TWO ACCITIED	
UNCLASSIFIEDSecurity Classification	AD773468
	ALL THE CONTRACT OF THE CONTRA
DOCUMENT CONT	
(Security classification of title, body of abstract and indexing 1. ORIGINATING ACTIVITY (Corporate author)	2a. REPORT SECURITY CLASSIFICATION
The Chemical Laboratory	Unclassified
•	2b. GROUP
University of Sussex	20. 64007
Falmer, Brighton BN1 9QJ, England	
	TAI DATA. CILICON COMPOUNDS
COMPUTER ANALYSIS OF THERMO CHEMIC	LAL DATA: SILICON COMPOUNDS
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	
Scientific. Interim.	
5. AUTHOR(S) (First name, middle initial, last name)	
J. B. Pedley, A. Kirk, S. Seilman	and I G Heath
J. B. Feuley, A. Kilk, S. Scilman	, and II, G. Heath
6. REPORT DATE	78. TOTAL NO. OF PAGES 7b. NO. OF REFS
September 1972	79
88. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)
AFOSR-72-2220	
b. PROJECT NO. 9537	
c. 61102F	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
V1	this report)
a. 681303	AFOSR - TR - 73 - 1741
.O. DISTRIBUTION STATEMENT	
Approved for public rele	ease; distribution unlimited
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
	Air Force Office of Scientific
	Research/NC, 1400 Wilson Blvd.

13. ABSTRACT

Thermodynamic data on silicon compounds from numerous sources were stored, sorted and processed by computer. Enthalpies of reactions were determined by the computer from the available data by a least squares procedure. Computer controlled automatic typesetting was used to prepare these tables of enthalpies.

> NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22151

Arlington, Va. 22209

4

WEN MARKS	LIN	K A	LIN	кв	LINK C	
KEY WORDS	ROLE	WΤ	ROLE	wit	ROLE	wr
COMPUTER ANALYSIS						
HEATS OF FORMATION						
HEATS OF FORMATION						
SILICON COMPOUNDS: STANDARD HEATS OF						
FORMATION						
THERMOCHEMICAL DATA						
				٠.		
						,
						-
		<u> </u>				
		}			`-	
						٠
		` ·				
					1	
	,					- 1 - 1
	•					
		V V				
		1				
]		Ĺ	

Introduction

The first half of each section of the CATCH tables consists of a list of pure substances and aqueous solutions in the standard order of arrangement described in detail in ref.1. The standard enthalpies of formation and the associated uncertainties have been calculated from the standard enthalpy changes of the numbered reactions listed in the second half.

The following symbols are used to indicate the states of the substances involved.

- (c) crystalline solid
- (l) liquid
- (g) gaseous
- (am) glassy or amorphous
- (a) completely dissociated species at infinite aqueous dilution
- (ao) undissociated species at infinite aqueous dilution

For solutions which are not infinitely dilute, the number of moles of water associated with one mole of solute is indicated in brackets.

Elements in their standard reference states are indicated by the symbols (cs), (ls) and (gs) and these, with the hydrogen ion at infinite dilution and the gaseous electron, are defined to have zero enthalpy of formation. (N.B. the electron is omitted from the equations corresponding to the processes in which it is involved).

Since compounds are identified by the computer by their molecular weights, isomers have been distinguished by an appropriate number after the symbol defining the state of the substance.

Some of the compounds at the end of the section do not belong to that set of compounds being explicitly considered, but they are present in the reactions. The standard enthalpies of formation of these species have been derived from other sections of the CATCH tables where this is possible, or from references 1, 2 or 3 in that order of preference. Data on organic species have been obtained from reference 4. The uncertainties are assigned as zero unless they are derived from other CATCH tables in which case they are the computer processed values.

In the reactions section, the reaction number is that referred to in the compounds section as contributing to the standard enthalpy of formation of a specific compound. The reactions form an overdetermined set of equations for the calculation of standard enthalpies of formation, so the data was analysed by standard least squares procedure using the reciprocal of the uncertainty on the enthalpy of reaction as a weight. The residuals associated with the reactions are the differences between the experimental value of the standard enthalpy of reaction and that calculated from the derived standard enthalpies of formation of the species in the reaction. These residuals are printed only when greater than 0.001kcal/mol and are a measure of the compatibility of a specific reaction with the others. The uncertainties (errors) on the standard enthalpies of formation were calculated from the uncertainties (errors) on the standard enthalpies of reaction by standard stastistical methods (see, for example, ref.4, p.43).

Any species already considered by the CODATA task group (ref.1) are assumed to have well defined standard enthalpies of formation and no attempt has been made to reanalyse the data leading to those values. The formation reaction of the species from the elements are included (labelled COD), and the weight of that equation in the least squares process has been increased to such an extent that the residual is always less than 0.001kcal/mol.

To make the list of compounds as comprehensive as possible, values of the enthalpy of the (often) hypothetical formation reaction of some compounds from their elements have been taken from reference 2 (and labelled NBS). Because the data sources leading to the selection of NBS values are at present unlisted, no further attempts at critical assessment have been made, and the uncertainty interval is assumed to be ten times the last figure given in reference 2. However, wherever

enthalpies of formation can be derived from critically assessed data without resort to unassessed values, this procedure has been adopted and the NBS data disregarded. It is intended that the number of references to NBS will be gradually reduced as critical assessment becomes possible. NBS data has also been used to provide enthalpies of solution and dilution.

Also included in the list of reactions are equations defining the equivalence of the enthalpies of a completely ionised solute at infinite dilution and the ions which are assumed to constitute the molecule of the electrolyte.

The uncertainties on many of the experimental standard enthalpies of reaction have been increased compared with the values quoted in the literature, when it was felt by the selector that large systematic errors may possibly be present. This is a very subjective operation and suggestions concerning the reliability of the data in the tables would be welcomed by the selector.

References

- 1 (COD) Report of CODATA Task Group on Key Values for Thermodynamics, Nov. 1971. CODATA BULLETIN No. 6, 1971.
- 2 (NBS) Wagman, Evans, Parker, Harlow, Bailey, and Schumm, Selected Values of Chemical Thermodynamic Properties, Natl. Bur. Stand. Tech. Note 270-3 U.S. Government Printing Office, Washington D.C., 1968.
- 3 Rossini, Wagman, Evans, Levine and Jaffe, Selected Values of Chemical Thermodynamic Properties, Natl. Bur. Stand. Circ. 500.
- 4 Cox and Pilcher, Thermochemistry of Organic and Organometallic Compounds, Academic Press, London, 1970.

J. B. Pedley, School of Molecular Sciences, University of Sussex.

Silicon compounds

Compound	Formula		Error	•	React	
	weight	(kcal		(kj/mol)		Hf°
Si(cs)	2 8.086	0.000	0.000	0.000	0	
Si(am)	28.086	1,000	0.101	4.184	2 23	20
Si(1)	28.086	11.586	0.101	48.475		115 130
Si(g)	28.086	107.920	0.863	451.536	3 37	36 39
					40	41
						125
						129
					216	
Si ⁺ (g)	28.086	297.370	0.869	1244.195	4	
Si ₂ (g)	56.172	141.840	3.754	593.457	5	
Si ₃ (g)	84.258	152.759	10.330	639.145	6	
SiO(g)	44.085	-24.775	1.590	-103.658	7	8
S10 (g)					9	10
SiO+(g)	44.085	224.225	10.126	938.158	11	
SiO ₂ (c1)		-217.997	0.271	-912.101	7	8
Alpha, quartz						
					12	13
					14	47
$SiO_2(c2)$	60.085	-217.494	0.339	-909.995	10	13
Alpha, tridymite						
$SiO_2(c3)$	60.085	-217.397	0.289	 909.59 0	14	44
Alpha, cristobalite					_	•
$SiO_2(am)$	60.085	-215.744	0.269	902.674	9	12
-					17	45
					46	
$SiO_2(1)$		-216.047	0.406	-903.942	15	
$SiO_2(g)$	60.085	-74.397	10.004	-311.278	16 17	81
$SiO_2(a)$	60.085	-217.244	0.288	 908.950	Δ.	01
Colloidal solution					82	192
						194
	60 005	195.603	14.145	818.402	18	
SiO ₂ +(g)	60.085 29.094	90.023	3.443	376.655	19	
SiH(g)	30.102	285.291	7.073	1193.658	21	2 5
SiH ₂ ⁺ (g)	31.110	54.250	11.191	226.984	26	
SiH ₃ (g)	31.110	234.749	5.010	982.189	22	
SiH ₃ +(g)	32.118	8.302	0.319	34.735	20	21
SiH ₄ (g)					25	
$\mathrm{Si}_{2}\mathrm{H}_{5}^{+}(\mathrm{g})$	61.212	229.896	10.007	961.885	27	
$\operatorname{Si}_{2}^{11}$ (g) Si_{2} H ₆ (1)	62.220	14.499	0.619	60.664	24	
$\operatorname{Si}_{2}\operatorname{H}_{6}(g)$	62.220	19.099	0.364	79.911	23	2 5
Si ₃ H ₈ (1)	92.322	22.200	1.158	92.885	29	
$Si_3H_8(g)$	92.322	28.900	1.045	120.918	28	
$H_0SiO_3(c)$	78.100	-284.100	1.000	-1188.674	30	
H_2SiO_3 (ao)	78.100	-282.700	1.005	-1182.817	31 32	
$H_4 SiO_4(c)$	96.116	-354.000	1.000	-1481.136	32 33	
$H_4SiO_4(ao)$	96.116	-351.000	1.005	- 1468.584	34	
$H_2Si_2O_5(c)$	138.185	-499.200	1.000	- 2088.653 - 2669.392	35	
$H_6^2 Si_2^2 O_7(c)$	174.216	-638.000	1.000	- 18.861	36	37
SiF(g)	47.084	-4.508 163.892	1.889 5.345	685.7 2 5	55	
SiF ⁺ (g)	47.084	100.002	0.020	00020		

