Formale Grundlagen der Informatik II 6. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach

Alexander Kreuzer Pavol Safarik SS 2012

Gruppenübung

Aufgabe G1

Welche der folgenden Mengen sind entscheidbar, welche sind rekursiv aufzählbar?

- (a) $SAT(AL) := \{ \varphi \in AL : \varphi \text{ erfüllbar} \}$
- (b) $\{(\varphi, \psi) \in AL : \varphi \models \psi\}$
- (c) $SAT(FO) := \{ \varphi \in FO : \varphi \text{ erfullbar} \}$
- (d) $VAL(FO) := \{ \varphi \in FO : \varphi \text{ all gemeing \"ultig} \}$
- (e) UNSAT(FO) := $\{\varphi \in FO : \varphi \text{ unerfullbar}\}\$
- (f) $\{(\varphi, \psi) \in FO : \varphi \models \psi\}$

Aufgabe G2

- (a) Leiten Sie die folgenden Sequenzen her:
 - i. $\forall xRxfx \vdash \exists xRfxffx$
 - ii. $\forall x \forall y (Rxy \lor Py), \exists x \neg Px \vdash \exists x \forall y Ryx$
 - iii. $\forall x fxx = x \vdash \forall x (Px \lor \neg Pfxx)$
- (b) Beweisen Sie die Korrektheit der folgenden Regel:

$$\frac{\Gamma \vdash \Delta, \forall x R x f x}{\Gamma \vdash \Delta, \forall x \exists y R x y}$$

Beachten Sie, daß sich diese Regel nicht in \mathcal{SK}^{\neq} (auch nicht in \mathcal{SK}) herleiten läßt (warum?).

Aufgabe G3

Wir betrachten die Signatur $S = \{f, 0\}$ mit einem einstelligen Funktionssymbol f und einer Konstanten 0. Beginnend mit einem Element x einer S-Struktur betrachten wir die Folge $x, f(x), f^2(x), \ldots$ und untersuchen, wie lange es dauert bis der Wert 0 erreicht wird.

- (a) Geben Sie für jedes n > 0 eine Formel $\varphi_n(x)$ an, die sagt, dass in der Folge $x, f(x), \dots, f^{n-1}(x)$ der Wert 0 nicht vorkommt.
- (b) Geben Sie eine Satzmenge Φ an, welche besagt, dass es für jedes n>0 ein x gibt, so dass, wenn wir mit x beginnen, der Wert 0 frühestens nach n Schritten erreicht.
- (c) Beweisen Sie mit Hilfe des Kompaktheitssatzes, dass es keine Satzmenge Φ gibt, welche ausdrückt, dass für jedes x schließlich die 0 erreicht wird, d.h., dass es kein x gibt, so dass $f^n(x) \neq 0$ für alle n.

(Die Collatz-Vermutung behauptet, dass die durch die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit

$$f(n) := \begin{cases} 3n+1 & \text{für ungerade } n\,,\\ n/2 & \text{für gerade } n\,, \end{cases}$$

erzeugte Folge für jede natürliche Zahl >0 schließlich 1 ergibt. Bis jetzt konnte diese Vermutung weder bewiesen noch widerlegt werden.)

Hausübung

Aufgabe H1 (8+4 Punkte)

Betrachten Sie die Signatur $S=(0,m,\leq,L)$, wobei 0,m Konstanten sind, \leq ein 2-stelliges und L ein 1-stelliges Relationssymbol ist.

Wir modellieren in dieser Signatur einen Datenspeicher. Die Konstante 0 steht für die Adresse des ersten Speicherblocks, m für die letzten, \leq bezeichnet die Ordnung der Speicheradressen und Lx steht dafür, dass der Speicherblock mit der Adresse x gesperrt ist.

- (a) Formalisieren Sie die folgenden Aussagen in FO:
 - i. Kein Speicherblock ist gesperrt.
 - ii. Nicht mehr als 3 Speicherblöcke sind gesperrt.
 - iii. Es gibt genau 5 Speicherblöcke.
 - iv. Ein Anfangsstück des Speichers ist gesperrt.
- (b) Zeigen Sie, dass es keine Formel $\varphi(x)$ in FO gibt, die aussagt, dass es nur endlich viele Speicherblöcke gibt.