Семинар 3. Реактивное движение. Динамика систем.

Клименок Кирилл Леонидович

15.09.2022

1 Теоретическая часть

1.1 Реактивное движение. Уравнение Мещерского.

Как мы и говорили в прошлый раз: если на систему не действуют внешние силы, то оказывается, что система не может изменить свой суммарный импульс. А иногда очень хочется это сделать, хотя и не понятно как именно. Но обойти это можно, если мы попытаемся изменить массу нашей системы. На этом подходе и основано все реактивное движение.

Давайте выведем как же у нас будет выглядеть уравнение движения тела с переменной массой. Для этого введем следующее обозначение: dm = m(t+dt) - m(t) — изменение массы исследуемого тела (обычно ракеты), $\mu = -dm/dt$ — расход топлива, v_f — скорость топлива относительной лабораторной системе отсчета. Теперь запишем 2 закон Ньютона в ЛСО для случая, когда у нас наш корабль избавился от некоторой массы топлива:

$$(m+dm)(\vec{v}+d\vec{v}) + dm\vec{v}_f - m\vec{v} = \vec{F}_e dt$$

$$m\frac{d\vec{v}}{dt} = \frac{dm}{dt}(\vec{v}_f - \vec{v}) + \vec{F}_e$$

$$m\frac{d\vec{v}}{dt} = -\mu\vec{u} + \vec{F}_e$$

Здесь мы ввели относительную скорость истечения топлива \vec{u} (относительно ракеты) и не запутались со знаками, так как если мы расходуем топливо, то знак должен быть минус, а если вдруг наоборот набираем массу, то плюс. Также здесь использована идея, что произведение 2 малых изменений — это малая более высокого порядка и на нее можно забить.

На примерах задач мы разберемся более подробно, как это использовать.

1.2 Система центра инерции

Это просто напоминание о том, что такое СЦИ из прошлого семинара. Все максимально просто: если у нас есть какая-то система из массивных точек, то система, где их суммарный импульс равен нулю и будет системой центра инерции. Тогда ее скорость:

$$\vec{V}_c = \frac{\sum m_i \vec{v}_i}{\sum m_i}$$

Теперь давайте покажем, что если на систему действую несколько силы, то только внешние силы и определяют как меняется импульс центр инерции всей системы.

Рис. 1: Внутренние и внешние силы, действующие на систему из нескольких тел

Запишем, что происходит с импульсом каждой конкретной точки в системе, а потом сложи все воедино:

$$\begin{cases} \frac{d\vec{p}_{1}}{dt} = \vec{F}_{1,e} + \vec{F}_{12} + \vec{F}_{13} \\ \frac{d\vec{p}_{2}}{dt} = \vec{F}_{2,e} + \vec{F}_{21} + \vec{F}_{23} \\ \frac{d\vec{p}_{3}}{dt} = \vec{F}_{3,e} + \vec{F}_{31} + \vec{F}_{32} \end{cases}$$
$$\frac{d(\vec{p}_{1} + \vec{p}_{2} + \vec{p}_{3})}{dt} = \vec{F}_{1,e} + \vec{F}_{2,e} + \vec{F}_{3,e}$$
$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{e}$$

То есть суммарный импульс системы оказывается изменяется только за счет внешних сил. Этот принципиальный факт и понадобится нам для разных задачек.

2 Практическая часть

2.1 Задача 3.11

Условие По горизонтальным рельсам без трения движутся параллельно две тележки с дворниками. На тележки падает μ [г/с] снега. В момент времени t=0 массы тележек равны m_0 , а скорости — v_0 . Начиная с момента t=0, один из дворников начинает сметать с тележки снег, так что масса ее в дальнейшем останется постоянной. Снег сметается в направлении, перпендикулярном движению тележки. Определить скорости тележек. Какая тележка будет двигаться быстрее? Почему?

Решение В случае, когда снег сбрасывается перпендикулярно рельсам, продольный импульс системы «снег-тележка» сохраняется, равно как сохраняется и масса тележки. Тогда можно записать закон сохранения импульса вдоль направления движения :

$$m_0 v = m_0(v + dv) + \mu dt(v + dv)$$

$$m_0 dv = -v\mu dt$$

$$\frac{dv}{v} = -\frac{\mu}{m_0} dt \Rightarrow \int_{v_0}^{v(t)} \frac{dv}{v} = -\frac{\mu}{m_0} \int_0^t dt$$

$$v_1(t) = v_0 \exp\left(-\frac{\mu t}{m_0}\right)$$

В случае, когда снег с тележки не сбрасывается, масса её увеличивается по линейному закону $m=m_0+\mu t$, а импульс вдоль рельсов сохраняется:

$$m_0 v = (m_0 + \mu t)v(t)$$

 $v_2(t) = \frac{v_0}{1 + \mu t/m_0}$

И чтобы ответить на вопрос задачи, достаточно найти отношение этих скоростей:

$$\frac{v_1}{v_2} = \exp\left(-\frac{\mu t}{m_0}\right) (1 + \mu t/m_0)$$

Если же аккуратно построить графики скоростей в один осях, то можно увидеть, что в случае смахивания, скорость падает быстрее, так как со снегом уносится и часть импульса тележки.

2.2 Задача 3.43

Условие Космический корабль, движущийся в пространстве, свободном от поля тяготения, должен изменить направление своего движения на противоположное, сохранив скорость по величине. Для этого предлагаются два способа:1) сначала затормозить корабль, а затем разогнать его до прежней скорости; 2) повернуть, заставив корабль двигаться по дуге окружности, сообщая ему ускорение в поперечном направлении. В каком из этих двух случаев потребуется меньшая затрата топлива? Скорость истечения газов относительно корабля считать постоянной и одинаковой в обоих случаях.

Решение В первом варианте мы тормозим и разгоняемся обратно, имея постоянную скорость u истечения газов относительно корабля. Так как пространство свободно, то мы можем просто записать уравнение Мещерского и проинтегрировать его:

$$mdv = -udm \Rightarrow \frac{dm}{m} = -\frac{du}{u} \Rightarrow \int_{m_0}^{m} \frac{dm}{m} = \int_{v_0}^{-v_0} -\frac{dv}{u}$$
$$\ln \frac{m}{m_0} = -\frac{2v_0}{u} \Rightarrow m = m_0 \exp\left(-\frac{2v_0}{u}\right)$$

Во втором случае (разворот по дуге окружности), реактивная сила сообщает кораблю центростремительное ускорение (предполагается, что скорость корабля остаётся неизменной по величине, так как двигатель развёрнут в поперечном направлении):

$$m\frac{v^2}{R} = -u\frac{dm}{dt} \Rightarrow \frac{v^2}{R}dt = -u\frac{dm}{m}$$
$$\frac{v^2}{R} \int_0^{\pi R/v} dt = -u \int_{m_0}^m \frac{dm}{m}$$
$$\ln \frac{m}{m_0} = -\frac{\pi v_0}{u} \Rightarrow m = m_0 \exp\left(-\frac{\pi v_0}{u}\right)$$

Из обеих зависимостей видно, что топливо тратится быстрее во втором случае.

2.3 Задача 3.27

Условие По какому закону должен изменяться расход топлива $\mu(t)$, чтобы в поле тяжести с постоянным g ракета двигалась вертикально вверх с постоянным ускорением a? Скорость истечения газовой струи относительно ракеты постоянна и равна u.

Решение В этой задаче надо просто написать уравнение Мещерского с учетом постоянного ускорения и постоянной внешней силы:

$$ma = -mg - u\frac{dm}{dt} \Rightarrow dt = -\frac{u}{a+g}\frac{dm}{m}$$
$$\int_{0}^{t} dt = -\frac{u}{a+g}\int_{m_{0}}^{m} \frac{dm}{m}$$
$$m = m_{0} \exp\left(-\frac{(a+g)t}{u}\right)$$

Но нам надо найти расход, а не зависимость ракеты от массы. Тогда:

$$\mu(t) = -\frac{dm}{dt} = \frac{m_0(a+g)}{u} \exp\left(-\frac{(a+g)t}{u}\right)$$

2.4 Задача 4.25

Условие На дне маленькой пробирки, подвешенной над столом на нити, сидит муха, масса которой равна массе пробирки, а расстояние от дна до поверхности стола равно длине пробирки L. Нить пережигают, и за время падения муха перелетает со дна в самый верхний конец пробирки. Определить время, по истечении которого нижний конец пробирки стукнется о стол.

Рис. 2: К задаче 4.25

Решение Центр масс в начале падения пробирки находится на расстоянии L/4 от дна пробирки, а в конце падения пробирки — на расстоянии L/4 от её верхнего конца. В результате смещение центра масс системы «муха-пробирка» составило L/2. При этом согласно теореме о движении центра масс последний падал с ускорением свободного падения. Таким образом, получаем пройденное центром масс расстояние:

$$\frac{L}{2} = \frac{gt^2}{2} \Rightarrow t = \sqrt{\frac{L}{g}}$$

2.5 Задача 4.55

Условие Кусок однородного каната висит вертикально, причем нижний конец каната доходит до горизонтального стола. Показать, что если верхний конец каната освободить, то в любой момент падения каната сила его давления на стол будет в три раза больше веса части каната, уже лежащей на столе.

Решение Дополнительное давление на стол (сверх веса части каната, уже лежащей на столе) вызвано потерей импульса падающими элементами каната при их ударе о стол. Пусть за элемент времени dt на стол падает элемент каната с массой $dm = \mu dx$, где μ — масса, приходящаяся на единицу длины каната, а dx — элемент длины каната. Сила, действующая со стороны этого элемента на стол будет:

$$\Delta F = v \frac{dm}{dt} = v \mu \frac{dx}{dt} = \mu v^2$$

где v — скорость, с которой элемент dm достигнет стола. Но, как нетрудно заметить, $v^2=2gx$, где x — длина части каната, лежащей на столе. Отсюда $\Delta F=2\mu gx$. Таким образом, полная сила, действующая на стол, будет равна $3\mu qx$.

2.6 Комментарии к задачам из задания

Нулевки В задаче про ракету надо просто аккуратно записать уравнение Мещерского, а в задаче со стержнем — закон движения центра масс системы

Задача 3.11 Решена

Задача 3.41 Тут 2 процесса происходят одновременно: налипание пыли и расход топлива. Оба надо учесть в уравнении Мещерского

Задача 3.43 Решена

Задача 3.60 Найдите ускорение от времени для взлетающей ракеты и проинтегрируйте, чтобы найти максимальную высоту

Задача 4.10 Простой закон сохранения импульса

Задача 4.13 Задача решена в задачнике

Задача 4.25 Решена

Задача 4.54 Используя 4.55 надо просто понять, что и откуда до куда интегрировать.

Задача 4.55 Решена

Задача T1 Это хорошая сложна задача на подумать. Попробуйте обобщить задачу с мухой 4.25 на этот случай через 2 закон Ньютона для системы «аэростат-человек», а дальше поймите, что за скорости у вас там стоят, как они связаны и как надо интегрировать