# A Marine Natural Product Database

Jing Lei and Jiaju Zhou\*

Laboratory of Computer Chemistry, Institute of Chemical Metallurgy, Chinese Academy of Sciences, P.O. Box 353, Beijing 100080, China

Received October 23, 2001

A database of marine natural products has been developed. The database contains approximately 6000 chemical compounds derived from over 10 000 marine-derived materials. For each compound, the structure, physical and chemical properties, marine source, and biological activities are given. A computer program for searching this database has also been developed and is described.

### INTRODUCTION

The oceans of the planet represent a huge unexplored resource, and, as the exploitation of terrestrial resources proceeds, the marine environment offers a new frontier for research. From a biological perspective, the ocean is indeed a treasure: it contains perhaps 200 000 organisms, all of which survive in the terrestrially unusual conditions of higher salt content, low or zero light, high pressure, and unusually high or low temperatures. These properties of the marine environment make it very likely that marine organisms, and the chemicals they produce, will be quite different from those associated with terrestrial biology. Some examples of the interesting new types of chemicals found in the marine environment are shown in Table 1.

Serious exploration of the marine environment began only recently. Since 1960, some 10 000 marine-derived materials have been studied and about 6000 specific chemicals have been identified.1 During the last 20 years, marine science has seen increasing levels of research. In 1998, some 840 new compounds were isolated and characterized. Of these 460 showed some bioactivity and indications of possible utility as, for example, anticancer, antibacterial, or cardiovascular agents,<sup>2</sup> and several marine chemicals are currently in clinical trials, especially those associated with cancer. Among the anticancer compounds, bryostatin 1 serves as a good example of past and current trends in marine biomedical research. Bryostatin 1 is a macrocyclic metabolite that was first isolated from bryozoan Bugula neritina from the Gulf of California and its structure was determined by X-ray crystallography in 1982. Bryostatin 1 was found to affect protein kinase C activity, which may be the mechanistic basis for both anticancer and immunostimulating activity. It has been developed for the treatment of melanoma, non-Hodgkins lymphoma, and renal cancer and is currently in phase 2 clinical trials. Recently, evidence favoring a symbiotic origin for bryostatin 1 has been present, opening the way for biotechnological manipulation of the biosynthetic genes. Furthermore, it has been shown that semisynthetic bryostatins retain the activity of the natural product.<sup>3</sup>

Marine chemicals often possess quite novel structures and this in turn leads to pronounced biological activity and novel pharmacology. The study of such chemicals therefore is a very promising endeavor. For example, prostaglandins such as prostaglandin  $E_1$  (1), first isolated in 1934 from sheep spermatophore,<sup>3</sup> shows exciting uterine and antihypertensive activities. The cost of prostaglandin from this source is high because spermatophores are scarce and synthetic approaches to such compounds are difficult. Clavulactone II (2), isolated from the Okinawan soft coral *Clavularia viridis*,<sup>4</sup> is a natural prostanoid possessing a  $\gamma$ -lactone moiety in

the  $\alpha$ -side-chain, and its discovery may provide a new, inexpensive source of prostanoids.

Marine chemicals often possess quite novel structures which in turn leads to pronounced biological activity and novel pharmacology. The study of such chemicals therefore is a very promising endeavor. There are three parallel tracks in marine natural products chemistry: marine toxins, marine biomedicinals, and marine chemical ecology. Integration of these three fields of study gives marine natural products chemistry its unique character and vigor.

The search among marine chemicals for medically useful agents involves two steps, discovering the type of biological activity and studying the pharmacological mechanism of the activity. Both of these tasks can be aided considerably by access to a database of marine-derived chemicals and their properties. Such a database has been developed for use in research into Traditional Chinese Medicines.<sup>5,6</sup>

#### DATABASE CONTENT

To support our systematic study of marine natural products, we have developed and here describe a Marine Natural Products database. This database contains detailed information on the source of marine natural products, their structures, chemical and physical properties, and pharmacological

<sup>\*</sup> Corresponding author phone: 0086-10-62626703; fax: 0086-10-62561822; e-mail: jjzhou@lcc.icm.ac.cn.

