"ZOOM AND ENHANCE" GEHT WIRKLICH MIT ATOMIC NORM MINIMIZATION

(UND OHNE MACHINE LEARNING)

Bachelorarbeit von Viktor Stein, März 2021

Betreuung: Prof. Dr. Gabriele Steidl und Dr. Robert Beinert

AG Angewandte Mathematik

17. Dies Mathematicus, 25.11.2022 Institut für Mathematik, TU Berlin

-"Zoom" unrealistisch: Computer kann Pixel nicht erfinden

- "Zoom" unrealistisch: Computer kann Pixel nicht erfinden
- Mit ANM: "enhancen" = Auflösung verbessern

- "Zoom" unrealistisch: Computer kann Pixel nicht erfinden
- Mit ANM: "enhancen" = Auflösung verbessern

Abb. 1: Links: Bild mit niedriger Auflösung.

- "Zoom" unrealistisch: Computer kann Pixel nicht erfinden
- Mit ANM: "enhancen" = Auflösung verbessern

ABB. 1: Links: Bild mit niedriger Auflösung. Rechts: Das Original.

DAS MODELL IN 2D UND 1D

Simple Bilder

Simple Bilder \sim Viele Pixel enthalten keine Infos.

Simple Bilder \sim Viele Pixel enthalten keine Infos.

Das Modell in 2D und 1D

Simple Bilder \sim Viele Pixel enthalten keine Infos.

1-dimensionales Analogon zu Bildern:

Simple Bilder \sim Viele Pixel enthalten keine Infos.

1-dimensionales Analogon zu Bildern:

Simple Bilder \sim Viele, viele Pixel enthalten keine Infos.

1-dimensionales Analogon im Grenzwert zu ∞ vielen Pixeln:

Das mathematische Modell - ein spike train

Modelliere Signal als **spike train** auf dem Einheitskreis T:

$$x \coloneqq \sum_{k=1}^{r} c_{k} \delta_{t_{k}}$$

Modelliere Signal als **spike train** auf dem Einheitskreis T:

$$x \coloneqq \sum_{k=1}^r \frac{c_k}{\delta_{t_k}} \delta_{t_k}$$
 $\delta_t(A) \coloneqq \begin{cases} 1, & \text{wenn } t \in A, \\ 0, & \text{sonst.} \end{cases}$

mit Amplituden $(c_k)_{k=1}^r \in \mathbb{C} \setminus \{0\}$ und Positionen $(t_k)_{k=1}^r \subseteq \mathbb{T}$.

Das Mathematische Modell - ein spike train

Modelliere Signal als **spike train** auf dem Einheitskreis \mathbb{T} :

$$x \coloneqq \sum_{k=1}^r c_k \delta_{t_k}$$
 $\delta_{t}(A) \coloneqq \begin{cases} 1, & \text{wenn } t \in A, \\ 0, & \text{sonst.} \end{cases}$

mit Amplituden $(c_k)_{k=1}^r \in \mathbb{C} \setminus \{0\}$ und Positionen $(t_k)_{k=1}^r \subseteq \mathbb{T}$.

ABB. 2: Ein reeller spike train auf \mathbb{T} mit r=4 spikes.

Wegen Beugung: bildgebendes Gerät hat beschränkte Auflösung. ⇒ das wirkliche empfangene, niedrig aufgelöste Signal ist

$$x_{\text{low}} \colon \mathbb{T} \to \mathbb{C}, \qquad t \mapsto (x * g)(t)$$

Das niedrig aufgelöste Signal

Wegen Beugung: bildgebendes Gerät hat beschränkte Auflösung.

⇒ das wirkliche empfangene, niedrig aufgelöste Signal ist

$$x_{\text{low}} \colon \mathbb{T} \to \mathbb{C}, \qquad t \mapsto (x * g)(t)$$

wobei

$$g(t) := \frac{1}{2\pi} \sum_{|k| \le f} e^{2\pi i tk}$$

für $f \in \mathbb{N}$.

Das niedrig aufgelöste Signal

Wegen Beugung: bildgebendes Gerät hat beschränkte Auflösung.

⇒ das wirkliche empfangene, niedrig aufgelöste Signal ist

$$x_{\text{low}} \colon \mathbb{T} \to \mathbb{C}, \qquad t \mapsto (x * q)(t)$$

wobei

$$g(t) := \frac{1}{2\pi} \sum_{|k| \le f} e^{2\pi i tk}$$

für $f \in \mathbb{N}$.

Die Fourier-Transformation

von
$$g$$
 ist $\hat{g} = \mathbb{1}_{\{-f,...,f\}}$.

Das niedrig aufgelöste Signal

Wegen Beugung: bildgebendes Gerät hat beschränkte Auflösung.

⇒ das wirkliche empfangene, niedrig aufgelöste Signal ist

$$x_{\mathrm{low}} \colon \mathbb{T} \to \mathbb{C}, \qquad t \mapsto (x * g)(t) = \sum_{k=1}^r \frac{c_k g(t - t_k)}{} \quad (* : \mathrm{Faltung}).$$

wobei

$$g(t) := \frac{1}{2\pi} \sum_{|k| \le f} e^{2\pi i tk}$$

für $f \in \mathbb{N}$.

Die Fourier-Transformation

von
$$g$$
 ist $\hat{g} = \mathbb{1}_{\{-f,...,f\}}$.

Die Fourier-Transformation von x_{low} ist

$$\widehat{x_{\mathrm{low}}} \colon\thinspace \mathbb{Z} \to \mathbb{C}, \qquad j \mapsto \widehat{x}(j) \widehat{g}(j) = \left(\sum_{k=1}^r c_k e^{-2\pi \mathrm{i} j t_k}\right) \mathbbm{1}_{|j| \le f}(j).$$

Superresolution

Messung: Fourier-Transformation des niedrig aufgelösten Signals

Die Fourier-Transformation von x_{low} ist

$$\widehat{x_{\mathrm{low}}} \colon \, \mathbb{Z} \to \mathbb{C}, \qquad j \mapsto \widehat{x}(j)\widehat{g}(j) = \left(\sum_{k=1}^r \underline{c_k} e^{-2\pi \mathrm{i} j t_k}\right) \mathbb{1}_{|j| \le f}(j).$$

 \sim Faltung von x mit g löscht die hohen Frequenzen von x.

NIEDERFREQUENTE MESSUNGEN ALS VEKTOR

Da $\hat{g} = \mathbbm{1}_{|\cdot| \le f},$ bleiben $d \coloneqq 2f + 1$ Messungen

NIEDERFREQUENTE MESSUNGEN ALS VEKTOR

Da $\hat{g} = \mathbb{1}_{|\cdot| \le f}$, bleiben $d \coloneqq 2f + 1$ Messungen

$$\tilde{x} := \left(\widehat{x_{\text{low}}}(j)\right)_{|j| \le f} = \left(\sum_{k=1}^r \frac{c_k}{c_k} e^{-2\pi i j t_k}\right)_{|j| \le f} = \sum_{k=1}^r \frac{c_k}{c_k} \psi(e^{-2\pi i t_k}) \in \mathbb{C}^d,$$

wobei $\psi(z) := (z^j)_{|j| < f}$.

Niederfrequente Messungen als Vektor

Da $\hat{g} = \mathbb{1}_{|\cdot| \leq f}$, bleiben $d \coloneqq 2f + 1$ Messungen

$$\tilde{x} := \left(\widehat{x_{\text{low}}}(j)\right)_{|j| \le f} = \left(\sum_{k=1}^r \frac{c_k}{c_k} e^{-2\pi i j t_k}\right)_{|j| \le f} = \sum_{k=1}^r \frac{c_k}{c_k} \psi(e^{-2\pi i t_k}) \in \mathbb{C}^d,$$

wobei $\psi(z) \coloneqq (z^j)_{|j| \le f}$.

