

NOSITEL VYZNAMENÁNI ZA BRANNOU VÝCHOVU I. A II. STUPNĚ

ŘADA B PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXIV/1985 ● ● ČÍSLO 4

V TOMTO SEŠITĚ

Celostátní	nferer	
ZAJÍMAVÁ ZAPOJENÍ	A	PRAKTICKÁ
Hlídač napájecíl Řízení triaku spí	sory no nape načem	napáječe 122 ětí123 v nule123 ětí/nabíječ125
Zkoušeč vř tran: Vinoměr Měřič rezonanc Generátor sinu: 10 Hz až 1 MHz Měřič kondenzí	zistorů :e sového	125 126 127 127 127 128 128 129 130, 131
TDA4920/25 LM1035 TDA4292		vané obvody 132 133 134 135 136
Aktivní širokop Sledovač signá Různě aplik	předz ásmovi lů Ovaná	esilovač137 á anténa138 139 · á
Konstrukčni Integrovane		147 odv
CMOS (doke		

AMATÉRSKÉ RADIO ŘADA B

Vydává ÚV Svazarmu ve vydavatelství NASE VOJSKO, Vladislavova 26, 133 66 Praha 1, tel. 26 06 51-7. Séfre-

Vladislavova zo, 133 be Frana 1, tel. 20 bb 51-7. Serre-daktor I ing. Jan Klabal, redaktor Luboš Kalousek, OK1FAC. Redakčni radu řídí ing. J. T. Hyan. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51-7, šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně výjde 6 čísel. Cena výtisku 5 Kčs, pololetní předplatné 15 Kčs. Rozšíruje PNS, isdnattách zabojaných čil ustovatelství. NAŠE VOL. v jednotkách ozbrojených sil vydavatelství NASE VOJ-SKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS, ústřední expedice a dovoz tisku, závod 01, Kafková 9, 160 00 Praha 6. Tiskne NAŠE VOJSKO, n. p., závod 08, 160 05 Praha 6, Vlastina ulice č. 889/23. Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.

Toto číslo má vyjít podle plánu 6. srpna 1985. © Vydavatelství NAŠE VOJSKO.

VÝROČNÍ ČLENSKÉ SCHŮZE A OKRESNÍ KONFERENCE SVAZARMU

V období od 1. září do 10. listopadu 1985 se uskuteční členské schůze (konference) základních organizací, a 23. a 30. listopadu a 7. prosince 1985 se konají okresní konference Svazarmu.

V odborném zaměření schůze i konference zaměří svoji pozornost na:

- Zkvalitnění řízení a účinnosti politickovýchovné práce v jednotě s branně výcvikovou a zájmovou brannou činností. To znamená zejména konkretizovat a prosadit do života základních a okresních organizací závěry 4. zasedání ústředního výboru k politickovýchovné práci a směrnicí pro politickóvýchovnou práci, novelizovanou v roce 1984. Současně přijmout další opatření k rozvinutí branné propagandy a popularizaci ČSLA i vlastní svazarmovské činnosti.
- Zvýšení přínosu základních organizací k přípravě mládeže na službu v ozbrojených silách, vojenských záloh a občanů. k obraně země zejména hlubším rozvinutím masové politické a vojenskoodborné činnosti.
- Vyšší podíl základních organizací při formování a uspokojování zájmů občanů v celé oblasti zájmové branné činnosti především pak mládeže. Rozšíře-ní vlivu a zvýšení kvality práce s mládeží od 14-18 let ve všech základních organizacích Svazarmu.

- Zvyšování úrovně finančního a materiálně technického zabezpečení činnosti a rozvoje základních a okresních organizací. V hospodaření s prostředky a materiály prosadit větší účelnost a efektivnost.
- Zdokonalení vnitřního života, obsahu i forem činnosti základních organizací a řídící práce výborů základních organizací a okresních výborů jako základ-ního předpokladu dalšího rozvoje činnosti a plnění závěrů VII. celostátního
- sjezdu. Pečlivou přípravu a výběr funkcionářů do výborů základních organizací a za členy okresních výborů. Mimo politické a odborné předpoklady musí dbát na schopnost pracovat s lidmi a ochotu vykonávat náročnou, dobrovolnou čin-nost v orgánech a aktivu Svazarmu. Je třeba docenit i zatížitelnost ve funk-cích, časové i další podmínky pro výkon funkce a posílit výbory o mladé, připra-vené a obětavé členy a ženy z řad Svazarmu. Zvláštní pozornost věnovat výběru předsedů a místopředsedů základních organizací a hospodářů.

Zvláštní pozornost je třeba věnovat posílení propagace a výsledků práce svazarmovských organizací ve sdělovacích prostředcích v okruhu působnosti základních organizací a okresních výborů i vyšších orgánů Svazarmu v souvislosti s přípravou a konáním výročních schůzí a konferenci

CELOSTÁTNÍ PŘEHLÍDKA TECHNICKÉ TVOŘIVOSTI SVAZARMU ERA 85 – ŠUMPERK

Přehlídka je ideově zaměřena k oslavám 40. výročí vyvrcholení národně osvobozeneckého boje československého lidu a osvobození Československa Rudou armádou. Svým zaměřením na propagaci uspěchů socialistické společnosti při pl-nění závěrů XVI. sjezdu KSČ a VII. sjezdu Svazarmu přehlídka dokumentuje rozvoj polytechnické výchovy mládeže, branně technické činnosti, technického vzdělávání a technické propagandy v elektronice

Přehlídka se koná v roce 25. výročí zahájení činnosti v odbornosti "elektroni-ka" a 5. výročí otevření Domu kultury ROH Pramet Šumperk ve dnech 7.–12. října 1985 v domě kultury ROH Pramet Šumperk, Sady 1. máje. Pořadatelem je ÚV Svazarmu Praha, oddělení elektroniky, a záštitu nad přehlídkou má OV KSČ Sumperk a Federální ministerstvo elektrotechnického průmyslu. Organizátorem přehlídky je OV Svazarmu Sumperk, Rada radioamatérství při OV Svazarmu Šum-perk a ZO Svazarmu hifiklub při SKZMŠ Sumperk.

Časový plán přehlídky

7. října 1985 Vernisáž výstavy. 14.00 14.00–19.00 Provoz pro veřejnost. 17.00–19.00 Přednáška pro veřejnost. 20.00 Kulturní pořad.

8. až 11. října 1985 9.00-19.00 Provoz pro veřejnost. 17.00-19.00 Technické přednášky pro veřeinost.

20.00 Kulturní program.

12. října 1985 9.00–19.00 F

Provoz pro veřejnost. Slavnostní vyhodnocení sou-těže a Premiéra HIFI DISCO 20.00 PLESU v Závodním klubu ZOS Šumperk, Žerotínova

ulice.

Odborné přednášky

8. října 1985 – 9.15 až 17.15 hodin Záznamová a reprodukční technika (GŘ TESLA Spotřební elektronika Bratis-

- 1. Kompaktní deska CD 204
- **TESLA Litovel** 2. Video deska **TESLA Litovel**
- 3. Design výrobků spotř. elektroniky 4. Novinky gramofonové techniky TESLA Litovel
- Spotřeb. elektronika v 8. PLP
- 9. října 1985 9.15 až 17.15 hodin

Radioamatérská technika (Pramet n. p. Šumperk a RRa při OV Svazarmu Šumperk)

- Jednoduché přístroje, měření a poznat-ky z konstrukce anténních systémů pro radioamatérské VHF a UHF pásmo (M. Strouhal, OK2BJF).
- Užití výpočetní techniky v radioamatérské praxi (J. Hendrich, OK2TT, ing. T. Svozil, OK2SST).
- Konstrukční zásady a praktické poznat-ky z řešení zařízení pro pásma 144 a 432 MHz (J. Klátil, MS, OK2JI).
- 4. Přijímače a vysílače pro 160 a 80 m (ing.
- Feritové materiály a termistory pro elektroniku (ing. E. Suchý, n. p. Pramet Sumperk).
- 6. Použití feritových materiálů v elektronických amatérských konstrukcích (ing. J. Petrek, n. p. Pramet Sumperk).

10: října 1985 – 9.15 až 17.15 hodin

Součástková základna (GŘ TESLA Elektronické součástky Rožnov)

1. Integrované obvody pro A-D převod-

- 2. Integrované obvody pro magnetofony a vf zesilovače (7770, 2054, 915)
- 3 Integrované obvody pro BTVP řady
- 4. Novinky v bipolárních IO
- nové paměti MH 8282, 83, 86, 87 řada ALS
- 5. Jednočipové mikropočítače a unipolární integrované obvody
- 11. října 1985 9.15 až 17.15 hodin

Výpočetní technika (GŘ TESLA Elektronické součástky Rožnov, GŘ ZAVT Praha)

- 1. Koncepce rozvoje malé výpočetní techniky v resortu FMEP

- 2. Osobní počítače SMEP 3. Školní mikropočítačový systém IQ-151 4. Osobní mikropočítač PMD-85 (TESLA Piešťany)
- 5. Přehled jazyků pro osobní počítače

12. října 1985 – 9.15 až 15.15

Výběr z odborného programu

- 1. Novinky v bipolárních integrovaných obvodech
- 2. Kompaktní deska a přehrávač CD 204
- přednáška 3. Nejlepší odborného programu
- Osobní mikropočítač PMD-85 (TESLA Piešťany)
- Koncepce rozvoje malé výpočetní techniky v resortu FMEP

V rámci přehlídky budou přítomní odborníci poskytovat konzultace se zájemci z řad účastníků přehlídky i technické veřeinosti.

Součástí přehlídky budou expozice podniků, zajišťujících odborný program a prodejní stánký součástek (včetně sortimentu n. p. Pramet Sumperk) a gramofonových desek (Supraphon, Panton).

Organizátor si vyhrazuje drobné změny odborného prògramu.

ZAJÍMAVÁ A PRAKTICKÁ ZAPOJENÍ

Zdeněk Svoboda

Úvod

Je to již delší dobu, co jsme se nad stránkami AR setkali se Zajímavými a praktickými zapojeními naposled. Přesto, že toto číslo AR patřilo ve vyšlých ročnících vždy k nejoblíbenějším, v posledních letech jsme se s ním nesetkávali - a to z mnoha různých důvodů. Jedním z nejpodstatnějších bylo to, že bylo a je stále složitější najít v zahraniční literatuře taková zapojení a takové přístroje, které by bylo možno realizovat s našimi součástkami. Při stále se rozšiřující výrobě integrovaných obvodů ve světě je totiž nemyslitelné, že by bylo možno u nás koupit (a tedy i vyrábět) integrované obvody a diskrétní součástky ekvivalentní alespoň většině zahraničních obvodů a součástek; podstatným způsobem však situaci u nás ovlivnil dovoz integrovaných obvodů z NDR, i když pokud jde o množství typů, není příliš velké. Každý si však přinejmenším mohl udělat představu o tom, co je to v praxi socialistická spolupráce. Kdyby se totéž (dohoda o dovozu) podařilo sjednat i s ostatními zeměmi RVHP, šlo by velké množství nejrůznějších konstrukcí řešit moderněji, úsporněji a elegantněji, než je zatím možné. A to zatím z úvah záměrně vypouštím dovoz ze SSSR, který by podle informací, většinou velmi kusých, obohatil náš trh integrovaných obvodů i diskrétních polovodičových součástek takovým způsobem, který by byl zřejmý ve všech oblastech aplikací.

Na tomto místě nezbývá než si přece jen poněkud postesknout: Jednou z nejběžnějších polovodičových součástek je tranzistor řízený polem. Přitom na našem trhu zcela chybi. Oba mosfety, KF520 a KF521, nemohou v žádném případě běžný FET nahradit. Přitom FET, podobný např. nejběžnějšímu a již snad více než 10 let (nebo již i déle?) vyráběnému FET 2N3819 by uvítali na všech pracovištích a mezi amatéry elektroniky všichni stejně nadšeně, jako kdysi první křemíkový tranzistor. Jisté je, že podobných součástek, které na našem trhu vůbec nejsou, by se našlo více, potřeba běžného tranzistoru FET je však asi nejnaléhavější.

Vratme se však k Zajímavým a praktickým zapojením. Výběr zapojení ze zahraniční literatury v tomto čísle AR řady B byl veden snahou poskytnout našim konstruktérům převážně nikoli podklady ke stavbě zařízení a přístrojů, ale ukázat, jak je možné jednoduše řešit potřebu např. běžných (avšak i neběžných) měřicích přístrojů, ukázat některá neobvyklá obvodová řešení a v neposlední řadě seznámit naše konstruktéry (nebo opraváře) s moderními zahraničními integrovanými obvody, jejichž ekvivalenty se v ČSSR nevyrábějí a asi ani vyrábět nebudou. Zcela záměrně byly vybírány především jednodušší konstrukce z "klasické" radiotechniky a elektroniky a obvody ze spotřební elektroniky, často i ze starších pramenů, a konstrukce či zapojení, která byla u nás publikována velmi málo nebo vůbec ne.

Protože redakce má v úmyslu čas od času věnovat této tematice jedno číslo AR řady B, uvítáme jakékoli připomínky čtenářů jak pokud jde o náplň, tak i o způsob zpracování.

A na závěr ještě poznámku: Znovu opakuji, že jde o výběr zapojení ze zahraničních pramenů, prameny jsou uvedeny vždy na konci toho či onoho článku. Protože tato zapojení ani autor, ani redakce neověřovali, nemohou k nim dávat žádné upřesňující informace. V původních pramenech bývá však často i nákres desky s plošnými spoji, ty však zásadně netiskneme proto, že se málokomu může podařit sehnat ke konstrukci takové součástky, jaké použili autoři zahraničních konstrukcí. Pokud autor originální konstrukce uváděl ke konstrukci v článku nějaké podstatné údaje, jsou i ty v našem stručném překladu většinou uvedeny.

Zdroje. nabíječe, napáječe

Napájecí zdroj pro zařízení s mikroprocesory

Zapojení na obr. 1 slouží jako stabilizovaný zdroj napájecího napětí pro zařízení s mikroprocesory z palubní sítě motorových vozidel. Zdroj odstraňuje většinu

Obr. 1. Zapojení stabilizovaného zdroje 5 V napájeného z palubní sítě automobilu

rušivých napětí, která se v palubní síti motorových vozidel vyskytují.

Vstup zdroje je chráněn před šumem a před rychlými změnami napětí (napěťovými špičkami) filtrem L₁, C₁, C₂ – filtr zabraňuje i zpětnému přenosu rušivých napětí ze zařízení do palubní sítě. Dioda D₁ zamezuje vstupu napětí opačné polarity a vybíjení hlavního filtračního kondenzátoru C₂. Tento kondenzátor umožňuje, že se i při krátkodobém výpadku napětí v palubní síti udrží na výstupu zdroje jmenovité napětí (při odběru proudu 500 mA po dobu 30 ms).

Zapojení pracuje takto: změní-li se výstupní napětí, nastavené odporovým trimrem 10 kΩ tak, že se zmenší pod jmenovitou úroveň referenčního napětí na bázi T₁, otevře se tranzistor T₂. Hystereze je dána rezistorem R₄. Otevře se i tranzistor T₃, což má za následek otevření Darlingtonova tranzistoru T₄, T₅. Proud cívkou L₂ a napětí na výstupním kondenzátoru se zvětšují, dokud se komparátor (T₁, T₂) neuvede do původního stavu. Když se Darlingtonova dvojice tranzistorů uzavře, indukční proud dále protéká komutační diodou D₅ a dobíjí výstupní kondenzátor C₄ (není na obrázku).

Vstupní napětí může být minimálně 6 V. Jako zdroj referenčního napětí slouží Zenerova dioda D₂, ZN423T, se Zenerovým napětím 1,25 V. Aby byla hystereze zapojení konstantní, je jako kolektorová zátěž T₁ použita dioda D₄. To je potřebné především proto, že se jinak vlastnosti komparátoru mění se změnou vstupního napětí.

Cívka L₂ má 20 závitů drátu o průměru 0,4 mm CuL na feritovém jádře se vzduchovou mezerou 0,25 mm mezi oběma polovinami jádra. Cívka L₁ je standardní tlumivka pro proud 2 A.

Electronic Engineering, srpen 1981

"Hlídač" napájecího napětí

S obvody 8212 a 8211, které jsou popsány v kapitole Zajímavé, integrované obvody, lze konstruovat např. i "hlídač" napájecího napětí, popř. jeho úplný výpadek. Zapojení indikátoru je na obr. 2.

lO₁ je použit jako monitor přepětí, IO₂ jako monitor podpětí. Má-li napájecí zdroj jmenovité napětí, je na výstupech obou integrovaných obvodů logická 1 (úroveň H). Zvětší-li se napětí zdroje, napětí na vývodu 3 obvodu IO₁ bude větší než 1,15 V a výstup obvodu bude na úrovni 0 V. Nápětí na vývodu 3 (práh, treshold) obvo-

du IO_2 bude proto také nulové a nulové bude i napětí na vývodu IO_2 (na něm bude log. 0).

Zmenší-li se napětí zdroje pod jmenovitou velikost nebo na nulu, bude i napětí na vývodu 3 obvodu IO₂ menší než 1,15 V (díky vhodně voleným rezistorům R₃ až R₅) a na výstupu IO₂ bude také log. 0.

Zapojením je dáno, že se stav obvodů při přepětí i při podpětí nezmění samočinně při opětném zvětšení nebo zmenšení napájecího napětí na jmenovitou velikost obvody se uvedou do výchozího stavu pouze stisknutím tlačítka TI (nastavení, reset).

K akustické kontrole činnosti "hlídače" napájecího napětí je k vyhodnocovacím obvodům přidán obvod indikace, který uvádí v činnost piezoelektrický hlásič. První dvě hradla obvodu 4001 pracují jako pomalu běžící oscilátor s velkým poměrem impuls-mezera, jehož signálem se uvádí v činnost nf oscilátor s dalšími dvěma hradly obvodu 4001. Změnou odporu rezistorů R₈ a R₉ lze podle potřeby měnit délku trvání zvukového signálu a mezery (pauzy).

Obvod podle obrázku je navržen pro napětí 5 V. Maximální napájecí napětí je 18 V. Pro jiné jmenovité napájecí napětí je třeba změnit odpor rezistorů R₁ až R₅ (podle popisu v kapitole Zajímavé IO) a popř. i napětí zdroje pro zvukovou indikaci.

Přístroj je velmi vhodný především u zařízení, napájených z baterií, neboť jeho odběr v klidovém stavu je max. 100 μA.

Practical Electronics č. 4/1985

Řízení triaku spínačem "v nule"

K plynulému řízení výkonu se v poslední době používají u tyristorů a triaků dvě

Obr. 3. Princip spínání a odpínání zátěže "v nule"

základní metody - buď se "uřezává" část sinusovky střídavého proudu, tzn. jde o tzv. fázové řízení výkonu, nebo se. používají tzv. spínače v nule, které řídí průchod proudu řízeným prvkem tím, že při průchodu sinusovky nulou (obr. 3) jednu nebo zvolený počet sinusovek řízeným prvkem nepropustí. Velkou výhodu řízení výkonu "v nule" je minimální vzni-kající rušení, neboť spínaný prvek se otevírá a zavírá v době, kdy nevede proud a kdy na něm není napětí, tj. v okamžiku průchodu sinusovky nulou. Fázové řízení je vždy nutně provázeno vznikem vf rušení a při spínání velkých proudů je problém odrušení řešitelný jen s velkými obtížemi. U fázového řízení je pak problémem při spínání zátěží s velmi malým činným odporem i značné zvětšení rychlosti di /dt, což může způsobit zničení spínaného prvku velkým proudem. Tento jev se u spínačů v nule projevit nemůže, neboť spínaný prvek se otevírá při průchodu sinusovky nulou a proud zátěží se nemůže proto zvětšovat rychleji, než jak to odpovídá zvětšování napětí sinusového průběhu, hodnoty di/dr jsou proto relativně malé.

Příkladem praktického zapojení spínačů "v nule" jsou regulátory na obr. 4. Oba byly vyzkoušeny autorem původního článku v praxi, jako spínaný prvek byl autorem použit sovětský triak ze série TC-10, jehož technické údaje byly popsány v Radio, Fernsehen, Elektronik č. 1/1978 na str. 31, 32. V prvním řízením šířky ovládacích impulsů, ve druhém případě o dvoubodový regulátor výkonu (teploty), udržující samočinně čidlem snímanou teplotu vyhřívaného objektu.

Obr. 2. Zapojení indikátoru přepětí a podpětí (a popř. výpadku napájecího napětí)

Obr. 4. Dva praktické spínače "v nule" – a) ručně řízený regulátor, b) samočinný regulator teploty (SF127C = KF508, KFY46, SZX18/12 – 12voltová Zenerova dioda např. typu KZZ, KFY16 = KF517, SAY 12 – např. KA501 apod., TC10/4 = sovětský triak, viz text)

Při použití spínačů v nule je si třeba uvědomit, že na rozdíl od fázového řízení není možno spínače použít k řízení osvětlení, neboť z principu funkce spínače vyplývá, že by žárovka poblikávala. Je tedy třeba používat spínače tam, kde má řízená zátěž značnou setrvačnost, jako např. u páječek, elektronických kamen, v některých případech je lze používat i k řízení motorů.

Pro určení středního výkonu lze vycházet při řízení impulsy o spínací periodě T z časové konstanty článku RC astabilního multivibrátoru, který dodává řídicí impulsy (obr. 3). Středního výkonu P_s , který bude právě poloviční vzhledem k maximálnímu výkonu P_s , lze tedy dosáhnout při poměru šířka impulsu/mezera mezi impulsy 1:1 (obr. 5).

U dvoubodového regulátoru se mění spínací perioda T v závislosti na snímané teplotě a na nastaveném prahu sepnutí. Závislost středního výkonu na nastavení regulačního potenciometru v obr. 4a ($R=500~k\Omega,~R_v=22~k\Omega$) je lineární a je na obr. 6.

Zapojení k ručnímu řízení výkonu (obr. 4a) změnou šířky o ovládacích impulsů se skládá ze dvou základních částí – vlastního spínače v nule (tranzistory T₁ až T₃) spolu s triakem, a astabilního multivibrátoru (T₄, T₅) s nastavitelným poměrem impuls-mezera. Aby triak spínal vždy při průchodu sinusovky nulou, musí se na jeho řídicí elektrodu přivádět otevírací

Obr. 5. Závislost středního výkonu na době sepnutí a vypnutí triaku

impulsy vždy přesně při průchodu sinusovky nulou. Proto se otevírací impulsy získávají z pravoúhlých impulsů na Zenerově diodě D₅ (12 V), jejichž hrany odpovídají průchodům sinusovky nulou. Ze stejného místa jako pravoúhlé impulsy se za usměrňovací diodou D₂ získává i stejnosměrné napájecí napětí asi 11 V pro astabilní multivibrátor.

Pravoúhlé impulsy ze Zenerovy diody jsou tvarovány po průchodu tranzistorem T_3 na článcích R_2 , C_2 a R_5 , C_3 na úzké impulsy, které jsou pak zesilovány doplňkovou dvojicí tranzistorů T_1 a T_2 a v obou polaritách přiváděny na řídicí elektrodu triaku.

Obr. 6. Závislost síředního výkonu na zátěži v závislosti na natočení hřídele potenciometru; a) část zapojení astabilního multivibrátoru k výpočtu závislosti, b) graf závislosti

V zapojení použité sovětské triaky mohou řídit podle použitých chladičů zátěž až 3 kW. Je třeba upozornit na to, že při velmi malých zátěžích (menších než 50 W) by zapojení nemuselo spolehlivě pracovat.

Impulsy, dodávané astabilním multivibrátorem, se přivádějí na tranzistor T₃. Ten je otevírán a zavírán v závislosti na poměru impuls/mezera, nastaveném potenciometrem P₁. Je-li tranzistor otevřen, pak pravoúhlé impulsy, vznikající na Zenerově diodě, procházejí přes T₃ a T₁, T₂ na řídicí elektrodu triaku a otevírají ho. Je-li T₃ uzavřen, nevede ani triak. Kondenzátor C₄ zabezpečuje, že triak nebude sepnut při vzniku nějakého falešného impulsu, ale pouze při průchodu sinusovky nulou.

Autor článku uvádí, že s použitými součástkami lze dosáhnout řízení výkonu v mezích 4 až 96 % maximálního výkonu.

Zapojení, využívající k řízení výkonu teplotní čidlo, obr. 4b, se skládá opět ze spínače v nule s triakem a z dvoubodového regulátoru. Jako teplotní čidlo se používá termistor. Signál z teplotního čidla se snímá diferenčním zesilovačem s tranzistory T₅ a T₄ a přivádí na spínač v nule. Požadovaná teplota se nastavuje potenciometrem P₁. Pro možnost lépe nastavit teplotní rozsah spínání lze paralelně a sériově k termistoru zapojovat ještě rezistory, jejichž odpor se volí podle použitého termistoru a požadované regulované teploty.

Pro možnost získat přehled o tom, kdy je topné těleso připojeno k síti a kdy nikoli, je na obr. 7 zapojení indikačního

Obr. 7. Indikační ovod

obvodu, který lze připojit k zátěži (topnému tělesu). Svítivá dioda svítí vždy, je-li topení připojeno k síti.

- Funkamateur č. 4/1980

*Kombinace měnič napětí/nabíječ

Nápad uspořádat do jedné skříně měnič napětí 12 V/220 V a současně nabíječ akumulátorů a využít přitom části součástek pro oba přístroje současně, není jistě špatný. O důležitosti a potřebnosti nabíječe akumulátorů není třeba nikoho přesvědčovat a mít možnost oholit se strojkem na síťové napětí např. v kempu nebo při stanování také není k zahození.

Přístroj, jehož schéma je na obr. 8, se skládá z generátoru a zesilovače napětí jednoho kmitočtu. Jako generátor slouží hradla CMOS z pouzdra 4049, kmitočet nradia CMOS z pouzdra 4049, kmitočet napětí lze odporovým trimrem nastavit na 50 Hz. K tomu, aby napětí na výstupu bylo symetrické (jde o pravoúhlý signál), slouží dioda 1N4148 a rezistor 220 kΩ. Čím bude napětí "symetričtější", tím větší účinnost bude mít měnič. Výstupní napětí z generátoru se vede na dvojici tranzistorů měniče (Darlingtonovy tranzistory) přes "budiče" hradla IO_d , IO_t) a do báze spodního tranzistoru přes hradlo IO_e , které otáčí fázi výstupního signálu generátoru. Výstupní signál z Darlingtonových tran-

zistorů se pak vede přes părované tranzistory 2N3055 na sekundární vinutí běžného síťového transformátoru, z jehož primár-ního vinutí lze odebírat napětí 220 V (až 30

Při uvádění do chodu je třeba nezapomenout na to, že výstupní napětí je vždy třeba měřit se zátěží (např. žárovka 25 W/ 220 V).

Přepneme-li přepínač "nabíjení" ,měnič" do polohy nabíjení a připojíme-li primární stranu transformátoru k síti, bude sekundární napětí transformátoru usměrněno diodami 1N5401 a lze jim nabíjet akumulátor (v režimu "měnič" skouží diody jako ochrana tranzistorů 2½3055). Nabíječ dodává proud maximálr 2,5 A.

Při uvádění do chodu je třeba nastavit kmitočet měniče – to lze udělat např. čítačem, ale i zkusmo, např. při připojení holicího strojku s kmitající kotvou otáčíme běžcem trimru tak dlouho, až bude kotva kmitat co "nejrazantněji

Ke konstrukci je třeba ještě dodat, že výkonové tranzistory musí být upevněny

na chladiči.

ELO č. 11/1984

4049 1N4148 2×BD682 2×2N3055 M22 2×1N5401 M12 İΔ 10 siti 10k zástrčka _menic

Měřicí technika

Měřiče síly pole

Jedním z nesporně užitečných přístrojů ve vybavení radioamatérské dílny je měřič síly pole. Poslouží jak při vývoji modelářských zařízení, tak např. při konstrukci antén, při určování průběhu elektromagnetického pole vysílače v místě požadovaného příjmu apod.

Konstrukce měřiče síly pole může být velmi jednoduchá - na obr. 9 a obr. 10 jsou příklady zapojení měřičů, uveřejněných před mnoha lety v časopisu Radioelectronics. První z měřičů je určen k mě-

jakýkoli mikroampérmetr s citlivostí 50 až 500 μA. Pro lepší čtení je paralelně k měřidlu zapojen kondenzátor C2. Na výstup se připojují sluchátka s velkou impedancí (větší než 2000 Ω). Základní nastavení spočívá v nastavení běžce R6 asi do poloviny odporové dráhy (tj. na 2500 Ω): Odpor trimru R₃ se pak zvolí tak, aby měřidlo ukázalo plnou výchylku ručky. Toto základní nastavení se dělá vždy bez signálu!

Anténní transformátor má jako primární vinutí 3 závity tzv. zvonkového drátu (drát s izolací z plastické hmoty), jako sekundární vinutí slouží 12 závitů drátu o průměru 0,35 mm CuL. Bližší údaje o kostřičce a jádru v původním pramenu

Obr. 9. Měřič síly pole pro pásmo 27 MHz

ření síly pole pro kmitočtové pásmo 27 MHz. Na jeho vstupu je anténní obvod, naladěný na 27 MHz. Signál z antény je přes souosý konektor přiveden na anténní transformátor. Obvod je díky kondenzátoru 10 pF a jádru v cívce možno přeladovat v celém pásmu 27 MHz. Signál z antény, detekovaný diodou, se vede do báze n-p-n tranzistoru 2N229, který je přímo vázán na další stupeň s tranzistorem. p-n-p, CK722. Jako měřidlo se používá

uvedeny nejsou.

Oba tranzistory jsou křemíkové typy, min. zesilovací činitel prvního je 25. Dioda je germaniová, hrotová.

Druhý z měřičů síly pole byl konstruován záměrně ve dvou oddělitelných skříňkách, v první z nich je detektor a ve druhé indikátor, což podle autora umožnilo např. u antén měřit jak zisk, tak např. předozadní poměr konstruované antény,

Obr.' 10. Měřič síly pole

Obr. 8. Užitečný přístroj pro automobilisty kombinace měnič napětí 12 V/220 V, 30 VA a nabíječ akumulátorů

neboť detektor může být úmístěn "v poli" a indikátor u měřené (nastavované) antény.

Skříňka detektoru má na horní stěně izolovaně umístěnou prutovou anténu. Na vstupu je pak laděný obvod, nastavený na kmitočet měřeného signálu, za nímž následuje detekční dioda.

Skříňka indikátoru obsahuje vlastně tranzistorový voltmetr se dvěma nastavovacími prvky - citlivost (R₁) a nula (R₄). Výstupní signál lze opět kontrolovat poslechem na sluchátka.

Obě skříňky autor zhotovil z hliníkového plechu, součástky byly ve skříňkách umístěny samonosně.

Jednoduchý a citlivý měřič síly pole

Z novějších konstrukcí měřiců síly pole v zahraničních časopisech je zajímavá konstrukce norského radioamatéra, uveřejněná v Radio Communication v září 1981. Přístroj podle obr. 11 lze však používat i k ladění vf a mí zesilovačů, k nastavování potlačení nosné v balančních modulátorech, jako selektivní vf voltmetr apod. Přístroj má velmi dobrou citlivost, mnohem lepší, než jaká bývá u podobných přístrojů-zvykem.