Table 1. Selected Marine Natural Products

| (24S)-Ethyl-5α-<br>hydroperoxycholesta-<br>6,25-dien-3β-ol | HO OOH              | Cytotoxic against P388,<br>KB, A-549, HT-299 cell<br>lines. | Green algae Codium<br>arabicum.         |
|------------------------------------------------------------|---------------------|-------------------------------------------------------------|-----------------------------------------|
| Dolatriol                                                  | OH HO               | Cytotoxic                                                   | Brown algae Dictyota<br>divaricata.     |
| Halomon                                                    | CI Br CI CI         | Antineoplastic.with cell-specific cytotoxicity.             | Red alga Portieria<br>homehanni         |
| O <sup>9</sup> -Kalihinol Y                                | HO <sub>M</sub> , H | Plasmodium falciparum inhibitor                             | Philippine sponge Phakellia pulcherrima |
| Clavulactone II                                            |                     | Antihypertensive;<br>uterine stimulant                      | Soft coral<br>Clavularia viridis        |
| Bryostatin I                                               | OCH OH OH           | Antitumor agent in Phase 2 trials                           | Japanese bryozen Bugula neritina        |
| Dolastatine 10                                             | S CONH              | Antitumor agent in Phase 1 & 2 trials. Antifungal           | Sea hare <i>Dolabella</i><br>uricularia |
| Arnoamine A                                                | HO                  | Antitumor agent.<br>Topoisomerase<br>inhibitor.             | Ascidian Cystodytes spp.                |

function. Most of the data has been derived from the secondary literature, i.e., books and reviews.

The database consists of four main segments, which are described below.

