Correction IE3 Chime2 29 janvier 2020 – Correction avec barème.

	EXERCICE 1 Electrolyse de l'eau en milieu basique						
question	Réponse						
1.1	$\frac{1}{2}O_{2}/OH^{-}: 2OH^{-}_{(aq)} \rightarrow \frac{1}{2}O_{2}_{(g)} + H_{2}O_{(l)} + 2e^{-}$ $O(0):-II$ $O(0):0$						
	$H_2O/H_2: 2H_2O_{(l)} + 2e^- \rightarrow H_{2(g)} + 2OH^{(aq)}$ $NO (H) : (+I) NO (H) : 0$						
1.2	Schéma du dispositif d'électrolyse de l'eau en conditions basiques : (-0.25 /erreur ou omission) Rappel de la réaction bilan : $H_2O_{(l)} \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$						
	Cathode = réduction Anode = oxydation (Oxydation anodique) Production e^{-} Production e^{-} e^{-} Production e^{-} e^{-}						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Anode +: ½ O ₂ /OH ⁻ : $20H^{-}_{(aq)} \rightarrow \frac{1}{2}O_{2}_{(g)} + H_{2}O_{(l)} + 2e^{-}$ Cathode -: $H_{2}O/H_{2}$: $2H_{2}O_{(l)} + 2e^{-} \rightarrow H_{2}_{(g)} + 20H^{-}_{(aq)}$						
1.3	Equations de Nernst : (-0.25 /erreur ou omission) Anode +: $E^+ = E_{\frac{1}{2}O_2/OH^-}^0 + \frac{RT}{2F} ln \left(\frac{P_{O_2}^{\frac{1}{2}}}{[OH^-]^2} \right)$ Cathode -: $E^- = E_{H_2O/H_2}^0 + \frac{RT}{2F} ln \left(\frac{1}{P_{H_2}^{-1} \times [OH^-]^2} \right)$						
1.4	Expression littérale de la différence de potentiel : (-0.25 /erreur ou omission)						
	Compter 0,75 (au lieu de 1,5) si inversion des P et conc.						
	$\mathcal{E} = E^{+} - E^{-} = E_{\frac{1}{2}O_{2}/OH^{-}}^{0} + \frac{RT}{2F}ln\left(\frac{P_{O_{2}}^{\frac{1}{2}}}{[OH^{-}]^{2}}\right) - E_{H_{2}O/H_{2}}^{0} - \frac{RT}{2F}ln\left(\frac{1}{P_{H_{2}}^{1} \times [OH^{-}]^{2}}\right)$						
	$\mathcal{E} = E_{\frac{1}{2}O_2/OH^-}^0 - E_{H_2O/H_2}^0 + \frac{RT}{2F} ln\left(P_{O_2}^{\frac{1}{2}} \times P_{H_2}^{1}\right)$						
1.5	Tension minimale à exercer : Si p standard, $P_{H2}=1$ bar et $P_{O2}=1$ bar Alors, $ E=E_{\frac{1}{2}O_2/OH^-}^0-E_{H_2O/H_2}^0 $						
	A.N.: $\varepsilon = 0.4 - (-0.83) = +1.23V$						
1.6	Production de 1 m ³ d'H ₂ sous p = 1 bar et T = 298 K $n_{H_2} = \frac{p.V}{R.T}$ A N = $\frac{1}{R}$ and $\frac{1}{R}$ and $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are $\frac{1}{R}$ are $\frac{1}{R}$ and $\frac{1}{R}$ are						
1.7	A.N.: n _{H2} = 40,36 moles = n _{H2O} ; m _{H2O} = 18 x 40,36 = 726,5 g Quantité d'électricité pour produire 40,36 moles: 2 moles d'électrons pour 1 mole d'H ₂ , soit: Avec Q = F x n						
	A.N: Q = 96500 x 40,36 x 2 = 7,8 10 ⁶ C						

	EXERCICE 2 Piéger le CO ₂ issu de la combustion du bois								
2.1	Combustion du bois								
2.1.1	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$								
2.1.2	$\Delta_r H = 6 \times \Delta_f H_{CO2g} + 6 \times \Delta_f H_{H2Og} - \Delta_f H_{glu}$								
		= $6x(-393,5)+6x(-241,8)-(-1273,3) = -2538,5 \text{ kJ.mol}^{-1}$							
2.1.3	Nombre d	e moles (in glucose	itial / Fina O ₂	N ₂	CO ₂	H ₂ O	total	7	
	Initial	1	10	40	0	0	51	-	