Přístroj je řešen s jedním vstupem 75 Ω, se dvěma selektivnímí laděnými obvody (připojují se přepínačem), jeden slouží pro nižší a druhý pro vyšší kmitočty. Za laděnými obvody jsou zapojeny tranzistory řízené polem, které pracují jako napěťové sledovače. Zesilovače jsou velmi stabilní a při konstrukci se nevyskytují žádné problémy. Pouze při velkých poměrech L/C (je-li použita kapacitní vazba) může zesilovač pracovat jako Colpittsův oscilátor.

Oba laděné obvody jsou zapojeny v sérii, vstupy se nepřepínají, při zapojení vyššího pásma je laděný obvod nižšího pásma zatlumen rezistorem 100 Ω a naopak, což vylučuje "falešné" rezonance.

Pro lepší představu o vlastnostech měřiče síly pole jsou v tabulkách udány: A – citlivost pro plnou výchylku ručky měřidla, B – citlivost pro výchylku ručky měřidla 10 % z plné výchylky a C – citlivost pro právě pozorovatelnou výchylku ručky měřidla, která udává nejnižší detektovanou úroveň měřeného signálu. Maximální měřený signál by neměl překročit 1 V; neboť pak se začíná uplatňovat tzv. Millerův jev, který způsobuje rozladění laděných obvodů.

Údaje jsou informativní, ukazují však, že jde skutečně o citlivý přístroj i při jednoduché konstrukci.

Všechny použité diody jsou germaniové kromě D_5 a D_6 , které jsou křemíkové – jde vesměs o univerzální typy. Údaje o cívkách (jádro, drát) nebyly v původním pramenu uvedeny, byla v něm pouze poznámka, že odbočka na cívce pro L_2 se má volit asi v 1/5 až 1/6 celkového počtu závitů a že má L_1 s kondenzátorem 400 pF rezonovat na kmitočtu 3,5 MHz a L_2 s kondenzátorem 250 pF na kmitočtu 14 MHz. Měřidlo má citlivost 1 mA, vnitřní odpor 100 Ω . Napájecí napětí je 12 V.

Citlivost pro nižší kmitočty

Kmitočet	<i>A</i>	<i>B</i>	C [mV]
[MHz]	[mV]	[mV]	
2,8	75	.11	4,5
3,5	75	11	
4	68	10	
5	61	9	
6	58	8 /	3,5
7	55	8	
. 8	54	8	
9	53	8	3
10	53	8	
11	52	7,5	
12	50	7,5	

Citlivost pro vyšší kmitočty

	10 MHz	85 mV	13 mV	5,5 mV
1	12	82	11	
	14	72	10	4
	16	65	8,5	
	18	. 62	8	
	20	62	8.	4~
i	22	. 58	7,5	·
	22 24	55	7	
	26	55	7 .	ŀ
	28	52	6,5	
	30	54	7	3
	39	55	7	4

Radio Communication září 1981

Zkoušeč ví tranzistorů

Univerzální a jednoduchý zkoušeč ví tranzistorů je na obr. 12. Lze jím zkoušet tranzistory bipolární n-p-n, FET i FET se dvěma řídicími elektrodami. Základem zkoušeče je standardní Colpittsův oscilátor, jehož signál je zesilován právě zkoušeným tranzistorem. Výstup ze zkoušeného tranzistoru se vede na diody D₂ a D₃,

které zesílený signál oscilátoru usměrňují a zdvojují. Usměrněný signál se indikuje měřidlem 200 μA, u něhož lze měnit citlivost potenciometrem R₆. Výchylka ručky měřidla odpovídá pak schopnosti tranzistoru zesilovat signál oscilátoru, přičemž lze kmitočet oscilátoru měnit laděným obvodem L₁/L₂, C_x.

Autor zvolil pro zkoušení tranzistorů dva různé kmitočty, 3,8 a 7 MHz. Pro 3,8 MHz má cívka L₁ 30 závitů drátu o průměru 0,18 mm CuL na kostřičce o průměru 6 mm s feritovým jádrem. Kondenzátor C_x je miniaturního typu a má kapacitu 150 pF. Pro kmitočet 7 MHz slouží L₂, cívka má opět 30 závitů stejného drátu jako L₁, je na stejné kostřičce, avšak nemá paralelní kondenzátor. Cívky byly upevněny na tříkolové zástrčce, používané pro konektory u nf zařízení.

Zkoušeč se napájí napětím 9 V, pro maximální zjednodušení byly vývody pro elektrody zkoušených tranzistorů zhotoveny z miniaturních krokosvorek. Činnost pro sestavení lze nejsnáze ověřit připojením zaručeně dobrého ví tranzistoru n-p-n – měřidlo musí ukázat výchylku. Pak lze měřit i stejnosměrná napětí na vývodech pro zkoušený tranzistor – jsouli blízká napětím ve schématu, je zkoušeč v pořádku.

Zkoušeč lze samozřejmě změnou vstupního laděného obvodu upravit i pro jiné měřicí kmitočty.

Practical Wireless, prosinec 1984

Vlnoměr s indikací svítivou diodou

Jedním z nejužitečnějších přístrojů v radiotechnice je vlnoměr. Lze jím stanovit např. množství a úroveň harmonických kmitočtů v násobičích kmitočtu, přibližně určit kmitočet krystalových i jiných oscilá-

Obr. 12. Zapojení jednoduchého zkoušeče vf tranzistorů

Obr. 11. Zapojení citlivého měřiče síly pole pro kmitočty od 2,8 do 39 MHz
FP... feritová perla

torů, VFO, kmitočet konvertorů apod. Popsaný vlnoměr pomůže přesně určit pásmo kmitočtu a přibližně i kmitočet.

Zapojení vlnoměru na obr. 13 používá jako indikační prvek nikoli měřicí přístroj, jak je běžné, ale svítivou diodu. Ta je zapojena tak, že po zapnutí přístroje svítí a signalizuje tak přítomnost napájecího napětí. Při naladění přístroje do rezonance se svit diody zmenšuje, je-li vf signál na cívce L₁ značně velký, pak zhasne úplně.

Není-li přítomen vf signál, pak tranzistor nevede, a proud z baterie prochází rezistorem R₁ a diodou. Dioda svítí plným světlem. Je-li laděný obvod v rezonanci s měřeným obvodem, vf signál se usměr-

Obr. 13. Zapojení vlnoměru s indikací svítivou diodou pro rozsah kmitočtů 1,5 až 190 MHz

ňuje diodou OA81 a tránzistor se otvírá. Proud tekoucí diodou svítivou se zmenšuje o proud tranzistorem a svit diodý se zmenšuje, popř. dioda zhasíná.

Vlnoměr byl navržen pro šest vlnových rozsahů - 190 až 60 MHz, 80 až 28 MHz, 34 až 13 MHz, 15 až 5,5 MHz, 5 až 2,6 MHz a 3 až 1,5 MHz. K upevnění cívek jednotlivých rozsahů byla použita objímka pro miniaturní elektronky, k níž se v Anglii prodávají i zástrčky s kostřičkou na cívky. Na této kostříčce jsou navinuty cívky jednotlivých pásem - pro první pásmo 1,5 závitu, pro druhé 6,5 závitu, pro třetí 21,5 závitu, pro čtvrté 65,6 závitu, všechny závit vedle závitu. Cívka pro pásmo 5 až 2,6 MHz má 90 závitů "divoce" a počet závitů cívky pro poslední pásmo nebyl udán. Cívky jsou vinuty drátem o průměru 0,27 mm CuL, cívka pro předposlední pásmo o průměru 0,23 mm CuL. Kostřičky mají průměr 9,5 mm.

Přístroj lze nejsnáze kalibrovat přiblížením snímací cívky k obvodům se známým kmitočtem (oscilátory a mezifrekvence v rozhlasových přijímačích).

Radio Communication, únor 1981

Měřič rezonance s akustickou signalizací "dipu"

Základním přístrojem v dílně každého radiotechnika je měřič rezonance, v období elektronek nazývaný grid-dip-metr, nyní často zkráceně dip-metr. Přistroj na obr. 14 je určen pro měření v rozsahu 1,6 až 215 MHz, celý měřicí rozsah je rozdělen na pět dílčích rozsahu. K indikaci dosažení rezonance slouží jednak měřidlo, jednak ní oscilátor, jehož kmitočet se při rezonanci snižuje, což je slyšet z připojeného piezoelektrického rezonátoru PR. Zvuková indikace je výhodná především při rychlém "přeladování" uvnitř jednotli-

vých rozsahů, kdy by změna výchylky ručky měřidla mohla být snadno přehlédnuta.

Vf oscilátor používá dva tranzistory FET v uspořádání Kalitron, neboť toto zapojení se ukázalo při zkouškách nejrůznějších oscilátorů z mnoha důvodů jako jediné vyhovující po všech stránkách a přitom relativně jednoduché, bez nutnosti používat odbočky na cívkách atd. Vf oscilátor je laděn dvojitým otočným kondenzátorem s kapacitou 2 × 260 pF, jehož vlastnosti, i když jde o typ s dielektrikem z plastických hmot, nijak neovlivní dobré vlastnosti oscilátoru. Výchylka ručky měřidla (dip) při rezonanci je (i vzhledem k menšímu Q, jakost obvodu s kondenzátorem se vzduchovým dielektrikem by byla větší) dostatečná a díky zvukové indikaci i snadno zjistitelná. Obě vf tlumivky L2, L3 odstraňují vlastní rezonance obvodu.

Oscilátorem by bylo možné obsáhnout i pásmo VHF, kdyby se zmenšila indukčnost L₂, L₃ a kapacita vazebních kondenzátorů; oscilátor by pak ovšem nepracoval na nejnižších pásmech. Navíc by pro přeladování po celém pásmu byl nevhodný poměr *L/C*.

Přepnutím spínače v obvodu společných elektrod S tranzistorů oscilátoru lze přístroj používat jako vlnoměr.

Měřič rezonance je napájen z baterie 9 V, jejíž napětí se stabilizuje Zenerovou diodou na 5,6 V. Odběr proudu je asi 7 mA.

Vf signál z oscilátoru se usměrňuje diodami D₂, D₃ – obě diody jsou germaniové, hrotové. Potenciometr slouží jako kontrola citlivosti měřidla; je to z praktických důvodů výhodné, i když napětí oscilátoru je v každém rozsahu přibližně konstantní.

Zdrojem signálu pro akustickou indikaci je multivibrátor, jako indikátor slouží piezokeramický rezonátor, zapojený mezi kolektory tranzistorů multivibrátoru. Celkový proud tekoucí obvodem a tím i kmitočet ní oscilací je určen tranzistorem T5 a mění se podle velikosti usměrněného napětí oscilátoru (a nastavení potenciometru citlivosti). V daném zapojení začíná multivibrátor pracovat asi při poloviční výchylce ručky měřidla. Paralelním rezistorem k měřidlu lze ovlivnit nasazení oscilací multivibrátoru i hlasitost zvuku – ovšem za cenu snížení citlivosti měřidla.

Výměnné cívky pro jednotlivé rozsahy vyřešil autor použitím běžných nf tříkolíkových konektorů. Cívky nižších rozsahů jsou vinuty na kostřičkách, cívky pro vyšší rozsahy jsou samonosné. Cívka pro rozsah 1,6 až 4 MHz má 109 závitů drátu o průměru 0,25 mm na kostřičce o průměru krytu kontaktů nf tříkolíkové zástrčky (16 mm). Cívka pro pásmo 3,5 až 10 MHz má 45 závitů drátu o Ø 0,56 mm na kostře stejného průměru, na stejné kostře je i cívka pro pásmo 9 až 26 MHz, která má 11 závitů drátu o průměru 0,56 mm. Pro pásmo 25 až 90 MHz má cívka 5 1/2 závitu drátu o průměru 1.25 mm na průměru asi 10 mm, cívka je vzduchová, pro 80 až 215 MHz má cívka 1 závit ve tvaru rámečku, jehož konce jsou připájeny na pájecí zástrčky konce kolíků "nf (drát o Ø 1,25 mm, délka drátu 65 mm).

Přístroj je postaven na desce s plošnými spoji o rozměrech 64 × 51 mm a umístěn v hliníkovém pouzdře.

Radio Communication, listopad 1981

Generátor sinusového signálu 10 Hz až 1 MHz

Na obr. 15 je zapojení generátoru dalo by se říci klasického typu s Wienovým můstkem a s velmi dobrými vlastnostmi. V rozsahu kmitočtů 10 Hz až 1 MHz je výstupní napětí (efektivní) až 7 V na 50 Ω. Celkový kmitočtový rozsah je rozdělen do pěti dílčích rozsahů, 10 Hz až 100 Hz, 100 kHz, 1

V horní větvi Wienova můstku je sériový článek *RC*, v dolní paralelní. Rezistory v obou větvích mají stejné odpory pro ten který rozsah. Uvnitř každého rozsahu se kmitočet ladí jemně dvojitým ladicím kondenzátorem. Vzhledem k dvojnásobnému otočení fáze (v T₁, T₂ vždy o 180°, T₃ 0°) je fáze na elektrodě G tranzistoru řízeného polem stejná jako fáze na výstupu T₂. Tím se díky zpětné vazbě zvětší šumové napětí tak, že celý obvod začne kmitat. Výstupní napětí je stabilizováno, jak bývá obvyklé, malou žárovkou Ž (60 V/20 mA).

Tranzistory T₂ a T₃ jsou zapojeny tak, že vstupní odpor tohoto obvodu je malý a výstupní velký – to zajišťuje nejen konstantní vlastnosti celého zapojení, ale také velmi malý činitel zkreslení generovaného signálu.

Na vývodu (kondenzátor C₁₄) je bez zatížení efektivní napětí asi 1,75 V. Kdo nepožaduje větší výstupní výkon, může zkušební napětí odebírat přímo z potenciometru P₆, popř. využívat zeslabovacího článku R₂₄, R₂₅ (útlum 40 dB). Bez výkonového stupně je odběr generátoru kolem 50 mA, s výkonovým stupněm kolem 200 mA; výkonový stupněm a ovšem dvě výhody – umožňuje zkoušet i např. reproduktorové soustavy a je při tom zkratuvzdorný, při zkratu na výstupu odebírá ze zdroje proud asi 600 mA.

Jako výkonový stupeň je použit operační zesilovač s diskrétními součástkami. Také v tomto případě by bylo možné

Obr. 14. Zapojení měřiče rezonance/vlnoměru s tranzistory FET pro pásmo 1,6 až 215 MHz

Obr. 15. Generátor napětí sinusového průběhu s výkonovým zesilovačem - operačním zesilovačem z diskrétních součástek

uvést, že jde o klasickou konstrukci: T4, T5 tvoří diferenční zesilovač, T₆, T₇ pracují jako zdroje konstantniho proudu, budiče T₉, T₁₀ koncových tranzistorů jsou-řízeny tranzistorem T₈. Ofset se nastavuje na nulu odporovým trimrem P4 a zesílení trimrem P5. Vlastnosti tohoto diskrétního operačního zesilovače jsou velmi dobré kmitočtový rozsah 0 až 2 MHz, přenos napětí pravoúhlého průběhu nejméně do 200 kHz, výkonové zesílení v pásmu nejméně 0 až 800 kHz. Výstupní napětí na 50 Ω maximálně 20 V (mezivrcholová hodnota), výstupní proud maximálně 800 mA, napěťový zisk maximálně 20 dB. Rychlost přeběhu (slew rate) je typicky 70 V/μs. To vše platí pro napájení napětím 24 V, pro 15 V jsou výstupní napětí a výstupní proud menší asi o 30 %.

Při nastavování je třeba:

- 1. Všechny trimry nastavit do středu odporové dráhy, P₆ na nulu.
- Stisknout tlačítko x1 kHz, otočný kondenzátor nastavit na doraz vlevo.
- Připojit osciloskop na horní konec rezistoru R₂₂, proměnným odporem P₁ nastavit amplitudu signálu až těsně před bod omezování, tj. asi na mezivrcholové napětí 16 V.
- 4. Nastavit symetrii signalu trimrem P3.
- Otáčet ladicím kondenzátorem pomalu doprava až na doraz – amplituda signálu se nesmí měnit; mění-li se, opatrně nastavit R'₈.

Dosavadní postup zopakovat pro kontrolu na všech dalších rozsazich. Kondenzátory C'_1 , C'_2 , popř. C_4 slouží k nastavení amplitudy signálu na vyšších kmitočtech. Kondenzátorem C_5 se nastavuje nejvyšší kmitočet. Nelze-li dosáhnout 1 MHz, připojí se paralelně k R_{10} rezistor s odporem $47~k\Omega$.

Poslední operací při nastavování vlastního generátoru je nastavení minimálního zkreslení trimry P₂ a P₃. Osciloskop se připojí na kondenzátor C₁₄, mezivrcholové napětí by mělo být 5 V. Na vyšších kmitočtech se pak střídavě nastavují P₂ a P₃. Dosažený činitel zkreslení závisí i na vlastnostech T₁.

Pak se nastaví výkonový operační zesilovač: na výstup se připojí číslicový multimetr nebo jiný vhodný měřicí přístroj

s velkým vstupním odporem a odporovým trimrem se nastaví na výstupu 0 V proti zemi. Potenciometr P_6 na základním přístroji se nastaví na nulový odpor a odporovým trimrem P_5 se nastaví plné vybuzení zesilovače, tj. bez zátěže asi mezivrcholové napětí 30 V, se zátěží 50 Ω asi 20 V (při napájecím napětí \pm 18 V).

K součástkám: místo snad nejběžnějšího FET 2N3819 lze použít i typ BF256, ale asi i jiné typy, všechny ostatní polovodičové součástky jsou běžné tranzistory obou polarit typu KC, diody jsou vesměs křemíkové.

ELO č. 6/1984

Měřič kondenzátorů malých kapacit

Přístroj na obr. 16 měří kapacity ve dvou rozsazích, 0 až 10 pF a 0 až 100 pF. Jako indikátor slouží bud měřidlo (viz obrázek), nebo lze výstup připojit k číslicovému multimetru. Bez problémů by bylo, kdyby byl požadavek na měření kondenzátorů větších kapacit než 100 pF – zcela analogicky, jak je ze základního rozsahu 10 pF realizován rozsah 100 pF, by bylo možno přístroj rozšířit i o vyšší rozsahy, 0 až 1000 pF atd. Stejně snadno by bylo možné (podle označení stupnice a počtu dílků na stupnici měřidla) zvolit jako základní rozsah 12 pF a vyšší rozsah do 120 pF atd.

Přístroj pracuje s měřicím napětím pravoúhlého průběhu o kmitočtu 12 kHz.

Tento signál konstantní amplitudy se vede na kapacitní dělič, jehož horní část je tvořena měřeným kondenzátorem a dolní část kondenzátorem známé a přesné kapacity. Napětí na spodním kondenzátoru je proporcionální napětí na měřeném kondenzátoru, proto se snímá, zesiluje a detekuje a konečně indikuje jako údaj kapacity měřeného kondenzátoru. Napětí na spodním kondenzátoru je navíc nezávislé na kmitočtu multivibrátoru, který generuje měřicí signál. Proto není třeba stabilizovat kmitočet měřicího napětí, ale pouze jeho amplitudu - k tomu slouží Zenerova dioda v přívodu kladného napájecího napětí pro integrované obvody multivibrátoru. Změny napájecího napětí nebudou mít proto vliv na přesnost údaje

Jak již bylo uvedeno, signál na spodním kondenzátoru děliče se vede na zesilovač, v našem případě na invertující vstup operačního zesilovače. Výstupní signál OZ se přes R_7 vede zpět na vstup, čímž se spolu s nastavením proměnného rezistoru R_1 (R_2) volí velikost zpětné vazby a tím zesílení operačního zesilovače: $A = R_7/R_1$ (nebo R_7/R_2).

Protože napětí na vývodu 2 operačního zesilovače je vztaženo k 0 V, může se napětí na výstupu OZ měnit pouze do kladných hodnot, obvod pracuje jako zesilovač třídy C. Podstatné je, že kombinaci stejnosměrné a střídavé záporné zpětné vazby se dosáhlo lineární závislosti mezi vstupním a výstupním napětím.

Protože má operační zesilovač IO2 velkou výstupní impedanci, je za ním násle-

10.

nultivibrator

Obr. 16. Citlivý měřič kapacity. Průběhy napětí ve vyznačených bodech jsou sejmuty na rozsahu 0 až 100 pF při plné výchylce ručky měřidla

Blokové schéma zapojení měřiče je vpravo dole

dující operační zesilovač zapojen jako měnič impedance, aby byl obvod indikátoru napájen ze zdroje s malou impedance. IO3 slouží tedy jako měnič impedance a současně jako detektor špičkového napětí. Jeho výstupní stejnosměrné napětí je úměrné špičkovému napětí na vstupu 3. Jde vlastně o napěťový sledovač a špičkový usměrňovač se zesílením 1.

Průběhy napětí v důležitých místech zapojení jsou uvedeny pod obrázkem, údaje jsou mezivrcholové velikosti.

Měřidlo má citlivost 100 µA. 1N914 je křemíková dioda. Citlivost lze měnit proměnným rezistorem R₁₂.

U hotového přístroje je třeba nejdříve nastavit nulu měřidla. K tomu účelu se zkratují vývody 1 a 2 10_1 a odporovým trimrem R_{12} , 10 $k\Omega$, se nastaví ručka měřidla na nulu. Pak je třeba připojit kondenzátory přesně známých kapacit, a to nejdříve do 10 pF (nejlépe 10 pF) a do 100 pF (nejlépe 100 pF). Nastavením odporových trimrů R_1 , popř. R_2 pak zajistíme souhlas údaje na stupnici s kapacitou kondenzátorů. Tím je přístroj nastaven.

Ještě několik drobností: Přístroj se napájí napětím 9 V, z vnějšího zdroje lze k napájení použít napětí v mezích 9 až 13 V. Celkový odběr proudu je asi 6 mA. Ke konstrukci multivibrátoru byl použit IO CMOS 4001 (nebo 4011), vlastně jen jeho jedna polovina. Vývody nepoužitých hradel je vhodné připojit na zemní potenciál. Multivibrátor kmitá na 12 kHz a mezivrcholové výstupní napětí je asi 6,8 V. Operační zesilovače jsou tzv. bifetové typy, velmi pravděpodobně by bylo možno nahradit je našimi typy z řady MAC15X.

Practical Wireless, říjen 1983

Obr. 17. Zapojení zkoušeče krystalů pro pásmo 27 MHz Objímka slouží k připojení krystalu

10,

krystalu do obvodu se oscilátor rozkmitá, signál se přes kondenzátor C_3 vede na detekční diodu a usměrněný signál se měří měřidlem. Citlivost měřidla se může měnit sériovým odporovým trimrem. Vhodné předpětí báze tranzistoru se nastaví rezistory R_1 a R_2 , jejichž odpory lze změnit podle tranzistoru, použitého v oscilátoru.

Laděný obvod, který se připojuje vně zkoušeče s měřidlem, umožňuje přeladit celé pásmo 27 MHz. Cívka laděného obvodu je samonosná a má 11 závitů drátu o průměru 1 mm. Cívka je navinuta na průměru 9,2 mm.

Přístroj se napájí z destičkové baterie 9 V. Jako usměrňovací dioda slouží hrotová germaniová dioda. Tranzistor může být libovolného typu, jeho vodivost je p-n-p.

Před zapnutím spínače napájecího napětí je vhodné zvětšit na maximum odpor proměnného rezistoru a teprve podle "aktivity" krystalu, tj. podle oscilačního napětí upravit proměnným rezistorem napětí na měřidle tak, aby ho bylo možno dobře číst.

Po změně laděného obvodu lze takto zkoušeť i krystaly jiných kmitočtů, popř. při určitém krystalu i "aktivitu" různých tranzistorů v daném pásmu.

Měřidlo, indikující usměrněné napětí oscilátoru by mělo být co nejcitlivější, v původním zapojení pracovalo měřidlo 50 μA. Jako ladicí kondenzátor sloužil kondenzátorový trimr s vyvedenou hřídelí, jeho kapacita byla 3 až 15 pF.

mènic

detektor

Ю

D-

Electronics world, listopad 1961

Zobrazení charakteristik /c/Uce na obrazovce osciloskopu

K rychlé a relativně přesné zkoušce tranzistorů, popř. k jejich párování slouží zapojení podle obr. 18. Ke zkoušení, popř. párování tranzistorů potřebujeme ještě osciloskop s vyvedenými vývody zesilovačů X a Y. Na obrazovce osciloskopu dostáváme křivky závislostí proudu kolektoru $I_{\rm C}$ na kolektorovém napětí $U_{\rm CE}$. Z křivek lze snadno odvodit proudové zesílení a kromě toho i výstupní impedanci tranzistoru. Stručně řečeno, čím je charakteristika "horizontálnější" a přímější, tím větší impedanci přechodu kolektor-emitor má tranzistor.

K zapojení: rezistor R₇ je pracovním odporem zkoušeného tranzistoru. Protože je horní konec tohoto rezistoru připo-

Zkoušeč krystalů pro 27 MHz

Při konstrukci zařízení v pásmu 27 MHz je s výhodou se přesvědčit o jakosti použitých krystalů. Malý přistroj, jehož-schéma je na obr. 17, umožňuje zjišťovat jakost krystalů v pásmu 27 MHz a po případné výměně laděného obvodu i v jiných kmitočtových pásmech.

Základem zkoušeče je oscilátor s tranzistorem p-n-p, zapojeným se společným emitorem. Přívody pro zkoušený krystal (objímka) jsou zapojeny do báze a kolektoru tranzistoru oscilátoru. Po zapojení

Obr. 18. Zapojení přístroje k zobrazení charakteristik tranzistorů a diod na obrazovce osciloskopu

ien na vstup. Y osciloskopu, Ic bude tvořit. svislou osu charakteristiky na obrazovce osciloskopu. Emitor zkoušeného tranzistoru je připojen na vstup X osciloskopu, proto napájecí napětí UCE bude tvořit vodorovnou osu charakteristiky..

Na zkoušený tranzistor jsou vedeny dva signály. Je to jednak signál schodovitého průběhu (5 schodů), který se přivádí na bázi, a jednak signál pilovitého průběhu, který se přivádí na kolektor. Tzn. že se napětí na kolektoru mění se změnou proudu báze: Změny jsou tak rychlé, že se na obrazovce osciloskopu objeví současně pět charakteristik pro pět různých proudů báze. Oba "zkušební" signály dodává astabilní multivibrátor, který kmitá asi na kmitočtu 1000 Hz a jehož výstupní pravoúhlé napětí se upravuje pro pilovitý průběh integrací článkem R₅, C₅. Získat napětí schodovitého průběhu je poněkud složitě ší. Během kladné půlvlny pravoúhlého napětí z astabilního multivibrátoru se nabíjí kondenzátor C3 na maximum (tj. na napětí rovné napájecímu napětí). Během záporné půlvlny napětí na kondenzátoru C₃ otevře tranzistor T₃, čímž se napětí na emitoru T4 (který je spojen s bází zkoušeného tranzistoru přes rezistor Ra) poněkud zmenší. Současně s nabíjením C4 bude každá záporná půlvina mít za následek další zmenšení napětí na emitoru T4 do té doby, dokud T₄ nepovede a neotevře T₅. Pak se kondenzátor C₄ vybije a celý cyklus se může opakovat. Napětí na emitoru T₄ se zmenší tolikrát, v jakém poměru je kapacita C₃ ke kapacitě kondenzátoru C₄ - v zapojení na obr. 18 je to pětkrát, signál schodovitého průběhu bude mít tedy pět stupňů. Počet stupňů lze volbou poměru kapacit obou kondenzátorů měnit podle požadavků na počet charakteristik, které se mají současně zobrazit.

Jak je ze schématu zapojení zřejmé, přístrojem lze měřit pouze tranzistory n-p-n. K měření tranzistorů p-n-p by bylo třeba zhotovit stejný přístroj s tranzistory opačného typu vodivosti. Přístrojem lze však měřit i diody a to tak, že anodu zkoušené diody připojíme na rezistor R7 (zem), a katodu na svorku X. Na obrazovce se objeví charakteristika I/U diody.

K součástkám: Jako tranzistory lze použít jakékoli univerzální typy, přístroj by měl pracovat na první zapojení. Jako dioda je použita germaniová dioda, opět libovolného typu.

Pro reprodukovatelnost měření by mělo být napájecí napětí stabilizované.

Elektor, září 1980

Měřicí přístroj pro FET a MOSFET

Důležitou vlastností tranzistorů řízených polem je jejich strmost, která závisí na pracovním bodu. Protože se i u tranzistorů stejného typu tento parametr liší a to často dosti značně, je především při ověřování či návrhu zapojení s tranzistory řízenými polem velmi vhodné ověřit si strmost použitých tranzistorů v daném pracovním bodu.

Multiplikativní směšovač s MOSFET se dvěma řídicími elektrodami pracují v určitém rozsahu bez vzniku křížové modulace jen tehdy, je-li v tomto rozsahu jejich strmost vztažená k jedné z řídicích elektrod lineárních funkcí předpětí na druhé řídicí elektrodě. Určit tento rozsah z údajů výrobce je v praxi nesnadné opět vzhledem k rozptylu parametrů tranzistorů i jednoho typu. Proto autor článku v časopisu Funkamateur (NDR) sestrojil malý, relativně jednoduchý přístroj, který umožňuje měřit strmost jak tranzistorů řízených polem s kanálem typu n i p, tak MOSFET se dvěma řídicími elektrodami. Přístroj měří strmost v rozsahu 0,3 mS až 30 mS v několika rozsazích.

Zapojení přístroje je na obr. 19. Předpětí pro obě řídicí elektrody MOSFET je možno individuálně nastavovat potenciometry P₁ a P₂. Rozsah nastavení je pro tranzistory s kanálem n a pro první řídicí

V přívodu k elektrodě D zkoušeného tranzistoru je rezistor R4, na němž průchodem střídavé složky proudu /p vzniká úbytek napětí, který se přes C3 a C4 přivádí na vstup (s malou impedancí) zesilovacího stupně s operačním zesilovačem OZ1. Činitele převodu tohoto celého měniče proud/napětí ize přepínat volbou zpětnovazebního rezistoru 333 Ω až 33,3 kΩ přepínačem rozsahů Př₃. Diody D₃ a D₄ chrání operační zesilovač před vlivem velkých nabíjecích a vybíjecích proudů C3 a C₄. Rezistory R₇ a R₆ odvádějí rušivé zbytkové proudy kondenzátorů C3 a C4, které by mohly ovlivňovat měření především na neinižším rozsahu.

Oba rezistory tvoří vlastně větev zpětné vazby, ta je však díky kondenzátorům C₅ a Ce pro střídavé napětí neúčinná.

OZ₂ usměrňuje v závislosti na fázi výstupní střídavý signál z OZ1. Proto řídí měřicí signál přes tranzistor T₅ zesílení

Obr. 19. Zapojení měřicího přístroje k měření strmosti FET a MOSFET se dvěma řídicími elektrodami. Diody jsou typu SAY30, neoznačené tranzistory $\beta = 200$

elektrodu asi ±8,5 V a pro druhou řídicí elektrodu asi -3 až +8 V (pro tranzistory s kanálem typu p platí tyto údaje s opačnými znaménky). Obě předpětí jsou vyvedena na zvláštní svorky a lze je měřit vně připojeným měřicím přístrojem.

Přívod pro elektrodu D měřeného tranzistoru je napájen ze zdroje konstantního napětí (T₁ nebo T₂). Pro malé proudy /_p je napětí elektroda D-elektroda S konstantní a je přesně 12 V. Dosáhne-li proud /D asi 13 mA, aktivuje se zdroj proudu a zabezpečí, že se proud dále nezvětšuje, což zamezuje nebezpečí přetížení měřeného tranzistoru

Polarita napájecího napětí se volí podle tranzistoru přepínačem Př. Proud Ip lze opět měřit vně připojeným přístrojem, připojeným ke svorkám /D.

