Ajuste de Curva: Método dos Mínimos Quadrados

Disciplina: Cálculo Numérico

Profa: Dayanne

dayanne.coelho@prof.unibh.br

Motivação

Qual a curva mais adequada para os pontos da tabela?

Motivação

Interpolação:

os dados são muito precisos e, assim, o ajuste de curvas deve passar diretamente por cada um dos pontos.

Ajuste de curva:

os dados exibem um grau significativo de erro ou "ruído". A curva ajustada representa a tendência geral dos dados.

Ajuste de Curva

- Em aulas anteriores vimos que Interpolação Polinomial é uma forma de ser trabalhar com funções definidas a partir de uma tabela de valores.
- Em algumas situações não é aconselhável o uso de interpolação, como por exemplos em problemas que:
 - se deseja obter um valor aproximado da função em algum ponto fora do intervalo da tabela.
 - os valores tabelados são resultados de experimentos físicos, e podem conter erros inerentes, que, em geral, não são previsíveis.

Exemplo 1:

- Tabela com os pontos de um processo químico.
- x = temperatura da reação.
- y = produção.
- 25 medições em diferentes níveis de temperatura do processo.

Observation	Temperature	Yield
Number	(x_i)	(y _i)
1	50	122
2	53	118
3	54	128
4	55	121
5	56	125
6	59	136
7	62	144
8	65	142
9	67	149
10	71	161
11	72	167
12	74	168
13	75	162
14	76	171
15	79	175
16	80	182
17	82	180
18	85	183
19	87	188
20	90	200
21	93	194
22	94	206
23	95	207
24	97	210
25	100	219

Exemplo 1: gráfico dos 25 pontos

- A relação entre x e y não pode ser dada por uma reta perfeita.
- Mas podemos ver que existe uma reta $\alpha + \beta x$ subjacente tal que $y \approx \alpha + \beta x$
- Como obter esta reta?

- A relação entre x e y não pode ser dada por uma reta perfeita.
- Mas podemos ver que existe uma reta $\alpha + \beta x$ subjacente tal que $y \approx \alpha + \beta x$
- Como obter esta reta?

Exemplo 2: número de mortes y versus idade x.

Ajuste de Curvas

- Nestes casos é necessário ajustar as funções tabeladas a uma função que seja uma "boa aproximação" para ela e que nos permita "'extrapolar" com certa margem de segurança.
- O objetivo do processo de ajuste de curva é aproximar uma função f(x) por outra $\varphi(x)$, escolhida de uma família de funções ou por uma soma de funções em duas situações distintas.

Ajuste de Curvas

Caso Discreto:

f(x) é dada por uma tabela de valores.

Caso Contínuo:

f(x) é dada por sua forma analítica.

• Dado um conjunto de *k* + 1 pontos distintos:

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	 Xn
$f(x_1)$	$f(x_2)$	$f(x_3)$	 $f(x_n)$

• O problema do ajuste de curvas consiste em determinar uma função $\varphi(x)$, tal que o desvio em cada ponto k, definido por:

$$d_k = f(x_k) - \varphi(x)$$

seja mínimo.

• $\varphi(x)$ é uma combinação linear de funções contínuas $g_i(x)$ escolhidas conforme os dados do problema.

•
$$\varphi(x)$$
 é dado por: $\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + ... + \alpha_n g_n$ chiriro Universitàri de Belo Horizonte

- As funções $g_i(x)$ podem não ser lineares, como por exemplo, $g_1(x) = x^2$, $g_2(x) = e^x$, $g_3(x) = 1$, $g_4(x) = (1 + x)^2$, $g_5(x) = sen(x)$, etc.
- Este modelo matemático é linear, pois os coeficientes a ser determinados aparecem linearmente.

- As funções $g_i(x)$ podem não ser lineares, como por exemplo, $g_1(x) = x^2$, $g_2(x) = e^x$, $g_3(x) = 1$, $g_4(x) = (1+x)^2$, $g_5(x) = sen(x)$, etc.
- Este modelo matemático é linear, pois os coeficientes a ser determinados aparecem linearmente.

