Appendix C

Answers to the "Do I Know This Already?" Quizzes

- 1. D and F. Of the remaining answers, Ethernet defines both physical and data-link protocols, PPP is a data-link protocol, IP is a network layer protocol, and SMTP and HTTP are application layer protocols.
- **2.** A and G. Of the remaining answers, IP is a network layer protocol, TCP and UDP are transport layer protocols, and SMTP and HTTP are application layer protocols.
- **3.** B. Adjacent-layer interaction occurs on one computer, with two adjacent layers in the model. The higher layer requests services from the next lower layer, and the lower layer provides the services to the next higher layer.
- **4.** B. Same-layer interaction occurs on multiple computers. The functions defined by that layer typically need to be accomplished by multiple computers—for example, the sender setting a sequence number for a segment and the receiver acknowledging receipt of that segment. A single layer defines that process, but the implementation of that layer on multiple devices is required to accomplish the function.

- **5.** A. Encapsulation is defined as the process of adding a header in front of data supplied by a higher layer (and possibly adding a trailer as well).
- **6.** D. By convention, the term *frame* refers to the part of a network message that includes the data-link header and trailer, with encapsulated data. The term *packet* omits the data-link header and trailer, leaving the network layer header with its encapsulated data. The term *segment* omits the network layer header, leaving the transport layer header and its encapsulated data.

- 1. A. The IEEE defines Ethernet LAN standards, with standard names that begin with 802.3, all of which happen to use cabling. The IEEE also defines wireless LAN standards, with standard names that begin with 802.11, which are separate standards from Ethernet.
- **2.** C. The number before the word *BASE* defines the speed, in megabits per second (Mbps): 1000 Mbps equals 1 gigabit per second (1 Gbps). The *T* in the suffix implies twisted-pair or UTP cabling, so 1000BASE-T is the UTP-based Gigabit Ethernet standard name.
- 3. B. Crossover cables cross the wire at one node's transmit pin pair to the different pins used as the receive pins on the other device. For 10-and 100-Mbps Ethernet, the specific crossover cable wiring connects the pair at pins 1 and 2 on each end of the cable to pins 3 and 6 on the other end of the cable, respectively.
- **4.** B, D, and E. Routers, wireless access point Ethernet ports, and PC NICs all send using pins 1 and 2, whereas hubs and LAN switches transmit on pins 3 and 6. Straight-through cables connect devices that use opposite pin pairs for sending, because the cable does not need to cross the pairs.
- **5.** B and D. Multimode fiber works with LED-based transmitters rather than laser-based transmitters. Two answers mention the type of transmitters, making one of those answers correct and one incorrect.

Two answers mention distance. The answer that mentions the longest distance possible is incorrect because single-mode cables, not multimode cables, provide the longest distances. The other (correct) answer mentions the tradeoff of multimode being used for distances just longer than UTP's 100-meter limit, while happening to use less expensive hardware than single mode.

- **6.** B. NICs (and switch ports) use the carrier sense multiple access with collision detection (CSMA/CD) algorithm to implement half-duplex logic. CSMA/CD attempts to avoid collisions, but it also notices when collisions do occur, with rules about how the Ethernet nodes should stop sending, wait, and try again later.
- 7. C. The 4-byte Ethernet FCS field, found in the Ethernet trailer, allows the receiving node to see what the sending node computed with a math formula that is a key part of the error-detection process. Note that Ethernet defines the process of detecting errors (error detection), but not error recovery.
- **8.** B, C, and E. The pre-assigned universal MAC address, given to each Ethernet port when manufactured, breaks the address into two 3-byte halves. The first half is called the organizationally unique identifier (OUI), which the IEEE assigns to the company that builds the product as a unique hex number to be used only by that company.
- **9.** C and D. Ethernet supports unicast addresses, which identify a single Ethernet node, and group addresses, which can be used to send one frame to multiple Ethernet nodes. The two types of group addresses are the *broadcast address* and *multicast address*.

- 1. D. The correct answer lists one term for an Ethernet WAN link between two sites: E-line, short for Ethernet line. The other answers list common synonyms for a serial link.
- 2. B and D. The physical installation uses a model in which each router uses a physical Ethernet link to connect to some SP device in an SP facility called a point of presence (PoP). The Ethernet link does not

- span from each customer device to the other. From a data-link perspective, both routers use the same Ethernet standard header and trailer used on LANs; HDLC does not matter on these Ethernet WAN links.
- 3. A. PC1 will send an Ethernet frame to Router1, with PC1's MAC address as the source address and Router1's MAC address as the destination address. Router1 will remove the encapsulated IP packet from that Ethernet frame, discarding the frame header and trailer, not using it again. Router1 will forward the IP packet by first encapsulating it inside a PPP frame. Router1 will not encapsulate the original Ethernet frame in the PPP frame but rather the IP packet. The PPP header uses different addresses than Ethernet, so the original frame's Ethernet addresses are not used.
- **4.** C. Routers compare the packet's destination IP address to the router's IP routing table, making a match and using the forwarding instructions in the matched route to forward the IP packet.
- **5.** C. IPv4 hosts generally use basic two-branch logic. To send an IP packet to another host on the same IP network or subnet that is on the same LAN, the sender sends the IP packet directly to that host. Otherwise, the sender sends the packet to its default router (also called the default gateway).
- 6. A and C. Routers perform all the actions listed in the answers. However, the routing protocol does the functions in the two correct answers. Independent of the routing protocol, a router learns routes for IP subnets and IP networks directly connected to its interfaces. Routers also forward (route) IP packets, but that process is called IP routing, or IP forwarding, and is an independent process compared to the work of a routing protocol.
- 7. C. Address Resolution Protocol (ARP) does allow PC1 to learn information, but the information is not stored on a server. The **ping** command does let the user at PC1 learn whether packets can flow in the network, but it again does not use a server. With the Domain Name System (DNS), PC1 acts as a DNS client, relying on a DNS

server to respond with information about the IP addresses that match a given hostname.

- 1. A and B. The command in the question is an EXEC command that happens to require only user mode access. As such, you can use this command in both user mode and enable mode. Because it is an EXEC command, you cannot use the command (as shown in the question) in configuration mode. Note that you can put the word do in front of the EXEC command while in configuration mode (for example, do show mac address-table) to issue the command from inside any configuration mode.
- 2. B. The command referenced in the question, the **reload** command, is an EXEC command that happens to require privileged mode, also known as enable mode. This command is not available in user mode. Note that you can put the word **do** in front of the EXEC command while in configuration mode (for example, **do reload**) to issue the command from inside any configuration mode.
- **3.** B. SSH provides a secure remote login option, encrypting all data flows, including password exchanges. Telnet sends all data (including passwords) as clear text.
- **4.** A. Switches (and routers) keep the currently used configuration in RAM, using NVRAM to store the configuration file that is loaded when the switch (or router) next loads the IOS.
- **5.** F. The startup-config file is in NVRAM, and the running-config file is in RAM.
- **6.** B and C. The **exit** command moves the user one config mode backward, toward global configuration mode, or if already in global configuration mode, it moves the user back to enable mode. From console mode, it moves the user back to global configuration mode. The **end** command and the Ctrl+Z key sequence both move the user back to enable mode regardless of the current configuration submode.

- 1. A. A switch compares the destination MAC address to the MAC address table. If a matching entry is found, the switch forwards the frame out the appropriate interface. If no matching entry is found, the switch floods the frame.
- 2. B. A switch floods broadcast frames, multicast frames (if no multicast optimizations are enabled), and unknown unicast destination frames (frames whose destination MAC address is not in the MAC address table). FFFF.FFFF.FFFF is the Ethernet broadcast address, so the switch floods the frame, which means that the switch forwards copies of the frame out all other ports except the arrival port.
- **3.** A. A switch floods broadcast frames, multicast frames (if no multicast optimizations are enabled), and unknown unicast destination frames (frames whose destination MAC address is not in the MAC address table). Of the available answers, the correct answer defines how a switch floods a frame.
 - Of the incorrect answers, one incorrect answer describes how a switch forwards known unicast frames by finding the matching entry in the MAC address table. Another describes MAC learning, in which the switch learns the source MAC address of incoming frames. Yet another incorrect answer mentions comparing the destination IP address to the destination MAC address, which the switch does not do.
- **4.** B. Switches need to learn the location of each MAC address used in the LAN relative to that local switch. When a switch receives a frame, the source MAC identifies the sender. The interface in which the frame arrives identifies the local switch interface closest to that node in the LAN topology.
- **5.** C. The **show interfaces status** command lists one line of output per interface. Cisco Catalyst switches name the type of interface based on the fastest speed of the interface, so 10/100 interfaces would be Fast Ethernet. With a working connection, ports from FastEthernet 0/1

through 0/10 would be listed in a connected state, while the rest would be listed in a notconnected state.

