Solution. Consider the domain $D = \{ \text{ SCE students } \}$. Set P(x) = ``x studies discrete mathematics. Then every SCE student studies discrete mathematics becomes

$$\forall x \in D, P(x).$$

Now Jackson is a SCE student means Jackson belongs to D. This gives

$$\forall x \in D, \ P(x); \text{Jackson} \in D; \therefore P(\text{Jackson}).$$

Exercise 37. Here is an optional exercise about universal generalization. Consider the following two premises: (1) for any number x, if x > 1 then x - 1 > 0, (2) every number in D is greater than 1. Show that therefore, for every number x in D, x - 1 > 0.

Solution. Set P(x) = "x > 1" and Q(x) = "x - 1 > 0". Let us formalize what we want to prove:

$$[\forall x \ (P(x) \to Q(x)) \land \forall x \in D \ P(x)] \to \forall x \in D, \ Q(x).$$

- 1. $\forall x \ (P(x) \to Q(x))$, by hypothesis
- 2. $\forall x \in D \ P(x)$, also by hypothesis
- 3. $P(y) \to Q(y)$, by universal instantiation on the first hypothesis
- 4. P(y), by universal instantiation on D in the second hypothesis
- 5. Q(y), using modus ponens
- 6. $\forall x \in D, \ Q(x)$, using universal generalization.

Exercises for Chapter 4

Exercise 38. Let q be a positive real number. Prove or disprove the following statement: if q is irrational, then \sqrt{q} is irrational.

Solution. We prove the contrapositive of this statement, namely: if \sqrt{q} is rational, then q is rational. But if \sqrt{q} is rational, then $\sqrt{q} = \frac{a}{b}$, a, b integers, $b \neq 0$, and thus $q = \frac{a^2}{b^2}$ which shows that q is rational.

Exercise 39. Prove using mathematical induction that the sum of the first n odd positive integers is n^2 .

Solution. We want to prove that $\forall n, P(n)$ where

$$P(n) = \sum_{j=1}^{n} (2j-1) = n^{2n}, \ n \in \mathbb{Z}, \ge 1.$$

• Basis Step: we need to show that P(1) is true.

$$P(1) = (2 - 1) = 1 = 1^2$$

which is true.

• Inductive Step: Assume P(k) is true, that is we assume that

$$\sum_{j=1}^{k} (2j-1) = k^2$$

is true. We now need to prove that P(k+1) is true.

$$\sum_{j=1}^{k+1} (2j-1)$$

$$= \sum_{j=1}^{k} (2j-1) + 2(k+1) - 1$$

$$= k^2 + 2(k+1) - 1 \text{ using } P(k)$$

$$= k^2 + 2k + 1 = (k+1)^2.$$

This shows that P(k+1) is true, therefore P(n) is true for all n.

Exercise 40. Prove using mathematical induction that $n^3 - n$ is divisible by 3 whenever n is a positive integer.

Solution. We first set $P(n) = "3 | n^3 - n"$, that is 3 divides $n^3 - n$.

- Basis Step: P(1) = "3|0" which is true.
- Inductive Step: Assume P(k) is true, that is we assume that

$$3 \mid (k^3 - k).$$

is true. We now need to prove that P(k+1) is true. When n=k+1, we get

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1) = (k^3 - k) + 3k^2 + 3k$$

which is divisible by 3, since (k^3-k) is divisible by 3, and so is $3(k^2+k)$. Therefore P(k+1) is true, and we conclude that P(n) is true for all n.

Exercise 41. Prove by mathematical induction that

$$1^{2} + 2^{2} + \ldots + n^{2} = \frac{1}{6}n(n+1)(2n+1).$$

Solution. We have $P(n) = {}^{n}1^{2} + 2^{2} + \ldots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$ ". The basis step is P(1) which is true, since $1^{2} = 1 = \frac{1}{6}1(1+1)(2+1)$. Suppose true for P(k), that is $1^{2} + 2^{2} + \ldots + k^{2} = \frac{1}{6}k(k+1)(2k+1)$ holds. We need to prove that P(k+1) is true, namely we need to prove that

$$1^{2} + 2^{2} + \ldots + (k+1)^{2} = \frac{1}{6}(k+1)(k+2)(2(k+1)+1) = \frac{1}{6}(k+1)(k+2)(2k+3)$$

is true. So let us start by computing the left hand side:

$$1^{2} + 2^{2} + \ldots + (k+1)^{2} = 1^{2} + 2^{2} + \ldots + k^{2} + (k+1)^{2}$$
$$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^{2}$$

using the induction hypothesis. We continue to compute

$$1^{2} + 2^{2} + \dots + (k+1)^{2} = \frac{1}{6}k(k+1)(2k+1) + (k+1)^{2}$$
$$= \frac{1}{6}(k+1)(k(2k+1) + 6(k+1))$$
$$= \frac{1}{6}(k+1)(2k^{2} + k + 6k + 6)$$

Since

$$\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)\left(2k^2 + k + 6k + 6\right)$$

this concludes the proof.