Apprentissage par Renforcement pour la Réfutation de Conjectures sur les Graphes

Plan

- Qu'est-ce que l'apprentissage par renforcement ?
- Description de l'objectif du stage
- La conjecture 2.3
- La conjecture λ₁ α
- Vue globale des conjectures
- Conclusion

Qu'est-ce que l'apprentissage par renforcement ?

- L'apprentissage par renforcement : une méthode d'apprentissage machine basée sur la maximisation d'une récompense.
- Un agent prend des décisions pour maximiser sa récompense cumulée dans un environnement évaluant ses choix.
- Des récompenses et pénalités guident l'apprentissage afin d'améliorer la prise de décisions au fil du temps.
- Applications : robotique, jeux, optimisation des ressources, gestion des stocks, prise de décision automatisée.

Description de l'objectif du stage

- Tenter de réfuter des conjectures ouvertes sur les graphes avec l'algorithme "deep-cross entropy".
- Vérifier si l'apprentissage par renforcement est un outil viable pour faire facilement le tri entre les vraies conjectures et les fausses.
- L'algorithme en lui-même: production de graphes, sélection des meilleurs 10%, ajustement des paramètres avec les meilleurs 50%.
- Exemple d'illustration pour une conjecture portant sur une propriété X dans un graphe connexe.

Conjecture 2.3 (Partie 1)

- $\pi + \partial_{\lfloor 2D/3 \rfloor} > 0$ pour tout graphe connexe ayant au moins 4 sommets.
- $-(\pi + \partial_{\lfloor 2D/3 \rfloor})$ comme fonction de score.
- Adam Wagner dessine ce à quoi doit ressembler le contre-exemple.
- Temps d'exécution très long, plusieurs jours pour N = 30 pour un résultat de 0.4 environ -> nécessité d'une autre implémentation (codage de Prüfer).

Conjecture 2.3 (Partie 2)

- Avec π = 1.0298507462686568 et ∂ $_{\lfloor 2D/3 \rfloor}$ = -1.286208
- Découverte d'un contre-exemple semblable au dessin d'Adam Wagner, à 203 sommets
- Mais peut-on faire encore mieux ?

Conjecture 2.3 (Partie 3)

- Avec π = 1.03 et $\partial_{12D/3J}$ = -1.286208
- Contre-exemple à 201 sommets
- Mais peut-on faire encore mieux ?
 (Non)

Conjecture λ_1 - α

- $\sqrt{n-1}$ n + 1 $\leq \lambda 1$ α
- Fonction de score: $\sqrt{n-1}$ n + 1 λ 1 + α .
- Contre-exemple ci-contre à 23 sommets.
- Avec $\lambda 1 = 3.6381407308541265$, $\alpha = 21$ soient $\sqrt{22} 23 + 1 3.6381407308541265 + 21 = 0.052275 > 0$.

Conjecture	Origine	Réfutation	Remarques
$\sqrt{(n-1)+1} \leq \lambda_1 + \mu$	Adam Wagner		2 contre-exemples à 19 sommets
$\pi + \partial_{\lfloor 2D/3\rfloor} > 0$	Adam Wagner		Un contre-exemple à 201 sommets comme plus petit contre-exemple
abs(peak-peakAdj) < 0.3	Adam Wagner		Un contre-exemple à 21 sommets comme plus petit contre-exemple
Ln/2J ≤ peak ≤ Γn*(1-1/√5)]	Adam Wagner		
$\lambda_1 + D \le n - 1 + 2 \cos (\pi/n + 1)$	A survey of automated conjectures in spectral graph theory		Un contre-exemple à 12 sommets comme plus petit contre-exemple
$\sqrt{(n-1)} - n + 1 \le \lambda_1 - \alpha$	A survey of automated conjectures in spectral graph theory		Un contre-exemple à 23 sommets ressemblant à la conjecture 2.1
$\sqrt{(n-1)} \le \lambda_1^* \mu$	A survey of automated conjectures in spectral graph theory		Un contre-exemple à 45 sommets en forme d'étoile
$\lambda_1 / \mu \leq \sqrt{(n-1)}$	A survey of automated conjectures in spectral graph theory		
$\lambda_1 - \mu \le n - 1 - \ln/2J$	A survey of automated conjectures in spectral graph theory		
$\sqrt{(n-1)} \le \lambda_1^* \pi$	A survey of automated conjectures in spectral graph theory		Un contre-exemple à 41 sommets en forme de fleur
paires dominantes	Maîtres de stage		

Conclusion

- Une opportunité passionnante d'explorer l'apprentissage par renforcement dans le domaine des graphes et de la réfutation de conjectures.
- L'apprentissage par renforcement, un outil efficace dans l'arsenal du chercheur.
- Collaboration entre la théorie des graphes et l'apprentissage automatique pour de nouvelles approches de recherche.

Bibliographie

- L'article de recherche d'Adam Wagner datant de 2021: https://arxiv.org/pdf/2104.14516.pdf
- L'article de M. Aouchiche et P. Hansen d'où sont tirées les quatre dernières conjectures datant de 2009:
 https://www.sciencedirect.com/science/article/pii/S0024379509003061?via%3

Dihub

Merci pour votre attention