Deep Reinforcement Learning Methods for Recommender Systems

ADVANCED DEEP LEARNING COURSE PROJECT
BY BRIEUC DE VOGHEL

AGENDA

- Recommender System overview
- Reinforcement Learning overview
- Deep Deterministic Policy Gradient (DDPG)
- Twin Delayed Deep Deterministic Policy Gradient (TD3)
- Experimental results of application to Recommender System
- Conclusion

Recommender System overview

- Goal: suggesting items that best match users' preferences
- Huge practical applications across the board : search engines, streaming services, news, ...
- Shown to be of sequential nature
 - can be formulated as a Markov Decision Process
 - RL employed to solve it
- Based on user-item interactions
 - features describing the users and items
 - interaction events data: explicit & implicit (ratings, reviews, queries, clicks, views, device, location, ...)
- Multiple challenges:
 - dynamic nature of the problem
 - very sparse interactions
 - large action space
 - "cold start problem" (new items w/o interaction history)
 - ⇒ specific RL requirements

Reinforcement Learning for Recommender Systems

- Goal: selecting best action (recommendation) to maximize reward (clicks, views, purchases, ...)
- Agent : recommender system / algorithm
- Environment: user interacting with recommendations
- **Reward**: number of clicks
- State: updated user representation according to behavior
- Action: feature vector of predicted favorite features to be found in suggested items
- Once modeled for specific problem :
 - state is embedding of user profile w/ browsing history
 - dot product of action with item features allow to list preferred items; top-k are presented
 - user model and action model (unknown to agent) allow to mimic the behavior of users in the environment

Reinforcement Learning overview

- Q-Learning: Q table where each state has a value for all possible actions
- DQN introduces parametrization by neural network with weights : $Q(s, a) \approx Q(s, a, \theta)$
- Probabilistic method: Q network predicts probability of selecting each action
 - select action by finding $\max_{a}(Q(s, a))$
- Limitation : only handle discrete & low-dimensional action spaces (one output neuron per action)

Deep Q Network with s as input and Q values per action as output (probabilities of taking the action)

Deep Deterministic Policy Gradient (DDPG)

DDPG: Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N.M., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2016). Continuous control with deep reinforcement learning. CoRR, abs/1509.02971.

- Methods and techniques from :
 - DQN
 - replay buffer
 - shuffling
 - target Q-network
 - Deterministic Policy Gradient (DPG)
 - Batch normalization (not used : proved inconclusive)
- Deterministic : direct action prediction (vs stochastic : probability distribution)
- Off-policy learning : use of replay buffer
- Actor $\pi_{\theta}(a_t|s_t)$ Critic $\hat{Q}^{\pi}_{\phi}(s_t, a_t)$
 - actor : policy-based
 - critic : value-based (measures how good the action is)
- All updates based on SDG

DDPG: Replay buffer & Shuffling

- Replay buffer stores experienced sequences of <state, action, reward, next_state>
 - used for training of the actor and critic networks (see later)
- Agent's experiences are not sampled independently and identically distributed (i.i.d.)
 - optimization algo assumes i.i.d. samples for weight update
 - ⇒ agent learns on mini-batches, rather than online
 - improves sample efficiency

 different replay buffer management strategies (random sampling, prioritized experience replay, ...) are optimal in different problems (is problem dependent)

DDPG: Training the Actor

- Assuming we have an already trained critic
- Using observed state from the replay buffer :

- maximize predicted Q
- Weights of actor updated to follow the gradient of the Q value wrt the actions
 - actions are inputs of critic, but roles are symmetric for weights and parameters

DDPG: Training the Critic

- Assuming we have an already trained actor
- Using observed state, action, reward, and future state from the replay buffer:

• MSE of temporal difference error $\delta = (r + \gamma Q') - Q$ to be minimized

DDPG: Target network

- Tabular case: each Q-value is updated separately and independently
- Continuous state and action setting: interdependencies exist between target updates (everything is a function of Q)
- Critic learning: minimize MSE between target and predicted value (i.e. temporal difference (TD) error)
- Target $y_t = r_t + \gamma \max_{\alpha} (Q_{\phi}^{\pi}(s_{t+1}, \alpha) | \phi)$ is itself a function of Q_{ϕ}^{π}
 - leads to unstable behavior
 - ⇒ Key idea : "periods of supervised learning"
 - Compute loss function from separate target critic Q'^{π}_{ϕ} , (loss used to update actual critic)
 - Soft update target network $\phi' \leftarrow (1-\tau)\phi' + \tau \phi$ with gain $\tau \ll 1$
- Similar idea for Actor

DDPG: Exploration

- To allow the agent to understand the observation space and action space, exploration must be allowed
- At initialization: random actions (due to noisy init)
- Adding noise
 - to action : variability in selected action
 - Ornstein-Uhlenbeck process to generate temporally correlated noise with inertia
 - to observation (state) : parameter noise

DDPG: Limitations

- As descendant of Q-learning: suffers from over-estimation bias
 - slows down learning as Q needs to converge after having over-estimated performances
- Estimation errors build up over time :
 - falling into a local optima
 - experience catastrophic forgetting
- Sensitive to hyper-parameter tuning

Twin Delayed DDPG (TD3)

