EEE336 Signal Processing and Digital Filtering

Lecture 10 Fast Fourier Transform 10_1 Why do we introduce FFT?

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Computational complexity

• Q: How many (complex) multiplications and additions are needed to compute DFT?

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \qquad k = 0, 1, ..., N-1$$

- for each "k", we need N complex multiplications, and N-1 complex additions, where W_N^{kn} does not depend on x[n], and hence can be precomputed and saved in a table;
- So for N values of "k", we need N^2 complex multiplications and N(N-1) complex additions;
 - The computational complexity grows with the square of the signal size.
 - This computational complexity is referred to as $O(N^2)$, also called, order of N^2 .

Properties of the Twiddle factor

- Symmetry: $(W_N^{kn})^* = W_N^{-kn}$
- Periodicity: $W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n}$
- Reduction: $W_N^{kn} = W_{mN}^{mkn} = W_{N/m}^{kn/m}$
- Other properties:

$$W_N^{k(N-n)} = W_N^{(N-k)n}$$

$$W_N^{N/2} = -1$$

$$W_N^{kn+N/2} = -W_N^{kn}$$

10_1 Wrap up

• Be able to evaluate the computational complexity!

• Be able to derive and use the properties of twiddle factors.

EEE336 Signal Processing and Digital Filtering

Lecture 10 Fast Fourier Transform 10_2 Decimation in Time: Radix-2

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Decimation in time: radix-2

- Assume that the signal is of length $N = 2^p$, a power of two. If it is not, zero-pad the signal with enough number of zeros to ensure power-of-two length.
- N-point DFT can be computed as two N/2 point DFTs, both of which can then be computed as two N/4 point DFTs
 - Therefore an N-point DFT can be computed as four N/4 point DFTs;
 - Similarly, an N/4 point DFT can be computed as two N/8 point DFTs;
 - The entire N-point DFT can then be computed as eight N/8 point DFTs;
 - Continuing in this fashion, an N-point DFT can be computed as N/2
 2-point DFTs;

- Stage 1: decimate the time-domain signal x[n] into two half:
 - Even indexed samples: $x_0[2r]$ - Odd indexed samples: $x_1[2r+1]$ $r = 0, 1, ..., \frac{N}{2} - 1$

$$X\big[k\big] = \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn} \ = \ \sum_{n \text{ even}}^{N-1} x[n] e^{-j(2\pi/N)kn} \ + \ \sum_{n \text{ odd}}^{N-1} x[n] e^{-j(2\pi/N)kn}$$

- Substitute variables n = 2r for n even and n = 2r + 1 for odd

$$X[k] = \sum_{r=0}^{N/2-1} x[2r] W_N^{2rk} + \sum_{r=0}^{N/2-1} x[2r+1] W_N^{(2r+1)k}$$

$$= \sum_{r=0}^{N/2-1} x_0[r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{N/2-1} x_1[r] W_{N/2}^{rk}$$

$$= X_0[k] + W_N^k X_1[k], \qquad k = 0, 1, N/2 - 1$$

- $X_0[k]$ and $X_1[k]$ are the N/2-point DFT's of each subsequence;
- X[k] calculated here is only the first half of it, when k = 0, 1, ..., N/2-1, how to get the second half of X[k]?

• For the second half of X[k] with k = 0, 1, ..., N/2-1:

$$X_{0}\left[\frac{N}{2}+k\right] = \sum_{r=0}^{N/2-1} x_{0}[r]W_{N/2}^{(N/2+k)r} = \sum_{r=0}^{N/2-1} x_{0}[r]W_{N/2}^{kr} = X_{0}[k]$$

$$X_{1}\left[\frac{N}{2}+k\right] = X_{1}[k]$$

• So:

$$X\left[\frac{N}{2} + k\right] = X_0 \left[\frac{N}{2} + k\right] + W_N^{N/2+k} X_1 \left[\frac{N}{2} + k\right]$$

$$= X_0 [k] + W_N^{k+N/2} X_1 [k]$$

$$= X_0 [k] - W_N^k X_1 [k]$$

- 8-point DFT example using decimation-in-time
- Two N/2-point DFTs
 - $-2(N/2)^2$ complex multiplications
 - $-2(N/2)^2$ complex additions
- Combining the DFT outputs
 - N complex multiplications
 - N complex additions
- Total complexity
 - $-N^2/2+N$ complex multiplications
 - $-N^2/2+N$ complex additions
 - More efficient than direct DFT
- No the end!

- Repeat same process
 - Divide N/2-point DFTs into two N/4-point DFTs

$$X_{0}[k] = X_{00}[\langle k \rangle_{N/4}] + W_{N/2}^{k} X_{01}[\langle k \rangle_{N/4}], \qquad 0 \le k \le \frac{N}{4} - 1$$

$$X_{0}[k] = X_{00}[\langle k \rangle_{N/4}] + W_{N/2}^{k+N/2} X_{01}[\langle k \rangle_{N/4}], \qquad \frac{N}{4} \le k \le \frac{N}{2} - 1$$

Combine outputs

DIT cont.

