Exercice 1

Écrire les tableaux de Karnaugh des fonctions suivantes :

$$a\bar{b}$$
; $a+b$; $\bar{a}+b$; $a\Leftrightarrow b$; $a\oplus b$; $a(a+b)$; $a+ab$;
$$a\bar{b}d+ac+\bar{a}b\bar{c}$$
; $\bar{a}+bd+a\bar{b}d$; $a\bar{b}c+\bar{d}+cd$.

Trouver si possible une expression plus simple grâce au tableau.

Exercice 2

Donner les expressions booléennes les plus simples possibles déduites des tableaux de Karnaugh donnés cidessous.

B_1		cd				
		00	01	11	10	
ab	00	1	1	1	1	
	01	1	1	1	1	
	11	0	1	1	0	
	10	0	1	1	0	

		00	1	0	0				
	ab	01	0	1	1				
'	uv	11	0	1	1				
		10	1	0	0				
	F	2.	cd						
	L	, ,	0.0	0.4					

00

 B_2

cd

11

10

01

B_3		cd				
		00	01	11	10	
ab	00	1	0	0	1	
	01	1	1	1	1	
	11	1	1	0	0	
	10	0	0	0	0	

B_4		cd				
		00	01	11	10	
ab	00	0	1	1	0	
	01	1	0	0	1	
	11	1	0	0	1	
	10	0	1	1	0	

Exercice 3

Soit le circuit suivant dont les entrées sont notées a, b, c et d et dont la sortie est notée s.

- 1. Donner une formule exprimant la fonction booléenne calculée par ce circuit.
- 2. Construire un tableau de Karnaugh pour cette fonction.
- 3. Simplifier la formule à l'aide du tableau de Karnaugh.
- 4. En déduire un circuit simplifié n'utilisant que des portes à deux entrées.

Nous allons travailler avec le logiciel Logisim. Pour cela, il faut télécharger le fichier

logisim-generic-2.7.1.jar

PF1

disponible sur le site Web de Logisim (le lien est publié sur Moodle), puis émettre la commande suivante dans la console.

```
java -jar logisim-generic-2.7.1.jar
```

Exercice 1

Dessiner les circuits (les plus simples possibles) pour les fonctions booléennes suivantes.

- 1. OU: $f_1(a, b, c) = 1$ si l'un au moins des trois paramètres vaut 1;
- 2. TOUS ÉGAUX : $f_2(a, b, c) = 1 \text{ ssi } a = b = c$;
- 3. $f_3(a,b,c) = (a+b) \oplus (bc)$;
- 4. UN SEUL : $f_4(a, b, c) = 1$ ssi exactement un paramètre parmi a, b, c vaut 1;
- 5. IMPARITÉ : $f_5(a, b, c) = 1$ ssi un nombre impair de paramètres parmi a, b, c valent 1;
- 6. MAJORITÉ: $f_6(a, b, c) = 1$ ssi au moins deux des paramètres valent 1;
- 7. $f_7(a,b,c) = (a+b)(a+c)(b+c)$.

Exercice 2

On souhaite construire des circuits permettant de comparer deux nombres.

- 1. On travaille tout d'abord sur deux nombres a et b sur $\mathbf 1$ bit.
 - (a) Exercise les circuits testant a < b, $a \le b$, a = b, a > b et $a \ge b$.
 - (b) On suppose qu'on dispose (de plusieurs exemplaires) d'un circuit CMP₁ prenant a et b comme entrées et ayant deux sorties : a < b et $a \le b$ (et de portes NOT).

Comment construire les trois autres fonctions a = b, a > b et $a \ge b$?

- 2. On s'intéresse maintenant à des nombres sur 2 bits.
 - (a) Écrire le tableau de Karnaugh des fonctions a < b et $a \le b$.
 - (b) En déduire les circuits LT₂ et LE₂ correspondants, puis le circuit comparateur CMP₂.
- 3. Comment cette construction pourrait se généraliser pour des nombres à n bits?