# 绝密 \* 启用前

# 2019 年全国硕士研究生入学统一考试

# 森哥五套卷之数学(一)试卷答案解析 (模拟二)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

| 得分 | 评卷人 |  |  |  |  |
|----|-----|--|--|--|--|
|    |     |  |  |  |  |

--、选择题:  $1\sim8$  小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个 符合要求, 把所选项前的字母填在题后的括号里.

- (A) x = 0 及 x = 1 都是 f(x) 的第一类间断点
- (B) x=0 及 x=1 都是 f(x) 的第二类间断点
- (C) x=0 是 f(x) 的第一类间断点, x=1 是 f(x) 的第二类间断点
- (D) x=0 是 f(x) 的第二类间断点, x=1 是 f(x) 的第一类间断点

## 【答案】(C).

$$\begin{bmatrix}
x \sin^2 \frac{1}{x(x-1)}, & |x| > 1, \\
0, & x = -1, & \lim_{x \to 0} f(x) = 0, \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x \sin^2 \frac{1}{x(x-1)} = 1, \\
-x \sin^2 \frac{1}{x(x-1)}, & 0 < |x| < 1,
\end{bmatrix}$$

 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} [-x\sin^2\frac{1}{x(x-1)}]$ 均不存在,所以应选答案(C).

- (2) 对于广义积分  $\int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x} (p > 0, q > 0)$  ,下列结论正确的是( ).
  - (A) 0 , <math>0 < q < 1时收敛. (B)  $0 , <math>q \ge 1$ 时收敛.
  - (C)  $p \ge 1$ , 0 < q < 1 时收敛. (D)  $p \ge 1$ ,  $q \ge 1$  时收敛.

#### 【答案】(A).

【解】由于 $x=0,\frac{\pi}{2}$ 都是被积函数的瑕点,因此,

$$\int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x} = \int_0^{\frac{\pi}{4}} \frac{dx}{\sin^p x \cos^q x} + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x}$$

因为  $\lim_{x\to 0^+} x^p \frac{1}{\sin^p x \cos^q x} = 1$ ,而  $\int_0^{\frac{\pi}{4}} \frac{1}{x^p} dx$  当  $p \ge 1$  时发散,当  $0 时收敛,所以 <math>\int_0^{\frac{\pi}{4}} \frac{dx}{\sin^p x \cos^q x}$  当

$$0 时收敛;同时由于 $\lim_{x \to \frac{\pi}{2}} (\frac{\pi}{2} - x)^q \frac{1}{\sin^p x \cos^q x} = 1$ ,可知 $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x} \stackrel{\text{iff}}{=} 0 < q < 1$ 收敛, $q \ge 1$$$

发散, 故选择(A).

(3) 设 
$$f(x,y) = \begin{cases} (x+y)\arctan\frac{1}{x^2+y^2}, (x,y) \neq (0,0), \\ 0, \qquad \qquad 其他. \end{cases}$$
,则  $f(x,y)$  在点  $(0,0)$  处  $(---)$ .

- (A) 偏导数  $f_{\mathbf{x}}'(x,y)$  与  $f_{\mathbf{y}}'(x,y)$  均连续
- (B) 偏导数  $f_{\mathbf{y}}'(\mathbf{x}, \mathbf{y})$  与  $f_{\mathbf{y}}'(\mathbf{x}, \mathbf{y})$  均不连续但可微
- (C) 不可微但偏导数  $f_{v}'(0,0)$  与  $f_{v}'(0,0)$  均存在
- (D) 连续但偏导数  $f_{x}'(0,0)$  与  $f_{y}'(0,0)$  均不存在

【答案】(A).

**[#]** 
$$f_x'(0,0) = \lim_{x \to 0} \frac{x \arctan \frac{1}{x^2}}{x} = \frac{\pi}{2}, f_y'(0,0) = \lim_{x \to 0} \frac{y \arctan \frac{1}{y^2}}{y} = \frac{\pi}{2},$$

曲 
$$f_x'(x,y) = \begin{cases} \arctan \frac{1}{x^2 + y^2} - \frac{2x(x+y)}{1 + (x^2 + y^2)^2}, (x,y) \neq (0,0), \\ \frac{\pi}{2}, \end{cases}$$
 可知偏导数  $f_x'(x,y)$  在点  $(0,0)$  处连续,同理

 $f_y^{\prime}(x,y)$ 在点(0,0)处也连续. 答案为(A).