Měřicí napětí se získává z generátoru s tranzistory T3 a T4 (astabilní multivibrátor, pracující na kmitočtu asi 800 Hz). Měřicí napětí z generátoru se přivádí přes C₁₆ na přepínač Př₂ a na první nebo druhou řídicí elektrodu zkoušeného tranzistoru. Jeho amplituda je asi 50 mV.

tohoto stupně mezi - 1 a + 1. Usměrňovač s OZ₂ potlačuje dobře rušivé signály a napětí ofsetu OZ₁. Stupeň zabezpečuje také velmi dobrou linearitu stupnice měřidla.

Operační zesilovač OZ₃ zesiluje výstupsignál OZ2 a vyhlazuje ho.

Pro praktickou konstrukci je třeba ke každému OZ připojit na přívod kladného i záporného napájecího napětí kondenzátor s kapacitou asi 33 nF. Rezistory R₁₅ a R₁₆ ve fázově citlivém usměrňovačí musí mit odpor s toleranci 1 %. Absolutni velikost odporu přitom není kritická. Prosnadné cejchování měřidla je třeba, aby i rezistory R_{10} až R_{14} měly odpor v toleranci 1.%.

Potenciometr P3 slouží k nastavení ručky měřidla na nulu před začátkem měření, (bez měřeného tranzistoru). Potenciometrem P4 se nastavuje konečná výchylka ručky měřidla. K tomu je třeba mít MOS-FET se známou strmostí, strmostíze měřit např. továrním měřicím přístrojem TESLA BM 529, nebo ji lze určit výpočtem z charakteristik /p/Ugs.

Obr. 20. Závislost proudu I_D a strmosti Y₂₁ na napětí U_{DS} sovětského tranzistoru KP303E u jednoho kusu (a) a u jiného kusu (b)

Na obr. 20 jsou typické charakteristiky – závislosti proudu $I_{\rm D}$ a strmosti $Y_{\rm 21}$ na napětí $U_{\rm GS}$ pro FET sovětské výroby (kanál typu n) KP303E. Na obr. 21 jsou charakteristiky tranzistoru se dvěma řídicími elektrodami sovětské výroby, KP350A, v závislosti na předpětí na druhé řídicí elektrodě.

Funkamateur (NDR)

Obr. 21. Strmost vztažená k řídicí elektrodě 1 jako funkce předpětí na druhé řídicí elektrodě (a) a strmost vztažená k druhé řídicí elektrodě jako funkce předpětí na první řídicí elektrodě pro sovětský tranzistor (MOSFET) KP350A

Obr. 22. Schéma zapojení měřiče tranzistorů, diod, Zenerových diod, tyristorů a tranzistorů UJT

Obr. 23. Blokové schéma měřiče

Zkoušeč polovodičových součástek

Mezi elektroniky profesionály i amatéry jsou tací, kteří dávají přednost jednoúčelovým měřicím přistrojum popř. přípravkům, a dále ti, kteří, byť za cenu větší složitosti, raději používají tzv. univerzální měřicí přístroje s několika funkcemi. Pro tuto druhou skupinu je určen měřicí přístroje, jímž lze zkoušet několik typů polovodičových součástek: tranzistory, diody, Zenerovy diody, tyristory a tranzistory UJT (diody se dvěma bázemi). Zapojení přístroje je na obr. 22.

Pro lepší přehled o možnostech použití si stručně zopakujeme některé základní vlastnosti měřených polovodičových součástek. Tranzistory: proudový zesilovací činitel (h21E) je vlastnost tranzistoru zesilovat malé proudy báze na velké proudy kolektorem, číselnou velikost tohoto činitele dostaneme dělením změny proudu kolektoru změnou proudu báze, a to pro určitý pracovní bod tranzistoru. Neteče-li bází žádný proud, měl by být nulový i proud kolektoru – v praxi však i tehdy, je-li báze odpojena, protéká tranzistorem malý tzv. zbytkový proud, ICEO. Diody: diodou, je-li zapojena v propustném směru, protéká od určitého napětí proud

v propustném směru. Toto napětí je u germaniových diod asi 0,2 V, u křemíkových asi 0,6 V. Do tohoto napětí teče diodou jen velmi malý proud. Od tohoto napětí malým změnám napětí odpovídají velké změny proudu diodou. Je-li dioda zapojena v závěrném směru, protéká jí malý "zbytkový" proud. Ten se rychle zvětší, dosáhne-li napětí velikosti tzv. napětí průrazu. Tyristory: tyristor je v podstatě elektronický spínač, u něhož lze malým proudem řídicí elektrody spínat mnohem větší proudy anoda-katoda. Je-li tyristor uveden do vodívého stavu, setrvává v něm a tento vodivý stav je možno zrušit buď přepólováním napětí anoda-katoda nebo odpojením napájecího napětí. Proud tekoucí tyristorem v nesepnutém stavu se nazývá zbytkový proud (/FO, je-li tyristor zapojen ve vodivém směru, popř. /FO, je-li zapojen v závěrném směru). Proud potřebný k otevření tyristoru se nazývá spínací proud /GT a odpovídající napětí se nazývá zapínací napětí UGT. Jestliže se proud tyristorem zmenšuje, dosáhne velikosti, jejíž další zmenšení by tyristor uvedlo do nevodivého stavu - tento proud se nazývá přídržný a značí se /:.

Tranzistory UJT: se vyskytují jen velmi zřídka, proto se jimi nebudeme zabývat.

Blokové schéma zapojení je na obr. 23. Z něho je zřejmé, že se přístroj skládá z multivibrátoru, kalibračních a přizpůsobovacích obvodů, obvodů k získání předpětí, komparátoru a diferenčního zesilovače a z výstupního obvodu s měřidlem.

Stručný popis a měření

Tranzistory: při měření I_{CEO} se používá jen měřidlo a přepínač měřidla. Měřidlo ukazuje proud při odpojeném přívodu báze. Proudový zesilovací činitel se měří tak, že se výstupní signál multivibrátoru (kmitá na kmitočtu asi 400 Hz) vede přes R₅ na potenciometr, jehož hřídel je opatřen ukazatelem, a současně do komparátoru. Stupnice pod knofliřem P₁ umožňuje číst přímo proudový zesilovací činitel. Signál z běžce P₁ se vede přes kompen-

Obr. 24. Měření tyristorů – přepínač v poloze I_G (a), přepínač v poloze U_G (b) a v poloze I_L (c)

zační rezistor a oddělovací kondenzátor Př_{1e} a přes Př_{2d} na zkoušený tranzistor. Tranzistor je zapojen v přístroji se společným emitorem a proto zesiluje a invertuje signál oscilátoru na své bázi. Zesílený signál se vede přes R7/a C4 na bázi T3, kde se kombinuje s neinvertovaným signálem oscilátoru, který byl přiveden přes R₁₆, C₃; P2, R17 . . . a konečně R10 jsou kompenzač-.ní a přizpůsobovací členy. Je-li P₁ správně nastaven (odpovídá-li údaj na jeho stupnici skutečnosti), signály invertovaný a neinvertovaný se na bázi T₃ vyruší. V opačném případě se rozdíl mezi oběma signály zesiluje a usměrňuje a je indikován měřidlem jako výchylka ručky. Potenciometrem P2 se nastavuje požadovaný proud /c (bez zkušebního signálu)

Měření diod a Zenerových diod je zřejmé ze schématu. Přístroj při měření Zenerových diod pracuje jako voltmetr.

Tyristory se měří podle zjednodušených schémat na obr. 24.

Practical Electronics, říjen 1973

Zajímavé integrované obvody

ICL8211 (ICL8212), programovatelné detektory napětí

Mezi výrobky firmy Intersil jsou i dva zajímavé integrované bipolární obvody s velmi malou spotřebou se širokou aplikovatelností. Každý obvod obsahuje přesný zdroj referenčního napětí, komparátor a dvojici výstupních obvodů. Zapojení vývodů obou obvodů je na obr. 25a.

Vnitřní referenční napětí obou IO je jmenovitě 1,15 V. Napětí, které se přivádí na vstup 3 "práh" ("treshold") z vnějších obvodů, se srovnává s tímto vnitřním referenčním napětím. Výstup je aktivován tehdy, je-li vstupní napětí menší (u 8211) nebo větší (u 8212) než napětí referenční. Na výstupu každého z obou obvodů je tranzistor s otevřeným kolektorem (n-p-n), jehož emitor je připojen na 0 V. Výstup 8211 je proudově omezen na 7 mA (může tedy přímo napájet LED), výstup 8212 proudové omezení nemá a lze z něj odebírat maximálně 30 mA. U obou obvodů je třeba připojovat zátěž mezi výstup 4 a kladné napájecí napětí.

$$U_{\text{hlid}} = (1,15(R_1 + R_2))/R_1,$$

proud rezistory by měl být do 50 μA. Protože jsou však oba obvody optimalizovány pokud jde o spotřebu proudu (klidový proud asi 20 μA u obou typů), doporučuje se navrhovat proud rezistory především u zařízení napájených z baterií asi na 6 μA (proud rezistory je pak srovnatelný s proudem do vstupu 3). Proud rezistory lze pak určit ze vztahu

$$I_{rez} = napájecí napětí/(R_1 + R_2),$$

(/rez v mezích 6 až 50 μA).

Oba obvody jsou ještě vybaveny vstupem "hystereze", vývod 2. Na tomto vstupu je zapojen tranzistor p-n-p s otevřeným kolektorem, jehož emitor je přípojen na kladné napájecí napětí. Vstup na vývodu 3 zajišťuje, že výstup obvodu bude aktivován tak dlouho, dokud se hlídané napětí nezvětší (nebo nezmenší, podle použitého obvodu) na správnou velikost, a že nevzniknou oscilace nebo zákmity při překlápění obvodu při změně hlídaného napětí na imenovitou velikost. Proud do vstupu 2 by neměl být větší než 10 μA. Dvě možnosti zapojení vstupu "hystereze" jsou na obr. 26a, b. Napětí U₁ na obr. 26á, b je napětí, při němž se mění stav výstupu, zmenšuje-li se napájecí napětí, U2 je napětí, při němž se mění stav výstupu, zvětšuje-li se napájecí napětí.

Na vstup 3 (treshold) může být přívedeno jakékoli napětí v mezích od -6 V do velikosti napájecího napětí, výrobce však

Obr. 25. Programovatelné detektory napětí 8211 a 8212; a) zapojení vývodů, b) základní zapojení 8211

Obr. 26. Základní způsoby zavedení hystereze

doporučuje jako horní mez napětí +6 V, neboť při větším napětí se značně zvětšuje spotřeba proudu. Vede-li se výstupní napětí do logických obvodů, musí být mezi výstup 4 a kladnou napájecí větev logiky zařazen rezistor (u TTL 1 k Ω , u LSTTL 4,7 k Ω , u CMOS 10 k Ω až 1 M Ω). Z výstupu 8211 lze napájet dva vstupy TTL, popř. 8 vstupů LSTTL, z výstupu 8212 4 vstupy TTL, popř. 16 vstupů LSTTL.

Závěrem si ještě ukážeme několik typických aplikací, z nichž vyplývá užitečnost těchto obvodů. Na obr. 27 je velmi

Obr. 27. Jednoduchý regulátor napětí

jednoduchý regulátor napětí, používající vnější tranzistor n-p-n jako sériový regulační člen. Výstupní napětí je určeno vztahem

$$U_{\text{vist}} = 1.15(R_1 + R_2)/R_1$$

Oba kondenzátory v zapojení jsou velmi důležité, protože IO nemá vnitřní kmitočtovou kompenzaci. Regulátor je vzhledem k odběru proudu a svým dalším vlastnostem (jednoduchosti, přesnosti) vhodný především při napájení z baterie.

Na obr. 28 je zapojení "programovatelné" Zenerovy diody, tj. zdroje referenční-

Obr. 28. "Programovateľná Zenerova dioda", zdroj referenčního napětí

ho napětí s 8212. Rezistor R₁ a odporový trimr určují velikost výstupního napětí

$$U_{\text{vyst}} = (1.15(R_1 + P))/R_1$$

Ekvivalentní impedance (Zenerova) při

Veličina	Poznámka	ICL8211CPA	ICL8212CPA
Napájecí napětí U Klidový proud	0 až 70 °C napětí na výv. 3 1,3 V	min. 2,2, maxim. 30 V	min. 2,2, max. 30 V. min. 50, typ. 110, max. 250 μΑ
Pracovní teplota	0,9 V	min. 50, typ. 140, max. 250 μA 0 až 70 °C	min. 10, typ. 20, max. 40 μA 0 až 70 °C
Výstupní proud Proud jakýmkoli vývodem	měřen na vývodu 4	min. 4, typ. 7, max. 12 mA absol. maximum ±30 mA	min. 15, max. 30 mA
Výstupní napětí	na vývodu 4	-0.5 až +30 V	absol. maximum ±30 mA 1 +0.5 až +30 V
Vst. napětí na 3	nap. napětí 2,2 až 25 V nap. napětí 25 až 30 V	+0,5 až + napájecí napětí (+U - 30) až +U	-0.5 až + napájecí napětí $(+U - 30)$ až $+U$
Výstupní saturační	výstupní proud	(10 00,02	(10 00) == 10
napětí	4 mA .	typ. 0,17 V, max. 0,4 V	typ. 0,17 V, max. 0,4 V
Výst. zbytkový proud	$ \begin{vmatrix} +U = 5 \text{ V} \\ +U = 30 \text{ V} \end{vmatrix} $	max. 1,0 μA max. 10 μA	max. 1 μA max. 10 μA
Výkonová ztráta	do 50 °C	max. 300 mW	max. 300 mW

Obr. 29. Zapojení integrovaných obvodů jako zdroje konstantního proudu

proudu v rozsahu 300 µA až 25 mA se mění v mezích 4 až 7 Ω.

Oba obvody lze použít i jako zdroje proudu (nebo jako normál spotřeby proudu), asi 130 μA, 8212 asi 25 μA. Ekvivalentní paralelní odpor je řádu desítek MΩ, proto jsou obvody vhodné i pro direfenční zesilovače, komparátory atd.

Intersil 1984

Stereofonní výkonové zesilovače TDA4920/25

V posledních letech se jako řešení problému jakostních nf výkonových zesilovačů s minimem vnějších součástek do výrobků spotřební elektroniky objevilo relativně značné množství nejrůznějších výkonových integrovaných zesilovačů, u nás např. MA0403, MBA810, MDA2010/ 20, v zahraničí mnoho dalších.

Ve snaze dále omezit počet vnějších součástek a zlepšit jakost zpracovávaného signálu byly firmou Siemens vyvinuty dva nové integrované výkonové zesilovače, TDA4920 a TDA4925.

Jde o bipolární technologií vyrobené stereofonní, popř. můstkové zesilovače, pracující ve třídě B. Integrované obvody mají pojistku proti zkratu na výstupu (jak pro stejnosměrné, tak pro střídavé napětí). Zesilovač je vybaven i vnitřním obvodem proti rázům při zapnutí.

Oba obvody jsou v pouzdrech "singlein-line" s devítí vývody. TDA4920 je určen pro napájecí napětí 3,5 až 12 V a lze ho používat i v bateriemi napájených přístrojích. Pro autorádia se středním výkonem a do televizních přijímačů s napájecím napětím až 17 V je určen typ TDA4925.

Základní technické údaje

TDA4920 ($U_{\rm B} = 9 \text{ V}, Z_{\rm z} = 1 \text{ S}$	Ω)
Rozsah napájecích napětí:	3,5 až 13,5 V.
Klidový proud:	typ. 15 mA.
Výstupní špičkový proud:	2 A .
Napěťový zisk:	typ. 40 dB.
Zkreslení při P=2 W,	
40 Hz až 10 kHz:	typ. 0,5 %.

Přeslechy při P=3 W:	typ. 50 dB.
Přenášené pásmo	
(~3dB):	40 Hz až 50 kHz.
Cizí napětí pásmo	,
DIN 45 405 (na vstupu):	tvp. 5.5 uV.

typ. 50 dB.1

typ. 12 μV. Rušivá napětí:

TDA4925 ($U_B = 14,4 \text{ V}, R_z =$	40 Ω)
Rozsah napájecích napětí:	3,5 až 17 V.
Klidový proud:	typ. 20 mA.
Výstupní špičkový proud:	2 A.
Napěťový zisk:	40 dB.
Zkreslení pro P=3,4 W,	
40 Hz áž 10 kHz:	typ. 0,5 %.

Přeslechy při P=5,2 W:	typ. 60 dB
Přenášené pásmo	
/ 2 dD),	40 Hz až 50 kHz

Cizí napětí a rušová napětí jako TDA4920. Standardní zapojení pro stereofonní reprodukci je na obr. 30. Kapacita kon-

	TDA4920,TD)A4925	
100 1	obvody napájení a ochrana		
1000	4 C4 5 23 100n C6 100n C5 + 2/4	6 7 8 R + Cr +Cs 2 100n 100u	
R ₃		R _s 10 kΩ V _{ist}	R,

Obr. 30. Stereofonní zesilovač s jedním integrovaným obvodem TDA4920/25. Rz. Ć, viz tabulku v textu

denzátoru Cz se volí podle zatěžovací impedance.

	Т	DA492	0	ŢDA	4925
C _z [μF]	2200	2200	1000	1000	1000
$R_{z}\left[\Omega\right]$	2	2	4	4	4
U _B [V]	6	9	12	14,4	16

Dolní mezní kmitočet je 40 Hz. Zvlnění napětí je potlačeno kondenzátorem $C_6 = 22 \mu F$ asi o 37 dB. Jak je zřejmé z obr. 31 lze obvod TDA4920 používat pro výstupní výkony 2× 3 W při zatěžovacím odporu R_z = 2 Ω. Při napájecím napětí 16 V a zátěži 4 Ω lze získat z TDA4925 výkon až 2× 6,5 W.

Obr. 31. Výstupní výkon integrovaných obvodů TDA4920/25 v závislosti na napájecím napětí

Z obr. 32 vyplývá i účinnost v závislosti na výkonu: Při 2× 3 W je typická účinnost 64 %, při 2× 6,5 W asi 73 %.

Obr. 32. Výkonová ztráta a účinnost TDA4920/25 jako funkce výstupního výkonu

Obr. 33. Můstkové zapojení "stereofonního" integrovaného obvodu TDA4920/25

Jak ukazuje obr. 33, lze obvody používat i v můstkovém zapojení. Pak lze při bateriovém napájení 14,4 V získat na zátěži 4 Ω výstupní výkon až 10 W.

Při zkratech na zátěži nebo zkratech výstupů zesilovače na kostru se ztrátový výkon obvodu omezuje podle obr. 34. Čím

Obr. 34. Charakteristika ochranných obvodů

více se čip ohřeje, tím menší bude výstupní výkon – to zaručuje nezničitelnost integrovaného obvodu při trvalých zkratech.

Napěťový zisk při můstkovém zapojení lze odvodit ze vztahu

$$\label{eq:Au} \boldsymbol{A}_{u} = \frac{\boldsymbol{R}_{4} + \boldsymbol{R}_{2} + \boldsymbol{R}_{3}}{\boldsymbol{R}_{2} + \boldsymbol{R}_{3}} + \frac{\boldsymbol{R}_{1} + \boldsymbol{R}_{2} + \boldsymbol{R}_{3}}{\boldsymbol{R}_{2} + \boldsymbol{R}_{3}},$$

protože $R_1 = R_4 \ll R_2 + R_3$,

$$A_u = \frac{R_1}{R_2} = 40 \text{ dB};$$

je tedy stejný jako vnitřně nastavený zisk pro stereofonní provoz. Zesílení je ovšem možné změnit rezistorem, zapojeným v sérii s rezistory R_2 a R_3 . Zmenší-li se zesílení, zvětší se šírka přenášeného pásma a zvětší se stupeň zpětné vazby, takže se zmenší i zkreslení v oblasti vysokých kmitočtů.

V původním pramenu je i základní návrh desek s plošnými spoji pro oba typy IO.

Funk-Technik č. 11/1982

Dvojitý stejnosměrným napětím ovládaný IO k řízení barvy tónu, hlasitosti a vyvážení kanálů, LM1035

Mezi integrovanými obvody, které slouží k ovládání výšek, hloubek, hlasitosti a vyvážení je jedním z posledních a nejzajímavějších typů výrobek National Semiconductor LM1035. Je určen k použití v jakostních nf zesilovačích se vstupy pro radio, gramo a magnetofon, lze ho však používat i v TV přijímačích, přijímačích pro motorová vozidla apod. Obvod má v jednom pouzdře oba stereofonní kanály. Zajímavostí je především to, že relativní zesílení na nizkých a vysokých kmitočtech může být samočinně nastaveno tak. že posluchać může zmenšovat zesílení (hlasitost) reprodukce, aniž by se pozorovatelně měnila barva zvuku – lze tedy mluvit o jakési fyziologické regulaci hlasitosti. Navíc malé změny hodnot součástek připojovaných vně umožňují uživateli upravovat útlumové kmitočtové charakteristiky podle jeho požadavků, a to ve značně širokém rozsahu.

Blokové schéma zapojení LM1035 je na obr. 35a, na obr. 35b je běžné zapojení se standardními hodnotami součástek. Protože jde o relativně značně složitý IO, je obsazeno všech 20 vývodů pouzdra dualin-line.

Vstupní stereofonní signály se vedou na vývody 2, a 19, a to přes kondenzátory 470 nF. Výstupy jsou na vývodech 8 a 13, výstupní signál se opět vede přes kondenzátory, jejichž kapacita závisí na vstupním odporu následujícího obvodu; obvykle bývá řádu jednotek mikrofaradů. Součástí integrovaného obvodu je i Zenerova dioda, která udržuje na vývodu 17 stabilní napětí asi 5,4 V. Z vývodu lze odebírat proud až 5 mA. V obrázku základního zapojení IO se toto napětí používá jako referenční napětí pro řízení hloubek, hlasitosti a loudness (je-li použíta) a dále výšek a vyvážení kanálů.

Maximální dovolené napájecí napětí LM1035 je 20 V. Provozní napětí se doporučuje v rozsahu 8 až 18 V, spotřeba proudu je typicky 35 mA při 12 V a 25 °C.

Maximální výstupní napětí na vývodech 8 a 13 závisí na napájecím napětí. Pro signál 1 kHz je efektivní výstupní napětí 1,3 V při napájecím napětí 8 V, 2,5 V při 12 V a 3,5 V při 18 V. Maximální vstupní napětí (na vstupech 2 a 19) je typicky 2,5 V. Vstupní odpor je typicky 30 k Ω při 1 kHz a napájecím napětí 12 V. Výstupní odpor (vývody 8 a 13) je na 1 kHz maximálně 20 Ω , takže spoj k výkonovému zesilovači může být prakticky libovolně dlouhý.

Celkové harmonické zkreslení je při napájecím napětí 12 V, 1 kHz a efektivním vstupním napětí 1 V typicky 0,05 % při maximálním zesílení. Odstup signál/šum je typicky 80 dB v pásmu 100 Hz až 20 kHz při maximálním zisku a 64 dB při zmenšení maximálním zisku a 60 dB. Kmitočtová charakteristika s potenciometry ve středu odporové dráhy je rovná (1 dB) do kmitočtu 250 kHz. Oddělení kanálů je vynikající – 80 dB na 1 kHz.

Ovládací proudy potřebné na vývodech 4, 7, 9, 12 a 14 jsou typicky –0,6 µA, takže v příslušných obvodech mohou být použity součástky s velkým odporem.

Typické zesílení tohoto IO je jedna, tj. zisk 0 dB, jsou-li spojeny vývody 12 a 17. Většina vyráběných obvodů však vykazůje zisk v rozmezí +2, -2 dB. Zesílení kanálů se neliší o více než (typicky) 1 dB (pro kmitočet 1 kHz), při zmenšení zisku v nejpoužívanější oblasti o -40 až -60 dB se zesílení kanálů liší typicky o 2 dB.

Obr. 35. Elokové schéma vnitřní struktury LM 1035 (a) a jeho standardní zapojení (b)

Obr. 36. Charakteristiky obvodu LM1035

Charakteristiky obvodu jsou na obr. 36. Je to především závislost zisku na napětí na vývodu 12. Pro zajímavost je třeba uvést, že vývod 12 je připojen vlastně na dva oddělené obvody k řízení hlasitosti, z nichž jeden je před a druhý za obvody k řízení barvy zvuku – to umožnilo zmenšit vlastní šum IO a zajistit, že nebudou přebuzeny velkým vstupním signálem vnitřní obvody IO, a že tedy nebude zpracovávaný signál zkreslen.

Vyvážení je řízeno napětím na vývodu 9. Vyvážení obou kanálů je dosaženo při napětí 2,75 V na tomto vývodu (tj. při polovině napětí na vývodu 17, stabilizovaného Zenerovou diodou).

Typické charakteristiky regulátorů barvy zvuku (hloubek a výšek) jsou závislé na kapacitách použitých kondenzátorů, tj. na C₈, C₉, C₄ a C₅. Ve standardním zapojení se součástkami podle obrázku jsou výšky a hloubky zdůrazněny nebo potlačeny o 15 dB. Kontrolní obvod pro loudness pracuje tehdy, je-li spínač v horní poloze, pak podle nastavení regulátoru hlasitosti jsou zdůrazňovány nebo potlačovány signály vysokých a nízkých kmitočtů podle citlivosti lidského ucha.

Obvod je velmi "pružný", kromě standardního zapojení lze podle požadavků zvětšit nebo zmenšit potlačení hloubek a výšek, lze upravovat i "fyziologii". Obvod si např. "nechá líbit" korekční kondenzátory pro hloubky a výšky o kapacitě 390 nF a 1 nF, pak může být použit v širokopásmových aplikacích při středním kmitočtu 10 kHz a při zdůraznění nebo potlačení výšek a hloubek o ± 15 kHz na kmitočtech 300 Hz, popř. 200 kHz!

Podle podkladů National Semiconductor

Dvojitý, stejnosměrným napětím ovládaný IÖ k řízení barvy tónu, hlasitosti, vyvážení kanálů a šířky stereofonní báze, TDA4292

Přesto, že jsou stereofonní televizní zvuk, popř. dvoukanálový zvukový doprovod (v jednom kanálu např. originální zvuk a v druhém dabovaný překlad) televizních programů relativními novinkami, staly se u posluchačů téměř přes noc televizní přijímače, které tento přijem umožňují, velmi žádaným zbožím. Aby se konstruktérům ulehčil život, uvedla na trh firma Siemens integrovaný obvod, který má několik (stereofonních) funkcí: umožňuje jednoduchým ovládacím prvkem (jednoduchý potenciometr) regulovat

hloubky, dalším výšky, dalším hlasitost, dalším vyvážení kanálů a konečně jedním spínačem lze zapojit do funkce fyziologickou regulaci (hlasitosti) a dalším spínačem rozšířit stereofonní bázi, což je právě u televizních přijímačů vzhledem k někdy malému odstupu posluchače od televizního přijímače velmi žádoucí.

Všechny funkce se ovládají stejnosměrným napětím, odvozeným z referenčního napětí, jehož zdrojem je sám integrovaný obvod. Rozsah nastavení hloubek a výšek je ±12 dB na 40 Hz a 15 kHz, rozsah vyvážení kanálů a fyziologického nastavení hlasitosti je +4 až -30 dB. Obvod má maximální vstupní napětí (efektivní) 1 V, oddělení kanálů 60 dB, odstup s/š při 1 V asi 77db, zkreslení při 1 V asi 0,5 % a konečně zbytkový šum 10 μV.

Blokové zapojení struktury vnitřního obvodu je na obr. 37a. Vstupní signály pravého a levého kanálu se vedou vstupy IO přes kondenzátory, nejprve jsou v cestě signálu regulátory hloubek, pak výšek, šířky stereofonní báze, vyvážení a konečně regulátory hlasitosti. Na vývodu 1 IO je k dispozici referenční napětí asi 4,8 V. Princip činnosti např. regulátoru hloubek je na obr. 37b, přičemž při 0 V na vývodu 3 jsou basy potlačeny nejvíce, při $U_{rel}/2$, tj. při 2,4 V je kmitočtový přenos lineární

Obr. 37. Blokové schéma vnitřní struktury a vnější prvky IO TDA4292 (a), princip řízení hloubek (b), výšek (c), šířky stereofonní báze, vyvážení a hlasitosti (d)

a při 4,8 V na vývodu 3 jsou basy maximálně zdůrazněny. Princip činnosti regulátoru výšek je na obr. 37c. Přiváděným řídicím napětím se mění přenos diferenčního zesilovače (se zpětnou vazbou rezistorem R₁), jehož charakteristiku určuje kapacita kondenzátoru C_v.

Na obr. 37d je princip činnosti regulátoru vyvážení a regulátoru hlasitosti. K rozšíření stereofonní báze slouží signály v protifázi. K fyziologickému řízení hlasitosti slouží členy RC mezi vývody 11 a 12, celý obvod fyziologie lze odpojit spínačem, připojeným na vývod 8 IO. Připojením nebo odpojením fyziologie se neovlivňuje nastavení regulátorů hloubek a výšek.

Pro činnost obvodu je velmi důležitý kondenzátor na vývodu 13 – pokud není plně nabitý, obvod nepracuje.

Podle podkladů Siemens

Integrovaný obvod pro rozhlasové přijímače AM, FM, TDA1220B

Již z přehledu několika málo integrovaných obvodů, uveřejněných v loňském AR řady B, věnovanému rozhlasovým přijímačům, bylo zřejmé, jakým směrem se ubírá trend v této oblasti elektroniky k masové výrobě levných přijímačů je třeba takové integrované obvody, které potlačují co nejméně vnějších součástek. Z řady novějších obvodů s minimem potřebných vnějších součástek se vyrábějí např. TDA1220A, nověji i TDA1220B a TDA1220L, z nichž poslední je určen především pro rozhlasové přijímače s napájecím napětím 3 až 9 V. Výrobce, SGS, vyvinul tyto obvody tak, že umožňují bezproblematický návrh vnějších součástek pro požadované parametry

Blokové funkční schéma a zjednodušené vnitřní zapojení integrovaného obvodu isou na obr. 38.

AM díl obsahuje multiplikativní směšovač, oscilátor, nf zesilovač s vnitřním řízením zesílení, aktivní demodulátor a konečně nf předzesilovač.

FM díl obsahuje mf zesilovač se směšovačem, kvadraturní demodulátor a také nf předzesilovač.

Integrovaný obvod má velmi malý vlastní šum, velkou vstupní citlivost, prakticky žádné harmonické signály a je odolný proti nepříznivým vlivům při velkých vstupních signálech. Konečně velmi jednoduché je i přepínání AM/FM.

K dalším přednostem patří i velmi malý potřebný počet vnějších součástek, velká stabilita jednou nastavených vlastností při daném napájecím napětí a velmi malá spotřeba proudu, asi 9 mA.

K hlavním technickým údajům patří napájecí napětí v mezích 2,7 až 16 V, odběr proudu 9 mA (max.), u dílu AM vstupní citlivost 15 μV, rozsah řízení AVC 86 dB, výstupní signál 120 mV, činitel zkreslení výstupního signálu 0,4 % a maximální vstupní signál 400 mV.

