Diszkrét matematika II.

1. Zh - 1 feladatsor (2023.09.16.)

A zárthelyi dolgozatra 90 perc áll rendelkezésre. A dolgozathoz egysoros (azaz 4 alapműveletes) számológép használható. A beadott megoldásokon szereplejen a nevűk, csoportjuk ill. a feladasor szorszáma.

A Zh-n 40 pontot lehet elérni, az aláírás feltétele, hogy minden Zh-n legalább 16 pontot elérjenek.

- 1. Számítsa ki a következő számok legnagyobb közős osztóját az euklideszi algoritmussal $(\mathbf{5p})$
 - (a) a = 126, b = 153;
 - (b) a = 287, b = 367
- Pajkos százlábúak futkároznak a ládában. Az egyik fajtánal 10 lába van, a másiknak 23 Összesen 208 lábat számoltunk meg. Hány százlábú van a ládában? (5p)
- 3 Számítsa ki a következő értékeket (5p)
 - (a) 996 997 998 999 modulo 1000;
 - (b) $1^2 + 2^2 + 3^2 + 4^2 + 5^2$ modulo 3;
 - (c) 50⁶ modulo 7;
 - (d) $60 \cdot 71 + 83 \cdot (-37) + 13^6 \mod 7$;
 - (e) 23²¹² modulo 14.
- Oldja meg a következő lincáris kongruenciát (5p):

 $34x \equiv 6 \mod 38$

5. Oldja meg a következő szimultán kongruenciarendszert (10p)

 $2x \equiv 1 \mod 3$

 $3r \equiv 1 \mod 4$

 $4x \equiv 1 \mod 5$

6. Mi lesz 1009^{1013^{1019¹⁰³¹} utolsó két számjegye tizes számrendszerben (**10p**)?}

1009101310191031