	INDEX			
	Topic	Date	Page No.	Sign
1.	Practical 1	17/09/22	3	
a.	Write a program for obtaining descriptive statistics of data		3	
b.	Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R /Python /Excel)		5	
2.	Practical 2	23/09/22	9	
a.	Design a survey form for a given case study, collect the primary data and analyse it.		9	
b.	Perform analysis of given secondary data.		11	
3.	Practical 3	24/09/22	14	
a.	Perform testing of hypothesis using one sample t-test.		14	
b.	Write a program for t-test comparing two means for independent samples.		15	
c.	Perform testing of Hypothesis using paired t-test.		17	
4.	Practical 4	01/10/22	19	
a.	Perform testing of hypothesis using chi-squared goodness-of-fit test.		19	
b.	Perform testing of hypothesis using chi-squared test of independence.		20	
5.	Practical 5	08/10/22	22	
a.	Perform testing of hypothesis using Z-test.		22	
6.	Practical 6	15/10/22	24	
a.	Perform testing of hypothesis using One-way ANOVA.		24	
b.	Perform testing of hypothesis using Two-way ANOVA.		26	
c.	Perform testing of hypothesis using MANOVA.		28	
7.	Practical 7	22/10/22	31	
a.	Perform the Random sampling for the given data and analyse it.		31	

b.	Perform the Stratified sampling for the given data and analyse it		33	
8.	Practical 8	12/11/22	36	
a.	Write a program for computing different correlation		36	
9.	Practical 9	19/11/22	36	
a.	Write a program to Perform linear regression for prediction.		36	
b.	Polynomial Regression		41	
10.	Practical 10	26/11/22	44	
a.	Multiple Linear Regression		44	
b.	Logistic Regression		45	

A. Write a program for obtaining descriptive statistics of data.

Step 1: Open your data in excel

A2	1	· : >	< 🗸	fx		
4	Α	В	С	D	Е	F
1	Height					
2	179					
3	155					
4	158					
5	180					
6	160					
7	150					
8	169					
9	155					
10	155					
11	155					
12	150					
13	162					
14	158					
15	161					
16	179					

Step 2: From the Data Tool in the ribbon choose Data Analysis.

Step 3: Select the option of descriptive statistics

Step 4: Select an input range, output range, and check summary statistics and confidence level.

Step 5: The output may appear as follows.

1	Height			
2	179	Columni	!	
3	155			
4	158	Mean	162.5789474	
5	180	Standard Error	2.212822533	
6	160	Median	160	
7	150	Mode	155	
8	169	Standard Deviation	9.645469803	
9	155	Sample Variance	93.03508772	
10	155	Kurtosis	-0.561004927	
11	155	Skewness	0.753286117	
12	150	Range	30	
13	162	Minimum	150	
14	158	Maximum	180	
15	161	Sum	3089	
16	179	Count	19	
17	165	Confidence Level(95.0%)	4.648967631	
18	176			
19	160			
20	162			

Conclusion: Descriptive statistics is a form of data analysis that involves the use of numerical measures to describe the characteristics of a given set of data. The goal of descriptive statistics is to summarize the data into a meaningful and useful form. The most common forms of descriptive statistics include the mean, median, mode, and standard deviation. These measures allow researchers to understand the characteristics of the data, such as its spread and distribution. Descriptive statistics can also be used to make predictions about future data. For example, if the mean of a set of data is consistently

higher than the median, it may be possible to predict that future data will also have a higher mean.

B. Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R /Python /Excel)

Code:

1 - SQLite3

```
import sqlite3 as sq
import pandas as pd
Base='C:/VKHCG'
sDatabaseName=Base + '/01-Vermeulen/04-
Transform//SQLite/vermeulen.db'
conn = sq.connect(sDatabaseName)
sFileName='C:/VKHCG/01-Vermeulen/01-Retrieve/01-EDS/02-
Python/Retrieve IP DATA.csv'
print('Loading :',sFileName)
IP DATA ALL FIX=pd.read csv(sFileName, header=0, low memory=False)
IP DATA ALL FIX.index.names = ['RowIDCSV']
sTable='IP DATA ALL'
print('Storing :',sDatabaseName,' Table:',sTable)
IP DATA ALL FIX.to sql(sTable, conn, if exists="replace")
print('Loading :',sDatabaseName,' Table:',sTable)
TestData=pd.read sql query("select * from IP DATA ALL;", conn)
```

```
print('## Data Values')
print(TestData)
print('## Data Profile')
print('Rows :',TestData.shape[0])
print('Columns :',TestData.shape[1])
print('Successful')1
```

