Spis treści

1	Prawa logiki 1						
	.1 Prawa łączności	1					
	.2 Prawa przemienności	1					
	.3 Prawa impotentności	1					
	.4 Prawo rozdzielności						
	.5 Prawo de Morgana	1					
	.6 Prawo podwójnej negacji	1					
	.7 Prawo transpozycji	2					
	.8 Prawo eksportacji-importacji	2					
2	Wnioskowanie	2					
	2.1 Reguły wnioskowania	2					
3	3 Przekształcenia						
4	Postaci normalne						
5	Sekwenty						
6	6 Kwantyfikatory						
7	Zbiory	3					

1 Prawa logiki

1.1 Prawa łączności

- $(p \wedge q) \wedge r \leftrightarrow p \wedge (q \wedge r)$
- $(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$
- $((p \leftrightarrow q) \leftrightarrow r) \leftrightarrow (p \leftrightarrow (q \leftrightarrow r))$

1.2 Prawa przemienności

- $\bullet \ p \wedge q \leftrightarrow q \wedge p$
- $\bullet \ p \vee q \leftrightarrow q \vee p$
- $(p \leftrightarrow q) \leftrightarrow (q \leftrightarrow p)$

1.3 Prawa impotentności

- $\bullet \ p \vee p \leftrightarrow p$
- $\bullet \ p \wedge p \leftrightarrow p$

1.4 Prawo rozdzielności

$$(p \land q) \lor r \leftrightarrow (p \lor r) \land (q \lor r)$$

1.5 Prawo de Morgana

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

1.6 Prawo podwójnej negacji

$$\neg\neg p \leftrightarrow p$$

1.7 Prawo transpozycji

$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$

1.8 Prawo eksportacji-importacji

$$(p \land q) \to r \leftrightarrow p \to (q \to r)$$

2 Wnioskowanie

$$\frac{x_1, x_2, \dots, x_n}{y}$$

 x_n - założenia, y - teza

Wnioskowanie jest dedukcyjne jeżeli $x_1 \wedge x_2 \cdots \wedge x_n \rightarrow y$ jest tautologią. Jeżeli wniosek wynika logicznie z przesłanek to wnioskowanie jest dedukcyjne.

2.1 Reguły wnioskowania

Poniższe reguły są zawsze poprawne.

$$\frac{p, p \to q}{q}$$

$$\frac{p \to q, q \to r}{p \to r}$$

$$\frac{p \to q, \neg q}{\neg p}$$

$$\frac{p \to q, q \to p}{p \leftrightarrow q}$$

3 Przekształcenia

$$p \to q \leftrightarrow \neg p \lor q$$

$$(p \leftrightarrow q) \leftrightarrow (p \to q) \land (q \to p)$$

$$X \downarrow Y = \neg (x \lor y)$$

$$X \uparrow Y = \neg (x \land y)$$

4 Postaci normalne

APN - alternatywna postać normalna. Zbiór klauzul nad zmiennymi połączonymi operatorem alternatywy. $(p \land q) \lor (\neg p \land q)$. Jeśli w APN jest para klauzul przeciwnych to jest to anty-tautologia.

KPN - koniunkcyjna postać normalna. Zbiór klauzul nad zmiennymi połączonymi operatorem koniunkcji. $(p \lor q) \land (\neg p \lor q)$. Jeśli w KPN jest para klauzul przeciwnych to jest to tautologia.

p	q	r	APN	KPN
1	1	1	$p \wedge q \wedge r$	$\neg p \lor \neg q \lor \neg r$
1	1	0	$p \wedge q \wedge \neg r$	$\neg p \vee \neg q \vee r$
1	0	1	$p \wedge \neg q \wedge r$	$\neg p \lor q \lor \neg r$

5 Sekwenty

Sekwent to para zbiorów formuł logicznych powstający z normalnego zapisu algebry logicznej.

Przy pomocy takiego drzewa można sprawdzić czy formula jest tautologią.

6 Kwantyfikatory

$$\forall_{A(x)}B(x) \leftrightarrow \forall_x(A(x) \to B(x))$$

$$\exists_{A(x)}B(x) \leftrightarrow \exists_x (A(x) \land B(x))$$

7 Zbiory

- $\bullet \ X \subset Y \leftrightarrow \forall x (x \in X \to x \in Y)$
- $X \cup Y \leftrightarrow \{x : x \in X \lor x \in Y\}$
- $X \cap Y \leftrightarrow \{x : x \in X \land x \in Y\}$
- $X \setminus Y \leftrightarrow \{x : x \in X \land \neg x \in Y\}$
- $A \div B = \{x : (x \in A \land \neg x \in B) \lor (\neg x \in A \land x \in B)\}$
- $\bullet \bigcup_{i \in I} A_i = \{x : \exists_{i \in I} (x \in A_i)\}\$
- $\bullet \bigcap_{i \in I} A_i = \{x : \forall_{i \in I} (x \in A_i)\}\$

 $\mathbb U$ - uniwer sum

$$A' = \mathbb{U} \setminus A$$

$$A\times B = \{< x,y>: x\in A \land y\in B\}$$