

Basics of Systems and Control Theory for pyMOR

Jens Saak

August 23, 2022

pyMOR School 2022

$$y(t) = \begin{array}{c} \hat{x}(t) + B \\ \hat{y}(t) = \begin{array}{c} C \\ \hat{x}(t) + D \\ \hat{y}(t) = \end{array} \begin{array}{c} \hat{x}(t) + D \\ \hat{x}(t) + D \\ \hat{y}(t) = \begin{array}{c} \hat{x} \\ \hat{x}(t) + D \\ \hat{x}(t) + D \\ \hat{x}(t) + D \\ \hat{y}(t) = \begin{array}{c} \hat{x} \\ \hat{x}(t) + D \\ \hat{x}(t) + D \\ \hat{x}(t) + D \\ \hat{x}(t) + D \\ \hat{y}(t) = \begin{array}{c} \hat{x} \\ \hat{x}(t) + D \\ \hat{x}(t) + D$$

MOR | Outline

- 1 Linear Time-Invariant (LTI) Systems
- 2 Transfer Function and Realizations
- 3 System Analysis
- 4 A Selection of MOR Methods

Only continuous-time systems
 Discrete-time is treated in [Ant05]

No differential-algebraic systems
 For DAE aspects see [Voi19, GSW13, MS05, Sty04]

No non-linearities

No parameter dependencies

- 1 Linear Time-Invariant (LTI) Systems
 - Setting for this course
 - Examples
- 2 Transfer Function and Realizations
- 3 System Analysis
- 4 A Selection of MOR Methods

First-order State-space Systems

(PMOR: LTIModel)

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t).$$
 (Σ)

Here

- $\mathbf{x}(t) \in \mathbb{R}^n$ is called the state,
- $\mathbf{u}(t) \in \mathbb{R}^m$ is called the input,
- $\mathbf{y}(t) \in \mathbb{R}^p$ is called the output

of the LTI system. Correspondingly, we have

$$\mathbf{A} \in \mathbb{R}^{n \times n}, \qquad \mathbf{B} \in \mathbb{R}^{n \times m}, \qquad \mathbf{C} \in \mathbb{R}^{p \times n} \quad \text{and} \quad \mathbf{D} \in \mathbb{R}^{p \times m}.$$

We assume $t \in [0, \infty)$, $\mathbf{x}(0) = 0$.

First-order State-space Systems

(PMOR: LTIModel)

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t).$$
 (Σ)

Here

- $\mathbf{x}(t) \in \mathbb{R}^n$ is called the state,
- $\mathbf{u}(t) \in \mathbb{R}^m$ is called the input,
- $\mathbf{y}(t) \in \mathbb{R}^p$ is called the output

of the LTI system. Correspondingly, we have

$$\mathbf{A} \in \mathbb{R}^{n \times n}, \quad \mathbf{B} \in \mathbb{R}^{n \times m}, \quad \mathbf{C} \in \mathbb{R}^{p \times n}.$$

$$\mathbf{B} \in \mathbb{R}^{n \times m}$$

$$\mathbf{C} \in \mathbb{R}^{p \times n}$$

We assume $t \in [0, \infty)$, $\mathbf{x}(0) = 0$.

First-order State-space Systems

(PMOR: LTIModel)

$$\begin{aligned} \mathbf{E}\dot{\mathbf{x}}(t) &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}\mathbf{x}(t). \end{aligned} \tag{Σ}$$

Here

- $\mathbf{x}(t) \in \mathbb{R}^n$ is called the state,
- $\mathbf{u}(t) \in \mathbb{R}^m$ is called the input,
- $\mathbf{y}(t) \in \mathbb{R}^p$ is called the output

of the LTI system. Correspondingly, we have

$$\mathbf{E}, \mathbf{A} \in \mathbb{R}^{n \times n}, \qquad \mathbf{B} \in \mathbb{R}^{n \times m}, \qquad \mathbf{C} \in \mathbb{R}^{p \times n}.$$

We assume $t \in [0, \infty)$, $\mathbf{x}(0) = 0$ and \mathbf{E} invertible.

Second-order State-space Systems

(PMOR: SecondOrderModel)

$$\begin{split} \mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{E}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) &= \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}_{\mathrm{V}}\dot{\mathbf{x}}(t) + \mathbf{C}_{\mathrm{p}}\mathbf{x}(t). \end{split}$$

Here

- $\mathbf{x}(t) \in \mathbb{R}^n$ is called the position,
- $\dot{\mathbf{x}}(t) \in \mathbb{R}^n$ is called the velocity,
- $\mathbf{u}(t) \in \mathbb{R}^m$ is called the input,
- $\mathbf{y}(t) \in \mathbb{R}^p$ is called the output

of the LTI system. Correspondingly, we have

M. E.
$$K \in \mathbb{R}^{n \times n}$$
.

$$\mathbf{B} \in \mathbb{R}^{n \times m}$$

$$\mathbf{M}, \mathbf{E}, \mathbf{K} \in \mathbb{R}^{n \times n}, \qquad \mathbf{B} \in \mathbb{R}^{n \times m}, \qquad \mathbf{C}_{\mathbf{V}}, \mathbf{C}_{\mathbf{p}} \in \mathbb{R}^{p \times n}.$$

Heat Equation [MORWiki thermal block] I

For $t \in (0, T)$, $\xi \in \Omega$ and initial values

$$\theta(0,\xi) = 0$$
, for $\xi \in \Omega$,

consider

$$\partial_t \theta(t,\xi) + \nabla \cdot (-\sigma(\xi)\nabla \theta(t,\xi)) = 0,$$

with boundary conditions

$$\begin{split} \sigma(\xi)\nabla\theta(t,\xi)\cdot n(\xi) &= u(t) &\quad t\in(0,\mathit{T}),\,\xi\in\Gamma_{\mathit{in}},\\ \sigma(\xi)\nabla\theta(t,\xi)\cdot n(\xi) &=0 &\quad t\in(0,\mathit{T}),\,\xi\in\Gamma_{\mathit{N}},\\ \theta(t,\xi) &=0 &\quad t\in(0,\mathit{T}),\,\xi\in\Gamma_{\mathit{D}}. \end{split}$$

