Chapter 15 (AIAMA)

Probabilistic Reasoning Over Time

Sukarna Barua Assistant Professor, CSE, BUET

Temporal Probabilistic Models

- Static world (as we considered in Bayesian network):
 - Random variables have a fixed number of states/values.
 - Values of Random variables doesn't change over time
- Dynamic world (time is an important factor):
 - Random variables have a fixed number of states/values.
 - Values of Random variables change over time.

Temporal Probabilistic Models

- Dynamic world has a state at time t
 - State is composed of a set of random variables X_t
 - A snapshot of the state at time t is a set of values of X_t
- State is not observable
 - State is not directly observable.
 - A set of evidence variables E_t are observable at time t [evidences depends on state]
 - We may infer which state we are in from the evidence!

Temporal Probabilistic Models: Example

You want to know whether you have infection at time step t. You can measure fever, headache, stomachache at time step t.

- X_t : { $Infection_t$ }
 - Values: Yes/No [Unobservable by agent, hidden]
- E_t : { $Fever_t$, $Stomachache_t$, $Headache_t$ }
 - Values: Yes/No [Observable by agent]

Temporal Probabilistic Models

In a temporal probabilistic model, agent have:

- Environment: Partially observable
- Belief state: What is the current state as agent maintains/believes?
- Transition model: How the environment might evolve in the next time step
- Sensor model: How the observable events happen at world state?
- Decision: How the agent take action?
 - Evidence → Belief state → Decision

Hidden Markov Models

- A temporal probabilistic model may be called a Hidden Markov Model (HMM) when the state is represented by a discrete random variable:
- X_t : A single state variables at time t
 - Unobservable by agent [hidden from the agent]
- E_t : Set of evidence variables
 - Observable by agent [known through percepts]

Hidden Markov Models

- What happens if world state has multiple random variables?
 - Multiple random variables may be mapped to a single random variable
 - Example: <Burglary, Earthquake> makes up agent state both are Boolean.
 - Construct a single variable $\langle BE \rangle$ with four values $\{0,1,2,3\}$ where
 - 0 means Burglary=T and Earthquake = T
 - 1 means Burglary=T and Earthquake = F
 - 2 means Burglary=F and Earthquake = T
 - 3 means Burglary=F and Earthquake = F

Hidden Markov Models: Example

A security guard inside a building needs to know whether it's raining outside. He can only see if someone coming in with/without an umbrella.

- X_t : { $Rain_t$ }
 - Values: Yes/No [Unobservable by agent]
- E_t : { $Umbrella_t$ }
 - Values: Yes/No [Observable by agent]

Transition Model

• Specifies the probability distribution of the state at time t, given the previous states:

$$P(X_t|X_{1:t-1})$$

- Assume the size of CPT when t is large [exponentially large]
- Problematic as number of time steps increases
- Not practical as current state may depend only on few previous states

Markov Assumption for Transition Model

Assumption: Current state is independent of all states $X_{1:t-k-1}$ given the previous k number of states $X_{t-k:t-1}$:

$$P(X_t|X_{1:t-1}) = P(X_t|X_{t-k:t-1})$$

- Markov Process: Process satisfying Markov assumption.
 - Also known as Markov chains.
 - After Russian mathematician Andrei Markov

Order of Markov Process

- First Order Markov Process:
 - Current state is independent of all other states given only the previous state
 - $P(X_t|X_{1:t-1}) = P(X_t|X_{t-1})$
 - Transition model is a conditional distribution $P(X_t|X_{t-1})$

- For a second order Markov Process:
 - Transition model is a conditional distribution $P(X_t|X_{t-1},X_{t-2})$

First Order Markov Process

- Stationary process: transition model do not change over time steps
 - $P(X_t|X_{t-1})$ is same for all time steps t.

$$-P(X_2|X_1) = P(X_3|X_2) = \cdots$$

$$-P(X_t = x_j | X_{t-1} = x_i) = a_i[j]$$

 $[a_{ij} \text{ is the probability of state transitioning from } x_i \text{ to } x_j]$

