

WHAT IS CLAIMED IS:

ı	1. A fault detection method comprising.
2	sensing a group of correlating operational parameters of a
3	semiconductor processing tool operating under a recipe;
4	sensing at least one non-correlating operational parameter of the tool
5	operating under the recipe;
6	forming an input vector including the group of correlating operational
7	parameters and the at least one non-correlating operational parameter;
8	comparing the input vector to a reference data library comprising vectors
9	from previous tool runs utilizing the recipe;
10	selecting from the reference data library one or more nearest neighbor
11	vectors to the input vector based upon a similarity with the group of correlating
12	operational parameters; and
13	generating a fault detection index from the selected nearest neighbor
14	vectors.
1	2. The method of claim 1 wherein sensing the group of correlating
2	operational parameters comprises sensing operational parameters relating to tool
3	pressure.
J	pressure.
1	3. The method of claim 1 wherein sensing the group of correlating
2	operational parameters comprises sensing operational parameters relating to tool
3	temperature.
1	4. The method of claim 1 wherein sensing the group of correlating
2	operational parameters comprises sensing operational parameters relating to tool power.
-	operational parameters comprise contains operational parameters.
1	5. The method of claim 1 wherein sensing the group of correlating
2	operational parameters comprises sensing operational parameters relating to positioning
3	of a wafer within the tool.
1	6. The method of claim 1 wherein the fault detection index is
2	generated by compiling a vector subset from the selected nearest neighbor vectors,
3	combining the vector subset into an output prediction vector, and generating a fault
4	detection index from the output prediction vector.

1	7. The method of claim 6 wherein the output vector comprises
2	predicted operational parameters, and the fault detection index is generated by
3	combining the predicted operational parameters.
1	8. The method of claim 7 wherein combining the operational
2	parameters of the output prediction vector comprises:
3	assigning a set of weights to the predicted operational parameters; and
4	adding together the weighted operational parameters.
7	adding together the weighted operational parameters.
1	9. The method of claim 8 wherein the set of weights is assigned
2	based upon the similarity.
1	10. The method of claim 1 further comprising:
2	including in the input vector a value of a passive-inclusive sensor,
3	ignoring the value of the passive-inclusive sensor in selecting the nearest
4	neighbor vectors; and
5	including the value of the passive-inclusive sensor in generating the fault
6	detection index.
1	11. The method of claim 1 further comprising:
2	including in the input vector a value of a cluster sensor;
3	including the value of the cluster sensor in selecting the nearest neighbor
4	vectors; and
5	ignoring the cluster sensor in generating the fault detection index.
1	12. The method of claim 11 wherein the cluster sensor represents a
2	stage in a semiconductor fabrication process when the group of correlating operational
3	parameters is sensed.
1	13. The method of claim 6 wherein the vectors of the reference data
2	library include a synthetic sensor, the method further comprising:
3	including in the input vector a null value of the synthetic sensor; and
4	obtaining a predicted value of the synthetic sensor from the output
5	prediction vector, the synthetic sensor ignored in selecting the nearest neighbor vectors
6	and ignored in generating the fault detection index.

	1	14. The method of claim 13 wherein the synthetic sensor is difficult
	2	or impossible to measure in real time during operation of the semiconductor fabrication
	3	tool, and is assigned to vectors of the library after completion of the processing.
	1	15. An apparatus for detecting a fault in a semiconductor processing
Fr anni tani tani tani tani tani	2	tool, the apparatus comprising:
	3	a first sensor, a second sensor, and a third sensor operatively coupled to
	4	the semiconductor processing tool;
	5	a controller in communication with the semiconductor processing tool
	6	and with the first, second, and third sensors;
	7	a memory coupled to the controller, the memory storing a computer
	8	program in computer readable format including computer instructions to control said
	9	controller to,
	10	receive from the first and second sensors correlating operational
	11	parameters of the semiconductor processing tool operating under a recipe,
fant,	12	receive from the third sensor a non-correlating operational parameter
of the state of	13	from the tool;
	14	compare the correlating operational parameters to corresponding
4 506 4	15	operational parameters recorded during prior runs of the tool utilizing the
i.	16	recipe, and
	17	generate a fault detection index from comparing the sensed correlating
	18	operational parameters to the corresponding operational parameters recorded
	19	during prior runs.
	1	16. The apparatus of claim 15 wherein the correlating operational
	2	parameters relate to tool pressure.
	1	17. The apparatus of claim 15 wherein the correlating operational
	2	parameters relate to tool temperature.
	1	18. The apparatus of claim 15 wherein the correlating operational
	2	parameters relate to tool power.
	1	19. The apparatus of claim 15 wherein the correlating operational
	2	parameters relate to positioning of a wafer within the tool