Hello, my name is Influencer

Ceccotti Alex, Fiorini Stefano, Govi David, Sessi Michela

 $Dataset:\ 5500\ righe,\ 23\ variabili\ (https://www.kaggle.com/c/predict-who-is-more-influential-in-a-social-network)$

Target binario Choice: quale tra i due utenti A e B è più influente (1=A, 0=B)

```
d <- read.csv("~/data_science_lab/train.csv")
status=df_status(d, print_results = F)
pander(status[,-c(6,7)]%>%arrange(type,-q_zeros))
```

variable	q_zeros	p_zeros	q_na	p_na	type	unique
Choice	2698	49.05	0	0	integer	2
$A_{network_feature_1}$	212	3.85	0	0	integer	345
$B_{network_feature_1}$	194	3.53	0	0	integer	350
A_listed_count	60	1.09	0	0	integer	523
B_listed_count	46	0.84	0	0	integer	528
$A_following_count$	35	0.64	0	0	integer	673
B_following_count	32	0.58	0	0	integer	668
$A_follower_count$	0	0	0	0	integer	759
$B_follower_count$	0	0	0	0	integer	760
$A_{network_feature_2}$	346	6.29	0	0	numeric	691
$B_{network_feature_2}$	341	6.2	0	0	numeric	708
$A_{network_feature_3}$	260	4.73	0	0	numeric	733
$B_{network_feature_3}$	247	4.49	0	0	numeric	743
A_mentions_received	0	0	0	0	numeric	719
$A_{retweets_received}$	0	0	0	0	numeric	582
A_mentions_sent	0	0	0	0	numeric	500
$A_retweets_sent$	0	0	0	0	numeric	247
A_posts	0	0	0	0	numeric	553
B_mentions_received	0	0	0	0	numeric	732
$B_{retweets_received}$	0	0	0	0	numeric	590
B_mentions_sent	0	0	0	0	numeric	518
$B_{retweets_sent}$	0	0	0	0	numeric	257
B_posts	0	0	0	0	numeric	581

```
prop.table(table(d$Choice))

##

## 0 1

## 0.4905455 0.5094545

for (i in (2:12)){
    d[,(i+22)] <- d[,i]/d[,(11+i)]
    names(d)[i+22] <- paste("rapp", substring(names(d)[i], 2), sep="")
}
status=df_status(d, print_results = F)
pander(head(status[,c(1,4,5)]%>%arrange(-q_na)))
```

variable	q_na	p_na
rapp_network_feature_2	17	0.31

variable	q_na	p_na
rapp_network_feature_3	7	0.13
$rapp_network_feature_1$	4	0.07
Choice	0	0
$A_follower_count$	0	0
$A_following_count$	0	0

pander(head(status[,c(1,6,7)]%>%arrange(-q_inf)))

variable	q_inf	p_inf
rapp_network_feature_2	324	5.89
$rapp_network_feature_3$	240	4.36
$rapp_network_feature_1$	190	3.45
$rapp_listed_count$	46	0.84
$rapp_following_count$	32	0.58
Choice	0	0

```
for (i in (24:ncol(d))){
   d[is.na(d[,i]),i] <- 1
   d[d[,i]==Inf,i] <- d[d[,i]==Inf,(i-22)]
}
status=df_status(d, print_results = F)
pander(head(status[,c(1,4,5)]%>%arrange(-q_na)))
```

variable	q_na	p_na
Choice	0	0
$A_follower_count$	0	0
$A_following_count$	0	0
A_listed_count	0	0
$A_{mentions_received}$	0	0
$A_retweets_received$	0	0

pander(head(status[,c(1,6,7)]%>%arrange(-q_inf)))

variable	q_i inf	p_inf
Choice	0	0
$A_follower_count$	0	0
$A_following_count$	0	0
A_listed_count	0	0
$A_mentions_received$	0	0
$A_{retweets_received}$	0	0

```
train<-d

train$A_foll_ratio <- train$A_following_count/train$A_follower_count
train$A_ment_ratio <- train$A_mentions_sent/train$A_mentions_received
train$A_retw_ratio <- train$A_retweets_sent/train$A_retweets_received</pre>
```

```
train$B_foll_ratio <- train$B_following_count/train$B_follower_count
train$B_ment_ratio <- train$B_mentions_sent/train$B_mentions_received
train$B_retw_ratio <- train$B_retweets_sent/train$B_retweets_received

train$A_zeros <- 0
train$B_zeros <- 0
for (i in (2:12)){
    train$A_zeros[train[,i]==0] <- train$A_zeros[train[,i]==0] + 1
}
for (i in (13:23)){
    train$B_zeros[train[,i]==0] <- train$B_zeros[train[,i]==0] + 1
}

train$has_zeros <- FALSE
train$has_zeros[(train$A_zeros+train$B_zeros)>0]<-TRUE

train$Choice=ifelse(train$Choice==1,"A","B")
dim(train)

## [1] 5500 43
pander(summary(train))</pre>
```

Table 6: Table continues below

Choice	A_follower_count	A_following_count	A_listed_count
Length:5500	Min. : 16	Min. : 0	Min.: 0
Class :character	1st Qu.: 2664	1st Qu.: 322	1st Qu.: 85
Mode :character	Median: 45589	Median: 778	Median: 932
NA	Mean: 649884	Mean: 12659	Mean: 5952
NA	3rd Qu.: 392738	3rd Qu.: 2838	3rd Qu.: 6734
NA	Max. $:36543194$	Max. $:1165830$	Max. :549144

Table 7: Table continues below

A_mentions_received	A_retweets_received	A_mentions_sent	A_retweets_sent
Min.: 0.1	Min.: 0.1	Min.: 0.1005	Min.: 0.1005
1st Qu.: 3.5	1st Qu.: 0.7	1st Qu.: 0.3595	1st Qu.: 0.1005
Median: 48.8 Mean: 2666.0	Median: 14.0 Mean: 1032.4	Median: 2.2997 Mean: 6.0119	Median: 0.3419 Mean: 1.1099
3rd Qu.: 349.8	3rd Qu.: 118.7	3rd Qu.: 7.1983	3rd Qu.: 1.3207
Max. :1145219.0	Max. $:435825.9$	Max. $:76.8095$	Max. $:16.2905$

Table 8: Table continues below

A_posts	$A_network_feature_1$	$A_network_feature_2$
Min.: 0.1005	Min. : 0	Min.: 0.00
1st Qu.: 0.6324	1st Qu.: 12	1st Qu.: 14.99
Median: 3.5552	Median: 195	Median: 54.93
Mean: 9.0907	Mean: 5268	Mean: 84.81
3rd Qu.: 10.6919	3rd Qu.: 1323	3rd Qu.: 109.70

A_posts	A_network_feature_1	A_network_feature_2
Max. :193.0724	Max. :920838	Max. :1121.00

Table 9: Table continues below

A_network_feature_3	$B_follower_count$	$B_following_count$	B_listed_count
Min.: 0	Min. : 20	Min. : 0	Min.: 0
1st Qu.: 1181	1st Qu.: 2498	1st Qu.: 322	1st Qu.: 75
Median: 2206	Median: 44027	Median: 773	Median: 890
Mean: 3747	Mean: 685487	Mean: 12738	Mean: 5903
3rd Qu.: 4390	3rd Qu.: 370114	3rd Qu.: 2838	3rd Qu.: 6734
Max. :144651	Max. :36543194	Max. :664324	Max. :549144

