## Name Services

- Introduction
- Name services
- Domain Name System
- Directory and discovery services
- Case study of the Global Name Service
- Summary

#### What is Name Service?

- Names: used to refer resources.
- Descriptive attributes also useful means of identification.
- E.g. file name: /etc/passwd or URL: www.cdk4.net
- E.g. Remote object reference or remote file handles.
- A distinct service that is used by client to obtain attributes such as the addresses of resources or objects when given their names
- Fundamental Trios:
  - Names
  - Addresses
  - Routes (path)

#### Name and Address

- Name
  - A human readable string
- Address
  - Bits used by machines to locate an object
- Bind
  - Association between a name and an address
- Resolve
  - Translate from a name to an address
  - Example

#### **Attributes**

Attributes: Value of a property associated with an object.

- DNS
  - IP address
- X.500
  - Person's email address and telephone number
- CORBA Naming Service
  - Remote object reference

#### **Uniform Resource Identifiers**

- URL (Uniform Resource Location)
  - Addresses of web resources
  - Dangling problems: a resource may be moved
- URN (Uniform Resource Name)
  - Pure resource names
  - Intend to solve the dangling problems
  - URN lookup service: mapping from URN to URL
  - E.g. urn:ISBN:0-201-62433-8 identifies books that bear the name 0-201-62433-8 in the standard ISBN naming scheme

#### General name service requirements

- Supports to resolve a name i.e. to lookup attributes from a given name.
- Motivation for name management:
  - Unification: It is often convenient for resources managed by different services to use the same naming scheme. URIs are a good example of this.
  - Integration: Common name service is required in DS because of sharing. (Different Domains)
- Scalability
  - Arbitrary number of names
  - Arbitrary number of administrative organizations
- Flexibility
  - A long lifetime
  - Accommodate variations on the organization of the set of names

## General name service requirements (2)

- High availability
  - Most other systems depend upon it
- Fault isolation
  - Isolate location failures from entire service
- Tolerance of mistrust
  - Not all clients are trusted by all components of the system

- When you hand a *name* to a naming system to resolve, it must ..... look it up to find the corresponding object or entity
  - Resolve
- When you hand an address to a system, it already knows how to find it.
  - E.g., an IP address, an i-node of a file system
- When you hand a path (i.e., a route) to a system, you are giving it a sequence of steps it knows how to follow
  - Iteratively or recursively

## Name spaces

- A collection of all valid names recognized by a particular service
- Require a syntactic definition
- Hierarchic Name spaces:
  - Each part of name is resolved relative to a separate context.
  - E.g. file system- directory represents a context.

#### Internal structure of a name

- Hierarchic structure, e.g./etc/passwd
  - Resolve relative to a separate context
  - Potentially infinite
  - Different context managed by different people
- Alias

## Naming domain

- A single administrative authority
  - A name space for which there exists a single authority
  - E.g. www.pku.edu
- Be stored in a separated server
  - Naming domains are in general stored in different name servers

## **Combining name spaces**

- Homogeneous/ heterogeneous name spaces
- Merging
  - E.g. mount file system in Unix and NFS
  - E.g. create a higher-level root context
- •How?
  - Each computer has its own root, with overlapping file names. For example, /etc/passwd refers to one file on red and a different file on blue.

•The obvious way to merge the file systems is to replace each computer's root with a 'super root' and mount each computer's file system in this super root, say as /red and /blue. Users and programs can then refer to/red/etc/passwd and /blue/etc/passwd.

## Heterogeneity:

Cell

- DS allows heterogeneous name spaces to be embedded within it.
- DCE names may contain junctions, which are similar to mount points in NFS and UNIX except that they allow heterogeneous name spaces to be mounted.
- Ex: /.../dcs.qmul.ac.uk/principals/Jean.Dollimore.\_\_\_\_\_\_ Junction

## **Customizing name spaces**

- One file with different names
  - E.g. a NFS directory mounted on different machines
- One name refer to different files
  - E.g. install configuration for multi-platform
- One name space per people

#### Name resolution

- Resolution is an iterative process, where a name is repeatedly presented the naming context.
- Name space is partitioned in different name servers(very large database)
- Navigation: process of locating naming domain from more than one name server is order to resolve name.
- Iterative navigation
  - Client controlling
  - E.g., DNS, NFS
- Maps given name onto attributes.
  e.g. /etc/passwd



A client iteratively contacts name servers NS1–NS3 in order to resolve a name

# • To resolve a name, it is first presented to some initial naming context; resolution iterates as long as further contexts and derived names are output.

• Example: /etc/passwd, in which 'etc' is presented to the context '/', and then 'passwd' is presented to the context '/etc'.

- •One navigation model that DNS supports is known as iterative To resolve a name, a client presents the name to the local name server, which attempts to resolve it.
- The local name server has the name, it returns the result immediately. If it does not, it will suggest another server that will be able to help.
- Resolution proceeds at the new server, with further navigation as necessary until the name is located or is discovered to be unbound.

E.g., ftp.cs.vu.nl



## Server controlled navigation

- Non-recursive/Recursive
  - Recursive type is suitable to environment where there are administrative domain prohibits



A name server NS1 communicates with other name servers on behalf of a client

- Under non-recursive server-controlled navigation, any name server may be chosen by the client.
- This server communicates by multicast or iteratively with its peers in as it were a client.
- Under recursive server-controlled navigation, the client once more contacts a single server.
- If this server does not store the name, the server contacts a peer storing a (larger) prefix of the name, which in turn attempts to resolve it.
- This procedure continues recursively until the name is resolved.

- If a name service spans distinct administrative domains, then clients executing in one administrative domain may be prohibited from accessing name servers belonging to another such domain.
- Moreover, even name servers may be prohibited from discovering the disposition of naming data across name servers in another administrative domain.
- Then, both client-controlled and non-recursive server-controlled navigation are inappropriate, and recursive server-controlled navigation must be used.

#### E.g., ftp.cs.vu.nl



## Caching tech. in name resolution

- To store the result of previous name resolutions.
- Enhance response time
- Eliminate the workload of high-level name servers
- Isolate the failures of high-level name servers

## The Domain Name System

- Original Internet Naming scheme
  - A central master files
  - Download to all hosts by FTP
- Domain names [1987]
  - Name space is partitioned both organizationally and according to geography
  - Convert domain names into IP addresses
- Hierarchical partitioning of the name database, replication of naming data & Caching.

### Parts of a URL



**Subdomain** 

Top-level

domain



#### The DNS name space: Top Level Domains

Com – Commercial organizations

Edu – Universities and other educational institutions

Gov – US governmental agencies

Mil – US military organizations

Net – Major network support centres

Org – Organizations not mentioned above

Int – International organizations

Us – united States

Uk – United Kingdom

Cn - China



## **DNS** queries

- Internet DNS is primarily used for simple host name resolution and for looking up electronic mail hosts, as follows:
- 1. Host name resolution: From URL to IP address
- 2. Mail host location
  - Given a domain name, return a list of domain names of hosts that can accept the mail
  - E.g. tom@dcs.rnx.ac.uk DNS is queried with the address dcs.rnx.ac.uk and the type designation 'mail'. It returns a list of domain names of hosts that can accept mail for dcs.rnx.ac.uk, if such exist.
- 3. Reverse resolution: From IP to URL

## DNS queries ...continued

#### 4. Host information

• E.g. the architecture type or operating system of a machine

#### 5. Well-known services

- A list of the services run by a computer (telnet/ ftp)
- Protocol used to obtain them (UDP & TCP)





#### **DNS** name servers

- DNS names are divided into Zones
- Zone
  - Include names in the domain, less any sub-domains (a zone could contain data for Queen Mary, University of London qmul.ac.uk less the data held by departments (for example the Department of Computer Science dcs.qmul.ac.uk).
  - At least two name servers for the zone
  - Hold name servers for the sub-domains
- Each server hold zero or more Zones
  - Zero zone: the caching name server

#### DNS name servers ...continued

- Servers that a name server holds
  - Lower-level name servers
    - Child name servers
  - High-level name servers
    - One or more root name servers
    - Parent name server

#### **DNS** name resolution

- Iterative navigation / recursive navigation
- Example
- DNS resource types

## **Navigation and Query Processing**

- Resolver: Client that access name server.
- Resolver specifies which type of navigation is required.
  - Recursive and Iterative Navigation
- BIND: Berkeley Internet Name Domain
  - Implementation of DNS on UNIX
  - Supports primary, secondary and cache-based servers

## **DNS** performance

- Replication
  - Zone data are replicated on at least two name servers
  - Master server / secondary server
    - Synchronize periodically
- Cache
  - Any server is free to cache data
  - Time-to-live value

# DNS performance (2)

- Availability & Scalability
  - Achieved by a combination of replication, cache and partition
- Acceptable inconsistent naming data

## **Directory Services**

- A special kind of naming service
  - Searching attributes (no name but knows only attributes)
  - E.g. What is the name of user who is phone number is 0250-22224533
  - Which computer in this building is running on MAC OS?
- Directory Service: a service that stores collections of bindings between names and attribute and looks up entries that match attribute-based specifications.
- Entries
  - Each entry is concerned with a set of <attribute, value> pairs
- Query
  - Lookup by known attributes
  - Return interested attributes
  - E.g. query one's telephone No. by his name

# **Directory services (2)**

- Yellow page / white page
  - Directory service / Conventional naming service
- Directory servers and navigation
  - Similar to name service
- Example
  - Active Directory Service
  - •X.500
  - LDAP

#### **Discovery services**

- A special kind of directory service
- Register the services provided in a spontaneous network.(can connect and disconnect unpredictably.)
- General operations
  - Register / lookup / de-register
- •E.g. a registered printer

ResourceClass=printer, type=laser, colour=yes, resolution=600dpi,

Location=room101, url=http://www.hotelDuLac.com/services/printer57

#### **Introduction to GNS(Global Name Service)**

- Designed by DEC lab [lampson 1986]
- To provide facilities for resource location, mail addressing and Authentication
- Design objectives of GNS:
  - Large Size: Millions of computer names
  - Long life time: accommodate changes
  - High Availability
  - Fault Isolation: Local failures don't cause the entire system to fail.
  - Tolerance of Mistrust

#### **Architecture of GNS**

- Directory tree / value tree
- Two levels:
  - Client Level: hierarchical names & their values with operations
  - Admin Level: Synchronized copies of database
- Directory identifier (DI)
  - Unique identifier of a directory
- Client side: Name of an entry
  - <directory name, value name>
  - E.g. <EC/UK/AC/QMW, Peter.Smith/password>

## Architecture of GNS (2)

- Multiple name servers
  - Directory tree is partitioned and stored in many servers
- Replication
  - Each partition is replicated in several servers
- Cache
  - Inconsistency cache data is acceptable

## How does GNS accommodate changes?

- Merge two name space by a super-root
  - How to it transparent to client applications?
  - E.g. how to locate /uk/ac/qmw?



## **Working root DI**

- Client agent
  - Store the DI of working root by client agent
  - E.g., for </UK/AC/QMW, Peter.Smith>, client agent stores #599 which is the DI of "/", i.e. EC
- Resolve name
  - Working root DI + relative path
    - Uniquely refer to a name in the merged tree
  - E.g. <#599/UK/AC/QMW, Peter.Smith>

#### Well-known directories

- A table of well-know directories
  - Mapping between working root DI to new absolute path
- Replication
  - Well-know directories are replicated at each nodes
  - Bottleneck of consistency
- Examples

# Composed naming domains used to access a resource from a URL





#### DNS name servers



Name server names are in italics, and the corresponding domains are in parentheses. Arrows denote name server entries



#### **DNS** resource records

| Record type | Meaning                               | Main contents                             |
|-------------|---------------------------------------|-------------------------------------------|
| A           | A computer address                    | IP number                                 |
| NS          | An authoritative name server          | Domain name for server                    |
| CNAME       | The canonical name for an alias       | Domain name for alias                     |
| SOA         | Marks the start of data for a zone    | Parameters governing the zone             |
| WKS         | A well-known service description      | List of service names and protocols       |
| PTR         | Domain name pointer (reverse lookups) | Domain name                               |
| HINFO       | Host information                      | Machine architecture and operating system |
| MX          | Mail exchange                         | List of < preference, host> pairs         |
| TXT         | Text string                           | Arbitrary text                            |

Zone data are stored by name servers in files in one of several fixed types of resource record.



#### GNS directory tree and value tree for user Peter.Smith





## Merging trees under a new root



# Restructuring the directory



