MTH385: History of Mathematics - Homework #4

Cason Konzer

February 12, 2022

The simplest epicyclic curve is the *cardioid* ("heart-shape"), which results from a circle rolling on a fixed circle of the same size.

Cardioid

Cardioid construction $\theta = 0$

Cardioid construction $\theta = \pi/4$

Exercise 1 (2.5.4). Show that if both circles have radius 1, and we follow the point on the rolling circle initially at (1,0), then the cardioid it traces out has parametric equations

$$x = 2\cos\theta - \cos 2\theta,$$

$$y = 2\sin\theta - \sin 2\theta.$$

Solution.

From the above two examples we can see that the distance between the origin of the two circles will always be 2 as it is the sum of their radii.

- The point C will thus always be at $2(\cos(\theta), \sin(\theta))$.
- The "tracer" of the cardioid is the blue dot and will always be at $C (\cos(\pi + 2\theta), \sin(\pi + 2\theta))$.
- We now have an equation for $t: t = (2\cos(\theta) \cos(\pi + 2\theta), 2\sin(\theta) \sin(\pi + 2\theta))$.
- Decomposing we have $x = 2\cos(\theta) \cos(\pi + 2\theta)$ and $y = 2\sin(\theta) \sin(\pi + 2\theta)$.

We will now simply using sum and difference identities to arrive at the parametric equations.

- $\cos(\pi + 2\theta) = \cos(\pi)\cos(2\theta) \sin(\pi)\sin(2\theta) = \cos(2\theta)$.
- $\sin(\pi + 2\theta) = \sin(\pi)\cos(2\theta) \cos(\pi)\sin(2\theta) = \sin(2\theta)$.
- $x = 2\cos\theta \cos 2\theta$.
- $y = 2\sin\theta \sin 2\theta$.

The cardioid is an algebraic curve. Its cartesian equation may be hard to discover, but it is easy to verify, especially if one has a computer algebra system.

Exercise 2 (2.5.5). Check that the point (x, y) on the cardioid satisfies

$$(x^2 + y^2 - 1)^2 = 4((x - 1)^2 + y^2).$$

Solution.

We will use substitution for this exercise

•
$$(x^2 + y^2 - 1)^2 = 4((x - 1)^2 + y^2)$$
.

•
$$x^2 = (2\cos\theta - \cos 2\theta)^2 = 4\cos^2\theta - 4\cos\theta\cos 2\theta + \cos^2 2\theta$$
.

•
$$y^2 = (2\sin\theta - \sin 2\theta)^2 = 4\sin^2\theta - 4\sin\theta\sin 2\theta + \sin^2 2\theta$$
.

•
$$x^2 + y^2 - 1 = 4\cos^2\theta + 4\sin^2\theta - 4\cos\theta\cos2\theta - 4\sin\theta\sin2\theta + \cos^22\theta + \sin^22\theta - 1$$
.
= $4 - 4(\cos(\theta - 2\theta)) = 4 - 4\cos\theta$.

•
$$(x^2 + y^2 - 1)^2 = 16\cos^2\theta - 32\cos\theta + 16$$
.

•
$$(x-1)^2 = (2\cos\theta - \cos 2\theta - 1)^2$$
.
= $4\cos^2\theta + \cos^2 2\theta - 4\cos\theta\cos 2\theta - 4\cos\theta + 2\cos 2\theta + 1$.

•
$$(x-1)^2 + y^2 =$$

$$4\cos^2\theta + 4\sin^2\theta + \cos^22\theta + \sin^22\theta + 1 - 4\cos\theta\cos2\theta - 4\sin\theta\sin2\theta - 4\cos\theta + 2\cos2\theta.$$

$$= 6 - 4\cos\theta - 4\cos\theta + 2\cos2\theta.$$

$$= 6 - 8\cos\theta + 2(2\cos^2\theta - 1).$$

$$= 4\cos^2\theta - 8\cos\theta + 4.$$

•
$$4((x-1)^2 + y^2) = 16\cos^2\theta - 32\cos\theta + 16$$
.

We can now see that any point satisfying our parametric equations also satisfies the algebragic equality.

Exercise 3 (3.2.3). Show that the k^{th} pentagonal number is $\frac{3k^2-k}{2}$.

Solution.

We have the k^{th} pentagonal number represented as the sum : $pent_k = \sum_{i=1}^k 3i - 2$.

