Chapter 1: Rings and Ideals

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 1.1. Let x be a nilpotent element of A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Proof.

(1) Suppose $x^m = 0$ for some odd integer $m \ge 0$. Then

$$1 = 1 + x^m = (1+x)(1-x+x^2-\dots+(-1)^{m-1}x^{m-1}),$$

or 1 + x is a unit.

(2) If u is any unit and x is any nilpotent, $u + x = u \cdot (1 + u^{-1}x)$ is a product of two units (using that $u^{-1}x$ is nilpotent and applying (1)) and hence a unit again.

Proof (Proposition 1.9).

- (1) The nilradical is a subset of the Jacobson radical.
 - (a) The nilradical \mathfrak{N} of A is the intersection of all the prime ideals of A by Proposition 1.8.
 - (b) The Jacobson radical \mathfrak{J} of A is the intersection of all the maximal ideals of A by definition.
- (2) By Proposition 1.9, $x \in \mathfrak{J}$ if and only if 1 xy is a unit in A for all $y \in A$. So $1 + x = 1 (-x) \cdot 1$ is a unit in A since x is a nilpotent and \mathfrak{J} is an ideal.

Exercise 1.2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

(i) f is a unit in A[x] if and only if a_0 is a unit in A and $a_1,...,a_n$ are nilpotent. (Hint: If $b_0 + b_1x + \cdots + b_mx^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r} = 0$. Hence show that a_n is nilpotent, and then use Exercise 1.1.)

- (ii) f is nilpotent if and only if $a_0, a_1, ..., a_n$ are nilpotent.
- (iii) f is a zero-divisor if and only if there exists $a \neq 0$ such that af = 0. (Hint: Choose a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ (because $a_n g$ annihilates f and has degree < m). Now show by induction that $a_{n-r}g = 0$ $(0 \leq r \leq n)$.)
- (iv) f is said to be primitive if $(a_0, a_1, ..., a_n) = (1)$. Prove that if $f, g \in A[x]$, then fg is primitive if and only if f and g are primitive.

Proof of (i).

- (1) (\Leftarrow) holds by Exercise 1.1.
- (2) (\Longrightarrow) There exists the inverse g of f, say $g = b_0 + b_1 x + \cdots + b_m x^m$ satisfying 1 = fg. Clearly, $1 = a_0 b_0$, or a_0 is a unit in A. Also,

$$0 = a_n b_m,$$

$$0 = a_n b_{m-1} + a_{n-1} b_m,$$

$$0 = a_n b_{m-2} + a_{n-1} b_{m-1} + a_{n-2} b_m,$$

A direct computing shows that

$$0 = a_n^1 b_m,$$

$$0 = a_n (a_n b_{m-1} + a_{n-1} b_m)$$

$$= a_n^2 b_{m-1} + a_{n-1} a_n b_m$$

$$= a_n^2 b_{m-1},$$

$$0 = a_n^2 (a_n b_{m-2} + a_{n-1} b_{m-1} + a_{n-2} b_m)$$

$$= a_n^3 b_{m-2} + a_{n-1} a_n^2 b_{m-1} + a_{n-2} a_n^2 b_m$$

$$= a_n^3 b_{m-2},$$

So we might have $a_n^{r+1}b_{m-r} = 0$ for r = 0, 1, 2, ..., m.

- (3) Show that $a_n^{r+1}b_{m-r} = 0$ for r = 0, 1, 2, ..., m by induction on r.
 - (a) As r = 0, $a_n b_m = 0$ by comparing the coefficient of fg = 1 at x^{n+m} .
 - (b) For any r > 0, comparing the coefficient of fg = 1 at x^{n+m-r} ,

$$0 = a_n b_{m-r} + a_{n-1} b_{m-r+1} + \dots + a_{n-r} b_m.$$

Multiplying by a_n^r on the both sides,

$$0 = a_n^{r+1} b_{m-r} + a_{n-1} a_n^r b_{m-r+1} + \dots + a_{n-r} a_n^r b_m$$

= $a_n^{r+1} b_{m-r}$.

by the induction hypothesis.

