Algoritmos epidémicos (Janeiro 2017)

Eduardo Lopes, 201303452; Ricardo Ferreira, 201303032; Wilson Cândido, 201100675 Sistemas Distribuídos (EEC0049), MIEEC, FEUP

Resumo—No âmbito da unidade curricular Sistemas Distribuídos (SDIS) do Mestrado Integrado em Engenharia Electrotécnica e de Computadores (MIEEC) da Faculdade de Engenharia da Universidade do Porto (FEUP), foi realizado um trabalho laboratorial que consiste no estudo, implementação e análise de um sistema distribuído capaz de disseminar informação de uma forma rápida e eficaz, baseado em protocolos epidémicos. Para a implementação deste sistema, foi então desenvolvido um algoritmo epidémico implementado na linguagem de programação JAVA capaz de criar uma rede distribuída de nós que formam ligações entre si e trocam informação. De seguida, outro programa foi desenvolvido com o objetivo de simular o algoritmo e apresentar estatísticas demonstrativas do seu desempenho em situações distintas: rede com 20, 40 ou 100 nós; informação tem origem em nós no meio ou na extremidade da rede; os nós têm um alcance fixo ou aleatório. Este documento tem como objetivo apresentar a solução desenvolvida pelo grupo e analisar os seus resultados.

Palavras-chave— Sistemas distribuídos, Redes distribuídas, Algoritmos epidémicos, Disseminação de informação, Sistemas de grande escala.

I. DEFINIÇÃO DOPROBLEMA

OS sistemas distribuídos são hoje em dia componentes fundamentais das infraestruturas e serviços de Tecnologias de Informação, como por exemplo a Internet.

Baseando-se na forma como as doenças se espalham pelas pessoas, os investigadores dedicaram-se ao desenvolvimento de técnicas simples que permitissem a disseminação de informação em sistemas distribuídos de grande escala.

Protocolos epidémicos permitem a propagação rápida da informação por entre uma grande quantidade de nós usando apenas informação local. O nó é a origem de toda a informação disseminada no sistema, disseminação que não é coordenada de forma centralizada, mas sim distribuída.

A informação pode também ser transmitida através do processo de Gossip (baseado em rumores), isto é, uma réplica que foi atualizada passa a atualização a algumas outras réplicas.

É possível realizar a troca de informação de diferentes maneiras:

- Push, A envia a B as suas atualizações.
- Pull, A extrai de B as suas atualizações.
- Push-Pull, A e B permutam atualizações, o que faz com que A e B tenham a mesma informação.

Os algoritmos epidémicos têm duas grandes vantagens, a sua escalabilidade e a eficiência na transmissão de atualizações.

Devido ao facto de o número de sincronizações entre processos ser relativamente pequeno quando comparado com outros métodos de propagação, a escalabilidade é uma das principais vantagens.

Os algoritmos epidémicos são extremamente eficientes na disseminação de nova informação. No entanto, este aspeto também tem um lado mau, por exemplo, na eliminação de itens.

Em sistemas distribuídos de grande escala, o objetivo é "infetar" todos os nós com nova informação, o mais rápido possível. Objetivo este, que consiste no problema deste trabalho: implementar um sistema de disseminação eficaz de informação num sistema distribuído.

II. DESCRIÇÃO DA SOLUÇÃO

De forma a resolver o problema descrito anteriormente, o grupo optou por desenvolver um algoritmo epidémico baseado em comunicação *unicast* com *sockets* UDP. Este algoritmo foi implementado na linguagem de programação JA VA, devido às vantagens que esta tem em comparação com outras linguagens de programação.

A. Criação da rede de nós e disseminação da informação

Para começar, foi necessário desenvolver um programa que permitisse a criação de uma rede distribuída de nós, de forma aleatória e automática. A cada nó criado será atribuído:

- Um número que permite identificar o nó ao longo do processo de disseminação de informação.
- Uma posição no referencial cartesiano, isto é, um valor para a coordenada x e outro para a coordenada y.
- Um alcance previamente definido, dentro do qual poderão ligar-se a "vizinhos", ou seja, nós que se encontram dentro do alcance do primeiro nó, com o qual formam uma ligação. Há duas opções na definição do alcance dos nós. Este poderá ser fixo, isto é, cada nó da rede só se poderá ligar a outro se a distância entre a posição de ambos no referencial cartesiano for inferior ou igual ao valor definido para o alcance. Outra opção será definir um alcance aleatório dentro de uma gama específica de valores, isto é, cada nó da rede poderá ter um alcance

diferente, desde que este se encontre dentro dos valores permitidos.

- Um estado que permite saber o papel de cada nó na rede. Este poderá ser *listen*, se o nó recebe uma mensagem e decide o que fazer com ela, ou *speak*, se este tiver a responsabilidade de enviar uma mensagem para outro nó.
- Uma lista com os números identificativos dos nós que conhecem a mensagem passada para o nó em questão. Desta forma, evita-se que este nó transmita a mensagem que recebeu a nós que já a conhecem.
- Uma lista com os números identificativos dos nós criados na rede que ainda não foram notificados pela mensagem a ser disseminada, na perspetiva do nó em questão.