Heat Equation [MORWiki thermal block] II

Finite element semi-discretization in space

- pairwise inner products of ansatz functions → E
- discretized spatial operator + Dirichlet boundary condition → A
- discretized non-zero Neumann boundary condition → B
- ullet average temperatures on the inclusions \leadsto ${f C}$

- n = 7488
- m = 1
- p = 4

An Artificial Fishtail [MORWiki Artificial Fishtail] I

Construction:

Fluid Elastomer Actuation:

no pressure

under pressure

An Artificial Fishtail [MORWiki Artificial Fishtail] II

Variables:

- displacement $\vec{s}(t, \vec{z})$
- strain $\underline{\vec{\varepsilon}}(\vec{s}(t, \vec{z}))$
- stress $\vec{\underline{\sigma}}(\vec{s}(t,\vec{z}))$

Material parameters:

- density ρ
- Lamé parameters λ , μ

Basic principle:

$$\begin{split} \underline{\vec{\varepsilon}}(\vec{s}(t,\vec{z})) &= \frac{1}{2} \left(\nabla \vec{s}(t,\vec{z}) + \nabla^{\mathsf{T}} \vec{s}(t,\vec{z}) \right) & \text{(kinematic equation)} \\ \underline{\vec{\sigma}}(\vec{s}(t,\vec{z})) &= \lambda \operatorname{tr}((\underline{\vec{\varepsilon}}(\vec{s}(t,\vec{z}))) \, \underline{l} + 2\mu \underline{\vec{\varepsilon}}(\vec{s}(t,\vec{z}))) & \text{(material equation)} \\ \rho \frac{\partial^2 \vec{s}(t,\vec{z})}{\partial t^2} &= \nabla \cdot \underline{\vec{\sigma}}(\vec{s}(t,\vec{z})) + \vec{f}(t,\vec{z}) & \text{(equation of motion)} \end{split}$$

+ initial and boundary conditions

An Artificial Fishtail [MORWiki Artificial Fishtail] III

FEM semi-discretization:

$$\begin{split} \mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{E}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) &= \mathbf{B}\mathbf{u}(t), \\ \mathbf{y}(t) &= \mathbf{C}_{\mathbf{p}}\mathbf{x}(t), \end{split}$$

with

- $\mathbf{M}, \mathbf{E}, \mathbf{K} > 0$, $\mathbf{C}_{\mathbf{v}} = 0$,
- n = 779232, m = 1, p = 3.

- 1 Linear Time-Invariant (LTI) Systems
- 2 Transfer Function and Realizations
 - Laplace Transform
 - Transfer Function
 - Realizations
 - Projection-based MOR
- 3 System Analysis
- 4 A Selection of MOR Methods

Then

$$\mathcal{L}\left\{f\right\}\left(\mathsf{s}\right) := \int_{0}^{\infty} f(\tau) \mathsf{e}^{-\mathsf{s}\tau} \mathsf{d}\tau$$

for $Re(s) > \alpha$ is called the **Laplace transform** of f. The process of forming the Laplace transform is called **Laplace transformation**.

It can be shown that the integral converges uniformly in a domain with $Re(s) \ge \beta$ for all $\beta > \alpha$.

Then

$$\mathcal{L}\left\{f\right\}\left(\mathsf{s}\right):=\int_{0}^{\infty}f(au)\mathsf{e}^{-\mathsf{s} au}\mathsf{d} au$$

for $Re(s) > \alpha$ is called the **Laplace transform** of f. The process of forming the Laplace transform is called **Laplace transformation**.

It can be shown that the integral converges uniformly in a domain with $Re(s) \ge \beta$ for all $\beta > \alpha$.

Allows us to map time signals to frequency signals.

MOR | Transfer Function and Realizations | Laplace Transform

Theorem

Let $f, g, h : [0, \infty) \to \mathbb{R}^n$ be given. Then the following two statements hold true:

a) The Laplace transformation is linear, i. e., if f and g are exponentially bounded, then $h:=\gamma f+\delta g$ is also exponentially bounded and

$$\mathcal{L}\left\{h\right\} = \gamma \mathcal{L}\left\{f\right\} + \delta \mathcal{L}\left\{g\right\}$$

holds for all $\gamma, \delta \in \mathbb{C}$.

b) If $f \in \mathcal{PC}^1([0,\infty),\mathbb{R}^n)$ and \dot{f} is exponentially bounded, then f is exponentially bounded and

$$\mathcal{L}\{\dot{f}\}(\mathbf{s}) = \mathbf{s}\mathcal{L}\{f\}(\mathbf{s}) - f(0).$$

Theorem

Let $f, g, h : [0, \infty) \to \mathbb{R}^n$ be given. Then the following two statements hold true:

a) The Laplace transformation is linear, i. e., if f and g are exponentially bounded, then $h:=\gamma f+\delta g$ is also exponentially bounded and

$$\mathcal{L}\left\{h\right\} = \gamma \mathcal{L}\left\{f\right\} + \delta \mathcal{L}\left\{g\right\}$$

holds for all $\gamma, \delta \in \mathbb{C}$.

b) If $f \in \mathcal{PC}^1([0,\infty),\mathbb{R}^n)$ and \dot{f} is exponentially bounded, then f is exponentially bounded and

$$\mathcal{L}\{\dot{f}\}(s) = s\mathcal{L}\{f\}(s) - f(0).$$

- $X(s) := \mathcal{L}\{\mathbf{x}\}(s), \ U(s) := \mathcal{L}\{\mathbf{u}\}(s), \ \text{and} \ Y(s) := \mathcal{L}\{\mathbf{y}\}(s)$
- $\mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \rightsquigarrow \mathbf{A}X(s) + \mathbf{B}U(s)$
- $\mathbf{v}(t) = \mathbf{C}\mathbf{x}(t) \rightsquigarrow Y(s) = \mathbf{C}X(s)$

Rational Matrix Function Representation

In summary we have:

- sEX(s) = AX(s) + BU(s)
- $Y(s) = \mathbf{C}X(s)$

Thus the mapping from inputs to outputs in frequency domain can be expressed as

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}.$$

Rational Matrix Function Representation

In summary we have:

