Lehrstuhl für Numerische Mathematik

Prof. Dr. A. Reusken

Model-based estimation methods, summer semester 2016

Sheet 8 (June 8th, Wednesday 18:15 - 19:45)

Problem 13: Discrepancy principle, L-curve

We reconsider the least squares problem from Sheet 6, Problem 11.

$$g(t) = \xi_1 t + \xi_2 e^t + \xi_3 t^3 + \xi_4 \sin t, \qquad \xi^* = (\xi_1, \xi_2, \xi_3, \xi_4)^T := (1.2, 0.6, 1.6, 0.9)^T.$$

Using discrete points $t_i = i\Delta t$, i = 1, ..., 6 for $\Delta t = 0.15$, we get an (exact) data vector $y \in \mathbb{R}^6$ with $y_i = g(t_i)$. We choose the perturbation $\delta y = 10^{-2} (-1, 1, 1, -0.5, -2, 1)^T$, yielding perturbed data $\tilde{y} = y + \delta y$ and consider the corresponding least-squares problem

$$||A\tilde{\xi} - \tilde{y}||_2 \to \min.$$

For the solution of this ill-posed problem we consider Tikhonov regularization, choosing the range of the regularization parameter $\alpha \in [10^{-4}, 10^{1}]$.

- a.) Plot the discrepancy $||A\tilde{\xi}_{\alpha} \tilde{y}||_2$ as a function of α . What is a good choice of α according to the discrepancy principle? For your chosen α , plot the parameters $\xi^*, \tilde{\xi}_{\alpha}$ and the data $y, \tilde{y}, \bar{y} = A\tilde{\xi}_{\alpha}$ in respective figures. Discuss your results.
- b.) If the magnitude of the data error is not known, the discrepancy principle cannot be applied. Then heuristic approaches like the L-curve may be the method of choice which do not require any a-priori knowledge on the data error.

To this end, we plot the values $(\|A\tilde{\xi}_{\alpha} - \tilde{y}\|_2, \|\tilde{\xi}_{\alpha}\|_2)$ in a loglog plot. Plotting also the values of α using text $(x, y, \text{num2str}(\alpha))$ to find a reasonable choice of α .

Bonus Problem 5: Iterative method

(Submit your program till 18:15 on 15th June in the L2P learning room.)

We reconsider the backward heat conduction problem from Sheet 6, Problem 10, with n = 100 unknowns Using the usual notation, we have to solve the linear problem

$$A\tilde{\xi} = \tilde{y}$$
 with $A = \exp(-TC)$, $\tilde{\xi} = \vec{u}_0^{\text{est}}$, $\tilde{y} = \vec{u}_T^{\text{meas}}$

where the measured final temperature \vec{u}_T^{meas} is generated by u(T) adding a perturbation 1e-2*randn(n,1) with normal distribution and variance $\sigma=10^{-2}$. Note that the measurement error has variance $\sigma=10^{-2}$, leading to $\|\tilde{y}-y\|_2 \approx \sigma \sqrt{n}=10^{-1}$. To solve the problem iteratively and for the purpose of regularization, we apply 250 iterations of the Landweber method

$$\tilde{\xi}_{k+1} = \tilde{\xi}_k - \beta A^T (A\tilde{\xi}_k - \tilde{y}), \qquad k = 0, 1, 2, \dots$$

with $\tilde{\xi}_0 = 0$ and $\beta = 1$. By choosing a suitable stopping index k^* (which plays the role of a regularization parameter) we will obtain a regularized solution $\tilde{\xi}_{k^*}$.

- a.) Use the discrepancy principle to obtain a good stopping index k^* . Plot the exact and estimated initial temperature $\xi^*, \tilde{\xi}_{k^*}$ as well as the final temperature data $y, \tilde{y}, \bar{y} = A\tilde{\xi}_{k^*}$ in respective figures. Discuss your results.
- b.) Now we want to choose a stopping index k^* by means of the L-curve. To this end, plot the values $(\|A\tilde{\xi}_k \tilde{y}\|_2, \|\tilde{\xi}_k\|_2)$ for $k = 1, \ldots, 250$ in a loglog plot. What do you observe?
- c.) Plot another L-curve, replacing $\|\tilde{\xi}_k\|_2$ by $\|C\tilde{\xi}_k\|_2$. Note that the C-norm will penalize oscillations in the estimate $\tilde{\xi}$ (remember: C is a discrete Laplacian operator). For the obtained index k^* , plot initial and final temperatures in respective plots as in a.), and discuss the results.