

Ù&@^œ^¦ÊÁQ}&È		FÍ»ÁVã¦oÁ, ĐịÁÙ^ã;{ã&ÁÖ^∙ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the duridoo.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1712.95</u>	<u>5819.86</u>	k
<u>5021.27</u>	<u>5208.03</u>	k
<u>9.45</u>	2096.31	k
0.02	<u>0.01</u>	k
	5021.27 9.45	1712.955819.865021.275208.039.452096.31

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 139602.1 \text{ in-lbs}$ Resisting Force Required = 2115.18 lbs A minimum 132in long x 31in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3525.30 lbs to resist overturning. Minimum Width = <u>31 in</u> in Weight Provided = 6180.63 lbs Sliding Force = 483.51 lbs Friction = Use a 132in long x 31in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1208.78 lbs Resisting Weight = 6180.63 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 483.51 lbs Cohesion = 130 psf Use a 132in long x 31in wide x 18in tall 28.42 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3090.31 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{31 \text{ in}} \frac{32 \text{ in}}{6380 \text{ lbs}} \frac{33 \text{ in}}{6579 \text{ lbs}} \frac{34 \text{ in}}{6779 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.58 \text{ ft}) = \frac{6181 \text{ lbs}}{6380 \text{ lbs}} \frac{6380 \text{ lbs}}{6579 \text{ lbs}} \frac{6779 \text{ lbs}}{6779 \text{ lbs}}$

									•							
ASD LC		1.0D	+ 1.0S			1.0D +	+ 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D+	+ 0.6W	
Width	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in
FA	1681 lbs	1681 lbs	1681 lbs	1681 lbs	1781 lbs	1781 lbs	1781 lbs	1781 lbs	2471 lbs	2471 lbs	2471 lbs	2471 lbs	-781 lbs	-781 lbs	-781 lbs	-781 lbs
F _B	1740 lbs	1740 lbs	1740 lbs	1740 lbs	1847 lbs	1847 lbs	1847 lbs	1847 lbs	2561 lbs	2561 lbs	2561 lbs	2561 lbs	-2677 lbs	-2677 lbs	-2677 lbs	-2677 lbs
F _V	148 lbs	148 lbs	148 lbs	148 lbs	854 lbs	854 lbs	854 lbs	854 lbs	741 lbs	741 lbs	741 lbs	741 lbs	-967 lbs	-967 lbs	-967 lbs	-967 lbs
P _{total}	9601 lbs	9801 lbs	10000 lbs	10199 lbs	9808 lbs	10007 lbs	10207 lbs	10406 lbs	11212 lbs	11412 lbs	11611 lbs	11810 lbs	251 lbs	370 lbs	490 lbs	610 lbs
M	4082 lbs-ft	4082 lbs-ft	4082 lbs-ft	4082 lbs-ft	5366 lbs-ft	5366 lbs-ft	5366 lbs-ft	5366 lbs-ft	6782 lbs-ft	6782 lbs-ft	6782 lbs-ft	6782 lbs-ft	1349 lbs-ft	1349 lbs-ft	1349 lbs-ft	1349 lbs-ft
е	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.55 ft	0.54 ft	0.53 ft	0.52 ft	0.60 ft	0.59 ft	0.58 ft	0.57 ft	5.38 ft	3.64 ft	2.75 ft	2.21 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	259.5 psf	258.2 psf	257.0 psf	255.8 psf	242.2 psf	241.4 psf	240.7 psf	240.0 psf	264.4 psf	262.9 psf	261.6 psf	260.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	416.2 psf	410.0 psf	404.2 psf	398.7 psf	448.1 psf	440.9 psf	434.2 psf	427.8 psf	524.7 psf	515.1 psf	506.1 psf	497.6 psf	538.5 psf	49.8 psf	43.2 psf	43.6 psf

Maximum Bearing Pressure = 539 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

1173.1 ft-lbs $M_O =$

908.23 lbs Resisting Force Required =

S.F. = 1.67

Weight Required = 1513.71 lbs Minimum Width = <u>31 in</u> in Weight Provided = 6180.63 lbs

A minimum 132in long x 31in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		31 in			31 in			31 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	233 lbs	630 lbs	233 lbs	917 lbs	2784 lbs	917 lbs	68 lbs	184 lbs	68 lbs		
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	7884 lbs	6181 lbs	7884 lbs	8201 lbs	6181 lbs	8201 lbs	2305 lbs	6181 lbs	2305 lbs		
M	3 lbs-ft	0 lbs-ft	3 lbs-ft	11 lbs-ft	0 lbs-ft	11 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft		
f _{min}	277.2 psf	217.5 psf	277.2 psf	287.7 psf	217.5 psf	287.7 psf	81.1 psf	217.5 psf	81.1 psf		
f _{max}	277.7 psf	217.5 psf	277.7 psf	289.5 psf	217.5 psf	289.5 psf	81.2 psf	217.5 psf	81.2 psf		

Maximum Bearing Pressure = 289 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 31in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.863 k	Maximum $\overline{\text{Axial Load}} = 4.074 \text{ k}$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>52%</u>	Utilization = <u>55%</u>
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.522 k 12.808 k 7.421 k <u>21%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.031 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 117 \text{ in}$$

$$J = 0.432$$

$$323.677$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Not Used

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 117 \\ \mathsf{J} &= 0.432 \\ 205.839 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \phi \mathsf{F_L} &= \phi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))}] \end{split}$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.5 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ lx = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \\ M_{max} St = & 2.788 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$L_{\rm b} = 88.9$$

$$J = 1.08$$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used

Rb/t = 18.1

$$R_{t-1.17} \frac{\theta_{y}}{\theta_{y}} F_{cv}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = C_t$$

 $S2 = 141.0$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{rll} \phi F_L St = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

3.4.16.1

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ ly = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

33.3 ksi

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$

3.4.10

 $\phi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.18

 $\phi F_L =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$\phi F_{L} = 31.4$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{\text{max}}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$
$\phi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St =$ 28.2 ksi

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\begin{array}{ll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.86047 \\ \phi F_L = (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{\text{max}}Wk = 1.460 \text{ k-ft}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L =$$

$\phi F_L =$

Weak Axis:

48.3

0.942 75.3767

30.6

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$

S1 = 0.51461

 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56

3.4.14

3.4.16 b/t =
$$24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$

3.4.16

$$0/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1 N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$ $\phi F_1 St =$ 28.2 ksi

 $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 28.2 \text{ ksi}$$

$$\varphi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.76536$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 18.9268$ ksi

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$ 3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-85.82	-85.82	0	0
2	M14	V	-85.82	-85.82	0	0
3	M15	V	-137.311	-137.311	0	0
4	M16	V	-137.311	-137.311	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	197.385	197.385	0	0
2	M14	٧	152.759	152.759	0	0
3	M15	V	85.82	85.82	0	0
4	M16	V	85 82	85 82	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Y		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Y		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	387.862	2	1202.401	1	1.001	1	.004	1	Ö	1	Ó	1
2		min	-510.031	3	-1368.437	3	.037	15	0	15	0	1	0	1
3	N7	max	.031	9	1307.846	1	248	15	0	15	0	1	0	1
4		min	117	2	-387.608	3	-7.271	1	016	1	0	1	0	1
5	N15	max	.023	9	3862.515	1	0	1	0	11	0	1	0	1
6		min	-1.5	2	-1317.65	3	0	2	0	2	0	1	0	1
7	N16	max	1478.281	2	4006.177	1	0	1	0	14	0	1	0	1
8		min	-1612.549	3	-4476.812	3	0	3	0	2	0	1	0	1
9	N23	max	.031	9	1307.846	1	7.271	1	.016	1	0	1	0	1
10		min	117	2	-387.608	3	.248	15	0	15	0	1	0	1
11	N24	max	387.862	2	1202.401	1	037	15	0	15	0	1	0	1
12		min	-510.031	3	-1368.437	3	-1.001	1	004	1	0	1	0	1
13	Totals:	max	2252.272	2	12889.186	1	0	11					·	
14		min	-2633.429	3	-9306.553	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
1	M13	1	max	79.569	1	537.49	1	-4.335	15	0	3	.189	1	0	1
2			min	2.613	15	-702.488	3	-132.697	1	015	1	.006	15	0	3
3		2	max	79.569	1	376.323	1	-3.333	15	0	3	.062	1	.648	3
4			min	2.613	15	-494.261	3	-101.968	1	015	1	.002	15	495	1
5		3	max	79.569	1	215.156	1	-2.332	15	0	3	0	3	1.071	3
6			min	2.613	15	-286.035	3	-71.24	1	015	1	032	1	815	1
7		4	max	79.569	1	53.989	1	-1.33	15	0	3	002	12	1.268	3
8			min	2.613	15	-77.809	3	-40.511	1	015	1	092	1	961	1
9		5	max	79.569	1	130.418	3	328	15	0	3	004	12	1.239	3
10			min	2.613	15	-107.177	1	-9.782	1	015	1	12	1	932	1
11		6	max	79.569	1	338.644	3	20.947	1	0	3	004	15	.985	3
12			min	2.613	15	-268.344	1	.201	12	015	1	114	1	729	1
13		7	max	79.569	1	546.87	3	51.675	1	0	3	002	15	.506	3
14			min	2.613	15	-429.511	1	1.203	12	015	1	074	1	351	1
15		8	max	79.569	1	755.096	3	82.404	1	0	3	0	10	.202	1
16			min	2.613	15	-590.678	1	2.205	12	015	1	002	3	199	3
17		9	max	79.569	1	963.323	3	113.133	1	0	3	.104	1	.929	1
18			min	2.613	15	-751.845	1	3.207	12	015	1	.001	12	-1.13	3
19		10	max	79.569	1	913.012	1	-4.208	12	0	3	.243	1	1.831	1
20			min	2.613	15	-1171.549	3	-143.861	1	015	1	.005	12	-2.287	3
21		11	max	79.569	1	751.845	1	-3.207	12	.015	1	.104	1	.929	1
22			min	2.613	15	-963.323	3	-113.133	1	0	3	.001	12	-1.13	3
23		12	max	79.569	1	590.678	1	-2.205	12	.015	1	0	10	.202	1
24			min	2.613	15	-755.096	3	-82.404	1	0	3	002	3	199	3
25		13	max	79.569	1	429.511	1	-1.203	12	.015	1	002	15	.506	3
26			min	2.613	15	-546.87	3	-51.675	1	0	3	074	1	351	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	1 1	Axial[lb]						Torque[k-ft]					
27		14	max	79.569	1	268.344	1	201	12	.015	1_	004	15	.985	3
28			min	2.613	15	-338.644	3	-20.947	1	0	3	114	1	729	1
29		15	max	79.569	1	107.177	_1_	9.782	1	.015	_1_	004	12	1.239	3
30			min	2.613	15	-130.418	3	.328	15	0	3	12	1	932	1
31		16	max	79.569	1	77.809	3	40.511	1	.015	_1_	002	12	1.268	3
32			min	2.613	15	-53.989	1	1.33	15	0	3	092	1	961	1
33		17	max	79.569	1	286.035	3	71.24	1	.015	1	0	3	1.071	3
34			min	2.613	15	-215.156	1	2.332	15	0	3	032	1	815	1
35		18	max	79.569	1	494.261	3	101.968	1	.015	1	.062	1	.648	3
36			min	2.613	15	-376.323	1	3.333	15	0	3	.002	15	495	1
37		19	max	79.569	1	702.488	3	132.697	1	.015	1	.189	1	0	1
38			min	2.613	15	-537.49	1	4.335	15	0	3	.006	15	0	3
39	M14	1	max	37.677	1	571.431	1	-4.472	15	.009	3	.216	1	0	1
40			min	1.239	15	-556.751	3	-136.89	1	012	1	.007	15	0	3
41		2	max	37.677	1	410.264	1	-3.47	15	.009	3	.085	1	.517	3
42		_	min	1.239	15	-396.87	3	-106.161	1	012	1	.003	15	532	1
43		3	max	37.677	1	249.097	1	-2.468	15	.009	3	.003	3	.86	3
44		-	min	1.239	15	-236.988	3	-75.432	1	012	1	014	1	889	1
45		4		37.677	1	87.93	1	-1.466	15	.009	3	002	12	1.03	3
		4	max		_										
46		-	min	1.239	15	-77.107	3	-44.704	1	012	1	079	1	<u>-1.071</u>	1
47		5	max	37.677	1	82.775	3	465	15	.009	3	003	12	1.027	3
48			min	1.239	15	-73.236	1	-13.975	1	012	1_	111	1	<u>-1.079</u>	1
49		6	max	37.677	1	242.656	3	16.754	1	.009	3	004	15	<u>.851</u>	3
50		_	min	1.239	15	-234.403	1_	.027	3	012	1_	109	1	913	1
51		7	max	37.677	1	402.538	3	47.482	1	.009	3	002	15	.501	3
52			min	1.239	15	-395.57	1_	1.071	12	012	1_	074	1	572	1
53		8	max	37.677	1	562.419	3	78.211	1	.009	3	0	10	0	15
54			min	1.239	15	-556.737	1_	2.073	12	012	1_	006	1	065	2
55		9	max	37.677	11	722.3	3	108.94	1	.009	3	.095	1	.635	1
56			min	1.239	15	-717.904	1	3.074	12	012	1	.001	12	717	3
57		10	max	37.677	1	879.071	1	-4.076	12	.009	3	.23	1	1.5	1
58			min	1.239	15	-882.182	3	-139.668	1	012	1	.005	12	-1.586	3
59		11	max	37.677	1	717.904	1	-3.074	12	.012	1	.095	1	.635	1
60			min	1.239	15	-722.3	3	-108.94	1	009	3	.001	12	717	3
61		12	max	37.677	1	556.737	1	-2.073	12	.012	1	0	10	0	15
62			min	1.239	15	-562.419	3	-78.211	1	009	3	006	1	065	2
63		13	max	37.677	1	395.57	1	-1.071	12	.012	1	002	15	.501	3
64			min	1.239	15	-402.538	3	-47.482	1	009	3	074	1	572	1
65		14	max	37.677	1	234.403	1	027	3	.012	1	004	15	.851	3
66			min	1.239	15	-242.656	3	-16.754	1	009	3	109	1	913	1
67		15	max		1	73.236	1	13.975	1	.012	1	003	12	1.027	3
68		13	min	1.239	15	-82.775	3	.465	15	009	3	111	1	-1.079	1
69		16	max	37.677	1	77.107	3	44.704	1	.012	<u> </u>	002	12	1.03	3
70		10	min	1.239	15	-87.93	1	1.466	15	009	3	002	1	-1.071	1
71		17		37.677	1	236.988	3	75.432	1	.012	<u> </u>	.001	3	.86	3
72		17	max	1.239		-249.097	1	2.468	15		3		1	889	1
		10	min		15	396.87				009		014	_		_
73		18	max	37.677	1		3	106.161	1	.012	1	.085	1	.517	3
74		40	min	1.239	15	-410.264	1	3.47	15	009	3	.003	15	532	1
75		19	max	37.677	1	556.751	3	136.89	1	.012	1	.216	1	0	1
76	NAA T	4	min	1.239	15	-571.431	1	4.472	15	009	3	.007	15	0	3
77	M15	1	max	-1.3	15	677.556	2	-4.471	15	.013	1_	.216	1	0	2
78			min	-39.476	1	-312.282	3	-136.877	1_	008	3	.007	15	0	3
79		2	max	<u>-1.3</u>	15	484.443	2	-3.469	15	.013	1	.084	1	.291	3
80			min	-39.476	1	-224.918	3	-106.149		008	3	.003	15	629	2
81		3	max	-1.3	15	291.331	2	-2.467	15	.013	_1_	.001	3	.487	3
82			min	-39.476	1	-137.554	3	-75.42	1	008	3	014	1	-1.05	2
83		4	max	-1.3	15	98.395	1_	-1.466	15	.013	_1_	002	12	.589	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC				LC		
84			min	-39.476	1	-50.19	3	-44.691	1	008	3	079	1	-1.261	2
85		5	max	-1.3	15	37.174	3	464	15	.013	1	003	12	.596	3
86			min	-39.476	1	-94.893	2	-13.963	1	008	3	111	1	-1.262	2
87		6	max	-1.3	15	124.539	3	16.766	1	.013	1	004	15	.508	3
88			min	-39.476	1	-288.006	2	.088	3	008	3	109	1	-1.055	2
89		7	max	-1.3	15	211.903	3	47.495	1	.013	1	002	15	.326	3
90			min	-39.476	1	-481.118	2	1.108	12	008	3	074	1	64	1
91		8	max	-1.3	15	299.267	3	78.223	1	.013	1	0	10	.049	3
92			min	-39.476	1	-674.23	2	2.109	12	008	3	006	1	029	1
93		9	max	-1.3	15	386.631	3	108.952	1	.013	1	.095	1	.822	2
94			min	-39.476	1	-867.342	2	3.111	12	008	3	.001	12	322	3
95		10	max	-1.3	15	1060.455	2	-4.113	12	.013	1	.23	1	1.867	2
96			min	-39.476	1	-473.995	3	-139.681	1	012	2	.005	12	788	3
97		11	max	-1.3	15	867.342	2	-3.111	12	.008	3	.095	1	.822	2
98			min	-39.476	1	-386.631	3	-108.952	1	013	1	.001	12	322	3
99		12	max	-1.3	15	674.23	2	-2.109	12	.008	3	0	10	.049	3
100			min	-39.476	1	-299.267	3	-78.223	1	013	1	006	1	029	1
101		13	max	-1.3	15	481.118	2	-1.108	12	.008	3	002	15	.326	3
102			min	-39.476	1	-211.903	3	-47.495	1	013	1	074	1	64	1
103		14	max	-1.3	15	288.006	2	088	3	.008	3	004	15	.508	3
104			min	-39.476	1	-124.539	3	-16.766	1	013	1	109	1	-1.055	2
105		15	max	-1.3	15	94.893	2	13.963	1	.008	3	003	12	.596	3
106			min	-39.476	1	-37.174	3	.464	15	013	1	111	1	-1.262	2
107		16	max	-1.3	15	50.19	3	44.691	1	.008	3	002	12	.589	3
108			min	-39.476	1	-98.395	1	1.466	15	013	1	079	1	-1.261	2
109		17	max	-1.3	15	137.554	3	75.42	1	.008	3	.001	3	.487	3
110			min	-39.476	1	-291.331	2	2.467	15	013	1	014	1	-1.05	2
111		18	max	-1.3	15	224.918	3	106.149	1	.008	3	.084	1	.291	3
112		1.0	min	-39.476	1	-484.443	2	3.469	15	013	1	.003	15	629	2
113		19	max	-1.3	15	312.282	3	136.877	1	.008	3	.216	1	0	2
114		'	min	-39.476	1	-677.556	2	4.471	15	013	1	.007	15	0	3
115	M16	1	max	-2.763	15	646.673	2	-4.34	15	.013	1	.19	1	0	2
116	IWITO		min	-84.04	1	-290.057	3	-132.892		011	3	.006	15	0	3
117		2	max	-2.763	15	453.56	2	-3.338	15	.013	1	.063	1	.267	3
118			min	-84.04	1	-202.693	3	-102.163		011	3	.002	15	596	2
119		3	max	-2.763	15	260.448	2	-2.336	15	.013	1	0	3	.439	3
120			min	-84.04	1	-115.329		-71.434	1	011	3	031	1	983	2
121		4	max	-2.763	15	67.336	2	-1.334	15	.013	1	002	12	.517	3
122			min	-84.04	1	-27.965	3	-40.706	1	011	3	092	1	-1.16	2
123		5	max	-2.763	15	59.4	3	332	15	.013	1	004	12	.5	3
124		<u> </u>	min		1			-9.977	1		3		1	-1.129	2
125		6	max		15		3	20.752	1	.013	1	004	15	.388	3
126		<u> </u>	min	-84.04	1	-318.889		.324	12	011	3	114	1	888	2
127		7	max	-2.763	15	234.128	3	51.481	1	.013	1	002	15	.182	3
128			min	-84.04	1	-512.001	2	1.325	12	011	3	074	1	438	2
129		8	max	-2.763	15	321.492	3	82.209	1	.013	1	0	10	.224	1
130		0	min	-84.04	1	-705.113		2.327	12	011	3	002	1	119	3
		9													
131		9	max	-2.763	15	408.856	3	112.938	1	.013	1	.104	1	1.09	2
132		10	min	-84.04	1 1 5	-898.225 1091.338	2	3.329 -4.33	12	011	3	.002	12	515	3
133 134		10		-2.763			2	-4.33 -143.667	12	.013	1	.243	1	2.168	2
		4.4	min	-84.04	1_	-496.221	3		12	011	3	.006	12	<u>-1.005</u>	3
135		11	max	-2.763	15	898.225	2	-3.329	12	.011	3	.104	1	1.09	2
136		40	min	-84.04	1	-408.856	3	-112.938		013	1	.002	12	<u>515</u>	3
137		12	max	-2.763	15	705.113	2	-2.327	12	.011	3	0	10	.224	1
138		40	min	-84.04	1_	-321.492	3	-82.209	1	013	1	002	1	<u>119</u>	3
139		13	max	-2.763	15	512.001	2	-1.325	12	.011	3	002	15	.182	3
140			min	-84.04	1	-234.128	3	-51.481	1	013	1	074	1	438	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-2.763	15	318.889	2	324	12	.011	3	004	15	.388	3
142			min	-84.04	1	-146.764	3	-20.752	1	013	1	114	1	888	2
143		15	max	-2.763	15	125.776	2	9.977	1	.011	3	004	12	.5	3
144			min	-84.04	1	-59.4	3	.332	15	013	1	119	1	-1.129	2
145		16	max	-2.763	15	27.965	3	40.706	1	.011	3	002	12	.517	3
146			min	-84.04	1_	-67.336	2	1.334	15	013	1	092	1	-1.16	2
147		17	max	-2.763	15	115.329	3	71.434	1	.011	3	0	3	.439	3
148			min	-84.04	_1_	-260.448	2	2.336	15	013	1	031	1	983	2
149		18	max		15	202.693	3	102.163	1	.011	3	.063	1	.267	3
150			min	-84.04	_1_	-453.56	2	3.338	15	013	1	.002	15	<u>596</u>	2
151		19	max	-2.763	<u>15</u>	290.057	3	132.892	1	.011	3	.19	1	0	2
152	140		min	-84.04	1_	-646.673	2	4.34	15	013	1	.006	15	0	3
153	<u>M2</u>	1_		1174.445	1_	2.28	4	1.133	1	0	3	0	3	0	1
154				-1246.551	3	.537	15	.037	15	0	1	0	1	0	1
155		2		1174.773	1_	2.265	4	1.133	1	0	3	0	1	0	15
156		2	min	-1246.304	3	.534	15	.037	15	0	1	0	15	0	4
157		3		1175.102 -1246.058	1	2.25	4	1.133	1	0	3	0	1	0	15
158		4			3	.53	<u>15</u>	.037	15	0	1	0	15 1	001	4
159		4		1175.43 -1245.812	1	2.235	<u>4</u> 15	1.133	15	0	1	0		0	15
160 161		5	min	1175.759	<u>3</u> 1	. <u>526</u> 2.219	4	.037 1.133	1	0	3	0	15 1	002 0	15
162		5		-1245.565	3	.523	15	.037	15	0	1	0	15	002	4
163		6		1176.087	_ <u></u>	2.204	4	1.133	1	0	3	.001	1	<u>002</u> 0	15
164				-1245.319	3	.519	15	.037	15	0	1	0	15	002	4
165		7		1176.416		2.189	4	1.133	1	0	3	.001	1	0	15
166				-1245.073	3	.516	15	.037	15	0	1	0	15	003	4
167		8	_	1176.744	1	2.174	4	1.133	1	0	3	.002	1	0	15
168				-1244.826	3	.512	15	.037	15	0	1	0	15	003	4
169		9		1177.072	1	2.158	4	1.133	1	0	3	.002	1	0	15
170				-1244.58	3	.509	15	.037	15	0	1	0	15	004	4
171		10		1177.401	1	2.143	4	1.133	1	0	3	.002	1	001	15
172				-1244.334	3	.505	15	.037	15	0	1	0	15	004	4
173		11	max	1177.729	1	2.128	4	1.133	1	0	3	.002	1	001	15
174			min	-1244.087	3	.501	15	.037	15	0	1	0	15	005	4
175		12	max	1178.058	1	2.113	4	1.133	1	0	3	.003	1	001	15
176			min	-1243.841	3	.498	15	.037	15	0	1	0	15	005	4
177		13		1178.386	1	2.097	4	1.133	1	0	3	.003	1	001	15
178			min	-1243.595	3	.494	15	.037	15	0	1	0	15	006	4
179		14		1178.715	_1_	2.082	4	1.133	1	0	3	.003	1	001	15
180			min	-1243.348	3	.491	15	.037	15	0	1	0	15	006	4
181		15		1179.043	_1_	2.067	4	1.133	1	0	3	.003	1	002	15
182				-1243.102	3_	.487	15	.037	15	0	1	0	15	007	4
183		16		1179.371	1_	2.052	4	1.133	1	0	3	.004	1	002	15
184				-1242.856	3	.483	15	.037	15	0	1	0	15	007	4
185		17		1179.7	1	2.036	4	1.133	1	0	3	.004	1	002	15
186		40		-1242.609	3	.48	15	.037	15	0	1	0	15	008	4
187		18		1180.028	1_	2.021	4	1.133	1	0	3	.004	1	002	15
188		40		-1242.363	3	.476	15	.037	15	0	1	0	15	008	4
189		19		1180.357	1	2.006	4	1.133	1	0	3	.005	1	002	15
190	MO	4		-1242.117	3	.473	15	.037	15	0	1	0	15	009	4
191	<u>M3</u>	1		364.107	2	8.078	15	.015	1	0	1	0	1	.009	4
192		2		-482.703	3	1.899	<u>15</u>	0	15	0	3	0	15	.002	15
193 194				363.936 -482.831	3	7.305 1.718	<u>4</u> 15	.015 0	15	0	1	0	15	.005	12
194		3		363.766	2	6.533	4	.015	1	0	3	0	1	.001	2
196		٥	min	-482.959	3	1.536	15	.015	15	0	1	0	15	<u>.003</u>	3
197		4		363.596	2	5.761	4	.015	1	0	3	0	1	0	2
101			IIIIax	000.030		0.701		.010		U	_ ∪_				

