STAR Laboratory of Advanced Research on Software Technology

Adaptive Random Testing

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas
ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Speaker Biographical Sketch

- Professor & Director of International Outreach Department of Computer Science University of Texas at Dallas
- Guest Researcher
 Computer Security Division
 National Institute of Standards and Technology (NIST)

- Vice President, IEEE Reliability Society
- Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)
- Principal Investigator, NSF TUES (Transforming Undergraduate Education in Science, Technology, Engineering and Mathematics) Project
 - Incorporating Software Testing into Multiple Computer Science and Software Engineering Undergraduate Courses
- Founder & Steering Committee co-Chair for the SERE conference (*IEEE International Conference on Software Security and Reliability*) (http://paris.utdallas.edu/sere13)

Basic Concepts

- Input domain: Set of all possible inputs
- Exhaustive testing:
 - Test the program with the entire input domain
 - Practically infeasible
- Failure-causing inputs: Inputs that exhibit failures

Random Testing (1)

- Random Testing
 - Selects test cases from the entire input domain randomly and independently
- Advantages:
 - Intuitively simple
 - Allows statistical quantitative estimation of the software's reliability

Random Testing (2)

- Two approaches
 - Uniform distributions
 - Operational distributions (profiles)

How to Improve Random Testing

• Any common information or characteristics to all faulty programs?

Failure-causing inputs

Patterns of Failure-Causing Inputs

- Strip Pattern
- Block Pattern
- Point Pattern

Types of Failure Patterns

Strip Pattern

Block Pattern

Point Pattern

Strip Pattern

Two Dimensional Input Domain

if
$$(2x - y > 10)$$

/* The correct statement is if (2x - y > 20) */ then

$$z = x/2y$$

else

$$z = xy$$

A different type of error "if (2x - y >= 10)"

Block Pattern

Two Dimensional Input Domain


```
if ((x >= 4 \text{ and } x <= 6)) and (y >= 4 \text{ and } y <= 6))
then z = x + y
/* The correct statement is z = x - y */ else z = 100
```

Point Pattern

Two Dimensional Input Domain


```
if (((x \mod 10) = 0)) and ((y \mod 10) = 0))
then z = f(x,y)
/* should be z = g(x,y) */
else z = f(x,y)
```

Which Pattern Occurs More Frequently?

Block and strip patterns

Intuition of ART

Adaptive Random Testing (1)

- For non-point failure patterns
 - An even spread of random test cases will enhance the fault detection capabilities

Adaptive Random Testing (2)

- Simulation and empirical results showed that as compared with random testing, fewer test cases required to detect *the first failure* (smaller *F-measure*)
- F-measure of ART \cong 50-60% of that of RT with replacement

How to Achieve "Even Spread"?

- Notion of distance
- Notion of exclusion

•

ART by Distance

ART by Exclusion

Even Spread Approaches

- Distance
 - Distance measures
 - Size of candidate set
 - -.....
- Exclusion
 - Exclusion amount
 - Shape of exclusion region
 - -....

Possible topic for your term paper

ART versus RT