6. D. For the correct answer, each entry lists the learned MAC address. By definition, dynamically learned MAC addresses are learned by looking at the source MAC address of received frames. (That fact rules out one of the incorrect answers as well.)

The **show mac address-table dynamic** command lists the current list of MAC table entries, with three known entries at the point at which the command output was gathered. The counter in the last line of output lists the number of current entries, not the total number of learned MAC addresses since the last reboot. For instance, the switch could have learned other MAC addresses whose entries timed out from the MAC address table.

Finally, the answer that claims that port Gi0/2 connects directly to a device with a particular MAC address may or may not be true. That port could connect to another switch, and another, and so on, with one of those switches connecting to the device that uses the listed MAC address.

Chapter 6

- **1.** B. If both commands are configured, IOS accepts only the password as configured in the **enable secret** command.
- **2.** A. To answer this question, it might be best to first think of the complete configuration and then find any answers that match the configuration. The commands, in vty line configuration mode, would be **password** and **login**. Only one answer lists a vty subcommand that is one of these two commands.

Of note in the incorrect answers:

One answer mentions console subcommands. The console does not define what happens when remote users log in; those details sit in the vty line configuration.

One answer mentions the **login local** command; this command means that the switch should use the local list of configured usernames/passwords. The question stated that the engineer wanted to use passwords only, with no usernames.

One answer mentions the **transport input ssh** command, which, by omitting the **telnet** keyword, disables Telnet. While that command can be useful, SSH does not work when using passwords only; SSH requires both a username and a password. So, by disabling Telnet (and allowing SSH only), the configuration would allow no one to remotely log in to the switch.

3. B and C. SSH requires the use of usernames in addition to a password. Using the **username** global command would be one way to define usernames (and matching passwords) to support SSH. The vty lines would also need to be configured to require the use of usernames, with the **login local** vty subcommand being one such option.

The **transport input ssh** command could be part of a meaningful configuration, but it is not a global configuration command (as claimed in one wrong answer). Likewise, one answer refers to the **username** command as a command in vty config mode, which is also the wrong mode.

- **4.** A, D, and F. To allow access through Telnet, the switch must have password security enabled, at a minimum using the **password** vty line configuration subcommand. In addition, the switch needs an IP address (configured under one VLAN interface) and a default gateway when the switch needs to communicate with hosts in a different subnet.
- 5. B and C. To allow SSH or Telnet access, a switch must have a correct IP configuration. That includes the configuration of a correct IP address and mask on a VLAN interface. That VLAN interface then must have a path out of the switch via ports assigned to that VLAN. In this case, with all ports assigned to VLAN 2, the switch must use interface VLAN 2 (using the **interface vlan 2** configuration command).

To meet the requirement to support login from hosts outside the local subnet, the switch must configure a correct default gateway setting with the **ip default-gateway 172.16.2.254** global command in this case.

6. A. The **logging synchronous** line subcommand synchronizes the log message display with other command output so the log message does not interrupt a **show** command's output. The **no ip domain-lookup** command is not a line subcommand. The other two incorrect answers are line subcommands but do not configure the function listed in the question.

- **1.** A and C. Because both devices use IEEE autonegotiation, they declare their speed and duplex capabilities to the other via messages sent out-of-band using Fast Link Pulses (FLPs). Then both devices choose the fastest speed that both support. They also use the best duplex setting that both support, with full duplex being better than half.
- **2.** E. Cisco switches support per-interface settings for speed (with the **speed** command) and duplex (with the **duplex** command) in interface configuration mode.
- 3. B and E. Because the PC disables autonegotiation, it does not send autonegotiation FLP messages. However, it does start sending Ethernet frames based on the physical layer standard configured on the PC. After not receiving any autonegotiation FLP messages, the switch port analyzes the incoming signal to determine the standard used by the PC to send Ethernet frames. That analysis identifies the speed used by the PC, so the switch chooses to also use that speed. The switch then chooses the duplex based on a table of defaults: full duplex for speeds of 1 Gbps and faster or half duplex for speeds slower than 1 Gbps.
- **4.** C. The **shutdown** interface subcommand administratively disables the interface, while the engineer can log in remotely on the weekend and configure the **no shutdown** interface subcommand to re-enable

the interface. Note that unplugging the cable would prevent the interface from being used but would not allow the engineer to enable the interface remotely during the weekend change window. The **disable** and **enable** commands shown in a few answers do not exist.

- 5. B and D. The **interface range** global configuration command identifies a set of interfaces and moves the user into interface configuration mode. At that point, the switch applies any interface subcommands to all the interfaces in that range. However, the switch does not keep the **interface range** command in the configuration. For instance, in this case, the switch would list the **description** command under all the interfaces in the range: interfaces GigabitEthernet1/0/10 through GigabitEthernet 1/0/20 (11 interfaces in total).
- **6.** A, B, and D. The disabled state in the **show interfaces status** command is the same as an "administratively down and down" state shown in the **show interfaces** command. The interface must be in a connected state (per the **show interfaces status** command) before the switch can send frames out of the interface.
- 7. A and C. First, note that some Cisco switch ports disable autonegotiation when configured with both **speed** and **duplex** on a port, as described in this question. A problem occurs when the combination of configured speed and duplex leads the autonegotiating device on the other end of the link to choose a different duplex setting—an effect called a duplex mismatch.

To summarize the scenario in this case, SW1 uses autonegotiation but receives no autonegotiation messages from SW2. As a result, SW1 then begins using alternate logic (called parallel detection) that does not rely on autonegotiation messages. SW2 does not use autonegotiation but has a speed set, so SW2 begins sending Ethernet frames per that speed on the link. SW1 senses the speed of those signals and uses the same speed, so a speed mismatch will not exist. However, SW1 then has to choose the duplex based on a default table, choosing half duplex if the speed is 10 or 100 Mbps, and full duplex if the speed is 1 Gbps or faster.

In the case of SW2 using **speed 100** and **duplex full** settings, SW1 senses the 100-Mbps speed and defaults to use half duplex, resulting in a duplex mismatch. Similar logic applies to the **speed 10** and **duplex full** case.

8. D. For the two answers about a duplex mismatch, that condition does cause collisions, particularly late collisions. However, only the side using CSMA/CD logic (the half-duplex side) has any concept of collisions. So, if switch SW1 were using half duplex and SW2 using full duplex, SW1 would likely see late collisions and show the counter incrementing over time.

If switch SW2 had shut down its interface, switch SW1's interface would be in a down/down state, and none of the counters would increment. Also, if both switch ports use different speed settings, the ports would be in a down/down state, and none of the interface counters would increment.

- 1. B. A VLAN is a set of devices in the same Layer 2 broadcast domain. A subnet often includes the exact same set of devices, but it is a Layer 3 concept. A collision domain refers to a set of Ethernet devices, but with different rules than VLAN rules for determining which devices are in the same collision domain.
- 2. D. Although a subnet and a VLAN are not equivalent concepts, the devices in one VLAN are typically in the same IP subnet and vice versa.
- **3.** B. The 802.1Q trunking defines a 4-byte header, inserted after the original frame's destination and source MAC address fields. The insertion of this header does not change the original frame's source or destination address. The header itself holds a 12-bit VLAN ID field, which identifies the VLAN associated with the frame.
- **4.** A and C. The **dynamic auto** setting means that the switch can negotiate trunking, but it can only respond to negotiation messages, and it cannot initiate the negotiation process. So, the other switch

- must be configured to trunk (switchport mode trunk) or to initiate the dynamic negotiation process (switchport mode dynamic desirable).
- **5.** A and B. The configured VTP setting of VTP transparent mode means that the switch can configure VLANs, so the VLAN is configured. In addition, the VLAN configuration details, including the VLAN name, show up as part of the running-config file.
- **6.** B and C. The **show interfaces switchport** command lists both the administrative and operational status of each port. When a switch considers a port to be trunking, this command lists an operational trunking state of "trunk." The **show interfaces trunk** command lists a set of interfaces—the interfaces that are currently operating as trunks. So, both of these commands identify interfaces that are operational trunks.
- 7. A and B. On switches that do not use VTP (by using VTP modes off or transparent), the switch lists all VLAN configuration in the configuration file (making one answer correct). Also, the **show vlan brief** command lists all defined VLANs, regardless of VTP mode and regardless of shutdown state. As a result, the two answers that mention commands are correct.
 - The other two answers are incorrect because VLAN 30 has been shut down, which means the switch will not forward frames in that VLAN, regardless of whether they arrive on access or trunk ports.
- 8. B. The first list of VLAN IDs includes all VLANs (1–4094) except those overtly removed per the details in any switchport trunk allowed vlan interface subcommands on the trunk interface. If no such commands are configured, the first list in the output will include 1–4094. The two incorrect answers that mention VLAN 30 list conditions that change the second of two lists of VLANs in the command output, while STP's choice to block an interface would impact the third list.

