Operating System Exercises 2010-2013

Rahmat M. Samik-Ibrahim et. al. http://rms46.vLSM.org/2/184.pdf

Contributors: Rahmat M. Samik-Ibrahim (VauLSMorg), Muhammad H. Hilman, Heri Kurniawan, Amril Syalim (Faculty of Computer Science, University of Indonesia), et. al.

Table of Contents

(2011-2) Process State	2
(2013-2) Process State	2
(2011-2) Fork	3
(2013-2) Fork	4
(2012-2) Thread Scheduling	5
(2011-2)	IV
(2012-2) Synchronization	11
(2013-2) Synchronization	12
(2012-2) Deadlock	13
(2011-2/UCB sp00mt2) Demand Paging(2011-2/UCB fa08mt1) Memory	13
(2011-2/UCB fa08mt1) Memory	13
(2013-2) Memory	14
(2011-2/Wikipedia) Disk IBM 350 Storage Unit	16
(2013-2) Disk	16
(2013-2) Disk(2013-2) RAID	17
(2012-2) Performance	17

(2011-2) Process State

There exists four (4) identical processes, with this following CPU utilization table:

	Mu	ultiprogrammino	g Combination (%)
	А	A+A	A+A+A	A+A+A
CPU utilization per proses A	10	9,5	9	8,6

The CPU time of each processes is 86 seconds

- a) How long will be the total time to run concurrently all (4) processes together?!
- b) How long will be the total time to run all (4) processes one by one?!

(2013-2) Process State

Four (4) processes, A(90%), B(80%), C(70%), D(60%); **where** [W(X); W=process name; X= I/O Wait(%)] with this following CPU utilization table:

The transfer of the same states															
		Multiprogramming Combination (%)													
	Α	В	C D A+B A+C A+D B+C B+D C+D A+B+C A+B+D A+C+D B+C+D A+B+C+D									A+B+C+D			
CPU utilization per proses A	10	-	-	-	9.3	9.3	9.2	-	-	-	8.3	8.1	7.8	-	7
CPU utilization per proses B	-	20	-	-	19	-	-	18	17	-	17	16	-	15	14
CPU utilization per proses C	-	-	30	-	-	28	-	26	-	25	25	-	23	22	21
CPU utilization per proses D	-	-	-	40	-	-	37	-	35	33	-	32	31	30	28

The relation between the process and time is as following:

- a) Calculate the *CPU time* of process A.
- b) Calculate the *CPU time* of process B.
- c) Calculate the *CPU time* of process C.
- d) Calculate the **CPU time** of process D
- e) What is the total execution time of process D, if it is executed alone?

```
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include "myutils.h"

int main(int argc, char * argv[]) {
   int ii;
   for (ii=0;ii<2;ii++) {
      fork();
      waitpid(-1,NULL,0);
    }
   printf("I am %d\n",(int) getpid());
}</pre>
```

Complete the output of that program:

I am 7000

(2013-2) Fork

```
1 #include <sys/types.h>
 2 #include <sys/wait.h>
 3 #include <stdio.h>
 4 #include <unistd.h>
 6 int delay1 fork (void) {
      sleep(1);
                               /* delay 1000 ms */
 8
      return (int) fork();
 9 }
10
11 void main(void) {
12
      int i1, i2, i3, i4, i5;
13
14
      i1 = i2 = i3 = i4 = i5 = (int) getpid();
15
      if (delay1 fork() > 0) {
16
         i1 = (int) getpid();
17
         if (delay1 fork() == 0) {
18
            i2 = (int) getpid();
            if (delay1 fork() > 0) {
19
20
               i3 = (int) getpid();
               if (delay1 fork() == 0) {
21
22
                   i4 = (int) getpid();
23
                   if (delay1_fork() > 0) {
24
                      i5 = (int) getpid();
25
                      sleep (1);
26
                   }
27
               }
28
            }
29
         }
30
      printf ("i1=%d - i2=%d - i3=%d - i4=%d - i5=%d \n", i1, i2, i3, i4, i5);
31
32
      fflush(stdout);
33
      wait(NULL);
34
      wait(NULL);
35
      wait(NULL);
36 }
```

- a) Convert your right most student ID into column [A-E]: $[0 \rightarrow A]$, $[1 \rightarrow B]$, $[2-3 \rightarrow C]$, $[4-5 \rightarrow D]$, $[>5 \rightarrow E]$!
- b) Convert your entrance year into row[I-VI]:[$<2009\rightarrow$ I], [$2009\rightarrow$ II], [$2010\rightarrow$ III], [$2011\rightarrow$ IV], [$2012\rightarrow$ V], [$2013\rightarrow$ VI]!
- c) Fill the value "1000" into the column/row below based on (a) and (b).
- d) Fill the rest below based on the output of the program above!

	A [0]	B [1]	C [2][3]	D [4][5]	E [>5]
l (<2009)	i1=	i2=	i3=	i4=	i5=
II (2009)	i1=	i2=	i3=	i4=	i5=
III (2010)	i1=	i2=	i3=	i4=	i5=
IV (2011)	i1=	i2=	i3=	i4=	i5=
V (2012)	i1=	i2=	i3=	i4=	i5=
VI (2013)	i1=	i2=	i3=	i4=	i5=

(2012-2) Thread Scheduling

a) Write down your student ID (10 digits)

b) Copy from digit #6 to #9 (4 digits)

6	7	8	9

c) Sort the digits where

Map the digits to box A, B, C, and D

Eg:
$$[1106436021] \rightarrow [3602] \rightarrow [0632]$$

A = 0 B = 6 C = 3 D = 2

The mapping of function "day_month (X)" is as following:

x	1	2	3	4	5	6	7	8	9	0
day_month(X)	0	31	59	90	120	151	181	212	243	273

At the end of executing function "init_n_start_thread(T1,T2,...Tn)", will appear "n" threads non-preemptive T1, T2,...Tn. Each thread will be put into the "Ready Queue" as "Rd" (Ready). If the CPU is available, the state will be changed to "R" (Run). There will be no new thread be executed before the threads from the previous init n start thread() are done.

This following is the unit time table for the "*Pseudo-program*" of the following page.

No	Туре	Unit	Example (line)							
1	M (Main function)	1 (R)	01 M: {							
2	T (Thread)	1 (R)	05 T1:{							
3	One Line Executions	1 (R) / line	16 day1 = dm1 + D;							
4	Function Executions	2 (RR) / line	<pre>10</pre>							

d)	Calculat	e:

delta = _____

```
##
    This program consists of M: (main) and T1...T9 (threads).
## Fill A, B, C, D according your student ID. See the previous page.
01 M: {
02
         A =
         B = _
03
         init n start thread(T1, T2, T3, T4, T5);
04
      }
##
05 T1:{
         C = _____;
06
##
07 T2:{
         D = \underline{\hspace{1cm}};
##
09 T3:{
10
         dm1 = day month(B);
      }
##
11 T4:{
12
         dm2 = day month(A);
      }
##
13 T5:{
         init n start thread(T6, T7, T8);
      }
##
15 T6:{
        day1 = dm1 + D;
##
17 T7:{
        day2 = dm2 + C;
18
      }
##
19 T8:{
        init_n_start_thread(T9);
20
      }
##
21 T9:{
        delta = day2 - day1;
22
      }
```

ill / c	ompl	ete th	is diaç	gram 1	for ON	IE PR	OCES	SOR ((P1). S	See the	e exar	nples
S												
83												
28												
27												
82												
52												
24												
ឌ												
22												
7												
8												
19												
8												
7												
16												
5												
4												
55												
12												
=												
우	60	13		'	1	24	湿	湿	'	1	1	1
മ	8	12	'	'	24	湿	湿	湿	'	'	1	1
∞	0	12	'	'	24	22	湿	꿡	'	'	'	1
7	90	딥		24	湿	22	22	꿡	'	'	'	•
9	05	딥		24	꿡	湿	꿡	꿡	1	1	1	
2	04	×	~	'	'	'	'	'	'	'	'	'
4	04	×	24	'	'	'	'	'	'	'	'	'
က	03	×	24	'	'	'	'	'	'	'	'	•
7	02	×	24	'	'	'	'	'	'	'	'	•
-	01	×	24	'	'	'	'	'	'	'	'	•
-	Line-P1	포	8	=	12	ខ	72	瓦	T 9	F	22	T9

