

Sécurité des implémentations pour la cryptographie

Partie 5 : Résistance aux attaques locales non-invasives

Benoît Gérard 16 janvier 2017

Plan du cours

Étape 1

Définition du besoin et de l'architecture au niveau système.

Étape 2

Définition de l'interface carte/terminal : API exposée par la carte.

Étape 3

Implémentation d'une version résistante aux attaques non-crypto.

Étape 4

Implémentation d'algo. crypto. résistante aux attaques distantes.

Étape <u>5</u>

Implémentation d'algo. crypto. résistante aux attaques locales.

Sommaire de la session

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA) Autres attaques Divide & Conquer Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives

Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA) Autres attaques Divide & Conquer Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Généralités sur les attaques non-invasives Principe

Généralités sur les attaques non-invasives Principe

attaques actives

Généralités sur les attaques non-invasives Principe

attaques actives

attaques passives

Généralités sur les attaques non-invasives Principe

attaques actives

attaques passives

Généralités sur les attaques non-invasives Principe

attaques actives

attaques passives

attaques actives

Généralités sur les attaques non-invasives Principe

Généralités sur les attaques non-invasives Exemples de canaux

Quelques canaux auxiliaires :

- temps d'exécution,
- consommation de courant,
- rayonnements électromagnétiques,
- émissions de photons,
- émissions sonores,
- température,
- potentiel électrique d'un corps en contact avec le PC!

Généralités sur les attaques non-invasives

Exemple de l'émission photonique

Généralités sur les attaques non-invasives

Exemple de l'émission photonique

Généralités sur les attaques non-invasives Se protéger

On se protège contre un attaquant borné

- en temps de calcul,
- en mémoire,
- en nombre de mesures.

On peut donc :

- augmenter la complexité des attaques,
- be diminuer le nombre de mesures disponibles.

La cryptographie n'est pas forcément la seule partie exposée.

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives

Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA) Autres attaques Divide & Conquer Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Single Power Analysis RSA: Square & Multiply

- Multiplication modulaire
 - Square & Multiply
- Multiplication d'un point par un scalaire
 - Double & Add

Calcul de $m^d \mod n$

$$R \leftarrow 1$$
 for $i = k-1$ to 0 do
$$R \leftarrow R \times R \mod n$$
 if $(d_i == 1)$
$$R \leftarrow R \times m \mod n$$
 return R

Simple Power Analysis

RSA : exemple de mesure

Simple Power Analysis Protections: des idées

Utilisation d'algorithmes d'exponentiation réguliers :

- ajout de multiplications inutiles,
- algorithmes intrinsèquement réguliers,
 - Montgomery Ladder,
 - Multiply Always,
 - Square Always.

Ajout de bruit :

- bruit sur la mesure,
- bruit sur le déroulement temporel de l'algorithme.

Simple Power Analysis Protections: opérations inutiles

Ajout d'opérations inutiles :

- √ solution pertinente contre les attaques sur le temps d'exécution,
 - x solution potentiellement douteuse contre les attaques locales.

Quelques idées d'attaques :

- fausses données détectables en SPA?
- calculs inutiles non sensibles aux fautes (cf. cours suivant),
- registre inutile détectable par analyse photonique.

Simple Power Analysis

Protections : le Montgomery Ladder

Calcul de $m^d \mod n$:

$$R_0 \leftarrow 1$$

$$R_1 \leftarrow m$$
 for $i = k - 1$ to 0 do
$$R_{1-d_i} \leftarrow R_0 \times R_1 \mod n$$

$$R_{d_i} \leftarrow R_{d_i}^2 \mod n$$
 return R_0

Sécurité basée sur l'incapacité à distinguer les registres R_0 et R_1 .

Simple Power Analysis

Protections : des algorithmes intrinsèquement réguliers

L'utilisation d'algorithmes nativement réguliers est à privilégier.

Attention il ne sont pas sécurisés pour autant!

Montgomery Ladder potentiellement :

- sensible à l'analyse d'émissions photoniques,
- sensible aux fautes.

