$R \leq 0.747 \stackrel{\circ}{A}$

(b) A 原子的体密度= 1.18×10^{23} cm⁻³ B 原子的体密度= 1.18×10^{23} cm⁻³

1.6

1.8

有效数字

面密度

$$\frac{(1/4)\times4}{2\pi} = \frac{1}{\sqrt{2}a^2} = 2.23\times10^{14} \text{cm}^{-2} \qquad \frac{(1/4)\times4}{a\times a} = \frac{1}{a^2} = 3.15\times10^{14} \text{cm}^{-2} \qquad \frac{(1/6)\times3}{(\frac{1}{2})(\sqrt{2}a)(\sqrt{\frac{3}{2}}a)} = \frac{1}{\sqrt{3}a^2} = 1.82\times10^{14} \text{cm}^{-2}$$

$$\frac{(1/4)\times4}{(\sqrt{2}a)\times a} = \frac{2}{\sqrt{2}a^2} = 4.46\times10^{14} \text{cm}^{-2} \qquad \frac{(1/4)\times4}{a\times a} = \frac{1}{a^2} = 3.15\times10^{14} \text{cm}^{-2} \qquad \frac{1}{\sqrt{3}a^2} = 1.82\times10^{14} \text{cm}^{-2}$$

$$\frac{(1/4)\times4+(1/2)\times2}{(\sqrt{2}a)\times a} = \frac{2}{\sqrt{2}a^2} = 4.46\times10^{14} \text{cm}^{-2} \qquad \frac{(1/4)\times4+1}{a\times a} = \frac{2}{a^2} = 6.31\times10^{14} \text{cm}^{-2} \qquad \frac{(1/6)\times3+(1/2)\times3}{(\sqrt{3}/2)a^2} = \frac{4}{\sqrt{3}a^2} = 7.29\times10^{14} \text{cm}^{-2}$$

第一章补充题:

1、

空隙率为: 31.9%

2,

解:

最小原子间距 =6.685×10-9×M1/3 cm。

$$\varphi(y) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi y}{a}\right)$$

$$\mathbb{E} \psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi(x+a/2)}{a}\right)$$

$$E_n = \frac{\hbar^2 \pi^2}{2ma^2} n^2, \quad n = 1, 2, 3, \cdots$$

将 "
$$x = 0$$
" 和 " $x = a$ " 分别改成 " $x = -a/2$ " 和 " $x = a/2$ "

2.17

深入势垒 1.2 nm: 相对几率密度=1.193×10-3

深入势垒 4.8 nm: 相对几率密度=2.036×10⁻¹²

书上题目没有提有效数字,本题不计有效数字的得分;以上结果至少2位有效数字

IX:
$$\psi_1(x) = A_1 e^{k_1 x}$$
 $x \le 0$ $k_1 = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$

II
$$\boxtimes$$
: $A_2 \sin(k_2 x) + B_2 \cos(k_2 x) = \psi_2(x)$ $0 < x < a$ $k_2 = \sqrt{\frac{2mE}{\hbar^2}}$

III
$$\boxtimes$$
: $\psi_3(x) = 0$ $x \ge a$

(b)

$$B_2 = A_1$$

$$k_1 A_1 = A_2 k_2, \quad A_2 = (k_1 / k_2) A_1$$

$$\begin{split} &A_2 \sin(k_2 a) + B_2 \cos(k_2 a) = 0 \\ &(k_1 / k_2) \sin(k_2 a) + \cos(k_2 a) = 0 \\ &\text{I } \boxtimes : \quad \psi_1(x) = A_1 e^{k_1 x} \quad x \leq 0 \qquad k_1 = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}} \\ &\text{II } \boxtimes : \quad \psi_2(x) = (k_1 / k_2) \sin(k_2 x) + \cos(k_2 x) \quad 0 < x < a \qquad k_2 = \sqrt{\frac{2mE}{\hbar^2}} \end{split}$$

$$k_2 a = n\pi - \arctan\left(\sqrt{\frac{E}{U_0 - E}}\right) = a\sqrt{\frac{2mE}{\hbar^2}}, \quad n = 1, 2, 3, \cdots$$

 $E = f(n, U_0), \quad n = 1, 2, 3, \cdots$

第二章补充题:

1. $\Delta v > 0.0401$ m/s 3 位有效数字

2. 基态粒子 n = 1, $P_n = 1.25\%$ 3 位有效数字

4.6 (a) 己知
$$N_{\rm A} = 5 \times 10^{15} \, {\rm cm}^{-3}$$
 $N_{\rm D} = 1 \times 10^{15} \, {\rm cm}^{-3}$ $A = 10^{-4} \, {\rm cm}^2$ $\tau_{\rm n_0} = 0.4 \mu {\rm s}$
$$\tau_{\rm p0} = 0.1 \mu {\rm s}$$
 $D_{\rm n} = 25 {\rm cm}^2/{\rm s}$ $D_{\rm p} = 10 {\rm cm}^2/{\rm s}$

