Brad Morgan

Homework 6 – Econometric Analysis

Part A

 $X_i = \alpha + \beta small_i + \Upsilon regaid_i + \epsilon_i$

Regular class: $E(X_i \mid small = 0, regaid = 0) = \alpha \rightarrow regular$

Small class: $E(X_i \mid small = 1) = \alpha + \beta$

Regular aid class: $E(X_i \mid regaid = 1) = \alpha + \Upsilon$

 α = average value of X_i

Part B

 β = difference between a small class and regular class (small – regular)

 Υ = difference between a regular aid class and a regular class (regaid – regular)

Part C

- Below is the output for the regression that displays the correlation between the different characteristics of the Small and Regular Aid classes.
- The "_cons" coefficient is the Regular class value. The coefficients under Small and RegAid measure how far off the values are from the constant (Regular) mean
- The second chart displays the means across the class types. 2 is the mean value of the Regular class, which matches the constant in the first chart
- 1 = Small, 2 = Regular, 3 = Regular + Aid (RegAid)

. reg freelun	ch Small RegA	id, robust						
Linear regression		Number of obs = F(2, 5383) = Prob > F = R-squared =		5,386 3.58 0.0281 0.0013	ctypek mea			
				Root MS	SE =	. 49957	1	.4679527
		Robust					2	. 4739387
freelunch	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	3	.5088634
Small RegAid _cons	005986 .0349247 .4739387	.0170018 .0162611 .0115778	-0.35 2.15 40.94	0.725 0.032 0.000	0393165 .0030464 .4512415	.0273445 .0668029 .496636	Total	. 4845897

F-Test: 0.0281 → we are 95% confident that we should reject the null hypothesis

R-squared: 0.0013 → model has very little explanatory power

t-test: Small==0.725 → not significant RegAid==0.032 → significant

A 1 unit increase in a Small class causes a -0.00599 decrease in "freelunch". A 1 unit increase in a Regular Aid class causes a 0.349 increase in "freelunch".

Based on these two tables from "freelunch", we see that 46.8% of students in a Small class will receive a free lunch. In the Regular Aid Class, 50.9% of students will receive a free lunch. The Small class has a negative coefficient which means that it has a negative correlation with "freelunch". The RegAid class coefficient is positive which results in a positive correlation with "freelunch".

					st	RegAid, robus	asian Small 1	. reg whiteor
mean	ctypek	5,405 2.81 0.0601		Number of F(2, 540 Prob > 1			sion	Linear regress
.6840149	1	0.0011 .47039	=	R-square Root MSE				
.6772118	2							
.6490135	3	<pre>Interval]</pre>	[95% Conf.	P> t	t	Robust Std. Err.	Coef.	whiteorasian
.6691952	Total	.037878 .0018934 .6984417	0242719 0582899 .6559819	0.668 0.066 0.000	0.43 -1.84 62.53	.0158513 .0153497 .0108293	.0068031 0281983 .6772118	Small RegAid _cons

F-test: $0.0601 \rightarrow$ we are 90% confident that we should reject the null hypothesis

R-squared: 0.0011 → model has very little explanatory power

t-test: Small == $0.668 \rightarrow$ not significant RegAid == $0.066 \rightarrow$ significant at 90% confidence

A 1 unit increase in a Small class causes a 0.0068 increase in "whiteorasian". A 1 unit increase in a Regular Aid class causes a decrease in "whiteorasian" by 0.0282.

The chart above shows that 68.4% of students are either white or Asian in a small class and 64.9% in a regular aid class. The Small class coefficient is positive which results in a positive correlation in "whiteorasian" and a Regular Aid class is negative which results in a negative correlation with "whiteorasian".

. reg agein1985 Small RegAid, robust

Linear regress	sion			Number F(2, 53 Prob >	397) =	5,400 1.30 0.2733	ctypek	mean
				R-squar Root MS		0.0005 .35007	1	5.445202
							2	5.428408
agein1985	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]	3	5.42842
Small RegAid _cons	.0167942 .0000114 5.428408	.011955 .0113701 .00816	1.40 0.00 665.24	0.160 0.999 0.000	0066424 0222786 5.412411	.0402307 .0223014 5.444405	Total	5.433426

F-test: 0.2733 → we should not reject the null hypothesis

R-squared: $0.0005 \rightarrow$ model has very little explanatory power, the least of the characteristics

t-test: Small == 0.160 → not significant RegAid == 0.999 → not significant

A 1 unit increase in a Small class causes a 0.0167 increase in "agein1985". A 1 unit increase in a Regular Aid class causes a 0.000014 increase in "agein1985".

