VLSI Implementation of a Pipelined 128 points 4-Parallel radix-2³ FFT Architecture via Folding Transformation

James J. W. Kunst jjwk89@gmail.com Kevin H. Viglianco kevinviglianco@gmail.com Daniel R. Garcia dani6rg@gmail.com

Digital Signal Processing in Very Large Scale Integration Systems

Autumn 2019

Dr. Keshab K. Parhi Dr. Ariel L. Pola

Universidad Nacional de Córdoba - FCEFyN Av. Vélez Sársfield 1611, X5016GCA, Córdoba, Argentina

Fundación FULGOR Ernesto Romagosa 518, Colinas V. Sarsfield, X5016GQN, Córdoba, Argentina

Abstract—- This work describes the design and the VLSI implementation of a 4-parallel pipelined architecture for the complex fast Fourier transform (CFFT) based on the radix-2³ algorithm with 128 points using folding transformation and register minimization techniques. In addition, different synthesis reports from the Hardware Description Language (HDL) using different optimization techniques were studied in order to obtain good performance on speed and area using an open-source FreePDK45 of 45 nm CMOS technology [1].

I. INTRODUCCION

The Fast Fourier Transform (FFT) is widely used in different applications fields, particularly in algorithms that involves applying digital signal processing, e.g., calculate the Discrete Fourier Transform (DFT) efficiently. Nowadays is common the use of FFT algorithm for real time applications and parallelpipelined hardware architecture, this allows to achieve good performance with high throughput rates.

There are two main types of pipelined FFT architectures [2]. On one hand, feedback architectures (FB) which can be divided into Single-path Delay Feedback (SDF) and Multi-path Delay Feedback (MDF), both methods transfer data samples between stages serially and use feedback loops. On the other hand, feedforward architectures such as Multi-Path Delay Commutator (MDC) transfers more than one sample per clock cycle and do not use feedback loops.

This work focuses on the design of 4-parallel pipelined architecture radix-2³ 128-points for Complex FFT-DIF (Decimation In Frequency). Section II, describes the equations that correspond to Butterfly structure of radix-23 FFT-DIF. In Section III, the design of a 2-parallel pipelined architecture, radix-2³ 16-points FFT via folding transformation is presented. In

Section IV, the previous design is translate to a 4-parallel, 128points radix-2³ DIF complex FFT, and a float-point simulator in *Matlab* is elaborated, to later be compared with a fixed-point model in order to obtain the best Signal to Quantization Noise Ratio (SQNR). In Section V, different power, area and timing reports with different optimizations such as varying pipelining levels, and the application of canonical signed digit (CSD) are compared to obtain the best performance with a clock frequency of 500MHz. Finally in Section VI some conclusions and discussions are presented.

II. RADIX-2³ FFT ALGORITHM

The N-point DFT of an input sequence x[n] is defined as:

$$X[k] = \sum_{n=0}^{N-1} x[n] \dot{W}_N^{nk}, \quad k = 0, 1, ..., N-1$$
 (1)

where $W_N^{nk} = e^{-j\frac{2\pi}{N}nk}$.

The FFT based on Cooley-Tukey algorithm is most commonly used to compute the DFT efficiently, this allows to reduce the number of operations from $O(N^2)$ for the DFT to $O(Nlog_2N)$. Direct computation of the DFT is basically inefficient primarily because it does not exploit the symmetry and periodicity properties of the phase factor W_N , these two properties are:

Symmetry property:
$$W_N^{k+N/2} = -W_N^k$$
 (2)
Periodicity property: $W_N^{k+N} = W_N^k$ (3)

Periodicity property:
$$W_N^{k+N} = W_N^k$$
 (3)

The development of computationally efficient algorithms for DFT is possible if a *Divide and Conquer* approach is adopted. This approach is based on the decomposition of an N point

Figure 1: Types of pipelined FFT archicectures for 16 points [10].

Figure 2: Basic butterflies computation in the decimation in time and frequency.

DFT into successively smaller DFTs. In accordance with this, the DFT is calculated in series of $s = log_{\rho}N$ stages, where ρ is the base of the *radix*. In this work this factor is two, so the number of stages for 128 points is 7.

According to [3], [4], There are two methods to design FFT algorithms:

- a) Decimation in time (DIT): In this method the N-point data sequence x[n] is split into two N/2-point data sequences, thus, is possible to obtain two different functions by decimating x[n] by a factor of 2. The decimation of the data sequence can be repeated again until the resulting sequences are reduced to one-point sequence.
- b) Decimation in frequency (DIF): This method is based on the divide-and-conquer technique, where the DFT formula is split into two summations, one of which involves the sum over the first N/2 data points and the second sum involves the last N/2 data points.

In each decomposition, the basic computing unit that processes the samples is called *butterfly*. In general, each butterfly involves one complex multiplication and two complex additions. The main difference between DIT and DIF is the instant in which the multiplication by W_N^{ϕ} is accomplished, the input samples can be multiplied before or after the split and the samples are later added inside the butterfly structure, as is depicted in Fig.2.

Another difference between the two methods are that the input samples in algorithms DIF are organized in natural order but its output are not in order, in which case a reordering circuit at the output is needed. On the other hand, the input sequence for DIT algorithms are not in order and its output are in natural order.

According the methodology presented in [3], it is possible to apply the mathematical expressions of *radix*-2³ DIF explained in [5].