(1) 空穴和电子反向饱和电流 $I_{\rm sp} = 3.6 \times 10^{-14} \; {
m A}$ $I_{\rm sn} = 5.69 \times 10^{-15} \; {
m A}$

(2)
$$p_{\rm n}(x_{\rm n}) = 3.35 \times 10^{10} \text{ cm}^{-3}$$

(3)
$$I_p(x_n + 0.5L_p) = 3.25 \times 10^{-9} \text{ A}$$

$$\Delta p_{\rm n}(x) = \frac{n_{\rm i}^2}{N_{\rm D}} (\exp(\frac{eV_{\rm F}}{k_{\rm B}T}) - 1) \exp(\frac{-x}{\sqrt{D_{\rm p}\tau_{\rm p0}}})$$

4.6
$$J_p(x = x_n + 3 \times 10^{-4} \text{ cm}) = 0.173 \text{ A/cm}^2$$

 $J_n(x = x_n + 3 \times 10^{-4} \text{ cm}) = 0.26 \text{ A/cm}^2$

补充题:

1. $V_{\rm t} = 0.717 \text{ V}$

有效数字准确

2.

(a) GaAs 材料是 P 型导电、Ge 材料是 n 型导电 形成 Pn 异质结

- (b) 晶格失配率 0.07%
- (c) 冶金结处导带能级差: $\Delta E_{\rm C}$ = 0.0600 eV
- (d) 冶金结处价带能级差: $\Delta E_{V} = 0.710 \text{ eV}$
- (e) GaAs 中性区的费米能级与最近允带之差: E_{FGaAs} E_{VGaAs} = 0.138 eV GaAs 中性区的费米能级位于导带中,高于导带底 0.138 eV
- (f)Ge 中性区的费米能级与最近允带之差: E_{FGe} E_{CGe} = -0.194 eV Ge 中性区的费米能级位于价带中,低于价带项 0.194 eV
- (g) Ge 与 GaAs 中性区真空能级差: △ E₀ = 1.04 eV
- (h) $\chi_n = 0.491 \, \mu \text{m}$, $\chi_P = 0.266 \, \mu \text{m}$
- (i) $V_{\rm Dn}$ = 0.627 eV, $V_{\rm DP}$ = 0.414 eV 有效数字准确

3.

直接能隙区: $0.620 \mu m \le \lambda \le 0.871 \mu m$

间接能隙区: $0.572 \mu m \le \lambda \le 0.620 \mu m$

(b) 直接能隙区 GaAs_{1-x}P_x与 Al_xGa_{1-x}As 接近,可以从以下图中近似

由教材的图 5.5.4 可得, E_g = 1.76 eV

或利用近似公式计算得到: $E_g = 1.424 + 1.247x = 1.86$ eV

 $\lambda = 0.705 \ \mu m$

或: $\lambda = 0.667 \, \mu \text{m}$

补充题 1:

反偏

Si 光电二极管响应度: R = 0.621 A/W 有效数字准确

补充题 2:

 n^{++} 中性区费米能级相对导带底的位置: E_{Fn} - E_{Cn} = 0.1231 eV n^{++} 中性区费米能级进入导带,高于导带底 0.1231 eV p^{++} 中性区费米能级相对价带顶的位置: E_{Vp} - E_{Fp} = 0.06232 eV p^{++} 中性区费米能级进入价带,低于价带顶 0.06232 eV 加偏压时:

中性区 n^{++} 的真空能级与中性区 p^{++} 的真空能级之差: E_{0p} - E_{0n} = 0.06400 eV 中性区 n^{++} 与中性区 p^{++} 相应的导带能级差: E_{Cp} - E_{Cn} = 0.06400 eV 中性区 n^{++} 与中性区 p^{++} 相应的价带能级差: E_{Vp} - E_{Vn} = 0.06400 eV

冶金结位置,2 侧的真空能级差: $E_{\rm Op}$ - $E_{\rm On}$ = 0 eV 冶金结位置,2 侧的导带能级差: $E_{\rm Cp}$ - $E_{\rm Cn}$ = 0 eV 冶金结位置,2 侧的价带能级差: $E_{\rm Vp}$ - $E_{\rm Vn}$ = 0 eV 有效数字准确

补充题 3:

 n^{++} 区结边缘与治金结的距离: $x_n = 9.941 \times 10^{-8}$ cm p^{++} 区结边缘与治金结的距离: $x_p = 7.009 \times 10^{-8}$ cm 扩散系数: $D_n = 225.0$ cm²/s, $D_p = 7.000$ cm²/s p^{++} 区少子(导带电子)的扩散长度: $L_n = 3.354 \times 10^{-3}$ cm n^{+} 区少子(价带空穴)的扩散长度: $L_p = 5.916 \times 10^{-4}$ cm 有效数字准确

补充题 4:

