Chapter 4: Stembridge Crystals

Recall:

(1) Fix
$$\Phi = (\Phi, \Sigma, I, \Lambda)$$
 $I \leftrightarrow \Sigma \subset \Phi \subset \Lambda \subset V$

(2) $\Theta = (e, h, e, f, e, \psi, h, e, \psi)$ is a Φ -crystal

(A1) $\forall x, y \in P$, $y = e, x : ff \times = f, y$
 $\forall x, y \in P$, $\forall y \in P, y \in P,$

(A2)
$$\varphi_i(x) - \varepsilon_i(x) = \langle w+(x), \alpha_i^{\nu} \rangle$$

(3) Given
$$x \in \mathcal{C}$$
 let

(i) $F_i(x) = \max_i \frac{1}{k} \frac{1}{k} 0$; $e_i^k(x) \neq 0$!

(ii) $F_i(x) = \max_i \frac{1}{k} \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

If $f_i(x) = \max_i \frac{1}{k} 0$, $f_i^k(x) \neq 0$!

Prop 2.32 (B&C) & D -> B&(C&D)

 $(886) \otimes 2 \longrightarrow$ is an iso.

\$4.1 Motivation
Fix \$\P\$, let \$P\$ be a \$\P\$-crystal.
Def: · u ∈ C st. e;u = O Y;
is a HWE.
· x,y & e, set x ≥ y iff
∃ (i,, ik) ∈ Ik, ∃k s.t.
$x = e_1 \dots e_n(u)$
$2m : X = e_{11} e_{1k} (y) =) wt(x) = wt(y) + Z_{j} x'_{j}$ $=) wt(x) \ge wt(y).$
\Rightarrow wt(x) \geq wt(y).
V
m 4.1 If 3! HWE LE C
\Rightarrow /w+(w) \geq w+(x) \forall x
\Rightarrow /w+(u) \succeq w+(x) \forall x connected
Let M= Tyee; ytx, txee}
(x > p + 2 xE, y Y) wo waiz , Ø ≠ M (=
, , , , , , , , , , , , , , , , , , , ,

 $\exists x \text{ s.t. } u \prec x$. $\Rightarrow M = \langle u \rangle$. \square

Can we define a map Problem 4.2 [semi-normal Φ -crystals] (3! u_{λ} HWE, $w+(u_{\lambda}) = \lambda$) BX. closed under 8? which Źι (also: char $(B_{\lambda}) = char(V_{\lambda})$ 11 Recall 12 ۱۱ 3 22 22 13 23 fi: rightmost it >i+1

For \$ simply-land: Stembridge!

Given
$$\Phi = (\Phi, \Sigma, I, \Lambda)$$

$$\int J \subseteq I$$

$$\Phi_{J} = (\Phi_{J}, \Sigma_{J}, J, \Lambda)$$
Levi Branching.

If C is a Φ - crystal
$$\Rightarrow C$$
 is also a Φ_{J} -cristal
$$(aisregard lei, fi, Ei, QilieJ).$$
Idea: Consider branchings for
$$J \subseteq I \quad \text{with } |J| = 2$$
Possibilities:
$$\Phi_{J} \quad \text{of type } |A_{I} \times A_{I} \text{ or } A_{2}|$$
if Φ is simply-laced.

Len 44 Assume $\langle \alpha_{i}, \alpha_{i}^{y} \rangle = -1 \quad \text{leix} \neq 0$. Then
$$Q_{I}(e_{I}x) - Q_{I}(x) = \mathcal{E}_{I}(e_{I}x) - \mathcal{E}_{I}(x) - 1$$
Pf. $(A1)$: $\langle wt(e_{X}), \alpha_{J}^{y} \rangle = \langle wt(x), \alpha_{J}^{y} \rangle - 1$

(A2): $\Psi_{j}(e_{i}x) - \varepsilon_{j}(e_{i}x) = \Psi_{j}(x) - \varepsilon_{j}(x) - 1$

Let
$$C$$
 be a C -crystal with C simply-land.

(SO) $C_{1} \times C_{2} = 0 \Rightarrow C_{1} \times C_{2} = 0$

(SO') $C_{1} \times C_{2} = 0 \Rightarrow C_{2} \times C_{2} = 0$

Rem: C seminormal C (SO), (SO').

(SI) $C_{1} \neq C_{2} = C_{2$

Pf.
$$\varphi_j(e_ix) - \varepsilon_j(e_jx) = \langle wh(e_ix), e_jy \rangle$$
 (A2)
$$= \langle wh(e_ix), e_jy \rangle + \langle e_i, e_jy \rangle$$
 (A2)
$$= \langle y_j(x) - \varepsilon_j(x) + \langle e_i, e_jy \rangle$$
 (A2)
$$(A2)$$
Claim follows from (S1).

(S2) $i \neq j \in I$, $x \in C$ with
$$\begin{cases} \varepsilon_j(e_ix) = \varepsilon_j(e_ix) > 0 \\ \varepsilon_j(e_ix) = \varepsilon_j(e_ix) > 0 \end{cases}$$

$$\Rightarrow \begin{cases} \varepsilon_j(e_ix) = \varepsilon_j(e_ix) \\ \varepsilon_j(e_ix) = \varepsilon_j(e_ix) \end{cases}$$

$$\Rightarrow \begin{cases} \varepsilon_j(e_jx) = \varepsilon_j(e_ix) \\ \varepsilon_j(e_ix) = \varepsilon_j(e_ix) + 1 > 1 \end{cases}$$

$$\Rightarrow \begin{cases} \varepsilon_j(e_jx) = \varepsilon_j(e_ix) + 1 > 1 \\ \varepsilon_j(e_ix) = \varepsilon_j(e_ix) + 1 > 1 \end{cases}$$

$$\Rightarrow \begin{cases} \varepsilon_j(e_jx) = \varepsilon_j(e_jx) \\ \varepsilon_j(e_jx) = \varepsilon_j(e_jx) \end{cases}$$

$$\Leftrightarrow \begin{cases} \varepsilon_j(e_jx) = \varepsilon_j(e_jx) \\ \varepsilon_j(e_jx) = \varepsilon_j(e_jx) \end{cases}$$

$$\Leftrightarrow \begin{cases} \varepsilon_j(e_jx) = \varepsilon_j(e_jx) \\ \varepsilon_j(e_jx) = \varepsilon_j(e_jx) \end{cases}$$

Let
$$Z = e_j x$$
.

$$(*) \Rightarrow \varepsilon_j (e_i z) = \varepsilon_j (z) + 1$$

$$(4.5)_{i_i} \Rightarrow \varphi_j (e_i z) = \varphi_j (z)$$

$$\Leftrightarrow \varphi_j (e_i e_x) = \varphi_j (x) + 1$$
Now: $\varphi_j (e_i^2 e_j x) = \varphi_j (e_i x)$

$$\frac{\varphi(e_i e_{jx})}{e_{ix}} = \frac{1}{2}$$

$$e_j x) = \varphi_j$$

$$= \varphi_{j}(x)$$

$$= \varphi_{j}(e_{j}e_{i}x)$$

$$= \varphi_j(e_je_ix) - 1$$

$$= \varphi_j(e_je_jx) - 1$$

$$= \varphi_{j}(e_{i})$$

$$= \psi_{j}^{3} (e^{i})$$

$$\varepsilon_{j}(e_{i}^{2}e_{j}x)=\varepsilon_{j}$$

$$e_i^2 e_j x$$
) = ϵ

$$(52) \implies \varphi_{i}(e_{i}e_{i}e_{j}x) = \varphi_{i}(e_{i}e_{j}x)$$

$$(4) \iff 0 (e_{i}^{2}e_{i}x) = (0 \cdot (e_{i}e_{j}x))$$

$$(4.5)_{(1)} \Longrightarrow \varepsilon_{j}(e_{i}^{2}e_{j}x) = \varepsilon_{j}(e_{i}e_{j}x)$$

Contradicting (t)

(CA)
$$\Leftrightarrow$$
 $\varphi_i(e_j^2e_ix) = \varphi_i(e_je_ix)$
Swapping i,j above
 $\varphi_j(e_i^2e_jx) = \varphi_j(e_ie_jx)$

$$= \psi_{j}(e_{i}e_{j}x) - 1$$

$$2_{e_{i}v} = \epsilon_{i}(e_{i}e_{j}x)$$

$$\rho_{j}(e_{j}e_{i}x) - 1$$
 (A2)
 $\rho_{j}(e_{i}e_{j}x) - 1$ (CA)

