197890690

PRIORITY DOCUMENT SURMITTED OR TRANSMITTED IN

REC'D **0 9 MAR 2000**WIPO PCT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

FP00/910

Bescheinigung

Die ESPE Dental AG in Seefeld, Oberbayern/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Einfärbung von Keramiken mittels ionischer oder komplexhaltiger Lösungen"

am 4. Februar 1999 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole A 61 K und C 04 B der Internationalen Patentklassifikation erhalten.

Aktenzeichen: <u>199 04 522.4</u>

München, den 26. Januar 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

... sinmay?

Abitz & Parti...

European Patent Attorneys

European Trademark Attorneys Patentanwälte

MANICABLE COPY

Dr.-Ing.

W. Abitz

M. Gritschneder Dipl.-Phys.

A. Frhr. von Wittgenstein Dr. Dipl.-Chem.

J. Morf Dr. Dipl.-Chem.

Abitz & Partner, Postfach 86 01 09, D-81628 München

Postanschrift / Postal Address Postfach 86 01 09 D-81628 München

4. Februar 1999 32302/CC-COL/DE

ESPE Dental AG ESPE Platz D-82229 Seefeld BR. Deutschland

Einfärbung von Keramiken mittels ionischer oder komplexhaltiger Lösungen

Die Erfindung betrifft die Einfärbung von Keramiken mittels ionischer oder komplexhaltiger Lösungen. Im besonderen betrifft die Erfindung die Einfärbung von Dentalkeramiken auf Zirkonoxidbasis mittels Lösungen von Seltenerdenmetallen und Nebengruppenelementen.

Keramiken werden aufgrund ihrer physikalischen Eigenschaften bei der Erstellung von hochwertigem Zahnersatz sehr geschätzt. Aluminium- und Zirkonoxidkeramiken sind im Medizinbereich seit langem die Materialien der Wahl (Sonderdruck-aus Industrie Diamanten Rundschau, IDR 2/1993, "Aluminium- und Zirkonoxidkeramik in der Medizin"). Im Dentalbereich gibt es eine Vielzahl von Publikationen, die sich mit der Verwendung von Keramiken zur Herstellung von Prothesen beschäftigen. Ebenso sind diverse Keramiksysteme bereits auf dem Dentalmarkt verfügbar (CEREC, Fa. Siemens; Procera, Fa. Nobel-Biocare).

Insbesondere im Dentalbereich spielen aber nicht nur die mechanischen Parameter eine große Rolle, sondern besonders auch die Ästhetik. Transluzenz

15

10

5

und Farbgebung der Gerüst- oder Verblendkeramiken sind wichtig, um dem Patienten ein ein natürliches Aussehen seines künstlichen Zahnersatzes zu ermöglichen.

5 Zahnersatz wird üblicherweise aus einem Gerüst und einer Verblendung hergestellt.

Bei den bisher bekannten Systemen kann nur eine oberflächliche individuelle Einfärbung des Grundgerüstes durch den Zahntechniker vorgenommen werden, dabei sind die ästhetischen Gestaltungsmöglichkeiten eingeschränkt.

10

15

20

25

30

Um ein natürliches Erscheinungsbild der Prothese zu erzielen, muß die Zahnfarbe und die Transluzenz über mehrere Schichten hinweg, beginnend mit dem Gerüst, simuliert werden.

Das natürliche Erscheinungsbild einer Prothese wird gewährleistet durch eine möglichst hohe freie Weglänge z = x + y + m des einfallenden Lichtes durch die Schicht (x) der Verblendkeramik und Schicht (m) der Gerüstkeramik und ggf. einer Zwischenschicht (y).

Herkömmliche Systeme müssen zur Veränderung des Grundfarbtones der Gerüstkeramik mit färbenden Zwischenschichten, beispielsweise Opaquer-Linern, arbeiten, die keine oder stark verringerte Transluzenz aufweisen; die freie Weglänge des Lichtes verringert sich um die Dicke der Gerüstkeramik (m) und der Zwischenschicht (y) auf z = x. Eine Beschreibung dieser Vorgehensweise ist z. B. in den Gebrauchsinformationen der Fa. Vita zum System Vita-Dur α oder der Fa. DUCERA mit dem System ALL Ceram zu finden.

