Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to contact me (mgabrie@nyu.edu) or to stop at the office hours.

Problem 5.1 (2.5 points). Give an othonormal basis of \mathbb{R}^3 using the Gram-Schmidt algorithm starting from the linearly independent family (v_1, v_2, v_3) where $v_1 = (1, 1, 1)$, $v_2 = (2, 1, 1)$ and $v_3 = (2, 0, 1)$.

Problem 5.2 (2.5 points). Consider $U = \text{Span}\left(\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right)$ and $V = \text{Span}\left((1, 0, 0, 0), (0, 1, 0, 0)\right)$, two subspaces of \mathbb{R}^4 .

- (a) Compute the canonical matrix $M_U \in \mathbb{R}^{4\times 4}$ of orthogonal projection $P_U(\cdot)$ onto subspace U. What is the rank of M_U ?
- (b) Compute the canonical matrix $M_V \in \mathbb{R}^{4\times 4}$ of orthogonal projection $P_V(\cdot)$ onto subspace V. What is the rank of M_V ?
- (c) Let x = (1, 2, 3, 4) in \mathbb{R}^4 , compute $y = P_U \circ P_V(x)$ and $z = P_V \circ P_U(x)$. Do we have y = z?
- (d) Compute the matrix products $M_U M_V$ and $M_V M_U$. Do M_U and M_V "commute", meaning do we have $M_U M_V = M_V M_U$. Can you give an intuition of why it is the case looking the definitions of U and V?
- (e) Considering now $U' = \operatorname{Span}\left(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)\right)$. Compute $M_{U'}$. Do we have $M_{U'}M_{V} = M_{V}M_{U'}$? Can you give an intuition why?

Problem 5.3 (1 points). Consider L a linear transformation from \mathbb{R}^n to \mathbb{R}^n and denote by $\tilde{L} \in \mathbb{R}^{n \times n}$ its canonical matrix. Let (u_1, \cdot, u_n) be any orthonormal basis of \mathbb{R}^n and

$$U = \begin{pmatrix} | & & | \\ u_1 & \cdots & u_n \\ | & & | \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Show that $\tilde{L}' = U^{\top} \tilde{L} U$ computes the transformation of vectors in \mathbb{R}^n using coordinates in the basis (u_1, \dots, u_n) .

Problem 5.4 (3 points). In this problem, we will see how to compress, by using a particular orthonormal basis called a "discrete cosine basis".

All the questions are in the jupyter notebook DCT. ipynb and have to be answered directly in the notebook. (Submit only a pdf export of your notebook: $Print \rightarrow Save \ as \ pdf$)

You have to use Python and its library numpy. A useful command: A @ B : performs the matrix product of the matrix A with the matrix B.

Problem 5.5 (\star) . Let S be a subspace of \mathbb{R}^n . We define the orthogonal complement of S by

$$S^{\perp} \stackrel{\text{def}}{=} \{ x \in \mathbb{R}^n \, | \, x \perp S \} = \{ x \in \mathbb{R}^n \, | \, \forall y \in S, \, \langle x, y \rangle = 0 \}.$$

- (a) Show that S^{\perp} is a subspace of \mathbb{R}^n .
- (b) Show that $\dim(S^{\perp}) = n \dim(S)$.
- (c) Show that for any $u \in \mathbb{R}^n$, we can find $x \in S$ and $y \in S^{\perp}$ such that u = x + y.