Table 2. Pharmacological Classes

| le 2. Pharmacological Classes                            |            |                                                          |            |
|----------------------------------------------------------|------------|----------------------------------------------------------|------------|
| abortifacients                                           | 3          | antineoplastic (radiosource)                             | 93         |
| ACE inhibitors                                           | 4          | antineoplastics                                          | 90         |
| α-adrenergic agonists                                    | 9          | antineutropenics                                         | 94         |
| α-adrenergic blockers                                    | 10         | antiosteoporotics                                        | 95<br>27.5 |
| β-adrenergic agonists                                    | 122        | antioxidant                                              | 275        |
| $\beta$ -adrenergic blockers adrenocortical suppressants | 123<br>5   | antipagetics<br>antiparkinsonians                        | 96<br>97   |
| adrenocortical suppressants adrenocorticotropic hormone  | 6          | antiperiodics                                            | 253        |
| alcohol deterrents                                       | 257        | antiperspirants                                          | 278        |
| aldose reductase inhibitor                               | 7          | antipheochromocytoma                                     | 98         |
| aldosterone antagonist                                   | 8          | antipneumocystic                                         | 99         |
| allergenic extracts                                      | 189        | cholinesterase inhibitors                                | 137        |
| α-glucosidase inhibitor                                  | 11         | cholinesterase reactivators                              | 138        |
| alzheimer-type dementia                                  | 190        | CNS stimulants                                           | 139        |
| amino acids                                              | 254        | CNS, miscellaneous                                       | 287        |
| aminoglycoside antibiotics amphenical antibiotics        | 41<br>42   | coccidiostats<br>contact lens products                   | 263<br>288 |
| anabolic steroids                                        | 12         | contraceptives                                           | 140        |
| analgesic (dental)                                       | 13         | cytoprotectants                                          | 141        |
| analgesic (narcotic)                                     | 14         | debridant                                                | 142        |
| analgesic (non-narcotic)                                 | 15         | decongestants                                            | 143        |
| analgesic (topical)                                      | 219        | deficiency anemias                                       | 289        |
| analgesics, general                                      | 227        | dental preparations                                      | 290        |
| anaphylaxis treatment kit                                | 264        | dentistry                                                | 258        |
| androgens                                                | 16         | dentrifice/denture products                              | 291        |
| anesthesia, adjuncts to/analeptics                       | 265        | depigmentor                                              | 144        |
| anesthetic (inhaled)                                     | 17         | dermatitis suppressant                                   | 145        |
| anesthetic (intravenous)                                 | 18<br>19   | diagnostic acid                                          | 147<br>146 |
| anesthetic (local)<br>anesthetic (rectal)                | 266        | diagnostic acid (radioisotope)<br>digestive aids         | 148        |
| anesthetic (topical)                                     | 267        | disorders, acid/peptic                                   | 292        |
| anesthetics, adjuncts                                    | 268        | diuretics                                                | 149        |
| angiotensin II antagonist                                | 20         | dopamine receptor agonists                               | 150        |
| anorectal products                                       | 269        | dopamine receptor antagonists                            | 151        |
| anorexics                                                | 21         | growth hormone secretion disorders                       | 293        |
| antacids                                                 | 22         | ear wax removal                                          | 249        |
| anterior pituitary/hypothalamic function                 | 270        | emetics                                                  | 153        |
| anthelmintics (cestodes)                                 | 23         | enkephalinase inihitors                                  | 154        |
| antidiabetics                                            | 62         | enzyme cofactors                                         | 156        |
| antidiarrheals                                           | 63         | enzyme inducers                                          | 157<br>261 |
| antidiuretics<br>antidotes                               | 64<br>65   | enzyme inhibitors                                        | 155        |
| antidotes<br>antidotes, general                          | 272        | enzymes<br>estrogens                                     | 158        |
| antidotes, general<br>antidotes, specific                | 273        | expectorants                                             | 159        |
| antidyskinetics                                          | 66         | extrapyrainidat movement disorders                       | 294        |
| antieczematics                                           | 67         | fibrinogen receptor antagonists                          | 160        |
| antiemetics                                              | 68         | gastric proton pump inhibitors                           | 161        |
| antiestrogens                                            | 69         | gastric secretion inhibitors                             | 162        |
| antifibrotics                                            | 70         | gastric secretion stimulant                              | 163        |
| antiflatulents                                           | 71         | gastrointestinal, miscellaneous                          | 295        |
| antifungals                                              | 72<br>73   | gastrointestinals                                        | 296        |
| antiglaucoma<br>antigonadotropin                         | 73<br>74   | gastroprokinetics<br>gonad stimulation prinicipal        | 164<br>165 |
| antigout                                                 | 75         | growth hormone inhibitors                                | 166        |
| antihistaminics                                          | 76         | growth stimulants                                        | 168        |
| antihyperlipoproteinemics                                | 77         | hematinics                                               | 169        |
| antihyperphosphatemics                                   | 78         | hematologics                                             | 297        |
| antihypertensives                                        | 79         | hematopoietics                                           | 170        |
| antihyperthyroids                                        | 80         | hemolytics                                               | 171        |
| antihypotensives                                         | 81         | hemorrhoid treatment                                     | 256        |
| antihypothyroids                                         | 82         | hemostatics                                              | 172        |
| antiinflammatories                                       | 84         | heparin antagonists                                      | 173        |
| antimalarials<br>antimanics                              | 86<br>87   | hepatoprotectants<br>hepatotoxics                        | 174<br>274 |
| antimetabolites                                          | 275        | histamine H <sub>2</sub> receptor antagonists            | 175        |
| antimetabolices                                          | 88         | HMG CoA reductase inhibitors                             | 176        |
| antimicrobials                                           | 276        | homeopathic products                                     | 299        |
| antimigraines                                            | 89         | hormonal/biological response modifiers                   | 300        |
| antimycobacterials (inc1 anti leprosy)                   | 277        | immunomodulators                                         | 177        |
| antineoplastic (hormonal)                                | 91         | immunosuppressants                                       | 178        |
| antineoplastic (other)                                   | 92         | insulin sensitizers                                      | 179        |
| ion exchangers                                           | 180        | relaxants/stimulants, urinary tract                      | 320        |
| keratolytics                                             | 181        | relaxants/stimulants, uterine                            | 321        |
| lactation stimulating hormones laxatives/cathartics      | 182<br>183 | relief of pain regulators of electrolytes/water balance  | 322<br>323 |
| leprostatic antibiotics                                  | 45         | regulators of electrolytes/water balance<br>replenishers | 323<br>208 |
| leukotriene antagonists                                  | 184        | respiratory inhibitor                                    | 277        |
| LH-RH agonists                                           | 185        | respiratory stimulants                                   | 209        |
| lincosamide antibiotics                                  | 46         | respiratory tract                                        | 324        |
| lipotropics                                              | 186        | retroviral protease inhibitors                           | 210        |
| 5-lipoxygenase inhibitors                                | 2          | RT inhibitors                                            | 211        |
| lozenge products                                         | 306        | rubifacients                                             | 238        |
| lubricants                                               | 259        | sclerosing agents                                        | 212        |
| lupus erythematosus inhibitors                           | 187        | sedative, hypnotics                                      | 213        |
| MAO inhibitors                                           | 193        | serenics                                                 | 214        |
|                                                          |            |                                                          |            |

Table 2. (Continued)

| matrix metalloproteinase inhibitors    | 188 | serotonin receptor agonists         | 215 |
|----------------------------------------|-----|-------------------------------------|-----|
| medical research                       | 244 | serotonin receptor antagonists      | 216 |
| menstrual products                     | 307 | serotonin reuptake inhibitors       | 217 |
| metabolics/nutrients                   | 308 | serotonin uptake inhibitors         | 218 |
| mineralocorticoids                     | 191 | skeletal muscle hyperactivity       | 325 |
| miotics                                | 192 | skin/mucous membranes               | 326 |
| mouth, canker sore products            | 309 | sleep products (OTC)                | 327 |
| mucolytics                             | 194 | spermaticides                       | 240 |
| muscle relaxants                       | 195 | steroidal antiinflammatories        | 85  |
| myasthenia gravis                      | 310 | surgical aids                       | 246 |
| mydriatics                             | 196 | therapeutics — radiopharmaceuticals | 328 |
| narcotic antagonists                   | 197 | thrombolytics                       | 220 |
| neurologics                            | 311 | thromboxane inhibitors              | 221 |
| neuromuscular blocker                  | 278 | thyroid hormones                    | 222 |
| nootropics                             | 198 | thyrotropic hormones                | 223 |
| nutrition, enteral/parentenal          | 312 | tocolytics                          | 224 |
| ocular anti-infective/antiinflammatory | 313 | topical analgesics                  | 329 |
| ophthalmics                            | 314 | topical anti-infectives             | 330 |
| ophthalmics, miscellaneous             | 315 | topical protectants                 | 225 |
| ophthalmics-antiallergy agents         | 316 | topical steroids                    | 331 |
| otics                                  | 317 | topisomerase inhibitors             | 226 |
| otics, topical                         | 318 | ultaviolet screens                  | 228 |
| oxytocics                              | 199 | unclassified/miscellaneous          | 332 |
| pediculosides                          | 262 | uricosurics                         | 229 |
| personal care products (vaginal)       | 319 | vaccines                            | 239 |
| pharmaceutical aids                    | 251 | vasodilators, cerebral              | 230 |
| pigmentation agents                    | 200 | vasodilators, coronary              | 231 |
| plasma volume expanders                | 201 | vasodilators, peripheral            | 232 |
| potassium channel activators           | 202 | vasoprotectants                     | 233 |
| progestogens                           | 203 | vertigo protectants                 | 334 |
| prolactin inhibitors                   | 204 | vitamins, vitamin sources           | 234 |
| prostaglandins                         | 205 | vulneraries                         | 235 |
| protease inhibitors                    | 206 | Wilson's disease treatment          | 236 |
| pulmonary surfactants                  | 207 | wounds and burns                    | 243 |
| 5α-reductase inhibitor                 | 1   | xanthine oxidase inhibitors         | 237 |
|                                        |     |                                     |     |

**Table 3.** Biological Activity of Some Marine Toxins

| toxin        | biological activity                                                 |
|--------------|---------------------------------------------------------------------|
| tetrodotoxin | blocks neurotransmission; has sodium channel-specific               |
|              | antiarrhythmic activity, possible antitumor activity                |
|              | and is implicated in food poisoning; highly toxic,                  |
|              | $LD_{50} \sim 5-10 \mu g/kg$ (mouse, oral)                          |
| saxitoxin    | blocks voltage-sensitive sodium channels;                           |
|              | high affinity ( $K_D = 1.9 \text{ nM}$ )                            |
| aplysiatoxin | antileukocytothemic; $LD_{50} = 0.3 \text{ mg/kg}$                  |
|              | (mouse, oral)                                                       |
| holotoxin    | inhibits oocyte maturation; antitumor agent                         |
| palytoxin    | tumor promoter; binds to (Na <sup>+</sup> /K <sup>+</sup> ) ATPase, |
|              | $LD_{50} = 0.15 \mu g/kg$ .                                         |
| nereistoxin  | neurotoxins; $LD_{50} = 1.8 \text{ mg/kg (mouse, oral)}$            |
| ciguatoxins  | anticholinesterase; highly toxic to humans                          |