Output:

```
Loading : C:/VKHCG/01-Vermeulen/01-Retrieve/01-EDS/02-Python/
Retrieve_IP_DATA.csv
Storing : C:/VKHCG/01-Vermeulen/04-Transform//SQLite/
vermeulen.db Table: IP_DATA_ALL
Loading : C:/VKHCG/01-Vermeulen/04-Transform//SQLite/
vermeulen.db Table: IP_DATA_ALL
## Data Values
        RowIDCSV
                    RowID ... First.IP.Number
Last.IP.Number
                        0 ...
                                     692781056
692781567
                                      692781824
692783103
                                      692909056
               2
                        2 ...
692909311
                                      692909568
692910079
                                      693051392
693052415
1247497 1247497 1247497 ...
                                     1068157850
1068157850
1247498 1247498 1247498 ...
                                     1334409600
1334409607
1247499 1247499 ...
                                     1596886528
1596886783
1247500 1247500 1247500 ...
                                     1742189568
1742190591
1247501 1247501 1247501 ...
                                    1905782573
1905782573
[1247502 rows x 11 columns]
## Data Profile
Rows : 1247502
```

import os

import pandas as pd

2 - Excel

```
Base='C:/VKHCG'
sFileDir=Base + '/01-Vermeulen/01-Retrieve/01-EDS/02-Python'
CurrencyRawData = pd.read excel('C:/VKHCG/01-Vermeulen/00-
RawData/Country Currency.xlsx')
sColumns = ['Country or territory', 'Currency', 'ISO-4217']
CurrencyData = CurrencyRawData[sColumns]
CurrencyData.rename(columns={'Country or territory': 'Country',
'ISO-4217':
'CurrencyCode'}, inplace=True)
CurrencyData.dropna(subset=['Currency'],inplace=True)
CurrencyData['Country'] = CurrencyData['Country'].map(lambda x:
x.strip())
CurrencyData['Currency'] = CurrencyData['Currency'].map(lambda
х:
x.strip())
CurrencyData['CurrencyCode'] =
CurrencyData['CurrencyCode'].map(lambda x:
x.strip())
print(CurrencyData)
print('~~~~ Data from Excel Sheet Retrived Successfully
~~~~~ ')
sFileName=sFileDir + '/Retrieve-Country-Currency.csv'
CurrencyData.to csv(sFileName, index = False)
```


Conclusion: SQLite/Python/Excel

This type of coding are very much helpful to get the correct exact output we can compare all the outputs for getting the more exact value for the accurate answering. Using Python and Excel helps us to do any formulation for finding accuracy getting the answers/the outputs very quickly and easily. SQLite is a database to store various data easily and easy to access.

A. Design a survey form for a given case study, collect the primary data and analyse it.

Step 1: In order to make a survey we used Google forms. Our case study's aim was to find out which age group did Shopping in festive seasons.

Step 2: The questions and options entered were as follows.

- Q1. Which group do you belong to?
- (a)10-20 (b)21-30 (c)31-40 (d)41-50 (e)51 Above
- Q2.What is your Gender?
- (a)Male (b)Female
- Q3. What is your Occupation?
- (a)Business (b)Student (c)Employee (d)Retired (e)Self Employed (f)Household
- Q4. What's your Monthly Income?
- (a)10,000 20,000 (b)21,000 30,000 (c)31,000 40,000 (d)41,000 and above (e)N/A
- Q5. How often do you shop?
- (a)Monthly (b)Occasionally (c)Festive Seasons (d)Rarely

Research in Computing

- Q6.Purpose of Shopping? (a)Personal Use (b)Gifting
- Q7. Where do you get to know about the festive sales?
- (a)Newspaper (b)Advertisement (c)WhatsApp (d)Through a person
- Q8.How would you rate your overall shopping experience during festive season? (a)Excellent (b)Good (c)Average (d)Poor

Conclusion: we have successfully made the survey form for the given case study. In the above practical, we have successfully demonstrated Designing of survey form to collect the shopping trend data of people from different age group. From the above survey we can observe that 42.9% people shop on monthly basis and in this 57.1% women are involved shopping. 45.2% people have Good shopping experience whereas 26.2% people have Excellent shopping experience. Advertisement (69%) is the main source for people to know about festive shopping.

B. Perform analysis of given secondary data.

Step 1: Open Data in excel

1	age	male	female	total	
2	0 to 4	328759	307079	635838	
3	4 to 9	315119	293664	608783	
4	10 to 14	311456	290598	602054	
5	15 to 19	312831	293313	606144	
6	20 to 24	311077	295739	606816	
7	25 to 29	284258	273379	557637	
8	30 to 34	255596	247383	502979	
9	35 to 39	248575	241938	490513	
10	40 to 44	232217	226914	459131	
11	45 to 49	202633	201142	403775	
12	50 to 54	176241	176440	352681	
13	55 to 59	153494	156283	309777	
14	60 to 64	114194	121200	235394	
15	65 to 69	83129	92071	175200	
16	70 to 74	65266	77990	143256	
17	75 to 79	43761	56895	100656	
18	80 to 84	25060	37873	62933	
19	85+	14164	28156	42320	
20					
21		3477830	3418057	6895887	

Step 2: Calculate the total sum of each column. Select the cell for Sum \rightarrow add formula SUM in formula bar \rightarrow select the range.

1	age	male	female	total	
2	0 to 4	328759	307079	635838	
3	4 to 9	315119	293664	608783	
4	10 to 14	311456	290598	602054	
5	15 to 19	312831	293313	606144	
6	20 to 24	311077	295739	606816	
7	25 to 29	284258	273379	557637	
8	30 to 34	255596	247383	502979	
9	35 to 39	248575	241938	490513	
10	40 to 44	232217	226914	459131	
11	45 to 49	202633	201142	403775	
12	50 to 54	176241	176440	352681	
13	55 to 59	153494	156283	309777	
14	60 to 64	114194	121200	235394	
15	65 to 69	83129	92071	175200	
16	70 to 74	65266	77990	143256	
17	75 to 79	43761	56895	100656	
18	80 to 84	25060	37873	62933	
19	85+	14164	28156	42320	
20					
21		3477830	3418057	6895887	

Step 3: Calculate the percentage of male in cell E. Use formula -1*100*B2/\$D\$21

Step 4: Calculate the percentage female in cell F. Use formula 100*C2/\$D\$21

Step 5: The modified data may seem as follows.

Δ	Α	В	С	D	E	F
1	age	male	female	total	Male(%)	female(%)
2	0 to 4	328759	307079	635838	-4.76747	4.453075
3	4 to 9	315119	293664	608783	-4.56967	4.258538
4	10 to 14	311456	290598	602054	-4.51655	4.214077
5	15 to 19	312831	293313	606144	-4.53649	4.253448
6	20 to 24	311077	295739	606816	-4.51105	4.288629
7	25 to 29	284258	273379	557637	-4.12214	3.964378
8	30 to 34	255596	247383	502979	-3.7065	3.587399
9	35 to 39	248575	241938	490513	-3.60468	3.508439
10	40 to 44	232217	226914	459131	-3.36747	3.29057
11	45 to 49	202633	201142	403775	-2.93846	2.91684
12	50 to 54	176241	176440	352681	-2.55574	2.558627
13	55 to 59	153494	156283	309777	-2.22588	2.266322

Step 6: For analysis go to Insert \rightarrow Bar \rightarrow 2D

Step 7: Drag the data and set the graph for analysis.

Conclusion: We have successfully performed the analysis for the given secondary data. We have opened the given data in excel and calculated the total sum of each column and applied formula for the respectively. Then we selected the graph to be a bar graph in 2D for the modified data and the output is obtained.

A.Perform testing of hypothesis using one sample t-test.

Code:

```
from scipy.stats import ttest_1samp
import numpy as np
ages=np.genfromtxt('H:/ages.csv')
print(ages)
ages_mean=np.mean(ages)
print(ages_mean)
tset,pval=ttest_1samp(ages,30)
print('p-values-',pval)
if pval<0.05:#alpha value is 0.05
    print("we are rejecting null hypothesis")
else:
    print("we are accepeting null hypothesis")</pre>
```

```
In [3]: runfile('H:/3a.py', wdir='H:')
[20. 30. 25. 13. 16. 17. 34. 35. 38. 42. 43. 45. 48. 49. 50. 51. 54. 55. 56. 59. 61. 62. 18. 22. 29. 30. 31. 39. 52. 53. 67. 36. 47. 54. 40. 40. 35. 22. 59. 58. 30. 43. 22. 45. 21. 59. 51. 47. 25. 58. 50. 23. 24. 45. 37. 59. 28. 28. 48. 42. 54. 36. 36. 24. 26. 24. 50. 48. 34. 44. 56. 55. 35. 33. 39. 53. 34. 28. 56. 24. 21. 29. 28. 58. 35. 57. 26. 25. 59. 56. 22. 57. 48. 33. 23. 26. 57. 32. 53. 31. 35. 44. 54. 25. 31. 58. 26. 32. 26. 50. 41. 49. 26. 33. 34. 24. 43. 42. 51. 36. 38. 38. 40. 38. 56. 39. 23. 33. 53. 30. 38.]
39.47328244274809
p-values- 5.362905195437013e-14
we are rejecting null hypothesis
```

Conclusion: we have successfully performed testing of hypothesis using one sample t-test. The one-sample t-test is a statistical hypothesis test used to determine whether an unknown population mean is different from a specific value.

B. Write a program for t-test comparing two means for independent samples.

Step 2: Calculate the SD of samples STDEV(range)

Step 3: Calculate the t-test

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
4	Α	В	С	D	E	F	G	Н	1	J	K	
1			Female	Male								
2			26	23								
3			25	30		Calculated T test						
4			43	18		=(C9-D9)/SQRT((C10	*C10)/COU	NT(C2:C9)	+(D10*D10)	/COUNT(D	2:D6))	
5			34	25								
6			18	28								
7			52	0								
8		Total	198	124								
9		Mean	28.28571	17.71429								
10		SD	12.64911	10.94836								
11												

Step 4: Apply t-test paired two Samples for Means.

Step 5: Apply input Range and Output range.

Step 6: Hence we reject null hypothesis.

Conclusion: we have successfully compared the two means of independent samples for a t-test. The Independent Samples t Test compares the means of two independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different.

C.Perform testing of Hypothesis using paired t-test.

Step 1: Load the Data

Step 2: Data -> Data Analysis -> t-test between samples for means.

Step 3: Choose the Input and Output range.

Step 4: Since the samples Means of the Data samples are not equal we reject the null hypothesis that they might be equal.

H2	1	-	× ✓	fx							
4	Α	В	С	D	Е	F	G	Н	1	J	K
1	patient	gender	agegrp	bp_before	bp_after						
2	1	Male	30-45	143	153			t-Test: Paired Two Sample for N	1eans		
3	2	Male	30-45	163	170						
4	3	Male	30-45	153	168				143	153	
5	4	Male	30-45	153	142			Mean	156.5630252	151.3445378	
6	5	Male	30-45	146	141			Variance	129.2820111	202.6853725	
7	6	Male	30-45	150	147			Observations	119	119	
8	7	Male	30-45	148	133			Pearson Correlation	0.161241417		
9	8	Male	30-45	153	141			Hypothesized Mean Difference	0		
10	9	Male	30-45	153	131			df	118		
11	10	Male	30-45	158	125			t Stat	3.403463555		
12	11	Male	30-45	149	164			P(T<=t) one-tail	0.000454744		
13	12	Male	30-45	173	159			t Critical one-tail	1.657869522		
14	13	Male	30-45	165	135			P(T<=t) two-tail	0.000909488		
15	14	Male	30-45	145	159			t Critical two-tail	1.980272249		
16	15	Male	30-45	143	153						
17	16	Male	30-45	152	126						
18	17	Male	30-45	141	162						
19	18	Male	30-45	176	134						
20	19	Male	30-45	143	136						
21	20	Mala	20-45	162	150						

Conclusion: We have performed the testing of hypothesis using paired t-test. A paired t-test is used when we are interested in the difference between two variables for the same subject. The Data is loaded and Data analysis for paired t-test is selected. Input and Output Range of the variables are entered (Labels=tick, Alpha =0.5). In Step 4, the output for the following is displayed.

