Formas de fordan Dado V um K uspaço utorial de dimensão finita. Teorema: Hija Y:V-1 Vum sperador linear, ande Vé, um espaço interial de dimonsao finita sobre k tal que; pt(x) = (x-2) m. (x-b) m. mi 71 e li +lj, St i+j. Então V= Me On Delle, Onde para coda i= 1,,,,, re, temos: al dim k lli=mi.)
b) o subuspaço lli é Vinvacionte.)
c) a restrição do Operador Litd-Valli, & Nel potonte.

Demonstação: Porta redai=1,...,re, Considere a Liansformação: Vi= liId-1!V-V

Temos que: Sija Y:V - N um operador limar, onde Vé um R-ispaço vetorial de dinersas finita. Entas Té a somo direta de um operador vilostente e em operador invertirel. Alem disso, Lal de composição e enercialmente Unde V=ULDWi, onde Mi e Wi são T-invariantes e as restrições de Ti a Mi a a Wi são Nilpotente e invertivel, respe-ativa manto ctiva monte. Como lli e Wi são Timuriantes, então socia também Timuriantes. Sejam; T! lli - Mi e Ti Wi - Wi As restrições de Talli e a Wi, upect-ivamente. Se que que : pr/k/=pt/k/.pr/k/.

Observe que li é o révico autovalor de T'e, como di Não é autovalor de T", concluimos que: pr'ki = (x-li) Mi En partiadar, dimelli = mi ea intersição Min Celst...tli-stli+st Mn simples arquemento usando as dimensors dos espaços envolvidos implica que! V= Miti.... + Mr, Como queríamo. Vamos agora utilizar o kerema anterior para construir a forma de Jordan de um operador livear.

Seja X:V-DV um operador livear tal
que i pX(x) = (x-2)^{ML},,,, (x-2)^{Mr}, com

re 7,1, mi 7,1 e li \dig le i \dig le i \dig. Pelo Vorema S. 6.1:

Aljam $Y:V\to V$ um operador livear, oncle V i um espaço vetorial de dimensão fivita sobre K Kal que $p V_{KK} = (x-\lambda_1)^{M_{\perp}}$. $(x-\Lambda_1)^{M_1}$, $mi\chi_1$ e $\lambda_i \neq \lambda_j$ se $i\neq j$. Então $V=U_{S}$ \mathcal{P} ... \mathcal{P} lbe, onde, para cada i=1,,,,,re, temo; al dim alli=mi, b) o subuspaço Mi é T-invariante c) a restricar do operador liId-T a lli é vil potente, Eiste uma de composição V=U10,...Dlr satisfazendo as propriedades (a1, (b) e(c) do enuviado do teorema. Para coda i=1,..., 1 possidere o Sporador Yi = Thi; ili - Mi. Yemos que Ti=Ti-liIdui à vilpotente el portanto, existe uma base Bi de Mi el vue meros ti, mis y Miz...... 7, mitig Lais que;

agnal voviando a 2 posição de vúmeros 0

A riopy as demonstrações feitas anteviormente possibitam à construção da forma de Jordan, mas va mética isso pode sur bastante trabalhos. Contrido es resultados anteriores sas de grande utilidade. Sejam Y:V-DV, si e mij, i=1,...,t e j = 1, ri como em (5.6.2). Para polivémio qui (x) = (x /i) mis. Chamamos de polinômio divisor elementar de Tole multiplicidade mij associado a li, Que o correspondente polindario qui i Simples.

Leque pailmente da construção feita que o polítionio característico de Téo pardito de todos os seus divisões elementares, isto é; $pT(x) = \iint qij(x)$

Observe também que o vimeros mij representam os tamanhos dos blocos de fordar. E clara que V será dia gonalizarel se e somente se todo os blocos de Jordam Fjurem Kamandros 1. Per outro lado, porea cada i, xere mos Mis y y Mini. De onde se condeui que T surá dia gondizavel se esomente se MILI = 1 pora todo i = 1, ..., t. Considere à bless de fordan fr(L) com LEK.

Observe que:

(fr(L) - LIdre = 0, e

(fr(L) - LIdre = 0 Alfam agra LEKA La matriz MXM formada por bloos de fordan (FILM),.....,
frs(h) na diagonal e matrize neulos no
lesto. le MIXXI, Vi= 2..., A, Nao i dificil ver
que (t-LIdu) = 0 e (t-LIdm) 1-1 + 0. Iltilizando esta Ssorvação, Mque-se que:

quiz(Vi) = (Vi -li Idri) "= 0, Isto é, que o operador l'i é quulado pelo polindraio que 1/1=1,..., t. Como a soma l'= 1/10,.... Ott é direta, condicionos que l'é anulado pelo polindraio; Que (x) q21(x).... q41(x) = (x-1) My (x-12) Mes (x-17) M+2 Mas vas por un lum outro grau meror. Pela definição dada este polivômio i de foto o polivômio minimal mrxx). Exemplo:

a) Sija V: C4 -> C4 a transformação

listar dada por: T(ys, ys, y3, y4) = (Bys-y2, 4ys+52y2) 9y3 +2y4, 2y3+6y4) Com relação à bose canólica can termos:

Portanto (x-10 (x-5) vão pode ser polivômio minimal. No entanto: (A-10Id4/2. (A-5Id4)= -2 -1 2. hop, (x-10)? (x-5) é o polivièmio milimal de T. Issa quer dizer que a forma de fordan de Tordan de Jaco de fordan 12 (10), pois a raiz 10 tem Multiplicidade 2 em mix. Have entao que: 10 0 10 0

1 10 0 0 úa forma de fordan de T.

