1Q: Utilizando um subtrator binário como núcleo do circuito, projetar o comparador 7485, usando o menor número de portas adicionais.

1Q:

Utilizando um subtrator binário como núcleo do circuito, projetar o comparador 7485, usando o menor número de portas adicionais.

Ma= Empresta' Eq' + Ma"Eq'

Mb= Empresta + Mb"Eq' 26/04/2020

Solução:

Eq → A-B=0
Ma → A-B>0 sem empréstimo
Mb → A-B<0 com empréstimo

2Q:

Usando funções MSI e portas,

implemente com o menor número de componentes o SOMADOR/COMPARADOR de 4 bits. Este circuito tem como entradas três operandos A, B e C de 4 bits cada, e um sinal de controle M de 1 bit. A saída é o sinal IGUAL de 1 bit. O circuito realizada as seguintes operações:

- Para M=0, se (A mais B)=C então IGUAL=1
- Para M=1, se (B mais C)=A então IGUAL=1
- Outras situações, IGUAL=0.

3Q: Usando um somador de quatro bits como bloco principal, sintetize o circuito combinatório que realiza a operação y=(3*x)mod 8. A variável de entrada x de 3 bits representa um número inteiro positivo (07), e a variável de saída y de 3 bits representa um número inteiro positivo (07).
Obs. O símbolo {*} significa multiplicação.

3Q: Usando um somador de quatro bits como bloco principal, sintetize o circuito combinatório que realiza a operação y=(3*x)mod 8. A variável de entrada x de 3 bits representa um número inteiro positivo (07), e a variável de saída y de 3 bits representa um número inteiro positivo (07).

Obs. O símbolo {*} significa multiplicação.

4Q: Usando a técnica de **redes iterativas**, projetar uma **célula básica de 1 bit** para um sistema digital que calcula a seguinte expressão **F= (3*A) mais B**, onde os operando A e B são de N bits cada um. Implemente esta célula na forma **mínima de soma de produtos**. Obs: (*) símbolo é de multiplicação.

4Q: Usando a técnica de redes iterativas, projetar uma célula básica de 1 bit para um sistema digital que calcula a seguinte expressão F= (3*A) mais B, onde os operando A e B são de N bits cada um. Implemente esta célula na forma mínima de soma de produtos. Obs: (*) símbolo é de multiplicação.

Solução:

Equações Booleanas

Obs: o carry C1 é o mais significativo

5Q: Usando funções MSI e portas, implementar o algoritmo abaixo: Dado os operandos A, B, C e D de oito bits cada um. Onde A e B são entradas e números positivos. C e D são saídas.

$$C := A + B + 1;$$

IF C é impar

THEN C := 2*A + 1

ELSE C:= 2*B;

IF 2*C>A+B

THEN D:=C

ELSE *D*:=0;

5Q: Usando funções MSI e portas, implementar o algoritmo abaixo: Dado os operandos A, B, C e D de oito bits cada um. Onde A e B são entradas e números positivos. C e D são saídas.

$$C:=A+B+1;$$

IF C é impar

THEN C := 2*A + 1

ELSE C:=2*B;

*IF 2*C>A+B*

THEN D:=C

ELSE *D*:=0;

- 6Q: Sejam A e B números em complemento de 2 de N bits. Usando somente um subtrator de N bits, banco de N mux's 2x1 e lógica adicional mínima, pede-se:
- a) um circuito digital que fornece o módulo: M=0 |A|; M=1 |B|
- b) um circuito digital que fornece Min/max: M=0 min (A,B); M=1 Max (A,B).

6Q: Sejam A e B números em complemento de 2 de N bits. Usando somente um subtrator de N bits, banco de N mux's 2x1 e lógica adicional mínima, pede-se:

a) um circuito digital que fornece o módulo: M=0 |A|; M=1

|B|

6Q: Sejam A e B números em complemento de 2 de N bits. Usando somente um subtrator de N bits, banco de N mux's 2x1 e lógica adicional mínima, pede-se:

b) um circuito digital que fornece Min/max: M=0 min (A,B);

Aplicada do ITA

M=1 Max (A,B).

7Q: Usando um número mínimo de somadores completos e de meio somadores de um bit, projete um circuito digital que decrementa por 3 um número sinalizado por complemento de 2 de tamanho de 6 bits. Assuma o resultado de 6 bits.

7Q: Usando um número mínimo de somadores completos e de meio somadores de um bit, projete um circuito digital que decrementa por 3 um número sinalizado por complemento de 2 de tamanho de 6 bits. Assuma o resultado de 6 bits.

Solução: Quatro somadores e dois meio somadores

8Q: Usando somente um número mínimo de somadores completos de 1 bit, implemente um conversor de códigos NBCD de 2 dígitos para binário puro. Obs: Use quando for conveniente meio somador de 1 bit.