Zwischenbilanz:

$$x = \sum_{k=1}^{r} c_k \delta_{t_k}$$

Niederfrequente Messungen als Vektor

Da $\hat{g} = \mathbb{1}_{|\cdot| < f}$, bleiben $d \coloneqq 2f + 1$ Messungen

$$\tilde{x} \coloneqq \left(\widehat{x_{\mathrm{low}}}(j)\right)_{|j| \le f} = \left(\sum_{k=1}^r \frac{c_k}{c_k} e^{-2\pi \mathrm{i} j t_k}\right)_{|j| \le f} = \sum_{k=1}^r \frac{c_k}{c_k} \psi(e^{-2\pi \mathrm{i} t_k}) \in \mathbb{C}^d,$$

wobei $\psi(z) \coloneqq (z^j)_{|j| \le f}$.

Zwischenbilanz:

$$x = \sum_{k=1}^{r} \frac{c_k}{c_k} \delta_{t_k} \xrightarrow{\text{ergibt die } \atop \text{Messung}} \tilde{x} = \sum_{k=1}^{r} |c_k| e^{-2\pi i \varphi_k} \psi(e^{-2\pi i t_k}).$$

nichtnegative Linearkombination von Vektoren vom Typ $e^{-2\pi i \varphi} \psi(e^{-2\pi i t}) \in \mathbb{C}^d, \ \varphi, t \in \mathbb{T}$.

Da $\hat{g} = \mathbb{1}_{|\cdot| < f}$, bleiben d := 2f + 1 Messungen

$$\tilde{x} \coloneqq \left(\widehat{x_{\mathrm{low}}}(j)\right)_{|j| \le f} = \left(\sum_{k=1}^r \frac{c_k}{c_k} e^{-2\pi \mathrm{i} j t_k}\right)_{|j| \le f} = \sum_{k=1}^r \frac{c_k}{c_k} \psi(e^{-2\pi \mathrm{i} t_k}) \in \mathbb{C}^d,$$

wobei $\psi(z) \coloneqq (z^j)_{|j| \le f}$.

Zwischenbilanz:

$$x = \sum_{k=1}^{r} \frac{c_k}{\delta_{t_k}} \xrightarrow{\text{ergibt die } \atop \text{Messung}} \tilde{x} = \sum_{k=1}^{r} \frac{|c_k|}{|c_k|} e^{-2\pi i \varphi_k} \psi(e^{-2\pi i t_k}).$$

nichtnegative Linearkombination von Vektoren vom Typ $e^{-2\pi i \varphi} \psi(e^{-2\pi i t}) \in \mathbb{C}^d, \ \varphi.t \in \mathbb{T}$.

Wie erhalten wir x aus \tilde{x} zurück?

SPARSAME ZERLEGUNG VON SIGNALEN

- Ziel: gegeben ein dictionary $\mathcal{A} \subseteq \mathbb{C}^d$, zerlege Signal $\tilde{x} \in \mathbb{C}^d$ in endliche nichtnegative Linearkombination bezüglich \mathcal{A} :

$$\tilde{x} = \sum_{a \in A \subset \mathcal{A}} c_a a, \qquad c_a \ge 0, \ |A| < \infty.$$

- Ziel: gegeben ein dictionary $\mathcal{A} \subseteq \mathbb{C}^d$, zerlege Signal $\tilde{x} \in \mathbb{C}^d$ in endliche nichtnegative Linearkombination bezüglich \mathcal{A} :

$$\tilde{x} = \sum_{a \in A \subset A} c_a a, \qquad c_a \ge 0, \ |A| < \infty.$$

 $-\exists$ sehr viele Zerlegungen von \tilde{x} . Welche sind "gut"?

- Ziel: gegeben ein dictionary $\mathcal{A} \subseteq \mathbb{C}^d$, zerlege Signal $\tilde{x} \in \mathbb{C}^d$ in endliche nichtnegative Linearkombination bezüglich \mathcal{A} :

$$\tilde{x} = \sum_{a \in A \subset A} c_a a, \qquad c_a \ge 0, \ |A| < \infty.$$

- $-\exists$ sehr viele Zerlegungen von \tilde{x} . Welche sind "gut"?
- Bilder simpel \implies Gut = sparsam \iff $c_a = 0$ für viele $a \in \mathcal{A}$.

Sparsame Zerlegung von Signalen

- Ziel: gegeben ein dictionary $\mathcal{A} \subset \mathbb{C}^d$, zerlege Signal $\tilde{x} \in \mathbb{C}^d$ in endliche nichtnegative Linearkombination bezüglich \mathcal{A} :

$$\tilde{x} = \sum_{a \in A \subset A} c_a a, \qquad c_a \ge 0, \ |A| < \infty.$$

- $-\exists$ sehr viele Zerlegungen von \tilde{x} . Welche sind "gut"?
- Bilder simpel \implies Gut = sparsam \iff $c_a = 0$ für viele $a \in \mathcal{A}$.
- \rightarrow Gegeben \tilde{x} und \mathcal{A} löse

$$\min_{(c_a)_{a \in \mathcal{A}} \subset [0,\infty)} \|c\|_0 \quad \text{sodass} \quad \tilde{x} = \sum_{a \in \mathcal{A}} c_a a, \tag{P_0}$$

wobei $||c||_0 := \#\{a \in \mathcal{A} : c_a \neq 0\}.$

SPARSAME ZERLEGUNG VON SIGNALEN

- Ziel: gegeben ein dictionary $\mathcal{A} \subseteq \mathbb{C}^d$, zerlege Signal $\tilde{x} \in \mathbb{C}^d$ in endliche nichtnegative Linearkombination bezüglich \mathcal{A} :

$$\tilde{x} = \sum_{a \in A \subset A} c_a a, \qquad c_a \ge 0, \ |A| < \infty.$$

- $-\exists$ sehr viele Zerlegungen von \tilde{x} . Welche sind "gut"?
- Bilder simpel \implies Gut = sparsam \iff $c_a = 0$ für viele $a \in \mathcal{A}$.
- \leadsto Gegeben \tilde{x} und \mathcal{A} löse

$$\min_{(c_a)_{a \in \mathcal{A}} \subset [0, \infty)} \|c\|_0 \quad \text{sodass} \quad \tilde{x} = \sum_{a \in \mathcal{A}} c_a a, \tag{P_0}$$

wobei $||c||_0 := \#\{a \in \mathcal{A} : c_a \neq 0\}.$

Konvexifizierung: ℓ₁-Minimierung

Was ist die nächstbeste konvexe Zielfunktion?

ABB. 3: Die konvexe Hülle von (a) ist (b).

Was ist die nächstbeste konvexe Zielfunktion?

(a) Der $\|\cdot\|_{0}$ -"Einheitsball", $\{(x_1, x_2) \in \mathbb{R}^2 : \|x\|_{0} \le 1, |x_1|, |x_2| \le 1\}.$

(b) Der $\|\cdot\|_{1}$ - Einheitsball.

ABB. 3: Die konvexe Hülle von (a) ist (b).

→löse stattdessen

$$\min_{(c_a)_{a \in \mathcal{A}} \subset [0, \infty)} \|c\|_1 \coloneqq \sum_{a \in \mathcal{A}} |c_a| \quad \text{sodass} \quad \tilde{x} = \sum_{a \in \mathcal{A}} c_a a. \tag{P_1}$$

