~				
	Name			

Section _____

Philosophy 57 — Quiz # 6

(solutions posted 05/06/03)

1 True/False (Circle the Correct Answer)

- (7) F 1. A compound statement contains at least one simple statement as a component.
- τ (F) 2. The tilde (\sim) is the logical operator that signifies disjunction.
- T (F) 3. In the conditional statement "Bob's constant overeating is a sufficient condition for his always having a stomach ache" the antecedent is "Bob always has a stomach ache."
 - 4. Each of the following is a well-formed formula (i.e., a WFF, or a sentence) of propositional logic:
- $\widehat{\text{(T)}} \text{ F}$ (a) " $(S \bullet T) \lor (\sim U \bullet W)$ "
- T (F) (b) " $(E \sim F) \lor (W \equiv X)$ "
- $(\widehat{\mathsf{T}}) \mathsf{F} \qquad (c) \quad \text{``} \sim (F \vee \sim G) \supset [(A \equiv E) \bullet \sim H]$
- $\mathsf{T} \ \ \mathsf{F} \qquad \qquad (\mathsf{d}) \quad \text{``} M(N \supset Q) \lor (\sim C \bullet D)\text{''}$
- $(e) \quad (e) \quad ((R \equiv S) \bullet T) \supset \sim (\sim W \bullet \sim X)"$
- $\mathsf{T} \ (\mathsf{F}) \qquad (\mathsf{f}) \quad \text{``}(F \equiv \sim Q) \bullet (A \supset E \lor T)$ "
- $\widehat{\text{T}}$ F (g) " $\sim \sim X$ "

2 Translations from English into PL

Instructions. Translate the following English sentences into symbolizations of propositional logic, using the following capital letters A = Al goes to town, B = Betty goes to town, C = Cathy goes to town. Write your **final answer** in space provided.

1. English: Al and Betty do not both go to town.

PL: $\sim (A \bullet B)$

2. English: Either Al or Cathy does not go to town, but Betty does go.

PL: $(\sim A \lor \sim C) \bullet B$

3. English: If Al or Betty goes to town, then Cathy doesn not go. [Note: the "n" in "doesn" was a typo.]

PL: $(A \vee B) \supset \sim C$

4. English: Al does not go to town if and only if both Betty and Cathy do.

PL: $\sim A \equiv (B \bullet C)$

5. English: Al goes to town only if Betty and Cathy go to town.

PL: $A \supset (B \bullet C)$

6. English: Either Al or Betty or Cathy goes to town.

PL: $(A \lor B) \lor C$ or $A \lor (B \lor C)$ [These are equivalent, but we must always group 3-atom statements.]

7. English: Al, Betty, and Cathy all go to town.

PL: $(A \bullet B) \bullet C$ or $A \bullet (B \bullet C)$ [These are equivalent, but we must always group 3-atom statements.]

8. English: Al does not go to town if Betty does.

PL: $B \supset \sim A$

9. English: Al goes to town and Betty does not go to town, or Cathy goes to town.

PL: $(A \bullet \sim B) \vee C$

10. English: Either Al goes to town or neither Betty nor Cathy goes to town.

PL: $A \lor \sim (B \lor C)$ or $A \lor (\sim B \bullet \sim C)$