Математический Анализ 2 семестр

Данил Заблоцкий

18 апреля 2023 г.

Оглавление

1		фференциальное исчисление		2
	1.1	r v		
		1.1.1 Формула Тейлора с остаточным членом в форм		
		1.1.2 Формула Тейлора с остаточным членом в форме	-	
		жа и в форме Коши		į
	1.2			ļ
		1.2.1 Монотонность функции		į
		1.2.2 Экстремумы		ļ
		1.2.3 Выпуклость функции		Į
	1.3			Ę
		1.3.1 Интегрирование рациональных дробей		-
		1.3.2 Интегрирование рациональных дробей		
		1.3.3 Разложение рациональной дроби на простые.		ć
		1.3.4 Метод неопределенных коэф-ов (следствия лем	им)	10
		1.3.5 Метод Остроградского		1
2	Инт	Интегральное исчисление		
	2.1	Базы. Предел функции по базе		1
	2.2	Разбиение. Интеграл Римана (v.2)		
	2.3	Критерий интегрируемости		
		2.3.1 Суммы Дарбу		18
		2.3.2 Классы интегрируемых функций		2
		2.3.3 Свойства интегрируемых функций		22
		2.3.4 Аддитивность интеграла Римана		23
		2.3.5 Монотонность интеграла Римана		2^{2}
	2.4	Интеграл Римана как функция верхнего предела интегриро-		
		вания		26
	2.5	Формула Ньютона-Лейбница		
	2.6	Интегрирование по частям в определенном интеграле и фор-		
		мула Тейлора		30
	2.7			3
3	Гео	ометрические приложения интеграла Римана		33
•	3.1			3
	O. 1	Attitude albanoar		.,

Глава 1

Дифференциальное исчисление

1.1 Формула Тейлора

1.1.1 Формула Тейлора с остаточным членом в форме Пеано

Пусть $f:(a;b)\to\mathbb{R},\ x_0\in(a;b)$. Нужно построить многочлен $P(x;x_0)$ вида:

$$P(x;x_0) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$$

 $f(x) - P(x; x_0) = r_n(x; x_0)$ - n-ый остаточный член в формуле Тейлора.

Определение 1.1.1. Остаточные члены в форме Пеано имеют вид:

$$r_n(x; x_0) = \underset{x \to x_0}{o} ((x - x_0)^n)$$

Определение 1.1.2. Пусть $f:(a;b)\to\mathbb{R},\ x_0\in(a;b),\ f(x)$ имеет в точке x_0 проиводные до n-ого порядка включительно.

Многочленом Тейлора (полиномом Тейлора) функции f(x) в точке x называется многочлен:

$$P(x;x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Утверждение 1.1.1. Если $f:(a;b)\to\mathbb{R}$ имеет в точке $x_0\in(a;b)$ производные до n-го порядка включительно и $P(x;x_0)$ - ее многочлен Тейлора, то:

$$f(x_0) = P(x_0; x_0), \ f'(x_0) = P'(x_0; x_0), \ \dots, \ f^{(n)}(x_0) = P^{(n)}(x_0; x_0)$$

Доказательство. $P(x;x_0)=f(x)+\ldots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$, при $x=x_0$: $P(x_0;x_0)=f(x_0)$

$$\begin{split} P'(x;x_0) &= +\frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}2(x-x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}n(x-x_0)^{n-1}, \\ \text{при } x &= x_0 \colon P'(x_0;x_0) = \frac{f'(x_0)}{1!} \colon P''(x;x_0) = f''(x_0) + \frac{f'''(x_0)}{3!}6(x-x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}n(n-1)(x-x_0)^{n-2} \colon P^{(n)}(x_0;x_0) = f^{(n)}(x_0). \end{split}$$

Теорема 1.1.1. Пусть $f:(a;b)\to\mathbb{R},\ x_0\in(a;b),\ f$ имеет в точке x_0 проивзодные до n-ого порядка включительно, тогда существует единственный многочлен вида:

$$p(x;x_0) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n$$

такой, что:

$$f(x) - P(x; x_0) = \underset{x \to x_0}{o} ((x - x_0)^n)$$

Доказательство. (теоремы)

1. Докажем единственность.

Пусть
$$Q(x;x_0) = b_0 + b_1(x-x_0) + \ldots + b_n(x-x_0)^n$$
: $f(x) - Q(x;x_0) = o_x ((x-x_0)^n)$, $f(x) = P(x;x_0) + o_x ((x-x_0)^n)$.

Рассмотрим разность этих выражений: $f(x)-f(x)=P(x;x_0)-Q(x;x_0)+o((x-x_0)^n)=(a_0-b_0)+(a_1-b_1)(x-x_0)+(a_2-b_2)(x-x_0)^2+\ldots+(a_n-b_n)(x-x_0)^n+o((x-x_0)^n)$ (*).

Переходя к пределу при $x \to x_0$, получим, что $0 = a_0 - b_0 \implies a_0 = b_0$. Разделим (*) на $x - x_0$: $0 = (a_1 - b_1) + (a_2 - b_2)(x - x_0) + \ldots + (a_n - b_n)(x - x_0)^{n-1} + \sum_{\substack{x \to x_0 \\ x \to x_0}} ((x - x_0)^{n-1})$ (**);

$$\underset{x \to x_0}{o}((x - x_0)^n) = \alpha(x)(x - x_0)^n, \ \alpha(x) \to 0 \ (x \to x_0)$$

Переходя к пределу при $x \to x_0$ в (**) получаем, что $a_1 - b_1 = 0 \implies a_1 = b_1$. Используя ММИ можно показать, что $a_i = b_i, \ i = 2, \ldots, n \implies Q(x; x_0) = P(x; x_0)$.

2. Докажем существование.

Лемма 1.1.1. Если фукнция $\phi:(a;b)\to\mathbb{R},\ x_0\in(a;b)$, такая, что $\phi(x_0)=\phi'(x_0)=\ldots=\phi^{(n)}(x_0)=0\ (\phi(x)$ имеет производную до *п*ого порядка включительно), причем все производные непрерывны в некоторой окрестности точки x_0 . Тогда:

$$\phi(x) = \underset{x \to x_0}{o}((x - x_0)^n), \ (x \to x_0)$$

Допустим, что лемма доказана. Тогда положим $\phi(x)=f(x)-P(x;x_0)$, тогда будет выполнено условие леммы (+ смотри утверждение в начале параграфа) $\implies f(x)-P(x;x_0)=\mathop{o}\limits_{x\to x_0}((x-x_0)^n)$ при $x\to x_0$, где $P(x;x_0)$ - многочлен Тейлора функциии f в точке x_0 .

Доказательство. (леммы)

По индукции.

Пусть n=1, то есть ϕ - дифференцируема в окрестности точки x_0 и $\phi(x_0)=\phi'(x_0)=0$. Тогда $\phi(x)=\phi(x)-\phi(x_0)=\phi'(\xi)(x-x_0)$, где $\xi\in(a;b)$ (по теореме Лагранжа).

Далее, $\phi'(\xi) \to \phi'(x_0)$ при $\xi \to x_0$ (используя непрерывность функции) $\Longrightarrow \phi'(\xi)$ - бесконечно малая, поскольку $\phi'(x_0)=0$.

To есть
$$\phi'(\xi) \to 0$$
 при $\xi \to x_0 \implies \phi(x) = \phi'(\xi)(x - x_0) = \underset{\xi \to x_0}{o}(x - x_0)$.

Допустим, лемма верна для k=n-1. Положим $g(x)=\phi'(x)$. Тогда g(x) имеет непрерывные производные до (n-1)-ого порядка включительно, при этом $g(x_0)=g'(x_0)=\ldots=g^{(n)}(x_0)=0$ \Longrightarrow по утверждению леммы:

$$g(x) = \mathop{o}_{x \to x_0} ((x - x_0)^{n-1})$$

Далее,
$$\phi(x) - \phi(x_0) = \phi(x) = \phi'(\xi)(x - x_0) = g(\xi)(x - x_0) = \underset{\xi \to x_0}{o}((\xi - x_0)^{n-1})(x - x_0) = \alpha(\xi)(\xi - x_0)^{n-1}(x - x_0), \ \alpha(\xi) \to 0 \text{ при } \xi \to x_0.$$
 Отсюда $|\phi(x)| = |\alpha(\xi)||\xi - x_0|^{n-1}|x - x_0| \le |\alpha(\xi)||x - x_0|^n \ (\alpha(\xi) \to 0 \text{ при } \xi \to x_0) \implies \phi(x) = \underset{x \to x_0}{o}((x - x_0)^n).$

$$\sum_{x \to x_0} ((x - x_0)^{-1})^{-1}$$

Примеры представления некоторых функций через многочлен Тейлора
$$(x_0=0)$$

1.
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{o} (x^{2n-1})$$

3.
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{o} (x^{2n})$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3!} - \dots + (-1)^{n-1} \frac{x^n}{n!} + \underset{x \to 0}{o} (x^n)$$

5.
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{\alpha!} x^2 + \ldots + \frac{\alpha(\alpha-1)(\alpha-2) \dots (\alpha-(n-1))}{n!} x^n + \underset{x \to 0}{o} (x^n)$$

- 1.1.2 Формула Тейлора с остаточным членом в форме Лагранжа и в форме Коши
- 1.2 Приложения дифференциального исчисления
- 1.2.1 Монотонность функции
- 1.2.2 Экстремумы
- 1.2.3 Выпуклость функции

Геометрический смысл выпуклой функции

1.3 Первообразная и неопределенный интеграл

Определение 1.3.1 (Первообразная функция). Пусть X - промежуток, $f: X \to \mathbb{R}$. Функция F(x) называется первообразной f(x), если производная F'(x) = f(x), при этом F(x) дифференцируема и непрерывна.

Пример 1. $f(x) = 2x \implies F(x) = x^2$. В самом деле, F'(x) = f(x).

Утверждение 1.3.1. (О первообразной)

- 1. Если F(x) первообразная функции f(x) на промежутке X, и $\Phi(x)=F(x)+C,\ c\in\mathbb{R},$ то $\Phi(x)$ тоже первообразная.
- 2. Если F(x) и $\Phi(x)$ две первообразные для f(x) на промежутке X, то $\exists C=const,\ c\in\mathbb{R}$ такая, что $\Phi(x)=F(x)+C$.

Доказательство. (Утверждения о первообразной)

- 1. $\Phi'(x) = (F(x) + C)' = F'(x) = f(x) \implies \Phi(x)$ первообразная для f(x).
- 2. Так как F(x) и $\Phi(x)$ первообразные для f(x), то F'(x) = f(x), $\Phi'(x) = f(x)$. Рассмотрим функцию $\phi = \Phi(x) F(x)$, $\forall x \in X$: $\phi'(x) = \Phi'(x) F'(x) = f(x) f(x) = 0$. Рассмотрим $\forall x_1, x_2 \in X$, по теореме Лагранжа, $\exists \xi \in (x_1, x_2) : \phi(x_1) \phi(x_2) = \phi'(\xi)(x_1 x_2) = 0 \implies \phi(x_1) = \phi(x_2) \implies \phi(x) = const$ для $\forall x \in X$.

Определение 1.3.2 (Неопределенный интеграл). Совокупность всех первообразных для функции f(x) на промежутке X называется **неопределенным интегралом** и обозначается:

$$\int f(x)dx$$

Таким образом, $\int f(x)dx = \{F(x) + C, \text{ где } F'(x) = f(x), C \in \mathbb{R}\}$, или:

$$\int f(x)dx = F(x) + C$$

Замечание. (Для неопределенного интеграла)

- $(\int f(x)dx)'_x = (F(x) + C)'_x = F'(x) = f(x);$
- $d(\int f(x)dx) = d(F(x) + C) = (F(x) + C)'dx = F'(x)dx = f(x)dx;$
- $\int d(F(x)) = \int F'(x)dx = \int f(x)dx = F(x) + C, C \in \mathbb{R}.$

Определение 1.3.3 (интегрирование). Операция нахождения первообразной функции f(x) называется ее **интегрированием**.

Утверждение 1.3.2. (Основные методы интегрирования) Пусть $f: X \to \mathbb{R}, \ q: X \to \mathbb{R}, \ X$ - промежуток:

- 1. Пусть $\alpha, \beta \in \mathbb{R} = const$, тогда: $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$
- 2. Формула интегрирования по частям: $udv = uv \int udv, \ u = u(x), v = v(x).$
- 3. Интегрирование подстановкой: Пусть T промежуток, X=X(t) дифференцируема на T. Тогда $\int f(X(t))*X'(t)dt = F(X(t)) + C = \int f(x)dx + C$.

Доказательство. (Утверждения об основных методах интегрирования)

- 1. Возьмем производную по x от обеих частей равенства: $\int (\alpha f(x) + \beta g(x))'_x = \alpha f(x) + \beta g(x) = \alpha F'(x) + \beta G'(x) = \alpha (\int f(x) dx)'_x + \beta (\int g(x) dx)'_x$ является производной для $\alpha \int f(x) dx + \beta \int g(x) dx$.
- 2. Рассмотрим $d(uv)=vdu+udv: \int d(uv)=\int vdu+\int udv$. Так как d(uv)=uv, то из того, что $\int d(uv)=\int vdu+\int udv \implies \int udv=uv-\int vdu$.
- 3. $f(X(t)) * X'(t)dt = \int f(X(t))dx(t) = \int f(x)dx = F(x) + C = F(X(t)) + C$; $(F(X(t)) + C)'_t = F'_t * X'_t = f(x) * X'(t) = (\int f(X(t)) * X'(t)dt)'_t$.

