Groups with perfect Cayley groups

M. Farrokhi D. G. (joint with A. Mohammadian)

IASBS

October 18, 2016

A Cayley graph $\operatorname{Cay}(G,S)$ of a group G with respect to a subset $S=S^{-1}$ of $G\setminus\{1\}$ is a graph with vertex set G whose edges are $\{g,sg\}$ for all $g\in G$ and $s\in S$.

Definition

A group G is Cayley \mathcal{P} -group (resp. minimal Cayley \mathcal{P} -group) if all its Cayley graphs (resp. minimal Cayley graphs) satisfy the property \mathcal{P} .

Theorem (Babai and Sós¹; Godsil and Imrich²)

For every finite graph Γ , the order of a Cayley Γ -free group is bounded above by $(2 + \sqrt{3})|\Gamma|^3$.

¹L. Babai and V. T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, *European J. Combin.* **6** (1985), 101–114.

²C. D. Godsil and W. Imrich, Embedding graphs in Cayley graphs, *Graphs Combin.* **3** (1987), 39–43.

³L. Babai, Chromatic number and subgraphs of Cayley graphs, *Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976)*, pp. 10–22.

 $^{^4}$ J. Spencer, What's not inside a Cayley graph, *Combinatorica* 3(2) (1983), 239–241.

Theorem (Babai and Sós¹; Godsil and Imrich²)

For every finite graph Γ , the order of a Cayley Γ -free group is bounded above by $(2 + \sqrt{3})|\Gamma|^3$.

Theorem

The following graphs cannot be embedded as induced subgraph in any minimal Cayley graph:

- $K_4 \setminus e$ (diamond) and $K_{3,5}$ (Babai 3);
- an infinite class of graphs (Spencer ⁴).

¹L. Babai and V. T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, *European J. Combin.* **6** (1985), 101–114.

²C. D. Godsil and W. Imrich, Embedding graphs in Cayley graphs, *Graphs Combin.* **3** (1987), 39–43.

³L. Babai, Chromatic number and subgraphs of Cayley graphs, *Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976)*, pp. 10–22.

⁴J. Spencer, What's not inside a Cayley graph, *Combinatorica* **3**(2) (1983), 239–241.

Conjecture (Lovasz, 1969)

All connected Cayley graphs are Hamiltonian, or equivalently all finite groups are Cayley Hamiltonian groups.

¹M. Jixiang and H. Qiongxiang, Almost all Cayley graphs are Hamiltonian, *Acta Math. Sinica, New Ser.* **12**(2) (1996), 151–155

Conjecture (Lovasz, 1969)

All connected Cayley graphs are Hamiltonian, or equivalently all finite groups are Cayley Hamiltonian groups.

Theorem (Jixiang and Qiongxiang¹)

Finite groups are almost Cayley Hamiltonian groups.

¹M. Jixiang and H. Qiongxiang, Almost all Cayley graphs are Hamiltonian, *Acta Math. Sinica, New Ser.* **12**(2) (1996), 151–155

The following groups are Cayley Hamiltonian groups:

- Abelian groups;
- Hamiltonian groups (Alspach and Qin ¹, 2001);
- p-groups (Witte ², 1986);
- Dihedral groups of order divisible by 4 (Alspach, Chen and Dean ³, 2010);
- Every group G with $G' = [G, G] \cong C_{p^n}$ (Keating and Witte ⁴, 1982);
- Groups of order kp (24 \neq k \leq 31), kp² (\leq 4), kp³ (k \leq 2), kpq (k \leq 5), and pqr (Kutnar, Marušič, Morris, Morris and Šparl ⁵, 2012).

¹B. Alspach and Y. S. Qin, Hamilton-connected Cayley graphs on Hamiltonian groups, *European J. Combin.* **22** (2001), 777–787.

²D. Witte, Cayley digraphs of prime-power order are Hamiltonian, J. Combin. Theory Ser. B 40 (1986), 107–112.

³B. Alspach, C. C. Chen and M. Dean, Hamilton paths in Cayley graphs on generalized dihedral groups, *Ars Math. Contemp.* **3** (2010), 29–47.

⁴K. Keating and D. Witte, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Cycles in graphs (Burnaby, B.C., 1982), North-Holland Mathematics Studies 115 (North-Holland, Amsterdam, 1985) 89–102.

⁵K. Kutnar, D. Marušič, D. Morris, J. Morris and P. Šparl, Hamiltonian cycles in Cayley graphs of small order, *Ars Math Contemp.* **5** (2012), 27–71.

