Mapping/Transformation: Let V and W be two vector spaces. A mapping T from V to W is a function that assigns to each vector $v \in V$ a unique vector $w \in W$. In this case we say that T maps V into W and is written as $T: V \to W$. For each $v \in V$ the vector $w = T(v) \in W$ is the image of v under T.

Linear Mapping/Linear Transformation: Let V and W be two vector spaces. A mapping $T: V \rightarrow W$ is called linear transformation or linear mapping if

- i) T(u+v) = T(u) + T(v), $u, v \in V$ (Additivity)
- ii) $T(\alpha u) = \alpha T(u), \ \alpha \in \mathbb{R}, \ u \in \mathbb{V}$ (Homogeneity)

When V = W, T is called as linear operator.

Note That : 1. Substituting , in condition (ii), we get T(0) = 0, thus every linear mapping maps zero vector into zero vector.

- 2. If for transformation $T: U \to V$, T(0) = 0, then T may or may not be linear.
- Some Examples of Linear Transformation
 - Any matrix transformation is a linear transformation.
 - 2) Derivative operator, integration operator are linear operators.
 - $T: \mathbb{R}^3 \to \mathbb{R}^2$ is projection of mapping is a linear transformation from \mathbb{R}^3 to \mathbb{R}^2 . 3)

$$A_{2\times 3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} .$$

- 4) Multiplication by a fixed polynomial is a linear transformation.
- Rotation Matrix is a linear transformation 5)
- Rotation matrix in 2 dimensions for anticlockwise rotation through an angle θ is

$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- Rotation matrix in 3 dimension
 - a) Rotation about X axis

$$A(x) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

- b) Rotation about Y-axis $A(y) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$ c) Rotation about Z-axis $A(z) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Illustrative Examples

- **Q 1)** Let A be $n \times n$ matrix. Define $T: \mathbb{R}^n \to \mathbb{R}^m$ by T(x) = Ax, $x \in \mathbb{R}^n$.
 - i) Show that T is a linear transformation.

ii) Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix}$$
. Find the image of $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & \begin{bmatrix} 7 \\ -1 \\ 5 \end{bmatrix}$ under the mapping $T(x) = Ax$.

Solⁿ. i) Let $u, v \in \mathbb{R}^n$ & $\alpha \in \mathbb{R}$. Then T(u+v) = A(u+v) = Au + Av = T(u) + T(v) and $T(\alpha u) = A(\alpha u) = \alpha Au = \alpha T(u)$. Hence T is linear.

ii)
$$T \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 and $T \begin{bmatrix} 7 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Note That: Every matrix of order $m \times n$ determines a linear transformation from \mathbb{R}^n to \mathbb{R}^m .

Q 2) Define
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x + 2y + z \\ -x + 5y + z \end{bmatrix}$

i) Show that T is a linear transformation. ii) Find all vectors that are mapped to 0 of \mathbb{R}^3 . **Sol**ⁿ. i) Let $u, v \in \mathbb{R}^3 \& \alpha \in \mathbb{R}$. Then

a)
$$T\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = T\begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{pmatrix} = \begin{bmatrix} (u_1 + v_1) + 2(u_2 + v_2) + (u_3 + v_3) \\ -(u_1 + v_1) + 5(u_2 + v_2) + (u_3 + v_3) \end{bmatrix}$$

$$= \begin{bmatrix} (u_1 + 2u_2 + u_3) + (v_1 + 2v_2 + v_3) \\ (-u_1 + 5u_2 + u_3) + (-v_1 + 5v_2 + v_3) \end{bmatrix} = \begin{bmatrix} (u_1 + 2u_2 + u_3) \\ (-u_1 + 5u_2 + u_3) \end{bmatrix} + \begin{bmatrix} (v_1 + 2v_2 + v_3) \\ (-v_1 + 5v_2 + v_3) \end{bmatrix} = T(u) + T(v).$$
b)
$$T\begin{pmatrix} \alpha \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = T\begin{pmatrix} \alpha u_1 \\ \alpha u_2 \\ \alpha u_3 \end{pmatrix} = \begin{bmatrix} (\alpha u_1 + 2\alpha u_2 + \alpha u_3) \\ (-\alpha u_1 + 5\alpha u_2 + \alpha u_3) \end{bmatrix} = \begin{bmatrix} \alpha (u_1 + 2u_2 + u_3) \\ \alpha (-u_1 + 5u_2 + u_3) \end{bmatrix}$$

$$= \alpha \begin{bmatrix} (u_1 + 2u_2 + u_3) \\ (-u_1 + 5u_2 + u_3) \end{bmatrix} = \alpha T\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \alpha T(u).$$

ii) To find u such that T(u) = 0, *i.e.*, $\begin{bmatrix} (u_1 + 2u_2 + u_3) \\ (-u_1 + 5u_2 + u_3) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$,

i.e., $u_1 + 2u_2 + u_3 = 0 & -u_1 + 5u_2 + u_3 = 0$.