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-483.086	3	1.355	15	0	15	0	1	0	15	001	3
199		5	max	363.425	2	4.988	4	.015	1	0	3	0	1	0	15
200			min	-483.214	3	1.173	15	0	15	0	1	0	15	003	3
201		6	max	363.255	2	4.216	4	.015	1	0	3	0	1	001	15
202			min	-483.342	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	363.085	2	3.443	4	.015	1	0	3	0	1	001	15
204			min	-483.47	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	362.914	2	2.671	4	.015	1	0	3	0	1	002	15
206			min	-483.597	3	.628	15	0	15	0	1	0	15	007	4
207		9	max	362.744	2	1.898	4	.015	1	0	3	0	1	002	15
208			min	-483.725	3	.447	15	0	15	0	1	0	15	008	4
209		10	max	362.574	2	1.126	4	.015	1	0	3	0	1_	002	15
210			min	-483.853	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	362.403	2	.43	2	.015	1	0	3	0	1	002	15
212			min	-483.981	3	006	3	0	15	0	1	0	15	009	4
213		12	max	362.233	2	098	15	.015	1	0	3	0	1	002	15
214			min	-484.108	3	458	3	0	15	0	1	0	15	009	4
215		13	max	362.063	2	279	15	.015	1	0	3	0	1_	002	15
216			min	-484.236	3	-1.191	4	0	15	0	1	0	15	009	4
217		14	max	361.892	2	461	15	.015	1	0	3	0	1	002	15
218			min	-484.364	3	-1.964	4	0	15	0	1	0	15	008	4
219		15	max	361.722	2	643	15	.015	1	0	3	0	1_	002	15
220			min	-484.492	3	-2.736	4	0	15	0	1	0	15	007	4
221		16	max	361.551	2	824	15	.015	1	0	3	0	1	001	15
222			min	-484.619	3	-3.509	4	0	15	0	1	0	15	006	4
223		17	max	361.381	2	-1.006	15	.015	1	0	3	0	1	001	15
224			min	-484.747	3	-4.281	4	0	15	0	1	0	15	004	4
225		18	max	361.211	2	-1.187	15	.015	1	0	3	0	1_	0	15
226			min	-484.875	3	-5.053	4	0	15	0	1	0	15	002	4
227		19	max	361.04	2	-1.369	15	.015	1	0	3	0	1_	0	1
228			min	-485.003	3	-5.826	4	0	15	0	1	0	15	0	1
229	<u>M4</u>	1	max	1304.78	_1_	0	1	248	15	0	1	0	1_	0	1
230			min	-389.908	3_	0	1	-7.579	1	0	1	0	10	0	1
231		2		1304.951	_1_	0	1	248	15	0	1	0	12	0	1
232			min	-389.78	3	0	1	-7.579	1	0	1	0	1_	0	1
233		3	max		1	0	1	248	15	0	1	0	15	0	1
234			min	-389.652	3	0	1	-7.579	1	0	1	002	1_	0	1
235		4	max		1_	0	1	248	15	0	1	0	15	0	1
236		<u> </u>	min	-389.525	3	0	1	-7.579	1	0	1	002	1	0	1
237		5_		1305.462	_1_	0	1	248	15	0	1	0	15	0	1
238				-389.397	3_	0	1	-7.579	1_	0	1	003	1_	0	1
239		6		1305.632	1_	0	1	248	15	0	1	0	15	0	1
240		<u> </u>	min	-389.269	3	0	1	-7.579	1	0	1	004	1_	0	1
241		7		1305.802	1	0	1	248	15	0	1	0	15	0	1
242			min		3	0	1	-7.579	1	0	1	005	1_	0	1
243		8		1305.973	1_	0	1	248	15	0	1	0	15	0	1
244			min			0	1	-7.579	1_	0	1	006	1_	0	1
245		9		1306.143	1	0	1	248	15	0	1	0	15	0	1
246		40		-388.886	3	0	1	-7.579	1_	0	1	007	1_	0	1
247		10		1306.313	1_	0	1	248	15	0	1	0	15	0	1
248		4.4		-388.758	3	0	1	-7.579	1_	0	1	008	1_	0	1
249		11		1306.484	1_	0	1	248	15	0	1	0	15	0	1
250		10	min		3	0	1	-7.579	1_	0	1	009	1_	0	1
251		12		1306.654	1	0	1	248	15	0	1	0	15	0	1
252		40	min	-388.502	3	0	1	-7.579	1_	0	1	009	1_	0	1
253		13		1306.824	1_	0	1	248	15	0	1	0	15	0	1
254			min	-388.375	3	0	1	-7.579	1	0	1	01	1_	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]	LC	y-y Mome			
255		14		1306.995	_1_	0	1	248	15	0	_1_	0	15	0	1
256			min	-388.247	3_	0	1	-7.579	1	0	1_	011	1	0	1
257		15		1307.165	_1_	0	1	248	15	0	_1_	0	15	0	1
258			min		3	0	1	-7.579	1	0	1	012	1	0	1
259		16	max	1307.335	_1_	0	1_	248	15	0	_1_	0	15	0	1
260			min	-387.991	3	0	1	-7.579	1	0	1_	013	1	0	1
261		17		1307.506	_1_	0	1	248	15	0	_1_	0	15	0	1
262			min	-387.864	3	0	1	-7.579	1	0	1	014	1	0	1
263		18		1307.676	1_	0	1	248	15	0	_1_	0	15	0	1
264			min	-387.736	3	0	1	-7.579	1	0	1_	015	1	0	1
265		19	max	1307.846	_1_	0	1	248	15	0	_1_	0	15	0	1
266			min	-387.608	3	0	1	-7.579	1	0	1_	016	1	0	1
267	M6	1	max	3773.857	<u>1</u>	2.86	2	0	1	0	_1_	0	1	0	1
268			min	-4074.007	3	.031	3	0	1	0	1	0	1	0	1
269		2	max	3774.185	1	2.849	2	0	1	0	1	0	1	0	3
270			min	-4073.761	3	.022	3	0	1	0	1	0	1	0	2
271		3	max	3774.514	1	2.837	2	0	1	0	1	0	1	0	3
272			min	-4073.515	3	.013	3	0	1	0	1	0	1	001	2
273		4	max	3774.842	1	2.825	2	0	1	0	1	0	1	0	3
274			min	-4073.268	3	.004	3	0	1	0	1	0	1	002	2
275		5	max	3775.171	1	2.813	2	0	1	0	1	0	1	0	3
276			min	-4073.022	3	005	3	0	1	0	1	0	1	003	2
277		6	max	3775.499	1	2.801	2	0	1	0	1	0	1	0	3
278			min	-4072.776	3	014	3	0	1	0	1	0	1	003	2
279		7		3775.828	1	2.789	2	0	1	0	1	0	1	0	3
280			min	-4072.529	3	023	3	0	1	0	1	0	1	004	2
281		8	max	3776.156	1	2.777	2	0	1	0	1	0	1	0	3
282			min	-4072.283	3	032	3	0	1	0	1	0	1	004	2
283		9		3776.484	1	2.765	2	0	1	0	1	0	1	0	3
284			min	-4072.037	3	041	3	0	1	0	1	0	1	005	2
285		10		3776.813	1	2.753	2	0	1	Ö	1	0	1	0	3
286			min	-4071.79	3	05	3	0	1	0	1	0	1	006	2
287		11		3777.141	1	2.742	2	0	1	0	1	0	1	0	3
288			min	-4071.544	3	059	3	0	1	0	1	0	1	006	2
289		12	max		1	2.73	2	0	1	0	1	0	1	0	3
290		12	min	-4071.298	3	067	3	0	1	0	1	0	1	007	2
291		13		3777.798	1	2.718	2	0	1	0	1	0	1	0	3
292			min	-4071.051	3	076	3	0	1	0	1	0	1	007	2
293		14		3778.127	1	2.706	2	0	1	0	1	0	1	0	3
294		17	min	-4070.805	3	085	3	0	1	0	1	0	1	008	2
295		15		3778.455	1	2.694	2	0	1	0	1	0	1	0	3
296		10	min		3	094	3	0	1	0	1	0	1	009	2
297		16		3778.783	1	2.682	2	0	1	0	1	0	1	0	3
298		10	min		3	103	3	0	1	0	1	0	1	009	2
299		17		3779.112	1	2.67	2	0	1	0	1	0	1	0	3
300		17	min		3	112	3	0	1	0	1	0	1	01	2
301		18		3779.44	<u> </u>	2.658	2	0	1	0	1	0	1	0	3
302		10	min		3	121	3	0	1	0	1	0	1	01	2
303		19		3779.769	<u> </u>	2.646	2	0	1	0	1	0	1	0	3
		19		-4069.573	3				1		1		1		2
304	N 1 7	1	min			13	3	0		0		0		011	
305	<u>M7</u>	1		1412.08	2	8.117	4	0	1	0	1	0	1	.011	2
306			min	-1519.755	3	1.905	15	0	1	0	1	0	1	0	3
307		2	max		2	7.344	4	0	1	0	1	0	1	.008	2
308			min		3	1.723	15	0	1	0	1	0	1_	002	3
309		3	max		2	6.572	4	0	1	0	1_	0	1	.006	2
310			min	-1520.011	3	1.541	15	0	1	0	1	0	1	003	3
311		4	max	1411.569	_2_	5.799	4	0	1	0	_1_	0	_1_	.003	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
312			min	-1520.138	3	1.36	15	0	1	0	1	0	1	004	3
313		5	max	1411.399	2	5.027	4	0	1	0	_1_	0	1	.001	2
314			min	-1520.266	3	1.178	15	0	1	0	1	0	1	005	3
315		6	max	1411.228	2	4.255	4	0	1	0	1	0	1	0	2
316			min	-1520.394	3	.997	15	0	1	0	1	0	1	006	3
317		7	max	1411.058	2	3.482	4	0	1	0	_1_	0	1	001	15
318			min	-1520.522	3	.815	15	0	1	0	1	0	1	007	3
319		8	max	1410.888	2	2.71	4	0	1	0	1	0	1	002	15
320			min	-1520.65	3	.631	12	0	1	0	1	0	1	007	3
321		9	max	1410.717	2	2.049	2	0	1	0	1	0	1	002	15
322			min	-1520.777	3	.33	12	0	1	0	1	0	1	008	4
323		10	max	1410.547	2	1.447	2	0	1	0	1	0	1	002	15
324			min	-1520.905	3	026	3	0	1	0	1	0	1	009	4
325		11	max	1410.377	2	.845	2	0	1	0	1	0	1	002	15
326			min	-1521.033	3	478	3	0	1	0	1	0	1	009	4
327		12	max	1410.206	2	.243	2	0	1	0	1	0	1	002	15
328			min	-1521.161	3	929	3	0	1	0	1	0	1	009	4
329		13	max	1410.036	2	274	15	0	1	0	1	0	1	002	15
330			min	-1521.288	3	-1.38	3	0	1	0	1	0	1	009	4
331		14	max	1409.866	2	456	15	0	1	0	1	0	1	002	15
332			min	-1521.416	3	-1.925	4	0	1	0	1	0	1	008	4
333		15	_	1409.695	2	637	15	0	1	0	1	0	1	002	15
334		1.0	min	-1521.544	3	-2.697	4	0	1	0	1	0	1	007	4
335		16		1409.525	2	819	15	0	1	0	1	0	1	001	15
336		1.0	min	-1521.672	3	-3.47	4	0	1	0	1	0	1	006	4
337		17		1409.355	2	-1.001	15	0	1	0	1	0	1	0	15
338		1 ''	min	-1521.799	3	-4.242	4	0	1	0	1	0	1	004	4
339		18	max		2	-1.182	15	0	1	0	1	0	1	0	15
340		10	min	-1521.927	3	-5.014	4	0	1	0	1	0	1	002	4
341		19		1409.014	2	-1.364	15	0	1	0	1	0	1	0	1
342		19	min	-1522.055	3	-5.787	4	0	1	0	1	0	1	0	1
343	M8	1		3859.448	<u> </u>	0	1	0	1	0	1	0	1	0	1
344	IVIO	+ -	min	-1319.95	3	0	1	0	1	0	1	0	1	0	1
345		2		3859.619	<u> </u>	0	1	0	1	0	1	0	1	0	1
				-1319.822		0	1	0	1	0	1	0	1	0	1
346		3	min	3859.789	3		1	0	1		1	0	1		1
347		3		-1319.694	1	0			1	0	1			0	
348		1	min		3_1	0	1	0	1	0	1	0	1	0	1
349		4	max	3859.959	1	0	1	0	1	0	1	0	1	0	1
350		-	min		3	0	•	0	1	0		0		0	1
351		5	max		1	0	1	0	_	0	1	0	1	0	1
352		_	min	-1319.439	3	0	1_1	0	1_1	0	1	0	1	0	1
353		6	max	3860.3 -1319.311	1	0	1	0	1	0	1	0	1	0	1
354		7	min		3	0		0	•	0	1	0	1	0	1
355		7	max		1	0	1	0	1	0	1	0	1	0	1
356			min	-1319.183	3	0	_	0		0		0		0	-
357		8		3860.641	1	0	1	0	1	0	1	0	1	0	1
358			min	-1319.055	3	0	1_	0	1_	0	1	0	1	0	1
359		9		3860.811	1_	0	1	0	1	0	1	0	1	0	1
360		4.0	min	-1318.928	3	0	1	0	1	0	1	0	1	0	1
361		10		3860.981	1_	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	0	1	0	1	0	1	0	1
363		11		3861.152	1_	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3861.322	_1_	0	1	0	1	0	1	0	1	0	1
366			min	-1318.544	3	0	1	0	1	0	1	0	1	0	1
367		13		3861.493	_1_	0	1	0	1	0	1	0	1	0	1
368			min	-1318.417	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14		3861.663	_1_	0	1	0	1	0	1	0	1_	0	1
370			min	-1318.289	3	0	1	0	1	0	1	0	1	0	1
371		15		3861.833	_1_	0	1	0	1_	0	1	0	1_	0	1
372			min	-1318.161	3	0	1	0	1	0	1	0	1	0	1
373		16		3862.004	_1_	0	1_	0	1	0	1	0	1_	0	1
374			min	-1318.033	3	0	1	0	1	0	1	0	1	0	1
375		17	max	3862.174	_1_	0	1	0	1	0	1	0	_1_	0	1
376			min	-1317.906	3	0	1	0	1	0	1	0	1	0	1
377		18		3862.344	_1_	0	1	0	1	0	1	0	1	0	1
378			min	-1317.778	3	0	1	0	1	0	1	0	1	0	1
379		19	max	3862.515	1_	0	1	0	1	0	1	0	1	0	1
380			min	-1317.65	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1174.445	1	2.28	4	037	15	0	1	0	1	0	1
382			min	-1246.551	3	.537	15	-1.133	1	0	3	0	3	0	1
383		2	max	1174.773	1	2.265	4	037	15	0	1	0	15	0	15
384			min	-1246.304	3	.534	15	-1.133	1	0	3	0	1	0	4
385		3	max	1175.102	1	2.25	4	037	15	0	1	0	15	0	15
386			min	-1246.058	3	.53	15	-1.133	1	0	3	0	1	001	4
387		4	max	1175.43	1	2.235	4	037	15	0	1	0	15	0	15
388			min	-1245.812	3	.526	15	-1.133	1	0	3	0	1	002	4
389		5	max		1	2.219	4	037	15	0	1	0	15	0	15
390			min	-1245.565	3	.523	15	-1.133	1	0	3	0	1	002	4
391		6		1176.087	1	2.204	4	037	15	0	1	0	15	0	15
392			min	-1245.319	3	.519	15	-1.133	1	0	3	001	1	002	4
393		7		1176.416	1	2.189	4	037	15	0	1	0	15	0	15
394			min	-1245.073	3	.516	15	-1.133	1	0	3	001	1	003	4
395		8	max		1	2.174	4	037	15	0	1	0	15	0	15
396			min	-1244.826	3	.512	15	-1.133	1	0	3	002	1	003	4
397		9		1177.072	1	2.158	4	037	15	0	1	0	15	0	15
398		3	min	-1244.58	3	.509	15	-1.133	1	0	3	002	1	004	4
399		10		1177.401	<u> </u>	2.143	4	037	15	0	1	0	15	004	15
400		10	min	-1244.334	3	.505	15	-1.133	1	0	3	002	1	004	4
401		11		1177.729	<u> </u>	2.128	4	037	15	0	1	0	15	004	15
402			min	-1244.087	3	.501	15	-1.133	1	0	3	002	1	005	4
403		12		1178.058	<u> </u>	2.113	4	037	15		1	0	15	003	15
		12	min	-1243.841	3	.498	15	-1.133	1	0	3	003	1	005	4
404		12		1178.386		2.097			15		1		15		
405		13		-1243.595	1	.494	15	037	1	0	3	0		001	1 <u>5</u>
406		4.4	min		3_			-1.133		0	1	003	1_	006	
407		14		1178.715	1	2.082	4	037	15	0	_	0	15	001	15
408		4.5	min		3_	.491	15	-1.133	1_	0	3	003	1_	006	4
409		15		1179.043	1	2.067	4	037	15	0	1	0	15	002	15
410		40	min		3	.487	15	-1.133	1_	0	3	003	1_	007	4
411		16		1179.371	1_	2.052	4	037	15	0	1	0	15	002	15
412			min		3	.483	15	-1.133	1	0	3	004	1_	007	4
413		17	max		1_	2.036	4	037	15	0	1	0	15	002	15
414			min		3_	.48	15	-1.133	1	0	3	004	1_	008	4
415		18		1180.028	_1_	2.021	4	037	15	0	1	0	15	002	15
416			min	-1242.363	3	.476	15	-1.133	1	0	3	004	1	008	4
417		19		1180.357	_1_	2.006	4	037	15	0	1	0	15	002	15
418			min	-1242.117	3	.473	15	-1.133	1	0	3	005	1_	009	4
419	M11	1	max		2	8.078	4	0	15	0	1	0	15	.009	4
420			min		3	1.899	15	015	1	0	3	0	1	.002	15
421		2	max		2	7.305	4	0	15	0	1	0	15	.005	4
422			min	-482.831	3	1.718	15	015	1	0	3	0	1	.001	12
423		3	max	363.766	2	6.533	4	0	15	0	1	0	15	.003	2
424			min		3	1.536	15	015	1	0	3	0	1	0	3
425		4	max	363.596	2	5.761	4	0	15	0	1	0	15	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

100	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]		_			LC
426		_	min	-483.086	3	1.355	15	015	1_	0	3	0	1	001	3
427		5	max	363.425	2	4.988	4	0	15	0	_1_	0	15	0	15
428			min	-483.214	3_	1.173	15	015	1_	0	3	0	1_	003	3
429		6	max	363.255	2	4.216	4	0	15	0	1	0	15	001	15
430		_	min	-483.342	3_	.992	15	015	1_	0	3	0	1_	004	4
431		7	max	363.085	2	3.443	4	0	15	0	_1_	0	15	001	15
432		_	min	-483.47	3	.81	15	015	1	0	3	0	1	006	4
433		8	max	362.914	2	2.671	4	0	15	0	1	0	15	002	15
434			min	-483.597	3	.628	15	015	1_	0	3	0	1_	007	4
435		9	max	362.744	2	1.898	4	0	15	0	_1_	0	15	002	15
436			min	-483.725	3	.447	15	015	1	0	3	0	1	008	4
437		10	max	362.574	2	1.126	4	0	15	0	_1_	0	15	002	15
438			min	-483.853	3	.265	15	015	1	0	3	0	1	009	4
439		11	max		2	.43	2	0	15	0	_1_	0	15	002	15
440			min	-483.981	3	006	3	015	1	0	3	0	1	009	4
441		12	max	362.233	2	098	15	0	15	0	_1_	0	15	002	15
442			min	-484.108	3	458	3	015	1	0	3	0	1	009	4
443		13	max	362.063	2	279	15	0	15	0	_1_	0	15	002	15
444			min	-484.236	3	-1.191	4	015	1	0	3	0	1	009	4
445		14	max	361.892	2	461	15	0	15	0	_1_	0	15	002	15
446			min	-484.364	3	-1.964	4	015	1	0	3	0	1	008	4
447		15	max	361.722	2	643	15	0	15	0	_1_	0	15	002	15
448			min	-484.492	3	-2.736	4	015	1	0	3	0	1	007	4
449		16	max	361.551	2	824	15	0	15	0	1	0	15	001	15
450			min	-484.619	3	-3.509	4	015	1	0	3	0	1	006	4
451		17	max	361.381	2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-484.747	3	-4.281	4	015	1	0	3	0	1	004	4
453		18	max	361.211	2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-484.875	3	-5.053	4	015	1	0	3	0	1	002	4
455		19	max	361.04	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-485.003	3	-5.826	4	015	1	0	3	0	1	0	1
457	M12	1	max	1304.78	1	0	1	7.579	1	0	1	0	10	0	1
458			min	-389.908	3	0	1	.248	15	0	1	0	1	0	1
459		2	max	1304.951	1	0	1	7.579	1	0	1	0	1	0	1
460			min	-389.78	3	0	1	.248	15	0	1	0	12	0	1
461		3	max	1305.121	1	0	1	7.579	1	0	1	.002	1	0	1
462			min	-389.652	3	0	1	.248	15	0	1	0	15	0	1
463		4	max	1305.291	1	0	1	7.579	1	0	1	.002	1	0	1
464				-389.525	3	0	1	.248	15	0	1	0	15	0	1
465		5		1305.462	1	0	1	7.579	1	0	1	.003	1	0	1
466				-389.397	3	0	1	.248	15	0	1	0	15	0	1
467		6		1305.632	1	0	1	7.579	1	0	1	.004	1	0	1
468				-389.269	3	0	1	.248	15	0	1	0	15	0	1
469		7		1305.802	1	0	1	7.579	1	0	1	.005	1	0	1
470				-389.141	3	0	1	.248	15	0	1	0	15	0	1
471		8		1305.973	1	0	1	7.579	1	0	1	.006	1	0	1
472				-389.014	3	0	1	.248	15	0	1	0	15	0	1
473		9		1306.143	1	0	1	7.579	1	0	1	.007	1	0	1
474		Ĭ		-388.886	3	0	1	.248	15	0	1	0	15	0	1
475		10		1306.313	1	0	1	7.579	1	0	1	.008	1	0	1
476				-388.758	3	0	1	.248	15	0	1	0	15	0	1
477		11		1306.484	1	0	1	7.579	1	0	1	.009	1	0	1
478				-388.63	3	0	1	.248	15	0	1	0	15	0	1
479		12		1306.654	<u> </u>	0	1	7.579	1	0	1	.009	1	0	1
480		14		-388.502	3	0	1	.248	15	0	1	.009	15	0	1
481		13		1306.824	<u>ა</u> 1	0	1	7.579	1	0	1	.01	1	0	1
482		13		-388.375	3	0	1	.248	15	0	1	0	15	0	1
402			1111111	-300.373	J	U		.240	10	U		U	IU	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483			max	1306.995	1	0	1	7.579	1	0	1	.011	1	0	1
484			min	-388.247	3	0	1	.248	15	0	1	0	15	0	1
485		15		1307.165	1	0	1	7.579	1	0	1	.012	1	0	1
486			min	-388.119	3	0	1	.248	15	0	1	0	15	0	1
487		16			1	0	1	7.579	1	0	1	.013	1	0	1
488			min	-387.991	3	0	1	.248	15	0	1	0	15	0	1
489		17		1307.506	1	0	1	7.579	1	0	1	.014	1	0	1
490		1/	min	-387.864	3	0	1	.248	15	0	1	0	15	0	1
491		18		1307.676	_ <u></u>	0	1	7.579	1	0	1	.015	1	0	1
492		10	min	-387.736	3	0	1	.248	15	0	1	0	15	0	1
493		19		1307.846	_ <u></u>	0	1	7.579	1	0	1	.016	1	0	1
494		19		-387.608	3	0	1	.248	15	0	1	0	15	0	1
	M1	1	min			_					1				_
495	IVI I		max	132.7	1_	702.469	3	-2.613	15	0		.189	1	0	3
496			min	4.335	15	-536.246	1	-79.496	1	0	3	.006	15	015	1
497		2	max	133.071	1_	701.431	3	-2.613	15	0	1	.147	1_	.269	1
498			min	4.447	<u>15</u>	-537.63	1_	-79.496	1	0	3	.005	15	37	3
499		3	max		3_	603.317	1	-2.576	15	0	3	.105	1_	.539	1
500			min	-176.907	2	-516.187	3	-78.562	1_	0	1	.003	15	725	3
501		4	max	287.717	3	601.933	1	-2.576	15	0	3	.064	1	.221	1
502			min	-176.536	2	-517.225	3	-78.562	1	0	1	.002	15	452	3
503		5	max		_3_	600.549	1_	-2.576	15	0	3	.022	1_	004	15
504			min	-176.166	2	-518.262	3	-78.562	1	0	1	0	15	179	3
505		6	max		3_	599.166	1	-2.576	15	0	3	0	15	.095	3
506			min	-175.795	2	-519.3	3	-78.562	1	0	1	019	1	413	1
507		7	max	288.551	3	597.782	1	-2.576	15	0	3	002	15	.369	3
508			min	-175.424	2	-520.338	3	-78.562	1	0	1	061	1	729	1
509		8	max	288.829	3	596.399	1	-2.576	15	0	3	003	15	.644	3
510			min	-175.053	2	-521.375	3	-78.562	1	0	1	102	1	-1.044	1
511		9	max	296.592	3	47.313	2	-3.816	15	0	9	.061	1	.751	3
512			min	-122.18	2	.42	15	-116.263	1	0	3	.002	15	-1.19	1
513		10	max	296.87	3	45.93	2	-3.816	15	0	9	0	15	.732	3
514			min	-121.809	2	.002	15	-116.263	1	0	3	0	1	-1.203	1
515		11	max		3	44.546	2	-3.816	15	0	9	002	15	.714	3
516			min	-121.439	2	-1.717	4	-116.263	1	0	3	062	1	-1.215	1
517		12	max	304.852	3	347.326	3	-2.515	15	0	2	.101	1	.623	3
518			min	-72.515	10	-646.424	1	-76.815	1	Ö	3	.003	15	-1.073	1
519		13	max	305.13	3	346.288	3	-2.515	15	0	2	.06	1	.44	3
520			min	-72.206	10	-647.808	1	-76.815	1	0	3	.002	15	732	1
521		14	max	305.408	3	345.251	3	-2.515	15	0	2	.02	1	.257	3
522			min	-71.897	10	-649.191	1	-76.815	1	0	3	0	15	39	1
523		15	max	305.686	3	344.213		-2.515	15	0	2	0	15	.075	3
524		10	min		10	-650.575	1	-76.815	1	0	3	021	1	047	1
525		16		305.964	3	343.175	3	-2.515	15	0	2	002	15	.32	2
526		10	min		10	-651.959	1	-76.815	1	0	3	061	1	106	3
527		17			3	342.137		-2.515	15		2	003			_
528		17	max				3	-76.815	1	0	3	102	<u>15</u> 1	.658 287	3
		40	min	-70.97	10	-653.342	1								
529		Ιδ	max		<u>15</u>	648.461	2	-2.763	15	0	3	005	15	.331	2
530		40	min		1_	-289.06	3	-84.11	1	0	2	146	1_	142	3
531		19	max		15	647.078	2	-2.763	15	0	3	006	15	.011	3
532	NAC			-132.889	1_	-290.097	3	-84.11	1	0	2	19	1	013	1
533	M5	1	max		1	2343.035	3	0	1	0	1	0	1	.03	1
534			min	8.417	12	-1818.817	1	0	1	0	1	0	1_	002	3
535		2		288.087	_1_	2341.997	3	0	1	0	1	0	1	.99	1
536			min	8.602	12	-1820.2	1	0	1	0	1	0	1	-1.238	3
537		3		922.702	3_	1833.293	1	0	1	0	1	0	1	1.907	1
538			min	-624.328	2	-1646.7	3	0	1	0	1	0	1	-2.425	3
539		4	max	922.98	3	1831.909	1	0	1	0	1	0	1	.94	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
540			min	-623.958	2	-1647.738	3	0	1	0	1	0	1	-1.556	3
541		5	max		3	1830.525	1	0	1	0	1	0	1	.016	9
542			min	-623.587	2	-1648.776	3	0	1	0	1	0	1	686	3
543		6	max	923.536	3	1829.142	1	0	1	0	1	0	1	.184	3
544			min	-623.216	2	-1649.813	3	0	1	0	1	0	1	992	1
545		7	max	923.815	3	1827.758	1	0	1	0	1	0	1	1.055	3
546			min	-622.845	2	-1650.851	3	0	1	0	1	0	1	-1.957	1
547		8	max		3	1826.374	1	0	1	0	1	0	1	1.926	3
548			min	-622.475	2	-1651.889	3	0	1	0	1	0	1	-2.921	1
549		9	max	936.445	3	158.091	2	0	1	0	1	0	1	2.215	3
550			min	-513.163	2	.418	15	0	1	0	1	0	1	-3.307	1
551		10	max		3	156.708	2	0	1	0	1	0	1	2.148	3
552			min	-512.792	2	0	15	0	1	0	1	0	1	-3.351	1
553		11	max		3	155.324	2	0	1	0	1	0	1	2.082	3
554			min	-512.421	2	-1.608	4	0	1	0	1	0	1	-3.393	1
555		12	max		3	1090.775	3	0	1	0	1	0	1	1.828	3
556		12	min	-403.149	2	-1992.677	1	0	1	0	1	0	1	-3.025	1
557		13	max		3	1089.738	3	0	1	0	1	0	1	1.253	3
558		13	min	-402.778	2	-1994.061	1	0	1	0	1	0	1	-1.973	1
559		14	max	950.031	3	1088.7	3	0	1	0	1	0	1	.678	3
560		17	min	-402.407	2	-1995.445	1	0	1	0	1	0	1	921	1
561		15	max		3	1087.662	3	0	1	0	1	0	1	.21	2
562		13	min	-402.036	2	-1996.828	1	0	1	0	1	0	1	004	13
563		16	max	950.587	3	1086.624	3	0	1	0	1	0	1	1.244	2
564		10	min	-401.666	2	-1998.212	1	0	1	0	1	0	1	47	3
565		17	max		3	1085.587	3	0	1	0	1	0	1	2.279	2
566		17	min	-401.295	2	-1999.595	1	0	1	0	1	0	1	-1.043	3
567		18		-8.846	12	2186.325	2	0	1	0	1	0	1	1.175	2
568		10	max min	-287.709	1	-991.627	3	0	1	0	1	0	1	545	3
		19			12	2184.941	2	0	1	•	1	0	1	.026	1
569 570		19	max min	-8.661 -287.338	1	-992.665	3	0	1	0	1	0	1	021	3
571	M9	1		132.7	1	702.469	3	79.496	1	0	3	006	15	0	3
572	IVIÐ	-	max	4.335	15	-536.246	1	2.613	15	0	1	189	1	015	1
573		2	max	133.071	1	701.431	3	79.496	1	0	3	005	15	.269	1
					15	-537.63	1	2.613	15	0	1	147	1		3
574 575		3	min	4.447 287.439	3	603.317	1	78.562	1	0	1	003	15	37 .539	1
576		3	max	-176.907	2	-516.187	3	2.576	15	0	3	105	1	725	3
577		4		287.717	3	601.933	1	78.562	1	0	1	002	15	.221	1
578		4	max	-176.536	2	-517.225	3	2.576	15	0	3	064	1	452	3
579		5	min	287.995	3	600.549	1	78.562	1	•	1	064 0	15		15
580		5	max	-176.166	2	-518.262		2.576	15	0	3	022	1	004 179	3
581		6				599.166			1	0	1		1	.095	3
582		0	max	-175.795	2	-519.3	1	78.562 2.576	15	0	3	.019 0	15	413	1
		7				597.782	3								3
583 584		/		288.551 -175.424	2	-520.338	3	78.562 2.576	15	0	3	.061 .002	15	.369	1
		8							1		1	.102	1	729 .644	3
585		-	max		3	596.399	1	78.562	15	0	3		15	-1.044	
586					2	-521.375	3	2.576		0		.003			1
587		9		296.592	3	47.313	2	116.263	1	0	3	002	15	.751	3
588		40	min		2	.42	15	3.816	15	0	9	061	1	-1.19	1
589		10	max		3	45.93	2	116.263	1	0	3	0	1	.732	3
590		4.4		-121.809	2	.002	15	3.816	15	0	9	0	15	-1.203	1
591		11		297.148	3	44.546	2	116.263	1	0	3	.062	1	.714	3
592				-121.439	2	-1.717	4	3.816	15	0	9	.002	15	-1.215	1
593		12	max		3	347.326	3	76.815	1	0	3	003	15	.623	3
594			min		10	-646.424	1	2.515	15	0	2	101	1_	-1.073	1
595		13	max		3	346.288	3	76.815	1	0	3	002	15	.44	3
596			min	-72.206	10	-647.808	1	2.515	15	0	2	06	1	732	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	305.408	3	345.251	3	76.815	1	0	3	0	15	.257	3
598			min	-71.897	10	-649.191	1	2.515	15	0	2	02	1	39	1
599		15	max	305.686	3	344.213	3	76.815	1	0	3	.021	1	.075	3
600			min	-71.588	10	-650.575	1	2.515	15	0	2	0	15	047	1
601		16	max	305.964	3	343.175	3	76.815	1	0	3	.061	1	.32	2
602			min	-71.279	10	-651.959	1	2.515	15	0	2	.002	15	106	3
603		17	max	306.242	3	342.137	3	76.815	1	0	3	.102	1	.658	2
604			min	-70.97	10	-653.342	1	2.515	15	0	2	.003	15	287	3
605		18	max	-4.452	15	648.461	2	84.11	1	0	2	.146	1	.331	2
606			min	-133.26	1	-289.06	3	2.763	15	0	3	.005	15	142	3
607		19	max	-4.34	15	647.078	2	84.11	1	0	2	.19	1	.011	3
608			min	-132.889	1	-290.097	3	2.763	15	0	3	.006	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.122	1	.005	3 9.72e-3	1	NC	1_	NC	1
2			min	0	15	025	3	002	2 -1.897e-3	3	NC	1	NC	1
3		2	max	0	1	.281	3	.029	1 1.113e-2	1	NC	5	NC	2
4			min	0	15	09	1	0	10 -1.977e-3	3	763.841	3	8440.101	1
5		3	max	0	1	.529	3	.069	1 1.255e-2	1	NC	5	NC	3
6			min	0	15	257	1	.002	15 -2.056e-3	3	422.327	3	3463.973	1
7		4	max	0	1	.679	3	.103	1 1.396e-2	1	NC	5	NC	3
8			min	0	15	349	1	.003	15 -2.136e-3	3	332.472	3	2295.777	1
9		5	max	0	1	.712	3	.121	1 1.537e-2	1	NC	5	NC	3
10			min	0	15	353	1	.004	15 -2.216e-3	3	317.407	3	1957.851	1
11		6	max	0	1	.632	3	.117	1 1.679e-2	1	NC	5	NC	3
12			min	0	15	272	1	.004	15 -2.296e-3	3	356.192	3	2030.683	1
13		7	max	0	1	.462	3	.091	1 1.82e-2	1	NC	5	NC	3
14			min	0	15	124	1	.003	15 -2.375e-3	3	480.837	3	2594.291	1
15		8	max	0	1	.246	3	.053	1 1.961e-2	1	NC	4	NC	2
16			min	0	15	.001	15	0	10 -2.455e-3	3	863.456	3	4519.326	1
17		9	max	0	1	.219	2	.017	3 2.103e-2	1	NC	4	NC	1
18			min	0	15	.005	15	005	10 -2.535e-3	3	2337.225	2	NC	1
19		10	max	0	1	.285	1	.016	3 2.244e-2	1	NC	3	NC	1
20			min	0	1	038	3	01	2 -2.615e-3	3	1437.703	1	NC	1
21		11	max	0	15	.219	2	.017	3 2.103e-2	1	NC	4	NC	1
22			min	0	1	.005	15	005	10 -2.535e-3	3	2337.225	2	NC	1
23		12	max	0	15	.246	3	.053	1 1.961e-2	1	NC	4	NC	2
24			min	0	1	.001	15	0	10 -2.455e-3	3	863.456	3	4519.326	1
25		13	max	0	15	.462	3	.091	1 1.82e-2	1	NC	5	NC	3
26			min	0	1	124	1	.003	15 -2.375e-3	3	480.837	3	2594.291	1
27		14	max	0	15	.632	3	.117	1 1.679e-2	1	NC	5	NC	3
28			min	0	1	272	1	.004	15 -2.296e-3	3	356.192	3	2030.683	
29		15	max	0	15	.712	3	.121	1 1.537e-2	1	NC	5	NC	3
30			min	0	1	353	1	.004	15 -2.216e-3	3	317.407	3	1957.851	1
31		16	max	0	15	.679	3	.103	1 1.396e-2	1	NC	5	NC	3
32			min	0	1	349	1	.003	15 -2.136e-3	3	332.472	3	2295.777	1
33		17	max	0	15	.529	3	.069	1 1.255e-2	1	NC	5	NC	3
34			min	0	1	257	1	.002	15 -2.056e-3	3	422.327	3	3463.973	1
35		18	max	0	15	.281	3	.029	1 1.113e-2	1	NC	5	NC	2
36			min	0	1	09	1	0	10 -1.977e-3	3	763.841	3	8440.101	1
37		19	max	0	15	.122	1	.005	3 9.72e-3	1	NC	1_	NC	1
38			min	0	1	025	3	002	2 -1.897e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.223	3	.005	3 6.015e-3	1	NC	1	NC	1
40			min	0	15	391	1	002	2 -4.003e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

