1. The problem is based on Project Evaluation and Review Technique (PERT), a project planning tool. Consider the software project described in following table. It has 10 tasks (activities), indexed by j = 1, ..., 10. The project is completed when all of the tasks are completed. A task can begin only after all of its predecessors have been completed. The project starts at time 0. Task j starts at time

j	Task	Predecessors	Mean time (in Days)
1	Planning	None	4
2	Database Design	1	4
3	Module Layout	1	2
4	Database Capture	2	5
5	Database Interface	2	2
6	Input Module	3	3
7	Output Module	3	2
8	GUI Structure	3	3
9	I/O Interface Implementation	$5,\!6,\!7$	2
10	Final Testing	4,8,9	2

 S_j , takes time T_j and ends at time $E_j = S_j + T_j$. Any task j with no predecessors (here only task 1) starts at $S_j = 0$. The start time for a task with predecessors is the maximum of the ending times of its predecessors. For example, $S_4 = E_2$ and $S_9 = \max\{E_5, E_6, E_7\}$. The project as a whole ends at time E_{10} . Assume that T_j are independent exponentially distributed random variables with means (say θ_j) given in the final column of the table.

- (a) Write E_{10} in terms of T_j , j = 1, 2, ..., 10.
- (b) Find an approximate value of mean of E_{10} using a simple Monte Carlo. You may take n = 10000. Save the generated sample as it will be used.
- (c) Plot a histogram of generated values of E_{10} . Comment on the shape (mainly skewness) of the histogram.
- (d) Assume that there will be a severe penalty should the project miss a deadline in 70 days. Find an approximate value of the probability that the project miss the deadline using a simple Monte Carlo. You may use the same sample that you generated in (1b). Also calculate the standard deviation. Comment on the performance.
- (e) Find an approximate value of the probability that the project miss the deadline using importance sampling technique. To write q, take T_j are independent exponential with mean $\lambda_j = 4\theta_j$. Compute the standard deviation and effective sample size.
- (f) Find an approximate value of the probability that the project miss the deadline using importance sampling technique. Here to write q, take T_j are independent exponential with mean λ_j , where $\lambda_j = \kappa \theta_j$ for j = 1, 2, 4, 10 and $\lambda_j = \theta_j$ for $j \notin \{1, 2, 4, 10\}$. Take $\kappa = 3.0, 4.0, 5.0$. Compute the standard deviation and effective sample size for each values of κ .
- (g) Compare results that you obtained in 1e and 1f.
- (h) Obtain the confidence interval for the probability taking the value of κ that has minimum effective sample size among 3.0, 4.0, 5.0.