Viktor Stein

DAS MINKOWSKI-FUNKTIONAL

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

Das Minkowski-Funktional

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

DEFINITION

Das Minkowski-Funktional einer

Menge $A \subseteq X$ ist

$$p_A \colon X \to [0, \infty],$$

 $x \mapsto \inf\{r > 0 : x \in rA\}.$

Das Minkowski-Funktional

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

Definition

Das Minkowski-Funktional einer

Menge $A \subseteq X$ ist

$$p_A \colon X \to [0, \infty],$$

$$x \mapsto \inf\{r > 0 : x \in rA\}.$$

Atomische Norm

Das Minkowski-Funktional

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

Definition

Das Minkowski-Funktional einer

Menge $A \subseteq X$ ist

$$p_A \colon X \to [0, \infty],$$

$$x \mapsto \inf\{r > 0 : x \in rA\}.$$

DAS MINKOWSKI-FUNKTIONAL

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

DEFINITION

Das Minkowski-Funktional einer

Menge $A \subseteq X$ ist

$$p_A\colon X\to [0,\infty],$$

 $x \mapsto \inf\{r > 0 : x \in rA\}.$

Das Minkowski-Funktional

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

DEFINITION

Das Minkowski-Funktional einer Menge $A \subseteq X$ ist

$$p_A\colon X\to [0,\infty],$$

 $x \mapsto \inf\{r > 0 : x \in rA\}.$

DAS MINKOWSKI-FUNKTIONAL

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

DEFINITION

Das Minkowski-Funktional einer Menge $A \subseteq X$ ist

$$p_A \colon X \to [0, \infty],$$

 $x \mapsto \inf\{r > 0 : x \in rA\}.$

Atomische Norm

Das Minkowski-Funktional

Seien X ein normierter Raum und $\inf(\emptyset) := \infty$.

Definition

Das Minkowski-Funktional einer Menge $A \subseteq X$ ist

$$p_A \colon X \to [0, \infty],$$

$$x \mapsto \inf\{r > 0 : x \in rA\}.$$

Beispiel. Wenn $B := \{x \in X : ||x|| \le 1\}$, dann $p_B = ||\cdot||$.

Wann ist p_A eine Norm?

SATZ (NORMEIGENSCHAFTEN)

Ist $A \subseteq X$ eine nichtleere,

Menge, dann ist p_A eine Norm auf X.

WANN IST p_A EINE NORM?

SATZ (NORMEIGENSCHAFTEN)

Ist $A \subseteq X$ eine nichtleere, konvexe, beschränkte, symmetrische, volldimensionale Menge, dann ist p_A eine Norm auf X.

SATZ (NORMEIGENSCHAFTEN)

Ist $A \subseteq X$ eine nichtleere, konvexe, beschränkte, symmetrische, volldimensionale Menge, dann ist p_A eine Norm auf X.

symmetrisch: $rA = A \ \forall |r| = 1$.

Wann ist p_A eine Norm?

SATZ (NORMEIGENSCHAFTEN)

Ist $A \subseteq X$ eine nichtleere, konvexe, beschränkte, symmetrische, volldimensionale Menge, dann ist p_A eine Norm auf X.

symmetrisch: $rA = A \ \forall |r| = 1$.

volldimensional: A enthält offene Umgebung von 0.

DEFINITION (ATOMISCHE NORM)

Die von $\mathcal{A} \subseteq \mathbb{C}^d$ induzierte atomische Norm $\|\cdot\|_{\mathcal{A}}$ ist $p_{\text{conv}(\mathcal{A})}$, das MINKOWSKI-Funktional von $\text{conv}(\mathcal{A})$.

DEFINITION (ATOMISCHE NORM)

Die von $\mathcal{A} \subseteq \mathbb{C}^d$ induzierte atomische Norm $\|\cdot\|_{\mathcal{A}}$ ist $p_{\text{conv}(\mathcal{A})}$, das MINKOWSKI-Funktional von $\text{conv}(\mathcal{A})$.

Quelle: Fig. 1 aus: Y. Chi, M. Da Costa: Harnessing Sparsity Over the Continuum: Atomic Norm Minimization for Superresolution. IEEE Signal Process. Mag., 37(2):39–57, 2020.

DIE ATOMISCHE NORM FÜR SUPERRESOLUTION

Erinnerung:
$$\tilde{x} = \sum_{k=1}^{r} |\mathbf{c}_k| e^{-2\pi i \varphi_k} \psi(e^{-2\pi i t_k}).$$

DIE ATOMISCHE NORM FÜR SUPERRESOLUTION

Erinnerung: $\tilde{x} = \sum_{k=1}^{r} |c_k| e^{-2\pi i \varphi_k} \psi(e^{-2\pi i t_k}).$

 \implies Wir wählen $\mathcal{A} := \{e^{-2\pi i \varphi} \psi(e^{-2\pi i t}) : \varphi, t \in \mathbb{T}\} \subset \mathbb{C}^d$.

ABB. 4: $\Re(\mathcal{A})$ und $\Re(\operatorname{conv}(\mathcal{A}))$ für d=3.

