РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №7. Дискретное логарифмирование в конечном поле

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Аронова Юлия Вадимовна, 1032212303

Группа: НФИмд-01-21

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2021

Содержание

1 Цель работы					
2	Задание				
3	Теоретическое введение 3.1 Основные понятия из теории групп и теории чисел	7 7 8 9			
4	Выполнение лабораторной работы 4.1 Алгоритм, реализующий ρ -метод Полларда для задачи дискретного логарифмирования	12			
5	5 Выводы				
Сп	исок литературы	21			

List of Figures

4.1	Примеры нахождения порядка числа a по модулю n	14
4.2	Решение сравнения №1	18
4.3	Решение сравнения №2	18
4.4	Решение сравнения №3	19

List of Tables

7 1	-			N TO 1	10
3.1	Применение и	о-метода Полларда	лля решения	примера №1	10

1 Цель работы

Целью данной лабораторной работы является краткое ознакомление с задачей дискретного логарифмирования и ρ -методом Полларда для её решения, а также его последующая программная реализация.

2 Задание

Рассмотреть и реализовать на языке программирования Python ho-метод Полларда для задачи дискретного логарифмирования.

3 Теоретическое введение

3.1 Основные понятия из теории групп и теории чисел

Для начала введём некоторые базовые понятия.

- **Опр. 1.** *Группа* это непустое множество G с бинарной операцией \cdot , обладающей свойством ассоциативности $(a\cdot(b\cdot c)=(a\cdot b)\cdot c)$ и относительно которой существует нейтральный $(\exists e\in G: \forall a\in G\ ae=ea=a)$ и обратный элемент $(\forall a\in G\ \exists a^{-1}\in G: aa^{-1}=a^{-1}a=e)$. Если операция \cdot коммутативна, группа называется *абелевой* [1].
- **Опр. 2.** Если $M\subset G$, то *подгруппа, порождённая* M, $\langle M\rangle,$ это пересечение всех групп, содержащих M. Если существует $g\in G$ такой, что $\langle g\rangle=G$, то группа G циклическая. Все циклические группы абелевы.
- **Опр. 3.** Пусть $m\in\mathbb{N}, m\geq 2$. Целые a и b называются cpaвнимыми по модулю m, если $m\mid (a-b)$, т.е. m является делителем (a-b). Отношение сравнимости записывается следующим образом: $a\equiv b\pmod{m}$ [2].
- **Опр. 4.** Для любого $a\in\mathbb{Z}$ множество чисел $\bar{a}=\{x\in\mathbb{Z}:x\equiv a\pmod{m}\}$ называется *классом вычетов по модулю m*. Существует ровно m классов вычетов по модулю m, причём $\mathbb{Z}=\bar{0}\cup\bar{1}\cup...\cup\overline{(m-1)}$.
- **Опр. 5.** *Кольцо* это множество с двумя операциями $(R, +, \cdot)$, для которых выполняются свойства: (R, +) абелева группа, $a\cdot (b\cdot c)=(a\cdot b)\cdot c$, $a\cdot (b+c)=a\cdot b+a\cdot c$ и $(a+b)\cdot c=a\cdot c+b\cdot c$. Кольцо коммутативно, если $\forall a,b\in R\ a\cdot b=b\cdot a$. Кольцо с единицей, если $\exists 1\in R: \forall a\in R: 1\cdot a=a\cdot 1=a$ [1].

- **Опр. 6.** Полем называется коммутативное кольцо, содержащее не менее двух элементов, в котором все ненулевые элементы образуют группу по умножению [3]. Конечное поле с p элементами, где p простое число, обозначается \mathbb{F}_p [4].
- **Опр. 7.** Через \mathbb{Z}_m (или $\mathbb{Z}/m\mathbb{Z}$) обозначим множество классов вычетов по модулю $m:\mathbb{Z}_m=\{\bar{0},\bar{1},\ldots,\overline{m-1}\}.$ На нём можно определить операции сложения и умножения: $\bar{a}+\bar{b}=\overline{a+b},\bar{a}\cdot\bar{b}=\overline{a\cdot b}.$ \mathbb{Z}_m является коммутативным кольцом с единицей $\bar{1}$, в котором нулевой элемент: $\bar{0}$, а обратный по сложению элемент: $-(\bar{a})=\overline{(-a)}.$ Если m простое, то \mathbb{Z}_m поле.
- **Опр. 8.** Пусть $\bar{a} \in \mathbb{Z}_m$. Тогда \bar{b} обратный к \bar{a} , если $\bar{a} \cdot \bar{b} = 1$, а \bar{a} является обратимым, если имеет обратный класс. Множество всех обратимых классов в \mathbb{Z}_m обозначается \mathbb{Z}_m^* , является группой относительно умножения классов и называется мультипликативной группой кольца вычетов \mathbb{Z}_m [5].

