Matematisk Statistik: Vejledende besvarelse af eksamen

Steffen Lauritzen og Niels Richard Hansen

18. juni, 2020

Spørgsmål 1.1

Vi har tætheden

$$f_{(\beta,\gamma)}(x,y) = \frac{1}{\beta} e^{-x/\beta} \frac{1}{\gamma} e^{-y/\gamma}$$

som vi omskriver på eksponentiel familie form ved at lade $\theta_1 = 1/\beta$ og $\theta_2 = 1/\gamma$ og derfor med $t(x,y) = -(x,y)^{\top}$

$$f_{\theta}(x,y) = \theta_1 \theta_2 e^{\theta^{\top} t(x,y)} = e^{\theta^{\top} t(x,y) - \log \theta_1 - \log \theta_2}.$$

Idet $\lambda_1 x + \lambda_2 y = c$ for næsten alle (x,y) medfører $\lambda_1 = \lambda_2 = 0$, fremgår det, at den specificerede familie uden restriktioner på θ er en regulære og minimalt repræsenteret eksponentiel med dimension 2. Under hypotesen defineres en krum familie idet

$$\phi(\beta) = \begin{pmatrix} 1/\beta \\ 1/\beta^2 \end{pmatrix}$$

er en glat homeomorfi med Jacobi matrix

$$D\phi(\beta) = (-1/\beta, -2/\beta^2)$$

som har fuld rang 1.

Spørgsmål 1.2

Vi får likelihoodfunktionen

$$L_n(\beta) = \prod_{i=1}^n \frac{e^{-x_i/\beta} e^{-y_i/\beta}}{\beta^3}.$$

Lad $S_x = \sum_{i=1}^n X_i$, $S_y = \sum_{i=1}^n Y_i$, så får vi log-likelihoodfunktionen

$$\ell_n(\beta) = 3n\log\beta + \frac{S_x}{\beta} + \frac{S_y}{\beta^2}$$

og videre scorefunktion ved differentiation

$$S_n(\beta) = \frac{3n}{\beta} - \frac{S_x}{\beta^2} - \frac{2S_y}{\beta^3}$$

og en gang til for at få informationsfunktionen

$$I_n(\beta) = -\frac{3n}{\beta^2} + \frac{2S_x}{\beta^3} + \frac{6S_y}{\beta^4}.$$

Spørgsmål 1.3

Scoreligningen $S_n(\beta) = 0$:

$$\frac{3n}{\beta} - \frac{S_x}{\beta^2} - \frac{2S_y}{\beta^3} = 0$$

omskrives til idet $\bar{x}_n = S_x/n$, $\bar{y}_n = S_y/n$

$$3\beta^2 - \bar{x}_n\beta - 2\bar{y}_n = 0$$

Med entydig løsning i området $\beta > 0$

$$\hat{\beta} = \frac{\bar{x}_n + \sqrt{\bar{x}_n^2 + 24\bar{y}_n}}{6}.$$

Idet

$$\ell_n(\beta) = 3n\log\beta + \frac{S_x}{\beta} + \frac{S_y}{\beta^2}$$

ser vi at $\ell_n(\beta) \to \infty$ for $\beta \to 0$ og $\beta \to \infty$, så det må være et minimum.

Spørgsmål 1.4

Vi har Fisherinformationen

$$i_n(\beta) = \mathbf{E}_{\beta} \{I_n(\beta)\}$$

$$= -\frac{3n}{\beta^2} + \frac{2\mathbf{E}_{\beta} \{S_x\}}{\beta^3} + \frac{6\mathbf{E}_{\beta} \{S_y\}}{\beta^4}$$

$$= -\frac{3n}{\beta^2} + \frac{2n\beta}{\beta^3} + \frac{6n\beta^2}{\beta^4} = \frac{5n}{\beta^2}$$