The average age of a student in 1985 in a small class is 5.45 years old. In a regular aid class, the average age is 5.43 years old. The values are evenly distributed. We can also see that both coefficients are positive, which means that there is a positive correlation between the coefficients and "agein1985".

. reg Twhiteorasian Small RegAid, robust

mean	ctypek m		Number of obs = F(2, 5405) = Prob > F =				Linear regression	
. 6835913	1	0.0010 .47039		R-square Root MSE				
.6775576	2					Robust		
.6490135	3	Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	Twhiteoras~n
		.0370977	0250302	0.703	0.38	.0158457	.0060338	Small
.6691938	Total	.0015353	0586235	0.063	-1.86	.0153435	0285441	RegAid
.0091930	IOUAL	.6987701	.656345	0.000	62.62	.0108205	. 6775576	_cons

F-test: $0.0614 \rightarrow$ we are 90% confident that we should reject the null hypothesis

R-squared: 0.0010 → model has little explanatory power

t-test: Small == $0.703 \rightarrow$ not significant RegAid == $0.063 \rightarrow$ significant at 90% confidence

A 1 unit increase in a Small class causes a 0.006 increase in "Twhiteorasian". A 1 unit increase in a Regular Aid class causes a 0.0285 decrease in "Twhiteorasian".

68.4% of teachers in a small class are white or Asian. 64.9% of teachers in a regular aid class are white or Asian. The Small class coefficients is positive which results in a positive correlation with "Twhiteorasian". The RegAid coefficient, on the other hand, is negative which results in a negative correlation with "Twhiteorasian".

						l, robust	Small RegAio	. reg totexpk
mean	ctypek	5,408 17.58 0.0000 0.0088	= = = =	Number of F(2, 540 Prob > FR-square			ion	Linear regress
9.018576	1	7.7412	=	Root MSE				
9.113016	2					Robust		
10.58567	3	Interval]	95% Conf.	P> t	t	Std. Err.	Coef.	totexpk
		.2897938	4786732	0.630	-0.48	.1959972	0944397	Small
		2.004681	9406272	0.000	5.43	.2713866	1.472654	RegAid
9.609283	Total	9.371729	. 854302	0.000	69.05	.1319698	9.113016	_cons

F-test: 0.0000 → we are 99% confident that we should reject the null hypothesis

R-squared: 0.0088 \rightarrow this model has more explanatory power than the others in **Part C**

t-test: Small == $0.630 \rightarrow$ not significant RegAid == $0.000 \rightarrow$ significant at 99% confidence

A 1 unit increase in a Small class causes a 0.094 decrease in "totexpk". A 1 unit increase in a Regular Aid class causes a 1.47 increase in "totexpk".

For total years of experience, the average tenure is 9.02 years for a small class and 10.59 years for a regular aid class. This proves that the teachers in a regular aid class have more experience when instructing children with disabilities. The negative coefficient for a Small class results in a negative correlation with "totexpk" and the positive coefficient from RegAid results in a positive correlation with "totexpk".

Part D

If the P-Value falls below 0.05, the value is significant. We will then reject the null hypothesis.

Free Lunch (freelunch)

P-Value(Small) == 0.725 → NOT SIGNIFICANT

P-Value(RegAid) == 0.032 → SIGNIFICANT at 95% confidence

P-Value(_cons) == 0.000 → SIGNIFICANT

White or Asian students (whiteorasian)

P-Value(Small) == 0.668 → NOT SIGNIFICANT

P-Value(RegAid) == 0.066 → SIGNIFICANT at 90% confidence

P-Value(cons) == $0.000 \rightarrow SIGNIFICANT$

Age in 1985 (agein1985)

P-Value(Small) == 0.160 → NOT SIGNIFICANT

P-Value(RegAid) == 0.999 → NOT SIGNIFICANT

P-Value(cons) == $0.000 \rightarrow SIGNIFICANT$

White or Asian Teachers (Twhiteorasian)

