2014

(Fourth Semester)

MASTER OF COMPUTER APPLICATIONS

Paper No: MCA 405 (Information Securities)

Full Marks: 60
Time: 3 hours

The figures in the margin indicate full marks for the questions

PART-A

(All questions are compulsory-each question carry 2 marks)

(6X2=12)

- 1. What security features does Authentication Header add to the IP packet?
- 2. Differentiate between Digital signature and Public Key Cryptosystem?
- 3. What is Assertion? Write its format in SQL.
- 4. Differentiate between Denial of Service attack and Distributed Denial of Service attack.
- 5. Classify different types of viruses in terms their concealment strategy?
- 6. What is Remote Procedure Call?

PART-B

(Answer any 4	question-each	question	carry	12	mark	s)
---------------	---------------	----------	-------	----	------	----

(4X12=48)

		S CANADA SA				(47712	. 40)
	(a)		the RSA		for enc	rypting data by giv	ving 6
	(b)	What a describ	re the serv e the mech	ices provi anisms fo	ded by l	Network security? ling such services	Also
2.	(a)		and explair e diagram.		nodes o	f IPSec by giving	a 6
(\$)- 91	(b)	Write approa	and the last of the second flow	es on diffe	erent vir	us countermeasure	e 6
3.	Descr	ribe how	the follow	ing malic	ious pro	ogram works- 6x2	= 12
83	^	(a) W	Vorms		(b)	Trojan Horse	
(7	(c) s ₁	pyware		(d)	Backdoors	
		(e) S	niffers		(f)	Macro Virus	
4.	(a)	Write	e and expla	in two pr	otocols	that provide secur	ity at
	3680. 50	the T	ransport La	ayer.	8		6
	(L)	Who	t is a Vietu	al Private	Netwo	k? Explain why it	is
	(b)	neede	0.756	ai i iivaic	1100110	are analysis and	6
		110044				MC	4/405

5.	4	(a)	Describe the fault tolerance approach using redundancy.	6
	Ч	(b)	What are different classifications of faults? Explain different types of failure models.	6
6.		(a)	Write and explain various steps involved in the Two-Phase Commit (2PC) protocol.	6
		(b)	Describe the methods of Checkpointing for error Recovery.	6
7.		Exp	plain the following: $6x2 = 1$	2
		(a)	Domain Constraints (b) Referential Integrity	
		(c)	Triggers (d) Authorization	
		(e)	Authentication (f) Semaphore	