Ensemble Learning Strategies for Enhancing Predictive Models in Cardiology

Group Name - Ensemble Medi-Tech

- AYANTANU LAHA
- RAJARSHI SAHA

Content:

- 1. Goal-Importance-Methodology
- 2. Literature Review
- 3. Data Acquisition
- 4. Data Distribution
- 5. Model Selection and Ensemble Modelling
- 6. Experimental Results
- 7. Comparison with different Literature Survey
- 8. Summary
- 9. Reference
- 10. Acknowledgement

GOAL:

Our aim is to develop a predictive model using machine learning techniques to accurately identify the presence or absence of heart disease based on various patient attributes and medical measurements.

By analyzing a comprehensive dataset containing some features, our goal is to train an **Ensemble model** capable of effectively predicting the likelihood of heart disease occurrence.

IMPORTANCE

HEALTH REPORT DIABETES CARDIOVASCULAR DISEASES **ESTIMATED ANNUAL DEATH IN INDIA DUE TO** NON COMUNICABLE **DISEASES** COMMUNICABLE, MATERNAL, PERINATAL & NUTRITIONAL OTHER NCDS

METHODOLOGY:

- Raw dataset is used to maintain the authenticity, because preprocessing may tamper the raw dataset which may cause an impact in our study.
- Exploratory data analysis is done to understand the data's characteristics.
- Ensemble learning technique is applied to develop predictive models.
- Finally the performance is compared with the previous works.

Author	Paper	Method	Dataset	Result	Year
Alfredo Daza , Juana Bobadilla, Juan Carlos Herrera , Angelica Medina , Nemias Saboya , Karoline Zavaleta , Segundo Siguenas	Stacking ensemble based hyperparamete rs to diagnosing of heart disease: Future works [5]	Stacking 1: Level 0 (Decision Tree, Random Forest, Bayesian Networks, and Gradient Boosting) and Level 1 Logistic Regression Stacking 2: Level 0 (Decision Tree, Random Forest, Bayesian Networks, and Gradient Boosting) and Level 1 Random Forest; Stacking 3: Level 0 (Decision Tree, Random Forest, Bayesian Networks, and Gradient Boosting) and level 1 SVM; Stacking 4: Level 0 (Decision Tree, Random Forest, Bayesian Networks, and Gradient Boosting) and Level 1 KNN	Heart Failure Prediction Dataset (1190 instances) - Kaggle	Stacking 1 (Logistic Regression) combined with oversampling and AdaBoost- SVM with hyperparameter tuning exhibited superior performance. This combination achieved a high accuracy of 88.24% and an impressive ROC Curve of 92.00%.	2024

Daza A., Bobadilla J., Herrera J. C., Medina A., Saboya N., Zavaleta K., Siguenas S., Stacking ensemble based hyperparameters to diagnosing of heart disease: Future works, Results in Engineering, Volume 21,2024,101894, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2024.101894

Author	Paper	Method	Dataset	Result	Year
Mohd Syafiq Asyraf Suhaimi , Nor Azuana Raml, Noryanti Muhammad	Heart disease prediction using ensemble of k-nearest neighbour, random forest and logistic regression method [4]	Introduced a novel ensemble approach, specifically employing stacking, to predict heart disease. They utilized logistic regression as the meta-level classifier, alongside random forest and k-nearest neighbour methods as the base-level classifiers.	Heart Disease Dataset (1025 instances)- Kaggle	The combined approach of Random Forest, logistic regression, and k-NN achieved a comparable accuracy of 82.42% with Random Forest alone. Notably, k-NN exhibited the lowest accuracy among all methods.	2024

Suhaimi M. S. A, Ramli N. A., and Muhammad N. "Heart disease prediction using ensemble of k-nearest neighbour, random forest and logistic regression method." *AIP Conference Proceedings*. Vol. 2895. No. 1. AIP Publishing, 2024. https://doi.org/10.1063/5.0192203

Paper	Method	Dataset	Result	Year
Classification	They compared the performance of	Cleveland	Logistic	2024
models	logistic regression, decision tree, and	Clinic	88.52%.	
combined with	support vector machine (SVM)	<u>Heart</u>		
Boruta feature	methods with and without Boruta	<u>Disease</u>		
selection for	feature selection (automatically	<u>Dataset</u>		
heart disease	determines any thresholds and returns	<u>(303</u>		
prediction [9]	features that are most meaningful in the	instances)		
	dataset (<u>Algorithm</u>).	- Kaggle		
	Classification models combined with Boruta feature selection for heart disease	Classification They compared the performance of models logistic regression, decision tree, and combined with support vector machine (SVM) Boruta feature methods with and without Boruta feature selection for feature selection (automatically determines any thresholds and returns prediction [9]	Classification They compared the performance of Cleveland models logistic regression, decision tree, and clinic support vector machine (SVM) Heart methods with and without Boruta Disease selection for feature selection (automatically heart disease determines any thresholds and returns prediction [9] features that are most meaningful in the instances)	Classification models logistic regression, decision tree, and combined with Boruta feature selection for heart disease prediction [9] They compared the performance of logistic regression, decision tree, and Support vector machine (SVM) Heart Disease Dataset (303 instances)

G. Manikandan, B. Pragadeesh, V. Manojkumar, A.L. Karthikeyan, R. Manikandan, Amir H. Gandomi, Classification models combined with Boruta feature selection for heart disease prediction, Informatics in Medicine Unlocked, Volume 44,2024, 101442, ISSN 2352-9148, https://doi.org/10.1016/j.imu.2023.101442

Author	Paper	Method	Dataset	Result	Year
Ahmed Al Ahdal,	Monitoring	Random forests and extreme gradient	UCI Heart	Random forest -	2023
Moaiad Ahmad	Cardiovascular	boost	<u>Disease</u>	96.72%,	
Khder, Manik	Problems in		Data (920		
Rakhra,Rahul R.	Heart Patients		instances)		
Rajendran,Binit	Using Machine		<u>– Kaggle</u>		
Patel,Rituraj Jain,	Learning [1]				
Farrukh Arslan,					
Balaji Ramkumar					
Rajagopal					

A. A. Ahdal, M. A. Khder, M. Rakhra, R. R. Rajendran, B. Patel, R. Jain, F. Arslan, B. R. Rajagopal, "Monitoring Cardiovascular Problems in Heart Patients Using Machine Learning", 2040-2295, Journal of Healthcare Engineering, Hindawi, 10.1155/2023/9738123, https://doi.org/10.1155/2023/9738123

Author	Paper	Method	Dataset	Result	Year
Subhash Mondal, Yachang Omo, Ranjan Maity, Soumadip Ghosh, Amitava Nag	An Efficient Computational Risk Prediction Model of Heart Diseases Based on Dual-Stage Stacked Machine Learning Approaches [10]	Five machine learning classifiers - Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, and Extreme Gradient Boost - were used to create the initial prediction model, and their performance was optimized using hyperparameter tuning techniques like RandomizedSearchCV and GridSearchCV.	Dataset 1: Cleveland Cardiovascul ar Disease Dataset (1190 instances) - IEEE Data Dataset 2: Cardiovascul ar Disease Dataset (1000 instances) - Mendeley Data	Dataset 1 : 96.00 % Dataset 2 : 96.88 %	2024

S. Mondal, R. Maity, Y. Omo, S. Ghosh and A. Nag, "An Efficient Computational Risk Prediction Model of Heart Diseases Based on Dual-Stage Stacked Machine Learning Approaches," in *IEEE Access*, vol. 12, pp. 7255-7270, 2024, doi: 10.1109/ACCESS.2024.3350996.

