Theory of Statistical Learning Part II

Damien Garreau

Université Côte d'Azur

2021

Outline

1. Linear predictors

Linear classification Linear regression Ridge regression Polynomial regression Logistic regression

2. Tree-based classifiers Partition rules

Random forests

3. Boosting

Adaboost Gradient boosting XGBoost

1. Linear predictors

1.1. Linear classification

Linear functions

- $ightharpoonup \mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$
- ► thus $x_i = (x_{i,1}, x_{i,2}, \dots, x_{i,d})^{\top}$
- we consider no bias term (otherwise affine):

$$\{h: x \mapsto w^{\top}x, w \in \mathbb{R}^d\}.$$

▶ **Reminder:** given two vectors $u, v \in \mathbb{R}^d$,

$$\langle u, v \rangle = u^{\top} v = \sum_{j=1}^{d} u_i v_i.$$

- **b** binary classification: 0-1 loss, $\mathcal{Y} = \{-1, +1\}$
- ▶ **Important:** compose h with $\phi : \mathbb{R} \to \mathcal{Y}$ (typically the sign)

The sign function

Figure: the sign function

Halfspaces

thus our function class is

$$\mathcal{H} = \{ x \mapsto \operatorname{sign}(w^{\top} x), w \in \mathbb{R}^d \}.$$

 \triangleright gives label +1 to vector pointing in the same direction as w

VC dimension of halfspaces

Proposition: the VC dimension of halfspaces in dimension d is exactly d+1.

Consequence: \mathcal{H} is PAC learnable with sample complexity

$$\Omega\left(rac{d+\log(1/\delta)}{arepsilon}
ight)$$
 .

Linearly separable data

- ▶ Important assumption: data is linearly separable
- ▶ that is, there is a $w^* \in \mathbb{R}^d$ such that

$$y_i = \operatorname{sign}(\langle w^*, x_i \rangle) \quad \forall 1 \leq i \leq n.$$

Linear programming

► Empirical risk minimization: recall that we are looking for w such that

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{y_i \neq \operatorname{sign}(w^{\top} x_i)}$$

is minimal

- Question: how to solve this?
- we want $y_i = \operatorname{sign}\left(w^\top x_i\right)$ for all $1 \le i \le n$
- equivalent formulation: $y_i \langle w, x_i \rangle > 0$
- \triangleright we know that there is a vector that satisfies this condition (w^*)
- let us set $\gamma = \min_i \{ y_i \langle w^*, x_i \rangle \}$ and $\overline{w} = w^* / \gamma$
- we have shown that there is a vector such that $y_i\langle \overline{w}, x_i \rangle \geq 1$ for any $1 \leq i \leq n$ (and it is an ERM)

Linear programming, ctd.

▶ define the matrix $A \in \mathbb{R}^{n \times d}$ such that

$$A_{i,j} = y_i x_{i,j}$$
.

- ▶ **Intuition:** observations × labels
- ightharpoonup remember that we have the ± 1 label convention
- ightharpoonup define $v = (1, ..., 1)^{\top} \in \mathbb{R}^n$
- ▶ then we can rewrite the above problem as

maximize
$$\langle u, w \rangle$$
 subject to $Aw \leq v$,

with u = 0 for instance

- we call this sort of problems linear programs¹
- solvers readily available, e.g., scipy.optimize.linprog if you use Python

¹Boyd, Vandenberghe, Convex optimization, Cambridge University Press, 2004

The perceptron

- ► another possibility: the *perceptron*²
- ▶ **Idea:** iterative algorithm that constructs $w^{(1)}, w^{(2)}, \dots, w^{(T)}$
- update rule: at each step, find i that is misclassified and set

$$w^{(t+1)} = w^{(t)} + y_i x_i$$
.

