Crittografia a chiave pubblica: uno sguardo alle vulnerabilità di RSA e Diffie-Hellman

Leonardo Alfreducci

Relatori Dott. Gaspare Ferraro Prof.ssa Anna Bernasconi

> Università di Pisa Dipartimento di Informatica

> > Pisa. 7 ottobre 2022

Indice

Introduzione

2 RSA

Parte 1

Introduzione

Pisa, 7 ottobre 2022

Introduzione

- Una grandissima quantità di informazioni viaggia attraverso la rete: è dunque di fondamentale importanza proteggere i dati che vengono scambiati.
- Si passeranno in rassegna i due protocolli più usati per lo scambio di chiave: RSA e Diffie-Hellman, quest'ultimo analizzato su campo primo e su curve ellittiche.
- Lo scopo della tesi è quello di andare al di là di una trattazione teorica di questi due protocolli, concentrandosi piuttosto sull'aspetto pratico.

Parte 2 RSA

Pisa, 7 ottobre 2022

La teoria di RSA

- È un cifrario asimmetrico. Sono dunque presenti due coppie di chiavi:
 - (e, n) utilizzata per cifrare (chiave pubblica);
 - (d, n) utilizzata per decifrare (*chiave privata*).
- Si scelgono due numeri primi p e q.
- Si calcola $n = p \cdot q \in \phi(n) = (p-1) \cdot (q-1)$.
- Si sceglie $e < \phi(n)$ tale che gcd(e, n) = 1.
- Si calcola $d = e^{-1} \mod \phi(n)$.
- Tutti i passi descritti possono essere svolti in tempo polinomiale.

Pisa, 7 ottobre 2022

RSA: cifratura e decifrazione

• Per cifrare un messaggio m è sufficiente calcolare il crittogramma c come:

$$c = m^e \mod n$$
.

• Per ottenere il messaggio m dato c è sufficiente calcolarlo come:

$$m = c^d \mod n$$
.

La sicurezza di RSA 1

- La sicurezza di RSA è garantita grazie al problema della fattorizzazione di un numero n come prodotto di due fattori $p \cdot q$.
- Per questo è importante scegliere due fattori primi molto grandi, tale che il modulo sia almeno 2048 bit, meglio ancora se 3072 bit.
- Nel 1999 è stato fattorizzato RSA-512 in circa 7 mesi utilizzando centinaia di calcolatori e impiegando l'equivalente di 8400 anni di CPU.
 - Nel 2009 lo stesso attacco poteva essere effettuato in 83 giorni da un solo calcolatore.
- Nel 2020 il numero più grande fattorizzato ha 829 bit, impiegando l'equivalente di 2700 anni di CPU.

La sicurezza di RSA 2

- Sono stati implementati tre algoritmi per la fattorizzazione:
 - Wheel factorization: fondamentalmente un brute force sul numero, cercando i divisori;
 - Pollard's rho factorization: di natura probabilistica, è quello più efficiente;
 - Fermat factorization: è più veloce se i due numeri primi sono vicini tra loro.
- Sono stati fattorizzati moduli da 120 bit utilizzando l'algoritmo Pollard's rho in poco meno di un'ora su un moderno calcolatore.

RSA: L'esponente pubblico e

- L'esponente pubblico non dovrebbe essere troppo grande per velocizzare la cifratura.
- Con l'algoritmo delle quadrature successive, l'operazione può essere svolta in tempo $O(\log_2 e + hm(e))$, dove hm(e) rappresenta il peso di Hamming.
 - Il peso di Hamming rappresenta il numero di simboli diversi dal simbolo 0 dell'alfabeto utilizzato.
- L'esponente pubblico, dato che non contiene alcuna informazione, viene generalmente riutilizzato per molteplici operazioni.

RSA: Valori più utilizzati di e con i rispettivi pesi di Hamming

X.509			PGP			Combinati		
e	hm(e)	%	е	hm(e)	%	е	hm(e)	%
65537	2	98.4921	65537	2	48.8501	65537	2	95.4933
17	2	0.7633	17	2	39.5027	17	2	3.1035
3	2	0.3772	41	3	7.5727	41	3	0.4574
35	3	0.1410	19	3	2.4774	3	2	0.3578
5	2	0.1176	257	2	0.3872	19	3	0.1506
7	3	0.0631	23	4	0.2212	35	3	0.1339
11	3	0.0220	11	3	0.1755	5	2	0.1111
47	5	0.0101	3	2	0.0565	7	3	0.0596
13	3	0.0042	21	3	0.0512	11	3	0.0313
65535	16	0.0011	$2^{127} + 3$	3	0.0248	257	2	0.0241
altri	-	0.0083	altri	-	0.6807	altri	_	0.0774

RSA: Generazione errata della chiave

- L'esponente e deve essere scelto coprimo con $\phi(n)$.
- In una pre-release di Windows 10, non veniva effettuato il controllo che $gcd(e, \phi(n)) = 1$ nel momento in cui veniva scelto l'esponente pubblico.
- Il corretto funzionamento di RSA è compromesso.

RSA: la probabilità di scegliere l'esponente pubblico errato

• Anche se non viene effettuato il controllo che $gcd(e, \phi(n)) = 1$, non è detto che l'uguaglianza non sia comunque verificata.

•

