Курс лекций "Знакомство с ПЛИС"

Лекция №1. Что умеют ПЛИС и зачем они нужны

Организационная информация

Лектор

Толкачев Максим

руководитель группы FPGA HTЦ Метротек

m.tolkachev@metrotek.ru

Организационная информация

Содержание курса

- Курс для новичков в ПЛИС.
- Желателен опыт программирования или embedded разработки.
- Презентации выкладываются после лекции.
- Список рекомендованного ПО:
 - Windows версия: Quartus Prime Lite Edition 19.1:
 <u>Download Center for FPGAs</u>
 - Windows версия: ModelSim-Intel FPGA Edition (вместе с Quartus)

Организационная информация

Формат

- 4 лекции (1 лекция = 1ч);
- 20 минут ответов на вопросы после каждой лекции;
- вопросы можно присылать на почту или задавать на стриме.

11.05 Пн. 12.05 Вт.		13.05 Cp.	14.05 Чт.	15.05 Пт.	16.05 Cб.	17.05 Bc.	
18:00 Лекция 1		18:00 Лекция 2					
18.05 Пн.	19.05 Вт.	20.05 Cp.	21.05 Чт.	22.05 Пт.	23.05 Cб.	24.05 Bc.	
18:00 Лекция 3		18:00 Лекция 4					

- **Лекция №1**: Что умеют ПЛИС, и зачем они нужны.
 - Что это такое, где используется и из чего состоит.
- Лекция №2: Языки описания аппаратуры. Часть 1.
 - Знакомимся с HDL/HLS языками. Начинаем изучать SystemVerilog. Запускаем симулятор.
- Лекция №3: Языки описания аппаратуры. Часть 2.
 - Углубляемся в SystemVerilog.
- Лекция №4: Путь проекта для ПЛИС.
 - Используя полученные знания, собираем свой первый проект для ПЛИС.

Важные замечания по курсу

- Курс вводный и многое упрощено для простоты понимания.
- Курс **не подготовит** к позиции Junior FPGA, но станет отправной точкой подготовки.
- В курсе не рассматриваются вопросы:
 - Производства ПЛИС;
 - Аппаратной реализации ПЛИС на уровне полупроводниковых элементов.
- Все слайды, видео и файлы проектов буду выложены в открытый доступ.

Лекция №1. Что умеют ПЛИС, и зачем они нужны

План лекции

- I. Терминология;
- II. Что такое ПЛИС;
- III. Где ПЛИС применяются;
- IV. Производители ПЛИС;
- V. Архитектура ПЛИС:
 - а. общая структура;
 - b. функции блоков;
- VI. Советы для самостоятельной работы.

I. Терминология

Терминология

- ПЛИС (Программируемая Логическая Интегральная Схема) ~=
 FPGA (Field-Programmable Gate Array) ~=
 CPLD (Complex Programmable Logic Device)
- ASIC (Application-Specific Integrated Circuit)

II. Что такое ПЛИС

Что такое ПЛИС

• Программируемая

• Логическая

• Интегральная Схема

Что такое ПЛИС

• Field-Programmable

Gate Array

12:

17: c3

5d

ПЛИС не исполняет программы!

• Программа

int main() {
 int x=10, y=15;
 return 0;
}

pop

retq

%rbp

• Упрощенный конвейер процессора

Как работает схема на примере процессора

№ цикла Стадии	1	2	3	4	5	6	7
Чтение (fetch)	И1	И2	ИЗ	И4	И5	И6	И7
Раскодирование (decode)		И1	И2	ИЗ	И4	И5	И6
Выполнение (execute)			И1	И2	N3	И4	И5
Запись результата (write-back)		0		И1	И2	N3	И4

- Блоки внутри работают одновременно (параллельно)
- Для работы блоков с памятью (регистров) нужен периодический сигнал (clock)
- Частота этого сигнала напрямую влияет на производительность

Что такое ПЛИС

• Схемотехника:

• Цифровая схемотехника:

Clock

Выход

Inc

Сброс

-- **Компаратор**. Сравнение входов. На выходе "1" если входы равны. "0" если не равны.

