HNCO Evolution of entropy in PBIL and UMDA

February 28, 2019

Contents

1	one-max	2
2	lin	2
3	leading-ones	3
4	ridge	3
5	m jmp-5	4
6	jmp-10	4
7	${f djmp-5}$	5
8	${ m djmp} ext{-}10$	5
9	fp-5	6
10	fp-10	6
11	$\mathbf{n}\mathbf{k}$	7
12	max-sat	7
13	labs	8
14	ер	8
15	cancel	9
16	trap	9
17	hiff	10
18	plateau	10
19	walsh2	11
A	Plan	11
В	Default parameters	13

1 one-max

2 lin

3 leading-ones

4 ridge

5 jmp-5

6 jmp-10

7 djmp-5

8 djmp-10

9 fp-5

10 fp-10

11 nk

12 max-sat

13 labs

14 ep

15 cancel

16 trap

17 hiff

18 plateau

19 walsh2

A Plan

```
{
    "exec": "hnco",
    "opt": "--map 1 --map-random -s 100 -i 0 -b 200001 --pv-log-entropy",
    "parallel": true,
    "results": "results",
"graphics": "graphics",
    "report": "report",
    "xlabel": "Number of evaluations",
    "xcolumn": 1,
    "xlogscale": true,
    "ylabel": "Entropy",
    "ycolumn": 2,
    "ylogscale": false,
    "functions": [
        {
             "id": "one-max",
             "opt": "-F 0"
        },
             "id": "lin",
             "opt": "-F 1 -p instances/lin.100"
        },
             "id": "leading-ones",
             "opt": "-F 10"
        },
             "id": "ridge",
"opt": "-F 11"
        },
        {
```

```
"id": "jmp-5",
        "opt": "-F 30 -t 5"
   },
        "id": "jmp-10",
        "opt": "-F 30 -t 10"
   },
        "id": "djmp-5",
        "opt": "-F 31 -t 5"
    },
        "id": "djmp-10",
        "opt": "-F 31 -t 10"
    },
        "id": "fp-5",
        "opt": "-F 40 -t 5"
    },
        "id": "fp-10",
        "opt": "-F 40 -t 10"
   },
        "id": "nk",
        "opt": "-F 60 -p instances/nk.100.4"
    },
        "id": "max-sat",
        "opt": "-F 70 -p instances/ms.100.3.1000"
    },
    {
        "id": "labs",
        "opt": "-F 81"
    },
        "id": "ep",
        "opt": "-F 90 -p instances/ep.100"
    },
        "id": "cancel",
        "opt": "-F 100 -s 99"
    },
        "id": "trap",
        "opt": "-F 110 --fn-num-traps 10"
    },
    {
        "id": "hiff",
        "opt": "-F 120 -s 128"
    },
        "id": "plateau",
        "opt": "-F 130"
    },
        "id": "walsh2",
        "opt": "-F 162 -p instances/walsh2.100"
    }
"algorithms": [
    {
        "id": "pbil",
```

],

```
"opt": "-A 500 -x 10 -y 1 -r 5e-3"
},
{
        "id": "umda",
        "opt": "-A 600 -x 100 -y 10"
}
]
```

B Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
\# ea_lambda = 100
\# ea_mu = 10
# fn_name = noname
# fn_num_traps = 10
# fn_prefix_length = 2
# fn_threshold = 10
# function = 0
# ga_crossover_bias = 0.5
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_bit_herding = 0
# hea_num_seq_updates = 100
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = nopath
# mutation_probability = 1
# neighborhood = 0
# neighborhood_iterator = 0
# noise_stddev = 1
# num_iterations = 0
# num_threads = 1
# path = nopath
# pn_mutation_probability = 1
# pn_neighborhood = 0
# pn_radius = 2
# population_size = 10
# pv_log_num_components = 5
# radius = 2
# results_path = results.json
# rls_patience = 50
# sa_beta_ratio = 1.2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
\# seed = 0
# selection_size = 1
# target = 100
# print_defaults
# last_parameter
# exec_name = hnco
```

- # version = 0.12
- # Generated from hnco.json