

TECHNICAL REPORT 74-9-AD (II)

DEVELOPMENT OF A TOTAL TRAJECTORY SIMULATION FOR SINGLE RECOVERY PARACHUTE SYSTEMS

Volume II: Calculation Procedures and Computer Program

Robert A. Noreen
and
David P. Saari
University of Minnesota
Minneapolis, Minnesota USA
Project reference: 1F162203AA33
December 1973

Approved for public release; distribution unlimited.

UNITED STATES ARMY
NATICK LABORATORIES
Natick, Massachusetts 01760

Airdrop Engineering Laboratory

	4.			
ΔD		· .	1.	
111		 	 	

TECHNICAL REPORT

74-9-AD (II)

DEVELOPMENT OF A TOTAL TRAJECTORY SIMULATION FOR SINGLE RECOVERY PARACHUTE SYSTEMS

VOLUME II: Calculation Procedures and Computer Program

by

Robert A. Noreen David P. Saari

University of Minnesota Minneapolis, Minnesota USA

Contract No. DAAG17-72-C-0030

Project reference: 1F162203AA33

December 1973

Airdrop Engineering Laboratory U. S. Army Natick Laboratories Natick, Massachusetts 01760 Company of the Company

THE WASHING

and providing for the regular services.

the transfer of the second

Andrew Berger (1985) and the second of the s

 $\mathbf{e}_{i}(\boldsymbol{x}^{k}) = \boldsymbol{e}^{(k)} \cdot \boldsymbol{e}^{(k$

ERRATA

Technical Report 74-9-AD

Development of a Total Trajectory Simulation for Single Recovery Parachute Systems, Volume II: Calculation Procedures and Computer Program by Robert A. Noreen and David P. Saari, December 1973.

(1) On page 22, Equation (4)

$$\Delta V = \frac{PV^2 C_0 S_T}{2m_{rs}} \Delta t$$
 should be $\Delta V = -\frac{PV^2 C_0 S_T}{2m_{rs}} \Delta t$

(2) On page 35, in Eugation 47

$$+\frac{V}{m_T}$$
 ($\Delta m_i + \Delta m_a$) term should be $-\frac{V}{m_T}$ ($\Delta m_i + \Delta m_a$)

FOREWORD

This work was performed under US Army Natick Laboratories Contract No. DAAG17-72-C-0030 during the period 15 November 1971 and 30 June 1973. The project number was 1F162203AA33 and the task number was 04 entitled "Study of Dynamic Stability Characteristics of Parachute-Load System". Mr. Edward J. Giebutowski served as Project Officer.

The objective of the effort was to produce a computerized trajectory simulation which would describe the motion of a single parachute and its cargo from the time of release from the aircraft to the time of impact.

This report is intended to serve as a user manual for the computer program developed in Volume I. It includes flow charts for the major routines, a listing of computer mnemonics and a program listing. Sample output for some trial cases is also included.

CONTENTS

I.	Int	rodu	ction	. 1	Page 1
II.	Gen	e ra 1	Description	•	2
	A. B. C.	Bas	ic Program Organization	•	2
III.	Des	crip	tion of Computer Program	•	17
	Α.	MAI	N PRÓGRAM	•	17
		1. 2. 3. 4.	Input Output Common Blocks Method		17 18 18 18
	В.	Sep	aration-Deployment Phase	•	19
		1.	Subroutine EXTRACT	•	19
			a. Input b. Output c. Formal Parameters d. Common Blocks e. Method	•	20 20 20
			 i) Static Line System ii) Static Line Deployed Pilot Chute System iii) Extraction Parachute System iv) Reefed Main Parachute Extraction System 	•	21 22
		2.	Subroutine SNATCH	•	23
			a. Input b. Output c. Formal Parameters d. Common Blocks e. Methods		23 23 23 23 23
		3.	Subroutine BODIES	•	25
			a. Inputb. Outputc. Formal Parameters	•	25 25 25

		d. Common Blocks	6
C.	Inf	lation of the Main Parachute 2	6
	1.	Subroutine ØPENING	7
		c. Formal Parameters	7
	2.	Subroutine FILLTIM	0
		a. Input b. Output c. Formal Parameters d. Common Blocks e. Methods	1 31 31
	3.	Subroutine CALC	3
		b. Output	13 13 13 13
D.	Fre	ee Descent; Three Degrees of Freedom 3	35
	1.	Subroutine MØTIØN	36
		b. Output	36 36 36 37
	2.	Subroutine INTGRAT	1
		b. Output c. Formal Parameters d. Common Blocks	+1 +1 +1 +1
100		e. Methods	

	3.	Subroutine FØRMULA
		a. Input
		b. Output
		c. Formal Parameters
		d. Common Blocks
		e. Methods
	4.	Subroutine EMØTIØN 45
		a. Input
		b. Output 45
		c. Formal Parameters 45
		d. Common Blocks
		e. Methods
	5.	Subroutine DYNAMIC 48
		a. Input 48
		b. Output 48
		c. Formal Parameters
		d. Common Blocks
		e. Methods
	6.	Subroutine CØEFFTS 50
		a. Input 50
		b. Output 50
100		c. Formal Parameters 51
		d. Common Blocks 51
		e. Methods 51
Ε.	Free	Descent; Six Degrees of Freedom 53
	1.	Subroutine MØTIØN
		a. Input 54
		보다 그는 내고를 가득하는 말리 그는 이렇게 함께서를 가져 한 것이 되었다. 중에 없는 장에 가는 생기를 하고 있다.
		그들이 그는 그는 그는 그를 가려 가고싶다면 되었다. 그들은 사람들은 사람들이 가지 않는 것이 되었다.
		그는 그는 사람들은 그는 그를 그렇게 되어 살아왔다면 그는 그를 하게 하면 사람들이 가득하는 점점을 하는 것이 되었다. 그런 그렇게 하는 그렇게 하는 것이 없다.
		하지 않는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.
	2.	Subroutine EMØTIØN 56
		a. Input
		b. Output
7 ;		c. Formal Parameters 57
		d. Common Blocks 57
		e. Methods
		,一直一直,一点,一点,一直一点就是一点,一点,一点,一点,一点,一点,一点,一点,一点,一点,一点,一点,一点,一

									11.00					Pag	zе
		3.	Sub	coutine	CØSINES	3	•	• •	• • •	•	•	• • •	•	, 6I	-
1 2 4	$x = x_1$		4 .	v	5 1										
	ŷ .	j.	a.	Input Output		• •	•	• •	• •	•	•	•	•	, 61	
			b.	Output		• • •	• •	• •	• .	•	•	•		61	
			c.	Formal	Paramet	cers	•			• .	s •	• •	•	, 61	-
			d.	Common	PTOCKS							•		, 04	•
			e.	Methods	• • •	• •	•	• , •	• •	•	•	•	• •	, 62	:
	4							1 1/1 1							
		4.	Sub	coutine	COEFFIX	• •		• •	•	•	•	•	•	63)
			a.	Input								•		63	3
	er je	e ·	b.	Input Output		. (10			63	}
			c.	Formal	Paramet	ers						•		63	
			d.	Formal Common	Blocks							Ţĸ.	•	63	
			е.	Methods	1								• •	63	
			3.5												
	F.	DENS	SITY	and TRA	JEQN .		•	•	•	•	•	•	•	, 65)
		1.	Sub	routine	DENSTTY	γ								65	5
		-•	Dub.	LOGICATIO	DUITOLA .	• •									
			a.	Input	• • • •			• •		•	•	•		65	
			b.	Output					• •		•	•		, 65)
			c.	Forma1	Paramet	ters						•	•	65	,
				Common	Blocks					•		•	• (, 66	,
			e.	Method									•	, 66)
		2.	Sub:	routine	TRAJEQI	V	•	•	•	•	•	•	•	, 66)
			_	Tmmit										66	;
			a.		• • • • •									66	
			b.	Formal	Downwai	-040	•	• •		• •	•	•	•		
			c.	Formal	Paramet	Lers	•	• •	• •	• ; • ; •	•	•	• •	66	, :
			d.		Blocks										•
			e.	Method	• • •	• • •		• •	• •	•	•	•	•	, 00	, .
IV.	Col.	lina	Dar	ameters								1		. 68	ξ.
rv•	Ual.	rrng	rar	ameters	• • • •	•		• •	•	•	•	•	•	, 00	
	Α.	EXTI	RACT											68	3
,	В	SNA.												. 68	3
	Ĉ.	BØD.												68	3
	Ď.		NING										Ĭ	69	
	E.		LTIM								-			69	
	F.	CALC	, , , , , , , , ,			•			. •		_			69	
	G.	MØT.			• • •				•				•	69	
	H.		GRAT			• •	•				•			70	
	I.		riøn	• • •					•	•		•	•	70	
	J.		AMIC	• • •				•			•	•		70	
	K.		FFTS		• • •	• • •	•		• •			•		. 71	
	T/ 0	וונשט	1.10	• • •	• • •	• • •	•	• •	• • • •		•	•	•	, ,	-

	L. CØEFFTS M. CØSINES N. DENSITY O. TRAJEON	. 71 . 72
V .	O. TRAJEQN	
	Computer Program Symbols	314 A. F. S. S.
VII.	Computer Program Source List	.157
vIII.	Input Data Card Format	.185
IX.	Sample Output	.198
Χ.	References	-227

ILLUSTRATIONS

Fig.	Title	Page
1	Determination of the Separation-Deployment System in Subroutine EXTRACT	. 6
2	Static Line System	. 8
3	Sequence of Computer Solution for Static Line System	. 9
4	Static Line Deployed Pilot Chute System	. 10
5	Sequence of Computer Solution for Static Line Deployed Pilot Chute System	. 11
6	Extraction Parachute System	. 13
7	Sequence of Computer Solution for Extraction Parachute System	. 14
8	Reefed Main Parachute Extraction System	. 15
9	Sequence of Computer Solution for Reefed Main Parachute Extraction System	. 16
10	MAIN PRØGRAM	74
11	Subroutine EXTRACT	. 77
12	Subroutine SNATCH	. 81
13	Subroutine BØDIES	. 84
14	Subroutine OPENING	
15	Subroutine FILLTIM	. 88
16	Subroutine CALC	89
17	Subroutine MØTIØN (Three Degrees of Freedom)	90
18	Subroutine INTGRAT	. 94
19	Subroutine FØRMULA	96

ILLUSTRATIONS (CONT.)

Fig.	. The state of th		Page
20	Subroutine EMØTIØN (Three Degrees of Freedom) .	•	. 97
21	Subroutine DYNAMIC	•	. 98
22	Subroutine CØEFFTS (Three Degrees of Freedom) .	•	. 99
23	Subroutine MØTIØN (Six Degrees of Freedom)	•	. 100
24	Subroutine EMØTIØN (Six Degrees of Freedom)	•	. 104
25	Subroutine CØEFFTS (Six Degrees of Freedom)		. 105
26	Subroutine CØSINES	•	. 107
27	Subroutine DENSITY		. 108
28	Subroutine TRAJEQN	•	. 109
29	Computer Program for Three Degrees of Freedom .	•	. 158
30	Computer Program Allowing Six Degrees of Freedom for Free Descent Phase		. 171
31	Sample Output for the T-10 Parachute with Static Line System	•	. 199
32	Sample Output for the G-12D Cargo Parachute with Static Line Deployed Pilot Chute System		. 204
33	Sample Output for the Unreefed G-11A Cargo Parachute with Extraction Parachute System	•	. 209
34	Sample Output for the Reefed G-11A Cargo Parachute with Extraction Parachute System		. 214
35	Sample Output for the G-11A Cargo Parachute with Reefed Main Parachute Extraction System		. 222

TABLES

I		age 111
II	Computer Symbols for Subroutine EXTRACT	116
III	Computer Symbols for Subroutine SNATCH	119
IV	Computer Symbols for Subroutine BØDIES	122
V	Computer Symbols for Subroutine OPENING	124
VI	Computer Symbols for Subroutine FILLTIM	128
VII	Computer Symbols for Subroutine CALC	130
VIII	Computer Symbols for Subroutine MØTIØN (Three Degrees of Freedom)	132
IX	Computer Symbols for Subroutine INTGRAT	136
X	Computer Symbols for Subroutine FØRMULA	138
XI	Computer Symbols for Subroutine EMØTIØN (Three Degrees of Freedom)	139
XII	Computer Symbols for Subroutine DYNAMIC	142
XIII	Computer Symbols for Subroutine CØEFFTS (Three Degrees of Freedom)	144
XIV	Computer Symbols for Subroutine MØTIØN (Six Degrees of Freedom)	145
XV	Computer Symbols for Subroutine EMØTIØN (Six Degrees of Freedom)	149
XVI	Computer Symbols for Subroutine CØEFFTS (Six Degrees of Freedom)	153
XVII	Computer Symbols for Subroutine CØSINES	154
XVIII	Computer Symbols for Subroutine DENSITY	155
XIX	Computer Symbols for Subroutine TRAJEQN	156
XX	Input Data for Static Line System	186

TABLES (CONT.)

XXI	Input Data for Static Line Deployed Pilot Chute System	Page
XXII	Input Data for Extraction Parachute System	195
XXIII	Input Data for Reefed Main Parachute Extraction System	197

SYMBOLS

<u>a</u>	acceleration
^a ij	component of the matrix A, i th row, j th column, Eqns (149) through (157)
A	inverse of effective spring constant of suspension system, Eqn (10)
<u>A</u>	direction cosine matrix
B	Eqn (11)
c	effective porosity
C	Eqn (12)
c_{D_O}	drag coefficient of parachute based on nominal area
c_{D_p}	drag coefficient of parachute based on projected area
c _D s	drag area
c_{N_O}	aerodynamic normal force coefficient of parachute
$C_{M_{O}}$	aerodynamic moment coefficient of parachute
$\mathtt{CT}_{\mathbf{O}}$	aerodynamic tangent force coefficient of parachute
d	canopy inlet diameter
D	aerodynamic drag
D _o	nominal diameter of parachute
$\mathbf{D}_{\mathbf{p}}$	instantaneous projected diameter of parachute
$\mathtt{D}_{\mathtt{Pmax}}$	projected diameter of fully inflated parachute
<u> </u>	Force
<u>F</u> a	force due to included and apparent mass
$\mathbf{F}_{\mathbf{A}}$	aerodynamic force (during snatch)
Ep	allowable relative error in integration

F _{max}	opening shock
<u>F</u> N	aerodynamic normal force
Fo	instantaneous opening force
g	gravitational acceleration
h	altitude; D _p /D _o
Ī	inertia tensor of parachute-load system about its mass center
k	spring constant of suspension system
L	distance between load and secondary body or load and aircraft during deployment
1	distance from parachute-load system center of mass to load
L ₂	distance from parachute-load system center of mass to parachute center of volume
L ₃	distance from parachute-load system center of mass to parachute moment center
L _R	reefing line length
	distance load travels in aircraft; X-component of \underline{M} , body fixed
LBr	length of load bridle in Z-direction
LE	length of riser extension
$L_{\mathbf{R}}$	length of suspension lines
L _S	length of suspension lines
L _{static}	length of static line
m	mass
^m a	apparent mass of parachute
m _{Br}	mass of load bridle
m _E	mass of riser extensions

mass of included air in parachute canopy mass of suspension lines mass of pilot or extraction parachute and main m_{pb} parachute deployment bag total mass of load and packed recovery system mrs mass of risers m_R mass of suspension lines, risers, extensions, mss bridle and links total mass = $m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}$ $\mathbf{m}_{\mathbf{T}}$ mass of primary body during deployment of the mT suspension system = $m_0 + \frac{1}{2} m_{ss}$ moment acting on parachute-load system M Y-component of M, body fixed M aerodynamic moment due to parachute $\underline{\mathbf{M}}_{\mathbf{A}}$ mass of primary body at snatch = m + m s M_{τ} mass of secondary body during deployment of the M_{TT} suspension system = m_p + ½ m_{ss} + m_{pb} Z-component of M, body fixed N X-component of w, body fixed P P_{max} maximum snatch force Y-component of \underline{w} , body fixed; mass ratio, Eqn (15) Q position vector r reefing ratio; Z-component of ω, body fixed R reference distance from canopy skirt to parachute-load system center of mass in fully inflated configuration reference distance from canopy skirt to suspension s₁ line center of mass in fully inflated configuration

reference distance from canopy skirt to riser center s₂ of mass in fully inflated configuration reference distance from canopy skirt to riser extens₃ sion center of mass in fully inflated configuration reference distance from canopy skirt to load bridle s4 center of mass in fully inflated configuration reference distance from canopy skirt to load center s 5 of mass in fully inflated configuration reference distance from canopy skirt to parachute center of volume in fully inflated configuration s_c S nominal area t time t_{CD} reefing cutter delay time t_{D} time at which extraction or pilot parachute is released or main parachute is disreefed to initiate inflation final filling time; measured from end of bag strip t_{ff} to first attainment of hemispherical canopy volume filling time for reefed inflation period tfR T dimensionless time scale; aerodynamic tangent force of parachute t_{RCA} time at which reefing cutters are armed dimensionless time scale for reefed inflation periods T_R U X-component of v, body fixed general velocity; velocity of parachute-load system v mass center V general velocity; magnitude of velocity of parachuteload system center of mass snatch velocity, Eqn (16) V_S volume; Y-component of v, body fixed W Z-component of \underline{v} , body fixed; weight

X	space-fixed coordinate direction; position of parachute-load system center of mass
X	body-fixed coordinate
y	space-fixed coordinate direction; position of parachute-load system center of mass
Y	body-fixed coordinate
Z	space-fixed coordinate direction; position of parachute-load system center of mass
Z	body-fixed coordinate
α	angle of attack in XZ-plane
$lpha_{t}$	trajectory angle
β	angle of attack in YZ-plane
Υ	angle between velocity and XZ-plane
δ	angle between velocity and YZ-plane
η	allowable absolute error in integration
θ	Euler angle, system angle for problems constrained to three degrees of freedom
$\theta_{\mathbf{p}}$	angle between parachute velocity and systems axis
ν	integrand in Eqn (30)
ρ	air density
Po	sea level air density
o	air density ratio = ρ/ρ_0
<u>w</u>	angular velocity of parachute-load system
φ	Euler angle
di	Fuler anole

Subscripts

a	apparent
В	main parachute deployment bag
ex	extraction parachute(s)
i	included
	load
0	nominal, initial
p	parachute
R	referring to inflation of the main parachute with reefing
T	value required for instantaneous trajectory calculation
x	component in space-fixed x coordinate direction
X	component in body-fixed X coordinate direction
y	component in space-fixed y coordinate direction
Y	component in body-fixed Y coordinate direction
z	component in space-fixed z coordinate direction
Z	component in body-fixed Z coordinate direction
1	referring to end of reefed inflation stage
I	primary body
II	secondary body
	indicates vector quantity indicates matrix or tensor quantity

ABSTRACT

A method of total trajectory simulation was established which is based on the governing equations of the various phases of an airdrop or recovery system. In view of these equations, a computer program capable of predicting the performance characteristics of a parachute-load system from the instant of initiation to the moment of landing was established. Calculations were performed for a number of different aerial delivery systems. The calculated results fall well within the broad ranges of expected performance, based upon a familiarity with field test results.

In Volume I simulation methods and numerical calculation results are presented; in Volume II details of the calculation procedures and computer program are presented. The system is ready to be used for overall prediction of parachute performance characteristics and an intensive comparison of calculated and recorded field test results is highly desirable for validation and improvement of the technique of total trajectory simulation.

and Carlos and Araba Araba and Araba and

a ang 1986 ing pakasadidi kalendak palaman ng palaman kalenda i Manggarang kalendar ng palamanan kalendar ng palaman ng palaman ng palaman ng palaman ng palaman ng palaman ng

one in plantificial de la completa de la completa de la configuración de la completa de la completa de la comp La configuración de la completa de la co

The Mark Andrews (1997) and the State of the Control of the Contro

et angles, et form de l'imperèncie à l'imperènce à l'imperènce de l'imp L'imperènce de l'imp

I. INTRODUCTION

In this study mechanical and mathematical models have been selected to provide a total trajectory simulation for four parachute separation-deployment systems. In Volume I of this report these simulation methods are presented, and in this volume, Volume II, the calculation procedures for obtaining numerical results are shown.

The calculations were made using a Fortran IV computer program and a Control Data Corporation 6600 computer. Thus this volume presents the software documentation required for duplication and use of the computer program, beginning with a general description of the program and progressing to more detailed information. However, the various Sections cannot be considered independent; referring to later sections of the report may add to the understanding of the early sections.

The compile time with the standard Fortran compiler is approximately 5.6 seconds for the three degree of freedom solution and 7.1 seconds for the solution allowing six degrees of freedom for the free descent phase. The running time for the various trajectory calculations averaged about 7 to 8 seconds, ranging from 3 to 4 seconds for low altitude simulations to about 13 seconds for high altitude simulations.

II. GENERAL DESCRIPTION

The computer program for the total trajectory simulation can be considered to consist of three calculation phases organized to model four parachute separation-deployment systems. The three calculation phases correspond to the physical processes of an airdrop, and are: 1) separation and deployment, 2) inflation of the main parachute, and 3) free descent with consideration of dynamic characteristics. The first two phases have been limited to two dimensions; for free descent, the user can select two or three dimensional calculations. The program was organized with major subroutines directly related to physical processes so that calculation methods could be easily changed or improved by merely replacing a subroutine.

The user must select inputs that specify the physical characteristics of his parachute-load system and which of the four separation-deployment systems he is modeling. The separation-deployment systems are 1) static line, 2) static line deployed pilot chute, 3) extraction parachute, and 4) reefed main parachute extraction. The user also can have a range of outputs, from a nearly continuous print of trajectory data to only a few results at significant occurrences during the simulation.

A. Basic Program Organization

MAIN PRØGRAM is the first entry to the program; its basic functions are to read most of the input data, print some parameters of interest, sequence the calls to the major subroutines, and then either start the next simulation or terminate the run. Very few calculations are done in MAIN PRØGRAM itself, its major purposes are organization and sequencing.

The first functional call by MAIN PRØGRAM is to Subroutine EXTRACT, which is the first major subroutine that directs calculations for the separation-deployment process. EXTRACT calculates the process of separation from the aircraft for all systems and informs MAIN PRØGRAM whether or not a call to subroutine SNATCH is required. SNATCH is the second major subroutine of the separation-deployment phase, and calls subroutine BØDIES for calculating the separation between primary and secondary bodies of the parachute-load system.

After separation-deployment, MAIN PRØGRAM directs the simulation to the inflation of the main parachute, subroutine ØPENING. ØPENING is primarily an organizational subroutine and calls FILLTIM for a calculation of filling time and CALC for trajectory calculations during inflation.

The last phase is free descent, and since this can be two- or three-dimensional, the appropriate integer inputs as well as the desired subroutine decks must be selected by the user. Since the required aerodynamic force coefficients for three-dimensional calculations have not yet been measured, the majority of calculations will probably be two-dimensional, and thus there is no need to compile the three-dimensional subroutines for every calculation. In both cases subroutine MØTIØN is the major subroutine, and is basically organizational. MØTIØN calls subroutine INTGRAT for integration of the equations of motion. INTGRAT requires subroutine FØRMULA for the integration and subroutine EMØTIØN for numerical evaluation of the equations of motion. EMØTIØN calls subroutine DYNAMIC to evaluate terms in the equations of motion, and subroutine COEFFTS supplies values of the aerodynamic coefficients to EMØTIØN. Subroutines INTGRAT, FØRMULA, and DYNAMIC are identical for two or three dimensional calculations; the others have the same names in both cases but are

different. Subroutine CØSINES is added to evaluate the terms of the direction cosine matrix in three-dimensional calculations.

The subroutines DENSITY and TRAJEQN are called by many of the other subroutines. DENSITY calculates atmospheric density as a function of altitude and TRAJEQN evaluates the two-dimensional, point mass trajectory equations for use until the parachute is fully inflated.

B. Computer Program Outputs

The output from the computer program in all subroutines which include output statements can be divided into three categories: (1) all input data, (2) trajectory variables and other calculated information at points of interest throughout the program, and (3) continuous output of variables describing the calculated trajectory.

The first and second of these groups are always printed. All inputs are immediately printed in the main program or in the particular subroutine in which they are read. The trajectory variables at the following points during the trajectory simulation are printed immediately before exit from the following subroutines:

Subroutine EXTRACT--static line stretch and main parachute canopy unfolded or initiation of main parachute deployment; or load leaves aircraft and initiation of main parachute deployment or inflation,

Subroutine SNATCH--snatch force occurrence,

Subroutine OPENING--inflation of the main parachute to any reefed stage or to full inflation,

Subroutine MØTIØN--the first three instances when the parachute-load system is vertical or near vertical.

In addition, snatch force, snatch velocity, and primary and secondary body velocities at snatch are printed before exit from SNATCH. The projected diameter corresponding to the prescribed final reefing ratio, time of disreef (if applicable), filling time, and opening shock for each inflation are printed before exit from ØPENING.

The continuous output can be controlled by the program The variable NINT may be read into the program as a negative number, which then eliminates all continuous output. If NINT is positive, it represents the number of calculations which are to be made between successive printings of the trajectory variables in subroutines EXTRACT and SNATCH, and to some degree in OPENING and MOTION. During the inflation periods in OPENING, and if the automatically selected time increment in MØTIØN becomes too large, NINT does not affect the output of trajectory variables if it is greater than zero. The trajectory variables are time, altitude, system angle, position components, total velocity and velocity components, and total acceleration. These variables refer to the mass center of the parachute-load system until the main parachute is fully inflated, and to the load during the free descent phase in MØTIØN.

C. <u>Separation-Deployment Systems</u>

The values of the integer variables ISTATIC and IEXTRAC, and the variable D_{OPilot} control the selection of one of the four separation-deployment systems as shown in Fig 1. These variables are examined upon entry to EXTRACT, which then directs the simulation to the appropriate calculations. For the static line deployed pilot chute or extraction parachute systems a snatch force calculation is required and EXTRACT sets ISNATCH to -1 which then directs the MAIN PRØGRAM

FIG 1 Determination of the Separation-Deployment System in Subroutine EXTRACT

sequence to SNATCH. For the static line and reefed main parachute extraction systems no snatch force calculation is required and EXTRACT sets ISNATCH to +1 which directs the MAIN PRØGRAM sequence directly to ØPENING.

The following Items include figures which show the separation-deployment process and the sequencing of the simulation through MAIN PRØGRAM, the values of the pertinent variables for selecting the separation-deployment system, and a list of the physical processes involved in separation and deployment with the name of the subroutine that models the process.

1. Static Line System

Figures 2 and 3

ISTATIC = -1

DPILØT = 0

ISNATCH = +1

Separation from aircraft EXTRACT
Main Canopy Unfolding EXTRACT

2. Static Line Deployed Pilot Chute System

Figures 4 and 5

ISTATIC = -1

DPILØT = Dopilot

TSNATCH = -1

Separation from aircraft EXTRACT
Suspension system deployment BØDIES
Snatch force SNATCH
Main parachute unfolding BØDIES

FIG 3 Sequence of Computer Solution for Static Line System

FIG 5 Sequence of Computer Solution for Static Line Deployed Pilot Chute System

3. Extraction Parachute System

Figures 6 and 7

ISTATIC = +1

IEXTRAC = 0

ISNATCH = -1

Separation from aircraft EXTRACT
Suspension system deployment BØDIES
Snatch force SNATCH
Main parachute unfolding BØDIES

4. Reefed Main Parachute Extraction System

Figures 8 and 9

ISTATIC = +1

IEXTRAC = +1

ISNATCH = +1

Separation from aircraft EXTRACT

FIG 7 Sequence of Computer Solution for Extraction Parachute System

FIG 9 Sequence of Computer Solution for Reefed Main Parachute Extraction System

III. DESCRIPTION OF COMPUTER PROGRAM

This section describes the computer program used for the total trajectory simulations. The format used in the following is to include, for each program or subprogram, the following information: 1) list of inputs, 2) list of outputs, 3) list of formal parameters, 4) list of common blocks, and 5) an explanation of the calculation methods. Computer mnemonics are used in the lists of inputs, outputs, parameters, and common blocks to aid later cross references with the program listing, Section VII. These and all other non-standard mnemonics are defined in Section VI. The formal parameters and common blocks appear as they are shown in the listing of the particular subroutine. For assistance in following the calculation methods, the calling parameters of all calls to each subroutine are shown in Section IV.

A. MAIN PRØGRAM

The mnemonic symbol MAIN PRØGRAM is used in the text to describe PRØGRAM TRAJSIM, the name given by the authors to the main program for the total trajectory simulation. The name of the main program can be changed to any suitable form by the program user without affecting the functioning of the computer program. The standard files INPUT and ØUTPUT are required for the MAIN PRØGRAM.

1. Input

NSIM, C1, C2, C3, C4, C5, ALT, V0, MST, MP, MLS, MR, MRX, MBR, ML, X1, X2, X3, X4, X5, IZ, IAZO, DNØT, LSS, CDP, CDSL, Q1, Q2, VØLUME, N, NNN, DT1, DT2, DT3, NINT, ETA, PCTERR

2. Output

C1, C2, C3, C4, C5, ALT, V0, MST, ML, MP, MLS, MR, MRX, MBR, A8, B8, ALT, A9, B9, ALT, X1, X2, X3, X4, X5, A4, B4, ALT, A5, B5, ALT, A6, B6, ALT, A7, B7, ALT, DNØT, LSS, A1, B1, ALT, A2, B2, ALT, A3, B3, ALT, Q1, Q2, VØLUME, CDP, CDSL, N

3. Common Blocks

/CØNST/: ALT, PI, G, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT /VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1 /DYNAM/: DYDNØT, X1, X2, X3, X4, X5, MBR, DYML, MLS, DYMP, MR, MRX, IAZO, IZ, Q1, Q2, VØLUME, XNUM, XDENØM

4. Methods

MAIN PRØGRAM oversees the operation of the total trajectory simulation, providing for a specified number, NSIM, of trajectory simulations to be accomplished in one run of the computer program. For each total trajectory simulation, the operation of MAIN PRØGRAM is as follows. The title and most parachute-load system data are read and printed. The parameters

$$\begin{array}{l} \text{XNUM} = \ m_{L_s} \ s_1 + \ m_R s_2 + \ m_E s_3 + \ m_{Br} s_4 + \ m_{L} \ s_5 - \ m_p s_c \\ \text{XDENØM} = \ m_{L_s} + \ m_R + \ m_E + \ m_{Br} + \ m_{L} + \ m_p \end{array}$$

are established for use in subroutine DYNAMIC. Note that common block DYNAM must have different names for its variables, even though some represent the same variables as are in CØNST. To bracket the variable parachute-load system dynamic characteristics to be encountered, subroutine DYNAMIC is called for mean sea level density and for release

altitude density and the results of these two calls are printed. The necessary information for calculation is transmitted via the calling parameter list and the common block DYNAM.

The first call of the actual trajectory simulation is to EXTRACT, following which MAIN PRØGRAM directs the calculations by calling SNATCH, ØPENING, and MØTIØN as detailed in Subsections IIA and IIC for the particular separation-deployment system. When control is returned to MAIN PROGRAM after the call to MØTIØN, the next trajectory simulation begins or the program is terminated if the run is complete.

B. <u>Separation-Deployment Phase</u>

Three subroutines perform the calculations for the physical processes in the separation-deployment phase. The major subroutine is EXTRACT, which calculates the separation from the aircraft for all systems and contains all of the remaining deployment calculations for systems that do not have a snatch force. If a snatch force is required, EXTRACT directs MAIN PRØGRAM to subroutines SNATCH and BØDIES, the other two subroutines for this phase, SNATCH calculates maximum snatch force and calls BØDIES for calculating the separation between the primary and secondary bodies of the parachute load system.

1. Subroutine EXTRACT

a. Input

All Systems:

ISTATIC, IEXTRAC

Static Line System:

LSTATIC, CDSBAG, CDSP, DPILØT, LSPILØT, TD, LRXBR (CDSP = 0,

DPILØT = 0, LSPILØT = 0, TD = 0)

Static Line Deployed Pilot Chute System:

LSTATIC, CDSBAG, CDSP, DPILØT, LSPILØT, TD, LRXBR.
Extraction Parachute System:

LENGTH, CDSBAG, CDSEX, TD.

Reefed Main Parachute Extraction System:

R, LENGTH, TD

b. Output

Static Line System:

ALL NINT: LSTATIC, CDSBAG, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V.

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ. Static Line Deployed Pilot Chute System:

ALL NINT: LSTATIC, CDSBAG, CDSP, DPILØT, LSPILØT, TD, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V.

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ. Extraction Parachute System:

ALL NINT: LENGTH, CDSBAG, CDSEX, TD, T1, X1, V1, T, TRAJANG, X, Z, V.

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, V.

Reefed Main Parachute Extraction System:

ALL NINT: LENGTH, R, H*DNØT, TD, T1, X1, V1, T, TRAJANG, X, Z, V.

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, V.

c. Formal Parameters

ISNATCH, IEXTRAC, VO, DT, TRCA

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT.

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3.

- e. Methods
- i) Static Line System

The governing equations for the parachute-load system during the periods of separation and deployment of the main parachute by static line are the two-dimensional, point mass, trajectory equations, incorporated in subroutine TRAJEQN. Thus the procedure in subroutine EXTRACT is to call subroutine TRAJEQN with calling parameters representing the appropriate mass and drag area with time increments Δt between successive calls. The duration of the first calculation phase is determined by the distance between the release point in the aircraft and the recovery system mass center, given by

$$\int = \sqrt{(v_0 t - x)^2 + z^2}$$
 (1)

The main parachute is deployed, and control is returned to the main program, when

The parameter ISNATCH is assigned the value ± 1 before control is returned to the main program. The value of the time at this point is the value given to the return parameter t_{RCA} , which is required if reefing will be required in the inflation phase.

ii) Static Line Deployed Pilot Chute System

The procedure for this case is the same as for static line deployment, except that the pilot parachute is being deployed rather than the main parachute. The pilot parachute is deployed when

At this point, the calling parameter for subroutine TRAJEQN representing the drag area must be increased by the drag area of the pilot parachute. The parameter ISNATCH is assigned the value -1. Successive calls to subroutine TRAJEQN are made until the time exceeds the value $t_{\rm D}$.

iii) Extraction Parachute System

ISNATCH is set equal to -1. The governing equation while the load is in the aircraft is

$$\Delta v = \frac{-\rho v^2 C_0 S_T}{2m_{rs}} \Delta t \tag{4}$$

where C_DS_T is the drag area of the extraction parachute(s). The condition which indicates that the load has left the aircraft is

At this point, the value of $C_D^S_T$ is increased by the drag area of the load and the packed main parachute, $C_D^S_L + C_D^S_B$, and the trajectory is simulated by successive calls to subroutine TRAJEQN with time increment Δt . Control is returned to the main program when the time exceeds t_D .

iv) Reefed Main Parachute Extraction System

ISNATCH is set to +1. The drag area of the reefed main parachute is given by

$$C_{o}S_{\tau} = C_{op} \frac{\pi h^{2}D_{o}^{2}}{4}$$
 (6)

where

$$h = \frac{4(L_s + L_R)R + 2RD_0}{4(L_s + L_R) + \pi RD_0}$$
 (7)

The calculation procedure is the same as for standard extraction parachutes, with the value of C_DS_T from Eqn (6) used in Eqn (4). After the criterion (5) is satisfied, the value of C_DS_T is increased by the drag area of the load, C_DS_L , and successive calls are made until t exceeds t_D . The value of t_RCA is set to zero.

2. Subroutine SNATCH

a. Input

MPBAG, CDS2, K, LRXBR

b. Output

ALL NINT: MPBAG, CDS2, K, LRXBR, TL, TRAJL, XL, ZL, V1L, V2L,

PMAX, VF

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V1, V1X, V1Z

c. Formal Parameters

TRCA, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED1, UNUSED2, UNUSED3

e. Methods

The trajectories of the primary and secondary bodies and

the separation ℓ are calculated by calls to subroutine BØDIES for the periods before and after snatch. Subroutine BØDIES is called successively until

$$l = L_s + L_R + L_E + L_{\beta \gamma} \tag{8}$$

when snatch occurs. The snatch force equations are

$$P_{\text{max}} = -B + \sqrt{B^2 - C/A}$$
 (9)

$$A = \frac{1}{k} \tag{10}$$

$$B = F_{AI} \left[1 + Q + \frac{2v_{II}Q}{v_{s} - v_{II}} \right] + F_{AII} \left[Q + \frac{2v_{II}Q}{v_{s} - v_{II}} \right]$$
(11)

$$C = M_{I} \frac{Q-1}{Q} \left[\frac{Q+1}{Q} \left(V_{s} - V_{II} \right)^{2} + 2V_{II} \left(V_{s} - V_{II} \right) \right] + M_{p} \left[\left(V_{s} - V_{II} \right)^{2} + 2V_{II} \left(V_{s} - V_{II} \right) \right]$$
(12)

$$F_{AI} = \frac{\rho C_0 S_I}{4} \left(V_I^2 + V_s^2 \right) \tag{13}$$

$$F_{AII} = \frac{\rho C_0 S_{II}}{4} \left(v_{II}^2 + v_s^2 \right)$$
 (14)

$$Q = \frac{M_{\pi}}{M_{\pi} + M_{P}} \tag{15}$$

$$V_{S} = \frac{M_{I} V_{I} + w_{\rho} V_{I}}{M_{I} + w_{\rho}}$$
 (16)

The time t_{RCA} is set to the time value at snatch. Subroutine BØDIES is then again called successively, after adjusting primary and secondary velocities to the value v_s , and changing the masses to $(m_p + m_s)$ for the primary body, and to m_{pb} for the secondary body. This continues until

$$l = L_s + L_R + L_E + L_{Br} + D_0/2$$
 (17)

at which time control is returned to MAIN PROGRAM.

- 3. Subroutine BØDIES
- a. Input

None

b. Output

None

c. Formal Parameters
M1, CDS1, M2, CDS2, V1, V2, L, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS,

MST, NØUSE.

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED 3.

e. Methods

This subroutine merely evaluates the equations

$$\Delta \theta = -\frac{g \sin \theta}{V_{\rm I}} \Delta t \tag{18}$$

$$\Delta_{V_{I}} = \left(g\cos\theta - \frac{\rho C_{D}S_{I} V_{I}^{2}}{2m_{I}}\right)\Delta t$$
 (19)

$$\Delta v_{\pi} = \left(g \cos \theta - \frac{\rho c_0 s_{\pi} v_{\pi}^2}{2 m_{\pi}}\right) \Delta t \qquad (20)$$

$$\Delta x = V_{x} \sin \theta \Delta t \tag{21}$$

$$\Delta z = V_{x} \cos \theta \Delta t$$
 (22)

$$\Delta \mathcal{L} = V_{\mathbf{x}} \Delta t - V_{\mathbf{x}} \Delta t \tag{23}$$

C. Inflation of the Main Parachute

The second calculation phase is represented by subroutines <code>OPENING</code>, FILLTIM, and CALC. This calculation phase is required for all of the separation-deployment systems, and is initiated by a call from MAIN PROGRAM to <code>OPENING</code>, which then calls FILLTIM and CALC. This phase represents inflation of

the main parachute with provision for any number of reefed stages. The extent of the calculation phase is from the point when the main parachute is deployed in a stretched-out manner, or at the time $t=t_D$ for extraction by the reefed main parachute, until the main parachute is fully inflated.

1. Subroutine ØPENING

a. Input

No Reefing: NREEF

Reefing: NREEF, RO, R1, TCD

b. Ouput

No Reefing:

ALL NINT: T, TRAJANG, X, Z, V, FO, TF

NINT > 0: ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ, -FRCE/ML

Reefing:

ALL NINT: R1, H1*DNØT, TCD, TDR; T, TRAJANG, X, Z, V, FO, TF,

at end of each reefing stage.

NINT > 0: T, ALT-Z, TRAJANG, TRAJANG, X, Z, V, VX, VZ, -FRCE/ML

c. Formal Parameters

DQ, TRCA, N, F, VOLUMG, IEXTRAC, DTT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS,

MST, NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3

e. Methods

The first input to subroutine \emptyset PENING is the value NREEF, representing the number of reefing lines employed during the inflation. If the value of NREEF is zero, i.e. if the inflation is without reefing, no further inputs are made. If reefing is employed, the reefing ratios at the beginning and end of each reefed inflation and the reefing cutter delays must be read. Thus for the first reefed inflation stage, the initial value of the reefing ratio is zero and the final value is the reefing ratio corresponding to the first reefing line. For the last reefed inflation stage, the initial reefing ratio value corresponds to the final reefing line, and the final value is equal to the assumed projected diameter ratio for the fully inflated parachute, $2/\pi$.

The procedure for calculation of the simulated trajectory by subroutine ØPENING is as follows. For inflation of the main parachute without reefing, the volume increase of the parachute during inflation is given by the fully inflated volume V. The values for the initial and final projected diameter ratios are set by ØPENING to

$$h_o = (D_P/D_o)_{T=0} = 0$$
 (24)

$$h_1 = (D_P/D_0)_{T=1} = \frac{2}{\pi}$$
 (25)

The values of V, h_o , and h_1 are used for determination of the final filling time t_{ff} by calling subroutine FILLTIM. The trajectory is then calculated by successive calls to subroutine CALC, and control is returned to the main program when T = 1. The opening force during the inflation is found from

$$F_0 = m_{\ell} \left(g \cos \Theta - \frac{\Delta v}{t_{s_{\ell}} \Delta T} \right) \tag{26}$$

the opening shock being the largest value of F_0 .

For inflation from one reefed stage to another, the increase in volume is given by

$$V_{R} = \frac{\pi}{12} \left\{ D_{0}^{3} \left(h_{1}^{3} - h_{0}^{3} \right) + D_{0}^{2} \left[h_{1}^{2} \sqrt{\left(L_{s}^{+} L_{R} + D_{0} /_{2} - \frac{\pi h_{1} D_{0}}{4} \right)^{2}} \right\} \right.$$

$$-\frac{h_{i}^{2} O_{o}^{2}}{4} - h_{o}^{2} \sqrt{\left[L_{s}+L_{R} + D_{o}/2 - \frac{\pi h_{o} D_{o}}{4}\right]^{2} - \frac{h_{o}^{2} O_{o}^{2}}{4}} - D_{o}^{2} \left[R_{i}^{2} \sqrt{\left(L_{s}+L_{R}\right)^{2} - \frac{R_{i}^{2} D_{o}^{2}}{4}} - R_{o}^{2} \sqrt{\left(L_{s}+L_{R}\right)^{2} - \frac{R_{o}^{2} D_{o}^{2}}{4}}\right]\right\}$$

The values of the projected diameter ratios are found from the reefing ratios $\boldsymbol{R}_{\scriptscriptstyle O}$ and $\boldsymbol{R}_{\scriptscriptstyle 1}$ by

$$h_{o} = \frac{4(L_{s}+L_{R})R_{o}+2R_{o}D_{o}}{4(L_{s}+L_{R})+\pi R_{o}D_{o}}$$
(28)

$$h_1 = \frac{4(L_s + L_R)R_1 + 2R_1 P_0}{4(L_s + L_R) + \pi R_1 P_0}$$
 (29)

The filling time t_{fR} is then calculated by calling FILLTIM with the values of V_R , h_o , and h_1 from Eqns (27) through (29). The trajectory during a reefed inflation is calculated by successive calls to subroutine CALC until $T_R = 1$. The opening force is found from (26) with $t_{fR}\Delta T_R$ replacing $t_{ff}\Delta T_R$. If the

parachute is not fully inflated, i.e. if another inflation stage is required, there is in general a coasting phase before the next inflation begins. The length of this phase is determined by the input of the reefing cutter delay, t_{CD} . The trajectory during the coasting phase is determined by successive calls to TRAJEQN, with the values of the parachute-load system mass and the drag area of the system in its partially inflated configuration, and time increments Δt , until the time exceeds $t_{RCA} + t_{CD}$. At this point, the values of R_{O} , R_{1} , and t_{CD} for the next inflation stage are read. If the time already exceeds $t_{RCA} + t_{CD}$ when $T_{R} = 1$, no coasting phase is included and these values are read immediately. If, at the point $T_{R} = 1$, the parachute is fully inflated, i.e. at the end of the last inflation stage, control is returned to MAIN PRØGRAM.

When the main parachute is inflated to a reefed configuration at the entry to the subroutine, i.e when the reefed main parachute extraction system is used, the number of inflation stages is equal to the number of reefing lines, NREEF. In the general case, the number of inflation stages is equal to NREEF + 1. Thus, to distinguish between the two possibilities, the process described above is performed NREEF + 1 - IEXTRAC times, the value of IEXTRAC being 1 for extraction by the reefed main parachute and 0 otherwise. The number NREEF can assume any integer value up to 9 in the present arrangement of the computer solution, the restriction being due merely to the input format for NREEF and the dimension of the array REEF.

Subroutine FILLTIM

a. Input

None

b. Output

None

c. Formal Parameters

VO, XO, ZO, THETAO, MS, HO, H1, N, VOLDØT, TF

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST,

NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3

e. Methods

The filling time is given by the equation

$$VØLUME = \pi t_{fR} \int_{0}^{1} \left[v(1+2.2cT-T) \frac{d^{2}}{4} - \frac{1.1cD^{2}}{2} \right] dT_{R} (30)$$

for the general reefed case. This formula applies for the unreefed case by replacing the subscript R by f. The function of subroutine FILLTIM is to evaluate the filling time by an iterative scheme as follows.

