Istanbul Bilgi University CMPE 211 Data Structure and Algorithms 2017-2018 Fall Preperation For Midterm

Name	:	Department	:
Student No	:	Date	:
		Grade	

[5P] Q.1 Explain the following sentence "Algorithms are opinions embedded in code". Give a concrete example.

[5P] Q.2 What is the difference between traditional algorithms and machine learning algorithms?

[10P] Q.3 Compare the running times for two algorithms running on different computers over input size $N = 10^7$. What is your conclusion?

	Computer Power	Algorithm Time
A	10^{10} instructions per sec.	$T_A(N) = N^2$
В	10^7 instructions per sec.	$T_B(N) = Nlog_2(N)$

[20P] Q.4 Compare time complexity of the following three algorithms.

- $T_1(N) = 1 + T_1(N/2)$ with base case: $T_1(1) = 1$
- $T_2(N) = 2T_2(N/2)$ with base case: $T_2(1) = 1$
- $T_3(N) = 1 + T_3(N-1)$ with base case: $T_3(0) = 1$
- $T_4(N) = N + T_4(N/2)$ with base case: $T_4(1) = 1$

[5P] Q.5 Define and explain the use of $\Theta()$ notation.

[5P] Q.6 Compare arrays and linked lists.

	advantages	disadvantages
Array		
Linked List		

[10P] Q.7 Why insertion sort is a better algorithm than selection sort? What are their time complexity?

[10P] Q.8 How much time is required to check if an array is sorted? Give pseudo code or java code.

[10P] Q.9 How much time is required to merge two sorted sub-arrays? Give pseudo code or java code.

[5P] Q.10 What is the main advantage of quick sort over merge sort?

[10P] Q.11 Suppose you have a doubly-linked list with two references to the beginning of the list and end of the list. Write the worst-case running time of each operation below.

add(item)	prepend item to the beginning	
get(i)	return item with position i	
set(i, item)	put item to the position i	
remove()	remove last item	
exists(item)	does item exist?	

[10P] Q.12 Max-Heap. 1- Give the array representation of the heap. 2-Insert item Q to the binary heap. Indicate any entries that changed. 3- Remove max and show resulting tree. 4- Again remove max and show resulting tree.

[10P] Q.13 Binary Search. Fill the code.

[5P] Q.14 Draw the array content for some intermediate steps during selection the sort.

[5P] Q.15 Draw the array content for some intermediate steps during insertion sort.

12 9 0 1 5 8 4 6 19 3 7 2	11	1		2		7	3		19	6	4	8	5	1	0	9	12	
---------------------------	----	---	--	---	--	---	---	--	----	---	---	---	---	---	---	---	----	--

[5P] Q.16 Draw the array content for some intermediate steps during merge sort.

M	E	R	G	E	S	О	R	Т	E	X	Α	M	Р	L	E

[5P] Q.17 Draw the array content for some intermediate steps during quick sort.

							l .	ı	l	X	ı				
K	R	A	Т	Е	L	E	Р	U	I	M	Q	С	X	О	S

[15P] Q.18 Propose a better algorithm for the following code. Compare their running times.

```
public class twoSumProblem {
   public static int bruteForce(Integer[] a) {
      int count = 0;
      for (int i = 0; i < a.length; i++)
            for (int j = i+1; j < a.length; j++)
            if (a[i] + a[j] == 0) count++;
      return count;
}</pre>
```

[10P] Q.19 Write two different arbitrary java programs which run in $O(N^2 log(N))$ time.

[10P] Q.20 We want to generate 2 distinct random integers between [0, N-1]. Propose an algorithm which does not generate 2 duplicate integers.

[10P] Q.21 Suppose you are given a shuffled array of integers from 1 to N. But one integer is missing. Propose an efficient algorithm to find it.