

Triangulation

Beyond $\Omega(nlogn)$

- HVP

Junhui DENG

deng@tsinghua.edu.cn

Horizontal Visibility Partition

- ❖ Trapezoidalization may be extended to simple polygonal chains, where the horizontal lines run to infinity if they meet no obstruction
- ❖ The HVP of a simple polygonal chain is the partition of the plane obtained by adding horizontal edges connecting each vertex to
 - the closest point on the chain on both sides (if exists), or

Merging HVP's

- \diamondsuit Let P_1 and P_2 be two successively adjacent simple polygonal chains
- ❖ [Chazelle & Incerpi, 1984]

If $P_1 \cup P_2$ is also a simple polygonal chain, then

 $HVP(P_1 \cup P_2)$ can be obtained from $HVP(P_1)$ and $HVP(P_2)$ in linear time

- This result indicates a natural divide-and-conquer algorithm for computing the HVP of a simple polygonal chain
- ❖[Chazelle & Incerpi, 1984]

The HVP of a simple polygonal chain can be computed

in $|O(n\log n)|$ time, where n is the length of the chain

*However, the performance of this algorithm is not improved