NLP-101

Introduction to Natural Language processing

Srikanth Phalgun Pyaraka (Consultant - Data Analytics) 07/07/2020

Agenda

- √ What is Natural language?
- √ What is NLP?
- √ Why NLP?
- ✓ NLP Applications
- ✓ NLP Workflow
- √ Hands-on
- ✓ References
- √ Q&A

What is Natural Language?

- Mechanism used for Human interaction.
- Not like programming language.
- Highly unstructured in nature Text & Speech.
- Very Difficult to parse and comprehend by machines.
- Natural language can be communicated in different ways, like speech, writings or even using signs.

What is NLP?

- NLP is area of research in computer science, linguistics, and AI.
- NLP is concerned with interaction between computers and human (natural) language.
- Key focus is to train computers to process, analyse, and model large amounts of natural language data.
- NLP flow often referred as pipeline
- Goal for NLP is make computers understand natural language in order to perform useful tasks.

Why NLP is important?

- Handling large volume of text data.
- 80% of enterprise relevant information originates in unstructured form.
- Structuring highly unstructured data source.
- NLP models are realistic and affordable.
- Most powerful applications uses NLP.
 - Google Translate (Machine Translations)
 - Google Assistant/Alexa(Speech Recognition)
 - Google search
 - Chat bots providing better service experience

NLP Pyramid (Morphology)

Morphology:

- Analyse how words are formed/originated.
- Most of operations are at word level.
- Word is viewed as sequence of characters
- ❖ NLP tasks at word level:
 - Prefixes/Suffixes
 - Singularization/Pluralization
 - Gender detection
 - Word inflection
 - Lemmatization(Base form of word)
 - Spell checking etc

NLP Pyramid (Syntax)

Syntax:

- Analyse how sentences which are formed are grammatically valid.
- Most of operations are at sentence level.
- Sentence is viewed as sequence of words.
- ❖ NLP tasks at sentence level:
 - Parts-of-speech tagging (Assigning tags to the words like Noun/Verb/Adj etc.)
 - Building syntax trees.
 - Building Dependency trees.

NLP Pyramid (Semantics)

Semantics:

- It derives meaning from text.
- This branch deals with actual understanding of natural language.
- Most of operations are at text level.
- Text is viewed as sequence of sentences.
- ❖ NLP tasks at Text level:
 - Named entity extraction
 - Relation extraction
 - Semantic Role labelling
 - Word sense disambiguation

NLP Pyramid (Pragmatics)

Pragmatics:

- It analyses text as whole.
- It studies the way in which context contributes to meaning.
- It usually works on text with contexts.
- ❖ NLP tasks at pragmatic level:
 - Coreference/Anaphora resolution (find out what word refers what. E.g John is fine. He [John] in no danger.
 - Topic segmentation
 - Lexical chains
 - Summarization

NLP Applications

Common NLP Use cases

Text Classification

Support Ticket Classification, News Article Categorization

Text Clustering & Similarity

Recommender systems, Duplicate Detection with Fuzzy Matching

- Search and Information Retrieval
 Search Engines, Document Ranking
- Parsing and Named Entity Recognition

Entities from health records, legal documents

Text Summarization
 Topic models, summarizing entire documents

Machine Translation
 Speech to Text, Language Translation

- Conversational Interfaces
 Chatbots, Personal Assistants, Q&A Systems
- Sentiment Analysis
 Survey result analysis, NPI analysis

Standard NLP work flow

Text preprocessing Text parsing & Exploratory Data Analysis Text
Representation
& Feature
Engineering

Modeling and \ or Pattern Mining

Evaluation & Deployment

Text wrangling / Pre processing

- Removing HTML tags
- Remove Extra Whitespace and Newlines
- Remove special characters and symbols (optionally numbers)
- Convert accented characters to ASCII

- Stemming OR Lemmatization
- Removing Stop Words
- Tokenization if needed
- Spell Check & Grammar Check

Text Representation Model

- ML\DL models at heart are mathematical functions and cannot understand unstructured text
- Hence we need to convert text into some numeric representations which can be understood by machines
- Commonly known as Vector Space Models where text is converted to numeric vectors
 - Bag of Words, TF-IDF
 - Topic Models
 - Similarity
 - Word Embeddings Word2Vec, GloVe, FastText etc.

Traditional Text Representation Model

- Bag of Words
 - Each document is represented by a vector (bag) of words
 - Depicts the number of times each word occurs in that document
- Bag of N-grams
 - · Same as the Bag of Words model
 - Instead of words, we also have n-grams and counts for them in the vector

- 3 TF-IDF
 - Similar to the basic Bag of Words (TF) model
 - Normalizes counts using the inverse document frequency (IDF) to downplay effect of frequently occuring words
- 4 Document Similarity
 - Derived attribute \ feature from bag of words based features
 - Assign scores to each document w.r.t how similar it is to other documents (based on their BOW vectors)

Hands-on: Movie Recommender System

- Get Movie Dataset
- Clean Movie Descriptions
- Build TF-IDF Features per Movie Description
- Compute Document Similarity (pairwise)
- Recommend Similar Movies based on Movie Description

Do you want to try??

bit.ly/3107L3N

References:

- nlpforhackers.io
- https://machinelearningmastery.com/natural-languageprocessing/
- https://towardsdatascience.com/a-practitioners-guide-tonatural-language-processing-part-i-processingunderstanding-text-9f4abfd13e72
- https://www.analyticsvidhya.com/blog/2017/01/ultimateguide-to-understand-implement-natural-languageprocessing-codes-in-python/

A&Q

Thank You

