Quantifying Uncertainty

Maurizio Filippone

School of Computing Science University of Glasgow maurizio.filippone@glasgow.ac.uk

December 5th, 2013

Motivating Application

Neurological disorder from neuroimages

Relevance of the problem

Relevance of the problem

Models

label = function(input, par, noise)

Probabilistic Modeling

- How do we estimate model parameters?
- How do we assess that a model is preferable over another?
- How do we incorporate knowledge by experts?
- How can we attach confidence intervals to our predictions and parameter estimates?

Probabilistic modeling offers an answer to these questions

Inference and model selection

Parameters and data are viewed as random variables

• Inference using Bayes theorem:

$$p(\mathrm{par}|\mathrm{data}) = \frac{p(\mathrm{data}|\mathrm{par})p(\mathrm{par})}{\int p(\mathrm{data}|\mathrm{par})p(\mathrm{par})d\mathrm{par}}$$

Inference and predictions

Predictions for new data

$$p(\text{data}_*|\text{data}) = \int p(\text{data}_*|\text{par})p(\text{par}|\text{data}) d\text{par}$$

• Requires the posterior distribution p(par|data)

Monte Carlo integration

• Predictions for new data $p(\frac{\text{data}}{\text{data}})$ is an expectation

$$\int p(\text{data}_*|\text{par})p(\text{par}|\text{data}) d\text{par}$$

• Monte Carlo estimation:

$$\int p(\frac{\mathrm{data}_*|\mathrm{par}})p(\mathrm{par}|\frac{\mathrm{data}}{\mathrm{data}})\,d\mathrm{par} \simeq \frac{1}{N}\sum_{i=1}^N p(\frac{\mathrm{data}_*|\mathrm{par}_i}{\mathrm{data}})$$

with par_i drawn from p(par|data)

- Good news: asymptotically correct
- Bad news: the "error" o 0 in $O(1/\sqrt{N})$

Monte Carlo integration

• Draw samples according to the density

Probability density functions - An important example

- Gaussian probability density function
- We can draw samples from this directly

Markov chain Monte Carlo

• Explore the parameter space according to the density

Often it is not possible to draw samples directly - need to set up a Markov chain

Markov chain Monte Carlo

- MCMC needs the density up to a normalization constant
- Random walk sampler accept a proposal with probability

$$\min\left(1, \frac{p(\operatorname{par}'|\operatorname{data})}{p(\operatorname{par}|\operatorname{data})}\right)$$

by Bayes' theorem

$$p(\mathrm{par}|\mathrm{data}) = \frac{p(\mathrm{data}|\mathrm{par})p(\mathrm{par})}{\int p(\mathrm{Data}|\mathrm{Par})p(\mathrm{Par})d\mathrm{Par}}$$

• Therefore:

$$\min\left(1, \frac{p(\text{data}|\text{par}')p(\text{par}')}{p(\text{data}|\text{par})p(\text{par})}\right)$$

A class of hierarchical models

- Models can have more complex structures
- For example:

```
p(\text{data}|\text{latent state}) \quad p(\text{latent state}|\text{par}) \quad p(\text{par})
```

• Note: p(latent state|par) is actually (for example):

```
p(\text{latent state}|\text{par}, \text{time})
or
p(\text{latent state}|\text{par}, \text{location})
```

Coal mine disasters data

191 accidents between 1851 and 1962

Coal mine disasters data

191 accidents between 1851 and 1962

Latent Gaussian Models - LGMs

Class of hierarchical models

$$p(\text{data}|\text{latent}) \quad p(\text{latent}|\text{par}) \quad p(\text{par})$$

• $p(|\text{latent}|\text{par}) = \text{Gaussian}(|\text{latent}|\mu(\text{par}), K(\text{par}))$

LGMs - Classification example

LGMs - Count data example

Parkinson syndromes data

- 62 subjects
- Early stage prediction of development of
 - Parkinson Syndromes
 - Multiple System Atrophy
 - Progressive Supranuclear Palsy
- Given neuroimages

LGM based multiclass classification with multiple sources

Multiclass classification based on LGMs

$$p(\text{disease} = c|\text{sources}) = \text{unknown function}$$

- For every pair of subjects x_i x_j , we can characterize their similarity (covariance) $C_s(x_i, x_j)$ as given by the imaging modality s
- We do this by looking at the values of the neuroimages

LGM based multiclass classification with multiple sources

• Latent variables $f_c(x)$ with LGM prior with covariance

$$\operatorname{cov}(f_c(x_i), f_c(x_j)) = \sum_{s=1}^q w_{cs} C_s(x_i, x_j)$$

Multinomial likelihood - general case of the logistic function

$$p(\text{disease} = c | \text{latent}, \text{sources}) = \frac{\exp(f_c(x))}{\sum_{r=1}^m \exp(f_r(x))}$$

Parkinson syndromes data - multi source

Method	Accuracy
GP classifier	0.598
SimpleMKL	0.418

Parkinson syndromes data

Analysis of brain regions

- For this analysis we used only the GM data source
- We used an anatomical template as in Shattuck et al. 2008 to parcellate the GM images into:
 - brainstem
 - bilateral cerebellum
 - bilateral caudate
 - bilateral middle occipital gyrus
 - bilateral putamen
 - all other regions

Parkinson syndromes data - multi region

Method	Accuracy
GP classifier	0.614
SimpleMKL	0.229

Conclusions and ongoing work

- Bayesian inference offers the possibility to tackle challenging problems by accurately quantifying uncertainty in predictions and model parameters
- Computing is playing an important part in bridging the gap between theory and application of Bayesian inference

Thank you!

Questions?