Author	Paper	Method	Dataset	Result	Year
B.Rupa Devi, U.Sivaji, Thammisetty Swetha, Dr.J.Avanija, Dr.A.Suresh, Dr. K. Reddy Madhavi	Advanced Cardiovascular Disease Prediction: A Comparative Analysis of Ensemble Stacking and Deep Neural Networks. [7]	A neural network model is defined using TensorFlow/Keras, and two instances ('network1' and 'network2') are created. Both networks are trained on the data for a specified number of epochs. Predictions are obtained from both networks on the validation set and stacked horizontally to create features for the meta-model. A meta-model using the XGBoost classifier is defined and trained on the stacked predictions from the neural networks. Predictions on the test set are made using both 'network1' and 'network2,' stacked horizontally, and the meta-model (XGBoost) is used to make final ensemble predictions on the test set.	They gathered a dataset with several characteris tics some crucial factors of heart disease.	The proposed Model achieved accuracy of 93%	2023

Devi, B. R. ., Sivaji, U. ., Swetha, T. ., Avanija, J. ., Suresh, A. ., & Madhavi, K. R. . (2023). "Advanced Cardiovascular Disease Prediction: A Comparative Analysis of Ensemble Stacking and Deep Neural Networks.", International Journal of Intelligent Systems and Applications in Engineering, 12(6s), 46–55. https://ijisae.org/index.php/IJISAE/article/view/3937

Author	Paper	Method	Dataset	Result	Year
Abdullah Alqahtani,Shtwai Alsubai,Mohemmed Sha,Lucia Vilcekova, Talha Javed	Cardiovascular Disease Detection using Ensemble Learning. [3]	Six classification method algorithms is used to predict cardiovascular disease. They proposed an ensemble learning method for detecting CV disease including several classifiers in voting-based decision making. The Random Forest features extraction approach is applied to identify the most informative feature. Besides machine learning algorithms they used a neural network known as KDNN, a robust medical disease detection approach.	ular Disease dataset (70,000 instances)	ML ensemble classifier achieved an accuracy of 88.70 % The stacked classifier achieved an accuracy of 86.49%. Among all the classifier algorithms RF classifier obtained the best accuracy of 88.65%.	2022

A. Alqahtani,S. Alsubai,M. Sha,L. Vilcekova, T. Javed, "Cardiovascular Disease Detection using Ensemble Learning.", 1687-5265, Computational Intelligence and Neuroscience, Hindawi, 10.1155/2022/5267498, https://doi.org/10.1155/2022/5267498

3. Data Acquisition

Dataset 1	Dataset 2	Dataset 3	Dataset 4
• 1190 observations	• 1025 observations	• 1000 observations	• 70000 observations
 12 attributes (11 predictor variables and 1 predicted variable) Dataset 1 	 14 attributes (13 predictor variables and 1 predicted variable) Dataset 2 	 14 attributes (13 predictor variables and 1 predicted variable) Dataset 3 	 12 attributes (11 predictor variables and 1 predicted variable) Dataset 4

4.1 Dataset 1:

Confusion Matrix

4.2 Dataset 2 :

Confusion Matrix

4.3 Dataset 3:

Confusion Matrix

4.4 Dataset 4 :

Confusion Matrix

5. Model Selection & Ensemble Modelling

5.1 Data Split :

- Training set: 64% of the original dataset
- Validation set: 16% of the original dataset
- Testing set: 20% of the original dataset

5.2 Flow Chart:

5.3 Stacking Classifier

rf=RandomForestClassifier(criterion='entropy', max_features='sqrt')
dt= DecisionTreeClassifier (criterion='entropy', max_depth=5, min_samples_leaf=5,
splitter='random')
gb=GradientBoostingClassifier(max_depth=4, min_samples_leaf=20)
gnb-GaussianNB(var_smoothing=0.004328761281083057)
svm=SVC(C=100, gamma 'auto', probability=True)
knn=KNeighbors Classifier (metric='manhattan', n_neighbors=9, weights='distance')
lr=LogisticRegression (C=0.615848211066026, max_iter=500, penalty='11', solver='liblinear')

6. Experimental Results

6.1 Dataset 1:

Dataset 1 (1190)

Model Type	Classification Algorithm	Accı	ıracy	Precisi	on	R	ecall	F1 Score	
		Validation	Test	Validation	Test	Validation	Test	Validation	Test
	K-Nearest Neighbors	80.63%	85.71%	80.81%	85.75%	80.63%	85.71%	80.54%	85.68%
	Support Vector Machine	68.06%	69.33%	80.16%	80.47%	68.06%	69.33%	63.74%	65.11%
	Naïve Bayes Classifier	73.40%	71.85%	73.62%	72.91%	73.29%	71.85%	73.29%	71.82%
Individual Model	Decision Tree Classifier	81.15%	82.77%	81.17%	82.76%	81.15%	82.77%	81.12%	82.75%
	Logistic Regression Classifier	81.16%	81.93%	81.30%	81.94%	81.15%	81.93%	81.08%	81.94%
	Random Forest Classifier	89%	93.28%	89.02%	93.41%	89%	93.28%	88.99%	93.29%
	Stacking 1	89.53%	93.70%	89.66%	93.70%	89.53%	93.70%	89.50%	93.70%
	Stacking 2	88.48%	91.60%	88.48%	91.73%	88.48%	91.60%	88.48%	91.61%
Stack Classifier	Stacking 3	89.53%	91.18%	89.54%	91.28%	89.53%	91.18%	89.52%	91.19%
	Stacking 4	90.05%	92.02%	90.08%	92.02%	90.05%	92.02%	90.04%	92.02%
Majority Voting	Combined Stacking Model	90.58%	93.68%	90.63%	93.70%	90.57%	93.70%	90.56%	93.70%

6. Experimental Results

6.2 Dataset 2:

Dataset 2 (1025)

Model Type	Classification Algorithm	Accu	racy	Preci	sion	Recall		F1 Score	
		Validation	Test	Validation	Test	Validation	Test	Validation	Test
	K-Nearest Neighbors	96.95%	99.02%	97.12%	99.04%	96.95%	99.02%	96.95%	99.02%
	Support Vector Machine	96.34%	98.04%	96.59%	98.12%	96.34%	98.05%	96.34%	98.05%
	Naïve Bayes Classifier	70.73%	70.24%	70.75%	70.59%	70.73%	70.24%	70.73%	70.13%
Individual Model	Decision Tree Classifier	88.41%	86.83%	88.42%	87.26%	88.42%	86.83%	88.41%	86.79%
	Logistic Regression Classifier	81.09%	85.37%	81.22%	86.26%	81.09%	85.36%	81.08%	85.28%
	Random Forest Classifier	97%	98.54%	96.96%	98.54%	97%	98.54%	96.95%	98.54%
	Stacking 1	98.78%	99.02%	98.81%	99.04%	98.78%	99.02%	98.78%	99.02%
Stack Classifier	Stacking 2	98.78%	99.02%	98.81%	99.04%	98.78%	99.02%	98.78%	99.02%
	Stacking 3	96.95%	98.54%	96.96%	98.54%	96.95%	98.54%	96.95%	98.54%
	Stacking 4	98.78%	99.02%	98.81%	99.04%	98.78%	99.02%	98.78%	99.02%
Majority Voting	Combined Stacking Model	98.78%	99.02%	98.80%	99.04%	98.78%	99.02%	98.78%	99.02%

6. Experimental Results

6.3 Dataset 3:

Dataset 3 (1000)

Model Type	Classification Algorithm	Accu	racy	Precis	sion	Recall		F1 Score	
		Validation	Test	Validation	Test	Validation	Test	Validation	Test
	K-Nearest Neighbors	49.37%	55.00%	47.44%	54.88%	49.38%	55.00%	48.19%	54.91%
	Support Vector Machine	61.87%	53.50%	38.28%	28.62%	61.87%	53.50%	47.30%	37.29%
Individual Model	Naïve Bayes Classifier	61.87%	53.50%	38.28%	28.62%	61.87%	53.50%	47.30%	37.29%
marvidual Wodel	Decision Tree Classifier	93.75%	93.00%	93.94%	93.47%	93.75%	93.00%	93.75%	93.00%
	Logistic Regression Classifier	95.62%	95.50%	95.65%	95.50%	95.62%	95.50%	95.63%	95.49%
	Random Forest Classifier	97%	97.50%	96.87%	97.53%	97%	97.50%	96.87%	95.49%
	Stacking 1	96.25%	98.00%	96.25%	98.02%	96.25%	98.00%	96.25%	98.00%
Charle Classifian	Stacking 2	98.12%	97.00%	98.18%	97.01%	98.12%	97.00%	98.12%	97.00%
Stack Classifier	Stacking 3	98.12%	97.00%	98.18%	97.07%	98.12%	97.00%	98.12%	96.99%
	Stacking 4	97.50%	98.50%	97.52%	98.50%	97.50%	98.50%	97.49%	98.50%
Majority Voting	Combined Stacking Model	97.50%	98.00%	97.52%	98.01%	97.50%	98.00%	97.49%	97.99%

