Chapitre VII

Limites de Suites

I. SUITES MAJORÉES, MINORÉES ET BORNÉES

A. DÉFINITIONS

- Une suite (u_n) est majorée s'il existe un réel M tel que : $\forall n \in \mathbb{N}, u_n \leq M$
- Une suite (u_n) est minorée s'il existe un réel m tel que : $\forall n \in \mathbb{N}, u_n \geq m$
- Une suite est bornée si elle est majorée et bornée

B. EXEMPLE

La suite $(\frac{1}{n})_{n>1}$ est minorée par 0, mais aussi par tout nombre négatif.

Elle est majorée par 1 (qui est aussi son maximum) et par tout nombre supérieur à 1. Elle est donc bornée.

II. DÉFINITIONS

A. LIMITE INFINIE

1. Définition

Une suite (u_n) a pour limite $+\infty$ si, quel que soit le réel M, l'intervalle $]M; +\infty[$ contient tous les termes de la suite à partir d'un certain rang.

Autrement dit, pour tout réel M, on peut trouver un rang *n* tel que :

$$\forall n \ge N$$
, $u_n > M$

(A partir du rang N, tous les termes sont supérieurs à M)

On note $\lim_{n\to+\infty} u_n = +\infty$, On peut dire que la suite diverge vers $+\infty$

 $\text{H.P.}: \forall M \in \mathbb{R}, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \ge N \implies u_n > M)$

2. DÉFINITION

Une suite (u_n) a pour limite $-\infty$, si, quel que soit le réel m, l'intervalle $]-\infty$; m[contient tous les termes de le suite à partir d'un certain rang.

Autrement dit, pour tout réel m, on peut trouver un rang N tel que :

$$\forall n \ge N, \quad u_n < m$$

(A partir du rang N, tous les termes sont inférieurs à *m*)

On note $\lim_{n\to+\infty} u_n = -\infty$, On peut dire que la suite diverge vers $-\infty$

$$\text{H.P.}: \forall m \in \mathbb{R}, \ \exists \text{N} \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geq \text{N} \Longrightarrow u_n < m)$$

3. Théorème

$$\lim_{n \to +\infty} n^2 = +\infty \qquad \qquad \lim_{n \to +\infty} \sqrt{n} = +\infty$$

$$\lim_{n \to +\infty} \ln(n) = +\infty \qquad \qquad p \in \mathbb{N}^*, \lim_{n \to +\infty} n^p = +\infty$$

$$\lim_{n \to +\infty} +\infty - n^2 = -\infty \qquad \qquad \lim_{n \to +\infty} \ln\left(\frac{1}{n}\right) = -\infty$$

4. RAPPELS

$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = \dots \text{ signe}$$

 $\forall n \in \mathbb{N}, \ u_n > 0 \quad \frac{u_{n+1}}{u_n} \text{ on compare à } 1$

Cas où $u_n = f(n)$, par exemple : $u_n = \sqrt{n^2 + n - 3}$, on étudie f.

A. ARITHMÉTIQUE

$$u_{n+1} = u_n + r$$
 alors $u_n = u_0 + nr$ $(u_n = u_p + (n-p)r)$
 $S = u_0 + u_1 + \dots + u_n = \frac{u_0 + u_n}{2} \times (n+1)$

B. GÉOMÉTRIQUE

$$u_{n+1} = qu_n$$
 alors $u_n = u_0 \times q^n$ $(u_n = u_p \times q^{n-p})$
 $S = u_0 + u_1 + \dots + u_n = u_0 \times \frac{1 - q^{n+1}}{1 - q}$

B. Limites Finies / Suites Convergentes

1. Définition

Une suite (u_n) converge vers un réel l si tout intervalle ouvert contenant l contient tous les termes de la suite à partir d'un certain rang.

Autrement dit, on peut trouver un rang N à partir duquel tous les termes de la suite sont aussi près que l'on veut de l.

On dit que l est la limite de la suite (u_n) et que la suite est convergente.

On note
$$\lim_{n\to+\infty} u_n = l$$

$$\text{H.P.}: \lim_{n \to +\infty} u_n = l \iff \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \left(n \ge N \implies u_n \in \left] l - \epsilon; l + \epsilon \right[\right)$$

2. Théorème

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} \frac{1}{n^p} = 0$$

$$\lim_{n \to +\infty} e^{-n} = 0$$

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

3. Définition

Une suite qui n'est pas convergente est divergente

4. EXEMPLE

La suite (u_n) définie par $u_n = (-1)^n$ est divergente.

