关于指数函数和对数函数

指数函数(以及幂函数)本质上是正实数的任意次幂的问题, 即对给定的正数 a, 如何对任意的 x 给出 a^x 确切定义. 而对数实际上是 $a^x = y$ 的逆问题, 即已知 y 是否可以从方程 $a^x = y$ 求出唯一的解 x 的问题, 这里 a > 0, $a \ne 1$.

我们将看到, 由于实数域 ℝ 具有完备性(即满足确界原理), 上述问题在实数域 ℝ 中可以得到解决.

1° 正实数的指数幂

设 a > 0, 下面将分别对指数 x 是整数、有理数和实数情形, 依次讨论数 a^x 的确切定义.

(1) 当 x = n 为整数时, 定义 a 的整数次幂如下

$$a^{n} = \begin{cases} \overbrace{a \cdot a \cdot \cdot \cdot a}^{n}, & n > 0; \\ 1, & n = 0; \\ \left(\frac{1}{a}\right)^{-n}, & n < 0. \end{cases}$$

可以验证, 对整数 n, m, 无论正负, 有

$$a^n a^m = a^{n+m}, \ a^n b^n = (ab)^n, \ a > 0, \ b > 0.$$

(2) 当 $x = \frac{1}{n}$ (n 为正整数) 时, 即要定义正实数 a 的 n 次方根的存在性.

定理 1 对任意实数 a > 0 以及任意整数 n > 0, 存在唯一实数 y > 0 满足 $y^n = a$. 称 $y \to a$ 的 $y \to a$ $y \to a$

证明 若存在这样的 y, 显然是唯一的, 因为只要 $0 < y_1 < y_2$, 就有 $y_1^n < y_2^n$, 所以不可能同时等于 a. 下面证明存在性, 设

$$E = \{t \mid t \in \mathbb{R}, \ t > 0, \ t^n < a\},\$$

首先, E 是非空集合: 取 $t_0 = \frac{a}{1+a}$, 则 $0 < t_0 < 1$, $t_0^n < t_0 < a$, 因此 $t_0 \in E$.

其次, E 有上界: 因为 1+a 满足 $(1+a)^n > a$, 所以对任意 $t \in E$, $t^n < a < (1+a)^n$, 推得 t < 1+a, 所以 1+a 是 E 的一个上界.

根据确界原理, E 在 \mathbb{R} 中存在上确界 $y = \sup E \in \mathbb{R}$.

要证明 $y^n = a$, 只要证明无论是 $y^n < a$ 或是 $y^n > a$ 都会导致矛盾.

假设 $y^n < a$, 取

$$0 < h < 1, \ \coprod \ h < \frac{a - y^n}{n(y+1)^{n-1}},$$

则

$$(y+h)^n - y^n = h \left((y+h)^{n-1} + (y+h)^{n-2}y + \dots + y^{n-1} \right)$$

$$< hn(y+h)^{n-1} < hn(y+1)^{n-1} < a - y^n,$$

推得 $(y+h)^n < a$, 所以 $y+h \in E$. 但 y+h > y, 这与 $y \in E$ 的上确界矛盾.

假设 $y^n > a$, 取

$$k = \frac{y^n - a}{ny^{n-1}},$$

则 0 < k < y. 对任意的 $t \ge y - k$, 有

$$y^{n} - t^{n} \le y^{n} - (y - k)^{n} = k \left(y^{n-1} + y^{n-2} (y - k) + \dots + (y - k)^{n-1} \right)$$
$$< kny^{n-1} = y^{n} - a,$$

所以 $t^n > a$, 即 $t \notin E$, 这就意味着 y - k 是 E 的一个上界. 但 y - k < y, 因此与 y 是 E 的最小上界矛盾.

