Matemática Discreta

1. Mostre as afirmações abaixo por indução sobre n.

(a)
$$1+2+2^2+\ldots+2^n=2^{n+1}-1$$
, para $n > 1$.

(b)
$$2^n > n$$
, para $n > 1$.

(c)
$$1+4+7+\ldots+(3n-2)=\frac{n(3n-1)}{2}$$
, para $n \ge 1$.

(d)
$$n^2 > 3n$$
, para $n \ge 4$.

(e)
$$3^{2n} - 1$$
 é divisível por 8, para $n \ge 1$.

(f)
$$n^3 + 2n$$
 é divisível por 3, para $n \ge 1$.

(g)
$$1+3+5+\ldots+(2n-1)=n^2$$
, para $n \ge 1$.

(h)
$$2^n \le 2^{n+1}$$
, para $n \ge 1$.

(i)
$$n^2 > n + 1$$
, para $n \ge 2$.

(j)
$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
, para $n \ge 1$.

- 2. Determine o menor número natural n_o tal que $n_o! > n_o^2$, onde $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$. Prove que $n! > n^2$, para todo $n \ge n_o$.
- 3. Considere os predicados no universo dos inteiros: N(x): "x é um inteiro não-negativo", E(x): "x é par", I(x): "x é impar", P(x): "x é primo". Escreva as proposições abaixo simbolicamente:
 - (a) Existe um inteiro par.

- (d) Todo primo é ímpar.
- (b) Todo inteiro é par ou ímpar.
- (e) Se um inteiro não é impar, então é par.
- (c) Todo inteiro primo não é negativo.
- (f) Nem todos os primos são ímpares.
- 4. Considere os predicados P(x): " $x^3 2x = 0$ ", Q(x): "|x+1| = 2", R(x): " $x^2 9 = 0$ ". Determine o valor-verdade de cada proposição abaixo em cada um dos seguintes universos de discurso: $A = \{-3, 0, 3\}, \mathbb{N} \in \mathbb{R}.$

 - (a) $\exists x (P(x))$ (b) $\forall x (P(x) \lor R(x))$
- (c) $\forall x (R(x) \to Q(x))$

- (d) $\exists x(Q(x))$
- (e) $\forall x [\sim Q(x) \land (P(x) \rightarrow R(x))]$ (f) $\exists x (Q(x) \rightarrow R(x))$

- (g) $\exists x (\sim R(x))$ (h) $\forall x (\sim Q(x) \lor \sim R(x))$

- 5. Considere os predicados P(x): " $x^2 1 = 0$ " e Q(x): " $x^2 = 0$ ", no universo $\mathcal{U} = \{-1, 0, 1\}$. Determine o valor-verdade das seguintes proposições:
 - (a) $\forall x (P(x) \lor Q(x))$
- (b) $\forall x P(x) \lor \forall x Q(x)$ (c) $\exists x (P(x) \land Q(x))$
- (d) $\exists x P(x) \land \exists x Q(x)$
- 6. Considere os predicados P(x): " $x^2 36 = 0$ ", Q(x): " $x \notin \text{múltiplo de 3}$ ", R(x): " $|x| \leq 5$ ", S(x): " $x^2 - x - 2 = 0$ " e T(x): " $x^2 = x$ " no universo $\mathcal{U} = \mathbb{Z}$. Determine o valor-verdade das seguintes proposições:
 - (a) $\forall x (P(x) \rightarrow Q(x))$

(f) $\forall x (T(x) \rightarrow R(x))$

(b) $\exists x (\sim P(x) \land Q(x))$

(e) $\exists x (\sim T(x) \land R(x))$

(c) $\forall x (S(x) \to R(x))$

(g) $\forall x (\sim R(x) \lor Q(x) \lor T(x))$

(d) $\exists x (\sim R(x) \land S(x))$

- (h) $\exists x (R(x) \leftrightarrow P(x))$
- 7. Sendo $A=\{1,2,3,4\}$ e $B=\{2,4,5\}$, escreva simbolicamente as sentenças abaixo, classificandoas em verdadeiras (V) ou falsas (F):
 - (a) 2 é elemento de A

(d) 1 não é elemento de B

(b) 4 pertence a B

(e) A é igual a B

(c) B é um subconjunto de A

- (f) A não está contido em B
- 8. Considere o universo $\mathcal{U} = \{1, 4, 9, 10, 11\}$. Escreva os seguintes conjuntos listando explicitamente todos os seus elementos.