Dual axioms:

(SI')
$$i \neq j \in I$$
, x , $f_{i}x \in \mathcal{C}$

$$\Rightarrow \varphi_{j}(f_{i}x) = |\varphi_{j}(x)|$$

$$|\varphi_{j}(x) + 1| \Leftrightarrow \langle \alpha_{i}, \alpha_{j}^{v} \rangle = -1$$
(S2') $i \neq j \in I$, x , $f_{i}x \in \mathcal{C}$ with
$$|\varphi_{i}(x) > 0|$$

$$|\varphi_{j}(f_{i}x) = |\varphi_{j}(x)| > 0$$

(S21)
$$i \neq j \in I$$
, $x_j \neq i \times j \in U$ with $(x_j) \neq i \times j \in U$ with $(x_j) \neq i \times j \in U$ $(x_j) \neq i \times i \times j \in U$ $(x_j) \neq i \times i \times i \times U$ $(x_j) \neq i \times i \times U$ $(x_j) \neq i \times U$ $($

1+jeI, XEC with

Q((x) = Q(x) +1 >1

P, (f,x) = P, (x) +1 >1

 $\int f(t_3) dt = f(t_3) dt + 0$

 $\varepsilon_{i}(f_{i}x) = \varepsilon_{i}(f_{i}^{2}f_{i}x)$

E (fix) = E (fi2fix)

(23)

Def: · C weakly Stembrige if (SO-S3) & (SO'-S3') holds · C Stembritge if weakly Stembridge + seminormal. Prop 4.7 P wSt,

i * j with < \ai, \aj' > =-1 If x & C , / E; (x) > 0

) \(\xi_{i}(e_{j}x) = \xi_{i}(x) + 1 \) => &; (e; qx) = &; (x) -1 Rem 4-8 C fin. type. C satisfies (SI-S3)

iff CV satisfies (SI'-S3') Prop 4.9 C WSt. xee with 1 ex, eix, ejeix, ejeix =0 $\Rightarrow \varphi_i(e_i^2e_ix) < \varphi_i(e_ie_ix)$.

§4.3 Stembridge Crystals are mon. cat. Now: (52'), (53') hold for e, D (seminormal) => (52), (53) hold for e, D' fin. type) => (52) (53) hold for D'8 e' = (40D) =) (621), (531) hold for (COD) \$44 Properties of St Cry. Thin 4.11 B the std Ar or Dr crystal Any full (i.e. union of components)
subcrystal of B&k is St-Cry
In particular and Cryst. of tableaux is Stay.

Both are checked to be StCry D Thm 4.2 [St, 03] e w StCry, non-empty, upper seminormal and bounded above (i.e. tr, they st x x y) >> E has a unique HWE. Pf: $C \neq \emptyset$ bold above $\Rightarrow \exists \times \text{max'l element}$. $\Omega := \exists y; y \in \Omega \text{ but } 0 \neq e; y \notin \Omega, \exists i \exists$ claim: S=Ø. If not, let $y \in S$ be maximal (3om Lemma) $x > y = \exists i \neq j \in I$ s.t. $e_{i}y \neq 0$, $e_{j}y \neq 0$. If $(s_{2}) \Rightarrow e_{j}y = e_{j}e_{i}x \neq 0$ or $(s_{3}) \Rightarrow e_{i}e_{j}^{2}e_{i}y = e_{j}e_{i}^{2}e_{j}y \neq 0$.

ejy
$$\not= y \Rightarrow e_j y \notin S$$
 $\Rightarrow e_j e_j y \notin S$
 $\Rightarrow e_j e_j y \notin S$
 $\Rightarrow e_j e_j y \notin S$
 $\Rightarrow e_j e_j e_j y \in \Omega \setminus S$
 $\Rightarrow e_j e_j e_j e_j y = e_j e_j e_j y \in \Omega$

So $S = \emptyset$.

Claim: $e = Q$