Erinnerung:
$$\tilde{x} = \sum_{k=1}^{r} |\mathbf{c}_k| e^{-2\pi i \varphi_k} \psi(e^{-2\pi i t_k}).$$

$$\implies$$
 Wir wählen $\mathcal{A} := \{e^{-2\pi i \varphi} \psi(e^{-2\pi i t}) : \varphi, t \in \mathbb{T}\} \subset \mathbb{C}^d$.

 $\stackrel{\text{Satz}}{\Longrightarrow} \|\cdot\|_{\mathcal{A}} \text{ ist eine Norm.}$

ABB. 4: $\Re(\mathcal{A})$ und $\Re(\operatorname{conv}(\mathcal{A}))$ für d=3.

Die atomische Norm löst das sparsame Zerlegungsproblem (P_1) :

$\|\cdot\|_{\mathcal{A}}$ UND (P_1)

Die atomische Norm löst das sparsame Zerlegungsproblem (P_1) :

SATZ (DARSTELLUNG DER ATOMISCHEN NORM)

Für eine atomische Menge $A \subseteq \mathbb{C}^d$ und $\tilde{x} \in \mathbb{C}^d$ gilt

$$\|\tilde{x}\|_{\mathcal{A}} = \min \left\{ \|c\|_1 : \tilde{x} = \sum_{a \in A} c_a a, \ c_a \ge 0 \right\}.$$

$\|\cdot\|_{\mathcal{A}}$ UND (P_1)

Die atomische Norm löst das sparsame Zerlegungsproblem (P_1) :

SATZ (DARSTELLUNG DER ATOMISCHEN NORM)

Für eine atomische Menge $A \subseteq \mathbb{C}^d$ und $\tilde{x} \in \mathbb{C}^d$ gilt

$$\|\tilde{x}\|_{\mathcal{A}} = \min \left\{ \|c\|_1 : \tilde{x} = \sum_{a \in \mathcal{A}} c_a a, \ c_a \ge 0 \right\}.$$

Wie finden wir die Anzahl der Spikes r, die Positionen $(t_k)_{k=1}^r$ und die Amplituden $(c_k)_{k=1}^r$?

DAS DUALE PROBLEM - POSITIONEN FINDEN

Duale Problem

$$\|\tilde{x}\|_{\mathcal{A}} = \max_{p \in \mathbb{C}^d} \Re(\langle \tilde{x}, p \rangle) \quad \text{sodass} \quad \max_{t \in \mathbb{T}} \left| \langle \psi(e^{2\pi i t}), p \rangle \right| \le 1 \quad (D_{\mathcal{A}})$$

Das duale Problem - Positionen finden

Duale Problem

$$\|\tilde{x}\|_{\mathcal{A}} = \max_{p \in \mathbb{C}^d} \Re(\langle \tilde{x}, p \rangle) \text{ sodass } \max_{t \in \mathbb{T}} \left| \langle \psi(e^{2\pi i t}), p \rangle \right| \le 1 \quad (D_{\mathcal{A}})$$

hat semidefinite Formulierung \sim schnell lösbar.

DAS DUALE PROBLEM - POSITIONEN FINDEN

Duale Problem

$$\|\tilde{x}\|_{\mathcal{A}} = \max_{p \in \mathbb{C}^d} \Re(\langle \tilde{x}, p \rangle) \quad \text{sodass} \quad \max_{t \in \mathbb{T}} |\langle \psi(e^{2\pi i t}), p \rangle| \le 1 \quad (D_{\mathcal{A}})$$

hat semidefinite Formulierung \sim schnell lösbar.

Sei $\tilde{p} \in \mathbb{C}^d$ Lösung von $(D_{\mathcal{A}})$.

Das duale Problem - Positionen finden

Duale Problem

$$\|\tilde{x}\|_{\mathcal{A}} = \max_{p \in \mathbb{C}^d} \Re(\langle \tilde{x}, p \rangle) \text{ sodass } \max_{t \in \mathbb{T}} |\langle \psi(e^{2\pi i t}), p \rangle| \le 1 \quad (D_{\mathcal{A}})$$

hat semidefinite Formulierung \rightarrow schnell lösbar.

