Distance Matrix

Introduction

Lets \mathbf{x}_j be a set of points in a region $\Omega \in \mathbb{R}^s$, and $y_j \in \mathbb{R}$ such that¹

$$y_j = f(\mathbf{x}_j) \tag{1}$$

where f is an unknown function. We want to find a function P_f such that when evaluated at the point \mathbf{x}_j it matches the evaluation point y_j , that is

$$y_j = P_f(\mathbf{x}_j) \tag{2}$$

for $j = 1, \ldots, N$

We can construct this function P_f as a linear combination of some basis functions B_k , i.e.,

$$P_f(\mathbf{x}) = \sum_{k=1}^{N} c_k B_k(\mathbf{x}) \tag{3}$$

where $\mathbf{x} \in \mathbb{R}^s$. This is an interpolation problem that lead us to solve the following system of equations

$$A\mathbf{c} = \mathbf{y} \tag{4}$$

where the *interpolation matrix* A is given by $A_{j,k} = B_k(\mathbf{x}_j)$, with j, k = 1, ..., N the vector $\mathbf{c} = [c_1, c_2, ..., c_N]^T$, and the vector $\mathbf{y} = [y_1, y_2, ..., y_N]^T$.

The interpolation problem would be well-posed (a solution to the problem exists and it is unique) if and only if the matrix A is square.

Example

Lets say we want to construct a function P_f that approximates the following function:

$$f_s(\mathbf{x}) = 4^s \prod_{d=1}^s x_d (1 - x_d), \qquad \mathbf{x} = [x_1, ..., x_s] \in [0, 1]^s.$$
 (5)

where f_s evaluates to zero at the boundaries of the unit cube \mathbb{R}^s and has a maximum value of 1 at the center of the cube.

The notation and exercises follows that presented in the book by Fasshauer [1].

Construction of P_f

We construct P_f as a linear combination of certain basis functions $B_k = ||\mathbf{x} - \mathbf{x}_k||_2$ such that

$$P_f(\mathbf{x}) = \sum_{k=1}^{N} c_k \underbrace{||\mathbf{x} - \mathbf{x}_k||_2}_{B_k}, \quad \mathbf{x} \in [0, 1]^s$$
(6)

therefore

References

[1] G. E. Fasshauer, Meshfree approximation methods with MATLAB, vol. 6. World Scientific, 2007.