#### **Amendments to the Claims**

1. (Original) A compound of the formula I in the form of a racemate, a mixture of diastereomers or an essentially pure diastereomer,



where

R<sub>1</sub> is a hydrogen atom or C<sub>1</sub>-C<sub>4</sub>-alkyl and at least one sec-phosphine group is an unsubstituted or substituted cyclic phosphino group, or a phosphonium salt thereof having one or two monovalent anions or one divalent anion.

2. (Original) The compound as claimed in claim 1, wherein the cyclic sec-phosphino corresponds to the formula II, IIa, IIb or IIc,



which are unsubstituted or substituted by one or more -OH,  $C_1$ - $C_8$ -alkyl,  $C_4$ - $C_8$ -cycloalkyl,  $C_1$ - $C_6$ -alkoxy,  $C_1$ - $C_4$ -alkoxy- $C_1$ - $C_4$ -alkyl, phenyl,  $C_1$ - $C_4$ -alkyl- or  $C_1$ - $C_4$ -alkoxybenzyl, benzyloxy,  $C_1$ - $C_4$ -alkyl- or  $C_1$ - $C_4$ -alkoxybenzyloxy or  $C_1$ - $C_4$ -alkylidenedioxyl groups.

3. (Original) The compound as claimed in claim 2, wherein substituents are present in one or both  $\alpha$  positions relative to the P atom.

4. (Original) The compound as claimed in claim 1, wherein the compound of the formula I corresponds to the formula III or IV,

(IV),

where

R<sub>2</sub> and R<sub>3</sub> are each, independently of one another, a hydrocarbon radical which has from 1 to 20 carbon atoms and is unsubstituted or substituted by halogen, C<sub>1</sub>-C<sub>6</sub>-alkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkyl, C<sub>1</sub>-C<sub>6</sub>-haloalkoxy, di-C<sub>1</sub>-C<sub>4</sub>-alkylamino, (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>Si, (C<sub>1</sub>-C<sub>12</sub>-alkyl)<sub>3</sub>Si, or -CO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub>-alkyl,

Y is -CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH(OH)CH(OH)-, -CH(OC<sub>1</sub>-C<sub>4</sub>-alkyl)CH(OC<sub>1</sub>-C<sub>4</sub>-alkyl)- or a radical of the formula

R<sub>6</sub>, R<sub>7</sub>, R<sub>8</sub> and R<sub>9</sub> are each, independently of one another, H, C<sub>1</sub>-C<sub>4</sub>-alkyl or benzyl, and at least one of the radicals R<sub>6</sub>, R<sub>7</sub>, R<sub>8</sub> and R<sub>9</sub> is C<sub>1</sub>-C<sub>4</sub>-alkyl, benzyl or -CH<sub>2</sub>-O-C<sub>1</sub>-C<sub>4</sub>-alkyl or

-CH<sub>2</sub>-O-C<sub>6</sub>-C<sub>10</sub>-aryl,

 $R_{10}$  is H or  $C_1$ - $C_4$ -alkyl and

R<sub>11</sub> is C<sub>1</sub>-C<sub>4</sub>-alkyl.

5. (Currently amended) A process for preparing compounds of the formula I in the form of racemates, mixtures of diastereomers or essentially pure diastereomers,



where

R<sub>1</sub> is a hydrogen atom or C<sub>1</sub>-C<sub>4</sub>-alkyl and at least one sec-phosphino is an unsubstituted or substituted cyclic phosphino group, which comprises the steps

a) reaction of a compound of the formula V



where

### (BH<sub>3</sub>)<sub>0.1</sub> means that the group BH<sub>3</sub> may be present or not be present,

 $X_1$  and  $X_2$  are each, independently of one another, O or N and C-bonded hydrocarbon or heterohydrocarbon radicals are bound to the free bonds of the O and N atoms, with at least equivalent amounts of a lithium alkyl, a magnesium Grignard compound or an aliphatic Li sec-amide or  $X_3Mg$  sec-amide to form a compound of the formula VI,



where

M is -Li or -MgX<sub>3</sub> and X<sub>3</sub> is Cl, Br or I,

b) reaction of the compound of the formula VI with at least equivalent amounts of a disec-aminophosphine halide, a dialkoxyphosphine halide, di-sec-amino-P(O) halide, dialkoxy-P(O) halide or PCl<sub>3</sub> or PBr<sub>3</sub> to form a compound of the formula VII



