§ 34. Приведение матрицы оператора к жордановой нормальной форме

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Основной результат

Основным результатом данного параграфа является следующая теорема, для доказательства которой нам придется проделать большую предварительную работу.

Теорема о приведении матрицы оператора к жордановой форме

Пусть \mathcal{A} — линейный оператор в векторном пространстве V над полем F. Если характеристический многочлен оператора \mathcal{A} разложим над полем F на линейные множители, то существует базис пространства V, в котором матрица этого оператора имеет жорданову нормальную форму.

Базис векторного пространства, в котором матрица линейного оператора $\mathcal A$ имеет жорданову нормальную форму, называется жордановым базисом относительно оператора $\mathcal A$. Поэтому приведенную только что теорему можно переформулировать следующим образом: если характеристический многочлен оператора $\mathcal A$ разложим над полем $\mathcal F$ на линейные множители, то в пространстве $\mathcal V$ существует жорданов базис относительно $\mathcal A$.

Следствия из основного результата

Если любой многочлен степени ≥ 1 над полем F разложим над F на линейные множители, то поле F называется *алгебраически замкнутым*. Из теоремы о приведении матрицы оператора к жордановой форме вытекает

Следствие о жордановой форме в пространствах над алгебраически замкнутым полем

Если V — векторное пространство над алгебраически замкнутым полем, то для любого линейного оператора в V существует базис, в котором матрица этого оператора имеет жорданову нормальную форму.

Следствие о разложении многочленов над $\mathbb C$ (см. § 21) показывает, что поле $\mathbb C$ алгебраически замкнуто. Следовательно, справедливо

Следствие о жордановой форме в пространствах над ${\mathbb C}$

Если V — векторное пространство над полем \mathbb{C} , то для любого линейного оператора в V существует базис, в котором матрица этого оператора имеет жорданову нормальную форму.

Цепочки ядер и образов степеней линейного оператора (1)

Зафиксируем линейный оператор $\mathcal A$ в векторном пространстве V размерности n над полем F. Очевидно, что $\operatorname{Ker} \mathcal A^k \subseteq \operatorname{Ker} \mathcal A^{k+1}$ и $\operatorname{Im} \mathcal A^k \supseteq \operatorname{Im} \mathcal A^{k+1}$ для всякого натурального k.

Лемма о цепочках ядер и образов

Если $\operatorname{Ker} \mathcal{A} \neq \{\mathbf{0}\}$, то существует такое натуральное s, что

$$\{\mathbf{0}\}\subset\operatorname{Ker}\mathcal{A}\subset\operatorname{Ker}\mathcal{A}^2\subset\cdots\subset\operatorname{Ker}\mathcal{A}^s=\operatorname{Ker}\mathcal{A}^{s+1}=\cdots=\operatorname{Ker}\mathcal{A}^{s+k}=\cdots$$
 of $V\supset\operatorname{Im}\mathcal{A}\supset\operatorname{Im}\mathcal{A}^2\supset\cdots\supset\operatorname{Im}\mathcal{A}^s=\operatorname{Im}\mathcal{A}^{s+1}=\cdots=\operatorname{Im}\mathcal{A}^{s+k}=\cdots$.

Доказательство. Включение $\{{\bf 0}\}\subset {\sf Ker}\,{\cal A}$ выполнено по условию. Далее, ясно, что dim ${\sf Ker}\,{\cal A}^m\leqslant {\sf dim}\,{\sf Ker}\,{\cal A}^{m+1}\leqslant n$ для всякого натурального m. Следовательно, существует натуральное s такое, что

$$\{\mathbf{0}\}\subset\operatorname{\mathsf{Ker}}\mathcal{A}\subset\operatorname{\mathsf{Ker}}\mathcal{A}^2\subset\cdots\subset\operatorname{\mathsf{Ker}}\mathcal{A}^s=\operatorname{\mathsf{Ker}}\mathcal{A}^{s+1}.$$

Проверим, что $\ker \mathcal{A}^s = \ker \mathcal{A}^{s+k}$ для всякого натурального k. Предположим, напротив, что

$$\operatorname{\mathsf{Ker}} \mathcal{A}^{s} = \operatorname{\mathsf{Ker}} \mathcal{A}^{s+1} = \dots = \operatorname{\mathsf{Ker}} \mathcal{A}^{s+k-1} \subset \operatorname{\mathsf{Ker}} \mathcal{A}^{s+k}$$

для некоторого k. Отметим, что k>1, так как

$$\operatorname{\mathsf{Ker}} \mathcal{A}^{s} = \operatorname{\mathsf{Ker}} \mathcal{A}^{s+1}.$$

Цепочки ядер и образов степеней линейного оператора (2)

Из включения $\ker \mathcal{A}^{s+k-1} \subset \ker \mathcal{A}^{s+k}$ вытекает, что существует вектор х такой, что $\mathbf{x} \in \ker \mathcal{A}^{s+k}$, но $\mathbf{x} \notin \ker \mathcal{A}^{s+k-1}$. В частности, $\mathcal{A}^{s+k}(\mathbf{x}) = \mathbf{0}$. Положим $\mathbf{y} = \mathcal{A}^{k-1}(\mathbf{x})$. Тогда $\mathcal{A}^{s+1}(\mathbf{y}) = \mathcal{A}^{s+k}(\mathbf{x}) = \mathbf{0}$. Из равенства (1) вытекает, что $\mathcal{A}^s(\mathbf{y}) = \mathbf{0}$. Но $\mathcal{A}^s(\mathbf{y}) = \mathcal{A}^{s+k-1}(\mathbf{x}) \neq \mathbf{0}$. Полученное противоречие доказывает вторую из цепочек включений и равенств, указанных в формулировке леммы. Поскольку, в силу теоремы о ранге и дефекте (см. § 30), dim Im \mathcal{A}^m + dim $\ker \mathcal{A}^m = n$ для любого натурального m, из второй цепочки автоматически вытекает первая.

