BUSINESS CASE TARGET SQL

Target is a globally renowned brand and a prominent retailer in the United States. Target makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of Target in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into Target's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Dataset: https://drive.google.com/drive/folders/1TGEc66YKbD443nslRi1bWgVd238gJCnb

The data is available in 8 csv files:

- 1. customers.csv
- 2. sellers.csv
- 3. order items.csv
- 4. geolocation.csv
- 5. payments.csv
- 6. reviews.csv
- 7. orders.csv
- 8. products.csv

The column description for these csv files is given below.

The **customers.csv** contain following features:

Features	Description
----------	-------------

customer_id ID of the consumer who made the purchase

customer_unique_id Unique ID of the consumer

customer_zip_code_prefix Zip Code of consumer's location

customer_city Name of the City from where order is made

State Code from where order is made (Eg. são paulo -

SP)

The **sellers.csv** contains following features:

Features Description

seller_id Unique ID of the seller registered seller_zip_code_prefix Zip Code of the seller's location seller_city Name of the City of the seller seller_state State Code (Eg. são paulo - SP)

The **order_items.csv** contain following features:

Features Description

order_id A Unique ID of order made by the consumers

order_item_id A Unique ID given to each item ordered in the order product_id A Unique ID given to each product available on the site

seller_id Unique ID of the seller registered in Target

shipping_limit_date

The date before which the ordered product must be shipped

price Actual price of the products ordered

Price rate at which a product is delivered from one point

freight_value

customer_state

to another

The **geolocations.csv** contain following features:

Features Description

geolocation_zip_code_prefix First 5 digits of Zip Code

geolocation_lat Latitude geolocation_lng Longitude

geolocation_city City geolocation_state State

The payments.csv contain following features:

Features Description

order_id A Unique ID of order made by the consumers
payment_sequential Sequences of the payments made in case of EMI

payment_type Mode of payment used (Eg. Credit Card)

payment_value Total amount paid for the purchase order

The **orders.csv** contain following features:

Features Description

order_id A Unique ID of order made by the consumers customer_id ID of the consumer who made the purchase

order_status Status of the order made i.e. delivered, shipped, etc.

order_delivered_carrier_date Delivery date at which carrier made the delivery

order_delivered_customer_date Date at which customer got the product order_estimated_delivery_date Estimated delivery date of the products

The **reviews.csv** contain following features:

Features Description

ID of the review given on the product ordered by the

review_id

order id

order_id A Unique ID of order made by the consumers

Review score given by the customer for each order on

review_score

a scale of 1-5

review_comment_message Review comments posted by the consumer for each order review_creation_date Timestamp of the review when it is created review_answer_timestamp Timestamp of the review answered

The **products.csv** contain following features:

Features	Description
product_id	A Unique identifier for the proposed project.
product_category_name	Name of the product category
	Length of the string which specifies the name
product_name_length	given to the products ordered
	Length of the description written for each product
product_description_length	ordered on the site
product_photos_qty product_weight_g product_length_cm	Number of photos of each product ordered available on the shopping portal Weight of the products ordered in grams Length of the products ordered in centimeters
product_height_cm	Height of the products ordered in centimeters
product_width_cm	Width of the product ordered in centimeters

Problem Statement:

Assuming you are a data analyst/ scientist at Target, you have been assigned the task of analyzing the given dataset to extract valuable insights and provide actionable recommendations

SOLUTION:

Understanding the data in the dataset

• Customers Table

select * from Target.customers limit 5;

• Geolocation Table

select * from Target.geolocation limit 5;

Row	geolocation_zip_code	geolocation_lat ▼	geolocation_lng ▼	geolocation_city ▼	geolocation_state ▼
1	49010	-10.9105145187	-37.0524007769	aracaju	SE
2	49047	-10.9268145	-37.0710630000	aracaju	SE
3	49030	-10.9701647943	-37.0616438307	aracaju	SE
4	49048	-10.9401835317	-37.0708502427	aracaju	SE
5	49050	-10.9271573528	-37.0630786896	aracaju	SE

• Order_items Table

select * from Target.order_items limit 5;

