

Dimensionality reduction-PCA & UMAP

Johannes Müller

Summary

- Motivation
- Basic concepts: Different kinds of spaces (Euclidian & else)
- Algorithms:
 - PCA: Principal components analysis
 - UMAP: Uniform manifold approximation and projection
- Usage for data exploration and analysis

Introduction

Ideal situation: Biological property is related to a known, measurable feature in image data

Example: Unactivated vs. activated microglia in mouse brain

Existing scores: "Ramification index" (Wittekind et al., 2022)

@jm_mightypirate

Rammification index = $\frac{\Lambda C}{\Lambda}$

That's actually just...?

Solidity

Perimeter

Circularity

October 2022

Introduction

More typical situation:

- We expect or know of a biological effect (e.g., through external cues, cell growth stages, etc.)
- We do not know how this effect can be measured or how it manifests itself

Source: Mauricio Rocha Martins, Norden lab, MPI CBG

Example:

Developing zebrafish eye

Hypothesis: Cells develop differently depending on where they are

Introduction

We can measure tons of features but still have no idea about what's happening!

Basic concepts

Most common and intuitive space: Euclidian space

Practical example: (local) 2D space

Characteristics of Euclidian space:

- Distance between P and Q d(P,Q) is symmetric: d(P,Q) = d(Q,P)
- Distance between P and Q can be measured as the length ("norm") of the vector \overrightarrow{PQ}
- Distances satisfy the triangle inequality:

$$d(P,Q) \le d(P,A) + d(A,Q)$$

In other words: There is no shorter paths between two points other than a straight line

Basic concepts

How could **non-Euclidian** spaces look like? \rightarrow It's surprisingly intuitive!

• Non symmetric distances $\rightarrow d(P,Q) \neq d(Q,P)$

Use travel time between P and Q as metric for distance

Travelling by bike/foot \rightarrow it's *much* faster to get from Q to P than vice versa \rightarrow d(P,Q) > d(Q, P)

Replacing distance between P and Q with time between P and Q makes Dresden non-Euclidian!

Basic concepts

How could **non-Euclidian** spaces look like? \rightarrow It's surprisingly intuitive!

• Breaking the triangle inequality $\rightarrow d(P,Q) > d(P,A) + d(A,Q)$

Use travel time between P and Q as metric for distance

Travelling from Stadt Wehlen to Strand by bike is probably faster if you make a detour through Rathen

PCA: principal component analysis

Principal component analysis:

Decomposes data into linear combinations of features that explain the highest variance

Example: Squares of different size

> PCA transforms width/height measurements into a coordinate system that explains existing variance better

Component₁ =
$$a_1 * width + b_1 * height$$

Component₂ = $a_2 * width + b_2 * height$

PCA: principal component analysis

- Example: Squares of different size
- → PCA transforms width/height measurements into a coordinate system that explains existing variance better

Component₁ =
$$a_1 * width + a_2 * height$$

Component₂ = $b_1 * width + b_2 * height$

→ This is the result of a multiplication operation:

 $\underbrace{\begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix}}_{T} * \begin{pmatrix} width \\ height \end{pmatrix} = \begin{pmatrix} Component_1 \\ Component_2 \end{pmatrix}^{2}$

→ This works for any number of features!

$$T*\begin{pmatrix} feature_1\\ ...\\ feature_N \end{pmatrix} = \begin{pmatrix} Component_1\\ ...\\ Component_2 \end{pmatrix} \xrightarrow{\operatorname{id}_2 \operatorname{P}} \vdots$$

This is a linear operation!

Metrics remain meaningful

$$d_1 > d_2 \rightarrow d_1' > d_2'$$

PCA: principal component analysis

• **Example:** number of features = 3

→ This works for any number of features! $T * \begin{pmatrix} feature_1 \\ ... \\ feature_N \end{pmatrix} = \begin{pmatrix} Component_1 \\ ... \\ Component_2 \end{pmatrix}$

Two axes allow to get a good idea of groups in the data!

Important:

Always check the explained variance along the PCA component axes!

