Algorithms II

Ankur Kumar(14109), Tushar Vatsal(14766)

Theoretical Assignment 3

A real life application of Directed Acyclic Graphs

Given a DAG G=(V, E) and s(root vertex) and t(exit vertex)Pathid of a path p from s to t is defined as :

$$Pathid(p) = \sum_{e \in p} w(e), where \ e \in E$$

Problem Statement: To assign unique pathids to all possible paths from s to t such that the pathids range from 0 to N-1where there are N possible paths from s to t.

Inductive Approach

Consider the topological ordering of given DAG(we shall refer to the vertices in this ordering only). Suppose for a vertex v, we assigned pathids to each path from source vertex 's' to any vertex w_i such that $(w_i, v) \in E$. Each path from s to w_i is assigned a unique pathid in the range $[0, m_i - 1]$ where m_i is the number of paths from s to w_i .

Let there are k vertices $\{w_1, w_2, w_3, ..., w_k\}$ such that $(w_i, v) \in E$. So total number of paths from s to $v = \sum_{i=1}^k m_i$. Then how to assign pathids from s to v such that we could assign unique pathids to $\sum_{i=1}^k m_i$ possible paths from 0 to $(\sum_{i=1}^k m_i - 1)$. This can be done simply as mentioned below:

Notations: $\delta(i, j) = \text{weight of edge } (i,j) \text{ and } P(i, j) = \text{number of paths from i to j}$ **Idea:** Assign $\delta(w_1, v) = 0$, and $\forall i > 1$ assign $\delta(w_i, v) = \sum_{j=1}^{i-1} m_j = \sum_{j=1}^{i-2} m_j + m_{i-1} = \delta(w_{i-1}, v) + P(s, w_{i-1})$

 $s \rightsquigarrow w_1 \rightarrow v$ will give me all possible paths with pathids from 0 to $m_1 - 1$

 $s \rightsquigarrow w_2 \rightarrow v$ will give me all possible paths with pathids from m_1 to $m_2 - 1 + m_1$

 $s \leadsto w_i \to v$ will give me all possible paths with pathids from $\sum_{j=1}^{i-1} m_j$ to $m_i - 1 + \sum_{j=1}^{i-1} m_j$

 $s \rightsquigarrow w_k \to v$ will give me all possible paths from $\sum_{j=1}^{k-1} m_j$ to $m_k - 1 + \sum_{j=1}^{k-1} m_j$

Thus we get all paths with pathids assigned from 0 to $(\sum_{i=1}^{k} m_i - 1)$

Thus we can get all paths with unique pathids assigned as asked in the question from s to t inductively.

Algorithm and Time Complexity

As mentioned above, wherever we will be writing k_{th} vertex, it means k_{th} vertex in topological ordering.

Step 1: We will first get the topological ordering of the given DAG \triangleright **O**(**m**+**n**) time.

Step 2: Start processing from first vertex (source vertex, s) iteratively till we arrive at the exit vertex t..

Step 2(a): We have to assign every vertex number of paths coming from 1^{st} vertex to that vertex. Let P be an array where P[v]=number of paths from 1st vertex to i^{th} vertex.

Assign P[1] = 1 and for any vertex v > 1, assign $P[v] = \sum_{k \in S} P[k]$, where $S = \{k | (k, i) \in E\} \triangleright \mathbf{O}(\mathbf{in_degree}(\mathbf{v}))$.

Step 2(b): Assign weights to all edges (k, i) such that $(k, i) \in E$ in the way described in the inductive approach. $\delta(w_1, v) = 0$, and $\forall i > 1$ $\delta(w_i, v) = \sum_{j=1}^{i-1} m_j = \delta + P[w_{i-1}]$ where $\delta = \delta(w_{i-1}, v)$

We would have calculated $\delta(w_{i-1}, v)$ and $P[w_{i-1}]$ beforehand. We will keep one variable δ and update it with $\delta(w_i, v)$ each time w_i is processed. O(1) time to assign weight to one edge. total number of edges = O(in_degree(v)). \triangleright O(in_degree(v)) **Clarification:** Since we are assigning P values in topographical ordering, therefore assigning P values to any vertex i is not a problem because it requires P values of vertices j such that topographical ordering of j is before i. Also assigning weights to edges coming into any vertex i requires P values of vertices w such that $(w, i) \in E$ which we know beforehand since w comes before i in topographical ordering. Hence we scan the in-edges of all vertices in topographical ordering

Total Time = $O(m+n) + \sum_{i \in V} O(in_degree(i)) = O(n+m)$

2 At least one path

Given graph G = (V, E), to find if for all pair of vertices (u, v) in V either u is reachable from v or v is reachable from u. Find all the maximal SCCs(strongly connected components) of this graph G. This can be achieved in O(m + n) time. Say there are k such maximal SCCs. Let S be the set of all such SCCs, where $S = \{s_1, s_2, s_3, ..., s_k\}$, where s_i is ith maximal SCC. Treating each maximal SCC s_i as a vertex we get a graph say G' = (S, E'). This G' should be a DAG. Suppose G' is not a DAG implies there exist a cycle say : $(a_1 \leadsto a_2 \leadsto ... \leadsto a_i \leadsto a_1)$ where $a_j \in S \ \forall j \in \{1, 2, ..., i\}$

Just for the sake of clarity, I have shown edges between two SSCs though hook symbol. Take any two vertex u and $v \in V$ from this cycle.

Case1: Both u and v belong to same a_j

Since both the vertices u and v belong to an SCC, they are strongly connected to each other.

Case2: Vertex $u \in a_i$ and vertex $v \in a_k$, where j < k

Consider the path $u \rightsquigarrow a_{j+1} \rightsquigarrow ... \rightsquigarrow a_{k-1} \rightsquigarrow v$ It can be seen from this path that v is reachable from u. Also u is reachable from $v: v \rightsquigarrow a_{k+1} \rightsquigarrow a_i \rightsquigarrow a_1 \rightsquigarrow ... \rightsquigarrow a_{j-1} \rightsquigarrow u$

Note here u and v are vertices in V and a_j s are SCCs. Thus any two vertices taken from SCC a_j where $j \in \{1, 2, ..., i\}$ are strongly connected which contradicts the fact that these SCCs are maximal. Hence graph G' is indeed a DAG. Since this is a DAG we can arrange S in topographical ordering. Let this ordering be $\{v_1, v_2, ..., v_k\}$ where $S = \{v_1, v_2, ..., v_k\} = \{s_1, s_2, s_3, ..., s_k\}$ but I am not claiming that $s_i = v_i$. Again this topological ordering can be done in O(n + m) time in worst case when k = n.

Claim:

If there exists a path P: $v_1 \rightarrow v_2 \rightarrow \rightarrow v_k$ where $(v_i, v_{i+1}) \in$ edge in DAG of SCCs, then for all pair of vertices (u, v) in V either u is reachable from v or v is reachable from u in G otherwise not. This check can be achieved in O(m+n) time(trivial).

Proof of Correctness of this claim

Suppose for some i, $(v_i, v_{i+1}) \notin E'$. Then pick any vertex p from v_i and q from v_{i+1} . If $(v_i, v_j) \in E'$, then $j \ge i + 2$ since j cannot be i + 1 and j < i because in a topological ordering we cannot have any edge of the form (v_m, v_n) , where n < m. So p is not reachable from q.

Also q is not reachable from p because $(v_i, v_{i+1}) \notin E'$. If $(v_i, v_j) \in E'$ then $j \ge i+2$ and $\forall j \ge i+2$ $(a_i, a_j) \notin E'$ from topological ordering. Thus q is also not reachable from p.

Now suppose there exists such a path then for all pair of vertices (u, v) in V either u is reachable from v or v is reachable from u.

Choose any two vertices p and q.

Case1: p and q belong to same v_i

Then there is a path from p to q and from q to p since they belong to an SCC and hence they are strongly connected.

Case2: $p \in v_j$ and $q \in v_k$ say j < k

In this case consider a path from p to q which is shown below:

 $p \rightsquigarrow v_{i+1} \rightsquigarrow \dots \rightsquigarrow v_{k-1} \rightsquigarrow q$.

Thus there exists a path from p to q Hence proved. Thus my claim is correct.