- (4) 已知  $y = c_1 + c_2 \sin x + xe^{-x}$  (其中 $c_1, c_2$ 为任意常数)是某二阶微分方程的通解,则该方程是( ).
  - (A)  $\sin x \cdot y'' + \cos x \cdot y' = [(2-x)\sin x + (x-1)\cos x]e^{-x}$
  - (B)  $\sin x \cdot y'' + \cos x \cdot y' = [(x-2)\sin x + (1-x)\cos x]e^{-x}$
  - (C)  $\cos x \cdot y'' + \sin x \cdot y' = [(2-x)\sin x + (x-1)\cos x]e^{-x}$
  - (D)  $\cos x \cdot y'' + \sin x \cdot y' = [(x-2)\cos x + (1-x)\sin x]e^{-x}$

【答案】(D).

**【解】**  $y = \sin x$  所满足的齐次微分方程为  $\cos x \cdot y'' + \sin x \cdot y' = 0$ ,因此答案应该在(C)或者(D)中选取,又函数  $y = xe^{-x}$ 满足方程(D),因此答案为(D).

(5) 已知矩阵 
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
与  $B = \begin{pmatrix} 3 & a & 0 \\ a & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$  合同但不相似,则  $a$  的取值为( ).

(A) a=3

- (B) -9 < a < 0.0 < a < 9
- (C) -3 < a < 0, 0 < a < 3
- (D) a = -3

### 【答案】(C).

【解】矩阵 
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
的特征值为3,3,0;

$$|\lambda E - B| = \begin{vmatrix} 3 - \lambda & a & 0 \\ a & 3 - \lambda & 0 \\ 0 & 0 & 0 - \lambda \end{vmatrix} = -\lambda(\lambda^2 - 6\lambda + 9 - a^2),$$

要使矩阵 A.B 合同但是不相似,则  $\lambda^2 - 6\lambda + 9 - a^2 = 0$  有两个正根且不都是3,则

$$9-a^2 > 0 \Rightarrow -3 < a < 0, 0 < a < 3$$
.

- (6) 已知  $5 \times 4$  矩阵  $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ ,若  $\eta_1 = (2, 1, -2, 1)^T$ ,  $\eta_2 = (0, 1, 0, 1)^T$  是齐次线性方程组 Ax = 0的基础解系,那么下列命题
- ①  $\alpha_1, \alpha_3$ 线性无关; ②  $\alpha_1$ 可由 $\alpha_2, \alpha_3$ 线性表出;
- ③  $\alpha_3, \alpha_4$ 线性无关; ④  $r(\alpha_1, \alpha_1 \alpha_2, \alpha_3 + \alpha_4) = 3$

其中正确的是().

- (A) (1)(3)

- (B) 24 (C) 23 (D) 14

【答案】(C).

【解】
$$\eta_1 = (2,1,-2,1)^T$$
, $\eta_2 = (0,1,0,1)^T$ 是齐次线性方程组 $Ax = 0$ 的基础解系可知 
$$\begin{cases} 4 - r(A) = 2, \\ \alpha_1 - \alpha_3 = 0, \text{ 所以②} \\ \alpha_2 + \alpha_4 = 0. \end{cases}$$

③正确,
$$r(\alpha_1, \alpha_1 - \alpha_2, \alpha_3 + \alpha_4) = r(\alpha_1, -\alpha_2, \alpha_3 + \alpha_4) = r(\alpha_1, -\alpha_2, 0) = 2.$$

- (7) 设随机变量(X,Y)在由(0,0),(0,1),(1,1)为顶点的三角形区域内服从均匀分布,则当 $0 < y \le x$ 且  $y \le 1$ 时,(X,Y)的联合分布函数F(x,y) = ( ).
- (A)  $2xy x^2$  (B)  $y^2$  (C)  $2x x^2$
- (D) 1

【答案】(B).

【解】 当 0 < y ≤ x 且 y ≤ 1 时, 
$$F(x,y) = \int_0^y dv \int_0^v 2du = y^2$$
,选(B).

(8) 设
$$X \sim N(0,1)$$
,  $P\{X > U_{\alpha}\} = \alpha \; ; Y \sim \chi^{2}(1)$ ,  $P\{Y > \chi_{\alpha}^{2}(1)\} = \alpha \; ; Y \sim \chi^{2}(1)$ 

$$Z \sim t(n)$$
,  $P\left\{Z > t_{\alpha}(n)\right\} = \alpha$ ;  $W \sim F(1,n)$ ,  $P\left\{W > F_{\alpha}(1,n)\right\} = \alpha$ ,

其中 $0 < \alpha < 1$ , 现有如下四个命题:

$$\textcircled{1} \ \chi_{\alpha}^{2}(1) = U_{\frac{\alpha}{2}}^{2} \ ; \qquad \textcircled{2} \ F_{\alpha}(1,n) = t_{\frac{\alpha}{2}}^{2}(n) \ ; \qquad \textcircled{3} \ F_{\alpha}(1,n) \\ F_{1-\alpha}(1,n) = 1 \ ; \qquad \textcircled{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n) \\ F_{1-\alpha}(n,1) = 1 \ ; \qquad \textbf{4} \ t_{\frac{\alpha}{2}}^{2}(n$$

其中正确的个数为().

$$(A)$$
  $0$ 

$$(C)$$
 2

【答案】(D).