Uma vez criados os nós, cada um pode começar a procurar na sua "vizinhança" (delimitada pelo valor definido para o alcance) por nós com os quais possam comunicar, tal como está representado na figura 1. No final deste processo de procura, cada nó deverá ter noção dos nós que estão à sua volta e recolher os seus números identificativos.

Figura 1: Comunicação entre nós dispostos em linha com alcances diferentes

Para cada nó criado, é fundamental criar um *socket* que permitirá a comunicação ponto-a-ponto entre cada dois nós "vizinhos"

A disseminação epidémica de informação é desencadeada, neste programa, por um nó em qualquer posição na rede, à escolha do utilizador.

Caso um nó receba uma mensagem nova, este terá que guardá-la numa variável do tipo *string*, atualizar o tempo de disseminação da mensagem incrementando em 1 a respetiva variável, guardar na lista de nós que já conhecem a mensagem o número identificativo do nó que enviou a mensagem, de maneira a que a mes ma não seja enviada para o nó que a

disseminou, e remover da lista de nós que ainda não foram notificados o número identificativo desse mes mo nó. Por outro lado, se um nó receber uma mensagem cuja informação já conhece, esta será rejeitada e o nó que a transmitiu será adicionado à lista local de nós que já conhecem a mes ma e removido da lista de nós que ainda não foram notificados.

O processo termina quando já não existirem mais nós que ainda não tenham sido notificados.

B. Cenários de simulação

Após criação da rede, torna-se necessário avaliar o desempenho do algoritmo epidémico desenvolvido em diferentes cenários. O grupo definiu 13 cenários de simulação:

- Simulação 1: rede constituída por 20 nós dispostos em linha, com alcance aleatório, onde a disseminação tem origem na extre midade.
- Simulação 2: rede constituída por 40 nós dispostos em linha, com alcance aleatório, onde a disseminação tem origem na extre midade.
- Simulação 3: rede constituída por 100 nós dispostos em linha, com alcance aleatório, onde a disseminação tem origem na extre midade.
- Simulação 4: rede constituída por 20 nós dispostos em linha, com alcance fixo (no valor da média dos alcances da simulação 1), onde a disseminação tem origem na extremidade.
- Simulação 5: rede constituída por 40 nós dispostos em linha, com alcance fixo (no valor da média dos alcances da simulação 2), onde a disseminação tem origem na extremidade.
- Simulação 6: rede constituída por 100 nós dispostos em linha, com alcance fixo (no valor da média dos alcances da simulação 3), onde a disseminação tem origem na extremidade.
- Simulação 7: rede constituída por 20 nós dispostos em linha, com alcance fixo (no valor do dobro do alcance da simulação 4), onde a disseminação tem origem na extremidade.
- Simulação 8: rede constituída por 40 nós dispostos em linha, com alcance fixo (no valor do dobro do alcance da simulação 5), onde a disseminação tem origem na extremidade.
- Simulação 9: rede constituída por 100 nós dispostos em linha, com alcance fixo (no valor do dobro do alcance da simulação 6), onde a disseminação tem origem na extremidade.
- Simulação 10: rede constituída por 20 nós dispostos em linha, com alcance fixo (igual ao da simulação 4), onde a disseminação temorigem no meio da rede.
- Simulação 11: rede constituída por 40 nós dispostos em linha, com alcance fixo (igual ao da simulação 5), onde a disseminação temorigem no meio da rede.
- Simulação 12: rede constituída por 100 nós dispostos em linha, com alcance fixo (igual ao da simulação 6), onde a disseminação temorigem no meio da rede.

 Simulação 13: rede constituída por 100 nós dispostos em matriz, com alcance fixo (igual 1), onde a disseminação tem origem no canto da matriz.

C. Resultados das simulações

O programa criado pelo grupo tem também a capacidade de apresentar os resultados e estatísticas de cada simulação, com o objetivo de permitir ao utilizador uma rápida análise do desempenho do algoritmo epidémico. Para tal, para cada cenário, o programa realiza (100 simulações de forma a obtervalores o mais precisos possível) e gera data sets com os seguintes dados:

- Unidades de tempo médio de passagem da mensagem por cada nó da rede.
- Número de falhas.
- Percentagem de falhas.
- Alcance médio dos nós.

No anexo 7, encontra-se um exemplo do *output* deste programa para a simulação 1.

Os *data sets* gerados por este programa para todas as simulações podem ser consultados no anexo 8.

III. RESULTADOS

Após realizar todas as simulações anteriormente descritas, e com o recurso a uma folha de Excel, foi possível obter gráficos que nos permitem discutir os resultados do algoritmo implementado.

Gráfico 1: simulação 1 (a azul) e 4 (a laranja)

No gráfico 1, podemos verificar que não existem grandes diferenças entre as simulações efetuadas. De facto, os valores obtidos em ambas as simulações são bastante próximos, o que permite concluir que uma rede constituída por nós com alcances fixos e outra rede constituída por nós com alcances variáveis não terão diferenças significativas, ou seja, diferenças nos alcances dos nós não têm influência significativa nos tempos máximo e médio de propagação.

