Machine learning ideas in Seurat packages

Jan/16/2020

Sunho Park

Outline

Dimensionality reduction

- PCA
- t-SNE
- Uniform Manifold Approximation and Projection (UMAP)

Clustering approaches

- Graph based methods: e.g., Louvain algorithm
- Cell-type identification

Multiple Dataset Integration

- Canonical correlation analysis & L2-norm normalization
- Anchoring

Outline

- Dimensionality reduction (visualization)
 - PCA
 - t-SNE
 - Uniform Manifold Approximation and Projection (UMAP)
- Clustering approaches
 - Graph based methods: Louvain algorithm
 - Cell-type identification
- Multiple Dataset Integration
 - Canonical correlation analysis & L2-norm normalization
 - Anchoring

Dimensionality reduction

Figure credit: liam schoneveld

A process of reducing the number of the features

Dimensionality reduction: PCA

 Which one is a more accurate lower dimensional representation?

Dimensionality reduction: PCA

Find a direction that maximizes the projected variance

• Data samples are assumed to be center $\tilde{x}_i = x_i - \bar{x}$

$$\widehat{\boldsymbol{u}} = \operatorname{argmax}_{\boldsymbol{u}} \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{u}^{T} \widetilde{\mathbf{x}}_{i})^{2}$$

$$= \operatorname{argmax}_{\boldsymbol{u}} \boldsymbol{u}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \widetilde{\mathbf{x}}_{i} \widetilde{\mathbf{x}}_{i}^{T} \right) \boldsymbol{u}$$
such that $||\boldsymbol{u}||_{2}^{2} = 1$

Dimensionality reduction: FLD

Find a direction that maximizes the projected variance

$$\widehat{\boldsymbol{u}} = \operatorname{argmax}_{\boldsymbol{u}} \boldsymbol{u}^T \boldsymbol{S} \, \boldsymbol{u} \qquad \boldsymbol{S} = \left(\frac{1}{N} \sum_{i=1}^N \widetilde{\mathbf{x}}_i \, \widetilde{\mathbf{x}}_i^T \right)$$

such that $||\boldsymbol{u}||_2^2 = 1$

- \widehat{u} is the first eigenvector (with the largest eigenvalue) of the sample covariance matrix S
- If we need a d dimensional subspace, $U = [\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_d]$ with $\lambda_1 \ge \lambda_2 ... \ge \lambda_d$

$$\mathbf{y}_{i} = \mathbf{U}^{T} \widetilde{\mathbf{x}}_{i}$$
 $\mathbf{u}_{i} \perp \mathbf{u}_{j}$ for $i \neq j$

Dimensionality reduction: t-SNE

$$P_{ij} = \frac{p(\mathbf{x}_i|\mathbf{x}_j) + p(\mathbf{x}_j|\mathbf{x}_i)}{2}$$

$$P_{j|i} = \frac{\exp(-\frac{||\mathbf{x}_{j} - \mathbf{x}_{i}||_{2}^{2}}{2\sigma_{i}^{2}})}{\sum_{k \neq j} \exp(-\frac{||\mathbf{x}_{k} - \mathbf{x}_{i}||_{2}^{2}}{2\sigma_{i}^{2}})}$$

A mapping to preserve the local neighbor structure

$$\{P_{ij}\}\approx\{Q_{ij}\}$$

$$\hat{\mathbf{Y}} = \min_{\{\mathbf{y}_i\}} \text{KL}(\mathbf{P}||\mathbf{Q})$$
$$= \min_{\{\mathbf{y}_i\}} \sum_{i} \sum_{j} P_{ij} \log \frac{P_{ij}}{O_{ij}}$$

$$Q_{ij} = \frac{(1 + ||\mathbf{y}_j - \mathbf{y}_i||_2^2)^{-1}}{\sum_{k \neq j} (1 + ||\mathbf{y}_k - \mathbf{y}_i||_2^2)^{-1}}$$

Dimensionality reduction

t-SNE has been widely used for visualization of high dimensional data, but it has some limitations:

- The global structure is not preserved
 - points in the same cluster are close to each other (local structure)
 - Similarities between clusters might not be accurate (global structure, e.g., consider clusters (0 and 3), (0 and 6))
- It is not scalable to handle fast growing sample sizes in single cell data.

Uniform Manifold Approximation and Projection (UMAP)

Dimensionality reduction (t-SNE vs UMAP)

- UMAP works better for preserving the global structure of the data than t-SNE
 - t-SNE

$$KL(P_{ij}||Q_{ij}) \approx \exp(-d_{ij}^X)\log(1+(d_{ij}^Y)^2)$$

 $-d_{ij}^{X}$ is large: d_{ij}^{Y} can be any value (i.e., the global structure is not guaranteed)

UMAP

$$CE(P_{ij}||Q_{ij}) \approx \exp(-d_{ij}^X)\log(1+(d_{ij}^Y)^2) + (1-\exp(-d_{ij}^X))\log(\frac{1+(d_{ij}^Y)^2}{(d_{ij}^Y)^2})$$

 $-d_{ij}^X$ is small: $CE(P_{ij}||Q_{ij}) \approx \log(1 + (d_{ij}^Y)^2)$

$$-d_{ij}^X$$
 is large: $CE(P_{ij}||Q_{ij}) \approx \log\left(\frac{1+(d_{ij}^Y)^2}{(d_{ij}^Y)^2}\right)$ (i.e., it gives a high penalty for a small d_{ij}^Y and thus the global structure can be preserved)

Outline

- Dimensionality reduction (visualization)
 - PCA
 - t-SNE
 - Uniform Manifold Approximation and Projection (UMAP)

Clustering approaches

- Graph based methods: e.g., Louvain algorithm
- Cell-type identification
- Multiple Dataset Integration
 - Canonical correlation analysis & L2-norm normalization
 - Anchoring