Fill	l / con	nplete	this	liagra	m for	TWO	PROC	ESSC	DRS (F	P1+P2). See	the e	xampl	es.
8														
83														
28														
27														
56														
52														
24														
ន														
22														
21														
20														
19														
18														
17														
16														
15														
14														
13														
12														
Ξ														
9	10	T3	12	T4	'	1	'	æ	æ	路	1	'		'
6	10	T3	12	T4	'	1	'	æ	æ	路	1	1	1	'
∞	60	Т3	==	T4	1	1	1	24	24	R R	1	1	- 1	1
7	90	11	80	12	1	24	24	Rd	R	Rd	1	1	- 1	- 1
9	05	11	07	12	- 1	24	24	Rd	湿	Rd Rd	1	1	- 1	- 1
2	04	×	1	1	24	- 1	- 1	1	1	1	- 1	1	- 1	- 1
4	04	×	1	1	24	- 1	- 1	1	1	1	- 1	1	1	- 1
က	03	×	1	1	24	- 1	- 1	1	1	1	- 1	1	- 1	- 1
2	02	×	1	1	24	1	1	1	1	1	1.	1	1	1
-	01	×	1	1	24	1	- 1	1	1	1	1	1	- 1	- 1
-	Line-1	조	Line-2	P2	W	=	12	23	T4	₹ E	16	1	22	6

			Fil	I / cor	nplete	this	diagra	m for	FIVE	PROC	CESSO	ORS (F	P1, P2	, P5). No e	examp	ole.			
30																				
53																				
28																				
27																				
26																				
25																				
24																				
23																				
22																				
21																				
20																				
19																				
18																				
17																				
16																				
15																				
14																				
13																				
12																				
=																				
10																				
6																				
8																				
7																				
9																				
2																				
4																				
3																				
2																				
1																				
_	Line-1	Ε	Line-2	P2	Line-3	23	Line-4	P4	Line-5	25	M	=	T2	13	T4	T5	16	17	T8	£

(2011-2) Synchronization

```
Analyze this following "myutils.h" header program:
#define MAX THREAD 100
#define BUFFER SIZE 5
#define TRUE
#define FALSE
typedef struct {
  int buffer[BUFFER SIZE];
  int
        in;
  int
        out:
  int
        count;
} bbuf t;
void daftar trit
                  (void* trit);
                                    // mempersiapkan "trit"
void jalankan_trit (void);
                                     // menjalankan dan menunggu hasil dari
                                     // "daftar_trit"
void beberes_trit (char* pesan);
                                    // beberes menutup "jalankan_trit"
void rehat_acak
                  (long max_mdetik); // istirohat acak "0-max_mdetik" (ms)
                                    // init buffer
void init buffer
                  (void);
void enter_buffer (int entry);
int remove_buffer (void);
                                    // enter an integer item
                                    // remove the item
                  (void);
                                    // init readers writers
void init rw
int startRead
                  (void);
                                    // start reading
int endRead
                                    // end reading
                  (void);
void startWrite
                  (void);
                                    // start writing
void endWrite
                  (void);
                                    // end writing
                                                  a) Write down the output of the program:
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include "myutils.h"
                         mutex1, mutex2;
sem t
void* THREAD one (void* a) {
   sem wait (&mutex1);
   printf("This is THREAD one\n");
void* THREAD two (void* a) {
   sem wait (&mutex2);
   printf("This is THREAD two\n");
   sem post (&mutex1);
void* THREAD three (void* a) {
                                                  b) Complete/modify the program by adding
   printf("This is THREAD three\n");
                                                     "THREAD_four" (thread) which will print
   sem_post (&mutex2);
                                                     "This is THREAD four" after THREAD_one.
int main(int argc, char * argv[]) {
   sem_init (&mutex1, 0, 0);
   sem init (&mutex2, 0, 0);
   daftar trit(THREAD one);
   daftar_trit(THREAD_two);
   daftar trit(THREAD three);
   jalankan_trit();
   beberes trit("Good Bye");
}
```

(2012-2) Synchronization

Add the pseudo-program in "(2012-2) **Thread Scheduling**" with synchronization semaphores, so that there will be no new thread be executed before the threads from the previous init n start thread() are done.

Add to the pseudo-program, the combination of these following three semaphore functions:

```
sem_init(X,Y) - initial semaphore "X" with value "Y"
sem_wait(X) - semaphore "X" wait
sem_signal(X) - semaphore "X" signal
```

(2013-2) Synchronization

The program (next page) is using function like "daftar_trit()" for registering a "threat" and "jalankan_trit()" for starting the "threats". The "sem_init()" function will initiate a semaphore, "sem post()" to signal a semaphore, and "sem wait()" to wait for a semaphore.

- a) Write down one posibility of the program output.
- b) From the output above, which lines might be in different sequences. Explain!
- c) What is the role of semaphore "**mutex**"?
- d) What is the role of semaphore "switch1"?
- e) What is the role of semaphore "switch2"?

```
1 /*
                                                            44 void* add (void* a) {
   * $Revision: 140 $
                                                            45
                                                                   sem_post (&switch1);
                                                                  sem_wait (&switch2);
 3
   * (c) 2013 Rahmat M. Samik-Ibrahim
                                                            46
   * This is FREE SOFTWARE.
                                                            47
                                                            48
                                                                  sem wait (&mutex);
                                                                 printf("Add starts \n");
                                                            49
 7 #include <stdio.h>
                                                            50
                                                                   addresult = addvar1 + addvar2;
 8 #include <stdlib.h>
                                                                  sem_post (&mutex);
 9 #include <semaphore.h>
                                                            52
                                                                  sem post (&switch1);
10 #include "myutils.h"
                                                            53 }
11
                                                            54
12 #define
                 NThreads 4
                                                            55 void* subtract (void* a) {
13
                                                            56 sem_post (&switch1);
             mutex, switch1, switch2;
addvar1, addvar2, addresult;
subvar1, subvar2, subresult;
14 sem_t
                                                            57
                                                                  sem_wait (&switch2);
15 int
                                                            58
16 int
                                                            59
                                                                 sem_wait (&mutex);
                                                            60 printf("Subtract starts \n");
61 subresult = subvar1 - subvar2;
                mulvar1, mulvar2, mulresult;
17 int
18 int
                 divvar1, divvar2, divresult;
                                                                  sem_post (&mutex);
sem_post (&switch1);
                                                            62
19
20 void* manager (void* a) {
                                                            63
    printf("Manager starts \n");
                                                            64 }
21
22
23
     for (int ii=0; ii< NThreads;ii++)</pre>
                                                            66 void* multiply (void* a) {
24
          sem_wait (&switch1);
                                                            67
                                                                   sem_post (&switch1);
                                                                 sem_wait (&switch2);
sem_wait (&mutex);
25
     sem_wait (&mutex);
                                                            68
     addvar1 = 5;
26
                                                                 printf("Multiply starts \n");
27
      addvar2 = 2;
                                                            70
                                                            71
     subvar1 = 7:
                                                                  mulresult = mulvar1 * mulvar2;
28
                                                                  sem_post (&mutex);
sem_post (&switch1);
29
      subvar2 = 2;
                                                            72
30
      mulvar1 = 2;
                                                            73
31
      mulvar2 = 3;
32
      divvar1 = 4:
                                                            75
      divvar2 = 2;
                                                            76 void* divide (void* a) {
33
                                                                printf("Divide starts \n");
34
      sem post (&mutex);
                                                            77
35
                                                            78
                                                                  sem post (&switch1);
                                                                 sem wait (&switch2);
      for (int ii=0; ii< NThreads;ii++)</pre>
36
                                                            79
                                                                 sem_wait (&mutex);
divresult = divvar1 / divvar2;
37
          sem_post (&switch2);
                                                            80
                                                            81
38
      for (int ii=0; ii< NThreads;ii++)</pre>
          sem wait (&switch1);
                                                            82
39
                                                                  sem_post (&mutex);
      printf("Result add:%d; sub:%d; mul:%d;
                                                            83
                                                                   sem post (&switch1);
                                                            84 }
         div: d; n',
41
         addresult, subresult, mulresult,
                                                            85
         divresult);
                                                            86 void main(void) {
                                                               sem_init (&mutex, 0, 1);
sem_init (&switch1, 0, 0);
sem_init (&switch2, 0, 0);
42 }
43
                                                            88
                                                            89
                                                            90
                                                                daftar_trit (manager);
                                                                 daftar_trit (add);
daftar trit (subtract);
                                                            91
                                                                  daftar_trit
                                                            93
                                                                                  (multiply);
                                                            94
                                                                  daftar_trit
                                                                                  (divide);
                                                            95
                                                                   jalankan_trit ();
                                                            96
                                                                   beberes trit ("Done...");
```

