(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 28 September 2006 (28.09.2006)

(10) International Publication Number WO 2006/101474 Al

(51) International Patent Classification:

C12N 15/63 (2006.01) C12N 15/82 (2006.01) C12N 15/85 (2006.01) C12P 21/02 (2006.01)

(21) International Application Number:

PCT/US2005/008643

(22) International Filing Date: 15 March 2005 (15.03.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(71) Applicant (for all designated States except US): UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL [US/US]; 308 Bynum Hall, Campus Box 4105, Chapel Hill, North Carolina 27599-4105 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): STAFFORD, Darrel W. [US/US]; 300 Rainbow Drive, Carrboro, North Carolina 27510 (US).

(74) Agent: MYERS BIGEL SIBLEY & SAJOVEC, P.A.; P.O. Box 37428, Raleigh, North Carolina 27627 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOSITIONS FOR PRODUCING ACTIVE VITAMIN K-DEPENDENT PROTEINS

(57) Abstract: The present invention provides a method of identifying a human subject having increased or decreased sensitivity to warfarin, comprising detecting in the subject the presence of a single nucleotide polymorphism in the VKOR gene, wherein the single nucleotide polymorphism is correlated with increased or decreased sensitivity to warfarin, thereby identifying the subject having increased or decreased sensitivity to warfarin.

METHODS AND COMPOSITIONS FOR PRODUCING ACTIVE VITAMIN K-DEPENDENT PROTEINS

5

Government Support

The present invention was made, in part, with the support of grant numbers 5P01 HL06350-42 and 5-R01 HL48318 from the National Institutes of Health. The United States Government has certain rights to this invention.

10

Field of the Invention

The present invention concerns isolated nucleic acids, host cells containing the same, and methods of use thereof, as well as methods and compositions directed to identification of single nucleotide polymorphisms (SNPs) in the Vitamin K epoxide reductase (VKOR) gene and their correlation with sensitivity to warfarin.

15

20

25

30

Background of the Invention

The function of numerous proteins requires the modification of multiple glutamic acid residues to γ-carboxyglutamate. Among these vitamin K-dependent (VKD) coagulation proteins, FIX (Christmas factor), FVII, and prothrombin are the best known. The observation that a knock-out of the gene for matrix Gla protein results in calcification of the mouse's arteries (Luo et al. (1997) "Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein" Nature 386:78-81) emphasizes the importance of the vitamin K cycle for proteins with functions other than coagulation. Moreover, Gasδ and other Gla proteins of unknown function are expressed in neural tissue and warfarin exposure in utero results in mental retardation and facial abnormalities. This is consistent with the observation that the expression of VKD carboxylase, the enzyme that accomplishes the Gla modification, is temporally regulated in a tissue-specific manner with high expression in the nervous system during early embryonic stages. Concomitant with carboxylation, reduced vitamin K, a co-substrate of the reaction, is converted to vitamin K epoxide. Because the amount of vitamin K in the human diet is limited, vitamin K epoxide must be converted back to vitamin K by vitamin K epoxide reductase (VKOR) to prevent its depletion. Warfarin, the most widely used anticoagulation drug, targets VKOR and prevents the regeneration of vitamin K. The

consequence is a decrease in the concentration of reduced vitamin K, which results in a reduced rate of carboxylation by the γ -glutamyl carboxylase and in the production of undercarboxylated vitamin K-dependent proteins.

5

10

15

20

25

30

In the United States alone, warfarin is prescribed to more than one million patients per year and in Holland, it has been reported that approximately 2% of the population is on long term warfarin therapy. Because the dose of warfarin required for a therapeutic level of anticoagulation varies greatly between patients, the utilization of warfarin is accompanied by a significant risk of side effects. For example, it has been reported that following initiation of warfarin therapy, major bleeding episodes occurred in 1-2% of patients and death occurred in 0.1-0.7 % of patients. In spite of the dangers, it has been estimated that warfarin use can prevent 20 strokes per induced bleeding episode and is probably underutilized because of the fear of induced bleeding.

The present invention overcomes previous shortcomings in the art by providing methods and compositions for correlating single nucleotide polymorphisms in a subject with an increased or decreased sensitivity to warfarin, thereby allowing for more accurate and rapid determination of therapeutic and maintenance doses of warfarin at reduced risk to the subject.

Summary of the Invention

The present invention provides a method of identifying a human subject having increased or decreased sensitivity to warfarin, comprising detecting in the subject the presence of a single nucleotide polymorphism in the VKOR gene, wherein the single nucleotide polymorphism is correlated with increased or decreased sensitivity to warfarin, thereby identifying the subject having increased or decreased sensitivity to warfarin.

Additionally provided is a method of identifying a human subject having increased or decreased sensitivity to warfarin, comprising: a) correlating the presence of a single nucleotide polymorphism in the VKOR gene with increased or decreased sensitivity to warfarin; and b) detecting the single nucleotide polymorphism of step (a) in the subject, thereby identifying a subject having increased or decreased sensitivity to warfarin.

In a further embodiment, the present invention provides a method of identifying a single nucleotide polymorphism in the VKOR gene correlated with increased or decreased sensitivity to warfarin, comprising:

5

10

15

20

25

30

- a) identifying a subject having increased or decreased sensitivity to warfarin;
- b) detecting in the subject the presence of a single nucleotide polymorphism in the VKOR gene; and
- c) correlating the presence of the single nucleotide polymorphism of step (b) with the increased or decreased sensitivity to warfarin in the subject, thereby identifying a single nucleotide polymorphism in the VKOR gene correlated with increased or decreased sensitivity to warfarin.

In addition, the present invention provides a method of correlating a single nucleotide polymorphism in the VKOR gene of a subject with increased or decreased sensitivity to warfarin, comprising: a) identifying a subject having increased or decreased sensitivity to warfarin; b) determining the nucleotide sequence of the VKOR gene of the subject of (a); c) comparing the nucleotide sequence of step (b) with the wild type nucleotide sequence of the VKOR gene; d) detecting a single nucleotide polymorphism in the nucleotide sequence of (b); and e) correlating the single nucleotide polymorphism of (d) with increased or decreased sensitivity to warfarin in the subject of (a).

A further aspect of the present invention is an isolated nucleic acid encoding vitamin K epoxide reductase (VKOR), particularly mammalian (e.g., human, ovine, bovine, monkey, etc.) VKOR. Examples include (a) nucleic acids as disclosed herein, such as isolated nucleic acids having the nucleotide sequence as set forth in SEQ ID NO: 8 or SEQ ID NO: 9; (b) nucleic acids that hybridize to isolated nucleic acids of (a) above or the complement thereof (e.g., under stringent conditions), and/or have substantial sequence identity to nucleic acids of (a) above (e.g., are 80, 85, 90 95 or 99% identical to nucleic acids of (a) above), and encode a VKOR; and (c) nucleic acids that differ from the nucleic acids of (a) or (b) above due to the degeneracy of the genetic code, but code for a VKOR encoded by a nucleic acid of (a) or (b) above.

The term "stringent" as used here refers to hybridization conditions that are commonly understood in the art to define the commodities of the hybridization procedure. Stringency conditions can be low, high or medium, as those terms are commonly know in the art and well recognized by one of ordinary skill. High

stringency hybridization conditions that will permit homologous nucleotide sequences to hybridize to a nucleotide sequence as given herein are well known in the art. As one example, hybridization of such sequences to the nucleic acid molecules disclosed herein can be carried out in 25% formamide, 5X SSC, 5X Denhardt's solution and 5% dextran sulfate at 42°C, with wash conditions of 25% formamide, 5X SSC and 0.1% SDS at 420C, to allow hybridization of sequences of about 60% homology. Another example includes hybridization conditions of 6X SSC, 0.1 % SDS at about 45°C, followed by wash conditions of 0.2X SSC, 0.1 % SDS at 50-65°C. Another example of stringent conditions is represented by a wash stringency of 0.3 M NaCl, 0.03M sodium citrate, 0.1% SDS at 6070 °C using a standard hybridization assay (see SAMBROOK et al., EDS., MOLECULAR CLONING: A LABORATORY MANUAL 2d ed. (Cold Spring Harbor, NY 1989, the entire contents of which are incorporated by reference herein). In various embodiments, stringent conditions can include, for example, highly stringent (i.e., high stringency) conditions (e.g., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at 68°C), and/or moderately stringent (i.e., medium stringency) conditions (e.g., washing in 0.2xSSC/0.1 % SDS at 42⁰C).

10

20

25

30

An additional aspect of the present invention is a recombinant nucleic acid comprising a nucleic acid encoding vitamin K epoxide reductase as described herein operatively associated with a heterologous promoter.

A further aspect of the present invention is a cell that contains and expresses a recombinant nucleic acid as described above. Suitable cells include plant, animal, mammal, insect, yeast and bacterial cells.

A further aspect of the present invention is an oligonucleotide that hybridizes to an isolated nucleic acid encoding VKOR as described herein.

A further aspect of the present invention is isolated and purified VKOR (e.g., VKOR purified to homogeneity) encoded by a nucleic acid as described herein. For example, the VKOR of this invention can comprise the amino acid sequence as set forth in SEQ ID NO: 10.

A further aspect of the present invention is a method of making a vitamin K dependent protein which comprises culturing a host cell that expresses a nucleic acid encoding a vitamin K dependent protein in the presence of vitamin K and produces a vitamin K dependent protein, and then harvesting the vitamin K

dependent protein from the culture, the host cell containing and expressing a heterologous nucleic acid encoding vitamin K dependent carboxylase, and the host cell further containing and expressing a heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) and producing VKOR as described herein. Thus, the present invention further provides a cell comprising a heterologous nucleic acid encoding vitamin K dependent carboxylase and a heterologous nucleic acid encoding vitamin K epoxide reductase. The cell can further comprise nucleic acid encoding a vitamin K dependent protein, which nucleic acid can be heterologous to the cell or endogenous to the cell.

10

15

20

.25

30

5

Brief Description of the Drawings

Figures 1A-D Comparisons of warfarin dosages in wild type, heterozygous and homozygous subjects for SNPs vk 2581, vk3294 and vk4769, as well as a comparison of warfarin dosages in wild type and heterozygous subjects for P450 2Y9.

- Figure 2. For each of the 13 siRNA pools, three T7 flasks containing A549 cells were transfected and VKOR activity determined after 72 h. The VKOR assay used 25 μ M vitamin K epoxide. One siRNA pool specific for gene gi:13124769 reduced VKOR activity by 64%-70% in eight repetitions.
- Figure 3. Time course of inhibition of VKOR activity by the siRNA pool specific for gi: 131 24769 in A549 cells. VKOR activity decreased continuously during this time period while the level of its mRNA decreased rapidly to about 20% of normal. 25 μ M vitamin K epoxide was used for this assay. The siRNA did not affect the activity of VKD carboxylase or the level of lamin A/C mRNA.
- Figure 4. VKOR activity was detected when mGC_1 1276 was expressed in Sf9 insect cells. -1x1 0^6 cells were used in this assay. Reactions were performed using 32 μ M KO at 30^0 C for 30 minutes in Buffer D. Blank Sf9 cells served as a negative control and A549 cells as a reference.
 - Figure 5. Inhibition of VKOR by warfarin. Reactions were performed using 1.6 mg microsomal proteins made from VKOR_Sf9 cells, 60 μ M KO, and various concentration of warfarin at 30 0 C for 15 minutes in Buffer D.
 - Figures 6A-D. Carboxylation of a vitamin K dependent protein, factor X. A: Control HEK293 cells producing factor X without exogenous VKOR or VKGC. B: HEK 293 cells producing factor X and exogenous VKGC alone. C: HEK293 cells

producing factor X and exogenous VKOR alone. D: HEK293 cells producing factor X and both exogenous VKOR and CKGC.

Detailed Description of the Invention

As used herein, "a," "an" or "the" can mean one or more than one. For example, "a" cell can mean a single cell or a multiplicity of cells.

5

10

20

25

30

The present invention is explained in greater detail below. This description is not intended to be a detailed catalog of all the different ways in which the invention may be implemented, or all the features that may be added to the instant invention. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure which do not depart from the instant invention. Hence, the following specification is intended to illustrate some particular embodiments of the invention, and not to exhaustively specify all permutations, combinations and variations thereof.

The "Sequence Listing" attached hereto forms a part of the instant - specification as if fully set forth herein.

The present invention may be carried out based on the instant disclosure and further utilizing methods, components and features known in the art, including but not limited to those described in US Patent No. 5,268,275 to Stafford and Wu and US Patent No. 6,531,298 to Stafford and Chang, the disclosures of which are incorporated by reference herein in their entirety as if fully set forth herein.

As used herein, "nucleic acids" encompass both RNA and DNA, including cDNA, genomic DNA, synthetic (e.g., chemically synthesized) DNA and chimeras of RNA and DNA. The nucleic acid may be double-stranded or single-stranded. Where single-stranded, the nucleic acid may be a sense strand or an antisense strand. The nucleic acid may be synthesized using oligonucleotide analogs or derivatives (e.g., inosine or phosphorothioate nucleotides). Such oligonucleotides can be used, for example, to prepare nucleic acids that have altered base-pairing abilities or increased resistance to nucleases.

An "isolated nucleic acid" is a DNA or RNA that is not immediately contiguous with both of the coding sequences with which it is immediately contiguous (one on

the 5' end and one on the 3' end) in the naturally occurring genome of the organism from which it is derived. Thus, in one embodiment, an isolated nucleic acid includes some or all of the 5' non-coding (e.g., promoter) sequences that are immediately contiguous to the coding sequence. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment), independent of other sequences. It also includes a recombinant DNA that is part of a hybrid gene encoding an additional polypeptide sequence.

5

10

15

20

25

30

The term "isolated" can refer to a nucleic acid or polypeptide that is substantially free of cellular material, viral material, or culture medium (when produced by recombinant DNA techniques), or chemical precursors or other chemicals (when chemically synthesized). Moreover, an "isolated nucleic acid fragment" is a nucleic acid fragment that is not naturally occurring as a fragment and would not be found in the natural state.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about six nucleotides to about 100 nucleotides, for example, about 15 to 30 nucleotides, or about 20 to 25 nucleotides, which can be used, for example, as a primer in a PCR amplification or as a probe in a hybridization assay or in a microarray.

Oligonucleotides may be natural or synthetic, e.g., DNA, RNA, modified backbones, etc.

Where a particular nucleotide sequence is said to have a specific percent identity to a reference nucleotide sequence, the percent identity is relative to the reference nucleotide sequence. For example, a nucleotide sequence that is 50%, 75%, 85%, 90%, 95% or 99% identical to a reference nucleotide sequence that is 100 bases long can have 50, 75, 85, 90, 95 or 99 bases that are completely identical to a 50, 75, 85, 90, 95 or 99 nucleotide sequence of the reference nucleotide sequence. The nucleotide sequence can also be a 100 base long nucleotide sequence that is 50%, 75%, 85%, 90%, 95% or 99% identical to the reference nucleotide sequence over its entire length. Of course, there are other nucleotide sequences that will also meet the same criteria.

A nucleic acid sequence that is "substantially identical" to a VKOR nucleotide sequence is at least 80%, 85% 90%, 95% or 99% identical to the nucleotide

sequence of SEQ ID NO:8 or 9. For purposes of comparison of nucleic acids, the length of the reference nucleic acid sequence will generally be at least 40 nucleotides, e.g., at least 60 nucleotides or more nucleotides. Sequence identity can be measured using sequence analysis software (e.g., Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705).

5

10

15

20

25

30

As is known in the art, a number of different programs can be used to identify whether a nucleic acid or amino acid has sequence identity or similarity to a known sequence. Sequence identity or similarity may be determined using standard techniques known in the art, including, but not limited to, the local sequence identity algorithm of Smith & Waterman, *Adv. Appl. Math.* 2, 482 (1981), by the sequence identity alignment algorithm of Needleman & Wunsch, *J. Mol. Biol.* 48,443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Natl. Acad. Sci. USA* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, WI), the Best Fit sequence program described by Devereux *et al.*, *Nucl. Acid Res.* 12, 387-395 (1984), preferably using the default settings, or by inspection.

An example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. It can also plot a tree showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng & Doolittle, *J. Mol. Evol.* 35, 351-360 (1987); the method is similar to that described by Higgins & Sharp, *CABIOS* 5:151-153 (1989).

Another example of a useful algorithm is the BLAST algorithm, described in Altschul *et al., J. Mol. Biol.* 215, 403-410, (1990) and Karlin *et al., Proc. Natl. Acad. Sci. USA* 90, 5873-5787 (1993). A particularly useful BLAST program is the WU-BLAST-2 program that was obtained from Altschul *et al., Methods in Enzymology*, 266, 460-480 (1996). WU-BLAST-2 uses several search parameters, which are preferably set to the default values. The parameters are dynamic values and are established by the program itself depending upon the composition of the particular sequence and composition of the particular database against which the sequence of interest is being searched; however, the values may be adjusted to increase

sensitivity. An additional useful algorithm is gapped BLAST as reported by Altschul et al. Nucleic Acids Res. 25, 3389-3402.

The CLUSTAL program can also be used to determine sequence similarity. This algorithm is described by Higgins et al. (1988) Gené 73:237; Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16: 10881-90; Huang et al. (1992) CABIOS 8: 155-65; and Pearson et al. (1994) Meth. Mol. Biol. 24: 307-331.

5

10

15

20

25

30

In addition, for sequences that contain either more or fewer nucleotides than the nucleic acids disclosed herein, it is understood that in one embodiment, the percentage of sequence identity will be determined based on the number of identical nucleotides in relation to the total number of nucleotide bases. Thus, for example, sequence identity of sequences shorter than a sequence specifically disclosed herein will be determined using the number of nucleotide bases in the shorter sequence, in one embodiment. In percent identity calculations, relative weight is not assigned to various manifestations of sequence variation, such as, insertions, deletions, substitutions, etc.

The VKOR polypeptides of the invention include, but are not limited to, recombinant polypeptides, synthetic peptides and natural polypeptides. The invention also encompasses nucleic acid sequences that encode forms of VKOR polypeptides in which naturally occurring amino acid sequences are altered or deleted. Preferred nucleic acids encode polypeptides that are soluble under normal physiological conditions. Also within the invention are nucleic acids encoding fusion proteins in which all or a portion of VKOR is fused to an unrelated polypeptide (e.g., a marker polypeptide or a fusion partner) to create a fusion protein. For example, the polypeptide can be fused to a hexa-histidine tag to facilitate purification of bacterially expressed polypeptides, or to a hemagglutinin tag to facilitate purification of polypeptides expressed in eukaryotic cells, or to an HPC4 tag to facilitate purification of polypeptides by affinity chromatography or immunoprecipitation. The invention also includes isolated polypeptides (and the nucleic acids that encode these polypeptides) that include a first portion and a second portion; the first portion includes, e.g., all or a portion of a VKOR polypeptide, and the second portion includes, e.g., a detectable marker.

The fusion partner can be, for example, a polypeptide that facilitates secretion, e.g., a secretory sequence. Such a fused polypeptide is typically referred

to as a preprotein. The secretory sequence can be cleaved by the cell to form the mature protein. Also within the invention are nucleic acids that encode VKOR fused to a polypeptide sequence to produce an inactive preprotein. Preproteins can be converted into the active form of the protein by removal of the inactivating sequence.

5

10

15

20

25

30

The invention also includes nucleic acids that hybridize, e.g., under stringent hybridization conditions (as defined herein) to all or a portion of the nucleotide sequence of SEQ ID NOS: 1-6, 8 or 9 or their complements. In particular embodiments, the hybridizing portion of the hybridizing nucleic acid is typically at least 15 (e.g., 20, 30, or 50) nucleotides in length. The hybridizing portion of the hybridizing nucleic acid is at least 80%, e.g., at least 95%, at least 98% or 100%, identical to the sequence of a portion or all of a nucleic acid encoding a VKOR polypeptide. Hybridizing nucleic acids of the type described herein can be used, for example, as a cloning probe, a primer (e.g., a PCR primer), or a diagnostic probe. Also included within the invention are small inhibitory RNAs (siRNAs) and/or antisense RNAs that inhibit the function of VKOR, as determined, for example, in an activity assay, as described herein and as is known in the art.

In another embodiment, the invention features cells, e.g., transformed cells, which contain a nucleic acid of this invention. A "transformed cell" is a cell into which (or into an ancestor of which) has been introduced, by means of recombinant nucleic acid techniques, a nucleic acid encoding all or a part of a VKOR polypeptide, and/or an antisense nucleic acid or siRNA. Both prokaryotic and eukaryotic cells are included, e.g., bacteria, yeast, insect, mouse, rat, human, plant and the like.

The invention also features nucleic acid constructs (e.g., vectors and plasmids) that include a nucleic acid of the invention that is operably linked to a transcription and/or translation control elements to enable expression, e.g., expression vectors. By "operably linked" is meant that a selected nucleic acid, e.g., a DNA molecule encoding a VKOR polypeptide, is positioned adjacent to one or more regulatory elements, e.g., a promoter, which directs transcription and/or translation of the sequence such that the regulatory elements can control transcription and/or translation of the selected nucleic acid.

