(ask 1) (B) Hamming Distance: d(u, u') = (u\u') z つ
un yn HD(}arbidie} 3 sel	$\{adib\}$) $\{b\}$
Sag 2 15 da	$ _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = _{1, _{1}} = $
saifg} 3 1921	6, fg { = 4
Sorted Neavest : Neighbours:	S4,3,2,1,3}
$k=1: \bar{g}=3.\dot{y}$	8=4 ·X. 8=6 (4+3)=3.5 ·X.
K=3: U= = (3+2+1)=20	$g = \frac{1}{3}(4+3+2) = 3$
\Rightarrow k	= 3 was obtained

(D) Jaccard Similarity: SCMU = TRUXI

Jarbidiel Scidil Saf Safroj Serti	1 2 3 4	JO(Sa,5,2)	Jo (36%) Jo (36
	Sorted Neight Neight	2,113,47	3 = 3 (x)
k=1 -0	g=3 (3+2)	<i>)</i>	8= { (S+4)=3.5 (V)
Task 3)	The algorithm		

i) first we initiative D(0,j)=j and D(i,0)=i

ii) Recursively for D(ij) i {D(i-1)-1) if y=dj'

we do two limin {D(i-1)} if xith;

inner (oops i=1 to L D(i-1)-1)

j=1tok

iii) for the answer we select the buttom right element

0 1 2 3 4 5 6 7 8 9 i. 1 1 2 3 4 5 6 6 7 8 1 2 2 2 3 4 5 6 7 7 7 t 3 3 3 3 4 5 5 6 7 8
1 2 2 2 3 4 S 6 7 7 7 + 3 3 3 3 4 S 5 6 7 8
1 2 2 2 3 4 5 5 6 7 8 + 3 3 3 3 4 5 5 6 7 8
+ 3 3 3 4 5 5 6
e 4 3 4 3 4 5 6 6 7 0
n 5 4 4 4 4 5 6 7 7 7
+ 6 5 5 5 5 5 6 7 8
1 7 6 6 6 6 6 6 5 6 7
0 9 7 7 7 7 7 7 6 5
1 9 8 8 8 8 8 8 7

The final distance is 5

The distance between "intent" and exe" is 5

The distance between "execut" and "int" is 5

The distance between "execut" and "int" is 5

Task 2) The code given below:

```
In []: # We import necessary libraries
    # Please do not use scikit-learn or any other package. Implement K-NN classification yourself.
    import pandas as pd
    import matplotlib.pyplot as plt
    import numpy as np
    from matplotlib.colors import ListedColormap

In []: # Here we read the provided ushape.csv file
    # We have retained only a small number of rows to ensure computational easiness and clear visualization
    df = pd.read_csv('ushape.csv',names=['X','Y', 'C'], header=0, index_col=None)

In []: # Let us see how the data looks like
    df.plot.scatter('X','Y',c='C', s=100, colormap='Dark2')

Out[]: <Axes: xlabel='X', ylabel='Y'>
```



```
In []: # This function implements the L2 distance between two sets of points
    def l2(x1,y1, x2, y2):
        distance = np.sqrt((x1-x2)**2 + (y1-y2)**2)
        return distance

In []: # The following function computes the distances between a test point and all the training points
    def distance(x_test, y_test):
        distances = list()
        for index, row in df.iterrows():
            d = l2(row['X'], row['Y'], x_test, y_test)
            distances.append(d)
        return np.array(distances)
```

```
In [ ]: # You need to complete the following function.
        # The following function should assign the class to a point (x_test, y_test) using K-NN classification
        def knn_classification(x_test, y_test, k):
            dist=distance(x test,y test)
            sorted_indices = np.argsort(dist)
            k_nearest_labels = df['C'][sorted_indices[:k]]
            unique_labels, counts = np.unique(k_nearest_labels, return_counts=True)
            return unique labels[np.argmax(counts)]
In [ ]: # You need to complete the following function.
        # The following function should plot the decision surface for the two classes given the value of K.
        # You need to test all the points between df.X.min() and df.X.max() and also df.Y.min() and df.Y.max().
        def plot decision surface(k):
           light=ListedColormap(['#FFAAAA', '#AAAAFF'])
           bold=ListedColormap(['#FF0000','#0000FF'])
           x=df[['X', 'Y']] to numpy()
           xmin, xmax = x[:, 0].min()-1, x[:, 0].max()+1
           ymin, ymax=x[:, 1].min()-1,x[:, 1].max()+1
           XX,YY=np.meshgrid(np.linspace(xmin,xmax,100),np.linspace(ymin,ymax,100))
           ZZ=[]
           for xx,yy in zip(XX.ravel(),YY.ravel()):
              ZZ.append(knn classification(xx,yy,k))
           ZZ=np.array(ZZ).reshape(XX.shape)
           plt.pcolormesh(XX, YY, ZZ,cmap=light,shading='auto')
           plt.scatter(x[:,0], x[:,1],c=df['C'].to_numpy(),cmap=bold)
           plt.xlim(XX.min(), XX.max())
           plt.ylim(YY.min(), XX.max())
           plt.title('Decision boundary for K=%d'%k)
           plt.show()
In []: K=[1,2,3]
        for k in range(1, 4):
            plot decision surface(k)
```


Decision boundary for K=3

With smaller values of k, the decision boundary tends to be more sensitive to noise or outliers in the data. A single outlier can have a significant impact on the classification of a point. Smaller values of k result in more complex decision boundaries that follow the fluctuations in the training data more closely. This can lead to overfitting, especially if the dataset has noise.

s k increases, the decision boundary becomes smoother and less sensitive to local variations in the data. The model becomes more robust to noise and outliers. However, if the value of k is too large (which we do not have here in our example; just worth mentioning), the model might underfit the data, meaning it may fail to capture the underlying patterns and relationships in the dataset.