Math 780/780I

Test 2

Name: Answer Key.

1. The positive integer n when written in base 10 has last digit 8 and the sum of its the digits is 15. Explain briefly why n is divisible by 6.

Solution: As the last digit is 8 the number n is even, that is $2 \mid n$. As the sum of the digits is 15, which is divisible by 3, we have that n is also divisible by 3. Thus $2 \mid n$ and $3 \mid n$. As gcd(2,3) = 1, this implies $2 \cdot 3 = 6 \mid n$.

2. Find the general solution to the Diophantine equation

$$10x + 8y = 22.$$

Solution: As $gcd(10, 8) = 2 \mid 22$ we see that this has a solution. We first look for a solution to

$$10x + 8y = \gcd(8, 10) = 2.$$

This can be done by the Euclidean algorithm, but it is easy to see that x = 1, y = -1 is a solution, that is

$$10(1) + 8(-1) = 2.$$

Multiply this through by 11 to get

$$10(11) + 8(-11) = 22.$$

So $(x_0, y_0) = (11, -11)$ is a particular solution. Thus the general solution is

$$x = x_0 + \frac{8}{2}t = 11 + 4t$$
$$y = y_0 - \frac{10}{2}t = -11 - 5t$$

where t is any integer.

3. How many integer solutions (x, y) to

$$4x + 3y = 200.$$

have both x and y positive?

Solution: We first find a particular solution to $4x + 3y = \gcd(4,3) = 1$. Such a solution is x = 1, y = -1. Thus

$$4(1) + 3(-1) = 1.$$

Multiply by 200 to get

$$4(200) + 3(-200) = 200.$$

The general solution to this is

$$x = 200 - 3t$$

$$y = -200 + 4t$$

where t can be any integer. We are only interested in positive solutions so we want

$$x = 200 - 3t > 0$$
 \Longrightarrow $t < \frac{200}{3} = 66.6666...$

$$y = -200 + 4t > 0$$
 \Longrightarrow $t > \frac{200}{4} = 50$

As t is an integer this gives $51 \le t \le 66$. The number of t's satisfying this is 66 - 51 + 1 = 16 which is also the number of positive solutions to 4x + 3y = 200.

4. For the integers a = 44 and b = 28 find integers x and y such that

$$ax + by = \gcd(a, b)$$

by use of the Euclidean algorithm.

Solution: So start:

$$(16) = (44) - (28)$$
$$(12) = (26) - (16)$$
$$(4) = (16) - (12)$$

Now back solve

$$(4) = (16) - (12)$$

$$= (16) - ((26) - (16))$$

$$= -(26) + 2(16)$$

$$= -(26) + 2((44) - (28))$$

$$= 2(44) - 3(28)$$

Therefore x = 2 and y = -3 work.

5. Find the general solution to x + 2y + 3z = 12.

Solution: Rewrite as

$$x + 2y = 12 - 3z.$$

We first find a particular solution to x + 2y = 1. One such solution is (x, y) = (-1, 1). Multiply

$$(-1) + 2(1) = 1$$

by 12 - 3z to get

$$(-12+3z) + 2(12-3z) = 12-3z.$$

The general solution to this is

$$x = -12 + 3z + 2t,$$
 $y = 12 - 3z - t$

So if we let z = s we find the general solution to our original system is

$$x = -12 + 3s + 2t$$
$$y = 12 - 3s - t$$
$$z = s$$

where $s, t \in \mathbb{Z}$.

6. (a) State Bézout's theorem.

Solution: For all integers a and b, not both zero, there are integers x and y such that

$$ax + by = \gcd(a, b).$$

(b) Use Bézout's theorem to prove that if $gcd(a, b) \mid c$, then ax + by = c has solutions in integers.

Solution: Let $d = \gcd(a, b)$. Then $d \mid c$ so there is an integer c' such that c = c'd. By Bézout's Theorem there are integers x_0 and y_0 such that $ax_0 + by_0 = d$ Multiply this by c' to get

$$a(c'x_0) + b(c'y_0) = c'd = c.$$

Thus ax + by = c has the solution $(x, y) = (c'x_0, c'y_0)$.

7. Define $a \equiv b \mod n$.

Solution:
$$n \mid (b-a)$$

(a) Prove that if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$.

Solution: The hypothesis is that $n \mid (b-a)$ and $n \mid (d-c)$. Thus there are integers k and ℓ such that (b-a)=kn and $(d-c)=\ell n$. Whence

$$(b+d) - (a+c) = (b-a) + (d-c) = kn + \ell n = (k+\ell)n$$

which shows that $n \mid ((b+d)-(a+c))$, and therefore $a+c \equiv b+d \mod n$.

(b) Let k and n be positive integers. Show

 $ak \equiv bk \mod nk \implies a \equiv b \mod n.$

Solution: If $ak \equiv bk \mod nk$, then $nk \mid (bk - ak)$ which in turn implies there is an integer ℓ such that

$$(bk - ak) = nk\ell.$$

We cancel k in this equality to get $(b-a) = n\ell$ which implies $n \mid (b-a)$. That is $a \equiv b \mod n$. \square

- 8. State both forms of Fermat's Little Theorem. (Which order you do this does not matter.)
 (a) Form 1:
- Solution: If p is a prime and $\nmid a$, then $a^{p-1} \equiv 1 \mod p$.
 - (b) Form 2:

Solution: If p is a prime then for any integer a we have $a^p \equiv a \mod p$.

(c) Use Fermat's Little Theorem to find the remainder when 7^{38} is divided by 13.

Solution: By Fermat's Little Theorem we know that $7^{12} \equiv 1 \mod 13$. Therefore

$$7^{38} = (7^{12})^3 \cdot 7^2 \equiv 1^2 \cdot 7^2 \equiv 49 \equiv 10 \mod 13.$$

So the remainder is 10.

- **9.** Let n be a positive integer.
 - (a) Define what it means for \hat{a} to be the inverse of a modulo n.

Solution: This means that $\widehat{a}a \equiv 1 \mod n$.

(b) If gcd(a, n) = 1 prove that a has an inverse modulo n.

Solution: As gcd(a, n) = 1 Bézout's Theorem tells us there are integers x and y such that

$$ax + ny = 1$$
.

If we view this equation $\mod n$ we get

$$ax \equiv 1 \mod n$$
.

Thus $\widehat{a} = x$ is an inverse of a modulo n.

10. It can be shown that $3^{100} \equiv 1 \mod 5$ and $3^{100} \equiv 4 \mod 7$. What is the remainder when 3^{100} is divided by $35 = 5 \cdot 7$. *Hint:* Chinese Remainder Theorem.

Solution: If $x = 3^{100}$ then x is a solution to the Chinese remainder problem

$$x \equiv 1 \mod 5$$

$$x \equiv 4 \mod 7$$

We use our method for solving these problems. An inverse of 7 modulo 5 is 3 (as $3 \cdot 7 = 21 \equiv 1 \mod 5$). An inverse of 5 modulo y is 3 (as $3 \cdot \cdot \cdot 5 = 15 \equiv 1 \mod 7$). So

$$x = 7 \cdot 3 \cdot 1 + 5 \cdot 3 \cdot 4 = 21 + 60 = 81$$

is a solution and this solution is unique modulo 35. Reducing 81 modulo 35 we have

$$81 \equiv 11 \mod 35$$

and therefore the remainder of 3^{100} when divided by 35 is 11.