Orpie v1.5 User Manual

Paul J. Pelzl

September 13, 2007

"Because the equals key is for the weak."

Contents

1	Intro	oduction		2
2	Insta	allation		2
3	Quio	ck Start		2
	3.1	Overvio	ew	3
	3.2	Enterin	g Data	3
		3.2.1	Entering Real Numbers	3
		3.2.2	Entering Complex Numbers	3
		3.2.3	Entering Matrices	3
		3.2.4	Entering Data With Units	4
		3.2.5	Entering Exact Integers	4
		3.2.6	Entering Variable Names	4
		3.2.7	Entering Physical Constants	5
		3.2.8	Entering Data With an External Editor	5
	3.3	Executi	ing Basic Function Operations	6
	3.4	Executi	ing Function Abbreviations	7
	3.5	Executi	ing Basic Command Operations	9
	3.6		ing Command Abbreviations	10
	3.7	Browsi	ng the Stack	11
	3.8	Units F	Formatting	11
4	Adv	anced C	onfiguration	14
	4.1	orpie	erc Syntax	14
		4.1.1	Including Other Refiles	14
		4.1.2	Setting Configuration Variables	14
		4.1.3	Creating Key Bindings	14
		4.1.4	Removing Key Bindings	
		4.1.5	Creating Key Auto-Bindings	15
		4.1.6	Creating Operation Abbreviations	
		4.1.7	Removing Operation Abbreviations	16

7	Con	tact info		27
6	Cred	dits		27
5	Lice	nsing		26
		4.3.7	Integer Entry Operations	26
		4.3.6	Variable Entry Operations	26
		4.3.5	Abbreviation Entry Operations	26
		4.3.4	Browsing Operations	25
		4.3.3	Edit Operations	24
		4.3.2	Commands	22
		4.3.1	Functions	18
	4.3	Calcula	ator Operations	17
	4.2	Config	uration Variables	17
		4.1.10	Creating Constants	17
		4.1.9	Creating Units	16
		4.1.8	Creating Macros	16

1 Introduction

Orpie is a console-based RPN (reverse polish notation) desktop calculator. The interface is similar to that of modern Hewlett-Packard TM calculators, but has been optimized for efficiency on a PC keyboard. The design is also influenced to some degree by the Mutt email client and the Vim editor.

Orpie does not have graphing capability, nor does it offer much in the way of a programming interface; other applications such as GNU Octave³ are already very effective for such tasks. Orpie focuses specifically on helping you to crunch numbers quickly.

Orpie is written in Objective Caml (aka OCaml)⁴, a high-performance functional programming language with a whole lot of nice features. I highly recommend it.

2 Installation

This section describes how to install Orpie by compiling from source. Volunteers have pre-packaged Orpie for several popular operating systems, so you may be able to save yourself some time by installing from those packages. Please check the Orpie website for up-to-date package information.

Before installing Orpie, you should have installed the GNU Scientific Library (GSL)⁵ version 1.4 or greater. You will also need a curses library (e.g. ncurses⁶), which is almost certainly already installed on your system. Finally, OCaml 3.07 or higher is required to compile the sources. You will need the Nums library that is distributed with OCaml; if you install OCaml from binary packages distributed by your OS vendor, you may find that separate Nums packages must also be installed.

I will assume you have received this program in the form of a source tarball, e.g. "orpie-x.x.tar.gz". You have undoubtedly extracted this archive already (e.g. using "tar xvzf orpie-x.x.tar.gz"). Enter the root of the Orpie installation directory, e.g. "cd orpie-x.x". You can compile the sources with the following sequence:

```
$ ./configure
```

\$ make

Finally, run "make install" (as root) to install the executables. "configure" accepts a number of parameters that you can learn about with "./configure --help". Perhaps the most common of these is the --prefix option, which lets you install to a non-standard directory.

3 Quick Start

This section describes how to use Orpie in its default configuration. After familiarizing yourself with the basic operations as outlined in this section, you may wish to consult Section 4 to see how Orpie can be configured to better fit your needs.

¹http://www.mutt.org

²http://vim.sf.net

³http://www.octave.org

⁴http://caml.inria.fr/

⁵http://sources.redhat.com/gsl/

⁶http://www.gnu.org/software/ncurses/ncurses.html

⁷The default installation prefix is /usr/local. The orpierc file will be placed in \$(prefix)/etc by default; use the --sysconfider option to choose a different location.

3.1 Overview

You can start the calculator by executing orpie. The interface has two panels. The left panel combines status information with context-sensitive help; the right panel represents the calculator's stack. (Note that the left panel will be hidden if Orpie is run in a terminal with less than 80 columns.)

In general, you perform calculations by first entering data on to the stack, then executing functions that operate on the stack data. As an example, you can hit 1<enter>2<enter>+ in order to add 1 and 2.

