Problem 4.5

mixture of Poisson distribution

$$P(X=K|\theta) = \sum_{j=1}^{k} \pi_j \frac{1}{k!} e^{-\lambda_j} \lambda_j^k$$

$$p(X,Z|\pi,\lambda) = \prod_{i=1}^{N} \prod_{j=1}^{K} (\pi_{j} \frac{1}{x_{i}!} e^{-\lambda_{j}} \lambda_{j}^{x_{i}})^{z_{i}j}$$

$$lnp(X,Z|\pi,\lambda) = \sum_{i=1}^{N} \sum_{j=1}^{K} \left[z_{ij} \left(ln\pi_{j} - ln(x_{i}!) - \lambda_{j} + x_{i} ln\lambda_{j} \right) \right]$$

$$E[Z_{ij}] = \frac{\pi_{ij} \frac{1}{x_{i!}} e^{-\lambda_{ij}} \chi_{i}^{x_{i!}}}{\sum_{i=1}^{k} \pi_{ij} \frac{1}{x_{i!}} e^{-\lambda_{ij}} \chi_{i}^{x_{i!}}} = \gamma(Z_{ij})$$

$$L = E_{z} \left[\ln P(x, z | \tau, \lambda) \right] = \sum_{i=1}^{N} \sum_{j=1}^{K} \left[r(z_{ij}) \left(\ln \tau_{ij} - \ln(x_{i}!) - \lambda_{j} + x_{i} \ln \lambda_{j} \right) \right]$$

for
$$\lambda_j$$
: $\frac{\partial t}{\partial \lambda_j} = \sum_{i=1}^{N} \left[\Upsilon(\lambda_{ij}) \left(-| + \frac{\chi_i}{\lambda_j} \right) \right] = 0$

$$- \sum_{i=1}^{N} \Upsilon(\lambda_{ij}) + \frac{\sum_{i=1}^{N} \Upsilon(\lambda_{ij}) \chi_i}{\lambda_j} = 0$$

$$\lambda_j = \frac{\sum_{i=1}^{N} \Gamma(\lambda_{ij}) \chi_i}{\sum_{i=1}^{N} \Gamma(\lambda_{ij})}$$

$$\lambda_{j} = \frac{\sum_{i=1}^{N} r(z_{ij})^{i}}{\sum_{i=1}^{N} r(z_{ij})^{i}}$$

for
$$T_j$$
: $\alpha rg max l$

$$S:t. \stackrel{\times}{\underset{j=1}{\sum}} \pi_j = 1$$

$$L = l + \alpha (\stackrel{\times}{\underset{j=1}{\sum}} \pi_j - 1) = \stackrel{N}{\underset{j=1}{\sum}} [r(2ij) (lnT_j - ln(Xi!) - \lambda_j + x_i ln \lambda_j)] + \alpha (\stackrel{\times}{\underset{j=1}{\sum}} \pi_j - 1)$$

$$\frac{\partial l}{\partial \alpha} = \stackrel{\times}{\underset{j=1}{\sum}} \pi_j - 1 = 0 \implies \stackrel{\times}{\underset{j=1}{\sum}} \pi_j = 1$$

$$\frac{\partial L}{\partial \Omega} = \sum_{j=1}^{K} T_{ij} - | = 0 \implies \sum_{j=1}^{K} T_{ij} = |$$

$$\frac{\partial L}{\partial \Omega} = \sum_{j=1}^{K} T_{ij} - | = 0 \implies \sum_{j=1}^{K} T_{ij} = |$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{K} T_{ij} - | = 0 \implies \sum_{j=1}^{K} T_{ij} = |$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{K} \gamma(2ij) \frac{1}{T_{ij}} + \alpha = 0 \implies T_{ij} = \frac{\sum_{j=1}^{K} \gamma(2ij)}{-\alpha}$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{K} \gamma(2ij) \frac{1}{T_{ij}} + \alpha = 0 \implies T_{ij} = \frac{\sum_{j=1}^{K} \gamma(2ij)}{-\alpha}$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{K} \gamma(2ij) \frac{1}{T_{ij}} + \alpha = 0 \implies T_{ij} = \frac{\sum_{j=1}^{K} \gamma(2ij)}{-\alpha}$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{K} \gamma(2ij) \frac{1}{T_{ij}} + \alpha = 0 \implies T_{ij} = \frac{\sum_{j=1}^{K} \gamma(2ij)}{-\alpha}$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{N} T_{ij} - 1 = 0 \implies \sum_{j=1}^{N} T_{ij} = 1$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{N} T_{ij} - 1 = 0 \implies \sum_{j=1}^{N} T_{ij} = 1$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{N} T_{ij} - 1 = 0 \implies \sum_{j=1}^{N} T_{ij} = \sum_{j=1}^{N} T_{ij} = 1$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{N} T_{ij} - 1 = 0 \implies \sum_{j=1}^{N} T_{ij} = 1$$

$$\frac{\partial L}{\partial \alpha} = \sum_{j=1}^{N} T_{ij} = 1$$

$$-\alpha = \sum_{j=1}^{N} T_{ij} = 1$$

$$\sum_{j=1}^{N} T_{ij} = \sum_{j=1}^{N} T_{ij} = 1$$

$$\sum_{j=1}^{N} T_{ij} = \sum_{j=1}^{N} T_{ij} = 1$$

$$\sum_{j=1}^{N} T_{ij} = \sum_{j=1}^{N} T_{ij} = 1$$

0 K=1	, it's the same wi	th nomal Poissons distribution
@ K>2	, write a matlab	program
	after 500 iteration	
London)		
K	λ	π
	0.929	<u> </u>
2	[0.919, 1.072]	[0.936,0.064]
3	[0.926, 1.088, 1.088]	[0.98,0.005,2015]
4	[0.916, 1.67, 1.9], [.06]]	[0.91], 0. 0]2, 0.00], 0.004]
ţ	[0.894, [8], [8], [8], [8]]	[6758, 0.140, 0.06] 0.059,0.02]
2.8		
2.6	0.0000000000000000000000000000000000000	Conclusions: we can see that
2.2	convergence	there is one biggest Tik, so we can
2 -		suggest there is a specific targeting of area.
1.8		suggest willers a specific tangening of accu-
1.4		
1.2		
0 200	400 600 800 1000 1200	
Antwerp	< λ	75
	• • •	π
-	0.896	form all
	2 [2,195, 0.230]	
_	2.195,2.195,039	
L	F [2.3]4, 0.565, 0.565, 0]	[02]8,024,0214,02]

[2.3]4, 0.525, 0.525, 0] [0.2]8, 0.24, 0.2]4, 0.2]2]

[2 195, 2195, 2195, 2195, 228] [0.61, 0.086, 0.0H, 0.08, 0.66]