A. Perform testing of hypothesis using chi-squared goodness-of-fit test.

Step 1: Load the data.

D2		- i >	< 🗸	f _x
4	Α	В	С	D
1	0	E		
2	29	21.33		
3	24	21.33		
4	22	21.33		
5	19	21.33		
6	21	21.33		
7	18	21.33		
8	19	21.33		
9	20	21.33		
10	21	21.33		
11	18	21.33		
12	20	21.33		
13	23	21.33		
14				

Step 2: Type CHITEST and select Actual(observed value range) and Expected value range.

F5	F5 • fx =CHITEST(A2:A13,B2:B13)									
	Α	В	С	D	Е	F	G	Н		
1	0	E	O-E	(O-E)^2						
2	29	21.33	7.67	58.8289						
3	24	21.33	2.67	7.1289						
4	22	21.33	0.67	0.4489						
5	19	21.33	-2.33	5.4289		=CHITEST(A2:A13,B2:	B13)		
6	21	21.33	-0.33	0.1089						
7	18	21.33	-3.33	11.0889						
8	19	21.33	-2.33	5.4289						
9	20	21.33	-1.33	1.7689						
10	21	21.33	-0.33	0.1089						
11	18	21.33	-3.33	11.0889						
12	20	21.33	-1.33	1.7689						
13	23	21.33	1.67	2.7889						
14										

Step 3: This calculated value is less than table value which is 19.68. Hence we accept null hypothesis.

i.e 0.932663 < 19.68. H0 accepted.

F6		- i >	< 🗸	fx		
	Α	В	С	D	E	F
1	0	E	О-Е	(O-E)^2		
2	29	21.33	7.67	58.8289		
3	24	21.33	2.67	7.1289		
4	22	21.33	0.67	0.4489		
5	19	21.33	-2.33	5.4289		0.932663
6	21	21.33	-0.33	0.1089		
7	18	21.33	-3.33	11.0889		
8	19	21.33	-2.33	5.4289		
9	20	21.33	-1.33	1.7689		
10	21	21.33	-0.33	0.1089		
11	18	21.33	-3.33	11.0889		
12	20	21.33	-1.33	1.7689		
13	23	21.33	1.67	2.7889		
14						

Conclusion: In the above practical, we have successfully performed Testing of hypothesis using Chi squared goodness of fit test using Excel. The calculated value of Chi-Square goodness of fit test is compared with the table value. If the calculated value of Chi-Square goodness of fit test is greater than the table value, we will reject the null hypothesis and conclude that there is a significant difference between the observed and the expected frequency.

B.Perform testing of hypothesis using chi-squared test of independence.

Step 1: Load the data

Step 2: Calculate the value of (O-E)^2 /E

SUM		¥	: >	<	~	<i>f</i> x =(B2	-C2)^2/C2
4	Α		В		С	D	Е
1	System	0		E		(O-E)^2 /E	
2	Windows		20		33.33	=(B2-C2)^2	/C2
3	Mac		60		33.33		
4	Linux		20		33.33		
4	LIIIUX		20		00.00		

Step 3: Calculate Chi square at 5% confidence and degree of freedom n-1=2(in our case)

F2		+	:	>	< 4	fx =CHIINV(0	0.05,2)	
4	Α		В		С	D	Е	F
1	System	0			E	(O-E)^2 /E		
2	Windows			20	33.33	5.33120012		5.991465
3	Mac			60	33.33	21.34080108		
4	Linux			20	33.33	5.33120012		
5					Total	32.00320132		

Conclusion: Using a chi square test, you've just determined that there is, in fact, a statistically significant relationship between our two categorical variables, s2q10 and s1truan. In addition, we've run another chi square, determining that there is a statistically significant relationship between s2q10 and s1q62a, a measure of whether or not a respondent's father had obtained a degree. Remember that you are simply able to say now that paternal degree and Year 11 truancy both have relationships with respondent enrolment in full time education after secondary school. We cannot say, for example, that a paternal degree causes enrolment in full time education.

Perform testing of hypothesis using Z-test.

Step 1: Load the data

Н1	H14 • [X 🗸 fx]									
4	Α	В	С	D	Е	F				
1	patient	gender	agegrp	bp_before	bp_after					
2	1	Male	30-45	143	153					
3	2	Male	30-45	163	170					
4	3	Male	30-45	153	168					
5	4	Male	30-45	153	142					
6	5	Male	30-45	146	141					
7	6	Male	30-45	150	147					
8	7	Male	30-45	148	133					
