Research on Reference Architectures for Self-Adaptive Systems

A Systematic Mapping Protocol

Author:

Lina Garcés, University of São Paulo (USP)

January 2020

Presentation of the Document

This document contains the protocol of the systematic mapping study conducted to investigate reference architectures for self-adaptive systems.

This document was prepared for supporting information contained in the manuscript titled "Architectural Solutions for Self-Adaptive Systems" authored by Lina Garcés (Ph.D.), Silverio Martínez-Fernández (Ph.D.), Valdemar V.G. Neto (Prof. Dr.), and Elisa Yumi Nakagawa (Prof. Dr.).

Contents

1.Introduction	4
2.Planning the Mapping	5
Goals and Research Questions	5
Search Strategy	5
3.Search Conduction	6
Selected Studies	7
4.Data Extraction	8
5.Data Analysis	9
References	9
Appendix	10
Extracted Data from Reference Architectures of Self-Adaptive Systems	10

1.Introduction

A reference architecture is "an architecture that encompasses the knowledge about how to design concrete architectures of systems of a given application [or technological] domain; therefore, it must address the business rules, architectural styles (sometimes also defined as architectural patterns that address quality attributes in the reference architecture), best practices of software development (for instance, architectural decisions, domain constraints, legislation, and standards), and the software elements that support development of systems for that domain. All of this must be supported by a unified, unambiguous, and widely understood domain terminology" [Nakagawa et al. 2011].

The motives behind the adoption of reference architectures are: to facilitate reuse, and thereby harvest potential savings through reduced cycle times, cost, risk and increased quality [Cloutier et al. 2010]; to help with the evolution of a set of systems that stem from the same RA [Galster and Avgeriou 2011]; and to ensure standardization and interoperability [Angelov et al. 2012]. Due to this, RAs are becoming a key asset of organizations [Cloutier et al. 2010].

From this perspective, RAs have become an important approach in software development projects in the industry. Specifically, in times when the size and complexity of software systems, together with critical time-to-market needs, demand new software engineering approaches to software development.

Self-adaptive Systems (SaS) are complex systems that have the ability to modify their behavior or configuration at runtime, reacting to changes in their environment, new goals or due to failures [Oreizy et al. 1999]. Such modifications should occur without affecting the accomplishment of the SaS missions neither their reliability, security, safety, nor other quality attributes. Hence, engineering SaS is a time- and effort-consuming task, bringing important challenges mainly to design their architecture; however, there is a lack of solutions that guide such design.

We decided to conduct a systematic mapping study (SMS) to have a broad overview of existing RAs for SaS. For this, we followed the guidelines in [Petersen et al. 2015]. With this SMS, we intend to mining from RAs the most recurrent architectural solutions for SaS. This document describes the protocol of the SMS that was conducted for identifying the RAs for SaS and perform architectural solutions extraction. Moreover, the results of conducting the mapping are also presented.

2. Planning the Mapping

Following, we define the SMS protocol. It consists of the five steps aforementioned: definitions of research questions, the strategy that will be used to search for primary studies, the study selection criteria and procedures, keywording using abstracts, and the data extraction and mapping process.

Goals and Research Questions

Goal: To identify recurrent architectural solutions for SaS that are contained in RAs.

Research Questions:

- 1. What reference architectures for SaS have been reported in the scientific literature?
- 2. What are the main software building blocks that compose SaS architectures?
- 3. How SaS architectures vary depending on the adaptivity capabilities and control characteristics of these systems?

Search Strategy

Scientific databases: We used Scopus, Web of Science, IEEE Xplore, ACM Digital Library, ScienceDirect, and SpringerLink scientific data libraries as recommended by [Dieste and Padua 2007] and [Dyba et al. 2007] for their efficiency at searching research work in the software engineering area.

Search string: We defined the following string to be executed in the scientific data libraries:

("reference architecture?")

AND

("software architecture?" or "software structure?" or "software design?" or "system architecture?" or "system structure?" or "system design?")

We opted to do not limit the search only to SaS, since the term "self-adaptive systems" could not be explicitly used in the RAs. Therefore, we decided to look for adaptivity properties in existing RAs.

Studies Selection: The following criteria were used to decide the inclusion or exclusion of primary studies in our mapping study.

Inclusion Criteria (IC):

- **IC1** The work is mainly focused on a reference architecture for software systems of any domain.
- **IC2** Software systems considered in the reference architecture have adaptivity properties (e.g., self-adaptivity, self-configuration, self-organization, etc.)

Exclusion Criteria (EC):

- **EC1** The topic of the study is NOT focused on reference architectures for software systems but in other area and the term "reference architecture" just appear incidentally. Although the work may be about a reference architecture or an approach to support a reference architecture related practice, it is NOT mainly used for software systems.
- **EC2** The reference architecture presented in the study does not deal with software systems that have adaptivity characteristics.
- EC3 The study was not peer-reviewed.
- **EC4** The study is not accessible even after contacting the authors.
- **EC5** The study is not completely written in English.

