RUDIMENTARY ASPECTS OF COMPLEX ANALYSIS

SIMON FOLDVIK

17. September 2020

ABSTRACT. We exhibit an isomorphism of \mathbb{C} with a subalgebra of the matrix algebra $\mathcal{M}_2(\mathbb{R})$. From this we show $S^1 \simeq \mathrm{SO}(2)$ and $\mathbb{C} \setminus \{0\} \simeq (0,\infty) \times \mathrm{SO}(2)$ as groups.

Next, we discuss various senses in which a function $U \to Y$ on an open set $U \subseteq \mathbb{C}$ into a normed space Y can be differentiable. The interplay between the real and complex linear structures on \mathbb{C} leads to the Cauchy–Riemann equations for complex differentiability. We conclude by showing that the space of holomorphic functions agrees with the kernel of the $\overline{\partial}$ operator.

Contents

1	$Th\epsilon$	e Complex Field	1
2	Differentiability		
	2.1	Complex linearity	3
	2.2	Complex differentiability	4
	2.3	Real differentiability	5
	2.4	The Cauchy–Riemann equations	6
	2.5	Continuous differentiability	7
	2.6	The $\overline{\partial}$ operator	8

1. The Complex Field

Consider the matrix algebra $\mathcal{M}_2(\mathbb{R})$ of real 2×2 matricies, and let I denote the identity. The matrix

$$J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

generates a subalgebra $\mathcal{A} \subseteq \mathcal{M}_2(\mathbb{R})$, which we now describe.

Claim. $A = \mathbb{R}I \oplus \mathbb{R}J$.

Proof. The subspaces $\mathbb{R}I$ and $\mathbb{R}J$ of $\mathcal{M}_2(\mathbb{R})$ are independent: $\mathbb{R}I \cap \mathbb{R}J = 0$. Next, $J^2 = -I$, hence $I \in \mathcal{A}$. It follows that

$$\mathbb{R}I \oplus \mathbb{R}J \subseteq \mathcal{A}$$
.

Thirdly, $\mathbb{R}I \oplus \mathbb{R}J$ is a linear subspace of $\mathcal{M}_2(\mathbb{R})$. One checks it is a subalgebra:

$$(\alpha I + \beta J)(\alpha' I + \beta' J) = (\alpha \alpha')I + (\alpha \beta')J + (\alpha' \beta)J + (\beta \beta')J^{2}$$
$$= (\alpha \alpha' - \beta \beta')I + (\alpha \beta' + \alpha' \beta)J \in \mathbb{R}I \oplus \mathbb{R}J.$$

Since $\mathbb{R}I \oplus \mathbb{R}J$ is a subalgebra containing J, it must contain all of A.

Remark. Thus

$$\mathcal{A} = \mathbb{R}I \oplus \mathbb{R}J = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}.$$

We now define a map $M: \mathbb{C} \to \mathcal{A}$ by

$$M(z) \coloneqq \begin{bmatrix} \operatorname{Re} z & -\operatorname{Im} z \\ \operatorname{Im} z & \operatorname{Re} z \end{bmatrix} \quad (z \in \mathbb{C}).$$

Considering \mathbb{C} as an \mathbb{R} -algebra, we have:

Claim. M is a unital *-isomorphism $\mathbb{C} \to \mathcal{A}$. Hence $\mathbb{C} \simeq \mathcal{A}$ as fields.

Proof. Routine. The relevant algebraic properties are thus:

$$M(z+w) = M(z) + M(w),$$

$$M(zw) = M(z)M(w),$$

$$M(tz) = tM(z),$$

$$M(1) = I,$$

$$M(\overline{z}) = M(z)^{T},$$

where $z, w \in \mathbb{C}$ and $t \in \mathbb{R}$.

Remark. Observe also M(i) = J. Hence the representation z = a + bi becomes M(z) = a + bJ in matrix form.

Claim. det $M(z) = |z|^2$.

Proof. Immediate: det
$$M(z) = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2 = |z|^2$$
.

