Name: Dion D Rodrigues Assignment.no: 01

Roll.no: 56 Class: FYMCA B Subject: ML Lab Batch: B3

a) IMPORTING LIBRARIES

import pandas as pd

import numpy as np

from sklearn.preprocessing import OneHotEncoder

from sklearn.model_selection import train_test_split

from sklearn.impute import SimpleImputer

#b) IMPORTING LIBRARIES

data= pd.read_csv('C:/Users/Admin/Desktop/ML/Assignment_1/Online_shopper.csv')
print(data)

	Region	Age	Income	Online	Shopper
0	India	49.0	86400.0		No
1	Brazil	32.0	57600.0		Yes
2	USA	35.0	64800.0		No
3	Brazil	43.0	73200.0		No
4	USA	45.0	NaN		Yes
5	India	40.0	69600.0		Yes
6	Brazil	NaN	62400.0		No
7	India	53.0	94800.0		Yes
8	USA	55.0	99600.0		No
9	India	42.0	80400.0		Yes

c) IDENTIFYING AND HANDLING MISSING DATA

#identifying

print (data.isnull())

print(data.isnull().sum())

	Region	Age	Income	Online	Shopper
0	False	False	False		False
1	False	False	False		False
2	False	False	False		False
3	False	False	False		False
4	False	False	True		False
5	False	False	False		False
6	False	True	False		False
7	False	False	False		False
8	False	False	False		False
9	False	False	False		False
Region			0		
Age			1		
Income			1		
Online Shopper			0		
dtype: int64					

#handling (FILL WITH THE MODE OF THE COLUMN)

data['Age']=data['Age'].fillna(data['Age'].mode())

print(data)

	Region	Age	Income	Online	Shopper
0	India	49.0	86400.0		No
1	Brazil	32.0	57600.0		Yes
2	USA	35.0	64800.0		No
3	Brazil	43.0	73200.0		No
4	USA	45.0	NaN		Yes
5	India	40.0	69600.0		Yes
6	Brazil	49.0	62400.0		No
7	India	53.0	94800.0		Yes
8	USA	55.0	99600.0		No
9	India	42.0	80400.0		Yes

#handling (FILL WITH THE MEAN OF THE COLUMN)

data['Income']=data['Income'].fillna(data['Income'].mean()) print(data)

```
Region
                      Income Online Shopper
           Age
  India
          49.0 86400.000000
                                        No
1 Brazil
          32.0 57600.000000
                                       Yes
2
          35.0 64800.000000
     USA
                                        No
3 Brazil 43.0 73200.000000
                                        No
     USA 45.0 76533.333333
4
                                       Yes
5
   India 40.0 69600.000000
                                       Yes
6 Brazil 49.0 62400.000000
                                        No
7
   India 53.0 94800.000000
                                       Yes
8
     USA 55.0 99600.000000
                                        No
9
   India 42.0 80400.000000
                                       Yes
```

Verify if missing data is handled

print(data.isnull().sum())

Region 0
Age 0
Income 0
Online Shopper 0
dtype: int64

#d) IDENTIFYING AND HANDLING CATEGORICAL DATAZ

#identify categorial columns

```
categorical_columns = data.select_dtypes(include=[np.number]).columns
print(categorical_columns)
```

```
Index(['Age', 'Income'], dtype='object')
```

#handling missing data by replacing with the mode (for categorical columns)

```
imputer = SimpleImputer (strategy='most_frequent')
```

data[categorical_columns]=imputer.fit_transform(data[categorical_columns])

#verify if missing data is handled

print(data.isnull().sum())

Region 0
Age 0
Income 0
Online Shopper 0
dtype: int64

#Apply OneHotEnchoder to Categorical columns

```
encoder = OneHotEncoder(sparse_output=False,drop='first')
encoded_data = encoder.fit_transform(data[categorical_columns])
```

Getting the names of encoded columns

encoded_columns=encoder.get_feature_names_out(categorical_columns)

#Drop original categorical columns and concatenate encoded columns

```
data =data.drop(categorical_columns,axis=1)
data=pd.concat([data,pd.DataFrame (encoded_data,columns=encoded_columns)],axis=1)
```

#Assuming 'Online shopping ' is the target variable, adjust if different

```
x=data.drop('Online Shopper',axis=1)
y=data['Online Shopper']
```

#e) SPLIT THE DATA INTO TRAINING AND TESTING SETS (e.g., 80% train,20% test)

```
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=42)
print("Traning set Shape : ",x_train.shape,y_train.shape)
print("Testing set Shape : ",x_test.shape, y_test.shape)
```

```
Traning set Shape : (8, 18) (8,)
Testing set Shape : (2, 18) (2,)
```