Numerične metode 2 - definicije, tr
ditve in izreki

Oskar Vavtar po predavanjih profesorice Marjetke Knez2020/21

Kazalo

1 TEORIJA APROKSIMACIJE

3

1 TEORIJA APROKSIMACIJE

Definicija 1.1 (Aproksimacijska shema). ZX označimo (realni) vektorski prostor, katerega elemente želimo aproksimirati, $S \subseteq X$ označuje podprostor oz. podmnožico, v kateri iščemo aproksimant. Aproksimacijska shema je operator $A: X \to S$, ki vsakemu elementu $f \in X$ priredi aproksimacijski element $\tilde{f} = Af \in S$.

Definicija 1.2 (Optimalni aproksimacijski problem). Naj bo X vektorski prostor z normo $\|.\|$, $S \subseteq X$. Za $f \in X$ iščemo $\tilde{f} \in S$, da je

$$||f - \tilde{f}|| = \inf_{s \in S} ||f - s|| =: \operatorname{dist}(f, S).$$

Definicija 1.3. Recimo, da je $S = S_n$, kjer je n dimenzija. Zanima nas, ali za $f \in X$ in $\tilde{f}_n \in S_n$ napaka $||f - \tilde{f}_n||$ konvergira proti 0, ko gre $n \to \infty$. Če je to res, je aproksimacijska shema konvergentna.

Če gledamo zaporedje podprostorov $S_n \subset X$, mora veljati, da z večanjem svobodnih parametrov postane S_n gost v X. Za polinome to sledi iz Weierstrassovega izreka.

Izrek 1 (Weierstrassov izrek). Naj bo $f \in \mathcal{C}([a,b])$ poljubna funkcija. Potem $\forall \varepsilon > 0$ obstaja polinom p, da je

$$||f-p||_{\infty, [a,b]} < \varepsilon.$$

Drugače povedano:

$$\operatorname{dist}_{\infty}(f, \mathbb{P}_n) \xrightarrow{n \to \infty} 0.$$

Definicija 1.4 (Bernsteinov polinom).

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f(\frac{i}{n}) \cdot B_i^n(x),$$

kjer je B_i^n Bernsteinov bazni polinom:

$$B_i^n(x) := \binom{n}{i} x^i (1-x)^{n-1}, \quad i = 0, 1, \dots, n$$

Da se pokazati, da gre $\|f - \mathcal{B}_f\|_{\infty, [0,1]} \xrightarrow{n \to \infty} 0$. Bernsteinov aproksimacijski polinom nam poda en možen način aproksimacije funkcije f (na [0,1]).

Definicija 1.5 (Bernsteinov aproksimacijski operator). $\mathcal{B}_n : \mathcal{C}([a,b]) \to \mathbb{P}_n, \ f \mapsto \mathcal{B}_n f$:

$$\mathcal{B}_n f(x) = \sum_{i=0}^n f\left(a + \frac{i}{n}(b-a)\right) \cdot B_i^n(\frac{x-a}{b-a})$$

$$||f - \mathcal{B}_n f||_{\infty, [a,b]} = \max_{x \in [a,b]} |f(x) - \mathcal{B}_n f(x)|$$