主専攻実験第9週

信号の前処理2

- ノイズ除去ふたたび
 - 主成分分析
 - 独立成分分析
 - 経験的モード分解

多チャンネル信号

音声などの時系列信号とは異なり, 生体信号は多チャンネル計測がとても多い.

:: **ノイズ対策**, 信号源が広く分布 などなど

例)睡眠ステージ判定の場合, EEG 6ch, EOG 2ch, EMG 1ch での計測が原則.

具体的に、多チャンネルの信号をどうノイズ除去に 用いればよいのか?

周波数に着目したノイズ除去手順(おさらい)

ノイズ入りの信号

 \downarrow

周波数成分への分解

信号とノイズの性質差 (ここでは周波数の違い)を利用. ノイズのみ含まれる周波数成分を除去

信号を再構成, ノイズ除去された信号に

周波数に着目したノイズ除去手順(おさらい)

ノイズ入りの信号

周波数成分への分解

信号とノイズの性質差 (ここでは周波数の違い)を利用. ノイズのみ含まれる周波数成分を除去

信号を再構成、ノイズ除去された信号に

周波数以外の性質も 使えるのでは?

周波数フィルタで 取り除けないノイズ

ではどのような性質が使えるのか?

- 1. 複数チャンネルを同時に計測して,「共通して現れるか否か」
 - →主成分分析
- 2. 複数チャンネルで観測された信号は, 複数の信号源から出た電位変化の重畳
 - →「どの信号源から出てきたか」
 - →独立成分分析
- 3. よく見る波形・変化のパターン
 - →経験的モード分解

主成分分析による ノイズ除去のイメージ

主成分分析

サンプルの分布を基に, なるべく分散が大きくなる主成分を決定, →作成済みの主成分と直交し,かつ分散が大きい主成分を,,, (特定の条件を満たすようにした基底変換)

分散が大きい順に主成分を決定 →主成分ごとに分散が大きく異なる. 分散の全体に対する割合=寄与率 あまり寄与していない成分を除去する =空間の縮退を是正し, 同じ情報が繰り返し入力されないように

データの40%を説明

主成分分析を行列計算

主成分は,分散共分散行列の固有ベクトル

次のような列ベクトルを考える。

$$\mathbf{X} = egin{bmatrix} X_1 \ X_2 \ dots \ X_n \end{bmatrix}$$

このベクトルの要素が各々分散が有限である確率変数であるとき、(i,j)の要素が次のような行列 Σ を分散共分散行列という。

$$\Sigma_{ij} = \mathrm{E}[\,(X_i - \mu_i)(X_j - \mu_j)\,] = \mathrm{E}(X_i X_j) - \mathrm{E}(X_i) \mathrm{E}(X_j)$$
ただし、

$$\mu_i=\mathrm{E}(X_i)$$

は、ベクトルXのi番目の要素の期待値である。すなわち、 Σ は次のような行列である。

$$\Sigma = egin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \ \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \ \\ & \vdots & & \vdots & \ddots & \vdots \ \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \ \end{bmatrix}$$

この行列の逆行列は Σ^{-1} は、**逆共分散行列**(英: inverse covariance matrix) または**精度行列**(英: precision matrix) と呼ばれる $^{[1]}$ 。

主成分分析を行列計算

主成分は,分散共分散行列の固有ベクトル

次のような列ベクトルを考える。

$$\mathbf{X} = egin{bmatrix} X_1 \ X_2 \ dots \ X_n \end{bmatrix}$$

このベクトルの要素が各々分散が有限である確率変数であるとき、(i,j)の要素が次のような行列 Σ を分散共分散行列という。

$$\Sigma_{ij} = \mathrm{E}[\,(X_i-\mu_i)(X_j-\mu_j)\,] = \mathrm{E}(X_iX_j) - \mathrm{E}(X_i)\mathrm{E}(X_j)$$
ただし、

$$\mu_i=\mathrm{E}(X_i)$$

は、ベクトルXのi番目の要素の期待値である。すなわち、 Σ は次のような行列である。

$$\Sigma = egin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \ \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \ \\ & \vdots & & \vdots & \ddots & \vdots \ \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \ \end{bmatrix}$$