Row	order_id ▼	order_item_id ▼	product_id ▼	seller_id ▼	shipping_limit_date ▼	price ▼	freight_value ▼
1	f09e36e258656850b92657ac5	1	44d53f1240d6332232e4393c0	b64d51f0435e884e8de603b16	2018-07-09 13:31:36 UTC	3.0	12.79
2	f9ccaff7267fd0cf076e795b1fa	1	44d53f1240d6332232e4393c0	b64d51f0435e884e8de603b16	2018-08-14 14:04:44 UTC	3.0	15.23
3	c79bdf061e22288609201ec60	1	5304ff3fa35856a156e1170a60	cf6f6bc4df3999b9c6440f124f	2017-05-12 19:05:20 UTC	3.5	8.72
4	37193e64eb9a46b7f3197762f	1	98224bfc1eaadb3a394ec334c	ce616e1913288884e7742faac	2018-06-28 01:30:49 UTC	3.5	7.39
5	95d6357ffe41aa6d2998852a7	1	98224bfc1eaadb3a394ec334c	ce616e1913288884e7742faac	2018-06-12 19:15:14 UTC	3.5	18.23

• Order_reviews Table

select * from Target.order_reviews limit 5;

Row	review_id ▼	order_id ▼	review_score ▼	review_comment_title ▼	review_creation_date ▼	review_answer_timestamp ▼
1	be7e2989673cb2a147b87ba73	777c67eab7c0712ccde8ffbb2	1	null	0001-04-17 00:00:00 UTC	0001-04-17 07:40:00 UTC
2	e12151267e4594d69eda14a87	4338a4463f7f9193d2a03a83a	1	null	0001-04-17 00:00:00 UTC	0001-04-17 09:04:00 UTC
3	41d614b133efebcd10352001b	b8aaeda740b17cf925d3f2a13	1	null	0001-04-17 00:00:00 UTC	0002-04-17 03:48:00 UTC
4	c950324a42c5796d06f569f77	b159d0ce7cd881052da94fa16	1	null	0001-04-17 00:00:00 UTC	0001-04-17 10:24:00 UTC
5	76823ada94c8861ecebcfbc7c	2a3007ed051b02a0e0dd0709c	1	null	0001-04-17 00:00:00 UTC	0002-04-17 13:58:00 UTC

• Order Table select * from Target.orders limit 5;

Row	order_id ▼	customer_id ▼	order_status ▼	order_purchase_timestamp ▼	order_approved_at ▼	order_delivered_carrier_date
1	7a4df5d8cff4090e541401a20a	725e9c75605414b21fd8c8d5a	created	2017-11-25 11:10:33 UTC	null	null
2	35de4050331c6c644cddc86f4	4ee64f4bfc542546f422da0aeb	created	2017-12-05 01:07:58 UTC	null	null
3	b5359909123fa03c50bdb0cfe	438449d4af8980d107bf04571	created	2017-12-05 01:07:52 UTC	null	null
4	dba5062fbda3af4fb6c33b1e04	964a6df3d9bdf60fe3e7b8bb69	created	2018-02-09 17:21:04 UTC	null	null
5	90ab3e7d52544ec7bc3363c82	7d61b9f4f216052ba664f22e9c	created	2017-11-06 13:12:34 UTC	null	null

• Payment Table

select * from Target.payments limit 5;

Row	order_id ▼	payment_sequential	payment_type ▼	payment_installment	payment_value ▼
1	1a57108394169c0b47d8f876a	2	credit_card	0	129.94
2	744bade1fcf9ff3f31d860ace07	2	credit_card	0	58.69
3	8bcbe01d44d147f901cd31926	4	voucher	1	0.0
4	fa65dad1b0e818e3ccc5cb0e3	14	voucher	1	0.0
5	6ccb433e00daae1283ccc9561	4	voucher	1	0.0

• Products Table

select * from Target.products limit 5;

Row /	product_id ▼	product_category ▼	product_name_lengtl	product_description_	product_photos_qty	product_weight_g	product_length_cm_	product_height_cm/	product_width_cm
. 1	5eb564652db742ff8f28759cd8	null	null	null	null	null	null	nuli	null
2	09ff539a621711667c43eba6a	babies	60	865	3	nuli	nuli	nuli	null
3	2f763ba79d9cd987b2034aac7	electronics	45	1198	2	595	8	6	6
4	a69f15dfb803d485e8933e80b	Watches present	53	506	6	150	11	16	6
5	e1cfc87f543782b8a78b59fc85	Garden tools	39	524	4	369	26	7	7

• Sellers Table

select * from Target.sellers limit 5;

Row	seller_id ▼	seller_zip_code_prefi	seller_city ▼	seller_state ▼
1	4be2e7f96b4fd749d52dff41f8	69900	rio branco	AC
2	327b89b872c14d1c0be7235ef	69005	manaus	AM
3	4221a7df464f1fe2955934e30f	48602	bahia	BA
4	651530bf5c607240ccdd89a30	44600	ipira	BA
5	2b402d5dc42554061f8ea98d1	44900	irece	BA

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:
 - **1.1** Data type of all columns in the "customers" table.

SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM Target.INFORMATION_SCHEMA.COLUMNS;

Row	TABLE_NAME ▼	COLUMN_NAME ▼	DATA_TYPE ▼
1	order_items	order_id	STRING
2	order_items	order_item_id	INT64
3	order_items	product_id	STRING
4	order_items	seller_id	STRING
5	order_items	shipping_limit_date	TIMESTAMP
6	order_items	price	FLOAT64
7	order_items	freight_value	FLOAT64
8	sellers	seller_id	STRING
9	sellers	seller_zip_code_prefix	INT64
10	sellers	seller_city	STRING

1.2 Get the time range between which the orders were placed.

SELECT MIN(order_purchase_timestamp) AS min_time_of_purchase, MAX(order_estimated_delivery_date) AS max_time_of_purchase FROM Target.orders, Target.order_items;

Row	min_time_of_purchase ▼	max_time_of_purchase ▼	11
1	2016-09-04 21:15:19 UTC	2018-11-12 00:00:00 UTC	

1.3 Count the Cities & States of customers who ordered during the given period.

SELECT DISTINCT customer_state, customer_city FROM Target.customers GROUP BY 1, 2 ORDER BY 1, 2;

Row	customer_state ▼	customer_city ▼
1	AC	brasileia
2	AC	cruzeiro do sul
3	AC	epitaciolandia
4	AC	manoel urbano
5	AC	porto acre
6	AC	rio branco
7	AC	senador guiomard
8	AC	xapuri
9	AL	agua branca

2. In-depth Exploration:

2.1 Is there a growing trend in the no. of orders placed over the past years?

SELECT *, ROUND(((orders_count - prev_order_count) / prev_order_count) * 100, 2) AS order_growth_rate_percent FROM (SELECT *, LAG(orders_count) OVER(ORDER BY YEAR, MONTH) AS prev_order_count FROM (SELECT EXTRACT(YEAR FROM order_purchase_timestamp) AS YEAR, EXTRACT(MONTH FROM order_purchase_timestamp) AS MONTH, COUNT(*) AS orders_count FROM Target.orders

WHERE order_status = 'delivered'

GROUP BY 1, 2 ORDER BY 1, 2) AS BASE1 ORDER BY YEAR, MONTH) AS BASE2;

Row	YEAR ▼	MONTH ▼	orders_count ▼	prev_order_count 🏅	order_growth_rate_p
1	2016	9	1	null	null
2	2016	10	265	1	26400.0
3	2016	12	1	265	-99.62
4	2017	1	750	1	74900.0
5	2017	2	1653	750	120.4
6	2017	3	2546	1653	54.02

2.2 Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

select count(order_id) as total_orders,

EXTRACT(Month FROM order_purchase_timestamp) AS month, from `Target.orders` group by month order by month asc;

Row	total_orders ▼	month ▼
1	8069	1
2	8508	2
3	9893	3
4	9343	4
5	10573	5
6	9412	6
7	10318	7

2.3 During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

0-6 hrs: Dawn 7-12 hrs: Mornings 13-18 rs: Afternoon 13-19 19-23 hrs: Night

 $SELECT\ COUNTIF((TIME(order_purchase_timestamp) >= '05:00:00'\ AND\ TIME(order_purchase_timestamp) < '06:00:00'))\ AS\ dawn_orders_count_5am_6am,$