Mais les attaques sont moins faciles.

Le bruit rend l'attaque difficile . . . mais on peut le réduire en faisant une moyenne.

Mesure brute.

Moyenne de 20 mesures.

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA)

Correlation Power Analysis (CPA)
Autres attaques Divide & Conquer
Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Differential Power Analysis Principe

DPA: Differential Power Analysis

Terme désignant une attaque en particulier mais souvent utilisé pour parler des attaques par mesure de courant en général.

Principe

- pour un grand nombre de clairs,
- obtenir de l'information sur une variable intermédiaire,
- en déduire de l'information sur la clef,
- en général : approche "Diviser pour régner".

Vocabulaire

Trace/Courbe : mesures de consommation (ou autre) sur la durée d'un calcul.

Quand la consommation dépend des données

Modèle poids de Hamming

Quand on envoie un signal

- ▶ 0 ⇔ pas de tension,
- ▶ 1 ⇔ tension maintenue.

On consomme donc d'autant plus qu'il y a de 1.

Modèle distance de Hamming

Quand on met à jour une valeur (dans un registre, une mémoire)

- modifier un bit induit une sur-consommation (changement d'état),
- ne rien faire n'induit pas de sur-consommation.

On consomme donc d'autant plus que l'on modifie de bits.

Modèles usuels de consommation

On a donc deux modèles.

- ▶ Poids de Hamming on envoie a : on consomme en fonction de HW (a).
- ▶ Distrance de Hamming on modifie a en b: on consomme en fonction de $\mathrm{HW}\,(a\oplus b)$.

Οù

HW
$$(\overline{a_{n-1} \dots a_1 a_0}^2) = \sum_{i=0}^{n-1} a_i$$
.

On cible généralement des données intermédiaires mélangeant un secret et une donnée connue.

En cryptographie symétrique on regarde la sortie d'une boîte-S :

$$S(x_i \oplus k_i)$$

Décomposition d'une mesure

Décomposition d'une mesure

Décomposition d'une mesure

Décomposition d'une mesure

activité proc. (horloge ...)

bruit de mesure

Décomposition d'une mesure

$$S(x_i \oplus k_i), i \neq 1$$

activité proc. (horloge ...)

M. While have many May brown for the

bruit de mesure

Décomposition d'une mesure

B. Gérard

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{\left(0\right)}\oplus k)\right)=0$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{(0)}\oplus k)\right)=0$$

$$\mathrm{HW}\left(S(x^{(1)}\oplus k)\right)=2$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{\left(0\right)}\oplus k)\right)=0$$

$$\mathrm{HW}\left(S(x^{\left(1\right)}\oplus k)\right)=2$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{(0)}\oplus k)\right) = 0$$

$$HW(\cdot) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{\left(0\right)}\oplus k)\right)=0$$

$$\mathrm{HW}\left(S(x^{\left(1\right)}\oplus k)\right)=2$$

$$\mathrm{HW}\left(S(x^{(2)} \oplus k)\right) = 6$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{\left(0\right)}\oplus k)\right)=0$$

$$\mathrm{HW}\left(S(x^{\left(1\right)}\oplus k)\right)=2$$

$$HW\left(S(x^{(2)} \oplus k)\right) = 6$$

$$HW\left(S(x^{(3)} \oplus k)\right) = 8$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{(0)}\oplus k)\right) = 0$$

$$\mathrm{HW}\left(S(x^{(1)} \oplus k)\right) = 2$$

$$\mathrm{HW}\left(S(x^{\left(2\right)}\oplus k)\right)=6$$

$$\mathrm{HW}\left(S(x^{\left(3\right)}\oplus k)\right)=8$$

Avec la bonne clef

 $\mathrm{HW}\left(\cdot\right) < 4$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{(0)} \oplus k')\right) = 1$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{\left(0\right)}\oplus k')\right)=1$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\mathrm{HW}\left(S(x^{(0)}\oplus k')\right)=1$$

