Analysis of Storm Affects on Population Health and Economy in USA

Introduction

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Data Processing

Analysis

Sum aggregates of damages will provide a meaninful measure for our analysis.

Population health (HEALTHDAMAGES) for each event is obtained after cumulative sum of reported injuries and fatilities for each year between 1950 - 2011. Economic affect (DMGCASH) for each event is obtained after cumulative sum of crop and property damage and after applying appropriate multipler. The results are then sorted and top 25 events and their values are presented. Each storm data event is first grouped into a class and then the sums are obtained for each class.

Loading

There is also some documentation of the database available: https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2Fpd01016005curr.pdf https://d396qusza40orc.cloudfront.net/repdata%2Fpeer2_doc%2FNCDC%20Storm%20Events-FAQ%20Page.pdf The data used for this analysis is available: https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2.

```
#repdata-data-StormData.csv.bz2 is obtained from https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2
data <- read.csv(bzfile("repdata-data-StormData.csv.bz2"))</pre>
```

Processing Health Affects

Get only health affects

Calculate health affects (HEALTHDAMAGES)

```
health$HEALTHDAMAGES <- health$FATALITIES + health$INJURIES;</pre>
health.sum <- tapply(health$HEALTHDAMAGES, health$EVTYPE2, sum)</pre>
health.sum <- data.frame(EVTYPE2=names(health.sum),</pre>
                           HEALTHDAMAGES=health.sum, row.names=NULL)
health.sum <- health.sum[order(health.sum$HEALTHDAMAGES,
                                    decreasing=TRUE), ]
xt <- xtable(health.sum)</pre>
print(xt, type="html", include.rownames=FALSE)
EVTYPE2
HEALTHDAMAGES
TORNADO
96979.00
EXCESSIVE HEAT
8428.00
TSTM WIND
7461.00
FLOOD
7259.00
LIGHTNING
6046.00
HEAT
3037.00
FLASH FLOOD
2755.00
ICE STORM
2064.00
THUNDERSTORM WIND
1621.00
WINTER STORM
1527.00
HIGH WIND
1385.00
HAIL
1376.00
HURRICANE/TYPHOON
1339.00
```

HEAVY SNOW

THUNDERSTORM WINDS
972.00
BLIZZARD
906.00
FOG
796.00
RIP CURRENT
600.00
WILD/FOREST FIRE
557.00
HEAT WAVE
551.00
RIP CURRENTS
501.00
DUST STORM
462.00
WINTER WEATHER
431.00
TROPICAL STORM
398.00
AVALANCHE
394.00
EXTREME COLD
393.00
STRONG WIND
383.00
DENSE FOG
360.00
HEAVY RAIN
349.00
HIGH WINDS
337.00
HIGH SURF
260.00

WILDFIRE

GLAZE
223.00
TSUNAMI
162.00
WILD FIRES
153.00
EXTREME COLD/WIND CHILL
149.00
ICE
143.00
WIND
109.00
COLD/WIND CHILL
107.00
HURRICANE
107.00
URBAN/SML STREAM FLD
107.00
TSTM WIND/HAIL
100.00
WINTER WEATHER/MIX
100.00
HEAVY SURF/HIGH SURF
90.00
LANDSLIDE
90.00
COLD
86.00
WINTRY MIX
78.00
WINTER WEATHER MIX
68.00
RECORD HEAT
52.00

EXTREME HEAT

51.00
TROPICAL STORM GORDON
51.00
HEAVY SURF
48.00
DUST DEVIL
45.00
WATERSPOUT/TORNADO
45.00
SNOW SQUALL
37.00
ICY ROADS
36.00
MARINE STRONG WIND
36.00
MARINE THUNDERSTORM WIND
36.00
SNOW
36.00
SNOW/HIGH WINDS
36.00
FLOOD/FLASH FLOOD
32.00
WATERSPOUT
32.00
DRY MICROBURST
31.00
FREEZING RAIN
30.00
STRONG WINDS
29.00
UNSEASONABLY WARM AND DRY
29.00
MIXED PRECIP
28.00

