HIGHER INSTITUTE OF TECHNOLOGICAL STUDIES OF BIZERTE

AY: 2022-2023 RESIT | AI-ECUE221

July 2023

M1-S2: Dept. of Electrical Engineering

Teacher: A. Mhamdi Time Limit: $1\frac{1}{2}$ h

This document contains 6 pages numbered from 1/6 to 6/6. As soon as it is handed over to you, make sure that it is complete. The 2 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **No document** is allowed in the examination room.
- Any electronic material, except basic calculator, is prohibited.
- **18** Mysterious or unsupported answers will not receive full credit.
- **O Round results** to the nearest thousandth (i.e., third digit after the decimal point).
- **Task** N^{0}_{-2} : Each correct answer will grant a mark with no negative scoring.

Task Nº1

2 40mn | (9 points)

Use	the	K-means		algorithm			and	
Manhat	tan dista	nce	(p	=	1)	to	cluster	the
followir	ng 7 poin	ts in	to 3	clus	ters			

Point	Α	В	C	D	E	F
x_1	3	8	4	2	7	5
x_2	3	5	4	4	7	0

(a) (6 points) Perform K-means clustering and show all the calculations performed at each iteration. (Initial centroids α , β and γ are set at A, C and F respectively.)

1ST ITERATION

TIERRITOR						
Datum point	Α	В	C	D	E	F
Feature x ₁	3	8	4	2	7	5
Feature x_2	3	5	4	3	7	0
Distance to α	0	7	2	1	8	5
Distance to β	2	5	0	3	6	5
Distance to γ	5	8	5	6	9	0
∈ Cluster	#1	#2	#2	#1	#2	#3

New centroids are:

$$\alpha \begin{pmatrix} 2.5 \\ 3 \end{pmatrix}; \beta \begin{pmatrix} 19/3 \\ 16/3 \end{pmatrix}; \gamma \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

2^{ND} iteration

Datum	Α	В	C	D	E	F
x_1	3	8	4	2	7	5
x_2	3	5	4	3	7	0
$d(\underline{\ }\alpha)$	0.5	7.5	2.5	0.5	8.5	5.5
d(_, \beta)	17/3	6/3	12/3	20/3	7/3	20/3
$d(_, \gamma)$	5	8	5	6	9	0
€	#1	#2	#1	#1	#2	#3

$$\alpha \begin{pmatrix} 3 \\ 10/3 \end{pmatrix}; \beta \begin{pmatrix} 7.5 \\ 6 \end{pmatrix}; \gamma \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

3^{RD} iteration

Datum	Α	В	C	D	E	F
x_1	3	8	4	2	7	5
x_2	3	5	4	3	7	0
d(_, α)	1/3	20/3	5/3	4 /3	23/3	16/3
$d(_, \beta)$	7.5	1.5	5.5	8.5	1.5	8.5
$d(_, \gamma)$	5	8	5	6	9	0
€	#1	#2	#1	#1	#2	#3

Centroids are:

$$\alpha \begin{pmatrix} 3 \\ 10/3 \end{pmatrix}; \beta \begin{pmatrix} 7.5 \\ 6 \end{pmatrix}; \gamma \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

(b) (3 points) Draw a 2-d space with all the 6 points and show the clusters and the new centroids after each iteration.

AY: 2022-2023 M1-S2: Dept. of Electrical Engineering RESIT AI-ECUE221 July 2023 Teacher: A. Mhamdi	Full Name: ID: Class: Room: Time Limit:	1½ h
Answe	R SHEET	
<u>Task №2</u>		🛣 50mn (11 points)
 (a) (½ point) If there is no trend betwe a "" connection betwo linear ○ exponential √ rand (b) (½ point) What is the best definition ○ Bias is when your predicted ○ Bias is when your data is worder of Bias is when your values and √ Bias is the gap between your (c) (½ point) The data in your model has expect the data points to be grouped to the would be grouped tigouped tigouped tigouped tigouped tigouped tigouped tigouped tigouped 	een x and y. dom one non-non-non-non-non-non-non-non-non-non	random ur data model? uttered. ent reasons. the same percentage. lue and the outcome. low variance. How would you he diagram? the predicted outcome.
 They would be scattered and the scattered and the scattered factorises. They would be scattered factorises are type of machine learning algorithm 	round the predi or away from th ject that involv ond identify it a	ct outcome. re predicted outcome. res clustering together images
 Centroid reinforcement k-nearest neighbors Binary classification ✓ K-means clustering (e) (½ point) What is ensemble modeling When you create an ensem When you create an ensem 	ıble of your trai	•

