

i-VisionGroup

文献分享

范博昊

单目多人3Dpose检测

- Top-down
 - LCRNet(CVPR17)
 - LCRNet++(PAMI19)
 - HG-RCNN (3DV19)

- Bottom-up
 - ORPM (3DV18)
 - Xnect(arxiv)

LCR-net: CVPR2017

结构

$$\mathcal{L} = \mathcal{L}_{Loc} + \mathcal{L}_{Classif} + \mathcal{L}_{Reg}$$
 $\mathcal{L}_{Classif}(u, c_B) = -log \ u(c_B)$

$$\mathcal{L}_{Loc} = \mathcal{L}_{RPN} \qquad \qquad \mathcal{L}_{Reg}(v, t_{c_B}) = [c_B \geqslant 1] \| t_{c_B} - v_{c_B} \|_S$$

$$||x||_S = \begin{cases} 0.5x^2 & \text{if } |x| < 1, \\ |x| - 0.5 & \text{otherwise.} \end{cases}$$

Method	Im	Loc	Directions	Discussion	Eat	Greet	Phone	Pose	Purchase	Sit	SitDown
Tekin <i>et al</i> . [29]		✓	102.4	147.7	88.8	125.3	118.0	112.3	129.2	138.9	224.9
Zhou <i>et al</i> . [37]		ļ	87.4	109.3	87.0	103.2	116.2	106.9	99.8	124.5	199.2
Du <i>et al</i> . [7]		✓	85.1	112.7	104.9	122.1	139.1	105.9	166.2	117.5	226.9
Li et al. [14]	✓		-	148.8	104.0	127.2	-	-	-	-	-
Li <i>et al</i> . [15]	\checkmark	ļ	-	134.1	97.4	122.3	-	-	-	-	-
Li <i>et al</i> . [16]	\checkmark	ļ	-	133.5	97.6	120.4	-	-	-	-	-
Tekin <i>et al</i> . [28]	\checkmark	ļ	-	129.1	91.4	121.7	-	-	-	-	-
Rogez & Schmid [23]	\checkmark	ļ	94.5	110.4	109.3	143.9	125.9	95.5	89.8	134.2	179.2
Sanzari et al. [24]	\checkmark	✓	48.8	56.3	96.0	84.8	96.5	66.3	107.4	116.9	129.6
LCR-Net + NMS	✓	✓	79.8	84.5	76.4	86.6	94.2	81.6	74.2	106.3	129.4
LCR-Net + PPI	✓	✓	76.2	80.2	75.8	83.3	92.2	79.0	71.7	105.9	127.1
Method	Im	Loc	Smoke	Photo	Wait	Walk	WalkDog	WalkTogether		Avg. (All)	Avg. (6)
Method Tekin <i>et al.</i> [29]	Im	Loc	Smoke 118.4	Photo 182.7	Wait 138.7	Walk 55.1	WalkDog 126.3	WalkTogether 65.8		Avg. (All) 125.0	Avg. (6) 121.0
	Im		118.4 107.4	182.7 143.3	138.7 118.1	55.1 79.4	126.3 114.2				121.0 106.1
Tekin <i>et al</i> . [29]	Im		118.4	182.7	138.7	55.1	126.3	65.8		125.0	121.0
Tekin <i>et al.</i> [29] Zhou <i>et al.</i> [37]	Im √	√	118.4 107.4	182.7 143.3	138.7 118.1	55.1 79.4	126.3 114.2	65.8 97.7		125.0 113.0	121.0 106.1
Tekin <i>et al</i> . [29] Zhou <i>et al</i> . [37] Du <i>et al</i> . [7]		√	118.4 107.4 120.0	182.7 143.3 135.9	138.7 118.1 117.6	55.1 79.4 99.3	126.3 114.2 137.4	65.8 97.7 106.5		125.0 113.0 126.5	121.0 106.1 118.7
Tekin et al. [29] Zhou et al. [37] Du et al. [7] Li et al. [14]		√	118.4 107.4 120.0	182.7 143.3 135.9 189.1	138.7 118.1 117.6	55.1 79.4 99.3 77.6	126.3 114.2 137.4 146.6	65.8 97.7 106.5		125.0 113.0 126.5	121.0 106.1 118.7 132.2
Tekin et al. [29] Zhou et al. [37] Du et al. [7] Li et al. [14] Li et al. [15]		√	118.4 107.4 120.0	182.7 143.3 135.9 189.1 166.2	138.7 118.1 117.6	55.1 79.4 99.3 77.6 68.5	126.3 114.2 137.4 146.6 132.5	65.8 97.7 106.5		125.0 113.0 126.5	121.0 106.1 118.7 132.2 121.3
Tekin et al. [29] Zhou et al. [37] Du et al. [7] Li et al. [14] Li et al. [15] Li et al. [16]		√	118.4 107.4 120.0	182.7 143.3 135.9 189.1 166.2 163.3	138.7 118.1 117.6	55.1 79.4 99.3 77.6 68.5 73.7	126.3 114.2 137.4 146.6 132.5 135.2	65.8 97.7 106.5		125.0 113.0 126.5	121.0 106.1 118.7 132.2 121.3 121.6
Tekin et al. [29] Zhou et al. [37] Du et al. [7] Li et al. [14] Li et al. [15] Li et al. [16] Tekin et al. [28]		√	118.4 107.4 120.0	182.7 143.3 135.9 189.1 166.2 163.3 162.2	138.7 118.1 117.6	55.1 79.4 99.3 77.6 68.5 73.7 65.7	126.3 114.2 137.4 146.6 132.5 135.2 130.5	65.8 97.7 106.5 - -		125.0 113.0 126.5	121.0 106.1 118.7 132.2 121.3 121.6 116.8
Tekin et al. [29] Zhou et al. [37] Du et al. [7] Li et al. [14] Li et al. [15] Li et al. [16] Tekin et al. [28] Rogez & Schmid [23]	√ √ √ √	√	118.4 107.4 120.0	182.7 143.3 135.9 189.1 166.2 163.3 162.2 160.3	138.7 118.1 117.6 - - - 133.0	55.1 79.4 99.3 77.6 68.5 73.7 65.7 77.4	126.3 114.2 137.4 146.6 132.5 135.2 130.5 129.5	65.8 97.7 106.5 - - - 91.3		125.0 113.0 126.5 - - - 121.2	121.0 106.1 118.7 132.2 121.3 121.6 116.8

