StatsI — Exercise 5

- 1. Let X_1, \dots, X_n be a sample from Bernoulli(p), and Y_1, \dots, Y_m be a sample from Bernoulli(q), and the two samples are independent with each other.
 - (a) Find a reasonable estimator for p q and its standard error.
 - (b) Find an approximate 95% confidence interval for p q when both n and m are large.
- 2. 100 people are given a standard antibiotic to treat an infection and another 100 are given a new antibiotic. In the first group, 90 people recover; in the second group, 85 people recover. Let p_1 be the probability of recovery with the standard antibiotic and p_2 be the probability of recovery with the new antibiotic. We are interested in estimating $\theta = p_1 p_2$. Provide an estimate, standard error, an 80% confidence interval, and a 95% confidence interval for θ .
- 3. Let X_1, \dots, X_n be a sample from a distribution F and let \widehat{F}_n be the empirical distribution. Let x and y be two distinct points, and x < y.
 - (a) Compute $E\{\widehat{F}(x)\}\$ and $Var\{\widehat{F}(x)\}\$.
 - (b) Compute $Cov\{\widehat{F}(x), \widehat{F}(y)\}$.
 - (c) Based on the CLT, find the limiting distribution of $\widehat{F}(x)$. Furthermore, find an approximate 1α confidence interval for F(x).
 - (d) Suppose we are interested in estimating $\theta = F(y) F(x)$, and we use $\hat{\theta} = \hat{F}(y) \hat{F}(x)$ as our estimate. Find the standard deviation and the standard error of $\hat{\theta}$.
- 4. Let X_1, \dots, X_n be a sample from $N(\mu, 1)$. Let $\theta = e^{\mu}$, and we estimate θ by $\widehat{\theta} = e^{\bar{X}}$, where $\bar{X} = n^{-1} \sum_{1 \le i \le n} X_i$.
 - (a) State how to obtain a bootstrap estimator v^* for $v = Var(\widehat{\theta})$.
 - (b) Draw a sample of size n = 400 from N(5, 1) in R. Compute v^* with the bootstrap replication B = 2000 times. Plot the histogram of the bootstrap estimates $\theta_1^*, \dots, \theta_B^*$. This is a bootstrap estimator for the distribution of $\hat{\theta}$.
 - (c) Draw 2000 samples (with fixed size n=400) from N(5,1). For each sample, compute the estimate $\hat{\theta}_i$, $i=1,\cdots,2000$. Draw histogram of those $\hat{\theta}_i$. This may be regarded as the true distribution of $\hat{\theta}$. Compare it with its bootstrap estimator obtained in (b) above.
- 5. Let Y_1, \dots, Y_n be a sample from $N(\mu, \sigma^2)$. Let $\tau = \mu/\sigma$. We estimate τ by $\hat{\tau} = \bar{Y}/S$, where \bar{Y} and S are, respectively, the sample mean and the sample standard deviation.
 - (a) Based on the estimator $\hat{\tau}$, construct the three types of 95% bootstrap confidence intervals for τ .
 - (b) Set n = 100 and B = 200, repeat the estimation 500 times, and check the relative frequencies of the three intervals covering the true value of τ when $\mu = 1$ and $\sigma^2 = 1$.