Zbiór odpowiedzi do kolokwiów z MPwI

Emilian Zawrotny

9 czerwca 2025

1 2024 Termin 1 grupa A

- 1. iTrust
 - (a) $P(\underline{T}=0) = \frac{1}{5}$ $P(\underline{T}=1) = \frac{3}{5}$ $P(\underline{T}=2) = \frac{1}{5}$
 - (b) $V\underline{T} = 0.4$
 - (c) $G_{\underline{X}}(z) = \frac{1}{5}(1+3z+z^2)$
- 2. Wektor losowy
 - (a) $k = -\frac{5}{6}$
 - (b) $p_{\underline{X}}(x) = -\frac{5}{2}x + 3$ $p_{\underline{Y}}(y) = -\frac{5}{3} + 2y^2$
 - (c) są zależne
 - (d) $corr(\underline{X}, \underline{Y}) = \frac{25}{6}$
 - (e) $cov(\underline{X}, \underline{Y}) = 5$
 - (f) Nie są ani ortogonalne, ani nieskorelowane

2 2024 Termin 1 grupa B

- 1. iTrust
 - (a) $P(\underline{T}=0) = \frac{13}{20}$ $P(\underline{T}=1) = \frac{13}{40}$ $P(\underline{T}=2) = \frac{1}{40}$
 - (b) $V\underline{T} = 0.284375$
 - (c) $G_{\underline{T}}(z) = \frac{13}{20} + \frac{13}{40}z + \frac{1}{40}z^2$
- 2. Wektory losowe
 - (a) $k = -\frac{5}{6}$
 - (b) $p_{\underline{X}}(x) = 3x \frac{5}{2}$ $p_{\underline{Y}}(y) = -\frac{5}{3}y^2 + 2$
 - (c) Nie są niezależne statystycznie
 - (d) $corr(\underline{X}, \underline{Y}) = -\frac{9}{4}$
 - (e) $cov(\underline{X}, \underline{Y}) = \frac{15}{2}$
 - (f) Nie są ortogonalne, bo $corr(\underline{X},\underline{Y}) \neq 0$. Nie są też nieskorelowane, bo $\lambda \neq 0$

3 2023 Termin 1 grupa 1

1. Nadajniki i odbiorniki

(a)
$$P(O_{01}|N_{00}) = 0.16$$

 $P(O_{01}|N_{01}) = 0.72$
 $P(O_{01}|N_{10}) = 0.02$
 $P(O_{01}|N_{11}) = 0.09$
(b) $P(N_{01}|O_{01}) \approx 0.692$

- (1) (01) 11
- 2. Zmienne losowe

(a)
$$P(\underline{X} = k) = {4 \choose k} BER^k (1 - BER)^{4-k}$$
(b)
$$F(x) = \begin{cases} 0 & \text{dla } x \le 0 \\ 0.6561 & \text{dla } x \in (0; 1) \\ 0.9477 & \text{dla } x \in (1; 2) \\ 0.9963 & \text{dla } x \in (2; 3) \\ 0.9999 & \text{dla } x \in (3; 4) \\ 1 & \text{dla } x \ge 4 \end{cases}$$
(c)
$$p(x) = \begin{cases} 0.6561 & \text{dla } x = 0 \\ 0.2916 & \text{dla } x = 1 \\ 0.0486 & \text{dla } x = 2 \\ 0.0036 & \text{dla } x = 3 \\ 0.0001 & \text{dla } x = 4 \\ 0 & \text{dla pozostalych } x \end{cases}$$

- (d) $P(\underline{X} \ge 2) = 0.0523$
- (e) $P(1 \le X < 2) = 0.2916$

4 2023 Termin 1 grupa 2

1. iTrust

(a)
$$P(\underline{X} \leqslant 1) = \frac{4}{5}$$

(b)
$$P(\underline{X} = 2) = \frac{1}{5}$$

- (c) Trzeba powtórzyć 2 razy, wtedy prawdopodobieństwo trafienia wynosi96%
- 2. system komunikacji binarnej

(a)
$$F(x) = \begin{cases} 0 & \text{dla } x \leq 0 \\ 0.3025 & \text{dla } x \in (0; 1) \\ 0.55 & \text{dla } x \in (1; 2) \\ 0.7975 & \text{dla } x \in (2; 3) \\ 1 & \text{dla } x > 3 \end{cases}$$
(b)
$$p(X) = \begin{cases} 0.3025 & \text{w } x = 0 \\ 0.2475 & \text{w } x \in 1, 2 \\ 0.2025 & \text{w } x = 3 \\ 0 & \text{w pozostalych } x \end{cases}$$

5 2019 Kolos 1

- 1. P(A) = 0.027237354
- 2. Węzły A i B

(a)
$$P(A') = 1 - 2(1-p)^3(1+2(1-p))$$

6 2018 Kolos 1 grupa B

- 1. Wektor losowy
 - (a) $k = \frac{2}{e}$
 - (b) są niezależne
 - (c) $F(x,y) = e^{x-1}y$
 - (d) $P(0 \le X < 1) = 1 \frac{1}{6}$

7 2015 Kolos 2 grupa B

- 1. wielkość losowa
 - (a) $k = \frac{1}{243}$

(b)
$$F(x) = \begin{cases} 0 & \text{dla } x \le -9\\ \frac{1}{729}x^3 + 1 & \text{dla } x \in (-9; 0)\\ 1 & \text{dla } x \ge 0 \end{cases}$$

- (c) $P(a \leq X_{\frac{1}{3}}a) = \frac{26}{27}$
- (d) $E\underline{X} = -6.75$ $V\underline{X} = 3.0375$
- (e) $x_{\frac{1}{2}} = -\frac{9}{\sqrt[3]{2}}$
- 2. Wektor losowy

(a)
$$k_1 = \frac{1}{4}$$
; $k_2 = \frac{1}{2}$

(b)
$$F_{\underline{Y}}(y) = \begin{cases} 0 & \text{dla } y \leq 3\\ \frac{1}{6} & \text{dla } y \in (3;9)\\ \frac{1}{2} & \text{dla } y \in (9;12)\\ 1 & \text{dla } y > 12 \end{cases}$$

- (c) $E\underline{Y} = 9.5$ $V\underline{Y} = 10.25$
- (d) $x_{\frac{1}{2}} \in (9; 12)$ $x_{0.55} = 12$

(e)
$$P(2 \leq \underline{X} \leq 8, 0 \leq \underline{Y} \leq 4) = \frac{1}{8}$$

 $F(3,5) = \frac{1}{24}$

- (f) $E(\underline{X}|\underline{Y} = 9) = 6.5$
- $\begin{array}{c} \text{(g)} \ \ corr(\underline{X},\underline{Y}) = 61.75 \\ cov(\underline{X},\underline{Y}) = 0 \end{array}$

Wektory nie są ortogonalne, ani nie skorelowane.