UM 204: INTRODUCTION TO BASIC ANALYSIS SPRING 2022

QUIZ 1 JANUARY 31, 2022

PLEASE NOTE the following:

- This guiz must be completed and scanned within 15 minutes of the start-time!
- Your scanned PDF file must reach your TA within 3 minutes beyond the above-mentioned duration.
- 1. Recall that if α is a positive cut, then α^{-1} is given by

$$\alpha^{-1} := \{ x \in \mathbb{Q} : \exists r \in \mathbb{Q} \text{ such that } r < 1/x \text{ and } r \notin \alpha \} \cup 0^* \cup \{0\}.$$
 (1)

Now, let β be a **negative** cut.

(a) (6 marks) Give an expression for β^{-1} (please be brief).

Using, without proof the fact that the right-hand side of (1) is a cut, and **freely** using (i.e., without proof and without citing any specific result from the section Fields in "Baby" Rudin) any corollary of \mathbb{Q} being an ordered field, show—anything **else** will need proof!—that:

- (b) (3 marks) $\beta^{-1} \neq \emptyset$.
- (c) (1 mark) β^{-1} has the property (C2) of a cut.

Note. The above has some similarities with Problem 2 of Homework 3.

Solution. The principle behind the expression to derive in part (a) is that in any ordered field (\mathbb{F}, \leq) , if an element x > 0, then -x < 0 and, moreover, for any $x \neq 0$, $-(-x)^{-1} = x$.

Thus, to solve part (a), we need to find an expresion for $-(-\beta)^{-1}$. By definition:

$$-(-\beta)^{-1} = \{ x \in \mathbb{Q} : \exists r_1 \in \mathbb{Q}^+ \text{ s.t. } -(x+r_1) \notin (-\beta)^{-1} \},$$
 (2)

$$(-\beta)^{-1} = \{ y \in \mathbb{Q} : \exists r_2 \in \mathbb{Q} \setminus (-\beta) \text{ s.t. } 1/y > r_2 \} \cup 0^* \cup \{0\}.$$
 (3)

For (3), we apply (1) to $(-\beta)$. Since, as β is a negative cut, $(-\beta)$ is presumed positive and we substitute (by the principle stated above) α by $(-\beta)$ in (3). By negation and by de Morgan's law:

$$r_2 \in \mathbb{Q} \setminus (-\beta) \iff -(r_2 + r_3) \in \beta \quad \forall r_3 \in \mathbb{Q}^+,$$
 (4)

$$-(x+r_1) \notin (-\beta)^{-1} \iff -(x+r_1) > 0 \text{ and } \frac{1}{-(x+r_1)} \le r_2 \quad \forall r_2 \in \mathbb{Q} \setminus (-\beta).$$
 (5)

By (4), $r_2 > 0$ whenever $r_2 \in \mathbb{Q} \setminus (-\beta)$. Thus, the inequalities in (5) can e restated as

$$x < -r$$
 and $x \le -r_1 - \frac{1}{r_2} \quad \forall r_2 \in \mathbb{Q} \setminus (-\beta).$

Combining this with (2)–(4) gives us the desired expression for β^{-1} :

$$\beta^{-1} := \left\{ x \in \mathbb{Q} : \text{for some } r_1 \in \mathbb{Q}^+, \ x < -r_1, \text{ and} \right. \\ \left. x \le -r_1 - \frac{1}{r_2} \quad \forall r_2 \in \mathbb{Q}^+ \text{ s.t.} - (r_2 + r_3) \in \beta \ \forall r_3 \in \mathbb{Q}^+ \right\}$$
 (6)

As $\beta < 0^*$, by definition $\exists \tau \in 0^*$ such that $\tau \notin \beta$. Now, if $\exists z \in \beta$ such that $\tau \leq z$, then by the

property (C2) of β , we would get $\tau \in \beta$, which is a contradiction. We have just shown that

$$z < \tau < 0 \quad \forall z \in \beta. \tag{7}$$

As $\{r_2 \in \mathbb{Q}^+ : -r_2 - r_3 \in \beta \ \forall r_3 \in \mathbb{Q}^+\} \subseteq \{r_2 \in \mathbb{Q}^+ : -r_2 + (\tau/2) \in \beta\}$, if we can produce an $x \in \mathbb{Q}$ such that

(*) for some
$$r_1 \in \mathbb{Q}^+$$
, $x \le -r_1 - \frac{1}{r_2} \ \forall r_2 \in \mathbb{Q}^+ \text{ s.t. } -r_2 + (\tau/2) \in \beta$,

then x would satisfy all the conditions stated in (6) and would hence be in β^{-1} . But note that for any $r_2 \in \mathbb{Q}^+$ s.t. $-r_2 + (\tau/2) \in \beta$:

$$-r_2 + (\tau/2) < \tau$$
 [by the inequality (7) above]
 $\implies -(1/r_2) > 2/\tau$ [by the properties of an ordered field]

and this holds for any $r_2 \in \mathbb{Q}^+$ s.t. $-r_2 + (\tau/2) \in \beta$. So, $-1 + (2/\tau)$ satisfies (*) with $r_1 = 1$. By the statement following (*), we have $-1 + (2/\tau) \in \beta^{-1}$, whence the latter is non-empty.

Property (C2) is **immediate** from
$$(6)$$
.