3.2 Дискретное логарифмирование

Задача дискретного логарифмирования – наравне с задачей факторизации – является одной из фундаментальных в криптоанализе. На её сложности зиждется стойкость ряда криптосистем, включая такие известные, как:

- схема распределения ключей Диффи-Хеллмана (1976);
- схема Эль-Гамаля (1985), лежащая в основе алгоритма DSA;
- криптосистема Мэсси-Омуры (1978) для передачи сообщений [4].

Для конечного поля \mathbb{F}_p (в частности, в простейшем и важнейшем случае \mathbb{Z}_p^* , где p – большое простое число) задача дискретного логарифмирования определяется следующим образом [4]: при заданных ненулевых $a,b\in\mathbb{F}_p$ найти такое целое x, что:

$$a^x\equiv b\in \mathbb{F}_p,$$
 или $a^x\equiv b\pmod p.$

Пусть число a также имеет порядок r, то есть $a^r \equiv 1 \pmod{p}$.

3.3 $\, ho$ -метод Полларда для задачи дискретного

логарифмирования

Рассмотрим ρ -метод Полларда, который можно применить и для задач дискретного логарифмирования [6]. Здесь, как и в аналогичном методе факторизации, рассмотренном в предыдущей лабораторной, строится последовательность итеративных значений функции f, в которой требуется найти цикл. Для этого, как и ранее, используем алгоритм "черепахи и зайца" Флойда: к одному значению, c, на каждом шаге будем применять функции единожды, к другому, d, – дважды, пока их значения не совпадут и мы не сможем их приравнять.

Так, пусть $c=d\equiv a^{u_0}b^{v_0}\pmod p$, где u_0,v_0 случайные целые числа, – их начальные значения. Поскольку по условию задачи $b\equiv a^x\pmod p$, мы также можем записать $c\equiv a^{u_0}(a^x)^{v_0}\pmod p\equiv a^{u_0+v_0x}\pmod p$. Тогда $\log_a c\pmod p=u_0+v_0x$. Таким образом, логарифмы c и d по основанию a могут быть представлены линейно.

Теперь зададим отображение f. Оно должно обладать не только сжимающими свойствами, но и вычислимостью логарифма, чтобы по мере изменения значений c и d мы могли также отслеживать изменения в линейном представлении их логарифмов. Будем использовать ветвящееся отображение следующего вида:

$$f(c) = \begin{cases} ac, & \text{при } c < \frac{p}{2} \\ bc, & \text{при } c \geq \frac{p}{2} \end{cases}$$

Таким образом, c будет умножаться или на a, или на b. В первом случае получим $f(c) \equiv (a^ub^v)a \pmod p \equiv a^{u+1}b^v \pmod p \equiv a^{(u+1)+vx} \pmod p$, и тогда $\log_a f(c) = (u+1) + vx = \log_a c + 1$. Во втором случае же получаем $f(c) \equiv (a^ub^v)b \pmod p \equiv a^ub^{v+1} \pmod p \equiv a^{u+(v+1)x} \pmod p$, и отсюда $\log_a f(c) = u + (v+1)x = \log_a c + x$.

Когда значения c и d совпадут, мы сможем приравнять их логарифмы и получим сравнение по x: $u_i^c + v_i^c x \equiv u_i^d + v_i^d x \pmod{r}$.

Алгоритм 1. Алгоритм, реализующий ρ -метод Полларда для задач дискретного логарифмирования

Вход. Простое число p, число a порядка r по модулю p, целое число b, 1 < b < p; отображение f, обладающее сжимающими свойствами и сохраняющее вычислимость логарифма.

 $\mathit{Bыход}$. Показатель x, для которого $a^x \equiv b \pmod p$, если такой показатель существует.

- 1. Выбрать произвольные целые числа u,v и положить $c \leftarrow a^u b^v$ $\pmod{p}, d \leftarrow c.$
- 2. Выполнять $c \leftarrow f(c) \pmod p, d \leftarrow f(f(d)) \pmod p$, вычисляя при этом логарифмы для c и d как линейные функции от x по модулю r, до получения равенства $c \equiv d \pmod p$.
- 3. Приравняв логарифмы для c и d, вычислить логарифм x решением сравнения по модулю r. Результат: x или "Решений нет".

Пример 1. Решим задачу $10^x \equiv 64 \pmod{107}$. Выберем отображение: $f(c) = 10c \pmod{107}$ \$ при c < 53, $f(c) = 64c \pmod{107}$ при $c \geq 53$. Порядок числа 10 по модулю 107 равен 53. Пусть u = 2, v = 2. Результаты вычислений представлены в Таблице 3.1.

