Numărul de puncte ale curbelor eliptice

Adrian Manea

15 noiembrie 2019

Cuprins

	DE ADĂUGAT/CLARIFICAT	1
1	Curbe eliptice1.1 Generalități1.2 Aplicația Frobenius	4 4 5
2	Curbe eliptice peste corpuri finite	7
3	Algoritmul lui Schoof	8
	Index	12
	Bibliografie	12

	DE ADĂUGAT/CLARIFICAT
încă generalități	

INTRODUCERE

1.1 Generalități

Formal, curbele eliptice sînt varietăți proiective de dimensiune 1 și gen 1, dar ele pot fi definite și intuitiv, la nivel elementar, folosind forma dată de așa-numita *ecuație Weierstrass*.

Fără a intra în detalii generale privitoare la funcțiile Weierstrass, este suficient să definim o *curbă eliptică* printr-o ecuație de forma:

$$y^2 = x^3 + ax + b,$$

care este *nesingulară*, adică nu conține "colțuri" (eng. *cusps*) și autointersecții. În funcție de corpul peste care este definită curba eliptică, coeficienții *a, b* sînt elemente ale corpului respectiv.

Clasificarea curbelor eliptice se face folosind discriminantul curbei, care se definește prin:

$$\Delta = -16(4a^3 + 27b^2),$$

care trebuie să fie nenul ca să avem o curbă nesingulară.

Aplicațiile în geometrie algebrică și criptografie sînt facilitate de posibilitatea definirii unei structuri de grup pe mulțimea punctelor de pe o curbă eliptică. Această structură de grup este bine precizată riguros, folosind *divizori* (cf., de exemplu, [Silverman, 2009], III.§2), dar pentru scopurile lucrării prezente va fi suficient să descriem operația de grup intuitiv.

Astfel, fie P și Q două puncte de pe curbă. Putem descrie punctul P + Q astfel: se trasează dreapta care conține cele două puncte și al treilea punct de intersecție al acestei drepte cu curba se definește ca fiind opusul rezultatului.

Formal, avem:

Definiție 1.1: Fie *E* o curbă eliptică și fie *P*, *Q* două puncte pe *E*.

Fie L dreapta prin P și Q (dacă P = Q, atunci L va fi tangenta în P). Fie R un al treilea punct de intersecție al lui L cu E.

Fie L' dreapta care uneste R si O = [0, 1, 0], punctul de la infinit.

Atunci L' intersectează E în R, O și un al treilea punct, care se notează P + Q.

Operația este ilustrată în figura 1.1

Figura 1.1: Adunarea punctelor pe o curbă eliptică, [Silverman, 2009], p. 51

Cu această operație (E, +) formează un grup abelian, cu elementul neutru O = [0, 1, 0].

Exemplu 1.1: Fie curba eliptică *E*, definită peste Q prin ecuatia Weierstrass:

$$E: y^2 = x^3 + 17.$$

Calcule simple găsesc cîteva puncte cu coordonate întregi:

$$P_1 = (-2,3), P_2 = (-1,4), P_3 = (2,5), P_4 = (4,9), P_5 = (8,23).$$

Folosind operatia de grup, putem verifica relațiile:

$$P_5 = -2 \cdot P_1, \quad P_4 = P_1 - P_3.$$

Mai general, de fapt, se poate arăta că orice punct rațional $P \in E(\mathbb{Q})$ poate fi scris sub forma:

$$P = mP_1 + nP_3, \quad m, n \in \mathbb{Z},$$

de unde rezultă că $E(\mathbb{Q}) = \mathbb{Z} \times \mathbb{Z}$.

1.2 Aplicația Frobenius

Lucrăm în cazul particular cînd curba E este definită peste un corp finit \mathbb{F}_q (caz dezvoltat și în secțiunile următoare). Așadar, considerăm q o putere a unui prim p, iar \mathbb{F}_q va fi corpul cu q elemente.

Se definește aplicația Frobenius prin:

$$\phi: E \to E, \quad \phi(x, y) = (x^q, y^q).$$

Mai general, dacă K este un corp care-l extinde pe \mathbb{F}_q , se poate defini morfismul Frobenius F în general prin $\alpha \mapsto \alpha^q$.