- (4) a_n is a nilpotent. Putting r=m in $a_n^{r+1}b_{m-r}=0$ and get $a_n^{m+1}b_0=0$. Notice that b_0 is a unit, $a_n^{m+1}=0$, or a_n is a nilpotent.
- (5) Consider $f a_n x^n = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$, a polynomial $\in A[x]$ of degree n-1. Note that f is a unit and $a_n x^n$ is a nilpotent. By Exercise 1.1, $f a_n x^n$ is a unit too. Applying the (2)(3)(4) again, a_{n-1} is a nilpotent as n-1>0, that is, applying descending induction on n then yields the desired property.

Proof of (ii).

- (1) (\() holds since the nilradical of any ring is an ideal.
- (2) (\Longrightarrow) $f^N=0$ for some N>0. So $0=f^N=a_n^Nx^{nN}+\cdots+a_0^N$. Comparing the coefficient in the leading term x^{nN} leads to $a_n^N=0$, or a_n is a nilpotent.
- (3) Consider $f a_n x^n = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$, a polynomial $\in A[x]$ of degree n-1. Note that f and $a_n x^n$ are nilpotent. $f a_n x^n$ is a nilpotent too. Similar to step (5) in the proof of (i), applying descending induction on n then yields the desired property.

Proof of (iii).

- (1) (\Leftarrow) holds trivially.
- (2) (\Longrightarrow) Pick a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Especially, $a_n b_m = 0$.
- (3) Consider

$$a_n g = a_n b_0 + \dots + a_n b_{m-1} x^{m-1} + a_n b_m x^m$$

= $a_n b_0 + \dots + a_n b_{m-1} x^{m-1}$

(since $a_n b_m = 0$). $a_n g$ is a polynomial over A of having degree strictly less than m. Notice that $f \cdot (a_n g) = a_n \cdot (fg) = 0$. By minimality of m, $a_n g = 0$.

- (4) Induction on the degree n of f.
 - (a) As n = 0, $f = a_0$. There exists $b_m \neq 0$ such that $b_m f = b_m a_0 = 0$ by (2).
 - (b) For any zero-divisor f of degree n, there is a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. By (2)(3),

$$(f - a_n x^n) \cdot g = fg - a_n x^n g$$
$$= 0 - 0$$
$$= 0.$$

That is, $f - a_n x^n$ is a zero-divisor of degree n - 1. By the induction hypothesis, there exists $b_m \neq 0$ such that $b_m(f - a_n x^n) = 0$. So $b_m f = b_m (f - a_n x^n) + b_m a_n x^n = 0 + 0 = 0$.

(c) By (a)(b), (\Longrightarrow) holds by mathematical induction.

Proof of (iv). Note that

- (1) $f \notin \mathfrak{m}[x]$ for any maximal ideal \mathfrak{m} of A if and only if f is primitive.
- (2) For any maximal ideal \mathfrak{m} of A, A/\mathfrak{m} is a field (or an integral domain).
- (3) A[x] is an integral domain if A is an integral domain.
- (4) $A[x]/\mathfrak{m}[x] \cong (A/\mathfrak{m})[x]$ as a ring isomorphism.

Hence,

f,g: primitive $\iff f,g\notin \mathfrak{m}[x]$ for any maximal ideal \mathfrak{m} $\iff f,g\neq 0$ in $(A/\mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} $\iff fg\neq 0$ in $(A/\mathfrak{m})[x]$ for any maximal ideal \mathfrak{m} $\iff fg\notin \mathfrak{m}[x]$ for any maximal ideal \mathfrak{m} $\iff fg:$ primitive.

Exercise 1.4. In the ring A[x], the Jacobson radical is equal to the nilradical.

Proof.

- (1) The nilradical \mathfrak{N} is a subset of the Jacobson radical \mathfrak{J} . It suffices to show that $\mathfrak{J} \subseteq \mathfrak{N}$.
- (2) Given any $f \in \mathfrak{J}$. By Proposition 1.9, $f \in \mathfrak{J}$ if and only if 1 fy is a unit in A[x] for all $y \in A[x]$. Especially, pick $y = x \in A[x]$ and then 1 xf is a unit in A[x].
- (3) By Exercise 1.2 (i), all coefficients of f are nilpotent. By Exercise 1.2 (ii), f is nilpotent, or $f \in \mathfrak{N}$.

Exercise 1.7. Let A be a ring in which every element satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Proof. It suffices to show that for any prime ideal \mathfrak{p} in A, A/\mathfrak{p} is a field.

- (1) Take any $0 \neq \overline{x} \in A/\mathfrak{p}$, which is represented by $x \in A \mathfrak{p}$. By assumption there exists $n \geq 2$ such that $x^n = x$. So $\overline{x}^n = \overline{x}$ or $\overline{x}(\overline{x}^{n-1} 1) = 0$.
- (2) Since \mathfrak{p} is prime, A/\mathfrak{p} is a integral domain. That is, $\overline{x} = 0$ (impossible) or $\overline{x}^{n-1} 1 = 0$. Write $\overline{x} \cdot \overline{x}^{n-2} = 1$ in A/\mathfrak{p} . So \overline{x}^{n-2} is an inverse of $\overline{x} \neq 0$ in A/\mathfrak{p} , which implies that A/\mathfrak{p} is a field (since \overline{x} is arbitrary).
- (3) A/\mathfrak{p} is a field if and only if \mathfrak{p} is maximal.

Exercise 1.8. Let A be a ring $\neq 0$. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Similar to Theorem 1.3.

Proof (Zorn's Lemma).

- (1) Let Σ be the set of all prime ideals of A.
- (2) Order Σ by \supseteq , that is, $\mathfrak{p} \leq \mathfrak{q}$ if $\mathfrak{p} \supseteq \mathfrak{q}$.
- (3) Σ is not empty, since every ring $A \neq 0$ has at least one maximal ideal (or prime ideal) (Theorem 1.3).
- (4) To apply Zorn's lemma we must show that every chain in Σ has a lower bound in Σ ; let then (\mathfrak{p}_{α}) be a chain of prime ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{p}_{\alpha} \subseteq \mathfrak{p}_{\beta}$ or $\mathfrak{p}_{\beta} \subseteq \mathfrak{p}_{\alpha}$. Let $\mathfrak{p} = \bigcap_{\alpha} \mathfrak{p}_{\alpha}$.
- (5) Show that \mathfrak{p} is a prime ideal. Clearly \mathfrak{p} is an ideal. Given any $xy \in \mathfrak{p}$ and $x \notin \mathfrak{p}$. So xy is in all prime ideals \mathfrak{p}_{α} . By assumption $x \notin \mathfrak{p}$, there is some β such that $x \notin \mathfrak{p}_{\beta}$, or $x \notin \mathfrak{p}_{\alpha}$ whenever $\alpha \geq \beta$. So $y \in \mathfrak{p}_{\alpha}$ whenever $\alpha \geq \beta$. Since $y \in \mathfrak{p}_{\beta}$, $y \in \mathfrak{p}_{\gamma}$ whenever $\beta \geq \gamma$. Therefore, $y \in \mathfrak{p}_{\alpha}$ for all α , or $y \in \mathfrak{p}$, or \mathfrak{p} is prime.

Exercise 1.9. Let \mathfrak{a} be an ideal \neq (1) in a ring A. Show that $\mathfrak{a} = r(\mathfrak{a}) \iff \mathfrak{a}$ is an intersection of prime ideals.

Proof.

