



# 5G NTN AND 6G, STATUS AND PERSPECTIVES FOR NTN AT THE 3GPP

© 2023 Thales Alenia Space All rights reserved

Flavien Ronteix-Jacquet Thales Alenia Space, Toulouse.



### Content



/// Overview of 3GPP activities on Non-Terrestrial Networks (NTN)

/// Technical insights

/// Roadmap and 3GPP 6G activities



THALES ALENIA SPACE OPEN

### Overview of 3GPP activities on NTN

study phase



- > Initial Study item on NR to support Non-Terrestrial Networks
- > The TSG RAN and RAN WG1 findings and outcome: TR 38.811





- 2018
- > Study a set of necessary features and adaptations enabling the operation of NR protocol in NTN
- With a priority on satellite access
- > Outcome : TR 38.821













2025 --- 06-2027

- > 5GA: Further enhancements on NTN: GNSS resilient operation
- > 6GR: Harmonized TN & NTN
- > Work started in 3Q25

### Overview of 3GPP activities on NTN

#### **RAN1: Physical layer**

- Timing relationship (Timing Advance)
- UL time and frequency synchronization (Doppler shift)
- Enhancements on HARQ
- Polarization signaling for VSAT/ESIM
- Uplink capacity enhancements (OCC)
- Uplink coverage enhancements (repetitions)
- Downlink coverage enhancements (beam-hoping support)

#### RAN2: Higher layers

- User Plane: extended latency support for protocols (MAC, RLC, PDCP)
- HARQ disabling and 32 HARQ processes
- NTN system information broadcast (SIB19, SIB25)
- Control Plane: Tracking Area Management UE Location Service
- Mobility aspects: feeder link switchover, RACH-less handover, location and time-based handover, Inter-RAT mobility support
- Discontinuous coverage (IoT)
- Geofencing for MBS broadcast and PWS

#### RAN3: Access network architecture

- Transparent and regenerative architectures
- Network Identity handling
- Registration Update and Paging Handling
- Cell Relation Handling (Mapped Cell ID)
- Feeder Link Switch-Over (NGSO)
- Aspects Related to Country-Specific Routing (AMF re-selection)
- OAM for NTN

#### **RAN4: RF & RRM performance**

- New bands
- L-, S-, Ka-, Ku bands
- TN/NTN coexistence
- Satellite Access Node, UE
- RRM: e.g. timing compensation (idle, connected mode), GNSS accuracy
- VSAT support

#### **SA2: System level**

- Mobility management with huge cell size
- UE location and support of regulated service: network verified UE location
- QoS class for satellite links
- · Impact of satellite backhauling
- Store-and-Forward (IoT)
- UE-Sat-UE communication (Mesh)

#### **CT1: Network protocols**

- PLMN (re)selection
- NAS timers
- NAS overhead reduction

NOTE: IoT NTN and NR NTN are treated separately and solutions might be different or specific to one technology or the other



### **Technical insights – Architecture**





Date: 01/10/2025

Ref: NTN days 2025, LAAS-CNRS (Toulouse)
Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION
© 2023 Thales Alenia Space All rights reserved



# Technical insights – Spectrum







THALES ALENIA SPACE OPEN

## Technical insights – Delay compensation







**Technical insights – Mobility** 





- /// Mobility mechanisms introduced for NTN
- Conditional Handover (Location or Time-based)
- RACH-less handover
- Feeder link switch over and satellite switch with re-sync (for transparent architecture)
- I TN-NTN mobility (redirection, cell (re-)selection, assistance information)



### 5G and IoT NTN in Rel-20



- /// GNSS-resilient operations
- /// Voice over GEO via IoT NTN access
- /// RAN4
- High Power UE IoT NTN
- Half-Duplex FDD for Ka/Ku-band VSAT
- DL intra-band intra-SAN CA
- /// LTE TN to NR NTN handover and remaining inter-RAT mobilities
- /// IP and Ethernet UE-Sat-UE communications