9	8	Male	30-45	153	141					
10	9	Male	30-45	153	131					
11	10	Mala	20 45	100	125					

Step 2: To apply Z test we need a sample size over 30. Here our sample size is 120 data points, so to apply Z-test go to Data -> Data analysis.

Step 3: Select Z-Test: Two Sample for means.

Step 4: Varience can be calculated using VAR.S (range)

Step 5: Set the Variable 1 and 2 range.

Step 6: Output

Conclusion: The pre-requisite for using one-sample Z-test for means is that data must belong to normal distribution and the population standard deviation is known. In case, the population standard deviation is unknown, t-test gets used. The z-test for hypothesis testing will help you make confident decisions about your data.

A.Perform testing of hypothesis using One-way ANOVA.

Step 1: Load the data

Step 2: To Calculate Single factor(one-way) anova we use cells S,T,U .

Data -> Data Analysis.

Step 3: Select Anova: Single Factor

Step 4: Select the cells of S-T-U for input range

Step 5: Output

Conclusion: In the above practical, we have successfully performed One-way ANOVA on 'scores.csv' dataset. Since, in the resulting output the p-value is less than 0.05 so we are rejecting Null Hypothesis and we concludes that there is a significant difference between the SAT scores for each group mean.

B. Perform testing of hypothesis using Two-way ANOVA.

Step 1: Load the data.

Step 2: Data -> Data Analysis

Step 3: Select Anova: Two Factor with Replication

Step 4: Select input and output range

Step 5: Output

	Anova: Two	o-Factor V	ith Replica	ition			
	SUMMARY	len	dose	Total			
	1	icii	dosc	Total			
	Count	30	30	60			
	Sum	508.9	35	543.9			
	Average	16.9633	1.16667	9.065			
	Variance	68.3272	0.4023	97.2233			
	31						
	Count	30	30	60			
	Sum	619.9	35	654.9			
	Average	20.6633	1.16667	10.915			
	Variance	43.6334	0.4023	118.285			
	Total						
	Count	60	60				
	Sum	1128.8	70				
	Average	18.8133	1.16667				
	Variance	58.512	0.39548				
	ANOVA						
Soul	rce of Varia	SS	df	MS	F	P-value	F crit
	Sample	102.675	1	102.675	3.64208	0.05881	3.92288
	Columns	9342.15	1	9342.15	331.384	8.5E-36	3.92288
	Interaction	102.675	1	102.675	3.64208	0.05881	3.92288
	Within	3270.19	116	28.1913			
	Total	12817.7	119				

Conclusion: In the above practical, we have successfully performed Two-way ANOVA. Since, P-value = 0.0588 column in the ANOVA Source of Variation table at the bottom of the output. Because the p-values for both medicine dose and interaction are less than our significance level, these factors are statistically significant. On the other hand, the interaction effect is not significant because its p-value (0.05881) is greater than our

significance level. Because the interaction effect is not significant, we can focus on only the main effects and not consider the interaction effect of the dose.

C.Perform testing of hypothesis using MANOVA.

Step 1: Load the Data.

Step 2: Install Add-in in excel.

Select File -> Help | Options -> Add-Ins and click on the Go button at the bottom of the window.

Step 3: Click on browse and select XrealStats file. Check the following check boxes.

Step 4: Once loaded, CTRL+M to perform MANOVA. Click Multivar -> Manova: two factor -> OK.

Manova: Two Factors Sheet1!\$A\$2:\$D\$27 Input Range OK Analysis type Cancel C Repeated Measures Regular Help Options ▼ Significance Analysis ✓ Sum of Squares and Cross Product Matrices ▼ Covariance Matrices ✓ Outliers **▼** Box's Test Contrast ✓ Group Means Alpha 0.05 Output Range H6

Step 5: Select the data excluding column names. Select a cell for output

Step 6: Output

Two-Way	MANOVA						SSCP Matr	ices
fact A	stat	df1	df2	F	p-value	part eta-sq	Tot	
Pillai Traci	0.214135	2	18	2.452347	0.114323	0.214135	130	64
