МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Лабораторная работа № 1
По дисциплине «Прикладная математика»
Одномерная минимизация функции на отрезке.

Выполнил студент группы №М32091 Зернова Полина Алексеевна

Проверила Гомозова Валерия Эдуардовна

1. Реализация методов (https://github.com/alirise/app_math/tree/master/lab1)

На вход всех методов подается унимодальная функция f(x), а и b – промежуток, на котором необходимо найти минимум и ε – точность.

1.1. Метод дихотомии

Алгоритм:

// никл

- найти середину отрезка
- получить две точки, с и d, удаленные от середины отрезка на ε / 2
- сравнить значения функции в полученных точках и сдвинуть соответствующую границу, если f(c) < f(d), то b = d, иначе a = c
- повторять пока $0.5*(b-a) > \varepsilon$, иначе вернуть 0.5*(a+b)

Характеристики:

- гарантированно сходится
- линейная скорость сходимости
- так как с и d близки к середине отрезка, то на каждой итерации отрезок сокращается почти в 2 раза
- 2 вызова функции за итерацию

1.2. Метод золотого сечения

Алгоритм:

- получить две точки, $c = b + \tau * (a - b)$ и $d = a + \tau * (b - a)$, где $\tau = 1 / (0.5 * (1 + \sqrt{5}))$, разбивающие отрезок в соотношении золотого сечения

// цикл

- сравнить значения функции в полученных точках и сдвинуть соответствующую границу, если f(c) < f(d), то b = d, иначе a = c
- так как отрезок был разделен в отношении золотого сечение можно сохранить оставшуюся точку, так как она будет делить новый отрезок в отношении золотого сечения
- посчитать новое значение точки d, если f(c) < f(d), иначе c по формулам из первого шага
- повторять пока b а > ϵ , иначе вернуть 0.5 * (a + b)

Характеристики:

- гарантированно сходится
- линейная скорость сходимости
- 2 вызова функции на 1 итерации, на последующих 1
- постоянный коэффициент сокращения интервала, 0.618

1.3. Метод Фибоначчи

Алгоритм:

- из неравенства $(b-a) / F_n \le \epsilon$ найти n

- получить две точки и значения функции в них, $c = a + F_{n-2} / F_n * (b - a)$ и $d = a + F_{n-1} / F_n * (b - a)$, где F_i , - i число в последовательности Фибоначчи

// цикл

- -n = n 1
- сравнить значения функции в полученных точках и сдвинуть соответствующую границу, если f(c) < f(d), то b = d, иначе a = c
- сохранить оставшуюся точку и ее значение, с и f(c), если f(c) < f(d), иначе d и f(d)
- посчитать новое значение точки c, если f(d) < f(c), иначе d по формулам из второго шага
- повторять пока n > 2, иначе вернуть 0.5 * (a + b)

Характеристики:

- гарантированно сходится
- линейная скорость сходимости
- коэффициент сокращения интервала будет меняться от итерации к итерации
- 2 вызова функции на 1 итерации, на последующих 1
- дополнительные затраты на вычисление последовательности Фибоначчи и п

1.4. Метод парабол

Алгоритм:

- выбрать произвольную точку x на интервале [a, b]
- вычислить значения функции в точках a, x, b
- найти и минимум параболы, проходящей через а, b, х и вычислить значение функции в нем
- сравнить значения функции в точках и и х, сдвинуть соответствующую границу и обновить значение х при необходимости:

x < u:

$$f(x) < f(u)$$
: $b = u$, иначе $a = x$ и $x = u$

 $u \le x$:

$$f(x) < f(u)$$
: $a = u$, иначе $b = x$ и $x = u$

- повторять пока $|u-u_{prev}|>\epsilon$, иначе вернуть и

Характеристики:

- не гарантированно, что метод сходится
- суперлинейная скорость сходимости

1.5. Метод Брента

- задать три точки v, w, x = b + τ * (a b), где τ = 1 / (0.5 * (1 + $\sqrt{5}$))
- вычислить значение функции в точках a, b, x

// цикл

- если метод парабол устойчив, с помощью v, w и x вычисляем u и сокращаем интервал с помощью метода парабол, иначе используем метод золотого сечения
- обновить переменные, учитывая, что x точка, в которой функция принимается минимальное известное на данный момент значение, w точка, в которой функция принимает второе наименьшее значение известное на данный момент значение, v предыдущее значение w
- повторять пока $b-a>\epsilon$, иначе вернуть 0.5*(a+b)

Характеристики:

- гарантированно сходится
- обычно скорость сходимости суперлинейная, в худшем случае линейная
- как правило, первые две итерации золотое сечение, далее только метод парабол

2. Сравнение методов на унимодальной функции

$$y(x) = \sin(x) \cdot x^3$$
, интервал – [3, 7]

2.1. epsilon = 1e-3

Краткое сравнение

Метод	Количество итераций	Кол-во вычислений функции
Дихотомия	12	24
Золотое сечение	18	20
Фибоначчи	17	19
Парабола	8	11
Брент	9	10

iteration]	[function_calls]] [interval_decrease
		3.00000000	7.00000000	1.00000000
		4.999500000	7.000000000	1.999500125
		4.999500000	6.000250000	1.999000749
		4.999500000	5.500375000	1.998003494
		4.999500000	5.250437500	1.996014944
		5.124468750	5.250437500	1.992061523
	12	5.186953125	5.250437500	1.984248093
		5.218195312	5.250437500	1.968984735
		5.218195312	5.234816406	1.939835488
		5.226005859	5.234816406	1.886499667
		5.229911133	5.234816406	1.796137766
11		5.231863770	5.234816406	1.661319663
12		5.231863770	5.233840088	1.494008647

[iteration]	[function_calls]] [interval_decrease]
0		3.00000000	7.00000000	1.00000000
1		4.527864045	7.000000000	1.618033989
2		4.527864045	6.055728090	1.618033989
		4.527864045	5.472135955	1.618033989
4		4.888543820	5.472135955	1.618033989
5		5.111456180	5.472135955	1.618033989
6		5.111456180	5.334368540	1.618033989
7		5.196601125	5.334368540	1.618033989
		5.196601125	5.281746070	1.618033989
9	11	5.196601125	5.249223595	1.618033989
	12	5.216701120	5.249223595	1.618033989
11	13	5.216701120	5.236801115	1.618033989
12		5.224378635	5.236801115	1.618033989
13		5.229123600	5.236801115	1.618033989
		5.229123600	5.233868565	1.618033989
	17	5.230936015	5.233868565	1.618033989
		5.232056150	5.233868565	1.618033989
17		5.232056150	5.233176284	1.618033989
		5.232484003	5.233176284	1.618033989
Golden section	search: 5.232830144			

[iteration]	[function_calls]] [interval_decrease]
9		3.00000000	7.00000000	1.00000000
1		4.527864147	7.000000000	1.618034056
2		4.527864147	6.055728295	1.618033813
3		4.527864147	5.472135853	1.618034448
4		4.888543411	5.472135853	1.618032787
5		5.111456589	5.472135853	1.618037135
6		5.111456589	5.334369768	1.618025751
7		5.196603683	5.334369768	1.618055556
8		5.196603683	5.281750777	1.617977528
9	11	5.196603683	5.249222674	1.618181818
10	12	5.216694571	5.249222674	1.617647059
11	13	5.216694571	5.236785458	1.619047619
12		5.224348242	5.236785458	1.615384615
13		5.229131787	5.236785458	1.625000000
14		5.229131787	5.233915331	1.60000000
15	17	5.231045204	5.233915331	1.66666667
16		5.232001913	5.233915331	1.500000000
17		5.232958622	5.233915331	2.00000000
Fibonacci searc	h: 5.233436977			

iteration]	[function_calls]	L a] [interval_decrease
		3.000000000	7.00000000	1.00000000
		4.527528324	7.000000000	1.617814287
		5.000000000	7.000000000	1.236235838
		5.085069245	7.000000000	1.044424189
		5.186461040	7.000000000	1.055908253
		5.210884755	7.000000000	1.013651281
		5.225741505	7.000000000	1.008373498
		5.229932513	7.000000000	1.002367711
	11	5.229932513	7.000000000	1.000000000

[iteration]				
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
Brent's method:				
	 ·	 	·	

2.2. epsilon = **1e-7**

Краткое сравнение

Метод	Количество итераций	Кол-во вычислений функции
Дихотомия	26	52
Золотое сечение	37	39
Фибоначчи	37	39
Парабола	17	20
Брент	11	12

[iteration]	[function_calls]	[a] [b] [interval_decrease]
θ		3.00000000	7.000000000	1.00000000
1		4.999999950	7.00000000	1.99999950
2		4.999999950	6.00000000	1.99999900
3		4.999999950	5.500000037	1.99999800
4		4.999999950	5.250000044	1.99999600
5	10	5.124999947	5.250000044	1.99999200
6	12	5.124777747	5.250000044	1.999998400
7	14	5.218749945	5.250000044	1.999996800
8	16	5.218749945	5.234375044	1.999993600
9	18	5.226562444	5.234375044	1.999987200
10	20	5.230468694	5.234375044	1.999974401
11	22	5.232421819	5.234375044	1.999948803
12	24	5.232421819	5.233398482	1.999897610
13	26	5.232921819	5.233398482	1.999795242
14	28	5.232910100	5.233154341	1.999590568
15		5.232910100	5.233134341	1.999181471
16	30 32	5.232910100	5.233032271	1.998364280
17		5.232910100	5.232940718	1.996733902
18	36	5.232925359	5.232940718	1.993489070
19	38	5.232925359	5.232940718	1.987062376
20		5.232932989	5.232940718	1.974455240
21	40	5.232936803	5.232940718	1.974455240
21	42	5.232936803	5.232938811	1.950183043
23	44	5.232937757	5.232938811	1.905094012
23		5.232938234	5.232938811	1.820040848
25	48 50	5.232938234	5.232938572	1.704507945
26	50 52	5.232938353	5.232938572	1.543814945
20	52	5.232938353	5.232938513	1.3/3451818
Diebetemens	rch: 5.232938433			
Dicholomous sea	IPCII: 5.232938433			

Одномерная минимизация функции на отрезке.

[iteration]	[function_calls]			[interval_decrease]
0		3.000000000	7.00000000	1.00000000
1		4.527864045	7.00000000	1.618033989
2		4.527864045	6.055728090	1.618033989
3		4.527864045	5.472135955	1.618033989
4		4.888543820	5.472135955	1.618033989
5		5.111456180	5.472135955	1.618033989
6		5.111456180	5.334368540	1.618033989
7		5.196601125	5.334368540	1.618033989
8		5.196601125	5.281746070	1.618033989
9	11	5.196601125	5.249223595	1.618033989
10	12	5.216701120	5.249223595	1.618033989
11	13	5.216701120	5.236801115	1.618033989
12		5.224378635	5.236801115	1.618033989
13		5.229123600	5.236801115	1.618033989
14		5.229123600	5.233868565	1.618033989
15	17	5.230936015	5.233868565	1.618033989
16		5.232056150	5.233868565	1.618033989
17		5.232056150	5.233176284	1.618033989
18		5.232484003	5.233176284	1.618033989
19	21	5.232748431	5.233176284	1.618033989
20		5.232748431	5.233012859	1.618033989
21		5.232849433	5.233012859	1.618033989
22		5.232911856	5.233012859	1.618033989
23		5.232911856	5.232974279	1.618033989
24		5.232911856	5.232950436	1.618033989
25	27	5.232926592	5.232950436	1.618033989
26		5.232926592	5.232941328	1.618033989
27		5.232932221	5.232941328	1.618033989
28		5.232935700	5.232941328	1.618033989
29	31	5.232935700	5.232939178	1.618033989
30		5.232937028	5.232939178	1.618033989
31	33	5.232937850	5.232939178	1.618033989
32		5.232937850	5.232938671	1.618033989
33		5.232938163	5.232938671	1.618033988
34		5.232938357	5.232938671	1.618033991
35		5.232938357	5.232938551	1.618033989
36		5.232938357	5.232938477	1.618033987
37		5.232938403	5.232938477	1.618033993
Golden section s	search: 5.232938440			
				

iteration]	[function_calls]			[interval_decrease
		3.00000000	7.00000000	1.00000000
		4.527864045	7.00000000	1.618033989
		4.527864045	6.055728090	1.618033989
		4.527864045	5.472135955	1.618033989
		4.888543820	5.472135955	1.618033989
		5.111456180	5.472135955	1.618033989
		5.111456180	5.334368540	1.618033989
		5.196601125	5.334368540	1.618033989
		5.196601125	5.281746070	1.618033989
	11	5.196601125	5.249223595	1.618033989
	12	5.216701120	5.249223595	1.618033989
11	13	5.216701120	5.236801115	1.618033989
12		5.224378635	5.236801115	1.618033989
13		5.229123600	5.236801115	1.618033989
		5.229123600	5.233868565	1.618033989
	17	5.230936015	5.233868565	1.618033989
		5.232056150	5.233868565	1.618033988
17		5.232056150	5.233176284	1.618033990
		5.232484003	5.233176284	1.618033985
	21	5.232748431	5.233176284	1.618033999
		5.232748431	5.233012859	1.618033963
21		5.232849433	5.233012859	1.618034056
		5.232911856	5.233012859	1.618033813
		5.232911856	5.232974279	1.618034448
		5.232911856	5.232950436	1.618032787
	27	5.232926592	5.232950436	1.618037135
		5.232926592	5.232941328	1.618025751
27		5.232932221	5.232941328	1.618055556
		5.232935700	5.232941328	1.617977528
		5.232935700	5.232939178	1.618181818
		5.232937028	5.232939178	1.617647059
	33	5.232937850	5.232939178	1.619047619
		5.232937850	5.232938672	1.615384616
33		5.232938166	5.232938672	1.625000001
		5.232938356	5.232938672	1.600000003
		5.232938356	5.232938546	1.66666667
		5.232938419	5.232938546	1.500000000
		5.232938482	5.232938546	2.000000000
ibonacci searc	h: 5.232938514			

[iteration]	[function_calls]	[a] [b] [interval_decrease]
0		3.00000000	7.000000000	1.00000000
1		4.527528324	7.000000000	1.617814287
2		5.000000000	7.000000000	1.236235838
		5.085069245	7.000000000	1.044424189
		5.186461040	7.000000000	1.055908253
		5.210884755	7.000000000	1.013651281
		5.225741505	7.000000000	1.008373498
		5.229932513	7.000000000	1.002367711
	11	5.231903049		1.001114495
	12	5.232529859	7.000000000	1.000354637
	13	5.232792709	7.000000000	1.000148737
11		5.232882534	7.000000000	1.000050832
12		5.232918115		1.000020135
13		5.232930763	7.000000000	1.000007158
	17	5.232935627	7.000000000	1.000002752
		5.232937393	7.000000000	1.000000999
		5.232938062	7.000000000	1.00000378
17		5.232938062	7.00000000	1.00000000
Parabolic inter	polation: 5.232938399			

3. Сравнение методов на многомодальной функции

3.1.
$$y(x) = x^4 + 5 \cdot x^3 - 10 \cdot x$$
, интервал – [-4, 2], epsilon = 1e-3

График функции

Результаты работы методов

Метод	Количество итераций	Кол-во вычислений функции	Найденная точка		
Дихотомия	13	26	-3.551698669		
Золотое сечение	19	21	-3.551828048		
Фибоначчи	18	20	-3.552549889		
Парабола	расходится				
Брент		расходится			

[iteration]	[function_calls]	[a] [b] [interval_decrease]
0		-4.000000000	2.00000000	1.00000000
1		-4.000000000	-0.999500000	1.999666722
2		-4.000000000	-2.499250000	1.999333667
3		-4.000000000	-3.249125000	1.998668220
4			-3.249125000	1.997339983
5		-3.625062500	-3.436593750	1.994694081
6		-3.625062500	-3.530328125	1.989444170
7			-3.530328125	1.979108862
8		-3.554761719		1.959072742
9		-3.554761719	-3.542044922	1.921363846
10		-3.554761719	-3.547903320	1.854193365
11		-3.554761719		1.745495216
12		-3.553297119		1.594254581
13		-3.552564819		1.422732718
Dichotomous sea	 rch: -3.551698669			

[iteration]	[function_calls]] [interval_decrease]
			-0.291796068	
			-2.583592135	
		-4.000000000	-3.124611797	1.618033989
			-3.124611797	
			-3.331262920	
		-3.586697755	-3.458980338	1.618033989
		-3.586697755	-3.507764050	
		-3.586697755	-3.537914042	
		-3.568064035	-3.537914042	1.618033989
		-3.556547763	-3.537914042	1.618033989
			-3.545031490	1.618033989
		-3.556547763	-3.549430315	1.618033989
		-3.553829139	-3.549430315	1.618033989
		-3.553829139	-3.551110516	1.618033989
		-3.552790718	-3.551110516	1.618033989
		-3.552148938	-3.551110516	1.618033989
			-3.551507158	
Golden section	search: -3.551828048			

[iteration]	[function_calls]	[a] [b] [interval_decrease]
0				1.00000000
1			-0.291796009	1.618033963
2			-1.708203991	1.618034056
3		-4.000000000		1.618033813
4			-3.124611973	1.618034448
5			-3.124611973	1.618032787
6		-3.665631929	-3.331263858	1.618037135
			-3.458980044	1.618025751
		-3.586696231	-3.458980044	1.618055556
	11	-3.586696231	-3.507760532	1.617977528
		-3.586696231	-3.537915743	1.618181818
			-3.537915743	1.617647059
		-3.556541020		1.619047619
			-3.545011086	1.615384615
		-3.556541020	-3.549445676	1.625000000
		-3.553880266	-3.549445676	1.60000000
		-3.553880266	-3.551219512	1.66666667
		-3.552993348	-3.551219512	1.50000000
		-3.552993348	-3.552106430	2.00000000
	h: -3.552549889			

3.2. $y(x) = 5 \cdot (\sin 2x) + x^2$, интервал – [-6, 6], epsilon = 1e-3

График функции

Результаты работы методов

Метод	Количество итераций	Кол-во вычислений функции	Найденная точка
Дихотомия	14	28	-3.534739594
Золотое сечение	20	22	-0.713670113
Фибоначчи	20	22	-0.713454915
Парабола	7	10	-0.713762899
Брент	10	11	-0.713768148

[iteration]	[function_calls]	[a] [b] [interval_decrease]
0		-6.000000000	6.000000000	1.00000000
1		-6.000000000	1.416407865	1.618033989
2		-3.167184270	1.416407865	1.618033989
3		-1.416407865	1.416407865	1.618033989
4		-1.416407865	0.334368540	1.618033989
5		-1.416407865	-0.334368540	1.618033989
6		-1.003105620	-0.334368540	1.618033989
7		-1.003105620	-0.589803375	1.618033989
8		-0.845238210	-0.589803375	1.618033989
9	11	-0.747670785	-0.589803375	1.618033989
10	12	-0.747670785	-0.650103360	1.618033989
11	13	-0.747670785	-0.687370800	1.618033989
12		-0.724638240	-0.687370800	1.618033989
13		-0.724638240	-0.701605696	1.618033989
14		-0.724638240	-0.710403345	1.618033989
15	17	-0.719200994	-0.710403345	1.618033989
16		-0.715840591	-0.710403345	1.618033989
17		-0.715840591	-0.712480188	1.618033989
18		-0.714557031	-0.712480188	1.618033989
19	21	-0.714557031	-0.713273472	1.618033989
20		-0.714066755	-0.713273472	1.618033989
Golden section	search: -0.713670113			

teration] 	[function_calls]] [interval_decreas
		-6.000000000	6.00000000	1.000000000
		-6.000000000	1.416407882	1.618033985
		-3.167184236	1.416407882	1.618033999
		-1.416407882	1.416407882	1.618033963
		-1.416407882	0.334368472	1.618034056
		-1.416407882	-0.334368472	1.618033813
		-1.003105415	-0.334368472	1.618034448
		-1.003105415	-0.589802947	1.618032787
		-0.845237423	-0.589802947	1.618037135
	11	-0.747670939	-0.589802947	1.618025751
	12	-0.747670939	-0.650104455	1.618055556
11	13	-0.747670939	-0.687369431	1.617977528
12		-0.724634408	-0.687369431	1.618181818
13		-0.724634408	-0.701597877	1.617647059
		-0.724634408	-0.710405962	1.619047619
	17	-0.719214048	-0.710405962	1.615384615
		-0.715826323	-0.710405962	1.625000000
17		-0.715826323	-0.712438597	1.600000000
		-0.714471233	-0.712438597	1.666666667
	21	-0.714471233	-0.713116143	1.500000000
	22	-0.713793688	-0.713116143	2.000000000

