Table 3-11. Regression of milk income (Won) on days in milk and breeding values of milk β -hydroxylbutrate

Independent variable –		Parameter estimates				
		Model 1	Model 2	Model 3	Model 4	
Intercept		754,949	751,524	755,335	746,980	
Days in milk		33,019	33,028	33,023	33,030	
Breeding value of β -hydroxylbutrate	Parity 1	48,009	-21,280			
	Parity 2	48,392		-6,244		
	Parity 3-5	-67,169			-9,218	
R ²		0.8504	0.8504	0.8504	0.8504	

Table 3-12. Regression of milk income (Won) on days in milk and breeding values of milk acetone

		Parameter estimates				
Independent variable		Model 1	Model 2	Model 3	Model 4	
Intercept		728,033	753,649	751,407	749,464	
Days in milk		33,023	33,028	33,027	33,028	
Breeding value of milk acetone	Parity 1	-13,054	-10,450			
	Parity 2	213,980		-3,866		
	Parity 3-5	-202,023			-3,960	
R ²		0.8504	0.8504	0.8504	0.8504	

위의 두 Table은 BHBA와 acetone 농도의 육종가에 대한 유대수입의 회귀이다. 여기에서도 회 귀의 모형에서는 앞서 주성분분석에서 나타난 착유일수의 영향을 감안하여 모형에 포함하였 다. 회귀식에서 결정계수가 BHBA와 acetone의 똑 같은 값으로 높게 나타났다. 절편과 착유일 수의 회귀계수는 BHBA와 acetone의 acetone의 경우 모두 식의 종류와 관계없이 일정하게 나타 나는 것을 알 수 있다. 다행히 착유일수의 회귀값이 일정하여 각 육종가의 회귀도 불균형이 우려가 다소 완화되었다. 다만 Model 1에서 모든 육종가를 같이 포함하였을 때 육종가간의 공 선적 (colinearity) 특성은 여기에서도 나타나고 있다.