- sEX(s) = AX(s) + BU(s)
- $Y(s) = \mathbf{C}X(s)$

Thus the mapping from inputs to outputs in frequency domain can be expressed as

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}.$$

Analogously, for second-order systems we get

$$\mathbf{H}(s) = (s\mathbf{C}_{v} + \mathbf{C}_{p}) (s^{2}\mathbf{M} + s\mathbf{E} + \mathbf{K})^{-1}\mathbf{B}.$$

Rational Matrix Function Representation

In summary we have:

- sEX(s) = AX(s) + BU(s)
- $Y(s) = \mathbf{C}X(s)$

Thus the mapping from inputs to outputs in frequency domain can be expressed as

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}.$$

Analogously, for second-order systems we get

$$\mathbf{H}(s) = (s\mathbf{C}_{v} + \mathbf{C}_{p}) (s^{2}\mathbf{M} + s\mathbf{E} + \mathbf{K})^{-1}\mathbf{B}.$$

H is analytic in $\mathbb{C} \setminus \Lambda(\mathbf{E}, \mathbf{A})$, or $\mathbb{C} \setminus \Lambda(\mathbf{M}, \mathbf{E}, \mathbf{K})$, respectively

Important Representations of $\hat{H}(s)$

(Laurent) series expansion

$$\mathbf{H}(s) = \sum_{k=0}^{\infty} (s - s_0)^k M_k(s_0)$$
 $\mathbf{H}(s) = \sum_{k=0}^{\infty} s^{-k} M_k(\infty)$

The matrices $M_k(s_0)$ are called **moments** of **H**. At infinity they are also referred to as **Markov parameters**.

Pole Residue Form

Let (λ_i, w_i, v_i) be the eigentriplets of the pair (\mathbf{A}, \mathbf{E}) with no degenerate eigenspaces. Then we have

$$\mathbf{H}(s) = \sum_{i=1}^{n} \frac{R_i}{s - \lambda_i},$$

where $R_i = (\mathbf{C}v_i)(w_i^{\mathsf{H}}\mathbf{B})$, assuming $w_i^{\mathsf{H}}v_i = 1$.

MOR | Transfer Function and Realizations | Realizations

The representation of H using (E, A, B, C) is not unique.

In fact for any invertible matrix $\mathbf{T} \in \mathbb{R}^{n \times n}$, we have

$$\begin{aligned} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} \\ &= \mathbf{C}\mathbf{T}^{-1}\mathbf{T}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{T}^{-1}\mathbf{T}\mathbf{B} \\ &= \mathbf{C}\mathbf{T}^{-1}\left(s\mathbf{T}\mathbf{E}\mathbf{T}^{-1} - \mathbf{T}\mathbf{A}\mathbf{T}^{-1}\right)^{-1}\mathbf{T}\mathbf{B} \end{aligned}$$

and thus a system given, by $(\mathbf{TET}^{-1},\mathbf{TAT}^{-1},\mathbf{TB},\mathbf{CT}^{-1})$ realizes the exact same input/output behavior.

Definition

- All sets of matrices leading to the same function H are called its realizations.
- The matrix T above is called state-space transformation.

Important Realizations

Minimal Realizations

Can we realize ${\bf H}$ with less equations?

Important Realizations

Minimal Realizations

Can we realize **H** with less equations?

Truncated Realizations

Can we introduce a small error to get even less equations?

Important Realizations

Minimal Realizations

Can we realize **H** with less equations?

Truncated Realizations

Can we introduce a small error to get even less equations?

Balanced Realizations

Can we find state coordinates that allow us to decide what is important?

McMillan Degree and Minimal Realization

Example

Realizations can even be of different dimensions. Take for example:

$$\mathbf{E} = \mathbf{I} \text{ the identity, } \mathbf{A} = \begin{bmatrix} -11 & 0 \\ 0 & -5 \end{bmatrix} \text{, } \mathbf{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Truncating the second state component does not change H.

Definition

There exists a minimum number of equations necessary to describe \mathbf{H} . The state dimension n of this minimal set of equations is called $\mathbf{McMillan}$ degree of the system. A realization of \mathbf{H} with this dimension is called minimal realization.

$$\begin{aligned} \mathbf{E}\dot{\mathbf{x}}(t) - \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{u}(t) &= 0, \\ \mathbf{y}(t) - \mathbf{C}\mathbf{x}(t) - \mathbf{D}\mathbf{u}(t) &= 0. \end{aligned}$$

$$\begin{split} \mathbf{E}\mathbf{V}\dot{\hat{\mathbf{x}}}(t) - \mathbf{A}\mathbf{V}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{u}(t) &= e_{\mathrm{res}}(t), \\ \mathbf{y}(t) - \mathbf{C}\mathbf{V}\hat{\mathbf{x}}(t) - \mathbf{D}\mathbf{u}(t) &= e_{\mathrm{output}}(t). \end{split}$$

Step I: Use truncated state transformation

Replace

$$\mathbf{x}(t) \approx \mathbf{V}\hat{\mathbf{x}}(t)$$

with $\mathbf{V} \in \mathbb{R}^{n \times r}$ and $\hat{\mathbf{x}}(t) \in \mathbb{R}^{r}$.

$$\begin{split} \mathbf{V}^{\mathsf{T}}\mathbf{E}\mathbf{V}\dot{\hat{\mathbf{x}}}(t) - \mathbf{V}^{\mathsf{T}}\mathbf{A}\mathbf{V}\dot{\hat{\mathbf{x}}}(t) - \mathbf{V}^{\mathsf{T}}\mathbf{B}\mathbf{u}(t) &= 0,\\ \mathbf{y}(t) - \mathbf{C}\mathbf{V}\dot{\hat{\mathbf{x}}}(t) - \mathbf{D}\mathbf{u}(t) &= e_{\mathrm{output}}(t). \end{split}$$

Step I: Use truncated state transformation

Replace

$$\mathbf{x}(t) \approx \mathbf{V}\hat{\mathbf{x}}(t)$$

with $\mathbf{V} \in \mathbb{R}^{n \times r}$ and $\hat{\mathbf{x}}(t) \in \mathbb{R}^{r}$.