Compound	Formula	а ДНf°	Error	$\Delta \mathbf{H} f^{\circ}$	Reactions
	weight	(kcal		_ •	for ΔHf°
$SiF_2(c)$	66.083	-186.289	2.009	 779.431	38
Polymer		140 500	4 4 6 0	. 200 040	97 90
$SiF_2(g)$	66.083	140.786	1.122	-589.048	37 39 40 41
					56
$SiF_2^+(g)$	66.083	120.172	8.199	502.801	56 60
SiF ₃ (g)	85.081	-227.269	14.143	-950.892	57
SiF ₃ ⁺ (g)	85.081	-31.269	10.002	-130.828	58
SiF ₃ -(g)	85.081	-304.269	14.284	-1273.060	42
$SiF_4(g)$	104.080	-385.989	0.191	-1614.976	43 44
					45 46
					47 48
					60 122 124
STET +(m)	104.080	-23.689	10.002	-99.113	59
SiF ₄ ⁺ (g) SiF ₆ (a)	142.076		1.000	- 2389.064	49
Si ₂ F ₄ ⁺ (g)	132,166		18.278	-443.493	64
Si ₂ F ₅ (g)		-366.617	20.834	-1533.927	63
$\operatorname{Si}_{2}F_{5}^{+}(g)$	151.164	-203.558	12.916	-851.687	61
$\operatorname{Si}_{2}\mathbf{F}_{6}(\mathbf{c})$	170.162	- 575.95 8	8.189	-2409.809	51
$\operatorname{Si}_{2}\mathbf{F}_{6}(1)$	170.162		8.231	-2393.491	53
$Si_2F_6(g)$		-565.558		-2366.295	50 60
$\mathrm{Si}_{3}\mathrm{F}_{7}^{+}(\mathrm{g})$	217.247		18.277	-1733.288	65 52
$Si_3F_8(c)$	236.245		15.307	-3220.366 -3198.190	52 54
$Si_3F_8(1)$	236.245	- 764.386 - 755.586	15.329 15.298	-3161.371	62
$\mathbf{Si}_{3}\mathbf{F}_{8}(\mathbf{g})$	236.245 236.245		18.277	-2115.371	66
$\operatorname{Si}_{3}\mathbf{F}_{8}^{+}(\mathbf{g})$	50.108		5.000	-439.320	72
$SiH_3F(g)$ $H_2SiF_2(g)$	68.099		10.000	-811.696	7 3
SiHF ₃ (g)	86.089	-283.000	5.000	-1184.072	74
$H_2SiF_6(20H_2O)$	144.092	-575.530	0.512	 24 08.016	67
H ₂ SiF(a1)	144.092	-575.373	0.473	-2407.362	6 8 7 1
In 1.444 HF. 211.729H ₂ O					
				0404.400	183
$H_2SiF(a2)$	144.092	574.670	0.471	- 2404.420	69 70
In 41.157 HF. 174.657H ₂ O					104
II City (c2)	144 002	-574.670	0.471	-2404.420	184 70 83
H_2SiF_6 (a3) In 179 HF. 758 H_2O	144.092	-314.010	0.411	-2101.120	10 00
$H_2SiF_6(a4)$	144.092	-575.373	0.473	-2407.362	71 131
H ₂ SiF ₆ , 1.5HF. 600H ₂ O					
2 0, 2					135 136
					137 182
SiCl(g)	63.539	46.909	10.037	196.266	75
$SiCl_2(g)$	98.992	39.913	0.175	-166.998	84
SiCl ₃ ⁺ (g)	134.445	103.899	7.073	434.713	85 86
SiCl ₄ (c)	169.898 169.898	-167.322 -165.477	0.162 0.161	-700.076 -692.356	76 77 78
SiCl ₄ (1)	105.050	-105.211	0.101	- 002.000	79 80
					81 82
					83
$SiCl_4(g)$	169.898	-158.387	0.190	-662.690	77 85
SiH ₃ Cl(g)	66.563	-48.000	5.000	-200.832	87
$SiH_2Cl_2(g)$	101.008	-80.000	10.000	-334.720	88
SiCl ₃ H(l)	135.453	-121.723	0.319	-509.290	90
SiCl ₃ H(g)	135.453	115.223	0.303	-482.094 -1317.960	86 89 91
ClSiF ₃ (g)	120.534 153.443	-315.000 -201.000	5.000 5.000	-1317.900 -840.984	92
FSiCl ₃ (g)	107.990	50.000	1.000	209.200	93
SiBr(g) SiBr ₂ (g)	187.894	-11.142	0.792	-46.618	97
$SiBr_2(g)$ $SiBr_4(1)$	347.702	-105.844	1.280	-442.851	95 96
SiBr ₄ (g)	347.702	-95.464	1.297	-399.421	94
SiHBr ₃ (l)	268.806	-76.170	2.000	-318.695	99
v··					

Compdued	Formula	Δ₩f°	ΔHf° Error ΔHf° 1		
Compound	weight	(kcal		(kj/mol)	
$SiHBr_3(g)$	268.806	-67.170	2.236	-281.039	98
$\mathrm{SiI}_2(\mathbf{g})$	2 81.8 9 5	19.346	2.462	80.944	103
$SiI_4(c)$	535.704	-48.320	2.197	202.171	100
$\operatorname{SiI}_4^{}(1)$	535.704	-45.320	0.909	-189.619	102
$SiI_4(g)$	535.704	-28.420	2.197	-118.909	101
SiS(g)	60.146	16.926	0.101	70.818	104
SiS ₂ (c)	92.206	-51.604	2.552	-215.912	106
$SiS_2(1)$	92.206	46.604	2.741	194.992	105
SiSe(g)	107.046	23.780	0.101 1.000	99.496 29.288	107 108
SiSe ₂ (c)	186.006 155.686	-7.000 51.710	1,000	216.355	109
SiTe(g)	283.286	53.300	5.000	223.007	110
SiTe ₂ (g)	438.972	-19.750	5.000	-82.634	111
$Si_2Te_3(c)$ SiN(g)	42.093	90.890	10.037	380.283	112
$\operatorname{Si}_{2}N(g)$	70.179	92.340	1.995	386.349	113
$Si_3N_4(c)$	140.285	-177.606	0.995	-743.105	114 115
Alpha					
$(NH_4)_2SiF_6(c1)$	178.154	-640.940	0.101	-2681.693	116
Hexagonal					
$(NH_4)_2 SiF_6(c2)$	178.154	-640.670	0.143	-2680.563	117
Cubic					
$(NH_4)_2SiF_6(a)$	178.154	634.700		- 2655.585	118
$(NH_4)_2SiF_6(550H_2O)$	178.154	-634.005	1.000	- 2652.677	119
$(NH_4)_2SiF_6(800H_2O)$	178.154	633.865	1.000	-2652.091	120 121
$(NH_4)_2SiF_6(1500H_2O)$		-633.600	1.000	-2650.982	121 122 123
SiC(c1)	40.097	-17.270	0.422	-72.258	122 120
Beta, cubic	40.007	17 505	0.392	-73.240	124 12 5
SiC(c2)	40.097	-17.505	0.392	- 13.210	121 120
Alpha, hexagonal	40.097	172.225	3.443	720.588	126
SiC(g)	52.108	147.217	2.854	615.957	127 128
SiC ₂ (g)	68.183	128.524	3.028	537.746	129 130
$\operatorname{Si}_{2}\mathrm{C}(\mathrm{g})$	45.137	212.223	17.399	887.941	162
$CH_3SiH_2^+(g)$ $CH_3SiH_3(l)$	46.145	-12.164	20.068	-50.894	142
$CH_3SiH_3(f)$ $CH_3SiH_3(g)$	46.145	-7.774	20.068	-32.526	160
(CH ₃) ₂ SiH(g)	59.164	5.870	1.724	24.560	158
(CH ₃) ₂ SiH ⁺ (g)	59.164	184.320	10.135	771.195	164
$(CH_3)_2SiH_2(1)$	60.172	-25.077	14.238	-104.922	143
$(CH_3)_2SiH_2(g)$	60.172	-19.977	14.238	-83.584	161 128 130
· • •					215
	50 101	0.201	1.581	-39.001	157 159
$(CH_3)_3Si(g)$	73.191	-9.321	1.561	- 65.001	167 170
					174
	73.191	154.379	3.081	645.922	163 165
$(CH_3)_3Si^+(g)$	10.101	202.0.0			167 169
(CTT) CHT(I)	74.199	-43.250	1.653	-180.958	144
$(CH_3)_3SiH(1)$	74.199	-37.430	1.650	-156.607	157 163
(CH3)3SiH(g) (CH3)4Si(l1)	88.226	-62.733	2.078	-262.476	131 145
(CH ₃) ₄ Si(H) (CH ₃) ₄ Si(g1)	88.226	-56.481	2.079	-236.314	145 165
(0113)421(8-)				010 E47	202
$(C_2H_5)_2SiH_2(12)$	88.226	-50.322	3.367	-210.547	132 146
$(C_2H_5)_2SiH_2(g2)$	88.226	-43.142	3.368	-180.505 -171.012	139
$(CH_3)_2Si(CH_2)_3(1)$	100.237	-40.873	3.367	-136.285	154
$(CH_a)_aSi(CH_a)_3(g)$	100.237	-32.573	3.404	100.203	
1:1-Dimethyl silacyclobutane	100 059	-66.321	10.466	-277.487	147
$(CH_3)_3SiC_2H_5(1)$	102.253	-66.321 -59.121	10.464	-247.362	166
$(CH_3)_3SiC_2H_5(g)$	102.253 114.264	-51.939	1.732	-217.312	140
(CH ₂) ₂ Si(CH ₂) ₄ (1)	114.264	-42.939	1.803	-179.656	155
(CH ₃) ₂ Si(CH ₂) ₄ (g)	117.201				
1:1-Dimethyl silacyclopentane	116.280	-56.254	5.022	-235.366	133
$(C_2H_5)_3SiH(11)$	116.280	-47.554	5.031	 198.965	148
$(C_2H_5)_3SiH(g1)$					

Compound Formula $\Delta H f^{\circ}$ Error $\Delta H f^{\circ}$ Reactions									
Compound	weight	а дн <i>ј</i> (kcal		ΔHf° (kj/mol)	Reactions for AHf°				
$(C_2H_5)_4Si(1)$	144.334	-72.586	5.022	-303.699	134				
$(C_2H_5)_4Si(g)$	144.334	-63.086	5.047	-263.951	149				
$(CH_3)_5Si_2(g)$	131.347	-22.534	8.474	 94.283	169 173				
$(CH_3)_5Si_2^+(g)$	131.347	120.743	6.619	505.188	168 170				
					173				
$\operatorname{Si}_2 \operatorname{C}_6 \operatorname{H}_{16}(1)$	144.366	-80.882	3.465	-338.409	141				
$Si_2C_6H_{16}(g)$	144.366	-71.082	3.501	297.406	156				
1:1,3:3,-Tetramethyl, 1,3,-Disila	-		0 554	206 520	135 150				
$(CH_3)_6Si_2(1)$	146.382 146.382	- 94.770 - 85.830	2.554 2.556	-396.520 -359.115	150 150				
$(CH_3)_6Si_2(g)$	140.002	- 65.650	2,550	-003.110	167 168				
$(CH_3)_7Si_3(g)$	189.503	-28.608	11.600	119.698	172				
$(CH_3)_7Si_3^+(g)$	189.503	94.312	8.007	394.603	171 174				
(CH ₃) ₈ Si ₃ (1)	204.538	-123.564	4.455	-516.992	136 151				
$(CH_3)_8Si_3(g)$	204.538	-112.567	4.457	-470.980	151 169				
					170 171				
$(CH_3)_9Si_4(g)$	247.659	 23.500	15.494	 98.32 5	175				
tris-Trimethylsilyl silyl radical	000.004	146 190	4 004	-611.415	137 152				
$(CH_3)_{10}Si_4(1)$	262.694 262.694		4.994 5.006	-559.106	152 173				
$(CH_3)_{10}Si_4(g)$ n-Decamethyl tetrasilane	202.094	- 133.028	5.000	- 505.100	102 110				
n-Decamemy tetrasnane					174				
$(CH_3)_{12}Si_5(c)$	320.850	-151.321	10.275	-633.128	138				
(CH ₃) ₁₂ Si ₅ (g)	320.850	-131.321	11.427	-549. 44 8	153				
Tetrakis-trimethylsilyl silane									
$CH_3Si(OH)_3(a)$	94.143	- 27 5.355	4.904	-1152.085	176				
$(CH_3)_2Si(OH)_2(a)$	92.171		2.42 8	-862.900	177 197				
$(CH_3)_3SiOH(1)$	90.198		0.746	-544.780	178				
(CH ₃) ₃ SiOH(g)	90.198		0.855	-499.175	179 180				
$(CH_3)_3SiOC_2H_5(1)$	118.252		0.746	-527.730 -648.520	181				
$(C_6H_5)_2Si(OH)_2(a)$		155,000	5.000 1.478	-813.772	182 183				
$(CH_3)_6Si_2O(1)$	162.381 162.381	-194.496 -194.496	1.478	-813.772	182 183				
$(CH_3)_6Si_2O(1)$	102.551	- 131.100	1.110	020.77	184 204				
					205 219				
					220				
$(CH_3)_6Si_2O(g)$	162.381	 185.596	1.536	 776.534	188				
Hexamethyl disiloxane					405				
$(CH_3)_8Si_3O_2(1)$	236.537	-338.072	3.622	-1414.491	185				
$(CH_3)_8Si_3O_2(g)$	236.537	-328.572	3.657	-1374.743	189				
Octamethyl trisiloxane	242 200	4771 046	10 177	-1974.624	186				
$(CH_3)_{10}Si_4O_3(1)$	310.692	-471.946 -460.446	10.177 10.189	-1974.024 -1926.508	190				
$(CH_3)_{10}Si_4O_3(g)$	310.692	-400.440	10,100	1020.000	200				
Decamethyl tetrasiloxane (CH ₃) ₁₂ Si ₅ O ₄ (l)	384.848	-624.021	5.530	-2610.905	187				
$(CH_3)_{12}Si_5O_4(1)$ $(CH_3)_{12}Si_5O_4(g)$	384.848	-611.321	5.553	- 2557.768	191				
Dodecamethylpentasiloxane									
CH ₃ SiCl ₃ (l)	149.480	-138.709	4.876	-580.358	193 201				
CH ₃ SiCl ₃ (g)	149.480	-131.206	4.874	-548.964	201 203				
CH ₃ HSiCl ₂ (1)	115.035	—105.618	5.008	441.907	196				
$(CH_3)_2SiCl^+(g)$	93.609	126.656	10.029	529.928	207 195				
(CH ₃) ₂ HSiCl(l)	94.617	-79.595	5.008	333.026 489.734	194 197				
$(CH_3)_2SiCl_2(1)$	129.062	-117.049	2.425	- 100.101	200				
(MTT) (MMT (m)	129.062	-109.511	2.421	-458.193	200 202				
$(CH_3)_2SiCl_2(g)$	120.002	200			203				
(CH ₃) ₃ SiCl(1)	108.644	-91.747	0.741	-383.870	192 199				
(0113/35101(1/					204 205				
(CH ₃) ₃ SiCl(g)	108.644	 84.544	0.764	- 353.733	199 202				
• •	050 004	00.010	E 000	-277.466	203 198				
$(C_6H_5)_2SiCl_2(1)$	253.204	-66.316	5.028 10.030	- 211. 400 599.573	21 0				
$(CH_3)_2SiBr^+(g)$	138.060	143.301 78.099	0.746	-326.764	208				
$(CH_3)_3SiBr(1)$	153.095	- 10,000	0.120						

Compound	Formula	ΔHf° Error		$\Delta \mathbf{H} f^{\circ}$	Reactions
-	weight	(kcal,	/mol)	(kj/mol)	for ΔHf°
$(CH_3)_3SiBr(g)$	153.095	-70.299	0.774	-294.129	209
$(CH_3)_2SiI^+(g)$	185.060	154.846	14.474	647.876	212
$(CH_3)_3SiI(g)$	200.095	-49.454	10.464	-206.916	211
$(CH_3)_3SiSC_4H_9(1)$	162.367	91.011	0.746	-380.788	213
N-butylthio-trimethylsilane					
$(CH_3)_3SiSC_4H_9(g)$	162.367	-81.311	0.753	-340.203	214
SiCN(g)	54.104	90.582	2.344	378.994	215 216
(CH ₃) ₃ SiNHCH ₃ (l)	103.241	-63.939	0.746	-267.519	217
(CH ₃) ₃ SiNHCH ₃ (g)	103.241	-55.339	0.753	-231.537	22 3
$(CH_3)_3SiN(CH_3)_2(1)$	117.268	-66.856	0.746	-279.724	218
$(CH_3)_3SiN(CH_3)_2(g)$	117.268	-59.256	0.753	-247.925	224
$(CH_3)_3SiN(C_2H_5)_2(1)$	145.322	-87.647	0.800	-366.715	206
$(CH_3)_6Si_2NH(1)$	161.397	-123.573	1.479	-517.029	219 220
$(CH_3)_6Si_2NH(g)$	161.397	— 113.673	1.482	-475.608	22 5
$(CH_3)_6Si_2NCH_3(1)$	175.424	-117.429	1.492	-491.324	221
$(CH_3)_6Si_2NCH_3(g)$	175.424	-108.129	1.496	-452.412	22 6
$(CH_3)_0Si_3N(c)$	233.580	-172.317	2.286	-720.973	222
$(CH_3)_9Si_3N(g)$	2 33.580	 159.317	2.288	666.581	227

Compounds from other sections

Commound	Formula	$\Delta \mathrm{H} f^{\circ}$	Error	$\Delta \mathrm{H} f^{\circ}$
Compound	weight		/mol)	(kj/mol)
0 (65)	31.999	0.000	0.000	0.000
$O_2(gs)$	1.008	52.103	0.000	217.999
H(g)	2.016	0.000	0.000	0.000
H ₂ (gs)	18.015	-68.315	0.000	-285.830
H ₂ O(1)	18.015	-57.795	0.000	-241.814
$H_2O(g)$	18.998	18.880	1.000	78.994
F(g)	18.998	-64.700	0.500	-270.705
F-(g)	37.997	0.000	0.000	0.000
$\mathbf{F}_2(gs)$	20.006	-65.320	0.072	-273.297
HF(g)	20.006	-76.831	0.072	-321.461
$HF(4.0H_2O)$		-77.015	0.070	-322.230
$HF(25H_2O)$	20.006	-77.013	0.070	-322.256
HF(30H2O)	20.006	-77.021	0.070	-322.360
$HF(80H_2O)$	20.006		0.001	121.290
Cl(g)	35.453	28.989	0.001	0.000
$Cl_2(gs)$	70.906	0.000	0.000	-167.080
HCl(a)	36.461	-39.933	0.001	-161.239
$HCl(10H_2O)$	36.461	-38.537		-161.239 -165.276
$HCl(50H_2O)$	36.461	-39.502	0.001	-165.210 -165.845
$HCl(100H_2O)$	36.461	- 39.638	0.001	165.545 166.494
$HCl(500H_2O)$	36.461	-39.793	0.001	
$HCl(600H_2O)$	36.461	-39.804	0.001	-166.540 -166.607
$HCl(800H_2O)$	36.461	- 39.820	0.001	-166.724
$HCl(1500H_2O)$	36.461	-39.848	0.001	0.000
$\mathrm{Br}_2(\mathrm{ls})$	159.808	0.000	0.000	
$HBr(50H_2O)$	80.912	-28.708	0.001	-120.114
I(g)	126.9 05	25.517	0.003	106.763
S(cs)	32.060	0.000	0.000	0.000
$H_2S(g)$	34.076	-4.930	0.000	-20.627
Se(cs)	78.960	0.000	0.000	0.000
$Te_2(g)$	255.200	40.200	0.000	168.197
N(g)	14.007	112.970	0.003	472.666
$N_2(gs)$	28.013	0.000	0.000	0.000
NH ₄ +(a)	18.039	-31.850	0.001	-133.260
NH ₄ Cl(50H ₂ O)	53.492	-71.647	0.002	- 299.771
NH ₄ Cl(1500H ₂ O)	53.492	-71.720	0.002	-300.076

