# NBA match predictor

- Swaraj KaondalUtsav Lal



#### Previous Work

### Forecasting NBA Champions

- Jun Yu Chen work involved exploring ANNs for forecasting NBA champion for a season
- Used a simple neural network with 3 hidden layers with 33 features
- Tackled class imbalance using case sensitive training, where a higher penalty is given for misclassifying the minority class
- Achieved test accuracy of 93% overall
- Correctly predict the winner of the 2022 2023 season
- Proposed methods like Synthetic Minority Over-sampling Technique to be used in future to tackle class imbalance

# Win, Losses and Attributes' Sensitivities in the Soccer World Cup 2018

- Amr Hassan, Abdel-Rahman Akl, Ibrahim Hassan and Caroline Sunderland work involved predicting winners of 2018 soccer world cup
- Used Radial Basis functions for their artificial neural networks
- Achieved 72.7% win prediction accuracy.
- Concluded that distance covered by a team without the ball and average distance covered by a team as a whole were the 2 most important features while predicting
- Discussed about the possible drawbacks of their system and possible solutions

# Data and Data Preparation

# CMU Dataset - Player stats

| Player Id | Year | Team | Points | Steals | Blocks | Shots attempted |  |
|-----------|------|------|--------|--------|--------|-----------------|--|
| 1         | 1965 | LAL  | 230    | 154    | 124    | 312             |  |
| 2         | 1984 | OKH  | 194    | 160    | 197    | 491             |  |
| 3         | 1992 | ARL  | 188    | 128    | 136    | 234             |  |
| 4         | 2001 | BKN  | 153    | 203    | 158    | 255             |  |
|           |      |      | -      |        | -      |                 |  |

### Kaggle Dataset - Game data

| Game Id | Date         | Team 1 | Team 2 | Winner |
|---------|--------------|--------|--------|--------|
| 1       | 10 Jun, 1987 | LAL    | MEM    | Team 1 |
| 2       | 23 May, 1976 | BOS    | CHA    | Team 1 |
| 3       | 05 Dec, 1997 | OKC    | PHI    | Team 2 |
| 4       | 30 Aug, 1980 | PHX    | BOS    | Team 2 |
|         |              |        |        | •      |

# Kaggle Dataset - Play by Play data

| Game Id | Action | Player 1 | Player 1 Team | Player 2 | Player 2 Team |
|---------|--------|----------|---------------|----------|---------------|
| 1       | Steal  | 10001    | LAL           | 20001    | MEM           |
| 1       | Block  | 10005    | LAL           | 20010    | MEM           |
| 1       | Score  | 10005    | LAL           | -        | -             |
| 2       |        |          |               |          |               |
|         |        |          |               |          |               |



| Game Id | Team 1                 | Team 2          |  |
|---------|------------------------|-----------------|--|
| 1       | [10001, 10005, 10006,] | [20001, 20010,] |  |
| 2       |                        |                 |  |

#### Final Dataset

| Game Id | T1_Points | T1_Steals | T1_Blocks | <br>T2_Points | T2_Steals | T2_Blocks | <br>Winner |
|---------|-----------|-----------|-----------|---------------|-----------|-----------|------------|
| 1       | 18.51     | 34.23     | 24.63     | <br>18.23     | 38.32     | 12.45     | <br>T1     |
| 2       | 25.23     | 29.67     | 43.34     | <br>24.56     | 12.53     | 34.6      | <br>T1     |
| 3       | 22.12     | 17.89     | 21.26     | <br>28.55     | 51.45     | 34.21     | <br>T2     |
| 4       | .29.34    | .35.67    | 26.45     | <br>19.42     | 12.56     | 28.42     | <br>T2     |

**34 Features** (17 of each team) with a **binary target variable**. **8777** game data

#### Feature Correlation



# Naive Bayes Model

### Why Naive Bayes?

- Simple
- Easy to implement
- Good performance in categorical data
- Easily helps to identify features which might be influencing predictions

