Circuits and Systems II, Fall 2020 **Final Exam**

Q1. (Marks 10)

In Figure 1 v_i(t) is the input and vo(t) is the output of the circuit. The network function that represents this circuit is $H(\omega)=V_o(\omega)/V_i(\omega)$. The corresponding Bode plot is also shown.

lf

 ω_1 = Roundup (Average of the first three digits of your Reg. No) X 10. ω_2 = (Sum of the first three digits of your Reg. No) X 10.

Determine the values of C_1 and C_2 .

Q2. (Marks 10)

Find f(t),

When F(S) =
$$\frac{2s+8}{(s+1)(s^2+as+b)}$$

Where a = average of the first two digits of your Reg. No. b= average of the 2nd and 3rd digit of your Reg. No.

Q3. (Marks 10)

Determine the voltage $v_c(t)$ and the current $i_c(t)$ for $t \ge 0$ for the circuit of Figure 2, where A = Average of first two digits of Reg. No,

B = Average of the 2^{nd} and 3^{rd} digit of Reg. No.

Q4. (Marks 10)

Design an Op-Amp circuit so that $v_{out} = Av_1 - Bv_2$

where A = Roundup (Average of first two digits of Reg. No)

B = Roundup (Average of 2^{nd} and 3^{rd} digit of Reg. No).

Q5 (Marks 10)

Find the Thevenin equivalent circuit of the ac circuit in Figure shown in Figure 4.

where R = (Average of first three digits of Reg. No) X 10 Ω

Figure 4

END