[iteration]	[function_calls]	 [a	 1 [b	1	[interval_decrease]
[Iteration]	[TUNCTION_Calls]	[a				[Intervat_decrease]
9		-6.0000000	00	6.000000000		1.000000000
1		-6.0000000	00	0.223572049		1.928153142
2		-1.7722675	37	0.223572049		3.118272677
3		-1.7722675	37	0.000000000		1.126150282
4		-1.7722675	37	-0.661226338		1.595141151
5		-0.7199276	95	-0.661226338		18.927010574
6		-0.7186374	25	-0.661226338		1.022474232
7		-0.7186374	25	-0.661226338		1.000000000
Parabolic inter	polation: -0.713762899					

3.2. $y(x) = 2x^6 - 13x^5 + 26x^4 - 7x^3 - 28x^2 + 20x$, интервал – [-1, 3], epsilon = 1e-3

График функции

Результаты работы методов

Метод	Количество итераций	Кол-во вычислений функции	Найденная точка		
Дихотомия	12	24	1.354891724		
Золотое сечение	18	20	1.355506957		
Фибоначчи	17	19	1.355895719		
Парабола	расходится				
Брент	расходится				

[iteration]	[function_calls]] [interval_decrease]
0		-1.000000000	3.000000000	1.00000000
1		0.999500000	3.000000000	1.999500125
2		0.999500000	2.000250000	1.999000749
3		0.999500000	1.500375000	1.998003494
4		1.249437500	1.500375000	1.996014944
5		1.249437500	1.375406250	1.992061523
6	12	1.311921875	1.375406250	1.984248093
7		1.343164063	1.375406250	1.968984735
8		1.343164063	1.359785156	1.939835488
9		1.350974609	1.359785156	1.886499667
10		1.350974609	1.355879883	1.796137766
11		1.352927246	1.355879883	1.661319663
12		1.353903564	1.355879883	1.494008647
Dichotomous sea	rch: 1.354891724			

[iteration]	[function_calls]	[a]	[b] [interval_decrease]
		-1.00000000	3.000000000	1.00000000
		0.527864045	3.000000000	1.618033989
		0.527864045	2.055728090	1.618033989
		1.111456180	2.055728090	1.618033989
		1.111456180	1.695048315	1.618033989
		1.111456180	1.472135955	1.618033989
		1.249223595	1.472135955	1.618033989
		1.249223595	1.386991010	1.618033989
		1.301846065	1.386991010	1.618033989
	11	1.334368540	1.386991010	1.618033989
	12	1.334368540	1.366891015	1.618033989
11	13	1.346791020	1.366891015	1.618033989
12		1.346791020	1.359213500	1.618033989
13		1.351535985	1.359213500	1.618033989
		1.354468535	1.359213500	1.618033989
	17	1.354468535	1.357401085	1.618033989
		1.354468535	1.356280950	1.618033989
17		1.355160816	1.356280950	1.618033989
		1.355160816	1.355853097	1.618033989
Golden section :	search: 1.355506957			

		-1.000000000	3.000000000	1.000000000
		0.527864147	3.000000000	1.618034056
		0.527864147	2.055728295	1.618033813
		1.111456589	2.055728295	1.618034448
		1.111456589	1.695049031	1.618032787
		1.111456589	1.472135853	1.618037135
		1.249222674	1.472135853	1.618025751
		1.249222674	1.386988759	1.618055556
		1.301841665	1.386988759	1.617977528
	11	1.334369768	1.386988759	1.618181818
		1.334369768	1.366897871	1.617647059
11		1.346806984	1.366897871	1.619047619
		1.346806984		1.615384615
13		1.351590529		1.625000000
			1.356374073	1.60000000
	17	1.353503946	1.356374073	1.66666667
		1.354460655	1.356374073	1.500000000
17		1.355417364	1.356374073	2.00000000