Claim. $M(z) \in GL_2(\mathbb{R})$ if and only if $z \neq 0$, in which case

$$M(z)^{-1} = M(1/z) = \frac{1}{\det M(z)} M(z)^{T}.$$

Proof. One has det $M(z) = |z|^2 > 0$ if and only if $z \neq 0$, in which case

$$I = M(1) = M(z)M(1/z).$$

This proves $M(z)^{-1} = M(1/z)$. The second identity follows from

$$(\det M(z))I = M(\det M(z)) = M(z\overline{z}) = M(z)M(z)^{T}.$$

Remark. It follows that M provides an isomorphism of the multiplicative group $\mathbb{C} \setminus \{0\}$ with the subgroup $\mathcal{A} \cap \operatorname{GL}_2(\mathbb{R})$ of $\operatorname{GL}_2(\mathbb{R})$. In fact, this is the group $(0, \infty) \times \operatorname{SO}(2)$; we will have more to say about this soon.

Claim. M provides a group isomorphism $S^1 \simeq SO(2)$.

Proof. Assuming $z \in S^1$, then det $M(z) = |z|^2 = 1$ and

$$M(z)^T M(z) = M(\overline{z}z) = M(1) = I.$$

Similarly, $M(z)M(z)^T = I$. Hence M maps S^1 into SO(2). We now prove M is onto. For consider $A \in SO(2)$, say

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$$

The orthonormality of the columns of A dictates $(c, d) = \pm (-b, a)$. Now det A = 1 forces (c, d) = (-b, a). Hence

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

Now $a + ib \in S^1$ and M(a + ib) = A follows.

Being a surjective monomorphism, M is in fact an isomorphism $S^1 \xrightarrow{\sim} SO(2)$.

We now return to the complete description of the aforementioned group $\mathcal{A} \cap GL_2(\mathbb{R})$.

Claim. The map
$$\Phi \colon \mathbb{C} \setminus \{0\} \to (0, \infty) \times \mathrm{SO}(2)$$
 given by

$$\Phi(z) \coloneqq \big(|z|, M\big(z/|z|\big)\big) \quad (z \in \mathbb{C} \setminus \{0\})$$

is a group isomorphism. Hence

$$\mathcal{A}\cap \mathrm{GL}_2(\mathbb{R})\simeq \mathbb{C}\setminus \{0\}\simeq (0,\infty)\times \mathrm{SO}(2).$$

Proof. Φ is multiplicative since M is.

Injectivity can be seen as follows. If $\Phi(z) = \Phi(w)$, then |z| = |w|, and M agrees at the two points z/|z| and w/|w| of S^1 . Therefore, z/|z| = w/|w|, from which z = w follows.

We now prove surjectivity. Given r > 0 and $A \in SO(2)$, use that M provides an isomorphism $S^1 \xrightarrow{\sim} SO(2)$ to find $w \in S^1$ such that M(w) = A. One then checks that $\Phi(rw) = (r, A)$.

2. Differentiability

The complex field \mathbb{C} carries the structure of a real Banach space of (real) dimension two and of a complex Banach space of (complex) dimension one. The interplay between these structures gives rise to the Cauchy–Riemann equations.

2.1. Complex linearity. View \mathbb{C} as a Banach space over \mathbb{R} with canonical basis $\{1, i\}$. Given an \mathbb{R} -linear map $T \colon \mathbb{C} \to \mathbb{C}$, its representation [T] with respect to the canonical basis is an arbitrary element of the matrix algebra $\mathcal{M}_2(\mathbb{R})$. We now set out to characterize when such a mapping is \mathbb{C} -linear.

Claim. Let $T: \mathbb{C} \to \mathbb{C}$ be \mathbb{R} -linear. The following are equivalent:

- (1) T is \mathbb{C} -linear;
- (2) T(i) = iT(1);
- (3) T(iz) = iT(z) for all $z \in \mathbb{C}$;
- (4) [T] commutes with J, that is, [T]J = J[T];
- (5) $[T] \in \mathcal{A}$, that is, [T] takes the form

$$[T] = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad (a, b \in \mathbb{R}).$$

Proof. Routine and left to the reader.

Let $L(\mathbb{C})$ denote the \mathbb{C} -algebra of \mathbb{C} -linear transformations $\mathbb{C} \to \mathbb{C}$.

Claim. $L(\mathbb{C}) \simeq \mathbb{C}$ as \mathbb{C} -algebras.

