Examples On Asymptotic Notation

We know that Big D is defined as:

· We will give here some examples on how to find the constants 'C' and 'no'

Example 1:

100 n + 5 1

Here we can easily see that 100n +5 is 0[n²)

because

$$100n + 5 \le 100n + n for n 7.5$$

$$= 101 n$$

$$\le 101 n^{2}$$

: 100n +5 is O(n2) for no=5, c=101

A150,

: 100n+5 is 0(n2) for no=1, C=105

Here it is important to note that Big O gives the upper bound, so 100n+5 is 0(n²) is correct, but we can tighten the upper bound, as:

$$100n + 5 \le 100n + n$$
 for $n7, 5$

$$= 101n$$
i.e. $100n + 5 \le 101n$ for $n7, 5$

$$\therefore 100n + 5$$
 is $O(n)$ for $n_0 = 5$, $C = 101$.

Example 2.

$$100 n^2 + 20n + 5$$
 is $O(n^2)$

Here $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, $n = 125n^2$

50
$$100n^2 + 20n + 5$$
 is $0(n^2)$ for $n_0 = 1$
 $C = 125$

Alternatively,

$$100n^2 + 20n + 5 \le 100n^2 + n^2 + n^2$$
 for $n > 20$

$$= 102n^2$$

50,
$$100n^2 + 20n + 5$$
 is $O(n^2)$
for $n_0 = 20$, $C = 102$

Enample 3

3n3-20n2+5

hle see that

$$3n^3 - 20n^2 + 5 \le 3n^3 + 5$$

 $\le 3n^3 + n^3$ for $n > 5$
 $= 4n^3$

So,
$$3n^3 - 20n^2 + 5$$
 is $0(n^3)$
for $n_0 = 5$
 $c = 4$

$$\Omega(g(n)) = \begin{cases} f(n) : \exists positive constants c \\ and no such that $f(n) \leq cg(n) \\ \forall n > no \end{cases}$$$

· We give here some examples on how to find the constants c' and 'no'

Example 1

Here

Example 2

$$100 n^2 + 20n + 5$$
 is $\Omega(n^2)$

Here,

50,
$$100n^2 + 20n + 5$$
 is $\Omega(n)$ for $n_0 = 1$

Enample 3 3n3-20n°+5

We see that

$$3n^3 - 20n^2 + 5 \gg 3n^3 - 20n^2$$

 $\gg 3n^3 - n^3$ for $n \gg 20$
= $2n^3$

So,
$$3n^3 - 20n^2 + 5$$
 is $\Omega(n^3)$ for $n_0 = 20$
 $C = 2$

Big D is defined as

G(g(n)) = {f(n): I positive constants C, and C2 and no such that 0 = C,g(n) = f(n) = C2g(n) + n>no?

· We give here some enamples

Example 1.

20

and 100n+5 \$ 100n for n >> 5

100n & 100n+5 & 101 n for no 5

Example 2 100 n²+20n+5

> $100n^2 + 20n + 5 \le 102 n^2$ for $n \ge 20$ $100n^2 + 20n + 5 > 100 n^2$ for n > 1

50, $100n^2 \neq 100n^2 + 20n + 5 \neq 102n^2$ for $n^2, 20$ i.e. $C_1 = 100$, $C_2 = 102$, $N_0 = 20$

Enample 3

Here

$$3n^3 - 20n^2 + 5 \le 4n^3$$
 for $n7.5$
 $3n^3 - 20n^2 + 5 > 2n^3$ for $n7.20$

80

$$2n^{3} \leq 3n^{3} - 20n^{2} + 5 \leq 4n^{3}$$
 for $n > 120$
i.e. $c_{1} = 2$, $c_{2} = 4$, $n_{0} = 20$