

Computação Móvel

Aula 3: Mais Conceitos — Antenas e Propagação

Diego Passos

Antena

Transdutor

Corrente elétrica ⇔ onda eletromagnética

Diretividade de uma Antena

Irradiador isotrópico vs. não-isotrópico

Antenas práticas

Não-isotrópicas.

Diretividade

- Concentração da energia.
- Ganho.

Padrão de Irradiação (I)

Representação gráfica

Cortes horizontal e vertical.

Exemplo para antena omnidirecional

Padrão de Irradiação (II)

Representação gráfica

Cortes horizontal e vertical.

Exemplo para antena direcional

Ganho de Diretividade

Medido em dBi

Escala logarítmica.

$$Ganho_{(dBi)} = 10 \cdot \log_{10} \left(rac{DMAX}{DREF}
ight)$$

DMAX e DREF: densidades de potência

- DMAX: na direção de irradia mais intensa.
- DREF: do irradiador isotrópico.

Formação de Feixe

Beamforming

Várias antenas omnidirecionais ⇒ um feixe direcional.

Usos

- Sonar.
- Radar.
- Telefonia móvel.

- IEEE 802.11n (sem sucesso).
- IEEE 802.11ac.

Mais Medidas Logarítmicas

Medidas Logarítmicas

- Práticas para grandes amplitudes de valores.
- Multiplicações ⇒ somas.
- Divisões ⇒ subtrações.

Usos

- Potência.
- Atenuação.
- Ganhos.
- Sensibilidade.

dB	dBi	dBm
Ganho ou Perda	Ganho relativo a irradiador isotrópico	Potência
Aumento de 1000 vezes ≡ ganho de 30 dB	Ganho de 23 dBi ≡ 200 vezes mais potência irradiada	100 mW = 20 dBm

Ganhos e Perdas em dB

Bel (B)

- Aumento de uma ordem de grandeza.
 - Aumento de 10 vezes ⇒ 1 Bel.
 - Aumento de 100 vezes ⇒ 2 Béis.

Decibel (dB)

- 1 B = 10 dB.
 - Aumento de 10 vezes ⇒ 10 dB.
 - Aumento de 100 vezes ⇒ 20 dB.

$$G_{(dB)} = 10 \cdot \log_{10} G_{(lin)}
ightarrow G_{(lin)} = 10^{rac{G_{(dB)}}{10}}$$

Propriedades úteis

- Dobrar de valor:
 - $lap{1}{10} \cdot \log_{10} 2 pprox 3$ dB.
- Cair pela metade:
 - $ule{1} 10 \cdot \log_{10} 0, 5 pprox -3$ dB.
- Corolário: perdas são ganhos negativos.

Potência em dBm

Usual

- Facilita cálculos.
- Comum em datasheets, manuais.

Definição

Ganho/perda em relação 1 mW:

$$Pwr_{(dBm)} = 10 \cdot \log_{10} Pwr_{(mW)}$$

Exemplos

mW	dBm
100	20
50	17
10	10
1	0
0,5	-3
0,1	-10

Ganho de Diretividade em dBi

Relembrando

$$Ganho_{(dBi)} = 10 \cdot \log_{10} \left(rac{DMAX}{DREF}
ight)$$

Uso

- Determinar energia transmitida na direção do ganho.
- Exemplo:
 - $ightharpoonup Pwr_{trans}$: 15 dBm.
 - Ganho: 8 dBi.
 - lacksquare Potência irradiada: 15+8=23 dBm.
 - \blacksquare Em escala linear: 31,6 mW imes 6,31 = 199,4 mW.

Sensibilidade do Rádio em dBm

Significado

Menor potência tal que sinal possa ser decodificado.

Varios fatores

- Características do receptor.
- Taxa de transmissão.
 - Robustez da modulação.
- ...

Exemplos de Valores de Sensibilidade

Taxa	IEEE 802.11g	IEEE 802.11a
6 Mb/s	-90 dBm	-87 dBm
9 Mb/s	-84 dBm	-87 dBm
12 Mb/s	-82 dBm	-85 dBm
18 Mb/s	-80 dBm	-84 dBm
24 Mb/s	-77 dBm	-81 dBm
36 Mb/s	-73 dBm	-78 dBm
48 Mb/s	-72 dBm	-73 dBm
54 Mb/s	-72 dBm	-72 dBm

Segundo a Cisco, para o rádio do ponto de acesso Aironet Série 1200.

Relação Sinal-Ruído, SNR

Signal to Noise Ratio

Razão entre potência do sinal desejado e ruído:

$$SNR_{(dB)} = 10 \cdot \log_{10} rac{sinal}{ruido}$$

Importância

- Capacidade de decodificação.
 - \$\psi\$ SNR, \$\psi\$ probabilidade de sucesso.
 - Mesmo acima da sensibilidade!

Fontes de ruído

- Ruído térmico.
 - Inevitável.
 - Depende da largura de banda:
 - ▶ -101 dBm para 20 MHz.
 - Dobra com a largura.
- Outros equipamentos.

Atenuação

Motivos

- Dispersão da energia no espaço.
- Absorção da energia por partículas e obstáculos.

Representativa

Várias ordens de grandeza.

Modelos de propagação

- Prever atenuação
- Às vezes complexos, muitos parâmetros.
 - Típicos: frequência, distância e altura das antenas.
 - Mais raros: vegetação, rugosidade do solo, ...

Modelo de Propagação no Espaço Livre

Free-space path loss (FSPL)

- Simples
 - Considera apenas a dispersão da energia.

Ideia básica

- Energia espalhada na superfície de uma esfera.
- Raio aumenta com distância.

$$FSPL(dB) = 20 \cdot \log_{10}(d) + 20 \cdot \log 10(f) + 32,45$$

- Onde:
 - d = distância em Km.
 - f = frequência em MHz.

Obstáculos à propagação

Efeitos

- Absorção.
- Reflexão.
- ...

Material e espessura

- e.g., madeira e vidro: atenuação moderada.
- e.g., paredes de alvenaria e concreto: forte atenuação.
- e.g., água: atenuação extrema.

Exemplos de Obstáculos

Tipo de obstáculo	Atenuação típica (2,4 GHz)
Parede de concreto (20 cm) ou laje	35 dB
Parede de alvenaria	15 dB
Parede de gesso acartonado	3 dB
Divisórias (núcleo colmeia)	2 dB
Porta de madeira	3 dB
Janela de vidro	3 dB

Fonte: Daniel M. Dobkin, RF Engineering for Wireless Networks.

Próxima aula

Começamos a estudar o IEEE 802.11

Características básicas e arquiteturas.

Tarefas

Todos os alunos

Ler capítulo 2 do livro Tecnologias de Redes Sem Fio