These fundamental equations are in:

$$C_{8k+0} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) + (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] + \qquad (4) \\ \left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) + (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{0n} W_{N/8}^{nk}$$

$$C_{8k+4} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) + (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] - \\ \left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) + (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{4n} W_{N/8}^{nk}$$

$$C_{8k+2} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) - (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] - j \right.$$

$$\left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) - (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{2n} W_{N/8}^{nk}$$

$$C_{8k+6} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n + x_{n+\frac{N}{2}}) - (x_{n+\frac{N}{4}} + x_{n+\frac{3N}{4}}) \right] + j \right.$$

$$\left[(x_{n+\frac{N}{8}} + x_{n+\frac{5N}{8}}) - (x_{n+\frac{3N}{8}} + x_{n+\frac{7N}{8}}) \right] \right\} W_N^{6n} W_{N/8}^{nk}$$

$$C_{8k+1} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) - j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] + W_N^{N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) - j(x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{6n} W_{N/8}^{nk}$$

$$C_{8k+5} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) - j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) - j(x_{n+\frac{3N}{8}} - x_{n+\frac{7N}{8}}) \right] \right\} W_N^{5n} W_{N/8}^{nk}$$

$$C_{8k+3} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] + W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j(x_{n+\frac{3N}{4}} - x_{n+\frac{3N}{8}}) \right] \right\} W_N^{3n} W_{N/8}^{nk}$$

$$C_{8k+7} = \sum_{n=0}^{N/8-1} \left\{ \left[(x_n - x_{n+\frac{N}{2}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j(x_{n+\frac{N}{4}} - x_{n+\frac{3N}{4}}) \right] - W_N^{3N/8}$$

$$\left[(x_{n+\frac{N}{8}} - x_{n+\frac{5N}{8}}) + j$$

Fig. 3 and Fig. 4 show the equivalent diagram of interconnections and data flows from the equations presented in (4).

Figure 3: Structure of interconnection for radix-2³ DIF DFT.

Figure 4: Data flow graph (DFG) based in equations (4).

A. 16 points DFT

The next step is to find the suitable rotator factors for the 16 point DFT, the equations in (4) are essential for this design and where evaluated to get $C_{8k+i} = \sum_{n=0}^{16/8-1} \{\cdot\}$, for k=0,1. The structure for the 16 point DFT is described in Fig. 5 and Fig. 6.

Figure 5: Flow graph of a radix-2³ 16-point DIF DFT

B. 128 points DFT

With these first approaches is possible the application of the divide and conquer strategy by decomposing the 128-point DFT and calculating each coefficient $C_{8k+i} = \sum_{n=0}^{128/8-1} \{\cdot\}$, for k=0,1,...,(128/8)-1, this way a chain sequence of butterflies obtain together with its corresponding rotation factor and the correct index of the samples in which they must be added or

Figure 6: Data flow graph (DFG) for a radix-2³ 16-point DIF DFT

multiplied. With this technique is possible to do a subdivision of butterflies stages, as is shown in Fig. 7, the decomposition of the 128 point DFT involve three stages of butterflies to finally arrive to a set of eight 16 point DFTs.

III. DESIGN OF A FFT ARCHITECTURE VIA FOLDING TRANSFORMATION

In this section, we illustrate the folding transformation method to derive a 16-point DIF FFT 4-parallel architecture as an example and then, using the same method, we extend it to 128-point architecture. To do this, we will use the architecture proposed in [6], to do the folding transfomation and register minimization techiques we will use [7].

A. 4-Parallel radix-2³ 16-Points

In Fig. 5 we can see the flow graph of a 16-point DIF FFT radix- 2^3 with main base radix-2. The graph is divided into four stages and each of them consist of a set of butterflies and multipliers. The twiddle factor in between the stages indicates a multiplication by W_N^k , where W_N denotes the Nth root of unity, with its exponent evaluated modulo N. This can be represented as a DFG as shown in Fig. 6 where the nodes represents the butterfly computations of the radix-2 FFT algorithm.

The folding transformation is used on the DFG to derive a pipelined architecture. To do this we need a folding set, which is an ordered set of operations executed by the same functional unit. Each folding set contains K entries, where K is called the folding factor. The operation in the jth position within the folding set (where goes from 0 to K-1) is executed by the functional unit during the time partition, this term is called the folding order.

First we need to derive the folding equations, to do this consider an edge e connecting the nodes U and V with w(e) delays. Let the executions of the lth iteration of the nodes U and V be scheduled at the time units Kl + u and Kl + v respectively, where u and v are the folding orders of the nodes U and V, respectively. The folding equation for the edge e is:

$$D_F(U \to V) = Kw(e) - P_U + v - u \tag{5}$$

Figure 7: Decomposing a radix-2³ 128-point DFT.

where P_U is the number of pipeline stages in the hardware unit which executes the node U.

Consider folding of the the DFG in Fig. 6 with the folding sets:

$$A = \{A0, A2, A4, A6\}$$
 $A' = \{A1, A3, A5, A7\}$
 $B = \{B1, B3, B0, B2\}$ $B' = \{B5, B7, B4, B6\}$
 $C = \{C2, C1, C3, C0\}$ $C' = \{C6, C5, C7, C4\}$
 $D = \{D3, D0, D2, D1\}$ $D' = \{D7, D4, D6, D5\}$

Assuming that the butterfly operations do not have any pipeline stages ($P_A = P_B = P_C = P_D = 0$), the folding equations can be derived for all edges. Thus, we can obtained

Figure 8: Flow graph of a radix-2³ 128-point DIF DFT

from (5) the expressions without apply retiming.

