$12a_{0528} \ (K12a_{0528})$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{90} + 2u^{89} + \dots + 3u + 1 \rangle$$

 $I_2^u = \langle u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 91 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{90} + 2u^{89} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{17} - 4u^{15} + 7u^{13} - 4u^{11} - 3u^{9} + 6u^{7} - 2u^{5} + u \\ -u^{19} + 5u^{17} - 12u^{15} + 15u^{13} - 9u^{11} - u^{9} + 4u^{7} - 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} + 2u^{9} - 2u^{7} - u^{3} \\ u^{11} - 3u^{9} + 4u^{7} - u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{22} + 5u^{20} - 12u^{18} + 15u^{16} - 10u^{14} + 2u^{12} - u^{8} + u^{6} - u^{4} + 1 \\ u^{22} - 6u^{20} + 17u^{18} - 26u^{16} + 20u^{14} - 13u^{10} + 10u^{8} - u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{47} - 12u^{45} + \dots + 4u^{7} - 2u^{3} \\ -u^{49} + 13u^{47} + \dots - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{63} - 16u^{61} + \dots - 6u^{7} + 2u^{3} \\ -u^{63} + 17u^{61} + \dots - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{89} 96u^{87} + \cdots + 8u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{90} + 40u^{89} + \dots + u + 1$
c_2, c_6	$u^{90} - 20u^{88} + \dots - u + 1$
c_3, c_{12}	$u^{90} + 2u^{89} + \dots + 35u + 25$
c_4, c_{10}	$u^{90} + 2u^{89} + \dots + 3u + 1$
c_5,c_{11}	$u^{90} + 3u^{89} + \dots - 37u + 13$
	$u^{90} - 3u^{89} + \dots - 69u + 13$
c ₈	$u^{90} + 14u^{89} + \dots + 26531u + 1493$
<i>c</i> ₉	$u^{90} - 48u^{89} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{90} + 20y^{89} + \dots - 5y + 1$
c_{2}, c_{6}	$y^{90} - 40y^{89} + \dots - y + 1$
c_3,c_{12}	$y^{90} - 72y^{89} + \dots + 675y + 625$
c_4, c_{10}	$y^{90} - 48y^{89} + \dots - y + 1$
c_5, c_{11}	$y^{90} + 75y^{89} + \dots - 21571y + 169$
c_7	$y^{90} + 3y^{89} + \dots + 8941y + 169$
c ₈	$y^{90} - 24y^{89} + \dots - 76057601y + 2229049$
<i>c</i> ₉	$y^{90} - 12y^{89} + \dots + 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.873411 + 0.513697I	-1.81913 - 4.09974I	0
u = -0.873411 - 0.513697I	-1.81913 + 4.09974I	0
u = 0.902181 + 0.525801I	2.99810 + 6.09081I	0
u = 0.902181 - 0.525801I	2.99810 - 6.09081I	0
u = -0.897963 + 0.536251I	1.02275 - 11.20450I	0
u = -0.897963 - 0.536251I	1.02275 + 11.20450I	0
u = 0.922566 + 0.496402I	3.48059 + 3.55498I	0
u = 0.922566 - 0.496402I	3.48059 - 3.55498I	0
u = -0.903572 + 0.276220I	0.20740 - 3.77187I	5.01166 + 7.48596I
u = -0.903572 - 0.276220I	0.20740 + 3.77187I	5.01166 - 7.48596I
u = 0.788143 + 0.520655I	-4.28906 + 5.70288I	-4.46481 - 8.34300I
u = 0.788143 - 0.520655I	-4.28906 - 5.70288I	-4.46481 + 8.34300I
u = -0.941169 + 0.480866I	1.91087 + 1.41955I	0
u = -0.941169 - 0.480866I	1.91087 - 1.41955I	0
u = -1.059210 + 0.019229I	6.75320 - 1.38707I	0
u = -1.059210 - 0.019229I	6.75320 + 1.38707I	0
u = 1.063040 + 0.035242I	4.97510 + 6.54466I	0
u = 1.063040 - 0.035242I	4.97510 - 6.54466I	0
u = -0.770968 + 0.482215I	-1.57766 - 2.01209I	-0.85760 + 4.47164I
u = -0.770968 - 0.482215I	-1.57766 + 2.01209I	-0.85760 - 4.47164I
u = 0.738456 + 0.517645I	-4.43144 - 1.45967I	-5.28174 + 0.47374I
u = 0.738456 - 0.517645I	-4.43144 + 1.45967I	-5.28174 - 0.47374I
u = 0.831064 + 0.096380I	1.270970 + 0.122716I	8.82726 - 0.42041I
u = 0.831064 - 0.096380I	1.270970 - 0.122716I	8.82726 + 0.42041I
u = -0.126989 + 0.822033I	4.77347 + 11.44800I	3.37132 - 7.61382I
u = -0.126989 - 0.822033I	4.77347 - 11.44800I	3.37132 + 7.61382I
u = 0.120864 + 0.820667I	6.74638 - 6.20589I	6.36909 + 3.29581I
u = 0.120864 - 0.820667I	6.74638 + 6.20589I	6.36909 - 3.29581I
u = 0.103336 + 0.819213I	7.26934 - 3.28559I	7.18981 + 2.93019I
u = 0.103336 - 0.819213I	7.26934 + 3.28559I	7.18981 - 2.93019I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.094198 + 0.819093I	5.74525 - 1.91608I	4.94203 + 2.18879I
u = -0.094198 - 0.819093I	5.74525 + 1.91608I	4.94203 - 2.18879I
u = -0.120401 + 0.803953I	1.59070 + 4.18357I	0.16117 - 3.00795I
u = -0.120401 - 0.803953I	1.59070 - 4.18357I	0.16117 + 3.00795I
u = -0.578569 + 0.559212I	0.13368 + 6.80952I	-0.27186 - 4.68036I
u = -0.578569 - 0.559212I	0.13368 - 6.80952I	-0.27186 + 4.68036I
u = -0.620498 + 0.503672I	-2.52931 - 0.09500I	-4.25506 + 0.72855I
u = -0.620498 - 0.503672I	-2.52931 + 0.09500I	-4.25506 - 0.72855I
u = -1.130970 + 0.433801I	0.70255 - 4.46851I	0
u = -1.130970 - 0.433801I	0.70255 + 4.46851I	0
u = -1.152640 + 0.389106I	1.84992 + 2.50588I	0
u = -1.152640 - 0.389106I	1.84992 - 2.50588I	0
u = 0.561042 + 0.544183I	2.05754 - 1.76920I	2.90604 + 0.28243I
u = 0.561042 - 0.544183I	2.05754 + 1.76920I	2.90604 - 0.28243I
u = 1.162250 + 0.412550I	4.17297 + 1.71901I	0
u = 1.162250 - 0.412550I	4.17297 - 1.71901I	0
u = -0.024292 + 0.753892I	2.47216 + 2.13571I	5.91843 - 3.73421I
u = -0.024292 - 0.753892I	2.47216 - 2.13571I	5.91843 + 3.73421I
u = 1.152150 + 0.484969I	0.27112 + 3.48997I	0
u = 1.152150 - 0.484969I	0.27112 - 3.48997I	0
u = 0.153502 + 0.729188I	-1.85254 - 6.16807I	-1.72016 + 7.05399I
u = 0.153502 - 0.729188I	-1.85254 + 6.16807I	-1.72016 - 7.05399I
u = -1.170070 + 0.486533I	3.64084 - 6.60935I	0
u = -1.170070 - 0.486533I	3.64084 + 6.60935I	0
u = 1.167280 + 0.498284I	1.08161 + 10.76960I	0
u = 1.167280 - 0.498284I	1.08161 - 10.76960I	0
u = 1.191320 + 0.443194I	5.96752 + 2.13257I	0
u = 1.191320 - 0.443194I	5.96752 - 2.13257I	0
u = 1.213250 + 0.391111I	5.57380 - 0.11285I	0
u = 1.213250 - 0.391111I	5.57380 + 0.11285I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.116850 + 0.712914I	0.62172 + 2.11128I	2.36589 - 3.42722I
u = -0.116850 - 0.712914I	0.62172 - 2.11128I	2.36589 + 3.42722I
u = -1.191720 + 0.461019I	5.84080 - 6.54472I	0
u = -1.191720 - 0.461019I	5.84080 + 6.54472I	0
u = 0.485978 + 0.528952I	2.30152 + 0.59676I	3.38135 - 0.44638I
u = 0.485978 - 0.528952I	2.30152 - 0.59676I	3.38135 + 0.44638I
u = 1.224080 + 0.384721I	8.85923 - 7.34311I	0
u = 1.224080 - 0.384721I	8.85923 + 7.34311I	0
u = -1.223690 + 0.388798I	10.80400 + 2.07981I	0
u = -1.223690 - 0.388798I	10.80400 - 2.07981I	0
u = -1.223810 + 0.399626I	11.25850 - 0.90671I	0
u = -1.223810 - 0.399626I	11.25850 + 0.90671I	0
u = 1.224080 + 0.404848I	9.70226 + 6.14308I	0
u = 1.224080 - 0.404848I	9.70226 - 6.14308I	0
u = -0.450612 + 0.548105I	0.55266 - 5.54561I	0.22267 + 5.35237I
u = -0.450612 - 0.548105I	0.55266 + 5.54561I	0.22267 - 5.35237I
u = -1.197770 + 0.505207I	4.76470 - 8.98285I	0
u = -1.197770 - 0.505207I	4.76470 + 8.98285I	0
u = -1.208040 + 0.497568I	9.04174 - 2.87641I	0
u = -1.208040 - 0.497568I	9.04174 + 2.87641I	0
u = 1.206570 + 0.501359I	10.53440 + 8.09975I	0
u = 1.206570 - 0.501359I	10.53440 - 8.09975I	0
u = 1.203810 + 0.508612I	9.9530 + 11.0635I	0
u = 1.203810 - 0.508612I	9.9530 - 11.0635I	0
u = -1.203080 + 0.511255I	7.9613 - 16.3232I	0
u = -1.203080 - 0.511255I	7.9613 + 16.3232I	0
u = 0.164684 + 0.661302I	-2.55538 + 0.91259I	-3.81773 - 0.78733I
u = 0.164684 - 0.661302I	-2.55538 - 0.91259I	-3.81773 + 0.78733I
u = -0.299147 + 0.470065I	-1.76511 + 0.79975I	-3.82418 - 0.77073I
u = -0.299147 - 0.470065I	-1.76511 - 0.79975I	-3.82418 + 0.77073I

II.
$$I_2^u = \langle u-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2\\1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	u+1
c_2, c_3, c_4 c_6, c_8, c_9 c_{10}, c_{12}	u-1
c_5, c_7, c_{11}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_6, c_8 c_9, c_{10}, c_{12}	y-1	
c_5, c_7, c_{11}	y	

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000	1.64493	6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u+1)(u^{90}+40u^{89}+\cdots+u+1)$
c_2, c_6	$(u-1)(u^{90}-20u^{88}+\cdots-u+1)$
c_3, c_{12}	$(u-1)(u^{90} + 2u^{89} + \dots + 35u + 25)$
c_4, c_{10}	$(u-1)(u^{90} + 2u^{89} + \dots + 3u + 1)$
c_5, c_{11}	$u(u^{90} + 3u^{89} + \dots - 37u + 13)$
c_7	$u(u^{90} - 3u^{89} + \dots - 69u + 13)$
c ₈	$(u-1)(u^{90}+14u^{89}+\cdots+26531u+1493)$
<i>c</i> 9	$(u-1)(u^{90}-48u^{89}+\cdots-u+1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^{90} + 20y^{89} + \dots - 5y + 1)$
c_2, c_6	$(y-1)(y^{90}-40y^{89}+\cdots-y+1)$
c_3, c_{12}	$(y-1)(y^{90}-72y^{89}+\cdots+675y+625)$
c_4, c_{10}	$(y-1)(y^{90}-48y^{89}+\cdots-y+1)$
c_5, c_{11}	$y(y^{90} + 75y^{89} + \dots - 21571y + 169)$
c_7	$y(y^{90} + 3y^{89} + \dots + 8941y + 169)$
c ₈	$(y-1)(y^{90} - 24y^{89} + \dots - 7.60576 \times 10^7 y + 2229049)$
c_9	$(y-1)(y^{90}-12y^{89}+\cdots+3y+1)$