Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет ПИиКТ

Дисциплина: Основы профессиональной деятельности

Лабораторная работа №7 Синтез команд БЭВМ

Вариант 8786

Выполнил: Михайлов Петр Сергеевич

Группа: Р3111

Преподаватель: Остапенко Ольга Денисовна

Содержание

Задание	3
Определение функции, вычисляемой программой	Error! Bookmark not defined.
1. Текст исходный программы	Error! Bookmark not defined.
2. Описание программы	Error! Bookmark not defined.
3. Расположение в БЭВМ программы, исходных данных not defined.	и результатов Error! Bookmark
4. Область представления	Error! Bookmark not defined.
5. Область допустимых значений	Error! Bookmark not defined.
Трассировка программы	Error! Bookmark not defined.
Заключение	9

Задание

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

- 1. MSUB M вычитание аккумулятора из ячейки с записью результата в ячейку памяти без установки N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса $040D_{16}$

Текст синтезированных микрокоманд

Таблица 1: Текст синтезированных микрокоманд.

Адрес МП	Микрокоманда	Действие; Комментарий				
E0	80E3084002	IF $CR(11) = 0$ GOTO E3	; X(07)XX -> на E4			
E1	81E3024002	IF CR(9) = 1 GOTO E3	; $X(A,B,E,F)XX -> на E4$			
E2	81E9014002	IF CR(8) = 1 GOTO E9	; 8,C -> E4 / 9,D->за борт			
E3	80E9804002	IF $CR(15) = 0$ GOTO E9	; КОП 07 -> за борт			
E4	81E9404002	IF $CR(14) = 1 GOTO E9$; КОП СF -> за борт			
E5	81E9204002	IF $CR(13) = 1 GOTO E9$; КОП АВ -> за борт			
E6	80E9104002	IF $CR(12) = 0$ GOTO E9	; КОП 8 -> за борт			
E7	0001009611	~AC + DR + 1 -> DR	; B DR – операнд M – AC			
E8	8055101040	GOTO STORE @ 55	; Сохраним рез. в память			

Окончание таблицы.

Текст тестовой программы

Таблица 2: Текст тестовой программы.

Т		Таблица 2: Текст тестовой программы.
1 естирован		й команды MSUB M (9)
TOOLINT	ORG 0x40D	. 70
TCOUNT:	WORD 0x0002	; Константа: количество тестов.
RESULT:	WORD 0x0001	; Результат работы тест-программы.
TEMP_TC:	WORD ?	; Вспомогательная ячейка для счётчика.
START:	LD TCOUNT	
	ST TEMP_TC	; Инициализируем счётчик.
	LD #1	
	ST RESULT	; Инициализируем результат.
	CALL \$TEST1	; Вызываем первый тест.
	CALL \$TEST2	; Вызываем второй тест.
LOOP_ADDR:	POP	; Нужно взять со стека число
	AND RESULT	; И логически умножить на результат.
	ST RESULT	; Не забываем все сохранить.
	LOOP TEMP_TC	; Остались результаты тестов?
	JUMP LOOP_ADDR	; Да – учтем и их. Нет – на выход!
	HLT	; Тот самый выход!
	ORG 0x420	
TEST1:	LD TEST1_AC	; Загружаем тестовое значение АС.
	WORD 0x942C	; Вызываем синтезированную команду.
	LD TEST1_M	; Загружаем ее результат работы.
	CMP TEST1_CV	; Сравниваем с эталонным.
	BEQ T1_PASS	; Равен эталону?
T1_FAIL:	CLA	; Hem – загрузим 0 в AC.
	JUMP T1_RETURN	; И отправимся на возврат.
T1_PASS:	LD #1	; Да – загрузим 1 в AC.
T1_RETURN:	SWAP	; Не забываем про адрес возврата.
	PUSH	; Вернем результат теста.
	RET	; Возврат управления.
TEST1_AC:	WORD 0xFF01	; Тестовое значение AC.
TEST1_M:	WORD 0x5233	; Тестовая ячейка памяти для MSUB.
TEST1_CV:	WORD 0x5332	; Ожидаемый результат.
	ORG 0x430	· ·
TEST2:	LD TEST2_AC	; Загружаем тестовое значение АС.
	WORD 0x943C	; Вызываем синтезированную команду.
	LD TEST2_M	; Загружаем ее результат работы.
	CMP TEST2_CV	; Сравниваем с эталонным.
	BEQ T2_PASS	; Равен эталону?
T2_FAIL:	CLA	; Нет – загрузим 0 в АС.
	JUMP T1_RETURN	; И отправимся на возврат.
T2_PASS:	LD #1	; Да – загрузим 1 в AC .
T2_RETURN:	SWAP	; Не забываем про адрес возврата
	PUSH	; Не заовьием про иорес возврити ; Вернем результат теста.
	1 3011	, Бернем результит тести.

