Impact of inefficient combustion sources in Africa on pollution over the Atlantic Ocean

Eloise Marais

University of Birmingham e.a.marais@bham.ac.uk

with Christine Wiedinmyer, Alfred Bockarie, Helen Worden, Roisin Commane, Bruce Daube, Steven Wofsy

Africa's Population is Growing Rapidly

Sources of Inefficient Combustion in Africa

Trends driven by cropland expansion

Variability attributed to decadal _ oscillations

[Andela and van der Werf, 2014]

Sources of Inefficient Combustion in Africa

Anthropogenic Activity

Building Capacity to Model Anthropogenic Emissions in Africa

DICE-Africa(Diffuse and Inefficient Combustion Emissions in Africa)

Building Capacity to Model Anthropogenic Emissions in Africa

Sector Emissions from DICE-Africa

Residential biofuel use dominates all chemical species emissions BC and CO emissions similar in magnitude to open fire emissions NO_x emissions very low (high ozone production efficiencies)

Emissions Trends and Projections for Africa

Wide range of emissions trends and projections. Which is correct?

No trend in satellite record

Trends in surface NO₂ inferred with satellite NO₂

[Geddes et al., 2016]

Surface NO₂ inferred with GOME, SCIAMACHY, and GOME-2

Trend in Africa muted and opposite to what's projected

Some evidence of increases in NO₂

East Africa annual mean OMI NO₂

Increase in OMI NO₂ in cities and at ports, but column concentrations are low.

Use ATom (and HIPPO) to assess changing contribution of anthropogenic activity to pollution outflow over Atlantic

GEOS-Chem

Updates specific to Africa:

- DICE-Africa
- Trash Emissions (Wiedinmyer et al., 2014)
- Improve estimate of isoprene emissions (Marais et al., 2014)

Trash Emissions (CO in Gg a⁻¹)

[Wiedinmyer et al., 2014]

Updates in the works:

Detailed spatial allocation of emissions from charcoal use and production

GEOS-Chem evaluation with ATom CO

Annual mean GEOS-Chem lower troposphere CO

GEOS-Chem evaluation with ATom CO

Seasonal means

(Background is GEOS-Chem; circles are Atom)

Next Steps

Replace model with updated charcoal production and use inventory being developed by my student Alfred Bockarie.

Include assessment of model representation of NMVOCs during ATom and CO during HIPPO.

For CO, compare model CO variability to that from satellite (MOPITT) observations.

Combine with aircraft observations at the source of pollution West Africa (DACCIWA).

Use the model to determine the changing contribution of anthropogenic sectors to pollution outflow.