### PRACTICAL ASSIGNMENT - MARKING REPORT

#### 1. PERSONAL DATA

| Gro | Group number: |         |           |             |  |  |  |  |  |
|-----|---------------|---------|-----------|-------------|--|--|--|--|--|
| No  | Name          | ID      | Programme | Total Marks |  |  |  |  |  |
| 1.  | Lee Kim Lan   | 2104745 | AM        |             |  |  |  |  |  |
| 2.  | Tan Wan Xuen  | 2207214 | AM        |             |  |  |  |  |  |
| 3.  | Tee Junn Jeh  | 2105387 | SE        |             |  |  |  |  |  |
| 4.  | Yeap Huaizhou | 2104837 | SE        |             |  |  |  |  |  |

#### 2. SUBMISSION STATUS

| No soft copy/ Upload wrong file(s) | Late submission of softcopy | No hardcopy | Late submission of hardcopy | No issue |
|------------------------------------|-----------------------------|-------------|-----------------------------|----------|
|                                    |                             |             |                             |          |

#### 3. COMPILATION AND RUNNING

| Does not compile/Bytecode & batch file do not | Compile but no output/ wrong output/ | Compile and produce |
|-----------------------------------------------|--------------------------------------|---------------------|
| work                                          | runtime error                        | output              |
|                                               |                                      |                     |
|                                               |                                      |                     |
|                                               |                                      |                     |

#### 4. PRESENTATION OF SOURCE CODES(4%)

| t. 1 | KESENTATION OF SO     | JIC |             | ω,     |              |                        |
|------|-----------------------|-----|-------------|--------|--------------|------------------------|
| (a)  | Indent Style (2%)     |     | Poor        | $\Box$ | Inconsistent | Good                   |
| (b)  | Identifier names (2%) |     | Poor choice |        | Meaningful   | Good naming convention |

#### 5. PROGRAM COMPONENT (46% + 4%)

| Program Components                                                                                                                       | Missing/ | Major  | Minor  | Not    | No issue/ | Max   | Marks    |
|------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|--------|-----------|-------|----------|
|                                                                                                                                          | Does not | errors | errors | robust | Excellent | marks | obtained |
|                                                                                                                                          | work     |        |        |        | design    |       |          |
| Presentation of source codes                                                                                                             |          |        |        |        |           | 4     |          |
| Generate two datasets, one with 10M numbers, another with 1M English words                                                               |          |        |        |        |           | 6     |          |
| Implement FOUR (4) sorting algorithms with TWO (2) data structures.                                                                      |          |        |        |        |           | 20    |          |
| Ensure the correctness of the implementation.                                                                                            |          |        |        |        |           | 5     |          |
| Perform numerous experimental tests using the four algorithms, and get the elapsed times (average case & worst case) for the algorithms. |          |        |        |        |           | 15    |          |
|                                                                                                                                          |          |        |        |        | Total     | 50    |          |

#### 6. REPORT AND OTHER COMPONENTS (50%)

|                                                        | ,       |      |         |      |           |       |          |
|--------------------------------------------------------|---------|------|---------|------|-----------|-------|----------|
| Components                                             | Missing | Poor | Average | Good | Excellent | Max   | Marks    |
|                                                        |         |      |         |      |           | marks | obtained |
| Design (data structures and algorithms) and discussion |         |      |         |      |           | 20    |          |
| (efficiency and complexities)                          |         |      |         |      |           |       |          |
| Sample input and test cases                            |         |      |         |      |           | 10    |          |
| Screenshots of results                                 |         |      |         |      |           | 5     |          |
| Conclusion                                             |         |      |         |      |           | 5     |          |
|                                                        |         |      |         |      | Total     | 40    |          |

## UECS2083 / UECS2453 PROBLEM SOLVING WITH DATA STRUCTURES AND ALGORITHMS

| Individual presentation (Involvement, language, confident, preparedness, attitude) |  |  |       | 10 |  |
|------------------------------------------------------------------------------------|--|--|-------|----|--|
| Student 1:                                                                         |  |  |       |    |  |
| Student 2:                                                                         |  |  |       |    |  |
| Student 3:                                                                         |  |  |       |    |  |
| Student 4:                                                                         |  |  |       |    |  |
|                                                                                    |  |  | Total | 50 |  |

# **Table of Contents**

| Introdu | ction                            |
|---------|----------------------------------|
| Input D | ata and Test Case                |
| i.      | Input Data                       |
| ii.     | Test Case                        |
| Experin | nental Design and Implementation |
| i.      | Data Structure                   |
| ii.     | Sorting Algorithms               |
|         | Selection-Sort Algorithm         |
|         | Counting-Sort Algorithm          |
|         | Merge-Sort Algorithm             |
|         | Tim-Sort Algorithm               |
| Result. |                                  |
| i.      | Data Size                        |
| ii.     | Type of List                     |
| iii.    | Data Sequence                    |
| iv.     | String and Number                |
| v.      | Duplicates                       |
| vi.     | Presence of Outlier              |
| vii.    | Data Distribution                |
| viii.   | Floating Point Data              |
| ix.     | Even and Odd Number              |
| х.      | Positive and Negative Number     |
| xi.     | Upper- and Lower-Case String     |
| Conclus | sion                             |
| Append  | lix                              |
|         |                                  |

#### Introduction

In this assignment, we explore the performance and efficiency of various sorting algorithms, with focus on both comparison-based (**Merge-Sort**, **Selection-Sort**, **Tim-Sort**) and non-comparison-based (**Counting-Sort**) algorithms.

Our objective was to comprehensively analyse these algorithms by applying them to datasets of varying sizes and characteristics. We evaluated their behaviour across 11 experimental designs, including random data, sorted data, reversed data, datasets with repeated duplicate, negative data etc.

Time complexity served as the primary metric for assessing computational efficiency, enabling a clear comparison of each algorithm's performance under different conditions. Additionally, we compiled detailed tables of result to compare the efficiency of the four algorithms across these scenarios, providing a comprehensive understanding of their strengths and limitations.

This analysis highlights the computational strengths and weaknesses of each algorithm, offering practical insights for real-world applications. By understanding their performance across different scenarios, we aim to guide the selection of the most suitable sorting techniques for specific data challenges, ultimately enhancing the efficiency of data processing tasks.

# Input Data and Test Case

#### Input Data

The input data used include one English words dataset (Words.txt) and one 10 M numbers dataset (RandomNumbers.txt). The English words are retrieved from online sources (included in references) while the numbers are generated using a self-defined python program DataGeneration.py. The methods listed below are used to generate datasets for each experiment design.

| Dataset       | English Words Data             | Numbers Data                         |
|---------------|--------------------------------|--------------------------------------|
| Random        | getStringList(int)             | getNumberArrayList(int)              |
|               |                                | getNumberLinkedList(int)             |
| Sorted        | getSortedStringList(int)       | getSortedNumberArrayList(int)        |
|               |                                | getSortedNumberLinkedList(int)       |
| Reversed      | getReversedStringList(int)     | getReversedNumberArrayList(int)      |
|               |                                | getReversedNumberLinkedList(int)     |
| Nearly Sorted | getNearlySortedStringList(int) | getNearlySortedNumberArrayList(int)  |
|               |                                | getNearlySortedNumberLinkedList(int) |
| Duplicates    | getDuplicateStringList(int)    | getDuplicateNumArrayList(int)        |
|               |                                | getDuplicateNumLinkedList(int)       |
| Upper Case &  | getUpperCaseStringList(int)    | -                                    |
| Lower Case    | getLowerCaseStringList(int)    |                                      |
| Outliers      | -                              | getOutliersArrayList(int)            |
|               |                                | getOutliersLinkedList(int)           |
| Skewed        | -                              | getNegativeNumberArrayList(int)      |
|               |                                | getNegativeNumberLinkedList(int)     |

| Negative       | - | getNegativeNumberArrayList(int)  |
|----------------|---|----------------------------------|
|                |   | getNegativeNumberLinkedList(int) |
| Even           | - | getEvenNumberArrayList(int)      |
|                |   | getEvenNumberLinkedList(int)     |
| Odd            | - | getOddNumberArrayList(int)       |
|                |   | getOddNumberLinkedList(int)      |
| Floating Point | - | getDoubleNumberArrayList(int)    |
|                |   | getDoubleNumberLinkedList(int)   |

# Test Case

| Test<br>Case | Test Title  | Test Summary                  | <b>Test Steps</b>                          | Test<br>Data     | <b>Expected Result</b>                        | Post-<br>condition  |
|--------------|-------------|-------------------------------|--------------------------------------------|------------------|-----------------------------------------------|---------------------|
|              | Data        | C1                            | 1 Canada latanata                          |                  | Would as a dime                               |                     |
| TC0          | Data size   | Compare and                   | 1. Generate datasets                       | String           | Worst case time                               | Time                |
| 01           | [String +   | analyse the                   | (10M numbers & 500k                        | (10K -           | complexity:                                   | elapsed of          |
|              | Number]     | performance of                | String) 2. Run all sorting                 | 500K),<br>Number | Selection Sort: O(n <sup>2</sup> )            | sorting is recorded |
|              |             | each algorithm<br>on datasets |                                            | (10K -           | Counting Sort: O(n +k) Merge Sort: O(n log n) | recorded            |
|              |             | with different                | algorithms and analyse their performances. | 10M -            | Tim Sort: O(n log n)                          |                     |
|              |             | data size.                    | then performances.                         | 10101)           | Tim Soft. O(n log n)                          |                     |
| TC0          | Type of     | Compare and                   | 1. Generate datasets                       | Number           | Worst case time                               | Time                |
| 02           | Lists       | analyse the                   | (10M numbers)                              | (10K -           | complexity:                                   | elapsed of          |
|              | [ArrayList  | performance of                | 2. Run all sorting                         | 10M)             | Selection Sort: O(n <sup>2</sup> )            | sorting is          |
|              | +           | each algorithm                | algorithms and analyse                     | Í                | Counting Sort: O(n +k)                        | recorded            |
|              | LinkedList] | on datasets                   | their performances.                        |                  | Merge Sort: O(n log n)                        |                     |
|              |             | using                         | -                                          |                  | Tim Sort: O(n log n)                          |                     |
|              |             | ArrayList and                 |                                            |                  |                                               |                     |
|              |             | LinkedList.                   |                                            |                  |                                               |                     |
| TC0          | Data        | Compare and                   | 1. Generate datasets                       | String           | Worst case time                               | Time                |
| 03           | sequence    | analyse the                   | (10M numbers & 500k                        | (10K -           | complexity:                                   | elapsed of          |
|              | [random +   | performance of                | String)                                    | 500K),           | Selection Sort: O(n <sup>2</sup> )            | sorting is          |
|              | sorted +    | each algorithm                | 2. Run all sorting                         | Number           | Counting Sort: O(n +k)                        | recorded            |
|              | nearly      | on datasets                   | algorithms and analyse                     | (10K -           | Merge Sort: O(n log n)                        |                     |
|              | sorted]     | with different                | their performances.                        | 10M)             | Tim Sort: O(n log n)                          |                     |
|              |             | data sequence.                |                                            |                  |                                               |                     |
| TC0          | Data Type   | Compare and                   | 1. Generate datasets                       | String           | Worst case time                               | Time                |
| 04           | [String Vs  | analyse the                   | (10M numbers & 500k                        | (10K -           | complexity:                                   | elapsed of          |
|              | Number]     | performance of                | String)                                    | 500K),           | Selection Sort: O(n <sup>2</sup> )            | sorting is          |
|              |             | each algorithm                | 2. Run all sorting                         | Number           | Counting Sort: O(n +k)                        | recorded            |
|              |             | on datasets                   | algorithms and analyse                     | (10K -           | Merge Sort: O(n log n)                        |                     |
|              |             | with different                | their performances.                        | 10M)             | Tim Sort: O(n log n)                          |                     |
|              |             | data type.                    |                                            |                  |                                               |                     |