RET ; Возврат управления.

TEST2_AC: WORD 0x6001 ; Tecmosoe значение AC.

TEST2_M: WORD 0x7FFF ; Тестовая ячейка памяти для MSUB.

TEST2_CV: WORD 0x1FFE ; Ожидаемый результат.

Окончание таблицы.

Таблица трассировки цикла исполнения разработанных микрокоманд

Таблица 3: Трассировка цикла исполнения синтезированной команды.

MР до выборки	Содержимое памяти и регистров процессора после выборки и исполнения МК								
MK	MR	IP	CR	AR	DR	BR	AC	NZVC	MP
E0	80E3084002	422	942C	42C	5233	0421	FF01	1000	E3
E3	80E9804002	422	942C	42C	5233	0421	FF01	1000	E4
E4	81E9404002	422	942C	42C	5233	0421	FF01	1000	E5
E5	81E9204002	422	942C	42C	5233	0421	FF01	1000	E6
E6	80E9104002	422	942C	42C	5233	0421	FF01	1000	E7
E7	0001009611	422	942C	42C	5332	0421	FF01	1000	E8
E8	8055101040	422	942C	42C	5332	0421	FF01	1000	55
55	0200000000	422	942C	42C	5332	0421	FF01	1000	56
56	80C4101040	422	942C	42C	5332	0421	FF01	1000	C4

Окончание таблицы.

Методики проверки команды с использованием тестовой программы

- 1. Загрузить комплекс программ в память Базовой ЭВМ.
- 2. Ввести в клавишный регистр (IR) значение 0000.0100.0010.1011 (0x042B).
- 3. Нажать кнопку «ВВОД АДРЕСА».
- 4. Придумать число и записать его в клавишный регистр.
- 5. Нажать кнопку «ЗАПИСЬ».
- 6. Придумать еще одно число и записать его в клавишный регистр.
- 7. Нажать кнопку «ЗАПИСЬ».
- 8. Из числа, придуманного в пункте 6, вычесть число, придуманное в пункте 4. Результат ввести в клавишный регистр.
- 9. Нажать кнопку «ЗАПИСЬ».
- 10. Ввести в клавишный регистр (IR) значение 0000.0100.0011.1011 (0x043B).
- 11. Последовательно повторить все действия из пунктов с 3 по 9 включительно.
- 12. Ввести в клавишный регистр (IR) значение 0000.0100.0000.1111 (0x40F).
- 13. Переключить тумблер «РАБОТА/ОСТАНОВ» в режим «РАБОТА».
- 14. Нажать кнопку «ПУСК».
- 15. Дождаться остановки работы ЭВМ.
- 16. Ввести в клавишный регистр (IR) значение 0000.0100.0000.1110 (0x40E).
- 17. Нажать кнопку «ВВОД АДРЕСА».
- 18. Нажать кнопку «ЧТЕНИЕ».
- 19. Убедиться, что прочитанное значение равно 0х0001.

Заключение

Во время выполнения данной лабораторной работы я изучил процесс прерывания программы и исследовал функционирование Базовой ЭВМ при обмене данными в режиме прерывания программы, а также научился писать методики проверки программных комплексов и следовать им.