주체106(2017)년 제63권 제8호

JOURNAL OF KIM IL SUNG UNIVERSITY

(NATURAL SCIENCE)

Vol. 63 No. 8 JUCHE106(2017).

방사형전력망에서 도중손실을 최소화하기 위한 전력공급구역분할방법

과남일, 박경일

선행연구[1-3]에서는 무게보로노이도에 기초한 새로운 변전소의 위치결정과 공급구역 분할에 관한 문제를 제기하였지만 배전선로에서 손실전력을 최소화하기 위한 합리적인 무 게결정모형과 방법에 대하여서는 제기하지 못하였다.

우리는 방사형전력망에서 변전소의 능력과 부하지점들의 수요특성을 고려한 무게를 결정하고 그것에 기초하여 선로에서 손실전력이 최소로 되도록 공급구역을 분할하기 위한 문제를 무게보로노이도를 고려한 비선형최량계획문제로 모형화하고 연구하였다.

1. 변전소들이 전력공급구역분할문제

변압기의 용량이 s_i , 력률이 $\cos \varphi_i$, 부하률이 γ_i 인 변전소 p_i 가 m개 있고 요구전력량이 β_j 인 부하대상 x_j 가 n개 있으며 변전소모임을 M, 부하대상모임을 N이라고 할 때 i째 변전소의 일반무게보로노이도 $V(p_i,w_i)$ 는 전력공급구역을 표시하는 량으로서 다음과 같이 정의된다.

 $V(p_i,w_i) = \{x_j \in V(p_i,w_i), j \in N \,|\, w_i l_{ij}(p_i,x_j) \leq w_k l_{kj}(p_k,x_j), \, k \in M \,\setminus \{i\}\}, \, i \in M$ 여기서 $l_{ij}(p_i,x_j)$ 는 i째 변전소와 j째 부하대상사이의 유클리드거리, w_i 는 i째 변전소의 무게인데 이것을 어떻게 정의하는가에 따라 무게보로노이도에 의하여 생성되는 전력공급구역의 분할이 달라진다. 그러므로 i째 변전소의 무게를 다음과 같이 선정하였다.

$$w_i = \frac{v_i}{s_i \gamma_i \cos \varphi_i} = \frac{\sum_{j=1}^{n} (\zeta_{ij} - r_{ij} \zeta_{ij}^2)}{s_i \gamma_i \cos \varphi_i}$$

여기서 v_i 는 변압기와 련결된 부하대상들의 요구전력량, ζ_{ij} 는 i째 변전소에서 j째 부하대상에로의 전력공급량, $r_{ij}=\frac{r_0}{U^2\cos^2\varphi_i}l_{ij}$ 로서 i째 변전소에서 j째 부하대상까지의 손실곁수, U는 평균전압, r_0 은 도선의 단위저항이다.

이로부터 전력공급량 ζ_{ii} 가 변하면 무게도 변하게 된다.

목적함수는 $\min_{i\in M}\{w_i\}\Rightarrow\max$ 즉 모든 변전소들의 무게값이 고르롭게 되도록 공급구역을 결정하는데 있다.

i째 변전소에서 선로를 통하여 j째 부하대상에 공급된 전력량중에서 도달한 전력량을 ξ_{ij} 라고 하면 $\xi_{ij}=\zeta_{ij}-r_{ij}\zeta_{ij}^2$ 이다. 이로부터 $\zeta_{ij}=\frac{1-\sqrt{1-4r_{ij}\xi_{ij}}}{2r_{ij}}$ 이다.

방사형전력망에서 변전소들의 변압기용량과 그에 련결된 부하들의 요구전력량사이의 균형특성을 반영한 전력공급구역분할문제는 우선 무게보로노이도를 고려한 비선형계획법문 제로서 다음과 같다.

$$\sum_{j=1}^{n} \theta_{ij} \xi_{ij} \leq \alpha_{i},$$

$$\sum_{i=1}^{m} \xi_{ij} \geq \beta_{j},$$

$$\xi_{ij} \geq 0,$$

$$\min_{1 \leq i \leq m} \left\{ \sum_{j=1}^{n} \xi_{ij} / \alpha_{i} \right\} \Rightarrow \max$$
(1)

여기서 α_i 는 i째 변전소 변압기의 출력인데 $\alpha_i = s_i \gamma_i \cos \varphi_i$, θ_{ij} 는 i째 변전소에서 j째 부하지점에로의 도중손실을 고려한 곁수인데 $\theta_{ij} = \begin{cases} (1-\sqrt{1-4r_{ij}\xi_{ij}})/(2r_{ij}\xi_{ij});\ 0<\xi_{ij}\leq 1/4r_{ij}\ \text{olf.}\ 1 \end{cases}$ 리고 첫번째 제한은 i째 변전소에서 부하대상들에 공급되는 전력량은 자기의 능력보다 클수 없다는것이며 두번째 제한은 j째 부하대상에 도달하는 전력량은 자기의 요구량보다 작을수 없다는것이다.

또한 보조변수선형계획법문제로서 다음과 같다.

$$\sum_{j=1}^{n} \theta_{ij} \xi_{ij} \leq \alpha_{i},$$

$$\sum_{j=1}^{m} \xi_{ij} \geq \beta_{j},$$

$$\sum_{i=1}^{n} \xi_{ij} - \alpha_{i} \omega \geq 0,$$

$$\xi_{ij} \geq 0,$$

$$\omega \Rightarrow \max$$
(2)

이 문제의 허용구역은 빈모임이 아니며 최량풀이는 반드시 존재한다. 만일 허용구역이 빈모임이면 부하지점들의 요구량들을 다시 조절해야 한다.