(-) - I	TI V
$D_F(D0 \rightarrow B0) = 2$	$D_F(D0 \rightarrow B4) = 2$
$D_F(D1 \rightarrow B1) = 0$	$D_F(D1 \rightarrow B5) = 0$
$D_F(D2 \rightarrow B2) = 2$	$D_F(D2 \rightarrow B6) = 2$
$D_F(D3 \rightarrow B3) = -1$	$D_F(D3 \rightarrow B7) = -1$
$D_F(D4 \rightarrow B0) = 0$	$D_F(D4 \rightarrow B4) = 0$
$D_F(D5 \rightarrow B1) = -1$	$D_F(D5 \rightarrow B5) = -1$
$D_F(D6 \rightarrow B2) = 0$	$D_F(D6 \rightarrow B6) = 0$
$D_F(D7 \to B3) = -2$	$D_F(D7 \rightarrow B7) = -2$
$D_F(E0 \rightarrow C0) = 1$	$D_F(E0 \rightarrow C2) = -2$
$D_F(E1 \rightarrow C1) = 1$	$D_F(E1 \rightarrow C3) = 2$
$D_F(E2 \rightarrow C0) = 0$	$D_F(E2 \rightarrow C2) = -3$
$D_F(E3 \rightarrow C1) = 0$	$D_F(E3 \rightarrow C3) = 1$
$D_F(E4 \rightarrow C4) = 1$	$D_F(E4 \rightarrow C6) = -2$
$D_F(E5 \rightarrow C5) = 1$	$D_F(E5 \rightarrow C7) = 2$
$D_F(E6 \rightarrow C4) = 0$	$D_F(E6 \to C6) = -3$
$D_F(E7 \rightarrow C5) = 0$	$D_F(E7 \rightarrow C7) = 1$
$D_F(F0 \to D0) = -2$	$D_F(F0 \rightarrow D1) = 0$
$D_F(F1 \to D0) = 0$	$D_F(F1 \rightarrow D1) = 2$

Figure 9: Data Flow graph (DFG) of a radix-2 16-point DIF FFT with retiming and pipeline.

For the folded system to be realizable, $D_F(U \to V) \ge 0$ must hold for all the edges in the DFG. Retimming and/or pipeline can be applied to satisfy this property, if the DFG in Fig. 6 is pipelined/retimmed as shown in Fig. 9 the system is realizable and the folded delays for the edges are given by the equations that represent a folding set *with retiming*.

(6)

We can see that the number of registers required to implement the folding equations in (6) is 80. For minimize the number of registers we use the register minimization

Figure 10: Linear lifetime chart for the variables $y_{(0)}, y_{(1)}, ..., y_{(15)}$ for a 16-point FFT architecture.

Figure 11: Linear lifetime chart for the variables $z_{(0)}, z_{(1)}, ..., z_{(15)}$ for a 16-point FFT architecture.

Figure 12: Linear lifetime chart for the variables $w_{(0)}, w_{(1)}, ..., w_{(15)}$ for a 16-point FFT architecture.

technique. If we let the output of node A0 be $y_{(0)}$ and $y_{(8)}$ and the output of the node A1 be $y_{(1)}$ and $y_{(9)}$, applying this successively with the rest of the nodes A we can obtain the linear life time chart for this stage in Fig. 10. Applying this criteria to the rest of the stages we can obtain the life time chart 11 and 12 for the outputs of the nodes B and C respectively, we can see that the numbers of maximum registers in each stage are 8, 4 and 8 respectively, therefore the number of registers is reduced from 80 to 20. More information about this method can be found on [7].

The register allocation tables for the lifetime charts are shown in Fig. 13, 14 and 15 for stage 1, 2 and 3 respectively. In the Fig. 16 and 17 is shown the designations of registers for the stage 1 and 2 respectively used in the allocation tables, the designation for stage 3 are similar for stage 1. The folded architecture in Fig. ?? is synthesized using the folding equations and the register allocation tables. The dataflow for each stage can be see in Tab. I, the control signal for stage 1 and 2 can be implemented by dividing the clock signal to 4 and 2 respectively, for stage 3 the control signal is the same that the stage 1.

The inputs of each folding node are represented with a matrix where the values in the same column are data that flow in parallel and values in the same row flow through the same path in consecutive clock cycles. The first two rows represents the inputs of the superior BF and the others two represents the

Figure 13: Register allocation table for the data represented in 10

	I/P	R1	R2	R3	R4
2	z0,z4,z8, <u>z</u> 12				
3	22)z6(Z10)z14_	z4	20	z12	Z8
4	z1,z5,z9,z13	(26)	(z4)	(z14)	Ž12)
		\sim			
5	z3)z7(z11)z15	z5	<u>z1</u>	Ž13	2 9

Figure 14: Register allocation table for the data represented in 11

input of the inferior BF. The same criteria is used for represent the constants of rotators, where each number k of the matrix represent a multiplication by W_{N}^{k} .

As we can see in Fig. ??, we suppose that the inputs and output are not ordered, to order these variables extra logic are needed, using more registers and multiplexers.

The different types of rotators used in Fig. ?? are shown in Fig. 18, the description of each of them can be found below.

- Trivial rotator: They can be carried out by interchanging the real and imaginary components and/or changing the sign of the data.
- Constant CSD rotator: They can be carried out by interchanging the real and imaginary components and a multiplication by a unique constant fractional number, in this case we will use a CSD multiplier to perform the area utilized.

	I/P	R1	R2	R3	R4	R5	R6	R7	R8
4	w0,w2,w8,w10_								
5	w <u>4,w6,w12,w14</u> _	w2		w0		w10		w8	
6	W1),w3,W9,w11_	w6_	w2	w4	(W)	w14	w10	→ w12	W8
7	w5)w7,w13,w15_	w3	w6	w2	W 4)	w11	w14	w10	w12)
8		w7	w3	w6	w2)	w15	w11	w14	w10
9			W		% 6		w15		w14)

Figure 15: Register allocation table for the data represented in 12

Figure 16: Registers names used in Fig. 13 for stage 1.

Figure 17: Registers names used in Fig. 14 for stage 2.

 General rotator: They can be carried out by interchanging the real and imaginary components and/or a multiplication by more than one constant fractional numbers, in this case we will use a general multiplier.

IV. 4-PARALLEL RADIX-2³ 128-POINTS

We can deduce the folding architecture for 128 points following the same method than used with the 4-Parallel radix-2³ 16-Points. The DFG and folding set used can be shown in Fig. ?? and Table II. The architecture can be seen in Fig. ??.

A. Implementation of a 128-point FFT

In this section we are going to begin with the process of how accomplish the implementation of our 4-parallel architecture for the computation of 128-point *radix*-2³ DIF complex FFT. First, we wrote a *MATLAB* simulator to

Figure 18: Symbols used for the different types of rotators

#Cycle	Stage 1		Stage 2		Stage 3	
#Cycle	Dataflow	Control	Dataflow	Control	Dataflow	Control
0	$y0 \rightarrow R3$ $y8 \rightarrow R7$	0	$z0 \rightarrow R2$ $z8 \rightarrow R4$	0	$w0 \rightarrow R3$ $w8 \rightarrow R7$	0
1	$y2 \rightarrow R3$ $y10 \rightarrow R7$	0	$(z2, z10) \rightarrow i/p$ $R1 \rightarrow R2, R3 \rightarrow R4$	1	$w4 \rightarrow R3$ $w12 \rightarrow R7$	0
2	$(y4, y12, R4) \rightarrow i/p$ $R2 \rightarrow R3, R6 \rightarrow R7$	1	$z1 \rightarrow R2, z9 \rightarrow R4$ $R1 \rightarrow i/p, R3 \rightarrow i/p$	0	$(w1, w9, R4) \rightarrow i/p$ $R2 \rightarrow R3, R6 \rightarrow R7$	1
3	$(y6, y14, R4) \rightarrow i/p$ $R2 \rightarrow R3, R6 \rightarrow R7$	1	$(z3, z11) \rightarrow i/p$ $R1 \rightarrow R2, R3 \rightarrow R4$	1	$(w5, s9, R4) \rightarrow i/p$ $R2 \rightarrow R3, R6 \rightarrow R7$	1
4	$(R2, R4) \rightarrow i/p$	0	$R1 \rightarrow i/p, R3 \rightarrow i/p$	0	$(R2, R4) \rightarrow i/p$	0
5	$(R2, R4) \rightarrow i/p$	0	$R1 \rightarrow R2, R3 \rightarrow R4$	1	$(R2, R4) \rightarrow i/p$	0

Table I: Dataflow and mux control for each stage based on registers showed in Figure 16 and 17.

Figure 19: Folding architecture for the computation of a radix-2³ 16-point DIF complex FFT.

Table II: Folding set for the DFG showed in Fig. 3		?	•	'		
--	--	---	---	---	--	--

A A0 A2 A4 A6 A8 A10 A12 A14 A16 A18 A20 A22 A24 A26 A28 A30 A² A1 A3 A36 A38 A40 A42 A44 A46 A48 A50 A52 A24 A26 A28 A30 A² A1 A3 A5 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 B B1 B3 B5 B7 B9 B11 B13 B15 B17 B19 B21 B23 B25 B27 B29 B31 B B1 B3 B5 B7 B9 B11 B13 B15 B17 B19 B21 B23 B25 B27 B29 B31 B3 B33 B35 B37 B39 B41 B43 B45 B47 B49 <th></th>																	
A3 A34 A36 A38 A40 A42 A44 A46 A48 A50 A52 A34 A56 A58 A60 A62 A1 A3 A55 A7 A9 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 B B1 B3 B5 B7 A99 A41 A43 A45 A47 A49 A51 A53 A55 A57 A59 A61 A63 B B1 B3 B5 B7 B9 B11 B13 B15 B17 B19 B21 B23 B25 B27 B29 B31 B B1 B3 B5 B37 B39 B41 B43 B45 B47 B49 B51 B53 B57 B59 B61 B63 B3 B32 B34 B36 B38 B40 B42 B44 B46 <td< td=""><td>Δ</td><td>A0</td><td>A2</td><td>A4</td><td>A6</td><td>A8</td><td>A10</td><td>A12</td><td>A14</td><td>A16</td><td>A18</td><td>A20</td><td>A22</td><td>A24</td><td>A26</td><td>A28</td><td>A30</td></td<>	Δ	A0	A2	A4	A6	A8	A10	A12	A14	A16	A18	A20	A22	A24	A26	A28	A30
A' A33 A35 A37 A39 A41 A43 A45 A47 A49 A51 A53 A55 A57 A59 A61 A63 B BI B3 B5 B7 B9 B11 B13 B15 B17 B19 B21 B23 B25 B27 B29 B31 B B0 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20 B22 B24 B26 B28 B30 B B33 B35 B37 B39 B41 B43 B45 B47 B49 B51 B53 B57 B59 B61 B63 B B32 B34 B36 B38 B40 B42 B44 B48 B50 B52 B54 B56 B58 B60 B62 C C16 C18 C20 C22 C24 C26 C28 C30 C1 <	A	A32	A34	A36	A38	A40	A42	A44	A46	A48	A50	A52	A54	A56	A58	A60	A62
R33 R35 R37 R39 R41 R43 R45 R47 R49 R51 R53 R55 R57 R59 R51 R53 R55 R55	۸,	A1	A3	A5	A7	A9	A11	A13	A15	A17	A19	A21	A23	A25	A27	A29	A31
B BO B2 B4 B6 B8 B10 B12 B14 B16 B18 B20 B22 B24 B26 B28 B30 B' B33 B35 B37 B39 B41 B43 B45 B47 B49 B51 B53 B55 B57 B59 B61 B63 C C16 C18 C20 C22 C24 C26 C28 C30 C1 C3 C5 C7 C9 C11 C13 C15 C17 C19 C21 C23 C25 C27 C29 C31 C0 C2 C4 C6 C8 C10 C12 C14 C1 C48 C50 C52 C54 C56 C58 C60 C62 C33 C35 C37 C39 C41 C43 C45 C47 C49 C51 C53 C55 C57 C59 C61 C63 C32	A	A33	A35	A37	A39	A41	A43	A45	A47	A49	A51	A53	A55	A57	A59	A61	A63
B0 B2 B4 B6 B8 B10 B12 B14 B16 B18 B20 B22 B24 B26 B28 B30 B B33 B35 B37 B39 B41 B43 B45 B47 B49 B51 B53 B55 B57 B59 B61 B63 C C16 C18 C20 C22 C24 C26 C28 C30 C1 C3 C5 C7 C9 C11 C13 C15 C17 C19 C21 C23 C25 C27 C29 C31 C0 C2 C4 C6 C8 C10 C12 C14 C4 C50 C52 C54 C56 C58 C60 C62 C33 C35 C37 C39 C41 C43 C45 C47 C49 C51 C53 C55 C57 C59 C61 C63 C32 C34 C36	B	B1	В3	В5	В7	В9	B11	B13	B15	B17	B19	B21	B23	B25	B27	B29	B31
B B32 B34 B36 B38 B40 B42 B44 B46 B48 B50 B52 B54 B56 B58 B60 B62 C C16 C18 C20 C22 C24 C26 C28 C30 C1 C3 C5 C7 C9 C11 C13 C15 C17 C19 C21 C23 C25 C27 C29 C31 C0 C2 C4 C6 C8 C10 C12 C14 C2 C48 C50 C52 C54 C56 C58 C60 C62 C33 C35 C37 C39 C41 C43 C45 C47 C49 C51 C53 C55 C57 C59 C61 C63 C32 C34 C36 C38 C40 C42 C44 C46 D D8 D10 D12 D14 D16 D18 D20 D22 D24	B	B0	B2	B4	B6	B8	B10	B12	B14	B16	B18	B20	B22	B24	B26	B28	B30
C B32 B34 B36 B38 B40 B42 B44 B46 B48 B50 B52 B34 B56 B58 B60 B62 C C16 C18 C20 C22 C24 C26 C28 C30 C1 C3 C5 C7 C9 C11 C13 C15 C17 C19 C21 C23 C25 C27 C29 C31 C0 C2 C4 C6 C8 C10 C12 C14 C C48 C50 C52 C54 C56 C58 C60 C62 C33 C35 C37 C39 C41 C43 C45 C47 C49 C51 C53 C55 C57 C59 C61 C63 C32 C34 C36 C38 C40 C42 C44 C46 D D8 D10 D12 D14 D16 D18 D20 D22 D24	B,							B45									
C C17 C19 C21 C23 C25 C27 C29 C31 C0 C2 C4 C6 C8 C10 C12 C14 C' C48 C50 C52 C54 C56 C58 C60 C62 C33 C35 C37 C39 C41 C43 C45 C47 C49 C51 C53 C55 C57 C59 C61 C63 C32 C34 C36 C38 C40 C42 C44 C46 D D8 D10 D12 D14 D16 D18 D20 D22 D24 D26 D28 D30 D1 D3 D5 D7 D9 D11 D13 D15 D17 D19 D21 D23 D25 D27 D29 D31 D0 D2 D4 D6 D40 D42 D44 D46 D48 D50 D52 D54 D56 D58	ь	B32						B44						B56	B58		-
C17 C19 C21 C23 C25 C27 C29 C31 C0 C2 C4 C6 C8 C10 C12 C14 C' C48 C50 C52 C54 C56 C58 C60 C62 C33 C35 C37 C39 C41 C43 C45 C47 D D8 D10 D12 D14 D16 D18 D20 D22 D24 D26 D28 D30 D1 D3 D5 D7 D D8 D10 D12 D14 D16 D18 D20 D22 D24 D26 D28 D30 D1 D3 D5 D7 D9 D11 D13 D15 D17 D19 D21 D23 D25 D27 D29 D31 D0 D2 D4 D6 D41 D43 D45 D47 D49 D51 D53 D55 D57 D59	C																
C C49 C51 C53 C55 C57 C59 C61 C63 C32 C34 C36 C38 C40 C42 C44 C46 D D8 D10 D12 D14 D16 D18 D20 D22 D24 D26 D28 D30 D1 D3 D5 D7 D9 D11 D13 D15 D17 D19 D21 D23 D25 D27 D29 D31 D0 D2 D4 D6 D40 D42 D44 D46 D48 D50 D52 D54 D56 D58 D60 D62 D33 D35 D37 D39 D41 D43 D45 D47 D49 D51 D53 D55 D57 D59 D61 D63 D32 D34 D36 D38 E E4 E6 E8 E10 E12 E14 E16 E18 E20 E22																	
D D8 D10 D12 D14 D16 D18 D20 D22 D24 D26 D28 D30 D1 D3 D5 D7 D D9 D11 D13 D15 D17 D19 D21 D23 D25 D27 D29 D31 D0 D2 D4 D6 D* D40 D42 D44 D46 D48 D50 D52 D54 D56 D58 D60 D62 D33 D35 D37 D39 D41 D43 D45 D47 D49 D51 D53 D55 D57 D59 D61 D63 D32 D34 D36 D38 E E4 E6 E8 E10 E12 E14 E16 E18 E20 E22 E24 E26 E28 E30 E1 E3 E** E36 E38 E40 E42 E44 E46 E48 E50 <	C,	ı															
D D9 D11 D13 D15 D17 D19 D21 D23 D25 D27 D29 D31 D0 D2 D4 D6 D' D40 D42 D44 D46 D48 D50 D52 D54 D56 D58 D60 D62 D33 D35 D37 D39 B D41 D43 D45 D47 D49 D51 D53 D55 D57 D59 D61 D63 D32 D34 D36 D38 E E4 E6 E8 E10 E12 E14 E16 E18 E20 E22 E24 E26 E28 E30 E1 E3 E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E0 E2 E' E36 E38 E40 E42 E44 E46 E48 E50 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td></t<>															-	-	
D' D40 D42 D44 D46 D48 D50 D52 D53 D25 D27 D29 D31 D0 D2 D4 D6 D' D40 D42 D44 D46 D48 D50 D52 D54 D56 D58 D60 D62 D33 D35 D37 D39 E E4 E6 E8 E10 E12 E14 E16 E18 E20 E22 E24 E26 E28 E30 E1 E3 E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E0 E2 E36 E38 E40 E42 E44 E46 E48 E50 E52 E54 E56 E58 E60 E62 E33 E35 E37 E39 E41 E43 E45 E47 E49 E51 E53 E55	D																-
D41 D43 D45 D47 D49 D51 D53 D55 D57 D59 D61 D63 D32 D34 D36 D38 E E4 E6 E8 E10 E12 E14 E16 E18 E20 E22 E24 E26 E28 E30 E1 E3 E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E0 E2 E36 E38 E40 E42 E44 E46 E48 E50 E52 E54 E56 E58 E60 E62 E33 E35 E37 E39 E41 E43 E45 E47 E49 E51 E53 E55 E57 E59 E61 E63 E32 E34 F F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22																	
E B41 D43 D45 D47 D49 D51 D53 D55 D57 D59 D61 D63 D32 D34 D36 D38 E E4 E6 E8 E10 E12 E14 E16 E18 E20 E22 E24 E26 E28 E30 E1 E3 E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E0 E2 E7 E36 E38 E40 E42 E44 E46 E48 E50 E52 E54 E56 E58 E60 E62 E33 E35 E37 E39 E41 E43 E45 E47 E49 E51 E53 E55 E57 E59 E61 E63 E32 E34 F F2 F4 F6 F8 F10 F12 F14 F16 F18	D,																
E E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E0 E2 E7 E36 E38 E40 E42 E44 E46 E48 E50 E52 E54 E56 E58 E60 E62 E33 E35 E37 E39 E41 E43 E45 E47 E49 E51 E53 E55 E57 E59 E61 E63 E32 E34 F F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30 F1 F3 F5 F7 F9 F11 F13 F15 F17 F19 F21 F23 F25 F27 F29 F31 F0 F3 F34 F36 F38 F40 F42 F44 F46 F48 F50																	
E5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E0 E2 E* E36 E38 E40 E42 E44 E46 E48 E50 E52 E54 E56 E58 E60 E62 E33 E35 F E37 E39 E41 E43 E45 E47 E49 E51 E53 E55 E57 E59 E61 E63 E32 E34 F F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30 F1 F F3 F5 F7 F9 F11 F13 F15 F17 F19 F21 F23 F25 F27 F29 F31 F0 F F34 F36 F38 F40 F42 F44 F46 F48 <td< td=""><td>E</td><td>ı</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	E	ı															-
E E37 E39 E41 E43 E45 E47 E49 E51 E53 E55 E57 E59 E61 E63 E32 E34 F F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30 F1 F3 F5 F7 F9 F11 F13 F15 F17 F19 F21 F23 F25 F27 F29 F31 F0 F3 F34 F36 F38 F40 F42 F44 F46 F48 F50 F52 F54 F56 F58 F60 F62 F33 F35 F37 F39 F41 F43 F45 F47 F49 F51 F53 F55 F57 F59 F61 F63 F32 G G3 G5 G7 G9 G11 G13 G15 G17 G19																	
F E37 E39 E41 E43 E45 E47 E49 E51 E53 E55 E57 E59 E61 E63 E32 E34 F F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30 F1 F3 F5 F7 F9 F11 F13 F15 F17 F19 F21 F23 F25 F27 F29 F31 F0 F3 F34 F36 F38 F40 F42 F44 F46 F48 F50 F52 F54 F56 F58 F60 F62 F33 F35 F37 F39 F41 F43 F45 F47 F49 F51 F53 F55 F57 F59 F61 F63 F32 G G3 G5 G7 G9 G11 G13 G15 G17 G19	F,	ı															
F F3 F5 F7 F9 F11 F13 F15 F17 F19 F21 F23 F25 F27 F29 F31 F0 F' F34 F36 F38 F40 F42 F44 F46 F48 F50 F52 F54 F56 F58 F60 F62 F33 F35 F37 F39 F41 F43 F45 F47 F49 F51 F53 F55 F57 F59 F61 F63 F32 G G3 G5 G7 G9 G11 G13 G15 G17 G19 G21 G23 G25 G27 G29 G31 G0 G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G1 G2 G35 G37 G39 G41 G43 G45 G47 G49 G51	L																
F3 F5 F7 F9 F11 F13 F15 F17 F19 F21 F23 F25 F27 F29 F31 F0 F F34 F36 F38 F40 F42 F44 F46 F48 F50 F52 F54 F56 F58 F60 F62 F33 F35 F37 F39 F41 F43 F45 F47 F49 F51 F53 F55 F57 F59 F61 F63 F32 G G3 G5 G7 G9 G11 G13 G15 G17 G19 G21 G23 G25 G27 G29 G31 G0 G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G1 G35 G37 G39 G41 G43 G45 G47 G49 G51 G53 G55 G57 G59 G61 G63 G32	F	ı															
F F35 F37 F39 F41 F43 F45 F47 F49 F51 F53 F55 F57 F59 F61 F63 F32 G G3 G5 G7 G9 G11 G13 G15 G17 G19 G21 G23 G25 G27 G29 G31 G0 G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G1 G2 G35 G37 G39 G41 G43 G45 G47 G49 G51 G53 G55 G57 G59 G61 G63 G32																	
G G3 G5 G7 G9 G11 G13 G15 G17 G19 G21 G23 G25 G27 G29 G31 G0 G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G1 G2 G35 G37 G39 G41 G43 G45 G47 G49 G51 G53 G55 G57 G59 G61 G63 G32	F,																
G: G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G1 G: G35 G37 G39 G41 G43 G45 G47 G49 G51 G53 G55 G57 G59 G61 G63 G32	•																
G2 G4 G6 G8 G10 G12 G14 G16 G18 G20 G22 G24 G26 G28 G30 G1 G; G35 G37 G39 G41 G43 G45 G47 G49 G51 G53 G55 G57 G59 G61 G63 G32	G																
1 (*)																	
G34 G36 G38 G40 G42 G44 G46 G48 G50 G52 G54 G56 G58 G60 G62 G33	G'																
		G34	G36	G38	G40	G42	G44	G46	G48	G50	G52	G54	G56	G58	G60	G62	G33

Figure 20: Folding architecture for the computation of a radix-2³ 128-point DIF complex FFT.

validate the operation of our design and the design presented in [8], [9]. Therefore, we can have a reference architecture for compare the design that we deduce. After that, we take all these information to generate a Synthesizable *Verilog* code with different levels of optimizations with a powerful tool like *Synopsys* to get a final design integrated of Standard Cells @45nm.

B. Floating and Fixed point Simulator

The input signal Fig. 22 to our architecture will be a mixture of sinusoid signals with two frequency values, theses signal will be normalizing to the unity and in this way we can have a test bench design.

$$x'[n] = cos(2\pi f_1 n T_s) + cos(2\pi f_2 n T_s)$$

$$x[n] = x'[n]/max\{x'[n]\}$$
(7)

where $f_1 = 100Hz$, $f_2 = 1000Hz$ and T_s is the sampled period.

In each stage of the Fig. 21, input samples that propagate stage by stage will be carefully quantized with the purpose of getting a high SQNR (Signal to Quantization Noise Ratio).

$$SQNR_{dB} = 10log_{10} \left(\frac{Var\{Signal_{FloatPoint}\}}{Var\{Signal_{FloatPoint} - Signal_{FixedPoint}\}} \right)$$

SQNR computation represents the logarithmic relationship between float signal variance over error variance from an signal given.

The input signal x[n] is quantized with a value of S(10, 9), that representation means a number signed (S) with 10 total bits and 9 fractional bits. The value calculated of SQNR for the input is 56.9dB. Following the same steps, we can compute the SQNR for the *twiddle* factors and the architecture's output.

Twiddles factor are quantized with a relation of S(11,9) and the complex output signal X[k] with S(22,15). Output quantization for the real part is 46.8dB and for the imaginary part 47.3dB. In general, a value of quantization close to 50dB is a good approximation. Out signal from our MATLAB fixed-point model from the architecture in Fig. 21 the output signal is given in Fig. 23, that represents a first approach in our calculation of a DFT without optimization. The combination between latencies (delays registers) and switches in all stages in Fig. 21 is the equivalent circuit shows in Fig. 24, that is used to appropriately order samples in each butterflies input.

Whole elements on the architecture such as multipliers and butterflies are complex as Fig. 25 and 26. On an implementation is essential divide the signal in its real and imaginary part with the purpose of process them independently. A *general rotator* (full complex multiplier) generate a real and imaginary component that is composed by a real multiplication an one addition, but a *trivial rotator* only change the components of a complex signal. These relations are important at the moment of doing the quantization process to ensure an appropriate quantity of bits.

C. Verilog (HDL) Model

In this subsection we are going to talk about the different design instances to model the DFT in hardware. We made four design implementations with the purpose of have a global view of optimization levels to achieve the requested *Timing* at a working frequency of 500MHz obtained from the synthesis processes.

In the first instance of design was made from the base design showed in Fig. 21, this hardware model has butterflies modules that work in combination with multipliers and each multiplier has associated a memory block that contains

Figure 21: Quantization for a 128-point 4-parallel complex FFT architecture

Figure 22: Input signal x[n] in time domain

Figure 23: Output samples, absolute value vs frequency |X[k]|

Figure 24: Circuit for data shuffling

Figure 25: Complex butterfly

twiddle factors. In this first approach all multipliers are *full*, each stage has a control module that enable and disable the inversion of the switching block, this control signal is also sent to the multipliers to work synchronously with the switching. To avoid the bit growth generated by the addition and multiplication, a quantization block is necessary, the quantizer consisted of saturation and truncate operations.

Figure 26: Complex multiplier and complex adder

Table III: Design instance 1. Timing-Area-Power Report at 500MHz

Point	Path(ns)
data arrival time	5.60
clock CLK (rise edge)	2.00
clock network delay (ideal)	2.00
library setup time	1.95
data required time	1.95
data arrival time	-5.60
slack (VIOLATED)	-3.65

Logical Elements	
Number of ports	1228
Number of nets	112376
Number of cells	102726
Number of combinational cells	95310
Number of sequential cells	7404
Number of macros/black boxes	0
Number of buf/inv	27817
Combinational area	291201.116637
Buf/Inv area	44892.767764
Noncombinational area	58830.508095
Total cell area	350031.624731

Power Group	Internal	Switching	Leakage	Total Power
io pad	0.0000	0.0000	0.0000	0.0000
clock network	34.8220	603.2268	1.4573e+06	639.6328
register	54.2228	0.2699	4.0540e+05	54.8980
sequential	0.0000	0.0000	0.0000	0.0000
combinational	0.2884	0.7304	1.5016e+04	1.0337
Total	89.333mW	604.227mW	1.877e+06nW	695.564mW

In the second place with the goal of minimize the *critical path* in our design, we add *pipelined* registers after quantization blocks. In the third case of implementation incorporate *trivial* multipliers, imaginary multiplication by -1*j*, with this kind of operation we can reduce the size of the binary word.

In the fourth level of optimization showed in Fig. $\ref{fig:1}$, we place inside each butterfly blocks an internal pipelined to improve the required timing. Lastly, the full multipliers from stage two and five are modified to efficiently work with constant coefficients, these new multipliers are CSD because the twiddle factors in these stages are always $-je^{-j\frac{\pi}{4}}$ and $e^{-j\frac{\pi}{4}}$.

V. RESULTS

All designs were implemented with different levels of optimization to accomplish the desired working frequency. The design instances were synthesized by Synopsys tool in order to build an interconnection of Standard Cells to get and generate a complete set of *timing-area-power report* showed in Table III, IV and V. According to the first results, data arrival time is greater than minimum period established 2ns and we can detected that there is a time Violated, with this first approach we decide make a set of optimizations to folding architecture as a pipelined cutset between stages of DFT. In this way as we can see in Table IV, we reduced power, area and timing.

In contrast with the first instance of design, we found in the last case of implementation a slack of time equal to zero, that means the clock period satisfy the time constraint at 500MHz.

Table IV: Design instance 4. Timing-Area-Power Report at 500MHz

Point	Path(ns)
data arrival time	1.94
clock CLK (rise edge)	2.00
clock network delay (ideal)	2.00
library setup time	1.94
data required time	1.94
data arrival time	-1.94
slack (MET)	0.00

Logical Elements	
Number of ports	2315
Number of nets	75713
Number of cells	66284
Number of combinational cells	58017
Number of sequential cells	8240
Number of macros/black boxes	0
Number of buf/inv	14789
Combinational area	195877.841872
Buf/Inv area	24429.880240
Noncombinational area	64463.046570
Total cell area	260340.888442

Power Group	Internal	Switching	Leakage	Total Power
io pad	0.0000	0.0000	0.0000	0.0000
clock network	18.1655	581.6307	7.8320e+05	600.6672
register	58.2275	0.2873	4.4422e+05	58.9591
sequential	0.0000	0.0000	0.0000	0.0000
combinational	0.7768	0.9958	1.5970e+05	1.9322
Total	77.169mW	582.913mW	1.387e+06nW	661.558mW

Table V: Design instance 5. Timing-Area-Power Report at 500MHz

Point	Path(ns)
data arrival time	1.94
clock CLK (rise edge)	2.00
clock network delay (ideal)	2.00
library setup time	1.94
data required time	1.94
data arrival time	-1.94
slack (MET)	0,00

Logical Elements	
Number of ports	2315
Number of nets	75713
Number of cells	66284
Number of combinational cells	58017
Number of sequential cells	8240
Number of macros/black boxes	0
Number of buf/inv	14789
Combinational area	195877.841872
Buf/Inv area	24429.880240
Noncombinational area	64463.046570
Total cell area	260340.888442

Power Group	Internal	Switching	Leakage	Total Power
io pad	0.0000	0.0000	0.0000	0.0000
clock network	18.1655	581.6307	7.8320e+05	600.6672
register	58.2275	0.2873	4.4422e+05	58.9591
sequential	0.0000	0.0000	0.0000	0.0000
combinational	0.7768	0.9958	1.5970e+05	1.9322
Total	77.169mW	582.913mW	1.387e+06nW	661.558mW

Figure 27: Timing-Area-Power evolution.

VI. CONCLUSIONS

This work has presented a VLSI Implementation of a Pipelined 128 points 4-Parallel radix-2³ FFT Architecture via Folding Transformation. The Fourier Transform without folding technique processes 128 entry points of samples which are ordered but its output are disordered and it is necessary a reordering circuit. In the other hand a Fourier Transform with folding technique also needs a reordering circuit in the input. This circuit present an additional area and power consumption to be considered in the final design. The folding transformation applied reduce significatively (equal to the folded factor, i.e. 64 times) the number of functional units, and therefore the silicon area, at the expense of increasing the computation time by the same factor. Therefore is necessary to add pipeline cutsets and a careful quantization in order to achieve the required sample period with an acceptable SNR.

Folding technique, in this case, results in an architecture that uses a large number of register, to avoid this is necessary to apply a register minimization technique and allocate data to these registers. The number of registers applying this method is reduced significatively, from to . This results in a final design with less area and power consumption.

The number of DFT points is related with the radix-base, we can write as *radix*-8, this representation can be expressed as *radix*-2³ that means we can decompose in smaller radixes with main base-2, an advantage of using a hight radix is reduced the number of multipliers at expense of increase the routing.

Our design has implemented a quantizer block which works with saturation and truncated, the round method was not used because we reached a high SQNR. Lastly a series of optimization were necessary to accomplish the required frequency. The DFT implementation without any optimization level got to work at 166MHz, applying pipelines cutsets and quantization blocks, the final

architecture is implementable at the required clock frequency (500 MHz) at the cost of incrementing the numbers of sequential cells. Finally, with the CSD multipliers, is possible to reduce the combinational cells significatively.

REFERENCES

- [1] R. Thapa, S. Ataei, and J. E. Stine, "WIP. Open-source standard cell characterization process flow on 45 nm (FreePDK45), 0.18 μm, 0.25 μm, 0.35 μm and 0.5 μm," in 2017 IEEE International Conference on Microelectronic Systems Education (MSE). Lake Louise, AB, Canada: IEEE, May 2017, pp. 5–6. [Online]. Available: http://ieeexplore.ieee.org/document/7945072/
- [2] Shousheng He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de)modulation," in 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167). IEEE, pp. 257–262. [Online]. Available: http://ieeexplore.ieee.org/document/738077/
- [3] J. G. Proakis and D. G. Manolakis, "DIGITAL SIGNAL PROCESSING," p. 1033.
- [4] A. V. Oppenheim and R. W. Schafer, Tratamiento de señales en tiempo discreto, tercera edición. Pearson Educación, OCLC: 843859190.
- [5] L. Jia, Y. Gao, and H. Tenhunen, "Efficient VLSI implementation of radix-8 FFT algorithm," p. 4.
- [6] M. Ayinala, M. Brown, and K. K. Parhi, "Pipelined Parallel FFT Architectures via Folding Transformation," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 20, no. 6, pp. 1068–1081, Jun. 2012. [Online]. Available: http://ieeexplore.ieee.org/document/5776727/
- [7] K. K. Parhi, VLSI Digital Signal Processing Systems. Design and implementation. JOHN WILEY & SONS, INC., 1999, ch. Folding Transformation, pp. 151–163.
- [8] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, "Pipelined Radix-\$2^{k}\$ Feedforward FFT Architectures," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 21, no. 1, pp. 23–32, Jan. 2013. [Online]. Available: http://ieeexplore.ieee.org/document/6118316/
- [9] M. Garrido, S.-J. Huang, and S.-G. Chen, "Feedforward FFT hardware architectures based on rotator allocation," vol. 65, no. 2, pp. 581–592. [Online]. Available: http://ieeexplore.ieee.org/document/8010853/
- [10] Vladimir Stojanović, "Fast Fourier Transform: VLSI Architectures", 973 Communication System Design Spring 2006 Massachusetts Institute of Technology, Lecture 10.