Table 10: Table continues below

$B_{mentions_received}$	$B_retweets_received$	$B_mentions_sent$	$B_retweets_sent$
Min.: 0.1	Min.: 0.1	Min.: 0.1005	Min.: 0.1005
1st Qu.: 3.3	1st Qu.: 0.7	1st Qu.: 0.3569	1st Qu.: 0.1005
Median: 48.8	Median: 14.0	Median: 2.2514	Median: 0.3419
Mean: 2554.6	Mean: 997.1	Mean: 6.0997	Mean: 1.1062
3rd Qu.: 374.4	3rd Qu.: 107.1	3rd Qu.: 6.8668	3rd Qu.: 1.3207
Max. :1145219.0	Max. $:435825.9$	Max. $:76.8095$	Max. :16.2905

Table 11: Table continues below

B_posts	B_network_feature_1	B_network_feature_2
Min.: 0.1005	Min. : 0	Min.: 0.00
1st Qu.: 0.8226	1st Qu.: 11	1st Qu.: 15.18
Median: 3.3430	Median: 190	Median: 54.93
Mean: 9.5058	Mean: 5255	Mean: 85.02
3rd Qu.: 10.6005	3rd Qu.: 1323	3rd Qu.: 112.19
Max. :193.0724	Max. :920838	Max. :1861.58

Table 12: Table continues below

B_network_feature_3	$rapp_follower_count$	rapp_following_count
Min. : 0	Min. : 0.0	Min.: 0.0
1st Qu.: 1206	1st Qu.: 0.1	1st Qu.: 0.2
Median: 2206	Median: 1.0	Median: 1.0
Mean: 3745	Mean: 609.1	Mean: 253.5
3rd Qu.: 4350	3rd Qu.: 17.6	3rd Qu.: 5.9
Max. :75526	Max. :477141.0	Max. :550744.0

Table 13: Table continues below

rapp_listed_count	$rapp_mentions_received$	$rapp_retweets_received$
Min. : 0.00	Min.: 0.0	Min.: 0.0
1st Qu.: 0.08	1st Qu.: 0.1	1st Qu.: 0.1
Median: 1.08	Median: 1.0	Median: 1.0
Mean: 192.26	Mean: 1406.2	Mean: 1223.3
3rd Qu.: 13.09	3rd Qu.: 19.8	3rd Qu.: 21.2
Max. :90405.00	Max. :1727666.0	Max. :520874.9

Table 14: Table continues below

rapp_mentions_sent	$rapp_retweets_sent$	rapp_posts
Min.: 0.0013	Min. : 0.00617	Min.: 0.0005
1st Qu.: 0.1626	1st Qu.: 0.27954	1st Qu.: 0.1701
Median: 1.0000	Median: 1.00000	Median: 1.0000
Mean: 14.6858	Mean: 5.58557	Mean: 14.1958
3rd Qu.: 6.2542	3rd Qu.: 3.62966	3rd Qu.: 5.5832
Max. :764.2482	Max. :137.97700	Max. :1921.0544

Table 15: Table continues below

$_rapp_network_feature_1$	$rapp_network_feature_2$	rapp_network_feature_3
Min.: 0.00	Min.: 0.0000	Min.: 0.00
1st Qu.: 0.05	1st Qu.: 0.2409	1st Qu.: 0.34
Median: 1.00	Median: 1.0000	Median: 0.95
Mean: 610.66	Mean: 11.6571	Mean: 177.45
3rd Qu.: 18.57	3rd Qu.: 3.8490	3rd Qu.: 2.85
Max. :213718.00	Max. :1387.9091	Max. :44566.14

Table 16: Table continues below

A_{foll_ratio}	A_ment_ratio	A_{retw_ratio}	B_{foll_ratio}
Min. :0.000000	Min.: 0.000003	Min.: 0.000003	Min. :0.000000
1st Qu.:0.003375	1st Qu.: 0.008642	1st Qu.: 0.004788	1st Qu.:0.003339
Median $:0.076572$	Median: 0.056827	Median: 0.037888	Median $:0.073903$
Mean $:0.379249$	Mean: 0.334159	Mean: 0.398912	Mean $:0.373494$
3rd Qu.:0.534104	3rd Qu.: 0.313152	3rd Qu.: 0.328364	3rd Qu.:0.526048
Max. $:9.190476$	Max. $:15.294775$	Max. $:11.157260$	Max. :9.190476

