# UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno



Gráficas y Juegos

## Tarea 7

1. (a) Demuestre que si G tiene diámetro mayor que 3 (posiblemente infinito), entonces  $\overline{G}$  tiene diámetro menor que 3. Concluya que si G es inconexa, entonces  $\overline{G}$  es conexa.

Demostración: Sea G una gráfica.

Probaremos que  $\overline{G}$  tiene diámetro menor a 3.

Primero, sabemos que G tiene diametro mayor a 3 entonces tomemos una trayectoria P de G tal que su longitud es n (con n > 3).

La denotaremos como:

$$P = (x_0, x_1, \dots, x_n)$$

Ahora, por definición de  $\overline{G}$  es tal que:

$$|E_{\overline{G}}| = \binom{|V| - 1}{2} - |E_G|$$

Por tanto, en  $\overline{G}$  la trayectoria P cambia de la siguiente manera:

- El vértice  $x_0$  es adyacente a los vértices  $x_2, x_3, \ldots, x_n$ , donde esto equivale a n-1 vértices.
- El vértices  $x_1$  es adyacente a los vértices  $x_3, x_4, \ldots, x_n$ , donde esto equivale a n-2 vértices.
- El vértice  $x_2$  es adyacente a los vértices  $x_0, x_4, \ldots, x_n$ , donde esto equivale a n-2 vértices.

Siguiendo este procedimiento, tenemos lo siguiente:

• El vértice  $x_i$  es advacente a los vértices  $x_{i-2}, x_{i+2}, x_{i+3}, \dots, x_n$ , con i > 1.

Así, notemos lo siguiente:

En  $\overline{G}$   $x_0$  no es adyacente a  $x_1$ , entonces necesitamos otro vértice  $x_3$  para llegar a  $x_1$ . Lo que implica que nos toma distancia igual a 2 llegar de  $x_0$  a  $x_1$ .

De la misma forma,  $x_1$  no es adyacente a  $x_0$  ni a  $x_2$ , entonces necesitamos otro vértice  $x_4$  para llegar a  $x_0$  o  $x_2$ . Lo que implica que nos toma distancia igual a 2 llegar de  $x_1$  a  $x_0$  o de  $x_1$  a  $x_2$ .

De lo anterior obtenemos que:

El vértice  $x_i$  no es adyacente al vértice  $x_{i-1}$  ni al vértice  $x_{i+1}$ , entonces necesitamos otro vértice  $x_{i+2}$  para llegar a  $x_{i-1}$  o  $x_{i+1}$ . Lo que implica que nos toma distancia igual a 2 llegar de  $x_i$  a  $x_{i-1}$  o de  $x_i$  a  $x_{i+1}$ .

Por lo tanto,  $\overline{G}$  tiene diámetro menor a 3.

Aún más, si G es inconexa entonces  $\overline{G}$  es conexa (ya que por definición, para cualesquiera dos vértices distintos  $u, v \in G$  se tiene que  $uv \in E_{\overline{G}}$  si y sólo si  $uv \notin E_G$ ). Es decir, en  $\overline{G}$  estarán todas las aristas que no estén en G.

(b) Una gráfica G es autocomplementaria si  $G \cong \overline{G}$ . Demuestre que si G es autocomplementaria, entonces  $|V| \stackrel{4}{=} 0$  o  $|V| \stackrel{4}{=} 1$ .

**Demostración:** Primero, sabemos que si  $G \cong \overline{G}$  entonces  $V_G = V_{\overline{G}}$ .

Probaremos que  $|E_G| = |E_{\overline{G}}|$ . Veamos lo siguiente:

$$|V| \stackrel{4}{\equiv} 1 \longrightarrow |V| \equiv 1 \mod 4$$

Recordando la definición de mod , tenemos:

$$\begin{aligned} |V| &\equiv 1 \mod 4 \longrightarrow 4 \ \Big| |V| - 1 \\ &\longrightarrow |V| - 1 = 4 \cdot k, \text{ con } k \in \mathbb{N} \\ &\longrightarrow |V| = 4 \cdot k + 1 \end{aligned}$$

