Roll Number:

CS 228 Spring 2023 End-semester Examination 17-04-2023

- If you need to make any assumptions, state them clearly.
- Write your answers in the spaces provided in the question booklet.
- If needed, you may cite results/proofs covered in class without reproducing them.
- Penalty for Copying: FR grade

1. Good old propositional logic [10 marks]

(a) Convert the following argument into a propositional statement, i.e., $\Sigma \vdash F$. If the laws are good and their enforcement is strict, then crime will diminish. If strict enforcement of laws will make crime diminish, then our problem is a practical one. The laws are good. Therefore our problem is a practical one. (Hint: needed propositional variables G, S, D, P)

(b) Write a formal proof proving the statement in the previous problem.

2. LTL and cousins [20 marks]

Lets begin with LTL and first order logic whose models are infinite words.

(a) For each LTL formula φ over a set of propositional variables AP, show that there exists a first order logic sentence ψ such that $L(\varphi) = L(\psi)$.

Hint: Use the semantics of LTL, and use structural induction to come up with a translation T such that each LTL formula φ can be translated into an FO formula $\psi = T(\varphi)$. For example, for the LTL formula a, $T(a) = \exists x(Q_a(x) \land first(x))$, where you expand first appropriately.

(b) Part (a) shows that LTL \subseteq FO. Now consider the following variant of LTL, called quantified LTL (QLTL) defined as follows.

Syntax: any LTL φ over $AP \mid \varphi \wedge \varphi \mid \neg \varphi \mid \exists p.\varphi$, where $p \in AP$.

Semantics: Given an infinite word $w \in \Sigma^{\omega}$, $\Sigma = 2^{AP}$, $w, i \models \exists q. \varphi$ iff there exists $w' \in \Sigma^{\omega}$ with $w'[j] \cap (AP \setminus \{q\}) = w[j] \cap (AP \setminus \{q\})$ for all indices j, such that $w', i \models \varphi$. w[j] denotes the jth position of w.

(1) Show that the language $L=(\emptyset\emptyset)^*\{p\}^\omega$ is QLTL-definable.

(2) For every Büchi automaton \mathcal{A} over $\Sigma=2^{AP}$, there exists a QLTL formula φ such that $L(\varphi)=L(\mathcal{A})$.

3. Probably Regular/10 marks/

A probabilistic automaton A is given by $(Q, \Sigma = \{0, 1\}, (T_0, T_1), q_0, F)$ where Q is a set of states, the input alphabet is $\{0, 1\}$, q_0 is the initial state, F is a set of final states and T_0, T_1 are two $n \times n$ matrices where n = |Q|. The matrices have the following properties:

- each row and each column is labeled by the set of states q_0, q_1, \dots, q_{n-1}
- All the entries of the matrices are in the interval [0,1], i.e. $\forall i,j \in \{0,1,\cdots,n-1\}, 0 \leq T_0(q_i,q_j) \leq 1$ and $0 \leq T_1(q_i,q_j) \leq 1$.
- Each row sums up to 1, i.e. $\forall i \in \{0, 1, \dots, n-1\}, \sum_{j=0}^{n-1} T_0(q_i, q_j) = 1$ and $\sum_{j=0}^{n-1} T_1(q_i, q_j) = 1$.

The idea is that the transitions of the automaton are probabilistic, i.e. when the automaton is in the state q_i and sees a letter $b \in \{0, 1\}$ then it goes to state q_j with probability $T_b(q_i, q_j)$.

Let $w \in \{0,1\}^*$, $w = a_1 a_2 \cdots a_n$ and let $T_w = T_{a_1} \times T_{a_2} \cdots \times T_{a_n}$ where \times is matrix multiplication. Let $Nice(w) = \sum_{f \in F} T_w(q_0, f)$, i.e. the total probability of reaching any of the final states starting from q_0 on word w. We say that A τ -accepts w iff $Nice(w) \geq \tau$. Let $L_{\tau}(A) = \{w \mid A \tau$ -accepts $w\}$. As an example, for the automaton A above and w = 01, $Nice(01) = \frac{5}{18} + \frac{1}{10}$. Prove that for any probabilistic automaton, $L_1(A)$ is regular.

4. Alternation [15 marks]

Recall alternating finite automata (AFA) done in the class. Let us now consider this on infinite words with the Büchi acceptance condition. An Alternating Büchi automaton (ABA) is a tuple $A=(Q,q_0,\Sigma,\delta,F)$ where $\delta(q,a)$ for each $q\in Q, a\in \Sigma$ is a CNF over Q. Assume wlg that no states are terminal, that is, on each symbol of Σ , there is at least one outgoing transition from each state.

An infinite word $w \in \Sigma^{\omega}$ is accepted by A iff there is at least one run tree T for w, such that all the branches of T visit states of F infinitely often. Formally, T is an accepting run tree iff for each infinite branch α of T, $Inf(\alpha) \cap F \neq \emptyset$.

(a) Consider the ABA $A = (\{p,q,r\},\{p\},\{a,b\},\delta,\{p,r\})$ such that $\delta(p,a) = p \land q, \delta(p,b) = p, \delta(q,a) = q, \delta(q,b) = r, \delta(r,a) = \delta(r,b) = r$. What is L(A)?

(b) For every ABA $A=(Q,q_0,\Sigma,\delta,F)$, show that there exists a NBA B such that L(A)=L(B).

Hint: when you construct the NBA B, visiting the good states of B infinitely often must simulate the fact that there is a run tree T of A such that each branch of T sees states from F infinitely often. Recall the product construction we did in class for NBA, where we track visiting a good state in the first automaton, and then in the second automaton and keep alternating this. Recall we used a bit $\in \{1,2\}$ to track, and used this in the acceptance condition. Here, you need to track the branches of T; any run tree T is finitely branching. Perhaps you cant use a bit here, since you don't know exactly how many children are there at a given level of T; however, you can use the fact that the children at any level is just a subset of Q.

5. LTL model checking [20 marks] Consider the transition system TS given below.

(a) Give a persistence property P_{pers} such that $TS \nvDash P_{pers}$. Write an algorithm that checks $TS \nvDash P_{pers}$.

- (b) Consider the LTL formula $\varphi = \neg \bigcirc (q \wedge \bigcirc \Box (p \wedge q))$. Following the steps done in class, check if $TS \models \varphi$. To do this,
 - construct a NBA A for $\neg \varphi$,
 - ullet construct the product TS' of TS and A,
 - write down a persistence property ψ and argue that $TS' \models \psi$ iff $TS \models \varphi$.

- 6. Let's Count!/10 marks/
 - (a) Consider the following Boolean logic formula over variables $x_1, ..., x_n$.

$$(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \dots \land (\neg x_{n-1} \lor x_n) \land (\neg x_n \lor x_1)$$

How many assignments to the variables satisfy the above formula?

(b) Consider the following Boolean logic formula over variables $x_1, ..., x_n$.

$$(\neg x_1 \land x_2) \lor (\neg x_2 \land x_3) \lor \dots \lor (\neg x_{n-1} \land x_n) \lor (\neg x_n \land x_1)$$

How many assignments to the variables satisfy the above formula?

ROUGH WORK/ EXTRA SHEET

ROUGH WORK/ EXTRA SHEET