(1) (\Longrightarrow). By Proposition 1.14, $\mathfrak{a} = r(\mathfrak{a})$ is the intersection of the prime ideals which contain \mathfrak{a} .

$$(2) \ (\Longleftrightarrow).$$

$$\mathfrak{a} = \bigcap \{ \mathfrak{p} \in \text{some subset of } \operatorname{Spec}(A) \}$$

$$= \bigcap \{ \mathfrak{p} \in \operatorname{some subset of } \operatorname{Spec}(A) : \mathfrak{p} \supseteq \mathfrak{a} \}$$

$$\supseteq \bigcap \{ \mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \supseteq \mathfrak{a} \}$$

$$= r(\mathfrak{a}) \subseteq \mathfrak{a}.$$

The prime spectrum of a ring

Exercise 1.15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- (i) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a}))$.
- (ii) $V(0) = X, V(1) = \emptyset.$
- (iii) if $(E_i)_{i\in I}$ is any family of subsets of A, then

$$V\left(\bigcup_{i\in I} E_i\right) = \bigcap_{i\in I} V(E_i).$$

(iv) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals \mathfrak{a} , \mathfrak{b} of A.

The results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the Zariski topology. The topological space X is called the prime spectrum of A, and is written Spec(A).

Note that if $E_1 \subseteq E_2$, then $V(E_1) \supseteq V(E_2)$.

Proof of (i).

- (1) Show that $V(E) = V(\mathfrak{a})$.
 - (a) Show that $V(E) \subseteq V(\mathfrak{a})$. Given any $\mathfrak{p} \in V(E)$, $\mathfrak{p} \supseteq E$. For any $a \in \mathfrak{a}$, since \mathfrak{a} is generated by E, we can write a as a finite sum $a = \sum \alpha \beta$ where $\alpha \in A$ and $\beta \in E$. Since $E \subseteq \mathfrak{p}$, all $\beta \in \mathfrak{p}$. Since \mathfrak{p} is an ideal, $a = \sum \alpha \beta \in \mathfrak{p}$. That is, $\mathfrak{p} \supseteq \mathfrak{a}$, or $\mathfrak{p} \in V(\mathfrak{a})$.
 - (b) $V(E) \supseteq V(\mathfrak{a})$ since $\mathfrak{a} \supseteq E$.
- (2) Show that $V(\mathfrak{a}) = V(r(\mathfrak{a}))$.

(a) Show that $V(\mathfrak{a}) \subseteq V(r(\mathfrak{a}))$. Given any $\mathfrak{p} \in V(\mathfrak{a})$,

$$\begin{split} \mathfrak{p} \in V(\mathfrak{a}) &\Longrightarrow \mathfrak{p} \supseteq \mathfrak{a} \\ &\Longrightarrow \mathfrak{p} \supseteq \text{the intersection of the primes ideals } \mathfrak{p} \supseteq \mathfrak{a} \\ &\Longrightarrow \mathfrak{p} \supseteq r(\mathfrak{a}) \text{ (by Proposition 1.14)} \\ &\Longrightarrow \mathfrak{p} \in V(r(\mathfrak{a})). \end{split}$$

(b) $V(\mathfrak{a}) \supseteq V(r(\mathfrak{a}))$ since $r(\mathfrak{a}) \supseteq \mathfrak{a}$.

Proof of (ii).

- (1) $V(1) = \emptyset$ since no prime ideal contains 1 by definition.
- (2) V(0) = X since 0 is in every ideal (especially in every prime ideal).

Proof of (iii).

$$\begin{split} \mathfrak{p} \in V \left(\bigcup_{i \in I} E_i \right) &\Longleftrightarrow \mathfrak{p} \supseteq \bigcup_{i \in I} E_i \\ &\Longleftrightarrow \mathfrak{p} \supseteq E_i \text{ for all } i \in I \\ &\Longleftrightarrow \mathfrak{p} \in V(E_i) \text{ for all } i \in I \\ &\Longleftrightarrow \mathfrak{p} \in \bigcap_{i \in I} V(E_i). \end{split}$$

Lemma. For any $\mathfrak{p} \supseteq \mathfrak{ab}$, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$.

Proof of Lemma.

- (1) If $\mathfrak{p} \supseteq \mathfrak{a}$. We are done.
- (2) If $\mathfrak{p} \not\supseteq \mathfrak{a}$, there exists $a \in \mathfrak{a} \mathfrak{p}$. So for any $b \in \mathfrak{b}$, $b \in \mathfrak{p}$ since $ab \in \mathfrak{ab} \subseteq \mathfrak{p}$ and \mathfrak{p} is a prime ideal, that is, $\mathfrak{p} \supseteq \mathfrak{b}$.