Solving the above homogeneous system of 2 equations in 3 unknowns, the

possible set of vectors is
$$\left\{ \begin{bmatrix} 11 \\ -2 \\ 7 \end{bmatrix} t / t \in \mathbb{R} \right\}.$$

Q 3) Determine whether the function $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x, x + y) is a linear transformation.

Solⁿ.
$$T(x_1, y_1, z_1) = (2x_1, x_1 + y_1) = T(u)$$
, $T(x_2, y_2, z_2) = (2x_2, x_2 + y_2) = T(v)$
 $T(u+v) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$
 $= \{2(x_1 + x_2), [(x_1 + x_2) + (y_1 + y_2)]\} = (2x_1, x_1 + y_1) + (2x_2, x_2 + y_2) = T(u) + T(v)$
 $T(\alpha u) = T(\alpha x_1, \alpha y_1, \alpha z_1) = (2\alpha x_1, \alpha x_1 + \alpha y_1) = \alpha(2x_1, x_1 + y_1) = \alpha T(u)$

 \Rightarrow It is linear transformation.

Examples of Non-linear Transformations

- **Q 4)** Show that $T: R \to R$ defined by T(x) = x + 1 is not linear, i. e., translation is not a linear transformation.
- **Sol**ⁿ. Let $x_1, x_2 \in \mathbb{R}$ & $\alpha \in \mathbb{R}$ then $T(x_1 + x_2) = (x_1 + x_2) + 1 = x_1 + x_2 + 1$ while $T(x_1) + T(x_2) = x_1 + 1 + x_2 + 1 = (x_1 + x_2) + 2$. Thus, $T(x_1 + x_2) \neq T(x_1) + T(x_2)$. Also, $T(\alpha x) = (\alpha x) + 1$ and $\alpha T(x) = \alpha (x+1)$ Thus, $T(\alpha x) \neq \alpha T(x)$. T is not a linear operation.

Or equivalently $T(0) = 1 \neq 0$. Therefore T is not a linear transformation.

- **Q 5**) Show that $T: \mathbb{R} \to \mathbb{R}$ defined by $T(x) = x^2$ is not linear.
- **Solⁿ.** Let $x_1, x_2 \in \mathbb{R}$. $T(x_1 + x_2) = (x_1 + x_2)^2$ $T(x_1) + T(x_2) = x_1^2 + x_2^2$ Thus, $T(x_1 + x_2) \neq T(x_1) + T(x_2)$. \therefore T is not additive. $T(\alpha x) = (\alpha x)^2 = \alpha^2 x^2$ while $\alpha T(x) = \alpha x^2 \neq T(\alpha x)$ \therefore T is not satisfying homogeneity also. \therefore T is not linear.
- **Q 6)** Let $T: M_{n \times n} \to R$ be the transformation that maps an $n \times n$ matrix to a number set by $T(A) = \det(A)$. Show that the transformation is not linear.

Solⁿ. $T(A+B) = \det(A+B) \neq \det(A) + \det(B)$ and $\det(\alpha A) = \alpha^n \det(A) \neq \alpha \det(A)$. Therefore T is not linear transformation.

• Matrices For Linear Transformation

Consider the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

$$T(x, y, z) = (x-2y+3z, -2x+3y-2z, x-y-z).$$

This can be expressed as $T(x, y, z) = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & -2 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = AX$.

• Method of Finding Standard Matrix for Linear Transformation

Consider the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$T(e_{1}) = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, T(e_{2}) = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, ..., T(e_{n}) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}, \text{ where } \{e_{1}, e_{2}, \dots, e_{n}\} \text{ is a standard basis for }$$

 R^n . Then the $m \times n$ matrix whose n correspond to images of e_1, e_2, \dots, e_n under T, i.e., $T(e_1), T(e_2), \dots T(e_n)$ is called the standard matrix of T. Thus

$$\mathbf{A} = \begin{bmatrix} \mathbf{T}(\mathbf{e}_{1}) & \mathbf{T}(\mathbf{e}_{2}) & \dots & \mathbf{T}(\mathbf{e}_{n}) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}.$$

Hence for every $v \in \mathbb{R}^n$, T(v) = Av.

▶ Method of Finding Standard Matrix for general vector spaces

Consider the linear transformation $T: V \to W$ from a n-dimensional vector space V to a m-dimensional vector space W such that $T(e_1) = w_1$, $T(e_2) = w_2$, ..., $T(e_n) = w_n$, where $\{e_1, e_2, \dots, e_n\}$ is a standard basis for V. Let $\{f_1, f_2, \dots, f_m\}$ be standard basis of W. Express each image $T(e_i) = w_i$ as a linear combination of $\{f_1, f_2, \dots, f_m\}$, basis of W.

Thus
$$w_1 = T(e_1) = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_1$$
, $w_2 = T(e_2) = a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m$, ..., $w_j = T(e_j) = a_{1j}f_1 + a_{2j}f_2 + \dots + a_{mj}f_m$, ..., $w_n = T(e_n) = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m$.

To obtain the matrix representation of T, arrange the coefficients in linear combination of each $w_i = T(e_i)$ as the j^{th} column of a $m \times n$ matrix, denoted as [T]. Thus,

$$[T] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$

Example

Consider the transformation $T: M_2(\mathbb{R}) \to P_3$ defined by $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ax^3 + bx^2 + cx + d$.

$$T \text{ is a linear map. } T\left(k\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} ka_1 & kb_1 \\ kc_1 & kd_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} ka_1 + a_2 & kb_1 + b_2 \\ kc_1 + c_2 & kd_1 + d_2 \end{bmatrix}\right)$$

$$= (ka_1 + a_2)x^3 + (kb_1 + b_2)x^2 + (kc_1 + c_2)x + (kd_1 + d_2)$$

$$= (ka_1x^3 + kb_1x^2 + kc_1x + kd_1) + (a_2x^3 + b_2x^2 + c_2x + d_2)$$

$$= k\left(a_1x^3 + b_1x^2 + c_1x + d_1\right) + \left(a_2x^3 + b_2x^2 + c_2x + d_2\right) = kT\left(\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}\right) + T\left(\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}\right)$$

Standard basis of $M_2(R)$ is $\left\{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right\}$ and standard basis of P_3 is $\left\{x^3, x^2, x, 1\right\}$.

Now
$$T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 1x^3 + 0x^2 + 0x + 0$$
, $T \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0x^3 + 1x^2 + 0x + 0$, $T \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = 0x^3 + 0x^2 + 1x + 0$ and

$$T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0x^3 + 0x^2 + 0x + 1. \text{ Hence the matrix of } T, [T] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Note That: If T is a linear transformation from a n – dimensional vector space V to a m – dimensional vector space W, then the matrix of T is of order $m \times n$.

> Operations with Linear Transformations

1. Let *V* and *W* be vector spaces and let *S*, $T:V \to W$ be linear transformations. The function S+T defined by (S+T)(v) = S(v) + T(v) is a linear transformation from

V into W.

Let $u, v \in V$ and $k \in \mathbb{R}$.

$$(S+T)(ku+v) = S(ku+v) + T(ku+v)$$

$$= \{kS(u) + S(v)\} + \{kT(u) + T(v)\}$$

$$= k\{S(u) + T(u)\} + \{S(v) + T(v)\}$$

$$= k\{(S+T)(u)\} + \{(S+T)(v)\}$$

2. If c is any scalar, the function cS defined by (cS)(v) = cS(v) is a linear transformation from V into W.

Let $u, v \in V$ and $k \in \mathbb{R}$.

$$cS(ku+v) = cS(ku+v) = c\{kS(u) + S(v)\}$$
$$= ckS(u) + cS(v) = k(cS)(u) + (cS)(v)$$

3. Composite Linear Transformation

Let U, V, and W be vector spaces. If $T:V \to U$ and $S:U \to W$ are linear transformations, then the composition map $S \circ T:V \to W$, defined by $(S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))$ is a linear transformation.

Let $u, v \in V$ and $k \in \mathbb{R}$.

$$(S \circ T)(ku+v) = S\left(T(ku+v)\right) = S\left\{kT(u)+T(v)\right\}$$
$$=kS\left(T(u)\right)+S\left(T(v)\right) = k\left(S \circ T\right)(u)+\left(S \circ T\right)(v)$$

Note That: If $T:V \to U$ is a linear transformation from a n dimensional vector space V to a p dimensional vector space U and $S:U \to W$ is a linear transformation from a p dimensional vector space V to a m dimensional vector space W, then $S \circ T:V \to W$ is a linear transformation from a n dimensional vector space V to a m dimensional vector space W. Hence matrix of $S \circ T$ is of order $m \times n$, $[S \circ T] = [S][T]$.

Example

1.
$$S, T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x \end{pmatrix}$ and $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x-y \\ x-3y \end{pmatrix}$ then find $(S+T)$ and cS .

$$(S+T) \begin{pmatrix} x \\ y \end{pmatrix} = S \begin{pmatrix} x \\ y \end{pmatrix} + T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x \end{pmatrix} + \begin{pmatrix} 2x-y \\ x-3y \end{pmatrix} = \begin{pmatrix} 3x \\ 2x-3y \end{pmatrix} \text{ and }$$

$$(cS) \begin{pmatrix} x \\ y \end{pmatrix} = cS \begin{pmatrix} x \\ y \end{pmatrix} = c \begin{pmatrix} x+y \\ x \end{pmatrix} = \begin{pmatrix} cx+cy \\ cx \end{pmatrix}.$$

2. Define
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + z \\ -x + 5y + z \end{pmatrix}$ and $S: \mathbb{R}^2 \to \mathbb{R}^4$ by $S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ x + y \\ 2x \\ x - y \end{pmatrix}$.