41		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
43			2									_1_				
44								_								-
45			3		_											
46																
48			4													
48				min		15		•		15		3				
49			5	max		-		3						15		
So				min	0	15				15		3			2211.969	
ST	49		6	max	0	-		3	.106			1		15		3
Second Process Seco	50			min	0	15	-1.407	_	.004	15	-8.297e-3	3	230.155	1	2241.185	1
Sample	51		7	max	0	1	.959	3	.085	1	1.316e-2	1		15	NC	3
Second Part	52			min	0	15	-1.346	1	.003	15	-9.156e-3	3	244.823	1	2815.256	1
Second Color	53		8	max	0	1	.828	3	.05	1	1.436e-2	1	NC	15	NC	2
Second Color	54			min	0	15	-1.234	1	0	10	-1.002e-2	3	277.579	1	4831.933	1
Second Color	55		9	max	0	1	.699	3	.015	3	1.555e-2	1	NC	15	NC	1
58						15				10		3	322.145			1
The color of the			10		0			3		3		1		5		1
59						1										1
60			11		0	15		3		_				15		1
61																
62			12					_				_		•		-
63																1
65			13													3
66			10		_											
66			14													
68			17													
68			15					_						•		
69			13													
To Min O 1 -1.263 1 .003 15 -6.58e-3 3 268.331 1 2690.455 1			16													
The number of			10													
The following color			17									_		•		-
73 18 max 0 15 .529 3 .02 1 7.207e-3 1 NC 5 NC 1 74 min 0 1 741 1 0 10 -4.862e-3 3 668.685 1 NC 1 75 19 max 0 15 .223 3 .005 3 6.015e-3 1 NC 1 NC 1 76 min 0 1 391 1 002 2 4.003e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .228 3 .004 3 3.398e-3 3 NC 1 NC 1 78 min 0 1 781 1 0.002 2 -6.131e-3 1 NC 1 NC 1 80 min 0 1 781 1			17													4
74 min 0 1 741 1 0 10 -4.862e-3 3 668.685 1 NC 1 75 19 max 0 15 .223 3 .005 3 6.015e-3 1 NC 1 NC 1 76 min 0 1 391 1 002 2 -4.003e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .228 3 .004 3 3.398e-3 3 NC 1 NC 1 78 min 0 1 39 1 002 2 -6.131e-3 1 NC 1 NC 1 80 min 0 15 .428 3 .02 1 4.128e-3 3 NC 5 NC 1 81 3 max 0 15 .601 3			10					_								1
75 19 max 0 15 .223 3 .005 3 6.015e-3 1 NC 1 NC 1 76 min 0 1 391 1 002 2 -4.003e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .228 3 .004 3 3.398e-3 3 NC 1 NC 1 78 min 0 1 39 1 -002 2 -6.131e-3 1 NC 1 NC 1 79 2 max 0 15 .428 3 .02 1 4.128e-3 3 NC 5 NC 1 80 min 0 1 781 1 0 10 -7.35e-3 1 598.244 1 NC 1 81 3 3 3 .055 1 4.858e-3			18													_
76 min 0 1 391 1 002 2 -4.003e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .228 3 .004 3 3.398e-3 3 NC 1 NC 1 78 min 0 1 39 1 002 2 -6.131e-3 1 NC 1 NC 1 79 2 max 0 15 .428 3 .02 1 4.128e-3 3 NC 5 NC 1 80 min 0 1 781 1 0 10 -7.35e-3 1 598.244 1 NC 1 81 3 max 0 15 .601 3 .055 1 4.858e-3 3 NC 5 NC 2 82 min 0 1 -1.116 1			40						_							•
77 M15 1 max 0 15 .228 3 .004 3 3.398e-3 3 NC 1 NC 1 78 min 0 1 39 1 002 2 -6.131e-3 1 NC 1 NC 1 79 2 max 0 15 .428 3 .02 1 4.128e-3 3 NC 5 NC 1 80 min 0 1 781 1 0 10 -7.35e-3 1 598.244 1 NC 1 81 3 max 0 15 .601 3 .055 1 4.858e-3 3 NC 5 NC 2 82 min 0 1 -1.166 1 .002 15 -8.569e-3 1 .322.196 1 .4327.264 1 83 4 max 0 15 .80			19													
78 min 0 1 39 1 002 2 -6.131e-3 1 NC 1 NC 1 79 2 max 0 15 .428 3 .02 1 4.128e-3 3 NC 5 NC 1 80 min 0 1 781 1 0 10 -7.35e-3 1 598.244 1 NC 1 81 3 max 0 15 .601 3 .055 1 4.858e-3 3 NC 5 NC 2 82 min 0 1 -1.116 1 .002 15 -8.569e-3 1 322.196 1 4327.264 1 83 4 max 0 15 .73 3 .089 1 5.588e-3 3 NC 15 NC 3 84 min 0 1 -1.484 1 .00		N445				_		_				_				•
79 2 max 0 15 .428 3 .02 1 4.128e-3 3 NC 5 NC 1 80 min 0 1 781 1 0 10 -7.35e-3 1 598.244 1 NC 1 81 3 max 0 15 .601 3 .055 1 4.858e-3 3 NC 5 NC 2 82 min 0 1 -1.116 1 .002 15 -8.569e-3 1 322.196 1 4327.264 1 83 4 max 0 15 .73 3 .089 1 5.569e-3 1 322.196 1 4327.264 1 83 4 max 0 15 .805 3 .106 1 5.788e-3 1 242.029 1 268.865 1 85 5 max 0 15		<u>IVI15</u>	1							_						
80 min 0 1 781 1 0 10 -7.35e-3 1 598.244 1 NC 1 81 3 max 0 15 .601 3 .055 1 4.858e-3 3 NC 5 NC 2 82 min 0 1 -1.116 1 .002 15 -8.569e-3 1 322.196 1 4327.264 1 83 4 max 0 15 .73 3 .089 1 5.588e-3 3 NC 15 NC 3 84 min 0 1 -1.357 1 .003 15 -9.788e-3 1 242.029 1 2683.865 1 85 5 max 0 15 .805 3 .107 1 6.319e-3 3 NC 15 NC 3 86 min 0 1 -1.484 1																•
81 3 max 0 15 .601 3 .055 1 4.858e-3 3 NC 5 NC 2 82 min 0 1 -1.116 1 .002 15 -8.569e-3 1 322.196 1 4327.264 1 83 4 max 0 15 .73 3 .089 1 5.588e-3 3 NC 15 NC 3 84 min 0 1 -1.357 1 .003 15 -9.788e-3 1 242.029 1 2683.865 1 85 5 max 0 15 .805 3 .107 1 6.319e-3 3 NC 15 NC 3 86 min 0 1 -1.484 1 .004 15 -1.101e-2 1 214.02 1 2206.726 1 87 6 max 0 15 .			2													
82 min 0 1 -1.116 1 .002 15 -8.569e-3 1 322.196 1 4327.264 1 83 4 max 0 15 .73 3 .089 1 5.588e-3 3 NC 15 NC 3 84 min 0 1 -1.357 1 .003 15 -9.788e-3 1 242.029 1 2683.865 1 85 5 max 0 15 .805 3 .107 1 6.319e-3 3 NC 15 NC 3 86 min 0 1 -1.484 1 .004 15 -1.101e-2 1 214.02 1 2206.726 1 87 6 max 0 15 .825 3 .106 1 7.049e-3 3 NC 15 NC 3 88 min 0 1 -1.496										10						•
83 4 max 0 15 .73 3 .089 1 5.588e-3 3 NC 15 NC 3 84 min 0 1 -1.357 1 .003 15 -9.788e-3 1 242.029 1 2683.865 1 85 5 max 0 15 .805 3 .107 1 6.319e-3 3 NC 15 NC 3 86 min 0 1 -1.484 1 .004 15 -1.101e-2 1 214.02 1 2206.726 1 87 6 max 0 15 .825 3 .106 1 7.049e-3 3 NC 15 NC 3 88 min 0 1 -1.496 1 .004 15 -1.223e-2 1 211.674 1 2235.264 1 89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3			3									3_		-		
84 min 0 1 -1.357 1 .003 15 -9.788e-3 1 242.029 1 2683.865 1 85 5 max 0 15 .805 3 .107 1 6.319e-3 3 NC 15 NC 3 86 min 0 1 -1.484 1 .004 15 -1.101e-2 1 214.02 1 2206.726 1 87 6 max 0 15 .825 3 .106 1 7.049e-3 3 NC 15 NC 3 88 min 0 1 -1.496 1 .004 15 -1.223e-2 1 211.674 1 2235.264 1 89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3 90 min 0 1 -1.412								_				1_				
85 5 max 0 15 .805 3 .107 1 6.319e-3 3 NC 15 NC 3 86 min 0 1 -1.484 1 .004 15 -1.101e-2 1 214.02 1 2206.726 1 87 6 max 0 15 .825 3 .106 1 7.049e-3 3 NC 15 NC 3 88 min 0 1 -1.496 1 .004 15 -1.223e-2 1 211.674 1 2235.264 1 89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3 90 min 0 1 -1.412 1 .003 15 -1.344e-2 1 .228.996 1 .2805.405 1 91 8 max 0 15 <			4													
86 min 0 1 -1.484 1 .004 15 -1.101e-2 1 214.02 1 2206.726 1 87 6 max 0 15 .825 3 .106 1 7.049e-3 3 NC 15 NC 3 88 min 0 1 -1.496 1 .004 15 -1.23e-2 1 211.674 1 2235.264 1 89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3 90 min 0 1 -1.412 1 .003 15 -1.344e-2 1 .228.996 1 2805.405 1 91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 <														•		
87 6 max 0 15 .825 3 .106 1 7.049e-3 3 NC 15 NC 3 88 min 0 1 -1.496 1 .004 15 -1.223e-2 1 211.674 1 2235.264 1 89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3 90 min 0 1 -1.412 1 .003 15 -1.344e-2 1 228.996 1 2805.405 1 91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 1 0 10 -1.466e-2 1 265.83 1 4802.221 1 94 min 0 1 -1.128			5									3		15		
88 min 0 1 -1.496 1 .004 15 -1.223e-2 1 211.674 1 2235.264 1 89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3 90 min 0 1 -1.412 1 .003 15 -1.344e-2 1 .228.996 1 .2805.405 1 91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 1 0 10 -1.466e-2 1 .265.83 1 4802.221 1 93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 <t< td=""><td></td><td></td><td></td><td>min</td><td>0</td><td></td><td></td><td>•</td><td></td><td>15</td><td></td><td>1_</td><td></td><td>_</td><td></td><td></td></t<>				min	0			•		15		1_		_		
89 7 max 0 15 .799 3 .085 1 7.779e-3 3 NC 15 NC 3 90 min 0 1 -1.412 1 .003 15 -1.344e-2 1 228.996 1 2805.405 1 91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 1 0 10 -1.466e-2 1 265.83 1 4802.221 1 93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 -653	87		6	max	0	15		3	.106	1		3		15		
90 min 0 1 -1.412 1 .003 15 -1.344e-2 1 228.996 1 2805.405 1 91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 1 0 10 -1.466e-2 1 265.83 1 4802.221 1 93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 .653 3 .013 3 9.97e-3 3 NC 5 NC 1 96 min 0 1 -1.06 1				min	0					15		1				
91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 1 0 10 -1.466e-2 1 265.83 1 4802.221 1 93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 .653 3 .013 3 9.97e-3 3 NC 5 NC 1 96 min 0 1 -1.06 1 009 2 -1.71e-2 1 349.479 1 NC 1	89		7	max	0	15	.799	3	.085	1		3		15		
91 8 max 0 15 .742 3 .05 1 8.509e-3 3 NC 15 NC 2 92 min 0 1 -1.27 1 0 10 -1.466e-2 1 265.83 1 4802.221 1 93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 .653 3 .013 3 9.97e-3 3 NC 5 NC 1 96 min 0 1 -1.06 1 009 2 -1.71e-2 1 349.479 1 NC 1	90				0	1	-1.412	1	.003	15		1	228.996	1	2805.405	1
92 min 0 1 -1.27 1 0 10 -1.466e-2 1 265.83 1 4802.221 1 93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 .653 3 .013 3 9.97e-3 3 NC 5 NC 1 96 min 0 1 -1.06 1 009 2 -1.71e-2 1 349.479 1 NC 1			8		0	15		3		1		3		15		
93 9 max 0 15 .682 3 .015 1 9.24e-3 3 NC 15 NC 1 94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 .653 3 .013 3 9.97e-3 3 NC 5 NC 1 96 min 0 1 -1.06 1 009 2 -1.71e-2 1 349.479 1 NC 1					0					10		1		1		1
94 min 0 1 -1.128 1 004 10 -1.588e-2 1 317.275 1 NC 1 95 10 max 0 1 .653 3 .013 3 9.97e-3 3 NC 5 NC 1 96 min 0 1 -1.06 1 009 2 -1.71e-2 1 349.479 1 NC 1			9		0	15		3				3		15		1
95	94				0					10		1				1
96 min 0 1 -1.06 1009 2 -1.71e-2 1 349.479 1 NC 1			10			1		3				3		5		1
			11			1		3				3		15		1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
98			min	0	15	-1.128	1	004	10 -1.588e-2	1	317.275	1_	NC	1
99		12	max	0	1	.742	3	.05	1 8.509e-3	3	NC	<u>15</u>	NC	2
100			min	0	15	-1.27	1	0	10 -1.466e-2	1_	265.83	1_	4802.221	1
101		13	max	0	1	.799	3	.085	1 7.779e-3	3_	NC	15	NC	3
102			min	0	15	-1.412	1	.003	15 -1.344e-2	1_	228.996	1_	2805.405	1
103		14	max	0	1	.825	3	.106	1 7.049e-3	3	NC	15	NC	3
104			min	0	15	<u>-1.496</u>	1	.004	15 -1.223e-2	1_	211.674	1_	2235.264	1
105		15	max	0	1	.805	3	.107	1 6.319e-3	3	NC	<u>15</u>	NC	3
106			min	0	15	-1.484	1	.004	15 -1.101e-2	1	214.02	1_	2206.726	
107		16	max	0	1	.73	3	.089	1 5.588e-3	3	NC	<u>15</u>	NC	3
108			min	0	15	-1.357	1	.003	15 -9.788e-3	1	242.029	1_	2683.865	
109		17	max	0	1	.601	3	.055	1 4.858e-3	3	NC	5_	NC	2
110			min	0	15	-1.116	1	.002	15 -8.569e-3	1_	322.196	1_	4327.264	1
111		18	max	0	1	.428	3	.02	1 4.128e-3	3	NC	5	NC	1
112			min	0	15	781	1	0	10 -7.35e-3	1	598.244	1	NC	1
113		19	max	0	1	.228	3	.004	3 3.398e-3	3	NC	1	NC	1
114			min	0	15	39	1	002	2 -6.131e-3	1	NC	1_	NC	1
115	M16	1	max	0	15	.116	1	.004	3 5.963e-3	3	NC	1_	NC	1
116			min	0	1	076	3	002	2 -8.968e-3	1	NC	1	NC	1
117		2	max	0	15	.034	3	.029	1 6.984e-3	3	NC	5	NC	2
118			min	0	1	161	2	0	10 -1.02e-2	1	884.811	2	8483.796	1
119		3	max	0	15	.119	3	.069	1 8.005e-3	3	NC	5	NC	3
120			min	0	1	371	2	.002	15 -1.143e-2	1	492.581	2	3470.185	1
121		4	max	0	15	.164	3	.103	1 9.026e-3	3	NC	5	NC	3
122			min	0	1	492	2	.003	15 -1.267e-2	1	392.791	2	2295.188	1
123		5	max	0	15	.162	3	.121	1 1.005e-2	3	NC	5	NC	3
124			min	0	1	506	2	.004	15 -1.39e-2	1	383.611	2	1953.619	1
125		6	max	0	15	.114	3	.117	1 1.107e-2	3	NC	5	NC	3
126			min	0	1	417	2	.004	15 -1.513e-2	1	449.34	2	2021.246	1
127		7	max	0	15	.031	3	.092	1 1.209e-2	3	NC	5	NC	3
128			min	0	1	247	2	.003	15 -1.637e-2	1	667.653	2	2570.808	
129		8	max	0	15	.017	9	.054	1 1.311e-2	3	NC	3	NC	2
130			min	0	1	069	3	0	10 -1.76e-2	1	1658.838	2	4427.229	
131		9	max	0	15	.185	1	.016	1 1.413e-2	3	NC	4	NC	1