- **Question:** why does it work?
- pushes w in the right direction:

$$y_i\langle w^{(t+1)}, x_i\rangle = y_i\langle w^{(t)} + y_ix_i, x_i\rangle = y_i\langle w^{(t)}, x_i\rangle + \|x_i\|^2$$

remember, we want $y_i \langle w, x_i \rangle > 0$ for all i

²Rosenblatt, *The perceptron, a perceiving and recognizing automaton*, tech report, 1957

1.2. Linear regression

Least squares

▶ regression ⇒ squared-loss function

$$\ell(y,y')=(y-y')^2.$$

still looking at linear functions:

$$\mathcal{H} = \{ h : x \mapsto \langle w, x \rangle \text{ s.t. } w \in \mathbb{R}^d \}.$$

empirical risk in this context:

$$\hat{\mathcal{R}}_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} (w^{\top} x_{i} - y_{i})^{2} = F(w).$$

- also called mean squared error
- ▶ empirical risk minimization: we want to minimize $w \mapsto F(w)$ with respect to $w \in \mathbb{R}^d$
- F is a convex, smooth function

Least squares, ctd.

let us compute the gradient of *F*:

$$\begin{split} \frac{\partial F}{\partial w_j}(w) &= \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_j} (w^\top x_i - y_i)^2 \\ &= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (w^\top x_i - y_i) \cdot (w^\top x_i - y_i) \\ &= \frac{1}{n} \sum_{i=1}^n 2 \cdot \frac{\partial}{\partial w_j} (\cdots + w_j x_{i,j} + \cdots - y_i) \cdot (w^\top x_i - y_i) \\ \frac{\partial F}{\partial w_j}(w) &= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) \,. \end{split}$$

Least squares, ctd.

- ▶ it is more convenient to write $\nabla F(w) = 0$ in matrix notation
- ▶ define $X \in \mathbb{R}^{n \times d}$ the matrix such that line i of X is observation x_i
- ▶ one can check that, for any $1 \le j, k \le d$,

$$(X^{\top}X)_{j,k} = \sum_{i=1}^n x_{i,j}x_{i,k}.$$

thus

$$(X^{T}Xw)_{j} = \sum_{k=1}^{d} (X^{T}X)_{j,k} w_{k}$$
$$= \sum_{k=1}^{d} \sum_{i=1}^{n} x_{i,j} x_{i,k} w_{k}$$
$$= \sum_{i=1}^{n} x_{i,j} w^{T} x_{i}.$$

Least squares, ctd.

thus, if we define

$$A = X^{\top}X = \sum_{i=1}^{n} x_i x_i^{\top} \in \mathbb{R}^{d \times d} \text{ and } b = X^{\top}y = \sum_{i=1}^{n} y_i x_i \in \mathbb{R},$$

solving $\nabla F(w) = 0$ is equivalent to solving

$$Aw = b$$
.

▶ if *A* is invertible, straightforward:

$$\hat{w} = A^{-1}b$$

- ightharpoonup computational cost: $\mathcal{O}\left(d^3\right)$ (inversion is actually a bit less)
- what happens when A is not invertible?

Singular value decomposition

▶ since *A* is symmetric, it has an eigendecomposition

$$A = VDV^{\top}$$
,

with $D \in \mathbb{R}^d$ diagonal and V orthonormal

▶ define *D*⁺ such that

$$D_{i,i}^+=0$$
 if $D_{i,i}=0$ and $D_{i,i}^+=\frac{1}{D_{i,i}}$ otherwise.

- ightharpoonup define $A^+ = VD^+V^\top$
- ▶ then we set

$$\hat{w} = A^+ b$$
.

Singular value decomposition, ctd.

- why did we do that?
- \triangleright let v_i denote the *i*th column of V, then

$$A\hat{w} = AA^+b$$
 (definition of \hat{w})
$$= VDV^\top VD^+V^\top b$$
 (definition of A^+)
$$= VDD^+V^\top b$$
 (V is orthonormal)
$$A\hat{w} = \sum_{i:D_{i,i}\neq 0} v_i v_i^\top b.$$

- ▶ in definitive, $A\hat{w}$ is the projection of b onto the span of v_i such that $D_{i,i} \neq 0$
- ▶ since the span of these v_i is the span of the x_i and b is in the linear span of the x_i , we have $A\hat{w} = b$
- ▶ cost of SVD: $\mathcal{O}(dn^2)$ if d > n (SVD of X)

Exercise

Exercise: Of course, one does not have to use the squared loss. Instead, we may prefer to use

$$\ell(y,y') = |y-y'| .$$

1. show that, for any $c \in \mathbb{R}$,

$$|c| = \min_{a \geq 0} a$$
 subject to $a \geq c$ and $a \geq -c$.