#### Predicted

| Actual     | Team 1 Win | Team 2 Win |  |
|------------|------------|------------|--|
| Team 1 Win | 549        | 401        |  |
| Team 2 Win | 380        | 426        |  |

#### Result

|              | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Team 1 Win   | 0.59      | 0.58   | 0.58     | 950     |
| Team 2 Win   | 0.52      | 0.53   | 0.52     | 806     |
| Accuracy     |           |        | 0.56     | 1756    |
| Macro Avg    | 0.55      | 0.55   | 0.55     | 1756    |
| Weighted Avg | 0.56      | 0.56   | 0.56     | 1756    |

## L2-Norm Comparator

#### L2-Norm Comparator

Points Scored



$$|\mathbf{x}| = \sqrt{\sum_{k=1}^{n} |x_k|^2}.$$

#### Predicted

| Actual     | Team 1 Win | Team 2 Win |
|------------|------------|------------|
| Team 1 Win | 2987       | 2307       |
| Team 2 Win | 1941       | 2719       |

#### Results

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Team 1 win   | 0.61      | 0.56   | 0.58     | 5294    |
| Team 2 win   | 0.54      | 0.58   | 0.56     | 4660    |
| Accuracy     |           |        | 0.57     | 9954    |
| Macro Avg    | 0.57      | 0.57   | 0.57     | 9954    |
| Weighted Avg | 0.58      | 0.57   | 0.57     | 9954    |

# Artificial Neural Network

#### Grid Search

- Number of hidden layers 1, 2 and 3
- Number of neurons 34, 68 and 102
- Activation Layer Relu and Tanh
- Optimizers Adam, RMSProp and SGD

Number of total configurations = 648

Epochs per combination = 10

#### Epochs - Tuning



#### **40** Epochs Hidden Layer 1 **Adam** Optimizer Input Layer Hidden Layer 2 Output Layer 1 Neuron, Sigmoid 34 Neurons 34 Neurons, Relu 68 Neurons, Relu

#### Best Parameters

#### Predicted

| Actual     | Team 1 Win | Team 2 Win |  |
|------------|------------|------------|--|
| Team 1 Win | 965        | 100        |  |
| Team 2 Win | 696        | 230        |  |

### Results

| Class        | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| Team 1 Win   | 0.58      | 0.91   | 0.71     | 1065    |
| Team 2 Win   | 0.70      | 0.25   | 0.37     | 926     |
| Accuracy     |           |        | 0.60     | 1991    |
| Macro Avg    | 0.64      | 0.58   | 0.54     | 1991    |
| Weighted Avg | 0.63      | 0.60   | 0.55     | 1991    |

#### To conclude

### Summing it up together

- We predicted neural network performance to be much better
- Possible reasons could be insufficient data which caused less generalization
- Another possible reason could be data mismatch between the two datasets
- In the end, NBA is a fierce competition there are always upsets and using pure statistics might not be the best way to predict a winner of a match

#### References

- Bruin Sports Analytics. [n. d.]. Decoding the Game: Forecasting NBA Champions with Neural Network Algorithms — bruinsportsanalytics.com.
  https://www.bruinsportsanalytics.com/post/nba-champs-neural-network. [Accessed 03-03-2024].
- School of Computer Science Carnegie Mellon University. [n. d.]. NBA statistics data. http://www.cs.cmu.edu/~awm/10701/project/databasebasketball2.0.zip
- Amr Hassan, Abdel-Rahman Akl, Ibrahim Hassan, and Caroline Sunderland. 2020. Predicting wins, losses and attributes' sensitivities in the soccer world cup 2018 using neural network analysis. Sensors 20, 11 (2020), 3213.
- Xiaohu Tang, Zhifeng Liu, Taizhao Li, Wenbin Wu, and Zhenhua Wei. 2018. The application of decision tree in the prediction of winning team. In 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). IEEE, 239–242.