TD3: Fujimoto, S., Hoof, H. & Damp; Meger, D. (2018). Addressing Function Approximation Error in Actor-Critic Methods. Proceedings of the 35th International Conference on Machine Learning, in Proceedings of Machine Learning Research 80:1587-1596

- Improvement over DDPG tackling some of its limitations
- Inspired by Double Q-Learning
 - pair of independently trained critics : smallest value estimation is used
 - suggest to clip value estimate: upper-bound favors underestimation (which is not propagated)
 - need to have problem-specific knowledge
 - based on empirical evaluation
- Introduction of delayed policy updates
 - policy less frequently updated in comparison to value network
 - o updates on more stable value prediction
 - allows for better (lower variance) value estimation and prevents actor fooling

TD3: Addressing overestimation bias

- Overestimated values will propagate to neighboring states (through Bellman equation)
 - due to max operator in Q-learning
 - less clear in actor-critic setting : due to gradient direction being a local maximizer
 - tend to exploit over-estimated states until value lowers
 - o agent will lose a lot of time exploring these over-estimated states
 - Not the case for under-estimation
 - agent won't propagate as other states are more valuable
- Inaccurate value estimate may lead to poop policy updates
 - feedback loop is created
 - suboptimal actions will be higher rated by suboptimal critic
- Solution suggested by Double Q-Learning :
 - lowest of two independent value estimates will be "lesser of two evils"

TD3: Addressing variance build-up

- Introduction of delayed policy updates (discussed above)
- Target policy smoothing regularization: "similar actions should have similar values"
 - TD3 suggests to fit the value of small area around the target action

$$y = r + \mathbb{E}_{\varepsilon}[Q_{\phi}(s', \pi(s') + \varepsilon)]$$

o in practice: approximate expectation over actions by adding noise to the target policy

- Both DDPG and TD3 algorithms are applied to a recommender problem
- Virtual-Taobao : real-world online retail environment
- Metric used : click-trough-rate (CTR)
 - good indication of suggesting appropriate and relevant recommendations
 - rewards alone can be misleading: do not represent how many suggestions had to be made

Figure 1: Virtual-Taobao architecture for reinforcement learning.

Experimental results : Setup & Hyper-parameters

DDPG

- actor lr: 0.0001
- critic lr : 0.01
- gamma (discount factor): 0.95
- tau: 0.001
- hidden layer size : 128
- memory sample size : 100
- OU-noise sigma : 0.5 w/ decay over 1000 timesteps

TD3

- actor lr: 0.0001
- critic lr : 0.01
- gamma (discount factor): 0.99
- tau: 0.001
- hidden layer size : 128, 64
- memory sample size : 400
- Gaussian noise $\mathcal{N}(0,0.1)$
- Trained over 2000 episodes
- Implementation in PyTorch, trained on local machine

Conclusion

- Application of Deep RL techniques on the Recommender Problem
 - DDPG
 - TD3
- Identified key problems of DDPG and addressed by TD3
 - experimental results demonstrate benefits of suggested improvements

Further improvements

- Session-based recommendation (history of previous recommendations)
- Improve ability to learn long-term rewards
- Explore different replay buffer management strategies (random sampling, prioritized experience replay, ...)
 - used now: random sampling: samples do not correspond to an agent trajectory

Reinforcement Learning

- Goal: learn a policy π which maximizes expected reward
- Expected reward after taking action a_t in state s_t following policy π is described by action-value function $Q^{\pi}(s_t, a_t) = \mathbb{E}[R_t \mid s_t, a_t]$
- Recursive relationship by the Bellman equation :

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + \gamma \max_{a_{t+1}} (Q^{\pi}(s_{t+1}, a_{t+1}))$$

• Q-Learning: Q table where each state has a value for all possible actions

state / action	a_0	a_1	a_2	a_3
\mathbf{s}_0	0.66	0.88*	0.81	0.73
\mathbf{s}_1	0.73	0.63	0.9*	0.43
\mathbf{s}_2	0.73	0.9	0.95*	0.73
\mathbf{s}_3	0.81	0.9	1.0*	0.81
S 4	0.81	1.0*	0.81	0.9
\mathbf{s}_5	0.9	1.0*	0.0	0.9

- Off vs On policy learning :
 - off-policy: refers to learning about one way of behaving, called the target policy, from data generated by another way of selecting actions, called the behavior policy.
 - o reusing old data (e.g. replay buffer) : sample efficiency
 - more freedom for exploration
 - o able to learn from demonstration (imitation)
 - allow for transfer learning

DDPG: Training the Actor

Deterministic policy gradient theorem: the true policy gradient is

$$\nabla_{\boldsymbol{\theta}} \pi(\mathbf{s}_t, \mathbf{a}_t) = \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.)} [\nabla_a \hat{Q}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) \nabla_{\boldsymbol{\theta}} \pi(s|\boldsymbol{\theta})]$$

- $\nabla_a \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t)$ is used as error signal to update the actor weights.
- Comes from NFQCA
- $ightharpoonup
 abla_a \hat{Q}_{m{\phi}}^{\pi_{m{\theta}}}(\mathbf{s}_t, \mathbf{a}_t)$ is a gradient over actions
- y = f(w.x + b) (symmetric roles of weights and inputs)
- ▶ Gradient over actions ~ gradient over weights