Nos anexos 1 e 2, podem ainda ser consultados 2 gráficos para comparação das simulações 2 com 5 (rede com 40 nós), e 3 com 6 (rede com 100 nós) respetivamente, sendo que as conclusões tiradas com o gráfico 1 também se aplicam nesses casos.

Gráfico 2: simulação 4 (a laranja) e 7 (a azul)

Ao contrário do gráfico 1, no gráfico 2 há diferenças significativas nos valores obtidos pelas simulações corridas.

Podemos concluir que, com um alcance fixo mas de dimensões superiores, a informação propaga-se mais rapidamente, o que já era de esperar.

A velocidade de propagação na simulação 7 é quase duas vezes maior que na simulação 4, visto que o alcance na simulação 7 também é o dobro daquele da simulação 4. Além disso, verifica-se que o tempo médio de propagação da simulação 4 (4,14) é aproximadamente metade do tempo médio da simulação 7 (2,45).

Nos anexos 3 e 4, encontram-se mais 2 gráficos para comparação das simulações 5 com 8 (rede com 40 nós), e 6 com 9 (rede com 100 nós) respetivamente, sendo que as conclusões tiradas com o gráfico 2 também se aplicam nesses casos.

Gráfico 3: simulação 4 (a laranja) e 10 (a azul)

Como era de esperar no gráfico 3, o tempo máximo de propagação (tempo do último nó a receber a informação) na simulação 10 é inferior, quase metade, do tempo máximo obtido na simulação 4.

Isto acontece porque o nó que inicia a disseminação da informação na simulação 10 encontra-se no meio da rede e não na extremidade.

Nos anexos 5 e 6, podem ainda ser consultados 2 gráficos para comparação das simulações 5 com 11 (rede com 40 nós), e 6 com 12 (rede com 100 nós) respetivamente, sendo que as conclusões tiradas com o gráfico 3 também se aplicam nesses casos.

No gráfico 4, estão representadas as simulações 4, 5 e 6, nas quais as condições são as mesmas, isto é, alcance e nó de

a ser o número de nós da rede. Verifica-se que o tempo máximo de propagação da mensagem é diferente e proporcional ao número de nós da rede. Além disso, os tempos médios de propagação da simulação 4 (4,14), simulação 5 (7,99) e simulação 6 (19,365) também variam proporcionalmente com o número de nós de cada simulação.

início da disseminação iguais em todas, com a única diferença

Quanto maior o número de nós, maior é o tempo do último nó a receber a mensagem, o que também é possível comprovar com a análise do gráfico 5, que compara simulações onde a disseminação da informação tem origem a meio da rede.

Gráfico 5: simulação 10 (a verde), 11 (a azul), e 12 (a laranja)

Gráfico 6: simulação 13

No gráfico 6, está representada a simulação 13, na qual os nós se encontram dispostos em matriz e a disseminação de informação tem início no canto da mes ma.

Pode-se, então, verificar que o tempo de disseminação da mensagem varia de forma completamente diferente em comparação com as simulações com nós dispostos em linha. Comparando ainda o tempo máximo de propagação de ambos os casos, conclui-se que esta rede com disposição de nós em matriz é bastante mais rápida (18,163265) do que a rede com disposição de nós em linha equivalente (37,87342).

IV. ANÁLISE CRÍTICA E CONCLUSÕES

Uma vez concluído o trabalho, pode-se verificar que este foi bem-sucedido. De facto, o grupo desenvolveu um programa funcional que implementa com sucesso um algoritmo epidémico e o executa em diferentes cenários de simulação, recolhendo dados que permitem fazer uma avaliação do desempenho do mes mo.

Com este trabalho, foi possível aos elementos do grupo o estudo da disseminação epidémica de informação e a implementação e treino do uso de *sockets*, que revelam ser uma ferramenta e conceito nucleares em sistemas distribuídos.

Pode-se ainda acrescentar a distribuição de tarefas pelos elementos do grupo:

- Eduardo: desenvolvimento da secção "Descrição da solução" e "Resultados" e "Análise crítica e conclusões" do relatório; desenvolvimento do PowerPoint da apresentação. (30%).
- Ricardo: desenvolvimento da secção "Definição do problema" e "Resultados" do relatório; desenvolvimento do PowerPoint da apresentação. (30%).
- Wilson: implementação do algoritmo em JAVA e desenvolvimento das simulações. (40%).

