Fast Initialization

Yangrui Liu[†]

July 23, 2023

1 Notation

- conv(S) denotes the convex hull of the set S [1].
- \mathbb{R}^N is the N-dimensional Euclidean space.
- $\mathbb{R}^{M\times N}$ is the $(M\times N)$ -dimensional real-valued matrix space.
- 0 is the all-zero vector/matrix/tensor with dimensionality specified in its subscript.
- 1 is the all-one vector/matrix/tensor with dimensionality specified in its subscript.
- ullet $m{M}^T$ is the transpose of the matrix $m{M}$, and $m{M}^{-1}$ is the inverse of the matrix $m{M}$.
- $\|\cdot\|_2$ denotes ℓ_2 -norm.

2 Related Background

A p-dimensional ellipsoid in \mathbb{R}^n can be written as an "affine mapping" of the Euclidean unit ball:

$$\mathcal{E}(\mathbf{F}, \mathbf{c}) = \{ \mathbf{F} \mathbf{x} + \mathbf{c} | \mathbf{x} \in B \},\tag{1}$$

where $B = \{x | ||x||_2 \le 1\}$ is the Euclidean unit ball, c is the center of the ellipsoid, and F is the John ellipsoid matrix of full column rank. We can also simply represent the ellipsoid as:

$$\mathcal{E}(\mathbf{F}, \mathbf{c}) = \mathbf{F}B + \mathbf{c}.\tag{2}$$

John ellipsoid is defined as the maximum-volume ellipsoid inscribed in the data convex hull.

3 Closed-Form Solution for the John Ellipsoid of a Fixed Simplex

In this section, we derive the closed-form solution for the John ellipsoid of a fixed simplex, aiming to find the John ellipsoid matrix F and center c that define the shape and position of the John ellipsoid. This derivation is based on the specific problem of fast initialization of the John ellipsoid, which involves computing the matrix F and vector c of the John ellipsoid of the simplex obtained from the successive projections algorithm (SPA) [2]. This initialization can be utilized as a starting point for the subsequent calculation of the maximum inscribed ellipsoid within the data convex hull. Given a hyperspectral image, we employ SPA to obtain a dimension-reduced signature matrix

[†]Department of Electrical Engineering, Tainan, Taiwan (R.O.C.) E-mail: q36083030@gs.ncku.edu.tw; Website: https://sites.google.com/view/chiahsianglin/home

 $M_0 = [m_1, ..., m_p] \in \mathbb{R}^{n \times p}$, where p is the number of endmembers and n = p - 1. Since the vectors $\{m_1, ..., m_p\}$ are affinely independent, they form a simplex conv $\{m_1, ..., m_p\}$.

Our primary objective is to compute the John ellipsoid matrix F based on establishing the relationship between simplex conv $\{m_1, \ldots, m_p\}$ and the simplex whose John ellipsoid is the unit ellipsoid.

3.1 Constructing a Simplex with a Unit Ball as its John Ellipsoid

In order to construct the simplex whose John ellipsoid is unit ball B, we start by operating on the identity matrix $\mathbf{E} = [\mathbf{e}_1, \dots, \mathbf{e}_p] \in \mathbb{R}^{p \times p}$, where \mathbf{e}_i denotes a unit vector and $\operatorname{conv}\{\mathbf{e}_1, \dots, \mathbf{e}_p\}$ is a unit simplex. To center the unit simplex, we subtract the mean vector \mathbf{d} from each column of \mathbf{E} , resulting in a new centered identity matrix denoted as $\bar{\mathbf{E}} = \mathbf{E} - \mathbf{d}\mathbf{1}_p^T \in \mathbb{R}^{p \times p}$.

