# Álgebra



**Universidad** Internacional de Valencia

Máster Universitario en Inteligencia Artificial

02MIAR | Matemáticas:

Matemáticas para la Inteligencia Artificial

**Profesor:** 

Víctor M. Campello



#### Definición

Un vector real v de dimensión n es una lista ordenada de n números reales:

$$v = (v_1, v_2, \ldots, v_n), \quad v_i \in \mathbb{R}.$$

Se denota por  $\mathbb{R}^n$  el conjunto formado por todos los vectores de dimensión n. Por tanto, podemos escribir  $v \in \mathbb{R}^n$ .

#### **Ejemplos**

- 1.  $v = (1, -\frac{2}{3}) \in \mathbb{R}^2$ .
- 2.  $w = (\sqrt{2}, -1.2, \pi) \in \mathbb{R}^3$ .



Los vectores en  $\mathbb{R}^n$  se pueden interpretar de forma gráfica mediante un sistema de n coordenadas. En caso de tener una dimensión de n=3 o inferior, éstos se pueden dibujar.





#### Definición

Dados dos vectores  $v, w \in \mathbb{R}^n$ ,  $v = (v_1, v_2, \dots, v_n)$ ,  $w = (w_1, w_2, \dots, w_n)$ , podemos definir su suma como

$$v + w = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n).$$

#### Definición

Dado un valor real  $\lambda \in \mathbb{R}$  (escalar) y un vector  $v \in \mathbb{R}^n$ ,  $v = (v_1, v_2, \dots, v_n)$ , podemos definir su producto como

$$\lambda \cdot \mathbf{v} = (\lambda \mathbf{v}_1, \lambda \mathbf{v}_2, \dots, \lambda \mathbf{v}_n).$$



La longitud de los vectores se puede medir a través de **normas**. Algunas normas vectoriales importantes son:

Norma euclídea:

$$\|v\|_2 = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

Norma 1:

$$||v||_1 = \sum_{i=1}^n |v_i| = |v_1| + |v_2| + \cdots + |v_n|.$$

Norma del máximo:

$$||v||_{\infty} = \max_{1 \le i \le n} |v_i|.$$



### Ejemplo

Construimos un modelo de machine learning para predecir las temperaturas a partir de algunas variables de entrada (input). Supongamos que obtenemos un conjunto de n predicciones con el modelo considerado, almacenadas en un vector:

$$\hat{\mathbf{v}} = (\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \dots, \hat{\mathbf{v}}_n) \in \mathbb{R}^n.$$

Comparamos ahora el vector de predicciones,  $\hat{v}$ , con el vector de respuestas reales (observaciones),  $v = (v_1, \dots, v_n)$ . Una forma de hacerlo es utilizar alguna norma sobre la diferencia de los dos vectores:

$$E = \frac{1}{n} \|\hat{\mathbf{v}} - \mathbf{v}\|.$$

Objetivo: encontrar un algoritmo que minimice E.



El producto escalar entre dos vectores  $v, w \in \mathbb{R}^n$  se define como:

$$v\cdot w=\sum_{i=1}^n v_iw_i.$$

### Ejemplo

Sean  $v, w \in \mathbb{R}^3$ , con v = (2, -1, 0) y w = (-3, -2, 1). Entonces

$$v \cdot w = (2, -1, 0) \cdot (-3, -2, 1)$$
  
=  $2 \cdot (-3) + (-1) \cdot (-2) + 0 \cdot 1 = -6 + 2 + 0 = -4$ .



#### Definición

Sean  $u, v \in \mathbb{R}^n$ . Definimos la **proyección** de u sobre v como

$$\operatorname{Proj}_{v}(u) = \frac{u \cdot v}{v \cdot v} v.$$

#### Definición

Sean  $u, v \in \mathbb{R}^n$ . Definimos la **ortogonal** de u sobre v como

$$\operatorname{Ort}_{v}(u) = u - \operatorname{Proj}_{v}(u)$$
.





#### Definición

Diremos que dos vectores  $u, v \in \mathbb{R}^n$  son **ortogonales** si  $u \cdot v = 0$ .

La definición de ortogonalidad entre dos vectores se corresponde con la noción geométrica de perpendicularidad.

Más concretamente,

$$u \cdot v = \|u\|_2 \|v\|_2 \cos(\widehat{uv}),$$

donde  $\widehat{uv}$  es el ángulo que forman los vectores u y v.



