SPECIFICATION AMENDMENTS:

Please amend the paragraph beginning on page 29, line 16 as follows:

Referring now to FIG. 9, an antenna system 150 of the invention is shown for a phased array 152 of n elements 152₁ to 152_n employing double variable delay, n being an arbitrary positive integer. A first splitter 154₁ receives an input signal Vin, and splits it into two signals one of which has twice the power of the other. Of these two signals, the higher powered signal is routed to a first variable phase shifter 156₁ and the lower powered signal to a first fixed phase shifter 158₁ The first fixed phase shifter 158₁ provides an output signal via a second fixed phase shifter 158₂ to a second splitter 154₂, which splits it into n signal fractions al to an for output via a bus indicated by Path P. The first variable phase shifter 156₁ provides an output signal to a third splitter 154₃ which splits it into n signal fractions bl to bn. Signal fractions b2 to bn are output via a third first fixed phase shifter 158₃ and a bus indicated by Path Q. Signal fraction b1 has equal power to that of the signal fed to the first fixed phase shifter 158₁, and it is routed to a second variable phase shifter 156₂ and thence to a fourth splitter 154₄, which splits it into n signal fractions c1 to cn for output via a bus indicated by Path R. The buses indicated by Paths P, Q and R have Na, Nb and Nc individual conductors respectively.