Stock_Qlearning

August 3, 2020

0.1 Deep learning/Reinforcement learning in Time series data: Stock price verion

Our goal is to predict close price using our model from previous input Episode one: https://www.kaggle.com/peraktong/transformer-ts Please let me know if you have any question. Thanks to this useful link: https://www.tensorflow.org/tutorials/text/transformer Thanks to this useful link: https://www.kaggle.com/itoeiji/deep-reinforcement-learning-on-stock-data Thanks to this useful link: https://towardsdatascience.com/aifortrading-2edd6fac689d Thanks to this useful link: https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial Thanks to this useful link: https://rubikscode.net/2019/07/08/deep-q-learning-with-python-and-tensorflow-2-0/

```
In [1]: import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        import matplotlib
        import tensorflow as tf
        from matplotlib import colors as mcolors
        import matplotlib.pyplot as plt
        color_array = list(mcolors.CSS4_COLORS.keys())
        # Input data files are available in the read-only "../input/" directory
        # For example, running this (by clicking run or pressing Shift+Enter) will list all fi
        import os
        names_list = []
        for dirname, _, filenames in os.walk('Data/Stocks/'):
            for filename in filenames:
                #print(os.path.join(dirname, filename))
                names_list.append(filename)
        names_list = np.array(names_list)
        # TPU session :)
        # detect and init the TPU
        if False:
            tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
            tf.config.experimental_connect_to_cluster(tpu)
            tf.tpu.experimental.initialize_tpu_system(tpu)
```

```
In [2]: root_path = 'Data/Stocks/'
       #root_path = "/kaggle/input/price-volume-data-for-all-us-stocks-etfs/ETFs/"
       df = pd.read_csv(root_path + "googl.us.txt")
In [3]: df.head()
Out[3]:
                Date
                        Open
                             High
                                       Low Close
                                                      Volume OpenInt
       0 2004-08-19 50.000 52.03 47.980 50.170 44703800
       1 2004-08-20 50.505 54.54 50.250 54.155 22857200
                                                                    0
       2 2004-08-23 55.375 56.74 54.525 54.700 18274400
                                                                    0
       3 2004-08-24 55.620 55.80 51.785 52.435 15262600
                                                                    0
       4 2004-08-25 52.480 54.00 51.940 53.000 9197800
                                                                    0
In [4]: import matplotlib
       from matplotlib.pylab import rc
       font = {'family': 'normal', 'weight': 'bold',
               'size': 25}
       matplotlib.rc('font', **font)
       rc('axes', linewidth=3)
       plt.subplot(1,1,1)
       plt.plot(df["Open"],"k",label="Open")
       plt.plot(df["Close"],"r",label="Close")
       plt.xlabel("Day")
       plt.ylabel(r"${\rm value}$")
       plt.suptitle("Stock price vs Day Google")
       fig = matplotlib.pyplot.gcf()
       fig.set_size_inches(20,10)
       plt.legend(fontsize=25,handlelength=5,ncol=3)
       plt.show()
findfont: Font family ['normal'] not found. Falling back to DejaVu Sans.
findfont: Font family ['normal'] not found. Falling back to DejaVu Sans.
findfont: Font family ['normal'] not found. Falling back to DejaVu Sans.
```

instantiate a distribution strategy

tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu)

Stock price vs Day Google


```
In [5]: # Let's check whether there is a peroid in week/month?
        import datetime
        df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
        df['weekday'] = df['Date'].dt.weekday
        df['monthday'] = df['Date'].dt.day
        df['month'] = df['Date'].dt.month
        from matplotlib.pylab import rc
        font = {'family': 'normal', 'weight': 'bold',
                'size': 25}
        matplotlib.rc('font', **font)
        rc('axes', linewidth=3)
        color_array = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
        plt.subplot(1,1,1)
        names_array = list(df.keys()[1:5])
        for i in range(len(names_array)):
            #print("Doing %d"%i)
            plt.plot(df.groupby('weekday').mean().index+1,df.groupby('weekday').mean()[names_a
```

```
plt.xlabel("Day")
plt.ylabel(r"${\rm value}$")
plt.suptitle("Mean Usage grouped by weekday")
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(20,10)
plt.legend()
plt.show()
```

Mean Usage grouped by weekday


```
plt.xlabel("Day")
plt.ylabel(r"${\rm value}$")
plt.suptitle("Mean Usage grouped by monthday")

fig = matplotlib.pyplot.gcf()

fig.set_size_inches(20,10)
plt.legend()
plt.show()
```

