Algorithm 1 Diabetes diet recommendation mechanism

INPUT:

- 1. Personal Information (i.e. sex, weight, height, age) and other facts(physical activity, temperature, altitude)
- 2. Food items and quantity taking upto before dinner
- 3. Interested for dinner items

OUTPUT: Preference wise dinner menu list and corresponding weighting percentage.

METHODOLOGY

- Step 1: Daily required calorie calculation Mechanism
 - (a) BasicCalorie(sex, weight, height, age)
 - i. If sex=Male Output \leftarrow 66+(13.7×Weight)+(5×Height)-(6.8×Age)
 - (b) ExtraCalorie(phy. act., temperature, altitude)
 - i. temp $\leftarrow [0.8, 0.1, 0.1] \cdot [f_1, f_2, f_3]$
 - ii. Output $\leftarrow 0.3.temp + 1.2$
 - (c) Total Required Calorie (TRC) \leftarrow Basic Calorie \cdot Extra Calorie
- Step 2: Nutrition wise partitioning
 - (a) Required Nutrients in Calorie RNC \leftarrow [0.55, 0.22, 0.27, 0.0144]. TRC
 - (b) Required Nutrients in Gram $RNG \leftarrow RNC.[0.4,0.4,0.9,1]$
- **Step 3:** Knowledge $\operatorname{Set}(X)$ construction Mechanism and Checking
 - (a) Intake Nutrients in Gram ING←Calculate from input 2 and table 4
 - (b) Needed Nutrients in Gram NNG \leftarrow RNG-ING
 - (c) $X \leftarrow NNG/RNG$ (Component wise)
 - (d) If some component of X is -ve, then 1st output will show "Patient have taken extra food for these component nutrients"
- **Step 4:** Utility $Matrix(U) \leftarrow Calculated$ from input 3 and help of table 4
- **Step 5:** Decision taken Mechanism with the help of X and U
 - (a) Construct fuzzy utility associated \tilde{U}_i for each dinner item
 - (b) Construct maximizing fuzzy set U_i^{Max} for every dinner item from $S(\tilde{U}_i)$
 - (c) Using \wedge operator between \tilde{U}_i and U_i^{Max} construct optimal utility fuzzy set $U_i^{optimal}$
 - (d) Applying \sum operator on $U_i^{optimal}$ finally calculate optimal alternative set $A^{optimal}$ for dinner items
- **Step 6:** According to the membership value of $A^{optimal}$ for dinner items we are ranking the dinner items