Table 3.1: Применение *ρ*-метода Полларда для решения примера №1

Шаг	С	$\log_a c$	d	$\log_a d$
0	4	2+2x	4	2+2x
1	40	3+2x	79	4+2x
2	79	4+2x	56	5+3x
3	27	4+3x	75	5+5x
4	56	5+3x	3	5 + 7x
5	53	5+4x	86	7 + 7x
6	75	5+5x	42	8 + 8x

Шаг	С	$\log_a c$	d	$\log_a d$
7	92	5+6x	23	9+9x
8	3	5+7x	53	11 + 9x
9	30	6+7x	92	11 + 11x
10	86	7 + 7x	30	12 + 12x
11	47	7 + 8x	47	13 + 13x

Приравниваем полученные логарифмы: $7+8x\equiv 13+13x\pmod{53}$. Отсюда $-5x\equiv 6\pmod{53}$. Чтобы решить данное сравнение, нужно найти обратный элемент k^{-1} для k=-5 по модулю m=53 ($k^{-1}\cdot k\equiv 1\pmod{m}$) и умножить на него левую и правую часть сравнения. Так как этот обратный элемент – сравним сам с собой по модулю 53, подобное сравнение будет справедливо [7].

В общем виде пусть решается сравнение $kx\equiv b\pmod m$. Если k и m – вза-имно простые, т.е. $\mathrm{HOД}(k,m)=1$, мы можем применить расширенный алгоритм Евклида, разобранный в рамках 4-ой лабораторной работы, и получить линейное представление единицы в виде: $s_k\cdot k+s_m\cdot m=1$ [8]. Отсюда $s_k\cdot k-1=-s_m\cdot m$, что эквивалентно $m|(s_k\cdot k-1)$, что эквивалентно $s_k\cdot k\equiv 1\pmod m$, т.е. $k^{-1}=s_k$. Если же НОД не равен единице, то мы предполагаем, что $\gcd=\mathrm{HOД}(k,m)=\mathrm{HOД}(k,b,m)$ (поскольку в противном случае обратного элемента не существует), и тогда сравнение можно поделить на \gcd [7], и получим $\frac{k}{acd}x\equiv\frac{b}{acd}\pmod {\frac{m}{acd}}$.

Возвращаясь к примеру, получаем $x=20\pmod{53}$. Проверка: $10^{20}\equiv 64\pmod{107}$.

4 Выполнение лабораторной работы

Реализуем описанный выше алгоритм на языке **Python** в среде Jupyter Notebook. Для работы нам понадобится функция вычисления порядка числа по модулю, расширенный алгоритм Евклида, реализацию которого мы возьмем из 4-ой лабораторной работы, а также основанная на нём функция решения сравнения вида $k_1x + b_1 \equiv k_2x + b_2 \pmod{p}$:

```
import math
import numpy as np

def multiplicative_order(a, n):
    """
    Bычисляет порядок числа а по модулю n
    """
    k = 1; flag = True # начнем перебор с единицы

while flag:
    if (a ** k - 1) % n == 0: # если порядок найден
        flag = False # "опускаем" флаг и выходим из цикла
    else: # иначе
        k += 1 # увеличиваем порядок на единицу

return k
```

```
def euclidean_algorithm_extended(a, b):
    (a, b) = (int(a), int(b))
    reversed = True if abs(b) > abs(a) else False # флаг
    (a, b) = (b, a) if reversed else (a, b) # меняем местами а и b, если нужно
    (r, x, y) = ([a, b], [1, 0], [0, 1]) # war 1
    while r[1] != 0:
        (r[0], r[1], q) = (r[1], r[0] % r[1], r[0] // r[1])
        if r[1] != 0: # если остаток ещё не нулевой..
            (x[0], x[1]) = (x[1], x[0] - q * x[1])
            (y[0], y[1]) = (y[1], y[0] - q * y[1])
    (d, x_r, y_r) = (r[0], x[1], y[1])
    if reversed: # если а и b были в неправильном порядке
        (x_r, y_r) = (y_r, x_r) # меняем найденные коэффициенты местами
    return (d, x_r, y_r)
def solve_congruence(c, d, p):
```

```
c = (k_1, b_1), d = (k_2, b_2)
"""

(k_1, b_1) = c; (k_2, b_2) = d # получаем коэффициенты

k = k_1 - k_2; b = b_2 - b_1 # kx = b (mod p)

# k * k_inverse = gcd (mod p)

(gcd, k_inverse, _) = euclidean_algorithm_extended(k, p)

if gcd == 1: # если k и p - взаимно простые..

return (b * k_inverse) % p

else: # иначе

k = int(k / gcd); b = int(b / gcd) # делим сравнение на gcd

(_, k_inverse, _) = euclidean_algorithm_extended(k, int(p / gcd))

return (b * k_inverse) % p
```

