## 12.6.6 We can write table as

| Source     | Df | Sum of squares | Mean squares | F-statistic | p-value |
|------------|----|----------------|--------------|-------------|---------|
| Regression | 1  | 87.5889        | 87.5889      | 1.2454      | 0.2905  |
| Error      | 10 | 703.3278       | 70.3328      |             |         |
| Total      | 11 | 790.9167       |              |             |         |

The coefficient of determination is

$$R^2 = \frac{SSR}{SST} = 0.1107$$

The t-statistic for testing  $H_0: \beta_1 = 0$  is

$$t = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{S_{xx}}} = 1.1160 \Rightarrow t^2 = 1.2454 = F$$

The large p-value implies that there is no sufficient evidence to conclude that unloading time depends upon the temperature.



(a) Standardized residual



(b) Normal probability plot

12.7.2 There are no points that might be considered to be outliers since absolute value of standardized residual is smaller than 3.

The residual plot has no patterns that suggest that the fitted regression model is not appropriate.

The normal probability plot is approximately on a straight line, then the error terms are normally distributed.

#### 12.7.6 The plot shows that the residuals against the temperature increase

• You get 10 points for plot whether you arrive at any conclusion.

## **12.8.2** Plot of the data:



Use model  $1/y = \gamma_1 + \gamma_0 \times 1/x$ . (+2 points) By replacing 1/x by  $x^{'}$  and 1/y by  $y^{'}$ , we get  $\gamma_1 = \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = 1.067$  and  $\gamma_0 = \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 0.974$ . We have straight line  $y^{'} = 0.974 + 1.067x^{'}$ . (+5 points)



The fitted model back in terms of the original variables is  $y = \frac{x}{1.067 + 0.974x}$ . For x = 2, predicted value is  $y = \frac{2}{1.067 + 0.974 \times 2} = 0.663.(+3 \text{ points})$ 



# 12.8.4 (a) A plot of given data is given by



Thus, the model  $P = \gamma_0 A^{\gamma_1}$  looks appropriate.

Apply the residual analysis. After calculate all the values of (b), residual plot is given by



And using  $\hat{\sigma}^2 = 0.0442$ , the residual probability plot is given by



It looks like a single line so the model  $P=\gamma_0A^{\gamma_1}$  might be appropriate.

- (b) We have  $\log P = \gamma_1 \log A + \log \gamma_0$ . By using simple linear regression model  $\log A$  as input and  $\log P$  as output. Lwr  $x_i = \log A_i$  and  $y_i = \log P_i$  where  $(A_i, P_i)$  is i-th data. Then with some computation, we can conclude that  $\sum_{i=1}^{10} x_i = -3.390 \sum_{i=1}^{10} y_i = 28.039, \sum_{i=1}^{10} x_i^2 = 1.689, \sum_{i=1}^{10} y_i^2 = 92.428$ , and  $\sum_{i=1}^{10} x_i y_i = -6.811$ . By using it, we can conclude that  $\hat{\gamma}_1 = 4.993$ ,  $\log \hat{\gamma}_0 = 4.497$ . Therefore, we can conclude that  $\hat{\gamma}_0 = 89.722, \hat{\gamma}_1 = 4.993$ .
  - (c) Using values in (b), we can compute  $\hat{\sigma}^2 = 0.0442$ ,  $S_{xx} = 0.540$ , and s.e. $(\hat{\gamma}_1) = 0.286$ . Therefore, 95% confidence interval of  $\gamma_1$  is  $(\hat{\beta}_1 t_{\alpha/2, n-2} \times \text{s.e.}(\hat{\beta}_1), \hat{\beta}_1 + t_{\alpha/2, n-2} \times \text{s.e.}(\hat{\beta}_1)) = (4.3335, 5.6527)$ . Similarly, 95% confidence interval of  $\log \gamma_0$  is  $(\log \hat{\gamma}_0 t_{\alpha/2, n-2} \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\bar{x}}{S_{xx}}}, \log \hat{\gamma}_0 + t_{\alpha/2, n-2} \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\bar{x}}{S_{xx}}}) = (4.2256, 4.7678)$ . By taking exponential, we can conclude that 95% confidence interval of  $\gamma_0$  is (68.4185, 117.6589).
- **12.8.6** Taking ln to both side of  $e^{y/\gamma_0} = \gamma_1/x^2$ , we have

$$y = \gamma_0 \ln(\gamma_1) - 2\gamma_0 \ln(x).$$

Therefore, the simple linear regression model with ln(x) as the input variable is given by

$$y = \hat{\beta}_0 + \hat{\beta}_1 \ln(x) = \hat{\gamma}_0 \ln(\hat{\gamma}_1) - 2\hat{\gamma}_0 \ln(x).$$

That is, we have  $\hat{\beta}_0 = \hat{\gamma}_0 \ln(\hat{\gamma}_1)$  and  $\hat{\beta}_1 = -2\hat{\gamma}_0$ . Thus, we have

$$\hat{\gamma}_0 = -rac{\hat{eta}_1}{2}$$
 and  $\hat{\gamma}_1 = e^{-rac{2\hat{eta}_0}{\hat{eta}_1}}$ .

12.9.4 The data set of the times taken to unload a truck at a warehouse given in DS 12.2.2., the simple linear regression model is applied here.

|    |       |       | -       |          | _       |
|----|-------|-------|---------|----------|---------|
| i  | $y_i$ | $x_i$ | $y_i^2$ | $x_iy_i$ | $x_i^2$ |
| 1  | 64    | 52    | 4096    | 3328     | 2704    |
| 2  | 53    | 68    | 2809    | 3604     | 4624    |
| 3  | 58    | 64    | 3364    | 3712     | 4096    |
| 4  | 59    | 88    | 3481    | 5192     | 7744    |
| 5  | 49    | 80    | 2401    | 3920     | 6400    |
| 6  | 54    | 75    | 2916    | 4050     | 5625    |
| 7  | 38    | 59    | 1444    | 2242     | 3481    |
| 8  | 48    | 63    | 2304    | 3024     | 3969    |
| 9  | 68    | 85    | 4624    | 5780     | 7225    |
| 10 | 63    | 74    | 3969    | 4662     | 5476    |
| 11 | 58    | 71    | 3364    | 4118     | 5041    |
| 12 | 47    | 66    | 2209    | 3102     | 4356    |
| Σ  | 659   | 845   | 36981   | 46734    | 60741   |

There are "n" = 12 points in this data set. Hand calculations would be started by finding the following five sums:

$$S_y = \sum y_i = 659, \qquad S_x = \sum x_i = 845,$$
 
$$S_{yy} + \frac{S_y^2}{n} = \sum y_i^2 = 36981, \quad S_{xx} + \frac{S_x^2}{n} = \sum x_i^2 = 60741$$
 
$$S_{xy} + \frac{S_x S_y}{n} = \sum x_i y_i = 46734$$

These quantities would be used to calculate the estimates of the regression coefficients, and their standard errors.

$$\widehat{\beta_{1}} = \frac{nS_{xy}}{nS_{xx}} = \frac{12 \cdot 46734 - 659 \cdot 845}{12 \cdot 60741 - 845^{2}} \approx 0.266$$

$$\widehat{\beta_{0}} = \frac{1}{n}S_{y} - \widehat{\beta_{1}}\frac{1}{n}S_{x} \approx 36.194$$

$$\widehat{\sigma}^{2} = \frac{1}{n(n-2)} \left[ nS_{yy} - \widehat{\beta_{1}}^{2} nS_{xx} \right] \approx 70.333$$

$$\text{s.e}(\widehat{\beta_{1}}) = \sqrt{\frac{n\widehat{\sigma}^{2}}{nS_{xx}}} \approx 0.238$$

12.9.4 The normality assumption allows us to construct a t-value

$$t = \frac{\widehat{\beta_1}}{\mathrm{s.e}(\widehat{\beta_1})} \; \approx 1.116 \sim \; t_{n-2}.$$

The product-moment correlation coefficient might also be calculated:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \approx 0.333$$

And the  $t = r\sqrt{n-2}/(\sqrt{1-r^2})$  is approximately 1.116. So, we guess that the two t-statistics calculating using different methods have the same values. (+10 points) One can prove it. First, observe that

$$r^2 = \frac{S_{xy}^2}{S_{xx}S_{yy}} = \widehat{\beta_1}^2 \frac{S_{xx}}{S_{yy}}.$$