	Final	0	4	40	6	6	56		
	Tous les co	omposés fi	naux sont	à l'état ga	zeux, dono	$x_{CO2} = \frac{6}{56}$	= 0,107		
2.1.4	Tous les composés finaux sont à l'état gazeux, donc $x_{CO2}=\frac{6}{56}=0,107$ Raisonnement : Le système est adiabatique : $Q=0$ La pression est constante $Q=\Delta H$ La transformation est décomposée en 2 étapes : réaction à température initiale, et changement de température des produits. Pour une mole de glucose : $\Delta_r H + \int_{298}^{Tf} C_p dT = 0$ A.N. : $\text{Avec } C_p = 4C_{p,O2} + 40C_{p,N2} + 6C_{p,CO2} + 6C_{p,H2Og} \\ = 4x29,4 + 40x29,1 + 6x37,1 + 6x33,6 = 1705,6 \text{ J.K}^{-1}$ $T_f = 298 - \frac{-2538,5 \times 10^3}{1705.6} = 1786 \text{ K (1513 °C)}$								
	Absorptio	n du CO2 d		.90 — —	1705,6		ok (1313 C)	
2.2	Absorption du CO ₂ dans l'eau								
2.2.1		ession par			-				
	x_{CO2} : fraction molaire du CO_2 dans la phase liquide (sans unité) $K_{H,CO2}$ est la constante de Henry (unité de pression)								
2.2.2	$x_{CO2} = \frac{P_{CO2}}{K_{H,CO2}}, \text{ soit 5,35 } 10^5 / 1,68 \; 10^8 = 3,18 \; 10^{-3}$ Or, $x_{CO2} = \frac{n_{CO2}}{n_{H2O} + n_{CO2}}, \text{ donc } n_{CO2} = \frac{x_{CO2}}{1 - x_{CO2}} \times n_{H2O} \; (\approx x_{CO2} \times n_{H2O})$ Pour un litre d'eau (55,56 moles d'eau), $n_{CO2} = 0,177$ Non explicitement demandé								
					77 002	•	·		
2.2.3	D'où [CO ₂]=0,177 mol.L ⁻¹ D'après l'énoncé, le CO ₂ est le seul gaz des fumées qui s'absorbe ; lorsque la pression est ramenée à 1 bar, alors la concentration de CO ₂ à l'équilibre diminue et le CO ₂ dissout repasse en phase gazeuse. On produit donc du CO ₂ pur.								
2.2.4	Si la pression totale est de 1 bar, alors P_{CO2} =1 bar Donc $x_{CO2} = \frac{P_{CO2}}{K_{H,CO2}}$ =5,95 10^{-4} Concentration de CO ₂ en phase liquide : $n_{CO2} = \frac{x_{CO2}}{1-x_{CO2}} \times n_{H2O}$ n _{CO2} = 0,0330 moles, donc 0,033 mol.L ⁻¹ Quantité de CO ₂ désorbée pour un litre d'eau : 0,177-0,33 = 0,144 mol (6,33 g). Pour 1 m³ d'eau, on récupère 6,33 kg de CO ₂ .								

	EXERCICE 3 Etude de la réaction de méthanation							
3.1	Réaction 3 : $CO_2 + H_2 \rightleftarrows CO + H_2O$							
	$\Delta_{r3}S_{298}^0 = S_{CO}^0 + S_{H2Og}^0 - S_{CO2}^0 - S_{H2}^0$							
	= 197,7 + 188,8 - 213,8 - 130,7 = 42 J.K ⁻¹ .mol ⁻¹							
3.2	La réaction est endothermique dans le sens direct (+41,2 kJ/mol). D'après la loi de modération, l'augmentation de température favorise le sens endothermique, donc le sens direct de la réaction.							
	_	-			-			
	L'augmentation de pression favorise le sens lié à la disparition du nombre de moles de gaz. Dans ce cas, aucun sens n'est privilégié : aucun effet de la pression .							
3.3	Cp négligeables. $\Delta_{r3}G_T^0=\Delta_{r3}H_{298}^0-T\Delta_{r3}S_{298}^0$							
3.3	CP negligeables. $\Delta_{r3}G_{T} = \Delta_{r3}H_{298} = H\Delta_{r3}S_{298}$ AN : $\Delta_{r3}G_{T}^{0} = 41200 - 673x42 = 12 934 \text{ J.mol}^{-1}$.							