Luego, por definición de  $\overline{G}$ , tenemos:

$$|E_{\overline{G}}| = \binom{|V|-1}{2} - |E_G|$$

Sea  $n = |V_G|$ . Así,

$$|E_G| = |E_{\overline{G}}|$$

$$= {|V_G| - 1 \choose 2} - |E_G|$$

$$= {n - 1 \choose 2} - (n - 1), \text{ porque sabemos que } |E_G| = |V_G - 1| \text{ y } |V_G| = n$$

$$= \frac{(n - 1)!}{2! \cdot ((n - 1) - 2)!} - (n - 1)$$

$$= \frac{(n - 1)!}{2! \cdot (n - 1 - 2)!} - (n - 1)$$

$$= \frac{(n - 1)!}{2! \cdot (n - 3)!} - (n - 1)$$

$$= \frac{(n-1)(n-2)(n-3)!}{2! \cdot (n-3)!} - (n-1), \text{ porque } n! = n \cdot (n-1) \cdot (n-2)!$$

$$= \frac{(n-1)(n-2)(n-3)!}{2! \cdot (n-3)!} - (n-1)$$

$$= \frac{(n-1)(n-2)}{2!} - (n-1)$$

$$= \frac{(n-1)(n-2)}{2} - (n-1), \text{ porque } 2! = 2 \cdot 1 = 2$$

$$= \frac{(n-1)(n-2)}{2} - \frac{2(n-1)}{2}$$

$$= \frac{(n-1)(n-2) - 2(n-1)}{2}$$

$$= \frac{n^2 - 3n + 2 - 2n + 2}{2}$$

$$= \frac{n^2 - 5n + 4}{2}$$

Ahora,

$$\frac{n^2 - 5n + 4}{2} = \frac{4\left[\frac{n^2}{4} - \frac{5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2}{4} - \frac{5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2 - 5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2 - 5n + 4}{4}\right]}{2}$$

$$= 4 \cdot \left[\frac{n^2 - 5n + 4}{8}\right]$$

Por lo tanto, tenemos lo siguiente:

$$|E_G| = 4 \cdot \left[ \frac{n^2 - 5n + 4}{8} \right] \longrightarrow |V_G| - 1 = 4 \cdot \left[ \frac{n^2 - 5n + 4}{8} \right]$$

Despejando  $|V_G|$ , obtenemos:

$$|V_G| - 1 = 4 \cdot \left[ \frac{n^2 - 5n + 4}{8} \right] \longrightarrow |V_G| = 4 \cdot \left[ \frac{n^2 - 5n + 4}{8} \right] + 1$$

Sea 
$$k = \left[\frac{n^2 - 5n + 4}{8}\right]$$
. Entonces:

$$|V_G| = 4 \cdot k + 1$$

Por lo tanto, llegamos a que  $|E_G| = |E_{\overline{G}}|$  si  $|V_G| = 4 \cdot k + 1$ .

- 2. Un orden topológico de una digráfica D es un orden lineal de sus vértices tal que para cada flecha a de D, la cola de a precede a su cabeza en el orden.
  - (a) Demuestre que toda digráfica acíclica tiene al menos una fuente (vértice de ingrado 0) y un sumidero (vértice de exgrado 0).

Demostración: Procedamos por reducción al absurdo. Sea D una digráfica acíclica con  $\delta^+>0$  y  $\delta^->0$ , esto es que, para cada  $v\in V_D$  hay una flecha que le "pega" a v y otra que "sale" de v. Tomemos la trayectoria  $\vec{T}$  más larga en D y sea  $x\in V_D$  el último vértice de  $\vec{T}$ , luego en x sale una arista hacia algún otro vértice en  $\vec{T}$  [pues si saliera hacia algún otro vértice que no este en  $\vec{T}$ , llegariamos a que  $\vec{T}$  no es de longitud máxima!!], así  $\vec{T}xy$  claramente contiene un ciclo, esto implica que D contiene un ciclo!!, he aquí una contradicción de suponer que D no contiene ciclos.

 $\therefore$  Si D es acíclica tiene al menos una fuente y un sumidero.

(b) Deduzca que una digráfica admite un orden topológico si y sólo si es acíclica.