Step II: Mitigate transformation error

Suppress truncation residual through left projection.

• one-sided method: use **V** again.

$$\begin{split} \mathbf{W}^{\mathrm{T}}\mathbf{E}\mathbf{V}\dot{\hat{\mathbf{x}}}(t) - \mathbf{W}^{\mathrm{T}}\mathbf{A}\mathbf{V}\hat{\mathbf{x}}(t) - \mathbf{W}^{\mathrm{T}}\mathbf{B}\mathbf{u}(t) &= 0,\\ \mathbf{y}(t) - \mathbf{C}\mathbf{V}\hat{\mathbf{x}}(t) - \mathbf{D}\mathbf{u}(t) &= e_{\mathrm{output}}(t). \end{split}$$

Step I: Use truncated state transformation

Replace

$$\mathbf{x}(t) \approx \mathbf{V}\hat{\mathbf{x}}(t)$$

with $\mathbf{V} \in \mathbb{R}^{n \times r}$ and $\hat{\mathbf{x}}(t) \in \mathbb{R}^{r}$.

Step II: Mitigate transformation error

Suppress truncation residual through left projection.

- one-sided method: use V again.
- two-sided method: find $\mathbf{W} \in \mathbb{R}^{n \times r}$.

 $\hat{\mathbf{A}} \approx \mathbf{A}$

Reduced order model (ROM)

(PMOR: LTIPGReductor)

Define $\hat{\mathbf{E}} = \mathbf{W}^T \mathbf{E} \mathbf{V}$, $\hat{\mathbf{A}} = \mathbf{W}^T \mathbf{A} \mathbf{V} \in \mathbb{R}^{r \times r}$, $\hat{\mathbf{B}} = \mathbf{W}^T \mathbf{B} \in \mathbb{R}^{r \times m}$ and $\hat{\mathbf{C}} = \mathbf{C} \mathbf{V} \in \mathbb{R}^{p \times r}$. Then

$$\hat{\mathbf{E}}\dot{\hat{\mathbf{x}}}(t) = \hat{\mathbf{A}}\hat{\mathbf{x}}(t) + \hat{\mathbf{B}}\mathbf{u}(t),$$

$$\hat{\mathbf{y}}(t) = \hat{\mathbf{C}}\hat{\mathbf{x}}(t) + \mathbf{D}\mathbf{u}(t)$$
(ROM)

approximates the dynamics of the full-order model (Σ) with output error

$$\mathbf{y}(t) - \hat{\mathbf{y}}(t) = e_{\text{output}}(t).$$

- We call the corresponding transfer function $\hat{\mathbf{H}}$.
- Model order reduction (MOR) \leadsto Find $\mathbf{W}, \mathbf{V} \in \mathbb{R}^{n \times r}$ such that $e_{\text{output}}(t)$ is small in a suitable sense.
- We will focus on energy-based and interpolation-based methods today.

- 1 Linear Time-Invariant (LTI) Systems
- 2 Transfer Function and Realizations
- 3 System Analysis
 - System Norms and Hardy Spaces
 - Frequency-Domain Analysis
- 4 A Selection of MOR Methods

We have

$$Y(s) = \mathbf{H}(s)U(s)$$

and

$$\hat{Y}(s) = \hat{\mathbf{H}}(s)U(s).$$

Question

What are suitable norms such that

$$||y - \hat{y}|| \le ||\mathbf{H} - \hat{\mathbf{H}}|| \, ||u||?$$

The Banach Space $\mathcal{H}_{\infty}^{p \times m}$

$$\mathcal{H}_{\infty}^{\rho\times m}:=\left\{G:\mathbb{C}^{+}\rightarrow\mathbb{C}^{\rho\times m}\ :\ G\text{ is analytic in }\mathbb{C}^{+}\text{ and }\sup_{s\in\mathbb{C}^{+}}\left\Vert G(s)\right\Vert _{2}<\infty\right\}.$$

The Banach Space $\mathcal{H}_{\infty}^{p \times m}$

$$\mathcal{H}_{\infty}^{\rho\times m}:=\left\{G:\mathbb{C}^{+}\rightarrow\mathbb{C}^{\rho\times m}\ :\ G\text{ is analytic in }\mathbb{C}^{+}\text{ and }\sup_{s\in\mathbb{C}^{+}}\left\Vert G(s)\right\Vert _{2}<\infty\right\}.$$

 $\mathcal{H}_{\infty}^{p imes m}$ is a Banach space equipped with the \mathcal{H}_{∞} -norm

$$\left\| \mathbf{G} \right\|_{\mathcal{H}_{\infty}} := \sup_{\omega \in \mathbb{R}} \left\| \mathbf{G}(\mathrm{i}\omega) \right\|_{2}.$$

The Banach Space $\mathcal{H}_{\infty}^{p \times m}$

$$\mathcal{H}_{\infty}^{\rho\times m}:=\left\{G:\mathbb{C}^{+}\rightarrow\mathbb{C}^{\rho\times m}\ :\ G\text{ is analytic in }\mathbb{C}^{+}\text{ and }\sup_{s\in\mathbb{C}^{+}}\left\Vert G(s)\right\Vert _{2}<\infty\right\}.$$

 $\mathcal{H}_{\infty}^{p imes m}$ is a Banach space equipped with the \mathcal{H}_{∞} -norm

$$\left\| \mathit{G} \right\|_{\mathcal{H}_{\infty}} := \sup_{\omega \in \mathbb{R}} \left\| \mathit{G}(\mathrm{i}\omega) \right\|_{2}.$$

Can show:
$$\|\mathbf{y} - \hat{\mathbf{y}}\|_{\mathcal{L}_2} \leq \|\mathbf{H} - \hat{\mathbf{H}}\|_{\mathcal{H}_{\infty}} \|\mathbf{u}\|_{\mathcal{L}_2}.$$

This bound can even be shown to be sharp.