$$A = \{x \in \mathcal{U} \mid x^2 \neq 16\}$$

$$A = \{x \in \mathcal{U} \mid x^2 \neq 16\} \qquad D = \{x \in \mathcal{U} \mid 2x - 5 < 6\} \qquad G = \{x \in \mathcal{U} \mid x^2 = x\}$$

$$G = \{ x \in \mathcal{U} \mid x^2 = x \}$$

$$B = \{ x \in \mathcal{U} \mid x + 5 = 9 \}$$

$$E = \{ x \in \mathcal{U} \, | \, 4 < x < 9 \}$$

$$B = \{x \in \mathcal{U} \mid x + 5 = 9\} \qquad E = \{x \in \mathcal{U} \mid 4 < x < 9\} \qquad H = \{x \in \mathcal{U} \mid x^2 - 5x + 4 = 0\}$$

$$C = \{ x \in \mathcal{U} \mid x + 1 \in \mathcal{U} \}$$

$$C = \{x \in \mathcal{U} \mid x + 1 \in \mathcal{U}\}$$
 $F = \{x \in \mathcal{U} \mid x^2 - 3x = 0\}$ $I = \{x \in \mathcal{U} \mid |x - 6| \le 4\}$

$$I = \{x \in \mathcal{U} \mid |x - 6| \le 4\}$$

9. Escreva os seguintes conjuntos listando explicitamente todos os seus elementos.

$$A = \{ x \in \mathbb{N} \, | \, x < 5 \}$$

$$F = \{x \in \mathbb{N} \mid [x+3=8] \lor [x^2=9]\}$$

$$B = \{ x \in \mathbb{Z} \mid x^2 \le 25 \}$$

$$G = \{ x \in \mathbb{Z} \mid [(x > -1) \land (x < 1)] \lor [x^3 = 8] \}$$

$$C = \{x \in \mathbb{Q} \, | \, 10x^2 + 3x - 1 = 0\}$$

$$H = \{ x \in \mathbb{R} \mid |x| < 0 \}$$

$$D = \{ x \in \mathbb{R} \, | \, x^3 + 1 = 0 \}$$

$$I = \{ x \in \mathbb{Z} \mid [x^2 = 4] \land [x \text{ \'e impar }] \}$$

$$E = \{x \in \mathbb{R}_+ \mid 4x^2 - 4x - 1 = 0\}$$

$$J = \{ x \in \mathbb{Z} \mid [x^2 = 16] \lor [2x = 6] \}$$

10. Classificar em verdadeira (V) ou falsa (F) cada sentença abaixo:

(a)
$$\{1, 3, 5, 9\} = \{5, 9, 3, 1\}$$
 (e) $1 \in \{1\}$

(e)
$$1 \in \{1\}$$

(i)
$$\emptyset \in \{\emptyset, \{a\}\}$$

(b)
$$\{1\} \in \{1\}$$

(b)
$$\{1\} \in \{1\}$$
 (f) $\{1\} \subset \{\{1\}, \{2\}\}$ (j) $\emptyset \subset \{\emptyset, \{a\}\}$

$$(j) \emptyset \subset \{\emptyset, \{a\}\}\$$

(c)
$$\{1\} \subset \{1\}$$

(g)
$$\emptyset \subset \{0, a\}$$

$$(k) \emptyset \in \{1, \{a\}, 14\}$$

(d)
$$\{1\} \in \{\{1\}, \{2,3\}\}$$

(h)
$$\emptyset \subset \emptyset$$

(1)
$$\emptyset \subset \{1, \{a\}, 14\}.$$

11. Sejam P(x): "existe $y \in \mathbb{N}$ tal que $x = y^2$ " e Q(x): " $x \ge 20$ " predicados com universo de discurso $\mathcal{U} = \mathbb{N}$. Considere os seguintes subconjuntos de \mathbb{N} :

$$A = \{ x \in \mathbb{N} \,|\, P(x) \land \sim Q(x) \}$$

$$B = \{ x \in \mathbb{N} \mid [x \in A] \lor [x^2 - 7x + 12 = 0] \}$$

$$C = \{1, 3, 5, 9, 25, 45, 243\}$$

Diga quais afirmações são verdadeiras e quais são falsas, justificando sua resposta.

