3.4 Product and Quotient Rules

MATH 205

Derivative Product Rule

If f(x) and g(x) are differentiable at x, then $(f \cdot g)(x)$ is differentiable.

$$\frac{d}{dx}(f \bullet g)(x) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x) = f(x)g'(x) + g(x)f'(x)$$

Product Rule: first * derivative of the second + the second * the derivative of the first.

1.
$$\frac{d}{dx} (7x^3 - 6x + 10) (8x^5 + 6x^4 - 17x^2)$$

$$2. \frac{d}{dx} x^4 e^x$$

Derivative Quotient Rule

If f(x) and g(x) are differentiable at x, and $g(x) \neq 0$, then (f/g)(x) is differentiable at x,

$$\frac{d}{dx} \left(\frac{f}{g} \right) (x) = \frac{g(x) \frac{d}{dx} f(x) - f(x) \frac{d}{dx} g(x)}{(g(x))^2} = \frac{g(x) f'(x) - f(x) g'(x)}{(g(x))^2}$$

Low D-High minus High D-Low over Low Squared

Determine the following derivatives

3.
$$\frac{d}{dx} \frac{7x^5 - 10x^3 + 18}{-3x^4 + 7x}$$

4.
$$\frac{d}{dx} \frac{5x-8}{9x+e^x}$$

Power Rule for Negative Integers

Time to show $\frac{d}{dx}x^{-n} = -nx^{-n-1}$, where *n* is a natural number.

5.
$$\frac{d}{dx}x^{-7}$$
 6. $\frac{d}{dx}\frac{8}{x^{1}}$

7.
$$\frac{d}{dx} \left(10x^4 - 12x^3 + 6x - \frac{2}{x^5} \right)$$

Combinations

8. Determine g'(x) if $g(x) = (7x^3 - 6x^2 + \frac{3}{x^6})(10e^{4x})$

9.
$$\frac{d}{dx}e^{3x}$$

Practice

 $\begin{bmatrix} \frac{d^2y}{dx^2} \left[(8x^3 + 6x^2 - 10x + 17)e^{4x} \right] \end{bmatrix}$

More Practice

11.
$$\frac{d^2y}{dx^2} \frac{7x^2 + 3x - 1}{4x - 5}$$

Applications

- Determine the equation of the tangent line to $f(x) = \frac{2x^3 3x}{x^2 + 4}$
- particular car is $D(g) = 0.05g^2 + 35g$ where D is measured in Starting with a full tank of gas, the distance traveled by a miles and g is the amount of gas consumed in gallons.

- Determine $\frac{dD}{dg}$ and explain its meaning. 13.
- Determine D'(0.5) and D'(10). What do these results tell 14
- What is the range of the car if it has a 12-gal tank?

A Bit Abstract

Given the following table:

$$x$$
 $f(x)$ $g(x)$
0 -1 1 -3
-1 -3 -1 $\frac{1}{2}$

g'(x)

f'(x)

Determine the derivatives of each of the following

16.
$$8f(x) + 4g(x)$$
 at $x = 2$

$$\frac{f(x) + 7}{g(x)}$$
 at $x = 0$

19.
$$\frac{f(x)e^x + x^2g(x)}{f(x)}$$
 at $x = 0$

 $-17. \ f(x)g(x) \text{ at } x = -1$