#### **Propiedades**

#### Para $u, v, w \in \mathbb{R}^n$ $v \in \mathbb{R}$ :

- $\triangleright u + v = v + u$ .
  - $\vdash u \cdot v = v \cdot u$
  - $u \cdot (v + w) = u \cdot v + u \cdot w.$
  - $(a \cdot u) \cdot v = a \cdot (u \cdot v).$
  - $(a \cdot u) \cdot v = a \cdot (u \cdot v)$

  - $ightharpoonup u \cdot v = 0$  si y sólo si u y v son ortogonales.
  - $v \cdot u = v \cdot \operatorname{Proj}_{v}(u).$



#### Definición

Dados  $v_1, v_2, \ldots, v_k \in V$ , una **combinación lineal** de los k vectores anteriores es cualquier expresión de la forma

$$a_1v_1+a_2v_2+\ldots+a_kv_k,$$

 $con a_1, a_2, \ldots, a_k \in K$ .

#### Definición

Sean  $v_1, v_2, \ldots, v_k \in V$ . Diremos que los vectores anteriores son linealmente independientes si se cumple que la ecuación

$$a_1v_1 + a_2v_2 + \ldots + a_kv_k = 0$$

tiene como única solución  $a_1 = a_2 = \cdots = a_k = 0$ . En caso contrario, se dice que dichos vectores son linealmente dependientes.



#### Definición

Una **matriz** de tamaño  $m \times n$  sobre el cuerpo de los números reales  $\mathbb R$  es un conjunto formado por  $m \cdot n$  valores reales,  $a_{i,j}$ ,  $1 \le i \le m$ ,  $1 \le j \le n$ , distribuidos en m filas y n columnas de la siguiente forma:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}.$$

Escribimos  $A \in \mathbb{R}^{m \times n}$ , siendo  $\mathbb{R}^{m \times n}$  el conjunto formado por todas las matrices  $m \times n$ . Asimismo, diremos que una matriz  $A \in \mathbb{R}^{m \times n}$  es **cuadrada** si m = n, es decir, si tiene el mismo número de filas y de columnas.



Sean  $A, B \in \mathbb{R}^{m \times n}$ . Podemos definir la **suma** y la **resta**  $A \pm B$  como:

$$A \pm B = \begin{pmatrix} a_{1,1} \pm b_{1,1} & a_{1,2} \pm b_{1,2} & \cdots & a_{1,n} \pm b_{1,n} \\ a_{2,1} \pm b_{2,1} & a_{2,2} \pm b_{2,2} & \cdots & a_{2,n} \pm b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} \pm b_{m,1} & a_{m,2} \pm b_{m,2} & \cdots & a_{m,n} \pm b_{m,n} \end{pmatrix}$$

Asimismo, dado un escalar  $\lambda \in \mathbb{R}$ , definimos el **producto**  $\lambda \cdot A$  como

$$\lambda A = \begin{pmatrix} \lambda a_{1,1} & \lambda a_{1,2} & \cdots & \lambda a_{1,n} \\ \lambda a_{2,1} & \lambda a_{2,2} & \cdots & \lambda a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m,1} & \lambda a_{m,2} & \cdots & \lambda a_{m,n} \end{pmatrix}$$



Por último, si  $A \in \mathbb{R}^{m \times s}$  y  $B \in \mathbb{R}^{s \times n}$ , entonces definimos el **producto matricial**  $A \cdot B \in \mathbb{R}^{m \times n}$  como

$$A \cdot B = \begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & c_{m,2} & \cdots & c_{m,n} \end{pmatrix}$$

donde 
$$c_{i,j} = \sum_{k=1}^{s} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + a_{i,2} b_{2,j} + \cdots + a_{i,s} b_{s,j}.$$



#### Nota

En general, el producto de matrices NO es conmutativo. Por ejemplo:

$$\begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -6 & 7 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -7 & 8 \end{pmatrix}$$

#### Definición

Sea  $A \in \mathbb{R}^{n \times n}$ . Diremos que A es invertible o regular si  $\exists B \in \mathbb{R}^{n \times n}$  tal que

 $A \cdot B = B \cdot A = I_n$ . La matriz B recibe el nombre de **matriz inversa** y se denota por  $A^{-1}$ .



#### Definición

Sea  $A \in \mathbb{R}^{n \times n}$  una matriz cuadrada de la forma

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}.$$

Definimos el **determinante** de A de forma recurrente como sigue:

- $ightharpoonup Si \ n = 1, \ \det(A) = a_{1.1}.$
- ightharpoonup Para n > 1.

Para 
$$n > 1$$
, 
$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1,j} \det(A_{1,j}),$$

donde  $A_{i,j} \in \mathbb{R}^{(n-1)\times (n-1)}$  es la matriz resultante de eliminar en A la fila i y la columna j.