Mean Usage grouped by monthday

In [7]: # By month?

```
plt.subplot(1,1,1)

names_array = list(df.keys()[1:5])
for i in range(len(names_array)):
    #print("Doing %d"%i)
    plt.plot(df.groupby('month').mean().index+1,df.groupby('month').mean()[names_array
```

```
plt.xlabel("month")
plt.ylabel(r"${\rm value}$")
plt.suptitle("Mean Usage grouped by month")

fig = matplotlib.pyplot.gcf()

fig.set_size_inches(20,10)
plt.legend()
plt.show()
```

Mean Usage grouped by month

1 baseline model: GRU+Dense layer structure:

```
from sklearn.preprocessing import LabelEncoder
         import tensorflow as tf
         from keras.layers import Input, Masking, Dense, GRU
         from sklearn.model_selection import train_test_split
         from keras.layers import Dropout
In [13]: # some hyper parameters
         # Here we use 30 day data to predict future stock price. May need to modify later
         delta_t = 30
         n_cell = 50
         dropout_rate= 0.1
         n_epoch=30
         batch=256
In [14]: checkpoint_path = "model/cp.ckpt"
         checkpoint_dir = os.path.dirname(checkpoint_path)
         min max scaler = preprocessing.StandardScaler()
         # min-max scaler
         np_scaled = min_max_scaler.fit_transform(df[names_array])
         df_scaled = pd.DataFrame(np_scaled,columns=names_array)
         X = np.zeros((df_scaled.shape[0]-delta_t,delta_t,len(names_array)),dtype=float)
         y = df_scaled["Close"][delta_t:]
         for i in range(len(y)):
             if i%800==0:
                 print("Prepare data %.2f percent"%(100*i/len(y)))
             X[i,:,:] = df_scaled[i:i+delta_t][names_array].values
         # split train test:
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=True
Prepare data 0.00 percent
Prepare data 24.22 percent
Prepare data 48.44 percent
Prepare data 72.66 percent
Prepare data 96.88 percent
In [15]: def generate_model(MAX_TIMESTEPS,MAX_NB_VARIABLES):
             ip = Input(shape=(MAX_TIMESTEPS,MAX_NB_VARIABLES))
             # split into x and y two channels
             x = Masking()(ip)
```

```
x = GRU(n_{cell})(x)
          out = Dense(1)(x)
          #out = Dropout(dropout_rate)(x)
          #loc, scale = tf.keras.layers.GaussianNoise(stddev=0.01)(out)
          # now we only output loc
          #out=loc
          model = Model(ip, out)
          model.summary()
          # add load model code here to fine-tune
          return model
       model = generate_model(delta_t, X.shape[2])
       model.compile(loss='mae', optimizer='adam')
       #model.summary()
       callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,
                                              save_weights_only=True,
                                              verbose=1)
Model: "model"
-----
Layer (type)
            Output Shape
______
input_1 (InputLayer) [(None, 30, 4)]
______
                      (None, 30, 4)
masking (Masking)
                      (None, 50)
                                          8400
dense (Dense)
              (None, 1)
Total params: 8,451
Trainable params: 8,451
Non-trainable params: 0
In [16]: history = model.fit(X_train, y_train, epochs=n_epoch, batch_size=batch, validation_da
Epoch 1/30
Epoch 00001: saving model to model/cp.ckpt
10/10 - 2s - loss: 0.6025 - val_loss: 0.2666
```

