Исследование эффекта Комптона

Илларионов Владислав группа Б04-855

ВВЕДЕНИЕ

С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Эффект Комптона – увеличение длины волны рассеянного излучения по сравнению с падающим – интерпретируется как результат упругого соударения фотона и свободного электрона.

Изменение длины волны равно:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_{\kappa} (1 - \cos \theta), \quad (1)$$

где λ_0 и λ_1 – длины волн фотона до и после рассеяния на угол θ , а $\Lambda_{\rm K}=2.42\cdot 10^{-10}$ см – комптоновская длина волны электрона.

Преобразуем формулу (1), перейдя от длин волн к энергиям фотонов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ – выраженная в единицах mc^2 энергия фотонов, падающих на рассеиватель, $\varepsilon(\theta)$ – выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m – масса электрона.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Блок-схема установки изображена на рисунке 2. Источником излучения 1 служит 137 Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее Φ ЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Ti) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное

окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы возникающие на аноде ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота рассчитывается по лимбу 6.

Головная часть сцинтилляционного блока закрыта свинцовым коллиматором 5, который формирует входной пучок и защищает детектор от постороннего излучения.

Рис. 1. Результаты измерений

Рис. 2. Блок-схема установки по изучению рассеяния γ -квантов

На рисунке 3 представлена функциональная блоксхема измерительного комплекса, который состоит из ФЭУ, питаемого от высоковольтного выпрямителя ВСВ, усилителя-анализатора УА, являющегося входным интерфейсом ЭВМ, управляемой с клавиатуры КЛ. В ходе проведения эксперимента информация отображается на экране дисплея Д.

Рис. 3. Блок-схема измерительного комплекса

Под действием монохроматического излучения на выходе $\Phi \Im V$ возникает распределение электрических импульсов (рис. 4). В амплитудном распределении им-

пульсов имеется так называемый фотопик, возникающий в результате фотоэффекта, и обязанное комптоновскому рассеянию сплошное распределение. Положение фотопика однозначно связано с энергией регистрируемого γ -излучения. Соответственно нас будет интересовать положение (номер канала) вершины этого пика в зависимости от угла поворота детектора.

Рис. 4. Амплитудное распределение импульсов, возникающих под действием монохроматических γ -квантов в сцинтилляторе NaI(Ti)

МЕТОДИКА ИЗМЕРЕНИЯ

- 1. Включим все измерительные устройства и компьютер
- 2. Запустим программу и войдём режим измерения спектра
- 3. Устанавливая сцинтилляционный счетчик под разными углами θ к первоначальному направлению полета фотонов и вводя значения этих углов в ЭВМ, снимем амплитудные спектры и определим положения фотопиков для каждого θ ; измерения проводим с шагом в 10° в диапазоне от 0° до 120° . Также учтем, что с увеличением угла интенсивность рассеянных фотонов уменьшается, поэтому будем увеличивать время проведения замера.

Заменим в формуле (2) $\varepsilon(\theta)$ номером канала $N(\theta)$, соответствующего вершине фотопика в спектре для угла θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, получим:

$$\frac{1}{N(\theta)} - \frac{1}{N(0^\circ)} = A(1 - \cos\theta) \tag{3}$$

Используя экспериментальные данные, построим график, откладывая по оси абсцисс величину $1-\cos\theta$, а по оси ординат величину $1/N(\theta)$. Согласно формуле (3) получится линейная зависимость.

Для аппроксимации будем использовать взвешенный МНК, минимизируем взвешенную сумму квадратов остатков:

WRSS =
$$\sum_{i=1}^{n} \left(\frac{\Delta y_i}{\sigma_i} \right)^2 \longrightarrow \min$$

Здесь $\Delta y_i = y_i - kx_i - b$, σ_i – погрешность определения $1/N(\theta)$. Погрешность коэффициентов линейной модели определяется из оценки ковариационной матрицы.

По полученной аппроксимации рассчитываются значения $N_{\text{наил}}(0^{\circ})$, $N_{\text{наил}}(90^{\circ})$.

Возвращаясь от переменной ε к энергии E, получаем, что при $\theta=90^\circ$, формула (2) принимает вид:

$$mc^{2}\left(\frac{1}{E(90^{\circ})} - \frac{1}{E(0^{\circ})}\right) = 1$$

или:

$$mc^2 = E_\gamma \frac{N(90^\circ)}{N(0^\circ) - N(90^\circ)}$$
 (4)

ОБРАБОТКА ДАННЫХ

Проведём измерения описанные в предыдущем разделе и занесём результаты в таблицу I.

По полученным данным построим график зависимости $1/N(\theta)$ от $(1-\cos\theta)$ (см. рис. 5). Аппроксимируем график прямой y=kx+b. Полученные коэффициенты:

$$k = (167 \pm 7) \cdot 10^{-5}$$
$$b = (123 \pm 2) \cdot 10^{-5}$$

Рис. 5. График зависимости $1/N(\theta)$ от $(1-\cos\theta)$

Теперь можем найти $N_{\text{наил}}(0^{\circ})$, $N_{\text{наил}}(90^{\circ})$:

$$N_{\text{наил}}(0^{\circ}) = 813 \pm 11$$

 $N_{\text{наил}}(90^{\circ}) = 345 \pm 9$

Из формулы (4), учитывая, что $E_{\gamma}=662$ кэВ, найдем энергию покоя электрона:

$$mc^2 = 488 \pm 27$$
 кэВ

вывод

В ходе данной работы был исследован эффект Комптона. Была рассчитана энергия покоя электрона $mc^2=488\pm27$ кэВ, значение которой совпадает с табличным 511 кэВ в пределах погрешности, что подтверждает справедливость квантового описания эффекта Комптона.

Точность измерения составила 5.5%. Основной вклад в погрешность вносят большие значения для ширины фотопиков. Можно снизить эту погрешность, увеличив время измерений.

Приложение А: Таблицы

Таблица I. Результаты измерений

θ	$N(\theta)$	$1/N(\theta) \cdot 10^3$	$1-\cos\theta$
0°	771 ± 18	1.30 ± 0.03	0 ± 0.0003
10°	815 ± 13	1.23 ± 0.02	0.015 ± 0.003
20°	723 ± 26	1.38 ± 0.05	0.060 ± 0.006
30°	683 ± 16	1.46 ± 0.03	0.134 ± 0.009
40°	633 ± 19	1.58 ± 0.05	0.234 ± 0.011
50°	572 ± 32	1.75 ± 0.10	0.357 ± 0.013
60°	491 ± 18	2.04 ± 0.07	0.500 ± 0.015
70°	438 ± 28	2.28 ± 0.15	0.658 ± 0.016
80°	384 ± 17	2.60 ± 0.12	0.826 ± 0.017
90°	341 ± 22	2.93 ± 0.19	1.000 ± 0.017
100°	326 ± 18	3.07 ± 0.17	1.173 ± 0.017
110°	290 ± 20	3.45 ± 0.24	1.342 ± 0.016
120°	238 ± 13	4.20 ± 0.23	1.500 ± 0.015

Приложение В: Иллюстрации

Рис. 6. Амплитудное распределение импульсов для различных значений θ