$$\mathrm{HW}\left(S(x^{(1)}\oplus k')\right)=5$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{\left(0\right)}\oplus k')\right)=1$$

$$\mathrm{HW}\left(S(x^{\left(1\right)}\oplus k')\right)=5$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{\left(0\right)}\oplus k')\right)=1$$

$$HW\left(S(x^{(1)} \oplus k')\right) = 5$$

$$HW\left(S(x^{(2)} \oplus k')\right) = 7$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{\left(0\right)}\oplus k')\right)=1$$

$$\mathrm{HW}\left(S(x^{(1)}\oplus k')\right)=5$$

$$\mathrm{HW}\left(S(x^{\left(2\right)}\oplus k')\right)=7$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{\left(0\right)}\oplus k')\right)=1$$

$$\mathrm{HW}\left(S(x^{\left(1\right)}\oplus k')\right)=5$$

$$\operatorname{HW}\left(S(x^{(2)} \oplus k')\right) = 7 \qquad \underbrace{\bigwedge_{\mathbf{k} \in \mathcal{K}} \left(S(x^{(2)} \oplus k')\right)}_{\mathbf{k} \in \mathcal{K}} = 0$$

$$\operatorname{HW}\left(S(x^{\left(3\right)}\oplus k')\right)=2$$

$$\mathrm{HW}\left(\cdot\right) > 4$$

$$\mathrm{HW}\left(\cdot\right) < 4$$

$$\operatorname{HW}\left(S(x^{\left(0\right)}\oplus k')\right)=1$$

$$\mathrm{HW}\left(S(x^{(1)}\oplus k')\right)=5$$

$$\mathrm{HW}\left(S(x^{(2)} \oplus k')\right) = 7$$

$$\mathrm{HW}\left(S(x^{\left(3\right)}\oplus k')\right)=2$$

$$\operatorname{HW}\left(S(x^{(0)} \oplus k')\right) = 1$$

$$\mathrm{HW}\left(S(x^{(1)}\oplus k')\right) = 5$$

$$\operatorname{HW}\left(S(x^{(2)} \oplus k')\right) = 7$$

$$\operatorname{HW}\left(S(x^{(3)} \oplus k')\right) = 2$$

$$\swarrow k = 0$$
x00 \searrow

$$\angle k = 0x00 \searrow$$

$$\swarrow k = 0 \text{x52} \searrow$$

$$\checkmark k = 0x52 \searrow$$

Exemple sur une vrai mesure

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA)

Correlation Power Analysis (CPA)

Autres attaques Divide & Conquer Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Correlation Power Analysis Modèle de fuite

Hypothèse

La consommation est liée linéairement à un modèle de fuite.

Exemple 1

Poids de Hamming:

$$r \leftarrow x; \quad \Rightarrow \ell = \mathrm{HW}(x).$$

Exemple 2

Distance de Hamming:

$$r \leftarrow x; r \leftarrow y \implies \ell = \mathrm{HW}(x \oplus y).$$

Correlation Power Analysis Principe

Idée

On n'utilise que le bit de poids fort du poids de Hamming alors que l'on pourrait tout prendre.

```
 \begin{array}{lll} input & conso. \\ \hline [0x40 & 0,85 \mathrm{mV}] \\ 0x75 & 1,15 \mathrm{mV} \\ 0x14 & 1,05 \mathrm{mV} \\ 0xA4 & 0,95 \mathrm{mV} \\ 0x3F & 0,80 \mathrm{mV} \\ \end{array}
```

Correlation Power Analysis Principe

Idée

On n'utilise que le bit de poids fort du poids de Hamming alors que l'on pourrait tout prendre.

$$\begin{array}{ccc} input & conso. \\ \hline \texttt{0x40} & 0,85 \mathrm{mV} \\ \texttt{0x75} & 1,15 \mathrm{mV} \\ \texttt{0x14} & 1,05 \mathrm{mV} \\ \texttt{0xA4} & 0,95 \mathrm{mV} \\ \texttt{0x3F} & 0,80 \mathrm{mV} \\ \end{array}$$

$$k = 0 \times 00 \qquad k = 0 \times 42 \qquad k = 0 \times A7 \qquad k = 0 \times FF$$

$$\begin{bmatrix} 1 \\ 5 \\ 2 \\ 3 \\ 6 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 5 \\ 4 \\ 5 \\ 6 \end{bmatrix} \qquad \begin{bmatrix} 6 \\ 4 \\ 5 \\ 2 \\ 3 \end{bmatrix} \qquad \begin{bmatrix} 7 \\ 3 \\ 6 \\ 5 \\ 2 \end{bmatrix}$$

Correlation Power Analysis Principe

Idée

On n'utilise que le bit de poids fort du poids de Hamming alors que l'on pourrait tout prendre.

inp	out cons	80.	k = 0	x00	k =
[0x4	40 0,85	mV	[1]		
0x7	10 0,85 75 1,15	mV	5		
0x1	14 1,05 14 0,95	mV	2		
0xA	0,95	mV	3	• •	•
0x3	0,80	$\mathrm{mV} floor$	[6]		

0.0253

x00	k =	0x42	k =	= 0xA7	k =	= 0xF
		1 5 4 5 6		$\begin{bmatrix} 6 \\ 4 \\ 5 \\ 2 \\ 3 \end{bmatrix}$		$\begin{bmatrix} 7 \\ 3 \\ 6 \\ 5 \\ 2 \end{bmatrix}$

0.0552

0.172

-0.0253

Correlation Power Analysis

Coefficient de corrélation de Pearson

Produit scalaire de vecteurs normalisés

x : prévisions,

y : observations.

$$\rho(\mathbf{x}, \mathbf{y}) \triangleq \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Correlation Power Analysis

Exemple de résultat

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA)

Autres attaques Divide & Conquer

Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Autres attaques D&C

Pour le moment, on a vu

"Pour chaque clef j'effectue un calcul et je suis capable de détecter la bonne."

... Ce n'est pas mieux qu'une recherche exhaustive et pour des clefs de 128 bits c'est difficile.

L'astuce : on peut cibler chaque octet indépendemment (pour l'AES)

Autes attaques D&C Canevas général

executed operations

Autres attaques D&C

La LRA (Linear Regression Analysis)

Idée

Toutes les bascules/fils ne sont pas identiques (variabilité du processus de fabrication, routage contraint . . .).

On généralise donc le modèle poids de Hamming à une fuite :

$$\mathcal{L}(x) - cte \propto \sum_{i=0}^{n-1} \alpha_i x_i.$$

On peut:

- ightharpoonup soit calculer les $lpha_i$ en phase d'apprentissage puis attaquer avec le modèle,
- ▶ soit chercher le modèle obtenu pour chaque candidat et choisir la clef avec le modèle menant à l'erreur la plus faible.

Autres attaques D&C La LRA généralisée

Idée

Il existe des phénomènes physiques de couplages entre fils. On peut généraliser encore plus :

$$\mathcal{L}(x) - cte \propto \sum_{e=(e_0,\dots,e_{n-1})\in\{0,1\}^n} \alpha_e \prod_{i=0}^{n-1} x_i^{e_i}.$$

Autrement dit : au lieu de juste considérer les x_i un regarde tous les monômes de degré au plus d i.e. les couplages entre au plus d fils.

Attention! Si on considère tous les monômes alors toutes les clefs mèneront à un bon modèle.

Attaque par templates (attaque profilée)

Idée

Si on a accès à une cible similaire on peut apprendre précisément le modèle.

- Hypothèse Gaussienne (information dans la moyenne et les covariances uniquement).
- ▶ Sélection de point ou réduction de dimensionnalité sinon impraticable.

On estime les probabilités

$$\Pr\left[L=l|X=x,K=k\right].$$

On cherche ensuite

$$\underset{k}{\operatorname{argmax}} \prod_{i} \Pr\left[L = l_{i} | X = x_{i}, K = k\right].$$

Résultats sur un octet

Résultats sur un octet

Enumération : problématique

Probabilité de succès

Probabilité que pour chaque octet, la bonne valeur soit en tête de liste.

