

实验成绩	
教师签字	
批改日期	

实验报告

题 目:交流电桥

学 院: 物理学院

学 号: 11210615

姓 名:石航瑞

组 别: X2

实验地点: 唐敖庆楼 B 区

实验时间: 2023年6月1日

一、 实验原理

交流电桥是能准确测量电感、电容、互感的常用仪器,与电感、电容有关的其他物理量如电源频率、介电常量、Q值,以及磁导率等也可以用交流电桥来测量。交流电桥的电路形式与直流电桥相同,都是采用比较法进行测量,如图 1 所示。和直流电桥不同的是,电源换成交流信号源,示零器采用高灵敏度的交流毫伏表,四个桥臂中各元件不都是电阻,它们可以是电容、电感及其组合,用 Z_1 、 Z_2 、 Z_3 、 Z_4 表示四个桥臂的复阻抗。每个臂中电流的相位与电压的相位相比,可以滞后、超前或同相。

由于交流电桥中含有电感、电容等元件,因此,电桥的平衡条件为 $\tilde{u}_B = \tilde{u}_D$,即当B、D两点任何时刻电压的大小及相位都相等时,电桥便达到平衡,有

$$\begin{split} \tilde{I}_1 \tilde{Z}_1 &= \tilde{I}_4 \tilde{Z}_4 \\ \tilde{I}_2 \tilde{Z}_2 &= \tilde{I}_3 \tilde{Z}_3 \end{split}$$

因为

$$\tilde{I}_1 = \tilde{I}_2, \quad \tilde{I}_3 = \tilde{I}_4$$

从而可得

$$\tilde{Z}_1 \tilde{Z}_3 = \tilde{Z}_2 \tilde{Z}_4 \tag{1}$$

这就是交流电桥的平衡条件。若把复阻抗写成指数式, $\tilde{Z}_i=Z_iE^{j\varphi_i}$, Z_i 为模量, φ_i 为幅角,则式(1)相当于

$$Z_1 Z_3 = Z_2 Z_4 (2)$$

$$\varphi_1 + \varphi_3 = \varphi_2 + \varphi_4 \tag{3}$$

图 1 交流电桥原理图

由此可见,交流电桥平衡时,除了阻抗大小满足比例关系式(2)外,阻抗的幅角还要满足式(3),这就是交流电桥和直流电桥的主要差别。从理论上讲,调节直流电桥的任一桥臂都可能使电桥平衡,而交流电桥则不同,它要求桥臂的阻抗大小满足式(2),还要求四个臂中电流和电压的相差满足式(3)。利用式(3),可以判断电桥能否实现平衡,如果相邻两臂是纯电阻,例如 $Z_3=R_3$, $Z_4=R_4$,则另两臂必须同是电感性阻抗或电容性阻抗。如果相对两臂接入电阻,例如 $Z_1=R_1$, $Z_3=R_3$,则其他相对两臂之一应接入电感性阻抗,而另一

臂应接入电容性阻抗。总之,用四个不同性质的阻抗任意组成交流电桥不一定 能够平衡,必须根据阻抗的特性来决定各臂的选择。

1. 测量电容及损耗因数D

实际电容并非是理想电容,电容器的介质在电路中要消耗能量,所以实际电容可以理解为由一个理想电容和一个损耗电阻 R_{C_X} 组成,实验中可认为二者串联。图2为测量电容的一种电路,称为电容电桥,图中各臂的复阻抗为

$$\tilde{Z}_1 = R_0 + \frac{1}{j\omega C_0}, \ \tilde{Z}_3 = R_3$$

$$\tilde{Z}_2 = R_{C_X} + \frac{1}{i\omega C_Y}, \ \tilde{Z}_4 = R_4$$

平衡时有

$$R_3 \left(R_0 + \frac{1}{j\omega C_0} \right) = R_4 \left(R_{C_X} + \frac{1}{j\omega C_X} \right)$$