【解】由于 
$$X \sim N(0,1), X^2 \sim \chi^2(1), P\{Y > \chi_\alpha^2(1)\} = \alpha \Rightarrow P\{X^2 > \chi_\alpha^2(1)\} = \alpha$$

$$\Rightarrow P\{|X| > \sqrt{\chi_{\alpha}^{2}(1)}\} = 2P\{X > \sqrt{\chi_{\alpha}^{2}(1)}\} = \alpha \Rightarrow P\{X > \sqrt{\chi_{\alpha}^{2}(1)}\} = \frac{\alpha}{2},$$

$$\Rightarrow \sqrt{\chi_{\alpha}^{2}(1)} = U_{\frac{\alpha}{2}} \Rightarrow \chi_{\alpha}^{2}(1) = U_{\frac{\alpha}{2}}^{2}, \text{ ① 正确};$$

由于
$$Z \sim t(n)$$
, $Z^2 \sim F(1,n)$ ,同理② $F_\alpha(1,n) = t_{\frac{\alpha}{2}}^2(n)$ 正确;

若
$$W \sim F(1,n)$$
,则 $\frac{1}{W} \sim F(n,1)$ , $P\left\{W > F_{\alpha}(1,n)\right\} = \alpha \Rightarrow P\left\{\frac{1}{W} < \frac{1}{F_{\alpha}(1,n)}\right\} = \alpha$ ,

$$\Rightarrow 1 - P\left\{\frac{1}{W} \ge \frac{1}{F_{\alpha}(1,n)}\right\} = \alpha \Rightarrow P\left\{\frac{1}{W} > \frac{1}{F_{\alpha}(1,n)}\right\} = 1 - \alpha, \quad \forall P\left\{\frac{1}{W} > F_{1-\alpha}(n,1)\right\} = 1 - \alpha, \quad \text{if } \forall n \in \mathbb{N}$$

$$F_{1-\alpha}(n,1) = \frac{1}{F(1,n)}; \ (1,2), (4)$$
 正确.选 (D).

| 得分 | 评卷人 |  |  |  |  |  |
|----|-----|--|--|--|--|--|
|    |     |  |  |  |  |  |

二、填空题:9~14 小题,每小题 4 分,共 24 分. 把答案填在题中的横线上.

【答案】1.

【解】 
$$1 < (1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[n]{n}})^{\frac{1}{n}} < n^{\frac{1}{n}},$$

$$\lim_{n\to\infty} n^{\frac{1}{n}} = 1$$
, 由夹逼准则  $\lim_{n\to\infty} (1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[3]{n}})^{\frac{1}{n}} = 1$ .

$$(10) \int_0^2 \sqrt{x^3 - 2x^2 + x} dx = \underline{\hspace{1cm}}.$$

【答案】 
$$\frac{4}{15}(2+\sqrt{2})$$
.

$$\text{ [M] } \int_0^2 \sqrt{x^3 - 2x^2 + x} dx = \int_0^2 \sqrt{x} |x - 1| dx = \int_0^1 \sqrt{x} (1 - x) dx + \int_1^2 \sqrt{x} (x - 1) dx = \frac{4}{15} (2 + \sqrt{2}).$$

【答案】 2dx + dv.

【解】由题设知x=1,y=0时z=0,等式两边同时求微分可得,

 $e^{z}dz = 2xzdx + (x^{2} - 1)dz + (2 + y)dx + xdy$ , 把 x = 1, y = 0, z = 0代入可得

$$dz|_{(1,0)} = 2dx + dy$$
.

(12) 
$$I = \oint_{\Gamma} \frac{(x+2)^2 + (y-3)^2 + z^2}{x^2 + y^2 + z^2} ds = \underline{\qquad}$$
.  $\sharp \vdash \Gamma : \begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y = 0, \end{cases}$ 

【答案】  $2\pi a + \frac{26\pi}{a}$ .