Theorem (Abdollahi and Jazaeri², 2014; Ahmady, Bell and Mohar³, 2014)

A finite group is Cayley integral if and only if it is isomorphic to one of the following groups:

- (1) an abelian group of exponent 1, 2, 3, 4 or 6;
- (2) S_3 ;
- (3) $C_3 \times C_4 = \langle x, y : x^3 = y^4 = 1, x^y = x^{-1} \rangle$;
- (4) $Q_8 \times C_2^n \ (n \ge 0)$.

¹F. Harary and A. J. Schwenk, Which Graphs Have Integral Spectra? in: Lecture Notes in Mathematics, 406, Springer, 1974, 45–51.

²A. Abdollahi and M. Jazaeri, Groups all of whose undirected Cayley graphs are integral, *European J. Combin.* **38** (2014), 102–109.

³A. Ahmady, J. Bell and B. Mohar, Integral Cayley graphs and groups, *SIAM J. Discrete Math.* **28**(2) (2014), 685–701.

Lemma

Let G be a finite group. A connected Cayley graph Cay(G, S) is bipartite if and only if $[G : \langle S^2 \rangle] = 2$ and $S \subseteq G \setminus \langle S^2 \rangle$.

Lemma

Let G be a finite group. A connected Cayley graph Cay(G, S) is bipartite if and only if $[G : \langle S^2 \rangle] = 2$ and $S \subseteq G \setminus \langle S^2 \rangle$.

$$\langle S^2 \rangle X = X$$

$$\langle S^2 \rangle Y = Y$$

$$[G:\langle S^2\rangle]=2$$

A finite group G is a minimal Cayley bipartite group if and only if it is a 2-group.

A finite group G is a minimal Cayley bipartite group if and only if it is a 2-group.

G =minimal Cayley bipartite group:

$$\Rightarrow G \setminus \Phi(G) = \{2\text{-elements}\};$$

$$\Rightarrow$$
 $G = 2$ -group.

A finite group G is a minimal Cayley bipartite group if and only if it is a 2-group.

G =minimal Cayley bipartite group:

$$\Rightarrow G \setminus \Phi(G) = \{2\text{-elements}\};$$

$$\Rightarrow$$
 $G = 2$ -group.

$$G = 2$$
-group:

•
$$X = \{x_1, \dots, x_n\}$$
 (a minimal generating set of G);

•
$$S = X \cup X^{-1}$$
:

•
$$H = \langle \Phi(G), x_1 x_2, \dots, x_1 x_n \rangle$$
;

$$\Rightarrow$$
 $H = \langle S^2 \rangle$ and $S \subseteq G \setminus H$;

$$\Rightarrow \operatorname{Cay}(G, S) =$$
bipartite.

- A proper n-coloring of a graph Γ is an assignment of n colors to vertices of Γ such that adjacent vertices have distinct colors;
- The chromatic number $\chi(\Gamma)$ of Γ is the minimum number of colors to color Γ properly;
- The clique number $\omega(\Gamma)$ of Γ is the maximum size of a complete subgraph of Γ ;
- A graph Γ is perfect if $\chi(\Gamma') = \omega(\Gamma')$ for every induced subgraph Γ' of Γ.

Theorem (Strong Perfect Graph Theorem¹)

A graph Γ is perfect if and only if neither Γ nor Γ^c has an induced odd cycle of length ≥ 5 .

¹M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, *Ann. of Math. (2)* **164**(1) (2006), 51–229.

Notation

Suppose G is a finite group, $H \leq G$ and $g \in G$:

- $\overline{G} = G/\Phi(G);$
- $\overline{H} = H\Phi(G)/\Phi(G);$
- $\overline{g} = g\Phi(G).$

¹M. Farrokhi D. G., Finite groups with a given Frattini factor group, *In preparation*.

Notation

Suppose G is a finite group, $H \leq G$ and $g \in G$:

- $\overline{G} = G/\Phi(G);$
- $\overline{H} = H\Phi(G)/\Phi(G);$
- $\overline{g} = g\Phi(G).$

Theorem (MFDG¹)

Let G be a finite solvable group and P be a Sylow p-subgroup of G. If either $\overline{P} \subseteq G$ or \overline{P} is cyclic, then $d(P) = d(\overline{P})$.

¹M. Farrokhi D. G., Finite groups with a given Frattini factor group, *In preparation*.

The Hughes-Thompson subgroup of a group G with respect to a prime p is defined as

$$H_p(G) := \langle g \in G : |g| \neq p \rangle.$$

 $^{^{1}}$ D. R. Hughes and J. G. Thompson, The H_{p} -problem and the structure of H_{p} -groups, *Pacific J. Math.* **9** (1959), 1097–1101.

