Loss factorization, weakly supervised learning and label noise robustness

Giorgio Patrini, Frank Nielsen, Richard Nock, Marcello Carioni

Australian National University, Data61 (ex NICTA), Ecole Polytechnique, Sony CS Labs, Max Planck Institute of Mathematics in the Sciences

In 1 slide

Loss functions factor

$$\ell(x) = \ell_e(x) + \ell_o(x)$$

and so their risks, isolating a sufficient statistic for the labels, μ .

In 1 slide

Loss functions factor

$$\ell(x) = \ell_e(x) + \ell_o(x)$$

and so their risks, isolating a sufficient statistic for the labels, μ .

Weakly supervised learning: (1) estimate μ and (2) plug it into $\ell(x)$ and call standard algorithms. E.g., SGD:

$$oldsymbol{ heta}^{t+1} \leftarrow oldsymbol{ heta}^t - \eta
abla \ell(\pm \langle oldsymbol{ heta}^t, oldsymbol{x}_i
angle) - rac{1}{2} \eta a oldsymbol{\mu}$$

In 1 slide

Loss functions factor

$$\ell(x) = \ell_e(x) + \ell_o(x)$$

and so their risks, isolating a sufficient statistic for the labels, μ .

Weakly supervised learning: (1) estimate μ and (2) plug it into $\ell(x)$ and call standard algorithms. E.g., SGD:

$$\boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t - \eta \nabla \ell(\pm \langle \boldsymbol{\theta}^t, \boldsymbol{x}_i \rangle) - \frac{1}{2} \eta a \boldsymbol{\mu}$$

For asymmetric **label noise** with rates p_+, p_- , an unbiased estimator is

$$\hat{\boldsymbol{\mu}} \doteq \mathbb{E}_{(\boldsymbol{x},y)} \left[\frac{y - (p_- - p_+)}{1 - p_- - p_+} \boldsymbol{x} \right]$$

Preliminary

- Binary classification
 - $S = \{(\boldsymbol{x}_i, y_i), i \in [m]\}$ sampled from \mathfrak{D} over $\mathbb{R}^d \times \{-1, 1\}$
- Learn a linear (or kernel) model $h \in \mathcal{H}$
- Minimize the empirical risk associated with a surrogate loss $\ell(x)$

$$\underset{h \in \mathcal{H}}{\operatorname{argmin}} \, \mathbb{E}_{\mathcal{S}} \left[\ell(yh(\boldsymbol{x})) \right] = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \, R_{\mathcal{S},\ell}(h)$$

Mean operator & linear-odd losses

Mean operator

$$\boldsymbol{\mu}_{\mathbb{S}} \doteq \mathbb{E}_{\mathbb{S}}[y\boldsymbol{x}] = \frac{1}{m} \sum_{i=1}^{m} y_i \boldsymbol{x}_i$$

Mean operator & linear-odd losses

Mean operator

$$\boldsymbol{\mu}_{\mathbb{S}} \doteq \mathbb{E}_{\mathbb{S}}[y\boldsymbol{x}] = \frac{1}{m} \sum_{i=1}^{m} y_i \boldsymbol{x}_i$$

• Linear-odd loss, *a*-LOL

$$\exists a \in \mathbb{R}, \ \frac{1}{2} \ (\ell(x) - \ell(-x)) = \ell_o(x) = ax$$

generic x argument

Loss factorization

- Linear model h
- Linear-odd loss $\frac{1}{2}(\ell(x) \ell(-x)) = \ell_o(x) = ax$
- Given a sample S, define a "double sample"

$$S_{2x} \doteq \{(\boldsymbol{x}_i, \sigma), i \in [m], \sigma \in \{\pm 1\}\}$$

