Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER III - • EXAMINATION - SUMMER 2015

Date: 09/06/2015 Subject Code:130702 **Subject Name: Data and File structure** Time: 02.30pm-05.00pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **07** 0.1 (a) (i) Write algorithm to sum values in vector V and find out the execution time 04 required. (ii) Explain the equation that finds out the address of the element of the one 03 dimensional array. Assume necessary data. **(b)** 07 (i) Convert the following Polish(prefix) expression to Reverse Polish(suffix) 04 notation a. ++abc b. +a+bcc. +a*bc d. *a+bc (ii) Does a time sharing computer use a queue or stack? Explain. 03 (a) Write an algorithm for inserting a node and deleting a node in doubly linked linear **07** $\mathbf{Q.2}$ list. (b) Write steps of procedure to insert an element to the top of the stack and remove **07** top element from a stack. OR (b) What is the advantage of Polish expression over infix notation? Write an 07 algorithm to convert an infix expression into reverse Polish expression. **Q.3** 07 (a) (i) Write a recursive algorithm to find factorial. 04 (ii) Which type of allocation is called linked allocation? Define singly linked 03 linear list. **(b)** 07 (i) Explain the threaded storage representation for binary trees. 04 (ii) Define the inorder, postorder and preorder traversal for the following tree. 03 OR **07** Q.3(a) (i) What are the advantages of circular lists over singly linked list? 04

(ii) Explain – Why doubly linked lists are much more efficient with respect to

deletions than singly linked lists?

03

	(b)		07
	` /	(i) Define adjacency matrix. When two digraphs are considered to be	04
		equivalent?	
		(ii) Explain the breadth first search and depth first search tree traversal on the	03
		following graph.	
		A	
		B C D E	
		F	
Q.4	(a)	Write an algorithm for inserting and deleting an element from queue.	07
	(b)		07
		(i) Define 2-3 tree. Describe the characteristic of 2-3 tree.	04
		(ii) Write the characteristics of AVL tree.	03
		OR	
Q.4	(a)	What is a circular queue? Write an algorithm for inserting and deleting an element from a circular queue.	07
	(b)	•	07
		(i) Explain the structure of sequential file.	04
		(ii) Explain the structure of indexed sequential files.	03
Q.5	(a)	What is collision? Explain two broad classes of collision resolution techniques.	07
	(b)	Explain the binary search method. Write an algorithm for performing a binary search.	07
		OR	
0.5			
Q.5	(a)	What is hashing? Explain hashing functions.	07
