

Estimation of Actuation Configuration for a Multi-Actuated Blimp

Semester Thesis

Students: Matthias Krebs

Simon Laube

Advisors:

Kostas Alexis

Markus Achtelik

Overview

Problem: Motor to Blimp transformation is essential part of controller

Idea: Create blimp model from Motor transformations and fit this model to the system

How: Actuate blimp and compare measurements with model output

Autonomous Systems Lab

Concept

Batch Optimization Process

Model Function

$$\vec{\alpha} = J^{-1}(r \, \mathcal{C}(\theta) \, \vec{u} - \vec{\omega} \times J\vec{\omega}) + \vec{\varepsilon}$$

 $C(\theta)$ Thrust force transformation

 \vec{u} Thrust force (input)

 $\vec{\omega}$ Angular velocity

 $\vec{\alpha}$ Angular acceleration

r Radius

Inertia tensor

Parameterization

Gibbs-Rodriguez (3)

Quaternions (4)

Current Results

Iterative parameter optimization (2 actuation units)

Current Results

Residual grid plots

Rodriquez

Quaternions

Outlook

- Parameterization for radius, inertia tensor
- Actuator input patterns
- Varied simulation data from modular simulation model
- Convergence analysis

ETH zürich

