

Analog IC Design Intern Application

Lab#1: SPICE

Prepared by: Hisham Elreedy

Reasons For Sending After OverDue and not being accepted:

- 1. I understood the problem Correctly after searching it was easier than I expected
- 2. I would like to know a feedback on my work because I may did something wrong again because I learn by this way if I didn't try I won't learn then I won't be able to join ADT team
- 3. The question in interview was so easy but I didn't answer because I worried you ask a harder question about analog design not control theory, like what I thought about the assignment
- 4. I studied control theory last year and we built analog low freq. filters based on mathematical modeling approaches which we learned while studying control theory course
- 5. I didn't remember all of this as it was long time ago and this year of study we were focusing on electromagnetics theory and microwave-antenna design approaches. But I revised all of them and solved interview problem, where my GP focuses on Control theory approach but not in direct way like using pre-standard libraries in our work for mathematical modeling for Neural Networks like pytorch.

1. <u>Requirement 1:</u> SPICE subcircuit that describes an op-amp with an open-loop gain of 1e4 and a UGF of 10MHz.

1. Circuit Diagram:

2. Equations:

$$F_{Hz} = \frac{1}{2\pi RC}$$

$$\because F_{Hz} = 10MHz$$

$$choose \ R = 4K\Omega$$

$$\therefore C = 3.97pF$$

3. Spice Netlist Code:

*_____

*_____

.subckt nonidealopamp plus minus out

E1 mid gnd plus minus 1e4 * linear-dependent voltage source to model opamp

R1 mid out 4k * R1

C1 out gnd 3.97pf *C1

.ENDS nonidealopamp

^{*}Requirement 1

2. <u>Requirement 2:</u> Use the previous sub circuit to write a netlist of a non-inverting amplifier. The feedback resistance is 9kOhm and the other resistance is 1kOhm. Use a 1V DC input. Use comments generously to describe every line of the netlist. Run transfer function (TF)analysis. Report a snapshot of the SPICE output file. Justify the output.

2.1 Block and Circuit Diagram

2.2 Spice Netlist Code

Xop1 plus minus out nonidealopamp

R2 gnd minus 1k

R1 minus out 9k

Vin plus gnd 1V

.tf V(out) Vin

.probe

2.2. Simulation

--- Transfer Function --
Transfer_function: 9.98602 transfer

vin#Input_impedance: 1e+020 impedance
output_impedance_at_V(out): 3.99441 impedance

2.3. Analysis Equations

$$V^{-} = V_{out} * \frac{R_2}{R_1 + R_2} (from \ circuit) = V_{out} * \beta \ (from \ block \ diagram)$$

$$\beta = \frac{R_2}{R_1 + R_2} = \frac{1}{10} = 0.1$$

$$V^{+} = V_{in} \ (in \ block \ and \ cct \ diagram)$$

$$TF(s) = \frac{V_{out}}{V_{in}}(S) = \frac{\frac{A_o}{1 + sCR}}{1 + \frac{A_o\beta}{1 + sCR}} = \frac{A_o}{1 + sCR + A_o\beta} \cong \frac{1}{\beta} = \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2} = 10$$

The gain become independent of frequency which means GBW is infinite

3. <u>Requirement3</u>: Change the input to be a sine wave with 1V amplitude and 1kHz frequency. Run transient analysis for two complete periods. Use a time step = period/50. Report results (Vsig and Vout vs time). Clearly annotate the peak value of Vsig and Vout in the figure

3.1 Spice Netlist Code:

Xop1 plus minus out nonidealopamp R2 gnd minus 1k R1 minus out 9k Vin plus gnd SIN 0 1V 1k .tran 200us 1ms

3.2 Simulation

3.3 Analysis Equation

$$V_{out} = V_{in} * T.F = 10 * 1V \cong 10V$$

4. <u>Requirement 4:</u> How much is the voltage gain? Compare the voltage gain acquired from hand analysis, TF analysis, and TRAN analysis in a table. Comment.