Пример 2. (Интегрирование функций)

- 1. $\int x^3 dx = \frac{x^4}{4} + C$
- 2. $\int \ln x dx = \begin{vmatrix} u = \ln x, \ dv = dx, \ du = d(\ln x) = \frac{dx}{x} \implies \\ \implies \int dv = \int dx \implies v = x \end{vmatrix} = x \ln x \int x \frac{dx}{x} = x \ln x x + C$

3.
$$\int \sqrt{1-x^2} dx = \begin{vmatrix} x = \sin t, & dx = \\ = d(\sin t) = \cos t dt \end{vmatrix} = \int \cos^2 t dt = \int \frac{1}{2} (1 + \cos 2t) dt = \frac{1}{2} \int dt + \frac{1}{2} \int \cos 2t dt = \frac{t}{2} + \frac{1}{4} \int \cos 2t d(2t) = \frac{t}{2} + \frac{1}{4} \sin 2t + C = \frac{\arcsin x}{2} + \frac{1}{2} x \sqrt{1-x^2} + C$$

Пример 3. (Неинтегрируемые функции)

$$\int \frac{x}{\ln x} dx; \quad \int \frac{e^x}{x} dt; \quad \int e^{x^2} dx$$

1.3.1 Интегрирование рациональных дробей

Определение 1.3.4 (Рациональная дробь). Функция вида $\frac{P(x)}{Q(x)}$, где P(x), Q(x) - многочлены, называется **рациональной дробью**, или рациональной функцией.

Если $\deg P(x) < \deg Q(x)$, то дробь называется **правильной**, иначе - **неправильной**.

Если дробь $\frac{P(x)}{Q(x)}$ - неправильная, то ее можно представить в виде $\frac{P(x)}{Q(x)} = M(x) + \frac{P_1(x)}{Q_1(x)}$, где $\frac{P_1(x)}{Q_1(x)}$ - правильная дробь. Поэтому достаточно уметь интегрировать правильную дробь.

Определение 1.3.5 (Простые дроби). **Простыми дробями** будем называть дроби следующих четырех видов:

- 1. $\frac{A}{x-a}$, $A, a \in \mathbb{R}$
- 2. $\frac{A}{(x-a)^k}$, $A, a \in \mathbb{R}, k > 1$
- 3. $\frac{Ax+B}{x^2+px+q}, \quad A,B,p,q \in \mathbb{R}, \ p^2-4q < 0$
- 4. $\frac{Ax+B}{(x^2+px+q)^k}$, $A,B,p,q\in\mathbb{R},\ k>1,\ p^2-4q<0$

1.3.2 Интегрирование рациональных дробей

1.
$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = \left| \int \frac{dt}{t} dt \right| = A \ln|x-a| + C$$

2.
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} dx = A \int (x-a)^{-k} d(x-a) = \left| \int t^n dt = \frac{t^{n+1}}{n+1} \right| = A \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{A}{(x-a)^{k-1}(1-k)} + C$$

$$3. \int \frac{Ax+B}{x^{2}+px+q} dx = \begin{vmatrix} x^{2}+px+q = (x^{2}+2\frac{p}{2}x+\frac{p^{2}}{4}) - \frac{p^{2}}{4} + q = \\ = (x+\frac{p}{2})^{2} - \frac{p^{2}-4q}{4}, \ (-\frac{p^{2}-4q}{4} = C > 0) \end{vmatrix} = \int \frac{Ax+B}{(x+\frac{p}{2})^{2}+C} dx = \\ A \int \frac{xdx}{(x+\frac{p}{2})^{2}+C} + B \int \frac{dx}{(x+\frac{p}{2})^{2}+C} = \begin{vmatrix} d((x+\frac{p}{2})^{2}+C) = \\ = 2(x+\frac{p}{2}dx) \end{vmatrix} = \dots$$

$$A \int \frac{xdx}{(x+\frac{p}{2})^{2}+C} = \frac{A}{2} \int \frac{(2(x+\frac{p}{2})-p)dx}{(x+\frac{p}{2})^{2}+C} = \frac{A}{2} \int \frac{2(x+\frac{p}{2})dx}{(x+\frac{p}{2})^{2}+C} - \\ \frac{Ap}{2} \int \frac{dx}{(x+\frac{p}{2})^{2}+C} = \begin{vmatrix} \int \frac{dx}{(x+\frac{p}{2})^{2}+C} = I \end{vmatrix} = \\ \frac{A}{2} \int \frac{d((x+\frac{p}{2})^{2}+C)}{(x+\frac{p}{2})^{2}+C} - \frac{Ap}{2}I = \frac{A}{2} \ln|(x+\frac{p}{2})^{2}+C| - \frac{Ap}{2}I;$$

$$I = \frac{dx}{(x+\frac{p}{2})^{2}+C} = \frac{1}{C} \int \frac{\sqrt{C}d(\frac{x}{\sqrt{C}} + \frac{p}{2\sqrt{C}})}{(\frac{x}{\sqrt{C}} + \frac{p}{2\sqrt{C}})^{2}+1} = \\ |\int \frac{dt}{t^{2}+1} = \arctan t + C | = \frac{1}{\sqrt{C}}\arctan(\frac{x+2p}{2})^{2} = (\frac{1}{\sqrt{C}}(x+\frac{p}{2}))^{2} = (\frac{x}{\sqrt{C}} + \frac{p}{2\sqrt{C}})^{2};$$

$$\dots = \frac{A}{2} \ln |(x + \frac{p}{2})^2 - \frac{p^2 - 4q}{4}| + (B - \frac{Ap}{2}) \frac{1}{\sqrt{C}} \arctan(\frac{x + 2p}{2\sqrt{C}}) + C_1$$

$$4. \int \frac{Ax+B}{(x^2+px+q)^k} dx = \begin{vmatrix} d(x^2+px+q) = \\ = 2x+p \end{vmatrix} = \int \frac{\frac{A}{2}(2x+p)+B-\frac{Ap}{2}}{(x^2+px+q)^k} dx = \frac{A}{2} \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \\ (B-\frac{Ap}{2}) \int \frac{dx}{((x+\frac{p}{2})^2+(\frac{-p^2+4a}{4}))^k} = \frac{A}{2(1-k)} \frac{1}{(x^2+px+q)^{k-1}} + \frac{(B-\frac{Ap}{2})}{(-\frac{p^2+4q}{4})^k} \int \frac{dx}{((\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}})^2+1)^k} = \\ \frac{A}{2(1-k)} \frac{1}{(x^2+px+q)^{k-1}} + \frac{(B-\frac{Ap}{2})\sqrt{-p^2+4q}}{(\frac{-p^2+4q}{4})^k} \int \frac{d\left(\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}}\right)}{\left(\left(\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}}\right)^2+1\right)^k}$$

Таким образом, чтобы вычислить интеграл 4., нужно вычислить интеграл
$$\int \frac{dt}{(t^2+1)^k} = \left| \begin{array}{c} u = \frac{1}{(t^2+1)^k}; \ du = d((t^2+1)^k) = -k(t^2+1)^{-k-1}2tdt \\ dv = dt \implies v = t \end{array} \right| = \frac{t}{(t^2+1)^k} - \int \frac{-2kt^2}{(t^2+1)^{k+1}}dt = \frac{t}{(t^2+1)^k} + 2k(\int \frac{t^2+1}{(t^2+1)^{k+1}}dt - \int \frac{dt}{(t^2+1)^{k+1}});$$

$$\int \frac{dt}{(t^2+1)^k} = \frac{t}{(t^2+1)^k} + 2k\int \frac{dt}{(t^2+1)^k} - 2k\int \frac{dt}{(t^2+1)^{k+1}} \left| \begin{array}{c} \frac{dt}{(t^2+1)^k} = I_k \\ \frac{dt}{(t^2+1)^{k+1}} = I_{k+1} \end{array} \right|;$$

$$2kI_{k+1} = \frac{t}{(t^2+1)^k} + (2k-1)I_k; \quad I_{k+1} = \frac{t}{2k(t^2+1)^k} + \frac{2k-1}{2k}I_k, \ k=1,\dots$$

1.3.3 Разложение рациональной дроби на простые

Лемма 1.3.1. Пусть $\frac{P(x)}{Q(x)}$ - правильная рациональная дробь (несократимая). Причем $Q(x)=(x-a)^kQ_1(x)$, где $Q_1(x)$ не делится на (x-a). Тогда \exists многочлен $P_1(x)$ из $\exists A\in\mathbb{R}: \frac{P(x)}{Q(x)}=\frac{A}{(x-a)^k}+\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$. При этом дробь (рациональная) $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная.

 \mathcal{A} оказательство. Рассмотрим $\frac{A}{(x-a)^k}+\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}=\frac{Q_1(x)A+(x-a)P_1(x)}{Q(x)}.$ Нужно доказать, что $\frac{Q_1(x)A+(x-a)P_1(x)}{Q(x)}=\frac{P(x)}{Q(x)}.$

Отсюда следует, что для выполнения леммы, многочлен P(x) должен расскладываться: $P(x) = Q_1(x) + (x-a)P_1(x) \Longrightarrow P_1(x) = \frac{P(x) - AQ_1(x)}{x-a}$. Чтобы существовал многочлен $P_1(x)$, нужно, чтобы $P(x) - AQ_1(x)$ делилась на x-a. Для этого точка a должна быть корнем $P(x) - AQ_1(x)$, то есть чтобы $P(a) - AQ_1(a) = 0 \Longrightarrow A = \frac{P(a)}{Q(a)}; \quad Q_1(a) \neq 0$ по условию. Таким образом, при $A = \frac{P(a)}{Q_1(a)}$, функция $P_1(x)$ будет являться многочленом $P_1(x) = \frac{P(x) - \frac{P(a)}{Q_1(a)}Q_1(x)}{x-a}$.

Покажем, что дробь $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная, то есть $\deg P_1(x) < \deg[(x-a)^{k-1}Q_1(x)]$. Имеем, $P_1(x) = \frac{P(x) - AQ_1(x)}{x-a}; \quad \deg P_1(x) \leqslant \max(\deg P(x), \deg Q_1(x)) - 1$. Тогда $\deg P_1(x) \leqslant \deg P(x) - 1 < \deg Q(x) - 1 = \deg[(x-a)^{k-1}Q_1(x)]$.

Если
$$\deg Q_1(x)\geqslant \deg P(x) \Longrightarrow \deg P_1(x)\leqslant \deg Q_1(x)-1<\deg Q(x)-1=\deg[(x-a)^{k-1}Q_1(x)].$$
 Дробь $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная.

Лемма 1.3.2. Пусть $\frac{P(x)}{Q(x)}$ - правильная дробь. При этом $Q(x)=(x^2+px+q)^kQ_1(x)$, здесь $p^2-4q<0$. Тогда $\exists M,N\in\mathbb{R}$ и \exists многочлен $P_1(x)$: $\frac{P(x)}{Q(x)}=\frac{Mx+N}{(x^2+px+q)^k}+\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$. При этом $Q_1(x)$ не делится на x^2+px+q . Дробь $\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$ - правильная.

Доказательство. Если разложение $\frac{P(x)}{Q(x)} = \frac{Mx+N}{(x^2+px+q)^k} + \frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$ верно, то: $\frac{P(x)}{Q(x)} = \frac{(Mx+N)Q_1(x)+P_1(x)(x^2+px+q)}{Q(x)}$, следовательно P(x) должен выражаться как: $P(x) = (Mx+N)Q_1(x) + P_1(x)(x^2+px+q) \implies P_1(x) = \frac{P(x)-(Mx+N)Q_1(x)}{x^2+px+q}$.

Так как нужно, чтобы $P_1(x)$ был многочленом, то $P(x) - (Mx + N)Q_1(x)$ должно делиться на $x^2 + px + q$.

Рассмотрим остаток от деления P(x) на $x^2 + px + q$ в форме $\alpha x + \beta$ и остаток от деления $Q_1(x)$ на $x^2 + px + q$ в форме $\gamma x + \delta$.

