BUNDESREPUBLIK DEUTSCHLAND

PGT/EP200 4/007730

REC'D 2 4 AUG 2004

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 012 771.9

Anmeidetag:

15. März 2004

Anmelder/Inhaber:

Rosenberger AG, 99510 Apolda/DE

Bezeichnung:

Verfahren zum Biegen von Werkstücken

Priorität:

05. August 2003 DE 103 36 554.0

IPC:

B 21 D 43/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 26. Juli 2004 **Deutsches Patent- und Markenamt** Der Präsident Im Auftrag

5

10

Rosenberger AG Beim Weidige 21 DE-99510 Apolda

15 Verfahren zum Biegen von Werkstücken

- 20 Die Erfindung betrifft ein Verfahren zum Biegen von insbesondere Werkstücken, von Rohren, Drähten, Stangenmaterialien, Halbzeugen, Blechen dql. mit od. zumindest einer Biegeeinrichtung.
- Bei herkömmlichen Verfahren zum Biegen von Werkstücken wird Zuführeinrichtung beispielsweise mittels mittels einer eines Kreuzschlittens das zu verformende Werkstück einem Biegekopf einer Biegemaschine zugeführt. Dabei wird das Werkstück mittels einer Spanneinrichtung, beispielsweise 30 mittels und des einer Spannzange aufgenommen Kreuzschlittens dem Biegekopf zugeführt. Nachteilig hierbei ist, dass ein Einlegen des Werkstückes, ein Einrichten des Werkstückes auf die Biegeeinrichtung zeitaufwendig ist.

Ferner ist nachteilig, dass bei einem herkömmlichen Verfahren zum Biegen von Werkstücken ein manuelles Einlegen in die Biegeeinrichtung bzw. Biegemaschine erforderlich ist. Auch ein Entnehmen und ein Zuführen der Werkstücke einer Endkontrolle folgt meistens in manueller Weise.

Auch ist im Stand der Technik bekannt, dass bspw. mittels eines herkömmlichen Roboters eine Spanneinrichtung bzw. eine Spannzange einer Biegemaschine mit Werkstücken bestückt wird, die dann in der Biegemaschine fertiggestellt werden. Auf diese Weise ist die Einsatzmöglichkeit einer Biegemaschine beschränkt.

Zudem müssen die Werkstücke in einer Biegemaschine gebogen bzw. umgeformt werden. Sollten andere Biege- und Umformprozesse erforderlich sein, so wird das Werkstück einer weiteren Biegeeinrichtung zum weiteren Bearbeiten zugeführt. Dabei erfolgt keine exakte Endkontrolle des Biegezustandes im Prozess.

20

10

15

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Biegen von Werkstücken, insbesondere von Rohren, Drähten, Stangenmaterialien, Halbzeugen od. dgl. zu schaffen, welches die genannten Nachteile beseitigt und mit welchem zeit- und kostengünstig Werkstücke in einem Arbeitsgang umgeformt oder gebogen werden und ggf. eine Endkontrolle unmittelbar nach dem Biegen optimiert erfolgt.

Zur Lösung dieser Aufgabe führt, dass zumindest ein Roboter 30 das zu verformende Werkstück aufnimmt und der zumindest einen Biegeeinrichtung zum Verformen, insbesondere zum Biegen zuführt.

Bei der vorliegenden Erfindung hat sich als besonders vorteilhaft erwiesen, mittels eines Roboters ein Werkstück

aufzunehmen und dieses einer Biegeeinheit, bestehend aus zumindest einer Biegeeinrichtung zuzuführen. In der Biegeeinrichtung wird dann das Werkstück unter permanenter oder schubweiser Zufuhr mittels des Roboters verformt bzw. gebogen.

5

10

30

Dabei wird das Werkstück unmittelbar vom Roboter bzw. einem Greifarm eines Roboters aufgenommen und einem Biegekopf der Biegeeinrichtung direkt zugeführt. Dabei kann der Roboter mit dem entsprechenden Greifarm das Werkstück entsprechend radial verdrehen, sollte dies erforderlich sein. Eine herkömmliche Spanneinrichtung bzw. eine herkömmliche Spannzuführeinrichtung kann dadurch entfallen.

15 Nach dem Biegen eines bestimmten Bereiches lässt sich das Werkstück mittels des Roboters bzw. dessen Greifarm. aufnehmen, um bspw. umgekehrt dieses wieder in die Biegeeinrichtung bzw. dessen Biegekopf direkt einzuspannen, um bspw. ein anderes Ende eines Werkstückes zu bearbeiten. 20 Dies ist nach dem herkömmlichen Biegeverfahren nicht möglich.