## UECS2083 / UECS2453 PROBLEM SOLVING WITH DATA STRUCTURES AND ALGORITHMS

| TC0<br>05 | Duplicates<br>[non-<br>duplicate +<br>duplicate]                   | Compare and analyse the performance of each algorithm on datasets with duplications.                | 1. Generate datasets (10M numbers) 2. Run all sorting algorithms and analyse their performances.                                | Number<br>(10K -<br>10M) | Worst case time complexity: Selection Sort: O(n²) Counting Sort: O(n +k) Merge Sort: O(n log n) Tim Sort: O(n log n) | Time elapsed of sorting is recorded          |
|-----------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| TC0<br>06 | Presence of<br>Outliers<br>[no outliers<br>+ contains<br>outliers] | Compare and analyse the performance of each algorithm on datasets with outliers.                    | 1. Generate datasets (10M numbers) 2. Run all sorting algorithms and analyse their performances.                                | Number<br>(10K -<br>10M) | Worst case time complexity: Selection Sort: O(n²) Counting Sort: O(n +k) Merge Sort: O(n log n) Tim Sort: O(n log n) | Time<br>elapsed of<br>sorting is<br>recorded |
| TC0<br>07 | Data<br>distribution<br>[random +<br>skewed]                       | Compare and analyse the performance of each algorithm on datasets with different data distribution. | <ol> <li>Generate datasets</li> <li>(5M numbers)</li> <li>Run all sorting algorithms and analyse their performances.</li> </ol> | Number<br>(10K -<br>5M)  | Worst case time complexity: Selection Sort: O(n²) Counting Sort: O(n +k) Merge Sort: O(n log n) Tim Sort: O(n log n) | Time elapsed of sorting is recorded          |
| TC0<br>08 | Floating<br>points data<br>[random +<br>Double]                    | Compare and analyse the performance of each algorithm on datasets with floating points.             | 1. Generate datasets (10M numbers) 2. Run all sorting algorithms and analyse their performances.                                | Number<br>(10K -<br>10M) | Worst case time complexity: Selection Sort: O(n²) Counting Sort: O(n +k) Merge Sort: O(n log n) Tim Sort: O(n log n) | Time<br>elapsed of<br>sorting is<br>recorded |
| TC0<br>09 | Even and Odd number                                                | Compare and analyse the performance of each algorithm on datasets with odd and even numbers.        | 1. Generate datasets (5M numbers) 2. Run all sorting algorithms and analyse their performances.                                 | Number<br>(10K -<br>5M)  | Worst case time complexity: Selection Sort: O(n²) Counting Sort: O(n +k) Merge Sort: O(n log n) Tim Sort: O(n log n) | Time elapsed of sorting is recorded          |
| TC0<br>10 | Positive and Negative Numbers [all positive + all negative]        | Compare and analyse the performance of each algorithm on datasets with negative numbers.            | 1. Generate datasets (10M numbers) 2. Run all sorting algorithms and analyse their performances.                                | Number<br>(10K -<br>10M) | Worst case time complexity: Selection Sort: O(n²) Counting Sort: O(n +k) Merge Sort: O(n log n) Tim Sort: O(n log n) | Time elapsed of sorting is recorded          |

| TC0 | Upper- and | Compare and    | 1. Generate datasets   | String | Worst case time                    | Time       |
|-----|------------|----------------|------------------------|--------|------------------------------------|------------|
| 11  | Lower-     | analyse the    | (500k String)          | (10K - | complexity:                        | elapsed of |
|     | Case       | performance of | 2. Run all sorting     | 500K)  | Selection Sort: O(n <sup>2</sup> ) | sorting is |
|     | Words      | each algorithm | algorithms and analyse |        | Counting Sort: O(n +k)             | recorded   |
|     | [String]   | on datasets    | their performances.    |        | Merge Sort: O(n log n)             |            |
|     |            | with different | _                      |        | Tim Sort: O(n log n)               |            |
|     |            | String cases.  |                        |        |                                    |            |

# **Experimental Design and Implementation**

#### Data Structure

Knowing that ArrayLists and LinkedLists are data structures, they are used to test the efficiency and effectiveness of the Selection-Sort, Merge-Sort, Tim-Sort and Counting-Sort algorithms. Table below shows the data structures used to store different types of datasets.

| English Words (ArrayList)                  | Numbers (ArrayList and LinkedList)         |  |  |  |  |
|--------------------------------------------|--------------------------------------------|--|--|--|--|
| <ul> <li>Random</li> </ul>                 | • Random                                   |  |  |  |  |
| <ul> <li>Sorted</li> </ul>                 | • Sorted                                   |  |  |  |  |
| <ul> <li>Reversed</li> </ul>               | <ul> <li>Reversed</li> </ul>               |  |  |  |  |
| <ul> <li>Nearly Sorted</li> </ul>          | Nearly Sorted                              |  |  |  |  |
| <ul> <li>Presence of Duplicates</li> </ul> | <ul> <li>Presence of Duplicates</li> </ul> |  |  |  |  |
| <ul> <li>Upper Case</li> </ul>             | <ul> <li>Presence of Outliers</li> </ul>   |  |  |  |  |
| <ul> <li>Lower Case</li> </ul>             | Skewed data                                |  |  |  |  |
|                                            | <ul> <li>Negative Numbers</li> </ul>       |  |  |  |  |
|                                            | <ul> <li>Even Numbers</li> </ul>           |  |  |  |  |
|                                            | Odd Numbers                                |  |  |  |  |
|                                            | <ul> <li>Floating Point Data</li> </ul>    |  |  |  |  |

Besides that, noticed that LinkedList is facing the high elapsed time problem during sorting, Node was used to access the LinkedList, overcoming the lengthy sorting time as it was exceeding one hour.

# Sorting Algorithms

#### **Selection-Sort Algorithm**

The **Selection Sort** algorithm is a comparison-based sorting method that operates by repeatedly selecting the smallest (or largest) element from the unsorted portion of an array and placing it in its correct position. The algorithm proceeds to divide the list into two distinct portions: a sorted portion, located on the left, and an unsorted portion, situated on the right. In its initial state, the sorted portion empty since no element has sorted, and the algorithm proceeds to transfer elements from the unsorted portion to the sorted portion. This is achieved by selecting the minimum element from the unsorted portion, exchanging it with the leftmost unsorted element, and adjusting the boundary between the two portions (GeeksforGeeks, 2024). This process is repeated for each remaining element in the unsorted list until all elements have been sorted and fulfill the sorted portions.

In terms of performance, Selection Sort is **not an efficient algorithm** for large datasets due to its quadratic time complexity of  $O(N^2)$  in all cases, including the best, worst, and average cases. This is due to the fact that, for each element, the algorithm makes comparisons with the remaining unsorted elements. In the worst and average cases, the algorithm performs approximately  $\frac{n(n-1)}{2}$  comparisons (Baeldung, n.d.), where n is the number of elements in the list. This formula represents the sum of the first n-1 integers and illustrates how the number of comparisons grows quadratically as the size of the list increases.



#### **Counting-Sort Algorithm**

Counting sort, as a **non-comparison-based method**, sorts the keys within a specific range. By arithmetic operations, it identifies each object's index position to sort the elements. The time complexity of counting sort is O(n+k). Unlike comparison-based algorithms, it does not depend on the element-by-element comparisons. Hence, when the datasets are having narrow range of values, counting sort is very efficient. The time complexity of counting sort depends on the value of k, which leads to different scenarios for best, average, and worst cases. However, the time complexity of Counting Sort was always **O(n+k)**, no matter best, average, or worst cases, as its efficiency is determined by the ratio between n and k (*Counting Sort (with Code)*, n.d.). The table below shows the comparison of time complexity within counting sort based on different data structures. Since the program is facing a heap space error, the heap size was increased by setting the initial heap size from 512MB to 6144MB, as the laptop has 8GB of RAM. Overall, all the graphs satisfied O(n+k).





ArrayList (Number)

The graph illustrates the sorting time expands with dataset size, particularly for reversed strings. Nearly sorted and random strings perform consistently on smaller datasets but slow down dramatically as size increases. Sorted and duplicate strings are the most productive, with duplicates affecting just greater datasets. Hence, it can be concluded:

Best case: Duplicate strings

• Worst case: Reversed strings

• Average case: Random strings

According to the graph, time complexity increases dramatically approximately 1 million components, particularly for reversed, random numbers and those with outliers. Sorted and nearly sorted data are still efficient, however skewed distributions and outliers slow down Counting Sort. Double numbers, like random data, demonstrate the lowest effective results. Therefore, it was summarized as:

• Best case: Sorted numbers

• Worst case: Floating numbers

Average case: Random numbers



Based on the graph, LinkedLists have greater variability in sorting time than ArrayLists, particularly for huge datasets, with reversed and skewed data incurring the greatest delays. Sorted and nearly sorted numbers operate best, but performance diminishes with increasing size. Floating-point data and outliers also cause severe sorting inefficiencies. Overall, it wrapped up with:

Best case: Duplicate numbers

• Worst case: Floating numbers

Average case: Random numbers

### **Merge-Sort Algorithm**

Merge sort is a highly efficient, comparison-based sorting algorithm that follows the divide-and-conquer paradigm (Tyagi & Ahlawat, 2023). It works by recursively dividing an unsorted list into smaller sublists until each sublist contains a single element or is empty. Once the list is sufficiently divided, the algorithm merges these sublists back together in a sorted order. By systematically splitting and merging, merge sort ensures that the final list is sorted. The process involves dividing the list into two halves, sorting each half, and merging the sorted halves in linear time (P. Asha Rani et al., 2023).

