CS5760: Cryptanalysis of DES and DES-like Iterated Cryptosystems

Gautam Singh

Indian Institute of Technology Hyderabad

February 3, 2025

Introduction to Differential Cryptanalysis
 Differential Cryptanalysis
 Probability Analysis of S Boxes

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.

Differential Cryptanalysis

- 1 Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Ser DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E .
 - Invariant in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.

Figure 1: *F* function of DES.

Differential Cryptanalysis

- Chosen plaintext attack.
- Exploit XOR between plaintext pairs to find key bits.
- Ser DES round, XOR of respective inputs is:
 - Linear in expansion E to get S_E .
 - Invariant in key mixing with subkey S_K to get $S_I = S_E \oplus S_K$.
 - Linear in permutation P on S_O after S boxes.
 - Invariant in XOR operation connecting rounds.
- S boxes are nonlinear. Probability analysis performed between input and output XOR.

Figure 1: *F* function of DES.

Probability Analysis of S Boxes

• Suppose $Si'_I = Si_I \oplus Si'_I$ is the input XOR to the *i*-th S box, and Si'_O is the output XOR $(1 \le i \le 8)$.

Probability Analysis of S Boxes

- Suppose $Si'_I = Si_I \oplus Si'_I$ is the input XOR to the *i*-th S box, and Si'_O is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which Si'_I → Si'_O.
 - 64-by-16 joint probability mass function.

Probability Analysis of S Boxes

- Suppose $Si'_I = Si_I \oplus Si'_I$ is the input XOR to the *i*-th S box, and Si'_O is the output XOR $(1 \le i \le 8)$.
- We create a pairs XOR distribution table for each S box.
 - Each entry (Si'_I, Si'_O) equals the number of 6-bit key blocks Si_K for which $Si'_I \rightarrow Si'_O$.
 - 64-by-16 joint probability mass function.
- 3 This joint PMF can reduce the number of possible (sub)keys. Used to drive choice for the plaintext XOR.
 - Approximately 80 % of entries are non-zero/possible for each S box (some have lesser percentages).