Задача 8. Дадено е уравнението

$$y'' + y' - y = 1$$

- а) Намерете общото решение на уравнението;
- б) Намерете всички решения на уравнението, които са ограничени за $x \in [0, +\infty)$;
- в) Намерете всички периодични решения на уравнението.

Решение:

а) Характеристичния полином на хомогенната част е $R(\lambda)=\lambda^2+\lambda-1$. Корените на $R(\lambda)=0$ са $\lambda_{1,2}=\frac{-1\pm\sqrt{5}}{2}$, следователно ФСР:= $\{e^{\lambda_1 x},\,e^{\lambda_2 x}\}$ и общото решение има вида $y_o(x)=c_1e^{\frac{-1+\sqrt{5}}{2}x}+c_2e^{\frac{-1-\sqrt{5}}{2}x}$, където c_1 и c_2 са произволни константи.

б) За да намерим всички решения y_{\forall} на уравнението, е необходимо да намерим и частно решение z(x). Частното решение намираме по следния начин:

 $f(x) = 1 = P_m(x)e^{\gamma x}, \ \gamma \in C \Rightarrow m = 0, \ \gamma = 0$ - не е корен на характеристичното уравнение на хомогенната част $\Rightarrow s = 0$, където

$$z(x)=x^s$$
 . $Q_m(s)$. $e^{\gamma x}=1.c_3.1=c_3$. Тоест търсим такова решение, че $z''(x)+z'(x)-z(x)=1$ или $0+0-c_3=1\Rightarrow c_3=-1$.

Всички решения на уравнението са

$$y(x) = y_o(x) + z(x) = c_1 e^{\frac{-1 + \sqrt{5}}{2}x} + c_2 e^{\frac{-1 - \sqrt{5}}{2}x} - 1$$

Тъй като $\lim_{x\to +\infty}e^{\frac{-1+\sqrt{5}}{2}x}=+\infty$ и $\lim_{x\to +\infty}e^{\frac{-1-\sqrt{5}}{2}x}=0\Rightarrow c_1$ трябва да е нула, за да бъдат ограничени решенията в искания интервал. Следователно всички такива решения ще $\mathrm{ca} y(x)=-1+c_2e^{\frac{-1-\sqrt{5}}{2}x}$.

в) Тъй като функциите $e^{\frac{-1+\sqrt{5}}{2}x}$ и $e^{\frac{-1+\sqrt{5}}{2}x}$ са монотонни и непериодични, то за да са периодични решенията е необходимо $c_1=c_2=0$ и така y(x)=-1 е единсвеното периодично решение за уравнението.