# 5G NTN, a near future reality?

| Deployment scenarios | Α                                                                          | В                                        | С       | D                | E                                                             | F                                    |  |
|----------------------|----------------------------------------------------------------------------|------------------------------------------|---------|------------------|---------------------------------------------------------------|--------------------------------------|--|
| Service              | IoT-NTN, Messaging & voice                                                 |                                          |         | Broadband        |                                                               |                                      |  |
| 3GPP NTN RAT         | IoT-NTN                                                                    | IoT-NTN                                  | IoT-NTN | NR-NTN           | NR-NTN                                                        | NR-NTN                               |  |
| Orbit                | GSO                                                                        | NGSO                                     | NGSO    | NGSO             | GSO                                                           | NGSO                                 |  |
| Duplex mode          | FDD                                                                        | FDD                                      | TDD     | FDD              | FDD                                                           | FDD                                  |  |
| Payload              | Transparent Transparent/Regenera                                           |                                          | ıtive   | Transparent      | Regenerative                                                  |                                      |  |
| Bands                | Below 7.125 GHz (e.g. L/S bands)                                           |                                          |         |                  | Above 10 GHz (e.g. Ku/Ka band)                                |                                      |  |
| Targeted devices     | IoT & Smartphones (D2D)                                                    |                                          |         | Smartphones      | Fiexed and Mobile VSAT                                        |                                      |  |
| Potential SNOs       | EchoStar<br>Viasat/Inmarsat<br>Ligado<br>TerreStar<br>Solutions<br>Thuraya | Sateliot<br>OQT<br>EchoStar<br>OmniSpace | Iridium | -Echostar, MSS-A | Hispasat<br>Intelsat, JSAT,<br>KTSAT, Ovzon<br>Eutelsat Group | SpaceRISE<br>Eutelsat Group<br>IRIS2 |  |

Earliest service opening for each scenario (and related 3GPP releases)

| 2024   | 2025      | 2026       | 2027      | 2028   | 2029 | 2030      | <u> </u> |
|--------|-----------|------------|-----------|--------|------|-----------|----------|
| A      | ▲B        | <b>▲</b> C | ▲E        | ▲D     |      | ▲F        | V        |
| Rel-17 | Rel-17/18 | Rel-19     | Rel-18/19 | Pol 17 | /10  | Rel-18/19 |          |



### Roadmap and 6G NTN 3GPP activities







### Firsts 3GPP outcomes



- /// SA1 use cases (see 3GPP TR 22.870)
- /// RAN/SA Study Item descriptions (see RP-252912 and SP-250806)
- /// RAN service requirements (see 3GPP TR 38.914)
- /// RAN1 first meeting in August and first technical agreements :
- "For harmonized 6GR design for TN and NTN, RAN1 studies to identify the technical aspects affected by NTN characteristics, as well as lessons learned from NR/IoT NTN"
- Waveform
  - "CP-OFDM and DFT-s-OFDM waveforms as defined in 5G NR are supported as the basis for 6GR for uplink"
  - "CP-OFDM waveform as defined in 5G NR is supported as the basis for 6GR for downlink"
- Bands from sub 6GHz to 52.6 GHz
- Modulation
  - "For 6GR DL, 5G NR uniform QPSK, 16QAM, 64QAM, 256QAM and 1024QAM are supported as basis for study for data channel"
  - "For 6GR UL, 5G NR uniform QPSK, 16QAM, 64QAM, and 256QAM are supported as basis for study for CP-0FDM for data channel"
  - "For 6GR UL, 5G NR pi/2 BPSK, uniform QPSK, 16QAM, 64QAM, and 256QAM are supported as basis for study for DFT-s-OFDM for data channel"
- Energy-efficiency
- AI/ML in 6GR interface



# END.



#### **Contact:**

Flavien Ronteix-Jacquet, PhD.