- 2. use the previous question to show that ERM with the absolute value loss function is equivalent to minimizing the linear function $\sum_{i=1}^{n} s_i$, where the s_i satisfy linear constraints
- 3. write it in matrix form, that is, find $A \in \mathbb{R}^{2n \times (n+d)}$, $v \in \mathbb{R}^{d+n}$, and $b \in \mathbb{R}^{2n}$ such that the LP can be written

minimize
$$c^{\top}v$$
 subject to $Av \leq b$.

Correction of the exercise

- 1. The absolute value is the smallest positive number larger than both c and -c for any real number c.
- 2. In that case, the empirical risk can be written

$$\hat{\mathcal{R}}_S(w) = \frac{1}{n} \sum_{i=1}^n |y_i - w^\top x_i|.$$

We deduce the result from question 1.

3. One possibility is to define $v = (w_1, \ldots, w_d, s_1, \ldots, s_n)^\top \in \mathbb{R}^{n+d}$, $c = (0, \ldots, 0, 1, \ldots, 1)^\top \in \mathbb{R}^{d+n}$, $b = (y_1, \ldots, y_n, -y_1, \ldots, -y_n)^\top \in \mathbb{R}^{2n}$, and

$$A = \begin{pmatrix} -X & -I_n \\ X & -I_n \end{pmatrix} \in \mathbb{R}^{2n \times (n+d)},$$

with $X \in \mathbb{R}^{n \times d}$ the matrix whose lines are the x_i s and I_n the identity matrix.

Recap

- What happens when we invoke sklearn.linear_model.LinearRegression with default parameters?
- ▶ fit_intercept is True → assumes that the data is not centered (our maths are not totally accurate)
- $lackbox{ normalize is False}
 ightarrow ext{we are responsible for the normalization of our data}$
- behind the scenes, calls scipy.linalg.lstsq when fitting, which itself calls LAPACK (Linear Algebra PACKage)³
- ► LAPACK is coded in Fortran90

³http://www.netlib.org/lapack/

1.3. Ridge regression

Ridge regression

same hypothesis class: linear functions

$$\mathcal{H} = \{ h : x \mapsto w^{\top} x, w \in \mathbb{R}^d \}$$

squared loss:

$$\ell(y, y') = (y - y')^2$$
.

► **Idea:** regularization:

minimize
$$\left\{\frac{1}{n}\sum_{i=1}^{n}(y_i - w^{\top}x_i)^2 + \lambda \|w\|^2\right\}$$
,

with $\|u\|^2 = u_1^2 + \cdots + u_d^2$ and $\lambda > 0$ a regularization parameter

Exercise

Exercise: Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be n given training samples. For any $w \in \mathbb{R}^d$, set

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - w^{\top} x_i)^2 + \lambda \|w\|^2.$$

Notice that F is a convex smooth function.

1. show that the minimizer \hat{w} satisfies

$$(X^{\top}X + n\lambda I_d) w = X^{\top}y.$$

2. show that $X^{\top}X + n\lambda I_d$ is an invertible matrix

Correction of the exercise

1. Let $1 \le j \le d$ and let us compute $\partial_i F$:

$$\frac{\partial F}{\partial w_j}(w) = \frac{\partial}{\partial w_j} \left(\frac{1}{n} \sum_{i=1}^n (y_i - w^\top x_i)^2 \right) + \frac{\partial}{\partial w_j} (\lambda (w_1^2 + \cdots w_d^2))$$
$$= \frac{2}{n} \sum_{i=1}^n x_{i,j} \cdot (w^\top x_i - y_i) + 2\lambda w_j,$$

where we used the derivation for the least squares. We deduce the result by setting to zero and multiplying by n.

Correction of the exercise, ctd.

2. By contradiction, suppose that $X^{T}X + n\lambda I_d$ is not invertible. Then

$$\det\left(X^{\top}X + n\lambda I_d\right) = 0.$$

In other words, $-n\lambda$ is an eigenvalue of $X^\top X$. Since $X^\top X$ is a symmetric matrix, its spectrum is $\subseteq \mathbb{R}$. Moreover, it is positive definite, thus all eigenvalues are non-negative. Since $\lambda>0$, we deduce that $-n\lambda$ cannot be an eigenvalue of $X^\top X$ and we can conclude.