hvoraf vi slutter at MLE er asymptotisk normalfordelt

$$\hat{\beta}_n \sim N\left(\beta, \frac{\beta^2}{5n}\right).$$

Spørgsmål 1.5

(a): Vi at bruge et likelihood ratio test. Vi får

$$\begin{split} 2\ell(\hat{\beta}_{10}) - 2\ell(\hat{\theta}_{10}) &= 60\log(\hat{\beta}_{10}) + 20\frac{\bar{x}_{10}}{\hat{\beta}_{10}} + 20\frac{\bar{y}_{10}}{\hat{\beta}_{10}^2} \\ &- 20\log\bar{x}_{10} - 20\log\bar{y}_{10} - 20\frac{\bar{x}_{10}}{\bar{x}_{10}} - 20\frac{\bar{y}_{10}}{\bar{y}_{10}} \\ &= 60\log(\hat{\beta}_{10}) + 20\frac{\bar{x}_{10}}{\hat{\beta}_{10}} + 20\frac{\bar{y}_{10}}{\hat{\beta}_{10}^2} - 20\log\bar{x}_{10} - 20\log\bar{y}_{10} - 40 \\ &= 0.04. \end{split}$$

Denne skal vurderes i en χ^2 -fordeling med 2-1=1 frihedsgrader, hvilket giver en p-værdi på p=0.837, så der er absolut ingen grund til at forkaste H_0 .

(b): Denne gang vælger vi at bruge den ægte Wald størrelse for den simple hypotese. Idet $\hat{\beta}_{10} = 2.28$ fås

$$W_n = 5n(\hat{\beta}_n - 1)^2 = 50 \times 1.28^2 = 81.97$$

som skal vurderes i en χ^2 med 1 frihedsgrad, hvilket giver en p-værdi tæt på 0, så hypotesen kan ikke opretholdes.

Man kunne naturligvis også have brugt et LR test

$$\Lambda = 2(\ell(1) - \ell(\hat{\beta}_{10}) = 61.13$$

med samme resultat.

```
# data
xbar = 2.15
ybar = 5.349
# mle
hatbeta=(2.15+sqrt(xbar^2+24*ybar))/6
# LR sammensat hypotese
ell_0 =30*log(hatbeta)+10*xbar/hatbeta+10*ybar/(hatbeta^2)
ell_1 = 10*log(xbar) +10*log(ybar) +20
Lambda=2*(ell_0-ell_1)
# p vaerdi
1-pchisq(Lambda,1)
[1] 0.8375556
Lambda
[1] 0.04203367
# Wald
w=50*(hatbeta-1)^2
[1] 81.97329
# p vaerdi
1-pchisq(w,1)
[1] 0
# LR for simpel hypotese
ell_2=10*xbar+10*ybar
Lambda2= 2*(ell_2-ell_1)
Lambda2
[1] 61.13245
# p vaerdi
1-pchisq(Lambda2,1)
[1] 5.329071e-15
```

Spørgsmål 2.1

Da $\mathbf{E}_{\theta}(Z) = 0$ og X og Y er uafhængige, er

$$m(\theta) = \mathbf{E}_{\theta}(Z^2) = \mathbf{V}_{\theta}(X - Y) = \mathbf{V}_{\theta}(X) + \mathbf{V}_{\theta}(Y).$$

Da X og Y begge er poissonfordelte med middelværdi, og dermed varians, e^{θ} ser vi, at

$$m(\theta) = 2e^{\theta}$$
.

Momentestimatoren er dermed givet som løsning til

$$2e^{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i^2,$$

dvs.

$$\tilde{\theta}_n = \log\left(\frac{1}{2n}\sum_{i=1}^n Z_i^2\right),\,$$

som er veldefineret, hvis ikke alle Z_i -erne er 0.

Spørgsmål 2.2

Vi efterviser betingelserne for BMS, sætning 2.17. Da poissonfordelte variable har momenter af enhver orden, har t(Z) specielt endelig varians, endvidere er momentfunktionen glat og injektiv, og

$$m'(\theta) = 2e^{\theta} \neq 0.$$

Heraf følger, at $\tilde{\theta}_n$ er konsistent og asymptotisk normalfordelt.

