H3P1

Guanzhi Wang 4/8/2020" Collaborate with Shaoyu Feng

Question 1

Q0

Q1

Q2: Using a validation and test set

A

BSince the learning iteration stops at 60, we have 60 trees.

The RMSE is about 0.216.

Q3

In this case, the best tree's minsplit is 2, maxdepth is 5 and the RMSE of the this tree is

P2 (please ignore the titles of graphs)

V=0.01

3V=0.125

V=0.05

3V=0.125

V=0.125

There is only 1 tree with RMSE 0.001350553.

In this case, the best tree's minsplit is 2, maxdepth is 5 and the RMSE of the this tree is 0.04.

Question 2

part 1

a

Yes. It shows the two points are really close in the dimension.

b

Perplexity value is the expected number of nearest neighbors to the point.

c

If the steps is small, there might have early stop. Once the number of steps get larger, the outcome will be converge and stable.

d

Because to explain topological information generally need multiple perplexities to have a view.

part 2

###a

b

c

So, we can see, the larger the perplexity, the clearer the bound.

tSNE dimension 1

20

d

e
From c and d, we can say there will be a really clear bound.

f

g

Easily to find, the larger the eta, the smaller the running time. The graphs look no big difference than previous pics.