Derartige Systeme verwenden als Zwischenschicht Farbpasten bzw. Farbsuspensionen, die in mehreren Arbeitsgängen vom Zahntechniker auf das Gerüst aufgebracht und abschließend im Ofen gebrannt werden.

5

10

15

20

25

30

Dieser Vorgang ist nicht nur zeitaufwendig, sondern auch kostenintensiv.

Der Erfindung liegt somit die Aufgabe zugrunde, ein System zur Einfärbung von Keramik, insbesondere keramischem Zahnersatz, bereitzustellen, das eine optimale Ästhetik bei minimalem Arbeitsaufwand und bei minimierten Kosten gewährleistet.

Überraschend wird diese Aufgabe durch Aufbringen von ionischen oder komplexhaltigen Lösungen auf Keramiken im porösen oder saugfähigen, vorzugsweise vorgesinterten, Zustand gelöst. Hierfür bevorzugte Lösungen enthalten definierte Konzentrationen mindestens eines der Salze oder Komplexe der Seltenerden-Elemente oder der Elemente der Nebengruppen.

Die Lösungen sind vorzugsweise auf wäßriger oder alkoholischer Basis. Geeignete Salze oder Komplexe sind bevorzugt solche aus der Gruppe der Seltenerden oder der II. oder VIII. Nebengruppe, insbesondere Pr, Er, Fe, Co, Ni, Cu.

Bevorzugt sind Salze oder Komplexe mit anorganischen Gegenionen wie z. B. Cl⁻, Br⁻, J⁻, SO₃⁻², NO₂⁻, NO₃⁻, NO₃⁻, ClO₄⁻, ONC⁻, SCN⁻ wobei auch Oxokomplexe saurer oder basischer Salze gemeint sein können, nicht aber Doppelsalze mit einem Element der 1. oder 2. Hauptgruppe. Desweiteren sind Salze oder Komplexe mit organischen Ionen oder Liganden bevorzugt, die 1 bis 30 C-Atome und eine Anzahl von 1 bis 10 Heteroatome, wie O, N, S, enthalten. Im einzelnen sind dies Alkoxide oder Salze organischer Säuren. Bevorzugt sind hier unter den Alkoxiden die Salze der C₁-C₁₀-Alkanole, insbesondere die Methoxide, Ethoxide, n- und i-Propoxide und n-, i-, sek- bzw. tert-Butoxide. Unter den Salzen organischer Säuren sind diejenigen von Mono-, Di- und Tri- C₁-C₂₀-Carbonsäuren bevorzugt, insbesondere Formiat, Acetat, Malat, Maleat, Maleinat, Tartrat, Oxalat. Zuletzt sind auch Komplexbildner unter den Liganden zu verstehen, die dazu dienen, die Metallsalze in ihrer Oxidationsstufe und in Lösung zu stabilisieren. Diese können organische C₂-C₂₀-Moleküle mit bis zu 10 Heteroatomen O, N oder

BEST AVAILABLE COPY

S, darunter insbesondere EDTA und seine Salze, NTA, Salicylsäure, Phenole, 5-Sulfosalicylsäure etc., sein.

Bevorzugt sind wäßrige oder alkoholische Lösungen von Pr, Er, Fe, beispielsweise als Chloride, Acetate oder Alkoholate.

Die Ionen oder Komplexe werden vorzugsweise in Konzentrationen von 0,0001 bis 15 Gew.-%, besonders bevorzugt von 0,001 bis 10 Gew.-% und ganz besonders bevorzugt von 0,01 bis 7 Gew.-% eingesetzt.

