5 HUNHAM GOVETA 180749 The ASS-1

5) a)
$$min (m^{2}, 10^{12}) = 0(1)$$

for $m > 10^{6}$
 $10^{12} < m^{2}$

we see asymptotically large values

$$min (m^{2}, 10^{12}) = 10^{12}$$

to proose $10^{12} = 0(1)$
 $min (m^{2}, 10^{12}) = 10^{12}$

to proose $10^{12} = 0(1)$
 $min (m^{2}, 10^{12}) = 10^{12}$
 $min (m^{$

: | f(m) # 0 (m²) / (1)

sure, $f(m) \neq const$. n + O(2") log(m!) = O(m log m) $m! = m(m-1) - - \cdot 1$ $m! = m(1-0) m \cdot (1-\frac{1}{m}) m \cdot (1-\frac{2}{m}) \cdot - \cdot m \cdot (1-\frac{m-1}{m})$ $m! = m^m + (1 - h)$ take log both sides

log m! = m logm; + log $\left(\frac{1}{m} - \frac{1}{m}\right)^{-1}$ log m! $\leq m \log m$ i. $\log (m!) = O(m \log m)$

·