-- **Счетчик**. Считает количество тактов, когда был "1" на входе ► "Inc.

"1" на входе "Сброс" сбрасывает счетчик.

Как ПЛИС работают

Что такое ПЛИС

- На входе микросхемы цифровые сигналы (0,1)
- Абстрагируемся от физической реализации
- Основные элементы для работы:
 - Регистры (элементы памяти)
 - Логические вентили (И, ИЛИ, НЕ ...)
- Все элементы работают одновременно и уже есть в ПЛИС.
 Мы их только соединяем в нужном порядке.

Что такое ПЛИС

ПЛИС используют, когда производительности CPU не хватает и готовых специальных схем для решения задачи нет.

III. Где ПЛИС применяются

By Xilinx:

- Video and Image Processing
- Computational Storage
- Database and Data Analytics
- Financial Technology
- High Performance Computing
- Network Acceleration

By Intel FPGA:

- Automotive
- Embedded Vision
- Test and Measurement
- Broadcast
- Military, Aerospace,
 Government
- Wireless

1. Контрольно-измерительная техника

Точные измерения, детерминированные по времени воздействия на данные с датчиков предобработка большого потока данных.

2. Преобразователь интерфейсов

ПЛИС могут обрабатывать ЛЮБОЙ цифровой интерфейс и любое количество таких интерфейсов.

3. Цифровая обработка сигналов (ЦОС)

На архитектуру ПЛИС отлично ложатся различные цифровые фильтры, преобразования Фурье, демодуляцию и пр.

4. Быстрая и точная обработка сетевых пакетов

Обработка сетевых пакетов: генерация, прием, измерение задержки, точные временные метки приема пакетов, балансировки трафика и т. д. И все со 100% нагрузкой и без потерь.

5. Специальные ускорители

Большие ПЛИС с высокоскоростными трансиверами. Альтернатива GPU для другого класса задач или для уменьшения энергопотребления.

FPGA top applications categories in the research community from 1992 to 2018

Области научных работ по ПЛИС (FPGA):

- безопасность;
- ЦОС;
- криптография;
- сети;
- машинное обучение;
- последовательные интерфейсы;
- обработка видео и изображений;
- ...

Field Programmable Gate Array Applications -- A Scientometric Review (2019): https://www.mdpi.com/2079-3197/7/4/63

IV. Производители ПЛИС

Производители ПЛИС

- Xilinx
- Intel FPGA
- Lattice
- Microsemi
- QuickLogic
- Gowin
- ВЗПП-С (ВОРОНЕЖСКИЙ ЗАВОД ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ-СБОРКА)
- EFINIX
- Cologne Chip

Производители ПЛИС

An introduction to FPGAs and Their MPSOCs (2018): An introduction to FPGAs and Their MPSOCs

V. Архитектура ПЛИС

Описание конфигурации ПЛИС

1. Блок схема:

2. Структурная схема:

Описание конфигурации ПЛИС

3. Уровень регистровых передач (RTL):

4. Вентильный уровень (gate):

Структура чипа FPGA

I/О буферы:

- Clock buffers -- соединяют входы со специальными линиями тактирования
- 10 buffers -- согласование с внешней схемой.

Intel: ALM, Xilinx: CLB:

• Ячейки с логикой и регистрами

Intel: M9K/M10K, Xilinx: BlockRAM:

• Внутренняя память

DSP:

• Аппаратные умножители

Трансиверы:

• Сериализация/десериализация

Высокоскоростные пины (1,10,40 ГГц)

Что внутри ПЛИС. Логические блоки

• ALM или CLB -- главные внутренние блоки обработки сигналов. ALM (Adaptive Logic Module) CLB (Configurable Logic Block)

- LUT = таблица истинности.
 Комбинационная схема.
- Register = триггер = D-триггер. Ячейка памяти.
 Последовательная схема.

