Correction exercice 4 - fiche TD Groupes

a)

Les fonctions $f_1(x) = x$, $f_2(x) = 1 - x$, $f_3(x) = \frac{1}{x}$ sont des bijections de $E = \mathbb{R} \setminus \{0,1\}$ dans lui-même.

Détails de la démonstration pour $f_2(x) = 1 - x$

Injectivité : on suppose x et x' ont la même image

$$1 - x = 1 - x'$$

donc x = x' et la fonction est injective

Surjectivité : on prend y dans $E = \mathbb{R} - \{0, 1\}$, est-ce que y a un antécédent par f_2 ?

$$y = 1 - x \iff x = 1 - y$$

Cas particuliers x = 1 et x = 0 mais $f_2(1) = 0$ et $f_2(0) = 1$ donc ces 2 valeurs sont exclues de l'espace de départ et de celui d'arrivée.

Autre manière de démontrer : analyse "classique". On calcule la dérivée, on montre qu'elle est strictement négative ou positive sur l'intervalle de définition, on calcule les limites aux bornes du domaine et on en déduit que f_2 bijection.

 $f_2'(x) = -1 < 0$ donc f_2 strictement décroissante.

 $\lim_{-\infty} = +\infty$, $\lim_{-\infty} = +\infty$. Donc tout \mathbb{R} est parcouru si on part de \mathbb{R} . On a exclu 0 et 1 donc on va bien de E dans E puisqu'on a vu ci-dessus que $f_2(1) = 0$ et $f_2(0) = 1$.

On en conclut que $f_4(x) = \frac{1}{1-x} = f_3 \circ f_2(x)$, $f_5(x) = 1 - \frac{1}{x} = f_2 \circ f_3(x)$ et $f_6 = \frac{x}{x-1} = \frac{1}{1-\frac{1}{x}} = f_3 \circ f_5(x)$ le sont également par composition.

Table de l'opération (lue de gauche à droite):

	. 1			``		O
0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_1	f_2	f_3	f_4	f_5	f_6
f_2	f_2	f_1	f_5	f_6	f_3	$ f_4 $
f_3	f_3	f_4	f_1	f_2	f_6	$ f_5 $
f_4	f_4	f_3	f_6	f_5		f_2
f_5	f_5	f_6	f_2	f_1	f_4	$ f_3 $
f_6	f_6		f_4	f_3	f_2	$ f_1 $
c)						

Montrer que $F = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ est un groupe pour \circ :

- F est stable sous \circ - associativité: propriété générale de la composée de fonctions - neutre: c'est la fonction identité f_1 - symétriques: on le voit dans la table $f_1^{-1}=f_1$, $f_2^{-1}=f_2$, $f_3^{-1}=f_3$, $f_4^{-1}=f_5$, $f_5^{-1}=f_4$, $f_6^{-1}=f_6$

À partir de la table on voit les sous-groupes:

ordre 1 —
$$\{f_1\}$$

ordre 2 — $\{f_1, f_2\}$, $\{f_1, f_3\}$ $\{f_1, f_6\}$
ordre 3 — $\{f_1, f_4, f_5\}$

Isomorphisme avec S_3 : avec un petit abus de notation on peut considérer que ces 6 fonctions permutent $0, 1, \infty$ entre eux, ex. pour f_4 :

$$f_4(0) = 1, f_4(1) = \infty, f_4(\infty) = 0$$

donc f_4 correspond à la permutation $(0, 1, \infty)$ dans $S_{\{0,1,\infty\}}$.

La fonction $\varphi: F \to S_{\{0,1,\infty\}}$ qui associe à chaque fonction f la permutation σ associée est un isomorphisme. Explicitement:

$$f_1 \longleftrightarrow id$$

$$f_2 \longleftrightarrow (0, 1)$$

$$f_3 \longleftrightarrow (0, \infty)$$

$$f_4 \longleftrightarrow (0, 1, \infty)$$

$$f_5 \longleftrightarrow (0, \infty, 1)$$

$$f_6 \longleftrightarrow (1, \infty)$$

ce qui est cohérent avec tous les calculs ci-dessus.