答题时不要超过此线

姓名:

第十六届全国大学生数学竞赛初赛试卷参考答案 (非数学 A 类, 2024 年)

考试形式: 闭卷 考试时间: __150_ 分钟 满分: __100_ 分

题号	_		=	四	五	六	总分
满分	30	14	14	14	14	14	100
得分							

注意:

- 1. 所有答题都须写在本试卷指定的答题区域内.
- 2. 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3. 如答题空白不够,可写在当页背面,并标明题号.

得分	
评阅人	

(1)
$$\int_0^1 \ln(1+x^2) dx = \underline{\hspace{1cm}}$$

(2) 设
$$D: x^2 + y^2 \leqslant r^2$$
, 其中 $r > 0$. 则

$$\lim_{r \to 0^+} \frac{\iint_D (e^{x^2 + y^2} - 1) dx dy}{r^4} = \underline{\qquad}.$$

(3) 已知函数 $z = f(xy, e^{x+y})$, 且 f(x, y) 具有二阶连续偏导数. 则

$$\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{2cm}}.$$

- (4) 直线 $L: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 $\pi: x-y+2z-1=0$ 上的投影直线 L_0 的单位方向向量为 ______.
 - (5) 设 L 为圆周 $x^2 + y^2 = 9$,取逆时针方向,则第二型曲线积分

$$\int_{L} \frac{-y}{4x^2 + y^2} dx + \frac{x}{4x^2 + y^2} dy = \underline{\hspace{1cm}}.$$

解答.(1)

$$\int \ln(1+x^2) dx = x \ln(1+x^2) - \int \frac{2x^2}{1+x^2} dx = x \ln(1+x^2) - 2x + 2 \arctan x + C.$$
 故原式等于 $\ln 2 - 2 + \frac{\pi}{2}$.

(2) 利用极坐标变换 $x = \rho \cos \theta, y = \rho \sin \theta$, 则

$$\iint_D (e^{x^2+y^2} - 1) dx dy = 2\pi \int_0^r (e^{\rho^2} - 1) \rho d\rho = \pi (e^{r^2} - 1 - r^2).$$

注意,
$$r \to 0^+$$
 时, $e^{r^2} - 1 - r^2 = \frac{r^4}{2} + o(r^4)$, 故原式 $= \frac{\pi}{2}$.

(3)

$$z_x = yf_1 + e^{x+y}f_2.$$

$$z_{xy} = (xf_{11} + e^{x+y}f_{12})y + f_1 + (xf_{21} + e^{x+y}f_{22})e^{x+y} + e^{x+y}f_2$$

$$= xyf_{11} + (x+y)e^{x+y}f_{12} + e^{2(x+y)}f_{22} + f_1 + e^{x+y}f_2.$$

(4) 直线 L 的一般式方程为 $\begin{cases} x-y-1=0, \\ y+z-1=0. \end{cases}$ 这样,过 L 的平面束方程为

$$x - y - 1 + \lambda(y + z - 1) = 0$$
, \mathbb{P} $x + (\lambda - 1)y + \lambda z - 1 - \lambda = 0$,

其中 λ 为参数. 平面的法向量为 $(1, \lambda - 1, \lambda)$.

此法向量与平面 π 的法向量垂直当且仅当 $(1,\lambda-1,\lambda)\cdot(1,-1,2)=0$,即 $\lambda=-2$. 从而,过 L 且与平面 π 垂直的平面为 x-3y-2z+1=0. 于是,投影直线 L_0 的方程为 $\begin{cases} x-3y-2z+1=0, \\ x-y+2z-1=0. \end{cases}$

由此, L_0 的方向向量为 (-4, -2, 1). 故单位方向向量为 $\pm (-\frac{4}{\sqrt{21}}, -\frac{2}{\sqrt{21}}, \frac{1}{\sqrt{21}})$. 注:单位方向向量有两个,得到一个即可.

(5) 记 $P = \frac{-y}{4x^2 + y^2}$, $Q = \frac{x}{4x^2 + y^2}$, $L_1 : 4x^2 + y^2 = 4$, 取顺时针方向. 在 $L 与 L_1$ 所围成的环状区域内 P,Q 都是连续可微的且 $Q_x - P_y \equiv 0$. 根据Green公式,

$$\int_{L+L_1} P \mathrm{d}x + Q \mathrm{d}y = 0.$$

故

$$\int_{L} P dx + Q dy = \int_{-L_{1}} P dx + Q dy = \frac{1}{4} \int_{-L_{1}} -y dx + x dy.$$

再由Green公式,

$$\frac{1}{4} \int_{-L_1} -y dx + x dy = \frac{1}{4} \iint_D 2 dx dy = \frac{1}{2} \sigma(D) = \pi,$$

其中 $D:4x^2+y^2\leqslant 4, \sigma(D)=2\pi$ 为 D 的面积.

