## Teoria da Computação - Projecto - 1+3 valores

IST, LEIC – 4 de Maio de 2020

Considere a seguinte representação alternativa de máquinas de Turing (com 1 fita de memória bidireccional e movimentos-R,L,S), usando o alfabeto

$$\Sigma = \{Q, A, Y, N, S, L, R, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ;\}$$

e adoptando as convenções que se descrevem abaixo:

 cada máquina é codificada pela sua lista de transições, separadas por ponto-e-vírgula, no formato

$$trans_1; trans_2; ...; trans_N$$

• cada transição tem a forma

## estado<sub>A</sub> símbolo<sub>A</sub> estado<sub>B</sub> símbolo<sub>B</sub> movimento

onde  $estado_A$  é o estado de partida da transição,  $estado_B$  o estado de chegada,  $símbolo_A$  é o símbolo lido pela transição,  $símbolo_B$  o símbolo escrito pela transição, e movimento o movimento executado pela transição,

- cada estado de controlo da máquina é representado por uma palavra da forma  $Qd_1 \dots d_K$  onde cada símbolo  $d_i \in \{0,1,2,3,4,5,6,7,8,9\}$  (o valor de K, inteiro positivo, é igual para todos os estados da máquina),
- o estado inicial da máquina é Q0<sup>K</sup>,
- os estados de aceitação e rejeição da máquina são representados, respectivamente, por  $\mathbf{y}^{K+1}$  e  $\mathbb{N}^{K+1}$ .
- cada símbolo do alfabeto de trabalho da máquina é representado por uma palavra da forma  $Ad_1 \dots d_T$  onde cada símbolo  $d_i \in \{0,1,2,3,4,5,6,7,8,9\}$  (o valor de T, inteiro positivo, é igual para todos os símbolos do alfabeto),
- o símbolo AO<sup>T</sup> corresponde ao espaço em branco,
- cada movimento é representado por um dos símbolos R, L ou S.

Note que todos os estados de uma máquina são representados por palavras com o mesmo comprimento (K+1). Analogamente, todos os símbolos de uma máquina são representados por palavras com o mesmo comprimento (T+1). Obviamente, os valores de K e T podem variar de máquina para máquina (uma máquina com mais de 10 estados de controlo precisará de usar K>1, tal como uma máquina com alfabeto de trabalho com mais de 10 símbolos precisará de usar T>1).

(cont.)

Por exemplo, a palavra

Q0A1Q0A2R;Q0A0Q1A0L;Q1A1Q1A1L;Q1A2Q2A1R;Q1A0YYA1S;Q2A1Q2A1R;Q2A0Q1A1L

corresponde à máquina desenhada abaixo, adoptando a representação indicada à direita.



|                   | repr |
|-------------------|------|
| estados           |      |
| $\mathbf{q}_{in}$ | Q0   |
| $q_1$             | Q1   |
| $q_2$             | Q2   |
| $\mathbf{q}_{ac}$ | YY   |
| símbolos          |      |
|                   | A0   |
| 1                 | A1   |
| Х                 | A2   |
|                   |      |

Pretende-se definir duas máquinas de Turing (que podem ser bidireccionais e multifita, se conveniente):

- (a) uma máquina que decida se um *input* arbitrário em  $\Sigma^*$  corresponde ou não à representação de uma máquina de Turing de acordo com as regras descritas,
- (b) uma máquina que seja universal para a representação estipulada, cumprindo os requisitos da Proposição 2.22 das notas de apoio da disciplina.

## Instruções:

- o trabalho deve ser realizado em grupos de 3 alunos, devidamente inscritos no fénix (qualquer excepção necessita de autorização dos docentes)
- cada grupo deve entregar dois ficheiros de texto:
  - magok.txt, contendo o código da máquina desenvolvida na alínea (a),
  - maquniv.txt, contendo o código da máquina desenvolvida na alínea (b),
- em ambos os casos, o código deve ser executável directamente pelo emulador disponibilizado aqui,
- pode e deve testar ambas as máquinas usando o exemplo acima, bem como usando representações adequadas de outras máquinas de Turing,
- os trabalhos submetem-se no fénix até às 23h59m de 29 de Maio de 2020.