【解】利用曲线方程化简,有  $I = \frac{1}{a^2} \oint_{\Gamma} [(x+2)^2 + (y-3)^2 + z^2] ds$ ,由于  $\Gamma$  关于 x, y 轮换对称,则有

$$\oint_{\Gamma} x^2 ds = \oint_{\Gamma} y^2 ds \; , \quad \oint_{\Gamma} x ds = \oint_{\Gamma} y ds = \frac{1}{2} \oint_{\Gamma} (x+y) ds = 0 \; .$$

从而 
$$I = \frac{1}{a^2} \oint_{\Gamma} (x^2 + y^2 + z^2 + 4x - 6y + 13) ds$$

$$= \frac{1}{a^2} \oint_{\Gamma} (a^2 + 13) ds = \frac{a^2 + 13}{a^2} \cdot 2\pi a = 2\pi a + \frac{26\pi}{a}.$$

(13) 设矩阵  $\mathbf{A}$  和  $\mathbf{B}$  满足  $\mathbf{A}^*\mathbf{B}\mathbf{A} = 2\mathbf{B}\mathbf{A} - 8\mathbf{E}$ , 其中  $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix}$ ,  $\mathbf{A}^*$  是  $\mathbf{A}$  的伴随矩阵,则矩阵

 $B = \underline{\hspace{1cm}}$ .

【答案】
$$\begin{pmatrix} 2 & 4 & -6 \\ 0 & -4 & 8 \\ 0 & 0 & 2 \end{pmatrix}.$$

【解】 关系式 $A^*BA = 2BA - 8E$  两边左乘A,右乘 $A^{-1}$ , 得

$$-2B = 2AB - 8E$$
,  $\mathbb{P} AB + B = 4E$ 

$$\mathbf{B} = 4(\mathbf{E} + \mathbf{A})^{-1} = 4 \begin{pmatrix} 2 & 2 & -2 \\ 0 & -1 & 4 \\ 0 & 0 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 4 & -6 \\ 0 & -4 & 8 \\ 0 & 0 & 2 \end{pmatrix}.$$

(14) 一射手对一目标独立重复地射击 4 次,若至少命中一次的概率为 $\frac{80}{81}$ ,则他第四次射击恰好是第二

次命中的概率为\_\_\_\_\_

【答案】 $\frac{4}{27}$ .

【解】设每次命中目标的概率为 p ,由题意知 $1-(1-p)^4 = \frac{80}{81}$  ,则  $p = \frac{2}{3}$ 

则他第四次射击恰好是第二次命中的概率为 $C_3^1 \frac{2}{3} \left(\frac{1}{3}\right)^2 \frac{2}{3} = \frac{4}{27}$ .

## 三、解答题:15~23 小题, 共94分. 解答应写出文字说明、证明过程或演算步骤.

| 得分 | 评卷人 |
|----|-----|
|    |     |

(15) (**本题满分 10 分**) 设  $x \to 0$  时,函数  $a + bx - (1 + c \tan x) \sqrt{1 + x}$  与  $kx^3$  是等价无穷小,求常数 a,b,c,k 的值.

【解法一】由题设有 
$$\lim_{x\to 0} \frac{a+bx-(1+c\tan x)\sqrt{1+x}}{x^3} = k$$
,所以有

$$\lim_{x \to 0} [a+bx-(1+c\tan x)\sqrt{1+x}] = 0$$
,因此有 $a-1=0$ , $a=1$ , … 2分

左式=
$$\lim_{x\to 0} \frac{1+bx-(1+c\tan x)\sqrt{1+x}}{x^3} = \lim_{x\to 0} \frac{b-c\sqrt{1+x}\sec^2 x - \frac{1+c\tan x}{2\sqrt{1+x}}}{3x^2},$$

$$= \lim_{x\to 0} \frac{2b\sqrt{1+x}-2c(1+x)\sec^2 x - 1-c\tan x}{6x^2}, \quad \text{因此有 } 2b-2c-1=0,$$

左式 = 
$$\lim_{x \to 0} \frac{\frac{b}{\sqrt{1+x}} - 4c(1+x)\sec^2 x \tan x - 3c\sec^2 x}{12x}$$
  
=  $\lim_{x \to 0} \frac{b - 4c(1+x)^{\frac{3}{2}}\sec^2 x \tan x - 3c\sqrt{1+x}\sec^2 x}{12x\sqrt{1+x}}$ 

由此可得
$$b=3c$$
,再由 $2b-2c-1=0$ 可得 $b=\frac{3}{4},c=\frac{1}{4}$ 

因而有 
$$k = \lim_{x \to 0} \frac{\frac{3}{4} - (1+x)^{\frac{3}{2}} \sec^2 x \tan x - \frac{3}{4} \sqrt{1+x} \sec^2 x}{12x\sqrt{1+x}}$$

$$= \frac{3}{48} \lim_{x \to 0} \frac{1 - \sqrt{1 + x} \sec^2 x}{x\sqrt{1 + x}} - \frac{1}{12} \lim_{x \to 0} \frac{(1 + x)^{\frac{3}{2}} \sec^2 x \tan x}{x\sqrt{1 + x}}$$

$$= \frac{3}{48} \lim_{x \to 0} \frac{-2\sqrt{1+x} \sec^2 x \tan x - \frac{\sec^2 x}{2\sqrt{1+x}}}{1} - \frac{1}{12} = -\frac{11}{96}.$$

