

Filtering

Image and Signal Processing

Norman Juchler

Fourier's landscape

We are really wrapping this up now!

Fourier's landscape

Periodic

Aperiodic

Fourier's landscape

Periodic

Related:

- Fast **Fourier** transform
- Discrete cosine transform
- Discrete sine transform

Aperiodic

Generalization:

z - Transform

A zoo of different transformations...

...but they share many common characteristics:

- Each has a forward and inverse transformation.
- They all exhibit duality between time-domain and frequencydomain representations.
- They share similar mathematical properties, including:
 - Linearity
 - Time/ frequency shifting
 - Convolution theorem
 - •

Take-home messages:

- Fourier theory allows us to decompose signals into their fundamental frequency components.
- We can seamlessly switch between the time domain and the frequency domain, and vice versa.
- Different types of Fourier transforms are suited for different types of signals, ensuring the most effective representation.

The discrete Fourier transform

- Input: Finite sequence of N equally-spaced samples of a signal
- Output: Finite sequence of N equally-spaced samples of the DTFT

$$X[m] = \sum_{n=0}^{N-1} x[n] \cdot e^{-i2\pi \frac{m}{N}n}$$

$$X[m] = \sum_{n=0}^{N-1} x[n] \cdot e^{-i2\pi \frac{m}{N}n} \qquad f_m = \begin{cases} \frac{m}{N} \cdot f_s & \text{if } 0 \le m < N/2\\ \frac{m-N}{N} \cdot f_s & \text{if } N/2 \le m < N \end{cases}$$

Observations:

- The X[m] represents discrete samples of the (continuous) discrete-time Fourier transform
- The X[m] in general are complex numbers (with magnitude and phase)
- The DFT X[m] is periodic with period N (a fact leveraged by fftshift()...)
- Every X[m] is associated with the frequency f_m
 - Note that we usually consider frequencies f_m that are negative for $m \ge N/2$ (periodic extension)
 - The first value X[0] is known as the **direct current** (DC) or static component, with $f_0 = 0$
 - X[0] always equals the sum of the sample values

Example: A real sound

$$f_m = \begin{cases} \frac{m}{N} \cdot f_s & \text{if } 0 \le m < N/2\\ \frac{m-N}{N} \cdot f_s & \text{if } N/2 \le m < N \end{cases}$$

Look at the illustrations and try to answer the following **questions**:

- What is the sampling frequency?
- How many samples?
- What is the static component about? How is it related to the mean value?
- At which frequency is the peak?

Answers:

- Sampling at 44'100Hz
- Samples 0.88·44'100 ≈ 38'000
- Static component: first value X[0] = sum of x[n] ≈ 0
- Corresponds to the pitch of the note played (here: D_5 #=618.8Hz)

The discrete Fourier transform – a naive implementation:

Question: How long does it take to compute the DFT for a signal x?

Answer: Line 12 needs to be calculated N^2 times, or using the big-O notation: The complexity of this DFT is $O(N^2)$

The Fast Fourier Transform (FFT)

 The FFT is an efficient algorithm to compute the DFT of a discrete signal

History:

- Some ideas of FFT can be traced back to C.F. Gauss (1805).
- The algorithm was first published in 1965 by J. Cooley and J. Tukey.
- The most popular version is called radix-2 Cooley-Tukey algorithm.

Key idea: Divide and conquer

- Exploit DFT symmetry to recursively break the computation into smaller sub-problems, eliminating redundant calculations.
- The roots of unity play a central role here...
- Instead of directly computing the DFT for $N = N_1 N_2$, it reformulates the problem in terms of for N_1 smaller problems of size N_2 .
- This approach reduces computational complexity from O(N²) for a naive implementation to O(N log N)!

The increase of the amount of work (that is, the number of computations) increases with the problem size

A discrete signal of N=32 samples (top row) is divided into its even and odd samples (middle-left and middle-right).

Recommended videos

 Reducible / 2023: The Fast Fourier Transform (FFT): Most Ingenious Algorithm Ever? <u>Link</u>

 Veritasium / 2023: The Most Important Algorithm Of All Time. <u>Link</u>

The Fast Fourier Transform (FFT)

- The package <u>scipy.fft</u> offers fast implementations of various FFT algorithms
- See this tutorial for an overview how to use FFT.
- The main functions:

• fft(), fft2(), fftn():

ifft(), ifft2(), ifftn():

rfft(), rfft2(), rfftn():

irfft(), irfft2(), irfftn():

fftshift():

Compute the FFT on 1D, 2D, and nD input.

Compute the inverse DFT in 1D, 2D or nD

Compute the FFT on <u>real</u> input, faster than the fft*() functions.

Compute the inverse real DFT in 1D, 2D or nD

fft*() and fftfreq() return all components at positive frequencies, followed by components at negative frequencies. This function swaps the two halves so that the zero-frequency component is in the center: $[0, 1, 2, -3, -2, -1] \rightarrow [-3, -2, -1, 0, 1, 2, 3]$.

Get the frequencies of each bin returned by the FFT functions, such as the X-axis.

The short-time Fourier Transform (STFT)

- The DFT makes use of all samples in the signal
- Implicitly, this is assuming that frequency content is "stationary" over the duration of the signal.
- For time-varying signals, this is often not the case
- Idea: Divide a long signal up into short pieces (socalled frames), analyze each piece separately.
- Parameters:
 - Frame length (number of samples per frame)
 - Hop length (number of samples between two frames)
- STFTs can be visualized with spectrograms
 - Constructed by stacking the frames horizontally
 - Hint 1: Use the decibel scale for better visualization
 - Hint 2: Use windowing / apodization to avoid banding artifacts

Spectrogram with linear magnitude scaling (top) and with decibel scaling: $A_{\rm dB} = 20 \cdot \log_{10} A$

Spectrogram without (top) and with windowing (bottom). Use a window (here: Hann) to attenuate discontinuities at the ends of the frames.

Convolution

Revisited

Convolution of continuous-time signals

 The convolution is an operation that combines two functions to produce a third function.

$$y(t) = (h * x)(t) := \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau$$

- In words, integral computes the area under the product of $h(\tau)$ and $x(t-\tau)$ as t varies.
- Demo applet
- Video: 3blue1brown / 2023. But what is a convolution? <u>Link</u>

Convolution of discrete-time signals

There exists also a discrete-time definition for convolution:

$$y[n] = (h * g)[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

• In the animation right is x[n] the input signal, h[n] the kernel, and y[n] the output signal.

Naive implementation of a discrete-time convolution

```
# Compute the lengths of our input and filter
N = len(x)
K = len(h)

# Allocate an output buffer
y = np.zeros(N)

# Iterate over delay values
for k in range(K):

    # For each delay value, iterate over all sample indices
    for n in range(N):

    if n >= k:
        # No contribution from samples n < k
        y[n] += h[k] * x[n-k]</pre>
```

- scipy.signal.convolve() is a fast alternative
 - Makes use of FFT!
 - Question: Why again?

Convolution 18

Convolution and Fourier transform

• Result: The Fourier transform simplifies the convolution operation to a simple multiplication in the frequency domain!

$$y(t) = h(t) * x(t) \Leftrightarrow Y(\omega) = H(\omega) \cdot X(\omega)$$

 $y[n] = h[h] * x[n] \Leftrightarrow Y[m] = H[m] \cdot X[m]$

- Computing the convolution in the frequency domain is very easy!
- We can efficiently recover the time-domain signal via inverse FFT
- Recommended procedure (for discrete signals):
 - Pad x[n] and h[n] to the same length (if necessary)
 - Use the FFT to compute DTFs X[m] and H[m]
 - Multiply X[m] and H[m] elementwise
 - Compute the inverse DFT to recover y[n]

