Chapitre 7: Fonctions polynomiales, racines

Ici, K est un corps commutatif quelconque.

I Fonction polynomiale

Définition:

Soit $P \in \mathbb{K}[X]$, $P = \sum_{k \in \mathbb{N}} a_k X^k$ où les a_k sont nuls à partir d'un certain rang.

La fonction polynomiale associée à P est la fonction :

$$\widetilde{P}: \overline{\mathbb{K}} \to \overline{\mathbb{K}} \\ x \mapsto \widetilde{P}(x) = \sum_{k \in \mathbb{N}} a_k x^k$$

Attention:

 $P \in \mathbb{K}[X]$, c'est un polynôme formel, $\widetilde{P} \in \mathfrak{F}(\mathbb{K}, \mathbb{K})$, c'est une fonction polynomiale.

Théorème:

Soit $x \in \mathbb{K}$. Alors, pour tous $P_1, P_2 \in \mathbb{K}[X]$ et tout $\lambda \in \mathbb{K}$:

$$P_1 \stackrel{\sim}{+} P_2(x) = \widetilde{P}_1(x) + \widetilde{P}_2(x)$$

$$P_1 \times P_2(x) = \widetilde{P}_1(x) \times \widetilde{P}_2(x)$$

$$\lambda \widetilde{P}_1(x) = \lambda \widetilde{P}_1(x)$$

$$\widetilde{1}(x) = 1_{\mathbb{K}}$$

(Démonstration immédiate)

On en tire alors le théorème :

$$P_1 + P_2 = \widetilde{P}_1 + \widetilde{P}_2$$

$$P_1 \times P_2 = \widetilde{P}_1 \times \widetilde{P}_2$$

$$\widetilde{\lambda P_1} = \lambda \widetilde{P_1}$$

$$\widetilde{1} = 1_{\mathfrak{F}(\mathbb{K},\mathbb{K})}$$

(Car $\forall x \in \mathbb{K}, P_1 \stackrel{\sim}{+} P_2(x) = (\widetilde{P}_1 + \widetilde{P}_2)(x)$, et de même pour les autres)

Ainsi, l'application $\mathbb{K}[X] \to \mathfrak{F}(\mathbb{K}, \mathbb{K})$ est un morphisme de l'anneau $(\mathbb{K}[X], +, \times)$ vers $P \mapsto \widetilde{P}$

l'anneau $(\mathfrak{F}(\mathbb{K},\mathbb{K}),+,\times)$.

II Racines

A) Définition et caractérisation formelle

Soit $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$.

On dit que λ est une racine (dans \mathbb{K}) de P lorsque $\widetilde{P}(\lambda) = 0_{\mathbb{K}}$

Théorème:

Soit $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$.

Alors λ est racine de P si et seulement si $(X - \lambda)$ divise P.

Démonstration:

Déjà, $(X - \lambda)$ est non nul.

On peut donc faire la division euclidienne de P par $(X - \lambda)$:

$$P = (X - \lambda)Q + R$$
, où $Q \in \mathbb{K}[X]$ et $R \in \mathbb{K}_0[X]$, soit $R = r \in \mathbb{K}$.

Donc
$$P = (X - \lambda)Q + r$$

Donc
$$\widetilde{P} = (X - \lambda)\widetilde{Q} + \widetilde{r}$$
 d'où $\widetilde{P}(\lambda) = 0_{\pi} \times \widetilde{Q}(\lambda) + r = r$.

Donc λ est racine de P si et seulement si r = 0 soit si $(X - \lambda)$ divise P.

B) Multiplicité

Soit
$$P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}.$$

Soit λ un scalaire. On suppose que λ est racine de P. La multiplicité de λ dans P est, par définition, $m = \max\{k \in \mathbb{N}, (X - \lambda)^k \text{ divise } P\}$.

La définition est bien correcte car l'ensemble est non vide (contient 1) et est majoré (par deg(P))

On peut convenir que λ est de multiplicité 0 lorsque λ n'est pas racine de P.

