Econometric Estimation of Deforestation Impacts from Roads and Other Drivers

Alexander Pfaff, Juan Robalino, Claudio Bohrer, Eustaquio Reis, Robert Walker, Eugenio Arima, Marcellus Caldus, Steve Aldrich

Basin-Scale Econometric Modeling

Robert Walker & Eustaquio Reis, Pls

LBA-ECO 10th Science Team Meeting

Brasilia, DF October 6th, 2006

Acknowledgments

LBA - ECO for continued support (many outputs ongoing) <u>Tinker Foundation</u> complementary support for spatial work Columbia University seed funding & postdoctoral support <u>University of Florida</u> Stephen Perz for demographic inputs Smithsonian Institution William Laurence and Kate Kirby IPEA – Rio Marcia Pimentel & others working with E.Reis <u>Univ. Federal Fluminense</u> Simone Freitas, Marcia Santiago

Spatially Rich Data

Census Tracts (1996 boundaries) – LOTS of them:

- allows better statistical controls for what we miss;
 census-tract results are relative to counties' trends
- avoids measurement errors seen in big aggregates

There are some questions of appropriate measurement:

- treatment of the size of units within estimation
- appropriate normalization of clearing in a unit

Disaggregation of Roads in AML: "Being Paved" and "Implanted" Roads 1975

Road Assigned to Entire Municipio

Road Assigned to Census Tracts

Spatially Rich Data

Census Tracts (1996 boundaries) – LOTS of them:

- allows better statistical controls for what we miss,
 i.e. census tract results are relative to county trend
- avoids measurement errors seen in big aggregates

There are some questions of appropriate measurement:

- treatment of the size of units within estimation
- appropriate normalization of clearing in a unit

Cleared Percentage by Census Tracks Diagnostico 1991

Temporally Rich Data

Forest Changes 1976 - 1987, 1986 - 1992, 1992 - 2000:

- remotely sensed; unlike census, can map to tracts
- blending pairs of Diagnostico and TRFIC/Prodes

Road Changes 1968 – 1975, 1975 – 1987, 1985 - 1993:

- from maps, so roads can be mapped to census tracts
- amazingly, separating Fed/State & Paved/Unpaved;
 important to consider what types may follow others

Other Variables

- distances to large and medium and small cities:
 - evolution determined by Perz demographic projections
 (though small city group only shrinks, not adding new)
 - clearing frontiers move away from big cities over time?
- <u>biophysical constraints on production (for us, fixed):</u> amount of rain, several categories of slope, and soil fertility
- prior clearing: represents all sorts of possible changes ...
- census data (counties): changes in population & output

Regression Analyses

- explain fraction of forest lost in tract during period
 - to combine periods, annualize the loss and explain that
 - could use dummies per period, but are not significant
- for cleaner results, always use prior road investment; for development dynamics, also use 2nd and 3rd lags
- include dummy variable for each municipio (AMC), to strip out trends possibly due to unobserved factors
- drop tracts very close to big cities & all missing data

Basic Results (with a focus upon Roads)

Observations: 15,971 (3 periods pooled) Adjusted R-squared: 0.45

Prior Paved Federal Change	3.9 (0.00)	<u>Lag2</u> 3.2 (0.00)	<u>Lag3</u> 1.6 (0.01)
Prior Paved State Change	1.0 (0.06)	<u>Lag2</u> 2.9 (0.00)	<u>Lag3</u> 1.7 (0.18)
Prior Unpaved Federal Change	4.1 (0.00)	<u>Lag2</u> 3.2 (0.00)	<u>Lag3</u> 1.0 (0.11)
Prior Unpaved State Change	2.2 (0.00)	<u>Lag2</u> 2.5 (0.00)	<u>Lag3</u> 5.3 (0.00)
Prior Forest Fraction Cleared	1.2 (0.00)		
Min. Distance to Small City *	-1.4 (0.00)	Med -0.3 (0.00)	Large 0.1 (0.00)
Slope = "Rocky Outcropping"	-1.4 (0.00)	Soave Ondulado	0.3 (0.000)
Soil Suitability for Agriculture	0.02 (0.01)		

Road Effects – complications for 'THE #'

- multiple road types: if each has a #, categorize (AB paving)
- <u>effects over time with lags:</u> okay if enough periods (AB?)
- <u>effects change over time</u>? need to choose a 'base' period; for instance, earliest cross-section has distance to large city < 0
- effects over space -- not just own tract but neighbors':
 - at LBA 2005, showed 68-75 roads raised neighbor clearing
 - we have not yet done this using all periods (to apply to AB)

More Complications for 'THE #' for Roads

- given a clearing rate, any forest impacts require forest:
 - important case: tract's vegetation is mostly cerrado
 - for projections, need to know this setting too (AB?)
- roads' impacts on clearing rates are also dependent:
 - not very sensitive to dropping higher cerrado areas
 - prior clearing affected 76-87 impacts...(AB goes?)

Basic Regression, prior clearing = 0%

Observations: 6,344 (3 periods pooled) Adjusted R-squared: 0.46

Prior Paved	Federa	l Change	3.3 (0.02)	<u>Lag2</u> 4.1 (0.00)	<u>Lag3</u> 1.8 (0.31)
Prior Paved	State	Change	3.9 (0.03)	<u>Lag2</u> 3.0 (0.27)	<u>Lag3</u> 12 (0.32)
Prior Unpaved	d Federa	al Change	5.9 (0.00)	<u>Lag2</u> 3.5 (0.00)	<u>Lag3</u> 2.6 (0.20)
Prior Unpaved	d State	Change	3.3 (0.00)	<u>Lag2</u> -0.1 (0.93)	<u>Lag3</u> 6.4 (0.00)

First lag results are generally a bit higher than the pooled.

However, the additional lags are generally less significant.

Basic Regression, prior clearing 0 - 25%

Observations: 6,028 (3 periods pooled) Adjusted R-squared: 0.49

Prior Paved	Federa	1 Change	5.3 (0.00)	<u>Lag2</u> 4.9 (0.00)	<u>Lag3</u> 1.8 (0.06)
Prior Paved	State	Change	0.5 (0.53)	<u>Lag2</u> 2.9 (0.02)	<u>Lag3</u> 0.6 (0.71)
Prior Unpave	d Federa	al Change	4.1 (0.00)	<u>Lag2</u> 5.1 (0.00)	<u>Lag3</u> 1.3 (0.19)
Prior Unpave	d State	Change	2.0 (0.00)	<u>Lag2</u> 2.6 (0.00)	<u>Lag3</u> 4.7 (0.00)

First lag results are again a little bit higher than the pooled.

Additional lags are like the pooled, higher than prior = 0%.

Basic Regression, prior clearing > 25%

Observations: 3,599 (3 periods pooled) Adjusted R-squared: 0.40

<u>Prior Paved Federal Change</u> 1.7 (0.02) <u>Lag2</u> 0.4 (0.47) <u>Lag3</u> 0.2 (0.75)

<u>Prior Paved State Change</u> -0.2 (0.71) <u>Lag2</u> 0.9 (0.01) <u>Lag3</u> 0.9 (0.44)

<u>Prior Unpaved Federal Change</u> 1.0 (0.11) <u>Lag2</u> 0.5 (0.21) <u>Lag3</u> -0.8 (0.12)

<u>Prior Unpaved State Change</u> 0.4 (0.14) <u>Lag2</u> 0.9 (0.00) <u>Lag3</u> 0.9 (0.08)

Much weaker, in significance & in magnitude if significant.

Lagged Federal and earlier State (unpaved) hang on some.

A Final Complication for 'THE #' for Roads

- roads are unlikely to be located randomly across area:
 - decisions, with (fed/state) goals, are often involved
 - places getting roads may differ from those without
- accurate inference thus requires the right comparison:

for example, if paved strongly follows prior unpaved,

then compare with not paved that have prior unpaved

Federal vs. State Road Changes 1975-1981

FEDERAL	Coeff.	Std.Error	z	P> z
mountainous gentle roll	-0.52 0.15	0.30 0.13	-1.72 1.16	0.09 0.25
soil quality city distance	-0.06 0.001	0.05 0.000	-1.28 7.50	0.20

STATE	Coeff.	Std.Error	Z	P> z
mountainous	-0.31	0.14	-2.17	0.03
gentle roll	0.34	0.08	4.36	0.00
soil quality	0.14	0.03	5.14	0.00
city distance	-0.001	0.000	-8.26	0.00

N = 5432 for both, and Pseudo R2 = 9% for both.

Paved Roads often follow Prior Unpaved

- not highly correlated overall, as uni-directional
- tract-area-weighted density of paved building is 20 times higher if 1st or 2nd lagged unpaved > 0

Regression Explaining Investments in Paved Roads Using Prior Roads

Observations: 23,346 (3 periods pooled) Adjusted R-squared: 0.11

<u>Lagged Paved</u> Investment -0.04 (0.00) <u>Second Paved</u> <u>Lag</u> -0.01 (0.24)

<u>Lagged Unpaved Investment</u> 0.07 (0.00) <u>Second Unpaved Lag</u> 0.25 (0.00)

Paved Impacts differ where Prior Unpaved

Basic Regression for tracts with <u>positive</u> Prior Unpaved Investments

Observations: 2,894 (3 periods pooled) Adjusted R-squared: 0.50

<u>Prior Paved Change</u> -0.2 (0.79) <u>Lag2</u> 4.1 (0.00) <u>Lag3</u> 3.0 (0.03)

<u>Prior Unpaved Change</u> 1.0 (0.11) <u>Lag2</u> 3.3 (0.00) <u>Lag3</u> 4.2 (0.00)

Basic Regression for tracts with <u>zero</u> Prior Unpaved Investments

Observations: 12,861 (3 periods pooled) Adjusted R-squared: 0.45

<u>Prior Paved Change</u> 1.6 (0.01) <u>Lag2</u> 2.4 (0.00) <u>Lag3</u> 0.8 (0.23)

Prior Unpaved Change 2.0 (0.00) <u>Lag2</u> ----- <u>Lag3</u> -----

Road Effects: where does Avanca Brasil go?

- prior clearing (seems to lower effects of road on rate):
 - where paving goes, weighted prior clearing is over 50 %,
 but in non-AB census tracts, prior clearing is under 20 %
 - for AB unpaved, the comparison is roughly 30% to 15 %
- prior roads investments (also seem to affect impacts):
 - for AB paved, prior paving is much higher than non-AB
 - for AB unpaved, recent paving and lagged unpaved higher
- cerrado (at any clearing rate, forest impact is lower):
 - for AB paved, more in cerrado than non-AB, 36% > 18 %
 - for AB unpaved, more in cerrado than non-AB, 31% > 17%

Summarizing

- empirics using rich data, spatially & temporally, allow controls and the cleanest tests of roads' causal impacts
- paved & unpaved investments (prior, 2nd and 3rd lags) are found to <u>increase</u> deforestation in their own tracts {see early-period evidence of spillover increases too}
- however we are going further, to acknowledge setting
 & processes of fed/state paved/unpaved road location,
 in order that our projections use the right coefficients