УДК 519.48

C. B. BOCTOKOB

НОРМЕННОЕ СПАРИВАНИЕ В ФОРМАЛЬНЫХ МОДУЛЯХ

Введение

1. Общий закон взаимности в поле алгебраических чисел выражает в явной форме отношение символов степенных вычетов *n*-ой степени

$$\left(\frac{\alpha}{\beta}\right)\left(\frac{\beta}{\alpha}\right)^{-1}$$
 через числа α и β . Эта задача сводится (см. (1)) к вопросу

о нахождении явного выражения символа норменного вычета Гильберта в локальном поле (конечном расширении поля p-адических чисел \mathbf{Q}_p). Такое выражение для символа Гильберта, задающее его через разложение элементов α и β в ряды по локальной униформизирующей, было найдено в работе (11).

В настоящей работе обобщаются доказанные в (11) результаты на группу точек формальной группы Любина— Тэйта. Кратко эти результаты были сформулированы в (9).

В простом идеале $\mathfrak p$ локального поля вводится структура группы точек с помощью формального группового закона F(X, Y) Любина — Тэйта, т. е.

$$\alpha + \beta = F(\alpha, \beta), \quad \alpha, \beta \in \mathfrak{p}.$$

Далее, в полученной группе точек $F(\mathfrak{p})$ рассматривается аналог символа норменного вычета Гильберта $(\alpha, \beta)_F$ (см. ниже п. 4). Этот символ обладает норменным свойством, т. е. равен нулю тогда и только тогда, когда элемент α является мультипликативной нормой в расширении, полученном делением точки β на изогению.

Основная задача, решаемая в этой статье,— задание обобщенного символа Гильберта в явном виде через разложение элементов α и β в ряды по локальной униформизирующей.

Частные случаи для обобщенного символа Гильберта в расширениях локального поля (над кольцом целых элементов которого определена формальная группа F), полученных присоединением корня изогении, были разобраны в (8), (10) (в мультипликативном случае такие расширения в точности соответствуют круговым расширениям поля \mathbf{Q}_p). В этих работах результаты Ивасавы (см. (5)) переносятся на группу точек.

Изложим кратко содержание работы. В первых двух параграфах даются основные определения, обозначения и доказываются несколько вспомогательных утверждений.

В следующих двух параграфах изучается арифметика группы точек $F(\mathfrak{p})$. В § 3 строятся примарные элементы, т. е. элементы, задающие неразветвленное расширение при делении их на изогению. В § 4 задается канонический базис группы точек $F(\mathfrak{p})$, являющийся обобщением канонического базиса Шафаревича группы главных единиц локального поля (см. (3)).

В §§ 5, 6 задается в явном виде спаривание $\langle \alpha, \beta \rangle_F$ между мультипликативной группой локального поля и группой точек $F(\mathfrak{p})$ со значениями в корнях изогении и доказываются основные свойства этого спаривания. В § 5 проверяется билинейность и инвариантность спаривания относительно выбора локальной униформизирующей, а в § 6 — независимость относительно разложения заданных элементов α и β в ряды по этой униформизирующей.

Наконец, в последнем параграфе, используя доказанные ранее свойства спаривания $\langle \alpha, \beta \rangle_F$, проверяется совпадение спаривания $\langle \alpha, \beta \rangle_F$ с обобщенным символом Гяльберта $(\alpha, \beta)_F$ (при этом предполагается, что поле, над кольцом целых элементов которого определена формальная группа F, вполне разветвлено над \mathbf{Q}_p). Это дает нам явное выражение для обобщенного символа Гильберта на группе точек.

2. Введем основные обозначения статьи.

 k_0 — локальное поле (конечное расширение поля \mathbf{Q}_p),

 \mathfrak{o}_0 — кольцо целых элементов поля k_0 ,

 π_0 — простой элемент в \mathfrak{o}_0 ,

k — конечное расширение поля k_0 ,

 \mathfrak{p} — простой идеал кольца целых элементов поля k,

 π — простой элемент поля k,

e — индекс ветвления расширения k/k_0 ,

F — степень инерции расширения k_0/\mathbf{Q}_p ,

 $q = p^f$ — порядок поля вычетов в поле k_0 ,

$$e_1 = \frac{e}{q-1}, e_i = e_1/q^{i-1}, i = 1, 2, \ldots,$$

T — подполе инерции в расширении k/k_0 ,

 \mathfrak{o} — кольцо целых элементов поля T,

 Δ — автоморфизм Фробениуса в T/k_0 ,

tr — оператор следа в T/k_0 ,

 \Re — мультипликативная система представителей поля вычетов в поле k.

v — показатель в поле k, т. е. $v(\alpha) = a$, если $\alpha = \pi^a \xi$, где ξ — некоторая единица.

Обозначим, далее, через $\mathfrak{o}\{X\}$ множество рядов с целыми коэффициентами вида

$$\varphi(X) = \sum_{i \in \mathbf{Z}} d_i X^i, \quad d_i \in \mathfrak{o},$$

обладающих следующим свойством: $d_i o 0$, если $i o -\infty$. Множество $\mathfrak{g}\{X\}$ образует кольцо, которое содержит, очевидно, в качестве годкольца кольцо формальных степенных рядов с коэффициентами из \mathfrak{o} .

Если $\varphi(X) = d_m X^m + d_{m+1} X^{m+1} + \ldots$ некоторый ряд Лорана из кольца $\mathfrak{o}\{X\}$, то его порядок m будем обозначать $\deg \varphi$.

Далее, если ϕ и ψ — два ряда из $\mathfrak{o}\{X\}$, то сравнение

$$\varphi \equiv \psi \mod \deg s$$

будет означать равенство коэффициентов рядов ϕ и ψ при степенях, меньших s, а сравнение

$$\varphi \equiv \psi \mod (\pi_0^r, \deg s)$$

будет означать, что эти же коэффициенты сравнимы между собой по $\mod \pi_0^r$.

Определим, наконец, действие автоморфизма Фробениуса Δ на ряд $\phi = \sum_i d_i X^i$ из кольца $\mathfrak{o}\{X\}$ следующим образом.

$$\Delta \varphi = \varphi^{\Delta} = \sum d_i^{\Delta} X^{qi}.$$

3. Пусть F(X, Y) — однопараметрическая коммутативная формальная группа, определенная над кольцом целых элементов \mathfrak{o}_0 локального поля k_0 (см. (6)). Предположим, далее, что кольцо \mathfrak{o}_0 входит в кольцо эндоморфизмов формальной группы F, т. е. для любого элемента a из \mathfrak{o}_0 найдется ряд [a](X) с целыми коэффициентами такой, что $[a] \circ F = F \circ [a]$ (таким образом, формальная группа F(X, Y) является формальным \mathfrak{o}_0 -модулем).

Если мы в максимальном идеале \mathfrak{p} поля k (некоторого расширения поля k_0) будем складывать элементы и умножать их на элементы из кольца \mathfrak{o}_0 следующим образом:

$$\alpha + \beta = F(\alpha, \beta), \quad \alpha, \beta \in \mathfrak{p},$$

$$a\alpha = [a](\alpha), \quad a \in \mathfrak{p}_0, \quad \alpha \in \mathfrak{p},$$

то получим группу точек $F(\mathfrak{p})$ формального модуля F со структурой \mathfrak{o}_0 -модуля.

Напомним, что если $\lambda(X)$ — логарифм формальной группы F, то формальный групповой закон F(X, Y) можно представить в виде

$$F(X, Y) = \lambda^{-1}(\lambda(X) + \lambda(Y)) \tag{1}$$

(см. (6)) и если [a](X) — эндоморфизм, задаваемый целым элементом a из кольца \mathfrak{o}_0 , то

$$[a](X) = \lambda^{-1}(a\lambda(X)). \tag{2}$$

Пусть \mathscr{F}_{π_0} — множество степенных рядов из кольца $\mathfrak{o}_0[[X]]$, удсвлетворяющих следующим условиям:

$$f(X) \equiv \pi_0 X \mod \deg 2$$
, $f(X) \equiv X^q \mod \pi_0$.

Тогда над кольцом \mathfrak{o}_0 существует единственная формальная группа F высоты 1 (называемая группой Любина — Тэйта) такая, что ряд f(X) является ее эндоморфизмом (см. (4)). В дальнейшем мы этот эндоморфизм будем обозначать $[\pi_0]$ и, таким образом, по определению

$$[\pi_0](X) = \pi_0 X + X^q + \pi_0 \sum_{i=2}^{\infty} a_i X^i, \quad a_i \in \mathfrak{o}_0.$$
 (3)

Мы будем говорить, далее, что формальная группа F принадлежит классу \mathcal{F}_{π_0} .

Как было доказано в (4), если f_1 и f_2 — два ряда из множества \mathcal{F}_{π_0} , то соответствующие им формальные группы Любина — Тэйта F_1 и F_2 изоморфны над \mathfrak{o}_0 , т. е. существует степенной ряд $\phi(X) \equiv X \mod \deg 2$ с коэффициентами из \mathfrak{o}_0 такой, что

$$\varphi(F_1(X, Y)) = F_2(\varphi(X), \varphi(Y)),$$
 (4)

причем этот ряд единственный.

4. Пусть, как и в п. 3, F — формальная группа Любина — Тэйта с эндоморфизмом $[\pi_0]$. В дальнейшем мы будем предполагать, что поле k содержит все корни изогении $[\pi_0^n]$ и ξ — фиксированный первообразный корень этой изогении, т. е.

$$[\pi_0^n](\xi) = 0, \quad [\pi_0^{n-1}](\xi) \neq 0.$$

Определим теперь обобщенный символ Гильберта на группе точек $F(\mathfrak{p})$, как это было сделано в (6), а именно, зададим спаривание между мультипликативной группой k^{\times} и группой точек $F(\mathfrak{p})$ со значениями в корнях изогении $[\pi^n_0]$:

$$(\alpha, \beta)_F = \rho^{\sigma_{\alpha}} \underset{F}{\sim} \rho, \quad \alpha \in k^{\times}, \quad \beta \in F(\mathfrak{p}),$$

где σ_{α} — автоморфизм группы Галуа, соответствующий элементу α в силу локальной теории полей классов, а ρ — элемент алгебраического замыкания поля k, получающийся делением точки β на изогению $[\pi_0^n]$, τ . е. $[\pi_0^n]$ $(\rho) = \beta$.

Очевидно, что это определение не зависит от выбора элемента ρ . Далее, нетрудно видеть, что обобщенный символ Гильберта (α , β), обладает, как и обычный символ Гильберта, следующими свойствами:

1) билинейность:

$$(\alpha_1 \alpha_2, \beta)_F = (\alpha_1, \beta)_F + (\alpha_2, \beta)_F,$$

 $(\alpha, \beta_1 + \beta_2)_F = (\alpha, \beta_1)_F + (\alpha, \beta_2)_F,$

2) норменность по первому аргументу, т. е. $(\alpha, \beta)_F = 0 \iff \alpha - \text{мультипликативная норма из } k(\rho)$, где $[\pi_n^n](\rho) = \beta$.

Отметим еще одно свойство обобщенного символа Гильберта. Пусть F_1 и F_2 — две изоморфные формальные группы Любина — Тэйта и

 $\varphi(X)$ — степенной ряд, задающий изоморфизм между ними (см. (4), п. 3). Тогда имеет место равенство

$$(\alpha, \beta)_{F_2} = \varphi((\alpha, \varphi^{-1}(\beta))_{F_1}).$$
 (5)

§ 1. Несколько лемм

В этом параграфе мы проверим несколько утверждений огносительно логарифма формальной группы F, а также корней изогении [π_0^n].

1. Пусть F — формальная группа Любина — Тэйта с логарифмом $\lambda(X) = X + c_2 X^2 + c_3 X^3 + \dots$, $c_i = k_0$. Проверим справедливость следующих неравенств:

$$\mathbf{v}(c_m) \geqslant -(m-1)e, \quad m \geqslant 2. \tag{6}$$

Действительно из равенства $\lambda([\pi_0](X)) = \pi_0 \lambda(X)$ (см. (2), введение, п. 3) следует:

$$[\pi_0](X) + c_2([\pi_0](X))^2 + \dots = \pi_0 X + \pi_0 c_2 X^2 + \dots$$

Приравняем коэффициенты при X^m в обеих частях последнего равенства. Тогда, учитывая определение эндоморфизма [π_0] (см. (3), введение, п. 3), получим:

$$\pi_0 c_m = \pi_0^m c_m + \left(\sum_{i=2}^{m-1} c_i \alpha_i\right) + d_m,$$

где через α_i обозначен коэффициент при X^m в ряде $([\pi_0](X))^i$, а элемент d_m равен либо $\pi_0 a_m$, если $m \neq q$, либо $1 + \pi_0 a_q$, если m = q. Из последнего равенства следует:

$$c_m = \frac{d_m}{\pi_0 - \pi_0^m} + \sum_{i=2}^{m-1} \alpha_i \frac{c_i}{\pi_0 - \pi_0^m}.$$

Отсюда несложной индукцией получаем неравенства (6).

