

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2017-1

[Cod: CM-142 Curso: Cálculo Vectorial II] [Los Profesores]

Práctica Dirigida Nº 6

1. Encuentre los valores propios de las siguientes matrices:

a)
$$\begin{pmatrix} 8 & 9 & 9 \\ 3 & 2 & 3 \\ -9 & -9 & -10 \end{pmatrix}$$
b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$
c)
$$\begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$$

2. Sean λ_1, λ_2 y λ_3 los autovalores de la matriz $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix}$. Halle

 ${\lambda_1}^2 + {\lambda_2}^2 + {\lambda_3}^2$ sin calcular los autovalores de A ni la de A^2 .

- 3. Sea T una transformacion lineal invertible de un espacio vectorial V en si mismo. Muestre que x es un autovalor de T con autovalor λ , entonces x es un autovector de T^{-1} con autovalor λ^{-1} .
- 4. Sea A una matriz $n \times n$ real. Muestre que A y A^T tienen los mimos autovalores.

- 5. Sea $\beta = \{u_1 = (3, 1, -3),$ $u_2 = (1, -1, 0), u_3 = (0, 1, -1)\}$ un conjunto de vectores propios linealmente independientes, suponga que $A = \begin{pmatrix} 8 & 9 & 9 \\ 3 & 2 & 3 \\ -9 & -9 & -10 \end{pmatrix}$ es la representacion matricial de una transformacion lineal $L: IR^3 \longrightarrow IR^3$ respecto a la base canonica. Encuentre la represen-
- β.
 6. Justifique su respuesta, Verdadera o Falsa de la siguiente proposicion: A es una matriz no singular, entonces A es

diagonalizable.

tacion matricial de L respecto a la base

- 7. Demuestre que si L es una transformacion lineal de un espacio U de dimension n en U, entonces L tendra representacion diagonal si L tiene n valores propios y diferentes.
- 8. Mostrar que una matriz cuadrada A es invertible si y solo si $\lambda = 0$ no es un valor propio de A.
- 9. Mostrar que si λ es un valor propio de

una matriz invertible A, entonces λ^{-1} es un valor propio de A^{-1} .

- 10. Sea $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ lineal, cuya matriz que lo representa respecto a la base natural de \mathbb{R}^3 , es: $\begin{pmatrix} 1 & 3 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ Determine a) L(1,2,3), b) L(0,1,1)
- 11. Sean $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ lineal, suponga que la matriz de L con respecto a la base $S = v_1, v_2$ es $\begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix}$, donde $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ y $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 - a) Calcule $[L(v_1)]_s$ y $[L(v_2)]_s$
 - b) Calcule $L(v_1)$ y $L(v_2)$
 - c) Calcule L(-2,3).

12. Pruebe que:

- a) Si A es similar a B entonces |A| = |B|
- b) Si A es similar a B y A es regular, entonces B es regular y A^{-1} es similar a B^{-1} .
- 13. Sea A una matriz $n \times n$. Una matriz $n \times n$ tiene a lo mas n autovalores linealmente independientes. Asuma que A tiene n+1 autovectores tales que cualesquiera n de ellos son linealmente independientes. Muestre que A es un multiplo de la identidad.
- 14. Una matriz $n \times n P$ es una matriz estocastica si satisface las siguientes condiciones:

$$p_{i,j} \geq 0 \,\, \forall i,j = 1,2,...,n \,\, \mathrm{y} \,\, \sum_{i=1}^n p_{ij} = 1$$

$$\forall j = 1, 2, ..., n$$

Muestre que 1 es un autovalor de cualquier matriz estocastica.

- 15. Muestre que si una matriz A es diagonalizable por una matriz invertible Q entonces A^{-1} es diagonalizable por Q^{-1} .
- 16. Sea Q una matriz $n \times n$ ortogonal, y sea p(x) su polinomio caracteristico. Demuestre que para $\lambda \neq 0$ se tiene $p(\lambda) = \pm \lambda^n p(\frac{1}{\lambda})$.
- 17. Ecuentre el polinomio caracteristica de las siguientes matrices, halle su polinomio caracteristico, sus autovalores y autovectores y diga si son diagonalizables.

$$a) \left(\begin{array}{ccc} \mathbf{4} & \mathbf{0} & \mathbf{1} \\ -\mathbf{2} & \mathbf{1} & \mathbf{0} \\ -\mathbf{2} & \mathbf{0} & \mathbf{1} \end{array} \right)$$

$$b) \left(\begin{array}{rrr} -1 & 0 & 1 \\ -1 & 3 & 0 \\ -4 & 13 & 1 \end{array} \right)$$

- 18. Demuestre que dos matrices simetricas son semejantes ortogonalmente si y solo si tienen el mismo polinomio caracteristico.
- 19. Compruebe que si A y B son matrices semejantes entonces det(A) = det(B). Concluya que matrices semejantes tienen los mismos autovalores.
- 20. Compruebe que matrices semejantes tienen el mismo rango

- 21. Compruebe que si A y B son matrices semejantes entonces A^k y B^k son semejantes, para todo k > 0
- 22. a) Halle los autovalores y los autovectores unitarios de la matriz de rotacion: $A = \begin{pmatrix} \sin(\theta) & \cos(\theta) \\ -\cos(\theta) & \sin(\theta) \end{pmatrix}$
 - b) Diga si los autovectores son mutuamente ortogonales.
- 23. a) Una transformacion lineal T tal que $T^2 = T$ se dice que es idempotente. ¿Que se puede decir sobre los autovalores de una transformacion asi?
 - b) Una transformacion lineal T para la cual $T^p = 0$, donde p es un entero positivo se dice que es nilpotente. ¿Que se puede decir sobre los autovalores de una transformacion asi?
 - c) Una transformacion lineal T tal que $T^2 = I$ se dice que es involutiva. ¿Que se puede decir sobre los autovalores de una transformacion asi?
- 24. Sea x un vector columna no nulo en

- \mathbb{R}^{\times} . Entonces xx^T es una matriz $n \times n$ y x^Tx es un numero real. Muestre que x^Tx es un autovalor de xx^T y x es su correspondiente autovector.
- 25. Sea una transformacion lineal *T*. Muestre que los autovalores correspondientes a autovalores diferentes son linealmente independientes.
- 26. Sea $H: \mathbb{R}^{\nvDash} \to \mathbb{R}^{\nvDash}$ la transformación lineal cuya matriz asociada es $M_A^A(H) = \begin{pmatrix} -1 & 2 \\ -2 & 3 \end{pmatrix}$ y donde $A = \{(-1,0), (0,2)\}$. Determinar:
 - a) La regla de correspondencia de la transformación H .
 - b) La imagen del vector u=(-1,3) utilizando la matriz $M_A^A(H)$
- 27. Sea la transformación lineal $S:\mathbb{R}^2 \to \mathbb{R}^3$, cuya matriz asociada es $M_B^A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$, referida a las bases $A = \{(1,1),(0,1)\}$ del dominio y $B = \{(1,0,1),(0,1,1),(1,1,0)\}$ del codominio. Determinar la regla de correspondencia de la transformación S.

Uni, 21 de Junio del 2017.