

FCC SAR TEST REPORT

APPLICANT

KaiJet Technology International Limited

PRODUCT NAME

Wireless AC600 USB2.0 Mini Adapter

MODEL NAME

JUE303

TRADE NAME

j5 create

BRAND NAME

N/A

FCC ID

2AD37JUE303

STANDARD(S)

47CFR 2.1093 IEEE 1528-2013

ISSUE DATE

2015-04-10

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com E-mail: service@morlab.cn

Tel: 86-755-36698555 Fax: 86-755-36698525

DIRECTORY

TEST REPORT DECLARATION						4
1.TECHNICAL INFORMATION		<u> </u>				5
1.1 IDENTIFICATION OF APPLICANT ·····						5
1.2 IDENTIFICATION OF MANUFACTURER						5
1.3 EQUIPMENT UNDER TEST (EUT)						5
1.3.1 PHOTOGRAPHS OF THE EUT······						5
1.3.2 IDENTIFICATION OF ALL USED EUT						6
1.4 APPLIED REFERENCE DOCUMENTS						
1.5 DEVICE CATEGORY AND SAR LIMITS						6
2. SPECIFIC ABSORPTION RATE (SAR)						7
2.1 INTRODUCTION ······						7
2.2 SAR Definition ·····						7
3. SAR MEASUREMENT SETUP			<u></u>		0	8
3.1 THE MEASUREMENT SYSTEM	·····					8
3.2 PROBE						
3.3 PROBE CALIBRATION PROCESS						
3.3.1 DOSIMETRIC ASSESSMENT PROCEDURE ···						
3.3.2 FREE SPACE ASSESSMENT PROCEDURE ·····						
3.3.3 TEMPERATURE ASSESSMENT PROCEDURE						
3.4 PHANTOM						
3.5 DEVICE HOLDER ·····						
4. TISSUE SIMULATING LIQUIDS						12
Me BLAE MORE	Me	Q.B	RLAR	MORE	Mo	o.B
5. UNCERTAINTY ASSESSMENT ······			<u> </u>		×	14
AR RIVERSON IN	DE TO	RLAG	MORL	Wox	0.0	۵۱
5.1 UNCERTAINTY EVALUATION FOR EUT	SAR TEST	40.				14
5.2 UNCERTAINTY FOR SYSTEM PERFORM)
J. Z GIACENTATIATI I ON SISTEM FENFONI	TANCE CITECK	1111	-3		40	1.3

6. SAR MEASUREMENT EVALUATION······	17
6.1 System Setup	17
6.2 VALIDATION RESULTS	18
7. OPERATIONAL CONDITIONS DURING TEST	19
7.1 BODY-WORN CONFIGURATIONS ······	19
7.1 BODY-WORN CONFIGURATIONS	19
7.3 DESCRIPTION OF INTERPOLATION/EXTRAPOLATION SCHEME	20
8. WIFI (5GHZ BANDS)	21
9. MEASUREMENT OF CONDUCTED OUTPUT POWER ······	23
10. TEST RESULTS LIST	24
11. STRANSMITTERS EVALUATION	26
ANNEX A GRAPH TEST RESULTS	27
ANNEX B GENERAL INFORMATION	38

Change History			
Issue	Date	Reason for change	
1.0	2015-04-10	First edition	
9	RITE MOR	TE IN THE CHILD HOW IS IN THE CREAT	

TEST REPORT DECLARATION

Applicant	KaiJet Technology International Limited		
Applicant Address	6F., No113, Zhongcheng Rd., Tucheng Dist., New Taipei City 236, Taiwan (R.O.C.)		
Manufacturer	SHENZHEN MTN ELECTRONICS CO.,LTD		
Manufacturer Address	MTN Industrial Park, No.5,9, FuTai Road, Pingxi community, Pingdi Street, Longgang District, Shenzhen		
Product Name	Wireless AC600 USB2.0 Mini Adapter		
Model Name	JUE303		
Brand Name	N/A		
HW Version	V2.0		
SW Version	N/A		
Test Standards	47CFR 2.1093; IEEE 1528-2013		
Test Date	2015-04-08		
The Highest Reported 1g-SAR(W/kg)	Body 0.170W/Kg Limit(W/kg): 1.6W/kg		

Tested by :	LiuJun	10 Jan
and the second	Diu Jun	400
Reviewed by :	teg Ari	
	Peng Huarui	
	7 3	

Approved by : _______ Zeng Dexin

1.TECHNICAL INFORMATION

Note: the Following data is based on the information by the applicant

1.1 Identification of Applicant

Company Name:	KaiJet Technology International Limited
Address:	6F., No113, Zhongcheng Rd., Tucheng Dist., New Taipei City 236,
B ORLA MORE	Taiwan (R.O.C.)

