Université Mohamed Premier Faculté Pluridisciplinaire de Nador Département de Physique

Année universitaire 2022/2023 Filière SMP, Semestre 4 Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1

On réalise une expérience d'effet photoélectrique à l'aide d'une cellule photoélectrique dont l'énergie d'extraction est $W_0 = 4{,}14$ eV.

- 1. Expliquer brièvement l'effet photoélectrique et donner le schéma du montage permettant de produire un photo-courant (I_{ph}) .
- **2.** Dans cette expérience, on a utilisé trois longueurs d'ondes λ différentes (voir tableau). Calculer les fréquences ν des différents rayonnements utilisés (Présenter les résultats sous forme d'un tableau).

λ (nm)	200	400	600
--------	-----	-----	-----

- 3. Déterminer la fréquence v_0 du seuil photoélectrique. Parmi les trois longueurs d'ondes utilisées, quelles sont celles qui satisfont l'effet photoélectrique? Justifier votre réponse.
- **4.** Déterminer l'expression de la vitesse v des photoélectrons en fonction de ν , ν_0 , h et m. Calculer la valeur numérique de v pour les radiations qui satisfont l'effet photoélectrique.

On donne:

Masse d'un électron $m=9,11.10^{-31}$ kg; Constante de Planck $h=6,62.10^{-34}$ J.s; Célérité $c=3.10^8$ m.s⁻¹; 1 eV = $1,6.10^{-19}$ J

Exercice 2

Une particule de masse m et d'énergie E est animée d'un mouvement de vibrations, dans un espace à une dimension suivant la direction x $(x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel d'expression:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$
; ω la pulsation des vibrations.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- **2.** La fonction d'onde stationnaire $\varphi(x)$ de l'état fondamental de la particule peut s'écrire sous la forme:

$$\varphi(x) = A e^{-\alpha x^2}$$
; A et α des réels positifs

En injectant l'expression de $\varphi(x)$ dans l'équation différentielle précédente, déterminer la constante α ainsi que l'énergie propre E de la particule en fonction de m, \hbar et ω .

3. Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante A en fonction de m, \hbar et ω . On pourra utiliser le résultat de l'intégrale suivante: $\int_{-\beta}^{+\infty} e^{-\beta x^2} dx = \sqrt{\frac{\pi}{\beta}}$

Exercice 3

1. Soient A et B deux opérateurs linéaires dont les représentations matricielles, dans une base orthonormée, sont données par :

$$A = \begin{pmatrix} 1 & -3i \\ 3i & 2 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} i & -2 \\ 2 & -i \end{pmatrix}$$

- a) Calculer la trace des opérateurs A, B, A^2 et B^2 .
- b) Parmi ces quatre opérateurs (A, B, A^2, B^2) , lesquels sont hermitiques (ou hermitiens)? Justifier votre réponse.
- **2.** Soit $\{|e_1\rangle,|e_2\rangle\}$ une base orthonormée dont laquelle l'opérateur M s'écrit sous la forme:

$$M = \begin{pmatrix} \sqrt{2} & -1 \\ 1 & -\sqrt{2} \end{pmatrix}$$

- a) Ecrire l'équation aux valeurs propres de M et déterminer ses valeurs propres λ_I et λ_2 .
- b) Déterminer les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ associés aux valeurs propres λ_1 et λ_2 .

On considère une particule de masse m dont le mouvement est assimilé à un oscillateur harmonique à une dimension suivant la direction x $(x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel V(x) d'expression:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

où ω la pulsation des oscillations harmoniques.

- 1. Donner l'expression de l'opérateur hamiltonien H de la particule et rappeler l'équation de Schrödinger décrivant l'évolution de la fonction d'onde totale $\psi(x,t)$ en fonction du temps.
- **2.** La fonction d'onde totale $\psi(x,t)$ de l'état fondamental de la particule s'écrit sous la forme:

$$\psi(x,t) = C e^{-\alpha x^2} e^{-i\frac{E_0}{\hbar}t}$$

où C et α des constantes positives, et E_0 l'énergie de l'état fondamental de la particule. En injectant l'expression de $\psi(x,t)$ dans l'équation précédente, déterminer la constante α et l'énergie E_0 en fonction de m, \hbar et ω .

3. Ecrire la relation de normalisation de la fonction d'onde $\psi(x,t)$ puis établir l'expression de la constante C en fonction de m, \hbar et ω .