Vi finder nu

$$\mathbf{V}_{\theta}(t(Z)) = \mathbf{V}_{\theta}(Z^4) = \mathbf{E}_{\theta}(Z^4) - (\mathbf{E}_{\theta}(Z^2))^2 = 2e^{\theta} + 12e^{2\theta} - 4e^{2\theta} = 2e^{\theta} + 8e^{2\theta}.$$

BMS, sætning 2.17, giver den asymptotiske varians

$$\sigma^{2}(\theta) = \mathbf{V}(t(Z))/m'(\theta)^{2} = \frac{1}{4}e^{-2\theta}(2e^{\theta} + 8e^{2\theta}) = 2 + \frac{1}{2}e^{-\theta}.$$

Med andre ord er

$$\tilde{\theta}_n \stackrel{\text{as}}{\sim} N(\theta, (2 + e^{-\theta}/2)/n).$$

Spørgsmål 2.3

Det er mest interessant at undersøge den asymptotiske fordeling for negative værdier af θ og/eller små værdier af n, og eventuelt sammenholde med større værdier.

Her præsenteres resultaterne for fire kombinationer. De asymptotiske standardafvigelser (standard errors) beregnes endvidere for alle fire kombinationer.

```
set.seed(11)
B <- 1000
theta1 <- -1 ## Middelværdi exp(-1) = 0.37
n <- 20
se1 <- sqrt((2 + exp(-theta1) / 2) / n)
theta_tilde1 <- replicate(B, {
    x <- rpois(n, exp(theta1))
    y <- rpois(n, exp(theta1))
    log(mean((x - y)^2)/2)
})
theta2 <- 3 ## Middelværdi exp(3) = 20
se2 <- sqrt((2 + exp(-theta2) / 2) / n)</pre>
```

```
theta_tilde2 <- replicate(B, {</pre>
    x <- rpois(n, exp(theta2))
    y <- rpois(n, exp(theta2))
    \log(\max((x - y)^2)/2)
})
n <- 200
se3 \leftarrow sqrt((2 + exp(-theta1) / 2) / n)
theta tilde3 <- replicate(B, {</pre>
    x <- rpois(n, exp(theta1))
    y <- rpois(n, exp(theta1))
    log(mean((x - y)^2)/2)
})
se4 \leftarrow sqrt((2 + exp(-theta2) / 2) / n)
theta_tilde4 <- replicate(B, {</pre>
    x <- rpois(n, exp(theta2))
    y <- rpois(n, exp(theta2))
    log(mean((x - y)^2)/2)
})
```

Vi sammenligner nu med den asymptotiske normalfordeling via qqplot.

Det er klart, at for $\theta = -1$ er estimatoren ikke normalfordelt for n = 20, mens normalfordelingen er en OK approksimation for $\theta = 3$, selv for n = 20. For n = 200 er normalfordelingen en god approksimation til fordelingen af estimatoren, selv for $\theta = -1$

Vi kan også sammenligne de asymptotiske standardafvigelser med de empiriske.

```
tibble(theta = c(theta1, theta2, theta1, theta2), n = <math>c(20, 20, 200, 200),
             teo_se = c(se1, se2, se3, se4),
             emp_sd = c(sd(theta_tilde1), sd(theta_tilde2), sd(theta_tilde3), sd(theta_tilde4)))
# A tibble: 4 x 4
  theta
           n teo_se emp_sd
  <dbl> <dbl> <dbl> <dbl> <
          20 0.410 0.418
    -1
2
     3
           20 0.318 0.319
3
         200 0.130 0.133
     -1
     3
         200 0.101 0.101
```

Her ser vi en ret god overensstemmelse, selv for $\theta = -1$ og n = 20.

Spørgsmål 3.1

Vi indlæser data til opgaven.

```
gener <- read_csv("MatStat2020Juni_opg3.txt")</pre>
```

Opgavens første del løses ved krydstabulering af C og S Sålænge det er gjort korrekt, og argumenterne er rigtige, spiller det ingen rolle for bedømmelsen, hvordan det præcist er implementeret. Nedenfor følger en måde at løse opgaven på.

```
count(gener, C, S)
# A tibble: 38 \times 3
         S
                                      n
   <chr> <chr>
                                  <int>
 1 bird Aquila_chrysaetos
                                      9
 2 bird Cariama_cristata
                                      6
 3 bird Charadrius_vociferus
                                      9
 4 bird Eurypyga_helias
                                      6
5 bird Gallus_gallus
                                     10
6 bird Haliaeetus leucocephalus
                                     10
7 bird Pygoscelis_adeliae
                                      9
8 bird Serinus canaria
                                     10
9 fish Ictalurus_punctatus
                                      9
10 fish Lepisosteus_oculatus
                                      9
# ... with 28 more rows
```

I opgaven oplyses det, at der er 38 arter (hvilket i øvrigt også kan tjekkes ved tabulering), og da der ligeledes er 38 rækker i denne tabel følger det, at $C \le S$. Enhver værdi af S må jo så forekomme netop en gang i tabellen, og bestemmer således værdien af C.

