circuit-invader: circuits drawn with the Lagrange Lagrange

A collection

Alexandre Quenon

Last update: July 3, 2019

Contents

1		olar-based circuits	1
	1.1	Common emitter	. 1
	1.2	Common collector	. 1
	1.3	Common base	. 1
2		OS-based circuits	3
	2.1	Common source	. 3
	2.2	Common drain	. 4
	2.3	Common gate	. 4
3 Operational amplifier based circuits		erational amplifier based circuits	Ę
	3.1	Basic stages	
	3.2	Electrical arithmetic operators	
	3.3	First order active filters	

List of Figures

1.1	Common emitter bipolar transistor, with direct coupling at input	1
1.2	Common emitter bipolar NPN transistor polarized by current injection to	
	the base, with capacitive coupling at input	1
1.3	Common emitter bipolar transistor polarized by a resistive divider, with	
	capacitive coupling at input	2
1.4	Common collector bipolar transistor, with direct coupling at input	2
2.1	Common source CMOS transistor, with direct coupling at input	3
2.2	Common source CMOS transistor polarized by a resistive divider, with	
	capacitive coupling at input	3
2.3	Common drain CMOS transistor, with direct coupling at input	4
3.1	Follower amplifier	5
3.2	Amplifiers	6
3.3	Voltage sum	6
3.4	First order active filters op amps architectures with infinite gain	7
3.5	First order active filters op amps architectures with limited gain	8

1 Bipolar-based circuits

1.1 Common emitter

Figure 1.1: Common emitter bipolar transistor, with direct coupling at input.

Figure 1.2: Common emitter bipolar NPN transistor polarized by current injection to the base, with capacitive coupling at input.

1.2 Common collector

1.3 Common base

Figure 1.3: Common emitter bipolar transistor polarized by a resistive divider, with capacitive coupling at input.

Figure 1.4: Common collector bipolar transistor, with direct coupling at input.

2 CMOS-based circuits

2.1 Common source

Figure 2.1: Common source CMOS transistor, with direct coupling at input.

Figure 2.2: Common source CMOS transistor polarized by a resistive divider, with capacitive coupling at input.

2.2 Common drain

Figure 2.3: Common drain CMOS transistor, with direct coupling at input.

2.3 Common gate

3 Operational amplifier based circuits

3.1 Basic stages

Basic stages include:

- the follower (fig. 3.1),
- the inverting amplifier (fig. 3.2a), and
- the non-inverting amplifier (fig. 3.2b).

Figure 3.1: Follower amplifier.

3.2 Electrical arithmetic operators

3.3 First order active filters

First order active filters include low-pass and high-pass filters, either with infinite (fig. 3.4) or limited (fig. 3.5) gain.

Figure 3.2: Amplifiers.

Figure 3.3: Voltage sum.

Figure 3.4: First order active filters op amps architectures with infinite gain.

Figure 3.5: First order active filters op amps architectures with limited gain.