Electric Vehicle Sales in India

Importing the Libraries

```
# Importing Library
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns import
warnings
warnings.filterwarnings("ignore")
```

Data Collection

```
# Load the Dataset
df=pd.read csv(r"D:\Project work 2\Unified Main Project\Electric
Vehicle Sales by State in India(DA & DS project)\Electric Vehicle Sales
by State in India.csv")
# Displat the first few rows of the dataset
print(df.head())
    Year Month Name
                                        State
                         Date
Vehicle Class \
0 2014.0
                jan 1/1/2014 Andhra Pradesh
                                                    ADAPTED VEHICLE
1 2014.0
                jan 1/1/2014 Andhra Pradesh AGRICULTURAL TRACTOR
2 2014.0
                jan 1/1/2014 Andhra Pradesh
                                                          AMBULANCE
3 2014.0
                    1/1/2014 Andhra Pradesh ARTICULATED VEHICLE
                jan
4 2014.0
                jan 1/1/2014 Andhra Pradesh
                                                                BUS
 Vehicle Category Vehicle Type EV Sales Quantity
              Others
                          Others
               0.0
               Others
                           Others
1
               0.0
2
               Others
                           Others
               0.0
3
               Others
                           Others
               0.0
               Bus
                                               0.0
                            Bus
```

Data Preprocessing

```
df.info()
<class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 96845 entries, 0 to 96844
Data columns (total 8 columns):
# Column Non-Null Count Dtype
____
                        _____
0 Year 96845 non-null float64
1 Month_Name 96845 non-null object
2 Date 96845 non-null object
3 State 96845 non-null object
4 Vehicle_Class 96845 non-null object
5 Vehicle_Category 96845 non-null object
6 Vehicle Type 96845 non-null object 7
   EV Sales Quantity 96845 non-null float64
dtypes: float64(2), object(6)
memory usage: 5.9+ MB
# Convert date column to datetime format
df['Date']=pd.to datetime(df['Date'])
# Check for missing values
print(df.isnull().sum())
Year
Month Name
Date
State
Vehicle Class
Vehicle Category
Vehicle Type
EV Sales Quantity 0
dtype: int64
```

Exploratory Data Analysis(EDA)

Visualize trends in EV sales over time, across states, vehicle categories, vehicle classes, market share.

EV Sales Distribution

```
import matplotlib.pyplot as plt
import seaborn as sns

# Plot the distribution of EV sales quantity
plt.figure(figsize=(10, 5))
sns.histplot(df["EV_Sales_Quantity"], bins=50, kde=True)
plt.title("Distribution of EV Sales Quantity")
plt.xlabel("EV Sales Quantity") plt.ylabel("Frequency")

plt.xlim(0, df["EV_Sales_Quantity"].quantile(0.99)) # Limiting x-axis
to remove extreme outliers plt.show()
```


The distribution is highly skewed, with most sales values concentrated near zero.

A few records show very high sales figures, indicating possible outliers.

State-wise EV Sales

```
# Aggregate total EV sales per state
state_sales = df.groupby("State")
["EV_Sales_Quantity"].sum().sort_values(ascending=False)

# Plot top 10 states with highest EV sales
plt.figure(figsize=(12, 6))
sns.barplot(x=state_sales.head(10).index,
y=state_sales.head(10).values, palette="viridis")
plt.xticks(rotation=45)
plt.title("Top 10 States by Total EV Sales")
plt.xlabel("State")
plt.ylabel("Total EV Sales Quantity")
plt.show()

# Display the top 5 states with highest EV sales
state_sales.head(5)
```



```
State

Uttar Pradesh 732074.0

Maharashtra 401535.0

Karnataka 315498.0

Delhi 268538.0

Rajasthan 228573.0

Name: EV Sales Quantity, dtype: float64
```

State

Uttar Pradesh leads with 732,074 EV sales.

Followed by Maharashtra, Karnataka, Delhi, and Rajasthan.

These states likely have better EV adoption due to government policies, infrastructure, or demand.

