Qualifying Exam APPLIED DIFFERENTIAL EQUATIONS Winter 2004

Solve any 7 of the following 9 problems. Each problem has an equal value.

1) Consider the differential equation:

(1)
$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} + \lambda u(x,y) = 0$$

in the strip $\{(x,y), \ 0 < y < \pi, \ -\infty < x < +\infty\}$ with boundary conditions

(2)
$$u(x,0) = 0, u(x,\pi) = 0.$$

Find all bounded solution of the boundary value problem (1), (2) when

a)
$$\lambda = 0$$
, b) $\lambda > 0$, c) $\lambda < 0$

2) Let $C^2(\overline{\Omega})$ be the space of all twice continuously differentiable functions in the bounded smooth closed = domain $\overline{\Omega} \subset \mathbf{R}^2$. Let $u_0(x,y)$ be the function that minimizes the functional

$$D(u) = \int \int_{\Omega} \left[\left(\frac{\partial u(x,y)}{\partial = x} \right)^2 + \left(\frac{\partial u(x,y)}{\partial x} \right)^2 + f(x,y)u(x,y) \right] dxdy$$
 $+ \int_{\partial\Omega} a(s)u^2(x(s),y(s))ds,$

where f(x, y) and a(s) are given continuous functions and ds is the arclength element on $\partial\Omega$.

Find the differential equation and the boundary condition that u_0 satisfies

3) Let $f(x_1, x_2)$ be a continuous function with compact support. Define

$$u(x_1,x_2) = rac{1}{2\pi} \int \int_{\mathbf{R}^2} rac{f(y_1,y_2) dy_1 dy_2}{z - w}$$

where $z = x_1 + ix_2$, $w = y_1 + iy_2$. Prove that

$$\frac{\partial u}{\partial x_1} + i \frac{\partial u}{\partial x_2}$$
 $f(x_1, x_2)$ in \mathbf{R}^2 .

4) Consider boundary value problem on $[0, \pi]$

$$y''(x) + p(x)y(x) = f(x), \quad 0 < x < \pi,$$
(2)
$$y(0) = 0, \quad y'(\pi) = 0.$$

Find the smallest λ_0 such that the boundary value problem (1), (2) has a unique solution whenever $p(x) > \lambda_0$ for all x. Justify your answer.

5) Consider the Laplace equation

$$\frac{\partial u^2}{\partial x^2} + \frac{\partial u^2}{\partial y^2} \quad 0, \quad y > 0, \quad -\infty < x < +\infty$$

with the boundary condition

(2)
$$\frac{\partial u(x,0)}{\partial y} \quad u(x,0) = f(x).$$

where $f(x) \in C_0^{\infty}(\mathbf{R}^1)$. Find a bounded solution u(x,y) of (1), (2) and show that $u(x,y) \to 0$ when $|x| + y \to \infty$.

6) Consider the first order system $u_t - u_x = v_t + v_x = 0$ in the diamond shaped region -1 < x + t < 1, -1 < x - t < 1. For each of the following boundary value problems state whether this problem is well posed. If it is well-posed, find the solution.

(a)
$$u(x+t) = u_0(x+t)$$
 on $x-t=-1$, $v(x-t) = v_0(x-t)$ on $x+t=-1$

(a)
$$v(x+t) = v_0(x+t)$$
 on $x-t=-1$, $u(x-t) = u_0(x-t)$ on $x+t=-1$

- 7) For the two-point boundary value problem $Lf = f_{xx} f$ on $-\infty$ $x < \infty$ with $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$, the Green's function G(x, x')solves $LG = \delta(x - x')$ in which L acts on the variable x.
- (a) Show that G(x, x') = G(x x').
- (b) For each x', show that

$$G(x,x') = \begin{cases} a_-e^x & \text{for } x < x', \\ a_+e^{-x} & \text{for } x' < x, \end{cases}$$

in which a_{\pm} are functions that depend only on x'.

- (c) Using (a), find the x' dependence of a_{\pm} .
- (d) Finish finding G(x, x') by using the jump conditions to find the remaining unknowns in a_{\pm} .
 - 8) For the ODE

$$(1) u_t u v^2$$

$$\begin{array}{ccccc} u_t & u & v^2, \\ (2) & v_t &= v & u^2 \end{array}$$

do all of the following:

- a) Find all stationary points.
- b) Analyze their type.
- c) Show that u = v is an invariant set for this ODE; i.e., if u(0) = v(0), then u(t) = v(t) for all t.
- d) Draw the phase plane for this system.
 - 9) Consider the initial value problem

$$u_{tt}$$
 Δu

for $x \in \mathbb{R}^d$ and t > 0, and with $u(x,0) = u_0(x), u_t(x,0) = u_1(x)$ in which $u_0(x) = u_1(x) = 0$ for $|x| < R_1$ and $|x| > R_2$. For d = 2 and d = 3, find the largest set $\Omega_0 \subset \{x \in \mathbb{R}^d, t > 0\}$ on which u = 0 for any choice of u_0 .