Loss factorization

- Linear model h
- Linear-odd loss $\frac{1}{2}(\ell(x) \ell(-x)) = \ell_o(x) = ax$
- Given a sample \$\mathbb{S}\$, define a "double sample"

$$S_{2x} \doteq \{(\boldsymbol{x}_i, \sigma), i \in [m], \sigma \in \{\pm 1\}\}$$

$$R_{\mathcal{S},\ell}(h) = \frac{1}{2} R_{\mathcal{S}_{2x},\ell}(h) + a \cdot h(\boldsymbol{\mu}_{\mathcal{S}})$$

smoothness nor convexity of ℓ required

$$R_{\mathcal{S},\ell}(h) =$$

$$= \mathbb{E}_{\mathcal{S}} \Big[\ell(yh(\boldsymbol{x})) \Big]$$

$$R_{S,\ell}(h) =$$

$$= \mathbb{E}_{S} \left[\ell(yh(\boldsymbol{x})) \right] \qquad \text{even + odd}$$

$$= \frac{1}{2} \mathbb{E}_{S} \left[\ell(yh(\boldsymbol{x})) + \ell(-yh(\boldsymbol{x})) + \ell(yh(\boldsymbol{x})) - \ell(-yh(\boldsymbol{x})) \right]$$

$$R_{S,\ell}(h) =$$

$$= \mathbb{E}_{S} \left[\ell(yh(\boldsymbol{x})) \right] \qquad \text{even + odd}$$

$$= \frac{1}{2} \mathbb{E}_{S} \left[\ell(yh(\boldsymbol{x})) + \ell(-yh(\boldsymbol{x})) + \ell(yh(\boldsymbol{x})) - \ell(-yh(\boldsymbol{x})) \right]$$

$$= \frac{1}{2} \mathbb{E}_{S_{2x}} \left[\ell(\sigma h(\boldsymbol{x})) \right] + \mathbb{E}_{S} \left[\ell_{o}(h(y\boldsymbol{x})) \right]$$

$$R_{\mathcal{S},\ell}(h) =$$

$$= \mathbb{E}_{\mathcal{S}} \left[\ell(yh(\boldsymbol{x})) \right] \qquad \text{even + odd}$$

$$= \frac{1}{2} \mathbb{E}_{\mathcal{S}} \left[\ell(yh(\boldsymbol{x})) + \ell(-yh(\boldsymbol{x})) + \ell(yh(\boldsymbol{x})) - \ell(-yh(\boldsymbol{x})) \right]$$

$$= \frac{1}{2} \mathbb{E}_{\mathcal{S}_{2x}} \left[\ell(\sigma h(\boldsymbol{x})) \right] + \mathbb{E}_{\mathcal{S}} \left[\ell_o(h(y\boldsymbol{x})) \right]$$

$$= \frac{1}{2} R_{\mathcal{S}_{2x},\ell}(h) + a \cdot h(\boldsymbol{\mu}_{\mathcal{S}})$$
sufficiency

of μ for y

Linear-odd losses: examples

Logistic loss & exponential family

$$\sum_{i=1}^{m} \log \sum_{u \in \mathcal{Y}} e^{y\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle} - \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle = \sum_{i=1}^{m} \log \left(1 + e^{-2y_i \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle} \right)$$

Linear-odd losses: examples

Logistic loss & exponential family

$$\sum_{i=1}^{m} \log \sum_{y \in \mathcal{Y}} e^{y\langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle} - \langle \boldsymbol{\theta}, \boldsymbol{\mu} \rangle = \sum_{i=1}^{m} \log \left(1 + e^{-2y_i \langle \boldsymbol{\theta}, \boldsymbol{x}_i \rangle} \right)$$

	loss ℓ	odd term ℓ_o
LOL	$\ell(x)$	-ax
ρ -loss	$\rho x -\rho x+1$	$-\rho x \ (\rho \ge 0)$
unhinged	1-x	-x
perceptron	$\max(0, -x)$	-x
double-hinge	$\max(-x, 1/2 \max(0, 1-x))$	-x
SPL	$a_{\ell} + \ell^{\star}(-x)/b_{\ell}$	$-x/(2b_\ell)$
logistic	$\log(1 + e^{-x})$	-x/2
square	$(1-x)^2$	-2x
Matsushita	$\sqrt{1+x^2}-x$	-x

Generalization bound

- Loss ℓ is a-lol and L-Lipschitz
- Bounds $\mathbb{R}^d \supseteq \mathfrak{X} = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \le X < \infty \}$ and $\mathfrak{H} = \{ \boldsymbol{\theta} : \|\boldsymbol{\theta}\|_2 \le B < \infty \}$
- Bounded loss $c(X, B) \doteq \max_{y \in \{\pm 1\}} \ell(yXB)$
- Let $\hat{\boldsymbol{\theta}} \doteq \operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{S},\ell}(\boldsymbol{\theta})$

