Perceptrón Simple

Sistemas de Inteligencia Artificial

Primer Cuatrimestre 2025

Alan Pierri Rodrigo Ramele Eugenia Piñeiro Marina Fuster Luciano Bianchi Santiago Reyes Marco Scilipoti Paula Oseroff Joaquín Girod

RESUMEN DE PERCEPTRÓN SIMPLE

- McCulloch y Pitts sientan las bases del modelo de neurona que se utiliza en el área de redes neuronales.
 Este modelo se denomina Perceptrón.
- El modelo de McCulloch y Pitts permite resolver problemas linealmente separables.
- Rosenblatt provee el mecanismo que permite obtener los pesos del perceptrón de manera iterativa
- No es lo mismo aprendizaje que generalización

Salary based on years of experience 20 15 Salary (* 10.000) 10 5 0 -10 Years of Experience

salary(years_of_experience):
 return a * years_of_experience + b

salary(years_of_experience):
 return a * years_of_experience + b

salary(x1): return $w_1 * x_1 + w_0$

salary(x_1, x_2): return $w_1 * x_1 + w_2 * x_2 + w_0$

¿CÓMO RESUELVO EL PROBLEMA?

Necesito encontrar los valores de **w** que me permitan encontrar un hiperplano que ajuste lo mejor posible al conjunto de datos

salario =
$$\sum_{i=1}^{n} x_i \cdot w_i + w_0$$

Widrow-Hoff - 1960

ADALINE: ADAptive LINear Element (o perceptrón simple *lineal*)

Cambiamos la función de activación por la identidad:

$$O(h) = \theta(h(x)) = \sum_{i=1}^{n} x_i \cdot w_i + w_0$$

$$\theta(h) = h$$

La salida del perceptrón ya no está confinada a ser binaria: *toma valores en los reales*

¿CÓMO RESUELVO EL PROBLEMA?

Necesito encontrar los valores de **w** que me permitan encontrar un hiperplano que ajuste lo mejor posible al conjunto de datos

$$O(h) = \theta(h(x)) = \sum_{i=1}^{n} x_i \cdot w_i + w_0$$

APRENDIZAJE PARA EL PERCEPTRÓN LINEAL

$$O(x) = \sum_{i=1}^{n} x_i \cdot w_i + w_0$$

Rosenblatt: Cada vez que la neurona recibe un estímulo, los pesos sinápticos pueden actualizarse (proceso iterativo):

$$w^{nuevo} = w^{anterior} + \Delta w$$
?

¿CÓMO DEFINIMOS QUE EL PERCEPTRÓN SE EQUIVOCA?

salary(x1): return $w_1 * x_1 + w_0$

¿CÓMO DEFINIMOS QUE EL PERCEPTRÓN SE EQUIVOCA?

Podemos usar la siguiente función de error:

$$E(O) = \frac{1}{2} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})^{2}$$

$$E(\cdot) = rac{1}{2} \sum_{\mu=1}^p (\zeta^\mu - g(\xi^\mu_i))$$

La salida del perceptrón depende, a su vez, de los pesos sinápticos.

$$E(w) = \frac{1}{2} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i}))^{2}$$

¿CÓMO DEFINIMOS QUE EL PERCEPTRÓN SE EQUIVOCA?

Podemos usar la siguiente función de error o costo:

$$E(O) = \frac{1}{2} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})^{2}$$

La salida del perceptrón depende, a su vez, de los pesos sinápticos.

$$E(w) = \frac{1}{2} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - \theta (\sum_{i=0}^{n} x_{i}^{\mu}.w_{i}))^{2}$$
Incluye el "umbral" o "bias"

¿CÓMO "APRENDE" EL PERCEPTRÓN CON ESTA FUNCIÓN DE COSTO?

$$E(w) = \frac{1}{2} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i}))^{2}$$

Fórmula de actualización de los pesos al evaluar un dato de entrada:

$$w^{nuevo} = w^{anterior} + \Delta w$$

$$\Delta w = - \eta \frac{\partial E}{\partial w}$$

Condiciones sobre la dirección de movimiento

Por supuesto, la idea es que sea descendente, o sea $d_k^t \nabla f(x_k) < 0$.

- Recordar que el gradiente es la dirección de máximo crecimiento de una función.
- Cualquier dirección contraria a la del gradiente, es una dirección de decrecimiento de la función.

¿QUÉ FORMA TIENE LA FUNCIÓN DE COSTO?

$$\frac{\partial E}{\partial w_i} = \frac{\partial \left(\frac{1}{2} \sum_{\mu=0}^{p-1} \left(\zeta^{\mu} - \theta \left(\sum_{i=0}^{n} x_i^{\mu}.w_i\right)\right)^2\right)}{\partial w_i}$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial \left(\frac{1}{2}\sum_{\mu=0}^{p-1} \left(\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})\right)^{2}\right)}{\partial w_{i}} = \sum_{\mu=0}^{p-1} \left(\left(\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})\right)(-1)\theta'(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})x_{i}^{\mu}\right)$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial \left(\frac{1}{2}\sum_{\mu=0}^{p-1} \left(\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})\right)^{2}\right)}{\partial w_{i}} = \sum_{\mu=0}^{p-1} \left(\left(\zeta^{\mu} - \left[\theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})\right)(-1)\theta'\left(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i}\right)\right]^{2}\right)}{\left(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i}\right)^{2}}$$

$$= \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})(-1)\theta'(h^{\mu})x_i^{\mu} = -\sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})\theta'(h^{\mu})x_i^{\mu}$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial \left(\frac{1}{2}\sum_{\mu=0}^{p-1} \left(\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})\right)^{2}\right)}{\partial w_{i}} = \sum_{\mu=0}^{p-1} \left(\left(\zeta^{\mu} - \theta(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})\right)(-1)\theta'(\sum_{i=0}^{n} x_{i}^{\mu}.w_{i})x_{i}^{\mu}\right)$$

$$= \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})(-1)\theta'(h^{\mu})x_i^{\mu} = -\sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})\theta'(h^{\mu})x_i^{\mu}$$

