COSC 222 Data Structures

Algorithm Analysis

Efficiency

- Measure of efficiency is needed to compare one algorithm to another (assuming that both algorithms are correct and produce the same answers)
- Suggest some ways of how to measure efficiency
 - Time (How long does it take to run?)
 - Space (How much memory does it take?)
 - Other attributes?
 - Expensive operations, e.g. I/O
 - Energy, Power
 - Ease of programming, legal issues, etc.

Analyzing Runtime

```
old2 = 1;
old1 = 1;
results = 0;
for (i=3; i<n; i++) {
    result = old2+old1;
    old1 = old2;
    old2 = result;
}</pre>
```

How long does this take?

Analyzing Runtime

A simple mechanism: currentTimeMillis method of the System class

```
long startTime = System.currentTimeMillis(); // record the starting time
/* (run the algorithm) */
long endTime = System.currentTimeMillis(); // record the ending time
```

 Limitation: the measured times will vary greatly from machine to machine

long elapsed = endTime - startTime; // compute the elapsed time

Example

Two algorithms for constructing long strings in Java

```
/** Uses repeated concatenation to compose a String with n
copies of character c. */
 public static String repeat1(char c, int n) {
String answer = "";
 for (int j=0; j < n; j++)
    answer += c;
 return answer;
/** Uses StringBuilder to compose a String with n copies of
character c. */
public static String repeat2(char c, int n) {
 StringBuilder sb = new StringBuilder( );
 for (int j=0; j < n; j++)
    sb.append(c);
 return sb.toString( );
```

Example

- repeat1 is already taking more than 3 days to compose a string of 12.8 million characters, repeat2 is able to do the same in a fraction of a second
- As the value of n is doubled, the running time of repeat1 typically increases more than fourfold, while the running time of repeat2 approximately doubles

n	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
1,600,000	2,874,968	13
3,200,000	12,809,631	28
6,400,000	59,594,275	58
12,800,000	265,696,421	135

Limitations of Experiments

- While experimental studies of running times are valuable, there are three major limitations to their use for algorithm analysis:
 - It is necessary to **implement** the algorithm, which may be difficult
 - Experiments can be done only on a limited set of test inputs;
 hence, they leave out the running times of inputs not included in the experiment
 - In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Evaluate the efficiency of an algorithm independent of the hardware/software environment
- Uses a high-level description of the algorithm instead of an implementation
- Takes into account all possible inputs

Theoretical Analysis

• In order to analyze the time complexity of an algorithm:

- Consider the **worst-case** scenario
- Count the **number of operations**
- Express the number as a function of input size n

Number of Operations

- What is meant by "number of operations"?
 - Assigning a value to a variable
 - Following an object reference
 - Performing an arithmetic operation (for example, adding two numbers)
 - Comparing two numbers
 - Accessing a single element of an array by index
 - Calling a method
 - Returning from a method

Analyzing Runtime

- Running time is a function of n such as T(n)
- This is really nice because the runtime analysis doesn't depend on hardware or subjective conditions anymore

Input Size

- What is meant by the input size n? Provide some applicationspecific examples.
- Dictionary:
 - # words
- Restaurant:
 - # customers or # food choices or # employees
- Airline:
 - # flights or # luggage or # costumers
- We want to express the number of operations performed as a function of the input size n.

The Constant Function

 The simplest function we can think of is the constant function, that is,

$$f(n) = c$$

- For any argument n, the constant function f(n) assigns the value c.
- In other words, f(n) will always be equal to the constant value c.

The Logarithm Function

 One of the interesting and sometimes even surprising aspects of the analysis of data structures and algorithms is the ubiquitous presence of the *logarithm function*,

$$f(n) = \log_b n$$
, for some constant $b > 1$.

- The value *b* is known as the *base* of the logarithm.
- This base is common, we will typically omit it from the notation when it is 2. That is, for us,

$$\log n = \log_2 n$$
.