得分	
评阅人	

二、(本题 14 分) 求微分方程 $(x^3 - y^2)dx + (x^2y + xy)dy = 0$ 的通解.

$$\left(\frac{1+x}{x}\right)^2 u + (1+x)^2 = C.$$

即

$$\left(\frac{1+x}{x}\right)^{2}y^{2} + (1+x)^{2} = C.$$
.....(14 分)

解法2. 原方程可化为

$$xdx + ydy + y\frac{xdy - ydx}{x^2} = 0,$$

即

两边同时除以 $\sqrt{x^2+y^2}$,得

$$\frac{1}{2} \cdot \frac{\mathrm{d}(x^2 + y^2)}{\sqrt{x^2 + y^2}} + \frac{1}{\sqrt{1 + (\frac{y}{x})^2}} \cdot \frac{y}{x} \cdot \mathrm{d}\left(\frac{y}{x}\right) = 0,$$

即

$$\mathrm{d}(\sqrt{x^2+y^2})+\mathrm{d}\left(\sqrt{1+(\frac{y}{x})^2}\right)=0.$$

故

$$\sqrt{x^2 + y^2} + \frac{\sqrt{x^2 + y^2}}{x} = C,$$

即

$$(1+x)\sqrt{x^2+y^2} = Cx.$$
.....(14 $\%$)

解法3. 将原方程化为
$$xdx + ydy + y\frac{xdy - ydx}{x^2} = 0$$
, 即

$$\frac{1}{2}d(x^2+y^2) + yd\left(\frac{y}{x}\right) = 0.$$

(6分)

令
$$x = r \cos \theta, y = r \sin \theta$$
, 则 $r = \sqrt{x^2 + y^2}, \tan \theta = \frac{y}{x}$, 方程化为

$$\frac{1}{2}\mathrm{d}r^2 + r\sin\theta\mathrm{d}\tan\theta = 0,$$

$$dr + \sec\theta \tan\theta d\theta = 0.$$

积分得, $r + \sec \theta = C$.

换回原变量,得原方程的通解为

$$\sqrt{x^2 + y^2} + \frac{\sqrt{x^2 + y^2}}{x} = C.$$
(14 $\%$)

答题时不要超过此线 ()-

得分	
评阅人	

三、(本题 14分)设函数

$$f(x) = \begin{cases} \frac{1}{\ln(1+x)} - \frac{1}{x}, & 0 < x \le 1, \\ k, & x = 0. \end{cases}$$

- (1) 求常数 k 的值, 使得f(x)在区间[0,1]上连续;
- (2) 对(1)中 k 的值,求函数 f(x) 的最小值 λ 与最大值 μ .

解答. (1)

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x \to 0^+} \frac{x - \ln(1+x)}{x^2}$$
$$= \lim_{x \to 0^+} \frac{1 - \frac{1}{1+x}}{2x} = \lim_{x \to 0^+} \frac{1}{2(1+x)} = \frac{1}{2}.$$

令 $k = \frac{1}{2}$, 则 $\lim_{x \to 0^+} f(x) = f(0) = \frac{1}{2}$. 所以 f(x) 在 [0,1] 上连续. (4 分) (2) 易知, f(x) 在 (0,1) 内可导, 且

$$f'(x) = -\frac{1}{(1+x)\ln^2(1+x)} + \frac{1}{x^2} = \frac{g(x)}{x^2(1+x)\ln^2(1+x)},$$

其中 $g(x) = (1+x)\ln^2(1+x) - x^2$. (8 分) 因为 $g'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$, 且

$$g''(x) = \frac{2\ln(1+x)}{1+x} + \frac{2}{1+x} - 2 = \frac{2\ln(1+x) - 2x}{1+x} < 0 \quad (0 < x \le 1),$$

所以g'(x)在[0,1]上单调递减, 故当 $0 < x \le 1$ 时, g'(x) < g'(0) = 0. 这又推出 g(x) 在 [0,1] 上单调递减, 故当 $0 < x \le 1$ 时, g(x) < g(0) = 0. 从而 f'(x) < 0 ($0 < x \le 1$), 又可推出 f(x) 在 [0,1] 上单调递减. 因此,

$$\min_{0 \leqslant x \leqslant 1} f(x) = f(1) = \frac{1}{\ln 2} - 1, \quad \max_{0 \leqslant x \leqslant 1} f(x) = f(0) = \frac{1}{2}.$$

于是, 函数 f(x) 的最小值 $\lambda = \frac{1}{\ln 2} - 1$, 最大值 $\mu = \frac{1}{2}$ (14 分)

得分	
1471	
2파 1호	
评阅人	

四、(本题 14 分) 求曲面积分 $I=\iint_S (x^2-x)\mathrm{d}y\mathrm{d}z+$ $(y^2-y)\mathrm{d}z\mathrm{d}x+(z^2-z)\mathrm{d}x\mathrm{d}y,$ 其中 S 是上半球面 $x^2+y^2+z^2=$ R^2 $(z\geqslant 0)$ 的上侧.

解法1. 记 $\Sigma = \{(x, y, z) | z = 0, x^2 + y^2 \leq R^2 \}$, 取下侧. 由Gauss公式知

$$\iint\limits_{S+\Sigma} (x^2-x)\mathrm{d}y\mathrm{d}z + (y^2-y)\mathrm{d}z\mathrm{d}x + (z^2-z)\mathrm{d}x\mathrm{d}y = \iiint\limits_{\Omega} (2(x+y+z)-3)\mathrm{d}x\mathrm{d}y\mathrm{d}z,$$

$$\iint\limits_{\Sigma} (x^2 - x) dy dz + (y^2 - y) dz dx + (z^2 - z) dx dy = 0.$$

所以,

由对称性,

$$I = \iiint_{\Omega} (2z - 3) \mathrm{d}x \mathrm{d}y \mathrm{d}z.$$

用球坐标变换 $x = r \cos \theta \sin \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \varphi$, 得

$$I = \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^R (2r\cos\varphi - 3)r^2\sin\varphi dr = 2\pi \left(\frac{R^4}{4} - R^3\right).$$
.....(14 \(\frac{\psi}{2}\))

注: 最后一步直接利用直角坐标计算也可以.

解法2. S 的参数方程为

 $x = R\cos\theta\sin\varphi, \ y = R\sin\theta\sin\varphi, \ z = R\cos\varphi, \ (0 \leqslant \varphi \leqslant \frac{\pi}{2}, 0 \leqslant \theta \leqslant 2\pi).$

曲面 S 上的点 (x,y,z) 处的单位法向为 $\frac{(x,y,z)}{B}$. 故,

$$I = \iint_{S} (x^{2} - x, y^{2} - y, z^{2} - z) \cdot \frac{(x, y, z)}{R} dS$$

$$= \frac{1}{R} \iint_{S} \left[x^{3} + y^{3} + z^{3} - (x^{2} + y^{2} + z^{2}) \right] dS$$

$$= \frac{1}{R} \iint_{S} \left[x^{3} + y^{3} + z^{3} - R^{2} \right] dS.$$

故,

由对称性可知 $\iint_{S} x^3 dS = \iint_{S} y^3 dS = 0.$ (8分) $I = \frac{1}{R} \iint_{S} z^{3} dS - R \iint_{S} dS = \frac{1}{R} \iint_{S} z^{3} dS - 2\pi R^{3}$ $= \frac{1}{R} \iint_{0 \leqslant \varphi \leqslant \frac{\pi}{2}} (R \cos \varphi)^{3} R^{2} \sin \varphi d\varphi d\theta - 2\pi R^{3}$ $= \frac{1}{R} \iint_{0 \leqslant \varphi \leqslant \frac{\pi}{2}} (R \cos \varphi)^{3} R^{2} \sin \varphi d\varphi d\theta - 2\pi R^{3}$ $=2\pi R^4 \int_0^{\frac{\pi}{2}} \cos^3 \varphi \sin \varphi d\varphi - 2\pi R^3$ $= 2\pi R^4 \cdot \frac{1}{4} - 2\pi R^3$ $= \frac{\pi R^4}{2} - 2\pi R^3.$ (14分)

(6分)

得分	
评阅人	

五、(本题 14 分) 设 f(x)是 $(-\infty, +\infty)$ 上具有连续 导数的非负函数,且存在M>0使得对任意的 $x,y\in$ $(-\infty, +\infty)$, 有 $|f'(x) - f'(y)| \leq M|x-y|$. 证明: 对于任意 实数 x, 恒有 $(f'(x))^2 \leq 2Mf(x)$.

