

Prueba Módulo II - Forma B Mecánica Intermedia

Licenciatura en Física - 2021^1

Problema I

Encuentre el tiempo que un cometa (C) de masa m que sigue una trayectoria parabólica alrededor del Sol (S) puede pasar dentro de la órbita de la Tierra (E). Suponga que la órbita de la Tierra es circular y de radio R y está en el mismo plano que la del cometa. Se conoce además que el perihelio del cometa es r_{min} y la masa del Sol, M_S .

Problema II

Considere el movimiento de una partícula de masa m bajo la influencia de una fuerza central $\overrightarrow{F} = -K\overrightarrow{r}$, donde K es una constante positiva y \overrightarrow{r} es el vector posición de la partícula.

1. (15%) Demuestre que el movimiento de la partícula ocurre en un plano.

¹Hora de inicio: 18:30 hrs. Hora de término: 22:00 hrs. Envíe el documento en formato pdf 2. (30%) Encuentre la posición de la partícula como función del tiempo asumiendo las siguientes condiciones iniciales en t=0:

$$\begin{array}{rcl} x(0) & = & x_0 \\ y(0) & = & 0 \\ \dot{x}(0) & = & 0 \end{array}$$

$$x(0) = 0$$

- 3. (20%) Muestre que la órbita es una elipse.
- 4. (15%) Encuentre el período.
- 5. (20%) ¿Esta interacción obedece a la tercera ley de Kepler?.

Problema III

Un asteroide de masa m viene desde muy lejos (trayectoria parabólica) acercándose a un planeta de masa M y radio R, en cierto punto de la trayectoria tiene una velocidad v_0 perpendicular a la distancia d, distancia conocida como parámetro de impacto (ver figura).

- 1. (15%) Determine el momentum angular del asteroide en la posición mostrada en la figura.
- 2. (20%) La velocidad mínima v_0 para que el asteroide no choque con el planeta.
- 3. Si el asteroide estando en su punto más cercano al planeta se divide en dos partes, con una de ellas moviéndose en dirección hacia el centro del planeta con rapidez $\frac{v_0}{2}$ y con una masa de $\frac{m}{2}$, entonces:
 - (a) (25%) Determine la velocidad \overrightarrow{V}_A del otro trozo del asteroide y el ángulo respecto a la horizontal.

- (b) (20%) Obtenga la expresión final para la energía mecánica de este trozo en función de $M,\,m,\,R$ y d.
- (c) (20%) Este trozo ¿orbitará o no al planeta?.