Let $\pi \in S_n$ be a permutation. Define $D(\pi) = |\{1 \le i < n \mid \pi(i+1) < \pi(i)\}|$ to be the number of descents in π . Viewing D_n as a random variable on uniformly distributed permutations, a central limit theorem is known and we establish a local limit theorem.

As another way of viewing a permutation π , consider a sequence a_1, \ldots, a_n with $1 \le a_i \le n - i + 1$. To get a permutation π from such a sequence, start with $S = \{1, \ldots, n\}$. For $i = 1, \ldots, n$, let b_i be the a_i th remaining element of S, let $\pi(i) = b_i$, and remove b_i from S. Then $\pi(i+i) < \pi(i)$ if and only if $a_{i+1} < a_i$, so the problem of counting descents in π is equivalent to the problem of counting descents in $\{a_i\}$. This is nice since the a_i are distributed independently.

Now, define the random variable X_i for $1 \le i < n$ as the indicator for the *i*th potential descent, that is, 1 if $a_{i+1} < a_i$ and 0 otherwise. We can write $D_n = X_1 + \ldots + X_n$. Since X_i depends only on a_i and a_{i+1} , X_i is independent of all other X_j except for X_{i-1} and X_{i+1} . We calculate

$$\mathbb{P}(X_i = 1 \mid X_{i-1} = 1, X_{i+1} = 1) = 1/6$$

$$\mathbb{P}(X_i = 1 \mid X_{i-1} = 1, X_{i+1} = 0) = 1/2$$

$$\mathbb{P}(X_i = 1 \mid X_{i-1} = 0, X_{i+1} = 1) = 1/2$$

$$\mathbb{P}(X_i = 1 \mid X_{i-1} = 0, X_{i+1} = 0) = 5/6.$$

To bound the characteristic function of D_n , we first fix the values of X_i for odd i. For simplicity, assume n is even. (When n is odd, one must also observe that $\mathbb{P}(X_i = 1 \mid X_{i-1} = 1) = 1/3$ and $\mathbb{P}(X_i = 1 \mid X_{i-1} = 0) = 2/3$ are constant.) The even X_i are independent of each other, so conditioned on the odd X_i , D_n is a sum of independent random variables. The values of the odd X_i can be viewed as a binary string, and since the distribution of the even X_i depend only on the adjacent odd X_{i-1} and X_{i+1} , the distribution of the sum of the even X_i depends entirely on the number of occurrences of each length 2 substring in the binary string.

Write N_{11} for the number of substrings 11, N_{10} for the number of substrings 10, and the same for N_{01} and N_{00} . Let $B_i^{(p)}$ denote an independent Bernoulli random variable with expectation p. We compute

$$|\phi_{n}(t)| = \left| \mathbb{E} \left[e^{itD_{n}/\sigma} \right] \right| = \left| \mathbb{E} \left[\exp \left(it \left(\sum_{j=1}^{N_{11}} B_{j}^{(\frac{1}{6})} + \sum_{j=1}^{N_{10}} B_{j}^{(\frac{1}{2})} + \sum_{j=1}^{N_{01}} B_{j}^{(\frac{1}{2})} + \sum_{j=1}^{N_{00}} B_{j}^{(\frac{5}{6})} \right) / \sigma \right) \right] \right|$$

$$= \left| \mathbb{E} \left[e^{it \sum_{j=1}^{N_{11}} B_{j}^{(\frac{1}{6})} / \sigma} \right] \mathbb{E} \left[e^{it \sum_{j=1}^{N_{10}} B_{j}^{(\frac{1}{2})} / \sigma} \right] \mathbb{E} \left[e^{it \sum_{j=1}^{N_{01}} B_{j}^{(\frac{1}{2})} / \sigma} \right] \mathbb{E} \left[e^{it \sum_{j=1}^{N_{00}} B_{j}^{(\frac{5}{6})} / \sigma} \right] \right|$$

Using an argument similar to that of Gilmer-Kopparty [1], we bound each expectation separately.

$$\left| \mathbb{E} \left[e^{it \sum_{j=1}^{N} B_{j}^{(p)}/\sigma} \right] \right| = \left| \prod_{j=1}^{N} \mathbb{E} \left[e^{it B_{j}^{(p)}/\sigma} \right] \right|$$

$$\leq \left(1 - 8p(1-p) \left\| \frac{t}{2\pi\sigma_{n}} \right\|^{2} \right)^{N}$$

$$= \left(1 - 8p(1-p) \left(\frac{t}{2\pi\sigma_{n}} \right)^{2} \right)^{N} \quad \text{(when } t < \pi\sigma_{n}\text{)}$$

$$\leq \left(1 - C \left(\frac{t}{2\pi\sigma_{n}} \right)^{2} \right)^{N} \quad \text{(taking } C = \min \{8p(1-p)\} = 80/9\text{)}$$