V. REFERÊNCIAS

[1] Andrew S. Tanenbaum, Maarten van Steen; "Distributed systems"

ANEXOS

Anexo 1: simulações 2 (a azul) e 5 (a laranja)

Anexo 2: simulações 3 (a azul) e 6 (a laranja)

Anexo 3: simulações 5 (a laranja) e 8 (a azul)

Anexo 4: simulações 6 (a laranja) e 9 (a azul)

Anexo 5: simulações 5 (a laranja) e 11 (a azul)

Anexo 6: simulações 6 (a laranja) e 12 (a azul)

Anexo 7: exemplo de resultados das simulações (data sets) gerado pelo programa

```
SIMULAÇÃO 1: 20 nós, range random, em linha, começa na extremidade
#
Simulation 100 is done.
Done. 100 simulations were done. See stats below
Node | AVG Time | Fails | % Fails
      0.0 0.0
   0.0
   1.0
1
2
   1.1935484 7.0
             7.0
   1.8817204
          7.0
              7.0
         5.0 5.0
   1.9578947
   2.4421053 5.0 5.0
   2.451613
          7.0
6
         9.0
   3.1098902
             9.0
             12.0
   3.5227273 12.0
   3.7555556
          10.0
         11.0
   4.1910114
              11.0
10
   4.7419353 7.0 7.0
   4.968421 5.0 5.0
5.311828 7.0 7.0
12
   5.311828
13
   5.898876 11.0 11.0
14
   6.1847825
6.6222224
          8.0
              8.0
15
              10.0
16
   6.9010987 9.0 9.0
17
   7.1666665 10.0 10.0
18
19
    7.6391754
           3.0
              3.0
13149.0 / (100 * 20)
The avgRange was: 6.5745
```

Anexo 8: data sets das simulações

SIMULAÇÃO 1: 20 nós, range random, em linha, começa na extremidade				
Id	AvgTime	Fails	% Fails	
0	0,00	0	0	
1	1,00	0	0	
2	1,19	7	7	
3	1,88	7	7	
4	1,96	5	5	
5	2,44	5	5	
6	2,45	7	7	
7	3,11	9	9	
8	3,52	12	12	
9	3,76	10	10	
10	4,19	11	11	
11	4,74	7	7	
12	4,97	5	5	
13	5,31	7	7	
14	5,90	11	11	
15	6,18	8	8	
16	6,62	10	10	
17	6,90	9	9	
18	7,17	10	10	
19	7,64	3	3	
AvgRange	6,5745			

SIMULAÇÃO 2: 40 nós, range random, em linha, começa na extremidade

extermidade					
Id	AvgTime	Fails	% Fails		
0	0,00	0	0		
1	1,00	0	0		
2	1,15	9	9		
3	1,91	5	5		
4	2,02	6	6		
5	2,50	6	6		
6	2,68	10	10		
7	3,15	11	11		
8	3,43	8	8		
9	3,77	3	3		
10	4,15	8	8		
11	4,53	5	5		
12	5,08	9	9		
13	5,36	6	6		
14	5,92	13	13		
15	6,08	10	10		
16	6,56	14	14		
17	6,79	5	5		
18	7,22	7	7		
19	7,70	7	7		
20	7,97	7	7		
21	8,33	8	8		
22	8,89	8	8		
23	9,12	9	9		
24	9,57	7	7		
25	10,02	11	11		
26	10,48	9	9		
27	10,78	5	5		
28	11,23	12	12		
29	11,61	6	6		
30	12,04	10	10		
31	12,50	6	6		
32	12,88	5	5		
33	13,25	9	9		
34	13,86	10	10		
35	14,05	8	8		
36	14,49	6	6		
37	14,79	9	9		
38	15,28	11	11		
39	15,76	9	9		
AvgRange	6,47675				

SIMULAÇÃO 3: 100 nós, range random, em linha, começa na extremidade % Fails Id AvgTime Fails 1,2134831 1,8426967 1,9325843 2,4069767 2,7340426 3,0795455 3,402174 3,8297873 4,224719 4,5268817 4,875 5,445652 5,8586955 6,2272725 6,574468 6,806818 7,129032 7,715909 7,911111 8,574468 8,968421 9,075269 9,75532 9,978948 10,380435 10,711111 11,211111 11,52809 11,898876 12,340659 12,684783 12,956044 13,5348835 13,674157 14,186047 14,604651

39	15,420455	12	12
40	15,853659	18	18
41	16,068966	13	13
42	16,433332	10	10
43	16,885057	13	13
44	17,348314	11	11
45	17,622223	10	10
46	18,15909	12	12
47	18,60241	17	17
48	18,954546	12	12
49	19,321428	16	16
50	19,927711	17	17
51	20,246914	19	19
52	20,59036	17	17
53	21,144579	17	17
54	21,475609	18	18
55	21, 17 30 05	20	20
56	22,475	20	20
57	22,903614	17	17
58	23,207317	18	18
59	23,617285	19	19
60	23,911392	21	21
61	24,289156	17	17
62	24,835295	15	15
63	25,467533	23	23
64	25,61039	23	23
65	25,916666	25 16	25 16
66			16
67	26,261906 26,710844	16 17	16 17
68			
	27,096386 27,609756	17 19	17 10
69 70		18 17	18
70 71	27,975904 28,390244	17	17 19
71 72	28,590244	18 18	18 18
72	29,108435		16 17
75 74	•	17 19	
	29,304878	18	18
75 76	29,736841	24	24
76	30,1	20	20
77	30,3375	20	20
78 70	30,928572	16 20	16
79	31,2125	20	20
80	31,753246	23	23
81	32,240963	17	17
82	32,475	20	20
83	32,907894	24	24
84	33,08642	19	19

	85	33,77778	28	28
	86	33,92405	21	21
	87	34,576923	22	22
	88	34,855263	24	24
	89	35,41892	26	26
	90	35,773335	25	25
	91	36,02778	28	28
	92	36,394737	24	24
	93	37,133335	25	25
	94	37,51351	26	26
	95	37,72973	26	26
	96	38,36986	27	27
	97	38,546665	25	25
	98	39,06579	24	24
	99	39,356163	27	27
AvgRange		6,4925		

SIMULAÇÃO 4: 20 nós, range fixo, no valor da média dos ranges da simulação 1, em linha, começa na extremidade

Id	AvgTime	Fails	% Fails	
0	0,00	0	0	
1	1,00	2	2	
2	1,15	6	6	
3	1,84	1	1	
4	1,96	3	3	
5	2,67	8	8	
6	2,59	8	8	
7	3,31	9	9	
8	3,52	6	6	
9	4,03	4	4	
10	4,37	6	6	
11	4,76	5	5	
12	5,11	6	6	
13	5,54	5	5	
14	5,84	6	6	
15	6,31	5	5	
16	6,66	9	9	
17	7,05	6	6	
18	7,32	6	6	
19	7,78	6	6	
AvgRange	6,5745			

SIMULAÇÃO 5: 40 nós, range fixo, no valor da média dos ranges da simulação 2, em linha, começa na extremidade

Id	AvgTime	Fails	% Fails	
0	0,00	0	0	
1	1,00	0	0	
2	1,13	12	12	
3	1,89	3	3	
4	1,87	8	8	
5	2,48	6	6	
6	2,80	9	9	
7	3,15	5	5	
8	3,66	3	3	
9	4,04	7	7	
10	4,46	5	5	
11	4,76	9	9	
12	5,08	4	4	
13	5,45	7	7	
14	5,84	4	4	
15	6,25	4	4	
16	6,56	10	10	
17	7,01	10	10	
18	7,40	11	11	
19	7,56	9	9	
20	8,12	8	8	
21	8,40	8	8	
22	9,08	10	10	
23	9,29	4	4	
24	9,78	7	7	
25	10,02	12	12	
26	10,61	12	12	
27	10,90	6	6	
28	11,32	7	7	
29	11,77	7	7	
30	12,13	11	11	
31	12,46	10	10	
32	12,76	6	6	
33	13,33	9	9	
34	13,58	8	8	
35	13,98	15	15	
36	14,26	5	5	
37	14,82	13	13	
38	15,13	8	8	
39	15,60	7	7	
AvgRange	6,47675			

SIMULAÇÃO 6: 100 nós, range fixo, no valor da média dos ranges da simulação 3, em linha, começa na extremidade

da simulação	o 3, em linha, começa r	na extrem	nidade
Id	AvgTime	Fails	% Fails
0	0	0	0
1	1	1	1
2	1,1395348	14	14
3	1,8390805	13	13
4	1,8295455	12	12
5	2,3695652	8	8
6	2,6333334	10	10
7	3,186813	9	9
8	3,5217392	8	8
9	3,840909	12	12
10	4,2234044	6	6
11	4,577778	10	10
12	5,0319147	6	6
13	5,3956046	9	9
14	5,7912087	9	9
15	6,2150536	7	7
16	6,489362	6	6
17	6,9892473	7	7
18	7,3956046	9	9
19	7,741573	11	11
20	7,968421	5	5
21	8,615385	9	9
22	8,83871	7	7
23	9,397849	7	7
24	9,8	5	5
25	10,011495	13	13
26	10,483146	11	11
27	10,8	15	15
28	11,355556	10	10
29	11,608696	8	8
30	11,989011	9	9
31	12,4175825	9	9
32	12,977012	13	13
33	13,188889	10	10
34	13,5	10	10
35	13,934066	9	9
36	14,296703	9	9
37	14,704545	12	12
38	15,078651	11	11
39	15,351064	6	6

40	15,711111	10	10
41	16,123596	11	11
42	16,543478	8	8
43	17	12	12
44	17,321838	13	13
45	17,682352	15	15
46	18,101124	11	11
47	18,472527	9	9
48	18,811111	10	10
49	19,266666	10	10
50	19,574713	13	13
51	20,123596	11	11
52	20,48889	10	10
53	20,806818	12	12
54	21,068966	13	13
55	21,55294	15	15
56	22,011627	14	14
57	22,551723	13	13
58	22,585365	18	18
59	23,077778	10	10
60	23,470589	15	15
61	23,77647	15	15
62	24,267443	14	14
63	24,56322	13	13
64	24,952942	15	15
65	25,297619	16	16
66	25,833334	16	16
67	26,022472	11	11
68	26,357143	16	16
69	26,724138	13	13
70	27,164705	15	15
71	27,66279	14	14
72	28,02299	13	13
73	28,294117	15	15
74	28,647728	12	12
75	29,05814	14	14
76	29,482353	15	15
77	29,755814	14	14
78	30,170454	12	12
79	30,576471	15	15
80	31,068182	12	12
81	31,232557	14	14
82	31,97531	19	19
83	31,950617	19	19
84	32,468353	21	21
85	32,802467	19	19
-	- ,	-	

1				
	86	33,096386	17	17
	87	33,542168	17	17
	88	33,988235	15	15
	89	34,243904	18	18
	90	34,67073	18	18
	91	35,17073	18	18
	92	35,5625	20	20
	93	35,792683	18	18
	94	36,09756	18	18
	95	36,481014	21	21
	96	36,890244	18	18
	97	37,357143	16	16
	98	37,73077	22	22
	99	37,873417	21	21
AvgRange		6,4925		

SIMULAÇÃO 7: 20 nós, range fixo, no valor do dobro da simualção 4, em linha, começa na extremidade

Id	AvgTime	Fails	% Fails	
0	0	0	0	
1	1	0	0	
2	1,122222	10	10	
3	1,907217	3	3	
4	1,769231	9	9	
5	1,837209	14	14	
6	1,784946	7	7	
7	2,280899	11	11	
8	2,134831	11	11	
9	2,077778	10	10	
10	2,526882	7	7	
11	2,821053	5	5	
12	3	9	9	
13	3,094737	5	5	
14	3,163044	8	8	
15	3,375	4	4	
16	3,56044	9	9	
17	3,6	10	10	
18	3,84375	4	4	
19	4,010638	6	6	
AvgRange	13,149			

SIMULAÇÃO 8: 40 nós, range fixo, no valor do dobro da simualção 5, em linha, começa na extremidade

	, , , , , , , , , , , , , , , , , , ,	-, -			
I	d	AvgTime	Fails	% Fails	
	0	0	0	0	
	1	1	3	3	
	2	1,135417	4	4	
	3	1,819149	6	6	
	4	1,923913	8	8	
	5	1,776596	6	6	
	6	1,946237	7	7	
	7	2,258065	7	7	
	8	2,134021	3	3	
	9	2,25	12	12	
	10	2,608696	8	8	
	11	2,670103	3	3	
	12	2,852632	5	5	
	13	3,188889	10	10	
	14	3,089888	11	11	
	15	3,397727	12	12	
	16	3,505263	5	5	
	17	3,546392	3	3	
	18	3,733333	10	10	
	19	3,966667	10	10	
	20	4,076923	9	9	
	21	4,311828	7	7	
	22	4,473118	7	7	
	23	4,586207	13	13	
	24	4,764045	11	11	
	25	4,925532	6	6	
	26	5,123596	11	11	
	27	5,252747	9	9	
	28	5,304348	8	8	
	29	5,576087	8	8	
	30	5,725275	9	9	
	31	5,868687	1	1	
	32	5,935484	7	7	
	33	6,179775	11	11	
	34	6,333334	10	10	
	35	6,494382	11	11	
	36	6,788889	10	10	
	37	6,87234	6	6	
	38	7,043479	8	8	
	39	7,294737	5	5	
	AvgRange	12,9535			

SIMULAÇÃO 9: 100 nós, range fixo, no valor do dobro da simualção 6, em linha, começa na extremidade

simualção 6, em linha, começa na extremidade					
Id		AvgTime	Fails	% Fails	
	0	0	0	0	
	1	1	2	2	
	2	1,191489	6	6	
	3	1,791667	4	4	
	4	1,956989	7	7	
	5	2,034884	14	14	
	6	1,882979	6	6	
	7	2,11236	11	11	
	8	2,226804	3	3	
	9	2,336957	8	8	
	10	2,5	8	8	
	11	2,771739	8	8	
	12	3,033708	11	11	
	13	3,119565	8	8	
	14	3,163044	8	8	
	15	3,282609	8	8	
	16	3,510638	6	6	
	17	3,658824	15	15	
	18	3,912088	9	9	
	19	4,043956	9	9	
	20	4,274725	9	9	
	21	4,428571	9	9	
	22	4,476191	16	16	
	23	4,619565	8	8	
	24	4,908046	13	13	
	25	5,05618	11	11	
	26	5,333334	13	13	
	27	5,444445	10	10	
	28	5,569768	14	14	
	29	5,739131	8	8	
	30	5,857143	9	9	
	31	6,078652	11	11	
	32	6,1	10	10	
	33	6,373626	9	9	
	34	6,534091	12	12	
	35	6,802198	9	9	
	36	6,824176	9	9	
	37	7,066667	10	10	
	38	7,144445	10	10	
	39	7,419355	7	7	
	40	7,655556	10	10	

5 12 7 12 9 8 11 13 14 9 11 10 16 8 5 7 9 8
7 12 9 8 11 13 14 9 11 10 16 8 5 7 9 8
12 9 8 11 13 14 9 11 10 16 8 5 7 9 8 11
9 8 11 13 14 9 11 10 16 8 5 7 9 8 11
8 11 13 14 9 11 10 16 8 5 7 9 8 11
11 13 14 9 11 10 16 8 5 7 9 8 11
13 14 9 11 10 16 8 5 7 9 8
14 9 11 10 16 8 5 7 9 8 11
9 11 10 16 8 5 7 9 8
11 10 16 8 5 7 9 8 11
10 16 8 5 7 9 8 11
16 8 5 7 9 8 11
8 5 7 9 8 11
5 7 9 8 11
7 9 8 11
9 8 11
8 11
11
_
8
7
3
6
9
10
11
14
8
3
11
15
11
10
11
8
13
11
11
6
5
9
10
8
10
17