P-Value(Small) == 0.703 → NOT SIGNIFICANT

P-Value(RegAid) == 0.063 → SIGNIFICANT at 90% confidence

P-Value(cons) == 0.000 → SIGNIFICANT

Total Experience Teaching (totexpk)

P-Value(Small) == 0.630 → NOT SIGNIFICANT

P-Value(RegAid) == 0.000 → SIGNIFICANT at 99% confidence

P-Value(cons) == $0.000 \rightarrow SIGNIFICANT$

Part E

To distinguish the significant values, we can use the "test" command to compare the significance of the small and regular aid classes. The "test" command runs an F-test and the F-test of the overall significance indicates whether your regression model provides a better fit to the data than a model that contains no independent variables. Also, the F-test appears on output chart. You can do either. I will post the output below.

Free Lunch (freelunch)

- . test Small RegAid
- (1) Small = 0
- (2) RegAid = 0

$$F(2, 5383) = 3.58$$

 $Prob > F = 0.0281$

White or Asian Students (whiteorasian)

- . test Small RegAid
- (1) Small = 0
- (2) RegAid = 0

$$F(2, 5402) = 2.81$$

 $Prob > F = 0.0601$

Age in 1985 (agein1985)

- . test Small RegAid
- (1) Small = 0
- (2) RegAid = 0

$$F(2, 5397) = 1.30$$

 $Prob > F = 0.2733$

White or Asian Teachers (Twhiteorasian)

- . test Small RegAid
- (1) Small = 0
- (2) RegAid = 0

$$F(2, 5405) = 2.79$$

 $Prob > F = 0.0614$

Total Experience of Teachers (totexpk)

Part F

The regression for the following charts is based off of the variable "_Ischidk*" and the characteristics shown in **Part C**.

*For all of these tables below, I initially received all of the coefficients of the dummy variables. I screenshotted the dummy variables out to make the chart look neat. I included "_cons" but I had to take a separate screenshot for it.

Free Lunch (freelunch)

	. reg freelunch Small RegAid _Ischidk*, robust note: _Ischidk_14 omitted because of collinearity									
1	Linear regres:	sion		Number of obs =			5,386			
		F(80, 5	305)	=	214.25					
					Prob >	F	=	0.0000		
					R-squar	ed	=	0.3052		
					Root MS	E	=	.41973		
-	freelunch	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]		
-										
	Small	.0012137	.0147077	0.08	0.934	027	6195	.0300469		
	RegAid	.0180767	.0137331	1.32	0.188	008	B 4 59	.0449993		
	_cons	.9199356	.048922	18.80	0.000	.8240	0283	1.015843		

F-test: $0.0000 \rightarrow 99\%$ confident that we should reject the null hypothesis

R-squared: 0.3052 → this model has explanatory power

t-test: Small == 0.934 → not significant RegAid == 0.188 → not significant

A 1 unit increase in a small class causes a 0.0012 increase in "freelunch". A 1 unit increase in a regular aid class causes a 0.181 increase in "freelunch".

R-squared says that 30.52% of the variation in "freelunch" is explained by small and regular aid classes. The other 69.48% is not explained (error). Both coefficients are positive which means that they are positively correlated with "freelunch".

White or Asian Students (whiteorasian)

```
. reg whiteorasian Small RegAid _Ischidk*, robust
note: _Ischidk_65 omitted because of collinearity
                                        Number of obs =
Linear regression
                                                            5,405
                                        F(80, 5324)
                                                       > 99999.00
                                        Prob > F
                                                           0.0000
                                        R-squared
                                                           0.7378
                                        Root MSE
                                                            .24273
                        Robust
                Coef. Std. Err.
whiteorasian
                                  t P>|t|
                                               [95% Conf. Interval]
             -.0077297
                        .00829 -0.93 0.351 -.0239815 .0085221
     Small
             -.0091348 .007905 -1.16 0.248 -.0246317 .0063622
     RegAid
     cons
             .9530454 .0369332 25.80 0.000 .8806412 1.02545
```

F-test: 0.0000 → we are 99% confident that we should reject the null hypothesis

R-squared: 0.7378 → model has a lot of explanatory power, good model

t-test: Small == 0.351 → not significant RegAid == 0.248 → not significant

A 1 unit increase in a small class causes a 0.0077 decrease in "whiteorasian". A 1 unit increase in a regular aid class causes a 0.0091 decrease in "whiteorasian".