Therefore,

$$(n-2)\widehat{\sigma}^2 = S_{yy} - \widehat{\beta}_1^2 S_{xx} = S_{yy} - S_{yy}r^2 = S_{yy}(1-r^2).$$

So, we have:

$$r\sqrt{n-2}/(\sqrt{1-r^2}) = \frac{\sqrt{n-2}}{\sqrt{1-r^2}\sqrt{S_{yy}}} \frac{S_{xy}}{\sqrt{S_{xx}}} = \frac{\sqrt{n-2}}{\sqrt{(n-2)\widehat{\sigma}^2}} \frac{S_{xy}}{\sqrt{S_{xx}}} = \frac{S_{xy}}{\widehat{\sigma}\sqrt{S_{xx}}}$$

And the above is equals to  $\frac{\widehat{\beta_1}}{\text{s.e.}(\widehat{\beta_1})}$ , because

$$\frac{\widehat{\beta_1}}{\text{s.e.}(\widehat{\beta_1})} = \frac{S_{xy}}{S_{xx}} / \sqrt{\frac{\widehat{\sigma}^2}{S_{xx}}} = \frac{S_{xy}}{\widehat{\sigma}\sqrt{S_{xx}}}.$$

#### 12.12.19 Figure suggest use of exponential model:

$$y = \gamma_0 e^{\gamma_1 x}$$
.

Therefore we transform by taking ln both side to obtain

$$\ln y = \ln \gamma_0 + \gamma_1 \ln x.$$

Define  $\ln y_i = z_i$  and  $\ln x_i = w_i$ . Then we have :

| i      | Diameter | Strength | $w_i$   | $z_i$   | $w_i^2$ | $w_i z_i$ | $z_i^2$ |
|--------|----------|----------|---------|---------|---------|-----------|---------|
| 1      | 2.5      | 81       | 0.91629 | 4.39445 | 0.83959 | 4.02659   | 19.3112 |
| 2      | 3        | 167      | 1.09861 | 5.11799 | 1.20695 | 5.62269   | 26.1939 |
| 3      | 4        | 244      | 1.38629 | 5.49717 | 1.92181 | 7.62069   | 30.2189 |
| 4      | 5        | 484      | 1.60944 | 6.18209 | 2.59029 | 9.94968   | 38.2182 |
| 5      | 6        | 623      | 1.79176 | 6.43455 | 3.21040 | 11.5292   | 41.4034 |
| 6      | 8        | 1140     | 2.07944 | 7.03878 | 4.32408 | 14.6367   | 49.5445 |
| 7      | 9        | 1455     | 2.19723 | 7.28276 | 4.82780 | 16.0019   | 53.0386 |
| 8      | 11       | 2457     | 2.39790 | 7.80670 | 5.74990 | 18.7196   | 60.9445 |
| 9      | 13       | 3140     | 2.56495 | 8.05198 | 6.57897 | 20.6529   | 64.8344 |
| 10     | 16       | 6170     | 2.77259 | 8.72745 | 7.68725 | 24.1976   | 76.1685 |
| $\sum$ | 77.5     | 15961    | 18.8145 | 66.5339 | 38.9370 | 132.958   | 459.876 |

There are "n" = 10 points in this data set. Hand calculations would be started by finding the following five sums:

$$S_w = \sum w_i = 18.814, \qquad S_z = \sum z_i = 66.554,$$
 
$$S_{ww} + \frac{S_w^2}{n} = \sum w_i^2 = 38.947, \quad S_{zz} + \frac{S_z^2}{n} = \sum z_i^2 = 459.876$$
 
$$S_{wz} + \frac{S_w S_z}{n} = \sum w_i z_i = 132.958$$

These quantities would be used to calculate the estimates of the regression coefficients (you can see the formulas in the solution of 12.9.4)

$$\hat{\gamma}_1 = 2.1979$$
 and  $\hat{\ln \gamma_0} = 2.5181$ .

And the  $R^2$  is  $\widehat{\gamma_1}^2\frac{S_{ww}}{S_{zz}}=0.994.$  The form is

$$y = 12.405e^{21979x}$$
 :  $12.405 = e^{\widehat{\ln \gamma_0}}$  (+10 points)