Table 17: Table continues below

B_ment_ratio	B_retw_ratio	A_zeros	B_zeros
Min.: 0.000003	Min.: 0.000003	Min. :0.000	Min. :0.0000
1st Qu.: 0.008642	1st Qu.: 0.004788	1st Qu.:0.000	1st Qu.:0.0000
Median: 0.055929	Median : 0.038039	Median $:0.000$	Median $:0.0000$
Mean: 0.337523	Mean: 0.405542	Mean $:0.166$	Mean $:0.1564$
3rd Qu.: 0.302336	3rd Qu.: 0.328364	3rd Qu.:0.000	3rd Qu.:0.0000

B_ment_ratio	B_retw_ratio	A_zeros	B_zeros
Max. :13.255072	Max. :13.338818	Max. :5.000	Max. :5.0000

has_zeros	
Mode :logical	
FALSE:4754	
TRUE :746	
NA	
NA	
NA	

Selezione delle variabili tramite un albero di classificazione

```
set.seed(123)
metric <- "ROC"
Ctrl <- trainControl(method = "cv" , number=10, classProbs = TRUE,</pre>
                  summaryFunction = twoClassSummary)
rpartTune <- train(Choice ~ ., data = train, method = "rpart",</pre>
                tuneLength = 15, trControl = Ctrl, metric=metric)
rpartTune
## CART
##
## 5500 samples
##
    42 predictor
##
     2 classes: 'A', 'B'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 4950, 4951, 4950, 4951, 4950, 4950, ...
## Resampling results across tuning parameters:
##
##
                ROC
    ср
                          Sens
                                    Spec
##
    ##
    ##
    0.0012972572  0.8253175
                         0.7666154 0.7361256
    ##
##
    ##
    0.0016679021 0.8263638
                          0.7580465 0.7453807
##
                          0.7573322 0.7476112
    0.0017605634 0.8266267
##
    0.0018532246 0.8250727
                          0.7566218 0.7498251
##
    0.0020385471 0.8209134
                          0.7562621 0.7542696
##
    0.0025945145 0.8163874
                          0.7612532 0.7568677
##
    0.0033358043  0.8063396
                          0.7676906 0.7468759
##
    0.0038917717 \quad 0.8015270 \quad 0.7726906 \quad 0.7468746
##
    0.0044477391 0.8015495
                          0.7684024 0.7491119
##
    0.0058067704 0.7702202 0.8048017 0.7142434
##
    0.5207561156  0.6239966  0.9079931  0.3400000
##
```

ROC was used to select the optimal model using the largest value.

Figure 1: Feature importance

The final value used for the model was cp = 0.001760563.

```
pander(getTrainPerf(rpartTune))
```

TrainROC	TrainSens	TrainSpec	method
0.8266	0.7573	0.7476	rpart


```
set.seed(123)
mytree <- rpart(Choice ~ ., data = train, method = "class", cp = 0.001760563)
rpart.plot(mytree, type = 4, extra = 101)</pre>
```


Random Forest

```
customRF <- list(type = "Classification", library = "randomForest", loop = NULL)</pre>
customRF$parameters <- data.frame(parameter = c("mtry", "ntree"),</pre>
                                    class = rep("numeric", 2),
                                    label = c("mtry", "ntree"))
customRF$grid <- function(x, y, len = NULL, search = "grid") {}</pre>
customRF\$fit \leftarrow function(x, y, wts, param, lev, last, weights, classProbs, ...) {
  randomForest(x, y, mtry = param$mtry, ntree=param$ntree, ...)
}
customRF$predict <- function(modelFit, newdata, preProc = NULL, submodels = NULL)</pre>
  predict(modelFit, newdata)
customRF$prob <- function(modelFit, newdata, preProc = NULL, submodels = NULL)</pre>
  predict(modelFit, newdata, type = "prob")
customRF$sort <- function(x) x[order(x[,1]),]</pre>
customRF$levels <- function(x) x$classes</pre>
set.seed(123)
tunegrid <- expand.grid(.mtry=c(4:9), .ntree=c(100,500))</pre>
rpartTuneMyRf <- train(Choice ~ ., data = train, method = customRF,</pre>
                         tuneGrid=tunegrid, trControl = Ctrl, metric=metric)
plot(rpartTuneMyRf)
```