STORM SURGE

FLASH FLOODING 27.00 THUNDERSTORMW 27.00 WINTER STORMS 27.00 BLACK ICE 25.00 TORNADOES, TSTM WIND, HAIL 25.00 EXCESSIVE RAINFALL 23.00 HIGH WIND AND SEAS 23.00 EXTREME WINDCHILL 22.00 HEAT WAVE DROUGHT 19.00 FREEZING DRIZZLE 17.00 MARINE TSTM WIND 17.00 RECORD/EXCESSIVE HEAT 17.00BLOWING SNOW 16.00 STORM SURGE/TIDE 16.00 TORNADO F2 16.00 WINTER STORM HIGH WINDS 16.00 GLAZE/ICE STORM 15.00

UNSEASONABLY WARM

15.00 COLD AND SNOW 14.00 FLASH FLOOD/FLOOD 14.00 ${\bf HIGH\ SEAS}$ 13.00 ROUGH SEAS 13.00 ${\bf THUNDERSTORM}$ 13.00 MARINE MISHAP 12.00 HEAVY SNOW/ICE 10.00 SMALL HAIL 10.00THUNDERSTORM WINDS 10.00 HIGH WINDS/SNOW 9.00 ${\rm FLOODING}$ 8.00 HURRICANE ERIN 7.00 HYPOTHERMIA/EXPOSURE 7.00 LOW TEMPERATURE 7.00 NON-SEVERE WIND DAMAGE 7.00 MUDSLIDE 6.00RAIN/SNOW 6.00

GUSTY WINDS

COASTAL FLOOD 5.00 COASTAL FLOODING/EROSION 5.00 COASTAL STORM 5.00 COLD WEATHER 5.00 ${\tt FLASH\ FLOODING/FLOOD}$ 5.00 HEAT WAVES 5.00 RIP CURRENTS/HEAVY SURF 5.00 ROUGH SURF 5.00 SNOW AND ICE 5.00 TYPHOON 5.00 DROUGHT 4.00 FROST 4.00 HEAVY RAINS 4.00HIGH WINDS/COLD 4.00 HIGH WIND/SEAS 4.00 OTHER 4.00 RIVER FLOOD 4.00 THUNDERSTORM WINDSS 4.00

TORRENTIAL RAINFALL	
4.00	
COASTAL FLOODING	
3.00	
COLD WAVE	
3.00	
FUNNEL CLOUD	
3.00	
HEAVY SEAS	
3.00	
HEAVY SURF AND WIND	
3.00	
HIGH WATER	
3.00	
LIGHT SNOW	
3.00	
MARINE ACCIDENT	
3.00	
RIVER FLOODING	
3.00	
TSTM WIND (G45)	
3.00	
BRUSH FIRE	
2.00	
COLD TEMPERATURE	
2.00	
DROUGHT/EXCESSIVE HEAT	
2.00	
EXCESSIVE SNOW	
2.00	
FALLING SNOW/ICE	
2.00	
FLASH FLOODS	
2.00	
FOG AND COLD TEMPERATURES	
2.00	

GUSTY WIND 2.00 HEAVY SNOW AND HIGH WINDS 2.00 HEAVY SNOW SHOWER 2.00 HURRICANE EDOUARD 2.00 HURRICANE-GENERATED SWELLS 2.00 HURRICANE OPAL 2.00 HURRICANE OPAL/HIGH WINDS ICE STORM/FLASH FLOOD 2.00 LANDSLIDES 2.00 MARINE HIGH WIND 2.00 ROGUE WAVE 2.00 SLEET 2.00 THUNDERSNOW 2.00 TORNADO F3 2.00 UNSEASONABLY COLD 2.00 WARM WEATHER 2.00 WINDS 2.00 AVALANCE

COASTALSTORM
1.00
COLD/WINDS
1.00
DROWNING
1.00
DRY MIRCOBURST WINDS
1.00
EXTENDED COLD
1.00
FLOOD & HEAVY RAIN
1.00
FLOOD/RIVER FLOOD
1.00
FREEZE
1.00
FREEZING RAIN/SNOW
1.00
FREEZING SPRAY
1.00
HAZARDOUS SURF
1.00
HEAVY SNOW/BLIZZARD/AVALANCHE
1.00
HIGH
1.00
HIGH SWELLS
1.00
HIGH WAVES
1.00
HIGH WIND 48
1.00
HIGH WIND/HEAVY SNOW
1.00
HURRICANE EMILY
1.00

HURRICANE FELIX
1.00
HYPERTHERMIA/EXPOSURE
1.00
HYPOTHERMIA
1.00
ICE ON ROAD
1.00
ICE ROADS
1.00
LIGHTNING.
1.00
LIGHTNING AND THUNDERSTORM WIN
1.00
LIGHTNING INJURY
1.00
MINOR FLOODING
1.00
MUDSLIDES
1.00
NON TSTM WIND
1.00
RAIN/WIND
1.00
RAPIDLY RISING WATER
1.00
RECORD COLD
1.00
SNOW/ BITTER COLD
1.00
SNOW SQUALLS
1.00
THUNDERSTORMS WINDS
1.00
THUNDERSTORM WIND (G40)

```
THUNDERSTORM WIND G52
1.00
THUNDERSTORM WINDS 13
1.00
THUNDERSTORM WINDS/HAIL
```

THUNDERTORM WINDS

1 00

1.00

TIDAL FLOODING

1.00

TSTM WIND (G35)

1.00

TSTM WIND (G40)

1.00

URBAN AND SMALL STREAM FLOODIN

1.00

WATERSPOUT TORNADO

1.00

WHIRLWIND

1.00

WIND STORM

1.00

Processing Economic Affects

Extract economic affects

Calculate economic damages (DMGCASH).

The numeric values and its multiple are present in different columns. The multipler can be either character (e.g "H", "K", "M" or "B" for hunderds, thousands, millions or billions) or exponent values. We assume the multiplier == 1 when it does not fall into either of the above two classes.

```
economic$PROPDMGEXP <- as.factor(toupper(as.character(economic$PROPDMGEXP)))
economic$CROPDMGEXP <- as.factor(toupper(as.character(economic$CROPDMGEXP)))

dvals <- unique(union(economic$PROPDMGEXP, economic$CROPDMGEXP))

DMGEXP <- numeric(18)
names(DMGEXP) <- dvals</pre>
```

Processing Event Class Affects

Make groups by events.

```
groups <- function (sd) {</pre>
                     <- grep("HEAT|HYPERTHERMIA", sd$EVTYPE2, ignore.case=TRUE)</pre>
    heat
                     <- grep("FIRE", sd$EVTYPE2, ignore.case=TRUE)
    fire
    drought
                     <- grep("DROUGHT", sd$EVTYPE2, ignore.case=TRUE)
                     <- grep("CURRENT|SURF|SEAS|WAVE|MARINE", sd$EVTYPE2, ignore.case=TRUE)</pre>
    coastal
    lightning
                     <- grep("LIGHTNING", sd$EVTYPE2, ignore.case=TRUE)
                     <- grep("RAIN|LANDSLIDE|MUDSLIDE|AVALANCH?E", sd$EVTYPE2, ignore.case=TRUE)</pre>
    rain
                     <- grep("FLOOD|TSUNAMI|WATER|FLD", sd$EVTYPE2, ignore.case=TRUE)</pre>
    flood
    fog
                     <- grep("FOG", sd$EVTYPE2, ignore.case=TRUE)
                     <- grep("SNOW|COLD|HYPOTHERMIA|WINTER|HAIL|BLIZZARD|ICE|ICY|FREEZ|FROST|GLAZE|WINTR</pre>
    snow.cold
                             sd$EVTYPE2, ignore.case=TRUE)
    blizzard
                     <- grep("BLIZZARD", sd$EVTYPE2, ignore.case=TRUE)
    tornado
                     <- grep("TORNADO", sd$EVTYPE2, ignore.case=TRUE)
    thunderstorm
                     <- grep("THUNDERSTORM|TSTM", sd$EVTYPE2, ignore.case=TRUE)</pre>
    hurricane
                     <- setdiff(grep("HURRICANE|TYPHOON", sd$EVTYPE2,</pre>
                                      ignore.case=TRUE), thunderstorm)
                     <- setdiff(grep("STORM", sd$EVTYPE2, ignore.case=TRUE),
    storm
                                union(thunderstorm, c(blizzard, hurricane)))
                     <- setdiff(grep("WIND", sd$EVTYPE2, ignore.case=TRUE), thunderstorm)</pre>
    wind
    accounted <- unique(c(tornado, heat, snow.cold, drought, flood, lightning, fire, rain, fog, coastal
                           thunderstorm, wind, hurricane, blizzard, storm))
    others <- setdiff(1:nrow(sd), accounted)
    groups <- data.frame()</pre>
    groups <- rbind(groups, data.frame(group="TORNADO", EVTYPE2=unique(sd[tornado, c("EVTYPE2")])))</pre>
    groups <- rbind(groups, data.frame(group="HEAT", EVTYPE2=unique(sd[heat, c("EVTYPE2")])))</pre>
    groups <- rbind(groups, data.frame(group="SNOW/COLD", EVTYPE2=unique(sd[snow.cold, c("EVTYPE2")])))
    groups <- rbind(groups, data.frame(group="DROUGHT", EVTYPE2=unique(sd[drought, c("EVTYPE2")])))
    groups <- rbind(groups, data.frame(group="FLOOD", EVTYPE2=unique(sd[flood, c("EVTYPE2")])))
    groups <- rbind(groups, data.frame(group="LIGHTNING", EVTYPE2=unique(sd[lightning, c("EVTYPE2")])))</pre>
    groups <- rbind(groups, data.frame(group="FIRE", EVTYPE2=unique(sd[fire, c("EVTYPE2")])))</pre>
    groups <- rbind(groups, data.frame(group="RAIN", EVTYPE2=unique(sd[rain, c("EVTYPE2")])))</pre>
```

groups <- rbind(groups, data.frame(group="FOG", EVTYPE2=unique(sd[fog, c("EVTYPE2")])))</pre>

Calculate health affects by storm event classes

GROUP

HEALTHDAMAGES

TORNADO

97068.00

HEAT

12363.00

SNOW/COLD

9327.00

DROUGHT

25.00

FLOOD

10480.00

LIGHTNING

6049.00

FIRE

1698.00

RAIN

914.00

FOG

```
COASTAL
2315.00
THUNDERSTORM
10298.00
WIND
2692.00
HURRICANE
1468.00
BLIZZARD
907.00
OTHER STORMS
4636.00
OTHER
125.00
Calculate economic affects by storm event classes
economic.grp <- groups(economic)</pre>
economic.mrg <- merge(economic.sum, economic.grp,</pre>
                        by.x="EVTYPE2", by.y="EVTYPE2",
                        all.x=TRUE, all.y=FALSE)
economic.mrg.sum <- tapply(economic.mrg$DMGCASH, economic.mrg$group, sum)</pre>
economic.mrg.sum <- data.frame(GROUP=names(economic.mrg.sum),</pre>
                               DMGCASH=economic.mrg.sum, row.names=NULL)
xt <- xtable(economic.mrg.sum)</pre>
print(xt, type="html", include.rownames=FALSE)
GROUP
DMGCASH
TORNADO
220003318555.78
HEAT
4706.04
SNOW/COLD
20001828422.38
DROUGHT
38253.45
FLOOD
```

22003072590.57 LIGHTNING 610292.89

FIRE

134789.03

RAIN

2000093457.15

FOG

17259.26

COASTAL

12972.51

THUNDERSTORM

80003113210.84

WIND

35015487311.30

HURRICANE

36824.44

BLIZZARD

26195.48

OTHER STORMS

296656.54

OTHER

12707.58

Results

Health Affects

Show top health affects

Economic Affects

Show top economic affects

```
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5))
sde.gp
```


Event Class Affects

We use multiplot function, which is obtained from http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/

Show health and economic affects by storm event classes

health.mrg.sum\$HEALTHDAMAGES <- health.mrg.sum\$HEALTHDAMAGES / 1000 economic.mrg.sum\$DMGCASH <- economic.mrg.sum\$DMGCASH / (10^9)

```
sdh.grp.gp <- ggplot(health.mrg.sum, aes(x=GROUP, y=HEALTHDAMAGES)) +
    xlab("Event Classes") +
    ylab("Health affects in Thousands") +
    geom_bar(stat="identity", fill=rainbow(n=length(health.mrg.sum$GROUP))) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5))

sde.grp.gp <- ggplot(economic.mrg.sum, aes(x=GROUP, y=DMGCASH)) +
    xlab("Event Classes") +
    ylab("Economic affects in Billions") +
    getitle("Economic affects") +
    geom_bar(stat="identity", fill=rainbow(n=length(economic.mrg.sum$GROUP))) +
    theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5))

multiplot(sdh.grp.gp, sde.grp.gp, cols=2)</pre>
```

Loading required package: grid

Conclusion

This paper presents the types of storm related events that are responsible for most negative affects in USA from $1950\ t0\ 2011$