C) Le premier théorème de factorisation

Théorème:

Soit $P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}$. Soient $\lambda_1, \lambda_2, ... \lambda_p$ des racines distinctes de P de multiplicités au moins égales à $\alpha_1, \alpha_2, ... \alpha_p$.

Alors
$$\prod_{i=1}^{p} (X - \lambda_i)^{\alpha_i}$$
 divise P .

Démonstration :

Les polynômes $(X - \lambda_i)$, $i \in [1, n]$ sont irréductibles dans $\mathbb{K}[X]$ (car de degré 1). Ils tous distincts et unitaires, donc les $(X - \lambda_i)^{\alpha_i}$, $i \in [1, n]$ sont premiers entre eux. De plus, ils divisent tous P. Donc leur produit divise P.

Conséquence:

Soit $P \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}}\}$ de degré $n \in \mathbb{N}$. Alors le nombre de racines de P (en les comptant selon leur multiplicité) est inférieur ou égal à n.

Démonstration:

Si P admet les racines $\lambda_1, \lambda_2, ... \lambda_p$ distinctes avec les multiplicités $\alpha_1, \alpha_2, ... \alpha_p$,

alors
$$\prod_{i=1}^{p} (X - \lambda_i)^{\alpha_i}$$
, de degré $\sum_{k=1}^{n} \alpha_k$, divise P donc $\sum_{k=1}^{n} \alpha_k \le n$.

Conséquence pratique :

Si $P \in \mathbb{K}_n[X]$, et si on a trouvé n+1 racines distinctes à P, alors P=0.

Conséquence:

On suppose K infini.

Alors l'application $\mathbb{K}[X] \to \mathfrak{F}(\mathbb{K}, \mathbb{K})$ est injective :

$$P \mapsto$$

Si $\widetilde{P} = \widetilde{Q}$, alors $\widetilde{P} - \widetilde{Q} = 0_{\mathbb{K}}$, soit $P - \widetilde{Q} = 0_{\mathbb{K}}$, c'est-à-dire $\forall x \in \mathbb{K}, P - \widetilde{Q}(x) = 0_{\mathbb{K}}$.

Donc P - Q a une infinité de racines. Donc $P - Q = 0_{\mathbb{R}}$. Donc P = Q.

Dans la suite du chapitre, K est un sous corps de C. K est donc infini (car il contient au minimum Q puisqu'il contient 0 et 1 et est stable par +, \times et passage à l'inverse)

Ainsi, on a l'équivalence, pour tout $P,Q \in \mathbb{K}[X]$: $\widetilde{P} = \widetilde{Q} \Leftrightarrow P = Q$.

On peut donc retirer les ~ mais on distinguera $P = \sum_{k \in \mathbb{N}} a_k X^k$ et la fonction $x \mapsto P(x)$.

III Dérivation formelle

A) Définition

Soit $P \in \mathbb{K}[X]$, $P = \sum_{k=1}^{n} a_k X^k$ où les a_k sont nuls à partir d'un certain rang.

Alors le polynôme dérivé de *P* est par définition le polynôme :

$$P' = \sum_{k \in \mathbb{N}^*} k a_k X^{k-1}$$

On définit par récurrence le polynôme dérivé n fois de P:

$$\begin{cases} P^{(0)} = P \\ \forall n \in \mathbb{N}^*, P^{(n+1)} = (P^{(n)})' \end{cases}$$

Remarque : si on considère la fonction $P: \mathbb{R} \to \mathbb{C}$, on remarque que $(P)' = \overline{P'}$

B) Propriétés

• Si $\deg P \le n$, alors $P^{(n)}$ est constant, non nul si et seulement si $\deg P = n$. En effet:

Si
$$P = a_n X^n + a_{n-1} X^{n-1} + ... + a_1 X + a_0$$
,

Alors
$$P' = na_n X^{n-1} + (n-1)a_{n-1} X^{n-2} + ... + a_1$$

Donc si deg $P = n \ge 1$, alors deg P' = n - 1, d'où par récurrence deg $P^{(n)} = 0$.