_				_
	87	16,01124	11	11
	88	16,22892	17	17
	89	16,31461	11	11
	90	16,49412	15	15
	91	16,64706	15	15
	92	16,82558	14	14
	93	16,91765	15	15
	94	17,12222	10	10
	95	17,37234	6	6
	96	17,40206	3	3
	97	17,72043	7	7
	98	17,77778	10	10
	99	17,98925	7	7
AvgRange		12,985		

4	l), nós dispo	ostos em li	nha, come	ça no meio),
	Id	AvgTime	Fails	% Fails	
	1	2,031579	5	5	
	2	2,427083	4	4	
	3	2,25	8	8	
	4	2,590909	12	12	
	5	1	3	3	
	6	1	4	4	
	7	1	5	5	
	8	1,267442	14	14	
	9	0	0	0	
	10	1,202128	6	6	
	11	1,235955	11	11	
	12	1,261364	12	12	
	13	1,606383	6	6	
	14	2,351648	9	9	
	15	2,60215	7	7	
	16	2,943182	12	12	
	17	3,318681	9	9	
	18	3,810526	5	5	
	19	4,087912	9	9	
	20	4,463918	3	3	
	AvgRange	6,5745			

SIMULAÇÃO 11: 40 nós, range fixo (6.47675 = ao da simulação 5), nós dispostos em linha, começa no meio

3), nos dispostos em mila, começa no meio					
	Id	AvgTime	Fails	% Fails	
	0	6,310025	5	5	
	1	6,010638	6	6	
	2	5,336842	5	5	
	3	5,043956	9	9	
	4	5,188889	10	10	
	5	4,153846	9	9	
	6	4,010989	9	9	
	7	4	13	13	
	8	3,065218	8	8	
	9	3,020618	3	3	
	10	3	11	11	
	11	2	6	6	
	12	2	10	10	
	13	2	5	5	
	14	2,066667	10	10	
	15	1	0	0	
	16	1	8	8	
	17	1	3	3	
	18	1,087912	9	9	
	19	0	0	0	
	20	1,097826	8	8	
	21	1,074468	6	6	
	22	1,241758	9	9	
	23	1,416667	4	4	
	24	2,19149	6	6	
	25	2,4	5	5	
	26	-	5	5	
	27		9	9	
	28	3,632184	13	13	
	29	4,042553	6	6	
	30	4,2	10	10	
	31	4,75	4	4	
	32	5,150538	7	7	
	33	5,521739	8	8	
	34	5,824176	9	9	
	35	6,25	4	4	
	36	6,703297	9	9	
	37	6,956522	8	8	
	38	7,494505	9	9	
	39	7,840426	6	6	
	AvgRange	6,47675			

SIMULAÇÃO 12: 100 nós, range fixo (6.4925 = ao da simulação 6), nós dispostos em linha, começa no meio

Id AvgTime Fails % Fails

	6), nós dispostos em linha, começa no meio						
Id		AvgTime	Fails	% Fails			
	0	16,41	12	12			
	1	16,11905	16	16			
	2	15,97531	19	19			
	3	15,31646	21	21			
	4	15,15294	15	15			
	5	14,66667	16	16			
	6	14,26437	13	13			
	7	14,10112	11	11			
	8	13,63636	12	12			
	9	13,21839	13	13			
	10	13,05747	13	13			
	11	12,55814	14	14			
	12	12,2	15	15			
	13	12,06667	10	10			
	14	11,49451	9	9			
	15	11,16854	11	11			
	16	11,04598	13	13			
	17	10,4382	11	11			
	18	10,125	12	12			
	19	10,04444	10	10			
	20	9,355556	10	10			
	21	9,129032	7	7			
	22	9,043478	8	8			
	23	8,288889	10	10			
	24	8,098901	9	9			
	25	8,022727	12	12			
	26	7,258065	7	7			
	27	7,056818	12	12			
	28	7,022728	12	12			
	29	6,228261	8	8			
	30	6,044445	10	10			
	31	6	9	9			
	32	5,191489	6	6			
	33	5,034091	12	12			
	34	5	11	11			
	35	4,139785	7	7			
	36	4,022988	13	13			
	37	4	5	5			
	38	3,086021	7	7			
	39	3,010989	9	9			
	40	3,022222	10	10			

