Lab5C (5 pkt) 8.12.2023

Termin odesłania 15.12.2023 (pt) do godz. 14.15 na platformie Ms Teams (we właściwym zespole lab przypisanym dla przedmiotu Programowanie Matematyczne). Opóźnione przesłanie rozwiązania zadania będzie rozliczane zgodnie z regulaminem przedmiotu.

Rozwiązanie zadania tj. wszystkie źródłowe m-pliki, raport (obowiązkowy, w formacie PDF z omówieniem wyników) i w raporcie oświadczenie o samodzielności – całość w formacie zip o nazwie pm5c_swojenazwisko_swojeimie.zip

Raport (plik pdf) powinno być w formacie A4 i powinno obejmować:

Dane studenta (imię, nazwisko, grupa, data)

Treść zadania (postać rozwiązywanego problemu)

Opis kroków przekształcania zadania, krótki opis algorytmu

Ciekawe przykłady obliczeniowe (również dodatkowo wskazane w treści zadania)

Analize (omówienie) wyników obliczeniowych, testów

Ponadto (do pliku zip) należy załączyć:

Kody źródłowe wszystkich funkcji/procedur i skryptów (**brak** kompletu jest traktowany jak **brak** przesłania zadania, podobnie kod który **nie działa** bo nie jest kompletny... nie będą przyznane żadne punkty)

Napisz **skrypt**, w którym proszę wykonać całe zadanie **kolejnymi etapami**, wywołać przygotowane funkcje oraz przeprowadzić proponowane testy.

• Wygeneruj **nieosobliwy** kwadratowy układ równań liniowych Ax = b, $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, gdzie $A = A^T$ dodatnio określona, n = 10: 10: 200 (*może więcej? Ile?*)

Wygeneruj symetryczną dod. określoną macierz A z narzuconymi wartościami własnymi, np: podaj wektor wartości własnych (całkowitych), utwórz macierz diagonalną D z podanymi wartościami, wylosuj nieosobliwą macierz V, V = orth(V), $A = VDV^T$. W raporcie należy opisać konstrukcję macierzy A.

Napisz plik fun.m definiujący wypukłą funkcję kwadratową, której minimalizacja odpowiada rozwiązywaniu powyższego układu.

Oprócz wartości funkcji, należy również zwrócić jej analityczny gradient oraz hesjan.

- Rozwiąż układ wykorzystując **operator** \ (rozwiązanie *xE*)
- Przyjmij $x_0 = [0, 0, 0, ..., 0]^T$

Zastosuj funkcję **fminunc** do znalezienia wartości min funkcji oraz punktu optymalnego startując z x_0 .

W optimoptions ustaw pola:

Algorithm: quasi-Newton, Display: iter, GradObj: on

Porównaj uzyskane rozwiązanie xFminunc z dokładnym rozwiązaniem układu.

Oblicz normę różnicy: norm(xE-xFminunc)

napisać funkcję wykorzystującą algorytm gradientu sprzężonego FR

[xFR, fval, it]=FR(fun, x0, e)

xFR RO zadania

fval optymalna wartość funkcji

it liczba iteracji

Oblicz **krok minimalizacji kierunkowej wg** (porównaj skuteczność w testach):

- ✓ analitycznego wzoru dla funkcji kwadratowej
- ✓ algorytm **Armijo** z **kontrakcją**

Zbadaj zależność liczby iteracji dla rosnącego parametru *n* (liczby zmiennych), zależność od liczby unikalnych wartości własnych.

Wykonaj wykresy prezentujące wartość normy gradientu w kolejnych iteracjach.

Oblicz normę różnicy: norm(xE-xFR)

Wnioski

napisać funkcję wykorzystującą algorytm najszybszego spadku NS

[xNS, fval, it] = NS_eigs(fun, x0, e)

xNS RO zadania

fval optymalna wartość funkcji

it liczba iteracji

Niech **lambda** – wektor **unikalnych wartości własnych** (uporządkowany rosnąco? Malejąco? Może inny porządek czy ma znaczenie?)

Do minimalizacji kierunkowej należy zastosować kolejne wartości własne : $\alpha_k = \lambda_k^{-1}$

Zbadaj **zależność liczby iteracji** dla rosnącego **parametru** *n* (liczby zmiennych), zależność od **liczby unikalnych wartości własnych**.

Wykonaj wykresy prezentujące wartość normy gradientu w kolejnych iteracjach.

Oblicz normę różnicy: norm(xE-xNS)

Wnioski

- Opis testów
- Wnioski