

Ministerul Educației și Cercetării

Olimpiada Națională de Fizică

Drobeta – Turnu Severin 2-9 aprilie 2004 Proba teoretică - subiecte

1. Două conductoare (1) şi (2) aflate în echilibru electrostatic, izolate unul de celălalt şi de orice alte corpuri, sunt încărcate cu sarcinile electrice q_1 , respectiv q_2 . Potențialele celor două conductoare se pot exprima sub forma generală:

$$\begin{cases} V_1 = p_{11}q_1 + p_{12}q_2 \\ V_2 = p_{21}q_1 + p_{22}q_2 \end{cases}$$

în care p_{11} , p_{12} , p_{21} , p_{22} sunt constante reale care depind numai de geometria sistemului (*coeficienți de potențial*).

- a) Presupunem că cele două conductoare sunt două sfere metalice cu pereți subțiri având razele R_1 , respectiv R_2 ($R_2 > R_1$). Fie d distanța dintre centrele celor două sfere. Determină expresiile coeficienților de potențial pentru următoarele cazuri particulare:
 - **A.** d = 0
 - **B.** $d >> R_1 + R_2$

În ce relație se află coeficienții de potențial p_{12} și p_{21} ?

- b) Considerăm conductoarele de o formă oarecare. Exprimă energia totală a sistemului format din cele două conductoare în funcție de sarcinile lor și coeficienții de potențial. Calculează variația energiei sistemului dacă pe conductorul (1) se aduce de la distanță foarte mare o sarcină suplimentară Δq_1 ($\Delta q_1 \ll q_1$).
- c) Pornind de la considerente energetice, arată că relația stabilită la punctul a) între cei doi coeficienți de potențial p_{12} și p_{21} este adevărată, indiferent de forma și poziția relativă a conductoarelor izolate și aflate în echilibru electrostatic. Interpretează din punct de vedere fizic relația găsită.
- 2. O porțiune din linia de alimentare electrică a unui troleibuz poate fi asimilată circuitului din *Figura* 1. Fiecare fir al cablului aerian are rezistența R uniform distribuită pe toată lungimea firului, iar totalitatea consumatorilor din troleibuz poate fi considerată ca un singur consumator rezistiv cu rezistența electrică R_0 ($R = kR_0$, k = 0,1). La capetele liniei aeriene sunt conectate două generatoare identice cu t.e.m. E și cu rezistențele interioare neglijabile. Curentul absorbit de troleibuz atunci când trece pe sub unul dintre generatoare este I_0 .

- a) Exprimă intensitatea curentului absorbit de troleibuz în funcție de poziția acestuia între cele două capete ale liniei bifilare exprimată prin fracțiunea $x = \frac{d}{\ell}$ (d fiind distanța până la unul dintre capete, iar ℓ este lungimea liniei).
- b) Găsește valoarea minimă a intensității curentului absorbit de troleibuz și poziția acestuia în situația respectivă. Reprezintă grafic calitativ, în funcție de x, intensitățile prin cele trei ramuri ale circuitului precizat (prin R_0 , respectiv prin cele două generatoare).
- c) Pentru determinarea poziției troleibuzului pe traseu, se folosește un milivoltmetru ideal conectat în imediata vecinătate a capetelor liniei bifilare, în paralel cu o scurtă porțiune (AB) a unuia dintre fire. La realizarea scalei acestuia, *s-a considerat* că tensiunea măsurată depinde liniar de poziția troleibuzului astfel încât atunci când, de exemplu, $d = \frac{1}{3}\ell$, acul milivoltmetrului ar fi la $\frac{1}{3}$ din scală. În aceste condiții, cât este eroarea relativă care se face în determinarea poziției troleibuzului atunci când acesta se află la jumătatea distanței dintre capetele liniei?
- 3. În cele două circuite din *Figura* 2, generatoarele sunt identice, rezistențele R_1 , R_2 și R_3 sunt diferite, nenule și finite, iar puterile primite de circuitele exterioare sunt egale ($P_S = P_P = P$). Între rezistențele exterioare echivalente ale celor două circuite există relația: $R_S + R_P = nr$, în care r este rezistența interioară a unuia dintre generatoare, iar n este un număr real pozitiv.

- a) Calculează, în funcție de n și P, puterea disipată pe circuitul exterior pentru circuitul din *Figura* 3.
- **b)** Exprimă, în funcție de r și n, rezistențele echivalente R_s și R_p .
- c) Arată că dacă se conectează în serie cei 3 rezistori de rezistențe R_1 , R_2 și R_3 se obține o rezistență echivalentă cel puțin de x = 9 ori mai mare decât rezistența echivalentă a acelorași rezistori conectați în paralel. Cât este x pentru cazul a n rezistori?

(prof. dr. Florea Uliu – Universitatea Craiova prof. Dorel Haralamb – Colegiul Național "Petru Rareș", Piatra Neamț, prof. Gabriel Octavian Negrea – Colegiul Național "Gheorghe Lazăr", Sibiu)