#### Teorema

El determinante de una matriz A puede calcularse de cualquiera de las siguientes formas:

Desarrollo por la fila i, 1 < i < n:

$$\det(A)=\sum_{j=1}^n (-1)^{i+j}a_{i,j}\det(A_{i,j}).$$

▶ Desarrollo por la columna j,  $1 \le j \le n$ :

$$\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \det(A_{i,j}).$$

donde  $A_{i,j} \in \mathbb{R}^{(n-1)\times (n-1)}$  es la matriz resultante de eliminar en A la fila i y la columna j.



#### Teorema

 $\forall A, B \in \mathbb{R}^{n \times n}$ , se cumple

 $\det(A \cdot B) = \det(A) \cdot \det(B).$ 

#### Teorema

 $A \in \mathbb{R}^{n \times n}$  es regular si y sólo si  $\det(A) \neq 0$ .

#### Definición

El **rango** de una matriz  $A \in \mathbb{R}^{m \times n}$  es el número máximo de columnas que, como vectores, son linealmente independientes entre sí. Se denota por rank(A).

### Teorema

 $A \in \mathbb{R}^{n \times n}$  es regular si y sólo si  $\operatorname{rank}(A) = n$ .



#### Definición

Sea  $A \in \mathbb{R}^{m \times n}$ . La **traspuesta** de la matriz A se define como la matriz  $A' \in \mathbb{R}^{n \times m}$  tal que A'(i,j) = A(j,i),  $1 \le i \le n$ ,  $1 \le j \le m$ .

#### Teorema

Sea  $A \in \mathbb{R}^{n \times n}$  regular. Entonces la inversa de A,  $A^{-1}$ , viene dada por

$$A^{-1} = rac{1}{\det(A)} \cdot \operatorname{adj}(A),$$

donde  $\operatorname{adj}(A)$  es la matriz adjunta de A, dada por  $\operatorname{adj}(A) = C'$ , con  $C(i,j) = (-1)^{i+j} |A_{i,j}|, 1 \le i,j \le n$ , con  $|A_{i,j}| = \operatorname{det}(A_{i,j})$ .



#### Definición

Diremos que una aplicación  $f: \mathbb{R}^n \to \mathbb{R}^m$  es una aplicación lineal  $si \ \forall u_1, u_2 \in \mathbb{R}^n \ y$   $\forall a, b \in \mathbb{R}$  se cumple  $f(au_1 + bu_2) = af(u_1) + bf(u_2).$ 

- 1. La aplicación  $f: \mathbb{R}^3 \to \mathbb{R}^2$  dada por f(x, y, z) = (x + y, 2z x) es lineal.
  - 2. La aplicación  $f: \mathbb{R}^2 \to \mathbb{R}^2$  dada por  $f(x, y) = (x, x^2 y)$  no es lineal.
  - 3. La aplicación  $f: \mathbb{R}^2 \to \mathbb{R}^2$  dada por f(x,y) = (x-y,x+1) no es lineal.



#### **Teorema**

Toda aplicación lineal  $f: \mathbb{R}^n \to \mathbb{R}^m$  tiene una matriz que la representa, que además es única. Concretamente,  $\exists ! M_f \in \mathbb{R}^{m \times n}$  tal que  $\forall v \in \mathbb{R}^n$  puede escribirse:

$$f(v) = M_f v$$
.

### Ejemplo

Sea  $f: \mathbb{R}^3 \to \mathbb{R}^4$  dada por

$$f(x,y,z) = \left(egin{array}{c} x+y \ y-z \ 2x+y+z \ 3z \end{array}
ight) 
ightarrow M_f = \left(egin{array}{cc} 1 & 1 & 0 \ 0 & 1 & -1 \ 2 & 1 & 1 \ 0 & 0 & 3 \end{array}
ight)$$



#### **Teorema**

Sea  $f: \mathbb{R}^n \to \mathbb{R}^s$  y  $g: \mathbb{R}^s \to \mathbb{R}^m$  aplicaciones lineales, con  $M_f$  y  $M_g$  las matrices que las representan, respectivamente. Entonces  $g \circ f: \mathbb{R}^n \to \mathbb{R}^m$  es una aplicación lineal, cuya matriz que la representa viene dada por  $M_{g \circ f} = M_g M_f$ .

#### **Ejercicios**

- 1. Comprueba que el teorema se cumple para las dos ejemplos anteriores.
- 2. Probar el teorema para dos aplicaciones lineales cualesquiera. Es decir, probar lo siguiente:
  - 2.1 g o f es una aplicación lineal si f y g lo son.
  - 2.2 La matriz que representa  $g \circ f$ ,  $M_{g \circ f}$ , puede escribirse como el producto de las matrices que representan  $g \circ f$ , esto es,  $M_g M_f$ .



