Large Scale Industrial-Use Dust Injectors: Modeling, Evaluation

Luying Liu, Min Tang, Qingfeng Cao, Seungkoo Kang, and David Y. H. Pui

October 6th, 2017

52nd Review Meeting, Center for Filtration Research Donaldson Company, Inc., Bloomington, Minnesota

Outline

- Introduction
- Objective
- Model Description
- Numerical Results of Two Different Dust Injectors under Various Inlet Pressures
- Preliminary Results of Experiments
- Summary and Future Work

Introduction

- ISO dust injectors are used to disperse particles, e.g. A2 dust.
- The equipment can be a dust generator for testing internal combustion engines and compressors.
- The dispersed particles have different size distributions from the ones provided by manufacturers.
- Reasons for the difference:
 - ✓ Manufacturers' methods: wet sample dispersion, surfactants, ultrasonication, laser diffraction instrument.
 - ✓ General users' methods: ISO dust injectors, compressed air, aerosol instrument (e.g. APS).

Objective

- To perform numerical simulations on the air flow inside dust injectors.
- To conduct CFD analysis on the velocity, temperature and pressure fields of 2 different injector configurations.
- To test the particle size distributions of dust injectors using shadowgraphy method.
- To compare the numerical results with the experimental data.
- To design a new injector with better performance of dust dispersion according to the comparison.

Flow Configurations of ISO Dust Injectors

ISO dust injector

ISO heavy-duty dust injector

[1] ISO 5011:2000 Inlet air cleaning equipment for internal combustion engines and compressors - Performance testing.

2D Drawing of ISO Dust Injector

Key

- 1 Air entry
- 2 Dust entry
- 3 Dust/air exit

2D Drawing of ISO Heavy-duty Dust Injector

Dimensions in millimetres

- 1 Air entry
- 2 Dust entry
- 3 Dust/air exit
- 4 Vinyl tubing erosion shield
- 5 Stainless-steel tubing of wall thickness 1,65 mm
- 6 Stainless-steel tubing of wall thickness 0,81 mm
- 7 Vinyl tubing of diameter 9,53 mm

Model Discription

- Re >>4000, Ma >0.3
- Indicating Inviscid and compressible flow
- Equations solved in the Ansys Fluent software:
- Fully compressible Euler Equations
- Energy Equation

Contours of Mach Number $M = \frac{V}{c}$

ISO dust injector

ISO heavy-duty dust injector

University of Minnesota

Contours of Pressure

ISO dust injector

Center for Filtration Research

ISO heavy-duty dust injector
University of Minnesota

Contours of Temperature

ISO dust injector

Center for Filtration Research

ISO heavy-duty dust injector
University of Minnesota

Contours of velocity gradients

ISO Dust Injector

ISO Heavy-Duty Dust Injector

 $\partial v/\partial z$

CFR

 $\partial w/\partial x$

 $\partial w/\partial y$

Graphs for Different Inlet Pressures – Mach Number and Temperature

Contours for Different Inlet Pressures - Velocity v. Gradient of z Velocity v.Gradient Z Academic

5psi 15psi 50psi

University of Minnesota

Conclusions- Numerical Simulation

- The flow fields of two dust injectors are quite different
- The Mach Number becomes higher with increasing inlet air pressure
- Velocity Gradient increases with inlet air pressure, which contributes to the higher shear stress
- The performance of dust particle dispersion should be better with higher inlet air pressure

Measurement of Size Distributions of Dust Particles

 Applied shadowgraphy method to measure the particle size distributions from the two dust injectors under different inlet pressure conditions

Preliminary Results of Particle Size Distributions from Shadowgraphy Measurement

Future Work

- To solve the viscous Navier-Stokes equations for the dust injector flow fields
- To complete our experimental results under different inlet pressures and dust feed rate conditions for the two dust injector configurations.
- To validate our conclusions indicated from the numerical simulation against the experimental data.
- To design a new injector with better performance in dust particle dispersion based on the conclusions.

Large Scale Industrial-Use Dust Injectors: Modeling, Evaluation

Thank you

Luying Liu, Min Tang, Qingfeng Cao, Seungkoo Kang, and David Y. H. Pui

October 6th, 2017