Что внутри ПЛИС. Регистр

• D-триггер:

Что внутри ПЛИС. Регистр

Peructp: триггер, D-триггер, D flip-flop, DFF:

Inputs			Output
CLRN	CLK	D	Q
0	X	X	0
1	ı	0	0
1	J	1	1
1	0	X	Qo 🛶
1	1	Х	Qo <

Qo (Q old): Старое значение **Q**

CLRN = 1. Рабочее состояние:

Что внутри ПЛИС. Регистр

Регистр: триггер, D-триггер, D flip-flop, DFF:

RTL:

Gate level:

• Сдвиговый регистр:

Что внутри ПЛИС. Регистр

clr_i = 1. Рабочее состояние:

Сброс:

Что внутри ПЛИС. Блочная память

• M9K/M10K ... или BlockRAM -- блоки внутренней памяти. НЕ РЕГИСТРЫ.

- 9К, 10К ... -- размер блоков:
 - М9К = 8 192 бита
 - М10К = 10 240 бит
- BlockRAM = 32 768 бит

Количество блоков (штук):

- Xilinx 7 серия: от 135 до 2176
- Cyclone V: от 176 до 1220
- Xilinx UltraScale Plus: до 3008

Что внутри ПЛИС. DSP

• Специальные умножители -- потому что умножение на логике это сложно.

Аппаратный умножитель 18x18:

ACLR[1..0] ACCUMULATE Constant COEFSELA[2..0] Chainout adder/ accumulator Result[73..0] COEFSELB[2..0] chainout[63..0]

Умножитель 3х3 на логике:

Что внутри ПЛИС. Другие блоки

- Синтезатор тактовой частоты: PLL
- Трансиверы (SERDES)
- Аппаратные блоки (Hard-IP):
 - SDRAM контроллеры для доступа к памяти DDR2|3|4
 - Ethernet MAC контроллеры (10G и больше)
 - Процессор (ARM Cortex A9): HPS | PS
 - 0 ...

Поколение

Актуальные семейства Intel FPGA

Семейство	V	10	
Cyclone	Есть с ядром ARM. Маленький размер и энергопотребление. Трансиверы: до 6.144 Гб/с (до 12 штук) ALM: от 9 000 до 113 000	10 GX Нет ядра ARM. Развитие Cyclone V. Трансиверы: до 12.5 Гб/с (до 12 штук) ALM: от 31 000 до 80 000	
		10 LP	
		Het ядра ARM . Перерождение старого семейства Cyclone III.	
		Трансиверы: нет	
		ALM (пересчет из LE): от 2 000 до 43 000	
Arria	Есть с ядром ARM . Средняя линейка.	Есть с ядром ARM . Средняя линейка.	
	Трансиверы: до 6.144 Гб/с (до 36 штук)	Трансиверы: до 25.78 Гб/с (до 6 штук)	
	ALM : от 28 000 до 190 000	ALM : от 61 000 до 427 000	
Stratix	Нет ядра ARM . Максимальная	Есть с ядром ARM . Максимальная	
	производительность в поколении.	производительность.	
	Трансиверы: до 12.5 Гб/с (до 66 штук)	Трансиверы: до 28.3 Гб/с (до 96 штук)	
	ALM : от 128 000 до 360 000	ALM (пересчет из LE): от 137 000	
		до 3 720 000	
		Hyperflex	

Актуальные семейства Xilinx

Поколение 7-series Семейство		UltraScale	UltraScale Plus
Zynq	С ядром ARM. Низкая цена и производительность. Трансиверы: до 12.5 Гб/с (до 16 штук) LC: от 23 000 до 350 000		С ядром ARM. Высока производительность. Трансиверы: до 33 Гб/с (до 16 штук) LC: от 103 000 до 930 000
Artix / Spartan	Нет ядра ARM. Маленькие и средние ПЛИС. Трансиверы: до 6.6 Гб/с (до 16 штук) LC: от 6 000 до 215 000		-
Kintex / Virtex	Нет ядра ARM. Широкая линейка. Трансиверы: до 28.5 Гб/с (до 16 штук) до 13.1 Гб/с (до 80 штук) LC: от 65 000 до 876 000	Нет ядра ARM. Большая производительность. Трансиверы: до 30.5 Гб/с (до 60 штук) СLB: от 145 000 до 2 500 000	Нет ядра ARM. Максимальная производительность. Трансиверы: до 58 Гб/с (до 48 штук) до 32.7 Гб/с (до 128 штук) СLB: от 325 000 до 4 000 000

