Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

- Adjacency Matrix & Random Walks in Graphs
- Eigenvalue & Spectral Gap
- Expander Graph
 - Algebraic Expansion v.s. Edge Expansion
 - Expander & Pseudo-randomness
 - Explicit Constructions

Random Walks in Graphs

Let's take a random stroll in the graph.

Where will we be after a number of steps?

The Normalized Adjacency Matrix

- Let G = (V, E) be an n-vertex d-regular graph.
- Let A^* be the adjacency matrix of G and define $A := A^*/d$.
 - The sum of each row in A is 1.
 - Think $a_{i,j}$ as the **probability** that we move to vertex i when we are at vertex j.

- Let A^* be the adjacency matrix of G and define $A := A^*/d$.
 - Think $a_{i,j}$ as the **probability** that we move to vertex i when we are at vertex j.
 - Then, the i^{th} -row of A describes the probability that we reach vertex i from each vertex in V.

- Let A^* be the adjacency matrix of G and define $A := A^*/d$.
 - Think $a_{i,j}$ as the **probability** that we move to vertex i when we are at vertex j.
 - Let $v = (p_1, p_2, ..., p_n)^T$ be a probability distribution over V that denotes our starting point.
 - Then, Av gives the probability distribution of the location we will be in 1-step of random walk.

- Let A^* be the adjacency matrix of G and define $A := A^*/d$.
 - Let $v = (p_1, p_2, ..., p_n)^T$ be a probability distribution over V that denotes our starting point.
 - Then, Av gives the probability distribution of the location we will be in 1-step of random walk.
 - Similarly, $A^t v = A^{t-1}(Av)$ gives the probability distribution after t steps.
 - Question: Where will we be?
 - Intuitively, when $t \approx \infty$,

 $A^t v$ should be close to uniform.

How fast does it converge?

Eigenvalue & Spectral Gap

It turns out that, eigenvalue plays an essential role in many important concepts.

The Eigenvalues of the Matrix A

Let G = (V, E) be an n-vertex d-regular graph and A be the normalized adjacency matrix of G.

Uniform distribution.

- Clearly,
 - 1 is an eigenvalue of A with eigenvector $\mathbf{1} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right) \in \mathbb{R}^n$, i.e., $A\vec{1} = \vec{1}$.
- Furthermore, it can be shown that $\lambda \leq 1$ for any eigenvalue λ of A.

In fact, $\lambda \leq \max_{i} \sum_{j} |A_{i,j}| \leq 1$ for any eigenvalue λ of A.

A is *real symmetric*. Hence, all the eigenvalues of A are *real* numbers.

Eigenvalues & Spectral Gap

- Let G = (V, E) be an n-vertex d-regular graph and A be the normalized adjacency matrix of G.
 - Clearly, 1 is an eigenvalue of A with eigenvector $\mathbf{1} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$, i.e., $A\vec{\mathbf{1}} = \vec{\mathbf{1}}$.
 - Furthermore, $\lambda \leq 1$ for any eigenvalue λ of A.
 - Let λ_2 be the 2^{nd} -largest eigenvalue of A.
 - The quantity $(1 \lambda_2)$ is called the <u>spectral gap</u> of A.

Spectral gap provides a lot of information on the *connectivity* of the graph.

Eigenvalues & Spectral Gap

We have the following lemma.

Lemma 1.

Let G = (V, E) be a regular graph with 2^{nd} -largest eigenvalue λ_2 and \boldsymbol{p} be a probability distribution over V.

Then for any $\ell \in \mathbb{N}$,

$$\left\|A^{\ell}\boldsymbol{p}-\mathbf{1}\right\|_{2} \leq (\lambda_{2})^{\ell}.$$

- Recall that, $\mathbf{1} = \left(\frac{1}{n}, \dots, \frac{1}{n}\right)$ is an eigenvector of A with eigenvalue 1.
- Furthermore, we can obtain a set of orthonormal eigenvectors of A, including 1, that forms a basis of \mathbb{R}^n .
- Consider the subspace $\mathcal{C} \subset \mathbb{R}^n$ that is orthogonal to 1.
 - C is spanned by the remaining eigenvectors of A.
- Rewrite the vector p as $p = p' + \alpha \mathbf{1}$, where $p' \in C$ and $\alpha \in \mathbb{R}$.

