

Supporting Information for J. Am. Chem. Soc., 1992, 114(21), 8333-8334, DOI: 10.1021/ja00047a079

CHU-MOYER 8333-8334

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

- (a) THF (2M), rt, 5 d, 94%
- (b) 2,2-dimethyldioxirane, acetone, CH₂Cl₂, -78 $^{\circ}$ C \rightarrow rt, 2.5 h
- (c) NaBH₄, CeCl₃·7H₂O, MeOH, -78 °C, 1 h, 67% from 2
- (d) Ac₂O, Et₃N, DMAP, CH₂Cl₂, 0 °C, 30 min, 97%
- (e) TBAF, AcOH, THF, 0 °C, 30 min, 91%
- (f) NaIO₄, THF/ H₂O (2:1), rt, 1 h
- (g) NaBH₄, MeOH, 0 °C, 30 min
- (h) TBSOTf, Et₃N, CH₂Cl₂, 0 °C, 30 min, 99% from 4
- (i) NaOMe, MeOH, rt, 24 h, 96%
- (j) PDC, CH₂Cl₂, Celite, rt, 20 h, 84%
- (k) H_2O_2 , NaOH, MeOH, -78 °C \rightarrow -48 °C, 5.5 h, 7 (82%) and 7a (8%)
- (I) NaHMDS, Tf2NPh, THF, -78 °C, 30 min, 81% from 7
- (m) Bu₃SnCH=CH₂, PdCl₂(PPh₃)₂, LiCl, THF, reflux, 3.5 h, 54%
- (n) TBAF, AcOH, THF, $0 \, ^{\circ}\text{C} \rightarrow \text{rt}$, 4 h, 96%
- (o) MsCl, Et₃N, DMAP, CH₂Cl₂, 0 °C, 15 min, 96%
- (p) Me₃SnLi, THF, 0 °C, 5 min, 66%
- (q) (E)-3-methyl-4-oxo-2-butenoic acid, DCC, DMAP, CH₂Cl₂, 0 °C \rightarrow rt, 1 h, 93%
- (r) PhH, reflux, 13 h
- (s) Ph₃P=CH₂, THF, -78 °C \rightarrow 0 °C, 20 min, 85% from 11
- (t) DIBAL-H, CH₂Cl₂, -48 °C, 10 min then PDC, CH₂Cl₂, Celite, rt, 5 h, 74% (14% recovered sm)
- (u) I2, PhI(OAc)2, hv, cyclohexane, rt, 30 min, 15a (84%)and15b (12%)
- (v) Bu₃SnH, AIBN, 80 °C, 20 min, 15d (78%) and 15c (15%) from 15a; Bu₃SnH, AIBN, 110 °C, 10 min, 15d (61%) and 15c (27%) from 15b
- (w) Dess-Martin periodinane, CH₂Cl₂, rt, 10 min
- (x) H₂O₂, NaOH, MeOH, rt, 15 min, 67% from 15d
- (y) 4-OMe-PhSAlMe₃Li, THF, -20 °C \rightarrow 0 °C, 1 h, 99%
- (z) 2,2-dimethyldioxirane, acetone, CH₂Cl₂, 0 °C, 30 min, 56%
- (aa) O2, t-BuOK, THF/t-BuOH (2:1), -78 °C, 3 h then (EtO)₃P, THF, 0 °C, 10 min, 68%

Diels-Alder adduct 2: mp 96-98 °C; R_f 0.17 (1:9 EtOAc/Hex); IR (CDCl₃) 2950, 2850, 1665, 1625, 1460 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 6.59 (d, J = 10.5 Hz, 1 H), 6.54 (d, J = 10.5 Hz, 1 H), 4.90 (d, J = 7.0 Hz, 1 H), 3.03 (m, 1 H), 2.91 (dd, J = 8.4, 3.0 Hz, 1 H), 2.69 (d, J = 8.4 Hz, 1 H), 1.74-1.57 (c, 2 H), 1.52-1.35 (c, 2 H), 1.08 (s, 3 H), 0.84 (s, 9 H), 0.09 (s, 3 H), 0.03 (s, 3 H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 199.7, 198.2, 155.8, 142.2 (2), 100.5, 54.9, 51.4, 41.3, 36.7, 36.6, 25.5, 25.4, 19.0, 17.9, -4.8, -5.0; MS (CI, methane) m/z 333 (MH⁺); HRMS (CI, isobutane) exact mass calcd for C₁₉H₂₉O₃Si (MH⁺) 333.1887, found 333.1905. Anal. Calcd for C₁₉H₂₈O₃Si: C, 68.63; H, 8.49. Found: C, 68.70; H, 8.65.

Cyclopropyldienol 10: mp 101-103 °C; R_f 0.42 (1:1 EtOAc/Hex); IR (CDCl₃) 3590 (s), 3450 (br), 2960, 2930, 2860, 1760 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 6.01 (dd, J = 17.4, 10.8 Hz, 1 H), 5.84 (d, J = 2.0 Hz, 1 H), 5.34 (d, J = 17.3 Hz, 1 H), 5.02 (d, J = 10.8 Hz, 1 H), 4.63 (dd, J = 6.9, 4.6 Hz, 1 H), 4.59 (m, 1 H), 2.84 (d, J = 4.4 Hz, 1 H), 2.28 (d, J = 6.8 Hz, 1 H), 1.90-1.78 (c, 3 H), 1.72 (m, 1 H), 1.49 (m, 1 H), 1.26 (s, 3 H), 0.81 (t, J = 5.0 Hz, 1 H), 0.07 (dd, J = 8.4, 5.6 Hz, 1 H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 183.0, 143.3, 132.5, 127.4, 115.9, 86.7, 72.0, 44.4, 40.1, 26.5, 26.4, 20.4, 18.6, 14.4, 8.3; MS (EI) m/z 246 (M⁺); HRMS (EI) exact mass calcd for C₁₅H₁₈O₃ (M⁺) 246.1256, found 246.1252. Anal. Calcd for C₁₅H₁₈O₃: C, 73.15; H, 7.37. Found: C, 72.96; H, 7.37.

Wittig product 13: mp 216-217 °C; R_f 0.33 (1:3 EtOAc/Hex); IR (CDCl₃) 2960, 2920, 1770 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 6.38 (dd, J =17.5, 10.9 Hz, 1 H), 5.59 (m, 1 H), 5.11 (d, J = 10.9 Hz, 1 H), 5.08 (d, J = 17.5 Hz, 1 H), 4.88

(d, J = 4.7 Hz, 1 H), 4.75 (d, J = 4.3 Hz, 1 H), 3.14 (m, 1 H), 2.68 (dd, J = 6.3, 1.1 Hz, 1 H), 2.48 (d, J = 4.5 Hz, 1 H), 2.39 (dt, J = 18.2, 2.4 Hz, 1 H), 1.96 (dd, J = 13.9, 5.7 Hz, 1 H), 1.89-1.68 (c, 3 H), 1.55-1.37 (c, 2 H), 1.23 (s, 3 H), 1.00 (s, 3 H), 0.78 (dd, J = 5.5, 4.0 Hz, 1 H), 0.03 (dd, J = 8.3, 5.8 Hz, 1 H); 13C NMR (CDCl₃, 62.9 MHz) 8 181.5, 174.2, 144.8, 133.1, 122.4, 112.3, 174.5, 174.5, 174.8, 174

6-Desoxymyrocin C (18): mp 177-179 °C; R_f 0.24 (1:1 EtOAc/Hex); IR (CDCl₃) 3580 (s), 3470 (br), 2950, 2920, 2850, 1760, 1690, 1605 cm⁻¹; ¹H NMR (CDCl₃, 250 MHz) δ 6.90 (d, J = 1.6 Hz, 1 H), 5.81 (dd, J = 17.5, 10.7 Hz, 1 H), 5.04 (d, J = 17.4 Hz, 1 H), 5.03 (d, J = 10.7 Hz, 1 H), 4.83 (d, J = 6.8 Hz, 1 H), 3.51 (d, J = 6.8 Hz, 1 H), 1.95-1.78 (c, 5 H), 1.64-1.44 (c, 3 H), 1.40 (m, 1 H), 1.33 (s, 3 H), 1.32 (m, 1 H), 1.06 (s, 3 H), 0.48 (dd, J = 6.8, 4.6 Hz, 1 H), 0.20 (td, J = 7.2, 1.1 Hz, 1 H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 192.2, 181.9, 147.6, 144.9, 134.2, 112.8, 77.5, 69.9, 41.1, 39.9, 39.2, 29.1, 27.1, 26.3, 26.2, 24.0, 23.9, 18.8, 13.5, 5.9; MS (EI) m/z 328 (M⁺); HRMS (EI) exact mass calcd for C₂₀H₂₄O₄ (M⁺) 328.1675, found 328.1677.

Myrocin C (1): mp > 214 °C (dec); R_f 0.36 (1:1 EtOAc/Hex); IR (KBr) 3430 (s), 3290 (br), 2950, 2920, 2840, 1740, 1695, 1620 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.96 (d, J = 1.5 Hz, 1 H), 5.82 (dd, J = 17.5, 10.6 Hz, 1 H), 5.09 (d, J = 17.4 Hz, 1 H), 5.09 (d, J = 10.7 Hz, 1 H), 4.44 (s, 1 H), 3.35 (s, 1 H), 1.92-1.83 (c, 4 H), 1.65-1.54 (c, 4 H), 1.55 (s, 3 H), 1.47 (dt, J = 14.0, 3.7 Hz, 1 H), 1.42 (td, J = 13.9, 3.6 Hz, 1 H), 1.07 (s, 3 H), 0.47 (dd, J = 6.9, 4.7 Hz, 1 H), 0.19 (dd, J = 8.1, 7.6 Hz, 1 H); ¹³C NMR (CDCl₃, 125 MHz) δ 192.8, 181.9, 149.0, 144.5, 134.2, 112.9, 99.0, 70.0, 44.8, 41.7, 39.3, 29.2, 28.8 (2), 26.5, 23.9, 23.7, 18.8, 14.0, 6.3; MS (CI, isobutane) m/z 345 (MH⁺); HRMS (CI, isobutane) exact mass calcd for C₂₀H₂₅O₅ (MH⁺) 345.1702, found 345.1717.

Myrocin C - synthetic
'UNMR (500MMz) COUZ

Myrocin C - natural
'UNMR (270MHz) COCZ
-country of Dr. Y.-H. HSU

myrocin C - synthetic

13 CNMR (125 M/g) COC/g only

Sta Myrocin

myrocin C - natural 13 C NMR (25 MLy) COUZ 1 CD3 OD - courtesy of Dr. Y.-H. Hsu.

TOTAL

EXREF

RESOL 73251 -4 HZ a. 8888PPA

> "i-complete decei CATS 1 CD30D THS

> > RT BC

'H 47.50 5140

5

8=1.

6,00

COM

Low-:

21

 ω