

Course Name: EMBEDDED SYSTEMS I / III

Course Number and Section: 14:332:493:03 / 16:332:579:05

Year: Spring 2023

Lab Report #: 4

Lab Instructor: Milton Diaz

Student Name and RUID: Atharva Pandhare 203003207

Date Submitted: 04/07/2023

GitHub Link: https://github.com/embedded-systems-1-spring-2023-labs/lab-4-AtharvaPan265

Purpose/Objective:

The purpose of of this lab is to utilize the VGA analog video standard in order to produce a static image on a display. The timing signals and ROM addressing will all be driven by a combination of counters, which prove to be one of the most versatile components in digital design. This is to be done by creating components that use protocols to convert 8 bit data from the ROM into RGB values for the VGA analog standard.

Theory of Operation:

Simulation Waveforms: <screenshots of simulation results/waveforms>

a) VGA_CTRL

b) **IMAGE_TOP**

i)

<u>Vivado Schematics:</u> <Note: If there are multiple parts of the lab, submit the required **Schematics** and Utilization **Table** for each part of the lab.>

- c) <u>Vivado Elaboration Schematic</u>
 - i) <u>IMAGE TOP</u>

ii) <u>VGA CTRL</u>

iii) <u>PIXEL_PUSHER</u>

iv) <u>PICTURE</u>

v) <u>CLOCK_DIV</u>

1)

- d) Vivado Synthesis Schematic
 - i) <u>IMAGE_TOP</u>

ii) <u>VGA_CTRL</u>

iii) <u>PIXEL_PUSHER</u>

iv) <u>PICTURE</u>

v) <u>CLOCK_DIV</u>

1)

- e) <u>Post- Synthesis Utilization Table</u>
 - i) <u>IMAGE_TOP</u>

				Graph Table
Resource	Estimation		Available	Utilization %
LUT		30	17600	0.17
FF		64	35200	0.18
10		19	100	19.00
BUFG		1	32	3.13

1)

VGA_CTRL ii)

			Graph Table
Resource	Estimation	Available	Utilization %
LUT	24	17600	0.14
FF	10	35200	0.03
10	25	100	25.00
BUFG	1	32	3.13

1)

iii) PIXEL_PUSHER

				Graph Table
Resource	Estimation		Available	Utilization %
LUT		5	17600	0.03
FF		26	35200	0.07
Ю		51	100	51.00
BUFG		1	32	3.13

CLOCK_DIV iv)

			Graph Table
Resource	Estimation	Available	Utilization %
LUT	6	17600	0.03
FF	28	35200	0.08
10	2	100	2.00
BUFG	1	32	3.13

1)

f) On-Chip Power Graphs

i) IMAGE_TOP

ii) VGA CTRL

iii) PIXEL PUSHER

iv) <u>CLOCK_DIV</u>

g) Xdc changes

i) I had to uncomment the clock and the vga parts of the constraints

Conclusion:

I learned about how VGA protocols are used to output images to screens and how to modify 8 bits into RGB for the VGA protocol by doing a lab and reading the associated materials. During the lab, I created a VGA output using the zybo and modifying the 8 bits from the coe file generated by the MATLAB script and outputting it into RGB values. This combined with the diligent docs I was able to get an understanding of how VGA connectors work.

Follow Up:

I had some trouble with the printing because I was having trouble with vertical framing, I believe I fixed it, this will be tested in the lab on monday.