An initial estimate for the filling time is made by FILLTIM from the formula

$$t_{fR_1} = \frac{2h_1D_0}{V_0} \tag{31}$$

The estimate is based on the concept of a constant filling distance, adjusted for the projected diameter at the end of the inflation. An approximation to Eqn (30) is found by Simpson's rule with N increments, i.e. Eqn (30) is evaluated for N values of T_R . The required information is found from calls to CALC, for the values of T_R , ΔT_R , T, and ΔT ,

where

$$T = \frac{\pi^2}{4} \left[h_1^2 T_R + h_0^2 (1 - T_R) \right]$$
 (32)

$$\Delta T = \frac{\pi^2}{4} \left(h_1^2 - h_0^2 \right) \Delta T_R \tag{33}$$

Again, in the unreefed case the values T_R and T are equal as well as the increments ΔT_R and ΔT since h_0 = 0 and h_1 = 2π . The effective porosity c is found from (Ref 1)

$$c = c. \sigma^{1/7}$$
 (34)

where c_0 is assigned the constant value 0.05. This value was selected as representative of the parachute cloths encountered in this study, MIL-C-7020, Types I and II, MIL-C-7350, Type I, and MIL-C-4279, Type II, based on Ref 1. If ν represents the quantity under the integral sign in (30), the volume increase corresponding to a given value of the filling time t_{fR_n} is approximately, by Simpson's rule,

$$\nabla \emptyset L = \pi +_{fR_{\gamma}} \frac{\Delta T_R}{3} \left(\nu_0 + 4\nu_1 + 2\nu_2 + \dots + \nu_N \right)$$
 (35)

The value of VOL from Eqn (35) is compared with the parameter VOLUME, and a new filling time approximation is given by

$$t_{fR_{n+1}} = t_{fR_n} \left(\frac{\nabla \emptyset L \cup ME}{\nabla \emptyset L} \right)$$
 (36)

The above process is repeated until the value of t_{fR} is such that VØL from Eqn (35) satisfies the condition

$$\frac{|\nabla \emptyset L - \nabla \emptyset L U M E|}{\nabla \emptyset L U M E} \leq 10^{-5} \tag{37}$$

The number t_{fR} is then returned to subroutine ϕ PENING as the approximation to the filling time.

- 3. Subroutine CALC
- a. Input

None

b. Output

None

c. Formal Parameters

CAPT, TF, DCAPT, DCAPTR, M, DV, DP, D

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST,

NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3

e. Method

The function of subroutine CALC is to evaluate the following equations.

$$D_{p} = \frac{2D_{o}}{\pi} T^{1/2} \tag{38}$$

$$DP_{max} = \frac{2D_0}{\pi}$$
 (39)

$$\frac{d(D_p)}{dT} = \frac{D_0}{\pi T^{V_2}} \tag{40}$$

$$d = \frac{4(L_s + L_R) D_P}{4(L_s + L_R) + 2D_o - \pi D_P}$$
 (41)

$$\frac{d(d)}{dT} = \frac{\left[4(L_s+L_R) + 2D_o - \pi D_p\right] 4(L_s+L_R) \frac{d(D_p)}{dT}}{\left[4(L_s+L_R) + 2D_o - \pi D_p\right]^2} + \frac{4(L_s+L_R) \pi D_p d(D_p)/dT}{\left[4(L_s+L_R) + 2D_o - \pi D_p\right]^2}$$
(42)

$$m_a = \frac{\pi \rho}{32} \frac{D \rho^5}{\left(D \rho_{\text{max}}\right)^2} \tag{43}$$

$$\Delta m_a = \frac{5 \pi \rho D_\rho^4}{32 \left(D_{\rho max}\right)^2} \frac{d(D_\rho)}{dT} \Delta T \qquad (44)$$

$$m_{i} = \frac{\pi \rho}{12} \left\{ D_{p}^{3} + D_{p}^{2} \sqrt{\left(L_{s}^{+}L_{R} + \frac{D_{o}}{2} - \frac{\pi}{4} D_{p}\right)^{2}} \right.$$

$$\left. - \frac{D_{p}^{2}}{4} - d^{2} \sqrt{\left(L_{s}^{+}L_{R}\right)^{2} - \frac{d^{2}}{4}} \right\}$$
(45)

$$\Delta m_{i} = \frac{\pi p}{12} \left\{ 3D_{p}^{2} \frac{d(D_{p})}{dT} - D_{p}^{2} \left[\frac{2(L_{s}+L_{R}) + D_{0} - \frac{\pi}{2}D_{p}}{2[(L_{s}+L_{R} + D_{0/2} - \pi D_{p/4})^{2} - D_{p}^{2}/4]} \right] \frac{d(D_{p})}{dT} + \frac{D_{p}}{2[(L_{s}+L_{R} + \frac{D_{0}}{2} - \frac{\pi}{4}D_{p})^{2} - \frac{D_{p}^{2}}{4}]} + 2D_{p} \frac{d(D_{p})}{dT} \sqrt{(L_{s}+L_{R} + \frac{D_{0}}{2} - \frac{\pi}{4}D_{p})^{2} - \frac{D_{p}^{2}}{4}}} + \frac{d^{2}}{4[(L_{s}+L_{R})^{2} - \frac{d^{2}}{4}]} \right\} \Delta T$$

$$= \frac{d^{3}}{4[(L_{s}+L_{R})^{2} - \frac{d^{2}}{4}]} \sqrt{2} - 2d\frac{d(d)}{dT} \sqrt{(L_{s}+L_{R})^{2} - \frac{d^{2}}{4}} \right\} \Delta T$$

$$= \frac{d^{3}}{4[(L_{s}+L_{R})^{2} - \frac{d^{2}}{4}]} \sqrt{2} - 2d\frac{d(d)}{dT} \sqrt{(L_{s}+L_{R})^{2} - \frac{d^{2}}{4}}}$$

$$\Delta_{V} = \left[\frac{m_{\ell} + m_{ss} + m_{\rho}}{m_{T}} \right) g \cos \theta - \frac{\rho v^{2} (C_{D}S_{\chi} + C_{D}\rho \frac{\pi D \rho^{2}}{4})}{2m_{T}} \right]$$

$$\cdot t_{fR} \Delta T_{R} \stackrel{\Psi}{\longrightarrow} \frac{V}{m_{T}} (\Delta m_{i} + \Delta m_{a})$$
(47)

$$\Delta\theta = -\left(\frac{m\chi + m_{SS} + m_{P}}{m_{T}}\right) \frac{g \sin \theta}{V} t_{FR} \Delta T_{R}$$
 (48)

$$\Delta x = v \sin \Theta t_{fR} \Delta T_{Q}$$
 (49)

$$\Delta z = v \cos \theta \, t_{4R} \, \Delta T_R \tag{50}$$

D. Free Descent; Three Degrees of Freedom

The final calculation phase, the free descent phase, is required for all of the separation-deployment systems. Due to the degree of complexity involved in the general case

which has six degrees of freedom, the computer solution was programmed separately for the restricted problem of three degrees of freedom. The trajectory simulation is readily applicable to either three or six degrees of freedom merely by inserting the proper subroutines in the computer program and using the correct input value for allowable degrees of freedom in the main program.

When the simulation is restricted to three degrees of freedom, the subroutines required by the computer program for the free descent calculation phase are MØTIØN, INTGRAT, FØRMULA, EMØTIØN, DYNAMIC, and CØEFFTS. The function of this calculation phase is to calculate the trajectory of the parachute-load system during the period from full inflation to a specified time thereafter or until a specified altitude is reached, as defined by the program user.

- 1. Subroutine MØTIØN
- a. Input

TSTØP, ZSTØP

b. Output

ALL NINT: T, ALT-RZ, RX, RZ, V, VX, VZ, A at the first three instances the parachute-load system is vertical or near vertical

NINT > 0: T, ALT-RZ, SYSANGL, TRAJANG, RX, RZ, V, VX, VZ, A

c. Formal Parameters

DQ, PCTERR, ETA, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST,

NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The problem during the free descent calculation phase is to solve the six differential equations of motion for U, W, Q, θ , x, and z simultaneously. These quantities are represented in the computer solution by the six-dimensional array Y. The initial conditions for the free descent calculation phase are determined by the conditions which exist at the instant of full inflation. Thus MØTIØN first assigns the following values to Y:

$$Y(1) = U = 0 \tag{51}$$

$$Y(2) = W = V \tag{52}$$

$$Y(3) = Q = -\frac{9 \sin \theta}{V}$$
 (53)

$$Y(4) = \theta \tag{54}$$

$$Y(5) = x \tag{55}$$

$$Y(6) = 2 \tag{56}$$

where v, θ , x, and z are the values of velocity, system angle, and position of the mass center determined by $\emptyset PENING$ at the time of full inflation of the main parachute. The array YD $\emptyset T$ represents the time derivatives \dot{U} , \dot{W} , \dot{Q} , $\dot{\theta}$, \dot{x} , and \dot{z} . An initial condition is assigned for \dot{Q} such that

$$YDQT(3) = \dot{Q} = \frac{g^2 \cos\theta \sin\theta}{V^2} + \frac{g \sin\theta}{V} \frac{dV}{dt}$$
 (57)

the value of dv/dt being given by the formal parameter DQ.

Once the initial conditions have been established, the actual solution of the equations of motion is accomplished by means of subroutine INTGRAT. For the first call to INTGRAT. the calling parameter ID is set equal to +1, and for subsequent calls ID equals -1. The calls to INTGRAT are made as part of a DØ loop which has a variable terminator, NUMB. Output of the trajectory parameters is executed after the operations of the DØ loop have been completed; the loop is then executed again. This process continues until the free descent calculation phase is terminated. The original value of the DØ loop terminator, NINT, is set by the program user via the main program. Since the integration routine INTGRAT automatically selects time increments for the solution of the equations of motion, output could come at infrequent intervals of time as the time increment is increased during phases which approach steady state conditions if the loop terminator were not allowed to vary. Thus, if at any time the product of NUMB with the time increment DX (assigned by INTGRAT) is larger than one second, the value of NUMB is adjusted so that trajectory parameters will be printed at roughly one second intervals.

The parameters of the call to INTGRAT are T, Y, TF, G, PCTERR, ETA, X1, X2, X3, W, YDØT, B, ID, DX, TI, and K. The parameter G indicates the number of equations to be solved by

INTGRAT; X1, X2, X3, W, and B are arrays established for use in INTGRAT and FØRMULA; and DX is the time increment set by INTGRAT. T1 is a temporary variable for the time values, and K is a signal which is positive if the solution of the equations blow up due to the parachute angle of attack exceeding 85°. The results of the call to INTGRAT are the values of the arrays Y and YDØT evaluated at the time TF, which is defined before each call to INTGRAT as TF = T + DX or, before the first call, as TF = T + DT.

After calling INTGRAT, the next step taken by MØTIØN is to evaluate the position, velocity, and acceleration components of the load, following the relations

$$Y_{lx} = x + l_1 \sin \theta \tag{58}$$

$$\gamma_{\ell_{Z}} = Z + \ell_{1} \cos \theta \tag{59}$$

$$V_{l_X} = (\nabla + Q l_i) \cos \theta + W \sin \theta$$
 (60)

$$V_{l_{z}} = -(U+Ql_{1}) \sin\theta + W \cos\theta$$
 (61)

$$\alpha_{l_x} = (\ddot{U} + QW + \dot{Q}l_1)\cos\theta + (\dot{W} - QU - Q^2l_1)\sin\theta$$
 (62)

$$al_{z} = -(\dot{U} + QW + \dot{Q}l_{1}) \sin\theta + (\dot{W} - QU - Q^{2}l_{1}) \cos\theta \qquad (63)$$

The value r_{ℓ z} is first stored as a variable R2 for consideration of interpolation at the end of MØTIØN.

The load trajectory angle is given by

$$\alpha_{t} = \Theta - \alpha_{\ell} \tag{64}$$

where α_{\downarrow} is available from the Common block /VARIABL/, having been calculated in EMØTIØN.

In order to calculate the trajectory parameters at the first three instances when the system is vertical or near vertical, it is necessary to define the oscillatory behavior of the system in a quantitative sense. A counter, NMARK, is defined, initially equal to zero, such that it is increased by one each time that the sign of the system angle changes or the system angle reaches an extreme position. Then the parachute-load system will be vertical, or near vertical, when NMARK equals one, three, and five, and the corresponding values of t, $h_0 - r_{L_Z}$, r_{L_X} , r_{L_Z} , v, v_{L_X} , v_{L_Z} , and a_{L_Z} , which have been stored in the array VERTPAR, approximate the required trajectory parameters at the first three vertical positions.

The final calculations performed by MØTIØN occur when the time exceeds TSTØP or the altitude loss exceeds ZSTØP. The trajectory parameters at the point t = TSTØP or z = ZSTØP are then found by linear interpolation, using a correction given by

$$CORR = \frac{ZSTOP - r_{l_{Z}}}{R2 - r_{l_{Z}}}$$
 (65)

or

$$CØRR = \frac{TSTØP-t}{TI-t}$$
 (66)

The final values of the parameters are then printed, and control is returned to the main program.

2. Subroutine INTGRAT

a. Input

None

b. Output

None

c. Formal Parameters

T, Y, TF, NN, PCTERR, ETA, TRY1, TRY2, TRY3, W, YDØT, Z, ID, DX, T1, ISIGNAL

d. Common Blocks

None

e. Method

This subroutine is arranged in the form of a general solution method for a given number of simultaneous first order differential equations. The numerical technique employed is the Runge-Kutta method, (Ref 2) and INTGRAT is based strongly on the University Computer Center library subroutine The advantage of structuring the subroutine in the RK. manner of a general differential equation solving method is that the same subroutine can be used without modifications to solve both the three and six degree of freedom cases. Furthermore, with slight modifications, the subroutine can be used to solve a system of differential equations which may arise at a future time if substitute methods are to be used for any of the trajectory calculation phases rather than those for which the trajectory simulation computer program was originally written.

The formal parameter T represents the initial time, TF is the time at which the values of the arrays Y and YDØT are desired, and Tl is the running value of the time used by INTGRAT. When returned to MØTIØN, Tl and TF are equal. NN gives the dimension of the arrays Y, YDØT, TRY1, TRY2, TRY3, ETA, W, and Z, and physically represents the number of equations to be solved. For the free descent calculation phase, NN is twice the allowable number of degrees of freedom. PCTERR and ETA are the relative and absolute error parameters input to the main program. Values of these parameters are discussed in Section IX. ID and ISIGNAL are signals; ID signals to INTGRAT whether or not the call from MØTIØN is the first call and ISIGNAL indicates to MØTIØN whether $|\alpha_{\rm p}| > 85^{\rm O}$ (the variable K in MØTIØN is equal to ISIGNAL).

The basic functioning of INTGRAT is as follows. The variable IMDØNE indicates whether or not the integration has proceeded successfully to a solution at the time TF. Initially IMDØNE is set equal to -1. If the call to INTGRAT is the first, indicated by a positive value of ID, the time increment for a first approximation to the integration with the Runge-Kutta formula is taken as TF-T. On subsequent calls, the time increment is taken as DX, which was a suitable time increment at the end of the previous call.

The solution of the equations of motion is approximated by calls to subroutine FØRMULA, which evaluates the Runge-Kutta formula. For a given time increment, the equations are numerically integrated by FØRMULA, over the entire corresponding time interval and the results stored in the array TRY1. To evaluate the acceptability of these results, the equations are then integrated over half the time interval, the integrated quantities being stored in TRY2, and then over the other half of the time interval, yielding results in the array TRY3. The two separate integrations, yielding values of

the variables represented by Y at the initial time plus the time increment, are then compared. If any of the quantities in TRY3 and TRY1 differ in absolute value by more than the prescribed relative or absolute errors (PCTERR and ETA), the solution is considered unacceptable. The time increment is then halved and the process repeated until satisfactory results are obtained for Y_i at the time TF.

In this way, the actual time increment used in FØRMULA may become quite small. If, however, five consecutive calls to FØRMULA are made without halving the time increment, the increment is doubled. The number of successful consecutive calls to FØRMULA is stored by the variable M, which continuously counts the calls to FØRMULA disregarding the fact that control may revert to MØTIØN. Thus, the solution method for the free descent phase uses only as small a time increment as is required to meet the prescribed allowable error. If the time increment must be halved twenty times before a successful integration is made, as indicated by MM, control is returned with a signal that the equations cannot be integrated.

The last function of INTGRAT is to call subroutine $EM \phi TI \phi N$ to evaluate the derivatives $YD \phi T_i$ which correspond to the time TF. The third calling parameter of the call to $EM \phi TI \phi N$ is 1, indicating that the call comes from INTGRAT rather than $F \phi RMULA$. Control is then returned to subroutine $M \phi TI \phi N$.

- 3. Subroutine FØRMULA
- a. Input

None

b. Output

None

c. Formal Parameters

Y, H, YI, NN, W, YDØT, Z, ISIGNAL

d. Common Blocks

None

e. Method

The only function of this subroutine is to evaluate the Runge-Kutta formula for each of the equations being solved. Thus FØRMULA provides an approximation to the integration of the equations of motion by

$$Y_{i,n+1} = Y_{i,n} + \frac{1}{6} (k_0 + 2k_1 + 2k_2 + k_3)$$

$$i = 1, 2, ..., NN$$
(67)

where

$$k_{o} = \Delta t \dot{Y}_{i} (Y_{i,n})$$

$$k_{i} = \Delta t \dot{Y}_{i} (Y_{i,n} + \frac{1}{2}k_{o})$$

$$k_{2} = \Delta t \dot{Y}_{i} (Y_{i,n} + \frac{1}{2}k_{i})$$

$$k_{3} = \Delta t \dot{Y}_{i} (Y_{i,n} + k_{o})$$

to yield k₀, k₁, k₂, and k₃ in successive steps of the program. The evaluation of Eqn (67) is accomplished by means of nested DØ loops. Initially the contents of Z are set equal to the contents of YDØT, and the contents of W and of YI are set equal to Y. A DØ loop is then utilized to call EMØTIØN with W and Z as parameters four times. W is updated after each call by the relation

$$W_{L} = Y_{i} + A_{K}Z_{i}$$
; $k=1,2,3,4$ (68)

where

$$A_1 = A_2 = A_5 = \frac{1}{2} \Delta t$$
 $A_3 = A_4 = \Delta t$

and YI is updated by the relation

$$YI_{i} = YI_{i} + \frac{1}{3}A_{K+1}Z_{i}$$
; $K=1,2,3,4$ (69)

Relations (68) and (69) are carried out by a DØ loop such that i runs from one to NN. All calls to EMØTIØN have the third calling parameter 2 to indicate that the call comes from FØRMULA rather than INTGRAT. If ISIGNAL indicates that the solution blows up, control is returned to INTGRAT where the time increment is adjusted. After the equation (67) has been successfully evaluated, control is returned to INTGRAT.

- 4. Subroutine EMØTIØN
- a. Input

None

b. Output

None

c. Formal Parameters

Y, YDØT, ISTØP, ISIGNAL

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST,

NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The function of EMØTIØN is to evaluate the new array of derivatives YDØT from the given array of values Y and YDØT. The derivatives of U, W, Q, θ , x, and z are not explicit functions of time, and thus the only required information is the values of U, W, Q, θ , x, z, and \dot{Q} .

The calculations made by EMØTIØN are as follows. First, calls are made to DENSITY and DYNAMIC to determine the proper values of ℓ_1 , ℓ_2 , ℓ_3 , I_{XX} , I_{YY} , I_{ZZ} , I_{XZ} , m_i and m_a . I_{XX} , I_{ZZ} , and I_{XZ} are not required in the three degrees of freedom solution. The following equations are then evaluated in sequence.

$$V^2 = \overline{U}^2 + \overline{W}^2 \tag{70}$$

$$\alpha = \tan^{-1}\left(-\frac{U}{W}\right) \tag{71}$$

$$V_{\rho}^{2} = V^{2} + Q^{2} l_{z}^{2} + 2UQ l_{z}$$
 (72)

$$\alpha_{p} = \tan^{-1}\left(-\frac{U+Ql_{2}}{W}\right) \tag{73}$$

$$V_{\ell}^{2} = V^{2} + Q^{2} \ell_{1}^{2} + 2UQ\ell_{1}$$
 (74)

$$\alpha_{\ell} = \tan^{-1}\left(-\frac{U+QL_{i}}{W}\right) \tag{75}$$

Subroutine CØEFFTS is then called to give the values of C_{T_O} , C_{N_O} , and C_{M_O} corresponding to α_p . Calling parameter ISTØP indicates to CØEFFTS whether the call to EMØTIØN was from INTGRAT or FØRMULA, and ISIGNAL indicates whether $|\alpha_p| < 85^{\circ}$. If $|\alpha_p|$ is too large, control is returned to the calling program. The equations of motion are then evaluated if $|\alpha_p| < 85^{\circ}$, i.e.

$$\dot{U} = -\left(\frac{m_i + m_a}{m_T}\right) \dot{Q} l_2 - \left(\frac{m_l + m_{ss} + m_p}{m_T}\right) g \sin \theta$$

$$+ \frac{F_N}{m_T} + \frac{D}{m_T} \sin \alpha_l - QW$$
(76)

$$\vec{W} = \left(\frac{m_l + m_{\alpha}}{m_T}\right) Q^2 l_z + \left(\frac{m_l + m_{ss} + m_{\rho}}{m_T}\right) g \sin \theta$$

$$-\frac{T}{m_T} - \frac{D}{m_T} \cos \alpha_l + QV$$
 (77)

$$\dot{Q} = \frac{F_{N}l_{3}}{I_{YY}} + \frac{Dl_{1}\sin\alpha_{1}}{I_{YY}} + \frac{M_{A}}{I_{YY}}$$

$$- \frac{(m_{1}l_{1} + m_{p}l_{2}) \quad g\sin\theta}{I_{YY}} \qquad (78)$$

$$\dot{\Theta} = Q \tag{79}$$

$$x = U\cos\theta + W\sin\theta \tag{80}$$

$$\dot{z} = -U \sin \theta + W \cos \theta \tag{81}$$

The relation between the quantities as expressed above and the arrays Y and YD ϕ T is

$$Y(1) = U$$
, $YDØT(1) = \dot{U}$
 $Y(2) = W$, $YDØT(2) = \dot{W}$
 $Y(3) = Q$, $YDØT(3) = \dot{Q}$
 $Y(4) = \Theta$, $YDØT(4) = \dot{\Theta}$
 $Y(5) = \times$, $YDØT(5) = \dot{x}$
 $Y(6) = \Xi$, $YDØT(6) = \dot{z}$

Control is then returned to the calling program, either INTGRAT or FØRMULA.

- 5. Subroutine DYNAMIC
- a. Input

None

b. Output

None

c. Formal Parameters

RHØ, L1, L2, L3, IXX, IYY, IZZ, IXZ, MI.

d. Common Blocks

/DYNAM/: DNØT, X1, X2, X3, X4, X5, MBR, ML, MLS, MP, MR, MRX, IAZO, IZ

e. Method

The equations programmed in DYNAMIC are:

$$m_i = \rho V$$
 (82)

$$\overline{S} = \frac{XNUM - m_i S_c}{XDENØM + m_i}$$
 (83)

$$\mathcal{L}_{1} = S_{5} - \overline{S} \tag{84}$$

$$\mathcal{L}_{2} = -\bar{s} - S_{c} \tag{85}$$

$$l_3 = 0 = \overline{s} \tag{86}$$

$$I_a = (0.13195) \rho D_p^3 l_2^2$$
 (87)

$$I_{Y} = m_{p} l_{2}^{2} + m_{L_{S}} (\bar{s} - \bar{s}_{1})^{2} + m_{R} (\bar{s}_{2} - \bar{s}_{2})^{2} + m_{E} (\bar{s}_{2} - \bar{s}_{2})^{2} + m_{B_{r}} (\bar{s}_{4} - \bar{s}_{2})^{2} + m_{I} l_{1}^{2}$$
(88)

$$I_{YY} = I_Y + I_\alpha \tag{89}$$

$$I_{XX} = I_{YY} \tag{90}$$

$$I_{22} = I_2 + I_{a_2} \Big|_{o} \Big[\frac{\rho}{(.002378)} \Big]$$
 (91)

$$T_{XZ} = 0 \tag{92}$$

Thus the present arrangement of the computer solution is for parachutes which are rotationally symmetric. For a parachute without rotational symmetry, subroutine DYNAMIC must be modified for the appropriate components of the inertia tensor. After evaluation of the above equations, control is returned to the calling program.

6. Subroutine CØEFFTS

a. Input

None

b. Output

None

- c. Formal Parameters
 ALPHAP, CT, CN, CM, IPRINT, ISIGNAL
- d. Common Blocks

None

e. Method

The function of this subroutine is to evaluate the aerodynamic coefficients corresponding to the parachute angle of attack. If α_p is larger in absolute value than 85° , the parameter ISIGNAL is set equal to +1 and control returned immediately. If IPRINT is 1 a message indicating this occurrence is printed, and the successive travel of parameter ISIGNAL will cause the particular run to terminate. Otherwise, the only result will be to decrease the time increment in subroutine INTGRAT, after control is returned by means of EMØTIØN and FØRMULA.

If α_p is within the acceptable range, the following results are calculated for solid flat circular or T-10 parachutes:

Solid Flat Circular:

for
$$|\alpha_p| < 30^\circ$$

$$C_{T_0} = 0.647 - (1.2 \times 10^{-5}) |\alpha_p| + (9.15 \times 10^{-4}) |\alpha_p|^2 - (7.13 \times 10^{-5}) |\alpha_p|^3 + (1.33 \times 10^{-6}) |\alpha_p|^4$$
 (93)

$$C_{N_0} = -(6.74 \times 10^{-3}) \alpha_p + (5.57 \times 10^{-4}) \alpha_p^2$$

$$-(1.53 \times 10^{-5}) \alpha_p^3 + (1.9 \times 10^{-7}) \alpha_p^4 \qquad (94)$$

$$(\alpha_p > 0)$$

$$C_{M_0} = (4.844 \times 10^{-3}) \alpha_p - (3.94 \times 10^{-4}) \alpha_p^2 + (1.043 \times 10^{-5}) \alpha_p^3 - (1.32 \times 10^{-7}) \alpha_p^4$$

$$(\alpha_p > 0)$$
(95)

for
$$\left|\alpha_{\rm p}\right| \ge 30^{\rm o}$$

$$C_{T_0} = 0.62$$
 (96)

$$C_{N_0} = (.0056)(\alpha_p - 30^\circ) + .04 (\alpha_p > 0)$$
 (97)

$$C_{M_0} = -(.0044)(\alpha_p - 30^\circ) - .034 (\alpha_p > 0)$$
 (98)

T-10: for
$$|\alpha_p| < 30^\circ$$

$$C_{T_0} = 0.570 - (2.48 \times 10^{-3}) |\alpha_p| + (1.219 \times 10^{-3}) |\alpha_p|^2 - (7.687 \times 10^{-5}) |\alpha_p|^3 + (1.2797 \times 10^{-6}) |\alpha_p|^4$$
(99)

$$C_{N_0} = -(2.058 \times 10^{-2}) \alpha p + (1.95 \times 10^{-3}) \alpha p^2 + (6.022 \times 10^{-5}) \alpha p^3 - (6.827 \times 10^{-7}) \alpha p^4$$
 (100)
 $(\alpha p > 0)$

$$C_{M_0} = (1.845 \times 10^{-2}) \alpha_p - (1.929 \times 10^{-3}) \alpha_p^2 + (6.78 \times 10^{-5}) \alpha_p^3 - (8.709 \times 10^{-7}) \alpha_p^4$$

$$(\alpha_p > 0)$$
(101)

for
$$\alpha_p \ge 30^\circ$$

$$C_{T_0} = -(.0032)(|\alpha_p| - 30^{\circ}) + .553$$
 (102)

$$C_{N_0} = (.0072)(\alpha_p - 30^\circ) + .064 (\alpha_p > 0)$$
 (103)

$$C_{M_0} = -(.0060)(\alpha p - 30^0) - .056 \quad (\alpha p > 0)$$
 (104)

The proper subroutine must be inserted for computer trajectory simulations with a given parachute type so that the corresponding aerodynamic coefficients are used. Any parachute type other than the solid flat circular or T-10 may be used by properly providing the aerodynamic coefficients by means of subroutine CØEFFTS in the manner outlined here for solid flat circular and T-10 parachutes.

E. Free Descent; Six Degrees of Freedom

The free descent calculation phase follows the same organization when six degrees of freedom are allowed as when the trajectory simulation is restricted to three degrees of freedom. The names of the subroutines are the same for the six degree of freedom solution as for the solution allowing

only three degrees of freedom, with the exception of the addition of subroutine CØSINES for the six degree of freedom case. The subroutines INTGRAT, FØRMULA, and DYNAMIC are identical for both cases. Subroutines MØTIØN, EMØTIØN, and CØEFFTS are not the same when six degrees of freedom are allowed. In the following, only subroutines MØTIØN, EMØTIØN, CØEFFTS, and CØSINES are discussed.

1. Subroutine MØTIØN

a. Input

TSTØP, ZSTØP

b. Output

ALL NINT: T, ALT-RZ, RX, RY, RZ, V, VX, VY, VZ, AT, at the first three instances the parachute-load system is vertical or near vertical

NINT > 0: T, ALT-RZ, SYSANGL, TRAJANG, RX, RY, RZ, V, VX, VY, VZ, AT

c. Formal Parameters

DQ, PCTERR, ETA, DT

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS, MST, NINT

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The basic aspects of subroutine MØTIØN are the same for the three and six degree of freedom cases. All input and out-

put is the same, except that position and velocity components in the y-direction are included when all six degrees of freedom are allowed. The procedures for output and for calling the solution routine INTGRAT with variable time increments are exactly the same. After each call to INTGRAT, the position, velocity, and acceleration components of the load are evaluated by

$$\Upsilon \ell_{\mathbf{x}} = \mathbf{x} + \ell_1 \, \alpha_{13} \tag{105}$$

$$Y_{ly} = y + l_1 a_{23}$$
 (106)

$$Y_{\ell z} = Z + \ell_1 \alpha_{33} \tag{107}$$

$$V_{l_x} = (U + Ql_1) a_{11} + (V - Pl_1) a_{12} + W a_{13}$$
 (108)

$$V_{ly} = (U+Ql_1) a_{21} + (V-Pl_1) a_{22} + W a_{23}$$
 (109)

$$V_{l_z} = (U + Q l_1) a_{31} + (V - Pl_1) a_{32} + W a_{33}$$
 (110)

$$c_3 = \dot{U} + QW - RV + \dot{Q}l_1 + PRl_1 \qquad (111)$$

$$C_4 = \dot{V} + RU - PW - \dot{P}_1 + QR_1$$
 (112)

$$c_5 = \dot{W} - PV - QU - (P^2 + Q^2) l_1$$
 (113)

$$\alpha_{\ell x} = c_3 \alpha_{ij} + c_4 \alpha_{i2} + c_5 \alpha_{i3}$$
 (114)

$$a_{ly} = c_3 a_{21} + c_4 a_{22} + c_5 a_{23}$$
 (115)

$$\alpha_{12} = C_3 \alpha_{31} + C_4 \alpha_{32} + C_5 \alpha_{33}$$
 (116)

For the six degree of freedom case, the system angle and load trajectory angle are defined by

$$\alpha_{s} = \cos^{-1}(\alpha_{33}) \tag{117}$$

$$\alpha_{t} = \cos^{-1} \left\{ \frac{v_{\ell_z}}{\left[v_{\ell_x}^2 + v_{\ell_y}^2 + v_{\ell_z}^2\right]^{V_z}} \right\}$$
 (118)

The values of the trajectory parameters corresponding to the first three vertical positions are stored in the array VERTPAR and are determined in the same manner as for the three degrees of freedom. When the termination condition TSTØP or ZSTØP is exceeded, the trajectory parameters at the given condition are approximated by linear interpolation and control is returned to the main program.

2. Subroutine EMØTIØN

a. Input

None

b. Output

None

c. Formal Parameters

Y, YDØT, ISTØP, ISIGNAL

d. Common Blocks

/CØNST/: ALT, PI, G, CDP, DNØT, CDSL, LSS, ML, MP, MSS,

MST, NØUSE

/VARIABL/: RHØ, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1

e. Method

The purpose of EMØTIØN is to evaluate the equations of motion, providing the array YDØT containing the time derivatives of the twelve variables given the previously existing values of Y and YDØT. The calculation procedure for subroutine EMØTIØN is as follows. The values of ℓ_1 , ℓ_2 , ℓ_3 , ℓ_{XX} , ℓ_{YY} , ℓ_{ZZ} , ℓ_{XZ} , ℓ_{XZ} , ℓ_{XZ} , and ℓ_{ZZ} , and ℓ_{ZZ} , ℓ

$$U_{\ell} = U + Q_{\ell} \tag{119}$$

$$V_{\ell} = V - P \ell, \tag{120}$$

$$U_{\rho} = U + Q l_{z} \tag{121}$$

$$V_{p} = V - Pl_{2} \tag{122}$$

$$v_{\ell}^{2} = U_{\ell}^{2} + V_{\ell}^{2} + W^{2}$$
 (123)

$$V_{\rho}^{2} = U_{\rho}^{2} + V_{\rho}^{2} + W^{2}$$
 (124)

$$\alpha_{\ell} = \tan^{-1}\left(-\frac{U_{\ell}}{W}\right) \tag{125}$$

$$\beta_{\ell} = \tan^{-1}\left(\frac{\nabla_{\ell}}{W}\right)$$
 (126)

$$\gamma_{l} = \tan^{-1} \left\{ \frac{V_{l}}{(U_{l}^{2} + W^{2})^{1/2}} \right\}$$
 (127)

$$\delta_{\ell} = t_{an}^{-1} \left\{ \frac{U_{\ell}}{(V_{\ell}^2 + W^2)^{1/2}} \right\}$$
 (128)

$$\alpha_{p} = \tan^{-1}\left(-\frac{U_{p}}{W}\right)$$
 (129)

$$\beta_{p} = \tan^{-1}\left(\frac{\nabla_{p}}{W}\right)$$
 (130)

$$\theta_{p} = \cos^{-1} \left\{ \frac{W}{(U_{p}^{2} + V_{p}^{2} + W^{2})^{1/2}} \right\}$$
 (131)

 θ_p represents the angle between the systems axis and the parachute velocity in the plane formed by the systems axis and the parachute velocity. The aerodynamic coefficients are then found by calling CØEFFTS; α_p , β_p , and θ_p are supplied and CT_0 , CX_0 , CY_0 , CMX_0 , and CMY_0 are returned from CØEFFTS. The signals ISTØP and ISIGNAL in the call to CØEFFTS represent the same signals as in the three degree of freedom case. The aerodynamic forces and moments are given by

$$F_{NX} = \frac{1}{2} \rho v_{\rho}^{2} C_{NX} S_{o}$$
 (132)

$$F_{NY} = \frac{1}{2} \rho \vee \rho^2 C_{NY_0} S_0 \qquad (133)$$

$$T = \frac{1}{2} \rho V_{\rho}^{2} C_{T_{o}} S_{o}$$
 (134)

$$M_{AX} = \frac{1}{2} \rho v_{\rho}^{2} C_{MX} \cdot S_{o} D_{o}$$
 (135)

$$M_{AY} = \frac{1}{2} \rho v_{\rho}^{2} C_{MY_{o}} S_{o} D_{o}$$
 (136)

The direction cosines are evaluated by a call to CØSINES, and the equations of motion are then evaluated:

$$\dot{U} = \left(\frac{m_{\ell} + m_{ss} + m_{P}}{m_{T}}\right) g a_{31} + \frac{D_{\ell}}{m_{T}} \cos \delta_{\ell} \sin \alpha_{\ell}$$

$$+ \frac{F_{NX}}{m_{T}} - \left(\frac{m_{\ell} + m_{A}}{m_{T}}\right) l_{2}(\dot{q} + PR) - QW + RV$$
(137)

$$\ddot{V} = \left(\frac{m_{\ell} + m_{ss} + m_{\dot{p}}}{m_{T}}\right) g^{a_{32}} - \frac{D_{\ell}}{m_{T}} \cos \delta_{\ell} \sin \beta_{\ell} + \frac{F_{NY}}{m_{T}} + \left(\frac{m_{i} + m_{a}}{m_{T}}\right) l_{z} \left(\dot{P} - QR\right) + PW - RU$$
(138)

$$\dot{W} = \left(\frac{m_{l} + m_{ss} + m_{p}}{m_{T}}\right) g \alpha_{33} - \frac{D_{l}}{m_{T}} \cos \delta_{l} \cos \alpha_{l}
- \frac{T}{m_{T}} + \left(\frac{m_{l} + m_{q}}{m_{T}}\right) l_{2} \left(\rho^{2} + Q^{2}\right) - \rho V + Q U$$
(139)

$$\dot{P} = -\frac{F_{NY} l_3}{I_{XX}} + \frac{M_{AX}}{I_{XX}} + \frac{D_{\ell}}{I_{XX}} \cos \delta_{\ell} \sin \beta_{\ell} l_{1}$$

$$-\frac{9 \alpha_{32}}{I_{XX}} \left(m_{\ell} l_{1} + m_{\rho} l_{2}\right) + \dot{R} \frac{I_{XZ}}{I_{XX}} - QR \left(\frac{I_{ZZ} - I_{YY}}{I_{XX}}\right) + PQ \frac{I_{XZ}}{I_{XX}}$$
(140)

$$\dot{Q} = \frac{F_{NX} l_{3}}{I_{YY}} + \frac{M_{AY}}{I_{YY}} + \frac{D_{L}}{I_{YY}} \cos \delta_{L} \sin \alpha_{L} l_{1}$$

$$+ \frac{9 \alpha_{31}}{I_{YY}} (m_{L} l_{1} + m_{P} l_{2}) - PR(\frac{I_{XX} - I_{ZZ}}{I_{YY}}) - (P^{2} - R^{2}) \frac{I_{XZ}}{I_{YY}}$$
(141)

$$\dot{R} = \dot{Q} \frac{I_{XZ}}{I_{ZZ}} - PQ \frac{(I_{YY} - I_{XX})}{I_{ZZ}} - QR \frac{I_{XZ}}{I_{ZZ}}$$
(142)

$$\dot{\Theta} = Q \cos \varphi - R \sin \varphi \tag{143}$$

$$\dot{\varphi} = P + Q \sin \varphi \tan \theta + R \cos \varphi \tan \theta$$
 (144)

$$\dot{\Psi} = (Q \sin \varphi + R \cos \varphi) \sec \Theta$$
 (145)

$$\dot{x} = U a_{11} + V a_{12} + W a_{13}$$
 (146)

$$\dot{y} = U a_{21} + V a_{22} + W a_{23} \tag{147}$$

$$\dot{z} = Ua_{31} + Va_{32} + Wa_{33}$$
 (148)

Control is then returned to the main program.

3. Subroutine CØSINES

a. Input

None

b. Output

None

c. Formal Parameters

A, Y

d. Common Blocks

None

e. Method

The formal parameters of CØSINES are A and Y. A is a 3 x 3 array representing the direction cosine matrix, whose components are functions of the Euler angles. The subroutine merely evaluates the following relationships:

$$a_{11} = \cos \theta \cos \Psi$$
 (149)

$$a_{12} = \sin \varphi \sin \theta \cos \Psi - \cos \varphi \sin \Psi$$
 (150)

$$a_{13} = \cos \varphi \sin \theta \cos \Psi + \sin \varphi \sin \Psi$$
 (151)

$$a_{21} = \cos \theta \sin \Psi$$
 (152)

$$a_{22} = \sin \varphi \sin \theta \sin \Psi - \cos \varphi \cos \Psi$$
 (153)

$$a_{23} = \cos \varphi \sin \theta \sin \Psi - \sin \varphi \cos \Psi$$
 (154)

$$a_{31} = -\sin \theta \tag{155}$$

$$a_{32} = \sin \varphi \cos \theta$$
 (156)

$$a_{33} = \cos \varphi \cos \theta \tag{157}$$

Control is then returned to the calling program.

- 4. Subroutine COEFFTS
- a. Input

None

b. Output

None

c. Formal Parameters

ALPHAP, BETAP, POLANG, CT, CX, CY, CMX, CMY, IPRINT, ISIGNAL

d. Common Blocks

None

e. Method

This subroutine supplies the aerodynamic coefficients as functions of the parachute angles α_p , β_p , and θ_p . At present, measurements of the functional relationships which are required are not avilable. As an example of a possible arrangement for this subroutine, the following relationships are based on two-dimensional measurements for a solid flat circular parachute (Ref 3):

$$C_{T_0} = 0.647 - (1.2 \times 10^{-5}) |\Theta_p| + (9.15 \times 10^{-4}) |\Theta_p|^2 - (7.13 \times 10^{-5}) |\Theta_p|^3 + (1.33 \times 10^{-6}) |\Theta_p|^4, |\Theta_p|^4 |\Theta_p|^4$$
(158)

$$C_{N_{X_0}} = -(6.74 \times 10^{-3}) \alpha_p + (5.57 \times 10^{-4}) \alpha_p^2 - (7.13 \times 10^{-5}) \alpha_p^3 + (1.9 \times 10^{-7}) \alpha_p^4, \quad 0 \le \alpha_p < 30^{\circ}$$
 (159)

$$C_{NY_0} = -(6.74 \times 10^{-3}) \beta_{\rho} + (5.57 \times 10^{-4}) \beta_{\rho}^2 - (7.13 \times 10^{-5}) \beta_{\rho}^3 + (1.9 \times 10^{-7}) \beta_{\rho}^4, \quad 0 \le \beta_{\rho} \le 30^{\circ}$$
(160)

$$C_{MY_0} = (4.844 \times 10^{-3}) \alpha_p - (3.94 \times 10^{-4}) \alpha_p^2 + (1.043 \times 10^{-5}) \alpha_p^3 - (1.32 \times 10^{-7}) \alpha_p^4 , 0 \le \alpha_p < 30^{\circ}$$
(161)

$$C_{M_{X_0}} = (4.844 \times 10^{-3}) \beta_P - (3.94 \times 10^{-4}) \beta_P^2 + (1.043 \times 10^{-5}) \beta_P^3 - (1.32 \times 10^{-7}) \beta_P^4 , \quad 0 \le \beta_P \le 30^{\circ}$$
 (162)

$$C_{T_0} = 0.62$$
 , $|\Theta_p| \ge 30^{\circ}$ (163)

$$C_{NX_{\circ}} = (.0056)(\alpha_{\rho} - 30^{\circ}) + .04$$
 $\alpha_{\rho} \ge 30^{\circ}$
(164)

$$C_{NY_0} = (.0056)(\beta_P - 30^\circ) + .04$$
 (165)
 $\beta_P \ge 30^\circ$

$$C_{MY_0} = -(.0044)(\alpha \rho^{-30^{\circ}}) - .034$$
 (166)
 $\alpha \rho \ge 30^{\circ}$

$$C_{MX_0} = -(.0044)(\beta_p - 30^\circ) - .034$$
 (167)
 $\beta_p \ge 30^\circ$

Limits must be set on the allowable magnitude of the angles to prevent the solution from blowing up. When any of the angles are larger in absolute value than, for example, 85°, the parameter ISIGNAL so indicates. After the coefficients are determined, or the angles exceed the limit, control is returned to the calling program.

F. DENSITY and TRAJEQN

- 1. Subroutine DENSITY
- a. Input

None

b. Output

None

c. Formal Parameters

RHØ, H

d. Common Blocks

None

e. Method

This subroutine provides the value of the air density at altitude h, as follows:

$$\rho = (0.002378) e^{-h/32,916}, 0 \le h \le 15,000 \text{ ft}$$

$$\rho = (0.002378) (1.07133) e^{-h/28,953}, 15,000 \text{ ft} \le h$$

$$\le 35,000 \text{ ft}$$

- 2. Subroutine TRAJEQN
- a. Input

None

b. Output

None

- c. Formal Parameters
- T, V, THETA, X, Z, RHØ, CDS, M, DT, G, ALT, DV
- d. Common Blocks

None

e. Method

This subroutine evaluates the following two-dimensional

point mass trajectory equations:

$$\Delta v = \left[g \cos \Theta - \frac{\rho v^2 C_0 S}{\varrho_m} \right] \Delta t \tag{169}$$

$$\Delta \theta = -\frac{9 \sin \theta}{V} \Delta t \tag{170}$$

$$\Delta x = v \sin \theta \Delta t$$
 (171)

$$\Delta_{\bar{z}} = v \cos \theta \Delta^{\pm}$$
 (172)

and then adds these finite increments to v, θ , x, z, and t.

IV. CALLING PARAMETERS

The calling parameters for each call by the various calling programs to each subroutine are listed in the following. The formal parameter list of the particular subroutine is shown first for a reference, followed by the call statements in the indicated subroutine.

A. EXTRACT (ISNATCH, IEXTRAC, VO, DT, TRCA)

MAIN PRØGRAM:

CALL EXTRACT (ISNATCH, IEXTRAC, VO, DT1, TRCA)

B. SNATCH (TRCA, DT)

MAIN PRØGRAM:

CALL SNATCH (TRCA, DT1)

C. B ϕ DIES (M1, CDS1, M2, CDS2, V1, V2, L, DT)

SNATCH:

CALL BØDIES (M1, CDS1, CAPM2, CDS2, V1, V2, L, DT) CALL BØDIES (M1, CDS1, MPBAG, CDS2, V1, V2, L, DT)

D. ØPENING (DQ, TRCA, N, F, VØLUMG, IEXTRAC, DTT)

MAIN PRØGRAM:

CALL OPENING (DQ, TRCA, NNN, SPACE, VOLUME, IEXTRAC, DT3)

E. FILLTIM (VØLUME, VO, XO, ZO, THETAO, MS, HO, H1, N, VØLDØT, TF)

ØPENING:

CALL FILLTIM (VØLUME, VO, XO, ZO, THETAO, MS, HO, H1, N, F, TF)
CALL FILLTIM (VØLUME, VO, XO, ZO, THETAO, MS, HO, H1, N, F, TF)

F. CALC (CAPT, TF, DCAPT, DCAPTR, M, DV, DP, D)

OPENING:

CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)
(CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)

FILLTIM:

CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)

G. MØTIØN (DQ, PCTERR, ETA, DT)

MAIN PRØGRAM:

CALL MOTION (DQ, PCTERR, ETA, DT3)

H. INTGRAT (T, Y, TF, NN, PCTERR, ETA, TRY1, TRY2, TRY3, W, YDØT, Z, ID, DX, T1, ISIGNAL)

MØTIØN (Three Degrees of Freedom):

CALL INTGRAT (T, Y, TF, 6, PCTERR, ETA, X1, X2, X3, W, YDØT, B, ID, DX, T1, K)

MØTIØN (Six Degrees of Freedom):

CALL INTGRAT (T, Y, TF, 12, PCTERR, ETA, X1, X2, X3, W, YDØT, B, ID, DX, T1, K)

I. EMØTIØN (Y, YDØT, ISTØP, ISIGNAL)

FØRMULA:

CALL EMØTIØN (W, Z, 2, ISIGNAL)

INTGRAT:

CALL EMØTIØN (Y, YDØT, 1, ISIGNAL)

J. DYNAMIC (RHØ, L1, L2, L3, IXX, IYY, IZZ, IXZ, MI)

MAIN PRÓGRAM:

CALL DYNAMIC (0.002378, A1, A2, A3, A4, A5, A6, A7, A8) CALL DYNAMIC (RHØ, B1, B2, B3, B4, B5, B6, B7, B8)

EMØTIØN:

CALL DYNAMIC (RHØ, L1, L2, L3, IXX, IYY, IZZ, IXZ, MI)

K. CØEFFTS (ALPHAP, CT, CN, CM, IPRINT, ISIGNAL)

EMØTIØN (Three Degrees of Freedom):

CALL COEFFTS (ALPHAP, CT, CN, CM, ISTOP, ISIGNAL)

L. CØEFFTS (ALPHAP, BETAP, PØLANG, CT, CX, CY, CMX, CMY, IPRINT, ISIGNAL)

EMØTIØN (Six Degrees of Freedom):

CALL CØEFFTS (ALPHAP, BETAP, PØLANG, CT, CX, CY, CMX, CMY, ISTØP, ISIGNAL)

M. CØSINES (A, Y)

MØTIØN (Six Degrees of Freedom):

CALL CÓSINES (A, Y)

EMØTIØN (Six Degrees of Freedom):

CALL CÓSINES (A, Y)

N. DENSITY (RHØ,

H)

MAIN PROGRAM:

CALL DENSITY (RHØ,

ALT)

BØDIES, TRAJEQN, CALC:

CALL DENSITY (RHØ.

ALT-Z)

EMØTIØN (Three Degrees of Freedom):

CALL DENSITY (RHØ, ALT-Y(6))

EMØTIØN (Six Degrees of Freedom):

CALL DENSITY (RHØ, ALT-Y(12))

O. TRAJEQN (T, V, THETA, X, Z, RHØ, CDS, M, DT, G, ALT, DV)

EXTRACT:

CALL TRAJEQN (T, V, THETA, X, Z, RHØ, CDST, MT, DT, G, ALT, DV)

CALL TRAJEON (T, V, THETA, X, Z, RHØ, CDST, MT, DT, G, ALT, DV)

OPENING:

CALL TRAJEQN (T, V, THETA, X, Z, RHØ, CDST, MS, DTT, G, ALT, DV)

V. FLOW CHARTS

This section includes flow charts for the main program and for all of the computer program subroutines. The order of presentation corresponds to the order in which they are discussed in Section III. All details of the input and output in the various subroutines are not indicated. Input and/or output are treated in detail only where required for a basic understanding of the computer program.

FIG 10 MAIN PROGRAM

FIG 10 MAIN PROGRAM (Continued)

FIG 10 MAIN PROGRAM (Concluded)

FIG 11 Subroutine EXTRACT

FIG 11 Subroutine EXTRACT (Continued)

FIG 11 Subroutine EXTRACT (Continued)

FIG 11 Subroutine EXTRACT (Concluded)

FIG 12 Subroutine SNATCH

FIG 12 Subroutine SNATCH(Continued)

FIG 12 Subroutine SNATCH (Concluded)

FIG 13 Subroutine BØDIES

FIG 14 Subroutine ϕ PENING

FIG 14 Subroutine ϕ PENING (Continued)

FIG 14 Subroutine OPENING (Concluded)

FIG 15 Subroutine FILLTIM

FIG 16 Subroutine CALC

FIG 17 Subroutine M ϕ TI ϕ N (Three Degrees of Freedom)

FIG 17 Subroutine $M\phi TI\phi N$ (Three Degrees of Freedom) (Continued)

FIG 17 Subroutine $M\phi TI\phi N$ (Three Degrees of Freedom) (Continued)

FIG 17 Subroutine MØTIØN (Three Degrees of Freedom) (Concluded)

FIG 18 Subroutine INTGRAT

FIG 18 Subroutine INTGRAT (Concluded)

FIG 19 Subroutine F ϕ RMULA

FIG 20 Subroutine EMØTIØN(Three Degrees of Freedom)

FIG 21 Subroutine DYNAMIC

FIG 22 Subroutine CØEFFTS (Three Degrees of Freedom)

FIG 23 Subroutine $M\phi TI\phi N$ (Six Degrees of Freedom)

FIG 23 Subroutine MØTIØN (Six Degrees of Freedom) (Continued)

FIG 23 Subroutine MØTIØN (Six Degrees of Freedom)(Continued)

FIG 23 Subroutine MØTIØN (Six Degrees of Freedom) (Concluded)

FIG 24 Subroutine EMØTIØN (Six Degrees of Freedom)

FIG 25 Subroutine CØEFFTS (Six Degrees of Freedom)

FIG 25 Subroutine CØEFFTS (Six Degrees of Freedom) (Concluded)

FIG 26 Subroutine COSINES

FIG 27 Subroutine DENSITY

FIG 28 Subroutine TRAJEQN

VI. COMPUTER PROGRAM SYMBOLS

Tables I through XIX explain the various mnemonic symbols used in the computer program in terms of symbols used in the text of Volumes I and II of this report, where applicable, and brief comments. The symbols are arranged in tables which correspond to the various subroutines and are presented in the order of discussion in Section III.

TABLE I
Computer Symbols for MAIN PROGRAM

Mnemonic Variation	Symbol	Comment
ALT	$\mathbf{h}_{\mathbf{o}}$	release altitude
Al	ι_1	ℓ_1 at mean sea level
A2	L 2	ι ₂ at mean sea level
A3	ℓ 3	ι_3 at mean sea level
A 4	$\mathbf{I}_{\mathbf{XX}}$	I _{XX} at mean sea level
A 5	$\mathbf{I}_{\mathbf{YY}}$	I _{YY} at mean sea level
A 6	I _{ZZ}	I _{ZZ} at mean sea level
A7	I _{XZ}	I _{XZ} at mean sea level
A8	^m i	m _i at mean sea level
A 9	m _a	m _a at mean sea level
B1	ι_1	ℓ_1 at ${ extstyle h}_{ extstyle o}$
B2	Ł2	ℓ_2 at h_o
B3	ι_3	ℓ_3 at h_0
B4	$\mathbf{I}_{\mathbf{XX}}$	I_{XX} at h_o
B5	$\mathbf{I}_{\mathbf{YY}}$	I _{YY} at h _o
В6	I_{ZZ}	I _{ZZ} at h _o
В7	I_{XZ}	I _{XZ} at h _o
В8	m _i	$\mathtt{m_{i}}$ at $\mathtt{h_{o}}$
В9	m _a	$m_{a}^{}$ at $h_{o}^{}$
CDP	c_{D_p}	drag coefficient of parachute based on projected area
CDSL	$c_{D}^{}s_{\ell}^{}$	drag area of load

TABLE I (Cont'd.)
Computer Symbols for MAIN PRØGRAM

Mnemonic Variation	Symbol	Comment
C1-C5		A block of alphanumeric characters which form the title for a particular simulation
DNØT	D _o	nominal diameter
DQ	<u>dv</u> dt	acceleration at the moment of full inflation
DT1	Δt	Δt in EXTRACT
DT2	Δt	Δt in SNATCH
DT3	Δt	Δt in PPENING, MØTIØN
DYDNØT	D _o	nominal diameter
DYML	m _e and the	mass of load
DYMP	m _p	mass of parachute
ETA	η	absolute errors allowed in INTGRAT - N dimensional array
G	g	acceleration of gravity
I		implied $D\emptyset$ loop index for reading ETA
IAZO	I _a z) _o	Apparent moment of inertia about Z-axis at mean sea level
IEXTRAC		<pre>Integer Variable; if ISTATIC ≥ 0: IEXTRAC > 0, Reefed main parachute extraction system, IEXTRAC ≤ 0, Extraction parachute system</pre>
ISNATCH		<pre>Integer variable; if ISNATCH > 0, no snatch force calculation</pre>

TABLE I (Cont'd.)
Computer Symbols for MAIN PRØGRAM

Mnemonic Variation	Symbol	Comment
IZ	$\mathbf{I_Z}$	moment of inertia about Z-axis due to physical masses of load, para- chute, and suspension system
\mathbf{J}		DØ loop index for NSIM
LSS	$L_S + L_R$	suspension line + riser length
MBR	${\tt m}_{ extbf{Br}}$	mass of load bridle
ML	me	mass of load
MLS	$^{ ext{m}}$ L $_{ ext{S}}$	mass of suspension lines
MP	$\mathbf{m}_{\mathbf{p}}$	mass of parachute
MR	$^{ m m}_{ m R}$	mass of risers
MRX	^m E	mass of riser extensions
MSS	^m ss	$^{m}L_{S}$ + ^{m}R + ^{m}E + ^{m}Br
MST	Mrs Mrs	total mass
N		number of degrees of freedom allowed in MØTIØN
NINT		number of calculations between successive prints in EXTRACT, SNATCH, OPENING and MOTION
NN		2 · N
NNN	n	number of steps used to approximate inflation in OPENING

TABLE I (Cont'd.)
Computer Symbols for MAIN PRØGRAM

	Comment
	number of total trajectory simu- lations in 1 computer run
	Percentage error allowed in INTGRAT
π	3.141592653589793
s _{c/D_o}	ratio of reference distance from canopy skirt to parachute center of volume in fully inflated condition to $\mathbf{D}_{\mathbf{O}}$
D _{pmax/Do}	projected diameter ratio in fully inflated configuration
ρ	air density
t _{RCA}	time at which reefing cutters are armed
V	fully inflated volume
v _o	initial velocity
	$m_p + m_{L_s} + m_R + m_E + m_{Br} + m_{\ell}$
	$^{m}L_{s}^{s_{1}} + ^{m}R^{s_{2}} + ^{m}E^{s_{3}} + ^{m}Br^{s_{4}}$
	$+ m_{\ell} s_5 - m_{p} s_{c}$
s 1	reference distance from canopy skirt to suspension line center of mass in fully inflated configuration
s ₂	reference distance from canopy skirt to riser center of mass in fully inflated configuration
s 3	reference distance from canopy skirt to riser extension center of mass in fully inflated configuation
	Sc/Do Dpmax/Do ctRCA V vo

TABLE I (Cont'd.)
Computer Symbols for MAIN PRØGRAM

Mnemonic Variation	Symbol	Comment
X4	s ₄	reference distance from canopy skirt to load bridle center of mass in fully inflated configuration
x5	\$ 5	reference distance from canopy skirt to load center of mass in fully inflated configuration

TABLE II
Computer Symbols for Subroutine EXTRACT

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CDP	C _D p	drag coefficient based on projected area
CDSBAG	$c_D^{}s_B^{}$	drag area of main parachute deployment bag
CDSEX	$^{\text{C}}_{\text{D}}^{\text{S}}_{\text{ex}}$	drag area of extraction parachute
CDSL	$^{\mathrm{C}}_{\mathrm{D}}^{\mathrm{S}}_{\ell}$	drag area of load
CDSP	c_{D}^{s}	drag are a of pilot chute
CDST	$c_{\overline{D}}s_{\overline{T}}$	drag area for calls to EXTRACT or for Eqn (4)
DISTANC		distinct values of ℓ where modeled physical process is changed
DNØT	D _o	nominal diameter
DPILØT	$^{ m D}_{ m Pilot}$	flat diameter of pilot chute
DT	Δt	time increment
DV	Δv	velocity increment
DX	$\Delta \mathbf{x}$	x increment, v∆t
G	g	acceleration of gravity
H	$(D_p/D_o)_{ex}$	$D_{\rm p}/D_{\rm o}$ of reefed main extraction parachute
ICØUNT		index for number of calculations made without print
IEXTRAC		<pre>IntegerVariable; If ISTATIC ≥ 0, IEXTRAC > 0, Reefed main parachute extraction system; IEXTRAC ≤ 0, Extraction parachute system</pre>
ISNATCH		<pre>Integer variable; ISNATCH > 0, no snatch force calculation</pre>
ISTATIC		<pre>Integer variable; ISTATIC < 0, static line used</pre>

TABLE II (Cont'd.)
Computer Symbols for Subroutine EXTRACT

Mnemonic Variation	Symbol	Comment
LENGTH		distance load travels in aircraft
LSPILØT	$^{ extsf{L}} extsf{S}_{ extsf{Pilot}}$	length of pilot chute suspension lines
LSS		$L_s + L_R$
LSTATIC	L _{Static}	Static line length
MST	m _{rs}	mass of entire recovery system
MR	$\mathbf{m_{T}}$	mass used for calls to TRAJEQN or for Eqn (4)
NINT		number of calculations to be made between successive prints; if NINT < 0, continuous output is suppressed
PI	π	3.14159
R	R _{ex}	$\frac{(\ell_R/\pi)}{D_O} ex$
RНØ	ρ	air density
T	ŧ	time
TD	tD	coasting time at constant drag area
THETA	₩.	system angle, radians
TRAJANG	8	system angle, degrees
TRAJ1	θ1	0 at static line stretch
TRCA	^t RCA	time at which reefing cutters are armed
T1	t ₁	t at static line stretch or when load leaves aircraft
V	V	velocity
VX	$v_{\mathbf{x}}$	x component of v
VZ	${f v}_{f z}$	z component of v
VO	$\mathbf{v}_{\mathbf{o}}$	initial velocity
		(q. q. w)

TABLE II (Cont'd.)
Computer Symbols for Subroutine EXTRACT

Mnemonic Variation	Symbol Symbol	Comment		
V1	$\mathbf{v_1}$	v at static load leaves	line stretch airvraft	or when
X	x	x position		
X1	x ₁	x at static load leaves	line stretch aircraft	or when
Z - <i>i</i> -	Z	z position		
Z1	z 1	z at static	line stretch	

TABLE III
Computer Symbols for Subroutine SNATCH

Mnemonic Variation	Symbol	Comment
A	A	inverse of spring constant, k
ALT	h _o	release altitude
В	В	Equation (11)
C	C	Equation (12)
CAPM1	$M_{\mathbf{I}}$	m _l + m _{ss}
CAPM2	M _{II}	$m_p + \frac{1}{2}m_{ss} + m_{Pb}$
CDP	$^{C}_{D_{p}}$	drag coefficient based on pro- jected area of parachute
CDSL	c_D^s	drag area of load
CDS1	$^{\mathtt{C}_{\mathtt{D}}\mathtt{S}_{\mathtt{I}}}$	drag area of primary body
CDS2	$c_D s_{II}$	drag area of secondary body
DELTAV	v _s -v _{II}	difference between velocity of parachute immediately before snatch and snatch velocity
DNØT	D _o	nominal diameter
DT	Δt	time increment
FA1	FAI	Equation (13)
FA2	$^{\mathbf{F}}A_{\mathbf{II}}$	Equation (14)
ICØUNT		index for number of calculations made without print
K	k	suspension system spring constant

TABLE III (Cont'd.)
Computer Symbols for Subroutine SNATCH

Mnemonic Variation	Symbol	Comment
L 3.5		distance between load and secondary body during deployment
LRXBR		$L_E + L_{BR}$
LSS		$L_S + L_R$
ML	^m _Ł	mass of load
MP	m _p	mass of parachute
MPBAG	^m pb	mass of pilot or extraction para- chute and main parachute deploy- ment bag
MSS	m _{ss}	$m_{L_s} + m_R + m_E + m_{Br}$
M1	m _I	m _ℓ + ½m _{SS}
M2	$\mathbf{m}_{\mathbf{p}}$	
NINT		number of calculations to be made between successive prints; if NINT < 0 continuous output is suppressed
PI	1	3.14159
PMAX	P _{max}	maximum snatch force
Q	Q	mass ratio, Equation (15)
RHØ	p	air density
To a secondary	t. beginning	time
THETA		systems angle, radians

TABLE III (Cont'd.)
Computer Symbols for Subroutine SNATCH

Mnemonic Variation	Symbol	Comment
TL		t at snatch
TRAJANG	θ	system angle, degrees
TRAJL		θ at snatch
TRCA	^t RCA	time at which reefing cutters are armed
V	v	velocity
VF	$v_{\mathbf{s}}$	velocity just after snatch
V1	$v_{\mathtt{I}}$	velocity of primary body
V1L		velocity of primary body at snatch
V1X	$^{\mathbf{v}}\mathbf{I}_{\mathbf{x}}$	x - component of v_I
V1Z	$^{\mathtt{v}}\mathtt{I}_{\mathbf{z}}$	z - component of $v_{\mathbf{I}}$
V2	${f v_{II}}$	velocity of secondary body
V2L		velocity of secondary body at snatch
X	x	x position
XL		x at snatch
Z	Z	z position
ZL		z at snatch

TABLE IV
Computer Symbols for Subroutine BØDIES

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CDS1	c_D^s	drag area of primary body
CDS2	$c_D^{}s_{II}^{}$	drag area of secondary
DL	∆ ℓ	increment in distance between bodies
DT	Δt	time increment
DTHETA	Δθ	system angle increment
DV1	Δv _I	primary body velocity increment
DV2	$\Delta v_{ exttt{II}}$	secondary body velocity increment
DX	$\Delta \mathbf{x}$	x increment
DZ	∆z	z increment
G	g	acceleration of gravity
L		separation distance between bodies
M1	$^{ m m}{ extsf{I}}$	m _l + ½m _{ss}
M2	m _p	
RH Ø	ρ	air density
T	t	time
THETA		system angle, degrees
V1	vI	velocity of primary body
V2	v _{II}	velocity of secondary body

TABLE IV (Cont'd.) Computer Symbols for Subroutine BØDIES

Perana Parintan Peranahan

e Arthere de Lagrago de la Martine Differencia de Lagrago. De la filosoficia de la Martine de Lagrago de Lagrago de Lagrago de la Calenda de Lagrago de Lagrago de Lagrag

NAME OF A PARTY OF A PARTY OF

and the state of t

Mnemonic Variation	Symbol	Comment		
X	x	x position		a de
Z	Z	z position		

TABLE V
Computet Symbols for Subroutine PENING

Mnemonic Variation	Symbol	Comment
AL		acceleration
ALT	h _o	release altitude
CAPT	T	dimensionless time
CAPTR	$T_{\mathbf{R}}$	dimensionless time for reefed in- flation
CDP	c_{D_p}	drag coefficient of parachute based on projected area
CDS	(C _D S) _p	drag area of parachute
CDSL	$^{\mathrm{C}}_{\mathrm{D}}^{\mathrm{S}}_{\ell}$	drag area of load
CDST		$(C_DS)_p + C_DS_\ell$; for call to TRAJEQN
D	d	canopy inlet diameter
DCAPT	$\Delta {f T}$	increment in T
DCAPTR	$^{ riangle extbf{T}}_{ extbf{R}}$	increment in T_R
DNØT	D _o	nominal diameter
DP	$D_{\mathbf{p}}$	projected diameter
DQ	Δv/Δt	acceleration at full inflation
DT		time increment during inflation
DTT	Δt	time increment for coasting stages
DV	Δν	velocity increment
F		array established for ν_i in subroutine FILLTIM

TABLE V (Cont'd.)
Computer Symbols for Subroutine ØPENING

Mnemonic Variation	Symbol Symbol	Comment
FØ	F _{max}	maximum opening force
FRCE	F _O	instantaneous opening force
G	g	acceleration of gravity
НО	h _o	initial reefed D_p/D_o
H1	h 1	final reefed D_p/D_o
		DØ loop index for loop encompassing the complete inflation with reefed stages
ICØUNT		number of calculations made without print during coasting stages
IEXTRAC		integer variable, see MAIN PRØGRAM
J		DØ loop index for inflation periods; implied DØ loop index for printing array REEF
LSS		$\mathbf{L_s} + \mathbf{L_R}$
ML,	m	mass of load
MP	^m p	mass of parachute
MS		$m_{\ell} + m_{ss} + m_{p}$
MSS	mss	mass of suspension system
N 445,774 4 4 4 4	Shatyer k San yer	number of steps used to approxi- mate inflation periods

TABLE V (Cont'd.)
Computer Symbols for Subroutine ØPENING

Mnemonic	Symbol	Comment
<u>Variation</u>	Symbol	Comment
NINT		number of calculations to be made between successive prints during coasting stages; if NINT < 0, continuous output is suppressed
NREEF		integer variable, number of reefing lines used
PI	π :	3.14159
REEF		array which contains trajectory variables, opening shock, and filling time at end of each reefed inflation period
RHØ	ρ	air density
RO	R _o	initial reefing ratio = $\frac{\ell_{\rm R}/\pi}{D_{\rm o}}$
R1	$\mathbf{R_1}$	final reefing ratio = $\frac{\ell_R/\pi}{D_o}$
T .		time
TCD	tCD	reefing cutter delay time
TDR	t _{DR}	rime of disreef, $t_{DR} = t_{RCA} + t_{CD}$
TF	t _{ff} or t _{fR}	filling time
THETA	0	system angle, radians
THETAO	0	0 initial, at entry to FILLTIM
TNØT	t o	t initial, at beginning of each inflation stage
TRAJANG	θ	system angle, degrees

TABLE V (Cont'd.)
Computer Symbols for Subroutine ØPENING

Mnemonic Variation	Symbol	Comment
TRCA	t _{RCA}	time at which reefing cutters are armed
V	v	velocity
V1 - V5		terms in Eqn (27)
VØLUME	V or $V_{\mathbf{R}}$	volume, V or V_R , for call to FILLTIM
vølumg		volume of fully inflated parachute
VX	$\mathbf{v}_{\mathbf{x}}$	x component of velocity
VZ	$v_{\mathbf{z}}$	z component of velocity
VO		initial velocity, at entry to FILLTIM
X		x position
хо		initial x, at entry to FILLTIM
Z	Z	z position
ZO		initial z, at entry to FILLTIM

TABLE VI
Computer Symbols for Subroutine FILLTIM

Mnemonic Variation	Symbol	Comment
C 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	c	effective porosity
CAPT	T	dimensionless time
CAPTR	$T_{\mathbf{R}}$	dimensionless time for reefed in- flation periods
CO	c _o	effective porosity at mean sea level
		canopy inlet diameter
DCAPT	ΔT	increment of T
DCAPTR	$\Delta \mathbf{T_R}$	increment of T _R
DNØT	D	nominal diameter
DP	$\mathbf{p}_{\mathbf{p}}$	projected diameter
DTF		filling time increment,
		$\left(\frac{\text{VØLUME}}{\text{VØL}} - 1\right) t_{fR}$
DV	o V irginia	velocity increment
НО	h _o	initial reefed $\mathrm{D_{p}/D_{o}}$
H1	$\mathbf{h_1}$	final reefed $\mathrm{D_p/D_o}$
I		DØ loop index for evaluation of continuity equation
J, K		DØ loop indices for evaluation of Simpson's rule formula
MS		$m_{\ell} + m_{ss} + m_{p}$

TABLE VI (Cont'd.)
Computer Symbols for Subroutine FILLTIM

Mnemonic Variation	Symbol	Comment
N		number of steps used for integra- tion of continuity equation by Simpson's rule
PI		3.14159
RHØ	P	air density
SUM		approximation to $\int v \left[(1+2.2cT-T) \frac{d^2}{4} - \frac{1.1c}{2} p^2 \right] dT$
TF	t _{ff} or t _{fR}	filling time
THETA	θ	system angle, radians
THETAO	θο	initial θ , at entry to FILLTIM
V.		velocity
V Ø L	V	volume from integration of continuity equation
V Ó LD Ó T		array which contains integrand of Eqn (30)
VØLUME	v or v_R	volume increase for the particular inflation
VO.		initial velocity, at entry to FILLTIM
X	x	x position
XO .		initial x, at entry to FILLTIM
Z	Z	z position
Z 0		initial z, at entry to FILLTIM

TABLE VII
Computer Symbols for Subroutine CALC

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CAPT	T	dimensionless filling time
CDP	c _{Dp}	drag coefficient of parachute based on projected area
CDS		$(c_D s)_p + c_D s_\ell$
CDSL	$c_{\mathbf{D}}^{\mathbf{S}}$	drag area of load
D	d	inlet diameter
DCAPT	ΔΤ	increment in T
DCAPTR	$\Delta \mathbf{T_R}$	increment in $T_{\mathbf{R}}$
DDØT	d(d) dT	dimensionless time derivative of d
DMA	∆m _a	increment of ma
DMI	Δmi	increment of m _i
dnøt	D _o	nominal diameter
DP	$\mathbf{D}_{\mathbf{p}}$	projected diameter
DPD Ø T	d(D _p)/dT	dimensionless time derivative of $\mathbf{D}_{\mathbf{p}}$
DPMAX	D _{pmax}	projected diameter of fully inflated parachute
DTHETA	Δθ	increment in θ
DV	Δ V	increment in v

TABLE VII (Cont'd.)
Computer Symbols for Subroutine CALC

Mnemo n ic Variation	Symbol Symbol	Comment
DX	Δ×	increment in x
DZ	Δ z	increment in z
G	g	acceleration of gravity
LSS		$L_s + L_R$
M		$m_{\ell} + m_{ss} + m_{p}$
MA	^m a	apparent mass
MI	${\sf m_i}$	included mass
MT	^m T	$m_{\ell} + m_{ss} + m_{p} + m_{a} + m_{i}$
PI		3.14159
RHØ	ρ	air density
sq		term used in Eqn (46)
SQ1		term used in Eqn (46)
TF	tff or tfR	filling time
THETA	θ	system angle, radians
V		velocity
X		x position
Z	Z	z position

TABLE VIII

Computer Symbols for Subroutine MØTIØN

(Three Degrees of Freedom)

DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN PRØGRAM DX Δt time increment set by INTGRAT ETA η_i array containing allowable absolute errors in the integration G g acceleration of gravity I $D\emptyset$ loop index; implied $D\emptyset$ loop	Mnemonic. Variation	Symbol Symbol	Comment
ALPHA1 α_{ℓ} load angle of attack, degrees ALT h_0 release altitude AMARK ± 1 ANG θ previous value of system angle x-component of a_{ℓ} AZ a_{ℓ_X} z-component of a_{ℓ} AI a_{ℓ_X} a_{ℓ_X} if $t_1 > \text{TST} \not o$ P or R2 > ZST $\not o$ P A2 a_{ℓ_Z} a_{ℓ_Z} if $t_1 > \text{TST} \not o$ P or R2 > ZST $\not o$ P B dummy array established for use in call to INTGRAT CORR correction for linear interpolation DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN PROGRAM DX Δt time increment set by INTGRAT ETA η_1 array containing allowable absolute errors in the integration of gravity DØ loop index; implied DØ loop	A	aų	acceleration of the load
ALT h_0 release altitude AMARK ± 1 ANG θ previous value of system angle x-component of a_1 AZ a_{ℓ_X} z-component of a_1 AI a_{ℓ_X} a_{ℓ_X} if $t_1 > TST \theta P$ or $R2 > ZST \theta P$ A2 a_{ℓ_Z} a_{ℓ_X} if $t_1 > TST \theta P$ or $R2 > ZST \theta P$ B $dummy \ array \ established for use in call to INTGRAT correction for linear interpolation DQ \frac{dv}{dt} acceleration at the moment of full inflation DT \Delta t time increment set by MAIN PR GRAM DX \Delta t time increment set by INTGRAT array containing allowable absolute errors in the integration acceleration of gravity DØ loop index; implied DØ loop$	ALPHAL	$lpha_{\ell}$	load angle of attack, radians
AMARK ANG θ previous value of system angle AX a_{ℓ_X} AZ a_{ℓ_Z} AI a_{ℓ_X} AI a_{ℓ_X} AI a_{ℓ_X} AI a_{ℓ_X} AI a_{ℓ_X} a_{ℓ_X	ALPHA1	$lpha_{oldsymbol{\ell}}$	load angle of attack, degrees
AMARK ANG θ previous value of system angle AX a_{ℓ_X} AZ a_{ℓ_Z} AI a_{ℓ_X} AI a_{ℓ_X} AI a_{ℓ_X} AI a_{ℓ_X} AI a_{ℓ_X} a_{ℓ_X	ALT	h _o	release altitude
AX a_{ℓ_X} x-component of a_{ℓ} AZ a_{ℓ_Z} z-component of a_{ℓ} A1 a_{ℓ_X} a_{ℓ_X} if $t_1 > TST ØP$ or $R2 > ZST ØP$ A2 a_{ℓ_Z} a_{ℓ_Z} if $t_1 > TST ØP$ or $R2 > ZST ØP$ B dummy array established for use in call to INTGRAT CØRR correction for linear interpolation DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN PRØGRAM DX Δt time increment set by INTGRAT ETA η_1 array containing allowable absolute errors in the integration G g acceleration of gravity DØ loop index; implied DØ loop	AMARK		<u>± 1</u>
AZ a_{ℓ_Z} z-component of all a_{ℓ_X} a_{ℓ_X} if $t_1 > TST ØP$ or $R2 > ZST ØP$ A2 a_{ℓ_Z} a_{ℓ_Z} if $t_1 > TST ØP$ or $R2 > ZST ØP$ B dummy array established for use in call to INTGRAT CØRR correction for linear interpolation DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN $PR ØGRAM$ DX Δt time increment set by INTGRAT ETA η_i array containing allowable absolute errors in the integration G g acceleration of gravity I $DØ$ loop index; implied $DØ$ loop	ANG		previous value of system angle
AZ a_{ℓ_Z} z-component of all a_{ℓ_X} a_{ℓ_X} if $t_1 > TST ØP$ or $R2 > ZST ØP$ A2 a_{ℓ_Z} a_{ℓ_Z} if $t_1 > TST ØP$ or $R2 > ZST ØP$ B dummy array established for use in call to INTGRAT CØRR correction for linear interpolation DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN $PR ØGRAM$ DX Δt time increment set by INTGRAT ETA η_i array containing allowable absolute errors in the integration G g acceleration of gravity I $DØ$ loop index; implied $DØ$ loop	AX	a _l	x -component of $a_{\mathbf{k}}$
Al a_{ℓ_X} a_{ℓ_X} if $t_1 > TSTOP$ or $R2 > ZSTOP$ A2 a_{ℓ_Z} if $t_1 > TSTOP$ or $R2 > ZOTOP$ B dummy array established for use in call to INTGRAT CORR correction for linear interpolation DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN $PROCRAM$ DX Δt time increment set by INTGRAT ETA η_1 array containing allowable absolute errors in the integration G g acceleration of gravity I DOP loop index; implied DOP loop	AZ	$\mathbf{a}_{\ell_{\mathbf{Z}}}$	z-component of a
A2 $a_{\ell_{\mathbf{Z}}} \text{if } t_{1} > \text{TST}\emptyset P \text{ or } R2 > \textbf{ZST}\emptyset P$ B $\text{dummy array established for use} \\ \text{in call to INTGRAT} \\ \text{CORR} \text{correction for linear interpolation} \\ \text{DQ} \frac{\text{dv}}{\text{dt}} \text{acceleration at the moment of} \\ \text{full inflation} \\ \text{DT} \Delta t \text{time increment set by MAIN} \\ \text{PR}\emptyset \text{GRAM} \\ \text{DX} \Delta t \text{time increment set by INTGRAT} \\ \text{ETA} \eta_{\mathbf{i}} \text{array containing allowable absolute errors in the integration} \\ \text{G} \text{g} \text{acceleration of gravity} \\ \text{I} \text{DØ loop index; implied DØ loop} \\ \end{cases}$	A1		a_{t_x} if $t_1 > TST \phi P$ or $R2 > ZST \phi P$
in call to INTGRAT CORR correction for linear interpolation DQ dv dt acceleration at the moment of full inflation DT Δt time increment set by MAIN PROGRAM DX Δt time increment set by INTGRAT array containing allowable absolute errors in the integration G g acceleration of gravity I DØ loop index; implied DØ loop	A2		
DQ $\frac{dv}{dt}$ acceleration at the moment of full inflation DT Δt time increment set by MAIN PRØGRAM DX Δt time increment set by INTGRAT array containing allowable absolute errors in the integration G g acceleration of gravity I DØ loop index; implied DØ loop	$\mathbf{B}_{\mathbf{B}}$		
	CØRR	e ditalijum talimi. Liika	correction for linear interpolation
PRØGRAM DX Δt time increment set by INTGRAT ETA η i array containing allowable absolute errors in the integration G g acceleration of gravity I DØ loop index; implied DØ loop	DQ	dv dt	
ETA η _i array containing allowable absolute errors in the integration G g acceleration of gravity I DØ loop index; implied DØ loop	DT:	Δt	time increment set by MAIN PRØGRAM
lute errors in the integration G g acceleration of gravity DØ loop index; implied DØ loop	DX	Δt	time increment set by INTGRAT
I DØ loop index; implied DØ loop	ETA	$\mathfrak{n}_{\mathbf{i}}$	
by roop ringer, impried by roop	G	g	acceleration of gravity
-mach for princing array ventral			DØ loop index; implied DØ loop index for printing array VERTPAR
ID if ID > 0 indicates INTGRAT has not been called previously	ID		<pre>if ID > 0 indicates INTGRAT has not been called previously</pre>

TABLE VIII (Cont'd.) Computer Symbols for Subroutine MØTIØN (Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
IVERT		1, 2, or 3 the number of times the system has been vertical or near vertical
J		DØ loop index
K		if K > 0 indicates the integration cannot be completed
LI	e 1	distance from parachute-load system mass center to load
NINT		the number of calculations made between prints if the time increment is small enough; if NINT < 0 continuous output is suppressed
NMARK		1, 2, 3, 4 or 5NMARK = 1, 3, or 5 indicates the system is vertical or near vertical
NUMB		DØ loop index for calculations without print
PCTERR	Ep	allowable relative error in integration
PI	π	3.14159.,.
RX	$\mathbf{r}_{oldsymbol{\ell_{\mathbf{x}}}}$	x position of load
RZ	$\mathbf{r_{\ell_{Z}}}$	z position of load
R1	$\mathbf{r}_{oldsymbol{\ell_{\mathbf{X}}}}$	r_{ℓ_X} if $t_1 > TST \not OP$ or $R2 > ZST \not OP$
R2	$^{\mathbf{r}}_{\mathbf{\ell_{\mathbf{Z}}}}$	$r_{\ell_{Z}}$; used to determine if $r_{\ell_{Z}}$ > ZSTØP
SYSANGL	θ	system angle, degrees
T	t	time
TF	¢ _F	time at which integrated values are desired from INTGRAT

TABLE VIII (Cont'd.)

Computer Symbols for Subroutine MØTIØN
(Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
THETA	6 6 - 2 - 1 - 1 - 1 - 1 - 1	system angle, radians
TRAJANG	θ-α _ε	trajectory angle of load
TSTØP		time at which simulation termi- nates; initially number of seconds after full inflation
T1	t ₁	time
V	v, v,	velocity of load or mass center
VERTPAR		array containing information at the first three instances when the system is vertical or near vertical
VX	$^{\mathbf{v}}$ $_{\mathbf{x}}$	x - component of load velocity
VZ 20 1 1 2 2 2 3 4 5 5 5	$^{f v}_{f z}$	z - component of load velocity
VO	v	velocity of the load
V1	v_{ℓ_X}	v_{ℓ_x} if $t_1 > TST PP$ or $R2 > ZST PP$
V2	v $^{l}_{\mathbf{z}}$	v_{ℓ_z} if $t_1 > TST \emptyset P$ or $R2 > ZST \emptyset P$
W		array established for call to INTGRAT
X	X	position of mass center at entry to MOTION
X1		array established for call to INTGRAT
X2		array established for call to INTGRAT
Х3		array established for call to INTGRAT
Y Chryslen Staller		array of U, W, Q, θ , x, and z

TABLE VIII (Cont'd.) Computer Symbols for Subroutine MØTIØN (Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
YDØT		array of Ü, W, Q, ė, x, and ż
Z		array established for call to INTGRAT
ZSTØP		altitude mass at which simula- tion terminates

TABLE IX
Computer Symbols for Subroutine INTGRAT

Mnemonic Variation	Symbol Symbol	Comment
DT	ta Atama	time increment
DX	Δt	time increment; represents the last successful time increment used by INTGRAT on previous call
ERR1 ERR2	408 - 400 88 400 0 - 308 48 68	$\begin{bmatrix} Y_{3j} & -Y_{1j} & j = 1, NN \\ \max \left\{ \eta_{j}, E_{p} \cdot \left Y_{3j} \right \right\} & j = 1, NN \end{bmatrix}$
ETA	η _j	array containing sbsooute errors allowed in integration
I		DØ loop index
ID		if ID ≤ 0, INTGRAT has been called previously
IMD Ø NE		IMDØNE ≥ 0 indicates integration has been completed
ISIGNAL		ISIGNAL > 0 indicates solution cannot be accomplished
J		DØ loop index
K		DØ loop index
L		parameter of calls to FØRMULA; L > 0 indicates time increment must be halved
M		number of successful integrations without halving time increment
MM		number of times time increment is halved without successful integration
NN		number of equations being solved
PCTERR T	Ep	relative error allowed in integration time at entry to INTGRAT
TF	$t_{\mathbf{F}}$	time to which integration is desired

TABLE IX (Cont'd.)
Computer Symbols for Subroutine INTGRAT

Mnemonic Variation	Symbol	Comment
TRY1	$\mathbf{Y_{1}}_{\mathbf{J}}$	array containing values of Y after integration from t_1 to $t_1 + \Delta t$ in one step
TRY2	Y ₂ J	array containing values of Y after integration from t_1 to $t_1 + \frac{1}{2} \Delta t$
TRY3	$^{\mathbf{Y}_{3}}_{\mathbf{J}}$	array containing values of Y after integration from $t_1 + \frac{1}{2} \Delta t$ to $t_1 + \Delta t$
T1	보고 12 (12 12 12 12 12 12 12 12 12 12 12 12 12 1	time
W		array used in FORMULA
Y		array containing variable values for which solution is required
YD ØT		array containing derivatives of
Z		array used in FORMULA

TABLE X
Computer Symbols for Subroutine FØRMULA

Mnemonic Variation Symbol	Comment	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	array containing constants for the Runge-Kutta formula	
Control of Agricultural Artist Control	1/3 A(K + 1)	
H Δt 200 Action	time increment	ÇA _A
ISIGNAL TO WAR FOR THE PROPERTY	ISIGNAL > 0 indicates the call to EMOTION could not be successfully completed	is the legal
J Grandstall programmer in the contract of the	DØ loop index	
K	DØ loop index	
${f L}$	DØ loop index	
NN A P age to any ora	number of equations being solve	ed
	array containing values of Y for calls to EMØTIØN	
Y la savisaviki dala da s	array, see INTGRAT	*
YDØT	array, see INTGRAT	4
YI - 2.46.8558 - 2.558	final values of Y at $t = t + H$	
Z	array containing the values of YDØT returned by calls to EMØTIØN	

TABLE XI
Computer Symbols for Subroutine EMØTIØN
(Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
A		$m_{\dot{\mathbf{l}}} + m_{\dot{\mathbf{a}}}$
		$\frac{(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})}{(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})}$
aerøm	MA	aerodynamic moment of parachute
ALPHA		$ an^{-1}$ (- $rac{ ext{U}}{ ext{W}}$)
ALPHAL	a _e	angle of attack of load
ALPHAP	a p	angle of attack of parachute
ALT	h _o	release altitude
В		$(m_{\ell} + m_{ss} + m_{p})$ g
		$\frac{(m_{\ell} + m_{ss} + m_{p}) g}{(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})}$
C		<u>р</u> п D _o ²
CDNØT		(^ρ / ₈ π D _O ²) · D _O
CDSL	$c_{\mathbf{D}}s_{\boldsymbol{\ell}}$	drag area of load
CM	c _M	aerodynamic moment coefficient
CN	c _N o	aerodynamic normal force coefficient
CT	$^{ extsf{C}}_{ extsf{T}_{ extsf{o}}}$	aerodynamic tangent force co- efficient
D	D	drag of load
DNØT	. D _o	nominal diameter
E		½ ρ C _D S,
G	8	acceleration of gravity
ISIGNAL		if ISIGNAL > 0, call to CØEFFTS showed $ \alpha_{\rm D} $ too large

TABLE XI (Cont'd.)

Computer Symbols for Subroutine EMÓTIÓN

(Three Degrees of Freedom)

Variation	Symbol	Comment
IST Ø P		l or 2; parameter indicating whether the call to EMØTIØN comes from FØRMULA or INTGRAT
IXX	$\mathbf{I}_{\mathbf{XX}}$	moment of inertia about X-axis
IXZ	$\mathbf{I}_{\mathbf{XZ}}$	product of inertia
IYY	I _{YY}	moment of inertia about Y-axis
IZZ	$\mathbf{I}_{\mathbf{Z}\mathbf{Z}}$	moment of inertia about Z-axis
L1	ε ₁	distance from parachute-load system mass center to load
L2	£ 2	distance from parachute-load system mass center to parachute center of volume
L3	<i>l</i> ₃	distance from parachute-load system mass center to moment center
M		$m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}$
MA		$m_i + m_a$
MI	m _i	included mass
ML	m _g , a	mass of load
MP	m P	mass of parachute
MSS	m ss	mass of suspension system
N	$\mathbf{F}_{\mathbf{N}}$	aerodynamic normal force
PI	unin <mark>i</mark> uga afi.≪a e i π	3.14159
RНØ	ρ	air density
TT	a ji T arana injina ka	aerodynamic tangent force
VL2	odiata. Y	$\mathbf{v}_{\boldsymbol{\ell}}^{2}$

TABLE XI (Cont'd.)

Computer Symbols for Subroutine EMØTIØN

(Three Degrees of Freedom)

Mnemonic Symbol Variation	Comment	
VP2	v _p ²	
V2	$v^2 + w^2$	
\mathbf{Y}	array containing U, W	7, Q, θ, x, z
YD Ø T	array containing Ů, Ŵ	1, ἀ, ἀ, ẋ, ż

TABLE XII
Computer Symbols for Subroutine DYNAMIC

Mnemonic Variation	Symbol Symbol	Comment
DNØT	D _o	nominal diameter
IA	I _a	apparent moment of inertia about X or Y-axis
IAZ	I _a Z	apparent moment of inertia about Z-axis
IAZO	I _a Z) _o	I _{aZ} at mean sea level
IXX	I_{XX}	moment of inertia about X-axis
IXZ	$\mathbf{I}_{\mathbf{XZ}}$	product of inertia
IY	$\mathbf{I}_{\mathbf{Y}}$	moment of inertia about Y-axis due to physical masses, Eqn (88)
IYY	$\mathbf{I}_{\mathbf{YY}}$	moment of inertia about Y-axis
IZ	$\mathbf{I}_{\mathbf{Z}}$	moment of inertia about Z-axis due to physical masses
IZZ	IZZ	moment of inertia about Z-axis
L1	1	distance from parachute-load system mass center to load
L2	ℓ ₂	distance from parachute-load system mass center to parachute center of volume
L3	43	distance from parachute-load system mass center to moment center
MBR	m _{Br}	mass of load bridle
MI	m _i	included mass
MLS	$^{ ext{m}}\! ext{L}_{ ext{s}}$	mass of suspension lines
MP	m _p	mass of parachute
MR	$^{ m m}_{ m R}$	mass of risers

TABLE XII (Cont'd.)
Computer Symbols for Subroutine DYNAMIC

Mnemonic Variation	Symbol	Comment
MRX	m _E	mass of riser extension
Q_1	s _c /D _o	ratio of reference distance from canopy skirt to parachute center of volume in fully inflated configuration to $\mathbf{D}_{\mathbf{O}}$
Q_2	D _{pmax} /D _o	projected diameter ratio
RНØ	ρ	air density
V ∮ LUME	V	volume of fully inflated parachute
X	5	distance of parachute-load system mass center from canopy skirt
xden ø m		$m_p + m_{L_s} + m_R + m_E + m_{Br} + m_{\ell}$
XNUM		$^{m}L_{s}$ $^{\circ}s_{1}$ $^{+m}R^{\circ}s_{2}$ $^{+m}E^{\circ}s_{3}$
		$+ m_{Br} \cdot s_4 + m_{\ell} \cdot s_5 - m_p \cdot s_c$
X1	s 1	reference distance from canopy skirt to suspension line center of mass in fully inflated configuration
X2	s ₂	reference distance from canopy skirt to riser center of mass in fully inflated configuration
х3	8 3	reference distance from canopy skirt to riser extension center of mass im fully inflated configuration
X4	s ₄	reference distance from canopy skirt to load bridle center of mass in fully inflated configuration
X5	s ₅	reference distance from canopy skirt to load center of mass in fully inflated configuration

TABLE XIII

Computer Symbols for Subroutine COEFFTS
(Three Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
A		
АLРНАР	$\mathbf{\alpha}_{\mathbf{p}}$	parachute angle of attack, radians
ALPHAPD	∞ p	parachute angle of attack, degrees
СМ	$^{\rm C}_{ m M_{ m O}}$	aerodynamic moment coefficient
CN	$^{\rm C}_{ m N_{ m O}}$	aerodynamic normal force coefficient
CT	$^{\mathrm{C}}\mathrm{T}_{\mathrm{O}}$	aerodynamic tangent force coefficient
IPRINT		1 or 2; indicates whether or not to print message concerning parachute angle of attack
ISIGNAL		if ISIGNAL > 1, indicates
		$\left \alpha_{\rm p}\right > 85^{\rm o}$

TABLE XIV

Computer Symbols for Subroutine MØTIØN

(Six Degrees of Freedom)

		and the second of the second o
Mnemonic Variation	Symbol	Comment
A	<u>A</u>	3 x 3 array containing direction cosines
ALT	h _o	release altitude
AMARK		see MØTIØN (3DOF)
ANG		previous value of the system angle
AT	a	total acceleration of load
AX	a _{lx}	x-component of load acceleration
AY	a _Ł y	y-component of load acceleration
AZ	${^{\mathbf{a}}\ell}_{\mathbf{Z}}$	z-component of load acceleration
A1	$\mathbf{a}_{\mathbf{t}_{\mathbf{x}}}$	$a_{\ell_{X}}$ if $t_1 > TST\emptysetP$ or R3 > ZST \emptyset P
A2	a _e y	a_{ℓ_y} if $t_1 > TST \theta P$ or R3 > ZST θP
А3	a _e z	a_{ℓ_z} if $t_1 > TSTOP$ or R3 > ZSTOP
CÓRR		see MØTIØN (3DOF)
C1		$\mathbf{U} + \mathbf{Q} \mathbf{L}_{1}$
C2		v - R l 1
C3		$\dot{U} + PW - RV + \dot{Q} \ell_1 + PR \ell_1$
C 4		$\dot{V} + RU - QW - \dot{P}l_1 + QRl_1$
C 5		$\dot{W} + QV - PU - (P^2 + Q^2)\iota_1$
DQ	<u>dv</u> dt	see MØTIØN (3DOF)

TABLE XIV (Cont'd.)