PCA in Python

Import package

from sklearn.decomposition import PCA

Apply PCA

 $pca = PCA(n_components=2)$ pca.fit(data)

PCA PCA(n_components=2)

Transform data into transformed space

transformed_data = pca.transform(data)

Inspect explained variance

pca.explained_variance_ratio_

array([0.98773142, 0.01226858])

learn Install User Guide API Examples Community More

scikit-learn

Machine Learning in Python

Getting Started Release Highlights for 1.1 GitHub

- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable BSD license

Classification

Identifying which category an object belongs to.

Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more...

Examples

Dimensionality reduction

consider.

Reducing the number of random variables to

Applications: Visualization, Increased efficiency

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more...

Examples

Model selection

Comparing, validating and choosing parameters and models.

Applications: Improved accuracy via parameter tun-

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering, meanshift, and more...

Examples

Preprocessing

Feature extraction and normalization.

Applications: Transforming input data such as text for use with machine learning algorithms.

UMAP: Basic concepts

More complex concept: Manifolds

From Wikipedia: "In mathematics, a manifold is a topological space that locally resembles Euclidean

space near each point."

...Is this map Euclidian?

Yes

No

 \rightarrow It isn't! The two vectors \overrightarrow{PQ} and \overrightarrow{AB} have the same length, but the real distances (the norm) of both are completely different!

→ Cropping a small piece from the map gives us a local Euclidian space, where the previous assumptions

hold.

d₁: Euclidian

d₂: Non-Euclidian

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Idea:

Reconstruct underlying topology to identify a space that best explains differences in our data

Approach:

Identify neighboring points in data by setting a neighborhood radius

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Idea:

Reconstruct underlying topology to identify a space that best explains differences in our data

Approach:

Identify neighboring points in data by setting a neighborhood radius

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Result:

Neighborhood graph of close points

Problem:

The scarcity of the points leads to a disconnected neighborhood

→Searching neighbors by radius may not be viable

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Ideally:

Data spread uniformly on the curve

- → Allows capturing the global structure through neighborhood
- → We typically don't have this luxury

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Catch:

We *assume* that the data is actually uniform!

Each point now has its own distance metric assigned to it

- → d(A, B) from A's point of view: 1
- → d(B,C) from B's point of view: 1

This works well globally, but doesn't capture local structure appropriately

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Compromise:

- → Demand that each point is connected to its closes neighbor
- → Weigh connection to further neighbors with distance beyond nearest neighbor

Initial situation: Our data suggests an underlying structure ("topology") but we don't have a model for it

Result:

- → Global neighborhood graph
- → Local scarcity is reflected through edge weights

Last step:

Project this structure into a lower dimension so that overall topology is reflected

UMAP in Python

import umap

Import package

Create UMAP object

reducer = umap.UMAP()

Find projection

embedding = reducer.fit_transform(scaled_penguin_data)
embedding.shape

Conclusion

Takeaways:

- Dimensionality reduction projects data from high-dimensional space into fewer dimensions
- Algorithms try to preserve meaning in the data
- PCA (principal component analysis):
 - + Linear method: Metrics are preserved
 - Number of components required as input parameter
- UMAP (uniform manifold approximation and projection):
 - + Can capture quite arbitrary topologies
 - The embedded space is Euclidian, but the transform is not-linear!
 - → Two groups A and B being close (similar) to each other in embedded space ≠ A and B also similar in real space

Other methods

t-SNE: t-distributed Stochastic Neighbor Embedding

→ Construct neighborhood: Points 2-5 are neighbors of #1

 \rightarrow Introduce similarity between neighbors and scale to [0,1]: $similarity(1,2) = \frac{1}{d(1,2)}$

Neighbor	Similarity	Probability
2	0.4	0.19
3	0.8	0.39
4	0.45	0.22
5	0.38	0.19

New coordinates: (0.19, 0.39, 0.22, 0.19) "stochastic neighborhood embedding"

find similar probability distribution in lower space

densMAP: Augmented UMAP so that point density is preserved

Resources:

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html http://cb.csail.mit.edu/cb/densvis/

A comparison of the clustering algorithms in scikit-learn

https://scikit-learn.org/stable/modules/clustering.html

Things to consider

- Many parameters invite to "adjust" the data analysis
- Danger to over-interpret the visual "distance"
- How much data structure is preserved is still a matter of debate