Kapitola 4

Funkce (reálné funkce jedné reálné proměnné)

4.1 Základní vlastnosti

Definice 4.1.1

Funkcí f nazveme zobrazení v množině R. (Přesněji reálnou funkcí jedné reálné proměnné)

 $\begin{bmatrix} x, f(x) \end{bmatrix}$ $x \to f(x)$

Přiřazení mezi prvky zapisujeme některým ze způsobů:

$$f: y = f(x)$$

Protože se jedná o množinu uspořádaných dvojic lze funkci zadat

- a) výčtem (tabulkou)
- b) graficky (grafem)
- c) funkčním předpisem
 - slovním
 - rovnicí se dvěmi neznámými implicitní zadání F(x, y) = 0- explicitní zadání y = f(x)

Grafem funkce f rozumíme množinu všech bodů v rovinné kartézské soustavě souřadné, pro jejichž souřadnice [x, y] platí, že y = f(x).

Poznámka:

Zobrazení z množiny R^n do množiny R nazveme reálnou funkcí n reálných proměnných.

Definice 4.1.2

Definičním oborem funkce f nazveme množinu $D_f = \{ \forall x \in R : \exists y \in R : y = f(x) \}$. Oborem hodnot funkce f nazveme množinu $H_f = \{ \forall y \in R : \exists x \in R : y = f(x) \}$.

Definice 4.1.3

Necht' pro funkce f, g platí:

a)
$$D_f = D_g$$

b)
$$\forall x \in D_f : f(x) = g(x)$$

Potom říkáme, že se funkce f,g sobě rovnají na definičním oboru, zapisujeme f=g .

Poznámka: Rovnost funkcí na množině M.

Operace s funkcemi

Nechť funkce f, g jsou definované na stejném definičním oboru.

Potom pro všechna reálná čísla x definujeme funkci

- (f+g)(x) = f(x) + g(x), kterou nazveme součtem funkcí f,g
- (f-g)(x) = f(x) g(x), kterou nazveme rozdílem funkcí f,g
- $(f \cdot g)(x) = f(x) \cdot g(x)$, kterou nazveme součinem funkcí f, g
- $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$, kterou nazveme podílem f, g, pokud $g(x) \neq 0$

Složená funkce

Nechť jsou definována funkce φ , f v množině M. Pokud existuje neprázdný průnik množin H_{φ} , D_f , pak lze uvažovat funkci F v množině M, pro kterou platí $F(x) = \varphi \circ f = f(\varphi(x))$.

Říkáme, že funkce F je funkce složená, přičemž φ nazveme funkcí vnitřní a f funkcí vnější.

Inverzní funkce

Je dána relace U z množiny A do množiny B. Pak U_{-1} se nazývá inverzní relace k relaci U, jestliže platí : $[y,x] \in U_{-1} \Leftrightarrow [x,y] \in U$

Nechť f je funkce. Potom f_{-1} je funkce právě tehdy, když f je funkce prostá.

Graf funkce f a graf funkce f_{-1} k ní inverzní jsou souměrné podle osy I. a III. kvadrantu.

Poznámka

Běžnější, ale ne zcela jednoznačné značení, je U^{-1} , f^{-1} a podobně.

Vlastnosti funkcí

Obory funkce

Mezi základní vlastnosti funkce f lze zařadit D_f , H_f , pomineme-li skutečnost, že množinou D_f často doplňujeme zadání funkce a touto volbou je jednoznačně určena i množina H_f .

Definice 4.1.4 Parita

Funkci f nazveme sudou, pokud platí: $(x \in D_f) \Rightarrow (-x \in D_f)$ a $\forall x \in D_f : f(x) = f(-x)$. Funkci f nazveme lichou, pokud platí: $(x \in D_f) \Rightarrow (-x \in D_f)$ a $\forall x \in D_f : f(x) = -f(-x)$.

Věta 4.1.1

Graf sudé funkce je osově souměrný podle osy y.

Graf liché funkce je středově souměrný podle počátku souřadné soustavy.

Definice 4.1.5 Periodicita

Nechť pro funkci f existuje takové pevné kladné reálné číslo, že platí: $(x \in D_f) \Rightarrow (x + k \cdot p \in D_f, k \in Z)$ a $\forall x \in D_f : f(x) = f(x + k \cdot p), k \in Z$ Potom o funkci f řekneme, že je periodická s periodou p.

Pokud existuje nejmenší takové číslo p, mluvíme o tzv. základní periodě.

Poznámka: Ve fyzice se často základní perioda značí T.

Definice 4.1.6 Monotonie

Funkce f definovaná na množině $M \subseteq D$ je rostoucí (klesající) na množině $M \Leftrightarrow \forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ resp. $(\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) > f(x_2))$. Funkce f definovaná na množině $M \subseteq D$ je nerostoucí (neklesající) na množině $M \Leftrightarrow \forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ resp. $(\forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2))$.

Je-li $M=D_f$, pak hovoříme pouze o funkci rostoucí (klesající, nerostoucí, neklesající), o ryze a neryze monotónní funkci.

Věta 4.1.2

Je-li funkce f na množině $M \subseteq D_f$ rostoucí nebo klesající, pak je na množině M prostá.

Omezenost

Funkce f je omezená shora $\Leftrightarrow \exists H \in R : \forall x \in D_f : f(x) \leq H$. Funkce f je omezená zdola $\Leftrightarrow \exists d \in R : \forall x \in D_f : f(x) \geq d$. Pokud je funkce omezená shora i zdola, říkáme, že je omezená.

Spojitost

Přesnou definici spojitosti ponecháme na kapitole o diferenciálním počtu. Prozatím se spokojíme s intuitivní představou, že spojitá je funkce, jejíž graf lze nakreslit jedním nepřerušovaným tahem.

Věta 4.1.3

Každá polynomická funkce je funkce spojitá.

Sylabus

Funkce

Parametrické systémy funkcí

Necht' je dán graf funkce f.

$$a) y = f(x) + c$$
$$b) y = f(x+c)$$

$$c)y = c \cdot f(x)$$

Odvoď te grafy funkcí: $c)y = c \cdot f(x)$ $d)y = f(c \cdot x)$, kde $c \in R$.

$$e)y = |f(x)|$$

$$f)y = f(|x|)$$

- add a) graf funkce dostaneme posunutím ve směru osy y
- add b) graf funkce dostaneme posunutím ve směru osy x
- add c) graf funkce dostaneme deformací ve směru osy y
- add d) graf funkce dostaneme deformací ve směru osy x
- add e) části grafu pod osou x překlopíme nad osu a zbylé části ponecháme beze změny
- add f) graf z I. a II. kvadrantu překlopíme i do zbývajících dvou podle osy y

Dělení funkcí

Algebraické

racionální – celistvé (
$$f: y = x^3 - 2 \cdot |x| - 1$$
)

- lomené (
$$g : y = \frac{1}{x^2 - 2}$$
)

- iracionální (
$$h: y = x + \sqrt{1-x}$$
)

Nealgebraické (transcendentní) (
$$i: y = \frac{\sin x}{x}$$
)

Jiné dělení je na elementární a neelementární.

V podstatě všechny běžně probírané funkce na střední škole patří mezi elementární funkce. Mezi elementární funkce nepatří například Eulerova funkce $\Gamma(p)$ (čti: gama).

Poznámka

Mezi funkce patří též posloupnosti $\{a_n\}_{n=1}^{\infty}$ a dále funkce číselně-teoretické, například $\tau(n)$.

4.2 Algebraické funkce

4.2.1 Konstantní funkce

Definice 4.2.1

Konstantní funkce je každá funkce určená rovnicí $f: y = c, c \in R$ a dále každá její část.

$$D_f = R$$

Grafem konstantní funkce je přímka rovnoběžná s osou x, nebo její část.

4.2.2 Lineární funkce

Definice 4.2.2

Lineární funkce je každá funkce určená rovnicí $f: y=a\cdot x+b, a\in R-\{0\}, b\in R$ a dále každá její část. $D_f=R$

Grafem lineární funkce je přímka, která není rovnoběžná ani s osou x ani s osou y.

Parametrický systém funkcí

Grafem parametrického systému funkcí $f_i: y=p_i\cdot x+b, p_i, b\in R$ je svazek přímek I. druhu s výjimkou přímky rovnoběžné s osou y.

Grafem parametrického systému funkcí $f_i: y=a\cdot x+p_i, a, p_i\in R$ je svazek přímek II. druhu rovnoběžných s přímkou $y=a\cdot x$.

Věta 4.2.1

Lineární funkce $f: y = a \cdot x + b, a \in R - \{0\}, b \in R$ je rostoucí, pokud a > 0. Lineární funkce $f: y = a \cdot x + b, a \in R - \{0\}, b \in R$ je klesající, pokud a < 0.

Poznámka

Speciálním případem lineární funkce je přímá úměrnost $f: y = a \cdot x, a \in R - \{0\}$.

Příklady

Určete grafy a vlastnosti funkcí:

$$a)y = \operatorname{sgn}(x) - (\operatorname{signum})$$

$$b) y = |x|$$

$$c$$
) $y = [x] - (\text{celá část})$

d) $y = ch_M(x)$ - (charakteristická funkce množiny)

Poznámka

Někdy se mezi lineární funkce počítá též funkce konstantní.

4.2.3 Kvadratická funkce

Definice 4.2.3

Kvadratická funkce je každá funkce určená rovnicí

$$f: y = a \cdot x^2 + b \cdot x + c, a \in R - \{0\}, b, c \in R$$
 a dále každá její část.

$$D_f = R$$

Grafem kvadratické funkce je parabola jejíž osa je rovnoběžná s osou y.