Wilk's Lan	0.785865	2	18	2.452347	0.114323	0.214135	64	142
Hotelling	0.272483	2	18	2.452347	0.114323	0.214135		
Roy's Lg Re	0.272483						Row (A)	
							27.08333	17.5
fact B	stat	df1	df2	F	p-value	part eta-sq	17.5	11.30769
Pillai Traci	0.339044	4	38	1.939195	0.123777	0.169522		
Wilk's Lan	0.820428	4	36	1.969888	0.120034	0.179572	Column (B)
Hotelling	0.467615	4	34	1.987365	0.118648	0.189501	31.90278	28.18056
Roy's Lg R	0.425176						28.18056	30.36111
fact AB	stat	df1	df2	F	p-value	part eta-sq	Interaction	(AB)
Pillai Traci	0.249126	4	38	1.35172	0.268831	0.124563	5.963889	0.019444
Wilk's Lan	0.871554	4	36	1.326381	0.278864	0.128446	0.019444	21.0312
Hotelling	0.304976	4	34	1.296146	0.291053	0.132312		
Roy's Lg Re	0.260917						Res	
							65.05	18.3
							18.3	79.3

Conclusion: In the above practical, we have successfully performed two-way MANOVA. Since, the p-value of fact A is 0.114323 and fact B is 0.118648 as we can see they are different so we are rejecting null Hypothesis as there is significant difference between mean SAT scores of two groups.

A. Perform the Random sampling for the given data and analyze it.

Step 1: Load the data.

116	•	T	< ~	f_x sfe							
4	Α	В	С	D	E	F	G	Н	1	J	K
1	Sr. No.	Roll No.	Name	Gender	Grade		Sr. No.	Roll No.	Name	Gender	Grade
2	1	1	xyz	Male	0		24	3	add	Female	Α
3	2	2	mno	Male	Α		25	7	sd	Female	Α
4	3	5	pqr	Male	O		26	9	hg	Female	C
5	4	13	abc	Male	В		27	11	dg	Female	D
6	5	16	xyz	Male	O		28	14	pgu	Female	F
7	6	17	mno	Male	O		29	25	yt	Female	O
8	7	34	pqr	Male	D		30	36	f	Female	C
9	8	35	abc	Male	O		31	40	gh	Female	С
10	9	38	xyz	Male	O		32	41	t	Female	В
11	10	42	mno	Male	С		33	46	es	Female	Α
12	11	43	pqr	Male	0		34	47	gg	Female	В
13	12	45	abc	Male	O		35	10	gfh	Female	D
14	13	48	xyz	Male	В		36	20	ghy	Female	C
15	14	49	mno	Male	O		37	21	tgs	Female	В
16	15	50	pqr	Male	D		38	72	sfe	Female	O
17	16	51	abc	Male	O		39	73	sgg	Female	D
18	17	54	xyz	Male	A		40	75	dgt	Female	Α
19	18	55	mno	Male	В		41	77	dgt	Female	В
20	19	56	pqr	Male	D		42	82	jgt	Female	D
21	20	59	abc	Male	O		43	84	ghh	Female	D
22	21	61	xyz	Male	F		44	91	fer	Female	D
23	22	62	mno	Male	A		45	95	gyd	Female	D
24	23	63	pqr	Male	С		46	4	gtt	Female	С

Step 2: Set Cell O1= Male and Cell P2= Female

To generate a random sample for male students from given population go to Cell O1 and type =INDEX(E\$2:E\$62,RANK(B2,B\$2:B\$62))

Step 3: Repeat the step to perform random sampling on Female data.

Step 4: Output

Conclusion: A simple random sample is a subset of a statistical population in which each member of the subset has an equal probability of being chosen. we have successfully performed Random sampling and analyze it.

B.Perform the Stratified sampling for the given data and analyse it

Step 1: Load the data.

Step 2: Assign Random values using RAND() function.

Step 3: Copy the entire column D and paste only values

Step 4: To perform stratified sampling and obtain data where we get 2 new books cost, 2 old books cost, 2 new bags cost, 2 old bags cost. Select the data and click on sort.

Step 5: Sort the data by product, status and random.

Step 6: the output obtained will be as follows.

Conclusion: Conclusion: In stratified sampling, researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment). Once divided, each subgroup is randomly sampled using another probability sampling method. We have successfully performed stratified sampling for the given data and its analysis. We have opened the data in excel and assigned random values using RAND() function followed by data sorting based on the columns and the final output is obtained.

Practical 8 Write a program for computing different correlation

A. Positive Correlation.

