Computabilità e Algoritmi (Computabilità) 30 Giugno 2015

Esercizio 1

Dimostrare che un predicato $P(\vec{x})$ è semidecidibile se e solo se esiste un predicato decidibile $Q(\vec{x}, y)$ tale che $P(\vec{x}) \equiv \exists y. Q(\vec{x}, y)$.

Esercizio 2

Dati due insiemi $A, B \subseteq \mathbb{N}$ definire il significato di $A \leq_m B$. È vero che per ogni insieme A vale vale $A \leq_m A \cup \{0\}$? In caso affermativo dare una prova e in caso negativo un controesempio. Nel secondo caso, proporre una condizione (indicando se è solo suffciente o anche necessaria) che renda vero $A \leq_m A \cup \{0\}$.

Soluzione:

In generale non vale, in particolare non vale per $A = \mathbb{N} \setminus \{0\}$. Infatti, la relazione desiderata diviene $\mathbb{N} \setminus \{0\} \leq_m \mathbb{N}$ e si osserva che non può esistere una funzione totale $f : \mathbb{N} \to \mathbb{N}$ tale che $x \in \mathbb{N} \setminus \{0\}$ sse $f(x) \in \mathbb{N}$: qualunque sia f la seconda parte è sempre vera, mentre la prima è falsa per x = 0.

Questo è l'unico controesempio all'asserto, ovvero per ogni $A \neq \mathbb{N} \setminus \{0\}$ vale $A \leq_m A \cup \{0\}$. Infatti, distinguiamo due casi:

- se $0 \in A$, allora $A = A \cup \{0\}$ (la funzione di riduzione può essere l'identità).
- se $0 \notin A$, allora possiamo considerare certamente $x_0 \notin A$, $x_0 \neq 0$ (infatti sappiamo che $A \neq \mathbb{N}$ e $A \neq \mathbb{N} \setminus \{0\}$). E la funzione di riduzione può essere

$$f(x) = \begin{cases} x_0 & \text{se } x = 0\\ x & \text{altrimenti} \end{cases}$$

Si conclude quindi che $A \neq \mathbb{N} \setminus \{0\}$ è condizione necessaria e sufficiente per la validità dell'asserto

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : x \in E_x \cup W_x\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Mostriamo che $K \leq A$, quindi A non ricorsivo. Si definisca

$$g(x,y) = \begin{cases} \varphi_x(x) & \text{se } x \in K \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione g(x,y) è calcolabile, dato che

$$g(x,y) = \Psi_U(x,x)$$

Quindi per il teorema SMN, si ha che esiste una funzione $s: \mathbb{N} \to \mathbb{N}$ calcolabile totale tale che per ogni $x, y \in \mathbb{N}$

$$\varphi_{s(x)}(y) = g(x,y)$$

La funzione s è funzione di riduzione di K a A. Infatti

- se $x \in K$ allora $\varphi_{s(x)}(y) = g(x,y) = \varphi_x(x) \downarrow$ per ogni $y \in \mathbb{N}$. Pertanto $W_{s(x)} = \mathbb{N}$ e pertanto $s(x) \in E_{s(x)} \cup W_{sx} = \mathbb{N}$. Quindi $s(x) \in A$.
- se $x \notin K$ allora $\varphi_{s(x)}(y) = g(x,y) \uparrow$ per ogni $y \in \mathbb{N}$. Pertanto $W_{s(x)} = E_{s(x)} = \emptyset$ e pertanto $s(x) \notin E_{s(x)} \cup W_{sx} = \emptyset$. Quindi $s(x) \notin A$.

Inoltre A è r.e., dato che la sua funzione caratteristica

$$sc_A(x) = \mathbf{1}(\mu w. \ H(x, x(w)_1) \lor S(x, (w)_1, x, (w)_2))$$

è calcolabile. Pertanto \bar{A} non r.e., e quindi non è neppure ricorsivo.

Esercizio 4

Studiare la ricorsività dell'insieme $B = \{x \in N : 1 \le |E_x| \le 2\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme in esame è saturato, dato che $B = \{x : \varphi_x \in \mathcal{B}\}$, dove $\mathcal{B} = \{f \in \mathcal{C} : 1 \leq |cod(f)| \leq 2\}\}$.

Utilizzando il teorema di Rice-Shapiro si prova B e \bar{B} sono entrambi non r.e.:

• B non r.e. Si osservi che $id \notin \mathcal{B}$ ma vi è la funzione finita

$$\theta(x) = \begin{cases} 0 & \text{se } x = 0 \\ \uparrow & \text{altrimenti} \end{cases}$$

tale che $\theta \subseteq id$ e $\theta \in \mathcal{B}$ Per il teorema di Rice-Shapiro si conclude quindi che B non è r.e.

• \bar{B} non r.e. Si noti che se θ è la funzione definita al punto precedente, $\theta \notin \overline{\mathcal{B}}$, ma la funzione sempre indefinita $\emptyset \in \overline{\mathcal{B}}$. Per il teorema di Rice-Shapiro si conclude quindi che \bar{B} non è r.e.

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che l'insieme $C = \{x \in \mathbb{N} : [0, x] \subseteq W_x\}$ non è saturato.

Soluzione: Il Secondo Teorema di Ricorsione asserisce che data una funzione calcolabile totale $h: \mathbb{N} \to \mathbb{N}$ esiste $e \in \mathbb{N}$ tale che $\varphi_{h(e)} = \varphi_e$.

Per quanto riguarda la domanda, come nel caso della prova per K, possiamo trovare un indice e tale che $W_e = [0, e]$. Per provare questo, definiamo

$$g(e, x) = \begin{cases} e & \text{se } x \le e \\ \uparrow & \text{altrimenti} \end{cases}$$

È una funzione calcolabile e quindi per il teorema smn, si ha che esiste una funzione $s: \mathbb{N} \to \mathbb{N}$ calcolabile totale tale che per ogni $e, x \in \mathbb{N}$

$$\varphi_{s(e)}(x) = g(e, x)$$

Per il II teorema di ricorsione esiste un e tale che $\varphi_{s(e)} = \varphi_e$ e quindi

$$\varphi_e(x) = \begin{cases} e & \text{se } x \le e \\ \uparrow & \text{altrimenti} \end{cases}$$

Dato un qualsiasi indice e' > e tale che $\varphi_e = \varphi_{e'}$ (esiste certamente dato che ci sono infiniti indici per una funzione calcolabile) si ha che $e' \notin C$, dato che $[0, e'] \nsubseteq [0, e] = W_{e'}$. Quindi C non saturato.