WHAT IS CLAIMED IS:

2 m

1. A compound having a structure selected from the group consisting of:

$$(R_2)_x$$
 $(R_3)_x$
 $(R_3)_x$

and

$$(R_2)_x$$

$$(R_2)_x$$

$$(R_3)_x$$

in which each x is independently 1 or 2;

each R_1 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; oxo; or -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl

15 or H_{1-2} ;

each R_2 and each R_3 are independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H; C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; oxo;

25

or $-(CH_2)_n$ -X- $(CH_2)_m$ - $(R_5)_o$ where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ; or an R_2 and an R_3 together condense to form a saturated, partly saturated, or unsaturated ring structure having the formula $-(C(R_6)_p)_q$ -X_s- $(C(R_6)_p)_r$ -X_t- $(C(R_6)_p)_u$ where each R_6 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl and oxo where each p is independently 1 or 2, q is 0-5, r is 0-5, u is 0-5; each X is independently O, S, or N and s is 0 or 1; provided that q + r + u + s + t is less than 6;

10 Y is selected from the group consisting of O; S; N; --(C(R₇)_z)_s—where each R₇ is independently as previously defined for R1, each z is independently 1-2, and s is 1-3; --CH=; --CH=CH--; or Y₁CH₂—where Y₁ is O, N, or S; and the dotted lines are optional double bonds, with the proviso that if the ring including Y is a cyclohexane ring or a heterocyclic 5 member ring said ring is not fully unsaturated, and that if Y is O, N or S, the ring including Y contains at least one said double bond,

said compound further having selective agonist activity at the $\alpha 2B$ or $\alpha 2B/\alpha 2C$ adrenergic receptor subtype(s) over the $\alpha 2A$ adrenergic receptor subtype, and all pharmacologically acceptable salts, esters, stereoisomers and racemic mixtures thereof.

2. The compound of claim 1 in which the ring including Y has either a single double bond or no double bond, except that when an R₂ and an R₃ condense together to form a saturated, unsaturated or partly saturated ring structure said Y-including ring may share an additional double bond with said condensed ring, provided Y is not S, O, or N.

- 3. The compound of claim 2 in which Y is selected from the group consisting of: O; S; N; --CH=; --CH₂--CH₂--; --CH₂--; --CH=CH--; --Y₁=CH-- and Y₁CH₂-- where Y₁ is O, N or S.
- 5 4. The compound of either claim 2 or 3 in which each R₁, if present, is independently selected from the group consisting of: H; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; halide; C₃₋₆ cyloalkyl and trihalomethyl.
- 5. The compound of any of claims 1, 2, or 3 in which Y is selected from the group consisting of: -CH₂—; --CH=; O; S; and N.
 - 6. The compound of claim 4 in which Y is selected from the group consisting of: -CH₂—; --CH=; O; S; and N.
- 7. The compound of any of claims 1, 2 or 3 in which Y is selected from the group consisting of: -CH₂-CH₂--; --CH=CH--; --Y₁=CH-- and --Y₁-CH₂--, where Y₁ is O, N, or S.
- 8. The compound of claim 4 in which Y is selected from the group consisting of -CH₂-CH₂--; --CH=CH--; and --Y₁-CH₂--, where Y₁ is O, N, or S.

S. 25

The compound of claim 2, in which each R_2 and each R_3 are independently selected from the group consisting of: H: C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; halide; trihalomethyl; cycloalkyl; $(CH_2)_n$ -X- $(CH_2)_m$ - $(R_5)_o$, where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ; or an R_2 and an R_3 together condense to form a saturated, partly saturated, or unsaturated ring structure having the formula $-(C(R_6)_p)_q$ - X_s - $(C(R_6)_p)_r$ - X_t - $(C(R_6)_p)_u$ where each R_6 is independently selected from the group consisting of H; halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR4 where R_4 is H,

 C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s + r + t + u = 3 or 4.

5

10. The compound of claim 3, in which each R₂ and each R₃ are independently selected from the group consisting of: H; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; halide; trihalomethyl; cycloalkyl; (CH₂)_n-X-(CH₂)_m-(R₅)_o, where X is O, S or N, n is 0-3, m/s 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; or an R₂ and an R₃ together condense to form a saturated, partly saturated, or unsaturated ring structure having the formula –(C(R₆)_p)_q-X_s-(C(R₆)_p)_r –X_t—(C(R₆)_p)_u where each R₆ is independently selected from the group consisting of H; halogen, C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H, C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s+ r + t + u = 3 or 4.

15

10

11. The compound of claim 10 where if any R₁ is not H, then (R₁)_x equals (R₁)₁,

R₁ is not present, or (R₁)_x equals R₁ and H; if any R₂ is not H, then either

(R₂)_x equals (R₂)₁ or (R₂)_x equals R₂ and H; and if any R₃ is not H, then

either (R₃)_x equals (R₃)₁, or (R₃)_x equals R₃ and H.

