A. Moujahid

Grupo de Inteligencia Computacional Universidad del País Vasco UPV/EHU Curso 2014-2015

Contenido

- 1 Introducción
- Algoritmo Genético Simple (AGS)
- Extensiones del Algoritmo Genético Simple
- Operadores genéticos para el problema del TSP

Índice

- 1 Introducción
- Algoritmo Genético Simple (AGS)
- 3 Extensiones del Algoritmo Genético Simple
- Operadores genéticos para el problema del TSP

J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975. (Second edition: MIT Press, 1992.)

Características

- Son métodos adaptativos que pueden usarse para resolver problemas de búsqueda y optimización,
- Son técnica robustas, y pueden tratar con éxito una gran variedad de problemas provenientes de diferentes areas,
- A cada paso del algoritmo se mantiene un conjunto de soluciones (población),
- Algoritmos inspirados en la naturaleza.

Ideas básicas

- En cada momento se mantiene un conjunto de soluciones o individuos: población
- La población evoluciona a lo largo de iteraciones sucesivas (generaciones)
- Se generan nuevas soluciones combinando y modificando las actuales mediante el uso de operadores:
 - Operadores de selección
 - Operadores de reproducción: cruce y mutación
 - Operadores de reemplazo ó reducción (simple, elitista)

Esquema básico

- Un conjunto de N puntos del espacio de búsqueda elegidos aleatoriamente forman la población inicial (conjunto de individuos)
- Cada individuo de la población tiene un cierto valor (fitness) que mide su grado de adaptación al objetivo.
- El algoritmo consiste en una evolución progresiva de la población inicial durante generaciones sucesivas, manteniendo su tamaño constante.
- Los individuos son modificados y combinados mediante el uso de operadores de seleción y reproducción
- La población en el tiempo t se sustituye por la población en el tiempo t + 1

Índice

- 1 Introducción
- Algoritmo Genético Simple (AGS)
- 3 Extensiones del Algoritmo Genético Simple
- Operadores genéticos para el problema del TSP

BEGIN Algoritmo Genético Simple Generar una población inicial y computar la función de evaluación de cada individuo WHILE NOT Terminado DO **BEGIN** Producir nueva generación FOR Tamaño poblacion/2 DO **BEGIN** Ciclo Reproductivo Seleccionar dos individuos de la anterior generación, para el cruce (probabilidad de de selección proporcional al fitness del individuo) Cruzar con cierta probabilidad los dos individuos obteniendo dos descendientes Mutar los dos descendientes con cierta probabilidad Computar la función de evaluación de los dos descendientes mutados Insertar los dos descendientes mutados en la nueva generación **END** IF la población ha convergido THEN Terminado := TRUF **END** FND

- Codoficación o representación del problema: los individuos de la población (*cromosomas*) representados por un conjunto de parámetros -*genes*- utilizando un cierto *alfabeto* {0, 1}.
- Función de adaptación: para cada cromosoma devuelve un número real, que se supone es propocional a la adaptación del individuo al problema.
- Fase reproductiva: se efectúa la selección aleatoria de padres (favoreciendo a los mejor adaptados), para a continuación cruzarlos, y mutar los hijos.

Convergencia del algoritmo (De Jon, 1975)

 El concepto de convergencia está relacionado con la progresión hacia la uniformidad: Se dice que un gen ha convergido cuando al menos el 95 % de los individuos de la población comparten el mismo valor para dicho gen.

Adaptación media y mejor adaptación en un algoritmo genético simple

Ejemplo: Máximo de $f(x) = x^2$ sobre los enteros $\{1, 2, \dots, 32\}$

	Población inicial	x valor	f(x) valor (función	$f(x)/\sum f(x)$ (probabilidad	Probabilidad de selección			
	(fenotipos)	genotipo	adaptación)	selección)	acumulada			
1	01101	13	169	0.14	0.14			
2	11000	24	576	0.49	0.63			
3	01000	8	64	0.06	0.69			
4	10011	19	361	0.31	1.00			
Suma			1170					
Media		293						
Mejor		576						

Emparejamiento	Punto	Descen-	Nueva población	Х	f(x)
de los individuos	de	dientes	descendientes	valor	función
seleccionados	cruce		mutados	genotipo	adaptación
11000	2	11011	11011	27	729
10011	2	10000	10000	16	256
01101	3	01100	11100	28	784
11000	3	11001	11101	29	841
Suma					2610
Media					652.5
Mejor					841

Índice

- 1 Introducción
- 2 Algoritmo Genético Simple (AGS)
- 3 Extensiones del Algoritmo Genético Simple
- Operadores genéticos para el problema del TSP

Pseudocódigo

BEGIN AGA Obtener la población inicial WHILE NOT stop DO **BEGIN** Seleccionar padres de la población Producir hijos a partir de los padres seleccionados Mutar los individuos hijos Extender la población añadiendo los hijos Reducir la población extendida **END END** AGA

Extensiones del AGS: Población

Tamaño

- Poblaciones pequeñas riesgo de no cubrir adecuadamente el espacio de búsqueda
- Poblaciones grandes excesivo costo computacional
- Alander estudios empíricos, tamaño comprendido entre I y 2I

Población inicial

- Al azar
- Resultado de búsqueda por medio de un optimizador local
 - Ventaja: aceleración del algoritmo
 - Desventaja: prematura convergencia hacia óptimos locales

Extensiones del AGS: Función objetivo

Funciones regulares

Dos individuos cercanos en el espacio de búsqueda, sus respectivos valores en las funciones objetivo similares

Individuos sometidos a restricciones

- absolutista
- penalización de la función objetivo
 - número de restricciones violadas
 - coste esperado de reconstrucción