 $<sup>^{1}</sup>$ Una arista incide en v y v es la cabeza.

 $<sup>^{2}</sup>$ Una arista que inicia en v con dirección a otro vértice.

**Demostración:** Para este inciso analicemos 2 posibles casos:

- $\Rightarrow$ ) Procedamos por reducción al absurdo. Sea D una digráfica tal que admite un orden topológico. Supongamos que D contiene al menos un ciclo C, entonces existe un  $x \in V_D$  tal que  $\{x\} \subset C$  y x es un vértice inicial y final en C, luego existe  $y \in V_D$ :  $\{y\} \subset C$  tal que  $y\vec{x}$  es una arista, por tanto y < x [esto es que y precede a x en el orden]. Nótese que hay una trayectoria  $\vec{T}$  que va de x a y en C, así x < y!! [esto es que x precede a y en el orden], he aquí una contradicción de suponer que D admite un orden topológico.
  - $\therefore$  Si D admite un orden topológico  $\Rightarrow D$  es acíclica.
- $\Leftarrow$ ) Por el inciso (a) sabemos que D tiene al menos una fuente y un sumidero, tomemos una componente conexa en D y veamos que si los vértices x es fuente e y es sumidero, entonces la trayectoria de x a y es un orden topológico, si hay más de una fuente o más de un sumidero, cada trayectoria entre una fuente y un sumidero es un orden topológico pues de no serlo, dos flechas distintas provenientes de una misma fuente incidirían en algún vértice en común, lo que implicaría que D contiene un ciclo!!], así la componente conexa admite un orden topológico y esto pasa para cualquier componente conexa en D.
  - $\therefore$  Si D es acíclica  $\Rightarrow D$  admite un orden topológico.
  - ... Una digráfica admite un orden topológico si y sólo si es acíclica. П
- (c) Exhiba un algoritmo de tiempo a lo más cuadrático para encontrar un orden topológico en una digráfica acíclica.

A continuación se muestra el algoritmo<sup>3</sup> requerido:

1: TopologicalOrder(D; D)

15

16

17

18 19 end 20 return D

**Input:** Una digráfica *D* acíclica.

 $u \leftarrow v + 1$ 

end

end

end

```
Output: Un orden topológico admitido en D basado en números.
 1 for v \in V_D and d^-(v) = 0 do
    v \leftarrow 0;
 \mathbf{2}
 3 end
 4 for v \in V_D do
 5
       if v \neq 0 then
 6
            \texttt{temp} \leftarrow 0;
 7
            for u \in V_D : u es antecesor de v en D and u \neq \text{null do}
                if temp < u then
 8
                    \texttt{temp} \leftarrow u
 9
10
                \mathbf{end}
            end
11
            v \leftarrow temp + 1;
12
            for u \in V_D: u es sucesor de v en D and u \neq \text{null do}
13
                if u < v then
14
```

<sup>&</sup>lt;sup>3</sup>Tome en cuenta que suponemos que D se pasa como parámetro con valores nulos en sus vértices.

- 3. Demuestre que cada uno de los siguientes problemas está en la clase *NP* exhibiendo un certificado y un algoritmo de tiempo polinomial para verificar el certificado (escriba el algoritmo utilizando pseudo código como el visto en clase; sólo está permitido el uso de las estructuras de control **if**, **while** y **for**). Demuestre que su algoritmo usa tiempo polinomial.
  - (a) Hamilton Cycle.
  - (b) Vertex Cover.
  - (c) Colouring.
  - (d) Dominating Set.

Solución de (a): A continuación se da un certificado para una gráfica que contiene un ciclo hamiltoniano:



y  $S=(v_0,v_1,\cdots,v_n,v_0)=(3,10,2,9,1,16,8,15,7,14,6,13,5,12,4,11,3)$  una colección que contiene los vértices en sucesión tal que está sucesión forma un ciclo hamiltoniano en H. Así, nuestro algoritmo es el siguiente:

#### 2: HamiltonCycle( $\langle H, S \rangle$ ; true/false)

**Input:** Una gráfica H y una colección S que contiene a la sucesión de vértices que representará el ciclo hamiltoniano en H.

