ISÉN - $Ci \mathbb{R}^2$ 4 juin 2012

Algèbre et combinatoire Examen final – 2^e semestre

Consignes

- Cette épreuve de 2h comporte 4 questions équipondérées non ordonnées.
- Explicitez vos raisonnements, soignez votre rédaction, et surtout amusez-vous bien!

♣ - Somme de racines

Soit $V = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbf{Q}\}$, vu comme **Q**-espace vectoriel de dimension 4.

- a) Montrer que $T(x) := (\sqrt{2} + \sqrt{3}) \cdot x$ est un endomorphisme de V et en donner une représentation matricielle.
- b) Calculer son polynôme caractéristique.

[Remarque : cette méthode produit un polynôme à coefficients rationnels dont $\sqrt{2}+\sqrt{3}$ est racine]

\heartsuit – Nim de Lasker

Considérons une variante du jeu de Nim multi-tas dans laquelle on peut à chaque tour :

- soit prendre un certain nombre (strictement positif) d'allumettes dans un tas (comme d'habitude),
- soit répartir toutes les allumettes d'un tas en deux nouveaux tas non vides.
- a) Établir par récurrence la formule suivante pour la valeur de Sprague-Grundy d'un tas à n allumettes :

$$g(n) = \begin{cases} n+1 & \text{si } n \equiv_4 3, \\ n-1 & \text{si } n \equiv_4 0 \text{ et } n > 0, \\ n & \text{sinon.} \end{cases}$$

b) On vous présente trois tas à 2, 5, 7 allumettes. Que jouez-vous?

♠ – Suites récurrentes

a) Montrer que l'ensemble V des suites $(a_n)_{n=0}^{\infty}$ satisfaisant la récurrence

$$a_{n+2} + a_{n+1} + a_n = 0 \quad (n \geqslant 0)$$

est un sous-espace de l'espace $\mathbb{C}^{\mathbb{N}}$ des suites de nombres complexes et préciser sa dimension.

b) Donner une base de V formée de vecteurs propres pour l'opérateur de décalage $\sigma:(a_n)_{n=0}^{\infty}\mapsto (a_{n+1})_{n=0}^{\infty}$.

♦ – Polynômes de Legendre

a) Déterminer en fonction de λ les solutions analytiques au voisinage de x=0 de l'équation différentielle

$$(1 - x^2)f''(x) - 2xf'(x) + \lambda f(x) = 0.$$

b) Pour quelles valeurs de λ trouve-t-on des solutions polynomiales? Vérifier pour les petites valeurs de λ que celles-ci sont deux à deux orthogonales pour le produit scalaire

$$\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) dx.$$