数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

Ⅱ 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または, 0 から 9 までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A , BC** などが繰り返し現れる場合**,** 2 度目以降 は**, A , BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$

- (3) $A\sqrt{B}$ に $-\sqrt{3}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}} x$ に -x と答える場合は、 $\boxed{\textbf{De}}$ -、 $\boxed{\textbf{Ee}} 1$ とし、下のようにマークしてください。

【解答用紙】

Α	•	0	1	2	3	4	9	6	0	8	9	
В	Θ	0	1	2	•	4	6	6	0	8	9	
С	Θ	0	0	2	3	•	9	6	0	8	9	
D	•	0	0	0	3	4	6	6	0	8	9	
E	Θ	0	•	2	3	4	6	6	0	8	9	

- 4. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*			*			
名 前							

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

	< 解答用紙記入例 >							
	解答コース Course							
	コース 1 Course 1	Course 2						
,	0	•						
'								

選択したコースを正しくマークしないと、採点されません。

数学-16

T

問 1 2 次関数 $y = ax^2 + bx + \frac{3}{a}$ は、次の 2 つの条件 (i), (ii) を満たすとする。

- (i) x=3 のとき, y は最大値をとる。
- (ii) x=1 のとき, y の値は 2 である。

このとき、a, b の値を求めよう。

条件 (i), (ii) を用いて, a, b の関係式

$$\begin{cases} b = \boxed{AB} a \\ \boxed{C} = a + b + \boxed{D} \end{cases}$$

を得る。

上の2式より, 方程式

を得る。よって

$$a = \boxed{\mathsf{HI}}, \quad b = \boxed{\mathsf{J}}$$

間 2 2 つの整式

$$P = 2x^2 - x + 2, \quad Q = x^2 - 2x + 1$$

に対して

$$E = P^2 - 4Q^2 - 3P + 6Q$$

を考える。

(1) E の右辺を因数分解して

$$E = (P - \boxed{\mathbf{L}} Q)(P + \boxed{\mathbf{M}} Q - \boxed{\mathbf{N}})$$

を得る。

(2) Eをxの式で表すと

となる。

(3)
$$x=-rac{1-\sqrt{5}}{3-\sqrt{5}}$$
 のとき, E の値は $oldsymbol{\mathbb{S}}$ + $oldsymbol{\mathbb{T}}$ である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{V}$ \sim $oxed{Z}$ はマークしないでください。

II

1 辺の長さが 1 の正四面体 OABC において、 線分 OA を 3:1 に内分する点を L、線分 BC の 中点を M、線分 LM を t:(1-t) に内分する点を P とする。ただし、0 < t < 1 とする。

(1) $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}$ とおき、 \overrightarrow{OP} を $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ で表すと

$$\overrightarrow{\mathrm{OP}} = \begin{array}{|c|c|} \hline \mathbf{A} \\ \hline \mathbf{B} \end{array} \left(\begin{array}{|c|c|} \hline \mathbf{C} \\ \hline -t \end{array} \right) \overrightarrow{a} + \begin{array}{|c|c|} \hline \mathbf{D} \\ \hline \mathbf{E} \end{array} t \left(\overrightarrow{b} + \overrightarrow{c} \right)$$

である。さらに、 $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \mathbf{F}$, $|\overrightarrow{b} + \overrightarrow{c}|^2 = \mathbf{G}$ であるから

$$|\overrightarrow{\mathrm{OP}}| = \frac{1}{|\mathbf{H}|} \sqrt{|\mathbf{I}|} t^2 - |\mathbf{J}| t + |\mathbf{K}|$$

となる。ただし, $\overrightarrow{a}\cdot(\overrightarrow{b}+\overrightarrow{c})$ は \overrightarrow{a} と $(\overrightarrow{b}+\overrightarrow{c})$ の内積である。

(2) $|\overrightarrow{OP}|$ が最小となるときの t の値を求めると

$$t = \frac{\Box}{M}$$

であり、その $|\overrightarrow{OP}|$ の最小値は $|\overrightarrow{N}|$ である。

(3) (2) のとき、
$$\cos \angle AOP = \frac{P}{R}$$
 である。

注) 正四面体: regular tetrahedron, 内分する: divide internally, 内積: inner product

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{S}$ \sim $oxed{Z}$ はマークしないでください。

数学-22

$\Pi\Pi$

a>0 とする。次の x に関する 2 つの方程式を $-\frac{\pi}{2}$ $< x < \frac{\pi}{2}$ の範囲で考える。

$$\sin 2x + a\cos x = 0 \qquad \cdots \qquad \textcircled{1}$$

$$\cos 2x + a \sin x = -2 \qquad \cdots \qquad \bigcirc$$

例えば、 $a = \sqrt{2}$ のとき、① を満たす x は

$$x = \frac{\boxed{\textbf{AB}}}{\boxed{\textbf{C}}} \pi$$

である。このxに対して、2の左辺の値は **DE** となり、2の等式が成り立たない。 したがって、 $a=\sqrt{2}$ のとき、1、2は共通解をもたない。