On pourra utiliser le résultat de l'intégrale suivante: $\int_{-\infty}^{+\infty} e^{-\beta x^2} dx = \sqrt{\frac{\pi}{\beta}}$

Université Mohamed Premier Faculté Pluridisciplinaire de Nador Département de Physique

Année universitaire 2018/2019 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Exercice 1 (10 points)

On considère une particule de masse m dont le mouvement est assimilé à un oscillateur harmonique à une dimension suivant la direction x ($x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel V(x) d'expression:

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

où ω la pulsation des oscillations harmoniques.

La fonction d'onde $\psi(x,t)$ de l'état fondamental de la particule s'écrit sous la forme:

$$\psi(x,t) = C e^{-\alpha x^2} e^{-i\frac{E_0}{\hbar}t}$$

où C et α des constantes positives, et E_0 l'énergie de l'état fondamental de la particule.

- 1. Donner l'expression de l'opérateur hamiltonien H de la particule et rappeler l'équation de Schrödinger décrivant l'évolution de la fonction d'onde $\psi(x,t)$ en fonction du temps.
- **2.** En injectant l'expression de $\psi(x,t)$ dans l'équation précédente, déterminer la constante α et l'énergie E_0 en fonction de m, \hbar et ω .
- 3. Ecrire la relation de normalisation de la fonction d'onde $\psi(x,t)$ puis établir l'expression de la constante C en fonction de m, \hbar et ω .
- **4.** Déterminer l'expression de $\|\psi(x,t)\|^2$ puis tracer son allure en fonction de x. Que représente cette quantité ?
- **5.** La valeur moyenne d'une observable A quelconque dans l'état $\psi(x,t)$ est définie par :

$$\langle A \rangle = \int \psi^*(x,t) A \psi(x,t) dx$$

Déterminer la valeur moyenne de l'énergie totale $\langle H \rangle$ de la particule dans l'état fondamental.

On pourra utiliser dans cet exercice l'intégrale suivante: $\int_{-\infty}^{+\infty} e^{-\lambda x^2} dx = \sqrt{\frac{\pi}{\lambda}}$

Exercice 2 (7 points)

On considère une particule, de masse m et d'énergie E, effectuant un mouvement d'oscillations dans un espace à une dimension suivant la direction x ($x \in]-\infty, +\infty[$). Cette particule est soumise à un potentiel d'expression:

$$V(x) = \frac{1}{2}Kx^2$$

où K est la constante de force de rappel.

1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.

2. La fonction d'onde de l'état fondamental, solution de l'équation différentielle précédente, est de la forme:

$$\varphi(x) = A e^{-\alpha x^2}$$

- où A et α des constantes réelles positives.
- a) En injectant cette fonction dans l'équation différentielle, déterminer la constante α ainsi que l'énergie propre E de la particule en fonction de m, \hbar et K.
- b) Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de

la constante A. On pourra utiliser le résultat de l'intégrale suivante: $\int_{-\infty}^{+\infty} \exp(-\beta x^2) dx = \sqrt{\frac{\pi}{\beta}}$

3. La fonction d'onde totale $\psi(x,t)$ de la particule peut s'écrire sous la forme:

$$\psi(x,t) = \varphi(x)e^{-i\omega t}$$

- a) Donner l'expression de $\left\|\psi(x,t)\right\|^2$. Que représente cette quantité ?
- b) Tracer l'allure graphique de $\|\psi(x,t)\|^2$ en fonction de x.

4. Soit P(x) la densité de probabilité de présence de la particule. Donner l'expression de P(x) puis tracer son allure en fonction de x.

On pourra utiliser l'intégrale suivante:
$$\int_{-\infty}^{+\infty} \exp(-ax^2) dx = \sqrt{\frac{\pi}{a}}$$

Une particule de masse m et de charge q est animée d'un mouvement suivant la direction x $(x \in [0, +\infty[)$. Cette particule est soumise à un potentiel de type coulombien d'expression:

$$V(x) = -\frac{q^2}{4\pi\varepsilon_0 x}$$

- 1. Soient E l'énergie de la particule et $\varphi(x)$ sa fonction d'onde d'état stationnaire. Donner l'expression de l'opérateur hamiltonien H puis écrire l'équation de Schrödinger des états stationnaires de cette particule.
- 2. L'équation différentielle précédente peut avoir une solution de la forme:

$$\varphi(x) = Ax \exp(-\alpha x)$$

où A et α sont des constantes positives.