The Hilbert Space $\mathcal{H}_2^{\rho \times m}$

$$\mathcal{H}_2^{
ho imes m}:=\left\{\mathit{G}:\mathbb{C}^+ o\mathbb{C}^{
ho imes m}\ :\ \mathit{G}\ ext{is analytic in }\mathbb{C}^+\ ext{and}
ight.$$

$$\sup_{\xi>0}\int_{-\infty}^{\infty}\left\|\mathit{G}(\xi+\mathrm{i}\omega)\right\|_{\mathrm{F}}^{2}\mathrm{d}\omega<\infty\right\}.$$

The Hilbert Space $\mathcal{H}_2^{p \times m}$

$$\mathcal{H}_2^{
ho imes m}:=\left\{{\it G}:\mathbb{C}^+ o\mathbb{C}^{{\it p} imes m}\ :\ {\it G}\ ext{is analytic in }\mathbb{C}^+\ ext{and}
ight.$$

$$\sup_{\xi>0}\int_{-\infty}^{\infty}\left\|\mathit{G}(\xi+\mathrm{i}\omega)\right\|_{\mathrm{F}}^{2}\mathrm{d}\omega<\infty\right\}.$$

 $\mathcal{H}_2^{p \times m}$ is a Hilbert space with the inner product

$$\langle F, G \rangle_{\mathcal{H}_2} := \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{tr}\left(F(i\omega)^{\mathsf{H}} G(i\omega)\right) d\omega$$

and induced norm

$$\left\|\mathbf{G}\right\|_{\mathcal{H}_{2}}:=\left\langle\mathbf{G},\mathbf{G}\right\rangle_{\mathcal{H}_{2}}^{1/2}=\left(\frac{1}{2\pi}\int_{-\infty}^{\infty}\left\|\mathbf{G}(\mathrm{i}\omega)\right\|_{\mathrm{F}}^{2}\mathrm{d}\omega\right)^{1/2}.$$

The Hilbert Space $\mathcal{H}_2^{p \times m}$

$$\mathcal{H}_2^{\rho\times m}:=\left\{\mathit{G}:\mathbb{C}^+\to\mathbb{C}^{\rho\times m}\;:\;\mathit{G}\;\text{is analytic in }\mathbb{C}^+\;\text{and}\right.$$

$$\sup_{\xi>0}\int_{-\infty}^{\infty}\left\| \mathit{G}(\xi+\mathrm{i}\omega)\right\|_{\mathrm{F}}^{2}\mathrm{d}\omega<\infty\right\}.$$

 $\mathcal{H}_2^{p imes m}$ is a Hilbert space with the inner product

$$\langle F, G \rangle_{\mathcal{H}_2} := \frac{1}{2\pi} \int_{-\infty}^{\infty} \operatorname{tr}\left(F(i\omega)^{\mathsf{H}} G(i\omega)\right) d\omega$$

and induced norm

$$\|\mathbf{G}\|_{\mathcal{H}_2} := \langle \mathbf{G}, \mathbf{G} \rangle_{\mathcal{H}_2}^{1/2} = \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \|\mathbf{G}(\mathrm{i}\omega)\|_{\mathrm{F}}^2 \, \mathrm{d}\omega\right)^{1/2}.$$

$$\|\mathbf{y} - \hat{\mathbf{y}}\|_{\mathcal{L}_{\infty}} \leq \|\mathbf{H} - \hat{\mathbf{H}}\|_{\mathcal{H}_{2}} \|\mathbf{u}\|_{\mathcal{L}_{2}}.$$

System Gramians and \mathcal{H}_2 -trace-formula

A system (Σ) with $\Lambda(\mathbf{E}, \mathbf{A}) \subset \mathbb{C}^-$ is called **asymptotically stable**. Then, all state trajectories decay exponentially as $t \to \infty$ and

a) the infinite controllability and observability Gramians exist:

$$\begin{split} \mathbf{P} &= \int_0^\infty \mathrm{e}^{\mathbf{E}^{-1}\mathbf{A}t} \mathbf{E}^{-1} \mathbf{B} \mathbf{B}^\mathsf{T} \mathbf{E}^{-\mathsf{T}} \mathrm{e}^{\mathbf{A}^\mathsf{T} \mathbf{E}^{-\mathsf{T}}t} \mathrm{d}t \\ \mathbf{E}^\mathsf{T} \mathbf{Q} \mathbf{E} &= \int_0^\infty \mathrm{e}^{\mathbf{A}^\mathsf{T} \mathbf{E}^{-\mathsf{T}}t} \mathbf{C}^\mathsf{T} \mathbf{C} \mathrm{e}^{\mathbf{E}^{-1}\mathbf{A}t} \mathrm{d}t. \end{split}$$

b) P, Q solve the two Lyapunov equations

$$\mathbf{A}\mathbf{P}\mathbf{E}^\mathsf{T} + \mathbf{E}\mathbf{P}\mathbf{A}^\mathsf{T} = -\mathbf{B}\mathbf{B}^\mathsf{T}, \qquad \mathbf{A}^\mathsf{T}\mathbf{Q}\mathbf{E} + \mathbf{E}^\mathsf{T}\mathbf{Q}\mathbf{A} = -\mathbf{C}^\mathsf{T}\mathbf{C}$$

c) the \mathcal{H}_2 -norm can be expressed as

$$\left\|\mathbf{H}\right\|_{\mathcal{H}_2}^2 = \mathrm{tr} \left(\mathbf{CPC}^{\mathsf{T}}\right) = \mathrm{tr} \left(\mathbf{B}^{\mathsf{T}} \mathbf{QB}\right).$$

System Analysis | Frequency-Domain Analysis

Bode Plots

The Bode plot for **H** consists of a magnitude plot and a phase plot.

Bode magnitude plot

- component-wise graph of the function $|\mathbf{H}(\mathrm{i}\omega)|$ for frequencies $\omega \in [\omega_{\min}, \omega_{\max}] \subset \mathbb{R}.$
- ω -axis is logarithmic.
- magnitude is given in decibels, i.e., $|\mathbf{H}(i.)|$ is plotted as $20\log_{10}(|\mathbf{H}(i.)|)$.

Bode phase plot

- component-wise graph of the function $\arg \mathbf{H}(\mathrm{i}\omega)$ for frequencies $\omega \in [\omega_{\min}, \omega_{\max}] \subset \mathbb{R}.$
- ω -axis is logarithmic.
- phase is given in degrees on a linear scale.