- 1. A and B. Listening and learning are transitory port states, used only when moving from the blocking to the forwarding state. Discarding is not an STP port state.
- 2. C. The smallest numeric bridge ID wins the election. The bridge IDs in the answers break into a decimal priority on the left, a colon, and then the 12-digit hexadecimal MAC address of the switch. Of all the answers, two tie with the lowest priority (4097). Of those, the correct answer lists a lower MAC address.
- **3.** C and D. Listening and learning are transitory port states used only when moving from the blocking to the forwarding state. Discarding is not an STP port state. Forwarding and blocking are stable states.
- **4.** B. Nonroot switches forward Hellos received from the root; the root sends these Hellos based on the root's configured Hello timer.
- **5.** B and D. RSTP uses port states forwarding, learning, and discarding. Forwarding and learning perform the same functions as the port states used by traditional STP.
- **6.** A and D. With RSTP, an alternate port is an alternate to the root port when a switch's root port fails. A backup port takes over for a designated port if the designated port fails.
- 7. D. The PortFast feature allows STP/RSTP to move a port from blocking to forwarding without going through the interim listening and learning states. STP allows this exception when the link is known to have no switch on the other end of the link, removing the risk of a switching loop. Cisco created PortFast before the IEEE released RSTP, but RSTP included the equivalent feature as well, so it is a feature of both STP and RSTP.

BPDU Guard is a common feature to use at the same time as PortFast because it watches for incoming bridge protocol data units (BPDUs), which should not happen on an access port, and prevents the loops from a rogue switch by disabling the port.

8. C. Root Guard on a switch interface monitors incoming STP BPDUs, processing them as normal with STP, with one exception: superior BPDUs. Superior BPDUs identify a new root switch with a better (lower) Bridge ID. Root Guard reacts to receiving such a BPDU and disables the port.

For the other answers, BPDU Guard monitors for incoming BPDUs but disables the port for any received BPDU on the port. Neither PortFast nor Loop Guard monitor incoming BPDUs or react to them.

- 1. A. Of the four answers, only **pvst** and **rapid-pvst** are valid options on the command. Of those, the **rapid-pvst** option enables Rapid Per VLAN Spanning Tree (RPVST+), which uses RSTP. The **pvst** option enables Per VLAN Spanning Tree (PVST), which uses STP, not RSTP. The other two options, if attempted, would cause the command to be rejected because these option do not exist.
- 2. A and C. The system ID extension (or extended system ID) part of a bridge ID contains 12 bits and sits after the 4-bit priority field and before the 48-bit system ID. Switches use this field to store the VLAN ID when using STP or RSTP to build spanning trees per VLAN. So, of the two answers that mention the system ID extension, the one that lists the VLAN ID, in this case 5, is correct.
 - The output also lists a priority of 32773. However, that output lists the decimal equivalent of the 16-bit priority value. In reality, this decimal value is the sum of the configured decimal priority plus the VLAN ID: 32768 + 5 = 32773. So in this case, the root's configured priority is 32,768.
- 3. A, B, and D. Cisco's Rapid Per VLAN Spanning Tree (RPVST+) creates one spanning tree instance per VLAN. To do so, it sends BPDUs per VLAN. Each switch identifies itself with a unique Bridge ID (BID) per VLAN, made unique per VLAN by adding the VLAN ID to the system ID extension 12-bit field of the BID. RVPST also adds a new Type-Length Value (TLV) to the BPDU itself, which includes a place to list the VLAN ID. Finally, when transmitting the

- BPDUs over VLAN trunks, the switch uses a trunking header that lists the VLAN ID (a practice sometimes called tunneling in 802.1Q). The receiving switch can check all three locations that list the VLAN ID to ensure that they all agree about what VLAN the BPDU is describing. Of the four answers, the three correct answers describe the three actual locations in which RPVST+ lists the VLAN ID.
- **4.** B and C. BPDU Guard disables a port by placing it into an error disabled (err-disabled) interface state. BPDU Guard does so when it is enabled on the interface, regardless of whether PortFast is also enabled. The two correct answers both state that BPDU Guard is enabled, while the two incorrect answers list it as disabled.
- **5.** A and E. Root Guard reacts to the receipt of a superior BPDU by disabling the port. To do so, it leaves the interface state as is in a connected state. Instead, it manipulates the STP port state, changing it to a special state called broken. The commands display the broken state with letters BRK. So, the **show interfaces status** command lists a connected interface state, while the **show spanning-tree** command lists a port state of BRK, or broken, which stops all traffic on the interface.
- **6.** D. IOS uses the **channel-group** configuration command to create an EtherChannel. Then the term *etherchannel* is used in the **show etherchannel** command, which displays the status of the channel. The output of this **show** command then names the channel a *PortChannel*. The only answer that is not used somewhere in IOS to describe this multilink channel is *Ethernet-Channel*.
- 7. B and D. The **channel-group** command will direct the switch to use LACP to dynamically negotiate to add a link to an EtherChannel when the command uses the **active** and **passive** keywords, respectively. The **desirable** and **passive** keywords direct the switch to use PAgP instead of LACP. Of the four answers, the two correct answers use two LACP values, while the two incorrect answers use at least one value that would cause the switch to use PAgP, making the answers incorrect.

- Of the two correct answers, both combinations result in the switches attempting to add the link to an EtherChannel using LACP as the negotiation protocol. If both switches used the **passive** keyword, they would both sit and wait for the other switch to begin sending LACP messages and therefore never attempt to add the link to the channel.
- 8. C. EtherChannel load distribution, or load balancing, on Cisco Catalyst switches uses an algorithm. The algorithm examines some fields in the various headers, so messages that have the same values in those fields always flow over the same link in a particular EtherChannel. Note that it does not break the frames into smaller fragments or use a round-robin approach that ignores the header values, and it does not examine link utilization when making the choice.

- 1. B and D. The general rule to determine whether two devices' interfaces should be in the same subnet is whether the two interfaces are separated from each other by a router. To provide a way for hosts in one VLAN to send data to hosts outside that VLAN, a local router must connect its LAN interface to the same VLAN as the hosts and have an address in the same subnet as the hosts. All the hosts in that same VLAN on the same switch would not be separated from each other by a router, so these hosts would also be in the same subnet. However, another PC, connected to the same switch but in a different VLAN, will require its packets to flow through a router to reach Host A, so Host A's IP address would need to be in a different subnet compared to this new host.
- 2. D. By definition, two address values in every IPv4 subnet cannot be used as host IPv4 addresses: the first (lowest) numeric value in the subnet for the subnet ID and the last (highest) numeric value in the subnet for the subnet broadcast address.
- **3.** B and C. At least 7 subnet bits are needed because $2^6 = 64$, so 6 subnet bits could not number 100 different subnets. Seven subnet bits could because $2^7 = 128 \Rightarrow 100$. Similarly, 6 host bits is not enough

because $2^6 - 2 = 62$, but 7 host bits is enough because $2^7 - 2 = 126$ => 100.

The number of network, subnet, and host bits must total 32 bits, making one of the answers incorrect. The answer with 8 network bits cannot be correct because the question states that a Class B network is used, so the number of network bits must always be 16. The two correct answers have 16 network bits (required because the question states the use of a Class B network) and at least 7 subnet and host bits each.

- **4.** A and C. The private IPv4 networks, defined by RFC 1918, are Class A network 10.0.0.0, the 16 Class B networks from 172.16.0.0 to 172.31.0.0, and the 256 Class C networks that begin with 192.168.
- **5.** A, D, and E. The private IPv4 networks, defined by RFC 1918, are Class A network 10.0.0.0, the 16 Class B networks from 172.16.0.0 to 172.31.0.0, and the 256 Class C networks that begin with 192.168. The three correct answers are from the public IP network range, and none are reserved values.
- **6.** A and C. An unsubnetted Class A, B, or C network has two parts: the network and host parts.
- 7. B. An unsubnetted Class A, B, or C network has two parts: the network and host parts. The subnet part does not exist in that case. To perform subnetting, the engineer creates a new subnet part by choosing to use a subnet mask, defining a smaller number of host bits, which makes space for some bits to be used to number different subnets. So, the host part of the address structure gets smaller in the after-subnetting case. The subnet part of the address structure moves from size 0 (nonexistent) to some number of subnet bits after the engineer chooses a subnet (nondefault) mask. The network part remains a constant size throughout, whether subnetting or not.

