ANSWER	KEYS							
1. (2) matho	2. (4)	3. (3)	4. (1)	5. (2)	6. (1) 14. (2)	7. (2) mathon	8. (1)	math
9. (3)	10. (3)	11. (1)	12. (2)	13. (4)	14. (2)	15. (10)	16. (4)	
17. (1)	18. (4)	19. (2)	20. (3)	21. (3)	22. (30)	23. (1) nathon	24. (3)	
25. (3)	26. (3)	27. (5)	28. (3)	29. (3)	30. (1)			
` ' 1	er conditions of			1 127) (2)				
	nao- =///= no/	$0\Rightarrow x>\sqrt{3}$ (In $-1\Rightarrow rac{x^2-3}{6x-10}=rac{1}{2}$		h conditions)(i)				
$ \begin{array}{c} \Rightarrow x^2 \\ \text{math}_2 \\ \Rightarrow x^2 \end{array} $	-3 = 3x - 5 -3x + 2 = 0	athonas $\Rightarrow x=1,2$						
	$(i), x > (\sqrt{3})$ 2 is the answer							
	given expression							
	_		(5)nathongo					
We know	v that $\log_m(x)$ -	$+\log_m(y) = \log_x y$	$_m(xy) \ \& \ \log_m(x)$	$(c) - \log_m(y) = \log_m(y)$	$S_m\left(\frac{x}{y}\right)$			
$\Rightarrow \log_{10}$	$_0(2^x+1)=-1$	$\log_{10}(2)^x + \log_{10}$	$_{0}(6)$		///. mathongo			
$\Rightarrow \log_{10}$	$\sum_{0}^{\infty}[(2^{x})(2^{x}+1)]$	10810(0)	mathongo					
_	ntilog on both s $(2^x + 1) = 6$	_						
$\Rightarrow (2^x)$	$a^2 + 2^x - 6 = 0$							
	$(-2)(2^x+3) =$		mathongo	// mathongo	/// mathongo			
	(3) is rejected a $x=2 \Rightarrow x=1$	as value of an ex	rponential funct	ion cannot be neg	gative			

3. (3) As we know that
$$\log_a(b) > 0$$
, if $(0 < a < 1)$ and $(0 < b < 1)$. Though the mathon $(0 < a < 1)$ and $(0 < b < 1)$. Though the mathon $(0 < a < 1)$ and $(0 < a < 1)$

$$t \Rightarrow 0 < x^2 + 2x < 1$$
 mathongo $\mbox{\em //}{}$ mathongo $\mbox{\em //}{}$

Breaking into two cases:

Case I:
$$x^2 + 2x > 0$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow x(x+2) > 0$$

$$\Rightarrow x \in (-\infty, -2) \cup (0, \infty)$$
 ... (1) ...

Case II :
$$x^2 + 2x < 1$$

$$\Rightarrow x^2 + 2x - 1 < 0$$
 $\Rightarrow (x + 1 + \sqrt{2})(x + 1 - \sqrt{2}) < 0$
mathongo /// mathongo // mathongo

From equation (1) and (2), we get
$$x \in \left(-1-\sqrt{2},-2\right) \cup \left(0,\sqrt{2}-1\right)$$
 mathongo we mathongo we mathongo with a mathon of the mat

Thus,
$$\left(-1-\sqrt{2},-2\right)\cup\left(0,\sqrt{2}-1\right)$$
 is correct option. Thus, $\left(-1-\sqrt{2},-2\right)\cup\left(0,\sqrt{2}-1\right)$ is correct option. Thus, $\left(-1-\sqrt{2},-2\right)\cup\left(0,\sqrt{2}-1\right)$ is correct option.

$$4. \qquad \log_{175} 5x = \log_{343} 7x = k$$

$$(1)$$
 \Rightarrow $\frac{5}{7} = \left(\frac{175}{343}\right)^k \Rightarrow k = \frac{1}{2}$ /// mathongo /// mathongo /// mathongo /// mathongo ///

So,
$$\log 5x_{175} = (\frac{1}{2})$$
 or $5x = \sqrt{175}$ or $5x = 5\sqrt{7}$ or $x = \sqrt{7}$

$$\log \left(x^4-2x^2+7\right)_{42}$$

$$=\log(49-14+7)_{42}=\log42_{42}=1$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Therefore, 1 is the answer

We have,

$$\log_3(x-3) = \log_9(\mathrm{x}-1)$$
 $\Rightarrow \frac{\log(x-3)}{\log x} = \frac{\log(\mathrm{x}-1)}{\log x}$ mathongo we mathon we mathongo we mathon with the mathon we mathon with the mathon we mathon which we mathon with the mathon we mathon with the mathon we m

$$\Rightarrow \frac{\log(x-3)}{\log 3} = \frac{\log(x-1)}{\log 9}$$

$$\Rightarrow \frac{\log(x-3)}{\log 3} = \frac{\log(x-1)}{\log 3^2}$$

$$\Rightarrow \frac{\log(x-3)}{\log 3} = \frac{\log(x-1)}{2\log 3}$$
mathons mathon

$$2\log(x-3) = \log(x-1)\log 2$$
 mathongo mathong

$$\Rightarrow (x-3)^2 = (x-1)_{\text{nathongo}} \text{ mathongo } \text{ mathong$$

$$\Rightarrow$$
 x = 2, 5

$$\Rightarrow$$
 x = 2, 5 mathon $=$ x = 2 is not possible as $\log_3(x-3)$ is not defined for $=$ 2.

Therefore, x = 5.

$$\begin{array}{c} \textbf{6.} & \textbf{(1)} \text{ Let} & \textbf{matheres} & \textbf{matheres}$$

Answer Kevs and Solutions

10. Let
$$X = x^{\frac{1}{\ln y} + \frac{1}{\ln z}} \cdot y^{\frac{1}{\ln z} + \frac{1}{\ln x}} \cdot z^{\frac{1}{\ln x} + \frac{1}{\ln y}}$$
 mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow \ln X = \ln x \left(\frac{1}{\ln y} + \frac{1}{\ln z} \right) + (\ln y) \left(\frac{1}{\ln z} + \frac{1}{\ln x} \right) + \left(\frac{1}{\ln x} + \frac{1}{\ln y} \right) (\ln z)$$

Now given
$$\ln x + \ln y + \ln z = 0$$

Similarly
$$\frac{\ln y}{\ln x} + \frac{\ln z}{\ln x} = -1$$
 and

$$\frac{\ln x}{\ln z} + \frac{\ln y}{\ln z} = -1$$

$$\therefore \text{ R.H.S.} = -3$$
mathongo /// mathongo // mat

$$\therefore$$
 R.H.S. = -3

$$\ln X = -3$$

$$X = t^{-3} \log t$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

11. (1)
$$x \in (2n+1)\pi/2, n\pi$$
 where $n \in \mathbf{I}$. The given inequality can be written as $\frac{\log_2(x^2-8x+23)}{\log_2|\sin x|} > \frac{3}{\log_2|\sin x|}$

As
$$\log_2 |\sin x| < 0$$
, we get

$$\log_2(x^2 - 8x + 23) < 3$$

$$\Rightarrow x^2 - 8x + 23 < 2^3 = 8$$
 ongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow x^2 - 8x + 15 < 0$$

$$\Rightarrow (x-5)(x-3) < 0 \Rightarrow 3 < x < 5$$
For $x \in (2,5)$, $x \in \pi^{-\pi/3\pi}$. Hence

For
$$x \in (3,5), x \in \pi, \frac{\pi}{2}, \frac{3\pi}{2}$$
. Hence

$$x \in (3,\pi) \cup \left(\pi,rac{3\pi}{2}
ight) \cup \left(rac{3\pi}{2},5
ight)$$

12. (2) Taking log of both the sides with base 3, we have

$$\left(\log_3 x^2 + (\log_3 x)^2 - 10\right)(\log_3 x) = -2\log_3 x$$

This equation is equivalent to

$$\log_3 x = 0 \text{ or } 2\log_3 x + (\log_3 x)^2 - 8 = 0$$
 $\Rightarrow x = 1, \log_3 x = -1 \pm 3 \text{ i.e. } \log_3 x = 2, \log_3 x = -4$

$$\Rightarrow \quad x=1, \log_3 x = -1 \pm 3 \text{ i.e. } \log_3 x = 2, \log_3 x = -4$$

Hence
$$x = 1, 3^2, 3^{-4} = 1, 9, 1/81$$

Hence
$$x=1,3^2,3^4=1,9,1/81$$

13. Let $A=\log_a x\cdot\log_{10} a\cdot\log_a 5$ mathongo // mathongo // mathongo //

$$(4) \qquad = \log_{10} x \cdot \log_a 5$$

mathon=
$$\log_a(5)^{\log_{10}x}$$
nongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Let
$$\log_{10} x = x$$
, So, $A = \log_a 5^x$

Let
$$B = \log_{10}\left(\frac{x}{10}\right) = \log_{10}x - 1 = (x - 1)$$
 mathongo /// mathongo /// mathongo /// mathongo ///

$$\operatorname{Let} C = \log_{100} x + \log_4 2$$

$$\operatorname{math} = \frac{1}{2} \log_{10} x + \frac{1}{2} = \left(\frac{x+1}{2}\right)$$
 mathongo /// mathongo /// mathongo /// mathongo ///

$$\therefore 9^c = 9^{\frac{x+1}{2}} = 3^{x+1} = 3^x \cdot 3$$

$$\frac{6}{5} \cdot 5^x - \frac{3^x}{3} = 3 \cdot 3^x$$

$$\begin{array}{c} \text{mathongo} \\ \rightarrow 6 \cdot 5^{x-1} = 3^x \left(\frac{1}{3} + 3\right) \end{array}$$

$$\begin{array}{c} \text{mathongo} \\ \text{mathongo} \end{array}$$

$$\begin{array}{c} \text{mathongo} \\ \text{mathongo} \end{array}$$

$$\begin{array}{c} \text{mathongo} \\ \text{mathongo} \end{array}$$

$$\rightarrow 6 \cdot 5^{x-1} = 3^x \left(\frac{1}{3} + 3\right)$$

$$\rightarrow 6 \cdot 5^{x-1} = 3^{x-1} (10) \text{ athongo } \text{ mathongo } \text{ m$$

$$\rightarrow 5^{x-2} = 3^{x-2}$$
 Which is only possible when-

which is only possible when-
$$x=2 o \log_{10} x=2 o x=10^2=100$$

Answer Keys and Solutions

{2} also satisfy the given inequality.

14. (2) For (1) to hold, we must have we must have we mathongo we mathon we mathon we mathon we mathon we will be added the mathon we will be added to the weak will be added to $x > 0, x \neq 1 \text{ and } 2x^2 + x - 1 > 0$ $\Rightarrow x > 0, x \neq 1 \text{ and } (2x-1)(x+1) > 0$ mathongo /// mathongo /// mathongo /// $\Rightarrow x > 1/2, x \neq 1$ We can write (1) as $\log_x\left(\frac{2x^2+x-1}{2}\right) > -1$ (2) mathongo /// mathongo /// mathongo /// mathongo /// mathongo For 1/2 < x < 1, (2) can be written as $\frac{2x^2+x-1}{2} < \frac{1}{x}$ mathongo /// m \Rightarrow at $2\left(x^3-1\right)+x(x+1)<0$ /// mathongo /// mathongo /// mathongo /// mathongo /// $\Rightarrow (x-1)(2x^2+3x+2)<0$ \Rightarrow x < 1 $\left[\because 2x^2 + 3x + 2 > 0 \forall x > 0
ight]$ thongo $\ref{eq:mathongo}$ mathongo $\ref{eq:mathongo}$ mathongo $\ref{eq:mathongo}$ mathongo $\ref{eq:mathongo}$ For x > 1, (2) can be written as $\left| \frac{2x^2+x-1}{2} > \frac{1}{x} \right|$ thongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $\Rightarrow \quad (x-1)\left(2x^2+3x+2\right)>0$ This is true for each x > 1. ongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// Thus, (1) holds for 1/2 < x < 1, x > 1. 15. (10) $\log_{\sqrt{2}\sin x} \left(1+\cos x\right)=2$ w mathongo w mathon $\sqrt{2}\sin x \neq 1, \ \sqrt{2}\sin x > 0, \ 1 + \cos x > 0$ $\Leftrightarrow \sin x \neq \frac{1}{\sqrt{2}}, \sin x > 0$ and mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $x \neq \text{odd multiple of } \pi \Rightarrow x \in \left(0,\pi\right) - \left\{\frac{\pi}{4},\frac{3\pi}{4}\right\} \text{ (feasible region)}$ $\Leftrightarrow 2\sin^2 x = 1 + \cos x$ $\Leftrightarrow 2\cos^2 x + \cos x - 1 = 0$ mg // mathong // mathong // mathong // mathong // mathong // mathong $\Leftrightarrow (2\cos x - 1)(\cos x + 1) = 0$ $\Rightarrow \cos x = \frac{1}{2}$... $\left[\cos x + 1 > 0\right]$ /// mathongo /// mathongo /// mathongo /// mathongo /// $\Rightarrow x = \frac{\pi}{2}$ \Rightarrow $p \pm 1, q = 3$ /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $\Rightarrow p^2 + q^2 = 10$ (4) We have, $\frac{(x-2)^{10000}(x+1)^{253}\left(x-\frac{1}{2}\right)^{971}(x+8)^4}{x^{500}(x-3)^{75}(x+2)^{93}} \ge 0$ The critical points are $(-8)\cdot(-2),(-1),0,\frac{1}{2},2,3$ $[\because x
eq -2,0,3]$ the ather and the thongo with mathongo with mathon with math Hence, $x \in (-\infty, -8] \cup [-8, -2) \cup [-1, 0) \cup \left(0, \frac{1}{2}\right] \cup (3, \infty)$ or $x \in (-\infty, -2) \cup [-1, 0) \cup \left(0, \frac{1}{2}\right] \cup (3, \infty)$ ongo /// mathongo /// mathongo /// mathongo ///

Answer Kevs and Solutions

For
$$f(x) > 0, \forall x \in (-6, -2) \cup (-1, 3) \cup (5, \infty)$$

For
$$f(x) < 0, orall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$$
 and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ and though $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (3, 5)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (-2, -1) \cup (-2, -1) \cup (-2, -1)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup (-2, -1) \cup (-2, -1) \cup (-2, -1)$ for $y = 0, \forall x \in (-\infty, -6) \cup (-2, -1) \cup ($

18. (4) This equation has the form |f(x)| = -f(x)

when,
$$f(x)=rac{x^2-8x+12}{x^2-10x+21}$$
 thongo $ext{ iny mathongo}$ $ext{ iny mathongo}$

such an equation is equivalent to the collection of systems

The first system is equivalent to f(x) = 0 and the second system is equivalent to f(x) < 0 the combining both systems, we get mathon $f(x) \le 0$ mathons with a mathon $f(x) \le 0$ mathons with a mathon $f(x) \le 0$ mathons with a mathon $f(x) \le 0$ mathon $f(x) \le 0$ mathons with a mathon $f(x) \le 0$ m

$$\therefore \frac{x^2 - 8x + 12}{x^2 - 10x + 21} \le 0$$

$$\Rightarrow \frac{(x - 2)(x - 6)}{(x - 3)(x - 7)} \le 0$$
/// mathongo // mathongo

