

JAPANESE UTILITY MODEL LAID-OPEN NO. 62-161573

(19) Japan Patent Office (JP) (11) Utility Model Laid-
Open

(12) Japanese Utility Model Laid-Open No. 62-161573
(U)

(51) Int. Cl.⁴ Identification Internal File No. (43) Date of publication of
Symbol application: October 14, 1987

H 02 K 24/00 7319-5H

Request for Examination: Requested
(pages in all)

(54) Title of the Device: BRUSHLESS RESOLVER

(21) Application No. 61-49762

(22) Date of filing: April 4, 1986

(72) Creator: Sakae Kishi c/o SANYO DENKI Co., LTD
15-1, Kita-Otsuka, 1-chome, Toshima-
ku, Tokyo

(72) Creator: Norio Tazawa c/o SANYO DENKI Co., LTD
15-1, Kita-Otsuka, 1-chome, Toshima-
ku, Tokyo

(72) Creator: Shinji Kitamura c/o SANYO DENKI Co., LTD
15-1, Kita-Otsuka, 1-chome, Toshima-
ku, Tokyo

(71) Applicant: SANYO DENKI Co., LTD. 15-1, Kita-Otsuka, 1-chome, Toshima-
ku, Tokyo

(74) Agent: Patent Attorney, Hidetoshi Matsumoto and another

Specification

1. Title of the Device

BRUSHLESS RESOLVER

2. Claims for the Utility Model

(1) A brushless resolver in which a resolver main body and a rotary transformer which takes out its output are incorporated in a common casing, characterized in that a magnetic

shielding body which magnetically shields the resolver main body and the rotary

transformer in the casing is provided between both of them.

(2) The brushless resolver according to claim 1 for the utility model, wherein the

magnetic shielding body comprises a rotor-side magnetic shielding member provided

between a rotor of the resolver main body and a rotor of the rotary transformer, and a

stator-side magnetic shielding member provided between a stator of the resolver main

body and a stator of the rotary transformer.

3. Detailed Description of the Device

[Industrial Application Field]

The present device relates to a brushless resolver which comprises a resolver main body and a rotary transformer which takes out its output without a brush to a rotation system.

[Conventional Art]

Recently, since brushless resolvers have strong environment resistance, such as temperature, vibration, and impact, demand has grown as position and velocity sensors of numerically controlled machine tools, robots, etc.

Figures 2 and 3 show structure of a conventional brushless resolver. As shown in figures, the conventional brushless resolver has structure of incorporating a resolver main body 2 and a rotary transformer 3 into a common casing 1. The resolver main body 2 is made of an annular stator 4 and a rotor 5 rotatably incorporated concentrically in it, the stator 4 on an input side has structure of winding first and second stator windings 6 and 7, whose phases shift by 90° electrically, around an iron core 8, and the rotor 5 on an output side has structure of winding a single-phase (or two-phases) rotor winding 9 around an iron core 10. The rotary transformer 3 is made of an annular stator 11 and a rotor 12 rotatably incorporated concentrically in it, the stator 11 on an output side has structure of winding a stator winding 13 around an annular iron core 14, and the rotor 12 on an input side has structure of winding a rotor winding 15 around an iron core 16. The rotor winding 15 of

such the rotary transformer 3 is connected to the rotor winding 9 of the resolver main body 2 to receive its output signal. The rotor 5 of the resolver main body 2 and the rotor 12 of the rotary transformer 3 are attached to a common rotary shaft 17 to be rotationally driven by a rotational force from a rotational body not shown. The rotary shaft 17 is rotatably supported by the casing 1 with a bearing 18.