The present invention further provides fragments or oligonucleotides of the nucleic acids of this invention, which can be used as primers or probes. Thus, in some embodiments, a fragment or oligonucleotide of this invention is a nucleotide sequence that is at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,

90, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 1500, 2000, 2500 or 3000 contiguous nucleotides of the nucleotide sequence set forth in SEQ ID NO:8 or SEQ ID NO:9. Examples of oligonucleotides of this invention are provided in the Sequence Listing included herewith. Such fragments or oligonucleotides can be detectably labeled or modified, for example, to include and/or incorporate a restriction enzyme cleavage site when employed as a primer in an amplification (e.g., PCR) assay.

5

10

15

20

25

30

The invention also features purified or isolated VKOR polypeptides, such as, for example, a polypeptide comprising, consisting essentially of and/or consisting of the amino acid sequence of SEQ ID NO:10 or a biologically active fragment or peptide thereof. Such fragments or peptides are typically at least about ten amino acids of the amino acid sequence of SEQ ID NO:10 (e.g., 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 75, 85, 95, 100, 125, or 150 amino acids of the amino acid sequence of SEQ ID NO:10) and can be peptides or fragment of contiguous amino acids of the amino acid sequence of the VKOR protein (e.g., as set forth in SEQ ID NO:10). The biological activity of a fragment or peptide of this invention can be determined according to the methods provided herein and as are known in the art for identifying VKOR activity. The fragments and peptides of the VKOR protein of this invention can also be active as antigens for the production of antibodies. The identification of epitopes on a fragment or peptide of this invention is carried out by well known protocols and would be within the ordinary skill of one in the art.

As used herein, both "protein" and "polypeptide" mean any chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation, phosphorylation or N-myristylation). Thus, the term "VKOR polypeptide" includes full-length, naturally occurring VKOR proteins, respectively, as well as recombinantly or synthetically produced polypeptides that correspond to a full-length, naturally . occurring VKOR protein, or to a portion of a naturally occurring or synthetic VKOR polypeptide.

A "purified" or "isolated" compound or polypeptide is a composition that is at least 60% by weight the compound of interest, e.g., a VKOR polypeptide or antibody that is separated or substantially free from at least some of the other components of the naturally occurring organism or virus, for example, the cell or viral structural components or other polypeptides or nucleic acids commonly found associated with the polypeptide. As used herein, the "isolated" polypeptide is at least about 25%,

50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99% or more pure (w/w). Preferably the preparation is at least 75% (e.g., at least 90% or 99%) by weight the compound of interest. Purity can be measured by any appropriate standard method, e.g., column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

5

10

15

20

25

30

Preferred VKOR polypeptides include a sequence substantially identical to all or a portion of a naturally occurring VKOR polypeptide. Polypeptides "substantially identical" to the VKOR polypeptide sequences described herein have an amino acid sequence that is at least 80% or 85% (e.g., 90%, 95% or 99%) identical to the amino acid sequence of the VKOR polypeptides of SEQ ID NO: 10. For purposes of comparison, the length of the reference VKOR polypeptide sequence will generally be at least 16 amino acids, e.g., at least 20, 25, 30, 35, 40, 45, 50, 75, or 100 amino acids.

In the case of polypeptide sequences that are less than 100% identical to a reference sequence, the non-identical positions are preferably, but not necessarily, conservative substitutions for the reference sequence. Conservative substitutions typically include, but are not limited to, substitutions within the following groups: glycine and alanine; valine, isoleucine, and leucine; aspartic acid and glutamic acid; asparagine and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine.

Where a particular polypeptide is said to have a specific percent identity to a reference polypeptide of a defined length, the percent identity is relative to the reference polypeptide. Thus, for example, a polypeptide that is 50%, 75%, 85%, 90%, 95% or 99% identical to a reference polypeptide that is 100 amino acids long can be a 50, 75, 85, 90, 95 or 99 amino acid polypeptide that is completely identical to a 50, 75, 85, 90, 95 or 99 amino acid long portion of the reference polypeptide. It can also be a 100 amino acid long polypeptide that is 50%, 75%, 85%, 90%, 95% or 99% identical to the reference polypeptide over its entire length. Of course, other polypeptides also will meet the same criteria.

The invention also features purified or isolated antibodies that specifically bind to a VKOR polypeptide of this invention or to a fragment thereof. By "specifically binds" is meant that an antibody recognizes and binds a particular antigen, e.g., a VKOR polypeptide, or an epitope on a fragment or peptide of a VKOR polypeptide, but does not substantially recognize and bind other molecules in a sample. In one embodiment the antibody is a monoclonal antibody and in other embodiments, the

antibody is a polyclonal antibody. The production of both monoclonal and polyclonal antibodies, including chimeric antibodies, humanized antibodies, single chain antibodies, bi-specific antibodies, antibody fragments, etc., is well known in the art.

In another aspect, the invention features a method for detecting a VKOR polypeptide in a sample. This method comprises contacting the sample with an antibody that specifically binds a VKOR polypeptide or a fragment thereof under conditions that allow the formation of a complex between an antibody and VKOR; and detecting the formation of a complex, if any, as detection of a VKOR polypeptide or fragment thereof in the sample. Such immunoassays are well known in the art and include immunoprecipitation assays, immunoblotting assays, immunolabeling assays, ELISA, etc.

5

10

15

20

25

30

The present invention further provides a method of detecting a nucleic acid encoding a VKOR polypeptide in a sample, comprising contacting the sample with a nucleic acid of this invention that encodes VKOR or a fragment thereof, or a complement of a nucleic acid that encodes VKOR or a fragment thereof, under conditions whereby a hybridization complex can form, and detecting formation of a hybridization complex, thereby detecting a nucleic acid encoding a VKOR polypeptide in a sample. Such hybridization assays are well known in the art and include probe detection assays and nucleic acid amplification assays.

Also encompassed by the invention is a method of obtaining a gene related to (i.e., a functional homologue of) the VKOR gene. Such a method entails obtaining or producing a detectably-labeled probe comprising an isolated nucleic acid which encodes all or a portion of VKOR, or a homolog thereof; screening a nucleic acid fragment library with the labeled probe under conditions that allow hybridization of the probe to nucleic acid fragments in the library, thereby forming nucleic acid duplexes; isolating labeled duplexes, if any; and preparing a full-length gene sequence from the nucleic acid fragments in any labeled duplex to obtain a gene related to the VKOR gene.

A further aspect of the present invention is a method of making a vitamin K dependent protein, comprising culturing a cell that expresses a nucleic acid encoding a vitamin K dependent protein that, in the presence of vitamin K, produces a vitamin K dependent protein; and then harvesting the vitamin K dependent protein from the culture medium, wherein the cell comprises and expresses an exogenous nucleic acid encoding vitamin K epoxide reductase (VKOR), thereby producing VKOR and in

some embodiments the cell further comprises and expresses an exogenous nucleic acid encoding vitamin K dependent carboxylase, thereby producing vitamin K dependent carboxylase as described herein. In some embodiments, the expression of the VKOR-encoding nucleic acid and the production of the VKOR causes the cell to produce greater levels of the vitamin K dependent protein and/or greater levels of active (e.g., fully carboxylated) vitamin K dependent protein than would be produced in the absence of the VKOR or in the absence of the VKOR and carboxylase.

5

10

15

20

25

30

Thus, in some embodiments, the present invention also provides a method of producing a vitamin K dependent protein, comprising:

- a) introducing into a cell a nucleic acid that encodes a vitamin K dependent protein under conditions whereby the nucleic acid is expressed and the vitamin K dependent protein is produced in the presence of vitamin K, wherein the cell comprises a heterologous nucleic acid encoding vitamin K dependent carboxylase and further comprises a heterologous nucleic acid encoding vitamin K epoxide reductase; and
 - b) optionally collecting the vitamin K dependent protein from the cell.

The present invention also provides a method of increasing the amount of carboxylated vitamin K dependent protein in a cell, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively.

Further provided herein is a method of increasing the carboxylation of a vitamin K dependent protein, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively.

In addition, the present invention provides a method of producing a carboxylated (e.g., fully carboxylated) vitamin K dependent protein in a cell, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR,

respectively, wherein the amount of carboxylated vitamin K dependent protein produced in the cell in the presence of VKOR is increased as compared to the amount of carboxylated vitamin K dependent protein produced in the cell in the absence of VKOR.

5

10

15

20

25

30

Furthermore, the present invention provides a method of producing a vitamin K dependent protein in a cell, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second exogenous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively, wherein 100%, 90%, 80%, 70% or 60% of the vitamin K dependent protein produced in the cell in the presence of VKOR is carboxylated (e.g., fully carboxylated).

Also included herein is a method of producing a vitamin K dependent protein in a cell, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively.

In some embodiments of the methods described above, the cell can further comprise a third nucleic acid encoding a vitamin K dependent carboxylase, which can be, but is not limited to, a bovine vitamin K dependent carboxylase. In particular embodiments, the vitamin K-dependent carboxylase is vitamin K gamma glutamyl carboxylase (VKGC). The VKGC used in the methods of this invention can be VKGC from any vertebrate or invertebrate species that produces VKGC, as are known in the art.

In methods of this invention where the amount of carboxylated vitamin K-dependent protein is increased in a cell in the presence of VKOR and/or VKGC, the amount of carboxylated or fully carboxylated vitamin K dependent protein produced in the cell in the presence of VKOR and/or VKGC can be increased 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 100% 125% 150%, 200% or 300%, as compared to the amount of carboxylated or fully carboxylated vitamin K dependent protein produced in the cell in the absence of VKOR and/or VKGC.

By "fully carboxylated" in some embodiments is meant that all sites (or in some embodiments, the majority of sites) on a vitamin K dependent protein that can

undergo carboxylation are carboxylated. In some embodiments, fully carboxylated can mean that all vitamin K dependent proteins are carboxylated to some extent and/or that all vitamin K dependent proteins are carboxylated at all or at the majority of carboxylation sites. A carboxylated vitamin K dependent protein or fully carboxylated vitamin K dependent protein is an active protein. By "active protein" is meant that the vitamin K dependent protein has or is capable of activity in carrying out its biological function (e.g., an enzymatic activity for factor IX or factor X).

5

10

15

20

25

30

The vitamin K dependent protein that can be produced according to the methods of this invention can be any vitamin K dependent protein now known or later identified as such, including but not limited to, Factor VII, Factor VIIA, Factor IX, Factor X, Protein C, activated Protein C, Protein S, bone Gla protein (osteocalcin), matrix Gla protein and prothrombin, including modified versions of such proteins as described herein, in any combination.

Any cell that can be transformed with the nucleic acids described herein can be used as described herein, although in some embodiments non-human or even non-mammalian cells can be used. Thus, a cell or cell line of this invention can be, for example, a human cell, an animal cell, a plant cell and/or an insect cell. Nucleic acids encoding vitamin K dependent carboxylase and nucleic acids encoding vitamin K dependent proteins as described herein are well known in the art and their introduction into cells for expression would be carried out according to routine protocols. Thus, in some embodiments, the present invention provides a cell that comprises a nucleic acid (either endogenous or exogenous to the cell) that encodes a vitamin K dependent protein. The vitamin K dependent protein is produced in the cell in the presence of vitamin K. The cell further comprises a heterologous (i.e., exogenous) nucleic acid encoding vitamin K epoxide reductase (VKOR) and/or a vitamin K dependent carboxylase. The cell can be maintained under conditions known in the art whereby the nucleic acid encoding VKOR and/or the vitamin K dependent carboxylase are expressed and VKOR and/or the carboxylase are produced in the cell.

Certain embodiments of this invention are based on the inventors' discovery that a subject's therapeutic dose of warfarin for anticoagulation therapy can be correlated with the presence of one or more single nucleotide polymorphisms in the VKOR gene of the subject. Thus, the present invention also provides a method of identifying a human subject having increased or decreased sensitivity to warfarin,

comprising detecting in the subject the presence of a single nucleotide polymorphism (SNP) in the VKOR gene, wherein the single nucleotide polymorphism is correlated with increased or decreased sensitivity to warfarin, thereby identifying the subject as having increased or decreased sensitivity to warfarin.

5

10

15

20

25

30

An example of a SNP correlated with an increased sensitivity to warfarin is a G→C alteration at nucleotide 2581 (SEQ ID NO:12) (in intron 2 of the VKOR gene; GenBank accession no. refSNP ID: rs8050894, incorporated by reference herein) of the nucleotide sequence of SEQ ID NO:11, which is a reference sequence encompassing the genomic sequence of SEQ ID NO:8 and approximately 1000 nucleotides preceding and following this sequence. This sequence can be located as having the genome position "human chromosome 16p1 1.2" or in the physical map in the NCBI database as human chromosome 16: 31009700-31013800.

Examples of SNPs correlated with a decreased sensitivity to warfarin are a T→C alteration at nucleotide 3294 (SEQ ID NO:13) (in intron 2 of the VKOR gene; GenBank accession no. refSNP ID: rs2359612, incorporated by reference herein) of the nucleotide sequence of SEQ ID NO:11 and a G→A alteration at nucleotide 4769 (SEQ ID NO:14) (in the 3¹UTR of the VKOR gene; GenBank accession no. refSNP ID: rs7294, incorporated by reference herein) of the nucleotide sequence of SEQ ID NO:11.

As used herein, a subject having an "increased sensitivity to warfarin" is a subject for whom a suitable therapeutic or maintenance dose of warfarin is lower than the therapeutic or maintenance dose of warfarin that would suitable for a normal subject, i.e., a subject who did not carry a SNP in the VKOR gene that imparts a phenotype of increased sensitivity to warfarin. Conversely, as used herein, a subject having a "decreased sensitivity to warfarin" is a subject for whom a suitable therapeutic or maintenance dose of warfarin is higher than the therapeutic or maintenance dose of warfarin that would suitable for a normal subject, i.e., a subject who did not carry a SNP in the VKOR gene that imparts a phenotype of decreased sensitivity to warfarin. An example of a typical therapeutic dose of warfarin for a normal subject is 35 mg per week, although this amount can vary (e.g., a dose range of 3.5 to 420 mg per week is described in Aithal et al. (1999) Lancet 353:717-719). A typical therapeutic dose of warfarin can be determined for a given study group according to the methods described herein, which can be used to identify subjects

with therapeutic warfarin doses above or below this dose, thereby identifying subjects having decreased or increased sensitivity to warfarin.

Further provided herein is a method of identifying a human subject having increased or decreased sensitivity to warfarin, comprising: a) correlating the presence of a single nucleotide polymorphism in the VKOR gene with increased or decreased sensitivity to warfarin; and b) detecting the single nucleotide polymorphism of step (a) in the subject, thereby identifying a subject having increased or decreased sensitivity to warfarin.

5

10

15

20

25

30

In addition, the present invention provides a method of identifying a single nucleotide polymorphism in the VKOR gene correlated with increased or decreased sensitivity to warfarin, comprising: a) identifying a subject having increased or decreased sensitivity to warfarin; b) detecting in the subject the presence of a single nucleotide polymorphism in the VKOR gene; and c) correlating the presence of the single nucleotide polymorphism of step (b) with the increased or decreased sensitivity to warfarin in the subject, thereby identifying a single nucleotide polymorphism in the VKOR gene correlated with increased or decreased sensitivity to warfarin.

Also provided herein is a method of correlating a single nucleotide polymorphism in the VKOR gene of a subject with increased or decreased sensitivity to warfarin, comprising: a) identifying a subject having increased or decreased sensitivity to warfarin; b) determining the nucleotide sequence of the VKOR gene of the subject of (a); c) comparing the nucleotide sequence of step (b) with the wild type nucleotide sequence of the VKOR gene; d) detecting a single nucleotide polymorphism in the nucleotide sequence of (b); and e) correlating the single nucleotide polymorphism of (d) with increased or decreased sensitivity to warfarin in the subject of (a).

A subject is identified as having an increased or decreased sensitivity to warfarin by establishing a therapeutic or maintenance dose of warfarin for anticoagulation therapy according to well known protocols and comparing the therapeutic or maintenance dose for that subject with the therapeutic or maintenance dose of warfarin for anticoagulation therapy of a population of normal subjects (e.g., subjects lacking any SNPs in the VKOR gene correlated with increased or decreased sensitivity to warfarin) from which an average or mean therapeutic or maintenance dose of warfarin is calculated. A subject having a therapeutic or

maintenance dose of warfarin that is below the average therapeutic or maintenance dose of warfarin (e.g., the dose of warfarin that is therapeutic or provides a maintenance level for a subject that has a wild type VKOR gene, i.e., lacking any single nucleotide polymorphisms associated with warfarin sensitivity) is a subject identified as having an increased sensitivity to warfarin. A subject having a therapeutic or maintenance dose of warfarin that is above the average therapeutic or maintenance of warfarin is a subject identified as having a decreased sensitivity to warfarin. An average therapeutic or maintenance dose of warfarin for a subject with a wild type VKOR gene would be readily determined by one skilled in the art.

5

10

15

20

25

30

The nucleotide sequence of the VKOR gene of a subject is determined according to methods standard in the art, and as described in the Examples provided herein. For example, genomic DNA is extracted from cells of a subject and the VKOR gene is located and sequenced according to known protocols. Single nucleotide polymorphisms in the VKOR gene are identified by a comparison of a subject's sequence with the wild type sequence as known in the art (e.g., the reference sequence as shown herein as SEQ ID NO:11).

A SNP in the VKOR gene is correlated with an increased or decreased sensitivity to warfarin by identifying the presence of a SNP or multiple SNPs in the VKOR gene of a subject also identified as having increased or decreased sensitivity to warfarin, i.e., having a maintenance or therapeutic dose of warfarin that is above or below the average dose and performing a statistical analysis of the association of the SNP or SNPs with the increased or decreased sensitivity to warfarin, according to well known methods of statistical analysis. An analysis that identifies a statistical association (e.g., a significant association) between the SNP(s) (genotype) and increased or decreased warfarin sensitivity (phenotype) establishes a correlation between the presence of the SNP(s) in a subject and an increased or decreased sensitivity to warfarin in that subject.

It is contemplated that a combination of factors, including the presence of one or more SNPs in the VKOR gene of a subject, can be correlated with an increased or decreased sensitivity to warfarin in that subject. Such factors can include, but are not limited to cytochrome p450 2C9 polymorphisms, race, age, gender, smoking history and hepatic disease.

Thus, in a further embodiment, the present invention provides a method of identifying a human subject having increased or decreased sensitivity to warfarin,

comprising identifying in the subject the presence of a combination of factors correlated with an increased or decreased sensitivity to warfarin selected from the group consisting of one or more single nucleotide polymorphisms of the VKOR gene, one or more cytochrome p450 2C9 polymorphisms, race, age, gender, smoking history, hepatic disease and any combination of two or more of these factors, wherein the combination of factors is correlated with increased or decreased sensitivity to warfarin, thereby identifying the subject having increased or decreased sensitivity to warfarin.

Further provided herein is a method of identifying a human subject having increased or decreased sensitivity to warfarin, comprising: a) correlating the presence of a combination of factors with an increased or decreased sensitivity to warfarin, wherein the factors are selected from the group consisting of one or more single nucleotide polymorphisms of the VKOR gene, one or more cytochrome p450 2C9 polymorphisms, race, age, gender, smoking history, hepatic disease and any combination of two or more of these factors; and b) detecting the combination of factors of step (a) in the subject, thereby identifying a subject having increased or decreased sensitivity to warfarin.

10

15

20

25

30

In addition, the present invention provides a method of identifying a combination of factors correlated with an increased or decreased sensitivity to warfarin, wherein the factors are selected from the group consisting of one or more single nucleotide polymorphisms of the VKOR gene, one or more cytochrome p450 2C9 polymorphisms, race, age, gender, smoking history, hepatic disease and any combination of two or more of these factors, comprising: a) identifying a subject having increased or decreased sensitivity to warfarin; b) detecting in the subject the presence of a combination of the factors; and c) correlating the presence of the combination of factors of step (b) with the increased or decreased sensitivity to warfarin in the subject, thereby identifying a combination of factors correlated with increased or decreased sensitivity to warfarin.

Also provided herein is a method of correlating a combination of factors, wherein the factors are selected from the group consisting of one or more single nucleotide polymorphisms of the VKOR gene, one or more cytochrome p450 2C9 polymorphisms, race, age, gender, smoking history, hepatic disease and any combination of two or more of these factors, with increased or decreased sensitivity to warfarin, comprising: a) identifying a subject having increased or decreased

sensitivity to warfarin; b) identifying the presence of a combination of the factors in the subject; and c) correlating the combination of the factors of (b) with increased or decreased sensitivity to warfarin in the subject of (a).

5

10

15

20

25

30

A combination of factors as described herein is correlated with an increased or decreased sensitivity to warfarin by identifying the presence of the combination of factors in a subject also identified as having increased or decreased sensitivity to warfarin and performing a statistical analysis of the association of the combination of factors with the increased or decreased sensitivity to warfarin, according to well known methods of statistical analysis. An analysis that identifies a statistical association (e.g., a significant association) between the combination of factors and the warfarin sensitivity phenotype (increased or decreased) establishes a correlation between the presence of the combination of factors in a subject and an increased or decreased sensitivity to warfarin in that subject.