 $COUNTIF((TIME(order_purchase_timestamp) >= '06:00:00' \ AND \ TIME(order_purchase_timestamp) < '12:00:00')) \ AS morning_orders_count_6am_12pm,$

 $COUNTIF((TIME(order_purchase_timestamp) >= '12:00:00' \ AND \ TIME(order_purchase_timestamp) < '18:00:00')) \ AS \ afternoon_orders_count_12pm_6pm,$

 $\begin{aligned} &COUNTIF((TIME(order_purchase_timestamp) >= '18:00:00' \ AND \ TIME(order_purchase_timestamp) <= '23:59:59') \ OR \\ &(TIME(order_purchase_timestamp) \ >= \ '00:00:00' \ AND \ TIME(order_purchase_timestamp) \ < \ '05:00:00')) \ AS \\ &night_orders_count_6pm_5am \end{aligned}$

FROM Target.orders;

Row	dawn_orders_count_	morning_orders_cou	afternoon_orders_co	night_orders_count_6
1	188	22240	38361	38652

3. Evolution of E-commerce orders in the Brazil region:

3.1 Get the month on month no. of orders placed in each state.

select state, time_period, total_orders,

LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month) AS prev_month_orders_count,

ROUND(((total_orders - LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month)) /

LAG(total_orders) OVER(PARTITION BY state ORDER BY year, month))* 100,2) AS MoM_percent_growth

FROM (

SELECT

state, time_period,year,month,COUNT(*) AS total_orders

FROM (

SELECT o.order_id, o.order_purchase_timestamp,

EXTRACT(YEAR FROM order_purchase_timestamp) AS year,

EXTRACT(Month FROM order_purchase_timestamp) AS month,

FORMAT_DATE('%b %Y', DATE(ORDER_PURCHASE_TIMESTAMP)) AS time_period,

c.customer_state AS state

FROM

`Target.orders` o JOIN `Target.customers` c

USING (customer_id) ORDER BY year, month) t1 GROUP BY state, time_period,year, month) t2;

Row	customer_state ▼	customer_city ▼	YEAR ▼	MONTH ▼	orders_count ▼	prev_orders_count	orders_count_growth
1	AL	belem	2017	4	1	nuli	null
2	AL	belem	2018	2	1	1	0.0
3	AP	oiapoque	2017	5	1	nuli	null
4	BA	cairu	2017	10	1	nuli	null
5	BA	mascote	2017	7	1	nuli	null
6	BA	mascote	2018	1	1	1	0.0
7	BA	retirolandia	2017	3	1	nuli	null
8	CE	coreau	2018	5	1	nuli	null
9	CE	eusebio	2017	8	2	nuli	null
10	CE	eusebio	2017	9	2	2	0.0

3.2 How are the customers distributed across all the states?

SELECT customer_state, customer_city ,
COUNT(DISTINCT customer_id) AS count_customer_id,
COUNT(DISTINCT customer_unique_id) AS count_customer_unique_id
FROM Target.customers
GROUP BY 1, 2
ORDER BY 1, 2;

Row	customer_state ▼	customer_city ▼	count_customer_id	count_customer_unic
1	AC	brasileia	1	1
2	AC	cruzeiro do sul	3	3
3	AC	epitaciolandia	1	1
4	AC	manoel urbano	1	1
5	AC	porto acre	1	1
6	AC	rio branco	70	66
7	AC	senador guiomard	2	2
8	AC	xapuri	2	2
9	AL	agua branca	1	1
10	AL	anadia	2	2

4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

WITH TABLE1 AS

(SELECT ROUND(SUM(price + freight_value), 2) AS total_cost_2017

 $FROM\ (SELECT\ O.^*,\ OI.^*\ FROM\ `Target.orders`\ AS\ O\ JOIN\ `Target.order_items`\ AS\ OI\ ON\ O.order_id=OI$

WHERE O.order_status = 'delivered' AND (EXTRACT(YEAR FROM O.order_purchase_timestamp) = 2017) AND

