Лабораторная работа №2

Измерение и тестирование пропускной способности сети. Интерактивный эксперимент

Тазаева Анастасия Анатольевна

Содержание

2	Задание											
3	Выполнение лабораторной работы	8										
	3.1 Установка необходимого программного обеспечения	8										
	3.2 Интерактивные эксперименты	11										
4	Выводы	26										

Список иллюстраций

3.1	подключение к mininet через хостовой терминал	Ö
3.2	ifconfig	9
3.3	Обновление репозиториев ПО	9
3.4	Установка iperf3	10
3.5	Установка доп. ПО	10
3.6	Установка iperf3_plotter. git clone	11
3.7	Установка iperf3_plotter. перенос файлов	11
3.8	Попытка задать топологию. Ошибка	12
3.9	Исправление ошибки	12
3.10	Создание топологии	13
3.11	Терминалы	13
	Параметры топологии	14
	Запуск сервера iperf3	14
	Запуск клиента iperf3	14
3.15	Запуск сервера и клиента iperf3 в интерфейсе mininet. Измерение	
	пропускной способности	15
3.16	Остановка серверного процесса в интерфейсе mininet	16
3.17	Измерение пропускной способности. Опция -t	16
	Измерение пропускной способности. Опция -i. Запуск сервера	17
3.19	Измерение пропускной способности. Опция -i. Запуск клиента	17
	Измерение пропускной способности. Опция -п. Запуск клиента	17
3.21	Измерение пропускной способности. Опция -u. Запуск клиента	18
3.22	Измерение пропускной способности. Опция -р. Запуск сервера	19
3.23	Измерение пропускной способности. Опция -р. Запуск клиента	19
3.24	Измерение пропускной способности. Опция -1. Запуск сервера	20
3.25	Измерение пропускной способности. Опция -J. Запуск клиента	20
3.26	Перенаправление вывода в файл	21
3.27	Проверка создания файла с выводом информации	21
3.28	Изменение прав доступа к файлу JSON	21
3.29	Генерация выходных данных для файла JSON	21
3.30	Файлы с графиками	22
3.31	cwnd.pdf	22
3.32	retransmits.pdf	23
	RTT.pdf	23
	RTT_Var.pdf	24
	throughput.pdf	24
	MTU.pdf	25

3.37 bytes.pdf .	 															. ,		25	5
<i>J</i> 1																			

Список таблиц

1 Цель работы

Основной целью работы является знакомство с инструментом для измерения пропускной способности сети в режиме реального времени — iPerf3, а также получение навыков проведения интерактивного эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.

2 Задание

- 1. Установить на виртуальную машину mininet iPerf3 и дополнительное программное обеспечение для визуализации и обработки данных.
- 2. Провести ряд интерактивных экспериментов по измерению пропускной способности с помощью iPerf3 с построением графиков.

3 Выполнение лабораторной работы

3.1 Установка необходимого программного обеспечения

- 1. Запустила виртуальную среду с mininet.
- 2. Из основной ОС подключилась к виртуальной машине (рис. 3.1) с помощью команды ssh -Y mininet@192.168.56.101.

```
[aatazaeva@aatazaeva ~]$ ssh -Y mininet@192.168.56.101

welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-42-generic x86_64)

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

New release '22.04.5 LTS' available.

Run 'do-release-upgrade' to upgrade to it.

Last login: Wed Nov 20 05:16:09 2024
```

Рис. 3.1: Подключение к mininet через хостовой терминал

3. Проверила IP-адреса машины ifconfig (рис. 3.2), адрес NAT активен.

```
mininet@mininet-vm:~$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.56.101 netmask 255.255.255.0 broadcast 192.168.56.255
        ether 08:00:27:99:90:2a txqueuelen 1000 (Ethernet)
        RX packets 42 bytes 9118 (9.1 KB)
        RX errors 0 dropped 0 overruns 0
        TX packets 34 bytes 7377 (7.3 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 10.0.2.15 netmask 255.255.255.0 broadcast 10.0.2.255
        ether 08:00:27:al:13:d3 txqueuelen 1000 (Ethernet)
        RX packets 105 bytes 20977 (20.9 KB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 125 bytes 11859 (11.8 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        loop txqueuelen 1000 (Local Loopback)
        RX packets 28 bytes 2912 (2.9 KB)
        RX errors 0 dropped 0 overruns 0
                                              frame 0
        TX packets 28 bytes 2912 (2.9 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Рис. 3.2: ifconfig

4. Обновила репозитории ПО на виртуальной машине (рис. 3.3): sudo apt-get update.