# 【解法二】

$$a + bx - (1 + c \tan x)\sqrt{1 + x}$$

$$= a + bx - \left[1 + cx + \frac{cx^3}{3} + o(x^3)\right] \left[1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + o(x^3)\right]$$

$$=a-1+(b-c-\frac{1}{2})x-(\frac{c}{2}-\frac{1}{8})x^2-(\frac{1}{16}-\frac{c}{8}+\frac{c}{3})x^3+o(x^3),$$

$$=kx^3+o(x^3)$$
,因此有

$$a-1=0, b-c-\frac{1}{2}=0, \frac{c}{2}-\frac{1}{8}=0, -(\frac{1}{16}-\frac{c}{8}+\frac{c}{3})=k$$
, 解得

$$a=1, b=\frac{3}{4}, c=\frac{1}{4}, k=-\frac{11}{96}$$
.

| 得分 | 评卷人 |
|----|-----|
|    |     |

(16) (本题满分 10 分) 求函数  $z = f(x,y) = (x^2 + y - 1)e^{-2x-y}$  在区域

 $D = \{(x, y) \mid x \ge 0, y \ge 0, 2x + y \le 4\}$ 上的最大值及最小值.

【解】令  $\begin{cases} f_x'(x,y) = [2x-2(x^2+y-1)]e^{-2x-y} = 0, \\ f_y'(x,y) = [1-(x^2+y-1)]e^{-2x-y} = 0, \end{cases}$ 解得  $\begin{cases} x = 1, \\ y = 1. \end{cases}$  因此函数 f(x,y) 在区域 D 内有唯一的一

个驻点,且有 $z = f(1,1) = e^{-3}$ .

如图所示D的边界由三条线段组成.

记 $l_1: y = 0, 0 \le x \le 2$ , 当 $(x, y) \in l_1$ 时,

$$z = f(x,0) = (x^2 - 1)e^{-2x}, \frac{dz}{dx} = 2(1 + x - x^2)e^{-2x},$$

$$\Rightarrow \frac{dz}{dx} = 0$$
, 解得  $x = \frac{1+\sqrt{5}}{2}$  或者  $x = \frac{1-\sqrt{5}}{2}$  (舍去),





$$f(0,0) = -1, f(\frac{1+\sqrt{5}}{2},0) = \frac{1+\sqrt{5}}{2}e^{-(1+\sqrt{5})}, f(2,0) = 3e^{-4} > f(0,0), \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ \frac{dz}{dx} < 0, \ \exists \ x \in (\frac{1+\sqrt{5}}{2},2) \ \exists \ x \in (\frac{1+\sqrt{5}}{2$$

$$z = f(x, y)$$
 在  $l_1$  取到的最大值为  $f(\frac{1+\sqrt{5}}{2}, 0) = \frac{1+\sqrt{5}}{2}e^{-(1+\sqrt{5})}$ ,最小值为  $f(0, 0) = -1$ ; · · · · · · 4 分

记 
$$l_2: x = 0, 0 \le y \le 4$$
,当  $(x, y) \in l_2$  时, $z = f(0, y) = (y - 1)e^{-y}$ , $\frac{dz}{dy} = (2 - y)e^{-y}$ ,令  $\frac{dz}{dy} = 0$ ,解得  $y = 2$ ,

$$f(0,0) = -1, f(0,2) = e^{-2}, f(0,4) = 3e^{-4} > f(0,0)$$
,因  $y \in (2,4)$  时  $\frac{dz}{dy} < 0$ ,因此  $z = f(x,y)$  在  $l_2$  取到

的最大值为  $f(0,2) = e^{-2}$ , 最小值为 f(0,0) = -1;

..... 6分

$$z = f(x, 4-2x) = (x^2 - 2x + 3)e^{-4} = [(x-1)^2 + 2]e^{-4}$$

因此 z = f(x, y) 在  $l_3$  取到的最大值为  $f(0,4) = f(2,0) = 3e^{-4}$  ,最小值为  $f(1,2) = 2e^{-4}$  . ……8 分综合上述,  $z = f(x,y) = (x^2 + y - 1)e^{-2x-y}$  在区域  $D = \{(x,y) \mid x \ge 0, y \ge 0, 2x + y \le 4\}$  上的最大值最大值为  $f(0,2) = e^{-2}$  ,最小值为 f(0,0) = -1 . ……10 分

得分评卷人

(17) (本题满分 10 分) 计算  $I = \iint_D xy dx dy$ , 其中 D 由直线 y = 0, y = 2, x = -2, 及

曲线 
$$x = -\sqrt{2y - y^2}$$
 所围成.

