Presentazione esercitazioni MSSF esame finale per l'A.A. 24/25

Lorenzo Casavecchia, matricola 0350001 lorenzo.casavecchia@students.uniroma2.eu

Ingegneria dell'Automazione

24/07/2025

Indice

1 Assignment 2 - Ricostruzione parametrica nel modello della meccanica respiratoria

Usare l'algoritmo di fminsearch e implementare l'algoritmo di Gauss-Newton per la riscostruzione parametrica nel modello della meccanica respiratoria, considerando il modello con tutte le resistenze e compliances e il modello ridotto, cioè con il numero minimo di parametri che definisca le tif univocamente

Simulazioni sviluppate

Organizzazione dell'esercitazione

- ullet main_analysis.m salva su file output_data.mat e parms.mat P_{ao}, Q, Q_A, V, V_A simulati dal modello Simulink e i valori dei parametri R_*, C_*
- i main files per la ricostruzione sono main_id_<metodo>_<variabile>_<all/red>parms.m con
 - <metodo> l'algoritmo d'ottimizzazione usato

fminsearch vs Gauss-Newton

- lacktriangle <variabile> la variabile $x\in\{Q,Q_A\}$ con relativa stima \hat{x} nella funzione obiettivo $E=rac{1}{2}(\hat{x}-x)^2$
- ► <all/red> il tipo di modello su cui effettuare il fit tutti i parametri R_*, C_* vs l'insieme minimo che univocamente identifica la tf $\frac{x}{Pap}$

Nota sulla cartella di lavoro

Nota

I file main_id_<metodo>_<variabile>_<all/red>parms.m condividono, per stessi
<variabile> e <all/red>

• il file per la funzione obiettivo

obj_fun_<variabile>_<all/red>parms.m

• il file per la parametrizzazione e simulazione della corrente stima della tf predicted_model_<variabile>_<all/red>parms.m

Quindi le uniche differenze tra i main files sono l'algoritmo d'ottimizzazione usato e la stampa a schermo dei parametri ottimizzati di fatto i file sono in origine un copia-e-incolla dello stesso file, con diverso corpo per l'algoritmo d'ottimizzazione e label per la stampa

Descrizione degli algoritmi: fminsearch

Dalla documentazione di fminsearch

fminsearch (...) is a direct search method that does not use numerical or analytic gradients (...).

The algorithm is not guaranteed to converge to a local minimum.

L'algoritmo modifica la stima corrente \hat{x} di x creando un simplesso (i.e. un poliedro in \mathbb{R}^n) centrato in \hat{x} ed effettuando diverse operazioni geometriche Gli aspetti chiave dell'algoritmo sono

- ullet ottimizzatore locale, con ogni passo che riduce il valore del costo E
- ullet garanzia di convergenza dimostrata a basse dimensioni $n \leq 2$
- ullet indipendente da gradienti del costo E
- non è vincolato $x \in \mathbb{R}^n$ senza restrizioni di norma o di appartenenza $x \in D$, al contrario e.g. di algoritmi genetici o proiettivi

Descrizione degli algoritmi: Gauss-Newton

• Data la funzione obiettivo f(x) con $x \in \mathbb{R}^n$ si considera l'espansione di Taylor del secondo ordine trocando i termini $o(\|h^2\|)$

$$f(x+h) = f(x) + \frac{\partial f}{\partial x}(x)h + \frac{1}{2}h^{\top}\frac{\partial^2 f}{\partial x^2}h$$

- si sceglie h per ottimizzare f(x+h)
- la condizione di stazionarietà impone

$$\frac{\partial f(x+h)}{\partial h}(h) = \frac{\partial f}{\partial x}(x) + \frac{\partial^2 f}{\partial x^2}(x)h = 0$$

• che è possibile scegliendo

$$h = -\left[\frac{\partial^2 f}{\partial x^2}(x)\right]^{-1} (x) \left[\frac{\partial f}{\partial x}\right]^{\top} (x)$$

Convergenza di Gauss-Newton

Teorema 14 (Convergenza metodo di Newton)

Sia $\{x_k\}$ la successione generata dal metodo di Newton. Se esiste $x^* \in \mathbb{R}^n$ tale che $\nabla^f(x^*) = 0$ e $\nabla^2 f(x^*)$ è non singolare, allora esiste un intorno $\mathcal{B}(x^*;\rho)$ di x^* tale che, se $x_0 \in \mathcal{B}(x^*;\rho)$, allora $\{x_k\}$ converge a x^* con rapidità superlineare, cioè

$$\lim_{k\to\infty}\frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|}=0.$$

Inoltre, se $\nabla^2 f$ è Lipschitz continua, la rapidità di convergenza è quadratica, cioè esiste una costante C>0 tale che

$$||x_{k+1}-x^*|| \leq C||x_k-x^*||^2 \quad \forall k \geq 0.$$

Figure 1: Convergenza di Gauss-Newton (da Metodi di Ottimizzazione per Big Data)

Nota

La non singolarità di $\nabla^2 E(R_*,C_*)$ non è garantita in un intorno dei parametri veri R_*,C_* perchè questi non identificano univocamente il comportamento di alcuna tf tra Q,V,Q_A,V_A

Ricostruzione parametrica del modello della meccanica respiratoria Altre proprietà di Gauss-Newton

Complessivamente Gauss-Newton

• è un algoritmo di ricerca di punti stazionari

$$abla f(x)
ightarrow 0$$
 ma $abla^2 f(x)
ightharpoonup k^2 > 0 \implies x^*$ potrebbe essere un massimo locale

- dipende dal gradiente e dall'Hessiano della funzione obiettivo o una loro stima (vedi Gauss-Southwell, Gauss-Seidel, metodi a blocchi, etc)
- non è vincolato

Note preliminari alle simulazioni con fminsearch

Nota

- Per le identificazioni su parametri completi sono presenti i grafici della ricostruzione di Q e Q_A , a prescindere se l'identificazione fosse basata su Q o Q_A avendo i parametri completi possiamo costruire e simulare sia Q che Q_A , mentre con i soli parametri ridotti e.g. della tf di Q non possiamo costruire e simulare anche la tf di Q_A a meno di inversioni (non necessariamente univoche)
- La sensibilità dei parametri varia da param. a param. e da modello a modello è naturale che alcuni parametri variino di meno o si allontanino dal valore reale; e.g. in queste simulazioni le compliances migliorano e le resistenze peggiorano
- ullet i parametri iniziali $heta_{
 m init}$ sono scelti con un rumore additivo dell'80% di quelli veri

$$heta_{\mathsf{init}} = \left(1 + rac{8}{10} \left(\mathtt{rand(size}(heta_{\mathsf{predict}})) - rac{1}{2}
ight)
ight)$$
 .* $heta_{\mathsf{predict}}$

main_id_fminsearch_Q_allparms

		su Q tutti		. ###		
Repor	t sul fitt	ing dei par	ametri			
Param	etri					
	veri	iniziali	stimati	errori	relativi	
Rc	11	7.314	9.991	0.3351	0.09169	
Rp	2.5	3.359	3.729	0.3435	0.4917	
Cs	0.005	0.006103	0.005065	0.2206	0.01306	
CL	0.2	0.1979	0.2082	0.01057	0.04119	
Cw	0.2	0.1897	0.1837	0.05131	0.08153	
No. iterazioni						
	100					
Valor	e funzione	obbiettivo				

2.47769e-06

main_id_fminsearch_Q_redparms

##	### fminsearch su Q parametri ridotti ###							
Re	Report sul fitting dei parametri							
Pa	Parametri							
	veri	iniziali	stimati	errori	relativi			
a2	0.0025	0.001564	0.001777	0.3745	0.289			
a1	1.55	1.273	1.93	0.1785	0.2449			
a0	10	6.369	0.1418	0.3631	0.9858			
b1	-0.5	-0.3389	-0.3583	0.3223	0.2835			
No	No. iterazioni							
	87							
Va	lore funzione	obbiettivo						
	43.78							

$$\frac{Q}{P_{ao}} = \left(a_0 + \frac{b_1}{s}\right) \frac{s}{a_2 s^2 + a_1 s + a_0}$$

main_id_fminsearch_QA_allparms

### fminsearch su OA tutti i parametri ###							
Report sul fitting dei parametri							
Parametri							
	veri	iniziali	stimati	errori	relativi		
Rc	11	10.74	12.39	0.02326	0.1265		
Rp	2.5	1.961	1.215	0.2156	0.5141		
Cs	0.005	0.006377	0.004058	0.2754	0.1883		
CL	0.2	0.1512	0.1878	0.2442	0.06083		
Cw	0.2	0.1561	0.1964	0.2193	0.01797		
No. iterazioni							
	100						
Valore funzione obbiettivo							
2 99964- 06							

main_id_fminsearch_QA_redparms

fminsearch su OA parametri ridotti ### Report sul fitting dei parametri Parametri veri iniziali stimati errori relativi 0.7869 0.1375 0.1316 0.02931 0.04257 14.05 11.87 14.13 0.1549 0.005851 10.07 10.34 0.006807 0.03401 No. iterazioni 100 Valore funzione obbiettivo 2.2517e-06

Note preliminari alle simulazioni con Gauss-Newton

Nota

- Un grafico aggiuntivo con l'evoluzione nel tempo dei parametri è stato inserito
- L'identificazione basata su Q non è stata svolta
 avendo uno zero in più, Q tende a presentare problemi in più nel definire un insieme di parametri minimi che derivano dal scegliere quale
 termine nel numeratore o del denominatore debba essere preso = 1 (lo stesso problema è presente anche su id_fminsearch e non avevo
 intenzione di riaffrontario)

main_id_gaussnewt_QA_allparms

GN su OA tutti i parametri ### Report sul fitting dei parametri

Param	letri				
	veri	iniziali	stimati	errori	relativ
Rc	11	8.102	12.76	0.2634	0.1601
Rp	2.5	1.955	1.037	0.2179	0.5852
Cs	0.005	0.004743	0.002526	0.05144	0.4948
CL	0.2	0.1698	0.1492	0.1511	0.2539
Cw	0.2	0.2677	0.274	0.3387	0.3699
No. i	terazioni				
	101				

Valore funzione obbiettivo

2.28587e-06

main_id_gausnewt_QA_redparms

GN su OA tutti i parametri ### Report sul fitting dei parametri Danametri

	veri	iniziali	stimati	errori	relativ
a2	0.1375	0.1298	0.029	0.05583	0.789
a1	14.05	10.51	14.13	0.2521	0.00584
a0	10	13.24	10.34	0.3239	0.0339
No.	iterazioni				
	101				

Valore funzione obbiettivo

2.2518e-06

Problema delle ricostruzioni

Problema

Nonostante i parametri stimati fittino meglio Q,Q_A rispetto a quelli iniziali, anche nei modelli a parametri ridotti i parametri non convergono a quelli reali potrebbe essere una coincidenza, ma resta molto suspichoso

Ponendo $\theta_{\mathsf{init}} = \theta_{\mathsf{true}}$ ci aspettiamo che i parametri non cambino

perchè E=0 è il valore al minimo globale di E

Non stazionareità dei parametri veri

### fminsearch su QA parametri ridotti ###								
Rep	Report sul fitting dei parametri							
Para	ametri							
	veri	iniziali	stimati	errori	relativi			
a2	0.0025	0.0025	0.002476	0	0.009481			
a1	1.55	1.55	1.562	0	0.007424			
a0	10	10	10.29	0	0.02898			
No.	No. iterazioni							
41								
Valore funzione obbiettivo								
	1.19381e-05							

Qualcosa nel modello è sbagliato

Nota

Chiaramente qualcosa è sbagliato nel modello simulink, nelle main_id o nelle predicted_model

Investigando molto profondamente negli algoritmi di simulink, nelle tolleranze e lo step size la risposta a cui sono giunto è la seguente:

- i dati di simulink sono prodotti con algoritmi di integrazione di odes il modello è convertito in un sistema dinamico e le equazioni vengono integrate con metodi alla Eulero, Runge-Kutta, etc
- la simulazione per il fit dei parametri è svolta in MATLAB con 1sim su delle tf la tf è convertita nella sua rappresentazione di stato $\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$ con matrici A,B,C,D calcolate con una rappresentazione canonica; e le equazioni vengono integrate usando la formula per sistemi LTI

$$y(t) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau) d\tau + Du(t)$$

Ricostruzione parametrica del modello della meccanica respiratoria Spiegazione del problema

Nota

La derivazione, le applicazioni e le implementazioni di questi 2 metodi sono **complemtante** distinte

Infatti se generassimo Q,Q_A per il fit usando \mathtt{lsim} invece dei dati prodotti da simulink l'algoritmo converge subito

ponendo $\theta_{\mathrm{init}} = \theta_{\mathrm{true}}$

Conferma della spiegazione del problema

fminsearch su QA parametri ridotti ### Report sul fitting dei parametri Parametri iniziali stimati errori relativi 0.0025 0.0025 0.0025 1.55 1.55 1.55 10 10 No. iterazioni Valore funzione obbiettivo