Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Versuch 23 Röntgenstrahlung

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Phillip Bastian

Versuchsdatum: 11.03.2015

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung			
2	Theorie2.1 Röntgenröhre2.2 Geiger-Müller-Zählrohr2.3 charakteristische Röntgenstrahlung2.4 Abhängigkeit der Intensität von der Anodenspannung	3 4	
3	Durchführung	4	
4	Auswertung 4.1 Charakteristisches Spektrum von Eisen	4 4 4 8	
5	Diskussion	8	
6	Anhang	8	

1 Einleitung

2 Theorie

2.1 Röntgenröhre

Abbildung 1: Aufbau. [?, Datum: 02.01.15]

Abbildung 2: Bragg-Reflexion schematisch. [?, Datum: 02.01.15]

$$2d\sin\theta = n\lambda\tag{1}$$

2.2 Geiger-Müller-Zählrohr

$$N_{\text{korrigiert}} = \frac{N_{\text{gemessen}}}{1 - \tau \cdot N_{\text{gemessen}}} \tag{2}$$

2.3 charakteristische Röntgenstrahlung

$$v_K = R_v (Z - 1)^2 \left(\frac{1}{n_f^2} - \frac{1}{n_s^2} \right)$$
 (3)

$$v_L = R_v (Z - \sigma_L)^2 \left(\frac{1}{n_f^2} - \frac{1}{n_s^2} \right)$$
 (4)

2.4 Abhängigkeit der Intensität von der Anodenspannung

$$\lambda_{\rm gr} = \frac{hc}{e \cdot U_A} \tag{5}$$

$$I_K \sim I_A \cdot (U_A - U_K)^{3/2}$$
 (6)

3 Durchführung

4 Auswertung

4.1 Charakteristisches Spektrum von Eisen

4.1.1 Wellenlängen und Energien

					Energie E [eV]	
		n	Winkel θ	Wellenlänge λ [pm]	Messwert	Lit. Wert
ľ	IZ	1	$28.9^{\circ} \pm 0.2^{\circ}$	194.3 ± 1.3	6380 ± 50	6391, 6404
$ \mathbf{n}_{\alpha} $	\mathbf{n}_{α}	2	$74.1^{\circ} \pm 0.2^{\circ}$	193.3 ± 0.2	6414 ± 14	0591, 0404
ĺ	TZ	1	$26.0^{\circ} \pm 0.2^{\circ}$	176.2 ± 1.3	7040 ± 60	7058
$ \mathbf{n}_{\beta}$	K_{β}	2	$60.8^{\circ} \pm 0.2^{\circ}$	175.5 ± 0.4	7065 ± 17	1000

4.1.2 Abhängigkeit von der Anodenspannung

4.1.3 Grenzwellenlänge der Bremsstrahlung und Plancksche Konstante

$$h = (6.57 \pm 0.06) \ 10^{-34} \text{J s}$$
 (7)

Abbildung 3: Spektrum aus Messung 2

Abbildung 4: Messwerte im Bereich der charakteristischen Strahlung

Abbildung 5: Charakteristische Strahlung: Intensität in Abhängigkeit der Anodenspannnung

	Winkel θ	0 [1]	Rydbergfrequenz R_{ν}
Kupfer	$20.2^{\circ} \pm 0.2^{\circ}$	138.8 ± 1.4	$(3.67 \pm 0.04) \cdot 10^{15} \text{ Hz}$
Nickel	$21.8^{\circ} \pm 0.2^{\circ}$	149.8 ± 1.4	$(3.67 \pm 0.04) \cdot 10^{15} \text{ Hz}$

Tabelle 1: Absorptionskanten von Kupfer und Nickel und die daraus berechnete Rydbergfrequenz

Abbildung 6: Messwerte im Bereich der Grenzwellenlänge

Abbildung 7: Produkt aus Beschleunigungsspannung und zugehöriger Grenzwellenlänge in Abhängigkeit der Spannung

Abbildung 8: Absorptionskanten von Kupfer und Nickel: Intensität logarithmisch gegen Winkel aufgetragen

- 4.2 Absorptionskanten und Rydberg-Konstante
- 4.3 Absorptionskoeffizienten verschiedener Metalle
- 5 Diskussion
- 6 Anhang

Abbildung 9: ...

Abbildung 10: ...