Class 11. 데이터 시각화

시각화는 데이터 분석의 시작

데이터를 시각화할 수 있다면 먼저 시각화 한 후에 분석에 들어가라

데이터 시각화 도구 matplotlib

거의 원하는 모든 형태의 그래프를 그릴 수 있음

Basic

Basic plot types, usually y versus x.

plot(x, y)

scatter(x, y)

bar(x, height) / barh(y, width)

stem(x, y)

step(x, y)

fill_between(x, y1, y2)

Statistics plots

Plots for statistical analysis.

hist(x)

boxplot(X)

errorbar(x, y, yerr, xerr)

violinplot(D)

eventplot(D)

hist2d(x, y)

hexbin(x, y, C)

pie(x)

1. 류현진 선수의 ERA 추이를 선 그래프로 그려보자

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
   SELECT playerID, yearID, ERA
    FROM pitching WHERE playerID = 'ryuhy01';
    result = cur.fetchall()
cols = [column[0] for column in cur.description]
df = pd.DataFrame.from records(data=result, columns=cols)
plt.plot(df['yearID'], df['ERA'])
plt.title('Ryu Hyun-jin ERA')
plt.xlabel('season')
plt.ylabel('ERA')
plt.grid(True)
plt.savefig('ryu_era.png')
```


2. 류현진 선수의 ERA 추이를 선 그래프로 그려보자(마커, 범례 추가)

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
   cur.execute('''
   SELECT playerID, yearID, ERA
   FROM pitching WHERE playerID = 'ryuhy01';
   result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
plt.plot(df['yearID'], df['ERA'], marker='o', markersize=8)
plt.legend(labels=['ERA'], loc='best', fontsize=12)
plt.title('Ryu Hyun-jin ERA')
plt.xlabel('season')
plt.ylabel('ERA')
plt.grid(True)
plt.savefig('ryu_era.png')
```


