INVESTIGACIÓN DE OPERACIONES

SOLUCION EXAMEN DE MEDIO CICLO

PROBLEMA 1

Una compañía fabrica dos productos, *A* y *B*. El volumen de ventas de *A* es por lo menos 80% de las ventas totales de *A* y *B*. Sin embargo, la compañía no puede vender más de 100 unidades de *A* por día. Ambos productos utilizan una materia prima, cuya disponibilidad diaria máxima es de 240 lb. Las tasas de consumo de la materia prima son de 2 lb por unidad de *A* y de 4 lb por unidad de *B*. Las utilidades de *A* y *B* son de \$20 y \$50, respectivamente.

Determine la combinación óptima de productos para la compañía.

Resolución

Del enunciado resaltado de amarillo.

$$A \ge 0.8(A + B)$$

$$0 \ge 0.8A + 0.8B - A$$

$$0 \ge -0.2A + 0.8B$$

Ordenando
$$-0.2A + 0.8B \le 0$$

- Del enunciado resaltado de verde A < 100
- Del enunciado resaltado de celeste
 2A + 4B ≤ 240 simplificando A + 2B ≤ 120
- Las utilidades se expresa así Z = 20A + 50B

1. Modelo de PL

$$Z = 20x + 50y$$
Sujeto a:
$$-0.2x + 0.8y \le 0$$

$$x + 2y \le 120$$

$$x \le 100$$

$$x, y \ge 0$$

2. Variables

Z: función objetivo x: número de productos A y: número de productos B

3. Calcular los puntos para graficar cada restricción.
A continuación se muestra los puntos calculados para cada restricción:

Restricciones	Puntos para graficar la recta:	
	P ₁ (X ₁ ,0)	P ₂ (0,X ₂)
$-0.2x + 0.8y \le 0$	(0,0)	(0,0)
$x + 2y \le 120$	(120,0)	(0,60)
<i>x</i> ≤ 100	(100,0)	

4. Graficar las restricciones.

5. Determinar la región factible.

6. Coordenadas de los vértices de la región factible.

VÉRTICE	RESTRICCIONES	ECUACIONES	SOLUCIONES
Α	$-x + 4y \le 0$ $x + 2y \le 120$	-x + 4y = 0 $x + 2y = 120$	x = 80 y = 20
В	$x + 2y \le 120$ $x \le 100$	x + 2y = 120 $x = 100$	x = 100 y = 10
С	<i>x</i> ≤ 100	x = 100	x = 100 y = 0

7. Calcular el valor de la Función Objetivo en dichos vértices.

VÉRTICE	COORDENADAS (X ₁ , X ₂)	FUNCIÓN OBJETIVO
Α	(80 ; 20)	Z=20(80) + 50(20) = 2600
В	(100 ; 10)	Z=20(100) + 50(10) = 2500
С	(100 ; 0)	Z=20(100) + 50(0) = 2000

8. Encontrar la solución óptima del problema.

La compañía obtiene su mejor utilidad cuando fabrica 80 unidades del producto A y 20 unidades del producto B, cuya utilidad máxima es de 2600 dólares.

PROBLEMA 2

Minimizar Z = 0.3x + 0.9ySujeto a: $X + y \ge 800$ $0.21x - 0.3y \le 0$ $0.03x - 0.01y \ge 0$ $X, y \ge 0$

Resolución

1. Calcular los puntos para graficar cada restricción.

A continuación se muestra los puntos calculados para cada restricción:

Restricciones	Puntos para graficar la recta:	
	P ₁ (X _{1,} 0)	P ₂ (0,X ₂)
$x + y \ge 800$	(800,0)	(0,800)
$0.21x - 0.3y \le 0$	(0,0)	(0,0)
$0.03x - 0.01y \ge 0$	(0,0)	(0,0)

2. Graficar las restricciones.

3. Determinar la región factible.

4. Calcular las coordenadas de los vértices de la región factible.

VÉRTICE	RESTRICCIONES	ECUACIONES	SOLUCIONES
A	$x + y \ge 800 \\ 0.03x - 0.01y \ge 0$	x + y = 800 $0.03x - 0.01y = 0$	x = 200 y = 600
В	$x + y \ge 800$ $0.21x - 0.3y \le 0$	$x + y \ge 800 \\ 0.21x - 0.3y \le 0$	x = 470.588 y = 329.412

5. Calcular el valor de la Función Objetivo en dichos vértices.

VÉRTICE	COORDENADAS (X1, X2)	FUNCIÓN OBJETIVO
Α	(200 ; 600)	Z=0.3(200)+0.9(600) = 600
В	(470.588 ; 329.412)	Z=0.3(470.588)+0.9(329.412) = 437.647

6. Encontrar la solución óptima del problema.

La solución óptima de la minimización es 437.647, cuando x = 470.588 y = 329.412