Примеры работы функции multiplicative_order(a, n) представлены на Рис. 4.1.

```
print(multiplicative_order(10, 107))
print(multiplicative_order(2, 15))

✓ 0.4s
... 53
4
```

Figure 4.1: Примеры нахождения порядка числа a по модулю n

4.1 Алгоритм, реализующий ho-метод Полларда для задачи дискретного логарифмирования

Создадим функцию pollard_rho_method(n, f, c) следующего вида:

```
def pollard_rho_dlog(a, b, p, def0 = True, to_print = False):
    def0 = True, если нужно использовать начальные значения и и v по умолчанию,
    и False, если их нужно определить случайно;
    to print = True, если нужно вывести на экран ход алгоритма
    r = multiplicative_order(a, p) # порядок числа а
    half p = math.floor(p / 2) # p / 2
    f = "({a} * x % {p}) if x < {half} else ({b} * x % {p})".format(a = a,
                                                  p = p, half = half_p, b = b)
    (u, v) = (2, 2) if def0 else (np.random.randint(1, half_p),
                                            np.random.randint(1, half_p))
    if not def0 and to_print:
        print("(u, v) = ({}, {})".format(u, v))
    c = ((a ** u) * (b ** v)) % p #
    d = c
```

```
(k_c, l_c) = (u, v)
(k_d, l_d) = (u, v) #
if to_print:
                         .format("c", "log_c", "d", "log_d"))
        .format("----", "-----", "----")
                         .format(c, l_c, k_c, d, l_d, k_d))
while True:
  if x < half_p: #</pre>
  else:
    k_c += 1
   c = eval(f) #
   if x < half_p: #
    l_d += 1 #
   else:
    k_d += 1 #
   x = eval(f) #
```

Теперь с помощью данной функции решим несколько задач на вычисление дискретных логарифмов: $10^x \equiv 64 \pmod{107}$ (см. Рис. 4.2), $5^x \equiv 3 \pmod{23}$ (см. Рис. 4.3) и $29^x \equiv 479 \pmod{797}$ (см. Рис. 4.4).

```
pollard_rho_dlog(10, 64, 107, True, True)
 ✓ 0.6s
               log_c
                                         log_d
    4
    40
                              79
    79
                              56
    27
                              75
    56
              5 + 3 x |
    53
                   4 x |
                              86
    75
                              42
    92
                + 6 x |
                                     | 11
    30
                              92
                                     | 11
                                           + 11 x
    86
              7 + 7x
                              30
                                     | 12
                                          + 12 x
    47
              7 + 8 x |
                                     | 13 + 13 x
20
```

Figure 4.2: Решение сравнения №1

```
pollard_rho_dlog(5, 3, 23, False, True)
 ✓ 0.3s
(u, v) = (7, 3)
               log_c
                               d
                                           log_d
    22
                               22
    20
                               14
    14
                               11
                + 10 x |
    19
                                             + 12 x
    11
              3 + 11 x |
                               14
                                             + 13 x
    10
                + 12 x |
                                             + 15 x
                               11
                + 12 x |
                                            + 16 x
16
```

Figure 4.3: Решение сравнения №2

Figure 4.4: Решение сравнения №3

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: было проведено краткое знакомство с задачей дискретного логарифмирования и с алгоритмом, реализующим ρ -метод Полларда для её решения, после чего алгоритм был успешно реализован на языке программирования **Python**.

Список литературы

- 1. Богданов И.И. Теория групп: конспект. ФИВТ МФТИ, 2016. С. 42.
- 2. Илларионов А.А. Теория чисел: учебное пособие. 2016.
- 3. Зельвенский И.Г. Группы, кольца, поля: Методические указания по дисциплине «Геометрия и алгебра». Спб.: ГЭТУ ЛЭТИ, 1997. С. 30.
- 4. Yan S. Primality Testing and Integer Factorization in Public-Key Cryptography. Boston: Springer, 2009. C. 371.
- 5. Веретенников Б.М., Михалева М.М. Алгебра и теория чисел : учебное пособие. Часть 1 / под ред. Чуксина Н.В. Екатеринбург: Изд-во Урал. ун-та, 2014. С. 52.
- 6. Бубнов С.А. Лабораторный практикум по основам криптографии: учебнометодическое пособие. Саратов; http://elibrary.sgu.ru/uch_lit/656.pdf: Саратовский государственный университет им. Н.Г. Чернышевского, 2012.
- 7. Википедия. Сравнение по модулю Википедия, свободная энциклопедия. 2021.
- 8. Occhipinti T. Discrete logs with Pollard rho | Math 361. 2021.