 $^{^2}$ E. G. Straus and G. Szekeres, On a problem of D. R. Hughes, *Proc. Amer. Math. Soc.* **9**(1) (1958), 157–158.

The Hughes-Thompson subgroup of a group G with respect to a prime p is defined as

$$H_p(G) := \langle g \in G : |g| \neq p \rangle.$$

Theorem

Let G be a finite group and $p \in \pi(G)$. If

- G is not a p-group (Hughes and Thompson 1), or
- G is a p-group (p = 2,3) (Straus and Szekeres ²),

then

$$H_p(G) = 1$$
, $[G : H_p(G)] = p$, or $H_p(G) = G$.

¹D. R. Hughes and J. G. Thompson, The H_p -problem and the structure of H_p -groups, *Pacific J. Math.* **9** (1959), 1097–1101.

 $^{^2}$ E. G. Straus and G. Szekeres, On a problem of D. R. Hughes, *Proc. Amer. Math. Soc.* **9**(1) (1958), 157–158.

Let G be a group and $N \le H \le G$ with $N \le G$. Then H/N is a Frattini factor of G if

$$\frac{H}{N}\subseteq\Phi\left(\frac{G}{N}\right).$$

¹A. Luccini, The largest size of a minimal generating set of a finite group, *Arch. Math. (Basel)* **101** (2013), 1–8.

Let G be a group and $N \le H \le G$ with $N \le G$. Then H/N is a Frattini factor of G if

$$\frac{H}{N} \subseteq \Phi\left(\frac{G}{N}\right)$$
.

Theorem (Luccini¹)

The largest size of a minimal generating set of a finite solvable group equals the number of non-Frattini factors of a chief series of the group.

¹A. Luccini, The largest size of a minimal generating set of a finite group, *Arch. Math. (Basel)* **101** (2013), 1–8.

Lemma

Let $G = \langle g \rangle$ be a cyclic group. Then

- (1) $\operatorname{Cay}(G, \{g^{\pm 2}, g^{\pm 3}\})$ has an induced 5-cycle for $|g| \geq 10$.
- (2) $\operatorname{Cay}(G, \{g^{\pm 1}, g^{\pm 4}\})$ has an induced 5-cycle for $|g| \geq 8$.

Lemma

Let $G = \langle g \rangle$ be a cyclic group. Then

- (1) $\operatorname{Cay}(G, \{g^{\pm 2}, g^{\pm 3}\})$ has an induced 5-cycle for $|g| \ge 10$.
- (2) $\operatorname{Cay}(G, \{g^{\pm 1}, g^{\pm 4}\})$ has an induced 5-cycle for $|g| \geq 8$.

Notation

- $A_4 = \langle x, y : x^2 = y^3 = (xy)^3 = 1 \rangle.$
- $E_3 = \langle x, y : x^3 = y^3 = [y, x, y] = [x, y, x] = 1 \rangle$.
- $S_p(G)$ is a Sylow *p*-subgroup of G.

A finite group G is a minimal Cayley perfect group if and only if

- G is a 2-group, or
- G is isomorphic to C_3 , C_6 , S_3 , $C_3 \times C_3$, A_4 or E_3 .

 $G \neq$ 2-group is a minimal Cayley perfect group:

$$\Rightarrow$$
 $G \setminus \Phi(G) = \{\text{elements of orders } 2^k, 2^k \cdot 3 \text{ and } 3\};$

- *Q* :=Sylow 3-subgroup of *G*;
- $\exp(Q) > 3$;

$$\Rightarrow 1 \subset H_3(Q) \subseteq S_3(\Phi(G)) \subset Q$$
;

$$\Rightarrow S_3(\Phi(G)) = H_3(Q);$$

$$\Rightarrow d(Q) = d(\overline{Q}) = 1;$$

$$\Rightarrow Q \cong C_3 (*);$$

$$\Rightarrow \exp(Q) = 3.$$

- (1) G = 3-group:
 - $d(G) \ge 3$;
 - $X = \{a, b, c, ...\}$ = a m.g.s. of G;
 - \Rightarrow Cay($G, X \cup X^{-1}$) has an induced 9-cycle arising from the relation $(abc)^3 = 1$ (**);

- \Rightarrow $d(G) \leq 2$;
- \Rightarrow $G \cong C_3$, $C_3 \times C_3$ or E_3 .

