Module 02: Numerical Methods
Unit 09: Finite Volume Method-Overview

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Dr. Anirban Dhar NPTEL Computational Hydraulics 1 / 3

Learning Objective

 To discretize the derivatives of single-valued one-dimensional functions using finite volume method.

Learning Objective

- To discretize the derivatives of single-valued one-dimensional functions using finite volume method.
- To derive the algebraic form using discretized ODE and BC(s).

General Equation

A form of differential equation with a general variable ϕ :

$$\frac{\partial(\Lambda_{\phi}\phi)}{\partial t} + \nabla \cdot (\Upsilon_{\phi}\phi\mathbf{u}) = \nabla \cdot (\Gamma_{\phi} \cdot \nabla \phi) + F_{\phi_o} + S_{\phi}$$
 (1)

where

 ϕ = general variable

 $\Lambda_{\phi}, \Upsilon_{\phi} = \text{problem dependent parameters}$

 $\Gamma_{\phi} = {\sf tensor}$

 F_{ϕ_0} = other forces

 $S_{\phi} = \text{source/sink term}$

In the Method of Weighted Residual (MWR), residual ${\cal R}$ (Finlayson and Scriven, 1966) can be written as,

$$\mathcal{R}(\mathbf{x},t) \equiv \frac{\partial (\Lambda_{\phi}\phi)}{\partial t} + \nabla \cdot (\Upsilon_{\phi}\phi\mathbf{u}) - \nabla \cdot (\Gamma_{\phi}\cdot\nabla\phi) - F_{\phi_{\phi}} - S_{\phi}$$

In the Method of Weighted Residual (MWR), residual ${\cal R}$ (Finlayson and Scriven, 1966) can be written as,

$$\mathcal{R}(\mathbf{x},t) \equiv \frac{\partial (\Lambda_{\phi}\phi)}{\partial t} + \nabla \cdot (\Upsilon_{\phi}\phi\mathbf{u}) - \nabla \cdot (\Gamma_{\phi}\cdot\nabla\phi) - F_{\phi_o} - S_{\phi}$$

The weighted integrals of the residuals set equal to zero:

$$\int_{\Omega} w_l \mathcal{R} d\Omega = 0, \quad \forall l$$

In the Method of Weighted Residual (MWR), residual ${\cal R}$ (Finlayson and Scriven, 1966) can be written as,

$$\mathcal{R}(\mathbf{x},t) \equiv \frac{\partial (\Lambda_{\phi}\phi)}{\partial t} + \nabla \cdot (\Upsilon_{\phi}\phi\mathbf{u}) - \nabla \cdot (\Gamma_{\phi} \cdot \nabla \phi) - F_{\phi_o} - S_{\phi}$$

The weighted integrals of the residuals set equal to zero:

$$\int_{\Omega} w_l \mathcal{R} d\Omega = 0, \quad \forall l$$

where w_l is prescribed weighting function. If w_l is a Dirac delta function δ such that

$$w_l = \delta(\mathbf{x}_l - \mathbf{x})$$

In collocation method,

$$\int_{\Omega} \delta(\mathbf{x}_l - \mathbf{x}) \mathcal{R} d\Omega = 0 \Rightarrow \mathcal{R}(\mathbf{x}_l, t) = 0$$

This is similar to Finite Difference Method.

In sub-domain method, the weighting function can be written as

$$w_l = \begin{cases} 1 & if \ \mathbf{x} \in \Omega^l \\ 0 & if \ \mathbf{x} \notin \Omega^l \end{cases}$$

In sub-domain method, the weighting function can be written as

$$w_l = \begin{cases} 1 & if \ \mathbf{x} \in \Omega^l \\ 0 & if \ \mathbf{x} \notin \Omega^l \end{cases}$$

The weighted integral can be written as,

$$\int_{\Omega} w_l \mathcal{R} d\Omega \Rightarrow \int_{\Omega^l} \mathcal{R} d\Omega = 0$$

This is similar to Finite Volume Method.

