CÁLCULO VECTORIAL 2010-2011 HOJA 4

- 1. Decidir si las siguientes funciones son diferenciables y calcular la matriz diferencial de cada una de ellas:
 - a) $f: \mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (x, y)$,
 - b) $f: \mathbb{R}^2 \to \mathbb{R}^3 : (x, y) \mapsto (xe^y + \cos(y), x, x + e^y),$
 - c) $f: \mathbb{R}^3 \to \mathbb{R}^2 : (x, y, z) \mapsto (x + e^z + y, yx^2),$
 - d) $f: \mathbb{R}^2 \to \mathbb{R}^3: (x, y, z) \mapsto (xye^{xy}, xsen(y), 5xy^2).$
- 2. Decidir si las siguientes funciones son diferenciables y calcular la matriz diferencial de cada una de ellas:
 - a) $f: \mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (e^x, sen(xy)),$
 - b) $g: \mathbb{R}^3 \to \mathbb{R}^2 : (x, y, z) \mapsto (x y, y + z),$
 - c) $h: \mathbb{R}^2 \to \mathbb{R}^3 : (x,y) \mapsto (x+y, x-y, xy).$
- 3. Usando las funciones del ejercicio 2, escribe $h \circ f$ y calcula su matriz diferencial. También, calcula su matriz diferencial usando la regla de la cadena.
- 4. Usando las funciones del ejercicio 2, escribe $g \circ h$ y calcula su matriz diferencial. También, calcula su matriz diferencial usando la regla de la cadena.
- 5. Usando las funciones del ejercicio 2, escribe $h \circ g$ y calcula su matriz diferencial. También, calcula su matriz diferencial usando la regla de la cadena.
- 6. Sea la función $f: \mathbb{R}^2 \to \mathbb{R}^2 : (x,y) \mapsto (xy^2, sen(\pi xy))$ y sea $g: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable. Si la matriz diferencial de $D(g \circ f)$ en el punto (1,1) es la matriz (π, π) , ¿cuál es la matriz diferencial de g en el punto (1,0)?
- 7. Calcular la derivada direccional de $f(x, y, z) = z^2 x + y^3$ en el punto (1, 1, 2) y en la dirección del vector: $(1/\sqrt{5}, 2/\sqrt{5}, 0)$.
- 8. Calcular las derivadas direccionales de las siguientes funciones en los puntos indicados y en las direcciones dadas:
 - a) $f(x,y) = x + 2xy 3y^2$, $(x_0, y_0) = (1, 2)$, v = (3/5, 4/5),
 - b) $f(x,y) = ln(\sqrt{x^2 + y^2})$, $(x_0, y_0) = (1,0)$, $v = (2/\sqrt{5}, 1/\sqrt{5})$,
 - c) $f(x,y) = e^x \cos(\pi y), (x_0, y_0) = (0,1), v = (1/\sqrt{5}, 2/\sqrt{5}),$
 - d) $f(x,y) = xy^2 + x^3y$, $(x_0, y_0) = (4, 2)$, $v = (1/\sqrt{10}, 3/\sqrt{10})$.
- 9. Suponer que una montaña tiene forma de un paraboloide elíptico, es decir, viene dado por la ecuación $z=1-3x^2-y^2$ para $x,y\in\mathbb{R}$ satisfaciendo $3x^2+y^2\leq 1$.

En el punto $(\frac{1}{4}, \frac{1}{4})$, ¿en qué dirección está aumentando más rápido la altitud? Si se suelta una canica en $(\frac{1}{4}, \frac{1}{4})$, ¿en qué dirección comenzará a rodar?

10. Otto Lindenbrock, un afamado profesor de mineralogía, contrata a un ingeniero (geólogo, digamos) para construir un ferrocarril que suba a la cima de la montaña del ejercicio anterior. Subir directo la montaña es demasiado empinado para la fuerza de la locomotora. El ingeniero piensa que una pendiente del 3 % es razonable. O dicho de otra forma, que la tasa de cambio de la altura es 0.03. En el punto (¹/₄, ¹/₄) determinar en qué direcciones (hay dos) se puede colocar la vía de modo que suba un 3 %.