Изучим теперь область сходимости рядов $\lambda(X)$ и $\lambda^{-1}(X)$.

ЛЕММА 1.

- а) ряд $\lambda(X)$ сходится на идеале $\mathfrak{p},$ а ряд $\lambda^{-1}(X)$ сходится на идеале \mathfrak{p}^{e_1+1} :
- б) ряды $\lambda(X)$ и $\lambda^{-1}(X)$ определяют взаимно обратные изоморфизмы между группой точек $F(\mathfrak{p}^m)$ и аддитивным \mathfrak{o}_0 -модулем \mathfrak{p}^m , если $m > e_1$;
- в) все корни изогении $[\pi_0^n]$, содержащиеся в группе точек $F(\mathfrak{x})$, являются корнями логарифма $\lambda(X)$.

Доказательство. В классе изоморфных формальных групп Любина — Тэйта содержится формальная группа F_{α} с логарифмом Артина — Хассе

$$\lambda_a(X) = X + \frac{X^q}{\pi_0} + \frac{X^{q^2}}{\pi_0^2} + \dots$$
 (7)

(см. $(^{7})$). Для рядов $\lambda_{a}(X)$ и $\lambda_{a}^{-1}(X)$ первые два утверждения леммы проверяются точно так же, как и в теореме 3, § 2, гл. IV $(^{8})$.

Пусть, далее, $\varphi(X)$ — степенной ряд, задающий изоморфизм между F и F_a (см. (4), введение, п. 3). Тогда (см. лемму 3)

$$\lambda(X) = \lambda_a(\varphi^{-1}(X)), \quad \lambda^{-1}(X) = \lambda_a^{-1}(\varphi(X)),$$

поэтому сходимость ряда $\lambda(X)$ равносильна сходимости $\lambda_a(X)$, а сходимость $\lambda^{-1}(X)$ равносильна сходимости $\lambda_a^{-1}(X)$.

Последнее утверждение леммы проверяется точно так же, как и в теореме 3, § 2, гл. IV, (6). Лемма доказана.

ЛЕММА 2. В классе изоморфных формальных групп Любина — Тэйта, соответствующих множеству \mathcal{F}_{π_0} (см. введение, п. 3), найдется такая формальная группа F_0 с логарифмом λ_0 , что для любого $n \ge 1$ коэффициенты ряда $g(X) = \lambda_a^{-1} \circ \lambda_o [\pi_0^n]_0$ при степенях, меньших q^n , делятся на π_0 , а при степени q^n коэффициент равен 1 (здесь $[\pi_0]_0$ — эндоморфизм формальной группы F_0).

Доказательство. Рассмотрим в кольце формальных степенных рядов с коэффициентами из поля k_0 следующее равенство:

$$\lambda(f(X)) = \pi_0 \lambda(X), \tag{8}$$

в котором $\lambda(X) \equiv X \mod \deg 2$, $f(X) \equiv \pi_0 X \mod \deg 2$. Нетрудно проверить, что этим равенством однозначно определяется ряд f(X), если известен ряд $\lambda(X)$, и наоборот.

Предположим, что построенный по ряду $\lambda(X)$ с помощью равенства (8) ряд f(X) принадлежит множеству \mathcal{F}_{π_0} . Тогда, согласно теории Любина — Тэйта (см. (*)), существует единственная формальная группа F над кольцом \mathfrak{o}_0 , эндоморфизмом которой будет ряд f(X). С другой стороны, для формальной группы F существует единственный ряд $\lambda_F(X)$ (называемый логарифмом), задающий изоморфизм над k_0 формальной группы F в аддитивную формальную группу X+Y (см. (*)). В этом случае ряд λ_F тоже удовлетворяет равенству (3) (см. (2), введение, п. 3) и, значит, совпадает по вышесказанному с рядом $\lambda(X)$. Следовательно, мы доказали, что если ряд f(X), построенный по заданному ряду $\lambda(X)$ с помощью (8), принадлежит множеству \mathcal{F}_{π_0} , то соответствующая ряду f формальная группа Любина — Тэйта F будет иметь своим логарифмом ряд $\lambda(X)$.

Возьмем теперь в качестве ряда $\lambda(X)$ следующий ряд:

$$\lambda(X) = X + \frac{c_1}{\pi_0} X^q + \frac{c_2}{\pi_0^2} X^{q^2} + \dots, \quad c_i \in \mathfrak{o}_0,$$
 (9)

где $c_i \equiv 1 \mod \pi_0$. Несложно убедиться в том, что определяемый равенством (8) ряд f(X) будет в таком случае принадлежать \mathcal{F}_{π_0} и по только что доказанному ряд f(X) будет эндоморфизмом некоторой формальной группы Любина — Тэйта F из класса \mathcal{F}_{π_0} , логарифмом которой будет заданный ряд (9).

Существование формальной группы F с логарифмом (9) можно было бы проверить и другим способом, а именно, так же как устанавливается

существование формальной группы F_a с логарифмом Артина — Хассе λ_a в работе (7).

Далее, непосредственно проверяется, что ряд λ_a^{-1} , обратный к логарифму Артина — Хассе λ_a (см. (7)) относительно подстановки, имеет вид

$$\lambda_a^{-1} = X + \frac{d_1}{\pi_0} X^q + \ldots + \frac{d_m}{\pi_0^m} X^{mq-m+1} + \ldots, \quad d_m \in \mathfrak{o}_0.$$
 (10)

Поскольку формальная группа F с логарифмом (9) изоморфна формальной группе F_a с логарифмом λ_a (обе они принадлежат одному и тому же классу \mathcal{F}_{π_0}), то ряд $g = \lambda_a^{-1} \circ \lambda \circ [\pi_0^n]$ имеет целые коэффициенты (см. лемму 3, § 2, п. 1). Кроме того, из (2), введение, п. 3, следует, что ряд g(X) можно переписать в виде $g = \lambda_a^{-1} (\pi_0^n \lambda(X))$.

Подберем теперь коэффициенты в логарифме (9) так, чтсбы ряд g(X) удовлетворял условию нашей леммы. Для этого подставим ряд \mathbf{x}_0^n $\lambda(X)$ в ряд (10). Тогда коэффициент a_n при X^{qn} в ряде g будет иметь вид

$$c_n+h(c_1,\ldots,c_{n-1}),$$

где

$$h = \sum_{m=1}^{1+q+\ldots+q^{n-1}} d_m \pi_0^{m(q-1)-m+1} \sum_{m=1}^{\infty} \frac{(mq-m+1)!}{\alpha_0! \ldots \alpha_{n-1}!} c_1^{\alpha_1} \ldots c_{n-1}^{\alpha_{n-1}} \pi_0^{(n-1)\alpha_0+\ldots+\alpha_{n-2}}$$

и суммирование во внутренней сумме происходит по всем неотрицательным наборам $\alpha_0, \ldots, \alpha_{n-1}$, удовлетворяющих условиям:

 $lpha_0+\ldots+lpha_{n-1}=mq-m+1, \quad lpha_0+lpha_1q+\ldots+lpha_{n-1}q^{n-1}=q^n.$ Пусть сперва n=1. Тогда коэффициент a_1 равен $c_1+\pi_0^{q-1}d_1$ и, значит, $a_1=1$, если $c_1=1-\pi_0^{q-1}d_1$. Ясно при этом, что $c_1\equiv 1 \mod \pi_0$.

Пусть, далее, уже установлено существование целых c_1, \ldots, c_{n-1} , сравнимых с 1 по $\mod \pi_0$, таких, что $a_1 = \ldots = a_{n-1} = 1$. Очевидно, что $h(c_1, \ldots, c_{n-1})$ делится на π_0 . Поэтому, взяв c_n равным $1 - h(c_1, \ldots, c_{n-1})$, получим, что $c_n \equiv 1 \mod \pi_0$ и при этом $a_n = 1$.

Рассматривая таким же образом коэффициенты при степенях, меньших q^n в ряде g, несложно проверить их делимость на π_0 . Лемма доказана.

2. Пусть $[\pi_0]$ — эндоморфизм формальной группы F. Тогда для элемента, полученного применением эндоморфизмє $[\pi_0]$ к $\alpha \in \mathfrak{p}$, легко проверяются следующие формулы:

$$[\pi_0](\alpha) \equiv \alpha^q \mod \pi^{qi+1}$$
, если $\nu(\alpha) = i < e_1$, (11a)

$$[\pi_0](\alpha) \equiv \pi_0 \alpha \mod \pi^{i+e_1+1}, \text{ если } \nu(\alpha) = i > e_1,$$
 (116)

$$[\pi_0](lpha) \equiv \pi_0 lpha + lpha^q mod \pi^{qe_1+1}, \ ext{если }
u(lpha) = i = e_1.$$

Из этих формул, в частности, следует, что если элемент α из \mathfrak{o}_0 -модуля $F(\mathfrak{p})$ делится на π^{qe_1+1} , то он делится и на изогению $[\pi_0]$, т. е. $\alpha \equiv 0 \mod \pi^{qe_1+1} \Rightarrow \alpha = [\pi_0](\rho), \rho \in F(\mathfrak{p}).$

Далее, если $v(\alpha) \geqslant e_n$, то

$$v\left(\left[\pi_{0}^{n}\right]\left(\alpha\right)\right)\geqslant qe_{1},\quad v\left(\pi_{0}^{n}\lambda\left(\alpha\right)\right)\geqslant qe_{1}.$$
 (12)

Здесь первое неравенство следует непосредственно из формул (11 а—в), а второе вытекает из него, если учесть еще равенство $\pi_0^n \lambda(\alpha) = \lambda([\pi_0^n](\alpha))$ и лемму 1, п. 1.

Пусть ξ — первообразный корень изогении $[\pi_0^n]$ (см. введение, п. 4). Тогда из формул (11а—в) несложно получить, что $\nu(\xi) = e_n$. Более того, из (11a) получаем сравнение $[\pi_0^{n-1}](\xi) \equiv \xi^{q^{n-1}} \mod \pi^{e_i+1}$. Применяя теперь эндоморфизм $[\pi_0]$ и используя формулу (11в), получим:

$$\xi^{q^n} + \pi_0 \xi^{q^{n-1}} \equiv [\pi_0^n](\xi) = 0 \mod \pi^{qe_1+1}. \tag{13}$$

Отметим, наконец, что все корни изогении $[\pi_0^n]$ образуют \mathfrak{o}_0 -модуль с одной образующей.

3. Рассмотрим кольцо рядов $\mathfrak{o}\{X\}$ (см. введение, п. 2) и проверим, что ряд f(X) из этого кольца обратим тогда и только тогда, когда обратим хотя один из его коэффициентов. Ряд, обратный к ряду f(X) в кольцо $\mathfrak{o}\{X\}$, будем обозначать в дальнейшем 1/f.

Очевидно, что если ряд f обратим, то существует хоть один обратимый коэффициент. Пусть теперь ряд f имеет обратимые коэффициенты и степень m — наименьшая среди всех степеней с обратимыми коэффициентами (такая степень найдется, так как $a_i \rightarrow 0$, если $i \rightarrow -\infty$). Таким образом, ряд f можно записать в виде $f(X) = a_m X^m (1 + g(X))$, где a_m обратим в \mathfrak{o} , причем ряд g принадлежит кольцу $\mathfrak{o}\{X\}$, все его коэффициенты при отрицательных степенях делятся на π_0 , а свободный член равен нулю. Тогда

$$1/f = (a_m X^m)^{-1} (1 - g + g^2 - g^3 + \ldots), \tag{14}$$

и чтобы существовал ряд 1/f в кольце $\mathfrak{o}\{X\}$, нам осталось проверить, что имеет смысл сумма $1-g+g^2-g^3+\cdots$. Для этого достаточно доказать, что при достаточно большом s коэффициент при любой фиксированной степени X^r в ряде g^s делится на заданную степень π_0^t , т. е. стремится к нулю, если $s \rightarrow \infty$.

Ряд g по $\operatorname{mod} \pi_0^t$ является рядом Лорана, т. е. имеет конечное число отрицательных степеней. Пусть по $\operatorname{mod} \pi_0^t$ ряд g имеет вид

$$g(X) = d_0 X^{-u} + d_1 X^{-u+1} + \ldots + d_{u-1} X^{-1} + d_{u+1} X + \ldots,$$

при этом $d_0, d_1, \ldots, d_{u-1}$ делятся на π_0 . Тогда коэффициент при λ^r в ряде g^s будет равен

$$\sum_{\alpha_0!} \frac{s!}{\alpha_0! \alpha_1! \ldots} d_0^{\alpha_0} d_1^{\alpha_1} \ldots,$$

причем суммирование происходит по всем неотрицательным α_{ϵ} , α_{i} , ..., удовлетворяющим условиям: $\alpha_{0} + \alpha_{i} + \cdots = s$, $-u\alpha_{0} - (u-1)\alpha_{1} - \cdots - \alpha_{u-1} + \cdots$

 $+\alpha_{u+1}+2\alpha_{u+2}+\dots = r$. Отсюда следует, что

$$(u+1)(\alpha_0+\alpha_1+\cdots+\alpha_{u-1}) \geqslant s-r.$$

Последнее неравенство означает, что при фиксированном r коэффициент при X^r стремится к нулю, если $s \to \infty$, так как $d_0, d_1, \ldots, d_{u-1}$ делятся на π_0 .