2. 배전선로에서 손실전력을 최소화하기 위한 전력분배와 응용

식 (1)의 최량풀이에 의하여 i째 변전소의 무게보로노이도 $V(w_i)$ 는 다음과 같이 결정된다.

$$V(w_i) = \{ j \in N \mid \xi_{ii} > 0 \}, \ i \in M$$

편의상 $V(w_i)$ 를 V_i 로 표시하면 $\left|\bigcup_{i\in M}V_i\right|=m+n-1$ 이므로 방사형망의 선로들에서 손실전력을 줄이기 위한 전력분배문제는 다음과 같다.

$$\sum_{j \in V_{i}} \xi_{ij} \leq \alpha_{i},$$

$$\sum_{j \in V_{i}} \xi_{ij} = \beta_{j}, \quad j = \overline{1, n}$$

$$\xi_{ij} \geq 0,$$

$$\sum_{i=1}^{m} \sum_{j \in V_{i}} r_{ij} \xi_{ij}^{2} \Rightarrow \min$$
(3)

식 (3)의 최량풀이를 $x^* = \xi_{ij}^*$ 라고 하면 방사형망에서 선로의 손실전력을 최소화하기 위한 전력공급량분배문제의 최량풀이는 $\zeta_{ij}^* = \begin{cases} (1-\sqrt{1-4r_{ij}\xi_{ij}^*})/(2r_{ij});\ 0<\xi_{ij}^* \le 1/(4r_{ij})\ \text{이다.} \\ 0 ; 기타 \end{cases}$

우리는 기지역의 전력망실태를 분석하고 우의 방법에 기초하여 변전소들의 전력공급 구역을 분할하였다. 기지역의 전력망은 현재 11개의 변전소와 507개의 부하지점으로 구성 되여있으며 나무가지형을 이루고있다. 선로에서 도중손실률을 보면 표 1과 같다.

No.	변전소명	등가저항	평균전력공급반경/km	도중손실률/%		
1	७변전소	0.400	6.69	25.70		
2	ㅁ변전소	1.232	6.94	11.48		
3	ㅇ2변전소	0.415	5.11	19.1		
4	ㄹ변전소	0.838	8.87	19.60		
5	ㅅㅎ변전소	0.678	6.06	17.75		
6	ㅈ1변전소	0.159	5.15	14.71		
7	ㅈ2변전소	0.334	1.72	13.63		
8	ㄱㅅ변전소	1.316	5.90	20.61		
9	ㅅㅇ변전소	0.450	8.23	12.21		
10	┖ㅈ변전소	0.206	3.90	15.14		
11	ㅇ1변전소	0.129	3.29	12.21		

표 1. 선로에서의 도중손실률

표 1에서 보는바와 같이 ㄱㅅ변전소와 ㄱ변전소의 선로도중손실률은 20%이상이며 지역적인 현존평균손실률은 16.56%로서 비교적 크다.

우의 방법으로 방사형전력망을 구성하고 선로도중손실률을 계산한 결과는 표 2와 같다.

표 2. 제도 무용한 6사용한국용에서의 전도고용근물을						
No.	변전소명	공급능력/kw	평균전력공급반경/km	도중손실률/%		
1	7 변전소	5 600	2.26	13.3		
2	ㅁ변전소	1 000	1.56	11.5		
3	ㅇ2변전소	4 000	3.69	13.0		
4	ㄹ변전소	1 000	3.89	14.0		
5	人言변전소	1 000	4.01	12.1		
6	ㅈ1변전소	2 000	4.74	12.7		
7	ㅈ2변전소	2 000	3.13	12.0		
8	ㄱㅅ변전소	2 700	5.15	12.7		
9	ㅅㅇ변전소	3 200	3.97	12.7		
10	Гㅈ변전소	1 000	3.33	12.1		
11	ㅇ1변전소	1 500	4.29	15.2		

표 2. 새로 구성한 방사형전력망에서의 선로도중손실률

표 2에서 보는바와 같이 새로 구성한 방사형전력망에서는 선로도중손실률이 15%이하이며 지역적인 평균선로손실률은 12.85%로서 현존망에서보다 3.7%정도 더 줄일수 있다.

그리고 지역적인 평균전력공급반경이 3.64km로서 현존망에서보다 1.89km정도 줄일수 있다. 계산결과 지역내에서 변전소들의 능력과 부하대상들의 수요량사이의 균형을 보장하면서도 선로도중손실을 줄일수 있게 되였다.

맺 는 말

전력망에서 선로도중손실을 줄이기 위한 방도의 하나는 변전소의 전력공급구역을 합리적으로 분할하는것인데 그것은 무게보로노이도를 고려한 비선형최량계획문제로 모형화한다.

참 고 문 헌

- [1] Tian Song et al.; International Journal of Computer and Information Technology, 3, 4, 737, 2014.
- [2] 路志英 等; 中国电机工程学报, 29, 16, 35, 2009.
- [3] 唐小波 等; 电力系统保护与控制, 43, 19, 83, 2015.

주체106(2017)년 4월 5일 원고접수

On the Electric Power Supply Area Division Method to Minimize Power Loss in the Radiation-Type Electric Power Network

Kwak Nam Il, Pak Kyong Il

We decide the weight considered the capacity of substation and the demand of loads in the radiation-type electric power network, model the problem of supply area division for minimizing the electric power loss of line as a problem of nonlinear optimal program considering the weighted Voronoi diagrams and solve it.

Key words: electric power, substation