- **13.1.** Верно ли, что r(a) = ||a|| для любого $a \in A$, если **1)** $A = L^{\infty}(X, \mu)$? **2)** $A = C^{n}[a, b]$?
- **13.2** (оператор взвешенного сдвига). Пусть $H = \ell^2$ и $\alpha = (\alpha_n)_{n \in \mathbb{N}} \in \ell^{\infty}$. Оператор

$$T_{\alpha} \colon H \to H, \quad T_{\alpha}(x) = (0, \alpha_1 x_1, \alpha_2 x_2, \ldots)$$

называется *оператором взвешенного сдвига*. (*Реклама*: такие операторы изучаются давно, но особую популярность приобрели в 90-х гг. прошлого века ввиду их важности для теории представлений компактных квантовых групп.)

- **1)** Вычислите $||T_{\alpha}||$.
- **2)** Вычислите $r(T_{\alpha})$. Для каких последовательностей $\alpha \in \ell^{\infty}$ оператор T_{α} квазинильпотентен? Приведите конкретный пример такой последовательности.
- **13.3** (оператор Вольтерра). Пусть $I=[a,b],\, H=L^2(I)$ и $K\in L^2(I\times I)$. Оператор Вольтерра $V_K\colon L^2(I)\to L^2(I)$ задается формулой

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy$$

Обратите внимание, что это частный случай интегрального оператора Гильберта–Шмидта из задачи 2.12. (*Реклама*: операторы Вольтерра образуют один из наиболее классических и давно изучаемых классов линейных операторов; они играют важную роль в теории интегральных уравнений, описывающих различные физические процессы.)

- 1) Докажите, что если функция K ограничена, то V_K квазинильпотентен.
- **2-b)** Докажите, что V_K квазинильпотентен для любой $K \in L^2(I \times I)$.

Таким образом, интегральное уравнение Вольтерра второго рода $f = \lambda V_K f + g$ относительно неизвестной функции $f \in L^2(I)$ имеет единственное решение для любого $\lambda \in \mathbb{C}$ и любой $g \in L^2(I)$.

- **13.4.** Найдите точечный, непрерывный и остаточный спектр диагонального оператора в ℓ^{∞} .
- **13.5.** Пусть (X,μ) пространство с мерой, f существенно ограниченная измеримая функция на X и M_f оператор умножения на f, действующий в $L^p(X,\mu)$ (где $1\leqslant p\leqslant \infty$). Найдите точечный, непрерывный и остаточный спектр оператора M_f .
- **13.6.** Найдите спектр оператора $T\colon L^2[-\pi,\pi]\to L^2[-\pi,\pi]$, действующего по формуле

$$(Tf)(t) = \int_{-\pi}^{\pi} \sin^2(t-s)f(s) ds.$$

- 13.7. Найдите спектр, точечный спектр, непрерывный спектр и остаточный спектр операторов правого и левого сдвига, действующих в пространстве c_0 .
- **13.8.** Сделайте то же самое, что в предыдущей задаче, для пространства ℓ^1 .
- **13.9.** Сделайте то же самое, что в предыдущей задаче, для пространства ℓ^{∞} .
- **13.10.** Найдите точечный, непрерывный и остаточный спектр оператора двустороннего сдвига в пространстве $\ell^2(\mathbb{Z})$.
- **13.11-b.** Сделайте то же самое, что в предыдущей задаче, для пространств $\ell^p(\mathbb{Z})$ и $c_0(\mathbb{Z})$.
- **13.12.** Для фиксированного $\zeta \in \mathbb{T}$ определим оператор сдвига $T_{\zeta} \colon L^2(\mathbb{T}) \to L^2(\mathbb{T})$ формулой $(T_{\zeta}f)(z) = f(\zeta^{-1}z)$. Найдите его спектр, точечный спектр, непрерывный спектр и остаточный спектр.

- **13.13-b.** Сделайте то же самое, что в предыдущей задаче, для пространств $L^p(\mathbb{T})$ и $C(\mathbb{T})$.
- **13.14-b.** Пусть A ненулевая унитальная алгебра и $u, v \in A$ обратимые элементы, удовлетворяющие соотношению uv = qvu, где $q \in \mathbb{C} \setminus \{0\}$. (*Терминология*: если A порождена элементами u, v и между ними нет других соотношений, то A называется κ вантовым тором. Это одна из простейших некоммутативных нётеровых алгебр, играющая важную роль в некоммутативной геометрии.)
- 1) Докажите, что если $|q| \neq 1$, то A не может быть банаховой алгеброй.
- **2)** Пусть |q| = 1, A банахова алгебра и q не является корнем из единицы. Что можно сказать про спектры элементов u и v?
- 3) Пусть $A = \mathcal{B}(X)$ алгебра ограниченных линейных операторов в банаховом пространстве X, и пусть выполнены условия п. 2. Предположим, что операторы u и v изометричны. Найдите их спектры.
- 4) Приведите пример операторов в гильбертовом пространстве, удовлетворяющих условиям п. 3. (Подсказка: см. задачи 13.5 и 13.12. Реклама: такие операторы тесно связаны с каноническими коммутационными соотношениями Г. Вейля в квантовой механике.)

Определение 13.1. Пространство $Xap\partial u$ — это замкнутое подпространство в $L^2(\mathbb{T})$, определяемое следующим образом:

$$H^2 = \{ f \in L^2(\mathbb{T}) : \langle f, z^n \rangle = 0 \quad \forall n < 0 \}.$$

13.15-b. Для каждой непрерывной функции f на открытом единичном круге $\mathbb{D} \subset \mathbb{C}$ и каждого $0 < \rho < 1$ положим

$$||f||_{\rho} = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\rho e^{it})|^2 dt\right)^{1/2}.$$

Докажите, что определение пространства H^2 , данное выше, эквивалентно следующему:

$$H^2=\{f\colon \mathbb{D} o \mathbb{C}\,:\, f$$
 голоморфна и $\|f\|=\lim_{
ho o 1}\|f\|_
ho<\infty\}.$

- **13.16-b.** Докажите, что оператор правого сдвига в ℓ^2 унитарно эквивалентен оператору умножения M_z в H^2 . Интерпретируйте результаты о точечном, непрерывном и остаточном спектре этого оператора (см. лекцию) с точки зрения теории аналитических функций.
- **13.17-b.** Пусть A унитальная банахова алгебра и $B \subseteq A$ подалгебра, содержащая 1_A . Докажите, что
- 1) B^{\times} открыто-замкнутое подмножество в $B \cap A^{\times}$;
- **2)** для каждого $b \in B$ резольвентное множество $\rho_B(b) = \mathbb{C} \setminus \sigma_B(b)$ открыто-замкнуто в $\rho_A(b)$;
- 3) для каждого $b \in B$ спектр $\sigma_B(b)$ является объединением спектра $\sigma_A(b)$ и некоторого семейства ограниченных компонент связности множества $\rho_A(b)$;
- **4)** для каждого $b \in B$ справедливо включение $\partial \sigma_B(b) \subseteq \partial \sigma_A(b)$.