Logarithm Rules

• Given real numbers a > 0, b > 1, c > 0, and d > 1, we have:

- 1. $\log_b(ac) = \log_b a + \log_b c$
- 2. $\log_b(a/c) = \log_b a \log_b c$
- 3. $\log_b(a^c) = c \log_b a$
- 4. $\log_b a = \log_d a / \log_d b$
- 5. $b^{\log_d a} = a^{\log_d b}$

The Linear Function

Another simple yet important function is the *linear function*,

$$f(n) = n$$
.

■ That is, given an input value *n*, the linear function *f* assigns the value *n* itself.

The N-Log-N Function

 The function that assigns to an input n the value of n times the logarithm base-two of n

$$f(n) = n \log n$$
,

 This function grows a little more rapidly than the linear function and a lot less rapidly than the quadratic function

The Quadratic Function

 Given an input value n, the function f assigns the product of n with itself

$$f(n) = n^2$$

- There are many algorithms that have nested loops
 - the inner loop performs a linear number of operations
 - the outer loop is performed a linear number of times
 - Thus, the algorithm performs $n \cdot n = n^2$ operations.

The Cubic Function

■ An input value *n* the product of *n* with itself three times

$$f(n) = n^3$$

 The cubic function appears less frequently in the context of algorithm analysis than the constant, linear, and quadratic functions

Polynomials

- The linear, quadratic and cubic functions can each be viewed as being part of a larger class of functions, the *polynomials*.
- A polynomial function has the form

$$f(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3 + \dots + a_d n^d$$

where a_0, a_1, \ldots, a_d are constants, called the **coefficients** of the polynomial.

• The following functions are all polynomials:

$$f(n) = 2+5n+n^{2}$$

 $f(n) = 1+n^{3}$
 $f(n) = 1$
 $f(n) = n$
 $f(n) = n^{2}$

The Exponential Function

 Another function used in the analysis of algorithms is the exponential function,

$$f(n) = b^n$$
,

where *b* is a positive constant, called the *base*, and the argument *n* is the *exponent*.

Comparing Growth Rates

The seven common functions used in algorithm analysis

constant	logarithm	linear	n-log-n	quadratic	cubic	exponential
1	$\log n$	n	$n \log n$	n^2	n^3	a^n

10

Asymptotic Analysis

- We focus on the growth rate of the running time as a function of the input size n
- This approach reflects that each basic step in a pseudocode description or a high-level language implementation may correspond to a small number of primitive operations
 - without capturing so many details
 - without worrying about what happens for small inputs

The "Big-Oh" Notation

- Let f(n) and g(n) be functions mapping positive integers to positive real numbers.
- We say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that

$$f(n) \le c \cdot g(n)$$
, for $n \ge n_0$.

■ This definition is often referred to as the "big-Oh" notation, for it is sometimes pronounced as "f(n) is **big-Oh** of g(n)."

Prove $n \log n \in O(n^2)$

- We say f (n) is O(g(n)) if we can find f (n) \leq c \cdot g(n), for n \geq n₀.
- $f(n) = n \log n$, $O(g(n)) = O(n^2)$
- Guess or figure out values of c and n₀ that will work.

$$n \log n \le cn^2$$

 $\log n \le cn$

■ This is fairly trivial: log n <= n (for n>1) c=1 and n0 = 1 works!

The "Big-Oh" Notation

- Example: 2n + 10 is O(n)
 - $-2n + 10 \le cn$
 - (c-2) *n* ≥ 10
 - $n \ge 10/(c 2)$
 - Pick c = 3 and $n_0 = 10$
- Example: the function n^2 is not O(n)
 - n^2 ≤ cn
 - $-n \leq c$
 - The above inequality cannot be satisfied since *c* must be a constant

Try it Activity

- Prove $T(n) = n^3 + 20n + 1 \in O(n^3)$
 - n^3 + 20n +1 ≤ cn^3 for $n > n_0$
 - $-1 + 20/n^2 + 1/n^3 \le c$

holds for c=22 and $n_0 = 1$

- Prove $T(n) = n^3 + 20n + 1 \in O(n^4)$
 - $n^3 + 20 n + 1 \le cn^4 \text{ for } n > n_0$
 - $-1/n + 20/n^3 + 1/n^4 \le c$

holds for c=22 and $n_0=1$

- Prove $T(n) = n^3 + 20 n + 1 \in O(n^2)$
 - $n^3 + 20 n + 1 \le cn^2 \text{ for } n > n_0$
 - $n + 20/n + 1/n^2 \le c$

