

SURVIVABILITY • SUSTAINABILITY • MOBILITY SCIENCE AND TECHNOLOGY SOLDIER SYSTEM INTEGRATION

TECHNICAL REPORT NATICK/TR-95/012

AD)	

THERMAL OPTIMIZATION OF FLAMELESS RATION HEATERS

By Satish G. Kandlikar

December 1994

19950109 042

FINAL REPORT June 1990 - August 1990

Approved for Public Release; Distribution Unlimited

UNITED STATES ARMY
RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
NATICK, MASSACHUSETTS 01760-5000

SUSTAINABILITY DIRECTORATE

DISCLAIMERS

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For Classified Documents:

Follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For Unclassified/Limited Distribution Documents:

Destroy by any method that prevents disclosure of contents or reconstruction of the document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202	-4302, and to the Office of Management and Bu		
1. AGENCY USE ONLY (Leave blan	2. REPORT DATE December 1994	3. REPORT TYPE AND Final June	D DATES COVERED 2 1990 to August 1990
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
THERMAL OPTIMIZATION (OF FLAMELESS RATION HE	ATERS	Contract No. DAAL03-86-D-6002
6. AUTHOR(S)			Delivery No
Satish G. Kandlikar			Delivery No. #1979
7. PERFORMING ORGANIZATION NA	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army Natick RD&E ATIN: SATNC-WEA Natick, MA 01760	Center		NATICK/TR-95/012
9. SPONSORING / MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
			AND DISTRIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for Public Re	elease; Distribution Ur	nlimited	
13. ABSTRACT (Maximum 200 word	(s)		
the Meals-Ready-to Eat simulation program is various parameters on the results from the p controlled conditions	the thermal performance	ss Ration Heater y the effects of xe. It is sugge n experiments co yat generation r	s. The changing sted that nducted under attention and the and the
14. SUBJECT TERMS MR	RE(MEAL, READY-TO-EAT)	HEATIN	
HEAT TRANSFER CC	AMELESS RATION HEATER MPUTER PROGRAMS AMELESS BURNERS	(FRH) HOT ME SELF H RATION	EATING 16. PRICE CODE
		19. SECURITY CLASSIFIC	CATION 20. LIMITATION OF ABSTRACT
OF REPORT LINCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCT ASS	TETED SAR

CONTENTS

Li	st of Figures	v
Pr	eface	vii
Αc	cknowledgments	vii
No	omenclature	ix
Su	mmary	1
1.	INTRODUCTION	2
2.	OBJECTIVES OF THE PRESENT WORK	3
3.	THEORETICAL ANALYSIS	4
	3.1 Assumptions	4
	3.2 Finite Difference Formulation	4
4.	COMPUTER PROGRAM	7
5.	EXPERIMENTAL INVESTIGATION	8
6.	RESULTS AND DISCUSSION	9
	6.1 Sensitivity Analysis	9
	6.2 Experimental Results	15
	6.3 Observations on the Mechanics of the Heating Process	17
7.	CONCLUSIONS	18
8.	SCOPE FOR FUTURE WORK	19
9.	REFERENCES	21
ΑI	PPENDIX A - COMPUTER PROGRAM AND INPUT DATA	25
ΑI	PPENDIX B - SAMPLE INPUT DATA FILE	33
ΑI	PPENDIX C - SAMPLE OUTPUT FILE	35
Αŀ	PPENDIX D - USER'S GUIDE FOR COMPUTER PROGRAM	39
AF	PPENDIX E - EXPERIMENTAL INVESTIGATION	43

Accession For				
NTIS	CRA&I	Ø		
DTIC	TAB			
Unann	ownced			
Justi.	fication			
Ву				
Distribution A. M.				
Availability Codes				
	Avan a	od/or		
Dist	Specia	31		
1				
01/		The second second		
1				
•	3 6			

LIST OF FIGURES

Figure 1.	a) Schematic of a Flameless Ration Heater with MRE pouch.b) Location of nodes in the heater assembly for finite	Page
	difference analysis	5
Figure 2.	Effect of heater pad thickness on the heating performance	12
Figure 3.	Effect of initial temperature on the thermal performance	13
Figure 4.	Comparison of transient thermal characteristics of food with theoretical model predictions	16

PREFACE

The work reported in this report was performed by Satish G. Kandlikar from June 1990 to August 1990, at the US Army Natick RD&E Center (Natick) under a six week Summer Faculty Research and Engineering Program (Contract DAA103-86-d-0001). The work was sponsored by Mr. Il-Young Kim at the Sustainability Directorate (SusD) at Natick.

ACKNOWLEDGMENTS

The author acknowledges the support and facilities provided by Il-Young Kim for conducting the research reported in this report. The guidance and direction provided by Irwin Taub have played a major role in the successful completion of the project, and are gratefully acknowledged. Special thanks are due to Don Pickard for providing the technical information and sharing his experience on the Flameless Ration Heaters. Finally, the author wishes to acknowledge the prompt and expert support provided by Bob Trottier in conducting the experiments.

NOMENCLATURE

A - surface area in contact between the heater and the food pouch

 c_p - specific heat , J/kg-K

i - node number

j - i + 1 node number

k - thermal conductivity, W/m- ${}^{\circ}\text{C}$

n - time step number

 $R_{i,j}$ - thermal resistance between nodes i and j, ${}^{o}C$

T - temperature, °C

Δt - time step, sec

w - thickness, m

SUMMARY

A thermal simulation program utilizing finite difference technique was developed to analyze the transient heat transfer problem of heating the Meals-Ready-to-Eat (MRE's) using Flameless Ration Heaters (FRH). The simulation program was employed in evaluating the effect of changing various parameters on the thermal performance. The results indicate that the heating time could be further reduced by increasing the heater area in contact with the food pouch, and by improving the carton insulation. It is suggested that the results for the optimized geometry be checked with experiments conducted under controlled conditions in which the heater heat generation rate and the temperature profile in the food are carefully monitored under different operating conditions. Based on the experience of the theoretical simulation and experimental work, the scope for future work has been outlined.

THERMAL OPTIMIZATION OF FLAMELESS RATION HEATERS

1. INTRODUCTION

The Flameless Ration Heater (FRH) is used by soldiers for heating the Meals-Ready-to-Eat (MRE) packaged in a plastic pouch. The FRH consists of a heating pad which is activated by water to start a controlled oxidation reaction of Magnesium. The specification and composition of heater element is as follows:

Weight:

20 gms.

Size:

11.4 cm x 8.9 cm x 0.3 cm thick

 $(4.5" \times 3.5" \times 0.12" \text{ thick})$

Composition:

Mg powder - 40%

Fe powder

10%

Salt (NaCl) - 3%

Other materials - 47%

(Includes binder, wetting agent, fumed silica

and other inert materials)

Amount of Water Required to Activate - 56 gms. (2 ozs.)

With the specified amount of water, the FRH generates 123.4 kJ (117 BTU) of thermal energy. The heat released during the reaction is utilized in heating the MRE pouch. The technical characteristics of the heater related to its thermal performance are as follows:

- * Flameless Ration Heater should raise the temperature of a 227 gms (8 ozs.) packet of unfrozen Meals-Ready-to-Eat by 44.4 °C (80 °F) in less than 20 minutes (preferably 10 mins or less).
- * Flameless Ration Heater should be able to perform as stated above over an ambient temperature range from -32 °C to 43 °C (-25 °F to 110 °F).

The present work is aimed toward simulating the thermal performance of the heating process and evaluating the effect of varying different parameters on the performance.

2. OBJECTIVES OF PRESENT WORK

The objectives of the present work are as follows:

- a) Develop a computer program to simulate the thermal performance of the Flameless Ration Heater during the heating process.
- b) Conduct experiments to obtain the thermal performance of the heating process under controlled conditions to verify the computer model predictions and identify any significant departures from the assumed system behavior.
- c) Identify the system parameters which have the greatest influence on the heat transfer performance of the heater. Conduct a parametric investigation using the simulation program to study the effect of varying these parameters for optimizing the performance of the heating process.

The work undertaken here will be helpful in optimizing the thermal performance of the heater. The understanding of the heating process will be useful in the design of heaters for other applications such as heaters for individual tray packs.

3. THEORETICAL ANALYSIS

3.1 Assumptions

A schematic of the Flameless Ration Heater with a food pouch (Meal-Ready-to-Eat) is shown in Fig. 1a. The transient heat conduction problem is analyzed with the following assumptions:

- a) The heat transfer through the food pouch is one-dimensional.
- b) The heat generation in the heater starts as a result of a chemical reaction which is initiated after a certain time delay after adding the water to the heater bag. The heater surface temperature is assumed to reach a specified temperature after the reaction is initiated.
- c) The heat generated in the heater is assumed to be conducted away from both sides of the heater.
- d) The contact resistances between the food pouch and the heater cover, and between the heater pad and the cover are assumed to be negligible due to the presence of water.

The above assumptions were made on the basis of the information available at the beginning of the project. The validity of these assumptions was checked by conducting experiments discussed in Section 5.

3.2 Finite Difference Formulation

The transient heat conduction problem is solved by a one-dimensional finite difference formulation. The location of the nodes are shown in Fig. 1b. The food pouch was divided into ten nodes, and the thermal resistances between the heater and the pouch,

Figure 1. a) Schematic of a Flameless Ration Heater with MRE pouch.

b) Location of nodes in the heater assembly for finite difference analysis

heater and the surroundings and the pouch and the surroundings were lumped into three individual nodes.

The Crank-Nicholson formulation (Burden et al., 1980) is employed to obtain the following finite difference equations.

Internal nodes: i=2-12, time step n to n+1

$$m_{i} c_{p,i} (T_{i}^{n+1} - T_{i}^{n}) = \{ (1/R_{i,(i-1)})[(T_{i-1}^{n+1} - T_{i}^{n+1}) + (T_{i-1}^{n} - T_{i}^{n})]/2 + (1/R_{i,(i+1)})[(T_{i+1}^{n+1} - T_{i}^{n+1}) + (T_{i+1}^{n} - T_{i}^{n})]/2 \} \Delta t$$

$$(1)$$

Node 13

$$m_{13} c_{p,13} (T_{13}^{n+1} - T_{13}^{n}) = \{ (1/R_{13,1})[(T_1^{n+1} - T_{13}^{n+1}) + (T_1^{n} - T_{13}^{n})]/2$$

$$+ (1/R_{13,15})[(T_{15}^{n+1} - T_{13}^{n+1}) + (T_{15}^{n} - T_{14}^{n})]/2 \} \Delta t$$
(2)

