Aprendizaje Automático Aprendizaje de conceptos

Viviana Cotik 1er cuatrimestre 2021

Concepto

Subconjunto de objetos o eventos definidos sobre un conjunto mayor (aves/animales). ¿Cuáles de estos animales son aves?

Aprendizaje de conceptos (concept learning)

Concepto: un subconjunto de objetos o eventos definidos sobre un conjunto mayor.

Más formalmente, función booleana definida sobre el conjunto mayor.

Ej: EsAve: Animal -> Bool

Aprender un concepto: inducir automáticamente una función booleana a partir de citos. de ejemplos o datos (clasificados como positivos o negativos). Dado un nuevo caso, devuelve su clase.

Índice

- Concepto
- Aprendizaje de conceptos
 - Función objetivo; instancias; clases; atributos.
 - Hipótesis/modelo; espacio de hipótesis.
 - Ejemplo
- Aprendizaje inductivo
- Sesgo inductivo

Inducir automáticamente una función booleana a partir de ejemplos.

Se lo puede definir como un problema de <u>búsqueda de la hipótesis</u> que más se adecua a los <u>ejemplos mostrados</u> sobre un espacio predefinido de posibles hipótesis.

Construimos y evaluamos hipótesis para aproximar el concepto objetivo.

- -h = Vuela
- -h' = DosPatas
- h" = DosPatas ∧ TienePlumas ∧ PoneHuevos ∧ TienePico
- **—** ..

Las hipótesis pertenecen a un espacio de hipótesis H

Algoritmo de aprendizaje: buscar la hipótesis en H que mejor se ajuste a nuestros datos (D)

Aprendizaje de conceptos - Notación

Aprender una función booleana a partir de ejemplos o datos (clasificados como positivos o negativos).

Conjunto de instancias o casos: X

Concepto objetivo: $c: X \rightarrow \{+, -\}$

Experiencia: $E = \{(x, c(x))\}, x \in X$

Conjunto de datos: **D ⊂ E**

Conjunto de hipótesis posibles: H

Hipótesis: $h \in H / h : X \rightarrow \{+, -\}$

Objetivo: hallar h / h(x)=c(x)

Ejemplo

Ejemplos:

							COLICEL
							ļ
	Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
5	Sunny	Warm	Normal	Strong	Warm	Same	Yes
5	Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
1	Rainy	Cold	High	Strong	Warm	Change	No
5	Sunny	Warm	High	Strong	Cool	Change	Yes

CONCEPT

ATTRIBUTES

6 atributos

Sky = {Sunny, Cloudy, Rainy} Wind = {Strong, Week}

AirTemp = {Warm, Cold} Water = {Warm, Cool}

Humidity = {Normal, High} Forecast = {Same, Change}

Posibles datos: 3*2⁵ = 96

Tarea: predecir valor de Enjoy Sport para un día arbitrario basado en los valores de los atributos

Asumimos que hipótesis consisten en conjunción de valores de los atributos.

Cada hipótesis, vector de 6 dimensiones

Para cada atributo, la hipótesis contiene:

- valor en el rango del atributo
- ?: cualquier valor es válido
- Ø: ningún valor es válido

Pedro disfruta su deporte favorito los días fríos con alta humedad se representa así:

<Sky, Temp, Humd, Wind, Watr, Fcst>

<?, Cold, High, ?, ?, ? >

Hipótesis más general: <?, ?, ?, ?, ? (todos los días son ejs. positivos)

Hipótesis más específica: $\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$ (ningún día es un ej. positivo)

Tarea: aprender días en que EnjoySport = yes.

Forma: escribir el conjunto como conjunción de restricciones a partir de los

atributos de la instancia

Índice

- Concepto
- Aprendizaje de conceptos
- Aprendizaje inductivo
- Sesgo inductivo

Inferencia lógica

Inferir: establecer relación entre premisas y conclusiones

Razonamiento deductivo

- -Todos los hombres son mortales
- -Sócrates es hombre

Por lo tanto, Sócrates es mortal

p=> q

q

Razonamiento inductivo

- -Socrates es un hombre y es mortal.
- -Platón es un hombre y es mortal.
- -Aristóteles es un hombre y es mortal. Por lo tanto, probablemente todos los

hombres sean mortales

p => q

r => q

 $s \Rightarrow q$

todos en dominio =>q

Aprendizaje inductivo

Consiste en construir un modelo general a partir de información específica.

Principio de Aprendizaje Inductivo: Cualquier hipótesis (modelo) que aproxime bien a una función objetivo sobre un conjunto suficientemente grande de **datos** también aproximará bien a la función objetivo sobre **datos no observados**.

Aprendizaje supervisado

Dada una función objetivo f desconocida, queremos aproximarla mediante una hipótesis h (o modelo).

Los algoritmos de aprendizaje automático son procedimientos para entrenar modelos a partir de un conjunto de datos.

Índice

- Concepto
- Aprendizaje de conceptos
- Aprendizaje inductivo
- Sesgo inductivo

Sesgo inductivo (Bias)

Cantidad de posibles ejemplos: 3*2⁵= 96

Cantidad posible de hipótesis: $4*3^5 + 1 = 973$.

Cantidad posible de conceptos : 2^{96.} gigante.

Si proveemos espacio de hipótesis capaz de representar cada posible concepto tenemos partes de x, P(X) conceptos= $2^{|X|} = 2^{96}$

Hacemos una suposición para facilitar el algoritmo de ML: reducir el espacio de búsqueda. Para hacerlo asumimos que las hipótesis tiene una forma en particular.

Reducción de espacio de conceptos grande a uno chico: sesgo inductivo (inductive bias)

Todos los algoritmos de aprendizaje tienen sesgo inductivo.

Sesgo inductivo

Un conjunto finito de datos no suele alcanzar para inferir un modelo.

- El **sesgo inductivo** de un algoritmo de aprendizaje es el **conjunto de afirmaciones** que el algoritmo utiliza para construir un modelo.
- El sesgo inductivo incluye:
- forma de las hipótesis (número y tipo de parámetros);
- características de funcionamiento del algoritmo (cómo recorre el espacio de hipótesis hasta elegir un único modelo).

Resumen

- Concepto y Aprendizaje de Conceptos o Concept Learning
- Sesgo inductivo

Bibliografía

Mitchell, Cap. 2

Leer todo. Incluyendo

- Adquisición de conceptos como búsqueda
- Algoritmos
 - FIND-S
 - List-then-eliminate
 - Eliminación de candidatos