Vlastnosti dílu FM: napětí pro počátek omezení 36 µV, potlačení AM 50 dB, čini-

Obr. 38. Funkční blokové schéma a vnitřní zapojení (zjednodušeně) IO TDA 1220B

tel zkreslení 0,7 %, výstupní napětí 100 mV; pracovní rozsah pokud jde o teplotu je –20 až +95 °C, obvod je zapouzdřen v pouzdře dual-in-line se šestnácti vývody.

Příklad zapojení celého přijímače s dílem AM a FM a s integrovaným nf zesilovačem je na obr. 39. Vstupní díl FM je osazen dvěma tranzistory, laděn dvojitým ladicím kondenzátorem, Mf signál 10,7 MHz se přes keramický filtr přivádí na řetěz čtyř diferenčních zesilovačů v IO. Tam se signál zesiluje a omezuje. Vstup.16 IO má impedanci asi 6 kΩ paralelně s 14 pF. Po omezení se signál demoduluje v kvadraturním demodulátoru. Na vývodu 13 je k dispozici napětí asi 150 mV. Při přepnutí AM/FM se na vývod 13 přivede napájecí napětí, čímž se změní vnitřní referenční napětí.

Díl AM je laděn také dvojitým ladicím kondenzátorem. Ve vstupním laděném obvodu je feritová anténa. Vstupní zesilovač v IO pracuje až do 30 MHz. Na vývodu 3 je k dispozici mf signál, který se vede přímo na mf filtr. Vývod 1 IO je výstup oscilátoru, je na něm k dispozici (až do 30 MHz) napětí 100 mV. Výstup mf zesilovače je na vývodech 6 a 7, nf výstup je na vývodu 9.

I když je popis přijímače a IO velmi kusý, je zřejmé, jak použití IO zjednodušuje konstrukci přijímače při zachování dobrých parametrů.

Podle podkladů SGS

Obr. 39. Příklad zapojení přijímače AM/ FM s integrovaným obvodem TDA1220A

Vf a nf technika

Jednoduchý širokopásmový předzesilovač

Popsaný širokopásmový předzesilovač je navržen k použití pro příjem krátkých a velmi krátkých vln. Jeho největší předností je, že ho není třeba ladit, nastavuje se pouze proud tranzistorem (obr. 40a). Je

Obr. 40. Zapojení širokopásmového předzesilovače pro pásmo KV.a VKV

vhodný pro přijímače s dobrou vlastní selektivitou, vstupní a výstupní impedance je 50 až 70 Ω. Jeho získ v závislosti na kmitočtu je na obr. 40b. Zesilovač se skládá ze dvou oddělovacích kondenzátorů 1000 pF, mezi nimiž je zapojen rezistor s odporem 4,7 kΩ. Paralelně k rezistoru je zapojena i dráha báze-kolektor zesilovacího tranzistoru. Pracovní odpor tranzistoru je R₁, volí se tak, aby při napájecím napětí 9 V (baterie) byl kolektorový proud 5 mA (při tranzistoru BFY90, u jiných typů tranzistorů je třeba buď použít údajů kolektorového proudu doporučených výrobcem, nebo zkusmo určit nejvýhodnější pracovní bod jak z hlediska šumu, tak požadovaného zesílení).

Napájí-li se zesilovač ze zdroje 12 V (viz obrázek), je třeba odpor rezistoru R_2 volit tak, aby byl s $R_1=1,2$ k Ω proud kolektoru tranzistoru opět 5 mA.

Konstrukce zesilovače je samonosná, všechny součástky jsou připevněny k vývodům vstupního a výstupního konektoru, popř. k izolační průchodce pro přívod napájecího napětí a k "zemi", tj. ke kovovému pouzdru, v němž je zesilovač umístěn.

Jen pro úplnost – tranzistor BFY90 má vývody umístěny "klasickým" způsobem, tj. vlevo od klíče je emitor, pak báze, kolektor a stínění, to vše při pohledu zespodu. Všechny součástky musí mít co nejkratší přívody. Co nejkratší musí být především zemní spoje.

Adaptor k příjmu signálů v pásmu 3 až 300 kHz krátkovinným přijímačem

Tento tzv. up-converter slouží k příjmu "velmi dlouhých" až dlouhých vln krátkovlnnými přijímači, na nichž je k dispozici některé z pásem 3,5 až 25 MHz. Autor uvádí, že ho používal (v Anglii) s různými typy antén včetně náhražkových, přitom zachytil v síle S9 + 60 dB např. i čs. stanicí OMA, vysílající časové signály (na 50 kHz), stanici MSF Rugby (britský časový standard na 60 kHz), různé navigační majáky po celém světě v pásmu 10 až 14 kHz apod. Možný je příjem i na kmitočtech kolem 10 kHz (při použití odpovídají-

Obr. 41. Zapojení konvertoru "velmi dlouhých" a dlouhých vln (pásmo 3 až 300 kHz) ke krátkovlnnému přijímači

cí antény), ale i BBC Radio 4 na kmitočtu 200 kHz, GBR Rugby na 16 kHz atd. Přijímače, které mají úzký krystalový filtr CW, mohou umožnit na druhé straně příjem i na kmitočtech kolem 1 kHz, popř. i nižších.

Zapojení adaptoru je na obr. 41. Z antény se vede přijímaný signál na vstup dvojitého balančního směšovače IO₁ (SL1640C) přes širokopásmovou vstupní dolní propust C₈, C₉, L₁. Tento filtr, který má mezní kmitočet asi 150 kHz, zeslabuje silné signály středních a krátkých vln a zabraňuje tak přebuzení směšovače. Signály vyšších kmitočtů než je mezní kmitočet filtru mohou být však až do kmitočtu asi 300 kHz přijímány s příslušným zeslabením.

Injekce nosné do směšovače je realizována výstupním signálem krystalem řízeného oscilátoru s tranzistorem T_1 . Výstupní signál z-integrovaného obvodu, vývod 6, má malou impedanci, neboť na výstupu 6 je integrován emitorový sledovač. Výstupní signál lze přivádět na libovolný vstup přijímače KV o impedanci v mezích 50 až 300 Ω . Šúmové číslo konvertoru je 10 dB a pro uvedené pásmo VDV a DV je více než postačující, neboť v něm omezuje užitečnou citlivost především atmosférický šum.

Konvertor je napájen napětím 9 V (9 V je též horní mez napájecího napětí použitého integrovaného obvodu). Tranzistor oscilátoru je křemíkový typ s malým šumem, na tomto místě autor doporučuje použít typy BF197 nebo BF224; popř. BF273, místo SL1640C lze použít i SL640C v kovovém pouzdře (výrobce Plessey Sem.). Krystal se volí podle použitého pásma KV, do něhož chceme přijímané signály konvertovat. Tak např. při krystalu 14 MHz. se vstupní signál objeví na kmitočtech kolem 14 200 kHz, např. časový signál MSF Rugby (60 kHz) bude potom přijímán na kmitočtu 14 060 kHz.

Na konvertoru je sympatické i to, že není třeba nic nastavovat – výsledky však závisejí především na jakosti-použitého krátkovlnného přijímače (dolní mezní kmitočet příjmu atd.). O komunikaci na kmitočtech pod 10 kHz se lze blíže dozvědět v článku G3XBM v Radio Communication, duben 1975.

Radio Communication, červen 1981.

Předzesilovač pro magnetodynamickou přenosku

Různých předzesilovačů pro magnetodynamické přenosky bylo již publikováno mnoho. Kromě běžných předzesilovačů bez dalších funkcí byly popsány i předzesilovače s různými doplňkovými filtry, které omezovaly přenos rušivých signálů – zapojení na obr. 42 je právě z tohoto druhu předzesilovačů. Vzniklo proto, že některé gramofony produkují signály pod dolní mezí slyšitelnosti, tj. pod 20 Hz, které po zesílení v moderních zesilovačích (tyto zesilují všechny signály často i od 0 Hz) vychylují membrány hlubokotónových systémů reproduktorových sous-

Obr. 42. Předzesilovač k magnetodynamické přenosce s filtrem hluku

tav, což způsobuje v reprodukci nedefinovatelná zkresleni. Proto autor článku v ELO č. 2/1984 navrhl předzesilovač, který kromě toho, že sleduje přesně průběh podle křivky R.I.A.A. i potlačuje kmitočty nižší než 20 Hz, neboť ty jsou pro reprodukci hudby zcela zanedbatelné.

Filtr je konstruován jako aktivní Čebyševova horní propust druhého řádu se zvlněním 0,3 dB v propustném pásmu. Aktivní částí filtru je IO₂, bifetový operační zesilovač. Kondenzátor C₅ spolu s rezistorem R₇ tvoří pasívní horní propust. Zpětná vazba přes dělič R₈, R₉ určuje typ filtru a tím i jeho kmitočtovou charakteristiku (samozřejmě i zesílení). Mezní kmitočet filtru (–3 dB) je 20 Hz. Hluky kolem 2 Hz jsou potlačeny o více než 45 dB.

Jako předzesilovač pro magnetickou přenosku pracuje $1O_1$ s rezistory R_2 až R_5 a kondenzátory C_2 , C_3 . Nejlepších výsledků, pokud jde o šum a zkreslení, autor dosáhl s operačním zesilovačem firmy PMI/Bourns typu OP27GP nebo OP27GZ (P – v pouzdře z plastické hmoty, Z – v keramickém pouzdře). Místo tohoto operačního zesilovače lze použít i LF356 (bifetový OZ). Činnost předzesilovače lze stručně popsat takto: při velmi nízkých kmitočtech mají kondenzátory C_2 a C_3 velkou impedanci. Zesílení je pak

$$A = 1 + \frac{R_3}{R_2} = 1 + (100\ 000/100) = 1001$$
,
tj. zisk je asi 60 dB.

Se zvyšujícím se kmitočtem přestává "účinkovat" C_2 , R_3 je připojen paralelně k R_4 a na kmitočtu 1 kHz je tedy zesílení asi 100, tj. zisk asi 40 dB, při 20 kHz je pak komplexní zpětnovazební odpor asi 1 kHz, zesílení je tedy asi 10, tj. zisk asi 20 dB.

Režistor R_1 je pracovním odporem pro přenosku, C_1 je vf "filtr". Předzesilovač se napájí napětím ± 9 až ± 15 V. A pro zajímavost: vzhledem k tomu, že oba operační zesilovače mají vývody uspořádány stejně jako běžný OZ typu 741, Ize činnost zapojení ověřit i s těmito OZ. Jako C_6 až C_9 , popř. C_{10} , C_{11} jsou vhodné tantalové kondenzátory.

ELO č. 2/1984

Aktivní širokopásmová anténa UHF

Popisovaná širokopásmová aktivní anténa je vhodná pro weekendové domky, pro obytné přívěsy, pro montáž do omezeného prostoru i pro použití jako přenosná anténa např. v kempu atd.

Jako vlastní anténa slouží širokopásmová plochá anténa. K jejímu výstupu je připojen dvoustupňový širokopásmový anténní zesilovač. Anténa má zisk asi 5 až 10 dB a jeví se jako necitlivá proti možným změnám pole, což je výhodné především při montáží pod střechou.

Plochá anténa je zhotovena z ploché pravoúhlé hliníkové desky tloušťky 2 mm o rozměrech 550 × 450 mm. K této desce je čtyřmi distančními sloupky z izolačního materiálu (délka 140 mm, průměr 10 mm) připevněn motýlkový dipól. Dipól má rozměry podle obr. 43a a je z plechu stejné tloušíky jako reflektor. Ukázalo se, že reflektor jednak může mít rozměry až o 20 % menší, než je uvedeno (aniž by se pozorovatelně zhoršil obraz) a jednak může být zhotoven i ze "síťoviny". Drátěná oka je však třeba ve všech spojích dobře a spolehlivě propájet. Pak klade anténa mnohem menší odpor větru a lze ji tedy umístit i na střechu.

Zesilovač k anténě je modifikací továrně vyráběného zesilovače 3104.10 (VEB Antennenwerke Bad Blankenburg). Autor doporučuje použít tranzistory s malým šumem a velkým výkonovým zesílením, především jako T₁, např. AF279S, AF239S, GF147S. V původním článku je pro zesilovač (obr. 43b) uváděno jak zapojení desky s plošnými spoji, tak i další konstrukční údaje. Stručně lze uvést, že při stavbě zesilovače je třeba dodržovat zásady pro stavbu přistrojů UHF, tj. např. co nejkratší přívody součástek, co nejmenší součástky atd.

Celý zesilovač byl vestavěn do krabičky spájené z kuprextitu a jeho vstup opatřen dvěma pájecími podložkami, které byly připevněny pod šrouby dipólu. Výstupní signál je souosým kabelem veden k přijímači.

Napájecí napětí je 12 až 14 V. K zesilovači je napájecí napětí přivedeno podle obr. 43c.

K realizaci zesilovače použil autor dva základní prameny, jednak knihu Praxis der Fernsehantennen, díl první, třetí vydání vyšlo v Berlíně v roce 1969, a jednak návod k montáži a použití anténního zesilovače 3104.10, vydaný výrobcem. V článku nejsou bohužel uvedeny počty závitů cívek – ty jsou snad uvedeny v továrním návodu.

Funkamateur č. 7/1981

Sledovač signálů

Jedním z nejužitečnějších přístrojů k oživování a opravám rozhlasových přijímačů je sledovač signálů. Jeho zapojení však nebylo dlouho v ČSSR publikováno, takže jsem vybral ze zahraniční literatury zapojení s dostupnými a levnými součástkami. Jde především o germaniové tranzistory, které často leží nevyužity jak v různých kroužcích, tak zásuvkách jednotlivců. Navíc, protože jde o jednoduchý přístroj, je možné záměnou tranzistorů zjišťovat, jaký vliv má ten či onen tranzistor na citlivost přístroje, na šum atd.

Zapojení sledovače signálu je na obr. 44. Sledovač signálu je v podstatě citlivý nf zesilovač, kterému je předřazen detektor, obvykle ve formě oddělené hlavice se snímacím hrotem. Hledá-li se závada např. v rozhlasovém přijímači, postupuje se zásadně od předu, tj. od přívodu antény přes vf obvody, mf obvody a detekční obvod až přes nf zesilovač ke koncovému nf stupni. Přitom se sleduje zesílení signálu, jeho případné zkreslení a ve stupni, v němž je závada, se potom pečlivě měří "podezřelé" součástky (pracovní bod

Obr. 44. Sledovač signálů s germaniovými tranzistory. Po změně polarity napájecího napětí, elektrolytických kondenzátorů a diod lze použít v zapojení u nás běžné tranzistory n-p-n řady NU70 nebo NU71, popř. řady GC

tranzistorů, kapacita vazebních nebo blokovacích kondenzátorů atd.).

Sledovač signálů na obr. 44 je čtyřstupňový nf zesilovač. Bylo-li by třeba zlepšit citlivost, lze před stupeň s T₃ zařadit ještě jeden zesilovací stupeň.

Signál se do sledovače zavádí souosým konektorem a jde přes přepínač (volba citlivosti) a vazební kondenzátor na první tranzistor. Vzhledem k tomu, že se může vyskytnout potřeba použít sledovač v elektronkových zařízeních, je vhodné dimenzovat C₁ na 1000 V. Tranzistor T₁ pracuje v zapojení se společným kolektorem. Pracovní bod tranzistoru určuje R₆. Na tomto stupni je třeba použít tranzistor s co nejmenším šumem. Pracovním odporem stupně je emitorový rezistor R₈.

Následující zesilovací stupeň má s prvním stupněm přímou (galvanickou) vazbu. Tranzistor T₂ je zapojen se společným emitorem, stejně jako všechny další tranzistory. Proti možnosti vzniku brumu je, stejně jako u prvního tranzistoru, zapojen v kolektoru vyhlazovací člen RC. Zpětná vazba je zavedena rezistorem R₉. Proudovou stabilizaci zajišťuje emitorový rezistor R₁₀. Přes paralelní člen RC, omezující vysoké kmitočty, jde signál přes vazební kondenzátor na potenciometr hlasitosti. Za potenciometrem hlasitosti následuje běžný dvoustupňový nf zesilovač. Koncový tranzistor pracuje ve třídě A (konstantní odběr proudu). Jako kolektorová zátěž slouží primární vinutí výstupního transformátoru. Ze skundárního vinutí je možno přivádět signál buď na měřidlo a reproduktor, nebo jen na měřidlo, místo reproduktoru se přepínačem připojuje náhradní zátěž koncového tranzistoru - rezistor 8 Ω. Měřidlo má citlivost 100 μA. Nf signál se pro měřidlo usměrňuje diodou D₁ a vyhlazuje kondenzátorem C₁₂. Odporovým trimrem R22 se nastavuje citlivost měřicího obvodu.

Aby bylo možno sledovat postup i vf signálů, předřazuje se před sledovač (jeho vstup) detekční hlavice, jíž lze snímat jak vf, tak mf signály, amplitudově modulované. Jako detekční dioda je použita germaniová dioda.

Napájecí část je konstruována jako jednoduchý stabilizátor. Sekundární vinutí transformátoru dodává střídavé napětí 12 V (300 mA). Stabilizované napájecí napětí je 9 V, odběr proudu je při činnosti sledovače asi v mezích 15 až 20 mA.

Ke stavbě autor doporučuje použít malou kovovou skříňku (podle velikosti reproduktoru a ovládacích prvků. Také detekční obvod je vhodné umístit do kovové trubky. Výstup detekční hlavice a vstup sledovače je spojen souosým kabelem.

Funkamateur č. 9/1980

Různě aplikovaná elektronika

Počítač kol pro autodráhu

S moderními čítači CMOS typu CD4026 lze velmi snadno sestrojit čítač kol pro autodráhu podle obr. 45a. Průjezd auta se indikuje sepnutím jazýčkového kontaktu, čímž se na vstup čítače jednotek dostane kladný impuls a rozsvítí se současně jednička na displeji LED. Při každém dalším sepnutí kontaktu bude na displeji číslo o jednu větší. Při desátém sepnutí kontaktu bude na displeji "jednotek" opět nula a na výstupu 5 čítače jednotek se objeví úroveň H – na displeji "desítek" se objeví jednička.

Při projetí 100 kol budou na displeji dvě nuly. Aby tento okamžik nebyl v zápalu závodění přehlédnut, je možné doplnit základní zařízení ještě zvukovou indikaci podle obr. 45b. Je-li vstup zvukového indikátoru připojen na vývod 5 čítače jednotek, ozve se zvukové znamení (bzučák) po každém desátém kole, je-li připojen na vývod 5 čítače desítek, ozve se po každém stém kole. Vstupů (signálů z čítačů počtu kol) může mít zvukový indikátor libovolné množství.

Aby byl čítač vždy po zapnutí vynulován, je do zapojení přidán článek RC, C_2 , R_{16} . Čítače lze však kdykoli vynulovat i tlačítkem Tl.

Každý čítač kol odebírá ze zdroje 9 V proud asi 100 mA. Proto je vhodné při jejich větším počtu napájet je ze samostatných zdrojů – společný napájecí zdroj autoři zapojení nedoporučují.

Tranzistor BC237B lze nahradit libovolnými univerzálními tranzistory n-p-n, všechny diody našimi typy KA501 nebo podobnými.

ELO č. 4/1983

10, výv.5 - všíchni 100 kol 10, výv.5 - všíchni 10 kol dráha 10 + 11 + 10 kol dráha 20 + 11 + 10 kol dráhy 4µ7 4 hol dráhy 4 h

Obr. 45. Zapojení čítače kol pro autodráhu (a) a přídavné zvukové signalizace (b). K – kontakt jazýčkového relé pod dráhou

Časovač pro temnou komoru

Časovač, nebo lépe časový spínač na obr. 46 je určen pro práci v temné komoře. Tyto digitální "synchronní hodiny" lze nastavit podle volby taktu pro časy do 15 minut (takt 1 sekunda) nebo do dvou a půl hodiny (takt 10 s).

Celé zapojení se skládá ze síťového zdroje, který dodává jednak stabilizované napětí 12 V a jednak půlvlny sinusového napětí o kmitočtu 100 Hz (sekundární napětí transformátoru po usměrnění můstkovým usměrňovačem se na vyhlazovací kondenzátor vede přes diodu). Tranzistor BC237 (n-p-n univerzální křemíkový tranzistor) slouží jako tvarovač impulsů, IO CD4518 jako předdělič a CD4059 jako programovatelný dělič. Předdělič dělí signál 100 Hz na 1 Hz a 0,1 Hz. Tyto taktovací kmitočty čítá programovatelný čítač tak dlouho, až je počet načítaných impulsů shodný s počtem, odpovídajícím nastavení číslicových přepínačů (palcové přepínače). Přepínače jsou zapojeny takto:

hodnota	· 1	2	4	8
jednotky desitky	A E	B ·	C	D H
stovky	1	K	L	М

Počátek nastavené doby se startuje tlačítkem Tl. Po jeho stlačení se "nahodí" klopný obvod signálem na vývodu 3 a nastartuje i programovatelný čítač, stejně jako druhý klopný obvod, který přes tran-

zistor BC337. sepne relé, jehož kontakty ovládají rozsvěcení žárovky zvětšovacího nřístroje

Po uplynutí nastavené doby se objeví na vývodu 23 programovatelného čítače úroveň H, oba klopné obvody se vrátí do výchozí polohy, relé odpadne a žárovka zhasne.

Zajímavosti zapojení: CD4059 potřebuje k znovunastavení tři takty, toho se dosáhlo zapojením článku RC 100 kΩ, 22 μF (pouze při taktu 1 sekunda). Klopné obvody se po zapnutí napájecího napětí nastaví do jednoho z obou svých stavů zcela náhodně. Proto je v zapojení použit další článek RC, 10 kΩ, 68 nF, který zapezpečuje jejich takové nastavení, při němž po zapnutí přístroje žárovka zvětšovacího přístroje nesvítí.

Pro zaostřování apod. je možno rozsvítit žárovku zvětšovacího přístroje "ručně" spínačem S.

ELO č. 5/1983

Automat do fotokomory

Automat do fotokomory podle obr. 47 měří negativní snímek fotoodporem, zapamatovává si zjištěný údaj a převádí ho na binární formu. Přitom posuv ukazovatele (rozsvícená dioda) o jednu polovinu vpravo nebo vlevo odpovídá zmenšení nebo zvětšení clony zvětšovacího přístroje). Je možné volit dobu osvětlení od 0,5 až 63,5 sekundy s krokem 0,5 sekundy. Je ovšem možné nastavit i jiný rozsah, např. 1 až 127 sekund s krokem 1 sekunda.

Obr. 46. Zapojení časového spínače pro temnou komoru s programovatelným děličem CMOS typu DC4059

Přehled ovládacích prvků a indikačních prvků

Senzorové spínače

Měření – rozsvítí se žárovka zvětšovacího přístroje a změří se světlo, dopadající přes negativní snímek na fotoodpor. Změřený údaj se uloží do paměti a je současně indikován LED.

Nastavení – je možné ručně nastavit měřené údaje, které se ukládají do paměti. Indikace je stejná jako při "měření".

Osvětlení – rozsvítí se zvětšovací přístroj na dobu, určenou údajem v paměti přístroje.

Nulování – vynuluje se paměť a je umožněno nové "měření".

ZP zapnuto – rozsvítí se zvětšovací přístroj na časově neomezenou dobu.

ZP vypnuto – vypne se (zhasne žárovka) zvětšovací přístroj na neomezenou dobu.

Indikační prvky

Síť - LED indikuje zapnutí sítě.

ZP zapnuto – LED indikuje rozsvícení žárovky zvětšovacího přístroje.

Doba – sedm diod LED indikuje čas osvětlení (celkový čas je součtem všech dílčích údajů).

Další ovládací prvky

Citlivost – potenciometrem se nastavuje citlivost přístroje podle použitých fotografických přístrojů.

Do svorek "zásuvka" se připojuje síťová šňůra zvětšovacího přístroje.

Po zapnutí automatu je paměť volná a zvětšovací přístroj nesvítí. Tento stav lze též nastavit funkcí "nulování" a "ZP vypnut". Po přiložení prstu na senzory "měření" nebo "nastavení" se samočinně nastaví paměť – rozsvítí se žárovka zvětšovacího přístroje, fotorezistoř snímá světlo prošlé negativem a údaj se uloží do paměti. Přes ZP vypnuto se zhasne žárovka zvětšovacího přístroje. Dotykem prstu na senzor "osvětlení" ize po založení fotografického papíru na pracovní desku zvětšovacího přístroje rozsvítit žárobku zvětšovacího přístroje na dobu, odpovídající hustotě negativu.

Obvod vlastního automatu je tvořen senzorovými kontakty, časovačem (který je řízen fotorezistorem), prvním oscilátorem (ten řídí čítač pro zapamatování naměřené velikosti světla prošlého negativem), druhým oscilátorem (ten řídí druhý čítač během osvětlení papíru) a kompará-

Obr. 47. Zapojení automatu do fotokomory

torem, na jehož výstupu jsou diody, indikující požadovaný čas osvětlení. Nastaneli rovnost mezi obsahem čítačů, vypne se žárovka zvětšovacího přístroje, druhý čítač se vynuluje a druhý oscilátor přestane kmitat. Při funkci "nastavení" je první oscilátor ovládán přímo senzorem.

Indikátor s LED, který během činnosti automatu bliká, je připojen na výstup komparátoru, nikoli na výstup prvního čítače. Tak lze velmi snadno odlišit provozní stav od stavu "ZP zapnuto" Funkce nulování nuluje první čítač a umožňuje zahájit nové "měření". Funkce "měření", "osvětlení", "ZP zapnuto" a "ZP vypnuto" jsou realizovány klopnými obvody z hradel. Klopné obvody "měření" a "osvětlení" lze nulovat přes senzor "nulování", "osvětlení" je kromě toho nulováno signálem z výstupu 13 obvodu 4068 (IO₁₁).

Po zapnutí přístroje je článkem R₁C₁ nastaven definovaný stav na výstupu. Časovač 555 (IO₄) je nastartován záporným impulsem na svém vývodu 2 a C2 je nabíjen přes rezistor na napětí, dané potenciometrem P, (citlivost fotografického papíru). Na výstupu časovače je během nabíjení C2 napětí U+ a po uplynutí této doby se zmenší na nulu. Je-li na výstupu časovače U_+ , pracuje první čítač (IO_6) i se "svým" oscilátorem. (Pro oscilátory a čítače je použit obvod 4060, který lze však nahradit hradly 4020.) Kmitočet oscilátoru je nastaven P2 nebo P3 na 0,5 Hz. Oscilátor IO6 má na vstupu hradlo NOR, kterým je spouštěn jak z časovače 555, tak i funkcí "nastavení".

Při funkci "osvětlení" je porovnáván obsah obou čítačů (IO₆ a IO₅). Je-li dosaženo rovnosti, je přes vývod 13 obvodu IO₁₁ vynulován klopný obvod "osvětlení" i IO₅. Přes hradlo NOR jsou sloučeny funkce "osvětlení", "měření" a "ZP za-

pnuto" a je vybuzen tranzistor, který sepne relé a tím i žárovku zvětšovacího přístroje...

Elektor

Digitální stopky

Digitální stopky na obr. 48 jsou určeny k měření času do 1000 sekund s rozlišovací schopností 0,1 s. Stopky lze ovládat tlačítky na skříňce, v níž jsou stopky uloženy, popř. i dálkově, tj. signálem z nejrůznějších čidel.

Stopky jsou řešeny se čtyřmi tlačítky, jejich funkce vyplývá z jejich pojmenování: start, stop, mezičas, konečný čas, nulování (nastavení). Tlačítko "nulování" slouží k nastavení displeje na 000.0. Činnost stopek se spouští tlačítkem "start". Chceme-li kdykoli v době měření nějakého časového intervalu zjistit mezičas, stiskne se tlačítko "mezičas", na displeji se objeví časový údaj a přitom stopky měří

Obr. 48. Elektronické stopky (T₁ je typu BF245C)

nepřetržitě dál (vnitřní čítač pracuje bez přerušení). Chceme-li měření ukončit, stiskneme tlačítko "stop". Přitom ovšem bude na displeji stále údaj mezičasu, i když se stisknutím tohoto tlačítka zastaví činnost čítače. Stiskneme-li pak tlačítko "konečný čas", objeví se na displeji údaj, kterého dosáhl čítač při stisknutí tlačítka "stop".

Funkce tlačítek "start" a "stop" může být ovládána i dálkově. Na konektoru pro vnější ovládání je na vstupu "stop" i na vstupu "start" k dispozici napětí asi 5 V (proti zemi). Spojí-li se na krátkou dobu jedna z těchto úrovní se zemí (přes kontakty relé, spínací tranzistor atd.), lze tím ovládat činnost čítače, tj. jeho "rozběh" i zastavení. Aby bylo možno stopky ovládat dálkově i přivedením napětí, lze na oba vstupy připojit napětí až ±50 V.

Základem stopek je integrovaný obvod ICM7224IPL, čítač s dekodérem a budičem k přímému buzení displeje LCD. Čítací vstup (vývod 32 IO) je napájen signálem 10 Hz, který se získává z krystalového oscilátoru s děličkou (MM5369), na jejímž výstupu je signál 60 Hz, který se dále děli děličkou CMOS, CD4018, šesti na 10 Hz. Nastavovat krystalový oscilátor změnou kapacity jednoho z kondenzátorů 33 pF na přesný kmitočet není třeba, neboť má-li kmitočet krystalu: toleranci lepší než 10-4, je v našem případě možná chyba menší než 1 digit.

Hradla H₁, H₂ pracují jako klopný obvod, jehož výstupní signál spouští nebo zastavuje čítač (přes vývod 31 lO). Vývod 33 lO slouží jako nulovací, přes D₂ je signálem na nulovacím vstupu ovládána i činnost klopného obvodu.

Hradla H₃, H₄ tvoří též klopný obvod. Tímto klopným obvodem se ovládá "paměťový" vstup IO₃, vývod 34. Je-li na vývodu 34 úroveň H, paměť uchovává ten údaj na displeji, který na něm byl v okamžiku stisknutí tlačítka "mezičas". Údaj se uchovává v paměti tak dlouho, dokud se úroveň na vývodu 34 IO₃ opět nezmenší na L.

K dálkovému ovládání slouží konektor "vnější ovládání", z něhož jsou signály vedeny přes rezistory R_4 , R_7 a ochranné diody D_3 až D_6 .

Celý přístroj je napájen ze zdroje napětí 9 V, z něhož je odvozeno stabilizované napětí 5 V. Jako stabilizátor pracuje IO₅ ve spojení s diodou D₉ a rezistory R₁₃ až R₁₅. K součástkám: Integrované obvody

k součastkam: Integrovane obvody i tranzistor jsou zahraniční výroby a nemají tuzemský ekvivalent. Přesný kmitočet krystalu je 3,5795451 MHz.

ELV journal č. 26/1983

Poplachové zařízení

Poplachové zařízení, které je na blokovém schématu na obr. 49a, slouží k vyvolání poplachu při pokusu o krádež rozhlasového přijímače, pevně vestavěného v autě. Zařízení využívá k vyvolání poplachu houkačky, která při pokusu o krádež autorádia je nepřetržitě 30 sekund v činnosti. Houkačka se sepne automaticky při

Obr. 49. Poplachové zařízení do auta; a) blokové schéma zařízení, b) k principu činnosti časovače 555 jako monostabilního klopného obvodu, c) schéma zapojení poplachového zařízení

přetržení spojky mezi autorádiem a poplachovým zařízením.

Hlavní částí poplachového zařízení je monostabilní klopný obvod se známým časovačem typu 555 (obr. 49b). Z obrázku je zřejmé, že časovač 555 lze pro výklad činnosti poplachového zařízení nahradit dvěma komparátory, K₂ a K₁. Po připojení napájecího napětí se nabije kondenzátor C a na výstupu R horního komparátoru bude úroveň L. Horní vnitřní výstup klopného obvodu bude na úrovni H, vnitřní tranzistor IO povede a bude se tedy vybíjet náboj kondenzátoru C. Na vývodu 3 časovače bude úroveň L.

Kratší nebo delší záporný impuls na vývodu 2 časovače sepne spodní komparátor a na jeho výstupu se objeví úroveň L (S = L). Na výstupu 3 časovače bude tedy úroveň H, při této úrovni je obvod schopen dodat takový proud, který přitáhne kotvu relé. Vnitřní tranzistor časovače bude uzavřen a kondenzátor C se znovu nabije a to (díky stejným odporům rezistorů děliče v IO) na dvě třetiny napájecího napětí. Po nabití kondenzátoru může se celý popsaný děj opakovat.

Čas, po který se nabíjí kondenzátor, odpovídá v zapojení na obr. 49c době trvání poplachu, lze ho zhruba určit ze vztahu

 $t = 1.1R_1C$ [s; Ω F] nebo [s; $M\Omega$, μ F].

Zbývá jen dodat, jakým způsobem vzniká záporný impuls na vývodu 2 časovače: přetrhne-li se vodič mezi kostrou autorádia a šasi auta nebo mezi kostrou autorádia a poplachovým zařízením, otevře se tranzistor BC237 a jeho výstupní signál aktivuje vstup 2 časovače.

Pro provoz v autě je však třeba zajistit, aby poplach nebyl vyvolán rušivými impulsy, které vznikají v palubní síti za jízdy. K tomu slouží v poplachovém zařízení několik článků *RC*, zapojených jako dolní propusti – R₁C₁, R₃C₃, R₄C₄ a R₆C₆.

Celé zařízení odebírá v klidu proud menší než 10 mA, je proto možné pone-- chat je trvale připojené i při parkování např. v garáži. Relé by mělo mít kontakty dimenzované pro proud alespoň 1 A.

ELO č. 10/1984 _

Indikátor mrazu

V původním pramenu se toto zařízení uvádí jako indikátor možnosti náledí na silnici, je tedy určeno pro motoristy. Lze ho však použít samozřejmě i jinde, kde je třeba hlídat pokles teploty k nule a pod

Při zapojení podle obr. 50 začne blikat dioda LED při teplotě 4 °C v určitém rytmu. Snižuje-lí se teplota k bodu mrazu, dioda bliká stále rychleji, až při –1 °C začne svítit trvale. Při –6 °C se zařízení samo vypne, dioda opět nesvítí.

V zapojení jsou použity dva komparátory - operační zesilovače, které přepínají jako relé, změní-li se na jejich vstupech předem nastavené napětí třeba jen o mikrovolt. Napětí k ovládání jejich "překlápění" se získává z napěťového děliče, jehož součástí je rezistor s odporem závislým na teplotě (termistor). Komparátory pracují tak, že přivede-li se určité napětí na vývod 3 horního komparátoru (přes R₁, R₂ a C) a bude-li současně napětí na vývodu 2 větší než jaké je na 3, začne komparátor pomalu "kmitat" (s klesající teplotou se odpor termistoru zvětšuje). Protože kladnější napětí bude v tomto případě na invertujícím vstupu operačního zesilovače, bude jeho výstupní napětí záporné a tranzistor BC237 se bude periodicky otvírat a dioda bude blikat v rytmu "překlápění" operačního zesilovače. (Pozn. Operační zesilovače LM393 mají tranzistory s otevřeným kolektorem, rezistory na rozvod kladného napětí

Podobně pracuje i spodní komparátor, ten však "nekmitá". Je-li termistor v prostředí pod bodem mrazu, zvětšuje se napětí na vývodu 5 tak, že je větší než

 $P_{V} = 10.2148$ $P_{V} = 10$

Obr. 52. Celkové zapojení hlásiče (hlídače) vodní hladiny s možností optické a akustické indikace. Odporovým trimrem se nastavuje nejpronikavější tón akustického indikátoru

napětí na vývodu 6 a napětí na výstupu komparátoru bude kladné a LED tedy přestane svítit.

Článek RC, 570 μF a 12Ω filtruje napájecí napětí a zabraňuje falešnému rozsvícení LED rušivými impulsy.

Indikátor se nastavuje tak, že se trimrem P₁ nastaví počátek blikání LED při teplotě 4 °C, do teploty -1 °C LED bliká stále rychleji zcela samočinně (není třeba nic nastavovat) a dolní hranice indikace (-6 °C) se nastavuje trimrem P₂.

ELO č. 11/1984

Hlásič hladiny vody a univerzální tónový generátor s obvody CMOS

Pro základní seznámení s integrovanými obvody CMOS byl v časopisu ELO uveřejněn článek, který na příkladu dvou praktických přístrojů, hlásiče hladiny vody a univerzálního tonového generátoru, názorně ukazuje, jak pracují základní obvody CMOS a umožňuje každému seznámit se se způsobem "obsluhy" těchto integrovaných obvodů. Článek byl psán i se zřetelem k dosud často přetrvávající pověře, že "se stačí na CMOS špatně podívat" a on se zničí. Autoři úvodem vysvětlují, že na vstupech IO jsou ochranné diody a že při dodržování základních pravidel pro praci s obvody CMOS se není třeba zničení IO obávat.

Obr. 51. Základní zapojení vstupní části hlásiče. SE, a SE, jsou kontakty senzoru. Rychlou zkoušku činnosti zapojení umožňuje TI, (a); obvody indikující stav hladiny (b)

Hlásič hladiny vody nebo i jiných vodivých tekutin pracuje takto (obr. 51a). Na vstupech hradla H (Schmittův klopný obvod) je přes rezistor R₁ úrověň H. Budou-li oba kontakty senzoru SE ponořeny do vodivé tekutiny, vznikne mezi nimi odpor, který spolu s odporem rezistoru R₁ vytvoří odporový dělič. Zmenší-li se úroveň napětí na vstupech hradla H pod spínací úroveň, změní se úroveň na výstupu hradla H z původní. L na H.

Obvody následující za tímto "čidlem" mohou být konstruovány např. podle obr. 51b; hradlo H₁ je přitom zapojeno shodně s hradlem na obr. 51a. Hradlo H₂ invertuje výstupuí signál hradla H₁, proto je-li na výstupu hradla H₁ úroveň H, mají i hradla H₃ a H₄ na svých výstupech úroveň H, tranzistory povedou, bude svítit LED a sepne relé Re. Kontakty relé mohou spínat čerpadlo, akustický hlásič nebo pod. Tak lze kromě vizuální indikace určitého stavu získat i indikaci akustickou a navíc se může zcela samočinně spouštět i motor čerpadla.

V redakci ELO vybrali ke konstrukci hlásiče vodní hladiny integrovaný obvod se čtyřmi hradly, CD4093; konkrétní zapojení hlásiče stavu vodní hladiny je na obr. 52. Dioda, rezistor 27 kΩ a kondenzátor 330 nF omezují případná rušivá napětí, která by mohla nesprávně spouštět hlásič. Hradlo H₂ pracuje jako generátor ní signálu a ní signál pravoúhlého průběhu lze po průchodu hradlem H₃ případně dále zesílit vně připojeným ní zesilovačem. K tomu slouží zkratuvzdorný výstup A

Signálem z hradla H_4 se budí tranzistor T_1 . Symetrické pravoúhlé impulsy vyvolají takový kolektorový proud T_1 , který stačí k sepnutí relé (12 V). Kondenzátor 100 μ F nahrazuje v tomto zapojení běžněji používanou omezovací diodu (paralelně k vinutí relé).

Dvoutónový univerzální tónový generátor byl nazván univerzálním proto, že se oba tóny mohou nastavit odděleně a odděleně lze nastavit i jejich trvání. K lepšímu porozumění činnosti generátoru si popíšeme nejdříve činnost hradla NAND při spínání pravoúhlého signálu. Hradlo na obr. 53a propustí signál pravoúhlého průběhu jen tehdy, bude-li mít na druhém vstupu úroveň H. Bude-li na něm úroveň L, bude na výstupu hradla trvale úroveň H. Bude-li dále v zapojení podle obr. 53b na

vstupu O úroveň L, bude na výstupu H_2 nezávisle na úrovni na vstupu 5 úroveň H. Hradla H_1 a H_4 "povedou" a úroveň na výstupu bude tedy shodná s úrovní na vstupu. Bude-li na vstupu O opačná úroveň, tj. H, bude nezávisle na stavu vstupu 1 hradlo H_1 "zavřeno" (tj. bude mít trvale na výstupu úroveň H), povedou hradla H_2 a H_4 a na výstupu 11 bude stejný signál jako na vstupu 11. Takto lze získat na jednom výstupu střídavě signály ze dvou vstupů.

Signály pravoúhlého průběhu lze získat např. jednoduchým zapojením hradla CMOS podle obr. 53c. Činnost je jedno-

Obr. 53: Spínač pro signály pravoúhlého průběhu (a), elektronický "přepínač" dvou signálů (b) a nf generátor s hradlem CMOS (c)

duchá: přivedme na horní vstup hradla úroveň H, po připojení napájecího napětí na dolním vstupu hradla díky nenabitému kondenzátoru zprvu úroveň L, což odpovídá úrovní H na výstupu. Kondenzátor se búde nabíjet v závislosti na nastavení proměnného rezistoru P tak dlouho, až se napětí na něm zvětší na úroveň H – výstup hradla přejde na úroveň L a kondenzátor se začne vybíjet přes P, až se napětí na vstupu hradla změní opět na L. Tento postup se bude pak pravidelně opakovat s rychlostí, závislou na nastavení P.

Zapojení dvoutónového generátoru, pracujícího na popsaném principu, je na obr. 54. Kmitočet generátorů a přepínání se volí nastavením odporových trimrů 100 kΩ. Má-li generátor pracovat po připojení napájecího napětí, připojí se k pracovnímu kontaktu S rezistor 100 kΩ z kladného pólu napájecího napětí. Spojíli se pak S se zemí, generátor přestane pracovat. Použije-li se naopak rezistor 100 kΩ mezi zemí a kontaktem S, generátor začne pracovat po připojení kontaktu S na kladný pól napájecího napětí.

Obr. 54. Celkové zapojení univerzálního tónového generátoru s hradly CMOS

Hzn aż Hzn -CD4011

Výstupní signál lze zesilovat jakýmkoli nf zesilovačem.

ELO č. 1/1984

Anténní rotátor s IO A109

Při příjmu televizních nebo rozhlasových signálů na VKV z různých směrů je velmi výhodné mít možnost natáčet anténu dálkově na nejlepší příjem. Vzhledem k tomu, že především při dálkovém příjmu anténami s úzkým vyzařovacím úhlem je již nastavení antény o 10° znát na jakosti přijímaného signálu, byla při konstrukci popisovaného rotátoru záměrem konstruktéra velká přesnost nastavení a velmi malá hystereze rotátoru.

Zapojení celého zařízení je na obr. 55. Všechna potřebná napětí se získávají ze sítového transformátoru na jádře M55. Napájecí napětí +15 V a -15 V se získávají z vinutí L2. Žárovka paralelně k tomuto vinutí slouží jako kontrola zapnutí (12 V, 100 mA). Napětí z transformátoru jsou usměrňována diodami D2 a D3 a vyhlazena kondenzátory C6, C7. Rezistory R2 a R3 slouží jako předzátěž a zamezují kolísání napájecích napětí při zatížení výstupu A109. Ze stejného vinutí L2 je napájen i obvod k řízení chodu motoru. Stejnosměrné napětí pro vyvažovací můstek se odebírá z vinutí L3, je usměrněno diodou D₆. Motor se napájí z vinutí L₄ přes diody D7 a D8

Primární vinutí transformátoru má 2070 závitů drátu o Ø 0,15 mm CuL, vinutí L2 110 závitů drátu o průměru 0,1 mm CuL, vinutí L₃ 38 závitů o průměru 0,15 mm CuL a konečně vinutí L4 125 závitů drátu o průměru 0,5 mm CuL.

Otáčení antény umožňuje můstek ze dvou potenciometrů a přídavných odporových trimrů, které slouží k takovému vyvážení můstku, aby mohla být na minimum zmenšena chyba linearity. Oba potenciometry by měly být drátové typy, jejich odpor je možno volit v rozmezí 1 až 25 kΩ. Při odporové dráze s odporem menším než 25 kΩ je třeba zvětšit odpor odporových trimrů, které jsou s potenciometry v sérii. Není-li požadována lineární stupnice na ovládací skříňce, lze odporové trimry ze zapojení vypustit, popř. pouPřes R₁₅ se tak budí buď kladným výstupním napětím dvojice T2, T4, nebo záporným T₃, T₅ a to podle stavu rozvážení můstku.

Integrovaný obvod A109 je zapojen jako stejnosměrný zesilovač v co nejjednodušším zapojení. Kondenzátory C3, C4 slouží jako kmitočtová kompenzace, ofset se kompenzuje trimrem R₈. Článek R₇C₂ slouží k potlačení rušivých impulsů. Ke kompenzaci ofsetu je nutná stabilita napájecího napětí, proto ona předzátěž (R2, R₃), o níž již byla řeč. Napájecí napětí se může pohybovat v mezích 13 až 19 V.

Aby bylo možno zjistit, zda anténa dosáhla požadovaného směru, usměrňu-

Obr. 55. Anténní rotátor

žít. i běžné "uhlíkové" potenciometry. Stupnici je pak ovšem třeba ocejci ovat podle skutečného natočení antény v závislosti na poloze běžce potenciometru R₁₃. Rezistor R₈ slouží k nastavení napětí na můstku, na něm závisí jak citlivost zapojení, tak hystereze. Napětí by se mělo pohybovat od 1 do 4 V.

Jako motor se v zařízení používá motor stěračů (12 V), výrobce FER, který byl upraven přidáním převodu 1:100 na poslední ozubené kolo původního převodu. Motor má spotřebu asi 0,5 A. Provrtáním hřídele na straně kolektoru se získala možnost připevnit kulatý trvalý magnet, který se otáčí spolu s hřídelem. Kolem otáčejícího se magnetu je vytvarována smyčka ve tvaru U ze železného plechu tloušťky 1,5 mm a šířky 10 mm. Na obou ramenech smyčky jsou navinuty cívky z drátu o průměru 0,1 mm. Indukované střídavé napětí při plné rychlosti motoru by mělo být asi 1 V

Snímací potenciometr polohy antény (R₁₀) snímá polohu antény přes převod 1:1,5. Tak lze dosáhnout sejmutí polohy antény v rozmezí 0 až 360°, aniž by bylo využito celého úhlu otáčení hřídele potenciometru. V ovládací skříňce musí být ovšem použit stejný převod i u potenciometru Rta, jímž se volí požadované otáčení antény.

Aby se motor otáčel v obou směrech (v mezích 0 až 360°), jsou využity jako zesilovače signálu z výstupu A109 vždy dva tranzistory v Darlingtonově zapojení.

je se na přechodu báze-emitor tranzistoru T. střídavé napětí z tachogenerátoru, to otvírá tranzistor a rozsvěcí se žárovka (12 V/100 mA). Světlo žárovky se rozsvěcí v závislosti na kmitočtu tachogenerátoru. Proměnným rezistorem R₁ se nastavuje jas žárovky.

Přístroj se nastavuje tak, že se pod hřídel potenciometru R₁₃ podloží stupnice 0 až 360°. Odporové trimry R₉, R₁₁, R₁₂ a R₁₄ se nastaví na nulový odpor. Napětí na můstku se nastaví odporovým trimrem R₈ na 4 V. Oba potenciometry se nastaví na střed odporové dráhy. Mezi běžce obou potenciometrů (R₁₀ a R₁₃) se zapojí voltmetr ($R_i = 20 \text{ k}\Omega/V$), odporový trimr R_6 se nastaví na střed odporové dráhy, na výstup integrovaného obvodu se zapojí voltmetr (ideální s nulou uprostřed stupnice). Motor je odpojen. Potenciometrem R₁₃ se nastaví nula na voltmetru mezi běžci potenciometrů. Trimr Rs se pak nastaví tak, aby na výstupu IO byla také nula.

Pak se připojí motor a jsou-li motor a potenciometr správně pólovány, musí zařízení pracovat podle požadavků.

Autor originálu v závěru článku uvádí. že konstrukce je dobře reprodukovatelná a doporučuje pro případ silného větru opatřit stožár antény elektromechanickou brzdou.

Funkamateur č. 10/1980

Řízení elektrických motorků v modelech aut, lodí a letadel

Řízení elektrických motorků modelů především lodí a aut je relativně složité, neboť je třeba spínat relativně velké proudy. Proto není takových zařízení na trhu příliš mnoho – pro své čtenáře vyvinuli spolupracovníci časopisu ELO z uvedených důvodů několik obvodů, které lze použít prakticky ve všech u nich na trhu prodávaných soupravách dálkového řízení, ať již mají jejich řídicí impulsy kladnou nebo zápornou polaritu. Ve všech dále uvedených schématech je tedy možnost změnit vstup jednoduchým způsobem (např. záměnou tranzistoru n-p-n za p-n-p a obráceně) jak pro kladné, tak pro záporné řídicí impulsy.

Jednoduchý spínací obvod

Jako první k řízení rychlosti motorků si uvedeme jednoduchý spínací obvod (obr. 56). Z dekodéru se na vstup přivádějí (přes tranzistor T₃). Kondenzátor C₅ slouží k tomu, aby "podržel" napětí na bázi T₃ po dobu mezery mezi překlopením multivibrátoru do výchozího stavu a příchodem dalšího řídicího impulsu. Jinak by relé vždy v této mezeře odpadlo. Kontakty relé ovládají příslušný elektromotorek.

Výkonový stupeň

Moderní elektrické motory pro modely mají při napájecím napětí odběr proudu až 20 A. Protože je nesnadné sehnat pro takové proudy malé a lehké relé, lze tuto nesnáz obejít zapojením "elektronického relé", v němž autoři použili Darlingtonovy tranzistory typu BDX33A (obr. 57), z nichž každý snese zatížení proudem 4 A. Uvádějí dále, že lze použít i typy BD645 či BD901. Protože tranzistory mají průměrně zesilovací činitel asi 750, musí být napájeny proudem asi 30 mA - proto je výstupní signál 555 zesílen, aby byl bez potíží k dispozici proud až asi 3000 mA. Výkonové tranzistory isou chráněny diodami Di a D2. Ke spínání zátěže (motoru) se využí-

1N4148 BC177 podle typu relė Spinaci stupeň +5Vnebo+akum 7 I 47K C. C, přitažení (BD237 BC108 NE555 2×1N4001 servoimpulsy: kladně zapornė 😈 T, - BC108

Obr. 56. Jednoduchý obvod spínacího typu k řízení rychlosti elektrických motorků modelů. Jako T₁ při kladných vstupních impulsech BC177 (p-n-p), při záporných BC108. Nepoužije-li se výkonový stupeň (viz další obrázek), lze T₄ vypustit. Stejně tak lze místo BD675, použije-li se výkonový stupeň, dát jako T₃ méně "výkonový" typ BD237

impulsy minimální šířky asi 1 ms a maximální šířky asi 2 ms. Tyto impulsy po dobu svého trvání zavírají tranzistor T₁. Přitom se nabíjí kondenzátor C₁ přes P₁. V mezerách mezi impulsy se kondenzátor opět vybíjí. Na šířce impulsů záleží, jak se kondenzátor nabíje, tzn. jak velké napětí se na něm objeví.

Za tímto vstupním obvodem je zapojen časovač 555 jako monostabilní multivibrátor. Multivibrátor bude v činnosti, budeli na jeho vývodu 2 napětí menší než třetina napájecího napětí, v našem případě, tj. při napájecím napětí 5 V, musí být napětí na vývodu 2 menší než asi 1,6 V. Zvětší-li se napětí nad uvedenou mez, bude na výstupu 555 (vývod 3) "trvale" úroveň H. Doba trvání této úrovně závisí na poměru R₅/C₄, doba trvání musí být tak dlouhá, aby překlenula dobu trvání mezery mezi impulsy. Podle druhu dálkového ovládání a podle počtu kanálů bude tato doba asi 50 ms. Odpor rezistoru R₅ a kapacitu kondenzátoru C4 lze určit ze vztahu

 $R_3 \cdot C_3 \cdot 1,1 = t [k\Omega, \mu F; ms].$

Výstupní impuls (vývod 3), který je relativně dlouhý, ovládá pak činnost relé

vá napěťového úbytku na přechodu kolektor-emitor tranzistorů při jejich otevření.

Nastavení celého obvodu (ať již s relé nebo s tranzistory) je velmi jednoduché: odpovídající ovládač na vysílačí se nastaví do střední polohy a běžcem odporového

Obr. 57. Výkonový tranzistorový stupeň jako náhrada silového relé. Podle použítého motorku je třeba opatřit tranzistory vhodnými chladiči

trimru se pohybuje tak dlouho, až relé právě přitáhne. Je-li napájecí napětí dobře stabilizované, kotva relé odpadne velmi přesně v závislosti na "vypínacím" impulsu.

Plynulé řízení rychlosti

Elegantnější je ovšem řízení rychlosti otáčení plynulé, tj. proporcionální. Proporcionálně lze rychlost otáčení motorku řídit několika různými způsoby – autoři vyvinuli z různých důvodů řízení pomocí generátoru impulsů o kmitočtu asi 2,5 až 3 kHz.

Zapojení je na obr. 58. Skládá se ze tří základních částí: první část mění pracovní (řídicí) impulsy z dekodéru na stejnosměrné napětí, jehož velikost je závislá na šířce řídicích impulsů. Druhou částí je astabilní multivibrátor, jehož činnost je řízena právě tímto měnícím se stejnosměrným napětím. Třetí část slouží jako spínač a vypínač multivibrátoru, který zabezpečuje, že se v odpovidající poloze ovládače nedostanou na výkonové tranzistory žádné impulsy.

Kladné impulsy z přijímače se vedou přes oddělovací kondenzátor na hradla H₁ a H₂. Na výstupu hradla H₂ je opět k dispozici impuls podobný impulsu vstupnímu. Vzestupná hrana impulsu se článkem R₃, R₂, C₃ derivuje na jehlový impuls, kterým se přes T₁ nabíjí kondenzátor C₅. Po zbývající dobu trvání impulsu se kondenzátor C₅ vybíjí přes diodu D₁ a rezistor R₄. Článek *RC* v bázi T₂ (R₅, C₆) přicházející stejnosměrné napětí vyhlazuje, takže na bázi T₂ je vyhlazené stejnosměrné napětí, jehož velikost je určena šířkou vstupních impulsů.

Tímto napětím se řídí astabilní multivibrátor s časovačem 555. Trvání mezer mezi impulsy multivibrátoru je určeno článkem RC, R₇C₇. Zmenší-li se budicí napětí pod 1/3 napájecího napětí, astabilní multivibrátor nepracuje, na výstupu 3 je pak trvale kladné napětí (úroveň H).

Výkonové obvody (spínací tranzistory) jsou řízeny výstupními impulsy na vývodu 3 555. Protože však toto zapojení neumožňuje v poloze "vypnuto" ovládače zastavit motor, slouží zbytek obvodu k tomu, aby zabezpečil na vstupu "nastavení" multivibrátoru úroveň země. Kladné napětí na vývodu 4 multivibrátoru bude pak pouze tehdy, bude-li příslušný ovládač v poloze "provoz". Tato část zapojení (zbytek obvodů) je ňavržena jako spínač na předchozím obrázku. Výstup C spínače je přiveden na výstup 4 multivibrátoru

Nastavení je opět velmi jednoduché: ovládač do polohy těsně u "vypnuto", P₁ nastavit na střed odporové dráhy. Odporový trimr P₂ nastavit tak, aby na vývodu 4 multivibrátoru bylo kladné napětí. Pak ovládač přemístit pomalu do polohy "plnýplyn" a trimr P₁ nastavit tak, aby na vývodu 3 multivibrátoru krátce před "dorazem" páčky ovládače bylo trvalé kladné napětí. Pak lze ke koncovým tranzistorům připojený motor ovládat od nulové rychlosti do maximální.

Obr. 58. Zapojení k plynulému řízení rychlosti otáčení motorků. Vstup je opět upraven pro kladné nebo záporné impulsy z přijímače

Spínač maximálního výkonu

Aby motor mohl dosáhnout maximálního výkonu ihned po zapnutí vysílače (a samozřejmě i přijímače), použili autoři zajímavou "fintu" – jednoduchým obvodem (obr. 59) vyřazují z činnosti u regulátoru rychlosti výkonový stupeň s tranzistory, a nahrazují jej podobným obvodem – jako na obr. 56.

Obvod má poněkud jinak zapojený vstup, který se připojuje na výstup A astabilního multivibrátoru. Tím je zajištěno, že časovač 555 bude pracovat teprve tehdy, neobjeví-li se na vývodu 3 astabilního multivibrátoru mezery mezi impulsy. V takovém případě přitáhne relé. Aby bylo zajištěno, že relé spínače maximálního výkonu okamžitě po zapnutí soupravy dálkového ovládání krátkodobě sepne, je vývod 4 (vstup reset, nastavení) spínače maximálního výkonu (555) spojen s vývodem 4 časovače 555 astabilního multivibrátoru.

Uvedeným způsobem je tedy zajištěno, že motor v případě potřeby vyvine maximální speed, což je těžko přeložitelné slovő (známé např. z dostihů), které znamená volně přeloženo asi maximální výkon, maximální záběr.

Všechna dosud uvedená zapojení neumožňují jednoduše přepínat směr otáčení motoru. K řízení směru otáčení motoru je proto třeba u několikakanálových souprav využívat volného kanálu a přepínat výkonové relé.

Elektronická pojistka

Posledním zajímavým obvodem ze série obvodů pro modely s elektromotory je elektronická pojistka. Ta má sloužit k tomu, aby odpojila serva a motor (motory) modelu, je-li napájecí baterie tak vybita, že jak serva, tak motor pracují nedefinovaně, popř. s přestávkami. Takový stav

Obr. 59. Spínač maximálního výkonu motoru

téměř vždy znamená zničení drahého modelu. Odpojí-li se v tomto případě celá elektronika, vypne se i motor a napětí na baterii se při zmenšené zátěži opět poněkud zvětší. Pak je obvykle možno zapojit serva, která mají mnohem menší odběr proudu než motor, a model např. letadla dostat plachtěním bez nebezpečí zničením na zem.

Zapojení pojistky využívá opět časovače 555, tentokrát jako komparátoru. Vývod 2 časovače (obr. 60) je napájen z děli-

Obr. 60. Elektronická pojistka, hlídající velikost napájecího napětí

če napětí odporový trimr P). Např. osmičlánková baterie NiCd má konečné vybíjeci napětí 8 V. Odporový trimr musí být v tomto případě nastaven tak, aby při zmenšení napětí baterie na konečné vybíjecí napětí bylo na vývodu 2 komparátoručasovače 555 napětí asi 1,6 V. Pak še změní úroveň na výstupu (vývod 3) na H a tento stav trvá po dobu určenou článkem R₁C₁, v našem případě asi 5 sekund. Za tuto dobu jistě obsluha pozná, že motor letadla (či lodi) nepracuje a že je tedy napájecí baterie na mezi svých možností; vysílačem soupravy lze pak motor odpojiť od napájecího napětí. Napětí ne-

Obr. 61. Zapojení k řízení rychlosti otáčení elektrických motorků modelů s možností řídit směr otáčení

zatížené baterie se opět poněkud zvětší a za určitou dobu bude na výstupu 3 opět úroveň L ("záporné" napětí), tzn. že celá elektronika může opět pracovat bez omezení. Pilot má tedy možnost volit způsob, jak model dostat do bezpečí bez poško-

Obvod se do sestavy zařízení zapojuje tak, že se vývod 3 komparátoru-časovače připojí na vývod B hradla H₄ obvodu pro plynulé řízení rychlosti.

Možností, jak sestavit uvedené obvody, je několik. Lze je vzájemně kombinovat a případně i doplnit dalšími obvody, jako je např. stabilizátor napájecího napětí (při použití "silových akumulátorů s napětím větším, než je jmenovité napájecí napětí) apod.

Všechny popsané obvody byly uveřejněny v ELO č. 12/81 a č. 1/82. Redakce se k tomuto tématu vrátila znovu v č. 10 roku 1983 a uveřejnila zapojení k řízení rychlosti elektrických motorů modelů na základě dříve publikovaných obvodů, vylepšené o možnost změny směru otáčení motoru. Zapojení je na obr. 61. K vlastní konstrukci je třeba jen jedno upozornění desku s plošnými spoji je třeba navrhovat se zřetelem na proud, který odebírá motor - může to být až 20 A! Při průměrné tloušťce fólie (na desce s plošnými spoji) asi 0,035 mm je třeba, aby příslušné spoje byly co nejkratší a měly dostatečnou šířku.

Tranzistory výkonového stupně pracují v impulsním provozu (asi 5 kHz), z tohoto hlediska je třeba navrhovat jejich typy a chlazení podle použitého motoru.

Nastavení: Výchozí poloha všech běžců trimrů je ve středu odporové dráhy. P₁ se nastavuje tak, aby při ovládači ve střední poloze relé právě přitáhlo. Ovládač pro řízení rychlosti otáčení motoru se pak umístí do polohy "plný plyn" a trimrem P2 se nastaví nejprve střední rychlost otáčení. Při ovládačí se výchozí (klidové) poloze se pak musí motor zastavit. Není-li tomu tak, je třeba změnit polohu běžce trimru Pa. Protože se nastavení obou trimrů vzájemně ovlívňuje, je třeba nastavení několikrát opakovat, až nakonec v poloze ovládače "plný plyn" budou otáčky moto-ru maximální a ve výchozí poloze ovládače bude motor "stát"

K součástkám: relé, použité v originálním zapojení, je pro napětí 6 V/70 Ω, s kontakty na proud 5 A (Siemens V23037 - A0001-A101, tranzistory BC337 by měly mít zesilovací činitel lepší než 400, hradla proti původním obvodům CMOS) jsou z pouzdra 74LS86, výkonové Darlingtonovy tranzistory mohou být typu BD645, BD901 nebo BDX33A.

ELO č. 12/1981, č. 1/1982, č. 10/1983

Konstrukční část

Regulátor teploty pro akvária

V AR byl před časem uveřejněn stavební popis konstrukce regulátoru teploty pro akvária na principu fázového řízení triaku integrovaným obvodem MAA436. Regulátor pracoval spojitě a byl i přesný; jeho vlastně jedinou nevýhodou byl průvodní jev, charakteristický pro všechna zařízení na principu řízení fáze: značné vf

Obr. 1. Zapojení regulátoru teploty pro akvária, spínaného nule. a) Schéma zapojení, b) úprava signálu z čidla při termistoru 600 až 800 Ω pro teploty 15 až 35 °C

rušení, které se šířilo vzduchem i po síti. Protože jsem podobné zařízení potřeboval, postavil jsem regulátor a byl jsem s ním skutečně spokojen. Jen kdyby nerušil . .

Po mnoha nejrůznějších zásazích se mi sice podařilo růšení do značné míry odstranit, avšak součástky odrušovacích členů se mi nepodařilo vtěsnat do dvouzásuvkové krabice, v níž byl regulátor konstruován a zhotovovat speciální krabici se mi nechtělo, neboť pak se vytrácela iedna z předností regulátoru - snadná stavba do úhledné krabice, na níž nebylo třeba dělat žádné mechanické úpravy.

V době, kdy jsem se rozhodoval "co s ním" (regulátorem), se však do regulátoru při manipulaci kolem akvária dostala voda a celý regulátor byl zničen. Proto jsem se rozhodl postavit jiný, na jiném principu a hledal jsem inspiraci. V té době se mi také čirou náhodou dostal do ruky radioamatérský časopis z NDR, Funkamateur, v němž byl zajímavý článek o regulátorech výkonu s řízením výkonového prvku v nule, tj. v době, kdy sinusovka síťového napětí prochází nulou. Článek i konstrukce, kterou popisoval, se mi velice libily a proto jsem se pokusil upravit zapojení pro svoje potřeby. Stručný překlad původního článku je v kapitole Zdroje, napáječe ... v úvodu tohoto čísla AR řady B. Proti původnímu zapojení je v popisované konstrukci pouze minimum změn, a proto se v popisu regulátoru omezím jen na praktickou stránku kon-

strukce regulátoru.

Regulátor byl opět umístěn v dvoudílné nízké elektroinstalační krabici (viz fotografie), do jejíž jedné části byla umístěna deska s plošnými spoji a do druhé zásuvka pro připojení topného tělesa. Protože však autorem původního zapojení navržený srážecí rezistor v přívodu sítě k usměrňovací diodě a Zenerově diodě příliš "hřál" a nahrazovat jej rezistorem na ještě větší zatížení se mi nechtělo, zvolil jsem jako "srážecí" součástku běžný kondenzátor MP. Záměna se osvědčila a navíc si vyžádala pouze jednu další změnu proti původnímu zapojení: báze tranzistoru T₃ není v upraveném zapojení napájena z místa za srážecím rezistorem, ale přímo z přívodu fáze (obř. 1).

Jinak je zapojení shodné s originálem, a má všechny vlastnosti originálního zapojení. Neruší, pracuje spolehlivě již dlouhou dobu a je dobře reprodukovatelné.

Obr. 3. Deska s plošnými spoji T206 regulátoru

Obr. 4. Deska s plošnými spoji, osazená součástkami

Má navíc proti zapojení dříve publikovanému v AR jednu výhodu navíc:na místě teplotního čidla lze použít víceméně libovolný termistor a to jak provedením (hmotový, "perličkový" nebo jiný), tak s velkým rozsahem odporu při 25 °C. Vyhoví každý termistor v rozmezí asi od 600 do 10 000 Ω, nejvýhodnější je kolem 1 až 2 kΩ. Navíc regulovaný teplotní rozsah a částečně i citlivost lze upravit podle použitého termistoru paralelními a sériovými rezistory (R_p a R_s na schématu). Např. pro termistor (perličkový) s odporem v rozmezí 600 až 800 Ω při 25 °C je zapojení teplotního čidla na obr. 1b. Nastavení či úpravy obvodu vyžadují sice

poněkud větší trpělivost, výsledek se však jistě vždy dostaví.

Pro konstrukci a používání tohoto regulátoru (stejně jako pro nastavování a úpravy) jedno základní a důležíté upozornění:

Všechny součástky regulátoru jsou spojeny přímo se sítí! Protoje třeba, aby regulátor byl umístěn v krabici tak, aby žádná jeho část (tj. např. i hřídel ovládacího potenciometru k řízení teploty atd.) nemohla přijít do styku s jakoukoli částí lidského těla! Velkou pozornost je třeba věnovat i konstrukci čidla a topného tělesa – pracujeme se síťovým napětím! Já jsem vyřešil konstrukci čidla tak, že jsem termistor umístil do silikonovým olejem zčásti naplněné tlustostěnné zkumavky, podobně jsem vyřešil i ohřívací těleso (rezistory na větší výkon, zapojené sérioparaleině ve zkumavce, naplněné buď silikonovým olejem nebo velmi jemnozrnným pískem).

Konstrukce

Regulátor je postaven na desce s plošnými spoji podle obr. 2, 3 a 4. Výřezy v desce ji umožňují zasunout do instalační krabice. Rezistor R_{B} je vhodné rozdělit na dva, jeho celkový odpor by měl být asi 750 kΩ. Tento rezistor je nutné volit typu TR 151 (typ s kovovou vrstvou) nebo raději TR 152 vzhledem k dovolené napětové zatížitelnosti, v žádném případě nelze použít typ TR 112a, TR 212 nebo pod., tj. typy uhlíkové s drážkami. Kondenzátory C_5 , C_6 a C_7 musí být typy MP na napětí alespoň 630 V, raději na 1000 V, jejich kapacita by měla být asi 0,2 až 0,3 μF (např. 2× 0,15 μF apod.).

Prázdná ploška s třemi dírami slouží k připojení paralelních, popř. sériových rezistorů k termistoru. Triak je umístěn na chladiči podle obr. 5a, velikost chladiče lze upravit podle výkonu ohřívacího tělesa a podle typu triaku. Pro přívody termistoru a případně pro regulační potenciometr jsou ve víku instalační krabice díry podle obr. 5b. Paralelně k přívodům sítě lze do krabice umístit i kondenzátor 0,1 μF//1000 V, který byl použit v originálním zapojení.

Ostatní součástky je vhodné použít podle seznamu součástek. Rezistor v přívodu k řídicí elektrodě triaku zvolíme podle typu a "citlivosti" triaku.

Seznam součástek

Rezistory (TR 151 nebo odpovídající typ MLT) 100Ω R_1, R_2 R₃, R₄ $10 \text{ k}\Omega$ R₅ $2,2 k\Omega$ $1 k\Omega$ $5,6 \text{ k}\Omega$ R_7 750 kΩ (TR 152, viz text) R₈ R₉ 150 Ω R₁₀ $6,8~k\Omega$ R_{11} 33 k Ω R₁₂ $1.5 \text{ k}\Omega$ R₁₃ $10~k\Omega$ R₁₄, R₁₅ $6,8 k\Omega$ R_{16} 150 k Ω R₁₇ potenciometr nebo odporový trimr viz text R_{18} 39 až 56 Ω (viz text) R₁₉

Obr. 5. Chladič triaku a rozmístění děr na krycí desce

Regulátor bez krytu. Z obrázku je dobře vidět chladič triaku a celkové uspořádání

Kondenzátory

C₁, C₂ 33 až 47 nF, TC 235 (TC 216 apod.) C₃ 20 μF/15 V

 C_4 500 μ F/15 V C_5 až C_7 viz text

Polovodičové součástky

T₁, T₄, T₅ KF508, pópř. KFY46 T₂, T₃ KF517, popř. KFY18 D₁ KA501 D₂ KY130/150

 D_2 K71307130 D_3 KZZ76 (popř. jiná s U_Z asi 11 V)

triak KT207/600

Ostatní součástky

pojistka podle výkonu topného tělesa elektroinstalační krabice pod omítku dvojitá

síťová šňůra

přístrojový knoflík (bez možnosti styku s jeho kovovými částmi) termistor podle textu

Bude-li zvolena indikace topení (viz teoretickou část na začátku tohoto čísla), lze použít uvedené zapojení s diodou LED nebo pouze síťovou doutnavku, zapojenou paralelně k topnému tělesu.

Upozornění! Znovu důrazně upozorňuji, že jde o zařízení, přímo spojené se sítí! Nedoporučuji proto jeho stavbu začátečníkům a všem, kteří mají v elektronice malé praktické a teoretické znalosti.

Anténní zesilovač pro IV. a V. TV pásmo

V AR B5/1983 bylo uveřejněno několik zapojení anténních zesilovačů se zahraničními tranzistory pro různá kmitočtová pásma. Zapojení mne lákala svou jednoduchostí a dobrými parametry, proto jsem si obstaral jeden z doporučovaných tranzistorů a navrhl desku s plošnými spoji pro zesilovač pro IV. a V. televizní pásmo s optimálními vlastnostmi asi uproštřed pásma.

Pro širokopásmové zesilovače jsou nejvhodnější speciální zahraniční tranzistory jako např. BFT66. Zapojení vývodů tohoto tranzistoru je na obr. 6. Tyto

Obr. 6. Zapojení vývodů tranzistoru BFT66

tranzistory nemají žádný ani přibližný tuzemský ekvivalent. Pro úplnost jejich základní parametry: jsou to epitaxně planární tranzistory n-p-n, jejich $U_{\rm CBO}$ max = 15 V, $U_{\rm CEO}$ max = 15 V, $I_{\rm C}$ max = 30 mA, maximální teplota okolí je 200 °C, $P_{\rm tot}$ = 200 mW, $f_{\rm T}$ = 4000 MHz, zesilovací činitel $h_{\rm 21e}$ je větší než 30 při $I_{\rm C}$ = 25 mA, $U_{\rm CE}$ = 6 V.

S tímto tranzistorem byl zkonstruován zesilovač, jehož schéma je na obr. 7. Jde

Obr. 7. Zapojení anténního zesilovače pro IV. a V. TV pásmo

o jednoduchý, jednostupňový zesilovač, jehož změřené parametry jsou v tabulce.

Parametry zesilovače

Kmitočet / [MHz]	460	530	750	780	860
Zisk <i>G</i> [dB] Šumové číslo [kT _o] Šum [dB]	1,95,	14,5 2,1 3,2	-1,9	2,1	9 2,7 4,3

kanál <21 28 56 59 nad 60

Údaje platí pro napájecí napětí 12 V, proud $l_c = 12$ mA.

Zesilovač je na desce s plošnými spojí podle obr. 8 a 9, rozměry desky jsou 30 × 45 mm. Stínění a emitor tranzistoru jsou na straně spojů spojeny můstkem z plechu Fe (pocínovaný). Deska s plošnými spoji je umístěna v krabičce z pocínovaného plechu výšky 20 mm. Vstup i výstup jsou upraveny pro připojení souosého kabelu 75 Ω.

Seznam součástek

Rezistory (TR 151 nebo jiné na nejmenší

 $\begin{array}{ll} \text{zatiženi}) & & \\ \text{R}_1 & & 680\,\Omega \\ \text{R}_2 & & 56\,\text{k}\Omega \end{array}$

Kondenzátory

 $\begin{array}{cccc} C_1 & 4,7 \, \text{pF} \\ C_2 & 6,8 \, \text{pF} \\ C_3 & 1 \, \text{nF} \\ C_4 & 1 \, \text{nF} \end{array}$

Tranzistor BFT66 (Siemens)

Cívky
L
1,5 závitu drátu
o průměru 0,8 mm CuL
na průměru 3,5 mm
L
2 8 závitů drátu o průměru
0,25 mm CuL na toroidu
z materiálu H22,
průměr 4 mm

Zesilovač je napájen stabilizovaným napětím buď ze sítového zdroje, nebo z baterií, vývody součástek jsou zkráceny na minimum.

Obr. 8. Deska s plošnými spoji T207 anténního zesílovače

Obr. 9. Deska s plošnými spoji zesilovače, osazená součástkami-

INTEGROVANÉ OBVODY CMOS

Ing. Václav Teska

(Dokončení)

Hodinkový a budíkový obvod MHA1116

Časoměrný obvod MHA1116 (čs. vývoj) je určen pro analogové hodiny a budíky s bipolárním krokovým motorkem s indikací sekund. Blokové zapojení obvodu je na obr. 391. Oscilátor obvodu je Pierceova typu a pracuje s PKJ o jmenovitém kmitočtu 4,194 304 MHz, s keramickým trimrem a pevným kodenzátorem o kapacitě asi 15 pF. Za oscilátorem následují dva dynamické děliče typu CODYMOS, dělící kmitočet vstupního signálu v poměru 8:1, a řetězec osmnácti statických binárních dělicích buněk. Z výstupu sedmnácté buňky je odebírán signálu určený k pohonu krokového motorku. Signál je upraven ve dvou předzesilovacích stupních – invertorech I₂, I₃ a zesílen v můstkovém zesilovačí ze čtyř výkonových komplementárních tranzistorů T₁ až T₄ se širokými kanály s výstupy M₁ a M₂. Perioda výstupních komplementárních signálů je 2 s se střídou 1:1.

Signál výstupu A je určen k buzení elektroakustického měniče a je tvarován třívstupovým hradlem NAND se vstupy 2048 Hz, 0,5 Hz a 0,25 Hz. Potom je zesílen výkonovým stupněm s tranzistory T₅, T₆. Výsledný signál o kmitočtu 2048 Hz je klíčován a má trvání 1 s s mezerou 3 s.

Pracovní kmitočet obvodu MHA1116 není ohraničen kmitočtem 4 MHz. Na obr. 392 je ukázán výsledek měření obvodu v oblasti vyšších kmitočtů, spolu s vyhodnocením napájecího proudu. Při napájecím napětí $U_{DD}=1,8$ V pracuje obvod spolehlivě v oblasti kmitočtů 10 MHz. Dolní hranice je omezena kmitočtem 100 kHz. PKJ je zapojena mezi body OSC VSTUP a OSC VYSTUP, při měření byla odpojena a měřicí signál pravoúhlého průběhu se střidou 1:1 a o amplitudě totožné s napájecím napětím U_{DD} byl přiváděn na vývod OSC VYSTUP. Proud odebíraný obvodem v tomto uspořádání není shodný s proudem naprázdno I_{DD} (ten zahrnuje i složku k napájení oscilátoru). Proto byl ss proud odebíraný obvodem označen symbolem I_{DD} .

Na obr. 393 je zakreslena zatěžovací charakteristika obvodu, který byl zatěžován rezistorem $R_z=1000$ až 50 Ω , připojeným mezi výstupy M_1 a M_2 . Symboly U_2 a I_2 je označeno napětí a proud zátěží. Při každé sérii měření (při konstantním napájecím napětí U_{DD}) byly získány dvě zatěžovací charakteristiky. Jejich rozdíl je dán určitou nesymetrií geometrie a tím i odporů kanálů dvojic otevřených výkonových tranzistorů T_1 , T_4 a v druhém taktu T_2 , T_3 (obr. 391).

Aplikace obvodu, tj. typické zapojení budíku nebo hodin s PKJ (při nepoužitém

Obr. 392. Závislost napájecího proudu na kmitočtu obvodu MHA1116

Obr. 391. Blokové zapojení časoměrného obvodu MHA1116

výstupu A) je na obr. 394. Obvod je napájen jedním monočlánkem nebo tužkovou baterií o napětí 1,5 V. Mezi výstupy M_1 a M_2 je v sérii s kondenzátorem o kapacitě 50 až 100 μ F připojen krokový motorek KM. Proměnný kondenzátor o kapacitě asi 10 až 50 pF slouží k přesnému nastavení pracovního kmitočtu oscilátoruna jmenovitou velikost. U budíku jsou na výstup A zapojeny spínače akustického

Obr. 394. Typické zapojení budíku s integrovaným obvodem MHA1116

Obr. 393. Zatěžovací charakteristika obvodu MHA1116 signálu, za nímiž následuje zesilovací stupeň s elektroakustickým měničem:

Časoměrný obvod U114D

Časoměrný obvod U114D, vyráběný technologií CMOS v NDR, je určen ke kompletaci budíků s bipolárním krokovým motorkem a analogovým ukazovatelem. Odvozený obvod U124D je určen pro analogové hodiny. Obvod je vybaven vstupem "start-stop", který po přivedení nulového potenciálu nastaví průběh komplementárních impulsů napájecích krokový motorek. Další "motorový" impuls

Obr. 397. Zapojení synchronizátoru elektronických hodin s MHA1115

Obr. 395. Typické zapojení budíku s IO U114D

se objeví asi za 1 s po odpojení tohoto vstupu od nulového potenciálu. Obvod může pracovat v režimu testování, který je realizován přivedením nulového potenciálu na vstup TEST, přičemž se přemostí čtyří buňky děliče (16násobné zvýšení kmitočtu výstupních signálů).

Sekvence budicího signálu je tvořena čtyřmi oddělenými signály buzení 64 s. Signály jsou odděleny třemi pauzami 192 s. Jednotlivé signály se skládají z šestnácti budicích impulsů, modulovaných kmitočtem 1024 Hz s délkou 1 s a mezerou 3 s. Obvod je dále vybaven funkcí "PŘISPÁNÍ", umožňující pomocí spínače S, opakovat budící sekvenci.

Na obr. 396 je porovnán průběh

²Obr. 396. Napěťová závislost kmitočtu oscilátoru obvodů MHA1116, U114D

odchylky chodu obvodů MHA1116 a U114D. Při měření obvodů MHA1116 byly zvoleny $C_1=20~\mathrm{pF},~C_2=15~\mathrm{pF}.$ Kapacita C_2 u porovnávaného obvodu U114D musela být poněkud zvětšena (na $C_2=24~\mathrm{pF})$, kapacita C_1 nebyla měněna. V obou případech byla v obvodu použita stejná PKJ (TESLA). V grafu je současně zachycena i změna napájeícho proudu/ $_{0D}$ v závislosti na napájecím napětí U_{0D} .

Obvod U114D se používá v budících, vyráběných Chronotechnou Šternberk n. p. Zapojení budíku je na obr. 395.

Synchronizátor elektrických hodin řízených kmitočtem sítě

V naší literatuře se během doby objevilo několik článků s návrhem stavby synchronizátoru tj. zdroje přesného kmitočtu 50 Hz, odstraňujícího značné zpožďování elektronických hodin nejrůznějších provedení, řízených kmitočtem sítě.

Jednoduchý a současně vyhovující náročným požadavkům na přesnost je synchronizátor, zapojený s časoměrným obvodem, původně určeným pro analogové hodiny a hodinky. Využitelný je každý časoměrný obvod s nemodulovaným impulsním výstupem o kmitočtu desítek až stovek Hz.(např. výstup budicího signálu nebo výstup testování). K obvodu musí být připojena PKJ o jmenovitém kmitočtu f_{os} , který je dán vztahem: $f_{os} = 50.2^\circ$, kde n je celé číslo, rovné počtu ekvivalentních binárních dělicích stupňů, nacházejících se mezi oscilátorem a výstupem použitým k synchronizaci.

Optimálním se jeví časoměrný obvod ICM1115 fy Intersil nebo e1115 fy Eurosil. Tento obvod je opatřen výstupem signálu pro elektroakustický měnič o kmitočtu 64 Hz a mezi uvažovaným výstupem a oscilátorem je zařazeno 18 ekvivalentních binárních dělicích buněk, takže

$$f_{\rm os} = 50.2^{16} = 3\,276\,800\,{\rm Hz}.$$

Ekvivalentní obvod s označením MHA1115 byl vyvinut i v ČSSR; o jeho výrobě se však zatím neuvažuje.

Zapojení synchronizátoru, který byl použit jako zdroj přesného kmitočtu 50 Hz v časovači AUREX fy Toshiba, je na obr. 397. Synchronizátor byl navržen pro napájení ss napětím 20 V, které bylo v časovači k dispozici. Jeho napájecí část obsahuje stabilizátor proudu, osazený tranzistorem TR15 a Zenerovou diodou KZ141. Další Zenerova dioda stabilizuje

výstupní napětí stabilizátoru proudu. Z následujícího děliče je odebírán napájecí proud časoměrného obvodu (U_{DD} = 1,4 V). Signál z výstupu A o kmitočtu 50 Hz je po zesílení tranzistorem KSY21 přiváděn přímo na vstup časoměrného obvodu časovače, který byl původně určen ke vstupu synchronizačního napětí odvozeného ze sítě.

Časoměrné obvody CMOS pro číslicové hodinky a hodiny

Časoměrné obvody CMOS určené pro elektronické hodiny a hodinky s číslicovou zobrazovací jednotkou jsou nesporně složitější v porovnání s obvody s výstupy pro krokový motorek. Složitost obvodu je dána počtem funkcí, které mohou být obvodem realizovány. Obvod určený pro hodinky s displejem LCD obsahuje kromě integrované části oscilátoru a děličů kmitočtu řádu dalších bloků: čítače časových údajů (sekund, minut, hodin, popř. setin a desetin sekund, jde-li o ENH-chronometr), čítače kalendářních údajů (datum, pořádové číslo měsíce, případně dne v týdnu a údaj o roku), obvody pro nastavní referenčních údajů, pro řízení hodinek a vyvolavání jednotlivých funkcí, dekodér, blok výstupních tranzistorů budících jednotlivé segměnty displeje se společnou elektrodou, zdroj napětí pro napájení těchto výstupů a pomocné obvody určené k testování správné funkce jednotlivých částí časoměrného obvodu.

Příklad vnitřní struktury časoměrného obvodu běžně vybavených ENH-LCD je na obr. 398, kde je zapojení náramkových hodinek s obvodem MJ7 fy Philips. Oscilátor obvodu běžného typu s invertorem má integrovaný výstupní, kondenzátor C₂. Za oscilátorem následují tři bloky děličů kmitočtu s výstupním signálem o kmitočtu 1 Hz, který je zpracován řetězcem čítačů Č₁ až Č₆ (Č₁ – jednotky a desítky s, Č₂ jednotky a desítky minut, Č₃ – jednotky a desítky hodin, Č₅ – čítač měsíců, Č₆ – čítač dnů v týdnu). Datumový čítač Č₄ má proměnný rozsah čítání (1 až 28, 1 až 29, 1 až 30 a 1 až 31). Horní rozsah je volen čítačem Č₅ na základě jeho vnitřní informace o pořadovém čísle měsíce.

Blok zdvojovače napětí je určen k řízení displeje LCD. Displej s tekutými krystaly vyžaduje k provozu poněkud větší pracovní napětí, než jaké může poskytnout stříbrozinkový napájecí článek se jmenovitým napětím 1,55 V. Diodový násobič napětí je impulsně napájen z výstupu bloku děliče D₁ signálem o kmitočtu 512 Hz. Býva doplněn několika diskrétními součástkami – v našem případě dvěma kondenzáto-

ry o kapacitě 47 nF, které jsou připojeny mezi výstup 512 Hz a vývod CAP a mezi výstup UH a vývod $U_{\rm DD}$. Z dalšího bodu děliče je odebírán signál o kmitočtu 32 Hz, určený k napájení společné elektrody SE displeie.

Důležitou součástí každého časoměrného obvodu tohoto typu je blok ovládání hodinek. Jeho funkce spočívá v nastavo-vání počátečních údajů, volbě jednotlivých funkcí a volbě formátu displeje. Blok je vnitřně propojen se sekcí čítačů a dekodérem. V našem případě jsou hodinky ovládány dvěma spínači A a B, propojenými s odpovídajícími vstupy obvodu ovládání hodinek. Spínač A je určen k volbě dvanáctihodinové nebo čtyřiadvacetihodinové verze zobrazení časových údajů a k volbě časového a kalendářního údaje v režimu nastavování počátečních údajů. Spínač B je využit ke korekci sekundového údaje a k nastavení jednotlivých jednotek. Spínač B zjednodušuje obsluhu při minimálním počtu ovládacích tlačí-tek, což má za následek značné zvětšení odběru proudu během každého stisku spínače B v režimu nastavování údajů.

Obvod MJ7 je vybaven pouze dvěma testovacími vstupy. Vstup T, je určen ke zrychlenému testu, sloužícímu k rychlé-

Obr. 399. Vnitřní struktura časoměrného obvodu MSM5080

znak zobrazující číslici 1,2; 1 až 3; 1 až 6) je u obvodu MJ7 zapotřebí 56 spojů mezi, časoměrným obvodem a displejem LCD.

K jejich redukci na únosnou míru je využívána technika dvojitého, popř. vícenásobného multiplexování displeje LCD. Tato technika bude krátce popsána na příkladu činnosti časoměrného hodinkového obvodu MSM5080 ty OKI, který je z hlediska funkčního vybavení blizký popsanému obvodu MJ7. Displej LCD pro obvod MSM5080 obsahuje stejný počet číslic určených k trvalému zobrazení sekund, minut, hodin, data, dvojtečku, zkratky názvů dnů a tři znaky pro údaje dopoledne, odpoledne a 24hodinový formát indikace časových údajů:

Vnitřní struktura obvodu a jeho zapojení je na obr. 399. Oscilátor odpovídá zapojení na obr. 386c. Výstupní kondenzátor C₂ je integrován a je využit při připojení vývodu PKJ ke kontaktu OSC VÝST (2). Při připojení PKJ ke vývodům

Obr. 398. Vnitřní struktura časoměrného obvodu MJ7

mu ověření správné funkce bloku čítačů. Výrobce doporučuje, aby byl obvod během testu napájen externím signálem, přiváděným na OSC VSTUP. Měřící signálo kmitočtu $f_{\rm ext}$ prochází sestupným spínačem S_2 na spínač S_1 , dále je veden na vstup děliče D_3 (1:32) a na výstup SE, kde se objeví signál o kmitočtu $f_{\rm ext}$. Během testu je výstup děliče D_2 (1:16) oddělen od vstupu bloku D_3 . Signál na výstupu děliče D_3 , přiváděný na vstup sekcí čítačů, má kmitočet $f_{\rm ext}/32$. Vstup T_2 uvede obsahčitačů po přiložení napětí $U_{\rm DD}$ do definovaného stavu s údajem pondělí 1. dubna, 12 h, 00 min, 0 s při 24 hodinové verzi, který se současně zobrazí na displeji. Při přivedení napětí $U_{\rm DD}$ na vstupy T_2 a B je realizován tzv. lamp test, spočívající v současném zobrazení všech segmentů displeje.

Nevýhodou obvodu je značný počet kontaktů, potřebných pro připojení displeje. I při úsporném propojení několika segmentů zobrazených současně (číselný

Obr. 400. Průběh napětí na elektrodách displeje LCD při dvojím multiplexování

OSC VSTUP a OSC VÝST (1) musí být zapojen externí kondenzátor C2

Funkce ovládacích spínačů (vstupů) A a B jsou do značné míry podobné vstupům A a B u obvodu MJ7. Formát zobrazení časového údaje se volí vstupy 12/24 h a A. Obvod je vybaven testovacími vstupy T₁, T₂, T₃ a R, pomocí nichž mohou být realizovány zrychlené zkoušky, uvedení čítačů do definovaného stavu, "lamp test" a může se zrušit zobrazení skupiny

segmentů displeje. Časoměrný obvod MSM5080 je vybaven tzv. dvojitým multiplexováním a proto vyžaduje displej LCD, upravený pro tuto techniku. Displej má dvě společné elektrody a segmenty jednotlivých znaků včetně značek jsou propojeny do dvojic (nebo větších celků, když se jedná o segmenty, které jsou ve všech případech zobrazová ny společně). První segment dvojice přísluší společné elektrodě SE, a druhý segment elektrodě SE2. Každé společné elektrodě přísluší zhruba polovina všech segmentů a ostatních znaků.

Technika dvojitého multiplexování je schematicky znázorněna na obr. 400, kde je na případě dvou vodivě spojených segmentů X (s protilehlou elektrodou SE₁) (s protilehlou elektrodou SE₂) ukázán průběh napětí na jednotlivých výstupech pro ovládání displeje. Na obr. 400 je dále ukázán průběh signálu 32 Hz, odvozené-ho z mezistupně děliče kmitočtu, synchronizujíciho multiplexer. Multiplexer a výstupní stupně pracují se dvěma úrovněmi napětí a to s napětím záporného pólu baterie $U_{SS} = 1.5 \text{ V}$ a se záporným napětím násobiče $U_{\rm H} = -2.5 \text{ V}$

Segment může být zobrazen tehdy, je-li rozkmit napětí mezi příslušnými elektrodami přibližně rovný napětí UH. Je-li rozkmit napětí menší, segment se nezobrazí. Požadované změny amplitudy mezi odpovídajícími elektrodami se dosáhne fázovým posuvem výstupního napětí elektrod dvojic segmentů X a Y.

Technika multiplexování využitá u obvodu MSM5080 dovolila zmenšit počet propojek mezi časoměrným obvodem a displejem o 25 až 28 spojů.

Časovač procesů

Časovač je napájen z baterie 9 V. Jak je zřejmé z obr. 401, základem časovače jsou posuvné registry s řídicí logikou. Posuvné registry lO₁ až lO₄ mají na výstupech diody LED, jejichž proud je omezen tranzistorem T₁, který má na výstupu napětí o kmitočtu 2 Hz se střídou 1:1. Po stisku tlačítka "start" (Tl₃) se vynuluje klopný obvod dat IO₅ a rozsvítí se LED D₁. Úkolem časovače je "posouvat" svit diod vždy o jeden LED po uplynutí dané doby. Rytmus posuvu je dán generátorem taktu H₂, H₃. Taktovací impulsy jsou převedeny na čas čítačem IO₆, z něhož je buzen řetězec posuvných registrů IO₁ až IO₄. Pokud je časovač nastartován Tl₃, je na čítač přiveden nulovací impuls, takže všechny výstupy čítače mají úroveň "0" Po návratu Tl₃ do klidové polohy přejde výstup Q₁₂ IO₆ po 15 s na úroveň "1". Při kladné hraně:

1. Vstup D IO₁ "převezme" kladné napětí, které se objeví na výstupu Qo a rozsvítí se LED Do.

2. Výstup Q klopného obvodu lO₅ přejde na úroveň "0" a zhasne LED D₁. Po dalších 30 s se na výstupu Q₁₂ objeví nová kladná hrana impulsu, zhasne LED D_2 a rozsvítí se LED D_3 . Tento pochod se opakuje po 30 s. Obvod $R_{35}C_1$ uzavírá během posuvu tranzistor T₁, takže nejsou zatěžovány výstupy posuvných registrů. Po stisku Tl₂ se posuv zastaví a zůstane rozsvícena posledně rozsvícená LED. Obvod je nulován článkem H₄, R₃₇ a C₃. Vždy po připojení napájecího napětí se posuvné registry nastaví do výchozí polohy. Rytmus můžeme měnit na jiný změnou R₃₆

Literatura

Warner, R. M., Fordemwald, J. N.: Integrated circuits design and fabrication. McGraw-Hill: New York 1965.

Grove, A. S.: Physics and technology of semiconductor devices. John Wiley: New York 1967.

Cobbold, R. S. C.: Theory and applications of field effect transistors. John Wiley: New York 1970.

Bernard, J. M.; Hugon, J.: Od logických obvodů k mikroprocesorům. Díl 1 Základy kombinačních a sekvenčních

obvodů. SNTL: Praha 1982. Tietze, U.; Schenk, Ch.: Halbleiterschaltungstechnik. Springer Verlag: Berlín

Hnatek, E. R.: A user's handbook of D/A and A/D converters. John Wiley: New York 1979.

York 1979.

Sklenář, B.: Časoměrná technika s obvody CMOS. TESLA VÚST.

Kruml, J.: Základní měřicí metody obvodů CMOS. TESLA VÚST.

CMOS Taschenbuch. Díl I.a II. IWT Verlag:

Vaterstetten bei Munchen 1981. Lancaster, D.: CMOS Kochbuch, IWT Verlag: Vaterstetten bei Munchen 1980.

Firemní literatura a katalogy TESLA, Mo-torola, Intersil, Siliconix, Fairchild, Phi-lips, ITT, Analog Devices, Mostek, Hughes, Texas Instrument, Siemens, National Semiconductor atd.

Časopisy Solid State Circuit, RCA Revue, IEEE Trans. Electron Devices, Electronic Design, Elektronik, Elektor, Sdělovací technika, Funkschau, EDN atd.

Přehled obvodů CMOS

V této kapitole je přehled integrovaných obvodů MOS základní řady 4000, řady 74C, mikroprocesorů a mikropočítačů CMOS, pamětí RAM, ROM, PROM a EPROM, doplňkových obvodů k mikroprocesorům a mikropočítačům, převodníků A/D a D/A, multiplexerů a analogových spínačů, čítačů, časovačů a budičů displejů, dále lineárních obvodů, obvodů pro spotřební elektroniku a obvodů pro telekomunikace.

