

22520-88 My m. 1,2,3

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДАТЧИКИ ДАВЛЕНИЯ, РАЗРЕЖЕНИЯ И РАЗНОСТИ ДАВЛЕНИЙ С ЭЛЕКТРИЧЕСКИМИ АНАЛОГОВЫМИ ВЫХОДНЫМИ СИГНАЛАМИ ГСП

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 22520—85 [CT C3B 4124—83]

Издание официальное

E

KOU.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДАТЧИКИ ДАВЛЕНИЯ, РАЗРЕЖЕНИЯ И РАЗНОСТИ ДАВЛЕНИЙ С ЭЛЕКТРИЧЕСКИМИ АНАЛОГОВЫМИ ВЫХОДНЫМИ СИГНАЛАМИ ГСП

гост

Общие технические условия

22520—85

Pressure, vacuum and pressure difference transmitters with electrical analog output signals, SSI.

General specifications

[CT C9B 4124-83]

ОКП 42 1221. 42 1251. 42 1281

Срок действия

с 01.07.86

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на датчики (измерительные преобразователи) давления, разрежения и разности давлений с электрическими аналоговыми выходными сигналами, а также датчики других физических величин: расхода жидкостей и газов, уровня и плотности жидкостей, функционально связанных с давлением или разностью давлений.

Датчики входят в комплекс государственной системы промышленных приборов и средств автоматизации (ГСП) и предназначены для работы в системах автоматического управления, контроля и регулирования производственных процессов.

Стандарт устанавливает требования к датчикам, изготовляе-

мым для нужд народного хозяйства и экспорта.

(Измененная редакция, Изм. № 1).

1. ИСПОЛНЕНИЯ И ОСНОВНЫЕ ПАРАМЕТРЫ

1.1. В зависимости от конструктивного исполнения датчики следует изготовлять в виде:

единой конструкции;

изделия, состоящего из отдельных конструктивных блоков.

1.2. В зависимости от возможности перестройки диапазона измерения датчики подразделяют на однопредельные и многопредельные (в том числе перенастраиваемые).

Издание официальное

Перепечатка воспрещена

1.3. По устойчивости к воздействию окружающей среды датчики подразделяют на исполнения:

защищенное от проникновения пыли, посторонних тел и воды в соответствии со степенями защиты по ГОСТ 14254—80 и ГОСТ 12997—84;

степень защиты должна быть установлена в технических условиях на датчики конкретных типов;

взрывозащищенное по ГОСТ 22782.3—77, ГОСТ 22782.5—78 и ГОСТ 22782.6—81;

устойчивое к воздействию агрессивной среды (коррозионностойкое).

- 1.4. По устойчивости к механическим воздействиям датчики должны соответствовать одной из следующих групп исполнений: L1; L2; L3; N1; N2; N3; N4; V1; V2; V3; V4; V5 по ГОСТ 12997—84.
- 1.5. По устойчивости к воздействию температуры и влажности окружающей среды датчики должны соответствовать требованиям ГОСТ 12997—84.
- 1.6. Датчики допускается изготовлять в сочетании исполнений и групп, перечисленных в пп. 1.2—1.5.

Отдельные конструктивные блоки датчиков допускается отно-

сить к разным исполнениям и группам по пп. 1.2—1.5.

- 1.7. Верхние пределы измерений или диапазоны измерений
- 1.7.1. Верхние пределы измерений или диапазоны измерений датчиков разрежения следует выбирать из ряда:
- 0,06; 0,063; 0,10; 0,16; 0,25; 0,40; 0,60; 0,63; 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16; 25; 40; 60; 63; 100 κΠα.
 - 1.7.2. Верхние пределы измерений или диапазоны измерений

датчиков избыточного давления следует выбирать из ряда:

- 0,06; 0,063; 0,10; 0,16; 0,25; 0,40; 0,60; 0,63; 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16; 25; 40; 60; 63; 100; 160; 250; 400; 600; 630 $\kappa\Pi a$; 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16; 25; 40; 60; 63; 100; 160; 250; 400; 600; 630; 1000 $M\Pi a$.
- 1.7.3. Верхние пределы измерений или диапазоны измерений датчиков абсолютного давления следует выбирать из ряда:
- 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16; 25; 40; 60; 63; 100; 160; 250; 400; 600; 630 κΠa;
 - 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16 МПа.
- 1.7.4. Верхние пределы измерений датчиков избыточного давления-разрежения с одинаковыми по абсолютному значению верхними пределами измерений избыточного давления и разрежения следует выбирать из ряда:

0,05; 0,08; 0,125; 0,2; 0,3; 0,315; 0,5; 0,8; 1,25; 2,0; 3,0; 3,15;

5,0; 8,0; 12,5; 20,0; 30,0; 31,5; 50,0 кПа.

1.7.5. Верхине пределы измерений избыточного давления датынков избыточного давления-разрежения с различающимися по абсолютному значению верхними пределами измерений избыточного давления и разрежения следует выбирать из ряда:

60; 150; 300; 500; 530; 900 kHa;

1.5; $2.4 M\Pi a$;

верхний предел измерения разрежения должен соответствовать $100~\mathrm{k}\Pi a$.

1.7.6. Верхине пределы измерений или дианазоны измерений

датчиков разности давлений следует выбирать из ряда:

0,06; 0,10; 0,16; 0,25; 0,40; 0,60; 0,63; 1,0; 1,6; 2,5; 4,0; 6,0; 6,3; 10; 16; 25; 40; 60; 63; 100; 160; 250; 400; 600; 630 κΠα;

 $1,0; 1,6; 2,5; 4; 6,0; 6,3; 10; 16 M\Pi a.$

Примечание. Верхние пределы измерений или диапазоны измерений датчиков разности давлений, предназначенных для измерения уровня и плотности (датчики гидростатического давления), могут отличаться от приведенных.

- 1.7.1—1.7.6. (Измененная редакция, Изм. № 1).
- 1.7.7. Ряды верхних пределов измерений или диапазонов измерений, установленные в пп. 1.7.2-1.7.6, допускается продолжать в сторону увеличения и (или) уменьшения, умножая числа данного ряда на 10^n , где n целое положительное или отрицательное число.
- 1.8. Предельно допускаемые рабочие избыточные давления датчиков разности давлений следует выбирать из ряда:

25; 40; 60; 100; 160; 250; 400; 600 кПа;

- 1,0; 1,6; 2,5; 4,0; 6,0; 10; 16; 25; 32; 40; 60; 100 MHa.
- 1.9. Любые пределы измерений, диапазоны измерений (п. 1.7) и предельно допускаемые рабочие избыточные давления (п. 1.8) допускается выражать в паскалях, килопаскалях, мегапаскалях.

1.8, 1.9. (Измененная редакция, Изм. № 1).

- 1.10. Выходные сигналы
- 1.10.1. Токовые сигналы и сигналы напряжения постоянного тока: 0—5; 0—20; 4—20 мА; 0—10; 0—5; 0—1 В— по ГОСТ 26.011—80.
- 1.10.2. Сигналы напряжения переменного тока по ГОСТ 26.011—80.
 - 1.10.3. Частотные сигналы по ГОСТ 26.010—80.
- 1.10.4. Датчик может иметь несколько сигналов от одной или нескольких измеряемых величин.
- 1.10.5. Выходные сигналы датчиков предназначены для автоматизации процесса измерения: связи с вторичными приборами, регуляторами, сигнализаторами и машинами централизованного жонтроля.
- 1.11. Номинальная статистическая характеристика датчиков должна соответствовать одному из следующих видов:

 $y-y_{\rm H}=k(x-x_{\rm 0})$ в интервале $y_{\rm H} \leqslant y \leqslant y_{\rm B}$;

 $y-y_{\scriptscriptstyle H}=a\sqrt{x-x_0}$ в интервале $y_{\scriptscriptstyle C} \leqslant y \leqslant y_{\scriptscriptstyle B}$,

где y — текущее значение выходного сигнала датчика;

- $y_{\rm H}$, $y_{\rm B}$ соответственно нижнее и верхнее предельные значения выходного сигнала; $|y_{\rm H} y_{\rm B}|$ диапазон изменения выходного сигнала;
 - $y_{\rm c}$ наименьшее значение выходного сигнала, при котором гарантируется номинальная статистическая характеристика; при этом отношение $c=\frac{y_{\rm c}-y_{\rm R}}{y_{\rm B}-y_{\rm R}}\!\ll\!0,3$ устанавливают в технических условиях на датчики конкретных типов;
 - k, a коэффициенты пропорциональности, при этом k>0 или k<0 и a>0;
 - х значение измеряемой величины;
 - x_0 значение измеряемой величины, при котором расчетное значение $y=y_{\rm H}.$

 Π р и м е ч а н и е. Значения x и x_0 для датчиков давления-разрежения принимаются со знаком минус при измерении разрежения и со знаком плюс — при измерении избыточного давления.

1.12. Для датчиков с номинальной статической характеристикой $y-y_{\rm H}=a\sqrt{x-x_0}$ действительное значение выходного сигнала y_0 , соответствующее значению измеряемой величины, равной x_0 , может отличаться от значения $y_{\rm H}$.

Значение $y_0 \neq y_H$ устанавливают в технических условиях на датчики конкретных типов, при этом $y_0 - y_H \leqslant 0.15$ ($y_B - y_H$).

Примеры номинальных статических характеристик приве-

дены в приложении 1.

1.13. Номинальные значения напряжений питания следует выбирать из ряда: 6, 12, 15, 24, 27, 36, 42, 48, 60, 110 и 220 В постоянного или переменного тока по ГОСТ 23366—78. Остальные параметры напряжения питания — по ГОСТ 18953—73.

1.11—1.13. (Измененная редакция, Изм. № 1).

- 1.14. Сопротивление нагрузки по ГОСТ 26.011--80.
- 1.15. Потребляемая мощность не должна превышать 10 В А.
- 1.16. Масса не должна превышать:

для датчиков избыточного абсолютного давления и давления-разрежения — 10,5 кг;

для датчиков разности давлений — 18 кг.

Массу датчиков коррозионностойких и взрывозащищенных исполнений устанавливают в технических условиях на датчики конкретных типов.

1.15, 1.16. (Измененная редакция, Изм. № 1).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Датчики должны изготовляться в соответствии с требованиями настоящего стандарта и технических условий на датчики конкретных типов по рабочим чертежам, утвержденным в установленном порядке.

Датчики, предназначенные для экспорта, кроме того следует изготовлять в соответствии с требованиями ГОСТ 17532—84 и

заказа-наряда внешнеторговой организации.

2.2. Предел допускаемой основной погрешности

2.2.1. Пределы допускаемой основной погрешности датчиков, выраженной в процентах от диапазона измерений или верхнего предела измерений, следует выбирать из ряда: ± 0.1 ; ± 0.15 ; ± 0.16 ; ± 0.2 ; ± 0.25 ; ± 0.4 ; ± 0.5 ; ± 0.6 ; ± 1.0 ; ± 1.5 .

Для датчиков абсолютного давления с верхними пределами измерений менее 2,5 кПа, а также датчиков давления, разрежения и разности давлений с верхними пределами измерений менее 0,25 кПа и более 250 МПа предел допускаемой основной погрешности устанавливают в технических условиях на датчики конкретных типов.

(Измененная редакция, Изм. № 1).

- 2.2.2. Допускается устанавливать разные значения γ для разных участков значений измеряемой величины в пределах диапазона измерения.
- 2.2.3. Пределы допускаемой основной погрешности многопредельных датчиков допускается устанавливать различными в зависимости от предела (или диапазона) измерения.
- 2.2.4. Допускается в технических условиях на датчики конкретного типа предел допускаемой основной погрешности указывать в единицах измерения давления, единицах измерения выходного сигнала или в процентах диапазона изменения выходного сигнала. При этом указанные значения погрешности должны соответствовать значению, выраженному в процентах от верхнего предела измерений или диапазона измерения, выбранного из ряда, приведенного в п. 2.2.1.

Соотношение между погрешностями, выраженными различными способами, приведено в справочном приложении 2.

(Измененная редакция, Изм. № 1).

- 2.2.5. При необходимости по согласованию между потребителем и изготовителем нормируются систематическая и случайная составляющие основной погрешности.
- 2.3. Вариация выходного сигнала не должна превышать абсолютного значения допускаемой основной погрешности $|\gamma|$ для датчиков со значением $|\gamma| \le 1,0$ и 0,75 $|\gamma|$ для датчиков со значением $|\gamma| \ge 1,5$.

Для датчиков, у которых нормированы различные значения для разных участков значений измеряемой величины в пределах диапазона измерения, допустимые значения вариации устанавливают в технических условиях на датчики конкретных типов.

2.4. Наибольшее отклонение действительной характеристики преобразования ум от зависимости, приведенной в п. 1.11 (для датчиков с линейной номинальной статической характеристикой) и установленной таким образом, чтобы минимизировать значение этого отклонения, не должно превышать 0,8 | ү |. В обоснованных случаях по согласованию с потребителем ум допускается не нормировать.

Примечание. Отклонение действительной характеристики преобразования от установленной зависимости включает погрешность нелинейности выходного сигиала $\gamma_{\rm H}$, вариацию выходного сигнала $\gamma_{\rm r}$ и область разброса действительных значений выходного сигнала при многократных проверках датчика (повторяемость выходного сигнала уп).

Виды характеристик преобразования приведены в справочном приложении 3.

(Измененная редакция, Изм. № 1).

2.5. Зона нечувствительности датчиков со значениями $|\gamma| < 0.6$ не должна превышать 0,1% диапазона измерения.

Для датчиков со значением $|\gamma| \gg 1.0$ зона нечувствительности

не должна превышать 0,2 |y|.

- 2.6. Пульсация выходного сигнала должна быть установлена в технических условиях на датчики конкретных ГОСТ 26.011—80. При этом для датчиков с выходным сигналом постоянного тока нижний предел значения сопротивления нагрузки, при котором нормируется пульсация, должен быть 250 и 1000 Ом для датчиков с верхними предельными значениями выходного сигнала соответственно 20 и 5 мА.
- 2.7. Дополнительная погрешность, вызванная воздействи**ем** вибрации (п. 1.4), и допустимые направления воздействия вибрации должны быть установлены в технических условиях на датчики конкретных типов.
- 2.8. Изменение выходного сигнала датчиков разности давлений, вызванное изменением рабочего избыточного давления, устанавливают в технических условиях на датчики конкретных типов.

Изменение выходного сигнала следует нормировать при изменении рабочего избыточного давления на заданный интервал значений при любых давлениях от 0 до предельно допускаемого. (Измененная редакция, Изм. № 1).

2.9. Изменение выходного сигнала датчиков абсолютного давления, вызванное изменением атмосферного давления на $\pm 10~{\rm k}\Pi a$ (75 мм рт. ст.) от установившегося значения в пределах от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.), должно быть установлено в технических условиях на датчики конкретных типов.

2.10. Дополнительные погрешности, вызванные изменением влияющих величин, выраженные в той же размерности, что и основная погрешность по п. 2.2, не должны превышать значений, указанных в табл. 1.

Для датчиков с перенастраиваемым днапазопом измерения указанные значения дополнительных погрешностей относятся к наибольшему днапазону или наибольшему верхнему пределу измерений; значения дополнительных погрешностей для других диапазонов пли верхних пределов измерений должны быть установлены в технических условиях на датчики конкретных типов.

Дополнительную погрешность, вызванную изменением температуры окружающего воздуха на каждые 10°С, допускается нормировать раздельно по изменению выходного сигнала, соответствующего начальному значению, и по диапазону изменения выходного сигнала.

- 2.11. После подключения любых сопротивлений внешней нагрузки в рабочих пределах, установленных ГОСТ 26.011—80 для соответствующих выходных сигналов, датчики должны соответствовать требованиям пп. 2.2 и 2.3.
- 2.12. При скачкообразном изменении напряжения питания от номинального в пределах, указанных в и. 1.13, допускается выброс выходного сигнала, не превышающий 1,5% диапазона изменения выходного сигнала продолжительностью не более 1 с.

(Измененная редакция, Изм. № 1).

2.13. Динамические характеристики датчиков должны нормироваться:

переходной характеристикой при скачкообразном изменении измеряемой величины, составляющем 10% диапазона измерения;

временем установления выходного сигнала при скачкообразном изменении измеряемой величины, составляющем 90% диапазона измерения;

максимальным отклонением выходного сигнала при скачкообразном изменении измеряемой величины, составляющем 90% диапазона измерения.

Конкретные значения динамических характеристик устанавливают в технических условиях на датчики конкретных типов.

Примечания:

1. Допускается нормировать другие динамические характеристики, установленные ГОСТ 8.009—84.

2. Для датчиков, относящихся к линейным динамическим звеньям, допускается нормировать только переходную характеристику.

2.14. Датчики избыточного давления, разрежения, давления разрежения, абсолютного давления (далее — датчики давления и разрежения) должны быть прочными и герметичными при давлениях, указанных в табл. 2.

_
a
Ξ
Z
₽,
Ç
¢
Η

ванная	воздействием внешнего переменного магнитного поля напряженностью 400 А/м, частогой 50 Гц и (или) висшнего постоянного магнитного поля напряженностью 400 А/м, не болсе	##### 0,10 13 10,20 10,20 10,32 10,50 10,50 10,90
Дополнительная погрешность, вызванная	отклонением частоты тока питания от номинального на ±1 Гд, не более	######################################
Дополнителы	плавным отклонением напряжения питания от номинального значения на минус 15% и плос 10%, не болсе	######################################
	. изменением температуры окружающего воздуха на каждые 10°С, не более	######################################
	Предел допус- каемой основной погрениности, %	######################################

(Измененная редакция, Изм. № 1).

Таблипа 2

Наименование датчиков	Верхние пределы измерений, МПа	Исиытательное давление, % от верхнего предела измерений
Датчики давления-разряжения (по избыточному давлению)	Все пределы измерений	125
Датчики разрежения	До 0,06	125
Датчики избыточного давления	До 10	125
	От 16 до 60	115
	От 100 до 160	110
	От 250 до 1000	105
Датчики абсолютного давления	0,1 и более	125

Датчики абсолютного давления с верхним пределом измерения менее 0,1 МПа должны быть прочными и герметичными при атмосферном давлении.

Датчики разрежения с верхним пределом измерения 0,1 МПа, датчики избыточного давления-разрежения с верхними пределами измерений избыточного давления не более 0,15 МПа и датчики абсолютного давления с верхними пределами измерений не более 0,25 МПа должны быть герметичными при абсолютном давлении 0,13 кПа (1 мм рт. ст.).

По согласованию между потребителем и изготовителем допускается изготовлять датчики, выдерживающие большие (до 500% от верхнего предела измерений) перегрузки.

(Измененная редакция, Изм. № 1).