令上式中实部和虚部分别相等,有

$$C_X = \frac{R_4}{R_3} C_0$$

$$R_{C_X} = \frac{R_3}{R_4} R_0$$
(4)

则电容器的损耗因数为

$$D = \frac{R_{C_X}}{\frac{1}{\omega C_X}} = R_0 \omega C_0 \tag{5}$$

此电桥也称为串联电容电桥,适合测量损耗较小的电容。

图 2 串联电容电桥

图 3 麦克斯韦电感电桥

2. 测量线圈的电感及品质因数Q

图 3 为测量电感的一种电路, 称为麦克斯韦电感电桥, 图中阻抗分别为

$$\tilde{Z}_1 = R_0 + j\omega L_0$$
, $\tilde{Z}_3 = R_3$
 $\tilde{Z}_2 = R_{L_Y} + j\omega L_X$, $\tilde{Z}_4 = R_4$

平衡时有

$$R_3(R_0 + j\omega L_0) = R_4(R_{L_X} + j\omega L_X)$$

由平衡条件得

$$R_{L_X} + j\omega L_X = \frac{R_3}{R_4} (R_0 + j\omega L_0)$$

化简得

$$L_X = \frac{R_3}{R_4} L_0$$

$$R_{L_X} = \frac{R_3}{R_4} R_0$$

$$Q = \frac{\omega L_X}{R_{L_X}} = \frac{\omega L_0}{R_0}$$

图3中的电感电桥属于相邻两臂为纯电阻,另相邻两臂同为电感的情况。如果相对两臂接入纯电阻,另外相对两臂必须是一个接入电感,而另一臂接入电容,测量线路如图4所示。图中被测电感接入 Z_2 位置, R_{L_X} 为线圈的直流电阻,(a)、(b)两图的差别是第四臂电容 C_0 和电阻 R_0 的连接方式,(a)为串联,(b)为并联。同样,写出各臂的复阻抗后可导出 L_x 、 R_{L_X} 及线圈品质因数Q的表达式。

图 4 电感电桥

对于图4(a) 的电路,有

$$L_X = \frac{R_1 R_3 C_0}{1 + (\omega R_0 C_0)^2} \tag{6}$$

$$R_{L_X} = \frac{\omega^2 C_0^2 R_0 R_1 R_3}{1 + (\omega R_0 C_0)^2}$$

$$Q = \frac{\omega L_x}{R_{L_x}} + \frac{1}{\omega R_0 C_0} \tag{7}$$

对于图4(b)的电路,有

$$L_X = R_1 R_3 C_0$$

$$R_{L_X} = \frac{R_1 R_3}{R_0}$$
(8)

$$Q = \frac{\omega L_X}{R_{L_X}} = \omega R_0 C_0 \tag{9}$$

两种线路都可测得 L_x 和Q,线路的选择视电感品质因数的大小而定,用(a) 线路测量时,从公式(7)可以看出,该线路不适合测量Q值太小的电感。因为Q 值越小,要求 C_0 、 R_0 值越大,实际上 C_0 不能做得很大,而 R_0 值过大,则桥路的

灵敏度会下降,导致测量结果不准确,因此(a)线路适于测Q值较大的电感(Q > 10)。而Q值较小时,用(b)线路为宜。

二、 实验步骤

- 1. 按图 2 所示连接电路
- 2. 开始时取 $R_0=0$, $R_4=R_3=1k\Omega$, 调节 C_0 使得示零器指示最小。
- 3. 反复调节 R_0 、 R_4 使示零器指示最小,记录 R_0 、 R_4 及 C_0 。
- 4. 测量平衡时的桥路灵敏度。
- 5. 改变 R_0 , R_3 , R_4 的取值,反复调节使电桥平衡,记录 R_0 , R_3 , R_4 及 C_0 。
- 6. 按图 4 所示连接电路
- 7. 开始取 R_0 , R_1 , R_3 均为500 Ω , C_0 取1 μF , 仔细调节 R_1 , 使示零器指示最小。
- 8. 反复调节 R_0 , R_1 , C_0 , 使电桥平衡。
- 9. 测量平衡时的电桥灵敏度
- 10. 用数字多用表测 C_x , D, L_x , Q

三、 实验数据

表 1 测定待测电容

R_0/Ω	R_3/Ω	R_4/Ω	$C_0/\mu F$	V/mV	$\Delta C_0/nF$	$\Delta V/mV$
1.4	1000.0	1000.4	0.972	0.995	1	1.083

表 2 测定待测电感

R_0/Ω	R_1/Ω	R_3/Ω	$C_0/\mu F$	V/mV	$\Delta C_0/nF$	$\Delta V/mV$
637.2	109.4	500.1	1.00	3.425	2	1.371

表 3 数字多用表测量值

C_x/nF	D	L_X/mH	Q
964.418	8.94×10^{-3}	58.6425	3.9691

四、 计算与分析

对于未知电容,在电桥平衡时,由于:

$$C_X = \frac{R_4}{R_3} C_0$$

可得:

$$C_X = 0.9724 \mu F$$

损耗因数D:

$$D = R_0 \omega C_0 = 8.76 \times 10^{-3}$$

电桥灵敏度S为:

$$S = \frac{\Delta V}{\frac{\Delta C}{C_0}} = 1052.676$$

电桥总相对不确定度为:

$$\frac{\sigma_{C_X}}{C_X} = \sqrt{\left(\frac{\delta R_3}{R_3}\right)^2 + \left(\frac{\delta R_4}{R_4}\right)^2 + \left(\frac{\delta C_0}{C_0}\right)^2 + \left(\frac{1mV}{S}\right)^2} = 0.5282\%$$

所以

$$C_X = 972.4 \pm 5.1 nF$$

对于未知电感,在电桥平衡时,有:

$$L_X = \frac{R_3}{R_4} L_0$$

可得:

$$L_X = 54.711mH$$

品质因数0为:

$$Q = \omega R_0 C_0 = 4.004$$

电桥灵敏度S为:

$$S = \frac{\Delta V}{\frac{\Delta C}{C_0}} = 685.5$$

电桥总相对不确定度为:

$$\frac{\sigma_{L_X}}{L_X} = \sqrt{\left(\frac{\delta R_1}{R_1}\right)^2 + \left(\frac{\delta R_3}{R_3}\right)^2 + \left(\frac{\delta C_0}{C_0}\right)^2 + \left(\frac{1mV}{S}\right)^2} = 0.5397\%$$

所以:

$$L_{\rm x} = 54.711 + 0.295mH$$

五、 思考题

1. 交流电桥的平衡条件是什么?能否达到绝对平衡?

电桥的平衡条件为 $\tilde{u}_B = \tilde{u}_D$,即毫伏表两端电压大小和相位相同。在理论上可以达到绝对平衡,但实验中很难调节。

2. 如果在试验中测电容损耗时, $R_0 = 0$ 最接近平衡,能否说明D = 0? 为什么?

不能, 电阻箱在0挡位时也有一定的内阻。

3. 谢林电桥和欧文电桥是常用的交流电桥,试推导两电桥的平衡条件。

对于谢林电桥,毫伏表两端复阻抗相等,即:

$$\frac{1}{j\omega R_3 C_X} + \frac{R_x}{R_3} = \frac{1}{j\omega R_4 C_3} + \frac{C_0}{C_3}$$

所以有:

$$R_X = \frac{C_3}{C_0}$$
 $C_x = \frac{R_4}{R_3}C_3$

4. 用矢量图解释为何在如图 2 所示的电容电桥中,选 R_3 和 R_4 作调节臂电桥不可能达到平衡?

因为调节 R_3 和 R_4 会使得 A_0 的实部和虚部同时改变导致电桥不平衡。