

SEED-Noid における 双腕作業のための RTC 群

名城大学 四位茉祐果 真崎聡士 大原賢一

作品概要

双腕ロボットに関する研究は広く行われている中, RTミドルウェアには, 双腕ロボット制御機能共通インターフェース(以下, 双腕共通I/F)というリソースがあるが, 適用事例が少ないのが現状

双腕共通I/FをTHK(株)のSEED-Noidに適用した

THK(株) SEED-Noid

- ① 双腕共通I/Fを改良した双腕共通I/F2.0を提案を行う
- <u>② 双腕共通I/F2.0をTHK(株)のSEED-Noidに適用した</u>

利用するハードウェア

THK(株)が開発した双腕ロボット SEED-Noid

上半身の自由度

腰:3自由度

右腕:7自由度

左腕:7自由度

頭 :3自由度

双腕共通I/Fとは

NEDO 次世代ロボット知能化技術開発プロジェクトによって作成 双腕を持つロボットアームの制御に関わるインタフェースの共通仕様を定義

		Aug and and	Plantage W.A.	
PROFESSOR BASES		AND WILL PROPERTY.		
providence.		3171.05.20	アリッドを飲むした 制度外部とする。	
*	1,148	Deskayon	をから、中国製造を飲む(C 例: 生命に関いた状態 (M): を主に際・生水管	
, in	Longle	Debbles	をクラー(中国的先を到300) 中にたた。現たたまを 1905 を全に称った表面	
acodásis	Cataopatis.	RETURNATO:	・ディル構造の基件数で整定された日曜紅葉に対し、直引 空間における直接整備で製作する。	
16.	1/90	CHIMAGE	this Chilly Still Child an Agent	
- 2	State	Cartachine	TRUE ANNEXITATION (ANNIA MARKA)	
100				
PRESE	STORES	TELEPHONE	(数やみなりのの企業がは7回機が進出が、同時に関係し合う 「MET OSLY (可能検生性できますのことである。 1 ののでは数 dose は無限される。	
TOSSIC OMPONE	L STORINGS	t Situation	HILLOSTALMANALALANALISTEN	
TOSSIC OMPONE	L STORINGS	t. Sill suffici school	METOSAS STERVAR できまずのことである。 可能で発表する。主義的である。 ロボルド連系の他が関するできないとは他に悪にがしまり	
TOSSIC OMPONE	ar onen	t. Sill suffici school	(株式である) 対策を出てて新年二十二十分。 ののが「開発のから 地震的たる。 では、内側と「開発のから地域的なる」 型でこれら近端線的であたける。 近点により近端線的であたける。 (出来) 長年を下り間(前・発展の上の)。 (出来) 長年を下り間(前・発展の上の)。 (はま)	

仕様書URL:

https://www.sec.co.jp/robo t/_downloads/interface_dou blearm 1.0.pdf

適用例:HIRO

HiroController0

出典:「頭部ステレオカメラを用いた双腕ロボットによるマニピュレーション作業」 http://openrtc.org/Task_Vision/systems/Hiro.html

メリット

双腕共通I/F 対応コントローラ

ハードに依存せず再利用可能

双腕共通I/F2.0の提案

①関数の追加/修正

もともとあった関数

- ·各部サーボON/OFF
- ・双腕のグリッパ開閉/開度設定
- ・双腕の関節角度指定
- ・双腕の手先目標位置姿勢に直交空 間で直線補間で動作 など

追加した関数

- ・双腕の相対手先位置姿勢関係の取得(未実装)
- ・双腕の手先目標位置姿勢に関節空間で直線補間で動作 など

②アーム共通I/Fの包括

双腕共通I/Fだけで、単腕も扱うためにアーム共通I/Fをインクルードした

双腕共通I/F2.0

DualManipulatorCommonInterface_Common
DualManipulatorCommonInterface_Middle

URL: https://github.com/Mayuka-Shii/S EED-Noid_Dual-Arm_pkg/blob/master/i nterface_doublearm_2.0.pdf

仕様書を公開中

開発RTC紹介

双腕共通I/FでSEED-Noid実機を制御するRTC群の開発を行った

DualArmController

・双腕共通I/F2.0を用いた サンプルコントローラ

SeedUpperBody

- ・今回のメインRTC
- ・双腕共通I/F2.0によって SEED-Noid実機の双腕を制 御することができる
- ・今後, コントローラ側を充実させ, 再利用予定

このRTC群でできること

- ·各部サーボON/OFF
- ・グリッパ開閉/開度設定
- •関節角度指定
- 手先目標位置姿勢に直交/関節空間で直線補間で動作。

開発RTC紹介

RTC群デモ動画① 関節角度指定モードでSEED-Noid実機が動く様子

開発RTC紹介

RTC群デモ動画② 目標手先位置指定モードでSEED-Noid実機が動 く様子

実機が無くてもロボットを動かせるようなシミュレーション環境の構築 を行った

シミュレータの種類には Choreonoid/V-REP/Gazeboなどたくさんあるが…

今回、SEED-NoidのモデルがROSパッケージにあったためROSとの連携が容易なGazeboを採用

RTMとROSを連携したシステムの構築を行った

LABORATORY

RTMとROSのブリッジ

今回, eSEATによって動作するSEATMLファイルによって, RTMとROSのブリッジを作成した

eSEATとは

産総研の原氏が開発したソフトウェア
OpenRTM-aistのRTC、ROSノード、GUIパネル、Webサーバーとして動作

<u>eSEATを用いるとROSとRTMの連携が容易にできる</u>

RTMとROSのブリッジ

URL: https://github.com/Mayuka-Shii/SEED-Noid_Dual-Arm_pkg/

公開中のSEATMLファイル

- •SEED-Noidの関節角度
- ・Baxterの関節角度
- •NEXTAGEの関節角度

RTMとROSのブリッジ作成 マニュアルを公開予定

RTC群デモ動画③ 目標手先位置指定モードでシミュレー ション上のSEED-Noidが動く様子

実機

DualArmControllerから 同じ値を指定した 場合の実機の動き

BIGN

まとめ

• 双腕共通I/F2.0をTHK(株)のSEED-Noidに適用するとともに、実機と同様に動作するシミュレーション環境を構築した

 双腕共通I/Fに関数を追加するなどした双腕共通 I/F2.0を提案を行った

RTMとROSのブリッジとしてeSEATが有用であるという紹介を行った

ご清聴ありがとうございました

eSEATを開発されました原様に御礼申し上げます

予備スライド

頭部ステレオカメラを用いた双腕ロボットによるマニピュレーション作業

作業台に置かれた部品を状況に応じて再配置し、個々の部品を検出して 双腕を活かして箱に整理して入れ、双腕で別の場所に運ぶPick & Place作業を行う

出典:「頭部ステレオカメラを用いた双腕ロボットによるマニピュレーション作業」 URL: http://openrtc.org/Task_Vision/systems/Hiro.html

双腕共通I/F1.0

2.0で大きく修正した点

closeGripper()	グリッパを閉じる
moveGripper(r_angle,l_angle)	グリッパを指定開度に開く
moveLinearCartesianAbs(rArm,lArm)	ロボット座標系の絶対値で指定された目標 位置に対し、直交空間における直線補間で 動作
moveLinearCartesianRel(rArm,lArm)	ロボット座標系の相対値で指定された目標 位置に対し、直交空間における直線補間で 動作
movePTPJointAbs(JointPoints)	絶対関節座標で指定された目標位置に対し、 関節空間における直線補間で動作
movePTPJointRel(JointPoints)	絶対関節座標で指定された目標位置に対し、 関節空間における関節補間で動作
movePTPJointAbsSeq (JointPointsSeq)	両方の腕に対して、絶対関節座標で指定された目標位置に対し、関節空間における直線補間で動作
openGripper()	グリッパを開く
setSpeedCartesian(spdRation)	直交空間における動作時の速度を%指定
setSpeedJoint(spdRation)	直交空間における動作時の速度を%指定

双腕共通I/F2.0

movePTPJointAbs(JointPoints)	絶対関節座標で指定された目標位置に対し、 関節空間における直線補間で動作
movePTPJointRel(JointPoints)	絶対関節座標で指定された目標位置に対し、 関節空間における関節補間で動作
movePTPJointAbsSeq (JointPointsSeq)	両方の腕に対して、絶対関節座標で指定された目標位置に対し、関節空間における直 線補間で動作

movePTPJointAbs(rArm,IArm)	絶対関節座標で指定された目標位置に対し、 関節空間における直線補間で動作
movePTPJointRel(rArm,IArm)	絶対関節座標で指定された目標位置に対し、 関節空間における関節補間で動作

双腕共通I/F2.0

最低限必要だと思われる機能

movePTPCartesianAbs(rArm,IArm)	ロボット座標系の絶対値で指定された目標 位置に対し、関節空間における直線補間で 動作
movePTPCartesianRel(rArm,IArm)	ロボット座標系の絶対値で指定された目標 位置に対し、関節空間における直線補間で 動作

直交空間における直線補間で動作だけでは不十分である

双腕を制御する際にあると便利だと思われる機能

getRelativePosition(rArm,IArm)	双腕の相対位置姿勢関係の取得
--------------------------------	----------------

決まった位置姿勢関係で固定したい場合などに有用

ROS側 rqt_graph

アダプター

RTM側のアダプター

ROS側のアダプター