Políticas de reemplazo de páginas

Adaptación (ver referencias al final)

Políticas de reemplazo de páginas

- Se requieren criterios de expulsión de páginas de memoria al área de intercambio (swap).
 - Cuando el espacio libre en RAM empieza a agotarse
 - Se incrementa en número de procesos que requieren tiempo de CPU
- Estos criterios se denominan políticas de reemplazo
- Responden a la pregunta
 - ¿Cómo decidir cuál o cuáles páginas deben ser expulsadas de memoria?

Políticas de reemplazo de páginas

- Objetivos excluyentes entre sí
 - Minimizar el número de veces que se tiene que traer un página del disco (cache misses). Cuando se hace referencia a una página que NO está en memoria.
 - Maximizar el número de veces que la página se encuentra en memoria (cache hits). Cuando se hace referencia a una página que SI está en memoria.

Tiempo medio de acceso a memoria

$$AMAT = T_M + (P_{MISS} \cdot T_D)$$

- Donde,
 - T_M representa el costo de acceso a memoria (en unidades de tiempo)
 - T_D representa el costo de acceso a disco (en unidades de tiempo)
 - P_{MISS} representa la probabilidad/tasa de un *cache miss*: no encontrar la página en memoria.

CPU

$\frac{9}{0} = 90\%$

Tasa de fallos: $\frac{1}{10} = 10\%$

$$T_M = 100 \, \text{ns}$$

$$T_D = 10 \text{ ms}$$

$$AMAT = T_M + (P_{MISS} \cdot T_D)$$

$$AMAT = \frac{100}{1 \times 10^6} \text{ms} + (0.1 \cdot 10 \text{ms})$$

AMAT = 1.0001 ms

Referencia a memoria	Hit/Miss
Página 0	Hit
Página 1	Hit
Página 2	Hit
Página 3	Miss
Página 4	Hit
Página 5	Hit
Página 6	Hit
Página 7	Hit
Página 8	Hit
Página 9	Hit

Página 0
Página 4
Página 1
Página 2
Página 8
Página 6
Página 7
Página 5
Página 9
-

Memoria física

Ejemplo

- El costo de acceso a disco es muy alto y domina la métrica **AMAT** de cualquier proceso.
 - Si tasa de se aproxima a 100% entonces AMAT = 100 ns
- Hay que evitar una alta tasa de fallos de página (misses)
 - El acceso a disco es costoso en términos de tiempo
 - Mantener al mínimo la tasa de fallos de página
 - Se requieren políticas adecuadas de reemplazo de páginas
 - ¿Por qué la página tres está en disco?

Política de reemplazo óptimo

- Reemplazar la página más lejana en el futuro
- Política que minimiza la tasa de fallos de página
- Ha demostrado ser la mejor política de reemplazo de páginas pero de difícil implementación práctica
 - Básicamente hay que adivinar el futuro
- Para el ejemplo a continuación
 - Tasa de hits: $\frac{6}{11} = 54\%$

Referencia	Hit/Miss	Expulsió	ón Estado de memoria
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	2	0, 1, 3
0	Hit		0, 1, 3
3	Hit		0, 1, 3
1	Hit		0, 1, 3
2	Miss	3	•0, <u>1, 2</u>
1	Hit		0, 1, 2

 La memoria inicia sin páginas: las tres primeras referencias son fallos (obligados)

> Aquí el S.O debe tomar una decisión: La página **2** es la más lejana en el futuro, por lo que se expulsa

> Aquí la página **0** también podría haberse expulsado: No hay referencia en el futuro

Política FIFO

- Páginas se acomodan en una cola cuando ingresan al sistema
- De fácil implementación
 - Una estructura tipo cola
- Se expulsa la página que esté de primera en la cola
 - La primera página en llegar
- No tiene en cuenta la importancia de las páginas
 - La expulsión tiene lugar de acuerdo con la disciplina FIFO

Referencia	Hit/Miss	Expulsión	Estado de m	emoria
0	Miss		Cola 🗆	0
1	Miss		Cola 🗆	0, 1
2	Miss		Cola 🗆	0, 1, 2
0	Hit		Cola 🗆	0, 1, 2
1	Hit		Cola 🗆	0, 1, 2
3	Miss	0	Cola □	1, 2, 3
0	Miss	1	Cola □	2, 3, 0
3	Hit		Cola 🗆	2, 3, 0
1	Miss	2	Cola □	3, 0, 1
2	Miss	3	Cola □	0, 1, 2
1	Hit		Cola 🗆	0, 1, 2

