Cálculo Diferencial e Integral I LMAC/MEFT

 1° Teste (R) (VA) - 28 de Janeiro de 2020 - 8:00 às 9:30

Instruções

- NÃO É PERMITIDA A UTILIZAÇÃO DE QUAISQUER ELEMENTOS DE CONSULTA.
- NÃO PODE TER CALCULADORAS OU TELEMÓVEIS LIGADOS E/OU VISÍVEIS.
- Antes de começar:
 - Identifique com o nome e número a primeira página do seu caderno de respostas.
 - Preencha nesta folha o seu nome, número e a sala onde está.
 - Numere todas as páginas do caderno de respostas, **frente e verso**.
 - Coloque o seu documento de identificação em cima da mesa de trabalho.
- Sair da sala de exame se <u>entregar</u> o exame, ou <u>desistir</u>. Em ambos os casos, só o poderá fazer <u>ao fim dos primeiros 30 minutos</u>, e deve sempre entregar esta folha de instruções.
- SE DESISTIR: Entregue apenas esta folha de instruções, assinada, e com a indicação que desistiu.

pergunta	classificação	cotação
1 a, b, c		4
2 a, b, c		4
3 a, b, c		4
4 a, b, c		4
5 a, b, c, d		4
total		20

Nome:				
Número: _		_		
Sala:				

Cálculo Diferencial e Integral I LMAC/MEFT

1° Teste (R) (VA) - 28 de Janeiro de 2020 - 8:00 às 9:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4 val.) Calcule, se existirem (finitos ou infinitos), os seguintes limites:

(a)
$$\lim_{x \to +\infty} x(\pi - 2 \arctan x)$$
 (b) $\lim_{x \to +\infty} \frac{e^x + x^2 + \ln x}{x^{2^x} + x^4 + x^2 \ln x}$ (c) $\lim_{x \to 0^+} (\operatorname{sen}(\tan x))^{2 \operatorname{sen} x}$

Problema 2 (4 val.) Considere a função $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dada por:

$$f(x) = \begin{cases} x + x^{7/2} \operatorname{sen}(1/x) & \text{se } x > 0 \\ e^{-1/x^2} + \cosh x - 1 + x - x^2/2 & \text{se } x < 0 \end{cases}$$

- (a) Mostre que f é prolongável por continuidade ao ponto x=0 e determine f'.
- (b) Sendo g o prolongamento por continuidade de f a \mathbb{R} , diga se g'(0) e g''(0) existem.
- (c) Determine se q tem um ponto de inflexão em x=0.

Problema 3 (4 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = e^{\sqrt{1 + \arctan x}}$$
 (b) $g(x) = \ln(2 + \sec^2(1 + 3x))$ (c) $h(x) = (\sec(x^2))^{\ln x}$

Problema 4 (4 val.) Suponha que $f : \mathbb{R} \to \mathbb{R}$ satisfaz $f^{(2)}(x) = \ln(1+x^2)$ e, designando por p_n o seu polinómio de Taylor de f de ordem n no ponto a = 0, temos $p_1(x) = 1 + 5x$.

- (a) Calcule p_4 .
- (b) Mostre que $f(x) p_2(x) > 0$ quando |x| < 1.
- (c) Sendo $g(x) = (f(x) 1 5x)/x^2$ para $x \neq 0$ e g(0) = 0, calcule $g^{(4)}(0)$.

Problema 5 (4 val.) No que se segue, $f : \mathbb{R} \to \mathbb{R}$ é uma função pelo menos diferenciável em \mathbb{R} . Mostre que as seguintes afirmações são verdadeiras.

- (a) Se f' é crescente e $\underline{f}(0)=0$ então g(x)=f(x)/x é crescente.
- (b) Se f é de classe C^2 em \mathbb{R} e $f'(x) \neq 0$ para qualquer $x \in \mathbb{R}$ então a inversa f^{-1} é também de classe C^2 em \mathbb{R} .
- (c) Se $f^{(3)}(0) = 12$, $f^{(2)}(0) = 6$, $f^{(1)}(0) = 3$ e f(0) = 0 então $\lim_{x \to 0} \frac{f(x) 3x 3x^2}{x^3} = 2$.
- (d) Se f é uma função par de classe C^{∞} em \mathbb{R} então o respectivo polinómio de Taylor de ordem 2n em a=0 é da forma $p(x)=\sum_{k=0}^n a_k x^{2k}$.