R-squared states that 73.78% of the variation in "whiteorasian" is explained by small and regular aid classes. The other 26.22% is not explained (error). Both coefficients are negative which means that small and regular aid classes are negatively correlated with "whiteorasian".

Age in 1985 (agein1985)

. reg agein198	_	_		ity			
Linear regress	sion			Number	of obs	=	5,400
	F(80, 5	319)	=	2.13			
				Prob >	F	=	0.0000
				R-squar	ed	=	0.0309
				Root MS	E	=	.34722
	I						
		Robust					
agein1985	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
Small	.0139545	.0119959	1.16	0.245	009	5624	.0374713
RegAid	.0039446	.0116571	0.34	0.735	018	9081	.0267972
_cons	5.369787	.0638351	84.12	0.000	5.24	14644	5.49493

F-test: 0.0000 → we are 99% confident that we should reject the null hypothesis

R-squared: 0.0309 → little explanatory power

t-test: Small == 0.245 → not significant RegAid == 0.735 → not significant

A 1 unit increase in a small class causes a 0.014 increase in "agein1985". A 1 unit increase in a regular aid class causes a 0.0039 increase in "agein1985".

R-squared states that 3.09% of the variation in "agein1985" is explained by small and regular aid classes. The other 96.91% is not explained (error). Both coefficients are positive which means that small and regular aid classes are positively correlated with "agein1985".

White or Asian Teachers (Twhiteorasian)

- 1	. reg Twhiteorasian Small RegAid _Ischidk*, robust note: _Ischidk_65 omitted because of collinearity									
	Linear regression Number of obs = 5,40									
1					F(80, 5	327)	>	99999.00		
1					Prob >	F	=	0.0000		
					R-squar	ed	=	0.7371		
					Root MS	E	=	.24309		
		T								
1			Robust							
	Twhiteoras~n	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]		
	Small	0085143	.0083032	-1.03	0.305	024	7919	.0077634		
	RegAid	0098849	.0079219	-1.25	0.212	02	5415	.0056452		
	_cons	. 953547	.0369404	25.81	0.000	.881	1286	1.025965		

F-test: 0.0000 → we are 99% confident that we should reject the null hypothesis

R-squared: 0.7371 → model has a lot of explanatory power

t-test: Small == 0.305 → not significant RegAid == 0.212 → not significant

A 1 unit increase in a small class causes a 0.0085 decrease in "Twhiteorasian". A 1 unit increase in a regular aid class causes a 0.0099 decrease in "Twhiteorasian".

R-squared states that 73.71% of the variation in "Twhiteorasian" is explained by small and regular aid classes. The other 26.29% is not explained (error). Both coefficients are negative which means that both small and regular aid classes are negatively correlated with "Twhiteorasian".

Total Experience of Teachers (totexpk)

. reg totexpk Small RegAid _Ischidk*, robust note: _Ischidk_65 omitted because of collinearity

Linear regression	Number of obs	=	5,408
	F(80, 5327)	=	115.25
	Prob > F	=	0.0000
	R-squared	=	0.2599
	Root MSE	=	6.7377

totexpk	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Small RegAid	0650954 1.56631	.2025013 .2168953	-0.32 7.22	0.748 0.000	4620808 1.141106	.33189 1.991513
_cons	10.80329	.5167507	20.91	0.000	9.790244	11.81633

F-test: 0.0000 → we are 99% confident that we should reject the null hypothesis

R-squared: 0.2599 → model has explanatory power

t-test: Small == $0.748 \rightarrow$ not significant RegAid == $0.000 \rightarrow$ significant at 99%

R-squared states that 25.99% of the variation in "totexpk" is explained by small and regular aid classes. The other 74.01% is not explained (error). The small class coefficient is negative which means that it is negatively correlated with "totexpk" and the RegAid class coefficient is positive which means that there is a correlation between regular aid classes and "totexpk".

Part G

Based off of the estimates, **Part F** DOES support the notion that the class types were randomly assigned conditional on the schools. There is a huge difference in the R-Squared values between Part C and Part F. Within any given school, the numbers are evenly distributed across the class types. However, across all of the schools, they are not evenly distributed.