ECON220C Discussion Section 4 Staggered DID

Lapo Bini

Roadmap

- 1. Parallel Trend & No Anticipation
- 2. Staggered DID Framework
- 3. Exercise TWFE vs DID

Setup

- Goal: measure the impact of a policy intervention using differences-in-differences method. Assume there are only two periods, program participation only occurs between periods one and two.
- Framework: potential outcome. Remember from 220B $y_{it} = d_{it}y_{it}(1) + (1 d_{it})y_{it}(0)$. Our target:

$$ATT \equiv E[y_{it}(1) - y_{it}(0)|d_{it} = 1]$$

• Before going full-mode on potential outcome + staggered did framework, let's introduce two key assumptions: **parallel trend** and **no anticipation effect**.

1

Let's Construct the Model

Model: $y_{it} = \alpha_i + \lambda_t + \beta d_{it} + u_{it} \implies \text{Can we obtain this from Potential outcome notation?}$

- 1. $y_{it}(1) = E[y_{it}(1)] + u_{it}(1)$ and same for $y_{it}(0)$
- 2. Combine with $y_{it} = d_{it}y_{it}(1) + (1 d_{it})y_{it}(0)$
- 3. We get our **individual** and **time** fixed effect model.

$$\begin{aligned}
& = \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}^{n} \frac{1}{n} \left(\frac{1}{n} + \sum_{i=1}^{n} \frac{1}{n} \right) + \sum_{i=1}$$

Identification β_{DID}

As before, the model is $y_{it} = \alpha_i + \lambda_t + \beta d_{it} + u_{it}$. The **identification strategy** for β is the following:

1. Take average $\forall i$ of y_{i1} and y_{i2} or first difference (within TREALED (T) OR

CONTROL GROUP (C)
$$\Delta M_{T2} = M_{T2} - M_{T1} = (\lambda_2 - \lambda_1) + x_{T2}\beta + \Delta M_{T2}$$

 $\Delta M_{C1} = M_{C2} - M_{C1} = (\lambda_2 - \lambda_1) + \Delta M_{C2}$

2. Remove time and individual fixed effects using double-differencing $\Delta \underline{\mu}_{T2} - \Delta c_2 = (\lambda_2 - \lambda_1) + \underline{\chi}_{T2} \beta + \Delta \underline{\mu}_{T2} - (\lambda_2 - \lambda_1) - \Delta \underline{\mu}_{c2}$ $\Delta \underline{\mu}_{T2} - \Delta c_2 = \beta + \Delta \underline{\mu}_{T2} - \Delta c_2 \quad \text{we want to Let Rib of This}$

3. Parallel trends assumption

IF: EL
$$\Delta u_{72}$$
 - Δu_{c2}] = 0, THAT IS EL u_{72} - u_{74}] = EL u_{c2} - u_{c1}]

THEN β_{Nb} = EL Δu_{72}] - EL Δu_{c2}] => $\hat{\beta}_{Nb}$ = $\left(\frac{1}{N_{7}}\sum_{i\in 7}(u_{i2}\cdot u_{i2})\right) - \left(\frac{1}{N_{C}}\sum_{i\in C}(u_{i2}\cdot u_{i2})\right)$

$$\beta_{DID} = ATT$$
?

• First, let's rewrite $\beta_{DID} = E[\Delta y_{T2} - \Delta y_{C2}]$ in terms of **potential** outcomes:

•
$$\beta_{DID} - \underline{ATT} =$$
(EL $\underline{Bi_2}(11 - \underline{Bi_3}(11) | \underline{x}_{i_2} = 1] - EL \underline{Bi_2}(01 - \underline{Bi_3}(0) | \underline{x}_{i_2} = 0]$)
- $EL \underline{Bi_2}(11 - \underline{Bi_3}(0) | \underline{x}_{i_2} = 4]$

NOT IDENTIFIED

$$\beta_{DID} = ATT$$
?

LET'S USE THIS

(4) • No Anticipation effect: $E[y_{i1}(1)|d_{i2}=1]=E[y_{i1}(0)|d_{i2}=1]$, in plain english knowing that I would receive the treatment is not changing my behavior in the pre-treatment period.

(2) • New parallel trends assumption:

$$E[y_{i2}(0) - y_{i1}(0)|d_{i2} = 1] = E[y_{i2}(0) - y_{i1}(0)|d_{i2} = 0]$$

What is telling us? Is the same as before?

Empirical Studies: DID Estimator and Dummies

$$\hat{\beta}_{\text{bib}} = \left(\frac{1}{N_{7}} \sum_{i \in 7} \left(\frac{1}{M_{12} \cdot 3^{2} \cdot 3^{2}} \right) - \left(\frac{1}{N_{2}} \sum_{i \in C} \left(\frac{1}{M_{32} \cdot 3^{2}} \right) \right) \quad \text{CAN BE OBTAINED BY QUNNING}$$

$$M_{i,e} = \beta_{0} + \text{1} \left\{ \text{Treented} \right\}_{i,e} \cdot \beta_{1} + \text{1} \left\{ \text{E} = 2 \right\}_{i,e} \cdot \beta_{2} + \text{1} \left\{ \text{treented} \cap \text{E} = 2 \right\}_{i,e} \cdot \beta_{3}$$

$$\therefore \hat{\beta}_{\text{bib}} = \left[\left(\frac{\hat{\beta}_{3} + \hat{\beta}_{2} + \hat{\beta}_{1} + \hat{\beta}_{0}}{\hat{\beta}_{1} + \hat{\beta}_{0}} \right) - \left(\frac{\hat{\beta}_{0} + \hat{\beta}_{1}}{\hat{\beta}_{1}} \right) \right] - \left[\left(\frac{\hat{\beta}_{2} + \hat{\beta}_{0}}{\hat{\beta}_{0}} \right) - \frac{\hat{\beta}_{0}}{\hat{\beta}_{0}} \right]$$

$$\frac{M_{12}}{M_{12}}$$

$$\frac{M_{12}}{M_{12}}$$

$$\Delta \mu_{i2} = \beta_0 + \Delta x_{i2}\beta + \mu_{i2}$$
what is This
$$\Delta x_{i2} = x_{i2} \rightarrow CLEAR?$$

Staggered ID - Setup

- Setup: multiple time periods, treatment could happen at any time but once treated, always treated. New notation: $y_{it}(g)$ where g is the period when unit i gets treated (if t < g not yet treated), $y_{it}(\infty)$ means never treated.
- Example: 4 treatment groups and three time periods.

		ATMENT BCISION		OBSERVED OUTCOME			
	E = 1	t = 2	t=3	. E=1	t=2	t=3	
GROUP 1	1	1	1	· 4:111	412/11	મુ ં 3(1)	
GROUP 2	0	1	1	٤ ١٤١٤ (2)	<u> ۲۵ (۲)</u>	عنه (2)	
GROUP 3	Ð	0	1	964(3)	4i2 (3)	ياد)د)	
GROUP 4	<u>D</u>	<u>o</u>	<u>o</u>	<u>तेःग(∞)</u>	<u>4;²(∞)</u>	عن الالاقلا TREATED . NEVER TREATED .	

Staggered DID - Assumptions

PEOPLE TAKING TREATHENT AT TIME Q AND Q'

1. Parallel trends:

$$E[y_{it}(\infty) - y_{it-1}(\infty)|G_i = g] = E[y_{it}(\infty) - y_{it-1}(\infty)|G_i = g']$$

here $g, g' < \infty \ \forall t$. If treatment hadn't happended, all adoption cohorts would have evolved in parallel at all periods. We are considering people in cohorts i and j, trated at g, g'.

2. No anticipation effect (same as before)

$$E[y_{it}(g)|G_i=g]=E[y_{it}(\infty)|G_i=g]\ orall t < g$$

KNOWING THAT I GO

INTO TREATHEUT LOES NOT CHANGE MY BEHAVIOR BEFORE

Staggered DID - Goal

t = 0

- ATT(g, t)= $E[y_{it}(g) y_{it}(\infty)|G_i = g]$ this is the object we aim to identify and estimate.
- Claim: given conditions above, ATT(g, t) is identified as (we will prove it for a simple case later)

ATT
$$(g,t)=E[y_{it}(g)-y_{ig-1}(g)|G_i=g]-E[y_{it}(\infty)-y_{ig-1}(\infty)|G_i=\infty]$$

WHEN 1

EFFECT OF TREATMENT TODAY

TAKE TREATMENT WITH \$\frac{1}{2}g\$

WHEN I WAS THE SAME AS CONTROL GROUP

(9-1) (9)

FUALUATION EFFECTS

Exercise

Consider the **staggered DID** methodology for panel data in the potential outcomes framework. There are two periods t = 1, 2 and three potential treatment trajectories $\{d_1 = (1, 1); d_2 = (0, 1); d_3 = (0, 0)\}$ as listed in the table below:

d_i	t = 1	t=2		t = 1	t=2
group 1	1	0	group 1	$\bar{Y}_{d_1,1} = 0.3$	$\bar{Y}_{d_1,2} = 1.2$
group 2	0	1		$\bar{Y}_{d_2,1}=0$	
group 3	0	0	group 3	$\bar{Y}_{d_3,1} = 0.3$	$\bar{Y}_{d_3,2} = 0.3$

There are three potential outcomes $\{Y_{i1}(d_i), Y_{i2}(d_i)\}$ given the three different treatment status d_i . The sample is iid and each group has size $n_1 = n_2 = n_3 = 1/3$. The table on the right reports the average value of the outcome of interest for group d and time t.

Let $ATT(d_2, t) = E[Y_{i2}(d_2) - Y_{i2}(d_3)|Di = d_2]$ be the average treatment effect on treated at time 2 for the group of individuals who chose d_2 as the treatment trajectory. Explain how you would identify $ATT(d_2, t)$.

NOT OBSERVED

Answer

ATT (
$$d_{2}, t$$
) = ELY: $_{2}(d_{2})$ - Y: $_{2}(d_{3})$ | $d_{1} = b_{2}$]

= ELY: $_{2}(d_{2})$ | $d_{1} = d_{2}$] - ELY: $_{2}(d_{3})$ | $d_{1} = b_{2}$]

= ELY: $_{2}(d_{2})$ | $d_{1} = d_{2}$] - ELY: $_{2}(d_{3})$ | $d_{1} = b_{2}$]

+ ELY: $_{2}(d_{3})$ | $d_{1} = d_{3}$] - ELY: $_{2}(d_{3})$ | $d_{1} = d_{3}$]

ASSUME PARALLEL TRENDS

EQUAL TO

```
Answer
                                      LAS OF SELECTION BIAS (WITH
                                                                     MINUS
ATT (d2, t) = EL Yi2 (d2) | d: = d2] - EL Yi2 (d3) | d: = D2]
                                                                     SIGN )
         + El Yiz (da) 1 di = da ] - El Yiz (da) | di = da ]
       = EL Yi2 (d2) | d: = d2] - ELYi(d3) | d: = d2] + ELYi4(d3) | d: = d3]
         - EL Yiz (d3) | di=d3 ]
                                                                       SURSTITUTE
                                                                       RHS
NOW WE IMPOSE NO ANTICIPATION EFFECT
   ELYi1(d3) | di = d2] = ELYi1(d2) | di = d2]
```

AND WE SUBSTITUTE IN ATT TO GET

 $ATT/d_{2}/E = \left\{ ELY_{2}(d_{2}) \mid d_{1} = d_{2} - ELY_{2}(d_{2}) \mid d_{1} = d_{3} \right\} - \left\{ ELY_{2}(d_{3}) - Y_{2}(d_{3}) \mid d_{1} = d_{3} \right\}$

Explain how would you estimate $ATT(d_2, t)$. Please first provide a formula for your proposed estimator and then give a numerical answer based on the information provided.

Answer

PUT AN HAT:
$$A\Pi(d_{2},t) = \left\{ ELY:_{2}(d_{2}) \mid d_{1} = d_{2} \right\} - ELY:_{3}(d_{2}) \mid d_{1} = d_{3} \right\} - \left\{ ELY:_{2}(d_{3}) - Y:_{3}(d_{3}) \mid d_{1} = d_{3} \right\}$$

$$= \left\{ \frac{1}{N_{T}} \sum (y_{T2} - y_{T3}) \right\} - \left\{ \frac{1}{N_{C}} \sum (y_{C2} - y_{C3}) \right\}$$

$$= \left\{ \overline{Y}d_{2,2} - \overline{Y}d_{2,3} \right\} - \left\{ \overline{Y}d_{3,2} - \overline{Y}d_{3,3} \right\}$$

$$= (0.6 - 0.0) - (0.3 - 0.3)$$

Suppose we estimate the following model $Y_{it}(D_i) = \alpha_i + \lambda_t + D_{it}\beta + e_i$ by the TWFE estimator which requires a two way demeaned version of the dummy variable of the treatment. Find \tilde{D}_{it} and the TWFE estimate $\hat{\beta}_{TWFE}$. Please provide numerical answer.

Exercise - Q3 OUR HODEL Mie = a: + le + Die B + Mie

Answer
$$\widetilde{\mathcal{X}}_{ie}$$
 IS $\widetilde{\mathcal{D}}_{ie}$ IN OUR CASE

 $\widetilde{\mathcal{W}}_{ie}$ ARE α : AND λ_{E} . How bo we remove

THEM? AUX. REG: $\widetilde{\mathcal{D}}_{ie} = \alpha_{i}^{D} + \lambda_{E}^{D} + \mu_{ie}^{D}$

1. $\widetilde{\mathcal{D}}_{i} := \frac{1}{T} \sum_{E} (\alpha_{i}^{D} + \lambda_{E}^{D} + \mu_{ie}^{D}) = \alpha_{i}^{D} + \overline{\lambda_{E}^{D}} + \frac{1}{T} \sum_{E} \mu_{ie}^{D}$

2. $\widetilde{\mathcal{D}}_{ie} - \widetilde{\mathcal{D}}_{i} = (\alpha_{i}^{D} + \lambda_{E}^{D} + \mu_{ie}^{D}) - (\alpha_{i}^{D} + \overline{\lambda_{E}^{D}} + \frac{1}{T} \sum_{E} \mu_{ie}^{D})$

$$= \lambda_{E}^{D} - \overline{\lambda_{E}^{D}} + \mu_{ie}^{D} - \frac{1}{T} \sum_{E} \mu_{ie}^{D}$$

3. $\widetilde{\mathcal{D}}_{E} := \frac{1}{N} \sum_{i} (\alpha_{i}^{D} + \lambda_{E}^{D} + \mu_{ie}^{D}) = \overline{\alpha_{i}^{D}} + \lambda_{E}^{D} + \frac{1}{N} \sum_{i} \mu_{ie}^{D}$

$$= (\lambda_{E}^{D} - \overline{\lambda_{E}^{D}} + \mu_{ie}^{D}) = \overline{\alpha_{i}^{D}} + \lambda_{E}^{D} + \frac{1}{N} \sum_{i} \mu_{ie}^{D}$$

$$= -\overline{\alpha_{i}^{D}} - \overline{\lambda_{E}^{D}} + \mu_{ie}^{D} - \frac{1}{T} \sum_{E} \mu_{ie}^{D}) - (\overline{\alpha_{E}^{D}} + \lambda_{E}^{D} + \frac{1}{N} \sum_{i} \mu_{ie}^{D})$$

$$= -\overline{\alpha_{i}^{D}} - \overline{\lambda_{E}^{D}} + \mu_{ie}^{D} - \frac{1}{T} \sum_{E} \mu_{ie}^{D} - \frac{1}{N} \sum_{i} \mu_{ie}^{D}$$

Answer

5.
$$\overline{\Delta} = \frac{1}{NT} \sum_{i} \sum_{e} (\alpha_{i}^{D} + \lambda_{e}^{D} + \mu_{ie}^{D})$$

$$= (\frac{1}{NT} \sum_{i} T\alpha_{i}^{D}) + (\frac{1}{NT} \sum_{e} N\lambda_{e}^{D}) + \frac{1}{NT} \sum_{i} \sum_{e} \mu_{ie}^{D}$$

$$= (\frac{1}{N} \sum_{e} \alpha_{i}^{D}) + (\frac{1}{T} \sum_{e} \lambda_{e}^{D}) + \frac{1}{NT} \sum_{i} \sum_{e} \mu_{ie}^{D}$$

$$= (\frac{1}{N} \sum_{e} \alpha_{i}^{D}) + (\frac{1}{T} \sum_{e} \lambda_{e}^{D}) + \frac{1}{NT} \sum_{i} \sum_{e} \mu_{ie}^{D}$$

$$= (\frac{1}{N} \sum_{e} \alpha_{i}^{D}) + (\frac{1}{T} \sum_{e} \lambda_{e}^{D}) + \frac{1}{NT} \sum_{e} \mu_{ie}^{D}$$

$$= (\frac{1}{N} \sum_{e} \alpha_{i}^{D}) + (\frac{1}{T} \sum_{e} \lambda_{e}^{D}) + \frac{1}{NT} \sum_{e} \mu_{ie}^{D}$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{i}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{D})$$

$$+ (\frac{1}{N} \sum_{e} \alpha_{ie}^{D}) + (\frac{1}{N} \sum_{e} \alpha_{ie}^{$$

Exercise - Q3
$$\overline{b}_{t=1}$$
 $\overline{b}_{t=2}$

Answer $d_1 d_2 d_3 = 0$ $d_1 d_2 d_3 = 0$

$$d_1 d_2 d_3 = 0$$

$$d_2 d_3 = 0$$

$$d_3 d_4 d_3 = 0$$

$$d_4 d_2 d_3 d_4 d_5 = 0$$

$$d_1 d_5 = \overline{b}_{t=2}$$

$$0 0 0 = \overline{b}_{t=3}$$

$$d_1 d_3 d_4 d_5 = 0$$

$$d_1 d_4 d_5 = 0$$

$$d_1 d_5$$

$$\sum_{i \in A} = \begin{bmatrix} 1/6 & -1/2 \\ -1/3 & 1/3 \\ 1/6 & -1/6 \end{bmatrix}$$

PROBLEM : WE DON'T HAVE INDIVIDUAL Answer OBSERVATION BUT $\hat{\beta}_{\text{TWFE}} = \frac{\hat{O}_{\text{O}}(Y_{\text{ik}}, \hat{D}_{\text{ie}})}{\hat{A}_{\text{c}}} = \frac{1}{N} \sum_{k=1}^{N} \hat{D}_{\text{ie}} Y_{\text{ik}}$ GROUP VALUES $= \frac{\frac{1}{N} \sum_{k=1}^{2} \sum_{i=1}^{N} \widetilde{\Omega}_{ic} Y_{ic}}{\frac{1}{N} \sum_{k=1}^{2} \sum_{i=1}^{N} (\widetilde{\Omega}_{ik})^{2}} = \frac{\sum_{j=1}^{2} \sum_{k=1}^{N} \frac{m_{sj}}{m_{sj}} \frac{1}{N} \sum_{i \in s_{j}} \widetilde{\Omega}_{ic}^{i} Y_{ic}}{\sum_{j=1}^{2} \sum_{k=1}^{N} \frac{m_{sj}}{m_{sj}} \frac{1}{N} \sum_{i \in s_{j}} \widetilde{\Omega}_{ic}^{i} Y_{ic}}$

Answer
$$\beta_{\text{TWFE}} = \frac{\sum_{g=1}^{3} \sum_{k=1}^{3} \omega_{g} \widetilde{b}_{gk} \overline{Y}_{gk}}{\sum_{g=1}^{3} \sum_{k=1}^{3} \omega_{g} \widetilde{b}_{gk}} := K$$

$$= \frac{1}{K} \sum_{g=1}^{3} \sum_{k=1}^{3} \omega_{g} \widetilde{b}_{gk} \overline{Y}_{gk}$$

$$= \sum_{g=1}^{3} \sum_{k=1}^{3} \frac{\omega_{g} \widetilde{b}_{gk}}{K} \overline{Y}_{gk} = \sum_{g=1}^{3} \sum_{k=1}^{3} \alpha_{gk} \cdot \overline{Y}_{gk}$$

$$= 0.15$$

Verify that $\hat{\beta}_{TWFE} = \hat{\beta}_{2,DID} - \frac{1}{2}\hat{\beta}_{1,DID}$ where $\hat{\beta}_{2,DID}$ is the estimate in Q2, and $\hat{\beta}_{1,DID} = (\bar{Y}_{d_1,2} - \bar{Y}_{d_1,1}) - (\bar{Y}_{d_3,2} - \bar{Y}_{d_3,1})$

$$\hat{\beta}_{100} = (1.2 - 0.3) - (0.3 - 0.3) = 0.9$$

$$\hat{\beta}_{2\Delta I\Delta} - \frac{1}{2}\hat{\beta}_{4\Delta I\Delta} = 0.6 - \frac{1}{2}0.9 = 0.15$$

Answer