(2012-2) **Deadlock**

- a) What are the four conditions that can arise a *deadlock* situation. Explain each condition in 1-2 sentences.
- b) What are the three ways that are generally used to handle *deadlock*? Explain each way in 1-2 sentences.
- c) Which solution is the most used way to handle *deadlock*? Explain it in 1-2 sentences.

(2011-2/UCB sp00mt2) Demand Paging

Consider a demand paging system with four physical memory frames and the following reference string over seven pages:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6

Assuming that memory starts empty, **how many page faults** will occur and what **pages** will be the **final contents of memory** under:

- a) the FIFO page replacement policy?
- b) the LRU page replacement policy?
- c) the OPTIMAL page replacement policy?

(2011-2/UCB fa08mt1) Memory

Suppose we have a 32-bit virtual addresses system with 2 TB physical addresses. The page size is 8 kB. The Page Table Entry (PTE) will consist of:

- some bits for all frames of the physical address;
- one Valid/Invalid bit; and
- some unused bits.
- a) What will be the frame size (1 TB = 1024 GB = 1024 x 1024 MB)?
- b) In how many frames will the physical address be divided?
- c) How many bits are needed in the PTE for the frame part?
- d) Draw a complete PTE scheme with the "frame numbers" bits, "valid/invalid" bit, and "unused" bits. How many bytes (rounded) are needed?

- e) How many PTEs can be fit into one virtual page?
- f) Draw a complete virtual address scheme with "page numbers" bits and "offset" bits.

- g) How many PTEs are needed to map the whole the virtual address space?
- h) How many virtual pages are needed for those all PTEs above?

(2013-2) Memory

Consider a system with a 16 bits Virtual Address space and a 24 bits Physical Address space. The offset/ displacement ialah 12 bits. The Page Table starts at Physical Address 001000 (HEX).

Address (HEX)	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
001000	10	24	10	23	10	22	10	21	10	20	10	1F	10	1E	10	1D
001010	10	34	10	33	10	32	10	31	10	30	10	2F	10	2E	10	2D
01F000	A0	A1	A2	А3	A4	A 5	A6	A7	A8	A9	AA	AB	AC	AD	AE	AF
020000	В0	B1	B2	В3	B4	B5	B6	В7	B8	В9	ВА	BB	ВС	BD	BE	BF
023000	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	СВ	СС	CD	CE	CF
031000	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF

The **TLB** entry is (in HEX): "[Page Number][Flag 4 bits][Frame Number]". The "Frame Number" is INVALID unless the FLAGS value is "1 (HEX)" or "0001 (BIN)".

[Page#]	[Flags]	[Frame#		
0	1	0	2	4
1	1	0	2	3
2	1	0	2	2
3	1	0	2	1
4	1	0	2	0

a) Write down your student ID (NPM):

1	I				
1	I				
1	I				

b) Write down the most right digit of your student ID:

c) VA1 is 1000 (HEX) plus the value of point "b": VA1 = ____ + 1000 (HEX) = ____

d) VA2 is 5000 (HEX) plus the value of point "b": VA2 = ____ + 5000 (HEX) = ____

e)	Draw the 16 bit Virtual Address	s diagram:						
	Page Number (?? bit)	Offset (12 bit)						
	How many bits are there in the	"Page Number" space?	bit					
f)	Based on the Page Number sp	pages						
g)	Draw the 24 bit Physical Addre	ss diagram:						
	Frame Number (?? bit)	Offset (12 bit)						
	How many bits are there in the	"Frame Number" space?	bit					
h)	Based on the Frame Number s	space, how many frames are there?	frames					
i)	What is the Page Number of V	A1 (see point "c"):						
j)	Is VA1's Frame Number in TLB? Yes / No (circle the correct one)							
k)) Is VA1's Frame Number in PT (Page Table)? Yes / No							
l)	The Frame Number for VA1 is Valid / Not Valid / Not Found							
m)	If valid, what is the Frame Nu	umber value for VA1?						
n)	(If applicable) What is the Physical Address (PA1) value of VA1?							
o)) (If applicable) What number is inside VA1							
p)	What is the Page Number of V	A2 (see point "d"):						
q)) Is VA2's Frame Number in TLB? Yes / No (circle the correct one							
r)	Is VA2's <i>Frame Number</i> in I	PT (<i>Page Table</i>) ?	Yes / No					
s)	The Frame Number for VA2 is Valid / Not Valid / Not Found							
t)	If valid, what is the Frame Nu	<i>umber</i> value for VA2?						
u)	(If applicable) What is the Phys	sical Address (PA2) value of VA2?						

v) (If applicable) What number is inside VA2

(2011-2/Wikipedia) Disk IBM 350 Storage Unit

The IBM 350 disk storage unit model 1 (151 cm x 171 cm x 50.2 cm) was announced on September 4, 1956. IBM 350 had 100 surfaces @ 100 tracks. Each track had 5 sectors @ 600 bits. The disk spun at 1200 RPM. The seek time was about (10 + 10 Tr) mS where "Tr" was the Track differences. Switching time between surfaces was assumed 0 mS. At that time, the main purpose of IBM 350 was to store "6 bits" characters.

- a) How many "6 bits" characters can be stored into one sector?
- b) How many "6 bits" characters can be stored into one track?
- c) How many "6 bits" characters can be stored into one cylinder?
- d) How many "6 bits" characters can be stored into the whole disk?
- e) Calculate the maximum theoretical data transfer rate in "characters per seconds".
- f) How long (mS) will it take to write in sequence (sector by sector), 50100 characters starting from (Track 0, Surface 0, Sector 0) or (0, 0, 0) to (0, 0, 4) to (0, 1, 0) to (0, 1, 4) to (0, 2, 0) and so on.
- g) Which one (Track, Surface, Sector) will be the last to be written?

(2013-2) Disk

Consider a disk with 256 M sectors. Design a File System with linked-list blocks. There will be a pointer to the next block inside each block. The pointer size should be bytes (1, 2, 3, or more). The size of one block is equal to the size of a sector is equal to 8 kBytes. Use 1k=1024; 1M=1024k; 1G=1024M; 1T=1024G.

- a) What is the size of the disk (in Tbytes)?
- b) What is the size of the pointer (in bits)?
- c) Explain, why the maximum size of a file will be always less than the size of the disk!

(2013-2) RAID

Consider a collections of 1 Tbytes disks. Design a disk array with performance at least six times better compared to an individual disk. The amount of disks should be as few as possible.

- a) Draw a diagram of a disk array without any fault tolerance. How many disks will be used?
- b) Draw a diagram of a RAID 6 + 0. How many disks will be used?

(2012-2) Performance

Consider an application with total execution time of 100 hours. Based on an analysis, 24% of execution time is the CPU time and the rest is mostly the time of handling the HDD. Suppose you would like to make the application execution time less than 50 hours. First, the CPU is replaced with a one that has got 2 (two) cores where each core is twice faster. Second, a new RAID 6+0 configuration will be deployed, however using the same HDD type as before.

- a) Draw a diagram of the RAID 6+0 disks that fulfill the requirements!
- b) How much will be the minimum disk capacity of the new HDD configuration?