Compound	Formula	ΔHf°	Error	$\Delta \mathbf{H} f^{\circ}$
•	weight	(kcal	/mol)	(kj/mol)
C(cs)	12.011	0.000	0.000	0.000
$CO_2(g)$	44.010	-94.051	0.000	-393.509
$CH_3(g)$	15.035	33.200	0.000	138.909
$C_2H_5(g)$	29.062	25.000	0.000	104.600
$C_2H_5OH(50H_2O)$	46.069	-68.740	0.000	-287.6 08
$CF_4(g)$	88.005	-223.040	0.000	-933.199
$C_4H_9SH(1)$	90.184	-29.720	0.000	-124.348
$(\hat{\mathbf{C}}_2\hat{\mathbf{H}}_5)_2\mathbf{N}\mathbf{H}(\mathbf{l})$	73.139	-24.780	0.000	-103.680
CH ₃ NH ₃ Cl(50H ₂ O)	67.519	-69.650	0.000	-291.416
$(CH_3)_2NH_2C1(50H_2O)$	81.546	-68.567	0.000	-286.884
$(C_2H_5)_2NH_2Cl(c)$	109.600	-85.760	0.000	-358.820
Ga(1)	69.720	1.330	0.000	5.565
$Ga_2O(g)$	155.439	 21.000	0.000	-87.864
Ag(cs)	107.868	0.000	0.000	0.000
AgCl(c)	143.321	-30.370	0.000	-127.068
AgBr(c)	187.772	-23.990	0.000	-100.374
AgI(c)	2 34.772	-14.780	0.000	-61.840
Ca(g)	40.080	42.600	0.000	178.238
CaF(g)	59.078	-65.000	0.000	-271.960
$CaF_2(c)$	78.077	 291.500	0.000	-1219.636
$CaF_2(g)$	78.077	-186.800	0.000	 781.571
Na(cs)	22.990	0.000	0.000	0.000
NaOH(c)	39.997	101.990	0.000	-426.726
NaF(c)	41.988	-137.910	0.000	-577.015
NaCl(c)	58.443	 98.230	0.000	-410.994
NaBr(c)	102.894	86.030	0.000	- 359.950
$Na_2SiO_3(c)$	122.064	-363.000	0.000	-1518.792

Reactions

		ΔH°	Error	Ref
	Reaction		/mol)	
1	Si(cs)=Si(1)	11.585	0.100	71/1
2	Si(cs)=Si(am)	1.000	0.100	NBS
3	Si(cs)=Si(g)	107.700	1.000	71/1
	err v error	Residual 189.450	-0.220 0.100	49/1
4	$Si(g)=Si^{+}(g)$	74.000	3.000	71/1
5	$\operatorname{Si}_2(g) = 2\operatorname{Si}(g)$	171.000	10.000	71/1
6 7	$\begin{aligned} &\operatorname{Si}_3(g) = 3\operatorname{Si}(g) \\ &\operatorname{SiO}_2(c1) + \operatorname{H}_2(gs) = \operatorname{SiO}(g) + \operatorname{H}_2\operatorname{O}(g) \end{aligned}$	135.200	5.000	63/2
•	$510_2(C1)+11_2(gs)-510(g)+11_20(g)$	Residual	-0.227	,-
8	$Si(cs) + SiO_2(c1) = 2SiO(g)$	168,800	5.000	63/2
Ū	21(22) 2122(22)	Residual	0.353	
9	$2Ga(1)+SiO_2(am)=SiO(g)+Ga_2O(g)$	170.800	5.000	62/1
		Residual	3.491	
10	$Si(cs) + SiO_2(c2) = 2SiO(g)$	165.960	5.000	62/1
	_	Residual	-1.984	
11	$SiO(g)=SiO^{+}(g)$	249.000	12.000	55/1
12	$SiO_2(am) = SiO_2(c1)$	-2.210	0.100	12/1
		Residual	0.043	~
		-2.330	0.100	21/1
		Residual	-0.077	69/1
13	$SiO_2(c1)=SiO_2(c2)$	0.500	0.200	62/1
	717 (d) (10 (-0)	Residual 0.600	-0.003 0.100	71/1
14	$SiO_2(c1) = SiO_2(c3)$	1.950	0.300	71/1
15	$SiO_2(c1)=SiO_2(1)$	143.000	8.000	71/1
16	$SiO_2(c3) = SiO_2(g)$	1.500	0.100	31/1
17	$SiO_2(a) = SiO_2(am)$	270.000	12,000	55/1
18 19	$SiO_2(g)=SiO_2^+(g)$ SiH(g)=Si(g)+H(g)	70.000	3.000	71/1
20	SiH4(g)=Si(g)+H(g) $SiH4(g)=Si(am)+2H2(gs)$	-7.300	0.300	61/1
20	DI14(B)—24(din) =112(B2)	Residual	0.002	
21	$SiH_4(g) = SiH_2^+(g) + H_2(gs)$	279.000	9.000	6 3/3
	2 (0)	Residual	2.011	
		274.400	9.000	69/3
		Residual	2.589	20.10
		274.700	9,000	62/2
		Residual	 2.289	69 /9
22	$SiH_4(g) = SiH_3^+(g) + H(g)$	272.100	9.000 6.450	63/3
		Residual 272.400	9.000	66/2
		Residual	-6.150	00,2
		283.700	9.000	69/3
		Residual	5.150	•
		286.000	9.000	62/2
		Residual	7.450	
23	$Si_2H_6(g)=2Si(am)+3H_2(gs)$	-17.100	0.300	61/1
24	$Si_2H_6(1)=Si_2H_6(g)$	4.600	0.500	33/1
25	$Si_2H_6(g) = SiH_2+(g) + SiH_4(g)$	275.300	9.000	62/5
	2 .5. 1 =	Residual	0.806	20.40
		275.600	9.000	69/3
		Residual	1.106	62/5
26	$Si_2H_6(g) = SiH_3^+(g) + SiH_3(g)$	273.300	9.000 3.400	U2/U
		Residual 275.600	9.000	69/3
		Residual	5.700	00/0
		260.800	9.000	66/2
		Residual	-9.100	•
07	$Si_2H_6(g)=Si_2H_5^*(g)+H(g)$	262.900	9.000	69/3
27	D12116(B)—D12+15 (B) 1 ++ (B)			

		ΔH°	Error	Ref
	Reaction	(kcal	/mol)	
28	$Si_3H_8(g)=3Si(am)+4H_2(gs)$	-25.900	1.000	64/3
29	$Si_3H_8(1)=Si_3H_8(g)$	6.700	0.500	33/1
30	$2H_2(gs) + 3O_2(gs) + 2Si(cs) = 2H_2SiO_3(c)$	-568.200	2.000	NBS
31	$H_2SiO_3(c)=H_2SiO_3(ao)$	1.400	0.100	NBS
32 33	$2H_2(gs) + 2O_2(gs) + Si(cs) = H_4SiO_4(c)$ $H_4SiO_4(c) = H_4SiO_4(ao)$	354.000 3.000	1.000 0.100	NBS NBS
34	$2H_2(gs) + 5O_2(gs) + 4Si(cs) = 2H_2Si_2O_5(c)$	-998.400	2.000	NBS
35	$6H_2(gs) + 7O_2(gs) + 4Si(cs) = 2H_6Si_2O_7(c)$	-1276.000	2.000	NBS
36	SiF(g)=Si(g)+F(g)	125.000	10.000	58/1
•	DIE (B)—DI(B) E (B)	Residual	-6.308	,-
37	$Si(g)+SiF_2(g)=2SiF(g)$	23.500	3.000	71/1
٥.	DI(E) + DIL 2(E) - LDIL (E)	Residual	-0.350	
38	$SiF_2(c)+F_2(gs)=SiF_4(g)$	-199.700	1.700	70/3
39	$CaF_2(c)+Si(g)=Ca(g)+SiF_2(g)$	86.700	1,500	64/9
Jø	$Car_2(C) + SI(g) - Ca(g) + SIr_2(g)$	Residual	1.306	01/0
40	$CaF_2(g)+Si(g)=Ca(g)+SiF_2(g)$	-16.700	1.500	64/9
40	$Car_2(g)+si(g)=Ca(g)+sir_2(g)$	Residual	2.606	01/0
41	$2CaF(g)+Si(g)=2Ca(g)+SiF_2(g)$	-34.700	0.900	64/9
41	$2\operatorname{Car}(g) + \operatorname{Si}(g) = 2\operatorname{Ca}(g) + \operatorname{Sir}_2(g)$	Residual	-1.194	01/0
42	$SiF_3(g)=SiF_3^-(g)$	-77.000	2.000	70/2
43	$\operatorname{Si}(\operatorname{cs}) + 2\operatorname{F}_2(\operatorname{gs}) = \operatorname{SiF}_4(\operatorname{g})$	-385.980	0.190	63/2
40	51(C5)+21·2(B5)-511·4(B)	Residual	0.009	00, =
44	$SiF_4(g) + 2H_2O(g) = SiO_2(c3) + 4HF(g)$	24.530	5.000	63/1
11	Sir 4(g) + 21120(g) - 5102(00) + 1112 (g)	Residual	1.627	00, 2
45	$SiF_4(g) + 2H_2O(g) = SiO_2(am) + 4HF(g)$	26.370	5.000	63/1
10	Dir 4(g) 21120 (g) 2102 (dais) 1111 (g)	Residual	1.814	
46	$SiO_2(am) + 2F_2(gs) = SiF_4(g) + O_2(gs)$	-170.040	0.250	63/2
10	5102(dill) 212(gs)—5114(g) 02(gs)	Residual	0.204	
47	$SiO_2(c1) + 2F_2(gs) = SiF_4(g) + O_2(gs)$	-168.260	0.280	63/2
- '	2102(01) 1 21 2(82) 212 4(8) 1 0 2 (82)	Residual	-0.269	
48	$SiF_4(g) + 4Na(cs) = 4NaF(c) + Si(cs)$	-174.100	10.000	60/2
-0	21.4(8) ; 11.0(05) 11.01 (0) ; 10.0(05)	Residual	-8.449	•
49	$Si(cs) + 3F_2(gs) = SiF_6^{-1}(a)$	-571.000	1,000	NBS
50	$2\operatorname{Si}(\operatorname{cs}) + 3\operatorname{F}_{2}(\operatorname{gs}) = \operatorname{Si}_{2}\operatorname{F}_{6}(\operatorname{g})$	-565.000	10.000	64/6
•	202(00) 1 02 2(80) 2022 8(8)	Residual	0.558	
51	$Si_2F_6(c)=Si_2F_6(g)$	10.400	0.500	65/1
52	$\mathbf{Si}_{3}\mathbf{F}_{8}(\mathbf{c}) = \mathbf{Si}_{3}\mathbf{F}_{8}(\mathbf{g})$	14.100	0.500	65/1
53	$Si_2F_6(c)=Si_2F_6(1)$	3.900	0.800	65/1
54	$Si_3F_8(c)=Si_3F_8(1)$	5.300	0.800	65/1
55	$SiF(g)=SiF^+(g)$	168.400	5.000	68/1
56	$SiF_2(g) = SiF_2^+(g)$	260.400	6.900	68/1
	2.07	Residual	-0.558	
57	$SiF_3(g)=SiF_3^+(g)$	196,000	20.000	68/1
58	$SiF_4(g) = SiF_3^+(g) + F(g)$	373.600	6.900	68/1
59	$SiF_4(g)=SiF_4^+(g)$	362.300	6.900	68/1
60	$Si_2F_6(g) = SiF_2^+(g) + SiF_4(g)$	300.300	6.900	68/1
		Residual	0.558	
61	$Si_2F_6(g)=Si_2F_5^+(g)+F^-(g)$	297.300	6.900	68/1
62	$Si_3F_8(g) = SiF_2^+(g) + Si_2F_6(g)$	310.200	6.900	68/1
63	$\operatorname{Si}_{3}F_{8}(g) = \operatorname{Si}F_{3}^{+}(g) + \operatorname{Si}_{2}F_{5}(g)$	357.700	6.900	68/1
64	$Si_3F_8(g)=Si_2F_4(g)+SiF_4(g)$	26 3.600	6.900	68/1
65	$Si_3F_8(g)=Si_3F_7^+(g)+F(g)$	360.200	6.900	68/1
66	$Si_3F_8(g)=Si_3F_8^+(g)$	2 50,000	6.900	68/1
67	$SiO_2(c1) + 6HF(4.0H_2O)$			
	$=H_2SiF_6(20H_2O)+2H_2O(1)$	-33.290	0.080	51/1
		Residual	-0.113	
		-33.000	0.100	48/1
		Residual	0.177	
68	$Si(cs) + O_2(gs) + 6HF(30H_2O)$			04.10
	$= \mathbf{H}_2 \mathbf{SiF}_6(\mathbf{a1}) + 2\mathbf{H}_2 \mathbf{O}(1)$	- 249.890	0.250	64 /2
		Residual	-0.012	
69	$Si(cs) + O_2(gs) + 6HF(4.0H_2O)$	~~~ ~~~	A 624	0410
	$= H_2 SiF_6(a2) + 2H_2 O(1)$	-250.300	0.250	64/2
		Residual	0.015	

