Week 8 – attention and BERT

EGCO467 Natural Language and Speech Processing

Sources

- https://arxiv.org/abs/1706.03762 Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.
- http://jalammar.github.io/illustrated-transformer/
- https://www.youtube.com/watch?v=iDulhoQ2pro
- http://nlp.seas.harvard.edu/2018/04/03/attention.html

seq2seq

sequence to sequence model

disadvantage of LSTM

- sequential mode computation can't be parallelized
- all texts that comes before position t already absorbed into state vector h

Attention Mechanism

- Consider every pair of token
- If n tokens, there are n² pairs

encoder-decoder (seq2seq)

encoder-decoder

encoder-decoder

encoder

self-attention vs. "normal" attention

First Layer

Inside First Layer

Self attention

Self attention

Self attention

Matrix form

Matrix form

Multi-head

Multi-head

Multi-head

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Summary of self-attention

Order of sequence

Positional encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Residue connection

Complete encoder

Decoder side

Decoding

Decoding time step: 1 2 3 4 5 6 OUTPUT | am a student <end of sentence>

Implementation

• https://nlp.seas.harvard.edu/2018/04/03/attention.html

BERT

https://arxiv.org/pdf/1810.04805.pdf

https://arxiv.org/pdf/1907.11692.pdf

LM vs. Masked LM

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x')\right)},$$

Masked LM

Special Tokens:

[CLS]

[SEP]

[MASK]

[PAD]

NSP = next sentence prediction

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_{t} \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x_{t})\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x')\right)},$$

masking: 15% of tokens is replaced with [MASK], mt is 0 if [MASK] and 1 if not

Pre-training model architectures

Pretraining Tasks

- LM task: predict the masked token.
- NSP: next sentence prediction predict if sentence B is actually a sentence that follows A in corpus.
- For LM task: token are masked with 15% probability.
- NSP: 50-50 split between actual A followed by B, and replace B with a random sentence from corpus.

Encoding the input

Fine-tuning

- Change the head according to task
- E.g.
 - text recognition softmax head
 - squad (question answering) two softmax heads, one for start token position and for end token position

Roberta

- A variation on BERT
- remove NSP loss
- dynamic masking (masks are randomized for each batch)
- large batch size
- byte-level BPE tokenizer (BERT uses Wordpiece)
- more data and train for longer

Roberta vs. Bert

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13GB	256	1M	90.9/81.8	86.6	93.7
$XLNet_{LARGE}$						
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

Example - Huggingface

• https://github.com/huggingface/transformers/tree/v4.23-release/examples/pytorch