Таким образом, $P(x) = (x^2 + px + q)P_2(x) + (\alpha x + \beta);$ $Q_1(x) = (x^2 + px + q)Q_2(x) + (\gamma x + \delta).$

Отсюда достаточно показать, что на $x^2 + px + q$ делится многочлен $\alpha x + \beta - (Mx + N)(\gamma x + \delta) = -M\gamma x^2 + x(-N\gamma - M\delta + \alpha) + (\beta - N\delta).$

Поделим полученный выше многочлен на $x^2+px+q: \frac{-M\gamma x^2+x(-N\gamma-M\delta+\alpha)+(\beta-N\delta)}{x^2+px+q}=-M\gamma+(\alpha-N\gamma-M\delta+M\gamma p)x+(\beta-N\delta+M\gamma q).$

Для целого деления необходимо, чтобы:

$$\left\{ \begin{array}{l} \alpha - N\gamma - M\delta + M\gamma p = 0 \\ \beta - N\delta + M\gamma q = 0 \end{array} \right. \implies \left\{ \begin{array}{l} -(\delta - \gamma p)M - \gamma N = -\alpha \\ \gamma qM - \delta N = -\beta \end{array} \right.$$

где M, N - неизвестные:

$$\left\{ \begin{array}{ll} \alpha - N\gamma - M\delta + M\gamma p = 0 \\ \beta - N\delta + M\gamma q = 0 \end{array} \right. \; ; \; \left| \begin{array}{ll} \delta - \gamma p & \gamma \\ \gamma q & -\delta \end{array} \right| = -\delta^2 + \gamma p\delta - \gamma^2 q.$$

Заметим, что α и β , а так же γ и δ одновременно в 0 не обращаются. $p^2-4q<0\implies q\neq 0, \quad -(\delta^2+\gamma^2q)+\gamma p\delta$:

- 1. $\gamma = 0$, $\delta = 0$ невозможно;
- 2. $\gamma = 0, \ \delta \neq 0 \implies -\delta^2 \neq 0;$
- 3. $\gamma \neq 0$, $\delta = 0 \implies -\gamma^2 q \neq 0$;
- 4. $\gamma \neq 0$, $\delta \neq 0$.

Тогда, если $-(\delta^2+\gamma^2q)+\gamma p\delta=0 \implies \gamma p\delta=\delta^2+\gamma^2q;$ $p^2-4q<0,\ p^2<4q\implies 0\leqslant \frac{p^2}{4}< q$

 $\gamma \neq 0$: если $(\frac{\delta}{\gamma})^2 + (-\frac{\delta}{\gamma})p + q = 0$, то $x = \frac{\delta}{\gamma}$ - корень многочлена $x^2 + px + q \implies$ противоречие с тем, что $x^2 + px + q$ не имеет вещественных корней $\implies \Delta \neq 0 \implies \exists M, N$ и \exists многочлен $P_1(x)$.

1.3.4 Метод неопределенных коэф-ов (следствия лемм)

Если $\frac{P(x)}{Q(x)}$ - правильная дробь и $Q(x)=(x-a_1)^{k_1}*\ldots*(x-a_s)^{k_s}*(x^2+p_1x+q_1)^{m_1}*\ldots*(x^2+p_rx+q_r)^{m_r}$, то верно следующее разложение:

$$\frac{P(x)}{Q(x)} = \sum_{i=0}^{k_1 - 1} \frac{A_i}{(x - a_i)^{k_1 - i}} + \dots + \sum_{i=0}^{k_s - 1} \frac{A_i^s}{(x - a_s)^{k_s - i}} + \sum_{i=0}^{m_1 - 1} \frac{M_i x + N_i}{(x^2 + p_1 x + q_1)^{m_1 - i}} + \dots + \sum_{i=0}^{m_r - 1} \frac{M_i^r x + N_i^r}{(x^2 + p_r x + q_r)^{m_r - i}},$$

где $A_i, \ldots, A_i^s, M_i, N_i, \ldots, M_i^r, N_i^r \in \mathbb{R}$.

Пример 4. $Q(x) = (x-1)^3(x+2)^2(x^2+x+1)^3$

$$\frac{x^5 - x^3 + 1}{Q(x)} = \frac{A_0^1}{(x-3)^3} + \frac{A_1^1}{(x-3)^2} + \frac{A_2^1}{(x-3)} + \frac{A_0^2}{(x+2)^2} + \frac{A_1^2}{(x+2)} + \frac{M_0x + N_0}{(x^2 + x + 1)^3} + \frac{M_1x + N_1}{(x^2 + x + 1)^2} + \frac{M_2x + N_2}{(x^2 + x + 1)}$$

Приведем в $\frac{P(x)}{Q(x)} = \sum_{i=0}^{k_1-1} \frac{A_i}{(x-a_i)^{k_1-i}} + \dots$ правую часть к общему знаменателю и получим: $\frac{P(x)}{Q(x)} \equiv \frac{R(x)}{Q(x)};$ $\deg Q(x) = k_1 + \dots + k_s + 2m_1 + \dots + 2m_r = n;$

$$l = \deg R(x) = \deg P(x) \leqslant \deg Q(x) - 1.$$

Количество неизвестных коэф. у множества R(x) равно n штук, приравнивая коэф. при соответствующих степенях x (в том числе при x^0) получим n уравнений с n неизвестными (старшая степень x множества R(x) равна n-1).

1.3.5 Метод Остроградского

Теорема 1.3.1. Пусть $\frac{P(x)}{Q(x)}$ - правильная несократимая дробь.

Тогда $\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx$. Дроби $\frac{P_1(x)}{Q_1(x)}$ и $\frac{P_2(x)}{Q_2(x)}$ - правильные. $Q(x) = Q_1(x)Q_2(x)$ и многочлен $Q_2(x)$ представляет собой произведение всех линейных и квадратичных множителей многочлена Q(x), взятых в первой степени.

Пример 5.
$$\int \frac{x^2+2x+5}{(x-2)(x^2+1)^2} dx = \frac{P_1(x)}{x^2+1} + \int \frac{P_2(x)}{(x-2)(x^2+1)} dx = \frac{Ax+B}{x^2+1} + \int \frac{Cx^2+Dx+E}{(x-2)(x^2+1)} dx$$

Доказательство. Рассмотрим $\int \frac{A}{(x-a)^k} dx = \frac{A}{1-k} \frac{1}{(x-a)^{k-1}};$

$$\int \frac{Mx+N}{(x^2+px+q)^k} dx = \frac{A}{(x^2+px+q)^{k-1}} + B \int \frac{dx}{(x^2+px+q)^k} = \frac{A}{(x^2+px+q)^{k-1}} + \frac{C}{(x^2+px+q)^{k-1}} + D \int \frac{dx}{(x^2+px+q)^{k-1}} = \frac{A}{(x^2+px+q)^{k-1}} + \ldots + \frac{V}{(x^2+px+q)^2} + W \int \frac{dx}{x^2+px+q}.$$

Представим Q(x) в виде $Q(x)=(x-a_1)^{k_1}*\ldots*(x-a_s)^{k_s}*(x^2+p_1x+q_1)^{m_1}*\ldots*(x^2+p_rx+q_r)^{m_r}$, тогда:

$$Q_2(x) = (x - a_1) * \dots * (x - a_s) * (x^2 + p_1 x + q_1) * \dots * (x^2 + p_r x + q_r);$$

$$Q_1(x) = (x - a_1)^{k_1 - 1} * \dots * (x - a_s)^{k_s - 1} * (x^2 + p_1 x + q_1)^{m_1 - 1} * \dots * (x^2 + p_1 x + q_1)^{m_r - 1};$$

Из метода неопределенных коэффициентов и того, что $\int \frac{Mx+N}{(x^2+px+q)^k} dx = \frac{A}{(x^2+px+q)^{k-1}} + \ldots + \frac{V}{(x^2+px+q)^2} + W \int \frac{dx}{x^2+px+q} \implies \int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx.$

Как найти $P_1(x)$ и $Q_1(x)$?

Продифференцируем $\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx$:

$$\frac{P(x)}{Q(x)} = \frac{P_1'(x)Q_1(x) - P_1(x)Q_1'(x)}{Q_1^2} + \frac{P_2(x)}{Q_2(x)}. \text{ Рассмотрим: } \frac{P_1'(x)Q_1(x) - P_1(x)Q_1'(x)}{Q_1^2} = \frac{P_1'(x) - P_1(x)\frac{Q_1'(x)}{Q_1(x)}}{Q_1(x)} = \frac{P_1'(x)Q(x) - P_1(x)\frac{Q_1'(x)Q_2(x)}{Q_1(x)}}{Q_1(x)Q_2(x)}.$$

Пусть $H(x) = \frac{Q_1'(x)Q_2(x)}{Q_1(x)}$ - многочлен (нужно показать).

Пусть $Q_1(x)$ имеет среди своих множителей многочлен вида $(x-a)^n$, тогда $Q_1'(x)$ будет иметь в своем составе $(x-a)^{n-1}$, а $Q_2(x)$ только содержит в себе выражение $(x-a) \implies H(x)$ - многочлен.

Коэффициенты многочленов $P_1(x)$ и $P_2(x)$ можно найти с помощью метода неопределенных коэффициентов из выражения $\frac{P(x)}{Q(x)}=\frac{Mx+N}{(x^2+px+q)^k}+\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$.

Глава 2

Интегральное исчисление

Интеграл Римана

Определение 2.0.1 (интеграл Римана). Пусть $f:[a;b] \to \mathbb{R}$. Разобьем отрезок [a;b] на n частей точками $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. В каждом таком кусочке выберем точку $\xi_i \in [x_{i-1};x_i], \ i=1,\ldots,n$.

 $\Delta i = [x_{i-1}, x_i], \quad \Delta x = x_i - x_{i-1}$ - длина отрезка Δi .

Составим сумму $S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$, где $f(\xi_i)$ - высота i-го прямоугольника и Δx_i - ширина i-го прямоугольника.

 S_n - площадь ступенчатой фигуры, составленной из прямоугольников под графиком функции f(x).

Говорят, что функция f интегрируема на [a;b], если существует предел интегральных сумм S_n , то есть $\exists \lim_{\max \Delta x_i \to 0} S_n$, причем этот предел не зависит ни от способа разбиения отрезка [a;b], ни от способа выбора точек ξ_i .

Этот предел называется **интегралом Римана** функции f на [a;b]. Класс интегрируемых функций на отрезке [a;b] будем обозначать R([a;b]).

2.1 Базы. Предел функции по базе

Определение 2.1.1 (база множества). Пусть X - произвольное множество.

Система β подмножеств множества X называется **базой** на X, если:

- 1. $\forall \beta \in \beta \quad \beta \neq \emptyset$
- 2. $\forall \beta_1, \beta_2 \in \beta \ \exists \beta_3 \in \beta : \beta_3 \subset \beta_1 \cap \beta_2$

Пример 6 (баз множества). 1. $\beta = \{X\}$ - база

- 2. $X = \mathbb{R}, \quad \beta = \{\beta_n = (-\frac{1}{n}; \frac{1}{n}), \ n \in \mathbb{N}\}$
- 3. $X = \mathbb{R}, \quad \beta = \{\beta_{\epsilon} = \{x: \ 0 < |x| < \epsilon\}, \epsilon > 0\}$ (выколотые окрестности нуля)

Определение 2.1.2 (предел по базе). Пусть $f: X \to \mathbb{R}, \ \beta$ - база на X

Число $A \in \mathbb{R}$ называется **пределом** функции f по базе β , если $\forall \epsilon > 0$ \exists элемент базы $\beta \in \beta$: $|f(x) - A| < \epsilon$.

$$\lim_{\beta} f(x)$$

Определение 2.1.3 (предел по базе (МП)). Пусть (Y,d) - МП, $f:X\to Y,\ \beta$ - база на X.

 $y \in Y$ называется **пределом** функции f(x) **по базе** β , если $\forall \epsilon > 0 \ \exists \beta \in \beta \ \forall x \in \beta : \ d(f(x),y) < \epsilon$, или, что то же самое, $\forall V_Y(y) \ \exists \beta \in \beta \ f(\beta) \subset V_Y(y)$, где V_Y - окрестность метрического пространства Y.

Теорема 2.1.1 (основные свойства предела по базе). Пусть $f: X \to \mathbb{R}, \ \beta$ - база на X:

- 1. Если $\exists \underset{\beta}{\lim} f(x),$ то $\exists \beta \in \beta: \ f$ ограничена на β
- 2. Если $\underset{\beta}{\lim} f(x) = A$ и $\underset{\beta}{\lim} f(x) = B$, то A = B

Теорема 2.1.2 (связь предела по базе с арифметическими операциями). Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ \beta$ - база на $X, \lim_{\beta} f(x) = A, \lim_{\beta} g(x) = B$:

- 1. $\exists \lim_{\beta} (f(x) \pm g(x)) = A \pm B$
- 2. $\exists \lim_{\beta} (f(x)g(x)) = AB$
- 3. $\exists \lim_{\beta} (\frac{f(x)}{g(x)}) = \frac{A}{B}$, если $g(x) \neq 0$, $\beta \neq 0$

Теорема 2.1.3 (связь предела функции по базе с неравенствами). Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ \beta$ - база на X:

- 1. Если $\exists \beta \in \beta: \quad \forall x \in \beta \ f(x) \leqslant g(x), \ {\rm To} \ \lim_{\beta} f(x) \leqslant \lim_{\beta} g(x)$
- 2. Если $\lim_{\beta} f(x) < \lim_{\beta} g(x)$, то $\exists \beta \in \beta \ \forall x \in \beta \quad f(x) < g(x)$

Если $\lim_{\beta} f(x) \geqslant \lim_{\beta} g(x)$, то $\exists \beta \in \beta \ \forall x \in \beta \quad f(x) \geqslant g(x)$

3. Если $h:X\to\mathbb{R}$ и $\exists \beta\in\beta:\ \forall x\in\beta\ f(x)\leqslant h(x)\leqslant g(x)$ И $A=\lim_{\beta}f(x)=\lim_{\beta}g(x),$ то $\lim_{\beta}h(x)=A$

Теорема 2.1.4 (критерий Коши существования предела по базе). Существуют две формулировки:

- 1. Пусть $f:X\to\mathbb{R},\ \beta$ база на X. Функция f(x) имеет предел по базе $\beta\iff \forall \epsilon>0\ \exists \beta\in\beta:\ \ \forall x_1,x_2\in\beta\ |f(x_1)-f(x_2)|<\epsilon$
- 2. Пусть (Y,d) МП (полное), $f: X \to Y, \ \beta$ база на Y. Функция f(x) имеет предел по базе $\beta \iff \forall \epsilon > 0 \exists \beta \in \beta: \ \forall x_1, x_2 \in \beta \ d(f(x_1), f(x_2)) < \epsilon$

Доказательство. (критерия Коши ∃ предела по базе)

" — " Пусть $\exists \lim_{\beta} f(x) = A$. Покажем, что $\forall \epsilon > 0 \exists \beta \in \beta: \forall x_1, x_2 \in \beta \ |f(x_1) - f(x_2)| < \epsilon$. Рассмотрим $|f(x_1) - f(x_2)| = |f(x_1 - A) + (A - f(x_2))| \leqslant |f(x_1) - A| + |f(x_2) - A| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

" — "Пусть $\forall \epsilon > 0 \; \exists \beta \in \beta : \quad \forall x_1, x_2 \in \beta \; |f(x_1) - f(x_2)| < \epsilon.$ Покажем, что $\exists \liminf_{\beta} f(x)$. Возьмем $\beta_1 \in \beta : \quad \forall x_1, x_2 \in \beta_1 \; |f(x_1) - f(x_2)| < 1.$ Возьмем $\beta_1' \in \beta : \quad \forall x_1, x_2 \in \beta_1' \; |f(x_1) - f(x_2)| < \frac{1}{2}.$ Пусть $\beta_2 \subset \beta_1 \cap \beta_1'$ и так далее.