Computer Symbols for Subroutine MØTIØN
(Six Degrees of Freedom)

DT Δt see MØ	
DI ΔL SEE MD.	rión (3DOF)
DX Δt see MØ	IIÓN (3DOF)
ETA η see MØ	TIØN (3DOF)
G g acceler	ration of gravity
I see MØ	riøn (3dof)
ID see MØ	riøn (3DOF)
IVERT see MØ	CIØN (3DOF)
J see MØ	TIØN (3DOF)
K see MØ	TIØN (3DOF)
	ce from parachute-load mass center to load
NINT see MØ	riøn (3DOF)
NMARK see MØ	riøn (3dof)
NUMB see MØ	TIØN (3DOF)
PCTERR E_{p} see MØT	CIØN (3DOF)
ΡΙ π 3.14159	
RX r _e x-compo	onent of load position
	onent of load position
	onent of load position
r_{ℓ_x} if	$t_1 > TST \emptyset P \text{ or } R3 > ZST \emptyset P$
r_{ℓ_y} if	$t_1 > TST \emptyset P \text{ or } R3 > ZST \emptyset P$
r_{ℓ_z} ; u_{ϵ}	sed to determine if r _{lz} >
ZSTØP	
SYSANGL system	angle

TABLE XIV (Cont'd.)

Computer Symbols for Subroutine MØTIØN

(Six Degrees of Freedom)

Mnemonic Variation	Symbol Symbol	Comment
T	t	time
TF	$t_{\overline{\mathbf{F}}}$	see MØTIØN (3DOF)
THETA	θ	system angle at entry to MØTIØN
TRAJANG		trajectory angle of load
TSTØP		see MØTIØN (3DOF)
T1	t	time
VERTPAR		see MØTIØN (3DOF)
VX	$^{ m v}_{ m k_{_{ m X}}}$	x-component of velocity
VY	v _e x	y-component of velocity
VZ	v _{Łz}	z-component of velocity
vo	${\sf v}_{{m \ell}}$	velocity of load
V1	$^{\mathbf{v}} \mathbf{\ell}_{\mathbf{x}}$	v_{ℓ_x} if $t_1 > TST p P$ or R3 > ZST p P
V 2	ve _y	v_{ℓ_y} if $t_1 > TST p$ P or R3 > ZST p
v 3	$\mathbf{v}_{\mathbf{\ell_{z}}}$	v_{ℓ_z} if $t_1 > TSTPP$ or R3 $>/ZSTPP$
W		see MØTIØN (3DOF)
X		see MØTIØN (3DOF)
X1		see MØTIØN (3DOF)
X2		see MØTIØN (3DOF)
х3		see MØTIØN (3DOF)
Y		array containing U, V, W, P, Q, R, θ , φ , ψ , x, y, z
YDØT		array containing Ů, V, W, P, Q, R; ů, ů, x, y, ż
7		κ, θ, ψ, χ, y, z see MØTIØN (3DOF)
Z		e Libit Tond (and.)

TABLE XIV (Cont'd.) Computer Symbols for Subroutine MÓTIÓN (Six Degrees of Freedom)

Mnemonic Variation	Symbol	Comment		
ZSTØP		see MØTIØN	(3DOF)	

TABLE XV

Computer Symbols for Subroutine EMOTION
(Six Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
A	<u>A</u>	3 x 3 array containing direction cosines
AERØMX	M	X-component of aerodynamic moment
AERØMY	M	Y-component of aerodynamic moment
ALPHAL	$lpha_{oldsymbol{\mathcal{L}}}$	angle of attack of load in XZ-plane
АLРНАР	$\alpha_{\mathbf{p}}$	angle of attack of load in XZ-plane
ALT	h _o	release altitude
B		(m _l + m _{ss} + m _p) g
		$(m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a})$
BETAL	$\boldsymbol{\beta}_{\boldsymbol{\ell}}$	angle of attack of load in YZ-plane
ВЕТАР	βp	angle of attack of parachute in YZ-plane
C		$\frac{\rho}{8} \pi D_o^2$
CDNØT		$(\frac{\rho}{8} \pi D_0^2) D_0$
CDSL	$^{\mathrm{C}}_{\mathrm{D}}^{\mathrm{S}}_{\ell}$	drag area of load
CMX	c _M X _o	coefficient of aerodynamic moment about X axis
CMY	$\mathbf{Y}_{\mathbf{Q}}^{\mathbf{M}}$	coefficient of aerodynamic moment about Y axis
CT	$\mathbf{c}_{\mathbf{T_o}}$	aerodynamic tangent force coefficient
CX	$c_{N_{X_o}}$	coefficient of aerodynamic normal force in X-direction

TABLE XV (Cont'd.)
Computer Symbols for Subroutine EMØTIØN
(Six Degrees of Freedom)

<u> </u>		
Mnemonic Variation	Symbol	Comment
CY	$c_{N_{Y_{O}}}$	coefficient of aerodynamic normal force in Y-direction
D	$\mathbf{D}_{\boldsymbol{\ell}}$	drag of load
DELTAL	82	angle between load velocity and YZ-plane
DNØT	D ₀	nominal diameter
E		½ o C _D S _ℓ
FX	$\mathbf{F}_{\mathbf{NX}}$	normal force in X-direction
FY .	F _{NY}	normal force in Y-direction
G	g	acceleration of gravity
GAMMAL	Ye	angle between load velocity and XZ-plane
H1		$(I_{ZZ} - I_{YY})/I_{XX}$
Н2		$(I_{XX} - I_{ZZ})/I_{YY}$
н3		$(I_{YY} - I_{XX})/I_{ZZ}$
Н4		I_{XZ}/I_{XX}
Н5		I_{XZ}/I_{YY}
Н6		I_{XZ}/I_{ZZ}
ISIGNAL		see EMØTIØN (3DOF)
IST Ø P		see EMØTIØN (3DOF)
IXX	$\mathbf{I}_{\mathbf{XX}}$	moment of inertia about X-axis
IXZ	I _{XZ}	product of inertia
IYY	$\mathbf{I}_{\mathbf{YY}}$	moment of inertia about Y-axis

TABLE XV (Cont'd.)
Computer Symbols for Subroutine EMØTIØN
(Six Degrees of Freedom)

Mnemonic	Symbol	Comment
<u>Variation</u>	Symbol	Comment
IZZ	$\mathbf{I}_{\mathbf{Z}\mathbf{Z}}$	moment of inertia about Z-axis
L1	e ₁	distance from parachute-load system mass center to load
L2	ℓ ₂	distance from parachute-load system mass center to parachute center of volume
L3	£ 3	distance from parachute-load system mass center to moment center
M		$m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}$
MA		$m_i + m_a$
ML	m _i	included mass
ML	m _L	mass of load
MP	$m_{\mathbf{p}}$	mass of parachute
MSS	m _{ss}	mass of suspension system
PI	π	3.14159
PØLANG	$\theta_{\mathbf{p}}$	polar angle of parachute velocity
R		m _i + m _a
		$m_{\ell} + m_{ss} + m_{p} + m_{i} + m_{a}$
RHØ	ρ	air density
TT	T	aerodynamic tangent force
UL		$U + Q_{1}$
UP		$U + Q \ell_2$
VL		$V - P \ell_1$

TABLE XV (Cont'd.)

Computer Symbols for Subroutine EMØTIØN
(Six Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
VL2		v_{ℓ}^{2}
VP		V - PL ₂
VP2		v_p^2
Y		array containing U, V, W, P, Q, R, θ , ϕ , ψ , x, y, z
YD Ø T		array containing U, V, W, P, Q, R, 0, v, x, y, z

TABLE XVI
Computer Symbols for Subroutine CØEFFTS
(Six Degrees of Freedom)

Mnemonic Variation	Symbol	Comment
A		$ \alpha_{ m p} $
ALPHAP	$\alpha_{\mathbf{p}}$	angle of attack of parachute in XZ-plane, radians
ALPHAPD	$\alpha_{ m p}$	angle of attack of parachute in XZ-plane, radians
B		$ \beta_{\mathbf{p}} $
ВЕТАР	β _p	angle of attack of parachute in YZ-plane, radians
BETAPD	β _p	angle of attack of parachute in YZ-plane, degrees
CMX	$c_{\mathrm{M}_{\mathrm{X}_{\mathrm{O}}}}$	coefficient of aerodynamic moment about X-axis
CMY	$^{\mathrm{C}}_{\mathrm{M}_{\mathrm{Y}_{\mathrm{O}}}}$	coefficient of aerodynamic moment about Y-axis
CT	$\mathbf{c_{T}}_{\mathbf{o}}$	aerodynamic tangent force coefficient
CX	$^{\mathrm{c}_{\mathrm{N}_{\mathrm{X_o}}}}$	coefficient of aerodynamic normal force in X-direction
CY	$c_{\mathrm{M_{X_O}}}$ $c_{\mathrm{M_{X_O}}}$ $c_{\mathrm{T_O}}$ $c_{\mathrm{N_{X_O}}}$	coefficient of aerodynamic normal force in Y-direction
P		
PØLANG	$\theta_{\mathbf{p}}$	polar angle of parachute

TABLE XVII
Computer Symbols for Subroutine CØSINES

Mnemonic Variation	Symbol Symbol	Comment
A	≜	3 x 3 array containing direction cosines
Y (7:)	θ	Euler Angle
Y(8)	φ	Euler Angle
Y(9)	ere Vice Care	Euler Angle

TABLE XVIII
Computer Symbols for Subroutine DENSITY

Mnemonic Variation	Symbol	Comment	
H	h a company	altitude	
RHØ	\mathbf{p}	air density	

TABLE XIX. Computer Symbols for Subroutine TRAJEQN

Mnemonic Variation	Symbol	Comment
ALT	h _o	release altitude
CDS	c_{D}^{s}	drag area
DT	Δt	time increment
DTHETA	Δθ	system angle increment
DV	$\Delta \mathbf{v}$	velocity increment
DX	Δx	x increment
DZ	∆z	z increment
G	g	acceleration of gravity
M	m .	mass
RHØ	ρ	air density
T	t	time
THETA	θ	system angle
V	v	velocity
X	x	x position
Z	Z	z position

VII. COMPUTER PROGRAM SOURCE LIST

The computer program is arranged in the form which will probably be the most useful at the present time, i.e., including the complete solution allowing three degrees of freedom, with aerodynamic coefficients for a solid flat circular parachute, and listed in Fig 29. In addition, the solution allowing six degrees of freedom for the free descent phase is listed in Fig 30. The only difference between the two solutions lies in the arrangement of the subroutines following subroutine DYNAMIC. The appropriate data cards are inserted immediately after subroutine CØEFFTS. All subroutine calls are indicated by arrows in the left margins of Figs 29 and 30 for aid when referring to these source lists.

```
PROGRAM TRAJSIM (INPUT OUTPUT)
          THIS IS THE MAIN PROGRAM
C
      DIMENSION ETA(12) , SPACE(1000)
      REAL IXX, IYY, IZZ, IXZ, IAZO, IZ, LSS, L1, L2, L3, MA, MBR, ML, MLS, MP, MR, MRX,
     1MSS.MST
      COMMON /CONST/ ALT:PI:G:CDP:DNOT:CDSL:LSS:ML:MP:MSS:MST:NINT
      COMMON /VARIABL/ RHU, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
      COMMON /DYNAM/ DYDNOT:x1:x2:x3:x4:x5:MBR:DYML:MLS:DYMP:MR:MRx:IAZO
     1.1Z.Q1.Q2.VOLUME.XNUM.XDENOM
      PI=3.141592653589793
      G = 32.17
      READ 10.NSIM
      DO 11 J=1,NSIM
      READ 9.01.02.03.04.05
      PRINT 12,C1,C2,C3,C4,C5
      READ 6.ALT. VO. MST. MP. MLS. MR. MRX. MBR. ML . X1 . X2. X3. X4. X5. IZ. IAZO.
     1DNOT, LSS, CDP, CDSL, Q1, Q2, VOLUME, N, NNN, DT1, DT2, DT3, NINT
      DYDNOT=DNOT
      DYML=ML
      DYMP=MP
      XNUM=MLS#X1+MR#X2+MRX#X3+MBR#X4+ML#X5-MP#Q1#DNOT
      XDENOM=MP+MLS+MR+MRX+MBR+ML
      MSS=MLS+MR+MRX+MBR
      CALL DYNAMIC(0.002378.A1.A2.A3.A4.A5.A6.A7.A8)
      A9=0.375#A8
      CALL DENSITY (RHO+ALT)
      CALL DYNAMIC (RHO; 31, 62, 83, 84, 85, 86, 87, 88)
      B9=0.375#88
      PRINT 8.ALT.VO.MST.ML.MP. MLS.MR.MRX.MBR.A8.B8.ALT.A9.B9.ALT.X1.
     1X2,X3,X4,X5,A4,84,ALT,A5,B5,ALT,A6,B6,ALT,A7,B7,ALT,DNOT,LSS,A1,B1
     2, ALT, A2, B2, ALT, A3, B3, ALT, Q1, Q2, VOLUME, CDP
      PRINT 81.CUSL.N
      N4=2#N
      READ 7. (ETA(I), I=1, NN), PCTERR
      CALL EXTRACT (ISNATCH. IEXTRAC, VU, DT1, TRCA)
      IF (ISNATCH) 4,4,5
      CALL SNATCH (THCA . DT2)
 → 5 CALL OPENING (DQ, TRCA, NNN, SPACE, VOLUME, IEXTRAC, DT3)
      CALL MOTION(DQ.PCTERR.ETA.DT3)
  11 CONTINUE
      STOP
      FORMAT(2F10.0/7F10.0/7F10.0/7F10.0/II.19.3F10.0.15)
      FORMAT(6F10.0/6F10.0/F10.0)
     FORMAT(3/,5X,*FRAJECTORY SIMULATION--T=0,Z=0 IS RELEASE POINT*,3/,
     15x, *RELEASE CONDITIONS*,/,10x, *ALTITUDE=*,F10.0.* FT*,/,10x, *VELOC
     2ITY=#,F10.2,# FT/SEC#,///,5X,#MASSES--SLUGS#,/10X,#TOTAL SYSTEM= #
     3,F10.3,/,10x,4L0AD= 4,F10.3,/,10x,*PARACHUTE= 4,F10.3,/,10x,*SUSP.
     4 LINES= *.F10.3,/,10x,*RISERS= *,F10.3./,10x,*RISER EXTENSIONS= *,

√5F10.3./.10X.*LOAD BRIDLE= *.F10.3./.10X.*INCLUDED= *.F10.3.*(SEA L.)

     6EVEL) + + F10 + 3 + + (+ + F7 + 0 + + - FT) + + / + 10 x + APPARENT = - + + F10 + 3 + + (SEA LEVEL
     7) + F10.3, + (+, F7.0, + FT) + /// .5x, +REFERENCE DISTANCES FROM SKIRT--
     8 FT#9/910X9#X1= **F10.39/910X9#X2= **F10.39/910X9#X3= **F10.39/9
     910X**X4= **F10.3/10X**X5= **F10.3///,5X**MOM./PROD. INERTIA--SLUG
     1FT4,3H442,/,10X,41XX= 4,F15,3,4(SEA LEVEL)4,F15,3,4(4,F7,0,4 F1)4
     2,/,10x,#IYY= 4,F15.3,4(SEA LEVEL)4,F15.3,4(4,F7.0,4 FT)4,/,10x,
     3 *1ZZ= *,F15.3.*(SEA LEVEL)*,F15.3,*(*,F7.0,* FT)*,/,10X,*IXZ= *,
     4F15.3,*(SEA LEVEL)*,F15.3,*(*,F7.0,* FT)*,//,5X,*DIMENSIONS-- FT
     54./.10X, DNOT= #, F10.3,/.10X. #SUSP. SYSTEM= #, F10.3,/.10X, #L1= #.F
     610.3,*(SEA LEVEL)*,F10.3,*(*,F7.0,* FT)*,/,10x,*L2= *,F10.3,*(SEA
     7 LEVEL) *,F10.3,*(*,F7.0,* FT) *,/,10x,*L3= *,F10.3,*(SEA LEVEL) *,F
     810.39*(*,F7.09* FT)*9///95X,*YC/ONOT= *,F10.39/95X,*DP/DNOT= *,F1
     90.3./.5X.*VOLUME= *.F10.3.6H FT**3./.5X.*PARACHUTE CDP= *.F10.3)
   RI FORMAT(5X, *LOAD DRAG AREA= *, FIO. 3, 6H FT**2, /, 5X, *DEGREES OF FREE
     100M= *, I10,5/)
```

FIG 29 Computer Program for Three Degrees of Freedom

```
SUBROUTINE EXTRACT (ISNATCH, IEXTRAC, VO, DT, TRCA)
      COMMON /CONST/ ALT.PI.G.COP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
      COMMON / VARIABL/ RHO, T, V, THETA, X, Z, UNUSED . UNUSED2 . UNUSED3
      REAL LENGTH, LSPILDT, LSS, LSTATIC, MST, MT, LRXBR
      ICOUNT=0
      READ 15. ISTATIC. IEXTRAC
      IF((ISTATIC) 1.8.8
      READ 16, LSTATIC, COSBAG, COSP, OPILOT, LSPILOT, TO, LRXBR
      DISTANC#LSTATIC
      PRINT 22.LSTATIC.CDSBAG
      IF (DPILOT.GT.0.0) PRINT 23, CDSP, DPILOT, LSPILOT, TD
      IF (NINT.GT.O) PRINT 26
      T=X=Z=0.0
      THETA=0.5*PI
      V=V0
      CDST=CDSL+CDSBAG
      MT#MST
      CALL TRAJEQN(T. V. THETA. X. Z. RHO. COST. MT. DT. G. ALIT. DV)
→ 2
      VX=V+SIN(THETA)
      TRAJANG=THETA#180./PI
      VZ=V+COS(THETA)
      ICOUNT=ICOUNT+1
      ALITMZ=ALT-Z
      IFICICOUNT.EQ.NINT) PRINT 19. T. ALTMZ. TRAJANG. TRAJANG. X. Z. V. VX. VZ.
      IF (ICOUNT.EQ.NINT) ICOUNT#0
      IF((SQRT((VO#T+X)#(VO#T+X)+Z#Z).LT.DISTANC) GO TO 2
      IF (DISTANC. GT. LSTATIC) GO TO 3
      T1=T
      TRAJ1=TRAJANG
      X1=X
      71=Z
      V1=V
      DISTANC=LSTATIC+LSS+0.5*DNOT+LRXBR
      IF (OPILOT.GT.0.0) DISTANC=LSTATIC+LSPILOT+0.5*DPILOT
      GO TO 2
      IFI(DPILOT) 7.7.4
      ISNATCH==1
      CDST=CDSL+CDSBAG+CDSP
      IF((T=TD) 6.14.14
      CALL TRAJEGN (T. V. THETA . X. Z. RHO . COST . MT . DT . G. ALT . DV)
 → 6
      TRAJANG=THETA#180./PI
      VX=V+SIN(THETA)
      VZ=V+COS (THETA)
      ICOUNT=ICOUNT+1
      ALITMZ=ALT-Z
      IF (ICOUNT. EQ. NINT) PRINT 19. T. ALTMZ, TRAJANG, TRAJANG, X, Z. V. VX, VZ
      IF (ICOUNT.EQ.NINT) ICOUNT#0
      GO TO 5
  7 ISNATCH#1
      TRCA=T
     PRINT 20, T1, TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V
     RETURN
     IFI(IEXTRAC) 9,9,13
     READ 17. LENGTH, CDSBAG, CDSEX, TD
     PRINT 24. LENGTH, CDSBAG, CDSEX, TD
     IF (NINT.GT.O) PRINT 26
```

12 FORMAT (1H1+/+5x+*PARACHUTE-LOAD SYSTEM (DEPLOYMENT) --*+5A10)

9 FORMAT(5A10) 10 FORMAT(13)

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
ISNATCH=-1
10 T=X=Z=0.0
   THETA=0.5*PI
   TRAJANG=90.
   COST=COSEX
   VEVO
11 DV=+RHO+CDST+V+V+DT/(2.+MST)
   DX=V+DT
   V=V+DV
   X=X+DX
   TET+DT
   ICOUNT=ICOUNT+1
   ALTMZ=ALT-Z
   IFKICOUNT.EQ.NINT) PRINT 19, T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, V
   IF (ICOUNT.EQ.NINT) ICOUNT=0
   IF (VO+T-X-LENGTH) 11,12,12
12 CDST=CDSL+CDSBAG+CDSEX
   MT=MST
   Tl = T
   X1 = X
   v1=V
   GO TO 5
13 READ 18.R.LENGTH.TD
   H=(4. #LSS#R+2. #R#DNOT) / (4. #LSS+PI#R#DNOT)
   HTDNOT=H+DNOT
   PRINT 25, LENGTH, R, HTDNOT, TD
   IF (NINT.GT.O) PRINT 26
   CDSEX=CDP*PI*H*H*DNOT*DNOT/4.
   CDSBAG=0.0
   ISNATCH#1
   GO TO 10
14 IF (ISTATIC.LT.0) PRINT 20, T1 TRAJ1, X1, Z1, V1, T, TRAJANG, X, Z, V
   IF((ISTATIC.GE.0) PRINT 21,T1,X1,V1,T,TRAJANG.X.Z.V
   IF (IEXTRAC.GT.0) TRCA=0.0
   RETURN
15 FORMAT(212)
16 FORMAT (7F10.0)
17 FORMAT (8F10.0)
18 FORMAT (3F10.0)
19 FORMAT (1x+F8.2+4F11.2+11x+3F11.2+11x+F11.2)
                                                        Z(FT) VELOCITY(FT
20 FORMAT (//, 60x, +TIME (SEC) ANGLE (DEG)
                                           X(FT)
  1/SEC) **/*20X ** STATIC LINE STRETCH* 16X + SF11 . 2/20X ** PARACHUTE/PILOT
  2 CHUTE DEPLOYMENT + 3X . 5F11.2)
                                                       Z(FT)
                                                              VELOCITY (FT
21 FORMAT(//.60X. +TIME(SEC) ANGLE(DEG)
                                            X (FT)
  1/SEC) **/.20x, *LOAD OUT OF AIRCRAFT**15x, F11.2, 11x, F11.2, 11x, F11.2/
  220x . *PILOT CHUTE/EXTRACTION CHUTE RELEASE OR * . / . 20X . *MAIN PARACHUT
  3E DISREEF* 13X + 5F11 - 2)
22 FORMAT(////,20x, *STATIC LINE== *,Fl0.3,* FT**/,20x,*PARACHUTE PACK
  1DRAG AREA= +,F10.3.1x,5HFT**2)
23 FORMAT (20X, *PILOT CHUTE**/, 25X, *DRAG AREA#*, F10.3, 1X, 5HFT**2*/, 25X
  1,+DIAMETER= +,F10.3,+ FT+,/.25X.+SUSP. LINES= +,F10.3,+ FT+,/.20X.
  2+TIME OF PILOT CHUTE RELEASE + + F10.2 + SEC+ ////
24 FORMAT (//// 20x + RELEASE DISTANCE IN AIRCRAFT = + F10.3 + FT+ / 20x
  1*PARACHUTE PACK DRAG AREA ##F10.3.1X.5HFT+#2./.20X. #EXTRACTION CH
  ZUTE DRAG AREA - +, FIO. 3, 1X, SHFT++2, /, 20X, +TIME OF EXTRACTION CHUTE
  3RELEASE= +.F10.2.* SEC+.///)
25 FORMAT (////.20X, *RELEASE DISTANCE IN AIRCRAFT + *, F10.3. * FT*, /, 20X
  1*REEFING RATIO= *,F10.3,/,20x,*REEFED PROJ. DIAMETER= *,F10.3,* FT
  24,/,20x, HTIME: OF: PARACHUTE: DISREEF####10.2.4 SEC#:////
26 FORMAT (5/ ,4X, +TIME+,5X,+ALTITUDE+,4X,+SYSTEM+,3X,+C.M. TRAJ.+,10X
  1, +C.M. POSITION+, 26X, +C.M. VELOCITY+, 18X, +C.M.+, /, 26X, +ANGLE+, 6X,
                  +80X+*ACCELERATION*+/4X+*(SEC)*+6X+*(FT)*+7X+*(DEG)*
  3,6x,+(DEG)+,18x,+(FT)+,32x,+(FT/SEC)+,17x+(FT/SEC/SEC)+,/,50x,*X*
  4.10X,#Y#,10X,#Z#,BX,#TOTAL#,8X,#X#,10X,#Y#,10X,#Z#,8X,#TOTAL#5/)
   END
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
SUBROUTINE SNATCH (TRCA.DT)
     COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
     COMMON /VARIABL/ RHO, T. V, THETA, X, Z, UNUSED : UNUSED ? UNUSED 3
     REAL K.L.LSS.ML.MP.MPBAG.MI.MZ.MSS.LRXBR
     I COUNT = 0
     READ 5.MPBAG.CDS2.K.LRXBR
     PRINT 7, MPBAG, CDS2, K, LRXBR
     IF (NINT.GT.O) PRINT 9
     M2=MP
     M1=ML+0.5+MSS
     CAPM2=MP+MPBAG+0.5*MSS
     CAPM1=ML+MSS
     cos1=cosL
     v1=v
     V2=V
     L=0.0
     CALL BODIES (M1+CDS1+CAPM2+CDS2+V1+V2+L+DT)
→ 1
     TRAJANG=THETA#180./PI
     V1X=V1+SIN(THETA)
     V1Z=V1 +COS (THETA)
     ICOUNT=ICOUNT+1
     ALTMZ=ALT-Z
     IF:(ICOUNT.EQ.NINT) PRINT 6.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V1.V1X.V1Z
     IF (ICOUNT.EQ.NINT) ICOUNT=0
     IF!(L-LSS-LRXBR) 1,2,2
     TL=T
     TRAJL=TRAJANG
     XLEX
     ZL=Z
     V1L=V1
     V2L=V2
     Q=CAPM1/(CAPM1+M2)
     VF=(CAPM1+V1+M2+V2)/(CAPM1+M2)
     DELTAV=VF-V2
     FAl=RHO+CDS1+(V1+V1+VF+VF)/4.
     FA2=RHO+CDS2+(V2+V2+VF+VF)/4.
     A=1./K
     B=FA1*(1.+Q+2.*V2*Q/DELTAV)+FA2*(Q +2.*V2*Q/DELTAV)
     C=CAPM1*(Q-1.)/Q*((Q+1.)/Q*DELTAV*DELTAV+2.*V2*DELTAV) +M2*(DELTAV
    1+DELTAV+2.+V2+DELTAV)
     PMAX=-B+SQRT (B#B-C/A)
     TRCA=T
     v1=v2=vF
     M1=MP+ML+MSS
     CDS1=CDSL+0.015+CDP+DNOT+DNOT+PI/4.
     CALL BODIES (M1.CDS1.MPBAG.CDS2.V1.V2.L.DT)
     TRAJANG=THETA+180./PI
     V1X=V1+SIN(THETA)
     VIZ=VI+COS(THETA)
     ICOUNT=ICOUNT+1
     ALITMZ=ALT-Z
     IFK(ICOUNT.EQ.NINT) PRINT 6,T,ALTMZ.TRAJANG,TRAJANG,X,Z,V1.V1X,V1Z
     IF (ICOUNT.EQ.NINT) ICOUNT=0
     IF(L-LSS-LRXBR-DNOT/2.) 3,4,4
   V=V1
     PRINT 8.TL.TRAJL.XL.ZL.V1L.V2L.PMAX.VF
     RETURN
     FORMAT (4F10 - 0)
     FORMAT(1X+F8.2+4F11.2+11X+3F11.2+11X+F11.2)
     FORMAT(////920X, *PARACHUTE PACK MASS= *,F10.3, * SLUG*,/,20X, *PARAC
    THUTE PACK AND PILOT/EXTRACTION CHUTE DRAG AREA # + F10.3,1X + 5HFT # + 2
    2/20X+*SPRING CONSTANT= *+F10.3+* LB/FT*+/+20X+*LENGTH OF RISERS+ E
    3XTENSIONS AND LOAD BRIDLE= *.F10.3.* FT*,///)
    FORMAT (//.50x. +TIME (SEC) ANGLE (DEG)
                                                        Z(FT)
                                                                 VELOCITY1
                                            X(FT)
    1(FT/SEC) VELOCITY2(FT/SEC) +,/,20X, +SNATCH+,20X,4F11.2,2F15.2,//,
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
220x+*SNATCH FORCE= **,Fl0.0,* LB*,/,20x,*SNATCH VELOCITY= *,Fl0.3,
3* FT/SEC*)

9 FORMAT(5/,4X,*TIME*,5X,*ALTITUDE*,4X,*SYSTEM*,3X,*C.M. TRAJ.*,10X
1,*C.M. POSITION*,26X,*C.M. VELOCITY*,18X,*C.M.*,/,26X,*ANGLE*,6X,
2 *ANGLE* ,80X,*ACCELERATION*,/4X,*(SEC)*,6X,*(FT)*,7X,*(DEG)*
3,6X,*(DEG)*,18X,*(FT)*,32X,*(FT/SEC)*,17X,*(FT/SEC/SEC)*,/,50X,*X*
4,10X,*Y*,10X,*Z*,8X,*TOTAL*,8X,*X*,10X,*Y*,10X,*Z*,8X,*TOTAL*5/)
END
```

```
SUBROUTINE BODIES (M1, CDS1, M2, CDS2, V1, V2, L, DT)
COMMON /CONST/ ALT.PI.G.COP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NOUSE
COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSEDZ, UNUSEDZ
REAL MI.MZ.L
CALL DENSITY (RHO+ALT-Z)
DTHETA==G*SIN(THETA) +DT/V1
DV1=(G+COS(THETA)+RHO+CDS1+V1+V1/(2.+M1))+DT
DVZ=(G*COS(THETA) -RHO*CDSZ*VZ*VZ/(2.4M2)) *DT
DX=V1+SIN(THETA)+DT
DZ=V1+COS(THETA)+DT
DL=V1+DT-V2+DT
THETA=THETA+DTHETA
v1 = v1 + pv1
V2=V2+DV2
X = X + DX
Z=Z+DZ
L=L+DL
T = T + DT
RETURN
END
```

```
SUBROUTINE OPENING (DQ, TRCA, N, F, VOLUMG, IEXTRAC, DTT)
DIMENSION F(N) , REEF (7,10)
COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
REAL LSS, ML, MP, MS, MSS
I COUNT=0
DCAPT=DCAPTR=1./N
MS=ML+MSS+MP
READ 6. NREEF
IF (NREEF . EQ. 0) GO TO 4
NREEF=NREEF-IEXTRAC
NREEF1=NREEF+1
DO 3 I=1,NREEF1
READ 7, RO, RI, TCD
TNOT=T
TDR=TRCA+TCD
H0=(4.*LSS*R0+2.*R0*DNOT)/(4.*LSS*PI*R0*DNOT)
H1=(4.*LSS*R1+2.*R1*DNOT)/(4.*LSS+PI*R1*DNOT)
HTDNOT=H1+DNOT
PRINT 11,R1, HTDNOT,TCD,TDR
IF (NINT + GT + 0) PRINT 12
V1=(H1+H1+H1-H0+H0+H0)+DNOT+DNOT+DNOT
V2=H1*H1*SQRT((LSS+DNOT/2.-PI/4.*H1*DNOT)*#2-H1*H1*DNOT*DNOT/4.)
V3=H0*H0*SQRT((LSS+DNOT/2.=PI/4.*H0*DNOT) **2=H0*H0*DNOT*DNOT/4.)
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
V4=R1+R1+SQRT(LSS+LSS-R1+R1+DNOT+DNOT/4.)
   V5=R0+R0+SQRT(LSS+LSS-R0+R0+DNOT+DNOT/4.)
   VOLUME#(V1+DNOT+DNOT+(V2#V3-V4+V5)) #PI/12.
   X = 0 \times
   Z0=Z
   THETA0=THETA
   CALL FILLTIM (VOLUME . VO , XO , ZO , THETAO , MS , HO . H1 , N. F. TF)
   F0=0.0
   DT=DCAPTR*TF
   CAPTR=0.0
   DO:1 J=1.N
   ICOUNT=ICOUNT+1
   CAPTR=CAPTR+DCAPTR
   T=TF+CAPTR+TNOT
   CAPT=PI*PI/4.*(H1*H1*CAPTR+H0*H0*(1.=CAPTR))
DCAPT=PI*PI/4.*(H1*H1=H0*H0)*DCAPTR
   CALL CALC (CAPT. TF. DCAPT. DCAPTR. MS. DV. DP. D)
   FRCE=ML* (G*COS (THETA) -DV/DT)
   FO=AMAX1 (FRCE, FO)
   TRAJANG=THETA+180./PI
   VX=V#SIN(THETA)
   VZ=V#COS(THETA)
   IF (NINT.LT.0) GO TO 1
   IF (ICOUNT.LT.N/20) GO TO 1
   ICOUNT=0
   ALTMZ=ALT-Z
   ACC=+(G+COS(THETA)-DV/DT)
   PRINT 8.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
   CONTINUE
   REEF(1,I)=T
   REEF (2 , I) = TRAJANG
   REEF (3, I) =X
   REEF (4, I) =Z
   REEF (5.1) #V
   REEF (6 . I) = FO
   REEF (7, I) =TF
   IF (NREEF+1-1) 3,3,2
2 IF (T.GE.TOR) 60 TO 3
   CDS=CDP*PI*DNOT*DNOT*H1*H1/4.
   CDST=CDS+CDSL
   CALL TRAJEGN(T, V, THETA, X, Z, RHO, CDST, MS, DTT, G, ALT, DV)
   ALF-G#COS (THETA) +DV/DTT
   TRAJANG=THETA+180./PI
   VX=V#SIN (THETA)
   VZ=V+COS(THETA)
   ICOUNT=ICOUNT+1
   ALTMZ=ALT-Z
   IF (ICOUNT EQ-NINT) PRINT 8.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.AL
   IFICICOUNT.EQ.NINT) ICOUNT=0
   IF((T-TDR) 2.3.3
  CONTINUE
   PRINT 9. (REEF(J:1):J=1.7)
   IF (NREEF.GT.0) PRINT 10. ((REEF (J.I).J=1.7), I=2. NREEF1)
   DQ=DV/DT
   RETURN
4 VOLUME=VOLUMG
   H0=0.0
   H1=2./PI
   IF(NINT.GT.0) PRINT 12
   TNOT#T
   V0=V
   X0=X
   Z0=Z
   THETADETHETA
   CALL FILLTIM (VOLUME , VO, XO, ZO, THETAO, MS, HO, HI, No Fo TF)
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
F0=0.0
   DT=DCAPT+TF
   CAPT=0.0
   DO 5 J=1,N
   ICOUNT=ICOUNT+1
   CAPT=CAPT+DCAPT
   T#TF#CAPT+TNOT
   CALL CALC (CAPT. TF. DCAPT. DCAPTR. MS. DV. DP. D)
   FRCE=ML# (G+COS (THETA) +DV/DT)
   FO=AMAX1 (FRCE,FO)
   TRAJANG#THETA#180./PI
   VX=V+SIN(THETA)
   VZ=V*COS (THETA)
   IF (NINT.LT.0) GO TO 5
   IF (ICOUNT.LT.N/20) GO TO 5
   ICOUNT=0
   ALTMZ=ALT-Z
   ACC=-(G*COS(THETA)+DV/DT)
   PRINT 8.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
  CONTINUE
   PRINT 9, T, TRAJANG, X, Z, V, FO, TF
   DQ=DV/DT
   RETURN
  FORMAT(I1)
   FORMAT (3F10.0)
  FORMAT(1x, F8, 2, 4F11, 2, 11x, 3F11, 2, 11x, 2F11, 2)
   FORMAT (// +61 X + TIME (SEC) ANGLE (DEG) X (FT)
                                                     Z(FT)
                                                             V(FT/SEC)
  1MAX(LB) TF(SEC) +,/,20x,+FULL OR REEFED INFLATION #,12x,F10.2,
  2F 9.2,3F10.2,F10.0,F10.2)
10 FORMAT(9(58X)F10.2)F 9.2,3F10.2,F10.0,F10.2,/))
11 FORMAT(///, 20x, *REEFED INFLATION*, /, 25x, *REEFING RATIO= *, F10.3,/
  1,25X, #REEFED PROJ. DIAM.= #,F10.3,# FT*,/,25X,#CUTTER DELAY= #,F10
  2.3, * SEC *,/,25x. *TIME OF DISREEF # *. F10.3. * SEC *. ////
12 FORMAT(5/ ,4x,+TIME+,5x,+ALTITUDE+,4x,+SYSTEM+,3x,+C,M, TRAJ,+,10x
  1. #C.M. POSITION# . Z6X . #C.M. VELOCITY# 18X . #C.M. # . / . Z6X . #ANGLE# . 6X .
       #ANGLE#
                  •80X • #ACCELERATION *• / 4X • * (SEC) *•6X • * (FT) *•7X • * (DEG) *
  3,6X,+(DEG)+,18X,+(FT)+,32X,+(FT/SEC)+,17X,+(FT/SEC/SEC)+,/,50X,+X*
  4.10X,#Y#,10X,#Z#,BX,#TOTAL#,BX,#X#,10X,#Y#,10X,#Z#,BX,#TOTAL#5/}
   END
```

```
SUBROUTINE FILLTIM: (VOLUME, VO, XO, ZO, THETAO, MS, HO, HI, N, VOLDOT, TF)
   COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NOUSE
   COMMON /VARIABL/ RHO, T. V. THETA, X, Z, UNUSED, UNUSEDZ, UNUSEDZ
   REAL LSS.MS
   DIMENSION VOLDOT (N)
  DCAPTR=1./N
   TF=0.
   DTF=2.0+H1+DNOT/VO
  TF=TF+DTF
   V=V0
   X=X0
   Z=20
   THETA=THETA0
   CAPTR#0.0
2 DO 3 I=1.N
   CAPTR=CAPTR+DCAPTR
   CAPT=PI*PI/4.*(H1*H1*CAPTR*H0*H0*(1.*CAPTR))
   DCAPT=PI*PI/4.*(H1*H1-H0*H0)*DCAPTR
   CALL CALC (CAPT, TF, DCAPT, DCAPTR, MS, DV, DP, D)
   C0=0.05
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
C=C0+(RHO/0.002378) **.142857
   VOLDOT(1) = V*((1.+2.2*C*CAPT~CAPT)*D*D/4.-1.1*C*DP*DP/2.)
3
   SUM=VOLDOT(N)
   NM1=N-1
   D0: 4 J=1,NM1,2
   SUM=SUM+4. #VOLDOT(J)
   N45=N-5
   DO 5 K=2,NM2,2
5 SUM=SUM+2. #VOLDOT(K)
   VOL=DCAPTR/3. #SUM#PI#TF
   IF (ABS (VOL-VOLUME) / VOLUME-0.00001) 7,7,6
  DTF#TF# (VOLUME/VOL#1.)
   GO: TO 1
7 V=V0
   X = X0
   Z=Z0
   THETA=THETAO
   REITURN
   END
```

```
SUBROUTINE CALC(CAPT.TF.DCAPT.DCAPTR.M.DV.DP.D)
 COMMON /CONST/ ALT, PI.G. CDP. DNOT. CDSL. LSS. ML. MP. MSS. MST . NOUSE
 COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
 REAL LISSOMOMAOMIOMT
 DP=2. +DNOT/PI+SQRT (CAPT)
 DPMAX=2. #DNOT/PI
 DPDOT=DNOT/(PI#SQRT(CAPT))
 D=(4. +LSS+DP) / (4. +LSS+2. +DNOT-PI+DP)
 DDOT=((4.*LSS+2.*DNOT-PI*DP)*4.*LSS*DPDOT+4.*LSS*DP*PI*DPDOT)/(4.*
1LSS+2. +DNOT-PI+DP) ++2
 MA=PI+RHO+DP+DP+DP+DP+DP/(32,+DPMAX+DPMAX)
 DMA=5.*PI*RHO/(32.*DPMAX*DPMAX)*DP*DP*DP*DP*DPDOT*DCAPT
 SQ#SQRT((LSS+DNOT/2.=PI*DP/4:)**2=DP*DP/4.)
 SQ1=SQRT(LSS+LSS-D+D/4.)
MI=PI*RHO/12.*(DP*DP*DP*DP*SQ-D*D*SQ1)
DMIEPI+RHO/12.*(3.*DP+DP+DPDOT-DP+DP+((2.*LSS+DNOT=PI+DP/2.)*PI+DP
1D0T/4.+DP#DPD0T/2.)/(2.*SQ)+2.*DP*DPD0T*SQ+D*D*D*DD0T/(4.*SQ1)=2.*
2D*DDOT*SQ1) *DCAPT
MT=M+MA+MI
 DTHETA==GOSIN(THETA) OMODCAPTROTF/(VOMT)
 CDS=CDP*PI*DP*DP/4.+CDSL
 DV=(M+G+COS(THETA)/MT-RHO+V+V+CDS/(2.4MT))4DCAPTR+TF-V+(DMI+DMA)
1/MT
DX=V+SIN(THETA)+DCAPTR+TF
 DZ=V+COS (THETA) +DCAPTR+TF
 THETA=THETA+DTHETA
 V=V+DV
 X=X+DX
Z=Z+DZ
CALL DENSITY (RHO+ALT=Z)
RETURN
END
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
SUBROUTINE INTGRAT (T.Y.TF.NN.PCTERR.ETA.TRY1,TRY2.TRY3,W.YDOT.Z.ID
    1.DX.T1.ISIGNAL)
     DIMENSION Y(NN), YDOT(NN), TRY1(NN), TRY2(NN), TRY3(NN), ETA(NN), W(NN),
    12(NN)
     MMEO
     T1=T
     IMDONE==1
     TF((ID) 1.1.2
     DT=DX
     GO: TO 12
  2
     DT=TF=T1
     M=0
     CALL FORMULA (Y.DT.TRY1.NN.W.YDOT.Z.L)
     IF(L.GT.0) GO TO 15
     CALL FORMULA (Y.O.5+DT.TRY2.NN.W.YDOT.Z.L)
     IF(L.GT.0) GO TO 15
     CALL FORMULA (TRY2,0.5+DT.TRY3,NN,W,YDOT.Z.L)
     IF(L.GT.0) GO TO 15
DO 5 J=1,NN
     ERR1=ABS(TRY3(J)=TRY1(J))
     ERR2=AMAX1 (ETA(J), PCTERR*ABS(TRY3(J)))
     IF((ERR1-ERR2) 5,5,10
  5 CONTINUE
     M 4= 0
     DO 6 K=1.NN
     Y(K) = TRY3(K)
     T1=T1+DT
     IF(M.LT.5) 8,9
     M=M+1
  R
     GO TO 12
     MEO
     TO#0.5=TO
     GO TO 12
  10 M=0
     MM=MM+1
     IF (MM.GT.20) GO TO 16
     IMDONE = -1
     DT=DT+0.5
     DO: 11 I=1.NN
  11 TRY1(I) = TRY2(I)
     60 TO 4
    IF((T1=TF+DT) 3,13,13
  12 IF (IMDONE) 7,14,14
  13 DX=DT
     DT=TF-T1
     IF(DT.EQ.O.) GO TO 14
     IMDONE=1
     GO TO 3
- 14 CALL EMOTION (Y. YDOT . 1 . ISIGNAL)
     DX=AMAX1(DX,DT)
     RETURN
  15 M=0
     MM=MM+1
     IF(MM.GT.20) GO TO 16
     I MOONE==1
     DT=DT+0.5
     GO TO 3
  16 ISIGNAL=1
     PRINT 17
     RETURN
  17 FORMAT (5/+5X+5H******CANNOT INTEGRATE OR ANGLE OF ATTACK LARGE*)
     END
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
SUBROUTINE FORMULA (Y+H+YI+NN+W+YDOT+Z+ISIGNAL)
DIMENSIONY (NN) . YDOT (NN) . YI (NN) . W (NN) . Z (NN) . A (5)
A(3) = A(4) = H
A(1)=A(2)=A(5)=0.5
DO 1 J=1.NN
Z(J) = YDOT(J)
W(J) = Y(J)
(U)Y=(U)IY
DD 2 K=1,4
CALL EMOTION (W.Z.2. ISIGNAL)
IF (ISIGNAL.GT.0) RETURN
C=A(K+1) +0.33333333333333333
DO 2 L=1.NN
W(L)=Y(L)+A(K)+Z(L)
YI(L)=YI(L)+C*Z(L)
RETURN
END
SUBROUTINE TRAJEGNET.V.THETA,X.Z.RHO.CDS.M.DT.G.ALT.DV)
REAL M
CALL DENSITY (RHO+ALT-Z)
DV=(G+COS(THETA)-RHO+CDS+V+V/(2.+M))+DT
DTHETA==G+SIN(THETA)+DT/V
DX=V+SIN(THETA) +DT
DZ=V+COS (THETA) +DT
V=V+DV
THETA=THETA+DTHETA
X = X + DX
Z=Z+DZ
T=T+DT
RETURN
END
SUBROUTINE DENSITY (RHO+H)
RHO=0.002378#EXP(-H/32916.)
IF(H.GT.15000.) RHO=0.002378+1.07133+EXP(-H/28593.)
RETURN
END
SUBROUTINE DYNAMIC (RHO.LO.L.Z.L.3.IXX.IYY.IZZ.IXZ.MI)
REAL IA+IAZ+IAZO, IY+IYY+IXX+IXZ+IZ+IZZ+L1+L2+L3+MBR+ML+MLS+MR+MRX+
1MP.MI
COMMON /DYNAM/ DNOT+X1+X2+X3+X4+X5+MBR+ML+MLS+MP+MR+MRX+IAZ0+IZ+
1Q1,Q2,VOLUME,XNUM,XDENOM
MI=RHO#VOLUME
X=(XNUM+MI+Q1+DNOT)/(XDENOM+MI)
L1=X5=X
L2=-X-Q1*DNOT
L3=DNOT=X
 IA=0.13195*RHO*Q2*Q2*Q2*DNOT*DNOT*DNOT*L2*L2
 IY=MP+L2+L2+MLS+(X+X1)+(X-X1)+MR+(X2-X)+(X2-X)+MRX+(X3-X)+(X3-X)+
1MBR* (X4-X)*(X4-X)+ML*L1*L1
 IYY=IY+IA
 IXX=IYY
 IAZ=IAZ0#RHO/0.002378
 IZZ=IZ+IAZ
 IXZ=0.0
 RETURN
 END
         Computer Program for Three Degrees of Freedom
```

167

FIG 29

(Continued)

