Komisja Egzaminacyjna dla Aktuariuszy

XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

Część I

Matematyka finansowa

WERSJA TESTU A

lmıę ı	nazw	isko o	soby	egzamı	nowan	iej:

Czas egzaminu: 100 minut

- 1. Zakład ubezpieczeń stosuje strategię zabezpieczającą polegającą na:
 - (i) dopasowaniu obecnej wartości zobowiązań do wartości godziwej aktywów pokrywających te zobowiązania, oraz
 - (ii) utrzymaniu takiej samej wrażliwości aktywów i zobowiązań względem wahań stopy procentowej.

Ubezpieczyciel chce zastosować strategię zabezpieczającą w odniesieniu do trzech rent pewnych płacących 1 000 PLN na koniec każdego roku i wygasających odpowiednio po 10, 12 i 15 latach. W celu osłonienia tego zobowiązania zakupione zostały dwie obligacje zerokuponowe o nominałach: X_1 oraz X_2 i okresach do wygaśnięcia t_1 oraz t_2 , odpowiednio.

Podaj wartości parametrów pozwalających zrealizować założenia strategii zabezpieczającej przy stałej stopie procentowej 10%.

A)
$$t_1 = 3$$
; $t_2 = 14$; $X_1 = 18\,200\,PLN$; $X_2 = 26\,165\,PLN$

B)
$$t_1 = 4$$
; $t_2 = 13$; $X_1 = 24 179 PLN$; $X_2 = 13 980 PLN$

C)
$$t_1 = 7$$
; $t_2 = 10$; $X_1 = 28560 PLN$; $X_2 = 15325 PLN$

D)
$$t_1 = 5$$
; $t_2 = 12$; $X_1 = 27546 PLN$; $X_2 = 10860 PLN$

E)
$$t_1 = 4$$
; $t_2 = 8$; $X_1 = 18669 PLN$; $X_2 = 16748 PLN$

- 2. Inwestor działający na rynku opcji na akcje otrzymał następujące kwotowania:
 - (i) obecna cena akcji X: 100 PLN,
 - (ii) nominalna stopa wolna od ryzyka: 7% w skali roku,
 - (iii) europejska opcja kupna na 1 akcję X z ceną wykonania 95 PLN, wygasająca za 6 miesięcy kosztuje 11.4 PLN,
 - (iv) europejska opcja sprzedaży na 1 akcję X z ceną wykonania 95 PLN, wygasająca za 6 miesięcy kosztuje 5.6 PLN.

Inwestor uważa, że wykorzystując jedną akcję X istnieje możliwość zrealizowania zysku arbitrażowego. Strategia arbitrażowa ma opierać się na zajęciu odpowiednich pozycji na rynku opcji oraz na rynku akcji i instrumentów wolnych od ryzyka. Zysk arbitrażowy na chwilę obecną wynosi (do obliczeń przyjmij kapitalizację ciągłą, dopuszczamy możliwość krótkiej sprzedaży akcji bez kosztów transakcyjnych):

- A) 2.47 PLN
- B) 2.56 PLN
- C) 5.41 PLN
- D) 5.60 PLN
- E) 11.40 PLN

3. Proces ceny akcji S(t) przedstawia tabela

$t \setminus \omega$	ω_l	ω_2	<i>0</i> 3	<i>0</i> 4
t=0	7	7	7	7
t=1	11	11	4	4
t=2	13	10	6	2

Tabela podaje wartości $S(t,\omega_k)$ procesu S(t) dla poszczególnych zdarzeń elementarnych ω_k , $k=1,\ 2,\ 3,\ 4.$ Zdarzenie $\omega_k\in\Omega$ należy w modelu interpretować jako ścieżkę wzrostów i spadków ceny akcji w trzech kolejnych okresach $t=0,\ 1,\ 2,\ zaś\ \Omega$ jest przestrzenią zdarzeń elementarnych. Rozważmy stwierdzenia:

- (i) Element F_I filtracji \mathbf{F} generowanej przez proces $\mathbf{S}(t)$ ma postać $F_I = \{\emptyset, \Omega, \{\omega_1, \omega_2\}, \{\omega_3, \omega_4\}\}.$
- (ii) Jeżeli wzrosty i spadki cen akcji w modelu są jednakowo prawdopodobne, to warunkowa wartość oczekiwana $\mathbf{E}(S(t=2)|F_I)$ przyjmuje wartość 5.5 dla ω_3 , ω_4 .
- (iii) Jeżeli wzrosty i spadki cen akcji w modelu są jednakowo prawdopodobne, to warunkowa wartość oczekiwana $\mathbf{E}(\mathbf{S}(\mathbf{t}=2)|F_I)$ przyjmuje wartość 11.5 dla ω_1 , ω_2
- (iv) Jeżeli stopa wolna od ryzyka przekracza 2/11, to miara martyngałowa nie istnieje.

Liczba stwierdzeń prawdziwych wśród powyższych to:

- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

- **4.** Funkcja intensywności oprocentowania w chwili t dla kwoty zainwestowanej w chwili s, $0 \le s \le t$ wynosi $\delta(s,t) = \frac{1}{1+s+t}$. Funkcja a(s,t) jest wartością w chwili t kwoty 1 zainwestowanej w chwili s. Inwestor A rozpoczął inwestycję w chwili s=2 i zakończył w chwili t=5. Inwestor B również rozpoczął inwestycję w chwili s=2, przerwał ją po czasie 1 (na bardzo krótko), a następnie posiadaną kwotę ponownie zainwestował do chwili t=5. Wyznacz różnicę między zyskiem inwestorów A i B, tzn. $a(2,5) [a(2,3) \cdot a(3,5)]$. Odpowiedź (podaj najbliższą wartość).
 - A) 2/35
 - B) 3/35
 - C) 4/35
 - D) 5/35
 - E) 6/35

5. Wiadomo, że w chwili 0 cena obligacji zerokuponowej zapadającej w chwili T > 0 wynosi:

$$P(0,T) = \exp(-0.1T), \quad T > 0.$$

Wiadomo ponadto, że krzywa stóp spot ma postać R(0,s)=0.1, ;dla $0 \le s < 1$. Następnie, począwszy od chwili s=1, z prawdopodobieństwem q>0 opisuje ją funkcja

$$R(1,s) = 0.1 + u(s), \qquad s \ge 1,$$

zaś z prawdopodobieństwem 1 - q opisuje ją funkcja

$$R(1,s) = 0.1 - d(s), \quad s \ge 1,$$

dla pewnych ściśle dodatnich krzywych dochodowości u(s), d(s). Załóżmy, że u(s) jest ustaloną funkcją, zaś d(2) jest znane oraz, że rynek nie dopuszcza arbitrażu. Ile wynosi $\lim_{s\to\infty} d(s)$? Podaj najbliższą odpowiedź.

- A) exp[-2]
- B) $\exp[-0.1]$
- C) 0
- D) 1
- E) +∞

- **6.** Rozpatrzmy amerykańską opcję kupna na akcję niepłacącą dywidendy, dla której termin wygaśnięcia upływa za 4 miesiące. Obecna cena akcji wynosi 40 a cena wykonania opcji 44. Wiadomo, że w ciągu każdego miesiąca kurs akcji rośnie bądź spada o 15%. Zakładamy ponadto, że rynek nie dopuszcza arbitrażu. Stopa wolna od ryzyka wynosi 5% w ujęciu rocznym. Przy podanych założeniach cena tej opcji wynosi, w przybliżeniu:
 - A) 2.5
 - B) 2.8
 - C) 3.2
 - D) 3.8
 - E) 4.2

- **7.** Kredytobiorca zaciągnął kredyt w wysokości 300 000 na okres 20 lat. Kredyt ma być spłacany następująco:
 - przez pierwsze 10 lat, ratami płatnymi na koniec każdego roku o wartości R1, przy oprocentowaniu 7%,
 - przez drugie 10 lat, ratami płatnymi na koniec każdego roku o wartości R2, przy oprocentowaniu 9%,.

Bezpośrednio po zapłaceniu 15 raty kredytobiorca uzgodnił z bankiem, że dodatkowo pożyczy 100 000 oraz, że spłaci całość zadłużenia w ciągu 10 lat ratami płatnymi na koniec każdego roku o wartości R3, przy oprocentowaniu 8%.

Wiedząc, że suma odsetek, jakie zapłacił kredytobiorca w 7 i 14 racie spłaty kredytu wynosi 31 621.60, obliczyć ile wyniesie sumaryczna kwota odsetek, jakie zapłaci kredytobiorca w czasie spłaty kredytu w ostatnich 10 latach (po zmianie warunków kredytu). Podaj najbliższą wartość.

- A) 108 400
- B) 108 800
- C) 109 200
- D) 109 600
- E) 110 000

8. Kredyt w wysokości 100 000, zaciągnięty na okres 15 lat, jest spłacany ratami o równej wysokości R, płatnymi na koniec roku. W momencie płacenia K – tej raty kredytobiorca decyduje się na wpłacenie dodatkowej kwoty w wysokości kwoty kapitału, który byłby spłacony w następnej racie, gdyby zachowany został dotychczasowy tryb spłaty kredytu. Kredytobiorca obliczył, że po tej operacji, płacąc w kolejnych latach raty tej samej wysokości jak dotychczas tzn. R, aż do momentu spłaty kredytu, zapłaci w sumie o 7 014.03 mniej odsetek niż w przypadku, gdyby nie dokonywał dodatkowej wpłaty.

Znajdź wartość K, wiedząc, że oprocentowanie kredytu wynosi 10%.

- A) 5
- B) 6
- C) 7
- D) 8
- E) 9

- **9.** W portfelu inwestycyjnym znajdują się trzy rodzaje instrumentów finansowych:
 - 15 letnie zero kuponowe obligacje,
 - 20 letnie obligacje z kuponem o wartości 5% wartości nominalnej, płatnym na koniec roku,
 - bezterminowe obligacje (perpetuity) wypłacające na koniec każdego roku stałą kwotę.

Duration całego portfela wynosi 17, 5, natomiast duration portfela składającego się tylko z obligacji 15 - letnich i obligacji bezterminowych wynosi 20.

Wyznacz, udział procentowy obligacji 20 – letnich w portfelu, przy założeniu, że stopa procentowa jest równa 5% (podaj najbliższą wartość).

- A) 32%
- B) 34%
- C) 36%
- D) 38%
- E) 40%

- **10.** Rozważane są dwa sposoby 15 letniego inwestowania środków w fundusze inwestycyjne F_1 , F_2 i F_3 , których stopy zwrotu wynoszą odpowiednio $i_1 = 10\%$, $i_2 = 7\%$ i $i_3 = 8\%$.
 - Sposób 1 środki wpłacane są do funduszu F_1 , następnie na końcu każdego roku uzyskane w tym roku odsetki reinwestowane są w funduszu F_2 , a z kolei odsetki uzyskane w funduszu F_2 są reinwestowane w analogiczny sposób w F_3 (odsetki uzyskane w funduszu F_3 reinwestowane są w tym samym funduszu).
 - Sposób 2 środki wpłacane są do funduszu F_1 , następnie na końcu każdego parzystego roku uzyskane w tym roku odsetki reinwestowane są w funduszu F_2 (odsetki uzyskane w funduszu F_2 reinwestowane są w tym samym funduszu).

Niech j_1 oznacza efektywną roczną stopą zwrotu z inwestycji wykonywanej sposobem 1, a j_2 analogiczną stopę zwrotu z inwestycji wykonywanej sposobem 2. Oblicz różnicę $j_2 - j_1$ (podaj najbliższą wartość).

- A) -1%,
- B) -0.5%
- C) 0.5 %
- D) 1.0 %
- E) 1.5 %

Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.

Matematyka finansowa

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko:
Pesel:
OZNACZENIE WEDCH TECTH

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	А	
3	D	
4	Α	
5	С	
6	D	
7	В	
8	С	
9	С	
10	С	

 $^{^{\}ast}$ Oceniane są wyłącznie odpowiedzi umieszczone w $Arkuszu\ odpowiedzi.$

^{*} Wypełnia Komisja Egzaminacyjna.