Theoretical Reinforcement Learning Notes

Liangyawei Kuang 11st Feb 2022

Please email me at kriskongloveyou@gmail.com if you find any typos or errors. I do appreciate it!

Hong Kong University of Science and Technology

Theoretical Reinforcement Learning Notes

Liangyawei Kuang

Abstract

A kind reminder: This notes are mainly for reinforcement learning (RL) researchers who want to have a deep understanding in some basic RL concepts and related topics from a theoretical perspective. For those novices in this area, I recommend you read Csaba Szepesvári's RL book (about 100 pages)[2] or the most famous RL book (about 500 pages)[1] by Richard S. Sutton and Andrew G. Barto before you read my notes. Of course, you can also take my note as your first RL book and take the two books I mentioned above as references.

Updating...

To my mum	Jing Liang	and my dad forever love!	Kuang	with my

Acknowledgements

Contents

Abstract	j
Dedication	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	v
List of Tables	vi
1 Reinforcement Learning Fundamentals	1
2 Action-Value Estimation	2
3 Policy Gradient	3
A Appendix Title	4
Bibliography	

List of Figures

List of Tables

Chapter 1

Reinforcement Learning Fundamentals

Updating...

Chapter 2

Action-Value Estimation

Chapter 3
Policy Gradient

Appendix A Appendix Title

Bibliography

- [1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
- [2] Csaba Szepesvári. "Algorithms for reinforcement learning". In: Synthesis lectures on artificial intelligence and machine learning 4.1 (2010), pp. 1–103.