Johns Hopkins Engineering 625.464 Computational Statistics

Basic Bootstrapping Methods

Module 9 Lecture 9B

Nonparametric Bootstrap

n ~ n possible preudodatasets and so complete enumeration is not poss. Bind, random bootstrap pseudodata (b.p.d.) from the empirical did. F of the observed data. ie. draw $X_{i}^{*} = \{X_{ii}^{*}, X_{i2}^{*}, ..., X_{in}^{*}\}$ for i = 1, ..., Band then use $R(X_i^{\dagger}, \widehat{F})$ to approx the dist of $R(X_i^{\dagger}, \widehat{F})$.

Nonparametric Bootstrap Example

Denorate Xt by sampling of Xi, Xi, Xi, Xi, w/ replacement from E1, 2, 63. Each Xi, will yield an Ot B=1000 to approx Propose Proposed

<i>x</i> *	$\widehat{ heta}^*$	$P^*\left[\widehat{\theta}^*\right]$	Observed Frequency
111	3/3	1/27	36/1000
112	4/3	3/27	101/1000
122	5/3	3/27	123/1000
2 2 2	6/3	1/27	25/1000
116	8/3	3/27	104/1000
1 2 6	9/3	6/27	227/1000
2 2 6	10/3	3/27	131/1000
166	13/3	3/27	111/1000
266	14/3	3/27	102/1000
66	18/3	1/27	40/1000

Assumphon Parametric Bootstrap Believe that Fis a parametric dist F(X, D) with known form, but unknown parameter D Parametric Boststrap - Draw XI, Xn~ iid F(x, 0) -use X to est 0 => 6 - Each parametric b.p.d. X* is generated by drawing xi,..., xn~iid F(x, 6)

Parametric Bootstrap

- Compute == = XI - Compute == = XI - Lraw Xi, ..., Xn Normal (6.1)

`

We want to know the bias of T(F)= 0 ... we are interested in using bootstrap analysis on

$$\mathcal{R}(\chi_i F) = \mathcal{T}(\hat{F}) - \mathcal{T}(F) = \hat{\Theta} - \hat{\Theta}$$

We want to know

We want to know

$$EBiaS = E[6-0] = E[6] - 0 \text{ w.r.t. } F$$
using the bootstrap principle we calculate where B is $E[6^*-0] = E[6^*] - E$

Bootstrap Estimation of Variance

$$\sqrt{(6)} \sim \sqrt{(6)} = \frac{1}{B-1} = \frac{1}{3} = (6) - 6)^{2}$$