PROBLEM BACKGROUND

"Gambler's Ruin" Analysis

Index

- Problem Background: Gambler's Ruin
- **Simulation:** Testing with 4 players
- Simulation: Analysis with 4 players

"Gambler's Ruin" Analysis

Question: "How long does it take for the following game to end for 3, or 4 people?"

Game Description:

- Let 3 (or 4) people start with amounts a, b, c, (and d).
- Randomly choose a pair of people from $\binom{3}{2}$ (or from $\binom{4}{2}$) choice
- Randomly choose a winner, who gains \$1, and a loser, who loses \$1
- Terminate when one of the players loses all their money.

Aim:

• Find E[T(a, b, c)] or E[T(a, b, c, d)], where 'T' is the completion time

"Gambler's Ruin" Analysis

We know that for m = 2, 3,

$$E[T(k_1, k_2, ..., k_m)] \xrightarrow{k_1, k_2, ..., k_m \longrightarrow \infty} \frac{m \cdot \prod_{i=1}^m k_i}{\sum_{i=1}^m k_i}$$

where,

$$m \stackrel{\Delta}{=} \text{Number of people}$$
 $T = \text{Termination Time}$

But what if m > 3?

SIMULATION RESULTS

"Gambler's Ruin" Analysis

We perform a simulation with:

$$[a, b, c, d] = [\$20, \$20, \$20]$$

Thus, with $E[T] = \frac{3abc}{a+b+c} = 400$, we performed around 2×10^5 gambles.

SIMULATION RESULTS

We perform a simulation with:

$$[a, b, c, d] = [\$20, \$20, \$20, k]$$
 where, $k \in \{\$20, \$30, \$40, \$50\}$

Thus, with $E[T] \sim 700$, we performed around **1.4** \times **10**⁸ gambles.

SIMULATION RESULTS

Section 4: Analysis with 4 players

Section 4: Analysis with 4 players

Question: "Why is $E[T_4] > E[T_3]$?"

Possible Reason:

- In the 4 player case, there are $\binom{4}{2} = 6$ pairs, of which $\binom{3}{1} = 3$ include the 4th player.
- On average, the 4th player contributes and takes away ~\$0 from each player as k_1 , k_2 , k_3 , $k_4 \rightarrow \infty$.
- Thus, case with 4th player is *very* similar to the case with 3rd player, given k_1 , k_2 , k_3 , $k_4 \rightarrow \infty$.
- We can consider any gamble involving the 4th player as a *wasted turn*.
- Since ~3/6 random pairs include the 4th player, we can say that $\mathbf{E}[\mathbf{T}_4] \sim \mathbf{2} \times \mathbf{E}[\mathbf{T}_3]$ when $k_1, k_2, k_3, k_4 \rightarrow \infty$.