Next, we apply principal component analysis (PCA) [3] on the \bar{E} to perform dimensionality reduction. This process yields the matrix $\hat{B} = [\hat{b}_1, \dots, \hat{b}_p] \in \mathbb{R}^{n \times p}$, whose columns forms a regular simplex conv $\{\hat{b}_1, \dots, \hat{b}_p\}$. Therefore, the simplex conv $\{b_1, \dots, b_p\}$ whose John ellipsoid is the unit ball can be obtained by scaling the simplex conv $\{\hat{b}_1, \dots, \hat{b}_p\}$ with a scaled factor r, given by the equation:

$$B = \frac{\hat{B}}{r},\tag{3}$$

where $\boldsymbol{B} = [\boldsymbol{b}_1, \dots, \boldsymbol{b}_p] \in \mathbb{R}^{n \times p}$. The scaling factor r is computed using the formula:

$$r = \left\| \frac{\mathbf{1}p}{p} - \frac{\mathbf{1}p}{n} \right\|_2 \tag{4}$$

This scaling factor ensures that the unit ball B is derived appropriately from the centered simplex \bar{E} .

3.2 Closed-Form Solution of F and c

After obtaining the simplex $conv\{b_1,\ldots,b_p\}$ with the unit ball as its John ellipsoid, our goal is to establish a relationship between B and the signature matrix M_0 .

Let $\mathcal{E}(\boldsymbol{F}, \boldsymbol{c})$ be the John ellipsoid of the simplex conv $\{\boldsymbol{m}_1, \dots, \boldsymbol{m}_p\}$, and $\mathcal{E}(\boldsymbol{G}, \boldsymbol{d})$ be the John ellipsoid of the convex hull of the simplex conv $\{\boldsymbol{b}_1, \dots, \boldsymbol{b}_p\}$. Mathematically, these two ellipsoids can be expressed as $\mathcal{E}(\boldsymbol{F}, \boldsymbol{c}) = \boldsymbol{F}\boldsymbol{B} + \boldsymbol{c}$ and $\mathcal{E}(\boldsymbol{G}, \boldsymbol{d}) = \boldsymbol{G}\boldsymbol{B} + \boldsymbol{d}$. Thus, we establish the mathematical relationship between \boldsymbol{B} and \boldsymbol{M}_0 by :

$$G^{-1}(B - d\mathbf{1}_p^T) = F^{-1}(M_0 - c\mathbf{1}_p^T),$$
 (5)

where c is the center of the convex hull conv $\{m_1, \ldots, m_p\}$. Therefore, the closed-form solution of c can be computed as:

$$\mathbf{c} = \frac{1}{p} \sum_{i=1}^{p} \sqrt{\mathbf{m}_i} \tag{6}$$

As the John ellipsoid of the convex hull of matrix B is the unit ellipsoid, it follows that the matrices G and vector d correspond to the identity matrix I_n and the zero vector $\mathbf{0}_n$, respectively. Therefore, the John ellipsoid matrix F of the convex hull of M_0 can be computed as:

$$F = ([M_0]_{:,1:n} - \bar{a}\mathbf{1}_p^T)[B]_{:,1:n}^{-1}, \tag{7}$$

where $[\mathbf{M}_0]_{:,1:n} = [\mathbf{m}_1, \dots, \mathbf{m}_n] \in \mathbb{R}^{n \times n}$ and $[\mathbf{B}]_{:,1:n} = [\mathbf{b}_1, \dots, \mathbf{b}_n] \in \mathbb{R}^{n \times n}$ are square matrices with full rank, representing the first n columns of matrices \mathbf{M}_0 and \mathbf{B} respectively.

References

- [1] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications. Boca Raton, FL, USA: CRC Press, 2017.
- [2] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J. Plaza, A. Ambikapathi, and C.-Y. Chi, "A signal processing perspective on hyperspectral unmixing: Insights from remote sensing," *IEEE Signal Processing Magazine*, vol. 31, no. 1, pp. 67–81, 2014.
- [3] S. Wold, K. Esbensen, and P. Geladi, "Principal component analysis," *Chemometrics and Intelligent Laboratory Systems*, vol. 2, no. 1, pp. 37–52, Aug. 1987.