Sei $\tilde{p} \in \mathbb{C}^d$ Lösung von (D_A) . Dann

$$\{\mathbf{t}_k\}_{k=1}^r = \{t \in \mathbb{T} : |\langle \psi(e^{2\pi i t}), \tilde{p} \rangle| = 1\}.$$

Das duale Problem - Positionen finden

Duale Problem

$$\|\tilde{x}\|_{\mathcal{A}} = \max_{p \in \mathbb{C}^d} \Re(\langle \tilde{x}, p \rangle) \quad \text{sodass} \quad \max_{t \in \mathbb{T}} \left| \langle \psi(e^{2\pi i t}), p \rangle \right| \le 1 \quad (D_{\mathcal{A}})$$

hat semidefinite Formulierung \rightarrow schnell lösbar.

Sei $\tilde{p} \in \mathbb{C}^d$ Lösung von (D_A) . Dann

If
$$p\in\mathbb{C}^n$$
 Losung von $(D_{\mathcal{A}})$. Dann $\{t_k\}_{k=1}^r=\{t\in\mathbb{T}:|\langle\psi(e^{2\pi\mathrm{i}t}), ilde{p}
angle|=1\}.$

 \sim Positionen $(t_k)_{k=1}^r$ sind Extrema des Betrages des trigonometrischen Polynoms $t \mapsto$ $\langle \psi(e^{2\pi it}), \tilde{p} \rangle$ mit Koeffizientenvektor \tilde{p} .

AMPLITUDEN FINDEN

Mithilfe der Positionen (nährungsweise bestimmt) $(t_k^{\text{est}})_{k=1}^r \subset \mathbb{T}$, finden wir die Amplituden $(c_k)_{k=1}^r$ durch Lösen des linearen Gleichungssystems

$$\sum_{k=1}^{r} c_k e^{-2\pi i j t_k^{\text{est}}} = \tilde{x}_j, \qquad |j| \le f.$$

Vielen Dank für eure Aufmerksamkeit.

QUELLEN

Venkat Chandrasekaran, Benjamin Recht, Pablo Parrilo, and Alan Willsky.

The Convex Geometry of Linear Inverse Problems.

Foundations of Computational Mathematics, 12(6):849, Oct 2012.

Yuejie Chi and Maxime Ferreira Da Costa.

Harnessing Sparsity Over the Continuum: Atomic Norm Minimization for Superresolution.

IEEE Signal Processing Magazine, 37(2):39–57, 2020.

Gongguo Tang, Badri Narayan Bhaskar, Parikshit Shah, and Benjamin Recht.

Compressed sensing off the grid.

IEEE Transactions on Information Theory, 59(11):7465-7490, 2013.

Diese Folien → viktorajstein.github.io.

DIE MASSTHEORETISCHE PERSPEKTIVE

Unendlich-dimensionales lineares inverses Problem mit sparsamkeitsauswählender Zielfunktion: gegeben Messung $\tilde{x} \in \mathbb{C}^d$, löse

$$\inf_{\mu \in M(\mathbb{T})} \|\mu\|_{\text{TV}} \quad \text{s.d.} \quad \tilde{x} = \int_0^1 \psi(e^{-2\pi i t}) \,d\mu(t).$$

(U. a) weil die Extrempunkte des Einheitsballs in $M(\mathbb{T})$ aus spike trains bestehen, können wir stattdessen das endlich-dimensionale lineare inverse Problem inf $_{c\in\mathbb{C}^d} \|c\|_1$ s.d. $\tilde{x} = Fc$, wobei F die partielle Fourier-Matrix ist, lösen.

Anstatt \mathbb{T} : der (2-)Torus \mathbb{T}^2

Abb. 5: Oben: x, \hat{x} . Unten: $\widehat{x_{\text{low}}}$, x_{low} .

"Zoom and enhance" geht wirklich | Dies Mathematicus 2022

EXTREME POINTS OF CONVEX SETS

DEFINITION (EXTREME POINT OF A CONVEX SET)

A point $x \in C$ in a convex subset $C \subseteq X$ is an extreme point of C and we write $x \in \text{extr}(C)$ if there does not exist an open line segment contained in C that contains x, that is, the relations $x = \lambda y + (1 - \lambda)z$ for $y, z \in C$, $y \neq z$ and $\lambda \in [0, 1]$ imply that $\lambda = 0$ or $\lambda = 1$ and thus x = y or x = z.

