

Past Papers Int 2 Chemistry

2008 Marking Scheme

Grade	Mark R	equired	° condidates cabiavina anada
Awarded	(/80)	%	% candidates achieving grade
Α	57+	71%	40.8%
В	49+	61%	23.6%
С	41+	51%	18.7%
D	37+	46%	5.8%
No award	<37	<46%	11.0%

Section: Multiple Choice		Extended Answer		
Average Mark:	21.7	/30	31.5	/50

	2008 Int2 Chemistry Marking Scheme								
M <i>C</i> Qu	Answer	% Pupils Correct	Reasoning						
1	В	86	A Fastest: smallest particle size (powder) and highest concentration (4 mol l ⁻¹) B Slowest: largest particle size (ribbon) and lowest concentration (2 mol l ⁻¹) C Medium: smallest particle size (powder) and lowest concentration (2 mol l ⁻¹) M Medium: Largest particle size (ribbon) and highest concentration (4 mol l ⁻¹)						
2	С	67	A Ethanoic Acid is the solute (substance which is dissolved) B Saturated describes a solution where no more solute will dissolve in the solvent Water is the solvent (the liquid which does the dissolving) D Vinegar is the solution (ethanoic acid dissolved in water)						
3	С	95	☑A ammonia is a compound with the formula NH ₃ ☑B carbon dioxide is a compound with the formula CO ₂ ☑C fluorine is a diatomic element with the formula F ₂ ☑D methane is a compound with the formula CH ₄						
4	D	81	 ☒A number of electrons = no of protons in neutral atoms ☒B number of neutrons = mass number - atomic number ☒C number of protons = number of electrons in a neutral atom ☒D number of protons = number of electrons in a neutral atom 						
5	D	95	☑A Nitrogen (group 5) has the electron arrangement 2,5 ☑B Oxygen (group 6) has the electron arrangement 2,6 ☑C Fluorine (group 7) has the electron arrangement 2,7 ☑D Neon (group 0) has the electron arrangement 2,8						
6	A	76	Charge on ion = number of protons - number of electrons = 19-18 = +1						
7	A	70	☑A Metals have electrons which can jump from atom to atom ☑B Diagram shows a covalent molecular substance ☑C Diagram shows an ionic substance ☑D Diagram shows a covalent network substance						
8	D	65	Hydrocarbons burn in a plentiful supply of air to form carbon dioxide and water • methane is an alkane • alkanes are hydrocarbons						
9	A	81	gfm NH ₃ = (1×14) + (3×1) = 17g no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{1.7}{17}$ = 0.1mol						
10	С	72	☑A Metallic substance: conducts when solid and liquid ☑B Covalent substance: does not conduct when solid or liquid ☑C Ionic Substance: Does not conduct when solid but conducts when liquid ☑D Covalent Network: high melting point and does not conduct when solid or liquid						
11	D	77	Property Petroleum Gas Gasoline Kerosene Light gas Oil Heavy Gas Oil Residue Viscosity Low → High Evaporation Quickly → Slowly Flammability High → Low Boiling Point Low → High						
12	С	32	■ A Longest chain length incorrect (methyl side groups cannot be on Carbon no. 1) ■ B Longest chain length incorrect (ethyl side groups cannot be on Carbon no. 2) ■ C 2-methylbutane: methyl -CH3 group on carbon no. 2 of a 4 carbon main chain ■ D Numbering system is incorrect as side group must have lowest number possible						

12	_	67	\blacksquare A Cycloalkanes do not have a C=C double bond to decolourise bromine solution \blacksquare B Cycloalkenes do not have the general formula C_nH_{2n}							
13	13 D							olourise bromine	solution	
			☑D Alke	nes have gene	ral fo	ormula C _n H _{2n}	and C=C b	ond decolourises	bromine so	lution
				C ₄ H ₆			₅ H ₈	C ₆ H ₁₀)	
14	\mathcal{C}	87		7.0	C	orrect gener				
		0,				6 2n-2 = (2x5		If n=6 = 8 2n-2 = (2x6) -2 =	12-2 = 10	
								not an isomer of	heptane C_7	H ₁₆
15	В	73		nula = C7H16 ∴ 0		•			. ()	<i>~</i>
								so not an isomer		
				hol becomes to				so not an isomer	от пертапе	C7H16
	•					•		ntation stops at ^	13-15%	
16	Α	62		on dioxide is r		•		manon stops at	15-1576	
	• •			hol solution is		•				
								C=C double bond		
17		72						olecule leaving a C	=C double b	ond
17		72						er with water rem		
						•	_	s to become H ₂ O		ŭ
			Letter	Name of Pro	cess			Description		
			X	Distillatio	n	Separation of	compound	ls due to their diffe	erent boiling	points
18	D	70	y Cracking Breaking larger saturated hydrocarbons into smo				to smaller,			
			Z Polymerisation Joining up small monomers together to form large polymers						ners	
			☑A Amir	<u> </u>		th the NH2- o	roup and	-COOH group		
10	A	F O				-	•	t an hydroxyl -Ol	d group	
19	A	59	⊠ C Amir	no acids only h	ave o	ne amine -NH	12 group			
			⊠ D Amir	no acids only h	ave o	ne carboxyl -	-COOH gi	roup		
	_		T	ype of Lipid		Saturatio	n	Melting	Point	
20	$\boldsymbol{\mathcal{C}}$	58		Fat		more saturo	ated	highe	r	
				Oil		less satura	ted	lowe	r	
				Solution Ty	/pe		De	scription		
21	D	OF		Acidic Solu		Number of		> Number of O	H ⁻ ions	
21	В	95		Neutral Solu				= Number of O		
				Alkaline Solu	ıtion	Number of	f H⁺ ions	< Number of O	H ⁻ ions	
			≥ A non-	metal oxides l	ike co	arbon dioxide	dissolve	to form acids		
22		01		er (II) oxide i						
22		84	☑C metal oxides like potassium oxide dissolve to form alkalis							
			⋉ D non-	☑D non-metal oxides like nitrogen dioxide dissolve to form acids						
								$es \times 0.4$ mol l ⁻¹ = 0.1		
23	В	47		f mol = v olume						
	D	4/		f mol = volume					. mol	
		☑D no. of mol = volume × concentration = 0.2litres × 1mol l-1 = 0.2 mol								
	A	A 56		Solution		Туре	pН	Reaction with M		
24	24 A		<u> </u>	<u>Hydrochloric a</u>		strong acid	lower	faster		
				Ethanoic acid	t t	weak acid	higher	slower		

25	Α	95	☑A burns with a pop ∴hydrogen gas ☑B relights a glowing splint ∴oxygen gas ☑C turns damp pH paper red ∴sulphur dioxide/nitrogen dioxide/carbon dioxide ☑D turns lime water milky ∴carbon dioxide gas				
26	D	61	 ☑ A Electrons travel through the wires not the solution ☑ B Electrons travel through the wires not the solution ☑ C Electrons flow from the higher metal (zinc) to the lower metal (tin) ☑ D Electrons flow through the wires from the higher metal zinc to the lower tin 				
27	D	74	Order of metals in electrochemical series: Zinc Iron Tin Copper Copper is the closest metal to silver in the electrochemical series • Smallest voltage is obtained from the closest pairing				
28	D	75	A Aluminium is too reactive to be found uncombined (made by molten electrolysis) The Transistant and the found uncombined (made by molten electrolysis)				
29	С	70	 ☑A H⁺ ions are detected by universal indicator/pH paper turning red ☑B OH⁻ ions are detected by ferroxyl indicator turning pink (+pH paper turning blue) ☑C Fe²⁺ ions are detected by ferroxyl indicator turning blue ☑D Ferroxyl indicator and universal indicator do not detect Fe³⁺ ions 				
30	D	70	 ☑ A Painting provides a physical barrier to corrosion only ☑ B Greasing provides a physical barrier to corrosion only ☑ C Tin-plating has a physical barrier but tin does not sacrificially protect iron ☑ D Galvanising has a physical barrier and zinc sacrificially protects iron 				

	2008 Int2 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning						
1a	Transition metals	NameAlkali MetalsHalogensNoble gasesTransition MetalsLocationGroup 1Group 7Group 0Between Group 2 + 3						
1b(i)	29 34 29 36	No of protons = atomic number (lower number) No of neutrons = mass number (upper no.) - atomic number (lower no.)						
1b(ii)	Isotopes	Isotopes Same atomic number but different mass number Same number of protons but different number of neutrons						
2a	46	Problem Solving: Reading information from a graph						
2b(i)	9	Solubility at $60^{\circ}C$ =46g per 100cm^3 and solubility at $30^{\circ}C$ =37g per 100cm^3 Mass of solid potassium chloride formed = $46g$ – $37g$ = $9g$						
2b(ii)	Filtration	Solids can be separated from liquids by filtering. Solids remains in the filter paper (residue) and liquid goes through filter paper (filtrate)						
3a	$4N_2O + CH_4$ \downarrow $4N_2 + CO_2 + 2H_2O$	$4N_2O + CH_4 \longrightarrow 4N_2 + CO_2 + 2H_2O$						
3b	Catalyst in different state from reactants	Type of Catalyst Definition Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state from reactants						
3c	Products desorb from catalyst surface	Once the chemical reaction has taken place, the catalyst must release the products to allow next reaction to take place on the surface. • catalyst remains chemically unchanged throughout.						
3d	Poisons the catalyst	Catalysts get poisoned and stop working as the active sites on the catalyst surface get blocked up and this stops the reactants from adsorbing the catalyst surface.						
4a		Electrolysis used d.c. electricity to provide the energy to break compounds down into its constituent elements						
4b	Direction of electron flow remains the same	 D.C. electricity has a single direction of electron flow which means a constant positive and negative electrode. Positive ions (usually metal ions) move to the negative electrode and pick electrons to become atoms Negative ions move to the positive electrode to lose electrons and become an element again 						
4c(i)	positive negative Bubbles of gas Brown solid made	Positive electrode: $2Cl^- \rightarrow Cl_2 + 2e^-$ Negative electrode: $Cu^{2+} + 2e^- \rightarrow Cu$						
4c(ii)	Gas has distinctive chlorine smell (from swimming baths)	 Chlorine gas has a very distinctive smell, recognisable from the swimming baths Gas must be carefully wafted over your nose so not to breathe in too much of it. Chlorine can be detected because it bleaches blue litmus paper. 						

5α	tetrahedral	CFC molecule has similar in shape to methane					
5b(i)	1 from:	F F H F H F H F H F H F H F H F H F H F					
5b(ii)	chlorine						
5b(iii)	Shorter atmospheric life	The atmospheric life is linked to the number of chlorine atoms within the CFC compound.					
6a	hydroxyl	The hydroxyl group is the -OH group					
6b	H OH C C H H	H OH					
6c	Soluble in water	Poly(ethenol) is soluble in water due to hydrogen bonding between the -OH groups in poly(ethenol) and water					
7a	man-made or not natural	Synthetic materials are made by the chemical industry and are not made from natural materials					
7b	$C \leftarrow O - C \rightarrow$	The ester link is formed during a condensation between a hydroxyl grou and a carboxyl group. Water is removed as the groups join together.					
7c	Glycerol	Glycerol is also known as propane-1,2,3-triol H H H H H H H H H H H H H H H H H H H					
	C = C	Substance Types of bond present					
8a	Carbon – carbon double bond	propane C-H C-C C=C					

8b	Absorption peaks at a) 2800 - 3000 b) 3500 - 3700	4000 3600 3200 2800 2400 2000 1600 1200 wavenumber					
9a	Glucose	glucose starch + water nC ₆ H ₁₂ O ₆ (C ₆ H ₁₀ O ₅) _n + nH ₂ O					
9b	Iodine	Iodine solution turns blue-black in the presence of starch					
9c(i)	Line graph showing:	Correct Points (‡mark) Line drawn (‡mark)					
9c(ii)	80	$rate = \frac{1}{time} \qquad time = \frac{1}{rate} = \frac{1}{0.0125} = 80s$					
10a	shape of protein changes	Denaturing: specific shape of the protein is changed permanently					
10b	Use lime juice/acid	id Acid in lime juice changes the shape of the protein					
10c	Weak bonds	The bonds holding the protein shape together must be weak as proteins can be denatured relatively easily.					
10d	cooking temp (°C)	The hotter the temperature, the less time needed to denature the proteins and cook the protein.					
11a	1.62						
11b	Weigh clean beaker at start and end	The beaker will get lighter as the aluminium in the beaker is used up • aluminium metal atoms in the beaker turn into aluminium ions in the solution					
12a	Carbon dioxide	Sodium hydrogencarbonate will react with acid to release carbon dioxide					
12b	C ₆ H ₈ O ₇	$C_6H_8O_7$ $HOOC-CH_2-C(OH)(COOH)-CH_2-COOH \rightarrow C_6H_8O_7$					
12c	weak	Partial dissociation of COOH bonds is found in weak acids only.					
13a	Precipitation	$NaCO_{3(aq)} + SrS_{(aq)} \rightarrow Na_2S_{(aq)} + SrCO_{3(s)}$					
13b	ACID + METAL -> SALT + WATER + DIOXI						

13c	red colour	Flame Colours: page 6 of data book						
14a	To complete the circuit	Ions are able to move to complete the circuit						
14b(i)	Oxidation	Oxidation is Loss of 1	Electrons (electrons	s after the arrow on r	right hand side)			
14b(ii)	Aluminium hydroxide	$AI^{3+}(aq) + 3OH^{-}(aq) \longrightarrow AI^{3+}(OH^{-})_{3}(s)$						
	KMnO ₄	Write down Formulae of ions	Write down Valency below each ion	Put in Cross-over Arrows	Follow arrows to get formula			
15a		K⁺ MnO ₄ ⁻	K ⁺ MnO ₄ ⁻ 1 1	K MnO ₄	KMnO ₄			
15b	Releases oxygen when heated	Potassium permanganate is an oxidising agent which releases oxygen when heated.						
15c	Powders react too fast	Powders react much faster than lumps						