```
SUBROUTINE MOTION (DQ.PCTERR.ETA.DT)
    DIMENSION Y(6) , YDOT(6) , ETA(6) , X1(6) , X2(6) , X3(6) , W(6) , B(6) , VERTPAR(
   18.3)
    REAL LA
    COMMON /CONST/ ALT.PI.G.COP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
    COMMON /VARIABLY RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
    PRINT 8
    READ 7.TSTOP.ZSTOP
    TSTOP=TSTOP+T
    IF (NINT. GT. 0) PRINT 6
    AMARK#1.0
    NMARK#0
    IVERT=1
    ANG=THETA#180./PI
    ID=1
    Y(1)=0.
    Y(2)#V
    Y(3)==G*SIN(THETA)/V
    Y(4) #THETA
    Y(5)=X
   Y(6)=Z
   YDOT (3) #G#G#COS (THETA) #SIN (THETA) / (V#V) +G#SIN (THETA) / (V#V) #DQ
   TFMT+DT
   NUMB = IABS (NINT)
   DO 2 I=1.NUMB
   CALL: INTGRAT (T.Y.TF.6.PCTERR: .ETA.X1.X2.X3.W.YDOT.B.ID.DX.T1.K)
   IFI(K.GT.O) RETURN
   V0#V
   R2#Y(6) +L1#C05(Y(4))
    IF(R2.GT.ZSTOP) CORR=(ZSTOP=RZ)/(R2=RZ)
   IF (T1.GT.TSTOP)
                      CORR#(TSTOP#T)/(T1#T)
   IFICR2.GT.ZSTOP.OR.T1.GT.TSTOP) GO TO 3
   T=11
   RX=Y(5)+L1+SIN(Y(4))
   RZ#R2
   VX=(Y(1)+Y(3)+L1)+COS(Y(4))+Y(2)+SIN(Y(4))
   VZ=-(Y(1)+Y(3)*L1)*SIN(Y(4))+Y(2)*COS(Y(4))
   AX#(YDOT(1)+Y(2)+Y(3)+YDOT(3)+L1)+COS(Y(4))+(YDOT(2)+Y(1)+Y(3)+
  1Y(3) #Y(3) #L1) #SIN(Y(4))
   AZ==(YDOT(1)+Y(2)+Y(3)+YDOT(3)+L1)+SIN(Y(4))+(YDOT(2)+Y(1)+Y(3)
  1-Y(3) #Y(3) #L1) #COS(Y(4))
   V=SQRT(VX+VX+VZ+VZ)
   A=SQRT (AX#AX+AZ#AZ)
   IFILV.LIT.VO) A==A
   SYSANGL=Y(4) +180./PI
   ALPHA1#ALPHAL#180./PI
   TRAJANG=SYSANGL-ALPHA1
   IF (IVERT.GT.3) GO TO 15
   IF((SYSANGL/ABS(SYSANGL) -ANG/ABS(ANG)) 13.12.13
12 IFIC (ABS (SYSANGL) -ABS (ANG) ) *AMARK.GE.0.0) GO TO 13
   VERTPAR (1, IVERT) #T
   VERTPAR(2.IVERT) = ALT-RZ
   VERTPAR (3, IVERT) =RX
   VERTPAR (4, IVERT) #RZ
   VERTPAR (5. IVERT) #V
   VERTPAR (6 , IVERT) #VX
   VERTPAR (7. IVERT) #VZ
   VERTPAR(8, IVERT) #A
   ANG=SYSANGL
   GO: TO 15
13 AMARK==AMARK
   NMARK=NMARK+1
   GO: TO:(14,12,14,12,14) NMARK
14 IVERT#IVERT+1
   ANG#SYSANGL
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
15 10==1
       NUMB=IABS(NINT)
       IF (NUMB + DX.GT.1.0) NUMB = MAX1(1..1./DX)
       TFMT+DX
2 CONTINUE
       ALTMRZ=ALT-RZ
       IFKNINT.GT.O) PRINT 4.T.ALTMRZ.SYSANGLETRAJANGERX.RZ.V.VX.VZ.A
       GO TO 1
3 T=(T1-T)+CORR+T
       R1=Y(5)+L1+SIN(Y(4))
       V1=(Y(1)+Y(3)+L1)+COS(Y(4))+Y(2)+SIN(Y(4))
       V2=-(Y(1)+Y(3)+L1)+SIN(Y(4))+Y(2)+COS(Y(4))
       A1 = (YDOT(1) + Y(2) + Y(3) + YDOT(3) + L1) + COS(Y(4)) + (YDOT(2) - Y(1) + Y(3) - Y(3) + YDOT(3) + YDOT
     1Y(3)+Y(3)+L1)+SIN(Y(4))
       A2=-(YDOT(1)+Y(2)+Y(3)+YDOT(3)+L1)+SIN(Y(4))+(YDOT(2)-Y(1)+Y(3)
     1-4 (3) 44 (3) 4L1) 4COS (4 (4))
       RX=(R1-RX)+CORR+RX
       RZ=(R2=RZ) +CORR+RZ
       VX=(V1-VX) +CORR+VX
       VZ=(V2=VZ) +CORR+VZ
       AX=(A1-AX)+CORR+AX
       AZ=(AZ=AZ) +CORR+AZ
       V#SQRT (VX#VX+VZ#VZ)
       A=SQRT (AX+AX+AZ#AZ)
       IFICV.LIT.VO) A==A
       SYSANGL=(Y(4)+180./PI=SYSANGL)+CORR+SYSANGL
       ALPHAI = (ALPHAL +180 ./PI-ALPHAI) +CORR+ALPHAI
       TRAJANG=SYSANGL-ALPHA1
       ALITMRZ=ALT-RZ
       IF!(NINT-GT-0) PRINT 4,T,ALTMRZ-SYSANGL-TRAJANG-RX-RZ-V,VX-VZ-A
      PRINT 51
       IVERT1=IVERT=1
      DO: 31 J=1. IVERT1
31 PRINT 5. J . (VERTPAR(I.J). I#1.8)
      REITURN
      FORMAT(1X+F8-2+4F11-2+11X+3F11-2+11X+2F11-2)
      FORMAT(20X,110+ VERTICAL/MINIMUM++F9.2,F12,2)F11.2,3F10.2,2F12.2)
51 FORMAT(//+40X++TIME(SEC) ALTITUDE(FT)
                                                                                                  X(FT)
                                                                                                                          Z(FT) V(FT/SEC)
     1 VX(FT/SEC) VZ(FT/SEC) A(FT/SEC/SEC)+)
      FORMAT(5/ ,4X, *TIME*,5X, *ALTITUDE*,4X, *SYSTEM*,3X, *LOAD TRAJ. *10X
    1. #LOAD: POSITION#, 26X, #LOAD VELOCITY#, 18X, #LOAD#, /, 26X, #ANGLE#, 6X,
                *ANGLE*
                                       *80X**ACCELERATION**/4X**(SEC)**6X**(FT)**7X**(DEG)*
    3,6x,#(DEG)#,18x,#(FT)#,32x,#(FT/SEC)#,17x,#(FT/SEC/SEC)#;/,50x,#X#
    4,10X,4Y4,10X,4Z4,8X,4TOTAL*,8X,4X4,10X,4Y4,10X,4Z4,8X,4TOTAL*5/)
      FORMAT (2F10.0)
      FORMAT(5/,5%, *NOTE== POSITIONS, VELOCITIES, ACCELERATIONS, TRAJ. ANGL
    1ES: REFER: TO LOAD, PREVIOUS RESULTS ARE FOR MASS CENTER+)
      END
```

```
SUBROUTINE: EMOTION(Y, YDOT, ISTOP, ISIGNAL)
DIMENSION Y(6), YDOT(6)
REAL: M. MA. MI. MP. MSS. IXX, IYY, IZZ, IXZ, L1, L2. L3. N
COMMON: /CONST/ ALT. PI.G. CDP. DNOT. CDSL. LSS. ML. MP. MSS. MST. NOUSE
COMMON: /VARIABL/: RHO.T. V. THETA. X. Z. ALPHAL. ALPHAP. L1
CALL: DENSITY(RHO. ALT. Y(6))
CALL: DYNAMIC(RHO.L1. L2. LB. IXX, IYY, IZZ, IXZ, MI)
MA=1.375*MI
M=ML. MP+MSS+MA
A=MA/M:
B=:(ML+MP+MSS)*G/M:
```

FIG 29 Computer Program for Three Degrees of Freedom (Continued)

```
C#RHO#PI#DNOT#DNOT/8.
 CDNOT=C*DNOT
 E=0.5*RHO*CDSL
 AS#A(1) #A(1) +A(5) #A(5)
 ALPHA#ATAN(=Y(1)/Y(2))
 VP2=V2+Y(3)+Y(3)+L2+L2+2++Y(1)+Y(3)+L2
 ALPHAP=ATAN((-Y(1)+Y(3)+L2)/Y(2))
 VL2=V2+Y(3)+Y(3)+L1+L1+2++Y(1)+Y(3)+L1
 ALPHAL#ATAN((-Y(1)-Y(3)+L1)/Y(2))
 CALL COEFFTS (ALPHAP, CT, CN, CM, ISTOP, ISIGNAL)
 IF (ISIGNAL . GT. 0) RETURN
 N#C+CN#VP2
 TT#C#CT#VP2
 AEROM=CDNOT+CM+VP2
 D=E#VL2
 YDOT(1) =- A + YDOT(3) + L2-B + SIN(Y(4)) + N/M + D + SIN(ALPHAL) / M-Y(2) + Y(3)
 YDOT(2) = A+Y(3)+Y(3)+L2+B+COS(Y(4))-TT/M-D+COS(ALPHAL)/M+Y(1)+Y(3)
 YDOT(3) = N+L3/IYY+D+L1+SIN(ALPHAL)/IYY+AEROM/IYY-ML+G+SIN(Y(4))+L1
1/IYY=MP#G#SIN(Y(4))#L2/IYY
 YDOT (4) = Y (3)
 YDOT (5) #Y (1) #COS (Y(4)) +Y (2) #SIN(Y(4))
 YDOT(6) = Y(1) + SIN(Y(4)) + Y(2) + COS(Y(4))
 RETURN
 END
```

```
SUBROUTINE COEFFTS (ALPHAP.CT.CN.CM.IPRINT.ISIGNAL)
   ALPHAPD=ALPHAP#57.295779515
   IFK(ABS(ALPHAPD).LT.85.) GO TO 2 IFK(IPRINT.EQ.1) PRINT 1.ALPHAPD
   ISIGNAL=1
   REITURN
   FORMAT (5X, *ANGLE: OF ATTACK# ++F9.3, + TOO LARGE*)
2 ISIGNAL =-1
   A=ABS (ALPHAPD)
   IF(A-30.0) 3.4.4
  CT=.647-1.2E-05+A+9.15E-04+A+A-7.13E-05+A+A+A+1.33E-06+A+A+A+A
   CN=-6.74E-034A+5.57E-044A4A-1.53E-054A4A4A+1.9E-074A4A4A4A
   CM=4.844E-03+A-3.94E-04+A+A+2.043E-05+A+A+A-1.32E-07+A+A+A+A-
   IF (ALPHAPD.GT.O.) RETURN
   CN==CN
   CM##CMX
   RETURN
   CT=0.62~
   CN#.0056#(A-30.0)+.04V
   CM#= . 0044# (A-30.0) = . 034
   IF (ALPHAPD.GT.O.) RETURN
   CN=-CN-
   CM==CM~
   RETURN
```

FIG 29 Computer Program for Three Degrees of Freedom (Concluded)

```
PROGRAM TRAJSIM (INPUT.OUTPUT)
       THIS IS THE MAIN PROGRAM
   DIMENSION ETA(12) , SPACE(1000)
   REAL IXX, IYY, 12Z, IXZ, IAZO, IZ, LSS, L1, L2, L3, MA, MBR, ML, MLS, MP, MR, MRX,
  1MSS.MST
  COMMON /CONST/ ALT.PI.G.COP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
   COMMON /VARIABL/ RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
COMMON /DYNAM/ DYDNOT, X1, X2, X3, X4, X5, MBR, DYML, MLS, DYMP, MR, MRX, IAZO
 1.1Z.Q1.Q2.VOLUME.XNUM.XDENOM
   PI=3.141592653589793
   G = 32.17
   READ 10.NSIM
 DO 11 J=1.NSIM
 READ 9, C1, C2, C3, C4, C5
   PRINT 12,C1,C2,C3,C4,C5
   READ 6.ALT. VO. MST. MP. MLS. MR. MRX. MBR. ML. X1. X2. X3. X4. X5. IZ. IAZO.
 1DNOT.LSS.CDP.CDSL.Q1.Q2.VOLUME.N.NNN.DT1.DT2.DT3.NINT
   DYDNOT=DNOT
   DYML=ML
   DYMP=MP
   XNUM=MLS+X1+MR+X2+MRX+X3+MBR+X4+ML+X5-MP+Q1+DNOT
 V XDENOM=MP+MLS+MR+MRX+MBR+ML
   MSS=MLS+MR+MRX+MBR
 W CALL DYNAMIC (0.002378.A1.A2.A3.A4.A5.A6.A7.A8)
   A9=0.375#A8
 CALL DENSITY (RHO, ALT)
   CALL DYNAMIC (RHO. 81, 82, 83, 84, 85, 86, 87, 88)
   B9=0.375*B8
   PRINT 8, ALT. VO. MST. ML. MP. MLS. MR. MRX. MBR. A8. B8, ALT. A9. B9. ALT. X1.
 1X2+X3,X4,X5,A4+B4,ALT,A5+B5,ALT,A6,B6,ALT,A7,B7,ALT,DNOT+LSS,A1+B1
 2, ALT. AZ, BZ, ALT. A3, B3. ALT. Q1, Q2, VOLUME, CDP
   PRINT B1.CDSL.N
  NN=2#N
   READ 7, (ETA(I), I=1, NN), PCTERR
   CALL EXTRACT (ISNATCH, IEXTRAC, VO, DT1, TRCA)
   IF (ISNATCH) 4,4,5
   CALL SNATCH(TRCA, DT2)
CALL OPENING (DG, TRCA, NNN, SPACE, VOLUME, IEXTRAC, DT3)
   CALL MOTION (DQ+PCTERR+ETA+DT3)
11 CONTINUE
   STOP
  FORMAT (2F10.0/7F10.0/7F10.0/7F10.0/II, 19.3F10.0, I5)
7 FORMAT(6F10.0/6F10.0/F10.0)
B FORMAT(3/,5x, *TRAJECTORY SIMULATION -- T=0, Z=0 IS RELEASE POINT +,3/,
  15x, *RELEASE CONDITIONS*,/,10x, *ALTITUDE=*,F10.0, * FT*,/,10x, *VELOC
  ZITY=+,F10.2,+ FT/SEC+,///,5X,+MASSES--SLUGS+,/10X,+TOTAL SYSTEM= +
  3,F10.3,/,10X,*LOAD= *,F10.3,/,10X,*PARACHUTE= *,F10.3,/,10X,*SUSP.
   LINES= *,F10.3,/,10x,*RISERS= *,F10.3,/,10x,*RISER EXTENSIONS= *,
  5F10.3,/,10X,*LOAD HRIDLE= *,F10.3,/,10X,*INCLUDED= *,F10.3,*(SEA L
  6EVEL) +, F10.3, + (+, F7.0, + FT) +, /, 10x, +APPARENT= +, F10.3, + (SEA LEVEL
  7) +,F10.3, +(+,F7.0, + FT) +,//,5x, +REFERENCE DISTANCES FROM SKIRT-+
  8 Fifth / 10x + 4x1 = 4 + F10 + 3 + / + 10x + 4x2 = 4 + F10 + 3 + / + 10x + 4x3 = 4 + F10 + 3 + / +
  910x,*x4= *,F10.3/10x,*x5= *,F10.3///,5x,*MOM./PROD. INERTIA--SLUG
  1FT+,3H++2,/,10x,+Ixx= +,F15.3,+(SEA LEVEL)+,F15.3,+(+,F7.0,+ FT)+
  2,/,10x,+1YY= +,F15.3,+(SEA LEVEL)+,F15.3,+(+,F7.0,+ FT)+,/,10X,
  3 #IZZ= #,F15.3.# (SEA LEVEL) #,F15.3.# (#,F7.0.4 FT) #,/,10X,#IXZ= #,
  4F15.3,*(SEA LEVEL)*,F15.3,*(*,F7.0,* FT)*,//,5X,*DIMENSIONS-- FT
  5*,/.10x,*DNOT= *,F10.3,/.10x,*SUSP. SYSTEM= *,F10.3,/.10x,*L1= *,F610.3,*(SEA LEVEL) *,F10.3,*(*,F7.0,* FT) *,/.10x,*L2= *,F10.3,*(SEA
  7 LEVEL) *,F10.3,*(*,F7.0,* FT) *,/.10x,*L3= *,F10.3,*(SEA LEVEL) *,F
  810.3, 4 (*, F7.0, 4 FT) +, ///, 5X, 4YC/DNOT= +, F10.3, /, 5X, #DP/DNOT= +, F1
  90.3./.5x. #VOLUME= #:F10.3.6H FT##3./.5x. #PARACHUTE CDP= #:F10.3)
B1 FORMAT(5X, +LOAD DRAG AREA= +,F10.3,6H FT++2,/,5X, +DEGREES OF FREE
  1DOM= *. I10.5/)
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase

```
SUBROUTINE EXTRACT (ISNATCH, IEXTRAC, VO.DT. TRCA)
      COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
      COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
      REAL LENGTH. LSPILOT. LSS. LSTATIC. MST. MT. LRXBR
      ICOUNT=0
      READ 15. ISTATIC, IEXTRAC
      IF (ISTATIC) 1.8.8
   1 READ 16.LSTATIC, COSBAG, COSP, DPILOT, LSPILOT, TD. LRXBR
      DISTANC=LSTATIC
      PRINT 22.LSTATIC.CDSBAG
      IF (OPILOT.GT.0.0) PRINT 23.CDSP.DPILOT.LSPILOT.TD
      IF (NINT.GT.O) PRINT 26
      T=X=Z=0.0
      THETA=0.5*PI
      V=V0
      CDST=CDSL+CDSBAG
      MT=MST
→ S
     CALL TRAJERN (T. V. THETA . X. Z. RHO. CDST. MT. DT. G. ALT. DV)
      VX=V*SIN(THETA)
      TRAJANG=THETA#180./PI
      VZ=V+COS (THETA)
      ICOUNT=ICOUNT+1
      ALITMZ=ALT-Z
      IFKICOUNT.EQ.NINT) PRINT 19.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ
      IF (ICOUNT.EQ.NINT) ICOUNT=0
      IF(SQRT((V0+T-X)+(V0+T-X)+Z+Z).LT.DISTANC) GO TO 2
      IF (DISTANC. GT. LSTATIC) GO TO 3
      T1=T
      TRAJ1=TRAJANG
      X1=X
      Z1=Z
      V1=V
      DISTANC=LSTATIC+LSS+0.5*DNOT+LRXBR
      IF (OPILOT.GT.0.0) DISTANC=LSTATIC+LSPILOT+0.5*DPILOT
      GO TO 2
     IF (DPILOT) 7.7.4
     ISNATCH==1
      CDST=CDSL+CDSBAG+CDSP
     IF((T=TD) 6,14,14
 → 6
      CALL TRAJEGN (T. V. THETA . X. Z. RHO . CDST . MT . DT . G. ALT . DV)
      TRAJANG=THETA+180./PI
      VX=V+SIN(THETA)
      VZ=V+COS(THETA)
      ICOUNT=ICOUNT+1
      ALTMZ=ALT-Z
      IF (ICOUNT.EQ.NINT) PRINT 19, T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, VX, VZ
      IF (ICOUNT . EQ. NINT) ICOUNT=0
      GO TO 5
  7 ISNATCH=1
      TRCA=T
      PRINT 20 + T1 + TRAJ1 + X1 + Z1 + V1 + T + TRAJANG + X + Z + V
     RETURN
     IF (IEXTRAC) 9.9.13
     READ 17, LENGTH, CDSBAG, CDSEX, TD
     PRINT 24. LENGTH, CDSBAG, CDSEX. TD
      IF (NINT.GT.O) PRINT 26
```

12 FORMAT (1H1./.5x. *PARACHUTE-LOAD SYSTEM (DEPLOYMENT) -- *.5A10)

9 FORMAT(5A10) 10 FORMAT(13)

FNO

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
ISNATCH=-1
10 T=X=Z=0.0
   THETA=0.5*PI
   TRAJANG=90.
   COST=COSEX
   VEVO
11 DV=-RHO*CDST*V*V*DT/(2.*MST)
   DX=V#DT
   V = V + DV
   X=X+DX
   T=T+DT
   ICOUNT=ICOUNT+1
   ALTMZ=ALT-Z
   IF (ICOUNT, EQ. NINT) PRINT 19. T, ALTMZ, TRAJANG, TRAJANG, X, Z, V, V
   IF (ICOUNT.EQ.NINT) ICOUNT=0
   IF((V0+T-X-LENGTH) 11,12,12
12 CDST=CDSL+CDSBAG+CDSEX
   MT=MST
   T1=T
   X1 = X
   v1=v
   GD TO 5
13 READ 18.R.LENGTH.TD
   H=(4.*LSS*R+2.*R*DNOT)/(4.*LSS+PI*R*DNOT)
   HTDNOT=H*DNOT
   PRINT 25, LENGTH, R, HTDNOT, TD
   IF (NINT.GT.O) PRINT 26
   COSEX=CDP*PI*H*H*DNOT*DNOT/4.
   CDSBAG=0.0
   ISNATCH#1
   GO TO 10
14 IF (ISTATIC-LT-0) PRINT 20.T1.TRAJ1.X1.Z1.V1.T.TRAJANG.X.Z.V
   IF (ISTATIC.GE.0) PRINT 21, T1, X1, V1, T, TRAJANG, X, Z, V
   IF(IEXTRAC.GT.0) TRCA#0.0
   RETURN
15 FORMAT(212)
16 FORMAT (7F10.0)
17 FORMAT (8F10.0)
18 FORMAT (3F10.0)
19 FORMAT(1X+F8-2+4F11-2+11X+3F11-2+11X+F11-2)
20 FORMAT(//,60x, TIME (SEC) ANGLE (DEG) X(FT)
                                                      Z(FT) VELOCITY(FT
  1/SEC) +,/,20X, +STATIC LINE STRETCH+,16X,5F11,2/20X, +PARACHUTE/PILOT
  2 CHUTE DEPLOYMENT*,3X,5F11.2)
21 FORMAT(//.60X. +TIME(SEC) ANGLE(DEG)
                                          X(FT)
                                                     Z(FT) VELOCITY(FT
  1/SEC) +,/,20x, +LOAD OUT OF AIRCRAFT+,15x, F11.2,11x, F11.2,11x, F11.2/
  220X, *PILOT CHUTE/EXTRACTION CHUTE RELEASE OR* 1/20X, *MAIN PARACHUT
  3E DISREEF*,13X,5F11.2)
22 FORMAT(////+20X++STATIC LINE= ++F10.3++ FT++/+20X++PARACHUTE PACK
  1DRAG AREA= +,F10.3,1x,5HFT++2)
23 FORMAT(20X, *PILOT CHUTE*,/,25X,*DRAG AREA#*,Fl0.3,1X,5HFT**2,/,25X
  1,*DIAMETER= *,F10.3,* FT*,/,25x,*SUSP. LINES= *,F10.3,* FT*,/,20X,
  2*TIME OF PILOT CHUTE RELEASE # + F10.2 * SEC * + ////
24 FORMAT(////,20x,*RELEASE DISTANCE IN AIRCRAFT= *,F10,3,* FT*,/,20x
  1#PARACHUTE PACK DRAG AREA= #\flo.3\1X\5HFT\#2\/\20X\#EXTRACTION CH
  ZUTE DRAG AREA=: ++F10.3+1X+5HFT++2+/+20X++TIME OF EXTRACTION CHUTE
  3RELEASE= +,F10.2,+ SEC+,///)
25 FORMAT(////.20X, *RELEASE DISTANCE IN AIRCRAFT= *,F10.3, * FT*,/,20X
  1*REEFING RATIO= *,F10.3,/,20X,*REEFED PROJ. DIAMETER= *,F10.3,* FT
  2+,/,20x,+TIME OF PARACHUTE DISREEF= +,F10.2,+ SEC+,///)
26 FORMAT(5/3,4X,+TIME+,5X,+ALTITUDE+,4X,+SYSTEM+,3X,+C.M. TRAJ.+,10X
  1, *C.M. POSITION*, 26X, *C.M. VELOCITY*, 18X, *C.M. *, /, 26X, *ANGLE*, 6X,
                > +80X+*ACCELERATION*+/4X+*(SEC)*+6X++(FT)++7X+*(DEG)*
      *ANGLE*
  3,6x,4(DEG)4,18x,4(FT)4,32x,4(FT/SEC)4,17x,4(FT/SEC/SEC)4,/,50x,4x4
  4,10X,4Y#,10X,4Z#,BX,4TOTAL#,8X,4X#,10X,4Y#,10X,4Z#,8X,4TOTAL#5/)
  END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
SUBROUTINE SNATCH (TRCA.DT)
     COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NINT
     COMMON /VARIABL/ RHO, T. V. THETA . X. Z. UNUSED . UNUSED 2. UNUSED 3
     REAL K.L.LSS.ML.MP.MPBAG.MI.M2.MSS.LRXBR
     ICOUNT=0
     READ 5. MPBAG. CDS2. K. LRXBR
     PRINT 7.MPBAG.CDS2.K.LRXBR
     IF (NINT.GT.0) PRINT 9
     M2=MP
     M1=ML+0.5*MSS
     CAPMZ=MP+MPBAG+0.5#MSS
     CAPM1=ML+MSS
     CDS1=CDSL
     V1=V
     V2=V
     L=0.0
- 1
     CALL BODIES (M1 + CDS1 + CAPM2 + CDS2 + V1 + V2 + L + DT)
     TRAJANG=THETA+180./PI
     VIXEVI+SIN(THETA)
     VIZ=VI+COS (THETA)
     ICOUNT=ICOUNT+1
     ALTMZ=ALT-Z
     IF (ICOUNT.EQ.NINT) PRINT 6.T. ALTMZ. TRAJANG. TRAJANG. X. Z. VI. VIX. VIZ
     IF (ICOUNT . EQ. NINT) ICOUNT#0
     IFI(L-LSS-LRXBR) 1.2.2
     TLET
     TRAJL=TRAJANG
     XLEX
     ZLEZ
     V1L=V1
     V2L=V2
     Q=CAPM1/(CAPM1+M2)
VF=(CAPM1*V1+M2*V2)/(CAPM1+M2)
     DELTAV=VF-V2
     FA1=RHO+CDS1+(V1+V1+VF+VF)/4.
     FA2=RHO+CDS2#(V2+V2+VF+VF)/4.
     A#1./K
     B=FA1+(1.+Q+2.+V2+Q/DELTAV)+FA2+(Q +2.4V2+Q/DELTAV)
     C=CAPM1*(Q=1.)/Q*((Q+1.)/Q*DELTAV*DELTAV+2.*V2*DELTAV) +M2*(DELTAV
    1+DELTAV+2.+V2+DELTAV)
     PMAX#-B+SQRT (B#B-C/A)
     TRCA=T
     V1=V2=VF
     MI =MP+ML+MSS
     CDS1=CDSL+0.015+CDP+DNOT+DNOT+P1/4.
- 3 CALL BODIES (M1.CDS1.MPBAG.CDS2.V1.V2.L.DT)
     TRAJANG=THETA+180./PI
     VIX#VI#SIN(THETA)
     VIZ=VI+COS (THETA)
     ICOUNT#ICOUNT+1
     ALITMZ=ALT-Z
     IF(ICOUNT.EQ.NINT) PRINT 6.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V1.V1X.V1Z
     IF (ICOUNT.EQ.NINT) ICOUNT=0
     IF(L-LSS-LRXBR-DNOT/2.) 3.4.4
  4 V=V1
     PRINT 8. TL. TRAJLE XL. ZL. VIL. VZL. PMAX. VF
     RETURN
  5 FORMAT(4F10+0)
     FORMAT(1X.F8.2.4F11.2.11X.3F11.2.11X.F11.2)
    FORMAT(////+20X+*PARACHUTE PACK MASS= *+F10.3+* SLUG*+/+20X+*PARAC
    THUTE PACK AND PILOT/EXTRACTION CHUTE DRAG AREA +,F10.3.1X.5HFT++2
    2/20X+*SPRING CONSTANT= *+F10.3+* LB/FT++/+20X+*LENGTH OF RISERS+ E
    SXTENSIONS AND LOAD BRIDLE +.F10.3. FT+.///)
    FORMAT (//,50x++TIME (SEC) ANGLE (DEG) X (FT)
                                                         Z(FT) VELOCITY1
    1(FT/SEC) VELOCITY2(FT/SEC) *,/.20X. *SNATCH*,20X.4F11.2.2F15.2.//.
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
220x**SNATCH FORCE= *,F10.0.* LB**/,20x,*SNATCH VELOCITY= *,F10.3.
3* FT/SEC*)
9 FORMAT(5/.4x,*TIME*,5x,*ALTITUDE*,4x,*SYSTEM*,3x,*C,M. TRAJ.*,10X
1,*C.M. POSITION*,26x,*C.M. VELOCITY*,18x,*C.M.*/.26x,*ANGLE*,6x,
2 *ANGLE* .80x,*ACCELERATION*,/4x,*(SEC)*,6x,*(FT)*,7x,*(DEG)*
3,6x,*(DEG)*,18x,*(FT)*,32x,*(FT/SEC)*,17x,*(FT/SEC/SEC)*,/,50x,*X*
4,10x,*Y*,10x,*Z*,8x,*TOTAL*,8x,*X*,10x,*Y*,10x,*Z*,8x,*TOTAL*5/)
END
```

```
SUBROUTINE BODIES (M1.CDS1.M2.CDS2.V1.V2.L.DT)
COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NOUSE
COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED . UNUSED 2, UNUSED 3
REAL MI.MZ.L
CALL DENSITY (RHO+ALT=Z)
DTHETA = - G SIN (THETA) +DT/V1
DV1=(G*COS(THETA)-RHO*CDS1*V1*V1/(2.*M1))*DT
DV2=(G+COS(THETA) -RHO+CDS2+V2+V2/(2.+M2))+DT
DX=V1+SIN(THETA)+DT
DZ=V1+COS(THETA)+DT
DL=V1+DT-V2+DT
THETA=THETA+DTHETA
vl=vl+nvl
V2=V2+DV2
X = X + DX
Z=Z+DZ
L=L+DL
T=T+DT
RETURN
```

```
SUBROUTINE OPENING (DQ, TRCA, N, F, VOLUMG, IEXTRAC, DTT)
 DIMENSION F(N) REEF (7.10)
 COMMON /CONST/ ALT, PI.G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
 COMMON /VARIABL/ RHO.T.V.THETA.X.Z.UNUSED.UNUSED.UNUSED.
 REAL LSS.ML.MP.MS.MSS
 I COUNT=0
DCAPT=DCAPTR=1./N
MS=ML+MSS+MP
READ 6. NREEF
 IFI(NREEF.EQ.0) GO TO 4
NREEF=NREEF-IEXTRAC
NREEF1 = NREEF+1
DO 3 I=1.NREEF1
READ 7.RO.R1.TCD
TNOT=T
TDR=TRCA+TCD
H0=(4.+LSS+R0+2.+R0+DNOT)/(4.+LSS+PI+R0+DNOT)
H1=(4.*LSS*R1+2.*R1*DNOT)/(4:*LSS*PI*R1*DNOT)
HTDNOT=H1+DNOT
PRINT 11.R1. HTDNOT.TCD.TDR
IF (NINT.GT.0) PRINT 12
V1=(H1+H1+H1-H0+H0+H0) +DNOT+DNOT+DNOT
V2=H1*H1*SQRT((LSS+DNOT/2.=PI/4.*H1*DNOT)**2=H1*H1*DNOT*DNOT/4.)
V3=H0*H0*SQRT((LSS+DNOT/2.=PI/4.*H0*DNOT)**2=H0*H0*DNOT*DNOT/4.)
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
V4=R1*R1*SQRT(LSS*LSS*R1*R1*DNOT*DNOT/4.)
   V5=R0+R0+SQRT(LSS+LSS-R0+R0+DNOT+DNOT/4.)
   VOLUME= (V1+DNOT+DNOT+(V2-V3-V4+V5)) +P1/12.
   V 0 = V
   XO=X
   20#Z
   THETA0=THETA
   CALL FILLTIM (VOLUME . VO . XO . ZO . THETAO . MS . HO . H1 . N . F . TF)
   DT=DCAPTR*TF
   CAPTR=0.0
   DO 1 J#1,N
   ICOUNT=ICOUNT+1
   CAPTR#CAPTR+DCAPTR
   T=TF#CAPTR+TNOT
   CAPT=PI*PI/4.*(H1*H1*CAPTR+H0*H0*(1.=CAPTR))
   DCAPT=PI*PI/4.*(HI*HI-H0*H0)*DCAPTR
   CALL CALC(CAPT. TF. DCAPT. DCAPTR. MS. DV. DP. D)
   FRCE=ML* (G*COS (THETA) -DV/DT)
   FO=AMAX1 (FRCE.FO)
   TRAJANG=THETA+180./PI
   VX=V+SIN(THETA)
   VZ=V+COS(THETA)
   IF (NINT.LT.0) GO TO 1
   IF (ICOUNT.LT.N/20) GO TO 1
   ICOUNT=0
   ALTMZ=ALT-Z
   ACC==(G*COS(THETA) +DV/DT)
   PRINT B.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
   CONTINUE
   REEF (1.1) =T
   REEF(2, I) = TRAJANG
   REEF(3.1)=X
   REEF (4, I) = Z
   REEF (5.1) #V
   REEF (6 . I) =FO
   REEF (7, I) =TF
   IF(NREEF+1-1) 3,3,2
2 IF (T.GE.TDR) GO TO 3
   CDS=CDP*PI*DNOT*DNOT*H1*H1/4.
   CDST=CDS+CDSL
   CALL TRAJEGN (T. V. THETA. X. Z. RHO. CDST. MS. DTT. G. ALT. DV)
   AL == G + COS (THETA) + DV/DTT
   TRAJANG#THETA#180./PI
   VX=V+SIN(THETA)
   VZ=V+COS (THETA)
   ICOUNT=ICOUNT+1
   ALITMZ=ALT-Z
   IFKICOUNT.EQ.NINT) PRINT B.T.ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.AL
   IF (ICOUNT.EQ.NINT) ICOUNT=0
   IF!(T-TDR) 2,3,3
3 CONTINUE
   PRINT 9. (REEF!(J.1).J=1.7)
   IF (NREEF. GT. 0) PRINT 10. ((REEF (J. I)) J#1.7), I#2, NREEF1)
   DQ=DV/DT
   REITURN
   VOLUME#VOLUMG
   H0=0.0
   HI=Z./PI
   IF (NINT.GT.0) PRINT 12
   TNOT=T
   V0=V
   X0=X
   Z0=Z
   THETAORTHETA
   CALL FILLTIM (VOLUME . VO. XO. ZO. THETAO. MS. HO. HI. N. F. TF)
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
FD=0.0
   DT=DCAPT+TF
   CAPT#0.0
   DO 5 J=1.N
   ICOUNT=ICOUNT+1
   CAPT=CAPT+DCAPT
   T#TF#CAPT+TNOT
   CALL CALC (CAPT. TF. DCAPT. DCAPTR. MS. DV. DP. D)
   FRCE=ML# (G*COS (THETA) -DV/DT)
   FO=AMAX1 (FRCE,FO)
   TRAJANG#THETA#180./PI
   VX=V#SIN(THETA)
   VZ=V*COS (THETA)
   IF (NINT.LT.0) GO TO 5
   IFICICOUNT.LT.N/20) GO TO 5
   ICOUNT=0
   ALITMZ#ALT=Z
ACC==(G*COS(THETA)=DV/DT)
   PRINT 8.T. ALTMZ.TRAJANG.TRAJANG.X.Z.V.VX.VZ.ACC
5 CONTINUE
   PRINT 9, T, TRAJANG, X, Z, V, FO, TF
   DQ=DV/DT
   RETURN
   FORMAT(I1)
   FORMAT (3F10.0)
   FORMAT(1x,FB,2,4F11,2,11x,3F11,2,11x,2F11,2)
   FORMAT (//+61x++TIME (SEC) ANGLE (DEG) X (FT)
                                                            V(FT/SEC)
                                                   Z(FT)
  1MAX(LB) TF(SEC) **/,20x**FULL OR REEFED INFLATION **,12x*F10.2*
  2F 9.2.3F10.2.F10.0.F10.2)
10 FORMAT(9(58X+F10.2+F 9.2+3F10.2+F10.0+F10.2+/))
11 FORMAT(////+20x+*REEFED INFLATION*+/+25x+*REEFING RATIO=: *+F10-3+/
  1,25X,4REEFED PROJ. DIAM.= 4,F10,3,4 FT4,/,25X,4CUTTER DELAY= 4,F10
  2,3++ SEC +1/25x++TIME OF DISREEF# ++F10.3,+ SEC++////
12 FORMAT (5/ +4x++TIME++5x++ALTITUDE++4x++SYSTEM++3x++C.M. TRAJ.++10X
  1. #C.M. POSITION# 26X. #C.M. VELOCITY# 18X. #C.M. #./. 26X. #ANGLE# 6X.
       +ANGLE+
                 +80X+*ACCELERATION*+/4X+*(SEC)*+6X+*(FT)*+7X+*(DEG)*
  3,6x,4(DEG)4,18x,4(FT)4,32X,4(FT/SEC)4,17x,4(FT/SEC/SEC)4,/,50x,4X4
  4,10X,+Y+,10X,+Z+,BX,+TOTAL+,BX,+X+,10X,+Y+,10X,+Z+,BX,+TOTAL+5/)
  END
```

```
SUBROUTINE FILLTIM!(VOLUME, VO.XO, ZO, THETAO, MS, HO, H1, N, VOLDOT, TF)
COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST.NOUSE
COMMON /VARIABLY RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
REAL LSS. MS
DIMENSION VOLDOT (N)
DCAPTR=1./N
TF#0.
DTF=2.0+H1+DNOT/VO
TF#TF+DTF
V=VO
X=X0
Z=20
THETA=THETAO
CAPTR#0.0
DO: 3 I=1.N
CAPTR=CAPTR+DCAPTR
CAPT=PI#PI/4.* (H1+H1+CAPTR+H0+H0+(1.=CAPTR))
DCAPT=PIMPI/4. # (H1#H1-H0#H0) #DCAPTR
CALL: CALC (CAPT. TF, DCAPT. DCAPTR. MS. DV. DP. D)
C0=0.05
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
C=C0*(RHO/0.002378)**.142857
3 VOLDOT(I)=V*((1.+2.2*C*CAPT=CAPT)*D*D/4.-1.1*C*DP*DP/2.)
  SJM=VOLDOT(N)
   NM1=N-1
   S. 1MM. 1=1 4 Cd
4 SUM=SUM+4. #VOLDOT(J)
   NMS=N-S
  DO 5 K=2,NM2,2
5 SUM=SUM+2. #VOLDOT(K)
  VOL=DCAPTR/3. #SUM#PI#TF
   IF (ABS (VOL-VOLUME) / VOLUME-0.00001) 7,7,6
  DTF=TF*(VOLUME/VOL=1.)
   GO TO 1
  V=V0
   X=X0
   Z=20
   THETA=THETAO
   RETURN
   END
```