Таким образом, существование ряда 1/f при наших условиях доказано.

Отметим некоторые легко проверяемые свойства ряда 1/f:

- a) $f \equiv X^r \mod \pi_0 \iff 1/f \equiv X^{-r} \mod \pi_0$;
- б) если ряды f и g обратимы в кольцо $\mathfrak{o}\{X\}$, то

$$f \equiv g \mod \pi_0^m \Leftrightarrow 1/f \equiv 1/g \mod \pi_0^m;$$

- в) если h обратим в $\mathfrak{o}\{X\}$ и f, g произвольные ряды из $\mathfrak{o}\{X\}$, то $f \equiv g \bmod \pi_0^m \Leftrightarrow f/h \equiv g/h \bmod \pi_0^m;$
- Γ) если f обратим в $\mathfrak{o}\{X\}$, то

$$\frac{d}{dX}f\equiv 0 \bmod \pi_0^m \Leftrightarrow \frac{d}{dX}(1/f)\equiv 0 \bmod \pi_0^m.$$

4. Пусть $\xi = c_0 \pi^{e_n} + c_1 \pi^{e_n+1} + \ldots$ некоторое разложение первообразного корня изогении $[\pi_0^n]$ в степенной ряд по простому элементу π с коэффициентами из кольца \mathfrak{o} , и пусть

$$z(X) = c_0 X^{e_n} + c_1 X^{e_n+1} + \dots, \quad s_m(X) = [\pi_0^m](z).$$
 (15)

При m=n ряд $s_n(X)$ будем в дальнейшем обозначать просто через s(X). В этом пункте мы проверим несколько сравнений относительно ряда $s_m(X)$.

Из определения эндоморфизма $[\pi_0]$ (см. (3), введение, п. 3) следует сравнение

$$s_m(X) \equiv z^{q^m}(X) \bmod \pi_0. \tag{16}$$

Это сравнение, в частности, означает, что в кольце $\mathfrak{o}\{X\}$ можно рассматривать ряд $1/s_m$, для которого имеем:

$$1/s_m \equiv z^{-q^m}(X) \bmod \pi_0 \tag{17}$$

(см. а), п. 3). Далее, легко видеть, что $\frac{d}{dX}s_m \equiv 0 \mod \pi_0^m$, а значит (см. г), п. 3),

$$\frac{d}{dX}(1/s_m) \equiv 0 \bmod \pi_0^m. \tag{18}$$

Пусть f и g — два степенных ряда из кольца $\mathfrak{o}[[X]]_0$. Тогда из определения эндоморфизма $[\pi_0]$ следует, что если $f \equiv g \mod \pi_0^m$, то $[\pi_0](f) \equiv [\pi_0](g) \mod \pi_0^{m+1}$. Отсюда, учитывая, что $z^q \equiv z^\Delta \mod \pi_0$, можно несложной индукцией получить сравнение

$$s_m \equiv s_{m-1}^{\Lambda} \bmod \pi_0^m, \tag{19}$$

и, значит (см. б), п. 3),

$$1/s_m \equiv (1/s_{m-1})^{\Delta} \mod \pi_0^m. \tag{20}$$

Проверим, наконец, еще одно сравнение относительно ряд $s_m(X)$, а именно,

$$(s_{n-1}^{\Delta(q-1)} - s^{q-1})/s \equiv 0 \mod (\pi_0^{n+1}, \deg 0).$$
 (21)

Действительно, сравнение (19) можно записать в виде $s=s_{n-1}^{\Delta}+\pi_0^n h$, где $h\left(X\right)$ — некоторый степенной ряд. Тогда $s_{n-1}^{\Delta}=s-\pi_0^n h$. Возведя обе части последнего равенства в степень q-1 и воспользовавшись (16), голучим:

$$s_{n-1}^{\Delta(q-1)} - s^{q-1} \equiv \pi_0^n z^{q^n(q-2)} h \mod \pi_0^{n+1}.$$

Умножим обе части последнего равенства на ряд 1/s (см. в), п. 3) и используем при этом (17). Тогда в правой части получим ряд $\pi_0^n z^{q^n(q-3)}h$, который является при $q \geqslant 3$ степенным рядом, т. е. $\pi_0^n z^{q^n(q-3)}h \equiv 0 \mod \deg 0$. Это дает нам (21).

Пусть через $u_m(X)$ обозначен ряд s/s_{m-1} . Тогда очевидно, сто $u_m==\pi_0+\pi_0a_2s_{m-1}+\pi_0a_3s_{m-1}^2+\cdots$ (см. (3), введение, п. 3). Отсюда и из (19) для ряда $u=u_n$ вытекает сравнение

$$u^{\Delta} - u_{n+1} \equiv s_{n-1}^{\Delta(q-1)} - s^{q-1} \mod \pi_0^{n+1}. \tag{22}$$

В дальнейшем нам будет удобно использовать разложение ряда $u = u_n$ в ряд по s_{n-1} в следующем виде:

$$u = \pi_0 + s_{n-1}(X) \rho(X),$$
 (23)

где $\rho(X)$ — степенной ряд с целыми коэффициентами.

§ 2. Некоторые изоморфизмы

Пусть $\mathfrak{o}[[X]]_0$ — аддитивная группа формальных степенных рядов без свободного члена, рассматриваемая как \mathfrak{o}_0 -модуль, и пусть \mathscr{H}_r — \mathfrak{o}_0 -модуль степенных рядов без свободного члена с коэффициентами из \mathfrak{o} , в котором сложение происходит по формальному групповому закону F, \mathbf{r} . e.

$$\varphi(X) + \psi(X) = F(\varphi, \psi),$$

а действие операторов из кольца о определено следующим образом:

$$a\varphi = [a](\varphi), \quad a \in \mathfrak{o}_0.$$

В этом параграфе мы найдем для формального группового закона Любина — Тэйта F функции E_F и l_F , осуществляющие взаимно обратные изоморфизмы между аддитивным \mathfrak{o}_0 -модулем $\mathfrak{o}[[X]]_0$ и \mathfrak{o}_0 -модулем \mathfrak{H}_F .

1. Пусть F_1 и F_2 — две формальные группы Любина — Тэйта из класса \mathscr{F}_{π_0} , и пусть λ_1 , λ_2 — их логарифмы.

ЛЕММА 3. Ряды $\lambda_1^{-1} \circ \lambda_2$ и $\lambda_2^{-1} \circ \lambda_1$ имеют целые коэффициенты из кольца \mathfrak{o}_0 и осуществляют изоморфизм между F_1 и F_2 , т. е. $\lambda_1^{-1} \circ \lambda_2 : F_2 \rightarrow F_1$, $\lambda_2^{-1} \circ \lambda_1 : F_1 \rightarrow F_2$ и при этом $\lambda_1^{-1} \circ \lambda_2 \equiv \lambda_2^{-1} \circ \lambda_1 \equiv X \mod \deg 2$.

Доказательство. По условию формальные группы F_1 и F_2 принадлежат классу \mathcal{F}_{π_0} . Поэтому, в силу леммы 1, § 1, (4), существует единственный ряд $\varphi(X)$ с коэффициентами из кольца \mathfrak{o}_0 , осуществляющий изоморфизм из F_1 в F_2 . Далее, существует единственный ряд с коэффициентами из поля k_0 , задающий изоморфизм из F_1 в F_2 над полем k_0 (см. (6)). При этом нетрудно убедиться, что таким изоморфизмом является ряд $\lambda_2^{-1} \circ \lambda_1$ (см. (1), (4), введение, п. 3). Ряд $\varphi(X)$ тоже осуществляет этот изоморфизм, значит, $\varphi(X) = \lambda_2^{-1} \circ \lambda_1$, откуда следует, в частности, что ряд $\lambda_2^{-1} \circ \lambda_1$ имеет целые коэффициенты. Аналогично проверяется утверждение леммы относительно ряда $\lambda_1^{-1} \circ \lambda_2$. Лемма доказана.

2. В классе изоморфных между собой формальных групп Любина — Тэйта, соответствующих множеству степенных рядов \mathscr{F}_{π_0} (см. введение, п. 3), существует формальная группа F_a , логарифмом которой является функция Артина — Хассе $\lambda_a(X)$ (см. (7), § 1, п. 1). Поэтому ряд $\lambda^{-1} \circ \lambda_a$, как было показано в п. 1, задает изоморфизм из F_a в данную формальную группу F с логарифмом λ . Таким образом, $\lambda^{-1} \circ \lambda_a$ имеет целые коэффициенты. Надо отметить, что ряд $\lambda^{-1} \circ \lambda_a$ является обобщением функции Шафаревича $E(X) = \exp \sum_{r \geq 0} X^{pr}/p^r$ мультипликативного случая

(см. (³)). Тем самым E(X) осуществляет изоморфизм из формальной группы Любина — Тэйта (над \mathbf{Z}_p) с логарифмом $X + X^p/p + X^{p^2}/p^2 + \cdots$ в мультипликативную группу.

Свяжем теперь ряд $\lambda^{-1} \circ \lambda_a$ с автоморфизмом Фробениуса Δ и определим функцию $E_F(\phi)$ для любого ряда $\phi(X)$ из $\mathfrak{o}[[X]]_{\mathfrak{o}}$ следующим образом:

$$E_F(\varphi) = \lambda^{-1} \left(\sum_{r=0}^{\infty} \frac{\varphi^{\Delta r}}{\pi_0^r} \right).$$

В дальнейшем мы эти функции будем использовать чаще всего в виде

$$E_F(\varphi) = \lambda^{-1} \left(\left(1 + \frac{\Delta}{\pi_0} + \frac{\Delta^2}{\pi_0^2} + \dots \right) (\varphi) \right). \tag{24}$$

Ряд $\lambda^{-1} \circ \lambda_a \circ \varphi$, вообще говоря, не совпадает с функцией $E_F(\varphi)$, но если $\theta \in \Re$, то

$$E_F(\theta X^m) = \lambda^{-1}(\lambda_a(\theta X^m)). \tag{25}$$

Отсюда, в частности, следует, что

$$E_F(\theta X^m) \equiv \theta X^m \mod \deg 2m, \quad \theta \in \Re.$$
 (26)

Далее, из определения функции E_F получаем, что для любых степенных рядов φ и ψ из кольца $\mathfrak{o}[[X]]_0$ имеет место равенство, называем $\mathfrak{o}_{\mathbb{C}}$ в даль-

нейшем формальной аддитивностью функции $E_{\mathbf{F}}$:

$$E_F(\varphi + \psi) = E_F(\varphi) + E_F(\psi). \tag{27}$$

Кроме того, если $a \in \mathfrak{o}_0$, то

$$E_F(a\varphi) = [a]E_F(\varphi). \tag{28}$$

ЛЕММА 4. Функция $E_{\mathbb{F}}(\varphi)$ является степенным рядом с целыми коэффициентами без свободного члена и определсна на простом идеале у поля k.

Доказательство. Первое утверждение леммы достаточно проверить, согласно (27), для ряда $\varphi = aX^m$, $a \in \mathfrak{o}$. В этом случае доказательство можно свести к функции $E_F(\theta X^m)$, если разложить элеменг a в степенной ряд по $\pi_{\mathfrak{o}}$ с коэффициентами из \mathfrak{R} и использовать (27), (28). Функция $E_F(\theta X^m)$, согласно (25) и лемме 3, яеляется степенным рядом с целыми коэффициентами. Второе утверждение леммы является очевидным следствием первого.

3. Рассмотрим теперь ряд $\lambda_a^{-1} \circ \lambda$, задающий обратный изоморфизм из данной формальной группы F в формальную группу F_a с логарифмом Артина — Хассе $\lambda_a(X)$. Согласно лемме 3, п. 1, ряд $\lambda_a^{-1} \circ \lambda$ тоже будет степенным рядом с целыми коэффициентами без свободного члена.

Свяжем теперь, как и выше, ряд $\lambda_a^{-1} \circ \lambda$ с автоморфизмом Фробениуса Δ и определим функцию $l_F(\phi)$ для любого ряда ϕ из $\mathfrak{o}[[X]]_0$ следующим образом:

$$l_F(\varphi) = \left(1 - \frac{\Delta}{\pi_0}\right) (\lambda(\varphi))$$

(в мультипликативном случае см. (11), § 1). Полученная функцая будет, очевидно, обратной к функции $E_F(\varphi)$, т. е.

$$l_F(E_F(\varphi)) = \varphi, \quad E_F(l_F(\varphi)) = \varphi,$$
 (29)

и, кроме того, будет обладать следующими свойствами:

$$l_F(X) \equiv X \mod \deg 2,$$
 $l_F(\varphi + \psi) = l_F(\varphi) + l_F(\psi),$
 $l_F([a]\varphi) = al_F(\varphi), \quad a \in \mathfrak{o}_0.$

Далее, так же как и для функции $E_F(\varphi)$ можно проверить, что $l_F(\varphi)$ является степенным рядом с целыми коэффициентами без свободного члена. Тем самым функция $l_F(\varphi)$ тоже определена на простом идеале р поля k.

Замечание. Из результатов пунктов 2 и 3 следует, что функции E_F и l_F осуществляют взаимно обратные изоморфизмы между аддитивным \mathfrak{o}_0 -модулем $\mathfrak{o}[X]_0$ и \mathfrak{o}_0 -модулем \mathscr{H}_F .

4. Пусть $\varphi(X)$ — некоторый ряд из кольца $\mathfrak{o}[[X]]_0$. Если $\varphi = \pi_0^i \, \theta X^r$, где $\theta \in \Re$, то из (28), (26) и определения изогении $[\pi_0^i]$ следует для любого

i≥0 сравнение

$$E_F(\pi_0^i \theta X^r) \equiv \pi_0^i \theta X^r \mod \deg (r+1).$$

Отсюда, раскладывая произвольный элемент a из кольца \mathfrak{o} в ряд по простому элементу π_0 с коэффициентами из \mathfrak{R} и используя формальную аддитивность функции E_F , получаем:

$$E_F(aX^r) \equiv aX^r \mod \deg (r+1)$$
.

Из этого сравнения и формальной аддитивности функции E_{F} легко получается для произвольного ряда ϕ порядка r из кольца $\mathfrak{o}[[X]]_{0}$ сравнение

$$E_F(\varphi) \equiv \varphi \mod \deg (r+1)$$
.

Аналогично проверяется, что

$$l_r(\varphi) \equiv \varphi \mod \deg (r+1)$$
.

Из последних двух сравнений вытекает следующее утверждение.

ЛЕММА 5. Пусть φ — ряд порядка r из кольца $\mathfrak{o}[[X]]_{\mathfrak{o}}$. Тогда для любого a \in \mathfrak{o} имеет место сравнение

$$E_F(al_F(\varphi))|_{X=\pi} \equiv a\varphi(\pi) \operatorname{mod} \pi^{r+1}$$
.

Замечание. Сравнение леммы справедливо также и для любого элемента a из кольца целых пополнения максимального неразветвленного расширения поля T.

§ 3. Примарные элементы

В этом параграфе строятся π_0^n -примарные элементы поля k, играющие важную роль в задании символа Гильберта. Элемент ω группы точек $F(\mathfrak{p})$ называется π_0^n -примарным, если расширение поля k, полученное делением точки ω на изогению $[\pi^n]$, неразветвлено (в мультипликативном случае такие элементы были получены в (2) и (2)).

1. Построим π_0^n -примарные элементы в группе точек, являющиеся обобщением примарных элементов Хассе (см. (11), § 4, п. 1). Пусть z(X) — степенной ряд, полученный из разложения корня § взогении $[\pi_0^n]$ по простому элементу π (см. (15), § 1, п. 4).

Пусть, далее, α и A — элемент кольца целых пополнения максимального неразветвленного над T расширения \tilde{T} , который удовлетворяет равенству

$$\mathbf{A}^{\Delta} - \mathbf{A} = a \tag{30}$$

(продолжение автоморфизма Фробениуса Δ поля T на расшијение \overline{T} обозначено здесь той же буквой Δ).

ЛЕММА 6. Элемент

$$H(a) = E_F(\pi_0^n \mathbf{A}^{\Lambda} l_F(z)) \mid_{X=\pi}$$

является π_0^n -примарным и при этом $(\pi, H(a))_F = [\operatorname{tr} a](\xi)$.

Доказательство. Пусть Δ' — автоморфизм Фробениуся расширения \overline{T}/T . Из (30) следует $A^{\Delta\Delta'} = A^{\Delta} + \operatorname{tr} a$. Поэтому из формальной ад-

дитивности функции E_F получаем:

$$E_{F} (A^{\Delta} l_{F}(z))^{\Delta'} = E_{F} ((A^{\Delta} + \operatorname{tr} a) l_{F}(z)) =$$

$$= E_{F} (A^{\Delta} l_{F}(z)) + E_{F} ((\operatorname{tr} a) l_{F}(z)) = E_{F} (A^{\Delta} l_{F}(z)) + [\operatorname{tr} a] E_{F} (l_{F}(z)) =$$

$$= E_{F} (A^{\Delta} l_{F}(z)) + [\operatorname{tr} a] z (X)$$

(в последнем равенстве мы использовали (29), § 2, п. 3). Отсюда, с одной стороны,

$$H(a)^{\Delta'} = H(a) + [\pi_0^n \operatorname{tr} a](z(\pi)) = H(a) + [\operatorname{tr} a]([\pi_0^n](\xi)) = H(a),$$

т. е. $H(a) \in T(\xi)$, а с другой стороны,

$$(E_F(A^{\Delta}l_F(z))|_{X=\pi})^{\Delta'}=E_F(A^{\Delta}l_F(z))|_{X=\pi}+[\operatorname{tr} a](\xi).$$

Отсюда, по определению обобщенного символа Гильберта (см. въедение, п. 4), получим $(\pi, H(a)) = [tra](\xi)$ и лемма доказана.

Пусть корень изогении ξ двумя способами раскладывается в степенной ряд по простому элементу π с коэффициентами из \mathfrak{o} , 1. е. $\xi = z_1(\pi) = z_2(\pi)$, и пусть $H_1(a)$ и $H_2(a) = \pi_0^n$ -примарные элементы, построенные в лемме 6 с помощью рядов $z_1(X)$ и $z_2(X)$ соответственно.

Следствие. Примарные элементы $H_1(a)$ и $H_2(a)$ отличаются другот друга на элемент, делящийся в группе точек $F(\mathfrak{p})$ на изогению $[\pi_0^n]$, m. e. $H_1(a) \underset{F}{\longrightarrow} H_2(a) = [\pi_0^n](\mathfrak{e})$, $\mathfrak{e} \in F(\mathfrak{p})$.

Доказательство. Пусть $\eta(X)=z_1(X)\sim z_2(X)$. Так как $\eta(\pi)=z_1(\pi)\sim z_2(\pi)=0$, то, согласно лемме 6, § 3, работы (11), существует степенной ряд $\psi(X)$ с целыми коэффициентами такой, что $\eta(X)=z_1(X)\psi(X)$ (здесь $\chi(X)$ — произвольный неприводимый многочлен Эйзенштейна в расширении k/T, имеющий сроим корнем простой элемент π). Так же как и в лемме 6, получаем равенство

$$E_F \left(\mathbf{A}^{\Delta} l_F \left(\mathbf{\chi} \psi \right) \right)^{\Delta'} = E_F \left(\mathbf{A}^{\Delta} l_F \left(\mathbf{\chi} \psi \right) \right) + \left[\operatorname{tr} a \right] \left(\mathbf{\chi} \psi \right).$$

Отсюда, учитывая, что $\chi(\pi) = 0$, следует, что элемент $\varepsilon = E_F(A^{\Delta}l_F(\chi\psi)) \big|_{x=\pi}$ принадлежит группе точек $F(\mathfrak{p})$. Поэтому из определения $H_1(a)$ и $H_2(a)$ получаем:

$$H_1(a) \underset{F}{\sim} H_2(a) = E_F(\pi_0^n \Lambda^{\Delta} l_F(z_1 \underset{F}{\sim} z_2)) \big|_{X=\pi} = [\pi_0^n](\epsilon),$$

и следствие доказано.

ЛЕММА 7. Элемент

$$P(a) = E_F(\pi_0^n a \lambda(z))|_{X=\pi}, \quad a \in \mathfrak{o},$$

совпадает с π_0^n -примарным элементом H(a) и, значит, $(\pi, P(a))_F = [\text{tr } a](\xi)$.

Доказательство. В максимальном неразветвленном над $T(\xi)$ расширении имеет место равенство

$$E_F\left(\pi_0^n \mathbf{A}^{\Delta} l_F(z)\right) = E_F\left(\pi_0^n a \lambda(z)\right) + \lambda^{-1} \left(\pi_0^n \mathbf{A} \lambda(z)\right). \tag{31}$$

Действительно, из определения функции E_F (см. (24), § 2, п. 2) получаем:

$$E_{F}\left(\pi_{0}^{n}\left(1-\frac{\Delta}{\pi_{0}}\right)\Lambda\lambda\left(z\right)\right)=\lambda^{-1}\left(\pi_{0}^{n}\Lambda\lambda\left(z\right)\right).$$

С другой стороны, учитывая (30), имеем:

$$\left(1-\frac{\Delta}{\pi_{0}}\right)$$
 A λ (z) = A $^{\Delta}l_{F}$ (z) — $a\lambda$ (z).

Отсюда и из формальной аддитивности функции E_F следует (31).

Далее, порядок элемента $z(\alpha)$ для любого α из $\mathfrak p$ не меньше чем e_n (см. (15), § 1, п. 4), значит, и порядок элемента $\pi_0^n \lambda(z(\alpha))$ не меньше чем qe_1 (см. (12), § 1, п. 2). Поэтому ряд $\lambda^{-1}(\pi_0^n A\lambda(z(X)))$ определен для любого элемента из идеала $\mathfrak p$ (см. лемму 1, § 1, п. 1), в частности и для $X=\pi$. В этом случае мы получаем $\lambda(z(\pi))=\lambda(\xi)=0$. Значит, $\lambda^{-1}(\pi_0^n A\lambda(z(\pi)))=0$. Отсюда и из (31) следует, что H(a)=P(a) и лемма доказана

2. В этом пункте мы получим примарный элемент $\omega(a)$, когорый и будет использован в дальнейшем. Пусть, как и раньше, ряд $[\pi_0^n](z)$ обозначен через s(X).

ЛЕММА 8. Пусть $\mu \geqslant 1$, тогда

$$v(s^{\Delta^{\mu}}(X)|_{X\to\pi}) \gg e(1 + \max(\mu, n)).$$

Доказательство. Из сравнения (19), § 1, п. 4, следует равенство

$$s_{n+i-1}^{\Delta} = s_{n+i} + \pi_0^{n+i} f_i, \quad i \geqslant 1,$$

причем порядок ряда $f_i(X)$ не меньше чем e_n , так как ряды s_{n+i-1}^{Δ} и s_{n+i} имеют порядки $\geqslant e_n$. Применим к обеим частям этого равенства оператор $\Delta^{\mu-i}$ и затем сложим полученные равенства для $i=1,\ 2,\ \ldots,\ \mu$. Тогда

$$s^{\Delta\mu} = s_{n+\mu} + \pi_0^{n+\mu} f_{\mu} + \pi_0^{n+\mu-1} f_{\mu-1}^{\Delta} + \ldots + \pi_0^{n+1} f_1^{\Delta\mu-1},$$

при этом $\deg f_i \geqslant e_n$. Если мы теперь в слагаемые правой части последнего равенства подставим вместо X простой элемент π и учтем, что $\deg f_i \geqslant e_n$, то получим неравенства:

$$v(\pi_0^{n+\mu-i}f_{\mu-i}^{\Delta i}|_{X=\pi}) \gg (n+\mu-i)e+q^ie_n \gg e(1+\max(\mu,n)).$$

Отсюда следуют требуемые неравенства леммы, если заметим еще, что $s_{n+\mu}$ (π) = [$\pi_{0}^{n+\mu}$] (ξ) = 0.

Предложение 1. Элемент

$$\omega(a) = E_F(as) \mid_{X=\pi}$$

 $e\partial e$ $a \in \mathfrak{o}$, является π_0^n -примарным и при этом $(\pi, \omega(a))_F = [\operatorname{tr} a](\xi)$.

Доказательство. Из (2) (введение, п. 3) для изогении $[\pi_0^n]$ следует, очевидно, равенство $\pi_0^n \lambda(z) = \lambda([\pi_0^n](z))$; отсюда получаем:

$$E_F(\pi_0^n a\lambda(z)) = E_F(as) + E_F(a\varphi), \tag{32}$$

где через $\varphi(X)$ обозначен ряд $\lambda(s)$ —s. Проверим, что элемент $E_F(a\varphi)|_{x=\pi}$ делится на изогению $\{\pi_0^n\}$, т. е. найдется элемент ε из группы точек $F(\mathfrak{p})$ такой, что

$$E_F(a\varphi)|_{X=\pi} = [\pi_0^n](\varepsilon). \tag{33}$$

По определению функции $E_{\mathbf{F}}$ (см. § 2, п. 2) можно написать равенство

$$E_F(a\varphi) = \lambda^{-1}(a\varphi) + \sum_{\mu=1}^{\infty} {}_{(F)} \lambda^{-1}((a\varphi)^{\Delta^{\mu}}/\pi_0^{\mu}).$$

Поскольку элемент $\varphi(\alpha)$ для любого α из идеала \mathfrak{p} имеет порядок, не меньший чем qe_1 (см. (12), § 1), то, значит, сднозначно определен ряд $\lambda^{-1}(a\varphi)$ на идеале \mathfrak{p} (см. лемму 1, § 1), в частности, и на элементе $X=\pi$. Но $s(\pi)=\lambda(s(\pi))=0$, значит,

$$\lambda^{-1}(\alpha\varphi) \mid_{X=\pi} = 0. \tag{34}$$

Пусть $\lambda(X) = X + c_2 X^2 + c_3 X^3 + \cdots$, $c_i \in \mathfrak{o}_0$, — логарифм формальной группы F, тогда очевидно, что

$$\varphi(X) = \sum_{m \geqslant 2} c_m s^m.$$

Далее, элемент

$$X_{m,\mu} = \left(c_m s^{m\Delta^{\mu}} / \pi_0^{\mu + n} \right) \big|_{X=\pi}$$

делится на π_0 , если $m \ge 2$, $\mu \ge 1$. Действительно, если $m \ge 2$, то, используя (6) (§ 1, п. 1) и лемму 8, получим:

$$v(x_{m,\mu}) \geqslant -(m-1)e + me(1 + \max(\mu, n)) - (\mu + n)e =$$

= $e + (m \cdot \max(\mu, n) - (\mu + n))e \geqslant e$

и мы проверили тем самым, что $x_{m,\mu} \equiv 0 \mod \pi_0$. Это означает, что для любых $m \geqslant 2$, $\mu \geqslant 1$ однозначно определен элемент

$$\varepsilon_{m,\mu} = \lambda^{-1} (a^{\Delta^{\mu}} x_{m,\mu}), \quad a \in \mathfrak{o}$$

(см. лемму 1, § 1, п. 1). А тогда получим, что

$$\lambda^{-1}\left((a\varphi)^{\Delta^{\mu}}/\pi_0^{\mu}\right) = [\pi_0^n]\left(\sum_{m=2}^{\infty} \varepsilon_{m,\mu}\right).$$

Поэтому если мы применим к элементу $\varepsilon = \sum_{(F)} \varepsilon_{m,\mu}$ (здесь суммирование происходит по всем $m \geqslant 2$, $\mu \geqslant 1$) группы точек $F(\mathfrak{p})$ изогению $\{\mathbf{q}_0^n\}$, то получим, учитывая (34), элемент $E_F(a\mathfrak{q})|_{x=\pi}$, и равенство (33) доказано. Отсюда и из (32) получаем:

$$\omega(a) = P(a) \sim_{\widetilde{F}} [\pi_0^n] (\varepsilon), \tag{35}$$

что дает нам вместе с леммой 7 утверждение нашего предложения.

Замечание. Из равенства (35) и леммы 7 следует, что π_0^n -примарный элемент ω (a) отличается от π_0^n -примарного элемента H (a) на элемент, делящийся на изогению [π_0^n] в группе точек F (\mathfrak{p}). Поэтому примарный элемент ω (a), так же как и H (a), согласно следствию из леммы 6, не зависит (с точностью до элемента, делящегося на изогению [π_0^n] в группе точек F (\mathfrak{p})) от разложения корня изогении \mathfrak{p} в степенной ряд по простому элементу π с коэффициентами из \mathfrak{o} . Отметим, наконец, что разложение корня \mathfrak{p} может быть совершенно произвольным и не обязательно должно начинаться (как в (15), \mathfrak{p} 1, п. 4) с члена степени e_n .

§ 4. Арифметика группы точек

В этом параграфе будет построен канонический базис в группе точек $F(\mathfrak{p})$, который является обобщением канонического базиса Шафаревича группы главных единиц локального поля в мультипликативном случае (см. (3), § 1).

Мы не будем приводигь подробных доказательств, так как в основном они проходят по той же схеме, что и в мультипликативном случае.

1. Проверим утверждение, являющееся аналогом теоремы Хензеля (см. (12), § 14). Оно дает нам условие, при котором некоторая система элементов группы точек $F(\mathfrak{p})$ будет системой образующих над кольцом \mathfrak{o}_0 .

ЛЕММА 9. Пусть для каждого і с условием: $i \not\equiv 0 \bmod q$, $1 \leqslant i \leqslant qe_1$, а также для $i = qe_1$ и для каждого $\theta \in \Re$ выбран элемент $\varepsilon_i(\theta)$ е группе точек $F(\mathfrak{p})$, удовлетворяющий условию: $\varepsilon_i(\theta) \equiv \theta \pi^i \bmod \pi^{i+1}$. Тогда любой элемент $\beta \in F(\mathfrak{p})$ можно представить в виде

$$\beta = \sum_{i,r} [\pi_0^r] (\varepsilon_i (\theta_{i,r})),$$

где r пробегает все целые неотрицательные числа.

Доказательство. Несложной индукцией можно проверить, что всякий элемент β из $F(\mathfrak{p})$ представим в виде

$$\beta = \sum_{i=1}^{\infty} \varepsilon_i (\theta_i), \tag{36}$$

тде $\varepsilon_i(\theta_i)$ — элемент из $F(\mathfrak{p})$, удовлетворяющий сравнению

$$\varepsilon_i(\theta_i) \equiv \theta_i \pi^i \mod \pi^{i+1}, \quad \theta_i \in \Re.$$

Далее действуем точно так же как и в мультипликативном случае (см. (12), § 14). А именно, будем заменять последовательно в (36) элементы $\varepsilon_i(\theta_i)$ для $i > qe_i$ на $[\pi_0]\varepsilon_{i-e_i}(\gamma^{-1}\theta_i)$ (здесь γ — первый коэффициент в разложении π_0 по простому элементу π), используя при этом формулу (116). Затем элемент $\varepsilon_i(\theta_i)$ для $i=qh < qe_i$ будем заменять на $[\pi_0]\varepsilon_h(\theta_i^{q-1})$, используя формулу (11a). Этот процесс приведет нас в конце концов к системе образующих, указанной в условии нашего предложения.

2. Докажем несколько сравнений относительно примарного элемента H(a).

ЛЕММА 10. Пусть ξ — фиксированный корень изогении $[\pi_0^n]$. Тогда

$$H(a) \equiv a \xi^{q^n} \mod \pi^{qe_1+1}.$$

Доказательство. Примарный элемент H(a) получается применением изогении $[\pi_0^n]$ к элементу

$$E_F(\mathbf{A}^{\Delta}l_F(z))|_{X=\pi}$$

лежащему в пополнении максимального неразветвленного расширения поля k. Ряд z(X) (см. § 1, п. 4) имеет обратимый первый коэффициент в кольце $\mathfrak o$ и при этом $z(\pi) = \xi$. Поэтому из леммы 5, § 2, п. 4, следует:

$$E_F(\mathbf{A}^{\Delta}l_F(z))|_{X=\pi} \equiv \mathbf{A}^{\Delta}\xi \mod \pi^{e_{n+1}}.$$

Применяя теперь к этому элементу n-1 раз эндоморфизм $[\pi_0]$ и используя формулу (11a), § 1, п. 2, получим:

$$[\pi_0^{n-1}] E_F(\mathbf{A}^{\Delta} l_F(z)) \big|_{X=\pi} \equiv (\mathbf{A}^{\Delta} \xi)^{q^{n-1}} \bmod \pi^{e_1+1}.$$

Если применить к получившемуся элементу снова эндоморфизм [π_0], то придется пользоваться формулой (11в), § 1, п. 2. Тогда получим:

$$H\left(a\right) \equiv \left(\mathbf{A}^{\Delta}\boldsymbol{\xi}\right)^{q^{n-1}}\boldsymbol{\pi}_{0} + \left(\mathbf{A}^{\Delta}\boldsymbol{\xi}\right)^{q^{n}} \bmod \boldsymbol{\pi}^{qe_{1}+1}.$$

Из этого сравнения, а также сравнений

$$A^{\Delta q^n}$$
 — $A^{\Delta q^{n-1}} \equiv a^{q^n} \equiv a \mod \pi_0$

и (13), § 1, п. 2, вытекает сравнение нашей леммы.

ЛЕММА 11. Если примарный элемент H(a) делится на изогению $[\pi_0]$ в группе точек $F(\mathfrak{p})$, τ . е. $H(a) = [\pi_0](\rho)$, $\rho \in F(\mathfrak{p})$, то $\operatorname{tr} a \equiv 0 \operatorname{mod} \pi$.

Доказательство. Из формул (11а—в), § 1, п. 2, следует, что порядок элемента ρ равен e_1 . А тогда из равенства $H(a) = [\pi_0](\rho)$, формулы (11в), § 1, п. 2, и предыдущей леммы получаем сравнение

$$\rho \pi_0 + \rho^q \equiv a \xi^{q^n} \mod \pi^{q e_1 + 1}.$$

Отсюда и из (13), § 1, п. 2, следует $\eta^q - \eta \equiv a \mod \pi$, где $\eta = \rho/\xi^{q^{n-1}}$. Поэтому $a \equiv \eta^{\Delta} - \eta \mod \pi$, так как $\eta^{\Delta} \equiv \eta^q \mod \pi$. Значит, tr $a \equiv 0 \mod \pi$.

3. Рассмотрим теперь аналог канонического разложения Шафаревича для группы точек $F(\mathfrak{p})$.

 Π редложение 2. Всякий элемент β из группы точек $F(\mathfrak{p})$ можно представить в виде

$$\beta = H(b) + \sum_{i} E_{F}(b_{i}\pi^{i}), \tag{37}$$

где b, $b_i = 0$, а индекс i пробегает все значения между 1 и qe_1 , не делящиеся на q. При этом элементы tr b, b_i определены однозначно по $mod \pi_0^n$.

Доказательство. К системе элементов $H(\theta)$, $E_{\mathbf{r}}(\theta_i \pi^i)$, где θ , $\theta_i \in \Re$, можно применить лемму 9, согласно лемме 10 и сравнению (26), § 2. Тогда по лемме 9 всякий элемент β из $F(\mathfrak{p})$ представим в виде

$$\beta = \sum_{r (F)} ([\pi_0^r] H(\theta_r) + \sum_{i (F)} [\pi_0^r] E_F(\theta_{i,r}\pi^i)).$$

Отсюда, в силу формальной аддитивности функции E_F , получаєм каноническое разложение (37).

Проверим единственность канонического разложения (37). Используя сравнения (11а—в), § 1, п. 2, и лемму 11, можно проверить так же как и в лемме 1, § 1, работы (3), следующее утверждение. Если

$$H(b) + \sum_{i} E_F(b_i \pi^i) = 0,$$
 (38)

το tr $b \equiv 0 \mod \pi_0$, $b_i \equiv 0 \mod \pi_0$.

Отсюда, в точности как и в лемме 2, § 1, работы (3), доказывается, что в любом каноническом разложении корня изогении [π_0]

$$\xi_1 = H(\theta) + \sum_{i} E_F(\theta_i \pi^i)$$
(39)

выполняются сравнения $\operatorname{tr} \theta \equiv 0 \mod \pi_0^{n-1}, \quad \theta_i \equiv 0 \mod \pi_0^{n-1}.$

Пусть теперь

$$H(b) + \sum_{i} E_{F}(b_{i}\pi^{i}) = 0,$$

тогда, согласно (38), элементы b_i делятся на π_0 , т. е. $b_i = \pi_0 b_i'$, а для элемента b найдется $b' \in \mathfrak{o}$ такой, что $b \equiv \pi_0 b' \mod \pi_0^n$. Следовательно,

$$H(b') + \sum_{i} E_F(b'_i \pi^i) = \xi_1.$$

Здесь, согласно (39), имеем сравнения ${\rm tr}\,b'\!\equiv\!b'\!\equiv\!0\,{\rm mod}\,\pi_0^{n\!-\!1}$, и единственность канонического разложения доказана

Замечание. Примарный элемент $\omega(b)$, построенный в предложении 1, § 3, отличается от примарного элемента H(b) на элемент, делящийся на изогению $[\pi_0^n]$. Поэтому мы можем в каноническом разложении (37) заменить примарный элемент H(b) на $\omega(b)$. Далее, многочлен

 \sum_{i} $b_{i}X^{i}$ в разложении (37) будем обозначать через $w_{\mathfrak{g}}(X)$. В дальней-

шем мы будем использовать каноническое разложение в виде

$$\beta = \omega (b) + E_F(w_\beta)|_{X=\pi}. \tag{40}$$

§ 5. Вспомогательное спаривание

1. Рассмотрим мультипликативную группу \mathcal{H} рядов вида

$$\mathcal{H} = \{X^m \theta \varepsilon(X), m \in \mathbb{Z}, \theta \in \mathfrak{R}\},\$$

где $\varepsilon(X)$ — степенной ряд с коэффициентами из \Re и свободным членом 1. Пусть, далее, \mathcal{H}_F — \mathfrak{o}_0 -модуль степенных рядов с коэффициентами из \mathfrak{o} , сложение в котором происходит по формальному закону F (см. начало $\S 2$).

Определим спаривание группы \mathcal{H} с \mathfrak{o}_0 -модулем \mathcal{H}_F со значениями в кольце \mathfrak{o} :

$$[\ ,\]_F:\mathcal{H}\times\mathcal{H}_F\to 0.$$

Пусть $A(X) = X^a \theta \varepsilon(X)$ — ряд из \mathcal{H} , и пусть $\beta(X)$ — некоторый ряд из \mathfrak{o}_0 -модуля \mathcal{H}_F . Тогда положим

$$[A, \beta]_F = \operatorname{res}_X \Phi(X) W^{\Delta}(X), \tag{41}$$

где

$$\Phi\left(X\right) = l_{m}\left(\varepsilon\right) \frac{dl_{F}\left(\beta\right)}{dX} - l_{m}\left(\varepsilon\right) \frac{d\lambda\left(\beta\right)}{dX} + l_{F}\left(\beta\right) A^{-1} \frac{dA}{dX} \; ;$$

при этом

$$l_{m}(\varepsilon) = \left(1 - \frac{\Delta}{a}\right) \log \varepsilon(X), \quad l_{F}(\beta) = \left(1 - \frac{\Delta}{\pi_{0}}\right) \lambda(\beta(X)),$$

а W(X) — некоторый фиксированный ряд из кольца $\mathfrak{o}\{X\}$, производная которого делится на π_0^{n-1} , т. е.

$$\frac{d}{dX} W(X) \equiv 0 \bmod \pi_0^{n-1}. \tag{42}$$

2. В правой части равенства, определяющего ряд $\Phi(X)$ (см. (41)), не все слагаемые имеют цэлые коэффициенты. Все же имеет место следующее утверждение.

ЛЕММА 12. Pяд $\Phi(X)$ в спаривании (41) является степенным рядом с целыми коэффициентами из кольца \mathfrak{o} .

Доказательство. Последнее слагаемое в определении ряда $\Phi(X)$ имеет целые коэффициенты, так как $l_F(\eta) \rightleftharpoons \mathfrak{o}[\![X]\!]$ (см. § 2, п. 3). Далее,

$$\begin{split} &l_{m}\left(\varepsilon\right)\frac{d}{dX}\,l_{F}\left(\beta\right)-l_{m}\left(\varepsilon\right)\,\frac{d}{dX}\,\lambda\left(\beta\right)=-\frac{l_{m}\left(\varepsilon\right)}{\pi_{0}}\,\frac{d}{dX}\left(\lambda\left(\beta\right)\right)^{\Delta}=\\ &=-\frac{q}{\pi_{0}}\,l_{m}\left(\varepsilon\right)\,X^{q-1}\left(\frac{d}{dX}\,\lambda\left(\beta\right)\right)^{\Delta}=-\frac{p}{\pi_{0}}\left(p^{f-1}l_{m}\left(\varepsilon\right)\right)\,X^{q-1}\left(\frac{d}{dX}\,\lambda\left(\beta\right)\right)^{\Delta}. \end{split}$$

Здесь предпоследнее равенство следует из легко проверяемой для любого степенного ряда h(X) формулы

$$\frac{d}{dX}h^{\Delta} = qX^{q-1} \left(\frac{d}{dX}h\right)^{\Delta}.$$
 (43)

Производная логарифма формальной группы F имеет целые коэффициенты (см. (6)). Таким образом, для проверки утверждения леммы осталось доказать, что ряд $p^{f-1}l_m(\varepsilon)$ имеет целые коэффициенты. Из определения ряда $l_m(\varepsilon)$ получаем:

$$p^{f-1}l_m(\varepsilon) = (p^{f-1} + p^{f-2}\delta + \cdots + \delta^{f-1})l(\varepsilon),$$

где $l(\varepsilon) = (1 - \frac{\delta}{p})\log \varepsilon$, $\Delta = \delta^f$ и δ — автоморфизм Фробениуса в подполе инерции расширения k/\mathbf{Q}_p . Функция $l(\varepsilon)$ является степенным рядом с целыми коэффициентами (см. (11), § 1, лемма 1). Поэтому и ряд $p^{f-1}l_m(\varepsilon)$ имеет целые коэффициенты. Лемма доказана.

Заметим также, что для нашего спаривания выполняется следующая

 Π ÉMMA 13. Пусть $\varphi(X)$ — произвольный степенной ряд с коэффициентами из поля T такой, что ряд $p^{t-1}\varphi$ имеет целые коэффициенты. Tогда

$$\operatorname{res}_X\left(\frac{d}{dX}\,\mathbf{\varphi}\right)W^\Delta\equiv 0\ \mathrm{mod}\ \pi_{\mathbf{0}}^n.$$

 \mathcal{A} оказательство. Из равенства (43), сравнения (42) для ряда W и условия леммы следует сравнение

$$\operatorname{res}_X \varphi \frac{d}{dX} W^{\Delta} = \operatorname{rex}_X (p^{f-1} \varphi) p X^{q-1} \left(\frac{d}{dX} W \right)^{\Delta} \equiv 0 \mod \pi_0^n.$$

Далее,

$$\operatorname{res}_{X}\left(\frac{d}{dX}\,\varphi\right)W^{\Delta}+\operatorname{res}_{X}\,\varphi\left(\frac{d}{dX}\,W^{\Delta}\right)=\operatorname{res}_{X}\,\frac{d}{dX}\,(\varphi W^{\Delta})=0.$$

Отсюда и из предыдущего сравнения получаем требуемое сравнение леммы.

3. Отметим, что спаривание [A, β]_r будет линейным по первому аргументу, так как логарифмическая производная $A^{-1}\frac{dA}{dX}$ и функция $l_m(\varepsilon)$ аддитивны. Кроме того, наше спаривание линейно и по вгорому аргументу, что следует из линейности функции l_r (см. § 2, п. 3) и аддитивности производной. Таким образом, спаривание [A, β]_r билинейно, т. е.

$$[A_1 A_2, \beta]_F = [A_1, \beta]_F + [A_2, \beta]_F,$$

$$[A, \beta_1 + \beta_2]_F = [A, \beta_1]_F + [A, \beta_2]_F.$$

4. В этом пункте мы получим формулу замены переменных для функции $E_{\mathbf{F}}$ (в мультипликативном случае см. (11), § 2, п. 3, (7)), которая будет использована в следующем пункте для доказательства инвариантности спаривания [A, β] $_{\mathbf{F}}$.

Пусть имеется следующая замена переменных:

$$X = g(Y) = Y\theta\psi(Y), \quad \theta \in \Re, \tag{44}$$

где степенной ряд $\psi(Y)$ с коэффициентами из \Re и имеет свободный член 1. Рассмотрим, как изменится ряд $E_F(\alpha X^m)$, $\alpha \in \Re$, при этой замене переменных.

Функция E_F существенным образом зависит от выбора переменной X (см. (24), § 2, п. 2). Поэтому обозначим входящий в ее определение автоморфизм Фробениуса для переменной X через Δ_1 , а для переменной Y — через Δ_2 . При этом функцию E_F для переменной X снабдим индексом $E_{F,X}$. Таким образом, если $\varphi(X)$ — степенной ряд без свободного члена, то

$$E_{F,X}(\varphi) = \lambda^{-1} \left(\left(1 + \frac{\Delta_1}{\pi_0} + \frac{\Delta_1^2}{\pi_0^2} + \ldots \right) (\varphi) \right).$$

При этих обозначениях имеет место следующая формула замены переменных:

$$E_{F,X}(\alpha X^m) = E_{F,Y}\left(\left(1 - \frac{\Delta_2}{\pi_0}\right)(S)\right), \ \alpha \in \mathfrak{R},$$

где

$$S = \sum_{r=0}^{\infty} \frac{(\alpha g^m)^{q^r}}{\pi_0^r} .$$

Действительно,

$$E_{F,Y}\left(\left(1 - \frac{\Delta_2}{\pi_0}\right)S\right) = \lambda^{-1}\left(\left(1 + \frac{\Delta_2}{\pi_0} + \frac{\Delta_2^2}{\pi_0^2} + \ldots\right)\left(1 - \frac{\Delta_2}{\pi_0}\right)S\right) = \lambda^{-1}(S) = \\ = \lambda^{-1}\left(\alpha g^m + \frac{(\alpha g^m)^q}{\pi_0} + \ldots\right) = \lambda^{-1}\left(\alpha X^m + \frac{(\alpha X^m)^q}{\pi_0} + \ldots\right) = E_{F,X}(\alpha X^m),$$

и формула замены переменных доказана.

Заметим, что ряд $(1-\frac{\Delta_2}{\pi_0})$ (S) имеет целые коэффициенты, так как

$$\left(1 - \frac{\Delta_2}{\pi_0}\right)(S) = \alpha g^m + \sum_{r=1}^{\infty} \alpha^{q^r} \frac{g^{q^r m} - g^{q^{r-1} m \Delta_2}}{\pi_0^r}$$
(45)

и каждое слагаемое в правой части является степенным рядом с целыми коэффициентами (что легко проверить индукциєй).

5. Проверим теперь инвариантность спаривания $[A, \beta]_F$ по $\mod \pi_0^n$ относительно замены переменной в случае, когда A = X. Ряд $\beta(X)$ можно представить в виде $\beta(X) = E_F(l_F(\beta))$ (см. (29), § 2, п. 3). Поэтому ввиду билинейности спаривания и формальной аддитивности функции E_F инвариантность достагочно проверить для следующей гары X, $E_F(\alpha X^m)$, где $\alpha \in \mathfrak{R}$. Пусть, как и в п. 3, имеется следующая замена переменной: X = g(Y) (см. (44)).

Предложение 3. Гои $p\neq 2$ имеет место следующее сравнение:

$$[X, E_{F,X}(\alpha X^m)]_F \equiv \left[g(Y), E_{F,Y}\left(\left(1 - \frac{\Delta_2}{\pi_0}\right)(S)\right)\right]_F \mod \pi_0^n.$$

Доказательство. Пусть

$$[X, E_{F,X}(\alpha X^{m})]_{F} = \operatorname{res}_{X} \Phi(X) W^{\Delta}(X),$$

$$\left[g(Y), E_{F,Y}\left(\left(1 - \frac{\Delta_{2}}{\pi_{0}}\right)(S)\right)\right]_{F} = \operatorname{res}_{Y} \Psi(Y) W^{\Delta}(g(Y)).$$

По определению (41) ряды $\Phi(X)$ и $\Psi(Y)$ имеют вид

$$\Phi(X) = \alpha X^{m-1},$$

$$\Psi(Y) = l_m(\psi) \frac{d}{dY} \left(1 - \frac{\Delta_2}{\pi_0}\right)(S) - l_m(\psi) \frac{d}{dY} S + \left(1 - \frac{\Delta_2}{\pi_0}\right)(S) g^{-1} \frac{dg}{dY}.$$

Учитывая (45), получим:

$$\Psi\left(Y
ight) = lpha g^{m-1} rac{dg}{dY} + \ + \sum_{r=1}^{\infty} lpha^{q^r} \left(rac{g^{q^rm} - g^{q^{r-1}m\Delta_2}}{\pi_0^r} g^{-1} rac{dg}{dY} - l_m\left(\psi\right) rac{d}{dY} rac{g^{q^{r-1}m\Delta_2}}{\pi_0^r}
ight).$$

Легко проверить следующую формулу:

$$g^{-1}\frac{dg}{dY} = \frac{d}{dY}l_m(\psi) + Y^{q-1}\left(g^{-1}\frac{dg}{dY}\right)^{\Delta_2}.$$

Отсюда и из равенства (43) следует:

$$\begin{split} &\frac{d}{dY} \left(\frac{g^{q^{r_m}} - g^{q^{r-1}m\Delta_2}}{q^r m \pi_0^r} - l_m \left(\psi \right) \frac{g^{q^{r-1}m\Delta_2}}{\pi_0^r} \right) = \\ &= \frac{g^{q^{r_m}} - g^{q^{r-1}m\Delta_2}}{\pi_0^r} g^{-1} \frac{dg}{dY} - l_m \left(\psi \right) \frac{d}{dY} \frac{g^{q^{r-1}m\Delta_2}}{\pi_0^r} \;. \end{split}$$

Поэтому ряд $\Psi(Y)$ можно представить в виде

$$\Psi(Y) = \alpha g^{m-1} \frac{dg}{dY} + \frac{d}{dY} \left(\sum_{r=1}^{\infty} \varphi_r(Y) \right),$$

где

$$\varphi_r = (\alpha g^m)^{q^{r-1}\Delta_2} S_r, \quad S_r = \frac{g^{rm} \left(1 - \frac{\Delta_2}{q}\right)}{q^r m \pi_0^r} - \frac{l_m (\psi)}{\pi_0^r}.$$

Проверим теперь, что ряд φ_{τ} удовлетворяет условию леммы 13, п. 2, т. е. $p^{t-1}\varphi_{\tau} = \emptyset[Y]$. Действигельно,

$$p^{f-1}S_r = p^{f-1}\left(\frac{\exp\left(q^rml_m\left(\psi\right)\right) - 1}{q^rm\pi_0^r} - \frac{l_m\left(\psi\right)}{\pi_0^r}\right) = \sum_{i=2}^{\infty} \frac{\alpha_i}{i!} \left(p^{f-1}l_m\left(\psi\right)\right)^i,$$

где $\alpha_i = (q^r m)^{i-1}/\pi_0^r \ p^{(f-1)(i-1)}$. Ряд $p^{f-1}l_m(\psi)$ имеет целые коэффициенты (см. доказательство леммы 12, п. 2). Далее, коэффициент α_i делится на p^{i-2} , что легко следует из условий $r \geqslant 1$, $i \geqslant 2$ и $q = p^f$. Поэтому при $p \neq 2$ элемент $\alpha_i/i!$ будет p-целым. Значит, ряд $p^{f-1}S_r$, а с ним и ряд $p^{f-1}\phi_r$ будет иметь целые коэффициенты.

Отсюда, используя лемму 13, получаем сравнение

$$\operatorname{res}_{Y} \Psi(Y) W^{\Delta}(g) = \operatorname{res}_{Y} \left(\alpha g^{m-1} \frac{dg}{dY} + \frac{d}{dY} \sum_{r=1}^{\infty} \varphi_{r} \right) W^{\Delta}(g) \equiv$$

$$\equiv \operatorname{res}_{Y} \left(\alpha g^{m-1} \frac{dg}{dY} \right) W^{\Delta}(g) = \operatorname{res}_{Y} \Phi(g) W^{\Delta}(g) \frac{dg}{dY} =$$

$$= \operatorname{res}_{X} \Phi(X) W^{\Delta}(X) \operatorname{mod} \pi_{0}^{n},$$

и предложение доказано.

§ 6. Спаривание $\langle \alpha, \beta \rangle_F$

1. Построим с помощью спаривания [A, β]_F (см. § 5) спаривание между мультипликативной группой k^{\times} локального поля k и группой точек $F(\mathfrak{p})$ со значениями в группе корней изогении [π_0^n].

Пусть $\alpha = \pi^a \theta \epsilon$ — элемент мультипликативной группы k^\times , причем $\theta \in \Re$, а ϵ — главная единица. Пусть $\epsilon = 1 + a_1\pi + a_2\pi^2 + \cdots$ — некоторое разложение единицы ϵ в ряд по простому элементу π с коэффициентами из \Re . Обозначим через A(X) ряд $X^a\theta \epsilon(X)$, где $\epsilon(X) = 1 + a_1X + a_2X^2 + \cdots$. Пусть, далее, элемент β взят из группы точек $F(\mathfrak{p})$ и $\beta = b_1\pi + b_2\pi^2 + \cdots$ его разложение в ряд по π с коэффициентами из \mathfrak{o} . Обозначим через $\beta(X)$ ряд $b_1X + b_2X^2 + \cdots$. Наконец, ряд z(X), как и во введении, получен из разложения корня ξ изогении π_0 в степенной ряд по π , т. е. $\xi = z(\pi)$.

Определим теперь спаривание $\langle , \rangle_{\mathbb{F}}$ следующим образом:

$$\langle \alpha, \beta \rangle_F = [\text{tr } \gamma](\xi),$$
 (46)

где $\gamma = [A, \beta]_F$, и в спаривании $[A, \beta]_F$ (см. (41), § 5) в качестве ряда W^{Δ} взят ряд 1/s (см. (15) и (14), § 1).

Замечание. Из сравнений (20), (18), § 1, п. 4, следует, что ряд 1/s удовлетворяет условию (42), § 5.

Из доказанных в § 5 свойств спаривания $[A,\,\beta]_{F}$ вытекает следующее утверждение.

Предложение 4. Спаривание $\langle \alpha, \beta \rangle_F$ билинейно и является инвариантным относительно выбора простого элемента π , по крайней мере, для пары π , β , где $\pi \in k^{\times}$, $\beta \in F(\mathfrak{p})$.

В определение спаривания $\langle \alpha, \beta \rangle_F$ входит еще, вообще говоря, и способ разложения элементов α , β в ряды по простому элементу π . Основной результат этого параграфа состоит в доказательстве независимости нашего спаривания от способа разложения в ряды по π .

2. Прежде чем приступить к доказательству независимости спаривания $(\alpha, \beta)_F$, проверим следующую необходимую в дальнейшем лемму. Пусть, как и прежде, $\lambda(X) = X + c_2 X^2 + c_3 X^3 + \cdots$ — логарифм формальной группы F, через $u_m(X)$ обозначен ряд s_m/s_{m-1} и, наконец, $u(X) = u_n(X)$.

ЛЕММА 14. Для любого т≥1 имеет место сравнение

$$\frac{c_m}{\pi_0} u^{m\Delta} (1 - \pi_0 \Delta) (1/s) \equiv 0 \mod (\pi_0^n, \deg 0). \tag{47}$$

Доказательство. Рассмотрим сперва второе слагаемое в левой части (47), т. е. ряд $c_m u^{m\Delta}/s^{\Delta}$. Тогда из равенств $u^{\Delta}/s^{\Delta}=1/s^{\Delta}_{n-1}$ и $u^{\Delta}=\pi_0+s^{\Delta}_{n-1}\rho^{\Delta}$ (см. (23), § 1, п. 4) получаем:

$$c_{m}u^{m\Delta}/s^{\Delta} = c_{m}u^{(m-1)\Delta}/s^{\Delta}_{n-1} = c_{m}\pi_{0}^{m-1}/s^{\Delta}_{n-1} + \sum_{i=1}^{m-1} \alpha_{i}s^{\Delta(i-1)}_{n-1}\rho^{\Delta i}, \tag{48}$$

тде через α_i обозначен коэффициент $c_m \pi_0^{m-i} C_{m-1}^i$. Поскольку элемент $c_m \pi_0^{m-1}$ целый (см. (6), § 1, п. 1), то в первом слагаемом можно заменить ряд $1/s_{n-1}^{\Delta}$ на сравнимый с ним по mod π_0^n ряд 1/s (см. (20), § 1, п. 4) и тогда получим:

$$c_m \pi_0^{m-1} / s_{n-1}^{\Delta} \equiv c_m \pi_0^{m-1} / s \mod \pi_0^n$$

Далее, во второй сумме правой части (48) каждое слагаемое является степенным рядом, так как ряды $s_{n-1}^{\Delta(i-1)}$, $\rho^{\Delta t}$ при $i \geqslant 1$ — степенные. Таким образом,

$$\sum_{i=1}^{m-1} \alpha_i s_{n-1}^{\Delta(i-1)} \rho^{\Delta i} \equiv 0 \mod \deg 0.$$

Из последних двух сравнений вытекает:

$$c_m u^{m\Delta}/s^{\Delta} \equiv c_m \pi_0^{m-1}/s \bmod (\pi_0^n, \deg 0). \tag{49}$$

Займемся теперь первым слагаемым в левой части сравнения (47). Представим ряд $u^{\Delta}(X)$ в следующем виде:

$$u^{\Delta} = \pi_0 + s\varphi_0 + \pi_0^n \varphi_1 + \pi_0^{n+1} \varphi_2$$

где

$$\begin{split} \phi_0 &= (u_{n+1} - \pi_0)/s, \quad \phi_1 = (s_{n-1}^{\Delta(q-1)} - s^{q-1})/\pi_0^n, \\ \phi_2 &= (u^{\Delta} - u_{n+1} - \pi_0^n \phi_1)/\pi_0^{n+1}. \end{split}$$

Из определения ряда u_m (см. § 1, п. 4) и сравнений (19), (22), § 1, п. 4, следует, что ряды φ_0 , φ_1 , φ_2 являются степенными рядами с целыми коэффициентами. Таким образом, первое слагаємое в левой чести (47) можно записать в виде:

$$\frac{c_m}{\pi_0} u^{m\Delta}/s = \frac{c_m}{\pi_0} \sum_{i=1}^m C_m^i s^{i-1} \varphi_0^i \psi^{m-i} + \frac{c_m}{\pi_0} \psi^m/s, \tag{50}$$

где $\psi = \pi_0 + \pi_0^n \phi_1 + \pi_0^{n+1} \phi_2$. Первая сумма в правой части равенства (50) является степенным рядом, так как s^{i-1} , ϕ_0^i , ψ^{m-i} — степенные ряды, значит,

$$\frac{c_m}{\pi_0} \sum_{i=1}^m C_m^i s^{i-1} \varphi_0^i \psi^{m-i} \equiv 0 \mod \deg 0.$$
 (51)

Далее,

$$\frac{c_m}{\pi_0} \psi^m / s = \frac{c_m}{\pi_0} (1/s) \sum_{\alpha + \beta + \gamma = m} \frac{m!}{\alpha! \beta! \gamma!} \pi_0^{\alpha + n\beta + (n+1)\gamma} \varphi_1^{\beta} \varphi_2^{\gamma}, \tag{52}$$

при этом каждое слагаемое в правой части, кроме $c_m \pi_0^{m-1}/s$ и $(mc_m \pi_0^{m+n-2} \varphi_1)/s$, будет делиться на π_0^n . Действительно, $v(c_m/\pi_0) \geqslant -me$ (см. (6), § 1, п. 1) и если $\beta \geqslant 2$ или $\gamma \geqslant 1$, то $\alpha + n\beta + (n+1)\gamma = m + (n-1)\beta + n\gamma \geqslant m+n$. Поэтому из (52) получаем сравнение:

$$\frac{c_m}{\pi_0} \psi^m / s \equiv c_m \pi_0^{m-1} / s + (m c_m \pi_0^{m+n-2} \varphi_1) / s \pmod{\pi_0^n}. \tag{53}$$

Коэффициент $mc_m\pi_0^{m+n-2}$ делится на π_0^{n-1} , так как $v\left(c_m\right)\geqslant -(m-1)\,e$. Поэтому из (21), § 1, п, 4, следует сравнение

$$(mc_m\pi_0^{m+n-2}\varphi_1)/s \equiv 0 \bmod (\pi_0^n, \deg 0).$$

А тогда (53) можно записать в виде

$$\frac{c_m}{\pi_0} \psi^m / s \equiv c_m \pi_0^{m-1} / s \mod (\pi_0^n, \deg 0).$$

Отсюда, из (51) и (50) получаем:

$$\frac{c_m}{\pi_0} u^{m\Delta}/s \equiv c_m \pi_0^{m-1}/s \bmod (\pi_0^n, \deg 0).$$

Последнее сравнение вмесге с (49) дает требуемое сравнение леммы. 3. Рассмотрим теперь доказательство независимости спаривания $\langle \pi, \beta \rangle_F$ от способа разложения элемента β в ряды по π . Если элемент β группы точек $F(\mathfrak{p})$ двумя способами представлен в виде степенного ряда по простому элементу π , то обозначим ряд, соответствующий первому разложению, через $\beta_1(X)$, а второму — через $\beta_2(X)$. Таким образом, $\beta = \beta_1(\pi) = \beta_2(\pi)$. Пусть через $\langle \pi, \beta \rangle_F^1$ обозначено спаривание (46), полученное с помощью первого разложения элемента β , а через $\langle \pi, \beta \rangle_F^2$ — с помощью второго. Пусть, наконец, $\eta(X) = \beta_1(X) \approx \beta_2(X)$.

Для доказательства независимости спаризания нам достаточно проверить, в силу его билинейности, что

$$\operatorname{tr}\left[X,\,\eta\left(X\right)\right]_{F}\equiv 0\,\operatorname{mod}\,\pi_{0}^{n}.\tag{54}$$

Точно так же как в предложении 5, § 3, работы (11), используя только при этом лемму 14 настоящего параграфа и рассматривая сравнения по $\operatorname{mod} \pi_0^n$, доказывается следующее сравнение:

$$\operatorname{tr}\operatorname{res}_{X}\left(1/sX\right)\left(1-\frac{\Delta}{\pi_{0}}\right)\left(c_{m}u^{m}\varphi\right)\equiv0\operatorname{mod}\pi_{0}^{n},\tag{55}$$

где $\varphi(X)$ — произвольный степенной ряд с целыми коэффициентами из обез свободного члена.

Так как $\eta(\pi) = \beta_1(\pi)_{\widetilde{F}} \beta_2(\pi) = 0$, то точно так же как в лемме 6, § 2, работы (11) доказывается, что существует степенной ряд $\psi(X)$ с коэффициентами из \mathfrak{o} такой, что $\eta(X) = u(X)\psi(X)$ (относительно u(X) см. § 1, π . 4). Поэтому если $\lambda(X) = X + c_2 X^2 + c_3 X^3 + \cdots$ — логарифм формальной группы F, то, полагая ряд ϕ в (55) равным $c_m \psi^m$ и суммируя сравности.

