- 問題 1

一般項が

$$a_n = \frac{n+2}{3n+4}$$
 (n は自然数 $(n=1,2,3,\cdots)$)

で表される数列 (a_n) を考える。この数列は $n \to \infty$ としたときに収束することが知られている。

- (1) 極限 $\alpha = \lim a_n$ を求めよ。
- (2) $\varepsilon > 0$ に対して、次が成り立つような自然数 N_{ε} を答えよ。

「任意の N_{ε} 以上の自然数 n に対して $|a_n - \alpha| < \varepsilon$ である。」

解答

(1) 変形して $a_n = \frac{1+2n^{-1}}{3+4n^{-1}}$ であり、 $n \to \infty$ で $n^{-1} \to 0$ あることと教科書命題 1.1.9 (1), (4) を使えば、

$$a_n = \frac{1+2n^{-1}}{3+4n^{-1}} \to \frac{1+0}{3+0} = \frac{1}{3}$$

がわかる。よって、極限は $lpha = \lim_{n o \infty} a_n = rac{1}{3}$ 。

 $(2) |a_n - \alpha| < \varepsilon$ を変形すると、

$$\left| \frac{n+2}{3n+4} - \frac{1}{3} \right| = \frac{\frac{2}{3}}{3n+4} < \varepsilon.$$

よって、この条件は以下と同値である。

$$n > \frac{2 - 12\varepsilon}{9\varepsilon}.$$

したがって、 N_{ε} として $\frac{2-12\varepsilon}{9\varepsilon}$ より大きい自然数としておけばよい。

問題 2

次の漸化式によって定義される数列 (a_n) を考える。

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ (n = 1, 2, 3, \cdots).$$

- (1) この数列 (a_n) は各 n に対して $0 < a_n < 2$ を満たすことを示せ。
- (2) この数列 (a_n) は単調増加であることを示せ。
- (3) この数列 (a_n) は収束することを示し、極限 $\lim_{n \to \infty} a_n$ を求めよ。

解答

- (1) n=1 の時、 $0< a_1=\sqrt{2}<2$ なので、条件が成立する。 $n=1,2,3,\cdots$ で成立するつまり $0< a_n<2$ の時、 $a_{n+1}>\sqrt{2+0}>0$ かつ $a_{n+1}<\sqrt{2+2}=2$ なので、n+1 でも成立する。以上より数学的帰納法から、各 n に対して $0< a_n<2$ が成立する。
- (2) 各 $n=1,2,3,\cdots$ に対して $a_{n+1}\geq a_n$ を示せばよく、(1) より $a_n>0$ なので $a_{n+1}^2\geq a_n^2$ と同値でつまり $2+a_n\geq a_n^2$ を示せばよい。ここで (1) より $0< a_n<2$ なので、 $a_n^2-a_n-2=(a_n+1)(a_n-2)<0$ なので、上の不等式は確かに成り立つ。以上より数列 (a_n) は単調増加である。
- (3) (2) より数列 (a_n) は単調増加で (1) より上に有界でもあるので、実数の完備性(教科書公理 1.2.6)より何らかの実数 α に収束する。ここで $\lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n=\alpha$ なので漸化式から、

$$\alpha = \sqrt{2 + \alpha}$$
.

両辺を二乗してこれを解くと、 $\alpha=-1,2$ が必要で、 $\alpha=\sqrt{2+\alpha}\geq 0$ なので、解は $\alpha=2$ のみである。したがって、数列 (a_n) は α に収束してその α は 2 以外ありえないので、極限は $\lim a_n=2$ 。