By (1)(2), $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. \square

Proof of (iv).

- (1) Show that $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b})$.
 - (a) $V(\mathfrak{a} \cap \mathfrak{b}) \subseteq V(\mathfrak{ab})$ since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$.

- (b) Show that $V(\mathfrak{a} \cap \mathfrak{b}) \supseteq V(\mathfrak{ab})$. Given any $\mathfrak{p} \in V(\mathfrak{ab})$, $\mathfrak{p} \supseteq \mathfrak{ab}$. By Lemma, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. Notice that $\mathfrak{a} \supseteq \mathfrak{a} \cap \mathfrak{b}$ and $\mathfrak{b} \supseteq \mathfrak{a} \cap \mathfrak{b}$. In any case, $\mathfrak{p} \supseteq \mathfrak{a} \cap \mathfrak{b}$, $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$.
- (2) Show that $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.
 - (a) Show that $V(\mathfrak{ab}) \subseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$. Given any $\mathfrak{p} \in V(\mathfrak{ab})$, $\mathfrak{p} \supseteq \mathfrak{ab}$. By Lemma, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$, $\mathfrak{p} \in V(\mathfrak{a})$ or $\mathfrak{p} \in V(\mathfrak{b})$, $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$.
 - (b) Show that $V(\mathfrak{ab}) \supseteq V(\mathfrak{a}) \cup V(\mathfrak{b})$. Given any $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$, $\mathfrak{p} \in V(\mathfrak{a})$ or $\mathfrak{p} \in V(\mathfrak{b})$, $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. Notice that $\mathfrak{a} \supseteq \mathfrak{ab}$ and $\mathfrak{b} \supseteq \mathfrak{ab}$. In any cases, $\mathfrak{p} \supseteq \mathfrak{ab}$, or $\mathfrak{p} \in V(\mathfrak{ab})$.

Exercise 1.17. For each $f \in A$, let X_f denote the complement of V(f) in X = Spec(A). The sets X_f are open. Show that they form a basis of open sets for the Zariski topology, and that

- (i) $X_f \cap X_g = X_{fg}$.
- (ii) $X_f = \emptyset \iff f$ is nilpotent.
- (iii) $X_f = X \iff f$ is a unit.
- (iv) $X_f = X_g \iff r((f)) = r((g)).$
- (v) X is quasi-compact (compact), that is, every open covering of X has a finite subcovering.
- (vi) More generally, each X_f is quasi-compact.
- (vii) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f .

The sets X_f are called basic open sets of X = Spec(A).

(Hint: To prove (v), remark that it is enough to consider a covering of X by basic open sets $X_{f_i} (i \in I)$. Show that the f_i generate the unit ideal and hence that there is an equation of the form

$$1 = \sum_{i \in J} g_i f_i \quad (g_i \in A)$$

where J is some finite subset of I. Then the $X_{f_i}(i \in J)$ cover X.)

Proof of basis. It is equivalent to Exercise 1.15 (iii). Given any open set O in X. Write $O = X - V(\mathfrak{a})$ for some ideal \mathfrak{a} of A. Since

$$V(\mathfrak{a}) = V\left(\bigcup_{f \in \mathfrak{a}} (f)\right) = \bigcap_{f \in \mathfrak{a}} V(f),$$

we have

$$O = X - V(\mathfrak{a}) = X - \bigcap_{f \in \mathfrak{a}} V(f) = \bigcup_{f \in \mathfrak{a}} (X - V(f)) = \bigcup_{f \in \mathfrak{a}} X_f,$$

or any open set is a union of basic open sets. \square

Proof of (i). $X_f \cap X_g = X_{fg} \iff V(f) \cup V(g) = V(fg)$ holds by Exercise 1.15 (iv). \square

Proof of (ii).

$$X_f = \emptyset \iff V(f) = X$$

 $\iff f \in \mathfrak{p} \text{ for all prime ideal } \mathfrak{p} \text{ of } A$
 $\iff f \in \mathfrak{N}, \text{ the nilradical of } A \text{ (Proposition 1.8)}$
 $\iff f \text{ is nilpotent (Proposition 1.7)}$