Et si
$$\deg P = \begin{cases} 0 \\ -\infty \end{cases}$$
, alors $P' = 0$.

•
$$(P+Q)'=P'+Q'$$
 $\rightarrow (P+Q)^{(k)}=P^{(k)}+Q^{(k)}$
• $(\lambda .P)'=\lambda .P'$ $\rightarrow (\lambda .P)^{(n)}=\lambda .P^{(n)}$

•
$$(\lambda . P)' = \lambda . P'$$
 $\rightarrow (\lambda . P)^{(n)} = \lambda . P^{(n)}$

•
$$(P \times Q)' = P'Q + PQ' \rightarrow (PQ)^{(k)} = \sum_{i=0}^{k} C_k^i P^{(i)} Q^{(k-i)}$$

•
$$(P^m)' = mP'P^{m-1} (m \ge 1)$$

•
$$(P(Q))' = Q' \times P'(Q)$$

Démonstration:

(1) On a:
$$\forall x \in \mathbb{R}, (P+Q)'(x) = P'(x) + Q'(x)$$

Donc (P+Q)'-P'-Q' a une infinité de racines, donc (P+Q)'=P'+Q'.

De même, (2), (3), (4), puis par récurrence pour les dérivées k-ièmes.

Pour (5), la démonstration ne convient pas si Q n'est pas à coefficients réels.

Dans ce dernier cas (et aussi dans les autres):

$$P(Q) = \sum_{k \in \mathbb{N}} a_k Q^k$$

Donc
$$(P(Q))' = \sum_{k=N+k} a_k k Q' Q^{k-1}$$
 (d'après (1), (2), (4))

Soit
$$(P(Q))' = Q' \sum_{k \in \mathbb{N}^*} a_k k Q^{k-1} = Q' P'(Q)$$
.

Remarque:

$$(X^{p})^{(i)} = \begin{cases} 0 \text{ si } i > p \\ \frac{p!}{(p-i)!} X^{p-i} \text{ si } 0 \le i \le p \end{cases}$$

Ainsi,
$$D^{(i)}(X^p)(0) = \begin{cases} 0 \text{ si } i \neq p \\ p! \text{ si } i = p \end{cases}$$

C) Formule de Taylor pour les polynômes

Théorème:

Soit P un polynôme, soit $n \in \mathbb{N}$ tel que $n \ge \deg P$.

Alors pour tout $a, b \in \mathbb{K}$:

$$P(a+b) = P(a) + bP'(a) + \frac{b^2}{2!}P''(a) + \dots + \frac{b^n}{n!}P^{(n)}(a)$$

Démonstration :

- Si
$$a = 0$$
:

On veut montrer que $\forall x \in \mathbb{K}, P(x) = P(0) + xP'(0) + ... + \frac{x^n}{n!}P^{(n)}(0)$

$$P = \sum_{k=0}^{n} a_k X^k .$$

Donc pour tout $p \in \mathbb{N}$:

$$D^{(p)}(P) = \sum_{k=0}^{n} a_k D^{(p)}(X^k)$$

Donc
$$D^{(p)}(P)(0) = p! a_p$$
. Donc $a_p = \frac{D^{(p)}(P)(0)}{p!}$.

- Cas général :

On pose Q(X) = P(a+X).

Alors
$$\forall k \in \mathbb{N}, Q^{(k)}(X) = P^{(k)}(a+X) (\text{car } (a+X)'=1)$$

Donc
$$\forall x \in \mathbb{K}, Q(x) = \sum_{k=0}^{n} \frac{Q^{(k)}(0)}{k!} x^{k}$$

Soit
$$\forall x \in \mathbb{K}, P(a+x) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} x^k$$

Théorème (plus général):

Soit $P \in \mathbb{K}[X]$. Soit $n \in \mathbb{N}$ tel que $n \ge \deg P$. Alors, pour tous $A, B \in \mathbb{K}[X]$:

$$P(A+B) = \sum_{k=0}^{n} \frac{P^{(k)}(A)}{k!} B^{k}$$
.