The worst-case time complexity of merge sort is O(nlogn), where n represents the number of elements in the list. This time complexity arises because the algorithm must recursively divide the list into smaller sublists, which takes O(logn) levels of recursion. At each level, merging the sublists requires O(n) operations, resulting in an overall complexity of O(nlogn). Hence, merge sort's worst-case performance remains efficient even for large datasets. However, it requires additional space proportional to the input size, which can be a trade-off in memory-limited environments (Lobo & Kuwelkar, 2020).



As observed from the graph, merge sort performs consistently with the time complexity of O(n log n) for all types of cases. Merge Sort recursively divides the array into two halves, irrespective of the initial order. Whether the dataset is nearly sorted or completely reversed, Merge Sort will still perform the same number of divisions and merges. Hence, the additional time elapsed for nearly sorted dataset could be due to overhead and cache misses.



The graph illustrates the time complexity of merge sort on various number ArrayList. The best, average, worst case obeys the time complexity of O(n log n) as the same number of divisions and merges are performed. Dataset with duplicates takes shorter sorting time as fewer comparisons and swapping are required. Overall, merge sort takes consistent time complexity regardless of random, sorted, reverse initial order.



The graph shows the time complexity of merge sort on various number LinkedList. The time complexity for best cases, average cases and worst cases are O(n log n). In contrast to ArrayList, merge sort performs better in sorted, duplicate and reverse LinkedList. However, the sorting time for negative and outliers LinkedList are higher than average case. This might be due to the sign handling and overhead from comparing negative numbers.

#### **Tim-Sort Algorithm**

Tim-Sort algorithm utilizes the primary functions of Merge and Insertion sort, both of which are made to deal with sorting through heaps and stacks of uncategorized data (Abdon, A et al., 2024).

Let's refer sub-array as run, the minimal length of runs as  $min\_run$  and the length of input array as N. In accordance with Zhang, Y. et al., 2018, Tim-Sort algorithm works by first determining  $min\_run$ . Since insertion sort is only useful for short arrays, it shouldn't be too small. It also should not be too small either, because it will lead to more merge iterations later. When  $\frac{N}{min\_run}$  is a power of 2, it is the ideal  $min\_run$  value because merge sort works perfectly on balanced sub-arrays. However, there is not always such an integer  $min\_run$  for every possible value of N, thus we choose a value in the range (32, 65) that  $\frac{N}{min\_run}$  is strictly less than or equal to a power of 2.

The input array is then divided into *runs*. The algorithm first counts the number of continuous increasing or decreasing elements from current pointer. If the number is greater than *min\_run*, then this sorted sub-array will be count as a *run*; else, it will be reversed to make merging easier. Otherwise, it's extended to the length of *min\_run* using binary insertion sort to keep it sorted. Lastly, the sorted sub-arrays are then all merged in increasing order of size. Here, we keep doubling the size until the entire list is sorted.

Below are the graphs of time complexity of the Tim-Sort algorithm applied to String ArrayList, Number ArrayList and Number LinkedList respectively with different dataset characteristics.



The graph shows that sorted data consistently takes the least time to sort, with a time complexity that approaches O(n). Both random and reversed data exhibit similar performance, with a time complexity of O(n log n), reflecting that Tim-Sort handles these datasets with a slightly higher elapsed time compared to sorted data. The light blue line indicates that nearly sorted data is handled slightly slower than sorted data but better than random or reversed data. The performances of duplicate, upper case and lower-case datasets are similar to that of random and reversed data, suggesting that Tim-Sort handles these cases reasonably well.



From the graph, we can observe that Tim-Sort algorithm perform particularly well on sorted data, as indicated by the orange line, which represents a time complexity of O(n). This demonstrates that Tim-Sort can efficiently handle sorted number ArrayList with linear time complexity. Next, two lines above the orange line indicates that reversed and nearly sorted data exhibit higher time complexity of O(n log n), as compared to sorted data. The remaining data conditions also display a time complexity of O(n log n) as shown by the graph, consistent with the typical performance of Tim-Sort on less-optimized or more randomly ordered datasets.



This graph illustrates the time complexity of the Tim-Sort algorithm applied to LinkedList containing numbers with different data characteristics. As shown by the graph, the orange line (sorted data) is relatively low, indicating that Tim-Sort performs efficiently on sorted data, with a time complexity of O(n). Other data conditions especially negative number LinkedList possess time complexity of O(n log n).

The time complexity for Tim-sort algorithm differs in various cases. For the **best case** this algorithm produces O(n) which occurs when all the data is already sorted, while for the **average and worst-case** it produces  $O(n \log(n))$ , which occurs when the data is unsorted or reversed (Hanafi et al., 2022).

## Result

Noted that some of the result exceeded one hour, hence, those that exceeded were recorded as '-' since the program was terminated.

#### **Design 1: Data Size**



From the graph, it is evident that as the data size increases, the time complexity also grows elements longer as more required to access. Notably, each sorting algorithm demonstrates a different time complexity. Selection Sort, Tim Sort, Merge Sort and Counting Sort perform as  $O(n^2)$ ,  $O(n \log n)$ 

n), O(n log n) and O(n) respectively. Time complexity of the four algorithms based on different input size is ranked as follow: **Counting Sort< Merge Sort< Tim Sort< Selection Sort.** 

**Design 2: Type of Lists** 



Based on the graph, ArrayList and LinkedList with random number sequences are plotted. was noticed that Selection sort has the highest time complexity while the merge sort has the lowest time complexity. The time complexity of the four algorithms based on different input size of LinkedList is

ranked as follow: Merge Sort Counting Sort Tim Sort Selection Sort. In contrast, the time complexity of the four algorithms based on different input size of ArrayList is ranked as follow: Counting Sort Merge Sort Tim Sort Selection Sort. However, an interesting phenomenon was observed as the curve of Counting Sort of random numbers in ArrayList (red line) displayed small fluctuations, which is an unusual pattern. It can be explained due to the java enhancement system function as the enhancement of runtime efficiency could lead to variations in sorting time when handling large datasets. Additionally, it was found that the LinkedList of all four algorithms is more efficient than ArrayList of all four algorithms as the graph shows the time taken for LinkedList to be sorted is shorter. This is due to the Node-based structure in LinkedList allowing faster access and manipulation of elements compared to ArrayList. Another interesting perspective was found. The ArrayList of Tim Sort being sorted is performs better when data size is small while LinkedList of Tim

Sort performs better when data size is large. It can be said that the lesser memory overhead when dealing with large datasets in LinkedList is more suitable for Tim Sort.

**Design 3: Data Sequence** 



From the graph above, it is evident that the performance of Selection-Sort, Counting-Sort, Merge-Sort, and Tim-Sort algorithms varies with different data arrangements: random, sorted, reversed, nearly sorted. In this design, Counting-Sort performance is the best compare with the other three algorithms in every data sequence. This shows the good performance with O(N + K) which is unaffected by data sequence in the sorting

process. In contrast with the Counting-Sort, Selection-Sort has the worst performance in the sorting process. It consistently scans the entire unsorted portion to find the minimum element regardless of the data arrangement. This cause the time complexity of the Selection-Sort will be  $O(N^2)$ . The time complexity of the four algorithms when applied to data sequence: Counting-Sort < Merge-Sort < **Tim-Sort < Selection-Sort.** 

**Design 4: Data Type** 



The graph above shows that when it comes to different data types, four algorithms will also different have performance. In this design, Counting-Sort performs best in

String

Number types while Selection-Sort performs badly in these data types. In **String** data types, **Counting**-Sort and Merge-Sort perform generally better than Number data types, while Selection-Sort and **Tim-Sort** perform better in **Number** data types instead of String data types. Numerical data often benefits the Tim-Sort adaptive nature make it can handle quickly with the number types as it can make use of numeric comparisons. In the Selection-Sort, numerical data is consistent and predictable making the comparison and swaps straightforward. The time complexity of the four algorithms when applied to String and Number data types: **Counting-Sort < Merge-Sort < Tim-Sort < Selection-Sort.** 

**Design 5: Duplicates** 



From the graph above, we can notice that there would be a positive effect on Counting-Sort algorithm when duplication is being introduced. This because the Counting-Sort no perform repeated need to comparisons and it just counts the occurrences of each value and builds the sorted array based on those counts. For the Tim-Sort and Merge-Sort, it does not have any significant effect as both of them can handle

duplication effectively as it does not increase the workload of these two sorting algorithms. While it comes to Selection-Sort, it has a negative impact when the data size increase. This might be due to the redundant comparisons and swaps that offer no real advantage in progressing the sorting. In contrast with non-duplicate data, every comparison brings this sorting closer to the final sorted state and lead it to slightly better performance. The time complexity of the four algorithms when applied to duplicate-data: Counting-Sort < Merge-Sort < Tim-Sort < Selection-Sort.

**Design 6: Presence of Outlier** 



In this experiment design, the presence of outliers had a significant impact on the performance of the sorting algorithms. The **Merge** Sort and Tim Sort algorithms showed a noticeable increase in sorting time when outliers were introduced. graph shows that Merge Sort (with outliers) consistently took longer as

the data size increased, with the curve showing a steeper rise compared to the scenario without outliers.

This can be attributed to the recursive nature of Merge Sort, which has to split the array and merge it back together, causing outliers to have a disproportionate effect on the merging process.

Interestingly, **Counting Sort** remained unaffected by outliers. Since Counting Sort does not perform element comparisons, the presence of outliers does not significantly alter the sorting process. As the graph illustrates, the performance curve of **Counting Sort** (with outliers) closely mirrors that of **Counting Sort** (no outliers). On the other hand, **Selection Sort** was the most negatively impacted by outliers. Its already high time complexity was exacerbated by the presence of outliers, particularly as the data size increased. This is likely because Selection Sort always searches for the minimum value in each pass, and outliers can make this process slower and less efficient. Overall, the time complexity of the four algorithms for datasets with outliers, **Counting Sort** < **Tim Sort** < **Merge Sort** < **Selection Sort**.

