Design of the frontend for LEN5, a RISC-V Out-of-Order processor

Candidate: Marco Andorno Supervisor: prof. Maurizio Martina

POLITECNICO DI TORINO

Master's thesis in Electronic Engineering
Academic year 2018-2019

LEN5 overview

• Open source ISA, which allows for open source hardware.

- · Open source ISA, which allows for open source hardware.
- Modular ISA, that provides extensions to tailor the architecture to the design needs.

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Based on three pillars:

1. Dynamic pipeline scheduling

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Based on three pillars:

- 1. Dynamic pipeline scheduling
- 2. Branch prediction

Used in every modern high-performance processor, because it allows the best exploitation of ILP.

Based on three pillars:

- 1. Dynamic pipeline scheduling
- 2. Branch prediction
- 3. Speculative execution

Frontend design

Frontend overview

PC gen stage

Instruction Fetch Unit (IFU)

Branch management

Branch Prediction Unit (BPU)

Gshare branch predictor

Branch Target Buffer (BTB)

Branch unit

BPU update actions

Prediction	Resolution	Target	Action
Taken	Taken	~	Increment 2-bit counter
		×	Increment 2-bit counter
			Update BTB entry
			Flush, go to right target
	Not taken	-	Decrement 2-bit counter
			Remove BTB entry
			Flush, go to branch PC+4
Not taken	Not taken	-	Decrement 2-bit counter
	Taken	-	Increment 2-bit counter
			Add BTB entry
			Flush, go to right target

Results

Gshare accuracy vs. History bits

Misprediction penalty vs. BTB size

Synthesis area results

Synthesis frequency results

- · Frequency depends only on the size of the BTB
- The BTB address decoding network is the critical path of the whole design

Concluding remarks

• Even if results are not top-class, this exploratory work proved insightful.

Concluding remarks

- Even if results are not top-class, this exploratory work proved insightful.
- Useful in teaching, to explore firsthand a real implementation of an out-of-order processor.

Concluding remarks

- Even if results are not top-class, this exploratory work proved insightful.
- Useful in teaching, to explore firsthand a real implementation of an out-of-order processor.
- Academic potential, thanks to ISA extensions for parallel workloads (e.g. machine learning algorithms).

Thank you for your attention!