(a) Existe
$$x \in C$$
 tal que $x \notin B$

(e)
$$C \setminus B = \emptyset$$

(b)
$$B \cup C$$
 tem exatamente 10 elementos. (f) $25 \in C \setminus A$

(f)
$$25 \in C \setminus A$$

(c) Existe
$$x \in B$$
 tal que $x \notin C$

(g)
$$\{3,6\} \subset \mathbb{C}_{\mathbb{N}} ([A \cup C] \setminus B)$$

(d)
$$\{1, 3, 9\} \subset (A \cap C)$$

(h)
$$(\exists c \in C) [P(c) \land c \notin A]$$

12. Sejam
$$A = \{1, \{2\}, q\}, B = \{1, 2, \{1, 2\}, r\}, X = \{p, q, r, 1, 2, \{1, 2\}, \{1\}\}, Y = \{r, \{1, 2\}, p, 2, q\}$$
 e $Z = \{1, \{2\}, \{1, 2\}, q, 2\}.$

(a) Determine
$$((B \setminus A) \cap Z) \cup \mathcal{C}_X Y$$
 (b) É verdade que $\{1, 2\} \in \wp(Y)$?

(b) É verdade que
$$\{1,2\} \in \wp(Y)$$
?

13. Sejam A, B e C subconjuntos de um mesmo conjunto universo \mathcal{U} . Diga quais afirmações são verdadeiras e quais são falsas, justificando sua resposta.

(a)
$$A \setminus B = B \setminus A$$

(e)
$$(A \cap B) \cup C = A \cap (B \cup C)$$
.

(b)
$$(A \setminus B) \cup B = A \cup B$$

(f)
$$A \setminus B \subset (A \cup B)$$

(c)
$$A \cup (A \cap B) = A$$

(g) Se
$$(5,6) \notin A \times B$$
, então $5 \notin A$ e $6 \notin B$;

(d) Se
$$A \nsubseteq B$$
 e $B \subset C$, então $A \nsubseteq C$.

14. Sejam A, B, C e D subconjuntos de um mesmo conjunto universo \mathcal{U} . Mostre que:

(a)
$$A \subset B$$
 se, e somente se, $A \cup B = B$.

(b)
$$A \subset B$$
 se, e somente se, $A \cap B = A$.

(c)
$$C \setminus (B \setminus A) = (A \cap C) \cup (C \setminus B)$$

(d)
$$A \setminus A = \emptyset$$

(e)
$$A \setminus \emptyset = A$$

(f)
$$\emptyset \setminus A = \emptyset$$
.

(g)
$$A \setminus (A \setminus B) = A \cap B$$
.

(h)
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$
.

(i)
$$A \subset B$$
 se, e somente se, $A \setminus B = \emptyset$.

(j)
$$A \cap B = \emptyset$$
 se, e somente se, $B \setminus A = B$.

(k)
$$(C_{\mathcal{U}} A) \cap B = B \setminus A$$
.

(1)
$$A \cup (C_{\mathcal{U}} B) = C_{\mathcal{U}} (B \setminus A)$$

(m)
$$C_{\mathcal{U}}\emptyset = \mathcal{U}$$

(n)
$$C_{\mathcal{U}}\mathcal{U} = \emptyset$$

(o)
$$A \cap B = B \setminus \mathcal{C}_{\mathcal{U}} A$$

(p)
$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

(q)
$$(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$$

(r)
$$A \cup E = B$$
 se, e somente se, $A \setminus B = \emptyset$

(s)
$$C_E(A \cup B) = C_E(A) \cap C_E(B)$$

- 15. Sejam $A = \{1, 2, \{3\}\}$ e $B = \{1, 3\}$. Determine $A \times B$ e $B \times \wp(A \setminus B)$.
- 16. Existem conjuntos $A \in B$ tais que $A \times B = \{(5,11), (2,5), (5,2), (3,2), (3,11), (5,3), (3,5)\}$?
- 17. Sendo I o conjunto dos números naturais ímpares, considere os seguintes predicados no universo de discurso $\mathcal{U} = \wp(\mathbb{N})$:

$$P(X)$$
: " $X \cap \{1, 2, 5, 6\} \neq \emptyset$ " $R(X)$: " $\{1, 2, 5, 6\} \subset X$ " $A(X, Y)$: " $X \cap Y = \emptyset$ "

$$R(X)$$
: " $\{1, 2, 5, 6\} \subset X$ "

$$A(X,Y)$$
: " $X \cap Y = \emptyset$ "

$$Q(X)$$
: " X é infinito"

$$S(X)$$
: " $X \cap I = \emptyset$ "

$$S(X)$$
: " $X \cap I = \emptyset$ " $B(X,Y)$: " $X \cup Y = \mathbb{N}$ "

Diga quais afirmações são verdadeiras e quais são falsas, justificando sua resposta.

