7 Si consideri la funzione:

$$f(x) = \begin{cases} -1 + \arctan x & \text{se } x < 0\\ ax + b & \text{se } x \ge 0 \end{cases}$$

Determinare per quali valori dei parametri reali a, b la funzione è derivabile. Stabilire se esiste un intervallo di $\mathbb R$ in cui la funzione f soddisfa le ipotesi del teorema di Rolle. Motivare la risposta.

PISPOSIA.

Lim
$$f(x) = \lim_{x \to 0^{+}} f(x)$$
 CONTINUITY

 $x \to 0^{-}$ (-1 + outaux) = $\lim_{x \to 0^{+}} (a \times + b^{-})$
 $x \to 0^{-}$ (-1 + outaux) = $\lim_{x \to 0^{+}} (a \times + b^{-})$
 $-1 = b^{-}$
 $f(x) = \begin{cases} -1 + \text{outaux} & \text{se } \times < 0 \\ a \times + b^{-} \end{cases}$
 $-1 = b^{-}$
 $a \times b \to 0$

DEVO CONTACULATE IN $x = 0$

Lim $f'(x) = \lim_{x \to 0^{+}} f'(x)$ CONDITIONS DI DERUMBULTI IN $x = 0$
 $x \to 0^{-}$ (IL LIMITE DEVE ELSERE LOSTESSO E FINITO)

Lim $f'(x) = \lim_{x \to 0^{+}} a$
 $f'(x) = \lim_{x \to 0^{-}} a + x^{2} \times b^{-}$
 $f'(x) = \lim_{x \to 0^{-}} a + x^{2} \times b^{-}$

Quindi $f(x) = \lim_{x \to 0^{-}} a + x^{2} \times b^{-}$
 $f'(x) = \lim_{x \to 0^{-}} a + x^{2} \times b^{-}$

Orsernams the $f'(x) \neq 0$ $\forall x \in \mathbb{R}$, duque non ante alcum punts $f'(x) = 0$ the $f''(x) = 0$ duque non ante alcum punts $f'(x) = 0$

le ijoteni nen jossono essere saddisfette. Infetti f à strett. crescente e f(0) < f(b)

per agni intervallo [a,b]

Data la funzione $f_a(x) = x^5 - 5ax + a$, definita nell'insieme dei numeri reali, stabilire per quali valori del parametro a > 0 la funzione possiede tre zeri reali distinti.

 $\left(-4a\sqrt{a}+a<0\right)\left(\sqrt[4]{a}>\frac{1}{4}\right)=> a>\left(\frac{1}{4}\right)^{\frac{4}{3}}=\frac{1}{256}$ $a>\frac{1}{256}$

Interses questo piano (on le retto AB fee trovae H

$$(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 36 = 0 \Rightarrow) 1 + t + 5(-2 + 5t) + t + 36 = 0$
 $(x + 5y - 2 + 5t) + (x + 36 + 0) + ($

RAGGO SFERA
$$(1-0)^2 + (-6+7)^2 + (7-1)^2 = 7/1+1+36 = \sqrt{38}$$

Eq. SFERA
$$(x-1)^2 + (y+6)^2 + (z-7)^2 = 38$$

く = - と