**Design 7: Data Distribution** 



In this experiment design, the performance of each algorithm was compared between a skewed data distribution and a random dataset. The graph demonstrates that Counting Sort and Merge Sort performed relatively well in skewed distribution, with Merge Sort showing a slight performance degradation skewed. The reason for this is that Merge Sort divides the list into smaller sub lists, and even

when the data is skewed, the recursive division helps maintain its time efficiency.

Counting Sort also handled the skewed distribution effectively. Counting Sort's performance is largely unaffected by this skew because it only needs to count how many elements fall into each value, regardless of where the bulk of the values lie. However, Selection Sort and Tim Sort showed significant degradation in performance with skewed distributions. This is because Selection Sort compares elements in a brute-force manner, and skewed distributions lead to longer comparisons, particularly when the majority of elements are clustered around one value. Tim Sort's performance typically benefits from data that is more evenly distributed or partially sorted. In a skewed distribution, with most values clustered in one part of the range, the sorting process becomes less efficient because unbalanced data clusters require more comparisons and movements.

In summary, the time complexity of the four algorithms for datasets with skewed distribution, Counting Sort < Merge Sort < Tim Sort < Selection Sort.

**Design 8: Floating-point Data** 



In this experiment design, the algorithms were tested on datasets with floatingpoint numbers, and the performance was compared datasets to containing only integer values. The results from the graph show that Merge Sort and Tim Sort took longer when sorting floating-point data compared to integer data.

This increase in sorting time can be attributed to the fact that comparisons between floating-point numbers are more computationally expensive than comparisons between integers, due to the precision required in floating-point arithmetic.

**Selection Sort** was particularly slow when handling floating-point data. The brute-force nature of **Selection Sort** amplifies the effect of increased comparison time with floating-point numbers, resulting in longer execution times across all data sizes. Interestingly, **Counting Sort** performed well with floating-point data. This was expected because **Counting Sort** is primarily designed for number sorting and relies on creating a count array based on the range of the numbers. Since it only counts the frequency of each floating-point numbers, **Counting Sort** is having only slight increase in sorting time for floating-point datasets. Overall, the time complexity of the four algorithms for datasets with floating-point numbers, **Counting Sort** < **Merge Sort** < **Tim Sort** < **Selection Sort**.

**Design 9: Even and Odd Number** 



From the graph above, it is evident that the Selection-Sort, Counting-Sort and Tim-Sort algorithms perform slightly better on odd numbers, whereas the Merge-Sort algorithm is more efficient on even numbers. Merge-Sort algorithm maintains a relatively stable performance across different data sizes, with a slight edge in efficiency on even datasets, making it a strong choice for larger odd or even

number datasets. Tim-Sort algorithm shows consistent performance similar to Merge-Sort algorithm,

with a slight improvement on odd number dataset. On the other hand, Selection-Sort algorithm is overall the least efficient algorithm with a time complexity of  $O(n^2)$ . Although the efficiency of Counting-Sort algorithm decreases with larger datasets, it remains the most efficient algorithm overall, with a time complexity of O(n+k). The time complexity of the four algorithms when applied to even or odd data: Counting-Sort < Merge-Sort < Tim-Sort < Selection-Sort.



**Design 10: Positive and Negative Numbers** 

Idrizi, F. et al. (2017), Counting-Sort algorithm is only appropriate for positive numbers

The graph indicates

that all the sorting

algorithms perform

more efficiently on

dataset of positive

**number** compared to

numbers. As stated by

negative

of

those

Data Size

Counting-Sort (Negative) — Merge-Sort (Negative) — Selection-Sort (Negative) — Tim-Sort (Positive) — Tim-Sort (Positive)

because it becomes extremely complex, particularly when counting negative numbers. In general, the input of Counting-Sort algorithm consists of a collection of n items, where each has a non-negative integer key whose maximum value is at most k. However, among the algorithms, Counting-Sort algorithm proves to be the most efficient, exhibiting a time complexity of O(n+k).

Merge-Sort and Tim-Sort are comparison-based algorithms with a time complexity of  $O(n \log n)$ , and they maintain stable performance regardless of whether the dataset contains positive or negative numbers. However, Merge-Sort still perform slightly better than Tim-Sort due to its straightforward divide-and-conquer approach, which is less dependent on data characteristics. Selection-Sort, the least efficient algorithm with a time complexity of  $O(n^2)$ , shows a consistent pattern of being the slowest, regardless of the sign of the numbers. Its inefficiency stems from its repetitive comparisons and swaps, which are equally costly for both positive and negative numbers. The time complexity of the four algorithms when applied to positive or negative numbers: **Counting-Sort < Merge-Sort < Tim-Sort < Selection-Sort.** 

**Design 11: Upper- and Lower-Case Words** 



According to the graph, it denotes the time complexity of upper- and lower-case String ArrayList based on the four different algorithms. It was noticed that the result for each algorithm is almost the same, showing only slightly The different. time complexity of four the algorithms based on different input size of ArrayList is

ranked as follow: **Merge-Sort< Counting-Sort< Tim-Sort< Selection-Sort.** Overall, the lower-case String has a shorter elapsed time to sort the Strings compared to upper-case String for the algorithms except for Tim-Sort. This is because, based on the **Unicode sequence**, the lower-case characters come before upper-case characters, allowing more efficient sorting arrangements.

#### Conclusion

From the 11 experimental designs, it was realized that Counting Sort outperformed among the four sorting algorithms as it is non-comparison-based sorting method. Generally, Counting Sort is efficient in sorting non-negative integers as well as the Strings. This is closely related to its ability of sorting data by mapping the input values directly to their corresponding locations in the output array since element-by-element comparisons are not included. In contrast, Selection Sort was the most inefficient algorithm as it is time consuming during the sorting process. Selecting the smallest element from the huge dataset during each iteration and exchanging with the position inside the list takes plenty of time. Meanwhile, Merge Sort and Tim Sort maintained a stable performance. Tim Sort is a hybrid sorting algorithm that combines the best features of Merge Sort and Insertion Sort. It is highly efficient for real-world data, robust and adaptive sorting algorithm, making it the default choice in many programming environments. In conclusion, the performance the four algorithms can be ranked as Counting-Sort > Merge-Sort > Tim-Sort > Selection-Sort. Part of the result obtained is showcased in the Appendix.

## UECS2083 / UECS2453 PROBLEM SOLVING WITH DATA STRUCTURES AND ALGORITHMS

# Appendix

| *          |                            |                           | String Array List                    | *        |
|------------|----------------------------|---------------------------|--------------------------------------|----------|
| Data size  | Elapsed                    |                           | Sorting Algorithms                   | Tim-Sort |
| 404        |                            |                           | 407                                  |          |
| 10K        | 3                          | 10                        | 187                                  | 23       |
| 30K        | 7                          | 13                        | 1605                                 | 28       |
| 50K        | 4                          | 12                        | 3898                                 | 34       |
| 70K        | 3                          | 18                        | 7592                                 | 37       |
| 90K        | 6                          | 24                        | 11850                                | 40       |
| 100K       | 12                         | 28                        | 13157                                | 46       |
| 300K       | 11                         | 78                        | 160045                               | 165      |
| 500K       | 16                         | 129                       | 383704                               | 245      |
|            |                            |                           |                                      |          |
| *          | Experimental Desig         |                           | ring Array List                      | *        |
| Data size  |                            | Time(ms) of<br>Merge-Sort | Sorting Algorithms<br>Selection-Sort | Tim-Sort |
| 404        |                            |                           | 205                                  | 4        |
| 10K        | 0                          | 2                         | 205                                  | 1        |
| 30K        | 1                          | 6                         | 1732                                 | 4        |
| 50K        | 3                          | 10                        | 4805                                 | 19       |
| 70K        | 3                          | 16                        | 9711                                 | 21       |
| 90K        | 5                          | 20                        | 15355                                | 26       |
| 100K       | 6                          | 21                        | 16836                                | 25       |
| 300K       | 16                         | 69                        | 151199                               | 93       |
| 500K       | 22                         | 124                       | 427824                               | 138      |
|            |                            |                           |                                      |          |
|            | 5                          | D                         | Shalaa Aaaaa 13ab                    |          |
| *          | Experimental Desi          | gn: Reversed              | String Array List                    |          |
| Data size  | Elapsed<br>  Counting-Sort |                           | Sorting Algorithms<br>Selection-Sort | Tim-Sort |
| 10K        | ۱ ۵                        | 2                         | 314                                  |          |
|            | 0                          | 2                         |                                      | 3        |
| 30K<br>50K | 1 1                        | 6<br>10                   | 2416<br>4602                         | 7<br>14  |
| 70K        | 2                          | 15                        | 7577                                 | 21       |
| 90K        | 5                          | 19                        | 11713                                | 27       |
| 100K       | 4                          | 21                        | 13117                                | 31       |
| 300K       | 12                         | 70                        | 274131                               | 135      |
| 500K       | 43                         | 122                       | 538650                               | 247      |
|            | 1                          |                           |                                      |          |
|            |                            |                           |                                      |          |
| * E>       |                            |                           | ted String Array Li                  |          |
| Data size  | Elapsed<br>  Counting-Sort | Time(ms) of<br>Merge-Sort | Sorting Algorithms<br>Selection-Sort | Tim-Sort |
| 10K        | l 0                        | 3                         | 235                                  | 2        |
| 30K        | 1                          | 8                         | 2192                                 | 11       |
| 50K        | 3                          | 14                        | 5881                                 | 20       |
| 70K        | 5                          | 21                        | 10945                                | 30       |
| 90K        | 5                          | 28                        | 17027                                | 35       |
| 100K       | 5                          | 30                        | 19356                                | 45       |
| 300K       | 18                         | 99                        | 310057                               | 145      |
| 500K       | 33                         | 174                       | 881005                               | 217      |
|            |                            |                           |                                      |          |
| * Experi   | mental Design: St          | ring Array L              | ist Contains Duplic                  | ates *   |
|            |                            |                           | Sorting Algorithms                   |          |
| Data size  | Counting-Sort              | Merge-Sort                | Selection-Sort                       |          |
| 10K        | 0                          | 2                         | 165                                  | 3        |
| 30K        | j 0                        | 6                         | 1437                                 | 7        |
| 50K        | 1                          | 10                        | 3627                                 | 11       |
| 70K        | 2                          | 14                        | 7097                                 | 19       |
| 90K        | 1                          | 19                        |                                      | 20       |
| 100K       | 2                          | 21                        | 12633                                | 23       |
| 300K       | 10                         | 69                        | 140698                               | 113      |
| 500K       | 14                         | 120                       | 343813                               | 178      |
|            |                            |                           |                                      |          |
|            |                            |                           |                                      |          |