where

 $R_{12}$  is -PCl<sub>2</sub>, -PBr<sub>2</sub>, di(sec-amino)P-, dialkoxyP-, di-sec-amino-P(O)-, dialkoxy-P(O)-, and

b1) removing any borane group present from a compound of the formula VII, then splitting off the radicals (hetero)hydrocarbon- $X_1$ , (hetero)hydrocarbon- $X_2$  or  $X_1$ -(hetero)-hydrocarbon- $X_2$  or di-sec-amino or dialkoxy by means of HCl or HBr to form a -PCl<sub>2</sub> group or -PBr<sub>2</sub> group and then hydrogenating the -(O)PCl<sub>2</sub> groups, -(O)PBr<sub>2</sub> groups, -PCl<sub>2</sub> groups or -PBr<sub>2</sub> groups to form a compound of the formula VIII or b2) splitting off the radicals (hetero)hydrocarbon- $X_1$ , (hetero)hydrocarbon- $X_2$  or  $X_1$ -(hetero)hydrocarbon- $X_2$  or di-sec-amino or dialkoxy from a compound of the formula VII by means of HCl or HBr to form a -PCl<sub>2</sub> group or -PBr<sub>2</sub> group and then hydrogenating the -(O)PCl<sub>2</sub> groups, -(O)PBr<sub>2</sub> groups, -PCl<sub>2</sub> groups or -PBr<sub>2</sub> groups and then removing the borane group to form a compound of the formula VIII,



or

c) reaction of a compound of the formula VI with a sec-phosphine halide to form a compound of the formula IX,

$$R_1$$
 $P$ 
 $X_2$ 
 $(BH_3)_{0.1}$ 

sec-phosphino

 $R_1$ 

(IX),

- c1) removing any borane group present from a compound of the formula IX, then splitting off the radicals (hetero)hydrocarbon- $X_1$ , (hetero)hydrocarbon- $X_2$  or  $X_1$  (hetero)hydrocarbon- $X_2$  by means of HCl or HBr to form a -PCl<sub>2</sub> group or -PBr<sub>2</sub> group and then hydrogenating the -PCl<sub>2</sub> groups or -PBr<sub>2</sub> groups to form a compound of the formula X or
- c2) splitting off the radicals (hetero)hydrocarbon- $X_1$ , (hetero)hydrocarbon- $X_2$  or  $X_1$ (hetero)hydrocarbon- $X_2$  from a compound of the formula IX by means of HCl or HBr to
  form a -PCl<sub>2</sub> group or -PBr<sub>2</sub> group and then hydrogenating the -PCl<sub>2</sub> groups or -PBr<sub>2</sub>
  groups and then removing the borane group to form a compound of the formula X



or

d) reaction of a compound of the formula VI with a halogenating reagent to form a compound of the formula XI



where X<sub>4</sub> is Cl, Br or I,

d1) removing any borane group present from a compound of the formula XI, then splitting off the radicals (hetero)hydrocarbon- $X_1$ , (hetero)hydrocarbon- $X_2$  or  $X_1$ -

(hetero)hydrocarbon-X<sub>2</sub> by means of HCl or HBr to form a -PCl<sub>2</sub> group or -PBr<sub>2</sub> group and then hydrogenating the -PCl<sub>2</sub> group or -PBr<sub>2</sub> group to form a compound of the formula XII or

d2) splitting off the radicals (hetero)hydrocarbon-X<sub>1</sub>, (hetero)hydrocarbon-X<sub>2</sub> or X<sub>1</sub>- (hetero)hydrocarbon-X<sub>2</sub> from a compound of the formula XI by means of HCl or HBr to form a -PCl<sub>2</sub> group or -PBr<sub>2</sub> group and then hydrogenating the -PCl<sub>2</sub> groups or -PBr<sub>2</sub> groups and then removing the borane group to form a compound of the formula XII



and

- d3) reacting the compound of the formula XII with a metalated sec-phosphide to form a compound of the formula X,
- e) reaction of the compound of the formula VII with at least 2 equivalents and of the compound of the formula X with at least 1 equivalent of a cyclic sulfate or an open-chain disulfonate to produce compounds of the formula I in which one or both sec-phosphino groups are cyclic sec-phosphino or
- f) reaction of a compound of the formula XII with at least 1 equivalent of a cyclic sulfate or an open-chain disulfonate to produce compounds of the formula XIII,



where sec-phosphino is cyclic sec-phosphino which may, if appropriate, be protected by BH<sub>3</sub>, and then reaction of a compound of the formula XIII with at least 1 equivalent of a lithium alkyl and then with at least 1 equivalent of a sec-phosphine halide to form a compound of the formula I.