Chapter 12

1. B and C. Class A networks have a first octet in the range of 1–126, inclusive, and their network IDs have a 0 in the last three octets. A

- network ID of 130.0.0.0 is actually a Class B network (first octet range 128–191, inclusive). All addresses that begin with 127 are reserved, so 127.0.0.0 is not a Class A network.
- 2. E. All Class B networks begin with values between 128 and 191, inclusive, in their first octets. The network ID has any value in the 128–191 range in the first octet, and any value from 0 to 255 inclusive in the second octet, with decimal 0s in the final two octets. Two of the answers show a 255 in the second octet, which is acceptable. Two of the answers show a 0 in the second octet, which is also acceptable.
- **3.** B and D. The first octet (172) is in the range of values for Class B addresses (128–191). As a result, the network ID can be formed by copying the first two octets (172.16) and writing 0s for the last two octets (172.16.0.0). The default mask for all Class B networks is 255.255.0.0, and the number of host bits in all unsubnetted Class B networks is 16.
- **4.** A and C. The first octet (192) is in the range of values for Class C addresses (192–223). As a result, the network ID can be formed by copying the first three octets (192.168.6) and writing 0 for the last octet (192.168.6.0). The default mask for all Class C networks is 255.255.255.0, and the number of host bits in all unsubnetted Class C networks is 8.
- 5. D. To find the network broadcast address, first determine the class, and then determine the number of host octets. At that point, convert the host octets to 255 to create the network broadcast address. In this case, 10.1.255.255 is in a Class A network, with the last three octets as host octets, for a network broadcast address of 10.255.255.255. For 192.168.255.1, it is a Class C address, with the last octet as the host part, for a network broadcast address of 192.168.255.255. Address 224.1.1.255 is a Class D address, so it is not in any unicast IP network and the question does not apply. For 172.30.255.255, it is a Class B address, with the last two octets as host octets, so the network broadcast address is 172.30.255.255.

- 1. C. If you think about the conversion one octet at a time, the first two octets each convert to 8 binary 1s. The 254 converts to 8-bit binary 11111110, and the decimal 0 converts to 8-bit binary 00000000. So, the total number of binary 1s (which defines the prefix length) is 8 + 8 + 7 + 0 = /23.
- **2.** B. If you think about the conversion one octet at a time, the first three octets each convert to 8 binary 1s. The 240 converts to 8-bit binary 11110000, so the total number of binary 1s (which defines the prefix length) is 8 + 8 + 8 + 4 = /28.
- 3. B. Remember that /30 is the equivalent of the mask that in binary has 30 binary 1s. To convert that to DDN format, write down all the binary 1s (30 in this case), followed by binary 0s for the remainder of the 32-bit mask. Then take 8 bits at a time and convert from binary to decimal (or memorize the nine possible DDN mask octet values and their binary equivalents). Using the /30 mask in this question, the binary mask is 11111111 11111111 11111111 111111100. Each of the first three octets is all binary 1s, so each converts to 255. The last octet, 11111100, converts to 252, for a DDN mask of 255.255.255.252. See Appendix A, "Numeric Reference Tables," for a decimal/binary conversion table.
- **4.** C. The size of the network part is always either 8, 16, or 24 bits, based on whether it is Class A, B, or C, respectively. As a Class A address, N=8. The mask 255.255.255.0, converted to prefix format, is /24. The number of subnet bits is the difference between the prefix length (24) and N, so S=16 in this case. The size of the host part is a number that, when added to the prefix length (24), gives you 32, so H=8 in this case.
- **5.** A. The size of the network part is always either 8, 16, or 24 bits, based on whether it is Class A, B, or C, respectively. As a Class C address, N=24. The number of subnet bits is the difference between the prefix length (27) and N, so S=3 in this case. The size of the host part is a number that, when added to the prefix length (27), gives you 32, so H=5 in this case.

- **6.** D. Classless addressing rules define a two-part IP address structure: the prefix and the host part. This logic ignores Class A, B, and C rules and can be applied to the 32-bit IPv4 addresses from any address class. By ignoring Class A, B, and C rules, classless addressing ignores any distinction as to the network part of an IPv4 address.
- 7. A and B. The masks in binary define a number of binary 1s, and the number of binary 1s defines the length of the prefix (network + subnet) part. With a Class B network, the network part is 16 bits. To support 100 subnets, the subnet part must be at least 7 bits long. Six subnet bits would supply only $2^6 = 64$ subnets, while 7 subnet bits supply $2^7 = 128$ subnets. The /24 answer supplies 8 subnet bits, and the 255.255.255.252 answer supplies 14 subnet bits.

- 1. D. When using classful IP addressing concepts as described in Chapter 13, "Analyzing Subnet Masks," addresses have three parts: network, subnet, and host. For addresses in a single classful network, the network parts must be identical for the numbers to be in the same network. For addresses in the same subnet, both the network and subnet parts must have identical values. The host part differs when comparing different addresses in the same subnet.
- 2. B and D. In any subnet, the subnet ID is the smallest number in the range, the subnet broadcast address is the largest number, and the usable IP addresses sit between them. All numbers in a subnet have identical binary values in the prefix part (classless view) and network + subnet part (classful view). To be the lowest number, the subnet ID must have the lowest possible binary value (all 0s) in the host part. To be the largest number, the broadcast address must have the highest possible binary value (all binary 1s) in the host part. The usable addresses do not include the subnet ID and subnet broadcast address, so the addresses in the range of usable IP addresses never have a value of all 0s or 1s in their host parts.
- **3.** C. The mask converts to 255.255.255.0. To find the subnet ID, for each octet of the mask that is 255, you can copy the IP address's

- corresponding values. For mask octets of decimal 0, you can record a 0 in that octet of the subnet ID. As such, copy the 10.7.99 and write a 0 for the fourth octet, for a subnet ID of 10.7.99.0.
- **4.** C. First, the resident subnet (the subnet ID of the subnet in which the address resides) must be numerically smaller than the IP address, which rules out one of the answers. The mask converts to 255.255.255.252. As such, you can copy the first three octets of the IP address because of their value of 255. For the fourth octet, the subnet ID value must be a multiple of 4, because 256 252 (mask) = 4. Those multiples include 96 and 100, and the right choice is the multiple closest to the IP address value in that octet (97) without going over. So, the correct subnet ID is 192.168.44.96.
- 5. C. The resident subnet ID in this case is 172.31.77.192. You can find the subnet broadcast address based on the subnet ID and mask using several methods. Following the decimal process in the book, the mask converts to 255.255.255.224, making the interesting octet be octet 4, with magic number 256 224 = 32. For the three octets where the mask = 255, copy the subnet ID (172.31.77). For the interesting octet, take the subnet ID value (192), add magic (32), and subtract 1, for 223. That makes the subnet broadcast address 172.31.77.223.
- 6. C. To answer this question, you need to find the range of addresses in the subnet, which typically then means you need to calculate the subnet ID and subnet broadcast address. With a subnet ID/mask of 10.1.4.0/23, the mask converts to 255.255.254.0. To find the subnet broadcast address, following the decimal process described in this chapter, you can copy the subnet ID's first two octets because the mask's value is 255 in each octet. You write a 255 in the fourth octet because the mask has a 0 on the fourth octet. In octet 3, the interesting octet, add the magic number (2) to the subnet ID's value (4), minus 1, for a value of 2 + 4 1 = 5. (The magic number in this case is calculated as 256 254 = 2.) That makes the broadcast address 10.1.5.255. The last usable address is 1 less: 10.1.5.254. The range that includes the last 100 addresses is 10.1.5.155 10.1.5.254.

- 1. A. With 50 percent growth, the mask needs to define enough subnet bits to create 150 subnets. As a result, the mask needs at least 8 subnet bits (7 subnet bits supply 2⁷, or 128, subnets, and 8 subnet bits supply 2⁸, or 256, subnets). Similarly, the need for 50 percent growth in the size for the largest subnet means that the host part needs enough bits to number 750 hosts/subnet. Nine host bits are not enough (2⁹ 2 = 510), but 10 host bits supply 1022 hosts/subnet (2¹⁰ 2 = 1022). With 16 network bits existing because of the choice to use a Class B network, the design needs a total of 34 bits (at least) in the mask (16 network, 8 subnet, 10 host), but only 32 bits exist—so no single mask meets the requirements.
- 2. B. With a growth of 20 percent, the design needs to support 240 subnets. Seven subnet bits do not meet the need $(2^7 = 128)$, but 8 subnet bits do meet the need $(2^8 = 256)$. To support 120 hosts/subnet, with 20% growth, the mask should support 144 hosts/subnet. That number requires 8 host bits $(2^8 2 = 254)$. As a result, you need a minimum 8 subnet bits and 8 host bits.

The right answer, 10.0.0.0/22, has 8 network bits because the network class is Class A, 14 subnet bits (/22 - 8 = 14), and 10 host bits (32 - 22 = 10). This mask supplies at least 8 subnet bits and at least 8 host bits.

The answer with the /25 mask supplies only 7 host bits, making it incorrect. The answer showing 172.16.0.0/23 supplies 9 host bits, which is enough; however, it uses 16 network bits with the Class B network, leaving too few subnet bits (7). The answer that shows Class C network 192.168.7.0 with mask /24 supplies 8 host bits but 0 subnet bits.

3. B. To support 1000 subnets, 10 subnet bits $(2^{10} = 1024)$ are needed. The design uses a Class B network, which means that 16 network bits exist as well. So, the shortest mask that meets the requirements is 255.255.255.192, or /26, composed of 16 network plus 10 subnet bits. The /28 answer also supplies enough subnets to meet the need, but

- compared to /26, /28 supplies fewer host bits and so fewer hosts/subnet.
- **4.** C and D. The mask converts to 255.255.252.0, so the difference from subnet ID to subnet ID (called the magic number in this chapter) is 256 252 = 4. So, the subnet IDs start with 172.30.0.0, then 172.30.4.0, then 172.30.8.0, and so on, adding 4 to the third octet. The mask, used with a Class B network, implies 6 subnet bits, for 64 total subnet IDs. The last of these, 172.30.252.0, can be recognized in part because the third octet, where the subnet bits sit, has the same value as the mask in that third octet.
- **5.** A. The first (numerically lowest) subnet ID is the same number as the classful network number, or 192.168.9.0. The remaining subnet IDs are each 8 larger than the previous subnet ID, in sequence, or 192.168.9.8, 192.168.9.16, 192.168.9.24, 192.168.9.32, and so on, through 192.168.9.248.
- 6. D. Using mask /24 (255.255.255.0), the subnet IDs increment by 1 in the third octet. The reasoning is that with a Class B network, 16 network bits exist, and with mask /24, the next 8 bits are subnet bits, so the entire third octet contains subnet bits. All the subnet IDs will have a 0 as the last octet, because the entire fourth octet consists of host bits. Note that 172.19.0.0 (the zero subnet) and 172.19.255.0 (the broadcast subnet) might look odd but are valid subnet IDs.

- 1. B and D. Cisco routers originally used IOS, with some models today still using IOS. Most of the enterprise router product line uses the newer IOS XE operating system. CatOS, short for Catalyst OS, refers to the original Cisco switch operating system.
- 2. B. The switch and router CLI follows the same basic flow with many commands in common. The three incorrect answers are incorrect because they describe actions that can occur on both routers and switches. However, the user must configure router interfaces with IP addresses. Switches, when used as Layer 2 switches only, do not need any IP addresses on their Layer 2 physical interfaces.

- 3. A and C. To route packets on an interface, the router interface configuration must include an IP address and mask. One correct command shows the correct single command used to configure both values, while one incorrect command shows those settings as two separate (nonexistent) commands. Also, to route packets, the interface much reach an "up/up" state; that is, the **show interfaces** and other commands list two status values, and both must be "up." The **no shutdown** command enables the interface so that it can reach an up/up state, assuming the interface has correct cabling and is connected to an appropriate device. One incorrect answer mentions the **description** command, which is useful but has nothing to do with making the interface work properly.
- 4. B. If the first of the two status codes is "down," it typically means that a Layer 1 problem exists. In this case, the question states that the router connects to a switch with a UTP straight-through cable, which is the correct cable pinout. Of the two answers that mention the **shutdown** command, if the router interface were shut down, the first router status code would be "administratively down," so that answer is incorrect. However, if the neighboring device interface sits in a shutdown state, the router will sense no electrical signals over the cable, seeing that as a physical problem, and place the interface into a "down/down" state, making that answer correct.

Second, the two answers that mention interface IP addresses have no impact on the status codes of the **show interfaces brief** command. Both answers imply that the interface does not have an IP address configured; however, the IP address configuration has no effect on the interface status codes, making both answers incorrect.

- **5.** C. The **show ip interface brief** command lists all the interface IPv4 addresses but none of the masks. The other three commands list both the address and mask.
- **6.** B. A router has one IPv4 address for each interface in use, whereas a LAN switch has a single IPv4 address that is just used for accessing the switch. The rest of the answers list configuration settings that use the same conventions on both routers and switches.

- 1. A and C. The route defines the group of addresses represented by the route using the subnet ID and mask. The router can use those numbers to find the range of addresses that should be matched by this route. The other two answers list facts useful when forwarding packets that happen to match the route.
- 2. D. Each time a router routes an IP packet, it de-encapsulates (removes) the IP packet from the incoming data-link frame. Once it decides where to forward the packet next, it re-encapsulates the packet in a new data-link frame. That occurs even if the incoming and outgoing data links happen to be the same type, as is the case in this scenario. So, all three routers de-encapsulate the IP packet. Since all links are Ethernet links, all three de-encapsulation actions removed the packet from an Ethernet frame.
- **3.** A and D. First, for the subnetting math, address 10.1.1.100, with mask /26, implies a subnet ID of 10.1.1.64. Also, mask /26 converts to a DDN mask of 255.255.255.192. For any working router interface, after adding the **ip address** command to configure an address and mask, the router adds a connected route for the subnet. In this case, that means the router adds a connected route for subnet 10.1.1.64 255.255.255.192. The router also adds a route called a local route, which is a route for the interface IP address with a 255.255.255.255 mask. In this case, that means the router adds a local route for address 10.1.1.100 with mask 255.255.255.255.
- **4.** B and C. The **ip route** command can refer to the IP address of the next-hop router on the link between the two routers, or to the local router's outgoing interface ID. The incorrect answers reverse those items, mentioning the local router's IP address and the next-hop router's interface ID.
- **5.** A. The correct syntax lists a subnet number, then a subnet mask in dotted-decimal form, and then either an outgoing interface or a next-hop IP address. Of the incorrect answers, one omits the subnet mask, while two use a prefix-style mask instead of a DDN mask.

6. B. The network engineer issued the command, but the router did not add an IP route. So, either the command had a syntax error, or the router accepted the command but has some reason to believe that it should not add a route to the table.

Two (incorrect) answers suggest the command has a syntax error: one answer with a general claim of a syntax error, and another explicitly stating that the next-hop IP address is missing. However, the **ip route** 10.1.1.0 255.255.255.0 s0/0/0 command is syntactically correct. Note that with outgoing interface S0/0/0 listed, the command does not need a next-hop IP address.

As for reasons why IOS would not add a route once it accepts the command into the configuration, IOS performs several checks of the contents of a valid **ip route** command before adding the route to the routing table. It checks whether the outgoing interface is up/up (as noted in this question's correct answer) and whether it has a route to reach the next-hop address. Also, if the router already has a route to the same subnet learned from another source, the router checks whether the other route has a better administrative distance.

- **1.** A and F. Of all the commands listed, only the two correct answers are syntactically correct router configuration commands. The command to enable 802.1Q trunking is **encapsulation dot1q** *vlan_id*.
- 2. B and C. Subinterface G0/1.1 must be in an administratively down state due to the **shutdown** command being issued on that subinterface. For subinterface G0/1.2, its status cannot be administratively down because of the **no shutdown** command. G0/1.2's state will then track to the state of the underlying physical interface. With a physical interface state of down/down, subinterface G0/1.2 will be in a down/down state in this case.
- **3.** C. The configuration of the Layer 3 switch's routing feature uses VLAN interfaces. The VLAN interface numbers must match the associated VLAN ID, so with VLANs 1, 2, and 3 in use, the switch will configure **interface vlan 1**, **interface vlan 2** (which is the

correct answer), and **interface vlan 3**. The matching connected routes, like all connected IP routes, will list the VLAN interfaces.

As for the incorrect answers, a list of connected routes will not list any next-hop IP addresses. Each route will list an outgoing interface; the outgoing interface will not be a physical interface, but rather a VLAN interface, because the question states that the configuration uses SVIs. Finally, all the listed subnets have a /25 mask, which is 255.255.255.128, so none of the routes will list a 255.255.255.0 mask.

4. C and D. First, for the correct answers, a Layer 3 switch will not route packets on a VLAN interface unless it is in an up/up state. When using autostate, a VLAN interface will only be up/up if the matching VLAN (with the same VLAN number) exists on the switch, is not shut down, and at least one port is up and active in that VLAN. For one correct answer, if the **no vlan 2** command were issued, deleting VLAN 2, the switch would move interface VLAN 2 to a up/down state so it could no longer route packets. For the other correct answer, disabling VLAN 2 with the **shutdown** command in VLAN configuration mode has the same result.

As for the incorrect answers, when using autostate, a Layer 3 switch needs only one access port or trunk port forwarding for a VLAN to enable routing for that VLAN, so nine of the ten access ports in VLAN 2 could fail, leaving one working port, and the switch would keep routing for VLAN 2.

A **shutdown** of VLAN 4 does not affect routing for VLAN interfaces 2 and 3. Had that answer listed VLAN 2 or 3, it would be a reason to make routing fail for that VLAN interface.

5. A and C. With a Layer 3 EtherChannel, the physical ports and the port-channel interface must disable the behavior of acting like a switch port and therefore act like a routed port, through the configuration of the **no switchport** interface subcommand. (The **routedport** command is not an IOS command.) Once created, the physical interfaces should not have an IP address configured. The

- port-channel interface (the interface representing the EtherChannel) should be configured with the IP address.
- **6.** B and C. With a Layer 3 EtherChannel, two configuration settings must be the same on all the physical ports, specifically the speed and duplex as set with the **speed** and **duplex** commands. Additionally, the physical ports and port-channel port must all have the **no switchport** command configured to make each act as a routed port. So, having a different speed setting, or being configured with **switchport** rather than **no switchport**, would prevent IOS from adding interface G0/2 to the Layer 3 EtherChannel.

As for the wrong answers, both would cause an issue adding the port to a Layer 2 EtherChannel but do not cause a problem with a Layer 3 EtherChannel. Once Layer 2 operations have been disabled because of the **no switchport** command, those settings do not then cause problems for the Layer 3 EtherChannel. So, Layer 2 settings about access VLANs, trunking allowed lists, and STP settings, which must match before an interface can be added to a Layer 2 EtherChannel, do not matter for a Layer 3 EtherChannel.

7. A. On a router that has some routed ports, plus some switched ports, IOS supports LAN switching subcommands on the switched ports only. So, when in interface configuration mode for one of a router's switched interfaces, IOS accepts the **switchport access** command but not the **ip address** command. The router supports the **description** subcommand on both switched and routed ports, making that answer incorrect. Finally, one answer lists a global command (**hostname**), making that answer incorrect because the question asks for interface subcommands.

- **1.** B and D. The client sends a Discover message, with the server returning an Offer message. The client then sends a Request, with the server sending back the IP address in the Acknowledgment message.
- 2. A and B. The two correct answers list the two primary facts that impact which IP addresses the server will lease to clients. For the

- incorrect answer about DNS servers, the DHCP server does supply the IP address of the DNS servers, but not the hostnames of the DNS servers. Also, the DHCP server supplies the IP address (but not the MAC address) of the default gateway in each subnet.
- 3. A and C. A router needs to act as a DHCP relay agent if DHCP clients exist on the connected subnet and there is no DHCP server in that subnet. If a DHCP server exists in the subnet, the router does not need to forward DHCP messages to a remote DHCP server (which is the function of a DHCP relay agent). The answer that mentions the **ip** address dhcp command makes the router interface act as a DHCP client and has nothing to do with DHCP relay agent.
- **4.** D. The **ip address dhcp** command tells the router to obtain its address using DHCP. The router learns all the same information that a normal DHCP client would learn. The router uses the address listed as the default gateway to build a default route, using the default gateway IP address as the next-hop address. The router continues to work like a router always does, forwarding packets based on its IP routing table.
- **5.** B and C. The output shows the MAC address, IP address, subnet mask (in hex format), and the subnet broadcast address. Of those, the DHCP server supplies the information in the two correct answers. The two incorrect answers mention the MAC address (not supplied by DHCP, but known to the device's NIC) and the subnet broadcast address (calculated by the host).
- **6.** D. Windows supports both **ipconfig** and **ipconfig** /**all** commands, but the **ipconfig** command does not mention the DNS servers. Note that the **ifconfig** command works on Linux and macOS but not Windows, and the **ifconfig** /**all** command is an invalid command on all three.

There are no questions for this chapter.

- 1. D. Both versions of RIP use distance vector logic, and EIGRP uses a different kind of logic, characterized either as advanced distance vector or a balanced hybrid.
- 2. C and D. Both versions of RIP use the same hop-count metric, neither of which is affected by link bandwidth. EIGRP's metric, by default, is calculated based on bandwidth and delay. OSPF's metric is a sum of outgoing interfaces costs, with those costs (by default) based on interface bandwidth.
- **3.** B, C, and D. Of the listed routing protocols, only the old RIP Version 1 (RIP-1) protocol does not support variable-length subnet masks (VLSM).
- 4. C. LSAs contain topology information that is useful in calculating routes, but the LSAs do not directly list the route that a router should add to its routing table. In this case, R1 would run a calculation called the Shortest Path First (SPF) algorithm, against the LSAs, to determine what IP routes to add to the IP routing table.
- 5. B. Neighboring OSPF routers that complete the database exchange are considered fully adjacent and rest in a full neighbor state. The up/up and final states are not OSPF states at all. The 2-way state is either an interim state or a stable state between some routers on the same VLAN.
- **6.** C. The correct answer is the one advantage of using a single-area design. The three wrong answers are advantages of using a multiarea design, with all reasons being much more important with a larger internetwork.

Chapter 22

1. B. The **network 10.0.0 0.255.255.255 area 0** command matches all three interface IP addresses because it compares the first octet only (10) and matches in each case.

The three incorrect answers do not match all three interface IP addresses because they each compare at least one octet that does not match the address in the **network** command:

network 10.0.0.0 0.0.0.0 requires an exact match of all four octets (10.0.0.0), which matches no interfaces.

network 10.0.0.0 0.0.0.255 requires an exact match of the first three octets (10.0.0), which matches none of the interface IP addresses.

network 10.0.0.0 0.0.255.255 requires an exact match of the first two octets (10.0), which matches none of the interface IP addresses.

2. A. The **network 10.1.0.0 0.0.255.255 area 0** command matches all IP addresses that begin with 10.1, enabling OSPF in area 0 on all interfaces. The three incorrect answers do not match all three interface IP addresses because they each compare at least one octet that does not match the address in the **network** command:

network 10.0.0.0 0.255.255.0 ignores the middle two octets but compares the first (10) and last (0) octets to the interface addresses. The first octet matches, but the fourth octet matches none of the addresses.

network 10.1.1.0 0.x.1x.0 does not meet syntax requirements because of the letters (x) in the wildcard mask. It would be rejected when attempted in configuration mode.

network 10.1.1.0 255.0.0.0 ignores the first octet but compares the last three octets (1.1.0) to the addresses. None of the addresses end in 1.1.0, so no addresses match this command.

3. A and E. Of the three wrong answers, two are real commands that simply do not list the OSPF neighbors. **show ip ospf interface brief** lists interfaces on which OSPF is enabled but does not list neighbors. **show ip interface** lists IPv4 details about interfaces, but none related to OSPF. One incorrect answer, **show ip neighbor**, is not a valid IOS command.

- **4.** B. The rule for choosing the OSPF RID begins with the **router-id** command in the OSPF process configuration, but the router had no such command. The next rule considers all working (up/up) loopback interfaces, and among those, OSPF chooses the numerically highest IP address. In this case, two such loopback interfaces exist, with loopback 1, with address 10.8.8.8, having the numerically highest IP address.
- **5.** B. With OSPFv2 interface configuration mode, the configuration looks just like the traditional configuration, with a couple of exceptions. The **network** router subcommand is no longer required. Instead, each interface on which OSPF should be enabled is configured with an **ip ospf** process-id area area-id interface subcommand. This command refers to the OSPF routing process that should be enabled on the interface and specifies the OSPFv2 area.
- 6. A and D. Many of the show commands for OSPF do not happen to note whether OSPF happens to be enabled due to an interface subcommand the (ip ospf interface subcommand) or a router subcommand (the network command). The show ip protocols command lists all interfaces on which OSPF has been enabled using the ip ospf interface subcommand under the heading "Routing on Interfaces Configured Explicitly." Additionally, the show ip ospf interface command, which lists many lines of output per interface, lists the phrase "Attached via Interface Enable." Also, although not in the answers, you can also look at the configuration with the show running-config or show startup-config command.

- 1. B and D. By default, IOS assigns Ethernet interfaces an OSPF network type of broadcast, with an OSPF interface priority of 1. As a result, both routers attempt to discover the other routers on the link (which identifies one correct answer).
 - The broadcast network type means that the routers also attempt to elect a DR and BDR. With a priority tied, the routers choose the DR based on the highest router ID (RID) values, meaning that R2 will

become the DR and R1 will become the BDR. These facts show why the two incorrect answers are incorrect. The other correct answer is correct because the **show ip ospf neighbor** command lists the local router's neighbor relationship state (FULL) and the role filled by that neighbor (DR), which would be the output shown on R1 when R2 is acting as DR.

- **2.** B and C. First, the OSPF point-to-point network type causes the two routers to dynamically discover neighbors, making one answer correct.
 - Next, IOS assigns a default OSPF interface priority of 1, so R1's configured priority of 11 would be better in a DR/BDR election. However, the point-to-point network type causes the router to not use a DR/BDR on the interface. As a result, the answer about R1 becoming the DR is incorrect (because no DR exists at all), and the answer listing a state of "FULL/DR" is incorrect for the same reason. However, the answer that claims that R2 will be neither DR nor BDR is true because no DR or BDR is elected.
- **3.** D. The **show ip ospf interface brief** command lists a pair of counters under the heading "Nbrs F/C" on the far right of the output. The first of the two numbers represents the number of fully adjacent neighbors (2 in this case), and the second number represents the total number of neighbors.
- **4.** B. The default OSPF priority setting is 1. Once configured with 100, R2 has a higher priority. However, the routers only use the priority values when electing a new DR, so as long as the neighbor relationship is stable, no new DR election will occur. So, any change to make R2 (with higher priority) the DR occurs only after a failure that breaks the current neighbor relationship. Two of the answers refer to other timing as to when R2 becomes the DR. Another distractor states that R2 will cease to serve as BDR, which is not the case.
- **5.** B. SPF calculates the cost of a route as the sum of the OSPF interface costs for all outgoing interfaces in the route. The interface cost can be set directly (**ip ospf cost**), or IOS uses a default based on the reference bandwidth and the interface bandwidth. Of the listed

- answers, **delay** is the only setting that does not influence OSPFv2 metric calculations.
- **6.** D. The configuration of the interface subcommand **ip ospf hello-interval 15** sets the Hello interval to 15. Also, without any explicit configuration of a Dead interval, IOS also sets the Dead interval to 4X the Hello interval or 60 in this case. The question stem describes the timing and purpose of the Dead interval: how long to wait after not receiving any more Hellos before believing the neighbor has failed.

1. A and D. As worded, the correct answers list a scenario that would prevent the neighbor relationship. One correct answer mentions the use of two different OSPF areas on the potential OSPF neighbors; to become neighbors, the two routers must use the same area number. The other correct answer mentions the use of two different Hello timers, a mismatch that causes two routers to reject each other and to not become neighbors.

The two incorrect answers list scenarios that do not cause issues, making them incorrect answers. One mentions mismatched OSPF process IDs; OSPF process IDs do not need to match for two routers to become neighbors. The other incorrect answer (that is, a scenario that does not cause a problem) mentions the use of two different priority values. The priority values give OSPF a means to prefer one router over the other when electing a DR/BDR, so the setting is intended to be set to different values on different routers and does not cause a problem.

2. C. As worded, the correct answers should be a scenario that would prevent the neighbor relationship. The answers all list values that are identical or similar on the two routers. Of those, the use of an identical OSPF Router ID (RID) on the two routers prevents them from becoming neighbors, making that one answer correct.

Of the incorrect answers, both routers must have the same Dead interval, so both using a Dead interval of 40 causes no issues. The

- two routers can use any OSPF process ID (the same or different value, it does not matter), making that answer incorrect. Finally, the two routers' IP addresses must be in the same subnet, so again that scenario does not prevent R13 and R14 from becoming neighbors.
- **3.** D. The OSPF **shutdown** command tells the OSPF process to stop operating. That process includes removing any OSPF-learned routes from the IP routing table, clearing the router's LSDB, and closing existing OSPF neighbor relationships. In effect, it causes OSPF to stop working on the router, but it does retain the configuration so that a **no shutdown** command in OSPF configuration mode will cause the router to start using OSPF again with no changes to the configuration.
- **4.** B. OSPF uses an equal-cost multipath feature, in which when it calculates multiple routes for the same subnet that tie with the lowest metric, the router places multiple routes into the routing table. IOS limits the number of such routes for one destination subnet per the **maximum-paths** setting on the router, which typically defaults to 6. The router would not use the route with metric 15001, as it is worse than the other two routes' metric of 15000.
- 5. D. Within a routing protocol, the routing protocol will choose the best route based on the metric. As a result, OSPF picks the metric 1000 route while EIGRP chooses its metric 1,000,000 route. Then the router must choose between the two routing protocol sources using the administrative distance. With default settings, EIGRP has a better administrative distance of 90 versus OSPF's 110. As a result, the router places the best EIGRP route into its routing table, the route learned by EIGRP with metric 1,000,000.
- **6.** D. Each route defines a range of IP addresses as follows:
 - 172.20.90.9/32: 172.20.90.9 only
 - **172.20.88.0/23: 172.20.88.0–172.20.89.255**
 - **172.20.80.0/20: 172.20.80.0–172.20.95.255**
 - **172.20.0.0/16: 172.20.0.0–172.20.255.255**
 - **0.0.0.0/0: 0.0.0.0–255.255.255.255**

Given those ranges, a packet destined for address 172.20.89.100 matches all but the first route in the list.

- 7. C. Each route defines a range of IP addresses, as follows:
 - 172.20.90.9/32: 172.20.90.9 only
 - **172.20.88.0/23: 172.20.88.0–172.20.89.255**
 - **172.20.80.0/20: 172.20.80.0–172.20.95.255**
 - **172.20.0.0/16: 172.20.0.0–172.20.255.255**
 - **0.0.0.0/0: 0.0.0.0–255.255.255.255**

Given those ranges, a packet destined for address 172.20.90.1 matches the last three routes in the list. Among those, the router will use the most specific route, the route with the largest number of prefix bits. As a result, the router uses the route with prefix length /20, which has a next-hop address of 172.20.13.3.

- 1. C. NAT, specifically the PAT feature that allows many hosts to use private IPv4 addresses while being supported by a single public IPv4 address, was one short-term solution to the IPv4 address exhaustion problem. IP version 5 existed briefly as an experimental protocol and had nothing to do with IPv4 address exhaustion. IPv6 directly addresses the IPv4 address exhaustion problem, but it is a long-term solution. ARP has no impact on the number of IPv4 addresses used.
- 2. A. Routers use the same process steps when routing IPv6 packets as they do when routing IPv4 packets. Routers route IPv6 packets based on the IPv6 addresses listed inside the IPv6 header by comparing the destination IPv6 address to the router's IPv6 routing table. As a result, the router discards the incoming frame's data-link header and trailer, leaving an IPv6 packet. The router compares the destination (not source) IPv6 address in the header to the router's IPv6 (not IPv4) routing table and then forwards the packet based on the matched route.

- 3. D. If you are following the steps in the book, the first step removes up to three leading 0s in each quartet, leaving FE80:0:0:0:100:0:0:123. This value leaves two strings of consecutive all-0 quartets; when you change the longest string of all 0s to ::, the address is FE80::100:0:0:123.
- **4.** B. This question has many quartets that make it easy to make a common mistake: removing trailing 0s in a quartet of hex digits. Only leading 0s in a quartet and not trailing 0s should be removed. Many of the quartets have trailing 0s (0s on the right side of the quartet), so make sure not to remove those 0s.
- **5.** A. The unabbreviated version of an IPv6 address must have 32 digits, and only one answer has 32 hex digits. In this case, the original number shows four quartets and a ::. So, the :: was replaced with four quartets of 0000, making the number eight. Then, for each quartet with fewer than four digits, leading 0s were added, so each quartet has four hex digits.

- 1. C. Unique local addresses begin with FD in the first two digits.
- **2.** A. Global unicast addresses begin with a hex 2 or 3.
- **3.** D. The global routing prefix defines the address block, represented as a prefix value and prefix length, assigned to an organization by some numbering authority. The global routing prefix acts as the initial part of IPv6 addresses within the company for the number of bits defined by the prefix length. Similarly, when a company uses a public IPv4

- address block, all the addresses have the same value in the network part, which also acts as the initial part of IPv4 addresses.
- **4.** B. Subnetting a global unicast address block, using a single prefix length for all subnets, breaks the addresses into three parts. The parts are the global routing prefix, subnet ID, and interface ID.
- **5.** D. Unique local addresses begin with a 2-hex-digit prefix of FD, followed by the 10-hex-digit global ID.

- 1. A. The one correct answer lists the exact same IPv6 address listed in the question, with a /64 prefix length and no spaces in the syntax of the answer. Another (incorrect) answer is identical, except that it leaves a space between the address and prefix length, which is incorrect syntax. The two answers that list the eui-64 parameter list an address and not a prefix; they should list a prefix to be correct. However, even if these two incorrect answers had listed the prefix of the address shown (2001:1:1:1::), the EUI-64 process would not have resulted in the IPv6 address listed in the question.
- 2. B. With the eui-64 parameter, the router will calculate the interface ID portion of the IPv6 address based on its MAC address. Beginning with 5055.4444.3333, the router injects FF FE in the middle (5055.44FF.FE44.3333). Then the router inverts the seventh bit in the first byte. To see the change, hex 50 to binary 0101 0000. Then change bit 7, so the string becomes 0101 0010, which converts back to hex 52. The final interface ID value is 5255:44FF:FE44:3333. The wrong answers simply list a different value.
- **3.** A and C. Of the four answers, the two correct answers show the minimal required configuration to support IPv6 on a Cisco router: enabling IPv6 routing (**ipv6 unicast-routing**) and enabling IPv6 on each interface, typically by adding a unicast address to each interface (**ipv6 address...**). The two incorrect answers list nonexistent commands.

4. B and D. The **show ipv6 route connected** command lists all known connected routes, with each route listing the prefix/length of the route. The **show ipv6 interface g0/0/0** command lists the interface address and the prefix/length calculated from the configured address/length.

Of the incorrect answers, the **show ipv6 interface brief** command lists the interface address but not the prefix/length of the connected subnet. The **show ipv6 address** command does not exist, but is simply rejected as an invalid command if attempted.

5. A. With an **ipv6 address** command configured for a global unicast address but without a link-local address configured with an **ipv6 address** command, the router calculates its link-local address on the interface based on its MAC address and EUI-64 rules. The router does not use the global unicast IPv6 address to calculate the link-local address.

The first half of the link-local address begins FE80:0000:0000:0000. The router then calculates the second half of the link-local address value by taking the MAC address (0200.0001.000A), injecting FF FE in the middle (0200.00FF.FE01.000A), and flipping the seventh bit (0000.00FF.FE01.000A).

- **6.** B. FF02::1 is used by all IPv6 hosts on the link, FF02::5 is used by all OSPFv3 routers, and FF02::A is used by all EIGRPv6 routers. FF02::2 is used to send packets to all IPv6 routers on a link.
- 7. A. The router sends the NDP NS message to the solicited-node multicast address based on the unicast address of 2001:db8:1:1::1234:5678. To create the correct solicited-node address, take the last six hex digits (34:5678 in this case), and prepend FF02::1:FF. The correct answer is FF02::1:FF34:5678. The other answers are similar values that do not follow the correct solicited-node rules.
- **8.** B and C. First, for G0/0/1, with the **ipv6 enable** command, the router enables IPv6, creating an LLA using EUI-64 rules for the interface ID. Those facts identify one correct and one incorrect answer.

Then, for the answer interface G0/0/2 and the **ipv6 autoconfig** command, the command enables IPv6 with SLAAC. As a result, it generates an LLA, using EUI-64 rules, and generates a routable unicast address using SLAAC, again using EUI-64 rules for the interface ID. As a result, G0/0/2's LLA and global unicast address use the same interface ID values.

Finally, for the answer about interface G0/0/3 and the **ipv6 address** subcommand, every interface that supports IPv6 must have an LLA. The router will again use EUI-64 to self-assign the interface ID portion of the interface's LLA.

- 1. B. PC1 needs to discover PC2's MAC address. Unlike IPv4, IPv6 does not use ARP, instead using NDP. Specifically, PC1 uses the NDP Neighbor Solicitation (NS) message to request that PC2 send back an NDP Neighbor Advertisement (NA). SLAAC relates to address assignment and not to discovering a neighbor's MAC address.
- **2.** A and C. The NDP RA lists the router IPv6 address, the IPv6 prefixes known on the link, and the matching prefix lengths. The incorrect answers happen to list facts not included in the NDP RA message.
- **3.** A. The **show ipv6 neighbors** command lists all IPv6 addresses of neighbors (both routers and hosts), plus their matching MAC addresses. It does not note which are routers, leaving that information for the **show ipv6 routers** command.
- 4. D. For the one correct answer, hosts can ask for (solicit) all routers to identify themselves by sending an NDP Router Solicitation (RS) message, with the routers sending back an NDP Router Advertisement (RA) message. For the incorrect answers, PC1 uses NDP Neighbor Solicitation (NS) but not for learning its default router IPv6 address. DAD is a function that uses NDP NS and NA messages, but its function does not include the discovery of the default router address. Finally, EUI-64 does not define a protocol or message, but is rather a convention to define 64-bit values to use as an IPv6 IID.

- **5.** D. SLAAC gives the host a means to choose its unicast address. The host also uses NDP to learn its prefix length, plus the address(es) of any default routers. It then uses stateless DHCP to learn the addresses of the DNS server(s).
- **6.** B and D. With SLAAC, the host learns the subnet prefix from a router using NDP RS/RA messages, and then the host builds the rest of the address (the interface ID). The host can randomly generate the interface ID or use modified EUI-64 rules. The host does not learn the interface ID from any other device, which helps make the process stateless because no other device needs to assign the host its full address.
- 7. A. The DHCPv6 protocol uses well-known multicast addresses, specifically FF02::1:2, for messages directed to DHCPv6 servers. However, because this multicast address has a link-local scope, those messages remain on the local LAN. A router connected to the LAN must implement a DHCPv6 relay agent function so that the router will replace the packet's FF02::1:2 multicast destination address with the unicast address of the DHCPv6 server. The routers then use normal unicast routing to forward the packet.
 - For the two other incorrect answers, note that IPv6 does not use broadcast addresses at all. For instance, the all F's address in the answer is not an IPv6 broadcast address because there is no such thing in IPv6. Also, there is no mechanism to learn a DHCPv6 server's unicast address using NDP.
- 8. C. IPv6 routes on hosts and routers typically use the LLA of the next-hop device. For instance, PC1's default route would reference a router's LLA, not GUA. The **traceroute** command relies on those routes. However, the NDP messages that help the **traceroute** command identify how each router identifies the routable unicast address like the global unicast address. So, the **traceroute** command lists only GUAs in its output. Those facts determine the correct answer and rule out two answers as incorrect. One answer mentions the last line of **traceroute** output; because the command succeeded, that line lists the IPv6 address of the destination host rather than the address of the last router.

- 1. A and C. With an IPv6 address on a working interface, the router adds a connected route for the prefix (subnet) implied by the **ipv6 address** command. It also adds a local route (with a /128 prefix length) based on the unicast address. The router does not add a route based on the link-local address.
- 2. A and C. The two correct answers show the correct subnet ID (subnet prefix) and prefix length for the two connected subnets: 3111:1:1::/64 and 3222:2:2:2::/64. The answer with the /128 prefix length exists in a local route, but the **show ipv6 route connected** command does not list local routes. The other incorrect answer lists the entire IPv6 address with a /64 prefix length rather than the prefix ID.
- **3.** A and B. All the answers list the same destination subnet prefix (2000:1:2:3::/64), which is the subnet prefix on the LAN to the right of Router R1. The differences exist in the forwarding instructions in each route.

For the two commands that list both the outgoing interface (G0/0/1) and the next-hop address, both refer to the correct outgoing interface on Router R5. One refers to the incorrect next-hop address—R1's own global unicast address (GUA), whereas the correct command lists neighboring Router R6's GUA (which ends in :6).

For the incorrect answer that lists only an outgoing interface, it lists the correct interface, and the router adds it to its routing table, but the route does not work. IPv6 static routes that refer to an outgoing Ethernet interface must also list a next-hop address for the router to know enough information to forward packets.

For the correct answer that lists only a next-hop GUA, it lists the correct GUA: R6's GUA on the link between R5 and R6 (which ends in :6).

4. B. All four answers show examples of commands that use a next-hop router IPv6 address.

Two incorrect answers list a next-hop address for R5's WAN interface (one global unicast, one link-local). A correct next-hop address reference on Router R1 should refer to an address on Router R6 instead.

For the two answers that list addresses on Router R6, the one that lists R6's global unicast address (2001:1:2:56::6) is correct. The command that lists R6's link-local address also requires R5's outgoing interface, so the router would reject the command in the answer that lists FE80::FF:FE00:6.

- **5.** B. The **show ipv6 route** command, unlike the **show ip route** command, does not designate a gateway of last resort. Instead, it lists the default route like the other IPv6 routes, but with the special prefix/length of ::/0, which matches all possible IPv6 addresses.
 - For the other incorrect answers, the prefix of ::/128 would match the host address of all 0s, rather than matching all addresses. A route that matches prefix 2000::/3 will match all global unicast addresses, but it does not match all IPv6 addresses, so it would not be a default route.
- 6. B. The **ipv6 route** command in the question uses correct syntax, so the router will at least accept the command into the configuration. Of note, the command uses the administrative distance (AD) setting at the end, with a value of 200. As a result, Router R1 treats this route as a floating static route because its AD value (200) is greater than the default OSPF AD (110). As such, R1 continues to use the better OSPF-learned route based on the better (lower) AD and does not add the static route to the routing table.
- 7. C. The question asks what could have caused the conditions in the question. The user typed the command and pressed Enter, but the question did not say whether the router accepted the command. The question also tells us that the IPv6 routing table lists no routes for prefix/length (2001:DB8:8:8::/64). The goal then is to consider the answers to determine if any of those answers could result in no routes appearing for this prefix.

IOS will add a new static route to the IPv6 routing table if, when using a next-hop global unicast address, the router has a working

route to reach that next-hop address and there is no better (lower administrative distance) route for the exact same subnet. So, the correct answer identifies one reason why the route would not appear.

The answer that mentions a better route with administrative distance of 110 is a valid reason for the static route not to appear. Still, the question states that no route for the subnet appears in the routing table, so clearly that competing route does not exist.

The other two incorrect answers mention the **ipv6 route** command. This command can use a link-local next-hop address but does not have to do so, showing the incorrect claim on one of those answers. For the other answer, when using a global unicast address as next-hop, the command does not also require an outgoing interface parameter, showing that answer as incorrect.