Transformación de la función objetivo

- convergencia prematura: comprensión
- finalización lenta: expansión

240

Extensiones del AGS: Función objetivo

Devaluación de cromosomas muy cercanos

 $d(l_t^j, l_t^i)$ distancia de Hamming entre los individuos l_t^j e $l_t^i, K \in \Re^+$ a un parámetro

$$h(d(l_t^j, l_t^i)) = \begin{cases} K - d(l_t^j, l_t^i) & \text{si } d(l_t^j, l_t^i) < K, \\ 0 & \text{si } d(l_t^j, l_t^i) \ge K. \end{cases}$$

Para cada individuo l_t^j , definimos $\sigma_j^t = \sum_{i \neq j} h(d(l_t^j, l_t^i))$, valor que utilizaremos para devaluar la función objetivo del individuo en cuestión. $g^*(l_t^j) = g(l_t^j)/\sigma_i^t$

Selección proporcional a la función objetivo

Denotando por $p_{j,t}^{prop}$ la probabilidad de que el individuo l_t^j sea seleccionado como padre, se tiene que:

$$\rho_{j,t}^{\mathsf{prop}} = \frac{g(\mathit{I}_t^{j})}{\sum_{j=1}^{\lambda} g(\mathit{I}_t^{j})}.$$

Invariante ante un cambio de escala, pero no ante una traslación

Selección proporcional al rango del individuo

Produce una repartición más uniforme de la probabilidad de selección.

$$p_{j,t}^{\text{rango}} = \frac{\text{rango}(g(l_t^j))}{\lambda(\lambda+1)/2}.$$

Invariante frente a la translación y al cambio de escala

Selección (ii)

Esquemas de selección de padres proporcional a la función objetivo (izquierda) y proporcional al rango de la función objetivo (derecha)

Muestreo universal estocástico

El individuo I_1^t se escoge 2 veces, mientras que I_3^t e I_4^t son elegidos una única vez

Modelo de selección elitista

El mejor individuo de la población en el tiempo *t*, seleccionado como padre

Selección por torneo

Tamaño del torneo, (con o sin reemplazamiento), seleccionar el mejor individuo de este grupo, y repetir el proceso hasta que el número de individuos seleccionados coincida con el tamaño de la población

Clasificación de los operadores de selección

- dinámicos: variable (ej. proporcional función objetivo)
- estáticos: fija (ej. rango función objetivo)

Cruce basado en dos puntos

Individuo visto como un circuito

Cruce uniforme

máscara de cruce generada aleatoriamente. distribución de probabilidad de Bernouilli de parámetro 1/2

Máscara de cruce	100100	1
Padre 1	1 1 0 1 1 0	1
	√ √	\forall
Descendiente	100111	1
	^ ^ ^ ^	
Padre 2	0001110)

Cruce unif	orme
------------	------

Máscara de cruce	1	1	1	0	0	0	0	1	1	0	0	0	1	
Padre 1	1	0	1	1	0	0	1	1	0	1	1	0	0	
Descendiente	1	0	1	0	1	1	1	1	0	0	0	1	0	
Padre 2	1	0	0	0	1	1	1	1	0	0	0	1	1	

Máscaras de cruce para los operadores de cruce basados en 1 punto y en 2 puntos

Cruce uniforme

Cruce uniforme basado en la función objetivo

máscara de cruce generada aleatoriamente distribución de probabilidad de Bernouilli de parámetro

$$p = g(I_t^j)/(g(I_t^j) + g(I_t^i))$$

donde l_t^j y l_t^i denotan los padres seleccionados para ser cruzados.

Extensiones del AGS: Mutación

Operador de mutación

- La mutación se considera un operador básico responsable de la aleatoriedad en la vecindad de los individuos de la población.
- Una evolución que consta tan sólo de selección y mutación supera con creces a una evolución basada exclusivamente en la selección y el cruce (Schaffer et al. 1989).
- La determinación del valor óptimo de la probabilidad de mutación es mucho crucial que el relativo a la probabilidad de cruce (Schaffer et al. 1989).

Extensiones del AGS: Reducción

Operador de reemplazo

Una vez obtenidos los individuos descendientes de una determinada población en el tiempo t, el proceso de reducción al tamaño original, consiste en escoger λ individuos de entre los λ individuos que forman parte de la población en el tiempo t, y los λ individuos descendientes de los mismos.

- **Reducción simple**: los λ individuos descendientes son los que forman parte de la población en el tiempo t + 1.
- reducción elitista de grado λ: se escogen de entre los 2λ individuos, los λ individuos más adaptados al problema.

Extensiones del AGS: Reducción

Operador de reemplazo

El concepto de reducción está ligado con el de *tasa de* reemplazamiento generacional, es decir, el porcentaje de hijos con respecto del tamaño de la población:

- $t_{rq} = 1$ (Goldberg)
- $t_{rg} = \lambda^{-1}$ (Holland, Whitley)
- MOD_{GA} (Michalewicz)
 r₁ para reproducción, r₂ para morir, λ (r₁ + r₂) pasan a la siguiente generación

Índice

- 1 Introducción
- 2 Algoritmo Genético Simple (AGS)
- 3 Extensiones del Algoritmo Genético Simple
- Operadores genéticos para el problema del TSP

Representación basada en la trayectoria

Operadores de Cruce

- Operador basado en una correspondencia parcial PMX,
- Operador basado en ciclos CX,
- Operador basado en el orden OX1,
- etc.

Representación basada en la trayectoria

Operadores de Mutación

- Operador basado en el desplazamiento DM,
- Operador basado en cambios EM,
- Operador basado en la inserción ISM,
- etc.

A. Moujahid

Grupo de Inteligencia Computacional Universidad del País Vasco UPV/EHU Curso 2014-2015