3. 류현진 선수와 커쇼 선수의 ERA 추이를 선 그래프로 그려보자

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
    SELECT playerID, yearID, ERA
    FROM pitching WHERE playerID IN ('ryuhy01', 'kershcl01');
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from_records(data=result, columns=cols)
print(df)
df_ker = df[df['playerID']=='kershcl01']
print(df_ker)
df_ryu = df[df['playerID']=='ryuhy01']
print(df_ryu)
plt.plot(df_ker['yearID'], df_ker['ERA'], marker='o', markersize=8)
plt.plot(df_ryu['yearID'], df_ryu['ERA'], marker='o', markersize=8)
plt.legend(labels=['kershaw', 'ryu'], loc='best', fontsize=12)
plt.title('Ryu and Kershaw ERA')
plt.xlabel('season')
plt.ylabel('ERA')
plt.grid(True)
plt.savefig('ryu_kershaw_era.png')
```

	_		
	playerID	yearID	ERA
Θ	kershcl01	2008	4.26
1	kershcl01	2009	2.79
2	kershcl01	2010	2.91
3	kershcl01	2011	2.28
4	kershcl01	2012	2.53
5	kershcl01	2013	1.83
6	kershcl01	2014	1.77
7	kershcl01	2015	2.13
8	kershcl01	2016	1.69
9	kershcl01	2017	2.31
10	kershcl01	2018	2.73
11	kershcl01	2019	3.03
12	ryuhy01	2013	3.00
13	ryuhy01	2014	3.38
14	ryuhy01	2016	11.57
15	ryuhy01	2017	3.77
16	ryuhy01	2018	1.97
17	ryuhy01	2019	2.32

	playerID	yearID	ERA
0	kershcl01	2008	4.26
1	kershcl01	2009	2.79
2	kershcl01	2010	2.91
3	kershcl01	2011	2.28
4	kershcl01	2012	2.53
5	kershcl01	2013	1.83
6	kershcl01	2014	1.77
7	kershcl01	2015	2.13
8	kershcl01	2016	1.69
9	kershcl01	2017	2.31
10	kershcl01	2018	2.73
11	kershcl01	2019	3.03

	playerID	yearID	ERA
12	ryuhy01	2013	3.00
13	ryuhy01	2014	3.38
14	ryuhy01	2016	11.57
15	ryuhy01	2017	3.77
16	ryuhy01	2018	1.97
17	ryuhy01	2019	2.32

3. 류현진 선수와 커쇼 선수의 ERA 추이를 선 그래프로 그려보자

1. 2019년 LA 다저스 선발 투수 5명(류현진, 워커 뷸러, 클레이튼 커쇼, 켄타 마에다, 리치 힐)의 탈삼진 개수를 막대 그래프로 그려보자

Team Pitching Leag

Rk	Pos	Name
1	SP	Hyun Jin Ryu*
2	SP	Walker Buehler
3	SP	Clayton Kershaw*
4	SP	Kenta Maeda
5	SP	Rich Hill*

SELECT people.nameFirst || ' ' || people.nameLast AS
name, pitching.SO FROM pitching JOIN people ON
pitching.playerID = people.playerID WHERE
pitching.yearID = 2019 AND pitching.teamID = 'LAN' AND
people.nameLast IN ('Ryu', 'Buehler', 'Kershaw', 'Maeda',
'Hill');

JOIN 활용

스포츠 **> 야구**

"류현진 속한 2019 다저스 선발진, MLB 역대 10위"

美CBS스포츠 '최고 선발진' 선정

name	SO
Walker Buehler	215
Rich Hill	72
Clayton Kershaw	189
Kenta Maeda	169
Hyun-Jin Ryu	163

1. 2019년 LA 다저스 선발 투수 5명(류현진, 워커 뷸러, 클레이튼 커쇼, 켄타 마에다, 리치 힐)의 탈삼진 개수를 막대 그래프로 그려보자

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
   cur = con.cursor()
   cur.execute(''
   SELECT people.nameFirst || ' ' || people.nameLast AS name,
pitching.SO
   FROM pitching JOIN people ON pitching.playerID = people.playerID
   WHERE pitching.yearID = 2019 AND pitching.teamID = 'LAN' AND
people.nameLast IN ('Ryu', 'Buehler', 'Kershaw', 'Maeda', 'Hill');
   result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
plt.bar(df['name'], df['SO'])
plt.legend(labels=['SO'], loc='best', fontsize=12)
plt.title('2019 LAN SP SO')
plt.xlabel('player')
plt.ylabel('SO')
plt.grid(True)
plt.savefig('LAN2019_SP_S0.png')
```


2. 2019년 LA 다저스 선발 투수 5명(류현진, 워커 뷸러, 클레이튼 커쇼, 켄타 마에다, 리치 힐)의 탈삼진 개수를 막대 그래프로 그려보자(막대 위에 값 추가, x축 눈금 라벨 폰트 사이즈 변경 및 회전)

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute(''
    SELECT people.nameFirst |  ' ' | people.nameLast AS name, pitching.SO
    FROM pitching JOIN people ON pitching.playerID = people.playerID
   WHERE pitching.yearID = 2019 AND pitching.teamID = 'LAN' AND people.nameLast IN
('Ryu','Buehler', 'Kershaw','Maeda', 'Hill');
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
plt.bar(df['name'], df['SO'])
plt.legend(labels=['SO'], loc='best', fontsize=12)
plt.title('2019 LAN SP SO')
plt.xlabel('player')
plt.ylabel('SO')
plt.grid(True)
plt.xticks(size=6, rotation=10)
for i, v in enumerate(df['name']):
    plt.text(v, df.iloc[i, 1], df.iloc[i, 1],
            fontsize=9, horizontalalignment='center', verticalalignment='bottom')
plt.savefig('LAN2019_SP_S0.png')
```


2. 2019년 LA 다저스 선발 투수 5명(류현진, 워커 뷸러, 클레이튼 커쇼, 켄타 마에다, 리치 힐)의 볼넷와 탈삼진 개수를 비교해보자

```
SELECT people.nameFirst | ' ' | people.nameLast AS name, pitching.BB, pitching.SO FROM pitching JOIN people ON pitching.playerID = people.playerID WHERE pitching.yearID = 2019 AND pitching.teamID = 'LAN' AND people.nameLast IN ('Ryu', 'Buehler', 'Kershaw', 'Maeda', 'Hill');
```

name	ВВ	SO
Walker Buehler	37	215
Rich Hill	18	72
Clayton Kershaw	41	189
Kenta Maeda	51	169
Hyun-Jin Ryu	24	163

2. 2019년 LA 다저스 선발 투수 5명(류현진, 워커 뷸러, 클레이튼 커쇼, 켄타 마에다, 리치 힐)의 볼넷와 탈삼진 개수를 비교해보자

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
   cur = con.cursor()
   cur.execute('''
   SELECT people.nameFirst || ' ' || people.nameLast AS name, pitching.BB,
pitching.SO
   FROM pitching JOIN people ON pitching.playerID = people.playerID
   WHERE pitching.yearID = 2019 AND pitching.teamID = 'LAN' AND people.nameLast
IN ('Ryu', 'Buehler', 'Kershaw', 'Maeda', 'Hill');
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오기
df = pd.DataFrame.from records(data=result, columns=cols)
df.plot(x="name", y=["BB", "SO"], kind="bar")
plt.xticks(size=6, rotation=0)
plt.title('2019 LAN SP BB & SO')
plt.xlabel('player')
plt.grid(True)
plt.savefig('LAN2019 SP BB S0.png')
```


히스토그램 그리기

1. 2019년 MLB 전체 타자들의 홈런수를 히스토그램으로 그려보자

SELECT HR FROM batting WHERE yearID = 2019;

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute(''
    SELECT HR FROM batting WHERE yearID = 2019;
    result = cur.fetchall()
cols = [column[0] for column in cur.description]
df = pd.DataFrame.from records(data=result, columns=cols)
df.plot(kind="hist")
plt.xticks(size=6, rotation=0)
plt.title('2019 HR')
plt.xlabel('HR')
plt.grid(True)
plt.savefig('HR2019.png')
```


홈런 타자는 희소가치가 높다

히스토그램 그리기

2. 2019년 MLB 규정 타석을 채운 타자들의 홈런수를 히스토그램으로 그려보자

SELECT HR FROM batting WHERE yearID = 2019 AND (AB + BB + HBP + SH + SF) >= 502;

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('
    SELECT HR FROM batting WHERE yearID = 2019 AND (AB + BB +
HBP + SH + SF) >= 502;
    result = cur.fetchall()
cols = [column[0] for column in cur.description] # 컬럼명 가져오
df = pd.DataFrame.from records(data=result, columns=cols)
df.plot(kind="hist")
plt.xticks(size=6, rotation=0)
plt.title('2019 HR')
plt.xlabel('HR')
plt.grid(True)
plt.savefig('HR2019 regular.png')
```


MLB에서 규정 타석을 채울 기회를 부여 받은 타자는 홈런을 대체로 잘 쳤다.

Plaver Standard Batting Share & Export ▼ ✓When table 24 NYM NL 161 693 597 103 155 30 2 53 1 Pete Alonso 2 Eugenio Suarez 27 CIN NL 159 662 575 87 156 22 2 49 3 Jorge Soler 27 KCR AL 162 679 589 95 156 33 1 48 4 Cody Bellinger⁸ 23 LAD NL 156 661 558 121 170 34 3 47 5 Mike Trout 27 LAA AL 134 600 470 110 137 27 2 45 27 MIL NL 130 580 489 100 161 29 3 44 6 Christian Yelich* 7 Ronald Acuna Jr. 21 ATL NL 156 715 626 127 175 22 2 41 8 Nolan Arenado 28 COL NL 155 662 588 102 185 31 2 41 9 Alex Bregman 25 HOU AL 156 690 554 122 164 37 2 41 38 MIN AL 120 521 454 81 141 26 0 41 10 Nelson Cruz 11 George Springer 29 HOU AL 122 556 479 96 140 20 3 39 29 ATL NL 158 692 597 113 176 34 2 38 12 Freddie Freeman* 13 Kyle Schwarber* 26 CHC NL 155 610 529 82 132 29 3 38 14 Gleyber Torres 22 NYY AL 144 604 546 96 152 26 0 38 15 Josh Bell# 26 PIT NL 143 613 527 94 146 37 3 37 16 Josh Donaldson 33 ATL NL 155 659 549 96 142 33 0 37 17 Franmil Reyes 23 TOT MLB 150 548 494 69 123 19 0 37 26 OAK AL 156 670 583 102 145 36 3 36 18 Matt Chapmai 19 Max Kepler* 134 596 524 98 132 32 0 36 20 J.D. Martinez 31 BOS AL 146 657 575 98 175 33 2 36 21 Matt Olson* 25 OAK AL 127 547 483 73 129 26 0 36 27 LAD NL 149 514 450 83 112 16 3 36 22 Joc Pederson* 30 ARI NL 158 699 636 94 171 29 10 35 23 Eduardo Escobar# 24 Bryce Harper* 26 PHI NL 157 682 573 98 149 36 1 35 25 Trey Mancini 27 BAL AL 154 679 602 106 175 38 2 35 26 Mike Moustakas* 143 584 523 80 133 30 1 35 27 Max Muncy* 28 LAD NL 141 589 487 101 122 22 1 35 26 COL NL 145 656 588 111 173 38 5 35 28 Trevor Story 29 Edwin Encarnacion 36 TOT AL 109 486 418 81 102 18 0 34 31 Anthony Rendon 29 WSN NL 146 646 545 117 174 44 3 34 32 Gary Sanchez 33 Miguel Sano 26 MIN AL 105 439 380 76 94 19 2 34 34 Carlos Santana# 33 CLE AL 158 686 573 110 161 30 1 34 35 Juan Soto* 20 WSN NL 150 659 542 110 153 32 5 34 32 CHW AL 159 693 634 85 180 38 1 33 36 José Abreu 37 Xander Bogaerts 155 698 614 110 190 52 0 33 38 Kole Calhoun* 31 LAA AL 152 632 552 92 128 29 1 33 39 Michael Conforto 40 Austin Meadows 24 TBR AL 138 591 530 83 154 29 7 33 41 Hunter Renfroe 140 494 440 64 95 19 1 33 28 OAK AL 162 747 657 123 187 43 7 33 42 Marcus Semier 43 Charlie Blackmon* 32 COL NL 140 634 580 112 182 42 7 32 44 Rafael Devers* 22 BOS AL 156 702 647 129 201 54 4 32 25 CLE AL 143 654 598 101 170 40 2 32 45 Francisco Lindor# 46 Manny Machado 26 SDP NL 156 661 587 81 150 21 2 32 25 ARI NL 144 628 569 97 187 36 9 32 47 Ketel Marte# 48 Eddie Rosario 27 MIN AL 137 590 562 91 155 28 1 32 49 Jose Altuve 29 HOU AL 124 548 500 89 149 27 3 31 27 CHC NL 147 634 543 108 153 35 1 31 50 Kris Bryant

2019 MLB

30 홈런 이상을 친 타자가 무려 58명 20 홈런 이상을 친 타자는 130명 총 홈런 개수 6776개

MLB 시즌 홈런의 추이를 선 그래프로 그려보자

SELECT yearID, SUM(HR) AS HR_SUM FROM teams GROUP BY yearID;

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
    SELECT yearID, SUM(HR) AS HR SUM FROM teams GROUP BY yearID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description]
df = pd.DataFrame.from records(data=result, columns=cols)
plt.plot(df['yearID'], df['HR SUM'])
plt.xticks(size=6, rotation=0)
plt.title('MLB HR')
plt.xlabel('season')
plt.ylabel('HR')
plt.grid(True)
plt.savefig('MLB HR.png')
```


시즌 홈런 추이 그래프에 추세선을 넣어보자

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import linregress
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
    SELECT yearID, SUM(HR) AS HR SUM FROM teams GROUP BY yearID;
    result = cur.fetchall()
cols = [column[0] for column in cur.description]
df = pd.DataFrame.from records(data=result, columns=cols)
slope, intercept, r value, p value, std err = linregress(df['yearID'], df['HR SUM'])
print("slope: %f, intercept: %f" % (slope, intercept))
print("R-squared: %f" % r value**2)
plt.plot(df['yearID'], df['HR SUM'], label='HR')
plt.plot(df['yearID'], intercept + slope * df['yearID'], 'r', label='trend line')
plt.title('MLB HR')
plt.xlabel('season')
plt.ylabel('HR')
plt.legend()
plt.grid(True)
plt.savefig('MLB HR trend.png')
```


사이파이

과학기술계산을 위한 파이썬 패키지

linregress() 메소드: 선형 회귀

선형 회귀 설명!

시즌 홈런 추이 그래프에 추세선을 넣어보자

기울기: 38.414638, y절편: -72650.954381

피어슨 상관계수: 0.941227

결정계수 (R-squared): 0.885909

결정계수

- 회귀식이 얼마나 정확한지를 나타냄
- 회귀 모델에서 독립변수가 종속변수를 얼마만 큼 설명해 주는지를 가리키는 지표
- 1. 전체 기간을 놓고 보면 시즌 홈런은 증가하는 추세
- 2. 2000년부터 2014년까지는 홈런 개수가 감소하는 추세, WHY? 프로젝트 주제로 삼아보는 건 어떨지?
- 3. 1900-1920년 데드볼 시대라고 불림
- 투고타저 극심
- 데드볼: 반발력이 약한 공을 의미

박스 플롯 그리기

1. 2019년 규정이닝을 채운 MLB 투수들의 K/9를 박스 플롯으로 그려보자

SELECT SO*9/(Ipouts/3.0) AS "K/9" FROM pitching WHERE yearID = 2019 AND Ipouts/3.0 >= 162;

```
import sqlite3
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import linregress
with sqlite3.connect("lahmansbaseballdb.sqlite") as con:
    cur = con.cursor()
    cur.execute('''
    SELECT SO*9/(Ipouts/3.0) AS "K/9"
    FROM pitching
    WHERE yearID = 2019 AND Ipouts/3.0 >= 162;
    result = cur.fetchall()
cols = [column[0] for column in cur.description]
df = pd.DataFrame.from records(data=result, columns=cols)
plt.boxplot(df['K/9'])
plt.title('2019 K/9')
plt.legend(['K/9'])
plt.grid(True)
plt.savefig('2019_K9.png')
```


규정 이닝을 채운 평균 수준의 MLB 투수들은 9이닝 당 8.5개 정도의 탈삼진을 잡는다

박스 플롯 그리기

중앙값

37 제2사분위수

19.5 제1사분위수 43 제3사분위수

자료를 대표하는 대표값들

평균(mean) vs 중앙값(median) vs 최빈값(mode)

- 평균은 아웃라이어에 취약
- 중앙값, 최빈값은 비교적 아웃라이어의 영향을 덜 받음

TRY

선 그래프, 막대 그래프, 히스토그램, 박스 플롯, 파이 그래프 등을 활용하여 보고 싶은 데이터 3개를 시각화 해보자

이제 슬슬 프로젝트 주제를 선정해보세요