11 January 2025 11:12 Coscuit Stock
C 4 0 126
0 2 2 12 $\chi \rightarrow cseud 1$
T 2 4 20 y - craw2
pofit 2 max f(x,y) = 2x+3y
x ≤ y < x+3 y ≤ 10
$4x \le 16$, $2x + 2y \le 12$, $2x + 4y \in 20$, 470
Graphical method 4 (9,4)
3 (4,2) +
2 4
x+y < 67 x>,0 ×
$\chi + 2y < 10$ $y > 0$ $y = 4$
fearible region
* The oftimal solution of a L.P.P hier at
the corner of fearible segim.
1 / 9 corner 1 /
(romers of fearing (0,0), (0,5) (4,0), (2,4), (4,2) & corunt 1 / 4 corunt 2
26.11 2 15 8 (16) 14
feature (0,0), (0,5) (4,0), (2,4), (4,2) 4 cruis 2 f(x,y) 0 15 8 (16) 14 4 cruis 2
of time south (x,y) = $3x + 3y$ of time south (x,y) + (x,y) \in
Max $f(x,y) = \partial x + 3y$ of timed solution (x_0, y_0) $f(x_0, y_0) \ge f(x_0, y_0) + (x_0, y_0) \in f(x_0, y_0)$
n (1 x x x x x x x x) / x; ER ?
$\int_{-\infty}^{\infty} \mathbb{R}^{n} = \left\{ \left(\chi_{1,1} \chi_{\alpha_{1}-1} \chi_{n} \right) \middle \chi_{i} \in \mathbb{R}^{2} \right\}$ $= \left(\chi_{1,1} \chi_{\alpha_{1}-1} \chi_{n} \right) \bigvee_{n \in \mathbb{N}} \mathbb{R}^{n} $ New Section 17 Reco.
Navy Section 17 Dece 1

New Section 17 Page 1

$$R'' = \frac{1}{2} \left(\frac{\chi_{1,} \chi_{0,1} - 1}{\chi_{0,1} \chi_{0,1}} \right)$$

$$= \frac{1}{2} \left(\frac{\chi_{1,} \chi_{0,1} - 1}{\chi_{0,1}} \right) + \frac{1}{2} \left(\frac{\chi_{1,} \chi_{0,1}}{\chi_{1,1}} \right)$$

Sinear Combination:
$$\begin{array}{lll}
\mathbb{R}^2 &=& \{ (x,y) \mid x_1 \text{ yere} \} \\
\mathbb{R}^2 &=& \{ (x,y) \mid x_1 \text{ yere} \} \\
\mathbb{R}^3 &=& \{ (x,y) \mid x_1 \text{ yere} \} \\
\mathbb{R}^3 &=& \{ (x,0) \mid x_1 \text{ yere} \} \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,0) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}^3 &=& \{ (x,x) \mid (x,y) \mid (x,y) \mid (x,y) \mid (x,y) \\
\mathbb{R}$$

$$\begin{array}{lll}
\text{det} & \times_{1}, \times_{8}, -, \times_{R} \in \mathbb{R}^{n} \\
(1,0,0) & (1,1,0,0) & (-) \\
\text{Unear containation of } & \times_{1}, \times_{9}, -, \times_{R} & \text{is} \\
& \times_{1} \times_{1} + \lambda_{9} \times_{9} + - + \lambda_{R} \times_{R} \\
& \times_{1} \times_{1} + \lambda_{3} \times_{9} + - + \lambda_{R} \times_{R} \\
& \times_{1} \times_{1} + \lambda_{3} \times_{9} + - + \lambda_{R} \times_{R} \\
& \times_{1} \times_{1} + \lambda_{3} \times_{9} + - + \lambda_{R} \times_{R} \\
& \times_{1} \times_{1} + \lambda_{3} \times_{9} + - + \lambda_{R} \times_{R} \\
& \times_{1} \times_{1} + \lambda_{3} \times_{9} + - + \lambda_{R} \times_{R} \\
& \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \\
& \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \\
& \times_{1} \\
& \times_{1} \times_{1$$

$$\frac{(\chi_1 y) + (\chi_2 y)(1,0) + y(1,1) + o(0,1)}{(\chi_1 y) = (\chi_2 y)(1,0) + y(1,1) + o(0,1)}$$
 Expression is Novelle 1.

$$(2,5) = 2(1,0) + 5(0,1)$$

Basis: A subset S of IRn is called
Basis of IRn if every vector of IRT can be expressed as £c.
of rectors in S in unique way.

(1,0)) Not a Bain of 1R2

 $(0,y) \neq \lambda(\iota,0)$ $\{(1,0), (1,1), (0,1)\}$

(2,5) = 2(1,0) + 0(1,1) + 5(0,1) (2,5) = -3(1,0) + 5(1,1) + 0(0,1)

S(1,0), (0,1)}, {(2,0), (0,2)}, {(1,0), (1,1)}

Dimension of V.S.

Dimension of IRM = n Baris of 1Rn $= \{ (1,0,-,0), (0,1,0-,0), (0,0,1,0-0),$ __ (0,0,-,0,1)}

$$(\chi_1, \chi_2, -, \chi_n)$$

= $\chi_1(1,0,-0) + \chi_2(0,1,-0) + ---+ \chi_n(0,0,-,0,1)$.