Sistemas Operativos Avanzados

vpuente@unican.es

www.ce.unican.es

What is an Operating System?

Operating System (OS):

Software that converts hardware into a useful form for applications Not easy to define precisely...

Users

Applications

Operating System

Hardware

What DOES OS Provide?

- Role #1: Abstraction Provide standard library for resources
- What is a resource?
 - Anything valuable (e.g., CPU, memory, disk, I/O device)
- What abstraction does modern OS typically provide for each resource?
 - CPU:
 - process and/or thread
 - Memory:
 - address space
 - Disk:
 - o files
- Advantages of OS providing abstraction?
 - Allow applications to reuse common facilities Make different devices look the same

 - Provide higher-level or more useful functionality
- Challenges
 - What are the correct abstractions?
 - How much of hardware should be exposed?

What DOES OS Provide?

- Role #2: Resource management Share resources well
- Advantages of OS providing resource management?
 - Protect applications from one another
 - Provide efficient access to resources (cost, time, energy)
 - Provide fair access to resources
- Challenges
 - What are the correct mechanisms?
 - What are the correct policies?

OS Organization

How to cover all the topics relevant to operating systems?

Three PIECES

- Virtualization:
 - Make each application believe it has each resource to itself

- Concurrency:
 - Events are occurring simultaneously and may interact with one another

- Persistence: Access information permanently
 - Lifetime of information is longer than lifetime of any one process
 - Machine may be rebooted, machine may lose power or crash unexpectedly

Advanced Topics (beyond our reach)

- Current systems
 - Multiprocessors
 - Networked and distributed systems
 - Virtual machines
 - Containers
 - **•** ...

- Many of the pushed by the explosive demand (a.k.a. Massive complexity under constrained cost)
- This is the support of the world: it will keep changing ...
- Some of them covered in SVS (M1679)

Why study Operating Systems?

Build, modify, or administer an operating system

- Understand system performance
 - Behavior of OS impacts entire machine
 - Tune workload performance
 - Apply knowledge across many layers
 - Computer architecture, programming languages, data structures and algorithms, and performance modeling
- Fun and challenging to understand large, complex systems

Is the glue that "holds" all the ideas in place

Approach

- We will follow "Operating System: Three Easy Pieces" (OSTEP) style
 - From the **bottom** concepts to state-of-the-art approaches
 - Eminently practical style: all supported by "simulators" and simple coding examples
 - Assumes some basic knowledge in architecture, C, assembler and system administration
 - More than just a textbook...

Structure

- The three parts are split in small pieces (~40 in the book)
- Each chapter is built over the previous one (can't miss the beat)
- Each chapter has attached a "Homework" to reinforce the : from using python simulators to write small pieces of code (C)
- 5 + 1 Labs, developed on top of xv6

Lecture/Lab structure

- We mix dynamically both
 - The real thing is that there is no separation between "theory" and "lab"
- Sessions of:
 - 1st hour: Introduction to the topic
 - 2nd hour: Introduce/develop of Labs
 - Personal work (out the lab): 6 hours (labs and homework)
 - 10 hours/week
 - Strict schedule
- Although the original course/book is designed for 15-week semester (150h work), we will need to drop some details or advanced topics (and half of the labs)

Material

- Available in http://www.ce.unican.es/
- All written material will be in "English"
 - Lecture notes, Homework/Lab guides, etc....
- Git as communication "device": all material will be delivered via http://gitlab.com (lab work) and http://gitlub.com (lecture notes)
 - An e-mail inviting to join the course project will be sent to unican account
 - Slides, labs, other reference material is there
 - It uses "git" to have a "time-track"
 - Lecture notes updates
 - Additional material
- Use git to allow you and me "track" your personal work
- http://piazza.com is a great tool to resolve issues and collaborate (support anonymous questions!)

Book (ostep.org)

This book is and will always be free in PDF form, as seen below. For those of you wishing to BUY a copy, please consider the following:

- <u>Lulu Hardcover (v1.00)</u>: this may be the best printed form of the book (it really looks pretty good), but it is also the most expensive way to obtain *the black book* of operating systems (a.k.a. *the comet book* or *the asteroid book* according to students). Now just: \$38.00
- Lulu Softcover (v1.00): this way is pretty great too, if you like to read printed material but want to save a few bucks. Now just: \$22.00
- Amazon Softcover (v1.00): Same book as softcover above, but printed through Amazon CreateSpace. Now just: \$25.90 (but works with Prime shipping)
- <u>Downloadable PDF (v1.00)</u>: this is a nice convenience and adds things like a hyperlinked table of contents, index of terms, lists of hints, tips, systems advice, and a few other things not seen in the free version, all in one massive DRM-free PDF. Once purchased, you will always be able to get the latest version. Just: \$10.00
- Kindle: Really, just the PDF and does not include all the bells and whistles common in e-pub books.

New Partnership: We have a new partnership with Educative; they offer a way to take an OS course (based on OSTEP) through their platform at a low cost. However, don't worry: the book on this website is and will always remain free.

Lulu Discount Codes: These always exist in some form, look around for one?

Warning: Some resellers on Amazon buy old versions of the books and claim to sell them as "new" on Amazon (click here for an example); buy from them at your own risk. In general, buy either directly from Lulu.com or Amazon.com (not a reseller). For Amazon, go to this page and look for Seller Information to be Amazon.com.

Can't bear to go out in public without OSTEP? How about an Operating Systems: Three Easy Pieces T-shirt or laptop sticker or bathmat or blanket or mug or check out the whole store?

Donate: By popular demand, another way to support this site and its contents: donate! Click to donate \$1 - \$10 - \$20 - \$50 - or click here to donate any amount you want! Your donation helps keep this book going. Think about it: if everyone who came to this website donated just one dollar, we'd have at least three dollars. Thanks!

Another way to help the book out: cite it! Here is the BiBTeX entry (seen below); you can also link to the site of the best free operating systems book on the market.

Operating Systems: Three Easy Pieces

Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau

Arpaci-Dusseau Books

August, 2018 (Version 1.00)

And now, the free online form of the book, in chapter-by-chapter form (now with chapter numbers!):

Intro	Virtualization		Concurrency	Persistence	Security
Preface	3 <u>Dialogue</u>	12 <u>Dialogue</u>	25 <u>Dialogue</u>	35 <u>Dialogue</u>	52 <u>Dialogue</u>
TOC	4 <u>Processes</u>	13 Address Spaces code	26 Concurrency and Threads code 36 I/O Devices		53 <u>Intro Security</u>
1 <u>Dialogue</u>	5 Process API code	14 Memory API	27 <u>Thread API</u> ^{code}	37 Hard Disk Drives	54 <u>Authentication</u>
2 Introduction code	6 Direct Execution	15 Address Translation	28 <u>Locks</u> <u>code</u>	38 Redundant Disk Arrays (RAID)	55 Access Control
	7 CPU Scheduling	16 Segmentation	29 Locked Data Structures	39 Files and Directories	56 <u>Cryptography</u>
	8 Multi-level Feedback	17 Free Space Management	30 Condition Variables code	40 File System Implementation	57 <u>Distributed</u>
	9 <u>Lottery Scheduling</u> code	18 Introduction to Paging	31 Semaphores code	41 Fast File System (FFS)	
	10 Multi-CPU Scheduling	19 Translation Lookaside Buffers	32 Concurrency Bugs	42 FSCK and Journaling	Appendices
	11 <u>Summary</u>	20 Advanced Page Tables	33 Event-based Concurrency	43 Log-structured File System (LFS)	<u>Dialogue</u>
		21 Swapping: Mechanisms	34 <u>Summary</u>	44 Flash-based SSDs	Virtual Machines
		22 Swapping: Policies		45 Data Integrity and Protection	<u>Dialogue</u>
		23 Complete VM Systems		46 <u>Summary</u>	<u>Monitors</u>
		24 <u>Summary</u>		47 <u>Dialogue</u>	<u>Dialogue</u>
				48 <u>Distributed Systems</u>	Lab Tutorial
				49 Network File System (NFS)	Systems Labs
				50 Andrew File System (AFS)	xv6 Labs
				51 <u>Summary</u>	

INSTRUCTORS: If you are using these free chapters, please just link to them directly (instead of making a copy locally); we make little improvements frequently and thus would like to provide the latest to whomever is using it. Also: we have made our own class-preparation notes available to those of you teaching from this book; please drop us a line at remzi@cs.wisc.edu if you are interested.

Homework

- Some chapter (most) include homework
 - Homework can be used to solidify your knowledge of the material in each of the chapters
 - Most homework are based on running little simulators, which mimic some aspect of an operating system: For example, a disk scheduling simulator could be useful in understanding how different disk scheduling algorithms work:
 - Most of them provides the solution
 - Some home-works are just short programming exercises, allowing you to explore how real systems work and complement Lab work.

Homework are done in personal-time

Labs: C and xv6

- Refresh C knowledge
- Use a "toy" kernel to dig into implementation details
 - It is a clean and beautiful little kernel, and thus a perfect object for our study and usage.
 - It was developed by OS Eng. In MIT as a port of K&R original Unix R6/PDP11 (6.828 and 6.S081)
 - Use al real kernel (such as linux) will be certainly overkill

Prerequisites

All OS and architecture previous subjects(ugh!)

Evaluation

http://web.unican.as/estudios/Documents/Guias/2022/es/G677.ndf

				i	i	i	
T1: Examen Parcial Seguimiento Teoría		Examen escrito	No	Sí	5,00		
	Calif. mínima	0,00					
	Duración	1 hora					
	Fecha realización	Semana 9					
	Condiciones recuperación	Recuperable realizando el examen final.					
	Observaciones Examen de seguimiento Teoría (Virtualización CPU y Memoria).						
P1: F	P1: Prácticas de Laboratorio 1		Examen escrito	No	Sí	35,00	
	Calif. mínima 0,00						
	Duración 2,5 horas						
	Fecha realización Semana 9						
	Condiciones recuperación	ación Recuperable realizando el examen final.					
	Observaciones Cuestiones o propuesta de pequeñas modificaciones/extensiones sobre las implementaciones del alumno (prácticas Lab 1, Lab 2, Lab 3 y Lab4)						
T2: Examen Final Teoría			Examen escrito	Sí	Sí	45,00	
	Calif. mínima 0,00						
	Duración 2,5 horas						
	Fecha realización En las fechas indicadas por la Facultad para la realización de exámenes finales						
	Condiciones recuperación Recuperable en la convocatoria extraordinaria						
	Observaciones Preguntas que evaluarán globalmente el grado de comprensión de la materia de la asignatura.						
P2: F	P2: Prácticas de Laboratorio 2		Examen escrito	Sí	Sí	15,00	
	Calif. mínima	0,00					
	Duración	1,5 horas					
	Fecha realización	En las fechas indicadas por la Facultad para la realización de exámenes finales					
	Condiciones recuperación Recuperable en la convocatoria extraordinaria						
	Observaciones Cuestiones o propuesta de pequeñas modificaciones/extensiones sobre las implementaciones del alumno (prácticas Lab5,y Lab6)						

Para poder superar la asignatura, las notas medias de la parte práctica (i.e, P1*0.7+P2*0.3) y la parte teórica (i.e., T1*0.1+T2*0.9) deberán ser superior a 3.0.

Schedule

	Chapter	Lab	Homework	
	1 Intro	PO Lab Intro and review C		
	4. The Abstraction: The Process/ 5. Interlude: Process API		Process Intro / Process API	
	6. Mechanism: Limited Direct Execution		Direct Execution	
	7. Scheduling: Introduction	P0 Due, P1 System Calls	Scheduler	
19-sept	8: Scheduling: The Multi-Level Feedback Queue		MLFQ Scheduling	
	9: Scheduling: Proportional Share/10. Multiprocessor Scheduling		Lottery Scheduling	
26-sep.	13. The Abstraction: Address Space / 14. Memory API	P1 Due, P2 Scheduling	VM API	
28-sep.	15. Address Translation, 16. Segmentation		Relocation	
3-oct.	17. Free-Space Management		Segmentation	
5-oct.	18 Pagin Intro.	P2 Due	Free Space	
10-oct.	19. Translation Lookaside Buffers	P3 Memory	Paging	
17-oct.	20. Paging: Smaller Tables		TLBs	
19-oct	21. Swapping: Mechanisms/22. Swaping: Policies		Multi-level Paging/Paging Mechanism	
24-oct	26. Concurrency: An Introduction / 27. Interlude: Thread API		Threads (Intro)/Threads (API)	
26-oct	28. Locks		Threads (Locks)	
31-oct	29. Lock-based Concurrent Data Structures			
2-nov	30. Condition Variables	P3 Due, P4 Threads	Threads (CVs)	
????	Mid Term Exam (Processes & Memory LAB & TEO)			
7-nov	32. Common Concurrency Problems.			
9-nov	36. I/O Devices		Threads (Bugs)	
14-nov	37. Hard Disk Drives			
16-nov	39. File and Directories			
21-nov	40. File system Implementation.		Disks	
23-nov	41. Fast File System / 42. Crash Consistency: FSCK	P4 Due, P5 File systems	39. File and Directories	
28-nov	42. Crash Consistency: Journaling		FS Implement	
30-nov	43. Log-structured File Systems		FFS	
	44. SSD			
12-dic	45. Data Integrity And Protection	P5 Due		
	Appendix, Virtual Machines 1	Virtual Machines 2		