Det følger også af (den fulde version af) tabellen ovenfor, at C optræder på tre niveauer (bird, fish, mammal), så $\dim(L_C) = 3$.

Da $C \le S$ er endvidere $C \times G \le S \times G$, og $G \le C \times G$, så vi får, jf. også det tilsvarende design i eksempel 14.16 i EH, faktorstrukturdiagrammet

Diagrammet er ovenfor annoteret med dimensioner vi kender på nuværende tidspunkt.

Spørgsmål 3.2

Da $S \land C \times G = C$ og $C \le S$ er der kun to ikke-trivielle minima, der skal undersøges, nemlig $C \land G$ og $S \land G$, jf. også det tilsvarende design i eksempel 14.20 i EH.

Det gøres ligeledes ved krydstabulering, hvor det her nok er lettest bare at bruge table.

table(gener\$C, gener\$G)

	1CQ7M	1CS4Z	1CSGF	1CV66	1CW69	1CXQA	1D1QW	1D229	1DD42	1DFZX
bird	8	3	8	8	6	8	6	6	8	8
fish	7	7	7	7	6	7	7	5	0	7
mammal	23	22	21	23	23	22	18	17	23	21

Af tabellen ovenfor fremgår det, at der kun er en enkelt kombination af C og G (fish og 1DD42), som ikke forekommer. Designgrafen indeholder derfor alle kanter pånær denne ene, og er oplagt sammenhængende, hvorfor $C \land G = 1$.

Bemærk i øvrigt at tabellen viser, at produktfaktoren $C \times G$ forekommer på 29 niveauer, så $\dim(L_{C \times G}) = 29$.

table(gener\$S, gener\$G)

	1CQ7M	1CS4Z	1CSGF	1CV66	1CW69	1CXQA	1D1QW	1D229	1DD42	1DFZX
Acinonyx_jubatus	1	0	1	1	1	1	1	1	1	1
Aotus_nancymaae	1	1	1	1	1	1	0	1	1	1
Aquila_chrysaetos	1	0	1	1	1	1	1	1	1	1
Callithrix_jacchus	1	1	1	1	1	1	1	0	1	1
Cariama_cristata	1	0	1	1	0	1	0	0	1	1
Cebus_capucinus	1	1	1	1	1	1	1	0	1	1
Ceratotherium_simum	1	1	1	1	1	1	1	1	1	1
Charadrius_vociferus	1	0	1	1	1	1	1	1	1	1
Chinchilla_lanigera	1	1	1	1	1	1	1	1	1	1
Chrysochloris_asiatica	1	1	1	1	1	1	0	1	1	1
Elephantulus_edwardii	1	1	1	1	1	1	0	1	1	1
Eptesicus_fuscus	1	1	1	1	1	1	1	1	1	1
Eurypyga_helias	1	0	1	1	0	1	0	0	1	1
Gallus_gallus	1	1	1	1	1	1	1	1	1	1
Haliaeetus_leucocephalus	1	1	1	1	1	1	1	1	1	1
Ictalurus_punctatus	1	1	1	1	1	1	1	1	0	1
Lepisosteus_oculatus	1	1	1	1	1	1	1	1	0	1
Leptonychotes_weddellii	1	1	1	1	1	1	1	0	1	0
Lipotes_vexillifer	1	1	1	1	1	1	1	0	1	1
Loxodonta_africana	1	1	1	1	1	1	1	1	1	1