Divergence Theorem

Gauss Divergence Theorem (Aris, 1990)

Suppose Ω is the volume bounded by a closed surface S and a vector field defined in Ω and on S. If S is piecewise smooth with outward normal $\hat{\mathbf{n}}$ and a continuously differentiable, then

$$\iint_{\Omega} \int \nabla \cdot \mathbf{a} \ d\Omega = \iint_{S} \mathbf{a} \cdot \hat{\mathbf{n}} \ dS$$

Divergence Theorem Area Vector

Divergence Theorem Area Vector

Divergence Theorem Area Vector

Problem Definition

Mathematical Conceptualization

The differential equation describing the head distribution in the aquifer is given as ,

$$\frac{d}{dx}\left(T\frac{dh}{dx}\right) = C_{\mathsf{conf}}(h - h_{wt}) \tag{2}$$

or,

Mathematical Conceptualization

The differential equation describing the head distribution in the aquifer is given as ,

$$\frac{d}{dx}\left(T\frac{dh}{dx}\right) = C_{\mathsf{conf}}(h - h_{wt}) \tag{2}$$

or,

$$\frac{d^2h}{dx^2} = \frac{C_{\text{conf}}}{T}(h - h_{wt}) \tag{3}$$

where,

 $h = \mathsf{head}$,

T = aquifer transmissivity,

 $C_{\rm conf}=$ hydraulic conductivity/thickness of confining layer,

 $h_{wt} =$ overlying water table elevation $(c_0 + c_1 x + c_2 x^2)$.

Boundary Conditions

- Left Boundary is specified head/ Dirichlet boundary: $h(x=0)=h_s$
- Right Boundary is impervious/ no-flow/ Neumann Boundary: $\frac{dh}{dx}|_{L}=0$

Domain Discretization (Finite Difference)

Domain Discretization (Finite Volume)

Domain Discretization (Finite Volume)

In Finite Volume Method, the governing equation is integrated over the element volume to form the discretized equation at node Point P.

$$\int_{\Omega_F} \left[\frac{d}{dx} \left(T \frac{dh}{dx} \right) - C_{\text{conf}}(h - h_{wt}) \right] d\Omega = 0$$
 (4)

In Finite Volume Method, the governing equation is integrated over the element volume to form the discretized equation at node Point P.

$$\int_{\Omega_{P}} \left[\frac{d}{dx} \left(T \frac{dh}{dx} \right) - C_{\mathsf{conf}} (h - h_{wt}) \right] d\Omega = 0 \tag{4}$$

or,

$$\int_{\Omega_P} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega - C_{\text{conf}} \int_{\Omega_P} (h - h_{wt}) d\Omega = 0$$
 (5)

$$\int_{\Omega^{P}} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega = \int_{S^{P}} \left(T \frac{dh}{dx} \right) \hat{i} \cdot \hat{\mathbf{n}} dS$$

$$= \int_{S^{P}} \left(T \frac{dh}{dx} \right) dA_{x}$$

$$= \left(T \frac{dh}{dx} \right)_{e} A_{xe} - \left(T \frac{dh}{dx} \right)_{w} A_{xw}$$
(6)

$$\int_{\Omega^{P}} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega = \int_{S^{P}} \left(T \frac{dh}{dx} \right) \hat{i} \cdot \hat{\mathbf{n}} dS$$

$$= \int_{S^{P}} \left(T \frac{dh}{dx} \right) dA_{x}$$

$$= \left(T \frac{dh}{dx} \right)_{e} A_{xe} - \left(T \frac{dh}{dx} \right)_{w} A_{xw}$$
(6)

In a uniform grid system,

$$\left(T\frac{dh}{dx}\right)_{e} A_{xe} = T_{e} \frac{h_{E} - h_{P}}{\Delta x}
\left(T\frac{dh}{dx}\right)_{w} A_{xw} = T_{w} \frac{h_{P} - h_{W}}{\Delta x} \tag{7}$$

$$\int_{\Omega^{P}} (h - h_{wt}) d\Omega = h_{P} \Delta x - \int_{x_{w}}^{x_{e}} (c_{0} + c_{1}x + c_{2}x^{2}) dx$$

$$= h_{P} \Delta x - \left[c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} \right]_{x_{w}}^{x_{e}}$$

$$\int_{\Omega^{P}} (h - h_{wt}) d\Omega = h_{P} \Delta x - \int_{x_{w}}^{x_{e}} (c_{0} + c_{1}x + c_{2}x^{2}) dx$$

$$= h_{P} \Delta x - \left[c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} \right]_{x_{w}}^{x_{e}}$$

