Měření probíhalo při teplotě 24.5°C.

Délka drátu (vnitřní šířka rámečku) byla měřena posuvným měřidlem.

$$l = (1.964 \pm 0.002) \times 10^{-2} \text{ m}$$

Průměr drátu byl měřen mikrometrem na třech místech.

$$r = (0.60 \pm 0.01) \times 10^{-3} \text{ m}$$

V následující tabulce jsou uvedeny rozdíly hodnot naměřených torzními váhami Δm a hodnoty P_0 . Pro výpočty je využita přibližná hodnota tíhového zrychlení $g = 9.81 \,\mathrm{m\,s^{-2}}$.

c[%]	$\Delta m [{ m mg}]$	$P_0[N]$
100	117	0.00115
50	151	0.00148
25	190	0.00186
12.5	230	0.00226
6.25	253	0.00248
3.125	255	0.00250
1.5625	264	0.00259
0	297	0.00291

Tabulka 1: Δm a P_0 v závislosti na koncentraci c

Následující graf zachycuje závislost povrchového napětí počítaného pomocí (??). Lineární regrese byla provedena pomocí křivky $y = ae^{bx} + c$.

Obrázek 1: Graf závislosti povrchového napětí na koncentraci

a	b	c
0.035	-0.034	0.007 0.002
		0.035 -0.034

Tabulka 2: Parametry lineární regrese