

## Department of Inter Disciplinary Studies, Faculty of Engineering, University of Jaffna, Sri Lanka

## MC 4010: Discrete Mathematics

Tutorial-01 February 2023

1. Find the cardinality in the following sets,

(a) 
$$A = \{x \in \mathbb{R} : x^2 + 2x + 2 = 0\}$$

(b) 
$$B = \{a, b, c, \{a, b, c\}\}.$$

(c) 
$$C = \{x \in \mathbb{Q} : x < 1\}$$

2. Let X=[0,5), Y=[2,4], Z=(1,3] and W=(3,5) be intervals in  $\mathbb{R}$ . Find in each of the following sets:

(a) 
$$Y \cup Z$$

(b) 
$$Z \cap W$$

(c) 
$$X - (Z \cup W)$$

(d) 
$$\overline{Z}$$

3. Let  $A = \{x \in \mathbb{R} : x^2 - 4 > 0\}$  and  $B = \{x \in \mathbb{R} : x^2 - 9 > 0\}$ .

(a) Prove that, 
$$A \subset B$$
.

(b) Using part(a), complete the prove that  $A \neq B$ .

4. Let 
$$A = \{x \in \mathbb{R} \mid -3 < x < -2\}$$
 and  $B = \{x \in \mathbb{R} \mid x^2 + 6x - 5 < 0\}$ . Prove that  $A = B$ .

5. Show that the following two sets are equal:

$$A= \{x \in \mathbb{Z} | x = 1 + 3q, \text{ for some } q \in \mathbb{Z} \}.$$

$$B= \{x \in \mathbb{Z} | x = -2 + 3q, \text{ for some } q \in \mathbb{Z} \}.$$

6. Simplify the set,  $(A \cup B) \cap (\overline{\overline{A} \cap B})$ .

7. Prove that 
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$
.

8. Show that the function  $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{-1\}$  given that;

$$f\left(x\right) = \frac{x-3}{x+1}$$

is a bijective function.

9. Show that the function  $f : \mathbb{R} \to \{x \in \mathbb{R} : -1 < x < 1\}$  defined by;

$$f(x) = \frac{x}{1+|x|}, \quad \forall x \in \mathbb{R}$$

1

is a bijective function.

10. Since  $f: \mathbb{N} \to \mathbb{N}$  is given by;

$$f(x) = \begin{cases} x+1 & \text{if } x \text{ is odd} \\ x-1 & \text{if } x \text{ is even} \end{cases}$$

Show that f is both 1-1 and onto.

- 11. Prove the following:
  - (a) If  $f: A \to B$  is bijective, then  $f^{-1}: B \to A$  is unique.
  - (b) If  $f: A \to B$  is bijective, then  $f^{-1}: B \to A$  is also bijective.
- 12. Define the relation  $\sim$  on  $\mathbb{Q}$  by;

$$x \sim y$$
 if and only if  $\frac{x-y}{2} \in \mathbb{Z}$ 

Show that  $\sim$  is an equivalence relation. Describe the equivalence classes [0], [1],  $\left[\frac{1}{2}\right]$ .

13. Let S be a relation on the set R of all real numbers defined by;

$$S = \{(a, b) \in \mathbb{R}^2 | a^2 + b^2 = 1\}.$$

Prove that S is not an equivalence relation on  $\mathbb{R}$ .

14. Let R be relation defined on the set of natural numbers  $\mathbb{N}$  as follows;

$$R = \{(x, y); x \in \mathbb{N}, y \in \mathbb{N}, \ 2x + y = 41\}$$

Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

- 15. Let R and S be partial order on a set A. Determine whether the union relation  $R \cup S$  is also partial order on A.
- 16. Let f be a function from A to B. Let S and T be subsets of B. Show that
  - (a)  $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$ .
  - (b)  $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$ .
- 17. Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that
  - (a)  $f(S \cup T) = f(S) \cup f(T)$ .
  - (b)  $f(S \cap T) \subseteq f(S) \cap f(T)$ .
- 18. Show that  $A \oplus B = (A B) \cup (B A)$ .
- 19. Draw a Venn diagram for the symmetric difference of the sets A and B.
- 20. Find  $f \circ g$  and  $g \circ f$ , where  $f(x) = x^2 + 1$  and g(x) = x + 2, are functions from  $\mathbb{R}$  to  $\mathbb{R}$ .

<sup>\*</sup>Tutors will conduct this tutorial discussion on the 20th and 22nd of Feb, 2023.