

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задание 2_1_2 »

С тудент группы	ИКБО-13-21	Дамарад Д.В.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Постановка задачи
Метод решения
Описание алгоритма
Блок-схема алгоритма
Код программы
Тестирование
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

введение

Постановка задачи

Создать объект «треугольник», который содержит длины сторон треугольника. Длины сторон определяются в момент конструирования объекта.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления периметра;
- метод вычисления площади.

Написать программу, которая создает объект «треугольник», вводит стороны треугольника и выводит периметр и площадь.

Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Описание выходных данных

Первая		строка:	
P	=	«периметр»	

Вторая строка:

S = «площадь»

Метод решения

Для решения поставленной задачи используется:

- Объекты стандартного потокового ввода вывода cin, cout. Исполбзуются для вывода на экран.
- Стандартная функция sqrt()-извлечение корня.
- Объект obj класса triangle

Класс triangle:

- Поля отвечающие за стороны треугольника:
 - Наименование a, b, c.
 - Тип данных Целочисленные.
 - Модификатор доступа private
- Методы:
 - Метод triangle:
 - Функционал конструктор, принимающий параметры a, b, c.
 - Метод Р:
 - Функционал вычисление периметра треугольника.
 - Метод S:
 - Функционал вычисление площади треугольника.

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Без параметров

Возвращаемое значение: Целочисленный тип данных - код возврата

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленных переменных x,y,z	2	
2		Считывание с клавиатуры значений х,у,z	3	
3		Создание нового объекта obj класса triangle и последущее конструирование путем вызова параметризированого конструктора triangle и передача в него значения переменных х,у,z	4	
4		Вывод на экран "P = "+ результат вызова метода P() объекта obj	5	
5		Вывод на экран перехода на новую строку+"S = "+ результат вызова метода P() объекта obj	Ø	

Класс объекта: triangle

Модификатор доступа: public

Метод: triangle

Функционал: Параметризированный конструктор класса triangle

Параметры: Целочисленные переменные А,В,С - длины сторон треугольника

Возвращаемое значение: Отсутствует

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода triangle класса triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инициализация поля а, объекта класса triangle, принимающего значение параметра А	2	
2		Инициализация поля b, объекта класса triangle, принимающего значение параметра В	3	
3		Инициализация поля с, объекта класса triangle, принимающего значение параметра С	Ø	

Класс объекта: triangle

Модификатор доступа: public

Метод: Р

Функционал: Вычисление периметра треугольника

Параметры: Отсутсвуют

Возвращаемое значение: Целочисленное значение - сумма длин сторон

треугольника

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Р класса triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат суммы значений полей a,b,c объекта класса triangle	Ø	

Класс объекта: triangle

Модификатор доступа: public

Метод: S

Функционал: Вычисление площади треугольника

Параметры: Отсутсвуют

Возвращаемое значение: Вещественное значение с двойной точностью - площадь треугольника

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода S класса triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление вещественной переменной с двойной точностью с инициализацией p=(a+b+c)/2.0	2	
2		Возрат вещественного квадратного корня с двойной точностью из (p*(p-a)*(pb)*(p-c))	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл main.cpp

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "triangle.h"
using namespace std;
int main()
{
    int x,y,z;
    cin>>x>>y>>z;
    triangle obj(x,y,z);
    cout<<"P = "<<obj.P();
    cout<<endl<<"S = "<<obj.S();
    return 0;
}</pre>
```

Файл triangle.cpp

Файл triangle.h

```
#ifndef TRIANGLE_H
#define TRIANGLE_H
class triangle{
private:
    int a,b,c;
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
1 1 1	P = 3 S = 0.433013	P = 3 S = 0.433013
3 4 5	P = 12 S = 6	P = 12 S = 6
6 4 5	P = 15 S = 9.92157	P = 15 S = 9.92157

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).