Je celkem pochopitelné, že nemohl být zpracován celosvětový přehled obvodů CMOS, neboť každoročně přichází na trh několik desítek až stovek typů obvodů CMOS, a to jak číslicových, tak analogových a lineárních.

Mezi přední světové výrobce obvodů CMOS patří firmy jako např. Fairchild (Fa), s řadou F4000, Harris Semiconductor (HS) s řadou HD4000, popř. i s některými typy z řady HD14000, Hitachi (Hi) s řadou HD14000, Motorola (Mo) s řadou MC14000, s řadou pamětí MCM14000, National Semiconductor (NS) s řadou CD4000, a s řádou MM54/74C . . ., Philips a Valvo (PV) s řadou HEF4000, RCA (RC) s řadou CD4000, SGS (SG) s řadou HCC/ HCF4000, Solis State Scientific (SS) s řadou SCL4000, Toshiba (To) s řadou TC4000.

V zemích RVHP se budou nebo se již vyrábějí obvody CMOS v MLR (ML) - řada 4000PC, v NDR (ND) - řada U a V4000, v PLR (PL) - rada UCY74000, v RSR (RS) řada MMC4000 a v SSSR - 10 série K561. V SSSR se vyráběly CMOS obvody i v sériích K176 a K164, ty jsou však postupně nahrazovány sérií K561.

V ČSSR vyrábí obvody CMOS k. p. TESLA (Piešťany) a menší série i TESLA VÚST Praha. Obvody mají typové označeni MHB/MHF4000. Obvody MHB jsou určeny pro teplotní rozsah 0 až 70 °C, obvody MHF pro rozsah -40 až +85 °C.

Obvody řady 4000

V přehledu řady 4000 jsou pro jednotnost uváděny jen obvody řady 4000 a obvody série K561, které jsou ekvivalenty těchto obvodů. Nejsou zde uvedeny obvody řad 14000 a 74000, pokud je nevyrábí jen jeden výrobce. Takže např. je uveden obvod 4001 a v odstavci výrobce je, že ho mimo jiné vyrábí i Motorola (i když pod značením MC14001) a PLR (pod označením UCY74001).

Тур	Funkce	Výrobce
4000	2× 3vst. NOR + invertor	HS, NS, PV, RC SG, SS,
4001 K561LE5	4× 2vst. NOR	Mo, PL Fa, HS, NS, PV, RC, SG, SS TESLA (TE), To, Hi, Mo,
4002	2× 4vst. NOR	ML, ND, PL, RS Fa, Hi, HS, Mo, NS, PV,
K561LE6		RC, SG, SS, To, PL, RS, TE
4006 4007	18bit. statický posuvný registr	Fa, HS, Mo, NS, PV, RC, SG, SS, To, TE Fa, HS, Mo, NS, PV, RC,
4007	invertor a 2× kompl. pár 4bit. úplná sčítačka	SG, SS, To, ML, ND Fa, Hi, HS, Mo, NS, PV,
K561IM1 4009	6× budič-převodník, invert.	RC, SG, SS, To NS, RC, SS, To
K561PU2 4010	6× budić-převodník, neinv.	NS, RC, SS, To, ML
4011 K561LA7	4× 2vst. NAND 2× 4vstup. NAND	Fa, Hi, HS, Mo, NS, PV, RC SS, To, ML, ND, PL, RS, TE
4012 K561LA8 4013	2× klopný obvod D	Fa, Hi, HS, Mo, NS, PV, RC, SS, To, ML, ND, PL, RS Fa, Hi, HS, Mo, NS, PV,
K561TN2 4014	8bit. stat. posuv. registr	RC, SG, SS, To Fa, Hi, HS, Mo, NS, PV,
4015	2× 4bit. stat. posuv. registr	RC, SG, SS, To, ND, RS, TE
K561IR2 4016	čtyři obousměrné spínače	Fa, Hi, HS, Mo, NS, PV,
K561KT1 1017	dekadický čítač/dělič s deseti	RC, SG, SS, To, ML Fa, Hi, HS, Mo, NS, PV,
K561IE8	výstupy	RC, SG, SS, To, ML, ND, RS
4018 K561IE19	přednastavitelný dělič N, čítač 4bit. hradio SELECT AND/OR	Fa, HS, Mo, NS, PV, RC, SG, SS, To, RS Fa, HS, Mo, NS, PV, RC,
1019 K561LS2 1020	14bit. binární čítač/dělič	SG, SS, To, ND, PL, RS Fa, Hi, HS, Mo, NS, PV,
(561IE16 1021	8bit. stat. posuv. registr	SG, SS, To, ML, RS, TE Fa, Hi, HS, Mo, NS, PV,
1022 -	dělič 8, čítač, 8 výstupů	RC, SG, SS, To Fa, HS, Mo, NS, PV, RC, SG, SS, To, ML
K5611E9 1023 K561LA9	3× 3vst. NAND	Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, ML, ND,
1024 (5611E1	7bit. binární dělič/čítač	PL, RS Fa, HS, Mo, NS, PV, RC, SG, SS, To, RS, TE
025 (561LE10	3× 3vst. NOR	Fa, Hi, HS, Mo, RC, PV, SG, SS, To, PL, RS
1026 1027 (561TV1	dekadický dělič/čítač, 7seg. [*] 2× klopný obvod J-K master- -slave	RC, SG, SS, To Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, ML, ND, PL.
1028	BCD-dekadický dekodér	RS Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, ML, ND
(561ID1 1029	přednastavitelný binárně	RS, PL Fa, HS, Mo, NS, PV, RC,
(561IE15 1030 (561LP2	dekadický dělič/čítač 4× 2vst. exclusive-OR	SG, SS, To, ML, ND, TE Fa, HS, Mo, NS, PV, RC, SG, SS, To, MR, ND, RS,
1031 1032 (5611M2	64bit. stat. posuv. registr 3× sériová úplná sčítačka	TE Mo, NS, PV, RC, SG, SR RC, To, Mo,
K561IM2 4033 4034	dekadický dělič/čítač, 7seg. 8bit. třístavový registr	RC, SG, SS Hi, Mo, NS, RC, SG, SS,
K5611R6 4035	sběrnice 4bit. registr. paralel. vstup,	To, ML, ND Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, ND, RS,

		," .*	•
: 1	Тур	Funkce _	Výrobce
	4036 4038 4039 4040	4× 8bit. statická RAM 3× sériová úplná sčítačka 4× 8bit. statická RAM 14bit. binární čítač/dělič	TC, To Mo, RC, SG, To RC; To Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To
	4041 4042 K561TM2 4043 K561TR2	4× budič s výst. Q a Q 4× hradlovaný střadač D 4× třístav. střadače R-S, NOR	NS, PV, RC, SG, SS Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, ML, ND, RS Hi, HS, Mo, NS, PV, RC, SG SS, To
· j	4044 4045	4× střadač R-S, NAND, 3stav. 21 bit. čítač	Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, ML, ND RC, SG
•	K561PU4 4046 4047	obvod PLL mono/astabilní multivibrátor	Fa, Mo, NS, PV, RC, SG, SS, To, ND, TE Fa, Mo, NS, PV, RC, SG, SS,
	4048 4049 K561LN2 4050 K561PU4	vicefunkční hradlo 1×8, prog. 6× budič, převod invert. 6× budič, převod. neinvert.	TO, PL, RS, TE NS, RC, SG, ND Fa, Hi, HS, MO, NS, PV, RC, SG, SS, TO, ML, PL, RS, TE Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, TO, ML, ND, PL, RS,
	4051 K561KP2 4052 K561KP1 4053	8kanál. analog. multiplexer/ /demultiplexer .4kánál. dífer. analogový multiplexer/demultiplexer 3× 2kanál. analog. demulti- plexer-multiplexer	TE Fa, Hi, HS, Mo, NS, RC, SG, SS, To, ND, RS, TE Fa, HS, Mo, NS, PV, RC, SG, SS, To, RS, TE Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, RC, TE
	4054 4055 4056	4segm. budič LCD BCD 7seg. dekodér, budič LCD BCD 7seg. dek. střadač, budič LCD	PV, RC, SG, To, RS Mo, RC, SG, To, ML Mo, RC, SG, To, ML
	4057 K561IR1 4059 K561IE15 4060 4061 K561RU2A 4063 4066	4bit. ALU přednastavitelný dělič/ /čitač N:1 12bit. binár. čitač a oscil. RAM statická 256×1bit 4bit. komparátor veličin 4× obousměrný spínač	Mo SR RC Mo, NS, PV, RC, SG, SS, ML Mo, RC SR Mo, RC, SG, To Fa, Hi, HS, Mo, NS, PV, RC,
-	K561KT3 4067 4068	16kanál. multiplexer 8× 1vst. NAND/AND	SG, SS, To, ML, ND, PL, RS, TE Fa, PV, RC, SG, RS Hi, Mo, PV, RC, SG, SS,
	4069	6× invertor	To, TE Fa, Hi, HS, Mo, NS, RC,
	4070 K561LP2 4071 K561LE5	4× 2vst. exclusive-OR 4× 2vst. OR	SG, SS, To, ML, PL, RS Fa, Hi, HS, Mo, NS, PV, RC, SG, SS Fa, Hi, HS, Mo, NS, PV, RC, SG, SS, To, ML, PL, RS
	4072	2× 4vst. OR	Hi, Mo, NS, PV, RC, SG, SS, To, PL
:	4073	3× 3vst. AND	HI, Mo, NS, PV, RC, SG, SS, To, ML HI, Mo, NS, PV, RC, SG,
	4075	3×3vst. OR 4× třístav. klopné obvody D	SS, To Fa, HS, Mo, NS, PV, RC,
	4077	4× 2vst. exclusive-OR	SG, SS, To, TE Hi, HS, Mo, PV, RC, SG,
	4078	8× 1vst. NOR/OR	SS Hi, Mo, PV, RC, SG, SS, To
	4081	4× 2vst. AND	Ha, Hi, HS, Mo, NS, PV,- EC, SG, SS, To, ML, PL,
•	4082	2× 4vst. AND	TE, RS Hi, Mo, NS, PV, RC, SG, SS, To
	4085 4086 4089 4093 K561TL1 4094 4095 4096 4097	2× 2vst. AND-OR-invert 4× 2vst. rozš. AND-OR-invert binární násobička 4× 2vst. NAND, Schmittovy klopné obvody 8bit. posuv. registr. pro sběr. hradlov. klop. obvod J-K hradlov. klop. obvod J-K 8kanál. difer. multipl./de- mu!tiplexer	Mo, PV, RC, SG, SS, To Fa, PV, RC, SG, SS, To NS, RC, SG Mo, NS, PV, RC, SG, SS, To, ML, ND, RS Mo, PV, RC, SG, SS RC, SG, RC, SG, RC, SG, RS
	4098 4099 4104	dva monostab. multivibrátory 8bit. adresovatelný střadač 4× převodník TTL/CMOS	Mo, RC, SG, ML, ND, RS Mo, NS, RC, SG, SS, To, TE Fa, PV
		provodnik i i bromou	· =1 · ·

Тур -	Funkce	Výrobce	Tun	Euglian	T.,,
4311	střadač, dekod., budič	TE Vyrobce	Тур	Funkce	Výrobce
	7 seg. LED	1	4750 4751	syntezátor univerzátní dělič do 15 MHz	PV, TE PV, TE
4402 4404	2× 4vst. rozšířitelné NOR	SS	4752	řídicí obvod motorů	PV
4412	8bitový binární čítač 2× 4vst. rozšiřitelné NAND	SS SS	4753 4754	univerzální časovač	PV
4416	4× analogový spínač	I SS ·	4755	indikátor pro 18segm. LCD vysílač/přijímač sériových dat	PV PV
4426 4428	čítač/dekodér/budič 7 seg. LED	SS	40014 ·	6× Schmit. klop. obvod	Fa, Mo
4420	dekodér binární na 8 dekad. čítač/dekodér 7 seg. LED	SS SS	40085 40097	4bit. komparátor veličin	Fa, Mo
4441	4× budíč	l ss	40098	čtyři a dva budiče neinvert.	Fa, Mo, PV Fa, PV
4445 4446	21bit. délic a oscilátor	SS	40100	32bit. stat. posuv. registr	RC, SG
4449	obvod PLL 6× invertor	SS SS	40101 40102	9bit, generátor parity 2× předn. synchr, dekad, čítač	Mo, RC, SG
4502	6× strobov. invert./budič	Hi, Mo, PV, RC, SG, SS	40103	8bit. binár. předn. synchr. čítač	RC, SG, PL RC, SG, PL
K561LN1 . 4503	Cy History budit		40104	4bit. univer, obousměr, registr	RC, RS
4505	6× třístav. budič statická RAM 64×1 bit	HS, Mo, NS, TE Mo, PV, TE	40105 40106	4× 16bit registr FIFO 6× Schmit, klop, obvod	Mo, RC, SG
4507	4× 2vstup. exclusive-OR	HS, Mo, NS	40107	2× 2vst. budič NAND	PV, RC, SG RC, SG, RS
4508	2× 4bit. střadače	Hi, Mo, PV, RC, SG, SS,	K561LA10		
4510	BCD reverzibilní čítač	To, ML Fa, HS, Mo, NS, PV, RC,	40108 40109	4 na 4 registry vícebranné čtyři převodníky úrovně L/H	Mo, RC, SG
1 .		SG, SS, To, ML	KU561PU6	Ctyri prevodniky drovile E/H	RC, SG
4511	BCD dekodér/střadač/budič	Fa, Hi, HS, Mo, NS, RC,	40110	8bit. obousm. převodník CMOS/TTL	·RC ·· o
4512	7seg. LED 8kanál. selektor dat	SG, SS, To, ML, RS Fa, Hi, HS, Mo, NS, RC,	40112 40113	8bit. převodník A/D 8bit. převodník A/D	RC
1		SG, SS, To	40114	64× 1 bit, statická RAM	RC RC, TE
4514	4bit. střadač, 4 na 16 dekod.	HS, Mo, NS, PV, RC, SG,	40147	10 na 4 BCD kodér priority	RC
4515	4bit. střadač, 4 na 16 dekod.	SS, To Hi, HS, Mo, NS, PV, RC,	40160 4160	synchr. čítač BDC s asyn.	Mo, NS, PV, RC, SG, To,
1.		SG, To	40161	synchr. bin.	Mo, SS
. 4516 K561IE11	binarní reverzibilní čítač	Hi, HS, Mo, NS, PV, RC,	4161	čítač s asyn. clear.	NO 511 DG 22 -
4517	2× 64bit. stat. posuv. registr	SG, SS, To, ML, RS Mo, PV, RC, SS	40162 4162	syn. BCD čítač se syn. clear	NS, PV, RC, SG, To Mo, SS
4518	2× synchr. čítače BCD	Fa, HS, Mo, NS, PV, RC,	40163	syn. bin. čítač se syn. clear	Fa, NS, Mo, PV, RC, SG, To
4519	Av Ohit analas	SG, SS, To, ML, RS, TE	4163		Mo, SS
4319	4× 2bit. spolec. adres. multipl.	Hi, HS, Mo, NS, PV	40174 4174	šest klopných obvodů D	Fa, NS, PV, RC, SG, To Mo, Hi, SS
4520	dva binární čítače vpřed	Fa, Hi, HS, Mo, NS, Ph,	40175	čtyři střadače	Fa, NS, PV, To
K561IE10 4521	i i	RC, SG, SS, To, ND	4175		Hi, Mo, SS
4521	24bit. dělič s 9 výstupy BCD synchr. čítač, program.	Mo, PV, To HS, Mo, NS, PV, SS	40181 40182	4bit ALU generátor Look Ahead Carry	Mo, RC, SG, RS Mo, RC, SG
4526	4bit. binár. progr. čítač vzad	HS, Mo, NS, PV, SS	40192	BCD přednast, reverzib, čítač	Mo, NS, PV, RC, SG, RS
4527	násobička BCD	HS, Mo, NS, PV, RC, SG,	4192		I SS
4528	2× monostab. multivibrátor	SS, To Hi, HS, Mo, NS, PV, SS, To	40193 4193	binár přednast reverz čítač	Mo, PV, RC, SG, NS Fa, NS, SS
4529	2× 4kanál, anal, selektor dat	HS, Mo, NS	40194	4bit. obousměrný registr	Mo, PV, RC, SG
4531 K561SA1	12bit. kontrolér parity –	Mo, PV, SS, To, ND	41194		Hi, Mo
4532	8bit, kodér parity	Hi, Mo, PV, RC, SG, SS, To	40195	4 4 4 vícebranný registr	PV, NS Mo, RC
4534	pětidekádový čítač	Mo, PV	40240	2× 4bit. invertující budič	MO, HC
4536 4538	programovatelný časovací obvod	Mo. RC	40244	2× 4bit. neinvertující budič	PV I
	2× přesné monostab, klopné obvody	Mo, NS, PV, ND	40245 40257	8bit. obousměrný budič čtyři selektory dat 2 na 1	PV RC
4539	2× 4bit. společ. adres. MUX	Fa, Mo, PV, To	: 40373	8bit. registr a budič	PV
4541 4543	program, časovač, oscilátor	Mo, NS, PV	40374 14404	8bit. klopný obvod D a budič	PV
K561ID2	BCĎ dekodér/budič 7 seg. LCD	HS, Mo, NS, PV, SS, To, RS, TE	14404	PCM CODÉC CCIT modulátor impulsního kódu	Mo, TE Mo
4555	2× 2bit. dekodér 1 ze 4	Fa, Hi, Mo, PV, RC, SG,	14407		Mo
4556	(akt. H)	SS, To, TE	14408	převodník binárního impulsu	Mo
4557	2× 2bit. dekod. 1 ze 4 (akt. L) posuvný registr 1 až 64 bitů	Fa; Mo Mo, PV	14409	na telef.	Mo
4560	sčítačká NBCD	Hi, Mo, To	. 14410	kodér 2 až 8 tónů	Mo
4561 4581	9× komparátor	Hi, Mo, To	14411	kmitočtový generátor bitů	Mo `
K5611P3	4bit. ALU	Mo, SS	14412 14413	univerzální pomalý MODEM filtr PCM	Mo Mo, TE
4582	obvod Look-Ahead Carry	Mo, SS	14414	dolní propust PCM-	Mo ·
K561IP4 4584	•	`	14415	čtyři přesné časovače/budiče	Mo
4585	6× Schmittův klopný obvod 4bit. komparátor veličin	Hi, HS, Mo, NS, SS Hi, HS, Mo, NS, SS	14416 14417	časovač PCM časovač PCM	Mo
K561IP2			14418	časovač PCM-řadič kanálů	Mo, TE
4702 4703	programovatelný generátor	Fa	14419	2 z 8 na binární kód	Mo , -
4710	16× 4bit. paraleľně-sériový FIFO 16× 4bit. statická RAM, třístav.	Fa Fa	14424 14425	vyšílač dálkového ovládání 8× 14. bit. pamět ladění	Mo I
4720	256×1bit stat. RAM	Fa, PV	14429°	řízení paměti ladění	Mo ,
4723 4724	2× 4bit. adres. střadač	Fa	14430	kodér vstupních adres	Mo
4725	8bit. adres. střadač 64× 1bit. třístav. RAM	Fa, PV, RC, PL Fa	14433 14435	3 a 1/2 čísla převodník A/D 3 a 1/2 čísla převodník AD,	Mo -
4727	7bit. čítač	Fa	1	log. systém	MO J
4731 4734	4x 64bit. static. posuv. registr	Fa, PV	14443	8bit. převodník A/D, podsystém	Mo
4737	střadač, BCD dekod. budič 7 segm. čtyřdekádový čítač	Mo PV	14444 14447	8bit. převodník A/D 8bit. převodník A/D, podsystém	Mo Mo
4737	8bit. střadač	Fa	16,,,,,	osia protodisk AVD, podsystem	, mo
4738 4739	interface sběrnice IEC.	PV	,		•
4739	digitální voltmetr 4× 4 křížový spínač	PV Fa	•	P/4	^
] "	TO T RIZUTY OPINAL	, u		B/4 Amatórske	RADIO 155
•	•	•			

Тур	Funkce	Výrobce
.14459	procesor řízení rychlosti	Мо
14460 14466	procesor řízení rychlosti levný detektor kouře	Mo Mo
14469	adresovatelný asynchr. vysílač/	Mo
	/přijímač	
14490	"eliminátor odskoku" šesti kontaktů	Mo
14491	vícenásobný obvod sepnutí dvě křížové matice 2 × 2	l Mo l Mo
14493	binár. dekod. na 7 seg., budič	Mo
14494	binár, dekod, na 7 seg., budič	Mo
14495	binár. dekod. na 7 seg., budič PCM vysílač dálkového ovládání	Mo Mo
14497 14499	dekodér, budič pro 4 × 7 seg. LCD	Mo
14500	řídicí obvod pro průmysl	Mo
14501	tři hradla	Mo, Hi
14504 14506	šest převodníků TTL/CMOS dvě rozšiřitelná hradia AND-OR-Invert	Mo Mo
14513	střadač, BCD dekodér – 7 seg. LED	Mo
14524	ROM 256× 4bit	Mo
14530	2× 5vst. majoritní hradlo I statická RAM 256× 1 bit	Mo
14537 14544	střadač, BCD dekodér, budič 7 seg.	Mo Mo
14547		Mo
14549	registr pro postupnou aproximaci	Mo
14551 14552	4× 2kanál. analog. multiplexery statická RAM 64× 4 bit	Mo Mo
14553	BCD čítač, tři čísla	Mo
14554	2× 2bitová paralelní násobička	Мо
K561IP5	PCD dekodér na 7	ue vo
14558 K561IP12	BCD dekodér na 7 seg.	HS, Mo
14559	registr pro postupnou aproximaci	Mo
14562	statický posuvný registr 128 bitů	Mo
1 14563 1 14566	statický posuvný registr 128 bitů průmyslový generátor časování	l Mo Mo
14568	fázový komparátor, čítač programování	Mo
14569	2× BCD binární programovatelné čítače	Mo
14572	6× hradio	Mo, Hi Mo
14573 14575	čtyři programovatelné operač. zesil. čtyři programovatelné komparátory	I Mo
14580	4× 4bit. vícebřanný registr	Mo
74580	•	PL PL
K561IR12	2× Schmittovy klopné obvody	Mo, Hi
14597	8bit. čítač, střadač sběrnice	Mo
14598	8bit. programovatelný střadač sběrnice	Mo
14599 142100	8bit. střadač adres křížový spínač 4 × 4	Mo Mo
144100 -	duplexní budič 32 seg. LED	Mo
144102	statická RAM 16 × 16 bit	Mo
144110 144111	6× převodníky D/A 4× převodníky D/A	Mo Mo
144115	budic 16seg. LCD	Mo
144117	duplexní dekodér/budič 4 čísel LCD	Мо
145000 145001	budič multiplexovaných 48 seg. LCD budič multiplexovaných 44 seg. LCD	Mo Mo
145100	4 × 4 křížový spínač s pamětí	Mo
141000	4bit. mikropočítač	Mo ·
141099	4bit. mikropočítač	Mo Mo
141200 145026	4bit, mikropočítač kodér dálkového řízení	Mo- Mo
145027	dekodér dálkového řízení	Mo ·
145028	dekodér dálkového řízení	Mo :
145104 145106	syntezátor PLL syntezátor PL	Mo Mo
145007	syntezator PLL	Mo
145009	syntezátor PLL	Мо
145112 145143	syntezátor PLL syntezátor PLL	Mo Mo
145143	syntezátor PLL	Mo
145145	syntezátor PLL	Mo
145146	syntezátor PLL	Mo
145151 145152	syntezátor PLL syntezátor PLL	Mo Mo
145155	syntezátor PLL	Mo
145156	syntezátor PLL	Mo
146805 146818	8bit. mikropočítač obvod reálného času, RAM	Mo Mo
146819	obvod reálného času, RAM	Mo
Ŀ		L

Přehled obvodů řady 54C/74C . . .

Někteří světoví výrobci jako např. National Semiconductor (NS) – řada MM54C/74C, Harris Semiconductor (HS) – řada HD54C/74C a Toshiba (To) – řada TC74, začali vyrábět i obvody řady 54C/74C, které mají parametry shodné s obvody řady 4000 a vývody a funkce shodné s řadou 54/74.

Тур	Funkce	Výrobce	
74C00	4× 2vstup. NAND	HS, HS, To	
74C02	4× 2vstup. NOR	HS, NS	
74C04	6× invertor	HS, NS, To	
74C08	4× 2vstup. AND	HS, NS	
74C10	3× 3vstup. NAND	HS, NS, To	. •
74C14	6× klopný obvod	. HS, NS	-
74C20	2× 4vstup, NAND	HS, NS, To	
74C30-	8vstup.,NAND	HS, NS	
74C32	4× 2vstup. OR	HS, NS	
74C42	BCD dekadický dekodér	HS, NS	
74C48	BCD dekodér-budič 7 seg	g. LED HS, NS	
74C73	2× klopný obvod J-K	NS NS	•
74C74	2× klopný obvod D	, NS	•
74C76	2× klopný obvod J-K s př	rednastavením HS, NS	
74C83	4bit. binární úplná sčítačl	ka HS, NS	. `
74C85	4bit. komparátor veličin	HS, NS	
74C86	4× 2vstup. exclusive-OR	HS, NS	
74C89	třístavová RAM 64×1bit	. HS	
74C90	4bit. dekadický čítač	HS, NS	
74C93	4bit. binární čítač	NS	-
74C95	4bit. paralelní posuvný re		
74C107	dva klopné obvody J-K	HS, NS	
74C150	multiplexer 16 na 1	NS NS	
74C151	osmikanálový digitální m	ultiplexer HS, NS	
74C154	demultiplexer 4 na 16	HS, NS	
74C157	 čtyří dvouvstupové multij 	plexery HS, NS	
74C160	přednastavitelný dekadic	ký čítač HS, NS	·
74C161	synchronní binární čítač	HS, NS	-
74C162	plně synchronní dekadici		١.
74C163	plně synchronní binární č	čítač HS, NS	•
74C164	8bit. posuvný registr, séri		
	 paralel, výst. 		
74C165	8bit. posuvný registr, par	alelní HS, NS	•
	vstup/vystup	<u></u>	
74C173	4× třístavový klopný obv		
74C174	6× klopný obvod D	HS, NS	
74C175	4× klopný obvod D s clea		•
74C192	synchronní reverzibilní d	ekadický HS, NS	
74040-	čítač		
74C193	synchronní reverzibilní b		
74C195	4bit. posuvný registr, par	alelní HS, NS	
71000	vstup/výst.		
74C221	2× monostabilní multivib		
74C240	8× budič třístavový	NS NS	
74C244	8× budič třístavový	NS -	
74C373	8× střadač	NS NS	
74C374	8× klopný obvod D	NS NS	,
74C901	6× budič/převodník TTL		
74C902	6× budič/převodník TTL	, neinvert. HS, NS	•
740903	6× budič/převodník PMC	OS, invert. HS, NS	-
740904	6× budič/převodník PMC	OS, neinvert. HS, NS	
74C905	12bit. registr pro postupr		•
74C906- 74C907	6× budíš s otevřeným ko 6× budíč s otevřeným ko	viektorem, kanál n. HS, NS	
74C907	2× převodník s výstupem		
74C909		1 30 V NS	
74C911	4× komparátor čtyřmístný řídicí obvod d		
74C912	šestimístný řídicí obvod o	dienleie NC	
740912	6× Schmittův klopný obv		
74C915	BCD dekodér na 7seg.		
74C917	šestimístný řídicí obvod o	. NS displeje NS	
74C918	2× budič s výstupem 30 '		
	kodér klávesnice pro 16 t		
ΙΔ(('U')')			
74C922 74C923	kodér klávesnice pro 201		

POZOR!

Nezapomeňte, že uzávěrka letošního konkursu AR na nejlepší elektronické konstrukce je již 5. září 1985!