Yearly EV Sales Trend

```
# Aggregate yearly EV sales
yearly_sales = df.groupby("Year")["EV_Sales_Quantity"].sum()

# Plot yearly EV sales trend
plt.figure(figsize=(10, 5))
sns.lineplot(x=yearly_sales.index, y=yearly_sales.values, marker="o",
color="b")
plt.title("Yearly EV Sales Trend in India")
plt.xlabel("Year")
plt.ylabel("Total EV Sales Quantity")
plt.grid(True)
```

```
plt.show()
# Display yearly sales data yearly sales
```


Year			
2014.0	2392.0		
2014.0	7805.0		
2016.0	49855.0		
2017.0	87420.0		
2018.0	130254.0		
2019.0	166819.0		
2020.0	124684.0		
2021.0	331498.0		
2022.0	1024723.0		
2023.0	1525179.0		
2024.0	143182.0		
Name: EV	_Sales_Quantity,	dtype:	float64

Sales have seen exponential growth from 2014 (2,392 sales) to 2023 (1.52 million sales).

A sharp increase in 2021–2023 suggests rising adoption.

2024 data is incomplete, explaining the lower figure.

EV Sales by Vehicle Category

```
# EV Sales by Vehicle Category
vehicle_category_sales = df.groupby("Vehicle_Category")
["EV_Sales_Quantity"].sum().sort_values(ascending=False)

# Plot EV sales by vehicle category
plt.figure(figsize=(10, 5))
sns.barplot(x=vehicle_category_sales.index,
y=vehicle_category_sales.values, palette="Blues_r")
plt.title("EV Sales by Vehicle Category")
plt.xlabel("Vehicle Category") plt.ylabel("Total EV
Sales Quantity") plt.xticks(rotation=45) plt.show()

# Display vehicle category sales data
vehicle_category_sales
```



```
Vehicle_Category

2-Wheelers 1808105.0

3-Wheelers 1620310.0

4-Wheelers 149775.0
Others 8612.0
Bus 7009.0
Name: EV_Sales_Quantity, dtype: float64
```

- 2-Wheelers (1.8M sales) and 3-Wheelers (1.62M sales) dominate the EV market.
- 4-Wheelers (149K sales) have a lower adoption rate.

Buses (7K sales) and Other categories (8.6K sales) contribute the least.

Monthly EV Sales Trend

```
# Monthly Sales Trend
monthly sales = df.groupby("Month Name")["EV Sales Quantity"].sum()
# Define correct order for months
month order = ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug",
"sep", "oct", "nov", "dec"]
monthly sales = monthly sales.reindex(month order)
# Plot monthly sales trend
plt.figure(figsize=(10, 5))
sns.lineplot(x=monthly sales.index, y=monthly sales.values, marker="o",
color="q")
plt.title("Monthly EV Sales Trend in India")
plt.xlabel("Month")
plt.ylabel("Total EV Sales Quantity")
plt.grid(True) plt.show()
# Display monthly sales data
monthly sales
```



```
Month Name
     360703.0
jan
feb
     228739.0
    299888.0
mar
     232194.0
apr
may 262747.0
jun 229754.0
jul 270473.0
aug 294022.0
sep 313433.0
    355083.0
oct
     382217.0
nov
     364558.0
dec
Name: EV Sales Quantity, dtype: float64
```

November (382K) and December (365K) have the highest sales, suggesting a year-end boost.

February (228K) has the lowest sales, possibly due to fewer days in the month.

Sales peak in March, October, and year-end, indicating potential seasonal patterns.

EV Sales by Vehicle Class

```
# EV Sales by Vehicle Class
vehicle_class_sales = df.groupby("Vehicle_Class")
["EV_Sales_Quantity"].sum().sort_values(ascending=False)

# Plot top 10 vehicle classes
plt.figure(figsize=(12, 6))
sns.barplot(x=vehicle_class_sales.head(10).index,
y=vehicle_class_sales.head(10).values, palette="mako")
plt.xticks(rotation=45)
plt.title("Top 10 EV Vehicle Classes by Sales")
plt.xlabel("Vehicle Class") plt.ylabel("Total
EV Sales Quantity") plt.show()

# Display top 5 vehicle classes
vehicle_class_sales.head(5)
```



```
Vehicle_Class
M-CYCLE/SCOOTER 1697373.0
E-RICKSHAW(P) 1408127.0
MOTOR CAR 130676.0
E-RICKSHAW WITH CART (G) 90656.0
THREE WHEELER (PASSENGER) 76132.0
Name: EV_Sales_Quantity, dtype: float64
```

Motorcycles & Scooters (1.69M sales) and E-Rickshaws (1.4M sales) dominate the EV market.

