Edge Detection on Techniques

Edge detection is a technique for finding boundaries of objects on images. It helps to make the image clearer by increasing the sharpness of the these edges. Main 3 steps in edge detection are Enhancement, Detection, Localization.

1. Sobel method

-1	0	1
-2	0	2
-1	0	1

L	1	2	1
	0	0	0
	-2	-1	-1

Matlab Code

BW1 = edge(I,'sobel'); imshow(BW1);

2. Canny Method

$$\mathbf{B} = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix} * \mathbf{A}.$$

Matlab Code

BW2 = edge(I, 'canny');

Imshow(BW2);

3.Prewitt Method

$$h_1 = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad h_2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Matlab Code

BW3 = edge(I, 'prewitt)

imshow(BW3);

4.Roberts Method

$$h_1 = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad h_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Matlab Code

BW4= edge(I,'roberts');

Imshow(BW4);

Comparison of edge detection techniques

References:

- https://www.math.washington.edu/~morrow/336_13/papers/debosmit.pdf
- http://www.cse.usf.edu/~r1k/MachineVisionBook/MachineVision.files/MachineVision_Chapter5.pdf
- https://www.mathworks.com/help/images/examples/detecting-a-cell-using-image-segmentation.html