Part 6: Complexity of Productivity

Jörg Endrullis Clemens Grabmayer Dimitri Hendriks

Vrije Universiteit Amsterdam - Universiteit Utrecht - Vrije Universiteit Amsterdam

ISR 2010, Utrecht University
July 8, 2010

- 1. The arithmetical and analytical hierarchies
- 2. Complexity of productivity and equivalence for stream spec's
- 3. Productivity and variant definitions in TRSs
- 4. Complexity of productivity, and variants, in TRSs
- 5. Summary and References

1. The arithmetical and analytical hierarchies

The arithmetical hierarchy

$$\Pi^0_0 := \Sigma^0_0 := 1^{\text{st}}$$
-order arithmetic formulas $\Sigma^0_{n+1} := \{\exists x_1 \dots \exists x_k \Psi \mid \Psi \in \Pi^0_n\}$ with bounded quantifiers $\Pi^0_{n+1} := \{\forall x_1 \dots \forall x_k \Psi \mid \Psi \in \Sigma^0_n\}$

$$\mathbf{F}_{n+1}^{\mathbf{0}} := \{ \exists x_1 \dots \exists x_k \Psi \mid \Psi \in \mathbf{\Pi}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{\Sigma}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{\Sigma}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{\Sigma}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{\Sigma}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{\Sigma}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}}, \\
\mathbf{I}_{n+1}^{\mathbf{0}} := \{ \forall x_1 \dots \forall x_k \Psi \mid \Psi \in \mathbf{I}_n^{\mathbf{0}},$$

 $\Sigma_n^0(\Pi_n^0) := \text{interpretations of formulas in } \Sigma_n^0(\Pi_n^0) \text{ over } \mathbb{N}$ $\Delta_n^0 := \Sigma_n^0 \cap \Pi_n^0$

Summary/References

The analytical hierarchy

- 2. Complexity of productivity and equivalence for stream spec's

PRODUCTIVITY PROBLEM for class C of stream spec's

Instance: A stream specification $\mathcal{R} \in \mathcal{C}$ with root M_0

Question: Is \mathcal{R} productive?

(Does $M_0 \rightarrow u_0 : u_1 : u_2 : u_3 : ... ?$)

```
PRODUCTIVITY PROBLEM for class C of stream spec's
```

Instance: A stream specification $\mathcal{R} \in \mathcal{C}$ with root M_0

Question: Is \mathcal{R} productive?

(Does $M_0 \rightarrow u_0 : u_1 : u_2 : u_3 : \dots ?$)

Equivalence Problem for class C of stream spec's

Instance: Stream specifications $\mathcal{R}_1, \mathcal{R}_2 \in \mathcal{C}$ with roots $M_0^{(1)}, M_0^{(2)}$

Question: Do \mathcal{R}_1 and \mathcal{R}_2 uniquely define the same stream? *

```
PRODUCTIVITY PROBLEM for class C of stream spec's
```

Instance: A stream specification $\mathcal{R} \in \mathcal{C}$ with root M_0

Question: Is \mathcal{R} productive?

(Does $M_0 \rightarrow u_0 : u_1 : u_2 : u_3 : \dots ?$)

Equivalence Problem for class C of stream spec's

Instance: Stream specifications $\mathcal{R}_1, \mathcal{R}_2 \in \mathcal{C}$ with roots $M_0^{(1)}, M_0^{(2)}$

Question: Do \mathcal{R}_1 and \mathcal{R}_2 uniquely define the same stream? *

*) E.g. in the case that $M_0^{(1)} \rightarrow u_0 : u_1 : u_2 : u_3 : ... \leftarrow M_0^{(2)}$.

Equivalence problem for:

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	
pure and pure+		
general		

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	Π_1^0 -complete
pure and pure+	decidable	П ₁ -hard
flat	Π_2^0 -complete	Π_2^0 -complete
general	Π_2^0 -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	Π_1^0 -complete
pure and pure+	decidable	П ₁ -hard
flat	Π_2^0 -complete	Π_2^0 -complete
general	Π_2^0 -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	Π_1^0 -complete
pure and pure+	decidable	П ₁ -hard
flat	Π_2^0 -complete	Π_2^0 -complete
general	Π ₂ ⁰ -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

^{†)} J. Grue Simonsen (2009), E/G/H (2009).

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	Π_1^0 -complete
pure and pure ⁺	decidable	П ₁ -hard
flat	Π_2^0 -complete	Π_2^0 -complete
general	Π ₂ ⁰ -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

^{†)} J. Grue Simonsen (2009), E/G/H (2009).

