PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-176870

(43)Date of publication of application: 24.06.1994

(51)Int.CI.

H05B 33/12 C09K 11/06 HO4N 5/70

(21)Application number : 04-324520

(71)Applicant: FUJI ELECTRIC CO LTD

(22)Date of filing:

04.12.1992

(72)Inventor: NABETA OSAMU

KOSHO NOBORU

(54) ORGANIC THIN FILM LIGHT EMITTING ELEMENT

(57)Abstract:

PURPOSE: To provide an organic thin film type light emitting element which excels in the reliability CONSTITUTION: An assembly as the fore stage consisting of an electric charge implanting layer 13 and a light emitting layer 14 and a rear stage assembly consisting of a light emission layer 16 and an electric charge implanting layer 17 are stacked upon an insulative transparent base board 11 in stages while positive electrodes 12, 18 and negative electrode 15 are interposed. The positive electrodes and negative electrode are arranged alternately. The electrodes 12, 18 of the same polarity are connected with each other on the insulative base board. The assemblies laid in stages are stacked so that the rear one encloses the whole surfaces of the fore stage one.

LEGAL STATUS

[Date of request for examination]

18.09.1998

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3189438

[Date of registration]

18.05.2001

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-176870

(43)公開日 平成6年(1994)6月24日

(51)Int.Cl. ⁵ H 0 5 B	33/12	識別記号	庁内整理番号	FI		技術表示箇所
C 0 9 K	11/06	Z	9159-4H			
H 0 4 N	5/70	Z	9068-5C			

審査請求 未請求 請求項の数5(全 9 頁)

(21)出願番号	特顯平4-324520	(71)出顧人	
(22)出顧日	平成 4年(1992)12月 4日		富士電機株式会社 神奈川県川崎市川崎区田辺新田1番1号
(DD) [LINK] [M 1 + (100D) 10/1 4 G	(72)発明者	鍋田 修
			神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内
		(72)発明者	古庄 昇 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内
		(74)代理人	弁理士 山口 巖

(54) 【発明の名称】 有機薄膜発光素子

(57)【要約】

【目的】信頼性に優れる有機薄膜発光素子を得る。

【構成】絶縁性透明基板11上に電荷注入層13と発光層14からなる前段の結合体と、発光層16と電荷注入層17からなる後段の結合体とを正極12,18と、負極15を介して多段に積層する。正極と負極は交互に配置される。同一極性の電極12,18は絶縁性透明基板上で相互に電気的に接続される。多段の結合体は後段の結合体が前段の結合体を全体的に被覆して積層される。

【特許請求の範囲】

【請求項1】絶縁性透明基板と、電極と、電荷注入層/ 発光層の結合体とを有し、

前記結合体は電極を介して絶縁性透明基板上に多段に積 層され、

電極は正極と負極とが結合体を介して交互に配置される とともに同一極性の電極は絶縁性透明基板上で相互に電 気的に接続され、

前記結合体はその積層に際し、後段の結合体が前段の結 合体を全体的に被覆してなることを特徴とする有機薄膜 10 発光素子。

【請求項2】請求項1記載の有機薄膜発光素子におい て、電荷注入層/発光層の結合体は正孔注入層と発光層 であることを特徴とする有機薄膜発光素子。

【請求項3】請求項1記載の有機薄膜発光素子におい て、電荷注入層/発光層の結合体は正孔注入層と電子注 入層と前二者に挟まれた発光層であることを特徴とする 有機薄膜発光素子。

【請求項4】請求項1記載の有機薄膜発光素子におい て、各発光層は同一の発光物質からなることを特徴とす る有機薄膜発光素子。

【請求項5】請求項1記載の有機薄膜発光素子におい て、各電荷注入層は同一の電荷注入物質からなることを 特徴とする有機薄膜発光素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は各種表示装置の発光源 として用いる有機薄膜発光素子に係り、特に信頼性に優 れる有機薄膜発光素子の構造に関する。

[0002]