Proof. Every \mathbb{C} -linear transformation of the complex plane is multiplication by a complex number.

The coordinate isomorphism $\mathbb{C} \xrightarrow{\sim} \mathbb{R}^2$ induced by the canonical \mathbb{R} -basis $\{1,i\}$ for \mathbb{C} is the map $\operatorname{Re} \oplus \operatorname{Im} : z \mapsto (\operatorname{Re} z, \operatorname{Im} z)$. Therefore, representing a \mathbb{C} -linear transformation $T : \mathbb{C} \to \mathbb{C}$ with respect to this basis yields an element of \mathcal{A} equal to

$$[T] = \begin{bmatrix} \operatorname{Re} T(1) & -\operatorname{Im} T(1) \\ \operatorname{Im} T(1) & \operatorname{Re} T(1) \end{bmatrix}. \tag{2.1}$$

This transformation corresponds to multiplication by the complex number z := T(1), hence (2.1) shows [T] = M(z), from which we conclude that $\det[T] = \det M(z) = |z|^2 \ge 0$. In particular, $T \in \mathrm{GL}(\mathbb{C})$ and $[T] \in \mathrm{GL}_2(\mathbb{R})$ if and only if $z \ne 0$.

2.2. Complex differentiability. Consider now \mathbb{C} as a complex Banach space of dimension one. Let an open set $U \subseteq \mathbb{C}$, a function $f: U \to \mathbb{C}$, and a point $p \in U$ be given. We consider two senses in which f can be differentiable at p, which in the end turn out to coalesce.

Definition. f is said to be *complex differentiable* at p if the difference quotient (f(p+w)-f(p))/w converges in the topology of \mathbb{C} as $w\to 0$, in which case we denote this limit by f'(p):

$$f'(p) = \lim_{\substack{w \to 0 \\ w \in \mathbb{C} \setminus \{0\}}} \frac{f(p+w) - f(p)}{w}.$$

The other sense in which f can be differentiable at p is in the sense of normed spaces. Thus, f is complex Fréchet differentiable at p if there is a \mathbb{C} -linear map $T \colon \mathbb{C} \to \mathbb{C}$ (automatically continuous) such that

$$f(p+w) = f(p) + T(w) + |w|\epsilon(w)$$
(2.2)

holds for small $w \in \mathbb{C}$, where $\epsilon(w) \to 0$ as $w \to 0$. If this is the case, the map T is unique and called the Fréchet derivative of f at p.

Claim. f is complex differentiable at p if and only if it is Fréchet differentiable at p when \mathbb{C} is viewed as a complex Banach space. If $T: \mathbb{C} \to \mathbb{C}$ denotes the Fréchet derivative of f at p, then f'(p) = T(1), and

$$T(w) = wf'(p) \quad (w \in \mathbb{C}).$$

Hence T is multiplication by f'(p).

Proof. If f has Fréchet derivative T at p, estimate

$$\left| \frac{f(p+w) - f(p)}{w} - T(1) \right| = \frac{|f(p+w) - f(p) - T(w)|}{|w|} = |\epsilon(w)| \to 0.$$

Conversely, if f is complex differentiable at p, let $T: \mathbb{C} \to \mathbb{C}$ be multiplication by f'(p) and employ elementary estimates as above to conclude f is Fréchet differentiable at p with derivative T.

A function $U \to \mathbb{C}$ complex differentiable on all of U is said to be *holomorphic*. It is elementary to show that the collection H(U) of holomorphic

functions on U is a unital and commutative \mathbb{C} -algebra under pointwise operations, and that the derivative $f \mapsto f'$ satisfies the usual formal properties.¹ Moreover, the composition of holomorphic functions is holomorphic.

2.3. Real differentiability. Consider \mathbb{C} a Banach space over \mathbb{R} and let Y be an arbitrary real normed vector space. Let an open set $U \subseteq \mathbb{C}$, a mapping $f: U \to Y$, and a point $p \in U$ be given.

Definition. The real Fréchet derivative of f at p, if it exists, is the unique \mathbb{R} -linear map $Df(p): \mathbb{C} \to Y$ satisfying

$$f(p+w) = f(p) + Df(p)w + |w|\epsilon(w)$$

for small $w \in \mathbb{C}$, where $\epsilon(w) \to 0$ in Y as $w \to 0$ in the topology of \mathbb{C} .

There is also the notion of directional derivative. Indeed, given $w \in \mathbb{C}$ one defines

$$\partial_w f(p) := \lim_{\substack{t \to 0 \\ t \in \mathbb{R} \setminus \{0\}}} t^{-1} \big(f(p+tw) - f(p) \big),$$

when it exists, called the directional derivative of f at p in direction w.

It is well-known that if f is Fréchet differentiable at p in the real sense, then all directionals $\partial_w f$ of f exist at p, and

$$\partial_w f(p) = Df(p)w \quad (w \in \mathbb{C}).$$

The directionals

$$\partial_1 f(p) = Df(p)1$$
 and $\partial_i f(p) = Df(p)i$

are of particular interest.

As a converse to the previous statement, if all directionals $\partial_w f$ exist in a neighbourhood of p and are continuous at p, then f is real differentiable at p. In fact, it is sufficient to restrict the w to lie in an \mathbb{R} -basis for \mathbb{C} : see Section 2.5. We therefore have:

Claim. If the partials $\partial_1 f$ and $\partial_i f$ exist near p and are continuous at p, then f is real differentiable at p.

Specialise to the real Banach space $Y = \mathbb{C}$ and decompose f into real and imaginary parts, thus $u := \operatorname{Re} f \colon U \to \mathbb{R}$ and $v := \operatorname{Im} f \colon U \to \mathbb{R}$.

Claim. f is real differentiable at p if and only if u and v are, in which case

$$Df(p) = Du(p) + iDv(p).$$

Proof. Elementary estimates suffice.

By similar estimates:

Claim. Given $w \in \mathbb{C}$, the directional $\partial_w f$ exists at p if and only if both $\partial_w u$ and $\partial_w v$ exist at p, in which case

$$\partial_w f(p) = \partial_w u(p) + i \partial_w v(p).$$

In particular,

$$\partial_1 f = \partial_1 u + i \partial_1 v \quad \text{and} \quad \partial_i f = \partial_i u + i \partial_i v$$
 (2.3)

¹In fact, it is a \mathbb{C} -algebra derivation $H(U) \to H(U)$.

whenever one side of the respective equalities is defined. Consequently, with respect to the canonical \mathbb{R} -basis $\{1, i\}$ for \mathbb{C} , one has the matrix representation

$$[Df(p)] = \begin{bmatrix} [Df(p)1]_{\{1,i\}} & [Df(p)i]_{\{1,i\}} \end{bmatrix}$$
$$= \begin{bmatrix} \operatorname{Re} \partial_1 f(p) & \operatorname{Re} \partial_i f(p) \\ \operatorname{Im} \partial_1 f(p) & \operatorname{Im} \partial_i f(p) \end{bmatrix} = \begin{bmatrix} \partial_1 u(p) & \partial_i u(p) \\ \partial_1 v(p) & \partial_i v(p) \end{bmatrix}$$

whenever f is real differentiable at p.

2.4. **The Cauchy–Riemann equations.** We now investigate when the real differential is C-linear, leading to the Cauchy–Riemann condition for complex differentiability.

Let $f: U \to \mathbb{C}$ and $p \in U$ be as in Section 2.3, with real and imaginary parts u and v, respectively. Supposing f is real differentiable at p, one may consider the following conditions on f:

- (1) f is complex differentiable at p;
- (2) Df(p) is \mathbb{C} -linear;
- (3) Df(p)i = iDf(p)1;
- (4) [Df(p)] commutes with J, that is, [Df(p)]J = J[Df(p)].
- (5) [Df(p)] lies in the subalgebra $\mathcal{A} \subset \mathcal{M}_2(\mathbb{R})$, that is, takes the form

$$[Df(p)] = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

for some $a, b \in \mathbb{R}$.

(6) f satisfies the Cauchy–Riemann equation

$$\partial_i f(p) = i \partial_1 f(p);$$

(7) The real and imaginary parts of f satisfy the Cauchy–Riemann equations

$$\begin{cases} \partial_1 u(p) = \partial_i v(p) \\ \partial_i u(p) = -\partial_1 v(p). \end{cases}$$

Claim. All of the above conditions are equivalent.