(a)
$$\exists X (P(X) \land Q(X))$$

(f)
$$\exists X (S(X) \land \sim Q(X))$$

(b)
$$\forall X (R(X) \to P(X))$$

(g)
$$\forall X \exists Y (\sim A(X,Y))$$

(c)
$$\forall X (P(X) \to R(X))$$

(h)
$$\forall X \exists Y (A(X,Y) \land B(X,Y))$$

(d)
$$\exists X (Q(X) \leftrightarrow S(X))$$

(i)
$$\exists X \, \forall Y \, (A(X,Y) \to B(X,Y))$$

(e)
$$\forall X (P(X) \lor S(X))$$

(j)
$$\exists X \, \forall Y \, (\sim B(X,Y))$$

18. Seja $A = \{1, 2, 3, a, b, c\}$ e considere no conjunto $\mathcal{U} = \wp(A)$ os seguintes predicados:

$$P(X)$$
: " $X \cap \{a, b\} \neq \emptyset$ " $R(X)$: " $a \in X$

$$Q(X)$$
: " $\{1,2\} \subset C_A(X)$ " $S(X)$: " $X \cup \{b,c\} = A$ "

Diga quais afirmações são verdadeiras e quais são falsas, justificando sua resposta.

(a)
$$\exists X (P(X) \land Q(X))$$

(f)
$$\exists X (S(X) \land \sim Q(X))$$

(b)
$$\forall X (R(X) \rightarrow P(X))$$

(g)
$$\forall X(R(X) \to S(X))$$

(c)
$$\forall X (Q(X) \to R(X))$$

(h)
$$\forall X(P(X) \lor Q(X))$$

(d)
$$\exists X (Q(X) \leftrightarrow S(X))$$

(i)
$$\exists X([P(X) \lor Q(X)] \land S(X))$$

(e)
$$\forall X (P(X) \vee S(X))$$

$$(j) \ \forall X \ (\sim Q(X) \lor [S(X) \leftrightarrow R(X)])$$

19. Seja R a relação em $\mathbb Z$ definida por

$$aRb \Leftrightarrow 4 \text{ divide } a - b.$$

Prove que R é uma relação de equivalência em \mathbb{Z} e determine o conjunto quociente \mathbb{Z}/R .

- 20. Em $\mathbb{Z} \times \mathbb{Z}$, defina a relação (a,b)R(c,d) se e somente a-c=b-d. Mostre que R é uma relação de equivalência. Determine classe de equivalência do ponto (3,1). Represente geometricamente tal classe.
- 21. Seja R a relação sobre $\mathbb{R} \times \mathbb{R}$ dada por (x,y)R(z,w) quando x=z. Mostre que R é uma relação de equivalência e determine a classe de equivalência do elemento $(2,7) \in \mathbb{R} \times \mathbb{R}$.
- 22. Em $\mathbb{R} \times \mathbb{R}$, defina a relação (x,y)R(z,t) se e somente $x^2 + y^2 = z^2 + t^2$. Mostre que R é uma relação de equivalência. Determine a classe de equivalência de (5,0). Represente geometricamente tal classe.
- 23. Seja $A=\{1,2,3,4\}$ e seja o subconjunto $E=\{1,3\}$ de A. Defina a relação \sim em $\wp(A)$ por $X \sim Y \Leftrightarrow X \cup E = Y \cup E.$

Mostre que R é uma relação de equivalência em $\wp(A)$ e determine o conjunto quociente $\wp(A)/\sim$.