- 2.15. Датчики разности давлений должны выдерживать испытание на прочность пробным давлением по ГОСТ 356-80 и на герметичность предельно допускаемым рабочим избыточным давлением по п. 1.8, при этом за условное давление $P_{\rm y}$ по ГОСТ 356-80 принимают предельно допускаемое рабочее избыточное давление.
- 2.16. Датчики давления и разрежения должны выдерживать воздействия:

выключения напряжения питания на 30 мин;

перегрузки испытательным давлением по п. 2.14 в течение 15 мин.

 Через 4 ч после окончания указанных воздействий датчики должны соответствовать требованиям пп. 2.2 и 2.3.

2.17. Датчики разности давлений должны выдерживать воздействия:

выключения напряжения питания на 30 мин;

перегрузки со стороны илюсовой камеры давлением в 1,25 раза большим, чем предельная номинальная разность давлений, в течение 15 мин.

Через 4 ч после окончания указанных воздействий датчикы должны соответствовать требованиям пп. 2.2 и 2.3.

2.18. Датчики разности давлений, защищенные от воздействии односторовней перегрузки давлением, равным предельно допускаемому рабочему избыточному давлению, должны выдерживать перегрузку со стороны плюсовой и минусовой камер в течение і мин односторонним воздействием давления, равного предельно допускаемому рабочему избыточному давлению.

Через 12 ч после воздействия перегрузки датчики должны соот-

ветствовать требованиям пп. 2.2 и 2.3.

Допускается корректировка выходного сигнала.

2.19. Датчики должны выдерживать воздействие переменного давления или разрежения, изменяющего от 20—30 до 70—80%, но не более чем на 50% верхнего предела измерения, со следующим числом циклов:

```
20000 — с верхним пределом измерения до 25 МПа;
15000 » » » » 40, 60 МПа;
10000 » » » » 100, 160 МПа.
```

Для датчиков с верхними пределами измерения свыше 160 МПа и для датчиков абсолютного давления число циклов и дианазон изменения давления устанавливают в технических условиях на датчики конкретных типов.

(Измененная редакция, Изм. № 1).

- 2.20. Электрическая прочность изоляции и сопротивление изоляции электрических цепей по ГОСТ 21657—83. 2.21. Материалы деталей датчиков, соприкасающихся с изме-
- 2.21. Материалы деталей датчиков, соприкасающихся с измеряемой средой, должны быть указаны в технических условиях на датчики конкретных типов.
- 2.22. Габаритные, присоединительные и монтажные размеры датчиков должны быть указаны в технических условиях на датчики конкретных типов.
- 2.23. Элементы датчиков, предназначенные для присоединения к ним внешних гидравлических и газовых линий, и ряды их присоединительных размеров по ГОСТ 25164—82 и ГОСТ 25165—82.

Для датчиков, предназначенных для измерения давления или разности давлений агрессивных сред, затвердевающих (кристаллизирующихся) и засоренных сред, образующих осадок, сред

с вязкостью более 1 Па·с (10 П), а также разреженного газа допускается применять другие элементы соединений с импульсными линиями.

Элементы датчиков, предназначенные для присоединения к ним электрических линий, должны быть указаны в технических условиях на датчики конкретных типов.

2.24. Для датчиков, состоящих из отдельных конструктивных блоков, в эксплуатационной документации должны быть указаны параметры линии связи между блоками или тип кабеля (соединительного провода) и допустимая его длина.

2.25. Средняя наработка на отказ должна быть не менее 67000 --150000 ч для датчиков с верхним пределом измерений до

100 M∏a.

Среднюю наработку на отказ для датчиков с верхними пределами измерений свыше 100 МПа, а также датчиков, работающих в агрессивных средах, устанавливают в технических условиях на датчики конкретных типов.

2.26. Полный средний срок службы — не менее 12 лет для дат-

чиков с верхним пределом измерений до 100 МПа.

Для датчиков с верхним пределом измерений свыше 100 МПа, а также датчиков, работающих в агрессивных средах с естественно ограниченным сроком службы, полный средний срок службы устанавливают в технических условиях на датчики конкретных ти-

- 2.27. Ремонтопригодность должна быть установлена в технических условиях на датчики конкретных типов в соответствии с требованиями нормативно-технической документации, утвержденной в установленном порядке.
 - 2.25—2.27. (Измененная редакция, Изм. № 1).
- 2.28. Датчики в упаковке для транспортирования должны выдерживать воздействие транспортной тряски, температуры и влажности окружающего воздуха по ГОСТ 12997—84.

2.29. Датчики, в которых имеются источники радиопомех, должны соответствовать «Общесоюзным нормам допускаемых индустриальных радиопомех» (Нормы 1-72—9-72).

2.30. Установленная безотказная наработка должна быть не менее 7000—15000 ч для датчиков с верхним пределом измерений до 100 МПа.

Установленную безотказную наработку для датчиков с верхним пределом измерений свыше 100 МПа, а также датчиков, работающих в агрессивных средах, устанавливают в технических условиях на датчики конкретных типов.

(Введен дополнительно, Изм. № 1).

2.31. Комплектность устанавливается в технических условиях на датчики конкретных типов.

(Введен дополнительно, Изм. № 2).

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1. Источниками опасности при монтаже или эксплуатации датчиков являются электрический ток и измеряемая среда, находящаяся под давлением.
- 3.2. Безопасность эксплуатации датчиков должна обеспечиваться:

прочностью и герметичностью измерительных камер, которые должны соответствовать нормам, установленным в пп. 2.14, 2.15; изоляцией электрических цепей в соответствии с нормами, установленными в п. 2.20;

надежным креплением при монтаже на объекте;

конструкцией (все составные части датчика, находящиеся под напряжением, должны быть размещены в корпусе (корпусах), обеспечивающем защиту обслуживающего персонала от соприкосновения с деталями и узлами, находящимися под напряжением).

- 3.3. По способу защиты человека от поражения электрическим током датчик должен соответствовать одному из классов 0; 01; 1; 11 по ГОСТ 12.2.007.0—75.
- 3.4. На корпусе датчика, относящегося к классам 0I и I, необходимо предусмотреть зажим по ГОСТ 12.2.007.0—75, отмеченный знаком заземления, для присоединения заземляющего проводника при монтаже, испытаниях и эксплуатации (конструкцией датчика может быть предусмотрено присоединение заземляющего проводника при помощи сварки или пайки). Размещение датчика при монтаже должно обеспечивать удобство заземления и периодическую его проверку. Защитное заземление должно соответствовать требованиям ГОСТ 12.1.030—81.
- 3.5. При испытании датчиков необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019—80, а при эксплуатации «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей» для установок напряжением до 1000 В, утвержденные Госэнергонадзором.
- 3.6. Электробезопасность датчиков должна соответствовать требованиям ГОСТ 12.1.038—82.
- 3.7. Датчики должны обслуживаться персоналом, имеющим квалификационную группу по технике безопасности не ниже II в соответствии с «Правилами техники безопасности при эксплуатации электроустановок потребителей».
- 3.8. При испытании изоляции и измерении ее сопротивления необходимо учитывать требования безопасности, установленные на испытательное обрудование.
- 3.9. Замену, присоединение и отсоединение датчика от магистралей, подводящих измеряемую среду, следует производить при

отсутствии давления в магистралях и отключенном электрическом питании.

 Π р и м е ч а н и е. Требования относятся к датчикам, соприкасающимся с измеряемой средой, находящейся под давлением.

Разд. 4. (Исключен, Изм. № 2).

5. ПРАВИЛА ПРИЕМКИ

- 5.1. Для проверки соответствия датчиков требованиям настоящего стандарта следует проводить государственные испытания, приемо-сдаточные, периодические и типовые испытания, испытания на взрывозащищенность, а также контрольные испытания на надежность.
- 5.2. Порядок проведения государственных контрольных испытаний по ГОСТ 8.001—80, ГОСТ 8.383—80.
- 5.3. При приемо-сдаточных испытаниях каждый датчик проверяют на соответствие требованиям пп. 2.2, 2.3, 2.6, 2.8, 2.9, 2.14, 2.15, 2.20 (при температуре 20°C и относительной влажности 80%), 7.1, 7.2.

Допускается не проводить проверку датчиков на соответствие требованиям: п. 2.3, если указанное в технических условиях на датчики конкретных типов значение вариации составляет менее 0,5 абсолютного значения допускаемой основной погрешности;

пп. 2.8, 2.14 и 2.15, если проверка проведена в измерительном блоке;

п. 2.9, если необходимость проверки по этому пункту не оговорена в технических условиях на датчики конкретных типов.

В технических условиях на датчики конкретных типов устанавливают наибольшее значение вероятности приемки датчика с погрешностью, превышающей γ , и наибольшее отношение действительного значения погрешности датчика к нормируемому значению γ , а также приемочное значение погрешности датчика в долях от γ .

Последовательность проведения испытаний устанавливают в технических условиях на датчики конкретных типов.

Перед приемо-сдаточными испытаниями каждый датчик должен проходить технологическую приработку, в течение которой основная погрешность должна проверяться не менее трех раз.

Объем и продолжительность приработки должны быть установлены в нормативно-технической документации на датчики конкретных типов.

Если в процессе испытания будет обнаружено несоответствие проверяемого датчика хотя бы одному предъявленному требованию, то датчик признают не выдержавшим испытания.

Решение о целесообразности проведения повторных испытаний в полном объеме принимается в каждом конкретном случае. До-

пускается повторно подвергать датчики приемо-сдаточным испытаниям только по пунктам несоответствия и пунктам, по которым приемо-сдаточные испытания не проводились. Результаты повторных испытаний являются окончательными.

