

Fig. 1

5/63

BEST AVAILABLE COPY

BEST AVAILABLE COPY

SEST AVAILABLE COPY

52/63

(1)

Src Yes Fyn Yrk Fgr Hck Lyn Lck Blk	MGSNKSKP-KDASQRRRSLEPAENVHGAGGGAFPASQTMGCIKSKENKSPAIKYRPENTPEPVSTSVSHYGAEPTTVSMGCVQCKDKEATKLTEERDGSLNQS-SGYRYGTDMGCVHCKEKISGKGQGGSGTGTPAH-PPSQYDPDMGCVFCKKLEPVATAKEDAGLEGDFRSYGAADHYGPD GGRSSCEDPGCPRDEERAPRMGCMKSKFLQVGGNTFSKTETSASPHCPVYVPDPTMGCIKSKGKDSLSDDGVDLKTQPVRNTERTIYVRDPTMGCGCSSHPEDDWMENIDVCENCHYPIVPLDGK
Src	PSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGGVTTFVALY
Yes	PCPSSSAKGTAVNFSSLSMTPFGGSSGVTPFGGASSSFSVVPSSYPAGLTGGVTIFVALY
Fyn	PTPQHYPSFGVTSIPNYNNFHAAGGQGLTVFGGVNSSSHTGTLRTRGGTGVTLFVALY
Yrk	PTQLSGAFTHIPDFNNFHAAAVSPPVPFSGPGFYPCNTLQAHSSITGGGVTLFIALY
Fgr	PTKARPAS-SFAHIPNYSNFSSQAINPGFLDSGTIRGVSGIGVTLFIALY
Hck	STIKPGPNSHNSNTPGIREAGSEDIIVVALY
Lyn	SNKQQRPVPESQLLPGQRFQTKDPEEQGDIVVALY
Lck	GTLLIRNGSEVRDPLVTYEGSNPPASPLQDNLVIALH
Blk	APPLPPLVVFNHLTPPPPDEHLDEDKHFVVALY
Src	SH3 DYESRTETDLSFKKGERLQIVNNTEGDWWLAHSLSTGQTGYIPSNYVAPSDSIQAEEWYF
Yes	DYEARTTEDLSFKKGERFQIINNTEGDWWEARSIATGKNGYIPSNYVAPADSIQAEEWYF
Fyn	DYEARTEDDLSFHKGEKFQILNSSEGDWWEARSLTTGETGYIPSNYVAPVDSIQAEEWYF
Yrk	DYEARTEDDLSFQKGEKFHIINNTEGDWWEARSLSSGATGYIPSNYVAPVDSIQAEEWYF
Fgr	DYEARTEDDLTFTKGEKFHILNNTEGDWWEARSLSSGKTGCIPSNYVAPVDSIQAEEWYF
Hck	DYEAIHHEDLSFQKGDQMVVLEES-GEWWKARSLATRKEGYIPSNYVARVDSLETEEWFF
Lyn	PYDGIHPDDLSFKKGEKMKVLEEH-GEWWKAKSLLTKKEGFIPSNYVAKLNTLETEEWFF
Lck	SYEPSHDGDLGFEKGEPLRILEQS-GEWWKAQSLTTGQEGFIPFNFVAKANSLEPEPWFF
B1k	DYTAMNDRDLQMLKGEKLQVLKGT-GDWWLARSLVTGREGYVPSNFVARVESLEMERWFF
	* **: **: ::: *:** *:*: : *:* *:*
	SH2
Src	GKITRRESERLLLNAENPRGTFLVRESETTKGAYCLSVSDFDNAKGLNVKHYKIRKLDSG
Yes	GKMGRKDAERLLLNPGNQRGIFLVRESETTKGAYSLSIRDWDEIRGDNVKHYKIRKLDNG
Fyn	GKLGRKDAERQLLSFGNPRGTFLIRESETTKGAYSLSIRDWDDMKGDHVKHYKIRKLDNG
Yrk	GKIGRKDAERQLLCHGNCRGTFLIRESETTKGAYSLSIRDWDEAKGDHVKHYKIRKLDSG
Fgr	GKIGRKDAERQLLSPGNPQGAFLIRESETTKGAYSLSIRDWDQTRGDHVKHYKIRKLDMG
Hck	KGISRKDAERQLLAPGNMLGSFMIRDSETTKGSYSLSVRDYDPRQGDTVKHYKIRTLDNG
Lyn	KDITRKDAERQLLAPGNSAGAFLIRESETLKGSFSLSVRDFDPVHGDVIKHYKIRSLDNG
Lck	KNLSRKDAERQLLAPGNTHGSFLIRESESTAGSFSLSVRDFDQNQGEVVKHYKIRNLDNG
B1k	RSQGRKEAERQLLAPINKAGSFLIRESETNKGAFSLSVKDVT-TQGELIKHYKIRCLDEG
	*:::** **
Src	GFYITSRTQFNSLQQLVAYYSKHADGLCHRLTTVCPTSKPQTQGLAKDAWEIPRESL
Yes	GYYITTRAQFDTLQKLVKHYTEHADGLCHKLTTVCPTVKPQTQGLAKDAWEIPRESL
Fyn	GYYITTRAQFETLQQLVQHYSERAAGLCCRLVVPCHKGMPRLTDLSVKTKDVWEIPRESL
Yrk	GYYITTRAQFDTIQQLVQHYIERAAGLCCRLAVPCPKGTPKLADLSVKTKDVWEIPRESL
Fgr	GYYITTRVQFNSVQELVQHYMEVNDGLCNLLIAPCTIMKPQTLGLAKDAWEISRSSI
Hck	GFYISPRSTFSTLQELVDHYKKGNDGLCQKLSVPCMSSKPQKPWEKDAWEIPRESL
Lyn	GYYISPRITFPCISDMIKHYQKQADGLCRRLEKACISPKPQKPWDKDAWEIPRESI
Lck	GFYISPRITFPGLHELVRHYTNASDGLCTRLSRPCQTQKPQKPWWEDEWEVPRETL
B1k	GYYISPRITFPSLQALVQHYSKKGDGLCQRLTLPCVRPAPQNPWAQDEWEIPRQSL *:**:.* * : :: :* : *** * * : :: :* **:.*::

