

# Chapter 2: Introduction to the Relational Model

**Database System Concepts, 6th Ed.** 

©Silberschatz, Korth and Sudarshan See <a href="https://www.db-book.com">www.db-book.com</a> for conditions on re-use



#### **Example of a Relation**





#### **Attribute Types**

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value *null* is a member of every domain
- The null value causes complications in the definition of many operations



#### **Relation Schema and Instance**

- $\blacksquare$   $A_1, A_2, ..., A_n$  are attributes
- $R = (A_1, A_2, ..., A_n)$  is a relation schema Example:

instructor = (ID, name, dept\_name, salary)

- Formally, given sets  $D_1$ ,  $D_2$ , ....  $D_n$  a **relation** r is a subset of  $D_1 \times D_2 \times ... \times D_n$ Thus, a relation is a set of n-tuples  $(a_1, a_2, ..., a_n)$  where each  $a_i \in D_i$
- The current values (**relation instance**) of a relation are specified by a table
- An element t of r is a *tuple*, represented by a *row* in a table



#### **Relations are Unordered**

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: *instructor* relation with unordered tuples

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 22222 | Einstein   | Physics    | 95000  |
| 12121 | Wu         | Finance    | 90000  |
| 32343 | El Said    | History    | 60000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 58583 | Califieri  | History    | 62000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 76543 | Singh      | Finance    | 80000  |



#### **Database**

- A database consists of multiple relations
- Information about an enterprise is broken up into parts

instructor student advisor

Bad design:

univ (instructor\_ID, name, dept\_name, salary, student\_ID, ..) results in

- repetition of information (e.g., two students have the same instructor)
- the need for null values (e.g., represent an student with no advisor)
- Normalization theory (Chapter 7) deals with how to design "good" relational schemas



# **Keys**

- Let K ⊆ R
- $\blacksquare$  K is a **superkey** of R if values for K are sufficient to identify a unique tuple of **any possible** relation r(R)
  - Example: {ID} and {ID, name} are both superkeys of instructor.
  - However: {name} is not a superkey. (Why?)
- Superkey *K* is a **candidate key** if *K* is minimal Example: {*ID*} is a candidate key for *Instructor*
- One of the candidate keys is selected to be the primary key.
  - which one?
- Foreign key constraint: Value in one relation must appear in another
  - Referencing relation
  - Referenced relation



## **Keys and Foreign Keys: Example**

■ E-Commerce Database with customers, products, and purchases:

#### **CUSTOMER**

| CID | CNAME | CADDRESS |
|-----|-------|----------|
|     |       |          |

#### **PURCHASE**

| CID | PID | TIMEDATE | PRICE |
|-----|-----|----------|-------|
|     |     |          |       |

#### **PRODUCT**

| PID | PNAME | PDESCRIPTION | PPRICE |
|-----|-------|--------------|--------|
|     |       |              |        |



# **Keys and Foreign Keys: Example**

■ E-Commerce Database with customers, products, and purchases:

#### **CUSTOMER**

| CID | CNAME | CADDRESS |
|-----|-------|----------|
|     |       |          |

#### **PURCHASE**

| CID | PID | TIMEDATE | PRICE |
|-----|-----|----------|-------|
|     |     |          |       |

#### **PRODUCT**

| PID | PNAME | PDESCRIPTION | PPRICE |
|-----|-------|--------------|--------|
|     |       |              |        |



### **Keys and Foreign Keys: Example**

■ E-Commerce Database with customers, products, and purchases:

#### **CUSTOMER** CID **CADDRESS CNAME PURCHASE** CID PID **TIMEDATE PRICE PRODU** PID **PNAME PDESCRIPTION PPRICE**



#### **Schema Diagram for University Database**





# Relational Query Languages

- Procedural vs.non-procedural, or declarative
- "Pure" languages:
  - Relational algebra (procedural)
  - Relational calculus (non-procedural)
    - Domain relational calculus (DRC)
    - Tuple relational calculus (TRC)
- Non-pure, real languages:
  - SQL
  - Query By Example (QBE)
- But first we introduce relational operators
  - Selection, projection, cross product, ...



# **Selection of tuples**

Relation r

| A        | В | C  | D  |
|----------|---|----|----|
| α        | α | 1  | 7  |
| $\alpha$ | β | 5  | 7  |
| β        | β | 12 | 3  |
| β        | β | 23 | 10 |

- Select tuples with A=B and D > 5
- $\sigma_{A=B \text{ and } D>5}(r)$

| A | В | C  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| β | β | 23 | 10 |



### **Selection of Columns (Attributes)**

Relation *r*:

| A        | В          | C |
|----------|------------|---|
| α        | 10         | 1 |
| $\alpha$ | 20         | 1 |
| β        | 30         | 1 |
| β        | <b>4</b> 0 | 2 |

