MS211 - Turma H - Projeto I - Zeros de Funções

Deve ser resolvido no computador (usar Python ou Matlab/Octave) e o código-fonte deve ser acompanhado de um **relatório em pdf** contendo as saídas do seu código e respostas a cada item abaixo e, se for solicitado, uma discussão acerca deste resultado.

A equação de *Butler-Volmer* em processos eletroquímicos relaciona a densidade da corrente com o potencial em um eletrodo e pode ser escrita da seguinte maneira:

$$f(x) = e^{\alpha x} - e^{(\alpha - 1)x} - \beta$$

Considere $\alpha = 0.2$ e $\beta = 2$ e o problema de encontrar f(x) = 0.

- a) Encontre um intervalo que contenha uma raíz de f(x), pode-se utilizar algum software que plote o gráfico da função.
- b) Implemente os métodos da Bissecção, de Newton e da Secante utilizando um software de preferência. Utilize como critério de parada uma tolerância e número máximo de iterações.
- c) Utilizando os programas implementados, encontre a raíz da equação de Butler-Volmer para diferentes pontos iniciais. Faça tabelas para cada método que contenha os pontos iniciais (no caso do método da Secante, o intervalo inicial [a,b]), aproximação \tilde{x} obtida e número de iterações, como ilustrado nos exemplos seguintes:
 - Método da Bissecção

a	b	\tilde{x}	iterações
5	4	4.00006103	15
0	6	3.60379028	17
2	9	3.60372162	18

Método de Newton

x_0	\tilde{x}	iterações
0	3.60373245	4
5	3.60373245	4
9	3.60373245	5