Fluid2D: Parameter Description

general

Name: modelname

Default value: advection

Available value: advection, euler, boussinesq, quasigeostrophic

Description: Type of model

Name: expname

Default value: myexp

Description: Name of the experiment. Gives the prefix to the netcdf output files: "advection_his.nc"

contains the snapshots and "advection_diag.nc" contains integrals timeseries

domain and resolution

Name: nx

Default value: 128

Description: Number of gridpoints in x direction in the global grid.

Name: ny

Default value: 128

Description: Number of gridpoints in y direction in the global grid.

Name: Lx

Default value: 1.

Description: Domain length along x

Name: Ly

Default value: 1.

Description: Domain length along y

Name: geometry

Default value: disc

Available value: disc, perio, square, ychannel, xchannel

Description: Domain shape. It offers a bunch of predefined masks. You may change it in your script.

Name: isisland

Default value: False

Description: Activate to impose non-zero streamfunction along certain boundaries

Name: mpi

Default value: 0

Available value: 0,1

Description: whether mpi is activated or not

Name: myrank
Default value: 0

Description: rank of the process, working on the rank-th subdomain

Name: npx

Default value: 1

Description: number of subdomains (cores) in x

Name: npy

Default value: 1

Description: number of subdomains (cores) in y

time

Name: adaptable_dt
Default value: True

Description: Set whether the time step is recomputed in realtime according to the cfl

Name: dt

Default value: 0.1

Description: model time step if adaptable_dt is False

Name: cfl

Default value: 0.5

Description: desired cfl that sets the time step in the case of 'adaptable_dt'. dt is computed in core/

fluid2d.py

Name: dtmax

Default value: 5.

Description: Maximum time step of the model. It is import to control it for accelerated flows starting

from the rest state and/or for flows where the stability is dominated by waves propagation

Name: rescaledtime

Default value: none

Available value: none, enstrophy

Description: Measure time with either the model time (none) or a rescaled time (enstrophy)

Name: ninterrestart

Default value: 10

Description: Number of restart outputs during the integration.

numerics

Name: timestepping

Default value: RK3_SSP

Available value: EF,LF, Heun, RK3_SSP,AB2,AB3,RK4_LS

Description: Time scheme.

Name: order
Default value: 5

Description: Order of the advective flux discretization. Should be in [1,2,3,4,5] 1,3,5 are upwind

fluxes, 2,4 are centered fluxes

Name: nh

Default value: 3

Description: Number of ghost points in the halo

physics

Name: diffusion

Default value: False

Description: Add or not a diffusion term on tracer

Name: customized

Default value: False

Description: Customize the time step. If activated you should provide the name of the custom module

Name: Kdiff

Default value: 0.

Description: Diffusion coefficient. Has to be set manually. It should depends on the resolution.

Name: noslip

Default value: False

Description: Add a noslip condition along the boundaries

Name: enforce_momentum

Default value: False

Description: Enforce the global momentum conservation in closed domain in unforced case

plotting options

Name: plot_interactive

Default value: True

Description: Set on the interactive plotting. Turn it off to speed up the computation

Name: freq_plot
Default value: 1

Description: number of iterations between two plotting refresh

Name: colorscheme

Default value: minmax

Available value: minmax, symmetric, imposed

Description: Method to adjust the colorscale

Name: plotting_module
Default value: plotting
Available value: anything

Description: give the name of your plotting module (python script). It should look like core/

plotting.py