Modellazione e Valutazione degli Impianti di Elaborazione

Esame del 17 luglio 2006

I GRUPPO

Cognome e nome dello studente	
cognomic e nome deno studente.	

Esercizio N. 1 (5 punti)

Descrivere come si può generare l'effetto domino nel recupero di uno stato consistente in un sistema di elaborazione distribuito e poi descriver in dettaglio una tecnica che può ovviare ciò.

Esercizio N. 2 (5 punti)

Calcolare la disponibilità a regime permanente di un sistema RAID 2 (con quattro dischi di informazione) ipotizzando che i guasti e le manutenzioni di ogni singolo disco si presentino con una distribuzione esponenziale con rate pari a λ e μ , rispettivamente.

Esercizio N. 3 (5 punti)

Ricavare il processo markoviano di una coda M/M/3/5

Esercizio N. 4 (15 punti)

Un sito Web gestisce 100 utenti connessi ad una Ethernet da 1 Gbps, che è a sua volta è connessa ad internet tramite un router che ha una latenza di 10 µsec/packet. La connessione avviene tramite un collegamento che garantisce una banda di 10 Mbps. Nella rete locale c'è un proxy server (schematizzabile con una CPU e disco): nel caso di hit sul proxy server il service demand sulla CPU è di 0.1 msec., invece in caso di miss è di 0.2 msec; il tempo di servizio del disco è di 10 msec per kilobyte in lettura. La percentuale di clienti attivi verso il sito Web è del 10% e c'è un rate di 0.2 richiesta/sec quando sono nello stato di think-time. I clienti richiedono due tipi di documenti: il primo di 2048 byte (80% delle richieste) ed il secondo di 100 Kbyte (il restante 20%). La dimensione della richiesta http è di 400 byte. Il RTT di internet è di 200 msec. Il transfer rate dal server remoto è di 100 KB/sec in media.

Calcolare il tempo di risposta medio visto da ogni utente ed identificare il collo di bottiglia, nel caso che la probabilità di hit sul proxy server è del 60%.

Modellazione e Valutazione degli Impianti di Elaborazione

Esame del 17 luglio 2006

II GRUPPO

Cognome e nome dello studente	

Esercizio N. 1 (5 punti)

Descrivere le ridondanze a livello software che si possono utilizzare per migliorare l'affidabilità dei sistemi di elaborazione

Esercizio N. 2 (5 punti)

Calcolare la disponibilità a regime permanente di un sistema RAID 3 (con sei dischi di informazione) ipotizzando che i guasti e le manutenzioni di ogni singolo disco si presentino con una distribuzione esponenziale con rate pari a λ e μ , rispettivamente.

Esercizio N. 3 (5 punti)

Determinare il valore massimo del rate di ingresso di un sistema, modellabile con una rete di code, che non satura il sistema. Il sistema è costituito da router, da un bus, da tre cpu che lavorano in parallelo (che si distribuiscono equamente il carico) e da un file server costituito solo da un disco. Per ogni richiesta ci sono i seguenti flussi: dal router ad una CPU, da una CPU al file system, dal file system alla CPU, dalla CPU al router (sempre passando per il bus). I tempi di servizio medi per ogni risorsa, ogni qual volta passa un job, sono: 1 msec per il router in ingresso, ed 1 msec in uscita, 2 msec per il bus, 10 msec.per la CPU e 20 msec per il file system.

Esercizio N. 4 (15 punti)

Un sito Web è connesso ad una Ethernet da 100 Mbps, che è connessa all'ISP tramite un router. Il router ha una latenza di 25 µsec/racket e connette la LAN all'ISP tramite una connessione di tipo T1 (1.544 Mbps). Ci sono tre tipi di richieste che vengono sottoposte al Web server. La tabella successiva fornisce i relativi parametri. Arrivano in totale 5 richieste al sec. (ogni richiesta ha una dimensione di 300 byte), calcolare il tempo medio di risposta. Inoltre calcolare il rate di ingresso che satura il sistema.

classe	Dimensione media del file richiesto (KB)	% delle richieste	CPU time per richiesta http (sec.)
1	5	20	0.01

2	10	30	0.02
3	20	40	0.03