Analysis - PMA 3 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

Overview

Basic Topology Sets Metric Spaces

Chapter 2 Basic Topology

Contents of Ch2

- i. Sets
- ii. Metric Spaces
- iii. Compact Sets
- iv. Perfect Sets
- v. Connected Sets

 A,B,C,\cdots will always denote sets, a,b,c,\cdots will always denote members of sets, $\mathcal{A},\mathcal{B},\mathcal{C},\cdots$ will denote collections of some sets.

Definition

- $\triangleright \varnothing$ is a set which contains no element.
- $ightharpoonup A = B \text{ iff } x \in A \iff x \in B.$
- $ightharpoonup A \subset B \text{ iff } x \in A \implies x \in B.$ In this sense, $A = B \text{ iff } A \subset B \text{ and } B \subset A.$
- ▶ The power set $\mathcal{P}(A)$ of a set A is the collection of all subset of A, i.e.,

$$X \in \mathcal{P}(A) \iff X \subset A.$$

Definition

ightharpoonup The union of A and B is a set $A \cup B$ such that

$$x \in A \cup B \iff x \in A \text{ or } x \in B.$$

▶ The intersection of A and B is a set $A \cap B$ such that

$$x \in A \cap B \iff x \in A \text{ and } x \in B.$$

Definition

Consider two sets A and B.

- ightharpoonup We say $f:A\to B$ is a function if
 - 1. for all $a \in A$, there is $b \in B$ such that f(a) = b;
 - 2. for $a, a' \in A$ if $f(a) \neq f(a')$, then $a \neq a'$.
- ▶ In this case, we call A the domain of f, f(x) is a value of f.
- ▶ The set $\{b \in B : f(x) = b \text{ for some } x \in A\}$ is called the range of f.
- ▶ If $E \subset A$, $f(E) = \{b : f(x) = b \text{ for some } x \in E\}$. We call f(E) the image of E under f.
- ▶ If $E \subset B$, $f^{-1}(E) = \{a \in A : f(a) \in E\}$. We call $f^{-1}(E)$ the inverse image of E under f. If $E = \{y\}$ (a singleton set), write $f^{-1}(y)$ instead of $f^{-1}(E)$.
- ▶ If $f:A \to B$ and $g:B \to C$ are functions, a composite of f and g, denoted by $g \circ f$, is a function from A into C such that

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in A$.

Remark

Suppose $f:A\to B$ is a function. For $E\subset A$, $f(E)\subset B$ and in general, $f(A)\neq B$.

▶ If f(A) = B, we call f map A onto B. And we say f is a onto map, or surjective.

For $y \in B$, it may $f^{-1}(y) = \emptyset$ (moreover may $f^{-1}(E) = \emptyset$ for some $E \subset B$), and $f^{-1}(y)$ may not be singleton (that is, there may be at least two element $x, y \in f^{-1}(y)$.

- ▶ If $f^{-1}(y) = \{x\}$ is singleton for all $y \in f(A)$, we say f is 1-1 (one-to-one), or injective.
 - In this case, $f(x_1) = f(x_2)$ implies $x_1 = x_2$ for all $x_1, x_2 \in A$.
- \blacktriangleright If f is 1-1 and onto, we say f is a bijective.
 - In this case, we can define the inverse map from B into A, say f^{-1} , by $f^{-1}(y) = x$ where f(x) = y.

Definition

Suppose A and B are sets. We say A and B have the same cardinal number, write $A \sim B$, if there is a 1-1 and onto map $f: A \to B$.

Remark

The relation is an equivalence relation:

- $ightharpoonup A \sim A$.
- ▶ If $A \sim B$, then $B \sim A$.
- ▶ If $A \sim B$ and $B \sim C$, then $A \sim C$.

Definition

For any positive integer n, let $J_n = \{1, 2, \dots, n\}$; let J be the set of all positive integers. For any set A, we say:

- (a) A is finite if $A \sim J_n$ for some n.
- (b) A is infinite if A is not finite.
- (c) A is countable if $A \sim J$.
- (d) A is uncountable if A is neither finite nor countable.
- (e) A is at most countable if A is finite or countable.

Example

Let A be the set of all integers. Then A is countable:

$$A:0,1,-1,2,-2,3,-3,\cdots$$

 $J:1,2,3,4,5,6,7,\cdots$

or

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even,} \\ -\frac{n-1}{2} & n \text{ odd} \end{cases}$$

is 1-1 and onto.

