# AUTOTUNING UNDER TIGHT BUDGET CONSTRAINTS: A TRANSPARENT DESIGN OF EXPERIMENTS APPROACH



 $m{Pedro~Bruel}^{1,3}$ , Steven Quinito Masnada $^2$ , Brice Videau $^3$ , Arnaud Legrand $^3$ , Jean-Marc Vincent $^3$ , Alfredo Goldman $^1$ 

# Autotuning: Optimizing Program Configurations

# AND REPORT AND THE PARTY OF THE





- How to write efficient code for each of these?
- We can use autotuning: the process of automatically finding a configuration of a program that optimizes an objective

# Strategies for Exploring Search Spaces

| System                | Domain               | Approach                |
|-----------------------|----------------------|-------------------------|
| ATLAS                 | Dense Linear Algebra | Exhaustive              |
| INSIEME               | Compiler             | Genetic Algorithm       |
| <b>Active Harmony</b> | Runtime              | Nelder-Mead             |
| ParamILS              | Domain-Agnostic      | Stochastic Local Search |
| OPAL                  | Domain-Agnostic      | Direct Search           |
| OpenTuner             | Domain-Agnostic      | Ensemble                |
| MILEPOST GCC          | Compiler             | Machine Learning        |
| Apollo                | GPU kernels          | Decision Trees          |

Exhaustive, Meta-Heuristics, Machine Learning

#### Assumptions:

- Many measurements, "smoothness", reachable solutions After optimizing:
  - Learn "nothing", can't explain choices

# Autotuning: Search Spaces are Hard to Explore



Unrolling, tiling and performance for a biconjugate gradient kernel

- Represent the effect of all possible configurations on the objectives, can be difficult to explore, with multiple local optima and undefined regions
- Main issues are exponential growth, geometry, & measurement time

# Design of Experiments: Exploration under a Budget

#### Design of Experiments (DoE):

- ► Factors are program parameters, and levels are possible factor values
- An experiment fixes levels, and a design is a selection of experiments to run
- A performance model is required to construct designs



- A Plackett-Burman design for 7 2-level factors
- Results, or responses, can be used to identify relevant parameters and to fit a linear regression model



Exploration of a search space using a fixed budget of 50 points, the red "+" represents the best point found by each strategy

# A Transparent Design of Experiments Approach



- An initial model is provided by the user (steps 1 & 2)
- Design of Experiments guides exploration (steps 3 & 4)
- ► Significant factors are identified by Analysis of Variance (ANOVA) (steps 5 & 6)
- New fitted model predicts best value for significant factors (steps 7 & 8)

Transparent: factor and level selections based on ANOVA Parsimonious: DoE decreases measurements

#### A Motivating Result on a GPU Kernel

#### Kernel factors:

| Factor             | Levels               | <b>Short Description</b>                 |
|--------------------|----------------------|------------------------------------------|
| vector_length      | $2^0, \dots, 2^4$    | Size of support arrays                   |
| load_overlap       | true, false          | •                                        |
| temporary_size     | 2,4                  | Byte size of temporary data              |
| elements_number    | $1,\ldots,24$        | Size of equal data splits                |
| y_component_number | $1,\ldots,6$         | Loop tile size                           |
| threads_number     | $2^5, \dots, 2^{10}$ | Size of thread                           |
| lws_y              | $2^0, \dots, 2^{10}$ | groups<br>Block size in y di-<br>mension |

#### Initial performance model:



 This simple case had known valid search space and global optimum, and fixed budget

#### mension optimum, and fixed budget

Our approach (DLMT) was always within 1% of the optimum



#### Extensive Evaluation on the SPAPT Benchmark

- > SPAPT is an autotuning benchmark for CPU kernels, with search space sizes between  $10^7$  and  $10^{36}$
- We evaluated DLMT on 17 kernels (3 shown below) using the same initial performance model, and fixed budget

Our approach (DLMT) achieved good speedups using a smaller budget, while exploring better configurations



#### Laboratoire d'informatique de Grenoble







<sup>2</sup>University of Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK 38000 Grenoble, France <sup>3</sup>University of Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG 38000 Grenoble, France

