

Massachusetts Institute of Technology

MIT: Mex Foundation

Richard Qi, Semyon Savkin, Egor Lifar

1 Contest

```
2 Mathematics
3 Data Structures
4 Number Theory
5 Combinatorial
6 Numerical
7 Graphs
8 Geometry
9 Strings
10 Various
Contest (1)
run.sh
# Usage: bash run.sh L < L.in
g++-13 -std=c++17 -O3 $1.cpp -o $1 && ./$1
TemplateVervSmall.cpp
                                                  52340d, 28 lines
#include <bits/stdc++.h>
using namespace std;
using 11 = long long;
using pi = pair<int,int>;
#define mp make pair
#define f first
#define s second
#define tcT template<class T
tcT> using V = vector<T>;
using vi = V<int>;
using vpi = V<pi>;
#define sz(x) int((x).size())
\#define all(x) begin(x), end(x)
#define pb push_back
#define bk back()
// const int MOD = 1e9+7; //comment out for Semyon
tcT> bool ckmin(T& a, const T& b) {
 return b < a ? a = b, 1 : 0; } // set a = min(a,b)
tcT> bool ckmax(T& a, const T& b) {
 return a < b ? a = b, 1 : 0; } // set a = max(a,b)
int main() { cin.tie(0)->sync_with_stdio(0); }
TemplateShortKACTL.cpp
                                                  58c2bc, 34 lines
using 11 = long long;
using db = long double; // or double if tight TL
```

```
using str = string;
using pi = pair<int,int>;
#define mp make_pair
#define f first
#define s second
#define tcT template<class T
tcT> using V = vector<T>;
tcT, size_t SZ> using AR = array<T,SZ>;
using vi = V<int>;
using vb = V<bool>;
using vpi = V<pi>;
#define sz(x) int((x).size())
#define all(x) begin(x), end(x)
#define sor(x) sort(all(x))
#define rsz resize
#define pb push_back
#define ft front()
#define bk back()
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define F0R(i,a) FOR(i,0,a)
#define ROF(i,a,b) for (int i = (b)-1; i \ge (a); --i)
#define R0F(i,a) ROF(i,0,a)
#define rep(a) FOR(_,a)
#define each(a,x) for (auto& a: x)
const int MOD = 1e9+7;
const db PI = acos((db)-1);
mt19937 rng(0); // or mt19937_64
hash.sh
#!/bin/bash
# Modern replacement for KACTL hash.sh
# Usage: bash hash.sh < file.cpp
q++-13 -E -dD -P - <&0 2>/dev/null | tr -d '[:space:]' | md5sum
  \hookrightarrow | cut -c-6
stress.sh
# Usage: 'sh stress.sh'
# A_gen takes in i as a seed in stdin
for((i = 1; ; ++i)); do
    echo $i
    echo $i > Agenin
    ./A_gen < Agenin > int
    ./A < int > Aout
    ./A_naive < int > Anaiveout
    diff -w Aout Anaiveout || break
troubleshoot.txt
Write down most of your thoughts, even if you're not sure
whether they're useful.
Give your variables (and files) meaningful names.
Stay organized and don't leave papers all over the place!
You should know what your code is doing ...
Pre-submit:
Write a few simple test cases if sample is not enough.
Are time limits close? If so, generate max cases.
Is the memory usage fine?
Could anything overflow?
```

```
Remove debug output.
Make sure to submit the right file.
Wrong answer:
Print your solution! Print debug output as well.
Read the full problem statement again.
Have you understood the problem correctly?
Are you sure your algorithm works?
Try writing a slow (but correct) solution.
Can your algorithm handle the whole range of input?
Did you consider corner cases (ex. n=1)?
Is your output format correct? (including whitespace)
Are you clearing all data structures between test cases?
Any uninitialized variables?
Any undefined behavior (array out of bounds)?
Any overflows or NaNs (or shifting 11 by >=64 bits)?
Confusing N and M, i and j, etc.?
Confusing ++i and i++?
Return vs continue vs break?
Are you sure the STL functions you use work as you think?
Add some assertions, maybe resubmit.
Create some test cases to run your algorithm on.
Go through the algorithm for a simple case.
Go through this list again.
Explain your algorithm to a teammate.
Ask the teammate to look at your code.
Go for a small walk, e.g. to the toilet.
Rewrite your solution from the start or let a teammate do it.
Geometry:
Work with ints if possible.
Correctly account for numbers close to (but not) zero. Related:
for functions like acos make sure absolute val of input is not
(slightly) greater than one.
Correctly deal with vertices that are collinear, concyclic,
coplanar (in 3D), etc.
Subtracting a point from every other (but not itself)?
Have you tested all corner cases locally?
Any uninitialized variables?
Are you reading or writing outside the range of any vector?
Any assertions that might fail?
Any possible division by 0? (mod 0 for example)
Any possible infinite recursion?
Invalidated pointers or iterators?
Are you using too much memory?
Debug with resubmits (e.g. remapped signals, see Various).
Time limit exceeded:
Do you have any possible infinite loops?
What's your complexity? Large TL does not mean that something
simple (like NlogN) isn't intended.
Are you copying a lot of unnecessary data? (References)
Avoid vector, map. (use arrays/unordered_map)
How big is the input and output? (consider FastIO)
What do your teammates think about your algorithm?
Calling count() on multiset?
Memory limit exceeded:
What is the max amount of memory your algorithm should need?
Are you clearing all data structures between test cases?
If using pointers try BumpAllocator.
```

Mathematics (2)

Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$

$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$a\cos x + b\sin x = r\cos(x-\phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.2 Geometry

2.2.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$s = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

Circumradius:
$$R = \frac{abc}{4A}$$

Inradius:
$$r = \frac{A}{p}$$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

Law of sines:
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents:
$$\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$$

2.3 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.4 Sums/Series

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

Data Structures (3)

3.1 STL

MapComparator.h

Description: example of function object (functor) for map or set

Usage: set<int, cmp> s; map<int, int, cmp> m; struct cmp{bool operator()(int 1,int r)const{return 1>r;}};

HashMap.h

Description: Hash map with similar API as unordered_map. Initial capacity must be a power of 2 if provided.

Usage: ht<int, int> h({},{},{},{},{1<<16});

Memory: ~1.5x unordered map

Time: ∼3x faster than unordered map

```
<ext/pb_ds/assoc_container.hpp>
                                                        283cdc, 9 lines
using namespace __gnu_pbds;
struct chash {
 const uint64_t C = 11(4e18*acos(0))+71; // large odd number
 const int RANDOM = rng();
 11 operator()(11 x) const { return __builtin_bswap64((x^
     \hookrightarrowRANDOM) *C); }
template<class K,class V> using ht = gp hash table<K,V,chash>;
template<class K, class V> V get(ht<K, V>& u, K x) {
 auto it = u.find(x); return it == end(u) ? 0 : it->s; }
```

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. Change null_type to get a map. Time: $\mathcal{O}(\log N)$

```
<ext/pb_ds/assoc_container.hpp>
                                                     7c9393, 12 lines
using namespace __gnu_pbds;
tcT> using Tree = tree<T, null_type, less<T>,
 rb_tree_tag, tree_order_statistics_node_update>;
#define ook order_of_key
#define fbo find_by_order
void treeExample() {
 Tree<int> t, t2; t.insert(8);
 auto it = t.insert(10).f; assert(it == t.lb(9));
 assert(t.ook(10) == 1 && t.ook(11) == 2 && *t.fbo(0) == 8);
 t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
```

LineContainer.h

Time: $\mathcal{O}(\log N)$

Description: Add lines of the form ax + b, query maximum y-coordinate for any x.

```
using T = 11; const T INF = LLONG_MAX; // a/b rounded down
// 11 fdiv(11 a, 11 b) { return a/b-((a^b)<0&&a%b); }
bool _Q = 0;
struct Line {
T a, b; mutable T lst;
 T eval(T x) const { return a*x+b; }
 bool operator<(const Line&o)const{return _Q?lst<o.lst:a<o.a;}</pre>
 T last_gre(const Line& o) const { assert(a <= o.a);</pre>
    // greatest x s.t. a*x+b >= o.a*x+o.b
    return lst=(a==o.a?(b>=o.b?INF:-INF):fdiv(b-o.b,o.a-a));}
};
struct LineContainer: multiset<Line> {
 bool isect(iterator it) { auto n it = next(it);
    if (n_it == end()) return it->lst = INF, 0;
    return it->last_gre(*n_it) >= n_it->lst; }
  void add(T a, T b) {
    auto it = ins(\{a,b,0\}); while (isect(it)) erase(next(it));
    if (it == begin()) return;
    if (isect(--it)) erase(next(it)), isect(it);
    while (it != begin()) {
      --it; if (it->lst < next(it)->lst) break;
      erase(next(it)); isect(it); }
 T qmax(T x) { assert(!empty());
    _Q = 1; T res = lb(\{0,0,x\}) \rightarrow eval(x); _Q = 0;
    return res; }
};
```

LineContainerDeque.h

Description: LineContainer assuming both slopes and queries monotonic. Time: $\mathcal{O}(1)$

```
"LCold.h"
                                                      f0c640, 33 lines
struct LCdeque : deque<Line> {
 void addBack(Line L) { // assume nonempty
      auto a = bk; pop_back(); a.lst = a.last_gre(L);
     if (size() && bk.lst >= a.lst) continue;
      pb(a); break;
   L.lst = INF; pb(L);
 void addFront(Line L) {
    while (1) {
     if (!size()) { L.lst = INF; break; }
     if ((L.lst = L.last_gre(ft)) >= ft.lst) pop_front();
     else break;
   push_front(L);
 void add(T a, T b) { // line goes to one end of degue
    if (!size() || a <= ft.a) addFront({a,b,0});</pre>
    else assert(a >= bk.a), addBack({a,b,0});
 int ord = 0; // 1 = x's come in increasing order, -1 =
    ⇔decreasing order
 T query(T x) {
    assert (ord);
    if (ord == 1) {
      while (ft.lst < x) pop_front();</pre>
      return ft.eval(x);
```

while (size () >1&&prev (prev (end ())) ->1st>=x)pop_back ();

```
return bk.eval(x);
}
};
```

3.2 1D Range Queries

RMQ.h

Description: 1D range minimum query. If TL is an issue, use arrays instead of vectors and store values instead of indices.

Memory: $\mathcal{O}(N \log N)$

Time: $\mathcal{O}(1)$ 1ffc4a, 19 lines tcT> struct RMQ { int level(int x) { return 31-__builtin_clz(x); } V<T> v; V<vi> jmp; int cmb(int a, int b) { return v[a] == v[b]?min(a,b):(v[a] < v[b]?a:b); } void init(const V<T>& v) { $v = v; jmp = \{vi(sz(v))\};$ iota(all(jmp[0]),0); for (int $j = 1; 1 << j <= sz(v); ++j) {$ jmp.pb(vi(sz(v) - (1 << j) + 1));FOR(i,sz(jmp[j])) jmp[j][i] = cmb(jmp[j-1][i],jmp[j-1][i+(1<<(j-1))]);int index(int 1, int r) { assert($1 \le r$); int d = level(r-1+1); return cmb(jmp[d][1],jmp[d][r-(1<<d)+1]); } T query(int 1, int r) { return v[index(1,r)]; }

RMQArray.h

 $\textbf{Description:} \ \ \text{Faster} \ \ 1D \ \ \text{range minimum query}.$

Memory: $\mathcal{O}(N \log N)$ Time: $\mathcal{O}(1)$

e02798, 15 lines

a59028, 18 lines

```
col_form in the color of t
```

SegmentTree.h

Description: 1D point update and range query where cmb is any associative operation. seg[1] = query(0, N-1).

Time: $\mathcal{O}(\log N)$

tcT> struct SegTree { // cmb(ID,b) = b
 const T ID{}; T cmb(T a, T b) { return a+b; }
 int n; V<T> seg;
 void init(int _n) { // upd, query also work if n = _n
 for (n = 1; n < _n;) n *= 2;
 seg.assign(2*n,ID); }
 void pull(int p) { seg[p] = cmb(seg[2*p],seg[2*p+1]); }
 void upd(int p, T val) { // set val at position p
 seg[p += n] = val; for (p /= 2; p; p /= 2) pull(p); }
 T query(int 1, int r) { // zero-indexed, inclusive</pre>

```
T ra = ID, rb = ID;
for (1 += n, r += n+1; 1 < r; 1 /= 2, r /= 2) {
   if (1&1) ra = cmb(ra, seg[1++]);
   if (r&1) rb = cmb(seg[--r], rb);
}
return cmb(ra, rb);
}
};</pre>
```

LazySegmentTree.h

Description: 1D range increment and sum query. **Time:** $\mathcal{O}(\log N)$

```
6320bb, 26 lines
tcT, int SZ> struct LazySeq {
 static_assert(pct(SZ) == 1); // SZ must be power of 2
 const T ID{}; T cmb(T a, T b) { return a+b; }
 T seg[2*SZ], lazy[2*SZ];
 LazySeg() \{ FOR(i,2*SZ) seg[i] = lazy[i] = ID; \}
 void push(int ind, int L, int R) {
   seg[ind] += (R-L+1)*lazy[ind]; // dependent on operation
   if (L != R) FOR(i,2) lazy[2*ind+i] += lazy[ind];
   lazy[ind] = 0;
 } // recalc values for current node
 void pull(int ind){seq[ind]=cmb(seq[2*ind], seq[2*ind+1]);}
 void build() { ROF(i,1,SZ) pull(i); }
 void upd(int lo,int hi,T inc,int ind=1,int L=0, int R=SZ-1) {
   push(ind,L,R); if (hi < L || R < lo) return;</pre>
   if (lo <= L && R <= hi) {
     lazy[ind] = inc; push(ind, L, R); return; }
   int M = (L+R)/2; upd(lo,hi,inc,2*ind,L,M);
   upd(lo,hi,inc,2*ind+1,M+1,R); pull(ind);
 T query(int lo, int hi, int ind=1, int L=0, int R=SZ-1) {
   push(ind,L,R); if (lo > R || L > hi) return ID;
    if (lo <= L && R <= hi) return seg[ind];
   int M = (L+R)/2; return cmb(query(lo,hi,2*ind,L,M),
     query(lo,hi,2*ind+1,M+1,R));
```

SegTreeSuperBeats.h

Description: Lazy SegTree supports modifications of the form range min max and sum updates and queries.

```
Time: \mathcal{O}(\log N)?
                                                      28dc00, 202 lines
struct Info {
    11 sum. num:
    void adv(ll inc) {
        sum += num*inc;
};
bool operator == (const Info& a, const Info& b) {
    return a.sum == b.sum && a.num == b.num; }
Info& operator+=(Info& a, const Info& b) {
    a.sum += b.sum, a.num += b.num;
    return a; }
Info operator+(Info a, const Info& b) {
    return a += b; }
struct Node {
    AR<11,2> mx; // max, second max
    AR<11,2> mn; // min, second min
    AR<Info, 3> info; // sum of each, # of each
    AR<11,3> lazy; // lazy increments for min, middle, max
    Node() {}
    Node(ll x) { // OK
        mx = \{x, -BIG\};
        mn = \{x, BIG\};
        info = \{\}; info[1] = \{x,1\};
```

```
lazy = \{\};
    bool all equal() const { return mx[0] == mn[0]; } // true
       \hookrightarrow if min of range = max of range
    Info get_sum() const { return info[0]+info[1]+info[2]; }
    11 get_min() {
        if (all_equal()) return mn[0]+lazy[1];
        return mn[0]+lazy[0]; }
    11 get_max() {
        if (all_equal()) return mn[0]+lazy[1];
        return mx[0]+lazy[2]; }
};
Node seg[1<<19];
AR<11,2> comb_mx(const AR<11,2>& a, const AR<11,2>& b) {
    11 mx = max(a[0],b[0]);
    11 second_mx = max(a[0] == mx ? a[1] : a[0],b[0] == mx ? b
       \hookrightarrow[1] : b[0]);
    return {mx, second_mx};
AR<11,2> comb mn(const AR<11,2>& a, const AR<11,2>& b) {
    11 \, mn = min(a[0],b[0]);
    11 second_mn = min(a[0] == mn ? a[1] : a[0], b[0] == mn ? b
       \hookrightarrow[1] : b[0]);
    return {mn,second_mn};
void comb(Node& res, const Node& 1, const Node& r) {
    res.mx = comb mx(1.mx,r.mx);
    res.mn = comb_mn(1.mn,r.mn);
    res.info = {};
    auto deal = [&](const Node& x) {
        if (x.all_equal()) { // case 1: same value
            ll v = x.mn[0]; Info info = x.info[1];
            assert(res.mn[0] <= v && v <= res.mx[0]);
            if (res.all_equal()) {
                res.info[1] += info;
            } else {
                if (res.mn[0] == v) {
                     res.info[0] += info;
                } else if (res.mx[0] == v) {
                     res.info[2] += info;
                     res.info[1] += info;
            res.info[x.mn[0] == res.mn[0] ? 0 : 1] += x.info[0]
               \hookrightarrow];
            res.info[1] += x.info[1];
            res.info[x.mx[0] == res.mx[0] ? 2 : 1] += x.info
    };
    assert(res.mn[0] <= res.mx[0]);
    deal(1); deal(r);
void push(int ind, int L, int R) {
    if (seg[ind].all_equal()) {
        assert(seg[ind].lazy[0] == 0 \&\& seg[ind].lazy[2] == 0);
        seg[ind].lazy[0] = seg[ind].lazy[2] = seg[ind].lazy[1];
    if (L != R) {
        auto pushdown = [&](Node& node) {
            if (node.all_equal()) {
                if (seg[ind].mn[0] == node.get_min()) {
```

```
node.lazv[1] += seg[ind].lazv[0];
                } else if (seg[ind].mx[0] == node.get_max()) {
                    node.lazv[1] += seg[ind].lazv[2];
                } else {
                    node.lazy[1] += seg[ind].lazy[1];
            } else {
                node.lazv[0] += seg[ind].lazy[seg[ind].mn[0] ==
                   \hookrightarrow node.get_min() ? 0 : 1];
                node.lazy[1] += seg[ind].lazy[1];
                node.lazy[2] += seg[ind].lazy[seg[ind].mx[0] ==
                   \hookrightarrow node.get max() ? 2 : 1];
        };
        pushdown(seg[2*ind]);
        pushdown(seg[2*ind+1]);
    FOR(i,3) seg[ind].info[i].adv(seg[ind].lazy[i]);
    bool two_valued = (seg[ind].mn[1] == seg[ind].mx[0]);
    seg[ind].mn[0] += seg[ind].lazy[0];
    seg[ind].mx[0] += seg[ind].lazy[2];
    if (two_valued) {
        seg[ind].mn[1] = seg[ind].mx[0];
        seg[ind].mx[1] = seg[ind].mn[0];
        if (seg[ind].mn[1] != BIG)
            seg[ind].mn[1] += seg[ind].lazy[1];
        if (seg[ind].mx[1] != -BIG)
            seq[ind].mx[1] += seq[ind].lazy[1];
    seg[ind].lazy = {};
    assert(seg[ind].mn[0] <= seg[ind].mx[0]);
void pull(int ind, int L, int R) {
    assert(L < R);
    comb(seg[ind], seg[2*ind], seg[2*ind+1]);
void build(int ind, int L, int R, const vl& A) {
    if (L == R) {
        seg[ind] = Node(A[L]);
        return:
    int M = (L+R)/2;
   build(2*ind, L, M, A); build(2*ind+1, M+1, R, A);
    pull(ind,L,R);
Info query_sum(int lo, int hi, int ind, int L, int R) {
    if (R < lo || hi < L) return {};
    push (ind, L, R);
    if (lo <= L && R <= hi) return seg[ind].get sum();
    int M = (L+R)/2;
    return query_sum(lo,hi,2*ind,L,M)+query_sum(lo,hi,2*ind+1,M
void upd_min(int lo, int hi, ll B, int ind, int L, int R) {
    push (ind, L, R);
   11 dif = B-seq[ind].mx[0];
    if (R < lo || hi < L || dif >= 0) return;
   if (lo <= L && R <= hi) {
        if (seg[ind].all_equal()) {
            seg[ind].lazy[1] = dif;
            push(ind,L,R);
            return:
       } else if (B > seg[ind].mx[1]) {
            seg[ind].lazy[2] = dif;
```

```
push (ind, L, R);
            return:
    int M = (L+R)/2;
    upd min(lo,hi,B,2*ind,L,M);
    upd min(lo,hi,B,2*ind+1,M+1,R);
    pull(ind,L,R);
void upd_max(int lo, int hi, ll B, int ind, int L, int R) {
    push (ind, L, R);
    11 dif = B-seg[ind].mn[0];
    if (R < lo || hi < L || dif <= 0) return;
    if (lo <= L && R <= hi) {
        if (seg[ind].all_equal()) {
            seg[ind].lazy[1] = dif;
            push (ind, L, R);
            return:
        } else if (B < seg[ind].mn[1]) {</pre>
            seg[ind].lazy[0] = dif;
            push(ind, L, R);
            return;
    int M = (L+R)/2;
    upd_max(lo,hi,B,2*ind,L,M);
    upd max(lo,hi,B,2*ind+1,M+1,R);
    pull(ind,L,R);
void upd_ad(int lo, int hi, ll B, int ind, int L, int R) {
   push (ind, L, R);
    if (R < lo || hi < L) return;
    if (lo <= L && R <= hi) {
        if (seg[ind].all_equal()) {
            seg[ind].lazy[1] = B;
        } else {
            FOR(i,3) seg[ind].lazv[i] = B;
        push (ind, L, R);
        return;
    int M = (L+R)/2;
    upd_ad(lo,hi,B,2*ind,L,M);
    upd_ad(lo,hi,B,2*ind+1,M+1,R);
    pull(ind,L,R);
```

PSeg.h

Description: Persistent min segtree with lazy updates, no propagation. If making d a vector then save the results of upd and build in local variables first to avoid issues when vector resizes in C++14 or lower.

Memory: $\mathcal{O}(N + Q \log N)$

```
tcT, int SZ> struct pseg {
   static const int LIM = 2e7;
   struct node {
   int l, r; T val = 0, lazy = 0;
   void inc(T x) { lazy += x; }
   T get() { return val+lazy; }
};
   node d[LIM]; int nex = 0;
   int copy(int c) { d[nex] = d[c]; return nex++; }
   T cmb(T a, T b) { return min(a,b); }
   void pull(int c) { d[c].val =
      cmb(d[d[c].1].get(), d[d[c].r].get()); }
//// MAIN FUNCTIONS
T query(int c, int lo, int hi, int L, int R) {
```

```
if (lo <= L && R <= hi) return d[c].get();
  if (R < lo || hi < L) return MOD;</pre>
  int M = (L+R)/2;
  return d[c].lazy+cmb(query(d[c].1,lo,hi,L,M),
            query(d[c].r,lo,hi,M+1,R));
int upd(int c, int lo, int hi, T v, int L, int R) {
  if (R < lo || hi < L) return c;
  int x = copy(c);
  if (lo <= L && R <= hi) { d[x].inc(v); return x; }
  int M = (L+R)/2;
  d[x].l = upd(d[x].l, lo, hi, v, L, M);
  d[x].r = upd(d[x].r,lo,hi,v,M+1,R);
  pull(x); return x;
int build(const V<T>& arr, int L, int R) {
  int c = nex++;
  if (L == R) {
   if (L < sz(arr)) d[c].val = arr[L];</pre>
    return c:
  int M = (L+R)/2;
  d[c].l = build(arr, L, M), d[c].r = build(arr, M+1, R);
  pull(c); return c;
vi loc; //// PUBLIC
void upd(int lo, int hi, T v) {
 loc.pb(upd(loc.bk, lo, hi, v, 0, SZ-1)); }
T query(int ti, int lo, int hi) {
  return query(loc[ti],lo,hi,0,SZ-1); }
void build(const V<T>&arr) {loc.pb(build(arr, 0, SZ-1));}
```

Treap.h

bc67bc, 46 lines

Description: Easy BBST. Use split and merge to implement insert and delete.

```
Time: \mathcal{O}(\log N)
                                                        4f2861, 65 lines
using pt = struct tnode*;
struct thode {
  int pri, val; pt c[2]; // essential
  int sz; 11 sum; // for range gueries
  bool flip = 0; // lazy update
  tnode(int val) {
    pri = rng(); sum = val = _val;
    sz = 1; c[0] = c[1] = nullptr;
 ~tnode() { FOR(i,2) delete c[i]; }
int getsz(pt x) { return x?x->sz:0; }
11 getsum(pt x) { return x?x->sum:0; }
pt prop(pt x) { // lazy propagation
  if (!x || !x->flip) return x;
  swap (x->c[0], x->c[1]);
  x \rightarrow flip = 0; FOR(i,2) if (x \rightarrow c[i]) x \rightarrow c[i] \rightarrow flip ^= 1;
  return x;
pt calc(pt x) {
  pt a = x->c[0], b = x->c[1];
  assert(!x->flip); prop(a), prop(b);
  x->sz = 1+getsz(a)+getsz(b);
  x->sum = x->val+getsum(a)+getsum(b);
  return x;
void tour(pt x, vi& v) { // print values of nodes,
 if (!x) return; // inorder traversal
  prop(x); tour(x->c[0],v); v.pb(x->val); tour(x->c[1],v);
```

pair<pt, pt> split(pt t, int v) { // >= v goes to the right

BIT2DOff KthShortestWalk ModIntShort

```
if (!t) return {t,t};
  prop(t);
  if (t->val >= v) {
    auto p = split(t->c[0], v); t->c[0] = p.s;
    return {p.f,calc(t)};
  } else {
    auto p = split(t->c[1], v); t->c[1] = p.f;
    return {calc(t),p.s};
pair<pt,pt> splitsz(pt t, int sz) { // sz nodes go to left
 if (!t) return {t,t};
  if (getsz(t->c[0]) >= sz) {
    auto p = splitsz(t->c[0],sz); t->c[0] = p.s;
    return {p.f,calc(t)};
    auto p=splitsz(t->c[1],sz-qetsz(t->c[0])-1); t->c[1]=p.f;
    return {calc(t),p.s};
pt merge(pt 1, pt r) { // keys in 1 < keys in r
 if (!1 || !r) return 1?:r;
  prop(l), prop(r); pt t;
  if (1->pri > r->pri) 1->c[1] = merge(1->c[1],r), t = 1;
  else r\rightarrow c[0] = merge(1, r\rightarrow c[0]), t = r;
  return calc(t);
pt ins(pt x, int v) { // insert v
  auto a = split(x,v), b = split(a.s,v+1);
  return merge(a.f, merge(new tnode(v), b.s)); }
pt del(pt x, int v) { // delete v
  auto a = split(x,v), b = split(a.s,v+1);
  return merge(a.f,b.s); }
```

3.3 2D Range Queries

BIT2DOff.

Description: point update and rectangle sum with offline 2D BIT. For each of the points to be updated, $x \in (0, SZ)$ and $y \neq 0$.

Memory: $\mathcal{O}(N \log N)$

```
Time: \mathcal{O}\left(N\log^2 N\right)
                                                      35314c, 34 lines
template < class T, int SZ> struct OffBIT2D {
 bool mode = 0; // mode = 1 -> initialized
  vpi todo; // locations of updates to process
  int cnt[SZ], st[SZ];
  vi val; vector<T> bit; // store all BITs in single vector
  void init() { assert(!mode); mode = 1;
    int lst[SZ]; FOR(i,SZ) lst[i] = cnt[i] = 0;
   sort(all(todo),[](const pi& a, const pi& b) {
     return a.s < b.s; });</pre>
    each(t,todo) for (int x = t.f; x < SZ; x += x&-x)
     if (lst[x] != t.s) lst[x] = t.s, cnt[x] ++;
    int sum = 0; FOR(i,SZ) lst[i] = 0, st[i] = (sum += cnt[i]);
    val.rsz(sum); bit.rsz(sum); reverse(all(todo));
   each (t, todo) for (int x = t.f; x < SZ; x += x&-x)
      if (lst[x] != t.s) lst[x] = t.s, val[--st[x]] = t.s;
  int rank(int y, int 1, int r) {
    return ub(begin(val)+1, begin(val)+r, y)-begin(val)-l; }
  void UPD(int x, int y, T t) {
    for (y = rank(y, st[x], st[x] + cnt[x]); y \le cnt[x]; y += y&-y
     bit[st[x]+y-1] += t; }
  void upd(int x, int y, T t) {
   if (!mode) todo.pb(\{x,y\});
    else for (;x<SZ;x+=x\&-x) UPD(x,y,t); }
  int QUERY(int x, int y) { T res = 0;
```

```
for (y = rank(y, st[x], st[x]+cnt[x]); y; y -= y&-y) res +=
       \hookrightarrowbit[st[x]+y-1];
    return res; }
  T query(int x, int y) { assert(mode);
    T res = 0; for (;x;x-=x\&-x) res += QUERY(x,y);
    return res; }
  T query(int xl, int xr, int yl, int yr) {
    return query(xr,yr)-query(xl-1,yr)
      -query(xr,yl-1)+query(xl-1,yl-1); }
KthShortestWalk.h
Description: Kth Shortest Walk
Memory: \mathcal{O}(\log N) per meld
Time: \mathcal{O}(\log N) per meld
                                                       575d08, 84 lines
const 11 INF = 1e18;
const int MX = 300005;
typedef pair<ll,int> T;
typedef struct heap* ph;
struct heap { // min heap
  ph 1 = NULL, r = NULL;
  int s = 0; T v; // s: path to leaf
 heap(T _v):v(_v) {}
ph meld(ph p, ph q) {
 if (!p || !q) return p?:q;
  if (p->v > q->v) swap(p,q);
  ph P = new heap(*p); P -> r = meld(P -> r, q);
  if (!P->1 | P->1->s < P->r->s) swap(P->1,P->r);
  P->s = (P->r?P->r->s:0)+1; return P;
ph ins(ph p, T v) { return meld(p, new heap(v)); }
ph pop(ph p) { return meld(p->1,p->r); }
int N,M,src,des,K;
ph cand[MX];
vector<array<int,3>> adj[MX], radj[MX];
pi pre[MX];
11 dist[MX];
struct state {
 int vert; ph p; ll cost;
  bool operator<(const state& s) const { return cost > s.cost;
     \hookrightarrow }
};
int main() {
  cin.tie(0) -> sync_with_stdio(0); cin >> N >> M >> src >> des
     →>> K;
  F0R(i,M) {
    int u, v, w; cin >> u >> v >> w;
    adj[u].pb({v,w,i}); radj[v].pb({u,w,i}); // vert, weight,
       \hookrightarrow label
  priority_queue<state> ans;
    FOR(i,N) dist[i] = INF, pre[i] = \{-1,-1\};
    priority_queue<T, vector<T>, greater<T>> pq;
    auto ad = [&](int a, ll b, pi ind) {
      if (dist[a] <= b) return;</pre>
      pre[a] = ind; pq.push({dist[a] = b,a});
    ad (des, 0, \{-1, -1\});
    while (sz(pq)) {
```

```
auto a = pq.top(); pq.pop();
    if (a.f > dist[a.s]) continue;
    seq.pb(a.s); each(t, radj[a.s]) ad(t[0], a.f+t[1], \{t[2], a.s
       \hookrightarrow}); // edge index, vert
  each(t, seq) {
    each(u,adj[t]) if (u[2] != pre[t].f \&\& dist[u[0]] != INF)
      11 cost = dist[u[0]]+u[1]-dist[t];
      cand[t] = ins(cand[t], {cost, u[0]});
    if (pre[t].f != -1) cand[t] = meld(cand[t], cand[pre[t].s
       \hookrightarrow]);
    if (t == src) {
      cout << dist[t] << "\n"; K --;
      if (cand[t]) ans.push(state{t,cand[t],dist[t]+cand[t]->
         \hookrightarrow v.f);
F0R(i,K) {
 if (!sz(ans)) {
    cout << -1 << "\n";
    continue;
  auto a = ans.top(); ans.pop();
  int vert = a.vert;
  cout << a.cost << "\n";
  if (a.p->1) {
    ans.push(state{vert, a.p->l, a.cost+a.p->l->v.f-a.p->v.f});
  if (a.p->r) {
    ans.push(state{vert,a.p->r,a.cost+a.p->r->v.f-a.p->v.f});
  int V = a.p->v.s;
  if (cand[V]) ans.push(state{V,cand[V],a.cost+cand[V]->v.f})
```

Number Theory (4)

4.1 Modular Arithmetic

ModIntShort.h

Description: Modular arithmetic. Assumes MOD is prime.

Usage: mi a = MOD+5; inv(a); // 400000003

```
50ff3d, 24 lines
template<int MOD, int RT> struct mint {
 static const int mod = MOD;
 static constexpr mint rt() { return RT; } // primitive root
 explicit operator int() const { return v; }
 mint():v(0) {}
 mint(ll _v):v(int(_v%MOD)) { v += (v<0)*MOD; }
 mint& operator+=(mint o) {
   if ((v += o.v) >= MOD) v -= MOD;
   return *this; }
 mint& operator-=(mint o) {
   if ((v -= o.v) < 0) v += MOD;
   return *this; }
 mint& operator*=(mint o) {
   v = int((11)v*o.v%MOD); return *this; }
 friend mint pow(mint a, ll p) { assert(p >= 0);
    return p==0?1:pow(a*a,p/2)*(p&1?a:1); }
 friend mint inv(mint a) { assert(a.v != 0); return pow(a, MOD
 friend mint operator+(mint a, mint b) { return a += b; }
```

```
friend mint operator-(mint a, mint b) { return a -= b; }
friend mint operator*(mint a, mint b) { return a *= b; }
};
using mi = mint<(int)1e9+7, 5>;
using vmi = V<mi>;
```

ModFact.h

Description: Combinations modulo a prime MOD. Assumes $2 \leq N \leq MOD$.

```
Usage: F.init(10); F.C(6, 4); // 15
Time: \mathcal{O}(N)
```

ModMulLL.h

Description: Multiply two 64-bit integers mod another. Assumes 128-bit available. Works for $0 < a, b < mod < 2^{63}$.

```
using ul = uint64_t;
ul modMul(ul a, ul b, const ul mod) {
  return __int128(a) * __int128(b) % mod;
}
ul modPow(ul a, ul b, const ul mod) {
  if (b == 0) return 1;
  ul res = modPow(a,b/2,mod); res = modMul(res,res,mod);
  return b&l ? modMul(res,a,mod) : res;
}
```

FastMod.h

Description: Barrett reduction computes a%b about 4 times faster than usual where b>1 is constant but not known at compile time. Division by b is replaced by multiplication by m and shifting right 64 bits.

422175, 7 lines

```
using ul = uint64_t; using L = __uint128_t;
struct FastMod {
  ul b, m; FastMod(ul b) : b(b), m(-1ULL / b) {}
  ul reduce(ul a) {
    ul q = (ul) ((__uint128_t(m) * a) >> 64), r = a - q * b;
    return r - (r >= b) * b; }
};
```

ModSgrt.h

Description: To nelli-Shanks algorithm for square roots mod a prime. -1 if doesn't exist.

Usage: sqrt (mi ((11) 1e10)); // 100000 **Time:** $O(\log^2(MOD))$

```
"ModInt.h" e11e80, 14 lines
using T = int;
T sqrt(mi a) {
  mi p = pow(a, (MOD-1)/2);
  if (p.v!=1) return p.v == 0 ? 0 : -1;
  T s = MOD-1; int r = 0; while (s%2 == 0) s /= 2, ++r;
  mi n = 2; while (pow(n, (MOD-1)/2).v == 1) n = T(n)+1;
  // n non-square, ord(g)=2^r, ord(b)=2^m, ord(g)=2^r, m<r
  for (mi x = pow(a, (s+1)/2), b = pow(a, s), g = pow(n, s);;) {</pre>
```

```
if (b.v == 1) return min(x.v,MOD-x.v); // x^2=ab
int m = 0; for (mi t = b; t.v != 1; t *= t) ++m;
rep(r-m-1) g *= g; // ord(g)=2^{m+1};
x *= g, g *= g, b *= g, r = m; // ord(g)=2^m, ord(b)<2^m
}</pre>
```

ModSum.h

Description: Counts # of lattice points (x,y) in the triangle $1 \le x, 1 \le y, ax + by \le s \pmod{2^{64}}$ and related quantities.

Time: $\mathcal{O}\left(\log ab\right)$ fe2226, 20 lines

```
using ul = uint64 t;
ul sum2(ul n) { return n/2*((n-1)|1); } // sum(0..n-1)
// \text{ return } | \{(x,y) \mid 1 \le x, 1 \le y, a*x+b*y \le S\} |
       = sum_{i=1}^{qs} (S-a*i)/b
ul triSum(ul a, ul b, ul s) { assert(a > 0 && b > 0);
 ul qs = s/a, rs = s%a; // ans = sum_{i=0}^{i=0}^{g_{i=1}}(i*a+rs)/b
 ul ad = a/b*sum2(qs)+rs/b*qs; a %= b, rs %= b;
 return ad+(a?triSum(b,a,a*gs+rs):0); // reduce if a >= b
\} // then swap x and y axes and recurse
// \text{ return sum}_{x=0}^{n-1} (a*x+b)/m
   = |\{(x,y) \mid 0 < m*y \le a*x+b < a*n+b\}|
// assuming a*n+b does not overflow
ul divSum(ul n, ul a, ul b, ul m) { assert(m > 0);
 ul extra = b/m*n; b %= m;
 return extra+(a?triSum(m,a,a*n+b):0); }
// \text{return sum}_{x=0}^{n-1} (a*x+b) %m
ul modSum(ul n, ll a, ll b, ul m) { assert(m > 0);
 a = (a\%m+m)\%m, b = (b\%m+m)\%m;
  return a*sum2(n)+b*n-m*divSum(n,a,b,m); }
```

4.2 Primality

4.2.1 Primes

p=962592769 is such that $2^{21}\mid p-1,$ which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times a}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

4.2.2 Divisors

```
\sum_{d|n} d = O(n \log \log n).
```

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

Dirichlet Convolution: Given a function f(x), let

$$(f * g)(x) = \sum_{d \mid x} g(d) f(x/d).$$

If the partial sums $s_{f*g}(n)$, $s_g(n)$ can be computed in O(1) and $s_f(1 \dots n^{2/3})$ can be computed in $O\left(n^{2/3}\right)$ then all $s_f\left(\frac{n}{d}\right)$ can as well. Use

$$s_{f*g}(n) = \sum_{d=1}^{n} g(d)s_f(n/d).$$

```
If f(x) = \mu(x) then g(x) = 1, (f * g)(x) = (x == 1), and s_f(n) = 1 - \sum_{i=2}^n s_f(n/i).

If f(x) = \phi(x) then g(x) = 1, (f * g)(x) = x, and s_f(n) = \frac{n(n+1)}{2} - \sum_{i=2}^n s_f(n/i).
```

Sieve.h

Description: Tests primality up to SZ. Runs faster if only odd indices are stored.

```
Time: \mathcal{O}\left(SZ\log\log SZ\right) or \mathcal{O}\left(SZ\right)
```

da17cc, 20 lines

```
template<int SZ> struct Sieve {
 bitset<SZ> is_prime; vi primes;
 Sieve() {
   is_prime.set(); is_prime[0] = is_prime[1] = 0;
   for (int i = 4; i < SZ; i += 2) is_prime[i] = 0;
   for (int i = 3; i*i < SZ; i += 2) if (is_prime[i])
     for (int j = i*i; j < SZ; j += i*2) is_prime[j] = 0;
   FOR(i,SZ) if (is_prime[i]) primes.pb(i);
 // int sp[SZ]{}; // smallest prime that divides
 // Sieve() { // above is faster
 // FOR(i,2,SZ) {
      if (sp[i] == 0) sp[i] = i, primes.pb(i);
       for (int p: primes) {
       if (p > sp[i] || i*p >= SZ) break;
        sp[i*p] = p;
 // }
 // }
```

MultiplicativePrefixSums.h

Description: $\sum_{i=1}^{N} f(i)$ where $f(i) = \prod \text{val}[e]$ for each p^e in the factorization of i. Must satisfy val[1] = 1. Generalizes to any multiplicative function with $f(p) = p^{\text{fixed power}}$.

```
Time: \mathcal{O}\left(\sqrt{N}\right)
```

PrimeCnt.h

Description: Counts number of primes up to N. Can also count sum of primes.

```
Time: \mathcal{O}\left(N^{3/4}/\log N\right), 60ms for N=10^{11}, 2.5s for N=10^{13} 6e4962, 20 lines
```

```
11 count_primes(11 N) { // count_primes(1e13) == 346065536839
   if (N <= 1) return 0;
   int sq = (int) sqrt(N);
   vl big_ans((sq+1)/2), small_ans(sq+1);
   FOR(i,1,sq+1) small_ans[i] = (i-1)/2;
   FOR(i,sz(big_ans)) big_ans[i] = (N/(2*i+1)-1)/2;
   vb skip(sq+1); int prime_cnt = 0;
   for (int p = 3; p <= sq; p += 2) if (!skip[p]) { // primes
        for (int j = p; j <= sq; j += 2*p) skip[j] = 1;
        FOR(j,min((1l)sz(big_ans), (N/p/p+1)/2)) {
            1l prod = (1l) (2*j+1)*p;</pre>
```

```
big_ans[j] -= (prod > sq ? small_ans[(double) N/prod]
           : big_ans[prod/2])-prime_cnt;
  for (int j = sq, q = sq/p; q >= p; --q) for (; j >= q*p; --j)
   small_ans[j] -= small_ans[q]-prime_cnt;
  ++prime cnt;
return big_ans[0]+1;
```

MillerRabin.h

Description: Deterministic primality test, works up to 2⁶⁴. For larger numbers, extend A randomly.

```
"ModMulLL.h"
                                                      5769f3, 11 lines
bool prime (ul n) { // not 11!
 if (n < 2 \mid | n % 6 % 4 != 1) return n-2 < 2;
  ul A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
      s = builtin ctzll(n-1), d = n>>s;
  each(a,A) { // ^ count trailing zeroes
    ul p = modPow(a,d,n), i = s;
    while (p != 1 && p != n-1 && a%n && i--) p = modMul(p,p,n);
    if (p != n-1 && i != s) return 0;
  return 1;
```

FactorFast.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(N^{1/4}\right)$, less for numbers with small factors

```
"MillerRabin.h", "ModMulLL.h"
ul pollard(ul n) { // return some nontrivial factor of n
  auto f = [n](ul x) \{ return modMul(x, x, n) + 1; \};
  ul x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  while (t++ % 40 || gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modMul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
  return gcd(prd, n);
void factor_rec(ul n, map<ul,int>& cnt) {
 if (n == 1) return;
  if (prime(n)) { ++cnt[n]; return; }
  ul u = pollard(n);
  factor_rec(u,cnt), factor_rec(n/u,cnt);
```

Euclidean Algorithm

FracInterval.h

Description: Given fractions a < b with non-negative numerators and denominators, finds fraction f with lowest denominator such that a < f < b. Should work with all numbers less than 2⁶²

```
pl bet(pl a, pl b) {
  11 num = a.f/a.s; a.f -= num*a.s, b.f -= num*b.s;
  if (b.f > b.s) return {1+num,1};
  auto x = bet(\{b.s, b.f\}, \{a.s, a.f\});
  return {x.s+num*x.f,x.f};
```

Description: Generalized Euclidean algorithm. euclid and invGeneral work for $A, B < 2^{62}$.

Time: $\mathcal{O}(\log AB)$

a64144, 9 lines

```
// ceil(a/b)
```

```
// ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); }
pl euclid(ll A, ll B) { // For A, B>=0, finds (x,y) s.t.
 // Ax+By=gcd(A,B), |Ax|, |By| \le AB/gcd(A,B)
 if (!B) return {1,0};
 pl p = euclid(B, A%B); return {p.s,p.f-A/B*p.s}; }
ll invGeneral(ll A, ll B) { // find x in [0,B) such that Ax=1
 pl p = euclid(A, B); assert(p.f*A+p.s*B == 1);
 return p.f+(p.f<0) \starB; } // must have gcd(A,B)=1
```

Description: Chinese Remainder Theorem. $a.f \pmod{a.s}, b.f \pmod{b.s}$ \implies ? (mod lcm(a.s, b.s)). Should work for $ab < 2^{62}$

```
1b5adc, 10 lines
pl CRT(pl a, pl b) { assert(0 <= a.f && a.f < a.s && 0 <= b.f
   \hookrightarrow & & b.f < b.s);
  if (a.s < b.s) swap(a,b); // will overflow if b.s^2 > 2^{62}
  11 x, y; tie(x, y) = euclid(a.s, b.s);
  11 q = a.s*x+b.s*y, 1 = a.s/q*b.s;
  if ((b.f-a.f)%g) return {-1,-1}; // no solution
  // ?*a.s+a.f \equiv b.f \pmod{b.s}
  // ?= (b.f-a.f)/g*(a.s/g)^{-1} \pmod{b.s/g}
 x = (b.f-a.f) %b.s*x%b.s/g*a.s+a.f;
 return \{x+(x<0)*1,1\};
```

ModArith.h

Description: Statistics on mod'ed arithmetic series. minBetween and minRemainder both assume that $0 \le L \le R < B, AB < 2^{62}$

```
ll minBetween(ll A, ll B, ll L, ll R) {
 // min x s.t. exists y s.t. L \le A*x-B*y \le R
 A %= B;
 if (L == 0) return 0;
 if (A == 0) return -1:
 ll k = cdiv(L,A); if (A*k \le R) return k;
 ll x = minBetween(B, A, A-R%A, A-L%A); // min x s.t. exists y
 // s.t. -R <= Bx-Av <= -L
 return x == -1 ? x : cdiv(B*x+L,A); // solve for <math>y
// find min((Ax+C)%B) for 0 <= x <= M
// aka find minimum non-negative value of A*x-B*y+C
// where 0 <= x <= M, 0 <= y
11 minRemainder(11 A, 11 B, 11 C, 11 M) {
 assert (A \geq= 0 && B \geq 0 && C \geq= 0 && M \geq= 0);
 A %= B, C %= B; ckmin(M,B-1);
 if (A == 0) return C;
 if (C >= A) { // make sure C<A
    ll ad = cdiv(B-C,A);
    M \rightarrow ad; if (M < 0) return C;
    C += ad * A - B;
 ll q = B/A, new_B = B%A; // new_B < A
  if (new_B == 0) return C; // B-q*A
  // now minimize A*x-new_B*y+C
  // where \theta \le x, y and x+q*y \le M, \theta \le C \le new_B \le A
  // g*v -> C-new B*v
 if (C/new_B > M/q) return C-M/q*new_B;
 M -= C/new_B*q; C %= new_B; // now C < new_B
  // given y, we can compute x = ceil[((B-q*A)*y-C)/A]
  // so x+q*v = ceil((B*v-C)/A) <= M
  11 \text{ max}_Y = (M*A+C)/B; // \text{ must have } y \le \text{max}_Y
  11 max_X = cdiv(new_B*max_Y-C,A); // must have x <= max_X</pre>
  if (\max_X \times A - \text{new}_B \times \max_Y + C >= \text{new}_B) - -\max_X;
  // now we can remove upper bound on y
  return minRemainder(A, new_B, C, max_X);
```

4.4 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

4.5 Lifting the Exponent

For n > 0, p prime, and ints x, y s.t. $p \nmid x, y$ and p|x - y:

•
$$p \neq 2$$
 or $p = 2, 4|x-y \implies v_p(x^n - y^n) = v_p(x-y) + v_p(n)$.

•
$$p = 2, 2|n \implies v_2(x^n - y^n) = v_2((x^2)^{n/2} - (y^2)^{n/2}).$$

Combinatorial (5)

5.1 Permutations

5.1.1 Cycles

Let $q_S(n)$ be the number of n-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

5.1.2 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by q (q.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

Partitions and subsets

5.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

5.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

5.3 General purpose numbers

5.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, ...] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, ...]$

Sums of powers:

$$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

5.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

5.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{j} (k+1-j)^{n}$$

5.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

5.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

5.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

5.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_i C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- \bullet strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

5.4 Young Tableaux

Let a **Young diagram** have shape $\lambda = (\lambda_1 \ge \cdots \ge \lambda_k)$, where λ_i equals the number of cells in the *i*-th (left-justified) row from the top. A **Young tableau** of shape λ is a filling of the $n = \sum \lambda_i$ cells with a permutation of $1 \dots n$ such that each row and column is increasing.

Hook-Length Formula: For the cell in position (i, j), let $h_{\lambda}(i, j) = |\{(I, J)|i \leq I, j \leq J, (I = i \text{ or } J = j)\}|$. The number of Young tableaux of shape λ is equal to $f^{\lambda} = \frac{n!}{\prod h_{\lambda}(i, j)}$.