Démonstration:

Pour tout $x \in \mathbb{K}$, on a:

$$P(A(x) + B(x)) = \sum_{k=0}^{n} (B(x))^{k} \frac{P^{(k)}(A(x))}{k!}$$

(d'après le théorème précédent avec a = A(x) et b = B(x))

D'où l'égalité des polynômes formels P(A+B) et $\sum_{k=0}^{n} B^k \frac{P^{(k)}(A)}{k!}$ puisqu'ils coïncident sur \mathbb{K} .

D) Application à la multiplicité

Théorème:

Soient $P \in \mathbb{K}[X] \setminus \{0\}$, $\lambda \in \mathbb{K}$ et $k \in \mathbb{N}^*$. Alors λ est racine d'ordre au moins k de P si et seulement si : $P^{(0)}(\lambda) = P^{(1)}(\lambda) \dots = P^{(k-1)}(\lambda) = 0$

Par conséquent, λ est racine de P d'ordre exactement k si et seulement si :

$$P^{(0)}(\lambda) = P^{(1)}(\lambda) \dots = P^{(k-1)}(\lambda) = 0 \text{ et } P^{(k)}(\lambda) \neq 0.$$

Démonstration :

Soit $n \in \mathbb{N}$ tel que $n \ge \deg P$ et $n \ge k$. Alors:

$$P(X) = P(\lambda + (X - \lambda))$$

$$=\underbrace{P(\lambda) + (X - \lambda)P'(\lambda) + \ldots + \frac{(X - \lambda)^{k-1}}{(k-1)!}P^{(k-1)}(\lambda)}_{\text{polynôme R de degré} \leq k-1} + \underbrace{\ldots + \frac{(X - \lambda)^n}{n!}P^{(n)}(\lambda)}_{\text{polynôme divisible par }(X - \lambda)^k}$$

Donc R est le reste dans la division euclidienne de P par $(X - \lambda)^k$.

On a donc les équivalences :

 λ est racine d'ordre au moins k de $P \Leftrightarrow (X - \lambda)^k$ divise P

$$\Leftrightarrow R = 0$$

$$\Leftrightarrow \sum_{i=0}^{k-1} (X - \lambda)^i \frac{P^{(i)}(\lambda)}{i!} = 0$$

$$\Leftrightarrow \forall i \in [0, k-1], \frac{P^{(i)}(\lambda)}{i!} = 0$$

Pour la dernière équivalence (l'un des sens étant évident)

Si
$$\sum_{i=0}^{k-1} (X - \lambda)^i \frac{P^{(i)}(\lambda)}{i!} = 0$$
, alors $\forall x \in \mathbb{K}, \sum_{i=0}^{k-1} (x - \lambda)^i \frac{P^{(i)}(\lambda)}{i!} = 0$,

donc
$$\forall y \in \mathbb{K}, \sum_{i=0}^{k-1} y^i \frac{P^{(i)}(\lambda)}{i!} = 0$$
.

Ainsi,
$$\sum_{i=0}^{k-1} X^i \frac{P^{(i)}(\lambda)}{i!} = 0$$
, d'où $\forall i \in [0, k-1], \frac{P^{(i)}(\lambda)}{i!} = 0$.

IV Polynôme scindé

A) Définition

Soit $P \in \mathbb{K}[X]$, de degré $n \ge 1$.

On dit que P est scindé (dans \mathbb{K}) lorsque P a toutes ses racines dans \mathbb{K} , ce qui équivaut à dire que P admet exactement n racines dans \mathbb{K} en comptant les multiplicités et aussi à dire qu'il existe $p \in \mathbb{N}^*$, des éléments $\lambda_1, \lambda_2, ..., \lambda_p$ de \mathbb{K} distincts, des

éléments $\alpha_1, \alpha_2, ... \alpha_p$ de \mathbb{N}^* et $a \in \mathbb{K}^*$ tels que $P = a \prod_{i=1}^p (X - \lambda_i)^{\alpha_i}$ (théorème de

factorisation), ou à dire qu'il existe n éléments $\mu_1, \mu_2, ..., \mu_n$ de \mathbb{K} et $a \in \mathbb{K}^*$ tels que

$$P = a \prod_{i=1}^{n} X - \mu_i .$$

Exemple:

 X^3-1 est scindé dans $\mathbb{C}[X]$ mais pas dans $\mathbb{R}[X]$

B) Relations entre coefficients et racines pour un polynôme scindé 1) Fonctions symétriques élémentaires

Soit $n \in \mathbb{N}^*$. On définit les fonctions $\sigma_1, \sigma_2, ... \sigma_n$ de \mathbb{K}^n dans \mathbb{K} par les formules :

$$\begin{split} &\sigma_{1}(\lambda_{1},\lambda_{2},...\lambda_{n}) = \lambda_{1} + \lambda_{2}... + \lambda_{n} = \sum_{i=1}^{n} \lambda_{i} \\ &\sigma_{2}(\lambda_{1},\lambda_{2},...\lambda_{n}) = \lambda_{1}\lambda_{2} + \lambda_{1}\lambda_{3}... + \lambda_{1}\lambda_{n} + \lambda_{2}\lambda_{3} + ... + \lambda_{2}\lambda_{n} + ...\lambda_{n-1}\lambda_{n} = \sum_{i < j} \lambda_{i}\lambda_{j} \\ &\sigma_{3}(\lambda_{1},\lambda_{2},...\lambda_{n}) = \sum_{i < j < k} \lambda_{i}\lambda_{j}\lambda_{k} \\ &\sigma_{n}(\lambda_{1},\lambda_{2},...\lambda_{n}) = \prod_{i = 1}^{n} \lambda_{i} \end{split}$$

Pour
$$k \in [1, n]$$
, $\sigma_k(\lambda_1, \lambda_2, ..., \lambda_n) = \sum_{i_1 < i_2 < ... < i_k} \lambda_{i_1} \lambda_{i_2} ... \lambda_{i_k}$

Ces fonctions sont symétriques, c'est-à-dire :

Etant donnée $f: \mathbb{K}^n \to \mathbb{K}$, on dit que f est symétrique lorsque :

$$\forall (x_1, x_2, ... x_n) \in \mathbb{K}^n, \forall s \in \mathfrak{S}_n, f(x_{s(1)}, x_{s(2)} ... x_{s(n)}) = f(x_1, x_2 ... x_n).$$

Ce sont les fonctions symétriques élémentaires sur n éléments en vertu d'un résultat (hors programme) : toutes les fonctions symétriques rationnelles sur n éléments sont fonctions rationnelles des σ_k .

2) Le résultat

Soit P un polynôme scindé de degré $n \ge 1$ de $\mathbb{K}[X]$, d'écriture développée $P = \sum_{k=0}^{n} a_k X^k$ et d'écriture factorisée $P = a_n \prod_{i=1}^{n} (X - \lambda_i)$.

Pour alléger, on notera σ_k pour $\sigma_k(\lambda_1, \lambda_2, ... \lambda_n)$, pour tout $k \in [1, n]$.

Les formules suivantes donnent un lien entre les
$$\sigma_k$$
 et les a_k :

$$-a_n \sigma_1 = a_{n-1}$$
$$a_n \sigma_2 = a_{n-2}$$

...
$$(-1)^k a_n \sigma_k = a_{n-k}$$

En effet:

$$\prod_{i=1}^{n} (X - \lambda_i) = X^n - (\lambda_1 + \lambda_2 \dots + \lambda_n) X^{n-1} + \sum_{i < j} \lambda_i \lambda_j X^{n-2} + \dots + (-1)^k \sum_{\substack{l_1 < l_2 < \dots < l_k}} \lambda_{l_1} \lambda_{l_2} \dots \lambda_{l_k} X^{n-k} + \dots + \lambda_1 \lambda_2 \dots \lambda_n$$

3) Réciproque

Soient $u_1,u_2,...u_n\in\mathbb{K}$. Alors les solutions du système suivant, d'inconnues $x_1,x_2,...x_n$ dans \mathbb{K} :

(S):
$$\begin{cases} \sigma_{1}(x_{1}, x_{2}, ... x_{n}) = u_{1} \\ \sigma_{2}(x_{1}, x_{2}, ... x_{n}) = u_{2} \\ \vdots \\ \sigma_{n}(x_{1}, x_{2}, ... x_{n}) = u_{n} \end{cases}$$

sont exactement les racines du polynôme :

$$P = X^{n} - u_{1}X^{n-1} + \dots + (-1)^{k} u_{k} X^{n-k} + \dots (-1)^{n} u_{n}$$

Démonstration:

- Si x₁, x₂,...x_n sont racines de P, alors (x₁, x₂,...x_n) est solution de (S) d'après le 2).
- Si $(x_1, x_2, ... x_n)$ est solution de (S), alors le polynôme $P = \prod_{i=1}^{n} (X x_i)$ s'écrit sous forme développée $X^n - u_1 X^{n-1} + ... + (-1)^n u_n$.

V Factorisation dans $^{\mathbb{C}[X]}$ et $^{\mathbb{R}[X]}$.

A) Dans $\overline{\mathbb{C}[X]}$.

Théorème d'Alembert:

Tout polynôme de degré ≥ 1 à coefficients dans $\mathbb C$ a au moins une racine. Par conséquent, les polynômes de $\mathbb C[X]$ de degré ≥ 1 sont tous scindés dans $\mathbb C[X]$ (démonstration par récurrence)

Enoncé équivalent :

Les polynômes irréductibles unitaires de $\mathbb{C}[X]$ sont exactement les polynômes $X-\lambda,\lambda\in\mathbb{C}$.

On dit que C est algébriquement clos.

B) Dans $\mathbb{R}[X]$.

Soit $P \in \mathbb{R}[X]$.

Soit $\lambda \in \mathbb{C}$, racine de multiplicité α . Alors $\overline{\lambda}$ est aussi racine de P, et avec la même multiplicité α .

Démonstration:

- Si λ est racine de P, où $P = \sum_{k=0}^{n} a_k X^k$, alors:

$$P(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + ... + a_0 \lambda^0 = 0$$

Donc $\overline{P(\lambda)} = 0$, et:

$$\overline{P(\lambda)} = \overline{a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_0 \lambda^0}$$

$$= a_n \overline{\lambda}^n + a_{n-1} \overline{\lambda}^{n-1} + \dots + a_0 \overline{\lambda}^0$$

$$= P(\overline{\lambda})$$

Soit $P(\overline{\lambda}) = 0$. Donc $\overline{\lambda}$ est racine de P.

- Si λ est racine de multiplicité $\alpha \ge 1$ de P, alors :

$$P(\lambda) = P'(\lambda) = \dots = P^{(\alpha-1)}(\lambda) = 0$$
 et $P^{(\alpha)}(\lambda) \neq 0$.

Donc $P(\overline{\lambda}) = P'(\overline{\lambda}) = \dots = P^{(\alpha-1)}(\overline{\lambda}) = 0$ (étape précédente appliquée aux $P^{(k)}$), et $P^{(\alpha)}(\overline{\lambda}) \neq 0$ car sinon $P^{(\alpha)}(\lambda) = P^{(\alpha)}(\overline{\lambda}) = 0$.

Soient $P \in \mathbb{R}[X]$ et λ une racine de P. Peut-on affirmer que $(X - \lambda)(X - \overline{\lambda})$ divise P?

C'est vrai uniquement si $\lambda \notin \mathbb{R}$, car sinon dans ce cas là $\lambda = \overline{\lambda}$ et donc on peut avoir $(X - \lambda)$ qui divise P mais pas forcément $(X - \lambda)^2$.

Théorème:

Les irréductibles de $\mathbb{R}[X]$ sont exactement les polynômes de degré 1 et de degré 2 sans racine réelle. Ainsi, tout polynôme P à coefficients réels de degré ≥ 1 s'écrit de manière unique $P = a \prod_{i=1}^m P_i$ où $a \in \mathbb{R}^*$ et où $P_i \in \mathbb{R}_2[X] \setminus \{P \in \mathbb{R}_2[X], \Delta(P) \geq 0\}$.

Démonstration:

- Déjà, si P = aX + b $((a,b) \in \mathbb{R}^* \times \mathbb{R})$, alors P est irréductible.

Si
$$P = aX^2 + bX + c$$
 avec
$$\begin{cases} (a,b,c) \in \mathbb{R} * \times \mathbb{R} \times \mathbb{R} \\ b^2 - 4ac < 0 \end{cases}$$
, alors P est irréductible dans

 $\mathbb{R}[X]$ (sinon il s'écrirait $(\alpha . X + \beta)(\alpha' . X + \beta')$ et aurait deux racines réelles)

- Soit maintenant P un polynôme de degré ≥ 2 .

Selon le théorème d'Alembert, il y a au moins une racine $\lambda \in \mathbb{C}$.

- Si $\lambda \in \mathbb{R}$, alors $P = (X \lambda)Q$ où $\deg Q = n 1 \ge 1$, donc P n'est pas irréductible.
- Si $\lambda \in \mathbb{C} \setminus \mathbb{R}$, alors $\overline{\lambda}$ est aussi racine de P, et $\overline{\lambda} \neq \lambda$ donc $(X \lambda)(X \overline{\lambda})$ divise P.

Or,
$$(X - \lambda)(X - \overline{\lambda}) = X^2 - (\lambda + \overline{\lambda})X + \lambda \overline{\lambda} \in \mathbb{R}[X]$$
.

Donc $P = (X^2 - sX + p)Q$ où $Q \in \mathbb{R}[X]$, $s \in \mathbb{R}$ et $p \in \mathbb{R}$.

Donc $\deg Q = n - 2$.

Donc soit n = 2 et P est irréductible, soit $n \ge 3$ et P n'est pas irréductible.

Il n'y a donc pas d'autres polynômes irréductibles.

Plus précisément :

Soit $P \in \mathbb{R}[X]$, de degré $n \ge 1$ et de coefficient dominant a. Alors P admet n racines dans \mathbb{C} , regroupées ainsi :

 $\lambda_1, \lambda_2, ... \lambda_p$ racines réelles de multiplicités $\alpha_1, \alpha_2, ... \alpha_p$.

 $\mu_1, \overline{\mu}_1, \mu_2, \overline{\mu}_2, ... \mu_p, \overline{\mu}_p$ racines complexes de multiplicités $\beta_1, \beta_1, \beta_2, \beta_2 ... \beta_q, \beta_q$.

Avec
$$\sum_{i=1}^{p} \alpha_{i} + \sum_{i=1}^{q} \beta_{i} = n$$
. Alors:

$$P = a \prod_{i=1}^{p} (X - \lambda_{i})^{\alpha_{i}} \prod_{i=1}^{q} (X - \mu_{i})^{\beta_{i}} (X - \overline{\mu}_{i})^{\beta_{i}}$$

$$= a \prod_{i=1}^{p} (X - \lambda_{i})^{\alpha_{i}} \prod_{i=1}^{q} (X^{2} - s_{i}X + p_{i})^{\beta_{i}}$$
Où $\forall i \in [1, q] s_{i} = \mu_{i} + \overline{\mu}_{i} = 2 \operatorname{Re}(\mu_{i})$

$$p_{i} = \mu_{i} \overline{\mu}_{i} = |\mu_{i}|^{2}$$

Algorithme de Horner:

Soit
$$P: x \mapsto \sum_{k=0}^{n} a_k x^k$$

L'algorithme permet de calculer la valeur d'une fonction polynomiale en un point de $\mathbb K$ avec un minimum d'opérations élémentaires :

$$(...(((a_nx+a_{n-1})x+a_{n-2})x+...)x+a_1)x+a_0$$

On a ainsi au pire n multiplications et n additions.