Computational and Statistical Learning Theory

Problem set 4

Due: Friday, December 2nd

Please send your solutions to learning-submissions@ttic.edu

Notation:

• Input space: X

 \mathcal{X}

• Hypothesis Class: H

• Label space: $\mathcal{Y} = \{\pm 1\}$ • Risk: $L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\mathbf{1}_{h(x)\neq y}\right]$

• Sample: $(x_1, y_1), \ldots, (x_m, y_m) \in$ • Empirical Risk: $L_S(h) =$ $\frac{1}{m}\sum_{(x,y)\in S}\mathbf{1}_{h(x)\neq y}$

1. Perceptron:

- (a) Lower Bound for Perceptron: For any $\gamma > 0$, let $d \ge \frac{1}{\gamma^2}$ and $\mathcal{X} = \{x \in \mathcal{X} \in \mathcal{X} \mid x \in \mathcal{X} \in \mathcal{X} \in \mathcal{X} \}$ $\mathbb{R}^d: ||x|| \leq 1$ and $\mathcal{Y} = \{\pm 1\}$. Show that for any online learning algorithm, there exists a sequence of instances $(x_1, y_1), \dots, (x_m, y_m)$ which is separable by a margin of γ by some linear separator with ℓ_2 norm bounded by 1, such that the online algorithm makes at least $\lfloor \frac{1}{2} \rfloor$ mistakes on this sample. This shows that the perceptron bound is tight. Hint: Pick appropriate m (depending on γ) and provide instances adversarially so that the algorithm makes a mistake on every round. However show that the selected instances are separable by a linear separator of norm 1 with a margin of at least γ .
- (b) Direct analysis of non-separable perceptron:
 - i. Recall the perceptron rule : if $y \langle w, x \rangle \leq 0$, then add yx to w.

Instead of assuming the existence of w s.t. for all t, $y_t \langle w, x_t \rangle > 1$ (setting $\gamma = 1$), we will derive a mistake bound that bounds the number of mistakes the (standard) perceptron makes in terms of best possible total hinge loss on the sequence.

For any sequence $(x_t, y_t)_{t=1...m}$, where $||x_t|| \le 1$ and $y_t \in \{\pm 1\}$, let $|M_m|$ be the number of mistakes made by the perceptron:

$$|M_m| = \{t = 1 \dots m | y_t \langle w_t, x_t \rangle \le 0\}$$

For any w^* , let H_m^* be the total hinge loss of w^* on the sequence:

$$H_m^* = \sum_{t=1}^m [1 - y_t \langle w^*, x_t \rangle]_+$$

Prove the following:

$$M_m \le H_m^* + ||w^*||^2 + ||w^*|| \sqrt{H_m^*}$$

Hint: follow the perceptron analysis as in class: Bound $||w_{t+1}||^2$ from above in terms of $|M_t|$. Then bound $\langle w^*, w_{t+1} \rangle$ from below in terms of both $|M_t|$ and H_t^* . Combine the two bounds and solve a quadratic equation to obtain the bound on $|M_m|$.

ii. Use an online-to-batch conversion to obtain a learning rule A that output a linear predictor, for which, with high probability, for every w^* with $||w^*||_2 \leq B$:

$$L_{01}(A(S)) \le L^* + O(B^2/m + \sqrt{B^2L^*/m})$$

where $L^* = L_{\text{hinge}}(w^*)$. State the learning rule explicitly and prove the learning guarantee.

2. Stability:

Prove replace-one stability of RERM with $\Psi(w)$ regularization, where $\Psi(w)$ is α -strongly convex w.r.t. $\|w\|$ and $\ell(w,z)$ is G-Lipschitz w.r.t $\|w\|$. That is, there is a quantity β , such that for all $z_1,...,z_m$ and z_i' :

$$|\ell(A(z_1,...,z_m),z_i) - \ell(A(z_1,...,z'_i,...,z_m),z_i)| \le \beta,$$

specify β in terms of m, α, G .

3. Using $\Psi(w) = \|w\|_p^2$ as a regularizer,

- (a) Prove $\Psi(w)$ is α -strongly convex w.r.t. $||w||_n$.
- (b) Calculate
 - i. Link function $\nabla \Psi(w)$.
 - ii. Link function $\nabla \Psi^{-1}(\nu)$
 - iii. Bregman divergence $D_{\Psi}(w||w')$
- (c) Consider supervised learning, with linear predictor, hinge loss, $\|\phi(x)\|_{\infty} \leq 1$, $\phi(x) \in \mathbb{R}^d$, and learning the hypothesis class $\mathcal{H} = \{w \mid \|w\|_1 \leq B\}$. We would like to learn this hypothesis class using L-FTRL with the regularizer $\Psi(w) = \|w\|_p^2$.
 - i. Show that for an appropriate value of p, we get online regret $O(\sqrt{B^2\log(d)/m})$. State the value of p exactly, specify the learning rule, and in particular what sequence of regularization parameters you would use, and give the resulting regret bound exactly (not using big-O notation).
 - ii. Derive explicit pseudo-code for the update
 - iii. Instead consider using non-linearized online mirror descent. Derive explicit pseudo-code for the update
- 4. Consider "following the leader" learning rule as:

$$w_{t+1} = \arg\min_{w \in W} \frac{1}{t} \sum_{i=1}^{t} \ell(w, (x_i, y_i)).$$

where $W = \{w | \|w\|_2 \le B\}$ and $\max_i \|x_i\| \le 1$.

- (a) Prove if $\ell(\cdot,\cdot)$ is hinge loss, we may have non-diminishing regret using this rule, i.e. that there is some c s.t. for all t, there is a sequence of length t with average regret $\geq c$. Note that if there are multiple minimizers for the argmin, it is enough to show that there exists a choice of minimizers that yields non-diminishing regret.
- (b) Prove if $\ell(\cdot,\cdot)$ is squared loss, i.e. $\ell(w,(x,y)) = \frac{1}{2}(y-w^Tx)^2$, we may have non-diminishing regret using this rule.
- (c) Prove if $\ell(\cdot, \cdot)$ is squared loss, and x are drawn from multivariate normal distribution with zero mean and identity covariance, then we have sub-linear regret.