- Consider the subspace $\mathcal{C} \subset \mathbb{R}^n$ that is orthogonal to 1.
 - C is spanned by the remaining eigenvectors of A.
- Write $p = p' + \alpha \mathbf{1}$, where $p' \in C$ and $\alpha \in \mathbb{R}$.
 - It follows that

$$\frac{1}{n} \cdot \sum_{i} p_{i} = p \cdot \mathbf{1} = (p' + \alpha \mathbf{1}) \cdot \mathbf{1} = \frac{1}{n} \cdot \alpha.$$

- Since p is a probability distribution, $\sum_i p_i = 1$ and hence $\alpha = 1$.

- Write $p = p' + \alpha \mathbf{1}$, where $p' \in C$ and $\alpha \in \mathbb{R}$.
 - It follows that $\alpha = 1$.
- Hence,

$$||A^{\ell}p - \mathbf{1}||_{2} = ||A^{\ell}(p' + \mathbf{1}) - \mathbf{1}||_{2} = ||A^{\ell}p'||_{2}.$$

■ Since λ_2 is the largest eigenvalue other than 1, we obtain

$$||A^{\ell}p'||_{2} \leq \lambda_{2}^{\ell}||p'||_{2} \leq \lambda_{2}^{\ell}||p||_{2} \leq \lambda_{2}^{\ell}||p||_{1} = \lambda_{2}^{\ell}.$$

$$p \cdot p = p' \cdot p' + \mathbf{1} \cdot \mathbf{1}.$$

 $||p||_2 \le |p|$ for any vector p.

Expander Graph

For any subset of vertices with size at most n/2, there are always <u>a lot of edges</u> "going out" from the subset.

Expander Graph

Let G = (V, E) be an n-vertex d-regular graph with 2^{nd} -largest eigenvalue λ_2 .

- Then, G is called an (n, d, λ) -expander graph for any $\lambda_2 \leq \lambda$.
- We will show that, if G is an expander graph, then for any $S \subseteq V$ with

if G is an expander graph, then for any $S \subseteq V$ with $|S| \le n/2$, there will be <u>a lot of edges</u> connecting S and \overline{S} .

Lemma 2. (Expander Crossing Lemma)

Let G = (V, E) be an (n, d, λ) -expander and $S \subseteq V$, $T = V \setminus S$.

Then

$$|E(S,T)| \geq (1-\lambda) \cdot \frac{d|S||T|}{n}$$

where E(S,T) is the set of edges between S and T.

In particular, when $|S| \le n/2$, we have $|T| \ge n/2$ and $|E(S,T)| \ge \frac{d}{2}(1-\lambda)|S|$.

■ Define the vector $x \in \mathbb{R}^n$ as

$$x_i := \left\{ \begin{array}{ll} |T|, & \text{if } i \in S, \\ -|S|, & \text{if } i \in T. \end{array} \right.$$

Then, it follows that $x \perp 1$, and

$$||x||_2^2 = |S||T|^2 + |T||S|^2 = n \cdot |S||T|$$
.

l

- Define the vector $x \in \mathbb{R}^n$ as $x_i \coloneqq \begin{cases} |T|, & \text{if } i \in S, \\ -|S|, & \text{if } i \in T. \end{cases}$
- On the other hand, define

$$Z := \sum_{i,j} A_{i,j} (x_i - x_j)^2.$$

Then

- Any $(i,j) \in E$ with $i \in S, j \in T$ appears twice in the summation, each contributing $\frac{1}{d}(|S| + |T|)^2 = \frac{1}{d}n^2.$
- For the remaining cases,
 (i,j) contributes zero.

On the other hand, define

$$Z := \sum_{i,j} A_{i,j} (x_i - x_j)^2.$$

T

Then

- Any $(i,j) \in E$ with $i \in S, j \in T$ appears twice in the summation, each contributing $\frac{1}{d}(|S| + |T|)^2 = \frac{1}{d}n^2.$
- For the remaining cases,
 (i, j) contributes zero.
- Hence, $Z = \frac{2}{d} \cdot |E(S,T)| \cdot n^2$.