41	2,01087	8	8
42	2	12	12
43	2	10	10
44	2,079546	12	12
45	1	1	1
46	1	15	15
47	1	7	7
48	1,16129	7	7
49	0	0	0
50	1,11236	11	11
51	1,162791	14	14
52	1,136364	12	12
53	1,380435	8	8
54	2,2	5	5
55	2,505376	7	7
56	2,757895	5	5
57	3,26087	8	8
58	3,714286	9	9
59	4,042553	6	6
60	4,282609	8	8
61	4,777778	10	10
62	5,188889	10	10
63	5,714286	9	9
64	5,955056	11	11
65	6,39785	7	7
66	6,804348	8	8
67	7,195402	13	13
68	7,505155	3	3
69	8,011495	13	13
70	8,225806	7	7
71	8,768421	5	5
72	8,989473	5	5
73	9,449438	11	11
74	9,881721	7	7
75	10,2234	6	6
76	10,65909	12	12
77	11,02198	9	9
78	11,40625	4	4
79	11,63333	10	10
80	12,26596	6	6
81	12,70213	6	6
82	13,08247	3	3
83	13,39362	6	6
84	13,8617	6	6
85	14,12766	6	6
86	14,41935	7	7

î.				
	87	14,92391	8	8
	88	15,21739	8	8
	89	15,61957	8	8
	90	15,96703	9	9
	91	16,34831	11	11
	92	16,76596	6	6
	93	17,24138	13	13
	94	17,56522	8	8
	95	17,96552	13	13
	96	18,33333	13	13
	97	18,82955	12	12
	98	19,17978	11	11
	99	19,56522	8	8
AvgRange		6,4925		

SIMULAÇÃO 13: Simulação com 100 nós, em matriz, range fixo =1,						
começa no canto da matriz						
Id	AvgTime		Fails	% Fails		
	0	0	0.0	0.0		
	1	1	0.0	0.0		
	2	2	0.0	0.0		
	3	3	1.0	1.0		
	4	4	3.0	3.0		
	5	5	4.0	4.0		
	6	6	6.0	6.0		
	7	7	7.0	7.0		
	8	8	7.0	7.0		
	9	9	10.0	10.0		
	10	1	1.0	1.0		
	11	2	0.0	0.0		
	12	3	2.0	2.0		
	13	4	2.0	2.0		
	14	5	3.0	3.0		
	15	6	4.0	4.0		
	16	7	2.0	2.0		
	17	8	3.0	3.0		
	18	9	3.0	3.0		
	19	10	4.0	4.0		
	20	2,020202	1.0	1.0		
	21	3	2.0	2.0		
	22	4	0.0	0.0		
	23	5	1.0	1.0		

24	6	0.0	0.0
25	7,020408	2.0	2.0
26	8	0.0	0.0
27	9	0.0	0.0
28	10,530612	2.0	2.0
29	10,550012	3.0	3.0
30	3,0408163	2.0	2.0
31	3,0400103	1.0	1.0
32	5	0.0	0.0
33	6	1.0	1.0
34	7,040404	1.0	1.0
35	8,020202	1.0	1.0
36	9	1.0	1.0
37	10	4.0	4.0
38	11,77551	2.0	2.0
39	11,77331	1.0	1.0
40	4,080808	1.0	1.0
41	5,040816	2.0	2.0
42	6,020202	1.0	1.0
43	7,061225		2.0
43 44	8,06	2.0 0.0	0.0
44 45			
45 46	9,02 10,020409	0.0	0.0 2.0
40 47	•	2.0 1.0	1.0
47 48	11,020202		1.0
46 49	12,808081 13,081633	1.0	
50	•	2.0	2.0
51	5,12 6,06	0.0	0.0
52	•	0.0	0.0 0.0
53	7,08 8,060606		
55 54	9,040404	1.0 1.0	1.0
55	•		1.0 5.0
56	10,021052 11,020202	5.0 1.0	1.0
57	12,020202	1.0	1.0
58	13,767676	1.0	1.0
	14,122449	2.0	2.0
59	•		
60 61	6,125	4.0	4.0
61 62	7,1836734	2.0	2.0
	8,1237120	3.0	3.0
63 64	9,0816330	2.0	2.0
64 65	10,0612250	2.0	2.0
65 66	11,0408160	2.0	2.0
66 67	12,0412370	3.0	3.0
67 68	13,0606060	1.0	1.0
68 60	14,84	0.0	0.0
69	15,16	0.0	0.0

70		7,265306	2.0	2.0
71		8,208333		4.0
72		9,121212		1.0
73		10,101010		1.0
74		11,040816		2.0
75		12,020409		2.0
76		13,020409		2.0
77		14,020409	2.0	2.0
78		15,969697	1.0	1.0
79		16,141415	1.0	1.0
80		8,326530	2.0	2.0
81		9,224490	2.0	2.0
82		10,2	0.0	0.0
83		11,121212	1.0	1.0
84		12,061225	2.0	2.0
85		13,02	0.0	0.0
86		14,02	0.0	0.0
87		15,040816	2.0	2.0
88		16,877550	2.0	2.0
89		17,16	0.0	0.0
90		9,38	0.0	0.0
91		10,306123	2.0	2.0
92		11,222222	1.0	1.0
93		12,101010	1.0	1.0
94		13,080808	1.0	1.0
95		14,040816	2.0	2.0
96		15,02		0.0
97		16,040817		2.0
98		18,0		0.0
99		18,163265	2.0	2.0
avgRange	1.0			