有了上述定理, 不难推出下列结果:

推论 设实数 a > 0, b > 0 或 $a_1 > 0$, \cdots , $a_m > 0$, 以及整数 n > 0, 有

$$(ab)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}, \quad (a_1 \cdots a_m)^{\frac{1}{n}} = a_1^{\frac{1}{n}} \cdots a_m^{\frac{1}{n}}.$$

只要令 $\alpha = a^{1/n}, \ \beta = b^{1/n}, \ 就有$

$$ab = \alpha^n \beta^n = (\alpha \beta)^n,$$

根据定理1中的唯一性可得 $(ab)^{1/n} = \alpha \beta = a^{1/n}b^{1/n}$. 第二个等式可用归纳法证明.

(3) 当 $x=\frac{m}{n}$, (m,n)=1, n>0 为有理数时, 首先在推论中, 取 $a_1=\cdots=a_m=a$, 就有

$$\left(a^{m}\right)^{\frac{1}{n}} = \left(a^{\frac{1}{n}}\right)^{m},$$

因此, 正实数 a 的有理数的指数幂如下:

$$a^{x} = (a^{m})^{\frac{1}{n}} = \left(a^{\frac{1}{n}}\right)^{m},$$

并可证明对任意两个有理数 x, y, q

$$a^{x}a^{y} = a^{x+y}, (a^{x})^{y} = a^{xy}, a^{x}b^{x} = (ab)^{x}, a > 0, b > 0.$$

(4) 当 x 是任意实数时, 若 a > 1, 考虑集合

$$E(x) = \{ a^r \mid r \in \mathbb{Q}, \ r < x \},\$$

那么只要 $r_0 > x$ 是有理数, a^{r_0} 就是 E(x) 的上界, 因此有上确界. 定义

$$a^x = \sup E(x)$$
.

若 a = 1, 则定义 $a^x = 1$.

若 0 < a < 1, 则定义

$$a^x = \left(\frac{1}{a}\right)^{-x}.$$

定理 2 设 a 是正实数, x,y 为任意实数, 则

$$a^{x+y} = a^x a^y.$$

证明 不妨设 a > 1. 对任意满足 $r_1 < x$, $r_2 < y$ 的有理数 r_1, r_2 , 有 $a^{r_1} \in E(x)$, $a^{r_2} \in E(y)$. 因为有理数 $r = r_1 + r_2 < x + y$, 所以

$$a^{r_1}a^{r_2} = a^r \le \sup E(x+y) = a^{x+y},$$

由 $r_1 < x, r_2 < y$ 的任意性, 推出

$$\sup E(x)\sup E(y) \le \sup E(x+y), \ \ \mathbb{H} \ \ a^xa^y \le a^{x+y}.$$

反之, 对任意的有理数 r < x + y, 根据有理数的稠密性, 取有理数 r_1 满足

$$x > r_1 > x - \frac{x + y - r}{2},$$

令 $r_2 = r - r_1$, 则有理数 r_2 满足

$$r_2 = r - r_1 < r - \left(x - \frac{x + y - r}{2}\right) = \frac{r - x + y}{2} < y.$$

因此

$$a^{r} = a^{r_1} a^{r_2} \le \sup E(x) \sup E(y) = a^{x} a^{y},$$

根据 r < x + y 的任意性得 $a^x a^y$ 是 E(x + y) 的一个上界, 因此

$$x^{x+y} = \sup E(x+y) \le a^x a^y.$$

因此, 定理中等式成立.

2° 正实数的对数

在定义了实数 a > 0 的任意次幂 $a^x = y \ (x \in \mathbb{R})$ 后, 现在考虑逆问题.

定理 3 设 a > 0, $a \ne 1$, 对任意的 y > 0, 方程 $a^x = y$ 有唯一实数解 x, 记为 $x = \log_a y$. 称 $x \ne y$ 以 a 为底的对数, 特别, 以自然常数 e 为底的对数记为 $\ln y$.

证明 方程 $a^x = y$ 若有解, 那么唯一性显然, 这是因为若 $a^{x_1} = a^{x_2} = y$, 根据实数的指数幂的性质, 有 $a^{x_1-x_2} = 1$, 因此 $x_1 = x_2$.

为了证明解的存在性, 分两种情况讨论.

(1) 当 a > 1 时, 因为对任意 $b \in \mathbb{R}$, a^b 是一个实数, 因此令

$$A(y) = \{ b \mid b \in \mathbb{R}, \ a^b < y \} \subset \mathbb{R}.$$

第一步要证明 A(y) 非空.

若 y > 1, 只要取正整数 $n > \frac{a-1}{y-1}$, 则由不等式

$$a-1 \ge n(a^{\frac{1}{n}}-1)$$

推得 $a^{1/n} < y$, 即 $\frac{1}{n} \in A(y)$.

若 $0 < y \le 1$, 令 $a = 1 + \alpha$, $\alpha > 0$, 只要取正整数 $n > \frac{1 - y}{y\alpha}$, 就有

$$a^{n} = (1+\alpha)^{n} > 1 + n\alpha > \frac{1}{y},$$

所以 $a^{-n} < y$, 也就是 $-n \in A(y)$. 无论 y > 1 或 $0 < y \le 1$, A(y) 非空.

第二步要证明 A(y) 有上界.

因 $a=1+\alpha, \ \alpha>0$, 取正整数 $n>\frac{y-1}{\alpha}$, 则 $a^n>1+n\alpha>y$. 所以对任意的 $b\in A(y)$, 有

$$a^b < y < a^n$$

推出 b < n, 即 n 为 A(y) 的上界. 因此有上确界, 记为

$$x = \sup A(y).$$

第三步要证明 x 满足方程 $a^x = y$.

为此只要排除 $a^x < y$ 和 $a^x > y$ 即可.

若 $a^x < y$, 令 $y' = ya^{-x} > 1$, 根据第一步证明结果, 存在正整数 n, 使得 $\frac{1}{n} \in A(y')$, 也就是 $a^{1/n} < y' = ya^{-x}$, 推得 $a^{x+1/n} < y$, 即 $x < x + \frac{1}{n} \in A(y)$, 这与 $x = \sup A(y)$ 相矛盾.

同理可排除 $a^x > y$.

这样当 a>1 时, 就证明了方程 $a^x=y$ 有唯一的实数解 x, 也就是对实数 y>0, 定义了 y 的对数 $x=\sup A(y)=\log_a y$.

(2) 当 0 < a < 1 时, $\frac{1}{a} > 1$, 对实数 $\frac{1}{y}$, y > 0, 根据 (1) 的证明, 方程

$$\left(\frac{1}{a}\right)^x = \frac{1}{y}$$

有唯一解, 也就是 $a^x = y$ 有唯一解.

定理 4 设 a > 0, 对 $y_1 > 0$, $y_2 > 0$, 有

$$\log_a(y_1y_2) = \log_a y_1 + \log_a y_2.$$

$$a^{x_1 + x_2} = y_1 y_2.$$

根据定理 3 中解的存在唯一性, 对 $y_1y_2 > 0$, 存在唯一的 x 使得 $a^x = y_1y_2$, 即可得到 定理的结果.

注记 16、17世纪, Napier (纳皮尔, 1550 - 1617) 在研究天文学过程中为了简化计算而发明了对数. 对数的发明为天文、航海以及工程等方面处理复杂计算发挥了巨大作用,被称为数学史上重大发现. Galileo (伽利略, 1564 - 1642) 曾为此感叹道: "给我空间、时间及对数, 我就可以创造一个宇宙." 可见当时影响之大.

Napier 在发明对数时,并没有意识到指数和对数互逆关系,原因是当时还没有指数明确概念. 因此对数的发明早于指数. 直到 18 世纪, Euler 才发现了指数和对数互逆关系,并首先使用指数 $a^x=y$ 来定义对数 $x=\log_a y$. 同时指出: "对数源于指数".可以说 Napier 从实际问题中发明了对数, Euler 在数学中发现了对数的源头.