Advanced Engineering Mathematics Systems of Differential Equations by Dennis G. Zill Notes

Chris Doble

August 2023

Contents

10	Systems of Linear Differential Equations	1
	10.1 Theory of Linear Systems	-

10 Systems of Linear Differential Equations

10.1 Theory of Linear Systems

• A system of the form

$$\frac{dx_1}{dt} = g_1(t, x_1, x_2, \dots, x_n)$$

$$\frac{dx_2}{dt} = g_2(t, x_1, x_2, \dots, x_n)$$

$$\vdots$$

$$\frac{dx_n}{dt} = g_n(t, x_1, x_2, \dots, x_n)$$

is called a first-order system.

• When each of the functions $g_n(t, x_1, x_2, ..., x_n)$ is linear in the dependent variables $x_1, x_2, ..., x_n$, we get the **normal form** of a first-order system of linear equations

$$\frac{dx_1}{dt} = a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t)$$

$$\frac{dx_2}{dt} = a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t)$$

$$\vdots$$

$$\frac{dx_n}{dt} = a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t).$$

Such a system is called a linear system.

- When $f_i(t) = 0$ for i = 1, 2, ..., n the linear system is said to be **homogeneous**, otherwise it's **nonhomogenous**.
- If \mathbf{X} , $\mathbf{A}(t)$, and $\mathbf{F}(t)$ denote the matrices

$$\mathbf{X} = \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{pmatrix}$$

$$\mathbf{A}(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\ \vdots & & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix}$$

$$\mathbf{F}(t) = \begin{pmatrix} f_{1}(t) \\ f_{2}(t) \\ \vdots \\ f_{n}(t) \end{pmatrix}$$

then homogeneous linear systems can be written

$$X' = AX$$

and nonhomogeneous linear systems can be written

$$\mathbf{X}' = \mathbf{AX} + \mathbf{F}.$$

• A solution vector on an interval I is any column matrix

$$\mathbf{X} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

whose entries are differentiable functions satisfying the linear system on the interval.

- The entries of a solution vector can be considered a set of parametric equations that define a curve in *n*-space. Such a curve is called a **trajectory**.
- The problem of solving

$$\mathbf{X}' = \mathbf{A}(t)\mathbf{X} + \mathbf{F}(t)$$

subject to

$$\mathbf{X}(t_0) = \mathbf{X}_0$$

is an **initial value problem** in matrix form.

• The superposition principle states that if $X_1, X_2, ..., X_n$ are solution vectors of a homogeneous linear system on an interval I, then

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \ldots + c_n \mathbf{X}_n$$

where c_n are arbitrary constants is also a solution.

• If $X_1, X_2, ..., X_n$ are a set of solution vectors of a homogeneous linear system on an interval I, the set is said to be **linearly dependent** if there exist constants $c_1, c_2, ..., c_n$ not all zero such that

$$c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \ldots + x_n\mathbf{X}_n = \mathbf{0}$$

for every t in the interval. Otherwise the set is said to be **linearly independent**.

• A set of solution vectors

$$\mathbf{X}_1 = \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix}, \quad \mathbf{X}_2 = \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix}, \quad \dots, \quad \mathbf{X}_n = \begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix}$$

is linearly independent on an interval I if the Wronskian

$$W(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n) = \begin{vmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & & & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{vmatrix} \neq 0$$

for every t in the interval.

- Any set of n linearly independent solution vectors of a homogeneous linear system on an interval I is said to be a **fundamental set of solutions** on that interval.
- If $X_1, X_2, ..., X_n$ are a fundamental set of solutions of a homogeneous linear system on an interval I, then the **general solution** of the system on that interval is

$$\mathbf{X} = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \ldots + c_n \mathbf{X}_n$$

where c_i are arbitrary constants.

• For nonhomogenous systems, a **particular solution** \mathbf{X}_p on an interval I is any vector, free from arbitrary parameters, whose entries are functions that satisfy the system.

 $\bullet\,$ For nonhomogeneous systems, the ${\bf general\ solution}$ of the system on the interval is

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p$$

where \mathbf{X}_c is the general solution of the associated homogeneous system (the **complementary function**) and \mathbf{X}_p is a particular solution of the nonhomogeneous system.