0.1 Ostatnio

Była rozmaitość M z wymiarem dim M = n, krzywa

$$L: \{[a,b] \ni t \to \varphi(t) \in \mathbb{R}^n\},\$$

jednoforma $\omega \in \Lambda^1 M$ i zastanawialiśmy się jak obliczyć

$$\int_{L} \omega = \int_{a}^{b} \left\langle \varphi^{\star} \omega, \pm \frac{\partial}{\partial t} \right\rangle dt.$$

Wyszło nam dla $\omega = ydx$,

$$\int_{C_1} \omega = 2, \quad \int_{C_2} \omega = -2.$$

(rys 1)

Rysunek 1: W każdym momencie chcemy wiedzieć, w którą stronę chcemy iść. $L_1 + L_2 + L_3 = L$

Przykład 1. (rys 2)

Rysunek 2: $\dim M = 2$

$$\omega = A(x,y)dx + B(x,y)dy \in \Lambda^1 M.$$

Trzeba te krzywe sparametryzować:

$$L_1 = \{(x, b), a \le x \le c\}.$$

$$L_2 = \{(c, y), b \le y \le d\}.$$

$$L_3 = \{(x, d), a \le x \le c\}.$$

$$L_4 = \{(a, y), b \le y \le d\}.$$

$$\begin{split} \int_{L} \omega &= \int_{L_{1}} \omega + \int_{L_{2}} \omega + \int_{L_{3}} \omega + \int_{L_{4}} \omega = \\ &= \int_{a}^{c} \left\langle \varphi_{1}^{\star} \omega, \frac{\partial}{\partial x} \right\rangle dx + \int_{b}^{d} \left\langle \varphi_{2}^{\star} \omega, \frac{\partial}{\partial y} \right\rangle dy + \int_{a}^{c} \left\langle \varphi_{3}^{\star}, -\frac{\partial}{\partial x} \right\rangle dx + \int_{b}^{d} \left\langle \varphi_{4}^{\star} \omega, -\frac{\partial}{\partial y} \right\rangle = \\ &= \int_{a}^{c} A(x, b) dx + \int_{b}^{d} B(c, y) dy + (-1) \cdot \int_{a}^{c} A(x, d) dx + (-1) \cdot \int_{b}^{d} B(a, y) dy. \end{split}$$

(rys 3) dla dim $M = \mathbb{R}^1$. Niech $\varphi : T_pM \to T_pM$, $\varphi(v) = a \cdot v$ (φ - liniowe). a > 0 - nie zmienia orientacji (kierunku) a < 0 - zmienia kierunek wektora. (rys 4)

Rysunek 3: Tramwaj nie ma za dużo możliwości, jedynie przód, tył i ewentualnie szybciej - na rolkach

Rysunek 4: Różne orientacje na \mathbb{R}^2 , czy można to jakoś pogrupować?

Definicja 1. Niech B_1 , B_2 - bazy uporządkowane w V - przestrzeń wektorowa. Mówimy, że B_1 i B_2 należą do tej samej klasy orientacji, jeżeli wyznacznik odwzorowania liniowego z B_1 do B_2 jest większy od zera. Wybór klasy orientacji nazywamy zorientowaniem V.

Definicja 2. Orientacją standardową na \mathbb{R}^n nazywamy wybór zgodny z bazą standardową, tzn.

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \dots$$

Definicja 3. Niech M - rozmaitość zorientowana, $\dim M = n$ i $S = \{[a,b] \times [c,d] \ni (t_1,t_2) \rightarrow \varphi(t_1,t_2) \in M\}$ - powierzchnia sparametryzowana, $\Lambda^2 M \ni \omega$ - dwuforma. Wówczas

$$\int_{S} \omega \stackrel{def}{=} \int_{a}^{b} \int_{c}^{d} \left\langle \varphi^{\star} \omega, \underbrace{\pm \frac{\partial}{\partial t_{1}}, \pm \frac{\partial}{\partial t_{2}}}_{zqodne\ z\ orientacja} \right\rangle dt_{1} dt_{2}.$$

Przykład 2. do 7:

weźmy $\omega = A(x,y)dx + B(x,y)dy$ i obliczmy $\iint_{P} d\omega$.

$$d\omega = \frac{\partial A}{\partial y} dy \wedge dx + \frac{\partial B}{\partial x} dx \wedge dy = \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx \wedge dy,$$
$$P = \left\{ (x, y) \in \mathbb{R}^2 : a \leqslant x \leqslant b \\ c \leqslant y \leqslant d \right\}.$$

Wtedy mamy

$$\begin{split} \int \int_{P} d\omega &= \int \int_{[a,b] \times [c,d]} \left\langle d\omega, \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle = \\ &= \int_{a}^{b} dx \int_{c}^{d} dy \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) = \int_{c}^{d} dy \int_{a}^{b} \frac{\partial B(x,y)}{\partial x} dx - \int_{a}^{b} dx \int_{c}^{d} dy \frac{\partial A}{\partial y} = \\ &= \int_{c}^{d} dy (B(b,y) - B(a,y)) - \left[\int_{a}^{b} dx \left(A(x,d) - A(x,c) \right) \right] = \\ &= \int_{a}^{b} A(x,c) dx + \int_{c}^{d} B(b,y) dy - \int_{a}^{c} A(x,d) dx - \int_{c}^{d} B(a,y) dy = \\ &= \int_{L_{1}}^{b} \omega + \int_{L_{2}}^{a} \omega + \int_{L_{3}}^{a} \omega + \int_{l_{4}}^{a} \omega. \end{split}$$

Czyli

$$\int \int_{P} d\omega = \int_{L} \omega,$$

to kiedyś będzie twierdzenie Stokesa

Przykład 3. niech $S = S_1 \cup S_1$, gdzie

$$S_1 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1, z \ge 0\}, \quad S_2 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, z = 0\},$$

 $\alpha \in \Lambda^2 M$.

$$\int_{S} \alpha = \int_{S_1} \alpha + \int_{S_2} \alpha.$$

Rysunek 5: Tak to wygląda

Definicja 4. Atlasem zorientowanym nazywamy taki zbiór otoczeń i map (U_1, φ_1) , że dla każdej pary $(U_i, \varphi_i), (U_j, \varphi_j)$ takiej, że $U_i \cap U_j \neq \phi$, odwzorowanie $\det (\varphi_j \circ \varphi_i^{-1})' > 0$.

Definicja 5. Rozmaitość składająca się z atlasu zorientowanego nazywamy orientowalną.

Definicja 6. Po wyborze orientacji, rozmaitość nazywamy zorientowaną.