Wybrane metody klasteryzacji w oparciu o system R

Łukasz Odwrot 218283 24.04.2018

Spis treści

1	$\mathbf{W}\mathbf{step}$	2
2	Badane zbiory	2
3	Metody klasteryzacji	4
4	Ocena klasteryzacji	4
5	Klasteryzacja zbiorów	5
6	Wizualizacja klasteryzacji	8
7	Analiza zbioru data knowledge modeling	12
8	Wnioski	14

1 Wstęp

Klasteryzacja to forma nienadzorowanego uczenia. Polega ona na przypisaniu obiektów ze zbioru na podstawie podobieństwa cech do klastrów, których ilość zwykle jest parametrem wejściowym algorytmu klasteryzacji.

2 Badane zbiory

Klasteryzacja badana będzie na 4 zbiorach.

Rysunek 1: Rozkład cech dla zbioru Wine

Rysunek 2: Rozkład cech dla zbioru Glass

Rysunek 3: Rozkład cech dla zbioru Diabetes

Rysunek 4: Rozkład cech dla zbioru Knowledge

3 Metody klasteryzacji

Zbadane zostaną dwie metody klasteryzacji.

K-means

Metoda ta polega na przyporządkowaniu danych wejściowych, w których każda próbka należy do klastra z najbliższą wartością średnią. Każda próbka to wielowymiarowy wektor liczb rzeczywistych.

Na wejściu algorytmu podawane są parametry:

k - ilość klastrów

data - dane wejściowe

Algorytm działa następująco:

- 1. Rozmieszcza centroidy w losowych miejscach przestrzeni,
- 2. Dla każdego punktu znajduje najbliższą centroidę i przypisuje punkt do centroidy,
- 3. Na podstawie wszystkich próbek przypisanych do centroidy wyliczane są wartości średnie i powtarzany jest krok 2 dopóki warunki stopu nie zostaną spełnione lub nie nie zmieniło się przypisanie próbek.

Metoda przeznaczona jest jedynie dla danych numerycznych.

W funkcji klasteryzacji kmeans w R możemy zdefiniować maksymalną liczbę iteracji (domyślnie 10) oraz ilość losowań początkowych pozycji, z których wybrana zostanie najlepsza.

Partitioning Around Medoids

Używa ona zachłannego algorytmu, więc może nie znaleźć najlepszego rozwiązania, ale dzięki temu jest relatywnie szybka. Działa według następującego schematu.

1. Wybiera k reprezentatów, które będą centami klastrów. 2. Przypisuje wszystkie punkty do najbliższego klastra. 3. Dla każdej próbki będącą centrum medoidy i dla każdej próbki nie będącej centrum zamień je. Jeżeli konfiguracja pogorszyła się, cofnij zmianę. Koszt wyliczany jest jako suma odległości próbek w klastrze od jego centrum.

4 Ocena klasteryzacji

Do oceny jakości klasteryzacji posłuża nam następujące miary:

Purity

Informuje w jakim stopniu klastry odpowiadają pojedynczym klasom. Warto zaznaczyć, że w przypadku takiej samej ilości klas co klastrów funkcja zawsze zwróci wartość 1.

$$\frac{1}{N} = \sum_{m \in M} \max_{d \in D} |m \cap d|$$

Rand measure Porównuje jak podobne są klastry względem wzorca. Miara może być interpretowana jako procentowa ilość podjętych prawidłowych decyzji.

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

Dunn index Miara ta odzwierciedla gęstość i poprawność odseparowania klastrów. Wyliczana jest na podstawie stosunku minimalnej odległości wewnątrz klastra do maksymalnej odległości wewnątrz klastra.

Davies-Bouldin index Miare te można obliczyć na podstawie poniższego wzoru.

$$DB = \frac{1}{n} \sum_{i=1}^{n} \max \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$

Gdzie n jest liczbą klastrów, c - centroidą klastra, σ - średnia odległość od wszystkich elementów klastra. Algorytm dające niskie odległości wewnątrz klastra i duże odległości między klastrami będą dawały niskie wyniki.

5 Klasteryzacja zbiorów

Instanacja Wine				
k	Purity	Rand Index	Dann Index	DBI
		Kmean		
2	0.601	0.681	0.168	1.404
3	0.955	0.941	0.189	1.370
4	0.966	0.895	0.186	1.793
6	0.949	0.822	0.192	1.867
10	0.955	0.770	0.174	1.739
15	0.983	0.741	0.261	1.599
20	0.949	0.713	0.286	1.581
30	0.978	0.702	0.290	1.344
50	0.978	0.681	0.332	1.155
75	0.994	0.673	0.437	0.945
100	1.000	0.669	0.500	0.728
		Pam Stats		
2	0.601	0.679	0.168	1.422
3	0.904	0.878	0.229	1.408
4	0.904	0.845	0.173	2.091
6	0.961	0.814	0.199	2.090
10	0.944	0.747	0.167	2.067
15	0.933	0.724	0.188	1.814
20	0.938	0.714	0.235	1.655
30	0.961	0.699	0.284	1.357
50	0.983	0.686	0.320	1.084
75	0.994	0.676	0.414	0.883
100	1.000	0.672	0.482	0.672

