Machine/Statistical Learning Lecture 6: Dictionnary Learning

Filière SICOM, 3A

Reminder of regression and sparsity

- $\mathbf{x} \in \mathbb{R}^p \leftarrow \text{observations},$
- ▶ $D \in \mathbb{R}^{p \times K} \leftarrow \text{design/regression matrix}$,

Regression problem

Find coefficient vector $\boldsymbol{a} \in \mathbb{R}^K$ s.t. $\boldsymbol{x} \approx D\boldsymbol{a}$, i.e. $\|\boldsymbol{x} - D\boldsymbol{a}\| \leq \epsilon$

regularization/model selection: sparsity constraint

$$\min_{\boldsymbol{a}} \|\boldsymbol{x} - D\boldsymbol{a}\|_2^2$$
 s.t. $Pen(\boldsymbol{a}) \le T$, with e.g.

- $Pen(\boldsymbol{a}) = \|\boldsymbol{a}\|_1 \leftarrow \ell_1 \text{ norm},$
- ▶ Pen(a) = $||a||_0 \equiv \#\{i : 1 \le i \le K \text{ and } a_i \ne 0\} \leftarrow \ell_0$ pseudo-norm, i.e. number of non-zero components for a

Dictionary problem

Assumptions

▶ Inputs : $x_i \in \mathbb{R}^p$, for i = 1, ..., n, ← learning set

Objective

"Inverse" the regression problem, i.e. find $D \in \mathbb{R}^{p \times K}$ ensuring a sparse approximation/representation of the learning set x_1, \dots, x_n

$$\boldsymbol{x}_i \approx D\boldsymbol{a}_i$$
, for $i = 1, \dots, n$, s.t.

- ▶ $K \ll n \leftarrow$ sparsity of the representation 'basis' (\sim low rank constraint)
- ▶ $\|a_i\|_0 \le T$, for $i = 1, ..., n \leftarrow$ sparsity of the coefficients

Dictionary terminology

- ▶ $D \equiv (\mathbf{d}_1 | \dots | \mathbf{d}_K) \in \mathbb{R}^{p \times K} \leftarrow \text{dictionary s.t. } K \ll n \text{ (low rank)}$
- ▶ $d_k \in \mathbb{R}^p \leftarrow \text{atoms with } k = 1, ..., K \text{ (column vectors of } D)$
- ▶ $a_i \in \mathbb{R}^K \leftarrow \text{coefficients of } x_i \text{ s.t. } ||a_i||_0 \leq T \text{ (sparsity)}$

Dictionary vs Orthornormal Basis (ONB)

Orthornormal Bases (ONB)

Lots of good properties for ONB (e.g. Fourier, orthonormal wavelets,...):

- uniqueness of the decomposition (n coefficients to represent a n-dimensional vector),
- existence of fast transforms,
- projections to obtain approximate representations, . . .

But not necessarily good for sparse representations

e.g. sums of sinusoids + spikes (+ steps) are not sparse in either Fourier or identity bases...

Dictionary

Change of mindset

- ▶ loose uniqueness of representation using overcomplete/redundant bases
- get sparser representations in return!

Recap: Dictionary and Sparse representations

Hypotheses

▶ Inputs : $\boldsymbol{x}_i \in \mathbb{R}^p$, $1 \le i \le n$, $\rightarrow X = (\boldsymbol{x}_1 | \dots | \boldsymbol{x}_n) \in \mathbb{R}^{p \times n}$

Objective : sparse representation/factorization $X \approx DA$

- ▶ $D \equiv (d_1 | \dots | d_K) \in \mathbb{R}^{p \times K} \leftarrow \text{dictionary (redundant), with } K \ll n.$
- $\mathbf{d}_k \in \mathbb{R}^p \leftarrow \text{atoms with } k = 1, \dots, K$
- $ightharpoonup A \equiv (a_1 | \dots | a_n) \in \mathbb{R}^{K \times n} \leftarrow \text{coefficients s.t. } x_i \approx Da_i \text{ with } ||a_i||_0 \leq T$
- ${\color{red} \,}^{\color{red} \,}$ only the observations ${\color{blue} x_i}$ are known : unsupervised problem

Formalizing the dictionary learning problem

Cost criterion with sparsity constraints

$$\min_{D,\{a_i\}} J(D,\{a_i\}) \equiv \sum_{i=1}^n \|x_i - Da_i\|_2^2 = \|X - DA\|_F^2,$$

s.t. $\text{Pen}(a_i) < T \quad \text{for } i = 1, ..., n$

- $\begin{array}{ll}
 X = (\mathbf{x}_1 | \dots | \mathbf{x}_n) \in \mathbb{R}^{p \times n}, & D = (\mathbf{d}_1 | \dots | \mathbf{d}_K) \in \mathbb{R}^{p \times K}, \\
 A = (\mathbf{a}_1 | \dots | \mathbf{a}_n) \in \mathbb{R}^{K \times n},
 \end{array}$
- $\|M\|_F^2 \equiv \sum_{i,j} m_{ij}^2 \leftarrow \text{Frobenius norm}$

Identifiability issue

Pb: atoms d_k and their associate coefficients $a^k \in \mathbb{R}^{1 \times n}$ (kth line of a) are defined up to a scaling factor in the factorization criterion

atoms are assumed to be normalized, i.e. $\|\mathbf{d}_k\|_2 = 1$, for $k = 1, \dots, K$

Optimizing the factorization criterion

Alternate minimization method

$$\min_{D, \{\boldsymbol{a}_i\}} J\left(D, \{\boldsymbol{a}_i\}\right) = \|X - DA\|_F^2, \quad \text{s.t. Pen}(\boldsymbol{a}_i) \le T$$

Joint minimization w.r.t. A and D split into 2 simpler separated steps

- 1. sparse coding to estimate the coefficients A for a given dictionary D,
- 2. dictionary D update performed atom-by-atom, for a given A
- repeat 1) and 2) until a stopping criterion

Optimization issues

- when $Pen(a_i) = ||a_i||_0 \leftarrow NP$ -hard combinatorics problem...
- ▶ joint minimization w.r.t. D and $\{a_i\}_{1 \leq i \leq n} \leftarrow \text{non-convex problem}$
- sub-optimal solution around an initial value for D (cf clustering)

Sparse coding: update of the coefficients a

Assumption : D fixed

Objective: find sparse A^* minimizing $J(A) \equiv J(D, A) = ||X - DA||_F^2$

linear regression problem on each a_i with sparsity constraints

Basis Pursuit (BP)

Convex relaxation of the ℓ_0 pseudo-norm with the ℓ_1 norm :

$$A^{\star} = \min_{A} \|X - DA\|_F^2 + \lambda \sum_{i=1}^n \|\boldsymbol{a}_i\|, \quad \text{ where } \lambda > 0,$$

- convex problem on A, with Lasso solutions for a_i , i = 1, ..., n
- Online Dictionary Learning (ODL) algorithm (Mairal et al., 2009)

(Orthogonal) Matching Pursuit (OMP)

Sparse approximate (sub-optimal) solution of the ℓ_0 minimization problem using a greedy algorithm to select the "best matching" atoms

Orthogonal Matching Pursuit

Let D_{Γ} be the sub dictionary composed of the only atoms \mathbf{d}_k s.t. $k \in \Gamma$

- 1. Initialization: $\Gamma = \emptyset$, $r = x_i$ (sweep on the observations x_i)
- 2. for $iter = 1, \ldots, T$ do
- 3. Select the best matching atom, i.e. most correlated with the residuals

$$\widehat{k} \leftarrow \max_{1 \leq k \leq K} |\boldsymbol{r}^T \boldsymbol{d}_k|$$