Таким образом построим систему вложенных множеств: $\beta_1\supset\beta_2\supset\ldots\supset$ $\beta_n \supset \dots$, при этом $\forall x_1, x_2 \in \beta_n |f(x_1) - f(x_2)| < \frac{1}{2^{n-1}}$. Воспользуемся полнотой пространства, то есть в нем $\exists \lim f(x)$, если f(x) - фундаментальная.

 $\forall n \in \mathbb{N}$ рассмотрим $x_n \in \beta_n$. Тогда, если $n < m \ (m \in \mathbb{N})$, то для $x_n \in \beta_n$ и $x_m \in \beta_n |f(x_n) - f(x_m)| < \frac{1}{2^{n-1}}$.

Таким образом последовательность $f(x_n)$ - фундаментальная \Longrightarrow $\exists \lim_{n \to \infty} f(x_n) = A$. Покажем, что $A = \lim_{\beta} f(x)$. Пусть $\epsilon > 0$ задано. Выберем $n \in \mathbb{N}$: $\frac{1}{2^{n-1}} < \frac{\epsilon}{2}$. Возьмем m > n : $|f(x_m) - A| < \frac{\epsilon}{2}$. Возьмем $\beta = \beta_n$. Тогда $\forall x \in \beta |f(x) - A| = |f(x) - f(m) + f(x_m) - A| \le |f(x)| + |f(x)|$ $|f(x) - f(x_m)| + |f(x_m) - A| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Следовательно,
$$\exists \lim_{\beta} f(x) = A$$
.

Разбиение. Интеграл Римана (v.2) 2.2

Определение 2.2.1 (разбиение). Пусть дан отрезок [a;b]. **Разбиением** Pотрезка [a;b] называется набор точек $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. То есть $P = \{x_0, \dots, x_n\}$. Отрезки $[x_{i-1}; x_i] = \Delta_i$. $x_i - x_{i-1} = \Delta x_i$ - длина i-го отрезка разбиения $\lambda(P)=\max_{i=\overline{0,n}}\{\Delta x_i\}$. Величины $\Delta_i,\Delta x_i,\lambda(P)$ - параметры ограничения.

Определение 2.2.2 (разбиение с отмеченными точками). Разбиением с отмеченными точками называется пара наборов

$$P(\xi) = \{x_0, \dots, x_n\}, \{\xi_0, \dots, \xi_n\},$$
 где $a = x_0 < \dots < x_n = b, \; \xi_i \in [x_{i-1}; x_i].$

 ξ_1 ξ_2 ξ_n Пусть $\Re_{\xi} = \{(P, \xi)\}$ - семейство всевозможных разбиений с отмеченными точками отрезка [a, b].

Рассмотрим $\beta_{\delta} = \{(P, \xi) : \lambda(P) < \delta\}, \beta_{\delta} \subset P_{\varepsilon}$:

Утверждение 2.2.1. Множество $\beta = \{\beta_{\delta} : \delta > 0\}$ является базой на \Re_{ε} . Доказательство. (утверждения 2.3.1.).

1. $\forall \delta > 0 \beta_{\delta}$ - непусто.

В самом деле, пусть отрезок [a;b] поделен на n равных частей, причем n выбирается из соображений, чтобы $\Delta x_i = \Delta x \quad \forall i = 1, n \ (1, \dots, n), \ \Delta x < n$

Пусть $\xi_i \in [x_{i-1}; x_i]$ - середины отрезков $[x_{i-1}; x_i]$.

2. Покажем, что $\forall \beta_{\delta_1}, \beta_{\delta_2} \in \beta \exists \beta_{\delta_3} \subset \beta_{\delta_1} \cap \beta_{\delta_2}$.

Пусть заданы $\delta_1 > 0, \delta_2 > 0$. Покажем, что $\exists \beta_3 > 0$: $\beta_{\delta_3} \subset \beta_{\delta_1} \cap \beta_{\delta_2}$. Если $\delta_1 < \delta_2$, то $\delta_3 = \delta_1$ или $\delta_3 = \frac{\delta_1}{2}$

Определение 2.2.3 (!). Пусть $f:[a;b]\to\mathbb{R},\;(P,\xi)$ - разбиение отрезка [a;b] с отмеченными точками. Составим сумму:

$$\sigma(f, (P, \xi)) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Можно смотреть на σ для фиксированной функции f(x) как на функцию, сопоставляющую разбиение $(P,\xi) \in \Re_{\xi}$ сумме $\sum_{k=1}^{n} f(\xi_k) \Delta x_k$, то есть $\sigma_f:\Re_\xi\to\mathbb{R}$ (то есть (P,ξ) - аргумент функции σ).

Говорят, что функция $f:[a;b]\to\mathbb{R}$ интегрируема по Риману на [a;b], если:

$$\exists \lim_{\lambda(P)\to 0} \sigma_f((P,\xi)) = \lim_{\lambda(P)\to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k$$

Или, что то же самое, если $\forall \epsilon > 0 \; \exists \delta > 0$ и соответствующий элемент $\beta_{\delta} \in \beta$: \forall разбиения (P, ξ) : $\lambda(P) < \delta$ выполняется неравенство $|\sigma_f((P,\xi)) - I| < 0$:

$$I = \lim_{\lambda(P) \to 0} \sigma_f((P, \xi)) = \int_a^b f(x) dx$$

Обозначим базу β из утверждения 2.3.1. как $\lambda(P) \to 0$.

Теорема 2.2.1 (необходимое условие интегрируемости функции). * * Если $f:[a;b]\to\mathbb{R}$ интегрируема на [a;b] (то есть $f\in\mathbb{R}[a;b]$), то f ограничена на [a;b].

Доказательство. От противного:

Допустим, что f интегрируема на [a;b], но неограничена, то есть: $\forall M>$ $0 \exists x \in [a;b]: |f(x)| > M$. Покажем, что функция $\sigma((P,\xi))$ не имеет предела по базе на [a;b].

То есть $\exists \epsilon > 0$: $\forall \delta > 0$ $\exists (P',\xi')$ и (P'',ξ'') : $\lambda(P') < \delta, \ \lambda(P'') < \delta$ $\delta (\lambda(P'') = \max \Delta x_i)$, Ho $(\sigma(P'', \xi'') - \sigma(P'', \xi'')) \geqslant \epsilon$.

Положим, $\epsilon = 1$. Пусть $\delta > 0$ задана. Выберем разбиение с отмеченными точками (P',ξ') такое, что $\lambda(P')<\delta,\ P'=\{a=x_0,x_1,\ldots,x_n=x_n\}$ b}, $\epsilon_i \in [x_1, \ldots, x_n]$. Поскольку функция f неограничена на [a; b], то существует хотя бы один элемент разбиения $[x_{i-1}, x_i] = \Delta i$: функция fнеограничена на (? Спасибо Максим). В качестве P^n возьмем $P',\ \xi''=$ $\{\xi_1',\xi_2',\ldots,\xi_i'',\ldots,\xi_n'\},\ \lambda(P'')<\delta$ и $|f(\xi_i'')-f(\xi_i')|>rac{1}{\Delta x_i}$. Разбиения P' и P'' совпадают, точки разбиения так же совпадают, кроме ξ_i'' . Рассмотрим $|\sigma((P'',\xi''))-\sigma((P',\xi'))|=|\sum_{k=1}^n \Delta x_k f(\xi_k')-\sum_{k=1}^n \Delta x_k f(\xi_k'')|=|\Delta x_i(f(\xi_i'')-f(\xi_i'))|>rac{\Delta x_i}{\Delta x_i}=1=\epsilon$.

2.3 Критерий интегрируемости

2.3.1 Суммы Дарбу

Определение 2.3.1 (нижняя/верхняя суммы Дарбу). Пусть $f[a;b] \to \mathbb{R}, \ P$ - произвольное разбиение отрезка [a;b]. Числа $\underline{S}(P) = \sum_{k=1}^n m_k \Delta x_k$ и $\overline{S}(P) = \sum_{k=1}^n M_k \Delta x_k$, где $m_k = \inf_{\xi \in \Delta k} f(\xi), \ M_k = \sup_{\xi \in \Delta k} f(\xi)$, называются нижней и верхней суммами Дарбу, отвечающими разбиению P.

Теорема 2.3.1 (свойства сумм Дарбу). Свойства:

- 1. $\forall (P,\xi) \ \underline{S}(P) \leqslant \sigma_f((P,\xi)) \leqslant \overline{S}(P)$
- 2. Если разбиение P' получено из разбиения P добавлением новых точек, то $\underline{S}(P')\geqslant \underline{S}(P)$ и $\overline{S}(P')\leqslant \overline{S}(P)$
- 3. $\forall P_1, P_2 \quad \underline{S}(P_1) \leqslant \overline{S}(P_2)$

Доказательство. (теоремы 2.4.1)

- 1. $\underline{S}(P)=\sum_{k=1}^n m_k \Delta x_k \leqslant \sum_{k=1}^n f(\xi_k) \Delta x_k \leqslant \sum_{k=1}^n M_k \Delta x_k = \overline{S}(P)$, где $f(\xi_k)=\sigma((P,\xi))$, вроде
- 2. Пусть P произвольное разбиение отрезка [a;b]. Построим P'. Добавим на элемент разбиения Δi новую точку $x' \in [x_{i-1};x_i]$.

Пусть $m_i' = \inf_{\xi \in [x_{i-1},x_i]} f(\xi)$ и $m_i'' = \inf_{\xi \in [x_i',x_i]} f(\xi)$, $m_i = \inf_{\xi \in [x_{i-1};x_i]} f(\xi)$, имеем $m_i \leqslant m_i'$, $m_i \leqslant m_i''$.

Тогда $\underline{S}(P') - \underline{S}(P) = \sum_{k=1}^{i-1} \Delta x_k m_k + m_i' |x' - x_{i-1}| + m_i'' |x_i - x'| + \sum_{k=i+1}^n m_k \Delta x_k - \sum_{k=1}^n \Delta x_k m_k = m_i' |x' - x_{i-1}| + m_i'' |x_i - x'| - m_i \Delta x_i \geqslant 0 \Longrightarrow \underline{S}(P') \geqslant S(P)$ (вероятно, куча индексов - неправильные).

Аналогично доказывается для $\overline{S}(P') \leqslant \overline{S}(P)$.

3. Пусть P_1, P_2 - произвольные разбиения отрезка [a;b].

Возьмем разбиение $P=P_1\cap P_2$. Тогда, с одной стороны, P получено из P_1 добавлением точек, а с другой стороны - из P_2 добавлением точек. Тогда $\underline{P_i}\leqslant \underline{S}(P)$ и $\overline{S}(P_i)\geqslant S(P)$.

Тогда верно, что $\underline{S}(P_2) \leqslant \underline{S}(P)$ и $\overline{S}(P_2) \geqslant \overline{S}(P) \implies \underline{S}(P_1) \leqslant \underline{S}(P) \leqslant$ $\overline{S}(P) \leqslant \overline{S}(P_2)$.

Следствие. Множество нижних сумм Дарбу ограничено сверху. Множество верхних сумм Дарбу ограничено снизу.

Определение 2.3.2 (верхний/нижний интеграл Дарбу). Числа $\mathfrak{I} = \sup \underline{S}(P)$ и $\mathfrak{I}=\inf \widehat{S}(P)$ называются нижним и верхним интегралом Дарбу.

Рассмотрим множество разбиений с отмеченными точками отрезка [a;b] \Re $\{(P,\xi)\}$. Построим функцию $\underline{S}:\Re_\xi\to\mathbb{R}$ и $\underline{S}((P,\xi))=\underline{S}(P)$. Аналогично определим $\overline{S}: \Re_{\xi} \to \mathbb{R}$ и $\overline{S}((P,\xi)) = \overline{S}(P)$.