6. Experimental Results

6.4 Dataset 4:

Dataset 4 (70000)

Classification Algorithm	Accurac	У	Prec	ision		Recall	F1 Scc	ore
	Validation	Test	Validation	Test	Validation	Test	Validation	Test
K-Nearest Neighbors	57.96%	57.91%	58.03%	57.91%	57.96%	57.91%	57.94%	57.89%
Support Vector Machine	49.59%	50.26%	75.00%	25.28%	49.58%	50.26%	32.88%	33.63%
Naïve Bayes Classifier	60.19%	59.80%	60.29%	59.98%	60.19%	59.80%	60.03%	59.65%
Decision Tree Classifier	63.84%	63.90%	63.85%	63.94%	63.84%	63.90%	63.82%	63.89%
Logistic Regression Classifier	72.13%	71.91%	73.33%	72.01%	72.13%	71.91%	72.09%	71.87%
Random Forest Classifier	72%	72.68%	72.37%	72.23%	72%	71.27%	72.25%	72.65%
Stacking 1	73.62%	73.66%	73.97%	73.89%	73.62%	73.66%	73.54%	73.59%
Stacking 2	73.40%	73.68%	73.85%	73.98%	73.40%	73.68%	73.30%	73.58%
Stacking 3	73.13%	73.29%	73.84%	73.77%	73.13%	73.29%	72.96%	73.13%
Stacking 4	73.63%	73.69%	74.19%	74.06%	73.63%	73.69%	73.51%	73.58%
Combined Stacking Model	73.64%	73.66%	74.09%	73.95%	73.64%	73.65%	73.54%	73.56%

	DATASET 1				
		1 4			
Paper	Algorithm	Accuracy (%) Precision (%)	Recall (%)	F1 Score (%)
	DT	82.56	83	79	81
	RF	90.75	88	93	90
Doppala et al. [8]	NB	84.24	82	85	84
Боррага et al. <u>Гот</u>	LR	84.03	81	87	84
	SVM	81.52	82	84	83
	Ensemble Model	93.39	99	88	90
Daza et al. [5]	RF	88.5	88.95	88.8	88.5
Daza et al. <u>151</u>	Ensemble Model	91.5	91.5	91.6	91.49
		1-10/4	1		
Ozcan et al. [12]	Cart Algorithm	87.25	88.24	84.51	-
	RF	90.21	87.31	-	91.05
Timesi et al [42]	KNN	80.85	78.67	-	82.62
Tiwari et al [13]	SVM	82.55	80.14	- 1/	84.16
	Ensemble Model	92.34	92	- 72	92.74
			Thurs -		
	KNN	85.71	85.75	85.71	85.68
	SVM	69.33	80.47	69.33	65.11
	NB	71.85	72.91	71.85	71.82
OUR METHOD	DT	82.77	82.76	82.77	82.75
	LR	81.93	81.94	81.93	81.94
	RF	93.28	93.41	93.28	93.29
	Proposed Method	93.68	93.7	93.7	93.7

