Probleem 1:

(a)

$$f(x) = (1+x^3)^{1/2} \implies f'(x) = \frac{3}{2} \frac{x^2}{(1+x^3)^{1/2}}$$

Dus $f'(1) = \frac{3}{2\sqrt{2}}$ en $f'(3) = \frac{27}{2\sqrt{28}}$. Volgens die Euler-Maclaurin foutafskatting,

$$I - T_n \approx -\frac{h^2}{12} \left(\frac{27}{2\sqrt{28}} - \frac{3}{2\sqrt{2}} \right) = -0.1242166684 \, h^2.$$

Ons vereis dat die absolute fout nie groter as 10^{-4} moet wees nie, dus

$$|I - T_n| \le 10^{-4} \implies h \le 0.02837 \implies n = \frac{b - a}{h} \ge 70.5.$$

Gebruik dus 71 intervalle.

(b)

Aanvaar $I-T_n=Ch^2$, dus $I-T_{2n}=C(\frac{h}{2})^2=C\frac{h^2}{4}$. Elimineer I deur die twee vergelykings van mekaar af te trek. Dan $T_{2n}-T_n=\frac{3}{4}Ch^2$. Dus

$$C = \frac{4}{3} \left(\frac{T_{2n} - T_n}{h^2} \right).$$

Met n=4 is $h=\frac{1}{2},\,T_4=6.26094238308067$ en $T_8=6.23771877158169.$ Dus

$$C = \frac{4}{3}(T_8 - T_4) \cdot 4 = -0.1238592613.$$

[LW: Dit is baie naby aan die skatting van deel (a).]

Ons vereis weer dat die absolute fout nie groter as 10^{-4} moet wees nie, dus

$$|Ch^2| \le 10^{-4} \implies h \le 0.02841 \implies n = \frac{b-a}{h} \ge 70.4.$$

Gebruik dus 71 intervalle.

(c)

Die volgende stukkie kode bevestig dat 71 intervalle inderdaad die gevraagde akkuraatheid lewer:

Die 71 intervalle van die metodes van dele (a) en (b) is dus baie nader aan die kol as die 95 intervalle van Huiswerk 10, Probleem 3.

(d)

Aanvaar $I-S_n=Ch^4$, dus $I-S_{2n}=C(\frac{h}{2})^4=C\frac{h^4}{16}$. Elinimeer I deur die twee vergelykings van mekaar af te trek. Dan $S_{2n}-S_n=\frac{15}{16}Ch^4$. Dus

$$C = \frac{16}{15} \left(\frac{S_{2n} - S_n}{h^4} \right).$$

Met n=4 is $h=\frac{1}{2},\, S_4=6.23030381335719$ en $S_8=6.22997756774869$. Dus

$$C = \frac{16}{15}(S_8 - S_4) \cdot 16 = -0.00556792505173.$$

Ons vereis nou dat die absolute fout nie groter as 10^{-10} moet wees nie, dus

$$|Ch^4| \le 10^{-10} \implies h \le 0.01158 \implies n = \frac{b-a}{h} \ge 172.7.$$

Gebruik dus 174 intervalle. (Nie 173 nie, die Simpsonreël moet 'n ewe aantal intervalle hê!)

Die volgende kode wys dat 162 intervalle inderdaad genoeg is:

```
>> for n = 160:2:174
       S = simpson(f,1,3,n); disp([n abs(S-6.229959387883636)])
   end
       1.0147e-010
  160
       9.6549e-011
  164
       9.1926e-011
  166
       8.7575e-011
  168
       8.3477e-011
       7.9618e-011
  170
  172
       7.5980e-011
  174
       7.2544e-011
```

Dit is bietjie minder as ons geskatte 174 intervalle, maar ons skatting was nie te ver van die kol nie.

[As S_8 en S_{16} instede van S_4 en S_8 gebruik word, word C = -0.0047, en dan word n = 166 intervalle verkry, wat nader aan die kol is.]

Probleem 2:

(a)

Stel $x=3\cos t$ en $y=2\sin t$ in die linkerkant van die vergelyking,

$$4x^{2} + 9y^{2} = 4 \cdot 9\cos^{2} t + 9 \cdot 4\sin^{2} t$$
$$= 36(\cos^{2} t + \sin^{2} t) = 36,$$

en dit is die regterkant.

(b)

Herleiding van die formule vir booglengte (interessantheidshalwe):

$$\Delta s^{2} = \Delta x^{2} + \Delta y^{2}$$

$$\left(\frac{\Delta s}{\Delta t}\right)^{2} = \left(\frac{\Delta x}{\Delta t}\right)^{2} + \left(\frac{\Delta y}{\Delta t}\right)^{2}$$

$$\Delta s = \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^{2} + \left(\frac{\Delta y}{\Delta t}\right)^{2}} \Delta t$$

Laat $\Delta t \to 0$ en integreer weerskante,

$$\int_0^s ds = \int_\alpha^\beta \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

Vir hierdie probleem is $x = 3\cos t$ en $y = 2\sin t$ sodat $\frac{\mathrm{d}x}{\mathrm{d}t} = -3\sin t$ en $\frac{\mathrm{d}y}{\mathrm{d}t} = 2\cos t$. Ons bereken die booglengte van een kwart van die ellips se omtrek, en vermenigvuldig met 4 om die omtrek van die hele ellips te kry:

$$s = 4 \int_0^{\frac{\pi}{2}} \sqrt{9 \sin^2 t + 4 \cos^2 t} \, dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{9 \sin^2 t + 4(1 - \sin^2 t)} \, dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{4 + 5 \sin^2 t} \, dt$$

$$= 8 \int_0^{\frac{\pi}{2}} \sqrt{1 + \frac{5}{4} \sin^2 t} \, dt$$

(c)

Die helling by t = 0 is dieselfde as die helling by $t = \frac{\pi}{2}$, dus sal die Trapesiumreël vinniger as normaalweg konvergeer.

(d)

n	T_n	$ I-T_n $
2	15.86350275618153	1.9368×10^{-3}
4	15.86543855406580	1.0352×10^{-6}
6	15.86543958840492	8.8567×10^{-10}
8	15.86543958928968	9.1482×10^{-13}
10	15.86543958929059	1.7764×10^{-15}

Konvergensie is inderdaad baie vinniger as wat normaalweg van die Trapesiumreël verwag word. As die aantal intervalle verdubbel word, verwag mens tipies dat die fout met 'n faktor 4 moet verminder. In hierdie probleem kry mens egter 'n faktor $\frac{1.0352\times10^{-6}}{9.1482\times10^{-13}} = 1.1316\times10^6$ as die aantal intervalle van 4 na 8 verdubbel word.

Probleem 3:

(a)

Laat $x = \alpha t + \beta$, met $x \in [1, 3]$ en $t \in [-1, 1]$. D.w.s.

$$\left.\begin{array}{ll}
1 &= \alpha(-1) + \beta \\
3 &= \alpha(1) + \beta
\end{array}\right\} \Longrightarrow \begin{array}{ll}
\beta = 2 \\
\alpha = 1.$$

Dus x = t + 2 en dx = dt, sodat

$$I = \int_{1}^{3} \sqrt{1+x^{3}} \, dx = \int_{-1}^{1} \sqrt{1+(t+2)^{3}} \, dt.$$

Tweepunt Gauss-reël:

$$G_2 = \sqrt{1 + \left(-\frac{1}{\sqrt{3}} + 2\right)^3} + \sqrt{1 + \left(\frac{1}{\sqrt{3}} + 2\right)^3}$$

$$= 6.226441785$$

$$|I - G_2| = 0.0035.$$

Driepunt Gauss-reël:

$$G_{3} = \frac{5}{9}\sqrt{1 + \left(-\sqrt{\frac{3}{5}} + 2\right)^{3}} + \frac{8}{9}\sqrt{1 + (0 + 2)^{3}} + \frac{5}{9}\sqrt{1 + \left(\sqrt{\frac{3}{5}} + 2\right)^{3}}$$

$$= 6.22993431873294$$

$$|I - G_{3}| = 0.000025.$$

(b)

```
>> I = 6.229959387883646;
>> F = inline('sqrt(1+(2+t).^3)');
>> [t,w] = gauss(2);
>> G2 = w*F(t)
>> abs(I-G2)

>> [t,w] = gauss(3);
>> G3 = w*F(t)
>> abs(I-G3)
```

Ons verkry dieselfde waardes vir G2, G3 en die absolute foute as in deel (a).

```
(c)
```

```
>> for n = 4:10
     [t,w] = gauss(n);
     G = w*F(t);
     disp([n G abs(G-I)])
end
```

n	G_n	$ I-G_n $
4	6.22996851633989	9.1285×10^{-6}
5	6.22995998871568	6.0083×10^{-7}
6	6.22995938095061	6.9330×10^{-9}
7	6.22995938464617	3.2375×10^{-9}
8	6.22995938774417	1.3946×10^{-10}
9	6.22995938789365	1.0011×10^{-11}
10	6.22995938788499	1.3562×10^{-12}

(d)

In Probleem 1(d) is gevind dat Simpson se reël 162 intervalle benodig om die integraal tot 10^{-10} te benader, d.w.s. 163 funksie evaluerings. In Probleem 3(c) is gevind dat 'n 9-punt Gauss-reël 'n absolute fout kleiner as 10^{-10} sal lewer, d.w.s. slegs 9 funksie evaluerings! Die Gauss-reël is dus baie meer effektief.