```
Code: import matplotlib
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
# 1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
# Positive Correlation with some noise
y = x + np.random.normal(0, 10, 1000)
np.corrcoef(x, y)
matplotlib.style.use('ggplot')
plt.scatter(x, y)
plt.show()
```


Conclusion: A positive correlation is a relationship between two variables that move in tandem—that is, in the same direction. A positive correlation exists when one variable decreases as the other variable decreases, or one variable increases while the other increases. we have successfully computed positive correlation.

B. Negative Correlation.

Code:

```
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
# 1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
# Negative Correlation with some noise
y = 100 - x + np.random.normal(0, 5, 1000)
np.corrcoef(x, y)
plt.scatter(x, y)
plt.show()
```


Conclusion: we have successfully computed negative correlation. A negative correlation is a relationship between two variables such that as the value of one variable increases, the other decreases. Correlation is expressed on a range from +1 to -1, known as the correlation coefficient. Values below zero express negative correlation. A perfect negative correlation has a coefficient of -1, indicating that an increase in one variable reliably predicts a decrease in the other one.

C. No/Weak Correlation.

Code:

```
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)

x = np.random.randint(0, 50, 1000)

y = np.random.randint(0, 50, 1000)

np.corrcoef(x, y)

plt.scatter(x, y)

plt.show()
```


Conclusion: we have successfully computed no/weak correlation. A weak positive correlation indicates that, although both variables tend to go up in response to one another, the relationship is not very strong. A strong negative correlation, on the other hand, indicates a strong connection between the two variables, but that one goes up whenever the other one goes down.

A. Write a program to Perform linear regression for prediction.

Code:

```
> #Perform linear regression
> m < -c(1,2,3,4,5,6)
> t < -c(25, 22, 30, 34, 45, 52)
> #Label the chart
> png(file="Linear Regression")
> plot(t,m,col="red",main="Months and
Temperature", abline(lm(m~t)), cex=1.6, pch=10, xlab="Months", ylab="
Temperature")
> dev.off()
null device
> plot(t,m,col="red",main="Months and
Temperature", abline(lm(m~t)), cex=1.6, pch=10, xlab="Months", ylab="
Temperature")
  .----
 > #Perform linear regression
  > m<-c(1,2,3,4,5,6)
  > t<-c(25,22,30,34,45,52)
  > #Label the chart
  > png(file="Linear Regression")
  > plot(t,m,col="red",main="Months and Temperature",abline(lm(m~t)),cex=1.6,pch=$
  > dev.off()
 null device
 > plot(t,m,col="red",main="Months and Temperature",abline(lm(m~t)),cex=1.6,pch=$
```


Conclusion: we have successfully performed linear regression for predicted. Linear regression analysis is used to predict the value of a variable based on the value of another variable. The variable you want to predict is called the dependent variable. The variable you are using to predict the other variable's value is called the independent variable. We have successfully performed linear regression for prediction in R. We have achieved this by defining dataset values for the variables month "m" and temperature "t". We have also labelled the graph as "Months and Temperature" and a precisely jotted straight line graph is obtained.

B.Polynomial Regression.

Code:

- > #Polynomial Regression
- > set.seed(16)
- > x < -0:50
- $> y<-2.3-15.1*x+1.2*x^2+rnorm(length(x),20,50)$

```
> plot(x,y)
> fit <- lm(y ~ 1 + x + I(x^2))
> points(x, predict(fit), type="l")
> summary(fit)
```

```
Call:
lm(formula = y \sim 1 + x + I(x^2))
Residuals:
           10 Median
                          30
-92.173 -28.968 3.673 24.953 97.269
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.84216 18.36178
                                1.843 0.0715 .
                      1.69836 -9.001 7.07e-12 ***
           -15.28705
                     0.03285 36.569 < 2e-16 ***
I(x^2)
             1.20126
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 45.44 on 48 degrees of freedom
Multiple R-squared: 0.996,
                           Adjusted R-squared: 0.9959
F-statistic: 6034 on 2 and 48 DF, p-value: < 2.2e-16
```


Conclusion:

Polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modelled as an nth degree polynomial in x. We have successfully performed polynomial regression in R. We have achieved this by defining dataset values for the variables "x" and "y". Followed by which we have fit a polynomial regression model to get predicted values and a curved scatterplot graph is obtained.

A. Multiple linear regression.

Code:

```
> #Multiple linear regression
>ip<-mtcars[,c("mpg","disp","hp")]
> print(head(ip))
> m<-lm(mpg~disp+hp,data=ip)
> print(m)
> a<-coef(m)
>Xdisp<-coef(m)[1]
> print(Xdisp)
>Xhp<-coef(m)[2]
> print(Xhp)
```

```
R R Console
Mazda RX4
                  21.0 160 110
Mazda RX4 Wag
                 21.0 160 110
Datsun 710 22.8 108 93
Hornet 4 Drive 21.4 258 110
Hornet Sportabout 18.7 360 175
Valiant
                  18.1 225 105
> m<-lm(mpg~disp+hp,data=ip)
> print(m)
lm(formula = mpg ~ disp + hp, data = ip)
Coefficients:
             disp hp hp -0.03035 -0.02484
(Intercept)
  30.73590
> a<-coef(m)
> Xdisp<-coef(m)[1]
> print (Xdisp)
(Intercept)
   30.7359
> Xhp<-coef(m)[2]
> print (Xhp)
-0.03034628
```

Conclusion: Multiple linear regression is a generalization of simple linear regression, in the sense that this approach makes it possible to relate one variable with several variables through a linear function in its parameters.we have successfully performed multiple linear regression.

B.Logistic Regression.

Code:

```
> #Logistic regression
>ip<-mtcars[,c("am","wt","mpg")]
> print(head(ip))
>am.data<-glm(formula=am~wt+mpg,data=ip,family=binomial)
> summary(am.data)
```

Output:

```
- - X
R R Console
glm(formula = am ~ wt + mpg, family = binomial, data = ip)
Deviance Residuals:
    Min 1Q Median
                               30
                                         Max
-2.50806 -0.45191 -0.04684 0.24664 2.01168
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) 25.8866 12.1935 2.123 0.0338 *
           -6.4162
                     2.5466 -2.519 0.0118 *
          -0.3242
                     0.2395 -1.354 0.1759
mpg
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 43.230 on 31 degrees of freedom
Residual deviance: 17.184 on 29 degrees of freedom
AIC: 23.184
Number of Fisher Scoring iterations: 7
> |
```

Conclusion: Logistic regression in R Programming is a classification algorithm used to find the probability of event success and event failure. Logistic regression is used when the dependent variable is binary (0/1, True/False, Yes/No) in nature. Logit function is used as a link function in a binomial distribution. we have successfully performed logistic regression.