Sensor/Emission Model

- Evidence values depend on current state as well as all previous states and evidence values
- Probability distribution of events E_t :

$$P(E_t|X_{1:t},E_{1:t-1})$$

- What is the probability that $Umbrella_t = true$ given all previous state and evidence values?
- What is the size of CPT when t is large? [exponentially large]
- Not practical from computational perspective

Markov Assumption for Sensor Model

• Assumption: Evidence at time t is independent of all previous states and events given the state at time t (current state).

$$P(E_t|X_{1:t}, E_{1:t-1}) = P(E_t|X_t)$$
 [evidence depend only on current state]

- Evidence only depend on current state and is independent of all previous states and evidences
- $P(E_t = e_k | X_t = x_i) = o_{i,k}$ [probability of emitting output o_k from state x_i]
- Also known as Observation/Emission Model

Example Markov Process

- For the umbrella example:
 - Transition model: $P(R_t|R_{t-1})$, sensor model: $P(U_t|R_t)$

Complete/Full Joint Distribution

- We have
 - $P(X_t|X_{t-1})$ [transition model]
 - $P(E_t|X_t)$ [sensor model]
- We also need
 - $P(X_1)$: The prior probability distribution of states at time step t=1
- Complete joint distribution can be computed as:

$$P(X_{1:t}, E_{1:t}) = P(E_{1:t}|X_{1:t})P(X_{1:t}) = \prod_{i=1}^{t} P(E_i|X_i)P(X_i|X_{i-1})$$
[Assume $P(X_1|X_0) = P(X_1)$ for notational convenience]

Complete/Full Joint Distribution

Complete joint distribution derivation:

$$\begin{split} P(X_{1:t}, E_{1:t}) &= P(E_{1:t}|X_{1:t})P(X_{1:t}) \\ &= P(E_t|E_{1:t-1}, X_{1:t})P(E_{1:t-1}|X_{1:t})P(X_t|X_{1:t-1}P(X_{1:t-1}) \\ &= P(E_t|X_t)P(E_{1:t-1}|X_{1:t})P(X_t|X_{1:t-1}P(X_{t-1}|X_{1:t-2})P(X_{1:t-2}) \\ &= \prod_{i=1}^t P(E_i|X_i) \times \prod_1^t P(X_i|X_{i-1}) \\ &= \prod_{i=1}^t [P(E_i|X_i)P(X_i|X_{i-1})] \end{split}$$

Is First Order Markov Process Accurate?

Sometimes true

- For example, in a random walk along x - axis, position at time step t only depends on position at time step t-1.

Sometimes not

- For example, in our rain example, probability of raining at time step t may depend on several previous rainy days t-1, t-2, ...

Is First Order Markov Process Accurate?

Sometimes not

- For example, in our rain example, probability of raining at time step t only depend on whether it rained at time step t-1

Solutions

- Increase the order of the Markov process: $P(X_t|X_{t-1},X_{t-2})$
- Incorporate more state variables:

 $Temp_t$, $Humidity_t$, $Pressure_t$, $Session_t$, etc.

- **Filtering query**: Compute probability distribution of current state given all observations to date.
 - $P(X_t|e_{1:t})$
 - Compute probability of raining (and not raining also!) today, given all umbrella observations taken so far
 - Note the use capital and small letters: Capitals specify random variable and small letters specify values of random values.
 - Required for decision making at current state

• **Prediction query**: Compute probability distribution of a future state given all observations to date.

- $P(X_{t+k}|e_{1:t})$
- Compute probability of raining three days from now, given all umbrella observations taken so far
- Required for decision making about future action

• **Smoothing query**: Compute probability distribution of a past state given all observations to date.

- $P(X_k | e_{1:t}), 0 \le k < t$
- Compute probability of raining last Wednesday, given all umbrella observations taken so far
- Smoothing provides a better estimate than what was made before

- **Most likely explanation query**: Given a sequence of observation, what is the most likely state sequence that have generated the observation sequence?
 - $P(X_{1:t}|e_{1:t})$
 - Umbrella was observed on first three days and absent on fourth, the most likely state sequence could be it rained first three days and did not rain on fourth.
 - Speech recognition: What is the sequence of words given a sequence of sounds?

