







- >>> Las <u>estructuras</u> de *cluster* más habituales que buscan los <u>algoritmos</u> de *clustering* son:
- ·Partición
- ·Jerarquía
- >> Otras estructuras son:
- Recubrimiento
- Partición difusa
- ·Pirámide







- >>> La estructura de *partición* consiste en un conjunto de clases (*clusters*, subconjuntos) <u>no vacías</u> del conjunto de objetos tal que todo objeto <u>pertenece a únicamente una sola clase (*cluster*)</u>
  - El conjunto vacío no es una clase.
  - La unión de las clases es el conjunto total de sobjetos.
  - La intersección de dos clases es vacía.











>>> El resultado de realizar una *partición* es la definición de una **nueva variable**, **cualitativa**.

| Ω                     | $X_1$           | $X_{j}$         | X <sub>p</sub>  | C                     |
|-----------------------|-----------------|-----------------|-----------------|-----------------------|
| $\omega_1$            | x <sub>11</sub> | x <sub>1j</sub> | x <sub>1p</sub> | <b>C</b> <sub>1</sub> |
|                       |                 |                 |                 |                       |
| $\omega_{\mathrm{i}}$ | x <sub>i1</sub> | X <sub>ij</sub> | Xip             | C <sub>i</sub>        |
|                       |                 |                 |                 |                       |
| $\omega_{\mathrm{n}}$ | x <sub>n1</sub> | X <sub>nj</sub> | X <sub>np</sub> | C <sub>n</sub>        |







- >>> Se trata de buscar una <u>buena</u> partición (una <u>buena</u> variable cualitativa).
- Una buena partición es un conjunto de clases (clusters) de objetos que son <u>similares</u> entre sí (distancias pequeñas <u>dentro de</u> cada clase), y diferentes de los objetos de otras clases (clusters).

$$\sum_{i}\sum_{i'}d(\omega_{i},\omega_{i})=\sum_{k}\sum_{i}\sum_{i'}d_{j}(\omega_{i}^{k},\omega_{i'}^{k})+\sum_{k}\sum_{k'\neq k}\sum_{i}\sum_{i'}d_{j}(\omega_{i}^{k},\omega_{i'}^{k'})$$

• Una buena variable cualitativa es aquélla que está bien correlacionada con las variables originales. Siendo  $r_j$  la correlación entre  $X_j$  y la nueva variable, un criterio es buscar aquella variable que maximice  $\Sigma_i r_i$ .







>>> Si las variables  $X_j$  son <u>cuantitativas</u>,  $r_j$  puede ser la razón de correlación entre la variable cuantitativa  $X_j$  y la nueva variable, cualitativa, C:

$$R_{j} = 1 - (\sum_{k} n_{k} Var_{k}(X_{j}) / nVar(X_{j}))$$

con  $Var_k(X_j)$ , la varianza de  $X_j$  en la clase  $c_k$  de C.

>>> Como  $nVar(X_j) = \sum_i \sum_{i'} d_j(\omega_i, \omega_i) / 2n$ , siendo  $d_j$  la distancia euclidiana cuadrática en la variable  $X_i$ , y

$$\Sigma_{i}\Sigma_{i'}d(\omega_{i},\omega_{i}) = \Sigma_{i}\Sigma_{i'}\Sigma_{j}d_{i}(\omega_{i},\omega_{i})$$

se tiene que:

$$\Sigma_{j} r_{j} = 1 - (\Sigma_{k} \Sigma_{i} \Sigma_{i}^{k} d(\omega_{i}^{k}, \omega_{i}^{k}) / \Sigma_{i} \Sigma_{i}^{k} d(\omega_{i}, \omega_{i}))$$







- >>> Resumen: Minimizar la suma de distancias euclidianas cuadráticas dentro de las clases es equivalente a maximizar la suma de correlaciones de las variables cuantitativas con la variable cualitativa asociada a la partición (tomando las variables independientemente); y viceversa.
- >>> Cuando se usa otra distancia se suele plantear el problema de minimizar la suma de distancias dentro de las clases:

$$\min \Sigma_{k} \Sigma_{i} \Sigma_{i'} d(\omega_{i'}^{k}, \omega_{i'}^{k})$$

para realizar una buena estructura de partición, pero en estos casos no se hace ninguna referencia a la relación entre las variables.







>>> La estructura de *jerarquía* (árbol en teoría de grafos) consiste en un conjunto de clases (*clusters*, subconjuntos) <u>no vacías</u> del conjunto de objetos al que pertenecen:

- el conjunto o clase total (raíz)
- las clases singulares (hojas)
- y tal que si de dos clases son de la jerarquía, su intersección es o bien vacía u bien una de ellas (una contenida en la otra).