```
SUBROUTINE CALC(CAPT.TF.DCAPT.DCAPTR.M.DV.DP.D)
COMMON /CONST/ ALT.PI.G.CDP.DNOT.CDSL.LSS.ML.MP.MSS.MST .NOUSE
COMMON /VARIABL/ RHO, T, V, THETA, X, Z, UNUSED, UNUSED2, UNUSED3
REAL LSS.M.MA.MI.MT
DP=2. *DNOT/PI*SQRT(CAPT)
DPMAX=2. +DNOT/PI
DPDOT=DNOT/(PI*SQRT(CAPT))
D=(4.*LSS*DP)/(4.*LSS+2.*DNOT-PI*DP)
DDOT=((4.*LSS+2.*DNOT=PI*DP)*4.*LSS*DPDOT+4.*LSS*DP*PI*DPDOT)/(4.*
1LSS+2. #DNOT-PI#DP) ##2
MA=PI+RHO+DP+DP+DP+DP+DP/(32.+DPMAX+DPMAX)
DMA=5. *PI*RHO/(32. *DPMAX*DPMAX) *DP*DP*DP*DP*DPDOT*DCAPT
SQ=SQRT((LSS+DNOT/2.=PI*DP/4.) ++2=DP*DP/4.)
SQ1=5QRT(LSS+LSS-D+D/4.)
MI=PI*RHO/12.*(DP*DP*DP*DP*SQ-D*D*SQ1)
DWI=PI*RHO/12.*(3.*DP*DP*DPDOT-DP*DP*((2.*LSS*DNOT-PI*DP/2.)*PI*DP
1D3T/4.+DP#DPD0T/2.)/(2.#SQ)+2.#DP#DPD0T#SQ+D#D#D#D#DD0T/(4.#SQ1)=2.#
20*DDOT*SQ1) *DCAPT
MT=M+MA+MI
DTHETA==G+SIN(THETA)+M+DCAPTR+TF/(V+MT)
CDS=CDP*PI*DP*DP/4.+CDSL
DV=(M*G*COS(THETA)/MT-RHO*V*V*CDS/(2.*MT))+DCAPTR*TF-V*(DMI+DMA)
1/4T
DX=V+SIN(THETA)+DCAPTR+TF
DZ=V+COS (THETA) +DCAPTR+TF
THETA=THETA+DTHETA
V=V+DV
X=X+DX
Z=Z+DZ
CALL DENSITY (RHO, ALT=Z)
RETURN
END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
SUBROUTINE INTGRAT(T, Y, TF, NN PCTERR, ETA, TRY1, TRY2, TRY3, W, YDOT, Z, ID
     1.DX.T1.ISIGNAL)
      DIMENSION Y (NN) . YDOT (NN) . TRY1 (NN) . TRY2 (NN) . TRY3 (NN) . ETA (NN) . W (NN) .
     12 (NN)
      MM=0
      T1=T
      I MDONE == 1
      IF!(ID) 1,1,2
  1
      DT=DX
      GO TO 12
  2
      DT=TF=T1
      M=0
      CALL FORMULA (Y.DT.TRY1.NN.W.YDOT.Z.L)
 - 3
      IF(L.GT.0) GO TO 15
      CALL FORMULA (Y.O.5*DT.TRY2.NN.W.YDOT.Z.L)
      IF(L.GT.0) GO TO 15
      CALL FORMULA (TRY2,0.5*DT,TRY3,NN,W,YDOT,Z,L)
      IF(L.GT.0) GO TO 15
      DO 5 J=1,NN
      ERR1=ABS(TRY3(J)-TRY1(J))
      ERR2=AMAX1 (ETA (J) .PCTERR*ABS(TRY3(J)))
      IF(ERR1-ERR2) 5,5,10
     CONTINUE
      M 4=0
      DD 6 K=1.NN
     Y(K)=TRY3(K)
      Tl=Tl+DT
      IF(M.LT.5) 8,9
     M=M+1
     GO: TO 12
     M=0
     DT=2.0+0T
     GO TO 12
  10 M=0
     MM=MM+1
      IF (MM.GT.20) GO TO 16
      I MDONE = -1
     DT=DT#0.5
     DO 11 I=1.NN
  11 TRY1(I)=TRY2(I)
     GO TO 4
     IF(T1-TF+DT) 3,13,13
  12 IF (IMDONE) 7,14,14
  13 Dx=DT
     DT=TF=T1
     IF(DT.EQ.0.) GO TO 14
     I MDONE=1
     GD: TO 3
- 14 CALL EMOTION (Y. YDOT . 1 . ISIGNAL)
     DX=AMAX1 (DX+DT)
     RETURN
  15 M#0
     MM=MM+1
     IF (MM.GT.20) GO TO 16
     IMDONE==1
     DT=DT #0.5
     GO TO 3
  16 ISIGNAL=1
     PRINT 17
     RETURN
  17 FORMAT (5/+5X+5H+++++CANNOT INTEGRATE OR ANGLE OF ATTACK LARGE+)
     END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for free Descent Phase (Continued)

```
SUBROUTINE FORMULA (Y.H.YI.NN.W.YDOT.Z.ISIGNAL)
DIMENSIONY (NN) , YDOT (NN) , YI (NN) , W (NN) , Z (NN) , A (5)
A(3) = A(4) = H
A(1)=A(2)=A(5)=0.5*H
DO 1 J=1 .NN
Z(J) = YDOT(J)
(L) Y= (L) W
(U)Y=(U)IY
DO 2 K=1.4
CALL EMOTION (W.Z. 2. ISIGNAL)
 IFI(ISIGNAL.GT.0) RETURN
C=A(K+1) +0.33333333333333333
DO 2 L=1.NN
W(L)=Y(L)+A(K)+Z(L)
YI(L)=YI(L)+C#Z(L)
RETURN
END
 SUBROUTINE TRAJEQNETOV, THETA, X, Z, RHO, CDS, M, DT, G, ALT, DV)
REAL M
 CALL DENSITY (RHO+ALT-Z)
 DV=(G+COS(THETA) -RHO+CDS+V+V/(2.+M))+DT
DTHETA == G +SIN (THETA) +DT/V
 DX=V#SIN(THETA) #DT
DZ=V#COS(THETA) #DT
 V=V+DV
 THETA=THETA+DTHETA
 X = X + DX
Z=Z+0Z
T=T+DT
RETURN
END
SUBROUTINE DENSITY (RHO. H)
RHO=0.002378#EXP(-H/32916.)
IF(H.GT.15000.) RH0=0.002378*1.07133*EXP(-H/28593.)
RETURN
END
 SUBROUTINE DYNAMIC (RHO.L1.L2.L3.IXX.IYY.1ZZ.IXZ.MI)
REAL IA.IAZ.IAZO.IY.IYY.IXX.IXZ.IZ.IZZ.L1.L2.L3.MBR.ML.MLS.MR.MRX.
IMP.MI
 COMMON /DYNAM/ DNOT.X1.X2.X3.X4.X5.MBR.ML.MLS.MP.MR.MRX.IAZO.IZ.
1Q1.Q2.VOLUME.XNUM.XDENOM
 MI=RHO#VOLUME
 X=(XNUM-MI+Q1+DNOT)/(XDENOM+MI)
 L1=X5-X
L2=-X-Q1+DNOT
L3=DNOT=X
 IA=0.13195*RHO*Q2*Q2*Q2*DNOT*DNOT*DNOT*L2*L2
 IY=MP#L2#L2+MLS#(X=X1)#(X=X1)+MR#(X2-X)#(X2-X)+MRX#(X3-X)#(X3-X)+
1M3R*(X4-X)*(X4-X)*ML*L1*L1
 IYY=IY+IA
 IXX=IYY
 IAZ=IAZ0#RHO/0.002378
 IZZ=IZ+IAZ
 IXZ=0.0
 RETURN
 END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
SUBROUTINE MOTION (DQ.PCTERR.ETA.DT)
   DIMENSION Y(12), YDOT(12), ETA(12), X1(12), X2(12), X3(12), W(12), A(3,3)
   DIMENSION B(12) . VERTPAR(10.3)
   REAL LI
   COMMON /CONST/ ALT, PI, G, CDP, DNOT, CDSL, LSS, ML, MP, MSS, MST, NINT
   COMMON /VARIABLY RHO, T, V, THETA, X, Z, ALPHAL, ALPHAP, L1
   PRINT 8
   READ 7. TSTOP. ZSTOP
   TSTOP#TSTOP+T
   IF (NINT.GT.O) PRINT 6
   AMARK#1.0
   NMARK=0
   IVERT=1
   ANG=THETA+180./PI
   10=1
   Y(1) = Y(2) = Y(4) = Y(6) = Y(8) = Y(9) = Y(11) = 0.0
   Y(3) = V
   Y(5) ==G+SIN(THETA)/V
   Y(7)=THETA
   Y(10)=X
   Y(12)=Z
   YDOT (4) = YDOT (6) = 0.0
   YDDT(5) #G#G#COS(THETA) #SIN(THETA)/(V#V)+G#SIN(THETA)/(V#V) #DQ
   TF#T+DT
   NUMB=IABS(NINT)
   DO 2 I=1.NUMB
   CALL INTGRAT (T, Y, TF, 12, PCTERR , ETA, X1, X2, X3, W, YDOT, B, ID, DX, T1, K)
   IFI(K.GT.O) RETURN
   CALL COSINES (A.Y)
   V0=V
   R3=Y(12)+L1+A(3,3)
   IFI(R3.GT.ZSTOP) CORR=(ZSTOP=RZ)/(R3=RZ)
   IFKT1.GT.TSTOP) CORR=(TSTOP=T)/(T1=T)
   IFI(R3.GT.ZSTOP.OR.T1.GT.TSTOP) GO TO 3
   TaT1
   RX=Y(10)+L1+A(1,3)
   RY=Y(11)+L1#A(2,3)
   RZ=R3
   C1=Y(1)+Y(5)+L1
   C2#Y(2) #Y(4) #L1
   VX=C1+A(1+1)+C2+A(1+2)+Y(3)+A(1+3)
   VY#C1#A(2+1)+C2#A(2+2)+Y(3)#A(2+3)
   VZ#C1+A(3,1)+C2+A(3,2)+Y(3)+A(3,3)
   C3=YDOT(1)+Y(5)+Y(3)-Y(6)+Y(2)+YDOT(5)+L1+Y(4)+Y(6)+L1
   C4=YDOT(2)+Y(6)+Y(1)-Y(4)+Y(3)-YDOT(4)+L1+Y(5)+Y(6)+L1
   C5=YDOT(3)+Y(4)+Y(2)-Y(5)+Y(1)-(Y(4)+Y(4)+Y(5)+Y(5))+L1
   AX=C34A(1,1)+C44A(1,2)+C54A(1,3)
   AY=C3+A(2+1)+C4+A(2+2)+C5+A(2+3)
   AZ=C3#A(3,1)+C4#A(3,2)+C5#A(3,3)
   V=SQRT (VX#VX+VY#VY+VZ#VŽ)
   AT#SQRT (AX#AX+AY#AY+AZ#AZ)
   IFI(V.LIT.VO) AT##AT
   SYSANGL ACOS (A(3,3)) +180./PI
   TRAJANG=ACOS(VZ/V)+180./PI
   IF (IVERT.GT.3) GO TO 15
12 IF((ABS(SYSANGL)-ABS(ANG)) *AMARK+GE+0.0) GO TO 13
   VERTPAR(1.IVERT)=T
   VERTPAR(2.IVERT) #ALT-RZ
   VERTPAR (3, IVERT) =RX
   VERTPAR (4 - IVERT) =RY
   VERTPAR (5. IVERT) #RZ
   VERTPAR (6, IVERT) #V
   VERTPAR (7. IVERT) =VX
   VERTPAR(8, IVERT) = VY
   VERTPAR (9, IVERT) = VZ
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
VERTPAR (10 . IVERT) =AT
    ANG#SYSANGL
    GO TO 15
 13 AMARK -- AMARK
    NMARK=NMARK+1
    GO: TO (14.12.14.12.14) NMARK
14 IVERT=IVERT+1
    ANG=SYSANGL
15 ID=-1
    NUMB=IABS(NINT)
    IF (NUMB*DX.GT.1.0) NUMB#MAX1(1..1./DX)
    TF#T+DX
   CONTINUE
    ALITMRZ=ALT-RZ
   IFKNINT.GT.0) PRINT 4.T.ALTMRZ.SYSANGL.TRAJANG.RX.RY.RZ.V.VX.VY.VZ
  1 . AT
   GO: TO 1
  Tm:(T1+T)+CORR+T
   Rl=Y(10)+L1+A(1,3)
   R2=Y(11)+L1+A(2.3)
   C1=Y(1)+Y(5)+L1
   C2=Y(2) -Y(4) +L1
   V1=C1+A(1+1)+C2+A(1+2)+Y(3)+A(1+3)
   V2=C1+A(2.1)+C2+A(2.2)+Y(3)+A(2.3)
   V3#C1#A (3+1)+C2#A (3+2)+Y (3) #A (3+3)
   C3#YDOT(1)+Y(5)+Y(3)+Y(6)+Y(2)+YDOT(5)+L1+Y(4)+Y(6)+L1
   C4=YDOT(2)+Y(6)+Y(1)-Y(4)+Y(3)-YDOT(4)+L1+Y(5)+Y(6)+L1
   C5mYDOT(3)+Y(4)+Y(2)-Y(5)+Y(1)-(Y(4)+Y(4)+Y(5)+Y(5))+L1
   A1=C3+A(1+1)+C4+A(1+2)+C5+A(1+3)
   AZ#C3+A(2,1)+C4+A(2,2)+C5+A(2,3)
   A3=C3+A(3,1)+C4+A(3,2)+C5+A(3,3)
   RX=(R1=RX)+CORR+RX
   RY=(R2-RY) #CORR+RY
   RZ=(R3-RZ)+CORR+RZ
   VX#(V1-VX)#CORR+VX
   VY#(V2#VY) #CORR+VY
   VZ=(V3=VZ)+CORR+VZ
   AX=(A1-AX)+CORR+AX
   AY#(AZ-AY) #CORR+AY
   AZ# (A3-AZ) +CORR+AZ
   V#SQRT(VX#VX+VY#VY+VZ#VZ)
   AT=SQRT (AX+AX+AY+AY+AZ+AZ)
   IFI(V.LT.VO) AT==AT
   SYSANGL=(ACOS(A(3,3)) #180./PI-SYSANGL) #CORR+SYSANGL
   TRAJANG#ACOS(VZ/V) #180./PI
   ALITHRZ#ALT+RZ
   IFI(NINT.GT.O) PRINT 4.T.ALTMRZ.SYSANGL.TRAJANG.RX.RY.RZ.V.VX.VY.VZ
  1 . AT
   PRINT 51
   IVERT1=IVERT-1
   DO 31 J#1, IVERT1
31 PRINT 5.J. (VERTPAR(I.J), Im1, 10)
   RETURN
  FORMAT(1X,F8,2,11,11,2)
  FORMAT (5x,11, + VERT/MIN+,3F12.2,3F10.2,4F12.2)
51 FORMAT (//20X, *TIME(SEC) ALTITUDE (FT)
                                            X(FT)
                                                       Y(FT)
                                                                  Z(FT)
                VX (FT/SEC) VY (FT/SEC)
  1 V(FT/SEC)
                                          VZ(FT/SEC) A(FT/SEC/SEC)*)
  FORMAT (5/ +4x++TIME++5x++ALTITUDE++4x++SYSTEM++3x++LOAD TRAJ.+++10x
 1. *LOAD POSITION*, 26X, *LOAD VELOCITY*, 18X, *LOAD*, /, 26X, *ANGLE*, 6X,
       *ANGLE*
                 980X9 #ACCELERATION #9/4X9# (SEC) #96X9# (FT) #97X9# (DEG) #
 3,6X,+(DEG)+,18X,+(FT)+,32X,+(FT/SEC)+,17X,+(FT/SEC/SEC)+,/,50X,+X+
 4,10X,4Y4,10X,4Z4,8X,4TOTAL4,8X,4X4,10X,4Y4,10X,4Z4,8X,4TOTAL45/)
  FORMAT (2F10.0)
  FORMAT (5/,5X, *NOTE: POSITIONS, VELOCITIES, ACCELERATIONS, TRAJ. ANGL
 1ES REFER TO LOAD, PREVIOUS RESULTS ARE FOR MASS CENTER!
  END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
LA SUBROUTINE EMOTION (Y.YDOT. ISTOP. ISIGNAL)
  DIMENSION Y (12) . YDOT (12) . A (3+3)
  REAL: MOMAOMIONLOMPOMSSOIXXOIYYOIZZOIXZOLIOLZOLG
  COMMON /CONST/ ALT.PI.G.COP.DNOT.COSLELSS.ML.MP.MSS.MST.NOUSE
  COMMON /VARIABLY RHO. T. V. THETA. X. Z. ALPHAL. ALPHAP. L1
  CALL DENSITY (RHO + ALT-9 (12))
  CALL DYNAMIC (RHO+LR+L2+LB+IXX+IYY+IZZ+IXZ+MI)
  MA=1.375+MI
  M=ML+MP+MSS+MA
  R=MA/M
  B#:(ML+MP+MSS) +G/M
  H1=(IZZ-IYY)/IXX
  H2=(IXX-IZZ)/IYY
  H3=(IYY=IXX)/IZZ
  H4FIXZ/IXX
  H5=IXZ/IYY
  H6=1XZ/1ZZ
  C=RHO*PI*DNOT*DNOT/8.
  CONOT#C*DNOT
  E=0.5*RHO*CDSL
  UL#Y(1)+Y(5)+L1
  VLHY (2) -Y (4) +L1
  UPHY (1) +Y (5) +L2
  VP#Y(2) #Y(4) #L2
  VLR#UL#UL#VL#VL*Y(3) 4Y(3)
  VP2=UP#UP+VP#VP+Y(3) +Y(3)
  ALPHALMATAN(-ULYY (3))
  BETAL=ATAN(VL/Y(3))
  GAMMALMATAN(VL/SQRT(UL+UL+Y(3)+Y(3)))
  DELTALMATAN (+UL/SQRT (VL+VL+Y(3)+Y(3)))
  ALPHAPMATAN (-UP/Y(3))
  BETAP=ATAN (VP/Y (3))
  POLANG=ACOS (Y (3) /SQRT (UP#UP+WP#VP+Y (3) +Y (3) ))
  CALL: COEFFTS (ALPHAP BETAP POLANG CT . CX . CY . CMX . CMY . ISTOP . ISIGNAL)
  IFI(ISIGNAL.GT.0) RETURN
  FX#C#CX#VPZ
  FY#C#CY#VP2
  TT#C#CT#VP2
  AEROMX=CDNOT+CMX+VP2
  AEROMY=CONOT+CMY+VP2
  D#E#VLE
  CALL COSINES (A.Y)
  ŸDŌT(1)#8#A(3;1)+D#COS(GAMMAL)#SIN(ALPHAL)/M#FK/M=R#L2#(YDOT(5)+:
 17(4) 47(6) ) 47(5) 47(3) 47(6) 47(2)
  YDDT (2) #B#A (3,2) #D#COS (DELITAL) #SIN (BETAL) /M+FY/M+R#L2# (YDDT (4) #
 17(5) +7(6)) +7(4) +7(3) -7(6) 47(1)
  YDDT (3) #844 (3+3) -D#COS (GAMMAL) #COS (ALPHAL) /M-TT/M+R4L24 (Y (4) 4Y (4)
 1+7(5) +7(5)) -7(4) +7(2) -7(5) +7(1)
  YDOT (4) ##FY+L3/IXX+AEROMX/IXX+D+COS (DELTAL) #SIN (BETAL) #L1/IXX-ML#G
 1#å(3,2)#LĨ/ĨXX=MP#G#å(3,2)#L2/IXX+YDOT(6)#H4=Y(5)#Y(6)#H1+Y(4)#Y(5
  YDOT (5) =FX+LB/IYY+AEROMY/IYY+D+COS(GAMMAL)+SIN(ALPHAL)+L1/IYY+ML#G
 1+A(3,1)+L1/IYY+MP+G*A(3,1)+L2/IYY+Y(4)+Y(6)+H2-(Y(4)+Y(4)-Y(6)+Y(6)
 2)) #H5
  YDOT (6) #YDOT (4) *H6=Y (4) *Y (5) *H3=Y (5) *Y (6) *H6
  YDOT (7) =Y (5) +COS (Y(8) ) -Y (6) +SIN (Y(8) )
  YDDT(8)#Y(4)+TAN(Y(7))*(Y(5)*SIN(Y(8))+Y(6)*COS(Y(8))}
  YDOT (9) # (Y (5) #SIN(Y (8) ) +Y (6) #COS(Y (8) ) ) /COS(Y (7) )
  YDOT (10) #Y (1) #A (1,1) #Y (2) #A (1,2) +Y (3) #A (1,3)
  YDOT (11) #Y (1) #A (2,1) +Y (2) #A (2,2) +Y (3) #A (2,3)
  YDOT (12) #Y (1) #A (3,1) +Y (2) #A (3,2) +Y (3) #A (3,3)
  RETURN
  END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Continued)

```
SUBROUTINE COSINES(A.Y)
DIMENSION Y(12).A(3.3)
A(1.1) = COS(Y(7)) + COS(Y(9))
A(1.2) = SIN(Y(8)) + SIN(Y(7)) + COS(Y(9)) - COS(Y(8)) + SIN(Y(9))
A(1.3) = COS(Y(8)) + SIN(Y(7)) + COS(Y(9)) + SIN(Y(8)) + SIN(Y(9))
A(2.1) = COS(Y(7)) + SIN(Y(9)) + COS(Y(8)) + COS(Y(9))
A(2.2) = SIN(Y(8)) + SIN(Y(7)) + SIN(Y(9)) + COS(Y(8)) + COS(Y(9))
A(2.3) = COS(Y(8)) + SIN(Y(7)) + SIN(Y(9)) - SIN(Y(8)) + COS(Y(9))
A(3.1) = = SIN(Y(8)) + COS(Y(7))
A(3.2) = SIN(Y(8)) + COS(Y(7))
A(3.3) = COS(Y(8)) + COS(Y(7))
RETURN
END
```

```
SUBROUTINE COEFFTS (ALPHAP, BETAP, POLANG, CT, CX, CY, CMX, CMY, IPRINT)
  lisignal)
   ALPHAPO#ALPHAP#57.295779515
  BETAPD=BETAP+57.295779515
  P=POLANG+57 - 295779515
   IFI(ABS(ALPHAPD).LT.85.) GO TO 1
   IF (IPRINT.EQ.I) PRINT 2. ALPHAPO
   ISIGNAL=1
   RETURN
 IFI(ABS(BETAPD) .LT.85.) GO TO 3
   IF (IPRINT.EQ.1) PRINT 2.BETAPD
   ISIGNAL=1
  RETURN
2 FORMAT (5X, +ANGLE OF ATTACK ++F6.3,+ . TOO LARGE+)
3 ISIGNAL == 1
   A=ABS (ALPHAPD)
   IF(A-30.0) 4,5,5
4 CX==6.74E=03*A+5.57E=04*A*A-1.53E=05*A*A*A+1.9E=07*A*A*A*A
  CMY=4.844E-034A-3.94E-044A4A+1.043E-054A4A4A-1.32E-074A4A4A
  IF (ALPHAPD.GT.O.O) GO TO 6
   CX#=CX
  CMY=-CMY
  GO TO 6
5 CX=.0056+(A=30.0)+.04
   CMY=-.0044+(A-30.0)-.034
   IF (ALPHAPD.GT.0.0) GO TO 6
   CX=-CX
   CMY=-CMY
6 B#ABS (BETAPD)
   IF(8=30.0) 7.8.8
7 CY#+6.74E-03+8+5.57E-04+8+8-1.53E-05+8+8+8.1.9E-07+8+8+8*8
   CMX=4.844E=03+8=3.94E=04+8+8+1.043E=05+8+8+8=1.32E=07+8+8+8
   IF (BETAPO.GT.O.O) BO TO 9
   CY##CY
   CMX##CMX
   60 TO 9
B CY=.0056+(B=30.0)+.04
   CMX==,0044+(B=30.0)=.034
   IF (BETAPD.GT.O.O) GO TO 9
   CY==CY
   CMX#=CMX
9 IF((P=30.0) 10.11.11
10 CT=-647-1.2E=05*P+9.15E=04*P*P=7.13E=05*P*P*P+1.33E=06*P*P*P*P
   RETURN
11 CT=0.62
   REITURN
   END
```

FIG 30 Computer Program Allowing Six Degrees of Freedom for Free Descent Phase (Concluded)

VIII. INPUT DATA CARD FORMAT

Input to the computer program is provided on punched data cards. Somewhat different data is required for each of the four separation-deployment systems. Tables XX through XXIII detail the data cards which are required for the four separation-deployment systems. The numbers listed as card numbers correspond to the order and total number of cards which are required for two-dimensional trajectories with no reefed inflations. Data cards which must be inserted only for three-dimensional trajectories are denoted by 7a and 7b. When reefed inflations are desired, the user must insert the required number of appropriate cards at the points indicated in Tables XX through XXIII.

TABLE XX
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1	1-50	5A10	C1, C2, C3, C4, C5		title of simulation
2	1-10	F10.0	ALT	h	release altitude
	11-20	F10.0	VO	V	release velocity
3	1-10	FlO.O	MST	m _{rs}	mass of load and packed \ recovery system
	11-20	Flo.0	MP	m _p	mass of parachute
	21-30	F10.0	MLS	m _{T.}	mass of suspension lines
	31-40	F10.0	MR	$\frac{m_{L_{\dot{s}}}}{m_{R}}$	mass of risers
	41 - 50	F10.0	MRX	$\overline{\mathrm{m}_{\mathrm{E}}}$	mass of riser extensions
	51 - 60	F10.0	MBR	$rac{ extstyle{m}_{ extstyle{E}}}{ extstyle{m}_{ extstyle{Br}}}$	mass of load bridle
	61-70	Flo.0	ML	m _L	mass of load
4	1-10	FlO.O	Xl	\mathbf{s}_{1}^{2}	reference distance from canopy skirt to suspension line center of mass in fully inflated configuration
	11-20	FlO.O	X2	s ₂	reference distance from canopy skirt to riser center of mass in fully inflated configuration

TABLE XX (CONT.)
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	21-30	Flo.O	x3	s ₃	reference distance from canopy skirt to riser extension center of mass in fully inflated configuration
	31-40	FlO.O	x 4	5 4	reference distance from canopy skirt to load bridle center of mass in fully inflated configuration
	41-50	FlO.O	X 5	⁸ 5	reference distance from canopy skirt to load center of mass in full inflated configuration
51	51 - 60	FlO.O	IZ	I _Z (177) (1×7)	moment of inertia about Z-axis due to masses of load, parachute, and suspension system
	61-70	FlO.O	IAZO	I _{aZ})	apparent moment of inertia about Z-axis at mean sea level
5	1-10 11-20	F10.0 F10.0	DNØT LSS	Do	nominal diameter ${f L}_{f S}$ + ${f L}_{f R}$
	21-30	FlO.O	CDP	$^{\mathrm{C}}^{\mathrm{D}}^{\mathrm{p}}$	drag coefficient of parachute based on projected area

TABLE XX (CONT.)
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	31-40	F10.0	CDSL	$^{ extsf{C}}_{ extsf{D}}^{ extsf{S}}$	drag area of load
	41-50	FlO.O	Q1	sc/Do	ratio of reference distance from canopy skirt to parachute center of volume in fully inflate condition to D
	51 - 60	FlO.O	Q2	$\frac{D}{p_{\text{max}}}/D_{o}$	projected diameter rati in fully inflated con- figuration
	61-70	FlO.O	VOLUME	V	volume of fully inflate parachute
6	1	Il	N		number of degrees of freedom
	2-10	19	NNN		number of steps used to approximate inflation stages in \(\textsqr{PENING} \)
	11-20 21-30 31-40	F10.0 F10.0 F10.0	DT1 DT2 DT3	Δt Δt Δt	Δ t in EXTRACT Δ t in SNATCH Δ t in \emptyset PENING, $M\emptyset$ TI \emptyset N
	41-45	I 5	NINT		number of calculations made without print; if ≤ 0 suppresses continuo output
7	1-10	F10.0	ETA(1)	n_1	allowable absolute erro in integration for U

_ &

TABLE XX (CONT.)
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	11-20	F10.0	ETA(2)	1 2	allowable absolute error in integration for W
	21-30	F10.0	ETA(3)	n ₃	allowable absolute error in integration for Q
	31-40	F10.0	ETA(4)	1 4	allowable absolute error in integration for 6
	41-50	F10.0	ETA(5)	n ₅	allowable absolute error in integration for x
	51 - 60	FlO.O	ETA(6)	n ₆	allowable absolute error in integration for z
7a ¹	1-10	Flo.O	ETA(1)	$\boldsymbol{\gamma}_1$	allowable absolute error in integration for U
	11-20	Flo.O	ETA(2)	n ₂	allowable absolute error in integration for V
	21-30	F10.0	ETA(3)	h ₃	allowable absolute error in integration for W

these cards are required in place of card 7 when six degrees of freedom are allowed, i.e. N=6

TABLE XX (CONT.)
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	31-40	FlO.O	ETA(4)	n 4	allowable absolute error in integration for P
	41-50	FlO.O	ETA(5)	n 5	allowable absolute error in integration for Q
	51-60	FlO.O	ETA(6)	7 6	allowable absolute error in integration for R
7b ¹	1-10	F10.0	ETA(7)	n 7	allowable absolute error in integration for Θ
	11-20	FlO.0	ETA(8)	7 8	allowable absolute error in integration for $oldsymbol{arphi}$
	21-30	FlO.O	ETA(9)	n ₉	allowable absolute error in integration for $\pmb{\psi}$
	31-40	Flo.0	ETA(10)	$\mathbf{\gamma}_{10}$	allowable absolute error in integration for x
	41-50	FlO.O	ETA(11)	$\boldsymbol{\gamma}_{11}$	allowable absolute error in integration for y
	51 - 60	F10.0	ETA(12)	$\mathbf{\gamma}_{12}$	allowable absolute error in integration for z

these cards are required in place of card 7 when six degrees of freedom are allowed, i.e. N = 6

TABLE XX (CONT.)
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
8	1-10	F10.0	PCTERR	Ep	allowable relative error in integration
9	1-2	12	ISTATIC		
	3 - 4	12	IEXTRAC		0
10	1-10	F10.0	LSTATIC	^L static	length of static line
	11-20	F10.0	CDSBAG	c_{D}^{s}	drag area of main para- chute deployment bag
	21-30	F10.0	CDSP	$^{\mathrm{C}}_{\mathrm{D}}$ Spilot	0
	31-40	F10.0	DPILØT	Do pilot	0 - 2 - 2
	41-50	F10.0	LSPILØT	Ls pilot	0
	51-60	F10.0	TD	$t_{\mathtt{D}}^{-}$	0
	61-70	F10.0	LRXBR		$\mathtt{L_E} + \mathtt{L_{Br}}$
11	1		NREEF		number of reefing lines
lla ²	1-10	F) 0.0	RO	R_{o}	initial reefing ratio
	11-20	F10.0	Rl	$\mathbb{R}_1^{\widetilde{\beta}}$	final reefing ratio
	21-30	F10.0	TCD	t _{CD}	reefing cutter delay time

² required only when NREEF # 0; must have NREEF cards of type lla

TABLE XX (CONT.)
Input Data for Static Line System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
12	1-10	F10.0	TSTØP	tstop	number of seconds after full inflation when simulation is to terminate
	11-20	F10.0	ZSTØP	^Z stop	altitude loss at which simulation is to terminate

TABLE XXI

Input Data for Static Line Deployed Pilot Chute System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1-8					see Table XX
9	1-2	12	ISTATIC		
	3-4	Ĭ2	IEXTRAC		
10	1-10	F10.0	LSTATIC	$-{ m ^L}_{ m static}$	static line length
	11-20	F10.0	CDSBAG	C _D S _B	drag area of main para- chute deployment bag
	21-30	F10.0	CDSP	$^{ m C}_{ m D}{}^{ m S}_{ m pilot}$	drag area of pilot chute
tong the second	31-40	F10.0	DPILOT	Do pilot	flat diameter of pilot chute
	41 - 50	FlO.O	LSPILOT	Ls pilot	length of suspension lines of pilot chute
	51-60	F10.0	TD	t _D	time at which coasting period ends; if no coast-ing period, = 0
	61-70	F10.0	LRXBR		0
11	1-10	Fl0.0	MPBAG	^m pb	mass of pilot parachute and main parachute de- ployment bag
	11-20	Fl0.0	CDS2	$^{\mathtt{C}}{}_{\mathtt{D}}{}^{\mathtt{S}}{}_{\mathtt{II}}$	drag area of pilot chute and main parachute de- ployment bag
				The second secon	

TABLE XXI (CONT.)
Input Data for Static Line Deployed Pilot Chute System

		the first of the second of the	and the second of the second	1 2	
Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
	21 - 30	Fl0.0	K	k	spring constant of sus- pension system
	31-40	Flo.0	LRXBR	And the second s	L _E + L _{Br}
12	1	Il .	NREEF		number of reefing lines
12a ^l	1-10	F10.0	RO	$R_{\mathbf{O}}$	initial reefing ratio
	11-20	F10.0	Rl	R_1	final reefing ratio
	21-30	Fl0.0	TCD	${ t t}_{ ext{CD}}^{ ext{T}}$	reefing cutter delay time
13	1-10	F10.0	TST Ø P	tstop	number of seconds after full inflation when simulation is to terminate
	11-20	F10.0	ZST Ø P	^Z stop	altitude loss at which simulation is to terminate

¹ required only when NREEF ≠ 0; must have NREEF cards of type 12a

TABLE XXII

Input Data for Extraction Parachute System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1-8					see Table XX
9	1-2	12	ISTATIC		+1
	3 - 4	12	IEXTRAC		0
10	1-10	FlO.O	LENGTH	L	distance load travels in aircraft
	11-20	FlO.O	CDSBAG	$^{\mathrm{C}}{}_{\mathrm{D}}^{\mathrm{S}}{}_{\mathrm{B}}$	drag area of main para- chute deployment bag
	21-30	FlO.O	CDSEX	$^{\mathrm{C}}\mathrm{D}^{\mathrm{S}}\mathrm{ex}$	drag area of extraction parachute
	31-40	FlO.O	TD	t_{D}	time at which coasting period ends; if no coasting period, = 0
11	1-10	FlO.O	MPBAG	^m pb	mass of extraction para- chute and main parachute deployment bag
	11-20	FlO.O	CDS2	$^{\mathtt{C}}{}_{\mathtt{D}}^{\mathtt{S}}{}_{\mathtt{II}}$	drag area of extraction parachute and main parachute deployment bag
	21-30	F10.0	K	k	spring constant of sus- pension system
	31-40	F10.0	LRXBR		$L_{E} + L_{Br}$

TABLE XXII (CONT.)
Input Data for Extraction Parachute System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
12	1	Il	NREEF		number of reefing lines
$12a^{\perp}$	1-10	F10.0	RO	R_{O}	initial reefing ratio
	11-20	F10.0	Rl	R ₁	final reefing ratio
	21-30	F10.0	TCD	$t_{\mathtt{CD}}^{\mathtt{T}}$	reefing cutter delay time
13	1-10	F10.0	TST Ø P	t _{stop}	number of seconds after full inflation when simulation is to be terminated
	11-20	F10.0	ZST Ø P	^Z stop	altitude loss at which simulation is to be terminated

l required only when NREEF ≠ 0; must have NREEF cards of type 12a

TABLE XXIII

Input Data for Reefed Main Parachute Extraction System

Card Number	Column Number	Format Representation	Mnemonic	Symbol	Comments
1-8					see Table XX
9	1-2	I2	ISTATIC		
	3 - 4	I2	IEXTRAC		
10	1-10	FlO.O	R	R _{ex}	reefing ratio of main parachute during ex- traction
	11-20	F10.0	LENGTH	\mathbf{L}	distance load travels
	21-30	FlO.O	TD	$\mathtt{t}_{\mathtt{D}}$	time at which coasting period ends; if no coast-ing period, = 0
11	1	11	NREEF		number of reefing lines
12 ¹	1-10	F10.0	RO	R_{o}	initial reefing ratio
	11-20	F10.0	Rl	R_{1}	final reefing ratio
	21-30	F10.0	TCD	t_{CD}^{\perp}	reefing cutter delay time
13	1-10	FlO.O	TST ∮ P	OD	number of seconds after full inflation when sim- , ulation is to terminate
	11 - 20	Fl0.0	ZST Ø P		altitude loss at which simulation is to terminate

¹ NREEF cards of this type are needed

IX. SAMPLE OUTPUT

Figures 31 through 35 include portions of the computer output related to those calculations which are presented graphically in Volume I of this report. Portions of the data during the free descent phase are omitted since the intent of this Section is only to indicate the type of output which is produced by the computer program.

All physical input data related to the parachute-load system is printed on the computer outputs. Those input values which are required for the specific systems have been discussed in Section VIII. The remaining inputs are left to the discretion of the program user, and the particular values which were used in all of the calculations shown in this section are listed in the following:

NNN = 100

DT1 = 0.001

DT2 = 0.001

DT3 = 0.001

NINT = 50 (determines print increments)

ETA(1) = 0.001

ETA(2) = 0.001

ETA(3) = 0.00001

ETA(4) = 0.0001

ETA(5) = 0.01

ETA(6) = 0.01

PCTERR = 0.001

The above values were chosen after experimentation with a typical calculation showed that smaller values (larger for NNN) did not significantly alter the numerical results but required significantly more computer time for the calculations. These values must, of course, be estimated for the particular application the program user intends.

```
TRAJECTORY SIMULATION -- T=0, Z=0 IS RELEASE POINT
RELEASE CONDITIONS
     ALTITUDE=
                 6000. FT
     VELOCITY= 220.00 FT/SEC
MASSES--SLUGS
     TOTAL SYSTEM=
                       8.343
     LOAD=
               7.770
     PARACHUTE=
                     .364
     SUSP. LINES=
                       •075
     RISERS=
                .031
     RISER EXTENSIONS=
     LOAD BRIDLE
                    7.889(SEA LEVEL)
                                                        FT)
     INCLUDED=
                                         6.574( 6000.
                    2.958 (SEA LEVEL)
                                        2.465( 6000.
                                                        FT)
     APPARENT=
REFERENCE DISTANCES FROM SKIRT -- FT
     x1=
            11.520
     X2=
             24.170
     x3=
                 - 0
                  0
     X4=
            27.800
     X5≖.
MOM./PROD. INERTIA--SLUG FT##2
                 3339.500 (SEA LEVEL)
                                           2994.4941
                                                      6000.
     TXX
     IYY=
                 3339.500(SEA LEVEL)
                                           2994.494(
                                                      6000.
                                                             FT)
                                                  0 (
                                                      6000.
                                                             FT)
     IZZ=
                        O(SEA LEVEL)
                                                      6000.
                                                  0 (
                                                             FT)
                        O(SEA LEVEL)
     TXZ=
DIMENSIONS -- FT
    DNOT=
               35.000
     SUSP. SYSTEM=
                    28.000
                                15.291
            16.689 (SEA LEVEL)
                                          6000.
                                                  FT)
     L1=
           -15.766 (SEA LEVEL)
                                          6000.
                                                 FT)
                                 -17.164(
     L2=
     L3=
            23.889 (SEA LEVEL)
                                  22.491(
                                           6000.
                                                  FT)
               .133
YC/DNOT=
DP/DNOT=
               • 686
VOLUME= 3317.500 FT##3
PARACHUTE CDP=
                   1.487
LOAD DRAG AREAS 6.000 FT**2
DEGREES OF FREE DOME
```

```
STATIC LINE= 15.000 FT
PARACHUTE PACK DRAG AREA= .330 FT**2
```

FIG 31 Sample Output for the T-10 Parachute with Static Line System

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.		C.M. POSITION			C.M. VE	LOCITY		C.M.
	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/5	SFC)		ACCELERATION (FT/SEC/SEC)
					X	Y	Z	TOTAL	X	Υ Υ	Z	TOTAL
1												
TG												
କ ୍ର												
ယ	.05	5999.96	89.58	89.58	10.96		.04	218.20	218.20		1.60	
 	.10	5999.84	89.16	89.16	21.82		.16	216.44	216.42		3.19	
	.15	5999.64	88.73	88.73	32.60		.36	214.73	214.67		4.77	
L S	:20	5999.37 5999.01	88.30 87.86	88.30 87.86	43.29 53.90		63	213.05	212:25		5 m33 7 • 88	
amp	.30	5998.58	87.43	87.43	64.42		1.42	209.81	209.59		9.42	
ค ซี	.35	5998.07	86.99	86.99	74.86		1.93	208.24	207.95		10.95	
1e S	.40 .45	5997.49 5996.83	86.54	86.54	85.22		2,51	206.71	206.34		12.47	
Y	50	5996.09	86.10 85.65	86.10 85.65	95.49 105.69		3.17 3.91	205.22	204.75 203.18		13.97 15.47	
Outpu stem	.55	5995.28	85.19	85.19	115.81		4.72	202.34	201.63		16.95	
utp	.65	5994.40 5993.44	84.74 84.28	84.74 84.28	115.81 125.86 135.83		5.60	200.96	200.11		18.43	
E D	•70	5992.41	83.82	83.82	145.72		6.56 7.59	198.28	198.61 197.13		19.89	
Ä	.75	5991-31	83.36	83.36	155.54		8,69	196.99	195.67		22.79	
_	.80	5990 • 13 5988 • 89	82.89	82.89	165.29		9.87	195.73	194.23		24.22	
for (Cont	.85 .90	5987.57	82.42 81.95	82.42 81.95	174.97 184.57		11.11	194.51 193.31	192.81 191.41		25.65	
n c	•95	5986.18	81.48	81.48	194.11 203.58		13.82	192.15	190.02		27.07 28.47	
σ_	1.00	5984.72	81.00	81.00			15,28	191.01	188.66		29.87	
the Tinued	1.05	5983.20 5981.60	80.53 80.05	80.53 80.05	212.98		16.80	189.90	187.31		31.26	
E O	1.15	5979.93	79.56	79.56	231.58		18.40 20.07	188.83 187.78	185.98 184.67		32.64	
. e	1.20	5978.20	79.08	79.08	240.78		21.80	186.76	183.37		35.38	
	1.25	5976.40 5974.53	78.59 78.11	78.59	249.92		23.60	185.76	182.09		36.73	
10	1.35	5972.59	77.62	78.11 77.62	258.99 268.00		25.47 27.41	184.80 183.86	180.83 179.58		38.08 39.42	
	1.40	5970.59	77.13	77.13	276.95		29.41	182.94	178.34		40.75	
Pa	1.45	5968.52 5966.38	76.64 76.14	76.64	285.84		31.48	182.05	177.12		42.08	
K H	1.55	5964.18	75.65	76.14 75.65	294.66 303.43		33,62 35,82	181.19 180.35	175.92 174.72		43.39	
ည်	1.60	5961.91	75.15	75.15	312.14		38.09	179.54	173.54		44.70	
Ç	1.65	5959.58	74.66	74.66	320.78		40.42	178.75	172.38		47.30	
rachut												
te						TIME (SEC)	ANGLE (DE	3) X(FT)	7(FT) V	ELOCITY (FT/S	EC)	
			TIC LINE S			.81	82.77	167.81	10.18	195.41	,501	
wit		PAR	ACHUTE/PIL	OT CHUTE DEPL	OYMENT	1.68	74.35	326.12	41.90	178.27		
Ľ.												
Þ											r	
S												
rt	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.		.M. POSITION						
ω ω		45.11.005	ANGLE	ANGLE		.M. POSITION			C.M. VEL	OCITY		C.M.
μ. Τ	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/S	EC)		ACCELERATION (FT/SEC/SEC)
Ò					×		Z	TOTAL	X		Z	TOTAL
	1.76	5954,18	73,53	73.53	339.80		45.82	163.54	156,82		46.37	-212.41

Parachute

with

Static

Sample Output Line System

1.85 1.93	5950.46 5947.02	72.67 71.74	72.67	352.13		49.54	145.22	138.53		43.25	-239.40
2.01	5943.88	70.73	71.74 70.73	362.93 372.24		52.98 56.12	126.42	120.06		39.60 35.99	-234.05
2.09	5941.03	69.60	69.60	380.21		58,97	93.88	87.99		32.73	-211.69 -183.70
2.18	5938.43	68.35	68.35	387.02	Jan Bu	61.57	81.08	75.36		29.91	-156.32
2.26 2.34	5936.04 5933.84	66.97 65.46	66.97	392.87	,	63.96	70.43	64.82		27.55	-132.22
2.42	5931.79	63.82	65.46 63.82	397.91 402.28		66.16 68.21	61.64 54.39	56.07 48.80		25.60	-112.07
2.42 2.50 2.59	5929.86	62.04	62.04	406.09		70.14	48.39	42.74		24.00 22.68	-95.68 -82.53
2.59	5928.02	60.15	60.15	409.43		71.98	43.41	37,65		21.61	-72.07
2.67 2.75	5926.28 5924.59	58.15 56.06	58.15 56.06	412.39 415.01		73.72 75.41	39.26 35.79	33.35 29.69		20.72	-63.78 57.22
2.83	5922.97	53.89	53.89	417.35		77.03	32.87	26.56		19.98 19.37	-57.22 -52.04
	5921.39	51.66	51.66	419.45		78.61	30.41	23.85		18.86	-47.95
3.00 3.08	5919.85 5918.35	49.39 47.10	49.39 47.10	421.33 423.03		80.15 81.65	28.31 26.53	21.50		18.43	-44.72
3.16	5916.87	44.81	44.81	424.57		83.13	25.01	19.44 17.62		18.06 17.74	-42.20 -40.22
3.25 3.33	5915.42 5913.99	42.54 40.30	42.54 40.30	425.97 427.24		84.58 86.01	23.70 22.57	16.02 14.60		17.46	-38.68
	3,100					00.01	26.51	14.00		17.21	-37.48
					TI	ME (SEC) ANGLE (D	EG) X(FT)	Z(FT)	V(FT/SEC)	FMAX (LB)	TF (SEC)
	FUL	L OR REEFED	INFLATION			3.33 40.30	427.24	86.01	22.57	1868.	1.65

NOTE-- POSITIONS. VELOCITIES. ACCELERATIONS. TRAJ. ANGLES REFER TO LOAD. PREVIOUS RESULTS ARE FOR MASS CENTER

TIME	ALTITUDE	SYSTEM ANGLE	LOAD TRAJ.		LOAD POSITION			LOAD VEL	CITY		LOAD
(SEC)	(FT)	(DEG)	ANGLE (DEG)		(FT)			(FT/SI	FC)		ACCELERATION (FT/SEC/SEC)
				X	1 Y	Z	TOTAL	x (1,1,3)	-υ' Υ	Z	TOTAL
		* 1									
3.61	5895.33	24.34	-15.89	436.69		104.67	23.41	-6.41		22.52	-35.64
4.09	5887.29	-4.11	-48.48	431.55		112.71	16.37	-12.26		10.85	-22.22
4.60	5883.53	-28.21	-35.24	426.95		116.47	7.50	-4.33		6.12	-21.06
5.24	5877.01	-39.67	28.44	428.44		122.99	18.25	8,69		16.04	28.46
6.27	5852.81	-13.64	47.25	447.46		147.19	37.71	27.69		25.60	16.01
7.55	5829.61	35.41	38.24	478.77		170.39	19.94	12.34		15.66	-26.59
8.19	5816.78	39.08	-7. 01	481.65		183.22	25.27	-3.08		25.08	28.18
8,57	5806.18	31.69	-22.23	478.74		193,82	31.89	-12.07		29.52	24.38
9.34	5784.40	2.88	-44,87	463.81		215.60	34.24	-24.16		24.26	-15.23
10,30	5766,66	-31.87	-30,57	445.47		233.34	19.18	-9.76		16.52	-24.46
10.87	5755.32	-36.88	8,53	443.73		244.68	23.88	3.54		23.61	26.67
11.39	5741.64	-28.01	27.12	448.44		258.36	32.45	14.80		28.88	22.04
12,15	5720.80	.08	47.02	464.63		279.20	33,60	24.58		22.91	-13.77
13.24	5700.97	33.63	19,55	483.76		299.03	19.51	6.53		18.38	24.99
14.01	5683,22	30.57	-20.86	482.18		316.78	29.41	-10.47		27.49	23.14
14.78	5662,06	6.18	-42.46	468.68		337.94	33.71	-22.76	*	24.86	-13.97
15.80	5642.01	-27.93	-33.05	448.81		357.99	20.41	-11.13		17.10	-21.77
16,31	5632.23	-33,91	. 34	446.00		367.77	21.83	.13		21.82	24.80
16,95	5616.03	-25.57	25.93	450.42		383,97	30.86	13.50	*	27.76	20.03
17.72	5595,87	-,23	44.50	465.19		404,13	31.95	22.44		22.75	-11.33
18.68	5577.73	28.32	27.14	482.00		422.27	20,06	9.15		17.86	-21.46
19.26	5565.99	32.03.	-7.48	493.73		434_01	23.64	-3.08		23.44	23.65
						<u> </u>	<u> </u>		<u> </u>		

19.77	5552.81	24.05	-25.99	479.49	447.19	30.34	-13.30	27.28	18.89
20.54	5533.04	22	-43.78	465.16	466.96	31.13	-21.54	22.48	-10.25
21.50	5514.74	-27.15	-25.61	449.08	485.26	20.17	-8.72	18.19	-20.54
22.07	5502.91	-30.55	7.57	447.47	497.09	23.53	3.10	23.33	22.69
22.59	5489.90	-22.88	25.78	451,63	510,10	29.75	12.94	26.79	17.99
23.35	5470.44	.26	42.89	465.48	529.56	30.48	20.75	22.34	-9.33
24,38	5450.76	26.79	21.38	481.57	549.24	20.15	7.34	18.76	-20.13
25.05	5436.32	27.93	-13.62	482.04	563,68	25.18	-5.93	24.47	20.82
25.56	5423.10	18.25	-29,42	476.64	576.90	30.20	-14.83	26.30	15.55
26.20	540 7. 38 538 7. 57	82 -25.67	-42.05 -19.87	464.96 449.63	592.62 612.43	29.71 20.25	-19,90 -6.88	22.06 19.04	-8.40 -19.37
27.23 27.87	5373.86	-26.86	-19.87 12.31	449.11	626.14	24.58	5.24	24.02	-19.37 20.11
28.25	5364.21	-20.96	24.76	452.44	635.79	28.48	11.93	25.86	16.52
29.02	5345.26	16	40.83	465.20	654.74	29.34	19.18	22.20	-7.76
30.04	5325.16	23.87	21.33	480.48	674.84	20.47	7.45	19.07	-18.38
30,62	5313.14	26.27	-7.55	481.75	686 86	23.17	-3.04	22.97	19.52
31.13	5300.61	19.58	-24.70	477.92	699.39	27.97	-11.68	25.41	15.60
31.90	5281.99	20	-39.85	465.60	718.01	28,63	-18.35	21.98	-6.90
32.95	5261.14	-23.00	-18.66	450.79	738.86	20.51	-6.57	19.44	-17.79
33.59	5247,50	-24.16	11.10	450.17	752.50	23.83	4.59	23.38	18.09
33.98	5238.17	-19.06	23.32	453.14	761.83	27.10	10.73	24.89	15.13
34.75	5219.74		38.41	464.69	780,26	28,15	17.49	22.06	
35.83	5198.00	21.49	18.47	479.53	802.00	20.67	6,55	19.60	-16.91
36.41	5185.89	23.15	-7.81	480.51	814.11	22.88	-3.11	22.67	17.42
36,92	5173.71	16.99	-24.05	476.86	826.29	26.76	-10.91	24.44	13.82 -5.28
37.69 38.91	5155.71 5131.33	53 -21.34	-37.42 -10.19	465.60 451.31	844.29 868.67	27.25 20.74	-16.56 -3.67	21.64 20.41	16.59
39,67	5114.26	-18.17	19.09	453.16	885.74	25.12	8.22	23.74	14.35
40.44	5096.23	-3.12	34.66	462.77	903.77	27.06	15.39	22.26	-(5.73
41.21	5080.27	12.46	31.18	473.94	919.73	23.18	12.00	19.84	-10.20
41,91	5066.16	19.96	6.42	479,19	933.84	20.97	2.34	20.84	15.68
42.68	5049.03	15.60		476.63	950.97	24.94	-8.66	23.38	12.70
43.45	5031.45	1.27	-33.58	467.20	968.55	26,07	-14.42	21.72	-4.19
44.22	5015.61	-12,23	-27,77	457.07	984.39	22.66	-10.56	20.05	-9.78
45.11	4997.15	-17,98	2.86	452.56	1002.85	21.73	1.08	21.71	14.24
46.14	4974.02	-6,22	28.53	460.06	1025,98	25.45	12.16	22.36	6.39
46.91	4957.66	7.00	29,98	469,83	1042.34	23,59	11.79	20.43	-5.85
47.80	4939.29	15,06	9.00	477.02	1060.71	21.27	3,33	21.00	-12.11
48,57	4922.59	12,67	-14.34	476.02	1077.41	23.05	-5.71	22.33	10.53
49.34	4905.55	2.74	-26.84	469.23	1094.45	24,25	-10.95	21.64	-3.47
50.11	4889.45	-7.25	-24.42	461.02	1110.55	22.58	-9.34	20.56	-5.76
51,13	4867.98 4851.19	-10.18 -4.73	-3,98	455.33	1132.02	21.63	-1.50 3.12	21.58 21.90	7.81 3.81
51.90 52.79	4832.20	6.34	8.12 6.11	456.14 459.18	1148.81 1167.80	22.12 20.46	2,18	20.34	+5.65
53.50	4817.91	11.73	-8.65	458.97	1182.09	20.82	-3.13	20.58	8.80
54.01	4807.15	11.17	-19.52	456.22	1192.85	22.73	-7.60	21.43	8.56
55.03	4785.22	.55	-31.98	445.04	1214.78	24.45	-12.95	20.74	-2.42
55.80	4769.81	-8.06	-28,61	435,60	1230.19	22.41	-10.73	19.67	-5.84
56,57	4754.55	-9.70	-14.67	429.40	1245.45	20.83	-5,28	20.15	-7.17
57.59	4733.97	-,69	-3.13	426.76	1266.03	19.75	-1.08	19.72	-1.02
58,36	4718.97	7.10	-9.02	425.43	1281.03	19,81	-3,11	19.56	5.09
59,13	4703.59	9.03	-21.23	421.23	1296.41	22.07	-7.99	20.57	6.78
60.41	4677.09	-1.43	-31.95	407.06	1322.91	23.70	-12.54	20.11	-1.62
61.18	4661.98	-7.75	-26.92	398.21	1338.02	21.82	-9.88	19.46	-5.45 -3.25
62.46 63.23	4636.79 4621.76	-4.47 2.69	-8.67 -7.54	390.33 388.42	1363,21 1378,24	19.97 19.61	-3.01 -2.61	19.74 19.44	1.80
63.99	4606.71	7.38	-15.86	385.42	1393.29	20.69	-5.65	19.90	5.40
64.76	4591.11	6.13	-25.20	379.48	1408.89	22.78	-9.70	20.61	4.74
66.04	4565.16	-4.07	-29.52	365.12	1434.84	22.59	-11.13	19.66	-2.71
66.81	4550.17	-7.38	-21.83	357.72	1449.83	21.02	-7.82	19.51	-5.18
67.83	4530.08	-3.30	-10.23	352.18	1469.92	19.92	-3.54	19.60	-2.37
68.60	4515.10	2.71	-10.14	349,69	1484.90	19.78	-3,48	19.47	1.85
69.37	4500.01	6,29	-17,22	346.11	1499 99	20.86	-6.17	19.92	4.50
70.14	4484.47	4.87	-25.00	340.04	1515,53	22.53	-9.52	20.42	3.81
71.67	4453.73	-5.14	-26.29	323.83	1546.27	21.75	-9.63	19.50	-3.43
	4438.76	-6-1n	-18.24	317.62	1561.24	20.57	6.44	19.53	-4.26

FIG Sample Output for the T-10 Parachute with Static Line System (Continued)

Sample Output Line System

									· 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10			
200			0									
290.04 290.55	288.93 279.47	-,31 -,32	-20.21 -20.18	-1201.74 -1205.22		5711.	07 53	19.68	-6.80		18.47	01
291.07	270.01	32	-20.15	-1208.69		5720. 5729.		19.68 19.67	-6.79 -6.78		18.47	02
292 09	251.10	3 €	-20.10	-1215.62		5748		19.66	-6.75		18.46	- 03
293.11	232.20	26	-20.11	-1222.53		5767		19.65	-6.76		18.46 18.46	01 01
294.14	213.30	25	-20.17	-1229.46		5786		19.66	-6.78		18.45	
295.16	194.46	29	-20.21	-1236.41		5805		19.66	-6.79		18.45	01
296.19	175.51	32	-20.18	-1243.36		5824.		19.64	-6.78		18.44	01
297.21	156.63	31	-20.12	-1250.29		5843.		19.63	-6.75		18.43	02
299.26	118.88	25	-20.14	-1264.11		5881		19.63	-6.76		18.43	01
300.28	160.01	-,27	-20.19	-1271.04		5899		19.63	-6.78		18.42	.01
301.31	81.14	30	-20.19	-1277.98		5916.		19.62	-6.77		18.41	01
302.33	62.29	31	-20.15	-1284.91		5937		19.61	-6.75		18.41	02
303.35	43.44	29	-20.11	-1291.81		5950		19.60	-6.74		18.40	01
305.40	5.75	26	-20.17	-1305.62		5994		19.60	-6.76		18.39	•01
305.71	• 00	27	-20.1B	-1307.74		6000.	0.0	19.60	-6.76		18.39	01
												in tulk fil
Programme Control												
					TUDE (FT)	X(FT)	Z(FT)	V(FT/SEC)		VZ(FT/SEC)	A (FT/SEC	
		ERTICAL/MINI			388.44	432.74	111.56		-12.42	13.09	-24.6	
		ERTICAL/MINI			346.66	454.84	153.34		29.60	55.50	-16.2	
	3 V	EPTICAL/MINI	[MUM	9.34 5	784.40	463.81	215.60	34.24	-24.16	24.26	-15.2	<u> 23</u>

TRAJECTORY SIMULATION--T=0, Z=0 IS RELEASE POINT