! Всюду далее в этом параграфе буква s имеет тот же смысл, что и в формулировке леммы о цепочках ядер и образов.

Положим $N_{\mathcal{A}}=\operatorname{Ker}\mathcal{A}^{s},\;U_{\mathcal{A}}=\operatorname{Im}\mathcal{A}^{s},\;\mathcal{N}=\mathcal{A}|_{N_{\mathcal{A}}}$ и $\mathcal{U}=\mathcal{A}|_{U_{\mathcal{A}}}.$

Теорема о разложении Фиттинга

Если Ker $\mathcal{A} \neq \{\mathbf{0}\}$, то подпространства $N_{\mathcal{A}}$ и $U_{\mathcal{A}}$ инвариантны относительно \mathcal{A} , $V=N_{\mathcal{A}}\oplus U_{\mathcal{A}}$, \mathcal{N} — нильпотентный оператор, а \mathcal{U} — автоморфизм.

Доказательство. Инвариантность подпространств $N_{\mathcal{A}}$ и $U_{\mathcal{A}}$ относительно \mathcal{A} гарантируется 1-м замечанием об инвариантных подпространствах (см. § 32). Из определения подпространства $N_{\mathcal{A}}$ вытекает, что $\mathcal{N}^s = \mathcal{O}$, и потому оператор \mathcal{N} нильпотентен. Далее,

$$\mathcal{A}(U_{\mathcal{A}}) = \mathcal{A}(\operatorname{Im} \mathcal{A}^{s}) = \operatorname{Im} \mathcal{A}^{s+1} = \operatorname{Im} \mathcal{A}^{s} = U_{\mathcal{A}}.$$

Поэтому из критерия автоморфности линейного оператора (см. § 30) вытекает, что оператор $\mathcal{U}=\mathcal{A}|_{\mathcal{U}_{\mathcal{A}}}$ является автоморфизмом.

Докажем, что $N_{\mathcal{A}} \cap U_{\mathcal{A}} = \{\mathbf{0}\}$. Пусть $\mathbf{x} \in N_{\mathcal{A}} \cap U_{\mathcal{A}}$. Из того, что $\mathbf{x} \in N_{\mathcal{A}}$, вытекает, что $\mathcal{A}^s(\mathbf{x}) = \mathbf{0}$, а из того, что $\mathbf{x} \in U_{\mathcal{A}}$, следует, что $\mathbf{x} = \mathcal{A}^s(\mathbf{y})$ для некоторого вектора \mathbf{y} . Следовательно, $\mathcal{A}^{2s}(\mathbf{y}) = \mathcal{A}^s(\mathcal{A}^s(\mathbf{y})) = \mathcal{A}^s(\mathbf{x}) = \mathbf{0}$. Таким образом, $\mathbf{y} \in \operatorname{Ker} \mathcal{A}^{2s} = \operatorname{Ker} \mathcal{A}^s$, и значит $\mathbf{x} = \mathcal{A}^s(\mathbf{y}) = \mathbf{0}$.

Разложение Фиттинга (2)

Чтобы доказать равенство $V=N_{\mathcal{A}}\oplus U_{\mathcal{A}}$ (и тем самым завершить доказательство теоремы), осталось проверить, что $V=N_{\mathcal{A}}+U_{\mathcal{A}}$. В самом деле, учитывая, что $N_{\mathcal{A}}\cap U_{\mathcal{A}}=\{\mathbf{0}\}$, имеем

$$\dim(N_{\mathcal{A}} + U_{\mathcal{A}}) = \dim N_{\mathcal{A}} + \dim U_{\mathcal{A}} - \dim(N_{\mathcal{A}} \cap U_{\mathcal{A}}) = \dim N_{\mathcal{A}} + \dim U_{\mathcal{A}}.$$

Из теоремы о ранге и дефекте (см. § 30) вытекает, что $\dim N_{\mathcal{A}} + \dim U_{\mathcal{A}} = \dim V$. Таким образом, $\dim (N_{\mathcal{A}} + U_{\mathcal{A}}) = \dim V$, и потому $N_{\mathcal{A}} + U_{\mathcal{A}} = V$. Теорема доказана.

Равенство $V=N_{\mathcal{A}}\oplus U_{\mathcal{A}}$ называется *разложением Фиттинга* пространства V относительно линейного оператора \mathcal{A} .

Корневые подпространства (1)

Начиная с этого места будем считать, что многочлен $\chi_{\mathcal{A}}(x)$ разложим над полем F на линейные множители. А именно,

$$\chi_{\mathcal{A}}(x) = (-1)^n (x - \lambda_1)^{k_1} (x - \lambda_2)^{k_2} \cdots (x - \lambda_m)^{k_m}, \tag{2}$$

где $n=\dim V$, $\lambda_1,\lambda_2,\ldots,\lambda_m\in F$ — попарно различные корни характеристического многочлена (т.е. собственные значения оператора \mathcal{A}), а k_i — кратность корня λ_i ($i=1,2,\ldots,m$). Ясно, что

$$k_1 + k_2 + \dots + k_m = n. \tag{3}$$

! Всюду далее в этом параграфе скаляры $\lambda_1, \lambda_2, \ldots, \lambda_m$ и числа $n, m, k_1, k_2, \ldots, k_m$ имеют тот же смысл, что и в равенстве (2).

Для всякого $i=1,2,\ldots,m$ положим $\mathcal{A}_i=\mathcal{A}-\lambda_i\mathcal{E}$. Если $\mathbf{x}-$ собственный вектор оператора \mathcal{A}_i , относящийся к собственному значению λ_i , то $\mathbf{x}\neq\mathbf{0}$ и

$$A_i(\mathbf{x}) = (A - \lambda_i \mathcal{E})(\mathbf{x}) = A(\mathbf{x}) - \lambda_i \mathcal{E}(\mathbf{x}) = \lambda_i \mathbf{x} - \lambda_i \mathbf{x} = \mathbf{0}.$$

Мы видим, что $\mathbf{x} \in \operatorname{Ker} \mathcal{A}_i$, и потому $\operatorname{Ker} \mathcal{A}_i \neq \{\mathbf{0}\}$. Согласно лемме о цепочках ядер и образов, для всякого $i=1,2,\ldots,m$ существует число s_i такое, что

$$\{\mathbf{0}\}\subset\operatorname{Ker}\mathcal{A}_{i}\subset\operatorname{Ker}\mathcal{A}_{i}^{2}\subset\cdots\subset\operatorname{Ker}\mathcal{A}_{i}^{s_{i}}=\operatorname{Ker}\mathcal{A}_{i}^{s_{i}+1}=\cdots=\operatorname{Ker}\mathcal{A}_{i}^{s_{i}+k}=\cdots$$
 u $V\supset\operatorname{Im}\mathcal{A}_{i}^{2}\supset\cdots\supset\operatorname{Im}\mathcal{A}_{i}^{s_{i}}=\operatorname{Im}\mathcal{A}_{i}^{s_{i}+1}=\cdots=\operatorname{Im}\mathcal{A}_{i}^{s_{i}+k}=\cdots.$

Корневые подпространства (2)

Положим $N_i=\operatorname{Ker} \mathcal{A}_i^{s_i}$ и $U_i=\operatorname{Im} \mathcal{A}_i^{s_i}$. Ограничения оператора \mathcal{A}_i на подпространства N_i и U_i будем обозначать через \mathcal{N}_i и \mathcal{U}_i соответственно.

Определение

Подпространство N_i называется *корневым подпространством* пространства V, соответствующим собственному значению λ_i , а число $s_i - \mathit{глубиной}$ этого подпространства.

Из теоремы о разложении Фиттинга вытекает, что для всякого $i=1,2,\ldots,m$ справедливы следующие утверждения, которые далее будут использоваться без дополнительных оговорок:

- ullet подпространства $oldsymbol{\mathsf{N}}_i$ и $oldsymbol{\mathsf{U}}_i$ инвариантны относительно $oldsymbol{\mathcal{A}}_i$;
- $V = N_i \oplus U_i$;
- \mathcal{N}_i нильпотентный оператор;
- \bullet \mathcal{U}_i автоморфизм.

Теорема о корневом разложении

Оказывается, что справедлива следующая теорема, из которой, как мы увидим ниже, уже легко вытекает теорема о приведении матрицы оператора к жордановой форме.

Теорема о корневом разложении

$$V = N_1 \oplus N_2 \oplus \cdots \oplus N_m$$
.

Для доказательства этой теоремы нам понадобятся две леммы.

Лемма о размерности корневого подпространства (1)

Лемма о размерности корневого подпространства

Пусть $i \in \{1, 2, \ldots, m\}$. Тогда dim $N_i = k_i$.

Доказательство. Положим $d_i = \dim N_i$. Пусть A — матрица оператора $\mathcal A$ в некотором базисе. Тогда оператор $\mathcal A_i$ имеет в том же базисе матрицу $A - \lambda_i E$. Поскольку подпространства N_i и U_i инвариантны относительно $\mathcal A_i$ и $V = N_i \oplus U_i$, из теоремы о прямой сумме инвариантных подпространств (см. § 32) вытекает, что $\chi_{\mathcal A_i}(x) = \chi_{\mathcal N_i}(x) \cdot \chi_{\mathcal U_i}(x)$. Это равенство выполнен при любом значении x. В частности, $\chi_{\mathcal A_i}(x - \lambda_i) = \chi_{\mathcal N_i}(x - \lambda_i) \cdot \chi_{\mathcal U_i}(x - \lambda_i)$. В силу предложения о характеристическом многочлене нильпотентного оператора (см. § 33), $\chi_{\mathcal N_i}(x) = (-1)^{d_i} x^{d_i}$, и потому $\chi_{\mathcal N_i}(x - \lambda_i) = (-1)^{d_i} (x - \lambda_i)^{d_i}$. Объединяя сказанное, получаем, что

$$\chi_{\mathcal{A}}(x) = |A - xE| = |(A - \lambda_i E) - (x - \lambda_i)E| = \chi_{\mathcal{A}_i}(x - \lambda_i) =$$

$$= \chi_{\mathcal{N}_i}(x - \lambda_i) \cdot \chi_{\mathcal{U}_i}(x - \lambda_i) = (-1)^{d_i}(x - \lambda_i)^{d_i} \cdot \chi_{\mathcal{U}_i}(x - \lambda_i).$$

Лемма о размерности корневого подпространства (2)

Мы доказали, что многочлен $\chi_{\mathcal{A}}(x)$ делится на $(x-\lambda_i)^{d_i}$. Следовательно, $d_i \leq k_i$. Чтобы доказать, что $d_i = k_i$, осталось проверить, что он не делится на $(x-\lambda_i)^{d_i+1}$. В силу сказанного выше это равносильно тому, что скаляр λ_i не является корнем многочлена $\chi_{\mathcal{U}_i}(x-\lambda_i)$, т.е. тому, что $\chi_{\mathcal{U}_i}(\lambda_i-\lambda_i)=\chi_{\mathcal{U}_i}(0)\neq 0$. Предположим, напротив, что $\chi_{\mathcal{U}_i}(0)=0$. Обозначим матрицу оператора \mathcal{U}_i в некотором базисе через \mathcal{U}_i . Равенство $\chi_{\mathcal{U}_i}(0)=0$ означает, что $|\mathcal{U}_i-0\cdot E|=|\mathcal{U}_i|=0$. Но оператор \mathcal{U}_i является автоморфизмом. Поэтому из критерия автоморфности линейного оператора (см. § 30) вытекает, что его матрица в любом базисе невырождена. Следовательно, $|\mathcal{U}_i|\neq 0$. Полученное противоречие завершает доказательство.

Лемма о подпространствах N_i и U_j (1)

Лемма о подпространствах N_i и U_j

Пусть $i,j\in\{1,2,\ldots,m\}$ и i
eq j. Тогда $N_i\subseteq U_j$.

 \mathcal{A}_{o} казательство. Пространство N_i инвариантно относительно \mathcal{A}_i . Заметим, что

$$A_j = A - \lambda_j \mathcal{E} = A - \lambda_i \mathcal{E} + \lambda_i \mathcal{E} - \lambda_j \mathcal{E} = A_i + (\lambda_i - \lambda_j) \mathcal{E}.$$

В силу 2-го замечания об инвариантных подпространствах (см. § 32), получаем, что N_i инвариантно и относительно \mathcal{A}_j . Следовательно, ограничение оператора \mathcal{A}_j на подпространство N_i можно рассматривать как линейный оператор в N_i . Обозначим этот оператор через \mathcal{A}_{ji} .

Проверим, что $\operatorname{Ker} \mathcal{A}_{ji} = \{\mathbf{0}\}$. В самом деле, пусть $\mathbf{v} \in \operatorname{Ker} \mathcal{A}_{ji}$. Это означает, что $\mathbf{v} \in \operatorname{Ker} \mathcal{A}_j$ и $\mathbf{v} \in \mathcal{N}_i$. Используя первое из этих двух включений, имеем

$$\mathbf{0} = \mathcal{A}_j(\mathbf{v}) = (\mathcal{A} - \lambda_j \mathcal{E})(\mathbf{v}) = \mathcal{A}(\mathbf{v}) - \lambda_j \mathbf{v},$$

откуда $\mathcal{A}(\mathbf{v}) = \lambda_j \mathbf{v}$. Следовательно,

$$A_i(\mathbf{v}) = (A - \lambda_i \mathcal{E})(\mathbf{v}) = A(\mathbf{v}) - \lambda_i \mathbf{v} = \lambda_j \mathbf{v} - \lambda_i \mathbf{v} = (\lambda_j - \lambda_i) \mathbf{v}.$$

Отсюда вытекает, что $\mathcal{A}_{i}^{s_{i}}(\mathbf{v})=(\lambda_{j}-\lambda_{i})^{s_{i}}\mathbf{v}$. Учитывая, что $\mathbf{v}\in N_{i}=\operatorname{Ker}\mathcal{A}_{i}^{s_{i}}$, имеем $(\lambda_{j}-\lambda_{i})^{s_{i}}\mathbf{v}=\mathbf{0}$. Поскольку $\lambda_{j}\neq\lambda_{i}$, заключаем, что $(\lambda_{i}-\lambda_{i})^{s_{i}}\neq0$, и потому $\mathbf{v}=\mathbf{0}$. Мы доказали, что $\operatorname{Ker}\mathcal{A}_{ii}=\{\mathbf{0}\}_{=}$

Лемма о подпространствах N_i и U_j (2)

В силу теоремы о ранге и дефекте (см. § 30), получаем, что ${\rm Im}\, {\cal A}_{ji}=N_i.$ Из этого равенства и инвариантности подпространства N_i относительно оператора ${\cal A}_i$ вытекает, что ${\cal A}_i(N_i)=N_i.$ Но тогда

$$N_i = \mathcal{A}_j(N_i) = \mathcal{A}_j\big(\mathcal{A}_j(N_i)\big) = \mathcal{A}_j^2(N_i) = \dots = \mathcal{A}_j^{s_j}(N_i) \subseteq \mathcal{A}_j^{s_j}(V) = \operatorname{Im} \mathcal{A}_j^{s_j} = U_j.$$

Лемма о подпространствах N_i и U_j доказана.

Доказательство теоремы о корневом разложении

Доказательство теоремы о корневом разложении. Достаточно доказать следующие два равенства: $N_1+N_2+\dots+N_m=N_1\oplus N_2\oplus\dots\oplus N_m$ и $V=N_1+N_2+\dots+N_m$. Докажем первое из них. Пусть $1\leq i\leq m-1$. В силу леммы о подпространствах N_i и U_j , $N_{i+1},\dots,N_m\subseteq U_i$, и потому $N_{i+1}+\dots+N_m\subseteq U_i$. Поскольку $N_i\cap U_i=\{\mathbf{0}\}$, это означает, что $N_i+(N_{i+1}+\dots+N_m)=N_i\oplus (N_{i+1}+\dots+N_m)$. Следовательно,

$$N_1 + N_2 + \cdots + N_m = N_1 \oplus (N_2 + \cdots + N_m) =$$

$$= N_1 \oplus N_2 \oplus (N_3 + \cdots + N_m) =$$

$$= \cdots = N_1 \oplus N_2 \oplus \cdots \oplus N_m.$$

Осталось доказать, что $V=N_1+N_2+\cdots+N_m$. Из доказанного только что равенства $N_1+N_2+\cdots+N_m=N_1\oplus N_2\oplus\cdots\oplus N_m$ вытекает, что $\dim(N_1+N_2+\cdots+N_m)=\dim N_1+\dim N_2+\cdots\oplus M_m$ вытекает, что $\dim(N_1+N_2+\cdots+N_m)=\dim N_1+\dim N_2+\cdots\oplus M_m$. А из леммы о размерности корневого подпространства и формулы (3) вытекает, что $\dim(N_1+N_2+\cdots+N_m)=k_1+k_2+\cdots k_m=n$ (отметим, что последнее равенство — единственное место во всем доказательстве теоремы о приведении матрицы оператора к жордановой форме, в котором используется тот факт, что характеристический многочлен оператора $\mathcal A$ разлагается над полем F на линейные множители). Следовательно, $\dim(N_1+N_2+\cdots+N_m)=\dim V$, и потому $N_1+N_2+\cdots+N_m=V$.

Доказательство теоремы о приведении матрицы оператора к жордановой форме

Доказательство теоремы о приведении матрицы оператора к жордановой форме. Пусть $i \in \{1, 2, ..., m\}$. В силу основной теоремы о нильпотентных операторах (см. § 33), в пространстве N_i существует базис G_i , в котором матрица оператора \mathcal{N}_i имеет жорданову нормальную форму, на главных диагоналях всех клеток Жордана которой стоит 0. Обозначим эту матрицу через A_i . Обозначим матрицу оператора $\mathcal{A}|_{N_i}$ в базисе G_i через $A^{(i)}$. Поскольку $\mathcal{N}_i = \mathcal{A}|_{N_i} - \lambda_i \mathcal{E}$, имеем $A_i = A^{(i)} - \lambda_i E$, и потому $A^{(i)} = A_i + \lambda_i E$. Ясно, что матрица $A^{(i)}$ имеет жорданову нормальную форму и на главных диагоналях всех ее клеток Жордана стоит скаляр λ_i . Пусть теперь G — базис пространства V, являющийся объединением базисов G_1, G_2, \ldots, G_m , а A- матрица оператора $\mathcal A$ в базисе G. Из теоремы о корневом разложении и теоремы о прямой сумме инвариантных подпространств (см. § 32) вытекает, что

$$A = \begin{pmatrix} A^{(1)} & O & \dots & O \\ O & A^{(2)} & \dots & O \\ \dots & \dots & \dots & \dots \\ O & O & \dots & A^{(m)} \end{pmatrix}.$$

Ясно, что матрица A имеет жорданову нормальную форму.

Замечание о жордановой нормальной форме матрицы оператора

Из доказательства теоремы о приведении матрицы оператора к жордановой форме вытекает следущий факт.

Замечание о жордановой нормальной форме матрицы оператора

Если A — матрица линейного оператора \mathcal{A} , имеющая жорданову нормальную форму, то на главных диагоналях клеток Жордана матрицы A стоят собственные значения оператора \mathcal{A} . Каждому собственному значению λ_i соответствует столько клеток Жордана, сколько имеется ниль-слоев в жордановом базисе пространства N_i , а порядки этих клеток равны длинам соответствующих ниль-слоев. На главной диагонали матрицы A собственное значение λ_i появляется k_i раз.

Алгоритм приведения матрицы оператора к жордановой нормальной форме (1)

Алгоритм приведения матрицы оператора к жордановой нормальной форме (часть 1)

Рассматривается линейный оператор ${\cal A}$ в \emph{n} -мерном векторном пространстве V над полем F такой, что многочлен $\chi_A(x)$ разлагается над F на линейные множители. Предполагаются известными матрица A этого оператора в некотором базисе и разложение (2) многочлена $\chi_{_A}(x)$ на линейные множители. Требуется найти жорданов базис относительно этого оператора и матрицу оператора в этом базисе. Пусть, как и ранее, $A_i = A - \lambda_i \mathcal{E}$, N_i — корневое подпространство пространства V, соответствующее собственному значению λ_i , а \mathcal{N}_i — ограничение оператора \mathcal{A}_i на N_i $(i=1,2,\ldots,m)$. Если оператор \mathcal{A} имеет единственное собственное значение λ_1 , т. е. разложение (2) имеет вид $\chi_{A}(x) = (-1)^{n}(x - \lambda_{1})^{n}$, то, в силу теоремы Гамильтона-Кэли, $(\mathcal{A}-\lambda_1\mathcal{E})^n=\mathcal{O}$. Это значит, что оператор $\mathcal{A}_1=\mathcal{A}-\lambda_1\mathcal{E}$ нильпотентен. В этом случае применим алгоритм нахождения жорданова базиса относительно нильпотентного оператора из § 33 и найдем матрицу оператора \mathcal{A}_1 в этом базисе. Заменив в полученной матрице нули на главной диагонали на λ_1 , получим матрицу оператора $\mathcal A$ в том же базисе. Эта матрица будет иметь жорданову нормальную форму.

Алгоритм приведения матрицы оператора к жордановой нормальной форме (2)

Алгоритм приведения матрицы оператора к жордановой нормальной форме (часть 2)

Пусть теперь $\mathcal A$ имеет более одного собственного значения. Для того, чтобы достичь цели, достаточно найти какой-нибудь базис каждого из корневых подпространств N_1, N_2, \ldots, N_m . В самом деле, предположим, что мы знаем базис пространства N_i . Действуя так, как указано в § 33 (см. там алгоритм нахождения базиса, являющегося жордановой системой относительно нильпотентного оператора), можно найти жорданов базис для нильпотентного оператора $\mathcal N_i$. Объединив эти базисы для всех $i=1,2,\ldots,m$, получим жорданов базис всего пространства для оператора $\mathcal A$. Матрица оператора в этом базисе выписывается в соответствии с замечанием о жордановой нормальной форме матрицы оператора.

Алгоритм приведения матрицы оператора к жордановой нормальной форме (3)

Алгоритм приведения матрицы оператора к жордановой нормальной форме (часть 3)

Напомним, что переход от произвольного базиса пространства N_i к жорданову базису этого пространства относительно оператора \mathcal{N}_i осуществляется следующим образом: из каждого вектора исходного базиса вытягивается ниль-слой, эти ниль-слои, образующие жорданову систему векторов, записываются в виде жордановой таблицы, которая с помощью элементарных преобразований жордановых таблиц «сжимается» до жорданова базиса пространства N_i (более подробно об этом см. в § 33). Жорданову систему векторов, которая получается вытягиванием ниль-слоев из векторов исходного базиса пространства N_i , будем далее для краткости называть базисной жордановой системой пространства N_i . Как мы увидим ниже, для всех $i=1,2,\ldots,m-1$, мы будем в процессе вычислений сразу находить не только какой-то базис пространства N_i , но и базисную жорданову систему, содержащую этот базис.

Алгоритм приведения матрицы оператора к жордановой нормальной форме (4)

Алгоритм приведения матрицы оператора к жордановой нормальной форме (часть 4)

Чтобы найти базисную жорданову систему для пространства N_1 , запишем матрицу $(E \mid A_1^\top)$, где $A_1 = A - \lambda_1 E$. С помощью элементарных преобразований всей матрицы приведем ее к виду $(X_{1,1} \mid X_{1,2})$, где $X_{1,2}$ ступенчатая матрица. Затем запишем матрицу $(X_{1,1} \mid X_{1,2} \mid X_{1,2}A_1^{\top})$ и с помощью элементарных преобразований всей матрицы приведем ее к виду $(X_{2,1} \mid X_{2,2} \mid X_{2,3})$, где $X_{2,3}$ — ступенчатая матрица. Будем продолжать этот процесс до тех пор, пока на каком-то шаге не окажется, что ранг крайне правого (ступенчатого) блока полученной матрицы равен рангу крайне правого (ступенчатого) блока матрицы, полученной на предыдущем шаге. Обозначим число сделанных при этом шагов через s_1+1 . Таким образом, условием прекращения преобразований является равенство $r(X_{s_1,s_1+1}) = r(X_{s_1+1,s_1+2})$. В каждом из блоков $X_{s_1,1}, X_{s_1,2}, \ldots$ X_{s_1,s_1} рассмотрим ненулевые строки, продолжение которых в блоке X_{s_1,s_1+1} является нулевой строкой. Эти ненулевые строки образуют искомую базисную жорданову систему векторов для пространства N_1 .

Алгоритм приведения матрицы оператора к жордановой нормальной форме (5)

Алгоритм приведения матрицы оператора к жордановой нормальной форме (часть 5)

Чтобы найти базисную жорданову систему для пространства N_2 , положим $B=X_{s_1,s_1+1}$ и $A_2=A-\lambda_2 E$ и запишем матрицу $(B\mid BA_2^\top)$. С помощью элементарных преобразований всей матрицы приведем ее к виду $(Y_{1,1}\mid Y_{1,2})$, где $Y_{1,2}$ — ступенчатая матрица. Затем запишем матрицу $(Y_{1,1}\mid Y_{1,2}\mid Y_{1,2}A_2^\top)$ и с помощью элементарных преобразований всей матрицы приведем ее к виду $(Y_{2,1}\mid Y_{2,2}\mid Y_{2,3})$, где $Y_{2,3}$ — ступенчатая матрица. Будем продолжать этот процесс до тех пор, пока на каком-то шаге с номером s_2+1 не окажется выполненным равенство $r(Y_{s_2,s_2+1})=r(Y_{s_2+1,s_2+2})$. Базисная жорданова система векторов для пространства N_2 состоит из ненулевых строк блоков $Y_{s_2,1}, Y_{s_2,2}, \ldots, Y_{s_2,s_2}$, имеющих нулевые продолжения в блоке Y_{s_2,s_2+1} .

Алгоритм приведения матрицы оператора к жордановой нормальной форме (6)

Алгоритм приведения матрицы оператора к жордановой нормальной форме (часть 6)

Действия, аналогичные описанным на предыдущем слайде, проделаем для пространств N_3,\ldots,N_{m-1} . Тем самым мы найдем базисные жордановы системы векторов для этих пространств. На последнем шаге одновременно с базисной жордановой системой векторов для пространства N_{m-1} будет найден некоторый базис пространства N_m : он состоит из ненулевых строк самого правого (ступенчатого) блока той матрицы, с помощью которой была найдена ,базисная жорданова система векторов для пространства N_{m-1} . Как говорилось выше, этот базис можно «переработать» в жорданов базис пространства N_m с помощью алгоритма нахождения базиса, являющегося жордановой системой относительно нильпотентного оператора (см. § 33).

Обоснование алгоритма приведения матрицы оператора к жордановой нормальной форме (1)

В обосновании нуждается только способ нахождения базисных жордановых систем векторов для пространств $N_1, N_2, \ldots, N_{m-1}$ и базиса пространства N_m . Действуя так, как указано на четвертом из слайдов, посвященных описанию алгоритма, мы находим сначала базис подространства $\operatorname{Im} \mathcal{A}_1 = \operatorname{Im} (\mathcal{A} - \lambda_1 \mathcal{E})$ (ненулевые строки матрицы $X_{1,2}$), затем базис подпространства Im \mathcal{A}_1^2 (ненулевые строки матрицы $X_{2,3}$), и т. д., до тех пор, пока не совпадут ранги блоков X_{s_1,s_1+1} и X_{s_1+1,s_1+2} . В силу алгоритма Чуркина, последнее условие означает, что совпадают размерности подпространств $\operatorname{Im} \mathcal{A}_1^{s_1}$ и $\operatorname{Im} \mathcal{A}_1^{s_1+1}$, а значит, и сами эти подпространства. Это означает, что корневое подпространство N_1 имеет глубину s_1 . Отсюда и из алгоритма Чуркина вытекает, что ненулевые строки блока $X_{s_1,1}$, имеющие нулевые продолжения в блоке X_{s_1,s_1+1} , образуют базис подпространства N_1 , а ненулевые строки блока X_{s_1,s_1+1} базис подпространства U_1 . Каждую строку матрицы $(X_{s_1,1} \mid X_{s_1,2} \mid \cdots \mid X_{s_1,s_1+1})$ можно рассматривать как последовательность векторов, расположенных внутри блоков $X_{s_1,1}, X_{s_1,2}, \ldots, X_{s_1,s_1+1}$. Ясно, что ненулевые векторы из этой последовательности образуют ниль-слой, вытянутый из некоторого вектора, входящего в базис пространства N_1 . Поэтому ненулевые строки блоков $X_{s_1,1}, X_{s_1,2}, \ldots, X_{s_1,s_1}$, имеющие нулевые продолжения в X_{s_1,s_1+1} , образуют базисную жорданову систему пространства N_1 .

Обоснование алгоритма приведения матрицы оператора к жордановой нормальной форме (2)

Действия, указанные на пятом из слайдов, посвященных описанию алгоритма, происходят с векторами, лежащими в пространстве U_1 , которое, как видно из доказательства теоремы о корневом разложении, совпадает с $\stackrel{'''}{\oplus}$ N_i . Умножая матрицу B на A_2^{\top} , мы находим образы базисных векторов подпространства U_1 под действием оператора $\mathcal{A}_2 = \mathcal{A} - \lambda_2 \mathcal{E}$. После этого мы, по сути дела, вновь применяем алгоритм Чуркина, но в модифицированном виде. Как и в «классическом» варианте алгоритма Чуркина, мы приписываем к координатам базисных векторов координаты их образов и приводим правую часть матрицы к ступенчатому виду. Правда, здесь координаты базисных векторов и их образов записываются не в том базисе, который эти базисные векторы образуют, а в каком-то другом. Но из обоснования алгоритма Чуркина (см. § 30) легко усмотреть, что это ничего не меняет. Поэтому выполняя действия, указанные на пятом из слайдов, посвященных описанию алгоритма, мы находим базисную жорданову систему векторов пространства N_2 , после чего оказываемся внутри подпространства $\bigoplus\limits_{i=3}^{m} N_i$.

Обоснование алгоритма приведения матрицы оператора к жордановой нормальной форме (3)

Продолжая перебирать собственные значения, мы каждый раз, для очередного j, находим базисную жорданову систему векторов пространства N_j и попадаем внутрь подпространства $\prod_{i=j+1}^m N_i$. В конце концов, дойдя до последнего собственного значения λ_m , мы окажемся внутри подпространства N_m и найдем его базис так, как это предписывает алгоритм Чуркина. Этим объясняется сказанное на последнем из слайдов, посвященных описанию алгоритма.

Вычисление степеней матрицы (1)

Приведем пример задачи, решение которой значительно облегчается теоремой о приведении матрицы оператора к жордановой форме. Пусть $\mathcal A$ — линейный оператор в некотором векторном пространстве. Во многих приложениях надо знать поведение оператора $\mathcal A^k$ при $k \to \infty$. Если A — матрица оператора $\mathcal A$ в некотором базисе, то вопрос сводится к строению матрицы $\mathcal A^k$ при $k \to \infty$. В общем случае вопрос о вычислении матрицы $\mathcal A^k$ для произвольного k весьма сложен и трудоемок. Предположим теперь, что матрица $\mathcal A$ подобна некоторой матрице $\mathcal B$, степень которой вычисляется просто. Тогда $\mathcal A = \mathcal T^{-1}\mathcal B\mathcal T$ для некоторой невырожденной квадратной матрицы $\mathcal T$, и потому $\mathcal A^k = \mathcal T^{-1}\mathcal B^k\mathcal T$ (см. замечание о степенях подобных матриц в § 29). Поэтому если матрица $\mathcal T$ известна, то вычисление матрицы $\mathcal A^k$ становится несложной задачей.

Вернемся к рассмотрению линейных операторов. Если мы знаем матрицу A нашего оператора в некотором базисе P и сможем найти базис Q, в котором матрица оператора устроена просто (в том смысле, что ее степени вычисляются легко), то найдя матрицу T_{PQ} мы, в силу сказанного в предыдущем абзаце, легко вычислим степени матрицы A. Покажем, что у матриц, имеющих жорданову нормальную форму, степени вычисляются легко — тем самым станет ясна роль, которую в рассматриваемом вопросе играет теорема о приведении матрицы оператора к жордановой форме.

Вычисление степеней матрицы (2)

Совсем просто вычисляются степени диагональных матриц: легко проверяется, что если A — диагональная матрица с элементами a_1 , a_2 , ..., a_n на главной диагонали, то, для всякого натурального k, A^k — диагональная матрица с элементами a_1^k , a_2^k , ..., a_n^k на главной диагонали. Диагональная матрица — это простейший частный случай блочно-диагональной матрицы. У последней вычисление степени сводится к вычислению степеней ее диагональных клеток: легко понять, что

если
$$A = \begin{pmatrix} A_1 & O & \dots & O \\ O & A_2 & \dots & O \\ \dots & \dots & \dots & \dots \\ O & O & \dots & A_m \end{pmatrix}$$
 , то $A^k = \begin{pmatrix} A_1^k & O & \dots & O \\ O & A_2^k & \dots & O \\ \dots & \dots & \dots & \dots \\ O & O & \dots & A_m^k \end{pmatrix}$.

В частности, вычисление степеней матрицы, имеющей жорданову нормальную форму, сводится к вычислению степеней ее клеток Жордана.

Степень клетки Жордана

Приведем без доказательства результат о том, как выглядит произвольная степень клетки Жордана. Для этого нам понадобится следующее равенство (см. биномиальную формулу Ньютона, т. е. формулу (1) в § 3):

$$(\lambda + 1)^k = \lambda^k + C_k^1 \lambda^{k-1} + C_k^2 \lambda^{k-2} + \dots + C_k^{k-1} \lambda + 1.$$
 (4)

Пусть $J_{\lambda,n}$ — клетка Жордана порядка n>1 со скаляром λ на главной диагонали, а k — натуральное число. Все элементы матрицы J_{λ}^{k} nрасположенные выше главной диагонали, равны 0. В каждом ее столбце начиная с элемента на главной диагонали сверху вниз последовательно идут слагаемые из правой части равенства (4). При этом, если в указанной части столбца «хватает места» для всех слагаемых и столбец остается незаполненным, то оставшиеся места в нижней части столбца заполняются нулями. Если же места не хватает, то там стоят столько первых слагаемых из правой части равенства (4), сколько «помещаются» в столбце. Например,

$$J_{\lambda,3}^{5} = \begin{pmatrix} \lambda^{5} & 0 & 0 \\ 5\lambda^{4} & \lambda^{5} & 0 \\ 10\lambda^{3} & 5\lambda^{4} & \lambda^{5} \end{pmatrix}, \text{ a } J_{\lambda,7}^{4} = \begin{pmatrix} \lambda^{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 & 0 & 0 & 0 \\ 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 & 0 & 0 \\ 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 & 0 \\ 1 & 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 & 0 \\ 0 & 1 & 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} & 0 & 0 \\ 0 & 0 & 1 & 4\lambda & 6\lambda^{2} & 4\lambda^{3} & \lambda^{4} \end{pmatrix}_{\mathcal{O}} .$$