- Select A and C
  - Projection

$$\begin{array}{c|ccccc}
A & C \\
\hline
\alpha & 1 \\
\alpha & 1 \\
\beta & 1 \\
\beta & 2
\end{array}$$

$$\begin{array}{c|ccccc}
& A & C \\
\hline
\alpha & 1 \\
\beta & 1 \\
\beta & 2
\end{array}$$



# Joining two relations – Cartesian Product

Relations r, s:

| $A \mid B$ |   |
|------------|---|
| α          | 1 |
| β          | 2 |
| 1          |   |

| $\mathcal{L}$ | L  |
|---------------|----|
| 10            | a  |
| 10            | a  |
| 20            | b  |
| 10            | b  |
|               | 10 |

rxs

| A | В | C | D  | E |
|---|---|---|----|---|
| α | 1 | α | 10 | a |
| α | 1 | β | 10 | a |
| α | 1 | β | 20 | b |
| α | 1 | γ | 10 | b |
| β | 2 | α | 10 | a |
| β | 2 | β | 10 | a |
| β | 2 | β | 20 | b |
| β | 2 | γ | 10 | b |



#### Union of two relations

Relations *r*, *s*:

| A | В |
|---|---|
| α | 1 |
| α | 2 |
| β | 1 |

| 2 |
|---|
| 3 |
|   |

 $r \cup s$ 

| $\boldsymbol{A}$ | В |
|------------------|---|
| α                | 1 |
| α                | 2 |
| β                | 1 |
| β                | 3 |



#### Set difference of two relations

Relations *r*, *s*:

| $\boldsymbol{A}$ | В |
|------------------|---|
| α                | 1 |
| α                | 2 |
| β                | 1 |

| A | В |
|---|---|
| α | 2 |
| β | 3 |

r-s



#### **Set Intersection of two relations**

Relation *r*, *s*:



$$\begin{array}{c|c}
A & B \\
\hline
\alpha & 2 \\
\beta & 3 \\
\end{array}$$

 $r \cap s$ 



### Joining two relations – Natural Join

- Let r and s be relations on schemas R and S respectively.
  - Then, the "natural join" of relations R and S is a relation on schema  $R \cup S$  obtained as follows:
    - Consider each pair of tuples  $t_r$  from r and  $t_s$  from s.
    - If  $t_r$  and  $t_s$  have the same value on each of the attributes in  $R \cap S$ , add a tuple t to the result, where
      - t has the same value as t<sub>r</sub> on r
      - t has the same value as  $t_S$  on s



### **Natural Join Example**

Relations r, s:

| A      | В | C | D |
|--------|---|---|---|
| α      | 1 | α | a |
| β      | 2 | γ | a |
| γ      | 4 | β | b |
| α      | 1 | γ | a |
| δ      | 2 | β | b |
| 71: 42 | 3 | 1 |   |

| В | D | Ε |
|---|---|---|
| 1 | a | α |
| 3 | a | β |
| 1 | a | γ |
| 2 | b | δ |
| 3 | b | 3 |
|   | S |   |

Natural Join



| A        | В | C        | D | E |
|----------|---|----------|---|---|
| α        | 1 | $\alpha$ | a | α |
| $\alpha$ | 1 | α        | a | γ |
| $\alpha$ | 1 | γ        | a | α |
| α        | 1 | γ        | a | γ |
| δ        | 2 | β        | b | δ |



# **Overview of Operators**

| Symbol (Name)       | Example of Use                                                                                                                      |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| σ<br>(Salastion)    | <sup>σ</sup> salary>=85000 (instructor)                                                                                             |  |
| (Selection)         | Return rows of the input relation that satisfy the predicate.                                                                       |  |
| [] (Projection)     | П <sub>ID, salary</sub> (instructor)                                                                                                |  |
| (Projection)        | Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.                           |  |
| $\bowtie$           | instructor ⋈ department                                                                                                             |  |
| (Natural Join)      | Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.               |  |
| ×                   | instructor × department                                                                                                             |  |
| (Cartesian Product) | Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes) |  |
| U<br>(Union)        | $\Pi_{name}(instructor) \cup \Pi_{name}(student)$                                                                                   |  |
| (Omon)              | Output the union of tuples from the two input relations.                                                                            |  |



- Suppose you want to design a database for a bakery selling cakes
- The bakery makes certain cakes: Apple Pie, Chocolate Cake, etc.
- Cakes have a price and also need certain ingredients
- Customer can order cakes, and then pick them up on some date
- Bakery also wants to keep track of how much ingredients they have
- Customers may want to search by ingredient (e.g., "cakes with chocolate but without peanuts")
- Let's design a relational schema for this problem ...