System Analysis | Frequency-Domain Analysis

Bode Plot for the Thermal Block Example

System Analysis | Frequency-Domain Analysis

(Sigma) Magnitude Plots

Sigma magnitude plot

- 2-norm-wise graph of the function $\mathbf{H}(\mathrm{i}\omega)$ for frequencies $\omega \in [\omega_{\min}, \omega_{\max}] \subset \mathbb{R}.$
- ω -axis is logarithmic.

The name is due to the fact that for a given matrix ${\bf M}$ the norm $\|{\bf M}\|_2$ is given by its largest singular value.

The real sigma magnitude plot depicts all singular values as functions of ω .

Sigma Magnitude Plot for the Artificial Fishtail

$\mathbb{P}/MOR \mid A$ Selection of MOR Methods

- 1 Linear Time-Invariant (LTI) Systems
- 2 Transfer Function and Realizations
- 3 System Analysis
- 4 A Selection of MOR Methods
 - Modal Methods
 - Balancing Based MOR
 - Moments and Interpolation

MOR | A Selection of MOR Methods | Modal Methods

Modal Coordinates

Assume that the pair (E,A), respectively the triple (M,E,K), is simultaneously diagonalizable in $\mathbb{C}^{n\times n}$.

Classic Modal Truncation

- Compute diagonal realization from an eigendecomposition.
- State-space transformation matrices contain eigenvectors (modes).
- Use W = V.
- Populate V with modes corresponding to eigenvalues closest to $i\mathbb{R}$.
- Add a few domain specific or "anxiety" modes.

Problem

- Does not take inputs and outputs into account!
- How many "anxiety" modes are necessary?

Dominant Poles Approximation

(PMOR: MTReductor)

Recall the pole residue form of the transfer function

$$\mathbf{H}(s) = \sum_{i=1}^{n} \frac{R_i}{s - \lambda_i},$$

where $R_i = (\mathbf{C}v_i)(w_i^{\mathsf{H}}\mathbf{B})$, assuming $w_i^{\mathsf{H}}v_i = 1$.

Sort and select modes by the magnitude of the $||R_i|| / \text{Re}(\lambda_i)$. Then

Error bound

$$\left\|\mathbf{H} - \hat{\mathbf{H}}\right\|_{\infty} \leq \sum_{i=r+1}^{n} \frac{\left\|R_{i}\right\|}{\left|\operatorname{Re}(\lambda_{i})\right|}$$

Computation is feasible via *subspace accelerated MIMO dominant pole algorithm* (SAMDP).

Idea:

• The system (Σ), in realization ($\mathbf{E} = \mathbf{I}, \mathbf{A}, \mathbf{B}, \mathbf{C}$), is called balanced, if the solutions \mathbf{P} , \mathbf{Q} of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0,$$
 $A^{T}Q + QA + C^{T}C = 0,$

satisfy:
$$\mathbf{P} = \mathbf{Q} = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

Idea:

• The system (Σ), in realization ($\mathbf{E} = \mathbf{I}, \mathbf{A}, \mathbf{B}, \mathbf{C}$), is called balanced, if the solutions \mathbf{P} , \mathbf{Q} of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0,$$
 $A^{T}Q + QA + C^{T}C = 0,$

satisfy:
$$\mathbf{P} = \mathbf{Q} = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

• $\{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .

Idea:

• The system (Σ), in realization ($\mathbf{E} = \mathbf{I}, \mathbf{A}, \mathbf{B}, \mathbf{C}$), is called balanced, if the solutions \mathbf{P} , \mathbf{Q} of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0,$$
 $A^{T}Q + QA + C^{T}C = 0,$

satisfy:
$$\mathbf{P} = \mathbf{Q} = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

- $\{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- A balanced realization is computed via state space transformation

$$\begin{split} \boldsymbol{\mathcal{T}} : (\textbf{I}, \textbf{A}, \textbf{B}, \textbf{C}) &\mapsto (\textbf{I}, \textbf{TAT}^{-1}, \textbf{TB}, \textbf{CT}^{-1}) \\ &= \left(\left[\begin{array}{cc} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{array} \right], \left[\begin{array}{cc} \textbf{B}_{1} \\ \textbf{B}_{2} \end{array} \right], \left[\begin{array}{cc} \textbf{C}_{1} & \textbf{C}_{2} \end{array} \right] \right). \end{split}$$

Idea:

• The system (Σ), in realization ($\mathbf{E} = \mathbf{I}, \mathbf{A}, \mathbf{B}, \mathbf{C}$), is called balanced, if the solutions \mathbf{P} , \mathbf{Q} of the Lyapunov equations

$$AP + PA^{T} + BB^{T} = 0,$$
 $A^{T}Q + QA + C^{T}C = 0,$

satisfy: $\mathbf{P} = \mathbf{Q} = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$ where $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n > 0$.

- $\{\sigma_1, \dots, \sigma_n\}$ are the Hankel singular values (HSVs) of Σ .
- A balanced realization is computed via state space transformation

$$\begin{split} \mathcal{T}: (\textbf{I}, \textbf{A}, \textbf{B}, \textbf{C}) &\mapsto (\textbf{I}, \textbf{TAT}^{-1}, \textbf{TB}, \textbf{CT}^{-1}) \\ &= \left(\left[\begin{array}{cc} \textbf{A}_{11} & \textbf{A}_{12} \\ \textbf{A}_{21} & \textbf{A}_{22} \end{array} \right], \left[\begin{array}{cc} \textbf{B}_{1} \\ \textbf{B}_{2} \end{array} \right], \left[\begin{array}{cc} \textbf{C}_{1} & \textbf{C}_{2} \end{array} \right] \right). \end{split}$$

• Truncation \rightsquigarrow reduced order model: $(I, \hat{A}, \hat{B}, \hat{C}) = (I, A_{11}, B_1, C_1)$.

Implementation: The Square Root Method

The SR Method

(EMOR: BTReductor)

1. Compute (Cholesky) factors of the solutions to the Lyapunov equation,

$$P = S^T S$$
, $Q = R^T R$.