```
RELEASE CONDITIONS
     ALTITUDE=
                    6000. FT
     VELOCITY=
                   220.00 FT/SEC
MASSES -- SLUGS
     TOTAL SYSTEM=
                       72.870
     LOADS
              68.386
     PARACHUTE=
                   2.383
     SUSP. LINES=
                        -867
     RISERS=
                   .147
     RISER EXTENSIONS=
                              .280
     LOAD BRIDLE=
     INCLUDED=
                   41-143 (SEA LEVEL)
                                         34.287( 6000, FT)
     APPARENT=
                  15.429 (SEA LEVEL)
                                         12.858( 6000. FT)
REFERENCE DISTANCES FROM SKIRT -- FT
     x1=
             23.750
     X2=
             50.000
     X3=
     X4=
             56.230
     X5=
             57.210
MOM. /PROD. INERTIA -- SLUG FT##2
     IXX
               84525.147 (SEA LEVEL)
                                          74577.3641
                                                      5000.
                                                              FT)
     IYY=
               84525.147 (SEA LEVEL)
                                          74577.3641
                                                              FT)
                                                      6000.
     TZZ=
                        O(SEA LEVEL)
                                                   0 (
                                                              FT)
                                                     6000.
     IXZ=
                        O(SEA LEVEL)
                                                   0( 6000.
                                                              FT)
DIMENSIONS -- FT
     DNOT= 64.000
     SUSP. SYSTEM=
                      56.420
     Li=
            25.578 (SEA LEVEL)
                                 23.0061
                                           6000. FT)
                                 -42.460( 6000. FT)
     L2=
            -39.888 (SEA LEVEL)
                                  29,7961
                                           6000. FT)
     1_3=
             32.368 (SEA LEVEL)
YC/DNOT=
               .129
              .648
DP/DNOT=
VOLUME 17301.500 FT##3
PARACHUTE CDP# 1.780
                   1.786
LOAD DRAG AREA
                   18.900 FT##2
DEGREES OF FREE DOME
```

FIG 32 Sample Output for the G-12D Cargo Parachute with Static Line Deployed Pilot Chute System

PILOT CHUTE

DRAG AREA= 18.870 FT**2

DIAMETER= 5.660 FT

SUSP. LINES= 14.750 FT

TIME OF PILOT CHUTE RELEASE=

0 SEC

TIME	ALTITUDE	SYSTEM ANGLE	C.M. TRAJ. Angle		.M. POSITION			C.M. VE	LOCITY		C.M. ACCELERATIO
(SEC)	(FT)	(DEG)	(DEG)	x	(FT) (FT)	z ,	TOTAL	(FT/	SEC)	Z	(FT/SEC/SEC) TOTAL
.05	5999.96	89,58	89.58	10.98		.04	219.15	219.15		1.61	
.10	5999.84	89.16	89.16	21.92		.16	218.32	218.30		3.20	
.15	5999.64	88.74	88.74	32.81		.36	217.51	217.46		4.80	
.20	5999.36	88.31	88,31	43.66		.64	216.72	216.62 215.79		6.38 7.97	
. 25	5999.01 5998.57	87.89 87.46	87.89 87.46	54.47 65.24	a since	1,43	215.94 215.18	214.97		9.54	
.30 .35	5998.05	87.03	87.03	75.97		1.95	214.44	214.16		11.11	
.40	5997.46	86.60	86.60	86.66		2.54	213.72	213.35		12.67	
45	5996.79	86.17	86.17	97.31		3.21	213.02	212.54		14.23	
50	5996.04	85.74	85.74	107.91		3.96	212.33	211.74		15.78	
.55	5995.21	85.30	85.30	118,48		4.79	211.66	210.95		17.33	
.60	5994.31	84,87	84.87	129.01		5.69	211.00	210.16		18.67	
.65 .70	5993.33	84.43	84.43	139.50		6.67	210.37	209.38		20.40	Maria Company
.70	5992.27	84.00	84.00	149.95		7.73	209.75	208.60 207.83		21.93 23.46	
.75	5991.13 5989.92	83.56 83.12	83,56 83,12	160.36 170.73		8 87 10.08	209.15 208.56	207.06		24.98	
.8 ₀ .85	5988.64	82.68	82.68	181.07		11.36	207.99	206.30		26.49	
90	5987.28	82.24	82.24	191.36		12.72	207.44	205.54		28.00	
95	5985.84	81.80	81.80	201.62		14.16	206.90	204.78	•	29.50	
1.00	5984.33	81.36	81,36	211.84		15.67	206.38	204.04		31.00	
1.05	5982.74	80.92	80.92	222.02		17.26	205.87	203.29		32.49	
1.10	5981.08	80.48	80.48	232,17		18.92	205,38	202,55		33.98	
1.15	5979.34	80.03	80.03	242.28		20.66	204.91	201.82		35.46	
1.20	5977.53	79.59	79,59	252.35		22.47	204.45	201.09	•	36.94	
1.25	5975.65	79.15	79.15	262.39		24.35	204.01	200.36		38.41 39.88	Same and
1.30	5973.70	78.70 78.26	78.70 78.26	272.39 282.36		26.30 28.33	203.58 203.17	199.64 198.92		41.34	
1,35	5971.67	10.20	10.20	252.30		20,33	503.11	1,0,72		1,034	•
					TIME (SEC	ANGLE (D	EG) X(FT)	Z(FT)	VELOCITY (F	T/SEC)	
	ST	ATIC LINE	STRETCH		.92	82.06		13.32 28.96	207.21		

26.016 FT##2

8.000 FT

PARACHUTE PACK MASS= .303 SLUG
PARACHUTE PACK AND PILOT/EXTRACTION CHUTE DRAG AREA=
SPRING CONSTANT= 4777.000 LB/FT
LENGTH OF RISERS. EXTENSIONS AND LOAD BRIDLE= 8.

	TIME	ALTITUDE	SYSTEM ANGLE	C.M. TRAJ.	C•M	. POSITION			C.M. VELOCITY		C.M. ACCELERATION
	(SEC)	(FT)	(DEG)	(DEG)		(FT)	(Autorita)		(FT/SEC)		(FT/SEC/SEC)
					**************************************	Y	Z	TOTAL	and X and a second of the	Z	TOTAL
됩											
.IG											
ယ											
Ñ	1.41	5968.92	77.68	77.68	295.26		31.08	202.83	198.16	43.27	
	1.46	5966.72	77.24	77.24	305.15		33.28	202.62	197.61	44.76	
လလ	1.51 1.56	5964.44 5962.09	76.80 76.35	76.80 76.35	315.02 324.86		35.56 37.91	202.42	197.07 196.53	46.24	
Lt 55	1.61	5959.67	75.91	75.91	334.67		40.33	202.24	195.99	47.72 49.19	
amp tat	1.66	5957.18	75.47	75.47	344.46		42.82	201.91	195.45	50.67	
	1.71	5954.61	75.03	75.03	354.22		45.39	201.77	195.45 194.92	52.13	
ന ന	1.76 1.81	5951.96 5949.25	74.58 74.14	74.58 74.14	363.95		48.04	201.64	194.38	53.60	
НО	1.86	5946.46	73.71	73.71	373.66 383.34		50.75 53.54	201.52 201.41	193,85 193,32	55.06 56.51	
٦٠ ــ	1.91	5943.60	73.27	73.27	392.99		56 40	201.32	192.79	57.96	
Ď T	1,96	5940.67	72.83	73.27 72.83	402.62		59 33	201.32 201.24	192.27	59.41	
Output Line D	5.01	5937.66	72.39 71.95	72.39	412.22		59 33 62 34 65 42	201.17	191.74	60.86	
ם ה	2.06 2.11	5934.58 5931.43	71.95 71.52	71.95 71.52	421.79 431.34		65.42	201.11	191.22	62.30	
<u> </u>	2.16	5928.21	71.09	71.09	440.86		68.57 71.79	201.07	190.70 190.18	63.73 65.17	
e fc	2,21	5924.92	70.65	70.65	450.36		75.08	201.01	189.66	66.59	
οř	2.26	5921.56	70.22	70.22	459.79		78.44	196.84	185.22	66.62	
٧ <u> </u>	2,31	5918.22	69.78	69.78	468.99		81.78	194.61	182.62	67.28	
יט דד	2.36 2.41	5914.84 5911.42	69.33 68.88	69.33 68.88	478.06 487.00		85.16	192.46	180.07	67.94	
៊ី ក៏	2.46	5907.98	68.43	68.43	495.82		88.58 92.02	190.38 188.37	177.59 175.17	68,60 69,26	
P C	2.51	5904.50	67.97	67.97	504.52		95.50	186.42	172.81	69.92	
J 4 J											
91					TIME	C) ANGLE (DE	G) X(FT)	Z(FT)	WEL OCITY: (ET (SEC	\ \/E! 00TTY0/5	Ticen
מנ	***	SNA	TCH		2,25	70.31	457.9	77.77	VELOCITY1 (FT/SEC 201.00	88.92	1/350)
t for the G-12D Carg Deployed Pilot Chute					•						
L Ca			TCH FORCE= TCH VELOCI		LB 94 FT/SEC						
7 7			101. 122001	177105	24 F 17 3EC						
. O											
ഗ്											
Y P											
ct K	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C.M.	POSITION			C.M. VELOCITY		C.M.
ന ന			ANGLE	ANGLE							ACCELERATION
B 0	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/SEC)		(FT/SEC/SEC)
7					X		Z	TOTAL	X Y	Z	TOTAL
○ (†	1 to 1 to 1										
် က ၈						A 1 1					
ઍ દ											
H H.	2.61	5897.78	67.09	67.09	520.82		102.22	176.90	162.94	69 96	-136 00
Parachute with System (Continued)	2.69	5892.19	66.33	66.33	533.86		107.81	165.44	151.52	68.86 66.42	-136.00 -160.76
בֿ ב	2.78	5886.83	65.54	65.54	545.92		113.17	152.66	138.96	63.21	-171.93
D D	2.86	5881.74	64.71	64.71	556.93		118.26	139.55	126.18	59.61	-172.34
T)	2.94 3.02	5876.96 5872.48	63.84 62.91	63.84 62.91	566.90 575.88		123.04 127.52	126.82 114.92	113.83 102.31	55.91 52.32	-165.50 -154.51
	3.10	5868.29	61.93	61.93	583.95		131.71	104.06	91.82	48.97	-134.51 -141.70
•					a ta ta canada				사람 전투 전투 투 사람이 되었다.		

135.64

139,33

94.32

85.68

82.40

74.02

45.91

-128.57

-116.05

3,19

3.27

Õ

Ğ

20

5864.36

5860.67

60.88

59.76

60.88

59.76

591.19

597.69

32

Sample Static

Output for the G-12D Cargo Parachute with Line Deployed Pilot Chute System (Concluded)

171.43 171.94 172.46 172.97 173.99 174.50 175.02 175.53 176.04	654.88 640.18 625.50 610.83 596.17 5566.81 552.11	.62 .76 .75 .60 .35	21.35 20.89 20.37 19.90 19.56 19.51	1562.43 1568.11 1573.64 1579.01 1584.27	5345 5359 5374 5389	,82 50	30.69 30.56 30.45	11.22 10.94 10.64 10.36		28.71 28.67 28.64		
171.94 172.46 172.97 173.99 174.50 175.02 175.53 176.04	625.50 610.83 596.17 566.81 552.11	.75 .60 .35	20.37 19.90 19.56	1573.64 1579.01	5374 5389	,50	30.56	10.64		28.64		
172.46 172.97 173.99 174.50 175.02 175.53 176.04	610.83 596.17 566.81 552.11	.60 .35 27	19.90 19.56	1579.01	5389	17						
172.97 173.99 174.50 175.02 175.53 176.04	596.17 566.81 552.11	.35 27	19.56									
173.99 174.50 175.02 175.53 176.04	566.81 552.11	27		1207061	F403					28.63		4
174.50 175.02 175.53 176.04	552.11			1594.63	5403		30.39	10.18		28.64		
175.02 175.53 176.04		51	19.79	1599.88	5433	19	30.43	10.16		28,68		• 1
175.53 176.04		64	20.22	1605.23	5447	89	30.51	10.33		28.71		3
176.04	522.67	64	20.69		5462		30.63	10.58		28.74	100	
	507.94			1610.72	5477		30.74	10.86		28.76		
		51	21.12	1616.35	5492	0.6	30.83	11.11		28.76		4
	478.49	.01	21.57	1627.88	5521	51	30.88	11.35	and the first of the	28.72	1.00	•
	463,79	.29	21.51	1633.69	5536	21	30.82	11.30		28.67		
	449.12	.52	21.26	1639.44	5550	88	30.72	11.14	100	28.63		
	434.46	.64	20.88	1645.08	 5565	54	30.60	10.91		28.59		
	119.82	.65	20.44	1650,60	5580	18	30.49	10.65		28.57		
	390.57	.32	19.73	1661.27	5609.	43	30.34	10.24		28.56		
	375.94	.06	19.60	1666,49	5624	06	30.33	10.17		28.57		-
	361.30	20	19.66	1671.71	5638	70	30.36	10.21		28.59		
	346.65	41	19.89	1676.97	5653.		30.43	10.35		28.62		
	331.98	 53	20.24	1682.32	5668		30.53	10.56		28,64		•
	302.63	44	21.01	1693.37	5697		30.70	11.01		28.66		:
	87,95	25	21.29	1699.05	5712.	05	30.74	11.16		28.65		:
	73.28	01	21.42	1704.78	5726		30.74	11.23	1909	28.62		- :
	58.63	.23	21.38	1710.53	5741		30.70	11.19		28.58		
	44.00	.43	21.18	1716.23	5756	0.0	30.61	11.06		28.55		;
186,28 2	14.79	•56	20.49	1727.35	5785	21	30.41	10.65		28,49		
	200.20	.47	20.14	1732.75	5799	80	30.33	10.44		28.48		
187,30 1	85.61	.30	19.88	1738.05	5814	30	30.28	10.30		28.48		
187.82	71.02	.08	19.75	1743.30	5828	00	30.27	10.23				•
188.33	56,43	15	19.79	1748.54	5843		30.29	10.25		28.49	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	27.21	44	20.25	1759.16	5872		30.42			28.50		•
189.86 1	12.58	46	20.59	1764.61	5887	49	30.51	10.53		28.54		
	97.95	38	20.92	1770.15	5902	42 05	30.57	10.73 10.91		28.56		•
	83.33	22	21.16	1775.78	5916					28.56		•
	68.71	02	21.28	1781.45	2210	D /	30.61	11.05		28.55		
	39.52	.35	21.11	1792.80	5931.	29 40	30.61	11.11		28.53		•
	24.95	.46	20.85	1798.38	5960.	48	30.51	10.99		28.46		•
	10.39	.48	20.54		5975	05	30.43	10.83		28.43		- . :
93.81	.00			1803.88	5989	51	30.34	10.64		28,41		:
. 73,01	•00	.43	20.32	1807.74	6000.	00	30,29	10.52		28.40		3

TRAJECTORY SIMULATION--T=0, Z=0 IS RELEASE POINT

```
RELEASE CONDITIONS
     ALTITUDE=
                  2000. FT
     VELOCITY= 220.00 FT/SEC
MASSES--SLUGS
     TOTAL SYSTEM#
                      116.697
     LOAD= 108.800
     PARACHUTE=
                   4.156
     SUSP. LINES=
                       •643
                1.200
     RISERS=
     RISER EXTENSIONS=
                             .124
     LOAD BRIDLE=
                        .342
     INCLUDED= 158.613(SEA LEVEL)
                                      149.2621
                                                2000.
                                                       FT)
     APPARENT=
                 59.480 (SEA LEVEL)
                                       55 • 973 (
                                                2000. FT)
REFERENCE DISTANCES FROM SKIRT-- FT
     X1=
             16.450
     X2=
             61.100
     X3=
             99.300
     X4=
            113.300
     X5=
            119.300
MOM. /PROD. INERTIA -- SI UG FT##2
     IXX
              936191.608(SEA LEVEL)
                                        907066.874(
                                                     2000.
                                                            FT)
     IYY=
              936191.608(SEA LEVEL)
                                        907066.874( 2000.
                                                            FT)
     IZZ=
                       O(SEA LEVEL)
                                                 0.
                                                     2000.
                                                            FT)
     IXZ=
                        O(SEA LEVEL)
                                                 0 (
                                                    2000. FT)
DIMENSIONS -- FT
     DNOT= 100.000
     SUSP. SYSTEM=
                      95.000
     L1=
           79.081 (SEA LEVEL)
                                77.203( 2000.
                                                 FT)
           -53.119(SEA LEVEL)
                                          2000.
     L2=
                                -54.997(
                                                 FT)
         59.781 (SEA LEVEL)
    L3=
                                57.903(
                                          2000.
                                                 FT)
YC/DNOT=
              .129
DP/DNOT=
              .648
VOLUME# 66700.000 FT##3
PARACHUTE CDP=
                   1.786
LOAD DRAG AREA=
                   76.800 FT##2
DEGREES OF FREE DOME
```

FIG 33 Sample Output for the Unreefed G-11A Cargo Parachute with Extraction Parachute System

S

Sample with E	E ALTITUDE	SYSTEM ANGLE	C.M. TRAJ. Angle	C∙M∙ F	POSITION			C.M. VE	
Output xtractio	C) (FT)	(DEG)	(DEG)	X	(T)	Z	TOTAL	(FT/) *	SEC)
or the Unreefed G-11A Parachute System (C	05 2000.00 10 2000.00 15 2000.00 20 2000.00 25 2000.00 30 2000.00 40 2000.00 45 2000.00 55 2000.00 66 2000.00 65 2000.00 65 2000.00 65 2000.00 86 2000.00 87 2000.00 88 2000.00 89 2000.00 90 2000.00 90 2000.00 90 2000.00 90 2000.00 90 2000.00 90 2000.00 90 2000.00 90 2000.00 90 2000.00	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	10.96 21.86 32.68 43.44 54.12 64.74 75.29 85.77 96.19 106.55 116.84 127.07 137.24 147.34 157.39 167.37 177.30 187.17 196.98 206.73 216.43		0 0 0 0 0 0 0 0 0 0 0 0	218.57 217.15 215.75 213.01 213.01 211.67 210.34 209.03 207.73 206.45 205.19 203.94 202.71 200.29 199.10 197.92 196.76 197.92 196.76 195.61 194.48 193.36	218.57 217.15 215.75 214.37 213.01 211.67 210.34 209.03 207.73 206.45 205.19 203.94 202.71 201.49 200.29 199.10 197.92 196.61 194.48 193.36	
Cargo Parachut Continued)	F	MAIN PARACHUT	XTRACTION CH E DISREEF K MASS=	UTE RELEASE OR 1.432 SLUG EXTRACTION CHUI	1.07	ANGLE (DEG)	X(FT) 219.52 219.52 520 FT**2	Z(FT) 0	VELOCITY(FT/SEC) 193.00 193.00

C.M. ACCELERATION (FT/SEC/SEC) TOTAL

Z

121	TIME	ALTITUDE	SYSTEM ANGLE	C.M. TRAJ. Angle		C.M. POSITIO	IN CONTRACTOR OF THE PROPERTY			ELOCITY		C.M. ACCELERATION
- 1	(SEC)	(FT)	(DEG)	(DEG)		(FT)				/SEC)		(FT/SEC/SEC)
IG	(SEC)	*****			X	Υ	Z	TOTAL	X ,	Y -	Z	TOTAL
ω ω	•											
-								*.				
Sample with 1		1999.96	89,52	89.52	229.13		. 04	191.56	191.56		1.60	
	1.12	1999.84	89.04	89.04	238.67		.16	190.16	190.13		3.19	
5-5	1.17	1999.64	88.55	88.55	248.15		• 36	188.79	188.73		4.77	
Ϋ́	1.27	1999.37	88.06	88.06	257.55	Maria Caranta and Agricol	•63	187.46	187.35		6.34	
	1.32	1999-01	87.57	87.57	266.88		. 99	186.15	185.99		7.90	
Output Extract	1.37	998.58	87.07	87.07	276.15	i	1.42	184.88	184.64		9.44	· · · · · · · · · · · · · · · · · · ·
II O	1.42	1998.07	86.57	86.57	285.35	i.	1.93	183.64	183.32		10.98	
77 ==	1.47	1997.48	86.07	86.07	294.48		2.52	182.44	182.01		12.50 14.01	
2 4	1.52	1996.82	85.57	85.57	303.55	;	3.18	181.26	180.72		15.52	
	1.57	1996.08	85.06	85.06	312.56)	3.92	180.12	179.45		17.01	
P [T	1.62	1995.27	84.55	84.55	321.50)	4.73	179.00	178.19		18.50	
0	1.67	1994.38	84.03	84.03	330.38		5,62	177.92	176.95 175.73		19.97	
nofo	1.72	1993.42	83.52	83.52	339 • 19		6.58	176.86	174.52		21.44	
2	1.77	1992.39	83.00	83.00	347.95)	7.61	175.84 174.84	173.33		22.89	
r Pa	1.82	1991 • 28	82.48	82.48	356 • 65		8.72	173.87	172.15		24.34	
H C	1.87	1990 • 10	81.95	81.95	365 • 29		9.90 11.15	172.92	170.99		25.78	
a =	1.92	1988.85	81.43	81.43	373.87		11.12	172.01	169.84		27.21	
0 0	1.97	1987.52	80.90	80.90	382.39 390.85	•	12.48 13.87	171.12	168.71		28.63	
=	2.02	1986 • 13	80.37	80.37	399.26		15.34	170.26	167.58		30.04	4.1
the Unite	2.07	1984.66	79.84	79.84	407.61		16.88	169.42	166.48	• '	31.45	
그 글	2.12	1983.12	79.30	79.30	415.91		18.48	168.61	165.38		32.84	
	2.17	1981.52	78.77	78.77 78.23	424.15		20.16	167.82	164.29		34.23	
တ် လ	2.22	1979.84	78.23	77.69	432.34		21.90	167.06	163.22		35.61	
Y in	2.27	1978.10	77.69	77.15	440.4		23.72	166.33	162.16		36.98	
fe	2.32	1976.28	77.15 76.61	76.61	448.5		25.60	165.61	161.11		38.35	
T Q.	2.37	1974.40	76.07	76.07	456.5		27.55	164.92	160.07		39.70	
em	2.42	1972-45	75.53	75.53	464.5		29.57	164.26	159.05		41.05	
ိ∄် ဂု	2.47	1970•43 1968•36	74.98	74.98	472.4		31.64	158.94	153.51		41.19	
щ	2.52 2.57	1966.28	74.41	74.41	480.0		33.72	155.90	150.17		41.89	
	2.62	1964.17	73.84	73.84	487.4		35.83	153.01	146.97		42.58	No.
G ⊅	2,67	1962.02	73.26	73.26	494.7		37,98	150.26	143.89		43.28	
0	2.72	1959.84	72.67	72.67	501.8		40.16	147.63	140.93		43.99 44.69	
့ ဗ	2.77	1957-63	72.07	72.07	508.8	3	42.37	145.13	138.08		45.39	
L 55	2.82	1955.38	71.46	71.46	515.6		44.62	142.74	135.33		46.09	
E. W.	2.87	1953.09	70.84	70.64	522.3	7	46.91	140.46	132.68		46.80	
200	2.92	1950.77	70.22	70.22	528.9		49.23	138.28	130.12		47.50	
91	2.97	1948.41	69.59	69.59	535.3		51.59	136.21	127.65 125.27		48.21	
Ö. HJ	3.02	1946.02	68.95	68.95	541.7		53.98	134.22	122.96		48.91	
	3.07	1943.59	68.31	68.31	547.9	1	56.41	132.33	155.00			
lA Cargo Parachute (Continued)												
) E					TT	ME (SEC) ANGLE	(DEG) X(FT)	Z(F	r) VELOCI	TY1 (FT/SEC)	VELOCITY	(FT/SEC)
5		64	ATCH			2.50 75	5.12 470.4			163.78	52.0	4
Ē		51	H.I.CH								1	
rt i		e N	ATCH FORCE	E= 2365.	LB							
· · · · · · · · · · · ·			ATCH VELO	-	753 FT/S	EC						
		31	A 1,51. TEMO									

	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C•	M. POSITION			C.M.	VELOCITY		C+M+
1	(SEC)	(FT)	(DEG)	(DEG)		(FT)			(F	T/SEC)		ACCELERATION (FT/SEC/SEC)
IG					X	Y	Z	TOTAL	X	Y	Z	TOTAL
ω												
ω												
S	3.37	1928.75	64.45	64.45	582.44		71.25	113.21	102.14	Also feather of colors of the co	48.83	~84.95
<u>ن</u> و ي	3.64	1915.82	60.83	60.83	607.89		84.18	94.35	82.38	•	45.99	-82.64
+ 🗏	3.91	1903.74	56.94	56.94	628.28		96.26	78.15	65.50		42.63	⇔72.28
† E	4.18	1892.55	52.79	52.79	644.47		107.45	65.43	52,11		39.57	-61.52
	4.45	1882.13	48.43	48.43	657.39		117.87	55.81	41.76		37.03	-52.93
ַד [ַ] װ	4.72	1872.35	43.98	43.98	667.78		127.65	48.61	33.76		34.98	-46.74
(0	4.99	1863.07	39.57	39.57	676.21		136.93	43.23	27.53		33.32	~42.51
י ב	5.26	1854.21	35.30	35.30	683.10		145.79	39.16	22.63		31.96	-39.69
י דו נ	5,53	1845.69	31.28	31.28	688.78		154.31	36.05	18.72		30.81	-37.85
ים נ	5.80	1837.47	27.57	27.57	693.49		162,53	33.62	15.56		29.80	-36.66
† <u>C</u>	6.07	1829.50	24.21	24.21	697.41		170.50	31.69	12.99		28,90	-35.89
- CT	6.34	1821.78	21.20	21.20	700.69		178.22	30.11	10.89		28.07	~35.38
) J	6,61	1814.27	18.53	18,53	703.44		185.73	28.80	9.15		27.31	-35.04
fo	6.88	1806.96	16.17	16,17	705.75		193.04	27.68	7.71		26,58	-34.80
ਰੱਖ	7.15	1799.84	14.11	14.11	707.70		200.16	26.71	6.51		25,90	-34.62
š	7.42	1792.91	12.31	12.31	709.35		207.09	25.84	5.51		25.25	+34.47
; (†	7.70	1786.14 1779.54	10.74	10.74 9.38	710.75		213.86	25.07	4.67		24,63	∞34.36
į μ	7.97	1773.10	9.38		711.93		220,46	24.37	3.97		24.04	-34.25
<u> </u>	8.24	1766.81	8.19 7.16	8,19	712.94 713.80		226.90	23.72	3.38		23.48	-34.15
h Un	8,51	1400.01	1.10	7.16	172.00		233,19	23.12	2.88		22.94	-34.06
ד ד	u vieta e			, and a sign of								
) R	and the state of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					C) ANGLE (Z(FT)	V(FT/SEC)	FMAX (LB)	TF (SEC)
. ח ס מ	a e til de e i e	FUL	L OR REEFE	D INFLATION		8.5)	7.16	713.80	233.19	23.12	9331.	5.41
th.	1.54						of the Australia		A second of			
O C												
t Qu		n is de propriet and the constant of the const										
2												
ှ	NOTE	POSTTIONS . V	FLOCITIES	ACCELERATIONS	TPA L ANGI	ES DEFED TO	I DAD . PRE	VIOUS RESUL	TS ARE FOR	MASS CENTE	.	
-		- 7.00 240 1 000 7 1		A SOCIECIAN TONG	ATTION WHOL	LO KEI EK I	LOADY NE		TO AME TO	WASS SERVE		
—											4.5	
) D		The second									ereli of elementations	
)												
							in the state of th					
7 C	TIME	ALTITUDE	SYSTEM	LOAD TRAJ.	LOA	D POSITION			LOAD	VELOCITY		LOAD

TIME (SEC)	ALTITUDE (FT)	SYSTEM ANGLE (DEG)	LOAD TRAJ. ANGLE (DEG)	L	OAD POSITION (FT)	Z	TOTAL	LOAD VELOCITY (FT/SEC) X		LOAD ACCELERATION (FT/SEC/SEC) TOTAL
8.72 9.27 9.91 10.42 11.19 11.96	1684.58 1672.07 1658.44 1648.22 1632.87 1616.98	4.96 71 -7.08 -11.44 -15.94 -17.35	-25.41 -28.57 -25.87 -17.08 5.33 25.45	721.06 714.54 707.33 703.19 701.47 706.43		315.32 327.93 341.56 351.78 367.13 383.92	26.60 25.36 22.64 20.60 20.71 25.70	-11.41 -12.13 -9.88 -6.05 1.92 11.04	24.02 22.28 20.37 19.69 20.62 23.21	-4.67 -3.46 -6.13 -8.77 11.60 12.51

33.91 23.80 17.35 5.00 73.46 74.48 147.45 124.55 5.24 7.13 22.35 22.48 22.76 23.24 1852.55 1875.45 1887.05 26.93 24.57 23.85 1220.03 -4.17 -5.44 15.02 1232.90 1237.26 1241.84 9.92 7.11 112.95 89.34 65.51 75.00 76.02 7.23 5.75 -5.48 23.33 1910.66 2.03 -4.32 1934.49 1952.19 1969.69 1987.18 1998.97 2000.00 2.49 1242.10 77.04 -2.72 23.17 22.87 22.70 -1.10 -1.83 -.53 -3.44 -3.90 -.75 6.09 77.81 47.81 1240.97 1240.15 1240.89 22.93 -1.56 -,61 78.58 79.35 79.86 79.90 30.31 -.30 -2.55 12.82 -5.75 23.00 23.66 23.74 2.44 4.83 5.05 22.87 4.24 -6.73 11.78 12.27 1242.73 1.03 23.16 23.19 4.85 -6.77 .00 1243.00 4.88 TIME(SEC) ALTITUDE(FT) 9.14 1674-95 14.52 1550-58 20.40 1410.30 VX(FT/SEC) -12.19 30.93 -14.07 VZ(FT/SEC) A(FT/SEC/SEC)
22.70 -3.34
24.57 3.36
24.77 -2.90 X(FT) 716.10 Z(FT) 325.05 V(FT/SEC) 25.77 1 VERTICAL/MINIMUM 2 VERTICAL/MINIMUM 449.42 589.70 39.50 28.49 766.50 3 VERTICAL/MINIMUM 817.25

ယ

