Übungen zu Funktionentheorie 1

Sommersemester 2020

Prof. Dr. R. Weissauer

Blatt 6

Dr. Mirko Rösner Abgabe auf Moodle bis zum 5. Juni

Bearbeiten Sie bitte nur zwei der vier Aufgaben. Jede Aufgabe ist vier Punkte wert.

- 23. Aufgabe: Sei $P \in \mathbb{R}[X]$ ein reelles Polynom in einer Variablen.
 - (a) Ist $z \in \mathbb{C}$ eine Nullstelle von P, dann auch \overline{z} .
 - (b) Ist P irreduzibel in $\mathbb{R}[X]$, dann ist P linear oder quadratisch.

Hinweis: Verwenden Sie den Fundamentalsatz der Algebra.

- **24.** Aufgabe: Sei $f:\mathbb{C}\to\mathbb{C}$ eine holomorphe Funktion. Zeigen Sie zwei der drei Aussagen:
 - (a) Ist f nicht konstant, dann hat f dichtes Bild in \mathbb{C} .
 - (b) Wenn f(z) = f(z+1) = f(z+i), dann ist f konstant.
- (c)* Sei $g: \mathbb{C} \to \mathbb{C}$ eine weitere holomorphe Funktion mit höchstens einer Nullstelle. Wenn $|f(z)| \leq |g(z)|$ für alle $z \in \mathbb{C}$, dann gilt $f = c \cdot g$ mit einer Konstante $c \in \mathbb{C}$.

Hinweis: Verwenden Sie jeweils den Satz von Liouville.

- **25.** Aufgabe: Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = \frac{1}{1+x^2}$. Bestimmen Sie jeweils den Konvergenzradius der Taylorreihe von f in den Punkten $x_0 = 0$ und $x_1 = 4\sqrt{3}$. Hinweis: Setzen Sie f fort zu einer holomorphen Funktion auf einem geeigneten Definitionsbereich. Verwenden Sie dann die Abschätzung des Konvergenzradius.
- **26.** Aufgabe: Seien D und E offene nichtleere Teilmengen von \mathbb{C} und $b:D\to D'$ eine Bijektion, sodass b und b^{-1} holomorph sind. Sei E sternförmig. Zeigen Sie: Jede holomorphe Funktion $f:D\to\mathbb{C}$ hat eine Stammfunktion.

Bonusaufgabe (keine Wertung): Sei $D \subseteq \mathbb{C}$ offen und nichtleer. Sei $\gamma : [0,1] \to D$ ein stetiger Weg und $f: D \to \mathbb{C}$ eine holomorphe Funktion. Wie kann man ein Wegintegral $\int_{\gamma} f(z) dz$ sinnvoll definieren? Hinweis: Verwenden Sie Aufgabe 19.