STATS HW

Question 1

Create a scatterplot of y vs. x.

- > data <- read.table("~/Downloads/Ex11.06.txt", header = TRUE)
- > plot(data[,1], data[,2], xlab = "Stress", ylab = "Shear Resistance")

Fit a simple linear regression model using y as the response and plot the regression line (with the data).

- > data_lm <- lm(Shear_resistance ~ Stress, data = data)
- > abline(data_lm)

Test whether x is a significant predictor.

> summary(data_lm)

Call:

Im(formula = Shear_resistance ~ Stress, data = data)

Residuals:

Min 1Q Median 3Q Max -2.42633 -0.92139 -0.04785 0.89367 2.30506

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 42.5818 6.5065 6.544 6.52e-05 *** Stress -0.6861 0.2499 -2.745 **0.0206** *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.64 on 10 degrees of freedom Multiple R-squared: 0.4298, Adjusted R-squared: 0.3727

F-statistic: 7.537 on 1 and 10 DF, p-value: 0.02064

> anova(data_lm)
Analysis of Variance Table

Response: Shear_resistance

Df Sum Sq Mean Sq F value Pr(>F)

Stress 1 20.262 20.2621 7.5367 0.02064 *

Residuals 10 26.884 2.6885

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

According to a Stack Overflow thread, "The p-value in the last column tells you the significance of the regression coefficient for a given parameter. If the p-value is small enough to claim statistical significance, that just means there is strong evidence that the coefficient is different from 0." Therefore, with the p-value of Stress being approx 0.021, it is small enough to claim statistical significance.

Create and interpret a 95% CI around the slope coefficient.

```
> confint(data_lm, level = 0.95)
2.5 % 97.5 %
(Intercept) 28.084338 57.0792671
Stress -1.242908 -0.1292458
```

We can be 95% confident that the slope coefficient is between -1.24 and -0.13

Create a normal qq-plot of the standardized residuals. Does the assumption of normally distributed errors seem to be violated? Explain.

```
> standard_res <- rstandard(data_lm)
```

- > final_data <- cbind(data, standard_res)</pre>
- > final_data[order(-standard_res),]

Stress Shear_resistance standard_res

4 000	
1 26.8 26.5 1.48143209	
2 25.4 27.3 1.37168658	
3 28.9 24.2 1.04153035	
4 23.6 27.1 0.48798909	
7 24.7 26.3 0.43203879	
5 27.7 23.6 0.01493387	
12 25.6 24.9 -0.07544068	
6 23.9 25.9 -0.19195180	

```
8 28.1 22.5 -0.54386207
11 22.6 25.8 -0.96311785
10 27.4 21.4 -1.55930318
9 26.9 21.7 -1.56293208
```

> plot(final_data\$Stress, standard_res, ylab='Standardized Residuals', xlab='Stress')

- > library(ggplot2)
- > ggplot(data = final_data, mapping = aes(x = Stress, y = Shear_resistance, color
- = standard_res)) + geom_point() + geom_line(aes(y = pred)) + theme_bw()

The assumption of normally distributed errors seems to be violated, since the points do not seem to form any sort of line. They are scattered around the plot.

Create a plot of the residuals vs. the fitted values. Does the assumption of homoscedasticity of the errors seem to be violated? Explain.

- > b0 <- means[2] b1*means[1]
- > fitted_values <- b0 + b1*data[,1]</pre>
- > residuals <- data[,2] fitted_values
- > plot(fitted_values, residuals)

The assumption of homoscedasticy of errors seems to hold, as the residuals to not converge to any point, they remain generally distributed.

Report and interpret the coefficient of determination.

```
> df <- data.frame(fitted_values, residuals)
> model <- lm(residuals ~ fitted_values, data = df)
> summary(model)
Call:
lm(formula = residuals ~ fitted_values, data = df)

Residuals:
    Min    1Q Median    3Q Max
-37.993 -6.592    4.375    10.230    22.941
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.084e-14 2.741e+01 0 1
fitted_values -1.780e-16 4.632e-01 0 1
```

Residual standard error: 16.17 on 18 degrees of freedom Multiple R-squared: 2.6e-32, Adjusted R-squared: -0.05556

F-statistic: 4.68e-31 on 1 and 18 DF, p-value: 1

The coefficient of determination is very close to 0. The means that 0% of the variation of the residuals can be explained by the fitted values.

Estimate the shear resistance for a normal stress of x = 24.5.

```
> x=24.5
> print(b0+(b1*x))
Shear_resistance
25.77291
```

Construct a 95% CI for the mean shear resistance at a normal stress of x = 24.5.

```
> predict(data_lm, newdata = data.frame(Stress = 24.5), interval = "confidence")
    fit lwr upr
1 25.77291 24.43903 27.10679
```

For x=40, can we use the model to estimate E(Y|X=40)? Explain why or why not.