• After two stages of decimation:

Repeat until we're left with two-point DFT's

Butterfly

Flow graph constitutes of butterflies

Two complex multiplication
Two complex addition

• How many operations do we need for 2-point DFT?

$$X[0] = x[0] + W_N^0 x[1]$$

$$X[1] = x[0] + W_N^4 x[1] = x[0] - x[1]$$

• The butterfly:

No complex multiplication Two complex addition

Final flow-graph of DIT-2

• Number of stages:

$$p = log_2 N$$

• Number of butterflies per stage:

- Two computational complexity:
 - N(p-1) = N(log₂N-1)complex multiplications;
 - Np = Nlog₂Ncomplex additions.

Simplify the butterfly process

Original butterfly:

• We can implement each butterfly with one multiplication

- Final complexity for decimation-in-time FFT
 - (N/2)(log₂N-1) complex multiplications and Nlog₂N additions

Comparison of computational complexity

Length	DFT		FFT	
(N)	No. of	No. of +	No. of	No. of +
4	16	12	2	8
8	64	56	8	24
16	256	240	24	64
32	1024	992	64	160
64	4096	4032	160	384
128	16384	16256	384	896
256	65536	65280	896	2048

For DFT

- No. of * is N^2
- No. of + is N(N 1)

For FFT

- No. of * is $\frac{N}{2}(\log_2 N 1)$
- No. of + is $N \log_2 N$

Bit-reversal

• Note the arrangement of the input indices - Bit reversed indexing

x[n]	X[k]
x[0]	X[0]
x[4]	X[1]
x[2]	X[2]
x[6]	X[3]
x[1]	X[4]
x[5]	X[5]
x[3]	X[6]
x[7]	X[7]

10_2 Wrap up

- Understand how the FFT is performed
- Be able to draw the flow graph of FFT-DIT-2
- Be able to calculate any value in the graph
- Be able to calculate the computational complexity of different length of N
- Be able to arrange the input x[n] in correct order according to bit-reversal scheme

EEE336 Signal Processing and Digital Filtering

Lecture 10 Fast Fourier Transform

10_3 Applications of FFT

(Stream data processing)

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Filtering Streaming Data

- In most real-world applications, the filter length is actually rather small (typically, N<100); however, the input signal is obtained as a streaming data, and therefore can be very long.
- To calculate the output of the filter, we can:
 - a) Wait until we receive all the data, and then do a full linear convolution of length N filter and length M input x[n], where M>>>N -> y[n]=x[n]*h[n]
 - b) We can use the DFT based method -> y[n]=IDFT(X[k].H[k]), but we still need to wait for the entire data to arrive to calculate X[k]
- In either case, the calculation is very long, expensive, and need to wait for the entire data to arrive.
- Can we just process the data in batches, say 1000 samples at a time, and then concatenate the results...?

- The border effect! Processing individual segments separately and then combining them is possible, however, the border distortion needs to be addressed
 - Overlap add is a method that allows us to compute the individual segments and then concatenate them in such a way that the concatenated signal is the same as the one that would be obtained if we processed the entire data at once.

• We fist segment x[n], assumed to be a causal sequence here without any loss of generality, into a set of continuous finite-length subsequences $x_m[n]$ of length M_1 each:

$$x[n] = \sum_{m=0}^{\infty} x_m[n - mM_1], \quad \text{where } x_m[n] = \begin{cases} x[n + mM_1], 0 \le n \le M_1 - 1\\ 0, \quad \text{otherwise} \end{cases}$$

• Thus we can write

$$y[n] = h[n] * x[n] = \sum_{m=0}^{\infty} y_m[n - mM_1], \quad where y_m[n] = h[n] * x_m[n]$$

- Since h[n] is of length N and $x_m[n]$ is of length M_1 , the liner convolution h[n]* $x_m[n]$ is of length N+M₁-1;
- As a result, the desired linear convolution y[n] has been broken up into a sum of infinite number of short-length linear convolutions y_m of length N+M₁-1;
- Each of these short convolutions can be implemented using the zero-padding based DFT method, which are computed on the basis of N+M₁-1 points.

Notice

- The first convolution y1 is of length $N + M_1 1$ and is defined on $0 \le n \le N + M_1 2$;
- The second convolution y2 is also of length $N + M_1 1$, but is defined on $M_1 \le n \le 2M_1 + N 2$;
- There is an overlap of N-1 samples between these two short linear convolutions.
- In general, there will be an overlap of N-1 samples between all the adjacent results of the short convolutions.

N = 5 $M_1 = 7$

• Therefore, y[n] should be given by:

$$y[n] = y_0[n], 0 \le n \le 6$$
$$y[n] = y_0[n] + y_1[n-7], 7 \le n \le 10$$

$$y[n] = y_1[n-7], 11 \le n \le 13$$

$$y[n] = y_1[n-7] + y_2[n-14], 14 \le n \le 17$$

10_3 Wrap up

- Real-time signal processing:
 - Long (or infinite) input data x[n];
 - Short system impulse h[n];

- Output y[n] can be obtained by segment processing:
 - Overlap-add
 - How to perform
 - Evaluate the computational complexity

Chapter 10 Summary

- Computational complexity
 - Convolution, DFT, FFT
- FFT: DIT-2
 - Twiddle factor properties
 - DIT process, flow graph, gain on each path, etc.
 - Bit reversal
- Application: streaming data
 - Overlap add method