#### Ejemplo

Un ejemplo clásico de aplicaciones lineales son las rotaciones. En el caso de  $\mathbb{R}^2$  vienen dadas por  $f_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$  definidas como:

$$f_{\theta}(x,y) = \begin{pmatrix} \cos(\theta)x - \sin(\theta)y \\ \sin(\theta)x + \cos(\theta)y \end{pmatrix} \to M_{f_{\theta}} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix},$$

donde  $\theta$  representa el ángulo de rotación (en sentido antihorario). Por tanto, esta aplicación envía un vector  $(x,y) \in \mathbb{R}^2$  a su correspondiente versión rotada  $\theta$  grados:  $(\cos(\theta)x - \sin(\theta)y, \sin(\theta)x + \cos(\theta)y)$ . Asimismo, y como ya sabemos, podemos expresar la transformación matricialmente:

$$f_{\theta}(x,y) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$



#### Ejemplo

Por ejemplo, la rotación de  $30^{\circ}$  (o  $\pi/6$  rad) viene dada por:

$$f_{\pi/6} \equiv \left(egin{array}{cc} \cos\left(rac{\pi}{6}
ight) & -\sin\left(rac{\pi}{6}
ight) \ \sin\left(rac{\pi}{6}
ight) & \cos\left(rac{\pi}{6}
ight) \end{array}
ight) = \left(egin{array}{cc} rac{\sqrt{3}}{2} & -rac{1}{2} \ rac{1}{2} & rac{\sqrt{3}}{3} \end{array}
ight)$$

Por otra parte, la rotación de  $60^{\circ}$  (o  $\pi/3$  rad) viene dada por:

$$f_{\pi/3} \equiv \left(egin{array}{cc} \cos\left(rac{\pi}{3}
ight) & -\sin\left(rac{\pi}{3}
ight) \ \sin\left(rac{\pi}{3}
ight) & \cos\left(rac{\pi}{3}
ight) \end{array}
ight) = \left(egin{array}{cc} rac{1}{2} & -rac{\sqrt{3}}{2} \ rac{\sqrt{3}}{2} & rac{1}{2} \end{array}
ight)$$

Por tanto, si componemos sendas rotaciones queda:

$$f_{\pi/3}\circ f_{\pi/6}\equiv\left(egin{array}{cc}rac{\sqrt{3}}{2}&-rac{1}{2}\ rac{1}{2}&rac{\sqrt{3}}{2}\end{array}
ight)\left(egin{array}{cc}rac{1}{2}&-rac{\sqrt{3}}{2}\ rac{\sqrt{3}}{2}&rac{1}{2}\end{array}
ight)=\left(egin{array}{cc}0&-1\ 1&0\end{array}
ight)$$



#### Ejemplo

Cabe esperar que el resultado sea una rotación de  $90^{\circ}$  (o  $\pi/2$  rad) con respecto al original:

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -y \\ x \end{array}\right)$$

cumpliéndose  $(x, y) \cdot (-y, x) = -xy + yx = 0$ , luego son ortogonales.

### Ejercicio

Utilizando las identidades trigonométricas que procedan, demuestra los siguientes enunciados:

- (a)  $||f_{\theta}(v)||_2 = ||v||_2 \ \forall v \in \mathbb{R}^2$ ,  $\forall \theta \in \mathbb{R}$ .
- (b)  $f_{\beta} \circ f_{\alpha} = f_{\alpha+\beta} \ \forall \alpha, \beta \in \mathbb{R}.$

### Motivación



Las matrices (y las aplicaciones lineales que representan) constituyen un elemento importante en la descripción de redes neuronales.



$$a_1^{\mathsf{R}} = f_1 \left( \omega_{1,1} a_1^{\mathsf{L}} + \omega_{1,2} a_2^{\mathsf{L}} + \omega_{1,3} a_3^{\mathsf{L}} + b_1 \right),$$
  
 $a_2^{\mathsf{R}} = f_2 \left( \omega_{2,1} a_1^{\mathsf{L}} + \omega_{2,2} a_2^{\mathsf{L}} + \omega_{2,3} a_3^{\mathsf{L}} + b_2 \right).$ 

$$W = \left( egin{array}{ccc} \omega_{1,1} & \omega_{1,2} & \omega_{1,3} \ \omega_{2,1} & \omega_{2,2} & \omega_{2,3} \end{array} 
ight), \ a^{\mathsf{L}} = \left( egin{array}{c} a_1^{\mathsf{L}} \ a_2^{\mathsf{L}} \ a_3^{\mathsf{L}} \end{array} 
ight).$$

