Activity 22 – Introduction to Proof set operations

(1) Calculate the union and intersection of $\{1,2,3,5\}$ and $\{1,3,4,5\}$.

(2) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{2, 4, 6, 8, 10\}$. Calculate the following:

(a)
$$A \setminus B =$$

(b)
$$B \setminus A =$$

(c)
$$A \triangle B =$$

(d)
$$A \cup B =$$

(e)
$$A \cap B =$$

(f)
$$(A \cup B) \setminus (A \cap B) =$$

(3) Suppose $U = \{1, 2, \dots 10\}$. Let $A = \{1, 4, 6, 8, 9, 10\}$. What is \overline{A} ?

- (4) (Exercise 2 in §4.3 of GIAM) In a standard deck of playing cards one can distinguish sets based on face-value and/or suit. Let $A, 2, \ldots 9, 10, J, Q$ and K represent the sets of cards having the various face-values. Also, let \heartsuit , \spadesuit , \clubsuit and \diamondsuit be the sets of cards having the possible suits. Find the following
 - (a) $A \cap \heartsuit$
 - (b) $A \cup \heartsuit$
 - (c) $J \cap (\spadesuit \cup \heartsuit)$
 - (d) $K \cap \heartsuit$
 - (e) $A \cap K$
 - (f) $A \cup K$
- (5) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{2, 4, 6, 8, 10\}$. (The same sets as in problem 2.) Calculate all of the elements in DeMorgan's law: $\overline{A \cup B}$ and \overline{A} and \overline{B} and $\overline{A} \cap \overline{B}$.

(6) (Exercise 3 in §4.3 of GIAM) The following is a screenshot from the computational geometry program OpenSCAD (very handy for making models for 3-d printing...) In computational geometry we use the basice set operations together with a few other types of transformations to create interesting models using simple components. Across the top of the image below we see 3 sets of points in \mathbb{R}^3 , a ball, a sort of 3-dimensional plus sign, and a disk. Let's call the ball A, the plus sign B and the disk C. The nine shapes shown below them are made from A, B and C using union, intersection and set difference. Identify them!

(7) What interval would the following infinite union be equal to?

$$\bigcup_{n=2}^{\infty} [1, n]$$

(8) Let D_n be the set of all positive integers that are divisors of n,

$$D_N = \{ x \in \mathbb{Z}^+ \mid x \mid n \}.$$

What is the following infinite intersection?

$$\bigcap_{n=1}^{\infty} D_n$$

(9) Here's a proof of the commutative property for \cup :

Theorem. For all sets A and B, $A \cup B = B \cup A$.

Proof: We need to show that $x \in A \cup B \iff x \in B \cup A$. Suppose A and B are sets and x is a particular but arbitrary element of the universe of discourse.

 $x \in A \cup B$ Given

 $\iff x \in A \lor x \in B$ Definition of union

 $\iff x \in B \lor x \in A$ Commutative property of disjunction

 \iff $x \in B \cup A$ Definition of union

Q.E.D.

Write a proof of the associative property for intersection.

(10) Here's a proof of the associative law for union. (It may be instructive to compare this to your answer on the last question.)

Theorem. For all sets A, B, and C, $(A \cup B) \cup C = A \cup (B \cup C)$.

Proof: We need to show that $x \in (A \cup B) \cup C) \iff x \in A \cup (B \cup C)$. Suppose A, B and C are sets and x is a particular but arbitrary element of the universe of discourse.

$$x \in (A \cup B) \cup C \qquad \qquad \text{Given}$$

$$\iff x \in (A \cup B) \lor x \in C \qquad \qquad \text{Definition of union}$$

$$\iff (x \in A \lor x \in B) \lor x \in C \qquad \qquad \text{Definition of union}$$

$$\iff x \in A \lor (x \in B \lor x \in C) \qquad \qquad \text{Associative property of disjunction} \iff x \in A \lor$$

$$\iff x \in A \cup (B \cup C) \qquad \qquad \text{Definition of union}$$

Q.E.D.

Now you try one! Prove the distributive law of union over intersection.

- (11) Do a quick review of your last two proofs with the following in mind: On either side of a logical connector (\land and \lor) we must find logical *statements* (like $x \in A$ or $x \in B$). On either side of a set connector (\cap and \cup) we must find *sets*!
- (12) Without referring back to the lecture video, do the activity of assembling the two column proof that $A\triangle B = (A \cup B) \setminus (A \cap B)$ from the scrambled steps from page 184.

$= (A \cap \overline{B}) \cup (B \cap \overline{A})$	identity law
$= (A \cup B) \cap \overline{(A \cap B)}$	def. of relative difference
$(A \cup B) \setminus (A \cap B)$	Given
$= ((A \cap \overline{A}) \cup (A \cap \overline{B})) \cup ((B \cap \overline{A}) \cup (B \cap \overline{B}))$	distributive law
$= (A \setminus B) \cup (B \setminus A)$	def. of relative difference
$= (A \cap \overline{(A \cap B)}) \cup (B \cap \overline{(A \cap B)})$	distributive law
$=A\triangle B$	def. of symmetric difference
$= (A \cap (\overline{A} \cup \overline{B}) \cup (B \cap (\overline{A} \cup \overline{B}))$	DeMorgan's law
$= (\emptyset \cup (A \cap \overline{B})) \cup ((B \cap \overline{A}) \cup \emptyset)$	complementarity