132			min	0	1	157	3	003	10 -1.883e-2	1	2886.549	3	NC	1
133		10	max	0	1	.267	1	.012	3 1.515e-2	3	NC	5	NC	1
134		1	min	0	1	196	3	008	2 -2.007e-2	1	1548.404	1	NC	1
135		11	max	0	1	.185	1	.016	1 1.413e-2	3	NC	4	NC	1
136			min	0	15	157	3	003	10 -1.883e-2	1	2886.549	3	NC	1
137		12	max	0	1	.017	9	.054	1 1.311e-2	3	NC	3	NC	2
138		1.2	min	0	15	069	3	0	10 -1.76e-2				4427.229	
139		13	max	0	1	.031	3	.092	1 1.209e-2	3	NC	5	NC NC	3
140		1.0	min	0	15	247	2	.003	15 -1.637e-2	1	667.653	2	2570.808	
141		14	max	0	1	.114	3	.117	1 1.107e-2	3	NC	5	NC	3
142			min	0	15	417	2	.004	15 -1.513e-2	1	449.34	2	2021.246	
143		15	max	0	1	.162	3	.121	1 1.005e-2	3	NC	5	NC	3
144		10	min	0	15	506	2	.004	15 -1.39e-2	1	383.611	2	1953.619	
145		16	max	0	1	.164	3	.103	1 9.026e-3	3	NC	5	NC	3
146		10	min	0	15	492	2	.003	15 -1.267e-2	1	392.791	2	2295.188	
147		17			1	.119	3	.069	1 8.005e-3	3	NC	5	NC	
148		17	max min	<u> </u>	15	371	2	.009	15 -1.143e-2	<u> </u>	492.581	2	3470.185	3
149		10						.002				5	NC	2
		18	max	0	1	.034	3			3	NC	2		
150		10	min	0	15	161		004		1	884.811		8483.796	
151		19	max	0	1	.116	1	.004	3 5.963e-3	3	NC NC	1_	NC NC	1
152	N 40	4	min	0	15	076	3	002	2 -8.968e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.005	1	.003	2	.006	1 -5.108e-6		NC NC	1_	NC 7020 4 C2	2
154			min	006	3	007	3	0	15 -1.559e-4	1_	NC	1_	7839.162	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
155		2	max	.005	1	.003	2	.006	1	-4.734e-6	<u>15</u>	NC	_1_	NC	2
156			min	005	3	006	3	0	15	-1.445e-4	1_	NC	1_	8548.744	1
157		3	max	.005	1	.002	2	.005	1	-4.36e-6	15	NC	_1_	NC	2
158			min	005	3	006	3	0	15	-1.33e-4	1_	NC	1	9394.157	1
159		4	max	.005	1	.002	2	.005	1	-3.985e-6	<u>15</u>	NC	_1_	NC	1_
160			min	005	3	006	3	0	15	-1.216e-4	1_	NC	1_	NC	1
161		5	max	.004	1	.002	2	.004	1	-3.611e-6	15	NC	_1_	NC	1
162			min	004	3	006	3	0	15	-1.101e-4	1_	NC	1_	NC	1
163		6	max	.004	1	.001	2	.004	1	-3.237e-6	15	NC	1_	NC	1
164			min	004	3	005	3	0	15	-9.871e-5	1_	NC	1_	NC	1
165		7	max	.004	1	0	2	.003	1	-2.862e-6	<u>15</u>	NC	_1_	NC	1_
166			min	004	3	005	3	0	15	-8.727e-5	1_	NC	1_	NC	1
167		8	max	.003	1	0	2	.003	1_	-2.488e-6	<u>15</u>	NC	_1_	NC	1_
168			min	004	3	005	3	0	15	-7.584e-5	1_	NC	1	NC	1
169		9	max	.003	1	0	2	.002	1	-2.113e-6	<u>15</u>	NC	_1_	NC	1_
170			min	003	3	005	3	0	15	-6.44e-5	1_	NC	1	NC	1
171		10	max	.003	1	0	2	.002	1	-1.739e-6	<u>15</u>	NC	_1_	NC	1_
172			min	003	3	004	3	0	15	-5.296e-5	1	NC	1	NC	1
173		11	max	.002	1	0	2	.002	1	-1.365e-6	15	NC	1	NC	1
174			min	003	3	004	3	0	15	-4.152e-5	1	NC	1	NC	1
175		12	max	.002	1	0	15	.001	1	-9.903e-7	15	NC	_1_	NC	1_
176			min	002	3	003	3	0	15	-3.008e-5	1_	NC	1_	NC	1
177		13	max	.002	1	0	15	0	1	-6.159e-7	<u>15</u>	NC	_1_	NC	1_
178			min	002	3	003	3	0	15		1	NC	1	NC	1
179		14	max	.002	1	0	15	0	1	-2.415e-7	15	NC	1_	NC	1
180			min	002	3	003	3	0	15	-7.208e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	4.23e-6	1_	NC	1	NC	1
182			min	001	3	002	3	0	15	-2.08e-7	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.567e-5	1	NC	1	NC	1
184			min	0	3	002	3	0	15	3.996e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1	2.711e-5	1	NC	1	NC	1
186			min	0	3	001	3	0	15	8.816e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	3.854e-5	1	NC	1	NC	1
188			min	0	3	0	4	0	15	1.256e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.998e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.63e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.065e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.552e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.987e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15	1.31e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.349e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	7.685e-7	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	4.3e-5	1	NC	1	NC	1
198			min	0	2	005	4	0	15	1.406e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	6.251e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	2.044e-6	15	NC	1	NC	1
201		6	max	.001	3	002	15	.001	1	8.201e-5	1	NC	1	NC	1
202			min	0	2	009	4	0	15	2.681e-6	15	NC	1	NC	1
203		7	max	.001	3	002	15	.002	1	1.015e-4	1	NC	1	NC	1
204			min	001	2	01	4	0	15	3.319e-6		9286.424	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.21e-4	1	NC	1	NC	1
206		Ť	min	001	2	011	4	0	15	3.956e-6		8277.867	4	NC	1
207		9	max	.002	3	003	15	.002	1	1.405e-4	1	NC	1	NC	1
208			min	001	2	012	4	0	15	4.594e-6		7675.184	4	NC	1
209		10	max	.002	3	003	15	.003	1	1.6e-4	1	NC	2	NC	1
210		10	min	002	2	013	4	0	15	5.231e-6		7371.274	4	NC	1
211		11	max	.002	3	003	15	.003	1	1.795e-4	1	NC	2	NC	1
411			πιαλ	.002		.000	IU	.000	1 1	1.7 000-4		110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
212			min	002	2	013	4	0	15	5.869e-6		7320.569	4	NC	1
213		12	max	.003	3	003	15	.003	1	1.99e-4	_1_	NC	_1_	NC	1
214			min	002	2	013	4	0	15	6.506e-6	15	7521.429	4	NC	1
215		13	max	.003	3	003	15	.004	1	2.186e-4	_1_	NC	_1_	NC	1
216			min	002	2	012	4	0	15	7.144e-6	15	8017.653	4	NC	1
217		14	max	.003	3	002	15	.004	1	2.381e-4	_1_	NC	_1_	NC	1
218			min	002	2	011	4	0	15	7.781e-6		8921.831	4_	NC	1
219		15	max	.003	3	002	15	.004	1	2.576e-4	_1_	NC	_1_	NC	1
220			min	002	2	009	4	0	15	8.419e-6	15	NC	1_	NC	1
221		16	max	.004	3	002	15	.005	1_	2.771e-4	_1_	NC	_1_	NC	1_
222			min	003	2	008	1	0	15	9.056e-6	15	NC	1_	NC	1
223		17	max	.004	3	001	15	.005	1	2.966e-4	_1_	NC	_1_	NC	1
224			min	003	2	006	1	0	15	9.694e-6	15	NC	<u>1</u>	NC	1
225		18	max	.004	3	0	15	.005	1	3.161e-4	_1_	NC	_1_	NC	1
226			min	003	2	005	1	0	15	1.033e-5	15	NC	_1_	NC	1
227		19	max	.004	3	0	15	.006	1	3.356e-4	_1_	NC	_1_	NC	1
228			min	003	2	003	1	0	15	1.097e-5	15	NC	_1_	NC	1
229	M4	1_	max	.003	1	.003	2	0	15		12	NC	_1_	NC	2
230			min	0	3	004	3	006	1	-1.067e-5	1_	NC	1_	4242.42	1
231		2	max	.003	1	.002	2	0	15	-2.633e-7	12	NC	_1_	NC	2
232			min	0	3	004	3	005	1	-1.067e-5	_1_	NC	1	4620.882	1
233		3	max	.003	1	.002	2	00	15	-2.633e-7	12	NC	_1_	NC	2
234			min	0	3	004	3	005	1	-1.067e-5	1_	NC	1_	5070.894	1
235		4	max	.003	1	.002	2	0	15	-2.633e-7	12	NC	_1_	NC	2
236			min	0	3	003	3	004	1	-1.067e-5	1_	NC	1_	5611.12	1
237		5	max	.002	1	.002	2	0	15	-2.633e-7	12	NC	_1_	NC	2
238			min	0	3	003	3	004	1	-1.067e-5	1_	NC	1_	6266.92	1
239		6	max	.002	1	.002	2	0	15	-2.633e-7	12	NC	_1_	NC	2
240			min	0	3	003	3	004	1	-1.067e-5	1_	NC	1	7073.462	1
241		7	max	.002	1	.002	2	0	15	-2.633e-7	12	NC	_1_	NC	2
242			min	0	3	003	3	003	1	-1.067e-5	_1_	NC	1	8080.673	1
243		8	max	.002	1	.002	2	00	15	-2.633e-7	12	NC	_1_	NC	2
244			min	0	3	003	3	003	1	-1.067e-5	_1_	NC	<u>1</u>	9361.377	1
245		9	max	.002	1	.001	2	0	15	-2.633e-7	12	NC	_1_	NC	1
246			min	0	3	002	3	002	1	-1.067e-5	_1_	NC	_1_	NC	1
247		10	max	.002	1	.001	2	0	15	-2.633e-7	12	NC	1	NC	1
248			min	0	3	002	3	002	1	-1.067e-5	_1_	NC	_1_	NC	1
249		11	max	.001	1	.001	2	0	15		12	NC	1	NC	1
250			min	0	3	002	3	002	1	-1.067e-5	_1_	NC	1_	NC	1
251		12	max	.001	1	0	2	0	15	-2.633e-7	12	NC	1	NC	1
252			min	0	3	002	3	001		-1.067e-5		NC	1	NC	1
253		13	max	.001	1	0	2	0		-2.633e-7		NC	1	NC NC	1
254			min	0	3	<u>001</u>	3	0	1	-1.067e-5	1_	NC	_1_	NC NC	1
255		14	max	0	1	0	2	0		-2.633e-7		NC	1_	NC	1
256		4 -	min	0	3	001	3	0	1	-1.067e-5	1_	NC	1_	NC	1
257		15	max	0	1	0	2	0	15		12	NC	1	NC	1
258			min	0	3	0	3	0	1	-1.067e-5	_1_	NC	_1_	NC	1
259		16	max	0	1	0	2	0	15		12	NC	1_	NC	1
260			min	0	3	0	3	0	1	-1.067e-5	1_	NC	1_	NC	1
261		17	max	0	1	0	2	0	15	-2.633e-7		NC	1	NC	1
262		4 -	min	0	3	0	3	0	1	-1.067e-5	1_	NC	1_	NC	1
263		18	max	0	1	0	2	0	15	-2.633e-7	12	NC	1	NC	1
264		4 -	min	0	3	0	3	0	1	-1.067e-5	1_	NC	_1_	NC NC	1
265		19	max	0	1	0	1	0	1	-2.633e-7		NC	1_	NC	1
266			min	0	1	0	1	0	1	-1.067e-5	1_	NC	1_	NC NC	1
267	<u>M6</u>	1	max	.017	1	.014	2	0	1	0	_1_	NC	4	NC	1
268			min	019	3	021	3	0	1	0	1	2299.822	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L	C (n) L/z R	atio LC
269		2	max	.016	1	.013	2	0	1	0	1	NC 4		1
270			min	018	3	02	3	0	1	0	1	2435.284	NC	1
271		3	max	.015	1	.012	2	0	1	0	1	NC 4	l NC	1
272			min	017	3	018	3	0	1	0	1	2587.713	NC NC	1
273		4	max	.014	1	.01	2	0	1	0	1	NC 4	l NC	1
274			min	016	3	017	3	0	1	0	1	2760.516	NC NC	1
275		5	max	.014	1	.009	2	0	1	0	1_	NC 1		1
276			min	015	3	016	3	0	1	0	1	2958.075		1
277		6	max	.013	1	.008	2	0	1	0	_1_	NC 1		1
278			min	014	3	015	3	0	1	0	1	3186.122		1
279		7	max	.012	1	.007	2	0	1	0	_1_	NC 1		1
280			min	012	3	014	3	0	1	0	1_	3452.294		1
281		8	max	.011	1	.006	2	0	1	0	_1_	NC 1		1
282			min	011	3	013	3	0	1	0	1_	3767.012		1
283		9	max	.01	1	.005	2	00	1	0	_1_	NC 1		1
284			min	01	3	012	3	0	1	0	1_	4144.862		1
285		10	max	.009	1	.004	2	0	1	0	1	NC 1		1
286			min	009	3	01	3	0	1	0	1_	4606.911		1
287		11	max	.008	1	.003	2	0	1	0	1_	NC 1		1
288			min	008	3	009	3	0	1	0	1_	5184.764		1
289		12	max	.007	1	.003	2	0	1	0	1	NC 1		1
290		4.0	min	007	3	008	3	0	1	0	1_	5928.083		1
291		13	max	.006	1	.002	2	0	1	0	1	NC 1		1
292			min	006	3	007	3	0	1	0	1	6919.639		1
293		14	max	.005	1	.001	2	0	1	0	1	NC 1		1
294		4.5	min	005	3	006	3	0	1	0	1	8308.422		1
295		15	max	.004	1	0	2	0	1	0	1	NC 1		1
296		40	min	004	3	005	3	0	1	0	1_	NC 1		1
297		16	max	.003	1	0	2	0	1	0	1	NC 1		1
298		47	min	003	3	003	3	0	1	0	1_	110	110	1
299		17	max	.002	1	0	2	0	1	0	1	NC 1		1
300		18	min	002	3	002	3	0	1	0	<u>1</u> 1	NC 1		1
301		18	max	0 001	3	0 001	3	0	1	0	1	NC 1		1
303		19		<u>001</u> 0	1	<u>001</u> 0	1	0	1	0	1	NC 1		1
304		19	max	0	1	0	1	0	1	0	1	NC 1		1
305	M7	1	max	0	1	0	1	0	1	0	1	NC ²		1
306	IVI /	<u> </u>	min	0	1	0	1	0	1	0	1	NC 1		1
307		2	max	0	3	0	2	0	1	0	1	NC ²		1
308			min	0	2	002	3	0	1	0	1	NC 1	NC NC	1
309		3	max	.001	3	0	15	0	1	0	1	NC 1		1
310			min	001	2	004	3	0	1	0	1	NC 1		1
311		4	max	.002	3	001	15	0	1	0	1	NC 1		1
312		T	min	002	2	006	3	0	1	0	1	NC 1		1
313		5	max	.002	3	002	15	0	1	0	1	NC 1		1
314			min	003	2	008	3	0	1	0	1	NC 1		1
315		6	max	.004	3	002	15	0	1	0	1	NC 1		1
316			min	003	2	009	3	0	1	0	1	9822.235		1
317		7	max	.004	3	002	15	0	1	0	1	NC 1		1
318			min	004	2	011	3	0	1	0	1	8718.336		1
319		8	max	.005	3	003	15	0	1	0	1	NC 1		1
320			min	005	2	011	3	0	1	0	1	8056.856		1
321		9	max	.006	3	003	15	0	1	0	1	NC 1		1
322			min	005	2	012	4	0	1	0	1	7702.415		1
323		10	max	.007	3	003	15	0	1	0	1	NC 1		1
324			min	006	2	013	4	0	1	0	1	7537.198		1
325		11	max	.007	3	003	15	0	1	0	1	NC 1		1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	007	2	013	4	0	1	0	1	7476.017	4	NC	1
327		12	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
328			min	008	2	013	4	0	1	0	1	7673.139	4	NC	1
329		13	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
330			min	008	2	012	4	0	1	0	1	8172.264	4	NC	1
331		14	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
332			min	009	2	012	1	0	1	0	1	9087.347	4	NC	1
333		15	max	.01	3	002	15	0	1	0	1	NC	1	NC	1
334		13	min	01	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.011	3	002	15	0	1	0	1	NC	1	NC	1
336		10	min	01	2	00 <u>2</u> 01	1	0	1	0	1	NC NC	1	NC	1
		47							•				•		
337		17	max	.012	3	001	15	0	1	0	1	NC	1	NC	1
338		10	min	<u>011</u>	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.013	3	0	15	0	1	0	_1_	NC	1_	NC	1
340			min	012	2	009	1	0	1	0	1_	NC	1_	NC	1
341		19	max	.013	3	0	15	0	1	0	_1_	NC	_1_	NC	1
342			min	012	2	008	1	0	1	0	_1_	NC	1_	NC	1
343	M8	1	max	.009	1	.01	2	0	1	0	1	NC	1	NC	1