		ΔH°	Error	Ref
	Reaction		/mol)	
70	$\mathbf{H}_{2}\mathbf{SiF}_{6}(\mathbf{a3}) = \mathbf{H}_{2}\mathbf{SiF}_{6}(\mathbf{a2})$	0.000	0.000	64/4
71	$H_2SiF_6(a1)=H_2SiF_6(a4)$	0.000	0.000	72/1
72	$2Si(cs) + 3H_2(gs) + F_2(gs) = 2SiH_3F(g)$	-210.000	30.000	71/1
73	$Si(cs)+H_2(gs)+F_2(gs)=H_2SiF_2(g)$	-194.000	15.000	71/1
74	$2Si(cs) + H_2(gs) + 3F_2(gs) = 2SiHF_3(g)$	-566.000	30.000	71/1
7 5	SiCl(g)=Si(g)+Cl(g)	90.000	15.000	64/8
76	$SiCl_4(c) = SiCl_4(1)$	1.845	0.020	22/1
77	$SiCl_4(1) = SiCl_4(g)$	7.090	0.100	71/1
78	$Si(cs) + 2Cl_2(gs) = SiCl_4(l)$	-165.490	0.160	69/1
	(, , ,	Residual	-0.013	
79	$SiCl_4(l)+4Ag(cs)=Si(cs)+4AgCl(c)$	42.700	2.000	64/5
	•	Residual	1.297	
80	$SiCl_4(1) + 6NaOH(c)$	100.010	0.000	C1 /D
	= Na2SiO3(c) + 4NaCl(c) + 3H2O(l)	-192.310	9.000	61/2
		Residual	-8.862	00/1
81	$SiCl_4(1) + 2H_2O(1) = SiO_2(a) + 4HCl(100H_2O)$	-79.750	5.000	66/1
		Residual	-6.061	
82	$SiCl_4(1) + 2H_2O(1) = SiO_2(a) + 4HCl(500H_2O)$	-76.600	5.000	71/1
		Residual	-2.291	
83	SiCl4(1) + 6HF(4.0H2O)			
	$= H_2 SiF_6(a3) + 4HCl(10H_2O)$	-98.610	5.000	64/4
	-	Residual	3.745	
84	$SiCl_4(g) + Si(cs) = 2SiCl_2(g)$	78.350	0.500	71/1
	¥.0/	Residual	-0.210	
		78.490	0.500	71/1
		Residual	-0.070	
		78.840	0.500	71/1
		Residual	0.280	
85	$SiCl_4(g) = SiCl_3^+(g) + Cl(g)$	287.800	9.000	62/2
-	3 (3)	Residual	-3.475	
86	$SiCl_3H(g)=SiCl_3^+(g)+H(g)$	274.700	9.000	62/2
-	3101311 (8)	Residual	3.475	
87	$3H_2(gs) + Cl_2(gs) + 2Si(cs) = 2SiH_3Cl(g)$	-96.000	30.000	71/1
88	$H_2(gs) + Cl_2(gs) + Si(cs) = SiH_2Cl_2(g)$	-80.000	15.000	71/1
89	SiCl ₃ H(g)+5NaOH(c)			
00	$= Na_2SiO_3(c) + 3NaCl(c) + 2H_2O(1) + H_2(gs)$	-169.150	0.300	61/2
	=1.020103(0) 01.0111(0) 2 (7) 2 (8)	Residual	-0.003	
90	$SiCl_3H(l)=SiCl_3H(g)$	6.500	0.100	61/2
91	$Cl_2(gs) + 3F_2(gs) + 2Si(cs) = 2ClSiF_3(g)$	630.000	30.000	71/1
92	$3\operatorname{Cl}_{2}(\operatorname{gs}) + \operatorname{F}_{2}(\operatorname{gs}) + 2\operatorname{Si}(\operatorname{cs}) = 2\operatorname{FSiCl}_{3}(\operatorname{g})$	-402.000	30.000	71/1
93	2Si(cs) + Br2(ls) = 2SiBr(g)	100.000	2.000	NBS
94	$SiBr_4(1) = SiBr_4(g)$	10.380	0.200	47/1
95	SiBr4(1)+4Ag(cs)=Si(cs)+4AgBr(c)	13.300	1.560	64/5
20	SID14(1) 1118(00) = 21(00) 8 (0)	Residual	3.416	
96	$SiBr_4(1) + 6NaOH(c)$			
50	$=Na_2SiO_3(c)+4NaBr(c)+3H_2O(1)$	-199.200	2.000	62/4
		Residual	4.919	
97	$Si(cs) + SiBr_4(g) = 2SiBr_2(g)$	71.500	1.000	67/4
٠.	01(05) 02014(8)	Residual	-1.680	
		79.900	2.000	66/3
		Residual	6.720	
98	$SiHBr_3(l)=SiHBr_3(g)$	9.000	1.000	62/4
99	$SiHBr_3(1) = SiHBr_3(g)$ $SiHBr_3(1) + 5NaOH(c)$			
99	=Na ₂ SiO ₃ (c)+3NaBr(c)+2H ₂ O(l)+H ₂ (gs)	-171.600	2.000	62/4
100	$SiI_4(c) = SiI_4(1)$	3.000	2.000	
100	Estimated value			
101	$SiI_4(1)=SiI_4(g)$	16.900	2.000	
101	$\operatorname{Estimated}$ value			
100	Estimated value $SiI_4(1)+4Ag(cs)=Si(cs)+4AgI(c)$	-13.800	0.850	64/5
102		98.800	1.000	67/4
103	$SiI_4(g) = SiI_2(g) + 2I(g)$ $Si(ag) + S(ag) = SiS(g)$	16.926	0.100	71/1
104	Si(cs) + S(cs) = SiS(g)	5.000	1.000	71/1
105	$SiS_2(c) = SiS_2(1)$ $SiS_2(c) + SHF(4.0H, O)$			
106	$SiS_2(c) + 6HF(4.0H_2O)$ = $H_2SiF_6(20H_2O) + 2H_2S(g)$	-72.800	2.200	54/1
	$=\mathbf{H}_{2}\mathbf{Sir}_{6}(20\mathbf{H}_{2}\mathbf{O})+2\mathbf{H}_{2}\mathbf{S}(\mathbf{g})$			