III. PROPRIÉTÉS SUR LES LIMITES

A. THÉORÈMES DE COMPARAISON

1. Théorème

Soient (u_n) et (v_n) deux suites telles qu'à partir d'un certain rang $u_n \le v_n$

— Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} v_n = +\infty$

$$- \operatorname{Si} \lim_{n \to +\infty} v_n = -\infty \quad \text{alors} \quad \lim_{n \to +\infty} u_n = -\infty$$

2. DÉMONSTRATION

On suppose que $\lim_{n\to+\infty} u_n = +\infty$

Soit M > 0, il existe un rang N, à partir duquel si $n \ge N_1$, alors $u_n \ge M$

Or, il existe un rang N_2 , à partir duquel $n > N_2$, $v_n \ge u_n$

Donc, il existe un rang N = $\max(N_1; N_2)$ à partir duquel $v_n \ge u_n > M$ donc :

$$\lim_{n\to+\infty}v_n=+\infty\quad\square$$

3. Théorème dit des Gendarmes (Théorème d'Encadrement)

Soient (u_n) , (v_n) , et (w_n) trois suites telles qu'à partir d'un certain rang $u_n \le v_n \le w_n$

Si $\lim_{n\to+\infty} u_n = l$ et $\lim_{n\to+\infty} w_n = l$ où l est un réel alors :

$$\lim_{n\to+\infty}v_n=l$$

4. EXEMPLE

Soit (u_n) définie par $u_n = \frac{(-1)^n}{n}$

$$\forall n \in \mathbb{N}, \quad -1 \le (-1)^n \le 1$$

$$\iff \frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}$$

Or,
$$\lim_{n\to+\infty} \frac{-1}{n} = 0$$
, $\lim_{n\to+\infty} \frac{1}{n} = 0$

D'après le Théorème des Gendarmes, $\lim_{n\to+\infty}u_n=0$

B. Convergence Monotone

1. THÉORÈME ADMIS

Toute suite croissante et majorée converge vers une limite finie.

Toute suite décroissante et minorée converge vers une limite finie.

2. Théorème

Soit une suite (u_n) croissante et qui converge vers un réel l, alors (u_n) est majorée par l.

3. DÉMONSTRATION PAR L'ABSURDE

On suppose que (u_n) est croissante.

A. LEMME

Si (u_n) est croissante, si p et n sont deux entiers naturels tels que $p \le n$ Alors, $u_p \le u_n$

B. DÉMONSTRATION PAR RÉCURRENCE

1. Initialisation

On fixe p donc $u_p \le u_{p+1}$

2. Hérédité

On suppose que
$$k \ge 1$$
, $u_p \le u_{p+k}$
 $u_p \le u_{p+k} \implies u_p \le u_{p+k} \le u_{p+k+1}$ \square

On suppose $\exists n_0 \in \mathbb{N}$, $u_{n_0} > l$

Or tout intervalle ouvert contenant l contient tous les termes de la suite à partir d'un certain rang.

Prenons l'intervalle ouvert] a; b[tel que $l < b < u_{n_0}$

Il existe un indice $p > n_0$ tel que $u_p \in \, \big] \, a; b \big[$

(Ils y sont tous à partir d'un certain rang!)

Donc, $u_p < b < u_{n_0}$, ce qui impossible car (u_n) est croissante et d'après la lemme, $p > n_0 \implies u_p \ge u_{n_0}$

C'est absurde, donc, $\forall n \in \mathbb{N}, u_n \leq l \quad \square$

4. THÉORÈME

Toute suite croissante et non-majorée diverge vers $+\infty$ Toute suite décroissante et non-minorée diverge vers $-\infty$

C. Rappel: Limite de (q^n) où $q \in \mathbb{R}$

1. Théorème

- Si
$$q > 1$$
, $\lim_{n \to +\infty} q^n = +\infty$
- Si $q = 1$, $\lim_{n \to +\infty} q^n = 1$
- Si $-1 < q < 1$, $\lim_{n \to +\infty} q^n = 0$
- Si $q < -1$, la suite diverge.

IV. OPÉRATIONS SUR LES LIMITES

On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ admettant des limites finies ou infinies.

A. SOMME

u_n v_n	<i>l</i> un réel	+∞	$-\infty$
l' un réel	l + l'	+∞	$-\infty$
+∞	+∞	+∞	F.I. ¹
-∞	$-\infty$	F.I. ¹	$-\infty$

FIGURE 7.1. – Tableau des Limites des Sommes de Suites, de Limites Données

F.I.: Forme Indéterminée, il faut faire un calcul pour lever l'indétermination

1. Exemple

$$(u_n)_{n\in\mathbb{N}} \text{ définie par } u_n = n^2 - n \leftarrow \text{FI}.$$

$$= n(n-1) \leftarrow \text{On a levé l'indétermination}$$

$$\underbrace{\lim_{n \to +\infty} n^2 = +\infty \quad \lim_{n \to +\infty} -n = -\infty}_{\text{FI}.} \quad \lim_{n \to +\infty} n = +\infty \quad \lim_{n \to +\infty} n - 1 = +\infty}_{\text{EI}.}$$
 Donc, par produit,
$$\lim_{n \to +\infty} n(n+1) = +\infty$$
 et donc,
$$\lim_{n \to +\infty} u_n = +\infty$$

B. PRODUIT

u_n v_n	$l \neq 0$	0	+∞	-∞
$l' \neq 0$	$l \times l'$	0	$\pm\infty$ selon signe l'	$\pm\infty$ selon signe l'
0	0	0	F.I.	F.I.
+∞	$\pm\infty$ selon signe l	F.I.	+∞	$-\infty$
$-\infty$	$\pm\infty$ selon signe l	F.I.	$-\infty$	$-\infty$

FIGURE 7.2. – Tableau des Limites des Produits de Suites, de Limites Données

1. EXEMPLE

Soit
$$(u_n)_{n\in\mathbb{N}}$$
, définie par $u_n=n$ $\lim_{n\to+\infty}u_n=+\infty$
Soit $(v_n)_{n\in\mathbb{N}}$, définie par $v_n=\frac{1}{\sqrt{n}}$ $\lim_{n\to+\infty}v_n=0$ $u_n\times v_n=n\times\frac{1}{\sqrt{n}}=\sqrt{n}$ or $\lim_{n\to+\infty}\sqrt{n}=+\infty$
Donc, $\lim_{n\to+\infty}(u_n\times v_n)=+\infty$

2. Exemple 2

$$(u_n)_{n\in\mathbb{N}}$$
, définie par $u_n=n^2$ $\lim_{n\to+\infty}u_n=+\infty$ $(v_n)_{n\in\mathbb{N}}$, définie par $v_n=\frac{1}{n}-4$ $\lim_{n\to+\infty}v_n=-4$ (Somme) Donc, $\lim_{n\to+\infty}(u_n\times v_n)=-\infty$

C. QUOTIENT

u_n v_n	$l \neq 0$	0	+∞	-∞
$l' \neq 0$	$\frac{l}{l'}$	0	$\pm\infty$ selon signe l'	$\pm\infty$ selon signe l'
0	$\pm\infty$ selon signe l et 0	F.I.	$\pm\infty$ selon signe 0	$\pm\infty$ selon signe 0
+∞	0	0	F.I.	F.I.
$-\infty$	0	0	F.I.	F.I.

FIGURE 7.3. - Tableau des Limites des Quotients de Suites, de Limites Données

1. EXEMPLE

$$(u_n)_{n\in\mathbb{N}}$$
, définie par $u_n=\frac{1}{n^2-3}$ $\lim_{n\to+\infty}u_n=+\infty$ (Somme)
Donc, par quotient, $\lim_{n\to+\infty}u_n=0$

V. LIMITE DE SUITE ET CONTINUITÉ

A. THÉORÈME

Soit f une fonction continue sur un intervalle I et $(u_n)_{n\in I}$, une suite qui converge vers un réel l, tel que $\forall n \in \mathbb{N}$, $u_n \leq I$, $l \in I$, alors $f(u_n)$ converge vers f(l).

1. EXEMPLE

Soit le suite (u_n) , définie par $u_n = \frac{4n}{n+1}$. Alors $\lim_{n \to +\infty} u_n = 4$ Donc, la suite (v_n) , définie par $v_n = \sqrt{u_n}$ converge vers $\sqrt{4} = 2$.

B. Théorème

Soit f une fonction continue sur un intervalle I, telle que $f(I) \subset I$ et $(u_n)_{n \in \mathbb{N}}$ une suite définie par $u_{n+1} = f(u_n)$ et $u_0 \in I$

Si la suite (u_n) converge vers un réel l, alors l est solution de l'équation f(x) = x (On peut dire que l est un point fixe de f).

1. DÉMONSTRATION

$$\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}u_n=f(l)$$