この行列の逆行列は Σ^{-1} は、**逆共分散行列**(英: inverse covariance matrix) または**精度行列**(英: precision matrix) と呼ばれる $^{[1]}$ 。

主成分分析を行列計算

主成分は,分散共分散行列の固有ベクトル

次のような列ベクトルを考える。

$$\mathbf{X} = egin{bmatrix} X_1 \ X_2 \ dots \ X_n \end{bmatrix}$$

このベクトルの要素が各々分散が有限である確率変数であるとき、(i,i)の要素が次のような行列 Σ を分散共分散行列という。

$$\Sigma_{ij} = \mathrm{E}[\,(X_i-\mu_i)(X_j-\mu_j)\,] = \mathrm{E}(X_iX_j) - \mathrm{E}(X_i)\mathrm{E}(X_j)$$
ただし、

$$\mu_i = \mathrm{E}(X_i)$$

は、ベクトルXのi番目の要素の期待値である。すなわち、 Σ は次のような行列である。

$$\Sigma = \begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}$$

$$\Sigma = V \Lambda V^{\top} = [v_1 \dots v_d] \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix} [v_1 \dots v_d]^{\top}.$$

固有値固有ベクトル分解

この行列の逆行列は Σ^{-1} は、**逆共分散行列**(英: inverse covariance matrix) または**精度行列**(英: precision matrix) と呼ばれる $^{[1]}$ 。

生体信号への応用 サンプリング点をサンプルとして利用

生体信号X(Nチャンネル、サンプリング点T個)について考える

$$X = \begin{cases} x_{1,1} & \cdots & x_{N,1} \\ \vdots & \ddots & \vdots \\ x_{1,T} & \cdots & x_{N,T} \end{cases}$$

$$\Sigma_{ij} = \frac{1}{T} \sum_{t=1}^{T} (x_{i,t} - \mu_i)(x_{j,t} - \mu_j), \quad \mu_i = \frac{1}{T} \sum_{t=1}^{T} x_{i,t}$$

生体信号への応用

生体信号X(Nチャンネル、サンプリング点T個)について考える

$$\Sigma = egin{cases} \Sigma_{1,1} & \cdots & \Sigma_{N,1} \ dots & \ddots & dots \ \Sigma_{1,N} & \cdots & \Sigma_{N,N} \ \end{pmatrix}$$

$$\Sigma_{ij} = \frac{1}{T} \sum_{t=1}^{T} (x_{i,t} - \mu_i)(x_{j,t} - \mu_j), \quad \mu_i = \frac{1}{T} \sum_{t=1}^{T} x_{i,t}$$

$$X = \begin{cases} x_{1,1} & \cdots & x_{N,1} \\ \vdots & \ddots & \vdots \\ x_{1,T} & \cdots & x_{N,T} \end{cases}$$

生体信号への応用

生体信号X(Nチャンネル、サンプリング点T個)について考える $\Sigma_{ij} = \frac{1}{T} \sum_{t=1}^{T} (x_{i,t} - \mu_i)(x_{j,t} - \mu_j), \quad \mu_i = \frac{1}{T} \sum_{t=1}^{T} x_{i,t}$

$$\Sigma = egin{cases} \Sigma_{1,1} & \cdots & \Sigma_{N,1} \ dots & \ddots & dots \ \Sigma_{1,N} & \cdots & \Sigma_{N,N} \ \end{pmatrix}$$

$$\Sigma = V \Lambda V^{\top} = [v_1 \dots v_d] \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_d \end{pmatrix} [v_1 \dots v_d]^{\top}.$$

固有値固有ベクトル分解

生体信号の分離

 $x_{i,t} = p_{i,t} + q_{i,t}$

 $p_{i,t}$: x_i に含まれる信号の時刻tにおける共通部分

 $q_{i,t}$: 個別部分

んで、どっちが信号でどっちがノイズなん?

その時々で違う..