Compact form of the equation

$$T_{e} \frac{h_{E} - h_{P}}{\Delta x} - T_{w} \frac{h_{P} - h_{W}}{\Delta x} = C_{\mathsf{conf}} h_{P} \Delta x - C_{\mathsf{conf}} \left[c_{0} x + \frac{1}{2} c_{1} x^{2} + \frac{1}{3} c_{2} x^{3} \right]_{x_{w}}^{x_{e}}$$

With
$$T_e = T_w = T$$
 and $x_e - x_w = \Delta x$,

$$\frac{h_E - 2h_P + h_W}{\Delta x^2} = \frac{C_{\text{conf}}}{T} \left[h_P - \left(c_0 + \frac{1}{2} c_1 (x_e + x_w) + \frac{1}{3} c_2 (x_e^2 + x_e x_w + x_w^2) \right) \right]$$

With
$$T_e = T_w = T$$
 and $x_e - x_w = \Delta x$,

$$\frac{h_E - 2h_P + h_W}{\Delta x^2} = \frac{C_{\rm conf}}{T} \left[h_P - \left(c_0 + \frac{1}{2} c_1 (x_e + x_w) + \frac{1}{3} c_2 (x_e^2 + x_e x_w + x_w^2) \right) \right]$$

In simplified form,

$$\frac{h_E-2h_P+h_W}{\Delta x^2} = \frac{C_{\rm conf}}{T} \left[h_P-h_{wt}(x_P) - \frac{1}{12} \Delta x^2 \right] \label{eq:hepsilon}$$

$$\int_{\Omega^{P}} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega = \left(T \frac{dh}{dx} \right)_{e} A_{xe} - \left(T \frac{dh}{dx} \right)_{w} A_{xw}$$
 (8)

$$\int_{\Omega_{e}^{P}} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega = \left(T \frac{dh}{dx} \right)_{e} A_{xe} - \left(T \frac{dh}{dx} \right)_{w} A_{xw} \tag{8}$$

$$\left(T\frac{dh}{dx}\right)_{e} A_{xe} = T_{e} \frac{h_{E} - h_{P}}{3\Delta x/4}$$

$$\left(T\frac{dh}{dx}\right)_{w} A_{xw} = T_{w} \frac{h_{P} - h_{0}}{\Delta x/4}$$
(9)

$$\int_{\Omega^{P}} (h - h_{wt}) d\Omega = h_{P} \frac{\Delta x}{2} - \int_{x_{w}}^{x_{e}} (c_{0} + c_{1}x + c_{2}x^{2}) dx$$

$$= h_{P} \frac{\Delta x}{2} - \left[c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} \right]_{x_{w}}^{x_{e}}$$

$$\int_{\Omega^{P}} (h - h_{wt}) d\Omega = h_{P} \frac{\Delta x}{2} - \int_{x_{w}}^{x_{e}} (c_{0} + c_{1}x + c_{2}x^{2}) dx$$

$$= h_{P} \frac{\Delta x}{2} - \left[c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} \right]_{x_{w}}^{x_{e}}$$

Compact form of the equation

$$T_{e}\frac{h_{E}-h_{P}}{3\Delta x/4}-T_{w}\frac{h_{P}-h_{0}}{\Delta x/4}=C_{\mathrm{conf}}h_{P}\frac{\Delta x}{2}-C_{\mathrm{conf}}\left[c_{0}x+\frac{1}{2}c_{1}x^{2}+\frac{1}{3}c_{2}x^{3}\right]_{x_{w}}^{x_{e}}$$

With
$$T_e = T_w = T$$
 and $x_e - x_w = \Delta x/2$,

$$\frac{4h_E - 16h_P}{3\Delta x} = -\frac{4h_0}{\Delta x} + \frac{\Delta x}{2} \frac{C_{\mathsf{conf}}}{T} \left[h_P - \left(c_0 + \frac{1}{2} c_1 (x_e + x_w) + \frac{1}{3} c_2 (x_e^2 + x_e x_w + x_w^2) \right) \right]$$