Como escolher as funções contínuas $g_i(x)$?

- As funções $g_i(x)$ podem não ser lineares, como por exemplo, $g_1(x)=x^2$, $g_2(x)=e^x$, $g_3(x)=1$, $g_4(x)=(1+x)^2$, $g_5(x)=sen(x)$, etc.
- Este modelo matemático é linear, pois os coeficientes a ser determinados aparecem linearmente.

Como escolher as funções contínuas $g_i(x)$?

A escolha destas funções pode ser feita observando o **DIAGRAMA DE DISPERSÃO** ou baseados em fundamentos teóricos do experimento.

Exemplo:

Seja a tabela de pontos:

		- 0.75									
f(x)	2.05	1.153	0.45	0.4	0.5	0	0.2	0.6	0.512	1.2	2.05

Exemplo:

Seja a tabela de pontos:

x	-1.0	- 0.75	- 0.6	- 0.5	- 0.3	0	0.2	0.4	0.5	0.7	1.0
f(x)	2.05	1.153	0.45	0.4	0.5	0	0.2	0.6	0.512	1.2	2.05

O diagrama de dispersão é dado por:

Exemplo:

- O diagrama se assemelha a uma parábola.
- A escolha das funções pode ser dada por: $g_1(x) = 1$, $g_2(x) = x$ e $g_3(x) = x^2$.
- Pois escrevendo $\varphi(x)$ como combinação de g_1, g_2 e g_3 temos: $\varphi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \alpha_3 g_3(x)$
- Logo temos que $\varphi(x)$ representa "todas" as parábolas possíveis, e com a escolha adequada de *alpha*; teremos a melhor função que se ajusta aos pontos.

Método dos Mínimos Quadrados

• Este método consiste em determinar os α_i de tal forma que a soma dos quadrados dos desvios seja mínimo. Ou seja, o método consiste em determinar os α_i que minimizem a função:

$$F = \sum_{k=1}^{n} \left[f(x_k) - \varphi(x_k) \right]^2$$

ou seja:

$$\frac{\partial F}{\partial \alpha_i}\big|_{\alpha_1,\alpha_2,\dots,\alpha_n}=0$$

Método dos Mínimos Quadrados

• Que representa o seguinte sistema linear $n \times n$:

$$\left[\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{1}(x_{k}) \right] \cdot a_{1} + \dots + \left[\sum_{k=1}^{m} g_{1}(x_{k}) \cdot g_{n}(x_{k}) \right] \cdot a_{n} = \sum_{k=1}^{m} g_{1}(x_{k}) \cdot f(x_{k}) \\
\left[\sum_{k=1}^{m} g_{2}(x_{k}) \cdot g_{1}(x_{k}) \right] \cdot a_{1} + \dots + \left[\sum_{k=1}^{m} g_{2}(x_{k}) \cdot g_{n}(x_{k}) \right] \cdot a_{n} = \sum_{k=1}^{m} g_{2}(x_{k}) \cdot f(x_{k}) \\
\vdots \\
\left[\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{1}(x_{k}) \right] \cdot a_{1} + \dots + \left[\sum_{k=1}^{m} g_{n}(x_{k}) \cdot g_{n}(x_{k}) \right] \cdot a_{n} = \sum_{k=1}^{m} g_{n}(x_{k}) \cdot f(x_{k})$$

Método dos Mínimos Quadrados

• Que pode ser reescrito como:

$$\begin{cases} a_{11} a_1 + a_{12} a_2 + \cdots + a_{1n} a_n = b_1 \\ a_{21} a_1 + a_{22} a_2 + \cdots + a_{2n} a_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} a_1 + a_{n2} a_2 + \cdots + a_{nn} a_n = b_n \end{cases}$$

Onde:

$$a_{ij} = \sum_{k=1}^{n} g_i(x_k)g_j(x_k)$$
 e $b_i = \sum_{k=1}^{n} f(x_k)g_i(x_k)$

Exemplo

Ajuste os dados abaixo pelo método dos quadrados mínimos utilizando:

- a) Uma reta
- b) Uma parábola