0 0 0 5 pr(x) = (n-10)³ (x-5) b) Sija TELIRI, RT) um epurador limar com polinémio conacterístico: pT(XI= [X+2]?

Pr(1x) = (x+2/4 [A] can pt(x) = dut(xtd4-A) = (x+2)4*(x1,y12,w) = (-2x1-2y1-2z1-2w) Os candidatos a mita): "O polivônio minimal o o polivo vio que kon va ptra) =0, se for T-ciclico ptra) = notra). 1 (x+2/= mta), 2) wtol2= (x+2)3 3/ WATA) 3= (X+2)2 4 not 60) 4 = Cx+25 I polivornio minimal i utal=latal. Como l=-2 é uma raiz depla de sut M, a forma de fordan de Terá um bhocs de fordan (20-21. Ubserve, vo entanto, que a partir das informações dadas não i possível distinguir va tamente entre as sequintes posíveis formas de fordan.

COOOMais ainda, lo

LCOOOMAIS ainda, lo

existe um or

matriz deste

tipo, salvo

nos deva cao dos

ooomais deste

 \mathcal{C} : $\begin{bmatrix} C & O \end{bmatrix}$ $\begin{bmatrix} C & C \end{bmatrix}$ $\begin{bmatrix} L & C \end{bmatrix}$ COO Todos na dia gonal
LOLCJ373 Mincipal $pY(x) = (x-c)^3$. $||(x-e)|^2 \cdot (x-e)^4$ 0 0 0 0100 C 1020 $0 \text{ win} = [x-c]^3 (x-d).$ old of 0 1 d) 0 (x-e)., x=d; 000 1 MTG) = (x-c). (xe) Propriedades: Somete o bloco de major - Os elementos da diagonal dos Hocos são autovalores de V. - Se ptal = (x-q)de --- (x-Ck), a soma das dimousões dos bloos que covos poudem a ci edi.

Matriz mudança de base: My e M a

Imput

EVI3 = My . [V]2

output

My = (My)-1

EVI2 = My [V]3 Diagrama matricial: VITJaV MB MA MB MB
V ETTB V
B AV ITIX = Ma ITIB NB A B B-1 Definition: Dados ABEMUXN, dize mos que I,B são semelhantes, se existe PEMMN invertivel falque : A=PBP-1000 AP=PB

Votação ANB Exemplo: [3 1] N [40] $\begin{bmatrix} 31 & \boxed{ac} = \boxed{ac} & \boxed{40} \\ 13 & \boxed{bd} & \boxed{o2} \end{bmatrix}$ $3a+b=4a \qquad b=a \qquad M \qquad ab=1$ $c=-1 \qquad d=1$ $3c+d=2c \qquad d=-c \qquad P=1 \qquad -1$ $c+3d=2d \qquad L \qquad 1$ Invertivel. $Como \quad P \quad Nao \quad e \quad \text{if } \text{vica, ordao}: \qquad f+2p=0$ $A-R \quad RQ^{-1}$ $A = Q B Q^{-1}$ Eamplo: [31] [a c] = a c] [10] [13] [b d] [bd] [04] 3a+b=a (b=-2a (a=b=0, logo as a+3b=b (a=-2b (duas matrizes vão são semelhantes.

Pois [0 c] é vas invertruel. Eample: A= 42 , B= 6-1 4-1 THA=5 1A1 = 4-6=-2=det B1=-6+4= det Entat: B=P-1AP com ETX ig7 17B=AP (3 W) 3= 3 V2, V2 { base. PNão á tivica, seus multipos também satisfiz. $PB = \begin{bmatrix} 6x + 4y - x - y \\ 6x + 4w - y - w \end{bmatrix}$ AP= [71+23 y+2W]
3x+42 3y+4W] 6x + ty = 7+2z 15x+4y-2z=0 -x - y = y + 2.0 6z + 4w = 3x + 4z/ X+Zy+RW=D 93x-2z-4W=0 -x -w = 3y+4w (3y+z+5N=0

Matriz Abociada pluxabonar: 202 $\begin{bmatrix} 0 & 6 & 2 & 10 \\ 0 & 6 & 2 & 10 \\ 0 & 3 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 3 & 1 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 3 & 1 & 5 \end{bmatrix}$ 1031 1031 1031 101-73-43 Marro subuspago 10113 43 Td 1 P Forma de Fordan JX-38-43N=0 (y+188+36N=0 Extab: $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 3 & +4 & 4 & 4 \\ -13 & 3 & -4 & 4 & 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 4 & +4 & 4 \\ -13 & 3 & 4 & -4 \\ 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 4 & +4 & 4 \\ -13 & 3 & 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 4 & +4 & 4 \\ -13 & 4 & 4 \\ 0 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 4 & +4 & 4 \\ -13 & 4 & 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 & 4 & +4 & 4 \\ -13 & 4 & 4 \\ 0 \end{pmatrix}$

Ilma Solycas;
$$P = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}$$
, our
$$P = \begin{bmatrix} 4 & -5 \\ 0 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$Al; A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$A parq; (P^{-1}A).P = \begin{bmatrix} 1 & 48 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 4 & -1 \end{bmatrix}$$

$$B = P^{-1}AP$$