MATH 2418: Linear Algebra

Assignment #9

Due :10/31, Tuesday, 11:59pm Term <u>:Fall 2023</u>

[Last Name] [First Name] [Net ID] [Lab Section]

Recommended Problems:(Do not turn in)

Sec 4.3: 1, 2, 3, 4, 5, 6, 10, 17, 18, 21, 22, 23

Sec 4.4: 1, 2, 3, 4, 5, 6, 7, 17, 18, 21, 22, 24.

1. Find the values of C and D so that the straight line b = C + Dt gives the least squares approximation to the data below. Calculate the predicted values \hat{b} which lie on the resulting least squares regression line.

t	0	1	2	3
b	2	1	-1	2
\hat{b}				

2. Find the best parabola to fit the data points: (-2,2),(0,1),(1,1),(2,3).

4. Find orthonormal vectors q_1 , q_2 , and q_3 such that q_1 and q_2 span the column space of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & -3 \\ -2 & 4 \end{bmatrix}.$$

Which of the four fundamental subspaces contains q_3 ? Solve $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (1, 2, 4)^T$ by least squares. 5. Find orthonormal vectors q_1 , q_2 , and q_3 as combinations of the columns of matrix A, where

$$A = \begin{bmatrix} 2 & 2 & 4 \\ 0 & 0 & 3 \\ 0 & 3 & 6 \end{bmatrix}.$$

Then write A as QR.

6. Find a basis for the subspace ${f S}$ in ${f R}^4$ spanned by all solutions of

$$x_1 + 2x_2 + 3x_3 - x_4 = 0.$$

Find a basis for the orthogonal complement of S. Find b_1 in S and b_2 in the orthogonal complement of S so that $b_1 + b_2 = b = (1, 1, 2, 4)$.