On the other hand, define

$$Z := \sum_{i,j} A_{i,j} (x_i - x_j)^2.$$

On the other hand,
 expanding the summation in the above definition, we have

$$Z = \sum_{i,j} A_{i,j} x_i^2 - 2 \sum_{i,j} A_{i,j} x_i x_j + \sum_{i,j} A_{i,j} x_j^2$$

$$= 2||x||_2^2 - 2 \cdot x \cdot Ax.$$

■ Since $x \perp 1$, we obtain that $x \cdot Ax \leq \lambda \cdot ||x||_2^2$. The rows and columns of A sum up to 1.

$$Z = \frac{2}{d} \cdot |E(S,T)| \cdot n^2.$$

On the other hand, we have

$$Z = 2||x||_2^2 - 2 \cdot x \cdot Ax$$
.

- Since $x \perp 1$, we obtain that $x \cdot Ax \leq \lambda \cdot ||x||_2^2$.
- Hence,

$$\frac{1}{d} \cdot |E(S,T)| \cdot n^2 \geq (1-\lambda) \cdot ||x||_2^2,$$

and

$$|E(S,T)| \geq (1-\lambda) \cdot \frac{d|S||T|}{n}$$
.

5

T

$$||x||_2^2 = n \cdot |S||T|.$$

Connectivity of the Graph

- The expander crossing lemma implies that G = (V, E) is connected if $\lambda_2 < 1$.
 - Indeed, for any $S \subset V$ and $T := V \setminus S$,

$$|E(S,T)| \geq (1-\lambda) \cdot \frac{d|S||T|}{n} > 0.$$

The converse is also true,
i.e., λ₂ < 1 if the *G* is connected.

Lemma 3.

Let G = (V, E) be a d-regular graph with 2^{nd} -largest eigenvalue λ_2 . If G is connected, then $\lambda_2 < 1$.

- Suppose on the contrary that G is connected but $\lambda_2 = 1$.
 - Then, there exists $x \in \mathbb{R}^n$ such that

$$x \neq \mathbf{0}$$
, $x \cdot \mathbf{1} = 0$, and $A \cdot x = x$.

Pick i and j such that

$$x_i = \min_{1 \le k \le n} x_k$$
 and $x_j = \max_{1 \le k \le n} x_k$.

Then, $x_i < 0$ and $x_j > 0$.

- Suppose on the contrary that G is connected but $\lambda_2 = 1$.
 - Then, there exists $x \in \mathbb{R}^n$ such that

$$x \neq \mathbf{0}$$
, $x \cdot \mathbf{1} = 0$, and $A \cdot x = x$.

Pick i and j such that

$$x_i = \min_{1 \le k \le n} x_k$$
 and $x_j = \max_{1 \le k \le n} x_k$.

Then, $x_i < 0$ and $x_j > 0$.

- Let $c := -1/(n \cdot x_i)$ and consider the vector $y := \mathbf{1} + cx$.

Then
$$y \ge 0$$
, $y_i = 0$, and $y_j > 0$.

- Furthermore,

$$A \cdot y = A \cdot \mathbf{1} + cA \cdot x = \mathbf{1} + cx = y.$$

Note that c > 0 by definition.

- Suppose on the contrary that G is connected but $\lambda_2 = 1$.
 - Let $c := -1/x_i$ and consider the vector $y := \mathbf{1} + cx$.

Then

$$y \ge 0$$
, $y_i = 0$, and $y_j > 0$.

Note that c > 0 by definition.

- Furthermore,

$$A \cdot y = A \cdot \mathbf{1} + cA \cdot x = \mathbf{1} + cx = y.$$

- Hence, $A_{i,j} \cdot y_j \leq \sum_k A_{i,k} \cdot y_k = y_i = 0$

which implies that $A_{i,j} = 0$.

■ The following lemma says that, for arbitrarily $S, T \subseteq V$ that are sufficiently large, we have $|E(S,T)| \approx \frac{d}{n}|S||T|$.

Lemma 4. (Expander Mixing Lemma)

Let G = (V, E) be an (n, d, λ) -expander and $S, T \subseteq V$.

Then $\left| |E(S,T)| - \frac{d}{n}|S||T| \right| \leq \lambda d\sqrt{|S||T|},$

where E(S,T) is the set of edges between S and T.

- Another interpretation of the expander mixing lemma is that,
 - λ measures how close G behaves like a random graph.
 - To see this, observe that,
 - \blacksquare |E(S,T)| is the number of edges between S and T.

Connect each pair with probability $\frac{d}{n}$.

- $\frac{d}{n}|S||T|$ is the <u>expected number</u> of edges between S and T in a random graph, when the edge density is d/n.
- Hence, when λ is small, the connectivity of G behaves like a random graph.