	73-1				$\Delta_{r2}G_T^0$			
				$K_3^0 = \exp($	$-\frac{273GT}{RT}$)			
	A.N.: $K_3^0 = 0$,							
3.4	Tableau d'a	1	-0,25 /erreur		-	T-1		
	n ini	CO ₂	H ₂	CO 0	H ₂ O 0	Tot 5		
	n eq	 	· ·	-	ra	5		
	pi	$1-r_3$	$\frac{4-r_3}{5}p$	$\frac{r_3}{n}$	$\frac{r_3}{5}p$	р		
	Funnancian de	J	J	5 ^P	5 ^P			
	Expression as	e la constante	:	0	r_{2}^{2}			
				$K_3^0 = \frac{1}{(1-1)^n}$	$r_3(4-r_3)$			
	Résolution éc	quation du sec	cond degré :	$(1-K_3^0)+51$. V0 AV0 —	- 0		
	Une seule rac	ine positive : 1		$(1 - K_3) + 57$	$r_3 \Lambda_3^{\circ} - 4 \Lambda_3^{\circ} =$	= 0		
3.5			$rac{\Rightarrow CH_4 + H_2}{\Rightarrow CH_4 + H_2}$	0				
3.3	Tableau d'av	1	1	1		1	_	
	n ini	CO 1	H ₂	CH ₄	H ₂ O	Tot	_	
	n ini n eq		_	0 r ₄	0 r ₄	4 4-2r ₄	_	
	pi	$1 - r_4$	$3(1-r_4)$ $\frac{3(1-r_4)}{4-2r_4}p$	r_4	r_4	р		
		$\frac{1}{4-2r_4}p$	$\frac{1}{4-2r_4}p$	$4-2r_4^{p}$	$4-2r_4^{p}$			
	Expression de la constante : $K_4^0 = \frac{(\frac{r_4}{4 - 2r_4}p)^2}{(\frac{1 - r_4}{4 - 2r_4}p)(\frac{3(1 - r_4)}{4 - 2r_4}p)^3} = \frac{r_4^2(4 - 2r_4)^2}{27 \times (1 - r_4)^4} \frac{1}{p^2}$							
		ν	· 0 _ (Z	$(\frac{r_4}{1-2r_4}p)^2$	$-r_4^2$	$(4-2r_4)^2$	1	
		Λ	$\frac{1-r_4}{(\frac{1-r_4}{4-2r})}$	$(p)(\frac{3(1-r_4)}{4-2r})$	$\frac{1}{(p)^3}$ $-\frac{27}{27}$	$\times (1-r_4)^4 p$,2	
2.6	Si r4=0,95, a		sion donne K					
3.6			311852 (> 58	•				
	Donc le rend	dement est c	ompris entre	ces deux val	eurs. (à votr e	e appréciation	on, si raisonnement OK)	
3.7	_					=	nombre de moles de gaz,	
			. Le rendeme	ent va encore	e augmenter	, la réaction	4 est presque totale. (à	
	votre appré							
3.8	La consommation du CO par la réaction 4 entraine le déplacement de la réaction 3 dans le sens direct, ce qui conduit à la consommation du CO par la réaction 4, dont on a vu qu'elle est presque totale ;							
	Ainsi, chaque mole de CO produite est consommée, la réaction 3 est donc complètement déplacée dans le sens direct par la 4.							
	Par conséquent, la réaction 2 peut être considérée comme totale.							
	Le mélange à l'équilibre contient donc 1 mole de méthane et 2 moles d'eau.							