3. Search Conduction

This SMS was conducted from January to July 2018 by researchers from both industry and academia and with experience in self-adaptive systems, reference architectures and software architectures, besides their experience in researching, and conducting and updating a number of SMS and systematic literature review (SLR). To support this selection process, we used JabRef (http://www.jabref.org), a reference management tool.

Figure 1 depicts the steps of the selection process. By adapting the search string for each database and considering the search on title, abstract, and keywords, we obtained a total of **989** studies and removing the duplicated studies, **589** studies remained. After the first selection where we applied the selection criteria **IC1** on title, abstract, and keywords, **183** studies were selected. After reading the full text of these studies and applying the selection criteria **IC1** again, a final set of **142** primary studies were selected. Besides that, a snowballing inspection on the list of references of each selected study made us possible to include other **19** relevant studies, totaling 161 studies from which it was possible to identify **161** unique reference architectures.

Figure 1. The selection process of studies reporting reference architectures for SaS following [Petersen et al. 2015].

After these steps, we analyzed the 161 reference architectures and applied the selection criteria **IC2**, choosing only those RAs oriented to software systems with adaptivity characteristics. Finally, we identified **12 RAs for SaS**, listed as follows.

Selected Studies

RA1. Barbara Hayes-Roth and Jan Eric Larsson. A domain-specific software architecture for a class of intelligent patient monitoring agents, Journal of Experimental and Theoretical Artificial Intelligence, vol. 8, pp. 149-171 (1996).

RA2. IBM Corporation. An architectural blueprint for autonomic computing. Technical report, IBM Corporation (2006).

RA3. Berhane Zewdie, and C. R. Carlson. Adaptive component paradigm for highly configurable business components. In EIT'06, pp. 185-190 (2006).

RA4. Lei Liu, Stefan Thanheiser, Harmut Schmeck. A Reference Architecture for Self-organizing Service-Oriented Computing. In U. Brinkschulte, T. Ungerer, C. Hochberger and R. G. Spallek (eds.) Architecture of Computing Systems – ARCS, pp. 205-219, Springer Berlin Heidelberg (2008).

RA5. Lorena C. Bueno and Gabriel Tamura. A Reference Architecture for Component-Based Self-Adaptive Software Systems. Master project. Department of

Information and Communication Technologies Faculty of Engineering. ICESI University, pp.70 (2012).

RA6. Frank J. Affonso and Elisa Yumi Nakagawa. A Reference Architecture Based on Reflection for Self-Adaptive Software, In SBCARS'13, pp. 129–138 (2013).

RA7. Jennifer Perez, Jessica Diaz, Carlos Vidal, Daniel Rodriguez, Diego Fernandez. Self-Balancing Distributed Energy in Power Grids: An Architecture Based on Autonomic Computing. In HICSS'14, pp. 2398–2407 (2014).

RA8. Ricardo Sanz, Carlos Hernandez, Julita Bermejo, Manuel Rodriguez, Ignacio Lopez. Improved Resilience Controllers Using Cognitive Patterns. In IFAC'14, pp. 683-688 (2014).

RA9. Hossein Tajalli, Nenad Medvidovic. A Reference Architecture for Integrated Development and Run-Time Environments. Software - Practice and Experience, vol. 44, pp. 299-316 (2012).

RA10. Uwe ABmann, Sebastian Gotz, Jean-Marc Jezequel, Brice Morin, Mario Trapp. A Reference Architecture and Roadmap for Models@run.time Systems. In: Bencomo, N., France, R., Cheng, B., ABmann, U. models@run.time. Foundations, Applications, and Roadmaps. Springer International Publishing. pp. 1-18 (2014).

RA11. Victor Braberman, Nicolas D'ipolito, Jeff Kramer, Daniel Sykes, Sebastian Uchitel. MORPH: A Reference Architecture for Configuration and Behaviour Self-adaptation. In CTSE'15, pp. 9-16 (2015).

RA12. Jesus M.T. Portocarrero, Flavia C. Delicato, Paulo F. Pires, Bruno Costa, Wei Li, Weisheng Si, Albert Y. Zomaya. RAMSES: A new reference architecture for self-adaptive middleware in Wireless Sensor Networks, Ad Hoc Networks, Vol. 55, pp. 3-27 (2017).

4.Data Extraction

To obtain evidence to answer our RQs we read the full paper and extracted the following information of each paper:

- Author(s), Author(s) institution, year of publication, the title of the study
- Data library (e.g., Scopus, SpringerLink) and venue (e.g., conference, journal) where the study was published
- The study's keywords
- The application domain of the reference architecture
- Adaptivity properties and quality attributes requirements of software systems considered by the reference architecture
- Architectural patterns used by the reference architecture
- Whether the RA is oriented to industry

- Software structures, managed system, managing system, and control loops proposed in the RA
- SaS missions/goals described in the RA
- General description of the RA and the proposed solutions
- The rationale behind the proposed solution in the RA
- RA liabilities

To register the extracted information we used a LibreOffice spreadsheet. Appendix A contains the information that was extracted for each study.

5. Data Analysis

For data analysis, we used qualitative and narrative synthesis methods as recommended in [Felizardo et al. 2017].

References

[Angelov et al. 2013] Angelov, S., Trienekens, J. and Kusters, R., 2013. Software reference architectures-exploring their usage and design in practice. In Software Architecture. pp.17–24.

[Cloutier et al. 2010] Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E. and Bone, M., 2010. The Concept of Reference Architectures. Systems Engineering, 13(1), pp.14–27.

[Dieste and Padua 2007] Dieste, O. and Padua, A.G., 2007. Developing Search Strategies for Detecting Relevant Experiments for Systematic Reviews. In First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007). IEEE, pp. 215–224.

[Dyba et al. 2007] Dyba, T., Dingsoyr, T. and Hanssen, G.K., 2007. Applying Systematic Reviews to Diverse Study Types: An Experience Report. In First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007). IEEE, pp. 225–234.

[Felizardo et al. 2017] Felizardo, K.T; Nakagawa, E..Y., Fabbri, S.C.P.F., Ferrari, F., 2017. Revisão sistemática da literatura em Engenharia de Software: teoria e prática. 1 ed., Elsevier.

[Galster and Avgeriou 2011] Galster, M. and Avgeriou, P., 2011. Empirically-grounded reference architectures: a proposal. In Proceedings of the joint ACM SIGSOFT conference -- QoSA and ACM SIGSOFT symposium -- ISARCS on Quality of software architectures -- QoSA and architecting critical systems -- ISARCS. pp. 153–157.

[Nakagawa et al. 2011] Nakagawa, E.Y. 2011. Ramodel: A reference model for reference architectures. In Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European Conference on Software Architecture (ECSA). pp. 297–301.

[Oreizy et al. 1999] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf. An Architecture-Based Approach to Self-Adaptive Software. IEEE Intelligent Systems. vol.14, 3, pp. 54-62. (1999).

[Petersen et al. 2015] Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology 64, 1-18.

Appendix

Extracted Data from Reference Architectures of Self-Adaptive Systems

Institution	Computer science department, Stanford University, USA
Author	Barbara Hayes-Roth and Jan Eric Larsson
Year	1996
Title	A domain-specific software architecture for a class of intelligent patient monitoring agents

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source			X	X				

Venue Journal of Experimental and Theoretical Artificial Intelligence

	Conference	Journal	Book chapter	Report
Type of paper		X		

	Domain-					
	specific	adaptive				
	software	intelligent		fault	medical	
Keywords	architecture	systems	monitoring	diagnosis	diagnosis	

Application domain Health care software systems – intelligent patient monitoring system

TDI lovol	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level				Х					

Adamtiva	General level			Maj	or level	Primitive level		Others	
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	
properties							X	X	
Quality	performance eff	fdynamic adapta	tirobustness	flexibility	interoperability				
attributes									
		_			_				
Architectural	Layers	pipe and filters	blackboard						
patterns									

Industry-oriented (name of industry) funded by NASA

Structure control model in order to select best cognitive and physical behaviors

Managed system IPM system

Control loop	Centralized	Decentralized	Distributed	Non-distributed
Control loop	Х		Х	

Two independent controls

Systems Mission

The IPM systems must perceive, reason, and act to achieve multiple behaviors in dynamic, uncertain, complex environments

GENERAL DESCRIPTION

COGNITIVE LEVEL Information base Behavior Current Plan Behavior and world model Meta-controller Executed Behavior Physical Plan Perceptions & Action Feedback PHYSICAL LEVEL Information base Behavior Current Plan Behavior and world model Meta-controller Executed Behavior Physical Actions Sensory Inputs ENVIRONMENT

Layer represent the physical level and the cognitive level of AIS system. The layers and the relations follow the pipe and filter style. Specifically,

AISRA uses a bidirectional pipe and filter style in which each level reads from two input data streams and writes to two output data streams. Each layer, itself, comprises a number of components, organized in a blackboard style, to allow for a range of potentially complex behavior.

Physical level layer is oriented to represent the context-awareness property of AIS systems. Physical level implement perception (e.g., through sensors) and action (e.g., through effectors) in the external environment. The Cognitive level layer aim to represent the situation-aware property. This layer implement more abstract reasoning activities such as situation assessment (e.g., analysis), planning, problem-solving (e.g., execution of plans). Information flow is bidirectional. The results of cognitive behaviors can influence physical behaviors and vice versa. Meta-controllers in each layer aim to select the best behavior to be executed.

Rationale

Authors report that the use of hierarchical layers and pipe and filter styles introduces advantages in modularity, which allow easy replacement or enhancement of individual levels and facilitate construction of complex behaviors and manipulation of higher level concepts. Moreover, such combination allow the concurrent execution of behaviors in both levels, improving

their performance. Additionally, the use of the blackboard style to represent behaviors have allowed the flexible run-time behavior requirement of AIS systems.

RA1-Hayes-Roth1996

,
Liabilities
Reference Architecture concept and objective
It prescribes specific topologies of components and interactions, and can be used to build a large set of different agents, each with its own capabilities and limitations, but all based on the same general framework (Garlan et al 1994).
The RA gives an immediate understanding of a whole class of possible IPM systems.
The RA's objective is to support the shared functional requirements of IPM agents and provides a framework for configuring diverse
application-specific sets of components.
Oth an analytic atoms desiring
Other architectural decisions
Ontologies to represent information base and world model in both layers. Interoperability among application-specific components configured within an IPM agent, is achieved
through the IPM shared ontology.
Performance efficiency is addressed through considering cognitive and physical layers and their communication as pipes and filters.
Dynamical adaptation of agents is addressed by events allocated into the blackboard and delivered to the connected behaviors. Behaviors have standard interfaces to interpret events and send results.
Robustness and flexibility are addressed in the sense
that agents can select the better behavior in runtime to achieve the agent's goal.
unat agents can select the better behavior in runtime to achieve the agent's goal.
Requirements Requirements

Mapping to the MAPE-K model

Physical layer

Through pipes, it receives sensory inputs
Behaviors are triggered by events (modifications in the IV/WM due to sensory inputs or previously executed behaviors). The system must choose the best behavior. For
this, behaviors defines an standard interface.
Performed through control plans hosted in the IB/WM
Through meta-controller, which executes the most appropriate enabled behavior
Information Base/World Model, which houses a system's factual knowledge, descriptions of its potential behaviors, and a temporally organized representation of its run-time perception, reasoning, and action
pipe transferring environment inputs
Executed behavior (methods to achieve particular tasks)

Cognitive layer

Monitoring	Through pipes, it receives perceptions and action feedback from physical level (i.e., IB/WM at physical level))
Analysis	Behaviors are triggered by events (modifications in the IV/WM due to sensory inputs or previously executed behaviors). The system must choose the best behavior. For this, behaviors defines an standard interface.
Planning	Performed through control plans hosted in the IB/WM
Executing	Through meta-controller, which executes the most appropriate enabled behavior
Knowledge	Information Base/World Model, which houses a system's factual knowledge, descriptions of its potential behaviors, and a temporally organized representation of its run-time perception, reasoning, and action
Sensor	pipe transferring perceptions and actions feedback from the IB/WM at physical level
Actuator	Executed behavior (methods to achieve particular tasks), which sent through a pipe the new plan to the physical level.

Institution	IBM
Author	IBM
Year	2006
Title	An architectural blueprint for autonomic computing

	АСМ	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	SNOWBALLING
Source								X

Venue

	Conference	Journal	Book chapter	Report
Type of paper				X

Keywords

Application domain IT systems

TRL level	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
I KL level									X

Adomtivo	General level			Maj	or level		Primitive level		Others
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	
properties		x							
Quality	interoperability								
attributes									
Architectural	Layers	Enterprise service	e bus pattern						
patterns	Repository								

Industry-oriented (name of industry)

Structure Autonomic managers and human system administrators should interact with individual components by reading and setting high-level policies, rather than by reading and setting the thousands of configuration parameters on today's components.

Managed system

Any managed resource and the managing system

Control loop	Centralized	Decentralized	Distributed	Non-distributed
Control loop		х	x	

IT systems must perform self-management autonomic capabilities to anticipate IT system requirements and minimize human intervention

Liabilities

RA2-IBM2005

Reference Architecture concept
Other architectural decisions
Other architectural decisions
Requirements

Institution	Departament of computer science, Illinois Institute of Technology, Chicago, Illinois, USA
Author	Berhane Zewdie and C.R. Carlson
Year	2006
Title	Adaptive component paradigm for highly configurable business components

	АСМ	IEEE		WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source		X	X					

Venue IEEE International Conference on Electro/information Technology

	Conference	Journal	Book chapter	Report
Type of paper	X			

Keywords architecture component component specific design princip adaptive system

Application domain business components - technology domain

TDI lovel	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level	X								

Adamtina	Gener	al level		Majo	or level		Primitive level		Others
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	
properties			X						
Quality	dependability	availability	Mean-time betwee	trhroughput	capacity	latency	safety	security	
attributes	extensibility								

Architectural Layers-> three horizontal layers representing the ACP (Active component paradigm). There is a vertical layer that crosscut horizontal layers, representing the EFP (Extra functional properties)

Industry-oriented (name of industry) none

Structure enterprise component

Managed system components

Control loop	Centralized	Decentralized	Distributed	Non-distributed	
Control loop	X			x	

To change the hoherier of the component without changing the code hace (outcomization without programming) in runtime and dynamically

GENERAL DESCRIPTION

Figure 1: Proposed Adaptive Component Paradigm

Event -> Recognition -> Provision -> Execution -> Response

Figure 3: Proposed Reference Architecture with Key Abstractions

Ine Reference Architecture is based on the Adaptive Component Paradigm (ACP). The RA describes an adaptive component whose internal structure is composed by layers. Architectural layering helps to restructure applications that can be decomposed into groups which each group assumes a specific task at a particular level of abstraction. The RA is composed by three layers, which each layer corresponds to each phase of the ACP.

The Separation of Concerns principle was used to enforce independence and cooperation, because, this principle states that software should be decomposed in such a way that different concerns or aspects of the problem are solved in well separated modules of the software. Such principle allows address the following issues: representing business rules and processes, extra-functional property, and separating policy and execution.

Quality attributes are addressed by the Extra functional properties layer, a layer that crosscut all three ACP layers.

Extensibility is achieved by defining simple and comprehensive key abstractions with un-ambiguous functionality that can be implemented in a plug-in manner. Extensibility is the property of a technology that promotes evolution of modules without causing changes to other modules.

Processes and rules need to be configurable dynamically by decoupling their configuration from their execution and externalizing the configuration information. This approach facilitates the adaptability/extensibility of the component to changes in business demand and context of use, thereby conforming to the open-closed principle and

RA3-Zewdie2006

cusstomization without programming.
Orthogonality is achieved by using the separation of concerns principle where isolation and, therefore, loosely coupled system are guarantee. Concerns related to policy decision and execution are separately handled as can be seen in the use of rule selection (policy selection) and rule execution and also the use of action composition (policy selection) and transaction (execution)
The policy issues can be best achieved by externalizing the decision making information, hence, achieving dynamically changing the component behavior without code changes.
<u>Liabilities</u>
Reference Architecture concept
Reference architecture provides architectural guidance that can be used to organize and standardize the development of software with the same constituent parts but in different context and application domains
Other architectural decisions
Requirements Requirements

Mapping to the MAPE-K model

Adaptive Component internal reference architecture

Monitoring	Event recognition Layer → Contains the Detector component, which is poised waiting for an event to happen. This component is used to recognize event occurrence in the form of state change, method execution, and message event arrival.
Analysis	Event recognition Layer → handles the responsibility of capturing requests and deciding whether the service request is relevant to the component or requires a response. This layer creates an instance of the component. Valid requests are passed to the Service provision layer.
Planning	Service provision Layer → Verifies various applicable state, context and business rules. Identifies and composes proper configuration actions with execution sequence. It sends selected actions to the execution layer.
Executing	Execution Layer → Responsible in executing the decision made in the service provision layer (i.e., execute rules that allow components reconfiguration)
Knowledge	Each layer has its own knowledge components. In the ERL the Parser component contains information to identify the nature of the event and it stores events for further use. In the SPL, the Configuration Profile component contains policy information used to configure component properties. Moreover, the Rule component stores business constrains, and the Workflow Context component contains information about actions to be executed. The EL has the Data Element component which holds business data.
Sensor	Any component that send requests to the Acomponent.
Actuator	Execution Layer → through the Worker component which is responsible for accomplishing the actual task to provide response for the event.

Institution	Karlsruhe Institute of Technology - Institute AIFB				
Author	Lei Liu, Stefan Thanheiser, Hartmut Schmeck				
Year	2008				
Title	A Reference Architecture for Self-organizing Service-Oriented Computing				

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source							X	

Venue ARCS 2008

	Conference	Journal	Book chapter	Report
Type of paper	X			

Service-oriented Computing, Organic Computing, Self-organization, Reference Architecture, Reference Model.

Application SOA based systems

TRL level	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level	Х								

Adamtiva	General level		Major level				Primitive level		Others
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	Self-
higherings		X							organizing
Quality	reusability	scalability	flexibility						
attributes	interoperability	agility	robustness						
A robito oturol	Observer								
Architectural patterns	controller	Layers							
	SOA	VSM							

Industry-oriented (name of industry)

Structure
adapted
SOA elements located at SOA layer

Managed system SOA-based system

Control	Centralized	Decentralized	Distributed	Non-distributed
		x	Х	

A control loop is used based on the Observer Controller architecture

Mission

To allow self-organization to SOA-based systems

Fig. 3. Component view of a self-organizing component in OSOA with mapping to the VSM

See sections 4.2 and 4.3

Liabilities

See Conclusions
Reference Architecture concept
Reference Architecture concept
A reference architecture serves as an architectural blueprint for constructing software systems targeting particular problem domain(s) with specific functional, behavioural, and quality attribute requirements [7]. It outlines a set of necessary software components, their externally viewable interfaces as well as interrelation-ships existing between them (e.g. data flows). [7]. Kazman, R., Clements, P., Bass, L.: Software Architecture in Practice. Addison-WIRdi(2003)
Other architectural decisions
Requirements
Mapping to the MAPE-K model
Managing element reference architecture
Monitoring monitor

Monitoring	HIOHILOI
Analysis	data analyser
Planning	predictor

Executing	controller
Knowledge	observation model and local data storing by each component
Sensor	SuOC sensor
Actuator	SuOC actuator

Based on the Observer Controller architecture (Richter2005)

Figure 2: Generic observer architecture consisting of a monitor, a pre-processor, a data analyser, a predictor, and an aggregator.