3.2 Entering Data

3.2.1 Entering Real Numbers

To enter a real number, just type the desired digits and hit enter. The space bar will begin entry of a scientific notation exponent. The 'n' key is used for negation. Here are some examples:

Keypresses	Resulting Entry
1.23 <enter></enter>	1.23
1.23 <space>23n<enter></enter></space>	1.23e-23
1.23n <space>23<enter></enter></space>	-1.23e23

3.2.2 Entering Complex Numbers

Orpie can represent complex numbers using either cartesian (rectangular) or polar coordinates. See Section 3.5 to see how to change the complex number display mode.

A complex number is entered by first pressing '(', then entering the real part, then pressing', 'followed by the imaginary part. Alternatively, you can press'('followed by the magnitude, then '<' followed by the phase angle. The angle will be interpreted in degrees or radians, depending on the current setting of the angle mode (see Section 3.5). Examples:

Keypresses	Resulting Entry
(1.23, 4.56 <enter></enter>	(1.23, 4.56)
(0.7072<45 <enter></enter>	(0.500065915655126, 0.50006591
(1.23n,4.56 <space>10<enter></enter></space>	(-1.23, 45600000000)

3.2.3 Entering Matrices

You can enter matrices by pressing '['. The elements of the matrix may then be entered as described in the previous sections, and should be separated using ','. To start a new row of the matrix, press '[' again. On the stack, each row of the matrix is enclosed in a set of brackets; for example, the matrix

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

would appear on the stack as [[1, 2][3, 4]].

Examples of matrix entry:

Keypresses	Resulting Entry
[1,2[3,4 <enter></enter>	[[1, 2][3, 4]]
[1.2 <space>10,0[3n,5n<enter></enter></space>	[[1200000000, 0][-3, -5]]
[(1,2,3,4[5,6,7,8 <enter></enter>	[[(1, 2), (3, 4)][(5, 6), (

3.2.4 Entering Data With Units

Real and complex scalars and matrices can optionally be labeled with units. After typing in the numeric portion of the data, press '_' followed by a units string. The format of units strings is described in Section 3.8.

Examples of entering dimensioned data:

Keypresses	Resulting Entry
1.234_N*mm^2/s <enter></enter>	1.234_N*mm^2*s^-1
$(2.3,5_s^-4$	(2.3, 5) _s -4
[1,2[3,4_lbf*in <enter></enter>	[[1, 2][3, 4]]_lbf*in
_nm <enter></enter>	1_nm

3.2.5 Entering Exact Integers

An exact integer may be entered by pressing '#' followed by the desired digits. The base of the integer will be assumed to be the same as the current calculator base mode (see Section 3.5 to see how to set this mode). Alternatively, the desired base may be specified by pressing space and appending one of $\{b, o, d, h\}$, to represent binary, octal, decimal, or hexadecimal, respectively. On the stack, the representation of the integer will be changed to match the current base mode. Examples:

Keypresses	Resulting Entry
#123456 <enter></enter>	# 123456`d
#ffff <space>h<enter></enter></space>	# 65535`d
#10101n <space>b<enter></enter></space>	# -21`d

Note that exact integers may have unlimited length, and the basic arithmetic operations (addition, subtraction, multiplication, division) will be performed using exact arithmetic when both arguments are integers.

3.2.6 Entering Variable Names

A variable name may be entered by pressing '@' followed by the desired variable name string. The string may contain alphanumeric characters, dashes, and underscores. Example:

Keypresses	Resulting Entry
@myvar	@ myvar

Orpie also supports autocompletion of variable names. The help panel displays a list of pre-existing variables that partially match the name currently being entered. You can press '<tab>' to iterate through the list of matching variables.

As a shortcut, keys <f1>-<f4> will enter the variables ("registers") @ r01 through @ r04.

3.2.7 Entering Physical Constants

Orpie includes definitions for a number of fundamental physical constants. To enter a constant, press 'C', followed by the first few letters/digits of the constant's symbol, then hit enter. Orpie offers an autocompletion feature for physical constants, so you only need to type enough of the constant to identify it uniquely. A list of matching constants will appear in the left panel of the display, to assist you in finding the desired choice.

The following is a list of Orpie's physical constant symbols:

Symbol	Physical Constant
NA	Avagadro's number
k	Boltzmann constant
Vm	molar volume
R	universal gas constant
stdT	standard temperature
stdP	standard pressure
sigma	Stefan-Boltzmann constant
С	speed of light
eps0	permittivity of free space
u0	permeability of free space
g	acceleration of gravity
G	Newtonian gravitational constant
h	Planck's constant
hbar	Dirac's constant
е	electron charge
me	electron mass
mp	proton mass
alpha	fine structure constant
phi	magnetic flux quantum
F	Faraday's constant
Rinf	"infinity" Rydberg constant
a0	Bohr radius
uВ	Bohr magneton
uN	nuclear magneton
lam0	wavelength of a 1eV photon
f0	frequency of a 1eV photon
lamc	Compton wavelength
с3	Wien's constant

All physical constants are defined in the Orpie run-configuration file; consult Section 4 if you wish to define your own constants or change the existing definitions.

