Problem Sheet 5 for the Tutorial, October 27. $_{\rm (Partial\ Derivatives.)}$

Problem 1. Find partial derivatives f_x, f_y , and f_z of the functions:

- a) $f(x, y, z) = x \sqrt{y^2 + z^2}$.
- b) $f(x, y, z) = yz \ln(xy)$

Problem 2. Given a triangle ABC as shown in Figure below

- a) Express **A** implicitly as a function of **a**, **b**, and **c** and calculate $\partial A/\partial a$ and $\partial A/\partial b$.
- b) Express **a** implicitly as a function of **A**, **b**, and **B** and calculate $\partial a/\partial A$ and $\partial a/\partial B$.

Problem 3. Assuming that the following equations define y as a differentiable function of x, use Theorem 8 to find the value of dy/dx at the given point.

- a) $xe^y + \sin xy + y \ln 2 = 0$, $(0, \ln 2)$,
- b) $(x^3 y^4)^6 + \ln(x^2 + y) = 1$, (-1, 0).

${\bf Solution:}$

Problem 4. Let T=f(x,y) be the temperature at the point (x,y) on the circle $x=\cos t,\ y=\sin t,\ 0\leq t\leq 2\pi$ and suppose that

$$\frac{\partial T}{\partial x} = 8x - 4y, \quad \frac{\partial T}{\partial y} = 8y - 4x.$$

- a) Find where the maximum and minimum temperatures on the circle occur by examining the derivatives dT/dt and d^2T/dt^2 .
 - b) Suppose that $T = 4x^2 4xy + 4y^2$. Find the maximum and minimum values of T on the circle.

Problem 5. Find the directions in which the function

 $f(x,y,z)=\ln xy+\ln yz+\ln xz,$ increase and decrease most rapidly at $P_0(1,1,1)$. Then find the derivatives of the function in these directions.