You cannot find such c or n0

Asymptotic Analysis Hacks

- Eliminate low order terms
 - $-4n + 5 \Rightarrow 4n$
 - 0.5 n log n 2n + 7 \Rightarrow 0.5 n log n
 - $-2^{n} + n^{3} + 3n \Rightarrow 2^{n}$
- Eliminate coefficients
 - $-4n \Rightarrow n$
 - $0.5 \text{ n log n} \Rightarrow \text{n log n}$
 - $n \log (n^2) = 2 n \log n \Rightarrow n \log n$

Typical Growth Rates in Order

- constant: O(1)
- logarithmic: $O(\log n)$ ($\log_k n$, $\log n^2 \in O(\log n)$)
- poly-log: $O(log^k n) (= O(log n)^k, k is a constant > 1)$
- Sub-linear: $O(n^c)$ (c is a constant, 0 < c < 1)
- linear: O(n)
- (log-linear): O(n log n) (usually called "n log n")
- (superlinear): $O(n^{1+c})$ (c is a constant, 0 < c < 1)
- quadratic: O(n²)
- cubic: O(n³)
- polynomial: O(n^k) (k is a constant)
- exponential: O(cⁿ) (c is a constant > 1)

Which One is faster?

Post #1

 $n^3 + 2n^2$

■ n^{0.1}

 $n + 100n^{0.1}$

Post #2

 $100n^2 + 1000$

log n

 $2n + 10 \log n$

Note that faster means smaller, not larger!

Case 1

Case 2

Sub-linear: $O(n^c)$ (c is a constant, 0 < c < 1)

logarithmic: O(log n)

Case 3

O(...) Examples

```
Let f(n) = 3n<sup>2</sup> + 6n - 7
- f(n) is O(n<sup>2</sup>)
- f(n) is O(n<sup>3</sup>)
- f(n) is O(n<sup>4</sup>)
- ...

f(n) = 4 n log n + 34 n - 89
- f(n) is O(n log n)
- f(n) is O(n<sup>2</sup>)
```

• If it's O(n²), it's also O(n³) etc! However, we always use the smallest one

```
for (int count = 0; count < n; count++)
     /* some sequence of O(1) steps */
 }
for (int count = 0; count < n; count+=2)
     /* some sequence of O(1) steps */
 }
```

```
count = 1
while (count < n)
count *= 2;
/* some sequence of O(1) steps */
count = 1, 2, 4, 8, 16, 32, ...
 = 2^0, 2^1, 2^2, ... 2^k
n = 2^k
or, k = log n
```



```
for (int count = 0; count < n; count++)
{
    for (int count2 = 0; count2 < n; count2++)
    {
        /* some sequence of O(1) steps */
    }
}</pre>
```

```
for (int count = 0; count < n; count++)
{
    for (int count2 = count; count2 < n; count2++)
    {
        /* some sequence of O(1) steps */
    }
}</pre>
```

```
Algorithm 1

Algorithm 2

int x = 0;

int y = 0;

for (int i=0; i<n; i++) {

  for (int j=0; j<n; j++) {

    x += 2;

    x += 2;

    y += x*2;

  }

Algorithm 2

int x = 0;

int y = 0;

for (int i=0; i<n; i++)

    x += 2;

for (int j=0; j<n; j++)

  y += 2*j;

}
```

```
Algorithm 1

Algorithm 2

int x = 0;

int y = 0;

for (int i=0; i<n; i++) {

  for (int j=0; j<n; j++) {

    x += 2;

    x += 2;

    y += x*2;

  }

Algorithm 2

int x = 0;

int y = 0;

for (int i=0; i<n; i++)

    x += 2;

for (int j=0; j<n; j++)

    y += 2*j;

}
```

Algorithm 2 is asymptotically **faster** than Algorithm 1.

Relatives of Big-Oh

big-Omega

• f(n) is Ω (g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that

$$f(n) \ge c g(n)$$
 for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that

$$c'g(n) \le f(n) \le c''g(n)$$
 for $n \ge n_0$

Questions?