10

5

Unter Keramiken und Dentalkeramiken werden hier alle hochfesten Oxide der Elemente der Hauptgruppen II, III und IV und der Nebengruppen III und IV sowie deren Mischungen verstanden, insbesondere Al₂O₃, ZrO₂, sowohl teil- als auch vollstabilisiert, MgO, TiO₂ und deren Mischungen.

15

20.

Überraschend hierbei ist ferner, daß die Farbtiefe der Einfärbung nicht von der Einwirkdauer der Lösung, sondern nur von deren Konzentration abhängig ist. Dies ist besonders vorteilhaft, da der Zahntechniker nicht auf sekundengenaue Einwirkzeiten fixiert ist, sondern seine Arbeiten innerhalb gewisser Toleranzen beliebig lange mit den erfindungsgemäßen Lösungen behandeln kann.

Vorteilhafterweise kann durch die vorliegende Erfindung die oben erwähnte Zwischenschicht (y) komplett entfallen, da bereits die Gerüstkeramik durch die erfindungsgemäßen Lösungen individuell eingefärbt werden kann. Es entfällt daher ein zusätzlicher kosten- und zeitintensiver Schritt des Aufbrennens der Zwischenschicht. Dem einfallenden Licht steht nun die freie Weglänge z = x + y + y + y + z + zm zur Verfügung, da der Weg nicht mehr durch die Zwischenschicht unterbrochen wird.

25

30 Die erfindungsgemäßen Lösungen können neben den Salzen oder Komplexen Seltenerden-Elemente oder der Nebengruppenelemente auch Stabilisierungsmittel, wie Komplexbildner, Malhilfsmittel sowie organische

Farbpigmente zur Erleichterung der Farbabstimmung durch den Zahntechniker enthalten.

Als Stabilisierungsmittel geeignet sind Komplexbildner, wie Ethylendiamintetraessigsäure. Unter Malhilfsmitteln sind beispielsweise temporäre Bindemittel und Thixotropiemittel, wie Polyglykole, Polysaccharide, Polyethylenglykole, Polyvinylalkohole, hydrierte Rizinusöle, zu verstehen.

10

Aufgrund der niedrigen Konzentrationen an farbgebenden Ionen oder Komplexen innerhalb der erfindungsgemäßen Lösungen und der damit verbundenen schlechten optischen Erkennbarkeit des aufgebrachten Farbtons, können auch organische Pigmente zur Erleichterung der Farbabstimmung durch den Zahntechniker zugesetzt werden. Besonders hilfreich sind diese Zusätze bei der bereichsweisen Applikation der Lösungen über Applikationsinstrumente. Die Zusätze sind so zu wählen, daß sie beim Brennen der prothetischen Arbeit rückstandsfrei zerstört werden.

Die erfindungsgemäßen Lösungen können auf folgende Weisen auf die vorgesinterten bzw. saugfähigen Keramiken aufgebracht werden:

20

15

- 1. Tauchen der Keramik in Lösungen definierter Konzentrationen;
- Auftragen der Lösungen auf die Keramik mittels geeigneter Applikationsinstrumente, beispielsweise Pinsel, Tupfer;
- 3. Auftragen der Lösungen auf die Keramik mittels Sprühverfahren.

25

Die Erfindung wird nachfolgend durch Beispiele näher erläutert, ohne daß sie dadurch beschränkt sein soll.

Konzentrationsabhängige Einfärbung von durch 3 Mol Yttriumoxid stabilisiertem Zirkonoxid

Zur Herstellung der Lösungen werden die entsprechenden Mengen Farbreagenz in Wasser gelöst. Keramikkörper werden darin 5 min tauchgebadet und anschließend getrocknet und gesintert. Die Proben werden anschließend für die Farbmessung geschliffen und poliert. Der Farbbestimmung liegen folgende Parameter zugrunde:

10

Opazitätswert O: Maß für die Transparenz (0% ist voll transparent, 100% ist

opak);

L*-Wert:

Helligkeit (100: vollständige Reflexion; 0: keine Reflexion);

a*-Wert:

Rot-Grünverschiebung (+a: rot; -a: grün);

15 b*-Wert:

Gelb-Blauverschiebung (+b: gelb; -b: blau);

Meßgerät: Fa. HunterLab, LabScan Spectrocolorimeter;

Meßmethode: Cielab (Farbe); Opazität nach ASTM D2805 / TAPPI T425 / TAPPI T519.

