The Calculus of Linear Constructions — Technical Report

Anonymous Submission

January 3, 2022

Contents

1	Introduction	2
2	Syntax of CLC (clc_ast.v)	2
3	Reduction and Equality of CLC (clc_ast.v)	2
4	Confluence of CLC (clc_confluence.v) 4.1 Parallel Reduction 4.2 Reduction Lemmas 4.3 Equality Lemmas 4.4 Parallel Reduction Lemmas 4.5 Confluence Theorem 4.6 Corollaries of Confluence	2 2 3 4 4 5 5
5	Context of CLC (clc_context.v) 5.1 Merge Lemmas	6 6 7
6	Subtyping of CLC (clc_subtype.v) 6.1 Subtyping Lemmas	8 8
7	Typing of CLC (clc_typing.v)	9
8	Inversion Lemmas of CLC (clc_inversion.v)	10
9	Weakening Lemmas of CLC (clc_weakening.v) 9.1 Properties of agreeR	11 11 11
10	Substitution Lemmas of CLC (clc_substitution.v) 10.1 Properties of agreeS	12 12 12 12
11	Typing Validity of CLC (clc_validity.v)	13
12	Subject Reduction of CLC (clc_soundness.v)	13
13	Linearity Theorems of CLC (clc_linearity.v) 13.1 Linearity	13 13 14 15

14 Logical Consistency of CLC clc_consistent.v	15
14.1 Strong Normalization	15
14.2 Embedding of $CC\omega$	16

1 Introduction

This extended report is meant to accompany our paper of the same title. Here, we describe the meta-theory of CLC and its proofs in detail. All the results presented here have been formalized and proven correct in the Coq Proof Assistant.

2 Syntax of CLC (clc_ast.v)

$$\begin{array}{lll} i & & ::= \ 0 \ | \ 1 \ | \ 2 \ ... & & \text{universe levels} \\ \\ s,t & & ::= \ U \ | \ L & & \text{sorts} \\ \\ m,n,A,B,M & & ::= \ U_i \ | \ L_i \ | \ x & & \text{expressions} \\ \\ | \ (x:_s \ A) \to B & & \\ | \ (x:_s \ A) \multimap B & & \\ | \ \lambda x:_s \ A.n & & \\ | \ m \ n & & \end{array}$$

3 Reduction and Equality of CLC (clc ast.v)

$$\frac{m_1 \leadsto^* n \qquad m_2 \leadsto^* n}{m_1 \equiv m_2 : A}_{\text{JOIN}} \qquad \frac{(\lambda x :_s A.m) \ n \leadsto m[n/x]}{(\lambda x :_s A.m) \ n \leadsto m[n/x]}_{\text{STEP-}\beta} \qquad \frac{A \leadsto A'}{\lambda x :_s A.m \leadsto \lambda x :_s A'.m}_{\text{STEP-}\lambda L}$$

$$\frac{m \leadsto m'}{\lambda x :_s A.m \leadsto \lambda x :_s A.m'}_{\text{STEP-}\lambda R} \qquad \frac{A \leadsto_p A'}{(x :_s A) \to B \leadsto (x :_s A') \to B}_{\text{STEP-}L} \to$$

$$\frac{B \leadsto_p B'}{(x :_s A) \to B \leadsto (x :_s A) \to B'}_{\text{STEP-}R} \to \qquad \frac{A \leadsto_p A'}{(x :_s A) \multimap B \leadsto (x :_s A') \multimap B}_{\text{STEP-L}} \to$$

$$\frac{B \leadsto_p B'}{(x :_s A) \multimap B \leadsto (x :_s A) \multimap B'}_{\text{STEP-}R} \to \qquad \frac{m \leadsto m'}{m \ n \leadsto m' \ n}_{\text{STEP-}APPL} \to \frac{n \leadsto n'}{m \ n \leadsto m \ n'}_{\text{STEP-}APPR}$$

4 Confluence of CLC (clc_confluence.v)

4.1 Parallel Reduction

To prove the confluence property of CLC, we employ the standard technique utilizing parallel reductions.

$$\frac{A \leadsto_{p} A' \qquad m \leadsto_{p} m'}{\lambda x :_{s} A.m \leadsto_{p} \lambda x :_{s} A'.m'} PSTEP-\lambda$$

$$\frac{m \leadsto_{p} m' \qquad n \leadsto_{p} n'}{m \ n \leadsto_{p} m' \ n'} PSTEP-\lambda PP \qquad \frac{m \leadsto_{p} m' \qquad n \leadsto_{p} n'}{(\lambda x :_{s} A.m) \ n \leadsto_{p} m' [n'/x]} PSTEP-\beta$$

$$\frac{A \leadsto_{p} A' \qquad B \leadsto_{p} B'}{(x :_{s} A) \to B \leadsto_{p} (x :_{s} A') \to B'} PSTEP \to \qquad \frac{A \leadsto_{p} A' \qquad B \leadsto_{p} B'}{(x :_{s} A) \multimap_{p} B \leadsto_{p} (x :_{s} A') \multimap_{p} B'} PSTEP-\delta$$

4.2 Reduction Lemmas

Here, we prove some simple lemmas concerning \rightsquigarrow , \rightsquigarrow^* and substitution.

Definition 4.1. For a term m and a map σ from variables to terms, let $m[\sigma]$ be the term obtained by applying σ uniformly to all free variables in m.

Definition 4.2. For maps σ, τ from variables to terms, we say that σ reduces to τ if for any variable x there exists a reduction $(\sigma x) \rightsquigarrow^* (\tau x)$. We write $\sigma \rightsquigarrow^* \tau$ when it is clear from context that σ, τ are maps and not terms.

Lemma 4.1. For terms m, n and a map σ from variables to terms, if there exist a step $m \rightsquigarrow n$, then there exists a step $m[\sigma] \rightsquigarrow n[\sigma]$.

Proof. By induction on the derivation of $m \rightsquigarrow n$.

Lemma 4.2. For terms m_1, m_2, n_1, n_2 , if these exists reductions $m_1 \rightsquigarrow^* m_2$ and $n_1 \rightsquigarrow^* n_2$, then there exists reduction $(m_1 \ n_1) \rightsquigarrow^* (m_2 \ n_2)$.

Proof. By transitivity of →* and applying rules Step-AppL, Step-AppR.

Lemma 4.3. For terms A_1, A_2, m_1, m_2 and sort s, if there exists reductions $A_1 \leadsto^* A_2$ and $m_1 \leadsto^* m_2$, then there exists reduction $\lambda x :_s A_1.m_1 \leadsto^* \lambda x :_s A_2.m_2$.

Proof. By transitivity of \rightsquigarrow^* and applying rules Step- λ L, Step- λ R.

Lemma 4.4. For terms A_1, A_2, B_1, B_2 and sort s, if there exists reductions $A_1 \rightsquigarrow^* A_2$ and $B_1 \rightsquigarrow^* B_2$, then there exists reduction $(x :_s A_1) \to B_1 \rightsquigarrow^* (x :_s A_2) \to B_2$.

Proof. By transitivity of \leadsto^* and applying rules Step-L \to , Step-R \to .

Lemma 4.5. For terms A_1, A_2, B_1, B_2 and sort s, if there exists reductions $A_1 \rightsquigarrow^* A_2$ and $B_1 \rightsquigarrow^* B_2$, then there exists reduction $(x :_s A_1) \multimap B_1 \rightsquigarrow^* (x :_s A_2) \multimap B_2$.

Proof. By transitivity of \leadsto^* and applying rules Step-L \multimap , Step-R \multimap .

Lemma 4.6. For terms m, n and a map σ from variables to terms, if there exist a reduction $m \rightsquigarrow^* n$, then there exists a reduction $m[\sigma] \rightsquigarrow^* n[\sigma]$.

Proof. By induction on the derivation of \rightsquigarrow^* , the transitivity of \rightsquigarrow^* and Lemma 4.1.

Lemma 4.7. For maps σ, τ from variables to terms, if there is a map reduction $\sigma \leadsto^* \tau$, then for any term m these is a reduction $m[\sigma] \leadsto^* m[\tau]$.

Proof. By induction on the structure of m, applying Lemmas 4.2, 4.3, 4.4, 4.5.

4.3 Equality Lemmas

Here, we prove some simple lemmas concerning \rightsquigarrow^* , \equiv and substitution.

Definition 4.3. For maps σ, τ from variables to terms, we say that σ is equal to τ if for any variable x there exists an equality $(\sigma x) \equiv (\tau x)$. We write $\sigma \equiv \tau$ when it is clear from context that σ, τ are maps and not terms.

Lemma 4.8. For any map f from terms to terms, if for any terms m, n such that $m \rightsquigarrow n$ implies f $m \equiv f$ n, then for any terms m, n equality $m \equiv n$ implies f $m \equiv f$ n.

Proof. By the properties of the transitive reflexive closure \rightsquigarrow^* and that \equiv is an equivalence relation.

Lemma 4.9. For terms m_1, m_2, n_1, n_2 , if there exists equalities $m_1 \equiv m_2$ and $n_1 \equiv n_2$, then there exists equality $(m_1 \ n_1) \equiv (m_2 \ n_2)$.

Proof. By transitivity of \equiv and applying rules Join, Step-AppL, Step-AppR.

Lemma 4.10. For terms A_1, A_2, m_1, m_2 and sort s, if there exists equalities $A_1 \equiv A_2$ and $m_1 \equiv m_2$, then there exists equality $\lambda x :_s A_1.m_1 \equiv \lambda x :_s A_2.m_2$.

Proof. By transitivity of \equiv and applying rules Join, Step- λ R.

Lemma 4.11. For terms A_1, A_2, B_1, B_2 and sort s, if there exists equalities $A_1 \equiv A_2$ and $B_1 \equiv B_2$, then there exists equality $(x :_s A_1) \to B_1 \equiv (x :_s A_2) \to B_2$.

Proof. By transitivity of \equiv and applying rules Join, Step-L \rightarrow , Step-R \rightarrow .

Lemma 4.12. For terms A_1, A_2, B_1, B_2 and sort s, if there exists equalities $A_1 \equiv A_2$ and $B_1 \equiv B_2$, then there exists equality $(x :_s A_1) \multimap B_1 \equiv (x :_s A_2) \multimap B_2$.

Proof. By transitivity of \equiv and applying rules Join, Step-L \rightarrow , Step-R \rightarrow .

Lemma 4.13. For terms m, n and map σ from variables to terms, if there is equality $m \equiv n$, then there is equality $m[\sigma] \equiv n[\sigma]$.

Proof. By Lemmas 4.8 and 4.1. \Box

Lemma 4.14. For maps σ, τ from variables to terms and term m, if these is map equality $\sigma \equiv \tau$, then there is equality $m[\sigma] \equiv m[\tau]$.

Proof. By induction on the structure of m, applying Lemmas 4.9, 4.10, 4.11, 4.12.

Lemma 4.15. For terms m_1, m_2, n , if there is equality $m_1 \equiv m_2$, then there is equality $n[m_1/x] \equiv n[m_2/x]$ for any variable $x \in FV(n)$.

Proof. This is a special case of Lemma 4.14 where σ maps x to m_1 and τ maps x to m_2 .

4.4 Parallel Reduction Lemmas

Definition 4.4. For maps σ, τ from variables to terms, we say σ parallel reduces to τ if for any variable x there exists a parallel reduction $(\sigma x) \leadsto_p (\tau x)$. We write $\sigma \leadsto_p \tau$ when it is clear from context that σ, τ are maps and not terms.

Lemma 4.16. For any term m, there exists a reflexive parallel reduction $m \leadsto_p m$.

Proof. By induction on the structure of m.

Lemma 4.17. For any map σ from variables to terms, there exists a reflexive parallel map reduction $\sigma \leadsto_n \sigma$.

Proof. By Definition 4.4 and Lemma 4.16.

Lemma 4.18. For any terms m, n, if there exists step $m \leadsto n$, then there exists a parallel reduction $m \leadsto_p n$.

Proof. By induction on the derivation of $m \rightsquigarrow n$ and Lemma 4.16. **Lemma 4.19.** For terms m, n, if there exists parallel reduction $m \leadsto_p n$, then there exists a reduction $m \leadsto^* n$. *Proof.* By induction on the derivation of $m \leadsto_p n$, utilizing the transitive property of \leadsto^* and Lemmas 4.2, 4.3, 4.4, 4.5, 4.6, 4.7. **Lemma 4.20.** For terms m, n and map σ from variables to terms, if there exists parallel reduction $m \leadsto_p n$, there exists parallel reduction $m[\sigma] \leadsto_{p} n[\sigma]$. *Proof.* By induction on the derivation of $m \leadsto_p n$ and Lemma 4.16. **Lemma 4.21.** For terms m, n and maps σ, τ from variables to terms, if there exists parallel reduction $m \leadsto_p n$ and parallel map reduction $\sigma \leadsto_p \tau$, there exists parallel reduction $m[\sigma] \leadsto_p n[\tau]$. *Proof.* By induction on the derivation of $m \leadsto_p n$. **Lemma 4.22.** For terms m_1, m_2, n , if there is parallel reduction $m_1 \leadsto_p m_2$, then there is parallel reduction $n[m_1/x] \leadsto_p n[m_2/x]$ for any variable $x \in FV(n)$. *Proof.* By Lemma 4.16, this is a special case of Lemma 4.21 where σ maps x to m_1 and τ maps x to m_2 . \square 4.5 Confluence Theorem

We first show that \leadsto_p satisfies the diamond property. Using the diamond property, we ultimately prove the confluence theorem.

Lemma 4.23. CLC term reduction has the diamond property. For terms m, m_1, m_2 , if there are parallel reductions $m \leadsto_p m_1$ and $m \leadsto_p m_2$, then there exists term m' such that $m_1 \leadsto_p m'$ and $m_2 \leadsto_p m'$.

Proof. By induction on the derivation of $m \leadsto_p m_1$. Each case in the induction specializes m appearing in $m \leadsto_p m_2$, allowing one to invert its derivation in a syntax directed way and apply the induction hypothesis. The difficult cases are due to PSTEP- β as it concerns substitution, so Lemma 4.21 is used to push these cases through.

Lemma 4.24. Strip lemma. For terms m, m_1, m_2 , if there is parallel reduction $m \leadsto_p m_1$ and reduction $m \rightsquigarrow^* m_2$, then there exists term m' such that $m_1 \rightsquigarrow^* m'$ and $m_2 \rightsquigarrow_p m'$.

Proof. By induction on the derivation of $m \leadsto_p m_1$, utilizing transitivity of \leadsto^* and Lemmas 4.18, 4.19, 4.23.

Theorem 4.25. CLC term reduction is confluent. For terms m, m_1, m_2 , if there are reductions $m \rightsquigarrow^* m_1$ and $m \rightsquigarrow^* m_2$, then there exists term m' such that $m_1 \rightsquigarrow^* m'$ and $m_2 \rightsquigarrow^* m'$.

Proof. By induction on the derivation of $m \rightsquigarrow^* m_1$, utilizing transitivity of \rightsquigarrow^* and Lemmas 4.18, 4.19, 4.24.

4.6 Corollaries of Confluence

The following results are all corollaries of confluence, proven using a combination of induction, transitivity and confluence. These corollaries allow us to refute false reductions and equalities in future proofs.

Corollary 4.25.1. For a universe s_i and term m, if there is reduction $s_i \rightsquigarrow^* m$, then $m = s_i$.

Corollary 4.25.2. For variable x and term m, if there is reduction $x \rightsquigarrow^* m$, then m = x.

Corollary 4.25.3. For terms A, B, m and sort s, if there is reduction $(x :_s A) \to B \rightsquigarrow^* m$, then there exists A', B' such that there are reductions $A \leadsto^* A', B \leadsto^* B'$ and $m = (x :_s A') \to B'$.

Corollary 4.25.4. For terms A, B, m and sort s, if there is reduction $(x :_s A) \multimap B \leadsto^* m$, then there exists A', B' such that there are reductions $A \leadsto^* A'$, $B \leadsto^* B'$ and $m = (x :_s A') \multimap B'$.

Corollary 4.25.5. For terms A, m, n and sort s, if there is reduction $\lambda x :_s A.m \rightsquigarrow^* n$, then there exists A', m' such that there are reductions $A \rightsquigarrow^* A', m \rightsquigarrow^* m'$ and $n = \lambda x :_s A'.m'$.

Corollary 4.25.6. For sorts s, t and levels i, j, if there is equality $s_i \equiv t_j$, then there is s = t and i = j.

Corollary 4.25.7. For terms A_1, A_2, B_1, B_2 and sorts s, t, if there is equality $(x :_s A_1) \to B_1 \equiv (x :_t A_2) \to B_2$, then there are equalities $A_1 \equiv A_2, B_1 \equiv B_2$ and s = t.

Corollary 4.25.8. For terms A_1, A_2, B_1, B_2 and sorts s, t, if there is equality $(x :_s A_1) \multimap B_1 \equiv (x :_t A_2) \multimap B_2$, then there are equalities $A_1 \equiv A_2, B_1 \equiv B_2$ and s = t.

5 Context of CLC (clc context.v)

Contexts of CLC are of the form $x_1 :_{s_1} A_1, x_2 :_{s_2} A_2, ... x_k :_{s_k} A_k$ where each free variable x_i is assigned a type A_i and sort s_i . Contexts will be referred to by meta variables Γ and Δ .

$$\frac{\Gamma \vdash \overline{\Gamma} \vdash A : U_i}{\Gamma, x :_U A \vdash} \text{Wf-U} \qquad \frac{\Gamma \vdash \overline{\Gamma} \vdash A : L_i}{\Gamma, x :_L A \vdash} \text{Wf-L}$$

$$\frac{|\Gamma| \qquad \Gamma \vdash A : U_i}{|\Gamma, x :_U A|} \text{Pure-U}$$

$$\frac{|\Gamma| \qquad \Gamma \vdash A : U_i}{|\Gamma, x :_U A|} \text{Pure-U}$$

$$\frac{\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma}{\Gamma_1, x :_U A \ddagger \Gamma_2, x :_U A \ddagger \Gamma, x :_U A} \text{Merge-U}$$

$$\frac{\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma \qquad x \notin \Gamma_2}{\Gamma_1, x :_L A \ddagger \Gamma_2 \ddagger \Gamma, x :_L A} \text{Merge-L1}$$

$$\frac{\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma \qquad x \notin \Gamma_1}{\Gamma_1 \ddagger \Gamma_2, x :_L A \ddagger \Gamma, x :_L A} \text{Merge-L2}$$

5.1 Merge Lemmas

Since weakening and contraction rules will not be allowed on restricted variables, it is necessary to have lemmas that enable the manipulation of contexts.

Lemma 5.1. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then there is $\Gamma_2 \ddagger \Gamma_1 \ddagger \Gamma$.

Proof. By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.

Lemma 5.2. For any context Γ , if there is $|\Gamma|$, then there is $\Gamma \ddagger \Gamma \ddagger \Gamma$.

Proof. By induction on the derivation of $|\Gamma|$.

Lemma 5.3. For any context Γ , there is $\overline{\Gamma} \ddagger \Gamma \ddagger \Gamma$.

Proof. By induction on the structure of Γ .

Lemma 5.4. For any context Γ , there is $\Gamma \ddagger \overline{\Gamma} \ddagger \Gamma$.

Proof. By induction on the structure of Γ .

Lemma 5.5. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $|\Gamma|$, then there is $|\Gamma_1|$ and $|\Gamma_2|$.

Proof. By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.

Lemma 5.6. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $ \Gamma_1 $, then there is $\Gamma = \Gamma_2$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.7. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $ \Gamma_2 $, then there is $\Gamma = \Gamma_1$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.8. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, and also $ \Gamma_1 $, $ \Gamma_2 $, then there is $ \Gamma $.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.9. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, and also $ \Gamma_1 $, $ \Gamma_2 $, then there is $\Gamma_1 = \Gamma_2$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.10. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then there is $\overline{\Gamma_1} = \overline{\Gamma}$ and $\overline{\Gamma_2} = \overline{\Gamma}$.	
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.11. For any context Γ , there is $\overline{\Gamma} \ddagger \overline{\Gamma} \ddagger \overline{\Gamma}$.	
<i>Proof.</i> By induction on the structure of Γ .	
5.2 Restriction and Purity Lemmas	
Lemma 5.12. For any context Γ , there is $\overline{\Gamma} = \overline{\overline{\Gamma}}$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.13. For any context Γ , if there is $ \Gamma $, then there is $\Gamma = \overline{\Gamma}$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.14. For any context Γ , there is $ \overline{\Gamma} $.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.15. For any context Γ , variable x and type A , if there is $x :_U A \in \Gamma$, then there is $x :_U A \in \overline{\Gamma}$	
<i>Proof.</i> By induction on the derivation of $x:_U A \in \Gamma$.	
Lemma 5.16. For any context Γ , variable x and type A , there is $x :_L A \notin \overline{\Gamma}$.	
<i>Proof.</i> By induction on the structure of Γ .	
Lemma 5.17. For contexts $\Gamma_1, \Gamma_2, \Gamma, \Delta_1, \Delta_2$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Delta_1 \ddagger \Delta_2 \ddagger \Gamma_1$, then there exists such that $\Delta_1 \ddagger \Gamma_2 \ddagger \Delta$ and $\Delta \ddagger \Delta_2 \ddagger \Gamma$.	Α
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	
Lemma 5.18. For contexts $\Gamma_1, \Gamma_2, \Gamma, \Delta_1, \Delta_2$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Delta_1 \ddagger \Delta_2 \ddagger \Gamma_1$, then there exists such that $\Delta_2 \ddagger \Gamma_2 \ddagger \Delta$ and $\Delta_1 \ddagger \Delta \ddagger \Gamma$.	Α
<i>Proof.</i> By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.	

6 Subtyping of CLC (clc subtype.v)

The cumulativity relation (\preceq) is the smallest binary relation over terms such that

- 1. \leq is a partial order with respect to equality.
 - (a) If $A \equiv B$, then $A \leq B$.
 - (b) If $A \leq B$ and $B \leq A$, then $A \equiv B$.
 - (c) If $A \leq B$ and $B \leq C$, then $A \leq B$.
- 2. $U_0 \leq U_1 \leq U_2 \leq \cdots$
- 3. $L_0 \leq L_1 \leq L_2 \leq \cdots$
- 4. If $A_1 \equiv A_2$ and $B_1 \leq B_2$, then $(x :_s A_1) \to B_1 \leq (x :_s A_2) \to B_2$
- 5. If $A_1 \equiv A_2$ and $B_1 \preceq B_2$, then $(x:_s A_1) \multimap B_1 \preceq (x:_s A_2) \multimap B_2$

Here, we give an inductive definition of the cumulativity relation (\preceq) that is suitable for writing proofs.

$$\frac{i_{1} \leq i_{2}}{A \prec A} \prec \text{-Refl} \qquad \frac{i_{1} \leq i_{2}}{s_{i_{1}} \prec s_{i_{2}}} \prec \text{-Sort} \qquad \frac{B_{1} \prec B_{2}}{(x :_{s} A) \to B_{1} \prec (x :_{s} A) \to B_{2}} \prec \to$$

$$\frac{B_{1} \prec B_{2}}{(x :_{s} A) \multimap B_{1} \prec (x :_{s} A) \multimap B_{2}} \prec \to$$

$$\frac{A' \prec B' \qquad A \equiv A' \qquad B \equiv B'}{A \preceq B} \prec \to$$

6.1 Subtyping Lemmas

Lemma 6.1. For terms A, B, if there is $A \prec B$, then there is $A \leq B$.

Proof. By \prec - \leq and the reflexivity of equality \equiv .

Lemma 6.2. For terms A, B, C, if there is $A \prec B$ and $B \equiv C$, then there is $A \leq C$.

Proof. By \prec - \preceq and the transitivity of equality \equiv .

Lemma 6.3. For terms A, B, C, if there is $A \equiv B$ and $B \prec C$, then there is $A \preceq C$.

Proof. By \prec - \preceq and the transitivity of equality \equiv .

Lemma 6.4. For terms A, B, if there is $A \equiv B$, then there is $A \leq B$.

Proof. By Lemma 6.3 and \prec -Refl.

Lemma 6.5. For term A, there is $A \prec A$.

Proof. By Lemma 6.1 and \prec -Refl.

Lemma 6.6. For natural numbers i, j and sort s such that $i \leq j$, there is $s_i \leq s_j$.

Proof. By Lemma 6.1 and \prec -Sort.

Lemma 6.7. For terms A, B, C, D, if there is $A \prec B$, $B \equiv C$ and $C \prec D$, then there is $A \leq D$.

Proof. By induction on the derivation of $A \prec B$, definition of \prec and Lemmas 6.1, 6.2, 6.3.

Lemma 6.8. For terms A, B, C, if there is $A \leq B$ and $B \leq C$, then there is $A \leq C$.

Proof. By transitivity of \equiv , rule \prec - \preceq and Lemma 6.7.

Lemma 6.9. For sorts s, t and natural numbers i, j, if there is $s_i \leq t_j$, then there is s = t and $i \leq j$.

Proof. By transitivity of \equiv and Corollary 4.25.6.

Lemma 6.10. For terms A_1, A_2, B_1, B_2 and sorts s, t, if there is $(x :_s A_1) \to B_1 \preceq (x :_t A_2) \to B_2$, then there is $A_1 \equiv A_2$ and $B_1 \preceq B_2$ and s = t.

Proof. By transitivity of \equiv and Corollary 4.25.7.

Lemma 6.11. For terms A_1, A_2, B_1, B_2 and sorts s, t, if there is $(x :_s A_1) \multimap B_1 \preceq (x :_t A_2) \multimap B_2$, then there is $A_1 \equiv A_2$ and $B_1 \preceq B_2$ and s = t.

Proof. By transitivity of \equiv and Corollary 4.25.8.

Lemma 6.12. For terms A, B and map σ from variables to terms, if there is $A \prec B$, then there is $A[\sigma] \prec B[\sigma]$.

Proof. By induction on the derivation of $A \prec B$ and the definition of \prec .

Lemma 6.13. For terms A, B and map σ from variables to terms, if there is $A \leq B$, then there is $A[\sigma] \leq B[\sigma]$.

Proof. By rule \prec - \preceq and Lemmas 4.13, 6.12.

7 Typing of CLC (clc_typing.v)

The following rules define well-formed contexts.

$$\frac{\Gamma \vdash \overline{\Gamma} \vdash A : U_i}{\Gamma, x :_U A \vdash} \text{U-Ok} \qquad \frac{\Gamma \vdash \overline{\Gamma} \vdash A : L_i}{\Gamma, x :_L A \vdash} \text{L-Ok}$$

The typing rules of CLC are presented below.

$$\frac{|\Gamma|}{\Gamma \vdash s_i : U_{i+1}} \text{Sort-Axiom} \qquad \frac{|\Gamma|}{\Gamma \vdash A : U_i} \frac{\Gamma, x :_{U} A \vdash B : s_i}{\Gamma \vdash (x :_{U} A) \to B : U_i} \text{U} \to \frac{|\Gamma|}{\Gamma \vdash A : L_i} \frac{\Gamma \vdash B : s_i}{\Gamma \vdash (x :_{L} A) \to B : U_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{U} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{U} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma \vdash (x :_{U} A) \to B : L_i} \text{L} \to \frac{|\Gamma|}{\Gamma$$

$$\frac{\Gamma_1 \vdash m : (x :_U A) \multimap B \qquad |\Gamma_2| \qquad \Gamma_2 \vdash n : A \qquad \Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma}{\Gamma \vdash m \ n : B[n/x]}_{\text{APP-U} \multimap}$$

$$\frac{\Gamma_1 \vdash m : (x :_L A) \multimap B \qquad \Gamma_2 \vdash n : A \qquad \Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma}{\Gamma \vdash m \ n : B[n/x]}_{\text{APP-L} \multimap}$$

$$\frac{\Gamma \vdash m : A \qquad \overline{\Gamma} \vdash B : s_i \qquad A \preceq B}{\Gamma \vdash m : B}_{\text{CONVERSION}}$$

8 Inversion Lemmas of CLC (clc inversion.v)

Lemma 8.1. For any context Γ and terms A, B, s, if there is $\Gamma \vdash (x :_U A) \rightarrow B : s$, then there exists sort t and natural number i such that $\Gamma \vdash A : U_i$ and $\Gamma, x :_U A \vdash B : t_i$.

Proof. By induction on the derivation of $\Gamma \vdash (x :_{U} A) \to B : s$.

Lemma 8.2. For any context Γ and terms A, B, s, if there is $\Gamma \vdash (x :_L A) \rightarrow B : s$, then there exists sort t and natural number i such that $\Gamma \vdash A : L_i$ and $\Gamma \vdash B : t_i$.

Proof. By induction on the derivation of $\Gamma \vdash (x : A) \rightarrow B : s$.

Lemma 8.3. For any context Γ and terms A, B, s, if there is $\Gamma \vdash (x :_U A) \multimap B : s$, then there exists sort t and natural number i such that $\Gamma \vdash A : U_i$ and $\Gamma, x :_U A \vdash B : t_i$.

Proof. By induction on the derivation of $\Gamma \vdash (x :_{U} A) \multimap B : s$.

Lemma 8.4. For any context Γ and terms A, B, s, if there is $\Gamma \vdash (x :_L A) \multimap B : s$, then there exists sort t and natural number i such that $\Gamma \vdash A : L_i$ and $\Gamma \vdash B : t_i$.

Proof. By induction on the derivation of $\Gamma \vdash (x :_{L} A) \multimap B : s$.

Lemma 8.5. For any context Γ , terms A, n, C and sort s, if there is $\Gamma \vdash \lambda x :_s A.n : C$, then for all terms A', B, sorts s', t and natural number i such that $C \preceq (x :_{s'} A') \rightarrow B$ and $\overline{\Gamma}, x :_{s'} \overline{A'} \vdash B : t_i$, there is $\Gamma, x :_{s'} A' \vdash n : B$.

Proof. By induction on the derivation of $\Gamma \vdash \lambda x :_s A.n : C$ and Lemmas 8.1, 8.2.

Lemma 8.6. For any context Γ , terms A, n, C and sort s, if there is $\Gamma \vdash \lambda x :_s A.n : C$, then for all terms A', B, sorts s', t and natural number i such that $C \preceq (x :_{s'} A') \multimap B$ and $\overline{\Gamma}, x :_{s'} \overline{A'} \vdash B : t_i$, there is $\Gamma, x :_{s'} A' \vdash n : B$.

Proof. By induction on the derivation of $\Gamma \vdash \lambda x :_s A.n : C$ and Lemmas 8.3, 8.4.

Lemma 8.7. For any context Γ , terms A, A', B, n, sorts s, s', t and natural number i, if there is $\overline{\Gamma} \vdash (x :_{s'} A') \rightarrow B : t_i \text{ and } \Gamma \vdash \lambda x :_s A.n : (x :_{s'} A') \rightarrow B$, then there is $\Gamma, x :_{s'} A' \vdash n : B$.

Proof. Direct consequence of Lemmas 8.1, 8.2 and 8.5.

Lemma 8.8. For any context Γ , terms A, A', B, n, sorts s, s', t and natural number i, if there is $\overline{\Gamma} \vdash (x :_{s'} A') \multimap B : t_i$ and $\Gamma \vdash \lambda x :_s A :_{s'} A') \multimap B$, then there is $\Gamma, x :_{s'} A' \vdash n : B$.

Proof. Direct consequence of Lemmas 8.3, 8.4 and 8.6. \Box

9 Weakening Lemmas of CLC (clc weakening.v)

Weakening for non-linear types is admissible in CLC. To prove this, we first define an agreeR relation between two contexts Γ, Γ' and a mapping ξ from variables to variables.

$$\frac{agreeR \; \xi \; \Gamma \; \Gamma' \qquad x \notin FV(\Gamma) \cup FV(\Gamma')}{agreeR \; (\xi \cup (x,x)) \; (\Gamma,x:_{_{U}}A)(\Gamma',x:_{_{U}}A[\xi])} \text{^{AGREER-U}}$$

$$\frac{agreeR\ \xi\ \Gamma\ \Gamma' \qquad x\notin FV(\Gamma)\cup FV(\Gamma')}{agreeR\ (\xi\cup(x,x))\ (\Gamma,x:_LA)(\Gamma',x:_LA[\xi])} \text{\tiny AGREER-L} \qquad \frac{agreeR\ \xi\ \Gamma\ \Gamma' \qquad x\notin FV(\Gamma)\cup FV(\Gamma')}{agreeR\ \xi\ \Gamma\ (\Gamma',x:_UA)} \text{\tiny AGREER-WK}$$

9.1 Properties of agreeR

Lemma 9.1. For any context Γ and the identity map id from variables to variables, agree R id Γ Γ is always true.

Proof. By induction on the structure of Γ and the definition of agree R.

Lemma 9.2. For contexts Γ, Γ' and mapping ξ , if there is agree $R \xi \Gamma \Gamma'$ and $|\Gamma|$, then there is $|\Gamma'|$.

Proof. By induction on the derivation of $agreeR \xi \Gamma \Gamma'$.

Lemma 9.3. For contexts Γ, Γ' and mapping ξ , if there is agree $\xi \Gamma'$, then there is agree $\xi \Gamma'$.

9.2 Weakening Theorem

Lemma 9.4. For contexts $\Gamma, \Gamma', \Gamma_1, \Gamma_2$ and mapping ξ , if there is agreeR $\xi \Gamma \Gamma'$ and $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then there exists Γ'_1, Γ'_2 such that $\Gamma'_1 \ddagger \Gamma'_2 \ddagger \Gamma'$, and agreeR $\xi \Gamma_1 \Gamma'_1$ and agreeR $\xi \Gamma_2 \Gamma'_2$.

Proof. By induction on the derivation of agree $R \xi \Gamma'$ and lemmas in Section 9.1.

Lemma 9.5. For context Γ, Γ' , terms m, A and mapping ξ , if there is $\Gamma \vdash m : A$ and agreeR $\xi \Gamma \Gamma'$, then there is $\Gamma' \vdash m[\xi] : A[\xi]$.

Proof. By induction on the derivation of $\Gamma \vdash m : A$. We shall only discuss the application case in detail, as the other cases are proven by application of the induction hypothesis and the lemmas in Section 9.1.

- For the APP-U \rightarrow case, Lemma 9.4 is applied to split the context Γ into two contexts Γ'_1 and Γ'_2 such that there is $\Gamma'_1 \ddagger \Gamma'_2 \ddagger \Gamma'$ and $agreeR \notin \Gamma_1 \Gamma'_1$ and $agreeR \notin \Gamma_2 \Gamma'_2$. From $|\Gamma_2|$ and Lemma 9.2 we know that there is $|\Gamma'_2|$. At this point, the induction hypothesis allows us to apply APP-U \rightarrow to prove the goal.
- For the APP-L \rightarrow case, Lemma 9.4 is applied to split the context Γ into two contexts Γ'_1 and Γ'_2 such that there is $\Gamma'_1 \ddagger \Gamma'_2 \ddagger \Gamma'$ and $agreeR \xi \Gamma_1 \Gamma'_1$ and $agreeR \xi \Gamma_2 \Gamma'_2$. At this point, the induction hypothesis allows us to apply APP-L \rightarrow to prove the goal.
- For the APP-U \multimap case, Lemma 9.4 is applied to split the context Γ into two contexts Γ'_1 and Γ'_2 such that there is $\Gamma'_1 \ddagger \Gamma'_2 \ddagger \Gamma'$ and $agreeR \notin \Gamma_1 \Gamma'_1$ and $agreeR \notin \Gamma_2 \Gamma'_2$. From $|\Gamma_2|$ and Lemma 9.2 we know that there is $|\Gamma'_2|$. At this point, the induction hypothesis allows us to apply APP-U \multimap to prove the goal.
- For the APP-L \rightarrow case, Lemma 9.4 is applied to split the context Γ into two contexts Γ'_1 and Γ'_2 such that there is $\Gamma'_1 \ddagger \Gamma'_2 \ddagger \Gamma'$ and $agreeR \xi \Gamma_1 \Gamma'_1$ and $agreeR \xi \Gamma_2 \Gamma'_2$. At this point, the induction hypothesis allows us to apply APP-L \rightarrow to prove the goal.

Theorem 9.6. Weakening is admissible for CLC variables of non-linear type. For context Γ and terms m, A, B, if there is $\Gamma \vdash m : A$, then there is $\Gamma, x :_{U} B \vdash m : A$.

Proof. Using AGREER-WK and Lemma 9.1 a proof of agreeR id Γ $(\Gamma, x :_U B)$ can be constructed. Then by Lemma 9.5, the theorem can be proven.

10 Substitution Lemmas of CLC (clc substitution.v)

Similar to the proof of weakening, we first define an agreeS relation between two contexts Γ, Δ and a mapping σ from variables to terms.

$$\frac{agreeS \ \sigma \ \Delta \ \Gamma \qquad x \notin FV(\Delta) \cup FV(\Gamma)}{agreeS \ \sigma \ \Delta \ \Gamma \qquad x \notin FV(\Delta) \cup FV(\Gamma)}_{\text{AGREES-U}}$$

$$\frac{agreeS \ \sigma \ \Delta \ \Gamma \qquad x \notin FV(\Delta) \cup FV(\Gamma)}{agreeS \ (\sigma \cup (x,x)) \ (\Delta,x:_L A[\sigma]) \ (\Gamma,x:_L A)}_{\text{AGREES-L}}$$

$$\frac{agreeS \ \sigma \ \Delta \ \Gamma \qquad \overline{\Delta} \vdash n : A[\sigma] \qquad x \notin FV(\Delta) \cup FV(\Gamma)}_{\text{AGREES-WKU}}$$

$$\frac{agreeS \ \sigma \ \Delta \ \Gamma \qquad \overline{\Delta} \vdash n : A[\sigma] \qquad x \notin FV(\Delta) \cup FV(\Gamma)}_{\text{AGREES-WKU}}$$

$$\frac{agreeS \ \sigma \ \Delta \ \Gamma \qquad \overline{\Delta} \vdash n : A[\sigma] \qquad x \notin FV(\Delta) \cup FV(\Gamma)}_{\text{AGREES-WKL}}$$

$$\frac{\Delta_1 \ddagger \Delta_2 \ddagger \Delta \qquad agreeS \ \sigma \ \Delta_1 \ \Gamma \qquad \Delta_2 \vdash n : A[\sigma] \qquad x \notin FV(\Delta) \cup FV(\Gamma)}_{\text{AGREES-WKL}}$$

$$\frac{agreeS \ \sigma \ \Delta_1 \ \Gamma \qquad \Delta_2 \vdash n : A[\sigma] \qquad x \notin FV(\Delta) \cup FV(\Gamma)}_{\text{AGREES-CONVU}}$$

$$\frac{A \preceq B \qquad \overline{\Delta} \vdash B[\sigma] : U_i \qquad agreeS \ \sigma \ \Delta_i \ \Gamma, x :_L A}_{\text{AGREES-CONVU}}$$

$$\frac{A \preceq B \qquad \overline{\Delta} \vdash B[\sigma] : L_i \qquad \overline{\Gamma} \vdash B : L_i \qquad agreeS \ \sigma \ \Delta_i \ \Gamma, x :_L A}_{\text{AGREES-CONVU}}$$

$$\frac{A \preceq B \qquad \overline{\Delta} \vdash B[\sigma] : L_i \qquad \overline{\Gamma} \vdash B : L_i \qquad agreeS \ \sigma \ \Delta_i \ \Gamma, x :_L A}_{\text{AGREES-CONVU}}$$

10.1 Properties of agreeS

Lemma 10.1. For any context Γ and identity mapping id, there is agree S id Γ Γ .

Proof. By induction on the structure of Γ .

Lemma 10.2. For contexts Δ , Γ and mapping σ , if there is agreeS σ Δ Γ , then there is agreeS σ $\overline{\Delta}$ $\overline{\Gamma}$.

Proof. By induction on the derivation of agreeS $\sigma \Delta \Gamma$.

10.2 Substitution Lemma

Lemma 10.3. For contexts Δ , Γ , Γ_1 , Γ_2 and mapping σ , if there is agreeS σ Δ Γ and $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then there exists contexts Δ_1 , Δ_2 such that $\Delta_1 \ddagger \Delta_2 \ddagger \Delta$ and agreeS σ Δ_1 Γ_1 and agreeS σ Δ_2 Γ_2 .

Proof. By induction on the derivation of agreeS σ Δ Γ and lemmas in Section 10.1.

Lemma 10.4. Generalized Substitution Lemma. For context Γ, Δ , terms m, A and mapping σ , if there is $\Gamma \vdash m : A$ and agreeS $\sigma \Delta \Gamma$, then there is $\Delta \vdash m[\sigma] : A[\sigma]$.

Proof. The proof proceeds by induction on the derivation of $\Gamma \vdash m : A$. Similar to the proof of Lemma 9.5, the interesting cases are the application cases where Lemma 10.3 must be utilized to split the $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ judgments for use in the induction hypothesis.

10.3 Corollaries of Substitution

Corollary 10.4.1. For contexts $\Gamma_1, \Gamma_2, \Gamma$ and terms A, B, m, n, if there is $\Gamma_1, x :_U A \vdash m : B$ and $|\Gamma_2|$ and $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Gamma_2 \vdash n : A$, then there is $\Gamma \vdash m[n/x] : B[n/x]$.

Corollary 10.4.2. For contexts $\Gamma_1, \Gamma_2, \Gamma$ and terms A, B, m, n, if there is $\Gamma_1, x :_L A \vdash m : B$ and $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Gamma_2 \vdash n : A$, then there is $\Gamma \vdash m[n/x] : B[n/x]$.

Corollary 10.4.3. For context Γ , terms m, A, B, C and natural number i, if there is $B \equiv A$ and $\overline{\Gamma} \vdash A : U_i$ and $\Gamma, x :_U A \vdash m : C$, then there is $\Gamma, x :_U B \vdash m : C$.

Corollary 10.4.4. For context Γ , terms m, A, B, C and natural number i, if there is $B \equiv A$ and $\overline{\Gamma} \vdash A : L_i$ and $\Gamma, x :_L A \vdash m : C$, then there is $\Gamma, x :_L B \vdash m : C$.

11 Typing Validity of CLC (clc validity.v)

In this section, we prove that the types of all CLC terms are themselves well-sorted.

Lemma 11.1. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Gamma \vdash$, then there is $\Gamma_1 \vdash$ and $\Gamma_2 \vdash$.

Proof. By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and the properties of $_\ddagger _\ddagger _$ discussed in Section 5.1

Theorem 11.2. The validity of typing theorem. For any context Γ and terms m, A, if there is $\Gamma \vdash$ and $\Gamma \vdash m : A$, then there exists sort s and natural number i such that $\overline{\Gamma} \vdash A : s_i$.

12 Subject Reduction of CLC (clc soundness.v)

Theorem 12.1. For any context Γ and terms m, n, A, if $\Gamma \vdash$ and $\Gamma \vdash m : A$ and $m \leadsto n$, then there is $\Gamma \vdash n : A$.

Proof. The proof proceeds by induction on the derivation of $\Gamma \vdash m : A$. The interesting cases are the application cases which we shall discuss in detail.

- For the APP-U \rightarrow case, from assumptions $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $|\Gamma_2|$ and Lemmas 5.7, 5.10, we can conclude that $\overline{\Gamma_1} = \overline{\Gamma}$ and $\overline{\Gamma_2} = \overline{\Gamma}$. Applying Lemma 11.1 to assumptions $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $\Gamma \vdash$ obtains $\Gamma_1 \vdash$ and $\Gamma_2 \vdash$. Now by the induction hypothesis, we can conclude there exists sorts s,t and natural numbers i,j such that there are $\overline{\Gamma_1} \vdash (x:_U A) \rightarrow B: s_i$ and $\overline{\Gamma_2} \vdash A: t_j$. Applying Lemma 8.1 to assumption $\overline{\Gamma_1} \vdash (x:_U A) \rightarrow B: s_i$ allows us to derive $\overline{\Gamma_1} \vdash A: U_{i'}$ and $\overline{\Gamma_1}, x:_U A \vdash B: s'_{j'}$ where s' is a sort and i',j' are natural numbers. The goal can finally be proven by applying the substitution Lemma 10.4.1 on assumptions $\Gamma_2 \vdash n: A$ and $\overline{\Gamma_1}, x:_U A \vdash B: s'_{j'}$.
- For the App-L \rightarrow case, from assumption $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and Lemmas 5.10, we can conclude that $\overline{\Gamma_1} = \overline{\Gamma}$ and $\overline{\Gamma_2} = \overline{\Gamma}$. Applying Lemma 11.1 to assumptions $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and Γ \vdash obtains $\Gamma_1 \vdash$ and $\Gamma_2 \vdash$. Now by the induction hypothesis, we can conclude that there exists sorts s,t and natural numbers i,j such that there are $\overline{\Gamma_1} \vdash (x:_L A) \rightarrow B: s_i$ and $\overline{\Gamma_2} \vdash A: t_j$. Applying Lemma 8.2 to assumption $\overline{\Gamma_1} \vdash (x:_L A) \rightarrow B: s_i$ allows us to derive $\overline{\Gamma_1} \vdash A: L_{i'}$ and $\overline{\Gamma_1} \vdash B: s'_{j'}$. Due to the fact that variable x is not a free variable in B, the substitution occurring in goal $\exists s \in sort, i \in \mathbb{N}, \overline{\Gamma} \vdash B[n/x]: s_i$ is trivial, thus the judgment $\overline{\Gamma_1} \vdash B: s'_{j'}$ that we have proven shows the existence of the goal.
- For the App-U→ case, the proof is similar to the App-U→ case, the only difference is that the inversion lemmas used correspond to → instead of →.
- For the App-L \rightarrow case, the proof is similar to the App-L \rightarrow case, the only difference is that the inversion lemmas used correspond to \rightarrow instead of \rightarrow .

13 Linearity Theorems of CLC (clc_linearity.v)

13.1 Linearity

We introduce a meta-function occurs that counts the number of times a given variable occurs in a term.

$$occurs \ x \ y = \begin{cases} 1 & x =_{\alpha} y \\ 0 & x \neq_{\alpha} y \end{cases}$$

$$occurs \ x \ s_{i} = 0$$

$$occurs \ x \ ((y :_{s} A) \to B) = occurs \ x \ A + occurs \ x \ B$$

$$occurs \ x \ ((x :_{s} A) \to B) = occurs \ x \ A + occurs \ x \ B$$

$$occurs \ x \ (\lambda x :_{s} A . n) = occurs \ x \ A + occurs \ x \ n$$

$$occurs \ x \ (m \ n) = occurs \ x \ m + occurs \ x \ n$$

Lemma 13.1. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then for any variable with linear type $x \in \Gamma$ there is $x \in \Gamma_1$ and $x \notin \Gamma_2$ or $x \in \Gamma_2$ and $x \notin \Gamma_1$.

Proof. By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.

Lemma 13.2. For contexts $\Gamma_1, \Gamma_2, \Gamma$, if there is $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$, then for any variable $x \notin \Gamma$ there is $x \notin \Gamma_1$ and $x \notin \Gamma_2$.

Proof. By induction on the derivation of $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$.

Lemma 13.3. For context Γ , terms m, A, if there is $\Gamma \vdash m : A$, then for any variable $x \notin \Gamma$ there is occurs x m = 0

Proof. By induction on the derivation of $\Gamma \vdash m : A$.

Theorem 13.4. Linearity. For context Γ , terms m, A, if there is $\Gamma \vdash m : A$, then for any variable with linear type $x \in \Gamma$ there is occurs x = 1.

Proof. The proof proceeds by induction on the derivation of $\Gamma \vdash m : A$, we will discuss the application cases in detail.

- For case App-U \rightarrow , by assumptions $\Gamma_1 \ddagger \Gamma_2 \ddagger \Gamma$ and $(x :_L A) \in \Gamma$ and Lemma 13.1 we can conclude that $x \in \Gamma_1$ and $x \notin \Gamma_2$ or $x \in \Gamma_2$ and $x \notin \Gamma_1$. In both cases, applying the induction hypothesis and Lemma 13.3 proves the goal.
- For case APP-L \rightarrow , the proof is the same as APP-U \rightarrow .
- For case App-U \rightarrow , the proof is the same as App-U \rightarrow .
- For case App-L \rightarrow , the proof is the same as App-U \rightarrow .

13.2 Promotion

Theorem 13.5. Promotion. For context Γ , terms m, A, B and sort s, if there is $|\Gamma|$ and $\Gamma \vdash and \Gamma \vdash m : (x :_s A) \multimap B$, then there exists term n such that $\Gamma \vdash n : (x :_s A) \to B$.

Proof. Set $n = \lambda x :_s A.(m \ x)$. The proof proceeds by case analysis on the sort s.

- If s = U, then we may apply Theorem 11.2 to assumption $\Gamma \vdash m : (x :_U A) \multimap B$ to show that there exists sort t and natural number i such that there is $\overline{\Gamma} \vdash (x :_U A) \multimap B : t_i$. Now applying Lemma 8.3 to $\overline{\Gamma} \vdash (x :_U A) \multimap B : t_i$ shows that there exists sort t' and natural number i' such that $\overline{\Gamma} \vdash A : U_{i'}$ and $\overline{\Gamma}, x :_U A \vdash B : t'_{i'}$. Now by $U \to A$ and Lemma 5.13 the goal is proven.
- If s = L, then we may apply Theorem 11.2 to assumption $\Gamma \vdash m : (x :_L A) \multimap B$ to show that there exists sort t and natural number i such that $\overline{\Gamma} \vdash (x :_L A) \multimap B : t_i$. Now applying Lemma 8.4 to $\overline{\Gamma} \vdash (x :_L A) \multimap B : t_i$ shows that there exists sort t' and natural number i' such that $\overline{\Gamma} \vdash A : U_{i'}$ and $\overline{\Gamma} \vdash B : t'_{i'}$. Now by $L \to$ and Lemma 5.13 the goal is proven.

13.3 Dereliction

Theorem 13.6. Dereliction. For context Γ , terms m, A, B and sort s, if there is $\Gamma \vdash$ and $\Gamma \vdash m : (x :_s A) \rightarrow B$, then there exists term n such that $\Gamma \vdash n : (x :_s A) \multimap B$.

Proof. Set $n = \lambda x :_s A.(m x)$. The proof proceeds by case analysis on the sort s.

- If s = U, then we may apply Theorem 11.2 to $\Gamma \vdash m : (x :_U A) \to B$ showing that there exists sort t and natural number i such that there is $\overline{\Gamma} \vdash (x :_U A) \to B : t_i$. Now applying Lemma 8.1 to $\overline{\Gamma} \vdash (x :_U A) \to B : t_i$ shows that there exists sort t' and natural number i' such that $\overline{\Gamma} \vdash A : U_{i'}$ and $\overline{\Gamma}, x :_U A \vdash B : t'_{i'}$. By $U \multimap$ and Lemma 5.14 we can prove $\overline{\Gamma} \vdash (x :_U A) \multimap B : L_{i'}$. By rule $\lambda \multimap$, the rest of the goal can be proven in a straightforward manner.
- If s = L, then we may apply Theorem 11.2 to $\Gamma \vdash m : (x :_L A) \to B$ showing that there exists sort t and natural number i such that there is $\overline{\Gamma} \vdash (x :_L A) \to B : t_i$. Now applying Lemma 8.2 to $\overline{\Gamma} \vdash (x :_L A) \to B : t_i$ shows that there exists sort t' and natural number i' such that $\overline{\Gamma} \vdash A : U_{i'}$ and $\overline{\Gamma} \vdash B : t'_{i'}$. By $L \multimap$ and Lemma 5.14 we can prove $\overline{\Gamma} \vdash (x :_L A) \multimap B : L_{i'}$. By rule $\lambda \multimap$, the rest of the goal can be proven in a straightforward manner.

14 Logical Consistency of CLC clc consistent.v

14.1 Strong Normalization

The proof of the logical consistency of CLC proceeds by construction of a reduction preserving erasure from CLC to $CC\omega$. As $CC\omega$ is consistent, CLC must be consistent as well.

The erasure procedure is recursively defined as follows.

With slight overloading of notation, we define erasure for CLC contexts recursively.

$$\label{eq:epsilon} \begin{split} \llbracket \epsilon \rrbracket &= \epsilon \\ \llbracket \Gamma, x :_s A \rrbracket &= \llbracket \Gamma \rrbracket, x : \llbracket A \rrbracket \end{split}$$

Lemma 14.1. For CLC term m, map σ from variables to CLC terms, map τ from variables to CC ω terms, if for all variables x there is $\llbracket \sigma \ x \rrbracket = \tau \ x$, then $\llbracket m[\sigma] \rrbracket = \llbracket m \rrbracket [\tau]$.

Proof. By induction on the structure of term m.

For the following lemmas, we will index relations and judgments with subscript CLC or $CC\omega$ to emphasize the language it is defined over.

Lemma 14.2. For any CLC terms m and n, if there is $m \leadsto_{CLC} n$, then there is $[m] \leadsto_{CC\omega} [n]$.

Proof. By induction on the derivation of $m \leadsto_{\text{CLC}} n$.

Lemma 14.3. For any CLC terms m and n, if there is $m \equiv_{CLC} n$, then there is $[m] \equiv_{CC\omega} [n]$.

Proof. By induction on the derivation of $m \equiv_{CLC} n$ and Lemma 14.2.

Lemma 14.4. For any CLC terms m and n, if there is $m \prec_{CLC} n$, then there is $[m] \prec_{CC\omega} [n]$.

Proof. By induction on the derivation of $m \prec_{\text{CLC}} n$.

Lemma 14.5. For any CLC terms m and n, if there is $m \preceq_{CLC} n$, then there is $[m] \preceq_{CC\omega} [n]$.

Proof. By case analysis on the derivation of $m \leq_{CLC} n$ and the properties of subtyping proven in Section 6.

Theorem 14.6. Embedding. For any CLC context Γ and CLC terms m, A, if there is $\Gamma \vdash_{CLC} m : A$, then there is $\llbracket \Gamma \rrbracket \vdash_{CC\omega} \llbracket m \rrbracket : \llbracket A \rrbracket$.

Proof. By induction on the derivation of $\Gamma \vdash_{\text{CLC}} m : A$.

Corollary 14.6.1. For any CLC context Γ , if there is $\Gamma \vdash_{CLC}$, then there is $\llbracket \Gamma \rrbracket \vdash_{CC\omega}$.

Proof. Direct consequence of applying Theorem 14.6 to all types in context Γ .

Theorem 14.7. Strong normalization of CLC.

Proof. Suppose there exists a well-typed CLC term m with an infinite sequence of reductions. Theorem 14.6 shows that there must exist some term [m] that is well-typed in $CC\omega$. Additionally, this infinite sequence of reductions on m can be translated in $CC\omega$ step-wise by Lemma 14.2. This shows that we have constructed a non-normalizing $CC\omega$ term [m], which a contradiction to the strong normalization property of $CC\omega$, thus CLC must be strongly normalizing as well.

14.2 Embedding of $CC\omega$

To show that CLC is compatible with the predicative fragment of $CC\omega$, we construct a lifting procedure that lifts $CC\omega$ terms into CLC in a straightforward way.

$$\begin{split} \langle x \rangle &= x \\ \langle Type_i \rangle &= U_i \\ \langle (x:A) \to B \rangle &= (x:_U \langle A \rangle) \to \langle B \rangle \\ \langle \lambda x:A.n \rangle &= \lambda x:_U \langle A \rangle. \langle n \rangle \\ \langle m n \rangle &= \langle m \rangle \langle n \rangle \end{split}$$

With slight overloading of notation, we define lifting for $CC\omega$ recursively.

$$(\epsilon) = \epsilon$$

$$(\Gamma, x : A) = (\Gamma), x :_{U} (A)$$

Lemma 14.8. For $CC\omega$ context Γ , there is $|\langle |\Gamma \rangle|$.

Proof. By induction on the structure of Γ .

Lemma 14.9. For $CC\omega$ term m, map σ from variables to $CC\omega$ terms, map τ from variable to CLC terms, if for all variables x there is $(\sigma x) = \tau x$, then $(m[\sigma]) = (m)[\tau]$.

Proof. By induction on the structure of term m.

For the following lemmas, we will index relations and judgments with subscript CLC of $CC\omega$ to emphasize the language it is defined over.

Lemma 14.10. For any $CC\omega$ terms m and n, if there is $m \leadsto_{CC\omega} n$, then there is $(m) \leadsto_{CLC} (n)$.

Proof. By induction on the derivation of $m \leadsto_{CC\omega} n$.

Lemma 14.11. For any $CC\omega$ terms m and n , if there is $m \equiv_{CC\omega} n$, then there is $(m) \equiv_{CLC} (n)$.		
<i>Proof.</i> By induction on the derivation of $m \equiv_{CC\omega} n$ and Lemma 14.10.		
Lemma 14.12. For any $CC\omega$ terms m and n , if there is $m \prec_{CC\omega} n$, then there is $(m) \prec_{CLC} (n)$.		
<i>Proof.</i> By induction on the derivation of $m \prec_{CC\omega} n$.		
Lemma 14.13. For any $CC\omega$ terms m and n , if there is $m \preceq_{CC\omega} n$, then there is $(m) \preceq_{CLC} (n)$.		
<i>Proof.</i> By case analysis on the derivation of $m \preceq_{CC\omega} n$ and the properties of subtyping proven in 6.	$\stackrel{\rm Section}{\Box}$	
Theorem 14.14. Lifting. For any $CC\omega$ context Γ and $CC\omega$ terms m, A , if there is $\Gamma \vdash_{CC\omega} m : A$, then there is $(\Gamma) \vdash_{CLC} (m) : (A)$.		
<i>Proof.</i> By induction on the derivation of $\Gamma \vdash_{CC\omega} m : A$.		