A general theory of learning and memory with Complex Synapses

based on work with Surya Ganguli

Subhaneil Lahiri

Stanford University, Applied Physics

October 21, 2015

Introduction

We often model synaptic plasticity as the change of a single number (synaptic weight). In reality, there is a complex dynamical system inside a synapse.

Semi-realistic models of synaptic plasticity have terrible memory without synaptic complexity.

We will study the entire space of a broad class of models of complex synapses to find upper bounds on their performance.

This leads to understanding of what structures are useful for storing memories for different timescales.

Synaptic learning and memory

Synaptic learning and memory

Synapses are complex

[Coba et al. (2009)]

[Montgomery and Madison (2002)]

There is a complex, dynamic system underlying synaptic plasticity.

Timescales of memory

Memories stored in different places for different timescales

[Squire and Alvarez (1995)] cf. Cerebellar cortex vs. cerebellar

[Krakauer and Shadmehr (2006)]

Different synapses have different molecular structures.

[Emes and Grant (2012)]

nuclei.

Outline

- 1 Why complex synapses?
- 2 Modelling synaptic memory
- Upper bounds
- 4 Envelope memory curve

Section 1

Why complex synapses?

Storage capacity of synaptic memory

A classical perceptron has a capacity \propto N, (# synapses).

Requires synapses' dynamic range also $\propto N$.

With discrete, finite synapses: ⇒ new memories overwrite old.

[Petersen et al. (1998), O'Connor et al. (2005)]

When we store new memories rapidly, memory capacity $\sim \mathcal{O}(\log N)$. [Amit and Fusi (1992), Amit and Fusi (1994)]

Learning Remembering

Very plastic

Learning Remembering

Very plastic

Learning Remembering

Very plastic

Very rigid

Circumvent tradeoff: go beyond model of synapse as single number.

Section 2

Modelling synaptic memory

- ullet Internal functional state of synapse o synaptic weight.
- weakstrong
- $\bullet \ \mathsf{Candidate} \ \mathsf{plasticity} \ \mathsf{events} \to \mathsf{transitions} \ \mathsf{between} \ \mathsf{states}$

States: #AMPAR, #NMDAR, NMDAR subunit composition, CaMK II autophosphorylation, activating PKC, p38 MAPK,...

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)]

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weak
- $\bullet \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$

strong

Potentiation event

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weak
- $\bullet \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$

strong

Potentiation event

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weak
- $\bullet \ \ \mathsf{Candidate} \ \, \mathsf{plasticity} \ \, \mathsf{events} \, \to \, \mathsf{transitions} \ \, \mathsf{between} \ \, \mathsf{states}$

strong

Potentiation event

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states
- strong

Potentiation event

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weak
- ullet Candidate plasticity events o transitions between states
- strong

Potentiation event

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- $\bullet \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$

strong

Potentiation event

Depression event

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weak
- $\bullet \ \, \text{Candidate plasticity events} \to \text{transitions between states} \\$

strong

Potentiation event

Depression event

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- $\bullet \ \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$

strong

Potentiation event

Depression event

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- $\bullet \ \, \text{Candidate plasticity events} \to \text{transitions between states} \\$

strong

Potentiation event

Depression event

- $\bullet \ \ Internal \ functional \ state \ of \ synapse \rightarrow synaptic \ weight.$
- weak
- ullet Candidate plasticity events o transitions between states
- strong

Potentiation event

Depression event

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- $\bullet \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$
- strong

Potentiation event

Depression event

- \bullet Internal functional state of synapse \to synaptic weight.
- weak
- $\bullet \ \ \text{Candidate plasticity events} \to \text{transitions between states} \\$

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- $\bullet \ \ \, \text{Candidate plasticity events} \, \to \, \text{transitions between states} \\$

strong

Potentiation

Depression

Synapses given a sequence of patterns (pot & dep) to store

Synapses given a sequence of patterns (pot & dep) to store

Synapses given a sequence of patterns (pot & dep) to store

Synapses given a sequence of patterns (pot & dep) to store

Later: presented with a pattern. Has it been seen before?

Quantifying memory quality

Have we seen pattern before? Ask if $\vec{w}_{\text{ideal}} \cdot \vec{w}(t) \ge \theta$? Use $\vec{w}_{\text{ideal}} \cdot \vec{w}(\infty)$ as a null distribution \implies ROC curve:

$$\mathsf{TPR} = \Phi\left(rac{\mathsf{SNR}(t) + \Phi^{-1}(\mathsf{FPR})}{\mathsf{NNR}(t)}
ight),$$

$$\begin{split} \mathsf{SNR}(t) &= \frac{\langle \vec{w}_{\mathsf{ideal}} \cdot \vec{w}(t) \rangle - \langle \vec{w}_{\mathsf{ideal}} \cdot \vec{w}(\infty) \rangle}{\sqrt{\mathsf{Var}(\vec{w}_{\mathsf{ideal}} \cdot \vec{w}(\infty))}}, \\ \mathsf{NNR}(t) &= \sqrt{\frac{\mathsf{Var}(\vec{w}_{\mathsf{ideal}} \cdot \vec{w}(t))}{\mathsf{Var}(\vec{w}_{\mathsf{ideal}} \cdot \vec{w}(\infty))}}. \end{split}$$

Look at:
$$\overline{\mathsf{SNR}}(\tau) = \langle \mathsf{SNR}(t) \rangle_{P(t \,|\, \tau)} \,, \qquad P(t \,|\, \tau) = \frac{\mathsf{e}^{-t/\tau}}{\tau}.$$

Example models

Two example models of complex synapses.

[Fusi et al. (2005), Leibold and Kempter (2008), Ben-Dayan Rubin and Fusi (2007)] These have different memory storage properties

Questions

- Can we understand the space of all possible synaptic models?
- ullet How does structure (topology) of model o function (memory curve)?
- What are the limits on what can be achieved?
- Which transition topologies saturate these limits?
- Can synaptic structure be tuned for different timescales of memory?

Dynamics

There are N identical synapses with M internal functional states.

$$rac{\mathrm{d}\mathbf{p}(t)}{\mathrm{d}t} = r\mathbf{p}(t)\mathbf{W}^{\mathrm{F}}, \qquad \mathbf{W}^{\mathrm{F}} = f^{\mathsf{pot}}\mathbf{M}^{\mathsf{pot}} + f^{\mathsf{dep}}\mathbf{M}^{\mathsf{dep}} - \mathbf{I},$$
 $\mathbf{p}^{\infty}\mathbf{W}^{\mathrm{F}} = 0.$

Constraints

Memory curve given by

$$\mathsf{SNR}(t) = \sqrt{\mathsf{N}}(2f^\mathsf{pot}f^\mathsf{dep})\,\mathbf{p}^\infty\left(\mathbf{M}^\mathsf{pot} - \mathbf{M}^\mathsf{dep}
ight) \exp\left(rt\mathbf{W}^\mathrm{F}
ight)\mathbf{w}.$$

Constraints: $\mathbf{M}_{ij}^{\mathsf{pot/dep}} \in [0,1], \qquad \sum_{j} \mathbf{M}_{ij}^{\mathsf{pot/dep}} = 1.$

Eigenmode decomposition:

$$\mathsf{SNR}(t) = \sqrt{N} \sum_{\mathsf{a}} \mathcal{I}_{\mathsf{a}} \, \mathsf{e}^{-rt/ au_{\mathsf{a}}},$$

$$\overline{\mathsf{SNR}}(au) = \sqrt{N} \sum_{a} \frac{\mathcal{I}_{a}}{1 + r \tau / \tau_{a}},$$

Section 3

Upper bounds

Initial SNR as flux

Initial SNR is closely related to flux between strong & weak states

$$\mathsf{SNR}(0) \leq \frac{4\sqrt{N}}{r}\,\mathbf{\Phi}_{-+}.$$

Max when potentiation guarantees $\mathbf{w} \to +1$, depression guarantees $\mathbf{w} \to -1$.

Two-state model

Two-state model equivalent to previous slide:

$$\implies$$
 SNR $(t) = \sqrt{N} (4f^{\text{pot}}f^{\text{dep}}) e^{-rt}$.

Maximal initial SNR:

$$\mathsf{SNR}(0) \leq \sqrt{\textit{N}}.$$

Area under memory curve

Memory lifetime bounded by area under SNR curve:

$$\mathsf{SNR}(\mathsf{lifetime}) = 1$$
 $\Longrightarrow \mathsf{lifetime} < \mathcal{A}.$

This area has an upper bound:

$$\mathcal{A} \leq \sqrt{N}(M-1)/r.$$

Saturated by a model with linear chain topology.

Proof of area bound

For any model, we can construct perturbations that

 preserve equilibrium distribution.

e.g. decrease "shortcut" transitions, increase bypassed "direct" ones. Endpoint: linear chain

The area of this model is

$$A = \frac{2\sqrt{N}}{r} \sum_{k} \mathbf{p}_{k}^{\infty} |k - \langle k \rangle|.$$

Max: equilibrium probability distribution concentrated at both ends.

[Barrett and van Rossum (2008)]

Saturating model

Make end states "sticky"

Has long decay time, but terrible initial SNR.

$$\lim_{\varepsilon \to 0} A = \sqrt{N}(M-1)/r.$$

Section 4

Envelope memory curve

Bounding finite time SNR

SNR curve:

$$SNR(t) = \sqrt{N} \sum_{a} \mathcal{I}_{a} e^{-rt/\tau_{a}}.$$

subject to constraints:

$$\sum_{a} \mathcal{I}_{a} \leq 1, \qquad \sum_{a} \mathcal{I}_{a} \tau_{a} \leq M - 1.$$

We can maximise wrt. \mathcal{I}_a, τ_a .