Instanacja Glass				
k	Purity	Rand Index	Dann Index	DBI
		Kmean		
2	0.444	0.549	0.064	1.186
3	0.495	0.586	0.112	1.401
4	0.519	0.631	0.049	1.403
6	0.547	0.667	0.045	1.181
10	0.575	0.703	0.066	1.141
15	0.673	0.745	0.052	1.156
20	0.692	0.746	0.048	1.079
30	0.715	0.746	0.057	0.977
50	0.794	0.751	0.069	0.858
75	0.846	0.747	0.089	0.703
100	0.869	0.744	0.085	0.615
		Pam Stats		
2	0.444	0.538	0.137	1.174
3	0.467	0.615	0.032	1.438
4	0.514	0.635	0.043	1.409
6	0.528	0.661	0.035	1.534
10	0.659	0.741	0.023	1.535
15	0.682	0.747	0.039	1.244
20	0.710	0.749	0.033	1.071
30	0.752	0.757	0.066	0.876
50	0.804	0.750	0.088	0.710
75	0.836	0.749	0.157	0.570
100	0.874	0.745	0.201	0.470

Instanacja Diabetes				
k	Purity	Rand Index	Dann Index	DBI
		Kmean		
2	0.668	0.556	0.072	1.721
3	0.667	0.538	0.066	1.842
4	0.660	0.546	0.066	1.614
6	0.704	0.531	0.050	1.753
10	0.708	0.504	0.071	1.663
15	0.715	0.485	0.067	1.598
20	0.736	0.485	0.075	1.563
30	0.754	0.471	0.062	1.634
50	0.768	0.465	0.068	1.449
75	0.776	0.462	0.114	1.392
100	0.790	0.460	0.103	1.306
		Pam Stats		
2	0.665	0.554	0.076	1.730
3	0.651	0.524	0.055	1.945
4	0.663	0.537	0.034	2.008
6	0.672	0.514	0.034	1.995
10	0.694	0.489	0.068	1.812
15	0.721	0.480	0.051	1.785
20	0.729	0.474	0.068	1.753
30	0.743	0.468	0.069	1.739
50	0.762	0.464	0.085	1.613
75	0.779	0.462	0.116	1.434
100	0.792	0.460	0.123	1.357

Instanacja Knowledge				
k	Purity	Rand Index	Dann Index	DBI
		Kmean		
2	0.572	0.694	0.107	1.966
3	0.557	0.687	0.072	1.720
4	0.622	0.716	0.082	1.671
6	0.592	0.717	0.105	1.459
10	0.632	0.729	0.082	1.406
15	0.667	0.735	0.122	1.320
20	0.654	0.731	0.117	1.248
30	0.759	0.736	0.155	1.262
50	0.816	0.736	0.161	1.211
75	0.848	0.734	0.173	1.114
100	0.871	0.732	0.178	1.040
		Pam Stats		
2	0.478	0.594	0.056	2.057
3	0.463	0.643	0.059	1.745
4	0.505	0.663	0.079	1.695
6	0.550	0.709	0.075	1.515
10	0.652	0.729	0.090	1.396
15	0.697	0.734	0.093	1.449
20	0.716	0.737	0.111	1.419
30	0.774	0.739	0.125	1.346
50	0.838	0.737	0.125	1.270
75	0.871	0.735	0.159	1.199
100	0.888	0.734	0.265	1.045

6 Wizualizacja klasteryzacji

Na przykładzie zbioru Diabetes zostanie zwizualizowane przyporządkowanie próbek do poszczególnych klastrów.

Rysunek 5: Rozkład klas dla instancji Diabetes

Metoda klasteryzacji kmean Dla zbioru Diabetes.

Rysunek 6: Podział na dwa klastry

Rysunek 7: Podział na pięć klastrów

Rysunek 8: Podział na dziesięć klastrów

Metoda klasteryzacji Partitioning Around Medoids Dla zbioru Diabetes.

Rysunek 9: Podział na dwa klastry

Rysunek 10: Podział na pięć klastrów

Rysunek 11: Podział na dziesięć klastrów

7 Analiza zbioru data knowledge modeling

Zbiór knowledge zawiera realne dane dotyczące wiedzy stduentów o maszynach napędzanych silnikiem prądu stałego. Zawiera pięć atrybutów: **STG** Stopień czasu nauki poświęconego na osiągnięcie celu materiałów

SCG Stopień powtarzania materiału

STR Stopień czasu poświęconego na studiowanie zagadnień związanych z tematem

LPR Ocena egzaminacyjna studenta odnośnie zagadnień związanych z tematem

PEG Ocena egzaminacyjna wiedzy zdobytej na dany temat

Obiektom przypisana została dyskretna wartość oceny, która przez skrypt jest tłumaczona na czterostopniową skalę (1-very low, 2-low, 3-medium, 4-high).

Rysunek 12: Rozkład cech dla zbioru Knowledge

Analiza wszystkich atrybutów do klasteryzacji została przeanalizowan w poprzednim rozdziale. Widać jednak, że pod kątem klas najlepsze rozróżnienie niesie para atrybutów LPR, PEG. Przy podziale na około 12 klastrów, wokół których skupiać będą się grupy powinniśmy otrzymać zadowalające wyniki.

Rysunek 13: Rozkład cech dla zbioru Knowledge przy 12 klastrach i wyborze parametrów (PEG, LPR)

Knowledge - statystyki				
context	Purity	Rand Index	Dunn Index	DBI
All	0.896	0.788	0.065	3.443
Features	0.896	0.788	0.045	0.780

Wskaźniki zewnętrzne, które są powiązane z przynależnością do konkretnych klas uległy znaczącej poprawie. Natomiast w przypadku wskaźników wewnętrznych widać, że w kontekście wszystkich atrybutów, wielkość klastrów znacząco wzrosła.

8 Wnioski

Klasteryzacja to potężne narzędzie pomagające nam przyporządkowywać obiekty do grup wyznaczonych na podstawie cech. Po powiązaniu otrzymanych grup z cechami możemy wykorzystać tą wiedzę do zadania klasyfikacji. Warto jednak dogłębnie zaznajomić się ze zbiorami, ponieważ uwzględnianie wszystkich atrybutów nie koniecznie wiąże się z poprawą jakości klasteryzacji.