$$a_1^{\mathsf{R}} = f_1 \left( W(1,:) a^{\mathsf{L}} + b_1 \right),$$
  
 $a_2^{\mathsf{R}} = f_2 \left( W(2,:) a^{\mathsf{L}} + b_2 \right).$ 

### Motivación



En general, para el caso de información de una capa de n neuronas que se transmite a otra capa de m neuronas:



$$oldsymbol{a}_i^{\mathsf{R}} = f_i \left( \sum_{j=1}^n \omega_{i,j} oldsymbol{a}_j^{\mathsf{L}} + b_i 
ight), \ 1 \leq i \leq m.$$

$$W = \begin{pmatrix} \omega_{1,1} & \omega_{1,2} & \cdots & \omega_{1,n-1} & \omega_{1,n} \\ \omega_{2,1} & \omega_{2,2} & \cdots & \omega_{2,n-1} & \omega_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \omega_{m-1,1} & \omega_{m-1,2} & \cdots & \omega_{m-1,n-1} & \omega_{m-1,n} \\ \omega_{m,1} & \omega_{m,2} & \cdots & \omega_{m,n-1} & \omega_{m,n} \end{pmatrix},$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

### Autovectores y autovalores



#### Definición

Sea  $A \in \mathbb{R}^{n \times n}$  una matriz cuadrada. Un vector propio o autovector  $v \in \mathbb{R}^{n \times 1}$ ,  $v \neq \overrightarrow{\mathbf{0}}$ , asociado a A es aquel que cumple que  $\exists \lambda \in \mathbb{R}$  tal que  $Av = \lambda v$ . El valor  $\lambda$  recibe el nombre de valor propio o autovalor de A asociado al autovector v.

### Ejemplo

Sea 
$$A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$$
.  $\lambda_1 = 2$  y  $\lambda_2 = -3$  son valores propios de  $A$  asociados a los vectores

propios 
$$v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 y  $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ , resp.:  

$$Av_1 = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2v_1,$$

$$Av_2 = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -3 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -3v_2.$$



- ▶ ¿Qué interés tiene conocer los autovalores y autovectores?
- Supongamos que, dada  $A \in \mathbb{R}^{n \times n}$ , conseguimos encontrar n autovectores linealmente independientes,  $\{v_i\}_{i=1}^n$  (base de  $\mathbb{R}^n$ ), asociados respectivamente a n autovalores,  $\{\lambda_i\}_{i=1}^n$ .
- Por definición, se tiene  $Av_i = \lambda_i v_i$  para  $1 \le i \le n$ .
- ▶ Denotamos  $P \in \mathbb{R}^{n \times n}$  a la matriz formada por los vectores propios dispuestos en columna y D a la matriz diagonal formada por los valores propios:

$$P = \begin{pmatrix} \uparrow & \uparrow & & \uparrow \\ v_1 & v_2 & \cdots & v_n \\ \downarrow & \downarrow & & \downarrow \end{pmatrix}, \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

- ► Entonces se cumple AP = PD. Equivalentemente:  $P^{-1}AP = D$ .
- $(AP)(:,j) = AP(:,j) = Av_i = \lambda_i v_i = PD(:,j) = (PD)(:,j).$



### Ejemplo

Anteriormente vimos que los vectores propios de  $A=\left(\begin{array}{cc} 7 & -10 \\ 5 & -8 \end{array}\right)$  son  $v_1=\left(\begin{array}{cc} 2 \\ 1 \end{array}\right)$  y

$$v_2=\left(\begin{array}{c}1\\1\end{array}\right)$$
, asociados, respectivamente, a los autovalores  $\lambda_1=2$  y  $\lambda_2=-3$ . Definimos  $P=\left(\begin{array}{cc}2&1\\1&1\end{array}\right),\quad D=\left(\begin{array}{cc}2&0\\0&-3\end{array}\right)$ 

$$AP = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \uparrow & \uparrow \\ Av_1 & Av_2 \\ \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 2 & -3 \end{pmatrix}$$

$$PD = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} \uparrow & \uparrow \\ \lambda_1 v_1 & \lambda_2 v_2 \\ \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} 4 & -3 \\ 2 & -3 \end{pmatrix}$$



#### Definición

Sea  $A \in \mathbb{R}^{n \times n}$  una matriz cuadrada. Diremos que A es diagonalizable si  $\exists P \in \mathbb{R}^{n \times n}$ regular y  $D \in \mathbb{R}^{n \times n}$  diagonal tales que

$$P^{-1}AP = D$$

- ¿Qué utilidad tiene diagonalizar una matriz?
- Cálculo del determinante:

$$\det(A) = \det\left(PDP^{-1}\right) = \det(P)\det(D)\det\left(P^{-1}\right)$$

$$= \det(P)\det(D)\frac{1}{\det(P)} = \det(D) = \prod^{n} \lambda_{i}.$$

- Cálculo del rango:  $rank(A) = |\{\lambda_i \mid \lambda_i \neq 0, 1 < i < n\}|.$



Cálculo de potencias matriciales.

