SVD Factorization for Tall-and-Fat Matrices on Map/Reduce Architectures

Burak Bayramlı

October 15, 2013

Abstract

We demonstrate an implementation for an approximate rank-k SVD factorization, combining well-known randomized projection techniques with previously implemented map/reduce solutions in order to compute steps of the random projection based SVD procedure, such QR and SVD. We structure the problem in a way that it reduces to Cholesky and SVD factorizations on $k\times k$ matrices computed on a single machine, greatly easing the computability of the problem.

1 Introduction

(intro)

[I] presents many excellent techniques for utilizing map/reduce architectures to compute QR and SVD for the so-called tall-and-skinny matrices. QR factorization is turned into an A^TA computation problem to be computed in parallel using map/reduce, and its key element the Cholesky decomposition, can be performed on a single machine. Let's use $C = A^TA$ and, since

$$C = A^T A = (QR)^T (QR) = R^T Q^T QR = R^T R$$

and because Cholesky factorization of an $n \times n$ symmetric positive definite matrix is

$$C = II^T$$

where L is an $n \times n$ lower triangular matrix, and R is upper triangular, we can conclude if we factorize C into L and L^T , this implies $C = LL^T = RR^T$, we have a method of calculating R of QR using Cholesky factorization on A^TA . The key observation here is A^TA computation results an $n \times n$ matrix and if A is "skinny" then n is relatively small (in the thousands), then Cholesky decomposition can be executed on a small $n \times n$ matrix on a single computer utilizing an already available function in a scientific computing library. Q is computed simply as $Q = AR^{-1}$. This again is relatively cheap because R is $n \times n$, the inverse is computed locally, matrix multiplication with A can be performed through map/reduce.

SVD is an additional step. SVD decomposition is

$$A = U\Sigma V^{T}$$

If we expand it with A = QR

$$QR = U\Sigma V^T$$

$$R = Q^T U \Sigma V^T$$

Let's call
$$\tilde{U} = Q^T U$$

$$R = \tilde{U}\Sigma V^T$$

This means if we run a local SVD on R (we just calculated above with Cholesky) which is an $n \times n$ matrix, we will have calculated \tilde{U} , the real Σ , and real V^T .

Now we have a map/reduce way of calculating QR and SVD on $\mathfrak{m} \times \mathfrak{n}$ matrices where \mathfrak{n} is small.

1.1 Approximate rank-k SVD

Switching gears, we look at another method for calculating SVD. The motivation is while computing SVD, if n is large, creating a "fat" matrix which might have columns in the billions would require reducing the dimensionality of the problem. According to [2], one way to achieve is through random projection. First we draw an $n \times k$ Gaussian random matrix Ω . Then we calculate

$$Y = A\Omega$$

We perform QR decomposition on Y

$$Y = QR$$

Then form $k \times n$ matrix

$$B = Q^{\mathsf{T}} A(bt)$$

Then we can calculate SVD on this small matrix

$$B = \hat{U}\Sigma V^T$$

Then form the matrix

$$U = Q\hat{U}$$

The main idea is based on

$$A = QQ^{T}A$$

if replace Q which comes from random projection Y,

$$A\approx \tilde{Q}\tilde{Q}^\mathsf{T}A$$

Q and R of the projection are close to that of A. In the multiplication above R is called B where $B = \tilde{Q}^T A$, and,

$$A \approx \tilde{Q}B$$

then, as in [1], we can take SVD of B and apply the same transition rules to obtain an approximate U of A.

This approximation works because of the fact that projecting points to a random subspace preserves distances between points, or in detail, projecting the n-point subset onto a random subspace of $O(\log n/\epsilon^2)$ dimensions only changes the interpoint distances by $(1 \pm \epsilon)$ with positive probability [3]. It is also said that Y is a good representation of the span of A.

1.2 Combining Both Methods

Our idea was using approximate k-rank SVD calculation steps where k << n, and using map/reduce based QR and SVD methods to implement those steps. By utilizing random projection, we would be able to work in a smaller dimension which would translate to local Cholesky, and SVD calls on $k \times k$ matrices that can be performed in a speedy manner. Below we outline each map/reduce job.

```
random_projection_map(A)

1 Tokenize value and pick out id value pairs

2 result = zeros(1,k)

3 for each j<sup>th</sup> token ∈ value

4 Initialize seed with j

5 j = generate k random numbers

6 result = result + r · token[j]

7 emit key, result
```

Reduce is a no-op.

Each value of A will arrive to the algorithm as a key and value pair. Key is line number or other identifier per row of A. Value is a collection of id value pairs where id is column id this time, and value is the value for that column. Sparsity is handled through this format, if an id for a column does not appear in a row of A, it is assumed to be zero. The resulting Y matrix has dimensions $\mathfrak{m} \times k$.

```
A^{\mathsf{T}}A \texttt{cholesky\_job\_map}(\texttt{key k, value a}) \\ \mathbf{1} \qquad \texttt{for i, row in enumeratea}^{\mathsf{T}} \mathbf{a} \\ \mathbf{2} \qquad \texttt{emit i, row} \\ \\ \\ \qquad \qquad \texttt{cholesky\_job\_reduce}(\texttt{key, value}) \\ \mathbf{1} \qquad \texttt{emit k, sum}(v_{j}^{k}) \\ \\ \\ \end{aligned}
```

The <code>cholesky_job_final_local_reduce</code> step is a function provided in most map/reduce frameworks, it is a central point that collects the output of all reducers, naturally a single machine which makes it ideal to execute the final Cholesky call on by now a very small $(k \times k)$ matrix. The output is R.

References

- [1] Gleich, Benson, Demmel, Direct QR factorizations for tall-and-skinny matrices in MapReduce architectures, arXiv:1301.1071 [cs.DC], 2013
- [2] N. Halko, Randomized methods for computing low-rank approximations of matrices, University of Colorado, Boulder, 2010
- [3] S. Dangupta, A. Gupta *An Elementary Proof of a Theorem of Johnson and Lindenstrauss*, Wiley Periodicals, 2002

cholesky_job_final_local_reduce(key,value)

- $1 \qquad result = \texttt{cholesky}(A_{\texttt{sum}})$
- 2 emit result

- Q_job_map(key, value)
- During initialization $R_{inv} = R^{-1}$, store it once for each mapper
- 2 for row in Y
- 3 emit key, $row \cdot R_{inv}$

[4] M. Kurucz, A. A. Benczúr, K. Csalogány, Methods for large scale SVD with missing values, ACM, 2007

- [5] B. Bayramli, Sasha Framework, git@github.com:burakbayramli/sasha.git Github, 2013
- [6] B. Bayramli, Map/Reduce Code for Netflix SVD Analysis, http://github.com/burakbayramli/classnotes/tree/master/stat/stat_mr_rnd_svd/sasha, Github, 2013