```
mininet@mininet-vm:-$ sudo apt-get update

Get:1 http://security.ubuntu.com/ubuntu focal-security InRelease [128 kB]

Get:2 http://security.ubuntu.com/ubuntu focal-security/main i386 Packages [834 k B]

Hit:3 http://us.archive.ubuntu.com/ubuntu focal InRelease

Get:4 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]

Get:5 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [3,30 2 kB]

Get:6 http://security.ubuntu.com/ubuntu focal-security/main Translation-en [484 kB]

Get:7 http://security.ubuntu.com/ubuntu focal-security/main amd64 c-n-f Metadata [14.3 kB]

Get:8 http://security.ubuntu.com/ubuntu focal-security/restricted amd64 Packages [3,247 kB]

Get:9 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease [128 kB]

Get:10 http://security.ubuntu.com/ubuntu focal-security/restricted i386 Packages [38.6 kB]

Get:11 http://security.ubuntu.com/ubuntu focal-security/restricted Translation-e
```

Рис. 3.3: Обновление репозиториев ПО

5. Установила iperf3 (рис. 3.4): sudo apt-get install iperf3.

```
mininet@mininet-vm:-$ sudo apt-get install iperf3
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
libiperf0 libsctp1
Suggested packages:
   lksctp-tools
The following NEW packages will be installed:
  iperf3 libiperf0 libsctp1
0 upgraded, 3 newly installed, 0 to remove and 391 not upgraded.
Need to get 94.1 kB of archives.
After this operation, 331 kB of additional disk space will be used.
Do you want to continue? [Y/n]
Get:1 http://us.archive.ubuntu.com/ubuntu focal/main amd64 libsctp1 amd64 1.0.18
+dfsg-1 [7,876 B]
Get:2 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 libiperf0 amd64 3
.7-3 [72.0 kB]
Get:3 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 iperf3 amd64 3.7-
3 [14.2 kB]
Fetched 94.1 kB in 1s (125 kB/s)
Selecting previously unselected package libsctp1:amd64.
(Reading database ... 102146 files and directories currently installed.)
Preparing to unpack .../libsctp1_1.0.18+dfsg-1_amd64.deb ...
Unpacking libsctp1:amd64 (1.0.18+dfsg-1) ...
Selecting previously unselected package libiperf0:amd64.
Preparing to unpack .../libiperf0_3.7-3_amd64.deb ...
Unpacking libiperf0:amd64 (3.7-3) ...
Selecting previously unselected package iperf3.
Preparing to unpack .../iperf3_3.7-3_amd64.deb ...
Unpacking iperf3 (3.7-3) ...
Setting up libsctp1:amd64 (1.0.18+dfsg-1) ...
Setting up libiperf0:amd64 (3.7-3) ...
Setting up iperf3 (3.7-3) ...
Processing triggers for man-db (2.9.1-1) ...
Processing triggers fo<u>r</u> libc-bin (2.31-0ubuntu9)
```

Рис. 3.4: Установка iperf3

- 6. Установила необходимое дополнительное ПО на виртуальную машину (рис.
 - 3.5): sudo apt-get git jq gnuplot-nox evince.

```
mininet@mininet-vm:-$ sudo apt-get install git jq gnuplot-nox evince
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
    agifn aspell aspell-en bubblewrap enchant-2 evince-common fonts-liberation
    gnome-desktop3-data gnuplot-data groff hunspell-en-us imagemagick
    imagemagick-6.q16 libarchive13 libaspell15 libdjvulibre-text libdjvulibre21
    libenchant-2-2 libeydocument3-4 libevview3-3 libgnome-desktop-3-19
    libgspell-1-2 libgspell-1-common libgxps2 libhunspell-1.7-0 libilmbase24
    libjq1 libkpathsea6 liblua5.3-0 libmagickcore-6.q16-6-extra
    libnautilus-extension1a libnetpbm10 libnspr4 libnss3 libonig5 libopenexr24
    libpoppler-glib8 libpoppler97 libsecret-1-0 libsecret-common libspectre1
    libsynctex2 libwmf0.2-7 netpbm psutils
Suggested packages:
    aspell-doc spellutils gvfs nautilus-sendto unrar git-daemon-run
    | git-daemon-sysvinit git-doc git-el git-email git-gui gitweb git-cvs
    git-mediawiki git-svn gnuplot-doc hunspell openoffice.org-hunspell
    | openoffice.org-core imagemagick-doc autotrace cups-bsd | lpr | lprng curl
    enscript ffmpeg gimp grads graphviz hp2xx html2ps libwmf-bin mplayer povray
    radiance sane-utils texlive-base-bin transfig ufraw-batch xdg-utils lrzip
    libenchant-2-voikko inkscape libjxr-tools libwmf0.2-7-gtk
The following NEW packages will be installed:
```

Рис. 3.5: Установка доп. ПО

7. Установила iperf3_plotter, сначала скачав репозиторий во временный каталог(рис. 3.6), а потом перенесла исполняемые файлы в папку /usr/bin (рис. 3.7).

```
mininet@mininet-vm:-$ cd /tmp/
mininet@mininet-vm:/tmp$ git clone https://github.com/ekfoury/iperf3_plotter.git
Cloning into 'iperf3_plotter'...
remote: Enumerating objects: 74, done.
remote: Total 74 (delta 0), reused 0 (delta 0), pack-reused 74 (from 1)
Unpacking objects: 100% (74/74), 100.09 KiB | 1.01 MiB/s, done.
```

Рис. 3.6: Установка iperf3_plotter. git clone

```
mininet@mininet-vm:/tmp$ pd iperf3_plotter/
mininet@mininet-vm:/tmp/iperf3_plotter$ sudo cp plot_* /usr/bin
mininet@mininet-vm:/tmp/iperf3_plotter$ sudo *.sh /usr/bin
sudo: fairness.sh: command not found
mininet@mininet-vm:/tmp/iperf3_plotter$ sudo cp *.sh /usr/bin
```

Рис. 3.7: Установка iperf3_plotter. перенос файлов

3.2 Интерактивные эксперименты

1. Попыталась задать простейшую топологию из двух хостов и коммутатора. Появилась ошибка X11 connection rejected because of wrong authentification (рис. 3.8). Исправила её (рис. 3.9) и повторно задала простейшую топологию (рис. 3.10): sudo mn --topo=single, 2 -x. Открылись 4 терминала (рис. 3.11): два хоста, коммутатор и контроллера. Терминалы коммутатора и контроллера нам не понадобятся, потому их просто закрыла.

```
nininet@mininet-vm:~$ sudo mn --topo=single,2 -x
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2
*** Adding switches:
s1
*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Running terms on localhost:10.0
*** Starting controller
c0 X11 connection rejected because of wrong authentication.
X11 connection rejected because of wrong authentication.
*** Starting 1 switches
*** Starting CLI:
mininet> X11 connection rejected because of wrong authentication.
X11 connection rejected because of wrong authentication.
mininet> exit
```

Рис. 3.8: Попытка задать топологию. Ошибка

```
mininet@mininet-vm:-$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 9925602c91066c4ff237df7b54d3c177
mininet@mininet-vm:-$ sudo -i
root@mininet-vm:-$ sudo list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 ac5c4991c2d28ac1b8128bae87bcf379
root@mininet-vm:-# xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 9925602c91
066c4ff237df7b54d3c177
root@mininet-vm:-# xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 9925602c91066c4ff237df7b54d3c177
root@mininet-vm:-# logout
```

Рис. 3.9: Исправление ошибки

```
mininet@mininet-vm:~$ sudo mn --topo=single,2 -x
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2
*** Adding switches:
*** Adding links:
(h1, s1) (h2, s1)
*** Configuring hosts
h1 h2
*** Running terms on localhost:10.0
*** Starting controller
c0
*** Starting 1 switches
*** Starting CLI:
mininet>
```

Рис. 3.10: Создание топологии

Рис. 3.11: Терминалы

2. Посмотрела параметры запущенной в интерактивном режиме топологии (рис. 3.12).

```
mininet> net
h1 h1-eth0:s1-eth1
h2 h2-eth0:s1-eth2
s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0
c0
mininet> links
h1-eth0<->s1-eth1 (OK OK)
h2-eth0<->s1-eth2 (OK OK)
mininet> dump
<Host h1: h1-eth0:10.0.0.1 pid=4677>
<Host h2: h2-eth0:10.0.0.2 pid=4679>
<OVSSwitch s1: lo:127.0.0.1;s1-eth1:None,s1-eth2:None pid=4684>
<Controller c0: 127.0.0.1:6653 pid=4670>
```

Рис. 3.12: Параметры топологии

3. Провела простейший интерактивный эксперимент по измерению пропускной способности с помощью iperf3. Для этого сначала в терминале хоста 2 h2 запустила *сервер* iperf3 (рис. 3.13): iperf3 -s. После запуска этой команды хост перешел в режим прослушивания 5201-го порта в ожидании входящих подключений. Далее после запуска сервера в терминале хоста 1 h1 запустила *клиент* iperf3 (рис. 3.14): iperf3 -c 10.0.0.2.

```
"host:h2"(Ha mininet-vm)
root@mininet-vm:/home/mininet# iperf3 -s
warning: this system does not seem to support IPv6 - trying IPv4
Server listening on 5201
```

Рис. 3.13: Запуск сервера iperf3

```
"host: h1" (Ha mininet-vm)
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2
   nnecting to host 10.0.0.2, port 5201
7] local 10.0.0.1 port 50700 connected to 10.0.0.2 port 5201
[D] Interval Transfer Bitrate Retr Cwn
Connecting to host 10.0.0.2,
  ID] Interval
                                                                                 Cwnd
                          sec 4.21 GBytes
sec 4.29 GBytes
sec 3.92 GBytes
                                                   36.1 Gbits/sec
36.9 Gbits/sec
          0.00-1.00
                                                                                  22.3 MBytes
                                                                                 22.3 MBytes
22.3 MBytes
   7]
          1.00-2.00
          2.00-3.00
                                                   33.6 Gbits/sec
                                                   34.2 Gbits/sec
33.0 Gbits/sec
                                                                                 22.3 MBytes
22.3 MBytes
          3.00-4.00
                           sec
                                 3.97 GBytes
                                 3.84 GBytes
   71
          4.00-5.00
                          sec
          5.00-6.00
                                 3.91 GBytes
                                                                                  22.3 MBytes
                          sec
                                                   33.5 Gbits/sec
          6.00-7.00
7.00-8.00
                                                                                 22.3 MBytes
22.3 MBytes
                           sec
                                 3.92 GBytes
                                                   33.7 Gbits/sec
                                 3.91 GBytes
                                                   33.6 Gbits/sec
                          sec
          8.00-9.00
                                  4.24 GBytes
                                                   36.4 Gbits/sec
                          sec
   71
          9.00-10.00 sec
                                 4.42 GBytes
                                                   37.9 Gbits/sec
                                                                                 22.3 MBytes
  ID] Interval
                                                   Bitrate
          0.00-10.00 sec 40.6 GBytes 34.9 Gbits/sec 0.00-10.00 sec 40.6 GBytes 34.9 Gbits/sec
                                                                                               sender
                                                                                               receiver
iperf Done.
root@mininet-vm:/home/mininet#
```

Рис. 3.14: Запуск клиента iperf3

Начался тест с измерением пропускной способности, который длился 10 секунд по умолчанию. В итоге мы получили следующие данные: - ID: идентификационный номер соединения. - интервал (Interval): временной интервал для периодических отчетов о пропускной способности (по умолчанию временной интервал равен 1 секунде); - передача (Transfer): сколько данных было передано за каждый интервал времени; - пропускная способность (Bitrate): измеренная пропускная способность в каждом временном интервале; - Retr: количество повторно переданных TCP-сегментов за каждый временной интервал (это поле увеличивается, когда TCP-сегменты теряются в сети из-за перегрузки или повреждения); - Cwnd: указывает размер окна перегрузки в каждом временном интервале (TCP использует эту переменную для ограничения объёма данных, которые TCP-клиент может отправить до получения подтверждения отправленных данных). Суммарные данные на сервере аналогичны данным на стороне клиента iPerf3 и должны интерпретироваться таким же образом.

4. Провела аналогичный эксперимент только в интерфейсе mininet (рис. 3.15 и 3.16).

```
mininet> h1 iperf3 -c h2
Connecting to host 10.0.0.2, port 5201
     local 10.0.0.1 port 50704 connected to 10.0.0.2 port 5201
 ID] Interval
                            Transfer
                                            Bitrate
                                                                      Cwnd
                     sec 4.39 GBytes 37.7 Gbits/sec
sec 4.35 GBytes 37.4 Gbits/sec
sec 4.29 GBytes 36.8 Gbits/sec
        0.00-1.00
                                                                      8.30 MBytes
        1.00-2.00
                                                                      8.30 MBytes
        2.00-3.00
                                                                      8.30 MBytes
                      sec 4.27 GBytes 36.7 Gbits/sec
                                                                      8.30 MBytes
        3.00-4.00
                            4.29 GBytes
                                           36.8 Gbits/sec
                                                                      8.30 MBytes
        4.00-5.00
                      sec
        5.00-6.00
                            4.29 GBytes 36.9 Gbits/sec
                                                                      8.30 MBytes
                            4.36 GBytes 37.5 Gbits/sec
4.33 GBytes 32.2 Gbits/sec
        6.00-7.00
                                                                      8.30 MBytes
                                                                      8.30 MBytes
        7.00-8.00
                                                                      8.30 MBytes
        8.00-9.00
                            4.27 GBytes 36.7
        9.00-10.00 sec 4.38 GBytes 37.6 Gbits/sec
                                                                      8.30 MBytes
  ID] Interval
                            Transfer
                                                              Retr
        0.00-10.00 sec 43.2 GBytes 37.1 Gbits/sec 0.00-10.00 sec 43.2 GBytes 37.1 Gbits/sec
                                                                                  sender
                                                                                  receiver
```

Рис. 3.15: Запуск сервера и клиента iperf3 в интерфейсе mininet. Измерение пропускной способности

Рис. 3.16: Остановка серверного процесса в интерфейсе mininet

5. Для указания iPerf3 периода времени для передачи можно использовать ключ -t (или -time) — время в секундах для передачи (по умолчанию 10 секунд). Сначала запустила сервер. Далее запустила клиент iPerf3 с параметром -t, за которым следует количество секунд (рис. 3.17): iperf3 -c 10.0.0.2 -t 5

```
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -t 5
Connecting to host 10.0.0.2, port 5201
[ 7] local 10.0.0.1 port 50708 connected to 10.0.0.2 port 5201
          Interval Transfer Bitrate
0.00-1.00 sec 4.30 GBytes 37.0 Gbits/sec
1.00-2.00 sec 4.22 GBytes 36.3 Gbits/sec
2.00-3.00 sec 4.19 GBytes 36.0 Gbits/sec
3.00-4.00 sec 4.25 GBytes 36.5 Gbits/sec
4.00-5.00 sec 4.35 GBytes 37.4 Gbits/sec
  ID] Interval
                                       Transfer
                                                           Bitrate
                                                                                               8.01 MBytes
                                                                                               8.01 MBytes
   7]
                                                                                               8.01 MBytes
                                      Transfer
                                                           Bitrate
[ ID] Interval
           0.00-5.00 sec 21.3 GBytes 36.6 Gbits/sec 0.00-5.00 sec 21.3 GBytes 36.6 Gbits/sec
                                                                                                               sender
                                                                                                               receiver
   7]
iperf Done
root@mininet-vm:/home/mininet#
```

Рис. 3.17: Измерение пропускной способности. Опция -t

6. Настроила клиент iPerf3 для выполнения теста пропускной способности с 2-секундным интервалом времени отсчёта как на клиенте, так и на сервере. Использовала опцию -і для установки интервала между отсчётами, измеряемого в секундах:

- В терминале h2 запустила сервер iPerf3 (рис. 3.18): iperf3 -s -i 2
- В терминале h1 запустила клиент iPerf3 (рис. 3.19): iperf3 -c 10.0.0.2 -i 2

Рис. 3.18: Измерение пропускной способности. Опция -і. Запуск сервера