#### Possible schema:

CUSTOMER (cid, name, phone, ccn)

CAKE (cname, price, slices)

ORDER (oid, cid, cname, pickupdate, orderdate, oprice)

INGREDIENT (<u>iname</u>, price, amountleft)

USED\_IN (cname, iname, amount)



Possible schema:

CUSTOMER (cid, name, phone, ccn)

CAKE (cname, price, slices)

ORDER (oid, cid, cname, pickupdate, orderdate, oprice)

INGREDIENT (<u>iname</u>, price, amountleft)

USED\_IN (cname, iname, amount)

Foreign keys:





#### Possible schema:

CUSTOMER (cid, name, phone, ccn)
CAKE (cname, price, slices)
ORDER (oid, cid, cname, pickupdate, orderdate, oprice)
INGREDIENT (iname, price, amountleft)
USED\_IN (cname, iname, amount)

#### Possible queries:

- Customers with name "J. Smith"
- Cakes containing more than 12oz of chocolate
- Customers who bought "apple pie"
- Customers who have never bought a cake containing peanuts



# Chapter 6: Formal Relational Query Languages

Relational Algebra

Domain Relational Calculus

(Tuple Relational Calculus)

Query By Example



#### Relational Algebra

- Procedural language
- Based on relational operations introduced in chapter 2
- Three sets of RA operations
  - Basic RA operations:
    - select, project, union, set diff., cartesian product, rename
  - Additional RA operations:
    - Can be expressed using basic ones
    - But make it easier to write queries
    - intersection, assignment, joins, division
  - Extended RA:
    - Increases power of RA
    - Cannot be expressed with basic RA
    - Aggregation and group\_by



#### Relational Algebra

- Six basic operators
  - select: σ
  - project: ∏
  - union: U
  - set difference: –
  - Cartesian product: x
  - rename:  $\rho$
- All operators take one or two relations as inputs and produce a new relation as a result
- Additional operators defined on top of these 6 later



# **Select Operation – Example**

Relation r

| A | В | C  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| α | β | 5  | 7  |
| β | β | 12 | 3  |
| β | β | 23 | 10 |

$$\bullet$$
  $\sigma_{A=B \land D>5}(r)$ 

| A | В | C  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| β | β | 23 | 10 |



#### **Select Operation**

- Notation:  $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by :  $\land$  (**and**),  $\lor$  (**or**),  $\neg$  (**not**) Each **term** is one of:

<attribute> op <attribute> or <constant> where op is one of: =,  $\neq$ , >,  $\geq$ . <.  $\leq$ 

Example of selection:



# **Project Operation – Example**

Relation *r*:

| A        | В  | C |
|----------|----|---|
| α        | 10 | 1 |
| $\alpha$ | 20 | 1 |
| β        | 30 | 1 |
| β        | 40 | 2 |

$$\blacksquare \prod_{A,C} (r)$$

| A | C |   | A | C |
|---|---|---|---|---|
| α | 1 |   | α | 1 |
| α | 1 | = | β | 1 |
| β | 1 |   | β | 2 |
| β | 2 |   |   |   |



### **Project Operation**

Notation:

$$\prod_{A_1,A_2,\ldots,A_k}(r)$$

where  $A_1$ ,  $A_2$  are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept\_name attribute of instructor

 $\prod_{ID, name, salary} (instructor)$ 



# **Union Operation – Example**

Relations *r*, *s*:

| A | В |
|---|---|
| α | 1 |
| α | 2 |
| β | 1 |

| В |
|---|
| 2 |
| 3 |
|   |

 $r \cup s$ :



#### Set difference of two relations

Relations *r*, *s*:

| A | В |
|---|---|
| α | 1 |
| α | 2 |
| β | 1 |

| $\boldsymbol{A}$ | В |
|------------------|---|
| α                | 2 |
| β                | 3 |
|                  | 3 |

r - s:

| A        | В |
|----------|---|
| $\alpha$ | 1 |
| β        | 1 |



# **Cartesian-Product Operation – Example**

Relations r, s:

| A | В |
|---|---|
| α | 1 |
| β | 2 |
| 1 |   |

| D  | E        |
|----|----------|
| 10 | a        |
| 10 | a        |
| 20 | b        |
| 10 | b        |
|    | 10<br>20 |

*r* x *s*:

| A | В | C | D  | Ε |
|---|---|---|----|---|
| α | 1 | α | 10 | a |
| α | 1 | β | 10 | a |
| α | 1 | β | 20 | b |
| α | 1 | γ | 10 | b |
| β | 2 | α | 10 | a |
| β | 2 | β | 10 | a |
| β | 2 | β | 20 | b |
| β | 2 | γ | 10 | b |



### **Cartesian-Product Operation**

- Notation *r* x *s*
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is,  $R \cap S = \emptyset$ ).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.



## **Composition of Operations**

- Can build expressions using multiple operations
- **Example**:  $\sigma_{A=C}(r \times s)$
- rxs

| $\boldsymbol{A}$ | В | C        | D  | E |
|------------------|---|----------|----|---|
| α                | 1 | α        | 10 | a |
| $ \alpha $       | 1 | β        | 10 | a |
| $ \alpha $       | 1 | β        | 20 | b |
| $\alpha$         | 1 | γ        | 10 | b |
| β                | 2 | $\alpha$ | 10 | a |
| β                | 2 | β        | 10 | a |
| β                | 2 | β        | 20 | b |
| β                | 2 | γ        | 10 | b |

 $\bullet$   $\sigma_{A=C}(r \times s)$ 

| A | В | C | D  | Ε |
|---|---|---|----|---|
| α | 1 | α | 10 | a |
| β | 2 | β | 10 | a |
| β | 2 | β | 20 | b |



## **Rename Operation**

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- **Example:**  $\rho_X(E)$

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

$$\rho_{x(A_1,A_2,...,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to  $A_1$ ,  $A_2$ , ....,  $A_n$ .

■ E.g.. Given relation CAKE(cname, price, slices)

 $\rho$  cheapcake(cakename, price, slices) (  $\sigma$  price < 10 (CAKE) )



#### **Formal Definition**

- A basic expression in the relational algebra consists of either one of the following:
  - A relation in the database
  - A constant relation
- Let  $E_1$  and  $E_2$  be relational-algebra expressions; the following are all relational-algebra expressions:
  - $\bullet$   $E_1 \cup E_2$
  - $\bullet$   $E_1 E_2$
  - $\bullet$   $E_1 \times E_2$
  - $\sigma_p(E_1)$ , P is a predicate on attributes in  $E_1$
  - $\prod_{S}(E_1)$ , S is a list consisting of some of the attributes in  $E_1$
  - $\bullet$   $\rho_{x}(E_{1})$ , x is the new name for the result of  $E_{1}$



### **Additional Operations**

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Assignment
- Outer join
- Division



## **Set-Intersection Operation – Example**

Relation *r*, *s*:

| В |
|---|
| 1 |
| 2 |
| 1 |
|   |

| A | В |
|---|---|
| α | 2 |
| β | 3 |

 $r \cap s$ 



## **Natural-Join Operation**

- Notation: r ⋈ s
- Let r and s be relations on schemas R and S respectively. Then,  $r \bowtie s$  is a relation on schema  $R \cup S$  obtained as follows:
  - Consider each pair of tuples  $t_r$  from r and  $t_s$  from s.
  - If  $t_r$  and  $t_s$  have the same value on each of the attributes in  $R \cap S$ , add a tuple t to the result, where
    - ightharpoonup t has the same value as  $t_r$  on r
    - t has the same value as  $t_S$  on s
- Example:

$$R=(A,\,B,\,C,\,D)$$

$$S = (E, B, D)$$

- Result schema = (A, B, C, D, E)
- $r \bowtie s$  is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s))$$



# **Natural Join Example**

Relations r, s:

| $\boldsymbol{A}$ | В | C | D |
|------------------|---|---|---|
| α                | 1 | α | a |
| β                | 2 | γ | a |
| γ                | 4 | β | b |
| α                | 1 | γ | a |
| δ                | 2 | β | b |
| (d)              |   | r |   |

| В | D | Ε |
|---|---|---|
| 1 | a | α |
| 3 | a | β |
| 1 | a | γ |
| 2 | b | δ |
| 3 | b | 3 |
|   | S |   |

■ r⋈s

| A | В | C | D | E |
|---|---|---|---|---|
| α | 1 | α | a | α |
| α | 1 | α | a | γ |
| α | 1 | γ | a | α |
| α | 1 | γ | a | γ |
| δ | 2 | β | b | δ |



#### **Natural Join and Theta Join**

- Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
  - $\prod$  name, title (O dept\_name="Comp. Sci." (instructor  $\bowtie$  teaches  $\bowtie$  course))
- Natural join is associative
  - (instructor  $\bowtie$  teaches)  $\bowtie$  course is equivalent to instructor  $\bowtie$  (teaches  $\bowtie$  course)
- Natural join is commutative
  - instruct ⋈ teaches is equivalent to teaches ⋈ instructor
- The **theta join** operation  $r \bowtie_{\theta} s$  is defined as
  - $r \bowtie_{\theta} s = \sigma_{\theta} (r \times s)$

where  $\theta$  (theta) is an arbitrary condition



#### Natural Join and Theta Join

Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach

•  $\prod$  name, title ( $\sigma$  dept\_name="Comp. Sci." (instructor  $\bowtie$  teaches  $\bowtie$  ourse))



- Natural join is associative
  - (instructor ⋈ teaches) ⋈ course is equivalent to instructor  $\bowtie$  (teaches  $\bowtie$  course)
- Natural join is commutative
  - instruct ⊠teaches is equivalent to *teaches* ⋈ *instructor*
- The **theta join** operation  $r \bowtie_{\theta} s$  is defined as
  - $r \bowtie_{\theta} s = \sigma_{\theta} (r \times s)$

Careful: this assumes instructors only teach in "their" department!