Таким образом сумму Дарбу можно представить как функции на множестве разбиений с отмеченными точками отрезка [a;b].

Теорема 2.3.2 (критерий интегрируемости). Функция $f:[a;b] \to \mathbb{R}$ интегрируема на $[a;b] \iff \lim_{\lambda(P)\to 0} (\overline{S}(P) - \underline{S}(P)) = 0.$

Доказательство. (теоремы 2.4.2)

" \rightarrow " Пусть $f \in \mathbb{R}$ ([a;b]) (то есть интегрируема на [a;b]), то есть $\forall \epsilon >$ $0 \ \forall (P,\xi): \ \lambda(P) < \delta \implies |\sigma_f((P,\xi)) - I| < \epsilon.$

Лемма 2.3.1.
$$\forall P$$
 $\underline{S}(P) = \inf_{\xi} \sigma_f((P,\xi))$ и $\overline{S}(P) = \sup_{\xi} \sigma_f((P,\xi))$

Доказательство. (леммы 2.4.1)

 $\forall P \ S(P) \leqslant \sigma_f((P,\xi)).$

Покажем, что $\forall \epsilon>0$ $\exists \xi=\{\xi_1,\xi_2,\ldots,\xi_n\}:\ \underline{S}(P)+\epsilon>\sigma_f(P,\xi).$

Выберем $\xi_1, \xi_2, \dots, \xi_n$: $f(\xi_i) < m_i + \frac{\epsilon}{b-a}$.

Тогда $\sigma_f(P, \xi) = \sum_{k=1}^n f(\xi_k) \Delta x_k < \sum_{k=1}^n (m_k + \frac{\epsilon}{b-a}) \Delta x_k = \sum_{k=1}^n m_k \Delta x_k + \frac{\epsilon}{b-a} \sum_{k=1}^n \Delta x_k = \underline{S}(P) + \epsilon \implies \underline{S}(P) = \inf_{\xi} \sigma_f(P, \xi)$.

Аналогично для
$$\overline{S}(P) = \sup_{\xi} \sigma_f(P, \xi)$$
.

 $I-\epsilon < \sigma_f(P,\xi) < I+\epsilon, \ I-\frac{\epsilon}{2} < \sigma_f(P,\xi) < I+\frac{\epsilon}{2}.$ Из леммы 2.4.1: $\underline{S}(P)+\epsilon > \sigma_f(P,\xi) \implies \underline{S}(P) > \sigma_f(P,\xi) - \epsilon > \sigma_f(P,\xi) - \frac{\epsilon}{2} \ (I = \lim_{\lambda(P) \to 0} \sigma_f(P,\xi))$

Рассмотрим $I - \frac{2\epsilon}{3} < I - \frac{\epsilon}{2} \leqslant \underline{S}(P) \leqslant \sigma_f(P,\xi) \leqslant \overline{S}(P) < \sigma_f(P,\xi) + \epsilon < I + \frac{\epsilon}{2} + \epsilon = I + \frac{3\epsilon}{2} (\overline{S}(P) - \epsilon < \sigma_f(P,\xi))$ Тогда $I - \frac{3\epsilon}{2} < \underline{S}(P) \leqslant \overline{S}(P) < I + \frac{3\epsilon}{2}$, так как $\underline{S}(P) \leqslant \overline{S}(P) \implies 0 \leqslant$

 $\overline{S}(P) - \underline{S}(P),$

$$\overline{S}(P) < I + \frac{3\epsilon}{2} + \\ -\underline{S}(P) < -I + \frac{3\epsilon}{2}$$

$$0 \leqslant \overline{S}(P) - \underline{S}(P) < 3\epsilon \implies \lim_{\lambda(P) \to 0} (\overline{S}(P) - \underline{S}(P)) = 0$$
" \(\times \text{" \(\Times_{\lambda(P) \to 0}} \) \((\overline{S}(P) - \overline{S}(P)) = 0. \)

Пусть $\epsilon>0$ задана. Выберем $\delta>0$: $0\leqslant \overline{S}(P)-S(P)<\epsilon \ \forall (P,\xi)$: $d(P) < \delta$.

. Покажем, что $\exists I=\int_a^b f(x)dx=\lim_{\lambda(P)\to 0}\sigma_f(P,\xi)$. Имеем $\overline{S}(P)-\underline{S}(P)<\epsilon$ и $S(P) \leqslant I \leqslant \overline{S}(P)$.

Из неравенств следует, что $\overline{S}(P) < S(P) + \epsilon \leqslant I + \epsilon$, $S(P) > \overline{S}(P) - \epsilon \geqslant$ $I - \epsilon$.

Пусть (P,ξ) - произвольное разбиение: $\lambda(P) < \delta$. Тогда $I - \epsilon < \underline{S}(P) \leqslant$ $\sigma_f(P,\xi) \leqslant \overline{S}(P) < I + \epsilon \implies I - \epsilon < \sigma_f(P,\xi) < I + \epsilon \implies |\sigma_f(P,\xi) - I| < \epsilon \implies I = \lim_{\lambda(P) \to 0} \sigma_f(P,\xi) \implies f \in \mathbb{R}[a;b].$

Определение 2.3.3. Обозначим $M_i - m_i = \sup_{\xi \in \Delta i} f(\xi) - \inf_{\xi \in \Delta i} f(\xi) = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|$ $|f(x_2)| = \omega_i = \omega_i(f, \Delta i).$

 ω_i называется колебанием функции f(x) на отрезке Δi . $\overline{S}(P)-\underline{S}(P)=\sum_{i=1}^n\omega_i\Delta x_i$

Следствие. (из критерия интегрируемости) $f \in \mathbb{R}[a;b] \iff \lim_{\lambda(P) \to 0} \sum_{i=1}^n \omega_i \Delta x_i = 0$

Теорема 2.3.3 (Дарбу). Для любой ограниченной функции $f:[a;b] \to \mathbb{R}$ выполняются равенства:

$$\underline{\mathfrak{I}} = \lim_{\lambda(P) \to 0} \underline{S}(P); \ \overline{\mathfrak{I}} = \lim_{\lambda(P) \to 0} \overline{S}(P)$$

Лемма 2.3.2. Пусть $f:[a;b]\to\mathbb{R}$ ограничена на [a;b], то есть $\exists L>0$: $\forall x \in [a;b] | f(x) | < L$. Разбиение P' получено из разбиения P добавлением m точек. Тогда $\overline{S}P - \overline{S}(P') \leqslant 2L\lambda(P)m$

Доказательство. (леммы 2.4.2)

Пусть P - производное разбиение, $\lambda(P)$.

Рассмотрим случай, что P' получено добавлением k точек на i-тый отрезок разбиения P. (график, посмотреть у Максима). $\overline{S}(P) - \overline{S}(P') = \sum_{j=1}^{n} M_j \Delta x_j (\sum_{j=1}^{i-1} M_j \Delta x_j + \sum_{j=1}^k M'_{ij} \Delta x_{ij} + \sum_{j=i+1}^n M_j \Delta x_j) = M_i \Delta x_i - \sum_{j=1}^k M'_{ij} \Delta x_{ij} = M_i \sum_{j=1}^k \Delta x_{ij} - \sum_{j=1}^k M'_{ij} \Delta x_{ij} = \sum_{j=1}^k M_i \Delta x_{ij} - \sum_{j=1}^k M'_{ij} \Delta x_{ij} = \sum_{j=1}^k (M_i - M'_{ij}) \Delta x_{ij} \leqslant \sum_{j=1}^k 2L \Delta x_{ij} = (\text{вспомним, что } \lambda(P) = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_n\})$ $=2L\sum_{j=1}^k \Delta x_{ij}=2L\Delta x_i\leqslant 2L\lambda(P)$ Теперь, если P' получено из P добавлением m точек, то они попадут

самое большее на m промежутков. Тогда $\overline{S}(P) - \overline{S}(P') \leqslant 2L\lambda(P)m$

Доказательство. (теоремы 2.4.3, Дарбу)

$$\underline{\mathfrak{I}} \stackrel{def}{=} \sup_{P} \underline{S}(P), \ \overline{\mathfrak{I}} \stackrel{def}{=} \inf_{p} \overline{S}(P)$$

Пусть $\epsilon > 0$ задано. Выберем разбиение P' такое, что $\overline{\Im} + \epsilon > \overline{S}(P')$ (**) (определение inf). Положим, что $\delta = \frac{\epsilon}{2Lm}$.

Пусть P - произвольное разбиение: $\lambda(P) < \delta$.

Покажем, что $0 \leqslant \overline{S}(P) - \overline{\Im} < \epsilon$.

Построим разбиение $P'' = P' \cup P$. Тогда P'' получено из P добавлением m точек $\Longrightarrow \overline{S}(P) - \overline{S}(P'') \leqslant 2L\lambda(P)m$, где L>0 : $\forall x \in [a;b]|f(x)| < L$. Далее, $\overline{S}(P) - \overline{S}(P'') \leqslant 2L\lambda(P)m < 2Lm\delta = \frac{2Lm\epsilon}{2Lm} = \frac{\epsilon}{2}$. Кроме того, P''получено из P' добавлением некоторого количества точек.

$$\overline{S}(P'') \leqslant \overline{S}(P') \overset{(**)}{\leqslant} \overline{\mathfrak{I}} + \frac{\epsilon}{2} \implies \overline{S}(P'') - \frac{\epsilon}{2} < \overline{\mathfrak{I}}$$
 Рассмотрим $0 \leqslant \overline{S}(P) - \overline{\mathfrak{I}} < \overline{S}(P) - \overline{S}(P'') + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

2.3.2Классы интегрируемых функций

Теорема 2.3.4 (интегрируемость непрерывных функций). Пусть $f:[a;b] \to$ \mathbb{R} непрерывна на $[a;b] \implies f$ - интегрируема на [a;b] , то есть $f \in \mathbb{R}[a;b]$.

Доказательство. (теоремы 2.4.4)

Так как f - непрерывна на $[a;b] \implies f$ - равномерно непрерывна на [a;b]. Это значит, что если $\epsilon > 0$ задано, то $\exists \delta > 0: \ \forall x_1, x_2 \in [a;b]: \ |x_1 - x_2| < \delta$ $\delta \implies |f(x_1) - f(x_2)| < \frac{\epsilon}{b-a}$.

По критерию интегрируемости: $f \in \mathbb{R}[a;b] \iff \lim_{\lambda(P) \to 0} (\overline{S}(P) - \underline{S}(P)) =$

$$0 \ \forall (P;\xi)$$
 - разбиение.
$$\overline{S}(P) - \underline{S}(P) = \sum \omega_i \Delta x_i, \text{ где } \omega_i = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|.$$

$$\overline{S}(P) = \sum M_i \Delta x_i, M_i = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|.$$

$$\overline{S}(P) = \sum M_i \Delta x_i, \ M_i = \sup_{\xi \in \mathcal{S}} f(\xi).$$

$$\overline{S}(P) = \sum M_i \Delta x_i, \ M_i = \sup_{\xi \in \Delta x_i} f(\xi).$$

$$\omega_i = M_i - m_i = \sup_{\xi \in \Delta i} f(\xi) - \inf_{\xi \in \Delta i} f(\xi) = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)|.$$

$$\overline{S}(P) - \underline{S}(P) = \sum M_i \Delta x_i - \sum m_i \Delta x_i = \sum \omega_i \Delta x_i.$$

$$\overline{S}(P) - \underline{S}(P) = \sum M_i \Delta x_i - \sum m_i \Delta x_i = \sum \omega_i \Delta x_i$$

Таким образом критерий интегрируемости: f - интегрируема на $[a;b] \iff$ $\lim_{\lambda(P)\to 0}\sum \omega_i \Delta x_i = 0, \text{ то есть } \forall \epsilon>0 \ \exists \delta>0: \ \forall (P;\xi): \ \lambda(P)<\delta \implies 0 \leqslant \infty$ $\sum \omega_i \Delta x_i < \epsilon$.

Пусть $\epsilon>0$ задано. Возьмем $(P;\xi)$ - разбиение такое, что $\lambda(P)<\delta$. Тогда $\sum \omega_i \Delta x_i = \sum \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)| \Delta x_i \leqslant \sum \frac{\epsilon}{b-a} \Delta x_i = \frac{\epsilon}{b-a} \sum \Delta x_i = \sum \Delta x_$ $\frac{\epsilon}{b-a}(b-a) = \epsilon$

Теорема 2.3.5 (интегрируемость функций с конечным числом точек разрыва). Пусть $f:[a;b]\to\mathbb{R}$ - ограничена и имеет на [a;b] конечное число точек разрыва. Тогда $f \in \mathbb{R}[a;b]$ интегрируема на [a;b].

Доказательство. (теоремы 2.4.5)

Пусть L > 0: $\forall x \in [a; b] |f(x)| < L$ (ограничена). Пусть f имеет k точек разрыва на [a;b].

Пусть $\epsilon>0$ задано. Возьмем $\delta_1=\frac{\epsilon}{16Lk}$. Для каждой точки разрыва построим δ_1 -окрестность.