```
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -i 2
Connecting to host 10.0.0.2, port 5201

[ 7] local 10.0.0.1 port 50712 connected to 10.0.0.2 port 5201
                                                                                                                     Retr Cwnd
   ID] Interval

        Interval
        Transfer
        Bitrate
        Retr

        0.00-2.00
        sec
        8.75 GBytes
        37.5 Gbits/sec
        11

        2.00-4.00
        sec
        8.97 GBytes
        38.5 Gbits/sec
        0

        4.00-6.00
        sec
        8.92 GBytes
        38.3 Gbits/sec
        0

        6.00-8.00
        sec
        9.13 GBytes
        39.3 Gbits/sec
        0

        8.00-10.00
        sec
        9.16 GBytes
        39.3 Gbits/sec
        0

                                                     Transfer
                                                                                  Bitrate
                                                                                                                                  4.16 MBytes
                                                                                                                                  4.17 MBytes
                                                                                                                                 4.18 MBytes
                                                                                                                                 4.19 MBytes
   ID] Interval
                                                     Transfer
                                                                                  Bitrate
                                                                                                                     Retr
                0.00-10.00 sec 44.9 GBytes 38.6 Gbits/sec 11
                                                                                                                                                        sender
                0.00-10.00 sec 44.9 GBytes 38.6 Gbits/sec
                                                                                                                                                        receiver
iperf Done.
```

Рис. 3.19: Измерение пропускной способности. Опция -і. Запуск клиента

Как мы видим ничего, кроме интервала не поменялось. Общее кол-во переданных данных и пропускная способность не поменялись.

- 7. Задала на клиенте iPerf3 отправку определённого объёма данных. Использовала опцию -n для установки количества байт для передачи:
- В терминале h2 запустила сервер iPerf3: iperf3 -s
- В терминале h1 запустила клиент iPerf3, задав объём данных 16 Гбайт (рис. 3.20): iperf3 -c 10.0.0.2 -n 16G

Рис. 3.20: Измерение пропускной способности. Опция - п. Запуск клиента

По умолчанию iPerf3 выполняет измерение пропускной способности в течение 10 секунд, но при задании количества данных для передачи клиент iPerf3 будет продолжать отправлять пакеты до тех пор, пока не будет отправлен весь объем данных, указанный пользователем.

- 8. Изменила в тесте измерения пропускной способности iPerf3 протокол передачи данных с TCP (установлен по умолчанию) на UDP. iPerf3 автоматически определяет протокол транспортного уровня на стороне сервера. Для изменения протокола использовала опцию -и на стороне клиента iPerf3:
- В терминале h2 запустила сервер iPerf3: iperf3 -s
- В терминале h1 запустила клиент iPerf3, задав протокол UDP (рис. 3.21): iperf3 -c 10.0.0.2 -u

После завершения теста отобразились следующие сводные данные: - ID, интервал, передача, битрейт: то же, что и у TCP. - Jitter: разница в задержке пакетов. - Lost/Total: указывает количество потерянных дейтаграмм по сравнению с общим количеством отправленных на сервер (и процентное соотношение).

```
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -u
Connecting to host 10.0.0.2, port 5201
[ 7] local 10.0.0.1 port 34130 connected to 10.0.0.2 port 5201
  .
Total Datagrams
                               127 KBytes 1.05 Mbits/sec
129 KBytes 1.05 Mbits/sec
127 KBytes 1.05 Mbits/sec
129 KBytes 1.05 Mbits/sec
129 KBytes 1.04 Mbits/sec
129 KBytes 1.05 Mbits/sec
          4.00-5.00
5.00-6.00
                          sec
   7]
7]
7]
7]
          6.00-7.00
         7.00-8.00 sec
8.00-9.00 sec
9.00-10.00 sec
   7]
[ ID] Interval
                                                                                   Lost/Total Datag
_...เร
[ 7]
er
         0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.000 ms 0/906 (0%) send
         0.00-10.00 sec 1.25 MBytes 1.05 Mbits/sec 0.013 ms 0/906 (0%) rece
iperf Done.
```

Рис. 3.21: Измерение пропускной способности. Опция - и. Запуск клиента

- 9. В тесте измерения пропускной способности iPerf3 изменила номер порта для отправки/получения пакетов или датаграмм через указанный порт. Использовала для этого опцию -p:
- В терминале h2 запустила сервер iPerf3, используя параметр -р, чтобы указать порт прослушивания (рис. 3.22): iperf3 -s -p 3250
- В терминале h1 запустила клиент iPerf3, указав порт (рис. 3.23): iperf3 -с 10.0.0.2 -р 3250

Рис. 3.22: Измерение пропускной способности. Опция -р. Запуск сервера

```
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -p 3250
Connecting to host 10.0.0.2, port 3250
[ 7] local 10.0.0.1 port 46254 connected to 10.0.0.2 port 3250
            nterval Transfer
0.00-1.00 sec 4.38 GBytes
1.00-2.00 sec 4.36 GBytes
2.00-3.00 sec 4.41 GBytes
  ID] Interval
                                                             Bitrate
                                                             37.7 Gbits/sec
                                                                                                8.18 MBytes
8.18 MBytes
                                                             37.4 Gbits/sec
                                                             37.9 Gbits/sec
                                                                                                 8.18 MBytes
    7]
7]
                              sec 4.42 GBytes
sec 4.37 GBytes
                                                             37.9 Gbits/sec
37.5 Gbits/sec
            3.00-4.00
                                                                                                 8.18 MBvtes
            4.00-5.00
                                                                                                 8.18 MBytes
    7]
7]
7]
7]
            5.00-6.00
                               sec 4.35 GBytes
                                                             37.4 Gbits/sec
                                                                                                 8.18 MBytes
          6.00-7.00 sec 4.45 GBytes 38.2 Gbits/sec
7.00-8.00 sec 4.44 GBytes 38.1 Gbits/sec
8.00-9.00 sec 4.33 GBytes 37.1 Gbits/sec
9.00-10.00 sec 4.39 GBytes 37.7 Gbits/sec
                                                                                       0 8.18 MBytes
0 8.18 MBytes
0 8.18 MBytes
0 8.18 MBytes
   7]
7]
7]
[ ID] Interval
                                        Transfer
                                                             Bitrate
            0.00-10.00 sec 43.9 GBytes 37.7 Gbits/sec 0.00-10.00 sec 43.9 GBytes 37.7 Gbits/sec
                                                                                                                 sender
                                                                                                                 receiver
iperf Done.
```

Рис. 3.23: Измерение пропускной способности. Опция -р. Запуск клиента

- 10. По умолчанию после запуска сервер iPerf3 постоянно прослушивает входящие соединения. В тесте измерения пропускной способности iPerf3 задала для сервера параметр обработки данных только от одного клиента с остановкой сервера по завершении теста. Для этого использовала опцию -1 на сервере iPerf3:
 - В терминале h2 запустила сервер iPerf3, используя параметр -1, чтобы принять только одного клиента (рис. 3.24): iperf3 -s -1

• В терминале h1 запустила клиент iPerf3: iperf3 -c 10.0.0.2

Рис. 3.24: Измерение пропускной способности. Опция -1. Запуск сервера

После завершения этого теста сервер iPerf3 немедленно останавливается.

11. Экспортировала результаты теста измерения пропускной способности iPerf3 в файл JSON. Для этого в виртуальной машине mininet создала каталог для работы над проектом: mkdir -p ~/work/lab_iperf3. В терминале h2 запустила сервер iPerf3: iperf3 -s. В терминале h1 запустила клиент iPerf3, указав параметр -J для отображения вывода результатов в формате JSON (рис. 3.25): iperf3 -c 10.0.0.2 -J.

Рис. 3.25: Измерение пропускной способности. Опция - J. Запуск клиента.

В данном случае параметр -J выведет текст JSON на экран через стандартный вывод (stdout) после завершения теста. Экспортировала вывод результатов теста

в файл, перенаправив стандартный вывод в файл (рис. 3.26): iperf3 -c 10.0.0.2 -J > /home/mininet/work/lab_iperf3/iperf_results.json Убедилась, что файл iperf_results.json создан в указанном каталоге. Для этого в терминале хоста h1 ввела следующие команды (рис. 3.27): cd/home/mininet/work/lab_iperf3 и ls -l.

