Правила коммутации

И.И.Кравченко

Заметки по олимпфизу physfor.github.io

При решении задач с *коммутациями* — замыканиями и размыканиями ключей — удобно пользоваться следующими правилами.

Правило коммутации для конденсатора. Напряжение на конденсаторе не может измениться скачком.

Правило коммутации для катушки. Ток через катушку не может измениться скачком.

Почитайте эту литературу (там есть про доказательство и условия применимости этих правил):

- Jaan Kalda. Учебные пособия для IPhO. Электрические цепи, с. 17. https://www.ioc.ee/~kalda/ipho/electricity-circuits.pdf.
- В. В. Можаев. Конденсаторы в цепях постоянного тока. «Квант», 2000, N = 5.
- А. Р. Зильберман. Явление самоиндукции. «Квант», 1990, № 6.

Решите следующую задачу с использованием правила коммутации.

Задача. (См. Всеросс., 2025, ШЭ, 11) В электрической цепи долгое время ключ не замкнут (см. рис.). Конденсатор ёмкостью C_1 не заряжен. В некоторый момент ключ замыкают. Какой окажется сила тока, протекающего через источник питания, сразу после замыкания ключа? Величины, указанные на схеме считайте известными.

Указание: напомним, что в установившемся режиме постоянный(!) ток через конденсатор равен нулю.

0

Больше задач по физике \rightarrow https://mathus.ru/phys/.