T.C.A.S.

Un risolutore di limiti compatto ed efficiente

Roberto Alessandro Bertolini

Liceo "P. Nervi - G. Ferrari" - Morbegno

Giugno 2021

Indice

- Introduzione
 - La definizione di limite
 - La risoluzione per approssimazione
 - L'approccio matematico
 - La notazione polacca
- 2 TCAS
 - Il parsing dell'espressione
 - Riformulazione del limite
 - Prima semplificazione
 - Determinazione dell'MRV
 - Riscrittura del limite
 - Seconda semplificazione
 - Determinazione del nuovo MRV
 - Terza semplificazione
 - Espressione come serie di potenze

La definizione di limite

Definizione generale di limite di una funzione

$$\lim_{x\to x_0} f(x) = I$$

Se
$$\forall \varepsilon > 0 \exists \delta(\varepsilon) \mid \forall x \in D_f, 0 < |x - x_0| < \delta \implies |f(x) - I| < \varepsilon$$

La definizione di limite

Definizione generale di limite di una funzione

$$\lim_{x\to x_0} f(x) = I$$

Se
$$\forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) \mid \forall x \in D_f, 0 < \mid x - x_0 \mid < \delta \implies \mid f(x) - I \mid < \varepsilon$$

Esempio

$$\lim_{x \to 3} x^2 = 9; \quad \lim_{x \to +\infty} \frac{1}{x} = 0$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Cerchiamo
$$\lim_{x\to 0^+} f(x) = 0$$

Eppure
$$\lim_{x\to 0^+} f(x) = +\infty$$

Consideriamo
$$f(x) = \frac{1}{x^{\ln \ln \ln \ln \frac{1}{x} - 1}}$$

Cerchiamo
$$\lim_{x\to 0^+} f(x) = 0$$

Eppure
$$\lim_{x\to 0^+} f(x) = +\infty$$

La funzione ha un minimo in $x \approx 4.29 \times 10^{-1656521}$

L'approccio matematico

La regola di De L'Hôpital

Se
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
oppure $\lim_{x \to x_0} |f(x)| = \lim_{x \to x_0} |g(x)| = \infty$
ed esiste $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = I \in \mathbb{R}$
allora $\lim_{x \to x_0} \frac{f(x)}{g(x)} = I$

I problemi dell'approccio matematico

La regola di De L'Hôpital

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Esempio

$$f(x) = e^{x} + e^{-x}$$

$$g(x) = e^{x} - e^{-x}$$

$$f(x) = f'(x)$$

$$\lim_{x \to \infty} \frac{f''(x)}{g''(x)} = \lim_{x \to \infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to \infty} \frac{f(x)}{g(x)}; \quad \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

La notazione polacca

Notazione Polacca

È una notazione prefissa in cui gli operatori sono a sinistra degli argomenti. Non richiede parentesi perché non presenta ambiguità nell'interpretazione, se degli operatori è nota l'arietà.

La notazione polacca

Notazione Polacca

È una notazione prefissa in cui gli operatori sono a sinistra degli argomenti. Non richiede parentesi perché non presenta ambiguità nell'interpretazione, se degli operatori è nota l'arietà.

Esempio

$$3\times(4-5)\to\times3-45$$

La notazione polacca

Notazione Polacca

È una notazione prefissa in cui gli operatori sono a sinistra degli argomenti. Non richiede parentesi perché non presenta ambiguità nell'interpretazione, se degli operatori è nota l'arietà.

Esempio

$$3 \times (4-5) \rightarrow \times 3-45$$

$$\lim_{x\to 0} \frac{e^x - 1}{x} \to \lim /-\exp x \, 1 \, x \, x \, 0$$

$$\lim_{x\to 0}\frac{\sin x}{x}$$

lim / sin x x x 0

$$\lim_{x\to 0} \frac{\sin x}{x}$$

+x

 $\lim_{x\to 0} \frac{\sin x}{x}$

$$\lim_{x\to+\infty}\frac{\sin\frac{1}{x}}{\frac{1}{x}}$$

Prima semplificazione

$$\lim_{x\to+\infty} \frac{\sin\frac{1}{x}}{\frac{1}{x}}$$

 $\lim_{x\to+\infty}\sin\frac{1}{x}\cdot x$

Definizione di MRV

Sottoespressione di una funzione

$$g(x) \triangleleft f(x)$$
, se $g(x)$ è una sottoespressione di $f(x)$ $g(x) \not \lhd f(x)$, se $g(x)$ non è una sottoespressione di $f(x)$

Classe di Comparabilità

$$f(x) \prec g(x)$$
 se e solo se $\lim_{x \to \infty} \frac{\ln |f(x)|}{\ln |g(x)|} = 0$
 $f(x) \approx g(x)$ se e solo se $\lim_{x \to \infty} \frac{\ln |f(x)|}{\ln |g(x)|} \neq 0 \in \mathbb{R}$ (2)

Definizione di MRV

MRV

È l'insieme di sottoespressioni della funzione con la più alta classe di comparabilità.

$$mrv(f(x)) = \begin{cases} \{\} & \text{if } x \not \lhd f(x) \\ \{g(x) \mid g(x) \triangleleft f(x) \land (\nexists h(x) \triangleleft f(x) \mid h(x) \succ g(x)))\} \end{cases}$$

 $\lim_{x\to+\infty}\sin\frac{1}{x}\cdot x$

Incrementare la classe di comparabilità

Limite di un limite

$$\lim_{x \to +\infty} f(x) = +\infty , \lim_{x \to +\infty} g(x) = +\infty \implies \lim_{x \to +\infty} f(g(x)) = +\infty$$

Esempio

$$\lim_{x \to +\infty} \sin \frac{1}{x} \cdot x = \lim_{x \to +\infty} \sin e^{-x} \cdot e^{x}$$

$$\lim_{x\to+\infty}\sin\frac{1}{x}\cdot x$$

$$\lim_{x\to+\infty}\sin\frac{1}{e^x}\cdot e^x$$

 $\lim_{x\to+\infty}\sin\frac{1}{e^x}\cdot e^x$

 $\lim_{x\to +\infty} \sin \frac{1}{e^x} \cdot e^x$

 $\lim_{x\to+\infty}\sin e^{-x}\cdot e^x$

Determinazione del nuovo MRV

Sostituzione

Posto
$$w = e^{-x}$$

Sostituzione

Posto $w = e^{-x}$

lim

 $\lim_{w\to 0} \sin w \cdot \frac{1}{w}$

 $\lim_{w\to 0} \sin w \cdot \frac{1}{w}$

 $\lim_{w\to 0} \sin w \cdot \frac{1}{w}$

$$\lim_{w\to 0} \frac{\sin w}{w}$$

Serie di Maclaurin

Serie di Maclaurin

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Serie di Maclaurin

Serie di Maclaurin

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Esempio

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \dots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1} = x - \frac{x^3}{6} + \frac{x^5}{120}$$