Tentative homework assignments. Check for updates.

Math 530 (Probability and Statistics) Homework

From Casella and Berger; Statistical Inference, Second Edition

Ch.	Sec.	Exercise Numbers	Due date
1	1.1-1.2	5, 6, 11c, 13, 18 [Assume that the balls are distinct], 23	Mon. 8/28
	1.3	24, 25, 26, 27, 33, 35, 37, 38, 42 (You may consider proving this by induction, in place of the suggested method)	
	1.3	Independence: 36, 39, 40	Mon 9/11
	1.4-1.5	47(b,c,e), 48, 49, 51 (plot not needed)	Mon 9/11
	1.6	52, 53, 54, 55	Mon 9/11
2	2.1	1, 2, 3, 4, 6(a,c), 7a, 9	Mon 9/11
		11, 12, 13, 14, 15, 16, 17	Mon 9/11
	2.2	18 (Write E(X-a in terms of integrals, and take derivative w.r.t. a and set equal to zero, and solve for a), 19, 20 (Assume probability of having a daughter is p)	Mon 9/11
		22, 23, 24(b), 26, 27(ab), 28,	Mon 9/11
	2.3	25, 30 (a-c; Note that part (d) is problem 38a.), 31(Think about what an mgf should be at t=0), 32, 33c, 34, 36, 38(Note that Part (a) of this problem is the same as 30(d))	Mon 9/11
3	3.1-3.2	1, 2, 4, 5, 6, 7, 8, 12, 13, 14, 15	Mon 9/18
	3.3	17, 18, 19, 20, 22(d,e), 23, 24(c), 25, 26	Mon 9/18
	3.4	28(c,d,e)	Mon 9/18
		29(c,d,e), 30b, 32, 33(b,d)	Mon 9/25
	3.5	37, 39	Mon 9/25
	3.6	44, 45, 46, 48 (Binomial only). 49	Mon 9/25
4	4.1	1, 2(d), 4, 5(b)	Mon 10/9
	4.2	10, 11, 12, 13, 15	Mon 10/9

	4.3	14, 17	Mon 10/16
		19, 20, 21, 23a, 24, 26, 28(a)	Mon 10/16
	4.4	31, 32a, 36	Mon 10/16
	4.5	41, 42, 43, 44, 45, 47, 49, 50 only Corr(X,Y) (use the conditional distribution on page 177, also the fourth central moment of N(mu,sig^2) is 3*sig^4.), 51, 53, 54, 58,	Mon 10/16
	4.6	39	Mon 10/16
5	5.1-5.2	3, 4, 5, 8(a), 10 (Stein's Lemma can be useful in part a), 11 [Use Jenson's inequality (Theorem 4.7.7) on page 190]	Mon 10/23
	5.3	12, 15, 16, 17, 20(a) [Use the characterization of the t distribution, where $Z \sim N(0,1)$ and $X \sim \chi^2(\nu)$ and $T = \frac{Z}{\sqrt{\frac{X}{\nu}}}$. Then compute the cdf of T , using the law of total probability. Representing the t distribution as a mixture has important applications in computing.],	Mon 10/30
	5.4	21, 22, 24, 27(a) [Consider two cases, one where i <j and="" i="" one="" where="">j, and apply the definition of conditional pdf.]</j>	Mon 10/30
	5.5	29, 31, 32 (show part (a) directly)	Mon 10/30
		34, 35, 36 [Hint for Part (b): Write the mgf of $W = \frac{Y - EY}{\sqrt{Var(Y)}}$. Also it helps to reparametrize $\theta = \eta^2/2$, and let η approach infinity], 42, 43a [Start with $P(Y_n - \mu < \epsilon)$ and multiply both sides of the inequality by \sqrt{n} .], 44 [Use the theorems in Section 5.5]	Mon 11/13
6	6.2.2	1, 2, 3, 6	Skip
		9ab(use Theorem 6.2.13), 17 (apply Theorems 6.2.10 and 6.2.25)	Skip
	7.1-7.2	1, 4, 6, 8, 9, 10, 11, 13, 14	Mon 11/13
7	7.2	23, 24	Mon 11/27
	7.3	19, 20	Mon 11/27
		38 (Use Corollary 7.3.15) , 40, 41, 46(a,b,d), 61, 62	Mon 11/27
		37, 47, 49, 44 (Apply Theorem 7.3.23),	Skip
8	8.1-8.3	1, 2 (Test H_0 : $\lambda = 15$, versus H_1 : $\lambda < 15$), 3, 5(ab), 6	Mon 12/4

		10 (Use R or Rguroo instead of chi-squared table), 12(use R, and sigma =1), 13(a,b,c), 14, 16, 17, 18	Mon 12/4
		19, 20, 22, 25, 31, <mark>37</mark>	Skip
		49	Mon 12/4
9		3(Note that $\frac{\widehat{\beta}}{\beta}$ is a pivot), 4, 8, 12, 27	Wed 12/4
		6a, 14, 27a	Wed 12/4
10		1, 3, 9	Skip