- (2) G is a $\{2,3\}$ -group:
 - $C = \{X : X \cong C_6, S_3 \text{ or } A_4\};$
 - \Rightarrow $X \in \mathcal{C}$ whenever $|X| \in \{6,12\}$, $S = S^{-1} \ni s$ of order 3 and $\operatorname{Cay}(X,S)$ =perfect;

- (2) G is a $\{2,3\}$ -group:
 - $C = \{X : X \cong C_6, S_3 \text{ or } A_4\};$
 - \Rightarrow $X \in \mathcal{C}$ whenever $|X| \in \{6,12\}$, $S = S^{-1} \ni s$ of order 3 and $\mathrm{Cay}(X,S)$ =perfect;

Suppose $G \notin \mathcal{C}$ and |G| = minimum:

• I_f =the number of non-Frattini factors in a chief series of G;

$$I_f = 2$$
:

$$\Rightarrow \overline{G} \cong C_6$$
, S_3 or A_4 ;

- (i) $\overline{G} \cong C_6$:
 - \Rightarrow $G = \langle x \rangle$ is cyclic;
 - $\Rightarrow \operatorname{Cay}(G, \{x^{\pm 2}, x^{\pm 3}\})$ has an induced 5-cycle as |G| > 6 (**).
- (ii) $\overline{G} \cong S_3$:

$$\Rightarrow G = \langle x, y : x^3 = y^{2^k} = 1, x^y = x^{-1} \rangle \ (k \ge 1);$$

 \Rightarrow Cay(G, { $x^{\pm 1}$, $y^{\pm 1}$ }) has an induced ($2^k + 3$)-cycle determined by $y^{2^k-2}xyx^{-1}yx = 1$ as k > 1 (**).

(iii)
$$\overline{G} \cong A_4$$
:

- $\Rightarrow \overline{G} = \langle \overline{x}, \overline{y} : \overline{x}^2 = \overline{y}^3 = (\overline{x}\overline{y})^3 = \overline{1} \rangle;$
- \Rightarrow one can assume that $(xy)^3 = 1$ or $x^{y^{-1}}x^yx = 1$;
- $|x| = 2^m > 2$;
- $\langle a, b : a^{2^m} = b^{2^m} = (ab)^{2^m} = 1 \rangle$ is infinite for m > 1;
- ⇒ there is a relation w = 1 (of minimum length) in x, x^y independent of $x^{2^m} = (x^y)^{2^m} = (x^y x)^{2^m} = 1$;
- $w = x^{a_1 y} x^{b_1} \cdots x^{a_k y} x^{b_k}$ with $0 < a_i, b_i < 2^m$ and $(a_1, b_1) \neq (1, 1)$;
- $w' = x^{-y^{-1}} x^{-1} x^{(a_1-1)y} x^{b_1} x^{a_2 y} x^{b_2} \cdots x^{a_k y} x^{b_k};$
- \Rightarrow either w=1 or w'=1 determines an induced odd cycle in $\operatorname{Cay}(G,\{x^{\pm 1},y^{\pm 1}\})$ of length ≥ 7 (**).

$$I_f \ge 3$$
:

Let

$$\Phi(G) = G_0 \leq G_1 \leq \cdots \leq G_{l-1} \leq G_l = G;$$

- $M = G_{l-1}$;
- G_{n_i}/G_{n_i-1} =non-Frattini factor $(i = 1, ..., l_f)$;
- \Rightarrow $X = \{x_1, \dots, x_{l_f}\} = \text{m.g.s.}$ of G $(x_i \in G_{n_i} \setminus G_{n_i-1})$ is a p-element, $i = 1, \dots, l_f$;
 - $x_i, x_i \in S_2(G)$ or $S_3(G)$ if $x_i, x_i = p$ -element (p = 2, 3);
 - $Y_i = X \setminus \{x_i\} \text{ for } i = 1, ..., I_f;$
- \Rightarrow $x_i \in Y_{j_i}$ (containing elements of even and odd orders) for all $i = 1, \dots, I_f$;
- $\Rightarrow \operatorname{Cay}(\langle Y_{j_i} \rangle, Y_i \cup Y_{j_i}^{-1}) = \operatorname{perfect};$
- $\Rightarrow \langle Y_{i_i} \rangle \cong C_6$, S_3 or A_4 ;
- $\Rightarrow |x_i|$ is prime for all $i = 1, \dots, I_f$;

Claim:
$$I_f = I = 3$$
:

• $Y_i \ni$ elements of even and odd for i = 1 or 2;

$$\Rightarrow G = G_{n_2}\langle Y_i \rangle$$
 implies $G/G_{n_2} \cong \langle Y_i \rangle/(G_{n_2} \cap \langle Y_i \rangle) \cong C_2$ or C_3 ;

$$\Rightarrow$$
 $n_2 = n_3 - 1$ and $n_3 = I$;

$$\Rightarrow I_f = 3;$$

$$\Rightarrow$$
 $\Phi(G/G_1) = G_{l-2}/G_1$ and $G/G_1 = \langle G_1x_2, G_1x_3 \rangle$;

