Artificial Intelligence & Machine Learning

Bodhayan Roy

Department of Mathematics, Indian Institute of Technology Kharagpur

Lecture 4

Components of a problem

A problem can be defined formally by five components:

- ▶ The initial state that the agent starts in.
- ▶ A description of the possible actions available to the agent.
- A description of what each action does; the formal name for this is the transition model.
- The goal test, which determines whether a given state is a goal state.
- ▶ A path cost function that assigns a numeric cost to each path.

Components of a problem

The initial state, actions, and transition model implicitly define the state space of the problem: the set of all states reachable from the initial state by any sequence of actions. A path in the state space is a sequence of states connected by a sequence of actions.

A solution to a problem is an action sequence that leads from the initial state to a goal state. Solution quality is measured by the path cost function, and an optimal solution has the lowest path cost among all solutions.

Infrastructure for search algorithms

Each node in the search tree stores the following information:

- ➤ STATE : the state in the state space to which the node corresponds.
- ► PARENT : the node in the search tree that generated this node.
- ► ACTION : the action that was applied to the parent to generate the node.
- ▶ PATH-COST : the cost, traditionally denoted by g(n), of the path from the initial state to the node, as indicated by the parent pointers.

Measuring problem-solving performance

- ► Completeness: Is the algorithm guaranteed to find a solution when there is one?
- Optimality: Does the strategy find the optimal solution?
- ▶ Time complexity: How long does it take to find a solution?
- Space complexity: How much memory is needed to perform the search?

▶ BFS: $O(b^{d+1})$ time, $O(b^d)$ space where the solution is at depth d, and b is the branching factor.

▶ Uniform-cost search: $O(b^{1+\lfloor C^*/\epsilon\rfloor})$ time and space, where C^* is the cost of the optimal solution, and ϵ is the cost of each action.

▶ DFS: $O(b^m)$ time, O(bm) space, where m is the maximum depth of the graph.

Depth-limited search

- DFS may fail in infinite search spaces.
- ➤ So we limit the depth of the search tree to some I, and do DFS.
- $ightharpoonup O(b^l)$ time, O(bl) space.
- ▶ Incomplete if d > I.
- ▶ Non-optimal if d < I.

Iterative-deepening search

- ► Keep on increasing *I* starting from 1, and do Depth-limited search.
- ▶ Like BFS, it is complete when the branching factor is finite and optimal when the path cost is a nondecreasing function of the depth of the node.
- ► First level nodes generated once, second level nodes generated twice and so on.
- $ightharpoonup O(b^d)$ time, O(bd) space.

Bidirectional search

- Simultaneous BFS from the initial state and the goal.
- $ightharpoonup O(b^{d/2})$ time and space.
- ▶ Applicable only when actions in the state space are reversible.