# **Guideline for the Intern Program**

Joohwan Seo larban@yonsei.ac.kr Jan. 2021

### Control 개요 - Model

Mobile robot error-kinematics in body-frame (local) coordinate



- Where  $V_x$  is longitudinal velocity and  $\omega_z = \frac{R_{wheel}}{R_{robot}} (\omega_R \omega_L)$ .
- $\omega_R$  and  $\omega_L$  부호: longitudinally forward rotation (+)

# Control 개요 – Control Derivation

- Note that our control inputs are  $\omega_R$  and  $\omega_L$ .
- Since there are no control inputs in our system equation, we take the derivative of  $\dot{e}_{v}$ , assuming that  $V_{x}$  is fixed. (Similar to feedback-linearization)

$$\ddot{e}_y = V_x \dot{e}_\psi$$
$$= V_x \omega_z$$

• Take  $\omega_z$  as

$$\omega_z = \frac{1}{V_r} \left( -K_d(\dot{y} - \dot{y}_r) - K_p(y - y_r) \right)$$

Then, its closed-loop dynamics become

$$\ddot{e}_y + K_d(\dot{y} - \dot{y}_r) + K_p(y - y_r)$$

$$= \ddot{e}_y + K_d(\dot{e}_y) + K_p(e_y)$$

$$= 0$$

- The closed-loop error dynamics become 2<sup>nd</sup> order ODE, that you might be very familiar with.
- Also note that  $\omega_z$  rule is equivalent as the PD control, if we don't have the information of  $\dot{y}_r$ .

### Control 개요 – Problem

1. Assume that we don't want any oscillation in  $e_y$ . Then, find gain  $K_p$  and  $K_d$  such that  $e_y$  does not oscillate, with the fastest convergence possible. (Hint: Select  $\omega_n$  (natural frequency) on your own. You may need the

(Hint : Select  $\omega_n$  (natural frequency) on your own. You may need the knowledge of mechanical vibration.)

2. Assume that we have obtained the control gains  $K_p$  and  $K_d$  which guarantee fastest convergence and no oscillation. Then, derive the control signals of  $\omega_R$  and  $\omega_L$ . (Use any assumption that you might need.) (Hint: Do not forget  $V_x$ .)

- 3. Write the pseudo-code for  $\omega_R$  and  $\omega_L$ .
- 4. Assume that we want closed-loop system response with designated pole location. Define the pole location yourself and derive the control signal  $\omega_R$  and  $\omega_L$ .
- 5. Simulate the whole process with Matlab using ODE45. (Hint: It is mathematical simulation.)

#### Simulation Example

Consider a system

$$\ddot{x} = -x + 2\dot{x} + u$$

• The state variable is  $x = x_1$ ,  $\dot{x} = x_2$ , then the state-space equation is

$$\dot{x}_1 = x_2 \\
\dot{x}_2 = -x_1 + 2\dot{x} + u$$

For the pole location to be (-1,-1), select control input as

$$u = -4\dot{x}$$

#### Main file

```
clear; close all; clc

%%
init = [4,0]';
[t,X] = ode45(@(t,X) system_fun(t,X), [0,10],init,'.');

figure(1)
plot(t,X(:,1)); hold on; plot(t,X(:,2));
legend('x','dx');
xlabel('time (s)')
```

#### **ODE** Function file

See matlab ode45 Function user manual for the details.

## System parameter for the problem & Simulation

- $V_{\chi}=0.15$  m/s  $R_{wheel}=0.03$  m,  $R_{robot}=0.075$  m
- Initial condition of y=0.1,  $\dot{y}=0$ ,  $e_{\psi}=0$
- Reference trajectory  $y_r = 0.05 \cos(t)$
- Use the control signal  $u = [\omega_R, \omega_L]^T$ Simulate for 50 seconds
- Use simulation states  $X = \begin{bmatrix} y, \dot{y}, e_{\psi} \end{bmatrix}^T$