Dabei wird das Werkstück mittels des Roboters aus einem Vorratsbehältnis entnommen und der Biegeeinheit bzw. der zumindest einen Biegeeinrichtung zum Verformen oder Biegen zugeführt. Nach dem Biegen kann das gebogene Werkstück einer Ablage zugeführt werden. Der Roboter greift dann ein neues zu verformendes oder zu biegendes Werkstück aus dem Vorratsbehältnis und führt dieses permanent oder schubweise wieder der zumindest einen Biegeeinrichtung zu. Dabei kann der Roboterarm, insbesondere dessen Greifeinrichtung ein permanentes Zuführen und radiales Verdrehen des Werkstückes während des Biegeprozesses in der Biegeeinheit übernehmen.

Als Biegeeinrichtungen können Rollbiegeköpfe, Rechts-/Linksbiegeköpfe, sowie Biegeeinrichtung mit Dorneinrichtungen, Abkanteinrichtungen od. dgl. in einer Biegeeinheit zusammengefasst sein, welche stationär gegenüber einem Untergrund angeordnet sind.

Im Rahmen der vorliegenden Erfindung soll jedoch auch liegen, dass die Biegeeinrichtung gegenüber einem Untergrund und insbesondere gegenüber dem Roboter verfahrbar ist. Vorzugsweise kann die zumindest eine Biegeeinrichtung gegenüber dem Roboter auf einem Kreuzschlitten, einem Schienensystem, einem Linearsystem od. dgl. manuell und/oder automatisch steuerbar hin- und herbewegbar sein.

15

20

10

5

Auf diese Weise lassen sich unterschiedlich grosse bzw. unterschiedlich lange Werkstücke unterschiedlichster Art mit dem vorliegenden Verfahren bearbeiten. Auch sehr lange Rohre können Roboters hierdurch entsprechend des aufgenommen und in der Biegeeinrichtung gebogen werden, indem der Roboter direkt den Biegeköpfen Biegeeinrichtung das verformende Werkstück zuführt. soll ebenfalls im Rahmen der vorliegenden Erfindung liegen.

25

Als Vorratsbehältnis kann kein Fliessband, ein Aufnahmebehältnis, eine Maschine, wie beispielsweise eine Ablängmaschine oder ein Übergaberoboter dienen, der das Werkstück zum Verformen dem Roboter übergibt oder zur Verfügung stellt.

30

35

Nach dem Verformen oder Biegen des Werkstückes übergibt dann der Roboter das fertiggestellte Werkstück einer Ablage, die ein Fliessband, ein Vorratsbehältnis, eine Maschine zur weiteren Bearbeitung oder ein Übergaberoboter sein kann, um das fertiggestellte Werkstück einer weitere

Verarbeitung zuzuführen. Hierauf sei die Erfindung nicht beschränkt.

In einem erweiterten Ausführungsbeispiel der vorliegenden Erfindung kann nach dem Fertigstellen des Werkstückes der Roboter das Werkstück einer Messeinrichtung zuführen bzw. das fertiggestellte Werkstück entlang der Messeinrichtung so führen. dass die vollständige Kontur fertiggestellten Werkstückes in drei Ebenen als Ist-Wert aufgenommen und mit einem hinterlegten Soll-Wert verglichen wird. Hierdurch erfolgt automatisch nach dem Biegen und Umformen des Werkstückes eine Endkontrolle. Werkstück nicht dem Soll-Wert oder dessen Toleranzbereich entsprechen, so kann ein Nachbiegen erfolgen, in dem der das Werkstück zum Nachbiegen der Biegeeinheit erneut zuführt. Erst nach erneuter positiver Kontrolle in der Messeinrichtung wird dann das Werkstück der Ablage zur weiteren Verarbeitung oder Bearbeitung übergeben.

Bei der vorliegenden Erfindung hat sich als besonders vorteilhaft erwiesen, dass auf sehr schnelle Weise ein Werkstück vollautomatisiert in einen Fertigungsprozess eingebunden von einem Vorratsbehältnis entnommen werden in der Biegeeinheit bzw. der zumindest Biegeeinrichtung umgeformt oder gebogen werden kann und dann ggf. nach erfolgter Zwischenkontrolle einer Ablage zugeführt werden kann. Hierdurch können Fertigungskosten sowie auch Herstellungskosten der Anlage zum Verformen und Biegen von Werkstücken eingespart werden.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in

30

10

15

Figur 1 eine schematisch dargestellte Draufsicht auf eine Anlage zum Biegen von Werkstücken;

Figur 2 eine schematisch dargestellte Ansicht der Anlage 5 gemäss Figur 1 als weiteres Ausführungsbeispiel.