Case 1

眼電位とFp1, Fp2の同時計測を実施 Fp1, Fp2は眼電位の電極との 距離が近く, 眼電が混入している可能性大

この場合、眼電位&Fp1、Fp2すべてに共通する部分は 「眼電位」である可能性が高い

= Fp1, Fp2にとってはノイズ 眼電位電極にとっては信号

Fp1, Fp2にのみ共通する部分 = 脳波 どれにも共有しない部分 = 電極ノイズ

Case 2

睡眠時の標準電極部位に設置.

- ・F3, F4など左右間は共通部が信号 :同じものを見ているはずだから
- ・C3, F3など前後間は共通部はノイズ?
 - : 共通して観測されているなら 体動などの振幅の大きいノイズの混入っぽいから。

ノイズか信号かを既存の知見に基づいて見極めることが重要

本質的な問題も

医師・技師は,特徴波を 「最も見やすいチャンネルを参考にして判定している」

= 「共通部分を見ているわけではない」 # 共通部分は平均的になりやすい

電極の配置 (10-20 法)

独立成分分析

本質的に,皮膚表面で計測した脳波は, 複数の信号源から発せられた脳活動を 重ね合わせて記録したものである.

$$X = AS$$

X:観測信号

A:混合行列(混ぜ合わせ方)

S:信号源から出た元信号

独立成分分析

X = AS

この,A,Sを求める方法が独立成分分析。

元信号の各サンプル点の分布は 正規分布に従わなくなる

元信号が<u>互いに独立している</u>ならば,その<u>非ガウス性は高くなる</u>

: 様々な特徴を持った信号を混ぜれば混ぜるほど その分布は正規分布に近づく

何かしらの特徴を持った波形だけで構成されていれば、その分布は正規分布から離れる=非ガウス性が高くなる

独立成分分析

X = AS

この, A,Sを求める方法が独立成分分析.

元信号の各サンプル点の分布は 正規分布に従わなくなる

元信号が<u>互いに独立している</u>ならば,その<u>非ガウス性は高くなる</u> $\rightarrow S$ の非ガウス性が高くなるように, $A \succeq S$ を最適化すればよい.

独立成分分析のアルゴリズム色々

- FastICA 尖度や歪度から「非ガウス性」を指標化, これを最大化するように繰り返し計算(教師なし学習)
- Infomax Algorithm相互情報量の最小化=ある元信号から別の元信号が予測できないを目指すことで、独立成分を得る方法(教師なし学習)
- JADE (Joint Approximate Diagonalization of Eigenmatrices) 尖度用いて独立成分を分離する方法. 行列計算で完結するので収束が安定.

経験的モード分解

信号を複数の

固有モード関数に分解する手法

- 各極値(ピークと谷)の間に ちょうど1つのゼロ交差点が存在する =バイアスが存在しない
- 局所平均がゼロである
 特定の周波数成分のみ含んでいる

ちょっとフーリエに概念が似ている. 各周波数成分を時間軸上で分解しているイメージの操作

手順

 $Y = \sin(x) + 0.1\sin(100x)$

手順1極大値,極小値の検出

y = sin(x) + 0.1sin(100x)大変すぎるのでここまでで許してください...

手順2包括線の作成

 $y = \sin(x) + 0.1\sin(100x)$

極大点同士,極小点同士を3次スプライン補完して包括線を作成

手順3上下の包括線の平均を取る

 $y = \sin(x) + 0.1\sin(100x)$ 上下の平均値とるだけ.

手順5固有モード関数候補の精査

 $y = \sin(x) + 0.1\sin(100x)$

これが「固有モード関数の候補」

条件を満たしていれば、これを固有モードとして採用し、 元信号からこれを差っ引く。

だめならこの関数に対して1~5を繰り返す.

手順 6 差っ引かれたのに対して 1~5 を繰り返す

 $y = \sin(x) + 0.1\sin(100x)$

最終状態の例

最終的には、定常成分(ずっと同じ値)や 窓幅に対してずっと波長が長い成分だけ残る. (固有モード関数の条件2が満たせないものだけ残る.)

EMDのイメージ

手順1~5では,

「元の信号から低周波成分を1つずつ取り除く」イメージ.

最終的に1つの高周波成分が残って固有モード関数に採用.

固有モードには高周波成分から分離

→フーリエと異なり, 非定常な波に強いのが特徴.