【解】记半圆形区域为
$$D_1$$
,则 $I = \iint_D xydxdy = \iint_{D_1} xydxdy - \iint_{D_1} xydxdy$ , ..... 2 分

其中 
$$\iint_{D+D_1} xydxdy = \int_{-2}^0 dx \int_0^2 xydy = \left(\frac{1}{2}x^2\right)\Big|_{-2}^0 \cdot \left(\frac{1}{2}y^2\right)\Big|_0^2 = -4, \qquad \cdots 4$$
 分

$$\iint\limits_{D_1} xydxdy = \int_{\frac{\pi}{2}}^{\pi} d\theta \int_{0}^{2\sin\theta} (r\cos\theta)(r\sin\theta)rdr$$

$$= \int_{\frac{\pi}{2}}^{\pi} \frac{1}{4} r^4 \bigg|_{0}^{2\sin\theta} \cdot \sin\theta \cos\theta d\theta = \int_{\frac{\pi}{2}}^{\pi} \frac{1}{4} \cdot 16\sin^5\theta \cos\theta d\theta = 4 \cdot \frac{1}{6}\sin^6\theta \bigg|_{\frac{\pi}{2}}^{\pi} = -\frac{2}{3}, \dots 8$$

因此,原式 
$$I = -4 + \frac{2}{3} = -\frac{10}{3}$$
.

…… 10分

得分 评卷人 (18) (本题满分 10 分) 过抛物线  $y = x^2$  上一点  $(a, a^2)$  作切线, 其中 0 < a < 1, 切线

与抛物线及x轴所围图形面积为 $S_1$ , 切线与抛物线及y=1所围图形面积为 $S_2$ ,

 $S=S_1+S_2$ ,(1)问a为何值时,S最小。(11)当S最小时,求 $S_1$ 绕x轴旋转所得立体体积。

【解】在点 $(a,a^2)$ 处的切线方程为 $Y-a^2=2a(X-a)$ ,即 $Y=2aX-a^2$ ,

在 
$$x$$
 轴的截距为  $\frac{a}{2}$  ,则  $S(a) = \int_0^1 (\frac{1}{2a}(y+a^2) - \sqrt{y}) dy = \frac{1}{4a} + \frac{a}{2} - \frac{2}{3}$  . ...... 2 分

(1) 
$$S'(a) = -\frac{1}{4a^2} + \frac{1}{2}$$
, 令  $S'(a) = 0$  得惟一驻点  $a = \frac{\sqrt{2}}{2}$  且  $S''(\frac{\sqrt{2}}{2}) = \sqrt{2} > 0$ ,  $a = \frac{\sqrt{2}}{2}$  时,  $S$  最小,

最小值 
$$S(\frac{\sqrt{2}}{2}) = \frac{\sqrt{2}}{2} - \frac{2}{3}$$
.

(II) 
$$a = \frac{\sqrt{2}}{2}$$
 By,  $V_x = \pi \int_0^{\frac{\sqrt{2}}{2}} x^4 dx - \pi \int_{\frac{\sqrt{2}}{4}}^{\frac{\sqrt{2}}{2}} (\sqrt{2}x - \frac{1}{2})^2 dx = \frac{\pi}{5} (\frac{1}{\sqrt{2}})^5 - \pi \frac{1}{3\sqrt{2}} (\sqrt{2}x - \frac{1}{2})^3 \Big|_{\frac{\sqrt{2}}{4}}^{\frac{\sqrt{2}}{2}} = \frac{\pi}{120\sqrt{2}}$ 

…… 10分

得分

评卷人 (19) (本题满分 10 分) 设  $x \in (0, \frac{\pi}{2})$ , 证明:

(I) 
$$\frac{\sin x}{\cos^{\frac{1}{3}} x} > x$$
; (II)  $\csc^2 x < \frac{1}{x^2} + 1 - \frac{4}{\pi^2}$ .

【证明】(I) 原不等式等价于 
$$\frac{\sin x}{\cos^{\frac{1}{3}}x} - x > 0$$
, 令  $f(x) = \frac{\sin x}{\cos^{\frac{1}{3}}x} - x$ , $x \in [0, \frac{\pi}{2})$ , …… 1 分

$$f'(x) = \cos^{\frac{2}{3}} x + \frac{1}{3} \sin^2 x \cos^{-\frac{4}{3}} x - 1 = \frac{2}{3} \cos^{\frac{2}{3}} x + \frac{1}{3} \cos^{-\frac{4}{3}} x - 1,$$

$$f''(x) = -\frac{4}{9}\sin x \cos^{-\frac{1}{3}} x + \frac{4}{9}\sin x \cos^{-\frac{7}{3}} x = \frac{4\sin x(1-\cos^2 x)}{9\cos^{\frac{7}{3}} x}, \qquad \dots 3 \text{ }$$