Remark

This example shows that even $A \subsetneq B$, it may $A \sim B$.

Definition

- A sequence in A is a function $f: J \to A$, and denote f by $\{x_n\}$ where $f(n) = x_n$, or x_1, x_2, x_3, \cdots .
- \triangleright x_n 's are called the terms of the sequence.

Note that the terms x_1, x_2, \cdots need not be distinct.

Theorem

Every infinite subset of a countable set A is countable.

Definition

Let A and Ω be sets, and suppose that with each element α of A, there is associated a subset of Ω which we denote by E_{α} . Then the set $\{E_{\alpha}\}$ is called a collection of sets, or a family of sets.

▶ The union of the sets E_{α} is the set S such that

$$x \in S \iff x \in E_{\alpha} \text{ for some } \alpha \in A.$$

Write

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$

ightharpoonup Similarly, the intersection of the sets E_{α} is the set P such that

$$x \in P \iff x \in E_{\alpha} \text{ for all } \alpha \in A.$$

Write

$$P = \bigcap_{\alpha \in A} E_{\alpha}$$
.

Remark

- $ightharpoonup A \cap \varnothing = \varnothing.$
- $ightharpoonup A \cup \varnothing = A.$
- $ightharpoonup A \cap B \subset A$.
- $ightharpoonup A \subset A \cup B$.
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Theorem

Let $\{E_n\}_{n=1}^{\infty}$ be a sequence of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n.$$

Then S is countable. Thus a countable union of countable sets is again countable.

Corollary

Suppose A is at most countable, and, for every $\alpha \in A$, B_{α} is at most countable. Put

$$T = \bigcup_{\alpha \in A} B_{\alpha}.$$

Then T is at most countable.

Theorem

Let A be a countable set, and let B_n be the set of all n-tuples (a_1, \dots, a_n) , where $a_k \in A$, and the elements a_1, \dots, a_n need not to be distinct. Then B_n is countable.

Corollary

The set of all rational numbers is countable.

Theorem

Let A be the set of all sequences whose elements are the digits 0 and 1. For example, $1, 0, 0, 1, 0, 1, 1, 1, \cdots$ is an element of A. Then A is uncountable.

Exercises

Ex 2.2

A complex number z is said to be algebraic if there are integers a_0, \dots, a_n , not all zero, such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0.$$

Prove that the set of all algebraic numbers is countable.

logy

Exercises

Ex 2.3

Prove that there exists real numbers which are not algebraic.

Definition

Suppose X is a set.

- lacktriangle A function $d: X \times X \to \mathbb{R}$ is called a metric function, or simply a metric if
 - (a) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
 - (b) d(p,q) = d(q,p);
 - (c) $d(p,q) \le d(p,r) + d(r,q)$.
- \blacktriangleright We call d(p,q) the distance from p to q.
- ightharpoonup In this case, we say X is a metric space.
- $\triangleright x \in X$ is said to be a point of X, instead of an element of X.

Example

ightharpoonup For \mathbb{R}^k ,

$$d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$$

is a metric.

ightharpoonup For any nonempty set X,

$$d(p,q) = \begin{cases} 1 & p \neq q; \\ 0 & p = q \end{cases}$$

is a metric.

Ex 2.11

For $x, y \in \mathbb{R}$, define

$$d_1(x,y) = (x-y)^2,$$

$$d_2(x,y) = \sqrt{|x-y|},$$

$$d_3(x,y) = |x^2 - y^2|,$$

$$d_4(x,y) = |x - 2y|,$$

$$d_5(x,y) = \frac{|x-y|}{1 + |x-y|}.$$

Determine, for each of these, whether it is a metric or not.

Definition

On \mathbb{R} ,

- ▶ The segment $(a, b) = \{x : a < x < b\}.$
- ▶ The interval $[a,b] = \{x : a \le x \le b\}$.
- \blacktriangleright Half-open intervals [a,b) and (a,b] can be also defined similarly.

On \mathbb{R}^k , suppose $a_i < b_i$ for all $i = 1, \dots, k$.

- ▶ The set of all \mathbf{x} such that $a_i \leq x_i \leq b_i$ is called a k-cell.
- ▶ Let $\mathbf{x} \in \mathbb{R}^k$ and r > 0. The set B of all points $\mathbf{y} \in \mathbb{R}^k$ such that

$$|\mathbf{y} - \mathbf{x}| < r$$

is called the open ball (resp. closed ball when $\leq r$).

ightharpoonup A set $E \subset \mathbb{R}^k$ is convex if

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in E$$

whenever $\mathbf{x}, \mathbf{y} \in E$, and $0 < \lambda < 1$.

