■ TRAYA: Al-Driven Train Traffic Control System

SIH 2025 Project — Team Orion Pax

■ Project Overview

Indian Railways faces challenges with train congestion, conflicts in shared sections, and inefficient scheduling. Our system TRAYA provides a solution by detecting conflict zones dynamically, generating real-time control commands to avoid collisions, maximizing system throughput & efficiency, and providing performance analytics.

■■ System Design

1. Simulation Model

The core model ('train_scheduler.slx') contains Train Dynamics, Sensors, Scheduler (Al Controller), and Outputs.

2. Visualization Dashboard

Simulation results are presented in a dashboard view with Train Trajectories, Conflict Zone Detection, Al Commands, KPIs, System Efficiency, and Safety Status.

■ Performance Metrics

Metric	Value
Throughput (crossings)	Train A: X, Train B: Y, Total: X+Y
Safety	Conflicts: 0, Safety Margin: 100%, Status: SAFE
Efficiency	Average stop time: ~16.7%, Efficiency: 83.3% Active
Delays	7 incidents

■ Advanced Features

- 1. Monte Carlo Analysis for robustness testing.
- 2. Impact Projection with estimated annual benefits of ■5.3M.
- 3. Exported Results saved in `traya_simulation_results.mat`.

■ Repository Structure

. Land train_scheduler.slx # Core Simulink model traya_analysis.m # MATLAB analysis & visualization script docs/ # Documentation images results/ # Simulation results README.md # Project documentation

■ How to Run

- 1. Open MATLAB R2022b (or later).
- Load the Simulink model: `open_system('train_scheduler.slx');`
- 3. Run the script: `traya_analysis`

■ Key Contributions

- Al-based real-time train scheduling.
- Simulink model for dual-train conflict resolution.
- Dashboard with KPIs for safety, throughput, efficiency.
- Monte Carlo robustness testing.
- Projection of real-world financial impact.

■ Team Orion Pax

[Add team members here]

■ License

This project is released under the MIT License.