Cîteva proprietăți elementare, preluate fără demonstrație din [Soeten, 2013]:

Propoziție 1.1: Aplicația $F: K \to K$ de mai sus satisface proprietățile:

- (a) $F(xy) = F(x)F(y), \forall x, y \in K$;
- (b) $F(x + y) = F(x) + F(y), \forall x, y \in K$;
- (c) $\mathbb{F}_q = \{ \alpha \in K \mid F(\alpha) = \alpha \};$
- (d) Dacă $K = \mathbb{F}_q(t)$ este corpul de funcții raționale peste \mathbb{F}_q , într-o nedeterminată t, atunci pentru o funcție rațională $\gamma \in \mathbb{F}_q(t)$ are $\log F(\gamma(t)) = \gamma(t^q)$.

Demonstrațiile sînt manipulări algebrice simple ale proprietăților corpurilor finite, precum și ale caracteristicii q, în mod esential.

De asemenea, aplicația Frobenius este bijectivă.

încă generalități...

CURBE ELIPTICE PESTE CORPURI FINITE

Lucrăm acum într-un caz particular, acela al curbelor eliptice definite peste corpuri finite \mathbb{F}_q . Notațiile pe care le fixăm sînt:

- *q*, o putere a unui prim *p*;
- \mathbb{F}_q , un corp finit cu q elemente;
- $\overline{\mathbb{F}}_q$, o închidere algebrică a lui \mathbb{F}_q .

Fie acum E/\mathbb{F}_q o curbă eliptică definită peste un corp finit. Vrem să estimăm numărul punctelor din $E(\mathbb{F}_q)$, notat # $E(\mathbb{F}_q)$, adică una sau mai multe soluții ale ecuației Weierstrass scrisă în forma:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \quad (x, y) \in \mathbb{F}_q^2.$$

Evident că valoarea lui x conduce la cel mult 2 valori pentru y, deci vom avea o margine superioară:

$$\#E(\mathbb{F}_q) \leq 2q + 1.$$

Dar o ecuație pătratică aleatorie are mici șanse să fie rezolvabilă în \mathbb{F}_q , deci ne așteptăm ca marginea superioară să conțină mai curînd q, nu 2q.

Rezultatul important de mai jos a fost formulat ca o conjectură de E. Artin în 1924 și demonstrat de H. Hasse în 1933:

Teoremă 2.1 (Hasse): Fie E/\mathbb{F}_q o curbă eliptică definită peste corpul finit \mathbb{F}_q .

Atunci:

$$\left|\#E(\mathbb{F}_q)-q-1\right|\leq 2\sqrt{q}.$$

ALGORITMUL LUI SCHOOF

clarifică!

Există o abordare algoritmică pentru a număra punctele unei curbe eliptice definită peste un corp finit. Știm din teorema lui Hasse (teorema 2.1) că:

$$#E(\mathbb{F}_q) = q + 1 - a_1, \quad |a_q| \le 2\sqrt{q}.$$

Pentru aplicații criptografice, însă, este util să avem o metodă eficientă de a calcula numărul de puncte din $E(\mathbb{F}_q)$.

Pentru simplitate, vom presupune că lucrăm cu q impar și că E este dată de ecuația Weierstrass de forma:

$$E: y^2 = f(x) = 4x^3 + b_2x^2 + 2b_4x + b_6,$$

pentru care mare parte din rezultatele folosite vor fi valabile și în caracteristică 2, cu mici modificări.

Există o metodă directă, dar deloc simplă, de a calcula numărul de puncte, care folosește simboluri Legendre:

$$a_q = \sum_{x \in \mathbb{F}_q} \left(\frac{f(x)}{q} \right),\,$$

dar fiecare simbol Legendre se calculează folosind reciprocitatea pătratică în $O(\log q)$ pași, deci în total avem $O(q \log q)$ pași, adică un algoritm exponențial.

În continuare, descriem un algoritm care calculează # $E(\mathbb{F}_q)$ în timp polinomial, i.e. $O(\log^c q)$, cu c fixat, independent de q. Ideea acestui algoritm este să se calculeze $a_q \mod \ell$ pentru prime mici ℓ și apoi să se folosească lema chineză a resturilor pentru a recompune a_q .

Fie aplicația:

$$\tau: E(\overline{\mathbb{F}}_q) \to E(\overline{\mathbb{F}}_q), \quad (x, y) \mapsto (x^q, y^q),$$

aplicația Frobenius de putere q, deci știm că are loc:

$$\tau^2 - a_q \tau + q = 0$$

în End(E). În particular, pentru $P \in E(\mathbb{F}_a)[\ell]$, are loc:

$$\tau^{2}(P) - [a_{q}]\tau(P) + [q]P = O,$$

deci dacă punem P = (x, y) și presupunem $P \neq O$, avem:

$$(x^{q^2}, y^{q^2}) - [a_q](x^q, y^q) + [q](x, y) = O.$$

Deoarece am presupus că P = (x, y) are ordinul ℓ , rezultă:

$$[a_q](x^q, y^q) = [n_\ell](x^q, y^q),$$

pentru un $n_{\ell} \equiv a_q \mod \ell$ și $0 \le n_{\ell} < \ell$.