	Reaction	ΔH° Error (kcal/mol)		Ref
107	Si(cs) + Se(cs) = SiSe(g)	23.780	0.100	NBS
108	$Si(cs) + 2Se(cs) = SiSe_2(c)$	-7.000	1.000	NBS
109		61.600	6.000	67/1
109	$2Si(cs) + Te_2(g) = 2SiTe(g)$	Residual	-1.620	0.72
				67/1
		63.400	2.000	67/1
		Residual	0.180	05.11
110	$Si(cs)+Te_2(g)=SiTe_2(g)$	13.100	4.000	67/1
111	$2\operatorname{Si}_{2}\operatorname{Te}_{3}(c) = 4\operatorname{Si}(cs) + 3\operatorname{Te}_{2}(g)$	160.600	8.000	67/1
		Residual	0.500	
		159.600	8.000	67/1
		Residual	-0.500	
112	SiN(g)=Si(g)+N(g)	130.000	15.000	71/1
113	$2\operatorname{Si}_{2}\operatorname{N}(g) = 4\operatorname{Si}(g) + \operatorname{N}_{2}(gs)$	247.000	2.000	67/2
114	$Si_3N_4(c)=3Si(cs)+2N_2(gs)$	177.600	1.000	71/1
		Residual	-0.006	
115	$Si_3N_4(c)=3Si(1)+2N_2(gs)$	213.000	7.000	71/1
		Residual	0.637	
116	$N_2(gs) + 4H_2(gs) + Si(cs) + 3F_2(gs)$			
	$= (NH_4)_2 SiF_6(c1)$	-640.940	0.100	NBS
117	$(NH_4)_2SiF_6(c1) = (NH_4)_2SiF_6(c2)$	0.270	0.100	NBS
118	$(NH_4)_2SiF_6(a) = 2NH_4^+(a) + SiF_6^-(a)$	0.000	0.000	
119	$(NH_4)_2SiF_6(550H_2O) = (NH_4)_2SiF_6(a)$	-0.695	0.001	NBS
120	$(NH_4)_2 SiF_6 (800H_2O) = (NH_4)_2 SiF_6 (a)$	-0.835	0.001	NBS
121	$(NH_4)_2SiF_6(1500H_2O) = (NH_4)_2SiF_6(a)$	-1.100	0.001	NBS
122	$\operatorname{SiC}(c1) + 4F_2(gs) = \operatorname{SiF}_4(g) + \operatorname{CF}_4(g)$	-591.790	0.380	70/1
	1.0	Residual	-0.032	
12 3	SiC(c1)=C(cs)+Si(g)	125.000	3.000	58/2
		Residual	-0.190	
124	$SiC(c2)+4F_2(gs)=SiF_4(g)+CF_4(g)$	-591.530	0.340	70/1
	2-2(4-) 2(8-) 4(8) 4(8)	Residual	-0.006	
125	SiC(c2)=C(cs)+Si(g)	126.000	3.000	61/3
		Residual	0.575	
126	C(cs) + Si(g) = SiC(g)	6 5.940	4.000	71/1
	0(00) 01(8)	Residual	1.635	
		62.670	4.000	71/1
		Residual	-1.635	
127	$2C(cs) + Si(g) = SiC_2(g)$	39.000	4.000	71/1
121	20(6) 21(6)—2102(6)	Residual	-0.297	
		38.300	4.000	71/1
		Residual	-0.997	
128	$2\operatorname{SiC}(c1) = \operatorname{Si}(1) + \operatorname{SiC}_2(g)$	194.800	4.000	71/1
120	2510(01)=51(1) (5102(5)	Residual	1.457	
129	$C(cs) + 2Si(g) = Si_2C(g)$	-88.000	4.000	71/1
129	$C(CS) + 2SI(S) - SI_2O(S)$	Residual	-0.685	
		-86.800	4.000	71/1
		Residual	0.515	
120	$SiC(c1) + Si(l) = Si_2C(g)$	134.400	4.000	71/1
130	SIC(CI)+SI(I)-SI2C(g)	Residual	0.191	
101	$(CH_3)_4Si(11) + 8O_2(gs) + 6HF(80H_2O)$			
131	$= H_2 SiF_6(a4) + 4CO_2(g) + 8H_2 O(1)$	-971.400	2.400	72/1
	$=\mathbf{H}_{2}\mathbf{Sir}_{6}(\mathbf{a}1)+1\mathbf{CO}_{2}(\mathbf{g})+\mathbf{Sir}_{2}\mathbf{O}(1)$	Residual	1.689	
100	$(C_2H_5)_2SiH_2(12) + 8O_2(gs) + 6HF(80H_2O)$			
132	$= \frac{(C_2 H_5)_2 S H_2 (12) + 8 O_2 (gS) + 6 H_2 (GS)}{= H_2 S i F_6 (a4) + 4 C O_2 (g) + 8 H_2 O(1)}$	-985.500	3.200	72/1
400	$=H_2SiF_6(ar)+4CO_2(gr)+6H_2O(r)$ $(C_2H_5)_3SiH(l1)+11O_2(gs)+6HF(80H_2O)$			
133	$= H_2 SiF_6(a4) + 6CO_2(g) + 10H_2O(1)$	-1304.300	3.700	72/1
104	$= H_2 SiF_6(a4) + 6CO_2(g) + 10H_2 CO_2(g) + 6HF(80H_2 CO_2(g) +$			
134	$(C_2H_5)_4SI(1)+14C_2(gs)+GIIF(80II_2C)$	-1612.700	3.500	72/1
405	$= H_2 SiF_6 (a4) + 8CO_2 (g) + 12H_2 O(1)$ $2(CH_3)_6 Si_2 (1) + 25O_2 (gs) + 24HF(80H_2 O)$			-
135	$= \frac{2(CH_3)_6Sl_2(1) + 25O_2(gS) + 24HF(80H_2O)}{4H_2SiF_6(a4) + 12CO_2(g) + 26H_2O(1)}$	-3167.600	3.600	72/1
	=411201F6(a4) + 12002(B) + 201120(1)	Residual	0.052	-
100	$(CH_3)_8Si_3(l) + 17O_2(gs) + 18HF(80H_2O)$			
136	$=3H_2SiF_6(a4)+8CO_2(g)+18H_2O(1)$	-2199.500	3.900	72/1
	0112011 6 (at) 10003 (b) 1 101120 (*)	Residual	-1.693	

		$\Delta \mathbf{H}$ $^{\circ}$	Error	\mathbf{Ref}
	Reaction	(kcal,	/mol)	
137	$2(CH_3)_{10}Si_4(1) + 43O_2(gs) + 48HF(80H_2O)$			
	$=8H_2SiF_6(a4) + 20CO_2(g) + 46H_2O(1)$	-5635.400	10.600	72/1
	511 ₂ 511 6 (41) 15 5 5 2 (8) 1511 ₂ 5 (1)	Residual	0.629	•
100	$(CH_3)_{12}Si_5(c) + 26O_2(gs) + 30HF(80H_2O)$	200014441	0.020	
138		2455 600	7.400	72/1
	$=5H_2SiF_6(a4)+12CO_2(g)+28H_2O(1)$	-3455.600	1.400	14/1
139	$(CH_3)_2Si(CH_2)_3(1) + 9O_2(gs) + 6HF(80H_2O)$	4000 000	0.000	50 / 5
	$=H_2SiF_6(a4)+5CO_2(g)+8H_2O(l)$	 1089.000	2 .600	72/1
140	$2(CH_3)_2Si(CH_2)_4(1) + 21O_2(gs) + 12HF(80H_2O)$			
	$=2H_2SiF_6(a4)+12CO_2(g)+18H_2O(1)$	 2480.600	3.000	72/1
141	$Si_2C_6H_{16}(1) + 12O_2(gs) + 12HF(80H_2O)$			
	$=2H_2SiF_6(a4)+6CO_2(g)+12H_2O(1)$	-1529.400	3.000	72/1
142	$CH_3SiH_3(1)=CH_3SiH_3(g)$	4.390	0.100	53/1
143	$(CH_3)_2SiH_2(1) = (CH_3)_2SiH_2(g)$	5.100	0.100	53/1
144	$(CH_3)_2SH_2(1) = (CH_3)_2SH_2(g)$ $(CH_3)_3SH(1) = (CH_3)_3SH(g)$	5.820	0.100	53/1
		6.250	0.100	53/1
145	$(CH_3)_4Si(11) = (CH_3)_4Si(g1)$	Residual	-0.003	,-
	(T T) CUT (10) (C TT) CUT (-0)	7.180	0.100	53/1
146	$(C_2H_5)_2SiH_2(12) = (C_2H_5)_2SiH_2(g2)$			46/1
147	$(CH_3)_3SiC_2H_5(1) = (CH_3)_3SiC_2H_5(g)$	7.200	0.200	•
148	$(C_2H_5)_3SiH(11) = (C_2H_5)_3SiH(g1)$	8.700	0.300	72/1
149	$(C_2H_5)_4Si(1) = (C_2H_5)_4Si(g)$	9.500	0.500	46/1
150	$(CH_3)_6Si_2(1) = (CH_3)_6Si_2(g)$	8.940	0.100	59/1
	(3/8 2 (-)			
151	$(CH_3)_8Si_3(1) = (CH_3)_8Si_3(g)$	11.000	0.200	72/3
191	(CH3)8513(1)—(CH3)8513(E)	Residual	0.003	
	(CTT) (CTT) (CTT)	12.500	0.400	72/3
152	$(CH_3)_{10}Si_4(1) = (CH_3)_{10}Si_4(g)$	Residual	-0.002	,0
				72/3
153	$(CH_3)_{12}Si_5(c) = (CH_3)_{12}Si_5(g)$	20.000	5.000	
154	$(CH_3)_2Si(CH_2)_3(1) = (CH_3)_2Si(CH_2)_3(g)$	8.300	0.500	72/1
155	$(CH_3)_2Si(CH_2)_4(1) = (CH_3)_2Si(CH_2)_4(g)$	9.000	0.500	72/1
156	$Si_2C_6H_{16}(1)=Si_2C_6H_{16}(g)$	9.800	0.500	72/1
157	$(CH_3)_3SiH(g) = (CH_3)_3Si(g) + H(g)$	80.200	0.500	71/3
	(= 13/3=1110)	Residual	-0.012	
158	$(CH_3)_3SiH(g) = (CH_3)_2SiH(g) + CH_3(g)$	76.500	0.500	71/3
159	$(CH_3)_6Si_2(g) = 2(CH_3)_3Si(g)$	67.000	2.000	68/3
100	(C113)6512(G)=2(C113)3C1(G)	Residual	-0.188	
100	OII OIII (m) OH OIH +(m) + H(m)	272,100	9.000	70/5
160	$CH_3SiH_3(g) = CH_3SiH_2^+(g) + H(g)$	256.400	9.000	70/5
161	$(CH_3)_2SiH_2(g) = (CH_3)_2SiH^+(g) + H(g)$	265.400	9.000	70/5
162	$(CH_3)_2SiH_2(g) = CH_3SiH_2^+(g) + CH_3(g)$	242.600	9.000	70/5
163	$(CH_3)_3SiH(g) = (CH_3)_3Si^+(g) + H(g)$	Residual	-1.312	,.
			9.000	66/5
		247.200		00,0
		Residual	3.288	C7 /E
		244.400	9.000	67/5
		Residual	0.488	
		246.100	9.000	72/2
		Residual	2.188	
164	$(CH_3)_3SiH(g) = (CH_3)_2SiH^+(g) + CH_3(g)$	251.600	9.000	70/5
104	(C113/3D11(G)—(C113/2D11 (G)) ===3(G)	Residual	-3.350	
		258.300	9.000	68/2
		Residual	3.350	
	Street Color (Street Color	236.400	9.000	70/5
165	$(CH_3)_4Si(g1) = (CH_3)_3Si^+(g) + CH_3(g)$	Residual	-7.659	•
			9.000	66/5
		242.800		00,0
		Residual	-1.259	67 /K
		239.800	9.000	67 /5
		Residual	-4.259	00.14
		242 .800	9.000	69/4
		Residual	-1.259	
100	$(CH_3)_3SiC_2H_5(g) = (CH_3)_3Si^+(g) + C_2H_5(g)$	238.500	9.000	66/5
166	$(CH_3)_6Si_2(g) = (CH_3)_3Si^+(g) + (CH_3)_3Si(g)$ $(CH_3)_6Si_2(g) = (CH_3)_3Si^+(g) + (CH_3)_3Si(g)$	231.300	9.000	66/5
167	(On3/6012(E)—(O113/301 (E) + (O113/301(E)	Residual	0.412	
		230.600	9.000	67/5
		Residual	-0.288	