Find $S \circ T$ explicitly. Hence find matrix of $S \circ T$. Also verify $[S \circ T] = [S][T]$.

 $T: \mathbb{R}^3 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^4$, therefore $S \circ T: \mathbb{R}^3 \to \mathbb{R}^4$.

$$(S \circ T) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = S \begin{pmatrix} T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = S \begin{pmatrix} x+2y+z \\ -x+5y+z \end{pmatrix} = \begin{pmatrix} 2(-x+5y+z) \\ (x+2y+z)+(-x+5y+z) \\ 2(x+2y+z) - (-x+5y+z) \end{pmatrix} = \begin{pmatrix} -2x+10y+2z \\ 7y+2z \\ 2x+4y+2z \\ 2x-3y \end{pmatrix}.$$

To find matrix of $S \circ T$

Standard basis of
$$\mathbb{R}^3$$
 is $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ and $(S \circ T) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 2 \\ 2 \end{pmatrix}, (S \circ T) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ 7 \\ 4 \\ -3 \end{pmatrix}$,

$$(S \circ T) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 0 \end{pmatrix}. \text{ Hence } [S \circ T] = \begin{bmatrix} -2 & 10 & 2 \\ 0 & 7 & 2 \\ 2 & 4 & 2 \\ 2 & -3 & 0 \end{bmatrix}_{4\times 3} \text{ To verify } [S \circ T] = [S][T]$$

Standard basis of
$$\mathbb{R}^3$$
 is $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Therefore
$$[T] = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 5 & 1 \end{bmatrix}_{2\times 3}$$
. Standard basis of \mathbb{R}^2 is $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$.

$$S\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}, S\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ -1 \end{pmatrix}. \text{ Therefore } [S] = \begin{pmatrix} 0 & 2 \\ 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{bmatrix}_{4\times 2}.$$

Now
$$[S][T] = \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{bmatrix}_{4\times 2} \begin{bmatrix} 1 & 2 & 1 \\ -1 & 5 & 1 \end{bmatrix}_{2\times 3} = \begin{bmatrix} -2 & 10 & 2 \\ 1-1 & 2+5 & 1+1 \\ 2 & 4 & 2 \\ 1+1 & 2-5 & 1-1 \end{bmatrix}_{4\times 3} \begin{bmatrix} -2 & 10 & 2 \\ 0 & 7 & 2 \\ 2 & 4 & 2 \\ 2 & -3 & 0 \end{bmatrix}_{4\times 3}.$$

Kernel and Range of a Linear transformation

Let V and W be vector spaces. For a linear transformation $T:V \to W$ the **Kernel** or **null space** of T, denoted by Ker(T) or N(T), is the collection of all vectors in $v \in V$ which are map to zero vector of W. Thus $Ker(T) = N(T) = \{v \in V : T(v) = 0\}$.

The **range** of T, denoted by R(T) is the collection of all vectors $w \in W$ which are images of vectors $v \in V$ under the map T. Thus $R(T) = \{w = T(v) : v \in V\}$.

Note That: The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is with the matrix representation $[T] = \mathbb{A}$ then

- Range of $T = \{Y \in \mathbb{R}^m : \text{ such that } AX = Y\} = col(A) = column \text{ space of } A$.
- Kernel of $T = \{X \in \mathbb{R}^n : AX = 0\} = Null(A) = Null space of A$.

1) Ker(T) or N(T) is subspace of V. **Result:**

Let $u, v \in Ker(T) \subset V \Rightarrow T(u) = 0, T(v) = 0$, $k \in \mathbb{R}$. Now T(u+v) = T(u) + T(v) = 0 and T(ku) = kT(u) = 0. Therefore Ker(T) is closed under addition and scalar multiplication. Therefore Ker(T) is subspace of V.

2) R(T) is subspace of W.

Let $w_1, w_2 \in R(T) \subseteq W \Rightarrow \exists v_1, v_2 \in V$ such that $T(v_1) = w_1, T(v_2) = w_2$.

Now $w_1 + w_2 = T(v_1) + T(v_2) = T(v_1 + v_2)$. Thus $w_1 + w_2 \in W$ is image of $v_1 + v_2 \in V$.

Therefore $w_1 + w_2 \in R(T)$. For $k \in \mathbb{R}$, $kw_1 = kT(v_1) = T(kv_1)$. Thus kw_1 is image of kv_1 . Therefore

 $kw_1 \in R(T)$. Therefore R(T) is closed under addition and scalar multiplication. Therefore R(T) is subspace of W.

Examples:

1) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

 $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, 2x_1 - 2x_2 + 3x_3 + 4x_4, 3x_1 - 3x_2 + 4x_3 + 5x_4)$. Find

- a) Basis and dimension of the range of T.
- b) Basis and dimension of the kernel of T.

T(1, 0, 0, 0) = (1, 2, 3), T(0, 1, 0, 0) = (-1, -2, -3), T(0, 0, 1, 0) = (1, 3, 4) and

T(1, 0, 0, 0) = (1, 2, 3), T(0, 1, 0, 0) T(0, 0, 0, 1) = (1, 4, 5). Therefore the matrix of the transformation is $A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{bmatrix}.$

a) To find the basis of image of T which is nothing but column space of A, we reduce A to

row Echelon form $A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Therefore the basis of range of T is $\left\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix}\right\}$ and the dimension of R(T) the space is 2.

b) To find the basis for Kernel of T which is the null space of A, consider AX = 0.

Solving this homogeneous system of linear equations the solution is

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} l+k \\ l \\ -2k \\ k \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} l + \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} k$$
. Therefore the basis for kernel is $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix}$

and the dimension of the kernel is 2.

2) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator and $B = \{v_1, v_2, v_3\}$ a standard basis for \mathbb{R}^3 . Suppose

That
$$T(v_1) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, T(v_2) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, T(v_3) = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
. a) Is $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \in R(T)$? b) Find basis and

dimension of R(T) . c) Find basis and dimension of null space N(T) = Ker(T).

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \in R(T) \text{ if there exist } k_1, k_2, k_3 \in \mathbb{R} \text{ such that } \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = k_1 T(v_1) + k_2 T(v_2) + k_3 T(v_3) \ .$$

$$\mathbf{j.e.,} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \Rightarrow k_1 + k_2 + 2k_3 = 1, k_1 + k_3 = 2, -k_2 - k_3 = 1 \ .$$

,i.e.,
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \Rightarrow k_1 + k_2 + 2k_3 = 1, k_1 + k_3 = 2, -k_2 - k_3 = 1.$$

Augmented matrix

$$(A:B) = \begin{bmatrix} 1 & 1 & 2 & \vdots & 1 \\ 1 & 0 & 1 & \vdots & 2 \\ 0 & -1 & -1 & \vdots & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & \vdots & 1 \\ 0 & -1 & -1 & \vdots & 1 \\ 0 & 0 & 0 & \vdots & 0 \end{bmatrix} \therefore \rho(A:B) = \rho(A).$$

Thus the system is consistent. Therefore $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \in R(T)$.

b) To find basis and dimension of R(T)

As images of basis vectors are given, matrix of $T: \mathbb{R}^3 \to \mathbb{R}^3$ is $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$.

As R(T) = Col(A), Reduce A to Echelon form. $A \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$. Pivot columns of reduce

matrix are 1st and 2nd. Therefore $R(T) = span \begin{Bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{Bmatrix}$. Further vectors $\begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$ are not

scalar multiples of each other, hence are linearly independent. Thus basis of R(T) is

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\} \text{ and dimension of } R(T) \text{ is } 2.$$

c) $Ker(T) = \{v \in \mathbb{R}^3 : T(v) = 0\}$. Now every $v \in \mathbb{R}^3$ can be expressed as $v = k_1v_1 + k_2v_2 + k_3v_3$, as $B = \{v_1, v_2, v_3\}$ is basis. Therefore $0 = T(v) = k_1T(v_1) + k_2T(v_2) + k_3T(v_3)$

$$\textbf{i.e.,} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + k_3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \Rightarrow \begin{array}{l} k_1 + k_2 + 2k_3 = 0 \\ k_1 + k_3 = 0 \\ -k_2 - k_3 = 0 \end{array} .$$
 This homogeneous system has reduce

form
$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Hence the system possesses 1-parametric solution, $\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} t, t \in \mathbb{R}$.

Therefore $Ker(T) = span \begin{Bmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$. Basis of Ker(T) is $\begin{Bmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$. Dimension of Ker(T) is 1.

Also note that: $\dim(Ker(T)) + \dim(R(T)) = 1 + 3 = \dim(\mathbb{R}^3)$

Results: 1) Dimension of Ker(T) is known as nullity.

- 2) Dimension of R(T) is known as rank.
- 3) Rank-Nullity Theorem : Let $T: V \to W$ be a linear then $\dim(Ker(T)) + \dim(R(T)) = \dim(V)$.

dim(range)+ dim(kernel)= dim(domain)

One-to-One and Onto:

Let V and W be vector spaces and let $T:V \to W$ be linear transformation.

1. The mapping T is called **one-to-one** or **injective** if distinct elements of V must have distinct images in W.

i. e.
$$T(u) = T(v) \Rightarrow u = v \text{ OR } u \neq v \Rightarrow T(u) \neq T(v)$$
.

2. The mapping T is called **onto** or **surjective** if the range of T is W. i.e. given any $w \in W$ there is $v \in V$ such that w = T(v) OR W = T(V).

A mapping is called **bijective** if it is both injective and surjective.

