

Data Science Metody Sztucznej Inteligencji

Paweł Wawrzyński

Uczenie maszynowe Sztuczne sieci neuronowe

Plan na dziś

- Uczenie maszynowe
- Problem aproksymacji funkcji
- Sieci neuronowe

Naturalne sieci neuronowe

Neuron

- jądro komórkowe
- dendryty
- akson
- zakończenia aksonu
- połączenia synaptyczne

Działanie

- ładowanie się przez dendryty
- strzelanie impulsami przez akson

Sztuczne sieci neuronowe

- Źródło inspiracji: naturalny mózg
- Rozmaite zastosowania:
 - aproksymacja funkcji
 - prognozowanie
 - klasyfikacja
 - pamięć asocjacyjna
- My zajmiemy się:

 perceptronem dwuwarstwowym

 ponieważ jest to dobry aproksymator

 nieliniowy

 Data Science, MSI, Sztuczne sieci neuronowe, zima 2019

Aproksymacja neuronowa, model neuronu (1/2)

Aproksymacja neuronowa, model neuronu (2/2)

- Funkcja aktywacji jest ciągła i niemalejąca
- Neuron jest liniowy, jeśli $\psi(z)=z$
- Neuron jest sigmoidalny, jeśli f-cja aktywacji jest ciągła, różniczkowalna, rosnąca i ograniczona

$$\psi(z) = \arctan(z)$$
, $\psi(z) = \frac{\exp(z)}{1 + \exp(z)}$, itp.

• Neuron jest ReLU, jeśli

$$\psi(z) = \max\{0, z\}, \quad \psi(z) = \min\{\max\{0, z\}, M\}$$

Aproksymacja neuronowa, perceptron 2-warstwowy

$$\bar{f}_k(x;\theta) = \sum_{j=1}^n \theta_{k,j}'' \psi_j \left(\sum_{i=1}^{n_x} \theta_{j,i}' x_i + \theta_{j,n_x+1}' \right) + \theta_{k,n+1}''$$

Perceptron dwuwarstwowy, Przykład, funkcja $R \rightarrow R$

Perceptron dwuwarstwowy, własność uniwersalnej aproksymacji

- Niech \mathcal{X} będzie zbiorem ograniczonym i domkniętym
- f jest ciągła na ${\mathcal X}$
- dla każdego $\epsilon > 0$ istnieją n, $\, heta$, t.że:

$$\max_{x \in \mathcal{X}} \|f(x) - \bar{f}(x;\theta)\| \le \epsilon$$

Gradient

- Funkcja straty $q:\mathfrak{R}^{n_y}\mapsto\mathfrak{R}$
- Typowo $q(y) = ||y y^d||^2$
- zawsze funkcja straty jest zdefiniowana przez przykład trenujący
- Interesuje nas $\frac{\mathrm{d}q(\bar{f}(x;\theta))}{\mathrm{d}\theta^T}$
- czyli wektor kolumnowy złożony z pochodnych

$$\frac{\mathrm{d}q(\bar{f}(x;\theta))}{\mathrm{d}\theta'_{j,i}} \text{ oraz } \frac{\mathrm{d}q(\bar{f}(x;\theta))}{\mathrm{d}\theta''_{k,j}}$$

Wsteczna propagacja gradientu

- ullet Acykliczny graf działań obliczający q
- Zmienna w tym grafie oddziałuje na q poprzez zmienne, na które oddziałuje bezpośrednio

Pochodne po wagach warstwy wyjściowej

$$\frac{\mathrm{d}q(\bar{f}(x;\theta))}{\mathrm{d}\theta_{k,j}''} = \frac{\partial q}{\partial y_k^2} \frac{\mathrm{d}y_k^2}{\mathrm{d}\theta_{k,j}''} = \frac{\partial q}{\partial y_k^2} y_j^1$$

• dla
$$q(y) = ||y - y^d||^2 \text{mamy} \frac{dq(f(x; \theta))}{d\theta''_{k,j}} = 2(y_k^2 - y_k^d)y_j^1$$