Si  $P^{-1}AP = D$ , entonces multiplicando por P a la izquierda y  $P^{-1}$  a la derecha podemos obtener

$$A = PDP^{-1}$$

$$A^2 = A \cdot A = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PDI_nDP^{-1} = P(D \cdot D)P^{-1} = PD^2P^{-1}.$$

$$A^3 = A^2 \cdot A = (PD^2P^{-1})(PDP^{-1}) = PD^2(P^{-1}P)DP^{-1} = PD^2I_nDP^{-1} = P(D^2D)P^{-1} = PD^3P^{-1}.$$

► En general, se tiene

$$A^k = PD^kP^{-1}, ext{ donde } D^k = \left(egin{array}{cccc} \lambda_1^k & 0 & \cdots & 0 \ 0 & \lambda_2^k & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n^k \end{array}
ight).$$



Si  $A \in \mathbb{R}^{n \times n}$ ,  $\lambda \in \mathbb{R}$  es un valor propio de A y  $v \in \mathbb{R}^{n \times 1}$  es un vector propio asociado a  $\lambda$ , entonces:

$$Av = \lambda v \leftrightarrow Av - \lambda v = \overrightarrow{\mathbf{0}} \leftrightarrow Av - \lambda I_n v = \overrightarrow{\mathbf{0}} \leftrightarrow (A - \lambda I_n)v = \overrightarrow{\mathbf{0}}.$$

- $(A \lambda I_n)v = \overrightarrow{0}$  es un sistema de ecuaciones lineal **homogéneo** (términos independientes pulos). Por tanto, siempre es compatible:
- independientes nulos). Por tanto, siempre es compatible: ightharpoonup Si  $det(A - \lambda I_n) \neq 0$ , entonces es compatible determinado y su única solución es
- $v = \mathbf{0}$ Si  $det(A \lambda I_n) = 0$ , entonces es compatible indeterminado y tiene infinitas soluciones.
- Pueremos encontrar vectores propios  $v \neq \overrightarrow{\mathbf{0}}$ , luego imponemos  $\det(A \lambda I_n) = 0$  (ecuación característica). Las raíces de esta ecuación con incógnita  $\lambda$  son los valores propios.
- Para cada valor propio obtenido  $\{\lambda_i\}_{i=1}^k$  se obtiene el máximo número de vectores linealmente independientes como que verifican  $(A \lambda_i I_n)v = \overrightarrow{\mathbf{0}}$ ,  $1 \le i \le k$ .

# de Valencia

### **Ejemplo**

Sea 
$$A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix}$$
.

Ec. caract.: 
$$det(A - \lambda I_2) = 0 \rightarrow det\begin{pmatrix} 7 - \lambda & -10 \\ 5 & -8 - \lambda \end{pmatrix} = 0 \rightarrow \lambda^2 + \lambda - 6 = 0 \rightarrow 0$$

$$\lambda_1 = -3$$
,  $\lambda_2 = 1$ 

$$\lambda_1 = -3, \ \lambda_2 = 2.$$
Vectores propios:
$$\lambda_1 = -3, \ \lambda_2 = 2.$$
Vectores propios:

$$(A - \lambda_1 t_2) v = \mathbf{0} \to \begin{pmatrix} 5 & -5 \end{pmatrix} \begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix} \to \begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} \alpha \end{pmatrix}, \alpha \in \mathbb{R}.$$

$$\alpha = 1 \to v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$(A - \lambda_2 t_2) v = \mathbf{0} \to \begin{pmatrix} 5 & -10 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 & 1 \end{pmatrix} \to \begin{pmatrix} x \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 2\alpha \\ -1 & 1 \end{pmatrix}.$$

$$(A - \lambda_1 I_2) v = \overrightarrow{\mathbf{0}} \to \begin{pmatrix} 10 & -10 \\ 5 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix}, \ \alpha \in \mathbb{R}.$$

$$\alpha = 1 \to v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$(A - \lambda_2 I_2) v = \overrightarrow{\mathbf{0}} \to \begin{pmatrix} 5 & -10 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \to \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 0 \end{pmatrix}, \ \alpha \in \mathbb{R}.$$

### Otras descomposiciones matriciales



- $\triangleright$  No todas las matrices son diagonalizables en  $\mathbb{R}$ .
- ightharpoonup Si A es cuadrada y no diagonalizable ightharpoonup Forma canónica de Jordan.
- ightharpoonup Si A es rectangular o Factorización SVD (singular value decomposition) o PCA.
- Otras factorizaciones útiles:
  - Factorización *LU* (método de eliminación de Gauss).
  - Factorización de Cholesky (mínimos cuadrados, Montecarlo...).
  - Factorización de Cholesky (minimos cuadrados, Montecarió...)

