VITMO

ODRS— РЕКОМЕНДАТЕЛЬНЫЙ ФРЕЙМВОРК ПО ВЫБОРУ МОДЕЛЕЙ РАСПОЗНОВАНИЯ ОБЪЕКТОВ

Докладчик: Сметанин А.А.

Мотивация

Рост количества данных требует оптимального выбора

моделей

Разнообразие архитектур требует направления

Эффективное использование ресурсов

уУлучшение пользовательского опыта

Используемые методы и технологии

Название технологии	Краткое описание	Ключевые преимущества		
YOLO	Семейство алгоритмов обнаружения объектов в реальном времени, Основными нововведениями являются улучшение мозаичных данных, самосостязательное обучение и кросс-мини-пакетная нормализация.	 Широкий выбор моделей Высокая точность и скорость Активное сообщество разработчиков 		
SSD	В основе метода глубокая нейронная сеть, дискретизируя выходное пространство ограничивающих рамок в набор рамок по умолчанию с различными соотношениями сторон и масштабами для каждого местоположения на карте объектов.	- Высокая точность для малых размеров изображения		
Mask R-CNN	Улучшенная версия двухфазного алгоритма рекуррентных сетей R-CNN.	- Высокая точность		

Используемые методы и технологии

Классификация архитектур по типу обработки изображения для алгоритмов глубокого обучения в задачах распознавания объектов

Рассмотренные модели:

- YOLOv5-s
- YOLOv5-x
- YOLOv5-m
- YOLOv5-I
- YOLOv7-x
- YOLOv7-m
- YOLOv7-I
- YOLOv8-x
- YOLOv8-m
- YOLOv8-I
- SSD
- Faster-RCNN
- . . .

Принцип формирования продукционного правила

Схема алгоритма формирования рекомендаций

Формирования базы знаний – набора продукционных правил

Таблица 1. Наборы данных используемые для составления базы знаний

		Краткое описание	Характе ристики данных					
Nº	Название набора		Размер	Баланс	Количество классов	Количество изображений		
1	WARP	Набор промышленных изображений твердых коммунальных отходов, содержащий	1920x1080	94	28	5948		
2	Aerial-maritime	Размеченные снимки доков, лодок, подъемников, автомобилей и других объектов с беспилотного летательного аппарата	800x600	64	5	1016		
3	Food	Размеченные изображения еды	256x256	85	7	802		
4	PlantDoc	Снимки поверхностей больных и здоровых растений	416x416	95	30	2567		
5	Website- screenshot	Скришоты с различных популярных вебсайтов с размеченными элементами (картинки, кнопки, текст и другие)	1024x768	77	8	4824		

VITMO

ССЫЛКИ НА ПРЕДСТАВЛЕННЫЕ НАБОРЫ

Формирования базы знаний – набора продукционных правил

Таблица 2. Результаты экспериментов по обучению моделей МО на выбранных НД

Модель	Набор №	Р	R	mAP_50	mAP_95	FPS_GPU	FPS_CPU
yolov5l	1	0.566	0.505	0.503	0.386	50	4
yolov5m	1	0.538	0.445	0.444	0.333	61	7
yolov5n	1	0.524	0.436	0.452	0.321	80	18
yolov5s	1	0.596	0.48	0.52	0.402	79	13
yolov5x	1	0.639	0.49	0.512	0.404	42	2
yolov7x	1	0.675	0.503	0.555	0.435	15	4
yolov7	1	0.614	0.531	0.53	0.41	15	6
yolov7-tiny	1	0.466	0.51	0.473	0.344	14	12
yolov8x6	1	0.573	0.488	0.536	0.433	35	2
yolov8x	1	0.6	0.387	0.478	0.388	40	2
yolov8s	1	0.528	0.489	0.51	0.382	72	11
yolov8n	1	0.505	0.449	0.466	0.351	75	17
yolov8m	1	0.567	0.471	0.512	0.409	57	5
Faster-vgg16	1	0.45	0.421	0.461	0.411	29	4
SSD	1	0.497	0.431	0.467	0.435	45	4

Таблица 3. Примеры продукционных правила, сформированные на основе базы знаний

Размер	Баланс	Количество классов	Количество изображений	mAP50	mAP_95	FPS_GPU	FPS_CPU	модель
1920*1080	94	28	5948	0.512	0.404	42	2	Yolov5x
1920*1080	94	28	5948	0.555	0.435	15	4	yolov7x
1920*1080	94	28	5948	0.53	0.41	15	6	yolov7
1920*1080	94	28	5948	0.473	0.344	14	12	yolov7-tiny
1920*1080	94	28	5948	0.536	0.433	35	2	yolov8x6

Схема компонетов фреймворка ODRS

Фреймворк ODRS


```
1 from ODRS.ODRS.api.ODRS import ODRS
 2 odrs = ODRS (job="ml recommend",
               data path='/media/farm/ssd 1 tb evo sumsung/ODRS/user datasets/yolo/Warp-D'
               classes="classes.txt",
               gpu=True,
               accuracy=10,
               speed=1)
 8 odrs.fit()
Number of images: 6992
W: 1920
H: 1080
Gini Coefficient: 94.0
Number of classes: 28
Top models for training:
1) volov8x6
2) yolov5x
3) yolov7
```


ODRS

Фреймворк ODRS WEB

VITMO

1. Создание проекта

2. Загрузка набора данных

2. Выставление пользовательских параметров

ODRS WEB

Оценка работы системы продукционных правил

Расширенный набор данных WaRP

28 категорий:

- Пластиковые бутылки (17 видов)
- Стеклянные бутылки (3 типа)
- Картоны (2 вида)
- Моющие средства (4 категории)
- Канистры
- Алюминиевые банки

Получение рекомендаций с требованием максимальной точности: YOLOv5-х YOLOv8-х YOLOv5-m

Получение рекомендаций с требованием максимальной скорости:

YOLOv7-tiny

YOLOv8-n

YOLOv5-s

Таблица 4. Значение метрик качества и скорости рассмотренных моделей

Модель	mAP_50	mAP_95	FPS_GPU	
yolov5l	0.56	0.346	50	
yolov5m	0.421	0.333	61	
yolov5n	0.421	0.321	80	
yolov5s	0.49	0.3	79	
yolov5x	0.557	0.467	42	
yolov7x	0.425	0.435	15	
yolov7	0.521	0.421	15	
yolov7-tiny	0.443	0.334	86	
yolov8x6	0.532	0.423	35	
yolov8x	0.556	0.399	40	
yolov8s	0.512	0.432	72	
yolov8n	0.432	0.323	75	
yolov8m	0.321	0.231	57	
Faster-vgg16	0.345	0.322	29	
SSD	0.423	0.397	45	

Практическое применение

Результаты внедрения:

- Поднятие точности распознавания на 15% относительно исходной модели
- Ускорение скорости работы системы на 5%

Роботизированная сортировка отходов

Заключение

В настоящей работе предложена методика автоматического формирования рекомендаций, основанная на продукционных правилах и алгоритмах кластеризации. Используя различные наборы данных и модели машинного обучения, экспериментальным путем была сформирована база знаний, содержащие продукционные правила. Экспериментальным путем на нескольких кейсах было показана состоятельность методики.

В дальнейшем планируется пополнить базу знаний наборами правил, соответствующих новым уникальным наборам данным (в том числе, сформированных в России). Кроме того, будет дополнен список параметров, для увеличения пространства условий идентификации и классификации объектов в видеоизображениях и видеопотоках.

Спасибо за внимание!

ITSIMOre than a UNIVERSITY

Схема алгоритма формирования рекомендаций