EXTRACT(MONTH FROM O.order_purchase_timestamp) BETWEEN 1 AND 8)),

TABLE2 AS (SELECT ROUND(SUM(price + freight_value),2) AS total_cost_2018

FROM (SELECT O.*, OI.* FROM `Target.orders` AS O JOIN `Target.order_items` AS OI ON O.order_id = OI.order_id

WHERE O.order_status = 'delivered' AND (EXTRACT(YEAR FROM O.order_purchase_timestamp) = 2018) AND

EXTRACT(MONTH FROM O.order_purchase_timestamp) BETWEEN 1 AND 8))

SELECT T1.total_cost_2017, T2.total_cost_2018, ROUND(((T2.total_cost_2018 - T1.total_cost_2017) /T1.total_cost_2017) * 100, 2) AS cost_growth_rate

FROM TABLE1 AS T1 CROSS JOIN TABLE2 AS T2;

4.2 Calculate the Total & Average value of order price for each state.

SELECT C.customer_state, ROUND(AVG(OI.price + OI.freight_value), 2) AS avg_cost, ROUND(SUM(price +freight_value), 2) AS sum_cost

FROM `Target.customers` AS C JOIN `Target.orders` AS O ON C.customer_id = O.customer_id JOIN

`Target.order_items` AS OI ON O.order_id = OI.order_id

WHERE O.order_status = 'delivered'

GROUP BY 1;

Row	customer_state ▼	avg_cost ▼	sum_cost ▼
1	GO	146.78	334212.35
2	SP	124.22	5769703.15
3	RS	140.44	861472.79
4	BA	160.5	591137.81
5	MG	140.82	1818891.67
6	MT	174.76	181224.42
7	RJ	145.33	2055401.57
8	SC	145.26	595127.78
9	SE	187.44	70289.13
10	PE	176.96	308972.05

4.3 Calculate the Total & Average value of order freight for each state.

select seller_state,avg(Freight_value) as avg_freight from `Target.order_items` join `Target.sellers` using (seller_id) group by seller_state;

Row	seller_state ▼	avg_freight ▼
1	SP	18.45221266585
2	MG	24.08463351081
3	PR	22.72096874639
4	SC	26.14651779141
5	RS	26.03141882673
6	DF	20.57181312569
7	ES	32.71809139784
8	RJ	19.47486508924
9	GO	24.16442307692
10	PA	19.38874999999

5. Analysis based on sales, freight and delivery time.

5.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

You can calculate the delivery time and the difference between the estimated & actual delivery date using the given formula:

- **time_to_deliver** = order_delivered_customer_date order_purchase_timestamp
- **diff_estimated_delivery** = order_delivered_customer_date

 $order_estimated_delivery_date$

SELECT order_id, order_purchase_timestamp, order_delivered_customer_date, order_estimated_delivery_date, (TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) AS time_to_delivery, (TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY)) AS diff_estimated_delivery, (TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS diff_estdel_actdel FROM Target.orders

WHERE order_status = 'delivered';

Row	order_id ▼	order_purchase_timestamp ▼	order_delivered_customer_date	order_estimated_delivery_date 🔻	time_to_delivery 🔻	diff_estimated_delive	diff_estdel_actdel
1	cec8f5f7a13e5ab934a486ec9e	2017-03-17 15:56:47 UTC	2017-04-07 13:14:56 UTC	2017-05-18 00:00:00 UTC	20	61	40
2	58527ee4726911bee84a0f42c	2017-03-20 11:01:17 UTC	2017-03-30 14:04:04 UTC	2017-05-18 00:00:00 UTC	10	58	48
3	10ed5499d1623638ee810eff1	2017-03-21 13:38:25 UTC	2017-04-18 13:52:43 UTC	2017-05-18 00:00:00 UTC	28	57	29
4	818996ea247803ddc123789f2	2018-08-20 15:56:23 UTC	2018-08-29 22:52:40 UTC	2018-10-04 00:00:00 UTC	9	44	35
5	d195cac9ccaa1394ede717d38	2018-08-12 18:14:29 UTC	2018-08-23 02:08:44 UTC	2018-10-04 00:00:00 UTC	10	52	41
6	64eeb35d3ade7fcdff9fbb1ca5	2018-08-16 07:55:32 UTC	2018-08-23 00:09:45 UTC	2018-10-04 00:00:00 UTC	6	48	41
7	2691ae869f13b10f3d356461b	2018-08-22 22:39:54 UTC	2018-08-29 19:11:48 UTC	2018-10-04 00:00:00 UTC	6	42	35
8	1cd147d1c0fe18f3b742a3533	2018-08-20 17:04:34 UTC	2018-08-29 16:41:59 UTC	2018-10-04 00:00:00 UTC	8	44	35
9	b36d2e6b1781d380e140608a	2018-08-09 19:17:50 UTC	2018-08-22 18:04:27 UTC	2018-10-04 00:00:00 UTC	12	55	42

