Sebastian Meier

<u>CampusNet</u> / <u>26050 Indledende kemi for biovidenskaberne E18</u> / <u>Opgaver</u>

Eksamen i 26050 Efterår 2018

			_
SI	а	9	1

Spørgsmål 1

Vægtning 3%:
Hvilket udsagn er sandt?
P har 15 valenselektroner. Elektronkonfigurationen for valenselektronerne er:
P har 5 valenselektroner. Elektronkonfigurationen for valenselektronerne er:
P har 3 valenselektroner. Elektronkonfigurationen for valenselektronerne er: 3p ³
\square P har 2 valenselektroner. Elektronkonfigurationen for valenselektronerne er: $3s^2$
\square P har 10 valenselektroner. Elektronkonfigurationen for valenselektronerne er: $1s^22s^22p^6$

Spørgsmål 2

Væatnina.	3%:

Hvad er	elektronkonfiguration	en i	grundtilstanden	for Os ²⁺
iivaa ci	cicker of morningar action	C	granachstanach	

☐ [Xe] 6s ² 4f ¹⁴ 5d ⁶
☑ [Xe] 4f ¹⁴ 5d ⁶
[Xe] 6s ² 4f ¹⁴ 5d ⁴
[Xe]6s ² 4f ¹² 5d ⁶
\square [Xe]6s 1 4f 14 5d 1

Spørgsmål 3

Vægtning 4%:

Hvi

vilket af følgende generelle udsagn er normalt sandt for alkalimetallerne?
Ned gennem gruppen stiger ioniseringsenergien.
Ned gennem gruppen falder elektronegativiteten.
Oxidationstrin +2 er det mest hyppige.
Ned gennem gruppen falder atomradius.
Oxiderne af alkalimetallerne er sure og vil danne H ⁺ -ioner, når de reagerer med vand.

Vis rigtige svar OSkjul rigtige svar

Molekylorbitalteori

Spørgsmål 4

Vægtning 4%:

Brug MO diagrammer til at bestemme rækkefølgen af C_2^- , C_2^+ mht: (a) stigende bindingsenergi, (b) stigende bindingslængde

- (a) $C_2^- < C_2 < C_2^+$; (b) $C_2^+ < C_2 < C_2^-$
- \Box (a) $C_2 < C_2^+ < C_2^-$; (b) $C_2 < C_2^+ < C_2^-$
- \Box (a) $C_2^+ < C_2^- < C_2$; (b) $C_2 < C_2^+ < C_2^-$
- \Box (a) $C_2^+ = C_2^- < C_2$; (b) $C_2 < C_2^+ = C_2^-$

Spørgsmål 5

Vægtning 4%

Brug et MO diagram og værdien af bindingsorden til at afgøre om Be2⁺ er:

- (a) stabil eller ustabil,
- (b) diamagnetisk eller paramagnetisk,
- (c) hvad dens valenskonfiguration er
 - \square (a) ustabil, (b) diamagnetisk, (c) $(\sigma_{2s})^1(\sigma_{2s}^*)^1$
 - lacksquare (a) stabil, (b) paramagnetisk, (c) $(\sigma_{2s})^2(\sigma_{2s}^*)^1$
 - \Box (a) stabil, (b) diamagnetisk, (c) $(\sigma_{2s})^2(\sigma_{2s}^*)^0$
 - \Box (a) ustabil, (b) diamagnetisk, (c) $(\sigma_{2s})^2(\sigma_{2s}^*)^0$
 - \square (a) ustabil, (b) paramagnetisk, (c) $(\sigma_{2s})^1(\sigma_{2s}^*)^1$

Spørgsmål 6

Vægtning 3%

Hvad er mulige sæt af kvantetal for valenselektronerne i grundtilstanden for As?

- $(4,0,0,\frac{1}{2}); (4,0,0,-\frac{1}{2})$
- $\boxed{(4,0,0,\frac{1}{2}),(4,0,0,-\frac{1}{2}),(4,1,-1,\frac{1}{2}),(4,1,0,\frac{1}{2}),(4,1,1,\frac{1}{2})}$

