Máquinas de Turing Ábacos

Prof. Edson Alves

Faculdade UnB Gama

2020

Sumário

- 1. Ábacos
- 2. Exemplos
- 3. Computabilidade por ábacos

Contexto histórico

- As máquinas de Turing tem muitas limitações: uma delas é trabalhar exclusivamente com inteiros positivos, o que exclui o zero
- Além disso, elas foram propostas antes do surgimento dos computadores digitais
- De fato, as máquinas de Turing contribuíram significativamente no desenvolvimento destes computadores
- Uma importante característica presente nos computadores digitais e ausentes nas máquinas de Turing é o acesso aleatório à memória
- Além disso, o sistema numérico subjacente é o sistema binário, e não o monádico
- O acréscimo destas duas características às máquinas de Turing levam aos ábacos

Definição

Uma **máquina de Lambek** ou uma **máquina de ábaco** é uma versão idealizada de computador, com as seguintes características:

- (a) acesso ao um número ilimitado de registradores R_0, R_1, R_2, \dots
- (b) cada registrador pode armazenar um número natural (positivos e o zero) de tamanho **arbitrário**
- (c) Cada registrador tem seu próprio **endereço**, de modo que é possível se mover do registrador R_i para o registrador R_j diretamente, sem precisar passar, passo a passo, pelos registradores intermediários $R_{i+1}, R_{i+2}, \ldots, R_{j-1}$

Notação

- lackbox Os registradores são representados pela letra maiúscula R e pelo subscrito i, indicando o número do registrador
- \blacktriangleright A notação [m] indica o número que está armazenado no registrador R_m
- Um registrador pode estar vazio, isto é, armazenar o valor zero
- A instrução "Coloque a soma dos números armazenados em R_m e em R_n em R_p pode ser escrita como

$$[m] + [n] \rightarrow p$$

 O número à direita da seta indica o registrador que armazenará o resultado da instrução

Programas em ábaco

Um **programa** em um ábaco consiste em uma lista de instruções numeradas. Cada uma destas instruções é de uma das duas formas abaixo:

 $\left(q
ight)$ acrescente um à caixa m e vá para a instrução r

ou

 $(q) \begin{tabular}{ll} $\{$ se a caixa m n\~ao est\'a vazia, & ent\~ao subtraia um da caixa m e v\'a para r \\ se a caixa m est\'a vazia, & ent\~ao v\'a para s \\ \ent\~ao v\'a para v\'a p$

Diagramas correspondentes às duas instruções dos ábacos

Instrução: Acrescente um ao número armazenado no registrador R_n

Instrução: Se R_n estiver vazio, saia pela seta e; caso contrário, subtraia um e saia pela outra seta

Exemplo: Esvaziar o registrador R_n

O programa a seguir, que consiste em uma única instrução, esvazia o conteúdo do registrador R_n :

(1) $\begin{cases} \text{ se } [n] \text{ \'e diferente de zero}, & \text{então subtraia um e permaneça em } 1 \\ \text{se } [n] \text{ \'e igual a zero}, & \text{então pare} \end{cases}$

(a) Fluxograma (b) Diagrama de Blocos $0 \rightarrow n$

Exemplo: Esvaziar o registrador R_n

O programa abaixo esvazia o conteúdo do registrador R_m no registrador R_n , assumindo que ambos registradores são distintos.

Exemplo: Esvaziar R_m em R_n

Exemplo: Adicionar R_m a R_n , sem perda de R_m

Para adicionar o conteúdo de R_m em R_n , sem perda de R_m , é preciso um registrador auxiliar R_p , inicialmente vazio.

Exemplo: Adicionar R_m a R_n , sem perda de R_m

Exemplo: Multiplicação

O ábaco abaixo computa o produto dos números armazenados em R_a e R_b . O resultado ficará armazenado em R_n e, inicialmente, tanto R_n quanto R_p devem estar vazios.

Exemplo: Multiplicar R_a e R_b

Figura: Fluxograma completo

Equivalência entre ábacos e máquinas de Turing

Teorema

Toda função computável por ábaco é Turing computável.

1. BOOLOS, George S.; BURGESS, John P.; JEFFREY, Richard C. Computabilidade e Lógica, Editora Unesp, 2012.