

UESTC3001 Dynamics & Control Lecture 3

Block Diagram Reduction

Prof. Kelum Gamage <u>kelum.gamage@glasgow.ac.uk</u>
School of Engineering, University of Glasgow, UK

Outline

- Apply Block Diagram Reduction Rules
- Analyse Control System Subjected to a Disturbance

Rules for block diagram reduction - Summary

Example: Derive the overall transfer function

Exercise: Derive the overall transfer function

- Suppress disturbances in the steady state operation of the plant.
- Disturbance to the plant is incorporated by splitting the transfer function

Closed-Loop Control System Subjected to a Disturbance cont.

Response to inputs and disturbances can be evaluated individually

C/L Control System Subjected to a Disturbance cont.

No external disturbance

No reference input

Prof. Kelum Gamage Lecture 3

C/L System Subjected to a Disturbance cont.

• Overall transfer function: $C(s) = C_R(s) + C_N(s)$

Exercise - Derive the overall transfer function

Summary

- Apply Block Diagram Rules to Derive Overall Transfer Function
- Overall Transfer Function of Control Systems Subjected to Disturbances

Reference:

-Control Systems Engineering, 7th Edition, N.S. Nise

-UESTC3001 2019/20 Notes, J. Le Kernec