Epoch 2/30 Epoch 00002: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.1754 - val_loss: 0.1587 Epoch 3/30 Epoch 00003: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.1070 - val_loss: 0.0618 Epoch 4/30 Epoch 00004: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0652 - val_loss: 0.0540 Epoch 5/30 Epoch 00005: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0576 - val_loss: 0.0427 Epoch 6/30 Epoch 00006: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0432 - val_loss: 0.0430 Epoch 7/30 Epoch 00007: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0424 - val_loss: 0.0387 Epoch 8/30 Epoch 00008: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0363 - val_loss: 0.0361 Epoch 9/30 Epoch 00009: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0341 - val_loss: 0.0319 Epoch 10/30 Epoch 00010: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0315 - val_loss: 0.0302 Epoch 11/30 Epoch 00011: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0292 - val_loss: 0.0283 Epoch 12/30 Epoch 00012: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0275 - val_loss: 0.0268 Epoch 13/30 Epoch 00013: saving model to model/cp.ckpt 10/10 - 0s - loss: 0.0261 - val_loss: 0.0257

```
Epoch 14/30
Epoch 00014: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0256 - val_loss: 0.0252
Epoch 15/30
Epoch 00015: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0257 - val_loss: 0.0255
Epoch 16/30
Epoch 00016: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0266 - val_loss: 0.0257
Epoch 17/30
Epoch 00017: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0270 - val_loss: 0.0249
Epoch 18/30
Epoch 00018: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0269 - val_loss: 0.0241
Epoch 19/30
Epoch 00019: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0261 - val_loss: 0.0240
Epoch 20/30
Epoch 00020: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0253 - val_loss: 0.0239
Epoch 21/30
Epoch 00021: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0250 - val_loss: 0.0240
Epoch 22/30
Epoch 00022: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0255 - val_loss: 0.0238
Epoch 23/30
Epoch 00023: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0257 - val_loss: 0.0236
Epoch 24/30
Epoch 00024: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0256 - val_loss: 0.0235
Epoch 25/30
Epoch 00025: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0252 - val_loss: 0.0236
```

```
Epoch 26/30
Epoch 00026: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0249 - val_loss: 0.0233
Epoch 27/30
Epoch 00027: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0251 - val_loss: 0.0233
Epoch 28/30
Epoch 00028: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0249 - val_loss: 0.0232
Epoch 29/30
Epoch 00029: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0248 - val_loss: 0.0233
Epoch 30/30
Epoch 00030: saving model to model/cp.ckpt
10/10 - 0s - loss: 0.0245 - val_loss: 0.0231
In [17]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=False
         y_pre = model.predict(X_test)
In [19]: from matplotlib.pylab import rc
         font = {'family': 'normal', 'weight': 'bold',
                 'size': 25}
         matplotlib.rc('font', **font)
         rc('axes', linewidth=3)
         color_array = ['b', 'g', 'r', 'c', 'm', 'y', 'k']
         plt.subplot(1,1,1)
         min_val = np.nanmin(df["Close"])
         max_val = np.nanmax(df["Close"])
         date_array = np.arange(0,len(y_test),1)
         y1 = min_val+(max_val-min_val)*y_test
         y2 = min_val+(max_val-min_val)*y_pre[:,0]
         plt.plot(date_array,y1,"k",label = "Data")
         plt.plot(date_array,y2,"r",label = "Prediction")
         plt.plot(date_array,y1-y2,"b",label = "Difference")
```

```
plt.xlabel("Day")
plt.ylabel(r"${\rm value}$")
plt.suptitle("Stock price prediction MAE=%.4f"%np.nanmean(abs(y1-y2)))
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(20,10)
plt.legend()
plt.show()
```

Stock price prediction MAE=33.9523

1.1 The prediction seems to have a "Latency" inside.

1.2 Let's try the Q-net

In Q-learning we learn the value of taking an action from a given state. Q-value is the expected return after taking the action. We will use Rainbow which is a combination of seven Q learning algorithms.

In [8]: class Environment1:

```
def __init__(self, data, history_t=90):
    self.data = data
    self.history_t = history_t
    self.reset()

def reset(self):
    self.t = 0
```

```
self.profits = 0
                self.positions = []
                self.position_value = 0
                self.history = [0 for _ in range(self.history_t)]
                return [self.position_value] + self.history # obs
            def step(self, act):
                reward = 0
                # act = 0: stay, 1: buy, 2: sell
                if act == 1:
                    self.positions.append(self.data.iloc[self.t, :]['Close'])
                elif act == 2: # sell
                    if len(self.positions) == 0:
                        reward = -1
                    else:
                        profits = 0
                        for p in self.positions:
                            profits += (self.data.iloc[self.t, :]['Close'] - p)
                        reward += profits
                        self.profits += profits
                        self.positions = []
                # set next time
                self.t += 1
                self.position_value = 0
                for p in self.positions:
                    self.position_value += (self.data.iloc[self.t, :]['Close'] - p)
                self.history.pop(0)
                self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.*
                # clipping reward
                if reward > 0:
                    reward = 1
                elif reward < 0:</pre>
                    reward = -1
                return [self.position_value] + self.history, reward, self.done
In [9]: df = pd.read_csv(root_path + "googl.us.txt")
        df['Date'] = pd.to_datetime(df['Date'])
        data = df.set_index('Date')
        env = Environment1(df)
        print(env.reset())
        for _ in range(3):
            pact = np.random.randint(3)
```