Г

	EXERCICE 4 : Stockage du méthane pour son transport	10,5 points						
4.1- Stockage cryogénique								
question	Réponse							
4.1.1	Température de stockage cryogénique sous p = 1 bar : Utilisation de la relation de Clapeyron :	1,0						
	$Lnp_{CH4}^* = -\frac{1056}{T} + 9,37 \qquad \text{avec } p^* \text{ en bar}$	0,25						
	+ Rappel des trois hypothèses justifiant l'usage de cette relation : gaz parfait, enthalpie de vaporisation constante dans le domaine de température considéré ; volume molaire liquide négligeable. (-0.25 /erreur ou omission).	0,25						
	A.N.: T = 1056/9,37 = 112,7 K soit - 160,3 °C	0,5						
4.1.2	Volume de gaz méthane (p = 1 bar; 25 °C) correspondant à 1 m³ de méthane liquéfié à -165°C.	1,0						
	Avec masse volumique connue du méthane liquéfié, $m_{CH4} = 454 \ 10^3 \ g$ Soit $n_{CH4} = 454 \ 10^3/16 = 28 \ 375 \ moles$ dans un 1 m³ de méthane liquéfié.	0,25 0,25						
	Application de la Loi des gaz Parfaits : pV = nRT A.N. : V = 703 m ³	0,5						
4.2- Stock	age solide sous forme d'hydrate de méthane							
question	Réponse							
4.2.1	Compléter la figure (A : H_2O et B : CH_4). (-0,25 /erreur ou omission) : Domaine 2 : $L1_{(A+B)} + V_{(A+B)}$ Domaine 5 : : $L1_{(A+B)} + S_{(CD)}$ Domaine 6 : : $S_{(A)} + S_{(CD)}$	0,5						
4.2.2	Formule du composé défini (CD) :	1,0						
	xB (CD) = 0,143 ⇔ xB (CD) =1/7,	0,25						
	soit la formule du CD : CH ₄ (H ₂ O) ₆	0,75						
	(1 mole de CD contient donc 1 mole de méthane et 6 moles d'eau)							
4.2.3	Rappel du calcul de la variance (à votre appréciation) :	2,0						
	$V = N + n - \phi$, avec n = nb de facteur physique intensif, ϕ : nb de phase en équilibre, et N : nb de constituants.	0,5						
	Courbe d'analyse thermique (-0,25 /erreur ou omission) :							
	Température (°C) $\phi = 1$ $V = 2$ Apparition de L1 (A+B) $\phi = 2$ $V = 1$ Disparition de L1 (A+B) $\psi = 3$ $V = 0$ $\phi = 2$ $V = 1$ Temps	1,5						

424	Stockage de 1 m³ d'hydrate de méthane à -20 °C et 1 bar	
4.2.4		1,5
	Nombre de moles d'hydrates de méthane correspondant à ce volume :	
	Connaissant la masse volumique, on en déduit la masse correspondante :	
	$m_{CD} = 900 \times 10^{3} \text{ g}$ Avec $M_{CD} = 6 \times 18 + 1 \times 16 = 124 \text{ g.mol}^{-1}$, on détermine le nb de mole de CD :	
	$n_{CD} = m_{CD} / M_{CD} = 900 \times 10^3 / 124 = 7 258 \text{ moles de CD}.$	
	11CD - 11CD / 14CD - 300 X 10 / 124 - 7 230 11101C3 dC CD.	0,5
	Nombre de moles de méthane et nombre de mole d'eau correspondant :	0.5
		0,5
	$n_{CH4} = n_{CD} = 7 258$ moles de méthane	0,5
	n _{H20} = 6 x n _{CH4} = 43 548 moles d'eau	
4.2.5	Nombre de mole total n_T (eau + méthane) du mélange M ($x_{CH4} = x_B = 0,5$) nécessaire pour produit ce m^3 d'hydrate de méthane (S_{CD}).	2,5
	necessaire pour produit ce in a rivarate de metriane (30).	
	Selon la Figure 1 (et les données numériques), à -20 °C, deux phases en	
	équilibre : S _{CD} et V _(A+B)	
	Composition des phases (fractions molaires) :	
	xB (Solide : CD) = 0,143	0,5
	xB (V) = 0,75	0,3
	Utilisation de la règle des moments chimiques (RMC) pour calculer n _v et	
	n _T .	1,0
	Relation 1 : $n_T = n_S + n_V$	
	Relation 2 (RMC): $n_T = n_S x (SM) + n_V x (MV)$.	
	A.N.:	0,5
	ns = 7 258 + 43 548 = 50 806 moles de solide .	
	n _v .= 72 551 moles.	
	Alors:	
	$n_{T.}$ = n_{S} + n_{V} = 50806 + 72551 = 123 357 moles total	0,5
4.2.6	Comparaison des deux techniques, sur la base d'1 m³ de produits stocké /	1,0
	nb de moles de méthane stockés :	
	Méthane liquéfié par cryogénie : 28 375 moles Méthane stocké sous forme d'hydrate de méthane : 7 258 moles.	0,25
	i vietnane stocke sous forme a fryarate de methane . 7 236 moles.	
	Commentaires possibles des résultats (à votre appréciation) :	0.75
	- Stockage sous forme d'hydrates de méthane on stocke beaucoup	0,75
	d'eau;	
	- Reste également à déterminer l'énergie nécessaire pour assurer	
	ces deux conditions de stockage.	