Fig. 18

(2)

Fig. 18 (Continuation)

Cell Line		_	MTS					ATP	
	day1 (1h)da	ay1 (4h)	day2 (1h)da	ay2 (4h)	day3 (1h)d	ay3 (4h)	day1	day2	day3
parameters									
ZM74.6 (con)									
mean(-tet)	0,164	0,540	0,278	0,777	0,317	1,094	214859	361143	582472
mean(+tet)	0,163	0,585	0,279	0,819	0,337	1,140	214907	359070	587691
SD(-tet)	0,032	0,038	0,038	0,044	0,027	0,082	8968	31090	27383
SD(+tet)	0,011	0,036	0,021	0,025	0,026	0,098	7140	11126	30183
+/-tet (means)	99%	109%	100%	105%	107%	104%	100%	99%	101%
Z '	-128,00	-3,93	-176,00	-3,93	-6,95	-10,74	-1005,75	-60,09	-32,09
ZM75.7 (Src)									
mean(-tet)	0,106	0,458	0,148	0,534	0,126	0,586	234509	325403	448831
mean(+tet)	0,132	0,485	0,145	0,497	0,123	0,396	215792	280839	233775
SD(-tet)	0,029	0,052	0,021	0,008	0,025	0,042	14194	23609	13343
SD(+tet)	0,004	0,006	0,011	0,025	0,013	0,014	10006	6943	1441
+/-tet (means)	124%	106%	98%	93%	98%	68%		86%	52%
Z' .	-2,81	-5,44	-31,00	-1,68	-37,00	0,12	-2,88	-1,06	0,79
ZM75.7 (low dens.)									
mean(-tet)	0,053	0,254	0,079	0,287	0,085	0,358	116690	191699	265961
mean(+tet)	0,058	0,252	0,075	0,261	0,083	0,242	125842	163482	135240
SD(-tet)	0,010	0,029	0,004	0,025	0,012	0,019	1977	8464	3717
SD(+tet)	0,013	0,029	0,003	0,004	0,012	0,018	12953	2147	7198
+/-tet (means)	110%	99%	95%	91%	98%	68%	108%	85%	51%
Z'	-12,80	-86,00	-4,25	-2,35	-35,00	0,04	-3,89	-0,13	0,75
ZM76.3 (Src-KA)									
mean(-tet)	0,205	0,658	0,374	1,115	0,380	1,453	259818	530924	825367
mean(+tet)	0,279	0,674	0,245	0,803	0,255	1,096	252037	390461	593572
SD(-tet)	0,054	0,018	0,041	0,101	0,012	0,108	16276	23059	31613
SD(+tet)	0,067	0,053	0,020	0,078	0,019	0,102	16373	24307	47037
+/-tet (means)	136%	103%	65%	72%	67%	75%	97%	74%	72%
Z '	-3,91	-12,31	-0,42	-0,72	0,26	-0,76	-11,59	-0,01	-0,02
ZM76.3 (low dens.)									
mean(-tet)	0,193	0,504	0,264	0,665	0,296	0,981	151349	284572	597675
mean(+tet)	0,230	0,528	0,218	0,555	0,257	0,836	143889	224142	361517
SD(-tet)	0,039	0,034	0,032	0,043	0,013	0,048	6112	16956	74316
SD(+tet)	0,061	0,080	0,032	0,032	0,032	0,088	6201	5085	34512
+/-tet (means)	119%	105%	83%	83%	87%	85%	95%	79%	60%
Z'	-7,11	-13,25	-3,17	-1,05	-2,46	-1,81	-3,95	-0,09	-0,38

Fig. 19 – (Table 2)

Sheet 1

Cell Line			MTS	3				ATP	
T.	day1 (1h)day	/1 (4h)	day2 (1h)d	ay2 (4h)	day3 (1h)c	lay3 (4h)	day1	day2	day3
parameters									
ZM77.2 (Src-YF)					_				
mean(-tet)	0,244	0,837	0,411	1,190	0,422	1,354	301566	470629	749300
mean(+tet)	0,187	0,464	0,172	0,373	0,130	0,306	205115	171219	95946
SD(-tet)	0,049	0,147	0,053	0,066	0,021	0,055	8963	23671	115199
SD(+tet)	0,054	0,057	0,009	0,015	0,011	0,014	8915	8522	9223
+/-tet (means)	77%	55%	42%	31%	31%	23%	68%	36%	13%
Z '	-4,42	-0,64	0,22	0,70	0,67	0,80	0,44	0,68	0,43
ZM77.2 (low dens.)									
mean(-tet)	0,162	0,453	0,233	0,587	0,249	0,714	163222	280873	425838
mean(+tet)	0,098	0,280	0,133	0,260	0,137	0,255	106708	91365	48423
SD(-tet)	0,048	0,082	0,028	0,066	0,034	0,051	5612	12255	20592
SD(+tet)	0,029	0,051	0,036	0,046	0,029	0,019	6547	5533	2887
+/-tet (means)	60%	62%	57%	44%	55%	36%	65%	33%	11%
<u>Z'</u>	-2,61	-1,31	-0,92	-0,03	-0,69	0,54	0,35	0,72	0,81
ZM77.8 (Src-YF)									
mean(-tet)	0,294	1,027	0,479	1,337	0,447	1,583	412584	584915	934867
mean(+tet)	0,284	0,634	0,132	0,290	0,125	0,265	303942	183604	91808
SD(-tet)	0,014	0,061	0,042	0,059	0,042	0,037	14686	34945	24413
SD(+tet)	0,038	0,053	0,008	0,021	0,005	0,014	15481	5598	6186
+/-tet (means)	97%	62%	27%	22%	28%	17%	74%	31%	10%
z'	-14,60	0,13	0,57	0,77	0,56	0,88	0,17	0,70	0,89

Fig. 19 – (Table 2) Sheet 2 (Continuation)

			MTS			ATP	
Cell line	compound	day1 (4h)	day2 (4h)	day3 (4h)	day1	day2	day3
	parameters					_	
ZM74.6 (con)	(DMSO)						
	mean(-tet)	1,372	2,029	2,010	743351	981937	1473106
	mean(+tet)	1,498	2,187	2,331	739807	976312	1473711
	SD(-tet)	0,047	0,047	0,159	29926	70808	49456
	SD(+tet)	0,060	0,066	0,152	43708	66856	58424
	+/-tet (means)	109%	108%	116%	100%	99%	100%
	Z'	-1,55	-1,15	-1,91	-61,33	-72,42	-533,94
ZM77.8 (Src-YF)	(DMSO)						
	mean(-tet)	1,642		2,198	724364	1108823	1449098
	mean(+tet)	0,915	0,357	0,100	684408	440505	18986
	SD(-tet)	0,052	0,227	0,034	44042	30574	2960
	SD(+tet)	0,158	0,023	0,001	35764	7324	858
	+/-tet (means)	56%	16%	5%	94%	40%	13%
	Z '	0,13	0,59	0,95	-4,99	0,83	0,9
	10μM PP1-Chr.						
	mean(-tet)	1,593		1,880	724767		136926
	mean(+tet)	1,768	1,711	0,580	797267	1012586	59342
	SD(-tet)	0,101	0,170	0,126	54184	29308	5602
	SD(+tet)	0,035	0,039	0,021	56785	93100	539
	+/-tet (means)	111%	75%	31%	110%	88%	43%
	z'	-1,33	-0,10	0,66	-3,59	-1,74	0,70
	toxicity	0,03	-0,05	0,14	0,00	-0,03	0,0
	suppression	125%	70%	28%	281%	81%	35%
	Z' (suppression)	0,36	0,86	0,87	-1,47	0,46	0,9
	5μM PP2						
	mean(-tet)	1,744	2,216	1,990	707571	1124429	141766
	mean(+tet)	1,635	1,774	0,681	1069818	1026247	62863
	SD(-tet)	0,109	0,160	0,174	27577	19908	6761
	SD(+tet)	0,075	0,208	0,010	105004	27546	961
	+/-tet (means)	94%	80%	34%	151%	91%	449
	Z'	-4,06	-1,50	0,58	-0,10	-0,45	0,7
	toxicity	-0,06	-0,02	0,09	0,02	-0,01	0,0
	suppression	86%	76%	31%	1028%	86%	369
	Z' (suppression) 1 <i>µ</i> M PP2	-0,10	0,51	0,94	-0,05	0,82	0,8
	mean(-tet)	1,584	2,290	2,069	832208	1246781	133786
	mean(+tet)	1,485	0,621	0,242		720309	44428
	SD(-tet)	0,078	0,092	0,069	28984	29477	3188
	SD(+tet)	0,081		0,031	59129	32154	1296
	+/-tet (means)	94%	27%	12%	98%	58%	33%
	Ż,	-3,82	0,74	0,84	-11,93	0,65	0,8
	toxicity	0,04	-0,05	0,06	-0,15	-0,12	0,0
	suppression	86%	13%	7%	55%	30%	23%
	Z' (suppression) 40µM D5	-0,16	0,05	0,35	-10,81	0,46	0,7
	mean(-tet)	0,985	2,282	2,148	702816	946287	128479
	mean(+tet)	1,296	0,660	0,137	781108	661925	17332
	SD(-tet)	0,087	0,140	0,149	48730	14168	4035
	SD(+tet)	0,044		0,007	32815	1	1107
	+/-tet (means)	132%	29%	6%	111%	70%	13%
	Ż'	-0,26	0,69	0,77	-2,12	0,68	0,80
	toxicity	0,40	-0,05	0,02	0,03	0,15	0,1
	suppression	171%	15%	2%	302%	1	0%
	Z' (suppression)	0,44	0,44	0,39			-10,24

Fig. 20 – (Table 3)

Sheet 1

		1	MTS			ATP	
Cell line	compound	day1 (4h)	day2 (4h)	day3 (4h)	day1	day2	day3
	parameters						
ZM75.7 (Src)	(DMSO)						
, ,	mean(-tet)	1,016	1,488	2,889	609260	834114	1068812
	mean(+tet)	1,210	1,461	0,753		814126	
	SD(-tet)	0,044	0,097	0,165		34484	12829
	SD(+tet)	0,067	0,027	0,090		18200	
	+/-tet (means)	119%	98%	26%		98%	
	7' (11104110)	-0,72	-12,78	0,64		-6,91	0,87
	10μM PP1-Chr.	0,72	12,10	0,04	3,27	-0,51	0,0.
	mean(-tet)	0,949	1,553	2,225	547479	739210	932958
	mean(+tet)	1,087	1,896	1,909		847182	
	SD(-tet)	0,081	0,084	0,179		48654	83074
		I .					
	SD(+tet)	0,058	0,057	0,161	44549	55350	
	+/-tet (means)	115%	122%	86%	1	115%	
	£	-2,02	-0,23	-2,23		-1,89	
	toxicity		-0,04	0,23		0,11	0,13
	suppression		1317%	81%		710%	
	Z' (suppression)		0,31	0,48	-2,77	-0,71	0,55
	5μM PP2						
	mean(-tet)	0,983	1,279	2,772	606982	774481	997338
	mean(+tet)	1,029	1,650	2,246	600026	815204	930542
	SD(-tet)	0,039	0,090	0,073	3647	19773	21824
	SD(+tet)	0,099	0,012	0,082	53019	10464	29599
	+/-tet (means)	105%	129%	81%	99%	105%	93%
	z'	-8,00	0,18	0,12	-23,44	-1,23	-1,31
	toxicity		0,14	0,04	0,00	0,07	0,07
	suppression]	1699%	74%	59%	319%	86%
	Z' (suppression)		0,73	0,67	-29,02	-0,38	0,73
	1 <i>μ</i> M PP2						
	mean(-tet)	0,945	1,336	2,954	566569	718352	994566
	mean(+tet)	1,070	1,490	1,736		853362	786058
	SD(-tet)	0,040	0,123	0,099		38281	31146
	SD(+tet)	0,113	0,017	0,232	16555	49366	14042
	+/-tet (means)	113%	111%	59%	1	119%	79%
	z' ,	-2,67	-1,73	0,18		-0,95	
	toxicity		0,10	-0,02		0,14	0,07
	suppression		735%	44%		884%	
	Z' (suppression)	-8,49	0,31	-0,01	-8,64	-0,28	
	40µM D5	0,43	0,01	0,01	-0,04	-0,20	0,70
	mean(-tet)	0,923	1,499	2,966	568328	799400	942749
	mean(+tet)	1,118	1,366	0,728		802052	534819
	, ,						
	SD(-tet)	0,048		0,118		19567	63522
	SD(+tet)	0,082	0,102	0,088		37396	25533
	+/-tet (means)	121%	91%	25%	110%	100%	57%
	Z '	-1,00	-3,62	0,72	-2,59	-63,44	0,35
	toxicity		-0,01	-0,03	1	0,04	0,12
	suppression		-389%	-2%	468%	114%	12%
	Z' (suppression)	<u></u>	-2,66	-11,01	-2,41	-6,54	-0,90

Fig. 20 – (Table 3)

Sheet 2 (Continuation)

BEST AVAILABLE COPY

			MTS			ATP	
Cell line	compound	day1 (4h)	day2 (4h)	day3 (4h)	day1	day2	day3
	parameters					-	
ZM76.3 (Src-KA)	(DMSO)						
,	mean(-tet)	0,981	1,468	1,960	449055	768114	111452
	mean(+tet)	0,756		1,766		681683	94274
	SD(-tet)	0,025		0,008		15534	1676
	SD(+tet)	0,023	0,054	0,129		10225	2404
	+/-tet (means)	77%	74%	90%	94%	89%	85
	Z'	0,36		-1,12		0,11	0,2
	10μM PP1-Chr.	0,50	0,50	-1,12	-0,00	0,11	0,4
	mean(-tet)	1,134	1,590	2,078	439602	677688	111066
	1	0,670	0,785	2,076 1,524		659560	97115
	mean(+tet)	1	· ·				
	SD(-tet)	0,039	0,104	0,162		10350	3577
	SD(+tet)	0,034	0,006	0,127		20004	3007
	+/-tet (means)	59%	49%	73%	101%	97%	87
	Z'	0,53	0,59	-0,56		-4,02	-0,4
	toxicity	-0,16	-0,08	-0,06		0,12	0,0
	suppression	-78%	-98%	-169%		76%	19
	Z' (suppression) 5µM PP2	0,11	0,51	-1,27	-0,52	-0,50	-4,
	mean(-tet)	0,903	1,434	1,849	446210	669124	10392
	mean(+tet)	0,645	0,786	1,303	421013	578877	8408
	SD(-tet)	0,013	0,031	0,060		1464	4569
	SD(+tet)	0,013	0,023	0,205		8552	1284
	+/-tet (means)	71%	55%	70%	94%	87%	81
	z' `	0,70	0,75	-0,46		0,67	0,
	toxicity	0,08	0,02	0,06	0,01	0,13	0,0
	suppression	-25%	-77%	-198%	4%	-20%	-24
	Z' (suppression)	-1,01	0,19	-1,70		-2,50	-1,7
	1μM PP2	.,,,,	3,10	1,10	30,11	2,00	•,•
	mean(-tet)	1,073	1,787	2,093	439927	673524	104732
	mean(+tet)	0,706	0,100	1,601	417412	621696	93125
	SD(-tet)	0,136	0,060	0,121	12325	24672	3179
	SD(+tet)	0,115	0,191	0,117	17244	43672	4279
	+/-tet (means)	66%	56%	76%	95%	92%	89
	' 2'	-1,05	0,55	-0,45	-2,94	-2,96	-0,9
	toxicity	-0,09	-0,22	-0,07	0,02	0,12	0,0
	suppression	-49%	-270%	-137%	13%	32%	28
	Z' (suppression)	-2,48	0,37	-1,68	-20,73	-5,59	-3,3
	40μM D5						
	mean(-tet)	0,943	1,467	1,923	408428	728812	101075
	mean(+tet)	0,853	1,136	1,705	409222	589496	86473
	SD(-tet)	0,017	0,023	0,212	14044	21274	49
	SD(+tet)	0,073	0,111	0,119	11174	23622	4658
	+/-tet (means)	90%	77%	89%	100%	81%	86
	Z'	-2,00	-0,21	-3,56	-94,28	0,03	0,0
	toxicity	0,04	0,00	0,02	0,09	0,05	0,0
	suppression	58%	12%	-15%	103%	-70%	6
	Z' (suppression)	-1,26	-10,31	-25,63		-70 /8 -0,74	-20,0

Fig. 20 – (Table 3)

Sheet 3 (Continuation)

5.

			MTS			ATP	
Cell line	compound	day1 (4h)	day2 (4h)	day3 (4h)	day1	day2	day3
	parameters						
ZM77.8 (Src-YF)	(DMSO)						
(suspens.)	mean(-tet)				338971	361136	298794
	mean(+tet)				373161	265548	48428
	SD(-tet)				35198	44643	40668
	SD(+tet)		,		46667	81946	24977
	+/-tet (means)				110%	74%	16%
	z '				-6,18	-2,97	0,21
	10μM PP1-Chr.	.					
	mean(-tet)				315408	373406	321703
	mean(+tet)				371381	328824	204561
	SD(-tet)				21546	40847	46249
	SD(+tet)				45929	44887	41451
	+/-tet (means)				118%	88%	64%
	Z'				-2,62	-4,77	-1,25
	toxicity					-0,03	-0,08
	suppression					55%	57%
	Z' (suppression)	_				-6,17	-0,35

