Part I

1. Evaluate $\int_1^\infty \frac{1}{1+x^2} dx$

$$\int_{1}^{\infty} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{1+x^{2}} dx$$

$$\lim_{a \to \infty} \int_{1}^{a} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \left[\arctan(x) \right]_{1}^{a} = \lim_{a \to \infty} \arctan(a) - \arctan(1)$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \boxed{\frac{\pi}{4}}$$

2. Suppose:

$$x = 4 - \ln(t)$$

$$y = 1 + \ln(7t)$$

$$1 \le t \le e$$

Compute the arc length.

Arc length:
$$\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
$$\frac{dx}{dt} = -\frac{1}{t}$$
$$\frac{dy}{dt} = \frac{7}{7t} = \frac{dt}{t}$$
$$\int_{1}^{e} \sqrt{\left(-\frac{1}{t}\right)^{2} + \left(\frac{1}{t}\right)^{2}} dt = \int_{1}^{e} \sqrt{\frac{1}{t^{2}} + \frac{1}{t^{2}}} dt = \int_{1}^{e} \sqrt{\frac{2}{t^{2}}} dt = \sqrt{2} \int_{1}^{e} \frac{1}{t} dt$$
$$= \sqrt{2} \left[\ln(t)\right]_{1}^{e} = \sqrt{2} \left[\ln(e) - \ln(1)\right] = \boxed{\sqrt{2}}$$

3. Suppose:

$$x = \cos(3+t)$$

$$y = \sin(3+t)$$

What is the area of the region bounded by the graph and the positive x-axis and the positive y-axis?

Part II