ЛЕКЦИЯ 6

Этапы нечеткого вывода

- 1. Формирование базы правил.
- 2. Фаззификация (перевод из четкой области в нечеткую).
- 3. Агрегирование подусловий.
- 4. Активация (определение истинности высказывания, заключений, подзаключений).
- 5. Аккумуляция (формирование по всем подзаключениям или заключениям базы правил выходных лингвистических переменных).
- 6. Дефаззификация.

Система нечеткого вывода:

Рассмотрим, что происходит на каждом этапе.

1. Формирование базы правил.

База правил - это набор логических связок следующего вида:

Если β_1 есть α_1 и/или β_1 есть α_2 , то β_3 есть α_4 .

Если β_1 есть α_1 и/или β_2 есть α_3 , то β_3 есть α_4 и β_4 есть α_5 .

Конструкция вида " β есть α " - подзаключение.

2. Фаззификация (перевод из четкой области в нечеткую).

 β есть α_i .

3. Агрегирование подусловий.

Если β_1 есть α_1 и/или β_1 есть α_2 , то ...

Можно заменить " β_1 есть α_1 и/или β_1 есть α_2 " на " β_1 есть α_3 ".

 $\alpha_3 = \alpha_1 \wedge \alpha_2$ если "и".

 $\alpha_3 = \alpha_1 \vee \alpha_2$ если "или".

Можно обозначить β_1 есть $\alpha_1 = A$, β_2 есть $\alpha_2 = B$, тогда вид будет "Если A и/или B, то...", что можно заменить на "Если C, то..."

Обозначим I - степень истинности подусловий.

 I_i - степень истинности i-го подусловия.

4. Активизация.

 F_i - степень доверия к правилу с номером i.

Есть I_i, F_i , тогда степень истинности заключения/подзаключения будет равна: $C_i = F_i I_i$.

Способы формирования:

(a) $\mu'_i(b_k) = \min\{C_i, \mu_\alpha(b_k)\}.$

Здесь в обозначении ' - локальная функция принадлежности, относящаяся к одному из правил.

 β есть α .

(b)
$$\mu'_{i}(b_{k}) = C_{i}\mu_{\alpha}(b_{k}).$$

(c)
$$\mu'_i(b_k) = \frac{1}{2}(C_i + \mu_\alpha(b_k)).$$

В результате для каждого подзаключения каждого правила имеем функцию принадлежности. Как правило, подзаключений больше, чем лингвистических переменных.

5. Аккумуляция - объединение всех функций принадлежности относительно одной лингвистической переменной.

$$\mu(b_k) = \max_i \{\mu_i'(b_k)\}.$$

6. Дефаззификация.

Методы дефаззификации:

1. Метод центра тяжести.

Непрерывный случай:

$$b_k = \frac{\int_{\min}^{\max} x \mu_{b_k}(x) dx}{\int_{\min}^{\max} \mu_{b_k}(x) dx}.$$

Дискретный случай:

$$b_k = \frac{\sum x \mu_{b_k}(x)}{\sum \mu_{b_k}(x)}.$$

2. Метод центра площади.

$$\int_{\min}^{b_k} \mu_{b_k}(x) dx = \int_{b_k}^{\max} \mu_{b_k}(x) dx.$$

3. Методы левого и правого модальных значений.

Системы нечеткого вывода

• Система нечеткого вывода по Мамдани.

Алгоритм Мамдани:

- 1. Происходит стандартно, по описанному выше Этапу 1.
- 2. Происходит стандартно, по описанному выше Этапу 2.
- 3. Выполняется в соответствии с описанным выше, но те правила, которые имеют нулевую степень истинности отбрасываются при активизации.
- 4. $\mu'_i(b_k) = \min\{C_i, \mu_\alpha(b_k)\}.$
- 5. $\mu(b_k) = \max_i \{\mu_i'(b_k)\}.$
- 6. Либо по методу центра тяжести (непрерывный случай), либо по методу центра площади.

• Алгоритм Цукамото:

- 1. Происходит стандартно, по описанному выше.
- 2. Происходит стандартно, по описанному выше.
- 3. Происходит стандартно, по описанному выше.
- 4. $\mu_i'(b_k) = C_i$ функция принадлежности практически равна константе.
- 5. Отсутствует.
- 6. Центр тяжести для дискретного случая, $b_k = \frac{\sum C_i b_{k_i}}{\sum C_i}$.
- Алгоритм Ларсена.

Аналогичен алгоритму Мамдани, но отличается п. 4: $\mu'_i(b_k) = C_i \mu_\alpha(b_k)$.

- Алгоритм Сугено.
 - 1. Если β_1 есть α_1 и/или ..., то

$$b_{k_i} = \sum_{j=1}^n \varepsilon_j a_j,$$

где ε_j - произвольные коэффициенты.

- 2. Стандартно.
- 3. Стандартно.
- 4. Для каждого из правил определяется степень истинности условия, заключения, четкий выход по формуле:

$$b_{k_i} = \sum_{j=1}^{n} \varepsilon_j a_j$$

.

- 5. Отсутствует.
- 6. Аналогичен п. 6 алгоритма Цукамото, т.е. центр тяжести в дискретном виде: $b_k = \frac{\sum C_i b_{k_i}}{\sum C_i}$.

Этих знаний теперь достаточно, чтобы создать нечеткий лингвистический регулятор.

Нечеткий лингвистический регулятор:

Существует альтернативная структура.