From the summation we notice that $pent_{k+1} = pent_k + 3(k+1) - 2 = pent_k + 3k + 1$.

Similarly, $pent_{k+2} = pent_{k+1} + 3(k+2) - 2 = pent_k + 3k + 1 + 3(k+2) - 2 = pent_k + 6k + 5$.

Thus if the equality holds we have show that $\frac{3k^2-k}{2}$ is a closed form for $pent_k$.

• For base $pent_0 + 3(0) + 1 = pent_1$.

$$\frac{3(0)^2 - 0}{2} + 3(0) + 1 = 0 + 0 + 1 = 1.$$

• For base $pent_0 + 6(0) + 5 = pent_2$.

$$\frac{3(0)^2 - 0}{2} + 6(0) + 5 = 0 + 0 + 5 = 5.$$

• To show $pent_k + 3k + 1 = pent_{k+1}$.

$$\frac{3k^2-k}{2}+3k+1=\frac{3k^2+6k-k+2}{2}=\frac{(3k^2+6k-3)+(-k-1)}{2}=\frac{3(k+1)^2-(k+1)}{2}.$$

• To show $pent_k + 6k + 5 = pent_{k+2}$.

$$\frac{3k^2 - k}{2} + 6k + 5 = \frac{3k^2 + 12k - k + 10}{2} = \frac{(3k^2 + 12k - 12) + (-k - 2)}{2} = \frac{3(k + 2)^2 - (k + 2)}{2}.$$

Thus induction shows that the k^{th} pentagonal number is $\frac{3k^2-k}{2}$.

Exercise 4 (3.2.4). *Show that each square is the sum of two consecutive triangular numbers.*

Solution.

We have the k^{th} triangular number represented as the sum : $tri_k = \sum_{i=1}^{k} i$.

The k^{th} triangular number has the well know closed form : $tri_k = \frac{k(k+1)}{2}$.

We have the l^{th} square number represented as the sum : $sq_l = \sum_{j=1}^{l} 2l - 1$.

The l^{th} square number has the well know closed form : $sq_l = l^2$.

• We now consider two consecutive triangular numbers, tri_k and tri_{k+1} .

$$tri_k + tri_{k+1} = \frac{k(k+1)}{2} + \frac{(k+1)(k+2)}{2} = \frac{k^2 + k + k^2 + 2k + k + 2}{2}.$$

= $\frac{2k^2 + 4k + 2}{2} = k^2 + 2k + 1 = (k+1)^2.$

• considering l = k + 1

$$l^2 = tri_{l-1} + tri_l \; ; \; \forall l \geq 1.$$

We have shown that each square, sq_l , is the sum of the coresponding consecutive triangular numbers, tri_{l-1} , and tri_l .

Euclid's theorem about perfect numbers depends on the prime divisor property, which will be proved in the next section. Assuming this for the moment, it follows that if $2^n - 1$ is a prime p, then the proper divisors of $2^{n-1}p$ (those unequal to $2^{n-1}p$ itself) are . . .

$$1, 2, 2^2, \dots, 2^{n-1}$$
 and $p, 2p, 2^2p, \dots, 2^{n-2}p$.

Exercise 5 (3.2.5). Given that the divisors of $2^{n-1}p$ are those just listed, show that $2^{n-1}p$ is perfect when $p = 2^n - 1$ is prime.

Solution.

We must show that the sum of the proper divisors of $2^{n-1}p$ is equal to $2^{n-1}p$, let Σ denote this sum.

We will let $q = 2^{n-1}p \dots$

•
$$\Sigma = \Sigma_1 + \Sigma_2 = (2^0 + 2^1 + \dots + 2^{n-1}) + p(2^0 + 2^1 + \dots + 2^{n-2}).$$

•
$$\Sigma + q = \Sigma_1 + \Sigma_2 + q = (2^0 + 2^1 + \dots + 2^{n-1}) + p(2^0 + 2^1 + \dots + 2^{n-1}) = \Sigma_1 + p\Sigma_1$$
.

•
$$\Sigma_1 + p\Sigma_1 = \Sigma_1(1+p) = \Sigma_1(1+2^n-1) = 2^n\Sigma_1$$
.

• As Σ_1 is a geometric progression, $\Sigma_1 = 2^n - 1 = p$.

• Thus
$$\Sigma + q = 2^n p = 2(2^{n-1}p) = 2q$$
.

• Finally $\Sigma = q$.

We have now shown that $q = 2^{n-1}p$ is perfect.