Do not write anything here
×
When you use several ensembles of machine learning algorithms.
When you find the one best algorithm for your ensemble.
(f) (½ point) The dataset you have scraped seems to exhibit lots of missing values.
What action will help you minimizing that problem?
Wise fill-in of controlled random values.
 Replace missing values with averaging across all samples.
Remove defective samples.
√ Imputation.
(g) $\binom{1}{12}$ point) Which of the following methods can be used either as an unsupervised
learning or as a dimensionality reduction technique?
○ SVM
√ PCA
○ LDA
○ TSNE
(h) $(\frac{1}{12}$ point) The error function most suited for gradient descent using logistic re-
gression is
The entropy function.
○ The squared error.
The cross-entropy function.
(i) $\binom{1}{2}$ point) Someone on your data science team recommends that you use decision
trees, naive Bayes and k-nearest neighbors, all at the same time, on the same
training data, and then average the results. What is this an example of?
Regression analysis
O High various modeling
High -variance modeling / Tracephle modeling
√ Ensemble modeling
(j) (½ point) You are using k-nearest neighbors and you have a k of 1. What are you likely to see when you train the model?

○ Low bias & low variance√ Low bias & high variance

Do not write anything here
×
○ High bias & low variance
○ High bias & high variance
(k) ($^1\!\!\!/_2$ point) "" refers to a model that can neither model the training
data nor generalize to unseen data.
$\sqrt{}$ Underfitting
○ Good fitting
 Overfitting
(l) $\binom{1}{2}$ point) You created a machine learning system that interacts with its environment and responds to errors and rewards. What type of machine learning system is it?
○ Supervised learning
 Semi-supervised learning
√ Reinforcement learning
Unsupervised learning
(m) ($\frac{1}{2}$ point) You work for a website that helps match people up for lunch dates. The website boasts that it uses more than 500 predictors to find customers the perfect date, but many costumers complain that they get very few matches. What is a likely problem with your model?
O Your training set is too large.
You are underfitting the model to the data.
$\sqrt{\ }$ You are overfitting the model to the data.
 Your machine is creating inaccurate clusters.
(n) $\binom{1}{L}$ point) What is the difference between unstructured and structured data?
 Unstructured data is always text.
 Unstructured data is much easier to store.
Structured data has clearly defined data types.
Structured data is much more popular.
(o) (${}^1\!\!\!/_2$ point) Your data science team is often criticized for creating reports that are

boring or too obvious. What could you do to help improve the team?

 $\sqrt{}$ Suggest that the team is probably underfitting the model to the data.

DO NOT WRITE ANYTHING HERE

*-----

- O Suggest that unsupervised learning will lead to more interesting results.
- Make sure that they are picking the correct machine learning algorithms.
- Encourage the team to ask more interesting questions.
- (p) ($\frac{1}{2}$ point) What syntax do you use to import 'DataFrames' package to your Julia session after installing it?
 - O Pkg.add("DataFrames")
 - add DataFrames
 - use DataFrames
 - $\sqrt{\text{using DataFrames}}$
- (q) (1 point) Write the line of code that will import a <u>CSV</u> file named 'data.csv' as a **Julia** DataFrame, called df.

```
df = CSV.read("data.csv", DataFrame)
```

- (r) (1 point) Suppose you have a function f, defined as follows:
- function f(x)
- 2 return x+2
- 3 2**x**
- 4 end

What is the value of f(1)? Justify.

f(1) = 3. The 'return' keyword causes the function f to exit once x+2 is computed.

(s) (1 point) What would be the theoretical mean of the following random values? randn(12345)

The randn function returns random values from the standard normal distribution. Hence, the mean of 12345 random values would be 0.