Proof. The equivalence of (1)–(5) follows from the results of Section 2.1. In this case, the real derivative Df(p) is also the complex derivative.

Assuming that f is complex differentiable at p, the Cauchy–Riemann equation for f is immediate:

$$\partial_i f(p) = D f(p)i = iD f(p)1 = i\partial_1 f(p). \tag{2.4}$$

Conversely, (2.4) shows f is complex differentiable if it satisfies the Cauchy–Riemann equation (6).

We now include (7) in the equivalence. Indeed, if f is complex differentiable at p, then [Df(p)] belongs to \mathcal{A} , hence

$$[Df(p)] = \begin{bmatrix} \partial_1 u(p) & \partial_i u(p) \\ \partial_1 v(p) & \partial_i v(p) \end{bmatrix} = \begin{bmatrix} \partial_1 u(p) & -\partial_1 v(p) \\ \partial_1 v(p) & \partial_1 u(p) \end{bmatrix}, \tag{2.5}$$

which is (7). Conversely, if (7) holds, so does (2.5), from which $[Df(p)] \in \mathcal{A}$ and complex differentiability of f at p follows.

Incidentally, if f is differentiable at p in the complex sense, the matrix representation of Df(p) with respect to the \mathbb{C} -basis $\{1\}$ is the 1×1 -matrix [f'(p)].

More interestingly, under the same circumstances, the matrix representation of Df(p) with respect to the canonical \mathbb{R} -basis $\{1, i\}$ is an element of the subalgebra \mathcal{A} of $\mathcal{M}_2(\mathbb{R})$. Being multiplication by f'(p), it equals M(f'(p)), as seen in Section 2.1. In particular,

$$\det[Df(p)] = \det M(f'(p)) = |f'(p)|^2 \ge 0,$$

so that Df(p) belongs to $GL(\mathbb{C})$, and [Df(p)] to $GL_2(\mathbb{R})$, if and only if $f'(p) \neq 0$.

We also record the formulas

$$\partial_1 f(p) = Df(p)1 = f'(p),$$

 $\partial_w f(p) = wf'(p) \quad (w \in \mathbb{C})$

in the presence of complex differentiability.

2.5. Continuous differentiability. We continue to view \mathbb{C} as a Banach space over \mathbb{R} and let Y be a real normed vector space.

Consider an open set $U \subseteq \mathbb{C}$. A (real) differentiable mapping $f: U \to Y$ induces a map $Df: U \to L(\mathbb{C}, Y)$ of U into the set $L(\mathbb{C}, Y)$ of \mathbb{R} -linear transformations $\mathbb{C} \to Y$, namely $Df: p \mapsto Df(p)$.

Definition. A differentiable mapping $f: U \to Y$ is said to be *continuously differentiable* if the induced map $Df: U \to L(\mathbb{C}, Y)$ is continuous. The collection of continuously differentiable maps $U \to Y$ is denoted $C^1(U, Y)$.

Remark. Since \mathbb{C} is finite-dimensional, every \mathbb{R} -linear transformation $\mathbb{C} \to Y$ is continuous, and the space $L(\mathbb{C},Y)$ is a real normed space under the operator norm:

$$\|T\| \coloneqq \sup_{|z| \le 1} \|T(z)\| \quad (T \in L(\mathbb{C},Y)).$$

Continuous differentiability of $f \colon U \to Y$ may also be detected in terms of continuity of directionals or partials of f.

Claim. The following are equivalent:

- (1) f is continuously differentiable on U.
- (2) $\partial_w f$ exists and is continuous on U for all $w \in \mathbb{C}$.
- (3) $\partial_w f$ exists and is continuous on U for all w belonging to some \mathbb{R} -basis for \mathbb{C} .

Remark. In particular, f is continuously differentiable if and only if $\partial_1 f$ and $\partial_i f$ exist and are continuous on U.

Proof. This is a standard result.

One also has the following variant of the above claim, whose proof is left to the reader.

Claim. Let $f: U \to Y$ and suppose $\{w, w'\}$ is an \mathbb{R} -basis for \mathbb{C} . If both $\partial_w f$ and $\partial_{w'} f$ exist and are bounded on U, then f is continuous, and there exists $M \geq 0$ such that there for all $p \in U$ exists a radius r > 0 such that

$$||f(z) - f(p)|| \le M|z - p|$$

whenever |z - p| < r.

We conclude this section with an example showing that boundedness of directionals does not imply differentiability.

Example 2.1. Define $u: \mathbb{C} \to \mathbb{C}$ by u(0) = 0 and

$$u(z) = \frac{(\operatorname{Re} z)(\operatorname{Im} z)^2}{|z|^2} \quad (z \neq 0).$$

One computes directly that

$$\partial_w u(0) = u(w)$$
 for all $w \in \mathbb{C}$.

Moreover, one can show that $u|(\mathbb{C}\setminus\{0\})$ is continuously differentiable, and

$$|\partial_w u| \le 4|w|$$
 on \mathbb{C}

for all $w \in \mathbb{C}$. Since all directionals of u exist and are bounded on all of \mathbb{C} , it follows that u is continuous. However, u is *not* differentiable at 0. Indeed, let w := 1 + i. Then

$$\partial_w u(0) = u(1+i) = \frac{1}{2}.$$

On the other hand, if u was differentiable at 0, one would have

$$\partial_w u(0) = Du(0)w = \partial_1 u(0) + \partial_i u(0) = u(1) + u(i) = 0,$$

a contradiction.

2.6. The $\overline{\partial}$ operator. Let $U \subseteq \mathbb{C}$ be open and consider the \mathbb{C} -algebra $C^1(U)$ of continuously differentiable functions $U \to \mathbb{C}$. Each $w \in \mathbb{C}$ induces a linear partial differential operator

$$\partial_w \colon C^1(U) \to C(U),$$

namely $\partial_w \colon f \mapsto \partial_w f$.

Definition. We define linear differential operators $\partial, \overline{\partial} \colon C^1(U) \to C(U)$ by

$$\partial \coloneqq \frac{1}{2}(\partial_1 - i\partial_i)$$
 and $\overline{\partial} \coloneqq \frac{1}{2}(\partial_1 + i\partial_i)$.

Split $f \in C^1(U)$ into real and imaginary parts, thus $u := \operatorname{Re} f \in C^1(U, \mathbb{R})$ and $v := \operatorname{Im} f \in C^1(U, \mathbb{R})$. Then f is real differentiable on U, and by the results of Section 2.4, f is holomorphic if and only if it satisfies the Cauchy–Riemann equation

$$\partial_i f = i \partial_1 f$$

on U. Equivalently, f is holomorphic if and only if its real and imaginary parts satisfy the Cauchy–Riemann equations on U:

$$\begin{cases} \partial_1 u = \partial_i v \\ \partial_i u = -\partial_1 v. \end{cases}$$

Recall that H(U) is the collection of functions holomorphic on U.

Claim.
$$H(U) \cap C^1(U) = \ker \overline{\partial}$$
.

Remark. One can in fact show that a holomorphic function is automatically infinitely differentiable, hence $H(U) \cap C^1(U) = H(U)$ and

$$H(U) = \ker \overline{\partial}.$$

Proof. This is just a reformulation of the above considerations concerning the Cauchy–Riemann equations.

Supposing first that $\hat{f} \in H(U) \cap C^1(U)$, one finds

$$\overline{\partial} f = \frac{1}{2} (\partial_1 f + i \partial_i f) = \frac{1}{2} (\partial_1 f + i^2 \partial_1 f) = 0.$$

On the other hand, if $\overline{\partial} f = 0$, then $\partial_1 f = -i\partial_i f$, from which $\partial_i f = i\partial_1 f$ and $f \in H(U)$ follows.

Claim. $\partial f = f'$ for all $f \in H(U) \cap C^1(U)$.

Remark. As remarked above, $H(U) \cap C^1(U) = H(U)$, hence

$$\partial f = f'$$
 for all $f \in H(U)$.

Proof. Assuming $f \in H(U) \cap C^1(U)$,

$$\partial f = \frac{1}{2}(\partial_1 f - i\partial_i f) = \frac{1}{2}(\partial_1 f - i^2 \partial_1 f) = \partial_1 f = f'.$$