Similar, putem calcula [q](x, y) prin a reduce q modulo ℓ mai întîi.

Nu trebuie să știm exact valoarea lui n_{ℓ} , deci pentru orice întreg între 0 și ℓ calculăm $[n](x^q, y^q)$ pentru orice punct $(x, y) \in E[\ell] - \{O\}$ și verificăm dacă satisface:

$$[n](x^q, y^q) = (x^{q^2}, y^{q^2}) + [q](x, y).$$

Problema care apare este că punctele din $E[\ell]$ sînt definite peste extinderi destul de mari ale lui \mathbb{F}_q , deci va trebui să lucrăm cu toate punctele de ℓ -torsiune simultan. Pentru aceasta, folosim polinomul $\psi_\ell(x) \in \mathbb{F}_q[x]$, ale cărui rădăcini sînt coordonatele x ale punctelor nenule de ℓ -torsiune din E (presupunem, pentru simplitate, $\ell \neq 2$). Acest polinom are gradul $\frac{1}{2}(\ell^2-1)$ și se poate calcula simplu (v. Ex. 3.7, pagina 105). Acum putem lucra în inelul factor:

$$R_{\ell} = \frac{\mathbb{F}_q[x,y]}{\psi_{\ell}(x), y^2 - f(x)}.$$

Rezultă că, dacă avem o putere neliniară a lui y, putem înlocui y^2 cu f(x) și dacă avem o putere x^d , mai mare decît $\frac{1}{2}(\ell^2-1)$, putem împărți la $\psi_\ell(x)$ și luăm doar restul. Astfel, nu lucrăm niciodată cu polinoame de grad mai mare decît $\frac{1}{2}(\ell^2-3)$.

Scopul va fi să calculăm $a_q \mod \ell$ pentru suficiente prime ℓ și apoi să găsim a_q . Teorema lui Hasse (2.1) ne dă $|a_q| \le 2\sqrt{q}$, deci este suficient să luăm primele $\ell \le \ell_{\max}$ astfel încît:

$$\prod_{\ell \le \ell_{\max}} \ell \ge 4\sqrt{q}.$$

Teoremă 3.1 (Algoritmul Schoof): Fie E/\mathbb{F}_q o curbă eliptică. Algoritmul descris la 1 este unul în timp polinomial pentru a calcula $\#E(\mathbb{F}_q)$. Mai precis, calculează $\#E(\mathbb{F}_q)$ în $O(\log^8 q)$ pași.

Algorithm 1 Algoritmul lui Schoof

```
ightharpoonup returnează #E(\mathbb{F}_a)
 1: procedure Schoof(q, a)
          A \leftarrow 1
 2:
          \ell \leftarrow 3
 3:
          while A < 4\sqrt{q} do
 4:
                while n = 0, 1, 2, ..., \ell - 1 do
 5:
                     if (x^{q^2}, y^{q^2}) + [q](x, y) = [n](x^q, y^q) then break
 6:
 7:
                end while
 8:
                A \leftarrow \ell \cdot A
 9:
                n_{\ell} = n
10:
                \ell \leftarrow \text{urm \ atorul prim} \ \ell
11:
          end while
12:
          Lema Chineză \Rightarrow a \equiv n_{\ell} \mod \ell, \forall n_{\ell}
13:
          returnează #E(\mathbb{F}_q) = q + 1 - a
14:
15: end procedure
```

Demonstrație. Arătăm că timpul de rulare pentru algoritmul Schoof este $O(\log^8 q)$. Mai întîi:

(a) Cel mai mare număr prim ℓ folosit în algoritm are proprietatea $\ell \leq O(\log q)$:

Teorema de distribuție a numerelor prime poate fi rescrisă în forma:

$$\lim_{x \to \infty} \frac{1}{x} \sum_{\substack{\ell \le x \\ l \text{ prim}}} \log \ell = 1.$$

Rezultă $\prod_{\ell < x} \ell \simeq e^x$, deci pentru a face ca produsul să fie mai mare decît $4\sqrt{q}$, este suficient să luăm $x \simeq \frac{1}{2} \log(16q)$.

