Analyses and Management of Healthcare Data for Cancer Care

Agastya Silvina

A Brief Overview

Front-End

Visualisation
Reporting Service
Dashboard

Previous Projects

- Developed Patient timeline Visualisation, the SESO-Gateway
- The Oncology DB migration
- Designed and developed a reporting service for the Oncology DB

On Predicting the Outcomes of Chemotherapy Treatment in Breast Cancer

Agastya Silvina, Juliana Bowles, and Peter Hall

Accepted for publication at AI in Medicine

AIME 2019 17th Conference on Artificial Intelligence in Medicine Poznan, Poland June 26-29, 2019

- Project Overview
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Project Overview

- Cancer is
 - o a mutation caused by an abnormal reproduction of cells.
 - happens in in different organs (e.g., breast, lungs, bone, etc.)
- The treatments vary from surgery with **chemotherapy** and/or radiotherapy (i.e. usually take a long time and in sequence)
 - However some treatments are toxic and expensive
- We compared several different techniques (Markov Model, HMM, RF, RNN) applied to the same data set to predict the toxicity outcome of different treatment options

Related Work

- Many ongoing research looks at prediction of cancer treatment outcomes
 - Bayesian Logistic Regression (Subramani et al.)
 - Random Forest (Hui-Ling Chen et al.)
 - SVM (Nguyen et al.)
- We also consider HMM and RNN (common in different fields like NLP)

- Project Overview
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Data Analysis

- We use data extraction from an oncology department in Scotland
 - 3 years (2014 2016)
 - Includes various observations concerning breast cancer treatments (e.g. intention, regime, cycles), recorded side effects (here, toxicity level), and patient characteristics (e.g. age, BMI, performance status).

Intention	Number of Treatments	Number of Patients
Adjuvant	1209	205
Neo-adjuvant	1855	382
Palliative	2752	213

Features correlation

Treatment cycle - toxicity (No toxicity)

- Project Overview
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Markov Model (MM)

- A stochastic model with the assumption that a future state only depends on the current state.
- T0, T1, T2, T3 denote the toxicity state(i.e. No toxicity, Low, Medium, High)

The transition probability matrix

Hidden Markov Model (HMM)

- Based on augmenting a Markov chain to observe the hidden states of events
- Our HMM components:
 - States: T0, T1, T2, T3
 - Transitions: from T0 to T1, from T1 to T3, etc.
 - Observations: cycle, age, BMI, regime (categorised and coded). For example, 1-2-3-1 denotes the observation for an overweight patient who gets the FEC-D (D) in their first cycle and is aged less than 50 years
 - Emissions: the probability of the observations generated from the toxicity state

Random Forest

- An ensemble of decision trees for solving classification problems.
- We created three RF models for each treatment intention (i.e., adjuvant, neoadjuvant, palliative)
 - Predictors: age, BMI, Regime,
 cycle, previous toxicity, and
 previous performance status.
 - Outcome: Patients' toxicity

Recurrent Neural Network (RNN)

- A class of NN where connections between nodes form a directed graph along a temporal sequence.
- Implemented using tensorflow LSTM module.
- Used similar features as for our RF model.
 However, we do not use the previous performance status and previous toxicity fields.

many to one

- Project Overview
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Markov Model

Palliative treatments distribution

Classifier

F1-Score

- Introduction
- Related Work
- Data Analysis
- Models Creation
- Result
- Conclusion

Conclusion

- Our classifiers can predict the toxicity outcome of the chemotherapy outcomes with around 0.8 - 0.85 accuracy.
- The RNN model performed better than all other models because it considers all the patients' treatments
- In contrast to the MM, the classifiers are more tailored for an individual patient.
 - Both the MM and the classifiers are a complement to each other.

Future Work

- Improve the accuracy further by integrating more data regarding the cancer characteristics and patients' comorbidity.
- Create a dashboard and/or reporting system which can be helpful to the physician as a second opinion to decide which regime is suitable for an individual patient.

Ongoing Work

Our aim is to use a **synthetic data** during the development of the Application.

DEMO

http://localhost:8000/

https://breast.predict.nhs. uk/tool

Issues

- Missing Values
 - Solution: regression, removing some instances
- Class imbalance
 - Solution: duplication for some classes
- Overfitting
 - Solution: Cross Validation, using more data

Toxicity proportion

% of Total Number of Treatments

And something like this occasionally happens as well....

```
import {EventEmitter, Injectable} from '@angular/core';
import { HttpClient } from '@angular/common/http';
import {TreatmentModel} from '../shared/treatment.model';
@Injectable()
export class TreatmentService {
  // TODO: DYNAMIC UPDATE THE URL FROM CONFIG
  private API URL = 'assets/treatments.json';
    EVEN THOUGH MY HEART SCREAMS AT THIS PUBLIC ELEMENT ... I NEED TO EMIT THE MAP,
  // LETTING IT FREE TO THE OTHER MODULE...
    BECAUSE IT'S MORE CONVENIENT ... I KNOW SOMEDAY IT WILL COME BACK AT ME,
  // BUT FOR NOW, LET'S JUST HOPE FUTURE AGASTYA HANDLE IT WELL.
  public treatmentMap = new Map<string, TreatmentModel>();
  private mapEmitter: EventEmitter<Map<string, TreatmentModel>> = new EventEmitter();
  constructor(private http: HttpClient) {}
```