| 19K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :            |            | Array List                          | String /  | : Unner Case                              | <br>nerimental Design                            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------------------------------|-----------|-------------------------------------------|--------------------------------------------------|-----------|
| Data size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |                                     |           |                                           |                                                  |           |
| 10K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n-Sort       | Tim        | ion-Sort                            | Select    | Merge-Sort                                | Elapsed<br>Counting-Sort                         | Data size |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2            |            | 178                                 |           |                                           | 0                                                | 10K       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11           |            | 1428                                |           | 6                                         | 1                                                | 30K       |
| 100K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18           |            |                                     |           |                                           |                                                  |           |
| 100K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25           |            |                                     |           |                                           |                                                  |           |
| Seek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30           |            |                                     |           |                                           |                                                  | 90K       |
| Experimental Design: Lower Case String Array List   Elapsed Time(ms) of Sorting Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32           |            | 15597                               |           |                                           | 2                                                | 100K      |
| Experimental Design: Lower Case String Array List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 137          |            |                                     |           |                                           |                                                  |           |
| Experimental Design: Lower Case String Array List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 201          |            | 526632                              |           | 117                                       | 17                                               | 500K      |
| Elapsed Time(ms) of Sorting Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |            |                                     |           |                                           |                                                  |           |
| Data size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |                                     |           |                                           |                                                  |           |
| 10K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n-Sort       | Tim        | Algorithms<br>ion-Sort              | Sorting A | Time(ms) of<br>Merge-Sort                 | Elapsed<br>Counting-Sort                         | Data size |
| 36K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            |                                     |           |                                           |                                                  |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8            |            |                                     |           |                                           |                                                  |           |
| 1908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15           |            |                                     |           |                                           |                                                  |           |
| 90K   3   19   13587   17758   300K   15   71   172192   500K   122   579569   500K   123   500K   527   359   690117   500K   123   500K   527   359   690117   500K   120   500K   12 | 20           |            |                                     |           |                                           |                                                  |           |
| 190K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27           |            |                                     |           |                                           |                                                  |           |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30           |            |                                     |           |                                           |                                                  |           |
| Experimental Design: Random Number Array List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 123          |            |                                     |           |                                           |                                                  |           |
| Elapsed Time(ms) of Sorting Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 201          |            |                                     |           |                                           |                                                  |           |
| Elapsed Time(ms) of Sorting Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |            |                                     |           |                                           |                                                  |           |
| Elapsed Time(ms) of Sorting Algorithms   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |            |                                     |           |                                           |                                                  |           |
| 10K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            | Algorithms                          | Sorting A | Time(ms) of                               | Elapsed                                          |           |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |                                     |           |                                           |                                                  | Data size |
| SOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17           |            | 56                                  |           | 24                                        | 22                                               | 10K       |
| 70K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20           |            | 374                                 |           | 28                                        | 15                                               | 30K       |
| 100K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24           |            | 1302                                |           | 25                                        | 30                                               | 50K       |
| 198K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26           |            | 2412                                |           |                                           | 18                                               | 70K İ     |
| 390K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35           |            |                                     |           |                                           |                                                  | 100K      |
| Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 153          |            |                                     |           |                                           |                                                  |           |
| Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 247          |            | 173036                              |           |                                           |                                                  |           |
| 1000K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 308          |            |                                     |           |                                           |                                                  |           |
| Separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 462          |            |                                     |           |                                           |                                                  |           |
| Sepon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1562         |            | -                                   |           |                                           |                                                  |           |
| # Experimental Design: Nearly Sorted Number Linked List    Elapsed Time(ms) of Sorting Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2993         |            | _                                   |           |                                           |                                                  |           |
| * Experimental Design: Nearly Sorted Number Linked List  Elapsed Time(ms) of Sorting Algorithms Data size   Counting-Sort   Merge-Sort   Selection-Sort   Time  10K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4868         |            | -                                   |           | 3575                                      | 527                                              | 7000K     |
| * Experimental Design: Nearly Sorted Number Linked List  Elapsed Time(ms) of Sorting Algorithms Data size   Counting-Sort   Merge-Sort   Selection-Sort   Time  10K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7079         |            | -                                   |           | 5645                                      |                                                  | 10000K    |
| Elapsed Time(ms) of Sorting Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |            |                                     |           |                                           |                                                  |           |
| Data size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |            |                                     |           |                                           |                                                  |           |
| 30K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n-Sort       |            | tion-Sort                           | Selec     | Merge-Sort                                | Counting-Sort                                    |           |
| 30K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3            | _          |                                     |           |                                           |                                                  |           |
| Tok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            |            |                                     |           |                                           |                                                  |           |
| 76K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8            |            |                                     |           |                                           |                                                  |           |
| 100K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15           |            |                                     |           |                                           |                                                  |           |
| 300K   239   58   749184   500K   85   103   2388899   700K   135   154   -   1000K   135   231   -   3000K   371   842   -   5000K   757   2006   -   7000K   1060   2449   -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26           |            |                                     |           |                                           |                                                  |           |
| Seek   85   103   2388899     700K   135   154   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73           |            |                                     |           |                                           |                                                  |           |
| Took                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 130          |            |                                     |           |                                           |                                                  |           |
| 135   231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 193          |            |                                     |           |                                           |                                                  |           |
| 3000K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 759          |            | _                                   |           |                                           |                                                  |           |
| Top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1559         |            | _                                   |           |                                           |                                                  |           |
| 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2719         |            | _                                   |           |                                           |                                                  |           |
| 1367   3910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4102         |            | _                                   |           |                                           |                                                  |           |
| * Experimental Design: Number Array List Contains Duplicates  Elapsed Time(ms) of Sorting Algorithms  Data size   Counting-Sort Merge-Sort Selection-Sort Tim-  10K   13 7 53  30K   18 16 359  50K   27 25 3431  70K   18 22 2036  100K   26 34 17498  300K   43 100 111457  500K   199 196 307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5001         |            | -                                   |           |                                           | 1367                                             |           |
| 10K         13         7         53           30K         18         16         359           56K         27         25         3431           70K         18         22         2036           100K         26         34         17498           300K         43         100         111457           500K         199         196         307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | tes<br>Tim | ins Duplicat  Algorithms  tion-Sort | ist Conta | mber Array L<br>Time(ms) of<br>Merge-Sort | mental Design: Nur<br>Elapsed<br>  Counting-Sort | * Experi  |
| 30K 18 16 359<br>56K 27 25 3431<br>70K 18 22 2036<br>100K 26 34 17498<br>300K 43 100 111457<br>500K 199 196 307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15           |            |                                     |           |                                           |                                                  |           |
| 50K         27         25         3431           70K         18         22         2036           100K         26         34         17498           360K         43         100         111457           500K         199         196         307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39           |            |                                     |           |                                           |                                                  |           |
| 70K   18 22 2036<br>100K   26 34 17498<br>300K   43 100 111457<br>500K   199 196 307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48           |            |                                     |           |                                           |                                                  |           |
| 100K         26         34         17498           300K         43         100         111457           500K         199         196         307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16           |            |                                     |           |                                           |                                                  |           |
| 300K   43 100 111457<br>500K   199 196 307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47           |            |                                     |           |                                           |                                                  |           |
| 500K 199 196 307826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142          |            |                                     |           |                                           |                                                  |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 266          |            |                                     |           |                                           |                                                  |           |
| , 55   , 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 313          |            |                                     |           |                                           |                                                  |           |
| 1000K 263 304 991331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 445          |            |                                     |           |                                           |                                                  |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            | 221221                              |           |                                           |                                                  |           |
| 3000K 334 1159 -<br>5000K 496 2357 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1801<br>3498 |            | -                                   |           |                                           |                                                  |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            | -                                   |           |                                           |                                                  |           |
| 7000K   607 3159 -<br>10000K   813 4629 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4662<br>7542 |            | -                                   |           |                                           |                                                  |           |
| 10000K   615 4629 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            |                                     |           |                                           | •                                                |           |