Definition

Let X be a metric space with a metric d.

- (a) A neighborhood of p is a set $N_r(p) = \{q \in X : d(p,q) < r\}$ for some r > 0. r is called the radius of $N_r(p)$.
- (b) p is a limit point of E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- (c) If $p \in E$ and p is not a limit point of E, then p is called an isolated point of E.
- (d) E is closed if every limit point of E is a point of E.
- (e) p is an interior point of E if there is a neighborhood N of p such that $N \subset E$.
- (f) E is open if every point of E is an interior point of E.

(continued)

Definition

- (g) The complement of E, denoted by E^c , is the set of all points $p \in X$ such that $p \notin E$.
- (h) E is perfect if E is closed and if every point of E is a limit point of E.
- (i) E is bounded if there is a real number M and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- (j) E is dense in X if every point of X is a limit point of X is a limit point of E, or a point of E or both.

Theorem

Every neighborhood is an open set.

Theorem

If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.

Corollary

A finite set has no limit points, and hence closed.

Theorem (De Morgan's Laws)

Let $\{E_{\alpha}\}\$ be a (finite or infinite) collection of sets E_{α} . Then

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}^{c}\right).$$

Theorem

A set E is open if and only if its complement is closed.

Corollary

A set F is closed if and only if its complement is open.

Theorem

- (a) For any collection $\{G_{\alpha}\}$ of open sets, $\bigcup_{\alpha} G_{\alpha}$ is open.
- (b) For any collection $\{F_{\alpha}\}$ of closed sets, $\bigcap_{\alpha} F_{\alpha}$ is closed.
- (c) For any finite collection G_1, \dots, G_n of open sets, $\bigcap_{i=1}^n G_i$ is open.
- (d) For any finite collection F_1, \dots, F_n of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

Example

Let $G_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ for $n = 1, 2, 3, \cdots$. Put $G = \bigcap_{n=1}^{\infty} G_n$. Then $G = \{0\}$ which is not open.

Definition

If X is a metric space, if $E \subset X$, and if E' denotes the set of all limit points of E in X, then the closure of E is the set $\overline{E} = E \cup E'$.

Theorem

- (a) \overline{E} is closed.
- (b) $E = \overline{E}$ if and only if E is closed.
- (c) $\overline{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

This theorem says the closure \overline{E} is unique and it is the smallest closed set containing E.

Theorem

Let E be a nonempty set of real numbers which is bounded above. Let $y = \sup E$. Then $y \in \overline{E}$. Hence $y \in E$ if E is closed.

Observe

Suppose X is a metric space with a metic d and Y be a nonempty subset of X. Then d is also a metric on Y.

Suppose $E \subset Y$ be an open subset in X. Then for each $p \in E$, there is r > 0 such that $N_r(p) \subset E$. But $E \subset Y$, so every point of $N_r(p)$ belongs to Y. Thus we can define the openness respect to Y.

Say E is open relative to Y if for each $p \in E$ there is r > 0 such that $q \in E$ whenever d(p,q) < r and $q \in Y$. Note that there may be a subset E of Y which is open relative to Y but not open in X.

Theorem

Suppose $Y \subset X$. A subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some open subset G of X.

Ex 2.6

Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that E and \overline{E} have the same limit points. Do E and E' always have the same limit points?

Ex 2.7

Let A_1, A_2, \cdots be subsets of a metric space.

- (a) If $B_n = \bigcup_{i=1}^n A_i$, prove that $\overline{B}_n = \bigcup_{i=1}^n \overline{A}_i$.
- (b) If $B = \bigcup_{i=1}^{\infty} A_i$, prove that $\overline{B} \supset \bigcup_{i=1}^{\infty} \overline{A}_i$.

Ex 2.9

Let E° denote the set of all interior points of a set E.

- (a) Prove that E° is open.
- (b) Prove that E is open if and only if $E^{\circ} = E$.
- (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
- (d) Prove that the complement of E° is the closure of the complement of E.
- (e) Do E and \overline{E} always have the same interiors?
- (f) Do E and E° always have the same closures?

Ex 2.10

Let X be any nonempty set and define a metric

$$d(p,q) = \begin{cases} 1 & p \neq q; \\ 0 & p = q \end{cases}.$$

Which subsets of the resulting metric space are open? Which are closed?

The End