

REO'D 1 & SEP 2003

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Okmetic Oyj, Vantaa FI
 Applicant (s) SiCED Electronics Development GmbH & Co KG,
 Erlangen DE
- (21) Patentansökningsnummer 0202585-6 Patent application number
- (86) Ingivningsdatum
 Date of filing

2002-08-30

Stockholm, 2003-09-03

För Patent- och registreringsverket For the Patent- and Registration Office

Sonia André

Avgift Fee

> PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Muvudfaxen Kassan

Lightly doped silicon carbide substrate and use thereof in high power devices.

Field of the Invention

The invention relates to

5

10

15

20

25

30

35

- a lightly doped n-type or p-type silicon carbide wafer having a sufficiently
 low concentration of deep levels originating from either impurities, intrinsic
 defects or structural defects to enable free carriers injected into such wafer
 to recombine with a lifetime of interest for bipolar power devices,
- the use of a lightly doped n- or p-type silicon carbide wafer as base region
 of a high power device structure such as an IGBT with a voltage blocking
 capability of 15 kV or more.

Background and prior art

Currently, the highest breakdown voltages achieved by silicon power devices range from 4.5 to 6.5 kV for IGBTS and GTOs, and 9 to 12 kV for thyristors. The ability of these switching devices to handle higher voltages is today limited by technological factors, such as requirements of serial operations, and by the physical properties of the silicon semiconductor. It is considered that higher voltage (>10 kV) electrical transmission systems would benefit from the higher critical electrical field of the wider band-gap silicon carbide semiconductor. In addition, for an equivalent voltage rating, silicon carbide devices offer the advantages of lower on state resistances and lower switching losses than their silicon counterparts.

An example structure according to the prior art, comprising a lightly doped voltage blocking layer 3 deposited on a SiC substrate 1 is illustrated in Fig. 1. At present, all such voltage supporting SiC layers are epitaxially grown on highly doped off-oriented SiC substrates 1. The established method for growing such layers 3 is the CVD technique carried out at temperatures around 1600 °C. The advantage of the CVD technique lies in its ability to meet the low n- or p-type doping (typically 10.15 cm⁻³ range and lower) and the high carrier lifetime (several hundreds of nanoseconds) requirements needed for SiC bipolar devices. The main disadvantage of the CVD process lies in its low growth rate and thus high cost for layers thicker than 100 µm. For example, at a growth rate ranging between 5 and 10 µm/h, a 250 µm thick drift zone for a 20 kV blocking layer at N_D ~3×10¹⁴ cm⁻³, the existing CVD processes require growth times as long as 25 to 50 hours.

Ink. t. Patent- och reg.verket

2002 -08- 3 0

2

Huvudfaxen Kassan

been tackled by using, instead of a thick low doped epilayer grown on a conductive substrate, a low doped silicon substrate as drift zone. The starting substrates for state-of-the-art high power silicon devices are 4 to 6 inch diameter neutron transmuted wafers manufactured from float-zone grown SI crystals. For example, the drift region of a 5 kV switching device uses an approximately 500 µm thick silicon wafer with a doping of 2x10¹³ cm⁻³. This technology presently limits silicon power devices to voltage handling capabilities to the 10 kV range. A 25 kV silicon device would require the use of a wafer 2 mm thick as drift zone with a doping of 10¹² cm⁻³ or less and a carrier lifetime of 400 µs. A silicon carbide switching device would use an order of magnitude thinner drift zone, one to two orders of magnitude higher doping and lower carrier lifetime to achieve the same blocking voltage, while offering the advantages of a lower on state resistance and lower switching losses.

15

20

25

5.

