We denote their cardinalities by $p_m = |I_{\lambda>0}|$ and $q_m = |I_{\mu>0}|$.

Obviously, $p_f \leq p_m$ and $q_f \leq q_m$. There are $p - p_m$ points u_i classified correctly on the blue side and outside the δ -slab and there are $q - q_m$ points v_j classified correctly on the red side and outside the δ -slab. Intuitively a blue point that fails the margin is on the wrong side of the blue margin and a red point that fails the margin is on the wrong side of the red margin.

It can be shown that that K must be chosen so that

$$\max\left\{\frac{1}{2p_m}, \frac{1}{2q_m}\right\} \le K \le \min\left\{\frac{1}{2p_f}, \frac{1}{2q_f}\right\}.$$

If the optimal value is 0, then $\gamma = 0$ and $X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = 0$, so in this case it is not possible to determine w. However, if the optimal value is > 0, then once a solution for λ and μ is obtained, we have

$$\gamma = \frac{1}{2} \left(\begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2}$$
$$w = \frac{1}{2\gamma} \left(\sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j \right),$$

so we get

$$w = \frac{\sum_{i=1}^{p} \lambda_i u_i - \sum_{j=1}^{q} \mu_j v_j}{\left(\begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \right)^{1/2}},$$

If the following mild hypothesis holds, then b and δ can be found.

Standard Margin Hypothesis for (SVM_{s1}). There is some index i_0 such that $0 < \lambda_{i_0} < K$ and there is some index j_0 such that $0 < \mu_{j_0} < K$. This means that some u_{i_0} is a support vector of type 1 on the blue margin, and some v_{j_0} is a support vector of type 1 on the red margin.

If the **Standard Margin Hypothesis** for (SVM_{s1}) holds, then $\epsilon_{i_0} = 0$ and $\mu_{j_0} = 0$, and we have the active equations

$$w^{\mathsf{T}}u_{i_0} - b = \delta$$
 and $-w^{\mathsf{T}}v_{j_0} + b = \delta$,

and we obtain the value of b and δ as

$$b = \frac{1}{2} w^{\top} (u_{i_0} + v_{j_0})$$
$$\delta = \frac{1}{2} w^{\top} (u_{i_0} - v_{j_0}).$$