5.2 Find out the top 5 states with the highest & lowest average freight value.

SELECT order_id, order_purchase_timestamp, order_delivered_customer_date, order_estimated_delivery_date, (TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY)) AS time_to_delivery, (TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY)) AS diff_estimated_delivery, (TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY)) AS diff_estdel_actdel FROM Target.orders

WHERE order_status = 'delivered';

Row	order_id ▼	order_purchase_timestamp ▼	order_delivered_customer_date	order_estimated_delivery_date 🕶	time_to_delivery	diff_estimated_delive	diff_estdel_actdel
1	cec8f5f7a13e5ab934a486ec9e	2017-03-17 15:56:47 UTC	2017-04-07 13:14:56 UTC	2017-05-18 00:00:00 UTC	20	61	40
2	58527ee4726911bee84a0f42c	2017-03-20 11:01:17 UTC	2017-03-30 14:04:04 UTC	2017-05-18 00:00:00 UTC	10	58	48
3	10ed5499d1623638ee810eff1	2017-03-21 13:38:25 UTC	2017-04-18 13:52:43 UTC	2017-05-18 00:00:00 UTC	28	57	29
4	818996ea247803ddc123789f2	2018-08-20 15:56:23 UTC	2018-08-29 22:52:40 UTC	2018-10-04 00:00:00 UTC	9	44	35
5	d195cac9ccaa1394ede717d38	2018-08-12 18:14:29 UTC	2018-08-23 02:08:44 UTC	2018-10-04 00:00:00 UTC	10	52	41
6	64eeb35d3ade7fcdff9fbb1ca5	2018-08-16 07:55:32 UTC	2018-08-23 00:09:45 UTC	2018-10-04 00:00:00 UTC	6	48	41
7	2691ae869f13b10f3d356461b	2018-08-22 22:39:54 UTC	2018-08-29 19:11:48 UTC	2018-10-04 00:00:00 UTC	6	42	35
8	1cd147d1c0fe18f3b742a3533	2018-08-20 17:04:34 UTC	2018-08-29 16:41:59 UTC	2018-10-04 00:00:00 UTC	8	44	35
9	b36d2e6b1781d380e140608a	2018-08-09 19:17:50 UTC	2018-08-22 18:04:27 UTC	2018-10-04 00:00:00 UTC	12	55	42
10	88ab6b0ede7f19c65b5b71771	2018-08-13 12:12:46 UTC	2018-08-29 20:58:39 UTC	2018-10-04 00:00:00 UTC	16	51	35

5.3 Find out the top 5 states with the highest & lowest average delivery time.

SELECT C.customer_state,

AVG(OI.freight_value) AS avg_freight_value,

AVG(BASE1.time_to_delivery) AS avg_time_to_delivery,

AVG(BASE1.diff_estimated_delivery) AS avg_diff_estimated_delivery

FROM `Target.customers` AS C

JOIN

(SELECT *,

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_to_delivery,

TIMESTAMP_DIFF(order_estimated_delivery_date, order_purchase_timestamp, DAY) AS diff_estimated_delivery,

FROM `Target.orders`

 $WHERE\ order_status = 'delivered')\ AS\ BASE1\ ON\ C.customer_id = BASE1.customer_id$

JOIN

`Target.order_items` AS OI ON BASE1.order_id = OI.order_id

GROUP BY C.customer_state;