 $(4,0,0,\frac{1}{2}), (4,0,0,-\frac{1}{2}), (4,1,-1,\frac{1}{2}), (4,1,0,\frac{1}{2}), (4,1,1,\frac{1}{2}), (4,2,-2,\frac{1}{2}), (4,2,-1,\frac{1}{2}), (4,2,0,\frac{1}{2}), (4,2,1,\frac{1}{2}), (4,2,2,\frac{1}{2}), (4,2,-2,-\frac{1}{2}), (4,2,-1,-\frac{1}{2}), (4,2,0,-\frac{1}{2}), (4,2,1,-\frac{1}{2}), (4,2,2,-\frac{1}{2})$

- \bigcirc (4,0,0,½), (4,0,0,½), (4,1,-1,½), (4,1,0,½), (4,1,1,½)
- \square (4,0,0,½), (4,0,0,-½), (3,1,-1,½), (3,1,0,½), (3,1,1,½)

Lewisstrukturer
Spørgsmål 7
Vægtning 3%: Angiv hvilken af følgende forbindelser der er isoelektronisk med CsF
☐ BaI ₂
☑ BaO
RbBr
□ NaF
NaH
Spørgsmål 8
Vægtning 1%: Angiv antallet af lonepairs på P for forbindelsen PF ₅
□ 1
□ 2
□ 3
□ 4
Spørgsmål 9
Vægtning 2%: Angiv antallet af lonepairs på Cl for forbindelsen ${\it ClF}_3$
_ O
□ 1
☑ 2
□ 3
□ 4
Spørgsmål 10
Vægtning 2%: Angiv antallet af lonepairs på C for forbindelsen CO ₂
□ 1
_ 2
□ 3
_ 4

Spørgsmål 11 Vægtning 2%: Angiv antallet af lonepairs på hvert O-atom i forbindelsen CO₂ □ 0 □ 1 □ 2 □ 3

_ 4

Side 4
Navngivning
Spørgsmål 12
Vægtning 1%:
Navngiv NaH
Natriumhydrogen
Natriumhydrat
Natriumhydrid
☐ Natriumsyre
Natriumbrint
Spørgsmål 13
Vægtning 1%:
Opskriv formlen for kaliumhydrogencarbonat.
✓ KHCO ₃
☐ KH ₂ CO ₃
☐ K(HCO ₃) ₂
☐ KHCO ₂
□ кнс
Spørgsmål 14
Vægtning 1%:
Opskriv formlen for kaliumsuperoxid.
□ K ₂ O
□ КО
□ K ₂ O ₂
□ K ₂ O ₃
Spørgsmål 15
Vægtning 1%:
Opskriv formlen for brunsten - mangan(IV)oxid.
☐ MnO
\square Mn ₂ O ₃
✓ MnO₂
☐ MnO ₃

 \square MnO₄

Spørgsmål 16 Vægtning 1%: Navngiv følgende ion: H₂PO₄ hydrogenphosphat dihydrogenphosphat phosphat hydrogenphosphit

dihydrogenphosphit

Navngivning

Spørgsmål 17

Vægtning	1%:
----------	-----

Opskriv formlen for salpetersyre.

✓ HNO ₃	
--------------------	--

 \square HNO₂

 \square HNO

 \square HNO₄

 \square H₂NO₄

Kompleksforbindelser

Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)

Spørgsmål 18

Vægtning 1%:

Angiv centralatomets koordinationstal for den ioniske kompleksforbindelse:

 $[Ni(NH_3)_4]^{2+}$

2

3

4

6

Spørgsmål 19

Vægtning 2%:

Angiv centralatomets oxidationstrin for den ioniske kompleksforbindelse:

[Co(CN)₆]³⁻

_ +1

√ +3

_ +4

Spørgsmål 20

Vægtning 3%:

Angiv antallet af d-elektroner i \boldsymbol{e}_g og \boldsymbol{t}_{2g} for følgende kompleks:

 $[Fe(CN)_6]^{4-}$

Spørgsmål 21 Vægtning 3%: Navngiv følgende kompleksforbindelse: [Co(NH₃)₅Cl]Cl₂ ✓ Pentaamminchloridocobalt(III)chlorid ☐ Pentaamminchloridocobalt(II)chlorid ☐ Pentaamminchloridocobaltat(III)chlorid ☐ Cobaltpentaammindichlorid ☐ Cobaltpentaammintrichlorid Spørgsmål 22 Vægtning 3%: Opskriv formlen for diamminsølv(I)-ionen.