XGBoost, tuning automatico e tramite griglia

```
pander(fit.xgbTree.autoTune$bestTune)
```

Table 20: Table continues below

	nrounds	max_depth	eta	gamma	colsample_bytree
26	100	2	0.3	0	0.6

	min_child_weight	subsample
26	1	1

```
param = expand.grid(
  nrounds = seq(85,95,5),
  max_depth = 2,
```

TrainROC	TrainSens	TrainSpec	method
0.8731	0.7952	0.7665	xgbTree

Naive Bayes

pander(getTrainPerf(NBfit))

TrainROC	TrainSens	TrainSpec	method
0.8434	0.3002	0.9752	nb

Stochastic Gradient Boosting (il tuning automatico risulta essere il migliore)

STGfit

```
## Stochastic Gradient Boosting
##
## 5500 samples
```

```
##
     42 predictor
      2 classes: 'A', 'B'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 4950, 4951, 4950, 4951, 4950, 4950, ...
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees
                                 ROC
                                             Sens
                                                        Spec
##
                                            0.7808770
     1
                         50
                                  0.8608944
                                                        0.7565083
##
     1
                        100
                                  0.8658719
                                            0.7840913
                                                        0.7628074
##
                        150
                                  0.8674612
                                            0.7869420
     1
                                                        0.7624329
##
     2
                         50
                                  0.8654140 0.7815951
                                                        0.7590913
     2
                                 0.8699309 0.7901576
                                                        0.7672367
##
                        100
##
     2
                        150
                                 0.8708453
                                            0.7933668
                                                        0.7598293
##
     3
                         50
                                 0.8670567
                                            0.7894408
                                                        0.7620556
##
     3
                        100
                                 0.8713576
                                            0.7905071
                                                        0.7687319
##
     3
                        150
                                  0.8720522
                                            0.7883668
                                                        0.7683602
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 150,
   interaction.depth = 3, shrinkage = 0.1 and n.minobsinnode = 10.
set.seed(123)
grid <- expand.grid(n.trees=150, interaction.depth=3, shrinkage=0.1, n.minobsinnode=10)
STGfit.one.shot <- train(Choice ~ ., data = train, method="gbm", tuneGrid=grid,
                trControl=Ctrl_save, metric=metric)
```

Per nnet, svm e knn diamo in input le variabili sezionate tramite l'albero di classificazione, dato che l'inserimento di variabili non rilevanti potrebbe essere solo di disturbo

```
TRAINSELECT2 <- train[, c(1,26,24, 27,28, 32)]
pander(summary(TRAINSELECT2))</pre>
```

Table 24: Table continues below

Choice	rapp_listed_count	rapp_follower_count
Length:5500	Min. : 0.00	Min.: 0.0
Class :character	1st Qu.: 0.08	1st Qu.: 0.1
Mode :character	Median: 1.08	Median: 1.0
NA	Mean: 192.26	Mean: 609.1
NA	3rd Qu.: 13.09	3rd Qu.: 17.6
NA	Max. :90405.00	Max. $:477141.0$

$__rapp_mentions_received$	$rapp_retweets_received$	$rapp_network_feature_1$
Min.: 0.0	Min.: 0.0	Min.: 0.00
1st Qu.: 0.1	1st Qu.: 0.1	1st Qu.: 0.05
Median: 1.0	Median: 1.0	Median: 1.00
Mean: 1406.2	Mean: 1223.3	Mean: 610.66
3rd Qu.: 19.8	3rd Qu.: 21.2	3rd Qu.: 18.57

rapp_mentions_received	rapp_retweets_received	rapp_network_feature_1
Max. :1727666.0	Max. :520874.9	Max. :213718.00