3.2.8 Entering Data With an External Editor

Orpie can also parse input entered via an external editor. You may find this to be a convenient method for entering large matrices. Pressing 'E' will launch the external editor, and the various data types may be entered as illustrated by the examples below:

Data Type	Sample Input String
exact integer	#12345678 `d, where the trailing letter is one of the base characters {b, o, d, h}
real number	-123.45e67
complex number	(1e10, 2) or (1 <90)
real matrix	[[1, 2][3.1, 4.5e10]]
complex matrix	[[(1, 0), 5][1e10, (2 <90)]]
variable	@myvar

Real and complex numbers and matrices may have units appended; just add a units string such as "N*m/s" immediately following the numeric portion of the expression.

Notice that the complex matrix input parser is quite flexible; real and complex matrix elements may be mixed, and cartesian and polar complex formats may be mixed as well.

Multiple stack entries may be specified in the same file, if they are separated by whitespace. For example, entering (1, 2) 1.5 into the editor will cause the complex value (1, 2) to be placed on the stack, followed by the real value 1.5.

The input parser will discard whitespace where possible, so feel free to add any form of whitespace between matrix rows, matrix elements, real and complex components, etc.

3.3 Executing Basic Function Operations

Once some data has been entered on the stack, you can apply operations to that data. For example, '+' will add the last two elements on the stack. By default, the following keys have been bound to such operations:

Vous	Operations
Keys	Operations
+	add last two stack elements
_	subtract element 1 from element 2
*	multiply last two stack elements
/	divide element 2 by element 1
^	raise element 2 to the power of element 1
n	negate last element
i	invert last element
s	square root function
a	absolute value function
е	exponential function
1	natural logarithm function
С	complex conjugate function
!	factorial function
왕	element 2 mod element 1
S	store element 2 in (variable) element 1
;	evaluate variable to obtain contents

As a shortcut, function operators will automatically enter any data that you were in the process of entering. So instead of the sequence 2<enter>2<enter>+, you could type simply 2<enter>2+ and the second number would be entered before the addition operation is applied.

As an additional shortcut, any variable names used as function arguments will be evaluated before application of the function. In other words, it is not necessary to evaluate variables before performing arithmetic operations on them.

3.4 Executing Function Abbreviations

One could bind nearly all calculator operations to specific keypresses, but this would rapidly get confusing since the PC keyboard is not labeled as nicely as a calculator keyboard is. For this reason, Orpie includes an *abbreviation* syntax.

To activate an abbreviation, press '' (quote key), followed by the first few letters/digits of the abbreviation, then hit enter. Orpie offers an autocompletion feature for abbreviations, so you only need to type enough of the operation to identify it uniquely. The matching abbreviations will appear in the left panel of the display, to assist you in finding the appropriate operation.

To avoid interface conflicts, abbreviations may be entered only when the entry buffer (the bottom line of the screen) is empty.

The following functions are available as abbreviations:

Abbreviations	Functions
inv	inverse function
woq	raise element 2 to the power of element 1
sq	square last element
sqrt	square root function
abs	absolute value function
exp	exponential function
ln	natural logarithm function
10^	base 10 exponential function
log10	base 10 logarithm function
conj	complex conjugate function
sin	sine function
cos	cosine function
tan	tangent function
sinh	hyperbolic sine function
cosh	hyperbolic cosine function
tanh	hyperbolic tangent function
asin	arcsine function
acos	arccosine function
atan	arctangent function
asinh	inverse hyperbolic sine function
acosh	inverse hyperbolic cosine function
atanh	inverse hyperbolic tangent function
re	real part of complex number
im	imaginary part of complex number
gamma	Euler gamma function
lngamma	natural log of Euler gamma function
erf	error function
erfc	complementary error function
fact	factorial function
gcd	greatest common divisor function
lcm	least common multiple function
binom	binomial coefficient function
perm	permutation function

Abbreviations (con't)	Functions
trans	matrix transpose
trace	trace of a matrix
solvelin	solve a linear system of the form $Ax = b$
mod	element 2 mod element 1
floor	floor function
ceil	ceiling function
toint	convert a real number to an integer type
toreal	convert an integer type to a real number
add	add last two elements
sub	subtract element 1 from element 2
mult	multiply last two elements
div	divide element 2 by element 1
neg	negate last element
store	store element 2 in (variable) element 1
eval	evaluate variable to obtain contents
purge	delete a variable
total	sum the columns of a real matrix
mean	compute the sample means of the columns of a real matrix
sumsq	sum the squares of the columns of a real matrix
var	compute the unbiased sample variances of the columns of a real matrix
varbias	compute the biased (population) sample variances of the columns of a real matrix
stdev	compute the unbiased sample standard deviations of the columns of a real matrix
stdevbias	compute the biased (pop.) sample standard deviations of the columns of a matrix
min	find the minima of the columns of a real matrix
max	find the maxima of the columns of a real matrix
utpn	compute the upper tail probability of a normal distribution
uconvert	convert element 2 to an equivalent expression with units matching element 1
ustand	convert to equivalent expression using SI standard base units
uvalue	drop the units of the last element

Entering abbreviations can become tedious when performing repetitive calculations. To save some keystrokes, Orpie will automatically bind recently-used operations with no prexisting binding to keys <f5>-<f12>. The current autobindings can be viewed by pressing 'h' to cycle between the various pages of the help panel.

3.5 Executing Basic Command Operations

In addition to the function operations listed in Section 3.3, a number of basic calculator commands have been bound to single keypresses:

Keys	Operations
\	drop last element
	clear all stack elements
<pagedown></pagedown>	swap last two elements
<enter></enter>	duplicate last element (when entry buffer is empty)
u	undo last operation
r	toggle angle mode between degrees and radians
р	toggle complex display mode between rectangular and polar
b	cycle base display mode between binary, octal, decimal, hex
h	cycle through multiple help windows
v	view last stack element in a fullscreen editor
E	create a new stack element using an external editor
P	enter π on the stack
C-L	refresh the display
<up></up>	begin stack browsing mode
Q	quit Orpie

3.6 Executing Command Abbreviations

In addition to the function operations listed in Section 3.4, there are a large number of calculator commands that have been implemented using the abbreviation syntax:

Abbreviations	Calculator Operation
drop	drop last element
clear	clear all stack elements
swap	swap last two elements
dup	duplicate last element
undo	undo last operation
rad	set angle mode to radians
deg	set angle mode to degrees
rect	set complex display mode to rectangular
polar	set complex display mode to polar
bin	set base display mode to binary
oct	set base display mode to octal
dec	set base display mode to decimal
hex	set base display mode to hexidecimal
view	view last stack element in a fullscreen editor
edit	create a new stack element using an external editor
pi	enter π on the stack
rand	generate a random number between 0 and 1 (uniformly distributed)
refresh	refresh the display
about	display a nifty "About Orpie" screen
quit	quit Orpie

3.7 Browsing the Stack

Orpie offers a *stack browsing mode* to assist in viewing and manipulating stack data. Press <up> to enter stack browsing mode; this should highlight the last stack element. You can use the up and down arrow keys to select different stack elements. The following keys are useful in stack browsing mode:

Keys	Operations
q	quit stack browsing mode
<left></left>	scroll selected entry to the left
<right></right>	scroll selected entry to the right
r	cyclically "roll" stack elements downward, below the selected element (inclusive)
R	cyclically "roll" stack elements upward, below the selected element (inclusive)
v	view the currently selected element in a fullscreen editor
E	edit the currently selected element with an external editor
<enter></enter>	duplicate the currently selected element

The left and right scrolling option may prove useful for viewing very lengthy stack entries, such as large matrices. The edit option provides a convenient way to correct data after it has been entered on the stack.

3.8 Units Formatting

A units string is a list of units separated by '*' to indicate multiplication and '/' to indicate division. Units may be raised to real-valued powers using the '^' character. A contrived example of a valid unit string would be "N*nm^2*kg/s/in^-3*GHz^2.34".

Orpie supports the standard SI prefix set, $\{y, z, a, f, p, n, u, m, c, d, da, h, k, M, G, T, P, E, Z, Y\}$ (note the use of 'u' for micro-). These prefixes may be applied to any of the following exhaustive sets of units:

String	Length Unit
m	meter
ft	foot
in	inch
yd	yard
mi	mile
рс	parsec
AU	astronomical unit
Ang	angstrom
furlong	furlong
pt	PostScript point
pica	PostScript pica
nmi	nautical mile
lyr	lightyear

String	Mass Unit
g	gram
lb	pound mass
oz	ounce
slug	slug
lbt	Troy pound
ton	(USA) short ton
tonl	(UK) long ton
tonm	metric ton
ct	carat
gr	grain

String	Time Unit
s	second
min	minute
hr	hour
day	day
yr	year
Hz	Hertz

String	Temperature Unit
K	Kelvin
R	Rankine

Note: No, Celsius and Fahrenheit will not be supported. Because these temperature units do not share a common zero point, their behavior is ill-defined under many operations.

String	"Amount of Substance" Unit
mol	Mole

String	Force Unit
N	Newton
lbf	pound force
dyn	dyne
kip	kip

String	Energy Unit
J	Joule
erg	erg
cal	calorie
BTU	british thermal unit
eV	electron volt

String	Electrical Unit
A	Ampere
C	Coulomb
V	volt
Ohm	Ohm
F	Farad
H	Henry
Т	Tesla
G	Gauss
Wb	Weber
Mx	Maxwell

String	Power Unit
W	Watt
hp	horsepower

String	Pressure Unit
Pa	Pascal
atm	atmosphere
bar	bar
Ohm	Ohm
mmHg	millimeters of mercury
inHg	inches of mercury

String	Luminance Unit
cd	candela
lm	lumen
lx	lux

Note: Although the lumen is defined by $1_{lm} = 1_{cd} * sr$, Orpie drops the steridian because it is a dimensionless unit and therefore is of questionable use to a calculator.

String	Volume Unit
ozfl	fluid ounce (US)
cup	cup (US)
pt	pint (US)
qt	quart (US)
gal	gallon (US)
L	liter

All units are defined in the Orpie run-configuration file; consult Section 4 if you wish to define your own units or change the existing definitions.

4 Advanced Configuration

Orpie reads a run-configuration textfile (generally /etc/orpierc or /usr/local/etc/orpierc) to determine key and command bindings. You can create a personalized configuration file in \$HOME/.orpierc, and select bindings that match your usage patterns. The recommended procedure is to "include" the orpierc file provided with Orpie (see Section 4.1.1), and add or remove settings as desired.

4.1 orpierc Syntax

You may notice that the orpierc syntax is similar to the syntax used in the configuration file for the Mutt email client (muttrc).

Within the orpierc file, strings should be enclosed in double quotes ("). A double quote character inside a string may be represented by $\$ ". The backslash character must be represented by doubling it ($\$).

4.1.1 Including Other Refiles

Syntax: include filename_string

This syntax can be used to include one run-configuration file within another. This command could be used to load the default orpierc file (probably found in /etc/orpierc) within your personalized refile, ~/.orpierc. The filename string should be enclosed in quotes.

4.1.2 Setting Configuration Variables

Syntax: set variable=value_string

Several configuration variables can be set using this syntax; check Section 4.2 to see a list. The variables are unquoted, but the values should be quoted strings.

4.1.3 Creating Key Bindings

Syntax: bind key_identifier operation

This command will bind a keypress to execute a calculator operation. The various operations, which should not be enclosed in quotes, may be found in Section 4.3. Key identifiers may be specified by strings that represent a single keypress, for example "m" (quotes included). The key may be prefixed with "\\C" or "\\M" to represent Control or Meta (Alt) modifiers, respectively; note that the backslash must be doubled. A number of special keys lack single-character representations, so the following strings may be used to represent them:

- "<esc>"
- "<tab>"
- "<enter>"
- "<return>"
- "<insert>"

- "<home>"
- "<end>"
- "<pageup>"
- "<pagedown>"
- "<space>"
- "<left>"
- "<right>"
- "<up>"
- "<down>"
- "<f1>" to "<f12>"

Due to differences between various terminal emulators, this key identifier syntax may not be adequate to describe every keypress. As a workaround, Orpie will also accept key identifiers in octal notation. As an example, you could use \024 (do *not* enclose it in quotes) to represent Ctrl-T.

Orpie includes a secondary executable, orpie-curses-keys, that prints out the key identifiers associated with keypresses. You may find it useful when customizing orpierc.

Multiple keys may be bound to the same operation, if desired.

4.1.4 Removing Key Bindings

Syntax:

unbind_function key_identifier unbind_command key_identifier unbind_edit key_identifier unbind_browse key_identifier unbind_abbrev key_identifier unbind_variable key_identifier unbind_integer key_identifier

These commands will remove key bindings associated with the various entry modes (functions, commands, editing operations, etc.). The key identifiers should be defined using the syntax described in the previous section.

4.1.5 Creating Key Auto-Bindings

Syntax: autobind key_identifier

In order to make repetitive calculations more pleasant, Orpie offers an automatic key binding feature. When a function or command is executed using its abbreviation, one of the keys selected by the autobind syntax will be automatically bound to that operation (unless the operation has already been bound to a key). The

current set of autobindings can be viewed in the help panel by executing command_cycle_help (bound to 'h' by default).

The syntax for the key identifiers is provided in the previous section.

4.1.6 Creating Operation Abbreviations

Syntax: abbrev operation_abbreviation operation

You can use this syntax to set the abbreviations used within Orpie to represent the various functions and commands. A list of available operations may be found in Section 4.3. The operation abbreviations should be quoted strings, for example "sin" or "log".

Orpie performs autocompletion on these abbreviations, allowing you to type usually just a few letters in order to select the desired command. The order of the autocompletion matches will be the same as the order in which the abbreviations are registered by the rcfile—so you may wish to place the more commonly used operation abbreviations earlier in the list.

Multiple abbreviations may be bound to the same operation, if desired.

4.1.7 Removing Operation Abbreviations

Syntax: unabbrev operation_abbreviation

This syntax can be used to remove an operation abbreviation. The operation abbreviations should be quoted strings, as described in the previous section.

4.1.8 Creating Macros

Syntax: macro key_identifier macro_string

You can use this syntax to cause a single keypress (the *key_identifier*) to be interpreted as the series of keypresses listed in *macro_string*. The syntax for defining a keypress is the same as that defined in Section 4.1.3. The macro string should be a list of whitespace-separated keypresses, e.g. "2 <return> 2 +" (including quotes).

This macro syntax provides a way to create small programs; by way of example, the default orpierc file includes macros for the base 2 logarithm and the binary entropy function (bound to L and H, respectively), as well as "register" variable shortcuts (<f1> to <f12>).

Macros may call other macros recursively. However, take care that a macro does not call *itself* recursively; Orpie will not trap the infinite loop.

Note that operation abbreviations may be accessed within macros. For example, macro "A" "' a b o u t <return>" would bind A to display the "about Orpie" screen.

4.1.9 Creating Units

Syntax:

base_unit unit_symbol preferred_prefix
unit unit_symbol unit_definition

Units are defined in a two-step process:

1. Define a set of orthogonal "base units." All other units must be expressible in terms of these base units. The base units can be given a preferred SI prefix, which will be used whenever the units are standardized (e.g. via ustand). The unit symbols and preferred prefixes should all be quoted strings; to prefer *no* prefix, use the empty string ("").

It is expected that most users will use the fundamental SI units for base units.

2. Define all other units in terms of either base units or previously-defined units. Again, the unit symbol and unit definition should be quoted strings. The definition should take the form of a numeric value followed by a units string, e.g. "2.5_kN*m/s". See Section 3.8 for more details on the unit string format.

4.1.10 Creating Constants

Syntax: constant constant_symbol constant_definition

This syntax can be used to define a physical constant. Both the constant symbol and definition must be quoted strings. The constant definition should be a numeric constant followed by a units string e.g. "1.60217733e-19_C". All units used in the constant definition must already have been defined.

4.2 Configuration Variables

The following configuration variables may be set as described in Section 4.1.2:

• datadir

This variable should be set to the full path of the Orpie data directory, which will contain the calculator state save file, temporary buffers, etc. The default directory is "~/.orpie/".

• editor

This variable may be set to the fullscreen editor of your choice. The default value is "vi". It is recommended that you choose an editor that offers horizontal scrolling in place of word wrapping, so that the columns of large matrices can be properly aligned. (The Vim editor could be used in this fashion by setting editor to "vim -c 'set nowrap'".)

• hide_help

Set this variable to "true" to hide the left help/status panel, or leave it on the default of "false" to display the help panel.

• conserve_memory

Set this variable to "true" to minimize memory usage, or leave it on the default of "false" to improve rendering performance. (By default, Orpie caches multiple string representations of all stack elements. Very large integers in particular require significant computation for string representation, so caching these strings can make display updates much faster.)

4.3 Calculator Operations

Every calculator operation can be made available to the interface using the syntax described in Sections 4.1.3 and 4.1.6. The following is a list of every available operation.

4.3.1 Functions

The following operations are functions—that is, they will consume at least one argument from the stack. Orpie will generally abort the computation and provide an informative error message if a function cannot be successfully applied (for example, if you try to compute the transpose of something that is not a matrix).

For the exact integer data type, basic arithmetic operations will yield an exact integer result. Division of two exact integers will yield the quotient of the division. The more complicated functions will generally promote the integer to a real number, and as such the arithmetic will no longer be exact.

• function_10_x

Raise 10 to the power of the last stack element (inverse of function_log10).

• function_abs

Compute the absolute value of the last stack element.

• function_acos

Compute the inverse cosine of the last stack element. For real numbers, The result will be provided either in degrees or radians, depending on the angle mode of the calculator.

• function_acosh

Compute the inverse hyperbolic cosine of the last stack element.

• function_add

Add last two stack elements.

• function_arg

Compute the argument (phase angle of complex number) of the last stack element. The value will be provided in either degrees or radians, depending on the current angle mode of the calculator.

• function_asin

Compute the inverse sine of the last stack element. For real numbers, The result will be provided either in degrees or radians, depending on the angle mode of the calculator.

• function_asinh

Compute the inverse hyperbolic sine of the last stack element.

• function_atan

Compute the inverse tangent of the last stack element. For real numbers, The result will be provided either in degrees or radians, depending on the angle mode of the calculator.

• function_atanh

Compute the inverse hyperbolic tangent of the last stack element.

• function_binomial_coeff

Compute the binomial coefficient ("n choose k") formed by the last two stack elements. If these arguments are real, the coefficient is computed using a fast approximation to the log of the gamma function, and therefore the result is subject to rounding errors. For exact integer arguments, the coefficient is computed using exact arithmetic; this has the potential to be a slow operation.

• function_ceiling

Compute the ceiling of the last stack element.

• function_convert_units

Convert stack element 2 to an equivalent expression in the units of element 1. Element 1 should be real-valued, and its magnitude will be ignored when computing the conversion.

• function_cos

Compute the cosine of the last stack element. If the argument is real, it will be assumed to be either degrees or radians, depending on the angle mode of the calculator.

• function_cosh

Compute the hyperbolic cosine of the last stack element.

• function_conj

Compute the complex conjugate of the last stack element.

• function_div

Divide element 2 by element 1.

• function_erf

Compute the error function of the last stack element.

• function_erfc

Compute the complementary error function of the last stack element.

• function_eval

Obtain the contents of the variable in the last stack position.

• function_exp

Evaluate the exponential function of the last stack element.

• function_factorial

Compute the factorial of the last stack element. For a real argument, this is computed using a fast approximation to the gamma function, and therefore the result may be subject to rounding errors (or overflow). For an exact integer argument, the factorial is computed using exact arithmetic; this has the potential to be a slow operation.

• function_floor

Compute the floor of the last stack element.

• function_gamma

Compute the Euler gamma function of the last stack element.

• function_gcd

Compute the greatest common divisor of the last two stack elements. This operation may be applied only to integer type data.

• function_im

Compute the imaginary part of the last stack element.

• function_inv

Compute the multiplicative inverse of the last stack element.

• function_lcm

Compute the least common multiple of the last two stack elements. This operation may be applied only to integer type data.

• function_ln

Compute the natural logarithm of the last stack element.

• function_lngamma

Compute the natural logarithm of the Euler gamma function of the last stack element.

• function_log10

Compute the base-10 logarithm of the last stack element.

• function_maximum

Find the maximum values of each of the columns of a real NxM matrix, returning a 1xM matrix as a result.

• function_minimum

Find the minimum values of each of the columns of a real NxM matrix, returning a 1xM matrix as a result.

• function_mean

Compute the sample means of each of the columns of a real NxM matrix, returning a 1xM matrix as a result.

• function_mod

Compute element 2 mod element 1. This operation can be applied only to integer type data.

• function_mult

Multiply last two stack elements.

• function_neg

Negate last stack element.

• function_permutation

Compute the permutation coefficient determined by the last two stack elements 'n' and 'k': the number of ways of obtaining an ordered subset of k elements from a set of n elements. If these arguments are real, the coefficient is computed using a fast approximation to the log of the gamma function, and therefore the result is subject to rounding errors. For exact integer arguments, the coefficient is computed using exact arithmetic; this has the potential to be a slow operation.

• function_pow

Raise element 2 to the power of element 1.

• function_purge

Delete the variable in the last stack position.

• function_re

Compute the real part of the last stack element.

• function sin

Compute the sine of the last stack element. If the argument is real, it will be assumed to be either degrees or radians, depending on the angle mode of the calculator.

• function_sinh

Compute the hyperbolic sine of the last stack element.

• function_solve_linear

Solve a linear system of the form Ax = b, where A and b are the last two elements on the stack. A must be a square matrix and b must be a matrix with one column. This function does not compute inv(A), but obtains the solution by a more efficient LU decomposition method. This function is recommended over explicitly computing the inverse, especially when solving linear systems with relatively large dimension or with poorly conditioned matrices.

• function_sq

Square the last stack element.

• function_sqrt

Compute the square root of the last stack element.

• function_standardize_units

Convert the last stack element to an equivalent expression using the SI standard base units (kg, m, s, etc.).

• function_stdev_unbiased

Compute the unbiased sample standard deviation of each of the columns of a real NxM matrix, returning a 1xM matrix as a result. (Compare to HP48's sdev function.)

• function_stdev_biased

Compute the biased (population) sample standard deviation of each of the columns of a real NxM matrix, returning a 1xM matrix as a result. (Compare to HP48's psdev function.)

• function_store

Store element 2 in (variable) element 1.

• function_sub

Subtract element 1 from element 2.

• function_sumsq

Sum the squares of each of the columns of a real NxM matrix, returning a 1xM matrix as a result.

• function_tan

Compute the tangent of the last stack element. If the argument is real, it will be assumed to be either degrees or radians, depending on the angle mode of the calculator.

• function_tanh

Compute the hyperbolic tangent of the last stack element.

• function_to_int

Convert a real number to an integer type.

- function_to_real
 Convert an integer type to a real number.
- function_total
 Sum each of the columns of a real NxM matrix, returning a 1xM matrix as a result.
- function_trace
 Compute the trace of a square matrix.
- function_transpose

 Compute the matrix transpose of the last stack element.
- function_unit_value

 Drop the units of the last stack element.
- function_utpn Compute the upper tail probability of a normal distribution. $utpn(m,v,x) = \int_x^\infty \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{(m-y)^2}{2v}\right) \, dy$
- function_var_unbiased
 Compute the unbiased sample variance of each of the columns of a real NxM matrix, returning a 1xM matrix as a result. (Compare to HP48's var function.)
- function_var_biased Compute the biased (population) sample variance of each of the columns of a real NxM matrix, returning a 1xM matrix as a result. (Compare to HP48's pvar function.)

4.3.2 Commands

The following operations are referred to as commands; they differ from functions because they do not take an argument. Many calculator interface settings are implemented as commands.

- command_about Display a nifty "about Orpie" credits screen.
- command_begin_abbrev Begin entry of an operation abbreviation.
- command_begin_browsing Enter stack browsing mode.
- command_begin_constant Begin entry of a physical constant.
- command_begin_variable Begin entry of a variable name.
- command_bin
 Set the base of exact integer representation to 2 (binary).

• command clear

Clear all elements from the stack.

• command_cycle_base

Cycle the base of exact integer representation between 2, 8, 10, and 16 (bin, oct, dec, and hex).

• command_cycle_help

Cycle through multiple help pages. The first page displays commonly used bindings, and the second page displays the current autobindings.

• command_dec

Set the base of exact integer representation to 10 (decimal).

• command_deg

Set the angle mode to degrees.

• command_drop

Drop the last element off the stack.

• command_dup

Duplicate the last stack element.

• command_enter_pi

Enter π on the stack.

• command_hex

Set the base of exact integer representation to 16 (hexadecimal).

• command_oct

Set the base of exact integer representation to 8 (octal).

• command_polar

Set the complex display mode to polar.

• command_rad

Set the angle mode to radians.

• command_rand

Generate a random real-valued number between 0 (inclusive) and 1 (exclusive). The deviates are uniformly distributed.

• command_rect

Set the complex display mode to rectangular (cartesian).

• command_refresh

Refresh the display.

• command_swap

Swap stack elements 1 and 2.

• command_quit

Quit Orpie.

- command_toggle_angle_mode

 Toggle the angle mode between degrees and radians.
- command_toggle_complex_mode
 Toggle the complex display mode between rectangular and polar.
- command_undo
 Undo the last calculator operation.
- command_view
 View the last stack element in an external fullscreen editor.
- command_edit_input
 Create a new stack element using an external editor.

4.3.3 Edit Operations

The following operations are related to editing during data entry. These commands cannot be made available as operation abbreviations, since abbreviations are not accessible while entering data. These operations should be made available as single keypresses using the bind keyword.

- edit_angle
 Begin entering the phase angle of a complex number. (Orpie will assume the angle is in either degrees or radians, depending on the current angle mode.)
- edit_backspace
 Delete the last character entered.
- edit_begin_integer
 Begin entering an exact integer.
- edit_begin_units

 Begin appending units to a numeric expression.
- edit_complex
 Begin entering a complex number.
- edit_enter
 Enter the data that is currently being edited.
- edit_matrix
 Begin entering a matrix, or begin entering the next row of a matrix.
- edit_minus Enter a minus sign in input.
- edit_scientific_notation_base

 Begin entering the scientific notation exponent of a real number, or the base of an exact integer.
- edit_separator

 Begin editing the next element of a complex number or matrix. (This will insert a comma between elements.)

4.3.4 Browsing Operations

The following list of operations is available only in stack browsing mode. As abbreviations are unavailable while browsing the stack, these operations should be bound to single keypresses using the bind keyword.

• browse_echo

Echo the currently selected element to stack level 1.

• browse end

Exit stack browsing mode.

• browse_drop

Drop the currently selected stack element.

• browse_dropn

Drop all stack elements below the current selection (inclusive).

• browse_keep

Drop all stack elements *except* the current selection. (This is complementary to browse_drop.

• browse_keepn

Drop all stack elements above the current selection (non-inclusive). (This is complementary to browse_dropn.

• browse_next_line

Move the selection cursor down one line.

• browse_prev_line

Move the selection cursor up one line.

• browse_rolldown

Cyclically "roll" stack elements downward, below the selected element (inclusive).

• browse_rollup

Cyclically "roll" stack elements upward, below the selected element (inclusive).

• browse_scroll_left

Scroll the selected element to the left (for viewing very large entries such as matrices).

• browse_scroll_right

Scroll the selected element to the right.

• browse_view

View the currently selected stack element in a fullscreen editor.

• browse_edit

Edit the currently selected stack element using an external editor.

4.3.5 Abbreviation Entry Operations

The following list of operations is available only while entering a function or command abbreviation, or while entering a physical constant. These operations must be bound to single keypresses using the bind keyword.

- abbrev_backspace
 Delete a character from the abbreviation string.
- abbrev_enter Execute the operation associated with the selected abbreviation.
- abbrev_exit Cancel abbreviation entry.

4.3.6 Variable Entry Operations

The following list of operations is available only while entering a variable name. As abbreviations are unavailable while entering variables, these operations should be bound to single keypresses using the bind keyword.

- variable_backspace

 Delete a character from the variable name.
- variable_cancel
 Cancel entry of the variable name.
- variable_complete
 Autocomplete the variable name.
- variable_enter
 Enter the variable name on the stack.

4.3.7 Integer Entry Operations

The following operation is available only while entering an integer; it can be made accessible by binding it to a single keypress using the bind keyword.

• integer_cancel Cancel entry of an integer.

5 Licensing

Orpie is Free Software; you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL), Version 2, as published by the Free Software Foundation. You should have received a copy of the GPL along with this program, in the file "COPYING".

6 Credits

Orpie includes portions of the ocamlgsl⁸ bindings supplied by Olivier Andrieu, as well as the curses bindings from the OCaml Text Mode Kit⁹ written by Nicolas George. I would like to thank these authors for helping to make Orpie possible.

7 Contact info

Orpie author: Paul Pelzl <pelzlpj@eecs.umich.edu>

Orpie website: http://www.eecs.umich.edu/~pelzlpj/orpie

Feel free to contact me if you have bugs, feature requests, patches, etc. I would also welcome volunteers interested in packaging Orpie for various platforms.

⁸http://oandrieu.nerim.net/ocaml/gsl/

⁹http://www.nongnu.org/ocaml-tmk/