OS HW3

劉哲翰 林子甄 陳主員 葉俊谷

Technique - bilinear interpolation

four points
$$x_1 < x_2$$
 $y_1 < y_2$
 $f(x_1, y_1) = z_1$ $f(x_1, y_2) = z_2$ $f(x_2, y_1) = z_3$ $f(x_2, y_2) = z_4$
Using (t, u) to replace (x, y)
 $z = au + bt + cut + d$
 $a = z_3 - z_1$
 $b = z_2 - z_1$
 $c = z_1 - z_2 - z_3 + z_4$
 $d = z_1$

$$(1,0)$$

$$(x_1, y_1)$$

$$(x_1, y_2)$$

$$(x_1, y_2)$$

$$(x_1, y_2)$$

$$(x_1, y_2)$$

$$(x_2, y_2)$$

Technique - bilinear interpolation

• Ratio = 7

Technique - rotation

• Angle = 45°

Rotation

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v \cos \theta - w \sin \theta$$
$$y = v \cos \theta + w \sin \theta$$

Technique - shear

• Vertical = 0.45

Shear (vertical)

$$x = v + s_v w$$
$$y = w$$

Technique - shear

• Horizontal = 0.45

Shear (horizontal)

$$\begin{bmatrix} 1 & s_h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v$$
$$y = s_h v + w$$

Goal

- Using pthread to speed up this program.(100 points)
- output1.bmp : bilinear interpolation
- output2.bmp : bilinear + rotation
- output3.bmp : bilinear + shear(v)
- output4.bmp : bilinear + shear(h)
- output5.bmp : bilinear + shear(v) + rotation + shear(h)