(Измененная редакция, Изм. № 1, 2).

- 5.4. Периодические испытания
- 5.4.1. Периодические испытания датчиков проводят не реже одного раза в год. Испытания допускается не проводить, если в указанный промежуток времени проводились государственные контрольные испытания. Датчики проверяют на соответствие требованиям, указанным в п. 5.3 (включая п. 2.3), а также требованиям пп. 1.3 (кроме устойчивости к воздействию агрессивной среды и защищенности от проникновения пыли и посторонних тел), 1.4, 2.4, 2.5, 2.7, 2.10—2.12, 2.16—2.19, 2.23 и 2.28.
- 5.4.2. Для проведения периодических испытаний отбирают по три датчика от каждой однотипной группы датчиков или по три датчика каждого типового представителя, прошедших приемосдаточные испытания. Группы или типовые представители датчиков устанавливают в технических условиях на датчики конкретных типов.
 - 5.4.1, 5.4.2. (Измененная редакция, Изм. № 1).
- 5.4.3. Если в процессе испытаний будет обнаружено несоответствие предъявляемым требованиям хотя бы у одного из датчиков, то испытания проводят на удвоенном числе датчиков. В этом случае допускается проводить проверку в сокращенном объеме, но обязательно по пунктам несоответствия. Результаты повторных испытаний считают окончательными.
 - 5.5. Типовые испытания по ГОСТ 12997—84.
- 5.6. Испытания датчиков на взрывозащищенность проводит испытательная организация в соответствии с требованиями ГОСТ 12.2.021—76.
- 5.7. Контрольные испытания на безотказность следует проводить один раз на опытных образцах или первой промышленной партии по нормативно-технической документации, утвержденной в установленном порядке.
- 5.8. Динамические характеристики подтверждаются на основании испытаний опытных образцов или образцов-аналогов.
- В случаях внесения в конструкцию датчика изменений, которые могут повлиять на динамические характеристики, последние проверяют при типовых испытаниях.

5.7, 5.8. (Измененная редакция, Изм. № 1).

6. МЕТОДЫ ИСПЫТАНИЙ

6.1. Методы проведения испытаний датчиков на воздействие пыли и воды (п. 1.3) — по ГОСТ 14254—80; датчиков, изготовлен-

ных во взрывозащищенном исполнении, — по ГОСТ 22782.3—77, ГОСТ 22782.5—78 и ГОСТ 22782.6—81.

6.2. Испытания проводят при следующих условиях:

рабочее положение — в соответствии с техническими условиями на датчики конкретных типов;

температура окружающего воздуха:

для испытаний по пп. 2.2 и 2.3 должна быть (23 ± 2) °C;

для остальных испытаний — от 10 до 35° C, в течение одного испытания температура не должна изменяться более чем на $\pm 2^{\circ}$ C;

выдержка датчика при установленной температуре — не менее 2 ч:

относительная влажность от 30 до 80%;

атмосферное давление от 84 до 106,7 к Πa (от 630 до 800 мм рт. ст.);

для датчиков абсолютного давления изменение атмосферного давления устанавливают в технических условиях на эти датчики;

отклонение напряжения питания от номинального значения— не более $\pm 2\%$, если иное не установлено в технических условиях на датчики конкретных типов;

выдержка датчиков перед началом испытаний после включения питания должна быть не менее 30 мин;

нагрузочное сопротивление:

для датчиков с выходным сигналом постоянного тока 0-20; 4-20 мА должно быть (500 ± 50) Ом, с сигналом 0-5 мА — (1200 ± 100) Ом;

для датчиков с другими выходными сигналами нагрузочное сопротивление устанавливают в технических условиях на датчики конкретных типов;

измеряемая среда:

для датчиков с верхними пределами измерения до 2,5 МПа — воздух или другой газ;

для датчиков с верхними пределами измерения более 2,5 МПа — жидкость или газ; в обоснованных случаях допускается использовать жидкости для проверки датчиков с верхними пределами измерения от 0,25 до 2,5 МПа;

при проверке датчиков разности давлений номинальное значение измеряемого параметра устанавливают при сообщении минусовой камеры с атмосферой и подачей соответствующего избыточного давления в плюсовую камеру, допускается вместо сообщения с атмосферой подача опорного давления задатчика;

выходной сигнал, соответствующий нижнему предельному значению измеряемого параметра, должен быть установлен на номинальное значение после выдержки датчика при включенном

питании, подачи и сброса давления в режимах, установленных в технических условиях на датчики конкретных типов;

скорость изменения давления и (или) выдержка при контролируемом давлении должны быть установлены в технических условиях на датчики конкретных типов;

вибрация, тряска, удары, наклоны, магнитные поля, кроме земного, влияющие на работу датчиков, должны отсутствовать.

Влияние внешних факторов (пп. 2.7, 2.10) следует определять, исключив при этом все другие влияния, кроме определяемого, при значениях измеряемой величины или соответствующих ей значениях выходного сигнала, указанных в технических условиях на датчики конкретных типов.

6.3. Определение основной погрешности (п. 2.2) и вариации (п. 2.3) следует проводить одним из следующих способов:

установкой по образцовому прибору номинальных значений измеряемой величины на входе датчика и измерением по другому образцовому прибору выходного сигнала датчика;

установкой по образцовому прибору номинального значения выходного сигнала датчика и измерением по другому образцовому прибору значения измеряемой величины;

сравнением выходных сигналов проверяемого и образцового датчиков.

Основную погрешность определяют как максимальное отклонение действительных значений от расчетных.

При приемо-сдаточных испытаниях основную погрешность определяют по результатам измерений в течение одного цикла нагружения не менее чем при пяти значениях измеряемой величины, достаточно равномерно распределенных в диапазоне измерений, включая граничные значения диапазона измерения.

При периодических испытаниях основную погрешность определяют по результатам измерений в течение пяти циклов нагружения за 24 ч. При этом первые две проверки следуют непосредственно одна за другой, третью проверку проводят через 2 ч после второй, четвертую — через 4 ч после третьей, а пятую — через 18 ч после четвертой.

При нормировании характеристик систематической и случайной составляющих основной погрешности методы их проверки устанавливают в технических условиях на датчики конкретных типов.

Вариацию выходного сигнала определяют как разность между значениями или средними значениями выходного сигнала, соответствующими одному и тому же значению измеряемой величины, полученными отдельно при прямом и обратном ходе.

При проверке сравнением выходных сигналов проверяемого и образцового датчиков вариацию выходного сигнала определяют

как разность между погрешностью на прямом ходе и погрешностью на обратном ходе при значениях измеряемой величины, отличающихся не более чем на 5%.

6.4. Отклонение действительной характеристики преобразования от установленной зависимости (п. 2.4) следует определять при периодических испытаниях при многократных (не менее пяти), следующих одна за другой проверках датчика при изменении входного сигнала от меньших значений к большим и от больших значений к меньшим в пределах установленного дианазона измерения.

Значение отклонения γ_M определяют по формулам, в зависимости от вида действительной характеристики преобразования (см. справочное приложение 3).

Погрешность нелинейности $\gamma_{\rm H}$ выходного сигнала определяют по значению наибольшего отклонения средних значений выходното сигнала от линейной зависимости между входным и выходным сигналами, при котором минимизируется значение этого отклонения в заданном диапазоне измерения. Средние значения выходното сигнала определяют по результатам многократных, следующих одна за другой проверках датчика при изменении входного сигнала от меньших значений к большим и от больших значений к меньшим в пределах установленного диапазона измерения.

Вариацию выходиого сигнала γ_r определяют по значению наибольшей разности между двумя средними значениями выходного сигнала, соответствующими одному и тому же значению входного сигнала при приближении к этому значению с противоположных направлений (со стороны меньших и со стороны больших значений).

Повторяемость выходного сигнала γ_n определяют по значению разброса действительных значений выходного сигнала, соответствующих одному и тому же значению входного сигнала при приближении к этому значению с одного направления при многократных следующих одна за другой проверках датчика в пределах установленного диапазона измерения.

При оценке повторяемости выходного сигнала допускается не учитывать 5% всех результатов измерений.

Примеры и методика определения значений γ_{H} , γ_{T} , γ_{π} приведены в приложениях 5 и 6.

6.2—6.4. (Измененная редакция, Изм. № 1).

6.5. Зону нечувствительности (п. 2.5) следует проверять при двух приведенных значениях выходного сигнала: в интервале 20—40 и 70—90% диапазона его изменения. Установив одно из значений выходного сигнала, измеряют значение измеряемой величины в какую-либо сторону на нормируемую зону нечувстви-

тельности. Затем измеряемое значение изменяют в обратную сторону на то же значение зоны нечувствительности.

В обоих случаях при изменении измеряемого значения выходной сигнал должен измениться в соответствующую сторону.

6.6. Проверку пульсации выходного сигнала (п. 2.6) датчиков с токовым выходным сигналом проводят по напряжению его переменной составляющей при нижнем и верхнем предельном значениях выходного сигнала и при значении нагрузки, равной нижнему пределу, указанному в п. 2.6. Проверку проводят по осциллографу.

Проверку датчиков с другими выходными сигналами проводят по методике, приведенной в технических условиях на датчики

конкретных типов.

6.7. Испытание датчиков на воздействие механических факторов (пп. 2.7, 1.4) проводят одновременно или последовательно потрем взаимно перпендикулярным направлениям, если иное не оговорено в технических условиях.

Датчики, имеющие одно (два) рабочее положение, испытывают в этом (этих) положении. Допускается испытывать датчики в двух (одном) других взаимно перпендикулярных положениях по отношению к рабочему положению. Необходимость проведения испытаний и требования к испытаниям в этих положениях указывают в технических условиях, при этом изменение положения рассматривают как изменение направления воздействия механических факторов.

Контрольную точку выбирают на платформе стенда или на промежуточном крепежном приспособлении возможно ближе к одной из точек крепления. В технически обоснованных случаях по согласованию с заказчиком допускается выбирать контрольную точку непосредственно на датчике при условии, что будет обеспечен объективный контроль параметров испытательного режима. В этом случае положение контрольной точки указывают в технических условиях. Датчики считают выдержавшими испытания, если они удовлетворяют требованиям пп. 2.7 и 1.4.

6.8. Проверку изменения выходного сигнала датчиков разности давлений при изменении рабочего избыточного давления (п. 2.8) проводят следующим образом: при нулевом значении разности давлений корректором нуля или другим способом устанавливают начальное приведенное значение выходного сигнала, которое указывают в технических условиях на датчики конкретных типов.

Плавно повышая рабочее избыточное давление одновременно в обеих камерах от нуля до предельно допускаемого значения и снижая его затем от предельно допускаемого значения до нуля, определяют изменение выходного сигнала при изменении рабочего избыточного давления на заданный интервал. Значение интерва-

ла указывают в технических условиях на датчики конкретных типов.

Изменение выходного сигнала не должно превышать значений, указанных в п. 2.8.

(Измененная редакция, Изм. № 1).

6.9. Проверку изменения выходного сигнала датчиков абсолютного давления при изменении атмосферного давления (п. 2.9) проводят в барокамере:

при этом фиксированном значении измеряемого давления;

при значении давления окружающего воздуха, равном атмосферному, и при изменении давления окружающего воздуха от указанного на $\pm 10~{\rm kHa}$ (75 мм рт. ст.).

6.10. Влияние воздействия повышенной (пониженной) температуры окружающего воздуха (табл. 1) определяют следующим

ооразом:

датчик помещают в камеру тепла (холода), включают и проверяют погрешность по способам, приведенным в п. 6.3, при условиях, указанных в п. 6.2, один или три раза непосредственно один за другим;

повышают (понижают) температуру в камере до предельного значения соответствующей группы (п. 1.5), выдерживаюг датчик при этой температуре не менее 2 ч и проверяют один или при раза непосредственно один за другим; допускаемое отклонение температуры в камере $\pm 3^{\circ}$ С;

понижают (повышают) температуру до первоначального значения и после выдержки датчика при этой температуре в течение не менее 2 ч вновь проверяют его погрешность один или три раза непосредственно один за другим; допускаемая разность температур между первыми и последними тремя проверками $\pm 3^{\circ}$ С.

В течение всего процесса испытаний датчик должен находиться во включенном состоянии и с подключенными нагрузками.

Все проверки проводят без перестановки датчика.

Корректировка выходного сигнала допускается только перед первой проверкой.

Число проверок при заданных температурах устанавливают в технических условиях на датчики конкретных типов.

Дополнительную погрешность определяют:

при однократной проверке — как разность между значениями погрешностей или выходного сигнала, полученными при измерении при предельной температуре, и средним значением двух измерений при температуре, указанной в п. 6.2;

при трехкратной проверке — как разность между средними значениями погрешностей или выходного сигнала, полученными при трех измерениях при предельной температуре, и средними значениями шести измерений при температуре, указанной в п. 6.2.

При разности температур нормальной (п. 6.2) и предельной (п. 1.5) менее 20°С определяют значение погрешности при предельной температуре, которое не должно превышать суммы пределов основной и дополнительной погрещностей.

(Измененная редакция, Изм. № 1).

6.11. Влияние воздействия повышенной влажности (п. 1.5) определяют по методике ГОСТ 12997-84 в течение 48 ч.

Допускается выдерживать датчик между проверками в термо-

влагокамере в выключенном состоянии.

Датчик считают выдержавшим испытание, если на его внешних и внутренних деталях не обнаружено коррозии, отслаивания и повреждения защитных покрытий, нарушающих работоспособность и ухудшающих внешний вид; сопротивление изоляции соответствует требованиям ГОСТ 21657—83; погрешность не превышает суммы допускаемой основной и дополнительной погрешностей от воздействия температуры.

6.12. Влияние плавного изменения напряжения (табл. 1) проверяют при значениях выходного сигнала, указанных

з п. 6.5.

Определив выходной сигнал при номинальном напряжении питания, проверяют его установившееся значение при изменении напряжения питания от номинального значения до предельных, указанных в п. 2.10.

Дополнительная погрешность не должна превышать значений,

указанных в п. 2.10.

6.13. Влияние изменения частоты тока питания (табл. 1) следует проверять при значениях выходного сигнала, указанных з п. 6.5.

Установив одно из значений выходного сигнала при частоте тока питания 50 Гц, определяют его значение при частоте 49 и

Дополнительная погрешность не должна превышать значений,

указанных в табл. 1.

6.14. Определение влияния внешнего магнитного поля (табл. 1) датчиков следует проводить в установке, создающей равномерное магнитное поле.

Аппаратура контроля, усилитель и блок питания, выполненные в виде отдельных блоков (п. 1.1), должны находиться на расстоянии не менее 3 м от установки. Провода, соединяющие датчик с усилителем и блоком питания, должны быть перевиты и помещены в заземленный экран.

Устанавливают одно из значений выходного сигнала, указанное в п. 6.5, при отсутствии магнитного поля. Изменяя фазу и направление магнитного поля, определяют самые неблагоприятные полодкения, при которых возникает наибольшее изменение выходного

сигнала относительно его значений при отсутствии магнитного поля.

Дополнительная погрешность не должна превышать значений, указанных в табл. 1.

6.12—6.14. (Измененная редакция, Изм. № 1).

6.15. Влияние изменения сопротивления нагрузки (п. 2.11) на датчики с токовыми выходными сигналами проверяют по способам, приведенным в п. 6.3, при двух значениях сопротивления натрузки, равных 20—30 и 90—100% его верхнего предельного значения.

Методика испытаний на влияние нагрузки при других сигналах (п. 1.10) должна быть установлена в технических условиях на датчики конкретных типов.

Перед каждой проверкой следует устанавливать выходной сигнал, соответствующий нижнему предельному значению измеряемого давления.

·Погрешность не должна превышать значений, указанных в п. 2.2.

6.16. Влияние скачкообразного изменения напряжения питания (п. 2.12) следует проверять при значениях выходного сигнала, указанных в п. 6.5.

Установив одно из значений выходного сигнала при предельном минимальном напряжении питания, скачком изменяют напряжение питания датчика до номинального, при этом измеряют значение и продолжительность выброса выходного сигнала по осциллографу. Затем проводят аналогичные измерения при скачкообразном изменении напряжения питания от предельного максимального до номинального. Продолжительность выброса определяют от момента начала изменения выходного сигнала до момента вхождения выходного сигнала в зону установившегося состояния, составляющего $\pm 0.2\%$ диапазона изменения выходного сигнала для датчиков с $|\gamma| < 0.5$ и $\pm 0.5\%$ — для датчиков с $|\gamma| > 0.5$.

6.17. Динамические характеристики датчиков (п. 2.13) определяют по экспериментально полученным характеристикам переходного процесса при входных скачкообразных возмущениях, вызван-

ных сбросом или набором измеряемой величины.

Перед созданием возмущений при скачкообразном сбросе измеряемой величины до нуля допускается проводить корректировку начального значения выходного сигнала в сторону его увеличения на 0,1 диапазона изменения выходного сигнала.

6.16, 6.17. (Измененная редакция, Изм. № 1).

6.18. Методика проверки прочности и герметичности датчиков (пп. 2.14, 2.15) должна быть установлена в технических условиях на датчики конкретных типов.

6.19. Проверку датчиков на воздействие выключения напряжения питания и перегрузки (пп. 2.16, 2.17) следует проводить сле-

дующим образом: датчик с включенным напряжением питания выдерживают в течение 15 мин под давлением, указанным в п. 2.14 или 2.17.

Снизив давление до значения, соответствующего верхнему пределу измерения (для датчиков давления-разрежения— верхнему пределу измерения избыточного давления), выдерживают датчик при этом давлении в течение 30 мин при включенном напряжении питания.

Снизив измеряемое давление до нижнего предельного значения, включают датчик и проверяют его по методике, приведенной в п. 6.3. Если датчик соответствует требованиям пп. 2.2 и 2.3, испытание прекращают и датчик считают выдержавшим испытание. Если датчик не соответствует требованиям пп. 2.2 и 2.3, необходимо выдержать его в течение 4 ч и испытывать снова по способу, приведенному в п. 6.3. Результаты повторных испытаний считают окончательными.

6.20. Проверку датчиков разности давлений на влияние одностороннего воздействия предельно допускаемого рабочего избыточного давления (п. 2.18) следует проводить поочередной подачей указанного давления сначала в минусовую, а затем в плюсовую камеру и выдержкой датчика в обоих случаях под давлением в течение 1 мин.

Датчик подвергают перегрузкам, как указано выше, три раза. После выдержки без давления в течение 12 ч и корректировки выходного сигнала датчик должен соответствовать требованиям пп. 2.2 и 2.3. Допускается в обоснованных случаях сокращение указанного времени выдержки.

6.21. Проверку датчиков на воздействие переменного давления (п. 2.19) проводят на установке, создающей переменное давление в пределах, указанных в п. 2.19, изменяющееся за 0,1 с не более чем на 10% диапазона измерения давления (разности давлений).

После воздействия переменного давления и корректировки выходного сигнала датчик должен соответствовать требованиям пп. 2.2 и 2.3.

Допускается проводить испытания на представительных типоразмерах датчиков. Представительные типоразмеры указывают в технических условиях на датчики конкретных типов.

- 6.22. Электрическую прочность изоляции и сопротивление изоляции (п. 2.20) следует проверять на соответствие требований ГОСТ 21657—83. Допускается указанную проверку проводить в узлах.
- 6.23. Габаритные и присоединительные размеры датчиков (п. 2.22) следует проверять измерением и сравнением результатов с размерами, указанными в конструкторской документации на датчик.

Габаритные размеры определяют на опытных образцах и при типовых испытаниях.

Проверку массы датчиков (п. 1.16) проводят взвешиванием.

(Измененная редакция, Изм. № 1).

- 6.24. Мощность, потребляемую датчиком (п. 1.15), определяют по показаниям амперметра и вольтметра, включенных в цепь питания.
- 6.25. Методы проверки влияния линии связи (п. 2.24) на изменение выходного сигнала устанавливают, при необходимости, в технических условиях на датчики конкретного типа.
- 6.26. Методы проведения контрольных испытаний на безотказность (пп. 2.25 и 2.30) по нормативно-технической документации, утвержденной в установленном порядке.

(Измененная редакция, Изм. № 1).

- 6.27. Методы испытаний датчиков в упаковке для транспортирования на устойчивость к воздействию транспортной тряски, температуры и влажности окружающего воздуха (пп. 2.28, 7.6) по ГОСТ 12997—84.
- 6.28. Методы проверки уровня радиопомех, создаваемых датчиком, содержащим источники радиопомех (п. 2.29) по ГОСТ 16842—82 и «Общесоюзным нормам допускаемых индустриальных радиопомех» (Нормы 1-72—9-72).
- 6.29. Маркировку и упаковку (пп. 7.1, 7.3, 7.4) следует проверять внешним осмотром на соответствие техническим условиям на датчики конкретных типов.

(Измененная редакция, Изм. № 2).

7. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

7.1. На корпусе датчика или прикрепленной к нему табличке должны быть нанесены:

товарный знак или наименование предприятия-изготовителя; наименование и (или) тип датчика;

порядковый номер датчика по схеме нумерации предприятия-изготовителя;

год выпуска;

знак Госреестра по ГОСТ 8.383-80;

государственный Знак качества, присваиваемый в установленном порядке;

пределы измерения (с указанием единиц измерения);

предельно допускаемое рабочее избыточное давление для датчиков разности давлений;

параметры питания;

верхнее и нижнее предельные значения выходного сигнала.

Допускается указывать другие данные, характеризующие датчик, а также применять условные обозначения и сокращения.

Для малогабаритных датчиков допускается знак Госреестра, государственный Знак качества, пределы измерения, параметры питания, верхнее и нижнее предельные значения выходного сигнала указывать только в эксплуатационной документации на датчик.

- 7.2. Маркировка, указывающая на взрывозащищенное исполнение датчика, должна соответствовать требованиям ГОСТ 12.2.020—76.
 - 7.3. Транспортная маркировка по ГОСТ 14192—77.

На транспортной таре должны быть нанесены несмываемой краской основные, дополнительные и информационные надписи, а также манипуляционные знаки: «Осторожно, хрупкое», «Верх, не кантовать», «Боится сырости».

- 7.4. Упаковка датчиков должна соответствовать требованиям ГОСТ 12997—84 и техническим условиям на датчики конкретных типов.
- 7.5. Датчики в упаковке следует транспортировать любым видом транспорта в крытых транспортных средствах в соответствии с правилами, действующими на каждом виде транспорта.

При транспортировании датчиков воздушным транспортом их следует помещать в отапливаемые герметизированные отсеки са-

молетов.

- 7.6. Условия транспортирования по условиям хранения 5 ГОСТ 15150—69.
- 7.7. Датчики следует хранить в упаковке предприятия-изготовителя по условиям хранения 3 ГОСТ 15150—69.

Воздух помещения, в котором хранят датчики, не должен содержать коррозионно-активных веществ.

8. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

8.1. Изготовитель должен гарантировать соответствие датчиков требованиям настоящего стандарта и технических условий на датчики конкретных типов при соблюдении условий эксплуатации, транспортирования и хранения.

8.2. Гарантийный срок эксплуатации датчиков — 18 мес со дня ввода их в действие; для датчиков, устойчивых к воздействию агрессивной среды с естественно ограниченным сроком службы, —

по техническим условиям на эти датчики.

ПРИЛОЖЕНИЕ 1

Справочнов

Примеры номинальных статических характеристик

Черт. 1. Линейная зависимость $y-y_{\rm H}=k(x-x_0)$; $x_{\rm B}, x_{\rm BI}, x_{\rm B2}$ — верхние пределы измерений; для линейно убывающей характеристики значениям (x_0) и $(x_{\rm B})$ соответствуют значения выходного сигнала $(y_{\rm H})$ и $(y_{\rm B})$

Черт. 2. Нелинейная зависимость $y-y_{\rm H}=a$ $\sqrt{x-x_0}$ (Измененная редакция, Изм. № 1).

•СООТНОШЕНИЯ МЕЖДУ ПОГРЕШНОСТЯМИ, ВЫРАЖЕННЫМИ РАЗЛИЧНЫМИ СПОСОБАМИ

	Основной способ норми-рования	Значения погрешностей, выраженных				
, Номинальная статическая карактери- стика		в процен- тах диа- пазона из- мерения	в процен- тах верх- него пре- дела из- мерения	в процентах диапазона изменения выходного сигнала	в едини- цах изме- ряемой величины	в единицах из- мерения выход- ного сигнала
<i>u_u=</i>	в процентах диа- пазона измере- ния	ү д	$Y_{A} \left \frac{x_{B} - x_{0}}{x_{B}} \right $	Υд	$Y_{A} \left \frac{x_{a} - x_{0}}{100} \right $	$Y_{A} \left \frac{y_{B} - y_{H}}{100} \right $
$y-y_{\rm H}=k(x-x_0)$	в процен- тах верх- него пре- дела из- мерения	$Y_{\mathbf{B}} \left \frac{X_{\mathbf{B}}}{X_{\mathbf{B}} - X_{0}} \right $	γв	$\gamma_{\rm B} \left \frac{x_{\rm B}}{x_{\rm B} - x_0} \right $	үв <u>хв</u> 100	$\left \frac{x_{\mathrm{B}}(y_{\mathrm{B}} - y_{\mathrm{H}})}{100(x_{\mathrm{B}} - x_{\mathrm{0}})} \right $
$ \begin{array}{c} y - y_n = \\ a \sqrt{x - x_0} \end{array} $	в процен- тах верх- него пре- дела из- мерения	-	Υв	$\gamma_{\rm B} \left \frac{(y_{\rm B} - y_{\rm H})}{2(y - y_{\rm H})} \right $	$\left \begin{array}{c} x_{\rm B} \\ \hline 100 \end{array} \right $	$\gamma_{\rm B} \left \frac{(y_{\rm B} - y_{\rm H})^2}{200 (y - y_{\rm H})} \right $

Примечания:

 γ_д — приведенная погрешность, выраженная в процентах диапазона измегрения;

' γ_в — приведенная погрешность, выраженная в процентах верхнего предела измерений.

2. Остальные обозначения — по п. 1.11 и справочному приложению 1.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 3, Справочное

ВИДЫ ХАРАКТЕРИСТИК ПРЕОБРАЗОВАНИЯ

Отклонение действительной: характеристики преобразования

$$\gamma_{\rm M} = \pm \left| \frac{\gamma_{\rm r} + \gamma_{\rm H}}{2} \right|$$

Черт. 1

Черт. 2

$$\gamma_{\text{M}} = \pm \left[\gamma_{\text{M}} + \frac{\gamma_{\text{r}}}{4} + \frac{\gamma_{\text{n}}}{2} \right]$$

Черт. 3

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 4 Справочное

ПОЯСНЕНИЯ ТЕРМИНОВ, ИСПОЛЬЗОВАННЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

Термин	Пояснение
Время установления выходного сигнала Максимальное отклонение вы- ходного сигнала	Время, прошедшее с момента скачкообразного изменения измеряемого параметра, до момента, когда выходной сигнал датчика окончательно войдет в зону установившегося состояния, составляющую ±5% изменения выходного сигнала, соответствующего скачку измеряемого параметра Отношение наибольшего изменения выходного сигнала датчика, зафиксированного во время переходного процесса прискачкообразном изменении входного значе-
Технологическая приработка	ния, к изменению выходного сигнала от его начального значения до установившегося сэстояния Технологическая операция для выявления и устранения отказов

ПРИМЕРЫ НАХОЖДЕНИЯ ЗНАЧЕНИЙ $\gamma_{\rm H}, \ \gamma_{\rm r}, \ \gamma_{\rm n}$

Нахождение значения ун

1—кривая средних значений выходного сигнала; 2—прямая, минимизирующая значение наибольшего отклонения $\Delta_{\rm H}$ —значение наибольшего отклонения

Черт. 1

Нахождение значений уг, уп

I—кривые средних значений выходного сигнала для всех направлений изменения входного сигнала; Δ_r —наибольшая разность между средними значениями выходного сигнала; Δ_n —область разброса действительных значений выходного сигнала при этом направлении изменения входного сигнала

Черт. 2

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 6 Справочное

ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ Ун. Уг. Уп

При определении погрешности нелинейности ун, вариации уг и повторяемости γ_{π} выходного сигнала датчика диапазон измерений (диапазон изменения входной величины) разбивают на m интервалов (обычно m=4 или 5), достаточно равномерно распределенных по диапазону измерений.

