DataBase System Concepts

Deng Fang

Dengfang@bupt.edu.cn

■ Book:

Database System Concepts

■ Teaching hours: total 68 hours, including

lecture time: 48 hours

practice time: 16 hours

Reference Book:

数据库系统概念 机械工业出版社

数据库系统概论,王珊著,高等教育出版社

数据库系统原理,李建中,王珊编著,电子工业出版社

Contents(1)

Part 1 Introduction

Database Structure, Language, Users, Data Model...

Part 2 Relational Databases

Relational Model

SQL

Integrity and Security

Part 3 Database Design

E R Model

Relational-database Design

Contents(2)

Part 4 Data Storage and Querying

Storage and File Structure

Indexing and Hashing

Querying Processing

Query Optimization

Part 5 Transaction Management

Transactions

Concurrency control

Recovery System

Contents(3)

- Part 6 Database System Architecture
- Part 7 Object-Based Databases and XML
 - Part 8 Case Studies
- Part 9 Other Topics

- Chapter One Introduction
 - V History of Database systems
 - What is Database systems
- Three levels and Data Abstraction
- v Data Models
 - v Database languages
 - v Database users
 - v Database system structure

Development of Data Management

Manual Model

File System

Drawbacks of using file systems to store Data:

- Data redundancy and inconsistency
 Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 Need to write a new program to carry out each new task
 - ➤ Data isolation multiple files and formats

- ➤ Integrity problems
- Integrity constraints (e.g. account balance > 0) become part of program code
 - Hard to add new constraints or change existing ones
- Atomicity of updates
 - Concurrent access by multiple users
 - Security problems

Benefits of Database Approach

- Data can be shared;
- Redundancy can be reduced;
- Inconsistency can be avoided(to some extent);
- Transaction support can be provided;
- Integrity can be maintained;
- Security can be enforced;
- . . .

History of Database systems

- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Punched cards for input
 - Late 1960s and 1970s:
 - Hard disks allow direct access to data
 - Network and hierarchical data models in widespread use
 - Ted Codd defines the relational data model
 - Would win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
 - High-performance (for the era) transaction processing

History of Database systems

- 1980s:
 - Research relational prototypes evolve into commercial systems
 - SQL becomes industrial standard
 - Parallel and distributed database systems
 - Object-oriented database systems
 - 1990s:
 - Large decision support and data-mining applications
 - Large multi-terabyte data warehouses
 - Emergence of Web commerce
 - Early 2000s:
 - XML and XQuery standards
 - Automated database administration

- Later 2000s:
 - -Giant data storage systems
 - Google BigTable, Yahoo PNuts, Amazon, ..

- 1968, IBM's IMS (Information Management system) hierarchical data model;
 - 1970s, Cullinet Software's IDMS
- 1971, CODASYL(Conference on Data System Language)
 report network data model;
- 1970, E.F.Codd defined the relational model
- 1990s, object-relational database, WEB database, parallel database
- 2000s, NoSQL

•**DB**: database

a collection of interrelated data

•**DBMS**:

DataBase Management System

Applications

Set of programs to access the data

DBMS(教材上) contains information about a particular enterprise

- •Collection of interrelated data
- •Set of programs to access the data
- •An environment that is both *convenient* and *efficient* to use

Database Applications

Database Applications:

Banking: all transactions

Airlines: reservations, schedules

Universities: registration, grades

Sales: customers, products, purchases

Manufacturing: production, inventory, orders, supply chain

Human resources: employee records, salaries, tax deductions

Databases touch all aspects of our lives

Levels of Abstraction

- Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

type *customer* = **record**

```
customer_id: string;
customer_name: string;
customer_street: string;
customer_city: integer;
end;
```

• View level: Part of the entire database. Application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

- View abstraction
- Logical abstraction
 - Physical abstraction

Mappings (映象)

The Physical(internal)/Logical(conceptual) mapping

defines the correspondence between the logical view and the stored database;

specifies how logical records and fields are represented at the physical level;

• The View(external)/Logical(conceptual) mapping

defines the correspondence between a particular view and the logical view;

■ Physical Data Independence (物理数据独立性)—

the ability to modify the physical schema without changing the logical schema or the views

(The Physical(internal)/Logical(conceptual) mapping)

Application programs need not be rewritten if the physical schema changes.