- 4. Update the active set : $\Gamma \leftarrow \Gamma \cup \{\hat{k}\}\$
- 5. Update the residuals : $r \leftarrow \left(I_p D_{\Gamma}(D_{\Gamma}^T D_{\Gamma})^{-1} D_{\Gamma}^T\right) \boldsymbol{x}_i$,
- 6. endfor
- 7. **Output**: $a_i \equiv$ coefficients of the orthogonal projection of x_i on the space spanned by D_{Γ}
- residuals orthogonal to the sparse signal approximation $D_{\Gamma}a_{i}$
- by construction, card $(\Gamma) = T \Rightarrow \|\boldsymbol{a}_i\|_0 \leq T$

K-SVD algorithm outline

- 1. preliminary tools : SVD and low rank approximation
- $2.\,$ K-SVD dictionary update and K-SVD algorithm

Singular Value Decomposition (SVD)

Let $X \in \mathbb{R}^{n \times m}$ be a real rectangular matrix. There exists a factorization, called a singular value decomposition of X, of the form

$$X = U\Sigma V^T$$
, where

- ▶ $U \in \mathbb{R}^{n \times n}$ is orthonormal $(UU^T = U^TU = I_n) \leftarrow$ matrix of left-singular vectors $\boldsymbol{u}_k \in \mathbb{R}^n$ s.t. $U = (\boldsymbol{u}_1 | \dots | \boldsymbol{u}_n)$,
- ▶ $V \in \mathbb{R}^{m \times m}$ is orthonormal $(VV^T = V^TV = I_m) \leftarrow$ matrix of right-singular vectors $\boldsymbol{v}_k \in \mathbb{R}^m$ s.t. $V = (\boldsymbol{v}_1 | \dots | \boldsymbol{v}_m)$,
- ▶ $\Sigma \in \mathbb{R}^{n \times m}$ is a rectangular diagonal matrix with non negative diagonal entries $\Sigma_{ii} \equiv \lambda_i \geq 0$ for $i = 1, ..., \min(n, m)$
- the λ_i 's are uniquely defined and called the singular values of X
- By convention, these singular values are sorted in descending order:

$$\lambda_1 \ge \ldots \ge \lambda_{\min(n,m)} \ge 0$$

Singular value decomposition (SVD) and principal components analysis (PCA)

 $X \in \mathbb{R}^{n \times m}$ with SVD $X = U \Sigma V^T$

Eigendecomposition of Gram matrices

Gram matrices express as

$$\begin{array}{ll} \boldsymbol{X}^T\boldsymbol{X} &= \boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T &= \boldsymbol{V}\left(\boldsymbol{\Sigma}^T\boldsymbol{\Sigma}\right)\boldsymbol{V}^T, \\ \boldsymbol{X}\boldsymbol{X}^T &= \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T\boldsymbol{V}\boldsymbol{\Sigma}^T\boldsymbol{U}^T &= \boldsymbol{U}\left(\boldsymbol{\Sigma}\boldsymbol{\Sigma}^T\right)\boldsymbol{U}^T, \end{array}$$

where $\Sigma^T \Sigma \in \mathbb{R}^{m \times m}$ and $\Sigma \Sigma^T \in \mathbb{R}^{n \times n}$ are square diagonal

- ▶ right-singular vectors of X are eigenvectors of $X^TX = V\left(\Sigma^T\Sigma\right)V^T$,
- ▶ left-singular vectors of X are eigenvectors of $XX^T = U\left(\Sigma\Sigma^T\right)U^T$,
- ▶ non-zero singular values λ_i 's are the square roots of the non-zero eigenvalues of X^TX or XX^T
- SVD yields principal components analysis (PCA) decomposition

Singular Value Decomposition (SVD) and low rank approximation

- $X \in \mathbb{R}^{n \times m}$ with SVD $X = U\Sigma V^T$
- left-singular vectors $\boldsymbol{u}_k \in \mathbb{R}^n$ of X are the columns of U, for k = 1, ..., n
- right-singular vectors $\boldsymbol{v}_k \in \mathbb{R}^m$ of X are the columns of V, for $k = 1, \ldots, m$