Расчетные значения входной величины (x_i) определяют по формуле

$$x_1 = x_0 + \frac{i}{m} (x_B - x_0),$$
 (1)

 \mathbf{r} де i принимает значения $0,1,\ldots, m;$

 x_0 , x_B — нижний и верхний пределы измерений соответственно.

Для каждого значения входной величины x_1 определяют действительные значения выходного сигнала y_{ij} при подходе к x_i со стороны меньших значений и y_{ii}^* — при подходе к x_i со стороны больших значений. Значения y_{ij} и y_{ii}^* определяют отдельно при каждой *j*-й проверке ($j=1, 2, \ldots$).

Для каждого значения x_1 определяют средние значения выходного сигнала.

$$\overrightarrow{y_{i}} = \frac{1}{n} \sum_{j=1}^{n} y_{ij};$$

$$\overrightarrow{y}_{i}^{*} = \frac{1}{n} \sum_{j=1}^{n} y_{ij}^{*},$$

 σ де n — число проверок.

Погрешность нелинейности для каждого значения x_i определяют по формуле

$$\Delta_{H_{i}} = \frac{1}{2} \left[\Delta_{i} - \left(1 - \frac{i}{m} \right) \Delta_{0} - \frac{i}{m} \Delta_{m} \right], \qquad (2)$$

$$r_{\text{Me}} \Delta_{i} = \frac{\overline{y_{i} + \overline{y}_{i}^{*}}}{2} - y_{\text{Ip}};$$

$$\Delta_{0} = \frac{\overline{y_{0} + \overline{y}_{0}^{*}}}{2} - y_{\text{H}};$$

$$\Delta_{m} = \frac{\overline{y_{m} + \overline{y}_{m}^{*}}}{2} - y_{\text{B}};$$

 $y_{\rm lp}$ — расчетное значение выходного сигнала, соответствующее значению x_1 ; $y_{\rm H}, y_{\rm B}$ — соответственно нижнее и верхнее предельные значения

выходного сигнала;

 $\overline{y_0}$, $\overline{y_0}$ и $\overline{y_m}$, $\overline{y_m}$ — средние значения выходного сигнала при многократных проверках для значений x_0 и x_m соответственно.

Из полученных значений $\Delta_{\rm HI}$ выбирают максимальные по абсолютной величине и противоположные по знаку $\Delta_{\mathtt{Hk}}$ и $\Delta_{\mathtt{HL}}$ соответствующие значениям входных величин $x_k < x_1$ в интервале значений x_1 от x_0 до x_m .

C. 32 FOCT 22520-85

Погрешность нелинейности датчика определяют по одной из следующих формул:

$$\Delta_{\mathbf{H}} = \frac{1}{2} \left(\left| \Delta_{\mathbf{H}_k} \right| + \frac{k}{l} \left| \Delta_{\mathbf{H}_l} \right| \right) \tag{3}$$

при $|\Delta_{_{\mathrm{H}_{b}}}| > |\Delta_{_{\mathrm{H}_{1}}}|$ или $|\Delta_{_{\mathrm{H}_{b}}}| = |\Delta_{_{\mathrm{H}_{1}}}|$ при $m-k {\leqslant} l;$

$$\Delta_{\mathrm{H}} = \frac{1}{2} \left(\left| \Delta_{\mathrm{H}_{1}} \right| + \frac{m-l}{m-k} \left| \Delta_{\mathrm{H}_{k}} \right| \right) \tag{4}$$

при $|\Delta_{_{\mathbf{H}_{_{\mathbf{k}}}}}| < |\Delta_{_{\mathbf{H}_{_{\mathbf{l}}}}}|$ или $|\Delta_{_{\mathbf{H}_{_{\mathbf{k}}}}}| = |\Delta_{_{\mathbf{H}_{_{\mathbf{l}}}}}|$ при $m-k \geqslant l;$

$$\Delta_{\rm H} = \frac{1}{2} |\Delta_{\rm H_1}|_{\rm max}, \tag{5}$$

если значения погрешностей $\Delta_{\rm H_1}$ имеют один знак для каждого значения x_i ; $|\Delta_{\rm H_1}|_{\rm max}$ — максимальное по абсолютной величине значение погрешности из ряда $\Delta_{\rm H_1}$.

Приведенную погрешность нелинейности датчика определяют по формуле

$$\gamma_{\rm H} = \frac{\Delta_{\rm H}}{y_{\rm h} - y_{\rm H}} \ . \tag{6}$$

Вариацию выходного сигнала для каждого значения (x_i) определяют поформуле

$$\Delta_{\mathbf{r}_{\mathbf{i}}} = [\overline{y}_{\mathbf{i}} - \overline{y}_{\mathbf{i}}^*]. \tag{7}$$

За вариацию выходного сигнала датчика принимается наибольшее из полученных значений Δ_{Γ} .

Приведенное значение вариации выходного сигнала датчика определяют поформуле

$$\gamma_{\rm r} = \frac{\Lambda_{\rm r}}{y_{\rm s} - y_{\rm h}} \ . \tag{8}$$

Повторяемость выходного сигнала определяют для каждого значения x_t призмногократных проверках отдельно при подходе к x_t со стороны меньших значений (Δ_{n_t}) и со стороны больших значений ($\Delta_{n_t}^*$):

$$\Delta_{\pi_{i}} = |(y_{i})_{\max} - (y_{i})_{\min}|;$$

$$\Delta_{\pi_{i}}^{*} = |(y_{i}^{*})_{\max} - (y_{i}^{*})_{\min}|,$$
(9)

где $(y_i)_{\max}$, $(y_i^*)_{\max}$ и $(y_i)_{\min}$, $(y^*)_{\min}$ — соответственно максимальные и минимальные значения выходного сигнала, полученные при многократных проверках при одном и том же значении x_i .

Повторяемость выходного сигнала датчика Δ_{π} оценивается по среднему квадратическому отклонению σ_{i} или σ_{i}^{*} случайных реализаций выходного сигнала y_{i} или y_{i}^{*} , определяемому, например, по формуле Бесселя или методомиразмаха выборки по формулам:

$$\sigma_i = \alpha_n [(y_i)_{max} - (y_i)_{min}];$$

$$\sigma_{i}^{*} = \alpha_{n}[(y_{i}^{*})_{max} - (y_{i}^{*})_{min}],$$
 (10)

где α_n — коэффициент, зависящий от объема выборки, определяют по специальной таблице или вычисляют для небольшого числа измерений $(n=3\dots 15)$ по эмпирической формуле

$$\alpha_n = \frac{1}{\sqrt{n}}$$
.

В этом случае повторяемость выходного сигнала определяют по формулам

$$\Delta_{\pi_{i}} = \beta \sigma_{i};
\Delta_{\pi_{i}}^{*} = \beta \sigma_{i}^{*},$$
(11)

где β — коэффициент, устанавливаемый по заданной вероятности, с которой погрешности Δ_{π_i} и $\Delta_{\pi_i}^*$ находятся в заданной зоне.

Допускается определять повторяемость выходного сигнала как наибольшее из значений Δ_{n_i} и $\Delta_{n_i}^*$, полученных по формулам (9) или (11).

Приведенное значение повторяемости выходного сигнала датчика определяют по формуле

$$\gamma_{\pi} = \frac{\Delta_{\pi}}{y_{\text{B}} - y_{\pi}} \ . \tag{12}$$

Наибольшее отклонение действительной характеристики преобразования $\gamma_{\mathbf{m}}$ от зависимости, приведенной в п. 1.11, определяют по одной из формул приложения 3.

(Введено дополнительно, Изм. № 1).

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством приборостроения, средств автоматизации и систем управления СССР

ИСПОЛНИТЕЛИ

- И. Д. Бородин (руководитель темы), А. Я. Юровский, С. И. Мильман, Н. К. Сырцова, Н. А. Горшкова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 26.03.85 № 837
- 3. Срок проверки 1993 г.; периодичность проверки 5 лет
- 4. Стандарт полностью соответствует СТ СЭВ 4124—83
- 5. B3AMEH FOCT 14763—78, FOCT 14795—79, FOCT 22520—77
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

	Номер пункта
TOCT 12.1.038—82	5.2 2.13 5.2, 7.1 3.4 3.6 3.3, 3.4 7.2 5.6 3.5 1.10.3 1.10.1, 1.10.2, 1.14, 2.6, 2.11, 1.10.3 2.15 1.3, 1.4, 1.5, 2.28, 5.5, 6.11, 6.27, 7.4 7.3 1.3, 6.1 7.6, 7.7 6.28 2.1 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.14, 6.1 1.15, 6.1 1.16, 6.1 1.17 1.18 1.19 1.29

- 7. Срок действия продлен до 01.01.94 Постановлением Госстандарта СССР от 28.06.88 № 2485
- 8. ПЕРЕИЗДАНИЕ (август 1989 г.) с Изменениями № 1, 2, утвержденными в июне 1988 г., декабре 1988 г. [ИУС 11—88, 4—89]

П. ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ, СРЕДСТВА АВТОМАТИЗАЦИИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Группа П14

Изменение № 3 ГОСТ 22520—85 Датчики давления, разрежения и разности давления с электрическими аналоговыми выходными сигналами ГСП. Общие технические условия

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.09.90 № 2574

Дата введения 01.04.91

Вводная часть. Первый абзац. Заменить слово: «электрическими» на «электрическими унифицированными»; дополнить абзацем (после третьего): «Требования пп. 1.3—1.13; 1.15; 1.16; 2.1—2.4; 2.6—2.10; 2.13—2.18; 2.20—2.26; 2.28;

(Продолжение см. с. 136)

135

(Продолжение изменения к ГОСТ 22520—85)

2.29; 2.31 и разд. 3, 5, 6, 7, 8 настоящего стандарта являются обязательными, а требования пп. 1.1; 1.2; 1.14; 2.11; 2.12; 2.19; 2.27 — рекомендуемыми».

Пункт 1.4. Заменить исполнения: L 3 на L 3, LX; N 4 на N 4, NX; V5 на

V 5, VX.

Пункт 1.5 дополнить словами: «и (или) ГОСТ 15150-69».

Пункт 1.7.6. Заменить значение: 0,06 на 0,06; 0,063.

Пункт 1.10.1. Заменить значение: 0-20 на 0-20*; дополнить сноской: « Применение сигнала 0-20 мА не рекомендуется».

Пункты 1.10.2, 1.10.3 исключить.

Пункт 1.11. Заменить слово: «статистическая» на «статическая».

Пункты 1.15, 1.16 изложить в новой редакции: «1.15. Потребляемая мощность должна устанавливаться в технических условиях на датчики конкретнего ชหทล

1.16. Масса датчиков должна устанавливаться в технических условиях датчики конкретного типа».

(Продолжение см. с. 137)

Вункт 2.1 дополнить абзацем: «Перечень показателей качества, устанавливаемых чэи разработке технического залания и технических условий приведен в приложении 7».

Пункт 2.4 дополнить абзацем: «Допускается для многопредельных датчиков при нормировании ум не нормировать предел допускаемой основной погрешности по п. 2.2 и вариацию по п. 2.3».

Пункт 2.5 исключить.

Нункт 2.8. Исключить слова: «на заданный интервал значений при любых давлениях».

Пункт 2.10 изложить в новой редакции: «2.10. Дополнительная погрешность, вызваниая изменением температуры окружающего воздуха на каждые 10°С, не должиа превышать значений, указанных в табл. 1.

Таблипа 🟌

Предел допускаемой основной погрешности, %	Донолнительная погрешность, %	Предел допускае- мой основной по- грешности, %	Дополнительная погрешность, %
± 0.10 ± 0.15 ± 0.16 ± 0.20 ± 0.25	$egin{array}{c} \pm 0{,}10 \ \pm 0{,}15 \ \pm 0{,}16 \ \pm 0{,}20 \ \pm 0{,}25 \ \end{array}$	$\pm 0,40$ $\pm 0,50$ $\pm 0,60$ $\pm 1,00$ $\pm 1,50$	±0,35 ±0,45 ±0,50 ±0,60 ±0,75

Для датчиков с перенастраиваемым диапазоном измерения указанные значения дополнительной погрешности относятся к наибольшему диапазону или наибольшему верхнему пределу измерений, значения дополнительной погрешности для других диапазонов или верхних пределов измерений должны быть установлены в технических условиях на датчики конкретного типа.

Дополнительную погрешность, вызванную изменением температуры окружающего воздуха, допускается нормировать раздельно по значению выхолного сигнала, соответствующего начальному значению и по диапазону изменения выход-

Дополнительные погрешности, вызванные изменением напряжения и частоты тока питания, а также воздействием магнитного поля, должны выбираться из ряда: 0,05; 0,1; 0,16; 0,25; 0,4; 0,6». Пункт 2.14. Четвертый абзац исключить.

Пункт 2.16. Второй абзац исключить:

четвертый абзац. Заменить слова: «указанных возлействий» на «указанного

Пункт 2.17. Второй абзан исключить:

четвертый абзап. Заменить слова: «указанных воздействий» на «указанного воздействия».

Пункт 2.25. Первый абзац изложить в новой редакции: «Средняя наработка на отказ для датчиков с верхним пределом измерений до 100 МПа должна выби-100000, 125000. раться из ряда по ГОСТ 27883—88: 65000, 80000. 200000; 250000, 320000 4».

Пункт 2.26. Первый абзац изложить в новой редакции: «Средний срок службы для датчиков с верхним пределом измерений до 100 МПа должен выбираться из ряда: 4, 8, 12, 14 лет».

Пункт 2.28 изложить в новой редакции: «2.28. Требования к датчикам транспортной таре — по ГОСТ 12997—84».

Пункт 2.30 исключить.

Пункт 3.2. Второй абзац. Исключить слова: «и герметичность».

Гункт 5.4.1. Исключить есылку: п. 2.5;

(Продолжение см. с. 138)

депелнить абзацами: «По согласованию с заказчиком допускается не проводить испытания датчиков в упаковке на воздействие параметров, к которым датчики устойчивы без упаковки.

Иснытания датчиков в упаковке на воздействие повышенной влажности (п. 2.28) допускается проводить только на первой промышленной партии и (или)

при типовых испытаниях».

Пункт 5.7. Заменить слова: «по нормативно-технической документации, утвержденной в установленном порядке» на «по ГОСТ 27883—88 и нормативно-технической документации, утвержденной в установленном порядке».

Пункт 6.5 исключить.

Пункт 6.8. Исключить слова: «на ваданный интервал. Значения интервала указываются в технических условиях на датчики конкретных типов».

Пункт 6.19. Первый абзац. Исключить слова: «включения напряжения пита»

ния и»;

второй абзац исключить;

третий абзац. Заменить слова: «включают датчик и проверяют его» на «про-

веряют датчик»; «способу» на «методике»,

Пункты 6.26, 6.27 изложить в новой редакции: «6.26. Испытания на надежность (п. 2.25) проводят по методике, установленной в технических условиях на датчики конкретного типа, в соответствии с планами контрольных испытаний по ГОСТ 27.410—87.

6.27. Испытания датчиков в упаковке — по ГОСТ 12997—84».

Раздел 6 дополнить пунктом — 6.30: «6.30. Допускается применять другие методы проведения испытаний по пп. 6.1—6.29, обеспечивающие выполнение технических требований настоящего стандарта».

Стандарт дополнить приложением — 7:

«ПРИЛОЖЕНИЕ 7 Справочное

Перечень показателей качества, устанавливаемых при разработке технического задания и технических условий

1. Показатели назначения

1.1. Верхние пределы или диапазоны измерений, кПа, МПа.

1.2. Предельно допускаемые рабочие избыточные давления, к Π а, М Π а (для датчиков разности давлений).

1.3. Выходные сигналы.

1.4. Пределы допускаемой основной погрешности и (или) наибольшее отклонение действительной характеристики преобразований, %.

1.5. Вариация, %.

- 1.6. Пульсация выходного сигнала.
- 1.7. Дополнительные погрешности от влияния изменения внешних воздействующих факторов:

вибрация;

рабочего избыточного давления (для датчиков разности давления); атмосферного давления (для датчиков абсолютного давления);

температуры окружающего воздуха;

напряжения и частоты (при необходимости) тока питания;

внешнего магнитного поля; сопротивления нагрузки.

1.8. Исполнение по устойчивости к окружающей среде.

- 1.9. Исполнение по устойчивости к механическим воздействиям.
- 1.10. Динамические характеристики (при необходимости).
- 1.11. Перегрузки.
- 1.12. Циклопрочность.

(Продолжение см. с. 139)

(Продолжение изменения к ГОСТ 22520-85)

- 1.13. Габаритные, присоединительные и монтажные размеры.
- 1.14. Герметичность измерительных камер.
- 2. Показатели надежности
- 2.1. Средняя наработка на отказ, ч.
- 2.2. Средний срок службы, лет.
- 2.3. Ремонтопригодность (при необходимости).
- 3. Показатели экономного использования материалов, энергии
- 3.1. Масса, кг.
- 3.2. Потребляемая мощность, В.А.
- 4. Показатели транспортабельности
- Устойчивость к механическим воздействиям в упаковке при транспортировании.
- 4.2. Устойчивость к воздействию температуры в упаковке при транепортирования.
- 4.3. Устойчивость к воздействию влажности в упаковке при транелортиревании.

(Продолжение см. с. 140)

(Продолжение изменения к ГОСТ 22520—85)

- 5. Показатели безопасности
- 5.1. Прочность измерительных камер.
- 5.2. Электрическая прочность изоляции.
- 5.3. Электрическое сопротивление изоляции.5.4. Защита от поражения электрическим током.
- 6. Показатели экологии

Излучение радиопомех (для датчиков, имеющих источники радиопомех).

- 7. Гарантии
- 7.1. Гарантийный срок эксплуатации, мес.
- 7.2. Гарантийный срок хранения, мес.
- 8. Прочие показатели
- 8.1. Комплектность
- 8.2. Маркировка.
- 8.3. Упаковка.
- 8.4. Условия хранения».

(ИУС № 12 1990 г.)

Редактор Л. Д. Курочкина Технический редактор Э. В. Митяй Корректор Г. И. Чуйко

Сдано в наб. 29.06.89 Подп. в печ. 27.09.89 2,5 усл. п. л. 2,5 усл. кр.-отт. 2,125 уч.-изд. л. Тир. 12 000 Цена 10 к.

Ордена «Знак Почета» Издательство стандартов, 123557, Москва, ГСП, Новопресненский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Даряус и Гирено, 39. Зак. 1584.