LKP PERTEMUAN 3 PMK

1. Buktikan fungsi berikut konvergen atau divergen
$$\sum_{n=1}^{\infty} (\frac{3}{n^2+5n+6} - 9^{-n+2}4^{n+1})$$

- 1	3 - g2-n, qn+1 merupakan deret divergen/konvergen?
(n.	5n+6
suatu	deret E Xx dikatakan konvergen jika bartsan jumlah parsial (Sn)
konver	gen, dengan kota loin, lim sn = l
	n→w
+ Deret	diatas dipecah menjadi \(\sum_{n=1}^{2}\) dan \(\sum_{n=1}^{2}\) dan \(\sum_{n=1}^{2}\) dan \(\sum_{n=1}^{2}\)
	11 751776
+ ž	3 = 3 \(\sum 1
N=1	$\frac{3}{n^2+5n+6} = \frac{3}{n+2} \frac{1}{(n+2)(n+3)}$
	s 3. Σ / 1 - 1 \
	$= 3. \sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right)$
	$= 3 \cdot \left(\frac{1 - \frac{1}{3}}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{n+2} + \frac{1}{n+3} \right)$
	=3(1-1)
	$=3\left(\frac{1}{3}\frac{1}{(n+3)}\right)$
	$ \frac{2}{n \to \infty} \left(\frac{3 \cdot \left(\frac{1}{3} - \frac{1}{3} \right)}{3} \right) = 1 \text{(konvergen)} $
	1 113 1
+ 5 g	$4^{n+1} = \sum_{n=1}^{\infty} 9^{-(n-2)}, 4^{n+1} = \sum_{n=1}^{\infty} 4^{n+1}$
net	n:1 9n-2
	ε Σ 4 ^{h-1} . 4 ²
	90-1.9-1
·	= \(\sum \) 16.9.4 \(\text{n}^{-1} \)
	n=1 gn-1
	-
	2 Σ 144 (4) ⁿ⁻⁴
	(9)
1	= 144 = 1296 (konvergen)
	1-4/9 5

Jumiah deret grand assisted and remained y ten, in

$$\frac{z}{L} \left(\frac{3}{n^2 + 5n + 6} - 9^{2-n} \cdot 4^{n+1} \right) = 1 - 1296 = -1291$$

karen barisan jumlah parsial (sn) konvergen dan memiliki nilai 1 maka deret tsb dikatakan konvergen. 2. Buktikan fungsi berikut konvergen atau divergen $\sum_{n=1}^{\infty} \frac{n^2+2}{n^4+5}$

$$\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^4 + 5}$$

E nº + 2 divergen / kunvergen ? (431 bonding limit)
(n+5)
Misalkan an 20, bn 70 dan lim
C DN /
(i) Jika $U \leqslant L \leqslant \infty$, maka $\sum_{n=1}^{\infty}$ an dan $\sum_{n=1}^{\infty}$ by sames konvergen alou divergen
(ii) jika L 20 dan \(\tilde{\Sigma}\) bn konvergen maka an konvergen.
Dari deret diatas misal ditetapkan
$2n = n^2 + 2 > 0$ dan $bn = n^2 + 2 > 0$ $n^4 + 5$ n^4
n⁴ + 5 n⁴
-> Lim & an \ = L
$\rightarrow \lim_{n\to\infty} \left(\frac{\partial n}{\partial n}\right) = \Gamma$
Lim / n2+2. n4.) = Lim / n9)
$\frac{\text{Lim}\left(\frac{n^2+2}{n^2+5},\frac{n^2}{n^2+2}\right)}{n^2+5} \approx \frac{\text{Lim}\left(\frac{n^2}{n^2+5}\right)}{n^2+5}$
2 Lm / M
$\frac{1}{n+\infty} \left(\frac{p^{4}}{p^{4}} \cdot \left(\frac{1+5}{n^{4}} \right) \right)$
(n1)
- 11m / 1
77 W 1 4 M
$\frac{2 \operatorname{Lim}}{n^{2}} \left(\frac{1}{1 + \frac{5}{2}} \right)$
= 1 =1 → O <l<∞< td=""></l<∞<>
1+5 x0 samas konvergen /divergen

karena bn = nº+2 -+ kunvergen, maka an juga kunvergen