10701 Machine Learning

Boosting

Fighting the bias-variance tradeoff

- Simple (a.k.a. weak) learners are good
 - e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
 - Low variance, don't usually overfit
- Simple (a.k.a. weak) learners are bad
 - High bias, can't solve hard learning problems

- Can we make all weak learners always good????
 - No!!!
 - But often yes...

Simplest approach: A "bucket of models"

Input:

- your top T favorite learners (or tunings)
 - L₁,....,L_T
- A dataset D
- Learning algorithm:
 - Use 10-CV to estimate the error of L₁,....,L⊤
 - Pick the best (lowest 10-CV error) learner L*
 - Train L* on D and return its hypothesis h*

Pros and cons of a "bucket of models"

• Pros:

- Simple
- Will give results not much worse than the best of the "base learners"

Cons:

- What if there's not a single best learner?
- Other approaches:
 - Vote the hypotheses (how would you weight them?)
 - Combine them some other way?
 - How about *learning* to combine the hypotheses?

Stacked learners: first attempt

- Input:
 - your top T favorite learners (or tunings)
 - L₁,...,L_T
 - A dataset D containing (x,y),
- Learning algorithm:
 - Train $L_1,...,L_T$ on D to get $h_1,...,h_T$
 - Create a new dataset D' containing (x',y'),....
 - x' is a vector of the T predictions h₁(x),...,h_T(x)
 - y is the label y for x
 - Train new classifier on D' to get h' --- which combines the predictions!
- To predict on a new x:
 - Construct x' as before and predict h'(x')

Pros and cons of stacking

• Pros:

- Fairly simple
- Slow, but easy to parallelize

Cons:

- What if there's not a single best combination scheme?
- E.g.: for movie recommendation sometimes L1 is best for users with many ratings and L2 is best for users with few ratings.

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn many weak classifiers that are good at different parts of the input space
- Output class: (Weighted) vote of each classifier
 - Classifiers that are most "sure" will vote with more conviction
 - Classifiers will be most "sure" about a particular part of the space
 - On average, do better than single classifier!

But how do you ???

- force classifiers to learn about different parts of the input space?
- weigh the votes of different classifiers?

Comments

- Ensembles based on blending/stacking were key approaches used in the netflix competition
 - Winning entries blended many types of classifiers
- Ensembles based on stacking are the main architecture used in Watson
 - Not all of the base classifiers/rankers are learned, however; some are hand-programmed.

Boosting [Schapire, 1989]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let the learned classifiers vote
- On each iteration t.
 - weight each training example by how incorrectly it was classified
 - Learn a hypothesis h_t
 - A strength for this hypothesis α_t
- Final classifier:
 - A linear combination of the votes of the different classifiers weighted by their strength

- Practically useful
- Theoretically interesting

Learning from weighted data

- Sometimes not all data points are equal
 - Some data points are more equal than others
- Consider a weighted dataset
 - D(i) weight of *i* th training example ($\mathbf{x}^i, \mathbf{y}^i$)
 - Interpretations:
 - *i* th training example counts as D(i) examples
 - If I were to "resample" data, I would get more samples of "heavier" data points
- Now, in all calculations, whenever used, *i* th training example counts as D(i) "examples"
 - e.g., MLE for Naïve Bayes, redefine Count(Y=y) to be weighted count

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Getweak classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Figure 1: The boosting algorithm AdaBoost.

Boosting: A toy example

Boosting: A toy example

Round 1

Boosting: A toy example

Round 2

Thanks, Rob Schapire

Boosting: A toy example

Round 3

Thanks, Rob Schapire

Boosting: A toy example

Final Classifier

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Where
$$f(x) = \sum_{t} \alpha_t h_t(x)$$
; $H(x) = sign(f(x))$

[Schapire, 1989]

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where
$$f(x) = \sum_{t} \alpha_t h_t(x)$$
; $H(x) = sign(f(x))$

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

[Schapire, 1989]

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Where
$$f(x) = \sum_{t} \alpha_t h_t(x)$$
; $H(x) = sign(f(x))$

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Define

$$\epsilon_t = \sum_{i=1}^m D_t(i)\delta(h_t(x_i) \neq y_i)$$

We can show that:

$$Z_{t} = (1 - \varepsilon_{t}) \exp^{-\alpha_{t}} + \varepsilon_{t} \exp^{\alpha_{t}}$$

[Schapire, 1989]

We can minimize this bound by choosing α_t on each iteration to minimize Z_t

$$Z_{t} = (1 - \varepsilon_{t}) \exp^{-\alpha_{t}} + \varepsilon_{t} \exp^{\alpha_{t}}$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Where:

$$\epsilon_t = \sum_{i=1}^m D_t(i)\delta(h_t(x_i) \neq y_i)$$

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train base learner using distribution D_t .
- Get base classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. •
- Update:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Strong, weak classifiers

- If each classifier is (at least slightly) better than random
 - $\varepsilon_{t} < 0.5$
- With a few extra steps it can be shown that AdaBoost will achieve zero *training error* (exponentially fast):

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{m} Z_t \leq \exp\left(-2\sum_{t=1}^{m} (1/2 - \epsilon_t)^2\right)$$

Boosting results – Digit recognition

[Schapire, 1989]

Boosting often

- Robust to overfitting
- Test set error decreases even after training error is zero

Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision stumps (depth 1 trees), 27 benchmark datasets

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]

Random forest

- A collection of decision trees
- For each tree we select a subset of the attributes (recommended square root of |A|) and build tree using just these attributes

 An input sample is sing majority voting **TAP** GeneExpress Y2H GeneExpress Domain GeneExpress **GOProcess** HMS PCI N SynExpress **HMS-PCI** Y2H ProteinExpress GOLocalization GeneOccur GeneExpress **ProteinExpress**

What you need to know about Boosting

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier slightly better than random on training data
 - Resulting very strong classifier can eventually provide zero training error
- AdaBoost algorithm
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier

Boosting and Logistic Regression

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(f(x))}$$

And tries to maximize data likelihood:

$$P(\mathcal{D}|H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))}$$

Equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Boosting minimizes similar loss function!!

$$\frac{1}{m}\sum_{i} \exp(-y_i f(x_i)) = \prod_{t} Z_t$$

Both smooth approximations of 0/1 loss!

Logistic regression and Boosting

Logistic regression:

Minimize loss fn

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_j x_j$$

where x_i predefined

Boosting:

Minimize loss fn

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

• Define $f(x) = \sum_{t} \alpha_t h_t(x)$

where $h_t(x_i)$ defined dynamically to fit data

(not a linear classifier)

• Weights α_j learned incrementally