- Compute probability distribution of current state X_{t+1} given observation sequence $e_{1:t+1}$
- Agent maintains the probability distribution of current state X_t at time step t.
- As new evidence e_{t+1} comes up, agent updates its estimation of current state probabilities $P(X_{t+1})$

```
\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.
```

• α : a is a normalizing constant to make probabilities sum up to 1

```
\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}
= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.
```

$$\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \quad \text{(dividing up the evidence)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(using Bayes' rule)}$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1} | \mathbf{e}_{1:t}) \quad \text{(by the sensor Markov assumption)}.$$

- How to calculate $P(X_{t+1}|e_{1:t})$?
 - Marginalize over X_t : $P(X_{t+1}) = \sum_{x_t} P(X_{t+1}, x_t) = \sum_{x_t} P(X_{t+1} | x_t) P(x_t)$

$$\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t \mid \mathbf{e}_{1:t})$$

$$= \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

$$\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t \mid \mathbf{e}_{1:t})$$

$$= \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

- $P(e_{t+1}|X_{t+1})$ comes from observation/sensor model [given]
- $P(X_{t+1}|x_t)$ comes from the transition model [given]
- $P(x_t|e_{1:t})$ is the probability distribution of states at time step t
 - This part is recurrence and can be computed recursively or iteratively [using dynamic programming approach]

$$\mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{e}_{1:t+1}) = \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t \mid \mathbf{e}_{1:t})$$

$$= \alpha \, \mathbf{P}(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1} \mid \mathbf{x}_t) P(\mathbf{x}_t \mid \mathbf{e}_{1:t}) \quad \text{(Markov assumption)}.$$

- Let, $P(X_t|e_{1:t}) = \mathbf{f}_t$ [\mathbf{f}_t is a vector/array of probabilities] - $P(X_t = x_i|e_{1:t}) = \mathbf{f}_t$ [i] [\mathbf{f}_t [i] is a single probability value]
- Hence, $\mathbf{f}_{t}[i] = P(X_{t} = x_{i} | e_{1:t})$ $= \alpha P(e_{t} | X_{t} = x_{i}) \sum_{j} P(X_{t} = x_{i} | X_{t-1} = x_{j}) P(X_{t-1} = x_{j} | e_{1:t-1})$ $= \alpha \times (o_{i,k}) \times \sum_{j} (a_{j,i}) (\mathbf{f}_{t-1}[j]) \text{ [assume } e_{t+1} = e_{k} \text{ an output}$

Filtering: Forward Algorithm

- $\mathbf{f}_t[i] = \alpha \times (o_{i,k}) \times \sum_j (a_{j,i}) (\mathbf{f}_{t-1}[j])$
- \mathbf{f}_t is known as forward probabilities
- How to compute forward probabilities up to time step t?
 - Start from t = 1 and compute \mathbf{f}_1 [base condition]
 - Compute going forward in time up to \mathbf{f}_t using the recurrence
 - The algorithm is known as forward algorithm.

Filtering: Forward Algorithm

•
$$\mathbf{f}_t[i] = \alpha \times (o_{i,k}) \times \sum_j (a_{j,i}) (\mathbf{f}_{t-1}[j])$$

- \mathbf{f}_t is known as forward probabilities
- How to compute compute $\mathbf{f_1}$ [base condition]?
 - $\mathbf{f}_1[i] = P(X_1 = x_i | e_1)$ $= \alpha P(e_1 | X_1 = x_i) P(X_1 = x_i)$ $= \alpha \times o_{i,l} \times \pi_i \quad [\text{assume } e_1 = e_1, \pi_i \text{ is the prior probability of state } x_i]$

