LEVERAGING WEIGHT FUNCTIONS FOR OPTIMISTIC RESPONSIVENESS IN BLOCKCHAINS

Simon Holmgaard Kamp, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, **Søren Eller Thomsen** and Daniel Tschudi

INTUITION FOR CORRECTNESS

Observation 1: $T_2 - T_1 > \Delta_{Net} =>$ Good thing happens

Observation 2: $T_3 - T_2 < \Delta_{Net} =>$ Bad thing happens

THE LOTTERY DILEMMA

You need to guess the Δ_{Net} in order to instantiate the lottery that ensures a secure protocol.

If your guess is too low your protocol will not be secure!

If your guess is too high your protocol will be slow by construction!

THIS TALK

- 1. Weighted PoW lottery
- 2. Security of weighted lotteries
- 3. A specific weight-function that provides optimistic responsiveness

THE WEIGHT LOTTERY

Lottery	B
Valid blocks	Hash(B) > T
Contribution to chain	1
Best chain	Longest chain

THE WEIGHT LOTTERY

Lottery	B	Weight lottery
Valid blocks	Hash(B) > T	Everything
Contribution to chain	1	$w:\mathcal{H}\to\mathbb{R}$
Best chain	Longest chain	Heaviest chain

THE WEIGHT LOTTERY

Lottery	B	Weight lottery	-Weight lottery
Valid blocks	Hash(B) > T	Everything	Everything
Contribution to chain	1	$w:\mathcal{H}\to\mathbb{R}$	$w(h) = \begin{cases} 0, & \text{if } h \le T \\ 1, & \text{else} \end{cases}$
Best chain	Longest chain	Heaviest chain	Heaviest chain

B1

B2

ANALYSIS

ANALYSIS

Observation: Enough time between heavy

blocks is sufficient, to form a chain.

WHAT SHOULD A "HEAVY" BLOCK BE?

WHAT SHOULD A "HEAVY" BLOCK BE?

WHAT SHOULD A "HEAVY" BLOCK BE?

Low variance

• A >> B

A SUGGESTION: (3)

Low variance:

• A >> B: **V**

Worst case (under attack):

• Best case: 🐠

ANOTHER SUGGESTION: $w(h) = \begin{cases} e^{hc}, & \text{if } h \leq T \\ e^{Tc}, & \text{else} \end{cases}$

$$w(h) = \begin{cases} e^{hc}, & \text{if } h \leq T \\ e^{Tc}, & \text{else} \end{cases}$$

- Low variance: <a>
- A >> B: **V**
- Worst case (under attack):
- Best case: 🟃 💨

SUMMING UP

• We present a general framework capable of analysing weight-functions, and show that there are advantages of using different weights in the lottery.

• The paper is available: https://eprint.iacr.org/2020/328

Thank you for your attention!