Тур	Funkce	Výrobce
74C925	čtyřmístný čítač s dekodérem na 7seg.	HS, NS
74C926	čtýřmístný čítač s dekodérem na 7seg.	HS, NS
74C927	čtyřmístný čítač s dekodérem na 7seg.	HS, NS
74C928	čtyřmístný čítač s dekodérem na 7seg.	HS, NS
74C929	paměť RÁM 1 kbit	NS .
74C930	paměť RAM 1 kbit	NS
74C932	fázový komparátor	NS .
74C935	3 a 1/2místný digitální voltmetr	NS .
74C936	3 a 1/2místný digitální voltmetr	NS
74C937	3 a 1/2místný voltmetr, výstup BCD	NS
74C938	3 a 1/2místný voltmetr, výstup BCD	NS
74C940	8× budič	NS'
74C941	8× budič	NS .
74C948	převodník A/D, 8bit. na 16 kanálů	NS:
1.	±0,5 LSB	
74C949	převodník A/D, 8bit. na 8 kanálů	NS .
	±0,5 LSB	
74C945	čtyřmístný reverzibilní čítač/dekodér LCD	NS .
74C946	4,5místný čítač/dekodér LCD	NS .
74C950	4místný střadač/dekodér	NS
74C951	4místný střadač/dekodér	NS
74C952	4místný střadač/dekodér	NS
74C954	alfanumerický dekodér/budič 16seg.	NS
74C955	alfanumerický dekodér/budič 17 seg.	NS
74C956	alfanumerický dekodér/budič	NS
80C95	6× třístavový budič	HS, NS
80C96	6× třístavový invertor	NS
90C97	6× třístavový budič	HS, NS
80C98 ,	6× třístavový invertor	HS, NS

Přehled pamětí CMOS

Paměti ROM

Тур	Organizace	Doba přistupu (ns)	Výrobce
MCM14524 CDP1831 CDP1832 CDP1833 CDP1834 IM/HM6312 IM6316 CDP1835 CDM6116 CDM65516 SCM5316 SCM5317 SCM5332 CDM5332 CDM5332 CDM5332 CDM5364 CDM53128 HN43128 HN613128 HN61256	256×4 512×8 1024×8 1024×8 1024×12 2048×8 2048×8 2048×8 2048×8 4096×8 4096×8 4096×8 4096×8 16384×8 16284×8 16384×8 16384×8 16384×8 16586×4 32768×4 32768×8 65536×4	1200 850 650 575 640 600 250 450 450 6000 3000 3000 3000	MO RC RC RC RC Is, HS Is (Intensil) RC RC RC SS SS SS SS RC

Mikropočítače a mikroprocesory

Тур -	Funkce	Bitů	ROM-bitů	RAM-bitů	Cyki/f	Povelů počet	Vs1. -výst.	Výrobce
MC14500B	mikropočitač.	1		7 -	1 MHz			Mo
HMCS42C	mikropoč.	4	(512+32)10	32×4	10 µs	22		Hi l
HMCS43C	mikropoč.	4	(1024+64)10	- 80×4	10 µs	32	`	Hi I
HMCS44C	mikropoč.	4	2048 × 10	160×4	20 µs	31	1	Hi l
HMCS45C	mikropoč.	4	2048×10	160×4	20 µs	40		Hi I
SAA6000	mikropoč.	4	2268×8	96×4	,	54		in l
MC141000	mikropoč.	4	1024×8	64×4	600 kHz	43	1 11	Mo
MC141099	mikropoč.	4	.021/.0	64×4	600 kHz	43	l '' l	Mo
MC141200	mikropoč.	4	1024×8-	64×4	600 kHz	43	16	Mo
K587IK2	ALU	4	102170	V 1/1.	2 jus	10.	'	SR
K587RP1	řídicí paměť	,			,	٠.	-	SR
K587IK1	obv. výměny infor.					ľ		SR ·
K587IK3	oby, rozšíření				1	1		SR
TMS1200	mikroproc.	4			1 MHz	43	13	l Ti l
TCP4600	mikropoč.	4	1024×8	48×4	4.2 MHz	52	16	l i 'o l
TCP4620	mikropoč.	4	2048×8	96×4	4.2 MHz	52	16	To
TCP4630	mikropoč.	4	3072×8	160×4	4,2 MHz	52	16	To
MC146805	mikropoč.	8	1024×8	10074	4 MHz	61	'".	Mo .
MAB80C39	mikropoč.	8	102470	128×8	5 MHz	97	27	Va
MAB80C49	mikropoč.	.8	2048×8	128×8	5 MHz	97	27	Va I
NSC800	mikroproc.	8	2040.0	120/0	4 MHz	" .	1 2	l NS I
NSC810.	RAM, obv. příj./vys.	8	.	128×8	7 1411 12	}	42	NS /
NSC830	ROM, obv. příj./vys.	8	2048×8	120/0	į	i	72	NS -
CDP1802	mikroproc.	8	2040.0		6,4 MHz	91		RC
CDP1804	mikropoč.	.8	2048×8	64×8	5 MHz	113	1	RC .
SAB80C482	mikropoč.	8	2048×8	64×8	JIVILIZ	1113	31 .	Sie
PCF80C35	mikropoč.	8	2040.00 .	64×8	5 MHz	97	27	Va
PCF80C39	mikropoč.	8		128×8	5 MHz	97	27	Va
PCF80C40	mikropoč.	8		256×8	5 MHz	97	27	Va
PCF80C48	mikropoč.	8	1024×8	64×8	5 MHz	97	27	Va Va
PCF80C49	mikropoč.	8	2048×8	128×8	5 MHz	97	27	Va Va
PCF80C50	mikropoč.	8	4096×8	256×8	5 MHz	97	27	Va Va
PCF84C00	mikropoč.	8	7030^0	128×8	5 MHz	88	22	Va
PCF84C10	mikropoč.	8	1024×8	64×8	5 MHz	88	22	Va
PCF84C20	mikropoč.	8	2048×8	64×8	5 MHz	88	22	Va .
PCF8500	mikropoč.	8	2070^0	128×8	5 MHz	87	22	Va
PCF8510	mikropoč.	8	1024×8	64×8	5 MHz	87	22	Va -
PCF8520	mikropoč.	8.	2048×8	96×8	5 MHz	87	22	Va
PCF8540	mikropoč.	8	4096×8	128×8	5 MHz	87	22	Va
HM/IM6100	mikroproc.	12	100000	,2000	2,5 µs	1 "	""	HS. Is
+HD/IM6101	program, interf.	12		1	2,0 μ3	1		HS, Is
HM6102	obv. rozš. paměti	12	32k		· [1	1	HS
80C86	mikropoč.	16	JEN		5 MHz	133		HS
K588IK1	řídicí naměť	16	ĺ.		2 µS	1,00		SR
K588IK2	ALU	16	1	1	سر ـ	i	1	SR .
K588IK3	obvod rozšíření	16	1.					SR
1,0001110	22700 1020110111	L.,		<u></u>		<u> </u>		1

Doplňkové obvody k mikroprocesorům

Тур	Funkce	Výrobce
MH/IM6501	programovatelný obvod interface	HS, is
HM/IM6502	obvod rozšíření paměti, řízení	
	DMA, časovač	HS, is
IM6103	20bit. paralelní brána vstup/výstup	ls ·
MH/IM6402		i:
	vysílač/přijímač	is l
HM/IM6403	UART	HS, Is
IM82C43	expandér vstup/výstup	ls,
CDP1851	programovatelný interface	RC)
CDP1852	8bit. brána vstup/výstup	Rc
CDP1853	dekodér N bitů	RC
CDP1854A	UART -	RC
CDP1855	obvod pro násobení a dělení	RC
CDP1856	budič sběrnice/paměti	RC
CDP1857	budič sběrnice vstup/výstup	RC
CDP1858	střadač adres se dvěma	
	dekodéry 1 na 4	RC
CDP 1859	střadač adres s jedním	• -
l-:	dekodérem 1 na 4	RC
CDP1861	obvod řízení videodispleje	RC I
CDP1862	generátor barev	RC
CDP1863	generátor zvuku	RC
CDP1864	televizní interface PAL	RC
CDP1866	4bit. střadač, dekodér paměti	RC
CDP1867	4bit. střadač dekodér paměti	RC I
CDP1868	4bit, střadač dekodér paměti	RC
CDP1869	video interface (adresy,	
	generátor zvuku)	RC
CDP1870	video interface (video,	
	generátor barev)	RC
CDP1871	interface klávesnice	RC
CDP1872	8bit. brána vstup/výstup	RC .
CDP1873	dekodér N bitů (1 až 8)	RC
PCB8573	hodiny, časovač, kalendář	Va ·
SAF3019	hodiny, časovač, kalendář	۷a
PCE2100	duplexní budič LCD	v.
5050440	pro 40 segmentů	Va
PCE2110	duplexní budič LCD	
DODGE	pro 60 segmentů	Va.
PCB2111	duplexní budič LCD	J
L	pro 64 segmenty	Va

Paměti PROM a EPROM

Тур -	Organizace	Doba přístupu (ns)	Výrobce .
HM6610 HM6611 HM6612 CDP18U42 IM6654 IM6653 IM6658 CDP18U43 CDP27C58 IM6716 IM676	256×4 256×4 256×4 256×8 512×8 1024×4 1024×8 1024×8 2048×8 2048×4	400 400 1000 300 550 450	HS HS HS RC Is IS RC IS IS

Paměti l	RAM
----------	-----

Тур	Organizace	Doba přístupu [ns]	Výrobce
CD4036A	.4×8		RC .
CD4039A	4×8		RC .
CD/MHB40114	16×4	ĺ	RC, TE
CDP1824	32×8	700	RC
HEF/MHB4505	64×1	150	Va, (Valvo), TE
MCM14505	64×1	180	Mo.
MCM14552	64×4	700	Mo
IM/HM6512	64×12	460/150	Is, HS
CDP1823	128×8	350	RC
PCD8571	128×8	"	Va
CD4061A/K564RU2	256×1	450	RC, SR
MCM14537	256×1.	700	Mo
HEF4720B, V	256×1	200	Va
IM/F/MCM/I5101	256×4	285	Is, Fa, Mo, Intel
HM/NMC6551	256×4	285/360	HS/NS
IM65X51	256×4	300	Is
NMC6552	256×4	360	NS ·
HM/MHB6561	256×4	220	HS, TE
IM65X61	256×4	320	Is
HM6562	256×4	220	HS
MWS/PCD 5101	256×4	650/600	RC, Va
MCM145101	256×4	800	Mo
HM435101	256×4	650	Hi
TC5501	256×4		To
SCM5901	256×4	800 -	I SS
K16003RU1	256×4	"	SR (ekv. I5101)
CDP1822	256×4	450	RC
MM54C/74C920	256×4	325	NS
MM54C/74C921	256×4	325	NS
HM/NMC6513	512×4	300	HS, NS
CDP1821	1024×1	350	RC
SIL/MHB1902	1024×1	110	Siltek, TE
HM/NMC/6508	1024×1	180/310	HS, NS
TC5514	1024×1		То
TC5508	1024×1		То
IM65X08	1024×1	250	Is
MCM146508	1024×1	460	Mo
K573RU1	1024×1	800	SR (ekv. 6508)
HM/NMC6518	1024×1	180/310	HS, NS
IM65X18	1024×1	250	Is
MCM146518	1024×1	460	Mo
MM54C/74C929	1024×1	315	NS -
MM54C/74C930	. 1024×1	315	NS
CDP1825	1024×4	. •	RC
TC5047	1024×1	1	То
HM4334	1024×4	640	Hi
MWS5114	1024×4		RC
SCM5914	1024×4	450	SS
HM6148	1024×4	70	Hi-
HM/NMC6514	1024×4	200/370	HS, NS
U224	1024×4	300	ND (ekv. HM6514)
IM6533	1024×4		Is
U2148D	1024×4	1 .	ND (ekv. 6504)
PCD5114	1024×4	200	Va
HM/NMC6503	2048×1	300/320	HS, NS
SAB81C50	2048×1	,	Siemens
HM6116	2048×8	200	Hi
HM6117	2048×8	200	∤Hi .

HM6516	2048×8	250	l HS	1
'HM4315	4096×1	450	Hi .	
TC5504	4096×1		То	
HM6147	4096×1	70	Hi ·	
HM/NMC6504	4096×1	200/370	HS, NS	- [
MCM146504	4096×1	450	Mo	
K573RU3A	4096×1		SR (ekv. HM6504)	
IM6540	4096×1		is .	-
HM6264	8192×8	150	. Hi	- 1
HM6564	8192×8	350	HS ·	- 1
HM6167	16384×1	70	Hi :	- [
HM6564	16384×4	350	HS	- 1

Doby přístupu za zlomkovou čárou uvádějí firmy druhé v pořadí.

Převodníky A/D-D/A

Тур	Funkce	Výrobce
ADC0801	převodník A/D, ±0,25 LSB, nastavitelný	ls .
· ADC0802	převodník A/D, ±0,5 LSB, nenastavitelný	ls ·
ADC0803	převodník A/D, ±0,5 LSB, nastavitelný	ls .
ADC0804	převodník A/D, ±1 LSB, nenastavitelný	ls '
ICL7106	převodník A/D, 3,5 čísla převodník A/D,	
	budič LCD (pro DV)	Is, TE
ICL7107	3,5 čísla převodník A/D, budič LED (pro DV)	ls,
K572PV2		SR .
ICL7109	12bit. převodník A/D, interface	ls
CL7116	3,5čísla převodník A/D s pamětí pro displ.	ls
ICL7117	3,5čísla převodník A/D s pamětí pro displ.	ls,
G7116		ND
ICL7126	3,5čísla převodník A/D s malým příkonem	ls ,
[ICL7135	přesný 4,5čísla převodník A/D	ls
ICL7136	3,5čísla převodník A/D s malým příkonem	ls
ICL7101	digitální procesor	ls
. ICL8052	3,5čísla převodník A/D	ls
CA3308	8bit. převodník A/D	RC
ICL7134	14bit. převodník D/A pro mikropočítač	ls .
AD7520	10bit. převodník D/A	AD, Is ·
AD7530		l. <u>.</u> .
AD7521, AD7531	12bit. převodník D/A	AD, Is
AD7523	8bit. převodník D/A	AD, Is
	10bit. převodník D/A	AD, Is, SR
AD/541, K5/2PA2	12bit. převodník D/A	AD, Is, SR

Multiplexery a analogové spínače

Тур	Funkce	Výrobce
H1509/AD7502	2× multiplexer 4 na 1	HS, AD
HI1828	2× multiplexer 4 na 1	HS.
IH5208	2× multiplexer 4 na 1	ls
IH6208	2× multiplexer 4 na 1	is '
HI507, HI507A	2× multiplexer 8 na 1	HS -
DG507, AD7507	2× multiplexer 8 na 1	Siliconix (Sx), AD
IH6216	2× multiplexer 8 na 1 rozdílový	ls
HI1818A, AD7501	multiplexer 8 na 1	HS, AD
HI508A, DG508	multiplexer 8 na 1 ~	HS, Sx
IH5108, IH6108	multiplexer 8 na 1	ls
AD7506	multiplexer 8 na 1	AD
Hi1840	multiplexer 8 na 1	HS
IH6116	multiplexer 8 na 1	ls ·
HI1800A	multiplexer 4 na 1	HS
DG181, DG182	2× analogový spínač SPST (spín. kontakt)	ls.
DG184, DG185	2× analogový spínač DPST (2 rozp. kont.)	ls
DG187, DG188	analogový spínač SPDT (1 rozp., 1 spín.	
20100 20101	kont.)	ls -
DG190, DG191	2× analogové hradlo SPDT	ls la
IH181, IH182	2× analogové hradlo SPST	Is
IH184, IH185	2× analogové Hradlo DPST	ls
IH187, IH188	analogové hradio SPDT	ls
H190, IH191	2× analogové hradlo SPDT	ls III
H12000, DG200	2× analogový spínač SPST	ls, HS
H5200	2× analogový spínač SPST	ls is
IH200	2× analogové hradio SPST	ls .
HI201, DG201	4× analogový spínač SPST	HS, Is
IH5201	4× analogový spínač SPST	ls -
IH201, 1H202	4× analogové hradlo SPST	
HI5040, IH5040	analogové hradlo SPST	HS, Is HS, Is
HI5041, IH5041	2× analogové hradio SPST	HS, Is
HI5042, IH5042	-analogově hradlo SPDT	HS, Is
HI5043, IH5043	2× analogové hradlo SPDT	HS, Is
HI5044, IH5044 HI5045, IH5045	analogově hradlo DPST	HS, Is
i Hiomo, induto	2× analogové hradio DPST	ן ווט, וס

HI5046, IH5046 HI5047, IH5047 HI5048, IH5048 HI5049, IH5049 HI5050, IH5050 HI5051, IH5051 IH5052, IH5053	analogové hradlo DPDT (2spin., 2 rozp.) analogové hradlo 4PST (4 rozp.) 2× analogové hradlo SPST 2× analogové hradlo DPST analogové hradlo SPDT 2× analogové hradlo SPDT 4× analogové hradlo SPST analogové hradlo SPST	HS, is HS, is HS, is HS, is HS, is HS, is	
HI5050, IH5050	analogové hradio SPDT	. HS, Is	
IH5140	analogové hradio SPST	Is	
1H5141 1H5142	2× analogové hradio SPST analogové hradio SPDT	ls Is	
IH5143	2× analogové hradlo SPDT	ls -	
IH5144 IH5145	analogové hradlo DPST 2× analogové hradlo DPST	ls Is	
l			

1	PCE2110	budič pro 60seg. LCD	Va	ĺ
	PCE2111	budič pro 64 seg. LCD	Va	ı
1	SAA1124, SAA1224	30kanálový vysílač dálkového ovládání	III ·	
1		64kanálový vysílač dálkového ovládání	lΠ	ı
	SAA1020	288bit, posuvný registr pro paměť	lπ	ĺ
	SAA3004	7× 64povelový vysílač dálkového ovládání	Va	ı
j	SAA3006, SAA3027	32× 64povelový vysílač dálkového ovládání	Va	ı
	SAA3028	přijímač dekodér dálkového ovládání	Va	ı
	SAB3021, U807	2× 64povelový vysítač dálkového ovládání.	Va, ND	ı
Ì	U825	kalkulačkový obvod s hodinami	ND	i
ļ	U826	kalkulačkový obvod	ND	ı
	U114, U118	obvod pro analogové hodiný	ן מא	ĺ
i	0117,0110	outou pro analogove mounty	}	ĺ

Čítače, časovače a budiče displejů

Тур	Funkce	Výrobo
ICM7208	sedmidekádový čítač	ls
ICM7216	10 MHz univerzální čítač s budičem 8 čísel LED	Is
ICM7217	reverzibilní čítač s budičem 4 čísel LED	l Is
ICM7227	reverzibilní čítač s budičem 4 čísel LED	ls
ICM7224	čítač, dekodér, budič 4,5 čísla LCD	ls
ICM7225	čítač, dekodér, budič 4,5 čísla LED	. Is
ICM7226	10 MHz univerzální čítač s budičem 8 čísel LED	· Is
ICM7236	čítáč s budičem 4,5 čísla (fluorescenční displ.)	ls
ICM7207	časová základna pro čítače	Is
ICM7240	programovatelný časovač, čítač 1 až 255RC	ls
ICM7250	programovatelný časovač, čítač 1 až 99RC	· Is
ICM7260	programovatelný časovač, čítač 1 až 59RC	is
ICM7242	časovač pro dlouhá zpoždění, čítač	Is
ICM7211	budič 4 čísel LCD	Is, ND
ICM7212	budič 4 čisel LED	ls.
ICM7218	univerzální budič 8 čísel LED	ls
ICM7231	dekodér budič 8 čísel 7 segm. LCD	Is
ICM7232	dekodér budič 10 čísel 7 segm. LCD	ls
ICM7233	dekodér budič, 4 znaky 18segm. LCD	ls
ICM7234	dekodér budič, 5 znaků 18segm. LCD	ls
ICM7235	nemultiplexovaný dekodér, budič 4 čísel fluor. displ.	ls
ICM7243	budič alfanumerického displeje LED, 8 míst po 14/16 segm.	· Is
ICM7555 -	časovač	ls ·
ICM7556	2× časovač	ls

Lineární obvody

Operační zesilovače

ICL7621, ICL7622 ICL7631, ICL7632 ICL7641, ICL7642	vzorkovací obvod (sample-hold) operační zesilovač CAZ (automat. nulování) přístrojový CAZ OZ s malým příkonem 2× OZ s malým příkonem 3× OZ s malým příkonem 4× OZ s malým příkonem vzorkovaný OZ	Is Is Is Is Is
ICL7650	vzorkovaný ÓZ `	ls
TLC251, TLC271	programovatelný OZ	TI

Převodníky napětí

	převodník napětí detektor přepětí		ls Is	

Stabilizátory napětí

ICL7663 ICL7664		programovatelný stabilizátor kladného napětí programovatelný stabilizátor záporného napětí		ls Is
--------------------	--	---	--	----------

Obvody CMOS pro spotřební elektroniku

·	M192 M38, M740, M741,	14bit. dekodér na 7seg, LED	SG
ľ	M747	sedmistupňový dělič	SG
Ì	M755, M756	takt, interface pro mikropočítač	SG
1	M1024, M1124	30povelový vysílač dálkového ovládání	SG, PL
Į	PCB7571	hodiny a časovač s kalendářem	Va
1	PCD8571	paměť RAM 128×8 bitů	Va
-	PCE2100	budić pro 40seg. LCD	l Va

Obvody pro telekomunikace

M751, M761	dvoutónový generátor	SG
M760	obvod odpojení číselnice	SG
M764	opakovač tónu	SG
M5156	CODEC	SG
M5912	filtr PCM	SG .
M22100	křížový spínač 4×4 s řídicí pamětí	SG
PCD3320 až PCD3325.	generátor impulsú pro tlačítkovou volbu	
	čísel	Va .
PCD3340	8bitový telefonní mikropočítač	Va -
PCD8571	paměť RAM 1 kbit	Va
PDF8577	budič pro 64seq. LCD	Va
PSB7510	budič displeje LCD - 20 čísel 7seg.	Va
MK5085, MHB5085	obvod pro tónovou telefonní volbu	Mostek, TE
MT8804, MHB8804	spinaci matice 8×4 s řídicími obvody	Mitel, TE
MT8862, MHB8862	přijímač kmitočtové volby	Mitel, TE
MC14404, MHB14404	CODEC	Mo, TE
MC14413, MHB14413	filtr PCM	Mo, TE
MC14418, MHB14418	řadič kanálů	Mo, TE
HCTR0320, MHB0320	kmitočtová ústředna pro radiostanice	Hughes, TE

Přehled obvodů HCMOS

V této stati je uveden přehled obvodů HCMOS, které plánují jednotlivé firmy do výroby (zapojení vývodů je shodné s řadou 54/74 TTL, popř. s řadou 4000 CMOS).

Typ	d
54/7402 4× 2vst. NOR 54/7403 4× 2vst. NAND s otevř. kol. 54/7404 6× invertor/budič HC, HCT HC, HCT, HCT (Fai)	
54/7402	
54/7404 6× invertor/budić HC, HCT HC, HCU, HCT (Fai)	
54/7404 6× invertor/budič HC, HCT HC, HCU, HCT (Fai)	
54/7407 6× budič HCT (Fai)	
54/7407 6× budič . HCT (Fai)	
54/7408 4× 2vst. AND HC, HCT HC	
54/7410 3× 3vst. NAND HC, HCT HC	
54/7411 3× 3vst. AND HC, HCT HC	
54/7414 6x invert. Schmitt. KO HC, HCT HC	
54/7420 2× 4vst. NAND HC, HCT HC	
54/7427 3× 3vst. NOR HC, HCT HC	
54/7430 1× 8vst. NAND HC; HCT HC	
54/7432 4x 2vst. OR HC, HCT HC	
54/7442 BCD dekodér 1 z 10 HC, HCT HC	
54/7451 2×2vst, AND-OR-Invert HC (Fai)	;
54/7458 2× 2vst. AND-OR HC (NS) 54/7473 2× KO J-K s clearem HC, HCT HC	
54/7475 4bit. bistabilní střadač HC, HCT HC 54/7476 2× KO s nul. a clearem HC, HCT HC	
54/7476 2X RO'S Indi. a clearer HC (NS)	
.54/7485 4bit. komparátor veličin HC, HCT HC	
54/7486 4× 2vstup. exclusive-OR HC, HCT HC	
54/74109 2× KO J-K HC, HCT HC	
54/74112 2× KO J-K	
54/74113 2× KO J-K HC	
54/74123 2× monostabil. multiv. HC, HCT HC	
54/74125 4× třístavový budič HC (Fai)	
54/74132 4x 2vst. NAND - Schmit. KO HC, HCT HC /	
54/74133 1 x 13vst. NAND HC, HCT HC	
54/74137 hradlovaný dekodér 1 z 8	
Z 8 SC, HCT SC, HCT HC	

Тур	Funkce	Mittel Supertex	RCA Philips Signetics	Motorola, NS TI, Fairchild SGS, Toshiba
54/74138	dekodér 3 na 8	GTE SC, HCT	HC, HCT	HC, HCT
54/74139	2× dekodér 2 na 4	SC, HCT	1110, 1101	HC, TICT
54/74147.	kodér priority 10 na 4		HC, HCT	•
54/74148	kodér priority 8 na 3	·		HC (Fai)
54/74151	8kanál. digit. multiplexer		HC, HCT	HC
54/74153	2× 4vst. multiplexer		HC, HCT	HC
54/74154	demultiplexer 4 na 16	1. '	HC, HCT	HC
54/74157 54/74158	4× 2vstup. multiplexery 4× 2vstup. multiplex.		HC, HCT	HC HC
54/74160	BCD dekadický čítač	}	HC, HCT	HC HC
54/74161	4bit. binární čítač	ŀ	HC, HCT	l HČ
54/74162	BCD dekadický čítač		HC, HCT	HG
54/74163	4bit. binární čítač	1	HC, HCT	HC
54/74164	8bit. sério-par, posuv. reg.	1.	HC, HCT	HC
54/74165	8bit. posuv. reg. par. vstup	1 '	HC, HCT	HC
54/74166	sériový výstup 8bit. posúv. reg. par. vstup		нс, нст	нс
E4/74170	sériový výstup			
54/74173 54/74174	4× KO typu D, třístav. 6× KO typu D	·	HC, HCT	HC .
54/74175	4× KO typu D		HC, HCT	HC
54/74181	4bit. ALU	,	,,,,,	HC
54/74182	generátor přenosu		1	HC.
54/74191	přednast. 4bit. reverz. čítač	1	HC, HCT	HC (NS)
54/74192	synchr. reverz. dekad. čítač		HC, HCT	HC `
54/74193	synchr. reverz. binár. čitač	'	нс, нст	HC HC
54/74194	4bit. obousměr, univerz.	-	LUC LICT	, Inc.
54/74195	posuv. registr. 4bit. paralel. posuv. registr	ł	HC, HCT	I HC I HC
54/74221	2× monostab. multivib.		HC, HCT	HC
54/74237	dekodér s hrad, adres 1 z 8	SC, HCT	,	HC
54/74238	dekodér 3 na 8	SC, HCT	HC, HCT	
54/74239	2× dekodér 1 na 4	SC, HCT		J:
43/74240	8× budič vedení třístav.	SC, HCT	HC, HCT	I. HC, HCT
54/74241	8× budič vedení třístav.	SC, HCT	HC, HCT	HC, HCT
54/74242 54/74243	4× vysílač sběrnice 4× vysílač sběrnice neiny.		HC, HCT	HC HC-
54/74244,	8× třístav. budič vedení	SC, HCT	HC, HCT	HC, HCT
54/74245	8× vysílač vedení, třístav.	SC, HCT	HC, HCT	HC, HCT
54/74251	8kanál, třístav, multiplexer	00,01	HC, HCT	HC HC
54/74253	2× 4vst. třístav. multiplex.	ŀ	HC, HCT	HC
54/74257	4× 2vst. třístav. multipl.		HC; HCT	HC -
54/74258	4× 2vst. třístav. invert.		HC HCT.	HC (Fai)
54/74259	8bit. střadač adres 4× 2vst. exclusive-OR		HC, HCT HC, HCT	HC HC
54/74266 54/74273	8× KO typu D		HC, HCT	HC HC
54/74280	8bit. generator parity		HC, HCT	HČ
54/74283	4bit. sčítačka s přenosem	ļ		HC
54/74292	program, dělič-časovač	1		HC
54/74294	program, dělič-časovač			HC
54/74297	digitální filtr PLL	-	HC, HCT	ur .
54/74298	4× 2vst. p. multipl. s pamětí		нс, нст	HC HC
54/74299 54/74354	8bit. univerz. posuv. registr 8bit. multipl./registr	· ·	HC, HCT	HC ·
54/74356	8bit. multipl./registr	1 .	HC, HCT	HC
54/74365	6× třístav. budič		HC, HCT	HC .
54/74366	6× třístav. budič invert.		HC, HCT	HC .
54/74367	6× třístav. budič	1	HC, HCT	HC
54/74368	6× třístav. budič	00 1107	HC, HCT	HC
54/74373	8bit. registr	SC, HCT	HC, HCT HC, HCT	HC, HCT
54/74374 54/74375	8× KO typ D třístav. 4× střadač D	SC, HCT	no, no	HC, HCT HC (Fai)
54/74377	8bit. KO typu D		нс, нст	110 (1 ai)
54/74384	8bit. sério-paralel. převodník		HC, HCT	
54/74390	2× BCD dekadický čítač		HC, HCT	НС
54/74393	2× 4bit. binární čítač	1	HC, HCT	HC
54/74423	2× monostab. multivib.	1		HC
54/74533	8bit. registr, třístav.	SC, HCT	HC, HCT	HC HC
54/74540	8bit, budič sběrnice	SC, HCT	HC, HCT HC, HCT	HC HC
54/74541 54/74543	8bit, budič sběrnice invert. 8bit, registr/vysílač sběr.	SC HCT	110,1101	HC (Fai)
34/14343	8bit, registr/vysílač sběr.			HC (Fai)
54/74544	8bit, vysílač invert.	SC, HCT		()
54/74544 54/74545.		1	[·	HC (Fai)
54/74544 54/74545 54/74550	8bit, registr/vysílač sběr.	İ		
54/74545	8bit. registr/vysílač sběr. 8bit. registr/vysílač sběr.] <u>.</u> }	HC (Fai)
54/74545 54/74550 54/74551 54/74563	8bit. registr/vysílač sběr. 8bit. invert. registr	SC, HCT	HC, HCT	. HC
54/74545 54/74550 54/74551	8bit. registr/vysílač sběr.	SC, HCT SC, HCT	HC, HCT HC, HCT	

Тур	Funkce	Mittel Supertex GTE	RCA Philips Signetics	Motorola, NS TI, Fairchild SGS, Toshiba
54/74573 54/74574	8bit. sběrný registr 8bit. KO typu D, třístav.	SC, HCT SC, HCT	HC, HCT HC, HCT	HC HC
54/74580	8bit. KO typu D, třístav. invert. 8bit. paralelsériový			HC
54/74595	posuv. reg. 8bit. paraleisériový			HC
54/74597	posuv. reg. 8bit. paralelsériový			нс
54/74640	posuv. reg. 8bit. vysilač sběr.			HC
54/74643	třístav. inv. 8bit. vysílač sběr. třístav.		HC, HCT HC, HCT	HC HC
54/74645 54/74646	8bit. vysílač sběr. třístav. 8bit. vysílač sběr. třístav.		HC, HCT HC, HCT	HC (Fai) HC
54/74648	8bit. vysílač sběr. třístav. invert. 4× 4bit. registr FILE, třístav.	·	HC, HCT	HC .
54/74688	8bit. komparátor veličin 1 2× 4vst. NOR		HC, HCT HC, HCT HC, HCT	HC HC
4010 4015	4bit. univerz. posuv. registr 2× 4bit. posuv. registr,		HC, HCT	
4016	par. výst. 4× obousměrný spínač		HC, HCT HC, HCT	НС
4017 4020	dekadický čítač/dělič 14bit. binární čítač	, (HC, HCT HC, HCT	HC HC
4022 4024 4040	8bit. čítač/dělič 7bit. binární čítač 12bit. binární čítač		HC, HCT	HC HC HC
4046 4047	obvod PLL monostab. multivibrátor		HC, HCT HC, HCT	HC HC (Fai)
4049 4050	6× budič invert. 6× budič	-	HC, HCT HC, HCT	- HC
4051 4052	8kanál. analog. multiplexer 2× 4kanál. analog. multiplexer		HC, HCT HC, HCT	HC HC
4053 4060	3× 2kanál, analog, multiplex. 14bit, binár, čítač		HC, HCT	HC
4066 4067	s oscilátorem 4× nalog. spínač 16kanál. analog. multipi.		HC, HCT HC, HCT HC, HCT	HC HC
4075 4078	3× 3vst. OR 1× 8vst. OR		HC, HCT	HC HC
4094 4301	8bit. posuv. registr 8bit. střadač D, inv.		нс, нст	ĤC
4302 4303	8bit. střadač D/přijímač TTL 8bit. KO typu D/přijímač TTL	. ,		HC HC
4304	8bit. budič invert./přijímač TTL 8bit. budič invert./přijímač		-	нс
4306	TTL 8bit, budič/přijímač TTL			HC HC
4316 4351	4× analog. spínač 8bit. analog. multiplex	•		HC
4352	s hradi. adres 2× 4vst. analog.	-		HC
4353	multiplexer/demult. 3× 2vst. analog.			HC
4510 4511	multiplex/demultipl. reverz. dekadický čítač BCD střadač dekodér na 7segm.	•	HC, HCT	HC HC (Fai) HC
4512 4514	8vstup. multiplexer třístav. dekodér 4 na 16 se střadačem		HC, HCT	HC (Fai) HC
4516 4518	reverz. binární čítač 2× synchr. čítač BCD	_	нс, нст	, HC (Fai)
4520 4538	2× 4bit. binární čítač 2× přesný monostab. multivib.	* /	HC, HCT HC, HCT	HC HC
4543 4560	BCD střadač-dekodér 7segm. LCD sčítačka NBCD		HC, HCT	HC HC
4703 - 40103 40104	budič paměti FIFO 2× 8bit. čítač 4bit. obousměr, posuv, registr		HC, HCT	HC (Fai)
40105	16× 4bit. paměř FIFO		HC, HCT HC, HCT	

Obvody SC vyrábí fa Mittel, takže např. klopný obvod typu D má označení MD74SC534AE. Obvody série HC a HCT vyrábějí ostatní výrobci (rozsah napájecích napětí obvodů HC je 2 až 6 V, obvody série HCT mají rozsah napájecích napětí 4,5 až 5,5 V). Obvody HCU jsou obvody HC s nevýkonovým výstupem. Fy Valvo (Philips) označuje tyto obvody PCC74HCXXXXX, kde XXXXX je nahrazeno typovým číslem, nebo PCC74HCTXXXX pro rozsah teplot –40 až +85 °C. Obvody PCF54HCXXXXX a PCF54HCTXXXXX jsou pro teplotní rozsah –55 až +125 °C.