    Factorización QR (mínimos cuadrados).

#### Definición

Una matriz  $A \in \mathbb{R}^{n \times n}$  es simétrica si A' = A

### Teorema

Si  $A \in \mathbb{R}^{n \times n}$  es simétrica, entonces A es diagonalizable. Además,  $\exists P \in \mathbb{R}^{n \times n}$  ortogonal  $(P' = P^{-1})$  tal que P'AP = D.

### Matrices simétricas



#### Definición

Una matriz simétrica  $A \in \mathbb{R}^{n \times n}$  es definida positiva (respectivamente semidefinida positiva) si  $\forall v \in \mathbb{R}^{n \times 1}$ ,  $v \neq \overrightarrow{\mathbf{0}}$ , v'Av > 0 (respectivamente  $v'Av \geq 0$ ). Por otra parte, A es (semi)definida negativa si -A es (semi)definida positiva.

### Ejemplos

- 1.  $I_n \in \mathbb{R}^{n \times n}$  es definida positiva  $\forall n \in \mathbb{N}$ . En efecto, dado  $v \in \mathbb{R}^{n \times 1}$ ,  $v \neq \overrightarrow{\mathbf{0}}$ ,  $v'I_nv = v'v = ||v||_2^2 > 0$ .
- 2.  $0_n \in \mathbb{R}^{n \times n}$  es semidefinida positiva  $\forall n \in \mathbb{N}$ . En efecto, dado  $v \in \mathbb{R}^{n \times 1}$ ,  $v \neq \overrightarrow{\mathbf{0}}$ ,  $v'0_n v = 0$ .
- 3.  $A = \begin{pmatrix} 7 & -10 \\ 5 & -8 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$  no es (semi)definida positiva, pues, por ejemplo, tomando v' = (1, 1), se tiene v'Av = -6 < 0.

### Matrices simétricas



#### Definición

Sea  $A \in \mathbb{R}^{n \times n}$  y  $k \in \{1, 2, ..., n\}$ . El menor principal dominante de orden k asociado a A, al que denotaremos por  $A_k$ , es  $A_k = \det(A(1:k,1:k))$ ; es decir, el determinante de la submatriz formada por las primeras k filas y columnas.

#### Teorema

Sea  $A \in \mathbb{R}^{n \times n}$  una matriz simétrica. Los enunciados siguientes son equivalentes:

- ► A es definida positiva (respectivamente, semidefinida positiva).
- $ightharpoonup A_k > 0$ ,  $\forall k \in \{1, 2, ..., n\}$  (respectivamente,  $A_k \geq 0$ ).
- $ightharpoonup orall \lambda \in \mathbb{R}$  valor propio de A,  $\lambda > 0$  (respectivamente,  $\lambda \geq 0$ ).

# Álgebra tensorial



#### Definición

Un tensor es un objeto invariante con respecto a un cambio de coordenadas.

### **Ejemplos**

- 1. Los **escalares** en  $\mathbb{R}$  son tensores.
- 2. Los **vectores** v de un espacio vectorial V son tensores.
- 3. Los elementos del conjunto  $V^*$ , formado por las aplicaciones lineales de la forma  $V \to \mathbb{R}$ , llamados **covectores**, son tensores.
- 4. Las aplicaciones lineales entre dos espacios vectoriales V y W, de la forma  $V \to W$ , tienen representación como tensor.
- 5. En consecuencia, las matrices de  $\mathbb{R}^{m \times n}$  tienen representación como tensor.
- 6. Tensores métricos (ecuaciones de campo de Einstein).





$$Vector: v = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

▶ Base 
$$\mathcal{B} = \{e_1, e_2\}$$
, donde:

$$e_1=\left(egin{array}{c}1\\0\end{array}
ight),\;e_2=\left(egin{array}{c}0\\1\end{array}
ight)$$

$$v = 5e_1 + 4e_2$$

ightharpoonup Coordenadas de v en la base  $\mathcal{B}$ :





$$\blacktriangleright \text{ Vector: } v = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

 $\widetilde{\mathcal{B}} = \{\widetilde{e}_1, \widetilde{e}_2\}, \text{ donde:}$ 

$$\widetilde{e}_1 = \left( \begin{array}{c} 1 \\ -1 \end{array} \right), \ \widetilde{e}_2 = \left( \begin{array}{c} 1 \\ 2 \end{array} \right)$$