344			min	003	3	013	3	0	1	0	1	NC	1	NC	1
345		2	max	.009	1	.01	2	0	1	0	1	NC	1	NC	1
346			min	003	3	012	3	0	1	0	1	NC	1	NC	1
347		3	max	.008	1	.009	2	0	1	0	1	NC	1	NC	1
348			min	003	3	012	3	0	1	0	1	NC	1	NC	1
349		4	max	.008	1	.009	2	0	1	0	1	NC	1	NC	1
350			min	003	3	011	3	0	1	0	1	NC	1	NC	1
351		5	max	.007	1	.008	2	0	1	0	1	NC	1	NC	1
352		1	min	002	3	01	3	0	1	0	1	NC NC	1	NC	1
		_			1								•		
353		6	max	.007	-	.008	2	0	1	0	1	NC NC	1	NC NC	1
354		_	min	002	3	009	3	0	1	0	1_	NC	1	NC	1
355		7	max	.006	1	.007	2	0	1	0	1	NC	1	NC	1
356			min	002	3	009	3	0	1	0	1	NC	1	NC	1
357		8	max	.006	1	.006	2	00	1	0	_1_	NC	_1_	NC	1
358			min	002	3	008	3	0	1	0	_1_	NC	1_	NC	1
359		9	max	.005	1	.006	2	0	1	0	_1_	NC	1_	NC	1
360			min	002	3	007	3	0	1	0	1	NC	1	NC	1
361		10	max	.005	1	.005	2	0	1	0	1	NC	1	NC	1
362			min	002	3	006	3	0	1	0	1	NC	1	NC	1
363		11	max	.004	1	.005	2	0	1	0	1	NC	1	NC	1
364			min	001	3	006	3	0	1	0	1	NC	1	NC	1
365		12	max	.004	1	.004	2	0	1	0	1	NC	1	NC	1
366		1	min	001	3	005	3	0	1	Ö	1	NC	1	NC	1
367		13	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
368		10	min	001	3	004	3	0	1	0	1	NC	1	NC	1
369		14	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
370		14			3	004	3	0	1	0	1	NC NC	1	NC NC	1
		15	min	0					1	0	_		1		•
371		15	max	.002	1	.002	2	0			1	NC NC		NC NC	1
372		40	min	0	3	003	3	0	1	0	1	NC NC	1	NC NC	1
373		16	max	.002	1	.002	2	0	1	0		NC	1	NC	1
374			min	0	3	002	3	0	1	0	1	NC	1	NC	1
375		17	max	.001	1	.001	2	0	1	0	_1_	NC	1	NC	1
376			min	0	3	001	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	0	2	0	1	0	1_	NC	1_	NC	1
378			min	0	3	0	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.005	1	.003	2	0	15	1.559e-4	1	NC	1	NC	2
382			min	006	3	007	3	006	1	5.108e-6	15	NC	1	7839.162	1
002			11/11/1	.000		.001		.000		0.1000	.0	110		, 000, 10Z	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.003	2	0	15	1.445e-4	_1_	NC	_1_	NC	2
384			min	005	3	006	3	006	1	4.734e-6	15	NC	1_	8548.744	1
385		3	max	.005	1	.002	2	0	15	1.33e-4	_1_	NC	_1_	NC	2
386			min	005	3	006	3	005	1	4.36e-6	15	NC	1	9394.157	1
387		4	max	.005	1	.002	2	0	15	1.216e-4	1_	NC	_1_	NC	1_
388			min	005	3	006	3	005	1	3.985e-6	15	NC	1_	NC	1
389		5	max	.004	1	.002	2	0	15	1.101e-4	_1_	NC	_1_	NC	1_
390			min	004	3	006	3	004	1	3.611e-6	15	NC	1_	NC	1
391		6	max	.004	1	.001	2	0	15	9.871e-5	1_	NC	1_	NC	1
392			min	004	3	005	3	004	1	3.237e-6	15	NC	1_	NC	1
393		7	max	.004	1	00	2	0	15	8.727e-5	_1_	NC	_1_	NC	1_
394			min	004	3	005	3	003	1	2.862e-6	15	NC	1	NC	1
395		8	max	.003	1	0	2	0	15	7.584e-5	_1_	NC	_1_	NC	1
396			min	004	3	005	3	003	1	2.488e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	6.44e-5	_1_	NC	_1_	NC	1_
398			min	003	3	005	3	002	1	2.113e-6	15	NC	1	NC	1
399		10	max	.003	1	00	2	0	15	5.296e-5	_1_	NC	_1_	NC	1
400			min	003	3	004	3	002	1	1.739e-6	15	NC	1_	NC	1
401		11	max	.002	1	0	2	0	15	4.152e-5	1_	NC	1_	NC	1
402			min	003	3	004	3	002	1	1.365e-6	15	NC	1_	NC	1
403		12	max	.002	1	0	15	0	15	3.008e-5	_1_	NC	_1_	NC	1_
404			min	002	3	003	3	001	1	9.903e-7	15	NC	1_	NC	1
405		13	max	.002	1	0	15	0	15	1.865e-5	_1_	NC	_1_	NC	1
406			min	002	3	003	3	0	1	6.159e-7	15	NC	1_	NC	1
407		14	max	.002	1	0	15	0	15	7.208e-6	1_	NC	_1_	NC	1
408			min	002	3	003	3	0	1	2.415e-7	15	NC	1_	NC	1
409		15	max	.001	1	0	15	0	15	2.08e-7	3	NC	_1_	NC	1_
410			min	001	3	002	3	0	1	-4.23e-6	1_	NC	1_	NC	1
411		16	max	0	1	0	15	0	15	-3.996e-7	12	NC	1_	NC	1
412			min	0	3	002	3	0	1	-1.567e-5	1	NC	1	NC	1
413		17	max	0	1	0	15	0	15	-8.816e-7	<u>15</u>	NC	_1_	NC	1_
414			min	0	3	001	3	0	1	-2.711e-5	1_	NC	1_	NC	1
415		18	max	0	1	0	15	0	15	-1.256e-6	<u>15</u>	NC	_1_	NC	1_
416			min	0	3	0	4	0	1	-3.854e-5	1_	NC	1_	NC	1
417		19	max	0	1	0	1	0	1	-1.63e-6	15	NC	_1_	NC	1
418			min	0	1	0	1	0	1	-4.998e-5	1_	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.552e-5	<u>1</u>	NC	_1_	NC	1_
420			min	0	1	0	1	0	1	5.065e-7	15	NC	1_	NC	1
421		2	max	0	3	0	15	0	15	-1.31e-7	15	NC	_1_	NC	1
422			min	0	2	001	4	0	1	-3.987e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-7.685e-7	15	NC	_1_	NC	1_
424			min	0	2	003	4	0	1	-2.349e-5	1_	NC	1_	NC	1
425		4	max	0	3	001	15	0	15		15	NC	1	NC	1_
426			min	0	2	005	4	0	1	-4.3e-5	1_	NC	1	NC	1
427		5	max	0	3	002	15	0	15		15	NC	1_	NC	1_
428			min	0	2	007	4	001	1	-6.251e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15		15	NC	_1_	NC	1_
430			min	0	2	009	4	001	1	-8.201e-5	1_	NC	1_	NC	1
431		7	max	.001	3	002	15	0	15	-3.319e-6	15	NC	1_	NC	1_
432			min	001	2	01	4	002	1	-1.015e-4	1	9286.424	4	NC	1
433		8	max	.002	3	003	15	0	15		15	NC	_1_	NC	1_
434			min	001	2	011	4	002	1	-1.21e-4	1	8277.867	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	_1_	NC	1
436			min	001	2	012	4	002	1	-1.405e-4	1	7675.184	4	NC	1
437		10	max	.002	3	003	15	0	15		15	NC	2	NC	1
438			min	002	2	013	4	003	1	-1.6e-4	1_	7371.274	4	NC	1
439		11	max	.002	3	003	15	0	15	-5.869e-6	15	NC	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	002	2	013	4	003	1	-1.795e-4	1	7320.569	4	NC	1
441		12	max	.003	3	003	15	0	15	-6.506e-6	15	NC	_1_	NC	1
442			min	002	2	013	4	003	1	-1.99e-4	1_	7521.429	4	NC	1
443		13	max	.003	3	003	15	0	15		15	NC	_1_	NC	1
444			min	002	2	012	4	004	1	-2.186e-4	1_	8017.653	4_	NC	1
445		14	max	.003	3	002	15	0	15	-7.781e-6	<u>15</u>	NC	1	NC NC	1
446		45	min	002	2	011	4	004	1	-2.381e-4	1_	8921.831	4	NC NC	1
447		15	max	.003	3	002	15	0	15	-8.419e-6	<u>15</u>	NC NC	1_	NC NC	1
448		10	min	002	2	009	4	004	1_1_	-2.576e-4	1_	NC NC	1_	NC NC	1
449		16	max	.004 003	3	002 008	15	0 005	15	-9.056e-6 -2.771e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min		3		15	005 0	15	-2.77 1e-4 -9.694e-6	1_	NC NC	1	NC NC	1
451		17	max	.004 003	2	001 006	1	005	1	-9.694e-6 -2.966e-4	<u>15</u>	NC NC	1	NC NC	1
452		18	min max	.003	3	<u>006</u> 0	15	<u>005</u> 0	15	-1.033e-5	<u>1</u> 15	NC NC	1	NC NC	1
454		10	min	003	2	005	1	005	1	-3.161e-4	1	NC	1	NC	1
455		19	max	.003	3	005 0	15	<u>005</u> 0	15	-1.097e-5	15	NC	1	NC	1
456		13	min	003	2	003	1	006	1	-3.356e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.006	1	1.067e-5	1	NC	1	NC	2
458	IVIIZ	'	min	0	3	004	3	0	15	2.633e-7	12	NC	1	4242.42	1
459		2	max	.003	1	.002	2	.005	1	1.067e-5	1	NC	1	NC	2
460		_	min	0	3	004	3	0	15	2.633e-7	12	NC	1	4620.882	1
461		3	max	.003	1	.002	2	.005	1	1.067e-5	1	NC	1	NC	2
462			min	0	3	004	3	0	15	2.633e-7	12	NC	1	5070.894	1
463		4	max	.003	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
464			min	0	3	003	3	0	15	2.633e-7	12	NC	1	5611.12	1
465		5	max	.002	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
466			min	0	3	003	3	0	15	2.633e-7	12	NC	1	6266.92	1
467		6	max	.002	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
468			min	0	3	003	3	0	15	2.633e-7	12	NC	1	7073.462	1
469		7	max	.002	1	.002	2	.003	1	1.067e-5	1_	NC	1_	NC	2
470			min	0	3	003	3	0	15	2.633e-7	12	NC	1	8080.673	1
471		8	max	.002	1	.002	2	.003	1	1.067e-5	1_	NC	_1_	NC	2
472			min	0	3	003	3	0	15	2.633e-7	12	NC	1_	9361.377	1
473		9	max	.002	1	.001	2	.002	1	1.067e-5	_1_	NC	_1_	NC	1
474			min	0	3	002	3	0	15	2.633e-7	12	NC	_1_	NC	1
475		10	max	.002	1	.001	2	.002	1	1.067e-5	_1_	NC	_1_	NC	1
476			min	0	3	002	3	0	15	2.633e-7	12	NC	1_	NC	1
477		11	max	.001	1	.001	2	.002	1	1.067e-5	1_	NC	1_	NC NC	1
478		40	min	0	3	002	3	0	15	2.633e-7	12	NC	_1_	NC NC	1
479		12	max	.001	1	0	2	.001	1	1.067e-5	1	NC	1_	NC NC	1
480		40	min		3	002	3	0		2.633e-7			1	NC NC	1
481		13	max	.001	3	0	2	0	1	1.067e-5	1	NC NC	1	NC NC	1
482		1.1	min	0	1	001	2	0	15		12	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0	3	0	3	0 0	1	1.067e-5	12	NC NC	1	NC NC	1
484 485		15	min max	0	1	001 0	2	0	1 <u>5</u>	2.633e-7 1.067e-5	<u>12</u> 1	NC NC	1	NC NC	1
486		13	min	0	3	0	3	0	15		12	NC	1	NC	1
487		16	max	0	1	0	2	0	1	1.067e-5	1	NC	1	NC	1
488		10	min	0	3	0	3	0	15		12	NC	1	NC	1
489		17	max	0	1	0	2	0	1	1.067e-5	1	NC	1	NC	1
490		11/	min	0	3	0	3	0	15	2.633e-7	12	NC	1	NC	1
491		18	max	0	1	0	2	0	1	1.067e-5	1	NC	1	NC	1
492		10	min	0	3	0	3	0	15		12	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.067e-5	1	NC	1	NC	1
494		'	min	0	1	0	1	0	1	2.633e-7	12	NC	1	NC	1
495	M1	1	max	.005	3	.122	1	0	1	1.697e-2	1	NC	1	NC	1
496			min	002	2	025	3	0		-2.446e-2	3	NC	1	NC	1
			1111111	.002	_	.020			- 10				_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.005	3	.06	1	0	15	8.275e-3	1	NC	5	NC	1
498			min	002	2	012	3	004	1	-1.209e-2	3	1852.007	1	NC	1
499		3	max	.005	3	.008	3	0	15	3.203e-5	10	NC	5	NC	1
500			min	002	2	007	2	006	1	-1.177e-4	3	887.146	1	NC	1
501		4	max	.005	3	.041	3	0	15	5.035e-3	1_	NC	5	NC	1
502			min	002	2	084	1	006	1	-4.585e-3	3	555.231	1	NC	1
503		5	max	.005	3	.084	3	0	15	1.017e-2	1		15	NC	1
504			min	002	2	166	1	004	1	-9.052e-3	3	397.831	1	NC	1
505		6	max	.005	3	.13	3	0	15	1.531e-2	1	NC	15	NC	1
506			min	002	2	245	1	002	1	-1.352e-2	3	311.592	1	NC	1
507		7	max	.005	3	.174	3	0	1	2.045e-2	1		15	NC	1
508			min	002	2	317	1	0	12	-1.799e-2	3	260.916	1	NC	1
509		8	max	.005	3	.211	3	0	1	2.559e-2	1	8743.188	15	NC	1
510			min	002	2	373	1	0	15	-2.245e-2	3	231.04	1	NC	1
511		9	max	.005	3	.235	3	0	15	2.826e-2	1_		15	NC	1
512			min	002	2	409	1	0	1	-2.265e-2	3	215.523	1	NC	1
513		10	max	.004	3	.244	3	0	1	2.928e-2	1	7998.65	15	NC	1
514			min	002	2	421	1	0	15	-2.001e-2	3	210.887	1	NC	1
515		11	max	.004	3	.238	3	0	1	3.031e-2	1	8172.325	15	NC	1
516			min	002	2	409	1	0	15	-1.736e-2	3	215.84	1	NC	1
517		12	max	.004	3	.218	3	0	15	2.868e-2	1		15	NC	1
518			min	002	2	373	1	0	1	-1.461e-2	3	232.018	1	NC	1
519		13	max	.004	3	.185	3	0	15	2.303e-2	1		15	NC	1
520			min	002	2	315	1	0	1	-1.17e-2	3	263.32	1	NC	1
521		14	max	.004	3	.144	3	.001	1	1.739e-2	1		15	NC	1
522			min	002	2	242	1	0	15	-8.786e-3	3	316.75	1	NC	1
523		15	max	.004	3	.097	3	.004	1	1.175e-2	1	NC	15	NC	1
524			min	002	2	161	1	0	15	-5.873e-3	3	408.464	1	NC	1
525		16	max	.004	3	.049	3	.005	1	6.103e-3	1	NC	5	NC	1
526			min	002	2	08	1	0	15	-2.959e-3	3	577.652	1	NC	1
527		17	max	.004	3	.003	S	.006	1	4.599e-4	1	NC	5	NC	1
528			min	002	2	005	2	0	15	-4.592e-5	3	937.921	1	NC	1
529		18	max	.004	3	.059	1	.004	1	1.052e-2	2	NC	5	NC	1
530			min	002	2	038	3	0	15	-4.334e-3	3	1981.078	1	NC	1
531		19	max	.004	3	.116	1	0	15	2.116e-2	2	NC	1	NC	1
532			min	002	2	076	3	0	1	-8.789e-3	3	NC	1	NC	1
533	M5	1	max	.016	3	.285	1	0	1	0	1	NC	1	NC	1
534			min	01	2	038	3	0	1	0	1	NC	1	NC	1
535		2	max	.016	3	.141	1	0	1	0	1	NC	5	NC	1
536			min	01	2	019	3	0	1	0	1	797.113	1	NC	1
537		3	max	.016	3	.024	3	0	1	0	1	NC	5	NC	1
538			min	01	2	023	1	0	1	0	1	372.678	1	NC	1
539		4	max	.016	3	.113	3	0	1	0	1		15	NC	1
540			min	01	2	222	1	0	1	0	1	226.187	1	NC	1
541		5	max	.015	3	.233	3	0	1	0	1		15	NC	1
542			min	01	2	44	1	0	1	0	1		1	NC	1
543		6	max	.015	3	.367	3	0	1	0	1		15	NC	1
544			min	01	2	657	1	0	1	0	1	121.63	1	NC	1
545		7	max	.015	3	.497	3	0	1	0	1		15	NC	1
546			min	009	2	854	1	0	1	0	1	100.546	1	NC	1
547		8	max	.015	3	.605	3	0	1	0	1		15	NC	1
548			min	009	2	-1.013	1	0	1	Ö	1	88.287	1	NC	1
549		9	max	.014	3	.676	3	0	1	0	1		15	NC	1
550		Ĭ	min	009	2	-1.113	1	0	1	0	1	82.003	1	NC	1
551		10	max	.014	3	.701	3	0	1	0	1		15	NC	1
552		1.0	min	009	2	-1.146	1	0	1	0	1		1	NC	1
553		11	max	.014	3	.683	3	0	1	0	1		15	NC	1
			παλ	.017		.000						0002.000	īŪ		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