 $x \in (0, \frac{\pi}{2})$ 时, f''(x) > 0 , 因此 f'(x) 在  $[0, \frac{\pi}{2}]$  上单增,又 f'(0) = 0 , 因此当  $x \in (0, \frac{\pi}{2})$  时有 f'(x) > 0 ,

由此可得 f(x) 在  $[0,\frac{\pi}{2})$  上单增,因而  $x \in (0,\frac{\pi}{2})$  时有  $f(x) = \frac{\sin x}{\cos^{\frac{1}{3}}x} - x > f(0) = 0$ ,即

$$\frac{\sin x}{x} > \cos^{\frac{1}{3}} x; \qquad \cdots 5 \,$$

(II) 
$$\Leftrightarrow g(x) = \csc^2 x - \frac{1}{x^2} (x \in (0, \frac{\pi}{2}]),$$
 ..... 6  $\Re$ 

$$g'(x) = -2\csc^2 x \cot x + \frac{2}{x^3} = \frac{2(\sin^3 x - x^3 \cos x)}{x^3 \sin^3 x}, \qquad \cdots \qquad 8 \, \text{ }$$

由(I)的结论知  $x \in (0, \frac{\pi}{2})$ 时有  $\sin x > x \cos^{\frac{1}{3}} x$ ,即  $\sin^3 x - x^3 \cos x > 0$ ,所以  $x \in (0, \frac{\pi}{2})$ 时有 g'(x) > 0,

因而函数 g(x) 在区间  $(0, \frac{\pi}{2}]$  上单增,由此可得  $x \in (0, \frac{\pi}{2})$  时有  $g(x) = \csc^2 x - \frac{1}{x^2} < g(\frac{\pi}{2}) = 1 - \frac{4}{\pi^2}$ ,即  $\csc^2 x < \frac{1}{x^2} + 1 - \frac{4}{\pi^2}$ . ..... 10 分

| 得分 | 评卷人 |
|----|-----|
|    |     |

(20)(本题满分 11 分)设A 是 3 阶方阵,矩阵 $B = (\alpha_1, \alpha_2, \alpha_3)$ ,其中 $\alpha_1, \alpha_2, \alpha_3$ 是

3维列向量, $\alpha_1 \neq 0$ ,且满足 $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3)$ ,证明:(I) 齐次

线性方程组 Bx = 0 仅有零解; (II) 求 A 的特征值及特征向量.

【证】(I) 因为 $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3)$ ,所以

$$A\alpha_1 = \alpha_1$$
,  $A\alpha_2 = \alpha_1 + \alpha_2$ ,  $A\alpha_3 = \alpha_2 + \alpha_3$ ,

…… 3分

 $\mathbb{U}(A-E)\boldsymbol{\alpha}_1 = \boldsymbol{O}, \quad (A-E)\boldsymbol{\alpha}_2 = \boldsymbol{\alpha}_1, \quad (A-E)\boldsymbol{\alpha}_3 = \boldsymbol{\alpha}_2.$ 

设存在一组数 $k_1,k_2,k_3$ , 使得

$$k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + k_3 \boldsymbol{\alpha}_3 = \mathbf{0} , \tag{*}$$

用A-E 左乘(\*)两次,得 $k_3\alpha_1=0$ ,因为 $\alpha_1\neq 0$ ,所以 $k_3=0$ .再用A-E 左乘(\*)一次,得 $k_2\alpha_1=0$ ,因为 $\alpha_1\neq 0$ ,所以 $k_2=0$ .此时(\*)为 $k_1\alpha_1=0$ ,因为 $\alpha_1\neq 0$ ,所以 $k_1=0$ .故向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,于是 $B=(\alpha_1,\alpha_2,\alpha_3)$ 列满秩,因此齐次线性方程组Bx=0仅有零解. .....5分

(II) 
$$A(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3),$$

则 
$$\mathbf{B}^{-1}\mathbf{A}\mathbf{B} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = C, \mathbf{B} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3),$$
 ...... 7 分

又 
$$C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 的特征值  $\lambda_1 = \lambda_2 = \lambda_3 = 1$ , ...... 9 分

 $B^{-1}ig(E-Aig)B=E-C, rig(E-Aig)=r(E-C)=2$ ,因此属于  $\lambda_1=\lambda_2=\lambda_3=1$  的线性无关的特征向量个数 为 3-rig(E-Aig)=1,属于特征值  $\lambda_1=\lambda_2=\lambda_3=1$  的所有特征向量为  $klpha_1$   $(k\neq 0)$ . ······ 11 分

|   | 得分    | <b>评</b> |                                | (2) | 2 | 0, |               |
|---|-------|----------|--------------------------------|-----|---|----|---------------|
| - | ולניו | 月也八      | (21)(本题满分 11 分)已知矩阵 <b>A</b> = | 8   | 2 | 0  | 有三个线性无关的特征向量, |
|   |       |          |                                | 0   | a | 6  |               |

(I) 求参数 a 的值; (II) 求正交变换 x = Qy 化二次型  $f(x) = x^T Ax$  为标准形.

由已知A可对角化,故 $\lambda_1 = \lambda_2 = 6$ 必有2个线性无关的特征向量,

曲 
$$r(6E-A)=r\begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix}=1$$
知  $a=0$ ,因此  $A=\begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ ; ......4 分

(II) 
$$x^T A x = 2x_1^2 + 2x_2^2 + 6x_3^2 + 10x_1x_2$$
,该二次型矩阵  $A_1 = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ , ......6 分

$$\pm |\lambda E - A_1| = \begin{vmatrix} \lambda - 2 & -5 & 0 \\ -5 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 6 \end{vmatrix} = (\lambda - 6)(\lambda - 7)(\lambda + 3), \lambda_1 = 6, \lambda_2 = 7, \lambda_3 = -3, \qquad \dots \times 5$$

对 
$$\lambda_1 = 6$$
,解 $(6E - A_1)x = 0$ ,得  $\alpha_1 = (0,0,1)^T$ ,

对 
$$\lambda_2 = 7$$
 , 解  $(7E - A_1)x = 0$  , 得  $\alpha_2 = (1, 1, 0)^T$  ,

对 
$$\lambda_3 = -3$$
,解 $(-3E - A_1)x = 0$ ,得  $\alpha_3 = (1, -1, 0)^T$ ,

单位化得 
$$\beta_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
,  $\beta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ ,  $\beta_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ ,

$$\diamondsuit Q = (\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}, x = Qy 化二次型为 6y_1^2 + 7y_2^2 - 3y_3^2. \dots 11 分$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(22) (本题满分 11 分)设随机变量 X 的概率密度函数为

$$f_X(x) = \begin{cases} 6x(1-x), & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

在X = x (0 < x < 1)的条件下,Y 在(x,1)上服从均匀分布.

- (I) 求随机变量(X,Y)的联合概率密度函数f(x,y);
- (II)  $\bar{x}$  *P*{*X* + *Y* ≤ 1};
- (III) 求D(X-Y).

【解】(I) 
$$0 < x < 1$$
 时, $f_{Y|X}(y|x) = \begin{cases} \frac{1}{1-x}, & x < y < 1, \\ 0, & 其他. \end{cases}$  ……1分

所以 
$$f(x, y) = f_{Y|X}(y|x)f_X(x) = \begin{cases} 6x, & 0 < x < 1, x < y < 1, \\ 0, & 其他. \end{cases}$$
 ......3 分

(II) 
$$P\{X+Y\leq 1\} = \int_0^{\frac{1}{2}} dx \int_x^{1-x} 6x dy = \frac{1}{4}$$
. ......6  $\frac{1}{2}$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(23) (**本题满分 11 分**) 设总体  $X \sim \begin{pmatrix} 1 & 2 & 3 \\ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{pmatrix}$ , 其中  $\theta$  (0 <  $\theta$  < 1) 为

+知参数,利用总体 X 的如下样本值

1, 2, 3, 1, 3

- (I) 求 $\theta$ 的矩估计值 $\hat{\theta}_{M}$ ;
- (II) 求 $\theta$ 的最大似然估计值 $\hat{\theta}_L$ ;
- (III)  $X_1, X_2, \cdots, X_n$  为来自总体 X 的简单随机样本,N 表示样本 2 出现的次数,在  $\theta = \hat{\theta}_L$  时,求 E(N) .

【解】(I) 
$$\overline{x} = \frac{1+2+3+1+3}{5} = 2$$
,  $EX = 1 \times \theta^2 + 2 \times 2\theta (1-\theta) + 3 \times (1-\theta)^2 = -2\theta + 3$ ,   
 $\Rightarrow \overline{x} = EX$ ,  $2 = -2\theta + 3 \Rightarrow \hat{\theta}_M = \frac{1}{2}$ . ...... 4 分

(II) 似然函数 
$$L(\theta) = P\{X_1 = 1, X_2 = 2, X_3 = 3, X_4 = 1, X_5 = 3\}$$
 
$$= (\theta^2)^2 \times 2\theta(1-\theta) \times [(1-\theta)^2]^2$$
 
$$= 2\theta^5(1-\theta)^5, \qquad \cdots 7 分$$

 $\ln L(\theta) = \ln 2 + 5 \ln \theta + 5 \ln(1 - \theta),$