

Sommario

System Description	3
Functional requirements	3
Real time monitoring	3
Automated lighting control	
User interface	3
Data storage	3
Non-functional requirements	
Reliability	3
Scalability	3
System components	4
Sensors	
Smart lighting devices	4
Central Control System	4
Adaptation goals	4
Decision function	
User Interface	4
Data storage	4
Technologies	5

System Description

Smart Home Lighting System is designed to optimize energy usage and improve user experience in residential lighting. By leveraging a combination of sensors, data analytics, and automated control systems, this smart lighting system ensures that lighting conditions within the home are tailored to real-time environmental factors.

Functional requirements

Real time monitoring

The system continuously monitors environmental conditions through a network of sensors, including light sensors and motion sensors.

Automated lighting control

When the ambient light intensity falls below a certain threshold or motion is detected in a room, the system triggers smart lighting devices to adjust brightness levels or turn on/off accordingly.

User interface

The user interface provides real-time status updates, allows users to adjust lighting settings, offers energy consumption information, and influences the rule-based decision-making process.

Data storage

The system stores sensor data for further analysis and system configuration settings, such as light intensity thresholds.

Non-functional requirements

Reliability

The system must operate reliably under varying lighting conditions and user preferences.

Scalability

The system should be able to accommodate additional sensors or smart lighting devices as needed.

System components

Sensors

These are crucial for **monitoring** and gathering real-time data about light conditions. The main sensors are:

- Light intensity sensor
- Motion sensor

Smart lighting devices

Examples of lighting devices:

Smart bulbs

Central Control System

The Central Control System analyzes data from sensors and considers user preferences determine optimal lighting conditions. The system creates a plan based on rule-based decisions, adjusting lighting levels or turning lights on/off as needed.

Adaptation goals

Goal	Description	Evaluation metric
Adjust Lighting	Adjust lighting levels when	$((Li < Lit) \lor (Li > Lit)) \land Md$
	ambient light intensity falls	
	below or exceeds a certain	
	threshold and motion is	
	detected in the room.	
Turn off lights	Turn off lights when the	$Ld \lor \vdash Md$
	room is unoccupied or	
	when lights are disabled.	

- *Li*: Light intensity
- *Lit*: Light intensity threshold
- *Md*: Motion detected
- *Ld*: Lights disabled.

Decision function

The Smart Home Lighting System employs a rule-based decision-making approach to determine optimal lighting conditions. The decision logic is governed by predefined rules that consider environmental conditions and user preferences.

User Interface

The user interface allows users to monitor the system's status, adjust lighting settings, and view energy consumption reports.

Data storage

The data collected by sensors and system configuration settings are stored in a database.

Technologies

The system will be developed with the following technologies:

- MQTT: as communication protocol.
- Mosquitto: to collect real-time data from sensors and communication between the central control system, devices, and actuators.
- Paho MQTT
- InfluxDB: for storing historical sensor data.
- Grafana: for visualizing system performance and historical data.
- Docker: for containerizing the application.
- Git: for version control.
- Express.js: for the implementation of the backend.
- MongoDB: store system configuration settings.
- NodeRED: for the implementation of the dashboard and storing sensor and actuator data on Influxdb.
- Node.js: for the simulation of the sensors and actuators.