VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO

Esercizi

DISEQUAZIONI CON VALORE ASSOLUTO

<u>Esercizi</u>

EQUAZIONI CON VALORE ASSOLUTO

Data una qualsiasi espressione algebrica A(x), il suo <u>valore assoluto</u> |A(x)| dipende dal segno di A(x):

se
$$A(x) \ge 0$$

$$|A(x)| = A(x)$$

se
$$A(x) < 0$$

$$|A(x)| = -A(x)$$

cosa succede se dobbiamo risolvere delle equazioni in cui una o più espressioni contenenti l'incognita compaiono in *valore assoluto?*

Per risolvere queste equazioni è necessario studiare preliminarmente il segno di ciascuna espressione in cui compare il valore assoluto:

i valori che si possono attribuire all'incognita restano divisi in intervalli, in base al valore assoluto, e l'equazione data assume "forma diversa" nei suddetti intervalli!!

Esempio equazione con valore assoluto:

$$|x-1| = 4 - 2x$$

studiamo l'espressione con il v.a. |x-1|

quando $x-1 \ge 0$ ossia $x \ge 1$ il valore assoluto vale **X-1**

quando x-1<0 ossia x<1 il valore assoluto vale **-X+1**

quindi il valore assoluto |x-1| assume valori diversi nei due intervalli

e di conseguenza anche l'equazione assume "forme diverse" in ciascuno di questi intervalli:

quando $x \ge 1$ l'equazione diventa

$$x - 1 = 4 - 2x$$

quando x < 1 l'equazione diventa

$$-x + 1 = 4 - 2x$$

Perciò risolvere l'equazione con il valore assoluto

$$|x-1| = 4 - 2x$$

vuol dire risolvere due sistemi, contenenti le "forme diverse" dell'equazione negli intervalli determinati dal v.a.

$$\begin{cases} x \ge 1 \\ x - 1 = 4 - 2x \end{cases}$$

$$\begin{cases} x < 1 \\ -x + 1 = 4 - 2x \end{cases}$$

e la soluzione finale si ottiene unendo le soluzioni dei due sistemi

$$S = S_1 \cup S_2$$

risolviamo S_1

$$\begin{cases} x \ge 1 \\ x - 1 = 4 - 2x \end{cases}$$

$$\begin{cases} x \ge 1 \\ x + 2x = 4 + 1 \end{cases}$$

$$\begin{cases} x \ge 1 \\ 3x = 5 \end{cases}$$

$$\begin{cases} x \ge 1 \\ x = \frac{5}{3} \end{cases}$$

soluzione del sistema S_1 $x = \frac{5}{3}$

risolviamo S_2

$$\begin{cases} x < 1 \\ -x+1 = 4-2x \end{cases}$$

$$\begin{cases} x < 1 \\ -x+2x = 4-1 \end{cases}$$

$$\begin{cases} x < 1 \\ x = 3 \end{cases}$$

soluzione del sistema S_2 $\exists x \in \Re$ (impossibile; nessuna soluzione comune)

la <u>soluzione finale</u>: $S = S_1 \cup S_2 \Rightarrow x = \frac{5}{3}$

e se i valori assoluti nell'equazione sono due oppure più di due? Niente paura.. il ragionamento da seguire non cambia!! Si studiano i singoli v.a., si ricavano le "forme diverse" di equazioni e si ricavano i sistemi da risolvere!! Occhio, però, i sistemi da risolvere aumentano! L'unione di tutte le soluzioni dei sistemi determinerà la soluzione finale!

Esempio equazione con due valori assoluti:

$$|x| - 2|x + 3| = 0$$

studiamo il primo v.a. |x|

quando $x \ge 0$ il valore assoluto vale **X**

quando x < 0 il valore assoluto vale **-X**

quindi il valore assoluto |x| assume valori diversi nei due intervalli

studiamo il secondo v.a. |x+3|

quando $x+3 \ge 0$ ossia $x \ge -3$ il valore assoluto vale **X+3**

quando x+3<0 ossia x<-3 il valore assoluto vale **-X-3**

quindi il valore assoluto |x+3| assume valori diversi nei due intervalli

se consideriamo insieme i due valori assoluti e i loro intervalli si ricava

si può notare come l'equazione assume TRE "forme diverse" in tre intervalli

quando x < -3 l'equazione assume la forma -x-2(-x-3)=0

quando $-3 \le x < 0$ l'equazione assume la forma -x-2(x+3)=0

quando $x \ge 0$ l'equazione assume la forma **x-2(x+3)=0**

perciò dobbiamo studiare tre sistemi

$$\begin{cases} x < -3 \\ -x - 2(-x - 3) = 0 \end{cases} \begin{cases} -3 \le x < 0 \\ -x - 2(x + 3) = 0 \end{cases} \begin{cases} x \ge 0 \\ x - 2(x + 3) = 0 \end{cases}$$

e la soluzione finale si ricaverà unendo le soluzioni dei tre sistemi

$$S = S_1 \cup S_2 \cup S_3$$

risolviamo il primo sistema

$$\begin{cases} x < -3 \\ -x - 2(-x - 3) = 0 \end{cases}$$

$$\begin{cases} x < -3 \\ -x + 2x + 6 = 0 \end{cases}$$

$$\begin{cases} x < -3 \\ -x + 2x = -6 \end{cases}$$

$$\begin{cases} x < -3 \\ x = -6 \end{cases}$$

soluzione del sistema S_1 x = -6

risolviamo il secondo sistema

$$\begin{cases}
-3 \le x < 0 \\
-x - 2(x+3) = 0
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-x - 2x - 6 = 0
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-x - 2x = 6
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-3 \le x < 0
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-3x = 6
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-3x = 6
\end{cases}$$

soluzione del sistema S_2 x = -2

risolviamo il terzo sistema

$$\begin{cases} x \ge 0 \\ x - 2(x+3) = 0 \end{cases}$$

$$\begin{cases} x \ge 0 \\ x - 2x - 6 = 0 \end{cases}$$

$$\begin{cases} x \ge 0 \\ -x = 6 \end{cases}$$

$$\begin{cases} x \ge 0 \\ x = -6 \end{cases}$$

soluzione del sistema S_3 $\exists x \in \Re$ (impossibile; nessuna soluzione comune)

la soluzione finale: $S = S_1 \cup S_2 \cup S_3 \Rightarrow x = -6 \cup x = -2$

esercizi

DISEQUAZIONI CON VALORE ASSOLUTO

Data una qualsiasi espressione algebrica A(x), il suo valore assoluto |A(x)| dipende dal segno di A(x):

se
$$A(x) \ge 0$$

$$|A(x)| = A(x)$$

se
$$A(x) \ge 0$$

$$|A(x)| = A(x)$$
se $A(x) < 0$
$$|A(x)| = -A(x)$$

cosa succede se dobbiamo risolvere delle disequazioni in cui una o più espressioni contenenti l'incognita compaiono in valore assoluto?

Per risolvere queste disequazioni è necessario studiare preliminarmente il segno di ciascuna espressione in cui compare il valore assoluto:

i valori che si possono attribuire all'incognita restano divisi in intervalli, in base al valore assoluto, e la diseguazione data assume "forma diversa" nei suddetti intervalli!!

Esempio diseguazione con valore assoluto:

$$|x-1| > 4-2x$$

studiamo l'espressione con il v.a. |x-1|

quando $x-1 \ge 0$ ossia $x \ge 1$ il valore assoluto vale **X-1**

quando x-1<0 ossia x<1 il valore assoluto vale **-X+1**

quindi il valore assoluto |x-1| assume valori diversi nei due intervalli

e di conseguenza anche la disequazione assume "forme diverse" in ciascuno di questi intervalli:

quando $x \ge 1$ la disequazione diventa

$$x - 1 > 4 - 2x$$

quando x < 1 la disequazione diventa

$$-x + 1 > 4 - 2x$$

Perciò risolvere la disequazione con il valore assoluto

$$|x-1| > 4 - 2x$$

vuol dire risolvere due sistemi, contenenti le "forme diverse" della disequazione negli intervalli determinati dal v.a.

$$\begin{cases} x \ge 1 \\ x - 1 > 4 - 2x \end{cases}$$

$$\begin{cases} x < 1 \\ -x + 1 > 4 - 2x \end{cases}$$

e la soluzione finale si ottiene unendo le soluzioni dei due sistemi

$$S = S_1 \cup S_2$$

risolviamo S_1

$$\begin{cases} x \ge 1 \\ x - 1 > 4 - 2x \end{cases}$$

$$\begin{cases} x \ge 1 \\ x + 2x > 4 + 1 \end{cases}$$

$$\begin{cases} x \ge 1 \\ 3x > 5 \end{cases}$$

$$\begin{cases} x \ge 1 \\ x > \frac{5}{3} \end{cases}$$

soluzione del sistema S_1 $x > \frac{5}{3}$

risolviamo S_2

$$\begin{cases} x < 1 \\ -x+1 > 4-2x \end{cases}$$

$$\begin{cases} x < 1 \\ -x+2x > 4-1 \end{cases}$$

$$\begin{cases} x < 1 \\ x > 3 \end{cases}$$

soluzione del sistema S_2 $\exists x \in \Re$ (impossibile; nessuna soluzione comune)

la <u>soluzione finale</u>: $S = S_1 \cup S_2 \Rightarrow x > \frac{5}{3}$

e se i valori assoluti nella disequazione sono due? E se sono più di due?

Niente paura.. il ragionamento da seguire non cambia!! Si studiano i singoli v.a., si ricavano le "forme diverse" di diseguazioni e si ricavano i sistemi da risolvere!! Occhio, però, i sistemi da risolvere aumentano! L'unione di tutte le soluzioni dei sistemi determinerà la soluzione finale!

Esempio disequazione con due valori assoluti:

$$|x| - 2|x + 3| < 0$$

studiamo il primo v.a. |x|

quando $x \ge 0$ il valore assoluto vale **X**

quando x < 0 il valore assoluto vale **-X**

quindi il valore assoluto |x| assume valori diversi nei due intervalli

studiamo il secondo v.a. |x+3|

quando $x+3 \ge 0$ ossia $x \ge -3$ il valore assoluto vale **X+3**

quando x+3<0 ossia x<-3 il valore assoluto vale **-X-3**

quindi il valore assoluto |x+3| assume valori diversi nei due intervalli

se consideriamo insieme i due valori assoluti e i loro intervalli si ricava

si può notare come la disequazione assume TRE "forme diverse" in tre intervalli

quando x < -3 la disequazione assume la forma -x-2(-x-3)<0

quando $-3 \le x < 0$ la disequazione assume la forma -x-2(x+3)<0

quando $x \ge 0$ la disequazione assume la forma **x-2(x+3)<0**

perciò dobbiamo studiare tre sistemi

$$\begin{cases} x < -3 & \begin{cases} -3 \le x < 0 \\ -x - 2(-x - 3) < 0 \end{cases} & \begin{cases} -3 \le x < 0 \\ -x - 2(x + 3) < 0 \end{cases} & \begin{cases} x \ge 0 \\ x - 2(x + 3) < 0 \end{cases}$$

$$S = S_1 \cup S_2 \cup S_3$$

risolviamo il primo sistema

$$\begin{cases} x < -3 \\ -x - 2(-x - 3) < 0 \end{cases}$$

$$\begin{cases} x < -3 \\ -x + 2x + 6 < 0 \end{cases}$$

$$\begin{cases} x < -3 \\ -x + 2x < -6 \end{cases}$$

$$\begin{cases} x < -3 \\ x < -6 \end{cases}$$

soluzione del sistema S_1 x < -6

risolviamo il secondo sistema

$$\begin{cases}
-3 \le x < 0 \\
-x - 2(x + 3) < 0
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-x - 2x - 6 < 0
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-x - 2x < 6
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
-3x < 6
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
x > -\frac{6}{3}
\end{cases}$$

$$\begin{cases}
-3 \le x < 0 \\
x > -2
\end{cases}$$

risolviamo il terzo sistema

$$\begin{cases} x \ge 0 \\ x - 2(x+3) < 0 \end{cases}$$

$$\begin{cases} x \ge 0 \\ x - 2x - 6 < 0 \end{cases}$$

$$\begin{cases} x \ge 0 \\ -x < 6 \end{cases}$$

$$\begin{cases} x \ge 0 \\ x > -6 \end{cases}$$

soluzione del sistema S_3 $x \ge 0$

la <u>soluzione finale</u>: $S = S_1 \cup S_2 \cup S_3 \Rightarrow x < -6 \cup -2 < x < 0 \cup x \ge 0 \Rightarrow x < -6 \cup x > -2$

ESERCIZI: disequazioni con v.a.

Risolviamo insieme una disequazione con il valore assoluto! Non ricordi la teoria?!? No problem.. un ripasso sicuramente non fa male! teoria

Disequazione:

$$\left| x^2 - 5x + 6 \right| \le \left| x - 3 \right|$$

analizziamo il primo valore assoluto $|x^2 - 5x + 6|$

ossia

analizziamo il secondo valore assoluto |x-3|

prova a determinare il suo valore in modo autonomo.. e poi confronta il risultato ottenuto con quello riportato

adesso bisogna creare il grafico per individuare gli intervalli

Quanti sistemi si formano per la risoluzione della nostra disequazione?

Hai detto TRE?? BRAVO!!!

IMPOSTA I TRE SISTEMI.. E POI VERIFICA SE SONO CORRETTI!

$$S_1 \qquad \begin{cases} x \le 2 \\ x^2 - 5x + 6 \le -x + 3 \end{cases}$$

$$S_2 \qquad \begin{cases} 2 < x < 3 \\ -x^2 + 5x - 6 \le -x + 3 \end{cases}$$

$$S_3 \qquad \begin{cases} x \ge 3 \\ x^2 - 5x + 6 \le x - 3 \end{cases}$$

adesso bisogna risolvere i sistemi!!

Soluzioni:

$$S_1 \Longrightarrow 1 \le x \le 2$$

$$S_2 \Rightarrow 2 < x < 3$$

$$S_3 \Rightarrow 3 \le x \le 4$$

se uniamo le soluzioni ottenute determiniamo la soluzione della disequazione:

$$S = 1 \le x \le 4$$

hai ottenuto lo stesso risultato??

Bravo..

Non hai ottenuto lo stesso risultato?? Controlla bene i calcoli.. e non perderti d'animo! Sei ugualmente bravo!!

Adesso tocca a te..

risolvere le seguenti disequazioni con v.a.

a)
$$|x-4| > -2x+1$$

b)
$$x^2 - 1 > |x^2 - 5x + 1| - 2$$

c)
$$|x^2 - 2x| \le 2|x| - 3$$