Information Sheet: You may rip this page off of the exam, but leave the other pages intact.

Definitions

Throughout this exam, you may use the following definitions:

- An integer x is a perfect square if there exists an integer k such that $x = k^2$.
- An integer x divides an integer y if and only if $x \ne 0$ and there exists integer k such that y = kx.
- An integer x is even if there exists an integer k such that x = 2k.
- An integer x is odd if there exists an integer k such that x = 2k + 1.

Direct Proof Framework

Statement. For all x in the domain, if P(x), then Q(x).

Proof. Let x be an arbitrary member of the domain. Suppose P(x). We want to show Q(x).

...

Therefore, Q(x), as desired.

Proof by Contrapositive Framework

Statement. For all x in the domain, if P(x), then Q(x).

Proof. Let x be an arbitrary member of the domain. We will prove the contrapositive. Suppose $\neg Q(x)$. We want to show $\neg P(x)$.

...

Therefore, $\neg P(x)$, as desired.

Statement. For all x in the domain, if P(x), then Q(x).

Proof. We will proceed by contradiction. Suppose there exists an x in the domain such that P(x) and $\neg Q(x)$.

...

This is a contradiction. Therefore, the statement if P(x), then Q(x) is true for all x in the domain.

Proof by Cases Framework

Statement. For all x in the domain, if P(x) or Q(x), then R(x).

Proof. Let x be an arbitrary member of the domain. We will proceed by cases: First, P(x), and second, Q(x). We want to show R(x).

Case 1: Suppose P(x).

...(This part of the proof can be a direct proof, proof by contrapositive, proof by contradiction, etc.)

Therefore, R(x), as desired.

Case 2: Suppose Q(x).

...(This part of the proof can be a direct proof, proof by contrapositive, proof by contradiction, etc.)

Therefore, R(x), as desired.