Семинар 30

Общая информация:

- Если V евклидово пространство, и $U \subseteq V$ подпространство, то $V = U \oplus U^{\perp}$. Тогда любой вектор $v \in V$ представляется единственным образом в виде v = u + w, где $u \in U$ и $w \in W$. В этом случае u называется ортогональной проекцией v на U, а w ортогональной составляющей.
- Напомню, что длину вектора $v \in V$ я обозначаю через |v|.
- Для набора векторов $v_1, \ldots, v_k \in V$ матрица Грама $G(v_1, \ldots, v_k)$ это матрица с коэффициентами (v_i, v_j) .
- Параллелепипедом натянутым на векторы $v_1, \dots, v_k \in V$ называется множество $\Pi(v_1, \dots, v_k) = \{\sum_{i=1}^k \lambda_i v_i \mid 0 \le \lambda_i \le 1\}.$
- k-мерным объемом параллелепипеда $\Pi(v_1,\ldots,v_k)$ называется $\sqrt{\det G(v_1,\ldots,v_k)}$. Объем обозначается $\operatorname{Vol}(\Pi(v_1,\ldots,v_k))$ или просто $\operatorname{Vol}(v_1,\ldots,v_k)$.
- Для объема есть рекурентная формула $\operatorname{Vol}(\Pi(v_1,\ldots,v_k)) = \operatorname{Vol}(v_1,\ldots,v_{k-1})|h_k|$, где h_k это ортогональная состовляющая v_k относительно $\langle v_1,\ldots,v_{k-1}\rangle$. Смысл этой формулы в том, что объем можно считать как произведение высоты на площадь основания.

Задачи:

1. «Решите» систему методом наименьших квадратов

$$\begin{pmatrix}
2 & 7 & -3 & 6 \\
1 & -1 & 3 & 3 \\
2 & 1 & -1 & 0 \\
2 & -2 & 3 & -9
\end{pmatrix}$$

2. Пусть на пространстве \mathbb{R}^4 билинейная форма задана по правилу $\beta(x,y)=x^tBy$, где

$$B = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 2 & 4 & -2 & 4 \\ -1 & -2 & -1 & 2 \\ 2 & 4 & 2 & -2 \end{pmatrix}$$

Найдется ли линейное отображение $\phi \colon \mathbb{R}^2 \to \mathbb{R}^4$ такое, что билинейная форма $(u,v)_{\phi} = \beta(\phi(u),\phi(v))$ на \mathbb{R}^2 является скалярным произведением?

3. Пусть даны следующие векторы и матрица

$$v_1 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \quad G = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 10 & -4 \\ 1 & -4 & 6 \end{pmatrix}$$

Существует ли в пространстве \mathbb{R}^3 скалярное произведение и вектор $v_3 \in \mathbb{R}^3$ такие, что G будет матрицей Грама набора v_1, v_2, v_3 ? Если да, то приведите пример такого скалярного произведения (задайте его матрицей в стандартном базисе), если нет, то объясните почему.

4. Пусть $V = \mathbb{R}^n$ со стандартным скалярным произведением $(x,y) = x^t y$. Пусть $x_1, \dots, x_n \in V$ – набор векторов. Покажите, что

$$|\det(x_1|\ldots|x_n)| \leq |x_1|\ldots|x_n|$$

5. Пусть V – евклидово пространство, $U \subseteq V$ – некоторое подпространство и $P: V \to V$ оператор проектирования на U вдоль U^{\perp} . Покажите, что для любого набора векторов $v_1, \ldots, v_k \in V$ верно

$$Vol(\Pi(Pv_1,\ldots,Pv_k)) \leq Vol(\Pi(v_1,\ldots,v_k))$$

6. Пусть V – евклидово пространство и $v_1, \dots, v_k \in V$ и $u_1, \dots, u_m \in V$ – два произвольных набора векторов. Тогда

1

$$Vol(\Pi(v_1,\ldots,v_k,u_1,\ldots,u_m)) \leq Vol(\Pi(v_1,\ldots,v_k)) Vol(\Pi(u_1,\ldots,u_m))$$