Figure 3: Generic controller architecture

Institution	ICESI
Author	Bueno and Tamura
Year	2012
Title	A reference architecture for component-based self-adaptive software systems

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source								X

Venue

	Conference	Journal	Book chapter	Report	Master thesis
Type of paper					x

Keywords

Application domain

component-based self-adaptive systems

TRL level	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
		Х							

Adomtivo	General level			Maj	or level		Primitive level		Others	
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness		
properties								X		
Quality attributes	throughput									
attributes										
Architectural	Layers									
patterns	blackboard	pipe and filters								

Industry-oriented (name of industry)

Structure components behavior

Managed system Component-based system

Control loon	Centralized	Decentralized	Distributed	Non-distribute	
	Control loop	Х			x
			1		

Component based self adentities systems must adent their behavior depending an informations obtained from contact

Figure 3.8: Component-based reference architecture for self-adaptive systems

Liabilities

RA5-Bueno2012

Reference Architecture concept
Other architectural decisions
It is based on the ACRA e DYNAMICO
It is based on the ACRA e DYNAMICO
It is based on the ACRA e DYNAMICO
It is based on the ACRA e DYNAMICO
It is based on the ACRA e DYNAMICO
It is based on the ACRA e DYNAMICO Requirements

Institution	UNESP
Author	Frank Jose Affonso and Elisa Yumi Nakagawa
Year	2013
Title	A reference architecture based on reflection for self-adaptive software

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source		X						

Venue SBCARS

	Conference	Journal	Book chapter	Report
Type of paper	X			

Keywords

Application domain

Reflective self-adaptive system

TDI lovel	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level	Χ								

Adomtivo	General level			Maj	or level		Prim	itive level	Others	
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	reflectiv	
	Х		X	x	Х	X			eness	
Quality attributes										
attributes										
			_							
Architectural	decomposition s	tyle								
patterns										

Industry-oriented (name of industry)

Structure SaS

Managed system Self-adaptive system

Control loop	Centralized	Decentralized	Distributed	Non-distribute	ed
Control loop	Х			x	

To provide SaS with reflection, important resource for inspection and modification of the SaS at runtime. Such SaS presenting as main functionalities the

Figure 3. General representation of RA4SaS

RA6-Affonso2013

Reference Architecture concept
Other architectural decisions
Other architectural decisions
Requirements

Institution	Technical University of Madrid (UPM)
Author	Jennifer Perez, Jessica Diaz, Carlos Vidal, Daniel Rodriguez, Diego Fernandez
Year	2014
Title	Self-balancing distributed energy in power grids: an architecture based on autonomic computing

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source			X					

Venue 47th Hawaii international conference on system science

	Conference	Journal	Book chapter	Report
Type of paper	X			

Keywords

Application domain Smart Grids

TRL level	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
I RL level									Х

A domatic to	General level			Major level				Primitive level		
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness		
properties						X				
Quality	Effectiveness	Performance eff	iflexibility	deployability						
attributes	reliability	scalability	interoperability							
Architectural	layers									
patterns	publish subscrib	e								

Industry-oriented (name of industry)

Implemented in real environments

Structure
adapted

Policies to modify the Quantity of energy provided by microgrids/generating systems

Managed system Microgrid

Control loop	Centralized	Decentralized	Distributed	Non-distribute	þ
Control loop	х		x		

Smart aride must perform load halance among generating systems to achieve maximum utilization and minimum response time

RA7-Perez2014

Reference Architecture concept	
Other architectural decisions	
Omer architectural decisions	
Requirements	

Institution	Autonomous Systems Laboratory, UPM
Author	Ricardo Sanz, Carlos Hernandez, Julita Bermejo, Manuel Rodriguez, Ignacio Lopez
Year	2014
Title	Improved Resilience Controllers using congnitive patterns

	АСМ	IEEE	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	snowballing
Source							X

Venue 19th World Congress The International Federation of Automatic Control (IFAC)

	Conference	Journal	Book chapter	Report
Type of paper	X			

Keywords design patterns controller archite reconfiguration Model-based meta control

Application domain autonomous mobile robots

TRL level	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
I KL level				Х					

Adaptive properties	General level		Major level				Primitive level		Others
	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	
			X						
Quality	Fault-tolerance								
attributes									
				TRLTR					
Architectural	Epistemic Contr	ol Loop Pattern	Deep model reflec	tion pattern					
patterns	Meta Control Pa	ttern							

Industry-oriented (name of industry)

Structure configuration of the robot's running control application

Managed system robot's control application

Control loop	Centralized	Decentralized	Distributed	Non-distribute	ed
Control loop	х			x	

Autonomous mobile robots must bandle any kind of uncertainty whether environmental or internal

Fig. 4. The interplay of the main elements of the OM Ar-

RA8-Sanz2014

Reference Architecture concept	
Other architectural decisions	
Omer architectural decisions	
Requirements	

