姓名: 专业: 学号:

第 12 周作业解答

练习 1. 判断矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 可否对角化,说明理由。

解

• 解特征方程 $|\lambda I - A| = 0$ 。

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^3$$

所以特征值为 $\lambda_1 = 1$ (三重特征值)。

• 由于 $r(\lambda_1 I - A) = 2 \neq 0$ (即 $r(\lambda_1 I - A) \neq n - n_1$, 其中 n_1 为 λ_1 的重数),所以 A 不可对角化。 **练习 2.** 设 3 阶方阵 A 的特征值为 1, 2, 3,求 |A| 的值。

 $|A| = 1 \times 2 \times 3 = 6$ 。

练习 3. 假设 3 阶方阵 A 的特征值为 2, 1, -1。求行列式 $|A^2 - 2I|$ 和 $|A^{-1} - 2I|$ 。

解由假设知 3 阶方阵 A 有 3 个不同特征值,所以 A 可以对角化。设存在可逆矩阵 P 使得

$$P^{-1}AP = \Lambda \quad \Rightarrow \quad A = P\Lambda P^{-1}$$
.

其中
$$\Lambda = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
。所以

$$A^2 = P\Lambda P^{-1}P\Lambda P^{-1} = P\Lambda^2 P^{-1}, \quad A^{-1} = (P\Lambda P^{-1})^{-1} = P\Lambda^{-1}P^{-1}$$

得:

$$\begin{split} |A^2 - 2I| &= |P\Lambda^2 P^{-1} - 2PIP^{-1}| = |P| \cdot |\Lambda^2 - 2I| \cdot |P^{-1}| = |\Lambda^2 - 2I| \\ &= \left| \begin{pmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \right| = \left| \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right| \\ &= 2 \end{split}$$

及

$$\begin{split} |A^{-1} - 2I| &= |P\Lambda^{-1}P^{-1} - 2PIP^{-1}| = |P| \cdot |\Lambda^{-1} - 2I| \cdot |P^{-1}| = |\Lambda^{-1} - 2I| \\ &= \left| \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \right| = \left| \begin{pmatrix} -\frac{3}{2} & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right| \\ &= -\frac{9}{2} \end{split}$$

以下是附加题,做出来的同学下次课交,可以加分。注意解答过程要详细。

练习 4. 设 D 为平面三角形区域 $\left\{ \begin{pmatrix} x \\ y \end{pmatrix}: 0 \le x, 0 \le y, x+y \le 1 \right\}$,设 $p = \begin{pmatrix} a \\ b \end{pmatrix}$ 为 D 中一点,设 $A=\left(egin{array}{cc} 0.4 & 0.3 \\ 0.6 & 0.7 \end{array}
ight)$ 。 假设点 p 在平面上随时间运动,第 n 时刻的位置是 $p_n=A^np$ 。
 (a) 证明对任何时刻 $n\geq 0$,都有 $p_n\in D$ 。 (即,点 p 的运动限制在区域 D 中。)

- (b) 求 $\lim_{n\to\infty} p_n$ 。(即, 求 p 点的最终位置)

证明: (1) 由点 p 的任意性,只需证明 $Ap \in D$. 因为 $Ap = \begin{pmatrix} 0.4a + 0.3b \\ 0.6a + 0.7b \end{pmatrix}$ 满足 $0.4a + 0.3b \geq 0$, $0.6a + 0.7b \geq 0$ 及 $0.4a + 0.3b + 0.6a + 0.7b = a + b \leq 1$,所以 $Ap \in D$. (2) $|\lambda I - A| = \begin{vmatrix} \lambda - 0.4 & -0.3 \\ -0.6 & \lambda - 0.7 \end{vmatrix} = (\lambda - 0.1)(\lambda - 1)$ 。 $\lambda = 1$ 对应的特征值是 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\lambda = 0.1$ 对应的

特征值是 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 。所以

$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0.1 \\ 0.1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}^{-1}$$

所以

$$\lim_{n \to \infty} p_n = \lim_{n \to \infty} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}^{-1} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}^{-1} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}^{-1} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$

练习 5. 设 u 是 n 维非零列向量, $A=uu^T$ 是 n 阶方阵。证明 $||u||^2$ 是 A 的一个特征值。

证明注意到

$$Au = uu^T u = u(u^T u) = ||u||^2 u.$$

因为 $u \neq 0$, 所以上述说明 $||u||^2$ 是 A 的一个特征值, 而 u 是一个相应的特征向量。

练习 6. 设 3 阶矩阵 A 的特征值为 $\lambda_1 = 2, \lambda_2 = -2, \lambda_3 = 1$, 对应的特征向量分别为 $\alpha_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ \Rightarrow $\Rightarrow A$.

解由题意知, A 有 3 个线性无关特征向量, 故 A 可对角化。令 $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $\Lambda = \begin{pmatrix} 2 & & \\ & -2 & \\ & & 1 \end{pmatrix}$, 则 $P^{-1}AP = \Lambda$ 。所以 $A = P\Lambda P^{-1}$ 。 先求 P^{-1} :

$$(P \vdots I) = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 \rightarrow r_1} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 1 \end{pmatrix}$$

$$\xrightarrow{(-1) \times r_3} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{pmatrix} \xrightarrow{r_1 \rightarrow r_3} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{pmatrix}$$

$$\xrightarrow{r_1 \rightarrow r_2} \begin{pmatrix} 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{pmatrix}.$$

所以
$$P^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$
。所以

$$A = P\Lambda P^{-1} = \begin{pmatrix} -2 & 3 & -3 \\ -4 & 5 & -3 \\ -4 & -4 & -2 \end{pmatrix}.$$

练习 7. 将下列向量组正交化

1.
$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$

2.
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ -5 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 2 \\ 8 \\ -7 \end{pmatrix}$

解

1.

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{\|\beta_1\|^2} \beta_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ -1 \\ \frac{2}{3} \\ \frac{1}{2} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_3^T \beta_2}{||\beta_2||^2} \beta_2 = \begin{pmatrix} -1\\1\\1\\0 \end{pmatrix} - \frac{-2}{3} \begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix} - \frac{-\frac{2}{3}}{\frac{5}{3}} \begin{pmatrix} \frac{1}{3}\\-1\\\frac{2}{3}\\\frac{1}{3} \end{pmatrix} = \begin{pmatrix} -\frac{1}{5}\\\frac{3}{5}\\\frac{3}{5}\\\frac{4}{5} \end{pmatrix}$$

2.

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} = \begin{pmatrix} 1 \\ 1 \\ -5 \\ 3 \end{pmatrix} - \frac{-10}{10} \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -3 \\ 2 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} = \begin{pmatrix} 3 \\ 2 \\ 8 \\ -7 \end{pmatrix} - \frac{30}{10} \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix} - \frac{-26}{26} \begin{pmatrix} 2 \\ 3 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -1 \\ -2 \end{pmatrix}$$