		ΔH°	Error	Ref
	Reaction		l/mol)	rei
	reaction	232.900	9.000	67/6
		Residual	2.012	01,0
		235.700	9.000	69/4
		Residual	4.812	, -
168	$(CH_3)_6Si_2(g) = (CH_3)_5Si_2^+(g) + CH_3(g)$	237.100	9.000	72/3
100	(0113/6012(6)—(0113/5012 (6) 0113(6)	Residual	-2.673	, -
169	$(CH_3)_8Si_3(g) = (CH_3)_3Si^+(g) + (CH_3)_5Si_2(g)$	246.800	9.000	72 /3
100	(0113/8013(B) = (0113/301 (B) (0113/5012(B)	Residual	2.388	•
		247.700	9.000	72/2
		Residual	3.288	
170	$(CH_3)_8Si_3(g) = (CH_3)_5Si_2^+(g) + (CH_3)_3Si(g)$	229.500	9.000	72/3
	(2 3/6 · 3 (2/ · · · 3/6 2 · · · · · · · · · · · · · · · · · ·	Residual	5.512	
171	$(CH_3)_8Si_3(g) = (CH_3)_7Si_3^+(g) + CH_3(g)$	238.500	9.000	72 /3
	0.0 0.0 0.0	Residual	-1.579	
172	$(CH_3)_{10}Si_4(g) = (CH_3)_3Si^+(g) + (CH_3)_7Si_3(g)$	2 59. 4 00	9.000	72 /3
173	$(CH_3)_{10}Si_4(g) = (CH_3)_5Si_2^+(g) + (CH_3)_5Si_2(g)$	229.000	9.000	72 /3
		Residual	 2.83 8	
174	$(CH_3)_{10}Si_4(g) = (CH_3)_7Si_3^+(g) + (CH_3)_3Si(g)$	220,200	9.000	72/3
		Residual	1.579	
175	$(CH_3)_{12}Si_5(g) = (CH_3)_3Si^+(g) + (CH_3)_9Si_4(g)$	262.200	9.000	72 /3
176	$CH_3SiCl_3(1) + 3H_2O(1) = CH_3Si(OH)_3(a) + 3HCl(a)$	-51.500	0.500	53/3
177	$2C(cs) + Si(cs) + 4H_2(gs) + O_2(gs)$			
	$= (CH_3)_2 Si(OH)_2(a)$	-205.000	5.0 00	66/1
	-	Residual	1.238	
178	$2(CH_3)_3SiOH(1) = (CH_3)_6Si_2O(1) + H_2O(1)$	2.400	0.200	67/7
179	(CH3)3SiOH(1) = (CH3)3SiOH(g)	10.900	0.400	53/2
180	$2(CH_3)_3SiOC_2H_5(1) + H_2O(1)$			
	$= (CH_3)_6 Si_2 O(1) + 2C_2 H_5 OH(50H_2 O)$	 11.400	0.200	72/4
181	$12C(cs) + Si(cs) + 6H_2(gs) + O_2(gs)$			
	$= (C_6H_5)_2Si(OH)_2(a)$	 155.000	5.000	66/1
182	$(CH_3)_6Si_2O(1) + 12O_2(gs) + 12HF(80H_2O)$			
	$=2H_2SiF_6(a4)+6CO_2(g)+13H_2O(1)$	1484.800	4.200	72/1
		Residual	-0.699	
183	$(CH_3)_6Si_2O(l) + 12O_2(gs) + 12HF(25H_2O)$		4 400	04.10
	$=2H_2SiF_6(a1)+6CO_2(g)+13H_2O(l)$	-1484.510	1.490	64/2
		Residual	-0.037	
184	$(CH_3)_6Si_2O(1) + 12O_2(gs) + 12HF(4.0H_2O)$	4405 400	1 690	64/2
	$=2H_2SiF_6(a2)+6CO_2(g)+13H_2O(l)$	1485.460 Residual	1.620	01/2
	(0077.0)	Residual	-0.186	
185	$(CH_3)_8Si_3O_2(1) + 16O_2(gs) + 18HF(80H_2O)$	-1983.300	2.400	72/1
	$=3H_2SiF_6(a4)+8CO_2(g)+18H_2O(1)$	- 1965.500	2.400	••/ -
186	$(CH_3)_{10}Si_4O_3(1) + 20O_2(gs) + 24HF(80H_2O)$	-2492.200	5.000	72/1
	$=4H_2SiF_6(a4)+10CO_2(g)+23H_2O(1)$	- 2452.200	0.000	. =, =
187	$2(CH_3)_{12}Si_5O_4(1) + 48O_2(gs) + 60HF(80H_2O)$	-5965.800	14.600	72/1
	=10H2SiF6(a4)+24CO2(g)+56H2O(l)	8.900	0.400	47/1
188	$(CH_3)_6Si_2O(1) = (CH_3)_6Si_2O(g)$	9.500	0.500	72/1
189	$(CH_3)_8Si_3O_2(1) = (CH_3)_8Si_3O_2(g)$	11.500	0.500	72/1
190	$(CH_3)_{10}Si_4O_3(1) = (CH_3)_{10}Si_4O_3(g)$	12.700	0.500	72/1
191	$(CH_3)_{12}Si_5O_4(1) = (CH_3)_{12}Si_5O_4(g)$	1200		•
192	$(CH_3)_3SiCl(1)+6O_2(gs)$	-720.900	5.000	70/6
	$= SiO_2(a) + 3CO_2(g) + 4H_2O(1) + HCl(600H_2O)$	Residual	-0.186	
	COTT C1:C1 (1) 1 90 (cc)			
193	$CH_3SiCl_3(1) + 2O_2(gs)$ = $SiO_2(a) + CO_2(g) + 3HCl(600H_2O)$	 2 83.800	5.000	70/6
	$= 510_2(a) + 60_2(g) + 61101(6601120)$	Residual	8.198	
104	$(CH_3)_2SiCl_2(1)+4O_2(gs)$			
194	$= SiO_2(a) + 2CO_2(g) + 2H_2O(1) + 2HCl(600H_2O)$	-503.400	5.000	6 8/ 4
	-5.02(a) 2002(B) 22220(c)	Residual	1.135	
105	$2(CH_3)_2HSiCl(1)+9O_2(gs)$			
195	$= 2SiO_2(a) + 4CO_2(g) + 6H_2O(1) + 2HCI(600H_2O)$	-1141.000	5.000	68/4
196	$2CH_0HSiCl_0(1) + 5O_0(gs)$			
100	$=2SiO_2(a)+2CO_2(g)+2H_2O(1)+4HC1(600H_2O)$	-707.200	5.000	68/4

	Reaction	ΔH°	Error /mol)	Ref
197	(CH3)2SiCl2(1) + 2H2O(1)	(IICUI	, 11101)	
	$= (CH_3)_2 Si(OH)_2(a) + 2HCl(500H_2O)$	-32.090	0.200	66/1
		Residual	0.055	
		-32.500	0.500	53/3
		Residual	-0.355	
198	$(C_6H_5)_2SiCl_2(1) + 2H_2O(1)$	91 640	0.500	ee /1
100	$= (C_6H_5)_2Si(OH)_2(a) + 2HCl(500H_2O)$	-31.640 7.210	0.500 0.200	66/1 60/1
199	(CH3)3SiCl(1) = (CH3)3SiCl(g)	Residual	0.200	00/1
200	$(CH_3)_2SiCl_2(1) = (CH_3)_2SiCl_2(g)$	7.540	0.200	60/1
200	(0113/201012(1) (0113/201012(8)	Residual	0.002	•
201	$CH_3SiCl_3(1)=CH_3SiCl_3(g)$	7.500	0.200	60/1
		Residual	-0.003	
202	$2(CH_3)_3SiCl(g) = (CH_3)_2SiCl_2(g) + (CH_3)_4Si(g1)$	3.600	2.000	48/2
		Residual	0.503	40/9
203	$2(CH_3)_2SiCl_2(g) = CH_3SiCl_3(g) + (CH_3)_3SiCl(g)$	3.600	2.000 0.328	48/2
004	a(att.) a(a)(l) (H O(l)	Residual	0.328	
204	2(CH3)3SiCl(1) + H2O(1) = (CH3)6Si2O(1) + 2HCl(50H2O)	-21.600	0.200	67/7
	$= (CH_3)_6Si_2O(1) + 2HCI(30II_2O)$	Residual	0.091	4.,.
205	$2(CH_3)_3SiCl(1) + H_2O(1)$	1102144		
200	= (CH3)6Si2O(1) + 2HCl(800H2O)	 22.360	0.120	66/6
	(02-3/04-24 (-) / (-) 2 /	Residual	-0.033	
206	$(CH_3)_3SiCl(1) + 2(C_2H_5)_2NH(1)$			
	$= (CH_3)_3 SiN(C_2H_5)_2(1) + (C_2H_5)_2 NH_2 Cl(c)$	-32.100	0.300	62/6
207	$(CH_3)_3SiCl(g) = (CH_3)_2SiCl^+(g) + CH_3(g)$	244.400	9.000	68/2
208	$2(CH_3)_3SiBr(1) + H_2O(1)$	D7 400	0.900	6717
	$= (CH_3)_6 Si_2 O(1) + 2HBr(50H_2O)$	27.400 7.800	0.200 0.200	67/7 67/7
209	(CH3)3SiBr(1) = (CH3)3SiBr(g) $(CH3)3SiBr(m) + CH3(m) + CH4(m)$	246.800	9.000	68/2
210 211	$(CH_3)_3SiBr(g) = (CH_3)_2SiBr(g) + CH_3(g)$ $(CH_3)_3SiI(g) = (CH_3)_3Si(g) + I(g)$	232,900	9.000	67/5
411	$(CH_3)_3SH(g) = (CH_3)_3SH(g) + I(g)$	Residual	3.550	
		225.800	9.000	72/2
		Residual	-3.550	
212	$(CH_3)_3SiI(g) = (CH_3)_2SiI^+(g) + CH_3(g)$	237.500	9.000	6 8/ 2
21 3	$2(CH_3)_3SiSC_4H_9(1)+H_2O(1)$	0.000	0.000	07.17
	$= (CH_3)_6 Si_2 O(1) + 2C_4 H_9 SH(1)$	-3.600 9.700	0.200 0.100	67/7 67/7
214	$(CH_3)_3SiSC_4H_9(1) = (CH_3)_3SiSC_4H_9(g)$	221,000	8.000	70/4
215	$2SiC(c1) + N_2(gs) = 2SiCN(g)$	Residual	5.296	.0, -
01.0	$2\mathrm{Si}(g) + \mathrm{N}_2(gs) + 2\mathrm{C}(cs) = 2\mathrm{SiCN}(g)$	-36.000	4.000	70/4
216	251(g)+12(gs)+20(cs)-251011(g)	Residual	-1.324	
217	$2(CH_3)_3SiNHCH_3(1) + H_2O(1) + 2HCl(50H_2O)$			
	$= (CH_3)_6 Si_2 O(1) + 2CH_3 NH_3 CI(50H_2 O)$	-58.600	0.200	67/7
218	$2(CH_3)_3SiN(CH_3)_2(1) + H_2O(1) + 2HCl(50H_2O)$	~a aaa	0.000	67.17
	$= (CH_2)_6 Si_9 O(1) + 2(CH_3)_2 NH_2 CI(50H_2 O)$	50.600	0.200	67/7
219	$(CH_3)_6Si_2NH(1) + H_2O(1) + HC1(50H_2O)$	-34.500	0.200	67/7
	$= (CH_3)_6 Si_2 O(1) + NH_4 CI(50H_2 O)$	Residual	0.253	.,.
000	$(CH_3)_6Si_2NH(1) + H_2O(1) + HCl(1500H_2O)$	10024444	•	
220	$= (CH_3)_6 Si_2 NH(1) + NH_4 CI(1500H_2 O)$ $= (CH_3)_6 Si_2 O(1) + NH_4 CI(1500H_2 O)$	-34.490	0.040	66/6
	=(C113)65120(1) + 1111401(13001-20)	Residual	-0.010	
221	$(CH_3)_6Si_2NCH_3(1) + H_2O(1) + HCl(50H_2O)$			
	$= (CH_3)_6 Si_2 O(1) + CH_3 NH_3 CI(50H_2 O)$	-38.900	0.200	67/7
222	$2(CH_2)_0Si_2N(c) + 3H_2O(1) + 2HC1(50H_2O)$	00 000	1,000	67/7
	$=3(CH_3)_6Si_2O(1)+2NH_4C1(50H_2O)$	- 98,200	0.100	67/7
22 3	$(CH_3)_3SiNHCH_3(1) = (CH_3)_3SiNHCH_3(g)$	8.600 7.600	0.100	67/7
224	$(CH_3)_3SiN(CH_3)_2(1) = (CH_3)_3SiN(CH_3)_2(g)$	9.900	0.100	67/7
22 5	$(CH_3)_6Si_2NH(1) = (CH_3)_6Si_2NH(g)$ $(CH_3)_6Si_2NCH_3(1) = (CH_3)_6Si_2NCH_3(g)$	9.300	0.100	67/7
226 227	$(CH_3)_6SI_2NCH_3(1) = (CH_3)_6SI_6NCH_3(g)$ $(CH_3)_9Si_3N(c) = (CH_3)_9Si_3N(g)$	13.000	0.100	67/7
227	(O113/901311 (O) — (O113/9~13-118/			

References

- 12/1 Mullert, Z. anorg. Chem., 75, 198 (1912).
- Wietzel, Z. anorg. Chem., 116, 71 (1921).
- 22/1 Latimer, J. Amer. Chem. Soc., 44, 90 (1922).
- Thiesson and Koerner, Z. anorg. Chem., 197, 307 (1931).
- Stock, Hydrides of Boron and Silicon, Cornell University Press, Ithaca, N.Y, (1933).
- 46/1 Whitmore, Somner, DiGiorgio, Strong, Van Strien, Bailey, Pietrusza and Kerr, J. Amer. Chem. Soc., 68, 475 (1946).
- Hildebrand, J. Chem. Phys., 15, 727 (1947).
- Stull, Ind. Eng. Chem., 39, 517 (1947).
- Torgeson and Sahama, J. Amer. Chem. Soc., 70, 2156 (1948).
- Zemany and Price, J. Amer. Chem. Soc., 70, 4222 (1948).
- 49/1 Moore, Nat. Bur. Stand., Circ. 467.
- 51/1 King, J. Amer. Chem. Soc., 73, 656 (1951).
- Tannenbaum, Kaye and Lewenz, J. Amer. Chem. Soc., 75, 3753 (1953).
- Grubb and Osthoff, J. Amer. Chem. Soc., 75, 2230 (1953). 53/2
- Andrianov and Pavlov, Dokl. Akad. Nauk. SSSR., 88, 811 (1953).
- 54/1Rocquet and Ancey-Moret, Bull. Soc. Chim. France, 1038 (1954).
- 55/1Porter, Chupka and Inghram, J. Chem. Phys., 23, 216 (1955). Johns and Barrow, Proc. Phys. Soc. London, 71, 166 (1958).
- Drowart, DeMaria, and Inghram, J. Chem. Phys., 29, 1015 (1958). 58/2
- 59/1 Suza and Seki, Bull. Chem. Soc. Japan., 32, 1088 (1959).
- 60/1 Popov, Plasticheskie Massy, 8, 26 (1960); Chem. Abs., 55, 11006e (1961). Vorob'ev, Kolesov and Skuratov, Russ. J. Inorg. Chem., 5, 681 (1960). 60/2
- Gunn and Green, J. Phys. Chem., 65, 779 (1961).
- Wolf, Z. anorg. Chem., 313, 228 (1961). 61/2
- 61/3Davis, Anthrop and Searcy, J. Chem. Phys., 34, 659 (1961).
- 62/1 Cochran and Foster, J. Phys. Chem., 66, 380 (1962).
- 62/2Steele, Nichols and Stone, J. Amer. Chem. Soc., 84, 4441 (1962).
- 62/3Margrave, Kana'an and Pease, J. Phys. Chem., 66, 1200 (1962).
- Wolf, Stahn and Schonherr, Z. anorg. Chem., 319, 168 (1962). 62/4
- 62/5Steele and Stone, J. Amer. Chem. Soc., 84, 3599 (1962).
- 62/6 Claydon and Mortimer, J. Chem. Soc., 3212 (1962).
- 63/1 Feder, Hubbard, Wise and Margrave, J. Phys. Chem., 67, 1149 (1963).
- Wise, Margrave, Feder and Hubbard, J. Phys. Chem., 67, 815 (1963).
- Saalfeld and Svec, Inorg. Chem., 2, 46 (1963). 63/3
- Balk and Dong, J. Phys. Chem., 68, 960 (1964). 64/1
- Good, Lacina, DePrater and McCullough, J. Phys. Chem., 68, 579 (1964).
- 64/3Gunn and Green, J. Phys. Chem., 68, 946 (1964).
- Beezer and Mortimer, J. Chem. Soc., 2727 (1964). 64/4
- 64/5Schafer and Heine, Z. anorg. Chem., 332, 25 (1964).
- Kana'an and Margrave, Inorg. Chem., 3, 1037 (1964). 64/6
- Verhaegen, Stafford, and Drowart, J. Chem. Phys., 40, 1622 (1964). 64/7
- 64/8Verma, Can. J. Phys., 42, 2345 (1964).
- Ehlert and Margrave, J. Chem. Phys., 41, 1066 (1964). 64/9
- Timms, Kent, Ehlert, and Margrave, J. Amer. Chem. Soc. 87, 2824 (1965).
- 65/2 Hess, Lampe and Sommer, J. Amer. Chem. Soc., 87, 5327 (1965).
- Ring, O'Neal, Kadhim and Jappe, J. Organometal. Chem., 5, 124 (1966).
- Saalfeld and Svec, J. Phys. Chem., 70, 1753 (1966).
- Wolf and Herbst, Z. anorg. Chem., 347, 113 (1966).
- Davidson and Stephenson, Chem. Comm., 746 (1966). 66/4
- Connor, Finney, Leigh, Haszeldine, Robinson, Sedgewick and Simmons, Chem. 66/5Comm., 178 (1966).
- Beezer and Mortimer, J. Chem. Soc. A, 514 (1966).
- Exsteen, Drowart, Vander Auwera-Mahieu and Callaerts, J. Phys. Chem., 71, 4130 (1967).
- 67/2 Zmbov and Margrave, J. Amer. Chem. Soc., 89, 2492 (1967).
- 67/3 Wolf, Z. Chem., 7, 283 (1967).
- Schafer, Bruderreck and Morcher, Z. Anorg. Chem., 352, 122 (1967).
- 67/5 Band, Davidson, Lambert and Stevenson, Chem. Comm., 723 (1967).
- 67/6 Davidson and Stephenson, J. Organometal. Chem., 7, p.24 (1967).
- 67/7 Baldwin, Lappert, Pedley and Treverton, J. Chem. Soc. A, 1980 (1967).

- 68/1 McDonald, Williams, Thompson, and Margrave, Mass Spectometry in Inorganic Chemistry. Monograph No. 72, p. 261. American Chemical Society, Washington, D.C. (1968).
- 68/2 Band, Davidson and Lambert, J. Chem. Soc. A, 2068 (1968).
- 68/3 Davidson and Stephenson, J. Chem. Soc. A, 282 (1968).
- 68/4 Hajiev and Agarunov, J. Organometal. Chem., 11, 415 (1968).
- 69/1 Gross, Hayman and Mwroka, Trans. Faraday Soc., 65, 2856 (1969).
- 69/2 Ryklis, Bolgar and Fesenko, Porosh. Met., 9, 92 (1969).
- 69/3 Potzinger and Lampe, J. Phys. Chem., 73, 3912 (1969).
- 69/4 Lappert, Simpson and Spalding, J. Organometal. Chem., 17, p.1 (1969).
- 69/5 Tel'noi, Kol'yakova, Rabinovich and Vyazankin, Dokl. Akad. Nauk. SSSR, 185, 374 (1969).
- 70/1 Greenburg, Natke and Hubbard, J. Chem. Thermodyn., 2, 193 (1970).
- 70/2 Thynne and MacNeil, Inorg. Chem., 9, 1946 (1970).
- 70/3 Adams, Sharp, Wilson, and Margrave, J. Chem. Thermodyn., 2, 439 (1970).
- 70/4 Muenow and Margrave, J. Phys. Chem., 74, 2577 (1970).
- 70/5 Potzinger and Lampe, J. Phys. Chem., 74, 719 (1970).
- 70/6 Hajiev and Agarunov, J. Organometal. Chem., 22, 305 (1970).
- 71/1 JANAF Thermochemical Tables, Office of Standard Reference Data, National Bureau of Standards, Washington, D.C. 20234, June (1971).
- 71/2 Gaidis, Briggs and Shannon, J. Phys. Chem., 75, 974 (1971).
- 71/3 Davidson and Lambert, J. Chem. Soc. A, 882 (1971).
- 72/1 Iseard, Pedley and Treverton, (unpublished results).
- 72/2 Spalding, (unpublished results).
- 72/3 Iseard, Pedley and Krisnamurthy, (unpublished results).

. •