With
$$T_e = T_w = T$$
 and $x_e - x_w = \Delta x/2$,

$$\frac{4h_E - 16h_P}{3\Delta x} = -\frac{4h_0}{\Delta x} + \frac{\Delta x}{2} \frac{C_{\rm conf}}{T} \left[h_P - \left(c_0 + \frac{1}{2} c_1 (x_e + x_w) + \frac{1}{3} c_2 (x_e^2 + x_e x_w + x_w^2) \right) \right]$$

In simplified form,

$$\frac{8h_E-32h_P}{3\Delta x^2} = -\frac{8h_0}{\Delta x^2} + \frac{C_{\rm conf}}{T} \left[h_P - h_{wt}(x_P) - \frac{1}{48} \Delta x^2 \right] \label{eq:energy}$$

$$\int_{\Omega^{P}} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega = \left(T \frac{dh}{dx} \right)_{e} A_{xe} - \left(T \frac{dh}{dx} \right)_{w} A_{xw}$$
 (10)

$$\int_{\Omega_{P}} \frac{d}{dx} \left(T \frac{dh}{dx} \right) d\Omega = \left(T \frac{dh}{dx} \right)_{e} A_{xe} - \left(T \frac{dh}{dx} \right)_{w} A_{xw}$$
 (10)

$$\left(T\frac{dh}{dx}\right)_e A_{xe} = 0$$

$$\left(T\frac{dh}{dx}\right)_w A_{xw} = T_w \frac{h_P - h_W}{3\Delta x/4}$$
(11)

$$\int_{\Omega^{P}} (h - h_{wt}) d\Omega = h_{P} \frac{\Delta x}{2} - \int_{x_{w}}^{x_{e}} (c_{0} + c_{1}x + c_{2}x^{2}) dx$$

$$= h_{P} \frac{\Delta x}{2} - \left[c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} \right]_{x_{w}}^{x_{e}}$$

$$\int_{\Omega^{P}} (h - h_{wt}) d\Omega = h_{P} \frac{\Delta x}{2} - \int_{x_{w}}^{x_{e}} (c_{0} + c_{1}x + c_{2}x^{2}) dx$$

$$= h_{P} \frac{\Delta x}{2} - \left[c_{0}x + \frac{1}{2}c_{1}x^{2} + \frac{1}{3}c_{2}x^{3} \right]_{x_{w}}^{x_{e}}$$

Compact form of the equation

$$-T_w \frac{h_P - h_W}{3\Delta x/4} = C_{\rm conf} h_P \frac{\Delta x}{2} - C_{\rm conf} \left[c_0 x + \frac{1}{2} c_1 x^2 + \frac{1}{3} c_2 x^3 \right]_{x_w}^{x_e}$$

With
$$T_e = T_w = T$$
 and $x_e - x_w = \Delta x/2$,

$$-\frac{4h_P-4h_w}{3\Delta x} = \frac{\Delta x}{2} \frac{C_{\rm conf}}{T} \left[h_P - \left(c_0 + \frac{1}{2} c_1 (x_e + x_w) + \frac{1}{3} c_2 (x_e^2 + x_e x_w + x_w^2) \right) \right]$$

With
$$T_e = T_w = T$$
 and $x_e - x_w = \Delta x/2$,

$$-\frac{4h_P - 4h_w}{3\Delta x} = \frac{\Delta x}{2} \frac{C_{\rm conf}}{T} \left[h_P - \left(c_0 + \frac{1}{2} c_1 (x_e + x_w) + \frac{1}{3} c_2 (x_e^2 + x_e x_w + x_w^2) \right) \right]$$

In simplified form,

$$\frac{8h_W-8h_P}{3\Delta x^2} = \frac{C_{\rm conf}}{T} \left[h_P - h_{wt}(x_P) - \frac{1}{48} \Delta x^2 \right] \label{eq:local_energy}$$

Discretization Neumann Boundary

Discretization Neumann Boundary

Neumann Boundary

$$\frac{dh}{dx}\Big|_{x=L}=0$$

$$\frac{15h_N-16h_R+h_{N-1}}{3\Delta x}=0$$

Thank You

References

Aris, R. (1990). Computational Fluid Flow and Heat Transfer. Dover Publications Inc, New York.

Finlayson, B. A. and Scriven, L. E. (1966). The Method of Weighted Residuals-A Review. *Applied Mechanics Reviews*, 19(9):735–748.

Dr. Anirban Dhar