Predmet: Mataliza 1

Ukol: 3. Verze: 1.

Autor: David Napravnik

zadani

Spoctete limitu: $\lim_{n\to\infty} \frac{2^n}{n!}$

reseni

to ze n! roste rychleji nez 2^n je zrejme, staci dokazat, ze jejich podil je limitne nulovy.

Dokazme si nejdrive ze plati:

$$\lim_{n\to\infty} \frac{n!}{2^n} = \infty$$

pro $n \ge 6$ plati: $2^n * n < n!$ (magicke cislo 6 muzeme pouzit, protoze se budeme pohybovat v nekonecnu a $6 < \infty$) z toho ziskame ze $2^n < \frac{n!}{n}$ pro n > 6

pak $\frac{n!}{2^n}>n$ pron>6tudi
z $\lim_{n\to\infty}\frac{n!}{2^n}=\infty$

z toho dostavame ze $\underline{\lim_{n\to\infty}\frac{2^n}{n!}=0}$

zadani

Spoctete limitu: $\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+1} - \sqrt{n-1} \right)$

reseni

$$\lim_{n\to\infty} \sqrt{n\left(\sqrt{n+1} - \sqrt{n-1}\right)^2}$$

$$\lim_{n\to\infty} n\left(\sqrt{n+1} - \sqrt{n-1}\right)^2$$

$$\lim_{n\to\infty} \frac{n\left(\sqrt{n+1} - \sqrt{n-1}\right)^2 \left(\sqrt{n+1} + \sqrt{n-1}\right)^2}{\left(\sqrt{n+1} + \sqrt{n-1}\right)^2}$$

$$\lim_{n\to\infty} \frac{n(A-B)^2 (A+B)^2}{(A+B)^2}; A = \sqrt{n+1}; B = \sqrt{n-1};$$

$$\lim_{n\to\infty} \frac{n(A^2 + B^2 - 2AB)(A^2 + B^2 + 2AB)}{(A+B)^2}$$

$$\lim_{n\to\infty} \frac{n\left((A^2 + B^2)^2 - (2AB)^2\right)}{(A+B)^2}$$

$$\lim_{n\to\infty} \frac{n\left((A^2 + B^2)^2 - (2AB)^2\right)}{A^2 + B^2 + 2AB}$$

$$\lim_{n\to\infty} \frac{n(A^4 + B^4 - 2A^2B^2)}{A^2 + B^2 + 2AB}$$

$$\lim_{n\to\infty} \frac{n(n^2 + 1 + 2n + n^2 + 1 - 2n - 2(n+1)(n-1))}{n+1+n-1+2\sqrt{(n+1)(n-1)}}$$

$$\lim_{n\to\infty} \frac{4n}{2n+2\sqrt{n^2+1-2n}}$$

v $\sqrt{n^2+1-2n}$ ponechame pouze nejvyssi polynom

$$lim_{n\to\infty}\frac{4n}{2n+2\sqrt{n^2}}=lim_{n\to\infty}\frac{4n}{4n}=1$$

$$\underline{\lim_{n\to\infty}\sqrt{n}\left(\sqrt{n+1}-\sqrt{n-1}\right)}=1$$