Clustering approaches

Community detection (clustering) in networks (graphs)

Graph

It is used to represent complex systems (e.g., friend networks on Facebook, gene-gene interaction networks)

- $V = \{v_1, v_2, ..., v_N\}$: nodes (vertices)
- $E = \{e_{ij}\}$: links (edges)

$$G = \{V, E\}$$

Clustering on graphs

 Goal: divide a graph into multiple clusters where the nodes in the same cluster are more close to each other than to those in other clusters

Graph clustering

Modularity

Measurement of the strength of partitioning nodes into modules (clusters)

$$Q(\gamma) = \frac{1}{2m} \sum_{i,j} \left[E_{ij} - \frac{d_i d_j}{2m} \right] \delta(\gamma(v_i), \gamma(v_j))$$

- d_i : degree of the node i $(d_i = \sum_j E_{ij})$ and $m = \frac{1}{2} \sum_{i,j} E_{ij}$
- $\frac{d_i d_j}{2m}$: probability of an edge existing between v_i and v_j in the random null model
- the fraction of the edges inside the cluster minus the expected fraction if edges were distributed at random
- The high modularity means that there are dense connections between the nodes in the same cluster but sparse connections between nodes in different clusters

Graph clustering

Modularity

$$Q(\gamma) = \frac{1}{2m} \sum_{i,j} \left[E_{ij} - \frac{d_i d_j}{2m} \right] \delta(\gamma(v_i), \gamma(v_j))$$

The high modularity means that there are dense connections between the nodes in the same cluster but sparse connections between nodes in different clusters

of clusters = # of nodes

Clustering on graphs

- Louvain algorithm
 - greedily maximizes the modularity score by using an agglomerative approach
 - is one of the fastest modularity-based algorithms and scalable

Fast unfolding of communities in large networks

Vincent D. Blondel^{1;a}, Jean-Loup Guillaume^{1,2;b}, Renaud Lambiotte^{1,3;c} and Etienne Lefebvre¹

E-mail: a vincent.blondel@uclouvain.be; b jean-loup.guillaume@lip6.fr; c r.lambiotte@imperial.ac.uk;

¹Department of Mathematical Engineering, Université catholique de Louvain, 4 avenue Georges Lemaitre, B-1348 Louvain-la-Neuve, Belgium

² LIP6, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France

 $^{^3}$ Institute for Mathematical Sciences, Imperial College London, 53 Prince's Gate, South Kensington campus, SW72PG, UK

Clustering on graphs (Louvain algorithm)

(a) original network

(b) initial communities

(c) step 1 of 1st iteration

(d) step 2 of 1st iteration

Figure: Mário Cordeiro et al., "Dynamic community detection in evolving networks using locality modularity optimization", Social Network Analysis and Mining, 2016

Identify cell-types from single-cell RNA sequencing data

Clustering step

 Find sub-groups in single-cell data using any clustering methods (e.g., Louvain algorithm)

Assignment step

- Marker identification: Find differently expressed genes in each cluster compared to other cells (i.e., points in other clusters)
- Assign cell-type identities to the clusters by matching the marker genes with the members in known cell-type signatures

1. Clustering

- 2-1. Marker gene identification: finding differently expressed genes
- 2-2. Cell-type assignment

Cell Type
Naive CD4+ T
Memory CD4+
CD14+ Mono
В
CD8+ T
FCGR3A+ Mono
NK
DC
Platelet

Call Type

Figure credit: Seurat package

Final results

Outline

- Dimensionality reduction (visualization)
 - t-SNE
 - Uniform Manifold Approximation and Projection (UMAP)
- Clustering approaches
 - Graph based methods: e.g., Louvain algorithm
 - Cell-type identification
- Multiple Dataset Integration
 - Canonical correlation analysis & L2-norm normalization
 - Anchoring

Figure: Tim Stuart et al. "Comprehensive Integration of Single-Cell Data", Cell 2019

- Canonical correlation analysis (CCA)
- finds a common space of two sets of data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]^T$$
$$\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N]^T$$

finds a linear transformation of variables
 that makes the two variables maximally correlated

$$\hat{\mathbf{u}}, \hat{\mathbf{v}} = \operatorname{argmax}_{\mathbf{u}, \mathbf{v}} \mathbf{u}^T \mathbf{X}^T \mathbf{Y} \mathbf{v}$$

s.t. $\mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u} \leq 1$, $\mathbf{v}^T \mathbf{Y}^T \mathbf{Y} \mathbf{u} \leq 1$

- Canonical correlation analysis (CCA)
- finds a common space of two sets of data

$$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]^T$$
$$\mathbf{Y} = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N]^T$$

finds a linear transformation of variables
 that makes the two variables maximally correlated

In Seurat, the maximization problem is simplified as

$$\hat{\mathbf{u}}, \hat{\mathbf{v}} = \operatorname{argmax}_{\mathbf{u}, \mathbf{v}} \mathbf{u}^T \mathbf{X}^T \mathbf{Y} \mathbf{v}$$

s.t. $||\mathbf{u}||_2^2 \le 1$, $||\mathbf{v}||_2^2 \le 1$

The problem can be solved using singular value decomposition (SVD)

• L_2 -norm normalization

Anchors (Mutual nearest neighbors)

Label transfer

References

- Seurat package: https://satijalab.org/seurat/
- Stuart, Tim et al. "Comprehensive Integration of Single-Cell Data" Cell, Volume 177, Issue 7, 1888 - 1902.e21, 2019
- How Exactly UMAP Works: https://towardsdatascience.com/how-exactly-umap-works-13e3040e1668
- V. Blondel et al., "Fast unfolding of communities in large networks", Journal of Statistical Mechanics: Theory and Experiment 2008