Schensted's Algorithm: converts a permutation σ of length n into a pair of Young Tableaux $(S(\sigma), T(\sigma))$ of the same shape. When inserting $x = \sigma_i$,

- 1. Add x to the first row of S by inserting x in place of the largest y with x < y. If y doesn't exist, push x to the end of the row, set the value of T at that position to be i, and stop.
- Add y to the second row using the same rule, keep repeating as necessary.

All pairs $(S(\sigma), T(\sigma))$ of the same shape correspond to a unique σ , so $n! = \sum (f^{\lambda})^2$. Also, $S(\sigma^R) = S(\sigma)^T$.

Let $d_k(\sigma), a_k(\sigma)$ be the lengths of the longest subseqs which are a union of k decreasing/ascending subseqs, respectively. Then $a_k(\sigma) = \sum_{i=1}^k \lambda_i, d_k(\sigma) = \sum_{i=1}^k \lambda_i^*$, where λ_i^* is size of the i-th column.

5.5 Other

DeBruijnSeq.h

Description: Given alphabet [0, k) constructs a cyclic string of length k^n that contains every length n string as substr.

3a1ad6, 13 lines

```
vi deBruijnSeq(int k, int n) {
   if (k == 1) return {0};
   vi seq, aux(n+1);
   function<void(int,int)> gen = [&](int t, int p) {
      if (t > n) { // +lyndon word of len p
         if (n%p == 0) FOR(i,1,p+1) seq.pb(aux[i]);
      } else {
      aux[t] = aux[t-p]; gen(t+1,p);
      while (++aux[t] < k) gen(t+1,t);
      }
   };
   gen(1,1); return seq;
}</pre>
```

NimProduct.h

Description: Product of nimbers is associative, commutative, and distributive over addition (xor). Forms finite field of size 2^{2^k} . Defined by $ab = \max(\{a'b + ab' + a'b' : a' < a, b' < b\})$. Application: Given 1D coin turning games $G_1, G_2, G_1 \times G_2$ is the 2D coin turning game defined as follows. If turning coins at x_1, x_2, \ldots, x_m is legal in G_1 and y_1, y_2, \ldots, y_n is legal in G_2 , then turning coins at all positions (x_i, y_j) is legal assuming that the coin at (x_m, y_n) goes from heads to tails. Then the grundy function g(x, y) of $G_1 \times G_2$ is $g_1(x) \times g_2(y)$.

Time: 64² xors per multiplication, memorize to speed up.

8fe95e, 46 lines

```
using ul = uint64 t;
struct Precalc {
     ul tmp[64][64], y[8][8][256];
      unsigned char x[256][256];
      Precalc() { // small nim products, all < 256
            FOR(i, 256) FOR(i, 256) x[i][i] = mult < 8 > (i, i);
            FOR(i,8) FOR(j,i+1) FOR(k,256)
                  y[i][j][k] = mult < 64 > (prod2(8*i, 8*j), k);
      ul prod2(int i, int j) { // nim prod of 2^i, 2^j
            ul& u = tmp[i][j]; if (u) return u;
            if (!(i&j)) return u = 1ULL<<(i|j);</pre>
            int a = (i\&j)\&-(i\&j); // a=2^k, consider 2^{2^k}
            return u=prod2(i^a,j)^prod2((i^a)|(a-1),(j^a)|(i&(a-1)));
             // 2^{2^k} *2^{2^k} = 2^{2^k} +2^{2^k}
      \frac{1}{2^2} // 2^2i}*2^2i^2 = 2^2i^2i^2 = 2^2i^2i^2 = 2^2i^2 = 2
      template<int L> ul mult(ul a, ul b) {
            ul c = 0; FOR(i,L) if (a>>i&1)
                  FOR(j,L) if (b>>j&1) c ^= prod2(i,j);
            return c;
      // 2^{8*i}*(a>>(8*i)&255) * 2^{8*j}*(b>>(8*j)&255)
       // \rightarrow (2^{8*i}*2^{8*i})*((a>(8*i)&255)*(b>(8*i)&255))
     ul multFast(ul a, ul b) const { // faster nim product
            ul res = 0; auto f=[](ul c, int d) \{return c>> (8*d) & 255; \};
                  FOR(j,i) res ^= v[i][j][x[f(a,i)][f(b,j)]
                                           x[f(a,j)][f(b,i)];
                  res ^= y[i][i][x[f(a,i)][f(b,i)]];
             return res;
```

```
const Precalc P;

struct nb { // nimber
  ul x; nb() { x = 0; }
  nb(ul _x): x(_x) {}
  explicit operator ul() { return x; }
  nb operator+(nb y) { return nb(x^y.x); }
  nb operator+(nb y) { return nb(P.multFast(x,y.x)); }
  friend nb pow(nb b, ul p) {
    nb res = 1; for (;p;p=2,b=b*b) if (p&1) res = res*b;
    return res; } // b^{2^2^2A}-1}=1 where 2^{2^A} > b
  friend nb inv(nb b) { return pow(b,-2); }
};
```

MatroidIsect.h

"DSU.h"

Description: Computes a set of maximum size which is independent in both graphic and colorful matroids, aka a spanning forest where no two edges are of the same color. In general, construct the exchange graph and find a shortest path. Can apply similar concept to partition matroid.

Usage: MatroidIsect<Gmat, Cmat> M(sz (ed), Gmat (ed), Cmat (col)) **Time:** $\mathcal{O}\left(GI^{1.5}\right)$ calls to oracles, where G is size of ground set and I is size of independent set.

struct Gmat { // graphic matroid int V = 0; vpi ed; DSU D; Gmat(vpi ed):ed(ed) { map < int, int > m; each(t, ed) m[t.f] = m[t.s] = 0;each(t,m) t.s = V++;each(t,ed) t.f = m[t.f], t.s = m[t.s]; void clear() { D.init(V); } void ins(int i) { assert(D.unite(ed[i].f,ed[i].s)); } bool indep(int i) { return !D.sameSet(ed[i].f,ed[i].s); } struct Cmat { // colorful matroid int C = 0; vi col; V<bool> used; Cmat(vi col):col(col) {each(t,col) ckmax(C,t+1); } void clear() { used.assign(C,0); } void ins(int i) { used[col[i]] = 1; } bool indep(int i) { return !used[col[i]]; } template < class M1, class M2 > struct MatroidIsect { int n; V<bool> iset; M1 m1; M2 m2; bool augment() { vi pre(n+1,-1); queue<int> q({n}); while (sz(q)) { int x = q.ft; q.pop();if (iset[x]) { m1.clear(); F0R(i,n) if (iset[i] && i != x) m1.ins(i); FOR(i,n) if (!iset[i] && pre[i] == -1 && m1.indep(i)) pre[i] = x, q.push(i);} else { auto backE = [&]() { // back edge $FOR(c, 2) FOR(i, n) if((x==i | | iset[i]) &&(pre[i]==-1) ==c) {$ if (!m2.indep(i))return c?pre[i]=x,q.push(i),i:-1; m2.ins(i); } return n; for (int y; (y = backE()) != -1;) if $(y == n) {$ for(; x != n; x = pre[x]) iset[x] = !iset[x]; return 1; } return 0; MatroidIsect(int n, M1 m1, M2 m2):n(n), m1(m1), m2(m2) { iset.assign(n+1,0); iset[n] = 1; m1.clear(); m2.clear(); // greedily add to basis

```
R0F(i,n) if (m1.indep(i) && m2.indep(i))
    iset[i] = 1, m1.ins(i), m2.ins(i);
    while (augment());
}
```

Numerical (6)

6.1 Matrix

Matrix.h

db40ba, 51 lines

Description: 2D matrix operations.

```
a1cd39, 21 lines
using T = mi;
using Mat = V<V<T>>; // use array instead if tight TL
Mat makeMat(int r, int c) { return Mat(r, V<T>(c)); }
Mat makeId(int n) {
 Mat m = makeMat(n,n); FOR(i,n) m[i][i] = 1;
 return m;
Mat operator*(const Mat& a, const Mat& b) {
 int x = sz(a), y = sz(a[0]), z = sz(b[0]);
  assert (y == sz(b)); Mat c = makeMat(x,z);
 FOR(i,x) FOR(j,y) FOR(k,z) c[i][k] += a[i][j]*b[j][k];
  return c:
Mat& operator*=(Mat& a, const Mat& b) { return a = a*b; }
Mat pow(Mat m, ll p) {
 int n = sz(m); assert (n == sz(m[0]) \&\& p >= 0);
 Mat res = makeId(n);
 for (; p; p /= 2, m \star= m) if (p&1) res \star= m;
 return res;
```

MatrixInv.h

Description: Uses gaussian elimination to convert into reduced row echelon form and calculates determinant. For determinant via arbitrary modulos, use a modified form of the Euclidean algorithm because modular inverse may not exist. If you have computed $A^{-1} \pmod{p^k}$, then the inverse $\pmod{p^{2k}}$ is $A^{-1}(2I-AA^{-1})$.

Time: $\mathcal{O}\left(N^3\right)$, determinant of 1000 \times 1000 matrix of modints in 1 second if you reduce # of operations by half e25bfe, 38 lines

```
const db EPS = 1e-9; // adjust?
int getRow(V<V<db>>& m, int R, int i, int nex) {
 pair<db, int> bes{0,-1}; // find row with max abs value
 FOR(j,nex,R) ckmax(bes,{abs(m[j][i]),j});
 return bes.f < EPS ? -1 : bes.s; }</pre>
int getRow(V<vmi>& m, int R, int i, int nex) {
 FOR(j, nex, R) if (m[j][i] != 0) return j;
 return -1; }
pair<T,int> gauss(Mat& m) { // convert to reduced row echelon
  \hookrightarrow form
 if (!sz(m)) return {1,0};
 int R = sz(m), C = sz(m[0]), rank = 0, nex = 0;
 T prod = 1; // determinant
 F0R(i,C) {
    int row = getRow(m,R,i,nex);
    if (row == -1) { prod = 0; continue; }
   if (row != nex) prod \star= -1, swap(m[row], m[nex]);
    prod *= m[nex][i]; rank++;
    T x = 1/m[nex][i]; FOR(k,i,C) m[nex][k] \star= x;
   FOR(j,R) if (j != nex) {
     T v = m[j][i]; if (v == 0) continue;
      FOR(k,i,C) m[j][k] -= v*m[nex][k];
   nex++;
```

```
}
return {prod,rank};
}
Mat inv(Mat m) {
   int R = sz(m);   assert(R == sz(m[0]));
   Mat x = makeMat(R,2*R);
   F0R(i,R) {
      x(i][i+R] = 1;
      F0R(j,R) x[i][j] = m[i][j];
}
   if (gauss(x).s != R) return Mat();
   Mat res = makeMat(R,R);
   F0R(i,R) F0R(j,R) res[i][j] = x[i][j+R];
   return res;
}
```

MatrixTree.h

Description: Kirchhoff's Matrix Tree Theorem. Given adjacency matrix, calculates # of spanning trees.

ShermanMorrison.h

Description: Calculates $(A + uv^T)^{-1}$ given $B = A^{-1}$. Not invertible if sum=0.

6.2 Polynomials

| Poly

Description: Basic poly ops including division. Can replace T with double, complex.

```
"ModInt.h"
                                                     6d2a29, 73 lines
using T = mi; using poly = V<T>;
void remz(poly& p) { while (sz(p)&&p.bk==T(0)) p.pop_back(); }
poly REMZ(poly p) { remz(p); return p; }
poly rev(poly p) { reverse(all(p)); return p; }
poly shift (poly p, int x) {
 if (x \ge 0) p.insert(begin(p),x,0);
  else assert (sz(p)+x \ge 0), p.erase(begin(p),begin(p)-x);
  return p;
poly RSZ(const poly& p, int x) {
  if (x \le sz(p)) return poly(begin(p), begin(p)+x);
  poly q = p; q.rsz(x); return q; }
T eval(const poly& p, T x) { // evaluate at point x
 T res = 0; ROF(i,sz(p)) res = x*res+p[i];
  return res; }
poly dif(const poly& p) { // differentiate
  poly res; FOR(i, 1, sz(p)) res.pb(T(i)*p[i]);
  return res; }
```

```
poly integ(const poly& p) { // integrate
  static poly invs{0,1};
  for (int i = sz(invs); i \le sz(p); ++i)
   invs.pb(-MOD/i*invs[MOD%i]);
  poly res(sz(p)+1); F0R(i,sz(p)) res[i+1] = p[i]*invs[i+1];
  return res;
poly& operator+=(poly& 1, const poly& r) {
 1.rsz(max(sz(1),sz(r))); FOR(i,sz(r)) l[i] += r[i];
poly& operator-=(poly& 1, const poly& r) {
 1.rsz(max(sz(1),sz(r))); FOR(i,sz(r)) 1[i] -= r[i];
poly& operator *= (poly& 1, const T& r) { each(t,1) t *= r;
 return 1; }
poly& operator/=(poly& 1, const T& r) { each(t,1) t /= r;
 return 1; }
poly operator+(poly 1, const poly& r) { return 1 += r; }
poly operator-(poly 1, const poly& r) { return 1 -= r; }
poly operator-(poly 1) { each(t,1) t *=-1; return 1; }
poly operator*(poly 1, const T& r) { return 1 *= r; }
poly operator*(const T& r, const poly& 1) { return 1*r; }
poly operator/(poly 1, const T& r) { return 1 /= r; }
poly operator*(const poly& 1, const poly& r) {
 if (!min(sz(l),sz(r))) return {};
  poly x(sz(1)+sz(r)-1);
  FOR(i, sz(1)) FOR(j, sz(r)) x[i+j] += l[i]*r[j];
  return x:
poly& operator*=(poly& 1, const poly& r) { return 1 = 1*r; }
pair<poly, poly> quoRemSlow(poly a, poly b) {
  remz(a); remz(b); assert(sz(b));
  T lst = b.bk, B = T(1)/lst; each(t,a) t *= B;
  each(t,b) t \star= B;
  poly q(max(sz(a)-sz(b)+1,0));
  for (int dif; (dif=sz(a)-sz(b)) >= 0; remz(a)) {
   q[dif] = a.bk; F0R(i,sz(b)) a[i+dif] -= q[dif]*b[i]; }
  each(t,a) t \star= lst;
  return {q,a}; // quotient, remainder
poly operator% (const poly& a, const poly& b) {
 return quoRemSlow(a,b).s; }
T resultant (poly a, poly b) \{ // R(A,B) \}
  // =b_m^n*prod_{j=1}^mA(mu_j)
  // =b m^na n^m*prod {i=1}^nprod {i=1}^m (mu j-lambda i)
  // = (-1)^{mn}a_n^m*prod_{i=1}^nB(lambda_i)
  // = (-1) ^{nm} R(B, A)
  // Also, R(A,B)=b_m^{deg(A)-deg(A-CB)}R(A-CB,B)
  int ad = sz(a)-1, bd = sz(b)-1;
  if (bd <= 0) return bd < 0 ? 0 : pow(b.bk,ad);
  int pw = ad; a = a%b; pw -= (ad = sz(a)-1);
  return resultant (b, a) *pow(b.bk,pw) *T((bd&ad&1)?-1:1);
```

PolyInterpolate.h

Description: n points determine unique polynomial of degree $\leq n-1$. For numerical precision pick $v[k].f = c * \cos(k/(n-1)*\pi), k = 0 \dots n-1$. **Time:** $\mathcal{O}\left(n^2\right)$

FFT.h

Description: Multiply polynomials of ints for any modulus $< 2^{31}$. For XOR convolution ignore m within fft.

```
Time: \mathcal{O}(N \log N). For N = 10^6, conv ~0.13ms, conv_general ~320ms.
"ModInt.h"
                                                      6d6422, 39 lines
// const int MOD = 998244353;
tcT> void fft(V<T>& A, bool invert = 0) { // NTT
 int n = sz(A); assert((T::mod-1)%n == 0); V<T> B(n);
  for (int b = n/2; b; b \neq 2, swap (A, B)) { // w = n/b'th root
    T w = pow(T::rt(), (T::mod-1)/n*b), m = 1;
    for (int i = 0; i < n; i += b*2, m *= w) FOR(j,b) {
      T u = A[i+j], v = A[i+j+b]*m;
      B[i/2+j] = u+v; B[i/2+j+n/2] = u-v;
  if (invert) { reverse(1+all(A));
    Tz = inv(T(n)); each(t,A) t *= z; }
} // for NTT-able moduli
tcT> V<T> conv(V<T> A, V<T> B) {
  if (!min(sz(A),sz(B))) return {};
  int s = sz(A) + sz(B) - 1, n = 1; for (; n < s; n \ne 2);
  A.rsz(n), fft(A); B.rsz(n), fft(B);
  FOR(i,n) A[i] \star= B[i];
  fft(A,1); A.rsz(s); return A;
template<class M, class T> V<M> mulMod(const V<T>& x, const V<T
   →>& V) {
  auto con = [] (const V<T>& v) {
    V<M> w(sz(v)); FOR(i,sz(v)) w[i] = (int)v[i];
    return w; };
  return conv(con(x), con(y));
} // arbitrary moduli
tcT> V<T> conv_general(const V<T>& A, const V<T>& B) {
  using m0 = mint < (119 << 23) + 1,62 >; auto c0 = mulMod < m0 > (A,B);
  using m1 = mint < (5 << 25) +1, 62>; auto c1 = mulMod < m1> (A, B);
  using m2 = mint < (7 << 26) +1, 62>; auto c2 = mulMod < m2> (A, B);
  int n = sz(c\theta); V < T > res(n); m1 r\theta1 = inv(m1(m\theta::mod));
  m2 r02 = inv(m2(m0::mod)), r12 = inv(m2(m1::mod));
  FOR(i,n) { // a=remainder mod m0::mod, b fixes it mod m1::mod
    int a = c0[i].v, b = ((c1[i]-a)*r01).v,
      c = (((c2[i]-a)*r02-b)*r12).v;
    res[i] = (T(c)*m1::mod+b)*m0::mod+a; // c fixes m2::mod
  return res;
```

PolyInvSimpler.h

Description: computes A^{-1} such that $AA^{-1} \equiv 1 \pmod{x^n}$. Newton's method: If you want F(x) = 0 and $F(Q_k) \equiv 0 \pmod{x^a}$ then $Q_{k+1} = Q_k - \frac{F(Q_k)}{F'(Q_k)} \pmod{x^{2a}}$ satisfies $F(Q_{k+1}) \equiv 0 \pmod{x^{2a}}$. Application: if f(n), g(n) are the #s of forests and trees on n nodes then $\sum_{n=0}^{\infty} f(n)x^n = \exp\left(\sum_{n=1}^{\infty} \frac{g(n)}{n!}\right)$.

Usage: vmi v{1,5,2,3,4}; ps(exp(2*log(v,9),9)); // squares v **Time:** $\mathcal{O}(N \log N)$. For $N = 5 \cdot 10^5$, inv~270ms, log ~350ms, exp~550ms

```
Imme: O(N log N). For N = 5 · 10 ', inv~270ms, log ~350ms, exp~550ms

poly inv(poly A, int n) { // Q-(1/Q-A)/(-Q^{-2})}

poly B{inv(A[0])};

for (int x = 2; x/2 < n; x *= 2)

    B = 2*B-RSZ(conv(RSZ(A,x),conv(B,B)),x);

return RSZ(B,n);
}

poly sqrt(const poly& A, int n) { // Q-(Q^2-A)/(2Q)

assert(A[0].v == 1); poly B{1};

for (int x = 2; x/2 < n; x *= 2)

    B = inv(T(2))*RSZ(B+conv(RSZ(A,x),inv(B,x)),x);

return RSZ(B,n);
}</pre>
```

```
// return {quotient, remainder}
pair<poly, poly> quoRem(const poly& f, const poly& q) {
  if (sz(f) < sz(q)) return {{},f};
  poly q = conv(inv(rev(g), sz(f)-sz(g)+1), rev(f));
  q = rev(RSZ(q, sz(f) - sz(q) + 1));
  poly r = RSZ(f-conv(q, g), sz(g)-1); return \{q, r\};
poly log(poly A, int n) { assert(A[0].v == 1); // (ln A)' = A'/
  A.rsz(n); return integ(RSZ(conv(dif(A),inv(A,n-1)),n-1)); }
poly exp(poly A, int n) { assert(A[0].v == 0);
  poly B{1}, IB{1}; // inverse of B
  for (int x = 1; x < n; x *= 2) {
    IB = 2*IB-RSZ(conv(B,conv(IB,IB)),x);
    poly Q = dif(RSZ(A,x)); Q += RSZ(conv(IB, dif(B) - conv(B,Q))
       \hookrightarrow, 2 * x-1);
    B = B+RSZ (conv(B,RSZ(A,2*x)-integ(Q)),2*x);
  return RSZ(B,n);
```

6.3 Misc

LinearRecurrence.h

```
Description: Berlekamp-Massey. Computes linear recurrence \mathbb{C} of order N for sequence s of 2N terms. C[0] = 1 and for all i \geq sz(C) - 1, \sum_{j=0}^{sz(C)-1} C[j]s[i-j] = 0. Usage: LinRec L; L.init(\{0,1,1,2,3\}); L.eval(\{5\}); L.eval(\{6\}); \{1,2,3\}
```

Usage: Linker L; L.init({U,1,1,2,3}); L.eval(5); L.eval(6); 5, 8

Time: init $\Rightarrow \mathcal{O}(N|C|)$, eval $\Rightarrow \mathcal{O}(|C|^2 \log p)$ or faster with FFT b88eb7, 29 lines

```
struct LinRec {
 poly s, C, rC;
  void BM() {
    int x = 0; T b = 1;
    poly B; B = C = \{1\}; // B is fail vector
    FOR(i, sz(s)) { // update C after adding a term of s
      ++x; int L = sz(C), M = i+3-L;
      T d = 0; FOR(j,L) d += C[j] *s[i-j]; // [D^i]C*s
      if (d.v == 0) continue; // [D^i]C*s=0
      poly _{C} = C; T coef = d*inv(b);
      C.rsz(max(L,M)); FOR(j,sz(B)) C[j+x] -= coef*B[j];
      if (L < M) B = _C, b = d, x = 0;
 void init(const poly& _s) {
    s = _s; BM();
    rC = C; reverse(all(rC));
    C.erase(begin(C)); each(t,C) t \star = -1;
   // \text{ now } s[i] = sum_{j=0}^{sz(C)-1}C[j]*s[i-j-1] 
  poly getPow(ll p) { // get x^p mod rC
    if (p == 0) return {1};
    poly r = getPow(p/2); r = (r*r) %rC;
    return p&1?(r*poly{0,1})%rC:r;
 T dot(poly v) { // dot product with s
    T ans = 0; FOR(i,sz(v)) ans += v[i]*s[i];
    return ans; } // get p-th term of rec
 T eval(11 p) { assert(p \ge 0); return dot(getPow(p)); }
```

Integrate.h

Description: Integration of a function over an interval using Simpson's rule, exact for polynomials of degree up to 3. The error should be proportional to dif^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
Usage: quad([](db x) { return x*x+3*x+1; }, 2, 3) // 14,833. hies
```

template < class F > db quad (F f, db a, db b) {

```
const int n = 1000;
db dif = (b-a)/2/n, tot = f(a)+f(b);
FOR(i,1,2*n) tot += f(a+i*dif)*(i&1?4:2);
return tot*dif/3;
```

IntegrateAdaptive.h

Description: Unused. Fast integration using adaptive Simpson's rule, exact for polynomials of degree up to 5.

```
Usage: db z, y;
db h(db x) { return x*x + y*y + z*z <= 1; }
db g(db y) { :: y = y; return guad(h, -1, 1); }
db f(db z) \{ :: z = z; \text{ return quad}(q, -1, 1); \}
db sphereVol = quad(f,-1,1), pi = sphereVol*3/4;
                                                        7fe07d, 10 lines
template < class F > db simpson (F f, db a, db b) {
  db c = (a+b)/2; return (f(a)+4*f(c)+f(b))*(b-a)/6; }
template < class F > db rec(F& f, db a, db b, db eps, db S) {
  db c = (a+b)/2;
  db S1 = simpson(f,a,c), S2 = simpson(f,c,b), T = S1+S2;
  if (abs(T-S) \le 15 \times eps \mid | b-a \le 1e-10) return T+(T-S)/15;
  return rec(f,a,c,eps/2,S1)+rec(f,c,b,eps/2,S2);
template < class F > db quad (F f, db a, db b, db eps = 1e-8) {
 return rec(f,a,b,eps,simpson(f,a,b)); }
```

Simplex.h

Description: Solves a general linear maximization problem: maximize $c^T x$ subject to Ax < b, x > 0. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of $c^T x$ otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A\{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b\{1,1,-4\}, c\{-1,-1\}, x;
T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM \cdot \#pivots)$, where a pivot may be e.g. an edge relaxation.

```
\mathcal{O}\left(2^{N}\right) in the general case.
                                                      89b129, 67 lines
using T = db; // double probably suffices
using vd = V<T>; using vvd = V<vd>;
const T eps = 1e-8, inf = 1/.0;
#define ltj(X) if (s==-1 \mid | mp(X[j],N[j]) < mp(X[s],N[s])) s=j
struct LPSolver {
  int m, n; // # m = contraints, # n = variables
  vi N, B; // N[j] = non-basic variable (j-th column), = 0
  vvd D; // B[i] = basic variable (i-th row)
  LPSolver (const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
   FOR(i,m) FOR(j,n) D[i][j] = A[i][j];
   FOR(i, m) B[i] = n+i, D[i][n] = -1, D[i][n+1] = b[i];
    // B[i]: basic variable for each constraint
    // D[i][n]: artificial variable for testing feasibility
   FOR(j,n) N[j] = j, D[m][j] = -c[j];
    // D[m] stores negation of objective,
    // which we want to minimize
    N[n] = -1; D[m+1][n] = 1; // to find initial feasible
  } // solution, minimize artificial variable
  void pivot(int r, int s) { // swap B[r] (row)
   T inv = 1/D[r][s]; // with N[r] (column)
    FOR(i,m+2) if (i != r && abs(D[i][s]) > eps) {
     T binv = D[i][s]*inv;
     FOR(j, n+2) if (j != s) D[i][j] -= D[r][j] *binv;
     D[i][s] = -binv;
   D[r][s] = 1; F0R(j, n+2) D[r][j] *= inv; // scale r-th row
    swap(B[r],N[s]);
```

```
bool simplex(int phase) {
  int x = m+phase-1;
  while (1) { // if phase=1, ignore artificial variable
    int s = -1; FOR(j, n+1) if (N[j] != -phase) ltj(D[x]);
    // find most negative col for nonbasic (NB) variable
    if (D[x][s] >= -eps) return 1;
    // can't get better sol by increasing NB variable
    int r = -1:
    F0R(i,m) {
      if (D[i][s] <= eps) continue;</pre>
      if (r == -1 \mid | mp(D[i][n+1] / D[i][s], B[i])
             < mp(D[r][n+1] / D[r][s], B[r])) r = i;
      // find smallest positive ratio
    } // -> max increase in NB variable
    if (r == -1) return 0; // objective is unbounded
    pivot(r,s);
T solve(vd& x) { // 1. check if x=0 feasible
  int r = 0; FOR(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
  if (D[r][n+1] < -eps) { // if not, find feasible start
    pivot(r,n); // make artificial variable basic
    assert(simplex(2)); // I think this will always be true??
    if (D[m+1][n+1] < -eps) return -inf;</pre>
    // D[m+1][n+1] is max possible value of the negation of
    // artificial variable, optimal value should be zero
    // if exists feasible solution
    FOR(i,m) if (B[i] == -1) { // artificial var basic
      int s = 0; FOR(j,1,n+1) ltj(D[i]); // -> nonbasic
      pivot(i,s);
  bool ok = simplex(1); x = vd(n);
  FOR(i,m) if (B[i] < n) x[B[i]] = D[i][n+1];
  return ok ? D[m][n+1] : inf;
```

Graphs (7)

Erdos-Gallai: $d_1 \ge \cdots \ge d_n$ can be degree sequence of simple graph on n vertices iff their sum is even and $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k), \forall 1 \le k \le n.$

7.1 Basics

DSU.h

Description: Disjoint Set Union with path compression and union by size. Add edges and test connectivity. Use for Kruskal's or Boruyka's minimum spanning tree. Time: $\mathcal{O}(\alpha(N))$

```
509e58, 11 lines
struct DSU {
 vi e; void init(int N) { e = vi(N, -1); }
 int qet(int x) \{ return e[x] < 0 ? x : e[x] = qet(e[x]); \}
 bool sameSet(int a, int b) { return get(a) == get(b); }
 int size(int x) { return -e[get(x)]; }
 bool unite(int x, int v) { // union by size
   x = get(x), y = get(y); if (x == y) return 0;
   if (e[x] > e[y]) swap(x,y);
   e[x] += e[y]; e[y] = x; return 1;
```

NegativeCvcle.h

};

Description: use Bellman-Ford (make sure no underflow)

```
32329<u>8</u>, 11 lines
```

```
vi negCyc(int N, V<pair<pi,int>> ed) {
 vl d(N); vi p(N); int x = -1;
 rep(N) {
   x = -1; each(t,ed) if (ckmin(d[t.f.s],d[t.f.f]+t.s))
     p[t.f.s] = t.f.f, x = t.f.s;
    if (x == -1) return \{\};
 rep(N) x = p[x]; // enter cycle
 vi cyc{x}; while (p[cyc.bk] != x) cyc.pb(p[cyc.bk]);
 reverse(all(cyc)); return cyc;
```

7.2Trees

LCAiump.h

Description: Calculates least common ancestor in tree with verts $0 \dots N-1$ and root R using binary jumping.

Memory: $\mathcal{O}(N \log N)$

Time: $O(N \log N)$ build, $O(\log N)$ query

b4ef4e, 28 lines

```
struct LCA {
 int N; V<vi> par, adj; vi depth;
  void init(int N) { N = N;
    int d = 1; while ((1 << d) < N) ++d;
    par.assign(d, vi(N)); adj.rsz(N); depth.rsz(N);
  void ae(int x, int y) { adj[x].pb(y), adj[y].pb(x); }
  void gen(int R = 0) { par[0][R] = R; dfs(R); }
  void dfs(int x = 0) {
    FOR(i, 1, sz(par)) par[i][x] = par[i-1][par[i-1][x]];
    each(y,adj[x]) if (y != par[0][x])
      depth[y] = depth[par[0][y]=x]+1, dfs(y);
  int jmp(int x, int d) {
    FOR(i,sz(par)) if ((d>>i)&1) x = par[i][x];
    return x; }
  int lca(int x, int y) {
    if (depth[x] < depth[y]) swap(x,y);</pre>
    x = jmp(x, depth[x] - depth[y]); if (x == y) return x;
    R0F(i,sz(par)) {
      int X = par[i][x], Y = par[i][y];
      if (X != Y) x = X, y = Y;
    return par[0][x];
 int dist(int x, int y) { // # edges on path
    return depth[x]+depth[y]-2*depth[lca(x,y)]; }
};
```

LCArma.h

Description: Euler Tour LCA. Compress takes a subset S of nodes and computes the minimal subtree that contains all the nodes pairwise LCAs and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

Time: $\mathcal{O}(N \log N)$ build, $\mathcal{O}(1)$ LCA, $\mathcal{O}(|S| \log |S|)$ compress

```
"RMQ.h"
                                                     1cb19c, 28 lines
struct LCA {
 int N; V<vi> adj;
 vi depth, pos, par, rev; // rev is for compress
 vpi tmp; RMQ<pi> r;
 void init(int _N) { N = _N; adj.rsz(N);
    depth = pos = par = rev = vi(N); }
  void ae(int x, int y) { adj[x].pb(y), adj[y].pb(x); }
  void dfs(int x) {
    pos[x] = sz(tmp); tmp.eb(depth[x],x);
    each(y,adj[x]) if (y != par[x]) {
      depth[y] = depth[par[y]=x]+1, dfs(y);
      tmp.eb(depth[x],x); }
```

12

```
void gen(int R = 0) \{ par[R] = R; dfs(R); r.init(tmp); \}
  int lca(int u, int v){
   u = pos[u], v = pos[v]; if (u > v) swap(u,v);
   return r.query(u,v).s; }
  int dist(int u, int v) {
   return depth[u]+depth[v]-2*depth[lca(u,v)]; }
  vpi compress(vi S) {
    auto cmp = [&](int a, int b) { return pos[a] < pos[b]; };</pre>
    sort(all(S), cmp); R0F(i, sz(S)-1) S.pb(lca(S[i], S[i+1]));
    sort(all(S),cmp); S.erase(unique(all(S)),end(S));
    vpi ret{\{0,S[0]\}\}; F0R(i,sz(S)) rev[S[i]] = i;}
   FOR(i,1,sz(S)) ret.eb(rev[lca(S[i-1],S[i])],S[i]);
    return ret:
};
```

HLD.h

Description: Heavy-Light Decomposition, add val to verts and query sum in path/subtree.

Time: any tree path is split into $\mathcal{O}(\log N)$ parts

585bcb, 48 lines template<int SZ, bool VALS_IN_EDGES> struct HLD { int N; vi adj[SZ]; int par[SZ], root[SZ], depth[SZ], sz[SZ], ti; int pos[SZ]; vi rpos; // rpos not used but could be useful void ae(int x, int y) { adj[x].pb(y), adj[y].pb(x); } void dfsSz(int x) { sz[x] = 1;each(y,adj[x]) { par[y] = x; depth[y] = depth[x]+1;adj[y].erase(find(all(adj[y]),x)); dfsSz(y); sz[x] += sz[y];if (sz[y] > sz[adj[x][0]]) swap(y,adj[x][0]); void dfsHld(int x) { pos[x] = ti++; rpos.pb(x);each(y,adj[x]) { root[y] = (y == adj[x][0] ? root[x] : y);dfsHld(y); } void init(int N, int R = 0) { N = N; par[R] = depth[R] = ti = 0; dfsSz(R);root[R] = R; dfsHld(R); int lca(int x, int y) { for (; root[x] != root[y]; y = par[root[y]]) if (depth[root[x]] > depth[root[y]]) swap(x,y); return depth[x] < depth[y] ? x : y;</pre> LazySeg<11,SZ> tree; // segtree for sum template <class BinaryOp> void processPath(int x, int y, BinaryOp op) { for (; root[x] != root[y]; y = par[root[y]]) { if (depth[root[x]] > depth[root[y]]) swap(x,y); op(pos[root[y]],pos[y]); } if (depth[x] > depth[y]) swap(x,y); op(pos[x]+VALS_IN_EDGES,pos[y]); void modifyPath(int x, int y, int v) { processPath(x,y,[this,&v](int 1, int r) { tree.upd(1,r,v); }); } 11 queryPath(int x, int y) { 11 res = 0; processPath(x,y,[this,&res](int 1, int r) { res += tree.query(1,r); }); return res; } void modifySubtree(int x, int v) { tree.upd(pos[x]+VALS_IN_EDGES,pos[x]+sz[x]-1,v); }

Centroid.h

Description: The centroid of a tree of size N is a vertex such that after removing it, all resulting subtrees have size at most $\frac{N}{2}$. Supports updates in the form "add 1 to all verts v such that dist(x, v) < v."

Memory: $\mathcal{O}(N \log N)$

Time: $\mathcal{O}(N \log N)$ build, $\mathcal{O}(\log N)$ update and query 3405a1, 54 lines void ad(vi& a, int b) { ckmin(b,sz(a)-1); if (b>=0) a[b]++; } void prop(vi& a) { R0F(i,sz(a)-1) a[i] += a[i+1]; } template<int SZ> struct Centroid { vi adj[SZ]; void ae(int a, int b) {adj[a].pb(b),adj[b].pb(a);} bool done[SZ]; // processed as centroid yet int N, sub[SZ], cen[SZ], lev[SZ]; // subtree size, centroid and int dist[32-__builtin_clz(SZ)][SZ]; // dists to all ancs vi stor[SZ], STOR[SZ]; void dfs(int x, int p) { sub[x] = 1; each(v,adj[x]) if (!done[v] && v != p) dfs(y,x), sub[x] += sub[y]; int centroid(int x) { dfs(x,-1);for (int sz = sub[x];;) { $pi mx = \{0, 0\};$ each(y,adj[x]) if (!done[y] && sub[y] < sub[x])ckmax(mx, {sub[y],y}); if $(mx.f*2 \le sz)$ return x; x = mx.s:void genDist(int x, int p, int lev) { dist[lev][x] = dist[lev][p]+1; each(y,adj[x]) if (!done[y] && y != p) genDist(y,x,lev);} void gen(int CEN, int _x) { // CEN = centroid above x int $x = centroid(_x); done[x] = 1; cen[x] = CEN;$ sub[x] = sub[x]; lev[x] = (CEN == -1 ? 0 : lev[CEN]+1);dist[lev[x]][x] = 0;stor[x].rsz(sub[x]), STOR[x].rsz(sub[x]+1);each(y,adj[x]) if (!done[y]) genDist(y,x,lev[x]); each(y,adj[x]) if (!done[y]) gen(x,y); void init(int N) { N = N; FOR(i, 1, N+1) done[i] = 0; gen(-1,1); } // start at vert 1 void upd(int x, int y) { int cur = x, pre = -1; ROF(i, lev[x]+1) { ad(stor[cur],y-dist[i][x]); if (pre != -1) ad(STOR[pre], y-dist[i][x]); if (i > 0) pre = cur, cur = cen[cur]; } // call propAll() after all updates void propAll() { FOR(i,1,N+1) prop(stor[i]), prop(STOR[i]); } int query(int x) { // get value at vertex x int cur = x, pre = -1, ans = 0; ROF(i, lev[x]+1) { // if pre != -1, subtract those from ans += stor[cur][dist[i][x]]; // same subtree if (pre != -1) ans -= STOR[pre][dist[i][x]]; if (i > 0) pre = cur, cur = cen[cur]; return ans; };

7.2.1 SqrtDecompton

HLD generally suffices. If not, here are some common strateResuild the tree after every \sqrt{N} queries.

- Consider vertices with > or $<\sqrt{N}$ degree separately.
- For subtree updates, note that there are $O(\sqrt{N})$ distinct sizes among child subtrees of any node.

Block Tree: Use a DFS to split edges into contiguous groups of size \sqrt{N} to $2\sqrt{N}$.

Mo's Algorithm for Tree Paths: Maintain an array of vertices where each one appears twice, once when a DFS enters the vertex (st) and one when the DFS exists (en). For a tree path $u \leftrightarrow v$ such that st[u] < st[v].

- If u is an ancestor of v, query [st[u], st[v]].
- Otherwise, query [en[u], st[v]] and consider LCA(u,v)separately.

Solutions with worse complexities can be faster if you optimize the operations that are performed most frequently. Use arrays instead of vectors whenever possible. Iterating over an array in order is faster than iterating through the same array in some other order (ex. one given by a random permutation) or DFSing on a tree of the same size. Also, the difference between \sqrt{N} and the optimal block (or buffer) size can be quite large. Try up to 5x smaller or larger (at least).

7.3 DFS Algorithms

EulerPath.h

Description: Eulerian path starting at src if it exists, visits all edges exactly once. Works for both directed and undirected. Returns vector of {vertex, label of edge to vertex}. Second element of first pair is always -1. Time: $\mathcal{O}(N+M)$ 67f245, 23 lines

```
template<bool directed> struct Euler {
 int N; V<vpi> adj; V<vpi::iterator> its; vb used;
 void init(int _N) { N = _N; adj.rsz(N); }
 void ae(int a, int b) {
    int M = sz(used); used.pb(0);
    adj[a].eb(b,M); if (!directed) adj[b].eb(a,M); }
  vpi solve(int src = 0) {
    its.rsz(N); F0R(i,N) its[i] = begin(adj[i]);
    vpi ans, s{{src,-1}}; // {{vert,prev vert},edge label}
    int lst = -1; // ans generated in reverse order
    while (sz(s)) {
      int x = s.bk.f; auto& it=its[x], en=end(adj[x]);
      while (it != en && used[it->s]) ++it;
      if (it == en) { // no more edges out of vertex
       if (lst != -1 && lst != x) return {};
        // not a path, no tour exists
        ans.pb(s.bk); s.pop_back(); if (sz(s)) lst=s.bk.f;
      } else s.pb(*it), used[it->s] = 1;
    } // must use all edges
    if (sz(ans) != sz(used)+1) return {};
    reverse(all(ans)); return ans;
};
```

SCCT.h

Description: Tarjan's, DFS once to generate strongly connected components in topological order. a, b in same component if both $a \to b$ and $b \to a$ exist. Uses less memory than Kosaraju b/c doesn't store reverse edges. Time: $\mathcal{O}(N+M)$ 32b45f, 22 lines

TwoSAT BCC MaximalCliques Dinic GomoryHu

```
struct SCC {
 int N, ti = 0; V<vi> adj;
  vi disc, comp, stk, comps;
  void init(int _N) { N = _N, adj.rsz(N);
   disc.rsz(N), comp.rsz(N,-1);
  void ae(int x, int y) { adj[x].pb(y); }
  int dfs(int x) {
   int low = disc[x] = ++ti; stk.pb(x);
   each(y,adj[x]) if (comp[y] == -1) // comp[y] == -1,
     ckmin(low, disc[y]?:dfs(y)); // disc[y] != 0 -> in stack
    if (low == disc[x]) { // make new SCC
     // pop off stack until you find x
     comps.pb(x); for (int y = -1; y != x;)
       comp[y = stk.bk] = x, stk.pop_back();
    return low;
 void gen() {
   F0R(i,N) if (!disc[i]) dfs(i);
    reverse(all(comps));
};
```

TwoSAT.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions ($\sim x$). Usage: TwoSat ts;

```
ts.setVal(2); // Var 2 is true
ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim 1 and 2 are true
ts.solve(N); // Returns true iff it is solvable
ts.ans[0..N-1] holds the assigned values to the vars
"SCC.h"
                                                         9c12ef, 31 lines
```

ts.either(0, \sim 3); // Var 0 is true or var 3 is false

```
struct TwoSAT {
 int N = 0; vpi edges;
  void init(int _N) { N = _N; }
  int addVar() { return N++; }
  void either(int x, int y) {
   x = max(2*x, -1-2*x), y = max(2*y, -1-2*y);
   edges.eb(x,y); }
  void implies (int x, int y) { either (\sim x, y); }
  void must(int x) { either(x,x); }
  void atMostOne(const vi& li) {
    if (sz(li) <= 1) return;
    int cur = \simli[0];
   FOR(i,2,sz(li)) {
     int next = addVar();
     either(cur,~li[i]); either(cur,next);
     either(~li[i],next); cur = ~next;
    either(cur,~li[1]);
  vb solve() {
    SCC S; S.init(2*N);
    each (e, edges) S.ae (e.f^1, e.s), S.ae (e.s^1, e.f);
   S.gen(); reverse(all(S.comps)); // reverse topo order
    for (int i = 0; i < 2*N; i += 2)
     if (S.comp[i] == S.comp[i^1]) return {};
    vi tmp(2*N); each(i,S.comps) if (!tmp[i])
     tmp[i] = 1, tmp[S.comp[i^1]] = -1;
    vb ans(N); FOR(i,N) ans[i] = tmp[S.comp[2*i]] == 1;
    return ans;
};
```

Time: $\mathcal{O}(N+M)$

Description: Biconnected components of edges. Removing any vertex in BCC doesn't disconnect it. To get block-cut tree, create a bipartite graph with the original vertices on the left and a vertex for each BCC on the right. Draw edge $u \leftrightarrow v$ if u is contained within the BCC for v. Self-loops are not included in any BCC while BCCS of size 1 represent bridges.

```
2cb202, 35 lines
struct BCC {
 V<vpi> adj; vpi ed;
 V<vi> edgeSets, vertSets; // edges for each bcc
 int N, ti = 0; vi disc, stk;
 void init(int _N) { N = _N; disc.rsz(N), adj.rsz(N); }
 void ae(int x, int y) {
    adj[x].eb(y,sz(ed)), adj[y].eb(x,sz(ed)), ed.eb(x,y); }
 int dfs(int x, int p = -1) { // return lowest disc
   int low = disc[x] = ++ti;
   each(e,adj[x]) if (e.s != p) {
     if (!disc[e.f]) {
       stk.pb(e.s); // disc[x] < LOW -> bridge
       int LOW = dfs(e.f,e.s); ckmin(low,LOW);
       if (disc[x] <= LOW) { // get edges in bcc
         edgeSets.eb(); vi& tmp = edgeSets.bk; // new bcc
         for (int y = -1; y != e.s;)
            tmp.pb(y = stk.bk), stk.pop_back();
     } else if (disc[e.f] < disc[x]) // back-edge</pre>
        ckmin(low,disc[e.f]), stk.pb(e.s);
   return low;
 void gen() {
   FOR(i, N) if (!disc[i]) dfs(i);
   vb in(N);
    each(c,edgeSets) { // edges contained within each BCC
      vertSets.eb(); // so you can easily create block cut tree
     auto ad = [\&] (int x) {
       if (!in[x]) in[x] = 1, vertSets.bk.pb(x); };
      each(e,c) ad(ed[e].f), ad(ed[e].s);
     each(e,c) in[ed[e].f] = in[ed[e].s] = 0;
};
```

MaximalCliques.h

Description: Used only once. Finds all maximal cliques.

Time: $\mathcal{O}\left(3^{N/3}\right)$

bea652, 16 lines using B = bitset<128>; B adj[128]; int N; // possibly in clique, not in clique, in clique void cliques (B P = \sim B(), B X={}, B R={}) { if (!P.any()) { if (!X.any()) // do smth with R return; int q = (P|X)._Find_first(); // clique must contain q or non-neighbor of q B cands = $P\&\sim adj[q];$ F0R(i,N) if (cands[i]) { R[i] = 1; cliques(P&adj[i], X&adj[i], R); R[i] = P[i] = 0; X[i] = 1;

7.4 Flows

Konig's Theorem: In a bipartite graph, max matching = min vertex cover.

Dilworth's Theorem: For any partially ordered set, the sizes of the max antichain and of the min chain decomposition are equal. Equivalent to Konig's theorem on the bipartite graph (U, V, E) where U = V = S and (u, v) is an edge when u < v. Those vertices outside the min vertex cover in both U and Vform a max antichain.

Dinic.h

Description: Fast flow. After computing flow, edges $\{u, v\}$ such that $lev[u] \neq 0$, lev[v] = 0 are part of min cut. Time: $\mathcal{O}(N^2M)$ flow

```
5fa3fd, 43 lines
template<class F> struct Dinic {
 struct Edge { int to, rev; F cap; };
 int N; V<V<Edge>> adj;
 void init(int _N) { N = _N; adj.rsz(N); }
 pi ae(int a, int b, F cap, F rcap = \theta) {
   assert(min(cap,rcap) >= 0); // saved me > once
   adj[a].pb({b,sz(adj[b]),cap});
   adj[b].pb({a,sz(adj[a])-1,rcap});
   return {a,sz(adj[a])-1};
 F edgeFlow(pi loc) { // get flow along original edge
    const Edge& e = adj.at(loc.f).at(loc.s);
   return adj.at(e.to).at(e.rev).cap;
 vi lev, ptr;
 bool bfs(int s, int t) { // level=shortest dist from source
   lev = ptr = vi(N);
   lev[s] = 1; queue < int > q({s});
   while (sz(q)) { int u = q.ft; q.pop();
      each(e,adj[u]) if (e.cap && !lev[e.to]) {
       q.push(e.to), lev[e.to] = lev[u]+1;
       if (e.to == t) return 1;
    return 0;
 F dfs(int v, int t, F flo) {
    if (v == t) return flo;
    for (int& i = ptr[v]; i < sz(adj[v]); i++) {
     Edge& e = adj[v][i];
     if (lev[e.to]!=lev[v]+1||!e.cap) continue;
     if (F df = dfs(e.to,t,min(flo,e.cap))) {
       e.cap -= df; adj[e.to][e.rev].cap += df;
        return df; } // saturated >=1 one edge
   return 0:
 F maxFlow(int s, int t) {
    F tot = 0; while (bfs(s,t)) while (F df =
      dfs(s,t,numeric limits<F>::max())) tot += df;
    return tot:
```

GomorvHu.h

};

Description: Returns edges of Gomory-Hu tree (second element is weight). Max flow between pair of vertices of undirected graph is given by min edge weight along tree path. Uses the fact that for any $\bar{i}, \bar{j}, k, \lambda_{ik} \geq \min(\lambda_{ij}, \lambda_{jk})$, where $\lambda_{i,j}$ denotes the flow between i and j.

Time: N - 1 calls to Dinic

```
"Dinic.h"
                                                      1a34c0, 16 lines
template<class F> V<pair<pi,F>> gomoryHu(int N,
    const V<pair<pi,F>>& ed) {
  vi par(N); Dinic<F> D; D.init(N);
  vpi ed_locs; each(t,ed)ed_locs.pb(D.ae(t.f.f,t.f.s,t.s,t.s));
```

```
V<pair<pi,F>> ans;
FOR(i,1,N) {
  each (p,ed locs) { // reset capacities
   auto& e = D.adj.at(p.f).at(p.s);
   auto& e_rev = D.adj.at(e.to).at(e.rev);
   e.cap = e_rev.cap = (e.cap+e_rev.cap)/2;
 ans.pb({{i,par[i]},D.maxFlow(i,par[i])});
 FOR(j, i+1, N) if (par[j] == par[i] \&\& D.lev[j]) par[j] = i;
return ans;
```

MCMF.h

Description: Minimum-cost maximum flow, assumes no negative cycles. It is possible to choose negative edge costs such that the first run of Dijkstra is slow, but this hasn't been an issue in the past. Edge weights > 0 for every subsequent run. To get flow through original edges, assign ID's during ae. **Time:** Ignoring first run of Dijkstra, $\mathcal{O}(FM \log M)$ if caps are integers and F is max flow.

struct MCMF { using F = 11; using C = 11; // flow type, cost type struct Edge { int to, rev; F flo, cap; C cost; }; int N; V<C> p, dist; vpi pre; V<V<Edge>> adj; void init(int _N) { N = _N; p.rsz(N), adj.rsz(N), dist.rsz(N), pre.rsz(N); } void ae(int u, int v, F cap, C cost) { assert(cap >= 0); adj[u].pb({v,sz(adj[v]),0,cap,cost}); $adj[v].pb({u,sz(adj[u])-1,0,0,-cost});$ } // use asserts, don't try smth dumb bool path(int s, int t) { // send flow through lowest cost const C inf = numeric_limits<C>::max(); dist.assign(N,inf); using T = pair<C, int>; priority gueue<T,V<T>, greater<T>> todo; todo.push($\{dist[s] = 0, s\}$); while (sz(todo)) { // Diikstra T x = todo.top(); todo.pop();if (x.f > dist[x.s]) continue; each(e,adj[x.s]) { // all weights should be non-negative if (e.flo < e.cap && ckmin(dist[e.to], x.f+e.cost+p[x.s]-p[e.to]))pre[e.to]={x.s,e.rev}, todo.push({dist[e.to],e.to}); } // if costs are doubles, add some EPS so you // don't traverse ~0-weight cycle repeatedly return dist[t] != inf; // true if augmenting path pair<F,C> calc(int s, int t) { assert(s != t); FOR(_,N) FOR(i,N) each(e,adj[i]) // Bellman-Ford if (e.cap) ckmin(p[e.to],p[i]+e.cost); F totFlow = 0; C totCost = 0; while (path(s,t)) { $// p \rightarrow potentials for Dijkstra$ FOR(i,N) p[i] += dist[i]; // don't matter for unreachable F df = numeric_limits<F>::max(); for (int x = t; x != s; x = pre[x].f) { Edge& e = adj[pre[x].f][adj[x][pre[x].s].rev]; ckmin(df,e.cap-e.flo); } totFlow += df; totCost += (p[t]-p[s])*df;for (int x = t; x != s; x = pre[x].f) { Edge& e = adj[x][pre[x].s]; e.flo -= df; adj[pre[x].f][e.rev].flo += df; } // get max flow you can send along path return {totFlow,totCost}; };

7.5 Matching

Hungarian.h

Description: Given array of (possibly negative) costs to complete each of N(1-indexed) jobs w/ each of M workers $(N \leq M)$, finds min cost to complete all jobs such that each worker is assigned to at most one job. Dijkstra with potentials works in almost the same way as MCMF. Time: $\mathcal{O}(N^2M)$

361623, 28 lines

```
using C = 11;
C hungarian(const V<V<C>>& a) {
 int N = sz(a)-1, M = sz(a[0])-1; assert (N \le M);
 V<C> u(N+1), v(M+1); // potentials to make edge weights >= 0
 vi job(M+1);
 FOR(i,1,N+1) { // find alternating path with job i
   const C inf = numeric_limits<C>::max();
   int w = 0; job[w] = i; // add "dummy" worker 0
   V<C> dist(M+1,inf); vi pre(M+1,-1); vb done(M+1);
   while (job[w]) { // dijkstra
     done[w] = 1; int j = job[w], nexW; C delta = inf;
     // fix dist[j], update dists from j
     FOR(W,M+1) if (!done[W]) { // try all workers
       if (ckmin(dist[W],a[j][W]-u[j]-v[W])) pre[W] = w;
       if (ckmin(delta,dist[W])) nexW = W;
     FOR(W,M+1) { // subtract constant from all edges going
       // from done -> not done vertices, lowers all
       // remaining dists by constant
       if (done[W]) u[job[W]] += delta, v[W] -= delta;
       else dist[W] -= delta;
     w = nexW:
   } // potentials adjusted so all edge weights >= 0
   for (int W; w; w = W) job[w] = job[W = pre[w]];
 } // job[w] = 0, found alternating path
 return -v[0]; // min cost
```

GeneralMatchBlossom.h

Description: Variant on Gabow's Impl of Edmond's Blossom Algorithm. General unweighted max matching with 1-based indexing. If white[v] = 0 after solve () returns, v is part of every max matching.

Time: $\mathcal{O}(NM)$, faster in practice

```
642802, 50 lines
struct MaxMatching {
 int N; V<vi> adj;
 V<int> mate, first; vb white; vpi label;
 void init(int _N) { N = _N; adj = V<vi>(N+1);
   mate = first = vi(N+1); label = vpi(N+1); white = vb(N+1);
 void ae(int u, int v) { adj.at(u).pb(v), adj.at(v).pb(u); }
 int group(int x) { if (white[first[x]]) first[x] = group(
    \hookrightarrowfirst[x]);
   return first[x]; }
 void match(int p, int b) {
   swap(b, mate[p]); if (mate[b] != p) return;
   if (!label[p].s) mate[b] = label[p].f, match(label[p].f,b);
       \hookrightarrow // vertex label
   else match(label[p].f,label[p].s), match(label[p].s,label[p
       \hookrightarrow1.f); // edge label
 bool augment(int st) { assert(st);
   white[st] = 1; first[st] = 0; label[st] = \{0,0\};
   queue<int> q; q.push(st);
   while (!q.empty()) {
     int a = q.ft; q.pop(); // outer vertex
     each(b,adj[a]) { assert(b);
       if (white[b]) { // two outer vertices, form blossom
          int x = group(a), y = group(b), lca = 0;
          while (x||y) {
```

```
if (y) swap(x,y);
            if (label[x] == pi{a,b}) { lca = x; break; }
            label[x] = {a,b}; x = group(label[mate[x]].first);
          for (int v: {group(a),group(b)}) while (v != lca) {
            assert(!white[v]); // make everything along path
               \hookrightarrowwhite
            q.push(v); white[v] = true; first[v] = lca;
            v = group(label[mate[v]].first);
        } else if (!mate[b]) { // found augmenting path
          mate[b] = a; match(a,b); white = vb(N+1); // reset
          return true;
        } else if (!white[mate[b]]) {
          white[mate[b]] = true; first[mate[b]] = b;
          label[b] = \{0,0\}; label[mate[b]] = pi\{a,0\};
          q.push(mate[b]);
    return false;
 int solve() {
    int ans = 0;
    FOR(st,1,N+1) if (!mate[st]) ans += augment(st);
    FOR(st,1,N+1) if (!mate[st] && !white[st]) assert(!augment(
    return ans;
};
```

GeneralWeightedMatch.h

Description: General max weight max matching with 1-based indexing. Edge weights must be positive, combo of UnweightedMatch and Hungarian. Time: $\mathcal{O}(N^3)$?

00189f, 145 lines

```
template<int SZ> struct WeightedMatch {
 struct edge { int u, v, w; }; edge q[SZ*2][SZ*2];
  void ae(int u, int v, int w) { g[u][v].w = g[v][u].w = w; }
  int N,NX,lab[SZ*2],match[SZ*2],slack[SZ*2],st[SZ*2];
  int par[SZ*2],floFrom[SZ*2][SZ],S[SZ*2],aux[SZ*2];
 vi flo[SZ*2]; queue<int> q;
  void init(int _N) { N = _N; // init all edges
    FOR (u, 1, N+1) FOR (v, 1, N+1) g[u][v] = \{u, v, 0\}; \}
 int eDelta(edge e) { // >= 0 at all times
    return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2; }
  void updSlack(int u, int x) { // smallest edge -> blossom x
    if (!slack[x] || eDelta(g[u][x]) < eDelta(g[slack[x]][x]))</pre>
      slack[x] = u; }
  void setSlack(int x) {
    slack[x] = 0; FOR(u, 1, N+1) if (g[u][x].w > 0
    && st[u] != x && S[st[u]] == 0) updSlack(u,x); }
  void gPush(int x) {
    if (x \le N) q.push(x);
    else each(t,flo[x]) qPush(t); }
  void setSt(int x, int b) {
    st[x] = b; if (x > N) each(t,flo[x]) setSt(t,b); }
  int getPr(int b, int xr) { // get even position of xr
    int pr = find(all(flo[b]),xr)-begin(flo[b]);
    if (pr&1) { reverse(1+all(flo[b])); return sz(flo[b])-pr; }
    return pr; }
  void setMatch(int u, int v) { // rearrange flo[u], matches
    edge e = g[u][v]; match[u] = e.v; if (u <= N) return;
    int xr = floFrom[u][e.u], pr = getPr(u,xr);
    FOR(i,pr) setMatch(flo[u][i],flo[u][i^1]);
    setMatch(xr,v); rotate(begin(flo[u]),pr+all(flo[u])); }
  void augment (int u, int v) { // set matches including u->v
    while (1) { // and previous ones
      int xnv = st[match[u]]; setMatch(u,v);
```

MaxMatchFast ChordalGraphRecognition

```
if (!xnv) return;
   setMatch(xnv,st[par[xnv]]);
   u = st[par[xnv]], v = xnv;
int lca(int u, int v) { // same as in unweighted
  static int t = 0; // except maybe return 0
  for (++t;u||v;swap(u,v)) {
   if (!u) continue;
   if (aux[u] == t) return u;
   aux[u] = t; u = st[match[u]];
   if (u) u = st[par[u]];
 return 0;
void addBlossom(int u, int anc, int v) {
  int b = N+1; while (b <= NX && st[b]) ++b;
  if (b > NX) ++NX; // new blossom
 lab[b] = S[b] = 0; match[b] = match[anc]; flo[b] = {anc};
  auto blossom = [&](int x) {
   for (int y; x != anc; x = st[par[y]])
      flo[b].pb(x), flo[b].pb(y = st[match[x]]), qPush(y);
 blossom(u); reverse(1+all(flo[b])); blossom(v); setSt(b,b);
  // identify all nodes in current blossom
  FOR(x, 1, NX+1) g[b][x].w = g[x][b].w = 0;
  FOR(x, 1, N+1) floFrom[b][x] = 0;
  each(xs,flo[b]) { // find tightest constraints
   FOR(x,1,NX+1) if (g[b][x].w == 0 \mid \mid eDelta(g[xs][x]) <
      eDelta(q[b][x])) q[b][x]=q[xs][x], q[x][b]=q[x][xs];
   FOR(x, 1, N+1) if (floFrom[xs][x]) floFrom[b][x] = xs;
  } // floFrom to deconstruct blossom
  setSlack(b); // since didn't qPush everything
void expandBlossom(int b) {
  each(t,flo[b]) setSt(t,t); // undo setSt(b,b)
  int xr = floFrom[b][q[b][par[b]].u], pr = getPr(b,xr);
  for (int i = 0; i < pr; i += 2) {
   int xs = flo[b][i], xns = flo[b][i+1];
   par[xs] = q[xns][xs].u; S[xs] = 1; // no setSlack(xns)?
   S[xns] = slack[xs] = slack[xns] = 0; qPush(xns);
  S[xr] = 1, par[xr] = par[b];
 FOR(i,pr+1,sz(flo[b])) { // matches don't change
   int xs = flo[b][i]; S[xs] = -1, setSlack(xs); }
 st[b] = 0; // blossom killed
bool onFoundEdge(edge e) {
  int u = st[e.u], v = st[e.v];
 if (S[v] == -1) { // v unvisited, matched with smth else
   par[v] = e.u, S[v] = 1; slack[v] = 0;
   int nu = st[match[v]]; S[nu] = slack[nu] = 0; qPush(nu);
  } else if (S[v] == 0) {
   int anc = lca(u, v); // if 0 then match found!
   if (!anc) return augment(u,v), augment(v,u),1;
   addBlossom(u,anc,v);
 return 0;
bool matching() {
 q = queue<int>();
 FOR(x, 1, NX+1) {
   S[x] = -1, slack[x] = 0; // all initially unvisited
   if (st[x] == x \&\& !match[x]) par[x] = S[x] = 0, qPush(x);
  if (!sz(q)) return 0;
  while (1) {
   while (sz(q)) { // unweighted matching with tight edges
     int u = q.ft; q.pop(); if (S[st[u]] == 1) continue;
```

```
FOR(v, 1, N+1) if (g[u][v].w > 0 && st[u] != st[v]) {
          if (eDelta(g[u][v]) == 0) { // condition is strict
            if (onFoundEdge(g[u][v])) return 1;
          } else updSlack(u,st[v]);
      int d = INT MAX;
      FOR(b, N+1, NX+1) if (st[b] == b \&\& S[b] == 1)
       ckmin(d, lab[b]/2); // decrease lab[b]
      FOR(x,1,NX+1) if (st[x] == x \&\& slack[x]) {
       if (S[x] == -1) ckmin(d, eDelta(g[slack[x]][x]));
       else if (S[x] == 0) ckmin(d, eDelta(g[slack[x]][x])/2);
      } // edge weights shouldn't go below 0
      FOR(u, 1, N+1) {
        if (S[st[u]] == 0) {
          if (lab[u] <= d) return 0; // why?
          lab[u] -= d;
        } else if (S[st[u]] == 1) lab[u] += d;
      } // lab has opposite meaning for verts and blossoms
      FOR(b, N+1, NX+1) if (st[b] == b \&\& S[b] != -1)
        lab[b] += (S[b] == 0 ? 1 : -1) *d*2;
      q = queue<int>();
      FOR(x, 1, NX+1) if (st[x] == x && slack[x] // new tight edge
        && st[slack[x]] != x && eDelta(q[slack[x]][x]) == 0
          if (onFoundEdge(g[slack[x]][x])) return 1;
      FOR (b, N+1, NX+1) if (st[b] == b \&\& S[b] == 1 \&\& lab[b] == 0)
        expandBlossom(b); // odd dist blossom taken apart
    return 0;
 pair<ll, int> calc() {
    NX = N; st[0] = 0; FOR(i, 1, 2*N+1) aux[i] = 0;
    FOR(i,1,N+1) match[i] = 0, st[i] = i, flo[i].clear();
    int wMax = 0;
    FOR(u, 1, N+1) FOR(v, 1, N+1)
      floFrom[u][v] = (u == v ? u : 0), ckmax(wMax,g[u][v].w);
    FOR(u, 1, N+1) lab[u] = wMax; // start high and decrease
    int num = 0; 11 wei = 0; while (matching()) ++num;
    FOR(u, 1, N+1) if (match[u] \&\& match[u] < u)
      wei += q[u][match[u]].w; // edges in matching
    return {wei, num};
};
MaxMatchFast.h
Description: Fast bipartite matching.
Time: \mathcal{O}\left(M\sqrt{N}\right)
                                                      0cfd24, 31 lines
vpi maxMatch(int L, int R, const vpi& edges) {
 V < vi > adj = V < vi > (L);
 vi nxt(L,-1), prv(R,-1), lev, ptr;
 FOR(i, sz(edges)) adj.at(edges[i].f).pb(edges[i].s);
 while (true) {
   lev = ptr = vi(L); int max_lev = 0;
    queue<int> q; F0R(i,L) if (nxt[i]==-1) lev[i]=1, q.push(i);
    while (sz(q)) {
      int x = q.ft; q.pop();
      for (int y: adj[x]) {
        int z = prv[y];
        if (z == -1) max_lev = lev[x];
        else if (!lev[z]) lev[z] = lev[x]+1, q.push(z);
      if (max_lev) break;
    if (!max_lev) break;
   FOR(i,L) if (lev[i] > max_lev) lev[i] = 0;
   auto dfs = [&](auto self, int x) -> bool {
      for (;ptr[x] < sz(adj[x]);++ptr[x]) {</pre>
        int y = adj[x][ptr[x]], z = prv[y];
```

7.6 Advanced

ChordalGraphRecognition.h

Description: Recognizes graph where every induced cycle has length exactly 3 using maximum adjacency search.

```
int N, M;
set<int> adj[MX];
int cnt[MX];
vi ord, rord;
vi find_path(int x, int y, int z) {
 vi pre(N,-1);
  queue<int> q; q.push(x);
  while (sz(q)) {
    int t = q.ft; q.pop();
    if (adj[t].count(y)) {
      pre[y] = t; vi path = {y};
      while (path.bk != x) path.pb(pre[path.bk]);
      path.pb(z);
      return path;
    each(u,adj[t]) if (u != z \&\& !adj[u].count(z) \&\& pre[u] ==
       →-1) {
      pre[u] = t;
      q.push(u);
 assert (0);
int main() {
 setIO(); re(N,M);
 F0R(i,M) {
    int a,b; re(a,b);
    adj[a].insert(b), adj[b].insert(a);
 rord = vi(N, -1);
  priority_queue<pi> pq;
  F0R(i,N) pq.push({0,i});
  while (sz(pq)) {
    pi p = pq.top(); pq.pop();
    if (rord[p.s] != -1) continue;
    rord[p.s] = sz(ord); ord.pb(p.s);
    each(t,adj[p.s]) pq.push({++cnt[t],t});
  assert(sz(ord) == N);
  each(z,ord) {
    pi big = \{-1, -1\};
    each(y,adj[z]) if (rord[y] < rord[z])
      ckmax(big,mp(rord[y],y));
    if (big.f == -1) continue;
    int y = big.s;
    each(x,adj[z]) if (rord[x] < rord[y]) if (!adj[y].count(x))
      \hookrightarrow {
      ps("NO");
      vi v = find_path(x, y, z);
      ps(sz(v));
      each(t,v) pr(t,' ');
```

DominatorTree EdgeColor DirectedMST LCT

```
exit(0);
}
ps("YES");
reverse(all(ord));
each(z,ord) pr(z,' ');
}
```

DominatorTree.h

Description: Used only a few times. Assuming that all nodes are reachable from root, a dominates b iff every path from root to b passes through a.

Time: $\mathcal{O}\left(M\log N\right)$

c6e97b, 41 lines

```
template<int SZ> struct Dominator {
 vi adj[SZ], ans[SZ]; // input edges, edges of dominator tree
  vi radj[SZ], child[SZ], sdomChild[SZ];
  int label[SZ], rlabel[SZ], sdom[SZ], dom[SZ], co = 0;
  int par[SZ], bes[SZ];
  void ae(int a, int b) { adj[a].pb(b); }
  int get(int x) { // DSU with path compression
    // get vertex with smallest sdom on path to root
   if (par[x] != x) {
     int t = get(par[x]); par[x] = par[par[x]];
     if (sdom[t] < sdom[bes[x]]) bes[x] = t;</pre>
   return bes[x];
  void dfs(int x) { // create DFS tree
   label[x] = ++co; rlabel[co] = x;
    sdom[co] = par[co] = bes[co] = co;
    each(v,adi[x]) {
     if (!label[y]) {
       dfs(y); child[label[x]].pb(label[y]); }
     radj[label[y]].pb(label[x]);
  void init(int root) {
   dfs(root);
   ROF(i,1,co+1) {
     each(j,radj[i]) ckmin(sdom[i],sdom[get(j)]);
     if (i > 1) sdomChild[sdom[i]].pb(i);
     each(j,sdomChild[i]) {
       int k = qet(i):
       if (sdom[j] == sdom[k]) dom[j] = sdom[j];
       else dom[i] = k;
     each(j,child[i]) par[j] = i;
   FOR(i, 2, co+1) {
     if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
     ans[rlabel[dom[i]]].pb(rlabel[i]);
};
```

EdgeColor.h

Description: Used only once. Naive implementation of Misra & Gries edge coloring. By Vizing's Theorem, a simple graph with max degree d can be edge colored with at most d+1 colors

Time: $\mathcal{O}(N^2M)$, faster in practice

25ae8f, 40 lines

```
template<int SZ> struct EdgeColor {
  int N = 0, maxDeg = 0, adj[SZ][SZ], deg[SZ];
  void init(int _N) { N = _N;
    F0R(i,N) { deg[i] = 0; F0R(j,N) adj[i][j] = 0; } }
  void ae(int a, int b, int c) {
    adj[a][b] = adj[b][a] = c; }
  int delEdge(int a, int b) {
    int c = adj[a][b]; adj[a][b] = adj[b][a] = 0;
```

```
return c; }
  V<bool> genCol(int x) {
   V < bool > col(N+1); FOR(i,N) col[adi[x][i]] = 1;
    return col; }
  int freeCol(int u) {
    auto col = genCol(u); int x = 1;
   while (col[x]) ++x; return x; }
  void invert(int x, int d, int c) {
   FOR(i,N) if (adj[x][i] == d)
      delEdge(x,i), invert(i,c,d), ae(x,i,c); }
  void ae(int u, int v) {
    // check if you can add edge w/o doing any work
    assert(N); ckmax(maxDeg,max(++deg[u],++deg[v]));
    auto a = genCol(u), b = genCol(v);
    FOR(i,1,maxDeg+2) if (!a[i] && !b[i])
     return ae(u,v,i);
    V < bool > use(N); vi fan = \{v\}; use[v] = 1;
    while (1) {
      auto col = genCol(fan.bk);
      if (sz(fan) > 1) col[adj[fan.bk][u]] = 0;
      int i=0; while (i<N && (use[i] || col[adj[u][i]])) i++;
      if (i < N) fan.pb(i), use[i] = 1;
      else break;
    int c = freeCol(u), d = freeCol(fan.bk); invert(u,d,c);
    int i = 0; while (i < sz(fan) && genCol(fan[i])[d]</pre>
     && adj[u][fan[i]] != d) i ++;
    assert (i != sz(fan));
   FOR(j,i) ae(u,fan[j],delEdge(u,fan[j+1]));
    ae(u,fan[i],d);
};
```

DirectedMST.h

Description: Chu-Liu-Edmonds algorithm. Computes minimum weight directed spanning tree rooted at r, edge from $par[i] \rightarrow i$ for all $i \neq r$. Use DSU with rollback if need to return edges.

Time: $\mathcal{O}(M \log M)$

```
"DSUrb.h"
                                                     2f614f, 61 lines
struct Edge { int a, b; ll w; };
struct Node { // lazy skew heap node
 Edge key; Node *1, *r; ll delta;
 void prop() {
    kev.w += delta;
   if (1) 1->delta += delta;
   if (r) r->delta += delta;
    delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
 a->prop(), b->prop();
 if (a->key.w > b->key.w) swap(a, b);
 swap(a->1, a->r = merge(b, a->r));
 return a;
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
pair<ll, vi> dmst(int n, int r, const vector<Edge>& g) {
 DSUrb dsu; dsu.init(n);
 vector<Node*> heap(n); // store edges entering each vertex
  // in increasing order of weight
  each(e,g) heap[e.b] = merge(heap[e.b], new Node{e});
  ll res = 0; vi seen(n,-1); seen[r] = r;
  vpi in(n, \{-1,-1\}); // edge entering each vertex in MST
  vector<pair<int, vector<Edge>>> cycs;
  FOR(s,n) {
    int u = s, w;
```

