Endogenous Politics and the Design of Trade Institutions

Kristy Buzard
Syracuse University
kbuzard@syr.edu

January 6, 2017

Overview

The Questions

The Questions

1. When is endogenizing political pressure important for answering optimal design questions?

Preview

The Questions

- 1. When is endogenizing political pressure important for answering optimal design questions?
 - ► Exogenous vs. endogenous politics

The Questions

- 1. When is endogenizing political pressure important for answering optimal design questions?
 - ► Exogenous vs. endogenous politics
- 2. When do governments want to use trade agreements to manipulate domestic lobbying incentives?

- 1. When is endogenizing political pressure important for answering optimal design questions?
 - ► Exogenous vs. endogenous politics
- 2. When do governments want to use trade agreements to manipulate domestic lobbying incentives?
 - ► Government objective function

Political Economy of Trade Institutions

Preview

Political Economy of Trade Institutions

With a few exceptions, TA design literature has taken political economy forces to be exogenous. I:

Political Economy of Trade Institutions

With a few exceptions, TA design literature has taken political economy forces to be exogenous. I:

► endogenize politics into a standard model for studying TA design questions

Overview

Political Economy of Trade Institutions

With a few exceptions, TA design literature has taken political economy forces to be exogenous. I:

- ► endogenize politics into a standard model for studying TA design questions
- ► carefully distinguish between dynamics induced by exogenous and endogenous politics for tariff caps with escape clause

Overview

Political Economy of Trade Institutions

With a few exceptions, TA design literature has taken political economy forces to be exogenous. I:

- ► endogenize politics into a standard model for studying TA design questions
- ► carefully distinguish between dynamics induced by exogenous and endogenous politics for tariff caps with escape clause
- ► examine escape clause design when both exogenous and endogenous forces are present

Preview

► Show that TAs may be used to manipulate domestic

political actors (no long-run distortions)

Preview

- ► Show that TAs may be used to manipulate domestic political actors (no long-run distortions)
- ► Escape clause outcomes are very different with endogenous politics

Preview

- ► Show that TAs may be used to manipulate domestic political actors (no long-run distortions)
- ► Escape clause outcomes are very different with endogenous politics
- ► Demonstrate that (standard, theoretical) escape clause can't work in the presence of endogenous political pressure

- ► Show that TAs may be used to manipulate domestic political actors (no long-run distortions)
- ► Escape clause outcomes are very different with endogenous politics
- ► Demonstrate that (standard, theoretical) escape clause can't work in the presence of endogenous political pressure
 - ► Points to real-world design of WTO Agreement on Safeguards

- ► Show that TAs may be used to manipulate domestic political actors (no long-run distortions)
- ► Escape clause outcomes are very different with endogenous politics
- ► Demonstrate that (standard, theoretical) escape clause can't work in the presence of endogenous political pressure
 - ► Points to real-world design of WTO Agreement on Safeguards
 - ▶ May explain why escape clause has fallen out of use

Model

Economy

Two countries: home and foreign (*)

- ► Separable in two goods: X and Y
 - \triangleright P_i : home price of good i
 - \triangleright P_i^* : foreign price of good i
- ▶ Demand identical for both goods in both countries
 - ► $D(P_i) = 1 P_i$
- ▶ Supply: $Q_X^*(P_X) > Q_X(P_X) \ \forall P_X$; symmetric for Y
 - $P = Q_X(P_X) = \frac{P_X}{2}; Q_Y(P_Y) = P_Y$
 - ▶ Home net importer of X, net exporter of Y

Economic and Political Structure

Policy and Politics

Home levies τ on X, Foreign levies τ^* on Y

Home levies τ on X, Foreign levies τ^* on Y

•
$$P_X = P_X^W + \tau$$
 increasing in τ

Home levies τ on X, Foreign levies τ^* on Y

- $P_X = P_X^W + \tau$ increasing in τ
- $\blacktriangleright \pi_X(P_X)$ increasing in P_X , therefore also τ

Home levies τ on X, Foreign levies τ^* on Y

- $ightharpoonup P_X = P_X^W + \tau$ increasing in τ
- $\blacktriangleright \pi_X(P_X)$ increasing in P_X , therefore also τ

Non-tradable specific factors motivate political activity

Economic and Political Structure

Timeline

Timeline

Economic and Political Structure

Timeline

Each period:

1. Trade Agreement Formed

Timeline

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement

Timeline

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out

Economic and Political Structure

Timeline

Each period:

1. Trade Agreement Formed

Model

- i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out
 - Exogenous shocks are realized AND/OR

Timeline

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out
 - Exogenous shocks are realized AND/OR
 - ii. Import-competing industry lobbies government for protection

Timeline

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out
 - i. Exogenous shocks are realized AND/OR
 - ii. Import-competing industry lobbies government for protection
- 3. Tariffs are Applied

Economic and Political Structure

Timeline

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out
 - i. Exogenous shocks are realized AND/OR
 - ii. Import-competing industry lobbies government for protection
- 3. Tariffs are Applied
 - Given political pressure, governments choose applied tariff levels

The Players

Applied Tariff Decision

Applied Tariff Decision

Baldwin-style government objective function:

Applied Tariff Decision

Model 000 •00

Baldwin-style government objective function:

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

Applied Tariff Decision

Model •00

Baldwin-style government objective function:

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

 \blacktriangleright Standard except for s and e:

Model ○○○ ●○○

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

- \blacktriangleright Standard except for s and e:
 - ► s: exogenous shock

Model •00

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

- \triangleright Standard except for s and e:
 - ► s: exogenous shock
 - ▶ e: lobbying effort

Model ○○○ •○○

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

- \blacktriangleright Standard except for s and e:
 - ► s: exogenous shock
 - ▶ e: lobbying effort
- ▶ Optimal applied tariff is a function of $\gamma(s, e)$

Model ○○○ •○○

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

- \blacktriangleright Standard except for s and e:
 - ▶ s: exogenous shock
 - ▶ e: lobbying effort
- ▶ Optimal applied tariff is a function of $\gamma(s, e)$
 - ► Ignores foreign welfare

Model ○○○ •○○

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau) - e$$

- \blacktriangleright Standard except for s and e:
 - ► s: exogenous shock
 - ▶ e: lobbying effort
- ▶ Optimal applied tariff is a function of $\gamma(s, e)$
 - ► Ignores foreign welfare
 - ► Takes into account trade agreement enforcement

Domestic Political Pressure

Two potential sources

1. Exogenous shocks

Model 000

- 1. Exogenous shocks
 - ▶ Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or

Model 000

- 1. Exogenous shocks
 - ▶ Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or
 - ▶ Can take γ as a function of s: $\gamma(s)$

Model ○○○

- 1. Exogenous shocks
 - ▶ Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or
 - ► Can take γ as a function of s: $\gamma(s)$
- 2. Endogenous effort choice of lobby, e

Model ○○○

- 1. Exogenous shocks
 - ▶ Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or
 - ▶ Can take γ as a function of s: $\gamma(s)$
- 2. Endogenous effort choice of lobby, e
 - ▶ Lobby chooses effort to maximize profits, $\pi(\cdot)$, net of lobbying effort, e

Model ○○○

- 1. Exogenous shocks
 - ► Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or
 - ▶ Can take γ as a function of s: $\gamma(s)$
- 2. Endogenous effort choice of lobby, e
 - ▶ Lobby chooses effort to maximize profits, $\pi(\cdot)$, net of lobbying effort, e
 - ▶ Call lobby's optimal effort choice e^L

$$e^{L} = \max_{e} \pi(\tau(\gamma(e))) - e$$

Trade Agreement Negotiation

Trade Agreement Negotiation

Model as Nash bargain between the two countries' governments

Trade Agreement Negotiation

Model as Nash bargain between the two countries' governments

► Maximize joint political welfare

Trade Agreement Negotiation

Model as Nash bargain between the two countries' governments

- ► Maximize joint political welfare
- ▶ Disagreement point: non-cooperative outcome

Trade Agreement Negotiation

Model as Nash bargain between the two countries' governments

- ► Maximize joint political welfare
- ▶ Disagreement point: non-cooperative outcome

Trade Agreement Negotiation

Model

Model as Nash bargain between the two countries' governments

- ► Maximize joint political welfare
- ▶ Disagreement point: non-cooperative outcome

Once agreement is set, cooperation enforced by repeated-game punishments conditioned on history, history + DSB signal

Objective Function

Restraining Political Pressure through TAs

Objective Function

Restraining Political Pressure through TAs

Will TA be used to discourage lobbying? Depends on how gov't welfare varies in γ

Restraining Political Pressure through TAs

- Will TA be used to discourage lobbying? Depends on how gov't welfare varies in γ
- ▶ With standard Baldwin-style objective function, welfare always increases with γ

$$W = CS_X(\tau) + \gamma \pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

Restraining Political Pressure through TAs

- Will TA be used to discourage lobbying? Depends on how gov't welfare varies in γ
- With standard Baldwin-style objective function, welfare always increases with γ

$$W = CS_X(\tau) + \gamma \pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

► Isomorphic to 'Protection for Sale' objective function

Restraining Political Pressure through TAs

- Will TA be used to discourage lobbying? Depends on how gov't welfare varies in γ
- With standard Baldwin-style objective function, welfare always increases with γ

$$W = CS_X(\tau) + \gamma \pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

- ► Isomorphic to 'Protection for Sale' objective function
- When subtracting lobbying effort, welfare no longer monotonic in γ

Escape Clause

Escape Clause with Exogenous Politics

When γ is only exogenous (Bagwell & Staiger 2005):

► Simple escape clause: add a second (higher) negotiated weak binding

Escape Clause

Escape Clause with Exogenous Politics

- ► Simple escape clause: add a second (higher) negotiated weak binding
 - ► Escape clause is designed to allow higher applied tariff when realization of γ is high

Escape Clause with Exogenous Politics

- ► Simple escape clause: add a second (higher) negotiated weak binding
 - ► Escape clause is designed to allow higher applied tariff when realization of γ is high
- ► Improves political efficiency

- ► Simple escape clause: add a second (higher) negotiated weak binding
 - Escape clause is designed to allow higher applied tariff when realization of γ is high
- ▶ Improves political efficiency
- ► Can improve self-enforcement

When γ is *only* endogenous:

Escape Clause

Escape Clause with Endogenous Politics

When γ is *only* endogenous:

▶ Benefit of escape clause from exogenous case is gone

When γ is *only* endogenous:

- ▶ Benefit of escape clause from exogenous case is gone
- ► Assuming lower binding is set to maximize political welfare, escape clause encourages inefficiently high lobbying effort / protection

When γ is *only* endogenous:

- ▶ Benefit of escape clause from exogenous case is gone
- ► Assuming lower binding is set to maximize political welfare, escape clause encourages inefficiently high lobbying effort / protection

Escape Clause with Endogenous Politics

When γ is *only* endogenous:

- ▶ Benefit of escape clause from exogenous case is gone
- Assuming lower binding is set to maximize political welfare, escape clause encourages inefficiently high lobbying effort / protection

If γ is only endogenous, escape clause causes problems, provides no benefits

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

▶ Want escape clause to deal with exogenous shock

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

- ▶ Want escape clause to deal with exogenous shock
- ► But endogenous part ⇒ lobbying incentives make it hard to implement escape clause

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

- ▶ Want escape clause to deal with exogenous shock
- ► But endogenous part ⇒ lobbying incentives make it hard to implement escape clause

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

- ▶ Want escape clause to deal with exogenous shock
- ► But endogenous part ⇒ lobbying incentives make it hard to implement escape clause

Ineffectiveness of Political Criterion for Escape Clause

Assume $\gamma(s,e)=\gamma(s)+\gamma(e)$. If an escape clause conditions on $\gamma(s,e)$ and $\gamma(s^L)<\gamma(s^H)<\gamma(e^L)$, the lower "normal" tariff binding will never be applied.

When the world is more complicated... (con't)

▶ To make escape clause work, can't use γ

When the world is more complicated... (con't)

- \blacktriangleright To make escape clause work, can't use γ
 - ▶ Need signal of shock that is not influenced by endogenous pressure

When the world is more complicated... (con't)

- \blacktriangleright To make escape clause work, can't use γ
 - ► Need signal of shock that is not influenced by endogenous pressure
- ightharpoonup Can condition directly on s

When the world is more complicated... (con't)

- ► To make escape clause work, can't use γ
 - ▶ Need signal of shock that is not influenced by endogenous pressure
- ► Can condition directly on s
 - ▶ This seems to be what the WTO actually does

An Escape Clause for a Complicated World

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

▶ Assume s verifiable, so no punishment for $\tau(s)$

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ▶ Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ▶ Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ▶ Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ▶ Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

▶ When this happens, it leads to dispute, not valid escape

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ► Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

- ▶ When this happens, it leads to dispute, not valid escape
- ► Otherwise, no extra rent-seeking is encouraged

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ► Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

- ▶ When this happens, it leads to dispute, not valid escape
- ► Otherwise, no extra rent-seeking is encouraged

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s, e)$

- ▶ Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

- ▶ When this happens, it leads to dispute, not valid escape
- ► Otherwise, no extra rent-seeking is encouraged

May explain why escape clause has fallen out of use

Conclusion

Taking into account endogenous political forces alongside exogenous ones...

Conclusion

Taking into account endogenous political forces alongside exogenous ones...

► helps explain the structure and enforcement of the WTO Safeguards measure

Conclusion

Taking into account endogenous political forces alongside exogenous ones...

- ► helps explain the structure and enforcement of the WTO Safeguards measure
- can help us think about optimal design of trading institutions

Future Work

▶ Application of framework to other design questions

- ▶ Application of framework to other design questions
- ▶ Interactions between $\gamma(s)$ and $\gamma(e)$

- ▶ Application of framework to other design questions
- ▶ Interactions between $\gamma(s)$ and $\gamma(e)$
- ► Choice between protective measures over time

