

Habib University

Electrical Engineering Department

Dhanani School of Science & Engineering

Course	EE 211 – Basic Electronics
Semester	Fall 2022
Section	Section 1
Exam	Quiz – 1a
Instructor	Dr. Ahmad Usman
Total Marks	10

- 1. Consider a simple cubic structure with a lattice constant of a = 4.65 Å. Determine the surface density of atoms (atoms/cm²) in the
 - a. (100) plane
 - b. (110) plane

Note: Clearly draw the cubic structure and the corresponding planes. Give your answers up to four decimal places.

No. of atoms
$$=\frac{1}{4} \times 4$$
 on (100) plane $=\frac{1}{4}$

Area of plane =
$$2-16225 \times 10^{-15}$$
 cm²

No. of atoms/cm² =
$$\frac{1}{2.16225 \times 10^{-15}}$$

= 4.6248×10^{14} atoms/cm²

Plane No. of atoms =
$$\frac{1}{4} \times 4 = 1$$

Area of plane = $a \times \sqrt{2}a$

$$= \sqrt{2}a^{2}$$

No. of atoms = $\frac{1}{4} \times 4 = 1$

Habib University

Electrical Engineering Department

Dhanani School of Science & Engineering

Course	EE 211 – Basic Electronics
Semester	Fall 2022
Section	Section 1
Exam	Quiz – 1b
Instructor	Dr. Ahmad Usman
Total Marks	10

- 1. Consider a simple cubic structure with a lattice constant of a = 5.46 Å. Determine the surface density of atoms (atoms/cm²) in the
 - a. (111) plane
 - b. (100) plane

Note: Clearly draw the cubic structure and the corresponding planes. Give your answers up to four decimal places.

Area of (111) plane
$$= \frac{1}{2} (\sqrt{2}a) (\sqrt{3}a) = \frac{\sqrt{3}}{2}a^{2}$$

No. of atoms on the plane $\Rightarrow \frac{60^{\circ}}{360^{\circ}} \times 3 = 0.5$ atoms

No. of atoms/om² = $\frac{0.5}{\sqrt{3}/2}$ a² = $\frac{1.9366 \times 10^{14} \text{ atoms/om}^2}{\sqrt{19}}$

Area of the (100) plane $= a \times a = a^{2}$ No. of atoms on the plane $= \frac{1}{4} \times 4 = 1$ No. of atoms/cm² = $\frac{1}{a^{2}}$ $= 3.3544 \times 10^{14} \text{ atoms/cm}^{2}$