	Hand Analysis	TF Analysis	TRAN Analysis
Voltage Gain	$ @s = 0(DC) $ $tf = \frac{A_o}{1 + A_o \beta} = \frac{10^4}{1 + 10^4 * \frac{1}{10}} = 9.99 $	9.986	9.97

Comment:

This proves that TF analysis is more accurate than Tran. analysis

5. <u>Requirement 5:</u> Report the waveform of the differential input of the op-amp. Clearly annotate the peak value in the figure. What is the amplitude of this signal? Why (explain with hand-analysis)?

5.1 Simulation

5.2 **Analysis Equation**

$$\begin{aligned} \boldsymbol{V_{out}} &= \boldsymbol{A_v} * (\boldsymbol{V^+} - \boldsymbol{V^-}) = 20kV \\ @\omega \ll \frac{1}{RC}, & \frac{V_{out}}{V_{in}}(j\omega) = \frac{A_o}{1 + j\omega CR} = > LPF \cong A_o \end{aligned}$$

5.3 Spice Netlist Code

Xop2 plus minus out nonidealopamp

Vplus plus gnd SIN 0 1V 1k

Vminus minus gnd SIN 0 -1V 1k

R1 out gnd 1

.tran 200us 1ms

6. <u>Requirement 6:</u> Repeat the previous step but with input frequency equal to the UGF. What is the amplitude of this signal? Why (explain with hand-analysis)?

$$@\omega \gg \frac{1}{RC}$$
, $\frac{V_{out}}{V_{in}}(j\omega) = \frac{A_o}{1 + j\omega CR} = = > integrator(\frac{1}{j\omega}) \cong \frac{A_o}{j\omega CR}$

Input frequency equal to UGF means that roots is at the edge of stability which means at the oscillatory frequency

7. <u>Requirement 7:</u> Run AC analysis to plot the frequency response of the previous non-inverting amplifier (use an AC source). Use parametric sweep for the feedback resistance with two values (9k and 4k). Report the gain in dB vs frequency (log-log scale). Clearly annotate the DC gain, the 3dB high cutoff frequency, and the GBW (UGF) in the figure

1. Simulation

2. Analysis

Rf	Gain(v/v)	Gain in dB
4k	5	13.979
6k	7	16.9
8k	9	19.085
10k	11	20.827

3dB cutoff @ inf. And GBW is infinite because open loop gain is approx. infinite

$$TF(s) = \frac{V_{out}}{V_{in}}(S) = \frac{\frac{A_o}{1 + sCR}}{1 + \frac{A_o\beta}{1 + sCR}} = \frac{A_o}{1 + sCR + A_o\beta} \cong \frac{1}{\beta} = \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2} = 10$$

The gain become independent of frequency which means GBW is infinite

3. Spice Netlist Code

- *.param Rf 9k
- *Xop1 plus minus out nonidealopamp
- *R2 gnd minus 1k
- *R1 minus out 'Rf'
- *Vin plus gnd AC 1
- *.PIOT AC V(out)
- *.AC dec 10 0.001 900MEG
- *.STEP PARAM Rf 4k 10k 2k

8. Requirement 8: If you increase the input amplitude in AC analysis and transient analysis, do you expect to see clipping in the output? Why?

No, because we are using a ideal linear dependent source which means it never saturates that's why we can't see clipping in the output

9. <u>Requirement 9:</u> Compare the DC gain, the 3dB high cutoff frequency, and the GBW (UGF) from hand analysis and AC analysis in a table. Comment.

	Hand Analysis	AC Analysis
DC Gain	80dB	80dB
3dB high cutoff frequency	10MHz	10MHz
GBW(UGF)	10MHz	10MHz

10. Interview Problem: Bode plot of closed loop response and pz map

case of using inverting amplifier

Our Case but with a small finite gain 10:

And ofcourse by this intuition poles of closed on pz map will move till certain limit