Eckart-Young-Mirsky theorem

For the Frobenius norm $(\|M\|_F^2 = \sum_{i,j} m_{i,j}^2)$, the solution to the low-rank approximation problem $\min_{\hat{X}} \|X - \hat{X}\|_F^2$ s.t. $\operatorname{rank}(\hat{X}) \leq r$, is

$$\hat{X} = \sum_{k=1}^{r} \lambda_k \boldsymbol{u}_k \boldsymbol{v}_k^T,$$

where λ_k , \boldsymbol{u}_k and \boldsymbol{v}_k are the first singular values and left/right-singular vectors of X, for $k = 1, \ldots, r \leq \min(m, n)$.

Dictionary update: K-SVD algorithm (Aharon et al., 2006)

Objective: For a given A, find D minimizing $J(D) \equiv J(D, A) = ||X - DA||_F^2$

Sweep on the atoms d_k that are sequentially updated, for k = 1, ... K, as

$$\min_{\mathbf{d}_k} ||X - DA||_F^2 = ||E^k - \mathbf{d}_k \mathbf{a}^k||_F^2$$

- $\mathbf{a}^k \in \mathbb{R}^{1 \times n}$ is the kth line of A,
- $E^k = X \sum_{l \neq k} d_l a^l \in \mathbb{R}^{p \times n},$
- $\mathbf{d}_k \mathbf{a}^k \in \mathbb{R}^{p \times n}$ is a rank 1 matrix

Atoms (and coefficients) update

Best rank 1 approximation of E^k obtained from its SVD as $\lambda_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T$,

- $ightharpoonup \lambda_1 \equiv \text{largest singular value}, u_1 \text{ and } v_1^T \equiv \text{associated singular vectors}$
- $d_k = u_1 \leftarrow \text{unit norm vector by construction}$
- $\mathbf{a}^k = \lambda_1 \mathbf{v}_1^T \leftarrow \text{Pb}$: there is no reason for the updated \mathbf{a}^k to be sparse!

Dictionary update: K-SVD algorithm (Aharon et al., 2006)

K-SVD solution to enforce sparsity of the coefficients

For updating the kth atom restrict attention to the only observations x_i for which the atom is active, i.e. data and dictionary columns with indexes in

$$\Gamma_k = \{i : \alpha_i^k \neq 0\}$$

- $m{a}_{\Gamma_k}^k \in \mathbb{R}^{|\Gamma_k|}$ is the vector of the only non zero components of $m{a}^k \in \mathbb{R}^n$
- ▶ $E_{\Gamma_k}^k \in \mathbb{R}^{n \times |\Gamma_k|}$ is the matrix obtained by retaining the only column vectors of $E^k = X \sum_{l \neq k} d_l a^l$ with column index $i \in \Gamma_k$
- ▶ $\lambda_1 \equiv$ largest singular value, u_1 and $v_1^T \equiv$ associated singular vectors of the SVD of $E_{\Gamma_k}^k$

K-SVD atoms (and coefficients) update

- ▶ $d_k \leftarrow u_1$ (unit norm vector by construction)
- ▶ $a_{\Gamma_k}^k \leftarrow \lambda_1 v_1^T$ (hence a^k remains as sparse as sparse coding outputs)
- $\ \, \ \,$ both atoms and coefficients are updated during the K-SVD dictionary update step

K-SVD algorithm

- 0. Initialize dictionary $D^{(0)}$ using union of ONBs elements / randomly by picking K observations
- 1. Sparse coding: computation of the coefficients a_i for each x_i given $D^{(t-1)}$ (usually using OMP with $||a_i||_0 \leq T$)
- 2. Dictionary update: for each atom $d_k \in D^{(t-1)}$, $1 \le k \le K$
 - ▶ Define the set of active entries $\Gamma_k = \{i : \alpha_i^k \neq 0\}$
 - ▶ Compute $E^k = X \sum_{l \neq k} d_l a^l$ and its restriction $E^k_{\Gamma_k}$ to columns in Γ_k
 - ▶ Compute the first largest singular value $\lambda_1 > 0$ of $E_{\Gamma_k}^k$, and the associate left and right singular vectors \boldsymbol{u}_1 and \boldsymbol{v}_1
 - ▶ Update the k-th atom and the associated coefficients

$$egin{array}{lll} oldsymbol{d}_k & \leftarrow & oldsymbol{u}_1, \ oldsymbol{a}_{\Gamma_k}^k & \leftarrow & \lambda_1 oldsymbol{v}_1^T \end{array}$$

▶ Repeat steps 1 and 2 for t = 1, ... until convergence

Properties of K-SVD algorithm

Convergence

Convergence to a local minimum guaranteed if the sparse coding step always decrease the empirical quadratic error $||X - DA||_F^2$

- ▶ no theoretical guaranties when using approximations like OMP
- in practice, condition empirically satisfied when $T \ll n$

Generalization of K-means

- For T = 1 sparsity constraints, normalizing the coefficients \mathbf{a}_i rather than the atoms \mathbf{d}_k , then K-SVD reduces to the K-means algorithm dictionary atoms are the cluster means/centroids
- ▶ In the general case $T \ge 1$, the computation of the mean is replaced by a SVD computation for updating the atoms
 - ™ "K-SVD" algorithm

Implementation details of K-SVD

Sparse coding

- OMP is preferred for efficiency,
- ▶ for denoising problem, more convenient to solve (approximatively) the similar problem

$$\min_{\boldsymbol{a}_i} ||\boldsymbol{a}_i||_0 \quad \text{s.t. } ||\boldsymbol{x}_i - D\boldsymbol{a}_i|| \le \epsilon,$$

where ϵ can be tuned from the noise power \leftarrow change of stopping criterion in OMP

Dictionary update heuristics

- ▶ Pruning atoms that are not "used" enough,
- ▶ Removing atoms too coherent with each other,
- pruned or removed atom replaced by the least well-explained observation, i.e. observation \boldsymbol{x}_l where $l = \arg\max_{1 \leq i \leq n} \|\boldsymbol{x}_i D\boldsymbol{a}_i\|_2$

Examples of sparse representations for image restoration

Solving the denoising problem [Elad and Aharon, 2006]

- Extract all overlapping 8×8 patches x_i , for $1 \le i \le n$ with $n > 10^5$
- ▶ Solve a matrix factorization (dictionary learning) problem :

$$\min_{D, \{a_i\}} \quad \sum_{i=1}^n ||x_i - Da_i||_2^2 = \min_{D, A} \quad ||X - DA||_F^2$$

with sparsity constraints $Pen(\boldsymbol{a}_i) \leq T$, e.g. $Pen(\boldsymbol{a}_i) = ||\boldsymbol{a}_i||_0$

▶ Average the reconstruction of each patch.

K-SVD results for image restoration

▶ Dictionary trained on a noisy version of the image

From ICCV tutorial

http://lear.inrialpes.fr/people/mairal/tutorial_iccv09/tuto_part2.pdf

Applications: denoising

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009c]

▶ Dictionary trained on a noisy version of the image

From ICCV tutorial

http://lear.inrialpes.fr/people/mairal/tutorial_iccv09/tuto_part2.pdf

Applications: inpainting (1)

Inpainting, [Mairal, Elad, and Sapiro, 2008a]

▶ Dictionary trained on the image with missing data

 $From\ ICCV\ tutorial\ \texttt{http://lear.inrialpes.fr/people/mairal/tutorial_iccv09/tuto_part2.pdf}$

Applications: inpainting (2)

Inpainting, [Mairal, Elad, and Sapiro, 2008a]

▶ Dictionary trained on the image with missing data

From ICCV tutorial http://lear.inrialpes.fr/people/mairal/tutorial_iccv09/tuto_part2.pdf