Since $N_{11} + N_{10} + N_{01} + N_{00} = \frac{n}{2} - 1$, we get

$$|\phi_n(t)| \le \left(1 - C\left(\frac{t}{2\pi\sigma_n}\right)^2\right)^{(\frac{n}{2}-1)}$$
$$= \left(1 - \Theta(t^2/n)\right)^{(\frac{n}{2}-1)}$$
$$\le e^{-\Theta(t^2)}.$$

Now we obtain the final bound for the local limit theorem. As shown in [2], we have a central limit theorem

 $\sup_{-\infty < x < \infty} \left| \mathbb{P}(\frac{D_n - \mu}{\sigma} < t) - \mathbb{P}(Z < t) \right| \le \frac{12}{\sqrt{n}}$

For y<0, $P(D_n-\mu\leq y\sigma)=\frac{1}{2}P(|D_n-\mu|\geq |y|\sigma)\leq \frac{1}{2y^2}$ by Chebyshev's Inequality. Similarly, $P(D_n-\mu\leq y\sigma)\leq \frac{1}{2y^2}$. Thus

$$\left| \mathbb{P}(\frac{D_n - \mu}{\sigma} < t) - \mathbb{P}(Z < t) \right| = \begin{cases} \frac{12}{\sqrt{n}} \\ \mathbb{P}(\frac{D_n - \mu}{\sigma} \le y) + \mathbb{P}(Z \le y) \le \frac{1}{2y^2} + e^{-\Theta(y^2)} & \text{for } y < 0 \\ \mathbb{P}(\frac{D_n - \mu}{\sigma} \ge y) + \mathbb{P}(Z \ge y) \le \frac{1}{2y^2} + e^{-\Theta(y^2)} & \text{for } y > 0 \end{cases}$$

Hence, we have

$$\left| \phi_{n}(t) - e^{-t^{2}/2} \right| \leq |t| \int_{R} \left| \mathbb{P}\left(\frac{D_{n} - \mu}{\sigma} < y\right) - \mathbb{P}(Z < y) \right| dy \tag{1}$$

$$\leq |t| \int_{|y| > k\sigma} \left| \mathbb{P}\left(\frac{D_{n} - \mu}{\sigma} < y\right) - \mathbb{P}(Z < y) \right| dy + |t| \int_{|y| \leq k\sigma} \left| \mathbb{P}\left(\frac{D_{n} - \mu}{\sigma} < y\right) - \mathbb{P}(Z < y) \right| dy \tag{2}$$

$$\leq |t| \int_{|y| > k\sigma} \frac{1}{2y^{2}} + e^{-\Theta(y^{2})} dy + |t| 2k\sigma \sqrt{\frac{12}{n}}. \tag{3}$$

If we take $k = O(n^{-\frac{1}{2}+\epsilon})$. Since $\sigma = O(n)$, we have $\left|\phi_n(t) - e^{-t^2/2}\right| \le |t|O(n^{-\frac{1}{2}+\epsilon})$. Thus, for any $\varepsilon > 0$, we compute

$$\int_{-\pi\sigma}^{\pi\sigma} \left| \phi_n(t) - e^{-t^2/2} \right| dt \le \int_{-n^{\varepsilon}}^{n^{\varepsilon}} \left| \phi_n(t) - e^{-t^2/2} \right| dt + \int_{n^{\varepsilon} < |t| < \pi\sigma} (|\phi_n(t)| + |e^{-t^2/2}|) dt \\
\le \int_{-n^{\varepsilon}}^{n^{\varepsilon}} \left| \phi_n(t) - e^{-t^2/2} \right| dt + \int_{n^{\varepsilon} < |t| < \pi\sigma} e^{-\Theta(t^2)} dt \\
= O(n^{-\frac{1}{2} + \varepsilon}).$$

References

- [1] Justin Gilmer and Swastik Kopparty. A local central limit theorem for the number of triangles in a random graph. ArXiv e-prints, November 2014.
- [2] Jason Fulman. Stein's Method and Non-Reversible Markov Chains. ArXiv e-prints, December 1997.