HMM Tagging as Decoding

- · HMM taggers make two simplifying assumptions.
- The first is that the probability of a word appearing depends only on its own tag and is independent of neighboring words and tags:

$$P(W|T) = P(w_1 ... w_n | t_1 ... t_n) \approx \prod_{i=1}^{n} P(w_i | t_i)$$

The second assumption, the bigram assumption (first-order HMM), is that the
probability of a tag is dependent only on the previous tag, rather than the entire
tag sequence:

$$P(T) = P(t_1 ... t_n) \approx \prod_{i=1}^{n} P(t_i | t_{i-1})$$

HMM Tagging as Decoding

 Plugging the simplifying assumptions results in the following equation for the most probable tag sequence from a bigram tagger (first-order HMM):

Observation likelihoods B computed from the WSJ corpus without smoothing

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

• The A transition probabilities $P(t_i|t_{i-1})$ computed from the WSJ corpus without smoothing.

	NNP	MD	VB	JJ	NN	RB	DT
<s></s>	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Sketch of Viterbi matrix for Janet will back the bill,

- possible tags for each word and highlighting the path corresponding to the correct tag sequence through the hidden states. States (parts-of-speech) which have a zero probability of generating a particular word according to the B matrix (such as the probability that a determiner DT will be realized as Janet) are greyed out..

Another Example

A colored ball choosing example:

Probability of transition to another Urn after picking a ball:

	U1	U2	U3
U1	0.1	0.4	0.5
U2	0.6	0.2	0.2
U3	0.3	0.4	0.3

Example (contd.)

Given:

	U1	U2	U3
U1	0.1	0.4	0.5
U2	0.6	0.2	0.2
U3	0.3	0.4	0.3

and

	R	G	В
U1	0.3	0.5	0.2
U2	0.1	0.4	0.5
U3	0.6	0.1	0.3

Observation: RRGGBRGR

State Sequence: ??

	u1	u2	u3
<s></s>	0.4	0.3	.3
u1	0.1	0.4	.5
u2	.6	.2	.2
u3	.3	.4	.3