

Universidade do Minho Escola de Ciências

Análise Mestrado Integrado em Engenharia Informática

Teste 2 :: 30 de maio de 2018

Departamento de Matemática e Aplicações

Nome Número		
I		
Em cada uma das questões seguintes, assinale neste enunciado, se a afirmação é verdadeira ou falsa; não deve apresentar qualquer justificação. Cada resposta certa vale 1 valor e cada resposta errada desconta 0,5 valores.		
	V	
Questão 1. Se $f(0,0)=1$, $\nabla f(0,0)=(1,2)$, $g(0,0)=1$ e $\nabla g(0,0)=(2,4)$ então as curvas de nível 1 de f e g são tangentes em $(0,0)$.	\circ	
Questão 2. O ponto de coordenadas $(\frac{1}{2},-2,-\frac{3}{4})$ é um ponto da superfície definida pela equação $z=8-3x^2-2y^2$ no qual o plano tangente é perpendicular à reta definida por $x=2-3t$, $y=7-8t$ e $z=5-t$, $t\in\mathbb{R}.$	\circ	(
Questão 3. Se $\mathscr{D}\subseteq\mathbb{R}^3$ é um conjunto limitado e $f:\mathscr{D}\to\mathbb{R}$ é uma função contínua e limitada então f tem máximo e mínimo.	\circ	
Questão 4. $\int_{1}^{2} \int_{0}^{2} f(x,y) dy dx = \int_{0}^{1} \int_{0}^{1} f(x+1,2y) dy dx.$	\circ	
Questão 5. As coordenadas cartesianas do ponto cujas coordenadas esféricas são $\rho=1$, $\theta=\pi$ e $\phi=\frac{\pi}{2}$ são $(-1,0,0)$.	\bigcirc	
II		

As respostas às questões deste grupo devem ser convenientemente justificadas e devem ser dadas na folha de teste.

Questão 1. [3 valores] Considere a superfície cónica definida por $z^2=x^2+y^2$.

- a) Defina a reta normal à superfície no ponto de coordenadas $(-1,1,\sqrt{2})$.
- b) Verifique se a reta determinada na alínea anterior interseta algum dos eixos coordenados.

Questão 2. [3 valores] Considere a função definida por $f(x,y)=3xe^y-x^3-e^{3y}$.

- a) Determine os pontos críticos de f.
- b) Classifique os pontos críticos encontrados na alínea anterior.
- c) Mostre que f não possui extremos absolutos.

- Questão 3. [4 valores] Considere o sólido limitado por uma superfície esférica, uma cilíndrica e uma cónica, representado na figura.
 - a) Escreve as equações que definem cada uma das superfícies.
 - b) Exprima, usando um integral duplo, o volume do sólido.
 - c) Exprima, usando um integral triplo, o volume do sólido.
 - d) Calcule o volume do sólido.

Ш

Em cada uma das questões seguintes, assinale neste enunciado, a afirmação verdadeira; não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

- Questão 1. Considerando as funções f(x,y)=(x+y,xy) e $g(u,v)=(e^{u+v},e^{uv})$, o elemento da segunda linha e primeira coluna da matriz jacobiana de $g\circ f$ é:
 - $\bigcap e^{(x+y)xy}(2xy+x^2);$

 $e^{(x+y)xy}(x^2+y^2);$

 $\bigcirc e^{(x+y)xy}(2xy+y^2);$

- nenhuma das anteriores.
- Questão 2. Seja $f:\mathbb{R}^3 \to \mathbb{R}$ uma função de classe \mathscr{C}^2 e P um ponto crítico de f. Se a matriz hessiana de f no ponto P é $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, então:
 - \bigcirc P é ponto de máximo local de f;
- $\bigcirc P$ é ponto de sela;
- \bigcirc P é ponto de mínimo local de f;
- nenhuma das anteriores.
- Questão 3. Seja $f:\mathbb{R}^2 \to \mathbb{R}$ uma aplicação linear não nula e seja $S=\{(x,y)\in\mathbb{R}^2: x^2+y^2\leq 1\}.$ Se $f(a,b)=\min f_{|_S}$ e $f(c,d)=\max f_{|_S}$ então:
- $0 1 \ge a^2 + b^2 > c^2 + d^2;$
- $a^2 + b^2 = c^2 + d^2 = 1$;

- nenhuma das anteriores.
- Questão 4. O valor do integral $\int_{-1}^{1} \int_{0}^{1} y \, dy dx$ é:
 - \bigcirc 0;

 \bigcirc 1;

- \bigcirc 2
- Questão 5. A mudança da ordem de integração no integral $\int_0^1 \int_{-x^2}^x f(x,y) \, dy dx$ permite escrever este integral na forma:

- $\bigcirc \ \, \int_{-1}^{0} \int_{-\sqrt{y}}^{1} \!\! f(x,y) \, dx dy + \int_{0}^{1} \int_{y}^{1} \!\! f(x,y) \, dx dy; \ \, \bigcirc \ \, \int_{-1}^{0} \int_{\sqrt{-y}}^{1} \!\! f(x,y) \, dx dy + \int_{0}^{1} \int_{y}^{1} \!\! f(x,y) \, dx dy.$