Coordenadas de 
$$v$$
 en la base  $\widetilde{\mathcal{B}}$ :

$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\widetilde{\mathcal{B}}}$$





$$\blacktriangleright \text{ Vector: } v = \left(\begin{array}{c} 5 \\ 4 \end{array}\right)$$

Base  $\widetilde{\mathcal{B}} = \{\widetilde{e}_1 = 2e_1, \widetilde{e}_2 = 2e_1\},\$ donde:

$$\widetilde{\mathbf{e}}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \ \widetilde{\mathbf{e}}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$ightharpoonup v = 2.5\widetilde{e}_1 + 2\widetilde{e}_2$$

$$ightharpoonup$$
 Coordenadas de  $v$  en la base  $\widetilde{\mathcal{B}}$ :

$$\begin{bmatrix} 2.5 \\ 2 \end{bmatrix}_{\widetilde{R}} = \frac{1}{2} \begin{bmatrix} 5 \\ 4 \end{bmatrix}_{R}$$





$$\blacktriangleright \text{ Vector: } v = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Base  $\widetilde{\mathcal{B}}=\{\widetilde{e}_1=\frac{1}{2}e_1,\widetilde{e}_2=\frac{1}{2}e_1\}$ , donde:

$$\widetilde{e}_1 = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}, \ \widetilde{e}_2 = \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$$

ightharpoonup Coordenadas de v en la base  $\widehat{\mathcal{B}}$ :

$$\left[\begin{array}{c} 10 \\ 8 \end{array}\right]_{\widetilde{\mathcal{B}}} = 2 \left[\begin{array}{c} 5 \\ 4 \end{array}\right]_{\mathcal{B}}$$



- Diremos que una componente de un tensor es **contravariante** si ésta varía en proporción inversa con respecto a un cambio de coordenadas.
- **Ejemplo:** coordenadas de un vector con respecto a una base.
- Diremos que una componente de un tensor es covariante si ésta varía en proporción directa con respecto a un cambio de coordenadas.
- **Ejemplo:** coordenadas de un vector v formadas a partir de su producto escalar con los elementos de la base  $\mathcal{B} = \{b_i\}_{i=1}^n$ :

$$\left[\begin{array}{c} v \cdot b_1 \\ \vdots \\ v \cdot b_n \end{array}\right]$$

### Arrays multidimensionales



- Los arrays multidimensionales son casos particulares de objetos que tienen representación de tensor.
- ► El **rango** de un tensor en forma de array representa las dimensiones espaciales en términos de la disposición de sus entradas.
  - Un escalar  $x \in \mathbb{R}$  tiene rango 0.
  - ▶ Un vector  $v \in \mathbb{R}^n$  tiene rango 1 (y dimensión n).
  - ▶ Una matriz  $A \in \mathbb{R}^{n \times n}$  tiene rango 2 (y dimensión n).
  - ▶ Un array del tipo  $A \in \mathbb{R}^{n \times n \times n}$  tiene rango 3 (y dimensión n).

▶ En general,  $T_{j_1,...,j_q}^{i_1,...,i_p}$  es un tensor de tipo (p,q) (p componentes contravariantes y q componentes covariantes), con rango p+q.

### Arrays multidimensionales



### **Ejemplos**

- 1. Audio PCM Mono de 2 segundos, con frecuencia de muestreo de 48 kHz (48000 muestras por segundo).
  - Rango: 1.
  - Dimensión: 96000.
- 2. Audio PCM Stereo de 3 segundos, con frecuencia de muestreo 44.1 kHz (44100 muestras por segundo).
  - Rango: 2.
  - ▶ Dimensión: 2 × 132300.
- 3. Imagen monocroma, con 600 píxeles de anchura y 800 píxeles de altura.
  - Rango: 2.
  - **▶** *Dimensión:* 600 × 800.

### Arrays multidimensionales



### **Ejemplos**

- 4. Imagen RGB, con 2000 píxeles de anchura y 1200 píxeles de altura.
  - ► *Rango:* 3.
  - ightharpoonup Dimensión:  $3 \times 2000 \times 1200$ .
- 5. Vídeo monocromo de 1 minuto, a 30 fps (frames por segundo), con resolución 720p:
  - Rango: 3.
  - **▶** *Dimensión:* 1800 × 1280 × 720.
- 6. Vídeo RGB de 40 segundos, a 60 fps (frames por segundo), con resolución 1080p:
  - Rango: 4.
  - *▶ Dimensión:* 2400 × 3 × 1920 × 1080.

# ¡Muchas gracias!



#### **Contacto:**

victormanuel.campello@campusviu.es