Teorema 1 (PUMPING LEMMA) Per ogni linguaggio regolare L esiste una costante n tale che, se $z \in L$ e $|z| \ge n$, allora possiamo scrivere z = uvw, con $|uv| \le n$, $|v| \ge 1$ e ottenere che $uv^iw \in L$ per ogni $i \ge 0$.

Proof. Dato un linguaggio regolare L esiste un ASFD che lo riconosce. Sia $\mathcal{A}=(\Sigma,Q,\delta,q_0,F)$ un automa che riconosce L e sia |Q|=n. Sia $z\in L$, con $|z|=k\geq n$. In tal caso deve necessariamente valere che $\overline{\delta}(q_0,z)\in F$.

Supponiamo che $q_{i_0}, q_{i_1}, \ldots, q_{i_k}$ sia la sequenza di stati attraversati da $\mathcal A$ durante la computazione su z, con $q_{i_0} = q_0$ e $q_{i_k} = \overline{\delta}(q_0, z) \in F$.

In altre parole q_{i_1} e' lo stato in cui arriva l'automa \mathcal{A} dopo aver letto il primo simbolo di z, q_{i_2} lo stato in cui arriva l'automa \mathcal{A} dopo aver letto i primi due simboli di z, q_{i_3} e' lo stato in cui arriva l'automa \mathcal{A} dopo aver letto i primi tre simboli di z e cosi' via.

Se indichiamo con z_h il prefisso di z di lunghezza h, allora avremo che q_{i_h} e' lo stato in cui arriva l'automa $\mathcal A$ dopo aver letto z_h cioe' $q_{i_h} = \overline{\delta}(q_0, z_h)$.

Dal momento che $k \geq n$, deve esistere almeno uno stato in cui l'automa si porta almeno due volte durante la computazione su z cioe' esistono due stati nella sequenza $q_{i_0}, q_{i_1}, \ldots, q_{i_k}$ che coincidono. In realta' questi due stati che coincidono si possono trovare gia' tra i primi n+1 elementi della sequenza cioe' in $q_{i_0}, q_{i_1}, \ldots, q_{i_n}$.

Possiamo quindi affermare che

esistono due indici
$$r, s$$
 con $0 \le r < s \le n$ tali che $q_{i_r} = q_{i_s}$.

Cioe' lo stato in cui arriva l'automa leggendo il prefisso di z di lunghezza r (leggendo cioe' z_r) e' esattamente lo stesso stato a cui arriva l'automa leggendo il prefisso di z di lunghezza s (leggendo cioe' z_s) cioe' ancora

$$\overline{\delta}(q_0, z_r) = q_{i_r} = q_{i_s} = \overline{\delta}(q_0, z_s)$$
 (*).

Poniamo $u = z_r$ $uv = z_s$ uvw = z

Chiaramente $|uv| = |z_s| = s \le n$ e

$$|v| \ge 1$$
 (perche' $|u| = |z_r| = r < s = |z_s| = |uv|$).

Inoltre $uv^iw \in L$ per ogni $i \geq 0$. Per induzione su i.

Passo Base: i = 0.

$$\overline{\delta}(q_o, uv^0w) = \overline{\delta}(q_o, u\epsilon w) = \overline{\delta}(\overline{q}_o, uw) = \overline{\delta}(\overline{\delta}(q_o, u), w) = \overline{\delta}(\overline{\delta}(\overline{q}_o, z_r), w) = (\text{per la } (*)) = \overline{\delta}(\overline{\delta}(q_o, z_s), w) = \overline{\delta}(\overline{\delta}(q_o, uv), w) = \overline{\delta}(q_o, uvw) = \overline{\delta}(q_o, z) \in F$$

cioe' $uv^0w = uw \in L$.

Passo Induttivo: sia i > 0.

Per ipotesi induttiva $uv^{i-1}w \in L$ cioe' $\overline{\delta}(q_o, uv^{i-1}w) \in F$. Allora

$$\overline{\delta}(q_o,uv^iw) = \overline{\delta}(q_o,uvv^{i-1}w) = \overline{\delta}(\overline{\delta}(q_o,uv),v^{i-1}w) = \overline{\delta}(\overline{\delta}(q_o,z_s),v^{i-1}w) = (\text{per la }(*)) = \overline{\delta}(\overline{\delta}(q_o,z_r),v^{i-1}w) = \overline{\delta}(\overline{\delta}(q_o,u),v^{i-1}w) = \overline{\delta}(q_o,uv^{i-1}w) \in F$$

cioe'
$$uv^iw \in L$$
.