LCRNet++(PAMI2019)

3D GT

3DV2019

Multi-Person 3D Human Pose Estimation from Monocular Images

Rishabh Dabral IIT Bombay

rdabral@cse.iitb.ac.in

Abhishek Sharma Axogyan AI

abhisharayiya@gmail.com

Nitesh B Gundavarapu IIT Bombay

ntesh93@gmail.com

Ganesh Ramakrishnan IIT Bombay

ganesh@cse.iitb.ac.in

Rahul Mitra IIT Bombay

rmitter@cse.iitb.ac.in

Arjun Jain Axogyan AI

arjunjain@gmail.com

结构

Figure 2. Schematic of our Multi-Person 3D Pose Estimation approach. We augment the Faster-RCNN [26] architecture with a shallow HourGlass Network [23]. The heatmaps generated by the hourglass are then input to a 3D Pose Module which regresses the root-relative 3D joint coordinates. The estimated 3D poses of all the Regions of Interests (RoI's) are then collected and their global root positions are approximated to ensure that relative spatial ordering is preserved.

3D Pose Module: Our 2D-to-3D pose module converts the heatmap activations to 3D pose using a residual architecture and is in line with the 2D-3D lifting pipelines proposed in [17, 32, 22]. We input the 2D poses in heatmap space after passing the heatmaps through a *softargmax* layer. This has two benefits: a) it makes learning possible from images of any given size and scale, and b) it facilitates end-to-end training of the network architecture. The network is trained using RMSProp optimizer and a learning rate of $2.5 \exp -4$ which is reduced by 10 times after 40 epochs.

$$Z = f * \frac{S_{3D}}{S_{2D}},$$

$$f^*, t^* = \underset{f,t}{\arg\min} \sum_{i=1}^N ||K_i - \Pi_{f,t_i} P_i||_2$$
 (3)

where $t = \{t_1, t_2, \dots t_N\}$ with t_i being the translation vector of i^{th} subject's root joint and Π being the projection operator. This, finally, leads to the global pose, $P_i^G = P_i + t_i^*$.

10thPercentile

30th Percentile

90th Percentile

Table 5. Comparison of HG-RCNN and Mask-RCNN based models on MuPoTS 3D. The evaluation metric is 3DPCK.

	Mask-RCNN	HG-RCNN
all annotated joints	70.1	72.4
all occluded joints	61.0	64.1

Table 1. Comparison of our method with prior work on MuPoTS-3D on Setting 1. The top half shows results on all annotated poses in the test set. The bottom half shows results when only the detected poses are considered. The evaluation metric is 3D PCK and higher is better. *Note, that the average PCK provided in LCRNet++ [28] is not weighed by the number of persons in each test sequence unlike [27, 20] and ours.

Method	TS1	TS2 T	rs3	TS4	TS5	TS6	TS7	TS8	TS9	TS10	TS11	TS12	TS13	TS14	TS15	TS16	TS17	TS18	TS19	TS20	Avg
[27]	67.7	19.85	3.4	59.1	67.5	22.8	43.7	49.9	31.1	78.1	50.2	51.0	51.6	49.3	56.2	66.5	65.2	62.9	66.1	59.1	53.8
[20]	81.0	59.96	4.4	62.8	68.0	30.3	65.0	59.2	64.1	83.9	67.2	68.3	60.6	56.5	69.9	79.4	79.6	66.1	66.3	63.5	65.0
[28]*	87.3	51.96	7.9	74.6	78.8	48.9	58.3	59.7	78.1	89.5	69.2	73.8	66.2	56.0	74.1	82.1	78.1	72.6	73.1	61.0	70.6
[19]	88.4	65.16	8.2	72.5	76.2	46.2	65.8	64.1	75.1	82.4	74.1	72.4	64.4	58.8	73.7	80.4	84.3	67.2	74.3	67.8	70.4
Ours	85.1	67.97	3.5	76.2	74.9	52.5	65.7	63.6	56.3	77.8	76.4	70.1	65.3	51.7	69.5	87.0	82.1	80.3	78.5	70.7	71.3
[27]	69.1	57.3 5	4.6	61.7	74.5	25.2	48.4	63.3	69.0	78.1	53.8	52.2	60.5	60.9	59.1	70.5	76.0	70.0	77.1	81.4	62.4
[20]	81.0	54.3 6	4.6	63.7	73.8	30.3	65.1	60.7	64.1	83.9	71.5	69.6	69.0	69.6	71.1	82.9	79.6	72.2	76.2	85.9	69.8
[28]*	88.0	73.36	7.9	74.6	81.8	50.1	60.6	60.8	78.2	89.5	70.8	74.4	72.8	64.5	74.2	84.9	85.2	78.4	75.8	74.4	74.0
[19]	88.4	70.46	8.3	73.6	82.4	46.4	66.1	83.4	75.1	82.4	76.5	73.0	72.4	73.8	74.0	83.6	84.3	73.9	85.7	90.6	75.8
Ours	85.8	73.6 6	1.1	55.7	77.9	53.3	75.1	65.5	54.2	81.3	82.2	71.0	70.1	67.7	69.9	90.5	85.7	86.3	85.0	91.4	74.2

3DV2018

Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB

Dushyant Mehta^[1,2], Oleksandr Sotnychenko^[1,2], Franziska Mueller^[1,2], Weipeng Xu^[1,2], Srinath Sridhar^[3], Gerard Pons-Moll^[1,2], Christian Theobalt^[1,2]

[1] MPI For Informatics [2] Saarland Informatics Campus [3] Stanford University

Location Map VS ORPM

□ 3n LM of size W/k*H/k

ORPM+

Inference: Openpose Heatmap+part affinity +confidence map+ORPM L

2D Joint Validation: We declare a 2D joint location $\mathbf{P^{2D}}_{i}^{j} = (u, v)_{j}^{i}$ of person i as valid read-out location iff (1) it is un-occluded, i.e., has confidence value higher than a threshold t_{C} , and (2) it is sufficiently far $(\geq t_{D})$ away from all read-out locations of joint j of other individuals:

$$valid(\mathbf{P^{2D}}_{i}^{j}) \Leftrightarrow \mathbf{C^{2D}}_{i}^{j} > t_{C} \wedge ||a - \mathbf{P^{2D}}_{i}^{j}||_{2} \geq t_{D}$$
$$\forall \overline{i} = [1:m], \ \overline{i} \neq i. \ \forall a \in \rho_{\overline{i}}(j). \tag{2}$$

Loss: The 2D heatmaps \mathcal{H}_{COCO} and \mathcal{H}_{MPI} are trained with per-pixel L2 loss comparing the predictions to the reference which has unit peak Gaussians with a limited support at the ground truth 2D joint locations, as is common. The part affinity fields \mathcal{A}_{COCO} are similarly trained with a per-pixel L2 loss, using the framework made available by Cao et al. [8]. While training ORPMs with our MuCo-3DHP, per joint type j, for all subjects i in the scene, a per-pixel L2 loss is enforced in the neighborhood of all possible readout locations $\rho_i(j)$. The loss is weighted by a limited support Gaussian centered at the read-out location.

	Sit	Crouch	Total		
Method	PCK	PCK	PCK	AUC	
VNect [34]	74.7	72.9	76.6	40.4	
LCR-net [49]	58.5	69.4	59.7	27.6	
Zhou et al.[68]	60.7	71.4	69.2	32.5	
Mehta et al.[33]	74.8	73.7	75.7	39.3	
Our Single-Person (Torso)	69.1	68.7	65.6	32.6	
Our Single-Person (Full)	77.8	77.5	75.2	37.8	
Our Multi-Person (Torso)	64.6	65.8	63.6	31.1	
Our Multi-Person (Full)	75.9	73.9	73.4	36.2	