12. The compound of claim 10 represented by a formula selected from the group consisting of :

$$(R_2)_x$$
 $(R_3)_x$
 $(R_3)_x$

5

and

$$(R_2)_x$$

$$(R_3)_x$$

$$(R_3)_x$$

- 10 13. The compound of claim 12 in which the ring including Y is completely saturated.
 - 14. The compound of claim 13 in which at least one of $(R_1)_x$, $(R_2)_x$ and $(R_3)_x$ equals $(H)_2$.

15

15. The compound of claim 14 in which $(R_1)_x$ equals H or $(H)_2$.

16. The compound of claim 13 in which at least one of an R2 or an R3 is selected from the group consisting of: halogen; C_{1-4} alkyl; C_{1-4} alkenyl; C_{1-4} alkynyl; --COR4 where R4 is H; C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; trihalomethyl; $(CH_2)_n$ -X- $(CH_2)_m$ - $(R_5)_o$, where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ; and oxo.

- 17. The compound of claim 13 in which Y is selected from the group consisting of -- CH2--, O, S, and N.
- 18. The compound of claim 17 in which Y is -CH₂--. 10
 - 19. The compound of claim 17 in which Y is selected from the group consisting of O, S, and N.
- 20. The compound of claim 13 in which Y is selected from the group consisting 15 of --CH₂-CH₂—and --Y₁-CH₂--, where Y_1 is O, S, or N.
 - 21. The compound of claim 20 in which Y is -CH₂-CH₂--.
- 22. The compound of claim 20 in which Y is --Y1-CH2--, where Y1 is O, S, or 20 N.
 - 23. The compound of claim 22 comprising the following structure:

$$R_1$$
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2

24. The compound of claim 22 comprising the following structure:

$$\begin{array}{c|c} & & & \\ & & & \\$$

5

Part of the order and and the law

25. The compound of claim 22 comprising the following structure:

$$\begin{array}{c|c} & & & \\ & & & \\$$

10

26. The compound of any one of claims 21-25 in which an R₂ and an R₃ together condense to form a saturated, partly saturated, or unsaturated ring structure having the formula $-(C(R_6)_p)_q$ -X_s- $(C(R_6)_p)_r$ -X_t— $(C(R_6)_p)_u$ where each R₆ is independently selected from the group consisting of H; halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H, C₁₋₄ alkyl or C₁₋₄

20

alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s + r + t + u = 3 or 4.

- 5 27. The compound of claim 26 in which at least one of s and t equals 1.
 - 28. The compound of claim 27 in which q + r + s + t + u equal 3.
 - 29. The compound of claim 28 in which an X equals S.
 - 30. The compound of claim 28 in which an X equals O.
 - 31. The compound of claim 28 in which an X equals N.
- 15 32. The compound of claim 27 in which q + r + s + t + u equal 4.
 - 33. The compound of claim 32 in which an X equals S.
 - 34. The compound of claim 32 in which an X equals O.
 - 35. The compound of claim 32 in which an X equals N.
- 36. The compound of either of claims 28 or 32 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.

10

- 37. The compound of either of claim 36 in which at least two R₆ groups are selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)₀ where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
- 38. The compound of claim 26 in which both s and t equal 0.
- 39. The compound of claim 38 in which q + r + s + t + u equal 3.
- 40. The compound of claim 39 in which said ring structure is not completely saturated.
- 41. The compound of claim 40 in which at least one R₆ is selected from the

 group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄

 where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl;

 trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is

 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
- 42. The compound of claim 41 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
 - 43. The compound of claim 39 in which said ring structure is fully saturated.
 - 44. The compound of claim 43 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄

where R_4 is H; C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; trihalomethyl; $-(CH_2)_n-X-(CH_2)_m-(R_5)_o$ where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R_5 is methyl or H_{1-2} ; and oxo.

- 45. The compound of claim 44 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
- 46. The compound of claim 38 in which q + r + s + t + u equal 4.
 - 47. The compound of claim 46 in which said ring structure is fully saturated.
- 48. The compound of claim 47 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
- 20

25

- 49. The compound of claim 48 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
- 50. The compound of claim 46 in which said ring structure is not completely saturated.

15

20

- 51. The compound of claim 50 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
- 52. The compound of claim 51 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆
 cycloalkyl; aryl; heteroaryl; trihalomethyl; -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂; and oxo.
 - 53. The compound of claim 12 in which the ring including Y is not completely saturated.
 - 54. The compound of claim 53 in which at least one of $(R_1)_x$, $(R_2)_x$ and $(R_3)_x$ equals $(H)_2$.
 - 55. The compound of claim 54 in which $(R_1)_x$ equals H or $(H)_2$.
 - 56. The compound of claim 53 in which at least one of an R₂ or an R₃ is selected from the group consisting of: halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; -COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; oxo; and -(CH₂)_n-X-(CH₂)_m-(R₅)_o where X is O, S or N, n is 0-3, m is 0-3, o is 0-1, and R₅ is methyl or H₁₋₂.
 - 57. The compound of claim 56 in which said at least one of an R₂ or an R₃ is selected from the group consisting of: C₁₋₄ alkyl; C₁₋₄ alkoxy, C₁₋₄ alkenyl; and C₁₋₄ alkynyl.

58. The compound of claim 56 in which said compound has the structure:

5

(J

(]:

59. The compound of claim 56 in which said compound has the structure:

10 60. The compound of claim 56 in which said compound has the structure:

61. The compound of claim 56 in which said compound has the structure:

62. The compound of claim 56 in which said compound has the structure:

63. The compound of claim 56 in which said compound has the structure:

5

64. The compound of claim 56 in which said compound has the structure:

10 65. The compound of claim 56 in which said compound has the structure:

66. The compound of claim 56 in which said compound has the structure:

67. The compound of claim 56 in which said compound has the structure:

5

68. The compound of claim 56 in which said compound has the structure:

69. The compound of claim 56 in which said compound has the structure:

Dy 15/

10

selected from the group consisting of: halogen; trihalomethyl and C₃₋₆ cycloalkyl.

5

71. The compound of claim 53 in which an R₂ and an R₃ together condense to form a saturated, partly saturated, or unsaturated ring structure having the

70. The compound of claim 53 in which said at least one of an R2 or an R3 is

 C_{1-4} alkenyl; C_{1-4} alkynyl; --COR₄ where R_4 is H, C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; cyano; nitro; trihalomethyl; and oxo where each p is independently 1 or 2, q is 0-4, r is 0-4, u is 0-4; each X is independently O, S, or N, s is 0 or 1, and q + s + r + t + u = 3 or 4.

independently selected from the group consisting of H; halogen; C_{1.4} alkyl;

72. The compound of claim 71 in which at least one of s and t equals 1.

73. The compound of claim 72 in which q + r + s + t + u equal 3.

74. The compound of claim 73 in which an X equals S.

20 75. The compound of claim 73 in which an X equals O.

76. The compound of claim 73 in which an X equals N.

77. The compound of claim 72 in which q + r + s + t + u equal 4.

78. The compound of claim 77 in which an X equals S.

79. The compound of claim 77 in which an X equals O.

15

- 80. The compound of claim 77 in which an X equals N.
- 81. The compound of either of claims 73 or 77 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
- 82. The compound of claim 81 in which at least two R₆ groups are selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; -COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
 - 83. The compound of claim 77 in which said compound has the structure:

5

10

in which Y₁ is selected from the group consisting of O, N, and S.

84. The compound of claim 77 in which said compound has the structure:

85. The compound of claim 77 in which said compound has the structure:

86. The compound of claim 77 in which said compound has the structure:

5

87. The compound of claim 77 in which said compound has the structure:

10

88. The compound of claim 77 in which said compound has the structure:

20

- 89. The compound of claim 71 in which both s and t equal 0.
- 90. The compound of claim 89 in which q + r + s + t + u equal 3.
- 91. The compound of claim 90 in which said ring structure is at least partly saturated.
- 92. The compound of claim 91 in which at least one R₆ is selected from the

 group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄

 where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl;

 trihalomethyl; and oxo.
- 93. The compound of claim 92 in which at least two R₆ groups are

 independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄

 alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆

 cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
 - 94. The compound of claim 90 in which said ring structure is fully unsaturated.
 - 95. The compound of claim 94 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
 - 96. The compound of claim 92 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.

- 97. The compound of claim 89 in which q + r + s + t + u equal 4.
- 98. The compound of claim 97 in which said ring structure is fully saturated.
- 99. The compound of claim 98 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
- 100. The compound of claim 99 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
- 101. The compound of claim 97 in which said ring structure is partly saturated.
- 102. The compound of claim 101 in which said compound has the formula:

103. The compound of claim 101 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄

5

10

10

15

20

where R_4 is H; C_{1-4} alkyl or C_{1-4} alkoxy; C_{3-6} cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.

- 104. The compound of claim 103 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
 - 105. The compound of claim 97 in which said ring structure is unsaturated.
- 106. The compound of claim 105 in which at least one R₆ is selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H; C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
- 107. The compound of claim 106 in which at least two R₆ groups are independently selected from the group consisting of halogen; C₁₋₄ alkyl; C₁₋₄ alkenyl; C₁₋₄ alkynyl; --COR₄ where R₄ is H, C₁₋₄ alkyl or C₁₋₄ alkoxy; C₃₋₆ cycloalkyl; aryl; heteroaryl; trihalomethyl; and oxo.
- 108. A compound represented by the structure: