이항계수

• 이항 계수(binomial coefficient)는 주어진 크기의 (순서 없는) 조합의 가짓수

$$\binom{n}{k} = \left\{ \frac{1 \text{ if } n = k \text{ or } k = 0}{n!} \atop \frac{n!}{k! (n-k)!} = \binom{n-1}{k-1} + \binom{n-1}{k} \right\}$$

• 점화식 표현

```
def bino(n, k):
if k==0 or k==n:
    return 1
return bino(n-1, k-1) + bino(n-1, k)
```

• 재귀적 계산

• Momoization (중복계산 제거)

Dynamic Programming

- 다음 두가지 조건을 만족해야 성립
 - 1. 문제가 중복되는 부분 문제 (subprogram)로 쪼개어질 수 있음 (점화식)
 - 2. 부분문제(Subprogram) 의 결과값이 상위문제에서 재사용 가능

Ex) Gridworld 최적 경로 찾기 (방문한 cell 의 정수값 합이 최소인 경로)

6	7	12	5
5	3	11	18
7	17	3	3
8	10	14	9

6	7	12	5
5	3	11	18
7	17	3	3
8	10	14	9

• 점화식 도출을 위한 하위 문제 도출

• (I, j) 에 도달하기 위해서는 반드시 (i-1, j) 혹은 (I, j-1) 을 거쳐야 한다.

	6	/	12	5
	5	3	11	18
i	7	17	3	3
	8	10	14	9