Neural Network (preprocessing tramite pca, normalizzazione e standardizzazione)

pander(getTrainPerf(nnetFit_defgridDR1))

TrainROC	TrainSens	TrainSpec	method
0.8571	0.6788	0.8354	nnet

pander(nnetFit_defgridDR1\$bestTune)

	size	decay
4	1	3e-04

pander(getTrainPerf(nnetFit_defgridDR3))

TrainROC	TrainSens	TrainSpec	method
0.8577	0.4475	0.9448	nnet

pander(nnetFit_defgridDR3\$bestTune)

	size	decay
11	3	2e-04

pander(getTrainPerf(nnetFit_defgridDR2))

TrainROC	TrainSens	TrainSpec	method
0.8581	0.697	0.8258	nnet

pander(nnetFit_defgridDR2\$bestTune)

	size	decay
7	2	2e-04

La migliore è quella con standardizzazione

SVM

plot(svm.tune)

K-Nearest Neighbors

Regressione logistica

TrainROC	TrainSens	TrainSpec	method
0.8358	0.7645	0.7613	glm

TrainROC TrainSens		TrainSpec	method	
0.8534	0.3694	0.97	$_{\rm glm}$	

```
summary(logistic_sub)
## Call:
## NULL
##
## Deviance Residuals:
##
     Min
               1Q Median
                                3Q
                                       Max
## -1.462 -1.250 0.000 1.078
                                     8.490
##
## Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                           2.399e-01 3.001e-02
                                                  7.991 1.33e-15 ***
## rapp_listed_count
                          -7.211e-03 8.339e-04 -8.648 < 2e-16 ***
                        -7.270e-04 2.502e-04 -2.906 0.00366 **
## rapp_follower_count
## rapp_mentions_received 8.735e-06 1.613e-05
                                                  0.542 0.58814
## rapp_retweets_received 3.697e-05 1.528e-05
                                                   2.419 0.01556 *
## rapp_network_feature_1 -1.525e-04 6.473e-05 -2.357 0.01844 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 7622.7 on 5499 degrees of freedom
## Residual deviance: 6935.8 on 5494 degrees of freedom
## AIC: 6947.8
##
## Number of Fisher Scoring iterations: 11
ROC curves
roc_values <- cbind(as.data.frame(fit.xgbTree.one.shot$pred$obs),</pre>
                    as.data.frame(fit.xgbTree.one.shot$pred$A))
gbm <- as.data.frame(STGfit.one.shot$pred$A)</pre>
nb <- as.data.frame(NBfit$pred$A)</pre>
nnet <- as.data.frame(nnetFit_finale$pred$A)</pre>
knn <- as.data.frame(knnFit1f$pred$A)</pre>
rf <- as.data.frame(rpartTuneMyRf_ok$pred$A)</pre>
svm <- as.data.frame(svm.tune.ok$pred$A)</pre>
roc_values <- cbind(roc_values, gbm, nb, nnet, knn, rf, svm)</pre>
names(roc_values) <- c("obs","xgb","gbm", "nb", "nnet", "knn", "rf", "svm")</pre>
longtest <- melt_roc(roc_values, "obs", c("xgb", "gbm", "nb", "nnet", "knn", "rf", "svm"))</pre>
longtest$D <- ifelse(longtest$D=="A",1,0)</pre>
names(longtest)[3] <- "Models"</pre>
g <- ggplot(longtest, aes(m=M, d=D, color=Models)) +
  geom_roc(n.cuts=0) +
  coord_equal() +
  style_roc(xlab="1-Specificity", ylab="Sensitivity")
g + annotate("text", x=0.75, y=0.4, label="AUC") +
  annotate("text", x=0.75, y=0.35, label=paste("gbm =", round(calc_auc(g)$AUC[1], 4))) +
```

```
annotate("text", x=0.75, y=0.30, label=paste("xgb =", round(calc_auc(g)$AUC[7], 4))) +
annotate("text", x=0.75, y=0.25, label=paste("rf =", round(calc_auc(g)$AUC[5], 4))) +
annotate("text", x=0.75, y=0.20, label=paste("nnet =", round(calc_auc(g)$AUC[4], 4))) +
annotate("text", x=0.75, y=0.15, label=paste("knn =", round(calc_auc(g)$AUC[2], 4))) +
annotate("text", x=0.75, y=0.10, label=paste("nb =", round(calc_auc(g)$AUC[3], 4))) +
annotate("text", x=0.75, y=0.05, label=paste("svm =", round(calc_auc(g)$AUC[6], 4)))
```



```
roc_best <- roc_values[,c("obs","xgb","gbm")]
longtest2 <- melt_roc(roc_best, "obs", c("xgb", "gbm"))
longtest2$D <- ifelse(longtest2$D=="A",1,0)
names(longtest2)[3] <- "Models"

ggplot(longtest2, aes(m=M, d=D)) +
    geom_roc(n.cuts=0) +
    coord_equal() +
    facet_wrap(~Models) +
    style_roc(xlab="1-Specificity", ylab="Sensitivity")</pre>
```



```
roc_best$ens <- apply(roc_best[,c(2,3)], MARGIN=1, FUN=mean)
roc_best$obs <- ifelse(roc_best$obs=="A",1,0)

g <- ggplot(roc_best[,c(1,4)], aes(m=ens, d=obs)) +
    geom_roc(n.cuts=0) +
    coord_equal() +
    style_roc(xlab="1-Specificity", ylab="Sensitivity")

g + annotate("text", x=0.75, y=0.4, label="AUC") +
    annotate("text", x=0.75, y=0.35, label=paste("ens =", round(calc_auc(g)$AUC, 4)))</pre>
```



```
roc_ens <- roc_values[,c("obs","xgb","gbm","rf")]</pre>
grid <- expand.grid(p1=seq(0,1,0.1), p2=seq(0,1,0.1), p3=seq(0,1,0.1))
grid$sum <- apply(grid, MARGIN=1, FUN=sum)</pre>
grid <- grid[grid$sum==1,]</pre>
grid$sum=NULL
best <- 0
best_roc <- 0</pre>
for (i in (1:nrow(grid))){
  el<-grid[i,]
  roc_ens$ens <- apply(roc_ens[,-1], MARGIN=1, function(u)</pre>
    as.numeric(el[1]*u[1]+el[2]*u[2]+el[3]*u[3]))
  auc <- as.numeric(auc(roc(roc_ens$obs, roc_ens$ens)))</pre>
  if (auc>best_roc){
    best <- i
    best_roc <- auc
  }
}
pander(cbind(best, best_roc))
```

best	best_roc
25	0.8742

pander(grid[best,])

	p1	p2	р3
301	0.3	0.5	0.2

```
roc_ens$ens <- apply(roc_ens[,-1], MARGIN=1, function(u)
    as.numeric(grid[best,1]*u[1]+grid[best,2]*u[2]+grid[best,3]*u[3]))

roc_ens$obs <- ifelse(roc_ens$obs=="A",1,0)

g <- ggplot(roc_ens[,c(1,5)], aes(m=ens, d=obs)) +
    geom_roc(n.cuts=0) +
    coord_equal() +
    style_roc(xlab="1-Specificity", ylab="Sensitivity")

g + annotate("text", x=0.75, y=0.4, label="AUC") +
    annotate("text", x=0.75, y=0.35, label=paste("ens =", round(calc_auc(g)$AUC, 4)))</pre>
```