Convolution

Signal filtering

First concepts

- Input:
 - Noisy signal x(t)
 - A filter window h(t)
- Output
 - Filtered signal y(t)
- Solution:

```
import numpy as np
from scipy import signal

noise = 0.05
width = 50
win = signal.windows.boxcar(width)
x = np.repeat([0., 1., 0.], 100)
x += np.random.normal(0, noise, x.shape)
y = signal.convolve(x, win, mode='same') / sum(win)
```


Observations:

- We sacrifice some of the signal, but
- We can remove the noise.

```
import numpy as np
from scipy import signal

noise = 0.05
width = 50
win = signal.windows.gaussian(width, std=7)
x = np.repeat([0., 1., 0.], 100)
x += np.random.normal(0, noise, x.shape)
y = signal.convolve(x, win, mode='same') / sum(win)
```


- Many different window types are possible:
 - BoxParzen
 - TriangleExponential
 - BlackmanTukey
 - HammingLanczos
 - Hann■ ...

```
import numpy as np
from scipy import signal

noise = 0.05
width = 50
win = signal.windows.triang(width)
x = np.repeat([0., 1., 0.], 100)
x += np.random.normal(0, noise, x.shape)
y = signal.convolve(x, win, mode='same') / sum(win)
```


- What type of smoothing window should be used? Which parameters to select?
 - A typical filter design question!
 - Requires an understanding of signal characteristics
 - Spectral analysis of signal and filter!

```
import numpy as np
from scipy import signal

noise = 0.05
width = 50
win = signal.windows.lanczos(width)
x = np.repeat([0., 1., 0.], 100)
x += np.random.normal(0, noise, x.shape)
y = signal.convolve(x, win, mode='same') / sum(win)
```


Comparison of different windows

$$h_{box}[n] = 1$$

$$h_{gauss}[n] = e^{\frac{1}{2}\left(\frac{n}{\sigma}\right)^2}$$

$$h_{lanc}[n] = sinc_{\pi} \left(\frac{2n}{M-1} - 1 \right)$$

$$h_{lanc}[n] = sinc_{\pi} \left(\frac{2n}{M-1} - 1 \right)$$
 $h_{lann}[n] = 0.5 - 0.5 \cos \left(\frac{2\pi n}{M-1} \right)$

What is the theoretically best low-pass filter?

- Alternative approach: start in the frequency domain
- Goal: Get rid of all frequencies above some cut-off f_c
- Idea: Let's define the ideal low-pass filter:

$$H[m] = \begin{cases} 0, & \text{if } f_m > f_c \\ 1, & \text{if } f_m \le f_c \end{cases}$$

We then can apply the filter in the frequency domain by multiplying it with the signal X[m] and recover the resulting signal y[n] in the time-domain.

 Such a filter is called ideal low-pass filter, or brick-wall filter.

H[m]: The ideal low-pass filter in the frequency-domain

h[n]: Filter representation in the timedomain (so-called impulse response)

(b) Note the stopband attenuation of 60 dB and passband ripple within 0.1 dB

Problems with the ideal low-pass filter

- Has an infinite representation in the time domain
- Cannot be handled properly with DTF, as the filter lengths are limited
- Observations:
 - We already saw that it is difficult to represent sharp edges in the time-domain using frequency components (we require infinitely high frequencies)
 - The same holds true in the frequency domain: The sharper the filter is in the frequency domain, the more time-domain samples are necessary.
 - Note that the filter requires infinitely many samples at t<0! The ideal filter therefore is a non-causal filter.</p>
- See here for an illustrative demonstration.

(b) Note the stopband attenuation of 60 dB and passband ripple within 0.1 dB

Overview: Types of filters

Frequency bands

A signal is called **band-limited** if its frequency components are limited within frequencies:

$$f_L \le f \le f_H$$

The bandwidth of a signal is defined as the difference between the extreme frequencies:

$$B = \Delta f = f_H - f_L$$

- A strictly band-limited signal does not carry energy at frequencies outside the band limits
- In practice, a signal is considered band-limited if its energy outside of a frequency range is low enough to be considered negligible

Amplitude spectrum of a bandlimited signal. Source of illustration: Wikimedia