

Ermal ZEQO, Ilhan AKCA, Marie-Candice Bergame, Long Keo, Mahya Hajifatah

L'évolution de la température

ARE Dynamique 2023-2024

Introduction

- Étude **dynamique de la température** dans différents environnements.
- Utilisation du langage Python pour simuler une ville en matrice
- Exploration et analyse des zones vertes et industrielles

Problématique

Comment l'urbanisation et la végétation influencent-elles l'évolution de la température dans une ville ?

Hypothèse principale

URBANISATION

Hausse de la température locale due à l'effet d'îlot de chaleur urbain (ICU)

VEGETATION

Régulateur thermique, atténuant cette augmentation de température

Objectif

Étudier l'évolution de la température dans une ville en tenant compte de l'urbanisation et de la couverture végétale

Sommaire

- I. Dynamique de la température lors de l'ensoleillement
- II. Dynamique de la température lors la libération de chaleur
- III. Comparaison des résultats

I. Dynamique de la température lors de l'ensoleillement

- Coefficient d'absorption
- Variation de l'ensoleillement
- Température initiale

Initialisation de la ville à étudier

Représentation de la fonction "generate_heat_amount_per_hour"

La variation de l'ensoleillement = amplitude \times sin ($\pi/12 \times$ (heure - heure de point))

+ compense quantité de chaleur

Plan de l'augmentation attendue de la température dans la ville

Temperature = Ti + Abs * Ve

L'évolution de la température pour une case précise (plus haute chaleur)

Temperature = Ti + Abs * Ve

II. Dynamique de la température lors la libération de chaleur

- Quantité de chaleur libérée
- Coefficient de réflexion
- Température initiale

L'évolution de la quantité de chaleur libérée dans une journée

La variation de l'ensoleillement = amplitude \times sin ($\pi/12 \times$ (heure - heure de point))+ quantité de chaleur libérée

Plan de la baisse attendue de la température dans la ville

Temperature = Ti – Cr * QChL

L'évolution de la température pour une case précise (plus faible chaleur)

Temperature = Ti – Cr * QChL

III. Comparaison des résultats

Comparaison des évolutions de température pour deux zones différentes

L'évolution de température pour une même zone

Evolutions de températures maximales et minimales à différents moments.

L'évolution dynamique idéale de la température pour une case pendant un jour

Conclusion

- Importance de la végétation
- Planification urbaine verte