Hence, by Wavy curve method,

$$/\!/\!/$$
 $x\in[2,3)\cup[6,7)\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$

19. (2) We have,
$$(x+3)(3x-2)^5(7-x)^3(5x+8)^2 \ge 0$$

$$\Rightarrow x-(x+3)(3x-2)^5(x-7)^3(5x+8)^2 \ge 0$$

$$\Rightarrow (x+3)(3x-2)^5(x-7)^3(5x+8)^2 \le 0$$
mathong we mathong we mathon the second s

[take before x, + ve sign in all brackets] mathongo /// mathongo // mat

The critical points are (-3), $\left(-\frac{8}{5}\right)$, $\frac{2}{3}$, 7 mathongo /// mathon

20.
$$\max_{x+2} \frac{x|x|}{x+2} \leq 1$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

///
$$\max \frac{x|x|-x-2}{x+2} \le 0$$
 athongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

(3) Case I
$$x \in [0, \infty)$$

$$m \frac{x^2 - x - 2}{x + 2} \leq 0$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

$$\Rightarrow \frac{(x-2)(x+1)}{x+2 \cdot \cot \log x} \leq 0$$

$$\Rightarrow x \leq 2$$
mathongo /// mathongo // mathongo

$$\Rightarrow$$
 integral values $0, 1, 2$

Be careful: x cannot be 0 otherwise in the given inequality denominator will become 0

Case II
$$x \in (-\infty, 0)$$

$$\frac{-x^2-x-2}{x+2} \leq 0$$
 /// mathongo // mathongo /// mathongo // math

$$\Rightarrow \quad x > -2$$

$$^{\prime\prime}$$
 \Rightarrow at $_x$ ==1 $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$

So 3 integral values

21. (3) We have,
$$\sqrt{(-x^2+4x-3)} > 6-2x$$
 athongo /// mathongo /// mathongo /// mathongo ///

This inequation is equivalent to the collection of two systems, of inequations

i.e.
$$\begin{cases} 6-2x \geq 0 \\ -x^2+4x-3 > (6-2x)^2 \end{cases}$$
 and $\begin{cases} 6-2x < 0 \\ -x^2+4x-3 \geq 0 \end{cases}$

$$\Rightarrow \begin{cases} x \le 3 \\ \frac{13}{15} < x < 3 \end{cases} \text{ and } \begin{cases} x > 3 \\ 1 \le x < 3 \end{cases} \text{ mathongo } \text{mathongo } \text{ma$$

The second system has no solution and the first system has solution in the interval $\left(\frac{13}{5} < x < 3\right)$

Hence,
$$x \in \left(\frac{13}{5},3\right)$$
 is the set of solution of the original inequation. Ongo www. mathongo www. mathongo www. mathongo www.

22. (30) We have,
$$y = 2[x] + 3 = 3[x - 2] \dots$$
 (i)

$$\Rightarrow$$
 2[x] + 3 = 3([x] + 2) \(\text{or}[from property (i)] \) | mathongo | mat

$$|\Rightarrow$$
 $[x] = 9$ mothonic

$$\Rightarrow$$
 $[x] = 9$ \Rightarrow mathons $[x] = 9$ \Rightarrow mat

$$[x+y] = [x+21] = [x] + 21 = 9 + 21 = 30$$
Hence, the value of $[x+y]$ is 30

23. (1)
$$[x] + \sum_{r=1}^{2000} \frac{\{x+r\}}{2000} = [x] + \sum_{r=1}^{2000} \frac{\{x\}}{2000}$$

[We know,
$$\{x + \text{Integer}\} = \{x\}$$

As
$$r$$
 takes only integral values here, $\{x+r\} = \{x\}$

$$\frac{1}{2000} = [x] + \frac{\{x\}}{2000} \sum_{r=1}^{2000} 1 = [x] + \frac{\{x\}}{2000} \times 2000 = [x] + \{x\} = x$$
 mathongo with mathongo in mathon math

24. (3) This equation is equivalent to the collection of systems mathongo // mathongo // mathongo // mathongo //

$$\begin{cases} |x - (4 - x)| - 2x = 4, & \text{if } 4 - x \ge 0 \\ |x - (4 - x)| - 2x = 4, & \text{if } 4 - x \le 0 \end{cases}$$

$$\begin{cases} |x+(4-x)|-2x=4, & \text{if } 4-x<0\\ \Rightarrow \begin{cases} |2x-4|-2x=4, & \text{if } x\leq 4\\ 4-2x=4, & \text{if } x>4 \end{cases} & \dots \text{(i)} \end{cases}$$
 The second system of this collection wathongs we mathongs we mathon the second system of this collection where the second system of this collection we will be second system.

gives
$$x = 0$$

but
$$x > 4$$
 go $\,$ ///. mathongo $\,$ ///.

Hence, second system has no solution.

$$\begin{cases} 2x - 4 - 2x = 4, & \text{if } 2x \ge 4 \\ -2x + 4 - 2x = 4, & \text{if } 2x < 4 \end{cases}$$

$$\Rightarrow \begin{cases} -4 = 4, & \text{if } x \ge 2 \text{ longo} \\ -4x = 0, & \text{if } x < 2 \end{cases}$$
mathongo /// mathongo // mathongo // mathongo // mathongo

$$ightarrow \left\{ egin{array}{l} -4=4, ext{ if } x\geq 2 \ -4x=0, ext{ if } x<2 \end{array}
ight.$$

The first system is failed and second system gives x = 0. mathong we mathong we mathon mathong with mathon mathong with mathon matho

Hence, x = 0 is unique solution of the given equation.

25. (3)

Mathongo // matho

Hence number of solutions = 0

26. (3) We have, $\frac{2x}{(2x^2+5x+2)} > \frac{1}{(x+1)}$

$$\Rightarrow \frac{2x}{(x+2)(2x+1)} - \frac{1}{(x+1)} > 0$$

$$\Rightarrow \frac{(2x^2+2x) - (2x^2+5x+2)}{(x+2)(x+1)(2x+1)} > 0$$

$$\Rightarrow -\frac{(3x+2)}{(x+2)(x+1)(2x+1)} > 0$$
or
$$\frac{(3x+2)}{(x+2)(x+1)(2x+1)} < 0$$

$$\Rightarrow \frac{(2x^2+2x)-(2x^2+5x+2)}{(x+2)(x+1)(2x+1)} > 0$$

$$\Rightarrow -\frac{(3x+2)}{(x+2)(x+1)(2x+1)} > 0$$

or
$$\frac{(3x+2)}{(x+2)(x+1)(2x+1)} < 0$$

The critical points are
$$(-2)$$
, (-1) , $\left(-\frac{2}{3}\right)\left(-\frac{1}{2}\right)$ morphongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$

mathongo // matho

27. (5)

$$\frac{\left(x^{2}-2x+8\right)\left(e^{x}+2\right)\left(x-3\right)\left(x-8\right)}{\left(\log_{2}\left(x^{2}+3\right)\right)\left(x-5\right)^{2}}\leq0$$

$$x^2-2x+8, e^x+2$$
 and $\log_2(x^2+3)$ are positive quantities nothongo /// mothongo /// mothongo ///

Next we have to find condition for (x-3), (x-5) and (x-8)

At x = 5, the denominator = 0. So x = 5 is not a solution. Therefore, number of integral solutions will be between 3 and 8 excluding 5 (using wavy curve method)

Thus, we have 5 integral values possible.

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

#MathBoleTohMathonGo

28. (3) If
$$|a+b+c| = |a| + |b| + |c|$$
 then a, b, c have same sign mathons 2. Mathons 2. Mathons 3. Matho

$$1 + \log_{1/6} x + \log_{2} x + \log_{1/6} x + \log_{2} x + \log_{1/6} x + \log_{1$$

$$rac{1}{6}\leqslant x$$
 /// $-\log_2x\geqslant 0$ /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo

$$\therefore x \in \left[\frac{1}{6}, 2\right], a = 2 \text{ and } b = 12$$

$$\frac{a+b}{a} = 7$$
mathongo /// mathongo // mathongo //

29. (3) The given inequation is equivalent to the collection of systems
$$\left(\frac{1}{1 - \frac{x}{x}} \right) > \frac{1}{2}$$
, if $x > 0$ $\left(\frac{1}{1 + \frac{1}{x}} \right) \geq \frac{1}{2}$, if $x \geq 0$

$$\left| \frac{1+\frac{x}{1-x}}{1+\frac{x}{1-x}} \right| \ge \frac{1}{2}, \text{ if } x < 0 \implies \left\{ \frac{1}{|1-x|} \ge \frac{1}{2}, \text{ if } x < 0 \right\} \text{ mathongo } mathongo$$

29. (3) The given inequation is equivalent to the collection of systems
$$\begin{cases} \left|1-\frac{x}{1+x}\right| \geq \frac{1}{2}, \text{ if } x \geq 0 \\ \left|1+\frac{x}{1-x}\right| \geq \frac{1}{2}, \text{ if } x < 0 \end{cases} \Rightarrow \begin{cases} \frac{1}{|1+x|} \geq \frac{1}{2}, \text{ if } x < 0 \\ \frac{1}{|1-x|} \geq \frac{1}{2}, \text{ if } x < 0 \end{cases} \Rightarrow \begin{cases} \frac{1}{1+x} \geq 0, \text{ if } x < 0 \\ \frac{1}{1+x} \geq 0, \text{ if } x < 0 \end{cases} \Rightarrow \begin{cases} \frac{1+x}{1+x} \geq 0, \text{ if } x < 0 \\ \frac{1+x}{1-x} \geq 0, \text{ if } x < 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \\ \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \leq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \leq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \end{cases} \Rightarrow \begin{cases} \frac$$

$$\Rightarrow \begin{cases} \frac{x-1}{x+1} \leq 0, \text{ if } x \geq 0 \\ \frac{x+1}{x-1} \leq 0, \text{ if } x < 0 \text{ thongo} \end{cases}$$
 mathongo /// mathongo // mathongo /// mathongo // mathon

$$x+1=0, x=2$$

/// mat $+1=0, x=2$

/// mathongo // math

$$0 \le x \le 1$$
 ...(i)

For $\frac{x+1}{x-1} \le 0$, if $x < 0$ mathongo /// mathongo // ma

Hence, from Eqs. (i) and (ii), the solution of the given equation is
$$x \in [-1,1]$$
 mathong y mathon y math

$$\frac{1}{1 - \frac{|x|}{1 + |x|}} \ge \frac{1}{2} \Rightarrow \left| \frac{1}{1 + |x|} \right| \ge \frac{1}{2} \Rightarrow \left| \frac{1}{1 + |x|} \right| \ge \frac{1}{2} \Rightarrow \frac{1}{1 + |x|} \Rightarrow \frac{1}{$$

$$|1+|x||=2$$
 and thought $|1+|x||=2$ and though $|1+|x|=2$ and the $|1+|x|=2$ and th

///.
$$: nath1 \le x \le 1 \text{ or } x \Rightarrow [-1,1]$$
 ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$[2x]-[x+1]=2x$$
 ...(1) mathongo /// mathongo // mathongo /

$$egin{array}{lll} -1 \leq x < 0, & -2 \leq 2x < 0 \ [2x] = & -2, & -1 \end{array}$$

$$[2x] = -2, -1$$

from equation (1) mathongo /// mathongo // mathongo /// mathongo // mathongo /

$$[2x]-0=2x,\ 2x=-2,\ -1$$
/// $x=-1, n-\frac{1}{2}$ /// mathongo // mathongo /