self.done = False

```
#print(env.step(pact))
In [10]: delta_split = int(df.shape[0]*0.7)
        train = df[:delta_split]
        test = df[delta_split:]
        print("Training date length",len(train),"testing date length", len(test))
Training date length 2333 testing date length 1000
In [12]: import chainer
        import chainer.functions as F
        import chainer.links as L
        import copy
        import time
        def train_dqn(env):
            class Q_Network(chainer.Chain):
               def __init__(self, input_size, hidden_size, output_size):
                   super(Q_Network, self).__init__(
                       fc1 = L.Linear(input_size, hidden_size),
                       fc2 = L.Linear(hidden_size, hidden_size),
                       fc3 = L.Linear(hidden_size, output_size)
               def __call__(self, x):
                   h = F.relu(self.fc1(x))
                   h = F.relu(self.fc2(h))
                   y = self.fc3(h)
                   return y
               def reset(self):
                   self.zerograds()
            Q = Q_Network(input_size=env.history_t+1, hidden_size=100, output_size=3)
            # GPU Option
            #Q.to_gpu()
            Q_ast = copy.deepcopy(Q)
            optimizer = chainer.optimizers.Adam()
            optimizer.setup(Q)
```

```
# Hyper-parameters
epoch_num = 80
step_max = len(env.data)-1
memory size = 200
batch_size = 20
epsilon = 1.0
epsilon_decrease = 1e-3
epsilon_min = 0.1
start_reduce_epsilon = 200
train_freq = 10
update_q_freq = 20
gamma = 0.97
show_log_freq = 5
memory = []
total_step = 0
total_rewards = []
total_losses = []
start = time.time()
for epoch in range(epoch_num):
    pobs = env.reset()
    step = 0
    done = False
    total_reward = 0
    total_loss = 0
    while not done and step < step_max:</pre>
        # select act
        pact = np.random.randint(3)
        if np.random.rand() > epsilon:
            pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
            pact = np.argmax(pact.data)
        # act
        obs, reward, done = env.step(pact)
        # add memory
        memory.append((pobs, pact, reward, obs, done))
        if len(memory) > memory_size:
            memory.pop(0)
        # train or update q
        if len(memory) == memory_size:
```

```
shuffled_memory = np.random.permutation(memory)
                             memory_idx = range(len(shuffled_memory))
                             for i in memory_idx[::batch_size]:
                                 batch = np.array(shuffled_memory[i:i+batch_size])
                                 b_pobs = np.array(batch[:, 0].tolist(), dtype=np.float32).res
                                 b_pact = np.array(batch[:, 1].tolist(), dtype=np.int32)
                                 b_reward = np.array(batch[:, 2].tolist(), dtype=np.int32)
                                 b_obs = np.array(batch[:, 3].tolist(), dtype=np.float32).resh
                                 b_done = np.array(batch[:, 4].tolist(), dtype=np.bool)
                                 q = Q(b_pobs)
                                 maxq = np.max(Q_ast(b_obs).data, axis=1)
                                 target = copy.deepcopy(q.data)
                                 for j in range(batch_size):
                                      target[j, b_pact[j]] = b_reward[j]+gamma*maxq[j]*(not b_decomposition)
                                 Q.reset()
                                 loss = F.mean_squared_error(q, target)
                                 total_loss += loss.data
                                 loss.backward()
                                 optimizer.update()
                         if total_step % update_q_freq == 0:
                             Q_ast = copy.deepcopy(Q)
                     # epsilon
                     if epsilon > epsilon_min and total_step > start_reduce_epsilon:
                         epsilon -= epsilon_decrease
                     # next step
                     total_reward += reward
                     pobs = obs
                     step += 1
                     total_step += 1
                 total_rewards.append(total_reward)
                 total_losses.append(total_loss)
                 if (epoch+1) % show_log_freq == 0:
                     log_reward = sum(total_rewards[((epoch+1)-show_log_freq):])/show_log_freq
                     log_loss = sum(total_losses[((epoch+1)-show_log_freq):])/show_log_freq
                     elapsed_time = time.time()-start
                     print('\t'.join(map(str, [epoch+1, epsilon, total_step, log_reward, log_le
                     start = time.time()
             return Q, total_losses, total_rewards
In [13]: # Let's do it!
```

if total_step % train_freq == 0:

Q, total_losses, total_rewards = train_dqn(Environment1(train))

5	0.09999999999992	11660	-285.2	51965.05232162122	117.4800
10	0.09999999999999	23320	-80.8	1027.4448142735287	115.840
15	0.09999999999999	34980	-74.4	3630.1065551162233	119.92
20	0.09999999999999	46640	-7.6	185.28804305889645	116.4130
25	0.09999999999999	58300	1.0	94.8101543105673	125.799100
30	0.09999999999999	69960	6.0	120.34398262030444	120.1654
35	0.09999999999999	81620	12.0	119.88713874976384	122.615
40	0.09999999999999	93280	31.0	67.79507062511402	144.38074
45	0.09999999999999	104940	5.8	44.29382843388188	156.4024
50	0.09999999999999	116600	-15.6	201.66404752623004	173.08
55	0.09999999999999	128260	-12.8	28.744812113972795	161.4
60	0.09999999999999	139920	-10.8	27.08253281260819	146.280
65	0.09999999999999	151580	-13.0	29.144518221883402	172.4
70	0.09999999999999	163240	-12.0	30.49970243915491	149.45
75	0.09999999999999	174900	-12.2	24.998096223475294	139.99
80	0.09999999999999	186560	-14.0	29.336842975529276	157.99


```
In [30]: train_env,test_env = Environment1(train), Environment1(test)

# train
pobs = train_env.reset()
train_acts = []
train_rewards = []

for _ in range(len(train_env.data) - 1):
    pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
    pact = np.argmax(pact.data)
    train_acts.append(pact)

    obs, reward, done = train_env.step(pact)
    train_rewards.append(reward)

    pobs = obs

train_profits = train_env.profits
```

```
# test
pobs = test_env.reset()
test_acts = []
test_rewards = []
for _ in range(len(test_env.data) - 1):
    pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
    pact = np.argmax(pact.data)
    test_acts.append(pact)
    obs, reward, done = test_env.step(pact)
    test_rewards.append(reward)
    pobs = obs
test_profits = test_env.profits
pobs = train_env.reset()
train_acts = []
train_rewards = []
for _ in range(len(train_env.data) - 1):
    pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
    pact = np.argmax(pact.data)
    train_acts.append(pact)
    obs, reward, done = train_env.step(pact)
    train_rewards.append(reward)
    pobs = obs
train_profits = train_env.profits
# test
pobs = test_env.reset()
test acts = []
test_rewards = []
for _ in range(len(test_env.data) - 1):
    pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
    pact = np.argmax(pact.data)
    test_acts.append(pact)
    obs, reward, done = test_env.step(pact)
    test_rewards.append(reward)
    pobs = obs
test_profits = test_env.profits
```

```
In [43]: train_copy = train_env.data.copy()
         test_copy = test_env.data.copy()
         train_copy['act'] = train_acts + [np.nan]
         train_copy['reward'] = train_rewards + [np.nan]
         test copy['act'] = test acts + [np.nan]
         test_copy['reward'] = test_rewards + [np.nan]
         train0 = train copy[train copy['act'] == 0]
         train1 = train_copy[train_copy['act'] == 1]
         train2 = train copy[train copy['act'] == 2]
         test0 = test_copy[test_copy['act'] == 0]
         test1 = test_copy[test_copy['act'] == 1]
         test2 = test_copy[test_copy['act'] == 2]
In [82]: y1 = test0['Close']
        y2 = test["Close"]
         y2 = y2[:len(y1)].values
         plt.plot(np.arange(0,len(y1),1),y1,"r",label="Prediction Q-learning")
         plt.plot(np.arange(0,len(y1),1),y2,"k",label="Data")
         plt.plot(np.arange(0,len(y1),1),y1-y2,"b",label="Difference")
         plt.xlabel("Day")
         plt.ylabel(r"${\rm value}$")
         plt.suptitle("Stock price prediction MAE=%.4f"%np.nanmean(abs(y1-y2[:len(y1)])))
         fig = matplotlib.pyplot.gcf()
         fig.set_size_inches(20,10)
         plt.legend()
         plt.show()
```

Stock price prediction MAE=6.5584

- In []:
- In []:
- In []: