANSFORMER-PCB	St
	MP 2	54.02.0320		FLAT-PIN	
	MP3	54.02.0320		FLAT-PIN	
	MP4	53.03.0142		FUSE-CLIP	
	MP5	53.03.0142		FUSE-CL IP	
	MP	51.99.0129		FUSE-ISOLATION	
	MP7	1.769.450.02		LABEL	St
		54.01.0230	6 POLE	CIS PIN CASE	
		1.759.450.93		WIRING-LIST TRANSFORMER-BOARD	St
		35.23.0160		TY-RAP. PLASTIC	
(03)		28.21.0045	14 pcs	Tubular rivets	
	T1	1.769.450.01		TRANSFORMER 8126/226-5	St

(01) 13-04-88 phase to case distance too small (02) 24-13-88 Funkschutzzeichen (03) 24-10-88 modification for production MANUFACTURER: St=Studer

ORIG 88/03/21 (01) 89/04/13 (02) 88/10/24 (03) 88/10/24

S T U D E R (03) ±8/10/24 STU TRANSFORMER-BOARD-220V

PL 1.769.450.00 PAGE 1

IND.	P05.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NU F.
	F1	51.01.0113		T 400 mA 5 = 20	
	L 1	62.03.0100		CHOKE	
(00)	MP1	1.769.450.11		TRANSFORMER-PCB	St
(01)	MP	1.769.450.12		TRANSFORMER-PCB	St
	MP 2	54.02.0320		FLAT-PIN	
	MP3	54.02.0320		FLAT-PIN	
	MP 4	53.03.0142		FUSE-CL IP	
	MP5	53.03.0142		FUSE-CLIP	
	MP 6	51.99.0128		FUSE-ISOLATION	
	MP 7	1.769.451.02		LABEL	St
	MP8	54.01.0230	6 POLE	CIS PIN CASE	
	MP9	1.769.450.93		WIRING-LIST TRANSFORMER-BOARD	St
	MP 10	35.03.0160		TY-RAP, PLASTIC	
(02)	MP11	28.21.0045	14 pcs	Tubular rivets	
	T1	1.769.450.01		TRANSFORMER B126/226-S	St

ORIG 88/03/21 (01) 88/04/13 (02) 88/10/24

S T U D E R (02) 88/10/24 STU TRANSFORMER-BOARD-110V PL 1.769.451.00 PAGE 1

NO.	P05+N0+	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.
01)	c • • • • • • • •	57.14.0472	4.7 n	NOISE SUPPRESSION CAPACITOR	
	F1	51.01.0110		T 200 mA 5 ⇒ 20	
00)	L l	52.33.0103		CHOKE	
01)	L l			not used	
	MP1	1.769.450.12		TRANSFORMER-PCB	St
	MP 2	54.02.0320		FLAT-PIN	
	MP3	54.02.0320		FLAT-PIN	
	MP4	53.03.0142		FUSE-CLIP	
	MP5	>3.33.0142		FUSE-CLIP	
	MP	51.99.0128		FUSE-ISOLATION	
	MP 7	1.769.450.02		LABEL	St
	MP B	54.01.0230	6 POLE	CIS PIN CASE	
	MP 9	1.769.450.93		WIRING-LIST TRANSFORMER-BOARD	St
	MP 10	35.03.0160		TY-RAP. PLASTIC	
02)	MP11	28.21.0045	14 pcs	Tubular rivets	
	T1	1.769.450.01		TRANSFORMER B126/226-5	St

ORIG 88/08/16 (01) 89/10/24 (02) 88/10/24

S T U D E R (02) 88/10/24 STU TRANSFORMER-BOARD-24UV PL 1.769.452.00 PAGE 1

220V	
	1.769.450-123
	STUDER
	MP8 II
	yel org org MP 10

.769.450-12	
STUDER	
yel gn	MP8 MP9

(0) 2804.88 LC	(1) 6.10.88 /haris (2) 24.10.88 Shicki (0
Roll	B 126 COMPACT DISC PLAYER		PAGE 7 OF 3
STUDER	OECODER-BOARD	sc	1.768.421.00

0) 28,04,86 LC	(1) 610.88 Shick (2) 24.10.88 S. Nicki ().	•	0
Lock	B 126 COMPACT DISC PLAYER		PAGE 2 OF 3
STUDER	DECODER - BOARD	SC	1.769.421.00

DECODER PCB 1.769.421.00 B126

∑30488	() 6.10.88 (2) 24.10.88	0	0
Ed	B 126 COMPACT DISC	PLAYER	PAGE 3 OF 3
STUDER	DECODER-BOARD	sc	1.769.421.00

.CNI	P05.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NU F
	C1	59.22.8109 59.22.3470 59.06.0223	1 u 47 u	lov, el *** all capacito 10v, el *** otherwise	rs 10% /50 V *** e noted ***
	C 4	>9+22+4103	10 m	164 01	
(00)	L5	59.22.4222 59.22.5102	2.2 m	16V , e1 25V , e1	
	C 7	59.22.3470 59.06.0223	47 u 22 n	107 , 61	
	C 9	59 • 22 • 5220 59 • 22 • 3470	22 u 47 u	10V , e1 1UV , e1	
	C 10	59.06.0223	22 n		
	C12	59.22.6102	1 m	40V • e1	
	C13	59.22.5220 59.06.0223	22 u 22 n	25V , el	
	(• • • • 15 (• • • • 16	59.22.5220 59.36.0223	22 u 22 n	25V , e1	
	C 17	59.06.0223 59.06.0223	22 n 22 n		
	C 21	59.22.3101 59.36.0223	100 u 22 n 22 n	10V , e1	
00)	C 22	59-06-0223	22 n	not used	
•,,	C 23	59.06.0473	47 n		
00)	C 24	59-26-1479 59-06-0104	4.7 u 100 n	10V , sal	
03)	C • • • • 25	59-06-0104 59-06-0104	100 n 100 n	not used	
	C **** 27	59.06.0104 59.06.0104	100 n 100 n		
	C 29 C 3ú	59.06.0104 59.06.0104	100 n 100 n		
	C31	59.06.0104	100 n		
	C 32	59.00.0104 59.34.2470	10ú n 47 p	cer	
	C 35	59.06.0472 59.22.8109	4.7 n l u	10V , el	
τu	D E R (0	3) 38/10/24 Sm			421.00 PAGE
IND.	POS+NO+	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NUI
	C 37	59.22.3470	47 u 22 n 22 n	10V • el	
	C 38 L 39	59.06.0223 59.06.0223	22 n 22 n 33 p		
	C 40 C 41	59•34•2330 59•34•2330	33 p 33 p	c er c er	
	C 42	59.34.5471 59.06.0223	470 p 22 n	Cer	
	C 45	59.36.0104	100 n		
	C 46 C 47	59.36.0104 59.36.0104	100 n		
	C48	59-36-0104 59-06-0104	100 n 100 n		
	C 50	59.06.0104 59.06.0104	100 n		
	C 52	59.06.0223 59.36.0224	22 n 220 n		
	C • • • • 54	59-25-3101 59-31-6223	100 u 22 n	lov , el	
03)	L 56 L 57	59.99.0205 59.32.3103	6s n 10 n	cer	
03)	C 58	59.32.3103	10 n	cer	
03)	C 59	59.12.3103 59.12.7512	10 n 5•1 n	cer 1%	
	C 102	59.05.1682 59.05.1222	6+8 n 2-2 n	12	
	C 194 L 195	59.05.1222 59.12.7821	2•2 n 820 p	12	
	L 106 C 107	39.22.4101 39.06.0102	100 u	lov , el	
	C116	59.06.0223	22 n		
	C201	59.35.16d2 59.12.7512	6.8 n 5.1 n 6.8 n	14	
	C 202	59.05.1582 29.05.1222	6•8 n 2•2 n 2•2 n	11	
	C 204	59.05.1222 59.12.7821	2•2 n 820 p	14	
	C 206	59.22.4101	820 p 100 u	lov , el	
Ťυ	D E R (03) 88/10/24 Sa	DECODER-BO	ARG PL 1.769.	421.00 PAGE
ηD.	P05+N0+	PART NO.	VALUE	SPECIFICATIONS / ENUIVALENT	MANUF
	C216 C218	59.06.0102 59.06.0223 59.05.1582	1 n 22 n 6•8 n	14	
	0 2	50.04.0125	1 44 448 1 44 448		
	D4	50-04-0122 50-04-0122	1N4001 1N4001		
	D5	50-34-0125	1N4448 1N4001		
	D7	50.04.0122	194001		
	D9	50-14-0122 50-34-0122	1N4001 1N4001		
	D11	50.04.0122 50.04.0122	1 N4 00 1 1 N4 00 1		
	D12	50-04-0122	1N4001 1N4001		
	D15	50.04.0122	1N4001 1N4001		
	D16 D17	>0.34.0122 >0.34.0125	1N4001 1N4448		
	D18	20-34-0125	14448		
	07	70-71-0235		880 C3700/2200	
	101	50.10.0104	LM317	PUS. VOLTAGE-REGULATOR	
	102	>3.10.0104	LM317 LM337	POS. VOLTAGE-REGULATOR NEG. VOLTAGE-REGULATOR	
	10	>0.10.0104	LM317	PUS. VOLTAGE-REGULATOR	
	105	>0.10.0105	LM337	NEG. VOLTAGE-REGULATOR	

DECODER PCB 1.769.421.00 B126

IND.	POS • NO •	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.	1NO. PO5.NO.	PART NÚ.	VALUE	SPECIFICATIONS / EQUIVALENT	HANUF.	INO. POS-NO-	PART NO.	VALUE	SPECIFICATIONS / Eu	UIVALENT MANUF.	IND.	P05+N0+	PART NO+	VALUE	SPECIFICATIONS / EUL	JIVALENT	MANUF.
(00) (03) (03) (01) (01) (01) (01) (01)	J2 J2 J2 MP1 L2 MP2 MP3 MP3 MP3 MP4 MP3 MP5 MP5 MP5 MP5 MP15 MP15 MP15 MP16 MP16 MP16 MP16 MP17 MP18 MP18 MP18 MP19 MP20 MP.	54.01.0216	6 PIN 106 POL 3 PIN 24V 40U	CIS STRIP CINCH CIS STRIP PCB RELAIS OOBM-TRANSFORMER DECODER-PCB DECUDER-PCB THERNOPLASTIC CYNCH-SINK CLIP TO 220 SCREW, CYLINHEAD. M 3:0 ° 6 SCREW, CYLINHEAD. M 3:0 ° 6 MASHER: 0 5:5/3:2 SERRAL LOCK MASHER: 0 5/3:2 MASHER: 0 5:5/3:2 SERRAL LOCK MASHER: 0 6/3:2	St St St St	U	50.03.0510 50.03.0515 50.03.0515 50.03.0515 50.03.0515 50.03.0515 50.03.0523 50.03.0523 50.03.0515	80 136-16 8C 5478 8C 5578 8C 5	PNP, 45V. 1.5A SC 2178, aC 5500 SC 2178, aC 5500 AC 1078, aC 5500 NPP, NPN NPN NPN SC 2178, aC 5500 SC 2178,	SIX SIX cos coc coc	R. 18 R. 19 R. 20 R. 20 R. 22 R. 22 R. 25 R. 26 R. 27 R. 20 R. 20 R. 20 R. 31 R. 31 R. 31 R. 32 R. 31 R. 34 R. 35 R. 36 R. 37 R. 36 R. 37 R. 36 R. 37 R. 37 R. 38 R. 38 R. 31 R. 31 R. 32 R. 32 R. 33 R. 34 R. 36 R. 36 R. 36 R. 37 R. 36 R. 37 R. 37 R. 37 R. 38 R. 39 R. 30 R. 31 R. 31 R. 31 R. 32 R. 32 R. 32 R. 33 R. 34 R. 35	57-11-3151 57-11-3117 57-11-3117 57-11-3117 57-11-3107 57-11-3107 57-11-3103	150 1.13 k 100 k 101 k 390 k 110 k 310 k 110 k 1	21 24 24 24 24 24 24 24 24 24 24 24 24 24	PL 1.769-421-00 PAGE 3	(02) (03) el=el Manuf	06.10.88 mg 24.10.88 Fu ectrolytic, ACTURER: Ph= TI= 48/02/12 (37-11-3106 57-11-3112 57-11-3202 57-11-3202 57-11-3202 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 57-11-3103 69-01-0559 defication of inkschutzeiche dereceralische Mittigen Schotzeichen Grone Innstrumen	n f=metal filme uder+ SIX=Sil nts+ ADI=Anal (O2) 88/LO/O	Sal=solid aluminium liconix+ log Uevices lo (03) 88/10/24	PL 1-707-421-0	Pn 300 PAGE 1
5 7 13	D E R (03) 88/10/24 S#	DECODER-80A	ARD PL 1-769-421-0	OO PAGE 4	STUDER (03	3) 88/10/24 SW	DECODER-BOAR	D PL 1.769.421.0	D PAGE 5	210064 (0	3) 30/10/24 3#	DECODER-B	SUARU	PE 1070421100 PAGE 5			, ,		_		

(1) 48'04'83 FC	(1088 thusis 224,1088	S.Wiki ()	0
LAL	BZZG-S COMPACT DISC	PLAYER	PAGE 1 OF 3
STUDER	DECODER-BOARD	S	C 1.769.422.00

PL 1.769.422.00 PAGE 1 S T U 0 E R (04) 89/01/15 STU DECODER-80ARD

PL 1.769.422.00 PAGE 2

5 T U D E 9 (04) 49/01/15 STU DECOUER-HOARD

(00) MP....1 1.769.420.14

PL 1.769.422.00 PAGE 3

S T U D E R (04) 89/01/16 STU DECODER-80ARD

PL 1.769.422.00 PAGE 4

S T U D E + (04) 89/01/16 STU DECODER-BOARD

DECODER PCB 1.769.422.00 B226-S

IND.	POS.NO.	PART NO.	V AL UÉ	SPECIFICATIONS / EQUIVALENT	MANUF.	IND.	POS+NO+	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NU
(03)	MP1	1.769.420.15		DECODER-PCB	St		R56	57-11-3180	18		
	MP 2	1.759.420.01		HEAT-SINK	St		R 57	57-11-3331	330		
	MP3	1.769.420.02		THERMOPLASTIC			R 100	57.11.5106	10 M	10%	
	MP 4	1.769.420.03		CYNCH-SINK	St		R 101	57-11-3112	1.1 k	1 %	
	MP 5	50.20.2003		CLIP TO 220			R * * * 102	57-11-3202	2 k	12	
	MP6	50-20-2003		CLIP TO 220			R103	57.11.3242	2•4 k	12	
	MP 7	50.20.2003		CLIP TO 220			R 104	57-11-3242	2•4 k	14	
	MP8	50.20.2003		CLIP TO 220			R • • • 105	57-11-3221	220		
	MP9	50-20-2003		CLIP TO 220			R • • • 106	57.11.3103	10 k		
	MP11	50.20.2001		2 * TO 92 CLIP			K 107	57.11.3472	4•7 k	14	
		50-20-2001		2 * TO 92 CLIP			R • • • 108	57.11.3123	12 k	12	
	MP12	50-20-2001 50-20-2001		2 * TO 92 CLIP			K • • • 109	>7-11-3103	10 k		
	MP14	21.26.0354		2 * TO 92 CLIP			A 110	>7-11-3103	10 k		
	MP15	21-26-0354		SCREW. CYLINHEAD, M 3.0 0 6			R 111	57.11.3229	2.2		
(00)	MP 16	24-16-1030		SCREW, CYLINHEAD, M 3.0 = 6			R 112	57-11-3229	2 • 2		
(01)	MP 16	24-16-2030		WASHER. D 5,5/3,2			R113	57-11-3221	220	11	
(00)	MP 17	24-16-1030		SERRAL LOCK WASHER. D 6/3.2			R • • • 114	57-11-3220	22		
(01)	MP 17	24-16-2030		WASHER+ D 5+5/3+2			R • • • 115	57-11-3331	330	14	
01,	MP18	21.26.0354		SERRAL LOCK WASHER, D 6/3,2			R 116	57-11-3333	33 k	2%	
	MP19	21.26.0354		SCREW+ CYLINHEAD+ M 3.0 = 6 SCREW+ CYLIMHEAD+ M 3.0 = 6			R117	37-11-3135	1 M	10%	
(00)	MP 20	24-16-1030		WASHER+ D 5,5/3,2			R • • • 200	37-11-5106	10 M	10%	
(01)	MP 20	24.16.2030		SERRAL LOCK WASHER, D 6/3.2			R • • • 201	57.11.3112	1.1 k	1%	
00)	MP21	24.16.1030		WASHER+ D 5+5/3+2			R • • • 202	57.11.3202	2 k	1 %	
01)	HP 21	24.16.2030		SERRAL LOCK WASHER+ D 6/3+2			R • • • 203	>7.11.3242	2.4 k	12	
,	MP 22	20.23.7355		SCREW			R 204	57-11-3242	2.4 k	12	
	MP23	20-23-7355		SCREW			R • • • 205	57.11.3221	220		
	MP 24	1.769.420.05		CLIP			R 206	57-11-3103	10 k		
		201070420007		CLIF			R207	57.11.3472	4.7 k	14	
	P 1	54.14.2003	26 PIN	FLAT CABLE CONNECTOR			R • • • 208	57-11-3123	12 k	14	
		3.01.102003	20 . 2	TENT CADEL CONTECTOR			R • • • 209	57-11-3103	10 k		
	u1	50.03.0510	80 136-16	PNP+ 45V+ 1+5A			R • • • 210	>7.11.3103	10 k		
	U2	50.03.0436	BC 5478	BC 2379 BC 550B			R211	57.11.3229	2.2		
	43	50.03.0515	BC 5578	AC 307B, BC 560B			R 212	57-11-3229	2.2		
	24	50.03.0436	dC 5478	3C 237B+ BC 550B			R 213 R 214	57-11-3221	220	12	
00)	45	30.03.0343	ac 337-25	NPN			R214	57-11-3220	22		
02)	25	50.73.0523	ZTX651	NPN			R215	57-11-3331 57-11-3333	330 33 k	11 21	

POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NU F.	IND.	P05.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUI	IVAL ENT	М,
ü6	50.03.0352	ZTX 751	PNP			R217	57-11-3105	1 M	10%		
4 7	50-33-0340	aC 337-25	NPN								
J 8	50-03-0436	dC 5478	BC 2378 ⋅ BC 550b			XIC 11	53.03.0173	28 POL			
u9	50-03-0515	aC 557B	9C 307B+ BC 560b								
Q10	50.03.0436	3C 5478	8C 2378, BC 550B			Y 1	89.01.0559		11.2896 MHz. QUARTZ		Р
211	50.03.0515	dC 5578	3C 3078+ BC 5608								
J12	50.03.0515	BC 5578	3C 307B, BC 560B								
4 13	50.03.0436	dC 5478	BC 237B, BC 550B								
U14	>0.03.0436	BC 5478	3C 2379, BC 5>08								
415	50-03-0515	BC 5578	BC 3078, BC 560B								
· · · · · 16	>0.03.0515	BC 557B	9C 307B+ dC 560B								
u100	50.03.0216	J 111	ND-FET+ Rason < 30 ohm	XIX							
4101	50.03.0516	BC 337-25	NPN+1) see note below								
4 102	50-03-0516	aC 337-25	NPN+1) see note below								
····103	50.03.0625	dC 327-25	PNP,2) see note below								
J 104	50.03.0625	BC 327-25	PNP,2) see note below								
4 200	50-03-0216	J 111	ND-FET+ Ruson < 30 ohm	XIZ							
4000201	50-23-0516	BC 337-25	NPN+1) see note below								
2050	50-03-0516	BC 337-25	NPN.1) see note below								
4 203	50.03.0625	aC 327-25	PNP,21 see note below								
ü204	50.03.0625	BC 327-25	PNP,2) see note below								
R 1	57 - 11 - 3221	220	2%								
R Z	57.11.3681	680	24 *** general purpose	***							
R 3	57-11-3221	220	24 and unless otherwise note	1 000							
R 4	57-11-3681	680	24								
R >	57-11-3681	680			(01) 2	2.00.88 me	chanical contac	t with groun	ıd		
R 6	57-11-3681	680			(02) 0	6.10.88 mg	dification of	5			
R • • • • 7	57-11-3221	220	2 %		(03) 2	4.1J.88 Fu	nkschutzzeichen				
K 8	57-11-3821	820	21		(04) 1	6.01.89 po	sition-list cor	rection			
R 9	57.11.3222	2.2 k			2 x 8C	337 (50-03	+0516) same waf	er and there	al coupled with clip		
2 10	57.11.3393	39 k							al coupled with clip		
R 11	57.11.3472	4.7 k							Sal=solid aluminium		
R12	57.11.3472	4.7 k			MANUFA	CTURER: Ph=	Philips, St=Stu	der, SIX=Sil	iconix.		
R13	>7.11.3472	4•7 k					Texas Instrumen				
K14	57-11-3472	4.7 k							-		
R15	57-11-3472	4.7 k			ORIG 8	8/02/12 (01) 83/06/22	(02) 88/10/0	6 (03) 89/10/24 (0	4) 89/01/6	
D E R (04) 89/01/16 STU	0550050	RD PL 1.769.422.0		STU) 89/01/16 STU			L 1.769.4/2 -00	

IND.	POS+NO+	PART NO.		LUE	SPECIFICATIONS /	EQUIVALENT	MA!	NU F
	R16	57-11-3272	2.7	k				
	Reese17	57-11-3222	2.2	k				
	R 18	57-11-3151	150		24			
	R 19	57.11.3132	1.3	k	23			
	R 20	57-11-3101	100		21			
	R 21	57.11.3112	1.1	k	24'			
	R22	57-11-3473	47	k				
	R 23	57-11-3103	10	k				
	R 24	57-11-3394	390	k				
	R 25	57-11-3103	10	k				
	R 26	57-11-3333	33	k				
	8 27	57-11-3334	330	k				
	R 2 d	>7-11-3473	47	k				
	R 29	57-11-3103	10	k				
	R 30	57-11-3103	10	k				
	R 31	57-11-3103	10	k				
	R 32	>7-11-3273	27	k				
	R 33	>7.11.3104	100	k				
	R 34	57.11.3229	2.2					
	R • • • • 36	57-11-3580	68		24			
	R 37	>7.11.3105	1	м				
	R 3 t	57-11-3472	4.7	k				
	R 39	57-11-3103	10	k				
	R 40	57-11-3103	10	k				
	R 41	57 - 11 - 35 61	560					
	R 42	57.11.3103	10	k				
	R 43	57-11-3471	470					
	R 44	>7.11.3102	1	k				
	K 45	57.11.3102	1	k				
	R * * * * 4 b	57.11.3223	22	k				
	R 47	>7-11-3104	100	k				
00)	R 49	57.11.3751	750		14			
03)	R49	57.11.3911	910		1 4			
	R • • • • 50	>7-11-3104	100	k				
	2 51	57.11.3103		k				
	R 53	57.11.3152		k	1 4			
	R 54	57-11-3123	12	k	12			
τυ) 89/01/16 STU		ER-80		PL 1.769.422.0		

MICROPROCESSOR PCB 1.769.402.20 B126

J6: TO SERVO PCB

P1: TO DECODER PCB 1.769.421.00

J1: TO LCD PCB 1.769.255.0)

MICROPROCESSOR PCB 1.769.402.20 B126

MICROPROCESSOR PCB 1.769.406.20 ★ B126

★ CIRCUIT DIAGRAM EQUAL TO 1.769.402.20, CONNECTION TO SERVO PCB IS SEPARATELY LISTED → INTERCONNECTION CABLE 1.769.457.00

J6: TO SERVO PCB

P1: TO DECODER PCB 1.769.422.00

J1: TO LCD PCB 1.769.455.00

MICROPROCESSOR PCB 1.769.402.20 B126

	POS-NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.	I ND .	POS+NO-	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.
	C1	59-22-6100	10 u	lov . ei *** all capacitor 10	t /50 V ***		R21	57.11.3103	10 k		
	C2	59-06-0102	1 0	ass otherwise note	ed ÷÷÷		R * * * * 22	57-11-3103	10 k		
	C 3	59-22-3470	47 u	10V , el			R 23	57-11-3103	10 k		
	C 4	59.06.0103	10 n				R 27	57.11.3821 57.11.3820	820 82		
	C10	59-22-8109	1 u	10V , e)			R28	57.11.3472	4.7 k		
	C12	59.06.0102	1 n 22 n				Ra29	57-11-3473	47 K		
	C13	59.06.0223 59.06.0102	1 0				R * * * * 30	57-11-3189	1 + 8		
	C 15	59-06-0223	22 n				R 32	57-11-3101	100		
	C 16	59-06-0223	22 n				R • • • • 33	57.11.3101	100		
	C17	59-06-0223	22 n				R 34	57-11-3104	100 k		
	C 18	59.06.0223	22 n				R 35	57-11-3564 57-11-3104	560 k 100 k		
	C19	59.06.0223	22 n				R36 R37	57-11-3564	560 k		
	C20	59-06-0223	22 n				R38	57-11-3473	47 k		
	C 51	59-06-0105	1 U 22 n				R 39	57-11-3683	68 k		
	C 23	59.06.0223 59.06.0223	22 n				R40	57-11-3473	47 K		
	C26	59.34.2330	33 p	cer			R 41	57-11-3472	4.7 k		
	C 27	59.34.2330	33 p	cer			R 42	57.11.3472	4.7 k		
	C 28	59-22-6100	10 u	10V , el			R 43	57-11-3472	4.7 k		
	C Z9	59.06.0104	100 n				K 44	57-11-3472	4.7 k		
	C 30	59.06.0223	22 n				R45	57.11.3105 57.11.3472	1 M 4•7 k		
	C31	59.06.0223	22 n	10V - el			R 46 R 47	57.11.3472	4.7 k		
	C 32	59.22.8109 59.22.3470	1 u 47 u	10V + el			R48	57-11-3472	4+7 K		
	C 34	59-06-0223	22 n	104 4 61			R 49	57-11-3271	270		
	C 35	59-06-0223	22 n				R * * * * 50	57-11-3103	10 k		
	C 36	59.22.3470	47 u	1UV + e}			K 51	57.11.3472	4.7 k		
	C 37	59+36+0223	22 n			(00)	R52	57-11-3103	10		
	C 38	59-06-0223	22 n			(01)	K 52	57-11-3103	10 k		
	C 39	59.06.0102	1 n				R • • • • 53	57-11-3104	100 k		
}	C 40	59.32.4102	1 n	cer			R54	57-11-3103 57-11-3153	10 k 15 k		
			3.9V	ZENER DIODE			R 58 R 59	57-11-3821	820		
	D2	50-04-1101 50-04-1101	3.99	ZENER DIODE			R 60	57-11-3102	i k		
	D3	50.04.0125	1 N4 448	general purpose			A 61	57-11-3561	560		
	D4	>0.04.0125	194448	general purpose			R 6 Z	57.11.3682	6-8 k		
TU	D E R (01) 98/10/06 24	MICROPROCE	SS OR-BO PL 1-769-402-;	20 PAGE 1	S T U	DER (01) 88/10/06 Sw	MICROPROCE	SSOR-BOARD PL 1.769.402.20	PAGE
IND.	POS - NO -	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NU Fa		P05+N0-	PART NO+		SPECIFICATIONS / EQUIVALENT	MANU
							R63	57-11-3103	10 k		
	07	>0.04.0125	1 N4448 1 N4448	general purpose general purpose			R 64	57.11.3223	22 k		
	D10	50.04.0125	1 114440	general purpose			R 65	57.11.3392	3.9 k		
	DL 1	50.04.2119	MV 57124	LED			R 66	57-11-3102	1 k		
	DL 3	50-04-3001	OP8804	DPTD-COUPLER			R 67	57-11-3472	4.7 k		
	UL4	50.04.3001	DP8804	OPTO-COUPLER			R 68	57-11-3472	4.7 k		
	DL 5	50.99.0126	4428	OPTO-COUPLER			R69	57-11-3021	820		
	DL 6	50.99.0126	4 N2 B	OPTO-COUPL ER			R * * * * 70	57.11.3103	10 k		
	DL 7	50.99.0111	MCT6	DUAL OPTO-COUPLER			R73	57-11-3561	560		
	DP 1	50.04.2136	BP# 50	PHOTO DIDDE			H1	1-759-402-93		WIRING-LIST MICROPROCESSOR-BOAD	St
	161	50.11.0121	TBA2800	1R-RECEIVER			XIC 5	53.03.0164	6 PIN	TC-SOCKET	

	07	>0.04.0125 50.04.0125	1 N4448 1 N4448	general purpose general purpose	R63 R64	57.11.3103 57.11.3223	10 k 22 k		
	D	30-04-0125	14440	general purpose	R * * * * 65	57-11-3392	3.9 k		
	011	50.24.2119	NV 57124	L ED	R * * * * 66	57-11-3102	1 k		
	DL 3	50-04-3001	OP8804	DPTD-COUPLER	R 67	57-11-3472	4.7 k		
	UL	50.04.3001	BP8804	OPT O-COUPLER	R 68	57.11.3472	4.7 k		
	DL	50.99.0126	4428	OPTO-COUPLER	R69	57-11-3021	820		
	DL 6	50.99.0126	4 N2 B	OPTO-COUPLER	R70	57.11.3103	10 k		
	DL 7	50.99.0111	MCT6	DUAL OPTO-COUPLER	R73	57-11-3561	560		
	DP 1	50.34.2136	BP# 50	PHOTO DIDDE	H1	1-759-402-93		WIRING-LIST MICROPROCESSOR-BORD	St
	101	50.11.0121	TBA2800	IR-RECEIVER	XIC5	53.03.0164	6 PIN	TC-SOCKET	
	103	50.05.0284	ULN2003	7-FACH DARLINGTON DRIVER	XIC6	53.03.0164	6 PIN	1C-SOCK ET	
	10	50-17-1574	HC 574	OCTAL O-TYPE FLIP FLOP	X1C16	53.03.0173	28 PIN	TC-SOCK ET	
	155	50.17.1645	HC645	DCTAL BUS TRANSCEIVER					
	10	50-17-1014	HC 14	HEX SCHMITT TRIGGER INVERTER	Y * * * * * 1	89.01.0560		4.9152 MHZ. QUARTZ HC 49 U	
	107	50.17.1574	HC 574	OCTAL D-TYPE FLIP FLOP					
	108	50-17-1136	HC138	3 TO 8 LINE DECODER					
	109	53.17.1074	HC 74	DUAL D-TYPE FF WITH PRESET AND CLEAR					
	15 13	50.17.1574	HC 574	OCTAL D-TYPE FLIP FLOP					
	1011	50-17-1138	H£138	3 TO 8 LINE DECODER					
	1012	50-17-1000	HC 00	QUAD 2-INPUT NAND GATE					
	1014	50.09.0107	RC4559	DUAL OP-AMP					
	10 15	50-14-0107	HM6116LP	ZK≑B RAM					
(00)	1016	1.769.403.20		BIZ6/226-S CD-SOFTHARE					
(01)	1616	53-14-0153	HN27256	8126/226-5 CD-SOFTWARE 1.769.403.20					
	1617	50-11-0127	TL7705	RESET GENERATOR					
	1018	50-16-0121	63AD3-Y	MICROPROCESSOR					
	J1	54.01.0215	7 PIN	CIS-SOCKET STRIP					
	J2	54.31.0291	11 PIN	CIS-SOCKET STRIP					
	J3	54.01.0290	10 PIN	CIS-SUCKET STRIP		unkschutzzeiche	1		
	J 4	>4.01.0249	3 PIN	CIS-SOCKET STRIP	el=electrolytic				
	J5	>4.20.2001	6 PIN	DIN JACK SOCKET	MANUFACTURER: S:	t=2 those			
	J 6	>4.99.0208	5 PIN	STOCKO-CONNECTOR	0071 00103131	(01) 88/10/06			
	J 7	54.99.0207	14 PIN	STOCKO-CONNECTOR	ORTG 88/03/21	(01) 60/10/04			
SΤU	DER (01) 88/10/06 S#	MICROPROCE	SSOR-BDARD PL 1.769.402.20 PAGE	2 STUDER (01) 88/10/06 SW	MICROPROC	ESSOR-80ARD PL 1.769.4@. ≥ 0	PAGE 5

INO.	+00.20q	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	HANUF.
	L1	52.72.3479	4.7 uH	HF-CHOKE HF-CHOKE	
	L 2	62.52.3479	4-7 UH	HF-CHUKE	
	MP1	1.769.402.11		MICROPROCESSOR PCB	St
	MP2	1.769.400.02		TR-SHIELD-CASE	St
	MP3	1.769.330.31		IA-DIODE-SOCKET	St
	MP4	31.01.0108		KABELTUELLE Kabeltuelle	
	MP5	31.01.0108		KABELIDELLE	
	P1	54.14.2003	26 P1N	FLAT CABLE CONNECTOR	
	41	50.33.0351	BC 327-25		
	QZ	50-33-0340	BC 337-25		
	43	50.03.0515	BC 5578	BC 307B, HC 560B	
	34	50.33.0436	BC 5478	BC 2378+ BC 5508	
	0 5	50.03.0436	BC 5478	BC 2378, BC 550b BC 2378, BC 550B	
	2	50.03.0436	8C 5478 8C 5478	BC 2378+ BC 5508	
	97	50.03.0436 50.03.0436	8C 547B	BC 2378+ BC 550B	
	98	50.03.0436	BC 5478	BC 237B+ BC 550B	
	010	50.03.0436	8C 547p	9C 237B+ 8C 5506	
(00)	J11	50.33.0436	BC 5478	8C 237B+ 8C 550B	
(01)	911	50.33.0351	BC327-25		
	R1	57.11.3101	700	*** all resistors 5% .25	M 000
	R 2	57-11-3392	3.9 k	eee general purpose	000
	K 3	57-11-3391	390	*** unless otherwise note	14 440
	R * * * * * 4	57.11.3102	1 k		
	R B	57-11-3472 57-11-3472	4.7 k 4.7 k		
	R9 R10	57-11-3472	4.7 k		
	R 14	57-11-3103	10 k		
	R16	57-11-3103	10 k		
	R17	57.11.3683	68 k		
	R18	57+11+33 3 3	33 k		
	R19	57-11-3103	10 k		
	R • • • • 20	57-11-3103	10 K		
		N2 90/01/88 [10	MICROPROCE	SSOR-ROARD PL 1-769-402-	

MICROPROCESSOR PCB 1.769.406.20 B126

POS-NO-	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.	IND. POS-NO.	PART NO.	VALUE	SPECIFICATIONS	/ EJUIVALENT	HANUF
C 2	59.22.6100 59.06.0102	10 u 1 n	10V , el *** all capacitor l	.0% /50 V *** ted ***	R *** * 26 R *** * 27	57-11-3921 57-11-3920	820 92			
C4 C10	59.22.3473 59.06.0103 59.22.8109	47 u 10 n 1 u	10V , el 10V , el		R28 R29 R30	57-11-3472 57-11-3473 57-11-3189	4+7 k 47 k 1•8			
C12 C13	59.06.0102 59.06.0223	1 n 22 n	101 7 21		R32 R33	57-11-3101 57-11-3101	100			
C14 C15	59.06.0102 59.06.0223	1 n 22 n			R 34 R 35	57.11.3104 57.11.3564	100 k 560 k			
C16 C17 C18	59.06.0223 59.06.0223 59.06.0223	22 n 22 n 22 n			R36 R37 R38	57-11-3104 57-11-3564 57-11-3473	100 k 560 k 47 k			
C19 C20	59.36.0223 59.06.0223	22 n 22 n			R40	57-11-3683 57-11-3473	68 k 47 k			
C23 C24	59.06.0105 59.06.0223 59.06.0223	22 n 22 n			R****41 R****42 R****43	57-11-3472 57-11-3472 57-11-3472	4.7 k 4.7 k 4.7 k			
C * * * * 26 C * * * * 27	59.34.2330 59.34.2330	33 p 33 p	cer cer		R44 245	57•11•3472 57•11•3105	4-7 k 1 M			
C • • • • 28	59.22.6103 59.06.0104	10 u 100 n	10V , el		R45 R47 R48	57-11-3472 57-11-3472 57-11-3472	4.7 k 4.7 k 4.7 k			
C30 C31 C32	59.36.0223 59.06.0223 59.22.8109	22 n 22 n 1 u	10V + el		R 49 R 50	57.11.3271 57.11.3103	4.7 k 270 10 k			
C33	59.22.3470 59.06.0223	47 u 22 n	10v , el		R51 R52	57.11.3472 57.11.3103	4-7 k 10 K			
C 35 C 36 C 37	59.06.0223 59.22.3473 59.06.0223	22 n 47 u 22 n	10V . el		R53 R54 R58	57-11-3104 57-11-3103 57-11-3153	100 k 10 k 15 k			
C 3 d	59.06.0223 59.06.0102	22 n 1 n			R59 R60	57-11-3821 57-11-3102	820 1 k			
Di	59-32-4102 50-04-1101	1 n 3.9v	CEF ZENER DIODE		R62 R63	57-11-3561 57-11-3582 57-11-3103	560 6+8 k 10 k			
D2 D3	50.04.1101	3.9V 1N4448	ZENER DIODE general purpose		R64 R65	57-11-3223 57-11-3392	22 k 3.9 k			
D4	50.04.0125 40 (02) 88/10/24	194448 Microproce	general purpose SSOR-BDARD Pt 1.769.406	0.20 PAGE 1	866 STUDER (02	57.11.3102) 88/10/24 Sw	1 k MICROPROCE	SS OR-BO ARD	PL 1-769-406-2	O PAGE
POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MA NUF.	1N3- POS-NO-	PART 40-	VALUE	SPECIFICATIONS	/ EQUIVALENT	HANU
D7 D10	50.04.0125 50.04.0125	1 N4448 1 N4448	general purpose general purpose		R57 R68	57.11.3472 57.11.3472	4.7 k 4.7 k			
DL1 DL3	50-04-2119 50-04-3001	MV 57124 OP8804	LEO OPTO-COUPLER		R59 R70 R73	57.11.3821 57.11.3103 57.11.3561	820 10 k 560			
DL4 UL5	50.04.3001 50.99.0126	0P6804 4 N 2 B	OPTO-COUPLER OPTO-COUPLER		XIC5	53-03-0164	6 PIN	1C-SOCKET		
DL7	50.99.0126 50.99.0111	4428 4676	OPTO-COUPLER OUAL OPTO-COUPLER		XIC6 XIC16	53.03.0164 53.03.0173	6 PIN 28 PIN	IC-SOCKET		
DP1	50.34.2136	BP# 50	PHOTO DIGGE		Y1	89.01.0560		4+9152 MHZ+	QUARTZ HC 49 U	
IC1 1C3 IC4	50.11.0121 50.35.0284 50.17.1574	TBA2800 ULNZ003 HE574	IR-RECEIVER 7-FACH DARLINGTON DRIVER OCTAL D-TYPE FLIP FLOP							
IC5 IC6	50.17.1645 50.17.1014	HE645 HC 14	OCTAL BUS TRANSCEIVER HEX SCHMITT TRIGGER INVERTER							
158	50.17.1574 50.17.1138	HC574 HC136	OCTAL D-TYPE FLIP FLOP 3 TO 8 LINE DECODER							
109 1131	50-17-1074 50-17-1574 50-17-1138	HC 74 HC574 HC138	DUAL D-TYPE FF WITH PRESET AND (DCTAL D-TYPE FLIP FLOP 3 TO B LINE DECODER	CLEAR						
1012	50.17.1003 53.09.0107	HC 00 RC4559	QUAD 2-INPUT NAND GATE DUAL OP-AMP							
IC15 IC16 IC17	50-14-0107 50-14-0153 50-11-0122	HM6116LP HM27256F1 TL7705	2k*8 RAM BI26/226-S CD-SOFTWARE 1.769.403 RESET GENERATOR	3 • 20						
1018	53-16-0121	63A03-Y	MICROPROCESSOR							
J2 J3	54.01.0218 54.01.0291 54.01.0290	7 PIN 11 PIN 10 PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP		(01) 6-10-88 Fun	bechut traichen				
J5	54.01.0249 54.20.2001	3 PIN 6 PIN	CIS-SOCKET STRIP DIN JACK SOCKET		(02) 24-13-88 Fun el=electrolytic,	kschutzzeichen cer≈ceramic+				
J6 L1	54.01.0312	19 PIN 4.7 um	CIS-SOCKET STRIP HF-CHOKE		MANUFACTUREŘ: St ORIG 88/09/19 (Studer				
	02) 88/10/24 54	MICROPROCES		20 PAGE 2	S T U D E R (02				PL 1-769-406-2	O PAGE
POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.						
L2	62.02.3479	4.7 UH	MF-CHOKE							
MP1 MP2	1.769.406.11 1.769.406.12 1.769.400.02		MICROPROCESSOR PCB MICROPROCESSOR PCB IR-SHIELD-CASE	St St St						
MP3 P1	1.769.330.01	26 PIN	TR-DIODE-SOCKET FLAT CABLE CONNECTOR	St						
Q1	50.03.0351	ac 327-25								
02	50.03.0340 50.03.0515 50.03.0436	BC 337-25 BC 557B	BC 3078, BC 5606 BC 2378, BC 5508							
Q5 Q6	50-03-0436 50-03-0436	8C 5478 8C 5478 8C 5478	8C 2378, &C 5508 8C 2378, &C 5508							
4	50.03.0436 50.03.0436 50.03.0436	8C 5478 8C 5478 8C 5478	8C 2378. 8C 5508 8C 2378. 8C 5508							
910 411	50.03.0436 50.03.0436 50.03.0351	8C 5478 8C 5478 8C 327-25	8C 2378, 8C 5508 8C 2378, BC 5508							
A 1	57.11.3101	F 00	oos all resistors 5% -29	5W 888						
R2 R4	57-11-3392 57-11-3391 57-11-3102	3•9 k 390 1 k	oct general purpose oct unless otherwise note							
R9	57-11-3472 57-11-3472	4-7 k 4-7 k								
R10 214	57.11.3472 57.11.3103 57.11.3103	4.7 k 10 k 10 k								
	57.11.3683	10 k 68 k 33 k								
R17 R17	57-11-3333									
R17 R16 R19 R20	57-11-3103 57-11-3103	10 k 10 K								
R17 R19	57-11-3103	10 k								

MICROPROCESSOR PCB 1.769.404.20 B226-S

٥.	POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.		POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT MAR
	C1	59-22-6100	10 u	10V , el *** all capacitor 10% /			R1	57.11.3101	100	*** all resistors 5% .25% ***
	C3 C4	59.06.0102 59.22.3470 59.06.0103	1 n 47 u	oos otherwise noted	***		R2 R3 R4	57-11-3392 57-11-3391	3.9 k 390	*** general purpose *** *** unless otherwise noted ***
	C 5 C 6	59.22.3473	10 n 47 u 330 p	10V , el cer , 2%		(00)	R5 R5	57-11-3102 57-11-3511 57-11-3751	1 k 510 750	
	E7	59-06-0333 59-06-5472	33 n 4.7 n	53		(01)	R	57-11-3102 57-11-3132	1 k 1-3 k	
	C 9 C 10	59-26-5472 59-22-8109	4.7 n 1 u	5\$ 10V • el		,,	R7 R6	57.11.3224 57.11.3472	220 k 4•7 k	
	C 11 C 12	59-22-4221 59-06-0102	220 u 1 n	16V , el			R9 R10	57.11.3472 57.11.3472	4.7 k 4.7 k	
	C14	59-06-0223 59-06-0102	22 n				R12	57.11.3913 57.11.3913	91 k 91 k	12 12
	C15 C16 C17	59.06.0223 59.06.0223 59.06.0223	22 n 22 n 22 n				R14 R15	57.11.3103 57.11.3103 57.11.3103	10 k 10 k 10 k	
	C18	59.36.0223	22 n 22 n				R16	57-11-3103 57-11-3683	10 k 68 k	
	C 20	59.06.0223 59.06.0105	22 n 1 u				R18 R19	57.11.3333 57.11.3103	33 k 10 k	
	C23	59.06.0223 59.06.0223	22 n				R20	57-11-3103 57-11-3103	10 K	
	C 24 C 26 C 27	59.06.0223 59.34.2330 59.34.2330	22 n 33 p 33 p	cer cer			R22 R23	57-11-3103 57-11-3103 57-11-3124	10 k 10 k 120 k	
	C 28 C 29	59.22.6103 59.06.0104	10 u	10V , e1			R25 R26	57-11-3124 57-11-3104 57-11-3821	100 k 820	
	C30 C31	59.06.0223 59.06.0223	22 n 22 n				R27 R28	57.11.3820 57.11.3472	82 4•7 k	
	C 32 C 33	59.22.8109 59.22.3470	1 u 47 u	10V , el 10V , el			R29 R30	57.11.3473 57.11.3189	47 k 1-8	
	C 35 C 36	59-06-0223 59-06-0223 59-22-3473	22 n 22 n 47 u	10 V . el			R31 R32 R33	57-11-3103 57-11-3101 57-11-3101	10 k 100 100	
	C37 C38	59.06.0223 59.06.0223	22 n 22 n	104 4 61			R34 R35	57-11-3104 57-11-3564	100 k 560 k	
		38/10/06 54		SSOR-BOARD PL 1.769.404.20	PAGE 1	STU		02) 88/10/06 SM	MICROPROCE	SSOR-BOARD PL 1-769-404-20 PAGE
) .	POS+NO-	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	HA NU F.	IND.	POS.NO.	PART NO.	VALUE 100 k	SPECIFICATIONS / EQUIVALENT MAN
•	C40	59-32-4102	1 n	Cer			R37 R38	57-11-3564 57-11-3473	560 k 47 k	
	D1	50.34.1131 >0.04.1101	3.9V 3.9V	ZENER DIODE Zener Diode			R39 R40	57-11-3683 57-11-3473	68 k 47 k	
	D3 D4 D5	50-04-0125 50-04-0125 50-04-0125	1 N444B 1 N4448 1 N444B	general purpose general purpose general purpose			R42 R43	57.11.3472 57.11.3472 57.11.3472	4.7 k 4.7 k 4.7 k	
	D6 D7	50-04-0125	1N4448 1N4448	general purpose general purpose			R44 R45	57-11-3472 57-11-3105	4-7 k	
	D 9	50-04-0125 50-04-0125	1 N 4 4 4 8	general purpose general purpose			R46 R47	57.11.3472 57.11.3472	4.7 k	
	D10	50.34.0125	14448	general purpose			R48	57.11.3472 57.11.3271	4+7 k 270	
	DL 3 DL 4	50.74.2117 50.04.3001 50.04.3001	MV 57124 0P8804 0P8804	DPTO-COUPLER OPTO-COUPLER		(00)	R • • • • 50 R • • • • 51 R • • • • 52	57-11-3103 57-11-3472 57-11-3103	10 k 4.7 k 10	
	DL • • • • 5 DL • • • • 6	50.99.0126	4N28 4N28	DPTO-COUPLER DPTO-COUPLER		(01)		57-11-3103 57-11-3104	10 k	
	DL 7	53.99.0111	4016	DUAL OPTO-COUPLER			R 54 R 55	57-11-3103 57-11-3272	10 k 2.7 k	
	DP • • • • 1	50.04.2136	BPN 50 TBAZ800	PHOTO DIQUE TR-RECEIVER			R56 R57	57-11-3272 57-11-3272	2.7 k 2.7 k	
	102	50-11-J121 50-99-0114 50-05-0284	L 272 M ULNZ003	DUAL POWER OP-AMP 7-FACH DARLINGTON DRIVER			R58	57-11-3153 57-11-3821	15 k 820	
	10	50.17.1574	HC 574	OCTAL D-TYPE FLIP FLOP OCTAL BUS TRANSCEIVER			R60 R61 R62	57-11-3102 57-11-3561 57-11-3682	l k 560 6.8 k	
	IC6 IC7	50-17-1645 50-17-1014 50-17-1574	HC 14 HC574	HEX SCHMITT TRIGGER INVERTER OCTAL D-TYPE FLIP FLUP			R64	57.11.3103 57.11.3223	10 k 22 k	
	109	50.17.1138 53.17.1074	HE 138 HC 74	3 TO 8 LINE DECODER OUAL D-TYPE FF WITH PRESET AND CLEA	NR.		R65 R66	57.11.3392 57.11.3102	3.9 k 1 k	
	IC10 IC11	50-17-1574 50-17-1138 50-17-1009	HC574 HC138 HC 00	OCTAL O-TYPE FLIP FLOP 3 TO 8 LINE DEECODER QUADZ-INPUT NAND GATE			R67	57.11.3472 57.11.3472 57.11.3821	4.7 k	
	IC12 IC14 IC15	50.09.0107 >0.14.0107	RC4559 HM6116LP	DUAL OP-AMP 2k+8 RAM		(00)	R70 R71	57-11-3103 57-11-3103	820 10 k 10 k	
v		S) 98/10/06 24		SS OR-BOARD PL 1.769.404.20	PAGE 2			05) 38\F0\0P 2M	MICROPROCES	SS OR-BOARD PL 1.769.404.20 MGE
	POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.	[NO. 	POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT MA.N.
	IC 16 IC 17	50-14-0153 50-11-0122	HN27256 TL7705	B126/226~S CD-SOFTWARE 1.769.403.20 RESET GENERATOR		,	R72 R73	57.11.3103 57.11.3561	10 k 560	
	J18	50-16-0121	63A03-Y 11 PIN	MICROPROCESSOR CIS-SOCKET STRIP			T1	1.022.602.00		DISPLAY TRANSFORMER
	J2 J3	54.01.0291 54.01.0290	IL PIN IG PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP			***** 1	1.769.402.93		WIRING-LIST TICROPROCESSOR-80ARO S t
	J 5	54.01.0249 54.20.2001	3 PIN 6 PIN	CIS-SOCKET STRIP DIN JACK SOCKET			XIC5	53.03.0164 53.03.0164	6 PIN 6 PIN	IC-SOCKET
	J7	54.99.0208 54.99.0207	5 PIN 14 PIN	STOCKO-CONNECTOR STOCKO-CONNECTOR			x1C16	53.03.0173	28 PIN	IC-SOCKET
	L • • • • • 1 L • • • • • 2	52.32.3479 62.02.3479	4.7 uH 4.7 uH	HF-CHOKE HF-CHOKE			Y 1	89.01.0560		4.9152 MHZ. QUARTZ HC 49 U
	MP 1	1.769.402.11		MICROPROCESSOR PCB	St					
	MP3 MP4	1-759-400-02		IR-SHIELD-CASE IR-DIDDE-SOCKET KABELTUELLE	St St St					
		31.01.0108 31.31.0108		KABELTUELLE KABELTUELLE						
	MP5		26 PIN	FLAT CABLE CONNECTOR						
	P1	54.14.2003								
	P1 21	50.03.0351 50.03.0343	BC 327-25 BC 337-25							
	P1 21 42 43 94	50.03.0351 50.03.0343 50.03.0515 50.03.0436	BC 337-25 BC 5578 BC 5478	BC 3078, BC 5608 BC 2378, BC 5508						
	P1 21 32 93 95	50.03.0351 50.03.0343 50.03.0515 50.03.0436 50.03.0436	8C 337-25 8C 5578 8C 5478 8C 5478 8C 5478	BC 2378+ BC 5508 BC 2378+ BC 5508 BC 2378+ BC 5508		(01) 0	5.07.00	2015(647*29 +22-		
	P1 31 J2 43 G6 37	50.03.0351 50.03.0343 50.03.0515 50.03.0436 50.03.0436 50.03.0436 50.03.0436	8C 337-25 8C 5578 8C 5478 8C 5478 8C 5478 8C 5478	BC 2378, BC 5508 BC 2378, BC 5508 BC 2378, BC 5508 BC 2378, BC 5508 BC 2378, BC 5508		(01) 0: (02) 0:	5.07.88 40 6.10.88 Fu	DDIFICATION AFTE	t O-SERIE	
	P1 31 42 94 95 96	50.03.0351 50.03.0340 50.03.0515 50.03.0436 50.03.0436 50.03.0436 50.03.0436	8C 337-25 8C 5578 8C 5478 8C 5478 8C 5478 8C 5478	BC 2378, BC 550B BC 2378, BC 550B BC 2378, BC 550B BC 2378, BC 550B		(OZ) 0: e1=e1e:	6.10.88 Fu	unkschutzzeichen , cer×ceraaic,	l O-SERIE	

MICROPROCESSOR PCB 1.769.407.20 ★ B226-S

★ CIRCUIT DIAGRAM EQUAL TO 1.769.404.20, CONNECTION TO SERVO PCB IS SEPARATELY LISTED →INTERCONNECTION CABLE 1.769.457.00

M

- PI)\$+NO+	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.	IND. POS.NO.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MAN
	1	59-22-6100 59-06-0102	10 u	10V , el *** all capacitor 10%	/50 ¥ *** d ***	R 5 R 5	57-11-3751 58-02-5222	750 2•2 k	lin	
٤.	3	59.22.3470 59.06.0103	47 u 10 n	10V + e1		R7 R8	57-11-3224 57-11-3472	220 k 4.7 k 4.7 k		
٤.	5	59.22.3470	47 U 330 p	10V • e) cer • 2%		R9 R10 R11	57-11-3472 57-11-3472 57-11-3913	4.7 k 4.7 k 91 k	12	
Ç.	7	59.06.0333 59.06.5472	33 n 4•7 n	5%		R12 R13	57.11.3913 57.11.3103	91 k 10 k	ix	
	••••9 ••••10	59.22.8109	4-7 n 1 u	5 t 10 v + el		R14 R15	57-11-3103 57-11-3103	10 k 10 k		
C	••••11 ••••12	59.06.0102	220 u	164 , e1		R16 R17	57-11-3103 57-11-3683	10 k 68 k		
C	13	59.06.0223 59.06.0102 59.06.0223	22 n 1 n 22 n			R16 K19	57-11-3333 57-11-3103	33 k 10 k		
c	••••15 ••••16 ••••17	59.06.0223 59.06.0223	22 n 22 n			R20 R21	57.11.3103 57.11.3103	10 K		
٤	19	59.06.0223 59.06.0223	22 n 22 n			R22 R23 R24	57.11.3103 57.11.3103 57.11.3124	10 k 10 k 120 k		
C	••••20 ••••21	59-06-0223 59-06-0105	22 n 1 u			R25 R26	57.11.3104 57.11.3821	100 k 820		
Ĺ	••••22 ••••23 ••••24	59.06.0223 59.06.0223 59.06.0223	22 n 22 n 22 n			R27 R28	57.11.3920 57.11.3472	62 4•7 k		
c	26	59.34.2330 59.34.2330	33 p 33 p	cer cer		R 29 R 30	57.11.3473 57.11.3189	47 k		
C	28	59.22.6100 59.06.0104	10 u 100 n	10V , e1		R 31 R 32	57-11-3103 57-11-3101 57-11-3101	10 k 100 100		
C	30 31	59.06.0223 59.06.0223	22 n	_		R34 R35	57.11.3104 57.11.3564	100 k 560 k		
C	32	59.22.8109 59.22.3470	1 u 47 u	10V , el 10V , el		R36 R37	57-11-3104 57-11-3564	100 k 560 k		
c	35	59.06.0223 59.06.0223 59.22.3470	22 n 22 n 47 u	10V • el		R38 R39	57.11.3473 57.11.3583	47 k 68 k		
ε	37	59.06.0223 59.06.0223	22 n 22 n			R40 R41	57.11.3473 57.11.3472	47 k 4•7 k		
UD	ER (02)	88/10/24 Sa	MICROPROCES:	S OR-BOARD PL 1-769-407-2	O PAGE L	STUDER (OZ) 88/10/24 SW	MICROPROCE	ESSOR-BDARD PL 1.769.407.	.20 PAGE
		PART NO-	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.	IND. POS-NO-	PART NO- 57-11-3472	VALUE 4.7 k	SPECIFICATIONS / EQUIVALENT	MA)
	40	59.32.4102	1 "	cer		R43	57-11-3472	4+7 k 4+7 k 1 M		
	02	50.04.1101	3.9V 3.9V	ZENER DIODE ZENER DIODE		R45	57.11.3105 57.11.3472 57.11.3472	1 M 4•7 k 4•7 k		
- 1	04	50.04.0125 50.04.0125	L N4448 1 N4448	general purpose general purpose		R47 R48 R49	57.11.3472 57.11.3271	4.7 k 270		
	D5	50.04.0125	194448 194448 194448	general purpose general purpose general purpose		R50 R51	57-11-3103 57-11-3472	10 k 4.7 k		
	08	50-04-0125 50-04-0125 50-04-0125	14448 184448	general purpose general purpose		R52 R53	57.11.3103 57.11.3104	100 K		
	D9 D10	50-34-0125	1N444B	general purpose		154 K55	57.11.3103 57.11.3272	10 k 2•7 k 2•7 k		
	DL1 DL3	50-34-2119 50-04-3001	NV 57124 OP8804	LED OPTO-COUPLER		R56 R57 R58	57-11-3272 57-11-3272 57-11-3153	2.7 k 15 k		
	DL • • • • • • • • • • • • • • • • • • •	50.04.3001 50.99.0126	OPB804 4N28	OPTO-COUPLER OPTO-COUPLER OPTO-COUPLER		R59 R60	57-11-3821 57-11-3102	820 l k		
	DL7	50.99.0126 50.99.0111	4NZB HCT6	DUAL DPTO-COUPLER		R61 R62	57.11.3561 57.11.3682	560 6-8 k		
	DP1	50-34-2136	BP# 50	PHOTO DIGDE		R63	57-11-3103 57-11-3223	10 k 22 k 3.9 k		
	101	50.11.0121 50.09.0114	T8AZ800 L 272 M	IR-RECEIVER DUAL POWER OP-AMP		R65 R66 R67	57.11.3392 57.11.3102 57.11.3472	1 k		
	15	50.05.0284 50.17.1574	ULN2003 HC574	T-FACH DARLINGTON DRIVER OCTAL D-TYPE FLIP FLOP		R58	57.11.3472 57.11.3821	4.7 k 820		
	105	50-17-1645 50-17-1014	HC 14 HC 574	OCTAL BUS TRANSCEIVER HEX SCHMITT TRIGGER INVERTER OCTAL D-TYPE FLIP FLOP		R70 R72	57-11-3103 57-11-3103	10 k 10 k		
	107 108 109	50-17-1574 50-17-1138 50-17-1074	HC138 HC 74	3 TO B LINE DECODER DUAL D-TYPE FF WITH PRESET AND C	L EAR	R73	57.11.3561	560	DISPLAY TRANSFORMER	
	IC10	53.17.1574	HC574 HC138	OCTAL D-TYPE FLIP FLOP 3 TO 8 LINE DEECDOER		T1		6 PIN	IC-SOCKEY	
	1012	50-17-1000 50-09-0107	HC 00 RC4559	QUADZ-INPUT NAND GATE DUAL DP-ANP		XIC5 XIC6 XIC16		6 PIN 28 PIN	IC-SOCKET IC-SOCKET	
	1015	50-14-0107 2) 88/10/24 SH	HM6116LP MICROPROCE	2k≏8 RAM SSOR-BOARD PL 1≈769≈407≈	20 PAGE 2		(02) 88/10/24 Sa	_	ESSOR-BOARD PL 1-769-407	.20 PAGE
٠.	POS - NO -	PART NG.	VALUE HN27256F1	SPECIFICATIONS / EQUIVALENT	MA NUF.	IND. POS.NO.		VALUE	SPECIFICATIONS / EQUIVALENT	
	1016	50.11.0122	TL7705 63A03-Y	RESET GENERATOR						
	1017	50-16-0121	03803-1	MICROPROCESSOR						
	101	54.31.0291	11 PIN	CIS-SOCKET STRIP						
	J1 J2 J3	54.71.0291 54.01.0291 54.91.0290	11 PIN 11 PIN 10 PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP						
	J2 J3 J4	54.01.0291 54.01.0291 54.01.0290 54.01.0249 54.20.2001	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN	CIS-SOCKET STRIP						
	J2 J3 J4	54.31.0291 54.01.0291 54.91.0290 54.31.0249	11 PIN 11 PIN 10 PIN 3 PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIN JACK SOCKET						
0)	J2 J2 J4 J5 J6 L1 L2	54.31.0291 54.01-0291 54.91.0290 54.91.0249 54.20.2001 54.31.0312 b2.32.3479 b2.32.3479	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 19 PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP GIS-SOCKET STRIP GIS-SOCKET STRIP HE-CHOKE HE-CHOKE HE-CHOKE HE-CHOKE HE-CHOKE HE-CHOKE HE-CHOKE	St St					
0)	J2 J2 J3 J5 J6	54.01.0291 54.01.0291 54.01.0290 54.01.0249 54.20.2001 54.01.0312 b2.02.3479 b2.02.3479	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 19 PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIN JACK SOCKET CIS-SOCKET STRIP HE-CHOKE HF-CHOKE						
0)	IC18 J2 J3 J4 J5 J6 L1 L2 HP1 HP1	54.71.0291 54.01.0291 54.01.0290 54.01.0249 54.20.2001 54.21.0312 62.02.3479 62.02.3479 1.769.406.11 1.769.406.12	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 19 PIN	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP HF-CHUKE HF-CHUKE HK-CHUKE	St St					
00)	IC18 J2 J3 J5 J6 L1 L2 MP1 MP1 MP2 MP3 P1	54.01.0291 54.01.0290 54.01.0290 54.01.0290 54.01.0240 54.20.2001 54.31.0312 b2.02.3479 b2.032.3479 1.769.406.12 1.769.406.12 1.769.400.02 1.769.30.01	11 PIN 11 PIN 12 PIN 3 PIN 6 PIN 19 PIN 4.7 UH 4.7 UH 26 PIN 8C 327-25	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIN JAKK SOCKET CIS-SOCKET STRIP HE-CHOKE HF-CHOKE HICROPROCESSOR PCB HICROPROCESSOR PCB IR-SHIELD-CASE IR-DIDDE-SOCKET FLAT CABLE CONNECTOR	St St					
00)	J1 J2 J3 J6 L1 L2 MP1 MP2 MP3	54.31.0291 54.01.0291 54.01.0290 54.31.0249 54.20.2001 54.20.2001 54.20.2001 54.20.23479 1.769.400.12 1.769.400.13 1.769.400.03 50.33.0351 50.03.0343 50.03.0343	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 19 PIN 4.7 UH 4.7 UH 26 PIN AC 327-25 BC 337-25 BC 5578 BC 5578	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIN JAKK SOCKET CIS-SOCKET STRIP HF-CHOKE HF-CHOKE HF-CHOKE HF-CHOKE HF-CHOKE HF-CHOKE HF-CHOKE HF-CHOKE HTCROPROCESSOR PCB HR-DHOED-SOCKET FLAT CABLE CONNECTOR BC 307B- BC 560B 3C 237B- BC 560B	St St					
00)	IC18 J2 J3 J5 J6 L1 HP2 MP1 MP2 MP1 MP2 MP3 P1 J5 J5 MP2 MP2 MP3	54.31.0291 54.01.0291 54.01.0249 54.21.0249 54.20.2001 54.31.0312 62.32.3479 62.32.3479 62.32.3479 62.32.3479 62.32.3479 62.32.3479 62.32.3479 62.32.3479 63.33.03.03.03.03.03.03.03.03.03.03.03.03	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 19 PIN 4-7 UH 4-7 UH 26 PIN 8C 327-25 8C 337-25 8C 347-8 8C 5478 8C 5478	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIN JAKK SOCKET CIS-SOCKET STRIP HE-CHOKE HI-CHOKE H	St St					
00)	IC18 J1 J2 J3 J4 J5 J6 L1 L2 MP1 MP2 MP1 MP2 MP3 P1 J5 J6 MP1 MP2 J6 MP1	54.31.0291 54.01.0291 54.01.0249 54.20.2031 54.21.0312 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.33.03.01 54.14.2003 50.33.0351 50.03.0353 50.03.0353 50.03.0353 50.03.0353	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 19 PIN 4-7 uH 4-7 uH 26 PIN 8C 327-25 8C 337-25 8C 557-8 8C 557-8 8C 557-8 8C 557-8 8C 557-8 8C 557-8 8C 557-8 8C 557-8 8C 557-8 8C 557-8	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP HE-CHOKE HE-CHOKE HE-CHOKE HICROPROCESSOR PCB HICROPROCESSOR PCB HICROPROCESSOR PCB IR-SHIELD-CASE IR-OIODE-SOCKET FLAT CABLE CONNECIDR BC 3078, BC 560B 3C 2378, BC 560B 3C 2378, BC 550B BC 2378, BC 550B	St St					
0)	IC18 J1 J2 J3 J4 J5 J6 L1 L2 MP1 MP1 MP1 MP2 MP1 MP2 J5 J6 MP1 MP1 MP2 J6 MP1 MP2 J6 MP1 MP1 MP1 MP2 J6 MP1 MP1 MP1 MP2 J6 MP1 MP1 MP1	54.31.0291 54.01.0291 54.01.0290 54.01.0290 54.01.0290 54.01.0210 54.01.0312 52.02.0379 52.02.0379 52.02.0379 52.03.030 52.03.03.030 52.03.03.030 50.03.0330 50.03.0330 50.03.0330 50.03.0330 50.03.0330 50.03.0330 50.03.0330	11 PIN 11 PIN 10 PIN 3 PIN 6 PIN 10 PIN 10 PIN 14-7 UH 4-7	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP HF-CHUKE HF-CHUKE HF-CHUKE HF-CHUKE HF-CHUKE HF-CHUKE HF-CHUKE HS-CHUK-CASSE IR-OIODE-SOCKET FLAT CABLE CONNECTOR BC 3078, BC 5608 SC 2378, BC 5508	St St	(01) 6-13-88	Funkschutzzeic	hen		
00)	IC18 J1 J2 J3 J4 J5 J6 MP1 MP1 MP1 MP1 MP2 MP3 G5	54.31.0291 54.01.0291 54.01.0249 54.20.2001 54.21.0249 54.20.2001 54.21.0312 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.32.3479 52.30.30.30.30.30.30.30.30.30.30.30.30.30.	11 PFN 11 PFN 11 PFN 12 PFN 3 PFN 19 PFN 4.7 WH 4.7 WH 4.7 WH 4.7 WH 4.7 WH 4.7 WH 6. 327-25 8C 337-28 8C 3478	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIN JACK SOCKET CIS-SOCKET STRIP HE-CHOKE HE-CHOKE HE-CHOKE HICROPROCESSOR PCB HICROPROCESSOR PCB HICROPROCESSOR PCB IR-SHIELD-CASE IR-OIDDE-SOCKET FLAT CABLE COMNECTOR BC 3078-BC 5008 3C 2378-BC 5008 3C 2378-BC 5508 BC 5508-BC 5508	St St St	(02) 24.10.88 el=electrolyt	Funkschutzzeic ic. cer*ceramic.	hen		
0)	IC18 J1 J2 J3 J4 J5 J6 L1 L2 MP1 MP1 MP1 MP2 MP1 MP2 J5 J6 MP1 MP1 MP2 J6 MP1 MP2 J6 MP1 MP1 MP1 MP2 J6 MP1 MP1 MP1 MP2 J6 MP1 MP1 MP1	54.31.0291 54.01.0291 54.01.0290 54.01.0290 54.01.0290 54.01.0290 54.01.0312 b2.02.031 1759.406.11 1759.406.12 1759.406.10 1759.406.10 1759.406.10 1759.406.10 1759.406.10 1759.330.01	11 PIN 11 PIN 10 PIN 10 PIN 10 PIN 10 PIN 10 PIN 10 PIN 11	CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP CIS-SOCKET STRIP DIS-SOCKET STRIP HE-CHOKE HE-CHOKE HE-CHOKE HICADPROCESSOR PEB HICADPROCESSOR PE	St St St	(02) 24.10.88 el=electrolyt manufacturer:	Funkschutzzeic ic. cer*ceramic.	hen	0.24	

LCD PCB 1.769.255.00 B126, 1.769.455.00 B226-S

① 47	7. 7.85	L.	M.	0	0	0		0
			Roth	RE V OX	B126/B226 (CD-PLAYER		PAGE 1 OF 1
STUDER		2	LCD-BC	DARD		SC	1.769.255.00	

LCD PCB 1.769.455.00

8. π'8 s	LC	Ο	0	0		0
	Roth	REVOX	BSSP-2 CD-BLAKES			PAGE 1 OF 1
STUD		rcD-BO	DARD		sc	1.769.455.00

LCD PCB 1.769.255.00 B126, 1.769.455.00 B226-S

I NO .	P05 • N0 •	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.
	C1	59.32.4152	1.5 n	ceramic, 50V, 20%	
	01	50.04.1101	3.9 V	zener, .4#	
	101	50-16-0112	PCE 2111	LCD-DRIVER	
	102	50.16.0112	PCE 2111	L CD-DRIVER	
	ME 1	1.769.250.01		LCD	
	MP1	1.769.250.11		LCD-PCB	St
	MP2	1.769.255.01		BLENDE	
	MP3	20.21.7102		SCREW	
	MP 4	20.21.7102		SCREW	
	MP5	20.21.7102		SCREW	
	MP6	54.01.0233	7 POLE	CIS PIN CASE	
(00)	MP 7	35.03.0109		TY-RAP, PLASTIC	
(01)	MP7	35.03.0160		TY-RAP+ PLASTIC	
	R 1	57-11-4681	680	*** all resistors 5% ***	
	R 2	57.11.5105	1 #		
	R3	57.11.4473	47 k		
	R4	>7.11.4473	47 k		
	R 5	57-11-4473	47 k		
	R 6	57-11-4473	47 k		
	R 7	57-11-4473	47 k		
	R 8	57-11-4473	47 k		
	w1	1.769.255.93		WIRING-LIST LCD-BOARD	St

(Ol) 14-10-87 easter production
MANUFACTURER: St=Studer
ORIC 83/07/04 (Ol) 87/10/14
S T U D E R (Ol) 87/10/14 STU LCD-BOARU PL 1-769-255-00 PAGE 1

1 NO .	P05.N0.	PART NO.	VALUE	SPECIFICATIONS / EQUIVALENT	MANUF.
	C 1	59.32.4152	1.5 n	ceramic, 50V, 20%	
	01	50.04.1101	3.9 V	zener4W	
	FL1	1.769.256.02		FL-LAMP	
	101	50-16-0112			
	102	50-16-0112	PCE 2111	LCD-ORIVER	
	ME 1	1.769.256.01		LCD	
	MP 1	1.769.250.11		LCD-PCB	St
	MP 2	1.769.254.01		BLENGE	
	MP	20.21.7102		SCREW	
		20.21.7102		SCR EW	
	MP 5	20.21.7102		SCREW	
		54.31.0229	11 POLE	CIS PIN CASE	
	MP7	35.23.0109		TY-RAP, PLASTIC	
	R1	57.11.3581	680	eee all resistors 54 ***	
	R 2	37-11-3105	1 #		
	R 3	57.11.3473	47 k		
	R 4	57.11.3473	47 k		
	A 5	57-11-3473	47 k		
		57.11.3473			
	R 7	57.11.3473	47 k		
	Ř • • • • • 5	57-11-3473	47 k		
	#1	1.769.256.93		WIRING-LIST LCD-BUARD	St

MANUFACTURER: St=Studer
ORIG 88/01/U7

S T U D E R (00) 88/01/07 DR LCD-BOARU 82265

PL 1.769.455.00 PAGE 1

★ TO SERVO PCB

① 12 PESS EM O . .

KEYBOARD LEFT/RIGHT 1.769.215/202.00 B126/226-S

INTERCONNECTION CABLE 1.769.457.00 B126/226-S

0) 47,08,88	S Wicki	0	0	K)		0.	
	Loth	REVOX E1	26/B226-S	COMPACT	DISC	PLAYE!	PAGE	1 of 1
STUDER		INTERCO	NNECTION	CABLE		£	1.769.	457.00

CD-DRIVE 1.769.117.00 B126, 1.769.118.00 B226-S

	SERVO BOARD CONNECTIONS								
TO CD DRIVE	TO MICROPROCESSOR BOARD	TO DISC MOTOR BOARD							
31 -1: G -2: S - -3: D4 -4: D3 -5: D1 -6: D2 -7: GND -8: LM -9: LO -10: LG -11: RA+ -12: RA- -13: FO- -14: FO+	33 -1: +10 V -2: +5 V -3: GND -4: -6 V -5: -10 V 34 -1: MSC -2: PULSE -3: RE -4: B0 -5: B1 -6: B2 -7: B3 -8: TL -9: SI -10: not connected -11: DODS -12: HFL -13: GND -14: HF	36 -1: Vc -2: GND -3: -10 V -4: +10 V							

SER VO PCB

CD-DRIVE 1.769.117.00 B126, 1.769.118.00 B226-S

MOTOR PCB

PIECE DE RECHANGE

6/1

6/3

ERSATZTEILE

PIECE DE RECHANGE

VUE ÉCLATÉE

INHALT	CONTENTS	SOMMAIRE	Page
6.	ERSATZTEILE		6/1
6.1	EXPLOSIONSANSICHT		6/3
6.	SPARE PARTS		6/1
6.1	EXPLODED VIEW		6/3

SPARE PARTS

HINWEIS:

6.

6.1

Die nachfolgenden Positionslisten enthalten teilweise Bestellnummern, die nur fertigungstechnisch Anwendung finden. Für Servicezwecke können die Referenznummern abweichen.

Bei elektrischen Komponenten wie Widerständen, Kondensatoren, Transistoren, IC's usw., die keine spezielle, gerätegebundene Nummer haben, empfehlen wir eine lokale Beschaffung.

NOTE:

Some of the order numbers contained in the following lists are used for production purposes only. The reference numbers may deviate for service purposes. Electrical components such as resistors, capacitors, transistors, IC's etc. having no special unit-specific number and not being identified respectively should be purchased locally.

REMARQUE:

Les listes ci-après contiennent en partie des numéros de référence utilisés uniquement lors de la fabrication. Pour le service ces numéros peuvent différer. Pour tous les composants électriques, tels que résistances, transistors, IC, etc. qui n'ont pas un numéro de référence se rapportant à un type défini d'appareil, nous vous recommandons de vous les procurer localement.

B126— B226-S

	QTY	QTY	ORDER NUMBER	PART NAME SPECIFICATION
01	1 8 2 2	1 8 2 2	1.726.510.07	Philips head screw M3x5
02	10	10	1.769.100.10 1.726.103.01	Push button 5x21
03	10	16	1.728.100.45 1.728.100.46	Push button
04	1	1	1.769.140.32 1.769.150.32	Window
05	3	3	1.769.100.09 1.726.103.02	Push button 21x17.5
06	2	2	1.726.600.54 1.726.103.03	Push button 21x36
07	1	1	1.769.150.02	Operating chassis right
08	1	1	1.769.100.04	Conductive rubber mat right
09	1 2	1 2	1.769.202.00 20.99.0103	Keyboard PCB right Self tapping screw Ø2.2x5
10	-	1	54.24.0101 1.769.100.52	
11	1	1	1.769.253.00 1.769.455.00	LCD PCB
	3	3		Self tapping screw Ø2.2x5
12	1 2	1 2		Keyboard PCB left Self tapping screw Ø2.2x5
13	1	1	1.769.100.05	Conductive rubber mat left
14	1	1	1.769.150.03	Operating chassis left
15	1 4	1 4		CD drive bottom cover Philips head screw M3x6
16	1 1 4 4 4	1 1 4 4 4	1.769.150.23 21.26.0355 1.769.117.02	Damping chassis right part left part Philips head screw M3x8 Damping rubber Pressure spring
17	1 4	1 4	1.769.117.00 1.769.118.00	CD Drive CDM/4 (incl. Servo PCB) CD Drive CDM/1/4 (incl. " ") Torx screw black
18	3 1	1	34102	Retrofit-kit for rack mnounting
19	4	4	31.02.0209 1.726.022.00	
20	1 8	1 8	1.769.421.00 1.769.422.00 21.26.0353	l .
2	 	-	1.726.010.04	Side cover Left/right
	4	2	1.726.010.06	

22	1 4 4	1 4 4 4	21.26.0367 23.01.3032	Mains transformer Philips head screw M3x45 Flat washer Lock washer
23	1 1 2 1	1 1 2 1	1.769.140.38 21.26.0371 1.769.140.63	Magnet lifter Arm reinforcement Philips head screw M3x14 Guide roller arm Rubber ring Ø26x1.5
24	1 5	1	1.769.019.02 1.769.020.02 1.010.026.21	
25	1 1 2	-	1.769.565.02	Illumination PCB Light bulb tubular 12V/0.25A Philips head screw M3x5
26	1 1 1 1 2 3	1 1 1 1 2 3	1.769.140.71 31.99.0136	
27	1	1	1.769.150.69	Disc lifter
28	1 1 2	1 1 2	1.769.140.20 1.769.140.22 24.16.3019	
29	1 2 2 2	1 2 2 2	21.26.0353 23.01.1030	Belt strecher Philips head screw M3x5 Lock washer Flat washer
30	1	1	1.769.140.54	Drive toothed belt
31	1 2 2 2	1 2 2 2	21.26.0354 23.01.1030	Curved slide part Philips head screw M3x6 Lock washer Flat washer
32	1 2 1	1 2 1	31.99.0136	Guide roller left Rubber ring Shaft lock Ø1.9
33	1 1	1	1.769.140.24 24.16.3019	Guide roller top Shaft lock Ø1.9
34	1 3 3	1 3 3 1	31.04.0120 21.26.0452	Motor drawer Vibration element Philips head screw M4x4 Vibration limiter screw (Attention: applay with a drop of Loctait)
35	1	1	1.769.406.20	Microprocessor PCB Microprocessor PCB (Connector Servo PCB) dito
	4	4		Philips head screw M3x5
36	1 1 1 1	1 1 1 1	31.99.0137 1.769.140.46	Roller drawer left Rubber ring Bearing shaft Retaining clip Hex nut M4x0.5 spec.

37	1 1 1 1	1 1 1 1	31.99.0137 1.769.140.46	Roller drawer Rubber ring Bearing shaft Retaining clip Hex nut	right M4x0.5 spec.
38	4	4	1.769.140.88	Special screw	
39	1 2 2	1 2 2	1.769.180.09 22.01.8030	Front profile Front profile black Hex nut Flat washer	м3.

				†
				ł 4 5
				ļ
				,
				,
			,	1
				-1
				::1
				A.1
				: 1
				}
				[]
				1
				1
				i
)

7. Technical data REVOX B126 CD Player

Audio data	
Number of channels:	2
Frequency response:	20 Hz 20 kHz, ±0.1 dB
Harmonic distortion:	<0.005% (20 Hz 20 kHz)
Signal-to-noise ratio: linear: A-weighted:	100 dB (20 Hz 20 kHz) 106 dB
Channel separation:	>90 dB (20 Hz 20 kHz)
Output level: ANALOG OUTPUT: DIGITAL OUTPUT:	2.5 V, Ri $<$ 500 Ω , short-circuit-proof 500 mVpp, Ri = 75 Ω , short-circuit-proof
Channel balance:	<0.2 dB
Phase linearity:	by digital filtering (oversampling)

General CD Specificatio	ns
Scanning frequency:	44.1 kHz
Quantisation:	16 bit linear/channel
Recording rate:	4.3218 Mbit/sec
Digital/analog conversion:	16 bit, quad oversampling
Optical pickup:	AlGaAs semiconductor laser
Wave length:	780 nm
Error correction system:	CIRC (Cross Interleave Reed Solomon Code)
Preemphasis:	50 or 15 µs (automatic changeover)
CD rotational speed:	500 200 RPMs
Scanning speed:	1.2 1.4 m/s
Constant speed:	quartz-accurate
Max. Playing time:	74 min
Start-up time from paus	se: < 0.6 s
Search time for any position:	<3 s
Display:	Multifunctional LC display for indication of TRACK, INDEX, DISC/TRACK TIME DISC/TRACK REMAINING TIME
Programming:	19 tracks in any order plus the special functions LOOP, PAUSE or POWER OFF

General:				
Remote control:	With hand-held IR transmitter B208 or via SERIA LINK socket of the REVOX remote control system			
Power requirements:	220 VAC + 5/- 10%, 50 60 Hz Solder strappable to 110 V or 240 V			
Power fuse:	220 V, 240 V 110 V	200 mA slow 400 mA slow		
Power consumption:	max. 25 W Standby: < 6 W	1		
Dimensions (WxHxD):	450 x 109 x 332	mm		
Weight:	8.5 kg			
	-			

Subject to change.

7. Technische Daten REVOX B126 CD Player

Audio-Daten	
Anzahl Kanäle:	2
Frequenzgang:	20 Hz 20 kHz, ±0,1 dB
Klirrfaktor:	<0,005 % (20 Hz 20 kHz)
Geräuschspannungsabs linear: A-bewertet:	tand: 100 dB (20 Hz 20 kHz) 106 dB
Übersprechdämpfung:	>90 dB (20 Hz 20 kHz)
Ausgangspegel: ANALOG OUTPUT: DIGITAL OUTPUT:	2,5 V, R _i < 500 Ohm, kurzschlussfest 500 mVpp, R _i = 75 Ohm, kurzschlussfest
Kanalgleichheit:	<0,2 dB
Phasenlinearität:	durch digitale Filterung (Oversampling)

Allgemeines Fernbedienung:	Mit IR-Handsender B208 oder über Buchse SERIAL LINK am REVOX-Fernsteuersystem		
Stromversorgung:	220 V AC + 5/-10 %, 50 60 Hz, umlötbar auf 110 V oder 240 V		
Leistungsaufnahme:	max. 25 W Standby: <6 W		
Netzsicherung:	220/240 V AC T 200 mA 110 V AC T 400 mA		
Abmessungen (BxHxT):	450×109×332 mm		
Gewicht:	8.5 kg		
Änderungen vorbehalten			

Allgemeine CD-Daten	
Abtastfrequenz:	44,1 kHz
Quantisierung:	16 Bit linear/Kanal
Aufzeichnungsrate:	4,3218 MBit/s
Digital-Analog-Wandlung:	16 Bit, Vierfach-Oversampling
Optischer Abtaster:	AlGaAs-Halbleiterlaser
Wellenlänge:	780 nm
Fehlerkorrektur-System:	CIRC (Cross Interleave Reed Solomon Code)
Preemphasis:	50 oder 15 µs (automatisch umgeschaltet)
CD-Drehgeschwindigkeit	: 500 200 U/min.
Abtastgeschwindigkeit:	1,21,4 m/s
Gleichlauf:	quarzgenau
Max. Spieldauer:	74 Min.
Startzeit aus Pause:	<0.6s
Suchzeit für beliebige Stelle:	<3s
Anzeige:	Multifunktionales LC-Display mit Anzeige von TRACK, INDEX, DISC/TRACK TIME, DISC/TRACK REMAINING TIME
Programmierung:	19 Tracks in beliebiger Reihenfolge sowie Sonderfunktionen LOOP, PAUSE oder POWER OFF

7. Caractéristiques techniques REVOX B126 CD Player

Données audio	
Nombre de canaux:	2
Bande passante:	20 Hz 20 kHz, ±0,1 dB
Distorsions:	<0,005% (20 Hz 20 kHz)
Ecart signal bruit: linéaire: pondéré A:	100 dB (20 Hz 20 kHz) 106 dB
Affaiblissement de diaphonie:	>90 dB (20 Hz 20 kHz)
Niveau de sortie: ANALOG OUTPUT:	2.5 V, Ri < 500 Ω,
DIGITAL OUTPUT:	protégée contre les court-circuits 500 mVcc, Ri 75 Ω, protégée contre les court-circuits
Egalité des canaux:	<0,2 dB
Linéarité de phase:	par filtrage digital (suréchantillonage)

LINK du systèm	IRE B208 ou par la prise SERIAL ne de télécommande REVOX
220 VAC + 5/- 1 110 ou 240 V	10%, 50 60 Hz modifiable pour
220 V, 240 V 110 V	T 200 mA (retardé) T 400 mA (retardé)
max. 25 W veille: < 6 W	
450 x 109 x 332	mm
8,5 kg	
	110 ou 240 V 220 V, 240 V 110 V max. 25 W veille: < 6 W 450 x 109 x 332

Généralités	
Fréquence d'échantillonage:	44,1 kHz
Quantification:	16 bits linéaire/canal
Vitesse de transmission:	4,3218 Mbit/s
Conversion D/A:	16 bits, quadruple suréchantillonage
Lecteur optique:	laser à semi-conducteur A1GaAs
Longueur d'onde:	0,78 µm
Système de correction d'erreurs:	CIRC (Cross Interleave Reed Solomon Code)
Préaccentuation:	50 ou 15 μs (commutation automatique)
Vitesse de rotation CD:	500 200 t/min.
Vitesse de lecture:	1,2 1,4 m/s
Synchronisation:	quartz
Durée max. de lecture:	74 min.
Départ de pause:	<0,6 s
Temps de recherche pour point quelconque:	<3s
Affichage:	LC multifonctionnel pour TRACK, INDEX, DISC/ TRACK TIME, DISC/TRACK REMAINING TIME
Programmation:	19 titres en ordre quelconque et fonction spécia- les LOOP, PAUSE ou POWER OFF

7. Technische Daten REVOX B226-S CD Player

Audio-Daten	
Anzahl Kanäle:	2
Frequenzgang:	20 Hz 20 kHz, ±0,1 dB
Klirrfaktor:	<0,004% (20 Hz 20 kHz)
Geräuschspannungs- abstand:	
linear: A-bewertet:	102 dB (20 Hz 20 kHz) 108 dB
Übersprechdämpfung:	>90 dB (20 Hz 20 kHz)
Ausgangspegel: FIXED OUTPUT: VARIABLE OUTPUT: DIGITAL OUTPUT:	2,5 V, Ri $<$ 500 Ω , kurzschlussfest 0 2,5 V, Ri $<$ 500 Ω , kurzschlussfest 500 mVpp, Ri $=$ 75 Ω , kurzschlussfest
Kopfhörerausgang:	4,5 V, Ri < 50 Ω, kurzschlussfest
Kanalgleichheit:	<0,2 dB
Phasenlinearität:	durch digitale Filterung (Oversampling)

Allgemeine CD-Daten	
Abtastfrequenz:	44,1 kHz
Quantisierung:	16 Bits linear/Kanal
Aufzeichnungsrate:	4,3218 MBit/s
Digital-Analog-Wandlung:	16 Bit, Vierfach-Oversampling
Optischer Abtaster:	AlGaAs-Halbleiterlaser
Wellenlänge:	780 nm
Fehlerkorrektur- System:	CIRC (Cross Interleave Reed Solomon Code)
Preemphasis:	50 oder 15 µs (automatisch umgeschaltet)
CD-Drehgeschwindigkeit:	500 200 U/min.
Abtastgeschwindigkeit:	1,2 1,4 m/s
Gleichlauf:	quarzgenau
max. Spieldauer:	74 min.
Startzeit aus Pause:	<0,6 s
Suchzeit für beliebige Stelle:	<3s

Anzeige:	Multifunktionales LC-Display, informiert über folgende Zustände:
	TRACK: aktueller Stand entweder in TRACK- Anzeige oder im 30-Segment-Balken INDEX: Indizes werden automatisch angezeigt TIME: jede mögliche Zeit kann angezeigt wer- den: DISC TIME TRACK TIME TRACK REMAINING TIME DISC REMAINING TIME
PAUSE, AUTOSTOP, LOOP:	spezielle Betriebsarten werden angezeigt
PROGRAM MODE:	jeder Programmschritt wird sekundengenau angezeigt
VOLUME:	Position des Lautstärkestellers in der 30-Seg- ment-Balkenanzeige während des Verstellens. Auflösung ca. 2 dB/Segment
Programmier- möglichkeiten:	19 Programmschritte; TRACK, TIME øder ver- mischt. Eingabe über Zehnertastatur oder durch Setzen von Marken, sekundengenau. Sonder- funktionen wie LOOP, PAUSE oder POWER OFF usw. ebenfalls programmierbar
Fernbedienung:	Mit IR-Handsender B208 oder über Buchse SERIAL LINK am REVOX-Fernsteuersystem
Stromversorgung:	220 VAC + 5/- 10%, 50 60 Hz umlötbar auf 110 V oder 240 V
Netzsicherung:	220 V, 240 V T 200 mA 110 V T 400 mA
Leistungsaufnahme:	max. 25 W Standby: <6 W
Abmessungen (BxHxT):	480 x 118 x 332 mm
Gewicht (Masse):	9.5 kg
Änderungen vorbehalten	

7. Technical data REVOX B226-S CD Player

Audio data	
Number of channels:	2
Frequency response:	20 Hz 20 kHz, ±0.1 dB
Harmonic distortion:	<0.004% (20 Hz 20 kHz)
Signal-to-noise ratio: linear: A-weighted:	102 dB (20 Hz 20 kHz) 108 dB
Channel separation:	>90 dB (20 Hz 20 kHz)
Output level: FIXED OUTPUT: VARIABLE OUTPUT: DIGITAL OUTPUT: HEADPHONES OUTPUT:	2.5 V, Ri $<$ 500 Ω , short-circuit-proof 0 2.5 V, Ri $<$ 500 Ω , short-circuit-proof 500 mVpp, Ri $=$ 75 Ω , short-circuit-proof 500 mVpp, Ri $=$ <50 Ω , short-circuit-proof
Channel balance:	<0.2 dB
Phase linearity:	by digital filtering (oversampling)

General CD Specifications	
Scanning frequency:	44.1 kHz
Quantisation:	16 bit linear/channel
Recording rate:	4.3218 Mbit/sec
Digital/analog conversion:	16 bit, quad oversampling
Optical pickup:	AlGaAs semiconductor laser
Wave length:	780 nm
Error correction system:	CIRC (Cross Interleave Reed Solomon Code)
Preemphasis:	50 or 15 µs (automatic changeover)
CD rotational speed:	500200 RPMs
Scanning speed:	1.2 1.4 m/s
Constant speed:	quartz-accurate
Max. Playing time:	74 min
Start-up time from pause:	<0.6 s
Search time for any CD location:	<3 s

Display:	Multifunctional LC display. Provides information on the following states:
	TRACK: Current address either on TRACK display or 30-segment bar. INDEX: Indices are automatically indicated TRACK TIME DISC TIME TRACK REMAINING TIME DISC REMAINING TIME
PAUSE, AUTOSTOP, LOOP:	Special operating modes are indicated
PROGRAM MODE:	Each program step is indicated with one second accuracy
VOLUME:	The position of the volume control is indicated on the 30-segement bar while the control is being manipulated. Resolution approx. 2db per segment.
Programming:	19 program steps; TRACK TIME or intermixed. Input via 10-key pad or by setting markers with one second accuracy. Special functions like LOOP, PAUSE, or POWER OFF, etc. can also be programmed.
Remote control:	With hand-held IR transmitter B208 or via SERIAL LINK socket of the REVOX remote control system.
Power requirements:	220 VAC + 5/- 10%, 50 60 Hz Solder strappable to 110 V or 240 V
Power fuse:	220 V, 240 V 200 mA slow 110 V 400 mA slow
Power consumption:	max. 25 W Standby: < 6 W
Dimensions (WxHxD):	480 x 118 x 332 mm
Weight:	9.5 kg
Subject to change.	

7. Caractéristiques techniques REVOX B226-S CD Player

Données audio	
Nombre de canaux:	2
Bande passante:	20 Hz 20 kHz, ±0,1 dB
Distorsions:	<0,004% (20 Hz 20 kHz)
Ecart signal bruit: linéaire: évaluativ:	102 dB (20 Hz 20 kHz) 108 dB
Affaiblissement de diaphonie:	>90 dB (20 Hz 20 kHz)
Niveau de sortie:	
FIXED OUTPUT:	2,5 V, Ri <500 Ω, protégée contre les court- circuits
VARIABLE OUTPUT:	0 2,5 V, Ri < 500 Ω, protégée contre les court- circuits
DIGITAL OUTPUT:	500 mVcc, Ri = 75 Ω, protégée contre les court- circuits
SORTIE CASQUE:	4,5 V, Ri < 50 Ω, protégée contre les court- circuits
Egalité des canaux:	<0,2 dB
Linéarité de phase:	par filtrage digital (suréchantillonnage)

Généralités	
Fréquence d'échantillonnage:	44,1 kHz
Quantification:	16 bits linéaire/canal
Vitesse de transmission:	4,3218 Mbit/s
Conversion D/A:	16 bits, quadruple suréchantillonnage
Lecteur optique:	laser à semi-conducteurs AlGaAs
Longueur d'onde:	0,78 µm
Système de correction d'erreurs:	CIRC (Cross Interleave Reed Solomon Code)
Préaccentuations:	50 ou 15 µs (commutativ automatique)
Vitesse de rotation CD:	500 200 t/min.
Vitesse de lecture:	1,2 1,4 m/s
Synchronisation:	quartz
Durée max. de lecture:	74 min.
Départ de pause:	<0,6 s
Temps de recherche pour point quelconque:	<3 s

LC multifonctionnel renseignant sur les états suivants;
TRACK: état actuel soit en TRACK, soit en 30 seg- ments. INDEX: les repères sont indiqués automatique- ment TIME: possibilité d'afficher tout temps voulu: DISC TIME TRACK TIME TRACK REMAINING TIME DISC REMAINING TIME
affichage des modes spéciaux
chaque pas de programme est affiché à la seconde près
affichage à 30 segments de la position du réglage de volume pendant le réglage. Résolution environ 2 dB par segment.
19 pas de programme: TRACK, TIME ou mixte. Introduction par clavier numéral ou par place- ment de marques, à la seconde près. Fonctions spéciales comme LOOP, PAUSE ou POWER OFF également programmables.
avec émetteur IR B208 ou par la prise SERIAL LINK du système de télécommande REVOX
220 VAC + 5/-10%, 50 60 Hz modifiable pour 110 ou 240 V
220 V, 240 V T 200 mA (retardé) 110 V T 400 mA (retardé)
max. 25 W veille: <6 W
100 440 444
480 x 118 x 332 mm

