The transformation of a OCT is given as

 $\exp(: F_{in} :) \exp(: aL :) \exp(: H_3/2 :) \exp(: bL :)$ $\times \exp(: V_3:) \exp(: aL:) \exp(: H_3/2:) \exp(: bL:) \exp(: F_{out}:)$

where L and H_3 are the Hamiltonians of a drift of length L and a thin octupole kick with integrated strength K3:

$$H_3 = \frac{K3}{4!} \Re(x - iy)^4,$$

respectively. The coefficients are $a = 1/2 - 1/\sqrt{12}$ and b = 1/2 - a. Terms exp(: F_{in} :) and exp(: F_{out} :) are transformation

where , i represents the derivative by x or y. We have also introduced two coefficients $\beta = 1/6 - 1/\sqrt{48}$ and $\gamma = 1/40 - 1$

 $V_3 = \sum_{j=(x,y),k=(x,y)} -\frac{\beta}{2} H_{3,k}^2 + \gamma H_{3,j} H_{3,k} H_{3,j,k},$