1. Module 1

7 варіант

1.1. 1

1. Схема RSA. Повідомлення: m = 17; параметри: p = 3, q = 7, e = 17.

Знайти d, зашифрувати m (тобто знайти c), розшифрувати c.

$$\begin{cases} p = 3\\ q = 7\\ e = 17\\ m = 17 \end{cases}$$

$$n = 21$$

$$\text{mod } \varphi(n) = 12$$

$$17d = 1 \text{ mod } 12$$

Need to calculate modular multiplicative inverse

$$d=17^{-1} \operatorname{mod} 12$$

Using extended Euclidean algorithm. Let's set: $x_0 = 1, x_1 = 0$

While a>1:

$$q=1; (a,n)=(12,5); (x_0,x_1)=(1,-1)$$

$$q=2; (a,n)=(5,2); (x_0,x_1)=(-1,3)$$

$$q=2; (a,n)=(2,1); (x_0,x_1)=(3,5)$$

$$q=2; (a,n)=(1,1); (x_0,x_1)=(5,\ldots)$$

$$a=1, \mathrm{stop}$$

$$x_0=5\to x=5$$
 Let's verify: $17*5 \bmod 12=85 \bmod 12=1$
$$d=5$$

Public key = (n, e) = (21, 17)

The encrypted message is $y = 17^{17} \mod 21$

The decrypted message is

$$m=17^{17*d} \bmod 21$$

$$m=17^{17*5} \bmod 21$$
 as we know $(17*5)=k12+1=84+1=85$
$$m=17^{7*\varphi(21)}17 \bmod 21=17 \bmod 21$$

1.2. 2

2. Розв'язати порівняння за модулем:

Need to calculate modular multiplicative inverse

$$610x \equiv 1 \mod 987$$
$$x \equiv 610^{-1} \mod 987$$
$$610x - 987y = 1$$

Using extended Euclidean algorithm. Let's set: $x_0 = 1, x_1 = 0$

$q = \left \lfloor rac{r_{i-1} - r_{i-1}}{r_i} ight floor$	$r_i = r_{i-2} - qr_{i-1}$	$t_{i+1} = t_{i-1} - q_i t_i$
0	610	0
1	987	1
1	377	-1
1	233	2
1	144	-3
1	89	5
1	55	-8
1	34	13
1	21	-21
1	13	34
1	8	-55
1	5	89
1	3	-144
1	1	233
1	0	-377

$$x = -377 \mod 987 = 610$$

1.3. 3

$$15^{3^{1000}} \mod 17 =$$

$$3^{1000} \mod 16 = 16^x + y$$

$$15^{16x+y} \mod 17 = 15^y * 15^{16x} \mod 17$$

За малою теоремою Ферма

$$15^{16x} \mod 17 = \left(15^{16}\right)^x \mod 17$$
$$\left(15^{p-1}\right)^x \mod p = 1^x \mod p \longrightarrow \left(15^{16}\right)^x \mod 17 = 1 \mod 17$$

Залишилось знайти у.

$$15^y \mod 17 = 15^{3^{1000}} \mod 17$$

16 is not prime. 3^1000 is not prime, but 3 and 16 is coprime -> we can apply Euler's theorem. $\varphi(n) = 8$

$$3^{1000} \operatorname{mod} 16 = \left(3^{8}\right)^{125} \operatorname{mod} 16$$

By Euler's theorem:

$$a^{\varphi(n)} \equiv 1 \operatorname{mod} n$$

 $3^8 \equiv 1 \operatorname{mod} 16$
 $(3^8)^{125} \equiv 1 \operatorname{mod} 16$
 $3^{1000} \operatorname{mod} 16 = 1 \operatorname{mod} 16$

$$3^{1000} = 16^z + 1$$

Finally:

$$15^{16z} \bmod 17 = 1 \bmod 17$$

 $15^{16z} * 15 \mod 17$

$$1*1*15 \mod 17 = 15 \mod 17$$