GDS Processing for Cadence in Matlab

By Zainulabideen Khalifa

Ph.D. Student at the University of Michigan, Ann Arbor

Contact: zainkh@umich.edu

9/9/2020

HFSS -> Cadence Layout

HRO Lt1.qds [HRO Lt1]

Overview

Each code will have the following general structure:

- 1. Import GDS libraries from HFSS or Cadence
- 2. Perform the needed operations
- 3. Assign layer and data type numbers (mapping).
- 4. Export the GDS library.

GDSII File Basics

- gds_library
 - gds_structures
 - gds_elements
 - Different types: "boundary", "SREF" or ... etc
 - Layer number
 - Data type number

```
>> glib = in_glib
glib is a GDSII library:
   Library name : HRO_M8_HFSS.gds
  Database unit: 1e-09 m
  User unit
             : 1e-06 m
   Structures :
        1 ... HRO_M8_HFSSstruct (11)
>> qstr = qlib(1)
gstr is a GDSII structure with 11 elements:
   sname = HRO_M8_HFSSstruct
   cdate = 120-7-21, 13:31:41
  mdate = 120-7-21, 13:31:41
>> gelm = gstr(1)
gelm is a GDSII element:
  Type: boundary (1)
  layer = 1
  dtvpe = 0
\gg XY = gelm(1)
ans =
    2.1000
            -2.1000
    2.1000
             0.2630
    2.5290
             0.5770
    3.0150
             0.9430
```

GDSII File Basics


```
>> cell2mat(xy(gstr(1)))
    65
          30
    55
          30
          20
    55
    65
          20
          30
    65
>> cell2mat(xy(gstr(2)))
    55
    80
    80
          30
    70
          30
          15
    70
          15
    55
    55
>> cell2mat(xy(gstr(3)))
  50.0100
            50.0100
             25.0100
  100.0100
  150.0100
             50.0100
             75.0100
  125.0100
   50.0100
             50.0100
>> cell2mat(xy(gstr(4)))
  134.1400
             10.0000
  140.0000
             15.8600
  140.0000
             24.1400
  134.1400
             30.0000
  125.8600
             30.0000
  120.0000
             24.1400
  120.0000
             15.8600
  125.8600
             10.0000
  134.1400
             10.0000
```

Main Operations

- The goad is to manipulate the layout to pass DRC and maintain your structure from EM point of view.
- Operations:
 - (Discretize): Discretize to correct for allowed angles and minimum grid.
 - (minWidth): Correct for minimum Width/Space.
 - Generate vias between metals
 - Fill metal block fillings like (Grid_Wall)
- With these operations, you can convert any design from HFSS to Cadence without any DRC errors.

Operations - Discretize

The shapes after performing the function Discretize

Operations - minWidth

Appling minWidth on the discretized shapes will trim pointy head and might miss some. (why?!)

Functions

```
% % -----General Functions-----
% function GDS_plot(igds,str)
% function [ogstr] = GDS_MATH(ig1,ig2,operation,units)
% function [ogstr] = GDS_Merge(igstr,units)
% function [ogstr] = GDS_combine_gstrcells(igstr)
% function [ogelm] = GDS_Create_box(d,c)
% function [ogelm] = GDS_Create_Octagonal(d_side, center, max45)
% function [ogstr] = GDS_Create_Grid(igstr,NxN)
% function [ogstr] = GDS_Split_gstr(igstr,NxN,units)
% function [RC,Center] = GDS_Mosaic_calc(igelm,Mosaic)
% function [ogstr] = GDS_Mosaic(igds,Mosaic,RC,Center)
% function [ogds] = GDS_Shift(igds,shift)
% function [ogds] = GDS_reset(igds,info)
% function [iglib] = GDS_auto_rename_glib(iglib,sname)
% % -----Layout specific Functions-----
% function [ogstr] = GDS_checkvias(igstr.d)
% function [ogstr] = GDS_Mosaic_intersections(igds, Mosaic_gstr, units)
% function [ogstr] = GDS_Mosaic_imprint(block_gstr,bbox_block,igstr,bbox_gstr,units)
% function [ogstr] = GDS_Discretize_gstr(igstr,minGrid,units)
% function [ogelm] = GDS_minwidth_gelm(igelm,minwidth,minGrid,Smallestwirewidth,units)
% function [ogstr] = GDS_minwidth_gstr(igstr,minwidth,minGrid,Smallestwirewidth,units)
% function [xo,yo] = Discritize_2P(X,Y,minGrid)
% function [XY,count] = minwidth_corr(XY,minwidth,minGrid,SmallestWireWidth,units)
% % -----ST55 Functions-----
% function [info] = GDS_ST55(str)
% function [ogstr] = GDS_ST55_Generate_tileNot(igstr)
```

Needed layers from HFSS

- 1. Top Metal or your line metal layer
- 2. Shielding Walls
- 3. Shrunk version of shielding walls for via filling
- Grid_Wall filling layers (connected with shielding)
- 5. tileNot layer

 Keep in mind that all layer must have the same reference point. This is so they will fit on each other in Cadence.

Needed layers from HFSS

Processing M8

- 1. Export the GDS layer from HFSS
- 2. Import in Matlab
- 3. Discretize and minWidth
- 4. Split (Why ?!)
- 5. Reset layer and dtype
- 6. Export

Type: boundary (1)

layer = 38

dtype = 120

Processing Vias

- There are two procedures for processing vias:
- 1. Processing vias between the shield walls and the ground layer.
- 2. Processing vias between the shield walls itself.

200

Processing Wall-Wall Vias

Processing Wall-Wall Vias

Processing Wall-Wall Vias

Processing tileNOT filling

- 1. Export the GDS layer from HFSS
- 2. Import in Matlab
- 3. Discretize
- 4. Split
- 5. Reset layer and dtype
- 6. Export

Conclusion

THE END!