(九) 图论: 路径与圈 (Paths and Cycles)

魏恒峰

hfwei@nju.edu.cn

2021年05月06日

Dodecahedron: 12 faces, 20 vertices, and 30 edges

Dodecahedron: 12 faces, 20 vertices, and 30 edges

Is there a cycle that visits each vertex exactly once?

Is there a cycle that visits each vertex exactly once?

Definition (Hamiltonian Path)

A Hamiltonian path is a path that visits each vertex exactly once.

Definition (Hamiltonian Cycle)

A Hamiltonian cycle is a Hamiltonian path that is a cycle.

Definition (Hamiltonian Graph)

A graph is a Hamiltonian graph if it has a Hamiltonian cycle.

5/31

Definition (Hamiltonian Graph)

A graph is a Hamiltonian graph if it has a Hamiltonian cycle.

Definition (Semi-Hamiltonian Graph)

A non-Hamiltonian graph is semi-Hamiltonian if it has a Hamiltonian path.

William Rowan Hamilton $(1805 \sim 1865)$

(October 16, 1843)

$$i^2 = j^2 = k^2 = ijk = -1$$

I do not know.

I do not know.

Nobody knows.

I do not know.

Nobody knows.

We will probably never know it.

Theorem

The Hamiltonian Path/Cycle problem is NP-complete.

Typical (Positive/Negative) Graph Examples

Sufficient Conditions

Necessary Conditions

► Every cycle is Hamiltonian

▶ A complete graph (完全图) with |V| > 2 is Hamiltonian.

▶ A complete graph (完全图) with |V| > 2 is Hamiltonian.

▶ A complete bipartite graph $K_{m,n}$ is Hamiltonian iff m = n.

Definition (Bipartite Graph (Bigraph; 二部图))

A bipartite graph G = (U, V, E) is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

Definition (Bipartite Graph (Bigraph; 二部图))

A bipartite graph G = (U, V, E) is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

Definition (Complete Bipartite Graph (Biclique; 完全二部图))

A complete bipartite graph G = (U, V, E) is bipartite graph where every vertex of U is connected to every vertex of V.

$$K_{m,n}: m = |U|, n = |V|$$

Definition (Complete Bipartite Graph (Biclique; 完全二部图))

A complete bipartite graph G = (U, V, E) is bipartite graph where every vertex of U is connected to every vertex of V.

$$K_{m,n}: m = |U|, n = |V|$$

 $K_{1.5}$ (star)

(utility graph) $K_{3.3}$

 $K_{4.7}$

ightharpoonup A complete bipartite graph $K_{m,n}$ is Hamiltonian iff m=n.

▶ A complete bipartite graph $K_{m,n}$ is Hamiltonian iff m = n.

► Every platonic solid (正多面体), considered as a graph, is Hamiltonian.

Every platonic solid (正多面体), considered as a graph, is Hamiltonian.

Theorem

▶ Petersen graph is not Hamiltonian.

Julius Petersen (1839 \sim 1910)

Theorem

▶ Petersen graph is not Hamiltonian.

Julius Petersen (1839 \sim 1910)

"If G has enough edges, then G is Hamiltonian."

Theorem (Ore's Theorem, 1960)

Let G be a simple graph with $n \geq 3$ vertices. If

$$deg(u) + deg(v) \ge n$$

for each pair of non-adjacent vertices u and v, then G is Hamiltonian.

Theorem (Ore's Theorem, 1960)

Let G be a simple graph with $n \geq 3$ vertices. If

$$deg(u) + deg(v) \ge n$$

for each pair of non-adjacent vertices u and v, then G is Hamiltonian.

By Contradiction.

Let G be a non-Hamiltonian (simple) graph with $n \geq 3$ vertices.

Let G be a non-Hamiltonian (simple) graph with $n \geq 3$ vertices.

Suppose that G meets the Ore's Condition.

We need to derive a contradiction.

Let G be a non-Hamiltonian (simple) graph with $n \geq 3$ vertices.

Suppose that G meets the Ore's Condition.

We need to derive a contradiction.

By Extremality.

Let G be a non-Hamiltonian (simple) graph with $n \geq 3$ vertices.

Suppose that G meets the Ore's Condition.

We need to derive a contradiction.

By Extremality.

Adding edges cannot violate the Ore's Condition.

Let G be a non-Hamiltonian (simple) graph with $n \geq 3$ vertices.

Suppose that G meets the Ore's Condition. We need to derive a contradiction.

By Extremality.

Adding edges cannot violate the Ore's Condition.

Thus we may consider only maximal non-Hamiltonian graphs: adding any edge gives a Hamiltonian graph.

$$v_1 \to v_2 \to \cdots \to v_n$$

$$v_1 \to v_2 \to \cdots \to v_n$$

 v_1 and v_n are non-adjacent

$$v_1 \to v_2 \to \cdots \to v_n$$

 v_1 and v_n are non-adjacent

$$\deg(v_1) + \deg(v_2) \ge n$$

$$v_1 \to v_2 \to \cdots \to v_n$$

 v_1 and v_n are non-adjacent

$$\deg(v_1) + \deg(v_2) \ge n$$

There must be some vertex v_i adjacent to v_1 such that v_{i-1} is adjacent to v_n .

Theorem (Dirac's Theorem (1952; Gabriel Andrew Dirac))

A simple graph G = (V, E) with $n \ge 3$ vertices is Hamiltonian

 $\forall v \in V. \ deg(v) \ge n/2.$

Theorem (Dirac's Theorem (1952; Gabriel Andrew Dirac))

A simple graph G = (V, E) with $n \ge 3$ vertices is Hamiltonian

$$\forall v \in V. \ deg(v) \ge n/2.$$

$$\delta(G) \triangleq \min_{v \in V} \deg(v)$$
$$\delta(G) \ge n/2$$

Theorem (Dirac's Theorem (1952; Gabriel Andrew Dirac))

A simple graph G = (V, E) with $n \ge 3$ vertices is Hamiltonian

$$\forall v \in V. \ deg(v) \ge n/2.$$

$$\delta(G) \triangleq \min_{v \in V} \deg(v)$$
$$\delta(G) \ge n/2$$

Family [edit | edit source]

He was born Balázs Gábor in Budapest, to Richárd Balázs, a military officer and businessman, and Margit "Manci" Wigner (sister of Eugene Wigner).^[5] When his mother married Paul Dirac in 1937, he and his sister resettled in England and were formally adopted, changing their family name to Dirac.^[6]

Theorem (Dirac's Theorem (1952))

A simple graph G = (V, E) with $n \ge 3$ vertices is Hamiltonian

$$\delta(G) \geq n/2$$

Theorem (Dirac's Theorem (1952))

A simple graph G = (V, E) with $n \ge 3$ vertices is Hamiltonian

$$\delta(G) \ge n/2$$

$$\delta(G) = \lfloor (n-1)/2 \rfloor$$

Theorem (Dirac's Theorem (1952))

A simple graph G = (V, E) with $n \ge 3$ vertices is Hamiltonian

$$\delta(G) \geq n/2$$

$$\delta(G) = \lfloor (n-1)/2 \rfloor$$

Counterexample: $C_{\lfloor (n+1)/2 \rfloor}$ and $C_{\lceil (n+1)/2 \rceil}$ sharing a vertex

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn