Halcon 二次开发示例程序说明

【摘要】

本文档主要介绍了使用 Halcon 接口进行开发程序方法及过程。在 SDK 开发包目录下,提供了 5 个示例程序,其中三个用 C++开发、两个用 C#开发,总共三个界面程序,分别为 HalconGrabImage 、 Raw2Himage_C 、 Raw2Himage_Csharp , 另 外 两 个 为 控 制 台 程 序 Raw_2_3DFile_C 和 Raw_2_3DFile_CSharp 。 Raw2Himage_C 和 Raw2Himage_CSharp、Raw_2_3DFile_C 和 Raw_2_3DFile_CSharp 功能完全相同,只是开发的语言不同。这些示例程序分别从不同角度展示了利用 halcondontnet 和 MvCameraControl.Net 进行开发的方法。

本文档就其中三个界面示例程序的操作方法和开发流程展开讨论,介绍示例程序的使用步骤和开发流程,方便用户快速入门使用 Halcon 的接口、C++和 C# 的 SDK。

【注意】

C++版示例程序兼容中英文,对关键的程序会有中英文的注释,界面有英文的副本;同时 C#版示例程序也兼容中英文,关键的程序会有中英文的注释,且界面控件也有中英文的区分,可通过切换属性的 language 实现。

对于 C++示例程序,因 Halcon 版本差异,单个 Demo 无法适配所有的 Halcon 版本,故在工程名中备注适用的 Halcon 版本,如 HalconGrabImage_10 表示该示例用于 Halcon10,HalconGrabImage_11-13 表示该示例用于 Halcon11-13 版本。

一. HalconGrabImage 使用步骤及开发流程

HalconGrabImage 是一个基本示例程序,包含了 Halcon 常用的一些接口调用,初次使用 Halcon 接口进行二次开发的用户推荐首先参考 HalconGrabImage,其涵盖了大多数用户对 Halcon接口的使用方法示例需求。

1.1 Demo 软件使用步骤

1.1.1 界面总体

软件界面总览,一共包括三个控制模块(初始化,图像采集,参数控制)、一个下拉设备 列表和一个图像显示区域

1.1.2 使用过程

在使用该示例程序之前需要拷贝 Halcon 插件,在用户安装 MVS 目录下按照如下路径 Development\ThirdPartyPlatformAdapter 找到 hAcqMVision.dll,Halcon 安装目录中找到目录为 HalconHDevelop 的文件夹,根据 Halcon版本找到对应的 hAcqMVision.dll,将其拷贝到 Halcon安装目录下,如下图所示,如果是 64 位,则拷贝到 64 位对应目录下。(若使用 Halcon XL程序,则应拷贝 hAcqMVisionxl.dll,与 hAcqMVision.dll 使用方法相同)

点击【查找设备】进行查找设备,这时(15)会出现当前在线的设备列表,命名方式为用户 ID 不为空时显示序列号+设备类型+设备名称+IP 地址,ID 为空时显示为空。

点击【打开设备】打开当前选中的设备,默认以连续方式打开设备。选择触发模式可以 选中触发模式单选框。

在触发模式下,可以设置为软触发,当点击【开始采集】后,同时【软触发一次】也是

可以点击从而完成触发一次功能

采用连续模式下,点击【开始采集】进行图像采集,左边的显示区域将会出现实时图像 此时,点击【获取参数】将会刷新当前的曝光时间、增益和帧率的数值,而更改【曝光】、 【增益】、【帧率】的数值之后点击【设置参数】将会重新设置新的曝光时间、增益和帧率的 数值

在使用过程中有任何异常或错误,都会以弹窗的形式出现提示,若没有任何提示,则认

为一切正常地运行

1.2 Demo 软件开发步骤

1.2.1 Dll 加载

安装好 MVS 和 Halcon 的同时会把相应 32 和 64 的 dll 打到环境变量。

1.2.2 工程配置

创建 C++工程并添加引用,加入 Halcon 和 C++的 SDK 头文件和 lib 文件到工程中,如下图所示。

1.2.3 引用头文件

添加引用后再工程中引用 MvCameraControl.h 和 HalconCpp.h,就可以调 Halcon 和 SDK

中相机操作的函数。

```
2□//·HalconGrabImageDlg.h·:·头文件
3 | //
   #pragma once
#include afxwin.h"
#include MvCameraControl.h"
#include HalconCpp.h"
10 using namespace Halcon;
12
13
    /*函数返回码定义*/
   typedef·int·Status;
#define·STATUS_OK······0
#define·STATUS_ERROR····-1
14
16
17 L//·CHalconGrabImageDlg·对话框
18 = class·CHalconGrabImageDlg·:·public·CDialog
19
    //·构造
20
21
22
23
24
25
26
27
28
29
    public:
    → CHalconGrabImageDlg(CWnd*·pParent·=·NULL);→ //·标准构造函数
    //·对话框数据
→ enum·{·IDD·=·IDD_HALCONGRABIMAGE_DIALOG·};
    → protected:
    → virtual·void·DoDataExchange(CDataExchange*·pDX);→ //·DDX/DDV·支持
    //·实现
    protected:
    → HICON·m_hIcon;
34
        //·生成的消息映射函数
36
        virtual · BOOL · OnInitDialog();
        afx msg·void·OnSvsCommand(UINT·nID,·LPARAM·lParam)
```

二. Raw2Himage_C 使用步骤及开发流程

Raw2Himage_C 重点展示了使用 Halcon 接口进行格式转换的步骤。告知用户如何使用 Halcon 接口进行图像像素转换以及显示。

2.1 Demo 软件使用步骤

2.1.1 界面总体

总体界面如下图。界面类似 HalconGrabImage, 具有查找设备、打开设备、关闭设备、 开始采集、停止采集、设置触发等功能。

2.1.2 使用过程

Raw2Himage_C中,当相机连接时,当点击开始取流按钮后,会调用 SDK 中的取流函数,然后创建一个线程,用于获取图像数据以及图像格式转换。

2.2 Demo 软件开发步骤

关于相机操作的开发流程与 HalconGrabImage 相似。本节重点介绍如何创建线程实现取流。

首先调用 SDK 中的开始取流接口 StartGrabbing,然后创建一个线程 WorkThread,在该线程中循环调用 SDK 的获取一帧图像的接口 GetOneFrameTimeout,获取到图像后就可以进行图像格式转换,保存成 Himage 图片格式,并用 holcon 自带的显示接口 HalconDisplay 进行显示。

三. Raw_2_3DFile_C 和 Raw_2_3DFile_CSharp 使用步骤及开发流程

Raw_2_3DFile_C和Raw_2_3DFile_CSharp 重点展示了使用 Halcon 接口进行格式转换的步骤。告知用户如何使用 Halcon 接口进行 3D 图像的转换。

3. 1Demo 软件使用步骤

3.1.1 界面总体

总体界面如下图。为控制台程序界面,具有查找设备、打开设备、关闭设备、开始采集、停止采集、存取 Halcon3D 的图像等功能。

```
III d:\SVN\Release\MVS\Samples\Halcon\VC\Raw 2 3DFile C\x64\Debug\Raw 2 3DFile C 11-13.exe
```

```
[device 20]:
CurrentIp: 10.64.52.4
JserDefinedName: 600
device 21]:
CurrentIp: 10.64.52.165
UserDefinedName: DSB123
device 22]:
CurrentIp: 10.64.52.34
UserDefinedName: SmartCamera
device 23]:
CurrentIp: 10.64.52.142
JserDefinedName: SmartCamera
[device 24]:
CurrentIp: 10.64.52.218
JserDefinedName: 2100Sub
Please Input camera index:10
et One Frame: Width[1536], Height[1], FrameNum[1]
  0.ply; 1.obj; *
 elect FileType: 0
ress a key to exit.
```

3.1.2 使用过程

Raw 2 3DFile C 和 Raw 2 3DFile CSharp 中, 当相机枚举完成时, 输入对应枚举 3D 相机设备的下标,会调用 SDK 中的取流函数,用于获取图像数据以及图像格式转换。

3.2 Demo 软件开发步骤

关于相机操作的开发流程与 HalconGrabImage 相似。本节重点介绍如何将相机的 3D 数 据转换为 Halcon 中 3D 的数据格式,并存取为文件,存取的文件类型有 ply 和 obj 两种。

首先调用 SDK 中的开始取流接口 StartGrabbing,调用取流接口 MV CC GetOneFrameTimeout 获取一帧图像,获取到图像后就可以进行图像格式转换,保 存为 Halcon 的 3D 数据格式 ply 和 obj 两种。

四. Raw2Himage_CSharp 使用步骤及开发流程

本节介绍的 Demo 重点展示了使用 Halcon 接口进行格式转换的步骤。告知用户如何使 用 Halcon 接口进行图像像素转换以及显示,同 Raw2Himage_CSharp 示例程序。

4.1 Demo 软件使用步骤

4.1.1 界面总体

总体界面如下图。界面类似 HalconGrabImage, 具有查找设备、打开设备、关闭设备、 开始采集、停止采集、设置触发等功能。

4. 2 Demo 软件开发步骤

4.2.1 Dll 加载

安装好 MVS 和 Halcon 的同时会把相应 32 和 64 的 dll 打到环境变量。

4.2.2 工程配置

创建 CS 工程并添加引用,加入 halcondotnet.dll 和 MvCameraControl.Net.dll 到工程中。

4.2.3 引用命名空间

添加引用后再工程中引用命名空间 using MVCameraSDK.NET 和 using HalconDotNet,就可以调 MyCamera 和 Halcon 中相机操作的函数。

4.2.4 调用过程

首先调用 SDK 中的开始取流接口 MV_CC_StartGrabbing_NET, 然后创建一个线程 ReceiveImageWorkThread, 在该线程中循环调用 SDK 的获取一帧图像的接口 MV_CC_GetOneFrameTimeout_NET, 获取到图像后就可以进行图像格式转换,保存成 Himage 图片格式,并用 holcon 自带的显示接口 HalconDisplay 进行显示。