Tasa de éxitos: $\frac{4}{11} = 36.4\%$

Política aleatoria

- Seleccionar de manera aleatoria una página para la expulsión
- De fácil implementación
- Algunas veces será tan bueno como la política de reemplazo óptimo
 - Depende de la suerte

Referencia	Hit/Miss	Expulsión	Estado de memoria
0	Miss		0
1	Miss		0, 1
2	Miss		0, 1, 2
0	Hit		0, 1, 2
1	Hit		0, 1, 2
3	Miss	0	1, 2, 3
0	Miss	1	2, 3, 0
3	Hit		2, 3, 0
1	Miss	3	2, 0, 1
2	Hit		2, 0, 1
1	Hit		2, 0, 1

Tasa de éxitos:
$$\frac{5}{11} = 45\%$$

Política LRU: menos usada recientemente

- LRU: Least Recently Used
- Política que tiene en cuenta el historial del uso de las páginas
- Si una página se referencia muchas veces, probablemente es una página importante
- Una página recientemente usada es bastante probable que sea referenciada próximamente
 - Localidad espacial y temporal
- LFU (Least Frequently Used)
 - Página usada con menos frecuencia

Referencia	Hit/Miss	Expulsión	Estado de mo	emoria
0	Miss		LRU □	0
1	Miss		LRU □	0, 1
2	Miss		LRU □	0, 1, 2
0	Hit		LRU □	1, 2, 0
1	Hit		LRU □	2,0,1
3	Miss	2	LRU □	0, 1, 3
0	Hit		LRU □	1, 3, 0
3	Hit		LRU □	1, 0, 3
1	Hit		LRU □	0, 3, 1
2	Miss	0	LRU □	3, 1, 2
1	Hit		LRU □	3, 2, 1

La menos usada va quedando de primera y es la que se expulsa

La más recientemente usada se coloca al final

Otras políticas basadas en el historial de uso

- Políticas opuestas a LFU y LRU
 - Ignoran el principio de localidad espacial y temporal
 - En la mayoría de los casos no se desempeñan bien
- MFU (Most Frequently Used)
 - Página más utilizada con frecuencia
- MRU (Most Recently Used)
 - Página más recientemente utilizada

Localidad espacial y temporal

- Los programas tienden a acceder código de acceso secuencial con bastante frecuencia
 - Ciclos
 - Arreglos
- Localidad espacial
 - Si una página P es referenciada, es probable que las páginas que están cerca a P(P+1,P-1) también sean referenciadas.
- Localidad temporal
 - Una página referenciadas en el pasado cercano, es probable que sea referenciada de nuevo en el futuro cercano
- El principio de localidad es una heurística, no es una regla.

Implementación de LRU

- Se necesita llevar un registro en cada referencia a memoria
 - Resulta costoso si se implementa una solución por software
 - Se requiere mover las páginas conforme se van referenciando
- Para mejorar el desempeño se necesita apoyo del hardware
 - Bit de referencia
- Bit de referencia
 - Cuando una página se lee o se escribe el bit de referencia se establece a 1
 - Solo el S.O puede establecer el bit de referencia a 0.
- Política de reemplazo revisa bit de referencia
 - Si bit es igual 1, página no es candidata a reemplazo

Otras políticas de administración de memoria

- Política de selección de página
 - Cuándo llevar una página del disco a la memoria RAM
- Usualmente se usa una política bajo demanda
 - · Página que se referencia página que se lleva a memoria
- Criterio se combina con principio de localidad espacial para anticipar la siguiente página
 - Página $m{P}$ referenciada, llevar a memoria de una vez página $m{P}~+~{f 1}$
- Políticas de escritura de página en disco
 - Seleccionar varias página (grupo) para hacer una sola escritura

Confirmada: memoria física en uso para la que se ha reservado espacio en el archivo de paginación. Suma total de memoria virtual + memoria física.

Bloque paginado: páginas que se encuentran en memoria virtual (disco). P. Ej.: de procesos inactivos.

Bloque no paginado: páginas de memoria que deben quedarse en RAM.

Límite: S.O abre espacio en la memoria TOTAL por si se necesita.

Referencias

• Arpaci-Dusseau, R. H., & Arpaci-Dusseau, A. (2018). Beyond Physical Memory: Policies. In *Operating Systems. Three Easy Pieces*. Arpaci-Dusseau Books.