Generalization bound

- Loss ℓ is a-lol and L-Lipschitz
- Bounds $\mathbb{R}^d \supseteq \mathfrak{X} = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \le X < \infty \}$ and $\mathfrak{H} = \{ \boldsymbol{\theta} : \|\boldsymbol{\theta}\|_2 \le B < \infty \}$
- Bounded loss $c(X, B) = \max_{y \in \{\pm 1\}} \ell(yXB)$
- Let $\hat{\boldsymbol{\theta}} \doteq \operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{S},\ell}(\boldsymbol{\theta})$

Then for any $\delta > 0$, with probability at least $1 - \delta$:

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - \inf_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{D},\ell}(\boldsymbol{\theta}) \le \left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2} \cdot \sqrt{\frac{1}{m} \log\left(\frac{1}{\delta}\right)} + 2|a|B \cdot ||\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}||_{2}$$

Generalization bound

- Loss ℓ is a-lol and L-Lipschitz
- Bounds $\mathbb{R}^d \supseteq \mathfrak{X} = \{ \boldsymbol{x} : \|\boldsymbol{x}\|_2 \leq X < \infty \}$ and $\mathfrak{H} = \{ \boldsymbol{\theta} : \|\boldsymbol{\theta}\|_2 \leq B < \infty \}$
- Bounded loss $c(X, B) \doteq \max_{y \in \{\pm 1\}} \ell(yXB)$
- Let $\hat{\boldsymbol{\theta}} \doteq \operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{S},\ell}(\boldsymbol{\theta})$

Then for any $\delta > 0$, with probability at least $1 - \delta$:

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - \inf_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{D},\ell}(\boldsymbol{\theta}) \le \left(\frac{\sqrt{2} + 1}{4}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{\text{complexity of space } \mathcal{H}}{\text{of space } \mathcal{H}}$$

$$\frac{c(X,B)L}{2} \cdot \sqrt{\frac{1}{m} \log\left(\frac{1}{\delta}\right)} + 2|a|B \cdot ||\boldsymbol{\mu}_{\mathcal{D}} - \boldsymbol{\mu}_{\mathcal{S}}||_{2}$$
arity
$$2|a|XB\sqrt{\frac{d}{m} \log\left(\frac{2d}{\delta}\right)}$$

non-linearity

$$2|a|XB\sqrt{\frac{d}{m}\log\left(\frac{2d}{\delta}\right)}$$

Weakly supervised learning

$$\mathcal{D} \xrightarrow{corrupt} \tilde{\mathcal{D}} \xrightarrow{sample} \tilde{\mathcal{S}}$$

 Weak labels may be wrong (noisy), missing, multi-instance, etc.

Weakly supervised learning

$$\mathcal{D} \xrightarrow{corrupt} \tilde{\mathcal{D}} \xrightarrow{sample} \tilde{\mathcal{S}}$$

- Weak labels may be wrong (noisy), missing, multi-instance, etc.
- 2-step approach:
 - (1) Estimate μ_{S} from weak labels
 - (2) Plug it into ℓ and call any algorithm for risk minimization on S_{2x}

Example: SGD (step 2)

```
Algorithm \muSGD
    Input: S_{2x}, \mu, \ell is a-LOL;
    \boldsymbol{\theta}^0 \leftarrow \mathbf{0}
    For any t = 1, 2, \ldots until convergence
              Pick i \in \{1, \ldots, |S_{2x}|\} at random
              \eta \leftarrow 1/t
              Pick any \boldsymbol{v} \in \partial \ell(y_i \langle \boldsymbol{\theta}^t, \boldsymbol{x}_i \rangle)
              \boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t - \eta(\boldsymbol{v} + a\boldsymbol{\mu}/2)
    Output: \theta^{t+1}
```

