Roteiros dos Experimentos de Laboratório de Física Básica

Mário Pacheco Michel

25 de maio de 2012

Universidade Federal do Ceará Campus Cariri

2012

Roteiros das Práticas de Laboratório de Física

Autor:

Mário PACHECO Michel Teló Felipe CAVALCANTE

Digitador:

Sumário

Lista de Figuras

Lista de Tabelas

Introdução					p. 5	
1	Paquímetro				p. 6	
	1.1	Objeti	vos	p.	6	
	1.2	Materi	al	p.	6	
	1.3	Funda	mentos	p.	6	
	1.4	Pré-la	poratório	p.	7	
	1.5	Proced	limento	p.	7	
	1.6	Questi	onário	p.	7	
2	Análise Gráfica e Movimento Retilíneo Uniformemente Acelerado				8	
	2.1	Introdu	ıção	p.	8	
	2.2	Parte I	Experimental	p.	9	
		2.2.1	Objetivo	p	9	
		2.2.2	Material Utilizado	p	9	
		2.2.3	Procedimentos	p. 1	0	
	2.3	Sugest	ão para condução da análise dos dados:	p. 1	0	

Lista de Figuras

Lista de Tabelas

Introdução

A disciplina de laboratório de física IV tem como objetivo abordar tópicos experimentais relacionados à disciplina de física IV. Nessa disciplina o estudante tem os primeiros contatos com experiências relacionadas ao estudo de correntes alternadas, óptica e física moderna. Na medida do possível, as experiências seguem a mesma ordem da disciplina teórica de física IV. Espera-se com isso, que o estudante tenha a oportunidade de entender o fenômeno físico do ponto de vista teórico e experimental. A preparação dos relatórios de cada experiência deverá seguir um padrão que permita ao estudante entender o desenvolvimento do método científico.

A disciplina de laboratório de física IV é uma matéria experimental, na qual a turma de estudantes se divide em grupos de trabalho. No início de cada aula, o professor apresenta uma breve discussão teórica sobre a experiência que será realizada. Nessa discussão, os grupos também são orientados na seqüência lógica do procedimento experimental. Sugere-se que uma experiência completa deve ser executada em cada aula.

1 Paquímetro

1.1 Objetivos

1.2 Material

- Paquímetro
- Cilindro
- 1. Paquímetro
- 2. Cilindro

definição Paquímetro

definição 2 Cilindro

1.3 Fundamentos

sadlkas asdsjd asja askjdas askdjad sjdas (B) dslfjsdfd ksjfs sdfjsdk sdjfs

1.4 Pré-laboratório

1.5 Procedimento

1.6 Questionário

2 Análise Gráfica e Movimento Retilíneo Uniformemente Acelerado

2.1 Introdução

Um movimento retilíneo chama-se uniformemente acelerado quando a aceleração instantânea é constante (independente do tempo). Isto é,

$$\frac{dv}{dt} = \frac{d^2x}{dt^2} = a = constante \tag{2.1}$$

Da Equação (2.1) na página 8 podemos obter a equação horária da velocidade, que é dada por:

$$v(t) - v(t_0) = \int_{t_0}^t adt = a(t - t_0)$$
(2.2)

O valor $v(t) = v(t_0)$ da velocidade no instante inicial chama-se *velocidade inicial*. Assim, $v(t) = v_0 + a(t - t_0)$ mostrando que a velocidade é uma função linear do tempo no movimento uniformemente acelerado.

Podemos obter a lei horária da posição integrando a equação da velocidade em função do tempo (Equação (2.2)).

$$x(t) - x(t_0) = \int_{t_0}^t v(t')dt' = v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$
(2.3)

Se definirmos $x(t_0) = x_0$ como posição inicial. Obtemos, desta forma:

$$x(t) = x(t_0) + v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$
(2.4)

Também podemos exprimir a velocidade do movimento uniformemente acelerado em função

da posição por $v^2 = v_0^2 + 2a(t - t_0)^2$; também conhecidad como equaçõa de Torricelli.

Aa esquaç oes cima descrevem apenas a cinemática do movimento uniformemente acelerado, sem ter a preocupação de descrver a origem destes moviemntos - que é o objeto de estudo da dinâmica, cujos princípios básicos forma formulador por Galileu e Newton.

2.2 Parte Experimental

2.2.1 Objetivo

analisar o movimento de um objeto sob a ação de uma força constante. Utilizar também a análise gráfica para descrever este movimento e determinar sua aceleração.

2.2.2 Material Utilizado

Talvez esta seja a primeira vez que você lida com um trilho de ar, assim, algumas notas de cuidado são úteis. O trilho possui pequenos orifícios pelos quais ar é expelido sob pressão. O carro que corre sobre o trilho tem o formato de um Y invertido, e se mantém flutuando sobre o colchão de ar formado entre o trilho e o carro pelo ar expelido nos cilindros. Assim, é eseencial manter os orifícios e a superfície do carro limpos e livre de arranhões. Evite, portanto, escrever ou marcar o trilho de ar para não obstruir os orifícios e causar variações no colchão de ar formado.

Importante: Não empurre o carrinho sobre o trilho quando a fonte de ar comprimido estiver ligada. Do contrário, tanto o carrinho quanto o trilho poderão sofrer arranhões.

O trilho de ar possui uma escala milimetrada que pode ser usada para registrar a posição do carro, e dispões de um cronômetro digital para registrar os intervalos de tempo. É mais simples com este equipamento medir o tempo transcorrido em função da distância a ser percorrida, embora posteriormente você possa inverter a dependência e analisar a posição em função do tempo transcorrido.

Decrição do material:

- 01 trilho de 12cm;
- cronômetro digital multifunções com fonte DV 12V;

- 2.2.3 Procedimentos
- 2.3 Sugestão para condução da análise dos dados: