Probabilidade e Estatística

Probabilidade e Estatística

Variáveis aleatórias contínuas

- Distribuição Uniforme
- Distribuição Exponencial
- Distribuição Normal

Capítulo 6, pp. 140 - 168

Variáveis aleatórias contínuas

Muitas variáveis aleatórias têm natureza contínua, por exemplo:

- ✓ Tempo de resposta de um sistema computacional;
- ✓ Tempo de vida de um componente eletrônico;
- ✓ Resistência de um material etc.

MODELOS PARA VARIÁVEIS ALEATÓRIAS CONTÍNUAS

Distribuição Normal ou de Gauss

Johann Carl Friedrich Gauss (1777-1855)

Distribuição Normal

Exemplo: Tempo de prova no TADS

Função densidade de probabilidade da normal

Dados os parâmetros $\mu \in \mathbb{R}$ e $\sigma > 0$, a função densidade de probabilidade da normal é dada por:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < +\infty$$

μ: média

σ: desvio padrão

Representação gráfica da f.d.p. normal

Representação gráfica da função densidade de probabilidade normal e a indicação de seus dois parâmetros: $\mu \in \sigma$.

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Distribuição Normal

Máquina de Galton (YouTube)

Distribuição Normal – média e desvio padrão

mesmo σ e diferentes μ

mesma μ e diferentes σ

Características

Identificada pela média (μ) e pelo desvio padrão (σ)

Características

- Área abaixo da curva é igual a 1 (100% de probabilidade)
- A variável aleatória pode assumir valores de ∞ a + ∞

Características

Simetria em relação à média.

Afastamentos da média, em unidades de desvio padrão

Mas cada experimento possui

uma média diferente, como

contornar este problema?

Normal Padronizada

Escore padronizado – Exemplo 1

Selecionar, aleatoriamente, de uma certa universidade, um estudante. Seja **X** o valor de sua altura, em centímetros. Admita que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm. Qual é o escore padronizado de um estudante com 190 cm?

Escore padronizado – Exemplo 1

Selecionar, aleatoriamente, de uma certa universidade, um estudante. Seja X o valor de sua altura, em centímetros. Admita que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm. Qual é o escore padronizado de um estudante com 190 cm? $_{X=190}$


```
mu = 170
dp = 10
z = (x - mu)/dp
z
```

plot(function(x) dnorm(x, 170, 10), 130,210) abline(v=170)

Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

a) altura superior a 185 cm?

Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

a) altura superior a 185 cm?

integrate(fn, li, +Inf)

Gerar um gráfico marcando uma área (a probabilidade P[X > 185])

```
x <- seq(mu-4*dp, mu+4*dp, I = 250)
fx <- fn(x)
plot(x, fx, type = "I")
ax <- c(Ii, Ii, x[x > Ii], mu+4*dp, mu+4*dp)
ay <- c(0, fn(Ii), fx[x > Ii], fn(Ii), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)
```


Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

b) altura inferior a 165 cm?

Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

b) altura inferior a 165 cm?


```
pnorm(165,170,10, lower=T)
```

Cálculo por integrais

```
mu = 170
dp = 10
var = dp^2
ls = 165

fn <- function(x) {
   fx <- (1/sqrt(2 * pi * var)) * exp((-1/(2*var)) * (x - mu)^2)
   return(fx)
}
integrate(fn, -Inf, ls)</pre>
```

Gerar um gráfico marcando uma área (a probabilidade P[X > 185])

```
x <- seq(mu-4*dp, mu+4*dp, l = 250)
fx <- fn(x)
plot(x, fx, type = "l")
ax <- c(mu-4*dp, mu-4*dp, x[x < ls], ls, ls)
ay <- c(0, fn(mu-4*dp), fx[x < ls], fn(ls), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)</pre>
```


Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

c) altura entre 165 e 185 cm?

Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

c) altura entre 165 e 185 cm?

```
pnorm(185, 170, 10) - pnorm(165, 170, 10)

Cálculo por integrais

mu = 170
dp = 10
var = dp^2
li = 165
ls = 185

fn <- function(x) {
fx <- (1/sqrt(2 * pi * var)) * exp((-1/(2*var)) * (x - mu)^2)
return(fx)
}
integrate(fn, li, ls)
```

```
# Gerar um gráfico marcando uma área (a probabilidade P[X > 185])

x <- seq(mu-4*dp, mu+4*dp, l = 250)
fx <- fn(x)
plot(x, fx, type = "l")
ax <- c(li, li, x[x > li & x < ls], ls, ls)
ay <- c(0, fn(li), fx[x > li & x < ls], fn(ls), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)
```

Tabela – Distribuição normal padrão

	segunda decimal de z									
Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	-,				0,4801			0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483		0,4404	0,4364		0,4286	0,4247
0,2 0,3	,		0,4129 0.3745	,	0,4052 0,3669	,	,	0,3936 0,3557	0,3897 0.3520	0,3859 0.3483
0,3	- ,	0,3409	0,3743	- ,	0,3300		-,		0,3326	0,3403
-,	, , ,	, , , , , , , , , , , , , , , , , , , ,	, , , ,	,	,	, , ,	, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
0,5							0 ,2877			
0,6							0 ,2546			
0,7							0 ,2236			
0,8 0,9							0 ,1949 0 ,1685			
0,0	0,10-11	0,1014	0,1700	0,1702	0,1700	0,1711	0,1000	0,1000	0,1000	0,1011
1,0	0,1587	0 ,1562	0 ,1539	0 ,1515	0 ,1492	0,1469	0 ,1446	0 ,1423	0 ,1401	0 ,1379
1,1							0 ,1230			
1,2							0 ,1038			
1,3 1,4							0 ,0869 0 ,0722			
1,-	0 ,0000	0,0795	0,0770	0,0704	0,0743	0,0733	0,0722	0,0700	0 ,0034	0 ,0001
1,5	0 ,0668	0 ,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0 ,0571	0 ,0559
1,6							0 ,0485			
1,7							0 ,0392			
1,8 1,9							0,0314 0,0250			
1,9	0 ,0207	0 ,0201	0 ,0274	0 ,0206	0 ,0202	0 ,0230	0,0250	0 ,0244	0 ,0239	0 ,0233
2,0	0 ,0228	0 ,0222	0 ,0217	0 ,0212	0 ,0207	0 ,0202	0 ,0197	0,0192	0 ,0188	0 ,0183
2,1	,	,	,	,	,	,	0 ,0154	,	,	,
2,2							0 ,0119			
2,3							0,0091			
2,4	0 ,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0 ,0069	0 ,0068	0 ,0066	0 ,0064
2,5	0 .0062	0 ,0060	0 ,0059	0 .0057	0 .0055	0 .0054	0 .0052	0 ,0051	0 ,0049	0 ,0048
2,6							0,0039			
2,7							0 ,0029			
2,8							0 ,0021			
2,9	0,0019	0 ,0018	0 ,0017	0 ,0017	0,0016	0,0016	0 ,0015	0 ,0015	0 ,0014	0 ,0014
3,0	0.00135									
3,5	0,000 233									
4,0	0,000 031 7									
4,5	0,000 003 40									
5,0	0,000 00	JU 287								

Selecionar, aleatoriamente, um estudante de uma certa universidade. Seja **X** o valor de sua altura, em centímetros. Admitindo que nesta universidade os estudantes têm altura média de 170 cm com desvio padrão de 10 cm.

Qual é a probabilidade do estudante sorteado ter:

- a) altura superior a 185 cm?
- b) altura inferior a 165 cm?
- c) altura entre 165 e 185 cm?

- a) pnorm(185, 170, 10, lower = \mathbf{F})
- b) pnorm(165, 170, 10, lower = **T**) **T**é default
- c) pnorm(185, 170, 10) pnorm(165, 170, 10)

Cálculo por Integrais no R

Qual é a probabilidade do estudante sorteado ter:

a) altura superior a 185 cm?

```
mu = 170
dp = 10
var = dp^2
li = 185
fn <- function(x) {
 fx <- (1/sqrt(2 * pi * var)) * exp((-1/(2*var)) * (x - mu)^2)
 return(fx)
integrate(fn, li, +lnf)
# Gerar um gráfico marcando uma área (a probabilidade P[X > 185])
x <- seq(mu-4*dp, mu+4*dp, I = 250)
fx <- fn(x)
plot(x, fx, type = "l")
ax <- c(li, li, x[x > li], mu+4*dp, mu+4*dp)
ay <-c(0, fn(li), fx[x > li], fn(li), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)
```

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Cálculo por Integrais no R

Qual é a probabilidade do estudante sorteado ter:

b) altura inferior a 165 cm?

```
mu = 170
dp = 10
var = dp^2
ls = 165
fn <- function(x) {</pre>
 fx <- (1/sqrt(2 * pi * var)) * exp((-1/(2*var)) * (x - mu)^2)
 return(fx)
integrate(fn, -Inf, Is)
# Gerar um gráfico marcando uma área (a probabilidade P[X < 165])
x <- seg(mu-4*dp, mu+4*dp, l = 250)
fx <- fn(x)
plot(x, fx, type = "l")
ax <- c(mu-4*dp, mu-4*dp, x[x < ls], ls, ls)
ay <-c(0, fn(mu-4*dp), fx[x < ls], fn(ls), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)
```

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Cálculo por Integrais no R

Qual é a probabilidade do estudante sorteado ter:

c) altura entre 165 e 185 cm?

```
mu = 170
dp = 10
var = dp^2
li = 165
ls = 185
fn <- function(x) {</pre>
 fx <- (1/sqrt(2 * pi * var)) * exp((-1/(2*var)) * (x - mu)^2)
 return(fx)
integrate(fn, li, ls)
# Gerar um gráfico marcando uma área (a probabilidade P[X > 165 e < 185])
x <- seg(mu-4*dp, mu+4*dp, I = 250)
fx <- fn(x)
plot(x, fx, type = "l")
ax <- c(li, li, x[x > li & x < ls], ls, ls)
ay <-c(0, fn(li), fx[x > li & x < ls], fn(ls), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)
```

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Suponha que a espessura média de arruelas produzidas em uma fábrica tenha distribuição normal com média 11,15 mm e desvio padrão 2,238 mm. Qual a porcentagem de arruelas que tem espessura entre 8,70 mm e 14,70 mm?

$$\mu = 11,15 \ mm$$
 $\sigma = 2,238 \ mm$

entre 8,70 mm e 14,70 mm?

$$z = \frac{x - \mu}{\sigma}$$

```
R Console
```

pnorm(14.70, 11.15, 2.238) - pnorm(8.70, 11.15, 2.238)

```
# Cálculo por integrais
mu = 11.15
dp = 2.238
var = dp^2
li = 8.70
ls = 14.70
fn <- function(x) {
 fx <- (1/sqrt(2 * pi * var)) * exp((-1/(2*var)) * (x - mu)^2)
 return(fx)
integrate(fn, li, ls)
# Gerar um gráfico marcando uma área (a probabilidade P[X > 11.15 e < 14.70])
x <- seq(mu-4*dp, mu+4*dp, I = 250)
fx \leftarrow fn(x)
plot(x, fx, type = "I")
ax <- c(li, li, x[x > li & x < ls], ls, ls)
ay <-c(0, fn(li), fx[x > li & x < ls], fn(ls), 0)
polygon(ax, ay, dens = 10)
abline(v=mu)
```


Como a probabilidade contribui para o processo de planejamento da demanda?

O planejamento da demanda é importante para as empresas que possuem modelo de negócios baseado na gestão de estoques, sendo que os produtos são comercializados com os clientes gerando lucro para o negócio.

Empresas de varejo incluem: supermercados, lojas de roupas e eletrodomésticos, livrarias, etc...

Neste tipo de empreendimento a previsão da demanda tem como objetivo, principalmente, responder perguntas do tipo:

Quanto vamos vender no próximo período?

Quanto de cada produto vamos manter em estoque?

Que produtos devemos distribuir e para onde?

Gestão da demanda

Para responder a estas perguntas o planejamento da demanda utiliza técnicas estatísticas que consistem na aplicação de diversos métodos matemáticos, baseados principalmente em dados históricos e no conhecimento da empresa para prever a demanda futura por estes produtos.

Gestão da demanda

Parte importante das atividade gerenciais de um gestor de supermercados é dimensionar este estoque a fim de minimizar os custos de armazenagem e ao mesmo tempo garantir que nenhum negócio seja perdido por falta de produto.

O gerente após alguns estudos e observando séries históricas de vendas verificou que a demanda diária de pacotes de biscoito água e sal é uma v.a. normalmente distribuída com média igual a 1200 pacotes e desvio padrão = 100 pacotes.

Estratégia: Determinar o estoque necessário (por dia) para que, em apenas 2% dos casos, a demanda diária de biscoitos água é sal não seja atendida.

média igual a 1200 pacotes; desvio padrão = 100 pacotes

Determinar o estoque necessário (por dia) para que, em apenas 2% dos casos, a demanda diária de biscoitos água é sal não seja atendida.

média igual a 1200 pacotes; desvio padrão = 100 pacotes

Determinar o estoque necessário (por dia) para que, em apenas 2% dos casos, a demanda diária de biscoitos água é sal não seja atendida.

EXERCÍCIOS

01. Seja Z uma variável aleatória com distribuição normal padrão, calcule:

a)
$$P(Z > 1,65)$$

b)
$$P(Z < 1.65)$$

c)
$$P(-1 < Z < 1)$$

d) o valor de z, tal que
$$P(-z < Z < z) = 0.95$$

p. 159

- 02. Suponha que o tempo de resposta na execução de um algoritmo é uma variável aleatória com distribuição normal de média 23 segundos e desvio padrão de 4 segundos. Calcule:
- a) a probabilidade de o tempo de resposta ser menor que 25 segundos;
- b) a probabilidade de o tempo de resposta ficar entre 20 e 30 segundos.

EXERCÍCIOS

- 03. Uma fábrica de carros sabe que os motores de sua fabricação têm duração normal com média 150.000 km e desvio padrão de 5.000 km. Qual a probabilidade de que um carro, escolhido ao acaso, dos fabricados por essa fábrica, tenha um motor que dure:
- (a) Menos de 140.000 km?
- (b) Entre 140.000 km e 160.000 km?
- (c) Se a fábrica substitui o motor que apresenta duração inferior à garantia, qual deve ser esta garantia para que a porcentagem de motores substituídos seja inferior a 5%?