Mintオペレーティングシステムにおける仮想ネットワークインタフェースによる OSノード間通信の実現

平成30年2月16日 岡山大学 工学部 情報系学科 小倉 伊織

<Mint>

- 1台の計算機上で複数のLinuxを走行
- 計算機資源を各Linuxで分割/占有
- メモリの一部はすべてのLinuxで 共有可能(共有メモリ)

<Mintにおける既存のOSノード間通信>

(手法1) NICハードウェアを用いた通信

問題: 通信可能なOSノード数に限界有

(手法2) 共有メモリを介した通信

問題: 既存APの改変が必要

共有メモリを介してEthernet互換で通信する仮想ネットワークインタフェース (VNI)を実現

No.2

<Mint>

- 1台の計算機上で複数のLinuxを走行
- 計算機資源を各Linuxで分割/占有
- メモリの一部はすべてのLinuxで 共有可能(共有メモリ)

<Mintにおける既存のOSノード間通信>

(手法1) NICハードウェアを用いた通信

問題: 通信可能なOSノード数に限界有

(手法2) 共有メモリを介した通信

問題: 既存APの改変が必要

共有メモリを介してEthernet互換で通信する仮想ネットワークインタフェース(VNI)を実現

No.3

<Mint>

- 1台の計算機上で複数のLinuxを走行
- 計算機資源を各Linuxで分割/占有
- メモリの一部はすべてのLinuxで 共有可能(共有メモリ)

<Mintにおける既存のOSノード間通信>

(手法1) NICハードウェアを用いた通信

問題: 通信可能なOSノード数に限界有

(手法2) 共有メモリを介した通信

問題: 既存APの改変が必要

共有メモリを介してEthernet互換で通信する仮想ネットワークインタフェース(VNI)を実現

No.4

<Mint>

- 1台の計算機上で複数のLinuxを走行
- 計算機資源を各Linuxで分割/占有
- メモリの一部はすべてのLinuxで 共有可能(共有メモリ)

<Mintにおける既存のOSノード間通信>

(手法1) NICハードウェアを用いた通信

問題: 通信可能なOSノード数に限界有

(手法2) 共有メモリを介した通信

問題: 既存APの改変が必要

共有メモリを介してEthernet互換で通信する仮想ネットワークインタフェース (VNI)を実現

No.5

課題

- (1) 送受信バッファの構成の検討
 - (構成1)パケットを送信先毎に別々の送受信バッファ で管理する構成
 - (構成2) すべてのパケットを同一の送受信バッファで管理 する構成

どちらの構成が提案手法に適しているか検討

(2) 排他制御すべき操作の検討 不要な操作を排他制御すると、ロックを保持する時 間が長くなる

- ロック獲得のための待ち時間の長大化

排他制御する操作が最小となるように検討

送受信バッファの構成の検討

(構成1) パケットを送信先毎に別々の送受信バッファで管理する構成 (構成2) すべてのパケットを同一の送受信バッファで管理する構成

	利点	欠点
構成1	処理工数が小さい	送受信バッファの利用率が低い
構成2	送受信バッファの利用率が高い	処理工数が大きい

<比較>

- (構成2)の方が処理工数が大きい ただし、処理時間の増加は全体に比べて極めて小さい
- (構成2)の方が送受信バッファの利用率が高い

提案手法には(構成2)を採用する

(構成2)の処理流れ

(構成2) すべてのパケットを同一の送受信バッファで管理する構成

排他制御すべき操作の検討

く共有資源を参照/更新する操作>

- (1) バッファ管理部の操作
- (2) アドレス管理部の操作
- 排他制御が必要
- ∵ 複数のOSノードが同時に操作する
- (3) 送受信バッファの操作 / 排他制御は不要
 - : (1)と(2)が排他制御されている場合, 複数のOSノードが同じ領域を同時に操作しない

評価

<評価項目>

- (1) アプリケーション改変の有無
- (2) 提案手法の実装によるコード量
- (3) 性能評価
 - (A) 通信におけるレイテンシ
 - (B) 単位時間あたりの通信量
 - (C) パケットロス率

<評価結果>

(1) 既存APの改変なしでTCP/IPで通信可能であることを確認

既存APの改変なしで通信可能

(2) 追加したコード量は4ファイルで計474行であり、 Mint カーネル全体の約0.004%と極めて小さい

まとめ

く実績>

- (1) 送受信バッファの構成の検討
- (2) 排他制御すべき操作の検討
- (3) 提案手法の実装
- (4) 提案手法の評価
 - (A) アプリケーション改変の有無
 - (B) 提案手法の実装によるコード量

<今後の課題>

- (1) 性能評価
 - (A) 通信におけるレイテンシ
 - (B) 単位時間あたりの通信量
 - (C) パケットロス率

予備スライド

Mint の構成例

NICハードウェアを用いた通信

共有メモリを介した通信

No.15

VNIを用いたOSノード間通信

構成1

VNIの処理流れ

No.18

アプリケーション改変の有無

<テスト>

- (テスト1) TCP/IPプロトコルを用いた通信 送信側で特定の文字列を送信し、受信側で受信した文 字列を標準出力する
- (テスト2) ベンチマークツールを用いた通信 Linux上で動作するベンチマークツールを用いて 通信できることを確認する

(テスト1)から、提案手法において、既存APを改変せずに NICハードウェアを用いた通信と同様の結果を確認した

(テスト2)から、iperf を用いて実効スループット802 μ msで通信可能であることを確認した

提案手法の実装により追加したコード量

通番	ファイル	コード量
1	driver/net/vni/vni.c	456
2	driver/net/vni/vni.h	16
3	driver/net/vni/Makefile	1
4	driver/net/Makefile	1
合計	4ファイル	474