

Enable mobile Bitcoin clients

@4 False positive

target False Positive Rate (FPR)

@5 True negative

Simple Payment Verification (SPV)

Bloom filter

Filter transactions not relevant for user

Promise: 33 mio addresses in the Blockchain target FPR: 0.1 %

"User addresses hidden amongst 33 000" false positives

Model and Privacy measure

Stair stepping

Bloom filter designed for

- max number of addresses
- target FPR when max addresses inserted

Rationale: avoid filters with different sizes

Analytical results - Actual FPR vs. Target FPR

Resizing

Once max addresses inserted —> bigger filter

Summary of current SPV design choices

- 1. Stair stepping → actual FPR ≤ target FPR
- 3. Restarting

 different False Positives

• Consequence, New Interpretes unferent raise positives

One Bloom filter

Multiple Bloom filters

Experiment 1 - No resize

R	esu	lts
1 (ILO

Target FPR (%)	P(1) with 2 BF	P(1) with 1 BF
0.05	0.2990	0.2910
0.1	0.1020	0.1070
0.5	0.0078	0.0075

no change of privacy

- Exp. Client Seed Size No resize Same Same Same Resize Same Different Same Different Same Restart Same > 2 filter Different Different Same
- Yield the same positives
- The adversary does not learn a lot

Experiment 2 - Resize

Exp.	Client	Seed	Size
No resize	Same	Same	Same
<u>Resize</u>	Same	Same	Different
Restart	Same	Different	Same
> 2 filter	Same	Different	Different

 Different BF sizes improve the attack

Experiment 3 - restart C

Exp.	Client	Seed	Size
No resize	Same	Same	Same
Resize	Same	Same	Different
<u>Restart</u>	Same	Different	Same
> 2 filter	Same	Different	Different

 Different BF seeds improve the attack

Experiment 4 - More than 2 filter

Exp.	Client	Seed	Size
No resize	Same	Same	Same
Resize	Same	Same	Different
Restart	Same	Different	Same
> 2 filter	Same	Different	Different

Guessing all addresses

Results

Target FPR (%)	P(N) given 3 or more BF
0.05	~1
0.1	~1

3 Bloom filter

All addresses yielded by B₁ are leaked

Observations

1. Need constant FPR

2. Multiple Bloom filter with different parameters

3. SPV clients should keep state (e.g., about seed)

Proposed solution

Information leakage through Bloom Filters in SPV clients

Analytical and Empirical evaluation

1 Bloom filter critical if < 20 Bitcoin addresses

◆ 3+ Bloom filter intersection attack particularly strong

Lightweight countermeasure

- Significantly reduces leakage
- Intersection attack not effective
- Requires few changes

Conclusion

- Bloom filter for privacy is delicate
- Designed carefully we can achieve proper privacy

Thank you!