(b) Înmulțirea în inelul R_{ℓ} se poate face în $O(\ell^4 \log^2 q)$ operații pe biți:

Elementele inelului R_{ℓ} sînt polinoame de grad $O(\ell^2)$. Înmulțirea între două astfel de polinoame și reducerea modulo $\psi_{\ell}(x)$ consumă $O(\ell^4)$ operații elementare (adunări și înmulțiri) în corpul \mathbb{F}_q . Similar, înmulțirea în \mathbb{F}_q consumă $O(\log^2 q)$ operați pe biți.

Rezultă că operațiile de bază în R_{ℓ} consumă $O(\ell^4 \log^2 q)$ operații pe biți.

(c) Sînt necesare $O(\log q)$ operații în inelul R_ℓ pentru a reduce x^q, y^q, x^{q^2} și y^{q^2} în inelul R_ℓ : În general, sînt necesare $O(\log n)$ operații pentru a calcula puterile x^n și y^n în R_ℓ . Dar aceste operații sînt făcute o singură dată, iar apoi putem stoca punctele de forma:

$$(x^{q^2}, y^{q^2}) + [q \mod \ell](x, y)$$
 și (x^q, y^q)

pe care apoi le folosim în pasul 4 al algoritmului Schoof.

Folosind operațiile elementare de mai sus, putem estima timpul de rulare pentru algoritmul Schoof. Din (a), obținem că avem nevoie doar de ℓ prime care sînt mai mici decît $O(\log q)$ și cum există $O\left(\frac{\log q}{\log\log q}\right)$ asemenea prime, rezultă că liniile 4-12 din algoritmul lui Schoof se execută de atîtea ori. Apoi, de fiecare dată cînd se intră în bucla controlată de A, se execută bucla controlată de n (liniile 5-8) de $\ell = O(\log q)$ ori.

Mai departe, cum $\ell = O(\log q)$, din afirmația (b) de mai sus, rezultă că operațiile de bază din R_ℓ durează $O(\log^6 q)$ operații pe biți. Valoarea $[n](x^q, y^q)$ din linia 6 a algoritmului se poate calcula în O(1) operații în R_ℓ , știind valoarea anterioară $[n-1](x^q, y^q)$.

Rezultă că numărul total de pași este:

$$\underbrace{O(\log q)}_{\text{bucla A}} \cdot \underbrace{O(\log q)}_{\text{bucla n}} \cdot \underbrace{O(\log^6 q)}_{\text{operații pe biți}} = O(\log^8 q) \text{ operații pe biți.}$$

Am demonstrat, deci, că algoritmul lui Schoof calculează $\#E(\mathbb{F}_q)$ în timp polinomial.

Remarcăm că cele mai costisitoare etape sînt calculele în inelul R_{ℓ} , care este o extindere a lui \mathbb{F}_q , de grad $2\ell^2$. Așadar, deși marginea pentru ℓ este liniară în $\log q$, pentru valori mari ale lui q, și marginea pentru ℓ și dimensiunea inelului R_{ℓ} peste \mathbb{F}_q sînt mari.

Exemplu: Fie $q \approx 2^{256}$, o valoare utilizată în practică în aplicații criptografice. Rezultă:

$$\prod_{\ell \leq 103} \ell \simeq 2^{133} > 4\sqrt{q} = 2^{130},$$

deci cel mai mare prim ℓ utilizat de algoritmul lui Schoof este ℓ = 103.

Rezultă că un element din $V = \mathbb{F}_q[x]/\psi_\ell(x)$ este reprezentat de un \mathbb{F}_q -vector de mărime $103^2 \simeq 2^{13}$, iar fiecare element al \mathbb{F}_q este un număr pe 256 biți. Așadar, elementele din V ocupă aproximativ 2^{22} biți, adică mai mult de 16 kB. Mărimea nu este nerezonabilă pentru computerele moderne, totuși calcule intensive în inele ale căror elemente se stochează pe 16 kB durează considerabil.

[Husemoller, 2004] Husemoller, D. (2004). Elliptic Curves. Springer.

[Silverman, 1994] Silverman, J. (1994). Advanced Topics in the Arithmetic of Elliptic Curves. Springer.

[Silverman, 2009] Silverman, J. (2009). The Arithmetic of Elliptic Curves. Springer.

[Soeten, 2013] Soeten, M. (2013). Hasse's theorem on elliptic curves. Master's thesis, Rijkuniversiteit Groningen.

[Washington, 2008] Washington, L. (2008). *Elliptic Curves, Number Theory and Cryptography*. Chapman and Hall.