20

Zum Nachweis der Unabhängigkeit der Farbintensität von der Einwirkdauer der Lösung werden bei fester Lösungskonzentration verschiedene Einwirkzeiten zugrundegelegt und die Farbbestimmung analog durchgeführt.

25 Als Material wurde käufliche Zirkonoxidkeramik der Firma Tosoh, Japan vom Typ TZ3YE verwendet.

Einfärbung mit Fe(III)CI₃-Lösungen

Konzentration Lösung [Gew%]	L*	a*	b*	0
0	85,67	-0,97	1,51	91,4
0,1	83,93	-1,67	5.15	92,36
0,3	79,04	-1,52	22,35	95,1
0,5	75,37	1,16	25	95,32
0,75	74,01	1,72	25,91	96,51
1	72,25	2,83	24,67	97,79

5

Einfärbung mit Pr(III)Acetat-Lösungen

Konzentration Lösung [Gew%]	L*	A*	b*	0
0,1	81,02	-3,60	24,98	89,98
0,25	80,80	-3,02	34,17	91,40
0,75	74,85	4,77	47,31	92,11

Ergebnis: Über die Konzentration der Lösung kann die Intensität der Farbe gesteuert werden.

10

Abhängigkeit der Farbintensität von der Einwirkdauer

Lösungskonzentration: 0,75 Gew.-% Fe (III) CI – Lösung

Einwirkdauer	L*	a*	b*	0
2 Minuten	75,18	0.32	20,15	06.05
	76,06		21,4	95,86
10 Minuten	75,18	-0,09	22,4	96,08
20 Minuten	75,80	-0,21	23,11	96,37

Ergebnis: Die Einwirkdauer hat keinen Einfluß auf die Farbintensität.

BEST AVAILABLE COPY

Patentansprüche

- Verfahren zum Einfärben von Keramiken im porösen oder saugfähigen Zustand, dadurch gekennzeichnet, daß dazu Metallionen-Lösungen oder Metallkomplex-Lösungen verwendet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Dentalkeramiken eingefärbt werden.
- 10 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Lösungen mindestens eines der Ionen oder Komplexe der Seltenerden-Elemente oder Nebengruppen enthalten.
 - Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Lösungen
 Pr, Er, Fe, Co, Ni oder Cu enthalten.
 - 5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß als Salze Chloride, Acetate oder Alkohole sowie Oxokomplexe verwendet werden.

20

5

- 1
- 6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Dentalkeramiken im vorgesinterten Zustand verwendet werden.
- 25 7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß Dentalkeramiken auf Zirkonoxid- oder Aluminiumoxidbasis verwendet werden.
- 8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die ionischen oder komplexhaltigen Lösungen auf wäßriger oder alkoholischer Basis sind.

- 9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Einwirkdauer der ionischen oder komplexhaltigen Lösungen unter 20 Minuten liegt.
- 5 10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Konzentration der Lösungen 0,001 bis 15 Gew.-% beträgt.
 - 11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Einfärben durch Tauchen der Keramik in die Lösungen, durch Auftragen der Lösungen auf die Keramik mit Hilfe von Applikationsinstrumenten oder durch Aufsprühen der Lösungen auf die Keramik erfolgt.

BEST AVAILABLE COPY

10

Einfärbung von Keramiken mittels ionischer oder komplexhaltiger Lösungen

Zusammenfassung

5

Die Erfindung betrifft das Einfärben von Keramiken mittels ionischer oder komplexhaltiger Lösungen. Hierfür bevorzugte Lösungen enthalten definierte Konzentrationen mindestens eines der Salze oder Komplexe der Seltenerden-Elemente oder der Elemente der Nebengruppen.

