Corrigé des exercices

Exercice 1.1

L'algorithme le plus simple que nous dénotons A1 découle directement de la définition d'un nombre premier. Rappelons qu'un nombre premier n est un nombre entier qui n'est divisible que par 1 et par luimême. L'algorithme va donc consister en une boucle dans laquelle on va tester si le nombre n est divisible par 2, 3, ..., n-1.

```
Algorithme A1;

début

premier := vrai;
i := 2;
tant \ que \ (i <= n-1) \ et \ premier \ faire
si \ (n \ mod \ i = 0) \ alors \ premier := faux \ sinon \ i := i+1;

fin.
```

Le pire cas qui nécessite le plus long temps, correspond au cas où n est premier car c'est dans ce cas que la boucle s'exécute avec un nombre maximum d'itérations. Dans ce cas ce nombre est égal à n-2. La complexité est donc en O(n).

Nous savons que pour améliorer l'algorithme, il est judicieux d'arrêter la boucle à n/2 car si n est divisible par 2, il est aussi divisible par n/2 et s'il est divisible par 3, il est aussi divisible par n/3. De manière générale, si n est divisible par i pour $i = 1 \dots \lfloor n/2 \rfloor$ où $\lfloor n/2 \rfloor$ dénote la partie entière de n/2, il est aussi divisible par n/i. Il n'est donc pas nécessaire de vérifier qu'il est divisible par un nombre supérieur à n/2. Le deuxième algorithme est donc :

```
Algorithme A2;
début

premier := vrai;
i := 2;
tant \ que \ ((i <= \lfloor n/2 \rfloor) \ et \ premier) \ faire
si \ (n \ mod \ i = 0) \ alors \ premier := faux \ sinon \ i := i+1;
fin
```

Le cas le plus défavorable qui nécessite le plus long temps correspond toujours au cas où n est premier et dans ce cas le nombre d'itérations est égal à $\lfloor n/2 \rfloor$ -1. La complexité est donc en O(n).

Une autre amélioration possible consiste à tester si n est impair et dans ce cas dans la boucle, il ne faut tester la divisibilité de *n* que par les nombres impairs. L'algorithme A3 est donc comme suit :

```
Algorithme A3;
début

premier := vrai;
si ((n <> 2) et (n mod 2 = 0)) alors premier := faux
sinon si (n <> 2) alors
début
i := 3;
tant que ((i <= n-2) et premier) faire
si (n mod i = 0) alors premier := faux sinon i := i+2;
fin
```

Le pire cas correspond au cas où n est premier et dans ce cas le nombre maximum d'itérations de la boucle est égal à $\lfloor n/2 \rfloor - 2$, la complexité est en O(n).

L'algorithme A4 peut être obtenu en hybridant A2 et A3 et on obtient :

```
Algorithme A4;
d\acute{e}but
premier := vrai;
si (n <> 2) et (n mod 2 = 0) alors premier := faux
sinon si (n <> 2) alors
d\acute{e}but
i := 3;
tant que (i <= [n/2]) et premier faire
si (n mod i = 0) alors premier := faux sinon i := i+2;
fin
```

Le nombre d'itérations de la boucle pour un nombre premier est égal à la moitié du nombre d'itérations de A3, il est égal à $\lfloor n/4 \rfloor - 1$. La complexité est donc O(n).

Une bonne amélioration de l'algorithme serait d'arrêter la boucle non pas à $\lfloor n/2 \rfloor$ mais à \sqrt{n} car en effet si n est divisible par i, il est aussi divisible par n/i. Et donc il serait judicieux de ne pas répéter le test de la divisibilité au-delà de i = n/i et dans ce cas $n = i^2$ et $i = \sqrt{n}$. L'algorithme A5 s'écrit donc comme suit :

```
Algorithme A5;

début premier := vrai;

i := 2;

tant \ que \ ((i <= \lfloor \sqrt{n} \rfloor) \ et \ premier) \ faire

si \ (n \ mod \ i = 0) \ alors \ premier := faux \ sinon \ i := i+1;

fin
```

Le nombre maximum d'itérations est égal à $\lfloor \sqrt{n} \rfloor - 1$, la complexité est en $O(\sqrt{n})$. Enfin, on peut concevoir un algorithme en hybridant A5 et A3, on obtient l'algorithme A6 suivant :

```
Algorithme A6; début premier = vrai; si (n <> 2) et (n \mod 2 = 0) alors premier := faux sinon si (n <> 2) alors début i := 3; tant que ((i <= \lfloor \sqrt{n} \rfloor) et premier) faire si (n \mod i = 0) alors premier := faux sinon i := i+2; fin fin
```

Le nombre maximum d'itérations de la boucle est égal à $\frac{|\sqrt{n}|}{2} - 1$. La complexité est donc en $O(\sqrt{n})$.