•
$$(|x_2|, |x_3|) = (2,3)$$
 or $(3,2)$;

$$\Rightarrow \langle x_2, x_3 \rangle \in \mathcal{C}$$
 so that $I = 3$;

•
$$(|x_2|, |x_3|) = (2, 2);$$

$$\Rightarrow$$
 $G/G_1 =$ a dihedral group;

•
$$\{x_1, x_2x_3, x_3\}$$
 is a m.g.s. of G ;

$$\Rightarrow (x_2x_3)^2 = 1;$$

$$\Rightarrow G_{l-2} = \langle G_1, (x_2 x_3)^2 \rangle = G_1 \text{ so that } l = 3;$$

 \Rightarrow $[x_2, x_3] \in \Phi(G)$ (%):

 \Rightarrow $G/G_1 \cong C_3 \times C_3$. Thus I=3:

•
$$(|x_2|, |x_3|) = (3, 3)$$
;
 $\Rightarrow G/G_1 \cong C_3 \times C_3 \text{ or } E_3$;
• $G/G_1 \cong E_3$:
• $[x_1, x_2] = [x_1, x_3] = 1 \text{ implies } G = \langle x_1 \rangle \times \langle x_2, x_3 \rangle \text{ so that } [x_2, x_3] \in \Phi(G) \text{ (*)};$
 $\Rightarrow [x_1, x_3] \neq 1, \text{ say};$
 $\Rightarrow \{x_1, x_2x_3, x_3\} \text{ is a m.g.s. of } G \text{ if } [x_1, x_2x_3] \neq 1;$
 $\Rightarrow \langle x_1, x_2x_3 \rangle \cong A_4;$
 $\Rightarrow \text{Cay}(G, X \cup X^{-1}) \text{ has an induced 9-cycle determined by } (x_1x_2x_3)^3 = 1 \text{ (*)};$
 $\Rightarrow [x_1, x_2x_3] = 1;$
 $\Rightarrow \text{ we may assume } [x_1, x_2] = 1 \text{ } (x_2 \mapsto x_2x_3);$
 $\Rightarrow [x_1, x_2x_3^{-1}] \neq 1, \{x_1, x_2, x_2x_3^{-1}\} \text{ is a m.g.s. of } G, \text{ and }$
 $x_1x_1^{x_3^{-1}x_2^{-1}} = (x_1x_1^{x_3^{-1}})^{x_2^{-1}} = x_1^{x_3x_2^{-1}} = x_1^{(x_2x_3^{-1})^{-1}} = x_1x_1^{x_2x_3^{-1}} = x_1x_1^{x_2^{-1}x_3^{-1}};$
 $\Rightarrow [x_2, x_3] \text{ commutes with } x_1;$
 $\Rightarrow G = \langle x_1, x_1^{x_3} \rangle \times \langle x_2, x_3 \rangle;$

Structure of $\Phi(G)$:

- $x_u = \text{involution}$;
- \Rightarrow gx_u =involution for all $g \in \Phi(G)$;
- $\Rightarrow g^{x_u} = g^{-1}$ for all $g \in \Phi(G)$;
- $\Rightarrow \Phi(G) = abelian;$
- $\langle x_u, x_v \rangle \cong A_4$ for some x_v ;
- $\Rightarrow g^{x_u^{x_v^{\pm 1}}} = g^{-1} \text{ for all } g \in \Phi(G) \ (x_u \mapsto x_u^{x_v^{\pm 1}});$
- $\Rightarrow g^{-1} = g^{x_u^{x_v^{-1}}} = g^{x_u x_u^{x_v}} = g;$
- $\Rightarrow \Phi(G)$ = elementary abelian 2-group.

$$H = \langle Y_3 \rangle$$

 $\Rightarrow \operatorname{Cay}(H, Y_3 \cup Y_3^{-1}) = \text{perfect};$

$$H = \langle Y_3 \rangle$$

 $\Rightarrow \operatorname{Cay}(H, Y_3 \cup Y_3^{-1}) = \operatorname{perfect};$

$$H = 2$$
-group;

$$\Rightarrow$$
 $[G:M]=3$, $M=S_2(G)$ and $\Phi(G)=\Phi(M)$;

