2020 年-2021 学年度第一学期 华中科技大学本科生课程考试试卷(B 卷)

	课程名称:	: 运筹	学(一)	课程	是类别	□公共课 ■专业课	考试形	形式		<u>开卷</u> 闭卷
,	所在院系:	: 人工智	能与自动位	化学院 专	业及班级	t:	考试日	期:_	202	<u>0. 12. 5</u>
	学 号:			姓名:		任	课教师:	张	<u></u>	
	题号	_		三	四	五	六	总	分	
	分数									

得分	评卷人

一、(25分) 试求解如下线性规划问题:

$$\max z = x_1 - x_2 + 3x_3$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_3 \ge 1 \\ x_1 + 2x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解答:

(1) 标准化

$$\max z = x_1 - x_2 + 3x_3$$

$$s.t.\begin{cases} \frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 - x_4 &= \frac{1}{2} \\ x_1 &+ 2x_3 &+ x_5 &= 1 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

。。。(4分)

(2) 构建初始单纯形表并用单纯形法求解

	$c_j o$			-1	3	0	0	θ
C_B	X_B	b	x_1	x_2	x_3	x_4	<i>x</i> ₅	
-1	x_2	1/2	1/2	1	1/2	-1	0	1
0	<i>x</i> ₅	1	1	0	(2)	0	1	1/2
	$c_j - z_j$			0	(7/2)	-1	0	
-1	x_2	1/4	1/4	1	0	-1	-1/4	
3	<i>x</i> ₃	1/2	1/2	0	1	0	1/2	
$c_j - z_j$			-1/4	0	0	-1	-7/4	

初始单纯形表。。。(10分)

调整。。。(8分)

(3) 得最优解

由于最后一个单纯形表中所有的检验数均已非正,得到原问题最优解, $x_1=0$, $x_2=1/4$, $x_3=1/2$ 。最优值为 max Z=5/4。

。。。(3分)

得分	评卷人

二、(20 分)若题一中再添加 x_1 , x_2 , x_3 均为整数的约束,请用割平面法进行求解。

解答:

(1) 构建割平面

由题一中的最后一个单纯形表的第2行构建割平面。

$$1/2 = x_1/2 + x_3 + x_5/2$$

$$1/2 - x_1/2 - x_5/2 \le 0$$

$$- x_1 - x_5 \le -1$$

。。。(10分)

(2) 用对偶单纯形法求解

将- x_1 - $x_5 \le -1$ 化为等式并添加到最后一个单纯表中。

第2页共7页

	$c_j o$			-1	3	0	0	0
C_B	X_B	b	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
-1	x_2	1/4	1/4	1	0	-1	-1/4	0
3	<i>x</i> ₃	1/2	1/2	0	1	0	1/2	0
0	x_6	(-1)	(-1)	0	0	0	-1	1
	$c_j - z_j$			0	0	-1	-7/4	0
	θ		1/4			_	7/4	
-1	<i>x</i> ₂	0	0	1	0	-1	-1/2	1/4
3	<i>x</i> ₃	0	0	0	1	0	0	1/2
1	x_1	1	1	0	0	0	1	-1
$c_j - z_j$			0	0	0	-1	-3/2	-1/4

....(8分)

所有变量取值均为整数,所有检验数均非正。得原整数规划最优解, $x_1=1$, $x_2=0$, $x_3=0$ 。最优值为 max Z=1。

....(2分)

评卷人 三、(20分) 若问题:

$$\min z = -x_1 + x_2$$

$$s.t. \begin{cases} -x_1 + 2x_2 \ge 3 \\ 3x_1 \le 1 \\ -x_1 + x_2 \ge 1 \\ x_1, x_2 \ge 0 \end{cases}$$

的最优解为 $x_1=1/3$, $x_2=5/3$ 。试进行如下分析:

- (1) 请利用互补松弛性求其对偶问题的最优解。
- (2) 假设问题描述了一个生产计划,问题的第2个约束为某设备的加工台

第3页共7页

时约束。若可以在市场上以每单位台时 2 个利润单位的价格出租该设备,则是否应该出租,为什么?解答:

(1) 原问题标准化

$$\min z = -x_1 + x_2$$

$$s.t. \begin{cases}
-x_1 + 2x_2 \ge 3 \\
-3x_1 \ge -1 \\
-x_1 + x_2 \ge 1 \\
x_1, x_2 \ge 0
\end{cases}$$

