Math 109 Week 8 Discussion

Ray Tsai

11/15/2022

1.

Proposition 1. \sim is equivalent

Proof. We will show that \sim is reflexive, symmetric, and transitive.

Reflexive: Let $(a,b) \in \mathbb{R}^2$. We will show that $(a,b) \sim (a,b)$. Since $a^2 + b^2 = a^2 + b^2$, we have that $(a,b) \sim (a,b)$.

Symmetric: Let $(a,b) \sim (c,d)$, (a,b), $(c,d) \in \mathbb{R}^2$, we will show that $(c,d) \sim (a,b)$. Since $(a,b) \sim (c,d)$, we have $a^2 + b^2 = c^2 + d^2$. This shows that $c^2 + d^2 = a^2 + b^2$, which means that $(c,d) \sim (a,b)$.

Transitive: Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, (a,b), (c,d), $(e,f) \in \mathbb{R}^2$, we will show that $(a,b) \sim (e,f)$. Since $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, we have $a^2 + b^2 = c^2 + d^2 = e^2 + f^2$, which shows that $(a,b) \sim (e,f)$. \square

2.

Proposition 2. \sim is not equivalent

Proof. \sim is not equivalent because it's not transitive. Consider the case $(1,1),(0,0),(1,2)\in\mathbb{R}^2$. $(1,1)\sim(0,0)$ because $1\cdot 0=0=1\cdot 0$. $(0,0)\sim(1,2)$ because $0\cdot 1=0=0\cdot 2$. However, since $1\cdot 2=2\neq 1=1\cdot 1$, $(1,1)\not\sim(0,0)$. Therefore, \sim is not transitive.

3.

Proposition 3. \sim is not equivalent

Proof. \sim is not equivalent because it's not symmetric. Consider the case $(0,0),(1,1)\in\mathbb{R}^2$. $(0,0)\sim(1,1)$ because there exist $k=0\in\mathbb{R}$ such that $(0,0)=(k\cdot 1,k\cdot 1)$. However, since there does not exist $k\in\mathbb{R}$ such that $(1,1)=(k\cdot 0,k\cdot 0),\sim$ is not symmetric.