Row	customer_state ▼	avg_freight_value	avg_time_to_delivery	avg_diff_estimated_c
1	RN	35.71808061420	18.87332053742	32.22456813819
2	CE	32.73449509116	20.53716690042	31.02524544179
3	RS	21.61319204434	14.70829936409	28.26866644929
4	SC	21.50735904320	14.51720771296	25.51476690261
5	SP	15.11518235446	8.259662797958	18.86938081295
6	MG	20.62634252090	11.51409104986	24.26393620315
7	BA	26.48755633994	18.77464023893	29.17512897094
8	RJ	20.91143604610	14.68882132503	26.08406985788
9	GO	22.56286780851	14.94817742643	26.62977602108

- **5.4** Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery. You can use the difference between the averages of actual & estimated delivery date to figure out how fast the delivery was for each state.
- 5.4.1 Top 5 states with highest/lowest average freight value sort in desc/asc limit 5

SELECT C.customer_state, ROUND(AVG(OI.freight_value), 2) AS avg_freight_value,

FROM `Target.customers` AS C

JOIN

(SELECT *,

FROM `Target.orders`

WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id

JOIN

`Target.order_items` AS OI ON BASE1.order_id = OI.order_id

GROUP BY C.customer_state

ORDER BY AVG(OI.freight_value) DESC LIMIT 5;

Row	customer_state	▼	avg_freight_value
1	PB		43.09
2	RR		43.09
3	RO		41.33
4	AC		40.05
5	PI		39.12

5.4.2 QUERY FOR Top 5 states with lowest avg_freight_value:

 $SELECT\ C. customer_state,\ ROUND (AVG (OI.freight_value),\ 2)\ AS\ avg_freight_value,$

FROM `Target.customers` AS C

JOIN

(SELECT *,

FROM `Target.orders`

WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id JOIN

`Target.order_items` AS OI ON BASE1.order_id = OI.order_id

GROUP BY C.customer_state

ORDER BY AVG(OI.freight_value) ASC

LIMIT 5;

Row	customer_state ▼	avg_freight_value
1	SP	15.12
2	PR	20.47
3	MG	20.63
4	RJ	20.91
5	DF	21.07

5.4.3 Top 5 states with highest/lowest average time to delivery

QUERY for the top 5 states with the highest average time to delivery:

 $SELECT\ C. customer_state,\ ROUND(AVG(BASE1.time_to_delivery),\ 2)\ AS\ avg_time_to_delivery,\ FROM\ `Target.customers\ `AS\ C$

JOIN

(SELECT *,

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_to_delivery,

FROM `Target.orders`
WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id
GROUP BY C.customer_state
ORDER BY AVG(BASE1.time_to_delivery) DESC limit 5;

Row	customer_state ▼	avg_time_to_delivery
1	RR	28.98
2	AP	26.73
3	AM	25.99
4	AL	24.04
5	PA	23.32

5.4.4 QUERY for the top 5 states with the lowest average time to delivery:

SELECT C.customer_state, ROUND(AVG(BASE1.time_to_delivery), 2) AS avg_time_to_delivery, FROM `bcs1target.customer` AS C JOIN (SELECT *,

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_t o_delivery FROM `bcs1target.orders`

WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id

GROUP BY C.customer_state

ORDER BY AVG(BASE1.time_to_delivery) ASC

LIMIT 5;

Row	customer_state	~	avg_time_to_delivery
1	SP		8.3
2	PR		11.53
3	MG		11.54
4	DF		12.51
5	SC		14.48

5.4.5 Top 5 states where delivery is really fast/ not so fast compared to the estimated date query for the top 5 states where delivery is really fast compared to the estimated date

 $SELECT\ C. customer_state,\ ROUND(AVG(BASE1.diff_estdel_actdel),\ 2)\ AS\ avg_daydiff_estdel_actdel\\ FROM\ `Target.customers\ `AS\ C$

JOIN

(SELECT *,

 $TIMESTAMP_DIFF (order_estimated_delivery_date, order_delivered_customer_date, DAY) \ AS \ diff_estdel_actdel \ FROM `Target.orders`$

WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id GROUP BY C.customer_state
ORDER BY AVG(BASE1.diff_estdel_actdel) DESC
LIMIT 5;

	Row	customer_state ▼	avg_daydiff_estdel_a
	1	AC	19.76
	2	RO	19.13
7	3	AP	18.73
	4	AM	18.61
	5	RR	16.41