Cálculo Diferencial e Integral I LMAC/MEFT

1° Teste (R) (VB) - 28 de Janeiro de 2020 - 8:00 às 9:30

Instruções

- NÃO É PERMITIDA A UTILIZAÇÃO DE QUAISQUER ELEMENTOS DE CONSULTA.
- NÃO PODE TER CALCULADORAS OU TELEMÓVEIS LIGADOS E/OU VISÍVEIS.
- Antes de começar:
 - Identifique com o nome e número a primeira página do seu caderno de respostas.
 - Preencha nesta folha o seu nome, número e a sala onde está.
 - Numere todas as páginas do caderno de respostas, **frente e verso**.
 - Coloque o seu documento de identificação em cima da mesa de trabalho.
- Sair da sala de exame se <u>entregar</u> o exame, ou <u>desistir</u>. Em ambos os casos, só o poderá fazer <u>ao fim dos primeiros 30 minutos</u>, e deve sempre entregar esta folha de instruções.
- SE DESISTIR: Entregue apenas esta folha de instruções, assinada, e com a indicação que desistiu.

pergunta	classificação	cotação
1 a, b, c		4
2 a, b, c		4
3 a, b, c		4
4 a, b, c		4
5 a, b, c, d		4
total		20

Nome:			
Número:			
Sala:			

Cálculo Diferencial e Integral I LMAC/MEFT

 1° Teste (R) (VB) - 28 de Janeiro de 2020 - 8:00 às 9:30

Apresente todos os cálculos que efectuar. Não é necessário simplificar os resultados. As cotações indicadas somam 20 valores.

Problema 1 (4 val.) Calcule, se existirem (finitos ou infinitos), os seguintes limites:

(a)
$$\lim_{x \to +\infty} x(\pi - 2 \arctan x)$$
 (b) $\lim_{x \to +\infty} \frac{e^x + x^2 + \ln x}{x^{2^x} + x^4 + x^2 \ln x}$ (c) $\lim_{x \to 0^+} (\operatorname{sen}(\tan x))^{2 \operatorname{sen} x}$

Problema 2 (4 val.) Considere a função $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dada por:

$$f(x) = \begin{cases} x + x^{7/2} \operatorname{sen}(1/x) & \text{se } x > 0 \\ e^{-1/x^2} + \cosh x - 1 + x - x^2/2 & \text{se } x < 0 \end{cases}$$

- (a) Mostre que f é prolongável por continuidade ao ponto x=0 e determine f'.
- (b) Sendo g o prolongamento por continuidade de f a \mathbb{R} , diga se g'(0) e g''(0) existem.
- (c) Determine se q tem um ponto de inflexão em x=0.

Problema 3 (4 val.) Calcule as derivadas das seguintes funções:

(a)
$$f(x) = e^{\sqrt{1 + \arctan x}}$$
 (b) $g(x) = \ln(2 + \sec^2(1 + 3x))$ (c) $h(x) = (\sec(x^2))^{\ln x}$

Problema 4 (4 val.) Suponha que $f : \mathbb{R} \to \mathbb{R}$ satisfaz $f^{(2)}(x) = \ln(1+x^2)$ e, designando por p_n o seu polinómio de Taylor de f de ordem n no ponto a = 0, temos $p_1(x) = 1 + 5x$.

- (a) Calcule p_4 .
- (b) Mostre que $f(x) p_2(x) > 0$ quando |x| < 1.
- (c) Sendo $g(x) = (f(x) 1 5x)/x^2$ para $x \neq 0$ e g(0) = 0, calcule $g^{(4)}(0)$.

Problema 5 (4 val.) No que se segue, $f : \mathbb{R} \to \mathbb{R}$ é uma função pelo menos diferenciável em \mathbb{R} . Mostre que as seguintes afirmações são verdadeiras.

- (a) Se f' é crescente e $\underline{f}(0)=0$ então g(x)=f(x)/x é crescente.
- (b) Se f é de classe C^2 em \mathbb{R} e $f'(x) \neq 0$ para qualquer $x \in \mathbb{R}$ então a inversa f^{-1} é também de classe C^2 em \mathbb{R} .
- (c) Se $f^{(3)}(0) = 12$, $f^{(2)}(0) = 6$, $f^{(1)}(0) = 3$ e f(0) = 0 então $\lim_{x \to 0} \frac{f(x) 3x 3x^2}{x^3} = 2$.
- (d) Se f é uma função par de classe C^{∞} em \mathbb{R} então o respectivo polinómio de Taylor de ordem 2n em a=0 é da forma $p(x)=\sum_{k=0}^{n}a_kx^{2k}$.