Further provided herein are nucleic acids encoding VKOR and comprising one or more SNPs as described herein. Thus, the present invention further provides nucleic acids comprising, consisting essentially of and/or consisting of the nucleotide sequence as set forth in SEQ ID NOs:12, 13, 14, 15 and 16. The nucleic acids can be present in a vector and the vector can be present in a cell. Further included are proteins encoded by a nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NOs:12, 13, 14, 15 and 16, as well as antibodies that specifically bind a protein encoded by a nucleic acid comprising a nucleotide sequence as set forth in SEQ ID NOs: 12, 13, 14, 15 and 16. The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art.

EXAMPLES

EXAMPLE I CORRELATION BETWEEN SNPS IN VKOR GENE AND INCREASED OR DECREASED SENSITIVITY TO WARFARIN

The most prevalent isoform of the VKOR gene is about 4 kb long, has three exons and encodes an enzyme of 163 amino acids with a mass of 18.4 kDa. In the present study, three mutations vk2581(G>C), vk3294(T>C) and vk4769(G>A), identified as SNPs (heterozygosity ratios of 46.9%, 46.8% and 46.3%, respectively)

were examined for a correlation between their presence in a subject and the maintenance dose of warfarin required to achieve a therapeutically effective response.

1. Selection of subjects

5

10

30

Subjects were obtained from the UNC Coagulation Clinic in the Ambulatory Care Center. Informed consent was obtained by a trained genetic counselor. Subjects not fluent in English were excluded because of the lack of translators and the requirement for consent. To qualify for the study, subjects had warfarin for at least six months, were older than 18 and were followed by the UNC Coagulation clinic at the Ambulatory Care Clinic.

2. Extraction of genomic DNA from whole blood

Genomic DNAs were extracted from the whole blood of subjects using QIAamp DNA Blood Mini Kit (QIAGEN cat#51 104). The DNA concentration was adjusted to 10 ng/µL.

15 3. Sequencing of the genomic DNA samples

Approximately 10 ng of DNA was used for polymerase chain reaction (PCR) assays. The primers used to amplify the VKOR gene were: Exon 1-5' CCAATCGCCGAGTCAGAGG (SEQ ID NO:29) and Exon 1-3' CCCAGTCCCCAGCACTGTCT (SEQ ID NO:30) for the 5'-UTR and Exon 1 region; Exon 2-5' AGGGGAGGATAGGGTCAGTG (SEQ ID NO:31) and Exon 2-3' CCTGTTAGTTACCTCCCACA (SEQ ID NO:32) for the Exon 2 region; and Exon 3-5' ATACGTGCGTAAGCCACCAC (SEQ ID NO:33) and Exon 3-3' ACCCAGATATGCCCCCTTAG (SEQ ID NO:34) for the Exon3 and 3'-UTR region. Automated high throughput capillary electrophoresis DNA sequencing was used for detecting SNPs in the VKOR gene.

4. Detection of known SNPs using real-time PCR

The assay reagents for SNP genotyping were from the Assay-by-Design™ service (Applied Biosystems, cat#4332072). The primers and probes (FAM™ and VIC™ dye-labeled) were designed using Primer Express software and were synthesized in an Applied Biosystems synthesizer. The primer pairs for each SNP are located at the upstream/downstream position of the SNP site and can generate less than 100 bp length of a DNA fragment in the PCR reaction. The FAM™ and VIC™ dye-labeled probes were designed to cover the SNP sites with a length of 15-16 nt. The primer and probe sequences for each VKOR SNP are shown in Table 2.

The 2X TaqMan™ Universal PCR Master Mix, No AmpErase UNG (Applied Biosystems, cat#4324018) was used in the PCR reactions. Forty cycles of real-time PCR were performed in an Opticon II (MJ Research) machine. There was a 10 minute 95°C preheat followed by 92°C for 15 sec, 60°C for 1 min. and then a plate reading. The results were read according to the signal value of FAM and VIC dye.

5. Statistical analysis

5

10

15

20

25

30

The difference of average dose between different genotypes was compared by analysis of variance (ANOVA) using SAS version 8.0 (SAS, Inc., Cary, NC). A two-sided p value less than 0.05 was considered significant. Examination of the distribution and residuals for the average dose of treatment among the SNP groups indicated that a log transformation was necessary to satisfy the assumption of homogeneity of variance.

6. Correlation of SNPs with warfarin dosage

By direct genomic DNA sequencing and SNP real-time PCR detection, five SNPs were identified in the VKOR gene: one in the 5'-UTR, two in intron II, one in the coding region and one in the 3'-UTR (Table 1).

Among these SNPs, the vk563 and vk4501 SNPs allele were carried by only one of the 58 subjects of the study (a triple heterozygous, also carrying the 3'-UTR SNP allele), while the other SNPs were identified in 17-25 heterozygous patients.

Each marker was first analyzed independently. Figure 1A shows that the average warfarin dose for patients with the vk2581 wild type allele was 50.19±3.20 mg per week (n=26), while those heterozygous and homozygous for this polymorphism were 35.19±3.73 (n=17) and 31.14±6.2 mg per week (n=15), respectively. Figure 1B shows that the average warfarin dose for patients with the wild-type vk3294 allele was 25.29±3.05 mg per week (n=11), while patients bearing the heterozygous and homozygous alleles were 41.68±4.92 (n=25) and 47.73±2.75 mg per week (n=22), respectively. Figure 1C shows the average warfarin dose for patients with vk4769 SNP wild type was 35.35±4.01 mg per week (n=27), while patients with the heterozygous and homozygous alleles required 44.48±4.80 (n=19) and 47.56±3.86 mg per week (n=12), respectively. It was also observed that P450 2C9 *3 has a significant effect on warfarin dose (Figure 1D), as previously reported (Joffe et al. (2004) "Warfarin dosing and cytochrome P450 2C9 polymorphisms" *Thromb Haemost* 91:1123-1128). The average warfarin dose for patients with P450

2C9 *1 (wild type) was 43.82±2.75 mg per week (n=50), while patients heterozygous for this allele required 22.4±4.34 mg per week (n=8).

7. Statistical analysis

5

10

15

20

25

30

The association of the Log_e (warfarin average dosage)(LnDose) with the SNPs in the VKOR gene was examined by analysis of variance (ANOVA). SAS was used first to do a repeated procedure in which a series of factors (race, gender, smoking history, hepatic diseases, SNPs at cytochrome P450 2Y9 gene, etc.) were examined to identify factors, excluding VKOR SNPs, which might affect dosage. P450 2C9 *3 was significantly associated with the average dose of warfarin; thus, it was included as a covariant for further analysis. The analysis indicated that the three VKOR SNPs were still significantly associated with weekly warfarin dose (vk2581, P < 0.0001; vk3294, P < 0.0001; and vk4769, P = 0.0044), when the covariance is included.

To specifically test if the three SNPs of VKOR were independently associated with warfarin dosage, the analysis was repeated in which two SNPs in the VKOR gene were included as covariates for the other SNP. The three VKOR SNPs are located within 2 kb distance of one another and are expected to be closely linked. It was clear from inspection that, at least for Caucasians, one haplotype (where A=vk2581 guanine and a=vk2581 cytosine; B=vk3294 thymine and b=vk3924 cytosine; C=vk4769 guanine and c=vk4769 adenine) was AAbbcc and another aaBBCC. The distribution of individual SNPs in patients was found to be significantly correlated with the others (R=0.63-0.87, p<0.001). Indeed, subjects with the haplotype AAbbcc (n=7) required a significantly higher dosage of warfarin (warfarin dosage=48.98±3.93) compared to those patients with haplotype aaBBCC (25.29+3.05; p<0.001).

EXAMPLE 2 SIRNA DESIGN AND SYNTHESIS

siRNAs were selected using an advanced version of a rational design algorithm (Reynolds et al. (2004) "Rational siRNA design for RNA interference" Nature Biotechnology 22:326-330). For each of the 13 genes, four siRNAs duplexes with the highest scores were selected and a BLAST search was conducted using the Human EST database. To minimize the potential for off-target silencing effects, only those sequence targets with more than three mismatches against un-related

sequences were selected (Jackson et al. (2003) "Expression profiling reveals off-target gene regulation by RNAi" *Nat Biotechnol* 2 1:635-7). All duplexes were synthesized in Dharmacon (Lafayette, CO) as 21-mers with UU overhangs using a modified method of 2'-ACE chemistry (Scaringe (2000) "Advanced 5'-silyl-2'-orthoester approach to RNA oligonucleotide synthesis" *Methods Enzymol* 317:3-18) and the AS strand was chemically phosphorylated to ensure maximum activity (Martinez et al. (2002) "Single-stranded antisense siRNAs guide target RNA cleavage in RNAi" *Cell* 110:563-74).

10 **EXAMPLE 3 siRNA transfection**

5

20

25

30

Transfection was essentially as previously described (Harborth et al. (2001) "Identification of essential genes in cultured mammalian cells using small interfering RNAs" *J Cell Sci* 114:4557-65) with minor modifications.

15 **EXAMPLE 4 VKOR activity assay**

siRNA transfected A549 cells were trypsin ized and washed twice with cold PBS. 1.5x10⁷ cells were taken for each VKOR assay. 200 µL buffer D (250 mM Na₂HPO₄-NaH₂PO₄, 500 mM KCl, 20% glycerol and 0.75% CHAPS, pH 7.4) was added to the cell pellet, followed by sonication of the cell lysate. For assays of solubilized microsomes, microsomes were prepared from 2x109 cells as described (Lin et al. (2002) "The putative vitamin K-dependent gamma-glutamyl carboxylase internal propeptide appears to be the propeptide binding site" J Biol Chem 277:28584-91); 10 to 50 μL of solubilized microsomes were used for each assay. Vitamin K epoxide was added to the concentration indicated in the figure legends and DTT was added to 4 mM to initiate the reaction. The reaction mixture was incubated in yellow light at 300C for 30 minutes and stopped by adding 500 μL 0.05 M AgNO₃: isopropanol (5:9). 500 μL hexane was added and the mixture was vortexed vigorously for 1 minute to extract the vitamin K and KO. After 5 minutes centrifugation, the upper organic layer was transferred to a 5-mL brown vial and dried with N₂. 150 μL HPLC buffer, acetonitrile:isopropanol:water (100:7:2), was added to dissolve the vitamin K and KO and the sample was analyzed by HPLC on an A C-18 column (Vydac, cat#218TP54).

EXAMPLE 5. RT-qPCR (reverse transcriptase quantitative PCR)

1x1 0⁶ cells were washed with PBS twice and total RNA was isolated with Trizol reagent according to the manufacturer's protocol (Invitrogen). 1 μg of RNA was digested by RQ1 DNasel (Promega) and heat-inactivated. First strand cDNA was made with M-MLV reverse transcriptase (Invitrogen). cDNAs were mixed with DyNAmo SYBR Green qPCR pre-mix (Finnzymes) and real-time PCR was performed with an Opticon II PCR thermal cycler (MJ Research). The following primers were used:

13124769-5 ¹(F): (TCCAACAG CATATTC GGTTGC, SEQ ID NO: 1); 13124769-3 (R)': (TTCTTGGACCTTCCGGAAACT, SEQ ID NO: 2);

GAPDH-F: (GAAGGTGAAGGTCGGAGTC, SEQ ID NO: 3);

GAPDH-R: (GAAGATG GTGATG GGATTTC, SEQ ID NO: 4);

Lamin-RT-F: (CTAGGTGAGGCCAAGAAGCAA, SEQ ID NO: 5) and

Lamin-RT-R: (CTGTTCCTCTCAGCAGACTGC, SEQ ID NO: 6).

15

20

25

30

10

5

EXAMPLE 6. Over-expression of VKOR in Sf9 insect cell line

The cDNA for the mGC1 1276 coding region was cloned into pVL1392 (Pharmingen), with the HPC4 tag (EDQVDPRLIDGK, SEQ ID NO: 7) at its amino terminus and expressed in Sf9 cells as described (Li et al. (2000) "Identification of a *Drosophila* vitamin K-dependent gamma-glutamyl carboxylase" *J Biol Chem* 275:18291-6).

EXAMPLE 7. Gene selection

The search for the VKOR gene was focused on human chromosome sixteen between markers D16S3131 and D16S419. This region corresponds to chromosome 16 at 50cM-65cM on the genetic map and 26-46.3Mb on the physical map. 190 predicted coding sequences in this region were analyzed by a BLASTX search of the NCBI non-redundant protein database. Those human genes and orthologs from related species with known function were eliminated. Because VKOR appears to be a transmembrane protein (Carlisle & Suttie (1980) "Vitamin K dependent carboxylase: subcellular location of the carboxylase and enzymes involved in vitamin K metabolism in rat liver" *Biochemistry* 19:1 161-7), the remaining genes were translated according to the cDNA sequences in the NCBI database and analyzed with the programs TMHMM and TMAP (Biology WorkBench, San Diego

Supercomputer System) to predict those with transmembrane domains. Thirteen genes predicted to code for integral membrane proteins were chosen for further analysis.

EXAMPLE 8. Cell line screening for VKOR activity

The strategy was to identify a cell line expressing relatively high amounts of VKOR activity and use siRNA to systematically knock down all thirteen candidate genes. siRNA, double stranded RNA of 21-23 nucleotides, has been shown to cause specific RNA degradation in cell culture (Hara et al. (2002) "Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action" Cell 110:177-89; Krichevsky & Kosik (2002) "RNAi functions in cultured mammalian neurons" Proc Natl Acad Sci USA 99:1 1926-9; Burns et al. (2003) "Silencing of the Novel p53 Target Gene Snk/Plk2 Leads to Mitotic Catastrophe in Paclitaxel (Taxol)-Exposed Cells" Mol Cell Biol 23:5556-71). However, application of siRNA for large scale screening in mammalian cells has not previously been reported because of the difficulty in identifying a functional target for a specific mammalian cell mRNA (Holen et al. (2003) "Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway" Nucleic Acids Res 31:2401-7). The development of a rational selection algorithm (Reynolds et al.) for siRNA design increases the probability that a specific siRNA can be developed; furthermore, the probability of success can be increased by pooling four rationally selected siRNAs. Using siRNA to search for previously unidentified genes has the advantage that, even if VKOR activity requires the product of more than one gene for activity, the screen should still be effective because the assay determines the loss of enzymatic activity.

Fifteen cell lines were screened and a human lung carcinoma line, A549, was identified to exhibit sufficient warfarin-sensitive VKOR activity for facile measurement. A second human colorectal adenocarcinoma cell line, HT29, which expressed very little VKOR activity, was used as a reference.

30

5

10

15

20

25

EXAMPLE 9 siRNA inhibition of VKOR activity in A549 cells

Each of the thirteen pools of siRNA were transfected in triplicate into A549 cells and assayed for VKOR activity after 72 hours. One siRNA pool specific for

gene gi: 131 24769 reduced VKOR activity by 64%-70% in eight separate assays (Fig. 2).

One possible reason that VKOR activity was inhibited to only -35% of its initial activity after 72 hours is that the half-life of mammalian proteins varies greatly (from minutes to days) (Zhang et al. (1996) "The major calpain isozymes are longlived proteins. Design of an antisense strategy for calpain depletion in cultured cells" J Biol Chem 271:18825-30; Bohley (1996) "Surface hydrophobicity and intracellular degradation of proteins" Biol Chem 377:425-35; Dice & Goldberg (1975) "Relationship between in vivo degradative rates and isoelectric points of proteins" Proc Natl Acad Sci USA 72:3893-7), and mRNA translation is being inhibited, not enzyme activity. Therefore, the cells were carried through eleven days and their VKOR activity followed. Figure 3 shows that the level of mRNA for gi: 13124769 mRNA decreased rapidly to about 20% of normal while VKOR activity decreased continuously during this time period. This reduction in activity is not a general effect of the siRNA or the result of cell death because the level of VKD carboxylase activity and lamin A/C mRNA remained constant. Furthermore, the level of gi: 1321 24769 mRNA is four fold lower in HT-29 cells, which have low VKOR activity, than in A549 cells that exhibit high VKOR activity. These data indicate that gi: 131 24769 corresponds to the VKOR gene.

20

25

30

15

5

10

EXAMPLE 10 Identification of gene encoding VKOR

The gene, IMAGE 3455200 (gi: 131 24769, **SEQ** ID NO: 8), identified herein to encode VKOR, maps to human chromosome 16p1 1.2, mouse chromosome 7F3, and rat chromosome 1:180.8 Mb. There are 338 cDNA clones in the NCBI database representing seven different splicing patterns (NCBI AceView program). These are composed of all or part of two to four exons. Among these, the most prevalent isoform, mGC1 1276, has three exons and is expressed at high levels in lung and liver cells. This three exon transcript (**SEQ** ID NO: 9) encodes a predicted protein of 163 amino acids with a mass of 18.2 kDa (**SEQ** ID NO: 10). It is a putative N-myristylated endoplasmic reticulum protein with one to three transmembrane domains, depending upon the program used for prediction. It has seven cysteine residues, which is consistent with observations that the enzymatic activity is dependent upon thiol reagents (Thijssen et al. (1994) "Microsomal lipoamide reductase provides vitamin K epoxide reductase with reducing equivalents" *Biochem*

J 297:277-80). Five of the seven cysteines are conserved among human, mice, rat, zebrafish, *Xenopus* and *Anopheles*.

To confirm that the VKOR gene had been identified, the most prevalent form of the enzyme (three exons) was expressed in *Spodoptera frugiperda*, Sf9 cells. Sf9 cells have no measurable VKOR activity but exhibit warfarin sensitive activity when transfected with mGC1 1276 cDNA (Figure 4). VKOR activity is observed from constructs with an epitope tag at either their amino or carboxyl terminus. This tag should assist in the purification of VKOR.

VKOR should exhibit warfarin sensitivity, therefore microsomes were made from Sf9 cells expressing VKOR and tested for warfarin sensitivity. The VKOR activity is warfarin-sensitive (Figure 5).

In summary, the present invention provides the first example of using siRNA in mammalian cells to identify an unknown gene. The identity of the VKOR gene was confirmed by its expression in insect cells. The VKOR gene encodes several isoforms. It will be important to characterize the activity and expression pattern of each isoform. Millions of people world-wide utilize warfarin to inhibit coagulation; therefore it is important to further characterize VKOR as it can lead to more accurate dosing or design of safer, more effective, anti-coagulants.

EXAMPLE 11 Studies on Carboxylation of Factor X

5

10

15

20

25

30

Post translational modification of glutamic acid to gamma carboxy glutamic acid is required for the activity of a number of proteins, most of them related to coagulation. Of these, several have become useful tools for treating various bleeding disorders. For example, recombinant human factor IX now accounts for most of the factor IX used for treating hemophilia B patients. In addition factor Vila is widely used for treating patients with auto-antibodies (inhibitors) to either factor IX or factor VIII and for bleeding that results from general trauma. Another Gla protein, activated protein C, is used for the treatment of sepsis. These vitamin K dependent proteins can be produced in cell culture utilizing cells such as Chinese hamster ovary (CHO), baby hamster kidney cells (BHK) and human embryo kidney cells (HEK 293). A common problem for all of these cell lines is that, if significant overproduction is achieved, then a significant fraction of the recombinant protein produced is undercarboxylated. Originally it was thought that the limiting factor in carboxylation was the vitamin K dependent gamma glutamyl carboxylase. However, after its

purification and cloning, it was reported that co-expression of factor IX and carboxylase failed to improve the degree of carboxylation of factor IX in a CHO cell line over-expressing human factor IX. The percentage of carboxylated factor X in the HEK 293 cell line can be increased by reducing the affinity of the factor X's propeptide. However, if the level of expression of factor X bearing the prothrombin propeptide is sufficiently high, the level of expression still exceeds the ability of the cell to achieve complete post-translational modification. The present study demonstrates that co-expressing vitamin K epoxide reductase in a cell line over-expressing factor X (with prothrombin propeptide) to the extent that only about 50% of the factor X is carboxylated, results in its near complete carboxylation.

5

10

15

20

Materials. All restriction enzymes were from New England Biolabs. *Pfu* DNA polymerase was obtained from Stratagene. Lipofectamine, hygromycin B and pcDNA3.1/Hygro vector were from Invitrogen. Trypsin-EDTA, fetal bovine serum and Dulbecco's phosphate buffered saline were from Sigma. Antibiotic-antimycotic, G41.8 (Geneticin) and DMEM F-12 were from GIBCO. Puromycin and the pIRESpuro3 vector were from BD Biosciences. Human factor X was from Enzyme Research Laboratories. Goat anti-human factor X (affinity-purified IgG) and rabbit anti-human factor X (IgG-peroxidase conjugate) were from Affinity Biologicals Corporation. Peroxidase-conjugated AffiniPure rabbit anti-goat IgG was from Jackson ImmunoResearch Laboratories INC. Q-sepharose™ Fast Flow was obtained from Amersham Pharmacia Biotech. The calcium-dependent monoclonal human FX antibody [MoAb, 4G3] was obtained from Dr. Harold James, University of Texas, Tyler, TX. Bio-Scale CHT5-I Hydroxyapatite was from Bio-Rad Laboratories.

Construction of mammalian cell expression vector containing VKOR.

Two primers were designed to amplify the VKOR cDNA. *Primeri:* 5'
CCGG,AAr r CGCCGCCACCA TGGGCAGCACCTGGGGAGCCCTGGCTGGGT

GCGG (SEQ ID NO:35) introduced a Kozak sequence (underlined) and a 5' Eco R I site. *Primer2:* 5'-CGGGCGGCCGCTCAGTGCCTCTTAGCCTTGCC (SEQ ID NO:36) introduced a *Not*\site at the 3' terminus of the cDNA. After PCR

amplification and digestion with EcoRI and *Not*\site, the PCR product was inserted into pIRESpuro3, which has a CMV virus major immediate early promoter/enhancer and confers puromycin resistance upon the transformed cells.

Construction of mammalian cell expression vector containing HGC. .

Two primers were designed to amplify HGC cDNA. *Primer3:* 5'-

CGCGGA 7 CCGCCGCCACCA TGGCGGTGTCTGCCGGGTCCGCGGGACCTC
GCCC (SEQ ID NO:37) introduced a Bam H 1 site and a Kozak sequence
(underlined) at the 5' terminus and *Primer4:* 5'CGGGCGGCCGCTCAGAACTCTGAGTGGACAGGATCAGGATTTGACTC (SEQ ID NO:38) introduced a Notl site at the 3' terminus. After digestion with *BamHI* and *Not*\, the PCR product was inserted into pcDNA3.1/Hygro, which has a CMV

promoter and confers hygromycin resistance upon the transformed cell.

5

10

15

20

25

30

Stable cell lines expressing Human VKOR. A cell line expressing mutated factor X (HEK293-FXI16L) that produces factor X (half of which is fully carboxylated) at about 10-12 mg per liter was used. HEK293-FXI16L was prepared as described (Camire, 2000) and was selected with the neomycin analogue, G418. HEK293-FXI16L was transfected with the plasmid plRESpuro3-VKOR using lipofectin (Invitrogen) according to the manufacturer's protocol. Selection was done with 450 μ I/ml G418 and 1.75 μ I/ml puromycin. Resistant colonies were picked and screened for VKOR activity. The colony with the highest VKOR activity was selected for further analysis.

Stable cell lines expressing Human GGCX. HEK293-FXI16L was transfected, using lipofectin, with the Plasmid pcDNA3.1/Hygro-HGGCX. Transformed colonies were selected with 300 μ g/ml of hygromycin and 450 μ g/ml of G418 and 18 clones were selected for assay of GGCX activity with the small peptide substrate FLEEL (SEQ ID NO:39). The colony with the highest GGCX activity was selected for further studies.

Stable cell lines co-expressing Human VKOR and HGC. To obtain a HEK293-FXI16L cell line over-expressing both VKOR and GGCX, HEK293-FXI16L-VKOR was transfected with the plasmid pcDNA3.1/Hygro-HGGCX and 18 resistant colonies were selected for analysis. HEK293-FXI16L-HGGCX was also transfected with HEK293-FXI16L-VKOR and from this selection, only one resistant colony was obtained. HEK293-FXI16L was transfected with both pIRESpuro3-VKOR and pcDNA3.1/Hygro-HGC, yielding 10 resistant colonies. The 29 isolated colonies were then assayed for both VKOR and GGCX activity. The clone with the highest levels of both activities was selected for further analysis.

Level of FXM 6L production by each cell line. For the sandwich ELISA antibody assay, goat anti-human Factor X (Affinity-Purified IgG) IgG-Peroxidase

Conjugate was used as the capture antibody and rabbit anti-human Factor X was used as the detecting antibody. P-OD was used as the substrate for color development. Human factor X was used to make a standard curve. HEK293-FXI16L₁HEK293-FXI16L-VKOR, HEK293-FXI16L-HGGCX, and HEK293-FXI16L-VKOR-HGGCX were grown in T25 flasks until they were confluent, then the medium was replaced with serum-free medium containing vitamin K1. The serum-free medium was changed at 12 hours and after 24 hours the conditioned medium was collected and analyzed for FXI16L expression.

5

10

15

20

25

30

Expression of FXH 6L from each cell line in roller bottles. The 4 stable cell lines, HEK293-FXI16L, HEK293-FXI16L-VKOR, HEK293-FXI16L-HGGCX, and HEK293-FXI16L-VKOR-HGGCX, were grown in T-225 flasks to confluency and transferred into roller bottles. At 24 and 36 hours the medium was replaced with serum-free medium containing Vitamin K1. The medium was collected from each cell line every 24 hours until a total of three liters was obtained.

Purification of FXM6L from each cell line. The conditioned medium was thawed and passed over a 0.45 μm HVLP filter. EDTA was then added to 5 mM and 0.25 ml of a 100X stock protease inhibitor cocktail was added per liter of conditioned medium. The conditioned media was loaded on a Q-sepharose™ Fast Flow column equilibrated with 20 mM Tris (pH 7.2)/60 mM NaCI/5 mM EDTA and the column was washed with the same buffer until the baseline was steady. 20 mM Tris (pH 7.2)/700 mM NaCl was used to elute FXI16L from the column. The protein containing fractions were pooled and dialyzed into 8 mM Tris(pH 7.4)/60 mM NaCl. Each sample was made 2mM CaCl₂ and applied to an immunoaffinity (4G3) column that had been equilibrated with 8 mM Tris(pH 7.4)/60 mM NaCI/2 mM CaCI₂. After washing with the same buffer, eluted factor X was eluted with a linear gradient of 0-8mM EDTA in the same buffer. The fractions containing protein were pooled and dialyzed overnight into 1mM Na₂HPO₄/NaH₂PO₄(pH 6.8). The dialyzed samples were applied to a Bio-Scale CHT5-I hydroxyapatite column pre-equilibrated with the starting buffer. A linear gradient of 1 to 400 mM Na₂HPO₄/NaH₂PO₄(pH 6.8) was used to separate carboxylated and non-carboxylated factor X.

Western blotting of sample post Q-sepharose and SDS-PAGE of sample post 4G3. After purification by using Q-sepharose™ Fast Flow, fractions from four cell lines (HEK293-FXI16L, HEK293-FXI16L-VKOR, HEK293-FXI16L-HGC, and HEK293-VKOR-HGC) were identified by Western blotting. Goat anti-human factor X

(Affinity-Purified IgG) was used as first antibody, peroxidase-conjugated affinipure rabbit anti-goat IgG was used as second antibody and ECL substrates were used for developing. After purification by affinity antibody chromatography, some samples were checked for purity.

Analysis of mRNA expression levels for VKOR, HGC and FXM6L among each cell line using real-time Q-PCR. A total of 1X10⁶ cells for each cell line (HEK293-FXI16L, HEK293-FXI16L-VKOR, HEK293-FXI16L-HGC and HEK293-FXI16L-VKOR-HGC) were seeded in a 12 well plate. Total RNA was extracted from each cell line.

5

10

15

20

25

30

VKOR & HGC activity for each cell line (HEK293-FXI16L, HEK293-FXI16L-VKOR, HEK293-FXI16L-HGC and HEK293-FXI16L-VKOR-HGC). pIRESpuro3-VKOR was transfected into HEK293-FXI16L and selected with 1.75 μg/ml puromycin and 450 μg/ml G418. Eighteen single clones were screened for VKOR activity. A single clone that contained a very high level of VKOR activity was kept as a stable cell line, HEK293-FXI16L-VKOR. After pcDNA3.1/Hygro-HGC was transfected into HEK293-FXI16L, transfectants can be selected at 300 μg/ml hygromycin and 450 μg/ml G418. A total of 18 single clones were screened for HGC activity. A single clone that contained a very high level of HGC activity was kept as a stable cell line, HEK293-FXI16L-HGC.

Three methods were used to make the stable cell line that contains a high level of both VKOR and HGC activity. A total of 29 single clones were screened for VKOR and HGC activity. A single clone that contained a high level of both VKOR and HGC activity was kept as a stable cell line HEK293-FXI16L-VKOR-HGC.

FXM6L production in each of the cell line. HEK293-FXI16L-VKOR, HEK293-FXI16L-HGC and HEK293-FXI16L-VKOR-HGC all expressed FXI16L at levels at least as high as the host cell. This experiment was done for comparative purposes in 25 ml T-flasks and the levels of expression were lower than when the protein was prepared in roller bottles. These experiments show that selecting cells over-producing carboxylase or VKOR did not result in loss of factor X expression

Three liters of medium were collected from cells grown in roller bottles and the factor X from each cell line was purified by Q-sepharose and factor X antibody affinity chromatography as described.

Analyzing carboxylation ratio alteration of rFXI16L among each cell line by using hydroxyapatite chromatography. After being dialyzed to 1mM

 Na_2HPO_4/NaH_2PO_4 (pH 6.8), fractions post 4G3 were applied to a Bio-Scale CHT5-I Hydroxyapatite column. A linear gradient of 0-100% of 400 mM $Na_2HPO_4ZNaH_2PO_4$ (pH 6.8) was used to elute column. A total of two pools can be obtained from each sample. The first pool is composed of uncarboxylated human FXI 16L, the second pool is composed of fully γ -carboxylated human FXI 16L. For each cell line, the amount of fully γ -carboxylated human FXI16L is divided by total amount of human FXM 6L, carboxylated to obtain a ratio. The carboxylated ratio for host cell line HEK293-FXI16L is 52% [4.5 mg/ (4.13 mg + 4.5 mg) = 52%]. The carboxylated ratio for the other three cell lines (HEK293-FXI16L-VKOR, HEK293-FXI16L-HGC and HEK293-FXI16L-VKOR-HGC) is 92% [10.5 mg/ (0.9 mg + 10.5 mg) = 92%], 57% [6.4 mg/ (4.78 mg + 6.4 mg) = 57%] and -100% [2.4 mg/2.4 mg= 100%], respectively.

5

10

15

20

25

30

The big difference in carboxylation ratios between cell lines HEK293-FXI16L and HEK293-FXI16L-VKOR indicates that VKOR improves the γ-carboxylation reaction *in vivo* dramatically. The smaller difference in carboxylation ratios between cell lines HEK293-FXI16L and HEK293-FXI16L-HGC indicates that although HGC catalyzes the carboxylation reaction, HGC is not the limiting factor of the carboxylation reaction *in vivo*, and it can only improves the carboxylation reaction *in vivo* a little. A carboxylation ratio of almost 100% in the cell line HEK293-FXI16L-VKOR-HGC indicates that VKOR can be the limiting factor of the carboxylation reaction *in vivo*. VKOR not only reduces vitamin K epoxide (KO) to vitamin K, but it also reduces vitamin K to reduced vitamin K (KH₂). Without the second function, which can reduce K to KH₂, vitamin K can not be reused in the carboxylation system *in vivo*.

In summary, this study demonstrates that a nucleic acid encoding vitamin K epoxide reductase (VKOR), when transfected into cells that have been transfected with and are producing a vitamin K dependent protein, such as factor X, results in the production of a vitamin K dependent protein with increased carboxylation, thereby increasing the amount of active vitamin K dependent protein in the cell.

To do these experiments, a human embryo kidney (HEK) cell line expressing about 12-14 mg per liter of a mutant factor X (with a prothrombin propeptide) was used. This factor X had been modified by replacing its propeptide with the propeptide of prothrombin (Camire et al. "Enhanced gamma-carboxylation of

recombinant factor X using a chimeric construct containing the prothrombin propeptide" *Biochemistry* 39(46): 14322-9 (2000)) and was over-producing coagulation factor X to such a great extent that only -50% of the factor X was carboxylated.

5

10

15

20

25

30

This cell line making about 12-14 mg per liter of factor X was used for the starting and control cells. At this level of expression, the HEK cells could not completely carboxylate the factor X, even with the prothrombin propeptide instead of the normal factor X propeptide. The HEK 293 cells expressing factor X at about 12-14 mg per liter were transfected with 1) vitamin K epoxide reductase (VKOR), 2) vitamin K gamma glutamyl carboxylase, or 3) both vitamin K epoxide reductase and vitamin K gamma glutamyl carboxylase (VKGC). Several cell lines were selected that were shown to produce a large amount of carboxylase, VKOR or both VKOR and carboxylase. In each of these selected cell lines, the level of expression of factor X was at least as high as the starting cell line (within experimental limits). The results of these experiments are shown in Figures 6A-D. The comparison in all cases is with the original factor X expressing cell line, which is expressing factor X that is about 50% carboxylated.

Three liters of media were collected from each of the experimental cell lines and the factor X was purified over QAE sephadex, a factor X antibody column and finally a hydroxylapatite column. The figures shown are for the final hydroxylapatite columns. It has previously been shown that the first peak is uncarboxylated factor X and the second peak is fully carboxylated factor X (Camire et al.). Figure 6A shows results of carboxylation of factor X in the original cell line without exogenous VKOR or VKGC. The second peak (centered around fraction 26) is the fully carboxylated peak. By area, 52% of factor X is fully carboxylated. Figure 6B shows that adding carboxylase alone to the cell line expressing factor X did not significantly increase the percentage of carboxylated factor X. The extent of full carboxylation increases marginally to 57% fully carboxylated. In this case the fully carboxylated peak is centered around fraction 25. Figure 6C shows that cells transfected with VKOR alone exhibited dramatically increased levels of fully carboxylated factor X. In this case the fully carboxylated peak (centered around fraction 26) and the extent of full carboxylation is increased to 92% of the total factor X made. Figure 6D shows that when cells are transfected with both VKOR and VKGC, 100% of the factor X is fully carboxylated. In this situation, expression of the VKOR gene is the main

determinant of complete carboxylation of a vitamin K dependent protein. In other situations where the turnover of the substrate is slower, i.e., when the propeptide binds much tighter than the factor X with the prothrombin propeptide and overexpression of the factor X is very high, it is likely that expression of the carboxylase gene will also be limiting. These results can be extended to all vitamin K dependent proteins, in addition to factor X.

5

10

15

These results demonstrate that VKOR (and probably VKGC) facilitates the production of fully carboxylated vitamin K dependent proteins. This provides a mechanism to increase the efficiency of producing fully active, modified proteins.

The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

All publications, patent applications, patents, patent publications and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented.

Table 1. Five SNPs examined in VKOR gene

SNPs	posit	AA change	Heterozygous ratio
	ion		
vk563	5'-	N/A	1/58
G>A	UTR		
(SEQ ID			·
NO:15)			
vk2581 G>C	Intro	N/A	17/58
(SEQ ID	n2		
NO:12)			
vk3294 T>C	Intro	N/A	25/58
(SEQ ID	n2		
NO:13)			
vk4501 C>T	Ехо	Leu120Leu	1/58
(SEQ ID	n3		
NO:16			
vk4769 G>A	3'-	N/A	19/58
(SEQ ID	UTR	,	
NO:14			

Fable 2.

SNPs	VIC Probe Sequence	FAM Probe Sequence	Forward Primer	Reverse Primer
vk2581	TCATCACGGAGCGTC	TCATCACCGAGCGTC	GGTGATCCACACAGCTGACA	CCTGTTAGTTACCTCCCCACATC (SEQ ID NO:20)
G>C	(SEQ ID NO:17)	(SEQ ID NO:18)	(SEQ ID NO:19)	
vk3294	vk3294 CCAGGACCATGGTGC	CCAGGACCGTGGTGC	GCTCCAGAGAGGCATCACT	GCCAAGTCTGAACCATGTGTCA
T>C	T>C (SEQ ID NO:21)	(SEQ ID NO:22)	(SEQ ID NO:23)	(SEQ ID NO:24)
vk4769	ATACCCGCACATGAC	CATACCCACACATGAC	GTCCCTAGAAGGCCCTAGATGT	GTGTGGCACATTTGGTCCATT
G>A	(SEQ ID NO:25)	(SEQ ID NO:26)	(SEQ ID NO:27)	(SEQ ID NO:28)

THAT WHICH IS CLAIMED IS:

1. A method of increasing the amount of carboxylated vitamin K dependent protein in a cell, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively.

- 2. A method of increasing the carboxylation of a vitamin K dependent protein, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively.
- 3. A method of producing a carboxylated vitamin K dependent protein in a cell, comprising introducing into a cell that expresses a first nucleic acid encoding a vitamin K dependent protein a second heterologous nucleic acid encoding vitamin K epoxide reductase (VKOR) under conditions whereby said first and second nucleic acids are expressed to produce a vitamin K dependent protein and VKOR, respectively, wherein the amount of carboxylated vitamin K dependent protein produced in the cell in the presence of VKOR is increased as compared to the amount of carboxylated vitamin K dependent protein produced in the cell in the absence of VKOR.
- 4. The method of any of claims 1-3, wherein the cell further comprises a third nucleic acid encoding a vitamin K dependent carboxylase.
- 5. The method of any of claims 1-4, wherein said vitamin K dependent protein is selected from the group consisting of Factor VII, Factor IX, Factor X, Protein C, Protein S, prothrombin and any combination thereof.

- 6. The method of any of claims 1-5, wherein said cell is a plant cell.
- 7. The method of any of claims 1-5, wherein said cell is an insect cell.
- 8. The method of any of claims 1-5, wherein said cell is an animal cell.
- 9. The method of any of claims 1-8, wherein said vitamin K-dependent carboxylase is bovine vitamin K dependent carboxylase.
- 10. The method of any of claims 1-8, wherein said vitamin K-dependent carboxylase is vitamin K gamma glutamyl carboxylase (VKGC).

Figures 1A-D

Figure 2

Figure 3

Figure 4

Figure 5

Fig 6A

Fig 6B

Fig 6C

Fig 6D

SEQUENCE LISTING

<110>	University of North Carolina-Chapel Hill Stafford, Darrel	
<120>	METHODS AND COMPOSITIONS FOR PRODUCING ACTIVE VITAMIN K DEPEND PROTEINS	ENT
<130>	5470.401WO2	
<160>	39	
<170>	Patentln version 3.3	
<210>	1 .	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide primer	
<400>	1	
tccaaca	agca tattcggttg c	21
	·	
<210>	2	
<211>	21 .	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide primer	
<400>	. 2	
	gacc ttccggaaac t	21
212		
<210>	3	
<211> <212>	19 DNA	
<213>	Artificial sequence	
<220>		•
<223>	Synthetic oligonucleotide primer	
<400>	3	
	gaag gtcggagtc	19
<210>	4	
<211>	2 0	
	DNA Artificial sequence	
~~13>	wrettrerar seducines	
<220>		
<223>	Synthetic oligonucleotide primer	
<400>	4	
-aadatc	ggtg atgggatttc	20

<210>	5				•	•	
<211>	21						
	DNA						
<213>	Art	ificial seq	uence				
<220>							
<223>	Syn	thetic olig	onucleotide	primer			
400	_					•	
<400>	5						
ctaggtg	agg	ccaagaagca	а				2
<210>	6						
<211>	21						
	DNA						
		ificial seq	uence				
		-					
<220>							
<223>	Synt	thetic oligo	onucleotide	primer			
				•			
<400>	6						
ctgttcc	tct	cagcagactg	С				2:
.230.	7						
<210><211>	7 12			,			
	PRT	ificial com					
<213>	AT C.	ificial seq	dence			•	
<220>							
	HPC4	tag seque	nce				
		-					
<400>	7						
	GIr	n Val Asp Pi	ro Arg Leu	He Asp Gly	Lys		
1		5		10			
010	•						
	8						
	3915)					
	DNA	anniona					
<213>	HOME	sapiens					
<400>	8	•					
	tcc	acagacacct	садасадаас	ctggagataa	tgggcagcac	ctgggggagc	6 (
		3 333 3	333 33	33 3	-5555	55555-5-	
cctggct	ggg	tgcggctcgc	tetttgeetg	acgggcttag	tgctctcgct	ctacqcqctq	120
						5 5 5	
cacgtga	agg	cggcgcgcgc	ccgggaccgg	gattac ogcg	cgctctgcga	cgtgggcacc	180
gccatca	gct	gttcgcgcgt	cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	240
ctcggag	cag	ggcggccagg	atgccagatg	attattctgg	agtctgggat	cggtgtgccc	300
ggggaac	gga	cacggggctg	gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	360
	.						
gcgatac	rgg	tgttcgaaat	aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	420
astt stt		agga at cass	catassttas	ataaaaaaa	2+22000+00	000000000	400
yactatt	ccg	gggactcgca	cycyaattgg	argecaagga	ataacggtga	ccaggaaagg	480

cggggaggca	ggatggcggt	agagattgac	gatggtctca	aggacggcgc	gcaggtgaag	540
gggggtgttg	gcgatggctg	· cgcccaggaa	caaggtggcc	cggtctggct	gtgcgtgatg	600
gccaggcgtt	agcataatga	cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	660
gattctgggg	tccagggcaa	agataatctg	ccccgactc	ccagtctctg	atgcaaaacc	720
gagtgaaccg	ttataccagc	cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	780
cccactcctg	taatcccagc	actttgggag	gccgaggcgg	atggatcact	tgaagt σ agg	840
agttgaccag	cctggccaac	atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	900
cgggcgctat	ggcgggtgcc	ttaatcccag	ctactcgggg	gggctaaggc	aggagaatcg	960
cttgaacccg	ggaggcggag	gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	1020
ggccagagtg	agactccgtc	tcaaaaaaaa	aaaaaaaaa	aaaaaaaag	agacttactt	1080
aaggtctaag	atgaaaagca	gggcctacgg	agtagccacg	teegggeetg	gtctggggag	1140
aggggaggat	agggtcagtg	acatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	1200
agatcatcga	cccttggact	aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	1260
tcttggaaat	cacctttctc	gggcagggtc	caaggcactg	ggttgacagt	cctaacctgg	1320
ttccacccca	ccccacccct	ctgccaggtg	gggcaggggt	ttcgggctgg	tggagcatgt	1380
gctgggacag	gacagcatcc	tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	1440
actacagcta	ttgttaggtg	agtggctccg	cccctccct	gcccgc occg	ccccgcccct	1500
catccccctt	ggtcagctca	gccccactcc	atgcaatctt	ggtgatccac	acagctgaca	1560
gccagctagc	tgctcatcac	ggagcgtcct	gcgggtgggg	atgtggggag	gtaactaaca	1620
ggagtctttt	aattggttta	agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	1680
gtccccaggt	tttttgtttg	ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	1740
gaggtctagg	atgcccttag	tgtgcactgg	cgtgatctca	gttcatggca	acctctgcct	1800
ccctgcccaa	gggatcctcc	caccttagcc	tcccaagcag	ctggaatcac	aggcgtgcac	1860
cactatgccc	agctaatttt	tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	1920
ttgcccaggc	tggtctcaag	caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	1980
acaggcgtga	gctaccatgc	cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	2040
cctttttaag	gagaagctga	gcatgagcta	tσttttgtct	catttagtgc	tcagcaggaa	2100
aatttgtatc	tagtcccata	agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	2160
ccccaggcct	tgctgatgcc	atatgccgga	gatgagacta	tccattacca	cccttcccag	2220
caggctccca	cgctcccttt	gagtcaccct	tcccagctcc	agagaaggca	tcactgaggg	. 2280
aggcccagca	c o atggtcct	ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	2340

attttattgc	tcagaacttt	ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	2400
ttggagggga	cctgttgaag	ccttctttt	tttttttt	aagaaataat	cttgctctgt	2460
tgcccaggct	ggagtgcagt	ggcacaatca	tagctcactg	taacctggct	caagcgatcc	252 0
tcctgagtag	ctaggactat	aggcatgtca	ctgcacccag	ctaattttt	tttttttt	258 0
tttttttt	ttgcgacata	gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	2640
ttggctcact	gcaacctctg	cctcccgggt	tcaagcaatt	tteσtgeete	agcctcctga	2700
gtagctggga	ctacaggcgc	gtgtcaccac	gccσagctaa	tttttgtatt	tttagtggag	2760
acagggtttc	accatgttgg	ctaggatggt	ctcaatctct	tgacctggtg	atccatccgc	2820
cttggcctcc	caaagtgcta	ggattacagg	cgtgagtcaa	cctcaccggg	cattttttt	2880
ttgagacgaa	gtcttgctct	tgctgcccaa	gctggaatgt	ggtggcatga	tctcggctca	2940
ctgcaacctc	cacctcctag	gttcaagcga	ttctccacct	tagcctcccc	agcagctggg	3000
attacaggtg	cccatcaaca	cacccggcta	atttttgtat	ttttattaga	gatggggttt	3060
tgccatgttg	gccaggctgc	tctcgaactc	ctaacctcag	gtgatccacc	$cc\sigma$ attggcc	3120
tcccaaaata	ctgggattac	aggcatgagc	caccgtgccc	agctgaattt	ctaaattttt	3180
gatagagatc	gggtctttct	atgttgccca	agctggtctt	gaactcctag	cctaaagcag	3240
tcttcccacc	teggeeteçe	agagtgtttg	gaatacgtgc	gtaagccacc	acatetgeee	3300
tggagcctct	tgttttågag	accettecca	gcagctcctg	gcatctaggt	agtgcagtga	3360
catcatggag	tgttcgggag	gtggccagtg	cctgaagccc	acaccggacc	ctcttctgcc	3420
ttgcaggttg	cctgcggaca	cgctgggcct	ctgtcctgat	gctgctgagc	tccctggtgt	3480
ctctcgctgg	ttctgtctac	ctggcctgga.	tcctgttctt	cgtgctctat	gatttctgca	3540
ttgtttgtat	caccacctat	gctatcaacg	tgagcctgat	gtggctcagt	ttccggaagg	3600
tccaagaacc	ccagggcaag	gctaagaggc	actgagccct	caacccaagc	caggctgacc	3660
tcatctgctt	tgctttggca	tgtgagcctt	gcctaagggg	gcatatctgg	gtccctagaa	3720
ggccctagat	gtggggcttc	tagattaccc	cctcctcctg	ccatacccgc	acatgacaat	3780
ggaccaaatg	tgccacacgc	tcgctctttt	ttacacccag	tgcctctgac	tctgtcccca	3840
tgggctggtc	tccaaagctc	tttccattgc	ccagggaggg	aaggttctga	gcaataaagt	3900
ttcttagatc	aatca					3915

<210> 9

<211> 806 <212> DNA <213> Homo sapiens

<220> <221> CDS (48).. (536) <400> ggcacgaggg ttttctccgc gggcgcctcg ggcggaacct ggagata atg ggc age Met GIy Ser acc tgg ggg age ect ggc tgg gtg egg etc get ctt tgc ctg acg ggc 104 Thr Trp GIy Ser Pro GIy Trp Val Arg Leu Ala Leu Cys Leu Thr GIy 10 tta gtg etc teg etc tac gcg ctg cac gtg aag gcg gcg cgc gcc egg 152 Leu VaI Leu Ser Leu Tyr Ala Leu His VaI Lys Ala Ala Arg Ala Arg 2.0 25 3.0 gac egg gat tac ege geg etc tgc gac gtg ggc acc gcc ate age tgt 200 Asp Arg Asp Tyr Arg Ala Leu Cys Asp VaI GIy Thr Ala lie Ser Cys 45 tcg cgc gtc ttc tec tec agg tgg ggc agg ggt ttc ggg ctg gtg gag 248 Ser Arg Val Phe Ser Ser Arg Trp Gly Arg Gly Phe Gly Leu Val Glu cat gtg ctg gga cag gac age ate etc aat caa tec aac age ata ttc 296 His Val Leu Gly Gln Asp Ser lie Leu Asn Gln Ser Asn Ser lie Phe 75 ggt tgc ate ttc tac aca eta cag eta ttg tta ggt tge ctg egg aca 344 GIy Cys lie Phe Tyr Thr Leu GIn Leu Leu GIy Cys Leu Arg Thr 9.0 cgc tgg gcc tct gtc ctg atg ctg ctg age tec ctg gtg tct etc get 392 Arg Trp Ala Ser VaI Leu Met Leu Leu Ser Ser Leu VaI Ser Leu Ala 100 105 110 ggt tot gto tac otg gco tgg ate otg tto tto gtg etc tat gat tto 440 GIy Ser VaI Tyr Leu Ala Trp lie Leu Phe Phe VaI Leu Tyr Asp Phe 120 125 tgc att gtt tgt ate acc acc tat get ate aac gtg age ctg atg tgg 488 Cys lie VaI Cys lie Thr Thr Tyr Ala lie Asn VaI Ser Leu Met Trp 135 140 etc agt ttc egg aag gtc caa gaa ccc cag ggc aag get aag agg cac 536 Leu Ser Phe Arg Lys VaI GIn GIu Pro Gin GIy Lys Ala Lys Arg His 155 tgagccctca acccaagcca ggctgacctc atctgctttg ctttggcatg tgagccttgc 596 ctaagggggc atatctgggt ccctagaagg ccctagatgt ggggcttcta gattaccccc 656 tcctcctgcc atacccgcac atgacaatgg accaaatgtg ccacacgctc gctctttttt 716 acacccagtg cetetgacte tgtecceatg ggetggtete caaagetett tecattgece 776 agggagggaa ggttctgagc aataaagttt 806

<210> 10 <211> 163 <212> PRT <213> Homo sapiens <400> 10 Met GIy Ser Thr Trp GIy Ser Pro GIy Trp Val Arg Leu Ala Leu Cys Leu Thr GIy Leu VaI Leu Ser Leu Tyr Ala Leu His VaI Lys Ala Ala 25 Arg Ala Arg Asp Arg Asp Tyr Arg Ala Leu Cys Asp VaI GIy Thr Ala 4.0 lie Ser Cys Ser Arg VaI Phe Ser Ser Arg Trp GIy Arg GIy Phe GIy 55 Leu VaI GIu His VaI Leu GIy GIn Asp Ser lie Leu Asn GIn Ser Asn Ser lie Phe GIy Cys lie Phe Tyr Thr Leu Gin Leu Leu GIy Cys Leu Arg Thr Arg Trp Ala Ser Val Leu Met Leu Leu Ser Ser Leu Val Ser Leu Ala GIy Ser VaI Tyr Leu Ala Trp lie Leu Phe Phe VaI Leu

Tyr Asp Phe Cys lie VaI Cys lie Thr Thr Tyr Ala lie Asn VaI Ser 130 135

Leu Met Trp Leu Ser Phe Arg Lys Val Gin Glu Pro Gln Gly Lys Ala 150 155

Lys Arg His

<210> 11 <211> 5915 <213> Homo sapiens

caccatcaga tgggacgtct gtgaaggaga gacctcatct ggcccacagc ttggaaagga gagactgact gttgagttga tgcaagctca ggtgttgcca ggcgggcgcc atgatagtag

6

agaggttagg	atactgtcaa	gggtgtgtgt	ggccaaagga	gtggttctgt	gaatgtatgg	180
gagaaaggga	gaccgaccac	caggaagcac	tggtgaggca	ggacccggga	ggatgggagg	240
ctgcagoccg	aatggtgcct	gaaatagttt	caggggaaat	gcttggttcc	cgaatcggat	300
cgccgtattc	gctggatccc	ctgatccgct	ggtctctagg	tcccggatgc	tgcaattctt	360
acaacaggac	ttggcatagg	gtaagcgcaa	atgctgttaa	ccacactaac	acacttttt	420
ttttctttt	tttttttgag	acagagtete	actctgtcgg	cctggctgga	gtgcagtggc	480
acgatctcgg	ctcactgcaa	cctccggctc	cccggctcaa	gcaattctcc	tgcctcagcc	540
tcccgagtag	ctgggattac	aggcatgtgc	caccacgccc	ggctaatttt	tgtattttta	600
gttgagatgg	ggtttcacca	tgttggcgag	gctggtcttg	aactcctgac	ctcaggtaat	660
ccgccagcct	cggcctccca	aagtgctggg	attacaagcg	tgagccaccg	tgcccggcca	720
acagttttta	aatctgtgga	gacttcattt	cccttgatgc	cttgcagccg	cgccgactac	780
aactcccatc	atgcctggca	gccgctgggg	ccgcgattcc	gcacgtccct	tacccgcttc	840
actagtcccg	gcattcttcg	ctgttttcct	aactcgcccg	cttgactagc	gccctggaac	900
agccatttgg.	gtcgtggagt	gcgagcacgg	ccggccaatc	gccgagtcag	agggccagga	960
ggggcgcggc	cattegeege	ccggcccctg	ctccgtggct	ggttttctcc	gcgggcgcct	1020
cgggcggaac	ctggagataa	tgggcagcac	ctgggggagc	cctggctggg	tgcggctcgc	1080
tetttgeetg	acgggcttag	tgctctcgct	ctacgcgctg	cacgtgaagg	cggcgcgcgc	1140
ccgggaccgg	gattaccgcg	cgctctgcga	cgtgggcacc	gccatcagct	gttegegegt	1200
cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	ctcggagcag	ggcggccagg	1260
atgccagatg	attattctgg	agtctgggat	cggtgtgccc	ggggaacgga	cacggggctg	1320
gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	gcgatactgg	tgttcgaaat	1380
aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	gattattccg	gggactcgca	1440
cgtgaattgg	atgccaagga	ataacggtga	ccaggaaagg	cggggaggca	ggatggcggt	1500
agagattgac	gatggtctca	aggacggcgc	gcaggtgaag	gggggtgttg	gcgatggctg	1560
cgcccaggaa	caaggtggcc	cggtctggct	gtgcgtgatg	gccaggcgtt	agcataatga	1620
cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	gattctgggg	tσcagggcaa	1680
agataatctg	cccccgactc	ccagtctctg	atgcaaaacc	gagtgaaccg	ttataccagc	1740
cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	cccactcctg	taatcccagc	1800
actttgggag	g σ cgaggcgg	atggatcact	tgaagtcagg	agttgaccag	cctggccaac	1860
atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	cgggcgctat	ggcgggtgcc	1920
ttaatcccag	ctactcgggg	gggctaaggc	aggagaatcg	cttgaacccg	ggaggcggag	1980

gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	ggccagagtg	agactccgtc	2040
tcaaaaaaaa	aaaaaaaaa	aaaaaaaag	agacttactt	aaggtctaag	atgaaaagca	2100
gggcctacgg	agtagecaeg	teegggeetg	gtctggggag	aggggaggat	agggtcagtg	2160
aσatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	agatcatcga	cccttggact	2220
aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	tcttggaaat	cacctttctc	2280
gggcagggtc	caaggcactg	ggttgacagt	cctaacctgg	ttccacccca	ccccacccct	2340
ctgccaggtg	gggcaggggt	ttegggetgg	tggagcatgt	gctgggacag	gacagcatcc	2400
tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	actacagcta	ttgttaggtg	2460
agtggctccg	cccctccct	geeegeeeeg	ccccgcccct	catececett	ggtcagctca	2520
gccccactcc	atgcaatctt	ggtgatccac	acagctgaca	gccagctagc	tgctcatcac	258 0
ggagcgtcct	gcgggtgggg	atgtggggag	gtaactaaca	ggagtctttt	aattggttta	2640
agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	gtccccaggt	tttttgtttg	2700
ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	gaggtctagg [.]	atgcccttag	2760
tgtgcactgg	cgtgatctca	gttcatggca	acctctgcct	ccctgcccaa	gggatcctcc	282 0
caccttagcc	tcccaagcag	ctggaatcac	aggegtgcac	cactatgccc	agctaatttt	2880
tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	ttgcccaggc	tggtctcaag	294 0
caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	acaggcgtga	gctaccatgc	3000
cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	cctttttaag	gagaagctga	3060
gcatgagcta	tettttgtet	catttagtgc	tcagcaggaa	aatttgtatc	tagtcccata	312 0
agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	ceccaggeet	tgctgatgcc	3180
atatgccgga	gatgagacta	tccattacca	cccttcccag	caggetecca	cgctcccttt	3240
gagtcaccct	teccagetee	agagaaggca	tcactgaggg	aggcccagca	ccatggt oct	3300
ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	attttattgc	tcagaacttt	3360
ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	ttggagggga	cctgttgaag	3420
ccttctttt	tttttttt	aagaaataat	cttgctctgt	tgcccaggct	ggagtgcagt	3480
ggcacaatca	tagctcactg	taacctggct	caagcgatcc	tcctgagtag	ctaggactat	3540
aggcatgtca	ctgcacccag	ctaattttt	tttttttt	tttttttt	ttgcgacata	3600
gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaacctctg	3660
cctcccgggt	tcaagcaatt	ttcctgcctc	agcctcctga	gtagctggga	ctacaggcgc	3720
gtgtcaccac	gcccagctaa	tttttgtatt	tttagtggag	acagggtttc	accatgttgg	3780

ctaggatggt	ctcaatctct	tgacctggtg	atccatccgc	cttggcctcc	caaagtgcta	3840
ggattacagg	cgtgagtcaa	cctcaccgġg	cattttttt	ttgagacgaa	gtcttgctct	3900
tgctgcccaa	gctggaatgt	ggtggcatga	teteggetea	ctgcaacctc	cacctcctag	3960
gttcaagcga	ttctccacct	tagcctcccc	agcagctggg	attacaggtg	cccatcaaca	4020
cacceggeta	atttttgtat	ttttattaga	gatggggttt	tgccatgttg	gccaggctgc	4080
tctcgaactc	ctaacctcag	gtgatccacc	cccattggcc	tcccaaaata	ctgggatta σ	4140
aggcatgagc	caccgtgccc	agctgaattt	ctaaattttt	gatagagatc	gggtctttct	4200
atgttgccca	agctggtctt	gaactcctag	cctaaagcag	tcttcccacc	teggeeteee	4260
agagtgtttg	gaatacgtgc	gtaagccacc	acatctgccc	tggagcctct	tgttttagag	432 0
acccttccca	gσagctcctg	gcatctaggt	agtgcagtga	catcatggag	tgttcgggag	4380
gtggccagtg	cctgaagccc	acaccggacc	ctcttctgcc	ttgcaggttg	cctgcggaca	4440
cgctgggcct	ctgtcctgat	gctgctgagc	tecetggtgt	ctctcgctgg	ttctgtctac	4500
ctggcctgga	tcctgttctt	cgtgctctat	gatttctgca	ttgtttgtat	caccacctat	4560
gctatcaacg	tgagcctgat	gtggctcagt	ttccggaagg	tccaagaacc	ccagggcaag	4620
gctaagaggc	actgagccct	caacccaagc	caggctgacc	tcatctgctt	tgctttggca	4680
tgtgagcctt	gcctaagggg	gcatatctgg	gtccctagaa	ggccctagat	gtggggcttc	4740
tagattaccc	cctcctcctg	ccatacccgc	acatgacaat	ggaccaaatg	tgccacacgc	4800
tcgctctttt	ttacacccag	tgcctctgac	tctgtcccca	tgggctggtc	tccaaagctc	4860
tttccattgc	ccagggaggg	aaggttctga	gcaataaagt	ttcttagatc	aatcagccaa	4920
gtctgaacca	tgtgtctgcc	atggactgtg	gtgctgggcc	teceteggtg	ttgccttctc	4980
tggagctggg	aagggtgagt	cagagggaga	gtggagggcc	tgctgggaag	ggtggttatg	5040
ggtagtctca	tctccagtgt	gtggagtcag	caaggcctgg	ggcaccattg	gccccaccc	5100
ccaggaaaca	ggctggcagc	tegeteetge	tgcccacagg	agcσaggcct	cctctcctgg	5160
gaaggctgag	cacacacctg	gaagggcagg	ctgcccttct	ggttctgtaa	atgcttgctg	5220
ggaagttctt	ccttgagttt	aactttaacc	cctccagttg	ccttatcgac	cattccaagc	5280
cagtattggt	agccttggag	ggtcagggcc	aggttgtgaa	ggtttttgtt	ttgcctatta	5340
tgccctgacG	acttacctac	atgccaagca	ctgtttaaga	acttgtgttg	gcagggtgca	5400
gtggctcaca	cctgtaatcc	ctgtactttg	ggaggccaag	gcaggaggat	cacttgaggc	5460
caggagttcc	agaccagcct	gggcaaaata	gtgagacccc	tgtctctaca	aaaaaaaaaa	5520
aaaaaaaaa	ttagccaggc	atggtggtgt	atgtacctat	agtcccaact	aatcgggaag	5580
ctggcgggaa	gactgcttga	gcccagaagg	ttgaggctgc	agtgagccat	gatcactgca	5640

ctccagcctg	agcaacagag	caagaccgtc	tccaaaaaaa	aacaaaaaac	aaaaaaaac	5700
ttgtgttaac	gtgttaaact	cgtttaatct	ttacagtgat	ttatgaggtg	ggtactatta	5760
ttatccctat	cttgatgata	gggacagagt	ggctaattag	tatgcctgag	atcacacagc	5820
tactgcagga	ggctctcagg	atttgaatcc	acctggtcca	tctggctcca	gcatctatat	5880
gcttttttt	ttgttggttt	gtttttgaga	cggac			5915
<210> 12 <211> 591! <212> DNA <213> Homo	sapiens					
<400> 12 caccatcaga	tgggacgtct	gtgaaggaga	gacctcatct	ggcccacagc	ttggaaagga	60
gagactgact	gttgagttga	tgcaagctca	ggtgttgcca	ggcgggcgcc	atgatagtag	120
agaggttagg	atactgtcaa	gggtgtgtgt	ggccaaagga	gtggttctgt	gaatgtatgg	180
gagaaaggga	gaccgaccac	caggaagcac	tggtgaggca	ggacccggga	ggatgggagg	240
ctgcagcccg	aatggtgcct	gaaatagttt	caggggaaat	gcttggttcc	cgaatcggat	300
cgccgtattc	gctggatccc	ctgatccgct	ggtctctagg	tcccggatgc	tgcaattctt	360
acaacaggac	ttggcatagg	gtaagcgcaa	atgctgttaa	ccacactaac	acacttttt	420
ttttcttttt	tttttttgag	acaġagtctc	actctgtcgg	cctggctgga	gtgcagtggc	480
acgatctcgg	ctcactgcaa	cctccggctc	cccggctcaa	gcaattctcc	tgcctcagcc	540
tcccgagtag	ctgggattac	aggcatgtgc	caccacgccc	ggctaatttt	tgtattttta	600
gttgagatgg	ggtttcacca	tgttggcgag	gctggtcttg	aactcctgac	ctcaggtaat	660
ccgccagcct	cggcctccca	aagtgctggg	attacaagcg	tgagccaccg	tgcccggcca	720
acagttttta	aatctgtgga	gacttcattt	cccttgatgc	cttgcagccg	cgccgactac	780
aactcccatc	atgcctggca	gccgctgggg	c o gcgattcc	gcacgtccct	tacccgcttc	840
actagtcccg	gcattcttcg	ctgttttcct	aactcgcccg	cttgactagc	gccctggaac	900
agccatttgg	gtcgtggagt	gcgagcacgg	ccggccaatc	gccgagtcag	agggccagga	960
ggggegegge	cattcgccgc	ccggcccctg	ctccgtggct	ggttttctcc	gcgggcgcct	1020
cgggcggaac	ctggagataa	tgggcagcac	ctgggggagc	cctggctgġg	tgcggctcgc	1080
tctttgcctg	acgggcttag	tgctctcgct	ctacgcgctg	cacgtgaagg	cggcgcgcgc	1140
ccgggaccgg	gattaccgcg	cgctctgcga	cgtgggcacc	gccatcagct	gttcgcgcgt	1200
cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	ctcggagcag	ggcggccagg	1260
atgccagatg	attattctgg	agtctgggat	cggtgtgccc	ggggaacgga	cacggggctg	1320

gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	gcgatactgg	tgttcgaaat	1380
aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	gattattccg	gggactcgca	1440
cgtgaattgg	atgccaagga	ataacggtga	ccaggaaagg	cggggaggca	ggatggcggt	1500
agagattgac	gatggtctca	aggacggcgc	gcaggtgaag	gggggtgttg	gcgatggctg.	1560
cgcccaggaa	caaggtggcc	cggtctggct	gtgcgtgatg	gccaggcgtt	agcataatga	1620
cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	gattctgggg	tccagggcaa	1680
agataatctg	cccccgactc	ccagtctctg	atgcaaaacc	gagtgaaccg	ttataccagc	1740
cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	cccactcctg	taatcccagc	1800
actttgggag	gccgaggcgg	atggatcact	tgaagtcagg	agttgaccag	cctggccaac	1860
atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	cgggcgctat	ggcgggtgcc	1920
ttaatcccag	ctactcgggg	gggctaaggc	aggagaatcg	cttgaacccg	ggaggcggag	1980
gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	ggccagagtg	agactccgtc	2040
tcaaaaaaaa	aaaaaaaaa	aaaaaaaag	agacttactt	aaggtctaag	atgaaaagca	2100
gggcctacgg	agtagccacg	teegggeetg	gtctggggag	aggggaggat	agggtcagtg	2160
acatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	agatcatcga	cccttggact	222 0
aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	tcttggaaat	cacctttctc	2280 [°]
gggcagggtc	caaggcactg	ggttgacagt	cctaacctgg	ttccacccca	ccccacccct	2340
ctgccaggtg	gggcaggggt	ttcgggctgg	tggagcatgt	gctgggacag	gacagcatcc	2400
tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	actacagcta	ttgttaggtg	2460
agtggctccg	cccctccct	gecegeceeg	ccccgcccct	catccccctt	ggtcagctca	252 0
gccccactcc	atgcaatctt	ggtgatccac	acagctgaca	gccagctagc	tgctcatcac	2580
cgagcgtcct	gcgggtgggg	atgtggggag	gtaactaaca	ggagtctttt	aattggttta	2640
agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	gtccccaggt	tttttgtttg	2700
ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	gaggtctagg	atgccσttag	2760
tgtgcactgg	cgtgatctca	gttcatggca	acctctgcct	ccctgcccaa	gggatectec	2820
caccttagcc	tcccaagcag	ctggaatcac	aggcgtgcac	cactatgccc	agctaatttt	2880
tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	ttgcccaggc	tggtctcaag	2940
caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	acaggcgtga	gctaccatgc	3000
cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	cctttttaag	gagaagctga	3060
gcatgagcta	tcttttgtct	catttagtgc	tcagcaggaa	aatttgtatc	tagtcccata	3120

agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	ccccaggcct	tgctgatgcσ	3180
atatgccgga	gatgagacta	tccattacca	cccttcccag	caggctccca	cgctcccttt	3240
gagtcaccct	tcccagctcc	agagaaggca	tcactgaggg	aggcccagca	ccatggtcct	3300
ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	attttattgc	tcagaacttt	3360
ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	ttggagggga	cctgttgaag	3420
ccttctttt	tttttttt	aagaaataat	cttgctctgt	tgcccaggct	ggagtgcagt	3480
ggcacaatca	tagctcactg	taacctggct	caagcgatcc	tcctgagtag	ctaggactat	3540
aggcatgtca	ctgcacccag	ctaattttt	tttttttt	tttttttt	ttgcgacata	3600
gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaacctctg	3660
cctcccgggt	tcaagcaatt	ttcctgcctc	agcctcctga	gtagctggga	ctacaggcgc	3720
gtgtcaccac	gcccagctaa	tttttgtatt	tttagtggag	acagggtttc	accatgttgg	3780
ctaggatggt	ctcaatctct	tgacctggtg	atccatccgc	cttggcctcc	caaagtgcta	3840
ggattacagg	cgtgagtcaa	cctcaccggg	cattttttt	ttgagacgaa	gtcttgctct	3900
tgctgcccaa	gctggaatgt	ggtggcatga	tctcggctca	ctgcaacctc	cacctcctag	3960
gttcaagcga	ttctccacct	tagcctcccc	agcagctggg	attacaggtg	cccatcaaca	4020
cacccggcta	atttttgtat	ttttattaga	gatggggttt	tgccatgttg	gccaggctgc	4080
tctcgaactc	ctaacctcag	gtgatccacc	cccattggcc	tcccaaaata	ctgggattac	4140
aggcatgagc	caccgtgccc	agctgaattt	ctaaattttt	gatagagatc	gggtctttct	4200
atgttgccca	agctggtctt	gaactcctag	cctaaagcag	tcttcccacc	teggeeteee	4260
agagtgtttg	gaatacgtgc	gtaagccacc	acatctgccc	tggagcctct	tgttttagag	4320
acccttccca	gcagctcctg	gcatctaggt	agtgcagtga	catcatggag	tgttcgggag	4380
gtggccagtg	cctgaagccc	acaccggacc	ctcttctgcc	ttgcaggttg	cctgcggaca	4440
cgctgggcct	ctgtcctgat	gctgctgagc	tccctggtgt	ctctcgctgg	ttctgtctac '	4500
ctggcctgga	tcctgttctt	cgtgctctat	gatttctgca	ttgtttgtat	caccacctat	4560
gctatcaacg	tgagcctgat	gtggctcagt	ttccggaagg	tccaagaacc	ccagggcaag	4620
gctaagaggc	actgagccct	caacccaagc	caggctgacc	tcatctgctt	tgctttggca	4680
tgtgagcσtt	gcctaagggg	gcatatctgg	gtccctagaa	ggccctagat	gtggggcttc	4740
tagattaccc	cctcctcctg	ccatacccgc	acatgacaat	ggaccaaatg	tgccacacgc	4800
tcgctctttt	ttacacccag	tgcctctgac	tctgtcccca	tgggctggtc	tccaaagctc	4860
tttccattgc	ccagggaggg	aaggttctga	gcaataaagt	ttcttagatc	aatcagccaa	4920
gtctgaacca	tgtgtctgcc	atggactgtg	gtgctgggcc	tccctcggtg	ttgccttctc	4980

tggagctggg	aagggtgagt	cagagggaga	gtggagggcc	tgctgggaag	ggtggttatg	5040
ggtagtctca	tctccagtgt	gtggagtcag	caaggcctgg	ggcaccattg	gσccccaccc	5100
ccaggaaaca	ggctgg σ agc	tegeteetge	tgcccacagg	agccaggcct	cct o tcctgg	51S0
gaaggctgag	cacacacctg	gaagggcagg	ctgcccttct	ggttctgtaa	atgcttgctg	522 0
ggaagttctt	ccttgagttt	aactttaacc	cctccagttg	ccttatcgac	cattccaagc	5280
cagtattggt	agccttggag	ggtcagggcc	aggttgtgaa	ggtttttgtt	ttgcctatta	5340
tgccctgacc	acttacctac	atgccaagca	ctgtttaaga	acttgtgttg	gcagggtgca	5400
gtggctcaca	cctgtaatcc	ctgtactttg	ggaggccaag	gcaggaggat	cacttgaggc	5460
caggagttcc	agaccagcct	gggcaaaata	gtgagacccc	tgtctctaca	aaaaaaaaa	5520
aaaaaaaaa	ttagccaggc	atggtggtgt	atgtacctat	agtcccaact	aatcgggaag	5580
ctggcgggaa	gactgcttga	gcccagaagg	ttgaggctgc	agtgagccat	gatcactgca	5640
ctccagcctg	agcaacagag	caagaccgtc	tccaaaaaaa	aacaaaaac	aaaaaaaac	5700
ttgtgttaac	gtgttaaact	cgtttaatct	ttacagtgat	ttatgaggtg	ggtactatta	5760
ttatccctat	cttgatgata	gggacagagt	ggctaattag	tatgcctgag	atcacacagc	5820
tactgcagga	ggctctcagg	atttgaatcc	acctggtcca	tctggctcca	gcatctatat	5880
gcttttttt	ttgttggttt	gtttttgaga	cggac			5915
<210> 13 <211> 591 <212> DNA <213> Hom	5 o sapiens					
<211> 591 <212> DNA <213> Hom <400> 13		gtgaaggaga	gacctcatct	ggcccacagc	ttggaaagga	60
<211> 591 <212> DNA <213> Hom <400> 13 caccatcaga	o sapiens				·	60
<211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact	o sapiens tgggacgtct	tgcaagctca	ggtgttgcca	ggcgggcgcc	atgatagtag	
<211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg	o sapiens tgggacgtct gttgagttga	tgcaagctca gggtgtgtgt	ggtgttgcca ggccaaagga	ggegggegee	atgatagtag gaatgtatgg	120
<211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg gagaaaggga	o sapiens tgggacgtct gttgagttga atactgtcaa	tgcaagctca gggtgtgtgt caggaagcac	ggtgttgcca ggccaaagga tggtgaggca	ggcgggcgcc gtggttctgt ggacccggga	atgatagtag gaatgtatgg ggatgggagg	120
<211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg gagaaaggga ctgcagcccg	o sapiens tgggacgtct gttgagttga atactgtcaa gaccgaccac	tgcaagctca gggtgtgtgt caggaagcac gaaatagttt	ggtgttgcca ggccaaagga tggtgaggca caggggaaat	ggcgggcgcc gtggttctgt ggacccggga gcttggttcc	atgatagtag gaatgtatgg ggatgggagg cgaatcggat	120 180 240
<pre><211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg gagaaaggga ctgcagcccg cgccgtattc</pre>	o sapiens tgggacgtct gttgagttga atactgtcaa gaccgaccac aatggtgcct	tgcaagctca gggtgtgtgt caggaagcac gaaatagttt ctgatccgct	ggtgttgcca ggccaaagga tggtgaggca caggggaaat ggtctctagg	ggcgggcgcc gtggttctgt ggacccggga gcttggttcc tcccggatgc	atgatagtag gaatgtatgg ggatgggagg cgaatcggat tgcaattctt	120 180 240 300
<pre><211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg gagaaaggga ctgcagcccg cgccgtattc acaacaggac</pre>	o sapiens tgggacgtct gttgagttga atactgtcaa gaccgaccac aatggtgcct gctggatccc	tgcaagctca gggtgtgtgt caggaagcac gaaatagttt ctgatccgct gtaagcgcaa	ggtgttgcca ggccaaagga tggtgaggca caggggaaat ggtctctagg atgctgttaa	ggcgggcgcc gtggttctgt ggacccggga gcttggttcc tcccggatgc ccacactaac	atgatagtag gaatgtatgg ggatgggagg cgaatcggat tgcaattctt acacttttt	120 180 240 300 360
<pre><211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg gagaaaggga ctgcagcccg cgccgtattc acaacaggac ttttctttt</pre>	o sapiens tgggacgtct gttgagttga atactgtcaa gaccgaccac aatggtgcct gctggatccc ttggcatagg	tgcaagctca gggtgtgtgt caggaagcac gaaatagttt ctgatccgct gtaagcgcaa acagagtctc	ggtgttgcca ggccaaagga tggtgaggca caggggaaat ggtctctagg atgctgttaa actctgtcgg	ggcgggcgcc gtggttctgt ggacccggga gcttggttcc tcccggatgc ccacactaac cctggctgga	atgatagtag gaatgtatgg ggatgggagg cgaatcggat tgcaattctt acactttttt gtgcagtggc	120 180 240 300 360 420
<pre><211> 591 <212> DNA <213> Hom <400> 13 caccatcaga gagactgact agaggttagg gagaaaggga ctgcagcccg cgccgtattc acaacaggac ttttctttt acgatctcgg</pre>	tgggacgtct gttgagttga atactgtcaa gaccgaccac aatggtgcct gctggatccc ttggcatagg	tgcaagctca gggtgtgtgt caggaagcac gaaatagttt ctgatccgct gtaagcgcaa acagagtctc cctccggctc	ggtgttgcca ggccaaagga tggtgaggca caggggaaat ggtctctagg atgctgttaa actctgtcgg cccggctcaa	ggcgggcgcc gtggttctgt ggacccggga gcttggttcc tcccggatgc ccacactaac cctggctgga gcaattctcc	atgatagtag gaatgtatgg ggatgggagg cgaatcggat tgcaattctt acacttttt gtgcagtggc tgcctcagcc	120 180 240 300 360 420 480

ccgccagcct	cggcctccca	aagtgctggg	attacaagcg	tgagccaccg	tgcccggcca	720
acagtttta	aatctgtgga	gacttcattt	cccttgatgc	cttgcagccg	cgccgactac	780
aactcccatc	atgcctggca	gccgctgggg	ccgcgattcc	gcacgtccct	tacccgcttc	840
actagtcccg	gcattcttcg	ctgttttcct	aactcgcccg	cttgactagc	gccctggaac	900
agccatttgg	gtcgtggagt	gcgagcacgg	ccggccaatc	gccgagtcag	agggccagga	960
ggggcgcggc	cattegeege	ccggcccctg	ctccgtggct	ggttttctcc	gcgggcgcct	1020
cgggcggaac	ctggagataa	tgggcagcac	ctgggggagc	cctggctggg	tgeggetege	1080
tctttgcctg	acgggcttag	tgctctcgct	ctacgcgctg	cacgtgaagg	cggcgcgcgc	1140
ccgggaccgg	gattaccgcg	cgctctgcga	cgtgggcacc	gccatcagct	gttcgcgcgt	. 1200
cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	ctcggagcag	ggcggccagg	1260
atgccagatg	ațtattctgg	agtctgggat	cggtgtgccc	ggggaacgga	cacggggctg	1320
gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	gcgatactgg	tgttcgaaat	1380
aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	gattattccg	gggactcgca	1440
cgtgaattgg	atgccaagga	ataacggtga	ccaggaaagg	cggggaggca	ggatggcggt	1500
agagattgac	gatggtctca	aggacggcgc	gcaggtgaag	gggggtgttg	gcgatggctg	1560
cgcccaggaa	caäggtggcc	cggtctggct	gtgcgtgatg	gccaggcgtt	agcataatga	1620
cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	gattctgggg	tccagggcaa	1680
agataatctg	cccccgactc	ccagtctctg	atgcaaaacc	gagtgaaccg	ttataccagc	1740
cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	cccactcctg	taatcccagc	1800
actttgggag	gccgaggcgg	atggatcact	tgaagtcagg	agttgaccag	cctggccaac	1860
atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	cgggcgctat	ggcgggtgcc	1920
ttaatcccag	ctactcgggg	gggctaaggc	aggagaatcg	cttgaacccg	ggaggcggag	1980
gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	ggccagagtg	agactccgtc	2040
tcaaaaaaaa	aaaaaaaaa	aaaaaaaag	agacttactt	aaggtctaag	atgaaaagca	2100
gggcctacgg	agtagccacg	teegggeetg	gtctggggag	aggggaggat	agggtcagtg	2160
acatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	agatcatcga	cccttggact	2220
aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	tcttggaaat	cacctttctc	2280
gggcagggtc	caaggcactg	ggttgacagt	cctaacctgg	ttccacccca	ccccacccct	2340
ctgccaggtg	gggcaggggt	ttcgggctgg	tggagcatgt	gctgggacag	gacagcatcc	2400
tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	actacagcta	ttgttaggtg	2460

agtgg σ tccg	cccctccct	gcccgccccg	ccccgcccct	catccccctt	ggtcagctca	2520
gccccactcc	atgcaatctt	ggtgatccac	acagctgaca	gccagctagc	tgctcatcac	2580
ggagcgtcct	gcgggtgggg	atgtggggag	gtaactaaca	ggagtctttt	aattggttta	2640
agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	gtccccaggt	tttttgtttg	2700
ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	gaggtctagg	atgcccttag	2760
tgtgcactgg	cgtgatctca	gttcatggca	acctctgcct	ccctgcccaa	gggatectee	282 0
caccttagcc	tcccaagcag	ctggaatcac	aggcgtgcac	cactatgccc	agctaatttt	2880
tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	ttgcccaggc	tggtctcaag	2940
caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	acaggcgtga	gctaccatgc	3000
cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	cctttttaag	gagaagctga	3060
gcatgagcta	tcttttgtct	catttagtgc	tcagcaggaa	aatttgtatc	tagtcccata	312 0
agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	ccccaggcct	tgctgatgcc	3180
atatgccgga	gatgagacta	tccattacca	cccttcccag	caggctccca	cgctcccttt	3240
gagtcaccct	tcccagetcc	agagaaggca	tcactgaggg	aggcccagca	ccacggtcct	3300
ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	attttattgc	tcagaacttt	3360
ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	ttggagggga	cctgttgaag	3420
ccttctttt	tttttttt	aagaaataat	cttgctctgt	tgcccaggct	ggagtgcagt	3480
ggcacaatca	tagctcactg	taacctggct	caagcgatcc	tcctgagtag	ctaggactat	3540
aggcatgtca	ctgcacccag	ctaattttt	tttttttt	tttttttt	ttgcgacata	3600
gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaacctctg	3660
cctcccgggt	tcaagcaatt	ttcctgcctc	agcctcctga	gtagctggga	ctacaggcgc	3720
gtgtcaccac	gcccagctaa	tttttgtatt	tttagtggag	acagggtttc	accatgttgg	3780
ctaggatggt	ctcaatctct	tgacctggtg	atccatccgc	cttggcctcc	caaagtgcta	3840
ggattacagg	cgtgagtcaa	cctcaccggg	cattttttt	ttgagacgaa	gtcttgctct	3900
tgctgcccaa	gctggaatgt	ggtggcatga	tctcggctca	ctgcaacctc	cacctcctag	3960
gttcaagcga	ttctccacct	tageeteece	agcagctggg	attacaggtg	cccatcaaca	4020
cacccggcta	atttttgtat	ttttattaga	gatggggttt	tgccatgttg	gccaggctgc	4080
tctcgaactc	ctaacctcag	gtgatccacc	cccattggcc	tcccaaaata	ctgggattac	4140
aggcatgagc	cacegtgeee	agctgaattt	ctaaattttt	gatagagatc	gggtctttct	4200
atgttgccca	agctggtctt	gaactcctag	cctaaagcag	tcttcccacc	teggeeteee	4260
agagtgtttg	gaatacgtgc	gtaagccacc	acatctgccc	tggagcctct	tgttttagag	4320

accettecea	gcagctcctg	gcatctaggt	agtgcagtga	catcatggag	tgttcgggag	4380
gtggccagtg	cctgaagccc	acaccggacc	ctcttctgcc	ttgcaggttg	cctgcggaca	4440
cgctgggcct	ctgtcctgat	gctgctgagc	tccctggtgt	ctctcgctgg	ttctgtctac	4500
ctggcctgga	tcctgttctt	cgtgctctat	gatttctgca	ttgtttgtat	caccacctat	4560
gctatcaacg	tgagcctgat	gtggctcagt	ttccggaagg	tccaagaacc	ccagggcaag	4620
gctaagaggc	actgagccct	caacccaagc	caggctgacc	tcatctgctt	tgctttggca	4680
tgtgagcctt	gcctaagggg	gcatatctgg	gtccctagaa	ggccctagat	gtggggcttc	4740
tagattaccc	cctcctcctg	ccatacccgc	acatgacaat	ggaccaaatg	tgccacacgc	4800
tegetetttt	ttacacccag	tgc o tctgac	tctgtcccca	tgggctggtc	tccaaagctc	4860
tttccattgc	ccagggaggg	aaggttctga	gcaataaagt	ttcttagatc	aatcagccaa	4920
gtctgaacca	tgtgtctgcc	atggactgtg	gtgctgggcc	teceteggtg	ttgccttctc	4980
tggagctggg	aagggtgagt	cagagggaga	gtggagggcc	tgctgggaag	ggtggttatg	5040
ggtagtctca	tctccagtgt	gtggagtcag	caaggcctgg	ggcaccattg	gececcacee	5100
ccaggaaaca	ggctggcagc	tegeteetge	tgcccacagg	agccaggcct	cctctcctgg	516 0
gaaggctgag	cacacacetg	gaagggcagg	ctgcccttct	ggttctgtaa	atgcttgctg	522 0
ggaagttctt	ccttgagttt	aactttaac σ	cctccagttg	ccttatcgac	cattccaagc	5280
cagtattggt	agccttggag	ggtcagggcc	aggttgtgaa	ggtttttgtt	ttgcctatta	5340
tgccctgacc	acttacctac	atgccaagca	ctgtttaaga	acttgtgttg	gcagggtgca	5400
gtggctcaca	cctgtaatcc	ctgtactttg	ggaggccaag	gcaggaggat	cacttgaggc	5460
caggagttcc	agaccagcct	gggcaaaata	gtgagacccc	tgtctctaca	aaaaaaaaa	552 0
aaaaaaaaa	ttagccaggc	atggtggtgt	atgtacctat	agtcccaact	aatcgggaag	5580
ctggcgggaa	gactgcttga	gcccagaagg	ttgaggctgc	agtgagccat	gatcactgca	5640
ctccagcctg	agcaacagag	caagaccgtc	tccaaaaaaa	aacaaaaaac	aaaaaaaac	5700
ttgtgttaac	gtgttaaact	cgtttaatct	ttacagtgat	ttatgaggtg	ggtactatta	5760
ttatccctat	cttgatgata	gggacagagt	ggctaattag	tatgcctgag	atcacacagc	5820
tactgcagga	ggctctcagg	atttgaatcc	acctggtcca	tctggctcca	gcatctatat	5880
gcttttttt	ttgttggttt	gtttttgaga	cggac			5915

<210> 14

<211> 5915

<212> DNA

<213> Homo sapiens

<400> 14 caccatcaga	tgggacgtct	gtgaaggaga	gacctcatct	ggcccacagc	ttggaaagga	60
gagactgact	gttgagttga	tgcaagctca	ggtgttgcca	ggcgggcgcc	atgatagtag	120
agaggttagg	atactgtcaa	gggtgtgtgt	ggccaaagga	gtggttctgt	gaatgtatgg	180
gagaaaggga	gaccgaccac	caggaagcac	tggtgaggca	ggacccggga	ggatgggagg	240
ctgcagcccg	aatggtgcct	gaaatagttt	caggggaaat	gcttggttcc	cgaatcggat	300
cgccgtattc	gctggatccc	ctgatccgct	ggtctctagg	tcccggatgc	tgcaattctt	360
acaacaggac	ttggcatagg	gtaagcgcaa	atgctgttaa	ccacactaac	acacttttt	420
ttttctttt	tttttttgag	acagagtete	actctgtcgg	cctggctgga	gtgcagtggc	480
acgatctcgg	ctcactgcaa	cctccggctc	cccggctcaa	gcaattctcc	tgcctcagcc	540
tcccgagtag	ctgggattac	aggcatgtgc	caccacgccc	ggctaatttt	tgtattttta	600
gttgagatgg	ggtttcacca	tgttggcgag	gctggtcttg	aactcctgac	ctcaggtaat	660
ccgccagcct	cggcctccca	aagtgctggg	attacaagcg	tgagccaccg	tgcccggcca	720
acagttttta	aatctgtgga	gacttcattt	cccttgatgc	cttgcagccg	cgccgactac	780
aactcccatc	atgcctggca	gccgctgggg	ccgcgattcc	gcacgtccct	tacccgcttc	840
actagtcccg	gcattcttcg	ctgttttcct	aactcgcccg	cttgactagc	gccctggaac	900
agccatttgg	gtcgtggagt	gcgagcacgg	ccggccaatc	gccgagtcag	agggccagga	960
ggggcgcggc	cattcgccgc	ccggcccctg	ctccgtggct	ggttttctcc	gogggcgcct	1020
cgggcggaac	ctggagataa	tgggcagcac	ctgggggagc	cctggctggg	tgcggctcgc	1080
tctttgcctg	acgggcttag	tgctctcgct	ctacgcgctg	cacgtgaagg	cggcgcgcgc	1140
ccgggaccgg	gattaccgcg	cgctctgcga	cgtgggcacc	gccatcagct	gttcgcgcgt	1200
cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	ctcggagcag	ggcggccagg	1260
atgccagatg	attattctgg	agtctgggat	cggtgtgccc	ggggaacgga	cacggggctg	1320
gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	gcgatactgg	tgttcgaaat	1380
aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	gattattccg	gggactcgca	1440
cgtgaattgg	atgccaagga	ataacggtga	ccaggaaagg	cggggaggca	ggatggcggt	1500
agagattgac	gatggtctca	aggacggcgc	gσaggtgaag	gggggtgttg	gcgatggctg	1560
cgcccaggaa	caaggtggcc	eggtetgget	gtgcgtgatg	gccaggcgtt	agcataatga	1620
cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	gattctgggg	tccagggcaa	1680
agataatctg	ccccgactc	ccagtctctg	atgcaaaacc	gagtgaaccg	ttataccagc	1740
cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	cccactcctg	taatcccagc	1800

actttgggag	gccgaggcgg	atggatcact	tgaagtcagg	agttgaccag	cctggccaac	1860
atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	cgggcgctat	ggcgggtgcc	1920
ttaatcccag	ctactcgggg	gggctaaggc	aggagaatcg	cttgaacccg	ggaggcggag	1980
gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	ggccagagtg	agactccgtc	2040
tcaaaaaaaa	aaaaaaaaa	aaaaaaaag	agacttactt	aaggtctaag	atgaaaagca	2100
gggcctacgg	agtagccacg	teegggeetg	gtctggggag	aggggaggat	agggtcagtg	2160
acatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	agatcatcga	cccttggact	2220
aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	tcttggaaat	cacctttctc	2280
gggcagggtc	caaggcactg	ggttgacagt	cctaacctgg	ttccacccca	ccccacccct	2340
ctgccaggtg	gggcaggggt	ttcgggctgg	tggagcatgt	gctgggacag	gacagcatcc	2400
tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	actacagcta	ttgttaggtg	2460
agtggctccg	cccctccct	gcccgccccg	ccccgcccct	catccccctt	ggtcagctca	2520
gccccactcc	atgcaatctt	ggtgatccac	acagctgaca	gccagctagc	tgctcatcac	2580
ggagcgtcct	gcgggtgggg	atgtggggag	gtaactaaca	ggagtctttt	aattggttta	2640
agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	gtccccaggt	tttttgtttg	2700
ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	gaggtctagg	atgcccttag	2760
tgtgcactgg	cgtgatctca	gttcatggca	acctctgcct	ccctgcccaa	gggatcctcc	2820
caccttagcc	tcccaagcag	ctggaatcac	aggcgtgcac	cactatgccc	agctaatttt	2880
tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	ttgcccaggc	tggtctcaag	2940
caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	acaggcgtga	gctaccatgc	3000
cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	cctttttaag	gagaagctga	3060
gcatgagcta	tcttttgtct	catttagtgc	tcagcaggaa	aatttgtatc	tagtcccata	312 0
agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	ccccaggcct	tgctgatgcc	3180
atatgccgga	gatgagacta	tccattacca	cccttcccag	caggctccca	cgctcccttt	3240
gagtcaccct	tcccagctcc	agagaaggca	tcactgaggg	aggcccagca	ccatggtcct	3300
ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	attttattgc	tcagaacttt	3360
ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	ttggagggga	cctgttgaag	3420
ccttctttt	tttttttt	aagaaataat	cttgctctgt	tgcccaggct	ggagtgcagt	3480
ggcacaatca	tageteactg	taacctggct	caagcgatcc	tcctgagtag	ctaggactat	3540
aggcatgtca	ctgcacccag	ctaattttt	tttttttt	tttttttt	ttgcgacata	3600
gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaacctctg	3660

cctcccgg	gt	tcaagcaatt	ttcotgcctc	agcctcctga	gtagctggga	ctacaggcgc	372 0
gtgtcacc	ac	gcccagctaa	tttttgtatt	tttagtggag	acagggtttc	accatgttgg	3780
ctaggatg	gt	ctcaatctct	tgacctggtg	atccatccgc	cttggcctcc	caaagtgcta	3840
ggattaca	gg	cgtgagtcaa	cctcaccggg	cattttttt	ttgagacgaa	gtcttgctct	3900
tgctgccc	aa	gctggaatgt	ggtggcatga	tctcggctca	ctgcaacctc	cacctcctag	3960
gttcaagc	ga	ttctccacct	tagcctcccc	agcagctggg	attacaggtg	cccatcaaca	4020
cacccggc	ta	atttttgtat	ttttattaga	gatggggttt	tgccatgttg	gccaggctgc	4080
tctcgaac	tc	ctaacctcag	gtgatccacc	cccattggcc	tcccaaaata	ctgggattac	4140
aggcatga	gc	caccgtgccc	agctgaattt	ctaaattttt	gatagagatc	gggtctttct	4200
atgttgcc	ca	agctggtctt	gaactcctag	cctaaagcag	tcttcccacc	tcggcctccc	4260
agagtgtt	tg	gaatacgtgc	gtaagccacc	acatctgccc	tggagcctct	tgttttagag	4320
accettee	ca	gcagctcctg	gcatctaggt	agtgcagtga	catcatggag	tgttcgggag	4380
gtggccag	tg	cctgaagccc	acaccggacc	ctcttctgcc	ttgcaggttg	cctgcggaca	4440
cgctgggc	ct	ctgtcctgat	gctgctgagc	tccctggtgt	ctctcgctgg	ttctgtctac	4500
ctggcctg	ga	tectgttett	cgtgctctat	gatttctgca	ttgtttgtat	caccacctat	4560
gctatcaa	.cg	tgagcctgat	gtggctcagt	ttccggaagg	tccaagaacc	ccagggcaag	4620
gctaagag	gc	actgagccct	caacccaagc	caggctgacc	tcatctgctt	tgctttggca	4680
tgtgagcc	tt	gcctaagggg	gcatatctgg	gtccctagaa	ggccctagat	gtggggcttc	4740
tagattac	:GC	cctcctcctg	ccatacccac	acatgacaat	ggaccaaatg [.]	tgccacacgc	4800
tcgctctt	tt	ttacacccag	tgcctctgac	tctgtcccca	tgggctggtc	tccaaagctc	4860
tttccatt	gc	ccagggäggg	aaggttctga	gcaataaagt	ttcttagatc	aatcagccaa	4920
gtctgaac	ca	tgtgtctgcc	atggactgtg	gtgctgggcc	tocctcggtg	ttgccttctc	4980
tggagctg	gg	aagggtgagt	cagagggaga	gtggagggcc	tgctgggaag	ggtggttatg	5040
ggtagtct	ca	tctccagtgt	gtggagtcag	caaggcctgg	ggcaccattg	gccccoaccc	5100
ccaggaaa	ca	ggctggcagc	tegeteetge	tgcccacagg	agccaggcct	cctctcctgg	5160
gaaggctg	ag	cacacacctg	gaagggcagg	ctgcccttct	ggttctgtaa	atgcttgctg	522 0
ggaagttc	tt	ccttgagttt	aactttaacc	cctccagttg	ccttatcgac	cattccaagc	5280
cagtattg	gt	agccttggag	ggtcagggcc	aggttgtgaa	ggtttttgtt	ttgcctatta	5340
tgccctga	.cc	acttacctac	atgccaagca	ctgtttaaga	acttgtgttg	gcagggtgca	5400
gtggctca	ca	cctgtaatcc	ctgtactttg	ggaggccaag	gcaggaggat	cacttgaggc	5460

caggagttcc	agaccagcct	gggcaaaata	gtgagacccc	tgtctctaca	aaaaaaaaa	5520
aaaaaaaaa	ttagc σ aggc	atggtggtgt	atgtacctat	agtcccaact	aatcgggaag	5580
ctggcgggaa	gactgcttga	gcccagaagg	ttgaggctgc	agtgagccat	gatcactgca	5640
ctccagcctg	agcaacagag	caagaccgt σ	tccaaaaaaa	aacaaaaaac	aaaaaaaac	5700
ttgtgttaac	gtgttaaact	cgtttaatct	ttacagtgat	ttatgaggtg	ggtactatta	5760
ttatccctat	cttgatgata	gggacagagt	ggctaattag	tatgcctgag	atcacacagc	5820
tactgcagga	ggσtctcagg	atttgaatcc	acctggtcca	tctggctcca	gcatctatat	5880
gcttttttt	ttgttggttt	gtttttgaga	cggac			5915
	5 o sapiens		·			
<400> 15 caccatcaga	tgggacgtct	gtgaaggaga	gacctcatct	ggcccacagc	ttggaaagga	60
gagactgact	gttgagttga	tgcaagctca	ggtgttgcca	ggcgggcgcc	atgatagtag	120
agaggttagg	atactgtcaa	gggtgtgtgt	ggccaaagga	gtggttctgt	gaatgtatgg	180
gagaaaggga	gaccgaccac	caggaagcac	tggtgaggca	ggacccggga	ggatgggagg	240
ctgcagcccg	aatggtgcct	gaaatagttt	caggggaaat	gcttggttcc	cgaatcggat	300
cgccgtattc	gctggatccc	ctgatccgct	ggtctctagg	teceggatge	tgcaattctt	360
acaacaggac	ttggcatagg	gtaagcgcaa	atgctgttaa	ccacactaac	acacttttt	420
ttttctttt	tttttttgag	acagagtete	actctgtcgg	cctggctgga	gtgcagtggc	480
acgatctcgg	ctcactgcaa	cctccggctc	cccggctcaa	gcaattctcc	tgcctcagcc	540
tcccgagtag	ctgggattac	agacatgtgc	caccacgccc	ggctaatttt	tgtattttta	600
gttgagatgg	ggtttcacca	tgttggcgag	gctggtcttg	aactcctgac	ctcaggtaat	660
ccgccagcct	eggeetecca	aagtgctggg	attacaagcg	tgagccaccg	tgcccggcca	720
acagttttta	aatctgtgga	gacttcattt	cccttgatgc	cttgcagccg	cgccgactac	780
aactcccatc	atgcctggca	gccgctgggg	ccgcgattcc	gcacgtccct	tacccgcttc	840
actagtcccg	gcattcttcg	ctgttttcct	aactcgcccg	cttgactagc	gccctggaac	900
agccatttgg	gtcgtggagt	gcgagcacgg	ccggccaatc	gccgagtcag	agggccagga	960
ggggcgcggc	cattcgccgc	ccggcccctg	ctccgtggct	ggttttctcc	gegggegeet	1020
cgggcggaac	ctggagataa	tgggcagcac	ctgggggagc	cctggctggg	tgcggctcgc	1080
tctttgcctg	acgggcttag	tgctctcgct	ctacgcgctg	cacgtgaagg	cggcgcgcgc	1140

ccgggaccgg	gattaccgcg	cgctctgcga	cgtgggcacc	gccatcagct	gttcgcgcgt	1200
cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	ctcggagcag	ggcggccagg	1260
atgccagatg	attattctgg	agtctgggat	cggtgtgccc	ggggaacgga	cacggggctg	1320
gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	gcgatactgg	tgttcgaaat	138 0
aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	gattattccg	gggactcgca	1440
cgtgaattgg	atgccaagga	ataacggtga	ccaggaaagg	cggggaggca	ggatggcggt	1500
agagattgac	gatggtctca	aggacggcgc	gcaggtgaag	gggggtgttg	gcgatggctg	1560
cgcccaggaa	caaggtggcc	cggtctggct	gtgcgtgatg	gccaggcgtt	agcataatga	1620
cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	gattctgggg	tcσagggcaa	1680
agataatctg	cccccgactc	ccagtctctg	atgcaaaacc	gagtgaaccg	ttataccagc	1740
cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	cccactcctg	taatcccagc	1800
actttgggag	gccgaggcgg	atggatcact	tgaagtcagg	agttgaccag	cctggccaac	1860
atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	cgggcgctat	ggcgggtgcc	1920
ttaatcccag	ctactcgggg	gggctaaggc	aggagaatcg	cttgaacccg	ggaggcggag	1980
gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	ggccagagtg	agactccgtc	2040
tcaaaaaaaa	aaaaaaaaa	aaaaaaaaag	agacttactt	aaggtctaag	atgaaaagca	2100
gggcctacgg	agtagccacg	teegggeetg	gtctggggag	aggggaggat	agggtcagtg	2160
acatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	agatcatcga	cccttggact	222 0
aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	tcttggaaat	cacctttctc	2280
gggcagggt σ	caaggcactg	ggttgacagt	cctaacctgg	ttccacccca	ccccacccct	. 2340
ctgccaggtg	gggcaggggt	ttcgggctgg	tggagcatgt	gctgggacag	gacagcatcc	2400
tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	actacagcta	ttgttaggtg	2460
agtggctccg	cccctccct	gcccgccccg	ccccgcccct	catccccctt	ggtcagctca	2520
gccccactcc	atgcaatctt	ggtgatccac	acagctgaca	gccagctagc	tgctcatcac	2580
ggagegteet	gcgggtgggg	atgtggggag	gtaactaaca	ggagtctttt	aattggttta	2640
agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	gtccccaggt	tttttgtttg	2700
ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	gaggtctagg	atgcccttag	2760
tgtgcactgg	cgtgatctca	gttcatggca	aσctctgcct	ccctgcccaa	gggatcctcc	2820
caccttagcc	tcccaagcag	ctggaatcac	aggcgtgcac	cactatgccc	agctaatttt	288 0
tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	ttgcccaggc	tggtctcaag	2940
caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	acaggcgtga	gctaccatgc	3 0 0 0

cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	cctttttaag	gagaagctga	3060
gcatgagcta	tcttttgtct	catttagtgc	tcagcaggaa	aatttgtatc	tagtcccata	3120
agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	ccccaggcct	tgctgatgcc	3180
atatgccggá	gatgagacta	tccattacca	cccttcccag	caggctccca	cgctcccttt	3240
gagtcaccct	tcccag o tcc	agagaaggca	tcactgaggg	aggeccagca	ccatggtcct	3300
ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	attttattgc	tcagaacttt	3360
ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	ttggagggga	cctgttgaag	3420
ccttcttttt	tttttttt	aagaaataat	cttgctctgt	tgcccaggct	ggagtgcagt	3480
ggcacaatca	tagctcactg	taacctgg <u>.</u> ot	caagcgatcc	tcctgagtag	ctaggactat	3540
aggcatgtca	ctgcacccag	ctaattttt	tttttttt	tttttttt	ttgcgacata	3600
gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaacctctg	3660
cctcccgggt	tcaagcaatt	ttcctgcctc	agcctcctga	gtagctggga	ctacaggcgc	3720
gtgtcaccac	gcccagctaa	tttttgtatt	tttagtggag	acagggtttc	accatgttgg	3780
ctaggatggt	ctcaatctct	tgacctggtg	atccatccgc	cttggcctcc	caaagtgcta	3840
ggattacagg	cgtgagtcaa	cctcaccggg	cattttttt	ttgagacgaa	gtcttgctct	3900
tgctgcccaa	gctggaatgt	ggtggcatga	tctcggctca	ctgcaacctc	cacctcctag	3960
gttcaagcga	ttctccacct	tageeteece	agcagctggg	attacaggtg	cccat Gaaca	4020
cacceggeta	atttttgtat	ttttattaga	gatggggttt	tgccatgttg	gccaggctgc	4080
tctcgaactc	ctaacctcag	gtgatccacc	cccattggcc	tcccaaaata	ctgggattac	4140
aggcatgagc	caccgtgccc	agctgaattt	ctaaattttt	gatagagatc	gggtctttct	4200
atgttgccca	agctggtctt	gaactcctag	cctaaagcag	tcttcccacc	teggeeteee	4260
agagtgtttg	gaatacgtgc	gtaagccacc	acatctgccc	tggagcctct	tgttttagag	4320
accettecca	gcagctcctg	gcatctaggt	agtgcagtga	catcatggag	tgttcgggag	4380
gtggccagtg	cctgaagccc	acaccggacc	ctcttctgcc	ttgcaggttg	cctgcggaca	4440
cgctggg o ct	ctgtcctgat	gctgctgagc	tccctggtgt	ctctcgctgg	ttctgtctac	4500
ctggcctgga	tectgttett	cgtgctctat	gatttctgca	ttgtttgtat	caccacctat	4560
gctatcaacg	tgagcctgat	gtggctcagt	ttccggaagg	tccaagaacc	ccagggcaag	4620
gctaagaggc	actgagccct	caacccaagc	caggctgacc	tcatctgctt	tgctttggca	4680
tgtgagcctt	gcctaagggg	gcatatctgg	gtccctagaa	ggccctagat	gtggggcttc	4740
tagattaccc	σ ctcctcctg	ccatacccgc	acatgacaat	ggaccaaatg	tgccacacgc	4800

tcgctctttt	ttacacccag	tgcctctgac	tctgtcccca	tgggctggtc	tccaaagctc	4860
tttccattgc	ccagggaggg	aaggttctga	gcaataaagt	ttcttagatc	aatcagccaa	4920
gtctgaacca	tgtgtctgcc	atggactgtg	gtgctgggcc	tccctcggtg	ttgccttctc	4980
tggagctggg	aagggtgagt	cagagggaga	gtggagggcc	tgctgggaag	ggtggttatg	5040
ggtagtctca	tctccagtgt	gtggagtcag	caaggcctgg	ggcaccattg	gccccaccc	5100
ccaggaaaca	ggctggcagc	tegeteetge	tgcccacagg	agccaggcct	cctctcctgg	5160
gaaggctgag	cacacacctg	gaagggcagg	ctgcccttct	ggttctgtaa	atgcttgctg	5220
ggaagttctt	ccttgagttt	aactttaacc	cctccagttg	ccttatcgac	cattccaagc	5280
cagtattggt	$agc\sigma$ ttggag	ggtcagggcc	aggttgtgaa	ggtttttgtt	ttgcctatta	5340
tgccctgacG	acttacctac	atgccaagca	ctgtttaaga	acttgtgttg	gcagggtgca	5400
gtggctcaca	cctgtaatcc	ctgtactttg	ggaggccaag	gcaggaggat	cacttgaggc	5460
caggagttcc	agaccagcct	gggcaaaata	gtgagacccc	tgtctctaca	aaaaaaaaa	5520
aaaaaaaaa	ttagccaggc	atggtggtgt	atgta σ ctat	agtcccaact	aatcgggaag	5580
ctggcgggaa	gactgcttga	gcccagaagg	ttgaggctgc	agtgagccat	gatcactgca	5640
ctccagcctg	agcaacagag	caagaccgtc	tccaaaaaaa	aacaaaaac	aaaaaaaac	5700
ttgtgttaac	gfegttaaact	cgtttaatct	ttacagtgaț	ttatgaggtg	ggtactatta	5760
ttatccctat	cttgatgata	gggacagagt	ggctaattag	tatgcctgag	atcacacagc	5820
tactgcagga	ggctctcagg	atttgaatcc	acctggtcca	tctggctcca	gcatctatat	5880
gcttttttt	ttgttggttt	gtttttgaga	cggac			5915
<210> 16 <211> 5915 <212> DNA <213> Homo	sapiens					•
caccatcaga	tgggacgtct	gtgaaggaga	gacctcatct	ggcccacagc	ttggaaagga	60
gagactgact	gttgagttga	tgcaagctca	ggtgttgcca	ggcgggcgcc	atgatagtag	120
agaggttagg	atactgtcaa	gggtgtgtgt	ggccaaagga	gtggttctgt	gaatgtatgg	180
gagaaaggga	gaccgaccac	caggaagcac	tggtgaggca	ggacccggga	ggatgggagg	240
ctgcagcGcg	aatggtgcct	gaaatagttt	caggggaaat	gcttggttcc	cgaatcggat	300
cgccgtattc	gctggatccc	ctgatccgct	ggtctctagg	tccσggatgc	tgcaattctt	360
acaacaggac	ttggcatagg	gtaagcgcaa	atgctgttaa	ccacactaac	acacttttt	420
ttttctttt	tttttttgag	acagagtete	actctgtcgg	cctggctgga	gtgcagtggc	480

acgatctcgg	ctcactgcaa	cctccggctc	cccggctcaa	gcaattctcc	tgcctcagcc	540
tcccgagtag	ctgggattac	aggcatgtgc	caccacgccc	ggctaatttt	tgtattttta	600
gttgagatgg	ggtttcacca	tgttggcgag	gctggtcttg	aactcctgac	ctcaggtaat	660
ccgccagcct	cggcctccca	aagtgctggg	attacaagcg	tgagccaccg	tgcccggcca	720
acagttttta	aatctgtgga	gacttcattt	cccttgatgc	cttgcagccg	cgccgactac	780
aactcccatc	atgcctggca	gccgctgggg	ccgcgattcc	gcacgtccct	tacccgcttc	840
actagtcccg	gcattcttcg	ctgttttcct	aactcgcccg	cttgactagc	gccctggaac	900
agccatttgg	gtcgtggagt	gcgagcacgg	ccggccaatc	gccgagtcag	agggccagga	960
ggggcgcggc	cattcgccgc	ccggcccctg	ctccgtggct	ggttttctcc	gcgggcgcct	1020
cgggcggaac	ctggagataa	tgggcagcac	ctgggggagc	cctggctggg	tgcggctcgc	1080
tctttgcctg	acgggcttag	tgctctcgct	ctacgcgctg	cacgtgaagg	cggcgcgcgc	1140
ccgggaccgg	gattaccgcg	cgctctgcga	cgtgggcacc	gccatcagct	gttcgcgcgt	1200
cttctcctcc	aggtgtgcac	gggagtggga	ggcgtggggc	ctcggagcag	ggcggccagg	1260
atgccagatg	attattctgg	agtctgggat	cggtgtgccc	ggggaacgga	cacggggctg	1320
gactgctcgc	ggggtcgttg	cacaggggct	gagctaccca	gcgatactgg	tgttcgaaat	1380
aagagtgcga	ggcaagggac	cagacagtgc	tggggactgg	gattattccg	gggactcgca	1440
cgtgaattgg	atgccaagga	ataacggtga	ccaggaaagg	cggggaggca	ggatggcggt	1500
agagattgac	gatggtctca	aggacggcgc	gcaggtgaag	gggggtgttg	gcgatggctg	1560
cgcccaggaa	caaggtggcc	cggtctggct	gtgcgtgatg	gccaggcgtt	agcataatga	1620
cggaatacag	aggaggcgag	tgagtggcca	gggagctgga	gattctgggg	tccagggcaa	1680
agataatctg	cccccgactc	ccagtctctg	atgcaaaacc	gagtgaaccg	ttataccagc	1740
cttgccattt	taagaattac	ttaagggccg	ggcgcggtgg	cccactcctg	taatcccagc	1800
actttgggag	gccgaggcgg	atggatcact	tgaagtcagg	agttgaccag	cctggccaac	1860
atggtgaaag	cctgtctcta	ccaaaaatag	aaaaattaat	cgggcgctat	ggcgggtgcc	1920
ttaatcc o ag	ctactcgggg	gggctaaggc	aggagaatcg	cttgaacccg	ggaggcggag	1980
gtttcagtga	gccgagatcg	cgccactgca	ctccagcctg	ggccagagtg	agactccgtc	2040
tcaaaaaaaa	aaaaaaaaa	aaaaaaaag	agacttactt	aaggtctaag	atgaaaagca	2100
gggcctacgg	agtagccacg	tccgggcctg	gtctggggag	aggggaggat	agggtcagtg	2160
acatggaatc	ctgacgtggc	caaaggtgcc	cggtgccagg	agatcatcga	cccttggact	2220
aggatgggag	gtcggggaac	agaggatagc	ccaggtggct	tcttggaaat	cacctttctc	2280
gggcagggtc	caaggcactg	ggttgacagt	cctaacctgg	ttccacccca	cccacccct	2340

ctgccaggtg	gggcaggggt	ttegggetgg	tggagcatgt	gctgggacag	gacagcatcc	2400
'tcaatcaatc	caacagcata	ttcggttgca	tcttctacac	actacagcta	ttgttaggtg	2460
agtggctccg	cccctccct	gecegeceeg	ccccgcccct	catccccctt	ggtcagctca	2520
gccccactcc	atgcaatctt	ggtgatccaσ	acagetgaca	gccagctagc	tgctcatcac	2580
ggagcgtcct	gcgggtgggg	atgtggggag	gtaactaaca	ggagtetttt	aattggttta	2640
agtactgtta	gaggctgaag	ggcccttaaa	gacatcctag	gtccccaggt	tttttgtttg	2700
ttgttgtttt	gagacagggt	ctggctctgt	tgcccaaagt	gaggtctagg	atgcccttag	2760
tgtgcactgg	cgtgatctca	gttcatggca	acctctgoct	ccctgcccaa	gggatcctcc	2820
caccttagcc	tcccaagcag	ctggaatcac	aggcgtgcac	cactatgccc	agctaatttt	2880
tgtttttgtt	tttttttggt	agagatggtg	tctcgccatg	ttgcccaggc	tggtctcaag	2940
caatctgtct	gcctcagcct	cccaaagtgc	tggggggatt	acaggcgtga	gctaccatgc	3000
cccaccaaca	ccccagtttt	gtggaaaaga	tgccgaaatt	cctttttaag	gagaagctga	3060
gcatgagcta	tcttttgtct	catttagtgc	tcagcaggaa	aatttgtatc	tagtcccata	3120
agaacagaga	gaggaaccaa	gggagtggaa	gacgatggcg	ccccaggcct	tgctgatgcc	3180
atatgccgga	gatgagacta	tccattacca	cccttcccag	caggeteeca	cgctccottt	3240
gagtcaccct	teccagetee	agagaaggca	tcactgaggg	aggcσcagca	ccatggtcct	3300
ggctgacaca	tggttcagac	ttggccgatt	tatttaagaa	attttattgc	tcagaacttt	3360
ccctccctgg	gcaatggcaa	gagcttcaga	gaccagtccc	ttggagggga	cctgttgaag	3420
ccttctttt	tttttttt	aagaaataat	cttgctctgt	tgcccaggct	ggagtgcagt	3480
ggcacaatca	tagctcactg	taacctggct	caagegatee	tcctgagtag	ctaggactat	3540
aggcatgtca	ctgcacccag	ctaattttt	tttttttt	tttttttt	ttgcgacata	3600
gtctcgctct	gtcaccaggc	tggagtgcag	tggcacgatc	ttggctcact	gcaacctctg	3660
cctcocgggt	tcaagcaatt	tteetgeete	agcctcctga	gtagctggga	ctacaggcgc	3720
gtgtcaccac	gcccagctaa	tttttgtatt	tttagtggag	acagggtttc	accatgttgg	3780
ctaggatggt	ctcaatctct	tgacctggtg	atccatccgc	cttggcctcc	caaagtgcta	3840
ggattacagg	cgtgagtcaa	cctcaccggg	cattttttt	ttgagacgaa	gtcttgctct	3900
tgctgσccaa	gctggaatgt	ggtggσatga	tctcggctca	ctgcaacctc	cacctcctag	3960
gttcaagcga	ttctccacct	tagcctcccc	agcagctggg	attacaggtg	cccatcaaca	4020
cacccggcta	atttttgtat	ttttattaga	gatggggttt	tgccatgttg	gccaggctgc	4080
tctcgaactc	σtaacctcag	gtgatccacc	cccattggcc	toccaaaata	ctgggattac	4140

aggcatgagc	caccgtgccc	agctgaattt	ctaaattttt	gatagagatc	gggtctttct	4200
atgttgccca	agctggtctt	gaactcctag	cctaaagcag	tcttcccacc	teggeetece	4260
agagtgtttg	gaatacgtgc	gtaagccacc	acatctgccc	tggagcctct	tgttttagag	4320
accettecca	gσagctcctg	gcatctaggt	agtgcagtga	catcatggag	tgttcgggag	4380
gtggccagtg	cctgaagccc	acaccggacc	ctcttctgcc	ttgcaggttg	cctgcggaca	4440
cgctgggcct	ctgtcctgat	gctgctgagc	tccctggtgt	ctctcgctgg	ttctgtctac	4500
ttggcctgga	tcctgttctt	cgtgctctat	gatttctgca	ttgtttgtat	caccacctat	4560
gctatcaacg	tgagcctgat	gtggctcagt	ttccggaagg	tccaagaacc	ccagggcaag	4620
gctaagaggc	actgagccct	caacccaagc	caggctgacc	tcatctgctt	tgctttggca	4680
tgtgagcctt	gcctaagggg	gcatatctgg	gtccctagaa	ggccctagat	gtggggcttc	4740
tagattaccc	cctcctcctg	ccatacecgc	acatgacaat	ggaccaaatg	tgccacacgc	4800
tcgctctttt	ttacacccag	tgcctctgac	tσtgtcccca	tgggctggtc	tccaaagctc	4860
tttccattgc	ccagggaggg	aaggttctga	gcaataaagt	ttcttagatc	aatcagccaa	4920
gtctgaacca	tgtgtctgcc	atggactgtg	gtgctgggcc	teccteggtg	ttgccttctc	4980
tggagctggg	aagggtgagt	cagagggaga	gtggagggcc	tgctgggaag	ggtggttatg	5040
ggtagtctca	tctccagtgt	gtggagtcag	caaggcctgg	ggcaccattg	gccccaccc	5100
ccaggaaaca	ggctggcagc	tegeteetge	tgcccacagg	agccaggcct	cctctcctgg	5160
gaaggctgag	cacacacctg	gaagggcagg	ctgcccttct	ggttctgtaa	atgcttgctg	522 0
ggaagttctt	ccttgagttt	aactttaacc	cctccagttg	ccttatcgac	cattccaagc	5280
cagtattggt	agccttggag	ggtcagggcc	aggttgtgaa	ggtttttgtt	ttgcctatta	5340
tgccctgacc	acttacctac	atgccaagca	ctgtttaaga	acttgtgttg	gcagggtgca	5400
gtggctcaca	cctgtaatcc	ctgtactttg	ggaggccaag	gcaggaggat	cacttgaggc	5460
caggagttcc	agaccagcct	gggcaaaata	gtgagacccc	tgtctctaca	aaaaaaaaa	552 0
aaaaaaaaa	ttagccaggc	atggtggtgt	atgtacctat	agtcccaact	aatcgggaag	5580
ctggcgggaa	gactgcttga	gcccagaagg	ttgaggctgc	agtgagccat	gatcactgca	5640
ctccagcctg	agcaacagag	caagaccgtc	tccaaaaaaa	aacaaaaaac	aaaaaaaac	5700
ttgtgttaac	gtgttaaact	cgtttaatct	ttacagtgat	ttatgaggtg	ggtactatta	5760
ttatccctat	cttgatgata	gggacagagt	ggctaattag	tatgcctgag	atcacacagc	5820
tactgcagga	ggctctcagg	atttgaatcc	acctggtcca	tctggctcca	gcatctatat	5880
gcttttttt	ttgttggttt	gtttttgaga	cggac			5915

PCT/US2005/008643 WO 2006/101474 <210> 17 <211> 15 <212> DNA <213> Artificial <220> <223> vk2581 G>C VIC probe sequence <400> 17 tcatcacgga gcgtc 15 <210> 18 <211> 15 <212> DNA <213> Artificial <220> <223> vk2581 G>C FAM probe sequence <400> 18 tcatcaccga gcgtc 15 <210> 19 <211> 20 <212> DNA <213> Artificial <220> <223> ·PCR primer <400> 19 ggtgatccac acagctgaca 20 <210> 20 <211> 23 <212> DNA <213> Artificial <220> <223> PCR primer <400> 20 cctgttagtt acctccccac ate 23 <210> 21 <211> 15 <212> DNA <213> Artificial <220> <223> vk3294 T>C VIC probe sequence <400> 21 ccaggaccat ggtgc 15

<210> 22

<212>	DNA Artificial	
<22 0>		
	vk3294 T>C FAM probe sequence	
<400>	22	
ccagga	ccgt ggtgc	15
<210>	23	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
	PCR primer	
<400>	23	20
gerecaç	gaga aggcatcact	20
<210>	24	
	22	
<212>		
<213>	Artificial .	
<220>		
<223>	PCR primer	
<400>	24	
	ctg aaccatgtgt ca	22
-210-		
<210> - <211>		
<212>		
	Artificial	
<220>	wk4760 Can VIC proba gamanga	
<223>	vk4769 G>A VIC probe sequence	
<400>	25	
atacccg	gcac atgac	15
<210>	26	
<211>	16	
	DNA	
<213>	Artificial	
<220>		
	vk4769 G>A FAM probe sequence	
	4 • • • • • • • • • • • • • • • • • • •	
<400>	26	
cataco	caca catgac	16
<210>	27	
<211>	22	

28

<212> <213>	DNA Artificial	
<220>		
	PCR primer	
<400>	27	
gtccct	agaa ggccctagat	gt 22
<210>	28	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	PCR primer	·
	•	
<400>	28	
gtgtgg	caca tttggtccat	t
	•	
<210>	29	
	19	
<212>		
<213>	Artificial	•
	•	
<220>		
<223>	PCR primer	
<400>	29	
ccaatc	gc o g agtcagagg	. 19
		•
<210>	2.0	
<211>		·
<212>		
	Artificial	
<220>		*
<223>	PCR primer	·
<400>	3 0	,
	cccc agcactgtct	2.0
	cccc agcactgtct	2 0
		2 0
<210>	31	2 0
<211>	31 20	20
<211> <212>	31 20 DNA	2 0
<211> <212>	31 20	2 0
<211> <212> <213>	31 20 DNA Artificial	20
<211> <212> <213>	31 20 DNA	20
<211><212><213><223>	31 20 DNA Artificial PCR primer	20
<211> <212> <213> <220> <223>	31 20 DNA Artificial PCR primer	
<211> <212> <213> <220> <223>	31 20 DNA Artificial PCR primer	20
<211> <212> <213> <220> <223> <400> aggggag	31 20 DNA Artificial PCR primer 31 ggat agggtcagtg	
<211><212><212><213> <td>31 20 DNA Artificial PCR primer 31 ggat agggtcagtg</td> <td></td>	31 20 DNA Artificial PCR primer 31 ggat agggtcagtg	
<211> <212> <213> <220> <223> <400> aggggag	31 20 DNA Artificial PCR primer 31 ggat agggtcagtg	

```
<213> Artificial
 <220>
 <223> PCR primer
 <400> 32
 cctgttagtt acctccccac a
                                                                           21
 <210> 33
 <211> 20
<212> DNA
<213> Artificial
 <220>
 <223> PCR primer
 <400> 33
 atacgtgcgt aagccaccac
                                                                           20
 <210> 34
 <211> 20
<212> DNA
 <213> Artificial
 <220>
 <223> PCR primer
 <400> 34
 acccagatat gcccccttag
                                                                           20
 <210> 35
 <211> 52
<212> DNA
 <213> Artificial sequence
. <220>
 <223> PCR primer
 ceggaatteg eege\sigmaaccat gggeageace tgggggagee etggetgggt ge
                                                                          52
 <210> 36
 <211> 32
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> PCR primer
 <400> 36
 cgggcggccg ctcagtgcct cttagccttg cc
                                                                          32
 <210> 37
 <211> 52
 <212> DNA
 <213> Artificial sequence
```

```
<220>
<223> PCR primer
<400> 37
cgcggatccg ccgccaccat ggcggtgtct gccgggtccg cgcggacctc gc 52
<210> 38
<211> 47
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 38
cgggcggccg ctcagaactc tgagtggaca ggatcaggat ttgactc
                                                 . 47
<210> 39
<211> 5
<212> PRT
<213> Artificial sequence
<223> GGCX peptide substrate
<400> 39
Phe Leu GIu GIu Leu
1
        5
```

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US05/08643

A. CLASSIFICATION OF SUBJECT MATTER WC(T) : C12N 15/63, 15/82, 15/85; C12P 21/02 US CL : 435/69.1, 455, 468				
According to International Patent Classification (IPC) or to both national classification and IPC				
	DS SEARCHED			
t	cumentation searched (classification system followed 35/69.1, 455, 468	by classification symbols)		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Continuation Sheet				
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where a		Relevant to claim No.	
Α	LIET AL. Identification of the gene for vitamin K		1-4	
А	February 2004, Vol. 427, pages 541-544, see entire US 5,686,631 (LI ET AL) 11 November 1997 (11.1)		1-4	
•		į		
		·		
			*	
	4			
Further	documents are listed in the continuation of Box C.	See patent family annex.		
* S	pecial categories of cited documents:	"T" later document published after the inter date and not in conflict with the applica-		
	defining the general state of the art which is not considered to be lar relevance	principle or theory underlying the inve	ntion	
•	plication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider when the document is taken alone		
"L" document establish (specified)	which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	"Y" document of particular relevance; the considered to involve an inventive step	when the document is	
°O" document	referring to an oral disclosure, use, exhibition or other means	combined with one or more other such being obvious to a person skilled in the		
	published prior to the international filing date but later than the ate claimed	"&" document member of the same patent f	amily	
	ctual completion of the international search	Date of mailing of the international searce	h report	
Name and ma		Authorized officer///	1 / 2	
	illing address of the ISA/US I Stop PCT, Attn: ISA/US	Addition Leed Officer (ICVA)		
Con	nmissioner for Patents	Terry A. McKelvey		
	. Box 1450 kandria, Virginia 22313-1450	Telephone No. 703-308-0196		
	Facsimile No. (703) 305-3230			

Form PCT/ISA/210 (second sheet) (January 2004)

	International application No.	
INTERNATIONAL SEARCH REPORT	PCT/US05/08643	
	•	
	·	
•		
Continuation of B. FIELDS SEARCHED Item 3:		
EAST (US-PGPUB, US-PAT, EPO, JPO, Derwent databases), Dialog OneSearch (biotech databases)	
search terms: vitamin k, epoxide reductase, vkor?, vker?, dependent, carboxylase, f prothrombin, vkgc	actor vii, factor ix, factor x, protein c, protein s,	
· · · · · · · · · · · · · · · · · · ·		
•		
•	ļ	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US05/08643

Box No. π Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. [X] Claims Nos.: 5-10 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. in Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(2)) (January 2004)