Tracking Detectors Based on CVD Diamonds

Michael Reichmann

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institute of Particle Physics and Astrophysics, ETH Zürich

Setup **Device under Test** Scintillator Telescope Planes

- ▶ particle beam to investigate DUTs (devices under test)
- beam "telescope": information where particles hit the DUT
- ▶ telescope: two pixelated planes before and after the DUT
- \blacktriangleright 4160 pixel à 150 µm \times 100 µm per each plane
- ▶ fast scintillator at the end for precise trigger timing \mathcal{O} (5 ns)

3D Detectors

Detectors

Detector & Fabrication

- ▶ 3D = bias and readout electrode inside detector material
- ightharpoonup same thickness $D o ext{same}$ induced charge $o ext{shorter}$ drift path L
- increase collected charge in detectors with limited mean drift path
- introduce low field regions

- ▶ "drilling" columns using 800 nm fs-LASER
- ► convert diamond into resistive mixture of carbon phases (i.a. DLC)
- ► column yield: ≥99.8 %
- > column diameter: 2.6 μm

(b) 3×2 bump pads

- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- \triangleright small gap (\sim 15 µm) to the surface
- bump bonding to pixel readout chip

Figure: Final detector on a readout chip.

Analysis

- pixel readout chip provides pixel hits with pulse height
- ▶ need to apply cuts to select meaningful events
- cuts applied in order of the following table

Cut	Excluded Events
event range	first minute of the run due to various beam conditions
beam interruptions	during rate changes of the beam due to beam interruption
aligned	DUT and Telescope are not aligned (event-wise)
trigger phase	Chip trigger timing is incorrect
tracks	not all telescope planes have exactly one cluster
chi2 (x/y)	badly fit tracks (>50 % quantile)
track slope (x/y)	large angles of the tracks (>2 deg)
rhit	large DUT residual (>100 mm)
pixel mask	noisy pixels
fiducial	not in selected (fiducial) area of the DUT

Figure: Cut contributions.

Detector & Fabrication

- detectors operated as ionisation chambers
- ► metallisation on both sides + readout = detector

(b) Pad Detector with Amplifier

- ▶ cleaning, photo-lithography and Cr-Au metallisation
- ▶ gluing to PCBs in custom built amplifier boxes
- \triangleright connecting to low gain, fast amplifier with $\mathcal{O}(5 \text{ ns})$ rise time

CVD Diamonds for Tracking

- ▶ inner tracking layers of future detectors → extreme radiation damage \mathcal{O} (GHz/cm²)
- ▶ R&D for more radiation tolerant detector designs and/or materials
- investigation of diamond as a future material for tracking detectors
- b diamonds artificially grown with chemical vapour deposition (CVD)
- poly crystalline (pCVD) diamonds available in wafers of 15 cm diameter

Properties of Diamonds:

Value	Silicon	Diamond	Property
Band Gap [eV]	1.12	5.45	low leakage current
Electron Mobility	1450	2200	fast signals
Hole Mobility	500	1600	fast signals
Resistivity [Ω cm]	$2.3 \cdot 10^{5}$	>10 ¹¹	low leakage current
Dielectric Constant	11.9	5.7	low input capacitance
Displacement Energy [eV]	13-20	43	radiation tolerant
Thermal Conductivity [W/cmK]	1.5	22	no cooling
e-h Creation Energy [eV]	3.6	13	low signals
e-h pairs per MIP per μm	89	36	low signals

▶ smaller signal than in silicon with same thickness (large bandgap) ▶ after $1 \cdot 10^{16} \, \text{n/cm}^2$ the mean drift path in diamond larger than in

silicon Research Goals:

- measure signal dependence of pCVD diamond detectors on incident particle flux using a pad detector geometry
- investigate novel detector design of a 3D geometry as potential candidate for future tracking detector

Results

built two very similar 3D detectors on different readout chips

	B5	В6
readout chip (ROC)	FE-I4B	PSI46digv2.1respin
pixel pitch	$250\mu\text{m}\times50\mu\text{m}$	$150\mu\text{m}\times100\mu\text{m}$
3D cell size	$50\mu m imes 50\mu m$	$50\mu\text{m} imes 50\mu\text{m}$
ganging	5×1	3×2
size	$4.90\mathrm{mm} \times 4.94\mathrm{mm}$	$4.85\mathrm{mm}\times4.90\mathrm{mm}$
thickness	510 μm	500 μm
$50 \text{pixels} \times 50 \text{pixels}$	53×67	67×53
3D columns	7223	7223
column diameter	2.6 µm	2.6 µm
active area	$3.2\mathrm{mm} \times 3.5\mathrm{mm}$	$3.45\mathrm{mm} \times 3.19\mathrm{mm}$
bump bonding	tin silver (IFAE)	indium (Princeton)

- ▶ telescope tracking resolution at DUT: \mathcal{O} (100 µm)
- ► magenta area → bump bonding problems
- ightharpoonup green area \rightarrow void in the diamond
- ▶ efficiency in blue box: 99.2% (→ 99.6% expected due to columns)
- efficiency already plateaus at 30 V

Figure: Pulse height distribution.

- ▶ threshold of the chip: \sim 3700 e ▶ mean from MC of Langau fit: \sim 14 500 e
- distribution below threshold not understood

Analysis

▶ digitised diamond waveforms with DRS4 Evaluation Board at 2 GS/s

Figure: Raw waveform.

▶ DRS4 memory cells vary in size → timing correction required

Figure: 100000 time corrected waveforms.

- ▶ signals in every bunch of the beam
- ▶ most dominant peak (@ \sim 85 ns) → triggered signal
- ▶ no signals in pre-trigger bunch due to trigger dead time
- ▶ use this region to measure noise

- ▶ find the triggered peak by max value
- ▶ signal: integrate asymmetrically around the peak
- ▶ noise: same integration window in centre of pre-trigger bunch
- ▶ final pulse height: signal pedestal integral event by event

Results

- ▶ noise distribution agrees well with Gaussian even at high rates
- extract noise by taking the sigma of the Gaussian fit
- ▶ signal distribution Landau shaped
 - ▶ widened due to superimposition of many Landaus from different regions in the poly crystal

- regions with different pulse heights in pCVD diamond
- ▶ signals corresponding to wide Landau
- rate scaled to the mean
- ▶ pulse height very stable after irradiation

Conclusion

Pad Detectors:

- built beam test setup to characterise the rate behaviour of diamond pad detectors
- ▶ pCVD diamond show non-uniformity according to wide landau of the signal depending on the position in the diamond
- ▶ rate dependence for most non-irradiated pCVD <5 %
- ▶ unknown origin, maybe surface contamination during production ▶ possible to fix with surface treatment
- ▶ detectors with irradiated pCVD diamond sensors have a rate dependence below $\sim 2\%$ up to a flux of $20 \,\mathrm{MHz/cm^2}$

3D Detectors:

- ▶ 3D Detectors work well in pCVD diamond
- \triangleright cell sizes down to $50 \, \mu \text{m} \times 50 \, \mu \text{m}$
- ► thin columns down to 2.6 μm general reasons for inefficiencies:
- ▶ less charge in volume of the electrodes (0.4 % for shown devices)
- ▶ missing/broken columns (0.2 % for the full device) \triangleright region with low electric field \rightarrow need precise simulations
- \triangleright (99.2 ± 0.3) % efficiency in 3 × 2 ganged device
- \triangleright consistent mean charge measurements for all devices: \sim 14 500 e
- ▶ largest charge collection of all pCVD diamond detectors
- michael.reichmann@cern.ch September 3, 2019