习题五补充讲解(3)

- $\frac{7}{1}$ 证任取 $x \neq \theta$,则 $Ax \neq \theta$, 否则 A 的列向量线性相关,与 A 列满秩矛盾. 令 y = Ax, 则 $x^T Bx = x^T A^T Ax = y^T y = y_1^2 + \dots + y_m^2 > 0$, 故 $B = A^T A$ 对称正定.
- $\frac{11}{11}$ 证任取 $x \neq \theta$,则 $y = Px \neq \theta$,由 A 正定性,可知

$$x^{T}(P^{T}AP)x = y^{T}Ay > 0$$
,即 $P^{T}AP$ 正定.

反之任取 $x \neq \theta$,则 $x^T(P^TAP)x = (Px)^TA(Px) > 0$,故 $Px \neq \theta$,即

 $Px = \theta$ 没有非零解,于是 P 可逆.

$$PX = 0$$
 沒有非零解,于是 P 可逆。
$$A = \begin{pmatrix} 1 & 1/2 & \cdots & 1/2 \\ 1/2 & 1 & \cdots & 1/2 \\ \vdots & \vdots & \ddots & \vdots \\ 1/2 & 1/2 & \cdots & 1 \end{pmatrix}$$
,则解特征方程

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1/2 & \cdots & -1/2 \\ -1/2 & \lambda - 1 & \cdots & -1/2 \\ \vdots & \vdots & \ddots & \vdots \\ -1/2 & -1/2 & \cdots & \lambda - 1 \end{vmatrix} = (\lambda - \frac{n+1}{2}) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & \lambda - 1/2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda - 1/2 \end{vmatrix} = (\lambda - \frac{n+1}{2})(\lambda - \frac{1}{2})^{n-1},$$

得特征值 $\lambda = \frac{n+1}{2}, \frac{1}{2}$,均大于 0,故正定

$$A = \begin{pmatrix} t+1 & -1 & 0 \\ -1 & t+2 & -1 \\ 0 & -1 & t+1 \end{pmatrix}$$
,解特征方程

15(2)解二次型矩阵
$$A = \begin{pmatrix} t+1 & -1 & 0 \\ -1 & t+2 & -1 \\ 0 & -1 & t+1 \end{pmatrix}, \text{ 解特征方程}$$
$$|\lambda E - A| = \begin{vmatrix} \lambda - t - 1 & 1 & 0 \\ 1 & \lambda - t - 2 & 1 \\ 0 & 1 & \lambda - t - 1 \end{vmatrix} = \begin{vmatrix} \lambda - t - 1 & 1 & 0 \\ 0 & \lambda - t - 2 & 1 \\ -(\lambda - t - 1) & 1 & \lambda - t - 1 \end{vmatrix} = (\lambda - t - 1)(\lambda - t)(\lambda - t - 3),$$

则 $x^T A_t x = y^T A y > 0$,故 A_t 正定,于是 $|A_t| > 0$.

 $\frac{18}{18}$ 证 $A = B^2, B$ 正定,则 $B^{-T}AB^{-1} = E$, A 对称且正惯性指数为阶数,故 A 正定.

若
$$A$$
 正定,则存在正交阵 Q ,使得 $Q^TAQ = \Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{pmatrix}$, $\lambda_1 > 0, \dots, \lambda_n > 0$

- 19 证因为 A 正定,故 A 合同于 E ,即存在可逆 C , $C^TAC = E$,再令 B , $= C^TBC$, 则 $B_2^T = C^T B C = B_2$,故有正交阵 Q,使得 $Q^T B_2 Q = \Lambda = diag(\lambda_1, \dots, \lambda_n)$ 令P = CQ,则有 $P^TAP = Q^TEQ = E, P^TBP = Q^TB_2Q = \Lambda$.
- 23 证因为 $\begin{pmatrix} E & 0 \\ x^T A^{-1} & 1 \end{pmatrix}\begin{pmatrix} -A & x \\ x^T & 0 \end{pmatrix}\begin{pmatrix} E & A^{-1}x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -A & 0 \\ 0 & x^T A^{-1}x \end{pmatrix}$,故 $\begin{vmatrix} -A & x \\ x^T & 0 \end{vmatrix} = \begin{vmatrix} -A & 0 \\ 0 & x^T A^{-1}x \end{vmatrix} = |-A|x^T A^{-1}x$ 即 $f(x_1, \dots, x_n) = |-A|x^T A^{-1} x = x^T ((-1)^n |A|A^{-1})x$,因为 A 正定,故 |A| > 0,且当 $x \neq \theta$ 有 $x^{T}(|A|A^{-1})x = |A|(A^{-1}x)^{T}A(A^{-1}x) > 0$,故n偶数时, $f(x_1, \dots, x_n) = x^{T}(|A|A^{-1})x$ 正定 n 奇数时, $f(x_1,...,x_n) = x^T(-|A|A^{-1})x$ 负定