Пусть U - множество таких окрестностей. U - открытое множество. Рассмотрим $V = [a;b] \setminus U \implies V$ - замкнутое (так как его дополнение открытое). Из того, что V - ограничено и замкнуто $\implies V$ - компактное. Функция f - непрерывна на $V \implies$ из того, что V - компактно и f - непрерывна на $V\implies f$ - равномерно непрерывна на $V\implies orall \epsilon>0$ $\exists \delta_2>0:\ orall x_1,x_2\in V:$ $|f(x_1) - f(x_2)| < \frac{\epsilon}{2(b-a)}.$

Положим, что $\delta = \min\{\delta_1, \delta_2\}$. Пусть P - произвольное разбиение отрезка

Рассмотрим $\sum \omega_i \Delta x_i = \sum' \omega_i \Delta x_i + \sum'' \omega_i \Delta x_i \leqslant |\sum'$ берется по всепм отрезкам разбиения, k-тые пересекаются с U, \sum'' - по всем остальным $|\leqslant \sum' \omega_i \Delta x_i + \sum'' \frac{\epsilon}{2(b-a)} \Delta x_i \leqslant 2L2\delta_1 k + \frac{\epsilon}{2(b-a)} \sum'' \Delta x_i < \frac{4Lk\epsilon}{8Lk} + \frac{\epsilon}{2(b-a)} (b-a) = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

— Дополнение: $(\overline{S}(P) - \overline{S}(P') \leqslant 2L\lambda(P)m, \sum M_i \Delta x_i - \sum M_i' \Delta x_i). \sum' \omega_i \Delta x_i = \sum \sup_{x_1, x_2 \in \Delta i \cap k} |f(x_1) - f(x_2)| \Delta x_i \leqslant 2L2\delta_1 k$

ГРАФИКИ НАДО НАРИСОВАТЬ

Теорема 2.3.6 (интегрируемость монотонных функций). Пусть $f:[a;b] \to$ \mathbb{R} - монотонна на $[a;b] \implies f$ - интегрируема на [a;b].

Доказательство. (теоремы 2.4.6)

Пусть f - не убывает на [a;b]. Пусть $\epsilon>0$ задано. Возьмем $\delta=\frac{\epsilon}{f(b)-f(a)}$. Тогда, если P - произвольное разбиение $[a;b]: \lambda(P) < \delta$, то $\sum \omega_i \Delta x_i \stackrel{monoton.}{=} \sum (f(x_i) - f(x_{i-1})) \Delta x_i < \delta \sum (f(x_i) - f(x_{i-1})) = \delta(f(b) - f(a)) = \epsilon.$

2.3.3 Свойства интегрируемых функций

Теорема 2.3.7. Пусть $f \in \mathbb{R}[a;b], g \in \mathbb{R}[a;b]$. Тогда:

- 1. $f \pm g \in R[a;b]$.
- 2. $\alpha f \in R[a;b], \ \alpha \in \mathbb{R}$.
- 3. $f * q \in R[a; b]$.
- 4. $|f| \in R[a; b]$, при этом:
 - $\int_a^b (f \pm g) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
 - $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$
 - $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$

Доказательство. (теоремы 2.4.7)

1.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \lim_{\lambda(P) \to 0} \sum (f(\xi_i) \pm g(\xi_i)) \Delta x_i = \lim_{\lambda(P) \to 0} \sum f(\xi_i) \Delta x_i = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

- 2. Аналогично.
- 3. Покажем, что если $f \in R[a;b]$, то $f^2 \in R[a;b]$. Рассмотрим $|f^2(x_1) f^2(x_2)| = |(f(x_1) f(x_2))(f(x_1) f(x_2))| \le |f(x_1) f(x_2)|(|f(x_2)| + |f(x_2)|) < 2L|f(x_1) f(x_2)|$, где L > 0: $\forall x \in [a;b] |f(x)| < L$ (интегрируема \Longrightarrow ограничена).

Пусть P - произвольное разбиение. Пусть $\epsilon>0$ задано. Возьмем $\delta>0$ и $P:\ \lambda(P)<\delta$ $\omega_i(f^2,\Delta_i)\leqslant 2L\omega_i(f,\Delta_i).$

$$\sum_{i} w_{i}(f^{2}, \Delta_{i}) \Delta x_{i} \leqslant (\sum_{i} \omega_{i}(f, \Delta_{i}) \Delta_{i}) 2L.$$

Так как $f \in R[a;b]$, то $\sum_i \omega_i(f,\Delta_i) \Delta x_i \to 0 \implies$ по лемме о двух миллиционерах, $\sum_i \omega_i(f^2,\Delta_i) \Delta x_i \to 0 \implies$ (по критерию интегрируемости) $f^2 \in R[a;b]$.

$$fg = \frac{1}{4}((f+g)^2 - (f-g)^2) \implies fg \in R[a;b].$$

4. Рассмотрим $||f(x_1)| - |f(x_2)|| \le |f(x_1) - f(x_2)|, x_1, x_2 \in \Delta_i \implies \omega_i(|f|, \Delta_i) \le \omega_i(f, \Delta_i).$

$$0 \leqslant \sum_{i} \omega_{i}(|f|, \Delta_{i}) \Delta x_{i} \leqslant \sum_{i} \omega_{i}(f, \Delta_{i}) \Delta x_{i} \implies |f| \in R[a; b].$$

Рассмотрим $|\sum_i f(\xi_i)| \leqslant \sum_i |f(\xi_i)| \Delta x_i \implies \lim_{\lambda(P) \to 0} |\sum_i f(\xi_i) \Delta x_i| \leqslant \lim_{\lambda(P) \to 0} \sum_i |f(\xi_i)| \Delta x_i, \quad |\int_a^b f(x) dx| \leqslant \int_a^b |f(x)| dx.$

2.3.4 Аддитивность интеграла Римана

Определение 2.3.4. Пусть $a>b,\ a,b\in\mathbb{R},$ положим $\int_a^b f(x)dx=-\int_b^a f(x)dx.$ Если a=b, то $\int_a^{a=b} f(x)dx=0.$

Теорема 2.3.8 (Аддитивность интеграла Римана). Пусть даны точки $a,b,c \in \mathbb{R}$. Если f - интегрируема на большем из отрезков [a;b], [a,c], [b,c], то f - интегрируема и на меньших отрезках. И наоборот, если f интегрирема на двух меньших отрезках, то она интегрируема и на большем отрезке. При этом:

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx + \int_{c}^{a} f(x)dx = 0$$

теоремы 2.4.8. Пусть a < b < c.

Построим такое разбиение отрезка [a;c] с отмеченнымыми точками, что точка b будет его точкой разбиения $P=x_0,x_1,\ldots,b,\ldots,x_n$.

Тогда $\sum_P f(\xi_i) \Delta x_i < \sum_{P'} f(\xi_i) \Delta x_i + \sum_{P''} f(\xi_i) \Delta x_i$, где P' - разбиение отрезка левеее точки b, P'' - правее точки b.

Покажем, что если $f \in R[a;c]$, то $f \in R[a;b]$. В самом деле, $\sum_{P'} \omega_i \Delta x_i \leq \sum_{P} \omega_i \Delta x_i \to 0 \implies f \in R[a;b]$. Аналогично, можно показать, что $f \in R[b;c]$. Если f - интегрируема на [a;b] и $f \in R[b;c] \implies \sum_{P'} \omega_i \Delta x_i \to 0$, $\sum_{P'} \omega_i \Delta x_i \to 0$ \implies учитывая то, что $\sum_{P} f(\xi_i) \Delta x_i < \sum_{P'} f(\xi_i) \Delta x_i + \sum_{P''} f(\xi_i) \Delta x_i$, тогда $\sum_{P} \omega_i \Delta x_i \to 0 \implies f \in R[a;c]$, а так же то, что $\int_a^c f(x) dx \int_a^b f(x) dx + \int_b^c f(x) dx$.

2.3.5 Монотонность интеграла Римана

Теорема 2.3.9. Если a < b и $f \in R[a; b]$ и:

- 1. $\forall x \in [a;b] \ f(x) \geqslant 0$, to $\int_a^b f(x) dx \geqslant 0$
- 2. $\forall x \in [a; b] \ f(x) > 0$, to $\int_a^b f(x) dx > 0$

Доказательство. (теоремы 2.4.9)

- Почти очевидно (по определению интеграла Римана и свойствам предела)
- 2. Пусть $\forall x \in [a;b]f(x)>0$. Покажем, что $\int_a^b f(x)dx>0$. Допустим, что $\int_a^b f(x)dx=0$. Тогда $\lim_{\lambda(P)\to 0}\overline{S}(P)=0$.

Тогда можно взять такое разбинеие $P:\overline{S}(P)<\frac{b-a}{2}$. Тогда у этого разбиения $P\exists$ отрезок $\Delta_i:M_i=\sup_{x\in\Delta_i}f(x)<\frac{1}{2}$. В самом деле, если $M_i>\frac{1}{2}$ $\forall i$ то $\overline{S}(P)=\sum M_i\Delta_i>\frac{1}{2}\sum\Delta_i=\frac{b-a}{2}$ противоречие с

 $M_i\geqslant \frac{1}{2}\ \forall i,$ то $\overline{S}(P)=\sum_i M_i\Delta x_i\geqslant \frac{1}{2}\sum_i \Delta x_i=\frac{b-a}{2},$ противоречие с выбраным P.

Обозначим $\Delta_i = [a_1,b_1]$. Так как $f \in R[a;b] \implies f \in R[a_1,b_1]$. При этом $\int_a^b f(x) dx = 0$. Пусть P_1 - разбиение отрезка $[a_1,b_1]: \overline{S}(P_1) < \frac{b_1-a_1}{4} \implies \exists$ отрезок разбиения $[a_2,b_2] \subset [a_1,b_1]: \sup_{x \in [a_2,b_2]} f(x) < \frac{1}{4}$ и так далее.

Таким образом получим систему вложенных отрезков $[a;b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\dots$, при этом $\sup_{x\in [a_k,b_k]}f(x)<\frac{1}{2^k}$. Пусть $c\in\bigcap_{k=1}^\infty [a_k;b_k]$. Тогда f(c)>0. С другой стороны, $f(c)<\frac{1}{2^k}\implies f(c)=0$ - противоречие $\Longrightarrow \int_a^b f(x)dx>0$.

Следствие. (теоремы 2.4.9)

- 1. Если $a < b, f, g \in R[a; b]$ и:
 - (a) $\forall x \in [a; b] \ f(x) \leqslant g(x)$, to $\int_a^b f(x) dx \leqslant \int_a^b g(x) dx$
 - (b) $\forall x \in [a;b] \ f(x) < g(x)$, to $\int_a^b f(x) dx < \int_a^b g(x) dx$

Доказательство. Очевидно, $g(x) - f(x) \geqslant 0$.

2. Если $f \in R[a;b], \ a < b, \ M = \sup_{x \in [a;b]} f(x), \ m = \inf_{x \in [a;b]} f(x),$ то $m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a).$

 \mathcal{A} оказатель ство. \forall разбиения P с отмеченными точками верно: $\sum_i m \Delta x_i \leqslant \sum_i f(\xi_i) \Delta x_i \leqslant \sum_i M \Delta x_i$ и $m(b-a) \leqslant \sum_i f(\xi_i) \Delta x_i \leqslant M(b-a)$.

Переходя к пределу получаем то, что нужно было доказать.

3. (Теорема о среднем)

Пусть $f \in R[a;b](a>b,a< b), \ m=\inf_{x\in [a;b]}f(x), \ M=\sup_{x\in [a;b]}f(x).$ Тогда существует $\mu\in [m;M]:\ \int_a^bf(x)dx=\mu(b-a).$

Доказательство. Пусть a < b. Тогда (из 2-го пункта) $m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a), \ (b-a>0).$

 $m\leqslant rac{1}{b-a}\int_a^b f(x)dx\leqslant M$. Пусть μ $rac{1}{b-a}rac{1}{b-a}\int_a^b f(x)dx\implies rac{a}{b}f(x)dx=\mu(b-a)$. Если a>b, то $m(a-b)\leqslant \int_a^b f(x)dx\leqslant M(a-b)$ (домножим на -1), $m(b-a)\geqslant \int_a^b f(x)dx\geqslant M(b-a)\implies m\leqslant rac{1}{b-a}\int_a^b f(x)dx\leqslant M$. \square

Следствие. Если, кроме того, f(x) - непрерывна на [a;b], то $\exists c \in [a;b]: \int_a^b f(x) dx = f(x)(b-a).$

Доказатель ство. Доказательство следует из теоремы Больцано-Коши о промежуточном значении. \Box

Теорема 2.3.10 (Первая теорема о среднем). Пусть $f,g\in R[a;b](a>b,a< b),\ m=\inf_{x\in [a;b]}f(x),\ M=\sup_{x\in [a;b]}f(x)$ и g не меняет свой знак на [a;b]. Тогда $\exists \mu\in [m;M]:\ \int_a^bf(x)g(x)dx=\mu\int_a^bg(x)dx.$

Доказательство. Пусть a < b и $\forall x \in [a;b]$ $g(x) \geqslant 0$. Имеем, что $m \leqslant$ доказательство. Пусть a < b и $\forall x \in [a,b]$ $g(x) \geqslant b$. Имеем, что $m \leqslant f(x) \leqslant M$, (g(x) > 0), $mg(x) \leqslant f(x)g(x) \leqslant Mg(x) \implies m \int_a^b g(x) dx \leqslant \int_a^b f(x)g(x) dx \leqslant M \int_a^b g(x) dx$. Если $\int_a^b g(x) dx = 0 \implies \int_a^b f(x)g(x) dx = 0$ неравенстве $m \int_a^b g(x) dx \leqslant \int_a^b f(x)g(x) dx \leqslant M \int_a^b g(x) dx$ все на $\int_a^b g(x) dx > 0$: $m \leqslant \frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx} \leqslant M$, где $\frac{\int_a^b f(x)g(x) dx}{\int_a^b g(x) dx} = \mu$. Аналогично доказываются остальные случаи $(a < b, g(x) \leqslant 0; a > b, g(x) > 0$)

 $b, g(x) \geqslant 0$.