EX: Peso 2 dígitos 0000100 0001010+0010100 $0\ 1\ 0\ 0\ 0\ 1\ 1 \rightarrow (35)_{10}$ I₁₀ 12 140 120 18 14 180 Conversor de códigos NBCD? Binário puro **Y** 6 **Y**₂ **Y**₇ **Y** 4 Y 5 **Y** 1

8Q: Usando somente um número mínimo de somadores completos de 1 bit, implemente um conversor de códigos NBCD de 2 dígitos para binário puro. Obs: Use quando for conveniente meio somador de 1 bit.

EX: Peso 2 dígitos

Sol	lução:
	5

	Y 64	Y 32	Y 16	<u> </u>	Y 4	<u>Y2</u>	<u>Y</u> 1
I ₁	0	0	0	0	0	0	1
l ₂	0	0	0	O	O	1	0
I 4	0	O	0	O	1	0	0
lв	0	O	0	1	0	O	0
I 10	0	0	0	1	O	1	0
l 20	0	0	1	O	1	0	0
l 40	0	1	0	1	0	0	0
lso	1	0	1	0	O	0	0

8Q: Usando somente um número mínimo de somadores completos de 1 bit, implemente um conversor de códigos NBCD de 2 dígitos para binário puro. Obs: Use quando for conveniente meio somador de 1 bit.

	Y 64	Y 32	Y 16	Y 8	Y 4	Y ₂	Y 1	Y1=I1
l ₁	0	0	0	0	0	0 1	1 0	$Y_2=I_2 \oplus I_{10} \rightarrow C_4;$
I4 I8	0 0	0 0	0	0 1	1 0	0 0	0 0	Y4=I4⊕I20⊕C4 → C8;
I10 I20 I40	0 0 0	0 0 1	0 1 0	1 0 1	0 1 0	1 0 0	0 0 0	Y8=I8⊕I10⊕I40⊕C8 → C16' e C16;
180	1	0	1	0	0	0	0	Y16= I 20⊕ I 80⊕ C 16'⊕ C 16 → C 32' e C 32;
								$Y_{32}=I_{40}\oplus C_{32}'\oplus C_{32} \rightarrow C_{64};$
								Y64 =I 80 ⊕C 64;

8Q: Usando somente um número mínimo de somadores completos de 1 bit, implemente um conversor de códigos NBCD de 2 dígitos para binário puro. Obs: Use quando for conveniente meio somador de 1 bit.

 $Y_1=I_1$; $Y_2=I_2 \oplus I_{10} \rightarrow C_4$; $Y_4=I_4 \oplus I_{20} \oplus C_4 \rightarrow C_8$; $Y_8=I_8 \oplus I_{10} \oplus I_{40} \oplus C_8 \rightarrow C_{16}$; $Y_8=I_8 \oplus I_{10} \oplus I_{40} \oplus C_8 \rightarrow C_{16}$;

Solução:

 $Y_{16}=I_{20} \oplus I_{80} \oplus C_{16}' \oplus C_{16} \rightarrow C_{32}' \oplus C_{32}' \oplus C_{32}' \oplus C_{32}' \oplus C_{32} \rightarrow C_{64};$ $Y_{64}=I_{80} \oplus C_{64};$

Quatro somadores e quatro meio somadores

9Q: Seja a função $F(a,b,c,d) = \Pi(1,10,11,14)$ e a sequencia de rajadas: $4 \rightarrow 1$; $1 \rightarrow 7$; $7 \rightarrow 10$; $10 \rightarrow 9$; $9 \rightarrow 12$; $12 \rightarrow 4$. Pede-se a função F minimizada soma de produto livre de hazard para esta sequencia de rajadas. A variável "a" é o mais significativo.

9Q: Seja a função $F(a,b,c,d) = \Pi(1,10,11,14)$ e a sequencia de rajadas: $4 \rightarrow 1$; $1 \rightarrow 7$; $7 \rightarrow 10$; $10 \rightarrow 9$; $9 \rightarrow 12$; $12 \rightarrow 4$. Pede-se a função F minimizada soma de produto livre de hazard para esta sequencia de rajadas. A variável "a" é o mais significativo.

10Q: Para o circuito combinatório de dois níveis abaixo, verifique se há hazard para as rajadas (a,b,c,d)=0001→0111 e (a,b,c,d)=1100→1001. Caso haja hazard, qual é o tipo.

10Q: Para o circuito combinatório de dois níveis abaixo, verifique se há hazard para as rajadas (a,b,c,d)=0001→0111 e (a,b,c,d)=1100→1001. Caso haja hazard, qual é o tipo.

$$F=a'b'+b'd'+b'c'+a'cd$$

10Q: Para o circuito combinatório de dois níveis abaixo, verifique se há hazard para as rajadas $(a,b,c,d)=0001 \rightarrow 0111$ e $(a,b,c,d)=1100 \rightarrow 1001$. Caso haja hazard, qual é o tipo.

Solução: F=a'b'+b'd'+b'c'+a'cd

Tem Hazard funcional

abcd=1100 →1001

Tem Hazard lógico