Manis_javanica	1	1	1	1	1	1	0	0	1	1
Myotis_lucifugus	1	1	1	1	1	1	1	1	1	0
Nannospalax_galili	1	1	1	1	1	1	1	1	1	1
Neolamprologus_brichardi	1	1	1	1	1	1	1	0	0	1
Octodon_degus	1	1	1	1	1	1	1	1	1	1
Orycteropus_afer	1	1	1	1	1	1	0	1	1	1
Pan_troglodytes	1	1	0	1	1	1	1	1	1	1
Papio_anubis	1	1	0	1	1	1	1	1	1	1
Poecilia_reticulata	1	1	1	1	0	1	1	1	0	1
Pteropus_alecto	1	1	1	1	1	1	1	1	1	1
Pygoscelis_adeliae	1	0	1	1	1	1	1	1	1	1
Saimiri_boliviensis	1	1	1	1	1	1	1	1	1	1
Sarcophilus_harrisii	1	1	1	1	1	0	1	0	1	1
Scleropages_formosus	1	1	1	1	1	1	1	1	0	1
Serinus_canaria	1	1	1	1	1	1	1	1	1	1
Sinocyclocheilus_grahami	1	1	1	1	1	1	1	1	0	1
Sorex_araneus	1	1	1	1	1	1	1	1	1	1
Xiphophorus_maculatus	1	1	1	1	1	1	1	0	0	1

Tabellen ovenfor viser, at der er visse art-gen kombinationer, der ikke forekommer, men f.eks. forekommer genet 1CQ7M sammen med alle arter, og da alle gener forekommer i kombination med mindst en art er der altid en vej i designgrafen mellem to knuder via 1CQ7M. Designgrafen er således sammenhængende, og $S \land G = 1$.

Designet er ikke ortogonalt, f.eks. fordi tabellen for C × G indeholder et 0, jf. lemma 13.11 i EH.

Vi kan nu endelig finde dimensionerne af sum-rummene ved at bruge formel (13.1) i EH sammen med lemma 14.6:

Da
$$L_{S \wedge G} = L_1$$
 er

$$\dim(L_S + L_G) = \dim(L_S) + \dim(L_1) - \dim(L_{S \wedge G}) = 38 + 10 - 1 = 47$$

og da $L_{S \wedge C \times G} = L_C$ er

$$\dim(L_S + L_{C \times G}) = \dim(L_S) + \dim(L_{C \times G}) - \dim(L_C) = 38 + 29 - 3 = 64$$

Bemærk at da designet ikke er ortogonalt, kan vi principielt ikke benytte teknikken baseret på sætning 14.21 til at finde dimensionerne af sum-rummene ovenfor, selvom det vil give de rigtige dimensioner i dette tilfælde.

Bonus: Minimum af S og $C \times G$

Man kunne lave et tilsvarende argument som ovenfor via tabulering for at vise at $S \wedge C \times G = C$, men tabellen bliver uoverskuelig. I stedet kan vi finde minimum ved at finde sammenhængskomponenterne på følgende måde (som gennemgået ved forelæsningerne).

```
library(igraph)
tab <- count(gener, S, C, G)
g <- mutate(tab, CG = paste(C, G, sep = "_")) %>%
        select(S, CG) %>%
        as.matrix() %>%
        graph_from_edgelist(directed = FALSE)
tab <- mutate(tab, min.S.CG = components(g)$membership[as.character(S)])
count(tab, C, min.S.CG)</pre>
```

```
# A tibble: 3 x 3
C min.S.CG n
```

	<chr></chr>	<dbl></dbl>	<int></int>
1	bird	2	69
2	fish	3	60
3	mammal	1	213

Denne tabel viser, at minimum er identisk med C.

Spørgsmål 3.3

Vi fitter de to modeller i R.

```
gen_lm <- lm(L ~ S + C * G, data = gener)
root_gen_lm <- lm(L^(1/3) ~ S + C * G, data = gener)</pre>
```

Dernæst ser vi på residualplot og qqplot for residualerne for de to modeller.

```
plot(gen_lm, 1:2)
```


Det er klart, at modellen for L ikke fitter data særligt godt. Den krumme tragtform af residualplottet viser, at middelværdien ser misspecificeret ud, og at variansen ikke er konstant.