When the first and second stator windings 6 and 7 are excited with two-phase alternating voltages $E_1 \sin \omega t$ and $E_1 \cos \omega t$ (where E_1 is a maximum amplitude value of a voltage, $\omega = 2\pi f$, and f is a frequency of the excitation voltage, and t is time) which have an equal amplitude, and whose phases are different, an output $K_1 E_1 \sin(\omega t + \theta)$ (where K_1 is a transformation ratio) whose phase shifts by a rotation angle θ of the rotary shaft 17 is obtained from the stator winding 9, and such the brushless resolver operates so that this output may be taken out from the rotary transformer 3 without a brush. It is possible to obtain a speed signal and a position signal of the rotational body by using the phase θ of this output signal.

In order to obtain an exact speed signal and an exact position signal, the phase shift by the rotation angle must be exact.

However, in the brushless resolver, magnetic fluxes ϕ_1 to ϕ_4 as shown in Figure 4 are generated. The ϕ_1 is rotary magnetic flux which generates an axial rotation signal by coupling of the stator 4 and rotor 5 of the resolver main body 2. The ϕ_2 is magnetic flux to

couple the rotor 12 and stator 11 of the rotary transformer 3, and to transmit the signal on a side of the rotor 12 to a side of the stator 11 regardless of axial rotation. The ϕ_3 is magnetic leakage flux which directly leaks from the stator 4 of the resolver main body 2 to the stator 11 of the rotary transformer 3. The ϕ_4 is magnetic leakage flux which directly leaks from the rotor 5 of the resolver main body 2 to the rotor 12 of the rotary transformer 3.

[Problems to be Solved by the Device]

Nevertheless, in the conventional brushless resolver, there was a problem that the unnecessary magnetic leakage fluxes ϕ_3 and ϕ_4 exist besides the magnetic fluxes ϕ_1 and ϕ_2 which function normally as a brushless resolver, these magnetic leakage fluxes ϕ_3 and ϕ_4 are magnetically coupled with the rotary transformer 3 for the regular magnetic fluxes ϕ_2 to be disturbed, and a phase error arises.

An object of the present device is to provide the brushless resolver which can reduce the phase error.

[Means for Solving the Problems]

Now, construction for achieving the above-mentioned object with reference to Figure 1 corresponding to an embodiment is described. The present device provides a magnetic

shielding body 19 between the resolver main body 2 and rotary transformer 3 in the casing 1 to magnetically shield both of them.

[Operation]

When providing the magnetic shielding body 19 in this way, the rotary transformer 3 is not affected by the magnetic leakage fluxes ϕ_3 and ϕ_4 which are mentioned above, and the phase error by the magnetic leakage fluxes is improved.

[Embodiment]

An embodiment of the present device is described below with reference to Figure 1. Here, the same numerals are given to parts corresponding to Figure 2 mentioned above. In the brushless resolver of this embodiment, the magnetic shielding body 19 which magnetically shields the resolver main body 2 and rotary transformer 3 in the casing 1 is provided between both of them. This magnetic shielding body 19 is made of a stator-side magnetic shielding member 20 which performs magnetic shielding between the stators 4 and 11 of both of 2 and 3, and a rotor-side magnetic shielding member 21 which performs magnetic shielding between rotors 5 and 12 of both of 2 and 3, and these magnetic shielding members 20 and 21 are provided oppositely through a small clearance. In an inner circumference of the stator-side magnetic shielding member 20, a flange portion 20A

is continuously provided so as to wrap an end portion of the rotor 4, which enables to perform magnetic shielding more effectively. It is possible to provide a flange portion similarly also in an outer circumference of the rotor-side magnetic shielding member 21.

In this way, providing the magnetic shielding body 19 prevents the above-mentioned magnetic leakage fluxes ϕ_3 and ϕ_4 from the resolver main body 2 from performing magnetic coupling with the rotary transformer 3. Hence, it is possible to improve a phase error due to the magnetic leakage fluxes.

Here, the magnetic shielding body 19 may have one-sheet structure of protruding from either one side of the rotor side and stator side to the other party.

Nevertheless, in consideration of simple assembly, it is preferable to divide the magnetic shielding body 19 into the rotor side and stator side as shown so that it does not protrude toward the other party.

[Advantage of the Device]

As explained above, in the present device, since magnetic shielding of a resolver main body and a rotary transformer is performed with a magnetic shielding body in a casing, it is possible to prevent the generation of a phase error due to magnetic leakage flux. In addition, when magnetic shielding is done like the present device, there is no adverse effect even if the resolver main body and rotary transformer are made to approach

mutually, and hence, there is also an advantage of being able to downsizing or thinning the brushless resolver.

4. Brief Description of the Drawings

Figure 1 is a vertical section side view of an upper half section of one embodiment of a brushless resolver according to the present device, Figure 2 is a vertical section side view of an upper half section of a conventional brushless resolver, Figure 3 is an electric circuit diagram of the brushless resolver, and Figure 4 is an explanatory diagram showing flows of magnetic fluxes of the conventional brushless resolver.

1 ... CASING, 2 ... RESOLVER MAIN BODY, 3 ... ROTARY TRANSFORMER, 4 ... STATOR, 5 ... ROTOR, 11 ... STATOR, 12 ... ROTOR, 19 ... MAGNETIC SHIELDING BODY, 20 ... STATOR-SIDE MAGNETIC SHIELDING MEMBER, 21 ... ROTOR-SIDE MAGNETIC SHIELDING MEMBER.

Agent, Patent Attorney, Hidetoshi Matsumoto

(and another)

Written Amendment (Formality)

May 19, 1986

Commissioner of the Patent Office, Michio Uga

1. Indication of the Case: Utility Model Application No. 61-49762

2. Title of the Device:

BRUSHLESS RESOLVER

3. Person Making Amendment:

Relationship with the Case: Utility Model Applicant

SANYO DENKI Co., LTD.

4. Agent:

6 Bunsan Bldg. 31-6, Shinbashi 4-chome, Minato-ku, Tokyo

Matsumoto Patent Office (Tel. 437-5781)

(7345) Patent Attorney, Hidetoshi Matsumoto

(and another)

5. Object of Amendment:

Figure 1 of the Drawings

6. Content of Amendment:

Amend Figure 1 of the Drawings as mentioned on the attached paper.

公開実用 昭和62- 161573

②日本国特許庁 (JP)

③実用新案出願公開

④公開実用新案公報 (U) 昭62- 161573

⑤Int.Cl.
H 02 K 24/06

識別記号
7319-5H

⑥公開 昭和62年(1987)10月14日

審査請求 有 (全頁)

⑦考案の名称 プラシレスレゾルバ

包実 類 昭61-49762

合出 類 昭61(1986)4月4日

⑧考案者	岸	栄	東京都豊島区北大塚1丁目15番1号 山岸電気株式会社内
⑨考案者	田	早	則 男 東京都豊島区北大塚1丁目15番1号 山岸電気株式会社内
⑩考案者	北	村	真 二 東京都豊島区北大塚1丁目15番1号 山岸電気株式会社内
⑪出願人	山岸電気株式会社		東京都豊島区北大塚1丁目15番1号
⑫代理人	岸屋士	松本 美枝	外1名

明細書

1. 考案の名称

ブラシレスレゾルバ

2. 実用新案登録請求の範囲

(1) 共通のケーシング内にレゾルバ本体とその出力をとり出す回転トランスとが組込まれてなるブラシレスレゾルバにおいて、前記ケーシング内の前記レゾルバ本体と前記回転トランスとの間に両者を磁気遮蔽する磁気遮蔽体が設けられていることを特徴とするブラシレスレゾルバ。

(2) 前記磁気遮蔽体は、前記レゾルバ本体のロータと前記回転トランスのロータとの間に設けられたロータ側磁気遮蔽部材と、前記レゾルバ本体のステータと前記回転トランスのステータとの間に設けられたステータ側磁気遮蔽部材とで構成されている実用新案登録請求の範囲第1項に記載のブラシレスレゾルバ。

3. 考案の詳細な説明

(産業上の利用分野)

- 1 -

734

実物ID: 161573

本考案は、レゾルバ本体とその出力を回転系に
ブラシレスで取り出す回転トランスとからなるブ
ラシレスレゾルバに関するものである。

(従来技術)

ブラシレスレゾルバは、温度、振動、衝撃など
の耐環境性が強いので、最近、歯納制御工作機械
やロボットなどの位置、速度センサとして需要が
増えている。

第2図及び第3図は従来のブラシレスレゾルバ
の構造を示したものである。図示のように従来の
ブラシレスレゾルバは、共通のケーシング1の中
にレゾルバ本体2と回転トランス3とを組込んだ
構造になっている。レゾルバ本体2は、環状のス
テータ4とその中に腐心状に回転自在に組込まれ
たロータ5とからなり、入力側のステータ4は電
気的に位相が90°ずれた第1、第2のステータ
巻線6、7を鉄心8に巻装した構造になっており、
出力側のロータ5は單相（または2相）のロータ
巻線9を鉄心10に巻装した構造になっている。

回転トランス3は、環状のステータ11とその中に同心状に回転自在に組込まれたロータ12とかなり、出力側のステータ11はステータ巻線13を環状の鉄心14に巻装した構造になっており、入力側のロータ12はロータ巻線15を鉄心16に巻装した構造になっている。このような回転トランス3のロータ巻線15は、レゾルバ本体2のロータ巻線9に接続され、その出力信号を受けるようになっている。レゾルバ本体2のロータ5と、回転トランス3のロータ12とは共通の回転軸17に取付けられ、図示しない回転体からの回転力で回転駆動されるようになっている。回転軸17は軸受18でクーリング1に回転自在に支持されている。

このようなプラシレスレゾルバは、第1、第2のステータ巻線6、7を断続が同じで位相の異なる2相交流電圧 $E_1 \sin \omega t$, $E_2 \cos \omega t$ (ただし、 E_1 は電圧の最大振幅値、 $\omega = 2\pi f$, f は励磁電圧の周波数、 t は時間)で励磁すると、ステータ巻線9からは回転軸17の回転角θだけ

位相がずれた出力 $K_1 E \sin(\omega t + \theta)$ (ただし、 K_1 は変圧比) が得られ、この出力が回転トランス 3 からラジオレスで取出されるように動作する。この出力信号の位相 θ を利用することにより、回転体の速度信号とか位置信号を得ることができる。

正確な速度信号や位置信号を得るには、回転角度による位相シフトが正確でなければならない。

しかるに、ラジオレスレゾルバ内には第4図に示すような磁束 ψ_1 ~ ψ_4 が発生している。 ψ_1 はレゾルバ本体 2 のステータイとロータ 5との結合により補助磁束信号を発生する回転磁束である。 ψ_2 は回転トランス 3 のロータ 1, 2 とステータ 1, 1とを結合し、補回転に対して無関係で、ロータ 1, 2 側の信号をステータ 1, 1 側へ伝達するのが目的の磁束である。 ψ_3 はレゾルバ本体 2 のステータイから回転トランス 3 のステータ 1, 1 へ直接漏洩する漏洩磁束である。 ψ_4 はレゾルバ本体 2 のロータ 5 から回転トランス 3 のロータ 1, 2 へ直接漏洩する漏洩磁束である。

(考案が解決しようとする問題点)

しかしながら、従来のブラシレスレゾルバは、
ブラシレスレゾルバとして正規な動きをする磁束
 ϕ_1 、 ϕ_2 以外に、不必要的漏洩磁束 ϕ_3 、 ϕ_4
が存在し、これら漏洩磁束 ϕ_3 、 ϕ_4 が回転トラ
ンス3と磁気結合して正規な磁束 ϕ_2 が乱され、
位相誤差が生ずる問題点があった。

本考案の目的は、位相誤差を低減できるブラシ
レスレゾルバを提供することにある。

(問題点を解決するための手段)

上記の目的を達成するための構成を、実施例に
対応する第1図を参照して説明すると、本考案は
ケーシング1内のレゾルバ本体2と回転トランス
3との間に両者を磁気遮蔽する磁気遮蔽体19を
設けたものである。

(作用)

このように磁気遮蔽体19を設けると、前述し
た漏洩磁束 ϕ_3 、 ϕ_4 の影響を回転トランス3が

受けなくなり、漏洩駆除による位相誤差を改善する。

（実施例）

以下本考案の実施例を第1図を参照して説明する。なお、前述した第2図と対応する部分には同一符号を付して示している。本実施例のフランジスレゾルバはケーシング1内のレゾルバ本体2と回転トランク3との間に両者を磁気遮蔽する磁気遮蔽体19が設けられている。この磁気遮蔽体19は、両者2、3のステータ4、11間に磁気遮蔽するステータ側磁気遮蔽部材20と、両者2、3のロータ5、12間に磁気遮蔽するロータ側磁気遮蔽部材21とからなり、これら磁気遮蔽部材20、21は小間隔を介して対向配設されている。ステータ側磁気遮蔽部材20の内周にはロータ4の端部を包むように突起部20Aが連続的に設けられ、磁気遮蔽がより効果的に行えるようになっている。ロータ側磁気遮蔽部材21の外周にも同様に突起部を設けることができる。

このように磁気遮蔽体 19 を設けると、レゾルバ本体 2 からの前述した漏洩磁束の、中性点が回転トランク 3 に磁気結合するのを防止する。従って、漏洩磁束による位相誤差を改善することができる。

なお、磁気遮蔽体 19 はロータ側或はステータ側のいずれか一方の側から相手側に突出する 1 枚構造のものでもよい。

しかしながら、組立ての容易さを考慮すると、磁気遮蔽体 19 は図示のようにロータ側とステータ側とに分割し、相手側へ突出しないようとするのが好ましい。

〔考案の効果〕

以上説明したように本考案では、ケーシング内でレゾルバ本体と回転トランクとを磁気遮蔽体で遮蔽したので、漏洩磁束による位相誤差の発生を防止することができる。しかも、本考案のように磁気遮蔽をするとレゾルバ本体と回転トランクとを相互に接近させても悪影響がなくなり、從

って、プラシレスレゾルバの小型或いは薄型化も
図れる利点がある。

4. 例面の簡単な説明

第1図は本考案に據るプラシレスレゾルバの一
実施例の上半部横断側面図、第2図は従来のプラ
シレスレゾルバの上半部横断側面図、第3図はア
ラシレスレゾルバの電気回路図、第4図は従来の
プラシレスレゾルバの歯災の流れを示す説明図で
ある。

1…ケーシング、2…レゾルバ本体、3…回転
トランス、4…ステータ、5…ロータ、11…ス
テータ、12…ロータ、19…磁気遮蔽部材、20
…ステータ側磁気遮蔽部材、21…ロータ側磁気
遮蔽部材。

代理人弁理士 松本英俊
(外1名)

第 1 図

第 2 図

742

実開60-161573

第3図

第4図

特許庁長官 宇賀道郎殿

1. 事件の表示 実願昭61-49762号

2. 考査の名稱

プラスレスレゾルバ

3. 紹正をする者

事件との関係 実用新案費算出願人

山洋電気株式会社

4. 代理人

東京都港区新橋4-31-6 文山ビル6階

松本特許事務所（電話437-5781番）

(7345)弁理士 松本英俊

（外1名）

5. 紹正の対象

図面の第1図

6. 紹正の内容

図面の第1図を別紙の通り訂正する。

実開61-161573

内
容
審
査
室

744

第1図

745

④ 61, 5, 19

公開日: 161573