Fórmula de actualización de los pesos al evaluar un dato de entrada:

$$\Delta w = - \eta \frac{\partial E}{\partial w} = \eta (\zeta^{\mu} - O^{\mu}) \theta'(h) x^{\mu}$$

EL ALGORITMO PARA EL PERCEPTRÓN LINEAL ES IGUAL AL ANTERIOR

```
Initialize weights w to small random values
Set learning rate n
for a fixed number of epochs:
     For each training example \mu in the dataset:
         1. Calculate the weighted sum:
             h^{\mu} = W_0 * X^{\mu}_0 + W_1 * X^{\mu}_1 + W_2 * X^{\mu}_2 + \dots + W_n * X^{\mu}_n
          2. Compute activation given by \theta:
             O(h^{\mu}) = \Theta(h^{\mu}) = h^{\mu}
          3. Update the weights and bias:
             For each weight w,:
                  W_i = W_i + \eta * (y - \text{output}) * \Theta'(h^{\mu}) * X^{\mu}_i
          4. Calculate perceptron error:
             error = f(x_1^{\mu}, x_2^{\mu}, \ldots, x_n^{\mu})
             convergence = True if error < \epsilon else False
             if convergence: break
End
```

Tip de implementación

Construirse un conjunto de datos que sean puntos pertenecientes a una recta y ajustarlos!

PERCEPTRÓN SIMPLE NO LINEAL

Cambiamos la función de activación por una sigmoidea, tanh o logística

$$O = \Theta(\sum_{i=0}^{n} x_i . w_i)$$

$$\Theta(x) = \tanh(\beta x) \quad Im = (-1, 1)$$

$$\Theta(x) = \frac{1}{1 + exp^{-2\beta x}} \quad Im = (0, 1)$$

La fórmula de error se mantiene igual al perceptrón lineal:

$$E(O) = \frac{1}{2} \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu})^{2}$$

¿Cómo "aprende"? ¡Igual que el anterior!

Cambiamos la función de activación por una sigmoidea, tanh o logística

$$O = \Theta(\sum_{i=0}^{n} x_i . w_i)$$

Fórmula de actualización de los pesos al evaluar un dato de entrada:

$$w^{nuevo} = w^{anterior} + \Delta w$$

$$\Delta w = - \eta \frac{\partial E}{\partial w} = \eta \sum_{\mu=0}^{p-1} (\zeta^{\mu} - O^{\mu}) \theta'(h) x^{\mu}$$

PERCEPTRÓN SIMPLE NO LINEAL

Cambiamos la función de activación por una sigmoidea, tanh o logística

$$O = \Theta(\sum_{i=0}^{n} x_i . w_i)$$

Hyperbolic Tangent Function	Logistic Function
$\theta(h) = tanh(\beta h)$	$\theta(h) = \frac{1}{1 + exp^{-2\beta h}}$
Im = (-1, 1)	Im = (0, 1)
$\theta'(h) = \beta(1 - \theta^2(h))$	$\theta'(h) = 2\beta\theta(h)(1 - \theta(h))$

Funciones sigmoideas

Tangente Hiperbólica

Parámetro *beta* que cambia la forma:

$$\theta(h) = tanh(\beta h)$$

$$\theta'(h) = \beta(1 - \theta^2(h))$$

Función Logística

Parámetro *beta* que cambia la forma:

$$\theta(h) = \frac{1}{1 + exp^{-2\beta h}}$$

$$\theta'(h) = 2\beta\theta(h)(1 - \theta(h))$$

Variación de tanh de acuerdo a beta

Con respecto a la inicialización de pesos

Inicializar los pesos en cero

Inicializar los pesos con valores aleatorios de una distribución uniforme/gaussiana

What are the best weight initialization techniques for deep neural networks?

All / Engineering / Machine Learning

What are the best weight initialization techniques for deep neural networks?

Powered by Al and the LinkedIn community

- 1 Random initialization
- 2 Xavier initialization
- 3 He initialization
- 4 Orthogonal initialization
- 5 Sparse initialization
- 6 Here's what else to consider

BIBLIOGRAFÍA

Rodrigo Ramele (2024) *Reglamento y Apuntes de Sistemas de Inteligencia Artificial*, Capítulo 6.

Bernard Widrow and Marcian E. Hoff, *Adaptive switching circuits*, 1960 IRE WESCON Convention Record, New York: IRE, pp. 96-104

PARA LA PRÓXIMA CLASE

- What is a Neural Network?
- 2. Gradient Descent
- 3. What is backpropagation?
- Backpropagation