Enumération : problématique

Probabilité de succès

Probabilité que pour chaque octet, la bonne valeur soit en tête de liste.

Enumération : problématique

Probabilité de succès

Probabilité que pour chaque octet, la bonne valeur soit en tête de liste.

Enumération : problématique

Probabilité de succès

Probabilité que pour chaque octet, la bonne valeur soit en tête de liste.

Enumération : problématique

Probabilité de succès d'ordre o

Probabilité que le score de la bonne clef soit parmi les o meilleurs scores.

Énumération et estimation de rang

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA) Autres attaques Divide & Conquer

Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures Contremesures

Contremesures Généralités

Augmentation du bruit :

- pipeline,
- jitter d'horloge,
- consommation parasite.

Contre-mesures "algorithmiques"

- exécution aléatoire,
- désynchronisation,
- partage de secret (masquage),
- utilisation du parallélisme.

La plupart des contre-mesures algorithmiques nécessitent du bruit!

Attention

Des contremesures mal implémentées peuvent rendre l'algorithme plus vulnérable.

Contremesures Le masquage

Calcul de $F_K(X)$.

Calcul de $F_K(X)$.

1. Aléatoirisation des calculs.

Le masquage

Calcul de $F_K(X)$.

- 1. Aléatoirisation des calculs.
- 2. Ajout d'un circuit compensatoire.

Contremesures Le masquage booléen

► Combinaison par XOR.

Le masquage booléen

- Combinaison par XOR.
- Facile si F_K linéaire.

$$F_K(X \oplus M) = F_K(X) \oplus F_K(M)$$

Le masquage booléen

- Combinaison par XOR.
- Facile si F_K linéaire.

$$F_K(X \oplus M) = F_K(X) \oplus F_K(M)$$

• Quid si F_K non linéaire (eg. boîte-S)?

Le masquage booléen

- Combinaison par XOR.
- Facile si F_K linéaire.

$$F_K(X \oplus M) = F_K(X) \oplus F_K(M)$$

- ▶ Quid si F_K non linéaire (eg. boîte-S)?
 - lacktriangle Calculer F_K' à chaque tirage de M

$$F_K'(X \oplus M) = F_K(X) \oplus M$$

Le masquage booléen

- Combinaison par XOR.
- Facile si F_K linéaire.

$$F_K(X \oplus M) = F_K(X) \oplus F_K(M)$$

- ▶ Quid si F_K non linéaire (eg. boîte-S)?
 - lacktriangle Calculer F_K' à chaque tirage de M

$$F'_K(X \oplus M) = F_K(X) \oplus M$$

- On s'autorise des "communications" entre les branches
 - nécessite de l'aléa en plus.

Sécurité du masquage

Exemple

Masquage à l'ordre 1 : deux registres de 4 bits.

M	$S \oplus M$	$HW(\cdot)$
0110	0110	4
0010	0010	2
1110	1110	6
1001	1001	4

Sécurité du masquage

Exemple

Masquage à l'ordre 1 : deux registres de 4 bits.

S		
	1111	

M	$S \oplus M$	$HW(\cdot)$
0110	1001	4
0010	1101	4
1110	0001	4
1001	0110	4

Sécurité du masquage

Exemple

Masquage à l'ordre 1 : deux registres de 4 bits.

S	M	$S\oplus M$	$HW(\cdot$
1111	0110	1001	4
	0010	1101	4
	1110	0001	4
	1001	0110	4

L'information se trouve dans la variance et plus la moyenne.

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA) Autres attaques Divide & Conquer Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures

Contremesures

Attaques à plusieurs mesures

Différences avec le symétrique

- taille des données,
 - ▶ $128 \rightarrow 256 \text{ à } 2048 \text{ bits}$
- complexité des calculs,
- temps des calculs.
 - ightharpoonup dizaines à milliers de cycles ightharpoonup milliers à millions de cycles
- relation mathématiques entre les données,

Relations mathématiques : implications

Sécurité d'un AES-128 dont on connait 1/4 des bit de clef : 2^{96} Sécurité de RSA si on connait 1/4 des bits de clef : peut être quasi nulle si le module n'est pas trop grand.

