影像處理導論 第四次作業

Homework 4-1

- 宣告一個函式Gaussian(n,s)
 - 產生任意大小高斯瀘波器並回傳
 - n: 產生n X n大小矩陣存放高斯濾波器系數
 - s:定義二維高斯函數的變異量
 - 高斯濾波器請參照Homework 4-1-1補充說明
- 宣告一個函式Laplacian(a)
 - 產生大小3x3之Laplacian 濾波器
 - a: 濾波器系數
 - Laplacian 濾波器請參照Homework 4-1-2補充說明

Homework 4-2

- 自行設定上述兩函數的參數產生對應的濾波器,分別對一張影像進行卷積運算(Convolution)產生兩張結果
 - 請自行使用任意的灰階影像

高斯濾波結果

Laplacian濾波結果

補充說明:濾波器座標

- 請注意matlab矩陣座標與濾波器座標的不同
- 以3X5大小的矩陣與濾波器為例

矩陣

m(1,1) 原點	m(1,2)	m(1,3)	m(1,4)	m(1,5)
m(2,1)	m(2,2)	m(2,3)	m(2,4)	m(2,5)
m(3,3)	m(3,2)	m(3,3)	m(3,4)	m(3,5)

濾波器

m(-1, -2)	m(-1,-1)	m(-1,0)	m(-1,1)	m(-1, 2)
m(0, -2)	m(0,-1)	m(0,0) 原點	m(0, 1)	m(0,2)
m(1, -2)	m(1,-1)	m(1,0)	m(1,1)	m(1,2)

Homework 4-1-1補充說明

• 使用二維高斯函數可產生任意大小的高斯濾波器

•
$$f(x,y) = e^{-\frac{x^2+y^2}{2s^2}}$$
 (結果須進行normalize, 使矩陣總和為1)

- Normalize:
 - 經Normalize後矩陣元素值 = 矩陣元素值(x, y) / 矩陣元素值總合
- Ex:

Gaussian(3,2)

0.1019	0.1154	0.1019
0.1154	0.1308	0.1154
0.1019	0.1154	0.1019

Homework 4-1-2補充說明

• 使用下列公式可產生大小3X3之Laplacian濾波器

$$\frac{1}{\alpha+1} \begin{bmatrix} -\alpha & \alpha-1 & -\alpha \\ \alpha-1 & \alpha+5 & \alpha-1 \\ -\alpha & \alpha-1 & -\alpha \end{bmatrix}$$

• Ex:

Laplacian(0.5)

-0.3333	-0.3333	-0.3333
-0.3333	3.6667	-0.3333
-0.3333	-0.3333	-0.3333