10

This approach can however not be used with the present state-of-the-art-silicon carbide substrates due to the lack of lightly doped, microsecond range lifetime, SiC substrates are presently available in the lower range resistivity (n-type, ca. $0.015~\Omega cm$ and p-type ca. $2.5~\Omega cm$) and in semi-insulating form (p > $10^6~\Omega cm$). For the low resistivity wafers, the shallow dopants concentrations (e.g. nitrogen or aluminium) are typically in the $10^{18}~cm^{-3}$ range or higher, whereas semi-insulating wafers contain a higher density of deep levels (intrinsic or extrinsic) than shallow levels (e.g. nitrogen). Neither a low resistivity substrate, which has no reverse voltage supporting capability, nor a semi-insulating substrate, where the free carriers lifetime is less than a few nanoseconds, can thus be used as a drift zone for power devices.

30

Vertical SiC semiconductor power devices fabricated on "low resistivity" p-type substrates exist up to now only in theory since a suitable base material with sufficient conductivity is not available (approx. 8Ωcm vs. 0,02Ωcm for n-type material). The reason for this lack can be attributed to the current technology of the most common crystal growth process. The incorporation of aluminum is hard to control in sublimation growth furnaces especially in the case of high doping concentrations. Additionally the ionization energy of all known acceptors in silicon carbide is comparably high. Thus, it is not possible to fabricate an attractive IGBT like structure using a p-type substrate and an n-type drift zone. Additionally, also assuming the availability of a suited base material, there are only restricted possibilities to adjust device parameters by lifetime modulation near the backward emitter of a deduced IGBT structure (Fig. 1).

40 .

35...

5.

20

30

35

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Huvudfaxen Kassan

Up to know, the realized IBGT structures on SiC suffer from unsatisfactory. technical parameters. In all cases, the base material was p-type with a very low conductivity. The successful realization of a classical IGBT structure using a MOS Gate seems not to be possible, since in this case the oxide stress is very high and the reliability will be strongly degraded (except using adequate shielding precautions).

Purpose and summary of the invention

Material purpose and summary

10. The object of this invention is to provide a method to fabricate SiC substrates from lightly doped n- or p-type crystals having a quality such that these substrates (Fig. 2) can be used as the base layer of high voltage power devices. This method can provide a lower cost solution than the conventional CVD growth of a thick (>100 µm) lightly doped layer on a low resistivity SiC 15 substrate. The invention also enables a new efficient design of SIC switching devices such as IGBTs.

Device purpose and summary

The most important advantage of the Invention is the possibility to fabricate a semiconductor structure without a substrate, which in the case of a vertical power device represents only an unnecessary additional resistance. The whole wafer consists now of a low doped n-drift zone (Fig. 2) able to block very high voltages (larger than 15kV).

25 Brief description of the drawings

Figure 1 illustrates a prior-art cross-sectional view of a classical IGBT SIC structure where the thick, lightly doped drift layer having a substantial carrier lifetime, is epitaxially grown on a highly doped p-type SiC substrate.

Figure. 2 is a cross-sectional view of a new high voltage IGRT with selectively implanted emitter and junction termination extension at the backside where a n-SIC substrate instead constitutes the drift region having a substantial carrier lifetime.

Figure 3 is a SIMS profile of the nitrogen concentration of a lightly doped 4H SiC wafer, showing that the nitrogen concentration is below the detection limit of the measurement.

40. Figure 4. Top: Current-voltage measurement using a Schottky diode contact on an intentionally lightly doped 4H SIC substrate showing n-type conductivity.

10

Bottom: The net carrier concentration measured by capacitance-voitage yields a mean value of 4x1014 cm-3.

Figure 5 DLTS spectra measured on a lightly n-type doped 4H SIC wafer before and after annealing in hydrogen ambient.

Figure 6 DLTS spectra measured on a lightly doped 4H SIC wafer grown under modified conditions as described in the invention showing a decrease of the of the Z_{1/2} center concentration after annealing in a hydrogen ambient

Figure 7 Time resolved photoluminescence at room temperature decay curves measured on the wafer of figure 6 before annealing, after annealing in argon and after annealing in hydrogen ambients.

15 Figure 8 is a cross-sectional view of a new high voltage IGBT with Implanted emitter and field stop layer where an n-SiC-substrate constitutes the drift region having a substantial carrier lifetime.

Figure 9 is a cross-sectional view of a new high voltage IGBT with implanted 20 emitter, junction termination extension and anodic short circuit where a n-1 SIC substrate constitutes the drift region having a substantial carrier lifetime.

5.

10-

15

30.

35-

40

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

5

Huvudfaxen Kassan

Detailed description of the invention

Material description

In order to enable a suitable operation in a bipolar device, the drift zone region must meet several requirements. The first one is a low doping, typically a net carrier concentration in the 10¹³ to 10¹⁴ cm⁻³ range, and a sufficient thickness of the order 100-300 µm, in order to sustain high voltages.

A second requirement is a sufficient lifetime of the carriers injected into the drift region under forward bias so that the resulting conduction modulation allows a high current density. The presence of defect levels within the band gap, acting as recombination centers, will adversely affect the carrier's lifetime. The concentration of efficient recombination centers, such as deep levels which can exchange carriers with both the conduction and the valence band, must therefore be kept as low as required by the desired device performance. Several defects are known to give rise to deep levels in SiC, such as transition metals and intrinsic defects. Certain structural defects such as stacking faults and low angle boundaries must also be avoided as they have been identified as lifetime killers.

The wafers manufactured from silicon carbide crystals grown by the conventional sublimation, or physical vapour transport (PVT) method are at present not pure enough for being useful as drift region in a power device. Even in the highest purity wafers sliced from PVT grown crystals, the nitrogen concentration remains of the order of 5x10¹⁶ cm⁻³. Furthermore, it has never been possible, to the best knowledge of the inventors, to detect any free carrier lifetime in such substrates.

One object of the present invention is to provide a method for growing lower doped silicon carbide crystals from which wafers of higher purity and long free carrier lifetime can be manufactured.

As described in US patents 5,704,985 – 6,030,6612 and 6,039,812 which teachings are hereby incorporated by reference, a preferred method for growing higher purity SiC crystals is the so-called High Temperature Chemical Vapour Deposition (HTCVD) method. In this vapour phase technique, the silicon and carbon containing source material is supplied by purified gases, as in conventional CVD methods. For example silane (SiH₄) is used as a silicon precursor whereas a hydrocarbon such as methane (CH₄) or ethylene (C₂H₄) is used as a carbon precursor. The growth of a SiC crystal, or boule, from which wafers of a desired diameter and thickness can subsequently be sliced and polished, is achieved by exposing, for a desired length of time, a SiC seed-wafer

35

40

Ink. t. Patent- och reg.verket

2002 -08- 3 0

6

. Huyudfaxon Kassan

heated to a temperature above 1900 °C to a continuous flow of source gases. A carrier gas, such as helium, argon or hydrogen, is used to aid the transport of the precursors.

Some of the advantages of the HTCVD technique for the present invention are 5 the use of ultra high purity gases as source material, the ability to optimise the carbon to sillcon ratio of the gases mixture and the ability to continuously feed a desired amount of doping source gas. For example, the SiC crystal can be made slightly n-type by introducing a small amount of nitrogen gas into the source gases mixture. The flow rate of the nitrogen precursor can be regulated 10 by the means of mass flow controllers, using for example, a dilution configuration. The technique uses growth temperatures above 1900 °C which enables to grow single polytype crystals on both so-called on-and off-axis seeds. An on-axis seed wafer is here defined as a seed where the surface exposed to the source gases mixtures is parallel within a few tenths of a degree 15. to a crystallographic plane, e.g. the (0001) plane. An off-axis seed wafer has an exposed surface intentionally more than a half degree from a reference crystallographic plane.

As compared to the conventional CVD method, which uses highly doped substrates off-oriented up to 8 degrees to provide a sufficient density of atomic steps, the HTCVD method allows to grow SiC crystals on seeds with substantially lower step densities, using on-axis or only slightly misoriented (1 degree or less) seed crystals. Both on-axis and low-misorientation wafers can be sliced and polished from such crystals. The use of such wafers as voltage blocking-layer of high power devices has the advantage of reducing electrical 25. · field anisotropy effects.

Although the invention is illustrated for the growth of the 4H polytype, or crystal lattice variant of the silicon carbide crystal, it is clear that the method can also be used to grow lightly doped crystals of other polytypes, such as for example 6H, 15R or 3C. The method is illustrated for crystals grown along, or near to, the c-axis of the crystal lattice. It may also be applied for crystals grown along other directions, as for example the a-axis directions such as [1120] or [1010] or any direction in-between the c- and a-axis of the SiC exystal lattice.

Although a preferred method is described to illustrate the feasibility of the invention, persons skilled in the field may modify the invention while still realising the same type of results. In particular the experimental values of the carrier lifetime are to be understood as not limited to the examples given below, which can be improved by modifying the invention.

5...

15

20

25

30

35.

40

+46 13 211345

Ink. L. Patent- och reg.verket

2002 -08- 3 D

Huvudfaxen Kassan

7

In a first embodiment, the invention concerns a novel method to prepare lightly doped SiC wafers in which free corriers injected by, either operating a device manufactured upon these wafers, or by optical excitation, recombine with a certain rate. The first embodiment concerns the growth of a SIC crystal with a determined low n- or p-type doping followed by a post-growth thermal treatment of either the crystal itself or of the wafers sliced from this crystal.

According to the invention, the n- or p-type doping is obtained by an accurate 10 . control of the background-doping combined with the introduction of a dopant gas, such as nitrogen, so that the dopant atoms concentration in the crystal is below 5×1015 cm⁻³, and preferably in the 1013 to 1014 cm⁻³ range: As shown in Figure 3, the nitrogen concentration in a 4H crystal grown according to the invention is below the detection limit of analytical measurement such as SIMS. Wafers prepared from such crystals exhibit n-type conductivity with a net carrier concentration in the 1014 cm-3 range (Fig. 4).

According to the invention, the lightly doped crystal is grown by a pure vapour phase method as the HTCVD technique, at a growth rate higher than 100 µm/h. The invention may however as well be carried out by growing the crystal by a method combining the use of pure gas precursors with a SI and C containing source material in a solid or liquid state, as described for example in US patent no. 6,048,398, which teachings are hereby incorporated. It has in particular been found that, in order to obtain n-type SiC wafers where the carrier lifetime can optically be measured, it is necessary to decrease the concentration of impurities such as transition metals (e.g. V, TI, etc.), compensating acceptors (e.g. B and Al). This requires the selection of materials preventing the release of intentional impurities into the crystal during the growth process and the use of purification techniques for both the carrier and the precursors gases used during the growth process. In particular the carbon precursor is preferably chosen to be the methane; which can be manufactured at higher purity grades than other hydrocarbons and can further be purified in-situ by gettering devices. A further finding of the invention is that the growth parameters and crystal cooling rate shall be adjusted so that the remaining active intrinsic defects acting as recombination centres can be annealed out. For example, using the teachings of the patent application SE 0103602-9, the growth conditions can be adjusted so that the as-grown crystal contains silicon. vacancies. It was in particular found that the concentration of silicon vacancies could be decreased by an annealing treatment of such crystals. Alternatively, the growth conditions may also be chosen so that for example carbon vacancies are present in the as-grown crystal.

+46 13 211345

13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Huvudfaxen Kassen

8

The following examples illustrate the conditions identified to meet the light doping and the lifetime requirements of the invention.

Example 1

A SIC single crystal of the 4H polytype was grown in a HTCVD turnace with an 5. average growth rate of 400 µm/h. A small nitrogen flow was added to the silane, ethylone and carrier gas flows fed into the furnace to provide a light ntype doping. Wafers were sliced and polished from this crystal and analysed using the Capacitance-Voltage (C-V). Deen Level Translent Spectroscopy 10 (DLTS), Secondary Ion Mass Spectroscopy (SIMS) and Time Resolved Photoluminescence (TRPL) techniques, The CV and DLTS measurements were identified as not being possible to perform on these wafers due to compensation of the nitrogen donors by at least one deep level. SIMS measurements revealed a TI contamination at a concentration of 3×10¹⁵ cm⁻³, whereas other impurities 15. such as B, Al and V had at least one order of magnitude lower concentration. TRPL measurements performed on such wafers, either after polishing or after annealing at 1600.°C for 1 hour, showed a decay time less than the detection limit of the experimental setup (< 5 ns), making such wafers not appropriate for the purpose of this Invention.

Example 2

20

25

30

35-

40

The growth system was modified to suppress Ti contamination into the growing crystal by selecting components preventing release of unwanted impurities, such as-transition metals, into the growth atmosphere. A low-doped n-type 4H SiC crystal was grown in conditions comparable to those in the previous example. The Ti concentration in this crystal was decreased to 5×1013 cm 3. DLTS measurements on as-polished wafers from this crystal showed however the presence of deep levels located at about 0.66:eV and about 1,5 eV from the conduction band with concentrations of 4,5x1015 cm⁻³ and 3x1015 cm⁻³. respectively (Fig. 5). The carrier lifetime, measured by TRPL on the same substrate, was less than 5 ns. The wafer was subsequently annealed for 1-hour at a temperature of 1600 °C in a hydrogen ambient. The concentration of the deep-levels-identified by DLTS in the as-polished wafers was drastically reduced after the annealing (Fig. 5). TRPL measurement also showed that recombination of free carriers with an optical lifetime of approximately 20 ns was observed in the hydrogen annealed wafers. This result can be interpreted as an anneal or a passivation by hydrogen-species of intrinsic defects present in the water and acting as efficient recombination channels. Intrinsic deep levels such as the silicon and the carbon vacancles, and the silicon antisite, which can act as, lifetime killers, have for example been identified in semi-insulating SiC crystals (patent application nr. SE 0103602-9)

25

30

35

40

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 B

Huvudiaxen Kussan

Example 3

The findings of the previous examples were taken into account by modifying the 5 growth conditions to reduce the concentration of intrinsic defects grown-in in the crystal. In this example, the input C/SI ratio of the ethylene/silane gas mixture was increased. Fig. 6 shows that wafers sliced and polished from such a crystal have a substantially lower concentration of the deep levels identified by 10 DLTS at 1,5 eV, but a similar concentration of the Z_{1/2} level. Upon annealing at 1600 °C in either an hydrogen or an argon ambient, the concentration of both deep levels is decreased, as in the previous example (Fig.6). The carrier lifetime of the substrate annealed in an hydrogen containing amblent was however increased by a factor 3, to ca. 60 ns (Fig. 7). The carrier lifetime of another 15 substrate cut from the same crystal and annealed in a pure argon ambient however remained below the detection limit of the TRPL system.

It is understood that the teachings of the first embodiment of the invention can be used and improved to further increase the value of the lifetime measured by the optical decay in TRPL to values up to several microseconds to satisfy the current density needs of devices with blocking voltages of 15 kV and above. It is also understood that the lifetime values measured optically may differ from the ones extracted from a bipolar device. The invention however teaches a first method to increase the lifetime value in lightly doped SiC crystals as claimed below.

Device description

In a second embodiment, the invention proposes a high power bipolar device structure using a lightly doped wafer, manufactured according to any of the embodiments of the invention

The invention solves the problem of a high resistive substrate by using a drift zone, which can simultaneously serve as a substrate. Such a wafer can be grown by an on-axis process described in the first embodiment. For a thickness exceeding approximately 150µm, the material will have a sufficient mechanical stability for further processing steps. Now, the emitter can be implemented from the backside by ion-implantation into the masked or unmasked backside surface (Fig. 8 and 9). This implantation can be optimized in order to obtain an emitter efficiency and minority carrier lifetime especially adjusted for the application demands. Additionally, the implementation of a planar junction edge termination at the backside of the substrate in order to get a reverse blocking

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 D

Huyudfaxen Kassan

10

device becomes possible using simple process steps (Fig 2). The here presented disclosure provides the opportunity to fabricate single switching devices able to block very high blocking voltages, which in silicon can be realized only by using serial connection of switches what regulres a complicated control circuit (Example SiC: 250 to 280 μ m thick drift zone, N_D - N_A = 3 x 10¹⁴cm⁻³, 20kV blocking voltage).

The most important advantage of the here presented solution is the possibility to fabricate a semiconductor structure without a substrate, which in the case of a vertical power device represents only an unnecessary additional resistance. The whole wafer now consists of a low doped n-drift zone, able to block a very high voltage (larger than 15kV). Furthermore, the backward emitter can be carefully designed via ion-implantation into the wafer backside. This can be carried out selectively with or without an additional field stop region. By implementing a junction termination extension at the backside emitter, reverse blocking devices are possible. A further advantage is the possibility to irradiate the backward pn-junction locally in order to adjust the minority carrier lifetime. The adjustment of the structures at the wafer backside to the controlling cells at the front side can be easily performed using large gap objectives for lithography since the SIC wafer itself is transparent for visible light. Thus, the adjustment can be performed with respect to alignment marks at the front-side. Additionally the HTCVD process provides the possibility to carry out an on-axis growth. Therefore, negative influences from anisotropies of the electrical breakdown field, e.g., can be minimized or excluded.

25

5

10.

15

20.

<u>Example</u>

Non limiting example.

Figure 9 shows a cross section of a postulated new IGRT structure using a lightly doped n- substrate as the active device layer.

30

40

The n-substrate should be doned according to the desired blocking voltage of the device. The minimum thickness of the layer is given by the ability of the technology to handle thin wafers. Assuming state of the art processes, this limit can be found around 150 µm. However, future developments can shift this 35 thickness to lower values. Into the drift zone the p-well base region 5 is implanted, diffused or created by selective epitaxial growth. The depth of this layer can range from some nanometers to several micrometers, depending on the used technology. The doping can vary between 1 imes 10 16 cm $^{-3}$ up to values higher than 1020cm⁻³. Typically it lies in the range of some 10¹⁸cm⁻³ and 10¹⁹cm 3 . The spacing between the p-wells can range from some μm up to 100 μm . At the surface of the no substrate and within the powell, the notype source region --

10

15.

20

30. .

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Huvudfaxen Kassan

11

is located. The distance between the source region and the edge of the p-well at the surface defines the channel length of the device and can be between 1µm and up to 100 um, typically for power devices are values around 2 to 4 um. The source region is formed by a region of n-type conductivity with a doping higher than used for the p-region, typically above 1019cm. At the periphery of the device a JTE (US patent 5,712,502) is implemented. Above the channel region with a certain overlap over the source region and completely overlapping the spacing between the p-well, the gate oxide is located. As the gate oxide, all common thin film isolators like silicon dioxide, silicon nitride or other novel dielectrics can be used. Typical for power devices are approx. 80nm thick silicon dioxide layer, thermally grown or deposited. As the gate material, a highly conductive material like a metal, a metal silicide or polysilicon can be used. This gate is electrically isolated from the large area front side emitter contact. This contact layers are usually formed by thick metals like Aluminum or others. The layers above the p-well (oxide, gate electrode) act as a control region. At the backside of the structure, the collector contact regions can be found. This collector contact can be placed over the whole area opposite to the active region (p-wells) or can be spaced by small areas with ohmic contacts to the lightly doped substrate. The collector region (backside emitter) is of opposite conductivity to the lightly doped substrate, its doping exceeds the doping of the substrate Typical values are between 1017cm-3 and 1019cm-3. For the depth and forming of this layers the rules for the p-well apply. The width and spacing will be choosing in the range of some um or more in order to ensure in the blocking case a sufficient shielding effect while maintaining injection in the forward direction. For reverse blocking, a ITE corresponding to the ITE at the front side can be implemented. The layers at the backside can be aligned to the front side structures due to the transparent SiC substrate. This is an important advantage compared to Silicon solutions. Additionally, the backside structure can be formed by selective doping directly in the surface due to the fact that the whole wafer acts as the active zone of the device. . .

30

35

211345

Huyudiaxen Kassan

Claims

- 1 A silicon carbide wafer with either an n-type or a p-type conductivity, characterized by a net carrier concentration less than 1015 cm-3 and a carrier lifetime of at least 50 ns at room temperature.
- 5 2. A silicon carbide wafer according to claim 1, wherein the dopants are either shallow donors, comprising nitrogen, or shallow acceptors, comprising aluminium.
- 3. A silicon carbide wafer according to claim 1 wherein the surface of the 10 wafer is either off-oriented towards a Miller Index direction with an off-axis angle less than 1 degree or on-axis, that is parallel to a Miller index plane.
 - 4. A method to manufacture a silicon carbide wafer according to claim 1 comprising the steps of, growing a silicon carbide crystal and, annealing, for a desired time, either the crystal or the wafers prepared from the crystal at a temperature above 700 °C in an atmosphere containing hydrogen or a mixture of hydrogen and an inert gas.
- 5. A silicon carbide wafer according to claim 1, wherein the material has a 20 boron concentration less than 5x1014 cm⁻³ and preferably less than 5x1013 cm⁻³, and a concentration of transition metals impurities less than 5x10¹⁴ cm⁻³ and preferably less than 10¹³ cm⁻³.
- 6. A silicon carbide wafer according to claim 1, wherein the density of 25 intrinsic defects in said wafer is less than the density of dopants.
 - 7. A method for producing a single crystal of silicon carbide wafers according to any of claims 4 to 6, characterized in that the method comprising the steps of:
 - Introducing a flow of silicon and carbon atoms containing gases into an
 - Heating the enclosure containing a seed silicon carbide crystal to a temperature above 1900 °C, in such a way that the temperature of the seed crystal remains lower than the temperature at which it would decompose under the partial pressures of the Si and C containing species introduced into the heated enclosure,

10

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

13

Huyudfaxon Kassan

- Maintaining the flows of silicon gas and carbon gas and the temperature above 1900 °C for a sufficient time so that a bulk crystal is grown, and
- Introducing into the crystal, during the time of its growth, a flow of a dopant to make the crystal either n- or p-type.
- 8. A method according to claim 7 wherein the crystal is cooled down from the growth temperature to room temperature at a rate sufficiently slow to decrease the concentration of intrinsic levels below the concentration of shallow impurities acting as dopants.
- A method according to claim 7 wherein the carbon containing gas is a hydrocarbon chosen from the group of methane, ethylene and propane.
- 15 10. A method according to claim 7 where the silicon containing gas is chosen from the group of silane, a chlorosilane compound and a methylsilane compound
- A method according to claim 7, wherein the as-grown crystal contains
 silicon vacancies before being annealed.
 - 12. A method according to claim 7 wherein the as-grown crystal contains carbon vacancies before being annealed.
- 25 13. A semiconductor device comprising:
 - a drift zone of a first conductivity type serving as a substrate layer having a front side and a back side,
- 30 a first contact electrode arranged at the front side of the drift zone
 - a control region arranged at the front side and controlling an injection of carriers of at least the first conductivity type into the drift zone
- 35 a second contact electrode at the backside of the drift zone

whereas the drift zone is arranged to carry a carrier flow between the first and the second contact electrode

40 characterized in that,

the drift zone consists of a silicon carbide wafer with a net carrier concentration less than $10^{15}~\rm cm^{-3}$ and a carrier lifetime of at least 50 ns.

25

- 14. A device according to claim 13, where the control region is comprising:
- at least two base regions of a second conductivity type with a predetermined depth, being arranged at the front side surface within the drift zone and being separated by a space;
 - a source region of the first conductivity type located at the front side surface and within the base regions of the second conductivity type;
- a channel region arranged at the front side surface within the base region comprising the source region and arranged between the source region and an edge of the base region;
 - a gate electrode for controlling the channel region; and
 - a gate insulation region for electrically separating the gate electrode from the channel region.
- 20 A device according to claim 14, where the gate insulation region is located above the channel region with an overlap over the source region and completely overlapping the space between the base regions.
 - 16. A device according to claim 14, where the first electrode is an emitter electrode with a common ohmic contact to the source region and the base region and being electrically isolated from the gate electrode.
 - 17. A device according to claim 13, where the first electrode is a emitter electrode extending over the whole front side of the drift zone
- 30 18. A device according to claim 13, where the second contact electrode is a collector electrode forming a layer arranged on the surface of the back side of the drift zone.
- 19. A device according to claim 13, where an collector region is located at the back side surface within the drift zone.
 - 20. A device according to claim 19, where the collector region is forming an ohmic contact with the second electrode.
- 40 21. A device according to claim 19, where the collector region is of a second conductivity type.
- 22. A device according to claim 19, where the collector region is extending over the whole back side of the drift zone and being provided with a field stop region.

20

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 o

15

Huvudfaxen Kassan

- 23. A device according to claim 19, where the collector region is divided into several units spaced by small areas. The second contact electrode is forming a common ohmic contact with each collector unit and the drift zone or field stop region within the drift zone.
- 5 24. A device according to claim 13, where the back side of the drift zone is provided with a junction termination extension for reverse blocking.
 - 25. A device according to claim 13, where the front side of the drift zone is provided with a junction termination extension for forward blocking.
 - 26. A device according to claim 13, where the front side of the drift zone is provided with alignment marks in order to align the structures provided on the back side of the drift zone with the structure on the front side
- 15 27. A device according to claim 13, where the device is an IGBT.
 - 28. A device according to claim 13, where the silicon carbide wafer has a surface forming the front side or the back side surface of the drift zone and being off-oriented towards a Miller index direction with an off-axis angle less than 1 degree.
 - 29. A device according to claim 28, where the surface of the silicon carbide wafer has an on-axis orientation.

10

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

16

Huyudfaxen Kassan

Abstract

The first object of this invention is a method to fabricate SIC substrates from lightly doped n- or p-type crystals having a quality such that these substrates can be used as the base layer of high voltage power devices. This method enables a lower cost solution than the conventional CVD growth of a thick lightly doped layer on a low resistivity SIC substrate. The second object of the invention is a novel semiconductor structure able to block very high voltages. Instead of using a highly doped substrate, which in the case of a vertical power device represents an unnecessary additional resistance, the device of the invention uses a lightly doped substrate as n-drift zone.

(Figure 2)

Huvudtaxen Kassan

n a an 7007

Huvudfaxen Kassan

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Huvudfaxen Kassan

18

Fig. 3

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Huvudiaxan Kassan

19

Fig. 4

+46 13 211345

Ink. t. Patent- och reg.verket

2002 -08- 3 0

Huvudfaxen Kassan

20

5 Fig. 5

Fig. 6

. :.

Ink. t. Patent- och reg. verket 2002 -08- 3 0

Huvudfaxen Kassan

Fig. 7

Huvudfaxen Kassan 2002 -UB- J U Promise promis

Ö.

Havadlaxen Kassan

n a nn 7007

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.