Some notes on CO dimer

Yu Zhai

Institute of Theoretical Chemistry, Jilin University, P. R. China Email: yuzhai@mail.huiligroup.org

6th November 2017

Geometry

Figure: Geometry of CO dimer.

$$\Delta V = V(r_1, r_2; R, \theta_1, \theta_2, \phi). \tag{1}$$

Zhai (Jilin U., China) CO dimer 6th November 2017

Symmetry

CO dimer is a flopping supramolecular so that we use permutation-inversion (PI) group G_4 to describe its symmetry.

Table: Character table of PI group G_4 .

G_4	Ê	Ŷ	\hat{E}^*	\hat{P}^*
A^+	1	1	1	1
A^{-}	1	1	-1	-1
B^{+}	1	-1	1	-1
B^{-}	1	-1	-1	1

Symmetry

$$\hat{E}(r_1, r_2; R, \theta_1, \theta_2, \phi) = (r_1, r_2; R, \theta_1, \theta_2, \phi),$$

$$\hat{P}(r_1, r_2; R, \theta_1, \theta_2, \phi) = (r_2, r_1; R, \pi - \theta_2, \pi - \theta_1, \phi),$$

$$\hat{E}^*(r_1, r_2; R, \theta_1, \theta_2, \phi) = (r_1, r_2; R, \theta_1, \theta_2, -\phi),$$

$$\hat{P}^*(r_1, r_2; R, \theta_1, \theta_2, \phi) = (r_2, r_1; R, \pi - \theta_2, \pi - \theta_1, -\phi).$$
(2)

Core electronic correlation¹

Dawes et al. built an intermolecular PES with all electrons correlated (AE). Compared to the case where only valence orbitals are correlated (Val.), the intermolecular PES is...?

Zhai (Jilin U., China) CO dimer 6th November 2017 5 / 1

Core electronic correlation¹

Dawes et al. built an intermolecular PES with all electrons correlated (AE). Compared to the case where only valence orbitals are correlated (Val.), the intermolecular PES is...?

Almost the same!

Core electronic correlation¹

Dawes et al. built an intermolecular PES with all electrons correlated (AE). Compared to the case where only valence orbitals are correlated (Val.), the intermolecular PES is...?

Almost the same! Unluckily they did not find that.

¹J. Phys. Chem. A, 117, 7612 (2013) doi:10.1021/jp404888d □ → ⟨₱ → ⟨ ≡ → ⟨ ≡ → ⟨ ≡ → ⟨ ≡ → ⟨ □ → ⟨

Explicit correlation method and basis sets

CCSD(T)-F12b/aug-cc-pVQZ wins.

Triple excitation correction

...It follows from this analysis that the calculation of an accurate intermolecular potential for CO is a particularly difficult problem: even the CCSD(T) method is not sufficiently reliable since it lacks important fifth-order correlation contributions.

Rode et al., Chem. Phys. Lett., 314, 326 (1999)

Triple excitation correction

... It follows from this analysis that the calculation of an accurate intermolecular potential for CO is a particularly difficult problem: even the CCSD(T) method is not sufficiently reliable since it lacks important fifth-order correlation contributions. Rode et al., Chem. Phys. Lett., 314, 326 (1999)

Correction energies on ang-cc-pVDZ, in cm^{-1} .

Landmark	Correction [†]
Global minimum (C-in)	-4.8725
Local minimum (O-in)	3.9640

Using MRCC2016.

 \bigcirc Walltime ~ 16 hr. for a geometry under C_1 point group.

Infrared spectrum: Consider the CO stretches

Based on Born-Oppenheimer Approximation, intramolecular vibration can be 'split out'. For only one chromophore, the vibrational average reads

$$\bar{V} = \int \Psi^*(r) V \Psi(r) dr. \tag{3}$$

What about CO dimer?

Two chromophores, $C^{(1)}O^{(1)}$ and $C^{(2)}O^{(2)}$, or 1 and 2 for short. If the two ones are all isolated, we have

$$|00\rangle = |0\rangle_1 |0\rangle_2,$$

$$|10\rangle = |1\rangle_1 |0\rangle_2,$$

$$|01\rangle = |0\rangle_1 |1\rangle_2$$
and
$$|11\rangle = |1\rangle_1 |1\rangle_2,$$
(4)

where 0 stands for the vibrational ground state and 1 for excited state.

Infrared spectrum: Consider the CO stretches

Use only $|10\rangle$ and $|01\rangle$ as the bases, the problem becomes a perturbation problem with degenerate states.

The Hamiltonian reads

$$\hat{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix},\tag{5}$$

where

$$H_{11} = \langle 10|\hat{H}_1 + \hat{H}_2 + \Delta V(r_1, r_2)|10 \rangle = E_v + \langle 10|\Delta V|10 \rangle = E_v + \Delta_1,$$

$$H_{22} = \langle 10|\hat{H}_1 + \hat{H}_2 + \Delta V(r_1, r_2)|10 \rangle = E_v + \langle 01|\Delta V|01 \rangle = E_v + \Delta_2,$$

$$H_{12} = \langle 10|\hat{H}_1 + \hat{H}_2 + \Delta V(r_1, r_2)|10 \rangle = \langle 10|\Delta V|01 \rangle = \varepsilon,$$
and
$$H_{21} = \langle 10|\hat{H}_1 + \hat{H}_2 + \Delta V(r_1, r_2)|10 \rangle = \langle 01|\Delta V|10 \rangle = \varepsilon.$$
(6)

Here E_{ν} can be obtained experimentally. The results read

$$E = E_v + \frac{\Delta_1 + \Delta_2 \pm \sqrt{(\Delta_1 - \Delta_2)^2 + 4\varepsilon^2}}{2}.$$
 (7)

Discussion

Is it really necessary to include the coupling term?

I am not sure since in *J. Phys. Chem. A*, **117**, 9612 (2013), Rezaei et al. said the splitting between symmetric and antisymmetric stretching is only $\sim 0.2\,\mathrm{cm}^{-1}$. However, since we will calculate the data, it is just a simple calculation using little time. So why not? However, since the PES can be fairly inaccurate...

Why do not you include the states $|00\rangle$ and $|11\rangle$?

Our experience with ${\rm CO-H_2}$ tells us that high-order perturbation is NOT necessary. It means that the contribution from ground state and the higher excited state is small enough to ignore.

Zhai (Jilin U., China) CO dimer 6th November 2017

Thank you for your attention!