Stability of autocatalytic cycles imposes constraints on kinetic parameters of enzymes

Uri Barenholz

Prof. Ron Milo lab Department of Plant & Environmental Sciences Weizmann Institute of Science, Rehovot, Israel

April 14, 2017

An autocatalytic cycle requires its internal metabolite to produce it

Internal metabolite + Assimilated metabolite $o (1+\delta)$ Internal metabolite

Why do we care about autocatalytic cycles?

- ▶ The lab implements the Calvin-Benson-Bassham cycle in *E.coli*¹
- ► Two enzymes were introduced
- ▶ It didn't work
- ► Can we understand why?

¹Antonovsky et. al., Cell 2016

$$f_a = \frac{V_{\max,a}X}{K_{M,a}+X}$$

$$f_a = rac{V_{ ext{max},a}X}{K_{M,a}+X}$$

$$f_b = rac{V_{\mathsf{max},b}X}{K_{M,b}+X}$$

$$f_a = rac{V_{\max,a}X}{K_{M,a}+X}$$

$$f_b = \frac{V_{\text{max},b}X}{K_{M,b}+X}$$

Conclusions drawn from the simple model apply under various extensions

- Using bisubstrate reaction schemes for the autocatalytic reaction
 - ▶ Critical lower concentration of the assimilated metabolite exists
 - Upper bound on the affinity of the branch reaction remains in most schemes

Conclusions drawn from the simple model apply under various extensions

- Using bisubstrate reaction schemes for the autocatalytic reaction
 - ▶ Critical lower concentration of the assimilated metabolite exists
 - Upper bound on the affinity of the branch reaction remains in most schemes
- Assuming the autocatalytic reaction is reversible
 - ▶ Relaxes the constraint on the ratio of maximal fluxes between the autocatalytic and the branch reaction

Conclusions drawn from the simple model apply under various extensions

- Using bisubstrate reaction schemes for the autocatalytic reaction
 - ▶ Critical lower concentration of the assimilated metabolite exists
 - Upper bound on the affinity of the branch reaction remains in most schemes
- Assuming the autocatalytic reaction is reversible
 - ▶ Relaxes the constraint on the ratio of maximal fluxes between the autocatalytic and the branch reaction
- Assuming the branch reaction is reversible
 - ▶ Depending on the consumption of the branch reaction product, either the branch reaction, or the reaction downstream of it must have limited affinity

Directed evolution towards function of the CBB cycle required changes in kinetic parameters of main branch reactions

- ▶ 3 Directed evolution repeats evolved functioning CBB cycle
- ▶ Single common mutation: The major branch reaction gene, PRS
 - ▶ With other, different mutations in each strain
- ▶ In all cases K_{cat}/K_M of PRS decreased
- Minimal changes required for CBB function include mutations in other major branch reactions

Why should you care about autocatalytic cycles?

- ▶ Key metabolic processes are autocatalytic
 - ▶ In glycolysis ATP investment is required for the production of ATP
- Systematic search reveals autocatalytic cycles are abundant in central carbon metabolism

Stability criteria of the simple model can be extended for complex cycles

Stability criteria of the simple model can be extended for complex cycles

• At steady state: $\sum f_{b_i} = f_{a_n}$

Stability criteria of the simple model can be extended for complex cycles

- At steady state: $\sum f_{b_i} = f_{a_n}$
- ▶ Sufficient condition for stability is: $\exists_i \quad \beta_i \geq \alpha_i$ where $\beta_i = \frac{df_{b_i}}{dX_i}\Big|_{X_*^*}$ and $\alpha_i = \frac{df_{a_i}}{dX_i}\Big|_{X_*^*}$

Theoretical $\beta_i \geq \alpha_i$ constraint results in experimental prediction on reaction saturation level

► Reaction saturation is the ratio of the actual flux to the potential flux, given expression level and catalytic rate

Theoretical $\beta_i \ge \alpha_i$ constraint results in experimental prediction on reaction saturation level

- ► Reaction saturation is the ratio of the actual flux to the potential flux, given expression level and catalytic rate
- ► For monotonically increasing, bounded, concave functions: saturation and derivative are inversely correlated

Theoretical $\beta_i \ge \alpha_i$ constraint results in experimental prediction on reaction saturation level

- ► Reaction saturation is the ratio of the actual flux to the potential flux, given expression level and catalytic rate
- ► For monotonically increasing, bounded, concave functions: saturation and derivative are inversely correlated
- ▶ Therefore, $\beta_i \ge \alpha_i$ imply that branch reaction is less saturated than autocatalytic reaction

