MO601 – Project 3 LISC

Learning Instruction Semantics from Code Generators

093311 – Alberto Arruda de Oliveira

Overview

- Binary analysis and instrumentation
 - Program monitoring (Valgrind, Pin)
 - Virtualization
 - Malware Analysis
 - o Etc.
- Modeling of instruction Semantics
 - Translation of assembly to intermediate language representation
- Requires previously existing models, created manually
 - Limited Support of new architectures

LISC Objective

- Automated modeling of instruction semantics
- Compilers: Intermediate Language -> Assembly Code
 - o GCC, LLVM, etc.
- LISC:
 - Learn from code generators
 - Automatically extract semantics
 - Test extracted semantics

LISC Benefits

- Automated instruction semantics modeling
 - Machine Learning Approach
 - Reduce manual efforts
 - Broaden Architecture Support
- Architecture Neutrality
 - Code Generators
- Well tested compiler code

Project 3 Objective

- Test LISC in a already used architecture of choice
 - o x86, ARM, AVR

- Reproduce Table 4 of reference [1]
 - Completeness result

LISC Evaluation Completeness

- Are all the instructions lifted correctly?
- 99.5% of Ubuntu/x86 and 99.8% of Debian/ARM binaries
 - Missed Instructions are mostly NOPS
- Evaluation:
 - Testing programs P_{test} and training programs $P_{train} \subset P_{test}$
 - \circ Build a transducer using P_{train}
 - \circ Translate the assembly of P_{test}

LISC Evaluation Completeness

- How was P_{test} chosen?
 - All x86 binaries, including kernel modules, found on Ubuntu-14.04 desktop;
 - Around 38M unique instructions;
- How was P_{train} chosen?
 - Started as openssl-1.0.1f + binutils-2.22 binaries;
 - Each round added a new binary, in order: ffmpeg-2.3.3 (With no optmizations), glibc-2.21, ffmpeg-2-3-3(With optmizations), gstreamer-1.4.5, qt-5.4.1, linux-kernel-3.19, Manual instructions.

LISC Evaluation Completeness Metrics

- Comparison between:
 - **Exact Recall:** an instruction from P_{test} is lifted only if it also belongs to P_{train} ;
 - LISC % of instructions lifted
- From the LISC %:
 - Number of Mnemonics missing, from the total of 1187 found in x86:
 - Percentage;
 - Absolute Number;
 - Percentage of operands missing

LISC Evaluation Completeness

	% Instructions Lifted		LISC (%)		
P_train	Exact Recall	LISC	Missing Mnemonics	Missing Operands	Missing Mnemonics (Absolute)
openssl-1.0.1f + binutils-2.22	63.72	98.46	1.05	0.49	464
+ffmpeg-2.3.3 (Non Opt)	68.21	98.74	1.03	0.23	377
+glibc-2.21	68.74	98.8	1.01	0.19	346
+ffmpeg-2.3.3 (Opt)	69.07	98.89	0.88	0.23	303
+gstreamer-1.4.5	71.07	99.1	0.79	0.11	221
+qt-5.4.1	72.45	99.21	0.69	0.09	161
+linuxkern-3.19	73.97	99.49	0.44	0.07	49
+Manual	74.04	100	0	0	0

LISC Flow of execution

LISC Evaluation Issues

- It is very difficult to reproduce an experiment without the original files (.imap or .auto, and test .bin)
- The set of .imap files provided by the authors was incomplete,
 and most files were outdated and did not work
- Generating the code generator dumps for some specifical programs was very difficult
- The generation of the P_{test} set was not clear

LISC Evaluation Experiment

- Solution: perform a new experiment based on the completeness experiment described
- P_{test} used: all executable files found in Ubunt-14.04 server paths
 - Around 1349 executables, but not all of them could be disassembled
 - Total number of instructions: 51.857.724
 - Number of Unique instructions: 4.183.060

LISC Evaluation Experiment

- P_{train} : started with openssl-1.0.0.f + binutils-2.24
 - Add ffmpeg-3.2 with no optimizations
 - Add *glibc-2.19*
 - Add ffmpeg-3.2 with optimizations
 - Add gstreamer-1.2.4
 - Add Manually defined instructions
- Total Recall was not computed
 - Script in the package lacked a dependency

LISC Evaluation Experimental Result

LISC Evaluation Conclusions

- The authors propose a novel approach for automatically translating assembly to intermediate language
- The approach is architecture neutral and based on learning from well teste compiler code
- The software provided by the authors is simple to use, but unreliable
- The lack of proper documentation makes it hard to reproduce results

THANK YOU!