证明. 任取 $x \in (-\infty, +\infty)$, 对任意 $h \in (-\infty, +\infty)$, 且 $h \neq 0$, 恒有

$$0 \le f(x+h) = f(x) + \int_0^h f'(x+t) dt$$
$$= f(x) + \int_0^h (f'(x+t) - f'(x)) dt + f'(x)h.$$
 (6 $\frac{1}{2}$)

取 h 使得 $hf'(x) \leq 0$, 则

$$-f'(x)h \leqslant f(x) + \int_0^h (f'(x+t) - f'(x))dt \leqslant f(x) + M\frac{h^2}{2}.$$

$$|f'(x)| \le \frac{f(x)}{|h|} + M\frac{|h|}{2}.$$

取
$$|h| = \sqrt{\frac{2f(x)}{M}}$$
,即得所证不等式 $(f'(x))^2 \le 2Mf(x)$. (14 分)

六、(本题 14 分) 证明:级数 $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n^2 + k^2}$ 收 敛, 其中 [x] 表示不超过 x 的最大整数

得分 评阅人

证明. 对于任意固定的 n 和 N, 有

$$\sum_{k=1}^{N} \frac{1}{k^2 + n^2} \leqslant \sum_{k=1}^{N} \int_{k-1}^{k} \frac{1}{y^2 + n^2} dy = \int_{0}^{N} \frac{1}{y^2 + n^2} dy = \frac{1}{n} \arctan \frac{N}{n}.$$

$$\sum_{k=1}^{N} \frac{1}{k^2 + n^2} \geqslant \sum_{k=1}^{N} \int_{k}^{k+1} \frac{1}{y^2 + n^2} dy = \int_{1}^{N+1} \frac{1}{y^2 + n^2} dy = \frac{1}{n} \left(\arctan \frac{N+1}{n} - \arctan \frac{1}{n} \right).$$

$$\left| \sum_{k=1}^{N} \frac{1}{k^2 + n^2} - \frac{\pi}{2n} \right| \leqslant \frac{\pi}{2n} - \frac{1}{n} \left(\arctan \frac{N+1}{n} - \arctan \frac{1}{n} \right).$$

$$\left| \sum_{k=1}^{\infty} \frac{1}{k^2 + n^2} - \frac{\pi}{2n} \right| \leqslant \frac{1}{n} \arctan \frac{1}{n}.$$

(4分)

注意到

$$\sum_{n=1}^{\infty} \left| \sum_{k=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n^2 + k^2} - \frac{\pi}{2} \frac{(-1)^{[\sqrt{n}]}}{n} \right| = \sum_{n=1}^{\infty} \left| \sum_{k=1}^{\infty} \frac{1}{k^2 + n^2} - \frac{\pi}{2n} \right| \leqslant \sum_{n=1}^{\infty} \frac{1}{n} \arctan \frac{1}{n} < +\infty.$$

即
$$\sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n^2 + k^2} - \frac{\pi}{2} \frac{(-1)^{[\sqrt{n}]}}{n} \right)$$
 绝对收敛,从而收敛. 由此,级数 $\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n^2 + k^2}$ 与

级数
$$\sum_{n=1}^{\infty} \frac{\pi}{2} \frac{(-1)^{[\sqrt{n}]}}{n}$$
 同敛散. 以下只需证级数 $\sum_{n=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n}$ 收敛.

记 S_n 为级数 $\sum_{i=1}^{\infty} \frac{(-1)^{[\sqrt{n}]}}{n}$ 的前 n 项部分和,则有

$$S_{n^2} = \sum_{m=1}^{n-1} \sum_{k=m^2}^{(m+1)^2 - 1} \frac{(-1)^{[\sqrt{k}]}}{k} + \frac{(-1)^n}{n^2} = \sum_{m=1}^{n-1} (-1)^m C_m + \frac{(-1)^n}{n^2},$$

其中

$$C_m = \sum_{k=m^2}^{(m+1)^2 - 1} \frac{1}{k}.$$