Proof of (ii)(Using (iv)).

$$X_f = \varnothing \iff X_f = X_0$$
 (Exercise 15(ii))
$$\iff r(f) = r(0)$$
 ((iv))
$$\iff f \in r(f) = r(0)$$

$$\iff f^m = 0 \text{ for some } m > 0$$

$$\iff f \text{ is nilpotent}$$

Proof of (iii).

$$X_f = X \iff V(f) = \emptyset$$

 $\iff f \notin \mathfrak{p} \text{ for all prime ideal } \mathfrak{p} \text{ of } A$
 $\iff f \text{ is unit (Corollary 1.5)}$

Proof of (iii)(Using (iv)).

$$X_f = X \iff X_f = X_1$$
 (Exercise 15(ii))
 $\iff r(f) = r(1)$ ((iv))
 $\iff f \in r(f) = r(1)$
 $\iff f^m = 1 \text{ for some } m > 0$
 $\iff f \text{ is unit}$

Proof of (iv).

(1) Show that $X_f \subseteq X_g \iff r((f)) \subseteq r((g))$. Actually,

$$\begin{split} X_f \subseteq X_g &\Longrightarrow V(f) \supseteq V(g) \\ &\Longrightarrow \{ \mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \supseteq (f) \} \supseteq \{ \mathfrak{p} \in \operatorname{Spec}(A) : \mathfrak{p} \supseteq (g) \} \\ &\Longrightarrow \bigcap_{(f) \subseteq \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p} \subseteq \bigcap_{(g) \subseteq \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p} \\ &\stackrel{1.14}{\Longrightarrow} r(f) \subseteq r(g) \\ &\Longrightarrow V(r(f)) \supseteq V(r(g)) \\ &\Longrightarrow V(f) \supseteq V(g) \\ &\Longrightarrow X_f \subseteq X_g. \end{split}$$

(2) By (1),

$$X_f \subseteq X_g \iff r((f)) \subseteq r((g)),$$

 $X_f \supseteq X_g \iff r((f)) \supseteq r((g)).$

Hence,

$$X_f = X_g \iff r((f)) = r((g)).$$

Proof of (v). Notice that it is enough to consider a covering of X by basic open sets $X_{f_i} (i \in I)$.

(1) Since X is covered by $X_{f_i} (i \in I)$,

$$X = \bigcup_{i \in I} X_{f_i} \Longrightarrow X - V(1) = \bigcup_{i \in I} (X - V(f_i))$$

$$\Longrightarrow V(1) = \bigcap_{i \in I} V(f_i)$$

$$\Longrightarrow V(1) = V\left(\sum_{i \in I} f_i\right)$$

$$\Longrightarrow r(1) = r\left(\sum_{i \in I} f_i\right).$$

Hence, $1 \in r(1) = r\left(\sum_{i \in I} f_i\right)$ can be expressed as

$$1 = 1^m = \sum_{j \in J} g_j f_j$$

where *J* is a finite subset of *I* and $g_j \in A$. That is, $(1) = \sum_{j \in J} f_j$.

(2) Hence, $V(1) = V\left(\sum_{j \in J} f_j\right)$. Therefore, X is covered by finite subcovering $\{X_{f_i}\}(j \in J)$.

Proof of $(v)(Using\ (vi))$. Since $X=X_1,\ X$ is quasi-compact by (vi). \square

Proof of (vi). Notice that it is enough to consider a covering of X_f by basic open sets $X_{f_i} (i \in I)$.

(1) Since X_f is covered by $X_{f_i} (i \in I)$,

$$X_{f} = \bigcup_{i \in I} X_{f_{i}} \Longrightarrow X - V(f) = \bigcup_{i \in I} (X - V(f_{i}))$$

$$\Longrightarrow V(f) = \bigcap_{i \in I} V(f_{i})$$

$$\Longrightarrow V(f) = V\left(\sum_{i \in I} f_{i}\right)$$

$$\Longrightarrow r(f) = r\left(\sum_{i \in I} f_{i}\right).$$

Hence, $f \in r(f) = r\left(\sum_{i \in I} f_i\right)$ can be expressed as

$$f^m = \sum_{j \in J} g_j f_j$$

where *J* is a finite subset of *I* and $g_j \in A$. That is, $f^m \in \sum_{i \in J} f_i$.