For x = 40, we cannot use the model to estimate Y. This is because extrapolating outside the current data set is never guaranteed and can result in improper conclusions.

Question 2

Create a scatterplot of y vs. x.

```
> data <- read.table("~/Downloads/Ex11.08.txt", header = TRUE)
> plot(data[,1], data[,2], xlab = "Placement_Test ", ylab = "Course_Grade")
```


Fit a simple linear regression model using y as the response and plot the regression line (with the data).

```
> data_lm <- lm(Course_Grade ~ Placement_Test, data = data) > abline(data_lm)
```


Test whether x is a significant predictor.

> summary(data_lm)

Call:

Im(formula = Course_Grade ~ Placement_Test, data = data)

Residuals:

Min 1Q Median 3Q Max -37.993 -6.592 4.375 10.230 22.941

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 32.5059 12.6386 2.572 0.0192 *
Placement_Test 0.4711 0.2182 2.159 **0.0446 ***---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.17 on 18 degrees of freedom Multiple R-squared: 0.2057, Adjusted R-squared: 0.1615

F-statistic: 4.661 on 1 and 18 DF, p-value: 0.04461

```
> anova(data_lm)
Analysis of Variance Table
```

```
Response: Course_Grade
```

Df Sum Sq Mean Sq F value Pr(>F)

Placement_Test 1 1219.4 1219.35 4.6607 0.04461 *

Residuals 18 4709.2 261.62

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With the p-value of Stress being approx 0.045, it is small enough to claim statistical significance.

Create and interpret a 95% CI around the slope coefficient.

> confint(data_lm, level = 0.95)

2.5 % 97.5 %

(Intercept) 5.9531568 59.0586722

Placement_Test 0.0126448 0.9294844

We are 95% confident that the slope coefficient is between 0.01 and 0.93

Create a normal qq-plot of the standardized residuals. Does the assumption of normally distributed errors seem to be violated? Explain.

- > standard_res <- rstandard(data_lm)
- > final_data <- cbind(data, standard_res)</pre>
- > final_data[order(-standard_res),]

Placement_Test Course_Grade standard_res

1 100	5111011t <u> </u>	ot ooai	oo_oraao otariat	a. a o.
20	50	79	1.4593938	
12	80	91	1.4030562	
3	35	61	0.7942443	
18	50	68	0.7596234	
10	35	59	0.6619455	
14	60	71	0.6501737	
15	60	71	0.6501737	
5	55	68	0.6080336	
8	60	70	0.5866194	
4	40	56	0.3020821	
9	90	79	0.2958658	
1	50	53	-0.1946090	
16	40	47	-0.2824043	
17	55	53	-0.3434528	
19	65	57	-0.3919242	
2	35	41	-0.5287438	

```
13 60 48 -0.8115750
11 90 54 -1.5089549
6 65 36 -1.7356392
7 35 11 -2.5132260
```

> plot(final_data\$Placement_Test, standard_res, ylab='Standardized Residuals', xlab='Placement Tests')

- > library(ggplot2)
- > final_data\$pred <- predict(data_lm)</pre>
- > ggplot(data = final_data, mapping = aes(x = Placement_Test, y = Course_Grade, color = standard_res)) + geom_point() + geom_line(aes(y = pred)) + theme_bw()

The assumption of normally distributed errors seems to be violated, since the points do not seem to form any sort of line. They are scattered around the plot.

Create a plot of the residuals vs. the fitted values. Does the assumption of Homoscedasticity of the errors seem to be violated? Explain.

- > b0 <- means[2] b1*means[1]
- > fitted_values <- b0 + b1*data[,1]
- > residuals <- data[,2] fitted_values
- > plot(fitted_values, residuals)

Assumption of homoscedasticity seems to hold. The values are evenly distributed about the 0 line.

Report and interpret the coefficient of determination.

```
> df <- data.frame(fitted_values, residuals)</pre>
```

> model <- Im(residuals ~ fitted_values, data = df)

> summary(model)

Call:

lm(formula = residuals ~ fitted_values, data = df)

Residuals:

Min 1Q Median 3Q Max -37.993 -6.592 4.375 10.230 22.941

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.084e-14 2.741e+01 0 1

fitted_values -1.780e-16 4.632e-01 0 1

Residual standard error: 16.17 on 18 degrees of freedom Multiple R-squared: 2.6e-32, Adjusted R-squared: -0.05556

F-statistic: 4.68e-31 on 1 and 18 DF, p-value: 1

Essentially 0% of the variation of the residuals can be explained by the fitted values.

Estimate the course grade for a placement test score of x = 70.

> x=70 > print(b0+(b1*x)) Course_Grade 65.48044

Construct a 95% PI (prediction interval) for a new observation of x = 70.

> predict(data_lm, newdata = data.frame(Placement_Test = 70), interval =
"prediction")
 fit lwr upr

165.48044 30.03062 100.9303