Introducción a Modelos Supervisados

Camilo Esteban Núñez Fernández

INF396 - Introducción a la Ciencia de Datos Departamento de Informática

2025-04-11

$I \triangleright Sobre IA, ML, y DL$

Fig.: Diagrama de Venn para relaciones entre AI, ML y DL.¹

 $^{^{1}\}text{O'Connor, O., McVeigh, T.P. Increasing use of artificial intelligence in genomic medicine for cancer care- the promise and potential pitfalls. BJC Rep 3, 20 (2025).$ https://doi.org/10.1038/s44276-025-00135-4

Tom Michael Mitchell

Machine Learning, Mitchell, T.M., 1997, McGraw-Hill Education.

Definición

A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Ejemplo: Handwritten Digits Classification

Clasificación de Dígitos Escritos a Mano

- Task T: Reconocer y clasificar dígitos escritos a mano desde una imagen.
- Performance Measure P: Porcentaje de dígitos clasificados correctamente.
- Training Experience E: Secuencia de imágenes etiquetas con dígitos.

80322-4129 80206 コンタンとの語 ,55502 7531/ 35460: AL 1611915485726803226414186 4359720299299722510046701 3084111591010615406103631 1017750187112991089970984 0109707597331972015519056 1075518255182814358090969

18255108503067520439401

Ejemplo: Handwritten Digits Classification

Fig.: Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel; Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput 1989; 1 (4): 541–551. doi: https://doi.org/10.1162/neco.1989.1.4.541

Definición Task T

Definición Task T

Definición Task T

Es el **problema** que busca resolver nuestro programa.

- Ejemplos:
 - Clasificar imagen de un dibujo.
 - Detectar la figura de los autos en una imagen.
 - Clasificar una anomalía en una serie de tiempo.
 - Generar la descripción de una imagen.

Definición Task T

Definición

La $Task\ T$ se puede formalizar como una función o transformación f^* tal que: $f^*: \mathcal{X} \to \mathcal{Y}$.

Definición Task T

Definición

La f^* es **desconocida**, sólo sabes qué elementos toma en un **dominio** \mathcal{X} y qué elementos toma en el **codominio** \mathcal{Y} .

Buscamos aproximar f^* según nuestros datos!

Tipos de Task T

T: Clasificación

• Problema que busca predecir aquellos valores cualitativos o categóricos del espacio \mathcal{Y} .

Tipos de Task T

T: Clasificación

- Por definición canónica (o histórica), de la ecuación $\hat{y}_n = f(x_n)$, desprenderemos el termino $f(x_n)$, y lo llamaremos la **hipotiposis**.²
- En este caso, x_n, SOLO puede ser asignado a UN elemento (o categoría) c. Las categorías c son mutuamente excluyentes, no se pueden dar simultáneamente.

²Es normal encontrar textos donde se sobrescribe $f^*: \mathcal{X} \to \mathcal{Y}$, como $h: \mathcal{X} \to \mathcal{Y}$, y donde h es la **hipótesis** y a su vez de función que busca predecir el valor de y_n .

II ⊳ Definición de *Aprendizaje*Tipos de *Task T*

T: Clasificación Multi-Label

 Problema que busca predecir aquellos valores múltiples cualitativos o categóricos del espacio y.

II ⊳ Definición de *Aprendizaje*Tipos de *Task T*

T: Clasificación Multi-Label

En este caso, x_n, puede ser asignado a UNA o MÁS categorías c.
 Las categorías c no son mutuamente excluyentes, y sí pueden dar simultáneamente.

Tipos de Task T

T: Regresión

• Problema que busca predecir aquellos valores cuantitativos o continuos en \Re del espacio $\mathcal{Y} \subset \Re$.

Tipos de *Task T*

T: Regresión Múltiple

• Problema que busca predecir aquel vector K-dimensional de valores cuantitativos o continuos en \Re del espacio $\mathcal{Y} \subset \Re^K$.

II ⊳ Definición de *Aprendizaje* Tipos de *Task T*

T: Regresión Múltiple

- ullet Una regresión múltiple se puede transformar en K regresiones simples.
- Pero! En una regresión múltiple pueden existir una correlaciones entre las dimensiones del espacio \mathcal{Y} .

II ⊳ Definición de *Aprendizaje* Tipos de *Task T*

¿Pero qué ocurre en el caso cuando $\mathbf{x_n} \in \Re^D$ con D > 1?

► Tenemos una tarea de predicción estructurada

Representación en $\mathcal{X} \subset \Re^D$

Sobre Espacios Típicos \mathcal{X}

- La mayoría de los métodos predicción van a considerar *Input Values* del tipo *D*-dimensional, tal que *X* ⊂ ℝ^{N×D}, y donde cada input será un vector del tipo x_n ∈ ℝ^D.³
- \bullet Cada elemento D del vector $\mathbf{x_n}$ será llamado **feature** o **característica**.

 $^{^3}$ Recuerden que $n=1,2,\cdots,N$, y donde n se refiere a la fila n-ésima de un dataframe.

Representación en $\mathcal{X} \subset \Re^D$

Representación tipo DataFrame

Feature 2			2		Feature 5	Feature 8			
	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	$\mathbf{x_1}$
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	$\mathbf{x_3}$
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	

$$\mathcal{X} \subset \Re^{5 \times 8} = \begin{bmatrix} \mathsf{M} & 0.455 & 0.365 & 0.095 & 0.514 & 0.2245 & 0.101 & 0.15 \\ \mathsf{M} & 0.35 & 0.265 & 0.09 & 0.2255 & 0.0995 & 0.0485 & 0.07 \\ \mathsf{F} & 0.53 & 0.42 & 0.135 & 0.677 & 0.2565 & 0.1415 & 0.21 \\ \mathsf{M} & 0.44 & 0.365 & 0.125 & 0.516 & 0.2155 & 0.114 & 0.155 \\ \mathsf{I} & 0.33 & 0.255 & 0.08 & 0.205 & 0.0895 & 0.0395 & 0.055 \end{bmatrix}$$

Tipos de Task T Complejas

T: Predicación Estructurada

 Problema que busca predecir un output que NO es un número continuo, una categoría, o un vector; sino un conjunto de valores relacionados entre ellos.

Tipos de Task T Complejas

T: Predicación Estructurada

Fig.: Arquitectura Transformer-decoder para el procesamientos e lenguaje natural.⁴

Xiao, T., & Zhu, J. (2025). Foundations of Large Language Models (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2501.09223

Tipos de *Task T* Complejas

T: Predicación Estructurada

 Problema que busca predecir un output que NO es un número continuo, una categoría, o un vector; sino un conjunto de valores relacionados entre ellos.

Tipos de Task T Complejas

T: Predicación Estructurada

Fig.: Arquitectura VQ-VAE.⁵

⁵Oord, A. van den, Vinyals, O., & Kavukcuoglu, K. (2017). Neural Discrete Representation Learning (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1711.00937

Tipos de *Task T* Complejas

T: Predicación Estructurada

 Problema que busca predecir un output que es una densidad de probabilidad.

II ⊳ Definición de *Aprendizaje*Tipos de *Task T* Complejas

T: Predicación Estructurada

Fig.: Ejemplo de la aplicación de KDE sobre el dataset NACC.⁶

⁶Chen, Y.-C. (2017). A Tutorial on Kernel Density Estimation and Recent Advances (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1704.03924

Definición Training Experience E

III ⊳ Definición de *Aprendizaje*Definición Training Experience *E*

Definición Training Experience E

Es aquella **información** que se le proporciona al programa durante la fase de **entrenamiento**, en orden de optimizar la solución al **problema**.

- La información entregada corresponde al conjunto de datos que representan ejemplos de una solución esperada al problema.
- Lo llamaremos dataset de entrenamiento o training set S.

Tipos Training Experience E

Aprendizaje Supervisado

 a Se dispone de un conjunto de N inputs con el respectivo valor de la solución al problema.

$$S = \{x_n, y_n\}_{n=0}^N := \{(x_0, y_0), (x_1, y_1), \cdots, (x_N, y_N)\},\$$

donde $\mathbf{x_n} \in \Re^D$, $D \ge 1$, e $y_n \in \Re$.

- > Supuestos típico para las tareas de regresión y clasificación.
- \triangleright Es importante que $\{\mathbf{x_n}, y_n\} \sim \mathrm{idd}$.

^aEn futuras definiciones, vamos a asumir por defecto siempre que se trata de un entrenamiento supervenido, a menos que se diga lo contrario.

Tipos Training Experience E

Aprendizaje Supervisado

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight		Rings
17	F	0.440	0.340	0.100	0.4510	0.1880	0.0870	0.130	17	10
1131	М	0.565	0.435	0.150	0.9900	0.5795	0.1825	0.206	1131	8
299	М	0.370	0.280	0.105	0.2340	0.0905	0.0585	0.075	299	9
1338	М	0.580	0.455	0.135	0.7955	0.4050	0.1670	0.204	1338	10
2383	F	0.525	0.390	0.135	0.6005	0.2265	0.1310	0.210	2383	16

Fig.: Abalone Dataset. Predecir la edad de los abalones a partir de características físicas. 1995.

	sepal length	sepal width	petal length	petal width		class
14	5.8	4.0	1.2	0.2	14	Iris-setosa
98	5.1	2.5	3.0	1.1	98	Iris-versicolor
75	6.6	3.0	4.4	1.4	75	Iris-versicolor
16	5.4	3.9	1.3	0.4	16	Iris-setosa
131	7.9	3.8	6.4	2.0	131	Iris-virginica

Fig.: Iris Dataset. Predecir la **clase** de las plantas Iris a partir de características físicas. Ronald Fisher 1936.

Tipos Training Experience E

Aprendizaje No Supervisado

Se dispone de un conjunto de N inputs SIN el respectivo valor de la solución al problema.

$$\mathcal{S} = \left\{ x_n \right\}_{n=0}^{N} \coloneqq \left\{ \left(x_0 \right), \left(x_1 \right), \cdots, \left(x_N \right) \right\},$$

donde $\mathbf{x_n} \in \Re^D$, $D \ge 1$.

⊳ Supuestos típico paras las tareas de detección de anomalías, reconstrucción de imágenes, y estimación de densidades de probabilidad.

Sobre la *Hipotiposis*

Sobre la Hipotiposis

- Para aproximar la función desconocida, nuestra máquina debe observar casos del tipo input-output.
- Dado un input, la maquinas tratara de predecir el output más correcto.

• La función que busca nuestra máquina será la hipotiposis.

Sobre la Hipotiposis

Espacio de Hipotiposis

Espacio ${\cal H}$

Conjunto de todas las **posibles soluciones** dadas por las **funciones** que la máquina puede implementar para el problema dado.

$$\mathcal{H} = \{ f(\mathbf{x}_n, \mathbf{w}); (\mathbf{x}_n \in \mathbb{R}^D) \land (\mathbf{w} \in \Lambda) \land (\Lambda \subset \mathbb{R}^*) \}$$

Espacio de Hipotiposis

- El espacio \mathcal{H} esta **parametrizado**, y por lo tanto, cada función $f(\mathbf{x}_n, \mathbf{w})$ queda identificada por un conjunto finito de parámetros \mathbf{w} .
- De este modo, vamos a definir w como los parámetros del modelo y conjunto Λ como el espacio de parámetros.
- En la práctica, la máquina no va trabajar sobre función f(*), sino sobre el espacio de parámetros Λ .

Definición Performance Measure P

Definición Performance Measure P

Definición Performance Measure P

Es aquella función R sobre el espacio de hipótesis \mathcal{H} que permite **medir** cuantitativamente la calidad de la función $f(\mathbf{x}_n, \mathbf{w})$, implementada por la máquina.

Definición Performance Measure P

Definición Función de Perdida ℓ

La funcion ℓ permite medir cuantitativamente la calidad de la hipótesis dada por $\hat{y} = f(x_n)$, la cual implementa la maquina para un correspondiente input x_n y su posible respuesta \hat{y}

Definición Performance Measure P

Definición Función de Perdida ℓ

- La función ℓ suele ser conocida como: *loss function*.
- La etiqueta y suele ser llamada ground truth.
- \bullet Por lo general ocurre que $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \Re_0^+.$
- ullet > ℓ equivale a menor desempeño, mientra que $<\ell$ equivale a un mejor desempeño.

Ejemplos de Funciones de Perdida ℓ

Task: Clasificación

Misclassification Loss⁷

$$\ell(y, \hat{y}) = \mathbb{I}(y \neq \hat{y}) = \begin{cases} 0 & \text{si } y = \hat{y}, \\ 1 & \text{si } y \neq \hat{y}. \end{cases}$$

⁷Donde I(*) es la función indicatriz.

Ejemplos de Funciones de Perdida ℓ

Task: Regresión

Squered Loss

$$\ell(y,\hat{y}) = (y - \hat{y})^2$$

Epsilon Insensitive Loss

$$\ell(y,\hat{y}) = egin{cases} 0 & ext{si } |y-\hat{y}| \leq \epsilon, \ |y-\hat{y}| - \epsilon & ext{etoc.} \end{cases}$$

Definición Performance Measure P

Definición Performance Measure P

Es aquella función R sobre el espacio de hipótesis \mathcal{H} que permite **medir** cuantitativamente la calidad de la función $f(\mathbf{x}_n, \mathbf{w})$, implementada por la máquina.

 \triangleright Dado los N valores de la evaluación $\ell(y_n, \hat{y}_n)$, con $n = 0, 1, \dots, N$, el desempeño global de la máquina viene dado por la función de agregación R.

Cual es el valor \mathbb{E} de un conjunto iid ?

Definición Performance Measure P

Cual es el valor $\mathbb E$ de un conjunto iid $?\Rightarrow$ la media

$$\begin{array}{c}
\stackrel{\mathcal{X} \sim p(x)}{\longrightarrow} x_n \longrightarrow \boxed{h} \\
\stackrel{\text{Observador}}{\longrightarrow} y_n
\end{array}$$

$$\mathbb{E}_{\mathcal{X},\mathcal{Y}}\left[\ell\left(y,\ f\left(x\right)\right)\right] = \int_{\mathcal{X},\mathcal{Y}} \ell\left(y,\ f\left(x\right)\right) \cdot p\left(y,\ f\left(x\right)\right) dx dy$$

$$\mathbb{E}_{\mathcal{X},\mathcal{Y}}\left[\ell\left(y,\ f\left(x\right)\right)\right] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \ell\left(y,\ f\left(x\right)\right) \cdot \rho\left(y,\ f\left(x\right)\right)$$

V ⊳ Objetivo del Aprendizaje

Minimización del Expected Risk

Buscamos una función f(*) tal que minimice el **Expected Risk** \mathbb{E} .

$$\min R(f) = \mathbb{E}\left[\ell\left(y, f\left(x\right)\right)\right]$$
 sujeto a $f \in \mathcal{H}$

V ⊳ Objetivo del Aprendizaje

Minimización del Expected Risk

Buscamos el vector de paramentos \mathbf{w}^* para la función $f(x, \mathbf{w}^*)$ tal que minimice el **Expected Risk** \mathbb{E} .

$$\min R(\mathbf{w}) = \mathbb{E}\left[\ell\left(y, f\left(x, \mathbf{w}\right)\right)\right]$$
 sujeto a $\mathbf{w} \in \Lambda$

$$\mathcal{H} = \{ f(x, \mathbf{w}); \mathbf{w} \in \Lambda \}$$