■ Logical Data Independence (逻辑数据独立性)—

the ability to modify the logical schema without changing the logical views

(The View(external)/Logical(conceptual) mapping)

Instances and Schemas

•Schema (模式) – the description of the structure of the data in a database

e.g., the database consists of information about a set of customers and accounts and the relationship between them);

Analogous to type information of a variable in a program;

Physical schema: database design at the physical level;

Logical schema: database design at the logical level;

- •Instance (实例) the actual content of the database at a particular point in time
 - Analogous to the value of a variable

A collection of conceptual tools for describing data, data relationships, data semantics, and consistency constrains.

Data Structure;

Data Operations;

Constraint Rules.

Object_based data model:

Entity-Relational Model (E_R Model);

Object-oriented Model;

Record_based data model:

hierarchical data model;

network data model;

relational data model

Customer-	customer- name	customer- street	customer- city	account- number
192-83-7465	Johnson	Alma	Palo Alto	A-101
019-28-3746	Smith	North	Rye	A-215
192-83-7465	Johnson	Alma	Palo Alto	A-201
321-12-3123	Jones	Main	Harrison	A-217
019-28-3746	Smith	North	Rye	A-201

- Data Definition Language (DDL):
- Specification notation for defining the database schema; Eg:

Including:

Database schema

Data storage and definition language

Data Manipulation Language (DML):

Language for accessing and manipulating the data organized by the appropriate data model;

(query, insert, delete, update)

- DML also known as query language
 - Two classes of languages
 - Procedural user specifies what data is required and how to get those data;
 - Nonprocedural user specifies what data is required without specifying how to get those data;
 - •SQL is the most widely used query language

Database Users

- Users are differentiated by the way they expect to interact with the system
- Application programmers interact with system through DML calls
- <u>Sophisticated users</u> form requests in a database query language
 - •<u>Specialized users</u> write specialized database applications that do not fit into the traditional data processing framework
 - •<u>Naive users</u> invoke one of the permanent application programs that have been written previously
 - -E.g. people accessing database over the web, bank tellers, clerical staff

Database Users

- End Users:
 - naive Users
 - casual users -----Interactive SQL
 - Application Programmers-----Procedural SQL, Transaction
- Database analyzer and designer -----Data modeling,
 - Normalization theory,
- <u>Database Administrators</u>, <u>DBA</u> ----- Database maintenance ,
 - Security, Integrity, Recovery
 - Database Management System designer and implementer -----

Implementation technique of above techniques for Special and New Database Management System

Database System Structure

- Storage Management:
 - •Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
 - •is responsible for efficient storing, retrieving and updating of data;
- Authorization and integrity manager;
 - Transaction manager;
 - File manager;
 - Buffer manager;
 - Data Structure
- Data files;
 - Data dictionary;
 - Indices;

Database System Structure

Query Processor:

DDL interpreter;

DML complier;

Query optimization;

Query evaluation engine;

Transaction Management

- A *transaction* is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

- Data Definition and storage management;
- Data Manipulation, Data Access;
- Data Security and integrity;
- Transaction management, Data recovery and concurrency;
- Data dictionary;

Application Architectures

- ■Two-tier architecture: E.g. client programs using ODBC/JDBC to communicate with a database
 - ■Three-tier architecture: E.g. web-based applications, and applications built using "middleware"

Summary

Database System structure

DB

DBMS, DBMS Functions

Three-level structure

Data independence

Data Model

Database Languages

Database Users