S T

- Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of the normalized matrix A and $x_1 = \sqrt{n} \mathbf{1}, x_2, \dots, x_n$ be the corresponding <u>orthonormal</u> eigenvectors.
- Let v_S and v_T be the characteristic vectors of S and T, i.e.,
 - The i^{th} -coordinate of v_S is 1 if and only if $i \in S$.
 - Express v_S and v_T as

$$v_S = \sum_i a_i x_i$$
 and $v_T = \sum_i b_i x_i$.

Since $\{x_i\}_{1 \le i \le n}$ forms a basis of \mathbb{R}^n .

- Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ be the eigenvalues of the normalized matrix A and $x_1 = \sqrt{n} \mathbf{1}, x_2, \dots, x_n$ the corresponding <u>orthonormal</u> eigenvectors.
- Let v_S and v_T be the characteristic vectors of S and T with

$$v_S = \sum_i a_i x_i$$
 and $v_T = \sum_i b_i x_i$.

It follows that

$$\frac{|E(S,T)|}{d} = v_S^{\mathsf{T}} A v_T = \left(\sum_i a_i x_i\right)^{\mathsf{T}} A \left(\sum_i b_i x_i\right) = \sum_i \lambda_i a_i b_i.$$

 $\{x_i\}_{1 \le i \le n}$ is an orthonormal basis.

- Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of the normalized matrix A and $x_1 = \sqrt{n} \mathbf{1}, x_2, ..., x_n$ the corresponding *orthonormal* eigenvectors.
- Let v_S and v_T be the characteristic vectors of S and T with $v_S = \sum_i a_i x_i$ and $v_T = \sum_i b_i x_i$.
- It follows that $|E(S,T)| = d \cdot \sum_i \lambda_i a_i b_i$.
 - Furthermore, $a_1 = v_S \cdot x_1 = |S|/\sqrt{n}$ and $b_1 = |T|/\sqrt{n}$.
 - Hence, $\lambda_1 a_1 b_1 = |S||T|/n$.
 - $-\lambda_i \leq \lambda$ for all $i \geq 2$.

By the Cauchy-Schwarz inequality.

Hence
$$\left| \sum_{i \geq 2} \lambda_i a_i b_i \right| \leq \lambda \cdot \left| \sum_{i \geq 2} a_i b_i \right| \leq \lambda \cdot ||a||_2 \cdot ||b||_2.$$

- Let $x_1 = \sqrt{n}\mathbf{1}, x_2, ..., x_n$ be the <u>orthonormal</u> eigenvectors of A.
- Let v_S and v_T be the characteristic vectors of S and T with $v_S = \sum_i a_i x_i$ and $v_T = \sum_i b_i x_i$.
- It follows that

$$\left| |e(S,T)| - \frac{d|S||T|}{n} \right| = \left| \sum_{i \geq 2} \lambda_i a_i b_i \right| \leq \lambda d \cdot ||a||_2 \cdot ||b||_2.$$

■ Since $\{x_i\}_{1 \le i \le n}$ is orthonormal,

$$||a||_2 = ||v_S||_2 = \sqrt{|S|}$$
 and $||b||_2 = ||v_T||_2 = \sqrt{|T|}$, and

$$\left| |e(S,T)| - \frac{d|S||T|}{n} \right| \leq \lambda d\sqrt{|S||T|}.$$

Equivalent Notions

Edge expansion (Combinatorial expansion) is roughly equivalent to Algebraic expansion.

Definition. (Edge Expander)

S

Let G = (V, E) be an n-vertex d-regular graph.

G is called an (n,d,ρ) -edge expander graph, if for any vertex subset $S\subseteq V$ with $|S|\leq n/2$, we always have

$$|E(S,\bar{S})| \ge \rho d|S|$$
.

- The expander crossing lemma says that, an (n, d, λ) -expander is also an edge expander with $\rho = (1 \lambda)/2$.
 - The converse is roughly true as well.

Lemma 5. (Edge Expansion implies Algebraic Expansion)

Let G = (V, E) be an (n, d, ρ) -edge expander.

Then, the 2^{nd} -largest eigenvalue of G is at most

$$1 - \rho^2/2$$
,

i.e., G is an (n, d, λ) -expander with $\lambda = 1 - \rho^2/2$.

■ The proof, however, is beyond the scope of this course and is omitted here.

Expander Graph &

Pseudo-Randomness