EXTREME POINTS OF CONVEX SETS

DEFINITION (EXTREME POINT OF A CONVEX SET)

A point $x \in C$ in a convex subset $C \subseteq X$ is an extreme point of C and we write $x \in \text{extr}(C)$ if there does not exist an open line segment contained in C that contains x, that is, the relations $x = \lambda y + (1 - \lambda)z$ for $y, z \in C$, $y \neq z$ and $\lambda \in [0, 1]$ imply that $\lambda = 0$ or $\lambda = 1$ and thus x = y or x = z.

ABB. 6: The black dotes are some extreme points of the set.

EXTREME POINTS OF CONVEX SETS

DEFINITION (EXTREME POINT OF A CONVEX SET)

A point $x \in C$ in a convex subset $C \subseteq X$ is an extreme point of C and we write $x \in \text{extr}(C)$ if there does not exist an open line segment contained in C that contains x, that is, the relations $x = \lambda y + (1 - \lambda)z$ for $y, z \in C$, $y \neq z$ and $\lambda \in [0, 1]$ imply that $\lambda = 0$ or $\lambda = 1$ and thus x = y or x = z.

ABB. 6: The black dotes are some extreme points of the set.

Semidefinite formulation for $||p||_{\mathcal{A}}^* \leq 1$

SATZ (NONNEGATIVE TRIGONOMETRIC POLYNOMIALS AND HERMITIAN GRAM MATRICES)

For $p \in \mathbb{C}^d$, the following are equivalent.

SEMIDEFINITE FORMULATION FOR $||p||_{4}^{*} \leq 1$

SATZ (NONNEGATIVE TRIGONOMETRIC POLYNOMIALS AND HERMITIAN GRAM MATRICES)

For $p \in \mathbb{C}^d$, the following are equivalent.

1. We have $|\langle \psi(e^{2\pi i w}), p \rangle_{\Re}| \leq 1$ for all $w \in \mathbb{T}$.

Semidefinite formulation for $||p||_{\mathcal{A}}^* \leq 1$

SATZ (NONNEGATIVE TRIGONOMETRIC POLYNOMIALS AND HERMITIAN GRAM MATRICES)

For $p \in \mathbb{C}^d$, the following are equivalent.

- 1. We have $|\langle \psi(e^{2\pi i w}), p \rangle_{\Re}| \leq 1$ for all $w \in \mathbb{T}$.
- 2. There exists a Hermitian matrix $Q \in \mathbb{C}^{d \times d}$ such that

$$\begin{pmatrix} Q & p \\ p^{\mathsf{H}} & 1 \end{pmatrix} \succeq 0 \qquad and \qquad T^*(Q) = e_0,$$

Semidefinite formulation for $||p||_A^* \le 1$

SATZ (NONNEGATIVE TRIGONOMETRIC POLYNOMIALS AND HERMITIAN GRAM MATRICES)

For $p \in \mathbb{C}^d$, the following are equivalent.

- 1. We have $|\langle \psi(e^{2\pi i w}), p \rangle_{\Re}| \leq 1$ for all $w \in \mathbb{T}$.
- 2. There exists a Hermitian matrix $Q \in \mathbb{C}^{d \times d}$ such that

$$\begin{pmatrix} Q & p \\ p^{\mathsf{H}} & 1 \end{pmatrix} \succeq 0 \qquad and \qquad T^*(Q) = e_0,$$

where $T^*(Q)_k = \text{Tr}[\Theta_k Q]$ and Θ_k is the TOEPLITZ matrix whose first row is the k-th unit vector e_k , where $k \in \{0, ..., d-1\}$.

 \sim Dual problem can easily be solved by convex solvers

GRENZEN VON SUPERRESOLUTION

ABB. 7: Superresolution ist nicht unbegrenzt möglich.

Quelle: phdcomics.com/comics.php?f=1156