Example : Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(v) = Av, A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$. Show that T is bijective.

Let
$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2$$
,

$$T\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = T\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow \begin{pmatrix} u_1 + u_2 \\ -u_1 \end{pmatrix} = \begin{pmatrix} v_1 + v_2 \\ -v_1 \end{pmatrix}$$

This implies $u_1 = v_1 \& u_2 = v_2$, i.e., $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow u = v$. Therefore T is one-one.

To check *T* is onto. Let $w = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ be any general vector, to find $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ such that w = T(u)

$$T(u) = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = w \Rightarrow \begin{pmatrix} u_1 + u_2 \\ -u_1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}. \text{ This solves to } u_1 = -b \& u_2 = a + b. \text{ Thus given}$$

$$w = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$$
, there is $u = \begin{pmatrix} -b \\ a+b \end{pmatrix}$ such that $T \begin{pmatrix} -b \\ a+b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$. Therefore T is onto.

As T is one-one as well as onto, T is bijective

Results: 1) Let $T:V \to W$ be a linear transformation. Then T is one-to-one if and only if $Ker(T) = \{0\}$, i.e., $T:V \to W$ is One-one if and only if Ker(T) only contains zero or null vector of W.

- 2) Let $T: V \to W$ be a linear transformation, where W is finite dimensional. Then T is onto if and only if rank of T equals dimension of W, i. e, $\dim(R(T)) = \operatorname{rank} \operatorname{of} T = \dim(W)$.
- 3) Let $T: V \to W$ be a linear transformation, where $\dim(V) = \dim(W) = n$ finite. Then T is one-one if and only if T is onto.

Example:

The linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is represented by T(X) = AX. Find the nullity and rank of and determine whether is one-to-one, onto, or neither.

a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank$ of $T = 3$.

Further $\dim(V) = 3$. By rank-nullity thm, nullity= $\dim(V) - rank = 0$. Hence $Ker(T) = \{0\}$. Therefore T is one-one. By result 3 above, $\dim(V) = \dim(W) = 3$, T is onto also.

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank \ of \ T = 2$.

Further $\dim(V) = 2$. By rank-nullity thm, nullity= $\dim(V) - rank = 0$. Hence $Ker(T) = \{0\}$. Therefore T is one-one. By result 2 above, $\dim(W) = 3 \neq rank = 2$, T is not onto also.

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank$ of $T = 2$.

Further $\dim(V) = 3$. By rank-nullity thm, nullity= $\dim(V) - rank = 1$. Hence $Ker(T) \neq \{0\}$. Therefore T is not one-one. By result 2 above, $\dim(W) = 2 = rank$, T is onto also.

d)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Here matrix of T is in echelon form, hence $rank$ of $T = 2$.

Further $\dim(V) = 3$. By rank-nullity thm, nullity= $\dim(V) - rank = 1$. Hence $Ker(T) \neq \{0\}$.

Therefore T is not one-one. By result 2 above, $dim(W) = 3 \neq rank = 2$, T is not onto also.

Illustrative Example:

Q 1) Find the standard matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x+3y, 2x-y).

$$\mathbf{Sol^{n}.}T(e_{1}) = T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad T(e_{2}) = T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} \text{ and } \quad T(e_{1}) = T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

$$Thus \quad A = \begin{bmatrix} T(e_{1}) & T(e_{2}) & T(e_{3}) \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & -1 & 0 \end{bmatrix}.$$

Q 2) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, 2x_1 - 2x_2 + 3x_3 + 4x_4, 3x_1 - 3x_2 + 4x_3 + 5x_4)$$
. Find

- c) Basis and dimension of the image of T.
- d) Basis and dimension of the kernel of T.

Solⁿ.
$$T(1, 0, 0, 0) = (1, 2, 3), T(0, 1, 0, 0) = (-1, -2, -3), T(0, 0, 1, 0) = (1, 3, 4)$$
 and $T(0, 0, 0, 1) = (1, 4, 5)$. Therefore the matrix of the transformation is

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{bmatrix}.$$

a) To find the basis of image of T which is nothing but column space of A, we reduce A to row Echelon form

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 2 & -2 & 3 & 4 \\ 3 & -3 & 4 & 5 \end{bmatrix} \square \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \square \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Therefore the basis of image of T is $\left\{\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix}\right\}$ and the dimension of the space is 2.

b) To find the basis for Kernel of T which is the null space of A, consider AX = 0. Solving this homogeneous system of linear equations the solution is

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} l+k \\ l \\ -2k \\ k \end{bmatrix} = l \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$$
 Therefore the basis for kernel is $\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$ and

the dimension of the kernel is 2.

Q 3) Let $B = \{v_1, v_2\}$ be basis of \mathbb{R}^2 , where $v_1 = (1, 1)$ and $v_2 = (1, 2)$. Let $\mathbb{T} : \mathbb{R}^2 \to \mathbb{R}^3$ is

such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -2, 4)$. Find T(5, -1).

