











| Project Title              | Concrete Compressive Strength Prediction |
|----------------------------|------------------------------------------|
| Technologies               | Machine Learning Technology              |
| Domain                     | Infra                                    |
| Project Difficulties level | Intermediate                             |

### **Problem Statement:**

The quality of concrete is determined by its compressive strength, which is measured using a conventional crushing test on a concrete cylinder. The strength of the concrete is also a vital aspect in achieving the requisite longevity. It will take 28 days to test strength, which is a long period. So, what will we do now? We can save a lot of time and effort by using Data Science to estimate how much quantity of which raw material we need for acceptable compressive strength.

Approach: The classical machine learning tasks like Data Exploration, Data Cleaning, Feature Engineering, Model Building and Model Testing. Try out different machine learning algorithms that's best fit for the above case.

**Results:** You have to build a solution that should able to predict the compressive strength of the concrete.











### Dataset:

Dataset Link: - Link

### **Project Evaluation metrics:**

### Code:

- You are supposed to write a code in a modular fashion
- Safe: It can be used without causing harm.
- Testable: It can be tested at the code level.
- Maintainable: It can be maintained, even as your codebase grows.
- Portable: It works the same in every environment (operating system)
- You have to maintain your code on GitHub.
- You have to keep your GitHub repo public so that anyone can check your code.
- Proper readme file you have to maintain for any project development.
- You should include basic workflow and execution of the entire project in the readme file on GitHub
- Follow the coding standards: https://www.python.org/dev/peps/pep-0008/

### Database:

- You are supposed to use a given dataset for this project which is a Cassandra database.
- https://astra.dev/ineuron

#### Cloud:

 You can use any cloud platform for this entire solution hosting like AWS, Azure or **GCP** 

#### **API Details or User Interface:**

 You have to expose your complete solution as an API or try to create a user interface for your model testing. Anything will be fine for us.

## Logging:

 Logging is a must for every action performed by your code use the python logging library for this.

# **Ops Pipeline:**

• If possible, you can try to use AI ops pipeline for project delivery Ex. DVC, MLflow , Sagemaker, Azure machine learning studio, Jenkins, Circle CI, Azure DevOps, TFX, Travis CI











## **Deployment:**

 You can host your model in the cloud platform, edge devices, or maybe local, but with a proper justification of your system design.

### **Solutions Design:**

You have to submit complete solution design strategies in HLD and LLD document

### **System Architecture:**

 You have to submit a system architecture design in your wireframe document and architecture document.

### Latency for model response:

 You have to measure the response time of your model for a particular input of a dataset.

# **Optimization of solutions:**

- Try to optimize your solution on code level, architecture level and mention all of these things in your final submission.
- Mention your test cases for your project.











# **Submission requirements:**

## **High-level Document:**

You have to create a high-level document design for your project. You can reference the HLD form below the link.

Sample link:

**HLD Document Link** 

### Low-level document:

You have to create a Low-level document design for your project; you can refer to the LLD from the below link.

Sample link

LLD Document Link

Architecture: You have to create an Architecture document design for your project; you can refer to the Architecture from the below link.

Sample link

Architecture sample link

**Wireframe:** You have to create a Wireframe document design for your project; refer to the Wireframe from the below link.

### Demo link

Wireframe Document Link

# **Project code:**

You have to submit your code GitHub repo in your dashboard when the final submission of your project.











#### **Demo link**

Project code sample link:

## **Detail project report:**

You have to create a detailed project report and submit that document as per the given sample.

#### **Demo link**

DPR sample link

# Project demo video:

You have to record a project demo video for at least 5 Minutes and submit that link as per the given demo.

#### **Demo link**

Project sample link:

# The project LinkedIn a post:

You have to post your project detail on LinkedIn and submit that post link in your dashboard in your respective field.

#### **Demo link**

<u>Linkedin post sample link</u>: