§2.6 problems.

2. Prove Theorem 1: For all integers, a, b, c, x and y, if a|b and b|c, then a|(bx + cy).

$$\forall a, b, c, x, y \in \mathbb{Z} ((a|b \wedge a|c) \rightarrow a|(bx + cy)).$$

Proof. Let a, b, c, x, and y be given as arbitrary integers. Assume that a|b and a|c. By the definition of divides there exist $w, u \in \mathbb{Z}$ such that

$$aw = b$$
,

$$au = c$$
.

Let $k \in \mathbb{Z}$ be defined as

$$k = wx + uy$$
.

Then

$$bx + cy = awx + auy,$$
$$= a(wx + uy),$$
$$= ak.$$

Thus, by definition, a|(bx+cy). Therefore, for $a,b,c,x,y\in\mathbb{Z}$, if a|b and b|c, then a|(bx+cy).

4. Let $m, n \in \mathbb{Z}, n \neq 0$. Prove that if $n^2x^2 - 2mnx + m^2 = n^2$, then x is irrational.

$$\forall m, n \in \mathbb{Z}\left(\left((n \neq 0) \land (n^2x^2 - 2mnx + m^2 = n^2)\right) \rightarrow \left(\forall a \in \mathbb{Z}, b \in \mathbb{Z}^+ x \neq \frac{a}{b}\right)\right).$$

6. Use the contrapositive to prove the following statement. For all $x \in \mathbb{R}^+$ if x is irrational, then \sqrt{x} is irrational. You will need to use the following consequence of the Closure Properties for the Rational Numbers: If x is rational, then x^2 is rational.

$$\forall x \in \mathbb{R}^+ ((x \text{ is irrational}) \to (\sqrt{x} \text{ is irrational})).$$

Proof. Let $x \in \mathbb{R}^+$ be given. We proceed with a proof by the contrapositive:

$$(\sqrt{x} \text{ is rational}) \to (x \text{ is rational}).$$

Assume \sqrt{x} is rational, that is, there exist $a, b \in \mathbb{Z}$ such that

$$\sqrt{x} = \frac{a}{b}.$$

Then

$$\sqrt{x} = \frac{a}{b},$$
$$x = \frac{a^2}{b^2}.$$

By the Closure Properties of the Rational Numbers a^2/b^2 is rational, that is, there exist $c, d \in \mathbb{Z}$ such that

$$\frac{a^2}{b^2} = \frac{c}{d}.$$

This is a contradiction, I think (check this later, it just feeeeeels like one). Thus our assumption must be wrong; \sqrt{x} is irrational. Therefore if x is irrational then \sqrt{x} is irrational.

9. Prove or disprove the following statement. For all $x, y \in \mathbb{R}$, if x and y are irrational, then xy is irrational.

$$\forall x, y \in \mathbb{R} (((x \text{ is irrational}) \land (y \text{ is irrational})) \rightarrow (xy \text{ is irrational})).$$

Counterexample. Suppose $x = \sqrt{2}$ and $y = \sqrt{2}$. As proven in class, $\sqrt{2}$ is irrational. Then

$$xy = \sqrt{2} \cdot \sqrt{2},$$

$$= \sqrt{2 \cdot 2},$$

$$= \sqrt{4},$$

$$= 2.$$

Thus for two particular irrational numbers, x and y, their product, xy is rational. This disproves the statement

$$\forall x, y \in \mathbb{R} (((x \text{ is irrational}) \land (y \text{ is irrational})) \rightarrow (xy \text{ is irrational})).$$

11. Prove, for all integers x and y, $14x + 36y \neq 51$.

$$\forall x, y \in \mathbb{Z} \ 14x + 36y \neq 51.$$

Proof. We proceed with a proof by contradiction:

$$\exists x, y \in \mathbb{Z} 14x + 36y = 51.$$

If there are two integers, x and y such that 14x + 36y = 51 then they can be found by re-arrangement. That is

$$14x + 36y = 51,$$

$$14x = 51 - 36y,$$

$$x = \frac{51 - 36y}{14},$$

$$= \frac{51}{14} - \frac{36}{14}y.$$

This is a contradiction since $x, y \in \mathbb{Z}$ but integers are not closed under division. Thus,

$$\forall x, y \in \mathbb{Z} \ 14x + 36y \neq 51.$$

- 16 a) Use the contrapositive to prove, for all $x \in \mathbb{Z}$, that if $3|x^2$, then 3|x. There will be two cases, namely $x \mod 3 = 1$ and $x \mod 3 = 2$.
 - b) Use part a) of this exercise to prove that the square root of 3, $\sqrt{3}$, is irrational.

$\S 2.7$ problems.

2. Prove $\log_{32} 16$ is irrational.

3. Prove $\log_{10} 7$ is irrational.

4. Prove $\log_4 5$ is irrational.

§3.2 problems.

- 2. Let A, B, and C be sets, x an object, and p and q statements. For each expression given below, determine whether it makes sense (yes) or it does not make sense (no). If your answer is yes, state whether the expression is a statement or a set. If the answer is no, briefly explain why.
 - a) $x \in A$.

Yes. This is a statement.

b) $p \in \mathbb{Z}$.

No. A statement does not belong to the set of integers.

c) $A \in q$.

No. A set does not belong to a statement.

 $d) \neg A.$

No. There is no meaning to the negation of a set.

e) $x \in A \wedge B$.

No. While $x \in A$ is a statement that makes sense B is not a statement.

f) $x \in A \vee q$.

Yes. This is a statement.

g) $(A \cup B) \cap C$.

Yes. This is a set.

h) $(A \cup B) \subseteq C$.

Yes. This is a statement.

i) $(x \in A)^c$.

No. $x \in A$ is a statement and there is no meaning to the complement of a statement.

j) $x \in A^c$.

Yes. This is a statement.

k) $\neg (x \in A) \cap B$.

No. $\neg(x \in A)$ is a statement and there is no meaning to the intersect of a statement and a set.

1) $\neg (x \in (A \cap B)).$

Yes. This is a statement.

3. Let $S=\{x\in\mathbb{Z}:\exists\,k\in\mathbb{Z},x=2k-1\}$ and $T=\{x\in\mathbb{Z}:x\text{ is odd}\}$. Prove that S=T.

Proof. Let $x \in \mathbb{Z}$ be given. We proceed with a proof by cases

- (i). $x \in S$,
- (ii). $x \in T$.

Case (i). Suppose $x \in S$, that is, x = 2k - 1 for some $k \in \mathbb{Z}$.

Case (ii). Suppose $x \in T$, that is, x is odd. Then, by definition, there exists $q \in \mathbb{Z}$ such that x = 2q + 1.

5. Let $S=\{x\in\mathbb{Z}:x\bmod 12=8\}$ and $T=\{x\in\mathbb{Z}:4|x\}$. Prove that $S\subseteq T,$ but $T\nsubseteq S.$

- 9. Let $S = \{x \in \mathbb{Z} : \exists r, s \in \mathbb{Z}, x = 9r + 6s\}$ and $T = \{x \in \mathbb{Z} : 3|x\}$.
 - a) Prove that $S \subseteq T$.
 - b) Prove that $T \subseteq S$.

10. Let A, B, and C be subsets of a universal set \mathcal{U} . Prove each of the following set theory theorems using a sequence of logically equivalent compound forms.

d.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

k.
$$A \cap A^c = \emptyset$$
.

14. Prove that, if $A \cap B^c = \emptyset$, then $A \subseteq B$.

24. Find the mistake in the "proof" of the following "proposition." Is this "proposition" true? If not, find a counterexample.

"**Proposition.**" Let A, B, and C be sets and suppose that $A \subseteq (B \cup C)$. Then $A \subseteq B$ or $A \subseteq C$.

"proof." Let x be any object and suppose that $x \in A$. Then $x \in (B \cup C)$ since $A \subseteq (B \cup C)$. Thus, by the definition of union, $x \in B$ or $x \in C$. Therefore, for all objects x, if $x \in A$, then $x \in B$ or, for all objects x, if $x \in A$, then $x \in C$.

Hence, by the definition of subset, $A \subseteq B$ or $A \subseteq C$.