 $\boxed{ } [Ag(NH_3)_2]^+$

 \square [Au(NH₃)₂]⁺

 $[S(NH_3)_2]^+$

 \square [Ag(NH₄)₂]⁺

 \square [Ag(NH₃)₂]⁻

Reaktionsskemaer

Spørgsmål 23

Vægtning 4%:

Færdiggør og afstem følgende reaktion. Afbrænding i overskud af dioxygen.

$$P_4(s) + O_2(g) \rightarrow ?$$

$$P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$$

$$P_4(s) + 6O_2(g) \rightarrow P_4O_{12}(s)$$

Spørgsmål 24

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori Li₂O reagerer med stort overskud af vand.

$$Li_2O(s) + H_2O(l) \rightarrow ?$$

$$\text{Li}_2O(s) + 3H_2O(l) \rightarrow 2\text{LiOH}(aq) + 2H_2(g) + O_2(g)$$

$$\Box$$
 Li₂O(s) + 2H₂O(I) \rightarrow 2Li²⁺(aq) + 4OH⁻(aq)

Spørgsmål 25

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af NO ud fra afbrænding af ammoniak

$$\checkmark$$
 4NH₃ (g) + 5 O₂ (g) → 4 NO (g) + 6H₂O (g)

$$\bigcirc$$
 2NH₄ (g) + 3O₂ (g) \rightarrow 2NO (g) + 4H₂O (g)

$$\square$$
 2NH₃ (g) + 2O₂ (g) \rightarrow 2NO (g) + 3H₂O (g)

$$\square$$
 4NH₃ (g) + 4O₂ (g) \rightarrow 2NO (g) + N₂ + 6H₂O (g)

$$\square$$
 NH₂ (g) + O₂ (g) \rightarrow NO (g) + H₂O (g)

Støkiometri

Spørgsmål 26

Vægtning 3%:

0,880 g organisk forbindelse der kun indeholder C, H og O forbrændes fuldstændig, hvilket producerer 1,76 g $\rm CO_2$ og 0,720 g $\rm H_2O$.

Bestem:

- (1) den empiriske formel;
- (2) den molekylære formel givet molarmassen af forbindelsen er ca. 88,0 g/mol.
 - \Box (1) CH₂O; (2) C₃H₆O₃
 - \bigcirc (1) C₂H₄O; (2) C₄H₈O₂
 - \Box (1) C₂HO; (2) C₄H₂O₂
 - \Box (1) CH₄O₂; (2) C₂H₄O₂
 - \Box (1) CHO; (2) C₂H₂O₂

Spørgsmål 27

Vægtning 6%:

25,0 mL opløsning Fe^{2+} oxideres (titreres) med 26,0 mL 0,0250 M $K_2Cr_2O_7$. Afstem titreringsreaktionen (redox):

$$\text{Cr}_2\text{O}_7^{2-}$$
 (aq) + Fe²⁺ (aq) + H⁺ (aq) \rightarrow Cr³⁺ (aq) + Fe³⁺ (aq) + H₂O (I)

og beregn bagefter den molære koncentration af Fe²⁺

$$Arr Cr_2O_7^{2-}$$
 (aq) + 6Fe²⁺(aq) + 14 H⁺(aq) --> 2Cr³⁺(aq) + 6Fe³⁺(aq) + 7H₂O(I); 0,156 M

$$\Box$$
 Cr₂O₇²⁻ (aq) + 2Fe²⁺ (aq) + 7H⁺ (aq) --> 2Cr³⁺(aq) + 2Fe³⁺(aq) + 7H₂O(I); 0,130 M

$$\Box$$
 Cr₂O₇²⁻ (aq) + 7Fe²⁺ (aq) + 12H⁺ (aq) --> 2Cr³⁺(aq) + 7Fe³⁺(aq) + 6H₂O(I); 0,152 M

$$\Box$$
 Cr₂O₇²⁻ (aq) + 6Fe²⁺ (aq) + 14H⁺ (aq) --> 2Cr³⁺(aq) + 6Fe³⁺(aq) + 7H₂O(I); 0,130 M

$$\Box$$
 Cr₂O₇²⁻ (aq) + 6Fe³⁺ (aq) + 14H⁺ (aq) --> 2Cr²⁺(aq) + 6Fe²⁺(aq) + 7H₂O(I); 0,156 M

Syre-base- og puffersystemer

Spørgsmål 28

Væa	tning	4%:
νæy	umig	- / /0.