Node 14

$$m_{14} c_{p,14} (T_{14}^{n+1} - T_{14}^{n}) = \{ (1/R_{14,1})[(T_1^{n+1} - T_{14}^{n+1}) + (T_1^{n} - T_{14}^{n})]/2$$

$$+ (1/R_{14,15})[(T_{15}^{n+1} - T_{14}^{n+1}) + (T_{15}^{n} - T_{14}^{n})]/2 \} \Delta t$$
(3)

where R_{i,j} is the thermal resistance between the nodes i and j and is given by

$$R_{i,i} = w_{ii} / (A_{ii}k_{ii})$$

 \mathbf{w}_{ii} - distance between nodes i and j

 A_{ij} - Surface area for heat transfer between nodes i and j

 \boldsymbol{k}_{ij} - Equivalent thermal conductivity between nodes i and j

The above formulation yields equations which are average of the forward and backward difference equations. This Crank-Nicholson formulation provides guaranteed convergence, as well as having faster convergence characteristics.

The temperatures of all nodes are assumed to be at the specified room temperature until the time instant when the reaction starts, and the heater temperature rises to T_1 . Equations (1)-(3) are then applied for every time step from that instant on until the end of the heating period.

At every time step n+1, the 14 equations for the 14 nodes have to be solved simultaneously. To enable the computations on Personal Computer, a Gauss-Seidel iterative method is employed for solving the simultaneous equations.

The average food temperature at any time instant is then calculated by finding the average temperature of the heated and the unheated portions of food.

4. COMPUTER PROGRAM

A computer program, PROGRAM HEATR1 is developed to implement the finite difference scheme described in Section 3. The program allows the user to input the information on the food and material properties, initial temperatures, heater temperature, time step, and heat transfer surface area through an input file, INPUT.DAT. The program has the following features:

- * Documentation at every major step in the program to facilitate the incorporation of any subsequent changes.
- * Nomenclature within the program code for easy reference.
- * Structured for future expansion.

A copy of the program and the sample input data file are included in Appendixes A and B, respectively, A sample output file is given in Appendix C. Appendix D contains a user's manual illustrating the use of the computer program.

5. EXPERIMENTAL INVESTIGATION

An experimental investigation is undertaken for the following three reasons:

- a) To obtain data for validating the numerical model described in sections 3 and 4.
- b) To study the heating process and observe any clues which might be helpful in improving the numerical model.
- c) To gain a practical, hands-on experience of the entire heating process to identify any aspects where improvements could be made.

For the experiments, a food pouch (MRE) was selected instead of pouches filled with water since the water pouches do not simulate the actual heating process because of a significant amount of convection occurring in them.

The thermocouples used for the heating process were specially prepared by applying a thin coating of epoxy on the exposed surface near the thermocouple junction. Care was taken as to form only a thin layer so as not to affect the transient response of the thermocouples.

The thermocouples were placed at the following locations:

- i) On the two sides of the heater element between the pad and the cover.
- ii) Two thermocouples between the heater cover and the food pouch.

- iii) Two thermocouples on the opposite side of the food pouch.
- iv) One thermocouple inside the food pouch for the specially prepared food pouches.
- v) One thermocouple on the outer surface of the carton.

The output from the thermocouples was connected to a data recorder (DATASTRIP III) which was set to scan all the output channels every 20 seconds.

The experimental procedure followed is given in Appendix E.

The time-temperature data obtained by the data recorder is then used for further analysis and comparison with the numerical scheme.

Seven tests were conducted and the results and discussion are presented in the next section.

6. RESULTS AND DISCUSSION

6.1 Sensitivity Analysis

A sensitivity analysis was performed using the numerical model described in Sections 3 and 4. The purpose of the analysis is to identify the major system variables which have the greatest influence on the thermal performance of the heater. The following parameters enter directly in the performance calculations, and are varied over a wide range to study their influence.

- i) Thermal resistance of the cover pad on the heater
- ii) Thermal resistance of the heat loss paths to the atmosphere

- iii) Ambient temperature
- iv) Surface area of the food pouch for heat transfer

The effects of varying each of the parameter is evaluated through the thermal simulation program. The base conditions for the simulation program were:

Food material: Chili, 8 ozs.

Thermal properties of food:

$$k = 0.5381 \text{ W/m}^{-0}\text{C},$$

Water content 65 %

Thermal diffusivity = 1.533×10^{-3}

Ambient temperature and Initial temperature of food:

Delay time for starting the reaction after addition of water:

1 minute for
$$T_{initial} = 30$$
 $^{\circ}C$

3 minutes for
$$T_{initial} = 5$$
 OC

Heater pad surface temperature after the start of reaction:

95
$$^{\circ}$$
C for $T_{initial} = 30 {^{\circ}}$ C

100
$$^{\circ}$$
C for $T_{initial} = 5 {^{\circ}}$ C

Surface area for heat transfer:

Heater pad surface area on one side plus 15% of that area to account for diffusion of heat along the length of the food pouch.

Heat transfer coefficient between the carton and surrounding

air:

i) Thermal resistance of the cover pad

The thermal resistance of the cover pad is the only thermal resistance between the heater and the food pouch. When the cover pad is wet, its thermal resistance decreases considerably due to the presence of water. Figure 2 shows the predictions for the average temperature of the food after mixing as a function of time after starting the heating process (assuming the heating process is terminated at that time).

The two curves drawn show the effect of varying the thickness of the heater cover by a factor of 4. Solid curve shows the performance with a pad thickness of 120 microns which is currently employed. Dashed curve represents the performance with a heater pad thickness of 480 microns. The two curves are very close to each other, and it can be concluded that the heater pad thermal resistance has very little influence on the thermal performance. The thickness of the heater pad will be governed by strength and cost considerations.

ii) Thermal resistance of heat loss path to the surroundings

The heat loss to the surroundings occurs by convective heat loss from the carton to the surrounding air by natural convection. The heat loss by this mode was calculated to be a total of 18.2 kJ from both sides of the heater. This compares to approximately 40 kJ of energy needed to heat the food from 30 °C to 70 °C, and a total of approximately 130 kJ released by the heating process over a 20 minute time period. The heat losses increase to 24.4 kJ when the ambient temperature is 5 °C.

Figure 2. Effect of heater pad thickness on the heating performance

____ Theoretical predictions, $T_{initial} = 30^{\circ}C$

__ _ Theoretical predictions, $T_{initial} = 5$ °C

- Experimental data point, T_{initial} = 30 °C
- Experimental data point, T_{initial} = 5 °C

Figure 3. Effect of initial temperature on the thermal performance

There are three resistances in the thermal path for the heat losses to the surroundings. These are a) the thermal resistance of the carton, $(R=1.1x10^{-3} \text{ OC/W})$, b) the thermal resistance of the polyethylene bag, $(R=7.3x10^{-5} \text{ OC/W})$ and c) the thermal resistance due to convective heat transfer between the carton and the surrounding air (R=0.1 OC/W). It is seen that the parameters, which are under the designer's control, such as the thickness of the carton or the thickness of the bag, have very little influence on the performance.

In order to conserve energy so that a smaller heater could be utilized, it is essential to reduce the heat losses significantly. This can be done by insulating the carton. The cost benefit of this effect should be further evaluated in light of the additional weight and volume introduced by increasing the carton insulation. The carton insulation is expected to be a major parameter in the overall system optimization.

iii) Ambient Temperature

The effect of lowering ambient temperature is seen in three different ways. Firstly, the initial temperature of the food and the heater is same as the ambient temperature, and a greater amount of thermal energy will be needed to reach the same final temperature. Secondly, the heat losses from the assembly would increase with a decrease in ambient temperature. Finally, the lower initial temperature would provide a greater temperature difference between the heater and the food since the heater surface temperature is assumed to be close to 100 °C irrespective of the initial temperature. This will make the heating process more efficient, and the thermal energy will be transferred faster into the food pouch. This model assumes that enough thermal energy is released by the heater during the heating process to maintain the increased heat transfer rate while heating the food with a lower initial temperature.

The initial waiting time before the start of the reaction is assumed to be 1 minute for $T_{initial}$ =30 °C, and 3 minutes for $T_{initial}$ =5 °C. Also, the heater surface temperature is assumed to be 95 °C and 100 °C respectively for $T_{initial}$ of 30 °C and 5 °C respectively.

Figure 3 shows the average temperature of food as a function of different heating periods for two different initial temperatures. At the end of a 10 minute heating period, the average food temperature with $T_{initial} = 30$ °C is 72.8 °C, while it is 63.1 with $T_{initial} = 5$ °C. The corresponding values at the end of 20 minute time period are 80.2 and 73.1, respectively. The temperature rise is thus seen to be faster with a lower initial temperature.

iv) Surface area of the food pouch for heat transfer

The heat transfer rate from the heater to the food pouch is directly proportional to the surface area available for heat transfer. However, since the model is based on a one-dimensional analysis, the heat transfer in the plane of the food pouch near the edges of the heater surface will provide an additional effective area. To account for this area, a factor of 1.15 is employed to represent an effective area for heat transfer. This factor was based on comparison of the theoretical predictions with the experiment. Further discussion on this aspect is presented while discussing the experimental results.

6.2 Experimental Results

The theoretical development presented in Sections 3 and 4 was primarily based on the information available at the time model was developed. The assumptions made in the model therefore need to be verified in order to validate the model and gain an insight into the physics of the heating process.

Two sets of experiments were performed in which the time temperature history and the average bulk temperature at the end of a certain heating time were recorded.

Figure 3 shows the average food temperature as a function of heating time. Solid curve represents the theoretical performance as predicted by the computer program for $T_{initial} = 30$ °C. The filled circle represents the experimental data point which was obtained at the end of a 10 minute heating cycle. It can be seen that the experimental point lies close to the theoretical prediction. The dashed curve represents the theoretical

- ____ Transient response of node 4
- __ _ Transient response of node 5
- ___ Transient response of node 6
 - Experimental data points

Figure 4. Comparison of transient thermal characteristics of food with theoretical model predictions.

performance for $T_{initial} = 5$ °C. Also shown is an experimental point, filled square, for this case. In case of $T_{initial} = 5$ °C, the model in general tended to predict a lower performance than the experimental values; the main reason being a significant amount of steam generation for the case of $T_{initial} = 30$ °C, which was not accounted by the model. Further discussion on this aspect is included in Section 6.3.

Figure 4 shows the results of an experiment with the temperature within the food pouch plotted as a function of time. The corresponding plot obtained from the theoretical model is shown in Fig. 4. The agreement between the experiment and theory is reasonable, and further fine-tuning in the thermal model is necessary to improve the agreement. This work could not be undertaken due to a limited time of six weeks available to perform the entire work.

6.3 Observations on the Mechanics of the Heating Process

The following observations were made during the heating process:

- i) The heater surface temperature jumped in a very short time from the ambient temperature to about 95-100 °C.
- ii) The heater surface temperature after the initiation of reaction was independent of the initial food pouch temperature.
- iii) The initiation of the heater reaction was delayed from about 1 minute to approximately 3 minutes when the initial temperature of the food and the water were lowered from 30 °C to 5 °C.
- iv) The reaction was initiated and sustained at a higher value of heat generation rate when the $T_{initial}$ was 5 °C, with the heater surface temperature maintained at 100 °C (as against 95 °C for $T_{initial}$ = 30 °C). A possible explanation for this may be that with the lower heater temperature, the heater had a longer time to get soaked, and a

larger amount of magnesium was able to participate in the reaction.

v) A considerable amount of steam was generated and the heat-transfer process was no longer restricted through the interface between the heater and the food pouch. The steam flowed through the bag and condensed during its passage as it came in contact with the colder parts of the food pouch above the heater. Steam also was seen to condense in the portion of the bag which was wrapped around the food pouch. The heat transfer coefficient with condensing steam being very high, the actual heating process in all experiments was found to be more efficient than the theoretical predictions based on the interface area alone for heat transfer. This fact needs to be further quantified and considered while designing heating systems for other configurations.

7. CONCLUSIONS

A numerical model is developed to predict the transient thermal performance of Flameless Ration Heaters. The model predicts the temperature at various locations in the food as well as the average temperature of the food at the end of a given time period. Experiments were conducted to validate the theoretical model. Good agreement was observed between the theoretical predictions and the experimental values. An additional heat transfer mechanism was observed during the experimentation. When the initial temperature of the heater and the water was lowered to 5°C, the heater reaction was initiated after 3 minutes and a rapid steam generation was observed. This behavior was initiated after 3 minutes and a rapid steam generation was observed. This behavior was not expected on the basis of information available on the heaters. Since the heat transfer mechanism is altered significantly, the simulation model needs to modified further. Additionally, the rate of heat generation in the heater as a function of time needs to be determined accurately.

8. SCOPE FOR FUTURE WORK

The work performed on the simulation and experimentation on the Flameless Ration Heaters provided valuable information in understanding the basic mechanisms of heat transfer involved in heating an MRE. The knowledge gained can be utilized in further refining the model and optimizing its performance. Also, the model provides helpful directions in designing the FRH based systems for heating other configurations such as individual meal trays.

Specifically, the following work may be undertaken in future.

- i) The theoretical model developed in the present work could be modified to account for the steam generation and additional heat transfer resulting from the contact of the steam and hydrogen gas with additional surfaces of MRE pouch.
- ii) The experience and knowledge gained in this project through the theoretical and experimental work on the Flameless Ration Heaters could be extended to develop efficient heating system design for other configurations including Individual Meal Trays and Tray Packs.
- iii) The experimental procedure followed here could be further refined to arrive at a standardized testing procedure for conducting quick and accurate quality control checks on the Flameless Ration Heaters.

This document reports research undertaken at the U.S. Army Natick Research, Development and Engineering Center and has been assigned No. NATICK/TR-75/012 in the series of reports approved for publication.

9. REFERENCES

Burden, R.L., NUMERICAL ANALYSIS, Second Edition, Prindle, Weber and Schmidt Publishers, pp. 528.

BLANK PAGE

APPENDICES

BLANK PAGE

APPENDIX A

COMPUTER PROGRAM

PROGRAM HEATER OF THE MRE HEATER SIMULATES THE PERFORMANCE C THIS PROGRAM BY DR. SATISH G. KANDLIKAR FOR THE C THE WORK IS PERFORMED C US ARMY LABORATORY AT NATICK, MA, DURING SUMMER 1990. C NOMENCLATURE OF THE HEATER, C BH - WIDTH THE FOOD BLOCK IN THE POUCH, M - WIDTH OF THE HEATER. C CH - LENGTH ΩF BLOCK IN THE POUCH, OF THE FOOD C CF - LENGTH OF BAG MATERIAL, J/KG-K HEAT - SPECIFIC - SPECIFIC HEAT OF COVER MATERIAL, J/KG-K HEAT OF FOOD. J/KG-K C CPF - SPECIFIC HEAT OF HEATER, - SPECIFIC J/KG-K C CPH - SPECIFIC HEAT OF POUCH MATERIAL, J/KG-K C CPP HEAT OF WATER, J/KG-K C CPW - SPECIFIC C CP(25) - SPECIFIC HEAT OF MATERIAL AT THE INDIVIDUAL. NODES. ON THE CARTON SURFACES EXPOSED C HAMB - HEAT TRANSFER COEFFICIENT AIR, W/M**2-C AMBIENT C HFG - LATENT HEAT OF STEAM, J/KG CONDUCTIVITY OF MATERIAL AT THE INDIVIDUAL NODES, C K(25) - THERMAL W/M-C CONDUCTIVITY OF BAG MATERIAL, W/M-C C KB - THERMAL OF COVER MATERIAL, C KC - THERMAL CONDUCTIVITY C KF - THERMAL CONDUCTIVITY OF F000, W/M-C C KH - THERMAL CONDUCTIVITY OF HEATER MATERIAL, W/M-C C KP - THERMAL CONDUCTIVITY OF POUCH MATERIAL, W/M-C C KPW - THERMAL CONDUCTIVITY OF WATER, W/M-C C MS - AMOUNT OF STEAM GENERATED, - MASS PER UNIT AREA AT DIFFERENT NODES, KG/H**2 C MASS(25) OF NODES IN THE FOOD C N - NUMBER C QGEN - HEAT GENERATION RATE, W/M**3 C/W -ON THE TWO SIDES OF A NODE, C R(25,2) - CONTACT RESISTANCE THE NOOE AND ADJACENT LOWER RESISTANCE BETWEEN R(N,1) NUMBERED NODE C BETWEEN THE NODE AND ADJACENT RESISTANCE R(N,2) CONTACT HIGHER NUMBERED NODE - DENSITY OF MATERIAL AT THE INDIVIDUAL NODES, KG/M**3 KG/M**3 - DENSITY OF BAG MATERIAL. C RHR KG/H**3 COVER MATERIAL, - DENSITY DF C RHC KG/M**3 HEATER, OF - DENSITY

POUCH MATERIAL, KG/M**3

KG/M**3

C RHP

- DENSITY

C RHF - DENSITY

OF

OF

F000,

```
C RHW - DENSITY OF WATER, KG/M**3
C T(25,600) - TEMPERATURE AT 50 NODES AT 600 TIME STEPS
C TAMB - AMBIENT
                 TEMPERATURE,
                        BEFORE THE HEATER REACTION IS INITIATED,
C TSTART - TIME ELAPSED
C TSTEP - TIME STEP, SEC
C W(25) - WIDTH OF INDIVIDUAL NOOES,
C WB - THICKNESS OF BAG,
C WC - THICKNESS OF COVER,
C WH - THICKNESS F HEATER,
C WP - THICKNESS OF POUCH,
C WF - THICKNESS
                OF FOOD,
C WG - THICKNESS OF WATER GAP.
REAL K, MS, KC, KH, KP, KF, KG, MASS
        CHARACTER*1
                  RES
        DIMENSION CP(25), D(25,2), K(25), R(25), RHO(25),
                 TOLD(25), TNEW(25), TNEWPR(25), W(25), MASS(25),
     2 TAVE(30)
                      BF, CPB, CPC, CPH, CPK, CPP, CPF, CPW, ERRLMT,
        COMMON/PAR/BH.
     1 HAMB, HFG, KB, KC, KH, KK, KP, KF, KW, N, QGEN,
     2 RHS, RHC, RHH, RHK, RHP, RHF, RHW, TAMB, TSTEP, WB, WC, WH,
     3 WK, WP, WF, WG, THEATR, TIMEMAX, TSTART
C INPUT THE VALUES OF ALL GEOMETRICAL AND THERMAL VARIABLES THROUGH
C AN INPUT SUBROUTINE.
        CALL INPUT
C ESTIMATE THICKNESS AND AVERAGE THERMAL PROPERTIES OF EACH
        MASS(1) = WH*RHH
        CP(1) = CPH
        R(1) = 1
C
        MASS(2) = WC*RHC + WG*RHW + WP*RHP
                                         + WP*RHP*CPP)/
        CP(2) = (WC*RHC*CPC
                            + WG*RHW*CPW
                (WC*RHC + WG*RHW + WP*RHP)
        R(2) = WC/KC + WG/KW + WP/KP
        D(2,1) = TSTEP/(2.0*MASS(2)*CP(2)*(R(2)/2.0))
        D(2,2) = TSTEP/(2.0*MASS(2)*CP(2)*((R(2)+R(3))/2.0))
        DO 100 I=3,2+N
        MASS(I) = (WF/N)*RHF
        CP(I) = CPF
```

```
R(1) = (WF/N)/KF
           R(I+1)=R(I)
                   = TSTEP/(2.0*MASS(I)*CP(I)*(R(I)+R(I-1))/2.0)
          D(I,1)
          D(I,2) = TSTEP/(2.0*MASS(I)*CP(I)*(R(I)+R(I+1))/2.0)
           CONTINUE
  100
                       = WP*RHP
                                  + WG*RHW
          MASS(N+3)
                                              + WB*RHB
           CP(N+3)
                     = (WP*RHP*CPP
                                       + UC*PHU*CPU
                                                        + WB*RHB*CPB
                                                                        + WC*RHC*CPC)/
       1
                                  + WG*RHW
                                             + WB*RHB
                                                         + WK*RHK)
          R(N+3)
                    = WP/KP
                             + WG/KW
                                       + W8/K8
                                                 +WK/KK
          D(N+3,1)
                     = TSTEP/(2.0*MASS(N+3)*CP(N+3)*(R(N+3)+R(N+2))/2.0)
          D(N+3,2)
                      = TSTEP/(2.0*MASS(N+3)*CP(N+3)*(R(N+3)/2.0+
       1 1.0/HAMB))
C
          MASS(N+4)
                       = WC*RHC
                                  + WG*RHW + WB*RHB
          CP(N+4)
                   = (WC*RHC*CPC
                                                       + WB*RHB*CPB
                                                                        + WC*RHC*CPC)/
                                       + WG*RHW*CPW
                          (WC*RHC
                                    + WG*RHW
                                               + WB*RHB
                                                           + WC*RHC)
      1
          R(N+4)
                   = WC/KC
                             + WG/KW
                                       + WB/KB
                                                  + WC/KC
          D(N+4.1)
                      = TSTEP/(2.0*MASS(N+4)*CP(N+4)*(R(N+4)/2.0))
          D(N+4.2)
                      = TSTEP/(2.0*MASS(N+4)*CP(N+4)*(R(N+4)/2.0+
      1 1.0/HAMB))
C
C WRITE
          TITLE FOR THE TIME TEMPERATURE
                                                  RESULTS
C
          WRITE(6,51)
          WRITE(10,51)
          FORMAT(5X, 'TIME
                                                                  AT 14 NODES
                                                                                  ARE AS F
 51
                               IN SECONDS
                                             AND
                                                 TEMPERATURES
      10LLOWS: ')
C
                                                                    SEC SINCE
            INITIAL
                      VALUES
                               OF T AT TIME=0
                                                  UP TO TIME=60
C NO REACTION
                  OCCURS
                          FOR THE FIRST
                                             TSTART
          TIME=0.0
          DO 200 I=1,N+4
          TOLD(I)
                    = TAMB
 200
          CONTINUE
          WRITE(10,21)TIME, (TOLD(I), I=1,14)
 21
          FORMAT(2X, F5.1, 3X, 14(F7.3))
          TIME=TSTART
          WRITE(10,21)TIME, (TOLD(1), I=1,14)
          WRITE(6,21)TIME, (TOLD(1), I=1,14)
C INCREMENT
                          STEP AND EVALUATE
                                                 ALL T'S BY GAUSS-SIEDEL
               THE TIME
C ITERATION
               TECHNIQUE
                            FOR NEXT
                                       9 MINUTES.
          TOLD(1) = THEATR
```

```
NSTEP=(TIMEMAX-TSTART)/TSTEP
C
                                 TO ZERO
C SET HEAT
               LOSSES
C
           QLOSS1=0.0
           QLOSS2=0.0
           DO 1000 ISTEP=1,NSTEP
           TIME=TIME+TSTEP
C
                       GUESSES
                                            TEMPERATURES .
C SUPPLY
            INITIAL
C
           DO 300 I=1,N+4
                      = TOLD(I)
           TNEW(I)
 300
           CONTINUE
C
C ITERATE
                                     STEP
                  A GIVEN
                              TIME
C
           DO 400
                    ITER=1,100
           DO 700 I=1,N+4
                         = TNEW(I)
           TNEWPR(I)
 700
           CONTINUE
           TNEW(2)=(TOLD(2)+D(2,1)*(TNEW(1)+TOLD(1)-TOLD(2))
                      +D(2,2)*(TNEW(3)+TOLD(3)-TOLD(2)))/(1.0+D(2,1)+D(2,2))
           DO 500 I=3,N+2
           TNEW(I)=(TOLD(I)+D(I,1)*(TNEW(I-1)+TOLD(I-1)-TOLD(I))
                      +D(I,2)*(TNEW(I+1)+TOLD(I+1)-TOLD(I)))/
       1
                        (1.0+D(I,1)+D(I,2))
       1
  500
           CONTINUE
           1=N+3
           TNEW(I)=(TOLD(I)+D(I,1)*(TNEW(I-1)+TOLD(I-1)-TOLD(I))
                      +D(I,2)*(2.0*TAMB-TOLD(I)))/
       1
       1
                        (1.0+D(I,1)+D(I,2))
           TNEW(I)=(TOLD(I)+D(I,1)*(TNEW(1)+TOLD(1)-TOLD(I))
                      +D(I,2)*(2.0*TAMB-TOLD(I)))/
       1
       1
                        (1.0+D(I,1)+D(I,2))
           ERRMAX=0.0
           DO 600 I=1,N+4
           ERR=ABS(TNEWPR(I)-TNEW(I))
           IF(ERR.GT.ERRMAX)ERRMAX=ERR
  600
           CONTINUE
                                           TO 610
           IF(ERRMAX.LT.ERRLMT)GO
           CONTINUE
  400
           WRITE(10,22)ISTEP
            WRITE(6,22)1STEP
                                                               AT ISTEP=',14,//)
                                             NOT CONVERGED
            FORMAT(//,2X, ITERATION
  22
```

```
610
           CONTINUE
           I1 = TIME/20.0
           12 = (TIME-TSTEP)/20.0
           IF(11.GT.12)GO
                                TO 620
           GC TO 630
 620
           CONTINUE
           WRITE(10,21)TIME,(TNEW(I), I=1,14)
           WRITE(6,21)TIME, (TNEW(I), I=1,14)
           CONTINUE
 630
C
            WRITE(6,21)TIME, (TNEW(I), I=1,14)
С
           WRITE(6,25)
                                                                                      TO CONTINU
                                   N IF YOU
                                                      TO
                                                          STOP,
                                                                        OTHER
                                                                                 KEY
C25
           FORMAT(2X, 'ENTER
C
       1E')
C
           READ(5,26)RES
C26
           FORMAT(A1)
C
           IF(RES.EQ.'N')GO
                                   TO 1010
           I1=TIME/60.0
           12=(TIME-TSTEP)/60.0
           IF(I1.GT.12)THEN
                IJ=(TIME/60)
                TAVE(IJ)=0.0
                DO 800 I=3.N+2
                TAVE(IJ)=TAVE(IJ)+TNEW(I)
 800
              CONTINUE
                TAVE(IJ)
                             = TAVE(IJ)/N
                                                     TAMB*(BF-BH))/BF
                TAVE(IJ)
                             = (TAVE(IJ)*BH
           ENDIF
           DO 900 I=1,N+4
           TOLD(1)=TNEW(1)
           CONTINUE
 900
           QLOSS1=QLOSS1+(6.5*3.5*2.54**2/1E4)*HAMB*(TNEW(13)-TAMB)*TSTEP
           QLOSS2=QLOSS2+(6.5*3.5*2.54**2/1E4)*HAMB*(TNEW(14)-TAMB)*TSTEP
 1000
           CONTINUE
 1010
           CONTINUE
           IJMAX=TIMEMAX/60
           WRITE(6,31)