1.2 Identification of Manufacturer

Company Name:	SHENZHEN MTN ELECTRONICS CO.,LTD	
Address:	MTN Industrial Park, No.5,9, FuTai Road, Pingxi community,Pingdi	
S W. SLAB AORLA	Street,Longgang District, Shenzhen	

1.3 Equipment Under Test (EUT)

Model Name:	JUE303
Trade Name:	j5 create
Brand Name:	N/A
Hardware Version:	V2.0
Software Version:	N/A
Tx Frequency Bands:	WIFI 802.11 b/g/n20/n40 (2.4GHz);
	WIFI 802.11ac/n20/n40 (5.180-5.250GHz, 5.745-5.825GHz);
Uplink Modulations:	WIFI802.11b: DSSS;WIFI802.11g: OFDM;
	WIFI802.11ac/n20/n40: OFDM;
Multislot Class:	Fixed Internal Antenna
GPRS Class:	Identical prototype
Antenna type:	Fixed Internal Antenna
Development Stage:	Identical prototype
Hotspot function:	Not Support

1.3.1 Photographs of the EUT

Please refer to the External Photos for the Photos of the EU7

1.3.2 Identification of all used EUT

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the Following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	V2.0	N/A

1.4 Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title	
1	47 CFR§2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices	
2	IEEE 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques	
3	KDB 447498 D01v05r02	General RF Exposure Guidance	
4	KDB 447498 D02v02	SAR Procedures for Dongle Xmtr	
5	KDB 248227 D01v02	SAR Measurement Guidance for IEEE 802.11 TransmittersS	
6	KDB 865664 D01v01r02	SAR Measurement 100 MHz to 6 GHz	
7	KDB 865664 D02v01r01	SAR Reporting	

1.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2. SPECIFIC ABSORPTION RATE (SAR)

2.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are High than the limits for general population/uncontrolled.

2.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density. (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \Big(\frac{dW}{dm} \Big) = \frac{d}{dt} \Big(\frac{dW}{\rho dv} \Big)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by,

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where σ is the conductivity of the tissue, ρ is the mass density of the tissue and |E| is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

3. SAR MEASUREMENT SETUP

3.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the Following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The Following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 37/08 EP80 with Following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 6.5 mm

- Distance between probe tip and sensor center: 2.5mm

 Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

Probe linearity: <0.25 dB
Axial Isotropy: <0.25 dB
Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with CENELEC EN 62209 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 622091 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

= Skin depth

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$

(N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$

(N=1,2,3)

Where DCP is the diode compression point in mV.

3.3 Probe Calibration Process

3.3.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

3.3.2 Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

3.3.3 Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulating head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

 $\delta t = \text{exposure time (30 seconds)},$

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

C = heat capacity of tissue (brain or muscle),

 δT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Where:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

 σ = simulated tissue conductivity,

 ρ = Tissue density (1.25 g/cm³ for brain tissue)

3.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is High than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

4. TISSUE SIMULATING LIQUIDS

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in below table.

The following table gives the recipes for tissue simulating liquids

Y AV	ANA		
Ingredients	Frequency Band		
(% by weight)	2450MHz		
Tissue Type	Body		
Ingredients (% by wei	ght)		
Deionised Water	73.20		
Salt(NaCl)	0.10		
Sugar	0.00		
Tween 20	0.00		
HEC	0.00		
Bactericide	0.00		
Triton X-100	0.00		
DGBE	26.70		
Diethylenglycol	0.00		
monohexylether			
Measured dielectric parameters			
Dielectric Constant	52.70		
Conductivity (S/m)	1.95		

Recipes for Tissue Simulating Liquid

Note: Please refer to the validation results for dielectric parameters of each frequency band.

Note: Please refer to the validation results for dielectric parameters of each frequency band.

The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using an Agilent 85033E Dielectric Probe Kit and an Agilent Network Analyzer.

Table 1: Dielectric Performance of Tissue Simulating Liquid

Temperature: 22.0~23.8°C, humidity: 54~60%.							
Date	Freq.(MHz)	Liquid Parameters	Meas.	Target	Delta(%)	Limit±(%)	
0045/4/0 D-dv 0450	Relative Permittivity(cr):	52.52	52.7	-0.34	5		
2015/4/8 Body 2450		Conductivity(σ):	1.90	1.95	-2.56	5	

5. UNCERTAINTY ASSESSMENT

The Following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

5.1 UNCERTAINTY EVALUATION FOR EUT SAR TEST

		. 30							
a mortage in mortage	b	C	d	e= f(d,k)	f MORLAS	g	h= c*f/e	i= c*g/ e	k
Uncertainty Component	Sec.	Tol (+- %)	Prob Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+- %)	Vi
Measurement System	AR	RLAD	11/1	al.	40.	AB	RLAB	/0)	Oth.
Probe calibration	E.2.1	4.76	N	1.08	1 410	1	4.76	4.7	∞
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1.0	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1 🤲	1	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	1. PLA	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1 1	1 🚜	1	0.02	0.0	∞
Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	10	1 ala	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1 alas	1110	1.15	1.1 5	∞
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1 B	0.03	0.0	8
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	AB WE	1 MORLAR	2.89	2.8 9	∞
Test sample Related	AL	ORE	dille	NB NB		RLAL	MORL	THI THI	
Test sample positioning	E.4.2.	0.03	N	1 _{MORE}	1 MC	1 AE	0.03	0.0	N- 1
Device Holder Uncertainty	E.4.1.	5.00	N	1 1	1 💸	1	5.00	5.0	N-

ORLAND ORLAND	1	7 B W.	- ALP		A. B.	More	0	0	1
Output power Power drift -	6.6.2	4.04	R	$\sqrt{3}$	1	1	2.33	2.3	∞
SAR drift measurement	B	CLAF		RLA	Mokr	G W	LAB	3	OPL
Phantom and Tissue Para	meters	MOL	· @	LAB		RLA	MOL	0 0	
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R	$\sqrt{3}$	1 A	1 MORLAS	0.03	0.0	8
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	1 _{MORE}	0.64	0.43	3.20	2.1 5	M
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0 4	8
Liquid permittivity - measurement uncertainty	E.3.3	10.0	N W	1 10RLAE	0.6	0.49	6.00	4.9 0	М
Combined Standard Uncertainty	NORL.	A.E MO	RSS	MO	LAB	MORL	11.55	10. 67	3
Expanded Uncertainty (95% Confidence interval)	AE MO.	ORLAB	K=2	RLAB	MORLE	LAE MC	23.11	21. 33	ORL

5.2 UNCERTAINTY FOR SYSTEM PERFORMANCE CHECK

a West Late	b work	С	d	e=	f	g	h=		k
	A.B	RLAL	212	f(d,k)	Mic	OB.	c*f/e	c*g/	ORL
AB ALAP OR	4	NO.	40	al Alb	٠.٥	2 les	Mo.	е	
Uncertainty Component	Sec.	Tol	Prob	Div.	Ci	Ci	1g Ui	10g	Vi
	More	(+-	· ALA	, o ^R	(1g)	(10g)	(+-%)	Ui	8
	ORI	%)	Dist.	B	LAP	.0	RLA	(+-	
3 ORLA MORE	BIN	LAB	.0	RLA	Moles	BIN	LAB	%)	RLA
Measurement System	Like	NOFE	B W	LAB	.0	RLA	MORE	2 1/1	
Probe calibration	E.2.1	4.76	N	1,101	1, 1	1 100	4.76	4.7	8
Axial Isotropy	E.2.2	2.5	R	$\sqrt{3}$	0.7	0.7	1.01	1.0	∞
Hemispherical Isotropy	E.2.2	4.0	R	$\sqrt{3}$	0.7	0.7	1.62	1.6	∞ .
Boundary effect	E.2.3	1.0	R 🐠	$\sqrt{3}$	1	1.8	0.58	0.5	∞
Linearity	E.2.4	5.0	R	$\sqrt{3}$	1 110	1 💦	2.89	2.8	∞
System detection limits	E.2.5	1.0	R	$\sqrt{3}$	1	108	0.58	0.5	∞
Readout Electronics	E.2.6	0.02	N	1,5	1 1 AE	1	0.02	0.0	∞

Reponse Time	E.2.7	3.0	R	$\sqrt{3}$	1	1,10	1.73	1.7	∞
Integration Time	E.2.8	2.0	R	$\sqrt{3}$	1 21.0	1	1.15	1.1	∞
RF ambient Conditions	E.6.1	3.0	R	$\sqrt{3}$	1	1,0	1.73	1.7	∞
Probe positioner Mechanical Tolerance	E.6.2	2.0	R	$\sqrt{3}$	1 11	1	1.15	1.1 5	8
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	$\sqrt{3}$	1	1.110	0.03	0.0	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.8	8
Dipole	OR	Like	MORE	O Mes		3	RLA	Moles	
Dipole axis to liquid Distance	8,E.4. 2	1.00	N	$\sqrt{3}$	1010	1 MARIAN	0.58	0.5 8	8
Input power and SAR drift measurement	8,6.6. 2	4.04	R	$\sqrt{3}$	LAE W	1 NOPLAS	2.33	2.3	8
Phantom and Tissue Para	meters	ART	MORT	Mo	o.	3	QLA!	MORIL	
Phantom Uncertainty (Shape and thickness tolerances)	E.3.1	0.05	R III	$\sqrt{3}$	11 ¹ 0 ^{FL}	1 M	0.03	0.0	8
Liquid conductivity - deviation from target value	E.3.2	4.57	R	$\sqrt{3}$	0.64	0.43	1.69	1.1	∞
Liquid conductivity - measurement uncertainty	E.3.3	5.00	N	$\sqrt{3}$	0.64	0.43	1.85	1.2	М
Liquid permittivity - deviation from target value	E.3.2	3.69	R	$\sqrt{3}$	0.6	0.49	1.28	1.0	8
Liquid permittivity - measurement uncertainty	E.3.3	10.0	Nati	$\sqrt{3}$	0.6	0.49	3.46	2.8	M
Combined Standard Uncertainty	, C	MORLAN	RSS	ORLAE	en.	PALAE .	8.83	8.3	OF
Expanded Uncertainty (95% Confidence interval)	JORLA	AE MO	K=2	, ms mor	LAE	MORLA	17.66	16. 73	3 17

6. SAR MEASUREMENT EVALUATION

6.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The power meter PM1 measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz,100 mW is used for 3.5 GHz to

6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

6.2 Validation Results

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Frequency	2450MHz(B)		
Target value 1W (1g)	56.13 W/Kg		
Test value 1g (250 mW input power)	13.981 W/Kg		
Normalized to 1W value(1g)	55.924 W/Kg		

Note: System checks the specific test data please see 36~37.

7. OPERATIONAL CONDITIONS DURING TEST

7.1 Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

Illustration for Body Worn Position

7.2 Measurement procedure

The Following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- 2. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- 3. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- 4. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.3 Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

8. WIFI (5GHz BANDS)

Required Test Channels per KDB 248227 D01

MO	ode	de Band G		Channel	"Default Test Cha	annels"
10P	ode	Danu	GHz	Channel	802.11	
VB W.	2LAB		5.18	36	$\sqrt{}$	
	UNII	5.2GHz	5.20	40		*
	(15.407)	5.2GHZ	5.22	44		*
	BIN		5.24	48	√	
802.11a	The MO		5.745	149	√	
	DTS		5.765	153		*
	(15.247)	5.8GHz	5.785	157	√	
	OPLA		5.805	161		*
	G Wes		5.825	165	√	

^{√ = &}quot;default test channels"

Measured Results

	69 -4.7	.07	/// O			
Dand	01 1	Frequency	Output Power(dBm)			
Band	Channel	(MHz)	802.11ac	802.11n		
ORLAE	36	5180	8.09	8.17		
	38	5190	8.18	7.92		
3 140	40	5200	8.11	8.04		
Wi-Fi	42	5210	8.06	N/A		
5.2GHz	44	5220	8.15	8.19		
Je. 8 111.	46	5230	8.15	8.21		
	48	5240	8.19	8.14		

⁼ possible 802.11a channels with maximum average output > the "default test channels"

^{# =} when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

Dond	Channal	Frequency	Output Power(dBm)			
Band	Channel	(MHz)	802.11ac	802.11n		
	149	5745	6.51	5.93		
MORLIN	151	5755	7.05	6.81		
\A/: - :	153	5765	5.91	5.61		
Wi-Fi	155	5775	6.91	N/A		
5.8GHz	157	5785	5.85	5.37		
(UNII)	159	5795	6.95	6.71		
	161	5805	5.77	5.42		
, m	165	5825	5.71	5.50		

9. MEASUREMENT OF CONDUCTED OUTPUT POWER

1. WiFi Average output power

		Frequency	Output Power(dBm)				
Band	Band Channel	(MHz)	802.11b	802.11g	802.11n20		
		(=)	(DSSS)	(OFDM)	(OFDM)		
MO AB	1,21,41	2412	17.93	14.28	15.62		
WiFi	6	2437	18.26	15.38	16.11		
of m.	11	2462	17.32	14.08	15.01		

		Output		
Channel	Frequency	Power(dBm)		
Charmer	(MHz)	802.11n40		
		(OFDM)		
3	2422	13.78		
6	2437	14.72		
9	2452	14.47		
	- 650	Channel (MHz) 3 2422 6 2437		

10. TEST RESULTS LIST

Summary of Measurement Results (WLAN 802.11b Band)

Temperature: 21.	0~23.8°C, humidity:	54~60%.	MERLAR	MORLAN	MORE III
Phantom Configurations	Device Test Positions	Device Test channel	SAR(W/Kg), 1g Peak	Scaling Factor	Scaled SAR (W/Kg), 1g
IRLAS D. AMORLA	Horizontal-Up	ORLAG.	0.143	OF AB	0.151
Body	Horizontal-Down	0 0	0.161	4.057	0.170
(5mm	Vertical-Front	6	0.058	1.057	0.061
Separation)	Vertical-Back	A.G	0.054		0.057

Note:

- When the 1-g SAR for the mid-band channel or the channel with the highest output power satisfy the following conditions, testing of the other channels in the band is not required. (Per KDB 447498 D01 General RF Exposure Guidance v05r02)
 - ≤ 0.8 W/kg and transmission band ≤ 100 MHz
 - ≤ 0.6 W/kg and, 100 MHz < transmission bandwidth ≤ 200 MHz
 - ≤ 0.4 W/kg and transmission band > 200 MHz
- During 802.11 testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal. The RF signal utilized in SAR measurement has almost 100% duty cycle, and its crest factor is 1.
- 3. IEEE Std 1528-2013 require the High channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the High channel, the highest output power channel must be used.
- 4. Per KDB 447498, when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg and peak SAR is less than 1.6W/kg, where the transmission band corresponding to all channels is ≤ 100 MHz, testing for the other channels is not required.

5. Scaling Factor calculation

Band	Tune-up power tolerance(dBm)	SAR test channel Power (dBm)	Scaling Factor
802.11b	Max output power =18+-0.5	18.26	1.057

11. STAND-ALONE TRANSMITTERS EVALUATION

Stand-alone SAR

Test distance	e: 5mm	ORLAN MORE MIC AE RIAL MO	W.
Band	Highest power(mW) per tune up	1-g SAR test threshold	Test required?
WIFI(5.2G)	6.76	[(max. power of channel, including tune-up tolerance,	No
WIFI(5.8G)	5.37	mW)/(min. test separation distance, mm)] • [√f(GHz)] ≤ 3.0 for 1-g SAR	No

The Body SAR test for WIFI 5.2GHz and WIFI 5.8GHz is not required.

The Body SAR test for WIFI required. 802.11g/HT20/HT40 is not required, for the maximum average output power is less than 1/4 dB Higher than measured on the corresponding 802.11b channels. As per KDB 248227

ANNEX A GRAPH TEST RESULTS

BAND	<u>PARAMETERS</u>
ORLAN	Measurement 1: Flat Plane with Body Horizontal-Up on Middle
	Channel in DSSS mode
	Measurement 2: Flat Plane with Body Horizontal-Down on Middle
Channel in DSSS mode Measurement 3: Flat Plane with Body Vertical-Front on Measurement 3:	
	Measurement 4: Flat Plane with Body Vertical-Back on Middle
	Channel in DSSS mode.