## UECS2083 / UECS2453 PROBLEM SOLVING WITH DATA STRUCTURES AND ALGORITHMS

|                                                                                                                                                                        |                                                                                                                                                                                                                                            | amber erinced i                                                                                                                                   | ist Contains Outlie                                                                                                                         | rs +                                                                                            | *                                                                                                                                                                                         | Experimental Design                                                                                                                                                                                           | : Negative Nu                                                                                                                                         | mber Linked List                                                                                                                                                                    |                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Data size                                                                                                                                                              | Elapsed<br>  Counting-Sort                                                                                                                                                                                                                 | Time(ms) of :<br>Merge-Sort                                                                                                                       | Sorting Algorithms<br>Selection-Sort                                                                                                        | Tim-Sort                                                                                        | Data size                                                                                                                                                                                 | Elapsed<br>  Counting-Sort                                                                                                                                                                                    | Time(ms) of<br>Merge-Sort                                                                                                                             | Sorting Algorithms<br>Selection-Sort                                                                                                                                                | Tim-Sort                                                                                           |
| 10K                                                                                                                                                                    | l 30                                                                                                                                                                                                                                       | 1                                                                                                                                                 | 142                                                                                                                                         | 2                                                                                               | 10K                                                                                                                                                                                       | 33                                                                                                                                                                                                            | 1                                                                                                                                                     | 152                                                                                                                                                                                 | 1                                                                                                  |
| 30K                                                                                                                                                                    | 37                                                                                                                                                                                                                                         | 4                                                                                                                                                 | 1236                                                                                                                                        | 8                                                                                               | 30K                                                                                                                                                                                       | 14                                                                                                                                                                                                            | 4                                                                                                                                                     | 1449                                                                                                                                                                                | 2                                                                                                  |
| 50K                                                                                                                                                                    | 71                                                                                                                                                                                                                                         | 7                                                                                                                                                 | 3643                                                                                                                                        | 10                                                                                              | 50K                                                                                                                                                                                       | 24                                                                                                                                                                                                            | 7                                                                                                                                                     | 4127                                                                                                                                                                                | 15                                                                                                 |
| 70K                                                                                                                                                                    | 33                                                                                                                                                                                                                                         | 10                                                                                                                                                | 7192                                                                                                                                        | 14                                                                                              | 70K                                                                                                                                                                                       | 14                                                                                                                                                                                                            | 10                                                                                                                                                    | 8176                                                                                                                                                                                | 17                                                                                                 |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 | 100K                                                                                                                                                                                      | 141                                                                                                                                                                                                           | 16                                                                                                                                                    | 16952                                                                                                                                                                               | 31                                                                                                 |
| .00K                                                                                                                                                                   | 31                                                                                                                                                                                                                                         | 15                                                                                                                                                | 14773                                                                                                                                       | 22                                                                                              | 300K                                                                                                                                                                                      | 36                                                                                                                                                                                                            | 64                                                                                                                                                    | 273207                                                                                                                                                                              | 141                                                                                                |
| 100K                                                                                                                                                                   | 87                                                                                                                                                                                                                                         | 57                                                                                                                                                | 144895                                                                                                                                      | 79                                                                                              | 500K                                                                                                                                                                                      | j 66                                                                                                                                                                                                          | 121                                                                                                                                                   | 1160627                                                                                                                                                                             | 233                                                                                                |
| 00K                                                                                                                                                                    | 152                                                                                                                                                                                                                                        | 110                                                                                                                                               | 474420                                                                                                                                      | 139                                                                                             | 700K                                                                                                                                                                                      | j 92                                                                                                                                                                                                          | 185                                                                                                                                                   | 2780859                                                                                                                                                                             | 314                                                                                                |
| 90K                                                                                                                                                                    | 80                                                                                                                                                                                                                                         | 168                                                                                                                                               | -                                                                                                                                           | 239                                                                                             | 1000K                                                                                                                                                                                     | 103                                                                                                                                                                                                           | 301                                                                                                                                                   | _                                                                                                                                                                                   | 613                                                                                                |
| 000K                                                                                                                                                                   | j 134                                                                                                                                                                                                                                      | 274                                                                                                                                               | _                                                                                                                                           | 503                                                                                             | 3000K                                                                                                                                                                                     | 272                                                                                                                                                                                                           | 1169                                                                                                                                                  | _                                                                                                                                                                                   | 2257                                                                                               |
| 999K                                                                                                                                                                   | 339                                                                                                                                                                                                                                        | 1119                                                                                                                                              | _                                                                                                                                           | 1947                                                                                            | 5000K                                                                                                                                                                                     | 480                                                                                                                                                                                                           | 2175                                                                                                                                                  | _                                                                                                                                                                                   | 4518                                                                                               |
| 000K                                                                                                                                                                   | 525                                                                                                                                                                                                                                        | 2058                                                                                                                                              | _                                                                                                                                           | 3312                                                                                            | 7000K                                                                                                                                                                                     | 648                                                                                                                                                                                                           | 3836                                                                                                                                                  | _                                                                                                                                                                                   | 7817                                                                                               |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 | 10000K                                                                                                                                                                                    | 958                                                                                                                                                                                                           | 5838                                                                                                                                                  | _                                                                                                                                                                                   | 12791                                                                                              |
| 900K                                                                                                                                                                   | 678                                                                                                                                                                                                                                        | 3518                                                                                                                                              | -                                                                                                                                           | 6503                                                                                            | 100001                                                                                                                                                                                    | 1 936                                                                                                                                                                                                         | 3636                                                                                                                                                  | _                                                                                                                                                                                   | 12/5                                                                                               |
| 0000K                                                                                                                                                                  | 937                                                                                                                                                                                                                                        | 6007                                                                                                                                              | -                                                                                                                                           | 11724                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 | *                                                                                                                                                                                         | Experimental Desi                                                                                                                                                                                             |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
|                                                                                                                                                                        | Experimental Desig                                                                                                                                                                                                                         | n: Skewed Nur                                                                                                                                     | mher Array List                                                                                                                             | *                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                       | Sorting Algorithms                                                                                                                                                                  |                                                                                                    |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   | Sorting Algorithms                                                                                                                          |                                                                                                 | Data size                                                                                                                                                                                 | Counting-Sort                                                                                                                                                                                                 | Merge-Sort                                                                                                                                            | Selection-Sort                                                                                                                                                                      | Tim-Sort                                                                                           |
| ata size                                                                                                                                                               | Counting-Sort                                                                                                                                                                                                                              | Merge-Sort                                                                                                                                        | Selection-Sort                                                                                                                              | Tim-Sort                                                                                        | 10K                                                                                                                                                                                       | 15                                                                                                                                                                                                            | 2                                                                                                                                                     | 58                                                                                                                                                                                  | 16                                                                                                 |
| ЭК                                                                                                                                                                     | 12                                                                                                                                                                                                                                         | 2                                                                                                                                                 | 47                                                                                                                                          | 3                                                                                               | 30K<br>50K                                                                                                                                                                                | 17<br>19                                                                                                                                                                                                      | 78<br>15                                                                                                                                              | 490<br>1491                                                                                                                                                                         | 31                                                                                                 |
| 9K                                                                                                                                                                     | 15                                                                                                                                                                                                                                         | 7                                                                                                                                                 | 425                                                                                                                                         | 9                                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                               | 15                                                                                                                                                    |                                                                                                                                                                                     | 32                                                                                                 |
| 0K                                                                                                                                                                     | 14                                                                                                                                                                                                                                         | 89                                                                                                                                                | 1494                                                                                                                                        | 17                                                                                              | 70K                                                                                                                                                                                       | 23                                                                                                                                                                                                            | 19                                                                                                                                                    | 3000                                                                                                                                                                                | 47                                                                                                 |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 | 100K                                                                                                                                                                                      | 24                                                                                                                                                                                                            | 28                                                                                                                                                    | 6234                                                                                                                                                                                | 48                                                                                                 |
| 0K                                                                                                                                                                     | 16                                                                                                                                                                                                                                         | 19                                                                                                                                                | 2819                                                                                                                                        | 24                                                                                              | 300K                                                                                                                                                                                      | 52                                                                                                                                                                                                            | 97                                                                                                                                                    | 72104                                                                                                                                                                               | 204                                                                                                |
| 30K                                                                                                                                                                    | 18                                                                                                                                                                                                                                         | 27                                                                                                                                                | 6470                                                                                                                                        | 35                                                                                              | 500K                                                                                                                                                                                      | 79                                                                                                                                                                                                            | 211                                                                                                                                                   | 372547                                                                                                                                                                              | 366                                                                                                |
| 30K                                                                                                                                                                    | 36                                                                                                                                                                                                                                         | 103                                                                                                                                               | 70688                                                                                                                                       | 184                                                                                             | 700K                                                                                                                                                                                      | 81                                                                                                                                                                                                            | 250                                                                                                                                                   | 1000134                                                                                                                                                                             | 596                                                                                                |
| 30K                                                                                                                                                                    | l 52                                                                                                                                                                                                                                       | 194                                                                                                                                               | 182034                                                                                                                                      | 365                                                                                             | 1000K                                                                                                                                                                                     | 121                                                                                                                                                                                                           | 408                                                                                                                                                   | 2501494                                                                                                                                                                             | 627                                                                                                |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 | 3000K                                                                                                                                                                                     | 290                                                                                                                                                                                                           | 1723                                                                                                                                                  | -                                                                                                                                                                                   | 2479                                                                                               |
|                                                                                                                                                                        | Experimental Desig                                                                                                                                                                                                                         | n: Skewed Num                                                                                                                                     | ber Linked List                                                                                                                             | *                                                                                               | 5000K                                                                                                                                                                                     | 505                                                                                                                                                                                                           | 2870                                                                                                                                                  | -                                                                                                                                                                                   | 4551                                                                                               |
|                                                                                                                                                                        | Flansed                                                                                                                                                                                                                                    | Time(ms) of S                                                                                                                                     | orting Algorithms                                                                                                                           |                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
| Data size                                                                                                                                                              | Counting-Sort                                                                                                                                                                                                                              | Merge-Sort                                                                                                                                        | Selection-Sort                                                                                                                              | Tim-Sort                                                                                        |                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                             |                                                                                                 | *                                                                                                                                                                                         | Experimental Desig                                                                                                                                                                                            |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
| løk                                                                                                                                                                    | 29                                                                                                                                                                                                                                         | 1                                                                                                                                                 | 192                                                                                                                                         | 2                                                                                               | *                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                    |