Beregn pH af:

- (a) en 0,200 M opløsning CH₃COOH ($K_a = 1,80 \times 10^{-5}$);
- (b) en opløsning indeholdende 0,200 M CH₃COOH og 0,300 M CH₃COONa
 - (a) 4,92; (b) 2,72
 - (a) 2,72; (b) 6,22
 - ⟨a⟩ 2,72; (b) 4,92
 - (a) 7,00; (b) 7,00
 - (a) 4,65; (b) 4,74

Spørgsmål 29

Vægtning 4%:

En prøve indeholdende 0,1276 g af en ukendt monoprotisk syre bliver opløst i 25,0 mL vand og titreret med en vandig 0,0633 M opløsning af NaOH. Ved titreringsendepunkt (ækvivalenspunktet) er der brugt 18,4 mL af NaOH opløsningen.

(a) Bestem molærmassen M af den ukendte syre.

Efter tilføjelsen af 10,0 mL NaOH er pH=5,87.

- (b) Bestem K_a af den ukendte syre
 - \checkmark (a) M = 110 g/mol; (b) $K_a = 1.6 \times 10^{-6}$
 - (a) M = 58 g/mol; (b) $K_a = 1.7 \times 10^{-5}$
 - (a) M = 89 g/mol; (a) $K_a = 2.1 \times 10^2$
 - (a) M = 75 g/mol; (b) $K_a = 1.0 \times 10^{-7}$
 - (a) M = 110 g/mol; (b) $K_a = 1.6 \times 10^{-4}$

Spørgsmål 30

Vægtning 4%:

Fenyleddikesyre, $C_6H_5CH_2COOH$, dannes i relativt store mængder i blodet af folk der lider af fenylketonuri (Føllings sygdom, PKU). En undersøgelse af syren viser, at pH af en 0,12 M opløsning af $C_6H_5CH_2COOH$ er 2,62.

Beregn K_a

- $K_a = 2.4 \times 10^{-5}$
- \checkmark $K_a = 4.8 \times 10^{-5}$
- $K_a = 2.3 \times 10^{-5}$
- $K_a = 1,00 \times 10^{-7}$

Ligevægte

Spørgsmål 31

Vægtning 6%:

 $3,00 \times 10^{-2}$ mol ren fosgen (COCl₂) placeres i en 1,50 L beholder og varmes til T=800 K. Ved ligevægten finder man at det partielle tryk af CO er $P_{CO}=0,503$ bar. Beregn ligevægtskonstanten K_P for reaktionen

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$

- $V K_P = 3,27$
- $K_P = 1,24$
- $K_P = 0.303$
- $K_P = 1,00$
- $K_P = 0,500$

Spørgsmål 32

Vægtning 6%:

Opløselighedkonstanten for PbI₂ er K_{sp} =1,4 x 10⁻⁸.

Beregn den molære opløselighed i:

- (a) rent vand
- (b) en 0,050 M opløsning af NaI (antag her at man kan se bort fra mængden af I^- fra PbI₂).
 - \checkmark (a) 1,5 x 10⁻³ M; (b) 5,6 x 10⁻⁶ M
 - \Box (a) 5,6 x 10⁻⁶ M; (b) 1,5 x 10⁻³ M
 - \Box (a) 3,0 x 10⁻⁶ M; (b) 3,0 x 10⁻⁹ M
 - \Box (a) 1,5 x 10³ M; (b) 5,6 x 10⁶ M
 - \Box (a) 5,6 x 10⁶ M; (b) 1,5 x 10³ M

Kinetik

Spørgsmål 33

Vægtning 6%:

Omdannelsen af cyklopropan til propen i gasfase:

$${\rm CH_2}$$
 / ${\rm (}g{\rm)}$ --> ${\rm CH_3\text{-}CH=CH_2}$ ${\rm (}g{\rm)}$ ${\rm CH_2\text{-}CH_2}$

er en førsteordensreaktion med hastighedskonstant $k=6,71 \times 10^{-4} \, \rm s^{-1}~ved~250~^{o}C.$ Startkoncentrationen af cyklopropan er 0,25 M.

- (a) Bestem koncentrationen efter 4,5 min(b) Bestem hvor lang tid det tager for at konvertere 72 % cyklopropan til propen.
 - ⟨a⟩ 0,21 M; (b) 32 min
 - (a) 0,079 M; (b) 13 min
 - \Box (a) 1,2 x 10⁻¹² M; (b) 3,4 x 10⁻¹⁰ s
 - (a) 0,32 M; (b) 21 min
 - (a) 0,21 M; (b) 32 s