- $\Rightarrow \overline{M} = \text{elementary abelian 2-group};$
- $\Rightarrow \langle Y_i \rangle \cong C_6 \text{ or } A_4 \text{ for } i = 1, 2;$
 - $\langle Y_1 \rangle \cong \langle Y_2 \rangle \cong C_6$:
 - $\Rightarrow M = H, G/\Phi(G) \cong C_6 \times C_2;$
 - \Rightarrow G = nilpotent;
 - $M \setminus \Phi(M) \ni$ an element of order ≥ 4 implies $G \setminus \Phi(G) \ni$ an element x of order > 12 (*):
 - $\Rightarrow M \setminus \Phi(M)$ contains only involutions;
 - \Rightarrow $M \cong C_2 \times C_2$ so that $G \cong C_6 \times C_2$ (**);

- $\langle Y_i \rangle \cong A_4$ for some i = 1, 2:
 - $\Rightarrow \Phi(G) =$ elementary abelian 2-group;
 - We show that $\langle Y_j \rangle \cong C_6$ for $j \in \{1,2\} \setminus \{i\}$:
 - $\langle Y_1 \rangle = \langle x_2, x_3 \rangle \cong A_4$;
 - $\Rightarrow \{x_1, x_2, x_2x_3\}$ is a m.g.s of G and $|x_2x_3| = 3$;
 - \Rightarrow Cay($G, X \cup X^{-1}$) has an induced 9-cycle given by $(x_1 x_2 x_3)^3 = 1$ if $[x_1, x_2 x_3] \neq 1(*)$:
 - \Rightarrow $[x_1, x_2x_3] = 1;$
 - \Rightarrow $[x_1, x_3] = 1$ and $\langle Y_2 \rangle = \langle x_1, x_3 \rangle \cong C_6$ $(x_3 \mapsto x_2 x_3)$;
 - \Rightarrow Apply $(x_i, x_j) \mapsto (gx_i, gx_j)$ for $g \in \Phi(G)$ yields

$$(gx_i)^{x_3^{-1}} = (gx_i)(gx_i)^{x_3}$$
 and $(gx_j)^{x_3} = (gx_j)$;

- $\Rightarrow g^{x_3^{-1}} = gg^{x_3} = 1;$
- $\Rightarrow \Phi(G) = 1;$
- $\Rightarrow G \cong A_4 \times C_2$;
- $\Rightarrow \operatorname{Cay}(G, \{a^{\pm 1}, b^{\pm 1}\})$ has an induced 7-cycle arising from $b^{-1}abab^2a^{-1} = 1$ ($a := x_3^{x_i}$ and $b := x_ix_3$) (**).

$$H = 3$$
-group:

$$\Rightarrow$$
 [G: M] = 2 and M = $S_3(G)$;

$$\Rightarrow \langle Y_i \rangle \cong C_6 \text{ or } S_3 \text{ for } i = 1, 2;$$

$$\Rightarrow x_i^{x_3} = x_i^{\epsilon_i}$$
 with $\epsilon_i = \pm 1$ for $i = 1, 2$;

$$\Rightarrow |M| = |H| = 9 \text{ or } 27;$$

- \Rightarrow Cay $(G, X \cup X^{-1})$ has an induced 7-cycle arising from $x_3x_2^{\epsilon_2}x_1^{-\epsilon_1}x_3x_2x_1x_2 = 1$ if $[x_1, x_2] = 1$ (*);
- \Rightarrow Cay $(G, X \cup X^{-1})$ has an induced 11-cycle arising from $x_3 x_2^{\epsilon_2} x_1^{-\epsilon_1} x_3 x_2 x_1 x_2 x_1^{-1} x_2^{-1} x_1 x_2 = 1$ if $[x_1, x_2] \neq 1$ (**).

$$H = \{2, 3\}$$
-group:

- \Rightarrow $H \in \mathcal{C}$ so that $H \cong \mathcal{C}_6$, \mathcal{S}_3 or \mathcal{A}_4 ;
 - $|x_2| = |x_3| = 2$:
 - \Rightarrow $[x_2, x_3] = 1$ and $x_1^{x_2}, x_1^{x_3} \in \langle x_1 \rangle;$
 - \Rightarrow $G \cong C_6 \times C_2 \text{ or } S_3 \times C_2 \text{ (*)};$
 - $|x_2| = |x_3| = 3$:
- $\Rightarrow x_1$ commutes with $[x_2, x_3]$ and x_3 , say;
 - $[x_1, x_2] = 1$ implies $G = \langle x_1 \rangle \times \langle x_2, x_3 \rangle$;
 - \Rightarrow Cay($G, X \cup X^{-1}$) has an induced 9-cycle arising from $x_1x_2x_3x_2^{-1}x_1x_2^{-1}x_3x_2x_3 = 1$ (**);
 - $[x_1, x_2] \neq 1$;
 - \Rightarrow Cay($G, X \cup X^{-1}$) has an induced 9-cycle arising from $(x_1x_2x_3)^2x_1x_3x_2 = 1$ if $[x_2, x_3] = 1$ (*);
 - ⇒ $Cay(G, X \cup X^{-1})$ has an induced 13-cycle arising from $(x_1x_2x_3)^2x_2^{-1}x_3^{-1}x_2x_3x_1x_3x_2 = 1$ if $[x_2, x_3] \neq 1$ (**).

```
• |x_2| \neq |x_3|:

• [x_2, x_3] = 1;

\Rightarrow H = p-group with p \in \{2, 3\} (x_2 \longleftrightarrow x_3) (%);

\Rightarrow [x_2, x_3] \neq 1;

• [x_1, x_2] = 1;

\Rightarrow \langle x_2, x_2^{x_3}, x_2^{x_3^{-1}} \rangle \subseteq G is elementary abelian (?);

\Rightarrow |x_2| = |x_3| (x_1 \longleftrightarrow x_2) (%);

\Rightarrow [x_1, x_2] \neq 1;

\Rightarrow \{\langle x_1, x_2 \rangle, \langle x_2, x_3 \rangle\} = \{S_3, A_4\};

\Rightarrow \Phi(G) = \text{elementary abelian 2-group};
```

• $(|x_1|, |x_2|, |x_3|) = (2, 3, 2)$: $\Rightarrow \langle x_1, x_2 \rangle \cong A_4 \text{ and } \langle x_2, x_3 \rangle \cong S_3;$ $\Rightarrow |x_1x_3| = 2^m (\langle x_1, x_3 \rangle = \text{dihedral 2-group});$ $\Rightarrow \operatorname{Cay}(G, X \cup X^{-1}) \text{ has an induced } (2^{m+1} + 5) - \text{cycle arising}$ from $(x_1x_2)^2 (x_3x_1)^{2^m-1} x_2 x_3 x_2^{-1} = 1$ (*);

```
• (|x_1|, |x_2|, |x_3|) = (2, 3, 2):
      \Rightarrow \langle x_1, x_2 \rangle \cong A_4 and \langle x_2, x_3 \rangle \cong S_3:
      \Rightarrow |x_1x_3| = 2^m (\langle x_1, x_3 \rangle = dihedral 2-group);
      \Rightarrow Cay(G, X \cup X<sup>-1</sup>) has an induced (2<sup>m+1</sup> + 5)-cycle arising
            from (x_1x_2)^2(x_3x_1)^{2^m-1}x_2x_3x_2^{-1} = 1 (**):
• (|x_1|, |x_2|, |x_3|) = (3, 2, 3):
      \Rightarrow \langle x_1, x_2 \rangle \cong S_3 and \langle x_2, x_3 \rangle \cong A_4:
      \Rightarrow |x_1x_3| = 3:
        • Q = S_3(G) \ni x_2x_3:
        • y \in \Phi(G)(x_2, x_2^{x_3}) = S_2(G) such that x_1^y \in Q;
      \Rightarrow (x_1x_2x_3)^3 = 1 (x_1 \mapsto x_1^y):
      \Rightarrow \operatorname{Cay}(G, X \cup X^{-1}) has an induced 9-cycle (**).
```

Corollary

Let G be a nontrivial finite group. Then G is a Cayley perfect group if and only if G is isomorphic to one of the groups C_2 , C_3 , C_4 , $C_2 \times C_2$, S_3 , C_6 , $C_2 \times C_2 \times C_2$, $C_2 \times C_4$, D_8 , Q_8 or $C_3 \times C_3$.