|                                                                                                                                                                        |                                                                                                                                                                                                                                            | 1<br>4                                                                                                                                            |                                                                                                                                             | 2<br>5                                                                                          | *                                                                                                                                                                                         | Elapsed                                                                                                                                                                                                       | Time(ms) of S                                                                                                                                         | Sorting Algorithms                                                                                                                                                                  |                                                                                                    |
| ØK                                                                                                                                                                     | 15                                                                                                                                                                                                                                         | 4                                                                                                                                                 | 1681                                                                                                                                        | 5                                                                                               | *<br><br>Data size                                                                                                                                                                        | Elapsed                                                                                                                                                                                                       |                                                                                                                                                       |                                                                                                                                                                                     | Tim-Sort                                                                                           |
| ØК<br>ØК                                                                                                                                                               | 15<br>13                                                                                                                                                                                                                                   | 4<br>7                                                                                                                                            | 1681<br>4894                                                                                                                                | 5<br>11                                                                                         |                                                                                                                                                                                           | Elapsed<br>  Counting-Sort                                                                                                                                                                                    | Time(ms) of S<br>Merge-Sort                                                                                                                           | Sorting Algorithms<br>Selection-Sort                                                                                                                                                |                                                                                                    |
| 0К<br>0К<br>0К                                                                                                                                                         | 15<br>13<br>21                                                                                                                                                                                                                             | 4<br>7<br>10                                                                                                                                      | 1681<br>4894<br>9223                                                                                                                        | 5<br>11<br>17                                                                                   | 10K                                                                                                                                                                                       | Elapsed<br>  Counting-Sort                                                                                                                                                                                    | Time(ms) of S<br>Merge-Sort                                                                                                                           | Sorting Algorithms<br>Selection-Sort<br>209                                                                                                                                         | 15                                                                                                 |
| 9К<br>9К<br>9К<br>98                                                                                                                                                   | 15<br>13<br>21<br>19                                                                                                                                                                                                                       | 4<br>7<br>10<br>14                                                                                                                                | 1681<br>4894<br>9223<br>19387                                                                                                               | 5<br>11<br>17<br>36                                                                             | 10K<br>30K                                                                                                                                                                                | Elapsed<br>  Counting-Sort<br>  129<br>  130                                                                                                                                                                  | Time(ms) of S<br>Merge-Sort<br>17                                                                                                                     | Sorting Algorithms<br>Selection-Sort                                                                                                                                                | 15<br>24                                                                                           |
| өк<br>өк<br>өк<br>өөк<br>өөк                                                                                                                                           | 15<br>13<br>21<br>19<br>44                                                                                                                                                                                                                 | 4<br>7<br>10<br>14<br>59                                                                                                                          | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105                                                                      | 10K                                                                                                                                                                                       | Elapsed<br>  Counting-Sort                                                                                                                                                                                    | Time(ms) of S<br>Merge-Sort                                                                                                                           | Sorting Algorithms<br>Selection-Sort<br>209                                                                                                                                         | 15                                                                                                 |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K                                                                                                                                    | 15<br>13<br>21<br>19<br>44<br>65                                                                                                                                                                                                           | 4<br>7<br>10<br>14<br>59<br>113                                                                                                                   | 1681<br>4894<br>9223<br>19387                                                                                                               | 5<br>11<br>17<br>36<br>105<br>194                                                               | 10K<br>30K                                                                                                                                                                                | Elapsed<br>  Counting-Sort<br>  129<br>  130                                                                                                                                                                  | Time(ms) of S<br>Merge-Sort<br>17                                                                                                                     | Sorting Algorithms<br>Selection-Sort<br>209<br>1252                                                                                                                                 | 15<br>24                                                                                           |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K                                                                                                                                    | 15<br>13<br>21<br>19<br>44                                                                                                                                                                                                                 | 4<br>7<br>10<br>14<br>59                                                                                                                          | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105                                                                      | 10K<br>30K<br>50K                                                                                                                                                                         | Elapsed<br>  Counting-Sort<br>  129<br>  130<br>  243                                                                                                                                                         | Time(ms) of S<br>Merge-Sort<br>17<br>8<br>14                                                                                                          | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741                                                                                                                         | 15<br>24<br>29                                                                                     |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K<br>00K                                                                                                                             | 15<br>13<br>21<br>19<br>44<br>65                                                                                                                                                                                                           | 4<br>7<br>10<br>14<br>59<br>113<br>177                                                                                                            | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105<br>194                                                               | 10K<br>30K<br>50K<br>70K<br>100K                                                                                                                                                          | Elapsed   Counting-Sort   129   130   243   106   110                                                                                                                                                         | Time(ms) of S<br>Merge-Sort<br>17<br>8<br>14<br>21<br>30                                                                                              | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904                                                                                                         | 15<br>24<br>29<br>31                                                                               |
| 9K<br>9K<br>9K<br>90K<br>90K<br>90K<br>90K<br>900K                                                                                                                     | 15<br>13<br>21<br>19<br>44<br>65<br>190                                                                                                                                                                                                    | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292                                                                                                     | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497                                                 | 10K<br>30K<br>50K<br>70K<br>100K<br>300K                                                                                                                                                  | Elapsed   Counting-Sort   129   130   243   106   110   277                                                                                                                                                   | Time(ms) of S<br>Merge-Sort<br>17<br>8<br>14<br>21<br>30<br>101                                                                                       | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717                                                                                                | 15<br>24<br>29<br>31<br>39<br>144                                                                  |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K<br>00K<br>00K<br>000K                                                                                                              | 15<br>13<br>21<br>19<br>44<br>65<br>190<br>114<br>412                                                                                                                                                                                      | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136                                                                                             | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686                                         | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K                                                                                                                                          | Elapsed   Counting-Sort   129   130   243   106   110   277   147                                                                                                                                             | Time(ms) of 5<br>Merge-Sort<br>17<br>8<br>14<br>21<br>30<br>101<br>205                                                                                | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717<br>365564                                                                                      | 15<br>24<br>29<br>31<br>39<br>144<br>253                                                           |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K<br>00K<br>00K<br>000K                                                                                                              | 15<br>13<br>21<br>19<br>44<br>65<br>190                                                                                                                                                                                                    | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292                                                                                                     | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497                                                 | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K                                                                                                                                  | Elapsed   Counting-Sort   129   130   243   196   110   277   147   157                                                                                                                                       | Time(ms) of S<br>Merge-Sort<br>17<br>8<br>14<br>21<br>30<br>101<br>205<br>318                                                                         | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717<br>365564<br>1363518                                                                           | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348                                                    |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K<br>00K<br>00K<br>000K                                                                                                              | 15<br>13<br>21<br>19<br>44<br>65<br>190<br>114<br>412                                                                                                                                                                                      | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136                                                                                             | 1681<br>4894<br>9223<br>19387<br>184806                                                                                                     | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686                                         | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K                                                                                                                         | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195                                                                                                                                 | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518                                                                                               | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717<br>365564                                                                                      | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470                                             |
| 9K<br>9K<br>9K<br>99K<br>99K<br>99K<br>99K<br>998K                                                                                                                     | 15<br>13<br>21<br>19<br>44<br>65<br>190<br>114<br>412<br>541                                                                                                                                                                               | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115                                                                                     | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-                                                                                 | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686                                         | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K                                                                                                                | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423                                                                                                                           | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218                                                                                          | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717<br>365564<br>1363518                                                                           | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773                                     |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K<br>00K<br>00K<br>000K                                                                                                              | 15<br>13<br>21<br>19<br>44<br>65<br>190<br>114<br>412                                                                                                                                                                                      | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115                                                                                     | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-                                                                                 | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686                                         | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K                                                                                                       | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   888                                                                                                                     | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981                                                                                     | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717<br>365564<br>1363518                                                                           | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826                             |
| 1.0K<br>1.06K<br>1.00K<br>1.00K<br>1.00K<br>1.00K<br>1.000K<br>1.000K<br>1.000K                                                                                        | 15<br>13<br>21<br>19<br>44<br>65<br>190<br>114<br>412<br>541<br>Experimental Design                                                                                                                                                        | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115                                                                                     | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686                                         | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>700K                                                                                               | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1060   1060                                                                                                | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373                                                                                | Sorting Algorithms<br>Selection-Sort<br>209<br>1252<br>2741<br>6606<br>7904<br>77717<br>365564<br>1363518                                                                           | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409                     |
| 9K<br>9K<br>9K<br>99K<br>99K<br>99K<br>99K<br>99K<br>999K                                                                                                              | 15<br>13<br>21<br>19<br>44<br>65<br>190<br>114<br>412<br>541<br>Experimental Design                                                                                                                                                        | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115                                                                                     | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-                                                                       | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686                                         | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K                                                                                              | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   888                                                                                                                     | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666                                                                           | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826                             |
| 00K<br>00K<br>00K<br>000K<br>000K<br>000K<br>000K<br>0000K<br>0000K                                                                                                    | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design                                                                                                                                    | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>: Negative Nu                                                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686<br>4394                                 | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K                                                                                              | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542                                                                                                       | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666                                                                           | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409                     |
| 0K<br>0K<br>0K<br>00K<br>00K<br>00K<br>00K<br>000K<br>000K<br>000                                                                                                      | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Counting-Sort                                                                                                                 | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>: Negative Nu                                                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686<br>4394<br>**                           | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K                                                                                              | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                  | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666                                                                           | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409                     |
| ak<br>ak<br>ak<br>abek<br>abek<br>abek<br>abek<br>abeok<br>abeok<br>ata size                                                                                           | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Counting-Sort                                                                                                                 | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>:: Negative Nu<br>Time(ms) of S<br>Merge-Sort                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686<br>4394<br>*<br>Tim-Sort                | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K                                                                                              | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                  | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666                                                                           | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409                     |
| 9K<br>9K<br>90K<br>99K<br>99K<br>99K<br>990K<br>990K<br>990K<br>94<br>ata size<br>9K<br>9K                                                                             | 15<br>  21<br>  29<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34                                                                                                 | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>:: Negative Nu<br>Time(ms) of S<br>Merge-Sort                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686<br>4394<br>                             | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K                                                                                              | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                  | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666                                                                           | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409                     |
| 0K<br>0K<br>0K<br>00K<br>00K<br>000K<br>000K<br>000K<br>000K<br>0                                                                                                      | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Counting-Sort                                                                                                                 | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>:: Negative Nu<br>Time(ms) of S<br>Merge-Sort                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686<br>4394<br>*<br>Tim-Sort                | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K                                                                                              | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                  | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666 gn: Double Num                                                            | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058             |
| 9K<br>9K<br>9B<br>99K<br>999K<br>999K<br>999K<br>9999K<br>9990K<br>9990K<br>9990K                                                                                      | 15<br>  21<br>  29<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34                                                                                                 | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>:: Negative Nu<br>Time(ms) of S<br>Merge-Sort                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5<br>11<br>17<br>36<br>105<br>194<br>299<br>497<br>1686<br>4394<br>                             | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 1000K **                                                                                                                      | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                  | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666 gn: Double Num                                                            | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058             |
| 90 K<br>90 K<br>90 K<br>90 K<br>90 K<br>90 K<br>90 0 K<br>90 0 K<br>90 0 K<br>90 0 K<br>91 0 K<br>92 K<br>93 K<br>94 K<br>95 K<br>96 K<br>97 K<br>98 K<br>98 K<br>99 K | 15<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11                                                                                         | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>:: Negative Nu<br>Time(ms) of S<br>Merge-Sort                                    | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394  *  Tim-Sort  17 38 50 51 70                               | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K 5000K 7000K                                                                                                            | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1060   1542   Experimental Designation   Elapsed   Counting-Sort   225                                            | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666 gn: Double Num Time(ms) of S Merge-Sort                                   | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058             |
| sk<br>sk<br>sk<br>spk<br>spek<br>spek<br>spek<br>spek<br>spek<br>sp                                                                                                    | 15<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31                                                                | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>:: Negative Nu<br>Time(ms) of S<br>Merge-Sort<br>2<br>7<br>12<br>18<br>27<br>563 | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394  * Tim-Sort  17 38 50 51 70 124                            | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K *  Data size 10K                                                                                                       | Elapsed   Counting-Sort   129   130   243   106   110   277   195   423   880   1060   1542   Experimental Desig                                                                                              | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2281 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8                              | Sorting Algorithms Selection-Sort  209 1252 2741 66606 7904 77717 365564 1363518 4212621                                                                                            | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058             |
| ata size                                                                                                                                                               | 15<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Elapsed<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48                                                    | 4<br>7<br>10<br>14<br>59<br>113<br>177<br>292<br>1136<br>2115<br>                                                                                 | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 * Tim-Sort 17 38 50 51 70 124 247                          | 10K<br>30K<br>50K<br>70K<br>100K<br>300K<br>500K<br>700K<br>1000K<br>3000K<br>5000K<br>7000K<br>10000K                                                                                    | Elapsed   Counting-Sort   129   130   243   106   110   1277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                 | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666  gn: Double Nun Time(ms) of S Merge-Sort  4 8 13                          | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058<br>Tim-Sort |
| 9K 9K 9K 99K 990K 990K 990K 990K 9900K 9900K 9900K 900K 900K 900K 900K 900K 900K 900K 900K                                                                             | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  Experimental Design<br>  Elapsed<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48<br>  75                                    | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394                                                            | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K 10000K                                                                                                                 | Elapsed   Counting-Sort   129   130   243   106   110   1277   147   157   195   423   880   1060   1542   Experimental Desig                                                                                 | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11                        | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621 mber Linked List Sorting Algorithms Selection-Sort  157 1495 4333 8838                      | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058             |
| 9K<br>9K<br>90K<br>90K<br>90K<br>90K<br>900K<br>900K<br>9000K<br>9000K<br>900<br>9K<br>9K<br>9K<br>9K<br>90K<br>90                                                     | 15   13   21   19   44   65   190   114   412   541                                                                                                                                                                                        | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 * Tim-Sort 17 38 50 51 70 124 247 279 396                  | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 7000K 1000K *  Data size 10K 30K 50K 70K 100K                                                                                             | Elapsed   Counting-Sort   129   130   243   106   110   157   195   423   880   1060   1542   Experimental Designation   225   109   110   102   111   111                                                    | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18                          | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15<br>24<br>29<br>31<br>39<br>144<br>253<br>348<br>470<br>1773<br>3826<br>4409<br>8058<br>Tim-Sort |
| 9K<br>9K<br>90K<br>90K<br>90K<br>90K<br>900K<br>900K<br>900K<br>900K<br>90K<br>9                                                                                       | 15   13   21   19   44   65   190   114   112   541                                                                                                                                                                                        | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 *  Tim-Sort                                                | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 7000K 10000K **  Data size  10K 30K 50K 70K 1000K 30K 30K 30K 30K 30K 30K 30K 30K 30K                                                     | Elapsed   Counting-Sort   129   130   243   106   110   127   147   157   195   423   880   1060   1542   Experimental Designation   225   109   110   102   111   329                                        | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666  gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18 70                 | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15 24 29 31 39 144 253 348 470 1773 3826 4409 8058 Tim-Sort                                        |
| 9K<br>9K<br>90K<br>90K<br>90K<br>90K<br>900K<br>900K<br>9000K<br>900K<br>90K<br>9                                                                                      | 15   13   21   19   44   65   190   114   412   541                                                                                                                                                                                        | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 * Tim-Sort 17 38 50 51 70 124 247 279 396                  | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K *  Data size  10K 30K 50K 1000 30K                                                                                     | Elapsed   Counting-Sort   129   130   243   106   110   277   157   155   423   880   1060   1542   Experimental Desig                                                                                        | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2281 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18 70 133              | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621 mber Linked List Sorting Algorithms Selection-Sort  157 1495 4333 8838 17599 323119 1615395 | 15 24 29 31 39 144 253 348 470 1773 3826 4409 8058  Tim-Sort  0 7 15 16 32 94 237                  |
| 9K<br>9K<br>9BK<br>99K<br>99K<br>99K<br>990K<br>990K<br>990K<br>9K<br>9K<br>9K<br>9K<br>98K<br>99K<br>99K<br>99K<br>9                                                  | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  541<br>  Experimental Design<br>  Elapsed<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48<br>  75<br>  85<br>  243<br>  392 | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394  *  Tim-Sort  17 38 50 51 70 124 247 279 396 1559 3895     | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K  *  Data size  10K 30K 50K 70K 100K 300K 500K 70K 100K                                                                 | Elapsed   Counting-Sort   129   130   243   106   110   277   147   157   195   423   880   1660   1542   Experimental Desig   Elapsed   Counting-Sort   225   109   110   102   111   329   197   174        | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 2218 2981 4373 6666  gn: Double Nun  Time(ms) of S Merge-Sort  4 8 13 11 18 70 133 216            | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15 24 29 31 39 144 253 348 470 1773 3826 4409 8058  Tim-Sort  0 7 15 16 32 94 237 477              |
| 9K<br>9K<br>90K<br>90K<br>90K<br>90K<br>900K<br>900K<br>900K<br>900OK<br>90K<br>90K<br>90K<br>90K<br>90K<br>90K<br>90K<br>90                                           | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48<br>  75<br>  85<br>  243<br>  392<br>  779     | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 *  Tim-Sort  17 38 50 51 70 124 247 279 396 1559 3895 5141 | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K **  Data size  10K 30K 50K 70K 100K 30K 50K 70K 100K 100K 100K 100K 100K 100K 100                                      | Elapsed   Counting-Sort   129   130   243   106   110   1277   147   157   195   423   880   1060   1542   Experimental Desig   Elapsed   Counting-Sort   225   109   110   102   111   329   197   174   205 | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18 70 133 216 326      | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621 mber Linked List Sorting Algorithms Selection-Sort  157 1495 4333 8838 17599 323119 1615395 | 15 24 29 31 39 144 4253 3488 470 1773 3826 4409 8058  Tim-Sort  0 7 15 16 32 94 237 477 630        |
| ak a                                                                                                                               | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  541<br>  Experimental Design<br>  Elapsed<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48<br>  75<br>  85<br>  243<br>  392 | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394  *  Tim-Sort  17 38 50 51 70 124 247 279 396 1559 3895     | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K **  Data size  10K 30K 50K 70K 100K 30K 50K 70K 100K 30K 50K 70K 100K 300K 70K 100K 300K 700K 100K 300K 700K 100K 300K | Elapsed   Counting-Sort   129   130   243   106   110   1277   147   157   195   423   880   1060   1542   Experimental Designation   225   109   110   102   111   329   197   174   205   956               | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2281 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18 70 133 216 326 1270 | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15 24 29 31 39 144 253 348 470 1773 3826 4409 8058  Tim-Sort  0 7 15 16 32 94 237 477 630 2597     |
| 9K<br>9K<br>90K<br>90K<br>90K<br>90K<br>900K<br>900K<br>900K<br>900K<br>90K<br>9                                                                                       | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48<br>  75<br>  85<br>  243<br>  392<br>  779     | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 *  Tim-Sort  17 38 50 51 70 124 247 279 396 1559 3895 5141 | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K **  Data size  10K 30K 50K 70K 100K 30K 50K 70K 100K 100K 100K 100K 100K 100K 100                                      | Elapsed   Counting-Sort   129   130   243   106   110   1277   147   157   195   423   880   1060   1542   Experimental Desig   Elapsed   Counting-Sort   225   109   110   102   111   329   197   174   205 | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2981 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18 70 133 216 326      | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15 24 29 31 39 144 253 348 470 1773 3826 4409 8058  Tim-Sort  0 7 15 16 32 94 237 477 630          |
| 9K 9K 9K 90K 90K 90K 90K 909K 909K 909K                                                                                                                                | 15<br>  13<br>  21<br>  19<br>  44<br>  65<br>  190<br>  114<br>  412<br>  541<br>  541<br>  Experimental Design<br>  Counting-Sort<br>  30<br>  19<br>  34<br>  11<br>  14<br>  31<br>  48<br>  75<br>  85<br>  243<br>  392<br>  779     | 4 7 7 10 14 59 113 177 292 1136 2115                                                                                                              | 1681<br>4894<br>9223<br>19387<br>184806<br>570455<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | 5 11 17 36 105 194 299 497 1686 4394 *  Tim-Sort  17 38 50 51 70 124 247 279 396 1559 3895 5141 | 10K 30K 50K 70K 100K 300K 500K 700K 1000K 3000K 5000K 7000K 10000K **  Data size  10K 30K 50K 70K 100K 30K 50K 70K 100K 30K 50K 70K 100K 300K 70K 100K 300K 700K 100K 300K 700K 100K 300K | Elapsed   Counting-Sort   129   130   243   106   110   1277   147   157   195   423   880   1060   1542   Experimental Designation   225   109   110   102   111   329   197   174   205   956               | Time(ms) of S Merge-Sort  17 8 14 21 30 101 205 318 518 2218 2281 4373 6666 gn: Double Num Time(ms) of S Merge-Sort  4 8 13 11 18 70 133 216 326 1270 | Sorting Algorithms Selection-Sort  209 1252 2741 6606 7904 77717 365564 1363518 4212621                                                                                             | 15 24 29 31 39 144 253 348 470 1773 3826 4409 8058  Tim-Sort  0 7 15 16 32 94 477 630 2597         |