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	Π_1^0 -complete
pure and pure+	decidable	Π_1^0 -hard
flat	Π_2^0 -complete	Π_2^0 -complete
general	Π ₂ ⁰ -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

^{†)} J. Grue Simonsen (2009), E/G/H (2009).

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	П <mark>1</mark> -complete
pure and pure+	decidable	Π ₁ -hard
flat	Π_2^0 -complete	Π ₂ ⁰ -complete
general	Π_2^0 -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

^{†)} J. Grue Simonsen (2009), E/G/H (2009).

- automatic sequences: (easily) decidable
- morphic streams: decidable [Culik and Harju (1984)]

stream specification	productivity probl.	equivalence probl.
productive	_	Π <mark>0</mark> -complete
pure and pure+	decidable	Π <mark>0</mark> -hard
flat	Π_2^0 -complete	Π_2^0 -complete
general	Π_2^0 -complete [†]	Π ₂ ⁰ -complete*

^{*)} G. Roşu (2006).

^{†)} J. Grue Simonsen (2009), E/G/H (2009).

Theorem

The productivity problem for flat stream specifications is Π_2^0 -complete.

$$M_0 \rightarrow u_0 : u_1 : u_2 : \ldots,$$

$$\forall n \in \mathbb{N}. \ \exists m \in \mathbb{N}. \ \exists \rho. \ \rho \text{ is rewrite sequence of length } m, \\ \rho: M_0 \Rightarrow u_0: u_1: u_2: \dots u_n: t$$
 $\} \in \Pi$

Theorem

Arithmetical/Analytical hierarchy

The productivity problem for flat stream specifications is Π_2^0 -complete.

Proof.

Contained in Π_2^0 :

A flat stream spec \mathcal{R} with root M_0 is productive iff

$$M_0 \rightarrow u_0 : u_1 : u_2 : \ldots,$$

and iff:

```
\forall n \in \mathbb{N}. \exists m \in \mathbb{N}. \exists \rho. \ \rho \text{ is rewrite sequence of length } m,
\rho : M_0 \twoheadrightarrow u_0 : u_1 : u_2 : \dots u_n : t
```

Theorem

The productivity problem for flat stream specifications is Π_2^0 -complete.

Proof.

Contained in Π_2^0 :

A flat stream spec \mathcal{R} with root M_0 is productive iff

$$M_0 \rightarrow u_0 : u_1 : u_2 : \ldots,$$

and iff:

```
\forall n \in \mathbb{N}. \exists m \in \mathbb{N}. \exists \rho. \ \rho \text{ is rewrite sequence of length } m, \\ \rho : M_0 \twoheadrightarrow u_0 : u_1 : u_2 : \dots u_n : t  } \in \Pi_2^0
```

Π₀-complete: By reducing the uniform halting problem for Turing-machines, which is Π_0^0 -complete, to the productivity problem.

Proof (continued).

Arithmetical/Analytical hierarchy

We show $\{ \lceil M \rceil : M \text{ halts on all inputs} \} = UHP \leq_m PROD(FLAT)$:

$$R_M \to R(stops_M(0,0),0,0)$$

$$Stops_M(x, y) \rightarrow \begin{cases} 0 \dots & M \text{ halts on } x \text{ in } \leq y \text{ steps} \\ s(0) \dots & \text{otherwise} \end{cases}$$

Proof (continued).

We show $\{ \lceil M \rceil : M \text{ halts on all inputs} \} = UHP \leq_m PROD(FLAT)$: An instance $\lceil M \rceil$ of *UHP* is transformed into the flat spec \mathcal{R}_M :

$$\begin{array}{c} \mathsf{R}_{M} \to \mathsf{R}(\mathsf{stops}_{M}(0,0),0,0) \\ \mathsf{R}(\mathsf{s}(0),x,y) \to \mathsf{R}(\mathsf{stops}_{M}(x,\mathsf{s}(y)),x,\mathsf{s}(y)) \\ \mathsf{R}(0,x,y) \to 0 : \mathsf{R}(\mathsf{stops}_{M}(\mathsf{s}(x),0),\mathsf{s}(x),0) \\ \\ \mathsf{stops}_{M}(x,y) \twoheadrightarrow \begin{cases} 0 \dots & M \text{ halts on } x \text{ in } \leq y \text{ steps} \\ \mathsf{s}(0) \dots & \text{otherwise} \end{cases} \end{array}$$

Proof (continued).

Arithmetical/Analytical hierarchy

We show $\{ \lceil M \rceil : M \text{ halts on all inputs} \} = UHP \leq_m PROD(FLAT)$: An instance $\lceil M \rceil$ of *UHP* is transformed into the flat spec \mathcal{R}_M :

$$R_M \to R(\operatorname{stops}_M(0,0),0,0)$$

$$R(s(0),x,y) \to R(\operatorname{stops}_M(x,s(y)),x,s(y))$$

$$R(0,x,y) \to 0 : R(\operatorname{stops}_M(s(x),0),s(x),0)$$

$$\operatorname{stops}_M(x,y) \twoheadrightarrow \begin{cases} 0 \dots & M \text{ halts on } x \text{ in } \leq y \text{ steps} \\ s(0) \dots & \text{otherwise} \end{cases}$$

Proof (continued).

Arithmetical/Analytical hierarchy

We show $\{ \lceil M \rceil : M \text{ halts on all inputs} \} = UHP \leq_m PROD(FLAT)$: An instance $\lceil M \rceil$ of *UHP* is transformed into the flat spec \mathcal{R}_M :

$$\begin{array}{c} \mathsf{R}_M \to \mathsf{R}(\mathsf{stops}_M(0,0),0,0) \\ \mathsf{R}(\mathsf{s}(0),x,y) \to \mathsf{R}(\mathsf{stops}_M(x,\mathsf{s}(y)),x,\mathsf{s}(y)) \\ \mathsf{R}(0,x,y) \to 0 : \mathsf{R}(\mathsf{stops}_M(\mathsf{s}(x),0),\mathsf{s}(x),0) \\ \\ \mathsf{stops}_M(x,y) \twoheadrightarrow \begin{cases} 0 \dots & \textit{M} \text{ halts on } x \text{ in } \leq y \text{ steps} \\ \mathsf{s}(0) \dots & \text{otherwise} \end{cases} \end{array}$$

Then:
$$\mathcal{R}_M$$
 is productive (and: $\mathbf{R}_M \twoheadrightarrow 0:0:\dots$ $\iff M$ halts on all inputs

Proof (continued).

We show $\{ \lceil M \rceil : M \text{ halts on all inputs} \} = UHP \leq_m PROD(FLAT)$: An instance $\lceil M \rceil$ of *UHP* is transformed into the flat spec \mathcal{R}_M :

$$\begin{array}{c} \mathsf{R}_M \to \mathsf{R}(\mathsf{stops}_M(0,0),0,0) \\ \mathsf{R}(\mathsf{s}(0),x,y) \to \mathsf{R}(\mathsf{stops}_M(x,\mathsf{s}(y)),x,\mathsf{s}(y)) \\ \mathsf{R}(0,x,y) \to 0 : \mathsf{R}(\mathsf{stops}_M(\mathsf{s}(x),0),\mathsf{s}(x),0) \\ \\ \mathsf{stops}_M(x,y) \twoheadrightarrow \begin{cases} 0 \dots & \textit{M} \text{ halts on } x \text{ in } \leq y \text{ steps} \\ \mathsf{s}(0) \dots & \text{otherwise} \end{cases} \end{array}$$

Then:

 \mathcal{R}_M is productive (and: $\mathcal{R}_M \rightarrow 0:0:...$)

 \iff M halts on all inputs

$$\iff \lceil M \rceil \in UHP$$
.

Equivalence for productive stream specifications

Theorem

Arithmetical/Analytical hierarchy

The equivalence problem for productive specifications is Π_{\bullet}^{0} -complete.

$$M_0^{(1)} woheadrightarrow u_0 : u_1 : u_2 : u_3 : \dots woheadrightarrow M_0^{(2)}$$

$$\rho_{1}: \mathsf{M}_{0}^{(1)} \twoheadrightarrow u'_{0}: u'_{1}: u'_{2}: \dots u'_{m}: t',
\rho_{2}: \mathsf{M}_{0}^{(1)} \twoheadrightarrow u''_{0}: u''_{1}: u''_{2}: \dots u''_{m}: t'',
\Rightarrow nf(u'_{0}) = nf(u'_{0}) \wedge \dots \wedge nf(u'_{m}) = nf(u'_{m})$$

Equivalence for productive stream specifications

Theorem

The equivalence problem for productive specifications is Π_1^0 -complete.

Proof.

 Π_1^0 -complete: By reducing \overline{HP} , the complement of the halting problem, which is Π_1^0 -complete, to the equivalence problem here.

$$\rho_{1}: M_{0}^{(1)} \twoheadrightarrow u'_{0}: u'_{1}: u'_{2}: \dots u'_{m}: t',
\rho_{2}: M_{0}^{(1)} \twoheadrightarrow u''_{0}: u''_{1}: u''_{2}: \dots u''_{m}: t'',
\Rightarrow nf(u'_{0}) = nf(u'_{0}) \wedge \dots \wedge nf(u'_{m}) = nf(u'_{m})$$

Theorem

Arithmetical/Analytical hierarchy

The equivalence problem for productive specifications is Π_1^0 -complete.

Proof.

 Π_1^0 -complete: By reducing \overline{HP} , the complement of the halting problem, which is Π_1^0 -complete, to the equivalence problem here.

Contained in Π_1^0 :

Productive spec's \mathcal{R}_1 and \mathcal{R}_2 with roots $M_0^{(1)}$, $M_0^{(2)}$ are equivalent iff $M_0^{(1)} \rightarrow u_0 : u_1 : u_2 : u_3 : \dots \leftarrow M_0^{(2)}$

and iff:

 $\forall n, m \in \mathbb{N}. \forall \rho_1, \rho_2. \rho_1, \rho_2$ are rewrite sequences of length n, $\rho_1: \mathsf{M}_0^{(1)} \twoheadrightarrow u_0': u_1': u_2': \dots u_m': t',$ $\rho_2: \mathsf{M}_0^{(1)} \twoheadrightarrow u_0'': u_1'': u_2'': \dots u_m'': t'',$ $\Rightarrow nf(u'_0) = nf(u'_0) \wedge ... \wedge nf(u'_m) = nf(u'_m)$

Overview

- 3. Productivity and variant definitions in TRSs

- $zeros \rightarrow 0$: zeros
 - productive: there is only one maximal rewrite sequence:

```
zeros \rightarrow 0 : zeros \rightarrow 0 : 0 : zeros \rightarrow \dots \rightarrow 0 : 0 : 0 : \dots
```

- $zeros \rightarrow 0$: zeros
 - productive: there is only one maximal rewrite sequence:

$$zeros \rightarrow 0 : zeros \rightarrow 0 : 0 : zeros \rightarrow \dots \rightarrow 0 : 0 : 0 : \dots$$

- $zeros \rightarrow 0$: id(zeros) $id(xs) \rightarrow xs$ 2
 - zeros --- 0 : id(0 : id(0 : id(...)))
 - still productive, since for all max. outermost-fair rewrite sequences: zeros $\rightarrow 0:0:0:\dots$

- $zeros \rightarrow 0$: zeros 1
 - productive: there is only one maximal rewrite sequence:

$$zeros \rightarrow 0 : zeros \rightarrow 0 : 0 : zeros \rightarrow \dots \rightarrow 0 : 0 : 0 : \dots$$

- $zeros \rightarrow 0$: id(zeros) $id(xs) \rightarrow xs$ 2
 - zeros --- 0 : id(0 : id(0 : id(...)))
 - still productive, since for all max. outermost-fair rewrite sequences: zeros $\rightarrow 0:0:0:\dots$

Even for well-behaved spec's (orthogonal TRSs), productivity should be based on a fair treatment of outermost redexes.

- 3 maybe $\rightarrow 0$: maybe maybe \rightarrow sink $sink \rightarrow sink$
 - productive or not, dependent on the chosen strategy
 - 'weakly productive': maybe --- 0:0:0:...
 - Not 'strongly productive': e.g. maybe → sink → sink → ...
- - 'weakly' and 'strongly productive'
 - ► infinite normal forms not unique

- 3 maybe \rightarrow 0 : maybe maybe \rightarrow sink $sink \rightarrow sink$
 - productive or not, dependent on the chosen strategy
 - 'weakly productive': maybe --> 0:0:0:0:...
 - ▶ not 'strongly productive': e.g. maybe \rightarrow sink \rightarrow sink \rightarrow ...
- abitstream $\rightarrow 0$: abitstream abitstream $\rightarrow 1$: abitstream 4
 - productive independent of the strategy chosen
 - 'weakly' and 'strongly productive'
 - infinite normal forms not unique

Results for prod./variants in TRSs

Definition of productivity in general TRSs

With practical purposes in mind, we think:

- For non-well-behaved spec's (non-orthogonal TRSs), productivity has to be defined relative to a given rewrite strategy.
- Strategy-independent variants (strong, weak productivity) are only of theoretical interest.
- ▶ Uniqueness of (infinite) normal form UN[∞] should be considered to be a separate property, independent of productivity. (In orthogonal TRSs, UN^{∞} is guaranteed.)

Let \mathcal{R} be a TRS.

A strategy for a rewrite relation $\rightarrow_{\mathcal{R}}$ is a relation $\sim \subseteq \rightarrow_{\mathcal{R}}$ with the same normal forms as $\rightarrow_{\mathcal{R}}$.

Definition

A term t is called productive w.r.t. a strategy \sim if all maximal \sim -rewrite sequences starting from t end in a constructor normal form.

Strong and weak productivity

Definition

A term t in a TRS \mathcal{R} is called

- strongly productive: all maximal outermost-fair rewrite sequences starting from t end in a constructor normal form.
- weakly productive: if there exists a rewrite sequence starting from t that ends in a constructor normal form.

- 4. Complexity of productivity, and variants, in TRSs

Productivity w.r.t. computable strategies

PRODUCTIVITY PROBLEM w.r.t. a family $\mathcal S$ of computable strategies

Instance: Encodings of a finite TRS \mathcal{R} , a strategy $\sim \in \mathcal{S}(\mathcal{R})$,

and a term t in \mathbb{R} .

Question: Is t productive w.r.t. \sim ?

We say that:

▶ such a family S is admissible: if R is orthogonal, $S(R) \neq \emptyset$.

Theorem

For every family of admissible, computate strategies S, the productivity problem w.r.t. S is Π_2^9 -complete.

Corollary

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation is Π_0^0 -complete.

Summary/References

PRODUCTIVITY PROBLEM w.r.t. a family S of computable strategies

Instance: Encodings of a finite TRS \mathcal{R} , a strategy $\sim \in \mathcal{S}(\mathcal{R})$,

and a term t in \mathbb{R} .

Question: Is t productive w.r.t. \sim ?

We say that:

▶ such a family S is admissible: if R is orthogonal, $S(R) \neq \emptyset$.

Theorem

For every family of admissible, computate strategies S, the productivity problem w.r.t. S is Π_2^0 -complete.

Corollary

In orthogonal TRSs, productivity w.r.t. lazy (outermost-fair) evaluation is Π_2^0 -complete.

Summary/References

Theorem

Arithmetical/Analytical hierarchy

The recognition problem for

- ▶ strong productivity is ∏:-complete;
- weak productivity is Σ -complete.

Proof (Idea).

```
\Pi_{-}^{1}-hardness (\Sigma_{-}^{1}-hardness): reducing the
```

- recognition problem for well-founded (for non-well-founded) binary relations over \mathbb{N} , which is Π_{-}^{1} -complete (Σ_{-}^{1} -complete), to the
- to the recognition problem of strong (weak) productivity.

Theorem

Arithmetical/Analytical hierarchy

The problem of recognising, for TRSs \mathcal{R} and terms t in \mathcal{R} , whether t has a unique (finite or infinite) normal form is Π_{i}^{1} -complete.

- - ▶ uniqueness of normal forms w.r.t. \sim : Π_2^0 -complete.

Results for prod./variants in TRSs

Theorem

Arithmetical/Analytical hierarchy

The problem of recognising, for TRSs \mathcal{R} and terms t in \mathcal{R} , whether t has a unique (finite or infinite) normal form is Π_i^1 -complete.

Changes due to adding the condition uniqueness of normal form:

- (i) w.r.t. family of strategies:
 - ▶ uniqueness of normal forms w.r.t. \sim : Π_2^0 -complete.
 - ▶ uniqueness of normal forms generally: □¹-complete.
- (ii) strong productivity: □¹-complete
- (iii) weak productivity: now $(\Pi_1^1 \cup \Sigma_1^1)$ -hard

Overview

- 5. Summary and References

Complexity of productivity: gathered results

- Productivity for pure/pure+ stream specifications is decidable
- ▶ Productivity for flat stream specifications is □⁰₂-complete
 - But recall: data-oblivious productivity is decidable for flat spec's.
- Complexity of productivity in TRS's, and variant definitions:
 - productivity w.r.t. computable strategies: Π₂-complete
 - ▶ strong productivity: □¹-complete
 - ▶ weak productivity: ∑¹-complete
 - ▶ unique infinite normal forms: ☐ -complete

Results for Stream Spec's Productivity/Variants in TRSs Results for prod./variants in TRSs

References

Arithmetical/Analytical hierarchy

The Π_2^0 -Completeness of Most of the Properties of Rewriting Systems You Care About (and Productivity). In *RTA*, volume 5595 of *LNCS*, pages 335–349. Springer, 2009.

Jörg Endrullis, Herman Geuvers, and Hans Zantema. Degrees of Undecidability of TRS Properties. In CSL, volume 5771 of LNCS, pages 255–270. Springer, 2009.

G. Roşu.

Equality of Streams is a Π_2^0 -complete Problem. In *ICFP*, pages 184–191, 2006.

Summary/References