สารบัญ	หน้า
1. บทนำ	1
1.1 ประวัติโดยย่อของโครงข่ายประสาทเทียม	3
1.2 โครงข่ายประสาทเทียมเชิงลึก	5
1.3 รูปแบบการเรียนรู้	6
1.3.1 แผนภาพการเรียนรู้เชิงลึก	7
1.4 ซอฟต์แวร์สำหรับพัฒนา	8
1.5 การใช้งาน TF เบื้องต้น	18
1.5.1 ค่าคงที่ ตัวแปร และเทนเซอร์	18
1.5.2 การเข้าถึงชั้นของโมเดล	21
1.5.3 การเข้าถึงเทนเซอร์ในโมเดล	23
1.5.4 พื้นฐานการถ่ายโอนการเรียนรู้	24
1.5.5 การบันทึกและโหลดโมเดล	27
1.6 โครงสร้างของหนังสือ	28
1.7 สรุปท้ายบท	29
โจทย์ปัญหา	29
2. โมเดลโครงข่ายประสาทเทียมเชิงลึก	31
2.1 การถดถอยเชิงเส้น	31
2.2 การถดถอยลอจิสติก	34
2.2.1 ฟังก์ชันมูลค่า	37
2.2.2 ขั้นตอนวิธีลดค่าเกรเดียนต์	39
2.2.3 การลดค่าเกรเดียนต์สำหรับการถดถอยลอจิสติก	42
2.2.4 การคำนวณในรูปเวกเตอร์	45
2.3 โครงข่ายประสาทเทียมเชิงลึก	51
2.3.1 แผนภาพการคำนวณสำหรับ DNN ชั้นแฝงเดี่ยว	51
2.3.2 การคำนวณเชิงเวกเตอร์สำหรับทั้งชุดตัวอย่าง	54
2.3.3 ฟังก์ชันกระตุ้นแบบไม่เป็นเชิงเส้น	55
2.3.4 อนุพันธ์ของฟังก์ชันกระตุ้น	58
2.3.5 การลดค่าเกรเดียนต์สำหรับ DNN ชั้นแฝงเดี่ยว	59
2.3.6 โมเดล DNN หลายชั้นแฝง	70
2.3.7 สร้างโมเดลโดยไลบรารี TF	84
2.4 การจำแนกหลายประเภท	91

2.4.1 ฟังก์ชันกระตุ้นแบบซอฟต์แมกซ์	91
2.5 สรุปท้ายบท	98
โจทย์ปัญหา	99
3. การปรับปรุงโครงข่ายประสาทเทียม	101
3.1 การจัดการข้อมูล	101
3.1.1 ค่าเอนเอียงและความแปรปรวน	102
3.1.2 วิธีพื้นฐานในการลดค่าเอนเอียงและความแปรปรวน	104
3.2 การปรับปรุงโมเดลความแปรปรวนสูง	105
3.2.1 การเรกูลาไรเซชันโครงข่ายประสาทเทียม	105
3.2.2 วิธีการดรอปเอาต์	113
3.2.3 การแก้ปัญหาฟิตเกินโดยหยุดฝึกก่อนกำหนด	117
3.3 การเตรียมข้อมูลและตั้งค่าพารามิเตอร์	120
3.3.1 การทำอินพุตให้เป็นบรรทัดฐาน	120
3.3.2 การกำหนดค่าเริ่มต้นของพารามิเตอร์	120
3.4 ขั้นตอนวิธีหาค่าเหมาะที่สุด	128
3.4.1 การแบ่งข้อมูลเป็นกลุ่มย่อย	128
3.4.2 วิธีโมเมนตัม	130
3.4.3 วิธีการแพร่กระจายแบบรากกำลังสองเฉลี่ย	132
3.4.4 วิธีการ Adam	134
3.4.5 การลดระดับการเรียนรู้	138
3.5 การทำกลุ่มให้เป็นบรรทัดฐาน	139
3.6 สรุปท้ายบท	146
โจทย์ปัญหา	147
4. โครงข่ายประสาทเทียมเชิงสังวัตนาการ	149
4.1 การประมวลผลภาพโดยวิธีสังวัตนาการ	150
4.1.1 การเสริมเต็มเมทริกซ์อินพุต	154
4.1.2 การกำหนดช่วงก้าว	155
4.1.3 การสังวัตนาการ 3 มิติ	155
4.2 ชั้นสังวัตนาการในโครงข่ายประสาทเทียม	156
4.2.1 ชั้นพูลลิง	158
4.2.2 ตัวอย่างโมเดล CNN	160
4.3 การแต่งเติมข้อมูลภาพ	180

4.4 โมเดลกรณีศึกษา	189
4.4.1 LeNet-5	190
4.4.2 AlexNet	190
4.4.3 VGG-16 และ VGG-19	191
4.4.4 ResNets	198
4.4.5 โครงข่ายอินเซปชัน	208
4.5 การถ่ายโอนการเรียนรู้	211
4.6 การประยุกต์ใช้งานด้านการตรวจหาวัตถุ	218
4.6.1 การจำแนกและระบุตำแหน่งวัตถุ	218
4.6.2 วิธีการหน้าต่างเลื่อน	221
4.6.3 การแปลงชั้นเชื่อมต่อเต็มเป็นชั้นสังวัตนาการ	222
4.6.4 อิมพลิเมนต์หน้าต่างเลื่อนโดยการสังวัตนาการ	223
4.7 ขั้นตอนวิธี YOLO	224
4.7.1 อัตราส่วนอินเตอร์เซกชันต่อยูเนียน	226
4.7.2 การขจัดการตรวจพบที่ไม่ใช่ค่ามากสุด	227
4.7.3 กล่องจุดตรึง	228
4.8 การประยุกต์ใช้งานด้านการรู้จำใบหน้า	231
4.8.1 การเรียนรู้จากภาพเดียว	232
4.8.2 โครงข่ายสยาม	233
4.9 สรุปท้ายบท	237
โจทย์ปัญหา	238
5. โครงข่ายประสาทเทียมวกกลับ	241
5.1 สัญกรณ์สำหรับข้อมูลลำดับ	241
5.2 โครงข่ายประสาทเทียมวกกลับ	243
5.2.1 การแพร่กระจายข้างหน้าของ RNN	244
5.2.2 การแพร่กระจายย้อนหลังของ RNN	245
5.2.3 จำนวนอินพุตและเอาต์พุตของโมเดล RNN	245
5.3 โมเดลอันดับสูงที่พัฒนาจาก RNN	247
5.3.1 โมเดล GRU	248
5.3.2 โมเดล LSTM	250
5.3.3 โมเดล RNN สองทิศทาง	252
5.3.4 โมเดล RNN เชิงลึก	253
5.4 สร้างโมเดลอันดับโดยไลบรารี TF	254

5.5 การพัฒนางาน NLP โดย TF ขั้นพื้นฐาน	261
5.5.1 การเข้ารหัสคำ	262
5.5.2 การเสริมเต็ม	264
5.5.3 การฝังตรึงคำศัพท์	265
5.6 สรุปท้ายบท	274
โจทย์ปัญหา	275
A. รวมหลักการและวิธีการ	277
A.1 ค่าเฉลี่ยที่ให้น้ำหนักแบบเลขชี้กำลัง	277
A.1.1 การแก้ไขค่าเอนเอียง	279
A.2 ข้อมูลอนุกรมเวลา	281
A.2.1 แนวโน้ม	282
A.2.2 องค์ประกอบตามฤดูกาล	283
A.2.3 การรบกวน	285
A.2.4 สหสัมพันธ์อัตโนมัติ	286
A.2.5 อนุกรมเวลาไม่คงที่	289
A.3 การพยากรณ์ข้อมูลอนุกรมเวลา	290
A.3.1 ตัววัดสมรรถนะ	291
A.3.2 เส้นฐานการพยากรณ์	292
A.3.3 การจัดรูปข้อมูลอนุกรมเวลา	295
B. ซอฟต์แวร์	303
B.1 โปรแกรม GNU wget	303
B.2 การติดตั้ง TF และไลบรารีสนับสนุน	304
บรรณานุกรม	305
ประวัติผู้เขียน	309
ดัชนี	310