$Confusion\ matrix$

```
obs <- as.factor(roc_ens$obs)
ensamb <- as.factor(ifelse(roc_ens$ens>0.5,1,0))
confusionMatrix(obs, ensamb, positive="1")
```

Confusion Matrix and Statistics

```
##
             Reference
##
## Prediction
                 0
            0 2065 633
##
##
            1 586 2216
##
##
                   Accuracy: 0.7784
                     95% CI : (0.7671, 0.7893)
##
##
       No Information Rate: 0.518
##
       P-Value [Acc > NIR] : <2e-16
##
##
                      Kappa: 0.5564
##
    Mcnemar's Test P-Value: 0.1877
##
##
               Sensitivity: 0.7778
##
                Specificity: 0.7790
##
            Pos Pred Value: 0.7909
##
            Neg Pred Value: 0.7654
##
                Prevalence: 0.5180
##
            Detection Rate: 0.4029
##
      Detection Prevalence: 0.5095
##
         Balanced Accuracy: 0.7784
##
##
          'Positive' Class: 1
##
Codice per il test set (da vedere la performance su kaggle)
test <- read.csv("~/data_science_lab/test.csv")</pre>
for (i in (1:11)){
  test[,(i+22)] <- test[,i]/test[,(11+i)]
  names(test)[i+22] <- paste("rapp", substring(names(test)[i], 2), sep="")</pre>
for (i in (23:ncol(test))){
  test[is.na(test[,i]),i] <- 1</pre>
  test[test[,i]==Inf,i] \leftarrow test[test[,i]==Inf,(i-22)]
}
test$A_foll_ratio <- test$A_following_count/test$A_follower_count
test$A_ment_ratio <- test$A_mentions_sent/test$A_mentions_received</pre>
test$A_retw_ratio <- test$A_retweets_sent/test$A_retweets_received
test$B_foll_ratio <- test$B_following_count/test$B_follower_count
test$B_ment_ratio <- test$B_mentions_sent/test$B_mentions_received
test$B_retw_ratio <- test$B_retweets_sent/test$B_retweets_received
test$A_zeros <- 0
test$B_zeros <- 0
for (i in (1:11)){
  test\$A\_zeros[test[,i]==0] \leftarrow test\$A\_zeros[test[,i]==0] + 1
for (i in (12:22)){
 test$B_zeros[test[,i]==0] \leftarrow test$B_zeros[test[,i]==0] + 1
```

Id	Choice
1	0.2447
2	0.5723
3	0.05361
4	0.1788
5	0.5192
6	0.2733

```
write.csv(submission, file="mysub.csv", row.names=FALSE)
```

GBM & XGB Scores

Submission and Description		Private Score	Public Score	Public Score Use for Final Score		
gbm.c just nov add su		details	0.86613	0.86457		
	sv ites ago by ubmission	details	0.86568	0.86677		
Pub	lic Lea	derboard				
34	1 new	Van Zeidt		0.866	81 11	5у
35	5 new	Jure Zbontar		0.866	78 2	5у
36	6 new	vyatka		0.866	56 8	5у
37	7 new	dh_weekenders	999	0.866	05 57	5у
Priv	ate Le	aderboard				
45	→ 3	ziyuang		0.866	17 23	5у
46	5 ▼28	The Classy Fires	[A] 🎥 🕍	0.866	17 32	5у
47	7 ▼8	Matt Sco		0.866	05 12	5у
48	8 ▼8	Tony_R		0.865	68 11	5у
Ensai	mble S	core				
Submis	ssion and	Description	Private Score	Public Score	Use for Fina	l Score
mysub.	.csv tes ago by		0.86792	0.86790		
	omission o	details				
Public	c Lead	erboard				
27	new	Andrew Matteson	ļ	0.8681	1 2	5у
28	new	Dmitry Efimov		0.8678	9 49	5у
Privat	te Lea	derboard				
36	1 0	ragingphilip		0.8682	0 6	5у
37	▼ 4	bilibili	@ 🐴 !	0.8672	1 35	5у