1	27. The combination of claim 21 wherein said
2	helical tubular reaction chamber has maximum tube wall
3	temperatures ranging from 1300°F to 1600°F, when heated
4	by said radiant burner, in operation.
5	
6	
7	28. The combination of claim 21 wherein said
8	helical tubular reaction chamber has average heat
9	fluxes ranging from 3,000 btu/ft²/h to
10	10,000 btu/ft²/h, when heated by said radiant burner in
11	operation.
12	
13	
14	29. The combination of claim 21 wherein said
15	helical tubular reaction chamber is sized to have
16	capacity to generate hydrogen plus carbon monoxide
17	product in volumetric quantities ranging from 50 SCFH
18	to between 100 and 1500 SCFH.
19	
20	
21	30. The combination of claim 21 wherein said
22	radiant burner comprises a supported porous ceramic
23	material having extended life at operating temperatures
24	up to 2100°F.
25	
23	

1	31. The combination of claim 21 wherein said
2	radiant burner comprises a supported metal fiber
3	material consisting essentially of an alloy containing
4	principally iron, chromium, and aluminum and smaller
5	quantities of yttrium, silicon, and manganese, said
6	alloy having extended life at operating temperatures up
7	to 2000°F.
8	
9	
10	32. The combination of claim 21 wherein said
11	radiant burner is configured to radiate heat energy in
12	a substantially uniform radial pattern.
13	
14	
15	33. The combination of claim 21 wherein said
16	radiant burner has surface temperatures ranging between
17	1500°F and 1900°F, in operation.
18	
19	
20	34. The combination of claim 21 wherein said
21	radiant burner has an operating combustion intensity
22	typically ranging from 150,000 btu/ft ² /h to
23	$350,000 \text{ btu/ft}^2/\text{hr}$, wherein the combustion intensity is
24	defined as the higher heating value of the fuel
25	combusted divided by the permeable radiant burner
26	surface area.

1	35. The combination of claim 21 wherein said
2	radiant burner has an operating excess air ratio
3	typically ranging from 30% to 100%, wherein the excess
4	air ratio is defined as percent combustion air in
5	excess of the stoichiometric amount required for
6	complete combustion of the burner fuel.
7	
8	
9	36. The combination of claim 22 wherein the
10	coil has free area in the range 50% to 75%, wherein the
11	free area is defined as the ratio of the free area
12	between successive coil turns and the cylinder that
13	bisects the helical coil circle.
14	
15	
16	37. The combination of claim 21 wherein the
17	convection chamber has an inlet within the combustion
18	chamber, and an outlet outside the combustion chamber.
19	
20	
21	38. The combination of claim 1 including a
22	fuel cell in operating communication with said reaction
23	chamber, to receive hydrogen therefrom.
24	
25	
26	