- 1. Identification. Every chemical compound is identified by its name, structure, and a structural type identifier (steroid, alkaloid, etc.). Chemical and physical properties, as available, are also described in detail in the file.
- 2. Biological Activity. The reported biological activity of the compound is carried in the database. The classification in Drugs: Synonyms and Properties,7 with 253 separate classes is used here, as shown in Table 2.

Marine toxins are an important subgroup of marine chemicals and have received considerable attention because their toxicity may be a sign of a medically valuable biological activity. A number of marine toxins have been used<sup>3,8</sup> to probe biological and pharmacological systems, and some of these are listed in Table 3.

Among marine toxins, maitotoxin (3) (see Chart 1) is one of the most complex and lethal nonprotenaceous toxins known. This compound is a calcium channel activator which inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4Cl



Figure 1. Marine organisms.

Cells.9 It also stimulates phosphoinositide breakdown in smooth muscle cells, NCB-20 cells, and PC12 cells through a nifedipine-insensitive mechanism.9 It was isolated from the epiphytic dinoflagellate Gambierdiscus toxicus, and the elucidation of its structure is a tour de force of modern structural chemistry.

3. Sources. Precise identification of the organism which is the source of the material in question requires a classification system for marine organisms. We use the system proposed by Faulkner<sup>10</sup> in which 11 distinct organisms are defined, as shown in Figure 1. The number of occurrences in each organism of compounds in the database is given in the figure. There is a fairly even distribution of compounds among these species although sponges and coelenterates are

| Enter Compound Name:                            |                                                                                              |
|-------------------------------------------------|----------------------------------------------------------------------------------------------|
| (for example:cereulide)                         |                                                                                              |
| OR                                              |                                                                                              |
| Choice Compound Name:                           | Cereulide Cereulide                                                                          |
| Reset submit                                    | Alterobactin A Myxol (3S, 3' S)Astaxanthi-β-D-glucoside (3S, 3' R)Adonixanthin-β-D-glucoside |
| earch through Chemical Type                     | Phomactin E Phomactin F Phomactin G Epolactaene                                              |
| Enter Chemical Type:     (for example:Alkaloid) | Leptosin G Leptosin G1                                                                       |
| OR THE TANK                                     |                                                                                              |
| Choice Chemical Type:                           | Choose Chemical Type 🕶                                                                       |
|                                                 |                                                                                              |
| Reset Submit                                    |                                                                                              |

Figure 2. Search for "cereulide".

### Chart 1

dominant, possibly as a reflection of the accessibility relative to bryozoans for example.

**4. References.** This segment contains information concerning the publication(s) from which the data in the record were taken.

## DATABASE DESIGN

The Marine Natural Products Database is a cross-subject database with three subjects: biology, chemistry, and pharmacology. The biology sector is summarized by the classification of marine organism into the 11 categories



Figure 3. "Cereulide" query result.



**Figure 4.** Eighteen 1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinolines.

shown in Figure 2, and the database can be searched for members of any of these classes. The chemistry segment contains chemical data on the several thousand compounds which have been characterized as components of marine organisms. Searches for full or partial 2D or 3D structures are supported, as are searches by chemical name, molecular formula, and so on. All structures are developed and stored in the MolFile format. 11 Biological activity and pharmacology data for each compound are stored in the pharmacology section.

Structural data stored in the MolFile format can be visualized using Chime MDL software available from MDL.<sup>12</sup> This can be used in a stand alone PC or on the Web by means of Netscape or Internet Explorer browsers. Structures can be represented in a variety of styles such as ball-and-stick, wireframe, and so on, zoomed, and moved or rotated in any direction. Rasmol scripts or chemical

structure markup language (CSML) can be used to change or argument the display mode. Geometries such as bond angles, torsion angles, interatomic separations, or hydrogen bond dimensions can be calculated as needed. Structures can be extracted from the database and transferred into ISIS/  $Draw^{9-12}$  for copying or editing.