Filtering: Example

- Compute $P(R_2|u_{1:2})$
- Day 1: $P(R_1|u_1) = \alpha P(u_1|R_1)P(R_1)$
 - $P(R_1)$ is the prior probability distribution of initial state [at time t=1]
 - If both states are equally likely from START, $P(R_1) = < 0.5, 0.5 >$
 - $P(R_1|u_1)$ can now be calculated as:

$$\mathbf{P}(R_1 \mid u_1) = \alpha \, \mathbf{P}(u_1 \mid R_1) \mathbf{P}(R_1) = \alpha \, \langle 0.9, 0.2 \rangle \langle 0.5, 0.5 \rangle$$
$$= \alpha \, \langle 0.45, 0.1 \rangle \approx \langle 0.818, 0.182 \rangle .$$

Filtering: Example

- Day 2: $P(R_2|u_{1:2}) = \alpha P(u_2|R_2)P(R_2|u_1) = \alpha P(u_1|R_1)\sum_{r_1} P(R_1|r_1)P(r_1|u_1)$
 - Can be calculated as:

$$\mathbf{P}(R_2 \mid u_1) = \sum_{r_1} \mathbf{P}(R_2 \mid r_1) P(r_1 \mid u_1)$$
$$= \langle 0.7, 0.3 \rangle \times 0.818 + \langle 0.3, 0.7 \rangle \times 0.182 \approx \langle 0.627, 0.373 \rangle$$

$$\mathbf{P}(R_2 \mid u_1, u_2) = \alpha \, \mathbf{P}(u_2 \mid R_2) \mathbf{P}(R_2 \mid u_1) = \alpha \, \langle 0.9, 0.2 \rangle \langle 0.627, 0.373 \rangle$$
$$= \alpha \, \langle 0.565, 0.075 \rangle \approx \langle 0.883, 0.117 \rangle .$$

Filtering: Example

Probability of rain increases at day 2 from day 1 [why?]

Prediction

- Compute probability distribution of a future state: $P(X_{t+k}|e_{1:t})$
- Can be computed using filtering:
 - First compute $P(X_t|e_{1:t})$ [forward algorithm]
 - Then compute as: $P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$.
 - Similarly, compute $P(X_{t+2}|e_{1:t}), ..., P(X_{t+k}|e_{1:t})$
- Recursive/dynamic programming algorithm:

$$\mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{e}_{1:t}) = \sum_{\mathbf{x}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{x}_{t+k}) P(\mathbf{x}_{t+k} | \mathbf{e}_{1:t}) .$$

Prediction: Don't Go Too Much Ahead

• Recursive/dynamic programming algorithm:

$$\mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{e}_{1:t}) = \sum_{\mathbf{X}_{t+k}} \mathbf{P}(\mathbf{X}_{t+k+1} | \mathbf{X}_{t+k}) P(\mathbf{X}_{t+k} | \mathbf{e}_{1:t}) .$$

- Predicting too much ahead may be useless
 - $P(X_{t+k+1}|e_{1:t})$ will become fixed (stationary distribution of the Markov Process) after some time steps k
 - The time taken to reach the fixed point is known as Mixing Time.
- The more uncertainty in the transition model, the shorter will be the mixing time and the more future is obscured!

Likelihood of Evidence Sequence

- What is the likelihood of evidence sequence $e_{1:t}$?
- Compute as

$$-P(e_{1:t}) = \sum_{x_t} P(e_{1:t}, x_t)$$

• $P(e_{1:t}, x_t)$ can be calculated recursively or using dynamic programming:

$$P(e_{1:t}, x_t) = P(e_{1:t-1}, e_t, x_t) = P(e_t | x_t, e_{1:t-1}) P(x_t, e_{1:t-1})$$

$$= P(e_t | x_t) \sum_{x_{t-1}} P(x_t, x_{t-1}, e_{1:t-1}) \quad [Markov \, assumption]$$

$$= P(e_t | x_t) \sum_{x_{t-1}} P(x_t | x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

- $P(x_{t-1}, e_{1:t-1})$ can be computed recursively [using dynamic programming]
- This is similar to the forward algorithm [described earlier]