

RELATÓRIO DE ANÁLISE

Algoritmos de Ordenação

NOVEMBER 9, 2024 ATHON E EDUARDO Engenharia de Software

Relatório de Análise dos Algoritmos de Ordenação

Bubble Sort, Insertion Sort e Quick Sort

Este documento apresenta o relatório de conclusão após a coleta de dados em tempo utilizando os algoritmos de ordenação: Bubble Sort, Insertion Sort e Quick Sort.

Após a implementação dos três tipos de algoritmos, pudemos realizar a medição de tempo de sua execução para realizar a ordenação de arquivos no formato <u>.csv</u> separados em diversos tipos de distribuição de organização interna (ou seja, como os dados foram dispostos dentro dos documentos). Os documentos ordenados estão dispostos em diversos tópicos como: crescente, decrescente e aleatório; e cada um deles dispõe de três variações referentes à quantidade de dados contidos em cada um dos arquivos – dê 100 valores até 10.000 valores.

Segue tabelas com as medidas de tempo para cada dado coletado:

Tamanho do arquivo: 100 itens.

Conjunto de Dados Bubble Sort		Insertion Sort	Quick Sort
Crescente	2295600ns	160200ns	2792300ns
Decrescente	2842900ns	2829800ns	750800ns
Aleatório	3221300ns	3053200ns	1146500ns

Nesse cenário, o algoritmo do Quick Sort se destacou como o mais eficiente, especialmente na ordem decrescente, pois nesse caso a ordenação estava num cenário favorável.

Tamanho do arquivo: 1000 itens

Conjunto de Dados	Bubble Sort	Insertion Sort	Quick Sort
Crescente	25560200ns	1474600ns	27106800ns
Decrescente	29621000ns	27170100ns	26125600ns
Aleatório	37966200ns	23032500ns	5297400ns

Novamente o Quick Sort se saiu melhor nesse cenário, mesmo que ele tenha encontrado um tempo maior que o Bubble Sort e o Insertion Sort na ordenação do documento *crescente*.

Tamanho do arquivo: 10000 itens

Conjunto de Dados	Bubble Sort	Insertion Sort	Quick Sort	
Crescente	1746037800ns	3390200ns	1474034300ns	
Decrescente	1808701400ns	1543065400ns	1579535200ns	
Aleatório	3517866100ns	1409899500ns	20114600ns	

A diferença dos valores tornou-se tão discrepante que o gráfico (por conta dos altos dígitos de cada número) não conseguiu captar muito bem, mostrando o quão rápido foi a execução do algoritmo

Por fim, nesse último cenário, o Insertion Sort se destacou em grande parte das execuções, mesmo que o Quick Sort tenha superado na ordenação do aleatório, e tenha tido um tempo muito próximo (porém maior que o do Insertion Sort) – isso pode ser resultado do fato de que o pivô do Quick Sort foi definido como o último elemento, o que impactou negativamente o algoritmo, o levando para o pior cenário possível para ele na maioria desses testes.