1. Let $f: R \to R$ be a function which is continuous at 0 and f(0) = 1. Also assume that f satisfies the following relation for all x:

$$f(x) - f(x/2) = \frac{3x^2}{4} + x.$$

Find f(3).

- 2. For any $n \times n$ matrix $A = ((a_{ij}))$, consider the following three properties:
 - 1. a_{ij} is real valued for all i, j and A is upper triangular.
 - 2. $\sum_{j=1}^{n} a_{ij} = 0$, for all $1 \le i \le n$.
 - 3. $\sum_{i=1}^{n} a_{ij} = 0$, for all $1 \le j \le n$.

Define the following set of matrices:

 $C_n = \{A : A \text{ is } n \times n \text{ and satisfies (1), (2) and (3) above}\}.$

- (a) Show that C_n is a vector space for any $n \geq 1$.
- (b) Find the dimension of C_n , when n=2 and n=3.
- 3. Let A be a real valued and symmetric $n \times n$ matrix with entries such that $A \neq \pm I$ and $A^2 = I$.
 - (a) Prove that there exist non-zero column vectors v and w such that Av = v and Aw = -w.
 - (b) Prove that every vector z has a unique decomposition z = x + y where Ax = x and Ay = -y.

- 4. Suppose 15 identical balls are placed in 3 boxes labeled A, B and C. What is the number of ways in which Box A can have more balls than Box C?
- 5. Suppose that X and Y are random variables such that

$$E(X + Y) = E(X - Y) = 0,$$

 $Var(X + Y) = 3,$
 $Var(X - Y) = 1.$

- (a) Evaluate Cov(X, Y).
- (b) Show that $E|X+Y| \leq \sqrt{3}$.
- (c) If in addition, it is given that (X, Y) is bivariate normal, calculate $E(|X + Y|^3)$.
- 6. Suppose X_1, \ldots, X_n are i.i.d. random variables with mean μ and variance 1. Also assume that Y_1, \ldots, Y_n are i.i.d. with probability mass function $\mathbf{P}(Y_i = \pm 1) = 1/2$ for all $1 \le i \le n$ and independent of X_1, \ldots, X_n . Define T_n as follows:

$$T_n = \frac{1}{n} \sum_{i=1}^{n} Y_i \cdot |X_i|, \quad n \ge 1.$$

(a) For any fixed $z \in R$, find

$$\lim_{n\to\infty} \mathbf{P}\left(\sqrt{n}T_n \le z\right).$$

(b) Using the result in part (a) above, find random quantities L_n and U_n , based on T_n , such that

$$\lim_{n\to\infty} \mathbf{P}\left(L_n \le \mu \le U_n\right) = 0.95 \ .$$

7. Suppose that X_1, \ldots, X_n are i.i.d. with probability density function

$$f_{\theta}(x) = \begin{cases} \frac{1}{2\sqrt{\theta x}} & \text{if } 0 < x < \theta \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Show that $X_{(n)}$ is sufficient for θ .
- (b) Consider a test of size α (0 < α < 1) for H_0 : $\theta = \theta_0$ versus $H_1: \theta = \theta_1$ (> θ_0), that rejects H_0 if and only if $X_{(n)} > k$.
 - i. Determine the value of k.
 - ii. Find the minimum sample size required such that the power of the test is at least β ($\alpha < \beta < 1$).

8. Consider the regression model:

$$y_i = bx_i + e_i, \quad 1 \le i \le n,$$

where x_i 's are fixed non-zero real numbers and e_i 's are independent random variables with mean zero and equal variance.

- (a) Consider estimators of the form $\sum_{i=1}^{n} a_i y_i$ (where a_i 's are non random real numbers) that are unbiased for b. Show that the least squares estimator of b has the minimum variance in this class of estimators.
- (b) Suppose that x_i 's take values -1 or +1 and e_i 's have density

$$f(t) = \frac{1}{2} e^{-|t|}, \quad t \in R.$$

Find the maximum likelihood estimator of b.

9. Consider a collection of N cards, numbered 1, 2, ..., N, where $N \geq 2$. A card is drawn at random and set aside. Suppose n cards are selected from the remaining (N-1) cards using SRSWR and their numbers noted as $Y_1, ..., Y_n$. If $S = \sum_{i=1}^n Y_i$, find E(S) and Var(S).