- 24. Em cada item, determine se a relação R dada é uma relação de equivalência e, para as que forem, determine o quociente A/R.
 - (a) $A = \mathbb{N}$, xRy se x + y é par.
 - (b) $A = \mathbb{Z}$, xRy so 5 divide x y.
 - (c) $A = \mathbb{Z}$, xRy se 3x + y 'e m'ultiplo de 4.
 - (d) $A = \mathbb{R}$, xRy se x = y = 0 ou xy > 0.
- 25. Sejam $A = \{1, 2, 3, 4, 5\}$ e $S = \{(1, 2), (3, 2), (4, 5), (2, 2)\} \subset A \times A$. Apresente uma relação R em A tal que $S \subset R$ e $R \cap \{(1,4),(1,5)\} = \emptyset$. Determine também o conjunto quociente A/R.
- 26. Dados os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{-1, 0, 1, 2\}$, considere as relações:
 - (a) $\{(1,0),(2,1),(3,-1),(4,2)\}$
 - (b) $\{(1,0),(2,-1),(3,2)\}$
 - (c) $\{(1,0),(2,0),(3,-1),(4,1)\}$
 - (d) $\{(1,0),(2,1),(3,-1),(2,1)\}$
 - (e) $\{(1,-1),(2,1),(3,0),(4,2)\}$

Diga quais delas define uma função $f:A\to B$. Para cada uma dessas funções, verifique se é injetora/sobrejetora.

- 27. (a) A relação $R = \{(1,1), (a,b), (b,j), (c,d), (d,d), (-1,1), (i,j), (a,j)\}$ é uma função de $A = \{-1, 1, a, b, c, d, e, i\} \text{ em } B = \{1, 2, 3, b, c, d, i\}$?
 - (b) A relação $R = \{(1,1), (b,1), (\{a\},1), (c,21), (b,b)\}$ é uma função de $A = \{1, \{a\}, b, c, k\}$ em $B = \{1, 9, 21, b, s\}$?
- 28. Considere a função $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ dada por f(x) = (x, 2x). A função f é injetora? É sobrejetora?
- 29. Considere a função $f: A \to A$. Verifique se as funções abaixo são injetoras ou sobrejetoras para cada um dos casos: (i) $A = \mathbb{N}$, (ii) $A = \mathbb{Z}$, (iii) $A = \mathbb{R}$.
 - (a) f(n) = 2n + 3 (b) f(n) = n + 4 (c) $f(n) = n^2 + 1$.

- 30. Considere as três funções f, g, h de \mathbb{Z} em \mathbb{Z} definidas por: f(n) = 2n, g(n) = n 3, e h(n) = 0 se n é par e h(n) = 1 se n é impar. Determine as funções: $g \circ f$, $f \circ g$, $f \circ h$, $h \circ f$, $h \circ g$, $g \circ (h \circ f)$.
- 31. Mostre que cada função abaixo é bijetora e encontre sua inversa.
 - (a) $f: \{1, 2, 3, 4\} \to \{1, 4, 9, 16\}$, dada por $f(x) = x^2$.
 - (b) $f: \mathbb{Z} \to \mathbb{Z}$, definida por f(x) = x + 9.
 - (c) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, dada por f(x, y) = (y, x)
 - (d) $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = 5x + 8.
 - (e) $f: A \to A \times \{a\}$, dada por f(x) = (x, a).
- 32. Considere $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$ e $g: \mathbb{R} \setminus \{0\} \to \mathbb{R} \times \mathbb{R}$ as funções definidas por

$$f(x) = \frac{1}{x}$$
 $g(x) = \begin{cases} (x, x) & \text{se } x > 0 \\ (1, x^2) & \text{se } x < 0 \end{cases}$

- (a) Mostre que g não é injetora, nem sobrejetora.
- (b) Mostre que f é bijetora e determine sua inversa f^{-1}
- (c) Determine a função composta $g \circ f$, dizendo qual é seu domínio e contradomínio.
- 33. Seja $A = \{2, 3, 4, 5, 6, 10\}$ e considere as funções

$$f:\mathbb{Z}\to\mathbb{Z}, \qquad g:\{-1,-2,-3,1,4,9\}\to A, \qquad h:A\to\mathbb{Z}\times\mathbb{Z}$$

dadas por f(x) = x + 15, g(x) = |x| + 1 e h(x) = (2x, 3x + 1).

- (a) Mostre que g não é injetora. A função g é sobrejetora?
- (b) Mostre que f é bijetora e determine sua inversa f^{-1} .
- (c) Determine a função composta $h \circ g$, dizendo qual é seu domínio e contradomínio. Calcule $(h \circ g)(-1)$.