```
vector<pair<int, Edge>> path;
  while (seen[u] < 0) {</pre>
    if (!heap[u]) return {-1,{}};
    seen[u] = s;
    Edge e = heap[u] \rightarrow top(); path.pb(\{u,e\});
    heap[u]->delta -= e.w, pop(heap[u]);
    res += e.w, u = dsu.get(e.a);
    if (seen[u] == s) { // found cycle, contract
      Node* cyc = 0; cycs.eb();
      qo 1
        cyc = merge(cyc, heap[w = path.bk.f]);
        cycs.bk.s.pb(path.bk.s);
        path.pop_back();
      } while (dsu.unite(u,w));
      u = dsu.get(u); heap[u] = cyc, seen[u] = -1;
      cycs.bk.f = u;
  each(t,path) in[dsu.qet(t.s.b)] = \{t.s.a,t.s.b\};
} // found path from root to s, done
while (sz(cycs)) { // expand cycs to restore sol
  auto c = cycs.bk; cycs.pop_back();
  pi inEdge = in[c.f];
  each(t,c.s) dsu.rollback();
  each(t,c.s) in[dsu.get(t.b)] = \{t.a,t.b\};
  in[dsu.get(inEdge.s)] = inEdge;
vi par(n); F0R(i,n) par[i] = in[i].f;
// i == r ? in[i].s == -1 : in[i].s == i
return {res,par};
```

LCT.h

Description: Link-Cut Tree. Given a function $f(1\ldots N)\to 1\ldots N$, evaluates $f^b(a)$ for any a,b. sz is for path queries; sub, vsub are for subtree queries. x->access() brings x to the top and propagates it; its left subtree will be the path from x to the root and its right subtree will be empty. Then sub will be the number of nodes in the connected component of x and vsub will be the number of nodes under x. Use makeRoot for arbitrary path queries

```
Usage: FOR(i,1,N+1)LCT[i]=new snode(i); link(LCT[1],LCT[2],1);
Time: \mathcal{O}(\log N)
```

```
db3b62, 115 lines
typedef struct snode* sn;
struct snode { ////// VARIABLES
 sn p, c[2]; // parent, children
 sn extra; // extra cycle node for "The Applicant"
 bool flip = 0; // subtree flipped or not
 int val, sz; // value in node, # nodes in current splay tree
 int sub, vsub = 0; // vsub stores sum of virtual children
 snode(int _val) : val(_val) {
   p = c[0] = c[1] = extra = NULL; calc(); }
 friend int getSz(sn x) { return x?x->sz:0; }
 friend int getSub(sn x) { return x?x->sub:0; }
 void prop() { // lazy prop
   if (!flip) return;
   swap(c[0],c[1]); flip = 0;
   FOR(i,2) if (c[i]) c[i]->flip ^= 1;
 void calc() { // recalc vals
   FOR(i,2) if (c[i]) c[i]->prop();
    sz = 1+qetSz(c[0])+qetSz(c[1]);
    sub = 1+getSub(c[0])+getSub(c[1])+vsub;
  ////// SPLAY TREE OPERATIONS
 int dir() {
   if (!p) return -2;
   FOR(i,2) if (p->c[i] == this) return i;
    return -1; // p is path-parent pointer
```

ComplexComp PointShort AngleCmp SegDist SegIsect

```
} // -> not in current splay tree
// test if root of current splay tree
bool isRoot() { return dir() < 0; }</pre>
friend void setLink(sn x, sn y, int d) {
 if (y) y -> p = x;
 if (d >= 0) x -> c[d] = y; }
void rot() { // assume p and p->p propagated
 assert(!isRoot()); int x = dir(); sn pa = p;
 setLink(pa->p, this, pa->dir());
 setLink(pa, c[x^1], x); setLink(this, pa, x^1);
 pa->calc();
void splay() {
 while (!isRoot() && !p->isRoot()) {
   p->p->prop(), p->prop(), prop();
   dir() == p->dir() ? p->rot() : rot();
 if (!isRoot()) p->prop(), prop(), rot();
 prop(); calc();
sn fbo(int b) { // find by order
 prop(); int z = getSz(c[0]); // of splay tree
 if (b == z) { splay(); return this; }
 return b < z ? c[0] -> fbo(b) : c[1] -> fbo(b-z-1);
////// BASE OPERATIONS
void access() { // bring this to top of tree, propagate
 for (sn v = this, pre = NULL; v; v = v -> p) {
   v->splay(); // now switch virtual children
   if (pre) v->vsub -= pre->sub;
   if (v->c[1]) v->vsub += v->c[1]->sub;
   v->c[1] = pre; v->calc(); pre = v;
 splay(); assert(!c[1]); // right subtree is empty
void makeRoot() {
 access(); flip ^= 1; access(); assert(!c[0] && !c[1]); }
////// OUERIES
friend sn lca(sn x, sn y) {
 if (x == y) return x;
 x->access(), y->access(); if (!x->p) return NULL;
 x->splay(); return x->p?:x; // y was below x in latter case
} // access at v did not affect x -> not connected
friend bool connected(sn x, sn y) { return lca(x,y); }
// # nodes above
int distRoot() { access(); return getSz(c[0]); }
sn getRoot() { // get root of LCT component
 access(); sn a = this;
 while (a->c[0]) a = a->c[0], a->prop();
 a->access(); return a;
sn getPar(int b) { // get b-th parent on path to root
 access(); b = getSz(c[0])-b; assert(b >= 0);
 return fbo(b);
} // can also get min, max on path to root, etc
////// MODIFICATIONS
void set(int v) { access(); val = v; calc(); }
friend void link(sn x, sn y, bool force = 0) {
 assert(!connected(x,v));
 if (force) y->makeRoot(); // make x par of y
 else { y->access(); assert(!y->c[0]); }
 x->access(); setLink(y,x,0); y->calc();
friend void cut(sn y) { // cut y from its parent
 y->access(); assert(y->c[0]);
 y->c[0]->p = NULL; y->c[0] = NULL; y->calc(); }
friend void cut(sn x, sn y) { // if x, y adj in tree
 x->makeRoot(); y->access();
```

```
assert (y->c[0] == x && !x->c[0] && !x->c[1]); cut(y); }
};
sn LCT[MX];
////// THE APPLICANT SOLUTION
void setNex(sn a, sn b) { // set f[a] = b
 if (connected(a,b)) a->extra = b;
 else link(b,a); }
void delNex(sn a) { // set f[a] = NULL
 auto t = a->getRoot();
 if (t == a) { t->extra = NULL; return; }
 cut(a); assert(t->extra);
 if (!connected(t,t->extra))
   link(t->extra,t), t->extra = NULL;
sn getPar(sn a, int b) { // get f^b[a]
 int d = a->distRoot(); if (b <= d) return a->getPar(b);
 b -= d+1; auto r = a->getRoot()->extra; assert(r);
 d = r->distRoot()+1; return r->getPar(b%d);
```

Geometry (8)

8.1 Primitives

ComplexComp.h

Description: Allows you to sort complex numbers.

```
e3fa3d, 5 lines
```

```
#define x real()
#define y imag()
using P = complex<db>;
namespace std {
  bool operator<(P 1,P r) { return mp(1.x,1.y)<mp(r.x,r.y); } }</pre>
```

PointShort.h

```
Description: Use in place of complex<T>.
                                                    d14718, 36 lines
using T = db; // or 11
const T EPS = 1e-9; // adjust as needed
using P = pair<T,T>; using vP = V<P>; using Line = pair<P,P>;
int sgn(T a) { return (a>EPS)-(a<-EPS); }</pre>
T sq(T a) { return a*a; }
T norm(P p) { return sq(p.f)+sq(p.s); }
T abs(P p) { return sqrt(norm(p)); }
T arg(P p) { return atan2(p.s,p.f); }
P conj(P p) { return P(p.f,-p.s); }
P perp(P p) { return P(-p.s,p.f); }
P dir(T ang) { return P(cos(ang), sin(ang)); }
P operator+(P 1, P r) { return P(1.f+r.f,1.s+r.s); }
P operator-(P 1, P r) { return P(1.f-r.f,1.s-r.s); }
P operator*(P 1, T r) { return P(1.f*r,1.s*r); }
P operator/(P 1, T r) { return P(1.f/r,1.s/r); }
P operator*(P 1, P r) { // complex # multiplication
  return P(l.f*r.f-l.s*r.s,l.s*r.f+l.f*r.s); }
P operator/(P 1, P r) { return 1*conj(r)/norm(r); }
P unit(const P& p) { return p/abs(p); }
T dot(const P& a, const P& b) { return a.f*b.f+a.s*b.s; }
T dot(const P& p, const P& a, const P& b) { return dot(a-p,b-p)
T cross(const P& a, const P& b) { return a.f*b.s-a.s*b.f; }
T cross(const P& p, const P& a, const P& b) {
  return cross(a-p,b-p); }
P reflect (const P& p, const Line& 1) {
  P a = 1.f, d = 1.s-1.f;
  return a+conj((p-a)/d)*d; }
```

AngleCmp.h

Description: Sorts points in ccw order about origin in the same way as atan2, which returns real in $(-\pi, \pi]$ so points on negative x-axis come last. **Usage:** vP v; sort(all(v),angleCmp);

SegDist.h

Description: computes distance between P and line (segment) AB

SegIsect.h

Description: computes the intersection point(s) of line (segments) a and b "Point.h" 2e4a0f, 26 lines

```
// {unique intersection point} if it exists
// {b.f,b.s} if input lines are the same
// empty if lines do not intersect
vP lineIsect(const Line& a, const Line& b) {
 T = a0 = cross(a.f,a.s,b.f), a1 = cross(a.f,a.s,b.s);
 if (a0 == a1) return a0 == 0 ? vP{b.f,b.s} : vP{};
 return { (b.s*a0-b.f*a1) / (a0-a1) };
// point in interior of both segments a and b, if it exists
vP strictIsect(const Line& a, const Line& b) {
 T = a\theta = cross(a.f,a.s,b.f), al = cross(a.f,a.s,b.s);
 T b0 = cross(b.f,b.s,a.f), b1 = cross(b.f,b.s,a.s);
 if (\operatorname{sgn}(a0) * \operatorname{sgn}(a1) < 0 \&\& \operatorname{sgn}(b0) * \operatorname{sgn}(b1) < 0)
    return { (b.s*a0-b.f*a1) / (a0-a1) };
 return {};
// intersection of segments, a and b may be degenerate
vP segIsect(const Line& a, const Line& b) {
 vP v = strictIsect(a,b); if (sz(v)) return v;
  set<P> s:
  \#define i(x,y) if (onSeg(x,y)) s.ins(x)
 i(a.f,b); i(a.s,b); i(b.f,a); i(b.s,a);
 return {all(s)};
```

8.2 Polygons

PolygonCenArea.h

Description: centroid (center of mass) of a polygon with constant mass per unit area and SIGNED area

Time: $\mathcal{O}\left(N\right)$

InPolygon.h

Description: Tests whether point is inside, on, or outside of a polygon (returns -1, 0, or 1). Both CW and CCW polygons are ok.

Time: $\mathcal{O}(N)$

```
"Point.h" 95c39a, 9 lines
int inPoly(const P& p, const vP& poly) {
  int n = sz(poly), ans = 0;
  F0R(i,n) {
    P x = poly[i], y = poly[(i+1)*n]; if (x.s > y.s) swap(x,y);
    if (onSeg(p,{x,y})) return 0;
    ans ^= (x.s <= p.s && p.s < y.s && cross(p,x,y) > 0);
  }
  return ans ? -1 : 1;
}
```

ConvexHull.h

Description: top-bottom convex hull

Time: $\mathcal{O}\left(N\log N\right)$

```
"Point.h"
                                                      99be69, 18 lines
pair<vi, vi> ulHull(const vP& v) {
 vi p(sz(v)), u, l; iota(all(p), 0);
  sort(all(p), [&v](int a, int b) { return v[a] < v[b]; });</pre>
    #define ADDP(C, cmp) while (sz(C) > 1 \&\& cross(\
     v[C[sz(C)-2]], v[C.bk], v[i]) cmp 0) C.pop_back(); C.pb(i);
   ADDP (u, >=); ADDP (1, <=);
 return {u,1};
vi hullInd(const vP& v) { // returns indices in CCW order
 vi u,1; tie(u,1) = ulHull(v); if (sz(1) \le 1) return 1;
  if (v[1[0]] == v[1[1]]) return {0};
 1.insert (end(1),1+rall(u)-1); return 1;
vP hull(const vP& v) {
 vi w = hullInd(v); vP res; each(t,w) res.pb(v[t]);
  return res; }
```

MinkowskiSum.h

Description: Minkowski sum of two convex polygons given in CCW order. **Time:** $\mathcal{O}\left(N\right)$

"CONVEXHULL.H" 7fb805, 29 lines
VP minkowski_sum(vP a, vP b) {
 if (sz(a) > sz(b)) swap(a, b);
 if (!sz(a)) return {};
 if (sz(a) == 1) {
 each(t, b) t += a.ft;
 return b;
 }
 rotate(begin(a), min_element(all(a)), end(a));
 rotate(begin(b), min_element(all(b)), end(b));
 a.pb(a[0]), a.pb(a[1]);
 b.pb(b[0]), b.pb(b[1]);

```
vP result;
int i = 0, j = 0;
while (i < sz(a)-2 || j < sz(b)-2) {
    result.pb(a[i]+b[j]);
    T crs = cross(a[i+1]-a[i],b[j+1]-b[j]);
    i += (crs >= 0);
    j += (crs <= 0);
}
return result;
}

T diameter2(vP p) { // example application: squared diameter
    vP a = hull(p);
    vP b = a; each(t, b) t *= -1;
    vP c = minkowski_sum(a, b);
    T ret = 0; each(t, c) ckmax(ret, norm(t));
    return ret;
}</pre>
```

HullDiameter.h

Description: Rotating caliphers. Returns square of greatest distance between two points in P.

Time: $\mathcal{O}(N)$ given convex hull

HullTangents.h

Description: Given convex polygon with no three points collinear and a point strictly outside of it, computes the lower and upper tangents.

Time: $\mathcal{O}(\log N)$

```
"Point.h"
                                                     1f8719, 36 lines
bool lower;
bool better(P a, P b, P c) {
 T z = cross(a,b,c);
 return lower ? z < 0 : z > 0; }
int tangent (const vP& a, P b) {
 if (sz(a) == 1) return 0;
 int lo, hi;
 if (better(b,a[0],a[1])) {
   lo = 0, hi = sz(a)-1;
    while (lo < hi) {
      int mid = (lo+hi+1)/2;
     if (better(b,a[0],a[mid])) lo = mid;
     else hi = mid-1;
    10 = 0;
 } else {
    lo = 1, hi = sz(a);
    while (lo < hi) {
      int mid = (lo+hi)/2;
     if (!better(b, a[0], a[mid])) lo = mid+1;
      else hi = mid;
   hi = sz(a);
 while (lo < hi) {
    int mid = (lo+hi)/2;
    if (better(b,a[mid],a[(mid+1)%sz(a)])) lo = mid+1;
    else hi = mid;
```

```
return lo%sz(a);
}
pi tangents(const vP& a, P b) {
  lower = 1; int x = tangent(a,b);
  lower = 0; int y = tangent(a,b);
  return {x,y};
}
```

LineHull.h

Description: lineHull accepts line and ccw convex polygon. If all vertices in poly lie to one side of the line, returns a vector of closest vertices to line as well as orientation of poly with respect to line (± 1 for above/below). Otherwise, returns the range of vertices that lie on or below the line. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}\left(\log N\right)$

```
"Point.h"
using Line = AR<P,2>;
#define cmp(i,j) sgn(-dot(dir,poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i+1,i) >= 0 \&\& cmp(i,i-1+n) < 0
int extrVertex(const vP& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
 if (extr(0)) return 0;
  while (lo+1 < hi) {
    int m = (lo+hi)/2;
    if (extr(m)) return m;
    int ls = cmp(lo+1, lo), ms = cmp(m+1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
 return lo;
vi same (Line line, const vP& poly, int a) {
  // points on same parallel as a
 int n = sz(poly); P dir = perp(line[0]-line[1]);
 if (cmp(a+n-1,a) == 0) return \{(a+n-1)\%n,a\};
 if (cmp(a,a+1) == 0) return \{a,(a+1)\%n\};
  return {a};
#define cmpL(i) sqn(cross(line[0],line[1],poly[i]))
pair<int, vi> lineHull(Line line, const vP& polv) {
  int n = sz(poly); assert(n>1);
  int endA = extrVertex(poly,perp(line[0]-line[1])); // lowest
 if (cmpL(endA) >= 0) return {1, same(line, poly, endA)};
  int endB = extrVertex(poly,perp(line[1]-line[0])); // highest
  if (cmpL(endB) <= 0) return {-1, same(line, poly, endB)};</pre>
 AR<int,2> res;
 F0R(i,2) {
    int lo = endA, hi = endB; if (hi < lo) hi += n;
    while (lo < hi) {
     int m = (lo+hi+1)/2;
      if (cmpL(m%n) == cmpL(endA)) lo = m;
      else hi = m-1;
    res[i] = lo%n; swap(endA,endB);
 if (cmpL((res[0]+1)%n) == 0) res[0] = (res[0]+1)%n;
 return {0, {(res[1]+1)%n, res[0]}};
```

HalfPlaneIsect.h

Description: Returns vertices of half-plane intersection. A half-plane is the area to the left of a ray, which is defined by a point p and a direction dp. Area of intersection should be sufficiently precise when all inputs are integers with magnitude $\leq 10^5$. Intersection must be bounded. Probably works with floating point too (but EPS might need to be adjusted?).

Time: $\mathcal{O}(N \log N)$

```
"AngleCmp.h" 665477, 52 lines
struct Ray {
  P p, dp; // origin, direction
```

HalfPlaneSet PolygonUnion Circle CircleIsect

```
P isect(const Ray& L) const {
    return p+dp*(cross(L.dp,L.p-p)/cross(L.dp,dp)); }
  bool operator<(const Ray& L) const {
    return angleCmp(dp,L.dp); }
vP halfPlaneIsect(V<Ray> rays, bool add_bounds = false) {
  if (add_bounds) { // bound input by rectangle [0,DX] x [0,DY]
    int DX = 1e9, DY = 1e9;
    rays.pb(\{P\{0,0\},P\{1,0\}\});
    rays.pb(\{P\{DX, 0\}, P\{0, 1\}\});
    rays.pb(\{P\{DX, DY\}, P\{-1, 0\}\});
    rays.pb(\{P\{0,DY\},P\{0,-1\}\});
  sor(rays); // sort rays by angle
  { // remove parallel rays
    V<Ray> nrays;
    each(t,rays) {
     if (!sz(nrays) || cross(nrays.bk.dp,t.dp) > EPS) { nrays.
         \hookrightarrow pb(t); continue; }
      // last two rays are parallel, keep only one
     if (cross(t.dp,t.p-nrays.bk.p) > 0) nrays.bk = t;
    swap(rays, nrays);
  auto bad = [&] (const Ray& a, const Ray& b, const Ray& c) {
   P p1 = a.isect(b), p2 = b.isect(c);
    if (dot(p2-p1,b.dp) \le EPS) {
      if (cross(a.dp,c.dp) \le 0) return 2; // isect(a,b,c) =
     return 1; // isect(a,c) == isect(a,b,c)
    return 0; // all three rays matter
  };
  #define reduce(t) \
    while (sz(poly) > 1) \{ \
     int b = bad(poly.at(sz(poly)-2),poly.bk,t); \
     if (b == 2) return {}; \
     if (b == 1) poly.pop_back(); \
     else break; \
  deque<Ray> poly;
  each(t,rays) { reduce(t); poly.pb(t); }
  for(;;poly.pop_front()) {
    reduce(poly[0]);
    if (!bad(poly.bk,poly[0],poly[1])) break;
  assert(sz(poly) >= 3); // expect nonzero area
  vP poly_points; F0R(i,sz(poly))
    poly_points.pb(poly[i].isect(poly[(i+1)%sz(poly)]));
  return poly_points;
```

HalfPlaneSet.h

Description: Online Half-Plane Intersection

4a3ed9, 77 lines

```
return make_tuple(half(m), (T2)m.b * n.a) <</pre>
       make_tuple(half(n), (T2)m.a * n.b);
tuple<T4, T4, T2> LineIntersection(Line m, Line n) {
 T2 d = (T2)m.a * n.b - (T2)m.b * n.a; // assert(d);
 T4 x = (T4) m.c * n.b - (T4) m.b * n.c;
 T4 \ v = (T4) m.a * n.c - (T4) m.c * n.a;
 return {x, y, d};
Line LineFromPoints(T x1, T y1, T x2, T y2) {
 // everything to the right of ray \{x1, y1\} \rightarrow \{x2, y2\}
 T a = y1 - y2, b = x2 - x1;
 T2 c = (T2)a * x1 + (T2)b * y1;
 return {a, b, c}; // ax + by <= c
ostream &operator << (ostream &out, Line 1) {
 out << "Line " << l.a << " " << l.b << " " << -l.c;
 // out << "(" << 1.a << " * x + " << 1.b << " * y <= " << 1.c
 return out;
struct HalfplaneSet : multiset<Line> {
 HalfplaneSet() {
    insert({+1, 0, INF});
    insert({0, +1, INF});
    insert(\{-1, 0, INF\});
    insert(\{0, -1, INF\});
  auto adv (auto it, int z) { // z = \{-1, +1\}
    return (z == -1 ? --(it == begin() ? end() : it)
            : (++it == end() ? begin() : it));
 bool chk(auto it) {
    Line l = *it, pl = *adv(it, -1), nl = *adv(it, +1);
    auto [x, y, d] = LineIntersection(pl, nl);
    T4 \text{ sat} = 1.a * x + 1.b * y - (T4)1.c * d;
    if (d < 0 && sat < 0) return clear(), 0; // unsat
    if ((d > 0 && sat <= 0) || (d == 0 && sat < 0)) return
       \hookrightarrowerase(it), 1:
    return 0;
  void Cut(Line 1) { // add ax + by <= c
    if (empty()) return;
    auto it = insert(1);
    if (chk(it)) return;
    for (int z : \{-1, +1\})
      while (size() && chk(adv(it, z)))
  double Maximize(T a, T b) { // max ax + by (UNTESTED)
    if (empty()) return -1 / 0.;
    auto it = lower bound({a, b});
    if (it == end()) it = begin();
    auto [x, y, d] = LineIntersection(*adv(it, -1), *it);
    return (1.0 * a * x + 1.0 * b * y) / d;
  double Area() {
    double total = 0.:
    for (auto it = begin(); it != end(); ++it) {
     auto [x1, y1, d1] = LineIntersection(*adv(it, -1), *it);
     auto [x2, y2, d2] = LineIntersection(*it, *adv(it, +1));
     total += (1.0 * x1 * y2 - 1.0 * x2 * y1) / d1 / d2;
    return total * 0.5;
};
```

PolygonUnion.kt

Description: Compute union or intersection of two polygons and compute the area of the resulting figure.

Time: Runs quite quickly for two convex polygons with 10⁵ vertices each.

```
import java.awt.geom.* // at beginning of file
fun loadPolv(): DoubleArray {
    val n = rInt() // read n points
    return rDbs(2*n).toDoubleArray()
fun makeArea(ps: DoubleArray): Area {
    val p = Path2D.Double()
    p.moveTo(ps[0],ps[1])
    for (i in 0..ps.size/2-1) p.lineTo(ps[2*i],ps[2*i+1])
    p.closePath()
    return Area(p)
fun computeArea(a: Area): Double {
    val iter = a.getPathIterator(null)
    val buf = DoubleArray(6, {0.0})
    var ret = 0.0
    val ps = ArrayList<Double>()
    while (!iter.isDone()) {
        when (iter.currentSegment(buf)) {
            PathIterator.SEG_MOVETO, PathIterator.SEG_LINETO->{
                ps.add(buf[0])
                ps.add(buf[1])
            PathIterator.SEG CLOSE -> {
                ps.add(ps[0])
                ps.add(ps[1])
                for (i in 0..ps.size/2-2) ret -= ps[2*i]*ps[2*i
                   \hookrightarrow+3]-ps[2*i+1]*ps[2*i+2]
                ps.clear()
        iter.next()
    assert (ret >= 0)
    return ret/2
fun intersectArea(a: DoubleArray, b: DoubleArray): Double {
    val ret = makeArea(a)
    ret.intersect(makeArea(b)) // or .add for union
    return computeArea(ret)
```

8.3 Circles

Circle.h

Description: represent circle as {center,radius}

```
"Point.h"

948bc8, 6 lines
using Circ = pair<P,T>;
int in(const Circ& x, const P& y) { // -1 if inside, 0, 1
return sgn(abs(y-x.f)-x.s); }
T arcLength(const Circ& x, P a, P b) {
// precondition: a and b on x
P d = (a-x.f)/(b-x.f); return x.s*acos(d.f); }
```

CircleIsect.h

Description: Circle intersection points and intersection area. Tangents will be returned twice.

```
"Circle.h" 5f67b4, 22 lines
VP isect(const Circ& x, const Circ& y) { // precondition: x!=y
   T d = abs(x.f-y.f), a = x.s, b = y.s;
   if (sgn(d) == 0) { assert(a != b); return {};
   T C = (a*a+d*d-b*b)/(2*a*d);
   if (abs(C) > 1+EPS) return {};
   T S = sqrt(max(1-0*C,(T)0)); P tmp = (y.f-x.f)/d*x.s;
```

```
return {x.f+tmp*P(C,S),x.f+tmp*P(C,-S)};
}
vP isect(const Circ& x, const Line& y) {
   P c = foot(x.f,y); T sq_dist = sq(x.s)-norm(x.f-c);
   if (sgn(sq_dist) < 0) return {};
   P offset = unit(y.s-y.f)*sqrt(max(sq_dist,T(0)));
   return {c+offset,c-offset};
}
T isect_area(Circ x, Circ y) { // not thoroughly tested
   T d = abs(x.f-y.f), a = x.s, b = y.s; if (a < b) swap(a,b);
   if (d >= a+b) return 0;
   if (d <= a-b) return PI*b*b;
   T ca = (a*a+d*d-b*b)/(2*a*d), cb = (b*b+d*d-a*a)/(2*b*d);
   T s = (a+b+d)/2, h = 2*sqrt(s*(s-a)*(s-b)*(s-d))/d;
   return a*a*acos(ca)+b*b*acos(cb)-d*h;
}</pre>
```

CircleTangents.h

Description: internal and external tangents between two circles

```
49ceec, 22 lines
P tangent (P x, Circ y, int t = 0) {
 y.s = abs(y.s); // abs needed because internal calls y.s < 0
  if (y.s == 0) return y.f;
 T d = abs(x-y.f);
  P = pow(y.s/d, 2) * (x-y.f) + y.f;
  P b = sgrt(d*d-v.s*v.s)/d*v.s*unit(x-v.f)*dir(PI/2);
  return t == 0 ? a+b : a-b;
V<pair<P,P>> external(Circ x, Circ y) {
  V<pair<P.P>> v;
  if (x.s == y.s) {
   P \text{ tmp} = \text{unit}(x.f-v.f)*x.s*dir(PI/2);
   v.eb(x.f+tmp,y.f+tmp);
   v.eb(x.f-tmp,y.f-tmp);
  } else {
   P p = (y.s*x.f-x.s*y.f) / (y.s-x.s);
   FOR(i,2) v.eb(tangent(p,x,i),tangent(p,y,i));
 return v;
V<pair<P,P>> internal(Circ x, Circ y) {
 return external({x.f,-x.s},v); }
```

Circumcenter.h

Description: returns {circumcenter,circumradius}

```
"Circle.h" 199afa, 5 lines
Circ ccCenter(P a, P b, P c) {
   b -= a; c -= a;
   P res = b*c*(conj(c)-conj(b))/(b*conj(c)-conj(b)*c);
   return {a+res,abs(res)};
}
```

MinEnclosingCirc.h

Description: minimum enclosing circle

Time: expected $\mathcal{O}(N)$

```
return {o,r};
```

8.4 Misc

ClosestPair.h

Description: Line sweep to find two closest points .

Time: $\mathcal{O}\left(N\log N\right)$

```
"Point.h"
                                                      dfd4c8, 17 lines
pair<P,P> solve(vP v) {
 pair<db, pair<P, P>> bes; bes.f = INF;
 set < P > S; int ind = 0;
 sort(all(v));
 F0R(i,sz(v)) {
   if (i && v[i] == v[i-1]) return {v[i],v[i]};
    for (; v[i].f-v[ind].f >= bes.f; ++ind)
      S.erase({v[ind].s,v[ind].f});
    for (auto it = S.ub({v[i].s-bes.f,INF});
      it != end(S) && it->f < v[i].s+bes.f; ++it) {
      P t = \{it->s, it->f\};
      ckmin(bes, {abs(t-v[i]), {t,v[i]}});
    S.insert({v[i].s,v[i].f});
 return bes.s;
```

DelaunayFast.h

Description: Fast Delaunay triangulation assuming no duplicates and not all points collinear (in latter case, result will be empty). Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in ccw order. Each circumcircle will contain none of the input points. If coordinates are ints at most B then T should be large enough to support ints on the order of B^4 .

```
Time: \mathcal{O}(N \log N)
```

```
"Point.h"
                                                       c734ab, 82 lines
// using 111 = 11; (if coords are < 2e4)
using 111 = int128;
// returns true if p strictly within circumcircle(a,b,c)
bool inCircle(P p, P a, P b, P c) {
 a = p, b = p, c = p; // assert(cross(a,b,c)>0);
  lll x = (lll) norm(a) \star cross(b,c) + (lll) norm(b) \star cross(c,a)
      +(111) norm(c) *cross(a,b);
  return x*(cross(a,b,c)>0?1:-1) > 0;
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
using O = struct Ouad*;
struct Ouad {
  bool mark; Q o, rot; P p;
  P F() { return r()->p; }
  Q r() { return rot->rot; }
  O prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
Q makeEdge(P orig, P dest) {
  Q q[]{new Quad{0,0,0,oriq}, new Quad{0,0,0,arb},
      new Quad{0,0,0,dest}, new Quad{0,0,0,arb}};
  FOR(i, 4) q[i] -> o = q[-i \& 3], q[i] -> rot = q[(i+1) \& 3];
void splice (Q a, Q b) { swap(a->o->rot->o, b->o->rot->o); swap(a->o->rot->o)
   \hookrightarrow a->0, b->0); }
0 connect(0 a, 0 b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next()); splice(q->r(), b);
  return q;
pair<Q,Q> rec(const vP& s) {
```

```
Q a = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.bk);
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = cross(s[0], s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
\#define H(e) e \rightarrow F(), e \rightarrow p
#define valid(e) (cross(e->F(),H(base)) > 0)
 O A, B, ra, rb;
 int half = sz(s) / 2;
 tie(ra, A) = rec({all(s)-half});
 tie(B, rb) = rec(\{sz(s)-half+all(s)\});
  while ((cross(B->p,H(A)) < 0 \&& (A = A->next()))
       (cross(A->p,H(B)) > 0 && (B = B->r()->o)));
 Q base = connect(B->r(), A);
 if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (inCircle(e->dir->F(), H(base), e->F())) { \
      Q t = e->dir; \setminus
      splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e = t; \
  while (1) {
    DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && inCircle(H(RC), H(LC))))
      base = connect(RC, base->r());
    else base = connect(base->r(), LC->r());
 return {ra, rb};
V<AR<P,3>> triangulate(vP pts) {
  sor(pts); assert(unique(all(pts)) == end(pts)); // no
     \hookrightarrowduplicates
  if (sz(pts) < 2) return {};
 0 = rec(pts).f; V<0> q = {e};
  while (cross(e->o->F(), e->F(), e->p) < 0) e = e->o;
#define ADD { 0 c = e; do { c \rightarrow mark = 1; pts.pb(c \rightarrow p); \
 q.pb(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
  int qi = 0; while (qi < sz(q)) if (!(e = q[qi++]) -> mark) ADD;
 V<AR<P,3>> ret(sz(pts)/3);
 FOR(i,sz(pts)) ret[i/3][i%3] = pts[i];
 return ret;
```

ManhattanMST.h

Description: Given N points, returns up to 4N edges which are guaranteed to contain a MST for graph with edge weights w(p,q) = |p.x-q.x| + |p.y-q.y|. Edges are in the form {dist, {src, dst}}.

Time: $\mathcal{O}(N \log N)$

```
// use standard MST algorithm on result to find final MST
V<pair<int,pi>> manhattanMst(vpi v) {
  vi id(sz(v)); iota(all(id),0);
  V<pair<int,pi>> ed;
  F0R(k,4) {
    sort(all(id),[&](int i, int j) {
      return v[i].f+v[i].s < v[j].f+v[j].s; });
    map<int,int> sweep; // find first octant neighbors
    each(i,id) { // those in sweep haven't found neighbor yet
    for (auto it = sweep.lb(-v[i].s);
      it != end(sweep); sweep.erase(it++)) {
```

Point3D Hull3D PolySaVol

```
int j = it->s;
    pi d{v[i].f-v[j].f,v[i].s-v[j].s};if (d.s>d.f)break;
    ed.pb({d.f+d.s,{i,j}});
    }
    sweep[-v[i].s] = i;
}
each(p,v) {
    if (k&1) p.f *= -1;
    else swap(p.f,p.s);
}
return ed;
```

8.5 3D

Point3D.h

Description: Basic 3D geometry.

```
ff1c25, 82 lines
using P3 = AR<T,3>; using Tri = AR<P3,3>; using vP3 = V<P3>;
T norm(const P3& x) {
  T sum = 0; F0R(i,3) sum += sq(x[i]);
  return sum; }
T abs(const P3& x) { return sqrt(norm(x)); }
P3& operator+=(P3& 1, const P3& r) { F0R(i,3) 1[i] += r[i];
P3& operator -= (P3& 1, const P3& r) { F0R(i,3) 1[i] -= r[i];
  return 1; }
P3\& operator *= (P3\& 1, const T\& r) { F0R(i,3) 1[i] *= r;}
  return 1; }
P3& operator/=(P3& 1, const T& r) { F0R(i,3) 1[i] /= r;
  return 1: }
P3 operator-(P3 1) { 1 *= -1; return 1; }
P3 operator+(P3 1, const P3& r) { return 1 += r; }
P3 operator-(P3 1, const P3& r) { return 1 -= r; }
P3 operator*(P3 1, const T& r) { return 1 *= r; }
P3 operator*(const T& r, const P3& 1) { return 1*r; }
P3 operator/(P3 1, const T& r) { return 1 /= r; }
P3 unit(const P3& x) { return x/abs(x); }
T dot(const P3& a, const P3& b) {
  T sum = 0; FOR(i,3) sum += a[i]*b[i];
  return sum; }
P3 cross(const P3& a, const P3& b) {
  return {a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],
      a[0]*b[1]-a[1]*b[0]; }
P3 cross(const P3& a, const P3& b, const P3& c) {
  return cross(b-a,c-a); }
P3 perp(const P3& a, const P3& b, const P3& c) {
  return unit(cross(a,b,c)); }
bool isMult(const P3& a, const P3& b) { // for long longs
  P3 c = cross(a,b); FOR(i,sz(c)) if (c[i] != 0) return 0;
  return 1; }
bool collinear(const P3& a, const P3& b, const P3& c) {
  return isMult(b-a,c-a); }
T DC(const P3&a,const P3&b,const P3&c,const P3&p) {
  return dot(cross(a,b,c),p-a); }
bool coplanar(const P3&a,const P3&b,const P3&c,const P3&p) {
  return DC(a,b,c,p) == 0; }
bool op(const P3& a, const P3& b) {
  int ind = 0; // going in opposite directions?
  FOR(i,1,3) if (std::abs(a[i]*b[i])>std::abs(a[ind]*b[ind]))
    ind = i;
  return a[ind]*b[ind] < 0;</pre>
// coplanar points, b0 and b1 on opposite sides of a0-a1?
```

```
bool opSide(const P3&a,const P3&b,const P3&c,const P3&d) {
 return op(cross(a,b,c),cross(a,b,d)); }
// coplanar points, is a in Triangle b
bool inTri(const P3& a, const Tri& b) {
  FOR(i,3) if (opSide(b[i],b[(i+1)%3],b[(i+2)%3],a)) return 0;
 return 1; }
// point-seg dist
T psDist(const P3&p,const P3&a,const P3&b) {
 if (dot(a-p,a-b) <= 0) return abs(a-p);</pre>
  if (dot(b-p,b-a) <= 0) return abs(b-p);
 return abs(cross(p,a,b))/abs(a-b);
// projection onto line
P3 foot(const P3& p, const P3& a, const P3& b) {
 P3 d = unit(b-a); return a+dot(p-a,d)*d; }
// rotate p about axis
P3 rotAxis (const P3& p, const P3& a, const P3& b, T theta) {
  P3 dz = unit(b-a), f = foot(p,a,b);
  P3 dx = p-f, dy = cross(dz, dx);
  return f+cos(theta)*dx+sin(theta)*dy;
// projection onto plane
P3 foot(const P3& a, const Tri& b) {
 P3 c = perp(b[0],b[1],b[2]);
  return a-c*(dot(a,c)-dot(b[0],c)); }
// line-plane intersection
P3 lpIntersect(const P3&a0,const P3&a1,const Tri&b) {
 P3 c = unit(cross(b[2]-b[0],b[1]-b[0]));
 T \times = dot(a0,c) - dot(b[0],c), y = dot(a1,c) - dot(b[0],c);
  return (y*a0-x*a1)/(y-x);
```

Hull3D.h

Description: Incremental 3D convex hull where not all points are coplanar. Normals to returned faces point outwards. If coordinates are ints at most B then \mathbb{T} should be large enough to support ints on the order of B^3 . Changes order of points. The number of returned faces may depend on the random seed, because points that are on the boundary of the convex hull may or may not be included in the output.

```
Time: \mathcal{O}(N^2), \mathcal{O}(N \log N)
                                                     60821e, 91 lines
// using T = 11;
bool above (const P3&a, const P3&b, const P3&c, const P3&p) {
 return DC(a,b,c,p) > 0; } // is p strictly above plane
void prep(vP3% p) { // rearrange points such that
 shuffle(all(p),rng); // first four are not coplanar
 int dim = 1;
 FOR(i,1,sz(p))
    if (dim == 1) {
      if (p[0] != p[i]) swap(p[1],p[i]), ++dim;
    } else if (dim == 2) {
      if (!collinear(p[0],p[1],p[i]))
        swap(p[2],p[i]), ++dim;
    } else if (dim == 3) {
      if (!coplanar(p[0],p[1],p[2],p[i]))
        swap(p[3],p[i]), ++dim;
  assert(dim == 4);
using F = AR<int,3>; // face
V<F> hull3d(vP3& p) {
 // s.t. first four points form tetra
 prep(p); int N = sz(p); V<F> hull; // triangle for each face
 auto ad = [\&] (int a, int b, int c) { hull.pb(\{a,b,c\}); };
  // +new face to hull
  ad(0,1,2), ad(0,2,1); // initialize hull as first 3 points
 V<vb> in(N,vb(N)); // is zero before each iteration
```

```
FOR(i,3,N) { // incremental construction
   V<F> def, HULL; swap(hull, HULL);
    // HULL now contains old hull
    auto ins = [&](int a, int b, int c) {
     if (in[b][a]) in[b][a] = 0; // kill reverse face
     else in[a][b] = 1, ad(a,b,c);
    each(f, HULL) {
     if (above(p[f[0]],p[f[1]],p[f[2]],p[i]))
       FOR(j,3) ins(f[j],f[(j+1)%3],i);
        // recalc all faces s.t. point is above face
     else def.pb(f);
    each(t,hull) if (in[t[0]][t[1]]) // edge exposed,
     in[t[0]][t[1]] = 0, def.pb(t); // add a new face
    swap(hull, def);
 return hull;
V<F> hull3dFast(vP3& p) {
 prep(p); int N = sz(p); V<F> hull;
 vb active; // whether face is active
 V<vi> rvis; // points visible from each face
 V<AR<pi, 3>> other; // other face adjacent to each edge of
 V<vi> vis(N); // faces visible from each point
 auto ad = [&](int a, int b, int c) {
   hull.pb({a,b,c}); active.pb(1); rvis.eb(); other.eb(); };
 auto ae = [&](int a, int b) { vis[b].pb(a), rvis[a].pb(b); };
 auto abv = [&](int a, int b) {
   F f=hull[a]; return above(p[f[0]],p[f[1]],p[f[2]],p[b]);};
 auto edge = [&](pi e) -> pi {
   return {hull[e.f][e.s],hull[e.f][(e.s+1)%3]}; };
 auto glue = [&] (pi a, pi b) { // link two faces by an edge
   pi x = edge(a); assert(edge(b) == mp(x.s,x.f));
   other[a.f][a.s] = b, other[b.f][b.s] = a;
 \}; // ensure face 0 is removed when i=3
 ad(0,1,2), ad(0,2,1); if (abv(1,3)) swap(p[1],p[2]);
 FOR(i,3) glue(\{0,i\},\{1,2-i\});
 FOR(i,3,N) ae(abv(1,i),i); // coplanar points go in rvis[0]
 vi label (N, -1);
 FOR(i,3,N) { // incremental construction
    vi rem; each(t,vis[i]) if (active[t]) active[t]=0, rem.pb(t
    if (!sz(rem)) continue; // hull unchanged
    int st = -1;
    each(r,rem) FOR(i,3) {
     int o = other[r][j].f;
     if (active[o]) { // create new face!
       int a,b; tie(a,b) = edge(\{r,j\}); ad(a,b,i); st = a;
       int cur = sz(rvis)-1; label[a] = cur;
       vi tmp; set union(all(rvis[r]),all(rvis[o]),
                  back inserter(tmp));
       // merge sorted vectors ignoring duplicates
       each(x,tmp) if (abv(cur,x)) ae(cur,x);
       glue({cur,0},other[r][j]); // glue old w/ new face
    for (int x = st, y; ; x = y) { // glue new faces together
     int X = label[x]; glue({X,1}, {label[y=hull[X][1]],2});
     if (y == st) break;
 V<F> ans; F0R(i,sz(hull)) if (active[i]) ans.pb(hull[i]);
 return ans:
```

PolySaVol.h

Description: surface area and volume of polyhedron, normals to faces must point outwards

```
"Hull3D.h"
                                                       c1324d, 8 lines
pair<T,T> SaVol(vP3 p, V<F> faces) {
 T s = 0, v = 0;
  each(i,faces) {
   P3 a = p[i[0]], b = p[i[1]], c = p[i[2]];
    s += abs(cross(a,b,c)); v += dot(cross(a,b),c);
  return {s/2, v/6};
```

Strings (9)

ret.pb(i-sz(a));

return ret:

9.1 Light

KMP.h

Description: f[i] is length of the longest proper suffix of the *i*-th prefix of s that is a prefix of sTime: $\mathcal{O}(N)$

vi kmp(str s) { int N = sz(s); vi f(N+1); f[0] = -1; FOR(i,1,N+1) { for (f[i]=f[i-1];f[i]!=-1&&s[f[i]]!=s[i-1];)f[i]=f[f[i]]; ++f[i]; } return f; vi getOc(str a, str b) { // find occurrences of a in b vi f = kmp(a+"@"+b), ret;

FOR(i, sz(a), sz(b)+1) if (f[i+sz(a)+1] == sz(a))

Description: f[i] is the max len such that s.substr(0,len) == s.substr(i,len)

Time: $\mathcal{O}(N)$ 50d1eb, 15 lines vi z(str s) { int N = sz(s), L = 1, R = 0; s += '#'; vi ans(N); ans[0] = N; FOR(i,1,N) { if $(i \le R)$ ans [i] = min(R-i+1, ans[i-L]);while (s[i+ans[i]] == s[ans[i]]) ++ans[i];if (i+ans[i]-1 > R) L = i, R = i+ans[i]-1; return ans; vi getPrefix(str a, str b) { // find prefixes of a in b vi t = z(a+b); t = vi(sz(a)+all(t));each(u,t) ckmin(u,sz(a)); return t;

Manacher.h

Description: length of largest palindrome centered at each character of string and between every consecutive pair Time: $\mathcal{O}(N)$

82aff3, 13 lines vi manacher(str _S) { $str S = "@"; each(c,_S) S += c, S += "#";$ S.bk = '&'; vi ans(sz(S)-1); int lo = 0, hi = 0; FOR(i, 1, sz(S) - 1) { if (i != 1) ans [i] = min(hi-i, ans[hi-i+lo]);

```
while (S[i-ans[i]-1] == S[i+ans[i]+1]) ++ans[i];
  if (i+ans[i] > hi) lo = i-ans[i], hi = i+ans[i];
ans.erase(begin(ans));
FOR(i, sz(ans)) if (i\%2 == ans[i]\%2) ++ans[i];
return ans;
```

LyndonFactor.h

Time: $\mathcal{O}(N)$

af079f, 13 lines

Description: A string is "simple" if it is strictly smaller than any of its own nontrivial suffixes. The Lyndon factorization of the string s is a factorization $s = w_1 w_2 \dots w_k$ where all strings w_i are simple and $w_1 > w_2 > \dots > w_k$. Min rotation gets min index i such that cyclic shift of s starting at i is minimum.

```
3422af, 19 lines
vs duval(str s) {
 int N = sz(s); vs factors;
 for (int i = 0; i < N; ) {
    int j = i+1, k = i;
    for (; j < N \&\& s[k] <= s[j]; ++j) {
     if (s[k] < s[j]) k = i;
      else ++k;
    for (; i \le k; i += j-k) factors.pb(s.substr(i, j-k));
 return factors;
int minRotation(str s) {
 int N = sz(s); s += s;
 vs d = duval(s); int ind = 0, ans = 0;
 while (ans+sz(d[ind]) < N) ans += sz(d[ind++]);</pre>
  while (ind && d[ind] == d[ind-1]) ans -= sz(d[ind--]);
 return ans;
```

HashRange.h

Description: Polynomial hash for substrings with two bases. _{58a95a, 24 lines}

```
using H = AR<int,2>; // bases not too close to ends
H makeH(char c) { return {c,c}; }
uniform_int_distribution<int> BDIST(0.1*MOD, 0.9*MOD);
const H base{BDIST(rng),BDIST(rng)};
H operator+(H 1, H r) {
 FOR(i,2) if ((l[i] += r[i]) >= MOD) l[i] -= MOD;
 return 1; }
H operator-(H 1, H r) {
 FOR(i,2) if ((l[i] -= r[i]) < 0) l[i] += MOD;
 return 1; }
H operator*(H 1, H r) {
 FOR(i,2) 1[i] = (11)1[i]*r[i]%MOD;
 return 1; }
V<H> pows{{1,1}};
struct HashRange {
 str S; V<H> cum{{}};
 void add(char c) { S += c; cum.pb(base*cum.bk+makeH(c)); }
  void add(str s) { each(c,s) add(c); }
  void extend(int len) { while (sz(pows) <= len)</pre>
    pows.pb(base*pows.bk); }
  H hash(int 1, int r) { int len = r+1-1; extend(len);
    return cum[r+1]-pows[len]*cum[l]; }
};
```

ReverseBW.h

Description: Used only once. Burrows-Wheeler Transform appends # to a string, sorts the rotations of the string in increasing order, and constructs a new string that contains the last character of each rotation. This function reverses the transform.

```
Time: \mathcal{O}(N \log N)
                                                         09aad7, 7 lines
str reverseBW(str t) {
 vi nex(sz(t)); iota(all(nex),0);
 stable_sort(all(nex),[&t](int a,int b){return t[a]<t[b];});</pre>
 str ret; for (int i = nex[0]; i;)
    ret += t[i = nex[i]];
 return ret:
```

AhoCorasickFixed.h

Description: Aho-Corasick for fixed alphabet. For each prefix, stores link to max length suffix which is also a prefix.

```
Time: \mathcal{O}(N \Sigma)
                                                                   4916ab, 27 lines
template<size_t ASZ> struct ACfixed {
```

```
struct Node { AR<int, ASZ> to; int link; };
 V<Node> d{{}};
 int add(str s) { // add word
   int v = 0;
   each(C,s) {
     int c = C-'a';
     if (!d[v].to[c]) d[v].to[c] = sz(d), d.eb();
     v = d[v].to[c];
   return v;
 void init() { // generate links
   d[0].link = -1;
   queue<int> q; q.push(0);
   while (sz(q)) {
     int v = q.ft; q.pop();
     FOR(c, ASZ) {
       int u = d[v].to[c]; if (!u) continue;
       d[u].link = d[v].link == -1 ? 0 : d[d[v].link].to[c];
       q.push(u);
     if (v) F0R(c,ASZ) if (!d[v].to[c])
       d[v].to[c] = d[d[v].link].to[c];
};
```

SuffixArrav.h

Description: Sort suffixes. First element of sa is sz(S), isa is the inverse of sa, and lcp stores the longest common prefix between every two consecutive elements of sa.

Time: $\mathcal{O}(N \log N)$

```
"RMQ.h"
                                                       ed0c75, 30 lines
struct SuffixArray {
 str S; int N; vi sa, isa, lcp;
 void init(str \_S) { N = sz(S = \_S)+1; genSa(); genLcp(); }
 void genSa() { // sa has size sz(S)+1, starts with sz(S)
    sa = isa = vi(N); sa[0] = N-1; iota(1+all(sa),0);
    sort(1+all(sa),[&](int a, int b) { return S[a] < S[b]; });</pre>
    FOR(i, 1, N)  { int a = sa[i-1], b = sa[i];
      isa[b] = i > 1 \&\& S[a] == S[b] ? isa[a] : i; }
    for (int len = 1; len < N; len \star= 2) { // currently sorted
      // by first len chars
      vi s(sa), is(isa), pos(N); iota(all(pos),\theta);
      each(t,s) {int T=t-len; if (T>=0) sa[pos[isa[T]]++] = T;}
      FOR(i, 1, N)  { int a = sa[i-1], b = sa[i];
        isa[b] = is[a] == is[b] \& \&is[a+len] == is[b+len]?isa[a]:i; 
  void genLcp() { // Kasai's Algo
    lcp = vi(N-1); int h = 0;
    FOR(b, N-1) { int a = sa[isa[b]-1];
      while (a+h < sz(S) \&\& S[a+h] == S[b+h]) ++h;
```

```
lcp[isa[b]-1] = h; if (h) h--; }
   R.init(lcp);
  RMO<int> R;
  int getLCP(int a, int b) { // lcp of suffixes starting at a,b
   if (a == b) return sz(S)-a;
   int l = isa[a], r = isa[b]; if (l > r) swap(l,r);
   return R.query(1,r-1);
};
```

SuffixArravLinear.h

Description: Linear-time suffix array.

Usage: sa_is(s, 26) // all entries must be in [0, 26)

Time: O(N), ~100ms for $N = 5 \cdot 10^5$

```
487c1b, 46 lines
vi sa_is(const vi& s, int upper) {
 int n = sz(s); if (!n) return {};
  vi sa(n); vb ls(n);
  R0F(i, n-1) ls[i] = s[i] == s[i+1] ? ls[i+1] : s[i] < s[i+1];
  vi sum l(upper), sum s(upper);
  FOR(i,n) (ls[i] ? sum_l[s[i]+1] : sum_s[s[i]])++;
  FOR(i,upper) {
   if (i) sum_l[i] += sum_s[i-1];
   sum_s[i] += sum_l[i];
  auto induce = [&](const vi& lms) {
   fill(all(sa),-1);
   vi buf = sum s;
    for (int d: lms) if (d != n) sa[buf[s[d]] ++] = d;
   buf = sum_1; sa[buf[s[n-1]]++] = n-1;
   F0R(i,n) {
     int v = sa[i]-1;
     if (v \ge 0 \&\& !ls[v]) sa[buf[s[v]]++] = v;
   buf = sum_1;
   R0F(i,n) {
     int v = sa[i]-1;
     if (v >= 0 \&\& ls[v]) sa[--buf[s[v]+1]] = v;
  };
  vi lms_map(n+1,-1), lms; int m = 0;
  FOR(i, 1, n) if (!ls[i-1] && ls[i]) lms_map[i]=m++, lms.pb(i);
  induce(lms); // sorts LMS prefixes
  vi sorted_lms;each(v,sa)if (lms_map[v]!=-1)sorted_lms.pb(v);
  vi rec_s(m); int rec_upper = 0; // smaller subproblem
  FOR(i,1,m) { // compare two lms substrings in sorted order
    int 1 = sorted lms[i-1], r = sorted lms[i];
   int end_1 = lms_map[1]+1 < m ? lms[lms_map[1]+1] : n;</pre>
   int end_r = lms_map[r]+1 < m ? lms[lms_map[r]+1] : n;
   bool same = 0; // whether lms substrings are same
    if (end_1-1 == end_r-r) {
     for (;1 < end_1 && s[1] == s[r]; ++1,++r);
     if (1 != n \&\& s[1] == s[r]) same = 1;
   rec_s[lms_map[sorted_lms[i]]] = (rec_upper += !same);
  vi rec_sa = sa_is(rec_s, rec_upper+1);
  FOR(i,m) sorted lms[i] = lms[rec sa[i]];
  induce(sorted_lms); // sorts LMS suffixes
  return sa;
```

TandemRepeats.h

Description: Find all (i, p) such that s.substr(i,p) == s.substr(i+p,p). No two intervals with the same period intersect

Usage: solve("aaabababa") // {{0, 1, 1}, {2, 5, 2}}

```
Time: \mathcal{O}(N \log N)
```

```
"SuffixArray.h"
                                                      9536e1, 13 lines
V<AR<int,3>> solve(str s) {
 int N = sz(s); SuffixArray A,B;
 A.init(s); reverse(all(s)); B.init(s);
 V<AR<int,3>> runs;
 for (int p = 1; 2*p \le N; ++p) { // do in O(N/p) for period p
    for (int i = 0, lst = -1; i+p <= N; i += p) {
     int l = i-B.getLCP(N-i-p, N-i), r = i-p+A.getLCP(i, i+p);
     if (1 > r \mid \mid 1 == 1st) continue;
     runs.pb(\{lst = l,r,p\}); // for each i in [l,r],
   } // s.substr(i,p) == s.substr(i+p,p)
 return runs;
```

9.2 Heavy

PalTree.h

Description: Used infrequently. Palindromic tree computes number of occurrences of each palindrome within string. ans[i][0] stores min even xsuch that the prefix s[1..i] can be split into exactly x palindromes, ans [i] [1] does the same for odd x.

```
Time: \mathcal{O}(N \Sigma) for addChar, \mathcal{O}(N \log N) for updAns
                                                       cfc6df, 41 lines
struct PalTree {
 static const int ASZ = 26;
  struct node {
    AR < int, ASZ > to = AR < int, ASZ > ();
    int len, link, oc = 0; // # occurrences of pal
    int slink = 0, diff = 0;
    AR<int,2> seriesAns;
    node(int _len, int _link) : len(_len), link(_link) {}
  str s = "@"; V<AR<int, 2>> ans = {{0,MOD}};
 V < node > d = \{\{0,1\}, \{-1,0\}\}; // dummy pals of len 0,-1
  int last = 1;
  int getLink(int v) {
    while (s[sz(s)-d[v].len-2] != s.bk) v = d[v].link;
    return v;
  void updAns() { // serial path has O(log n) vertices
    ans.pb({MOD,MOD});
    for (int v = last; d[v].len > 0; v = d[v].slink) {
      d[v].seriesAns=ans[sz(s)-1-d[d[v].slink].len-d[v].diff];
      if (d[v].diff == d[d[v].link].diff)
        FOR(i,2) ckmin(d[v].seriesAns[i],
              d[d[v].link].seriesAns[i]);
      // start of previous oc of link[v]=start of last oc of v
      FOR(i,2) ckmin(ans.bk[i],d[v].seriesAns[i^1]+1);
  void addChar(char C) {
    s += C; int c = C-'a'; last = getLink(last);
    if (!d[last].to[c]) {
      d.eb(d[last].len+2,d[getLink(d[last].link)].to[c]);
      d[last].to[c] = sz(d)-1;
      auto& z = d.bk; z.diff = z.len-d[z.link].len;
      z.slink = z.diff == d[z.link].diff
        ? d[z.link].slink : z.link;
    } // max suf with different dif
    last = d[last].to[c]; ++d[last].oc;
    updAns();
 void numOc() { ROF(i,2,sz(d)) d[d[i].link].oc += d[i].oc; }
};
```

SuffixAutomaton.h

Description: Used infrequently. Constructs minimal deterministic finite automaton (DFA) that recognizes all suffixes of a string. len corresponds to the maximum length of a string in the equivalence class, pos corresponds to the first ending position of such a string, 1nk corresponds to the longest suffix that is in a different class. Suffix links correspond to suffix tree of the reversed string!

Time: $\mathcal{O}(N \log \Sigma)$

```
struct SuffixAutomaton {
  int N = 1; vi lnk\{-1\}, len\{0\}, pos\{-1\}; // suffix link,
  // max length of state, last pos of first occurrence of state
  V<map<char,int>> nex{1}; V<bool> isClone{0};
  // transitions, cloned -> not terminal state
  V<vi>iLnk; // inverse links
  int add(int p, char c) { // \sim p \text{ nonzero if } p != -1
    auto getNex = [&]() {
      if (p == -1) return 0;
      int q = nex[p][c]; if (len[p]+1 == len[q]) return q;
      int clone = N++; lnk.pb(lnk[q]); lnk[q] = clone;
      len.pb(len[p]+1), nex.pb(nex[q]),
      pos.pb(pos[q]), isClone.pb(1);
      for (; \sim p \&\& nex[p][c] == q; p = lnk[p]) nex[p][c]=clone;
      return clone:
    // if (nex[p].count(c)) return getNex();
    // ^ need if adding > 1 string
    int cur = N++; // make new state
    lnk.eb(), len.pb(len[p]+1), nex.eb(),
    pos.pb(pos[p]+1), isClone.pb(0);
    for (; \sim p \&\& !nex[p].count(c); p = lnk[p]) nex[p][c] = cur;
    int x = getNex(); lnk[cur] = x; return cur;
  void init(str s) { int p = 0; each(x,s) p = add(p,x); }
  // inverse links
  void qenIlnk() {iLnk.rsz(N); FOR(v,1,N)iLnk[lnk[v]].pb(v);}
  // APPLICATIONS
  void getAllOccur(vi& oc, int v) {
    if (!isClone[v]) oc.pb(pos[v]); // terminal position
    each(u,iLnk[v]) getAllOccur(oc,u); }
  vi allOccur(str s) { // get all occurrences of s in automaton
    int cur = 0;
    each(x,s) {
      if (!nex[cur].count(x)) return {};
      cur = nex[cur][x]; }
    // convert end pos -> start pos
    vi oc; getAllOccur(oc, cur); each(t, oc) t += 1-sz(s);
    sort(all(oc)); return oc;
  vl distinct;
  11 getDistinct(int x) {
    // # distinct strings starting at state x
    if (distinct[x]) return distinct[x];
    distinct[x]=1;each(y,nex[x]) distinct[x]+=getDistinct(y.s);
    return distinct[x]; }
  11 numDistinct() { // # distinct substrings including empty
    distinct.rsz(N); return getDistinct(0); }
  11 numDistinct2() { // assert(numDistinct() == numDistinct2());
    ll ans = 1; FOR(i,1,N) ans += len[i]-len[lnk[i]];
    return ans; }
SuffixAutomaton S;
vi sa; str s;
void dfs(int x) {
  if (!S.isClone[x]) sa.pb(sz(s)-1-S.pos[x]);
  V<pair<char,int>> chr;
  each(t, S.iLnk[x]) chr.pb({s[S.pos[t]-S.len[x]],t});
```

sort(all(chr)); each(t,chr) dfs(t.s);

```
int main() {
 re(s); reverse(all(s));
  S.init(s); S.genIlnk();
 dfs(0); ps(sa); // generating suffix array for s
```

SuffixTree.h

Description: Used infrequently. Ukkonen's algorithm for suffix tree. Longest non-unique suffix of s has length len[p]+lef after each call to add terminates. Each iteration of loop within add decreases this quantity by one. Time: $\mathcal{O}(N \log \Sigma)$

```
Ocfe4e, 51 lines
struct SuffixTree {
  str s; int N = 0;
  vi pos, len, lnk; V<map<char,int>> to;
  int make (int POS, int LEN) { // lnk[x] is meaningful when
    // x!=0 and len[x] != MOD
   pos.pb(POS);len.pb(LEN);lnk.pb(-1);to.eb();return N++; }
  void add(int& p, int& lef, char c) { // longest
    // non-unique suffix is at node p with lef extra chars
    s += c; ++lef; int lst = 0;
    for (;lef;p?p=lnk[p]:lef--) { // if p != root then lnk[p]
      // must be defined
      while (lef>1 && lef>len[to[p][s[sz(s)-lef]]])
       p = to[p][s[sz(s)-lef]], lef -= len[p];
      // traverse edges of suffix tree while you can
     char e = s[sz(s)-lef]; int & q = to[p][e];
      // next edge of suffix tree
     if (!q) q = make(sz(s)-lef,MOD), lnk[lst] = p, lst = 0;
      // make new edge
       char t = s[pos[q]+lef-1];
        if (t == c) { lnk[lst] = p; return; } // suffix not
           \hookrightarrowunique
        int u = make(pos[q],lef-1);
        // new node for current suffix-1, define its link
       to[u][c] = make(sz(s)-1, MOD); to[u][t] = q;
        // new, old nodes
       pos[q] += lef-1; if (len[q] != MOD) len[q] -= lef-1;
        q = u, lnk[lst] = u, lst = u;
  void init(str s) {
   make (-1,0); int p = 0, lef = 0;
   each(c,_s) add(p,lef,c);
   add(p,lef,'$'); s.pop_back(); // terminal char
  int maxPre(str x) { // max prefix of x which is substring
    for (int p = 0, ind = 0;;) {
     if (ind == sz(x) || !to[p].count(x[ind])) return ind;
     p = to[p][x[ind]];
     FOR(i,len[p]) {
       if (ind == sz(x) \mid \mid x[ind] != s[pos[p]+i]) return ind;
        ind ++;
  vi sa; // generate suffix array
  void genSa(int x = 0, int Len = 0) {
    if (!sz(to[x])) sa.pb(pos[x]-Len); // found terminal node
    else each(t,to[x]) genSa(t.s,Len+len[x]);
};
```

Various (10)

10.1 Dynamic programming

When doing DP on intervals:

 $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j),$ where the (minimal) optimal k increases with both i and j,

- one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j].
- This is known as Knuth DP. Sufficient criteria for this are if f(b,c) < f(a,d) and f(a,c) + f(b,d) < f(a,d) + f(b,c) forall $a \leq b \leq c \leq d$.
- Consider also: LineContainer (ch. Data structures), monotone queues, ternary search.

CircularLCS.h

Description: Used only twice. For strs A, B calculates longest common subsequence of A with all rotations of B

Time: $\mathcal{O}(|A| \cdot |B|)$

```
f1e9dc, 26 lines
int circular_lcs(str A, str B) {
 B += B:
 int max_lcs = 0;
 V < vb > dif_left(sz(A) + 1, vb(sz(B) + 1)), dif_up(sz(A) + 1, vb(sz(B)))
 auto recalc = [&](int x, int y) { assert(x && y);
   int res = (A.at(x-1) == B.at(y-1))
     dif_up[x][y-1] | dif_left[x-1][y];
   dif_left[x][y] = res-dif_up[x][y-1];
   dif_up[x][y] = res-dif_left[x-1][y];
 };
 FOR(i,1,sz(A)+1) FOR(j,1,sz(B)+1) recalc(i,j);
 FOR(j,sz(B)/2) {
    // 1. zero out dp[.][j], update dif_left and dif_right
   if (j) for (int x = 1, y = j; x \le sz(A) && y \le sz(B); ) {
     int pre_up = dif_up[x][y];
     if (y == j) dif_up[x][y] = 0;
     else recalc(x,y);
      (pre_up == dif_up[x][y]) ? ++x : ++y;
    // 2. calculate LCS(A[0:sz(A)),B[j:j+sz(B)/2))
   int cur_lcs = 0;
   FOR(x,1,sz(A)+1) cur_lcs += dif_up[x][j+sz(B)/2];
   ckmax(max_lcs,cur_lcs);
 return max lcs;
```

SMAWK.h

Description: Given negation of totally monotone matrix with entries of type D, find indices of row maxima (their indices increase for every submatrix). If tie, take lesser index. f returns matrix entry at (r,c) in O(1). Use in place of divide & conquer to remove a log factor.

Time: $\mathcal{O}(R+C)$, can be reduced to $\mathcal{O}(C(1+\log R/C))$ evaluations of f

```
template < class F, class D=11> vi smawk (F f, vi x, vi y) {
 vi ans(sz(x),-1); // x = rows, y = cols
 \#define upd() if (ans[i] == -1 | w > mx) ans[i] = c, mx = w
 if (\min(sz(x), sz(y)) \le 8) {
   FOR(i,sz(x))  { int r = x[i]; D mx;
      each(c,y) \{ D w = f(r,c); upd(); \} \}
    return ans;
```

```
if (sz(x) < sz(y)) { // reduce subset of cols to consider
    vi Y; each(c,y) {
      for (; sz(Y); Y.pop\_back()) \{ int X = x[sz(Y)-1];
       if (f(X,Y.bk) >= f(X,c)) break; }
      if (sz(Y) < sz(x)) Y.pb(c);
    y = Y;
  } // recurse on half the rows
  vi X; for (int i = 1; i < sz(x); i += 2) X.pb(x[i]);
 vi ANS = smawk(f, X, y); FOR(i, sz(ANS)) ans[2*i+1] = ANS[i];
  for (int i = 0, k = 0; i < sz(x); i += 2) {
    int to = i+1 < sz(ans) ? ans[i+1] : y.bk; D mx;
    for(int r = x[i];;++k) {
      int c = y[k]; D w = f(r,c); upd();
      if (c == to) break; }
 return ans;
};
```

24

Debugging tricks

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG violations generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.3 Optimization tricks

10.3.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- FOR(b,k) FOR(i,1<<K) if (i&1<<b) D[i] += D[i^(1<<b)]; computes all sums of subsets.

10.3.2 Pragmas

- #pragma GCC optimize ("Ofast, unroll-loops") will make GCC auto-vectorize for loops and optimizes floating points better (assumes associativity and turns off denormals).
- #pragma GCC target ("avx,avx2") can double performance of vectorized code, but causes crashes on old machines. Also consider older #pragma GCC target ("sse4").
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastIO.h

Description: Fast input and output for integers and strings. For doubles, read them as strings and convert them to double using stod. Usage: initO(); int a,b; ri(a,b); wi(b,'\n'); wi(a,'\n');

Time: input is ~ 300 ms faster for 10^6 long longs on CF. b2e69a, 39 lines

```
inline namespace FastIO {
```

Decimal EgorAllocator EgorJava1 EgorEulerPath

```
const int BSZ = 1<<15; ///// INPUT</pre>
char ibuf[BSZ]; int ipos, ilen;
char nc() { // next char
  if (ipos == ilen) {
   ipos = 0; ilen = fread(ibuf, 1, BSZ, stdin);
    if (!ilen) return EOF;
  return ibuf[ipos++];
void rs(str& x) { // read str
  char ch; while (isspace(ch = nc()));
  do { x += ch; } while (!isspace(ch = nc()) && ch != EOF);
tcT> void ri(T& x) { // read int or ll
  char ch; int sqn = 1;
  while (!isdigit(ch = nc())) if (ch == '-') sgn *= -1;
  x = ch'0'; while (isdigit(ch = nc())) x = x*10+(ch'0');
tcT, class... Ts> void ri(T& t, Ts&... ts) {
 ri(t); ri(ts...); } // read ints
///// OUTPUT (call initO() at start)
char obuf[BSZ], numBuf[100]; int opos;
void flushOut() { fwrite(obuf, 1, opos, stdout); opos = 0; }
void wc(char c) { // write char
 if (opos == BSZ) flushOut();
  obuf[opos++] = c; }
void ws(str s) { each(c,s) wc(c); } // write str
tcT> void wi(T x, char after = ' \setminus 0') {
  if (x < 0) wc('-'), x *= -1;
  int len = 0; for (;x>=10;x/=10) numBuf[len++] = '0'+(x%10);
  wc('0'+x); R0F(i,len) wc(numBuf[i]);
  if (after) wc(after);
void initO() { assert(atexit(flushOut) == 0); }
10.4 Other languages
Decimal.py
Description: Arbitrary-precision decimals
                                                            5 lines
from decimal import *
getcontext().prec = 100 # how many digits of precision
print(Decimal(1) / Decimal(7)) # 0.142857142857...
print(Decimal(10) ** -100) # 1E-100
EgorAllocator.h
Description: Egor's Allocator code
                                                     0e917a, 11 lines
const int MAXMEM = 4e8;
int mpos = 0;
char mem[MAXMEM];
inline void* operator new(size_t n) {
  if (mpos + n >= MAXMEM)
   mpos = MEMSIZE / 3;
  char* ret = mem + mpos;
  mpos += n;
  return (void) ret;
inline void operator delete (void) {}
EgorJava1.java
Description: Petr template
                                                     460018, 68 lines
import java.io.OutputStream; import java.io.IOException;
```

import java.io.InputStream; import java.io.PrintWriter;

```
import java.util.StringTokenizer; import java.util.*;
import java.io.IOException; import java.io.BufferedReader;
import java.io.InputStreamReader; import java.io.InputStream;
//Long arithmetics
import java.math.BigInteger; import java.math.BigDecimal;
//Math
import java.math.MathContext; import java.math.RoundingMode;
public class Main {
    public static void main(String[] args) {
        //Simple input/output
        Scanner sc = new Scanner(System.in);
        long a = sc.nextLong();
        System.out.println(new String("MEX"));
        //BigDecimal
        BigDecimal e = new BigDecimal(a);
        e = e.multiply(new BigDecimal(a));
        System.out.println(e);
        //Vector, initial capacity 4
        Vector<String> vec = new Vector<String>(4);
        InputStream inputStream = System.in;
        OutputStream outputStream = System.out;
        InputReader in = new InputReader(inputStream);
        PrintWriter out = new PrintWriter(outputStream);
        Taska solver = new Taska();
        solver.solve(1, in, out);
        out.close();
    static class Taska {
        int[][] array2d;
        public void solve(int testNumber, InputReader in,
           →PrintWriter out) {
            int n = in.nextInt();
            int[] a = new int[n];
            int sum = 0:
            for (int i = 0; i < n; ++i) {
                a[i] = in.nextInt();
                sum += a[i];
            out.println(sum);
    static class InputReader {
        public BufferedReader reader;
        public StringTokenizer tokenizer;
        public InputReader(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(
               \hookrightarrowstream), 32768);
            tokenizer = null;
       public String next() {
            while (tokenizer == null || !tokenizer.
               ⇔hasMoreTokens()) {
                    tokenizer = new StringTokenizer(reader.
                       \hookrightarrow readLine());
                } catch (IOException e) {
                    throw new RuntimeException(e);
            return tokenizer.nextToken();
       public int nextInt() {
            return Integer.parseInt(next());
```

```
EgorEulerPath.h
Description: Egor's find euler

void find_euler(int v) {
    while (ptr[v] < g[v].size()) {
        find_euler(g[v][ptr[v]++]);
    }
    euler.push_back(v);
}</pre>
```

AhoCorasickFixed 22 AngleCmp 17 BCC 13 BIT2DOff 5 CRT 7 Centroid 12 ChordalGraphRecognition 16 Circle 19 CircleIsect 20 CircleTangents 20 CircularLCS 24 Circumcenter 20 ClosestPair 20 ComplexComp 17 ConvexHull 18 DSU 11 DeBruijnSeq 8 Decimal 25 DelaunayFast 20 Dinic 13 DirectedMST 16 DominatorTree 16 EdgeColor 16 EgorAllocator 25 EgorEulerPath 25 EgorJaval 25 Euclid 7 EulerPath 12 FFT 10 FactorFast 7 FastIO 25 FastMod 6 FracInterval 7 GeneralMatchBlossom 14 GeneralWeightedMatch 15 GomorvHu 14 HLD 12 HalfPlaneIsect 19 HalfPlaneSet 19 HashMap 2 HashRange 22 Hull3D 21 HullDiameter 18 HullTangents 18 Hungarian 14 InPolygon 18 Integrate 11 IntegrateAdaptive 11 KMP 22 KthShortestWalk 5 LCAjump 11 LCArmq 12 LCT 17 LazySegmentTree 3 LineContainer 2 LineContainerDeque 2 LineHull 18 LinearRecurrence 10 LyndonFactor 22 MCMF 14 Manacher 22 ManhattanMST 21 MapComparator 2 Matrix 9 Matrix Inv 9 Matrix Tree 9 Matroid Isect 9 MaxMatchFast 15 MaximalCliques 13 MillerRabin 7 MinEnclosingCirc 20 MinkowskiSum 18 ModArith 7 ModFact 6 ModIntShort 5 ModMulLL 6 ModSqrt 6 ModSum 6 MultiplicativePrefixSums 6 NegativeCycle 11 NimProduct 8 OrderStatisticTree 2 PSeg 4 PalTree 23 Point3D 21 PointShort 17 Poly 10 PolyInterpolate 10 PolyInvSimpler 10 PolySaVol 22 PolygonCenArea 18 PolygonUnion 19 PrimeCnt 7 RMQ 3 RMQArray 3 ReverseBW 22 SCCT 13 SMAWK 24 SegDist 17 SegIsect 17 SegTreeSuperBeats 4 SegmentTree 3 ShermanMorrison 9 Sieve 6 Simplex 11 SuffixArray 23 SuffixArrayLinear 23 SuffixAutomaton 23 SuffixTree 24 TandemRepeats 23 TemplateShortKACTL 1 TemplateVerySmall 1 Treap 5 TwoSAT 13 Z 22 hash 1 run 1 stress 1 troubleshoot 1