Fig. 20. – (Table 3)

Sheet 4 (Continuation)

Coli Iline			L														
eens) 86113 1 25108 14986 129% 14986 14986 14986 12521 2521 2521 2521 2521 2521 2521 25	Il line	compound(s) parameters	day1 (1h)d	ay1 (2h)d	ay1 (3h)d	ay1 (4h)da	3y2 (1h)da	CTB 3y2 (2h)da	ay2 (3h)d.	ay2 (4h)¢	lay3 (1h)d	ay3 (2h)di	вуЗ (Зћ)d	lay3 (4h)	day1	ATP day2 (day3
B6113 B611	1170.21 (Src-TQ/)	(F)(DMSO)												Ī			Γ
(con)		mean(-tet)	86113	185876	281061	373139	68900	177108	304163	381943	311151	574626		8681490	2561664	918297	33065
(a) 14986 2221 2221 2221 2221 222221 222221 222221 222221 222221 222221 222221 222221 222221 222222		mean(+tet)	25108	43333	68534	86620	10096	15357	24203	31319	12747	16575		21033	1634951	14769 (31177
b) 2221 0,15 0,15 0,15 36551 36551 36551 3758 1000) -0,20 9% 1000) -0,10 1000		SD(-tet)	14986	13977	23174	24423	6403	23293	19918	15220	54092	65011		39498	13257	20506	9434
by M PP1-Chr. 103525 1 36551 27439 36551 27439 3545 3545 3545 3545 3545 3545 3545 3		SD(+tet)	2221	2619	5428	7408	2418	1862	2224	2354	3136	1838		3441	4260	2986	6699
0.15 0.15		+/-tet (means)	29%	23%	24%	23%	15%	%6	8%	88	4%	3%	%	2% 64% 23% 8%	64%	23%	8%
July PP1-Chr. 103525 1 36551 27439 27439 27439 27439 27563 3845 3845 3845 3845 3845 3845 3845 384		Ž	0,15	0,65	0,60	0,67	0,55	0,53	9,70	0,85	0,42	0,64		0,85	0,43	9,10	63,0
(c) 103225 1 103225 1 34539 27439 27439 3845 1 35% (c) 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5µM PP2+ 10µM PP1-Chr	.,														
(a) 36551 3645 3445 3445 3445 3445 3445 3446 3		mean(-tet)	103525	181753	267372	362521	139340	238220	360585	433943	272780	503400		757083	2757554	907756	35593
27439 3845 3845 3846 3846 3846 3846 3846 3846 3846 3846		mean(+tet)	36551	60348	86714	117825	5174	10958	37242	44778	16091	22245		31895	2404581	57810	15764
(on) (a) (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		SD(-tet)	27439	12548	22216	30801	30188	27936	26109	21931	58382	43632		24894	12184	19074	49932
10 25%		SD(+tet)	3845	4354	4582	404	3107	4417	3936	3426	2617	4248		5097	11243	8893	5371
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		+/-tet (means)	35%	33%	35%	33%	4%	2%	10%	10%	%9	4%		4%	87%	35%	13%
(on) (-2.07) 100, 2.07 100, 2.07 100, 31 100, 31 100, 31 100, 31 100, 32		Ž	-0,40	0,58	0,55	0,54	0,26	0,57	0,72	0,80	0,29	0.70		0,88	-0,99	0,75	0.72
(on) 29% 29025 1 29025 1 29025 1 29025 1 29025 1 29025 1 2 29025 1 2 29025 1 2 29025 1 2 29025 1 2 29025 1 2 29025 1 2 29029 2		toxicity	-0,20	0,02	0,05	0,03	7,02	-0,35	0,19	ó. 4	0,12	0,12		0,13	-0.08	000	0.10
(a) 1.507 (b) 1.507 (c) 1.40 (suppression	%6	13%	11%	12%	-13%	4%	3%	2%	5%	2%		2%	65%	15%	2%
(a) 59025 1 29		Z' (suppression)	-2,07	-0,15	-0,36	-0,27	-0,57	-1,14	1,31	-0,99	-2,27	-1,28	-1,37	-0,79 0,26 -0,30 -0,11	0,26	-0,30	-0,11
(on) (on) (on) (on) (on) (on) (on) (on)		40µM D5															
(a) 1000) 0.35 (a) 1000 (a) 10		mean(-tet)	59025	129809	194684	267404	60324	129829	221207	285984	192612	376851	469539	602212	2356573	8388758	30398
(5037 6387 6987 6031 28% 6031 28% 6035 6035 600 600 600 600 600 600 600 60		mean(+tet)	29053	59415	86858	121795	13158	25129	38482	48913	16581	24922	29246	36825	2081891	65319	9277
(on) (5001) 49% (b) 49% (c) 14	-	SD(-tet)	2969	13785	23997	29607	11555	15742	22790	24871	17644	23636	38570	46094	9671	2690	4826
(a) 49% (b) 49% (c) 14 (c) 14 (c) 14 (c) 14 (c) 15 (c) 15 (c) 16		SD(+tet)	5001	4004	3666	4679	2516	2283	3371	3467	2914	3350	3908	4383	2849	14611	3801
(con)		+/-tet (means)	49%	46%	45%	46%	22%	19%	17%	17%	%6	7%	%9	% 9	88%	43%	17%
(c) 28% (c) 28		Ž	-0,14	0,24	0,23	0,29	0,11	0,48	0,57	0,64	0,65	0,77	0,71	0,73	-0,37	69'0	0,76
(on) 0.29% 10.65 10.00 1		toxicity	0,31	0,30	0,31	0,28	0,12	0.27	0,27	0.25	0.38	0.34	0.33	0.31	0.08	0.22	0.24
(on) 0.65 (on) 0.66 (on) 0.29 (on) 0.35 (on) 0.35 (on) 0.35 (on) 0.35 (on) 0.35 (on) 0.29 (on) 0.29 (on) 0.29 (on) 0.29 (on) 0.29 (on) 0.29		suppression	28%	29%	27%	79%	8%	12%	10%	10%	2%	4%	4%	4%	%89	56%	10%
86697 1 52975 4711 3735 61% 61% 60,01 45% 60,01 6,35 60,03 3903 7167 3903 97% 600) 6,56 96% 9000		Z' (suppression)	-0,65	0,40	0,43	0,50	-2,22	0,21	0,28	0,38	99'0-	0,03	-0,0 40,0	0,09 0,65 0,12 0,49	9,0	0,12	0,49
(1) (28975 (1) (28975 (1) (28975 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		TUM 17-AAG	10000	000707	1010	00000	, ,	0,00	00000		,00,1			-,		1	
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		mean(-tet)	76000	0.0607	240/02	230027	48384	12340	226202	70007	1/4/361	33/652	431471	554614	59//812	632/25	818
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		SD(tot)	07870	2002	2/2/2	7.460	200	7/004	4004	2 2	32172	92288	17249	2000	202202	3,0000	0560
61% 61% 60,025 600) 6,035 601 6035		SD(-tet)	3735	500	15.0	2040	2002	200	070	0 0	12127	4304	24203	2000	866	20132	9230
(1) (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		+/-tet (means)	818	36,8	26.5	26.5	44%	43%	41%	41%	360	18%	18%	18%	96%	266	37,6
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		,	0.25	0.65	0.59	0.57	0.25	0.37	0.49	0.53	0.42	890	0.76	0.76	3 84	33	9
(1) (1) (2,8978 2,8089 2,8089 2,903 3,903		toxicity	0.01	0,11	0,12	0,10	0.30	0.37	0.33	0.30	0.44	0.41	0.38	0.36	0.15	0.26	0.27
(of 19978) 0,35 (of 19978) 1,36,36 (of 19978) 1,36,		suppression	45%	43%	45%	43%	34%	38%	36%	36%	17%	16%	16%	16%	88%	22%	31%
28978 (2808980 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (2808980 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089 (28089		Z' (suppression)	0,35	69'0	0,64	0,64	-0,19	0,30	0,52	0,63	0,42	0,70	0,75	0,75 0,58 0,70 0,47	0,58	0,70	0,47
28978 28978 28978 28978 28909 477 7167 7167 7167 7167 7167 7167 7167		1µM Radicicoi		!													
28089 2 7167 7167 7167 3 897% 97% 0.66 0.66 0.06 0.00		mean(-tet)	28978	80479	143848	208040	23984	53813	98255	130630	55854	121609		210961	2228122	4701129	37076
7167 7167 3903 3978 - 36,36 -1 0,66 96% 90%		mean(+tet)	28089	80037	143521	208802	19193	42280	78683	103955	41478	68851		104325	1961441	8837514	16974
3903 97% -36,36 -1 0,66 -96% 96% lon) 0,29		SD(-tet)	7167	11510	11810	11321	1437	4892	7496	9799	8290	11249		17102	9848	13100	5382
97% -36,36 -1 0,66 96% (on) 0,29		SD(+tet)	3903	4297	5234	6476	3478	5184	5095	5212	5792	9029		4142	3371	7433	4162
36,361 0,66 96% lon) 0,29		+/-tet (means)	%/6	%66	100%	101%	%08 80%	%6 <i>L</i>	80%	80%	74%	21%		49%	88 %	%9 ′	27%
0,56 96 (on) 0,29			-36,36	-106,29	-155,37	-27,67	-208	1,62	0,93	69'0	194	00	0,32	0,40 -0,49 -0,05 0,47	-0,49	-0,05	0,47
96% lon) 0,29		toxicity	0,66	0,57	0,49	44.	0,65	0,70	0,68	99'0	0,82	0,79		0,76	0,13	0,50	9,0
62'0		suppression	896	%66 61.0	%00L	85	%//	%!	78%	/8%	73%	25%		48%	%19	%69 *	23%
-		(subbression)	62'0	c/\3	0,/8	0,80	/L'0	0,54	0,75	0,81	0,51	0,70		0,85	0,61	0,72	0,85

Sheet 2 (Continuation)

Fig. 21 – (Table 4)

	727						1								9	
Cell line	compound(s) parameters	day1 (11),day1 (21),day1 (31),day1 (41),day2 (21),day2 (31),day2 (41),day3 (11),day3 (21),day3 (31),day3 (41)	lay1 (2h)di	ay1 (3h)d	ay1 (4h)d	ay2 (1h)d£	3y2 (2h)di	ay2 (3h)d.	ay2 (4h)c	lay3 (1h)d	lay3 (2h)d	ay3 (3h)d	ay3 (4h)	day1 day2		day3
ZM76.3 (Src-KA)(DMSO)	(A)(DMSO)															
	mean(-tet)	85137	212690	308486	458769	169271	321225	503254	597969	689004	1043142		1486974	360168688	353106	1063461
	mean(+tet)	69235	171904	249989	368416	126929	246859	385894	472102	476847	698222		1090515	325855594		933648
	SD(-tet)	30925	20046	21723	24337	20595	16811	33146	24905	31744	36323		34932	11095 34		5869
	SD(+tet)	6388	7774	9906	12309	11096	13255	14992	21693	44199	43743		63675	10574 20		1583
	+/-tet (means)	81%	81%	81%	%08	75%	71%	414%	%62	%69	%29	71%	73%	%98 %06 %EZ		88%
	ž	-6,04	-1,05	-0'28	-0,22	-1,25	-0.21	-0.23	6	-0.07	0.30		0.25	0- 68 0-		-2.18
	5µM PP2+ 10µM PP1-Chr.									+						-
	mean(-tet)	79832	190340	257065	388395	57160	228681	347763	432365	588188	831477		1240854	371831687	900106	2793
_	mean(+tet)	97140	181653	240280	362068	49822	140714	237636	294570	263333	431770		724438	339033566	77 698	9441
	SD(-tet)	21736	18270	12104	20245	24161	37166	30095	36350	90316	69044		78046	8622 409	391	8929
	SD(+tet)	19999	20695	23341	30656	17624	12135	23020	24228	40625	43153		61947	14916 508	310 3	8848
	+/-tet (means)	122%	82%	93%	93%	87%	62%	%89	%89	45%	25%		28%	91% 8	%	73%
	Ż.	-6,23	-12,46	-5,34	-4,80	-16,08	-0,68	-0,45	-0,32	-0,21	0,16		0,19	-1,15 -1	,27	0,18
	toxicity	90'0	0,11	0,17	0,15	99'0	0,29	0,31	0,28	0,15	0,20		0,17	0 80'0-	8	000
	suppression	216%	%9 2	%99	%99	49%	%99-	-36%	-51%	-79%	-45%		-56%	7% -2	- %8	18%
	Z' (suppression)	-1,42	-1,98	-1,90	-1,46	-8,21	-0,85	-2,45	-1,56	-0,64	-0,88	-0,98	-0,86	-0,86 -28,51 -7,07 -0,76	,07	-0,76
	1µM Radicicol															
	mean(-tet)	43719	97175	140618	216029	24975	55887	91209	115934	70370	123574	183709	218308	281947320	"	6401
	mean(+tet)	38140	82341	117040	179863	29996	55756	81436	100716	69770	114387	161803	188061	248834256	w	9832
	SD(-tet)	2241	7876	9628	14489	5338	5577	7953	9735	17210	21438	20612	19603	11981 123		4742
_	SD(+tet)	5356	2375	5091	6341	2237	2616	3297	4114	11084	9062	13104	17682	8764 223		0261
	+/-tet (means)	87%	82%	83%	83%	120%	100%	89%	87%	%66	93%	88%	%98	88% 8		79%
	Ž	-3,09	-1,07	-0,87	-0,73	-3,53	-186,63	-2,45	-1,73	-140,47	-8,96	-3,62	-2,70	0-88'0-		-0,33
	toxicity	0,49	0,54	0,54	0,53	0,85	0,83	0,82	0,81	0,90	0,88	0,86	0,85	0,22 0		0,75
	suppression	35%	50%	15%	15%	180%	%66	54%	38%	%26	78%	26%	48%	-53% -4		-74%
	Z' (suppression)	-9,02	-3,68	-7,96	-4,71	-0,03	-0,15	-0,57	-1,72	-1,22	-0,35	-0,99	-1,90	-1,90 -7,18 -3,88		-1,89

Sheet 3 (Continuation)

Fig. 22