SHEMYAKIN, M.M. MAYMIND, V.I.

Reaction mechanism of osazone formation. Dokl. AN SSSR 102 no.6:

1147-1150 Je¹55. (MIR: 8:10)

1. Chlen-korrespondent Akademii nauk SSSR (for Shemyakin) 2. In-

stitut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR

(Osazones) (Chemical reaction--Mechanism)

PAUSON, Peter L.; KHOKHLOV, A.S., ksndidat khimicheskikh nauk [translator];

SHEMYAKIN, M.M., redaktor; ZAKHAL'TEVSKIT, V.A., redaktor;

GERASIMOVA, Ye.S., tekhnicheskiy redaktor

[Chemistry of tropones and tropolones. Translated from the English]

Khimita troponov i tropolonov. Perevod s angliiskogo A.S. Khokhlova.

Pod red, M.M.Shemiakina. Moskva, Izd-vo inostrannoi lit-ry, 1956.

204 p. (MLRA 9:7)

1. Chlen-korrespondent AN SSSR (for Shemyakin)

(Tropones) (Tropolones)

RODIONOV, V.M., akademik, redaktor [deceased]; KAZANSKIY, B.A., akademik, redaktor; KNUNYANETS, I.L., &kademik, redaktor; SHEMYAKIN, M.M., redaktor; MEL'NIKOV, N.N., professor, redaktor; TAYTS, S.Z., redaktor; SHEMASTINA, Ye.V., redaktor; KORNEYEVA, V.I., tekhnicheskiy redaktor

[Reactions and methods of analysis of organic compounds] Reaktsii i metody issledovaniia organicheskikh soedinenii. Moskva, Gos. nauchnotekhn. izd-vo khim. lit-ry. Vol.4. 1956. 319 p. (MLRA 9:7)

1. Chlen-korrespondent AN SSSR (for Shemyakin)
(Chemical reactions) (Isomers and isomerization)

SHEMMARIN, MI M.

According to the article, "Investigation in the Field of Sarcomyecin and Its Analogs. I. Synthesis of Dihydrocarbomyecin and Its Antipodes," by M. M. Shemyakin et. al., of the Institute of Biological and Medical Chemistry, Academy of Sciences USSR, Japanese chemists discovered sarcomyecin in 1954. The structure of this antibiotic was worked out, however, by a group of American scientists in the latter part of 1955. This compound is known to have antibacterial properties and is active against tumors. The American scientists also discovered that reduced sarcomyecin, i. e., dihydrocarbomyecin, has the same activity against tumors as the antibiotic itself.

Soviet scientists started seeking routes to the synthesis of sarcomyecin and its analogs toward the end of 1955. The present report constitutes the first publication of the results of this research. The authors studied and developed a new synthesis of the racemates of cyclopetanone-3-carboxylic and 2-methylcyclopnetanone-3-carboxylic acids. The latter of these acids was separated into optically active antipodes, one of which is identical to (Zhurnal Obshchey Khimii, Vol 27, No 3, dihydrosarcomyecin. Mar 57, pp 742-748)

, YDOVINA, P. G., YERMCLAYEV, K. M., APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549020019-SHEMMAKIN, K. N.

Investigation in the Field of Compounds, marked C14 and N15 IV. Synthesis of Key! Ref Zhur-Khimiya, No ... 1957.

Compounds. Zh. chsheh. khimiyi, 1750, 26, No 7, 1762-1907.

Abstract : Described are methods of synthesis of phthalimide-N15 (I): of potassium salt of phthalimide-NII(II); HN1503 (III), HellII; salts of III-HN1502 and HC 14N. 19-150 molro NISHS (from 0.1 Mole NISH4M93) are passed for 3 hours into a suspension of 0.015 mole of phtablic acid in 400 cc water the solution is evaporated, the remainder is heated (2000) and sublimated (2000); then it is ground with water and neutralized with a 5% solution soda, yield is I, (82) %. Tra hot solution of 0.1 mole I is 350 ce antydr., alcohol is added 50 cc 2N C2H5OK, yield is II. 19-103, 0.15 mole N15H3 and O.62, MNO2 is separated, the filtrate is evaporated to 250-300 cc, neutralized with 20% H2SO4, evaporated to dryness, and after adding To co H2334, (d 1.5) III is distilled off. By neutralizing III with alkalies the nitrates with a yield 62-34% are obtained. By the reduction of 0.01-0.05 mole MI 1502 (orliam1503) by means of 0.015-0.075 g-atom Po at 3900 (for the preparation Mail502-at 330°) Kn1502: yield 91-93% is obtained. Hell4N is obtained with a yield namiportate job / miljor, yrold pittop is occurred. moral to occurred with a jiour 92-job cy a method described earlier (Maymind, V. I., Tokaryev, B. V. Shemyakin, M. M. Dokl. AN SSSR, 1954, 81, 195), by heating (750-7608). Bac1403 K and KN 3 in a current of N2 and Subsequent neutralization with H2SO4. In order to obtain KC1-H the vaport of Hell-H are passed through CaC12 at 400 absorbed by anhydro. alcoholat -250, and precipitated wutg a solution of C2H50K or spontaneously absorb HolbH with solution of an alcoholate. The previous reports see RZhKhim, 1956, 9001.

CIA-RDP86-00513R001549020019-LEASE: 08/23/2000

```
CIA-F.

CIA-F.

Synthetic Greatic Chemistry.

Synthetic Greatic Chemistry.
         Abs Jour: Ref Zhur-Khimiya, No 6, 1957, 19284.
                                                          Haymind V. I., Fermolayev Y. M., Shemyakin W.M.
                                                                 Investigations in the Field of Compounds marked Cl4 and
                                                                                    Investigations in the right of Compound acids.
[1] V. Synthesis of 115 amino acids.
                              Orig Fub: Zh. (bshoh, khimiyi: 1956, 26, 160 8, 2313-2318.
                                      Abotinet: The contensation of condensation of contensation of 
                  Author
                     Trat
                         71,470
                                                                                                                 the obtained phthology derivatives (PD) with a mixture of CH2000 and fibr is described. MED are obtained (nuring of CH2000H and fibr bromoscids acid. m.n. (0-610 (nuring on the 6-11. bennovlaminovaleric acid. m.n.
                                                                                                                       on the corresponding bromoscids were acid, m.p. (0-610 (purimon the corresponding bromoscids acid, m.p. (c.-bromoscids); (from ether); bromoscids acid m.p. 61-620 (from ether); fication by washing with acid m.p. 61-620 (from ether); n.phthaloylam.novaloric acid m.p.
                                                                                                                     , 1/4
                                                                         C^{BLq}
```

-m-benzovlaminocapronic acid, m.p. 43.44° a .bromo- & phenylpropionic ----hanvl)- NESMEYANOV, A.N.; KNUNYANTS, I.L.; SEMMYAKIN, M.M.; BOGOS LOVSKIY, B.M.;
SKURATOV, S.M.; KONKIN, A.F.; DERWITSKAYA, V.A.; ROGOV IN, Z.

In memory of A.A. Strepikheev; obityary. Zhur.ob.khim.26 no.11:3224-3226 N '56.

(MERA 10:1)

(Strepikheev, Aleksandr Aleksandrovich, 1912-1955)

SHEMYAKIN, M.M.; RAVDELI, G.A.; CHIMAN, Ye.S.

Synthesis of peptides containing an &-oxy-&-aminoacid residue.

Dokl.AN SSSR 107 no.5:706-709 Ap 156. (MLRA 9:8)

1. Chlen-korrespondent AN SSSI (for Shemyakin); 2. Institut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR. (Peptides)

USSR/ Physical Chemistry - Molecule. Chemical Bond.