- $\{\omega_{2}\},\{\omega_{5}\},\{\omega_{7}\},\{\omega_{3}\},\{\omega_{1}\},\{\omega_{6}\},\{\omega_{4}\},$
- $\bullet$  { $\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7$ },







- >>> El orden de aparición de los objetos (hojas) en el árbol no tiene ningún significado.
- · Ambos árboles representan la misma jerarquía





- $\{\omega_{2}\},\{\omega_{5}\},\{\omega_{7}\},\{\omega_{3}\},\{\omega_{1}\},\{\omega_{6}\},\{\omega_{4}\},$
- $\bullet$  { $\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7$ },







- >>> La <u>poda</u> de ramas del árbol (*jerarquía*) determina una *partición* del conjunto de objetos
- La poda de las hojas determina la partición más fina (la de las clases singulares  $\{\omega_i\}$ ).
- La poda desde la raíz determina la partición menos fina (la del conjunto entero  $\Omega$ ).
- Ambas podas son triviales y no aportan información. Interesan otras podas.







- >> Las longitudes de las ramas del árbol se usan para representar gráficamente las distancias entre los objetos, y las distancias entre clases de objetos (clusters): dendrograma (jerarquía valorada o indexada)
- >>> La altura a la que se fusionan dos clases de objetos representa la distancia entre ambas clases.
- >>> La distancia entre clases debe estar basada en la distancia entre objetos. La distancia entre dos clases singulares debe coincidir con la distancia entre los dos objetos correspondientes.





>>> <u>Distancias entre clases</u> de objetos (clusters):





• Media







#### Tabla de distancias

 $\omega_1$   $\omega_2$   $\omega_3$   $\omega_4$   $\omega_5$   $\omega_6$   $\omega_7$   $\omega_8$   $\omega_1$  0.00 3.16 3.61 1.41 3.00 2.24 1.41 2.83  $\omega_2$  3.16 0.00 4.12 2.83 1.00 3.61 2.00 1.41  $\omega_3$  3.61 4.12 0.00 2.24 3.16 1.41 4.12 5.00  $\omega_4$  1.41 2.83 2.24 0.00 2.24 1.00 2.00 3.16  $\omega_5$  3.00 1.00 3.16 2.24 0.00 2.83 2.24 2.24  $\omega_6$  2.24 3.61 1.41 1.00 2.83 0.00 3.00 4.12  $\omega_7$  1.41 2.00 4.12 2.00 2.24 3.00 0.00 1.41  $\omega_8$  2.83 1.41 5.00 3.16 2.24 4.12 1.41 0.00



Distancia entre clases de objetos con el el criterio del máximo.







#### Tabla de distancias

$$\omega_1$$
 $\omega_2$ 
 $\omega_3$ 
 $\omega_4$ 
 $\omega_5$ 
 $\omega_6$ 
 $\omega_7$ 
 $\omega_8$ 
 $\omega_1$ 
 $0.00$ 
 $3.16$ 
 $3.61$ 
 $4.12$ 
 $0.00$ 
 $2.24$ 
 $3.61$ 
 $4.12$ 
 $0.00$ 
 $2.24$ 
 $3.61$ 
 $4.12$ 
 $0.00$ 
 $2.24$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.16$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 
 $3.00$ 







Tabla de distancias reordenada





- · Poda del árbol de acuerdo a una altura
- Partición:  $\{\omega_2, \omega_5, \omega_7, \omega_8\}$ ,  $\{\omega_3\}$ ,  $\{\omega_1, \omega_6, \omega_4\}$
- La distancia entre las clases es mayor que 3











- $-\{\omega_{2},\omega_{5},\omega_{7},\omega_{8},\omega_{3},\omega_{1},\omega_{6},\omega_{4}\}$
- $-\{\omega_{2},\omega_{5},\omega_{7},\omega_{8}\},\{\omega_{3},\omega_{1},\omega_{6},\omega_{4}\}$
- $\{\omega_{2}, \omega_{5}, \omega_{7}, \omega_{8}\}, \{\omega_{3}\}, \{\omega_{1}, \omega_{6}, \omega_{4}\}$
- $\{\omega_{2}, \omega_{5}\}, \{\omega_{7}, \omega_{8}\}, \{\omega_{3}\}, \{\omega_{1}\}, \{\omega_{6}, \omega_{4}\}$
- $\{\omega_{2}, \omega_{5}\}, \{\omega_{7}\}, \{\omega_{8}\}, \{\omega_{3}\}, \{\omega_{1}\}, \{\omega_{6}, \omega_{4}\}$
- $\{\omega_{2}\}, \{\omega_{5}\}, \{\omega_{7}\}, \{\omega_{8}\}, \{\omega_{3}\}, \{\omega_{1}\}, \{\omega_{6}\}, \{\omega_{4}\}$



