$$\max_{x,y} \{x,y\} = \frac{|x-y| + (x+y)}{2}$$

$$\min_{x} \{x,y\} = \frac{|x-y| + (x+y)}{2}$$

min
$$\{x,y\} + \max\{x,y\} = x+y$$

min $\{x,y\} = x+y - \max\{x,y\}$
min $\{x,y\} = (x+y) - |x-y| + (x+y) = (x+y) - |x-y|$

(2)
$$x, y \in \mathbb{R}$$

 $a \mid |x+y| \leq |x| + |y||^2 = (|x+y||^2) \leq |x^2+y^2+a|x| \cdot |y|$
 $a \mid |x-y|| \geq |x| - |y|$
 $a \mid |x-y| + |y| \geq |x|$
 $a \mid |x-y| + |y| \leq |x-y| + |y|$
 $a \mid |x| = |x-y+y| \leq |x-y| + |y|$

MIN
$$(A) = (-\infty, 0)$$

 $inf(A) = max (MIN(A)) = 0$
 $inf(A) = max (MIN(A)) = 0$
 $max A = 0$
 $max A = 0$

d)
$$aniN(A) = (-a0, -1)$$
 $sup A = 2$
 $inf A = -1$ $min A = 2$
 $may (A) = \sum 2, +a0$ $mox A = 2$
 $ci A - \{f_n \mid n \in N^{4}\}$
 $Min A) = (-a0, 0)$

 $d) A = \left\{ \frac{1}{x - \left\{x\right\}} \right\} + \epsilon R \left\{ Z\right\}$

$$M(A) = (-\infty, 0)$$

$$inf(A) = anax((-\infty, 0)) = 0$$

$$inf(A) = \sum_{i=1}^{n} + \infty$$

$$aup(A) = 1$$

$$min(A) = x$$

$$max(A) = 1$$

a)
$$m = a m A = 3 \%$$

from $m! \in M! M(A) \Rightarrow m' \leq a , \forall a \in A$
 $m \in A$

analog $m \in A$
 $m \in A$

(5) A,B C R movide, marginite si AEB => inf B = inf A = ompA = omp B Lo tema int A Easoup A, FacA fie m=infB=) mEMIN(B) => mER +heB => m < a Hack =) m < onin(A) => m < inf A 6 Demonstrati cà s'intre oricare a m seale distinctio 7 eal putin un mer trational (respective incisional) ach, alber 1 20 => -] m ER/+: M> 1/2-9 $\forall x \in \mathbb{R}$ $x_{-1} \subset [x] \leq x$ [x] = max } KEZ [K E X } fie m= [n.a]+1 eZ m el m.a-1 L[m-a] = m.a /+1 m.a cm = m.a+1 = m +0 $a \neq \frac{m}{n} \neq a + \frac{1}{m} \leq \alpha + (h - \alpha) = b$ => m e(a,b) 1 Q

J2# Q

Derce ver real orte limita unui sie de me rationale (9) inationale) Exemple concrete it = a 1 y= 52

fox till

YM EH+

$$f \in \mathbb{N}^{+}$$

$$f \in$$

=> lim 9m=x

$$\gamma = \sqrt{2}$$
 $i_n = \sqrt{2} + \frac{1}{n}, n \in \mathbb{N}$
 $\gamma_n = \sqrt{2} + \frac{1}{n}, n \in \mathbb{N}$
 $\gamma_n = \sqrt{2} + \frac{1}{n}, n \in \mathbb{N}$

$$9m \rightarrow \sqrt{2}$$

$$9m \rightarrow \sqrt{2}$$

$$9m \rightarrow \sqrt{2}$$

$$219m \rightarrow 1$$

$$219m \rightarrow 1$$

$$3m \rightarrow 1$$

$$\frac{70-1}{4}$$
Ex: $9_{m+1} = \frac{9_{m}}{a} \cdot \frac{1}{4m}$ of $m \in \mathbb{N}$, $9_{70} \in \mathbb{Q}$, $9_{0} > 0$
 $10^{m+1} = \frac{9_{m}}{a} + \frac{1}{4m}$ $= \frac{7}{2} \cdot \frac{9_{m}}{a^{m}} \cdot \frac{1}{4m} = \sqrt{2}$
 $10^{m} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2}$
 $10^{m} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2}$
 $10^{m} \cdot \sqrt{2} \cdot \sqrt{2} \cdot \sqrt{2}$
 $10^$

=> $\sqrt{6} + ... + 1 = 0$ P.P. $d = \frac{7}{4} \cdot 19.9 + 7 \cdot 12 \neq 0$ => 211 | 3 = 1 + 13 = 3 almud & xo 311 | $4 \neq 0$