## **Assignment Operation**

- The assignment operation (←) provides a convenient way to express complex queries.
  - Write query as a sequential program consisting of
    - a series of assignments
    - followed by an expression whose value is displayed as a result of the query.
  - Assignment must always be made to a temporary relation variable.
  - Motivation from algebra: suppose you want to compute

$$y = (a+b+c)^2 + (a+b+c)^3 + (a+b+c)^4$$

Shorter: 
$$x = a+b+c$$

$$y = x^2 + x^3 + x^4$$



#### **Outer Join**

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
  - null signifies that the value is unknown or does not exist
  - All comparisons involving null are (roughly speaking) false by definition.
    - We shall study precise meaning of comparisons with nulls later



## **Outer Join – Example**

#### ■ Relation *instructor1*

| ID    | name   | dept_name  |
|-------|--------|------------|
|       |        | Comp. Sci. |
| 12121 | Wu     | Finance    |
| 15151 | Mozart | Music      |

#### ■ Relation *teaches1*

| ID    | course_id |
|-------|-----------|
| 10101 | CS-101    |
| 12121 | FIN-201   |
| 76766 | BIO-101   |



## **Outer Join – Example**

#### Join

instructor ⋈ teaches

| ID    | name       | dept_name  | course_id |
|-------|------------|------------|-----------|
| 10101 | Srinivasan | Comp. Sci. | CS-101    |
| 12121 | Wu         | Finance    | FIN-201   |

#### ■ Left Outer Join

| ID    | name       | dept_name  | course_id |
|-------|------------|------------|-----------|
| 10101 | Srinivasan | Comp. Sci. | CS-101    |
| 12121 | Wu         | Finance    | FIN-201   |
| 15151 | Mozart     | Music      | null      |



#### **Outer Join – Example**

■ Right Outer Join instructor ⋈ teaches

| ID    | name             | dept_name             | course_id         |
|-------|------------------|-----------------------|-------------------|
| 10101 | Srinivasan<br>Wu | Comp. Sci.<br>Finance | CS-101<br>FIN-201 |
|       |                  |                       |                   |
| 76766 | null             | null                  | BIO-101           |

■ Full Outer Join instructor □ teaches

| ID    | name       | dept_name  | course_id |
|-------|------------|------------|-----------|
| 10101 | Srinivasan | Comp. Sci. | CS-101    |
| 12121 | Wu         | Finance    | FIN-201   |
| 15151 | Mozart     | Music      | null      |
| 76766 | null       | null       | BIO-101   |

- Outer join can be expressed using basic operations

$$(r \bowtie s) \cup (r - \prod_{R} (r \bowtie s) \times \{(null, ..., null)\})$$



#### Theta vs. Natural vs. Outer Join

- CUSTOMER (cid, cname, joindate)PURCHASE (cid, pid, buydate)
- Theta Join: more general than Natural Join
- Natural Join: special case, join on common attributes
- Works 95% of time, but what if we use "date" in both?
- Inner versus outer join is separate issue



#### **Null Values**

- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving *null* is *null*.
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)



#### **Null Values**

- Comparisons with null values return the special truth value: unknown
  - If *false* was used instead of *unknown*, then not (A < 5) would not be equivalent to A >= 5
- Three-valued logic using the truth value *unknown*:
  - OR: (unknown or true) = true,
     (unknown or false) = unknown
     (unknown or unknown) = unknown
  - AND: (true and unknown) = unknown,
     (false and unknown) = false,
     (unknown and unknown) = unknown
  - NOT: (not unknown) = unknown
  - In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as *false* if it evaluates to *unknown*



### **Division Operator**

■ Given relations r(R) and s(S), such that  $S \subset R$ ,  $r \div s$  is the largest relation t(R-S) such that

- E.g. let  $r(ID, course\_id) = \prod_{ID, course\_id} (takes)$  and  $s(course\_id) = \prod_{course\_id} (O_{dept\_name="Biology"}(course)$  then  $r \div s$  gives us students who have taken all courses offered by the Biology department
- Can write r ÷ s as

$$temp1 \leftarrow \prod_{R-S}(r)$$
  
 $temp2 \leftarrow \prod_{R-S}((temp1 \times s) - \prod_{R-S,S}(r))$   
 $result = temp1 - temp2$ 

 See use of assignment: the result to the right of the ← is assigned to the relation variable on the left of the ←.