Modellen for $\sqrt[3]{L}$ fitter bedre. Der er hverken nogen åbenlys misspecifikation af middelværdien, og variansen ser nogenlunde konstant ud på residualplottet. QQplottet viser dog, at residualerne ikke helt følger en normalfordeling, specielt ikke i den venstre hale. Og vi kan også identificere nogle ekstreme observationer.

Spørgsmål 3.4

Da $G \leq C \times G$ er $L_G \subseteq L_{C \times G}$, og deraf følger, at

$$L_{S} + L_{G} \subseteq L_{S} + L_{C \times G}$$
.

Den additive hypotese S + G er således en hypotese i modellen specificeret ved $S + C \times G$.

Baseret på resultaterne i spørgsmål 3.4 vælger vi at teste den additive hypotese i modellen for $\sqrt[3]{L}$ ved hjælp af et F-test. Bemærk at de 17 frihedsgrader i testet netop er dimensionsfaldet på 64 - 47 = 17, som kan beregnes på basis af spørgsmål 3.2.

```
add_root_gen_lm <- lm(L^(1/3) ~ S + G, data = gener)
anova(add_root_gen_lm, root_gen_lm)</pre>
```

Analysis of Variance Table

```
Model 1: L^(1/3) ~ S + G

Model 2: L^(1/3) ~ S + C * G

Res.Df RSS Df Sum of Sq F Pr(>F)

1 295 72922

2 278 51747 17 21175 6.6916 2.227e-13 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Her ser vi at p-værdien er meget lille (2.2×10^{-13}) , så vi afviser den additive hypotese.

Havde vi udført testet i modellen for L, havde vi fået et tilsvarende resultat.

Analysis of Variance Table

```
Model 1: L ~ S + G

Model 2: L ~ S + C * G

Res.Df RSS Df Sum of Sq F Pr(>F)

1 295 2.5793e+13

2 278 1.8340e+13 17 7.4533e+12 6.6457 2.837e-13 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Spørgsmål 4.1

Modellen er som i Eksempel 5.10 men middelværdi 0 men uden restriktioner på variansmatricen, og derfor er $\hat{\Sigma} = \frac{1}{n}S$. Hypotesen H_0 er hypotesen om at Σ er diagonal, og det er den netop hvis Σ^{-1} er diagonal. Mængden af diagonalmatricer, $M_0 \subseteq \operatorname{Sym}_3$ udgør et underrum af dimension 3, så hypotesen er en lineær hypotese i den kanoniske parameter. Ortogonalprojektionen, q_0 , på M_0 består i at sætte ikke-diagonalindgangene til 0. Det følger igen af Eksemple 5.10 at likelihoodligningen er

$$\begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{pmatrix} = q_0(\Sigma) = \frac{1}{n}q_0(S) = \frac{1}{n}\begin{pmatrix} S_{11} & 0 & 0 \\ 0 & S_{22} & 0 \\ 0 & 0 & S_{33} \end{pmatrix},$$

hvoraf det følger, at $\hat{\sigma}_1^2 = \frac{1}{n} S_{11}, \hat{\sigma}_2^2 = \frac{1}{n} S_{22}, \hat{\sigma}_3^2 = \frac{1}{n} S_{33}$.

Fra korollar 5.9, formel (14), følger det, at $\log Q = \frac{n}{2}(\log \det(S) - \log \det(n\hat{\Sigma}_0)) = \frac{n}{2}(\log \det(S) - \log(S_{11}S_{22}S_{33}))$, eller

$$Q = \left(\frac{\det(S)}{S_{11}S_{22}S_{33}}\right)^{n/2}.$$

Spørgsmål 4.2

Da Sym₃ har dimension 6 og hypotesen er en lineær hypotese af dimension 3 følger det af Wilks sætning (BMS, sætning 4.5) at $-2 \log Q$ er asymptotisk χ^2 -fordelt med 6-3=3 frihedsgrader. Vi beregner p-værdien

```
z <- 30 * (sum(log(diag(S))) - determinant(S)$modulus)
c(test = z, pvalue = pchisq(z, 3, lower.tail = FALSE))

test    pvalue
15.17512045   0.00167295</pre>
```

Da p-værdien er relativt lille afvises hypotesen H_0 om at variansmatricen er diagonal.