Récapitulatif:

Algorithme	Nombre maximum d'itérations en fonction de n	Complexité théorique	Nombre réel d'itérations pour n = 990181
A1	n-2	O(n)	990179
A2	[n/2] -1	O(n)	495089
A3	[n/2] -1	O(n)	495089
A4	[n/4] -2	O(n)	247563
A5	$[\sqrt{n})$]-1	$O(\sqrt{n})$	994
A6	$[\sqrt{n}/2]$ -2	$O(\sqrt{n})$	495

Nous remarquons que lorsque l'on change d'ordre de complexité, le temps réel change de grandeur : un nombre de 6 chiffres pour les algorithmes A1 à A4 et un nombre de 3 chiffres pour A5 et A6.

Pour conclure, nous faisons remarquer que de simples améliorations au niveau de l'algorithme initial qui est le plus basique, nous a conduit à écrire un code très rapide. En effectuant les différentes améliorations, nous avons fait chuter le nombre d'itérations de 990179 à 495.

Exercice 1.2

```
1)    1 heure = 3600s = 3.6 \cdot 10^3s

1 jour = 86400s = 8.64 \cdot 10^4s

1 semaine = 604800s \approx 6.05 \cdot 10^5s

1 mois= 2 592 000s \approx 2.59 \cdot 10^6s

1 année = 31 536 000 \approx 3.15 \cdot 10^7s

1 siècle = 3 153 600 000\approx 3.15 \cdot 10^9s

1 millénaire = 31 536 000 000 \approx 3.15 \cdot 10^{10}s
```

2) Le temps nécessaire au traitement des tailles du problème pour n=10, n=100 et n=1000 pour une unité de temps égale à une milliseconde est montré dans le tableau suivant :

Algorithme	complexité	temps			
		n=10	n= 100	n=1000	
A0	Ln n	0,002s	0,005s	0,009s	
A1	√n	0,003s	0,01s	0,031s	
A2	n	0,01s	0,1s	1s	
A3	n ²	0,1s	10s	16mn40s	
A4	n ³	1s	16 mn 40s	11j13h46mn40s	
A5	n ⁴	10s	1j3h46mn40s	31 ans8 mois 15j 19h 3mn 28s	
A6	2 ⁿ	1,02s	3.2 10 ¹⁶ millénaires	3.2 10 ²⁸⁶ millénaires	

3) Le temps nécessaire au traitement des tailles de problème n=10, n =100 et n=1000 pour une unité de temps égale à une microseconde est montré dans le tableau suivant :

Algorithme	complexité	temps		
		n=10	n= 100	n=1000
A0	Ln n	2,3*10 ⁻⁶ s	4,6 *10 ⁻⁶ s	9,9 * 10 ⁻⁶ s
A1	\sqrt{n}	3,1*10 ⁻⁶ s	10 ⁻⁵ s	3,1*10 ⁻⁵ s
A2	n	10 ⁻⁵ s	10 ⁻⁴ s	10 ⁻³ s
A3	n^2	10 ⁻⁴ s	0,01s	1s
A4	n^3	10 ⁻³ s	1s	16mn40s
A5	n ⁴	10 ⁻² s	1mn40s	11j13h46mn40s
A6	2 ⁿ	10 ⁻³ s	3.2 10 ¹³	$3.2 \ 10^{283}$
			millénaires	millénaires

- 4) Nous concluons que l'augmentation de la performance de la machine de calcul apporte les effets suivants :
 - a. Améliore le temps de calcul pour des complexités polynomiales.
 - b. n'atténue en rien les valeurs prohibitives des complexités exponentielles des grandes tailles de problème et ne peut donc pas constituer une solution pour contourner le problème de l'explosion combinatoire.
 - c. Pour les petites tailles, la fonction exponentielle est plus intéressante que certaines fonctions polynomiales (n = 10, A6 est plus rapide que A5).