Příklad

Stanovte vlastnosti kvadratické funkce $f: y = a \cdot x^2 + b \cdot x + c, a \in R - \{0\}, b, c \in R$.

Věta 4.2.2

Vrchol paraboly, která je grafem funkce $f: y = a \cdot x^2 + b \cdot x + c, a \in R - \{0\}, b, c \in R$

je bod
$$V$$
 o souřadnicích $\left[-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right] = \left[-\frac{b}{2a}, c - \frac{b^2}{4a}\right].$

Parametrický systém funkcí

- a) Graf parametrického systému funkcí $f_i: y = a_i \cdot x^2, a_i \in R \{0\}$.
- b) Graf parametrického systému funkcí $f_i: y = a \cdot x^2 + c_i, a \in R \{0\}, c_i \in R$.

4.2.4 Mocninné funkce

4.2.4.1 Mocninné funkce s přirozeným exponentem

$$f_1: y = x$$

$$f_2: y = x^2$$

$$f_3: y = x^3$$

$$f_4: y = x^4$$

$$...$$

$$f_n: y = x^n, n \in N$$

$$D_f = R$$

Grafem mocninné funkce $f_n: y = x^n$ je parabola n - tého stupně (resp. n-1 - stupně).

```
> g1:=plot(x^1,x=-2..2,y=-1.6..1.6,color=green,thickness=1):

> g2:=plot(x^2,x=-2..2,y=-1.6..1.6,color=blue,thickness=1):

> g3:=plot(x^3,x=-2..2,y=-1.6..1.6,color=blue,thickness=2):

> g4:=plot(x^4,x=-2..2,y=-1.6..1.6,color=red,thickness=1):

> g5:=plot(x^5,x=-2..2,y=-1.6..1.6,color=red,thickness=2):

> display(g1,g2,g3,g4,g5);
```

Sylabus

Příklad

Stanovte vlastnosti mocninných funkcí.

Poznámka

Na intervalu (0,1) pro libovolné přirozené číslo n platí: $f_n > f_{n+1}$

4.2.4.2 Mocninné funkce se záporným celým exponentem

$$f_1: y=x^{-1}$$

$$f_2: y=x^{-2}$$

$$f_3: y=x^{-3}$$

$$f_4: y=x^{-4}$$

$$...$$

$$f_n: y=x^{-n}, n\in N$$

$$D_f = R - \{0\}$$

Grafem mocninné funkce $f_n : y = x^n$ je hyperbola n - tého stupně (resp. n-1 - stupně).

```
 > g1:=plot(x^{(-1)},x=-2..2,y=-2..2,color=green,thickness=1): \\ > g2:=plot(x^{(-2)},x=-2..2,y=-2..2,color=blue,thickness=1): \\ > g3:=plot(x^{(-3)},x=-2..2,y=-2..2,color=blue,thickness=2): \\ > g4:=plot(x^{(-4)},x=-2..2,y=-2..2,color=red,thickness=1): \\ > g5:=plot(x^{(-5)},x=-2..2,y=-2..2,color=red,thickness=2): \\ > display(g1,g2,g3,g4,g5);
```


Sylabus

Funkce

Příklad

Stanovte vlastnosti mocninných funkcí s celým exponentem.

4.2.5 Racionální lomené funkce

Racionální lomená funkce je každá funkce daná předpisem

$$f: y = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0}, n, m \in \mathbb{N}, a_i, b_j \in \mathbb{R}, b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0 \neq 0$$

Lineární lomená funkce

Zvláštním případem racionální lomené funkce je funkce lineární lomená,

která je dána obecně předpisem $f: y = \frac{ax+b}{cx+d}, c \neq 0, bc-ad \neq 0$

$$D_f = R - \left\{ \frac{-d}{c} \right\}$$

Grafem lineární lomené funkce je rovnoosá hyperbola.

Poznámka

Zvláštním případem lineární lomené funkce je funkce nepřímá úměrnost $f: y = \frac{k}{x}, k \neq 0$.

4.2.6 Funkce n-tá odmocnina

Iracionální funkce

Definice 4.2.6

Funkce n-tá odmocnina je inverzní funkce k funkci n-tá mocnina s přirozeným exponentem. Protože $y=x^n$, zřejmě $x=\sqrt[n]{y}$, což po přeznačení dává $y=\sqrt[n]{x}$.

Definičním oborem n-té odmocniny je na střední škole standardně interval $(0,\infty)$.

Poznámka

V případě lichého exponentu je možné definici rozšířit na celou množinu R.

Příklad

Určete inverzní funkce k funkcím:

$$f: y = 2x - 3, x \in \langle -3, 7 \rangle$$

$$g: y = 3x^2 - 2x + 4, x \in \langle 0,5;5 \rangle$$

$$h: y = x^{-3} + 5$$