Pochodne po wagach warstwy ukrytej

• *S_j* - suma obliczana w *j*-tym neuronie warstwy ukrytej

$$\frac{\mathrm{d}q}{\mathrm{d}y_j^1} = \sum_k \frac{\mathrm{d}q}{\mathrm{d}y_k^2} \frac{\partial y_k^2}{\partial y_j^1} = \sum_k \frac{\partial q}{\partial y_k^2} \theta_{k,j}''$$

$$\frac{\mathrm{d}q}{\mathrm{d}s_{j}} = \frac{\mathrm{d}q}{\mathrm{d}y_{j}^{1}} \frac{\partial y_{j}^{1}}{\partial s_{j}} = \frac{\mathrm{d}q}{\mathrm{d}y_{j}^{1}} \psi'(s_{j})$$

$$\frac{\mathrm{d}q}{\mathrm{d}\theta'_{j,i}} = \frac{\mathrm{d}q}{\mathrm{d}s_{j}} \frac{\partial s_{j}}{\partial \theta'_{j,i}} = \frac{\mathrm{d}q}{\mathrm{d}s_{j}} y_{i}^{0}$$

Zagadnienie aproksymacji funkcji na zbiorze skończonym

Dany jest skończony zbiór elementów

$$\langle x_i, y_i \rangle, \quad i \in \{1, \dots, N\}$$

 Należy znaleźć wektor parametrów aproksymatora, który minimalizuje wskaźnik jakości

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} ||y_i - \bar{f}(x_i; \theta)||^2$$

• Działają algorytmy optymalizacji, np. metoda grdientu prostego

Zagadnienie aproksymacji funkcji na zbiorze nieskończonym

- Dany jest generator losowych par $\langle x, y \rangle \sim P_{x,y}$ który generuje kolejne próbki $\langle x_t, y_t \rangle, t = 1, 2, \dots$
- Po t-tej próbce parametr aproksymatora jest aktualizowany (na jej podstawie) do wartości θ_t
- Ciąg parametrów $\theta_t, t = 1, 2, \ldots$ powinien zbiegać do minimum wskaźnika jakości

$$J(\theta) = \mathcal{E} \|y - \bar{f}(x;\theta)\|^2$$
$$= \iint \|y - \bar{f}(x;\theta)\|^2 P_{x,y}(x,y) dy dx$$

aproksymacja na zbiorze nieskończonym

"Reguła delta" i jej wykorzystanie

• Formula uczenia się ma postać

$$\nabla J(\theta) = \mathcal{E}\left(\frac{\mathrm{d}}{\mathrm{d}\theta^T} ||\bar{f}(X;\theta) - Y||^2\right)$$

- Działa metoda stochastycznego najszybszego spadku
- Formuła aktualizująca wagi sieci ma postać

$$\theta_{t+1} := \theta_t - \beta_t \frac{\mathrm{d}}{\mathrm{d}\theta_t^T} ||\bar{f}(x_t; \theta_t) - y_t||^2$$

Uczenie – usprawnienia

- Minibatch-e:
 estymator gradientu
 = średnia z kilku kolejnych próbek
- Inercja: $\gamma \in (0,1)$ zmiana wag = - β * gradient + γ * poprzednia_zmiana
- Normalizacja pochodnych: dzielenie przez ich odchylenia standardowe
- Algorytm uczenia sieci ADAM: połączenie ww.

Inicjalizacja parametrów sieci

- Hiperparametry sieci ← k-krotna walidacja krzyżowa
- Liczba neuronów ukrytych: wystarczająca
- Wagi neuronów wyjściowych: zerowe
- Wagi neuronów ukrytych $\sim U(-1/\sqrt{dim(we)}, 1/\sqrt{dim(we)})$
- Skalowanie wejść i wyjść, aby odchylenie standardowe każdego ~1

Przeuczenie i co z nim robić (1/4)

- Przeuczenie:
 - Znacznie większy błąd na zbiorze testowym aniżeli treningowym

Przeuczenie i co z nim robić (2/4)

- Wczesne zatrzymanie uczenia
 - Dane → zbiór treningowy i walidacyjny
 - Uczymy na treningowym dopóki strata na walidacyjnym (a nie treningowym) spada