【従来の技術】従来のブラウン管に代わるフラットディ スプレイの需要の急増に伴い、各種表示素子の開発及び 実用化が精力的に進められている。エレクトロルミネッ センス素子(以下EL素子とする)もこうしたニーズに 即するものであり、特に全固体の自発発光素子として、 他のディスプレイにはない高解像度及び高視認性により 注目を集めている。現在、実用化されているものは、発 光層にZnS/Mn系を用いた無機材料からなるEL素 子である。しかるに、この種の無機EL素子は発光に必 要な駆動電圧が100V以上と高いため駆動方法が複雑 となり製造コストが高いといった問題点がある。また、 青色発光の効率が低いため、フルカラー化が困難であ る。これに対して、有機材料を用いた薄膜発光素子は、 発光に必要な駆動電圧が大幅に低減でき、かつ各種発光 材料の適用によりフルカラー化の可能性を充分に持つと とから、近年研究が活発化している。

【0003】特に、電極/正孔注入層/発光層/電極か らなる積層型において、発光剤にトリス(8-ヒドロキ シキノリン)アルミニウムを、正孔注入剤に1,1′-ビス(4-N, N-ジトリアミノフェニル)シクロヘキ 50 素子を示す断面図である。図2はこの発明の異なる実施

サンを用いることにより、10 V以下の印加電圧で10 00cd/m²以上の輝度が得られたという報告がなさ れて以来開発に拍車がかけられた(Appl.Phys.Lett. 5 1,913,(1987)).

[0004]

【発明が解決しようとする課題】との様に、有機材料を 用いた薄膜発光素子は低電圧駆動やフルカラー化の可能 性等を強く示唆しているものの、性能面で解決しなけれ ばならない課題が多く残されている。特に約1万時間の 長時間駆動に伴う特性劣化の問題は乗り越えなければな らない課題である。また、フルカラー化におけるRGB 三原色の発光を可能にする発光材料の開発、また有機層 の膜厚が 1 μ m以下であるために、成膜性が良好でピン ホール等の電気的欠陥がなく、電子、正孔の輸送能力に 優れた有機材料の開発、有機層への電荷の注入性に優れ る電極材料の選択等がある。

【0005】さらには量産性の観点から大量製造が可能 で安価な有機材料の開発や素子形成方法の改良等も重要 な課題である。現在劣化機構の解明を中心に研究が進め られ、連続駆動時の雰囲気依存性の検討から大気中の水 分により上部電極と有機膜界面の剥離が発生し、これが 劣化原因となる等の推測や、駆動時の電流密度の低減に より劣化速度が低減し、寿命の向上に繋がるといった知 見が得られつつある。

【0006】との発明は上述の点に鑑みてなされその目 的は、大気中の水分の影響を受けにくい上に電流密度を 低減することが可能な素子構造を開発することにより信 頼性に優れる有機薄膜発光素子を提供することにある。 [0007]

【課題を解決するための手段】上述の目的はこの発明に よれば、絶縁性透明基板と、電極と、電荷注入層/発光 層の結合体とを有し、前記結合体は電極を介して絶縁性 透明基板上に多段に積層され、電極は正極と負極とが結 合体を介して交互に配置されるとともに同一極性の電極 は絶縁性透明基板上で相互に電気的に接続され、前記結 合体はその積層に際し、後段の結合体が前段の結合体を 全体的に被覆してなるとすることにより達成される。

[0008]

【作用】電荷注入層/発光層の結合体が多段に積層され ているので各段の輝度を低くし且つ各段の結合体の輝度 を積分して全体の輝度を高めることができる。従って各 段の結合体に印加される電圧を低くし各段の電流密度を 下げて駆動することが可能となる。

【0009】また前段の結合体は後段の結合体により全 体的に被覆されるので前段の結合体には大気中より水分 が拡散せず電極の剥離による素子劣化を防ぐことができ

[0010]

【実施例】図1はこの発明の実施例に係る有機薄膜発光

例に係る有機薄膜発光素子を示す断面図である。図3は との発明のさらに異なる実施例に係る有機薄膜発光素子 を示す断面図である。

【0011】図4はこの発明のさらに異なる実施例に係 る有機薄膜発光素子を示す断面図である。11,21, 31,41は絶縁性透明基板、12,18,25,3 6, 46, 52は正極、13, 17, 24, 26, 3 5, 37, 44, 47, 51は正孔注入層、14, 1 6, 23, 27, 34, 38, 43, 48, 50は発光 層、15, 22, 28, 32, 42, 49, 300は負 10 200ないし800点である。正孔注入物質としてはヒ 極、33,39は電子注入層、19,29,301,4 5は直流電源である。

【0012】絶縁性透明基板は素子の支持体であるガラ ス、樹脂等を用いる。発光面となるときは透明な材料を 用いる。正極は金、ニッケル等の半透膜やインジウムス ズ酸化物(ITO)、酸化スズ(SnO、)等の透明導

電膜からなり抵抗加熱蒸着、電子ビーム蒸着、スパッタ 法により形成する。該正極は、透明性を持たせるため に、100~3000人の厚さにすることが望ましい。 【0013】正孔注入層は正孔を効率良く輸送し、日つ 注入することが必要で発光した光の発光極大領域におい てできるだけ透明であることが望ましい。成膜方法とし てスピンコート、キャスティング、LB法、抵抗加熱蒸 着、電子ビーム蒸着等があるが抵抗加熱蒸着が一般的で ある。膜厚は100ないし2000人であり、好適には ドラゾン化合物、ビラゾリン化合物、スチルベン化合 物、アミン系化合物などが用いられる。代表的な正孔注 入物質が以下に示される。

[0014]

【化1】

$$C = CH - CH = C$$

$$N = C_{2H_6}$$

$$C_{2H_6}$$

$$C_{2H_6}$$

$$C_{2H_6}$$

$$\bigcirc N - \bigcirc - C H = C \bigcirc$$
 (5 - 4)

$$O = N - O = N - N$$

$$O = N - N$$

$$\bigcirc C H_2$$

$$O - C H_2$$

【0015】発光層は正孔注入層または正極から注入された正孔と、負極または電子注入層より注入された電子の再結合により効率良く発光を行う。成膜方法はスピンコート、キャスティング、LB法、抵抗加熱蒸着、電子ピーム蒸着等があるが抵抗加熱蒸着が一般的である。膜

厚は100ないし2000Åであるが好適には200ないし800Åである。代表的な発光物質が以下に示される。

[0016] [化2]

$$(6-1)$$

$$C = C H - S - C H = C$$

$$C H_3$$

$$C H_3$$

【0017】電子注入層は電子を効率良く発光層に注入することが望ましい。成膜方法はスピンコート、キャスティング、LB法、抵抗加熱蒸着、電子ビーム蒸着等があるが抵抗加熱蒸着が一般的である。膜厚は100ないし2000人であるが好適には200ないし800人で

ある。電子注入物質としてはオキサジアゾール誘導体, ペリレン誘導体などが用いられる。以下に代表的な電子 注入物質が示される。

[0018] [化3]

(7-3)

【0019】負極は電子を効率良く有機層に注入すると ビーム蒸着、スパッタ法が用いられる。負極用材料とし ては仕事関数の小さいMg, Ag, In, Ca, Al等 およびこれらの合金、積層体、Alを添加した酸化亜鉛 等が用いられる。A 1 を添加した酸化亜鉛は電子ビーム 蒸着、スパッタ法によりA1添加量0.5ないし3%の 範囲とし基板温度200℃以下、好適には100℃以下 で成膜することが好ましい。厚さは100ないし200 0 A厚さに形成する。A 1 等の半透膜は抵抗加熱蒸着法 で300ないし800Å厚さに形成する。

実施例1

図1はこの発明の実施例に係る有機薄膜発光素子を示す 断面図である。膜厚約1000AのITOである正極1 2を設けたガラス基板 1 1を抵抗加熱蒸着装置内に載置 し、正孔注入層13、発光層14と順次成膜した。成膜 に際して、真空槽内圧は8×10⁻¹Paとした。正孔注 入層13には前記化学式(5-1)に示される化合物を 用いポート温度200℃、成膜速度2A/sにて500 A厚さに形成した。続けて発光層14として前記化学式 (6-1)に示される化合物を用いボート温度約200 ℃にて加熱し、成膜速度を約2A/sとして600A厚 40 さに形成した。