B-4

Abs Jour : Referat Zhur - Khimiya, No 3, 1957, 1233

fractional contribution of a -electron interaction energy to the total BH energy in percent (fourth number in parentheses), and the interatomic 0...H distance calculated from standard bond dist. and the bond angles (fifth number in parentheses in A.U.) have been determined for the following compounds: the vapor of the nonomethyl ether of ethylene glycol (I) at 120-1220(3665, 0, 0, 0, -); I in CCl₄ (II), in the ratio 1:400 (3605, 60, 0.96, 0, 1.80); phenol in II, 1:400 ratio (3605, 0, 0, 0, -); guaicol in II, 1:400 (3530, 55, 0.90, 0, 2.20); oxyoctenol in II, 1:400 (3475, 147, 2.38, 59.7, 1.95); benzoin in II, 1:400 (3468, 147, 2.39, 60.0, 1.95); 2-hydroxy-1, 4-naphthoquinone in II, 1:400, 3398 (187, 3.07, 68.7, 2.25); 2-benzyl-3-hydroxy-1, 4-naphthoquinone in II, 1:600 (3370, 215, 3.52, 72.7, 2.25); h-methyltropinone in II, 1:400 (3116, 504, 8.19, 88.2,

Card 2/4

- 30 -

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-00513R001549020019-0

Abs Jour : Referat Zhur - Khimiya, No 3, 1957, 7233

2.25); vapor of the menomethyl ether of trimethylene glycol (III) at 160° (3650, 0, 0, 0, -); III in II, 1:400 (3580, 70, 1.12, 0, 1.65); o-methoxybenzyl alcohol (IV) vapor at 163-164° (3652, 0, 0, 0, -); IV in II 1:400 (3585, 67, 1.08, 0, 1.65); diacetone alcohol in II, 1:400 (3524, 94, 1.52, 26.2, 1.65); methyoxybenzoic acid in II, 1:400 (3357, 228, 3.74, 70.0, 1.65); salicylic acid vapor at 144° (3265, 320, 5.25, 78.7, 1.65); salol in II, 1:400 (3230, 355, 5.82, 80.7, 1.65); methyl salicylate in II, 1:400 (3205, 380, 6.23, 82.0, 1.65); acetylacetone in II, 1:400 (3050, 570, 9.26, 87.9, 1.65); monomethyl ether of 1, 8-dihydroxynaphthalene in II, 1:400 (3431, 189, 3.07, 63.5, 1.63); 9-hydroxy-1-methoxy-7-oxy-9-methyl-5,0,7,8-tetrahydroanthracene in II, 1:600 (3620, 0, 0, 0, -); 10-hydroxy-1-methoxy-7-oxy-9-methyl-5,6,7,8-tetrahydroanthracine in II, 1:400 (3423, 197, 3.20, 65.0, 1.63); 10-hydroxy-1-methoxy-9-methyl-

Card 3/4

SHCHUKINA, L.A.; SHEMYAKIN, M.N.

Oxidative and oxidative-hydrolytic transformations of organic molecules. Part 27: Tautomeric transformations and properties of hydroxy- and chloroketocarboxylic acids. Zhur.ob.khim. 26 no.6: 1708-1713 Je '56. (MIRA 11:1)

(Acids, Organic) (Tautorerizm)

SHEMYAKIN, M.M.; RAKDEL', G.A.; CHAMAN, Ye.S.; SHVETSOV, Yu.B.; VINOGRADOVA, Ye.I.

Synthesis of racemic sarkomycin, Izv. AN SSSR, Otd. khim. nauk no.8:1007 Ag '57.

l. Institut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR. (Sarkomycin)

TERENT'YEV, A.P.; YANOVSKAYA, L.A.; RUKHADZE, Ye.G., redaktor; RODIONOV, V.M., akademik, redaktor [deaceased]; KAZANSKIY, B.A., akademik, redaktor; KNUNYANTS, I.L., akademik, redaktor; SHEMYAKIN, M.M., redaktor; FEL' NIKOV, N.N., prof, redaktor; LUR'YE, M.S., tekhnicheskiy redaktor.

[Polarographic analysis in organic chemistry] Poliarograficheskli method v organicheskoi khimii. Moskva, Gos. nauchno - tekhn. izdvo khim. lit-ry, 1957. 388 r. (Reaktsii i metody issledovaniia organicheskikh soedinenii, vol.5) (MIRA 10:10)

1.Chlen-korrespondent AN SSER (for Shemyakin).
(Polarography) (Chemistry, Organic)

The Tautomerism of Arylazotropolones.

20-3-29/59

in position 3.0n this occasion they change into corresponding 5-arylazo-4-carboxylmethyl tropolones(VII); this reaction does not take place in the case of the initial tropolon(IIIg), in the case of the tautomeric models V g-V e, however, absolutely natural, where the separatable carboxyl group is in a B-position with respect to one of the carbonyl groups. Finally it was found that on the occasion of the transformation of the arylazotropolones IVg-IVe into acids(VII) and also directly from the latter, slightly neutral compounds (VIII) are formed as a consequence of closing the heterocycle of the tropochinonhydrazon forms of the arylazotropolones. The knowledge about the tropochinonhydrazon tautomerism of the arylazotropolones I which were obtained by chemical investigation could be confirmed spectroscopically. The capacity of the arylazotropolones for the above discussed tautomerism was recently noticed by Nozoe who also observed the formation of the chinoxalin-derivates with o-phenylendiamine. In the experimental part the usual data concerning the production methods and the constants of the substances in question are given. There is 1 table and 1 Slavic reference.

Card 2/2

ASSOCIATION

Institute for Biological and Medical Chemistry of the Academy of Medical Sciences of the USSR and of the Moscow Textile Institute. (Institut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR, Moskovskiy tekstil nyy institut).

AVAILABLE

June 17, 1957 Library of Congress

"APPROVED FOR RELEASE: 08/23/2000 CIA-RI

CIA-RDP86-00513R001549020019-0

SOV/62-58-6-34/37 Shemyakin, M. M., Kolosov, M. N., Arbuzov, Yu. A., Onopriyenko, V. V., AUTHORS: Shatenshteyn, G. A. The Course Taken by the Synthesis of Ring A of Tetracyclic Compounds (Put' sintema kol'tsa A tetratsiklinov) Izvestiya Akademii nauk SSSR, Otdeleniye khimicheskikh nauk, 1958, TITLE: Nr 6, pp. 794-795 (USSR) PERIODICAL: Already in 1957 the authors of this report described the synthesis of tricyclic compounds in which 2 rings, with respect to their structure, resemble rings D and C of tetracyclinic ABSTRACT: compounds. The third ring, which corresponds to ring B, contains a binary compound or a potential carbonyl group. At present the authors are studying the possibility of synthetizing ring A and describe this synthesis. The group CHX . CO2 is introduced into the initial ketone, ketone ester is ethylated, ethynyl carbinol (formula III) Y=C=CH is hydrated in the neutral medium and oxy-ketoester (formula II;Y=Ac) is cyclized into an oxy-diketone (formula III; Z=H). (Formula III; Z=CONHR). The scheme has the following form: Card 1/3

The Course Taken by the Synthesis of Ring A of Tetracyclic Compounds

307/62-58-6-34/37

$$(I)$$

$$X$$

$$CO_2Et$$

$$HO$$

$$Y$$

$$HO$$

$$Z$$

$$(III)$$

$$(III)$$

There are 2 references, 1 of which is Soviet.

ASSOCIATION:

Institut organicheskoy khimii im. N. D. Zelinskogo Akademii nauk SSSR i Institut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR (Institute of Organic Chemistry imeni N. P. Zelinskiy, AS USSR and Institute of Biological and Midico-chemistry of the Academy of Medical

Card 2/3

Sciences of the USSE)

507/62-55-9-22, 25 Shigarin, D. M., Shemyakin, M. L., AUTHORS: Kolosov, M. K. Internolocular Interactions Between Acetylene and Its Derivatives (Mezhmolekulyarnyye vzaimodeystviya u atsetilena i ye, o TITLE: proissodn, kh) Izvestiya Akademii nauk SSSR. Otdeleniye khimisheskikh mauk, PERIODICAL: 1958, Nr 9, pp 1133 - 1134 (USCR) Considering the peculiarities of the chemical structure of acetylene and its derivatives the authors consilered it ABSTRACT: possible that these compounds might be able to form complexes with one another and with solvents. These complexes could result from the hydrogen bridge bonds R-C & C-N.X (X=0), 0=0, 0, C = C, and so forth). The study of the infrured absorption spectra showed frequency changes in the T C-H and - C T C - groups of acetylene and its derivatives in dissolving in acetone, ether, pyridine, and Bioxane, in sublimating from the crystalline to the vapor state and in solutions of CCl4. This probably means that the acetylene molecule forms complexes with the molecules Card 1/3

Intermolecular Interactions Between Acetylene and Its SCV/t2-,t-3-22/26

of the solvent by forming hydrogen bonds. The union of the acetylene molecules and the homologs and derivatives of acetylene is apparently possible because of the electron shift in the \mathbf{EC} - H and $-\mathbf{CEC}$ bonds (which also electron shift in the \mathbf{EC} - H and $-\mathbf{CEC}$ bonds (which also belong to many other molecules). For this reason intermolecular electron orbitals are hypothesized. The authors discovered a new phenomenon in intermolecular interaction. It was shown experimentally that the formation of hydrogen bridge bonds and a complexes among the molecules of acetylene and its derivatives is possible. It was demonstrated that the hydrogen of the \mathbf{EC} -H group exchanges with deuterium in the dissolution of R - C \mathbf{EC} -H compounds in CH₂OD or \mathbf{CC} -H₂OD. For R-C \mathbf{ECD} in CCl₄ the following frequencies were found:

 $v(=c-D) = 2600 \text{ cm}^{-1}; v(-c=c-) = 1957 \text{ cm}^{-1}$. There is 1 table.

dard 2/3

Derivatives

Intermolecular Between Acetylene and Its 517/c2-10-9-22,2:

Derivatives

ASSOCIATION: Fiziko-khimicheskiy institut im.L.Ya.Karpova (Physical-Chemical Institute imeni L.Ya.Karpov) Institut biologiches-Chemical Institute of Biological and Medical Chem stry of the Academy of Medical Sciences of the USSR)

SUBMITTED: June 24, 1959

Card 3/3

79-28-8-29/60 Shemyakin, M. M. Maymind, V. I., Tokarev, B. V., Karpov, V.I. AUTHORS: Investigation of Stellen s (Stefen) Reaction (Izucheniye reaktsii Srefena) *)(Report VII From the Series "Investiga-TITLE: tions in the Field of Compounds Marked by C14 and N15". Previous Report See Reference 1) Zhurnal Obshchey Khimii; 1958 Vol. 28, Nr. 4, pr. 978-983 (PSSR) PERIODICAL: In the investigation of the synthesis of amino acids marked by radioactive carbon the authors had to apply Stelen's ABOTRACT: reaction for the production of aliphatic aldehydes from corresponding nitriles. As so far Stellen's reaction in this case provided not very satisfactory results. the authors were forced to settle the best conditions of its development at the example of the production of one of the aldehydes of the aliphatic series (180-valeric anhydride). Later these conditions were also extended to the synthesis of other aldehydes - acetaldehyde and phenylacetaldehyde. The following was ascertained as a result of the investigations: 1) The salt of the aldimine and of the hexachlor: stantill acid which develops immediately Oard 1/3

79.28-4-29/60
Investigation of Stephen and Stefen: Reaction, (Topics, MIT Prop. the Series "Investigations in the Field of Compounds Marked by Communications Report See Reference 1)

during the reaction can be dissolved in the reaction medium up to a certain legree. The salt of the phenylacetaldimine entirely deposits as sediment, whereas the salt of the acetaidamine partly remains in solution, and the salt of the use voleric aldinine dissolves entirely. For this reason in Ste. in a reaction in every new case not only the sediment but also the residue after the separation of the solvent must be investigated. 2) The best reaction temperature is in the range of 15 to 25°C (Table 1). 3) The optimum duration of the reduction reaction is ? days (Table 2). 4) The best quantity of stannab chloride in the production of the iso-valeric aldehyde is 7 moles to 1 nole of nitryl (Table 3), 5) Presence of water in the reaction medium effects a diminution in the yield of aldehydes (Table 4). As a result of the investigations it has been ascertained that the yield of iso-valeric aldehyde under the best conditions is 64 %, of acetaldehyde 64 67 % and of phenylacetaldehyde 55 - 60 %. It has been shown that the transformation reaction of nitryls into amilo ethers competes with the reduction

Card 2/3

Investigation of Steffen's (Stefen) Reaction. (Report VII From the Series "Investigations in the Field of Compounds Marked by C14 and N15". Previous

reaction of nitryls to aldimines. The transformation reaction takes place under the influence of alcohol developed in consequence of the decomposition of ethyl ether by hydrogen chloride. At higher temperatures this process can entirely prevent the reduction of nitryl. Starting from KC¹4N time reduction of benzilcyanide to phenylacetaldehyde after Steffen was used for the synthesis of the phenylalanine-2-C¹⁴. There are 4 tables and 26 references, 4 of which are Coviet.

JSCCIATION:

Institut biologicheskoy i meditsinskoy khimii Akademii reditsinskikh nauk SSSR (Institute for Biological and Medical Chemistry of the Academy of Medical Sciences USSR)

"CHTTHIS:

7 rch 18, 1957

CIA-RDP86-00513R001549020019-0 "APPROVED FOR RELEASE: 08/23/2000

301/79-28-6-61/63 Shemyakin, M. M., Maymind, V. I. AUTHORS:

Vaychunayte, B. K.

Letters to the Editor (Pis'ma v redaktsiyu) Investigation of the Wallach Regrouping and Its Related Reactions (Izucheniye TTTLE:

peregruppirovki Vallakha i rodstvennykh yey reaktsiy)

Zhurnal obshchey khimii, 1958, Vol. 28, Nr 6, PERIODICAL:

pp. 1708 - 1709 (USSR)

Lately the authors explained the reaction mechanism of the azoxy binding by means of N15 (Ref 1) and found that this process takes ABSTRACT:

place through the stage of formation of the intermediate dioxy compounds. At present they use N15 for the investigation of various isomerizations of azoxy compounds - of the Wallach regrouping and of its related reactions. For this purpose the $C_6H_5N14(0) = N^{15}C_6H_5$ (Refs 2,3) was synthetized from $C_6H_5N^{15}H_2$

and $0-02^{\rm H^{14}C_{6}H_{4}CHO}$; the product was then subjected to a regrouping

into the o- and p- oxyazobenzenes on different conditions. The

isotopic composition of the nitrogen in azoxybenzene was determined by bromination and subsequent reduction cleavage (Ref 1),

Card 1/3

Letters to the Editor. Investigation of the Wallach 301/79-28-6-61/63 Regrouping and Its Related Reactions

and in the oxyazobenzenes by reduction with tin in concentrated hydrochloric acid at 85-90°. It was found that in the presence of chlorosulfonic acid (Ref 4) the regrouping of azoxybenzene into the p-oxyazobenzene is accompanied by a complete balance of the isotopic composition of either nitrogen. On the action of 83% sulfuric acid on azoxybenzene the same results were obtained, which does not agree with the statements in publications. From the experiments carried out for this purpose follows that the conversion of the azoxybenzene into the p-oxyazobenzene takes place in two different ways: in the one way - the main way mentioned in scheme 1 - this regrouping takes place through the stage of oxide formation, and in the other way - the secondary way mentioned in scheme 2 - it takes place without touching this stage. The regrouping under the influence of ultraviolet light was only little accompanied by the balance of the isotopic composition of the nitrogen of the o-oxyazobenzene (Scheme 3). There are 5 references, 2 of which are Soviet.

Card 2/3

Letters to the Editor. Investigation of the Wallach 30V/79-28-6-61/63 Regrouping and Its Related Reactions

ASSOCIATION: Institut biologicheskcy i meditsinskoy khimii Akademii meditsinskikh nauk

SOSR (Institute of Biclogical and Medical Chemistry, Academy of

Medical Sciences USSR)

SULLITTED: February 24, 1958

1. Azoxybenzene--Synthesis

Card 5/3

sov/19-88-9-15/60 Bhemyakin, H. H., Folosov, M. F., Kerapetyan, M. G., Podionov, V. Ta. Investigations on Sercomicin and Its Analogs (Isoladovaniya y oblasti sarkomitsina i yego analogov) II. Synthesis of the CTTT: Arcomicin Isomer (II. lintez izomere sarkomitaina) Thurnal obshchey khimii, 1958, Vol. 28, Mr S, pp. 2008-2074 · TOP TOAL: (USSR) In connection with a previous publication on sarcomicin (Ref. 1) the authors worked on synthesizing this entibiotic (Formula 7) PROACT: and its ethyl ester isomer (II), which differs from sercomicin in the positions of ats methylene groups. Although sarcomicin has a simple structure its synthesis is especially difficult because it is easily oxidized and has a tendency to polymerize and to form isomers, Therefore, an energetic reaction cannot be carried out, and only mild reagents and lowered reaction temperatures can be used. Since the characteristic 8-methylene- γ -keto-acid group in sarcomicin cannot stand strong treatment the splitting of quarternary ammonium salts of the type 0.53 1/3

Investigations on Parcomicin and Its Analogs. II. Synthesis of the Sarcomicin Isomer sov/79-28-3-15/66

-COCH(CH $_2$ \vec{N} R $_3$)- seemed to be a promising synthetic method. One can synthesize in various ways the compounds of type (III) necessary for producing sarcomicin. The simplest way to synthesize these compounds was to use the easily obtainable cyclopentanone-3-carbonic acid (IV), by introducing the dialkyl aminomethyl group into the 2 position by the Mannich reaction and then halogenalkylating the resulting tertiary Emine. The synthesis of the isomer of the antibiotic sercomicin (which is used against malignant tumors) was accomplished in this way. The starting material was cyclopentenone-3carbonic acid. This compound was condensed with formaldehyde and piperidine. The next steps were esterification and iodomethylation, and the end-product was then converted to the corresponding quarternary ammonium selt. The splitting of the salt yielded the ester of the iso-sarcomicin. There are 10 references, 2 of which are Soviet.

FOR SOTE TION:

Institute biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR (Institute of Biological and Hedical Chemistry of the Academy of Medical Sciences, USSR)

Card 2/3

PHASE 1: BOOK EXPLOITATION SOV/3494

- Reaktsii i metody issledovaniya organicheskikh soyedineniy, Kn. 8 (Reactions and Research Methods of Organic Compcunds, Bk. 8) Moscow, Goskhimizdat, 1959. 446 p. Errata slip inserted. 4,200 copies printed.
- Eds (Title page): V.M. Rodionov, Academician (Deceased), B.A. Kazanskiy, Academician, I.L. Knunyants, Academician, M.M. Shemyakin, Academician, and N.N. Mel'nikov, Professor; Ed. (Inside book): V.P. Yevdakov; Tech. Ed.: V.F. Zazul'skaya.
- PURPOSE: This book is intended for laboratory personnel at industrial plants, for instructors and students at higher educational establishments, and particularly for scientists and researchers working at the numerous research institutes in the Soviet Union.
- COVERAGE: This is the eighth volume in a series "Reactions and Research Methods of Organic Compounds." This series does not duplicate the one published in English under the title "Organic Reactions" and appearing in Russian translation; however, some material, of particular interest, is included in this publication. The present series is primarily devoted to reviewing the works of Soviet chemists. The eighth volume of this series deals with thiocyanation

Card 1

5(3) AUTHORS:

Shemyakin, M. M., Denisova, L. I.,

30V/62-59-4-19/42

Chaman, Ye. S.

TITLE:

Investigations in the Field of the α -Substituted α -amino Acids (Issledovaniya v oblasti a-zameshchennykh a-aminokislot). Communication 5. Methods of Preparing Substituted a, a-Diamino-

carboxylic Acids (Soobshcheniye 5. Sposoby polucheniya rame-

shchennykh a,a-diaminokarbonovykh kislot)

PERIODICAL:

Izvestiya Akademii mauk SSSR. Otdeleniye khimicheskikh mauk,

1959, Nr 4, pp 690-594 (USSR)

ABSTRACT:

In the present work it has been confirmed that various a,a-diamino acids can easily be obtained in the form of deriv-

atives by the method recently proposed (Refs 20-23). This has made the production of many of these acids possible. It has been found that a quick reaction of the aniline used in the reaction (aniline, benzylamine, piperidine) with the oxazolinone ring makes it possible for this amine to act directly on the intermediate product, bromooxazolinine (III). This Sives the corresponding amides of a-amino-a-acylamino-

carboxylic acids of type (IV) in a good yield (Schemes (I)

Card 1/3

(II) \rightarrow (III) \rightarrow (IV) and Tables 1 and 2).

Investigations in the Field of the α -Substituted SOV/62-59-4-19/42 α -Amino Acids. Communication 5. Methods of Preparing Substituted α, α -Diaminocarboxylic Acids

If the amine used opens the oxazolinone ring only slowly, secondary reactions (polymerization, resinification) are observed, whereby the yield of the final compound is reduced. In some cases (IV) cannot be precipitated at all in individual form (Table 1). In these cases the oxazolinone ring must be opened first by another reagent. The corresponding esters of α-amino-α-acylaminocarboxylic acids (VI) can be synthesized in a satisfactory yield if 1 mole of any alcohol (or mercaptan) is previously caused to act on bromooxazolinone (III). These compounds may also be synthesized with such amines (aniline, benzylamine, piperidine, etc) as are suitable for the synthesis of amides of type (IV). (Schemes (I) \rightarrow (II) \rightarrow (III) \rightarrow (V) \rightarrow (VI) and Table 2). It must be mentioned that this reaction is accompanied by secondary conversions in some cases. Another synthesis of the substituted a,a-diaminocarboxylic acids has been found durin an investigation of the properties of a-hydrory-a-acylamino acids (VIII). It has been found that these acids can be converted into a, a-di-(acylamino) acids (IX) when heated with acid amides. Some of these

Card 2/3

Investigations in the Field of the undubs of the SOV, 62-59-4-17, 42 undamino Acids. Communication 5. Methods of Presering Substituted u,u-Diaminocarboxylic Acids

acids have been synthesized by this method (Table 2). There are 2 tables and 26 references, 8 of which are Soviet.

ASSOCIATION:

Institut biologicheskoy i meditsinskoy khimii Abademii meditsinskikh nauk SSSR (Institute of Biological and Merical

Chemistry of the Academy of Medical Sciences, USSR), Moskovskiy tekstil ayy institut (Moscow Textile Institute)

SUBMITTED:

July 13, 1957

Card 3/3

CIA-RDP86-00513R001549020019-0 "APPROVED FOR RELEASE: 08/23/2000

5(3)

AUTHORS: Shemyakin, M. M., Shigorin, D. M.,

SOV/62-59-4-20/42

Shchukina, L. A., Semcin, Ye. P.

TITLE:

Structure and Mechanism of the Hydrolytic Splitting of $\alpha ext{-Nitro-}\alpha ext{-rhenylacetophenon o-Carboxylic Acid (Stroyeniye i}$ mekhanizm gidroliticheskogo rasshchepleniya α-nitro-α-fenil-

atsetofenon-o-karbonovoy kisloty)

PERIODICAL:

Izvestiya Akademii nauk SSSR. Otdeleniye khimicheskikh nauk,

1959, Nr 4, pp 695-698 (USSR)

ABSTRACT:

To determine the structure of α -nitro- α -phenylacetophenone-ocarboxylic acid and its salts the spectra of these compounds were investigated in the present work (Table 1). These investigations have provided an answer to the question relating to their structure and their different behavior in the presence of hydrolyzing agents. As was to be expected, a-nitro-aphenylacetophenone-o-carboxylic acid, like other aromatic o-aldehyde-(keto)-acids, has the structure of lactol (IIIb) rather than that of the keto acid (IV) in the crystalline state as well as in sclution. After the actual structure of the α -nitro- α -phenylacetophenonic acid and of its disodium salt had been clarified, its different behavior in the

Card 1/3

Structure and Mechanism of the Hydrolytic Splitting of 50V/62-59-4-20/42 a-Nitro-a-Phenylacetophenon -o-Carboxylic Acid

presence of hydrolyzing agents has been understood. As was shown before (Ref 3) the C-C bonds can split in those compounds in which a protetropic group (V) is present or can be formed in the molecule. The tendency to split depends directly on the degree of polarization of the C-C bond under the action of the substituent. α -l'itro-dinitrophenylacetophenone-o-carboxylic acid itself, having a lactol (IIIb) structure, does not only contain the required group (V) but also a nitro group which can polarize the splitting bond to a very high degree in the required direction. For this very reason the acid (IIIb) splits easily to form rhthalic acid anhydride and phenylnitromethane if the pH-value of the solution exceeds 7. In the molecule of the disodium salt, on the other hand, the prototropic group (V) is not contained nor can it be formed by hydration owing to the structure of this salt. This fact is responsible for the resistance of this compound to hydrolytic splitting. There are 1 table and 11 references, 8 of which are Soviet.

Card 2/3

Structure and Mechanism of the Hydrolytic Splitting of S0Y/62-59-4-20/42 a-Nitro-albenylacetophenon -o-Carboxylic Acid

ASSOCIATION: Institut biologicheskoy i meditsinskoy khimii Akademii

meditsinskikh nauk SSSR (Institute of Biological and Medical

Chemistry of the Academy of Medical Sciences, USSR)

SUBMITTED: July 13, 1957

Card 3/3

5(3) SOV/20-128-1-30/53

AUTHORS: Shemyakin, M. M. Academician, Kolosov, M. N., Arbuzov, Yu A.

Hsieh hu-yuan, Sheng Huai-yu, Sklobovskiy, K. A..

Karapetyan, M. G., Gurevich, A. I.

TITLE: Intermediate Stages in the Synthesis of Tetracyclines

PERIODICAL: Doklady Akademii nauk SSSR, 1959, Vol 128, Nr 1, pp 113-116

(USSR) Juhn to 4 mine 1758

ABSTRACT: In 1956 the authors syrthesized tricyclic ketols of kind (I)

(Ref 1). They are similar to tetracyclines (III) as far as the structure of two rings is concerned. In the third ring they have a reactive double linkage in position 2,3. The present paper investigates the addition of heterogeneous reagents to the 2,3-double linkage of compounds (I) for introducing active groups into their molecules. The active groups are necessary for establishing a γ-grouping (II) in the B-ring and for a further extension of the A-ring of tetracyclines by a method previously elaborated. Investigations have shown that compounds (I) with typical electrophilic reagents such

as Hal, RCO, H and HOHal react readily. Thus, corresponding

Card 1/2 halogen derivatives, epoxides, hydrine halides, and halogen

507/20-128-1-30/58

Intermediate Stages in the Synthesis of Tetracyclines

ketones with good yields are formed. Constants and analytical results of synthesized compounds are given in table 1. The synthesis of tricyclic ketcls with active groups in the B-ring made by the authors provides the possibility of building up the A-ring of tetracyclines. There are 1 table and 3 references: 2 of which are Soviet.

ASSOCIATION: Institut organicheskoy khimii im. N. D. Zelinskogo AN SSSR (Institute of Organic Chemistry imeni N. D. Zelinskiy,

AS USSR).

Instituť biologicheskoy i meditsinskoy khimii AMN SSSR (Institute of Biological and Medical Chemistry, AMN USSR)

SUBMITTED:

June 4, 1958

Card 2/2

- (3)

AUTHORS:

Shemyakin, M. M., Lur'ye, M. Yu.

SOV/79-29-8-15/81

TITLE:

Investigations of the Chemistry of Chloromycetin (1 Mycetin). IX. Synthesis of the New Analog of Chloromycetin (D TREO 1 (n formylphenyl)-2 dichloroacetylamino-1,3-propanediol)

FERIODICAL:

Zhurnal obshchey knimii, 1959, Vol 29, Nr 8, pp 2531 - 2533

(USSR)

ABSTRACT:

Of the analogs of chloromycetin (I,R=CHCl₂) this hitherto undescribed analog is of special importance (IV,X=CHCl₂).

surbretted 11 mey 1:56

The presence of the aldehyde group within it allows for the synthesis of a large number of other hitherto little accessible chloromycetin analogs, which are important for the further explanation of the varied dependence of the antimicrobic activity on the structure of these compounds. On the basis of the method elaborated by W. F. Beech (Ref 2) for the introduction of the aldehyde group into the aromatic ring by way of diazo compounds, the authors succeeded in applying the simple synthesis of optically active chloromycetin analogs (IV,R=CHCl₂) directly from

Card 1/3

chloromycetin (I,R=CHCl2); suggested by them (Ref 3), for the

Investigations of the Chemistry of Chloromycetin SOV/79-29-8-15/81 (1-Mypetin). IX. Synthesis of the New Analog of Chloromycetin (D-TREO-1-(n-formylphenyl)-2-dichloroacetylamino-1,3-propanedicl)

synthesis of the alldehyde they were interested in (Schemes). Initially, the transformation did not proceed from compound (I) but from its racemic N-benzyl analog (I,R=C6H5), since in this way crystallizing compounds are more easily obtained. With it, the diazo group was replaced by the aldehyde group in compound (III, R=C6H5) under conditions suggested by Beech (Ref 2) as an optimum. Compound (IV, $X=CHO; R=C_6H_5$) was easily separated in crystalline form (yield 15%). This aldehyde was then characterized in the form of the 2,4 dinitrophenyl hydrazone and other derivatives. The synthesis of compound (IV, X=CHO; R=CHCl2) proceeded more difficultly. It was synthesized as above from compound (III, R=CHCl2). However, it was not possible to obtain it in crystalline state even after careful purification. This aldehyde was characterized in the form of the 2,4-dinitrophenyl hydrazone (xield 12%). There are 3 references: 2 of which are Soviet.

Card 2/3

Investigations of the Chemistry of Chloromycetin (1-Mycetin). IX. Synthesis of the New Analog of SOV/79-29-8-15/81

Chloromycetin (D-TREO-1-(n-formylphenyl)-2-dichloroacetylamino-1,3-propanediol)

Institut biologicheskoy i meditsinskoy khimii Akademii ASSCCIATION:

meditsinskikh nauk SSSR (Institute of Biological and Medical

Chemistry of the Academy of Medical Sciences, USSR)

July 11, 1958 SUBMITTED:

Card 3/3

CIA-RDP86-00513R001549020019-0" APPROVED FOR RELEASE: 08/23/2000

j., 30, 5 . 5 . 0, 9 . 5 . 10

77077 2077 2-59-12-21/43

AUTHORS:

Shemyakin, M. M., Ravdel', G. A., Chaman, E. S., Shvetsov, Yu. B., Vinogradova, E. I., Vdovina, R. G.,

Yermolayer, K. M., Bamdas, E. M.

TITLE:

Studies in the Field of Sarcomycine and Its Analogs. Communication 4. Study of Synthetic Routes to Car-

comycine and Ita Analoga

PERIODICAL:

Investiva Akademii nauk SSSR. Oldeleniye khimlekeshikh

ABSTRACT:

Investina Akademii nauk SSSE. Otdeleniye khimieleshikh nauk, 1959. Nr 12, pp 2177-2187 (USCR)

2-Methyleyelopentan-3-one-1,1-disarboxylie seid (III)
was used for the preparation of (Careemyelse) 2-nethylene-eyelopentanone-3-eurboxylie axid (I). (III) was assumed to be converted into (Y) by broministic. In seemed possible to symphosize (I) that (Y) by broministic. In seemed possible to symphosize (I) that (Y) series till of HBr and by describoxylsticn. Discil (Y) series in the obtained been a climination of HBr from (I) and simulfaneous describoxylsticn for all (YI) with an endocrelic double board.

endocyclic domble bond.

Card 1/10

Studies in the Field of Sarcomycine and Its Analogs. Communication 4. Study of Synthetic Routes to Sarcomycine and Its Analogs

77077 SOV/62-59-12-21/43

The semicarbazone of the diethyl ester of 2-methylcyclopentan-3-one-1,1-dicarboxylic acid (VIII) was brominated, and after eliminating HBr the semicarbazone of the diethyl ester of 2-methylenecyclopentan-3-one-1,1-dicarboxylic acid (X) was obtained in 56% yield (mp 207-209°). Diester (X) was saponified and the semicarbazone of the ethyl ester of 2-methylcyclopenten-1-one-3-carboxylic acid (XI) was obtained, in 74% yield (dec. temperature 220-230°).

Card 3/10

APPROVED FOR RELEASE: 08/23/2000

CIA-RDP86-00513R001549020019-0"

Studies in the Field of Sarcomycine and Its Analogs. Communication 4. Study of Synthetic Routes to Sarcomycine and Its Analogs

77077 80V/62-59-12-21/43

Attempts were made to convert the semicarbazone of the amide of 1-carbethoxy-2-methylcyclopentanene-3-carboxy-lic acid (XIV) into the semicarbazone of the amide of 1-carbethoxy-2-methylenecyclopentanone-3-carboxylic acid (XVI), but the isolated compound (XVI) was not pure and contained from 30 to 40% polymeric material.

Card 4/10

Studies in the Field of Sarcomycire and Its Analogs. Communication 4. Study of Synthetic Routes to Sarcomycine and Its Analogs

77077 SOV/62-59-12-21/43

Semicarbazone of the diethyl ester of 2-methylcyclo-pentan-2-olone-3-carboxylic acid (XVII) was obtained, in 81% yield (mp 160-161°), from (IX) by reaction with water. Semicarbazone of 2-methylcyclopentan-2-olone-3-carboxylic acid (XIX) was prepared in 38% yield (mp 187-188°) by saponification of (XVII) and by subsequent decarboxylation of the intermediate (XVIII).

Card 5/10

Studies in the Field of Sarcomycine and Its Analogs. Communication 4. Sindy of Synthetic Routes to Sarcomycine and Its Analogs

77077 ::07/62-59-12-21/43

Dibromide (XX) was obtained quantitatively (mp 82-85° dec.) by addition of two bromine atoms to the diester (X). In the compound (XX) one bromine atom (position 2) is very labile. (XX) reset with CH30H or H20 forming corresponding composade (XXI) in 65% yield (mp 136-139°) or (XXII) in 63% yield (mp 148-149°). The labile bromine atom in compound (XX) can quantitatively oxidize KI to free iodine, in the cold, but the obtained product can not be isolated, because the reaction is accompanied by elimination of HBr and formation of diester (X) in 71% yield (mp 207° dec.).

Card 6/10

Studies in the Field of Sarcomycine and Its Analogs. Communication 4. Study of Synthetic Routes to Sarcomycine and Its Analogs

77077 SOV/62-59-12-21/43

were X = NNIICONII3.

The synthesis of (I) may take place as follows: amines of (XXV-XXVI)-type, after hydrolysis, decarboxylation, of (XXV-XXVI)-type, after hydrolysis, decarboxylation, and formation of the methylene group, can be converted and formation of the methylene group, can be converted into (I). The results of investigation will be published in a forthcoming communication. There are 9 lished in a forthcoming communication in the published in a forthcoming communication.

card 9/10

Studies in the Field of Sarcomycine and Its Analogs. Communication 4. Study of Synthetic Routes to Sarcomycine and Its Analogs

77077 S0V/62-59-12-21/43

ASSOCIATION:

Institute of Biological and Medical Chemistry, Academy of Medical Sciences (Institut biologicheskiy i medit-

sinskoy khimii Akademii medicinskhikh nauk)

SUBMITTED:

April 12, 1958; Additions made, December 28, 1958

Card 10/10

Investigation in the Field of Sarcomycine 77078 sov/62-59-12-22/43 and Its Analogs. Communication 5. Synthesis sov/62-59-12-22/43 of Racemic Sarcomycine (NV) (NIX)

(NV) (NIX)

(CH₂ = -COOH Me₃NCH₂ COO-

 $X = NNHCONH_2$

The ethyl ester of 2-dimethylaminomethylcyclopentanone-3-carboxylic acid (XI) was used as starting material for the preparation of (III). Racemic sarcomycine in the form of its semicarbazone (XVII) can be obtained, in 39% yield, from the methiodide of acid (XV) or from betaine (XIV) together with the semicarbazone of 2-methylcyclopenten-1-one-3-carboxylic acid (XIX). For

Card 2/4

Intestigation in the Field of Surcemycine and Its Analogs. Communication 5. Synthesis of Rasemic Surcemycine

77076 007/62-59-12-12/-3

this purpose (XV) or (XIV) is heated on a water bath for 4 minutes with 2 moles (for betaine 1 mole) of 1N NaOH. The solution was cooled to 0-20, 10% HCl was added, and after 30 minutes the precipitate was removed by filtration and washed with cold water. Ine mixture of (XVIII) and (XIX) was obtained in 39% yield. The compound turns black on heating, but does ret melt. Found: C 48.87%; H 6.02%. C3H1103N3. Calculated: 48.75%; H 5.63%. From the above mixture, the semicarbazone of racamic sarcomycine (XVIII) was isolated by crystall mation, in 50-55% yield. There are 8 references, 3 Sovies, 1 Japanese, 1 U.K., 3 U.S. The 4 U.S. and U.K. reference: are: Chem. and Industr. 1957, 1320. G. Buchi, N. G. Yang and Others, Chem. and Industr. 1953, 1063; J. Meinwald, S. L. Emerman and others., J. Amer. Chem. Soc. 77, 4401 (1955); E. E. Van Tamelen, S. R. Bach, J. Amer. Chem. Soc. 77, 4683 (1955).

Card 3/4

Investigation in the Field of Sarcomycine and Its Analogs. Communication 5. Synthesis of Racemie Sarcomycine

57077 507/62-59-12-22/43

ASSOCIATION:

Institute of Biological and Medical Chemistry, Academy or Medical Sciences (Institut biologicheskoy i meditsin-skoy khimii Akademil meditsinskikh nauk)

SUBMITTED:

April 12, 1958; Additions made, December 28, 1958

Card 4/4

5 (3) AUTHORS: Shemyakin, M. M., Kolosov, M. N., Arbuzov, Yu. A. Karapetyan, M. G. sov/~:-29-6-13/72

Chaman, Ye. S. Onishchenko, A. A.

TITLE:

Investigations in the Field of Tetracyclines (Issledovaniya v oblasti tetratsiklinov). IV. Investigation of Different Syntheses of the Tricyclic System DCB of the Tetracyclines (IV. Izucheniya putey sinteza tritsiklicheskoy sistemy DCB tetra-

tsiklinov)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 6, pp :83! - 1842

(USSR)

Somethad 1 jun 31

ABSTRACT:

The structure of the well-known tetracyclines (I) has a specific characteristic which indicates the ways and methods necessary for carrying out the complete synthesis of compounds of this type. On the basis of certain theoretical considerations the authors tried to synthesize such ketols of the hydroanthracene series of type (III) and (IV) in which two rings had to be similar with respect to structure and spatial arrangement to the rings D and C of the tetracyclines. The third ring had to offer the structural conditions for the subsequent building-up of the ring A and for the introduction of the necessary func-

Card 1/3

Investigations in the Field of Tetracyclines. IV. Investigation of Different Syntheses of the Tricyclic System DCB of the Tetracyclines sov/79-29-6-:3/72

tional groups of the ring B of the tetracyclines. The adopted method of synthesizing these compounds consisted in the condensation of the total aphthoquinones with butadiene or its derivatives and the transformation of the resultant adducts (II) into the ketol; (III) which, on their part, can easily be hydrolyzed to give the oxy diketones (IV). The first step, the diene synthesis, takes place readily by heating naphthoquinone with the diene. By condensation of the 5-methoxy-naphtho-quinone with 2-methoxy butadiene two isomeric adducts - (II d) and (II e) in the ratio 4: : - are formed. The second step: the selective transformation of the Cq-keto group of the adducts (II) into the tertiary methyl carbinol grouping meets with some difficulties, it was however possible to carry out the reaction by mesns of magnesium methyl halide. The third step of the synthesis of the compounds (IV), the hydrolysis of the enclomethoxyl up to the keto group is only possible when using dilute acids. The synthesis of the tricyclines (XV) was thus performed on the basis of naphthoquinones, in which two rings are analogous with the rings D and C of the natural tet-

Card 2/3

Investigations in the Field of Terracyclines. IV. Investigation of Different Syntheses of the Tricyclic System DCB of the Tetracyclines

SOV/79-29-6-3/72

racyclines with respect to structure and spatial arrangement. The presence of the reactive double bond; the enol grouping or the carbonyl group in the third ring of the compounds (XV) offers further possibilities for the introduction of substituents and for the building up of the fourth ring of the tetracyclines. There are 12 references, 4 of which are Soviet.

ASSOCIATION:

Institut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk SSSR i Institut organicheskoy khimii Akademii nauk SSSR (Institute of Biological and Medical Chemistry of the Academy of Medical Sciences, USSR; and Institute of Organic Chemistry of the Academy of Sciences, USSR)

SUBMITTED:

June 9, 1958

Card 3/3

5(2, 3)

S07/20-128**-3-**36/58

AUTHORS:

Shemyakin, M. H., Academician, Maymind, V. I., Yermolayev,

K. M., Bamdas, E. M.

TITLE:

On the Reaction Mechanism of Osazone Formation

PERIODICAL:

Doklady Akademii nauk SSSR, 1959, Vol 128, Nr 3, pp 564-566(USSR)

ABSTRACT:

In spite of many investigations (Refs 1-15), the formation of osazones from a-oxycarbonyl compounds remains unclear. All respective hypotheses and assumptions can be reduced to 3 schemes: A (Ref 1), B (Ref 3), and C (Ref 3). In order to find the correct scheme, the osazone reaction was marked with

15 N. If scheme A applies, the resulting ammonia may not contain an excess in 15 N, but the 15 N must completely remain in the osazone. If, however, scheme B is correct, the osazone will remain unmarked while the ammonia will contain the entire marking. Finally, if scheme C is the right one, the 15 N excess will be distributed, in equal shares, between osazone and ammonia. Unfortunately, the investigation of the mechanism under discussion by means of tagged atoms is much impeded by the fact that the marking may be diluted by exchange reactions, hydrolysis or substitution. These secondary processes could be evoided to a large extent by producing the excesses.

Card 1/3

be avoided to a large extent, by producing the osazones in boiling isoamyl alcohol and removing the water from the reac-

On the Reaction Mechanism of Osazone Formation SOV/

SOV/20-128-3-36/58

tion sphere. Then, the dilution of the marking in the hydrazone is inconsiderable at the beginning, and cannot conceal the reaction mechanism of osazone formation. Therefore, it can be rather accurately judged which of the 3 achames really applies. For this purpose, the reaction must be interrupted after a certain period (depending on the type of hydrazone used). The investigations were carried out with \$6-15N-p-nitrophenyl hydrazones of fructose, cyclohexanolone and benzoin. Boiling alcoholic solutions of the said hydrazons and of an unmarked p-nitrophenyl hydrazine (2 moles) were poured together, and subsequently boiled in the nitrogen current. The resulting armonia was immediately removed from the reaction solution. The isolation and separation of osazone, hydrazone and hydrazine was done as quickly as possible under conditiona...which prevent a further change in the marking by exchange reactions. As they could not be fully eliminated, it was more convenient to measure the isotopic composition of ammonia, not of osazone. Table 1 shows that the escaping ammonia at first always contained much more than half of the marking of the initial hydrazone. Hence it is concluded that scheme B applies to all cases investigated. This scheme is distinguished from the others by the fact that the 1st reaction stage proceeds without par-

Card 2/3

On the Reaction Mechanism of Osazone Formation SOV/20-128+3-36/58

ticipation of hydrazine. As was expected, it could be observed that the osazone-formation process can be divided into 2 stages with separation of an intermediate monoimine of α -diketone (I). By the example of p-nitrophenyl hydrazone of benzoin, it was ascertained that prolonged heating at 60° in glacial acetic acid and without hydrazine causes its disappearance. If 2 moles of hydrazine are subsequently added, an osazone precipitation is quickly formed. There are 1 table and 15 references.

ASSOCIATION: Institut birlogicheskoy i meditsinskoy khimii Akademii medi-

tsinskikh nauk SSSR

(Institute of Biological and Medical Chemistry of the Academy

of Medical Sciences, USSR)

SUBMITTED: June 22, 1959

Card 3/3

Investigation of the Methods of Ring Synthesis of A-Tetracyclines - Method of Introducing the N,N-Dimethylglycine Residue Into the Cyclohexanone Ring

SOV/20-128-4-30/65

these problems. A model synthesis and some transformations of the simplest compound of type (IVb) - the ester of three-2-ketocyclo-hexyl-N,N-dimethyl glycine (XIIa) - are described. The above-mentioned introduction into the cyclohexanone ring has to be carried out under such conditions and by such methods as are also applicable to the case of tricyclic oxydiketones (I). This method is described. The authors ascribed a threo-configuration to the dimethyl-amino-keto ester obtained. This was also confirmed by further transformations (XVIII) and (XIVa). Table 1 shows the compounds obtained, their constants, as well as the composition found analytically and by computation (VIa - XXII). The dimethyl-amino-keto ester (XIIa) synthesized by the authors was also investigated with respect to the introduction of an ethinyl residue into the molecule. This is necessary for building up the "lower" part of the A-ring of tetracyclines by the method developed previously (Ref 2). It was shown that (XIIa) easily reacts with HC \equiv CNa in liquid NH, at - 50° to form an acetylene-oxy ester in a 60% yield. The latter is supposed to

Card 2/3

sey/79-29-9-1/76 Semenov N. H., Shemyakin, M. M., Hochetkov, N. K. 5(3) AUTHORS:

Academician Aleksanir Nikolayevich Nesmeyanov. (On His 60th TITLE: Birthday)

Zhurnal obshchey khimii, 1959, Vol 29, Nr 9, PERICLICAL: pp 2811 - 2816 (UESR)

A. K. Nesmeyanov (born 9.9.1899 in Moscow) graduated from the Physical and Mathematical Department of Moscow University ABSTRACT: in 1922, became an assistant to the well-known chemist N. D. Zelinskiy, and later was appointed professor in ordinary and head of the Chair of Organic Chemistry; he attained the highest degree in 1947, when he was elected rector. He became a member of the Acidemy of Sciences in 1943, and of other institutions later on. An outstanding speaker, he has a special talent of rendering the most complicated subjects intelligible and pleasant. His activities have covered various fields, from a great number of problems belonging to elemental-organic chemistry to the synthesis of valuable new polymers, from theoretical problems of reaction mechanism and reactivity to the

introduction of methods of synthesis relating to the compound Card 1/3

CIA-RDP86-00513R001549020019-0" APPROVED FOR RELEASE: 08/23/2000

Academician Aleksandr Nikolaysvich Nesmeyanov. (On His 60th Birthday)

SUV/79-29-9-1/76

heterocyclic systems. Among his numerous achievements the following deserve first mention: the simple method of synthesizing metal-organic compounds by the aid of aromatic diazocompounds, a method which is still for the synthesis of aromatic deriregarded as the best vatives of mercury, antimony, arsenic. This method has been developed to apply to syntheses of aromatic compounds of tin, zinc, thallium, alaminum as well as organomercury-silver compounds from compounds of Sn, Fb, As, Sb, Cd, Tl, and others. Remarkable syntheses are the ones yielding iodonium-, bromontume, and chlcronium compounds, and finally, exonium compounds by the arylation of bromo- and chlorobenzene, and of diphenyl ether with diazonium borofluoride. Great importance has been and still is attached to his investigations concerning the addition of metals to the unsaturated compounds of the olefin and acetylene series, the exchange of metal atoms in the compounds of the above metals containing a fachlorovinyl radical. Nesmeyanov has developed a new conception of the munifold reactivity and displacement of the reaction center in the reactions of metal compounds. His attempt of solving

Card 2/3

Academician Aleksandr Nikolayevich Nebmeyanov. (On His 60th Birthday)

sov/79-29-9-1/76

the problem of the mechanism of electrophilic substitution on the saturated carbon atom deserves special mention. He investigated the metallocenes, metal-organic compounds formed by the interaction of the s,p,d-electrons of the transition metals with the $\pi\text{-}\varepsilon lectrons$ of the unsaturated carbon bonds. The aromatic nature of ferrocene was proven by numerous reactions. From 1938 to 1954, Nesmeyanov was the head of the Institut organicheskoy khimii AN SSSR (Institute of Organic Chemistry AS USSR), from 1954 head of the Institut elementoorganicheskikh soyedineniy AN SSSR (Institute of Elementalorganic Compounds AS USSR); 1946-48, secretary of the Otdeleniye khimicheskikh mauk AN SSSR (Department of Chemical Sciences AS USSR), and since 1951 he is the President of the Akademiya nauk SSSR (Academy of Sciences, USSR). Since 1947 he is the chairman of the committee presiding over the scientific Lenin Prize awards (formerly called Stalin Prize). He was distinguished with the Lenin Order, the Order of the Red Workers' Banner, and the Stalin Prize First Class for scientific merits.

Card 3/3

Burn - 1/1. North A. R. M. Actorio, Yu., Potorov. B. H., Shrenen-4. 3.4 respect to a time to the Mile a not deduced element. The decept : the the art Himmone With Long third The many contributes the fit, for C. 701 mm, the compact of the SSR) Paga (Marchalle . Our conservation of armedone with a resorbe will active two cut love by one of the following varients. There are a servence on the following varients. The 0.3, reference in: R. L. Erenk, H. K. Hell, J. Am. Them. Not., γr , 1040 (see). tomographication of dimedone with a resorte will appropried $A_{i}(X_{i}^{*}) \cap A_{i}^{*}(X_{i}^{*}) = 0$ Institute of Oreanie Chemistes, were sens of Sciences, USSR ALMON THEE: (in titue or watchesto, khimil (k. amil mass SASR) · 1 mm (m. 1 5, 1) MUNITURE: //

J.5010

77886

507/79-30-2-37,78

AUTHORS:

Shemyakin, M. M., Kolobov, M. N., Arbuzov, Yu. A.,

Onoprienko, V. V., Sieh Yd-ydan

TITLE:

Investigation in the Field of Tetracyclines. VII.

Study of the Synthetic Routs to the A Ring of

Tetracyclines

PERIODICAL:

Zhurnal obshchey khimii, 1960, Vol 30, Nr 2,

pp 545-556 (USSR)

ABSTRACT:

Synthesis of compound IX can be divided into three

parts: (1) construction of the upper parts of the A ring (Ia (Ib) or IIa (IIb) \longrightarrow (V)); (2) construction

A ring (ia (ib) or lia (iib) \rightarrow (V)); (2) construction of its lower parts (V \rightarrow VI \rightarrow VII); and cyclication with subsequent introduction of carboxamide group (VII \rightarrow

VIII—IIV).

Card 1/11

Investigation in the Field of Tetracyclines. VII. Study of the Synthetic Routs to the Alking of Tetracyclines

77886 307/79-30-2-37/78

$$(Ia) \begin{array}{c} X \\ Y \\ CO_2R \\ CO$$

The following compounds can be used for construction of the upper ring: dibromides (Ia); epoxides (Ib); ketones (IIa); and haloketones (IIb). The third way (IIa) is simpler.

Card 2,11

Investigation in the Pictical Tetracy disc. VII. Study of the Synthetic head to the ArRing of Tetracyclines

$$CO_2Et$$

The fourth way (IIb) puts the carbomethoxy group exclusively in a certain position of cyclohexane ring.

Card 3, 11

APPROVED FOR RELEASE: 08/23/2000 CIA-RDP86-0051

CIA-RDP86-00513R001549020019-0"

Investigation in the Field of Tetracyclines. 30V/79-30-2-37,70 VII. Staip of the Synthetic Routs to the A Ring of Tetracyclines CO₂H CH.

$$\begin{array}{c} \text{Cl} & \text{CH}(\text{CO}_2\text{Et})_2 \\ \text{O} & \text{O}_2\text{Et} \\ \text{O}_2\text{Et}$$

7786F

Construction of lower parts of the \hat{a} ring includes ethynylation of V and hydration of the triple bond of the obtained ethynol carbinol (VI).

dard +/ 11

Investigation in the Field of Tetracyclines. VII. Study of the Synthetic Root, to the A-Ring of Tetracyclines

77080 307,70-30-2-37,78

Na-enclates of hydroxydiketones react in dimethylformamide with excess of the corresponding isocyanate (carboxyamidation of hydroxydiketones XXII and XXIII).

Card 5/11

III	entippition in the Fie . Study of the Synth 5 of Tetran, clines	ld of Tetrocycl etic Routs to ti	· · · · · · · · · · · · · · · · · · ·	77886 SOV/79	30-2-37/78
	Jome Prop	erties of Chtair	ned Pro	ducts	
M1.	Starting Material C	istaIned Product	Yleld (%)	ob um bu	$n_{D}(x)$
Ţ	Oyelohekanone (*) secondary amine toluenesulfonic acid (*) bensene	Х	-		
2	<pre>X + brompacetic este + hydrolysis with aqueous methanol</pre>	r XII	-	121-122 ⁰ ,7	x = 18 1.4592
3	Sodium malonic ester + 2-chlorocyclonexan + malonic ester + benzene	one	70		x = 20 1.4595
1., ,,,	· piperidi 16/11	ne, pyrroll ine	, morp:	noline.	

Inv VII	estigation in the Fiel	77880 807/75-30-2-37/78			
v I I Nr	Starting Material Oi	otained Product	Yield (%)	op/mm pr	$n_{D}^{(x)}$
4	solution in liquid	mixture of XV-a and XVI-a	85	83-8 ⁴⁰ /0.02	x = 18 1.4831
5	Mixture of XVa and XVI-a are hydrolyzed with NaOH	XV-b + mother liquid	71	mp 101-2°	-
6	the above mother liquid (5) + 0.1N H ₂ SO ₄	id XIX	24	63-640/0.04	$x = 21 \cdot 1.4926$
7	XIX is hydrolyzed with O.1 N NaOH, acidified with 1 N H ₂ SO ₄ , and extracted with CHCl ₃	XVI-b	-	-	- Card 7/11

Investigation in the Field of Tetracycli VII			201/12-20-2-21/10			
r	Starting Material Oi	otained Product	Yield (%)	op/mm pr	n _D (x)	И
3	XVIa + anhydrous	mixture of XVII-a and XVIII-a	<u>66</u>	90-92 ³ /0.03	$x = 17 \cdot 1.4735$	
9	Mixture of XVa and XVIa + mercuric salt of p-toluenesulfon-amide + alcohol	XVII-a and	41	-	-	•
10	Mixture of XVIIa and XVIIIa + alcohol + hydrolysis with 0.4 N NaOH	XVII-b + mother liquid	72	mp 115-6°	-	
ll Car	The above mother liquid (10) is boiled with 1 N H ₂ SO ₁ d 8/11	XXI	24	72-73°, 0.03	-	

"APPROVED FOR RELEASE: 08/23/2000 CIA-RI

CIA-RDP86-00513R001549020019-0

r	Starting Material Obt	ained Product	Yield (%)	bp/mm pr	$_{\rm r_D}$ (x)
2	XXI is hydrolyzed with O.1 N NaOH	d-IIIVX	96	mp 98-100°	-
3	XVII-b is heated at 150°/15 mm	XX	91	70-710/0.12	x = 22 1.4828
4	XVIII-0 + Na ₂ CO ₃ + AgNO ₃ + ethyl iodide	XVII-a	90	91-920/0.03	x = 19 1.4737
5	XVII-b or XVIII-b is distilled at 130°/0.07	XVIII-b trans form of lactone	ln 88	-	- 1

ΙI				SCV/79-3	0-2-37/78	
?	Starting Material	Obtained Product	Yield (%)	bp/mm pr	$n_{D}^{(x)}$	
S	XVII-b or XXVIII-b + 0.1 N H ₂ SO ₄	XVIII-b in the form of lactone	100	-	-	
	after 2 hours					
7	XVII-a+ 0.5 N sodium ethoxide in alcohol	XXII (cis)	95	mp 181-182°	-	
3	XXII (cls) + di- methylformamide + phenylisocyanate	XXIV-a	46	-	-	
9	XXIV-b+NH ₃ + CH ₃ OH	XXIV-b (els)	75	mp 153-154°	-	
)	XXV-a + ammonolyse	XXV-b (trans)	65	mp 160-161°	-	
	d 10/11					

SHEMYAKIN, Mikhail M.

"Synthesis of Depsipeptides."

report to be submitted for the Symposium on the Chemistry of Natural Products, Intl. Union of Pure and Applied Chem. (IUPAC), Melbourne, Canberra, and Sydney, Augstralia, 15-25 August 1960

Prof. Act. Mbr., Acad. Sci. USSR Dir. Inst. of the Chemistry of Natural Compounds, Moscow

SHEMYAKIN, M. M.; MAYMIND, V.I.; VAYCHUNAYTE, B.K.

Studies of compounds tagged with C¹⁴ and N¹⁵. Report No.10: Reaction involving the isomerization of azoxy compounds, as studied with the use of N¹⁵. Izv.AN SSSR Otd.khim.nauk no.5: 866-871 My ¹60. (MIRA 13:6)

1. Institut biologicheskoy i meditsinskoy khimii Akademii meditsinskikh nauk.

(Azoxy compounds) (Nitrogen-Isotopes)

BERGEL'SON, L.D.; MOLOTKOVSKIY, Yul.G.; SHEMYAKIN, M.M.

Synthesis of macrocyclic diacetylenic lactones. Izv.AN SSSR.

Otd.khim.nauk no.6:1139 J. '60. (MIRA 13:7)

1. Institut khimii prirodnykh soyedineniy Akademii nauk SSSR.

(Lactones) (Acetylene compounds)

BERGEL'SON, L.D.; VAVER, V.A.; SHEMYAKIN, M.M.

New method of synthesizing unsaturated acids. Izv. AN SSSR Otd. khim. nauk no.10:1900 0 60. (MIRA 13:10)

 Institut khimii prirodnykh soyedineniy AN SSSR. (Unsaturated compounds) (Acids, Organic)

SHEMYAKIN, M.M., akademik; ARBUZOV, Yu.A.; KOLOSOV, M.N.; OVCHINNIKOV, Yu.A.

Study of the synthetic paths used in building the ring system of BA tetracyclines. Dokl.AN SSSR 133 no.5:1121-1124 Ag 160.

(MIRA 13:8)

1. Institut khimii prirodnykh soyedineniy akademii nauk SSSR i Moskovskiy gosudarstvennyy universitet im. M.V.Lomonosova.

(Tetracycline)

SHEMYAKIN, M.M., akademik; aGadoHah AN, TS.Ye.; MAY.Ind, V.I.; KUDRYAVTSEV, R.V.; KURSANOV, D.H.

Study of the isomerizations of azoxy compounds by means of 0¹⁸. Dokl. AN SSSR 135 no.2:346-349 N '60. (MIRA 13:11)

1. Institut biologicheskoy i meditsinskoy khimii AMN SSSR i Institut elementoorganicheskikh soyedineniy AN SSSR. 2. Chlenkorrespondent an SSSR (for Kursanov). (Oxygen--Isotopes) (Azoxy compounds)

SHEMYAKIN, Mikhail Mikhaylovieh, KHOKHLOV, Aleksandr Stepanovich; KOLOSOV,
Mikhail Nikolayevich; BERCEL'SON, Lev Davydovich; ANTONOV, Vladimir
Konstaninovich; SHVETSOV, Yu.B., red. izd-va; DOROKHINA, I.N., tekhn.

[Chemistry of antibiotics Khimiia antibiotikov. Izd.3., perer. i dop. Moskva, Izd-vo Akad. nauk SSSR. Vol.1. 1961. pp.1-774. Vol.2. 1961. pp. 780-1550. (MIRA 14:8) (ANTIBIOTICS)

"The Chemistry of Depsipeptides."

report submitted for the International Chemistry Symposium, Stenford University, 1-3 March 1961

Shightakin, M. M., BERGELSON, L. D., TAVER, M. M. (USSR).

"A New Way of Fatty Acid Synthesis."

Report presented at the 5th International Biochemistry Congress, Moscow, 10-16 August 1961

BERGEL'SON, L.D.; DYATLOVITSKAYA, Ye.V.; SHEMYAKIN, M.M.

Intramolecular trans-acetalization accompanied by the formation of 1,3-dioxanes. Izv. AN SSSR. Otd. khim. nauk no;2:358-359 F '61. (MIRA 14:2)

1. Institut khimii prirodnykh soyedineniy AN SSSR. (Dioxane) (Acetals)

ARBUZOV, Yu.A.; KOLOSOV, M.N.; OVCHINNIKOV, Yu.A.; SHEMYAKIN, M.M.

New reaction of halo lactomes. Izv. AN SSSR, Otd. khim. nauk no.2: 377 F '61. (MIRA 14:2)

1. Institut khimii prirodnykh soyedineniy AN SSSR. (Lactones)

BEHGEL'SON, L.D.; VAVER, V.A.; SHEMYAKIN, M.M.

Effect of the solvent on the steric course of the Wittig reaction.

Izv.AN SSSR Otd.khim.nauk no.4:729-730 Ap :61. (MIRA 14:4)

1. Institut khimii prirodnykh soyedineniy AN SSSR. (Chemical reaction)