Thales Alenia Space
3GPP delegate RAN2/RAN3/SA2
flavien.ronteix-jacquet@thalesaleniaspace.com



# **3GPP** normative activities



| Releases                     | 15                                        | 16               | 17                                                     | 18                                                   |
|------------------------------|-------------------------------------------|------------------|--------------------------------------------------------|------------------------------------------------------|
| Completion date (Core part)  | June 2018                                 | Dec 2019         | June 2022                                              | June 2024                                            |
| Service requirements         | 5G NTN Use cases and service requirements |                  |                                                        |                                                      |
| System architecture          |                                           | Study key issues | Definition of the enables for the support of Satellite | -                                                    |
| Radio Access network aspects | Channel model for 0.5 –<br>100 GHz        | Study key issues | Support of NGSO/GSO, Earth fixed/moving beams,         | Verified UE location, UL coverage enh, mobility enh  |
| Targeted terminals           | -                                         | -                | Handheld/Smart phones (23 dBm)                         | Fixed VSAT for GSO/NGSO,<br>Mobile VSAT only for GSO |
| Frequency bands              | -                                         | -                | S, L bands in FDD mode                                 | Ka band in FDD mode                                  |

Date: 01/10/2025

Ref: NTN days 2025, LAAS-CNRS (Toulouse)
Template: 83230347-DOC-TAS-EN-011



# **3GPP** normative activities



| Releases                     | 19                                                                                         | 20                                                                                                                                                                                                                                                                                                          |
|------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Completion date (Core part)  | December 2025                                                                              |                                                                                                                                                                                                                                                                                                             |
| Service requirements         | Mesh connectivity                                                                          | <ul> <li>SA1 led Rel-20 SID 5G advanced:</li> <li>Emergency communication (text based via GEO)</li> <li>Multi orbit: need to identify potential use cases</li> <li>Resilient notification (previously robust notification alert): use case approved</li> <li>IMS call via GEO: use case approved</li> </ul> |
| System architecture          | SA2 led Rel-19 WID Sat-arch-ph3: Store and forward (S&F), UE-SAT-UE                        |                                                                                                                                                                                                                                                                                                             |
| Radio Access network aspects | DL coverage enh, broadcast, UL capacity enh,<br>4G TN/5G NTN mobility, Regen payload (gNB) | GNSS-resilient communications                                                                                                                                                                                                                                                                               |
| Targeted terminals           | RedCAP UE,<br>Other FR1-NTN UE types: HPUE<br>Other bands: Ku-band                         |                                                                                                                                                                                                                                                                                                             |
| Frequency bands              | Ku band in FDD mode, Extended L band for NR-NTN WID                                        |                                                                                                                                                                                                                                                                                                             |

Date: 01/10/2025

Ref: NTN days 2025, LAAS-CNRS (Toulouse)
Template: 83230347-DOC-TAS-EN-011



### **Technical insights - Terminals**





| class VS       | TN<br>SAT<br>pe | Type description                                                            |
|----------------|-----------------|-----------------------------------------------------------------------------|
| Fixed VSAT     | 1               | Fixed VSAT communicating with GSO and LEO with mechanical steering antenna. |
| 2              | 2               | Fixed VSAT communicating with GSO and LEO with electronic steering antenna. |
|                | 3               | Fixed VSAT communicating with LEO only with electronic steering antenna.    |
| Mobile<br>VSAT | 4               | Mobile VSAT communicating with GSO with mechanical steering antenna.        |
| 5              | 52              | Mobile VSAT communicating with GSO with electronic steering antenna.        |

NOTE 1: The NTN VSAT types are assuming NTN VSAT has only one antenna beam towards one satellite at a given time in this release.

NOTE 2: NTN VSAT may need power reduction to comply with OFF-axis EIRP requirement defined in clause 9.2.2. There is no requirement for the potential power reduction.



### What 6G would be?



# Improve user experience

Improve network capabilities

- Increasing data rate wrt 5G
- Increased reliability
- Coverage extension to light indoor/In car areas
- Increased Location accuracy/reliability
- Reduced Latency

- Terminal design adapted to installation/operational constraints (vehicles/Drones)
- · Automotive, public safety, transport (aeronautic, railway, road and maritime), utilities, media & entertainent, defence,

**6G NTN** 

**5G** NTN Resiliency

- Spectrum sharing NTN/TN and across orbit
- Environment footprint (energy saving)
- Reinforced security
- Capacity/connection density
- GNSS free operation
- Fast network deployment
- Sensing capability

Multi connectivity and mobility across orbit and with 5G-NTN

**Improve** support usage scenarios

**Interoperability** with 5G

6G will leverage and integrate 5G

Aim at a harmonized 6G Radio design for TN and NTN, including their integration.