原问题的对偶问题为

$$\max \omega = 3y_1 - y_2 + y_3$$

$$s.t.\begin{cases} -y_1 - 3y_2 - y_3 \le -1 \\ 2y_1 + y_3 \le 1 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

。。。(5分)

(2) 互补松弛性

由原问题的最优解 $x_1=1/3$, $x_2=5/3$ 以及对偶问题的互补松弛性知,对偶问题在最优解处,2 个约束均为等式约束。

将 x_1 =1/3, x_2 =5/3 带入标准化后的原问题知,原问题在最优解处使得第 1 和第 2 个约束均为等式约束,第 3 个约束为不等式约束。因此,原问题在最优解处只有第 3 个松弛变量非零。由对偶问题的互补松弛性知,对偶问题的最优解的第 3 个变量为 0,也即 y_3 =0.

$$\begin{cases} -y_1 - 3y_2 = -1 \\ 2y_1 = 1 \\ y_3 = 0 \end{cases}$$

解得,对偶问题的最优解为 $y_1=\frac{1}{2}$, $y_2=\frac{1}{6}$, $y_3=0$ 。 对偶问题的最优值为 $\max \ \omega = 4/3$ 。

。。。(10分)

(3) 影子价格

对偶问题的最优解中, $y_2 = \frac{1}{6}$ 为原问题第 2 个约束所对应的影子价

格。 $y_2 = \frac{1}{6}$ < 2, 因此, 应该以 2 个利润单位的价格出租设备台时。

。。。(5分)

得分	评卷人

四、(25 分)某公司的甲、乙两个产地,分别向 A、B、C 三个销地提供产品,请给出总运费最小的运输方案。

其中,产量、销量及产地到销地的单位运价如下表所示:

		—	.,		
*	销地地	A	В	С	产量
	THE				
	甲	6	4	9	7
	乙	1	10	2	4
	销量	2	5	4	

解答:

是产销平衡的运输问题。

。。。(3分)

(1) 伏格尔法求出初始解

	A	В	$\varsigma_{\scriptscriptstyle (1)}$	行差
	(6) ₍₃₎	(2) (4)	9	2
	(1)	10	(2) (1)	1
列差	5	6	(7)	

第5页共7页

	6		4		9	
2		5				7
	1		10		2	
0				4		4
2		5		4		

得初始解: $x_{11} = 2, x_{12} = 5, x_{21} = 0, x_{23} = 4, x_{13} = 0, x_{22} = 0$ 。

。。。(9分)

(2) 用位势法求检验数

		6		4		9	ui
	2		5		(+2)		0
		1		10		2	-5
	0		(+11)		4		
vi		6		4		7	

。。。(10分)

因所有检验数均已非负,因此由伏格尔法得到的初始解即为最优解。

最优解为: $x_{11} = 2$, $x_{12} = 5$, $x_{21} = 0$, $x_{23} = 4$, $x_{13} = 0$, $x_{22} = 0$ 。最小运费为: $2 \times 6 + 5 \times 4 + 4 \times 2 = 40$ (运价单位)。

最优运输方案为,分别由甲地给 A,B 两个销地运送 2,5 个单位的产品;由乙地给销地 C 运送 4 个单位的产品。

[由于基变量 $x_{21} = 0$,因此该运输问题有无穷多组最优解。]

第6页共7页

得分	评卷人

五(10分). 某厂生产 A,B 两种产品。产品 A,B 的每件工时消耗分别为 4 小时和 6 小时。每天的总工时为 24 小

时。每件产品 A, B 的利润分别为 50 元和 70 元。该厂经营目标如下:

P₁: 利润指标定为每天不低于2800元;

 P_2 : 产品 A 的产量多于产品 B 的产量。

试建立该厂经营的目标规划模型(只建模不求解)。

解答:

设 x_1 , x_2 分别为产品 A,B 的每天产量, d_1^+ , d_1^- , d_2^+ , d_2^- 分别为目标 P_1 和 P_2 的 正负偏差量。该问题的目标规划模型为,

$$\min P_1(d_1^-) + P_2(d_2^-)$$

$$\begin{cases} 50x_1 + 70x_2 + d_1^- - d_1^+ = 2800 \\ 4x_1 + 6x_2 \le 24 \end{cases}$$

$$x_1 - x_2 + d_2^- - d_2^+ = 0$$

$$x_1, x_2, d_1^-, d_1^+, d_2^-, d_2^+ \ge 0$$

。。。(10分)