G	S	5-cycle
$\langle a \rangle \times \langle b \rangle, \ a = b = 4$	$\{a^{\pm 1}, b^{\pm 1}, a^2b^2\}$	$1, a^{-1}, (ab)^{-1}, ab, a, 1$
$\langle a, b : a^4 = b^4 = 1, [a, b] = a^2 \rangle$	$\{a^{\pm 1}, b^{\pm 1}, a^2b^2\}$	$1, a^{-1}, (ba)^{-1}, ab, a, 1$
$\langle a \rangle \times \langle b \rangle \times \langle c \rangle, \ a = 4, b = c = 2$	$\{a^{\pm 1}, b, c, a^2bc\}$	$1, c, ca^{-1}, ba, b, 1$
$\langle a, b, c : a^4 = b^2 = c^2 = 1, a^c = a^{-1}b \rangle$	$\{a^{\pm 1}, b, c\}$	$1, c, ca^{-1}, ba, b, 1$
$(a, b, c : b^2 = c^2 = [a, b] = [a, c] = 1,$ $[b, c] = a^2 \rangle$	$\{a^{\pm 1}, b, c, a^2bc\}$	$1, a^{-1}, a^{-1}c, ab, a, 1$
$\langle a, b : a^4 = b^2 = 1, a^b = a^{-1} \rangle \times \langle c \rangle,$ c = 2	$\{a^{\pm 1}, b, c, a^2bc\}$	$1, a^{-1}, a^{-1}c, ab, a, 1$
$\langle a, b : a^4 = 1, a^2 = b^2, a^b = a^{-1} \rangle \times \langle c \rangle, \ c = 2$	$\{a^{\pm 1}, b^{\pm 1}, c, (a^2b^{-1}c)^{\pm 1}\}$	$1, a^{-1}, a^{-1}c, ab, a, 1$
$ \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle, a = b = c = d = 2 $	$\{a,b,c,d,abcd\}$	1, a, ab, abc, abcd, 1
$(a, b, c : a^3 = b^3 = [a, c] = [b, c] = 1,$ $c = [a, b] \rangle$	$\{a^{\pm 1}, b^{\pm 1}, c^{\pm 1}, (a^{-1}bc)^{\pm 1}\}$	$1, a, ac, bc^{-1}, b, 1$
$\langle a, b : a^2 = b^3 = (ab)^3 = 1 \rangle$	$\{a,b^{\pm 1},a^b\}$	1, a ^b , b ^a , ab, a, 1

Corollary

Let G be a nontrivial finite group. Then G is a Cayley perfect group if and only if G is isomorphic to one of the groups C_2 , C_3 , C_4 , $C_2 \times C_2$, S_3 , C_6 , $C_2 \times C_2 \times C_2$, $C_2 \times C_4$, D_8 , Q_8 or $C_3 \times C_3$.

G	5	5-cycle
$\langle a \rangle \times \langle b \rangle, \ a = b = 4$	$\{a^{\pm 1}, b^{\pm 1}, a^2b^2\}$	$1, a^{-1}, (ab)^{-1}, ab, a, 1$
$\langle a, b : a^4 = b^4 = 1, [a, b] = a^2 \rangle$	$\{a^{\pm 1}, b^{\pm 1}, a^2b^2\}$	$1, a^{-1}, (ba)^{-1}, ab, a, 1$
$\langle a \rangle \times \langle b \rangle \times \langle c \rangle, \ a = 4, b = c = 2$	$\{a^{\pm 1}, b, c, a^2bc\}$	$1, c, ca^{-1}, ba, b, 1$
$\langle a, b, c : a^4 = b^2 = c^2 = 1, a^c = a^{-1}b \rangle$	$\{a^{\pm 1},b,c\}$	$1, c, ca^{-1}, ba, b, 1$
$\langle a, b, c : b^2 = c^2 = [a, b] = [a, c] = 1,$ $[b, c] = a^2 \rangle$	$\{a^{\pm 1}, b, c, a^2bc\}$	$1, a^{-1}, a^{-1}c, ab, a, 1$
$\langle a, b : a^4 = b^2 = 1, a^b = a^{-1} \rangle \times \langle c \rangle,$ c = 2	$\{a^{\pm 1}, b, c, a^2bc\}$	$1, a^{-1}, a^{-1}c, ab, a, 1$
$\langle a, b : a^4 = 1, a^2 = b^2, a^b = a^{-1} \rangle \times \langle c \rangle, \ c = 2$	$\{a^{\pm 1}, b^{\pm 1}, c, (a^2b^{-1}c)^{\pm 1}\}$	$1, a^{-1}, a^{-1}c, ab, a, 1$
$ \langle a \rangle \times \langle b \rangle \times \langle c \rangle \times \langle d \rangle, a = b = c = d = 2 $	$\{a,b,c,d,abcd\}$	1, a, ab, abc, abcd, 1
$\langle a, b, c : a^3 = b^3 = [a, c] = [b, c] = 1,$ $c = [a, b] \rangle$	$\{a^{\pm 1}, b^{\pm 1}, c^{\pm 1}, (a^{-1}bc)^{\pm 1}\}$	$1, a, ac, bc^{-1}, b, 1$
$\langle a, b : a^2 = b^3 = (ab)^3 = 1 \rangle$	$\{a, b^{\pm 1}, a^b\}$	1, a ^b , b ^a , ab, a, 1

Thank You for Your Attention!