- (2) Show that $V\left(\sum_{j\in J} f_j\right) = V(f)$.
 - (a) (\subseteq) For any prime ideal $\mathfrak{p} \supseteq \sum_{j \in J} f_j$, $f^m \in \mathfrak{p}$ or $f \in \mathfrak{p}$ (since \mathfrak{p} is prime). So $\mathfrak{p} \supseteq (f)$, or $V\left(\sum_{j \in J} f_j\right) \subseteq V(f)$.
 - (b) (⊇)

$$\sum_{j \in J} f_j \subseteq \sum_{i \in I} f_i \Longrightarrow V\left(\sum_{j \in J} f_j\right) \supseteq V\left(\sum_{i \in I} f_i\right) = V(f).$$

(3) Therefore, X_f is covered by finite subcovering $\{X_{f_j}\}(j \in J)$.

Proof of $(vi)(Using\ (v))$. Exercise 3.21 (i) shows that X_f is the spectrum of A_f . By (v), X_f is quasi-compact. \square

Proof of (vii).

(1) (\Longrightarrow) Given an open subset O. Since X_f form a basis of open sets,

$$O = \bigcup_{f \in \mathfrak{a}} X_f$$
 for some ideal \mathfrak{a} of A

Especially, $\{X_f\}_{f\in\mathfrak{a}}$ is an open covering of O. Since O is quasi-compact, there exists a finite subcovering $\{X_f\}_{f\in J}$ of O, where J is a finite subset of \mathfrak{a} (as a set). That is, $O=\bigcup_{f\in J}X_f$ is a finite union of sets X_f .

(2) (\iff) Since X_f is quasi-compact, any finite union of quasi-compact sets is quasi-compact again.

Exercise 1.19. A topological space X is said to be irreducible if $X \neq \emptyset$ and if every pair of non-empty open sets in X intersect, or equivalently if every non-empty open set is dense in X. Show that Spec(A) is irreducible if and only if the nilradical of A is a prime ideal.

Exercise 1.20. Let X be a topological space.

(i) If Y is an irreducible subspace of X, then the closure \overline{Y} of Y in X is irreducible.

Proof of (i).

(1) Y is irreducible if and only if Y cannot be represented as the union of two proper closed subspaces.

 \forall nonempty open sets U_1 and $U_2, U_1 \cap U_2 \neq \emptyset$

 \iff nonempty open sets U_1 and $U_2, X - (U_1 \cap U_2) \neq X$

 \iff nonempty open sets U_1 and $U_2, (X-U_1) \cup (X-U_2) \neq X$

 \iff proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 \neq X$

 \iff proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 = X$.

(2) If \overline{Y} were reducible, there are two closed set Y_1 and Y_2 such that

$$\overline{Y} \subseteq Y_1 \cup Y_2, \overline{Y} \not\subseteq Y_i (i = 1, 2).$$

- (a) $Y \subseteq \overline{Y} \subseteq Y_1 \cup Y_2$.
- (b) $\underline{Y} \not\subseteq Y_i (i=1,2)$. If not, $Y \subseteq Y_i$ for some i. Take closure to get $\overline{Y} \subseteq \overline{Y_i} = Y_i$ (since Y_i is closed), contrary to the assumption.

By (a)(b), Y is reducible, which is absurd.

Supplement. (Exercise I.1.6 in Robin Hartshorne, Algebraic Geometry.) Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Here we use the definition of irreducibility given by Hartshorne.

Definition. A nonempty subset Y of a topological space X is irreducible if it cannot be expressed as the union $Y = Y_1 \cup Y_2$ of two proper subsets, each one of which is closed in Y. The empty set is not considered to be irreducible.

The proof is the same as Exercise 1.20(i).