Attaques à plusieurs mesures Opérations ciblées

Tout ce qui manipule des données sensibles :

- Exponentiation modulaire,
- Multiplication de point (sur courbe),
- Addition/soustraction,
- Multiplication,
- ▶ Inversion $\mod n$.
- **.** . . .

Attaques de type DPA (plusieurs traces)

Contrées par la randomisation (cf. suite).

Attaques à plusieurs mesures

Collisions : exemple de la doubling attack

Algorithme d'exemple : Montgomery Ladder

i	d_i	R_0 pour c^d	R_0 pour $(c^2)^d$
6	1	c^1	c^2
5	0	c^2	c^4
4	0	c^4	c^8
3	1	c^9	c^{18}
2	1	c^{19}	c^{38}
1	0	c^{38} c^{77}	c^{76}
0	1	c^{77}	c^{154}

Plan

Introduction aux attaques par canaux auxiliaires

Généralités sur les attaques non-invasives Simple Power Analysis (SPA)

Cryptographie symétrique

Differential Power Analysis (DPA) Correlation Power Analysis (CPA) Autres attaques Divide & Conquer Contremesures

Cryptographie asymétrique

Attaques à plusieurs mesures

Contremesures

Contremesures Randomisation

La DPA ne fonctionne que si on a un calcul qui manipule secret et donnée connue.

Calculs manipulant un secret s masqués avec un aléa a:

$$x + s \rightarrow ((s+a) + x) - a$$

$$x \times s \to ((s \times a) \times x) \times a^{-1}$$

$$ightharpoonup s^{-1} o (s imes a)^{-1} imes a$$

Coron : masquage du scalaire

Principe

Au lieu de calculer $c^d \mod N$,

- \triangleright on tire un aléa λ ,
- on calcule $c^{d+\lambda\cdot\varphi(N)} \mod N$.

- Par construction on obtient le même résultat.
- ightharpoonup L'exposant change à chaque fois \Rightarrow attaquant limité à 1 trace.

Précaution

Prendre λ suffisamment grand sinon on obtient facilement plusieurs traces avec le même λ .

Coron : masquage du point de base

Principe

Au lieu de calculer $c^d \mod N$,

- on tire un nombre aléatoire a < N,
- on calcule $(a \cdot c)^d/a^d \mod N$.

Le but est d'éviter les attaques

- ▶ où c est choisi,
- qui exploitent les valeurs intermédiaires.

Coron : randomisation du point de base

Principe

Au lieu de calculer $[k] \cdot P$ avec P = (X, Y, Z),

- ightharpoonup on tire un aléa λ ,
- on calcule $[k] \cdot P'$ avec $P' = (\lambda X, \lambda Y, \lambda Z)$.

- Par construction on obtient le même résultat.
- Évite les attaques exploitant les valeurs intermédiaires.
- ► Coût négligeable (contrairement à la précédente).

Ne fonctionne que pour les courbes et certains systèmes de coordonnées.

Attaques horizontales

- Les contremesures empêchent l'utilisation de plusieurs courbes.
- Les courbes contiennent énormément d'information.
- On découpe la courbe en plusieurs petits morceaux pour
 - faire des attaques de type DPA,
 - faire des attaques de type collisions.

Exemple d'attaque horizontale type DPA

Alors, DPA sur s_i avec 5 traces correspondant à x_0, x_1, x_2, x_3 et x_4 .

À retenir

Messages

- ► Combler les trous avec des opérations fantômes ne protège pas contre les attaques locales.
- Pour se protéger il faut du bruit :
 - source physique,
 - source algorithmique,
- ▶ et de l'aléa.

Bonnes pratiques

- Bien réfléchir au modèle d'attaquant à considérer.
- Limiter les manipulations inutiles de données secrètes (ou liées aux données secrètes).