Searches for specific chemicals may be carried out with CAS Registry Number, chemical name, and full or partial structures. Chemical names may be entered for a search or may be selected from the database name dictionary, as shown in Figure 3. Data input is not case-sensitive.

Successively entered search-terms are combined in a Boolean AND operation unless otherwise specified by the user, who can select OR or NOT operators. Display of results from a search is controlled by the user; by default, the full record of a retrieved compound is display, as shown in Figure 3.



Figure 5. Fumiquinazoline alkaloids.

To carry out a structure-based search, the user must use a program such as ChemDraw<sup>13</sup> to enter the appropriate chemical structure, which is then used as the basis for a full or substructure search. An example of this is given in Figure 4 in which a search for the 1,3,4,5-tetrahydropyrrolo[4,3,2-de]quinoline nucleus<sup>14</sup>(4) retrieves 18 different structures.

Structure and properties can be combined in searches. Thus the four "alkaloids" whose names contain the word "fumiquinazoline" can be retrieved, as shown in Figure 5.

## **CONCLUSIONS**

Marine sources have the highest probability of yielding natural products with unprecedented carbon skeletons and interesting biological activity. The tools used to identify marine metabolites are constantly improving in scope and sensitivity, allowing the marine organisms to be explored.

The establishment of MNPD has great effect on studying marine organism and mining new molecules. Three application examples of the database are provided. Future developments will be planned in two directions: to establish 3D MNPD and to implement 3D conformation search and molecular filter.

# ACKNOWLEDGMENT

The authors would like to acknowledge the assistance of the Editor, G. W. A. Miline, in preparing this paper.

#### REFERENCES AND NOTES

- Guan, H.; Geng, M.; Wang, C. 21th century, China Marine Drugs (in Chinese). Chinese J. Marine Drugs. 2000, 19, 44-47.
- (2) Faulkner, D. J. Marine natural products. *Nat. Prod. Rep.* **2000**, *17*, 7–55
- (3) Faulkner, D. J. Highlights of marine natural products chemistry (1972–1999). *Nat. Prod. Rep.* 2000, 17, 1–6.
- (4) Iguchi, K.; Iwashima, M.; Watanabe, K. Clavuloactone, New Marine Prostanoids with a γ-lactonic moiety in the α-Side-Chain from the Okinawan Soft Coral Clavularia viridis. J. Nat. Prod. 1995, 58, 790
- (5) Yan, X.; Zhou, J.; Zhi, H. Concept Design of Computer-Aided Study on Traditional Chinese Drug. J. Chem. Inf. Comput. Sci. 1999, 39, 86–89
- (6) Yan, X.; Zhou, J, Xie, G. Traditional Chinese Medicines; Ashgate Publishing: ISBN 0 566 08210 1.
- (7) Drugs: Synonyms and Properties; Milne, G. W. A.,Ed.; Ashgate Pulishing: 2000.
- (8) Takeshi, Y.; Michio, M. Marine Toxins. *Chem. Rev.* **1993**, *93*, 1897–1910
- (9) Van Dolah, F. M.; Ramsdell, J. S.; Maitotoxin, a calcium channel activator, inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4Cl cells. J. Chem. Physiol. 1996, 166, 49-56. Nakahata, N.; Yaginuma, T.; Ohizumi, Y. Maitotoxin-induced phosphoinositide hydrolysis is dependent on extracellular but not intracellular Ca2+ in human astrocytoma cells. Jpn. J. Pharmacol. 1999, 81, 240-3.
- (10) Faulkner, D. J. Marine natural products. Nat. Prod. Rep. 1996, 13,
- (11) Dalby, A.; Nourse, J. G.; Hounshell, W. D.; Gushurst, A. K. I.; Grier, D. L.; Leland, B. A.; Laufer, J. Description of Several Chemical Structure File Formats Used by Computer Programs Developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 1992, 32, 244–255.
- (12) Molecular Design Ltd., 14600 Catalina Street, San Leandro, CA 94577.
- (13) CambridgeSoft Corpn., 875 Massachusetts Avenue, Cambridge, MA 02139.
- (14) Ding, Q.; Chichak, K.; Lown, J. W. Pyrroloquinoline and Pyridoacridine Alkaloids from marine sources. *Curr. Med. Chem.* **1999**, *6*, 1–27

CI010111X