VI. Советы для самостоятельной работы

План самостоятельного знакомства с ПЛИС

- 1. Начать читать книгу: "Цифровая схемотехника и архитектура компьютера" Дэвид М. Харрис и Сара Л. Харрис.
- Лекции "FPGA начального уровня" от FPGA-Systems.ru: https://youtu.be/xcjR6BpTqhM
- Выбрать для себя язык описания аппаратуры для изучения (будет в Лекции №2).
- 4. Научиться работать с симулятором.
- 5. Выбрать вендор первой отладочной платы ПЛИС: лучше Xilinx или Intel
 - о доступность,
 - о интерфейсы для "развлечений".
- 5. Начать знакомиться со средой разработки:
 - Xilinx: Vivado
 - Intel: Quartus

План самостоятельного знакомства с ПЛИС

- 6. Начать "просматривать" стандарт выбранного языка
- 7. Углубиться в симуляцию:
 - автоматические тесты без анализа "времянок" глазами.
- 8. Углубиться в написание кода:
 - прочесть design guidelines от вендора
 - о изучить http://www.sunburst-design.com/ для best practice
 - прочесть "Advanced FPGA Design: Architecture, Implementation, and Optimization" Steve Kilts
- 9. Взяться за "серьезную" задачу

Полезные материалы

Для новичков:

- Статья от Ивана Шевчука: <u>Junior FPGA Design Engineer: как стать? / Хабр</u>
- <u>Цифровая схемотехника и архитектура компьютера- второе издание</u> Дэвид М. Харрис и Сара Л. Харрис
- Новости мира FPGA и не только: <u>FPGA-Systems Сообщество FPGA разработчиков</u>
- Примеры кода для DIY проектов: <u>fpga4fun.com where FPGAs are fun</u>

Обязательно к прочтению для развития:

- Рекомендации к написанию HDL кода от Inte: <u>Intel Ouartus Prime Pro Edition User Guide: Design</u> <u>Recommendations</u>
- Рекомендации к написанию HDL кода от Xilinx: Xilinx Synthesis and Simulation Design Guide (UG626)
- Стандарт SystemVerilog: <u>1800-2017 IEEE Standard for SystemVerilog--Unified Hardware Design</u>, <u>Specification</u>, and <u>Verification Language IEEE Standard</u>
- Best Practice: <u>Sunburst Design World Class Verilog</u>, <u>SystemVerilog</u> & <u>UVM Verification training</u>.
 <u>Classes include expert and advanced Verilog</u>, <u>Verilog Synthesism SystemVerilog and UVM Training classes</u>.

Полезные материалы

Материалы для профессиональной разработки:

- Документация по конкретным семействам ПЛИС. Примеры:
 - Xilinx 7 серия UG:
 - CLB: 7 Series FPGAs Configurable Logic Block User Guide (UG474)
 - RAM: <u>7 Series FPGAs Memory Resources User Guide</u>
 - Прошивка: <u>7 Series FPGAs Configuration User Guide (UG470)</u>
 - Intel Cyclone V UG:
 - Cyclone V Device Handbook Volume 1: Device Interfaces and Integration
- Советы по улучшению HDL кода: <u>Advanced FPGA Design: Architecture, Implementation, and Optimization: Steve Kilts: 9780470054376</u>
- Советы по использованию SystemVerilog для верификации: <u>SystemVerilog for Verification: A</u>
 <u>Guide to Learning the Testbench Language Features</u>