

## Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе № 8 Свиридов Фёдор, Александр Слободнюк, Владимир Попов

## «Измерение энтропии»

Рабочие формулы и исходные данные.

Рис. 1:



В опыте используется сплав массой  $M_0=120\ {
m r.}$  , который состоит из 60~%олова и 40~%свинца. Также в процессе теплообмена участвует стальная ампула массой  $M_a=500$  г. Удельные теплоёмкости данных материалов:

$$C_a(\text{сталь}) = 460 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

$$C_{Sn} = 228 \frac{AK}{\text{K}\Gamma \cdot \text{K}}$$

$$C_{Pb} = 128 \frac{\mathcal{L}_{KE}}{KE}$$

пула массои  $M_a=500$  г. Удельные теплоемкости  $C_a(\text{сталь})=460~\frac{Дж}{\text{кг-K}}$   $C_{Sn}=228~\frac{Дж}{\text{кг-K}}$   $C_{Pb}=128~\frac{Дж}{\text{кг-K}}$  Следовательно, удельная теплоёмкость сплава:

$$C_0 = 0.6 C_{Sn} + 0.4 C_{Pb} = 188 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}$$

Изменение энтропии:

$$S_2 - S_1 = \frac{\lambda M_0}{T} \tag{1}$$

Удельная теплота кристаллизации сплава:

$$\lambda = \frac{C_0 M_0 + C_a M_a}{M_0} \frac{\Delta T}{\Delta t} \Delta t_k \tag{2}$$

, где  $\frac{\Delta T}{\Delta t}$   $\Delta t_k$  средняя скорость остывания сплава на участках  $1^{'}\to 1$  и  $2\to 2^{'}($ Puc. 1);  $\Delta t_k$  - время кристаллизации сплава

**Результаты прямых измерений и их обработки.** Результаты прямых измерений находятся в приложении.

Время кристаллизации металла  $\Delta t_k = 960$  с.

Температура кристаллизации  $T_k = \frac{176,1+172,1}{2} = 174,1 \; (^{\circ}\mathrm{C})$ 



## Приложение

| Таблица 1: Зависимость температуры от времени |                |      |                        |      |                |      |              |
|-----------------------------------------------|----------------|------|------------------------|------|----------------|------|--------------|
| t, c                                          | T, $^{\circ}C$ | t, c | $\mid T, \circ C \mid$ | t, c | T, $^{\circ}C$ | t, c | $T, \circ C$ |
| 0                                             | 191.6          | 500  | 175.3                  | 1000 | 173.7          | 1500 | 143.1        |
| 20                                            | 190.0          | 520  | 175.2                  | 1020 | 173.6          | 1520 | 141.9        |
| 40                                            | 188.0          | 540  | 175.2                  | 1040 | 173.5          | 1540 | 140.6        |
| 60                                            | 186.1          | 560  | 175.2                  | 1060 | 173.3          | 1560 | 139.2        |
| 80                                            | 184.0          | 580  | 175.1                  | 1080 | 173.2          | 1580 | 138.0        |
| 100                                           | 181.9          | 600  | 175.1                  | 1100 | 173.0          | 1600 | 136.6        |
| 120                                           | 180.2          | 620  | 175.1                  | 1120 | 172.7          | 1620 | 135.4        |
| 140                                           | 178.5          | 640  | 175.1                  | 1140 | 172.4          | 1640 | 134.2        |
| 160                                           | 177.0          | 660  | 175.0                  | 1160 | 172.1          | 1660 | 133.0        |
| 180                                           | 176.3          | 680  | 175.0                  | 1180 | 170.7          | 1680 | 131.7        |
| 200                                           | 176.1          | 700  | 174.9                  | 1200 | 169.1          | 1700 | 130.4        |
| 220                                           | 176.1          | 720  | 174.8                  | 1220 | 167.0          | 1720 | 129.1        |
| 240                                           | 176.6          | 740  | 174.8                  | 1240 | 164.6          | 1740 | 128.0        |
| 260                                           | 176.8          | 760  | 174.8                  | 1260 | 162.4          | 1760 | 126.9        |
| 280                                           | 176.8          | 780  | 174.7                  | 1280 | 160.5          | 1780 | 125.7        |
| 300                                           | 176.8          | 800  | 174.7                  | 1300 | 158.7          | 1800 | 124.5        |
| 320                                           | 176.6          | 820  | 174.6                  | 1320 | 156.7          | 1820 | 123.4        |
| 340                                           | 176.4          | 840  | 174.5                  | 1340 | 155.1          | 1840 | 122.2        |
| 360                                           | 176.2          | 860  | 174.4                  | 1360 | 153.6          | 1860 | 120.9        |
| 380                                           | 176.1          | 880  | 174.3                  | 1380 | 151.7          | 1880 | 120.0        |
| 400                                           | 175.9          | 900  | 174.2                  | 1400 | 150.3          | 1900 | 118.8        |
| 420                                           | 175.7          | 920  | 174.1                  | 1420 | 148.7          | 1920 | 117.7        |
| 440                                           | 175.6          | 940  | 174.0                  | 1440 | 147.0          | 1940 | 116.6        |
| 460                                           | 175.4          | 960  | 173.9                  | 1460 | 145.9          |      |              |
| 480                                           | 175.3          | 980  | 173.8                  | 1480 | 144.2          |      |              |