Przeuczenie i co z nim robić (3/4)

Regularyzacja

- Stosujemy
$$\bar{q}(\theta) = q(\bar{f}(x;\theta)) + \lambda \|\theta\|^{2}$$
lub
$$\bar{q}(\theta) = q(\bar{f}(x;\theta)) + \lambda \|\theta\|$$

Przeuczenie i co z nim robić (4/4)

- Cel: elastyczność i odporność na braki
- Odrzucanie (*drop-out*)
 - Prawdopodobieństwo p ustalone dla warstwy
 - W trakcie uczenie dla danej próbki odrzucamy z p-stwem *p* dane wejście
 - W teście używane są wszystkie wejścia warstwy, ale wagi są przemnożone przez 1-p

Perceptron dwuwarstwowy jako klasyfikator

- n_y liczba klas
- Dla danego wejścia z *i*-tej klasy żądane wyjście = [0..010..0] 1 na *i*-tym miejscu
- Kiedy nauczona sieć produkuje wyjście, patrzymy który jego element jest największy, jego indeks wskazuje klasę

rozszerzenia

Perceptron wielowarstwowy

- Proste rozszerzenie perceptronu dwuwarstwowego:
 - wiele warstw
 - wszystkie, poza ostatnią zawierają neurony sigmoidalne
 - ostatnia warstwa zawiera neurony liniowe
- Możliwości aproksymacyjne takie jak perceptronu dwuwarstwowego, o ile warstwy są dość "szerokie"
- Łatwiej reprezentuje zależności obejmujące regularności wysokopoziomowe

rozszerzenia

Inne architektury sieci

- Sieci głębokie: liczba warstw >= 3
- Sieci bardzo głębokie: liczba warstw >= 10
- Sieci konwolucyjne: state-of-the-art w
 - Rozpoznawaniu obrazu
 - Rozpoznawaniu mowy
- Autoenkodery
- Generacyjne sieci przeciwstawne Generative Adversarial Networks - GAN

Na marginesie: dźwięk jako obraz

Szybka Transformata Fouriera (FFT): dźwięk jako funkcja czasu

→ natężenie składników częstotliwościowych

Sieci konwolucyjne

- Głębokie sieci złożone z 4 rodzajów warstw
 - Splotowe
 - ReLU
 - Łączące
 - Każdy-z-każdym

Warstwa splotowa (convolution)

- Wyjście neuronu
 - = wejście^T * wagi
- Wejście
 - ← pole recepcyjne
- Warstwa = kilka plastrów
- W plastrze
 - Neurony mają wspólne wagi
 - Pola recepcyjne neuronów pokrywają poprzednią warstwę

Warstwa ReLU (Rectified Linear Unit)

- Wyjście_neuronu = funkcja_aktywacji(wejście)
- Zwykle: f-cja-aktywacji(w) = max(0, w)
- Splot + ReLUidentyfikacja pewnej cechy
- Zastąpienie ReLU sigmoidalnymi
 - → wolna nauka

Warstwa łącząca (pooling, subsampling)

- Wyjście neuronu
 - = prosta funkcja pola recepcyjnego
- Zwykle ta funkcja to max
- Motywacja: musimy wiedzieć, że coś jest w okolicach, niekoniecznie gdzie dokładnie

Warstwa każdy-z-każdym (fully connected)

- Jak w perceptronie wielowarstwowym
- Funkcje aktywacji neuronów
 - Sigmoidalne
 - ReLU
 - Liniowe

Sieć konwolucyjna – cała struktura

• Wyjście:

- Klasyfikacja tyle wyjść ile klas
- Identyfikacja jedno wyjście tak/nie
- inne

rozszerzenia

Sieci rekurencyjne

- Połączenia cykliczne, z opóźnieniami
- Implementacja systemu dynamicznego
- Zastosowania:
 - prognozowanie
 - odtwarzanie stanu systemu częściowo obserwowanego

rozszerzenia

Sieci impulsowe

- Ang: *Spiking neural networks*
- Temat intensywnych badań
- Neurony stanowiące mniej-więcej wierne modele biologicznych odpowiedników
- Sieć działa w czasie rzeczywistym