PHYS20672 Complex Variables and Vector Spaces: Examples 9

1. Use the appropriate Cauchy integral formula to evaluate the following, where C_1 is a circle with |z| = 1 and C_2 is a square with corners at $\pm 2, \pm 2 + 4i$.

(a)
$$\oint_{C_1} \frac{e^{3z}}{z} dz$$
 (b) $\oint_{C_1} \frac{\cos^2(2z)}{z^2} dz$ (c) $\oint_{C_1} \frac{\sin^2(2z)}{z^2} dz$ (d) $\oint_{C_2} \frac{z^2}{z - 2i} dz$ (e) $\oint_{C_2} \frac{z^2}{z^2 + 4} dz$

2. Show that

$$\left| \frac{1}{z^2 + 1} \right| \le \frac{1}{R^2 - 1}$$
 for $|z| = R > 1$.

Hence use the estimation lemma to show that

$$\lim_{R \to \infty} \oint \frac{1}{z^2 + 1} dz = 0 \quad \text{for the circular path } |z| = R,$$

and explain why the same result (zero) will be found for any finite R > 1. Verify the result by using Cauchy's integral formula.

3. By writing $z = e^{i\theta}$ (and hence $dz = ie^{i\theta}d\theta$), and using formulae such as $\cos\theta = \frac{1}{2}(z+z^{-1})$, convert the following to contour integrals around the unit circle and evaluate using the appropriate Cauchy integral formulae:

(a)
$$\int_0^{2\pi} \cos^4 \theta \, d\theta$$
 (b)
$$\int_0^{2\pi} \sin^6 \theta \, d\theta$$

(c) [harder]
$$\int_0^{2\pi} \cos^{2n} \theta \, d\theta$$
, for integer $n \ge 0$
(d)
$$\int_0^{2\pi} \frac{\cos \theta}{4 \cos \theta - 5} \, d\theta$$
 (e)
$$\int_0^{2\pi} \frac{\cos 2\theta}{3 \cos \theta + 5} \, d\theta$$

In (c), you should be able to express your answer as $2\pi(2n-1)!!/(2n)!!$, where, e.g., $7!! = 7 \times 5 \times 3 \times 1$ and $8!! = 8 \times 6 \times 4 \times 2$ (though it's fine to leave the answer in terms of a binomial coefficient).

4. Without any calculation, explain why the Taylor expansion of $\tan z$ about $z = \pi/4$ must have a radius of convergence equal to $\pi/4$.

[Harder] Find the first four terms of the Taylor expansion of $\tan z$ about $z=\pi/4$. (Note that $\tan z$ is analytic near $z=\pi/4$, so you can use the usual expression for the coefficients in terms of derivatives of the function.)

5. If z_0 is a non-zero complex number, find the Taylor series of $f(z) = 1/(z - z_0)$ about z = 0, and explain why its radius of convergence is $|z_0|$. Check that you can sum the Taylor series to get back f(z).

Use the binomial expansion of f(z) to obtain a series expansion in powers of z^{-1} , which is valid in the region $|z| > |z_0|$. This is an example of a Laurent series, to be discussed in a later lecture.