Analysis of experimental fluxomics data² and proteomics data³ shows branch reactions are consistently less saturated than autocatalytic reactions

²Gerosa et. al., Cell Systems 2015

³Schmidt et. al., Nature Biotechnology 2016

Analysis of experimental fluxomics data² and proteomics data³ shows branch reactions are consistently less saturated than autocatalytic reactions

²Gerosa et. al., Cell Systems 2015

³Schmidt et. al., Nature Biotechnology 2016

Analysis of experimental fluxomics data² and proteomics data³ shows branch reactions are consistently less saturated than autocatalytic reactions

²Gerosa et. al., Cell Systems 2015

³Schmidt et. al., Nature Biotechnology 2016

Fructose PTS disagreement results from missing data on alternative transport pathways

- ▶ All fructose was assumed to be transported as fbp
- ► Experimental evidence shows other transport pathways are functioning⁴

- ► Convergence to steady state is faster when the differences between the cycle flux and the branch flux are larger
 - Intermediate metabolites activate branch reactions and inhibit cycle reactions

- ► Convergence to steady state is faster when the differences between the cycle flux and the branch flux are larger
 - ▶ Intermediate metabolites activate branch reactions and inhibit cycle reactions
- Adaptation of steady state fluxes to nutrient availability is achieved by allosteric regulation of the assimilated metabolite
 - The assimilated metabolite should activate branch reactions and inhibit cycle reactions

- ► Convergence to steady state is faster when the differences between the cycle flux and the branch flux are larger
 - ▶ Intermediate metabolites activate branch reactions and inhibit cycle reactions
- Adaptation of steady state fluxes to nutrient availability is achieved by allosteric regulation of the assimilated metabolite
 - The assimilated metabolite should activate branch reactions and inhibit cycle reactions
- ► Adaptation of steady state fluxes to demand of cycle products is achieved by allosteric regulation of the branch products
 - ▶ Branch products should activate branch reactions and inhibit cycle reactions

- ► Convergence to steady state is faster when the differences between the cycle flux and the branch flux are larger
 - ▶ Intermediate metabolites activate branch reactions and inhibit cycle reactions
- Adaptation of steady state fluxes to nutrient availability is achieved by allosteric regulation of the assimilated metabolite
 - The assimilated metabolite should activate branch reactions and inhibit cycle reactions
- ► Adaptation of steady state fluxes to demand of cycle products is achieved by allosteric regulation of the branch products
 - ▶ Branch products should activate branch reactions and inhibit cycle reactions
- ► For the PTS using cycle, 11 out of 12 allosteric interactions agree with these predictions

Conclusions

- Autocatalytic cycles play a major role in central carbon metabolism
- ▶ Proper function of autocatalytic cycles depends on kinetic parameters of enzymes
 - Limits affinity of branch reactions
- ► In metabolic engineering of autocatalytic cycles, native kinetic parameters can prohibit function
- Stability of autocatalytic cycles depends on under-saturation of branch reactions
 - Excess expression of branch reactions enzymes is required
- ▶ Fluxomics data approves sub-optimality constraints are maintained in-vivo

Acknowledgments

Sustainability And Energy Research Initiative

European Research Council

Outlook

- Efficient algorithm for identification of autocatalytic cycles in large metabolic networks
- Experimental exploration of different autocatalytic cycles function in-vivo
- ► Explore possible other uses of passive control of metabolic fluxes due to kinetic parameters

Thank You!

Supplementary figures

Input flux increases the range of parameters for which stable fluxes exist

Additional autocatalytic cycles in central carbon metabolism

Additional autocatalytic cycles in central carbon metabolism

ATP autocatalysis in glycolysis

Supplementary equations

Bisubstrate reaction equations

Substituted enzyme

$$f = \frac{V_{\mathsf{max}} A X}{K_X A + K_A X + A X}$$

Random binding ternary complex

$$f = \frac{V_{\text{max}}AX}{K_{i,A}K_X + K_XA + K_AX + AX}$$

Ordered binding ternary complex, assimilated metabolite binding first

$$f = \frac{V_{\mathsf{max}} A X}{K_{i,A} K_X + K_X A + A X}$$

Ordered binding ternary complex, internal metabolite binding first

$$f = \frac{V_{\text{max}}AX}{K_{i,X}K_A + K_AX + AX}$$

Reversible reaction equation

$$f_b = rac{V_{\mathsf{max},b}(X - Y)}{K_X + X + rac{K_X}{K_Y}Y}$$