Motor Cars (130K sales) have lower adoption.

Three-Wheelers and E-Rickshaws with carts are also significant contributors.

EV Sales Market Share by State

```
# EV Sales Market Share by State
state_market_share = (state_sales / state_sales.sum()) * 100

# Plot top 10 states by market share
plt.figure(figsize=(10, 5))
state_market_share.head(10).plot(kind="pie", autopct="%1.1f%%",
cmap="viridis", startangle=90, pctdistance=0.85) plt.title("Top
10 States by EV Sales Market Share")
```

```
plt.ylabel("")
plt.show()

# Display market share of top 5 states
state_market_share.head(5)
```

Top 10 States by EV Sales Market Share

Uttar Pradesh leads with 20.37% of India's EV market.

Maharashtra (11.17%) and Karnataka (8.77%) follow.

Delhi (7.47%) and Rajasthan (6.36%) also contribute significantly.

The top 5 states account for over 50% of total EV sales.

Correlation Analysis

```
# 15. Correlation Analysis
correlation_matrix = df[["Year", "EV_Sales_Quantity"]].corr()

# Plot heatmap
plt.figure(figsize=(6, 4))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm",
fmt=".2f")
plt.title("Correlation Matrix")
plt.show()

# Display correlation values
correlation_matrix
```


		Year	EV_Sales_Quantity
Di Dareb gaanerey 0.033320	Year EV Sales Quantity		0.095326 1.000000

Weak correlation (0.095) between Year and EV Sales Quantity.

Suggests that while EV adoption has increased over time, sales are influenced by other factors like policies, infrastructure, and incentives.

Feature Enginnering

Create new features such as month and day from the Date column and encode categorical variables.

```
# Extract Month and Day from the Date column
df['Month'] = df['Date'].dt.month df['Day']
= df['Date'].dt.day
# Encode categorical variables using one-hot encoding
df_encoded = pd.get_dummies(df, columns=['State',
    'Vehicle_Class', 'Vehicle_Category', 'Vehicle_Type'],
drop_first=True)
# Drop unnecessary columns like Date, Month_Name (if already extracted into numerical values)
df_encoded.drop(['Date', 'Month_Name'], axis=1, inplace=True)
```

Modeling

```
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean squared error #
Split the data into features and target variable X =
df encoded.drop('EV Sales Quantity', axis=1) y =
df encoded['EV Sales Quantity']
# Split the dataset into training and testing sets
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
# Instantiate the model
model = RandomForestRegressor(n estimators=100,
random state=42) # Train the model
model.fit(X train, y train)
# Make predictions
y pred = model.predict(X test)
# Evaluate the model
mse = mean squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print(f'Root Mean Squared Error: {rmse}')
Root Mean Squared Error: 130.58175227721011
```

Model Evaluation

```
# Plot actual vs predicted sales
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred)
plt.title('Actual vs Predicted EV Sales')
plt.xlabel('Actual EV Sales')
```

```
plt.ylabel('Predicted EV Sales')
plt.show()
# Check feature importance
importance = model.feature_importances_
feature_importance = pd.Series(importance,
index=X_train.columns).sort_values(ascending=False)
# Plot the most important features
plt.figure(figsize=(10, 6))
feature_importance.plot(kind='bar')
plt.title('Feature Importance')
plt.show()
```

Actual vs Predicted EV Sales

Conclusion

The analysis of EV sales in India shows a strong growth trend, with certain states leading in adoption. Two-wheeler and three-wheeler EVs dominate the market. Seasonal variations and policy impacts influence sales. Continuous growth suggests increasing EV acceptance, but infrastructure improvements are crucial for sustained expansion.