Automaty a Gramatiky

Poznámky z přednášek

Letní semestr 2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1 První přednáška 2

1 První přednáška

Poznámka (Chomského hierarchie): Automaty a gramatiky - dva způsoby popisu:

Turingovy stroje \leftrightarrow gramatiky Typu 0 lineárně omezené automaty \leftrightarrow kontextové gramatiky, monotónní gramatiky zásobníkové automaty \leftrightarrow bezkontextové gramatiky konečné automaty (DFA,NFA, λ NFA) \leftrightarrow regulární jazyky

Nejjednodušší jsou nejníž, turingův stroj je nejkomplikovanější. Každá gramatika odpovídá nějaké třídě automatů.

Proč to řešíme?

- zpracování přirozeného jazyka,
- překladače (lexikální, syntaktická analýza...),
- návrh, popis, verifikace hardware...
- hledání výskytu slova v textu (grep),
- verifikace systémů s konečně mnoha stavy

Příklad:

1. Návrh a verifikace integrovaných obvodů, např. Konečný automat modelující spínač on/off

2. Lexikální analýza, např. Konečný automat rozpoznávajíci slovo then

Definice (Deterministický konečný automat (DFA)): $A = (Q, \Sigma, \delta, q_0, F)$ sestává z:

- 1. konečné množiny stavů, zpravidla značíme Q
- 2. konečné neprázdné množiny vstupních symbolů (abecedy), znažíme Σ
- 3. **přechodové funkce** zobrazení $Q \times X \to Q$, značíme δ , která bude reprezentovaná hranami grafu
- 4. **počátečného stavu** $q_0 \in Q$, vede do něj šipka 'odnikud'

5. neprázdné **množiny koncových (přijímajících) stavů** (final states) $F \subseteq Q$, označených dvojitým kruhem či šipkou 'ven'.

Poznámka:

Pokud pro některou dvojici stavu a písmene není definovaný přechod, přidáme nový stav fail a přechodovou funkci doplníme na totální přidáním šipek do fail.

Pokud je množina F prázdná, přidáme do ní i Q nový stav final do kterého vedou jen přechody z něj samotného $\forall s \in \Sigma : \delta(final, s) = final$.

Příklad:

Automat A přijímající $L = x01y : x, y \in \{0, 0\} *.$

Automat
$$A = (\{q_0, q_1, q_2\}, 0, 1, \delta, q_0, q_1)$$

Reprezentujeme stavovým diagramem (grafem), pomocí tabulky nebo stavovým stromem

Definice (Abeceda, slova, jazyky): Mějme neprázdnou množinu symbolů Σ .

- Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ϵ
- Množinu všech slov v abecedě Σ značíme Σ^*
- $\bullet\,$ množinu všech neprádzných slov v abecedě značíme Σ^+
- jazyk $L \subseteq \Sigma^*$ je množina slov v abecedě Σ

Definice (Operace na Σ^*):

- 1. **zřetězení slov** u.v nebo uv
- 2. mocnina (počet opakování) $u^n(u^0 = \lambda, u^1 = u, u^{n+1} = u^n.u)$
- 3. délka slova $|u|(|\lambda|=0, |auto|=4)$
- 4. **počet výskytů** $s \in \Sigma$ ve slově u značíme $|u|_s(|zmrzlina|_z = 2)$.

Definice (Rozšířená přechodová funkce): Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$. Rozšířenou přechodovou funkci $\delta^*: Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně:

- 1. $\delta^*(q,\lambda) = q$,
- 2. $\delta^*(q, wx) = \delta(\delta^*(q, w)x)$ pro $x \in \Sigma, w \in \Sigma^*$.

Poznámka: Pokud se v textu objeví δ aplikované na slova, míní se tím δ^* .

Definice (Jazyk rozpoznávaný (přijímaný, akceptovaný) konečným automatem): Jazykem rozpoznávaným konečným automatem $A = (Q, \Sigma, \delta, q_0, F)$ nazveme jazyk $L(A) = \{w : w \in \Sigma^* \& \delta^*(q_0, w) \in F\}$.

- Slovo w je přijímáno automatem A, právě když $w \in L(A)$.
- \bullet Jazyk L je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L=L(A).
- \bullet Třídu jazyků rozpoznatelných konečnými automaty označíme \mathcal{F} , nazveme **regulární jazyky**.

Věta (Iterační (pumping) lemma pro regulární jazyky): Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak, že každé $w \in L; |w| \geq n$ můžeme rozdělit na tři části, w = xyz, že:

- 1. $y \neq \lambda$
- $2. |xy| \leq n$
- 3. $\forall k \in \mathbb{N}_0$, slovo $xy^k z$ je také v L.

Důkaz:

- Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A).
- Vezměme libovolné slovo $a_1a_2a_3...a_m = w \in L$ délky $m \geq n, a_i \in \Sigma$.
- Definizeme: $\forall i p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Platí $p_0 = q_0$.
- Máme $n+1p_i$ a n stavů, některý se opakuje, vezměme první takový, t. j. $(\exists i,j:0\leq i< jq leq n\& p_i=p_j)$.
- Definujeme $x = a_1 a_2 \dots a_i, y = a_{i+1} a_{i+2} \dots a_j, z = a_{j+1} a_{j+2} \dots a_m, t.j. w = xyz, y \neq \lambda, |xy| \leq n.$
- pak y^k můžeme opakovat libovolněkrát a vstup je také akceptovaný.

Příklad (Aplikace pumping lemmatu): TODO