# 6. (Currently amended) A compound of the formula VII, IX and or XI,

R<sub>1</sub>

$$R_1$$
 $R_1$ 
 $R$ 

where

(BH<sub>3</sub>)<sub>0.1</sub> means that the group BH<sub>3</sub> may be present or not be present, sec-phosphino is an unsubstituted or substituted cyclic phosphino group,

 $X_1$  and  $X_2$  are each, independently of one another, O or N and C-bonded hydrocarbon or heterohydrocarbon radicals are bound to the free bonds of the O and N atoms and  $R_1$ ,  $R_{12}$  and  $X_4$  are as defined in claim 5.

# 7. (Currently amended) A compound of the formula VIII, X or XII,





where

sec-phosphino is an unsubstituted or substituted cyclic phosphino group,

R'<sub>12</sub> is -PCl<sub>2</sub>, -PBr<sub>2</sub> or -PH<sub>2</sub> and R<sub>1</sub> and X<sub>4</sub> are as defined in claim 5.

### 8. (Original) A compound of the formula XIII



where R<sub>1</sub> and X<sub>4</sub> are as defined in claim 5 and sec-phosphino is cyclic sec-phosphino.

- 9. (Currently amended) A complex of a metal selected from the group consisting of the group 8-transition metals Cu, Ag, Au, Ni, Co, Rh, Pd, Ir, Ru and Pt with compounds a compound of the formula I according to claim 1 as-ligands ligand.
- 10. (Currently amended) The metal complex as claimed in claim 9, wherein the group 8-transition metal is ruthenium, rhodium or iridium.
- 11. (Currently amended) The metal complex as claimed in claim 9, eharacterized in that it which corresponds to the formula XIV or XV,

$$A_1MeL_n$$
 (XIV),  $(A_1MeL_n)^{(z+)}(E^-)_z$  (XV),

where  $A_1$  is a compound of the formula I,

L represents identical or different monodentate, anionic or nonionic ligands, or L<sub>2</sub>

represents identical or different bidentate, anionic or nonionic ligands; n is 2, 3 or 4 when L is a monodentate ligand or n is 1 or 2 when L is a bidentate ligand;

z is 1, 2 or 3;

Me is a metal selected from the group consisting of Rh, Ir and Ru; with the metal having the oxidation state 0, 1, 2, 3 or 4;

E is the anion of an oxo acid or complex acid; and the anionic ligands balance the charge of the oxidation state 1, 2, 3 or 4 of the metal.

12. (Currently amended) The metal complex as claimed in claim 9, <del>characterized in that it which corresponds to the formula XIII or XIV,</del>

$$[A_1Me_2YZ] \qquad (XVI), \qquad \qquad [A_1Me_2Y]^{\dagger}E_1 \qquad (XVII),$$

where

 $A_1$  is a compound of the formula I;

Me<sub>2</sub> is rhodium or iridium;

Y represents two olefins or diene;

Z is Cl, Br or I; and

 $E_1^-$  is the anion of an oxo acid or complex acid.

#### 13. (Cancelled)

- 14. (Currently amended) A process for preparing chiral organic compounds by asymmetric addition of hydrogen, boron hydrides or silanes onto a carbon-carbon or carbon-heteroatom multiple bond in prochiral organic compounds or asymmetric addition of carbon nucleophiles or amines onto allyl compounds in the presence of a catalyst, eharacterized in that wherein the addition reaction is carried out in the presence of catalytic amounts of at least one metal complex as claimed in claim 9.
- 15. (New) A method for preparing chiral organic compounds comprising asymmetrically adding hydrogen, boron hydrides or silanes onto a carbon-carbon or

carbon-heteroatom multiple bond in prochiral organic compounds, or asymmetrically adding carbon nucleophiles or amines onto allyl compounds, in the presence of a homogeneous catalyst, wherein the homogeneous catalyst is a complex to claim 9.