4 Continuous Random Variables

Together, discrete and continuous approaches form a powerful framework for modeling the world.

4.1 Probability density function

Continuous RVs!

An RV has a *continuous distribution* if its CDF is differentiable. Endpoints of CDF may be continuous but not differentiable. A continuous RV is a RV with a continuous distribution.

For a continuous RV X with CDF F, the PDF of X is derivative f of the CDF: f(x) = F'(x)

The support of X: all x where f(x) > 0.

The PDF is kinda similar to PMF, but for PDF quantity of f(x) is not a **probability**. To obtain the probability, we need to **integrate** PDF.

We can be carefree about including or excluding endpoints as above for continuous RVs, but we must not be careless about this for discrete RVs.

Valid PDF of a continuous RV:

1. Nonnegative: $f(x) \ge 0$

2. Integrates to 1: $\int_{-\infty}^{\infty} f(x) dx = 1$

Example: logistic distribution.

 $X \sim$ Logistic.

CDF:

$$F(x)=rac{e^x}{1+e^x}, x\in \mathbb{R}$$

PDF:

$$F(x)=rac{e^x}{(1+e^x)^2}, x\in \mathbb{R}$$

To find P(-2 < X < 2), we need to integrate PDF from -2 to 2:

$$P(-2 < X < 2) = \int_{-2}^2 rac{e^x}{(1+e^x)^2} = F(2) - F(-2) pprox 0.76$$

Or P(-2 < X < 2) is indicated by the shaded area under the PDF and the height of the curly brace on the CDF.

4.2 Uniform distribution