5556		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
				min		2	-1.113	-		1	- v	1		_		1
558	555		12	max	.013		.624	3	0	1	0	1_		15	NC	1
558	556			min	009		-1.011		0	1	0	1	88.708	1		1
569	557		13	max		3	.528	3	0	1	0	1_	4290.001	15		1
Feb				min				•	0	1	0	1		_		1
Fig.			14				.407	3	0	1_	0	_1_		15		_
F662	560			min	008		646	_	0	1	0	1	124.098	1	NC	1
F653	561		15	max	.012		.273	3	0	1	0	1_		15		1
F664	562			min		2		1	0	1	0	1	163.492	1		1
565	563		16	max				3	0	1	0	1		15		1
Sefe	564			min	008		208		0	1	0	1	238.202	1	NC	1
568	565		17	max	.012	3	.009	3	0	1	0	1	NC	5	NC	1
Fight Decision Fight Decision Deci	566			min	008	2	015	2	0	1	0	1	401.952	1	NC	1
Feb	567		18	max	.012	3	.138	1	0	1	0	1	NC	5	NC	1
S70	568			min	008	2	099	3	0	1	0	1	875.66	1	NC	1
S71 M9	569		19	max	.012	3	.267	1	0	1	0	1	NC	1	NC	1
S72	570			min	008	2	196	3	0	1	0	1	NC	1	NC	1
573	571	M9	1	max	.005	3	.122	1	0	15	2.446e-2	3	NC	1	NC	1
573	572			min	002	2	025	3	0	1	-1.697e-2	1	NC	1	NC	1
575 3 max 0.05 3 0.08 3 0.06 1 1.177e-4 3 NC 5 NC 1	573		2	max	.005	3	.06	1	.004	1		3	NC	5	NC	1
575 3 max 0.05 3 0.08 3 0.06 1 1.177e-4 3 NC 5 NC 1	574			min	002	2	012	3	0	15	-8.275e-3	1	1852.007	1	NC	1
577	575		3	max	.005	3	.008	3	.006	1		3	NC	5	NC	1
578	576			min	002	2	007	2	0	15	-3.203e-5	10	887.146	1	NC	1
578			4	max	.005	3	.041	3	.006	1		3	NC	5	NC	1
579										15		1				1
S81			5		.005	3	.084	3	.004	1	9.052e-3	3		15	NC	1
S81				min						15					NC	1
583 7 max .005 3 .174 3 0 12 1.799e-2 3 9837.428 15 NC 1 584 min 002 2 317 1 0 1 -2.045e-2 1 260.916 1 NC 1 585 8 max .005 3 .211 3 0 15 2.245e-2 3 8743.188 15 NC 1 586 min 002 2 373 1 0 1 -2.559e-2 1 231.04 1 NC 1 587 9 max .005 3 .235 3 0 1 2.265e-2 3 8172.494 15 NC 1 588 min 002 2 409 1 0 15 -2.826e-2 1 215.523 1 NC 1 599 min 002 2 421			6		.005	3		3	.002	1		3		15	NC	1
583 7 max .005 3 .174 3 0 12 1.799e-2 3 9837.428 15 NC 1 584 min 002 2 317 1 0 1 -2.045e-2 1 260.916 1 NC 1 585 8 max .005 3 .211 3 0 15 2.245e-2 3 8743.188 15 NC 1 586 min 002 2 373 1 0 1 -2.559e-2 1 231.04 1 NC 1 587 9 max .005 3 .235 3 0 1 2.265e-2 3 8172.494 15 NC 1 588 min 002 2 409 1 0 15 2.285e-2 1 215.523 1 NC 1 599 min 002 2 421	582			min	002	2	245	1	0	15	-1.531e-2	1	311.592	1	NC	1
584 min 002 2 317 1 0 1 -2.045e-2 1 260.916 1 NC 1 585 8 max .005 3 .211 3 0 15 2.245e-2 3 8743.188 15 NC 1 587 9 max .005 3 .235 3 0 1 2.259e-2 1 231.04 1 NC 1 588 min 002 2 409 1 0 15 -2.826e-2 1 215.523 1 NC 1 589 10 max .004 3 .244 3 0 15 2.001e-2 3 7998.65 15 NC 1 590 min 002 2 421 1 0 1 -2.928e-2 1 210.887 1 NC 1 599 11 min 002 2			7			3		3	0	12		3		15		1
585 8 max .005 3 .211 3 0 15 2.245e-2 3 8743.188 15 NC 1 586 min 002 2 373 1 0 1 -2.559e-2 1 231.04 1 NC 1 587 9 max .005 3 .235 3 0 1 2.265e-2 3 8172.494 15 NC 1 588 min 002 2 409 1 0 15 2.826e-2 1 215.523 1 NC 1 589 10 max .004 3 .244 3 0 15 2.001e-2 3 7998.65 15 NC 1 590 min 002 2 409 1 0 1 -2.928e-2 1 210.887 1 NC 1 591 11 min 002 2				min		2	317	1	0	1		1		1	NC	1
586 min 002 2 373 1 0 1 -2.559e-2 1 231.04 1 NC 1 587 9 max .005 3 .235 3 0 1 2.265e-2 3 8172.494 15 NC 1 588 min 002 2 409 1 0 15 -2.826e-2 1 215.523 1 NC 1 589 10 max .004 3 .244 3 0 15 -2.01e-2 3 7998.65 15 NC 1 590 min 002 2 421 1 0 1 -2.928e-2 1 210.887 1 NC 1 591 11 max .004 3 .238 3 0 15 1.736e-2 3 8172.325 15 NC 1 592 min 002 2 373			8	max	.005	3	.211	3	0	15	2.245e-2	3	8743.188	15	NC	1
588 min 002 2 409 1 0 15 -2.826e-2 1 215.523 1 NC 1 589 10 max .004 3 .244 3 0 15 2.001e-2 3 7998.65 15 NC 1 590 min 002 2 421 1 0 1 -2.928e-2 1 210.887 1 NC 1 591 11 max .004 3 .238 3 0 15 1.736e-2 3 8172.325 15 NC 1 592 min 002 2 -409 1 0 1 -3.031e-2 1 215.84 1 NC 1 593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373				min	002	2	373	1	0	1		1	231.04	1	NC	1
588 min 002 2 409 1 0 15 -2.826e-2 1 215.523 1 NC 1 589 10 max .004 3 .244 3 0 15 2.001e-2 3 7998.65 15 NC 1 590 min 002 2 421 1 0 1 -2.928e-2 1 210.887 1 NC 1 591 11 max .004 3 .238 3 0 15 1.736e-2 3 8172.325 15 NC 1 592 min 002 2 -409 1 0 1 3.031e-2 1 215.84 1 NC 1 593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373	587		9	max	.005	3	.235	3	0	1	2.265e-2	3	8172.494	15	NC	1
590 min 002 2 421 1 0 1 -2.928e-2 1 210.887 1 NC 1 591 11 max .004 3 .238 3 0 15 1.736e-2 3 8172.325 15 NC 1 592 min 002 2 409 1 0 1 -3.031e-2 1 215.84 1 NC 1 593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373 1 0 15 -2.868e-2 1 232.018 1 NC 1 595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315				min	002	2	409	1	0	15		1		1	NC	1
590 min 002 2 421 1 0 1 -2.928e-2 1 210.887 1 NC 1 591 11 max .004 3 .238 3 0 15 1.736e-2 3 8172.325 15 NC 1 592 min 002 2 409 1 0 1 -3.031e-2 1 215.84 1 NC 1 593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373 1 0 15 -2.868e-2 1 232.018 1 NC 1 595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315			10		.004	3	.244	3	0	15		3		15	NC	1
592 min 002 2 409 1 0 1 -3.031e-2 1 215.84 1 NC 1 593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373 1 0 15 -2.868e-2 1 232.018 1 NC 1 595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315 1 0 15 -2.303e-2 1 263.32 1 NC 1 597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242				min	002	2	421	1	0	1	-2.928e-2	1		1	NC	1
592 min 002 2 409 1 0 1 -3.031e-2 1 215.84 1 NC 1 593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373 1 0 15 -2.868e-2 1 232.018 1 NC 1 595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315 1 0 15 -2.303e-2 1 263.32 1 NC 1 597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242			11		.004	3	.238	3	0	15		3		15	NC	1
593 12 max .004 3 .218 3 0 1 1.461e-2 3 8742.831 15 NC 1 594 min 002 2 373 1 0 15 -2.868e-2 1 232.018 1 NC 1 595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315 1 0 15 -2.303e-2 1 263.32 1 NC 1 597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242 1 001 1 -1.739e-2 1 316.75 1 NC 1 600 min 002 2 161				min	002			1	0	1		1	215.84			1
594 min 002 2 373 1 0 15 -2.868e-2 1 232.018 1 NC 1 595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315 1 0 15 -2.303e-2 1 263.32 1 NC 1 597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242 1 001 1 -1.739e-2 1 316.75 1 NC 1 599 15 max .004 3 .097 3 0 15 5.873e-3 3 NC 15 NC 1 600 min 002 2 161			12			3		3	0	1		3		15		1
595 13 max .004 3 .185 3 0 1 1.17e-2 3 9836.794 15 NC 1 596 min 002 2 315 1 0 15 -2.303e-2 1 263.32 1 NC 1 597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242 1 001 1 -1.739e-2 1 316.75 1 NC 1 599 15 max .004 3 .097 3 0 15 5.873e-3 3 NC 15 NC 1 600 min 002 2 161 1 004 1 -1.175e-2 1 408.464 1 NC 1 601 max .004 3 .049				min					0	15	-2.868e-2	1	232.018		NC	1
596 min 002 2 315 1 0 15 -2.303e-2 1 263.32 1 NC 1 597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242 1 001 1 -1.739e-2 1 316.75 1 NC 1 599 15 max .004 3 .097 3 0 15 5.873e-3 3 NC 15 NC 1 600 min 002 2 161 1 004 1 -1.175e-2 1 408.464 1 NC 1 601 16 max .004 3 .049 3 0 15 2.959e-3 3 NC 5 NC 1 602 min 002 2 08 <			13													
597 14 max .004 3 .144 3 0 15 8.786e-3 3 NC 15 NC 1 598 min 002 2 242 1 001 1 -1.739e-2 1 316.75 1 NC 1 599 15 max .004 3 .097 3 0 15 5.873e-3 3 NC 15 NC 1 600 min 002 2 161 1 004 1 -1.175e-2 1 408.464 1 NC 1 601 16 max .004 3 .049 3 0 15 2.959e-3 3 NC 5 NC 1 602 min 002 2 08 1 005 1 -6.103e-3 1 577.652 1 NC 1 603 17 max .004 3 <										15		-				1
598 min 002 2 242 1 001 1 -1.739e-2 1 316.75 1 NC 1 599 15 max .004 3 .097 3 0 15 5.873e-3 3 NC 15 NC 1 600 min 002 2 161 1 004 1 -1.175e-2 1 408.464 1 NC 1 601 16 max .004 3 .049 3 0 15 2.959e-3 3 NC 5 NC 1 602 min 002 2 08 1 005 1 -6.103e-3 1 577.652 1 NC 1 603 17 max .004 3 .003 3 0 15 4.592e-5 3 NC 5 NC 1 604 min 002 2 005			14		.004		.144	3	0			3		15	NC	1
599 15 max .004 3 .097 3 0 15 5.873e-3 3 NC 15 NC 1 600 min 002 2 161 1 004 1 -1.175e-2 1 408.464 1 NC 1 601 16 max .004 3 .049 3 0 15 2.959e-3 3 NC 5 NC 1 602 min 002 2 08 1 005 1 -6.103e-3 1 577.652 1 NC 1 603 17 max .004 3 .003 3 0 15 4.592e-5 3 NC 5 NC 1 604 min 002 2 005 2 006 1 -4.599e-4 1 937.921 1 NC 1 605 18 max .004 3 <																1
600 min 002 2 161 1 004 1 -1.175e-2 1 408.464 1 NC 1 601 16 max .004 3 .049 3 0 15 2.959e-3 3 NC 5 NC 1 602 min 002 2 08 1 005 1 -6.103e-3 1 577.652 1 NC 1 603 17 max .004 3 .003 3 0 15 4.592e-5 3 NC 5 NC 1 604 min 002 2 005 2 006 1 -4.599e-4 1 937.921 1 NC 1 605 18 max .004 3 .059 1 0 15 4.334e-3 3 NC 5 NC 1 606 min 002 2 038			15					3		15		3		15		1
601 16 max .004 3 .049 3 0 15 2.959e-3 3 NC 5 NC 1 602 min 002 2 08 1 005 1 -6.103e-3 1 577.652 1 NC 1 603 17 max .004 3 .003 3 0 15 4.592e-5 3 NC 5 NC 1 604 min 002 2 005 2 006 1 -4.599e-4 1 937.921 1 NC 1 605 18 max .004 3 .059 1 0 15 4.334e-3 3 NC 5 NC 1 606 min 002 2 038 3 004 1 -1.052e-2 2 1981.078 1 NC 1 607 19 max .004 3 <																
602 min 002 2 08 1 005 1 -6.103e-3 1 577.652 1 NC 1 603 17 max .004 3 .003 3 0 15 4.592e-5 3 NC 5 NC 1 604 min 002 2 005 2 006 1 -4.599e-4 1 937.921 1 NC 1 605 18 max .004 3 .059 1 0 15 4.334e-3 3 NC 5 NC 1 606 min 002 2 038 3 004 1 -1.052e-2 2 1981.078 1 NC 1 607 19 max .004 3 .116 1 0 1 8.789e-3 3 NC 1 NC 1			16					3		15		3		5		
603 17 max .004 3 .003 3 0 15 4.592e-5 3 NC 5 NC 1 604 min 002 2 005 2 006 1 -4.599e-4 1 937.921 1 NC 1 605 18 max .004 3 .059 1 0 15 4.334e-3 3 NC 5 NC 1 606 min 002 2 038 3 004 1 -1.052e-2 2 1981.078 1 NC 1 607 19 max .004 3 .116 1 0 1 8.789e-3 3 NC 1 NC 1										-		-				
604 min 002 2 005 2 006 1 -4.599e-4 1 937.921 1 NC 1 605 18 max .004 3 .059 1 0 15 4.334e-3 3 NC 5 NC 1 606 min 002 2 038 3 004 1 -1.052e-2 2 1981.078 1 NC 1 607 19 max .004 3 .116 1 0 1 8.789e-3 3 NC 1 NC 1			17													
605 18 max .004 3 .059 1 0 15 4.334e-3 3 NC 5 NC 1 606 min 002 2 038 3 004 1 -1.052e-2 2 1981.078 1 NC 1 607 19 max .004 3 .116 1 0 1 8.789e-3 3 NC 1 NC 1																
606 min 002 2 038 3 004 1 -1.052e-2 2 1981.078 1 NC 1 607 19 max .004 3 .116 1 0 1 8.789e-3 3 NC 1 NC 1			18													_
607 19 max .004 3 .116 1 0 1 8.789e-3 3 NC 1 NC 1								_								
			19													
1	608			min	002	2	076	3	0			2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2559	6071	0.42	Pass
Concrete breakout	5118	10231	0.50	Pass
Adhesive	5118	8093	0.63	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1784	3156	0.57	Pass (Governs)
T Concrete breakout x+	3567	8641	0.41	Pass
Concrete breakout y-	1784	22862	0.08	Pass
Pryout	3567	20601	0.17	Pass
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.