Implementation: The Square Root Method

The SR Method

(PMOR: BTReductor)

1. Compute (Cholesky) factors of the solutions to the Lyapunov equation,

$$P = S^T S$$
, $Q = R^T R$.

2. Compute singular value decomposition

$$\mathbf{SR}^\mathsf{T} = \left[egin{array}{ccc} \mathbf{U}_1, \ \mathbf{U}_2 \end{array}
ight] \left[egin{array}{ccc} oldsymbol{\Sigma}_1 & & \ & oldsymbol{\Sigma}_2 \end{array}
ight] \left[egin{array}{ccc} \mathbf{V}_1^\mathsf{T} \ \mathbf{V}_2^\mathsf{T} \end{array}
ight].$$

Implementation: The Square Root Method

The SR Method

(PMOR: BTReductor)

1. Compute (Cholesky) factors of the solutions to the Lyapunov equation,

$$\mathbf{P} = \mathbf{S}^{\mathsf{T}}\mathbf{S}, \quad \mathbf{Q} = \mathbf{R}^{\mathsf{T}}\mathbf{R}.$$

2. Compute singular value decomposition

$$\mathbf{SR}^{\mathsf{T}} = \left[\, \mathbf{U}_1, \, \mathbf{U}_2 \, \right] \left[\begin{array}{cc} \Sigma_1 & \\ & \Sigma_2 \end{array} \right] \left[\begin{array}{c} \mathbf{V}_1^{\mathsf{T}} \\ \mathbf{V}_2^{\mathsf{T}} \end{array} \right].$$

3. Define

$$\mathbf{W} := \mathbf{R}^{\mathsf{T}} \mathbf{V}_1 \Sigma_1^{-1/2}, \qquad \mathbf{V} := \mathbf{S}^{\mathsf{T}} \mathbf{U}_1 \Sigma_1^{-1/2}.$$

4. Then the reduced order model is (**W**^T**AV**, **W**^T**B**, **CV**).

PYMOR | A Selection of MOR Methods | Balancing Based MOR

Properties

- Lyapunov balancing preserves asymptotic stability.
- We have the a priori error bound: $\|\mathbf{H} \hat{\mathbf{H}}\|_{\mathcal{H}_{\infty}} \leq 2\sum_{k=r+1}^{n} \sigma_{k}$

Variants

(PYNOR: BRBTReductor, LQGBTReductor)

Other versions for special classes of systems or applications exist, such as

- positive-real balancing, (passivity-preserving)
- bounded-real balancing, (contractivity-preserving)
- linear-quadratic Gaussian balancing. (stability preserving)
 (aims at low-order output feedback controllers)

The given ones all compute P, Q as solutions of algebraic Riccati equations of the form:

$$\begin{split} 0 &= \tilde{\mathbf{A}} \mathbf{P} \tilde{\mathbf{E}}^\mathsf{T} + \tilde{\mathbf{E}} \mathbf{P} \tilde{\mathbf{A}}^\mathsf{T} + \tilde{\mathbf{B}} \tilde{\mathbf{B}}^\mathsf{T} \pm \tilde{\mathbf{E}} \mathbf{P} \tilde{\mathbf{C}}^\mathsf{T} \tilde{\mathbf{C}} \mathbf{P} \tilde{\mathbf{E}}^\mathsf{T} \\ 0 &= \tilde{\mathbf{A}}^\mathsf{T} \mathbf{Q} \tilde{\mathbf{E}} + \tilde{\mathbf{E}}^\mathsf{T} \mathbf{Q} \tilde{\mathbf{A}} + \tilde{\mathbf{C}}^\mathsf{T} \tilde{\mathbf{C}} \pm \tilde{\mathbf{E}}^\mathsf{T} \mathbf{Q} \tilde{\mathbf{B}} \tilde{\mathbf{B}}^\mathsf{T} \mathbf{Q} \tilde{\mathbf{E}}. \end{split}$$

Tools I

Lemma (Neumann series)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ with spectral radius $\rho(\mathbf{A}) < 1$ be given. Then $\mathbf{I} - \mathbf{A}$ is invertible and it holds that

$$(\mathbf{I} - \mathbf{A})^{-1} = \sum_{k=0}^{\infty} \mathbf{A}^k.$$

Will be important to identify the actual shape of Markov parameters and system moments.

Tools II

Definition ((polynomial) Krylov subpace)

Given an invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^n$ the k-dimensional (polynomial) Krylov subspace is defined as

$$\mathcal{K}_{k}(\mathbf{A},\mathbf{b}) := \operatorname{span}\{\mathbf{b},\mathbf{Ab},\mathbf{A}^{2}\mathbf{b},\ldots,\mathbf{A}^{k-1}\mathbf{b}\}$$
.

Definition (rational Krylov subpace)

Given an invertible matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ a vector $\mathbf{b} \in \mathbb{R}^n$ and a vector of shifts $s \in \mathbb{R}^k$ the k-dimensional rational Krylov subspace is defined as

$$\mathcal{K}_k(\mathbf{A}, \mathbf{b}, s) := \operatorname{span}\left\{ \left(s_1 \mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{b}, \left(s_2 \mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{b}, \dots, \left(s_k \mathbf{I} - \mathbf{A}\right)^{-1} \mathbf{b} \right\}.$$

Orthonormal bases of these spaces should be computed via the **Arnoldi** iteration.