# **Division Operation – Example**

Relations *r*, *s*:

| A        | В |
|----------|---|
| α        | 1 |
| $\alpha$ | 2 |
| $\alpha$ | 3 |
| $\beta$  | 1 |
| γ        | 1 |
| δ        | 1 |
| δ        | 3 |
| δ        | 4 |
| $\in$    | 6 |
| $\in$    | 1 |
| β        | 2 |
|          | • |

 $r \div s$ :  $\alpha$ 



# **Another Division Example**

Relations *r, s*:

| A                                                             | В | C                | D | E |
|---------------------------------------------------------------|---|------------------|---|---|
| α                                                             | а | α                | а | 1 |
| $egin{array}{ccc} lpha & & & & & & & & & & & & & & & & & & &$ | а |                  | а | 1 |
| $\alpha$                                                      | а | γ                | b | 1 |
| β                                                             | а | γ                | а | 1 |
| β                                                             | а | γ<br>γ<br>γ<br>γ | b | 3 |
| γ                                                             | а | γ                | а | 1 |
| γ                                                             | а | γ                | b | 1 |
| γ                                                             | а | $\beta$          | b | 1 |
| r                                                             |   |                  |   |   |

D E
a 1
b 1

 $r \div s$ :

| A                                                | В      | С |
|--------------------------------------------------|--------|---|
| $\begin{bmatrix} \alpha \\ \gamma \end{bmatrix}$ | a<br>a | γ |



#### **Extended Relational-Algebra-Operations**

- Generalized Projection
- Aggregate Functions

#### **Generalized Projection**

Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{F_1, F_2}, ..., F_n(E)$$

- E is any relational-algebra expression
- Each of  $F_1$ ,  $F_2$ , ...,  $F_n$  are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation instructor(ID, name, dept\_name, salary) where salary is annual salary, get the same information but with monthly salary

 $\prod_{ID, name, dept_name, salary/12}$  (instructor)



## **Aggregate Functions and Operations**

Aggregation function takes a collection of values and returns a single value as a result.

avg: average valuemin: minimum valuemax: maximum valuesum: sum of values

count: number of values

Aggregate operation in relational algebra

$$G_{1},G_{2},...,G_{n}$$
  $G_{F_{1}(A_{1}),F_{2}(A_{2},...,F_{n}(A_{n})}(E)$ 

E is any relational-algebra expression

- $G_1$ ,  $G_2$  ...,  $G_n$  is a list of attributes on which to group (can be empty)
- Each F<sub>i</sub> is an aggregate function
- Each A<sub>i</sub> is an attribute name
- Note: Some books/articles use  $\gamma$  instead of  $\mathcal{G}$  (Calligraphic G)



## **Aggregate Operation – Example**

Relation *r*:

| Α        | В | С  |
|----------|---|----|
| α        | α | 7  |
| $\alpha$ | β | 7  |
| β        | β | 3  |
| β        | β | 10 |

$$\blacksquare \mathcal{G}_{\mathbf{sum(c)}}(\mathbf{r})$$



## **Aggregate Operation – Example**

Find the average salary in each department

 $dept_name \ Gavg(salary) \ (instructor)$ 

| ID    | пате       | dept_name  | salary |
|-------|------------|------------|--------|
| 76766 | Crick      | Biology    | 72000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |
| 12121 | Wu         | Finance    | 90000  |
| 76543 | Singh      | Finance    | 80000  |
| 32343 | El Said    | History    | 60000  |
| 58583 | Califieri  | History    | 62000  |
| 15151 | Mozart     | Music      | 40000  |
| 33456 | Gold       | Physics    | 87000  |
| 22222 | Einstein   | Physics    | 95000  |

| dept_name  | avg_salary |
|------------|------------|
| Biology    | 72000      |
| Comp. Sci. | 77333      |
| Elec. Eng. | 80000      |
| Finance    | 85000      |
| History    | 61000      |
| Music      | 40000      |
| Physics    | 91000      |



## **Aggregate Functions (Cont.)**

- Result of aggregation does not have a name
  - Can use rename operation to give it a name
  - For convenience, we permit renaming as part of aggregate operation

dept\_name Gavg(salary) as  $avg_sal(instructor)$ 

Do not nest inside selection operator as follows:

$$A \leftarrow G$$
 avg(salary) as avg\_sal (instructor)
$$O_{\text{salary} = A} \text{ (instructor)}$$

- A is a table with one row and one column
- No nested RA expressions (i.e., tables) inside selection condition



## **Aggregate Functions (Cont.)**

- Result of aggregation does not have a name
  - Can use rename operation to give it a name
  - For convenience, we permit renaming as part of aggregate operation

dept\_name Gavg(salary) as  $avg_sal(instructor)$ 

#### Correct:

A ← G avg(salary) as avg\_sal (instructor)

 $O_{\text{salary} = A.avg sal}$  (instructor XA)



#### **Modification of the Database**

- The content of the database may be modified using the following operations:
  - Deletion
  - Insertion
  - Updating
- All these operations can be expressed using the assignment operator



## **Multiset Relational Algebra**

- Pure relational algebra removes all duplicates
  - e.g. after projection
- Multiset relational algebra retains duplicates, to match SQL semantics
  - SQL duplicate retention was initially for efficiency, but is now a feature
- Multiset relational algebra defined as follows
  - selection: has as many duplicates of a tuple as in the input, if the tuple satisfies the selection
  - projection: one tuple per input tuple, even if it is a duplicate
  - cross product: If there are m copies of t1 in r, and n copies of t2 in s, there are m x n copies of t1.t2 in r x s
  - Other operators similarly defined
    - E.g. union: m + n copies, intersection: min(m, n) copies difference: min(0, m n) copies



## **SQL** and Relational Algebra

■ select A1, A2, .. An from r1, r2, ..., rm where P

is equivalent to the following expression in multiset relational algebra

$$\prod_{A1, \dots, An} (\mathcal{O}_P(r1 \times r2 \times \dots \times rm))$$

select A1, A2, sum(A3) from r1, r2, ..., rm where P group by A1, A2

is equivalent to the following expression in multiset relational algebra

A1, A2 
$$\mathcal{G}_{sum(A3)}$$
 ( $\mathcal{O}_{P}(r1 \times r2 \times .. \times rm)))$ 



## **Example Database**

■ E-Commerce Database with customers, products, and purchases:

#### **CUSTOMER**

| CID | CNAME | CADDRESS |
|-----|-------|----------|
|     |       |          |

#### **PURCHASE**

| CID | PID | TIMEDATE | PRICE |
|-----|-----|----------|-------|
|     |     |          |       |

#### **PRODUCT**

| PID | PNAME | PDESCRIPTION | PPRICE |
|-----|-------|--------------|--------|
|     |       |              |        |



### **Example Database**

#### **CUSTOMER**

| CID | CNAME | CADDRESS |
|-----|-------|----------|
|     |       |          |

#### **PURCHASE**

| CID | PID | TIMEDATE | PRICE |
|-----|-----|----------|-------|
|     |     |          |       |

#### **PRODUCT**

| PID | PNAME | PDESCRIPTION | PPRICE |
|-----|-------|--------------|--------|
|     |       |              |        |

- CIDs of Customers named "John Smith"
- Names of customers who have ordered something costing >\$10
- Names customers who have ordered an item called "IPhone 9"
- CID of customers named "John Smith" who have ordered an "IPhone9"
- For each customer, how much money they have spent.
- For each product, how many items were bought.



## **Tuple Relational Calculus**

A nonprocedural query language, where each query is of the form

$$\{t \mid P(t)\}$$

- It is the set of all tuples t such that predicate P is true for t
- *t* is a *tuple variable*, *t* [*A* ] denotes the value of tuple *t* on attribute *A*
- $t \in r$  denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus



#### **Predicate Calculus Formula**

- 1. Set of attributes and constants
- 2. Set of comparison operators: (e.g.,  $\langle$ ,  $\leq$ , =,  $\neq$ ,  $\rangle$ ,  $\geq$ )
- 3. Set of connectives: and  $(\land)$ , or  $(\lor)$ , not  $(\neg)$
- 4. Implication  $(\Rightarrow)$ :  $x \Rightarrow y$ , if x if true, then y is true

$$X \Rightarrow Y \equiv \neg X \lor Y$$

- 5. Set of quantifiers:
  - ▶  $\exists t \in r(Q(t)) \equiv$  "there exists" a tuple in t in relation r such that predicate Q(t) is true
  - ▶  $\forall t \in r(Q(t)) \equiv Q$  is true "for all" tuples t in relation r



### **Example Queries**

Find the *ID*, *name*, *dept\_name*, *salary* for instructors whose salary is greater than \$80,000

$$\{t \mid t \in instructor \land t [salary] > 80000\}$$

As in the previous query, but output only the *ID* attribute value

```
\{t \mid \exists s \in \text{instructor} \ (t \mid ID) = s \mid ID \mid \land s \mid salary \mid > 80000)\}
```

Notice that a relation on schema (*ID*) is implicitly defined by the query



### **Example Queries**

■ Find the names of all instructors whose department is in the Watson building

```
\{t \mid \exists s \in instructor (t [name] = s [name] \\ \land \exists u \in department (u [dept_name] = s[dept_name] " \\ \land u [building] = "Watson"))\}
```

■ Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009)
\forall \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```



### **Example Queries**

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009)
 \land \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```

Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009)
 \land \neg \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```



# Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example,  $\{t \mid \neg t \in r\}$  results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression  $\{t \mid P(t)\}$  in the tuple relational calculus is *safe* if every component of t appears in one of the relations, tuples, or constants that appear in P
  - NOTE: this is more than just a syntax condition.
    - E.g.  $\{t \mid t[A] = 5 \lor true\}$  is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.



#### **Universal Quantification**

- Find all students who have taken all courses offered in the Biology department
  - $\{t \mid \exists r \in student (t [ID] = r [ID]) \land (\forall u \in course (u [dept_name] = "Biology" \Rightarrow \exists s \in takes (t [ID] = s [ID] \land s [course_id] = u [course_id]))\}$
  - Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.



#### **Domain Relational Calculus**

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

- $\bullet$   $x_1, x_2, ..., x_n$  represent domain variables
- P represents a formula similar to those in predicate calculus



## **Example Queries**

- Find the *ID*, *name*, *dept\_name*, *salary* for instructors whose salary is greater than \$80,000
  - $\{ < i, n, d, s > 1 < i, n, d, s > \in instructor \land s > 80000 \}$
- As in the previous query, but output only the *ID* attribute value
  - $\{ < i > 1 \exists n, d, s ( < i, n, d, s > \in instructor \land s > 80000) \}$
- Find the names of all instructors whose department is in the Watson building

```
\{ \langle n \rangle \mid \exists i, d, s \ (\langle i, n, d, s \rangle \in instructor \land \exists b, a \ (\langle d, b, a \rangle \in department \land b = "Watson") \} \}
```



## **Example Queries**

■ Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

{<*c*> | ∃ *a*, *s*, *y*, *b*, *r*, *t* ( <*c*, *a*, *s*, *y*, *b*, *t* > ∈ section ∧ 
$$s = \text{``Fall''} \land y = 2009$$
)

v∃ *a*, *s*, *y*, *b*, *r*, *t* ( <*c*, *a*, *s*, *y*, *b*, *t* > ∈ section ] ∧  $s = \text{``Spring''} \land y = 2010$ )}

This case can also be written as {<*c*> | ∃ *a*, *s*, *y*, *b*, *r*, *t* ( <*c*, *a*, *s*, *y*, *b*, *t* > ∈ section ∧ ( (*s* = "Fall" ∧ *y* = 2009) v (*s* = "Spring" ∧ *y* = 2010))}

Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

```
{<c> | ∃ a, s, y, b, r, t (<c, a, s, y, b, t> ∈ section ∧ s = \text{``Fall''} \land y = 2009) 
 ∧ ∃ a, s, y, b, r, t (<c, a, s, y, b, t> ∈ section] ∧ s = \text{``Spring''} \land y = 2010)}
```



## **Relative Expressive Power**

- Save TRC & DRC are as powerful as basic relational algebra
- Extended relational algebra is
  - More powerful than TRC/DRC
  - useful for defining SQL semantics
  - useful for designing SQL queries
  - useful for understanding SQL execution
- Relational calculus is
  - useful for designing SQL queries (sometimes)
  - The basis for QBE
- Different viewpoints: relational calculus vs. relational algebra
- Limitation for all three languages: transitive closure



# **Query By Example**

- A graphical query language which is based (roughly) on domain relational calculus
- Two dimensional syntax system creates templates of relations that are requested by users
- Queries are expressed "by example" on skeleton tables (forms)

|      | branch      |  | branch-name branch- |      | branch-city | /     | assets   |
|------|-------------|--|---------------------|------|-------------|-------|----------|
|      |             |  |                     |      |             |       |          |
|      |             |  | <u>'</u>            |      |             | '     | <u>'</u> |
| cust | customer cu |  | tomer-name          | cust | omer-street | custo | mer-city |
|      |             |  |                     |      |             |       |          |
|      | loan        |  | Ioan-number         | r    | branch-name | ar    | mount    |



#### **Queries on One Relation**

**■** Find all loan numbers at the Perryridge branch.

| loan | loan_number | branch_name | amount |
|------|-------------|-------------|--------|
|      | P <i>x</i>  | Perryridge  |        |

- \_x is a variable (optional; can be omitted in above query since it is not used elsewhere in the query)
- P. means print (display)
- duplicates are removed by default
- To retain duplicates use P.ALL

| loan | loan_number | branch_name | amount |
|------|-------------|-------------|--------|
|      | P.ALL.      | Perryridge  |        |



# **Queries on One Relation (Cont.)**

Find the loan numbers of all loans made jointly to Smith and Jones.

| borrower | customer_name loan_nun |            |
|----------|------------------------|------------|
|          | Smith                  | P <i>x</i> |
|          | Jones                  | -x         |

Find all customers who live in the same city as Jones

| customer | customer_name | customer_street | customer_city |
|----------|---------------|-----------------|---------------|
|          | Px            |                 | _y            |
|          | Jones         |                 | _y            |



### **Queries on Several Relations**

Find the names of all customers who have a loan from the Perryridge branch.

| loan     | loan-number |         | branch-name |     | amount   |
|----------|-------------|---------|-------------|-----|----------|
|          | _X          |         | Perryridge  |     |          |
| borrower |             | custome | r-name      | loa | n-number |
|          |             | P       | <u>-y</u>   |     | _X       |



# **Negation in QBE**

Find the names of all customers who have an account at the bank, but do not have a loan from the bank.

| depositor | customer-name | account-number |
|-----------|---------------|----------------|
|           | P <i>x</i>    |                |
| borrower  | customer-name | loan-number    |
|           | _x            |                |

¬ means "there does not exist"



### **Example: Quantization and 3-Valued Logic**

### THREE LOGICIANS WALK INTO A BAR...