Institution	omputer science department, university of southern california						
Author	Hossein Tajalli and Nenad Medvidovic						
Year	2014						
Title	IDARE-a reference architecture for integrated software environments						

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source			X					

Venue Software - Practice and Experience

	Conference	Journal	Book chapter	Report
Type of paper		X		

Keywords reference archit development en Run-time environn Self-adaptation

Application domain SALES

TDI Javal	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level	Х								

Adomtivo	General level			Maj	or level	Prim	Others		
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	
properties		x							
Quality	adaptability	robustness							
attributes	Fault-tolerance								
Architectural									
patterns									

Industry-oriented (name of industry)

Structure applications

Run-time applications

Managed system adaptation engine

Control loop	Centralized	Decentralized	Distributed	Non-distributed	
Control loop	х		x		

A SALE must provide development time and run-time tools to support all stages in the life-cycle of a self-adaptive software system. In particular, such

RA9-Tajalli2013

Reference Architecture concept
Other architectural decisions
Other architectural decisions
Requirements

Institution	echnische Universitat Dresden, IRISA, SINTEF, and Fraunhofer IESE					
Author	Uwe Abmann, Sebastian Gotz, Jean-Marc Jezequel, Brice Morin, and Mario Trapp					
Year	2014					
Title	A reference architecture and roadmap for models@runtime systems					

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source							X	

Venue Models@runtime, LNCS 8374, pp. 1-18

	Conference	Journal	Book chapter	Report
Type of paper			X	

Application reflective systems, specifically, models@run.time systems. Important domains can be cyber-physical systems and safety-critical systems

TRL level	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
I KL level	Х								

Adaptive properties	General level		Major level				Primitive level		Others
	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	reflective
		X			X				properties
Quality	tractability	decidability	flexibility						
attributes	safety	reflectiveness	assurance						
Architectural	three layers as	proposed by krai	ner 2009						
patterns									

Industry-oriented (name of industry)

Structure adapted the managed system adapted by the models@run.time system, and the configuration management layer adapted by the goal management layer

Managed system any observable and controllable system (e.g., robot, or a managing models@run.time system again)

Control loop Centralized Decentralized Distributed X Non-distributed X

To anable unantiainated adaptations while answing safety

Fig. 1. Reference Architecture for models@run.time Systems

To maintain tractability (easy to modify or adapt), the models@run.time systems abstract from certain aspects of their code, maintaining runtime models of themselves, which form the basis of reflection. Manageable reflection is addressed by using models specified in the base layer. This allow to reason about alternatives to reach systems goals and consequences of the particular actions through the reasoner and analyzer modules. In this context, safety levels can be maintained through selecting the best alternative. Layered structure allows that a models@run.time system can be managed by other models@run.time system, and therefore create complex systems addressing manageable reflection. The use of models allow predictive reflection, that is, the ability of reasoning about future configurations of the system ensuring desired properties such as safety. Moreover, models allow tractability by abstraction, that is, the ability of the analyzer to abstract the information used by the reasoner reducing the reasoning task's complexity and, thus, to get desidability and, finally, tractability of the overall system.

RA10-UweAbmann2014

It is not applicable to distributed CPS or SCS. Improvements need to be made.	
Reference Architecture concept	
None	
Other architectural decisions	
They use the control loop but not follow the MAPE-K approach. Moreover, follow the three layer structure proposed by kramer. managing systems are loosely coupled, leaving to synchronization issues.	Managed and
Requirements Requirements	

Institution	Departamento de Computación, FCEN, Universidad de Buenos Aires, Argentina
Author	Braberman, V., D'Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.
Year	2015
Title	MORPH: A reference architecture for configuration and behaviour self-adaptation

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source	X							

Venue CISE'15

	Conference	Journal	Book chapter	Report
Type of paper	X			

Keywords Self-adaptive systems software architefcture

Application Any self-adaptive system requiring independent yet coordinated behaviour and configuration adaptation

TDI lovel	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level		X							

Adamtina	General level		Major level				Primitive level		Others
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	hohavior adaptation
		Х	х						behavior adaptation
Quality	coordinated ada	aptation	independent adapt	ation					
attributes	transparent ada	ptation	adaptation of syste	m configuratio	n and behaviour				

Architectural	Layers	Others	MAPE-k by layer	Rainbow framewor	k to model the target system
patterns		decisions	Master-slave deci	sion pattern to provide coordination w	vithin layers elements

Industry-oriented (name of industry) none

Structure adapted It is adapted the configuration and behavior of the target system.

Managed system Target system following the rainbow framework

Cei	ntralized [Decentralized	Distributed	Non-distribute	d The nature of target system is encapsulated. This RA is independent of
ontrol loop	×	(X	X	components architecture

To allow configuration and habouier adoptation in runtime independently

Figure 1: The MORPH Reference Architecture.

	Reference Architecture co	incent
	Reference Aromeoture of	moc pt
	Other architectural decis	ions
	Requirements	
	Mapping to the MAPE-K model	
Town of acceptance		
Target system		
	Monitoring of the component architecture can be provided by PROBES that reveal	
	state information. Monitoring information can be classified as information regarding	
	state information. Monitoring information can be classified as information regarding components status (active, inactive, connected, killed), or events that flows from the	
Monitoring	target system to the strategy enactment layer.	
Analysis		
Planning		

Executing	
Knowledge	
Sensor	
	effectors: API to configure components (add, remove and bind components) and
Actuator	API to invoking functional services (behaviour actions)

Strategic enactor layer

Monitoring	
Analysis	
Planning	
Executing	
Knowledge	
Sensor	
Actuator	

Strategic management layer

Monitoring	
Analysis	
Planning	
Executing	
Knowledge	
Sensor	
Actuator	

Goal management layer

Monitoring	
Analysis	
Planning	
Executing	
Knowledge	
Sensor	
Actuator	

Institution	UFRJ
Author	Jesus M.T. Portocarrero, Flavia C. Delicato, Paulo F. Pires, Bruno Costa, Wei Li, Weisheng Si, Albert Y. Zomaya
Year	2017
Title	RAMSES: A new reference architecture for self-adaptive middleware in Wireless Sensor Networks

	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL
Source	X		X					

Venue Ad Hoc Networks

_	Conference	Journal	Book chapter	Report
Type of paper		X		

autonomic com self adaptive sy WSN Keywords reference arch Pi-adl

Application domain WSN

TDL lovel	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
TRL level			X						

Adomtivo	General level		Major level				Primitive level		Others
Adaptive properties	Self-adaptive	Self-managed	Self-configuring	Self-healing	Self-protecting	Self-optimizing	Self-awareness	Context-awareness	
properties			Х						
Quality	resource utiliza	tion	interoperability						
attributes	flexiblility		Fault-tolerance						
Architectural	SOA	Layers		decorator patt	ern	aggregator escala	ator peer architectu	ıral style	
patterns	broker pattern	Service compon	ents for SaS	aspect p2p are	hitectural style				

Industry-oriented (name of industry)

Structure adapted nodes configuration

Managed system WSN

Control loon	Centralized	Decentralized	Distributed	Non-distribute	ed
Control loop	х		x		

To provide autonomic hobovier to MCNI

Fig 1. RA of a self-adaptive middleware for WSN

onale

RA12-Portocarrero2017

Reference Architecture concept
Other architectural decisions
Other architectural decisions
Requirements

DATA EXTRACTION										
	T									
Institution Author										
Year										
Title										
	•									
	ACM	IEEE	SCOPUS	WEB OF SCIENCE	COMPENDEX	SCIENCE DIRECT	SPRINGER	MANUAL		
Source			330.00				G. F. H. C.		1	
Source							<u>l</u>			
Venue										
	Conference	Journal	Book chapter	Report						
Type of paper										
					-	,	-			
Keywords]			
Application							7			
Application domain										
	TRL1	TDI 2	TDI 2	TDI 4	TDLE	TDLC	TRL7	TDI 0	TDLO	
TRL level	IKLI	TRL2	TRL3	TRL4	TRL5	TRL6	IRL/	TRL8	TRL9	
					1					
	General level		Major level Self-configuring Self-healing Self-protecting		or level			itive level	Others	
Adaptive			Solf configuring			Solf ontimizing			Others	
Adaptive properties		Self-managed	Self-configuring			Self-optimizing	Self-awareness	Context-awareness	Others	
properties			Self-configuring			Self-optimizing			- Curicis	
properties			Self-configuring			Self-optimizing				
Adaptive properties Quality attributes			Self-configuring			Self-optimizing				
Quality attributes Architectural			Self-configuring			Self-optimizing				
Quality attributes			Self-configuring			Self-optimizing				
Quality attributes Architectural patterns			Self-configuring			Self-optimizing				
Quality attributes Architectural			Self-configuring			Self-optimizing				
Quality attributes Architectural patterns			Self-configuring			Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry)			Self-configuring			Self-optimizing				
Quality attributes Architectural patterns			Self-configuring			Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry)			Self-configuring			Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry) Structure adapted	Self-adaptive		Self-configuring			Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry)	Self-adaptive		Self-configuring			Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry) Structure adapted	Self-adaptive		Self-configuring			Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry) Structure adapted Managed system	Self-adaptive	Self-managed		Self-healing	Self-protecting	Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry) Structure adapted	Self-adaptive		Self-configuring Distributed		Self-protecting	Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry) Structure adapted Managed system	Self-adaptive	Self-managed		Self-healing	Self-protecting	Self-optimizing				
Quality attributes Architectural patterns Industry-oriented (name of industry) Structure adapted Managed system	Self-adaptive	Self-managed		Self-healing	Self-protecting	Self-optimizing				

IMISSIOLI	

GENERAL DESCRIPTION	
Rationale	

	Data_Extraction_Template
Reference Architecture concept	