Elektrikernas kokbok

Björn Ögren

2022-11-09

Contents

1	Likströmskretsar 1.1 URI	5
2	Växelströmskretsar 2.1 Tidsintervall	7
	2.1 Hasintervall	9
3		
	Effekt 3.1 Trefaskretsar 3.2 Reaktiva kretsar	15 16
4	Växelstörmsmoststånd	21
	4.1 Impedans	

4		CONTENTS
4.3	Spolar	25

Chapter 1

Likströmskretsar

Test

1.1 URI

Hello World

Chapter 2

Växelströmskretsar

Hello World

2.1 Tidsintervall

Frekvens är en storhet för antalet repeterande händelser inom ett givet tidsintervall[1]. För att beräkna frekvensen fixerar man ett tidsintervall, räknar antalet förekomster av händelsen och dividerar detta antal med längden av tidsintervallet. Resultatet anges i enheten hertz (Hz) efter den tyske fysikern Heinrich Rudolf Hertz, där 1 Hz är en händelse som inträffar en gång per sekund. Alternativt kan man mäta tiden mellan två förekomster av händelsen ((tids)perioden) och därefter beräkna frekvensens reciproka värde.

2.1.1 Frekvens

Formel

$$Frekvens = \frac{1}{Tid}$$

Exemple

$$Frekvens = \frac{1}{Tid} = \frac{1}{38} \times 10^3 = 26, 3 \ Hz$$

Frekvens är således

$$F = 26, 3 Hz$$

2.1.2 Tid

Formel

$$Tid = \frac{1}{Frekvens}$$

Exemple

$$Tid = \frac{1}{Frekvens} = \frac{1}{400} \times 10^3 = 26, 3 \ Hz$$

Tid är således

$$T=2,5 ms$$

2.2. TOPPVÄRDEN

2.2 Toppvärden

2.2.1 Toppvärde av spänning

Formel

$$\hat{u} = U_{eff} \times \sqrt{2}$$

9

Exemple

$$\hat{u} = U_{eff} \times \sqrt{2} = 415 \times \sqrt{2} \approx 587~V$$

Toppvärdet är således

$$\hat{u}\approx 587~V$$

2.2.2 Toppvärde av ström

Formel

$$\hat{I} = I_{eff} \times \sqrt{2}$$

Exemple

$$\hat{I} = I_{eff} \times \sqrt{2} = 20 \times \sqrt{2} \approx 28, 3~A$$

Toppvärdet är således

$$\hat{I}\approx 28,3~A$$

2.2.3 Topp till toppvärde av spänning

Formel

$$\hat{\ddot{u}} = \hat{u} \times 2$$

Exemple

$$\hat{\tilde{u}} = \hat{u} \times 2 = 587 \times 2 = 1174 \ V$$

Topp till toppvärd är således

$$\hat{\ddot{u}} = 1174~V$$

2.2.4 Topp till toppvärde av ström

$$\hat{\tilde{I}}=\hat{I}\times 2$$

Exemple

$$\hat{\tilde{I}} = \hat{I} \times 2 \approx 28, 3 \times 2 = 56 \ A$$

Topp till toppvärd är således

$$\hat{\tilde{I}}\approx 56~A$$

2.3 Y/D-Koppling

2.3.1 Y-Koppling

2.3.1.1 Linjespänning

Formel

$$U_L=U_f\times\sqrt{3}$$

Exemple

$$U_L = U_f \times \sqrt{3} = 230 \times \sqrt{3} = 400 V$$

Linjespänningen är således

$$U_L=400V$$

2.3.1.2 Fasspänning

$$U_f = \frac{U_L}{\sqrt{3}}$$

Exemple

$$U_f = \frac{U_L}{\sqrt{3}} = \frac{400}{\sqrt{3}} = 230V$$

Fasspänningen är således

$$U_f = 230V$$

2.3.1.3 Fasström

Formel

$$I_f = \frac{U_f}{R}$$

Exemple

$$I_f = \frac{U_f}{R} = \frac{230}{100} = 2,3 A$$

Fasströmen är således

$$I_f = 2, 3 A$$

2.3.1.4 Linjeström

Formel

$$I_L = I_f = 9,58A$$

Linjesströmen är således

$$I_L=2,3A$$

2.3.2 D-koppling

2.3.2.1 Fasspänning

Formel

$$U_f = U_L = 400V$$

Fasspänning är således

$$U_f=400V$$

2.3.2.2 Fasström

Formel

$$I_f = \frac{U_f}{R}$$

Exemple

$$I_f = \frac{U_f}{R} = \frac{400}{2,88} = 5 A$$

Fasströmen är således

$$I_f = 2,3 A$$

2.3.2.3 Linjeström

Formel

$$I_L = I_f \times \sqrt{3}$$

Exemple

$$I_L = I_f \times \sqrt{3} = 90 \times \sqrt{3}$$

Linjeström är således '

$$I_L=2,3~A$$

Chapter 3

Effekt

3.1 Trefaskretsar

Det finns en formel för beräkning av effekt och strömmar i trefaskretsar som gäller både för Y- och D-koppling. I praktiken är vi oftast intresserade av strömmarna som går i ledarna till en belastning, det vi kallar huvudströ . Men i en D-koppling är det fasströmmarna genom brlastningen som ger effektutvecklingen. Därför komplettear vi effektformeln med:

 $\sqrt{3}$

som beskriver sambandet mellan huvudström och fasström. Formeln utgör även grunden för beräkningar av effekten i reaktiva belastningar och den kompletteras då med

 $cos\phi$

16 CHAPTER 3. EFFEKT

.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{P_{trefas}} =$	P	Aktiv effekt	Watt	W
$P_{trefas} = \sqrt{3} \times U \times I$				

3.2 Reaktiva kretsar

3.2.1 Aktiv

Det är den aktivs effekt som vi kan omsätta till ljus, värme eller mekansik rörelse. Aktiva effekten har enheten watt och betecknas med P i effektriangeln.

Samband	Beteckning	Storhet	Enhet	Förkortning
P =	P	Aktiv effekt	Watt	\overline{W}
$U \times I \times cos\phi$				

Samband	Beteckning	Storhet	Enhet	Förkortning
$P_{trefas} = \sqrt{3} \times$	P	Aktiv effekt	Watt	W
$U \times I \times cos\phi$				

Exempel uträkning aktiv effekt

$$\begin{split} P &= U \times I \times cos\phi \\ P &= 230 \times 0, 78 \times 0, 78 \\ P &= 1640 \ W \end{split}$$

Exempel uträkning aktiv effekt trefas

$$\begin{split} P_{trefas} &= \sqrt{3} \times U \times I \times cos\phi \\ P_{trefas} &= \sqrt{3} \times ? \times ? \times ? \\ P_{trefas} &= W \end{split}$$

3.2.2 Skenbar

Skenbar effekt är produkten av strömmens och spänningens effektvärden. Skenbar effekt har enheten voltampere (VA).

18 CHAPTER 3. EFFEKT

Samband	Beteckning	Storhet	Enhet	Förkortning
$S = U \times I =$	S	Skenbar effekt	Voltampere	VA
$ \sqrt{P^2 + Q^2} S_{trefas} = \sqrt{3} \times U \times I $	S	Skenbar effekt	Voltampere	VA
$\sqrt{3} \times U \times I$				

Exempel uträkning skenbar effekt (1)

$$S = U \times I$$

$$S = 230 \times 9,05$$

$$S = 2081 W$$

Exempel uträkning skenbar effekt (2)

$$S = \sqrt{P^2 + Q^2}$$

$$S = \sqrt{2000^2 + 1000^2}$$

$$S = 2, 2 \ kVA$$

Exempel uträkning skenbar effekt trefas

$$S_{trefas} = \sqrt{3} \times U \times I$$

$$S_{trefas} = \sqrt{3} \times 230 \times 9,05$$

$$S_{trefas} = 2081 \ W$$

3.2.3 Reaktiv

Den reaktiva effekten uppstår på grund av fasförskjutningen som det reaktiva motståndet åstakomer. Den reaktiva effekten har enheten voltampere, VAr. Tillläget r står för reaktiv.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} Q = \\ U \times I \times sin\phi = \\ \sqrt{S^2 - P^2} \end{array}$	Q	Reaktiv effekt	Voltampere reakt	VAr

Exempel uträkning reaktiv effekt (1)

$$\begin{aligned} Q &= U \times I \times sin\phi \\ Q &= U \times I \times sin\phi \\ Q &= VAr \end{aligned}$$

Exempel uträkning reaktiv effekt (2)

$$Q = \sqrt{S^2 - P^2}$$

$$Q = \sqrt{1000^2 - 607^2}$$

$$Q = 795 \ VAr$$

CHAPTER 3. EFFEKT

Chapter 4

Växelstörmsmoststånd

4.1 Impedans

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{Z} =$	Z	Impedans	Ohm	Ω
$\sqrt{R^2 + (X_L - X_L)}$ $R = \frac{U}{I}$	R	Resistans	Ohm	Ω
	X_L	Induktiv reaktans	Ohm	Ω
$\begin{array}{l} X_L = 2\pi f L \\ X_C = \frac{1}{2\pi f C} \end{array}$	X_C	kapacitiv reaktans	Ohm	Ω

Exempel uträkning impedans Z

$$Z = \sqrt{R^2 + (X_L)^2} \\ Z = \sqrt{20^2 + (15,7)^2} \\ Z = 25,4 \ \Omega$$

4.2 Kondensatorer

Kondensatorns förmåga att lagra elektrisk laddning kallas kapacitans, och betecknas C. Enheten för kapacitans är farad som betecknas F.

Prefixer	Förkortning	Tiopotens
$1 \ mikrofarad$	μF	10^{-6}
$1 \ nanofarad$	nF	10^{-9}
$1\ picofarad$	pF	10^{-12}

4.2.1 Kapacitans

Kapacitans beskriver hur mycket energi kondensatorn kan innehålla vid en viss spänning.

Samband	Beteckning	Storhet	Enhet	Förkortning
$C = \frac{1}{(2\pi f X_c)}$	C	Kapacitans	Farad	$F^{As/V}$
$f = \frac{1}{T}$	f	Hertz	Hz	
$2 \times \pi = 3.14$	Pi	Omkrets	Radies	π

4.2. KONDENSATORER 23

Exempel uträkning kapacitans

$$L = \frac{L = \frac{X_L}{2\pi f}}{\frac{1000}{(2\times3.14\times1.0\times10^3~\sqrt{3})}} \\ L = 0.16~H$$

4.2.2 Kapacitiv reaktans

Växelströmsmotståndet i kondensatorn minskar när frekvensen ökar. Då kommer ekvationen att minska när frekvesen ökar.

Samband	Beteckning	Storhet	Enhet	Förkortning
$X_C = \frac{1}{2\pi fC}$	X_C	kapacitiv reaktans	Ohm	Ω
$f = \frac{1}{T}$	f	Hertz	Hz	
$2 \times \pi = 3.14$	Pi	Omkrets	Radies	π

Exempel uträkning kapacitiv reaktans

$$X_C = \frac{1}{2\pi f C} \\ X_C = \frac{1}{2 \times \pi \times 50 \times 0,0002} \\ X_C = 15,91 \ \Omega$$

4.2.3 Seriekopplade

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{C_{tot}} = \\ C_1 + C_2 \dots$	C	Kapacitans	Farad	$F^{As/V}$

Exempel uträkning kapacitiv reaktans

$$\begin{split} C_{tot} &= C_1 + C_2 \\ C_{tot} &= 12_1 + 12_2 \\ C_{tot} &= 24 \ \mu F \end{split}$$

4.2.4 Parallellkopplade

Samband	Beteckning	Storhet	Enhet	Förkortning
$\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots$	C	Kapacitans	Farad	$F^{As/V}$

$$\frac{\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots}{\frac{1}{C_{tot}} = \frac{1}{1,8_1} + \frac{1}{16_2} + \frac{1}{32_3}}$$

$$C_{tot} = 4.5 \ nF$$

4.3. SPOLAR 25

4.3 Spolar

Spolens egenskaper kallas induktans, betecknas i formler L och mäts i enheten Henry (H).

Prefixer	Enhet	Förkostning
1 millihenry	mH	10^{-3}
$1\ mikrohenry$	μH	10^{-6}

4.3.1 Induktans

Induktansen beror på hur många varv spolen har, diametern, avståndet mellan ledarna och om spolen är försedd med järnkärna. Flera lindningsvarv och större diameter ger spolen större indutans.

Samband	Beteckning	Storhet	Enhet	Förkortning
$L = \frac{X_L}{2\pi f}$	L	Induktans	Henry	$H^{Vs/A}$
$f = \frac{1}{T}$	f	Frekvens	Hertz	Hz
$2 \times \pi = 3.14$	Pi	?	?	π

Exempel uträkning induktians
$L = \frac{L = \frac{X_L}{2 \times \pi f}}{\frac{1000}{(2 \times 3.14 \times 1.0 \times 10^3 \sqrt{3})}}$ $L = 0.16 \ H$

4.3.2 Induktiv reaktans

Växelströmsmotståndet är frekvensberoende och motståndet ökar när frekvensen ökar.

Samband	Beteckning	Storhet	Enhet	Förkortning
$X_L = 2\pi f L$ $f = \frac{1}{T}$	$\begin{matrix} X_L \\ f \end{matrix}$	Induktiv reaktans Frekvens	Ohm Hertz	$\Omega \ Hz$
$2 \times \pi = 3.14$	Pi	?	?	π

Test	_
$X_L = 2\pi f L$ $X_L = 2 \times \pi 50 \ Hz \times 0.05 \ H$ $X_L = 15.7 \ \Omega$	I

Exempel uträkning induktians
$$X_L = 2\pi f L$$

$$X_L = 2 \times \pi \ 50 \ Hz \times 0,05 \ H$$

$$X_L = 15,7 \ \Omega$$