Padé-type approximations

Goal

Match the coefficients $\mathbf{M}_k(s_0)$ or $\mathbf{M}_k(\infty)$ in

$$\mathbf{H}(s) = \sum_{k=0}^{\infty} (s - s_0)^k M_k(s_0)$$
 $\mathbf{H}(s) = \sum_{k=0}^{\infty} s^{-k} M_k(\infty)$

Motivation

(assume: m = p = 1, s large enough)

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} = \frac{1}{s}\mathbf{C}\underbrace{\left(\mathbf{I} - \frac{1}{s}\mathbf{E}^{-1}\mathbf{A}\right)^{-1}}_{=\sum_{k=0}^{\infty} \frac{1}{s^k}(\mathbf{E}^{-1}\mathbf{A})^k} \mathbf{E}^{-1}\mathbf{B} \\ &= \sum_{k=1}^{\infty} \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})^{k-1}\mathbf{E}^{-1}\mathbf{B}\frac{1}{s^k}. \end{split}$$

Padé-type approximations

Motivation

(assume: m = p = 1, s large enough)

$$\begin{split} \mathbf{H}(s) &= \mathbf{C}(s\mathbf{E} - \mathbf{A})^{-1}\mathbf{B} = \frac{1}{s}\mathbf{C}\underbrace{\left(\mathbf{I} - \frac{1}{s}\mathbf{E}^{-1}\mathbf{A}\right)^{-1}}_{=\sum_{k=0}^{\infty} \frac{1}{s^k}(\mathbf{E}^{-1}\mathbf{A})^k} \mathbf{E}^{-1}\mathbf{B} \\ &= \sum_{k=1}^{\infty} \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})^{k-1}\mathbf{E}^{-1}\mathbf{B}\frac{1}{s^k}. \end{split}$$

Therefore, we have

$$M_k(\infty) = \begin{cases} 0, & \text{if } k = 0, \\ \mathbf{C}(\mathbf{E}^{-1}\mathbf{A})^{k-1}\mathbf{E}^{-1}\mathbf{B}, & \text{if } k \geq 1. \end{cases} \implies \text{use } \mathbf{V} = \mathcal{K}_r(\mathbf{E}^{-1}\mathbf{A}, \mathbf{E}^{-1}\mathbf{B})$$

Padé-type approximations

Approximation at ∞

$$\mathbf{V} = \mathcal{K}_r(\mathbf{E}^{-1}\mathbf{A}, \mathbf{E}^{-1}\mathbf{B}), \qquad \mathbf{W} = \mathbf{V} \text{ or } \mathbf{W} = \mathcal{K}_r(\mathbf{A}^\mathsf{T}\mathbf{E}^{-\mathsf{T}}, \mathbf{C}^\mathsf{T})$$

Approximation at $s_0 = 0$

$$\mathbf{V} = \mathcal{K}_r(\mathbf{A}^{-1}\mathbf{E}, \mathbf{A}^{-1}\mathbf{B}), \qquad \mathbf{W} = \mathbf{V} \text{ or } \mathbf{W} = \mathcal{K}_r(\mathbf{E}^T\mathbf{A}^{-T}, \mathbf{C}^T)$$

Approximation at $s_0 \in (0, \infty)$

$$\mathbf{V} = \mathcal{K}_r((s_0\mathbf{E} - \mathbf{A})^{-1}\mathbf{E}, (s_0\mathbf{E} - \mathbf{A})^{-1}\mathbf{B}), \qquad \mathbf{W} = \mathbf{V}$$

or

$$\mathbf{W} = \mathcal{K}_r(\mathbf{E}^\mathsf{T}(s_0\mathbf{E}^\mathsf{T} - \mathbf{A}^\mathsf{T})^{-1}, \mathbf{C}^\mathsf{T})$$

Multi-point Moment Matching, Interpolation and IRKA/TSIA

Approximation at s_1, \ldots, s_r

$$\mathbf{V} = \mathcal{K}_r(\mathbf{s}, \mathbf{E}^{-1} \mathbf{A}, \mathbf{E}^{-1} \mathbf{B}), \qquad \mathbf{W} = \mathbf{V} \text{ or } \mathbf{W} = \mathcal{K}_r(\mathbf{s}, \mathbf{A}^\mathsf{T} \mathbf{E}^{-\mathsf{T}}, \mathbf{C}^\mathsf{T}).$$

- $\mathbf{W} = \mathbf{V}$ as above matches first r moments of (Σ) .
- $\mathbf{W} \neq \mathbf{V}$ as above matches first 2r moments of (Σ) .
- $\mathbf{W} \neq \mathbf{V}$ as above actually achieves Hermite interpolation of \mathbf{H} , see, e.g., [ABG20].

How do we choose s_1, \ldots, s_r ?

\mathcal{H}_2 -optimal MOR

Find $\mathbf{s} = [s_1, \dots, s_r]^\mathsf{T}$, such that $\|\mathbf{H} - \hat{\mathbf{H}}\|_{\mathcal{H}_2}$ is minimized.

IRKA iterative improvement of **s** using $\Lambda(\hat{\mathbf{E}}_j, \hat{\mathbf{A}}_j)$.

(PYNOR: IRKAReductor)

TSIA run a fixed point iteration on the first order necessary conditions. (FYMOR: TSIAReductor)

PYMOR | References I

[ABG20] A. C. Antoulas, C. A. Beattie, and S. Gugercin.
 Interpolatory Methods for Model Reduction.
 Computational Science & Engineering. Society for Industrial and Applied

Computational Science & Engineering. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2020. doi:10.1137/1.9781611976083.

[Ant05] A. C. Antoulas.

Approximation of Large-Scale Dynamical Systems volume 6 of Adv. Des. Co.

SIAM Publications, Philadelphia, PA, 2005. $\label{eq:controller} $\mbox{doi:} 10.1137/1.9780898718713.$

[GSW13] S. Gugercin, T. Stykel, and S. Wyatt. Model reduction of descriptor systems by interpolatory projection methods SIAM J. Sci. Comput., 35(5):B1010–B1033, 2013. doi:10.1137/130906635.

PYMOR | References II

[MS05] V. Mehrmann and T. Stykel.

Balanced truncation model reduction for large-scale systems in descriptor form.

In P. Benner, V. Mehrmann, and D. C. Sorensen, editors, *Dimension Reduction of Large-Scale Systems*, volume 45 of *Lect. Notes Comput. Sci. Eng.*, pages 83–115. Springer-Verlag, Berlin/Heidelberg, Germany, 2005. doi:10.1007/3-540-27909-1 3.

[Sty04] T. Stykel.

Gramian-based model reduction for descriptor systems.

Math. Control Signals Systems, 16(4):297–319, 2004. doi:10.1007/s00498-004-0141-4.

[Voi19] M. Voigt.

Model reduction

Lecture Notes, Uni Hamburg, 2019.

URL: https://www.math.uni-hamburg.de/home/voigt/Modellreduktion_SoSe19/Notes_ModelReduction.pdf.