【0020】との後、基板11を真空槽から取り出し、 とが必要である。成膜方法としては抵抗加熱蒸着,電子 20 スパッタ装置内に載置し、亜鉛ペレット上にAIワイヤ を載せた試料をターゲットとしてAr:O, =1:1の 混合ガスを流しながらスパッタし、A1添加酸化亜鉛か らなる透明な負極15を1000A厚さに形成した。と のA 1 添加酸化亜鉛透明負極 1 5 の可視光線透過率は約 85%である。次に試料をスパッタ装置から取り出し、 再度抵抗加熱蒸着装置内に載置し、前記発光層14、正 孔注入層13と同一の材料を用いて、同一の条件下で発 光層16、正孔注入層17の順に500Aの厚さに形成 した。最後に正極18としてAgを1000人の厚さに 30 形成した。

比較例1

上記実施例において発光層16、正孔注入層17、正極 18を形成しない他は実施例1と同様にして有機薄膜発 光素子を形成した。

【0021】実施例1と比較例1の両者とも直流電圧を 印加したところ緑色(中心波長:550nm)の均一な 発光が得られた。輝度100cd/m³ における電圧、 電流密度、発光効率、輝度半減時間を表しに示す。

[0022]

【表1】

	·	初期	輝度半減時間 (h)		
	初期輝度 (cd/m²)	電 圧 (V)	電流密度 (mA/cm²)	発光 効率 (lm/V)	()
実施例 1	100	10. 7	2.8	0. 52	880
比較例1	100	12. 5	5. 0	0. 50	200

本実施例においては正孔注入層と発光層からなる結合体 が二段積層されているために、単一の結合体が負担する 輝度は低くてすみ、そのために単一の結合体が必要とす る電流密度の低減することができ、有機薄膜発光素子全 体として寿命が向上する。さらに二段目の結合体は一段 目の結合体を全体的に被覆するので一段目の結合体への 水分の侵入が阻止され、有機薄膜発光素子の信頼性が向 上する。

【0023】また素子に係る電圧は比較例の一段素子に 比し低減できるから、発光効率においても同等か、若干 20 の向上がみられる。

実施例2

図2はこの発明の異なる実施例に係る有機薄膜発光素子 を示す断面図である。ガラス基板21上にA1添加酸化 亜鉛からなる透明な負極22を膜厚約1000人の厚さ に設けた。次に発光層23と正孔注入層24を順次成膜 した。発光層23と、正孔注入層24は実施例1と同一*

*の条件で作成した。

【0024】正極25はAuを用い、同じ抵抗加熱蒸着 装置を用い700A厚さに形成した。この正極の光透過 率は約70%である。引き続いて正孔注入層26と発光 層27を前記と同様にして順次作成した。最後に負極2 8をMgとAgの合金 (Mg/Ag=10:1) を用い て1000A厚さに抵抗加熱蒸着法により形成した。 比較例2

上記実施例において正孔注入層26、発光層27、負極 28を形成しない他は実施例2と同様にして有機薄膜発 光素子を形成した。

【0025】実施例2と比較例2の両者とも直流電圧を 印加したところ緑色(中心波長:550nm)の均一な 発光が得られた。輝度100cd/m² における電圧、 電流密度、発光効率、輝度半減時間を表2に示す。

[0026]

【表2】

		初	輝度半減時間 (h)		
	初期輝度(cd/m³)	電 圧 (V)	電流密度 (mA/cm²)	発光 効率 (lm/W)	\ /
実施例2	100	10. 5	3. 55	0. 35	8 2 0
比較例 2	100	13. 6	6. 3	0. 36	193

実施例3

図3はこの発明のさらに異なる実施例に係る有機薄膜発 加酸化亜鉛からなる透明な負極32を膜厚約1000人 の厚さに設けた。次に電子注入層33、発光層34、正 孔注入層35を順次成膜した。電子注入層は前記化学式 (7-2)を用いボート温度約300℃で加熱し、成膜 速度2A/sとして400A厚さに形成した。発光層3 4と、正孔注入層35は実施例1と同一の条件で作成し

【0027】正極36はAuを用い、同じ抵抗加熱蒸着 装置を用い700A厚さに形成した。この正極の光透過 率は約70%である。引き続いて正孔注入層37と発光 50

層38と電子注入層39を前記と同様にして順次作成し 最後に負極300をMgとAgの合金 (Mg/A 光素子を示す断面図である。ガラス基板31上にA1添 40 g=10:1)を用いて1000A厚さに抵抗加熱蒸着 法により形成した。

比較例3

上記実施例3において正孔注入層37、発光層38、負 極300を形成しない他は実施例3と同様にして有機薄 膜発光素子を形成した。

【0028】実施例3と比較例3の両者とも直流電圧を 印加したところ緑色(中心波長:550nm)の均一な 発光が得られた。輝度100cd/m²における電圧、 電流密度、発光効率、輝度半減時間を表3に示す。 [0029]

【表3】

		初	輝度半減時 間 (h)		
	初期輝度 (cd/m²)	電 圧 (V)	電流密度 (mA/cm²)	発光効率 (lm/V)	(II)
実施例3	100	12. 3	3. 40	0. 38	8 5 0
比較例3	100	13. 1	6. 1	0. 39	195

実施例4

図4はこの発明のさらに異なる実施例に係る有機薄膜発光素子を示す断面図である。ガラス基板41上にA1添加酸化亜鉛からなる透明な負極42を膜厚約1000Aの厚さに設けた。次に発光層43と正孔注入層44を順次成膜した。発光層43と、正孔注入層44は実施例1と同一の条件で作成した。

13

【0030】正極46はAuを用い、同じ抵抗加熱蒸着 装置を用い700A厚さに形成した。この正極の光透過 20 率は約70%である。引き続いて正孔注入層47、発光 層48、負極49、発光層50、正孔注入層51を前記*

*と同様にして作成した。正極52はAgを1000A形成した。本素子は正孔注入層と発光層の結合体が三組積層されている。

14

比較例4

前記比較例2と同一である。

【0031】実施例4と比較例4の両者とも直流電圧を 印加したところ緑色(中心波長:550nm)の均一な 発光が得られた。輝度100cd/m² における電圧、 電流密度、発光効率、輝度半減時間を表4に示す。

[0032]

【表4】

		初期	輝度半減時間 (h)		
	初期輝度(cd/㎡)	電 圧 (V)	電流密度 (mA/cm²)	発光効率 (lm/V)	(/
実施例4	100	9. 3	2.4	0. 47	1300
比較例4	100	12. 5	5.0	0. 50	200

[0033]

【発明の効果】との発明によれば絶縁性透明基板と、電極と、電荷注入層/発光層の結合体とを有し、前記結合体は電極を介して絶縁性透明基板上に多段に積層され、電極は正極と負極とが結合体を介して交互に配置されるとともに同一極性の電極は絶縁性透明基板上で相互に電気的に接続され、前記結合体はその積層に際し、後段の結合体が前段の結合体を全体的に被覆してなるので、電 40荷注入層/発光層の結合体各段の輝度を低くし且つ各段の結合体の輝度を積分して素子全体の輝度を高めることができる。従って各段の結合体に印加される電圧を低くし各段の電流密度を下げて駆動することができ信頼性に優れる有機薄膜発光素子が得られる。

【0034】また有機薄膜発光素子の結合体積層において前段にある結合体は後段の結合体により全体的に被覆されるので前段の結合体には大気中より水分が拡散せず電極の剥離による素子劣化を防ぐことができ信頼性に優れる有機薄膜発光素子が得られる。

【図面の簡単な説明】

【図1】との発明の実施例に係る有機薄膜発光素子を示す断面図

【図2】 この発明の異なる実施例に係る有機薄膜発光素 子を示す断面図

【図3】 この発明のさらに異なる実施例に係る有機薄膜 発光素子を示す断面図

【図4】との発明のさらに異なる実施例に係る有機薄膜 発光素子を示す断面図

【符号の説明】

11, 21, 31, 41 絶縁性透明基板

12, 18, 25, 36, 46, 52 正極

13, 17, 24, 26, 35, 37, 44, 47, 5 1 正孔注入層

14, 16, 23, 27, 34, 38, 43, 48, 5 0 発光層

15, 22, 28, 32, 42, 49, 300 負極

50 33,39 電子注入層

15 19, 29, 301, 45 直流電源

【図1】

【図3】

【図2】

【図4】

