

UNIVERSITY OF COLOMBO, SRI LANKA

FACULTY OF SCIENCE

FIRST YEAR EXAMINATION IN SCIENCE – SEMESTER II – 2003/2004 PH 1003– WAVES & VIBRATIONS AND AC THEORY

(Two Hours)

Answer ALL (FOUR) questions

Electronic calculators are allowed.

(This question paper consists of 04 questions in 07 pages.)

Important Instructions to the Candidates

- If a page or a part of this question paper is not printed, please inform the supervisor immediately.
- Enter Your Index Number on all pages of the answer script.
- MCQ TYPE: In each of these multiple choice questions, encircle the number of the correct response.
- ESSAY TYPE: Write the answers to these questions on writing papers provided.
- Electronic devices capable of storing and retrieving text, including electronic dictionaries and mobile phones are not allowed.
- In this question paper, questions 1, 2 & 3 are Essay Type questions. Question 4 consists of 15 Multiple Choice Questions.
- At the end of the time allowed for this paper, attach question 4 with the marked responses to your written answers to questions 1, 2 and 3 and hand them over to the supervisor or invigilator as one answer script. Please make sure that you handover both English and Sinhala versions of the question 4 to the supervisor or invigilator.
- You are permitted to remove only questions 1, 2 and 3 of the question paper from the Examination Hall.

- 1. (a) Show that a simple harmonic motion (SHM) can be represented by the equation $d^2x/dt^2 = -\omega^2x$ where all the symbols have their usual meaning. When the amplitude is A, obtain an expression for the velocity at the displacement of x.
 - (b) Sketch how the amplitude varies with time when a SHM is subject to light damping (under damping)
 - (c) In the circuit shown below, the switch S is closed at time t = 0. (Assume that the battery has no internal resistance and the capacitor is originally uncharged)

- (i) What is the current supplied by the battery just after the switch is closed (i.e at t = 0).
- (ii) What is the current supplied by the battery long time after the switch is closed?
- (iii) After long time, if the switch is open what will be the current in the circuit after 0.01 s from the time of opening the switch when E = 10 V, $R_1 = 10 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$ and $C = 2 \mu\text{F}$. Assume that the battery has no internal resistance.
- 2. (a) A loudspeaker at a musical show generates sound of 25 W. Assume that it spreads its total energy uniformly only in the forward hemisphere.
 - (i) What is the sound intensity level (in dB) at 25 m from the loudspeaker? (The sound intensity corresponding to the threshold of hearing is 10⁻¹² Wm⁻²)
 - (ii) If five such loudspeakers are in operation together at the same place, what would be the increase in sound intensity level (in dB) at 25 m from the speakers.
 - (iii)At what distance will the sound intensity be at the pain of threshold (i.e. 120 dB) when all the five loudspeakers are in operation.

- (b) A whistle emitting sound of frequency of 600 Hz moves in a circle of radius 1.5 m at 4 revolutions per second. What are the minimum and maximum frequencies heard by a listener moving towards the whistle at a speed of 60 ms⁻¹ starting from a distant point. Assume that the speed of sound in air = 340 ms⁻¹.
- 3. (a) Derive expressions for the current in an ideal inductance and ideal capacitance, when the voltage applied across each of them is in the form of $V = V_0 \sin \omega t$.

In the circuit shown above, the peak value of the current (I_0) through the inductor is 1.0 A and that through the capacitance is 0.8 A.

- (i) What is the rms value of the total current drawn from the power supply.
- (ii) What is the power factor in the circuit
- (iii) What is the power dissipation in the circuit
- (b) In a LCR series circuit, L=0.1 H, R=20 Ω and C is a variable capacitor. This circuit is connected across a sinusoidal voltage supply given in the form of $V=200 sin 100 \pi t$. Find the value of C to make the circuit resonant at the frequency of the voltage supply. Then, find the rms value of the current and the power dissipation in the circuit at resonance.

- Question 4 consists of 15 multiple choice questions.
- In each of these questions, encircle the number of the correct response on the question paper itself.
- Enter your Index Number in all pages.

Index	No:	 	

A particle undergoing simple harmonic motion has an amplitude A and 4. maximum velocity V_m. Its velocity at half amplitude (i.e. at A/2) will be

- (a) $V_m/4$ (b) $V_m/2$ (c) $V_m/\sqrt{2}$ (d) $(\sqrt{3}V_m)/2$ (e) V_m

The vibrations in the diaphragm of a microphone are (ii)

- (a) Free vibrations (undamped)
- (b) Damped vibrations
- (c) Electrically maintained vibrations
- (d) Forced vibrations
- (e) None of the above.

(iii) Which of the following represents a traveling wave? (All the symbols have their usual meaning)

- (a) $y = A\sin(x vt)$
- (b) $y = A\sin(x^2t)$
- (c) y = Alog(vt)
- (d) $y = A\cos^2(x^2 vt^2)$
- (e) $y = A\sin(\omega t + \varphi)$

(iv) The equation of a transverse wave is given by $y = 20\sin\pi(0.02x - 4t)$ where x and y are in m and t in s. The frequency of this wave is

- (a) 0.01 Hz
- (b) 0.02 Hz
- (c) 2 Hz
- (d) 4 Hz
- (e) 8 Hz.

	Index No:							
(v)	The intensity level of sound X is 30 dB greater than that of Y. How many times more intense is the sound X than Y?							
	(a) 3	(b) 30	(c) 300	(d) 100	(e) 1000			
(vi)	Which of the (All the sym	e following re	presents a stand r usual meaning	ing wave (or st	ationary wave)			
	(c)	y = Asinkxsi	$in(\omega t - \varphi)$ $(\omega t - kx + \varphi)$ + kx					
(vii) The linear density of a vibrating string is $1.5 \times 10^{-4} \text{ kgm}^{-1}$. A wave in the form of $y = 0.021\sin(x + 20t)$ is propagating alon where x and y are measured in m and t in s. The tension of the stri								
	(a) 0.06 N	(b) 1.20 N	(c) 0.48 N	(d) 4.80 N	(e) 0.96 N			
(viii)			nts given below					
	(B) It can produc	ns be used to ide ed by differen		onents of the w	terms of sinusoidal vaveforms of sound waveform.			
	The correct s	tatement/s is/a	are					
	(a) only (A)	(b) only (B)	(c) onl	y (A) & (B)			
	(d) only (A)	& (C) (6	e) all					

Index No:

- (ix) An inductor of 2 H and a resistance of 20 Ω are connected in series in a circuit containing a dc source of 50 V. The time constant of the circuit is
 - (a) 40 s
- (b)10 s
- (c) 20 s
- (d) 0.1 s
- (e) 25 s
- (x) A fully charged capacitor is being discharged through an inductor of 0.01 H. The initial current through the inductor increases from 0 A to 2 A in 2µs. The instantaneous voltage across the inductor is
 - (a) 20 kV
- (b) 10 kV
- (c) 5 kV
- (d) 1 kV
- (e) 100 kV
- (xi) What is the graph which shows the correct variation of the reactance of a capacitor X_C in an ac circuit with the frequency f of the source voltage?

- (xii) An ideal inductance of 10.0 mH is connected across an voltage supply given in the form of $V = 20\sin(200t)$. The peak current in the circuit will be
 - (a) 2 A
- (b) 5 A
- (c) 10 A
- (d) 20 A
- (e) 30 A

	Index No:		
(xiii) In a series C-R circuit, as the free	quency increases, the	impedance of the circu	it
(a) decreases			

- (b) increases
- (c) remains unchanged
- (d) first increases and then decreases
- (e) first deceases and then increases
- (xiv) When a dc supply of 200 V is applied across a real coil, a steady current of 2 A flows through it. When an ac supply of $V_{rms} = 200 \text{ V}$, 50 Hz is applied across the same coil, the rms value of the current through it is 1 A. The inductance of the coil is approximately
 - (a) 1.0 H
- (b) 0.85 H
- (c) 1.1 H
- (d) 0.92 H
- (e) 0.55 H
- (xv) In a LCR series circuit, the magnitude of the voltage across each resistance, inductance and capacitance is same and it is equal to 20 V. If the resistance ($R = 4 \Omega$) is short circuited, the current in the circuit will be
 - (a) 5 A
- (b) 10 A

- (c) 15 A (d) infinite (e) data given is not enough

VVVVVVVVVV