Solⁿ. Since $B = \{v_1, v_2\}$ is basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be expressed as a linear combination of v_1 and v_2 .

$$\therefore$$
 (5, -1) = $c_1(1, 1) + c_2(1, 2) \Rightarrow c_1 + c_2 = 5$ and $c_1 + 2c_2 = -1$ \therefore $c_1 = 11$ and $c_2 = -6$
Thus (5, -1) = $11 \times (1, 1) - 6 \times (1, 2)$.

$$T(5, -1) = T(11 \times (1, 1) - 6 \times (1, 2)) = 11 \times T(1, 1) - 6 \times T(1, 2)$$
$$= 11 \times (-1, 2, 0) - 6 \times (0, -2, 4) = (-11, 34, -24).$$

> Invertible Linear Transformation

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by T(X) = AX = Y is said to be **invertible** or **non singular** or **regular** if the matrix of transformation A is non singular matrix, i.e., invertible. The corresponding inverse transformation $S: \mathbb{R}^n \to \mathbb{R}^n$ is given by $S(Y) = A^{-1}Y = X$.

Note That: If $T: \mathbb{R}^n \to \mathbb{R}^n$ and its inverse is $S: \mathbb{R}^n \to \mathbb{R}^n$ then $S \circ T: \mathbb{R}^n \to \mathbb{R}^n$ is such that $S \circ T(X) = S(T(X)) = S(AX) = A^{-1}AX = X$. Also $T \circ S: \mathbb{R}^n \to \mathbb{R}^n$ is such that $T \circ S(Y) = T(S(Y)) = T(A^{-1}Y) = AA^{-1}Y = Y$. This implies $S \circ T$ and $T \circ S$ is identity map on \mathbb{R}^n .

Example : Is
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ 2x_1 + x_2 \end{pmatrix}$ regular?

If regular, find the inverse transformation.

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ 2x_1 + x_2 \end{pmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
. Thus $T(X) = AX$, where $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$.

Further $det(A) \neq 0$. Therefore T is a regular transformation. The inverse transformation

$$S: \mathbb{R}^2 \to \mathbb{R}^2 \text{ is given by } S \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A^{-1} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} (y_1 + y_2)/3 \\ (-2y_1 + y_2)/3 \end{pmatrix}.$$

Orthogonal Transformation : A transformation Y = AX is said to orthogonal if the matrix A is orthogonal matrix.

Orthogonal Matrix: Matrix A is said to be orthogonal matrix if $AA^T = A^TA = I$.

Note That :1) Every rotation matrix is an orthogonal matrix & vice versa.

- 2) If A is orthogonal then $|A| = \pm 1$.
- 3) If for certain matrix A, $|A| = \pm 1$ then A may or may not be orthogonal.
- 4) Orthogonal matrix A is always invertible and $A^{-1} = A^{T}$.

Illustrative Examples

Q 1) Is
$$A = \begin{bmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{bmatrix}$$
 orthogonal?

Solⁿ. No.

Q 2) Find
$$l, m, n$$
 so that the matrix $A = \begin{bmatrix} 0 & 2m & n \\ l & m & -n \\ l & -m & n \end{bmatrix}$ is orthogonal.

Solⁿ. A is an Orthogonal matrix, therefore
$$\sqrt{o^2 + l^2 + l^2} = 1 \Rightarrow 2l^2 = 1 \Rightarrow l = \pm \frac{1}{\sqrt{2}}$$
,

$$\sqrt{(2m)^2 + m^2 + m^2} = 1 \Rightarrow 6m^2 = 1 \Rightarrow m = \pm \frac{1}{\sqrt{6}} \quad \text{and} \quad \sqrt{n^2 + (-n)^2 + n^2} = 1 \Rightarrow 3n^2 = 1 \Rightarrow n = \pm \frac{1}{\sqrt{3}}.$$

Q 3) Is $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x - y, 2x + y) regular? If regular, find the inverse transformation.

Solⁿ.
$$T(x, y) = (x - y, 2x + y) = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
. Thus $TU = AU$, where $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$.

Further $det(A) \neq 0$. Therefore T is a regular transformation. The inverse transformation

is
$$S : \mathbb{R}^2 \to \mathbb{R}^2$$
 is given by $S(x, y) = A^{-1}(x, y)^T$, where $A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$.

• Geometry of Linear Operators on R²

If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the matrix operator whose standard matrix is $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then

$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}.$$

It is natural question that Geometrically how can we view the obove transformation?

We may view entries in the matrices as components of vectors or as co-ordinates of points.

• Compressions and Expansions

If T: $\mathbb{R}^2 \to \mathbb{R}^2$ is a compression or expansion in the x – direction with the factor k, then

$$T(e_1) = T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} k \\ 0 \end{bmatrix}$$
 and $T(e_2) = T\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. So the standard matrix for T is

 $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$. Similarly, the standard matrix for compression or expansion in the y-direction

is
$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$
.

• Special operators in R²

Sr. No.	Operator	Matrix Representation
1.	Reflection about X -axis	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
2.	Reflection about <i>Y</i> -axis	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
3.	Reflection about the line $y = x$.	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
4.	Projection on x-axis	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
5.	Projection on y-axis	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
6.	Counterclockwise Rotation through an angle θ .	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$
7.	Compression $(0 < k < 1)$ or Expansion $(k > 1)$ in the x_1 -direction	$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$
8.	Compression $(0 < k < 1)$ or Expansion $(k > 1)$ in the x_2 - direction	$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$
9.	Contraction $(0 < k < 1)$ or Dilation $(k > 1)$	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$
10.	Shear in the x_1 -direction with factor k.	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
11.	Shear in the x_2 -direction with factor k.	$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Linear Transformation

• Special operators in R³

Sr. No.	Operator	Matrix Representation
1.	Reflection about XY -plane	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
2.	Reflection about XZ -plane	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
3.	Reflection about YZ -plane	$ \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
4.	Projection on XY -plane	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
5.	Projection on YZ -plane	$ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
6.	Projection on XZ -plane	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
7.	Rotation about X -axis	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$
8.	Rotation about Y -axis	$\begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$
9.	Rotation about Z -axis	$\begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$

Illustrative Examples

Q 1) Find a transformation from R^2 to R^2 that first shears in x_1 direction by a factor of 3 and then reflects about y = x.

Solⁿ. The standard shear matrix in x_1 direction by a factor of 3 is $A_1 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.

The standard matrix of reflection about y = x is $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Hence the required matrix is $A_2A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$.

Q 2) Find a transformation from R^2 to R^2 that first reflects about y = x and then shears by a factor of 3 in x_1 direction.

Linear Transformation

Solⁿ. The standard shear matrix in x_1 direction by a factor of 3 is $A_1 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.

The standard matrix of reflection about y = x is $A_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

The required transformation is $A_1 A_2 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$.

Q 3) Find the standard matrix for $T:R^3 \to R^3$, that first reflects about xy - plane, then rotates the resulting vector in counterclockwise direction through an angle θ , about z - axis and then finally resultant vector is projected on xz - plane.

Solⁿ. The standard matrix for reflection about xy - plane is $A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. The standard matrix for rotation about z - axis $A_2 = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

The standard matrix for projection onto xz - plane $A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Therefore the required transformation is

$$A_{3}A_{2}A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Note that elementary matrix represents shear, compression, expansion or reflection. Thus every 2 by 2 invertible matrix geometrically represents the appropriate succession of shear, compression, expansion or reflection.

• Geometric properties of Linear Operator on R².

Theorem 2.3: If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is multiplication by an invertible matrix A, then the geometric effect of T is the appropriate succession of shears, compressions, expansions and reflections.

Proof: Since A is invertible, it can be reduced to identity matrix by a finite sequence of elementary row transformation. An elementary row operations can be performed by multiplying on the left by elementary matrix and so there exist elementary matrices

$$E_1, E_2, ..., E_k$$
 such that $E_k \cdots E_2 E_1 A = I$. Therefore $A = E_1^{-1} E_2^{-1} \cdots E_n^{-1} I = E_1^{-1} E_2^{-1} \cdots E_n^{-1}$.

Illustrative Example:

O 1) Express the following matrix as a product of elementary matrices. Describe the effect of multiplication by the given matrix in terms of compression, expression,

reflection and shear. $A = \begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$.

Solⁿ. A can be reduced to identity as follows:

$$\begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 - 4R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Two row operations can be performed on the left successively by

Linear Transformation

$$E_1 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}.$$
 Therefore $E_2 E_1 A = I$. $A = E_1^{-1} E_2^{-1} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}.$

It follows that the effect of multiplication by A

- i) Shearing by a factor 4 in the x_1 direction.
- ii) Followed by shearing by a factor 2 in the x_2 direction.
- **Q 2)** Express the following matrix as a product of elementary matrices. Describe the effect of multiplication by the given matrix in terms of compression, expression, reflection and

shear.
$$A = \begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix}.$$

 Sol^n . A can be reduce to identity as follows:

$$\begin{bmatrix} 4 & -3 \\ 3 & -2 \end{bmatrix} \xrightarrow{R_1 - R_2} \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Three row operations can be performed on the left successively by

$$E_1 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \text{ Therefore } E_3 E_2 E_1 A = I \ .$$

$$A = E_1^{-1} E_2^{-1} E_3^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}.$$

Hence the effect of multiplication is

- i) Shearing by a factor 1 in the negative x_1 direction.
- ii) Shearing by a factor 3 in the negative x_2 direction.
- iii) Shearing by a factor 1 in the x_1 direction.