2.4Интеграл Римана как функция верхнего предела интегрирования

Определение 2.4.1. Пусть $f \in R[a;b], \ x \in [a;b].$ Рассмотрим функцию $F(x) = \int_a^x f(t)dt, \ F(x)$ определена для $\forall x \in [a;b].$

Теорема 2.4.1 (непрерывность интеграла Римана). Если $f \in R[a;b]$, то $F(x) = \int_a^x f(t)dt$ - непрерывна на [a;b].

Доказательство. Пусть $h \in \mathbb{R}$: $x+h \in [a;b]$. Тогда $F(x+h) = \int_a^{x+h} f(t)dt$. Пусть $\epsilon>0$ задано. Покажем, что $\exists \delta>0$: $\forall h \in \mathbb{R}$: $|h|<\delta |F(x+h)-$

Рассмотрим $|F(x+h)-F(x)|=|\int_a^{x+h}f(t)dt-\int_a^xf(t)dt|=|\int_a^xf(t)dt+\int_x^{x+h}f(t)dt-\int_a^xf(t)dt|=|\int_x^{x+h}f(t)dt|\leq |\int_x^{x+h}|f(t)|dt|.$ Так как $f\in R[a;b],$ то f - ограничена на [a;b], то есть $\exists L>0: \ \forall x\in [a;b]\ |f(x)|\leqslant L.$ Тогда $|\int_x^{x+h}|f(t)|dt|\leqslant |L\int_x^{x+h}dt|,$ так как

$$\int_{x}^{x+h} 1dt = \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} 1\Delta x_{i} = |h|,$$

тогда $\delta = \frac{\epsilon}{L}$, что и требовалось доказать.

Теорема 2.4.2 (о дифференцируемости интеграла Римана как функции по верхнему пределу). Пусть $f \in R[a;b], x \in [a;b]$ и f непрерывна в точке x, тогда функция $F(x) = \int_a^x f(t)dt$ дифференцируема в точке x, причем:

$$F'(x) = f(x) \implies \left(\int_{a}^{x} f(t)dt\right)_{x}' = f(x)$$

Доказательство. Пусть $h \in \mathbb{R}$: $x+h \in [a;b]$. Рассмотрим $|\frac{F(x+h)-F(x)}{h}-f(x)| = |\frac{1}{h}(\int_a^{x+h}f(t)dt-\int_a^xf(t)dt)-f(x)| = |\frac{1}{h}\int_a^{x+h}f(t)dt-f(x)| = |\frac{1}{h}\int_x^{x+h}f(t)dt-\frac{f(x)}{h}\int_x^{x+h}dt| = |\frac{1}{h}(\int_x^{x+h}f(t)dt-\int_x^{x+h}f(x)dt)| = |\frac{1}{h}(\int_x^{x+h}(f(t)-f(x))dt)| = |\frac{1}{h}|\int_x^{x+h}|f(t)-f(x)|dt|.$

Так как f - непрерывна в точке x, то $\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall h : \; |h| <$

 $\delta |f(t) - f(x)| < \epsilon$, где $t \in [x; x+h]$. Тогда $|\frac{F(x+h) - F(x)}{h} - f(x)| \leqslant \frac{1}{|h|} |\int_x^{x+h} |f(t) - f(x)| dt| < \frac{1}{|h|} \epsilon |\int_x^{x+h} dt| = \epsilon$ $\frac{1}{|h|}\epsilon |h| = \epsilon$

Таким образом, по определению производной:

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x) = F'(x).$$

Следствие. Если f - непрерывна на [a;b], то на [a;b] она имеет первообразную, которая равна:

$$\Phi(x) = \int_{a}^{x} f(t)dt + C$$

Замечание. Рассмотрим следующие классы (множества/пространства) функций:

- R[a;b] множество интегрируемых на [a;b] функций;
- C[a;b] множество непрерывных на [a;b] функций;
- $C^{o}[a;b]$ множество дифференцируемых на [a;b] функций.

Получаем:

$$C^o[a;b] \subset C[a;b] \subset R[a;b].$$

Теорема 2.4.3 (вторая теорема о среднем). Пусть $f, g \in R[a; b]$, причем f- монотонна на [a;b]. Тогда $\exists \xi \in [a;b]$:

$$\int_{a}^{b} f(x)g(x)dx = f(a) \int_{a}^{\xi} g(x)dx + f(b) \int_{\xi}^{b} g(x)dx$$

Лемма 2.4.1. Пусть $f,g \in R[a;b]$, причем f - невозрастающая и неотрицательная.

Тогда $\exists \xi \in [a;b]$:

$$\int_{a}^{b} f(x)g(x)dx = f(a) \int_{a}^{\xi} g(x)dx.$$

Доказательство. (леммы)

Пусть P - произвольное разбиение отрезка $[a;b]:\ a=x_0 < x_1 < \ldots < x_n <$ Пусть 7 произвольное разовление отрожа [a,b] : $a=x_0 < x_1 < \dots < x_{n-1} < x_n = b$. Тогда $\int_a^b f(x)g(x)dt = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x)g(x)dx$ $+ \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_{i-1})g(x)dx - \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_{i-1})g(x)dx = \sum_{i=1}^n \int_{x_{i-1}}^{x_i} (f(x) - f(x_{i-1}))g(x)dx + \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_{i-1})g(x)dx = (\text{где } \sum_{i=1}^n \int_{x_{i-1}}^{x_i} (f(x) - f(x_{i-1}))g(x)dx = \rho$ и $\sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_{i-1})g(x)dx = \sigma$ $= \rho + \sigma$. Устремим $\lambda(P) \to 0$:

$$\int_{a}^{b} f(x)g(x)dx = \lim_{\lambda(P)\to 0} \rho + \lim_{\lambda(P)\to 0} \sigma$$

Покажем, что пределы существуют, более того: $\lim_{\lambda(R)\to 0} \rho = 0$.

Так как $g(x) \in R[a;b] \implies g$ - ограничена на [a;b], то есть $\exists L>0: \ \forall x \in A$ $[a;b] |g(x)| \leq L$

Рассмотрим $\omega_i = \omega_i(f, \Delta_i) = \sup_{\xi_1, \xi_2 = \Delta_i} |f(\xi_1) - f(\xi_2)|$. Так как $f \in R[a; b]$, то по критерию интегрируемости: $\sum_i \omega_i \Delta x_i \to 0$.

Тогда $|\rho| = |\sum_{i=1}^n \int_{x_{i-1}}^{x_i} (f(x) - f(x_{i-1})) g(x) dx| \leqslant \sum_{i=1}^n \int_{x_{i-1}}^{x_i} |f(x) - f(x_{i-1})| |g(x)| dx \leqslant \sum_{i=1}^n \int_{x_{i-1}}^{x_i} \omega_i L dx = L \sum_{i=1}^n \omega_i \int_{x_{i-1}}^{x_i} dx = L \sum_{i=1}^n \omega_i \Delta x_i.$ Пусть $\epsilon > 0$ задано. Выберем $\delta > 0$: $\forall P: \lambda(P) < \delta$ и $\sum_{i=1}^n \omega_i \Delta x_i < \frac{\epsilon}{L}$. Имеем, что $|\rho| \leqslant L \sum_{i=1}^n \omega_i \Delta x_i < L \frac{\epsilon}{L} = \epsilon \implies \lim_{\lambda(P) \to 0} \rho = 0$.

Тогда $\int_a^b f(x)g(x)dx=\lim_{\lambda(P)\to 0}\sum_{i=1}^n\int_{x_{i-1}}^{x_i}f(x_{i-1})g(x)dx.$ $\lim_{\lambda(P)\to 0}\sigma$ суще-

ствует, так как $\int_a^b f(x)g(x)dx = const$ и $\lim_{\lambda(P)\to 0} \rho = 0$.

Рассмотрим функцию $G(x) = \int_a^x g(x)dx$:

- 1. G(x) непрерывна на [a;b] $(x \in [a;b]) \implies G(x)$ принимает на [a; b] max min значение (по теореме Вейерштрасса о максимальном значении), $m = \min_{x \in [a;b]} G(x)$, $M = \max_{x \in [a;b]} G(x)$.
- 2. $\int_{x_{i-1}}^{x_i} g(x)dx = \int_{a}^{x_i} g(x)dx \int_{a}^{x_{i-1}} g(x)dx = G(x_i) G(x_{i-1}).$ $\sigma = \sum_{i=1}^{n} f(x_{i-1}) \int_{x_{i-1}}^{x_i} g(x) dx = \sum_{i=1}^{n} f(x_{i-1}) (G(x_i) - G(x_{i-1})) = f(x_0) G(x_1) - G(x_1)$ $f(x_0)G(x_0) + f(x_1)G(x_2) - f(x_1)G(x_1) + \dots + f(x_{n-2})G(x_{n-1}) - f(x_{n-2})G(x_{n-2}) + f(x_{n-1})G(x_n) - f(x_{n-1})G(x_{n-1}) = \sum_{i=1}^{n-1} G(x_i)(f(x_{i-1}) - f(x_i)) + f(x_{n-1})G(x_n).$ Тогда $\sigma\geqslant m(\sum_{i=1}^{n-1}(f(x_{i-1})-f(x_2))+f(x_{n-1}))=m(f(x_0)-f(x_1)+f(x_1)-f(x_2)+f(x_2)-\ldots-f(x_{n-1})+f(x_{n-1}))=mf(a).$ Аналогично, $\sigma \leqslant Mf(a)$.

$$mf(a) \leqslant \sigma \leqslant Mf(a)$$

Пусть $f(a) \neq 0 \implies (f(a) > 0) \ m \leqslant \frac{\sigma}{f(a)} \leqslant M \implies$

$$m \leqslant \frac{1}{f(a)} \int_{a}^{b} f(x)g(x)dx \leqslant M$$

 $\implies \exists \xi \in [a;b]: m \leqslant G(\xi) \leqslant M \text{ if } G(\xi) = \frac{1}{f(a)} \int_a^{\xi} f(x)g(x)dx.$

 $\int_a^b f(x)g(x)dx = f(a)G(\xi) = f(a)\int_a^{\xi} g(x)dx.$

Доказательство. (теоремы)

Пусть f - неубывающая. Рассмотрим функцию $h(x) = f(b) - f(x), h(x) \geqslant$ $0 \ \forall x \in [a; b] \ \forall x_1, x_2 \in [a; b]: \ x_1 < x_2 \implies h(x_1) - h(x_2) = f(b) - f(x) - f(b) + f(a) - f(b) + f(a) - f(b) + f(a) - f(b) - f(a) - f(b) + f(a) - f(b) - f(a) - f(a)$ $f(x_2)=f(x_2)-f(x_1)\geqslant 0 \implies h(x_1)\geqslant h(x_2) \implies h(x)$ - невозрастающая. По лемме, $\int_a^b h(x)g(x)dx=h(a)\int_a^\xi g(x)dx$.

С другой стороны, $\int_a^b h(x)g(x)dx = \int_a^b (f(b)-f(x))g(x)dx = f(b)\int_a^b g(x)dx - \int_a^b f(x)g(x)dx$ $\int_a^b f(x)g(x)dx$.

Имеем, что $f(b) \int_a^\xi g(x) dx - f(a) \int_a^\xi g(x) dx = f(b) \int_a^b g(x) dx - \int_a^b f(x) g(x) dx$. $\int_a^b f(x) g(x) dx = f(b) (\int_a^\xi g(x) dx + \int_\xi^b g(x) dx) - f(b) \int_a^\xi g(x) dx + f(a) \int_a^\xi g(x) dx = f(b) \int_a^\xi g(x) dx + f(a) \int_a^\xi g(x) dx = f(b) \int_a^\xi g(x) dx + f(a) \int_a^\xi g(x) dx = f(b) \int_a^\xi g(x) dx + f(a) \int_a^\xi g(x) dx$ $f(a) \int_a^{\xi} +f(b) \int_{\xi}^b g(x) dx.$

Для случая, когда f - невозрастающая, доказываем аналогично.

2.5Формула Ньютона-Лейбница

Теорема 2.5.1. Пусть f - непрерывна на [a;b] и F(x) - её первообразная. Тогда $\int_a^b f(x)dx = F(b) - F(a) = F(x)|_a^b$

Доказательство. Пусть F(x) - первообразная функции f(x) на [a;b]:

$$F(x) = \int_{a}^{x} f(t)dt + C.$$

Отсюда,
$$F(b) = \int_a^b f(t)dt + C$$
; $F(a) = \int_a^a f(t)dt$;
$$F(b) - F(a) = \int_a^b f(t)dt + C - C = \int_a^b f(t)dt + C(?)$$

Теорема 2.5.2. Пусть F(x) - непрерывна на [a;b], дифференцируема на [a;b] за исключением не более чем конечного числа точек. Причем всюду, где она дифференцируема: F'(x) = f(x). И, наконец, $f(x) \in R[a;b]$.

Тогда:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}$$

Доказательство. Возьмем произвольное разбиение P отрезка [a;b] так, что оно содержит все точки недиференцируемости функции F(x): $a=x_0$ $x_1 < \ldots < x_{n-1} < x_n = b, \Longrightarrow F(b) - F(a) = \sum_{i=1}^n (F(x_i) - F(x_{i-1})).$ Пусть $\Delta_i = [x_{i-1}; x_i].$ Фукнция F(x) дифференцируема на $(x_{i-1}; x_i),$

непрерывна на $[x_{i-1}; x_i] \ \forall i = \overline{1, n}$.

По теореме Лагранжа, $\exists \xi_i \in (x_{i-1}; x_i) : F(x_i) - F(x_{i-1}) = F'(\xi_i)(x_i - \xi_i)$ x_{i-1}) = $f(\xi_i)\Delta x_i$.

Тогда:

$$F(b) - F(a) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Устремим $\lambda(P) \to 0$:

$$F(b) - F(a) = \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

так как $\exists \lim, f \in R[a;b]$, то $F(b) - F(a) = \int_a^b f(x) dx$.

Следствие. Если функция F(x) удовлетворяет условиям теоремы 2.5.2, то $\forall x \in [a;b]$:

 $F(x) = F(a) + \int_{a}^{x} F'(t)dt.$

2.6 Интегрирование по частям в определенном интеграле и формула Тейлора

Теорема 2.6.1 (формула интегрирования по частям). Если фукнции u(x) и v(x) непрерывно дифференцируемы на отрезке [a;b], то справедливо равенство:

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du.$$

Доказательство. Рассмотрим $uv|_a^b = \int_a^b d(uv) = \int_a^b (vdu + udv) = \int_a^b vdu + \int_a^b udv \implies \int_a^b udv = uv|_a^b - \int_a^b vdu.$

Теорема 2.6.2 (формула Тейлора с остаточным членом в интегральной форме). Пусть функция f(t) имеет на отрезке [a;x] непрерывные производные до n-го порядка включительно. Тогда справедлива формула Тейлора:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + r_n(a;x),$$

где
$$r_n(a;x) = \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-a)^{n-1} dt.$$

Доказательство. Пусть f(t) имеет на [a;x] непрерывные производные до n-го порядка включительно. По формуле Ньютона-Лейбница: $f(x)-f(a)=\int_a^x f'(t)dt=\int_a^x f'(t)dt=-\int_a^x f'(t)(x-t)'dt=$

$$= \left| \begin{array}{c} u = f'(t) \implies u' = f'(t) \implies du = f''(t)dt \\ (x - t)'dt = dv \implies d(x - t) = dv \implies v = x - t \end{array} \right| =$$

 $= -f'(t)(x-t)|_a^x + \int_a^x f''(t)(x-t)dt = f'(a)(x-a) + \frac{1}{2} \int_a^x -f''(t)((x-t)^2)_t' dt = f'(a)(x-a) - \frac{1}{2} (f''(t)(x-t)^2)|_a^x - \int_a^x f'''(t)(x-t)^2 dt = f'(a)(x-a) + \frac{1}{2} f''(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 - \frac{1}{6} \int_a^x f'''(t)((x-t)^3)' dt = \dots = f'(a)(x-a) + \frac{1}{2} f''(a)(x-a)^2 + \frac{1}{6} f'''(a)(x-a)^3 + \dots + \frac{1}{6*\dots*(n-1)} f^{(n-1)}(a)(x-a)^{n-1} + \frac{1}{(n-1)!} \int_a^x f^{(n)}(t)(x-t)^{n-1} dt. \quad \Box$

2.7 Замена переменной в определенном интеграле

Теорема 2.7.1. Пусть $\phi: [\alpha; \beta] \to [a; b]$ - непрерывно дифференцируемое отображение отрезка $[\alpha; \beta]$ в отрезок [a; b], причем $\phi(\alpha) = a, \ \phi(\beta) = b$. Тогда для любой функции f(x), непрерывной на [a; b], функция $f(\phi(t))\phi'(t)$ - непрерывна на $[\alpha; \beta]$ и справедливо равенство:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt.$$

Доказательство. Пусть F(x) - первообразная f(x) на [a;b].

Тогда $F(\phi(t))$ - первообразная для $f(\phi(t)\phi'(t))$ $(F'_t(\phi(t)) = F'_\phi\phi'_t) \implies F(\phi(t))$ - непрерывна на $[\alpha;\beta]$.

По формуле Ньютона-Лейбница, $F(b)-F(a)=\int_a^b f(x)dx$ и $\int_\alpha^\beta f(\phi(t))\phi'(t)dt=F(\phi(\beta))-F(\phi(\alpha)).$

По условию,
$$\phi(\beta) = b$$
, $\phi(\alpha) = a \implies \int_a^b f(x) dx = \int_\alpha^\beta f(\phi(t)) \phi'(t) dt$.

Теорема 2.7.2 (замена переменной для интегрируемых функций). Пусть $f:[a;b] \to \mathbb{R}, \ f \in R[a;b],$ функция $x=\phi(t):$

- 1. $\phi : [\alpha; \beta] \to [a; b]$
- 2. $\phi(\alpha) = a, \ \phi(\beta) = b$
- 3. $\phi'(t)$ непрерывна на $[\alpha; \beta]$
- 4. ϕ строго монотонна

Тогда:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt$$

Доказательство. Пусть (P_t, τ) - произвольное разбиение с отмеченными точками отрезка $[\alpha; \beta]$:

$$\alpha = t_0 < t_1 < \ldots < t_{n-1} < t_n = \beta;$$

$$\tau_i \in [t_{i-1}; t_i], \ i = \overline{1, n},$$

Для определенности будем считать, что ϕ - возрастающая, то есть $\alpha < \beta, \ a < b.$

Тогда можно построить разбиение (P_x,ξ) с отмеченными точками отрезка [a;b] :

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b;$$

 $\xi_i \in [x_{i-1}; x_i], \ i = \overline{1, n},$

Здесь $x_i = \phi(t_i), \; \xi_i = \phi(\tau_i). \; ДВА \; \Gamma PA \Phi ИКА \; ИЗ \; \Gamma A ЛЕРЕИ$

Если $\lambda(P_t) \to 0 \implies \lambda(P_x) \to 0$. Составим интегральные суммы:

$$\sigma = \sum_{i=1}^{n} f(\phi(\tau_i))\phi'(\tau_i)\Delta t_i;$$

$$\overline{\sigma} = \sum_{i=1}^{n} f(\xi_i) \Delta x_i,$$

Если $\lambda(P_t) \to 0 \implies \lambda(P_x) \to 0 \implies \overline{\sigma} \to \int_a^b f(x) dx$ (так как $f \in R[a;b]$).

Покажем, что $\sigma \to \int_a^b f(x) dx$: $\Delta x_i = x_i - x_{i-1} = \phi(t_i) - \phi(t_{i-1}) = \phi'(\overline{\tau_i}) \Delta t_i, \ \overline{\tau_i} \in [t_{i-1}; t_i]$ (случайная точка из отрезка). Тогда:

$$\overline{\sigma} = \sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sum_{i=1}^{n} f(\phi(\tau_i)) \phi'(\overline{\tau_i}) \Delta t_i;$$

Покажем, что $\lim_{\lambda(P_i)\to 0} (\sigma - \overline{\sigma}) = 0$:

В самом деле, $|\sigma-\overline{\sigma}|=|\sum_{i=1}^n f(\phi(\tau_i))\phi'(\tau_i)\Delta t_i-\sum_{i=1}^n f(\phi(\tau_i)\phi'(\overline{\tau_i}))\Delta t_i|=|\sum_{i=1}^n f(\phi(\tau_i))(\phi'(\tau_i)-\phi'(\overline{\tau_i}))\Delta t_i|\leqslant \sum_{i=1}^n |f(\phi(\tau_i))||\phi'(\tau_i)-\phi'(\overline{\tau_i})|\Delta t_i\leqslant L\sum_{i=1}^n |\phi'(\tau_i)-\phi'(\overline{\tau_i})|\Delta t_i,$ где $L>0: \ \forall x\in[a;b] \ |f(x)|\leqslant L$ (так как f - интегрируема \Longrightarrow ограничена).

Так как $\phi'(t)$ непрерывна на $[\alpha; \beta] \implies \forall i = \overline{1, n} \ \phi'(t)$ непрерывна на $[t_{i-1}; t_i] \implies \phi'(t)$ равномерно непрерывна на $[t_{i-1}; t_i]$. Возьмем $\delta > 0$: $\forall t_1, t_2 \in [t_{i-1}; t_i] \ |[t_1 - t_2]| < \delta \implies |\phi'(t_1) - \phi'(t_2)| < \frac{\epsilon}{L(\beta - \epsilon)} \ (\forall \epsilon > 0)$.

 $\forall t_1, t_2 \in [t_{i-1}; t_i] \mid [t_1 - t_2] \mid < \delta \implies |\phi'(t_1) - \phi'(t_2)| < \frac{\epsilon}{L(\beta - \alpha)} \; (\forall \epsilon > 0).$ Тогда $|\sigma - \overline{\sigma}| \leqslant L \sum_{i=1}^n |\phi'(\tau_i) - \phi'(\overline{\tau_i})| \Delta t_i < L \frac{\epsilon}{L(\beta - \alpha)} \sum_{i=1}^n \Delta t_i = L \frac{\epsilon}{L(\beta - \alpha)} (\beta - \alpha) = \epsilon \implies \sigma \to \int_a^b f(x) dx \; \text{при } \lambda(P_t) \to 0.$

С другой стороны, по определению определенного интеграла:

$$\lim_{\lambda(P_t)\to 0} \sigma = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt \implies \int_{\alpha}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt.$$

Глава 3

Геометрические приложения интеграла Римана

3.1 Длина кривой

Определение 3.1.1. Пусть (X, ρ) - метрическое пространство, $[a; b] \subset \mathbb{R}$. Будем называть **путем** произвольное непрерывное отображение:

$$\gamma: [a;b] \to X$$

Определение 3.1.2. Пусть $\gamma:[a;b]\to X$ называется **простым**, если:

$$\forall t_1, t_2 \in [a; b]: \quad \gamma(t_1) = \gamma(t_2) \implies t_1 = t_2$$

ДВА ГРАФИКА ИЗ ГАЛЕРЕИ

Определение 3.1.3. Пусть $\gamma:[a;b]\to X$ называется **замкнутым**, если:

$$\gamma(a) = \gamma(b),$$

тогда:

- $\gamma(a)$ начало пути,
- $\gamma(b)$ конец пути

Определение 3.1.4. Пусть $\gamma:[a;b] \to X$ называется простым замкнутым, если:

$$\forall t_1, t_2 \in (a; b): \ \gamma(t_1) = \gamma(t_2) \implies t_1 = t_2; \ \gamma(a) = \gamma(b)$$

На множестве путей введем отношение.

Пусть
$$\gamma_1: [a;b] \to X, \ \gamma_2: [\alpha;\beta] \to X.$$

Будем говорить, что γ_1 и γ_2 находятся в отношении " \sim ", то есть $\gamma_1 \sim \gamma_2$, если существует строго возрастающее отображение $\phi: [\alpha; \beta] \to [a; b]$:

$$\phi(\alpha) = a, \ \phi(\beta) = b,$$

а так же:

$$\gamma_2(\tau) = \gamma_1(\phi(\tau))$$

РИСУНОК ИЗ ГАЛЕРЕИ

Упражнение 1: Доказать, что введенное отношение есть отношение эквивалентности.

Определение 3.1.5. Отображение ϕ называется **гомеоморфизмом**, если:

$$\phi$$
 и ϕ^{-1} - непрерывны

Упражнение 2: Доказать, что ϕ в определении отношения между γ_1 и γ_2 есть гомеоморфизм.

Определение 3.1.6. Кривой в X будем называть класс эквивалентных путей.

Определение 3.1.7. Образ пути γ называется **носителем** этого пути.

Пример 7. Рассмотрим:

$$egin{array}{ll} \gamma_1: [0;1]
ightarrow \mathbb{R}: & \gamma_1(t) = t; \ \gamma_2: [0;1]
ightarrow \mathbb{R}: & \gamma_2(au) = au^3, \ \Gamma PA\Phi UK & U3 & \Gamma A \Pi E PE U \end{array}$$

Что бы доказать, что $\gamma_1 \sim \gamma_2$, нужно найти строго возрастающее отображение $\phi: [0;1] \to [0;1]$:

$$t = \phi(\tau) = \tau^3$$
, $\phi(\tau)$ - строго возрастающее, $\phi(0) = 0$, $\phi(1) = 1$; $\gamma_2(\tau) = \tau^3 = \phi(\tau) = t = \gamma_1(t) = \gamma_1(\phi(\tau)) \implies \gamma_2(\tau) = \gamma_1(\phi(\tau))$.

Определение 3.1.8. Кривая называется **простой**, если она представляется простым путем (это значит, что в ее классе есть простой путь).

Упражнение 3: Доказать, что если один путь в классе эквивалентности простой, то остальные тоже простые.