```
root@mininet-vm:/home/mininet# iperf3 -c 10.0.0.2 -J > /home/mininet/work/lab_iperf3/i
perf_results.json
```

Рис. 3.26: Перенаправление вывода в файл

```
root@mininet-vm:/home/mininet# cd /home/mininet/work/lab_iperf3/
root@mininet-vm:/home/mininet/work/lab_iperf3# ls -l
total 8
-rw-r--r-- 1 root root 7789 Nov 20 06:30 iperf_results.json
```

Рис. 3.27: Проверка создания файла с выводом информации

- 12. Так как мы уже исправили права запуска X-соединения выше, то этот пункт пропустила.
- 13. В виртуальной машине mininet перешла в каталог для работы над проектом, проверила права, скорректировала их (рис. 3.28).

```
mininet@mininet-vm:~$ cd work/lab_iperf3/
mininet@mininet-vm:~/work/lab_iperf3$ ls -l
total 8
-rw-r--r-- 1 root root 7789 Nov 20 06:30 iperf_results.json
mininet@mininet-vm:~/work/lab_iperf3$ sudo chown -R mininet:mininet ~/work/
mininet@mininet-vm:~/work/lab_iperf3$ ls -l
total 8
-rw-r--r-- 1 mininet mininet 7789 Nov 20 06:30 iperf_results.json
```

Рис. 3.28: Изменение прав доступа к файлу JSON

14. Сгенерировала выходные данные для файла JSON Iperf3 (рис. 3.29): plot_iperf.sh iperf_results.json

```
mininet@mininet-vm:~/work/lab_iperf3$ plot_iperf.sh iperf_results.json
mininet@mininet-vm:~/work/lab_iperf3$ l
iperf.csv iperf_results.json results/
```

Рис. 3.29: Генерация выходных данных для файла JSON

15. Сценарий построения создал файл CSV (1.dat) (рис. 3.30), который может использоваться другими приложениями. В подкаталоге results каталога, в котором был выполнен скрипт, сценарий создал графики для следующих полей файла JSON:

```
mininet@mininet-vm:~/work/lab_iperf36 cd results/
mininet@mininet-vm:~/work/lab_iperf36/results$ ls -l

total 88
-rw-rw-r-- 1 mininet mininet 471 Nov 20 06:35 1.dat
-rw-rw-r-- 1 mininet mininet 9871 Nov 20 06:35 bytes.pdf
-rw-rw-r-- 1 mininet mininet 9617 Nov 20 06:35 cwnd.pdf
-rw-rw-r-- 1 mininet mininet 9036 Nov 20 06:35 MTU.pdf
-rw-rw-r-- 1 mininet mininet 8978 Nov 20 06:35 retransmits.pdf
-rw-rw-r-- 1 mininet mininet 8996 Nov 20 06:35 RTT.pdf
-rw-rw-r-- 1 mininet mininet 9253 Nov 20 06:35 RTT_Var.pdf
-rw-rw-r-- 1 mininet mininet 9569 Nov 20 06:35 throughput.pdf
```

Рис. 3.30: Файлы с графиками

• окно перегрузки (cwnd.pdf) (рис. 3.31);

Рис. 3.31: cwnd.pdf

• повторная передача (retransmits.pdf) (рис. 3.32);

Рис. 3.32: retransmits.pdf

• время приема-передачи (RTT.pdf) (рис. 3.33);

Рис. 3.33: RTT.pdf

• отклонение времени приема-передачи (RTT_Var.pdf) (рис. 3.34);

Рис. 3.34: RTT_Var.pdf

• пропускная способность (throughput.pdf) (рис. 3.35);

Рис. 3.35: throughput.pdf

• максимальная единица передачи (MTU.pdf) (рис. 3.36);

Рис. 3.36: MTU.pdf

• количество переданных байтов (bytes.pdf)(рис. 3.37).

Рис. 3.37: bytes.pdf

4 Выводы

В ходе лабораторной работы я познакомилась с инструментом для измерения пропускной способности сети в режиме реального времени — iPerf3, а также получила навыки проведения интерактивного эксперимента по измерению пропускной способности моделируемой сети в среде Mininet.