нения (55) по m, получим:

$$\sum_{m=1}^{\infty} \operatorname{tr} \operatorname{res}_{X} (1/sX) \left(1 - \frac{\Delta}{\pi_{0}} \right) (c_{m} u^{m} \psi^{m}) = \operatorname{tr} \operatorname{res}_{X} l_{F}(\eta)/sX \equiv 0 \mod \pi_{0}^{n},$$

что дает нам сравнение (54), и независимость спаривания для пары π, β доказана.

Таким образом, учитывая еще предложение 4, п. 1, нами получена следующая

ТЕОРЕМА 1. Спаривание $\langle \alpha, \beta \rangle_F$ между мультипликативной группой k^{\times} и группой точек $F(\mathfrak{p})$ билинейно, является инзариантным относительно выбора простого элемента π и независимым от способа разложения элементов в ряды по π , по крайней мере, для пары π , β , где $\pi \in k^{\times}$, $\beta \in F(\mathfrak{p})$.

Замечание. Можно доказать инвариантность и независимость спаривания для любых элементов $\alpha \in k^{\times}$, $\beta \in F(\mathfrak{p})$, но в дальнейшем нам это не потребуется.

§ 7. Явная форма обобщенного символа Гильберта

В этом параграфе мы изложим основной результат работы, а именно, найдем явную формулу для обобщенного символа Гильберта (α , β), на группе точек $F(\mathfrak{p})$ в случае, когда поле k_0 вполне разветвлено над \mathbf{Q}_p .

1. Проверим предварительно следующую лемму.

ЛЕММА 15. Пусть $c \in \mathfrak{I}$, тогда

$$(\pi, E_F(c\pi^i))_F = 0,$$

если і взаимно просто с р.

Доказательство. Из определения функции E_F получаем, что $E_F(\theta\pi^i)=\lambda^{-1}\lambda_a(\theta\pi^i)$, если θ \in \Re (см. (25), § 1, п. 2). Далее, ряд $\varphi(X)==\lambda^{-1}\lambda_0(X)$ осуществляет изоморфизм из формальной группы F_0 с логарифмом λ_0 (см. лемму 2 и 3) в формальную группу F с логарифмом λ . Поэтому

$$(\theta \pi^{i}, E_{F}(\theta \pi^{i}))_{F} = \varphi ((\theta \pi^{i}, \lambda_{0}^{-1} \lambda (\theta \pi^{i}))_{F_{A}})$$

$$(56)$$

(см. (5), введение, п. 4). Обозначим $\theta \pi^l$ через α и проверим, что $(\alpha, \lambda_0^{-1} \lambda_a(\alpha))_{F_0} = 0$. Для этого надо проверить согласно норменному свойству обобщенного символа Гильберта (см. введение, п. 4), что элемент α является мультипликативной нормой в расширении поля k, полученном делением точки $\lambda_0^{-1} \lambda_a$ (α) на изогению $[\pi_0^n]_0$ формальной группы F_0 . Таким образом, надо присоединить к полю k корни следующего ряда: $[\pi_0^n]_0(X) = \lambda_0^{-1} \lambda_a(\alpha)$, или, что то же самое, корни ряда $g(X) - \alpha$, где $g = \lambda_a^{-1} \circ \lambda_0 \circ [\pi_0^n]_0$. Ряд $g(X) - \alpha$ имеет, согласно лемме 2, § 1, п. 1, коэффициент, равный 1 при X^{q^n} , и все коэффициенты при степенях, меньших q^n , делятся на π . По подготовительной лемме Вейерштрасса найдется ряд $\epsilon(X) \equiv 1 \mod \deg 2$ с коэффициентами из кольца целых элементов локального поля k такой,

что ряд $f(X) = \varepsilon(X)$ ($g(X) - \alpha$) будет многочленом степени q^n . Ясно при этом, что многочлен f(X) унитарен (т. е. старший коэффициент его равен 1) и имеет свободный член α . Кроме того, все корни ряда $g(X) - \alpha$ будут корнями многочлена f(X), и наоборот. Из унитарности многочлена f(X) следует, что элемент α является нормой в расширении поля k, полученном присоединением корней многочлена f(X) (см., например, (8), лемма 4). Таким образом, $(\alpha, \lambda_0^{-1} \lambda_\alpha(\alpha))_{F_0} = 0$, а значит, и $(\theta \pi^i, E_F(\theta \pi^i))_F = 0$ (см. (56)).

Отсюда, используя билинейность символа, взаимную простоту чисел i и p и вытекающее непосредственно из определения символа равенство $(\theta, \beta)_F = 0, \theta \Longrightarrow \Re$, получаем:

$$\left(\pi,\,E_F\left(\theta\pi^i\right)\right)_F = \left\lceil\frac{1}{i}\right\rceil \left(\pi^i,\,E_F\left(\theta\pi^i\right)\right)_F + \left(\theta,\,E_F\left(\theta\pi^i\right)\right)_F = 0\,.$$

В общем случае из этого равенства будет следовать результат леммы, если мы разложим элемент $c \in \mathfrak{o}$ в ряд по простому элементу $\pi_{\mathfrak{o}}$ с коэффициентами из \mathfrak{R} и воспользуемся формальной аддитивностью функции E_F и билинейностью символа Гильберта. Лемма доказана.

Пусть $\alpha = \pi^a \theta \epsilon$ — элемент локального поля k, причем $\theta \in \Re$, а ϵ — главная единица. Обозначим через A(X) ряд $X^a \theta \epsilon(X)$, где $\epsilon(X) = 1 + d_1 X + \cdots$ — ряд, соответствующий разложению единицы ϵ в степенной ряд по простому элементу π с коэффициентами из \Re , т. е. $\epsilon(\pi) = \epsilon$. Аналогично, ряд $\beta(X)$ соответствует разложению элемента β группы точек $F(\mathfrak{p})$ в степенной ряд по π с коэффициентами из \mathfrak{o} , т. е. $\beta(\pi) = \beta$. Наконец, z(X), как и раньше, — ряд, соответствующий разложению корня ξ изогении π_0 в степенной ряд по π (см. (15), π 1, π 1). Мы считаем, далее, что поле π 1, над кольцом целых элементов которого определена формальная группа π 2, вполне разветвлено над π 2. При этих условиях имеет место следующая

ТЕОРЕМА 2. Для обобщенного символа Гильберта $(\alpha, \beta)_F$, еде $\alpha \in k^{\times}$, $\beta \in F(\mathfrak{p})$, при $p \neq 2$ имеет место формула

$$(\alpha, \beta)_F = [\operatorname{tr} \gamma](\xi),$$

где

$$\gamma = \operatorname{res}_{X} \left(l_{m} \left(\varepsilon \right) \frac{d}{dX} l_{F} \left(\beta \right) - l_{m} \left(\varepsilon \right) \frac{d}{dX} \lambda \left(\beta \right) + l_{F} \left(\beta \right) A^{-1} \frac{dA}{dX} \right) / [\pi_{0}^{n}] (z)$$

(относительно функций l_r и l_r см. (41), § 5, п. 1, а относительно ряда $1/[\pi_0^n](z)$ см. (14), § 1, п. 3).

Доказательство. Рассмотрим спаривание $\langle \alpha, \beta \rangle_F$ и проверим, что оно совпадает с обобщенным символом Гильберта на паре π , β , где $\beta \in F(\mathfrak{p})$, т. е.

$$\langle \mathfrak{n}, \, \beta \rangle_F = (\mathfrak{n}, \, \beta)_F.$$
 (57)

Из свойств независимости спаривания (см. теорема 1, § 6) следует, что мы можем использовать любое представление элемента β в сиде степенного ряда по π . Возьмем поэтому представление элемента β в сте-

пенной ряд, соответствующее каноническому разложению (40), § 4, п. 3. Тогда, с одной стороны, для символа $(\pi, \beta)_F$ получим:

$$(\pi, \beta)_F = (\pi, E_F(\omega_\beta)|_{X=\pi})_F + (\pi, \omega(b))_F.$$

В нашем случае поле k_0 вполне разветвлено над \mathbf{Q}_p , значит, q=p и поэтому в каноническом разложении (40), § 4, п. 3, все степени i взаимно просты с p. Таким образом, согласно лемме 15, имеем:

$$(\pi, E_F(\omega_\beta)|_{X=\pi})_F = \sum_{i} (\pi, E_F(b_i\pi^i))_F = 0.$$

Кроме того, $(\pi, \omega(b))_F = [\text{tr } b](\xi)$ (см. предложение 1, § 3), значит,

$$(\pi, \beta)_F = [\operatorname{tr} b](\xi). \tag{58}$$

С другой стороны, по определению спаривания имеем:

$$\langle \pi, E(\omega_{\beta})|_{X=\pi} \rangle_F = [\operatorname{tr} \gamma](\xi),$$

где $\gamma = \operatorname{res}_x w_{\beta}/sX$. При этом из сравнения (19), § 1, п. 4, следует, что все коэффициенты ряда 1/s при степенях, не делящихся на q = p, делятся на π_0^n . Многочлен $w_{\beta}(X)$ вообще не имеет членов со степенями, делящимися на p. Это означает, что свободный член ряда w_{β}/s делится на π_0^n или, что то же самое, $\gamma = \operatorname{res}_x w_{\beta}/sX \equiv 0 \mod \pi_0^n$. Отсюда получаем:

$$\langle \pi, E(\omega_{\beta}) |_{X=\pi} \rangle_F = 0.$$

Далее, по определению спаривания имеем:

$$\langle \pi, \omega(b) \rangle_F = \langle \pi, E(bs) |_{X=\pi} \rangle_F = [\operatorname{tr} \gamma'](\xi),$$

где $\gamma' = \operatorname{res}_X bs/sX = b$. Таким образом,

$$\langle \pi, \beta \rangle_F = [\operatorname{tr} b](\xi).$$

Последнее равенство вместе с (58) дает нам (57).

Проверим теперь, что наше спаривание совпадает с объбщенным символом Гильберта на паре ε , β , где ε — главная единица поля k, а $\beta \in \mathcal{F}(\mathfrak{p})$. Пусть $\tau = \pi \varepsilon$, тогда

$$\langle \varepsilon, \beta \rangle_{\pi} = \langle \tau, \beta \rangle_{\pi} \widehat{F} \langle \pi, \beta \rangle_{\pi} = \langle \tau, \beta \rangle_{\tau} \widehat{F} \langle \pi, \beta \rangle_{\pi} = (\tau, \beta)_{F} \widehat{F} \langle \pi, \beta \rangle_{F} = (\varepsilon, \beta)_{F}.$$

$$(59)$$

Здесь первое равенство использует билинейность спаривания, второе — инвариантность, а третье — равенство (57) (мы обозначали, кроме того, спаривание $\langle \alpha, \beta \rangle_F$, построенное с помощью элемента π , через $\langle \alpha, \beta \rangle_{\pi}$, а с помощью τ — через $\langle \alpha, \beta \rangle_{\tau}$).

В общем случае из (57), (59) и билинейности спаривания голучим:

$$\langle \alpha, \beta \rangle_F = [a] \langle \pi, \beta \rangle_F + \langle \varepsilon, \beta \rangle_F = [a] (\pi, \beta)_F + \langle \varepsilon, \beta \rangle_F = (\alpha, \beta)_F.$$

Теорема доказана.

Замечание. Если формальная группа F является мультипликативной, то формула для обобщенного символа Гильберта, найденная в теореме, в точности совпадает с формулой для обычного символа Гильберта (см. (11), теорема 4, § 5).

Поступило 3.I.1979

Литература

- ¹ Hasse H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper. Teil II: Reziprozitätsgesetz, Jahresbericht der deutsche Math.—Ver., 6 (1930), 204.
- ² Hasse H., Die Gruppe der p^n -primären Zahlen für einen Primteiler $\mathfrak p$ von p, J. reine u. angew. Math., 176 (1936), 174—183.
- ³ Шафаревич И. Р., Общий закон взаимосвязи, Матем. сб., 26 (68), № 1 (1950), 113— 146.
- ⁴ Lubin J., Tate J., Formal complex multiplication in local fields, Ann. Math., 81 (1965), 380—387.
- 5 Iwasawa K., On explicit formulas för the norm residue symbol, J. Math. Soc. Japan, 20 (1968), 151—164.
- ⁶ Fröhlich A., Formal groups, Lect. Notes Math., 74 (1968), 140.
- ⁷ Cartier P., Groupes de Lubin Tate généralisés, Invent. math., 35 (1976), 273—284.
- 8 Coates J., Wiles A., Explicit reciprocity laws, Soc. Math. France Astérisque, 41—42 (1977), 7—17.
- ⁹ Востокоз С. В., Явная формула спаривания в формальных модулях, Докл. АН СССР, 241, № 2 (1978), 275—278.
- 10 Wiles A., Higher explicit reciprocity laws, Ann. Math., 167, № 2 (1978), 235—254.
- ¹¹ **Востоков С. В.,** Явная форма закона взаимности, Изв. АН СССР. Сер. матем., 42 (1978), 1287—1320.
- ¹² Hasse H., Zahlentheorie, Berlin, 1963.