- a) En injectant cette fonction dans l'équation différentielle précédente, déterminer la constante α ainsi que l'énergie propre E de la particule en fonction de m, q, \hbar et ε_0 .
- b) Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de

la constante A. On pourra utiliser le résultat de l'intégrale suivante: $\int_{0}^{\infty} e^{-\lambda x} x^{n} dx = \frac{n!}{\lambda^{n+1}}$

3. La fonction d'onde totale $\psi(x,t)$ de la particule peut s'écrire sous la forme:

$$\psi(x,t) = \varphi(x)e^{-i\omega t}$$

- a) Ecrire l'équation de Schrödinger à laquelle obéit la fonction d'onde $\psi(x,t)$.
- b) Que représente la quantité $\|\psi(x,t)\|^2$? Montrer que $\|\psi(x,t)\|^2$ présente un maximum pour une valeur de x que l'on calculera en fonction de m, q, \hbar et ε_0 .
- c) Tracer l'allure graphique de $\|\psi(x,t)\|^2$ en fonction de x.

On considère une particule de masse m animée d'un mouvement dans un espace à une dimension suivant la direction Ox. Soient H l'opérateur hamiltonien associé à cette particule et $\psi(x,t)$ sa fonction d'onde qui peut s'écrire sous la forme:

$$\psi(x,t) = C e^{-\frac{x}{a}} e^{i(kx - \omega t)} \quad \text{avec } x \in [0, +\infty[$$

C et a sont des constantes positives.

- 1. Déterminer la constante C pour que la fonction d'onde $\psi(x,t)$ soit normée à l'unité.
- **2.** Que représente la quantité $\|\psi(x,t)\|^2$? Tracer l'allure de $\|\psi(x,t)\|^2$ en fonction de x.

On réalise une expérience d'effet photoélectrique en utilisant une cellule photoélectrique d'argent dont l'énergie d'extraction est $W = 4{,}30$ eV. Ce dispositif permet d'éclairer cette cellule par des radiations lumineuses afin de produire un courant photoélectron ($I_{\rm ph}$).

- 1. Donner le schéma du montage permettant de réaliser une expérience d'effet photoélectrique.
- **2.** En fonction de la fréquence ν de la radiation lumineuse, le photo-courant (I_{ph}) peut avoir l'allure suivante:

Expliquer brièvement cette courbe puis calculer la fréquence v_0 de la cellule d'argent.

3. Les longueurs d'ondes des radiations utilisées dans cette expérience sont regroupées dans le tableau suivant:

λ (nm) 100	200	300	400
------------	-----	-----	-----

Calculer les fréquences ν des différents rayonnements utilisés (Présenter les résultats sous forme d'un tableau). Parmi les quatre longueurs d'ondes utilisées, quelles sont celles susceptibles de satisfaire l'effet photoélectrique?

4. Après avoir écrire l'équation d'Einstein pour la conservation de l'énergie, déterminer l'expression de la vitesse v des photoélectrons en fonction de v, v_0 , la constante de Planck h et la masse m de l'électron. Calculer v pour les radiations qui sont susceptibles de produire l'effet photoélectrique.

On donne:
$$m = 9.1.10^{-31} \text{ kg}$$
; $c = 3.10^8 \text{ m.s}^{-1}$; $h = 6.62.10^{-34} \text{ J.s}$; $1 \text{ eV} = 1.6.10^{-19} \text{ J}$
Exercice 2 (10 points)

Une particule de masse m et d'énergie E est animée d'un mouvement, dans un espace à une dimension, suivant la direction x (x >0). Cette particule est soumise à un potentiel de type coulombien d'expression:

$$V(x) = -\frac{A}{x}$$

où A est une constante positive.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- 2. Cette équation différentielle admet une solution, appartenant à l'espace des fonctions d'onde, de la forme:

$$\varphi(x) = Cx \exp\left(-\frac{x}{a}\right)$$

où C et a sont des constantes.

Déterminer la constante a et l'énergie E de la particule en fonction de m, A et \hbar .

- **3.** Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante C.
- 4. Donner l'expression de la densité de probabilité de présence D(x) de la particule. Montrer que D(x) présente un maximum pour une valeur de x que l'on calculera en fonction de a.

5. Représenter l'allure de la densité de probabilité de présence $D(x)$ en fonction de x .