PyTorch入门了

- 1. Tensors张量
- 2. Autograd自动求导
- 3. 神经网络
- 4. 训练一个分类器

1.Tensors张量

- 1. Tensors张量
- 2. Autograd自动求导
- 3. 神经网络
- 4. 训练一个分类器

Tensor实际上就是一个多维数组 (multidimensional array)

标量 (0阶张量)

向量 (1阶张量)

1.2

矩阵 (2阶张量)

张量 (大于等于3阶张量)

- 创建张量的几种方法
 - 用现有数据创建张量,使用torch.tensor()
 - 如torch.tensor([[1., -1.], [1., -1.]])
 - 要创建具有特定大小的张量,请使用torch.*
 - 如torch.randn() #满足标准正态分布的一组随机数据
 - 创建与另一个张量具有相同大小的张量,请使用torch.*_like
 - 如torch.rand_like()
 - 创建与其他张量具有相似类型但大小不同的张量,请使用tensor.new_*创建操作。

- 查看张量的属性
 - 查看Tensor类型
 - tensor1 = torch.randn(2,3) #形状为(2,3)—组从标准正态分布中随机抽取的数据
 - tensor1.dtype # torch.float32
 - 查看Tensor维度和形状
 - tensor1.shape #查看形状或尺寸
 - tensor1.ndim #查看维度
 - 查看Tensor是否存储在GPU上
 - tensor1.is_cuda
 - 查看Tensor的梯度
 - tensor1.grad

- Tensor在CPU和GPU之间转换,以及numpy之间的转换
 - CPU tensor 转GPU tensor
 - cpu_tensor.cuda()
 - GPU tensor 转CPU tensor
 - gpu_tensor.cpu()
 - numpy转为CPU tensor
 - torch.from_numpy(numpy_test)
 - CPU tensor转为numpy数据
 - cpu_tensor.numpy()
 - 注意:
 - GPU tensor不能直接转为numpy数组,必须先转到CPU tensor。
 - 如果tensor是标量的话,可以直接使用item()函数(只能是标量)将值取出来: loss_output.item()

• Tensor与NumPy的异同

对比项	NumPy	Tensor
相同点	可以定义多维数组,进行切片、改变维度、数学运算等	可以定义多维数组,进行切片、改变维度、数学运算等
不同点	1、产生的数组类型为numpy.ndarray;2、会将ndarray放入	1、产生的数组类型为torch.Tensor; 2、会将tensor放入GPU中进行加速运算(如果有GPU) 3、导入方式为import torch ,后续通过
	CPU中进行运算; 3、导入方式为import numpy as np, 后续通过np.array([1,2])建立数组; 4、numpy中没有x.type()的用法,只能使用type(x)。	torch.tensor([1,2])或torch.Tensor([1,2])建立数组; 4、Tensor中查看数组类型既可以使用type(x),也可以使用x.type()。但是更加推荐采用x.type()(这种方式能看到更具体信息) 5、tensor含义device(是否使用GPU),requires_grad(是否需要求导)等设置参数。

• Tensor与NumPy的函数对比

操作类别	Numpy	PyTorch
数据类型	np.ndarray	torch.Tensor
	np.float32	torch.float32; torch.float
	np.float64	torch.float64; torch.double
	np.int64	torch.int64; torch.long
从已有数据构建	np.array([3.2, 4.3], dtype=np.float16)	torch.tensor([3.2, 4.3],dtype=torch.float16)
	x.copy()	x.clone()
	np.concatenate	torch.cat
线性代数	np.dot	torch.mm
属性	x.ndim	x.dim()
	x.size	x.nelement()
形状操作	x.reshape	x.reshape(相当于
		tensor.contiguous().view()); x.view
	x.flatten	x.view(-1); nn Flatten()
类型转换	np.floor(x)	torch.floor(x); x.floor()
比较	np.less	x.lt
	np.less_equal/np.greater	x.le/x.gt
	np.greater_equal/np.equal/np.not_equal	x.ge/x.eq/x.ne
随机种子	np.random.seed	torch.manual_seed

• Python、PyTorch 1.x与TensorFlow2.x的比较

类别	Python	PyTorch 1+	TensorFlow 2+
类型	nn.nd	Tensor	Tensor
自动求导	无	支持,示例 x=torch.tensor([2.0,3.6],requir e s_grad=True)	支持,①对变量求导示例 v=tf.Variable([3.2, 4.3], dtype=tf.float16), #TensorFlow一般使用梯度磁带tf.GradientTape来记录正向运算过程,然后反播磁带自动得到梯度值。 ②对常量也可求导,需要增加watch。 ③对tf.Variable可以通过参数trainable控制是否可学习,缺省是True。
是否支持GPU	不支持	支持	支持
常量示例	5.6	torch.tensor([5.6])	a=tf.constant([3.2, 4.3], dtype=tf.float16)
变量示例	x=10.5	torch.tensor([5.6])	v=tf.Variable([3.2, 4.3], dtype=tf.float16)

