11-2022 **EPFL**

Semaine 7b: Moment de flexion et axe neutre

Question 1 - Comparer des poutres avec différentes sections

Deux poutres avec des sections différentes sont illustrées sur la Figure 1.1. Calculer :

- Le moment d'inertie (I_{z,y_0}) . Attention à l'axe!
- Le module de section S.
- L'aire de la section transversale et le rapport $\frac{S}{4}$ pour les dimensions suivantes
- Quelle poutre est plus efficace (meilleur S/A). pourquoi?

$$cas\ A$$
: $b = 30\ cm$, $d = 40\ cm$, $b_1 = 6\ cm$, $d_1 = 32\ cm$

cas B:
$$b = 40 \text{ cm}$$
, $d = 30 \text{ cm}$, $b_1 = 32 \text{ cm}$, $d_1 = 6 \text{ cm}$

Figure 1.1 | Section des deux poutres

11-2022 **EPFL**

Question .2 - Flexion d'une poutre avec une section triangulaire

Une poutre encastrée AB de section triangulaire a une longueur L=2 m, une largeur b=40 mm et une hauteur h=50 mm (voir **Figure** .2.**1**). La poutre est en laiton. La densité est $\gamma=8000$ kg/m^3 . Attention, pour cet exercice, le poids de la poutre n'est pas négligé.

- Calculez les forces de réaction et le moment dus au poids de la poutre.
- Calculez puis dessinez les forces de cisaillement le long de la poutre
- Calculez puis dessinez le moment de flexion le long de la poutre
- Trouvez l'axe neutre
- Calculer les contraintes normales maximales en compression σ_{cmax} et en traction σ_{tmax} dus au poids de la poutre.

Figure .2.1 | Une poutre encastrée en A, avec une section triangulaire

Question 3 - Charges distribuée et ponctuelle

Une poutre simplement supportée est illustrée ci-dessous sur la **Figure** 3.1. Nous allons comparer deux sections, voir **Figure 3.3.**

Nous vous donnons moment de flexion le long de la poutre, voir **Figure** 3.2.

Trouvez:

- La contrainte normale <u>maximale</u> due à la flexion sur pour les sections A (rectangulaire) et B (en « I »)
- Quelle section est la plus efficace (calculer S/aire)?
 - O Pour la section rectangulaire : b = 30 cm, d = 40 cm
 - Pour la section en 'I' : $b_1 = 6$ cm, $d_1 = 32$ cm, b = 30 cm, d = 40 cm

Figure 3.1 | Poutre *AB*. q=20N/m. F=10 N. L=4m

Figure 3.2 | Moment de flexion M(x) le long de la poutre

Figure 3.3 | Sections: rectangulaire (A) et en forme de « I » (B).