```
TRAJECTORY SIMULATION -- T=0, 7=0 IS RELEASE POINT
RELEASE CONDITIONS
     ALTITUDE=
                   2000 - FT
                  169.00 FT/SEC
     VELOCITY=
MASSES--SLUGS
     TOTAL SYSTEM= 116.697
           108.800
     PARACHUTE=
                    4.156
                       .643
     SUSP. LINES=
     RISERS= 1.200
     RISER EXTENSIONS=
     LOAD BRIDLE=
                   •342
     INCLUDED= 158.613(SEA LEVEL) 149.262(
                                                 2000.
                                                        FT)
     APPARENT=
                  59.480 (SFA LEVEL)
                                       55.973(
                                                 2000.
                                                        FT)
REFERENCE DISTANCES FROM SKIRT -- FT
            16.450
     x 1 =
     x 5=
             61.100
     x3=
             99.300
            113.300
     X 4=
            119.300
     ¥5=
MOM. / PROD. INERTIA -- SLUG FT##2
               936191.608 (SEA LEVEL) 907066.874(
     IXX=
                                                      2000.
                                                             FTI
     IYY=
                                       907066.874(
               936191.608 (SEA LEVEL)
                                                             FT)
             936191.608(SEA LEVEL) 20700000.000(SEA LEVEL)
                                                      5000
                                       20658733.8681
     TZZ=
                                                             FT)
                                                      2000.
     TXZ=
                        O(SEA LEVEL)
                                                 0 (
                                                      2000.
                                                             FT)
DIMENSIONS -- FT
     DNOT= 100.000
     SUSP. SYSTEM#
                       95.000
     L1=
           79.081 (SEA LEVEL)
                                 77.203(
                                          2000 · FT)
    L2=
          -53.119(SEA LEVEL)
                                 -54.997(
                                           2000.
                                                  FT)
                               57.903(
           59.781 (SEA LEVEL)
    L 3=
                                                  FT)
                                           2000.
YC/DNOT=
               .129
DP/DNOT=
               .648
VOLUME = 66700.000 FT##3
PARACHUTE CDP=
                   1.786
                   76.800 FT##2
LOAD DRAG AREA
DEGREES OF FREE DOME
```

RELEASE DISTANCE IN AIRCRAFT= 15.000 FT
PARACHUTE PACK DRAG AREA= 2.330 FT**2

FIG 34 Sample Output for the Reefed G-11A Cargo Parachute with Extraction Parachute System

TRAJ. CHUTE RELEASE OF TIME TRAJ. X (FT) TY TY TY TY TY TIME TIM
NGLE (FT) (NGLE (
C.M. TRAJ. ANGLE (DEG) 90.00

Sample Output for the Reefed G-11A Cargo Parachute with Extraction Parachute System (Continued) FIG 34

	(SEC)		ANGLE	ANGLE		POSITION			C.M. VE	.00111		C.M. ACCELERATION
		(FT)	(DEG)	(DEG)		(FT)			(FT/			(FT/SEC/SEC)
					X	Y	Z	TOTAL	X	Y	Z	TOTAL
لتر												
IG												
. 43												
ယ္	1 66	1999.96	89.38	90.39	204 05							
4	1.44	1999.84	88.75	89.38 88.75	226.95		.04	147.41	147.40		1.60	
	1.54	1999.64	88.12	88.12	241.61		.16 .36	146.59 145.80	146.56	and the second	3.20	
S S	1.59	1999.36	87.49	87.49	248.87		.64	145.04	145.72	*. *	4.78 6.36	
amp ith	1.64	1999.01	86.85	86.85	256.10		99	144.30	144.08		7.93	
世里	1.69	1998.57	86.21	86.21	263,28		1.43	143.59	143.27	the Market of the	9.49	
) C	1.74	1998.06	85.57	85.57	270.43		1.94	142.90	142.47		11.04	
TXI-D	1.79	1997.47	84.93	84.93	277.53		2.53	142.24	141.68		12.58	
×	1.84	1996.80	84.28	84.28	284.60		3.20	141.60	140.90		14.12	
out _l	1.89 1.94	1996.06 1995.24	83.63 82.98	83.63	291.62		3.94	140.99	140.12		15.64	
Ϋ́ Ξ	1.99	1994.35	82.33	82.98 82.33	298.61		4.76	140.40	139.35		17.16	
3.C	2.04	1993.38	81.67	81.67	305.56 312.47		5.65 6.62	139.84 139.30	138.59		18.67	
H Z	2.09	1992.33	81.02	81.02	319.34		7.67	138.79	137.84 137.09		20.17 21.67	
) (†	2.14	1991.21	80.36	80.36	326.18		8.79	138.30	136.35		23.16	
2	2.19	1990.02	79.70	79.70	332.98		9.98	137.83	135,61		24.63	
p fo	2.24	1988.75	79.05	79.05	339.74		11.25	137.39	134.89		26.11	
ਅ ਮ	2.29	1987.41	78.39	78.39	346.47		12.59	136.97	134.17		27.57	
a .	2.34	1985.99	77.73	77.73	353.16		14.01	136.57	133.45		29.03	
R C	2.39	1984.51	77.07	77.07	359.81		15.49	136.19	132.74		30.48	
he	2.44	1982.95	76.41	76.41	366.43		17.05	135.84	132.04		31.92	
က က	2.49	1981.32	75.75	75.75	373.02		18.68	135.51	131.34		33.36	
R hu	2,54 2,59	1979.61 1977.84	75.09 74.43	75.09 74.43	379.57		20.39	135.19	130.64		34.78	
	2.64	1975.99	73.77	73.77	386.08 392.56		22.16 24.01	134.90 134.63	129.96		36.21	
(D) (D)	2.69	1974.08	73.12	73.12	399.01		25.92	134.39	129.27 128.59		37.62 39.03	
10 m	2.74	1972.09	72.46	72.46	405.42		27.91	134.16	127.92		40.43	
ed Sy	2.79	1970.04	71.81	71.81	411.80		29.96	133,95	127.25		41.82	
ເດ	2.84	1967.91	71.15	71.15	418.15		32.09	133,76	126,59 125,93		43.20	
4	2.89	1965.72	70.50	70.50	424.46		34.28	133.59	125,93		44.58	
O I	2.94	1963.46	69.85	69.85	430.74		36.54	133.43	125.27		45.96	
	2.99	1961.13	69.21	69.21	436.99		38,87	133.30	124.62		47.32	
1 _A	3.04 3.09	1958.73	68.56 67.92	68.56 67.92	443.21		41.27	133.18	123.97 123.33		48.68	
	3.14	1953.72	67.28	67.28	455.54		43.74	133.09 133.01	123.53		50.03 51.38	
က်က	3.19	1951.12	66.64	66.64	461.66		48.88	132.94	122.05		52.71	
Ö	3.24	1948.45	66.01	66.01	467.74		51.55	132.90	121.41		54.04	
nt. 87.	3.29	1945.79	65.36	65.36	473.63		54.21	128.19	116.51		53.45	
1100	3.34	1943.10	64.70	64.70	479.41		56.90	126.60	114,46		54.10	
o Pa inue	3,39	1940.3B	64.04	64.04	485.08		59.62	125.09	112.46		54.76	
にって	3.44	1937.63	63.38	63.38	490.66		62.37	123.64	110.53		55.41	
<u> α</u> α	3,49	1934.84	62.71	62.71	496.14		65.16	122.26	108.64		56.06	
d)	3.54 3.59	1932.02	62.04	62.04	501.53		67,98	120.94	106.81		56.71	
0.00	3,64	1926.29	61.36 60.68	61.36 60.68	506.82 512.03		70.83	119.68	105.03		57.36	
Þ	3.69	1923.37	60.00	60.00	517.16		73.71 76.63	118.47	103,30		58.01 58.66	
hu	3.74	1920.42	59.32	59.32	522.20		79.58	117.33 116.23	99.97		59.30	
T T	3.79	1917.44	58.64	58.64	527.15		82.56	115.19	98.36		59.95	
n n	3.84	1914.43	57.96	57.96	532.03		85.57	114.20	96.80		60.59	
	3.89	1911.39	57.27	57.27	536.84		88,61	113.25	95.27		61.23	
	3.94	1908.31	56.59	56.59	541.56		91.69	112.35	93,78		61.87	

SNATCH FORCE 2084. LB 129.716 FT/SEC

REEFED INFLATION
REEFING RATIO= .064
REEFED PROJ. DIAM.= 9.231 FT.
CUTTER DELAY= 2.000 SEC
TIME OF DISREEF= 5.242 SEC

TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C•M	- POSITION			C.M. VE	LOCITY		C.M.
(SEC)	(FT)	(DEG)	ANGLE (DEG)		(FT)			(FT/	SEC)		ACCELERATION (FT/SEC/SEC)
				X	Y	, z	TOTAL	×	Y	Z	TOTAL
											•
4.05	1901.58	55.13	55.13	551.52		98.42	112.39	92.21	* .	64.25	-13.28
4.13	1896.11	54.01	54.01	559.25		103.89	112.80	91.27		66.29	-14.11
4.21	1890•46	52.91	52.91	566•89		109.54	113.19	90.29		68.26	-14.94
4.30	1884.65	51.84	51.84	574.46		115.35	113.55	89.28		70.16	-15.77
4,38	1878.69	50.78	50.78	581.93		12].31	113.87	88,22		72.00	-16.61
4.47	1872.57	49.75	49.75	589.32		127.43	114-17	87.13		73.77	-17.44
4.55	1866.30	48.73	48.73	596.61		133.70	114.43	86-01		75.48	-18.28
4,63	1859.90	47.74	47.74	603.81		140.10	114.66	84.85		77.11	-19.11
4.72	<u>1</u> 853.36	46.76	46.76	610.91		146.64	114.85	83.67		78.68	-19.93
4.80	1846.68	45.80	45.80	617.91		153.32	115.00	82.45		80.17	-20.74
4.89	1839.89	44.87	44.87	624.81		160.11	115.12	81.22		81.60	-21.55
4.97	1832.98	43,95	43.95	631.60		167.02	115.21	79.95		82.95	-22.34
5.05		43.04	43.04	638.28		174.05	115.26	78,67		84.23	+ 23•12
5.14	1818.83	42.16	42.16	644.86		181.17	115.27	77.36		85.45	-23.89
5.22	ī811.60	41.29	41.29	651.32		188.40	115.24	76.04		86.59	-24.64
5.31	1804-27	40.44	40.44	657.68		195.73	115.18	74.71		87.67	-25.38
5.39	1796.86	39.60	39.60	663.92		203.14	115.08	73,36		88.67	-26.10
5.48	1789.37	38.78	38.78	670.05		210.63	114.95	72-00		89.61	-26.80
5.56	1781.80	37.97	37.97	676-06		218.20	114.79	70.63		90.49	-27:48
5.64	1774-16	37.18	37.18	681.95		225.84	114.59	69.25		91.30	-28.14

REEFED INFLATION
REEFING RATIO= -127
REEFED PROJ- DIAM-= 17.582 FT
CUTTER DELAY= 4.000 SEC
TIME OF DISREEF= 7.242 SEC

IG 3	TIME (SEC)	ALTITUDE (FT)	SYSTEM ANGLE (DEG)	C.M. TRAJ. ANGLE (DEG)	C•N	POSITION (FT)			C#M. VE			C.M. ACCELERATION
4					X	Υ	Z	TOTAL	k k	Y	z	(FT/SEC/SEC)
	1 4 4			er en en de la companya de la compa							•	TOTAL:
5 10											1999 50	and the second of the
Samp with	4.50	94 Y										
πB												
שיס	5.69	1769.77	36.74	36.74	685 • 26		230.23	113.93	.0 15			A SAN TENEDON AND A
le E	5.74	1765.39	36.30	36.30	688.51		234.61	113.73	68.15 67.02		91.31	-39.93
741 (D	5.79	1761.01	35.86	35.86	691.71		238.99	112.45	65.87	1.5	91.25	-41.31
X O	5.84	1756.63	35.43	35.43	694.85		243.37	111.62	64.70		91·13 90·96	-42.59
Out tra	5.88	1752.27	35.00	35.00	697.93		247.73	110.75	63.52		90.72	-43.79 -44.89
utp	5.93	1747.92	34.57	34.57	700.96		252.08	109.83	62.32		90.44	-45.9 1
ָסי ח	5.98	1743.58	34.15	34.15	703.93		256,42	108.88	61.12		90.10	-46.83
ti	6.03	1739.26	33.73	33.73	706.85		260.74	107.89	59.91		89.72	-47.67
C	6.08	1734.96	33.31	33.31	709.70		265.04	106.86	58.69		89.30	-48.43
ă m	6.12	1730.67	32.90	32.90	712.50	8	269.33	105.81	57.48		88.64	-49.10
0	6.17	1726.42	32.49	32.49	715.23		273.58	104.74	56.26		88.35	-49.70
אשי	6.22 6.27	1722.18 1717.98	32.08	32.08	717.91		277.82	103.64	55.05		87.82	-50.21
מ	6.32	1713.80	31.67 31.27	31.67	720.53		282.02	102.53	53.84		87.26	-50.66
th	6.36	1709.64	30.87	31.27 30.87	723.10		286.20	101.40	52.64		86.67	-51.04
he	6.41	1705.52	30.47	30.47	725.60 728.05		90.36	100.27	51.44		86.06	≈51.35
	6.46	1701.43	30.07	30.07	730.44		94.48	99.12	50.26		85.43	- 51.61
Re hut	6.51	1697.37	29.67	29.67	732.78		298.57 102.63	97.97	49'-09		84.79	-51.80
rt no	6.56	1693.34	29.28	29.28	735.06		106.66	96.82 95.67	47.93 46.79		84-12	-51.95
ው ው	6.60	1689.35	28.89	28.89	737.28		10.65	94.52	45.66		83.44	-52.04
S fe	6,65	1685.22	28.42	28.42	739.54		14.78	93.71	44.60		82.76	-52.09
эd	6.70	1681.11	27.95	27.95	741.74		18.89	92.95	43.57		82.42 82.11	-43.95 -43.24
TO:	6.75	1677.01	27.49	27.49	743.90		22.99	92.23	42.57		81.82	-42.5B
G-	6.80	1672.92	27.03	27.03	746.00		27.08	91.55	41.61		81.55	-41.96
ന ।	6.85	1668.85	26.58	26.58	748.06		31.15	90.90	40.67		81.30	-41.37
	6.90	1664.79	26.12	26.12	750.07	3	35.21	90.29	39.75		81.06	-40.82
1A	6.95	1660.75	25.68	25.68	752.04		39.25	89.71	38.87		80.85	-40.30
	7.00	1656.71	25.23	25.23	753.96	3	43.29	89.16	38.01		80.65	-39.81
် သည်	7.05 7.10	1652.68	24.79	24.79	755.84		47.32	88.64	37.17		80.47	-39.35
ÖÖ		1648.66	24.36	24.36	757.68		51.34	88.14	36.36		80.29	-38.92
on	7.15 7.20	1644.65 1640.65	23.93	23.93	759.48		55.35	87.68	35.57		80.14	-38.51
C+ (10)	(20	1040.00	23.51	23.51	761.24	3	59.35	87.23	34.80		79.99	-38.13
1.0												
o Par												
ดีผู้				A CANADA			A Stage :					
$\sigma_{\mathcal{H}}$		REE	ED INFLAT	ION								
) a	3.0455		REEFING		•191							
Ç.				ROJ. DIAM.=	25.176 F	r						
hut			CUTTER D		000 SEC							
7			TIME OF	DIZKEEL	9.242 SEC							

TIME	ALTITUDE	SYSTEM ANGLE	C.M. THAJ.	C•	M. POSITION	1		C.M. VE			C.M. ACCELERAT
(SEC)	(FT)	(DEG)	(DEG)		(FT)			(FT/		1 2 1 1	(FT/SEC/SE
		·		X	Υ	Z	TOTAL	X	Y	Z	TOTAL
										100	
7.25	1637.04	23.14	23.14	762.79		362,96	86.74	34.08		79.76	-53.91
7.29	1634.19	22.88	55.88	764.00		365.81	85.86	33.38		79.10	-54.24 -54.58
7.32	1631.36	22.63	22.63	765.19		368.64	84.97	32.69		78.43 77.75	-54.85
7.36	1628.56	22.37	22.37	766.35		371.44	84.08	32.00		77.05	-55.07
7.39	1625.78	22.12	22.12	767.49		374.22	83.17	31.32		76.34	-55.24
7.43	1623.03	21.87	21.87	768.60		376.97 379.69	82.26 81.35	30.64 29.98		75.63	-55.35
7,46	1620.31	21.62	51.65	769.69		382.39	80.44	29.32		74.91	-55.42
7.50	1617.61	21.38	21,38	770.76			79.53	28.67		74.18	-55.44
7.54	1614.93	21.13	21.13	771.80 772.82		385.07 387.72	78.62	28.03		73.45	+55.42
7.57	1612.28	20.89	20.89	773.81		390.34	77.71	27.40		72.72	-55.37
7.61	1609.66	20.64	20.64 20.40	774.78		392.93	76.81	26.78		71.99	-55.28
7.64	1607.07	20.40	20.16	775.73	V Company	395.50	75.91	26.17		71.26	-55.16
7.68	1604.50	20.16	19.92	776.66		398,05	75.02	25.57		70.53	-55.02
7.72	1601.95	19.69	19.69	777.57		400.56	74.14	24.98		69.80	-54.B4
7.75 7.79	1596.95	19.45	19.45	778.46		403.05	73,26	24.40		69.08	-54.65
7.82	1594.48	19.22	19.22	779.32		405.52	72.40	23.83		68,36	-54,43
7.86	1592.04	10 00	18.99	780.17		407.96	71.54	23,27		67,65	-54,20
7.89	1589.63	18.99 18.75	18.75	781.00		410.37	70.69	22.73		66.94	-53.95
7.93	1587.24	18.52	18.52	781.80		412.76	69.86	22.20		66.24	-53,68
8.01	1582-33	17.96	17.96	783.42		417.67	68.53	21.13		65•20	-44.62
8.06	1579.09	17.55	17.55	784.46		420.91	67.86	20.46		64.70	-43.75
8,11	1575.86	17.14	17.14	785.47		424.14	67.23	19,81		64.24	-42.94
8.16	1572.66	16.74	16.74	786.44		427.34	66.64	19.19		63.81	-42-19
8.21	569.48	16.34	16.34	787.39		430.52	66 • 09	18.60		63.42	-41.50
8.26	1566.32	15.95	15.95	788.31		433.68	65.57	18.02		63.05	-40.86
8.31	1563.17	15.57	15.57	789.19		436.83	65.09	17.47		62.71	-40-27
8.36	1560.05	15.19	15.19	790.05		439.95	64.65	16.94		62.39	-39.72
8.41	1556.93	14.82	14.82	790 • 89		443.07	64.23	16.43		62.09	-39.21
8.46	1553.84	14.46	14.46	791.70		446.16	63.83	15.94		61.81	-38.74 -38.30
8.51	1550.75	14.10	14.10	792.48		449.25	63.47	15.46		61.55	-37.89
8,56	1547.68	13.75	13.75	793.24		452.32	63.12	15.00		61.32 61.09	-37.51
8,61	1544.62	13.41	13.41	793.98		455.38	62.80	14,56		60.88	-37.1
8.66	1541.57	13.07	13.07 12.74	794.70		458,43	62.50	14.14		60.69	-36.8
8.71	1538.53	12.74	12.74	795.40		461.47	62.22	13.32		60.51	-36.5
8.76	1535,50	12,42	12.42	796.07		464.50	61.96	12.94		60.34	-36.23
8.81	1532.48	12.10	12.10	796.73		467.52	61.71 61.48	12.56		60.18	-35.9
8.86	1529.47	11.79	11.79	797.37		470.53 473.54	61.27	12.20		60.04	-35.71
8,91	1526.46	11.49	11.49	797.99		476.54	61.06	11.85		59.90	-35,46
8.96	1523.46	11.19	11.19	798.59		479.53	60.87	11.51		59.78	-35.26
9.01	1520.47	10.90		799.17 799.74		482.51	60.70	11.18		59.66	-35.06
9.06	1517.49	10.62	10.62	800.29		485.49	60.53	10.87		59.55	-34.87
9,11	1514.51	10.34	10.34	800.83		488.47	60.37	10.56		59.44	-34,69
9.16	1511.53	10.07	10.07			491.44	60.23	10.26		59.35	-34,53
9.21	1508.56	9.81	9.81	801.35		7.54.77					
			.=**.								
	RE	EFED INFLA	ALIUN								

REEFED INFLATION
REEFING RATIOM
REEFED PROJ. DIAM.M.
CUTTER DELAYM.
THE OF DISOFFFM

.637 63.661 FT -0 SEC 220

TIME

(SEC)

9.28

9.48

9.68

9.88 10.08

10.28

10.48 10.69 10.89

11.09

FIG

34

ALTITUDE

(FT)

1503.99

1492.61 1482.02

1472.16

1454.36

1446.28

1438.65

1431.43

1424.56

SYSTEM

ANGLE

(DEG)

9.46

8.72

8.03

7.38

6.76

6.19

5.66

5.16

4.70

4.28

C.M. TRAJ.

ANGLE

(DEG)

9.46

8.72

8.03

7.38

6.76

6.19

5.66

5.16

4.70

4.28

C.M. POSITION

X

802.13

803.96

805.54

806.88

808.03

809.02

809.86

810.59

811.22

811.77

(FT)

Z

496.01

507.39

517.98

527.84

537.03

545.64

553.72

TOTAL

59,25

55.02

51.09

47.53

44.37

41.57

39.12

36.96

35.06

33.39

C.M. VELOCITY

(FT/SEC)

9.74

8.34

7.14

6.10

5.23

4.48

3.86

3.32

2.87

2.49

C.M.

Z

58.45

54.39

50.59

47.14

44.06

41.33

38.92

36.81

34.94

ACCELERATION

(FT/SEC/SEC)

TOTAL

-53.57

-52.41

-50.76

-48.87

-46.98

-45.22

-43.64

-42.25

-41.05

FIG 34 With Extraction 58.81 219.32 1.04 14.03 1165.23 1780.68 22.94 22.96 23.65 5.73 -1.00 59.32 207.56 1792.44 1804.21 •40 5.43 5.38 13.31 1168.08 23.59 -.45 59.84 195.79 -.28 13.19 1170.84 .07 .56 23.60 22.98 60.35 184.01 -.95 13.67 1173.64 1815.99 5.59 23.68 23.01 -1.54 60.86 172.21 14.69 1827.79 1176.61 23.83 6.04 23.05 1.00 61.88 148.52 -2.34 17.89 1851.48 1863.38 1875.32 1.52 1183.48 24.36 7.48 23.18 Ö -2.49 24.71 25.08 8.36 9.24 62.40 136.62 19.77 1187.54 23.25 23.31 Parachute 62.91 124.68 -2.45 21.63 1192.04 1.70 63.42 112.73 -2.23 23.33 1196.99 1887.27 10.07 23.34 1.54 25.42 the 63.93 100.76 -1.85 24.76 1899.24 1202.33 10.76 11.59 25.71 23.34 1.26 64.96 -.74 76.88 1923.12 25.96 26.51 1213.84 23.24 •57 65.47 64.99 -.11 26.71 1219.80 1935.01 25.91 11.64 -.19 23.15 Ree 65.98 53.16 .51 26.44 1225.73 1946.84 25.74 -.53 -.92 -1.25 11.46 23.05 66.49 41.37 1.07 25.70 1231.50 22.96 1958.63 25.48 11.05 67.00 29.62 1.52 25·16 24·50 24.55 1237.01 1970.38 10.46 efed G-11A System (6.20 1.98 8,92 68.03 21.34 1246.96 1993.80 22.82 -1.55 1.93 1249.16 68.30 .00 20.40 2000.00 24.35 8.49 -1.52 22.83 TIME (SEC) ALTITUDE (FT) X(FT) V(FT/SEC) Z(FT) VX (FT/SEC) VZ(FT/SEC) A(FT/SEC/SEC) 23.87 .46 1272-17 1 VERTICAL/MINIMUM 13.88 815-17 727.83 24.00 -2.43 2 VERTICAL/MINIMUM 19.39 1139.43 836.00 860.57 26.49 1.36 11.08 24.06 3 VERTICAL/MINIMUM 994.69 25.53 882.28 1005.31 23.56 2.62 23.42 Cargo Parachute (Concluded)

TRAJECTORY SIMULATION -- T=0, Z=0 IS RELEASE POINT RELEASE CONDITIONS ALTITUDE= 2000 FT VELOCITY= 220.00 FT/SEC MASSES--SLUGS TOTAL SYSTEM= 115.265 LOAD= 108.800 PARACHUTE= 4.156 SUSP. LINES= .643 1.200 RISERS= RISER EXTENSIONS= .124 LOAD BRIDLE= .342 INCLUDED= 158.613(SEA LEVEL) 149.262(2000. FT) APPARENT= 59.480 (SEA LEVEL) 55.973(2000. REFERENCE DISTANCES FROM SKIRT -- FT X1 =16.450 ×2= 61.100 99.300 x3= x 4= 113.300 x5= 119.300 MOM . / PROD . INERTIA -- SLUG FT ** 2 907066-874(TXX≃ 936191.608 (SEA LEVEL) 2000. FT) 936191.608(SEA LEVEL) IYY= 907066.8741 2000. FT) FT) IZZ= 20700000.000(SEA LEVEL) 20658733.868(2000. IXZ O(SEA LEVEL) 0 (.0005 FT) DIMENSIONS -- FT 100.000 DNOT= SUSP. SYSTEM= 95.000 77,203(1 = 79.081 (SEA LEVEL) 2000. FT) -53.119(SEA LEVEL) -54,997(2000. FT) 1.2= 1_3= 59.781 (SEA LEVEL) 57.903(2000. FT) YC/DNOT= .129 DP/DNOT= .648 VOLUME= 66700.000 FT##3 PARACHUTE COP= 1.786 76.800 FT##2 LOAD DRAG AREA= DEGREES OF FREE DOME

```
RELEASE DISTANCE IN AIRCRAFT= 15.000 FT
REEFING RATIO= .064
```

FIG 35 Sample Output for the G-11A Cargo Parachute with Reefed Main Parachute Extraction System

12]												
IG												
w	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	c•	M. POSITION			C.M. VE	LOCITY		C.M.
G	(SEC)	(FT)	ANGLE (DEG)	ANGLE (DEG)		(FT)			(FT/	SEC)		ACCELERATION (FT/SEC/SEC)
	(SEC)		1024		X	Y	: . z	TOTAL	x	Y	Z	TOTAL
Sampl Reefe												
am					e e e e e e e e e e e e e e e e e e e							
שׁיַם,												
g Le			00.00	90.00	10.03		0	217.23	217.23			
	.05	5000.00 5000.00	90.00 90.00	90.00 90.00	10.93		0	214.52	214.52			
ΣÕ	.15	2000.00	90.00	90.00	32.39		Õ	211.89	211.89			
Outpu Main	.50	5000.00	90.00	90.00	42.92		Ŏ	209.31	209.31			
50	.25	2000.00	90.00	90.00	53.32		0	206.80	206.80			
	.30	2000.00	90.00	90.00	63.60		0	204.35	204.35			
H C	.35	2000.00	90.00	90.00	73.76		. 0	201.95	201.95			
μ iii	• 4 0	2000.00	90.00	90.00	83.80		0	199.61	199.61 197.33			
fo	.45	2000.00	90.00	90.00	93.73		.0	197.33 195.10	195.10			
OK	•50	2000-00	90.00	90.00	103.54 113.24		0	192.91	192.91			
5	.55 .60	5000.00 5000.00	90.00 90.00	90.00	122.83		0	190.78	190.78			
E H	.65	5000.00	90.00	90.00	132.32		ŏ	188.69	188.69			
he	.70	5000.00	90.00	90.00	141.70		0	186.64	186.64			
	.75	2000.00	90.00	90.00	150.99		0	184.64	184.64			
G-1 Ext	.80	1999.99	89.78	89.78	160.16		• 01	182.14	182.14		•70	
X I	.85	1999.92	89.27	89.27	169 • 19		• 08	179.05	179.03		2.29 3.84	
	.90	1999.77	88.75	88.75	178.07		.23	176.07	176.03		5.38	
1A ra	.95	1999.54	88.22	88.22	186.80		• 46	173•21 170•45	173•12 170•31		6.88	
	1.00	1999-23	87.69 87.14	87.69 87.14	195.39 203.84		.77 1.15	167.79	167.59		8.37	
rt C	1.05	1998.85 1998.40	86.59	86.59	212.15		1.60	165.24	164.95		9.83	
r a	1.15	1997.87	86.03	86.03	220.34		2.13	162.78	162.39		11.28	
₽ 00°	1.20	1997.27	85.46	85.46	228.39		2.73	160.41	159.91		12.70	
ြိ	1.25	1996.60	84.88	84.88	236.33		3.40	158.13	157.50	-	14.10	
S	1.30	1995.86	84.30	84.30	244.15		4.14	155.93	155.16		15.49	
Y P	1.35	1995.05	83.71	83.71	251.85		4.95	153.81	152.88 150.67		16.86 18.21	
s t	1.40	1994.18	83.11	83•11 82•50	259.44 266.92		5.82 6.77	151.77 149.80	148.52		19.55	
(a, a)	1.45	1993.23	82.50 81.89	81.89	274 • 29		7.78	147.91	146.43		20.87	
rachui tem	1.55	1991-15	81.27	81.27	281.57		8.85	146.08	144.39		22.18	
₽,	1.60	1990.01	80.64	80.64	288.74		9.99	144.33	142.41	**	23.47	
_ 🖺	1.65	1988.80	80.01	80.01	295.81		11,20	142.63	140.47		24.75	
Cote	1.70	1987.53	79.37	79.37	302.79		12.47	141.01	138.58		26.01	
5	1.75	1986.20	78.72	78.72	309.67		13.80	139.44	136.74		27.27	
S E	1.80	1984.81	78.07	78.07	316.46		15.19	137.93	134.95		28.51 29.73	
T >	1.85	1983.35	77.42	77.42	323.17		16.65	136.47	133.19 131.48		30.95	
L. C.	1.90	1981.84	76.75	76.75	329.78		18,16 19,74	135.07 133.73	129.81		32.15	
5 7	1.95	1980.26	76.09 75.42	76.09 75.42	336.32 342.77		21.38	132.44	128.17		33.35	
th	2.00	1978.62 1976.93	74.74	74.74	349.14		23.07	131.19	126.57		34.53	
(P	2.05 2.10	1975.17	74.06	74.06	355.43		24.83	130.00	125.00		35.70	
	2.15	1973.36	73.38	73.38	361.64		26.64	128.85	123.47		36.86	
	2.20	1971.49	72.69	72.69	367.78		28.51	127.75	121.97		38.01	
	2.25	1969.56	72.00	72.00	373.84		30.44	126.69	120.49		39.15	
	2.30	1967.57	71.31	71,31	379.83		32,43	125.68	119,05		40.28	

	2,35	1965.53	70.61	70.61	385.74		34,47	124.71	117.64		41.40
	2.40	1963.43	69.91	69,91	391.59		36.57	123.78	116.25		42,51
	2,45	1961.28	69,21	69.21	397.37	Alberta Company	36.57 38.72	122.89	114.89		43.61
	2,50	1959.07	68.51	68.51	403.08		40.93	122.04	113.56		44.71
Pag	2.55	1956.81	67.81	67.81	408.73		43,19	121.23	112.25		45.79
	2.60	1954.50	67.10	67.10	414.31		45.50	120.45	110.96		46.86
IG	2.65	1952.13	66.40	66.40	419.83						
4.1	2.70	1949.70	65.69	65.69			47.87	119.71	109.70		47.93
W					425.28		50.30	119.00	108.45		48.98
\mathcal{S}_{5}	2.75	1947.23	64.99	64.99	430.67		52,77	118.33	107.23		50.03
O 1	2.80	1944.70	64.28	64.28	436.01		55.30	117.69	106.03		51.07
	2.85	1942.12	63.58	63,58	441.28		57.88	117.08	104.85		52.10
N C	2.90	1939.49	62.87	62.87	446.49		60,51	116.50	103.69		53.12
amp (eef	2.95	1936.81	62.17	62.17	451,65		63.19	115.95	102.54		54.14
m E	3.00	1934.08	61.47	61.47	456.75		65.92	115.44	101.41		55.14
H-H	3.05	1931.30	60.77	60.77	461.79		68.70	114.95	100.31		56.14
6 ° 1—1	3.10	1928.47	60.07	60.07	466.78		71.53	114.48	99.21		57.13
le ed	3.15	1925.59	59.37	59.37	471.71		74.41	114.05	98.14		58.11
	3.20	1922.66	58.68	58.68	476.59		77,34	113.64	97.07		59.08
:₹O	3.25	1919.68	57.98	57.98	481.42		80.32	113.25	96.03		60.04
Out Mai	3.30	1916.66	57.30	57.30	486.20				95.00		
→- CT				56.61			83.34	112.89			61.00
ס מ	3.35	1913.58	56.61		490.92		86.42	112.55	93.98		61.94
	3.40	1910.46	55.93	55.93	495.60		89.54	112.24	92.97		62.88
n P	3.45	1907.30	55.25	55.25	500.22		92.70	111.95	91.98		63.81
$\boldsymbol{\omega}$	3.50	1904.08	54.58	54.58	504.80		95,92	111.68	91.01		64.73
нH	3,55	1900.82	53.91	53.91	509.32		99.18	111.43	90.04		65.65
b O	3.60	1897.52	53.24	53.24	513.80		102.48	111.20	89.09		66.55
CH	3,65	1894.17	52.58	52.58	518,23		105.83	110.99	88.15		67.45
thut	3.70	1890.78	51.92	51.92	522.62		109,22	110.80	87.22		68.34
□ □	3.75	1887.34	51.27	51.27	526,96		112,66	110.63	86.30		69.22
he	3.80	1883.85	50.62	50.62	531.25		116.15	110.47	85.39		70.09
@ @	3.85	1880.33	49.98	49.98	535.50		119,67	110.33	84.49		70.95
	3.90	1876.76	49.34	49.34	539.70		123.24	110.21	83.61		71.81
G-1 Ext	3.95	1873.15	48.71	48.71	543.86		126.85	110.10	82.73		
× '		1869.50	48.08	48.08	547.97						72.66
\vdash	4.00	1903.30	40.00	40.00	341.037		130,50	110.01	81.86		73,49
lA C											
<u>ш</u> ;ъ											
<u> </u>) ANGLE (DEC		Z(FT) \	/ELOCITY (FT/	SEC)
T C			DAD OUT OF AI			•78		156.14		183.54	
argo		P	IFDI CHOIENEX	TRACTION CH	UTE RELEASE OF	₹					
2, 2	The State of the S	М	AIN PARACHUTE	DISREEF		4.00	48.07	548.05	130.58	110.01	
7 00											
TO.	44.										
<u>بر</u> تي		1 A 14									
10 0											
Paracl ystem		R	EEFED INFLATI	ON							
rac tem			REEFING R		•637						
ä 5	100			OJ. DIAM.=	63.661 FT						
			CUTTER DE		0 SEC						
7											
hut.			TIME OF D	TOUCEL .	0 SEC						
(C) (e)											
0									100		
with ontinue											1.0
7 F.											
⊢• □											
in											
₫ _											
0											
<u>a</u>)											
<u> </u>	TIME	ALTITUDE	SYSTEM	C.M. TRAJ.	C.M.	POSITION			C.M. VEL	OCITY	
			ANGL F	ANGLE							

TIME ALTI	TUDE SYSTEM	C.M. TRAJ.	C.M. POSITION		C.M. VELOCITY		C•M•
	ANGLE		(ets				ACCELERATION
(SEC) (F	T) (DEG)	(DEG)	(F.1)	Z TOTAL	(FT/SEC) X	Z	(FT/SEC/SEC) TOTAL

Sys

Parachute with ystem (Continued)

rgo S no	9.34	1592.05	3.79	-19.95	660.50			407.95	25.35	-8,65		23.82	-3. 08
Ca									•				
1A rac	(SEC)	(FT)	(DEG)	(nEG)	. X		FT) Y	Z	TOTAL	(F) X	T/SEC)	Z	(FT/SEC/SEC)
\leftarrow			ANGLE	ANGLE		-	-			-	_		ACCELERATIO
E G	TIME	ALTITUDE	SYSTEM	LOAD TRAJ.		LOAD PO	SITION			LOAD	VELOCITY		LOAD
													. t
the													
77	MOLE	- LOSTITONS 4	r Coot i i ca	-00c[ckx 110N	CT INDO	-MAPPS K	w wn to	FORDA LIKE	יבטטט אבטטן	ANE 1.01			
or	NOTE	PACITIONS - V	FI OCITIES-	ACCELERATION	S. TOA.I.	ANGLES D	FFFD TA	I DAD. PDE	VIOUS RESUL	TS ARE EN	R MASS CENTE	ο .	
H H													
P CT													
tput in P		FUL	L UN HEEPE	O INFLATION			7.16	⊅• +0	034073	323.30	23061	0340	3.15
ıtı İtı		P. II	. OD DEFE	D INFLATION			TIME (SE 9.12		EG) X(FT) 654.93	Z(FT) 325.56	V(FT/SEC) 23.27	FMAX(L3) 8348.	TF(SEC) 5.12
₩ 20 10													
<u>ф</u> ю	9.12	1674.44	5.46	5.46	654.93			325.56	23.27	2.21		23.16	-34.42
p1 fe	8.61 8.86	1680.46	7.03 6.20	7.03 6.20	653.59 654.31			313.36 319.54	24.59 23.90	3.01 2.58		24.41 23.76	-34.78 -34.59
Samp.	8.10 8.35	1693.00	7.99	7.99	652.74			307.00	25.35	3.52		25.11	-35.01
χ S S	7.84	1706 • 29 1699 • 54	10.29	10.29 9.07	650.58 651.75			293.71 300.46	27•14 26•20	4.85 4.13		26.70 25.87	-35.61 -35.28
	7.58	1713.26	11.68	11.68	649.21			286.74	28.20	5.71		27.62	-36.01
Ğ	7.07 7.33	1727.99 1720.48	15.01 13.25	15.01 13.25	645.68			272.01 279.52	30.84 29.43	7.99 6.75		29.79 28.64	-37.16 -36.52
w	6.82	1735.81	16.98	15.98	643.41	-		264.19	32.51	9.49		31.10	-38.00
IG	6.3n 6.56	1752.60 1744.00	21.55 19.16	21.55 19.16	637.48 640.71			247.40 256.00	36.93 34.51	13.56		34.35 32.60	#39.11
鬥	6.05	1761.71	24.15	24.15	633.59			238.29	39.91	16.33		36.42 34.35	-42.62 -40.60
	5.79	1771.40	26.93	26.93	628.90			228.60	43.64	19.77		38.90	-45.36
	5.28 5.54	1793.09 1781.81	32.91 29.87	32.91 29.87	616.23 623.20			206.91 218.19	54.33 48.34	29.52 24.08		45.61 41.92	-54.01 -49.07
	5.02	1805-44	36.00	36.00	607.64			194.56	61.96	36.41		50.13	-60.32
	4.77	1819.09	39.08	39.08	597.03			180.91	71.58	45.12		55.57	-67.64
	4.26 4.51	1851.09	45.09 42.11	45.09 42.11	567.65 583.87			148.91 165.74	96.77 83.35	68.54 55.89		68.31	-76.46 -74.39
				45.45				• 40 0•	04 77	40.54		40 31	74 44
											The second of		to the first

ION ANGLE ANGLE (DEG) (FT/SEC/SEC)
TOTAL (FT/SEC) (FT) (DEG) (FT) (SEC) Y Z. Z TOTAL 407.95 420.67 -8.65 23.82 -3.08 1592.05 3.79 -19.95 660.50 25.35 9.34 -1.85 -.55 -6.39 9.88 1579,33 -21.81 -9.16 22.89 655.57 24.66 -6.82 649.21 22.91 21.87 -5.13 437,83 10,65 1562,17 -17,32 -8.26 9.86 -10.97 -13.46 454.55 471.71 11.42 -3.97 -1.51 21.82 1545.45 645.86 21.88 13.50 647.32 5.52 22.98 1528.29 23.64 -13.43 -12.03 -6.58 9.72 12.95 13.47 1509.97 1497.08 27.73 654.43 490.03 27.88 12.97 24.68 34.51 43.39 502.92 529.37 17.57 25.56 8.75 662.27 31.02 24.28 25.78 25.68 4.67 684.05 35.34 14.49 1470.63 2.67 542.36 24.91 15.00 1457.64 45.98 696.92 35.84 -3.01 24.41 -4.34 47.22 22.59 723.12 566,71 33,26 16.03 1433.29 4.29 -6.19 -8.88 16.54 17.56 7.45 11.66 44.89 1421.94 734.97 578.06 30.78 21.72 21.81 31.89 21.59 753.36 759.21 600.34 611.86 13.73 22.08 1399.66 26.00 -9.39 8.23 5.76 24.69 9.08 22.96 18.07 1388.14 12.42 24.83 19,10 1363,59 11.05 .07 763.78 636,41 24.83 .03 25.82 -5.33 25.27 1344.26 7.81 -11.90 761.63 655.74 19,87 -2.65 3.23 -1.89 -6.65 24.55 756.20 674,95 25.94 -8.37 20.63 1325.05 -18.84 -2.31 693.34 24.80 -8.49 23.31 749.52 21.40 1306.66 -20.01 -5.69 22.58 22.88 -5.23 710.92 23.28 1289.08 -14.14 743.91 22.17 7.64 -10.22 -.60 22.94 741.37 728.33 22.89 1271.67 -1.49 5,83 8.85 23.96 23.71 1253.70 -11.93 13.68 743.33 746,30 24,66 -10.89 29.67 753.83 771.69 29.32 14.51 25.48 7.94 24.73 1228.31

35

Sample Reefed Output for the Main Parachute 72.99 1170.09 1185.25 91.23 2.06 35.20 1908.77 28.04 16.16 22.91 -1.95 74.01 74.52 30.27 68.03 4.80 1931.97 26.01 13.11 22.46 -3.78 56.52 5.60 26.06 1191.43 1943.48 25.01 10.99 22.47 -4.32 75.03 44.98 5.94 21.05 1196.48 8.70 1955.02 24.22 22.60 -4.51 75.55 33.35 5.80 15.70 1966.65 23.66 23.16 1200.34 22.78 -4.41 6.40 1204.78 1205.57 76.57 9.85 4.17 6.17 2.49 23.03 -3.16 G-11A Cargo Parachute with Extraction System (Concluded) 3.05 77.00 .00 3.40 1.37 2000.00 23.07 23.03 -2.32 TIME (SEC) ALTITUDE (FT) X(FT) VZ(FT/SEC) A(FT/SEC/SEC) Z(FT) V(FT/SEC) VX(FT/SEC) 24.88 -9.21 25.78 1 VERTICAL/MINIMUM 9.75 1582.28 656.75 417.72 23.12 -1.76 2 VERTICAL/MINIMUM 15.00 1457.64 696.92 542.36 35.84 24.91 2.67 3 VERTICAL/MINIMUM 21.02 1315.73 752.87 684.27 25.50 -8.81 23.93 -1.69

X. REFERENCES

- 1. Heinrich, H. G.: The Effective Porosity of Parachute Cloth, USAF Technical Report No. AFFDL-TR-65-102, January, 1966.
- 2. Hildebrand, F. B.: <u>Introduction to Numerical Analysis</u>, McGraw-Hill Book Company, 1956, pp. 236-239.
- Heinrich, H. G. and Noreen, R. A.: Wind Tunnel Drag and Stability of Solid Flat Circular, T-10, and Ringslot Parachute Models with Centerlines, USAF Technical Report No. AFFDL-TR-73-17, December, 1972.

DISTRIBUTION LIST

	No. of	Copies
Director of Defense		
Research and Engineering		
Department of Defense		
Washington, DC 20315	1	
Department of the Army		
Office of the Chief of		
Research and Development		
ATTN: DARD-DDA	1 45 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Washington, DC 20310	1	
Department of the Army		
US Army Advanced Materiel Concepts Agency		
ATTN: AMXAM-AC		
Washington, DC 20315	1	
Commander		
US Army Foreign Science and Technology Center		
220 Seventh Street, NE		
Federal Building		
Charlottesville, VA 22312	1	
할 마다를 모르자를 하는 이름이면, 나는 살림으로 그리고 있다.		
Commander		
US Army Materiel Command		
ATTN: AMCRD-FS	1	
Washington, DC 20315		
하는 병원 회사 동생님 있으면 하는 일본 사람들은 기계를 잃었다.		
Commander		
USA Test and Evaluation Command		
ATTN: AMSTE-BG	1	
Aberdeen Proving Ground, MD 21005		
실근 선물보다 그리는 얼마는 이렇게 맛이 없는 그리고 하다였다.		
President		
USA Airborne Communications		
and Electronics Board	1	
Fort Bragg, NC 28307		
Commander		
Yuma Proving Ground		
Air Test Division		
ATTN: STEYP-TAT		
Yuma, AZ 85364	1	
Tuna, *** OJJUT		

USA CDC Institute of Land Combat	
ATTN: Technical Library	
301 Taylor Drive	
Alexandria, VA 22314	
Commander	
USA Combat Developments Command	
Institute of Advanced Studies	
Carlisle Barracks, PA 17013	1
Commander	
US Army Combat Developments Command	
Institute for Strategic and	
Stability Operations	
ATTN: ISSO-A	
Fort Bragg, NC 28307	
Chief, Systems and Equipment Division	
Eustis Directorate	
US Army Air Mobility R&D Laboratory	
Ft. Eustis, VA 23604	
Commander	
US Army Materiel Laboratories	
ATTN: Technical Library	
Fort Eustis, VA 23604	
	그렇게 얼마 얼마를 바다를
Commander	
USA Aviation Systems Command	
ATTN: AMSAV-FBTD	
P. O. Box 209	
St. Louis, MO 63166	
Commandon	
Commander	이 병원 제공하는 경험하여 시민 생
USA Aviation Systems Command ATTN: AMSAV-L-QRE	
P. O. Box 209	
St. Louis, MO 63166	그리는 그 그릇들이 되는데 하나를 다
Commander	
US Army Aviation Systems Command	
ATTN: AMSAV-R-R	
P. O. Box 209	
St. Louis. MO 63166	
~ ~ B ~ C ~ T G , MC UULUU	The state of the

Commander	
US Army Aviation Systems Command	
ATTN: SAVDL-8	
St. Louis, MO 63166	1
Commander	
US Army Aviation Systems Command	
ATTN: AMSAV-SA (CE) AMRDC	
St. Louis, MO 63166	1.
Commander	
US Army Aviation Systems Command	
ATTN: AMCPO-LSE	
St. Louis, MO 63166	
Director	
US Army Mobility R&D Laboratory	
AMES Research Center	
Moffett Field, CA 94035	1
Commander	
US Army Missile Command	
ATTN: Technical Library	
Redstone Arsenal, AL 35809	1
	grand and the second section with
Commander	a ghair sayad wila bighle
US Army Munitions Command	
ATTN: Technical Library	
Dover, NJ 07801	1
Commander	and the first of the second second
US Army Weapons Command	
Research & Development Directorate	
ATTN: Technical Library	
Rock Island, IL 61201	한 화물을 받는 것이 그렇게 되었다.
	ty for the original according
Commander	
Frankford Arsenal	
Bridge and Tacony Streets	
ATTN: Technical Library	
Philadelphia, PA 19137	and the second of the second o
	and the second of the second
Commander	1404
Redstone Scientific Information Cer	iver
US Army Missile Command	
ATTN: AMSMI-RBLD	
Redstone Arsenal, AL 35809	<u>.</u>

Commandant	
Quartermaster School	
Airborne Department	
ATTN: ATSQM-EA	
Fort Lee, VA 23801	1
	-
Commandant	
Quartermaster School	
ATTN: ATSQM-AR-T	
Fort Lee, VA 23801	
	1
Commandant	
Quartermaster School	
ATTN: ATSQM-AR-D	
Fort Lee, VA 23801	
	1,
Commander	
Readiness Command	
ATTN: STRJ4-T	
MacDill Air Force Base	
Tampa, FL 33608	
	1
Commander Aeronautical Systems Division US Army Natick Laboratories Liaison Office ATTN: ASDL-8	
Wright Patterson Air Force Base, OH 45433	6
Command	
Commander	
Army Research Office (Durham) ATTN: Information Processing Office	
The state of the s	
Box CM, Duke Station	
Durham, NC 27706	1
IIC Assess Chandrall	
US Army Standardization Group, UK	aten ja kantaj
ATTN: Research/General Materiel Representative	
Box 65	
FPO New York 09510	1
Donouth and at the same	
Department of the Air Force	
Hq, 6511th Test Group (Parachute) (AFSC)	
Naval Air Facility	
Army Liaison Office, ATQ	
El Centro, CA 92243	7

Direct o r	
Air University Library	
Maxwell Air Force Base, AL 36112	1
Headquarters	
Tactical Air Command	
ATTN: TAC-OA	
Langley Air Force Base, VA 23365	1.
Commander	
USAF Tactical Airlift Center (TAC) ATTN: DAL	
ATTN: DAL Pope Air Force Base, NC 28308	1
Commander	
Military Air Lift Command ATTN: MAORD	
Scott Air Force Base, IL 62225	1 L
Director	
Naval Research Laboratory	
ATTN: Technical Information Officer	
Anacostia Station	
Washington, DC 20390	1
washington, 20 2000	
Chief	
Office of Naval Research	
Department of the Navy	
ATTN: Code 423	1
Washington, DC 20390	
	The state of the s
US Naval Air Systems Command	
Department of the Navy	
ATTN: AIR 5315A	1
Washington, DC 20360	
Director	
Development Center	
Marine Corps Development and Education Command	
Quantico, VA 22134	1
Qualities, Vi. 22101	
Marine Corps Liaison Officer	
US Army Natick Laboratories	
Natick, MA 01760	1
Macton, Mr. Otioo	
Commandan	
Commander US Army Natick Laboratories	
ATTN: ST SNL-AOP	

Natick, Mass 01760

Commander	
US Army Natick Laboratories	
ATTN: ST SNL-RTL	
Natick, MA 01760	2
	-
Commander	
Defense Documentation Center	
Cameron Station	
5010 Duke Station	
Alexandria, VA 22314	12
	12
Sandia Laboratories	
Deceleration & Recovery Systems Division	
Albuquerque, NM 87115	1
	-
Commander	
Naval Aerospace Recovery Facility	
ATTN: Code ENAAT	
El Centro, CA 92243	1
	· · · · · · · · · · · · · · · · · · ·
Commander	
Hdqs Edgewood Arsenal	
ATTN: Mr. A. Flatau	
Aero Research Group	
Aberdeen Proving Ground, MD 21005	1
Commander	
Aero System Division	
ATTN: AFFDL/FER (Mr. James De Weese)	
WPAFB, OH 45433	3
Prof. Helmut G. Heinrich	
Department of Aeronautics	
and Engineering Mechanics	
University of Minnesota	
Minneapolis, MN 55455	20

Security Classification

DOCUMENT CONTROL DATA - R & D							
(Security classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate author)	annotation must be entered when the overall report is classified)						
		Imclassified					
University of Minnesota		2b. GROUP					
3. REPORT TITLE							
DEVELOPMENT OF A TOTAL TRAJECTORY SIMULA	ATION FOR SIN	NGLE RECO	VERY PARACHUTE SYSTEMS -				
VOLUME II: CALCULATION PROCEDURES AND C	OMPUTER PROC	GRAM.					
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)							
Final Report 15 Nov 1971 - 30 June 1973							
5. AUTHOR(S) (First name, middle initial, last name)							
Robert A. Noreen							
David P. Saari			· · · · · · · · · · · · · · · · · · ·				
6. REPORT DATE	78. TOTAL NO. O	FDAGES	7b. NO. OF REFS				
S. REPORT DATE	241		3				
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'	S REPORT NU	MBER(S)				
DAAG 17-72-C-0030	None						
b. PROJECT NO.							
_ 1F162203AA33							
c. 1F1022U3AA33	9b. OTHER REPO	RT NO(5) (An)	other numbers that may be assigned				
	74-9-AI	D(II)					
d. 10. DISTRIBUTION STATEMENT							
Distribution of this document is unlimit	cea.						
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY AC	TIVITY				
	US Army	Natick I	aboratories				
13. ABSTRACT							

A method of total trajectory simulation was established which is based on the governing equations of the various phases of an airdrop or recovery system. In view of these equations, a computer program capable of predicting the performance characteristics of a parachute-load system from the instant of initiation to the moment of landing was established. Calculations were performed for a number of different aerial delivery systems. The calculated results fall well within the broad ranges of expected performance, based upon familiarity with field test results.

In Volume I, simulation methods and numerical calculation results are presented; in Volume II details of the calculation procedures and computer program are presented. The system is ready to be used for overall prediction of parachute performance characteristics and an intensive comparison of calculated and recorded field test results in highly desirable for validation and improvement of the technique of total trajectory simulation.

Unclassified

Security Classification

-	Security Classification		LINKA		LINK B		LINK C	
	KEY WORDS	ROLE WT		ROLE WT		ROLE WT		
		110		7 N 1 N				
		8			-			
	Extraction	"	35 F		- 1	H. H.		
	그 이 그는 그는 그 그렇게 가는 걸고하는 사이들에 버린			9				
	Cargo	2		9				
	그 그 그는 그 그 이 얼마나 가장 가장 얼마나 이 이 사람들은 모습이다.	133			1 44			
	Aircraft	1			1			
	요							
	Recovery	10		4				
	그 그 그 그는 그 이렇게 살아왔다면 사람들이 되었다.							
	Parachutes	10		1.			l	
	그 그 그는 그는 이 기계상에 되고 있다고 있다. [18]							
	Low Altitude Drop	4		77				
			100				-	
	Airdrop Operations	4	-	9, 4				
	Tests			8				
	Equations			8				
	Data			8				
							İ	
	Computer Programming			10				
	Compared 11084 comments	1						
	Aerial Delivery			9	1			
	Aeriai Delivery							
	Loads			9		·		
						İ	1.	
	이 보고 있는 사람들이 많아. 하는 이후 된 화학이다.							
		1000	10/18/7				1	
				releasi				
	그 교통 이 사람들은 이 경기를 하는 사람들이 다른 바람이 되었다.			1000 1000				
		2.5						
	사이 이 사람들은 사람들이 하다고 하는 것을 하는데 다							
	그는 그 의학자를 하는데 회교의 회학들에 일본 내려야 하다.							
	그리고 그리는 전에 그가, 화가, 하셔야 다쳤다고 없다. 동네							
	그님, 그 그는 그들로 가장 그렇게 되었다.						l	
	그, 하면 하는 그리고 하다면 하루 하셨습니까 바다 했다.							
	이 그는 그는 이 이번 나는 한 경우를 가게 되었다.							
	그 의 이의 많이 어느는 얼마를 들어갈 하다니까요?							
							1	

Unclassified

Security Classification