QUERY for top 5 states where delivery is NOT SO FAST compared to the estimated date

 $SELECT\ C. customer_state,\ ROUND (AVG (BASE1.diff_estdel_actdel),\ 2)\ AS\ avg_day diff_estdel_actdel\\ FROM\ `Target.customers\ `AS\ C$

JOIN

(SELECT *,

 $TIMESTAMP_DIFF (order_estimated_delivery_date, order_delivered_customer_date, DAY) \ AS \ diff_estdel_actdel \ FROM \ `Target.orders`$

WHERE order_status = 'delivered') AS BASE1 ON C.customer_id = BASE1.customer_id

GROUP BY C.customer_state

ORDER BY AVG(BASE1.diff_estdel_actdel) ASC

LIMIT 5;

Row	customer_state ▼	avg_daydiff_estdel_a
1	AL	7.95
2	MA	8.77
3	SE	9.17
4	ES	9.62
5	BA	9.93

6. Analysis based on the payments:

6.1 Find the month on month no. of orders placed using different payment types.

SELECT time_period, payment_type,COUNT(*) AS total_orders

FROM (SELECT

p.order_id,p.payment_type,

EXTRACT(YEAR FROM order_purchase_timestamp) AS year,

EXTRACT(Month FROM order_purchase_timestamp) AS month,

 $FORMAT_DATE('\%b~\%Y', DATE(ORDER_PURCHASE_TIMESTAMP))~AS~time_period$

FROM

`Target.payments` p JOIN `Target.orders` o

USING

(order_id)) t1 GROUP BY time_period, payment_type, t1.YEAR, t1.month ORDER BY t1.YEAR, t1.month;

Row	time_period ▼	payment_type ▼	total_orders ▼
1	Sep 2016	credit_card	3
2	Oct 2016	credit_card	254
3	Oct 2016	UPI	63
4	Oct 2016	voucher	23
5	Oct 2016	debit_card	2
6	Dec 2016	credit_card	1
7	Jan 2017	credit_card	583
8	Jan 2017	UPI	197
9	Jan 2017	voucher	61
10	Jan 2017	debit_card	9

6.2 Find the no. of orders placed on the basis of the payment installments that have been paid.

SELECT P.payment_installments, COUNT(*) AS orders_count

FROM `Target.payments` AS P

JOIN

(SELECT *

FROM `Target.orders`

WHERE order_status = 'delivered') AS O ON P.order_id = O.order_id

group by 1;

Row	payment_installment	orders_count ▼
1	0	2
2	1	50929
3	2	12075
4	3	10164
5	4	6891
6	5	5095
7	6	3804
8	7	1563
9	8	4136

7. Actionable Insights and Recommendations

1. Most of the orders are placed in the august

- 2. Most of the reviews are least rating, those items need to be reevaluated
- 3. We can see how the orders trajectory is showing very abrupt increase in orders volume with in very short time. Looking at overall trend, it is seen that business is picking up very fast in brazil so company has to be ready with extra workforce. To avoid high risk, it can consider hiring contractual employees
- 4. As Brazilian customers usually tend to buy in afternoon and night, we can increase staff in during this time frame in order to manage the customers' requests, and services better during this time by reducing workforce of morning and dawn
- 5. We can see, only 3 state contribute for maximum volume, and rest of the state need to be focused for improving the business.
- 6. The monthly orders growth rate can be as high as 62.77% (Nov 2017) during the peak seasons. So to meet high demands, inventory levels must be adjusted accordingly to ensure that all the items are stocked at optimal levels. Else Target will lose sales from potential customers and the consumers will likely seek competitors to get what they need. By losing these sales, Target will also lose out on profits
- 7. As a significant number of orders (66.55% of total orders) come from three south-eastern states of Brazil i.e. Sao Paulo, Rio de Janeiro, and Minas Gerais so to reduce the freight cost and delivery time of the products, Target has to continue building a strong seller network to improve customer buying experience in such regions
- 8. Target has to develop a good social omnipresence. It should have footprints across all social media platforms to reach new potential customers and sellers. Since the count of customers and sellers is very less in most of the northern regions of Brazil.