Udine, 26 maggio 2022

- 1. Sia $f(x) = e^{x-1} x 1$.
 - Disegna il grafico di f. Localizza le due radici α, β , con $\alpha < \beta$.
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -1$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
 - Studia la convergenza a β del metodo di Newton. La successione ottenuta con $x_0 = 2$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.

Sia $g(x) = e^{x-1} - 1$. Verifica che α, β sono punti fissi di g.

- Studia la convergenza ad α del metodo iterativo $x_{i+1} = g(x_i), i = 0, 1, \dots$ La successione ottenuta con $x_0 = -1$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Studia la convergenza a β del metodo iterativo $x_{i+1} = g(x_i), i = 0, 1, \dots$ La successione ottenuta con $x_0 = 2$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.

Sia h(x) = log(x+1) + 1, x > -1. Verifica che α, β sono punti fissi di h.

- Studia la convergenza ad α del metodo iterativo $x_{i+1} = h(x_i), i = 0, 1, \dots$ La successione ottenuta con $x_0 = 0$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Studia la convergenza a β del metodo iterativo $x_{i+1} = h(x_i), i = 0, 1, \dots$ La successione ottenuta con $x_0 = 2$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- Definisci il concetto di ordine di convergenza.
- 2. La funzione $f(x) = e^x 1 2x$ è tale che f(0) = 0 e possiede un'ulteriore zero $\alpha \neq 0$.
- 3. Disegna il grafico di f. Localizza α .
- 4. Studia la convergenza del metodo di Newton, determinando tutti i valori x_0 che generano una successione convergente ad α e determina l'ordine di convergenza.
- 5. Studia la convergenza del metodo di iterazione funzionale $x_{k+1} = \frac{e^{x_k} 1}{2}$, $k = 0, 1, \dots$, determinando gli eventuali valori x_0 che generano una successione convergente ad α .
- 6. Studia la convergenza del metodo di iterazione funzionale $x_{k+1} = \log(1 + 2x_k)$, $k = 0, 1, \ldots$, determinando gli eventuali valori x_0 che generano una successione convergente ad α .
- 7. Quale metodo sceglieresti per approssimare α ? Giustifica la risposta.
- 8. Sia data la matrice

$$A = \left(\begin{array}{ccc} a & 2 & 3\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right).$$

- Calcola $||A||_1$ al variare del parametro a.
- \bullet Calcola la fattorizzazione LU di A.
- Illustra la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro a il metodo di Gauss è applicabile alla matrice A senza scambi di righe?
- Sia $a = \frac{1}{4}$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Sia a=4. Calcola la fattorizzazione PA=LU con la tecnica del pivot parziale.

Sia data la matrice

$$A = \left(\begin{array}{ccc} -2 & 6 & 0 \\ a & 3 & 1+a \\ 0 & -3 & -a \end{array} \right).$$

- Calcola $||A||_{\infty}$ al variare del parametro a.
- ullet Calcola la fattorizzazione LU di A, determinando per quali valori di a ciò é possibile.
- Calcola il determinante di A e determina per quali valori di a la matrice è singolare.
- Illustra la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori del parametro a la fattorizzazione PA = LU con la tecnica del pivot parziale fornisce P = I (I matrice identità)?
- Sia a = -1/3. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Sia a=3. Calcola la fattorizzazione PA=LU con la tecnica del pivot parziale.
- 9. Sia nota la fattorizzazione LU di una matrice $A \in \mathbb{R}^{n \times n}$ non singolare, i.e. A = LU.
 - Dati due vettori $b, c \in \mathbb{R}^n$, proponi un algoritmo efficiente per calcolare $y = c^t A^{-1}b$.
 - Analizza il costo computazionale dell'algoritmo proposto.
 - Come cambia l'algoritmo, se è nota la fattorizzazione PA = LU?