QUESTION BANK (OBJECTIVE TYPE)

MA1001-CALCULUS AND SOLID GEOMETRY

UNIT-II-FUNCTIONS OF SEVERAL VARIABLES

1. If $Z = x^2 + y^2 + 3xy$ then what is $\frac{\partial z}{\partial x}$?

- (i) 2y+3x (ii) 3y
- (iii) 2x+3y
- (iv) 2x

2. $u=\sin^{-1}\left(\frac{x^2+y^2}{x-y}\right)$ is homogeneous function of degree

- (i) 2
- (ii) 3
- (iii) 1
- (iv) 4

3.If $u=ax^2+2hxy+by^2$ then using Euler's theorem find $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=?$

- (i) u
- (ii) 2u
- (iii) 3u
- (iv) n(n-1)

4. If $f(x, y) = e^{xy}$ then what is $f_{yyy}(1, 1)$?

- (i)-e
- $(ii)^{\frac{1}{2}}$

- (iii)e
- $(iv)^{-\frac{1}{2}}$

5. if $z = \log (x^2 + xy + y^2)$ then what is $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = ?$

- (i) 1
- (ii) $\frac{2x+y}{x^2+xy+y^2}$ (iii) 2 (iv) $\frac{x+2y}{x^2+xy+y^2}$

6.If f(x,y) is an implicit function then $\frac{dy}{dx} = ?$

- (i) $-\frac{(\partial f/\partial x)}{(\partial f/\partial y)}$ (ii) $\frac{(\partial f/\partial x)}{(\partial f/\partial y)}$ (iii) $\frac{(\partial f/\partial y)}{(\partial f/\partial x)}$ (iv) $-\frac{(\partial f/\partial y)}{(\partial f/\partial x)}$

7. If $f(x, y) = e^x \cos y$ then what is $f_{xy}(0,0)$?

- (i) 1
- (ii) -1
- (iii) 0
- (iv) 2

8. If $f(x, y) = cosxcosy then f_{yy}(0, 0) = ?$

- (i) 1
- (ii) 0
- (iii) -1
- $(iv)^{1/2}$

9. If $f(x, y) = \tan^{-1} \left(\frac{y}{\chi} \right)$ then $f_x(1, 1)$ is

(i) $\frac{\pi}{4}$	(ii) ½	(iii) - ½	(iv) 0
10. If rt - s^2 < 0 at (a, b) then the point is			
(i) Maximum point (ii) minimum point (iii) saddle point (iv) none of these			
11. The stationary points of $x^2 + y^2 + 6x + 12$ are			
(i) (-3,0)	(ii) (0,3)	(iii) (0,-3)	(iv) (3,0)
12. If $x=u^2-v^2$ and $y=2uv$ then $J\left(\frac{x}{u},\frac{y}{v}\right)$ is			
(i) $u^2 + v^2$	(ii) $2(u^2 + v^2)$	(iii) $4(u^2 + v^2)$	(iv) $4v^2$
13. If $x = r\cos\theta$ and $y = r\sin\theta$ Then what is $\frac{\partial(x,y)}{\partial(r,\theta)} = ?$			
(i) r^2	(ii) r	(iii) 2r	(iv) 0
14. If $v = \tan^{-1} x + \tan^{-1} y$ then $\frac{\partial v}{\partial x}$ is			
(i) $1+y^2$	(ii) $\frac{1}{1+y^2}$	$(iii)\frac{1}{1+x^2}$	(iv) $1+x^2$
15.u and v are functionally dependent if their jacobian value is			
(i)zero	(ii)one	(iii)non-zero	(iv)greater than zero
16.if $J_1 = J\left(\frac{x,y}{u,v}\right)$ and $J_2 = J\left(\frac{u,v}{x,y}\right)$ then $J_1J_2 = ?$			
(i)0	(ii)1	(iii)-1	(iv)2
17. The stationary points of $f(x,y) = sin x + sin y + sin (x + y)$ are			
$(i)\left(\frac{\pi}{2},\frac{\pi}{3}\right)$	$(ii)\left(\frac{\pi}{3},\frac{\pi}{3}\right)$	$(iii)\left(\frac{\pi}{3},\frac{\pi}{2}\right)$ (i	$v)\left(\frac{\pi}{2},\frac{\pi}{2}\right)$
18.The point (0,0) for $f(x, y) = x^3 + y^3 - 3axy$ is			
(i)a maximum point (ii) a minimum point (iii)a saddle point (iv)none of these			
19.If $f(x, y) = x^2 + y^2$ where $x = r\cos\theta$ and $y = r\sin\theta$ then $\frac{\partial f}{\partial \theta}$ is			
(i) r	(ii) <i>r</i> ²	(iii) 1	(iv) 0

20.If $f(x, y)=x^2y+\sin y+e^x$ then $f_x(1,\pi)$ is

 $(i)2\pi$ -e

 $(ii)2\pi$

(iii) $2\pi + e$

(iv) 0

21. $u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$ is homogeneous function of degree

 $(i)^{\frac{1}{2}}$

(ii) 1

(iii) 2

(iv) 3

22. If $u = \tan^{-1}\left(\frac{x^2 + y^2}{x - y}\right)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ?$

(i) sinu

(ii) cosu

(iii) sin2u

(iv) tanu

23. If $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$ then $\frac{\partial(x,y)}{\partial(u,y)} = ?$

(i) -3

(ii) 3 (iii) $-\frac{1}{3}$ (iv) $\frac{1}{3}$

24. if $x = r \cos \theta$, $y = r \sin \theta$, z = z then $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = ?$

(i)2r

(ii) r^{2}

(iii) = 1

(iv)r

25.If $u=x^2-2y$ and v=x+y then $\frac{\partial(u,v)}{\partial(x,y)}=?$

(i)2x

(ii) 2x+2 (iii) 2y-2 (iv) 2x-y

ANSWERS

- 1.(iii) 2x+3y
- 2. (iii) 1
- 3. (ii) 2u
- 4.(iii)e
- 5. (iii) 2
- $6.i) \frac{(\partial f/\partial x)}{(\partial f/\partial y)}$
- 7. (iii) 0
- 8. (iii) 1
- 9. (ii) ½
- 10. (iii) saddle point
- 11. (i) (-3,0)
- 12. (iii) $4(u^2 + v^2)$
- 13. (ii) r
- 14. (iii) $\frac{1}{1+x^2}$
- 15. (i)zero
- 16. (ii)1
- 17. (ii) $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$
- 18. (iii) a saddle point
- 19. (iv) 0
- 20. (iii) $2\pi + e$
- 21. (i) $\frac{1}{2}$
- 22. (iii) sin2u
- 23. (iii) $-\frac{1}{3}$
- 24. (iv)r
- 25. (ii) 2x+2