Recap

- ► What happens when we invoke sklearn.linear_model.Ridge with default settings?
- ▶ alpha = $1 \rightarrow \lambda = 1/n$ with our notation, barely any regularization if n large
- ▶ fit_intercept is True → does not consider centered data (so our analysis is not entirely accurate)
- ightharpoonup normalize is False ightharpoonup we decide whether we normalize our data
- Solver is auto → sklearn will decide how to solve the minimization problem depending on the size of the data: the solution could be not exact!
- ightharpoonup tol = 0.001 ightharpoonup tolerance threshold on the residuals

1.4. Polynomial regression

Polynomial regression

- ► linear regression is a powerful tool, especially because we can transform the inputs in a non-linear fashion
- **Example:** polynomial regression in \mathbb{R}
- ▶ inputs $x_1, \ldots, x_n \in \mathbb{R}$
- define the mapping $\phi(x) = (1, x, x^2, \dots, x^p)^{\top}$
- then

$$\langle w, \phi(x) \rangle = w_0 + w_1 x + w_2 x^2 + \cdots + w_p x^p,$$

and we can find the best coefficients by linear regression

lacktriangleright numpy.polyfit ightarrow very handy when we want to fit univariate data

Polynomial regression, ctd.

- Example: data = degree three polynomial + Gaussian noise with small variance
- ▶ fit a degree 3 polynomial:

▶ **Remark:** in practice, we do not know the degree of the polynomial!

Polynomial regression, ctd.

- typical case of under / overfitting:
 - when degree too low, poor fit
 - when degree too high, wiggly function $(n+1 \Rightarrow \text{interpolation})$

1.5. Logistic regression

Logistic regression

- ightharpoonup classification with $\mathcal{Y} = \{0, 1\}$
- ▶ however, we predict the probability of belonging to class 1
- hypothesis class:

$$\mathcal{H} = \{ x \mapsto \phi(\langle w, x \rangle), w \in \mathbb{R}^d \},\,$$

with ϕ the *logistic function* (aka *sigmoid* function)

$$\phi(z) = \frac{1}{1 + \mathrm{e}^{-z}} \,.$$

- ▶ **Intuition:** squeeze the score between 0 and 1 to transform it into a probability
- $ightharpoonup \mathbb{P}(y = 1 \,|\, x) = \phi(w^{\top}x) \text{ and } \mathbb{P}(y = 0 \,|\, x) = 1 \phi(w^{\top}x)$

Logistic function

Figure: the logistic function $\phi: t \mapsto 1/(1 + e^{-t})$.

Logistic loss

- ▶ **Next:** we need to define a loss function
- \blacktriangleright for any y, y', we define the *logistic loss*:

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'$$
.

Logistic regression

- finally, logistic regression = empirical risk minimization with the logistic loss
- ▶ that is, minimize for $w \in \mathbb{R}^d$

$$\hat{\mathcal{R}}_{\mathcal{S}}(w) = \sum_{i=1}^{n} \left\{ -(1 - y_i) \log(1 - \phi(w^{\top} x_i)) - y_i \log \phi(w^{\top} x_i) \right\}.$$

- ► Remark (i): we can show that this is equivalent to maximum likelihood for a certain prior distribution
- ▶ Remark (ii): complicated to optimize (see exercise)

Logistic regression in dimension 1

Example: in dimension one:

Logistic regression in dimension 2

Example: in dimension two:

Exercise

Exercise: Recall that we defined the logistic loss by

$$\ell(y, y') = -(1 - y) \log(1 - y') - y \log y'.$$

1. Show that ERM with the logistic loss is equivalent to minimizing

$$F(w) = \sum_{i=1}^{n} \log(1 + \exp(-\tilde{y}_i \langle w, x_i \rangle)),$$

where $\tilde{y}_i = \mathrm{sign}\,(y_i - 0.5)$. Deduce that $\hat{\mathcal{R}}$ is a convex function of w.

- 2. Compute the gradient of $\hat{\mathcal{R}}$ with respect to w. Hint: show that $\phi'(z) = \phi(z)(1 \phi(z))$.
- 3. Can you solve $\nabla \hat{\mathcal{R}}(w) = 0$? If not, propose a strategy for finding a good w.