南京理工大学课程考试试卷(学生考试用)

课程名称: ____线性代数____ 学分: ____2.5__ 教学大纲编号: ___11031201_

试卷编号: ____A 考试方式: <u>闭卷</u> 满分分值: <u>80</u> 考试时间: <u>120</u>分钟

所有解答必须写在答题纸上,写在试卷上无效

一. 是非题: (每小题 3 分, 共 15 分)(下列命题正确的打 √, 错误的打×)

1. 设 A 为 n 阶非零实矩阵, A^* 为 A 的伴随矩阵,若 $A^* = A^T$,则 A 不可逆。

2. 设
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & a & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, a 为任意常数,则 $A 与 B$ 等价。

- 3. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s(s\geq 2)$ 线性无关的充要条件是其任一向量都不能由其余向量线性表示。()
- 4. 设 A, B 均为 n 阶矩阵,且 AB=0,则 A 的任一行向量与的 B 的任一列向量正交。

5. 二次型
$$f(x) = (x_1, x_2) \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 的矩阵为 $\begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix}$ 。

二. 填空题: (每小题 3 分, 共 15 分)

- 2. 设 n 阶方阵 A 满足 $A^2 + A + I = 0$,则 $(A I)^{-1} =$ ______
- 4. 设三阶方阵 A 的特征值为 0, 1, 2, 又 $B = 2A^2 A + I$, 则 B 的行列式 $|B| = ______$ 。

5. 已知
$$n$$
 阶矩阵 $A = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$, A_{ij} 表示 $|A|$ 的第 i 行第 j 列元素的代数余子式,则 $|A|$ 中

所有元素的代数余子式的和 $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} =$ _______。

三. (6分) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} a_1 + \lambda & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 + \lambda & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 + \lambda & \cdots & a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n + \lambda \end{vmatrix}$

四. (8分) 设向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 3 \\ -1 \\ -5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 1 \\ 15 \\ p+2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 6 \\ -2 \\ p \end{pmatrix}$,

- () 1、给出 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关的充要条件;
 - 2、给出 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关的充要条件,并在此时求出其秩和一个极大线性无关组。

五.
$$(8 分)$$
 已知线性变换 σ 在 R^3 中自然基 e_1, e_2, e_3 下的矩阵为 $A = \begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$,求 σ 在基

 $\xi_1 = e_1 + 2e_2 + e_3$, $\xi_2 = e_1 + e_2$, $\xi_3 = e_1 + 2e_2 + 2e_3$ 下的矩阵 B 。

六.(10 分)设线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$$
,试问 λ 取何值时,方程组无解?有唯一解?有 $x_1 + x_2 + \lambda x_3 = \lambda^2$

无穷多解?并在有无穷多解时求其通解。

七.
$$(10 分)$$
 设 $A = \begin{pmatrix} 9 & 4 & -1 \\ 4 & -6 & 4 \\ -1 & 4 & 9 \end{pmatrix}$,求一正交矩阵 T ,使得 T^TAT 为对角矩阵,并写出此对

角阵。

()

八. (8 分) 1、设A, B均为n阶矩阵, 证明 $AB-BA \neq I$ 。

2、n 个变量 x_1, x_2, \dots, x_n 的二次型 $f(x) = x^T A x$ 正定的充分必要条件是它的正惯性指标等于 n 。