	DATASET 2					
			. 4			
Paper	Algorithm		Accuracy (%)	Precision (%)	Recall (%)	F1 Score (%)
	LR		81.32	-	91.49	83.5
Aggraf et al. [4]	KNN		74.73	-	89.36	78.5
Asyraf et al. [4]	RF		82.42	-	85.11	83.3
	Ensemble Model	113/67	82.42	-	91.49	84.3
		11/1/11	VI			
	SVM	9.6	75	-	75	
	KNN		66.73	-	68	-
Nawaz et al. [11]	NB		83	-	78	-
	RF		92.48	- /	91.17	// -
	Gradient Decent Optimization		98.54	-	99.43	1/3 -
					81	
	KNN		99.02	99.04	99.02	99.02
	SVM		98.04	98.12	98.05	98.05
	NB		70.24	70.59	70.24	70.13
OUR METHOD	DT	11/1/1-14	86.83	87.26	86.83	86.79
	LR		85.37	86.26	85.36	85.28
	RF		98.54	98.54	98.54	98.54
	Proposed Method		99.02	99.04	99.02	99.02

	DATASET 3					
Paper	Algorithm		Accuracy (%)	Precision (%)	Recall (%)	F1 Score (%
	DT	20	95	96	95	95
	RF	A. 1997 p.	95.12	97	94	96
D l l. [0]	NB	Tay.	94.25	94	95	94
Doppala et al. [8]	LR	1/2	95.25	97	97	97
	SVM		93.15	93	95	93
	Ensemble Model	14/1/1	96.75	98	96	97
			130			
	RF	100	96	96	96	96
	DT	OW	93	92	92	92
Mondal et al. [10]	LR	7/1/2	87	87	86	86
	SVM		78	77	78	77
	Ensemble Model		96.88	96	97	97
	100 100 100		100/4			Assert
OUR METHOD	KNN		55	54.88	55	54.91
	SVM		53.5	28.62	53.5	37.29
	NB		53.5	28.62	53.5	37.29
	DT		93	93.47	93	93
	LR		95.5	95.5	95.5	95.49
	RF		97.5	97.53	97.5	95.49
	Proposed Method		98	98.01	98	97.99

	DATASET 4					
		3	4000000			
Paper	Algorithm		Accuracy (%)	Precision (%)	Recall (%)	F1 Score (%)
	LR	March 1	72.35	-	·	-
	DT		61.72	-	- 1	-
Delima et al [6]	RF	72010	68.94	-	10.1-	-
Definite et al [5]	SVM	2/10/10	72.16	-		-
	KNN		68.34	-		-
	Genetic Algorithm ANN		73.43	-		-
		100/6	- 4			
	LR		85.54	90.01	84.34	87.09
	RF	10000	86.03	92.82	82.19	87.19
46 - 17 - 1 - 103	DT	1000	85.93	93.57	81.24	86.97
Alfaidi et al. [2]	NB	100	83.38	93.65	76.44	84.18
	KNN	400	84.56	88.97	83.66	86.24
	SVM	III.V	86.63	96.06	80.16	87.39
	MLP	190	87.23	95.23	82.01	88.13
	RF		88.65	90.03	88.03	88.02
	KNN		86.45	87.53	86.21	86.25
Alqahtani et al. [3]	DT		86.35	86.23	86.22	86.22
	Stacking		86.49	87.32	86.02	86.01
	ML Ensemble(DNN+KDNN+Stack)		88.7	88.02	88.02	88.01
	KNN		57.91	57.91	57.91	57.89
	SVM		50.26	25.28	50.26	33.63
	NB		59.8	59.98	59.8	59.65
OUR METHOD	DT		63.9	63.94	63.9	63.89
	LR		71.91	72.01	71.91	71.87
	RF		72.68	72.23	71.27	72.65
	Proposed Method		73.66	73.95	73.65	73.56

8. Summary

- Four different datasets are taken and six different classification algorithms are applied on each dataset.
- Significant improvements are shown using our approach on three of the datasets.
- For the dataset 4, we have not achieved satisfactory accuracy.
- Future work will focus on improving the model for this dataset 4 as well as other three datasets.

9. Reference

- 1. Ahmed Al Ahdal, Manik Rakhra, Rahul R. Rajendran, Farrukh Arslan, Moaiad Ahmad Khder, Binit Patel, Balaji Ramkumar Rajagopal, and Rituraj Jain. [retracted] monitoring cardiovascular problems in heart patients using machine learning. Journal of Healthcare Engineering, 2023:9738123, Feb 2023. Paper link
- Aseel Alfaidi, Reem Aljuhani, Bushra Alshehri, Hajer Alwadei, and Sahar Sabbeh. Machine learning: Assisted cardiovascular diseases diagnosis. International Journal of Advanced Computer Science and Applications, 13, 01 2022. <u>Paper link</u>
- 3. Abdullah Alqahtani, Shtwai Alsubai, Mohemmed Sha, Lucia Vilcekova, and Talha Javed. Cardiovascular disease detection using ensemble learning. Computational Intelligence and Neuroscience, 2022:5267498, Aug 2022 Paper link
- 4. Syafiq Asyraf, Nor Azuana Ramli, and Noryanti Muhammad. Heart disease prediction using ensemble of k-nearest neighbour, random forest and logistic regression method. page 040009, 03 2024. Paper link
- 5. Alfredo Daza, Juana Bobadilla, Juan Carlos Herrera, Angelica Medina, Nemias Saboya, Karoline Zavaleta, and Segundo Siguenas. Stacking ensemble based hyperparameters to diagnosing of heart disease: Future works. Results in Engineering, 21:101894, 2024. Paper link

9. Reference

- 6. Allemar Jhone Delima and Jan Carlo Arroyo. An optimized neural network using genetic algorithm for cardiovascular disease prediction. Journal of Advances in Information Technology, 13:95–99, 01 2022. Paper Link
- 7. B. Rupa Devi, U. Sivaji, Thammisetty Swetha, J. Avanija, A. Suresh, and K. Reddy Madhavi. Advanced cardiovascular disease prediction: A comparative analysis of ensemble stacking and deep neural networks. International Journal of Intelligent Systems and Applications in Engineering, 12(6s):46–55, Nov. 2023. Paper link
- 8. Bhanu Prakash Doppala, Debnath Bhattacharyya, Midhunchakkaravarthy Janarthanan, and Namkyun Baik. A reliable machine intelligence model for accurate identification of cardiovascular diseases using ensemble techniques. Journal of Healthcare Engineering, 2022:2585235, Mar 2022. Paper link
- 9. G. Manikandan, B. Pragadeesh, V. Manojkumar, A.L. Karthikeyan, R. MANIKANDAN, and Amir Gandomi. Classification models combined with boruta feature selection for heart disease prediction. Informatics in Medicine Unlocked, 44, 01 2024. Paper link

9. Reference

- 10. Subhash Mondal, Ranjan Maity, Yachang Omo, Soumadip Ghosh, and Amitava Nag. An efficient computational risk prediction model of heart diseases based on dual-stage stacked machine learning approaches. IEEE Access, 12:72557270, 2024. Paper link
- 11. Muhammad Saqib Nawaz, Bilal Shoaib, and Muhammad Adeel Ashraf. Intelligent cardiovascular disease prediction empowered with gradient descent optimization. Heliyon, 7(5):e06948, 2021. Paper link
- 12. Mert Ozcan and Serhat Peker. A classification and regression tree algorithm for heart disease modeling and prediction. Healthcare Analytics, 3:100130, 2023. Paper link
- 13. Achyut Tiwari, Aryan Chugh, and Aman Sharma. Ensemble framework for cardiovascular disease prediction. Computers in Biology and Medicine, 146:105624, 2022. Paper link

10. Acknowledgment

We are deeply grateful to our esteemed supervisor, Dr. Soumitra Samanta, for his constructive academic advice, constant encouragement, and valuable suggestions at crucial junctures. His guidance and support have been instrumental in the successful completion of this project. We truly benefited from his excellent supervision.

We also extend our sincere thanks to our respected Head of the Department, Swami
Punyeshwaranandaji maharaj, for providing us with the necessary facilities and support.

Additionally, we would like to thank our PhD scholar, Rajdeep Mandal and other seniors in our department for giving us this wonderful opportunity to work on this project.

Thank You