List of useful functions

There are four libraries imported for this analysis: matplotlib, numpy, pandas.

- numpy is used for performing mathematical operations on arrays
- matplotlib allows graphs to be plotted
- pandas provides an interface for manipulating datasets

The list below gives some functions that you will find useful, although you can use other functions from the libraries given. Clicking on the heading of each function will take you to the function's main documentation page.

numpy

numpy.sqrt(n)

Description	Example
Return the square root of n	<pre>> a = numpy.array([1, 4, 9]) > numpy.sqrt(a) numpy.array([1, 2, 3])</pre>

numpy.mean(data)

Description	Example	
Return the mean of data	<pre>> a = numpy.array([1, 4, 9, 3]) > numpy.mean(a) 4.25</pre>	

numpy.sum(data)

Description	Example	
Sum all elements in data	<pre>> a = numpy.array([1, 4, 9]) > numpy.sum(a) 14</pre>	

numpy.minimum(data1, data2)

Description	Example
Compare two datasets and returns an array containing the element-wise minima	<pre>> a = numpy.array([1, 4, 9]) > b = numpy.array([9, 4, 1]) > numpy.minimum(a, b) numpy.array([1, 4, 1])</pre>

numpy.maximum(data1, data2)

Description	Example
Compare two datasets and returns an array containing the element-wise maxima	<pre>> a = numpy.array([1, 4, 9]) > b = numpy.array([9, 4, 1]) > numpy.maximum(a, b) numpy.array([9, 4, 9])</pre>

matplotlib

Functions in matplotlib are accessed through pyplot.

pyplot.hist(data, n, [x1, x2])

pyplot.hist2d(data1, data2, n, [[x1, x2], [y1, y2]])

Description	Example		
Plot a 2D histogram from two datasets, with n^2 bins equally spaced between x1 and x2 in x and y1 and y2 in y	<pre>> pyplot.hist2d(</pre>		
	4000 3500 3000 2500 2000 1500 1000 500 500 1000 500 1000 500 2000 1500 2000		

pyplot.scatter(x, y, size, color)

Description	Example					
Plot a scatter plot of x vs y where each point has area size and colour color	<pre>> pyplot.scatter([1, 2, 5, 1, 3, 5], [2, 5, 1, 4, 3, 5], 40, "red"))</pre>					
	5					

pandas

The following pandas functions have to be applied to an exisiting <code>DataFrame</code> object, see the example analysis for a demonstration.

df.head(n)

Example			
> df.head(3)			
	H1_PX	H1_PY	H1_PZ
0	1038.634354	4933.332660	164858.932313
1	-318.157696	-6407.683029	152900.152771
2	-97.802248	199.043666	4381.611081
	0	H1_PX 0 1038.634354	H1_PX H1_PY 0 1038.634354 4933.332660 1 -318.157696 -6407.683029

df.eval(expression)

Description	Example				
Evaluate an expression in the context of the DataFrame	<pre>> df['H1_PT'] = data.eval(</pre>				
		H1_PT	H1_PX	H1_PY	
	0	5041.481177	1038.634354	4933.332660	
	1	6415.576835	-318.157696	-6407.683029	
	2	221.773895	-97.802248	199.043666	

df.min()

Description	Example	
Return the minimum value for each column in a dataframe	<pre>> df.min() H1_PX H1_PY H1_PZ dtype: float64</pre>	-122475.373002 -613485.901808 1420.725768

df.max()

Description	Example				
Return the maximum value for each	> df.max()				
column in a dataframe	H1_PX	2.411849e+05			
	H1_PY	1.748288e+05			
	H1_PZ	1.998913e+07			
	dtype: float64				

df.query(expression)

Description	Example			
Select part of a DataFrame provided expression evaluates to true		<pre>> df_2 = df.query("H1_PX > 0") df_2.head(3)</pre>		
		H1_PT	H1_PX	H1_PY
	0	5041.481177	1038.634354	4933.332660
	10	624.982042	583.983691	222.633334
	11	1789.442985	1784.378885	134.529515
	·			