2002 AP® CHEMISTRY FREE-RESPONSE QUESTIONS (Form B)

- 3. Nitrogen monoxide, NO(g), and carbon monoxide, CO(g), are air pollutants generated by automobiles. It has been proposed that under suitable conditions these two gases could react to form $N_2(g)$ and $CO_2(g)$, which are components of unpolluted air.
 - (a) Write a balanced equation for the reaction described above. Indicate whether the carbon in CO is oxidized or whether it is reduced in the reaction. Justify your answer.
 - (b) Write the expression for the equilibrium constant, K_p , for the reaction.
 - (c) Consider the following thermodynamic data.

- (i) Calculate the value of ΔG° for the reaction at 298 K.
- (ii) Given that ΔH° for the reaction at 298 K is -746 kJ per mole of $N_2(g)$ formed, calculate the value of ΔS° for the reaction at 298 K. Include units with your answer.
- (d) For the reaction at 298 K, the value of K_p is 3.3×10^{120} . In an urban area, typical pressures of the gases in the reaction are $P_{\rm NO} = 5.0 \times 10^{-7}$ atm, $P_{\rm CO} = 5.0 \times 10^{-5}$ atm, $P_{\rm N_2} = 0.781$ atm, and $P_{\rm CO_2} = 3.1 \times 10^{-4}$ atm.
 - (i) Calculate the value of ΔG for the reaction at 298 K when the gases are at the partial pressures given above.
 - (ii) In which direction (to the right or to the left) will the reaction be spontaneous at 298 K with these partial pressures? Explain.