Constructing the envelope

Maximise SNR at one time

Constructing the envelope

Another time

Constructing the envelope

All times \rightarrow envelope

$$\mathsf{lifetime} \leq \frac{\sqrt{N}(M-1)}{\mathsf{e}r}$$

Achievable envelope

Early times:

Late times:

Summary

- We have formulated a general theory of learning and memory with complex synapses.
- The area under the memory curve of any model < linear chain with same equilibrium distribution.
- We find a memory envelope: a single curve that cannot be exceeded by the memory curve of *any* synaptic model.
- Synaptic complexity (M internal states) raises the memory envelope linearly in M for times $> \mathcal{O}(M)$.
- Gap between envelope and what we can achieve at early times?
- Trade-off between SNR at different times?

Acknowledgements

Thanks to:

- Surya Ganguli
- Stefano Fusi
- Marcus Benna
- David Sussillo
- Jascha Sohl-Dickstein

References I

M. P. Coba, A. J. Pocklington, M. O. Collins, M. V. Kopanitsa, R. T. Uren, S. Swamy, M. D. Croning, J. S. Choudhary, and S. G. Grant.

"Neurotransmitters drive combinatorial multistate postsynaptic density networks".

Sci Signal, 2(68):ra19, (2009).

Johanna M. Montgomery and Daniel V. Madison.

"State-Dependent Heterogeneity in Synaptic Depression between Pyramidal Cell Pairs".

Neuron, 33(5):765 - 777, (2002).

References II

Larry R Squire and Pablo Alvarez.

"Retrograde amnesia and memory consolidation: a neurobiological perspective".

Current Opinion in Neurobiology, 5(2):169-177, (April, 1995).

John W Krakauer and Reza Shadmehr.

"Consolidation of motor memory.".

Trends in neurosciences, 29(1):58-64, (January, 2006).

Richard D. Emes and Seth G.N. Grant.

"Evolution of Synapse Complexity and Diversity".

Annual Review of Neuroscience, 35(1):111-131, (2012) .

References III

Carl C. H. Petersen, Robert C. Malenka, Roger A. Nicoll, and John J. Hopfield.

"All-or-none potentiation at CA3-CA1 synapses".

Proc. Natl. Acad. Sci. U.S.A., 95(8):4732-4737, (1998) .

Daniel H. O'Connor, Gayle M. Wittenberg, and Samuel S.-H. Wang.

"Graded bidirectional synaptic plasticity is composed of switch-like unitary events".

Proc. Natl. Acad. Sci. U.S.A., 102(27):9679-9684, (2005) .

D. J. Amit and S. Fusi.

"Constraints on learning in dynamic synapses".

Network: Computation in Neural Systems, 3(4):443-464, (1992) .

References IV

D. J. Amit and S. Fusi.

"Learning in neural networks with material synapses".

Neural Computation, 6(5):957–982, (1994).

S. Fusi. P. J. Drew, and L. F. Abbott.

"Cascade models of synaptically stored memories".

Neuron, 45(4):599-611, (Feb. 2005).

"Limits on the memory storage capacity of bounded synapses".

Nat. Neurosci., 10(4):485-493, (Apr., 2007).

4 / 8

References V

A. B. Barrett and M. C. van Rossum.

"Optimal learning rules for discrete synapses".

PLoS Comput. Biol., 4(11):e1000230, (Nov., 2008).

Christian Leibold and Richard Kempter.

"Sparseness Constrains the Prolongation of Memory Lifetime via Synaptic Metaplasticity".

Cerebral Cortex, 18(1):67-77, (2008).

Daniel D Ben-Dayan Rubin and Stefano Fusi.

"Long memory lifetimes require complex synapses and limited sparseness".

Frontiers in computational neuroscience, 1(November):1-14, (2007).

5 / 8

References VI

J.G. Kemeny and J.L. Snell.

Finite markov chains.

Springer, 1960.

Techinical detail: ordering states

Let T_{ij} = mean first passage time from state i to state j. Then:

$$\eta = \sum_j \mathbf{T}_{ij} \mathbf{p}_j^{\infty},$$

is independent of the initial state i (Kemeney's constant).

[Kemeny and Snell (1960)]

We define:

$$\eta_i^+ = \sum_{j \in \mathsf{strong}} \mathbf{T}_{ij} \mathbf{p}_j^\infty, \qquad \eta_i^- = \sum_{j \in \mathsf{weak}} \mathbf{T}_{ij} \mathbf{p}_j^\infty.$$

They can be used to arrange the states in an order (increasing η^- or decreasing η^+).

Technical detail: upper/lower triangular

With states in order:

Endpoint: potentiation goes right, depression goes left.