Gemäss Figur 1 weist eine erfindungsgemässe Anlage R_1 zum Biegen von beliebigen Werkstücken 1 ein Vorratsbehältnis 2 auf, in welchem eine Mehrzahl von Werkstücken 1 gelagert sind. Unter dem Vorratsbehältnis 2 kann auch ein Fliessband, welches eine beispielsweise Mehrzahl Werkstücken, die ggf. vorbearbeitet wurden, verstanden werden.

10

Das Vorratsbehältnis 2 kann auch ein Roboter od. dgl. Fördereinrichtung sein, welches die zu verformenden oder zu biegenden Werkstücke 1 der Anlage R₁ zur Verfügung stellen.

Wesentlich ist bei der vorliegenden Erfindung, dass der 20 Anlage R₁ zumindest ein Roboter 3 zugeordnet ist. Roboter 3 weist einen in mehreren Teilstücke untergliederter 4 Roboterarm mit einer endseitigen Greifeinrichtung 5 auf. Mit der Greifeinrichtung 5 ergreift der Roboter 3 das zu verformende bzw. zú biegende Werkstück führt dieses nach dem Entnehmen Vorratsbehältnis 2 der zumindest einen Biegeeinrichtung 6 zu.

Es können mehrere Biegeeinrichtung 6 unterschiedlicher Art, 30 je nach Anforderung des zu biegenden Werkstückes, Biegeeinheit 7 zusammengefasst sein. Dabei einzelnen Biegeeinrichtungen beispielsweise als Rechts-Rollbiegeköpfe, und/oder Linksbiegeköpfe, Abkanteinrichtungen od. dgl. ausgebildet sein, 35 Werkstück auf unterschiedliche Weise zu verformen.

Wichtig ist dabei, dass die Zufuhr in angedeuteter X-Richtung sowie das Verdrehen des Werkstückes 1 um die Werkstückachse in dargestellter Doppelpfeilrichtung mittels des Roboters 3, insbesondere des Roboterarmes 4 und dessen endseits angeordneter Greifeinrichtung 5 erfolgt. Das Werkstück 1 wird mittels des Roboters 3 der zumindest einen Biegeeinrichtung 6 der Biegeeinheit 7 zugeführt, dort gebogen, nach dem Biegen weiter in X-Richtung für eine erneute Biegung der zumindest einen Biegeeinrichtung 6 zugeführt. Dabei folgt permanent ein Vorschub in X-Richtung und/oder eine radiale Verdrehung des Werkstückes 1 mittels des Roboters 3 um das Werkstück 1 umzuformen bzw. verbiegen in Y-Richtung.

15 .

20

30

10

Bevorzugt übernimmt der Roboter lediglich die Vorschubfunktion in dargestellter X-Richtung sowie das radiale Verdrehen des Werkstückes 1 in dargestellter Y-Richtung. Auf diese Weise kann ein Werkstück 1 in drei Ebenen verformt, insbesondere verbogen werden.

Ggf. kann während eines Biegeprozesses bzw. während das Werkstück 1 in Biegeeinrichtung 6 eingespannt ist, der Roboter 3 bzw. dessen Greifeinrichtung 5 das Werkstück 1 an einer anderen Stelle wieder aufnehmen, um den Biegeprozess, wie oben beschrieben, fortzuführen.

Nach dem Biegen wird das fertiggestellte Werkstück 1 mittels des Roboters 3 einer Ablage 8 zugeführt und dort abgelegt. Als Ablage 8 kann ein Fliessband, ein Übernahmeroboter, Vorratsbehältnis od. dgl. dienen. Hierauf sei die Erfindung nicht beschränkt.

In einem Ausführungsbeispiel der vorliegenden Erfindung $^{\circ}$ 35 gemäss Figur 2 ist eine Anlage R_2 beschrieben, die in etwa

der Anlage R₁ entspricht. Unterschiedlich ist hier, dass zwischen der Biegeeinheit 7 und der Ablage ein Messeinrichtung 9 zwischengeschaltet ist. Das fertia gebogene oder verformte Werkstück 1 wird mittels Roboters 3 nach dem Umformen bzw. nach dem Biegen aus der Biegeeinheit 7 entnommen und entlang der Messeinrichtung 9 geführt, wobei die gebogene Kontur des Werkstückes 1 über die Messeinrichtung 9 verfahren wird. Hierdurch wird ein Sollzustand des gebogenen Werkstückes 1 ermittelt und mit einem hinterlegten und/oder Ist-Wert Toleranzfeld verglichen. Weicht der Ist-Wert vom Soll-Wert unzulässig ab, so kann das Werkstück 1 mittels des Roboters 3 wieder der Biegeeinheit 7 zum Nachbiegen und Korrekturbiegen zugeführt werden. Anschliessend erfolgt eine Kontrolle des gebogenen bzw. verformten Werkstückes 1 in der Messeinrichtung 9. Erst nach Übereinstimmung von Soll-Wert zum Ist-Wert wird dann das verformte bzw. gebogene Werkstück 1 der Ablage 8 zugeführt bzw. an diese übergeben.

15

5

PATENTANSPRÜCHE

- Verfahren zum Biegen von Werkstücken (1), insbesondere von Rohren, Drähten, Stangenmaterialien, Halbzeugen, Blechen od. dgl. mit zumindest einer Biegeeinrichtung (6),
- 10 dadurch gekennzeichnet,
 - dass zumindest ein Roboter (3) das zu verformende Werkstück (1) aufnimmt und der zumindest einen Biegeeinrichtung (6) zum Verformen, insbesondere zum Biegen zuführt.
 - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Roboter (3) permanent das Werkstück (1) der zumindest einen Biegeeinrichtung (6) zuführt.
 - 3. Verfahren nach Anspruch 1 oder 2. dadurch gekennzeichnet, dass der Roboter (3) das Werkstück (1) während dem Zuführen in die zumindest Biegeeinrichtung (6) während des Biegens festhält und weiteren Biegen der zumindest einen Biegeeinrichtung (6) weiter zuführt und ggf. das Werkstück (1) radial verdreht.
- 4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3,
 30 dadurch gekennzeichnet, dass ein Roboterarm (4),
 insbesondere dessen Greifeinrichtung (5) des zumindest
 einen Roboters (2) das Werkstück (1) aufnimmt und der
 zumindest einen Biegeeinrichtung (6) direkt bzw. deren
 Biegekopf direkt zuführt.

15

- 5. Verfahren nach wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Roboterarm (4) das Werkstück (1) schubweise der zumindest Biegeeinrichtung (6) zuführt und an entsprechenden Biegestellen die Biegeeinrichtung (6) das Werkstück (1) verformt, wobei während des Verformens ggf. der Roboterarm (4), insbesondere die Greifeinrichtung (5) durch Umgreifen das Werkstück (1) an einer anderen beliebigen Stelle gqf. auch im fertiggestellten Bereich zum weiteren Zuführen des Werkstückes (1) in die zumindest eine Biegeinrichtung (6) aufnimmt.
- 6. Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der zumindest eine 15 Roboter (3), insbesondere die zumindest eine Greifeinrichtung (5) des Roboterarmes (5) das Werkstück (1)aufnimmt und zum Verformen von unterschiedlichen Radien, Mäander, Winkel etc. einer Mehrzahl von Biegeeinrichtungen (6) zuführt, wobei 20 ggf. in der Greifeinrichtung (5) das Werkstück (1) radial drehbar ist.

- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Biegeeinrichtungen (6), Rollbiegeköpfe, Rechts-/Linksbiegeköpfe, sowie Biegeeinrichtungen mit Dorneinrichtungen, Abkanteinrichtungen od. dgl. verwendet werden.
- 8. Verfahren nach wenigstens einem der Ansprüche 1 bis 7, 30 dadurch gekennzeichnet, dass die zumindest eine Biegeeinrichtung (6) ortsfest gegenüber einem Untergrund angeordnet ist und der zumindest Roboterarm (4) das Werkstück (1) der zumindest einen Biegeeinrichtung (6) bzw. dessen Biegeköpfen permanent

oder schubweise zum Verformen, insbesondere zum Biegen zuführt.

- 9. Verfahren nach wenigstens einem der Ansprüche 1 bis 8, 5 . dadurch gekennzeichnet, dass der zumindest Roboter (3), insbesondere Roboterarm (4) das Werkstück (1) aus einem Vorratsbehältnis (2) entnimmt, Biegeeinrichtung (6) zum Verformen oder Biegen zuführt und nach dem Biegen zur weiteren Bearbeitung einer 10 Ablage (8) zuführt, wobei dieser danach erneut aus dem Vorratsbehältnis (2) ein zu verformendes oder biegendes Werkstück (1) entnimmt.
- 10. Verfahren nach wenigstens einem der Ansprüche 1 bis 9, 15 dadurch gekennzeichnet. dass der zumindest Roboter nach dem Verformen oder Biegen eines (3) Werkstückes (1) dieses entlang einer Messeinrichtung führt, um die Verformungen oder Biegungen als Soll-Wert zu erfassen, wobei bei einem Vergleich mit 20 einem hinterlegten und ausgewählten Soll-Wert eine Fertigungskontrolle durchgeführt wird und ggf. Nachverformen oder Nachbiegen in der zumindest einen Biegeeinrichtung Zurückführen (6) durch Werkstückes (1) mittels des Roboters (3) zur zumindest einen Biegeeinrichtung (6) erfolgt.
 - 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass nach einem Nachbiegen oder Nachverformen das Werkstück (1) mittels des Roboters (3) erneut der Messeinrichtung (9) zugeführt wird und erst nach Übereinstimmung zwischen Soll-Wert und Ist-Wert bzw. mit den vorgegebenen Toleranzbereichen, das Werkstück (1) der Ablage (8) oder einer Weiterbearbeitung zugeführt wird.

12. Vorrichtung nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass als Ablage (8) bzw. zur Weiterbearbeitung das Werkstück (1) auch einem weiteren Roboter, einem Fliessband, einer Maschine, einem Vorratsbehältnis od. dql. übergeben wird.

5

10

15

- 13. Verfahren nach wenigstens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Roboter (3) das Werkstück (1) aufnimmt und in wählbaren Bereichen, die verformt werden, direkt der Biegevorrichtung (6), bzw. direkt dessen Biegeköpfe zuführt, nach dem Verformen entnimmt und weiteren Bereichen, ggf. Endbereichen zum weiteren Bearbeiten bzw. Verformen des Werkstückes (1) zuführt, wobei nach deren vollständigen Bearbeiten des Werkstückes (1) der Roboter (3), insbesondere dessen Greifeinrichtung (5) das Werkstück (1) dem Abtransport oder einer weiteren Bearbeitung zuführt.
- 14. Verfahren nach wenigstens einem der Ansprüche 1 bis
 20 13, dadurch gekennzeichnet, dass die Biegeeinheit (7),
 insbesondere die Biegevorrichtung (6) manuell und/oder
 automatisch gegenüber der Lage des Roboters (3)
 verfahrbar ist.
 - 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, Biegeeinheit (7), insbesondere die Biegevorrichtung automatisch ggf. (6) über Kreuzschlitten, ein Linearsystem in einer wählbaren Richtung oder entlang eines wählbaren Führungssystems gegenüber der Lage des Roboters (3) verfahrbar ist, wobei die entsprechenden Ortskoordinaten an den Roboter (3) übermittelt werden.

ZUSAMMENFASSUNG

Bei einem Verfahren 5 Biegen von zum Werkstücken insbesondere von Drähten, Rohren, Stangenmaterialien, Halbzeugen, Blechen od. dgl. mit zumindest Biegeeinrichtung (6), soll zumindest ein Roboter (3) das zu verformende Werkstück (1) aufnehmen und der zumindest einer Biegeeinrichtung (6) zum Verformen, insbesondere zum Biegen 10 zuführen.

(Figur 2)

DR. PETER WEISS & DIPL.-ING. A. BRECHT Patentanwälte European Patent Attorney

5

Aktenzeichen: P 3044/DE-II Datum: 02.03.2004

B/HE

Positionszahlenliste

		T	· · · · · · · · · · · · · · · · · · ·		
1	Werkstück	34		67	
2	1.0000000000000000000000000000000000000	35		68	
	Roboter	36		69	
4	Roboterarm	37		70	
5	Greifeinrichtung	38		71	
6	Biegevorrichtung	39		72	
7	Biegeeinheit	40		73	
8	Ablage	41		74	
9	Messeinrichtung	42		75	
10		43		76	·
11		44		77	
12		45		78	
13		46		79	
14		47			
15		48			
16		49	·	R_1	Anlage
17		50	·	R ₂	Anlage
18		51			
19		52		X	Richtung
20		53		Y	Richtung
21		54			
22		55			
23	· · · · · · · · · · · · · · · · · · ·	56			
24		57			
25		58			
26		59			
27		60			
28	·	61			
29		62			
30		63			·
31		64			
32	·	65			·
33		66			
	<u> </u>	سعسسينيا			