- 50 28pe , I 100N MINIE'N 50181 207765470 691 C- 212N (102)

Question 5

In this question we will show that an attempt to define a DFA by means of its generalized transition function can turn out to be erroneous and inconsistent. This justifies the given definition which relies on its transition function.

Let Q and Σ be two fixed finite nonempty sets, such that $q_0 \in Q$ and |Q| > 1.

- 1. Show using a counting argument, similar to what we did in class, that there exists a function $\alpha: Q \times \Sigma^* \to Q$ with $\alpha(q,\epsilon) = q$ for all $q \in Q$, for which there does not exist any function δ such that $\langle Q, \Sigma, \delta, q_0, Q \rangle$ is a DFA with $\delta^* = \alpha$.
- 2. Provide a specific function α maintaining this property.

6381 Q = 8 838 ps , 'KJA > MN"(NE & M'31,110) 1000 DENS (L

M'31,110) 7000 ps , & (E,w) - 8 M'700x | Q = nEN-e' E +we 5*

Ro < n x x 2 n x 2 | x