

	H	W	<u>L</u>	1	/	Ν	۱۱٬ ۵	1+.	er	M		R	(6)	, V (1	en)															
>	*	1	D	Đγ) '-	t		Ce	PV (H	C	xth	er	-	S	tu d	en	ts'		(уÚ	SW	eſ	S							
				Ne			,									2115W = 3 wh			whi	ch	ove	W	ong)		ÎŊ	4)	Ve.	Mi	1+e	хм.	
4	(f (k)		Let	rsing Pn :	this f	S(x)?	3149	i, w	e Wan	it to	find	ol 5	uch	that	lim n→w = {	Pn+1 -	<u>31</u> 31°													
		,			,	•			≯[i							ey are r															
				. ,	in	m +hio	. f(m)	9								$x_\star = 3$ y				=X											
									n+9- n 3 l			<u> </u>	liv no	n.	n³-2 Un³-	12-41 12-41 12-41	0) L+5 V(+6)		₹° -{°	otle	x=1 Huise										
				irvov>	, J	COPO	erge	s u	7 11		y.							first s	122												

HWZ (See discussion Recording)

Midterm Q4 f(x)= x3-5x2+3x+9 (a) multiplicity of x = 3? (5.1) $f(3) = f'(3) = 0 \neq f''(3)$ f"(3)= 6x-10 = \$0 $f(3) = 3^3 - 5 \cdot 3^2 + 3 \cdot 3 + 9 = 0$ $f'(3) = 3x^2 - 10x + 3 \Big|_{x=3} = 0$ (5.1.2) f(x) = (x-3)(x+1)Multip. = 2 (b) Newton's method to X* = 3. Order of conv.? Ans. Multip. > 1 at X*=3 Order of CoNV. of Newton's wethod = ((iner) $\frac{|X_{k1}-3|}{|X_{c}-3|^{\alpha}} \leftarrow \forall x > 1, \Rightarrow x$ $|X_{c}-3|^{\alpha} \qquad x = 1, \Rightarrow 0 < 1$

Lagrange interpolation (useful, but lacks exknoability) $P_n = 2$ poly. with deg $\leq n$ \leq all pdy. basis of $P_n: \{1, x, x^2, \dots, x^3\}$ Interp. Points { Xo, Xi, -, Xn} $\mathcal{B}_{k}(x) = \frac{(x - x_{0})(x - x_{1}) \cdot (x - x_{n})}{x - x_{k}} = \frac{1}{j \neq k} (x - x_{j})$ $L_{k}(1) = \frac{\beta_{k}(x)}{\beta_{k}(x_{k})} = \frac{\prod (x - x_{j})}{\int f(x - x_{j})}$ $= \frac{\prod (x - x_{j})}{\int f(x - x_{j})}$ $L_{k}(\chi_{j}) = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$ J=k $f(x_j) = P(x_j) \quad \forall j = 0, \cdots, n$ Then, $P(x) = f(x) L_0(x) + f(x,) L_1(x) + \cdots + f(x_n) L_n(x)$ {1(0, 1, 7, 7, 1, 7, 1) }

(3) Newton's divided differences $P_n(x) = c_0.1 + c_1(x-x_0) + c_2(x-x_0)(x-x_0)$ + (3 (x-1)(2-x,)(x-2) + Ca (x-x0) - ... (x-x1) Xo, ... Xa, Xnti $P_{n+1} = P_n(x) + C_{n+1}(x-x_0) - - (x-x_1)$ Error Analysis e.g Runge Phenomenon f(x) = (+ x2, We can prove Review the lecture note!!!

Thm $f(x_i) = P(x_i) \quad \forall i = 0, \dots, n$. $P \in P_n$ $f(x) - P(x) = \frac{f^{(n+1)}(\S_x)}{(n+1)!} \frac{n}{1=0} (x-x_i) = R(x)$ $Sup \left| f(\chi) - P(\chi) \right| = Sup \left| R(\chi) - Sup \left| \frac{f^{(n+1)}(x)}{(x+1)!} \right| \frac{1}{(x-x)}$ $\chi_{\varepsilon[a,b]} = \sum_{x \in [a,b]} \left| \frac{f^{(n+1)}(x)}{(x+1)!} \right| \frac{1}{(x-x)!}$ $\leq \sup_{\chi \in \{a,b\}} \left| \frac{1}{\prod_{i=1}^{n} (x-\chi_i)} \right| \times \sup_{\chi \in \{a,b\}} \left| \frac{1}{\prod_{i=1}^{n} (x-\chi_i)} \right|$

Newbor's div Liff Prove that $C_k = f[x_0, x_1, \cdots, x_k]$ for all k=0,...,1 3.3.7 (9th ed.) Construct P of degree 3 f[x,]-f[xk] // Zk - Zk-1 χ | $f[\chi_k]$ | $f[\chi_{k}, \chi_{k}]$ | $f[\chi_{k}, \chi_{k}, \chi_{k}]$ χ_{3} : -0.1 5.30 -3.3 -3.3 38.95 38.95 129.83 χ_{1} : 0.2 3.19 0.2 = +5.95 χ_3 : 0,3 | 1,00 $\frac{-2.19}{0.1} = -21.9$ $\frac{-27.85}{0.3} = -92.83$ $\{\chi_0,\chi_1\chi_1,\chi_2\}$ $P_{n}(x) = f[x_{o}] + f[x_{o}, \chi_{i}](x - \chi_{o})$ = -556,6 + $f[\chi_0, \chi_1, \chi_1](\chi - \chi_0)(\chi - \chi_1)$ + $f[\chi_0, \chi_1, \chi_2, \chi_3](\chi - \chi_0)(\chi - \chi_1)(\chi - \chi_1)$ =5.30-33(x+0.1)+(29.83(x+0.1)x-556,6(x+6.1)x(x-9.1)