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2015.4.8

Measurement duration: 9 minutes 37 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.520628
Conductivity (S/m)	1.958675
Power drift (%)	-3.420000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	ORL MO 1:1

Maximum location: X=2.00, Y=-1.00 SAR Peak: 0.22 W/kg

SAR 10g (W/Kg)	0.089761
SAR 1g (W/Kg)	0.142760

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2015.4.8

Measurement duration: 9 minutes 29 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.520628
Conductivity (S/m)	1.958675
Power drift (%)	-2.360000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	ORL 110 1:1

Maximum location: X=9.00, Y=-22.00 SAR Peak: 0.23 W/kg

SAR 10g (W/Kg)	0.101314
SAR 1g (W/Kg)	0.160630

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2015.4.8

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

tpormioniai contantiono.	
Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	802.11b
Channels	Middle
Signal	DSSS

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000
Relative permittivity (real part)	52.520628
Conductivity (S/m)	1.958675
Power drift (%)	-2.740000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.1°C
ConvF:	4.96
Crest factor:	ORL MO 1:1

Maximum location: X=1.00, Y=-1.00 SAR Peak: 0.09 W/kg

SAR 10g (W/Kg)	0.034755
SAR 1g (W/Kg)	0.057781

MEASUREMENT 4

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2015.4.8

Measurement duration: 9 minutes 31 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	802.11b	
Channels	Middle	
Signal	DSSS	

B. SAR Measurement Results

Middle Band SAR (Channel 6)

Frequency (MHz)	2437.000000	
Relative permittivity (real part) 52.520628		
Conductivity (S/m) 1.958675		
Power drift (%)	3.340000	
Ambient Temperature: 22.9°C		
Liquid Temperature:	22.1°C 4.96	
ConvF:		
Crest factor:	ORL MOTH	

Maximum location: X=2.00, Y=0.00 SAR Peak: 0.09 W/kg

SAR 10g (W/Kg)	0.032538	
SAR 1g (W/Kg)	0.053699	

System Performance Check Data(Body)

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2015.4.8

Measurement duration: 13 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	an alan double the	
Band	2450MHz	
Channels	, alas 10gs no 15	
Signal	CW	

B. SAR Measurement Results

Band SAR

<u> </u>		
Frequency (MHz)	2450.000000	
Relative permittivity (real part)	52.520628	
Conductivity (S/m)	1.958675	
Power Drift (%)	0.630000	
Ambient Temperature:	22.9°C	
Liquid Temperature:	22.1°C	
ConvF:	4.96	
Crest factor:	10 1:1 m	

Maximum location: X=-1.00, Y=-50.00

SAR 10g (W/Kg)	7.285412	
SAR 1g (W/Kg)	13.286857	

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR	0.0000	13.1279	6.8312	3. 5991	1.3473
(W/Kg)	Mo	SLAF	MORIL	MO	al Alb

ANNEX B GENERAL INFORMATION

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
Department:	Morlab Laboratory		
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang		
	Road, Block 67, BaoAn District, ShenZhen, GuangDong		
	Province, P. R. China		
Responsible Test Lab Manager:	Mr. Su Feng		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.	
RE AB TRIAB	Morlab Laboratory	
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang	
INO. AB I. SELAB MOR	Road, Block 67, BaoAn District, ShenZhen, GuangDong	
MORIL MO. BE IN	Province, P. R. China	

3. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due	
LAT	PC	Dell (Pentium IV 2.4GHz, SN:X10-23533)	(n.a)	(n.a)	
2	Network Emulator	Aglient (8960, SN:10752)	2015-2-21	1year	
3	Network Analyzer	Agilent(E5071B ,SN:MY42404762)	2014-9-24	1year	
4 _	Voltmeter	Keithley (2000, SN:1000572)	2014-9-24	1year	
5	Signal Generator	Rohde&Schwarz (SMP_02)	2014-9-24	1year	
6	Power Amplifier	PRANA (Ap32 SV125AZ)	2014-9-24	1year	
7	Power Meter	Agilent (E4416A, SN:MY45102093)	2014-5-07	1year	
8	Power Sensor	Agilent (N8482A, SN:MY41091706)	2014-5-07	1year	
9	Directional coupler	Giga-tronics(SN:1829112)	2014-9-24	1year	
10	Probe	Satimo (SN:SN 37/08 EP80)	2014-9-22	1year	
11	Dielectric Probe Kit	Agilent (85033E)	2014-9-24	1year	
12	Phantom	Satimo (SN:SN_36_08_SAM62)	2014-9-24	1year	
13	Liquid	Satimo(Last Calibration: 2015-1-13)	N/A	N/A	
14	Dipole 2450MHz	Satimo (SN 30/13 DIP2G450-263)	2014-9-22	1year	

***** FND OF RFPORT *****