Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Analiză reală – Curs Matematică, Matematică și Informatică, anul universitar: 2021/2022

Curs 7

Propoziția 1. Fie (X, A) un spațiu măsurabil, $f, g: X \to \overline{\mathbb{R}}$ funcții A-măsurabile și $\alpha \in \mathbb{R}$. Atunci următoarele funcții sunt A-măsurabile:

- (i) αf ;
- (ii) f+g şi f-g dacă sunt bine definite (adică nu iau valori de tipul $\infty-\infty$ sau $-\infty+\infty$);
- (iii) $f \cdot g$.

Propoziția 2. Fie (X, A) un spațiu măsurabil și $f_n : X \to \overline{\mathbb{R}}$, $n \in \mathbb{N}$, funcții A-măsurabile. Atunci funcțiile, definite pentru $x \in X$ prin

$$(\sup_{n\in\mathbb{N}} f_n)(x) = \sup\{f_n(x) : n\in\mathbb{N}\}, \qquad (\inf_{n\in\mathbb{N}} f_n)(x) = \inf\{f_n(x) : n\in\mathbb{N}\},$$
$$(\limsup_{n\to\infty} f_n)(x) = \limsup_{n\to\infty} f_n(x), \qquad (\liminf_{n\to\infty} f_n)(x) = \liminf_{n\to\infty} f_n(x),$$

sunt A- $m \ddot{a} surabile$.

 $Dac\check{a}$, $\hat{i}n$ plus, $\forall x \in X \exists \lim_{n \to \infty} f_n(x)$, atunci funcția

$$(\lim_{n \to \infty} f_n)(x) = \lim_{n \to \infty} f_n(x), \quad x \in X,$$

este A-măsurabilă.

Corolarul 1. Fie (X, A) un spațiu măsurabil și $f, g: X \to \overline{\mathbb{R}}$ funcții A-măsurabile. Atunci funcțiile

$$(f\vee g)(x)=\max\{f(x),g(x)\}\quad \text{g} i\quad (f\wedge g)(x)=\min\{f(x),g(x)\},\quad x\in X,$$

sunt A-măsurabile.

Definiția 1. Fie X o mulțime și $f:X\to\overline{\mathbb{R}}$. Funcțiile $f^+,f^-:X\to[0,\infty]$ definite prin

$$f^+(x) = \max\{f(x), 0\} \quad \text{si} \quad f^-(x) = -\min\{f(x), 0\} = \max\{-f(x), 0\}, \quad x \in X,$$

se numesc partea pozitivă, respectiv partea negativă, a lui f.

Observaţia 1. (i)
$$f^+ = f \vee 0$$
, $f^- = (-f) \vee 0$, $f = f^+ - f^-$ şi $|f| = f^+ + f^-$.

(ii) Fie (X, \mathcal{A}) un spațiu măsurabil. Atunci f este \mathcal{A} -măsurabilă $\iff f^+$ și f^- sunt \mathcal{A} -măsurabile.

Definiția 2. Fie X o mulțime. O funcție $f: X \to \mathbb{R}$ se numește simplă dacă ia un număr finit de valori.

Observația 2. O funcție $f: X \to \mathbb{R}$ este simplă dacă și numai dacă există numerele reale distincte $\alpha_1, \alpha_2, \ldots, \alpha_n$ și mulțimile $A_1, A_2, \ldots, A_n \subseteq X$ care formează o partiție a lui X astfel încât

$$f = \sum_{i=1}^{n} \alpha_i \chi_{A_i}. \tag{1}$$

Observația 3. Scriind o funcție simplă $f: X \to \mathbb{R}$ sub forma (1), f este A-măsurabilă dacă și numai dacă $\forall i \in \{1, ..., n\}, A_i \in A$.

Teorema 1 (Aproximarea funcțiilor măsurabile prin funcții simple). Fie (X, A) un spațiu măsurabil.

(i) Fie $f: X \to [0, \infty]$ o funcție A-măsurabilă. Atunci există un şir crescător $(f_n)_{n \in \mathbb{N}}$ de funcții simple şi A-măsurabile, unde $f_n: X \to [0, \infty)$, $n \in \mathbb{N}$, astfel încât

$$\forall x \in X, f(x) = \lim_{n \to \infty} f_n(x). \tag{2}$$

(ii) Fie $f: X \to \overline{\mathbb{R}}$ o funcție A-măsurabilă. Atunci există un şir $(f_n)_{n \in \mathbb{N}}$ de funcții simple şi A-măsurabile, unde $f_n: X \to \mathbb{R}$, $n \in \mathbb{N}$, astfel încât (2) să aibă loc.

Proprietăți care au loc aproape peste tot

Definiția 3. Fie (X, \mathcal{A}, μ) un spațiu cu măsură, $P(\cdot)$ o proprietate definită pentru punctele din X și $B \subseteq X$. Spunem că P are loc μ -aproape peste tot pe B (prescurtat μ -a.p.t. pe B) dacă există $A \in \mathcal{A}$ cu $\mu(A) = 0$ astfel încât pentru oricare $x \in B \setminus A$, P(x) se verifică.

Convenție: Dacă B=X, atunci spunem simplu că P are loc μ -a.p.t., iar dacă măsura μ este subînțeleasă, atunci nu o mai menționăm.

Exemplul 1. (i) Fie $f,g:X\to\overline{\mathbb{R}}$. Atunci f=g μ -a.p.t. înseamnă că

$$\exists A \in \mathcal{A} \text{ cu } \mu(A) = 0 \text{ astfel încât } \forall x \in X \setminus A, \ f(x) = g(x).$$

(ii) Fie $f: X \to \overline{\mathbb{R}}$ și $(f_n)_{n \in \mathbb{N}}$ un șir de funcții, unde $f_n: X \to \overline{\mathbb{R}}$, $n \in \mathbb{N}$. Atunci $f_n \to f$ μ -a.p.t. înseamnă că

$$\exists A \in \mathcal{A} \text{ cu } \mu(A) = 0 \text{ astfel încât } \forall x \in X \setminus A, \ \lim_{n \to \infty} f_n(x) = f(x).$$

Exemplul 2. Approape toate numerele reale sunt numere irationale.

Exemplul 3 (Teorema lui Rademacher). Fie $U \subseteq \mathbb{R}^n$ deschisă şi nevidă. Atunci orice funcție Lipschitz $f: U \to \mathbb{R}^m$ este diferențiabilă a.p.t. pe U.

Propoziția 3. Fie (X, \mathcal{A}, μ) un spațiu cu măsură completă.

- (i) $Dac\Breve{a}\ f,g:X\to \overline{\mathbb{R}}\ astfel\ \hat{\imath}nc\hat{a}t\ f\ este\ \mathcal{A}$ -măsurabilă şi $f=g\ \mu$ -a.p.t., atunci $g\ este\ \mathcal{A}$ -măsurabilă.
- (ii) Dacă $f: X \to \overline{\mathbb{R}}$ şi $(f_n)_{n \in \mathbb{N}}$ este un şir de funcții A-măsurabile, unde $f_n: X \to \overline{\mathbb{R}}$, $n \in \mathbb{N}$, astfel încât $f_n \to f$ μ -a.p.t., atunci f este A-măsurabilă.