# References

- Abdon, A. L. M., Ang, J. C. M., Domingo, K. N., & Gutierrez, J. E. (2024). Automated Windows-Based Timelining Tool for Memory and Disk Image Analysis: Leveraging Timsort Algorithm with WinPmem, FTK Imager, Volatility 3 and The Sleuth Kit.
- Baeldung. (n.d.). *Straight selection sort*. Baeldung. Retrieved from https://www.baeldung.com/cs/straight-selection-sort
- Counting Sort (With Code). (n.d.). Www.programiz.com. https://www.programiz.com/dsa/counting-sort
- GeeksforGeeks. (2024, September 4). *Selection sort algorithm*. GeeksforGeeks. Retrieved from https://www.geeksforgeeks.org/selection-sort-algorithm-2/
- Hanafi, M. R., Faadhilah, M. A., Putra, M. T. D., & Pradeka, D. (2022). Comparison Analysis of Bubble Sort Algorithm with Tim Sort Algorithm Sorting Against the Amount of Data. *Journal of Computer Engineering, Electronics and Information Technology*, 1(1), 29-38.
- Idrizi, F., Rustemi, A., & Dalipi, F. (2017, June). A new modified sorting algorithm: a comparison with state of the art. In 2017 6th Mediterranean Conference on Embedded Computing (MECO) (pp. 1-6). IEEE.
- Lobo, J., & Kuwelkar, S. (2020, July 1). *Performance Analysis of Merge Sort Algorithms*. IEEE Xplore. https://doi.org/10.1109/ICESC48915.2020.9155623
- P. Asha Rani, Chinnaiah, M. C., Kumari, A., G. Preethika, & Reddy, Y. P. (2023). *HLS Based Design and Optimization of Merge Sort Algorithm for High Performance Computing*. https://doi.org/10.1109/incet57972.2023.10170313
- Tyagi, A., & Ahlawat, A. K. (2023, April 1). *A New Optimized Version of Merge Sort*. IEEE Xplore. https://doi.org/10.1109/ICETET-SIP58143.2023.10151579

Zhang, Y., Zhao, Y., & Sanan, D. (2018). A verified timsort C implementation in isabelle/hol. *arXiv* preprint arXiv:1812.03318.