Example: SGD (step 2)

```
Algorithm \muSGD
    Input: S_{2x}, \mu, \ell is a-LOL;
    \boldsymbol{\theta}^0 \leftarrow \mathbf{0}
    For any t = 1, 2, \ldots until convergence
              Pick i \in \{1, \ldots, |S_{2x}|\} at random
              \eta \leftarrow 1/t
                                                                                only changes
              Pick any \boldsymbol{v} \in \partial \ell(y_i \langle \boldsymbol{\theta}^t, \boldsymbol{x}_i \rangle)
                                                                                wrt SGD
              \boldsymbol{\theta}^{t+1} \leftarrow \boldsymbol{\theta}^t - \eta(\boldsymbol{v} + a\boldsymbol{\mu}/2)
    Output: \theta^{t+1}
```

In the paper: proximal algorithms

A unifying approach

Learning from label proportions with

- logistic loss [N.Quadrianto et al. '09]
- symmetric proper loss [G. Patrini et al. '14]

Learning with noisy labels with

• logistic loss [Gao et al. '16]

Asymmetric label noise

Sample $\tilde{S} = \{(\boldsymbol{x}_i, \tilde{y}_i)\}_{i=1}^m$ corrupted by asymmetric noise rates p_+, p_-

Asymmetric label noise

Sample $\tilde{S} = \{(\boldsymbol{x}_i, \tilde{y}_i)\}_{i=1}^m$ corrupted by asymmetric noise rates p_+, p_-

By the method of [Natarajan et al. '13] an unbiased estimator of μ_{S} is

$$\hat{\boldsymbol{\mu}}_{\mathcal{S}} \doteq \mathbb{E}_{\tilde{\mathcal{S}}} \left| \frac{y - (p_{-} - p_{+})}{1 - p_{-} - p_{+}} \boldsymbol{x} \right|$$

This is step (1), then run μ -SGD for (2).

Generalization bound under noise

• Same as before, except that now $\hat{\theta} = \operatorname{argmin}_{\theta \in \mathcal{H}} \hat{R}_{\tilde{S},\ell}(\theta)$

Then for any $\delta > 0$, with probability at least $1 - \delta$:

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - \inf_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{D},\ell}(\boldsymbol{\theta}) \le \left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{XBL}{\sqrt{m}} + \frac{c(X,B)L}{2} \sqrt{\frac{1}{m} \log\left(\frac{2}{\delta}\right)} + \frac{2|a|XB}{1-p_{-}-p_{+}} \sqrt{\frac{d}{m} \log\left(\frac{2d}{\delta}\right)}$$

Generalization bound under noise

• Same as before, except that now $\hat{\boldsymbol{\theta}} = \operatorname{argmin}_{\boldsymbol{\theta} \in \mathcal{H}} \hat{R}_{\tilde{\mathbb{S}},\ell}(\boldsymbol{\theta})$

Then for any $\delta > 0$, with probability at least $1 - \delta$:

$$R_{\mathcal{D},\ell}(\hat{\boldsymbol{\theta}}) - \inf_{\boldsymbol{\theta} \in \mathcal{H}} R_{\mathcal{D},\ell}(\boldsymbol{\theta}) \le \left(\frac{\sqrt{2}+1}{4}\right) \cdot \frac{XBL}{\sqrt{m}} + \text{complexity untouched}$$

$$\frac{c(X,B)L}{2} \sqrt{\frac{1}{m} \log\left(\frac{2}{\delta}\right)} + \frac{2|a|XB}{1-p_{-}-p_{+}} \sqrt{\frac{d}{m} \log\left(\frac{2d}{\delta}\right)}$$

noise affects the linear term only

Empirics

- Artificially corrupted data. Noise rates up to ~50%
- SGD vs μ -SGD with the same parameters
- Test error average difference over 25 runs

														V.
(p_{-},p_{+}) -	→ (.0	(0,.00)	(.20	0, .00)	(.20	0, .10)	(.20	, .20)	(.20	, .30)	(.20	, .40)	(.20	(, .49)
dataset	SGD	$oldsymbol{\mu} ext{SGD}$	SGD	$oldsymbol{\mu} ext{SGD}$	SGD	$oldsymbol{\mu}$ SGD	SGD	$oldsymbol{\mu} ext{SGD}$						
australian	0.13	+.01	0.15	01	0.14	$\pm .00$	0.14	+.01	0.16	01	0.26	09	0.45	25
breast-can	0.02	+.01	0.03	$\pm .00$	0.03	$\pm .00$	0.03	$\pm .00$	0.05	01	0.11	06	0.17	08
diabetes	0.28	03	0.29	03	0.29	03	0.27	02	0.28	02	0.39	13	0.59	22
german	0.27	02	0.26	$\pm .00$	0.27	02	0.29	02	0.31	01	0.31	$\pm .00$	0.31	$\pm .00$
heart	0.15	+.01	0.17	01	0.16	$\pm .00$	0.17	$\pm .00$	0.18	01	0.26	08	0.35	15
housing	0.17	03	0.23	05	0.22	04	0.20	02	0.22	03	0.34	12	0.41	13
ionosphere	e 0.14	+05	0.19	05	0.20	05	0.20	03	0.21	03	0.35	13	0.54	29
sonar	0.27	$\pm .00$	0.29	+.02	0.29	+.01	0.34	04	0.36	03	0.43	10	0.45	05

Empirics

- Artificially corrupted data. Noise rates up to ~50%
- SGD vs μ -SGD with the same parameters
- Test error average difference over 25 runs

														V.
$(p, p_+) \to (.00, .00)$		(.20,.00)		(.20, .10)		(.20,.20)		(.20, .30)		(.20,.40)		(.20, .49)		
dataset	SGD	$oldsymbol{\mu} ext{SGD}$	SGD	$oldsymbol{\mu} ext{SGD}$	SGD	$oldsymbol{\mu}_{ ext{SGD}}$	SGD	$oldsymbol{\mu}$ SGD	SGD	$oldsymbol{\mu}_{ ext{SGD}}$	SGD	$oldsymbol{\mu} ext{SGD}$	SGD	$oldsymbol{\mu} ext{SGD}$
australiar	n 0.13	+.01	0.15	01	0.14	±.00	0.14	+.01	0.16	01	0.26	09	0.45	25
breast-car	n.0.02	+.01	0.03	$\pm .00$	0.03	$\pm .00$	0.03	$\pm .00$	0.05	01	0.11	06	0.17	08
diabetes	0.28	03	0.29	03	0.29	03	0.27	02	0.28	02	0.39	13	0.59	22
german	0.27	02	0.26	$\pm .00$	0.27	02	0.29	02	0.31	01	0.31	$\pm .00$	0.31	$\pm.00$
heart	0.15	+.01	0.17	01	0.16	$\pm .00$	0.17	$\pm .00$	0.18	01	0.26	08	0.35	15
housing	0.17	03	0.23	05	0.22	04	0.20	02	0.22	03	0.34	12	0.41	13
ionospher	e 0.14	+05	0.19	05	0.20	05	0.20	03	0.21	03	0.35	13	0.54	29
sonar	0.27	±.00	0.29	+.02	0.29	+.01	0.34	04	0.36	03	0.43	10	0.45	05

=> Still able to learn with one label ~ random

Bonus: data-dependent robustness

• The mean operator bounds the effect of noise

Let $\epsilon = 4|a|B \max\{p_+, p_-\} \|\boldsymbol{\mu}_{\mathcal{D}}\|_2$. Any a-LOL ℓ is such that

$$R_{\tilde{\mathcal{D}},\ell}(\boldsymbol{\theta}^{\star}) - R_{\tilde{\mathcal{D}},\ell}(\tilde{\boldsymbol{\theta}}^{\star}) \le \epsilon$$

 $\boldsymbol{\theta}^*$ and $\tilde{\boldsymbol{\theta}}^*$ minimizers under \mathcal{D} and $\tilde{\mathcal{D}}$

Moreover, if ℓ is differentiable and γ -strongly convex, then

$$\|\boldsymbol{\theta}^{\star} - \tilde{\boldsymbol{\theta}}^{\star}\|_{2}^{2} \leq 2/\gamma \cdot \epsilon$$

a data-dependent statistic

More in the paper

- Mean and covariance operators
- Non linear models & kernel mean map
- Learning reductions
- Data-dependent bounds

•

 Ongoing work: factorization and noisecorrection for deep neural networks