1.Tensor张量乘法

1. 二维矩阵乘法torch.mm()

torch.mm(mat1, mat2, out=None)

其中 $mat1 \in \mathbb{R}^{n \times m}$, $mat2 \in \mathbb{R}^{m \times d}$,输出的 $out \in \mathbb{R}^{n \times d}$ 该函数一般只用来计算两个二维矩阵的矩阵乘法,并且不支持broadcast操作。

1.Tensor张量乘法

2. 三维带batch的矩阵乘法 torch.bmm()

由于神经网络训练一般采用mini-batch, 经常输入的时三维带batch的矩阵, 所以提供torch.bmm(bmat1, bmat2, out=None)

其中 $bmat1 \in \mathbb{R}^{b \times n \times m}$, $bmat2 \in \mathbb{R}^{b \times m \times d}$,输入出的 $out \in \mathbb{R}^{b \times n \times d}$

该函数的两个输入必须是三维矩阵并且第一维相同(表示Batch维度),不支持broadcast操作

1.Tensor张量乘法

3. 多维矩阵乘法torch.matmul()

torch.matmul(input, other, out=None)

支持broadcast操作,使用起来比较复杂。针对多维数据matmul()乘法,可以认为该乘法 使用使用两个参数的后两个维度来计算,其他的维度都可以认为是batch维度。 假设两个输入的维度分别是input $(1000 \times 500 \times 99 \times 11)$, other $(500 \times 11 \times 99)$ 那么我们 可以认为torch.matmul(input, other, out=None)乘法首先是进行后两位矩阵乘法得到 (99×11)×(11×99)⇒(99×99), 然后分析两个参数的batch size分别是 (1000×500) 和 500, 可以广播成为 (1000×500) , 因此最终输出的维度是 $(1000 \times 500 \times 99 \times 99)_{\circ}$

1.Tensors张量乘法

4. 矩阵逐元素(Element-wise) 乘法 torch.mul()

torch.mul(mat1, other, out=None)

其中other 乘数可以是标量,也可以是任意维度的矩阵,只要满足最终相乘是可以broadcast的即可。

1.Tensors张量乘法

5. 两个运算符@和*

:矩阵乘法,自动执行适合的矩阵乘法函数

*: element-wise乘法

- 1. Tensors张量
- 2. Autograd自动求导
- 3. 神经网络
- 4. 训练一个分类器

PyTorch 1.x的自动微分机制

• PyTorch 1.x的Tensor不参与求导的几种方式

张量操作	新建/共享内存	留在计算图中	使用场景
tensor.clone()	新建	是 (即tensor与tensor.clone() 的 requires_grad一致)	常用在神经网络中某个单元需要 重复使用,但不参与求导的场景下
tensor.detach()	共享	否	常用在神经网络中仅要利用张量数值,而不需要追踪导数的场景下
tensor.clone().detach()	新建	否	只做简单的数据复制,既不数据 共享,也不对梯度共享,从此两 个张量无关联。

PyTorch之自动梯度

在训练一个神经网络时,<mark>梯度</mark>的计算是一个关键的步骤,它为神经 网络的<mark>优化</mark>提供了关键数据。

但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂、高维的方程是不现实的。

这就是自动求导出现的原因,当前最流行的深度学习框架如PyTorch、Tensorflow等都提供了自动微分的支持,让人们只需要很少的工作就能神奇般地自动计算出复杂函数的梯度。

requires_grad属性

requires_grad属性默认为False,也就是Tensor变量默认是不需要求导的。

如果一个节点的requires_grad是True,那么所有依赖它的节点requires_grad也会是True。

换言之,如果一个节点依赖的所有节点都不需要求导,那么它的 requires_grad也会是False。在反向传播的过程中,该节点所在的子图会被排除在外。

Function类

我们已经知道PyTorch使用动态计算图(DAG)记录计算的全过程,DAG的节点是Function对象,边表示数据依赖,从输出指向输入。因此Function类在PyTorch自动求导中位居核心地位,但是用户通常不会直接去使用。

每当对Tensor施加一个运算的时候,就会产生一个Function对象,它产生运算的结果,记录运算的发生,并且记录运算的输入。Tensor使用。grad_fn属性记录这个计算图的入口。反向传播过程中,autograd引擎会按照逆序,通过Function的backward依次计算梯度。

backward函数

backward函数是反向传播的入口点,在需要被求导的节点上调用 backward函数会计算梯度值到相应的节点上。 backward函数是反向求导数,使用链式法则求导。

backward需要一个重要的参数grad_tensor,对非标量节点求导,需要指定grad_tensors, grad_tensors的shape必须和y的相同。

但如果节点只含有一个标量值,这个参数就可以省略(例如最普遍的 loss.backward()与loss.backward(torch.tensor(1))等价)

grad属性

backward函数本身没有返回值,它计算出来的梯度存放在叶子节点的grad属性中。

PyTorch文档中提到,如果grad属性不为空,新计算出来的梯度值会直接加到旧值上面。 为什么不直接覆盖旧的结果呢?

这是因为有些Tensor可能有多个输出,那么就需要调用多个backward。叠加的处理方式使得backward不需要考虑之前有没有被计算过导数,只需要加上去就行了,这使得设计变得更简单。

因此我们用户在反向传播之前,常常需要用zero_grad函数对导数手动清零,确保计算出来的是正确的结果。

 $11 = input \times w1$

$$12 = 11 + w2$$

$$13 = 11 \times w3$$

$$14 = 12 \times 13$$

$$loss = mean(14)$$

https://zhuanlan.zhihu.com/p/69294347

- 1. Tensors张量
- 2. Autograd自动求导
- 3. 神经网络
- 4. 训练一个分类器

可以使用torch.nn包来构建神经网络. 你已知道autograd包,nn包依赖autograd包来定义模型并求导.一个nn.Module包含各个层和一个forward(input)方法,该方法返回output。

典型的神经网络

• 神经网络关键组件及相互关系

• PyTorch构建网络工具

神经网络的典型训练过程如下:

- 定义神经网络模型,它有一些可学习的参数(或者权重);
- 在数据集上迭代;
- 通过神经网络处理输入;
- 计算损失(输出结果和正确值的差距大小)
- 将梯度反向传播回网络的参数;
- 更新网络的参数,主要使用如下简单的更新原则:weight = weight learning_rate * gradient

深度学习的三个步骤

深度学习很简单.....

来源:李宏毅《1天搞懂深度学习》

torch.Tensor-支持自动编程操作(如backward())的多维数组。同时保持梯度的张量。

nn.Module-神经网络模块.封装参数,移动到GPU上运行,导出,加载等nn.Parameter-一种张量,当把它赋值给一个Module时,被自动的注册为参数。autograd.Function-实现一个自动求导操作的前向和反向定义,每个张量操作都会创建至少一个Function节点,该节点连接到创建张量并对其历史进行编码的函数。

数据处理工具箱

- 1. Tensors张量
- 2. Autograd自动求导
- 3. 神经网络
- 4. 训练一个分类器

训练一个分类器流程

torch.nn.Linear

PyTorch的nn.Linear ()是用于设置网络中的全连接层的,需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size],不同于卷积层要求输入输出是四维张量。

in_features指的是输入的二维张量的大小,即输入的[batch_size, size]中的size。out_features指的是输出的二维张量的大小,即输出的二维张量的形状为 [batch_size, output_size], 当然,它也代表了该全连接层的神经元个数。从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量。

torch.nn

计算图和autograd是十分强大的工具,可以定义复杂的操作并自动求导;然而对 于大规模的网络, autograd太过于底层。 在构建神经网络时, 我们经常考虑将 计算安排成层,其中一些具有可学习的参数,它们将在学习过程中进行优化。 TensorFlow里,有类似Keras,TensorFlow-Slim和TFLearn这种封装了底层计算 图的高度抽象的接口,这使得构建网络十分方便。 在PyTorch中,包nn 完成了同样的功能。nn包中定义一组大致等价于层的模块。 一个模块接受输入的tesnor,计算输出的tensor,而且 还保存了一些内部状态比

如需要学习的tensor的参数等。nn包中也定义了一组损失函数 (loss functions),用来训练神经网络。

torch.optim

#使用optim包定义优化器(Optimizer)。Optimizer将会为我们更新模型的权重。

这里我们使用Adam优化方法; optim包还包含了许多别的优化 算法。

Adam构造函数的第一个参数告诉优化器应该更新哪些张量。

learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), Ir=learning_rate)

参考文献

- 1. IAN GOODFELLOW等,《深度学习》,人民邮电出版社,2017
- 2. Andrew Ng, http://www.deeplearning.ai
- Christopher M. Bishop, Pattern Recognition and Machine Learning,
 Springer-Verlag, 2006
- 4. 李宏毅, 《一天搞懂深度学习》
- 5. 吴茂贵等,《Python深度学习基于PyTorch》,机械工业出版社,2020