Output: TRUE o FALSE dependiendo si S es un ciclo hamiltoniano en H.

```
1 for v \in S do
      siguiente = 0;
       while siguiente <|V_H| do
 3
          u \leftarrow S(\text{siguiente});
 4
          siguiente \leftarrow siguiente + 1;
 5
          if vu \notin E_H then
 6
           return false;
 7
          end
 8
 9
      end
10 end
11 if S(0) \neq S(|V_H - 1|) then
      return false;
13 end
14 for v \in S do
      if v \notin V_H then
       return false;
16
      end
17
18 end
19 return true;
```

Solución de (b): A continuación se da un certificado para una gráfica que contiene un covertura de vértices:



con  $S = (v_1, v_2v_3, v_4)$  una cubierta de vértices en G. Así nuestro algoritmo sería el que a continuación se muestra:

### **3:** VertexCover( $\langle G, S \rangle$ ; true/false)

**Input:** Una gráfica G y una colección S que contiene a la sucesión que conforma la covertura de vértices en G.

Output: TRUE o FALSE dependiendo si S es una covertura de vértices en G.

```
1 contador \leftarrow 0;
 2 for v \in S do
       if v \notin V_G then
        return false;
 4
       end
       for u \in V_G do
 6
          if vu \in E_G then
 7
            contador \leftarrow contador + 1;
 8
           \mathbf{end}
 9
       \mathbf{end}
10
11 end
12 if contador\neq |V_G| then
   return false;
14 end
15 return true;
```

Solución de (c): A continuación se muestra un certificado para una gráfica que admite una coloración:



con S = (1R, 3R, 5R, 0A, 2A, 4A) una coloración de vértices en G. Luego, nuestro algoritmo sería el que a continuación se muestra:

#### **4:** Colouring( $\langle G, S \rangle$ ; true/false)

**Input:** Una gráfica G y una colección S que contiene a la sucesión que conforma la coloración de vértices en G.

Output: TRUE o FALSE dependiendo si S es una coloración de vértices en G.

```
1 if |S| = |V_G| then
 2 return false;
 з end
 4 for v \in S do
      if v \notin V_G then
         return false;
 6
      end
 7
      for u \in S do
 8
          if v tiene el mismo color que u then
 9
             if uv \in E_G then
10
                return false;
11
             end
12
          end
13
14
      end
15 end
16 return true;
```

Solución de (d): A continuación se muestra un certificado para una gráfica que admite una coloración:



con S=(1R,3R,5R,0A,2A,4A) una coloración de vértices en G. Luego, nuestro algoritmo sería el que a continuación se muestra:

#### Puntos extra

- 1. Demuestre que toda digráfica sin lazos admite una descomposición en dos digráficas acíclicas, es decir, que existen  $D_1$  y  $D_2$  subdigráficas de D, acíclicas y tales que  $D_1 \cup D_2 = D$  y  $A_{D_1} \cap A_{D_2} = \emptyset$ .
- 2. Un torneo es una digráfica en la que entre cualesquiera dos vértices existe una única flecha. Demuestre que todo torneo es fuertemente conexo o puede transformarse en un torneo fuertemente conexo al reorientar exactamente una flecha.
- 3. Demuestre que una digráfica es fuertemente conexa si y sólo si contiene un camino cerrado generador.
- 4. Demuestre que si l, m y n son enteros con  $0 < l \le m \le n$ , entonces existe una gráfica simple G con  $\kappa = l$ ,  $\kappa' = m$  y  $\delta = n$ .

**Demostración:** Sean l, m, n perteneciente a los Enteros y G una gráfica con K=l, k'=m y  $\delta$ =n, tenemos que 0 < k ya que una gráfica no puede tener conexidad menor que  $0 \rightarrow$ 

por proposición demostrada en clase esta gráfica tendra la desigualdad 0 <  $k \leqslant k' \leqslant \delta$  sustituyendo los valores 0 <  $l \leqslant m \leqslant n$ 

Por lo tanto existe la grafica (ya que la proposicion demostrada en clase era un para todo y el paratodo implica el existe)  $\hfill\Box$