そこで、①、② が共通解をもつような a の値と、そのときの共通解 x を求めよう。 まず、① より

$$\sin x = \frac{\boxed{\mathsf{FG}}}{\boxed{\mathsf{H}}} a, \quad \cos 2x = \boxed{\boxed{\mathsf{I}}} - \frac{a^2}{\boxed{\mathsf{J}}}$$

となる。これらを② に代入して

$$a^2 = \boxed{K}$$

を得る。したがって、 $a = \sqrt{K}$ であり、共通解は

$$x = \frac{\boxed{\mathsf{LM}}}{\boxed{\mathsf{N}}} \pi$$

である。

[III] の問題はこれで終わりです。[III] の解答欄 [O] ~ [III] はマークしないでください。

間 1 a > 0 とする。 2 つの曲線

$$C_1$$
: $y = e^{6x}$

$$C_2$$
: $y = ax^2$

を考える。 C_1 と C_2 の両方に接する直線が 2 本引けるような a の条件を求めよう。

 C_1 上の点 (t, e^{6t}) における C_1 の接線の方程式は

$$y =$$
 A $e^{6t}x - e^{6t}($ B $t -$ C $)$

である。この接線がさらに C_2 に接するのは、2 次方程式

$$ax^2 = \boxed{A} e^{6t}x - e^{6t}(\boxed{B}t - \boxed{C})$$

が重解をもつときである。したがって, a,t に対して

が成り立つ。この式より

$$a = \frac{\mathsf{D} e^{6t}}{\mathsf{E} t - \mathsf{F}}$$

を得る。この右辺を f(t) とおくと、2 つの曲線 C_1 と C_2 の両方に接する直線が 2 本引けるための条件は、直線 s=a が s=f(t) のグラフと 2 点で交わることである。

ここで、f(t) の導関数は

$$f'(t) = \frac{108e^{6t}(\mathbf{G} t - \mathbf{H})}{(\mathbf{E} t - \mathbf{F})^2}$$

である。

よって、求める a の条件は

$$a > \square e^{\square}$$

である。ただし、必要であれば $\lim_{t \to \infty} \frac{e^t}{t} = \infty$ を用いてよい。

注) 導関数: derivative

間 2 次の問題文の K ~ Z には、下の 0 ~ 9 の中から適するものを選びなさい。

a, t を正の実数とする。x の 2 次関数

$$y = \frac{1}{t^2} \left(x - at^2 \right)^2$$

のグラフと x 軸, y 軸によって囲まれる部分を D とする。D を x 軸の周りに 1 回転させてできる立体の体積を V_1 , また, D を y 軸の周りに 1 回転させてできる立体の体積を V_2 とする。このとき、ある a の値に対して、t の値によらず $V_1=V_2$ となることを示そう。

まず, V₁を求めると

$$V_{1} = \pi \int_{\mathbb{K}}^{\mathbb{L}} \frac{1}{t^{\mathbb{M}}} (x - at^{2})^{\mathbb{N}} dx$$
$$= \frac{\pi}{\mathbb{Q}} a^{\mathbb{P}} t^{\mathbb{Q}}$$

となる。一方、 V2 を求めると

$$V_{2} = \pi \int_{\mathbb{K}}^{\mathbb{R}} \left(\begin{bmatrix} \mathbb{S} & - & \mathbb{T} \\ \sqrt{y} \end{bmatrix}^{\mathbb{U}} dy \right)$$
$$= \frac{\pi}{\mathbb{V}} a^{\mathbb{W}} t^{\mathbb{X}}$$

となる。

よって,
$$a=rac{f Y}{f Z}$$
 のとき, t の値によらず, $V_1=V_2$ となる。

〈数 学〉Mathematics

	コー	ス1 Cour	se 1
F	引 Q.	解答番号 row	正解 A.
		AB	-6
		CD	23
	問1	EFG	523
		HI	-1
Ι		J	6
		K	6
		LMN	223
	問2	OPQR	3141
		STU	365
		AB	20
		CD	12
	BBJ	EFGHI	14334
	問 1	JK	34
		L	3
-		M	6
I		NOP	177
		QR	17
	BB 0	ST	28
	問 2	UV	27
		WX	72
		YZ	24
		А	1
		ВС	-2
TIT		D	0
\blacksquare		EF	12
		GHI	-18
		J	0
		AB	14
		CDE	154
IV		FGHIJK	161515
		LM	16
		NOPQR	16155

	コー	ス2 Course 2				
問 Q.		解答番号 row	正解 A.			
		AB	-6			
		CD	23			
	問 1	EFG	523			
		HI	-1			
I		J	6			
		K	6			
		LMN	223			
	問 2	OPQR	3141			
		STU	365			
		ABCDE	34112			
		F	1			
		G	3			
I		HIJK	4969			
		LM	13			
		NO	22			
		PQR	223			
		ABC	-14			
		DE	-1			
Ш		FGH	-12			
Ш		IJ	12			
		K	3			
		LMN	-13			
		ABC	661			
	問 1	DEF	961			
		GH	31			
		IJ	92			
V		KLMN	0844			
		OPQ	556			
	問 2	RSTU	9872			
		VWX	646			
		YZ	56			