Introduction to Statistical Relational Learning

Adaptive Computation and Machine Learning

Thomas Dietterich, Editor

Christopher M. Bishop, David Heckerman, Michael I. Jordan, and Michael Kearns, Associate Editors

Bioinformatics: The Machine Learning Approach

Pierre Baldi and Søren Brunak, 1998

Reinforcement Learning: An Introduction Richard S. Sutton and Andrew G. Barto, 1998

Graphical Models for Machine Learning and Digital Communication Brendan J. Frey, 1998

Learning in Graphical Models Michael I. Jordan, ed., 1998

Causation, Prediction, and Search, 2nd Edition Peter Spirtes, Clark Glymour, and Richard Scheines, 2001

Principles of Data Mining
David Hand, Heikki Mannila, and Padhraic Smyth, 2001

Bioinformatics: The Machine Learning Approach, 2nd Edition Pierre Baldi and Søren Brunak, 2001

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond Bernhard Schölkopf and Alexander J. Smola, 2001

Learning Kernel Classifiers: Theory and Algorithms Ralf Herbrich, 2001

Introduction to Machine Learning Ethem Alpaydin, 2004

Gaussian Processes for Machine Learning Carl Edward Rasmussen and Christopher K. I. Williams, 2005

Semi-Supervised Learning
Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, eds. 2006

The Minimum Description Length Principle Peter D. Grünwald, 2007

Introduction to Statistical Relational Learning Lise Getoor and Ben Taskar, eds., 2007

Introduction to Statistical Relational Learning

edited by Lise Getoor Ben Taskar

The MIT Press Cambridge, Massachusetts London, England

©2007 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

Typeset by the authors using LATEX 2ε Printed and bound in the United States of America

Library of Congress Cataloging-in-Publication Data

Introduction to statistical relational learning / edited by Lise Getoor, Ben Taskar.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-262-07288-5 (hardcover : alk. paper)

1. Relational databases. 2. Machine learning–Statistical methods 3. Computer algorithms. I. Getoor, Lise. II. Taskar, Ben.

QA76.9.D3I68 2007

006.3'1 - dc22

2007000951

 $10\ 9\ 8\ 7\ 6\ 5\ 4\ 3\ 2\ 1$

Contents

Se	eries	Foreword	xi
Pı	refac	e	xiii
1	Introduction		
	1.1	Lise Getoor, Ben Taskar Overview	1
	1.1	Brief History of Relational Learning	2
	1.3	v	3
	1.3 1.4	Emerging Trends	3
	1.5	Chapter Map	5 5
	1.6	Outlook	8
	1.0	Outiook	0
2	Gra	aphical Models in a Nutshell	13
		Daphne Koller, Nir Friedman, Lise Getoor, Ben Taskar	
	2.1	Introduction	13
	2.2	Representation	14
	2.3	Inference	22
	2.4	Learning	42
	2.5	Conclusion	54
3	Ind	uctive Logic Programming in a Nutshell	57
	0.1	Sašo Džeroski	
	3.1	Introduction	57
	3.2	Logic Programming	58
	3.3	Inductive Logic Programming: Settings and Approaches	64
	3.4	Relational Classification Rules	71
	3.5	Relational Decision Trees	75
	3.6	Relational Association Rules	80
	3.7	Relational Distance-Based Methods	84
	3.8	Recent Trends in ILP and RDM	89
4	An	Introduction to Conditional Random Fields for Relational Learning	93
		Charles Sutton, Andrew McCallum	
	4.1	Introduction	93
	4.2	Graphical Models	
	4.3	Linear-Chain Conditional Random Fields	
	4.4	CRFs in General	
	4.5	Skip-Chain CRFs	
	4.6	Conclusion	122

5	\mathbf{Pro}	babilistic Relational Models	129
		Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, Ben Taskar	
	5.1	Introduction	
	5.2	PRM Representation	
	5.3	The Difference between PRMs and Bayesian Networks	. 140
	5.4	PRMs with Structural Uncertainty	. 141
	5.5	Probabilistic Model of Link Structure	. 141
	5.6	PRMs with Class Hierarchies	. 151
	5.7	Inference in PRMs	. 159
	5.8	Learning	. 161
	5.9	Conclusion	. 173
6	\mathbf{Rel}	ational Markov Networks	175
		Ben Taskar, Pieter Abbeel, Ming-Fai Wong, Daphne Koller	
	6.1	Introduction	. 175
	6.2	Relational Classification and Link Prediction	. 177
	6.3	Graph Structure and Subgraph Templates	. 178
	6.4	Undirected Models for Classification	. 180
	6.5	Learning the Models	. 184
	6.6	Experimental Results	
	6.7	Discussion and Conclusions	
7	Pro	babilistic Entity-Relationship Models, PRMs, and Plate Models	201
		David Heckerman, Chris Meek, Daphne Koller	
	7.1	Introduction	
	7.2	Background: Graphical Models	
	7.3	The Basic Ideas	
	7.4	Probabilistic Entity-Relationship Models	
	7.5	Plate Models	. 226
	7.6	Probabilistic Relational Models	. 228
	7.7	Technical Details	. 229
	7.8	Extensions and Future Work	. 233
8	Rel	ational Dependency Networks	239
		Jennifer Neville, David Jensen	
	8.1	Introduction	
	8.2	Dependency Networks	
	8.3	Relational Dependency Networks	
	8.4	Experiments	
	8.5	Related Work	. 262
	8.6	Discussion and Future Work	. 264
9	_	cic-based Formalisms for	
	Sta	tistical Relational Learning James Cussens	269
	9.1	Introduction	. 269
	9.2	Representation	
	9.3	Inference	
	9.4	Learning	
	9.5	Conclusion	
10	Bay	vesian Logic Programming: Theory and Tool	291
-	3	Kristian Kersting, Luc De Raedt	

Contents

10.	Introduction	91
10.	2 On Bayesian Networks and Logic Programs	93
10.	B Bayesian Logic Programs	96
10.	4 Extensions of the Basic Framework	04
10.	5 Learning Bayesian Logic Programs	11
10.	Balios – The Engine for Basic Logic Programs	15
10.	7 Related Work	15
10.	3 Conclusions	18
11 Sto	ochastic Logic Programs: A Tutorial Stephen Muggleton, Niels Pahlavi	23
11.	Introduction	23
11.	2 Mixing Deterministic and Probabilistic Choice	24
11.	Stochastic Grammars	30
11.	4 Stochastic Logic Programs	33
11.	5 Learning Techniques	35
11.	6 Conclusion	37
12 Ma	rkov Logic: A Unifying Framework for Statistical Relational Learning 33	39
	Pedro Domingos, Matthew Richardson	
	The Need for a Unifying Framework	
	2 Markov Networks	
	3 First-Order Logic	
	4 Markov Logic	
	5 SRL Approaches	
	5 SRL Tasks	
	7 Inference	
	3 Learning	
	D Experiments 30 10 Conclusion 3	
12.	to Concrusion	01
13 BI	OG: Probabilistic Models with Unknown Objects 33	7 3
	Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag,	
	Daniel L. Ong, Andrey Kolobov	
13.	Introduction	73
13.	2 Examples	75
13.	3 Syntax and Semantics: Possible Worlds	78
13.	4 Syntax and Semantics: Probabilities	83
13.	5 Evidence and Queries	88
13.	3 Inference	88
	7 Related Work	
13.	3 Conclusions and Future Work	94
1.4 ml	- Design and Involvementation of IDAI. A Consul Down on Durchalding	
	e Design and Implementation of IBAL: A General-Purpose Probabilistic	nr
La	nguage 39 Avi Pfeffer	99
1.4	Am Fjejjer I Introduction	٥c
	2 The IBAL Language	
	B Examples	
	4 Semantics	
	. Communico	
	5 Desiderata for Inference 4	15
	5 Desiderata for Inference	
14.	5 Desiderata for Inference 4 5 Related Approaches 4 7 Inference 4	16

14.8 Lessons Learned and Conclusion	. 429
15 Lifted First-Order Probabilistic Inference Rodrigo de Salvo Braz, Eyal Amir, Dan Roth	433
15.1 Introduction	122
15.2 Language, Semantics and Inference problem	
15.3 The First-Order Variable Elimination (FOVE) algorithm	
15.4 An experiment	
15.5 Auxiliary operations	
15.6 Applicability of lifted inference	
15.7 Future Directions	
15.8 Conclusion	. 449
16 Feature Generation and Selection in Multi-Relational Statistical Learning Alexandrin Popescul, Lyle H. Ungar	453
16.1 Introduction	453
16.2 Detailed Methodology	
16.3 Experimental Evaluation	
16.4 Related Work and Discussion	
16.5 Conclusion	. 472
17 Learning a New View of a Database: With an Application in Mammography Jesse Davis, Elizabeth Burnside, Inês Dutra, David Page, Raghu Ramakrishnan Jude Shavlik, Vítor Santos Costa	
17.1 Introduction	. 477
17.2 View Learning for Mammography	. 478
17.3 Naive View Learning Framework	. 482
17.4 Initial Experiments	. 483
17.5 Integrated View Learning Framework	
17.6 Further Experiments and Results	
17.7 Related Work	
17.8 Conclusions and Future Work	
18 Reinforcement Learning in Relational	
Domains: A Policy-Language Approach	499
Alan Fern, SungWook Yoon, Robert Givan	
18.1 Introduction	499
18.2 Problem Setup	
18.3 Approximate Policy Iteration with a Policy Language Bias	
18.4 API for Relational Planning	
18.5 Bootstrapping	
18.6 Relational Planning Experiments	
18.7 Related Work	
18.8 Summary and Future Work	
18.8 Summary and Future Work	. 530
19 Statistical Relational Learning for Natural Language Information Extraction	ı 535
Razvan C. Bunescu, Raymond J. Mooney	F0-
19.1 Introduction	
19.2 Background on Natural Language Processing	
19.3 Information Extraction	
19.4 Collective Information Extraction with RMNs	. 538
19.5 Future Research on SRL for NLP	. 549
19.6 Conclusions	. 550

Contents

20	Glol	bal Inference for Entity and Relation					
Identification via a							
Linear Programming Formulation							
		Dan Roth, Wen-tau Yih					
	20.1	$Introduction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	553				
	20.2	The Relational Inference Problem	556				
	20.3	Integer Linear Programming Inference	560				
	20.4	Solving Integer Linear Programming	562				
	20.5	Experiments	563				
	20.6	Comparison with Other Inference Methods	570				
	20.7	Conclusion	576				
Co	ntril	outors	581				
Inc	dex		587				

Series Foreword

The goal of building systems that can adapt to their environments and learn from their experience has attracted researchers from many fields, including computer science, engineering, mathematics, physics, neuroscience, and cognitive science. Out of this research has come a wide variety of learning techniques that have the potential to transform many scientific and industrial fields. Recently, several research communities have converged on a common set of issues surrounding supervised, unsupervised, and reinforcement learning problems. The MIT Press series on Adaptive Computation and Machine Learning seeks to unify the many diverse strands of machine learning research and to foster high quality research and innovative applications.

Thomas Dietterich

Preface

The goal of this book is to bring together important research at the intersection of statistical, logical and relational learning. The material in the collection is aimed at graduate students and researchers in machine learning and artificial intelligence. While by no means exhaustive, the articles introduce a wide variety of recent approaches to combining expressive knowledge representation and statistical learning.

The idea for this book emerged from a series of successful workshops addressing these issues:

- Learning Statistical Models from Relational Data (SRL2000) at the National Conference on Artificial Intelligence, AAAI-2000, organized by Lise Getoor and David Jensen.
- Learning Statistical Models from Relational Data (SRL2003) at the International Joint Conference on Artificial Intelligence, (IJCAI-2003), organized by Lise Getoor and David Jensen.
- Statistical Relational Learning and its Connections to Other Fields (SRL2004) at the International Conference on Machine Learning, (ICML2004), organized by Tom Dietterich, Lise Getoor and Kevin Murphy.
- Probabilistic, Logical and Relational Learning Towards a Synthesis, Dagstuhl Seminar 2005, organized by Luc De Raedt, Thomas Dietterich, Lise Getoor and Stephen Muggleton.
- Open Problems in Statistical Relational Learning (SRL2006) at the International Conference on Machine Learning, (ICML2006), organized by Alan Fern, Lise Getoor, and Brian Milch.

We would like to thank all of the participants at these workshops for their intellectual contributions and also for creating a warm and welcoming research community coming together from several distinct research areas.

In addition, there have been several other closely related workshops, including the series of workshops on Multi-Relational Data Mining held in conjunction with the Knowledge Discovery and Data Mining Conference beginning in 2002 organized by Sašo Džeroski, Luc De Raedt, Stefan Wrobel, and Hendrik Blockeel.

This volume contains invited contributions from leading researchers in this new research area. Each chapter has been reviewed by at least two anonymous reviewers. We are very grateful to all the authors for their high quality contributions and to all the reviewers for helping to clarify and improve this work.

In addition to thanking the workshop participants, book contributors and reviewers, we would like to thank our advisors: Daphne Koller, our PhD advisor; Stuart Russell, Lise Getoor's MS advisor; and Michael Jordan, Ben Taskar's Post-doctoral advisor. Lise Getoor would also like to thank David Jensen; besides being one of the people responsible for the name "Statistical Relational Learning," David has been a great mentor, workshop co-organizer and friend. We would also like to thank Tom Dietterich, Pedro Domingos, and David Heckerman, who have been very encouraging in developing this book. Luc De Raedt, Kristian Kersting, Stephen Muggleton, Sašo Džeroski and Hendrik Blockeel have been especially encouraging members from the inductive logic programming and relational learning community. Lise would also like to thank her inquisitive graduate students, members of the LINQs group at the University of Maryland, College Park, for their participation in this project. Finally, on a more personal note, Lise would like to thank Pete for his unwavering support and Ben would like to thank Anat for being his rock.