

C-CM-102

7017

BOARD DIPLOMA EXAMINATION, (C-20)

MAY—2023 DCE - FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 Hours] [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- **1.** If $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 4 \end{bmatrix}$ and $A = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$ is a function such that $A = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$ then find the range of $A = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$.
- **2.** Resolve $\frac{x \ 1}{(x \ 2)(x+3)}$ into partial fractions.
- 3. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find 3B = 2A.
- **4.** If $A + B = \frac{1}{4}$, then prove that $(1 + \tan A) (1 + \tan B) = 2$.
- 5. Prove that $\sin(60\%)\sin(60\% + \%) = \frac{1}{4}\sin(3\%)$.
- **6.** Find the modulus of the complex number $\frac{7 + 24i}{3 \, \mathbb{I} \, 4i}$.

*

- **7.** Find the equation of the straight line passing through (3, -4) and parallel to the line x + 7y + 1 = 0.
- **8.** Evaluate $\lim_{x \ge 2} \frac{x^5 \ 32}{x} = 8$
- **9.** Find the derivative of $3\cos x + \log x + 21x + 5$.
- **10.** Find the derivative of $e^{\sin^{1} x}$.

Instructions: (1) Answer **all** questions.

- (2) Each question carries eight marks.
- **11.** (a) Find the value of x, if the matrix $\begin{bmatrix} x+1 & 2 & 3 & 1 \\ 1 & 1 & x+2 & 3 & 1 \\ 1 & 1 & 2 & x+3 \end{bmatrix}$ is singular.

(OR)

- (b) Solve the following system of equations using Cramer's rule $2x \, \mathbb{I} \, y + 3z = 9$, x + y + z = 6, $x \, \mathbb{I} \, y + z = 2$.
- 12. (a) Prove that $\frac{\sin^2 A \, \mathbb{I} \, \sin^2 B}{\sin A \cos A \, \mathbb{I} \, \sin B \cos B} = \tan(A \, B), A \, B.$

- (b) Prove that $\tan^{|1|} \frac{1}{7} + \tan^{|1|} \frac{1}{13} = \tan^{|1|} \frac{2}{13}$
- **13.** (a) Solve $\cos 1 + \sin 1 = \sqrt{2}$.

*

/7017

* (OR)

- (b) In any $\mathbb{Z}ABC$, if $\mathbb{Z}A = 60\mathbb{I}$, then prove that $\frac{b}{c+a} + \frac{c}{a+b} = 1$.
- **14.** (a) Find the equation of the circle passing through the points (0, 0), (6, 0) and (8, 4).

(OR)

- (b) Find the equation of the rectangular hyperbola whose focus is the point (-1, -3), and directrix is the line 2x + y + 1 = 0.
- **15.** (a) If $y = x^x$, then show that $\frac{dy}{dx} = \frac{y^2}{x(1 \cdot y \log x)}$.

(OR)

(b) If
$$u(x,y) = \sin^{11} \left[x^2 + y^2 \right]$$
, then prove that $x = \tan u$.

$$\mathbf{PART} - \mathbf{C} \qquad 10 \times 1 = 10$$

AA23-PDF

Instructions: (1) Answer the following question.

- (2) The question carries ten marks.
- **16.** Find the lengths of tangent, normal, sub tangent and sub normal to the parabola $y^2 = 4x$ at (1, 2).