           WRITE(10,31)
           DO 810 IJ=1, IJMAX
           WRITE(10,32)IJ, TAVE(IJ)
           WRITE(6,32)[J,TAVE(IJ)
                                                                           TEMPERATURE,
                                                                                             C',/)
                                                                    F000
 31
                                      IN MINUTES
                                                         AVERAGE
           FORMAT(2X,//, 'TIME
 32
           FORMAT(8X, 12, 14X, F6.1)
 810
           CONTINUE
           QLOSS1=QLOSS1/1000.0
           QLOSS2=QLOSS2/1000.0
           QLOSS=QLOSS1+QLOSS2
```

```
WRITE(10,23)QLOSS1,QLOSS2,QLOSS
          WRITE(6,23)QLOSS1,QLOSS2,QLOSS
          FORMAT(//,5X,1
 23
                          HEAT LOSSES IN KILOJOULES
                                                           FROM THE CARTON
                                                                              ARE-1,/.
      2 15X, 'TOP
                     SIDE 1,8X, BOTTOM
                                         SIDE',8X, 'TOTAL',/,15X, F10.2,8X, F10.2,
      3 8x, F10.2)
          END
C END OF PROGRAM
                     HEATER
SUBROUTINE
                       INPUT
C
C SUBROUTINE
                INPUT
                       READS
                              THE VALUES
                                               GEOMETRICAL
C PARAMETERS
                CONTAINED
                            IN COMMON/PAR/
                K, MS, KB, KC, KH, KK,
                                           KP, KF,
          COMMON/PAR/BH,
                            BF, CPB,
                                       CPC,
                                            CPH.
                                                 CPK, CPP, CPF,
                                                                    CPW.
                                                                          ERRLMT,
          HAMB,
                 HFG, KB, KC, KH, KK, KP, KF, KW,
                                                        N, QGEN,
      2
          RHB, RHC, RHH, RHK, RHP, RHF,
                                            RHW,
                                                   TAMB,
                                                           TSTEP,
         WK, WP, WF, WG, THEATR, TIMEMAX,
                                                TSTART
          READ(20,*)BH,BF
          READ(20,11)I
 11
          FORMAT(11)
          READ(20,*)
                       CPB, CPC, CPH, CPK, CPP, CPF, CPW
          READ(20,11)I
          READ(20,*)
                       ERRLMT, HAMB, HFG
         READ(20,11)I
         READ(20,*)
                       KB,KC,KH,KK,KP,KF,KW
         READ(20,11)I
         READ(20,12)N
 12
          FORMAT(2X,12)
         READ(20,11)I
         READ(20,*)RHB,RHC,RHH,RHK,RHP,RHF,RHW
         READ(20,11)I
         READ(20,*)TAMB,
                             TSTEP
         READ(20,11)I
         READ(20,*)WB,
                          WC, WH, WK,
         READ(20,11)I
         READ(20,*)THEATR,
                               TIMEMAX
         READ(20,11)I
         READ(20,*)TSTART
C ERROR
         MESSAGES
C
C MESSAGE
            1, INPUT
                       TEMPERATURE
 30
         CONTINUE
```

```
IF(TAMB.LE.O.O)THEN
            WRITE(6,31)
 31
         FORMAT(2X, FATAL
                            ERROR # 10, INPUT TEMPERATURE
                                                                 BELOW
      1TEMPERATURE',/,2X, 'PLEASE
                                    ENTER A VALUE
                                                      ABOVE 0 C TO CONTINUE,
      20R ENTER 1000 TO EXIT')
            READ(6,*)TAMB
            IF(TAMB.EQ.1000)
                              GO TO 1000
            GO TO 30
         ENDIF
 40
         CONTINUE
         IF(TAMB.GE.100.0)THEN
           WRITE(6,41)
 41
         FORMAT(2X, FATAL
                             ERROR # 20, INPUT TEMPERATURE
                                                                 ABOVE
                                                                        BOILING
                                                                                  TEM
     1PERATURE',/,2X, 'PLEASE
                                  ENTER A VALUE BELOW
                                                          100 C TO CONTINUE,
                                                                                 - OR
     ZENTER 1000 TO EXIT')
           READ(6,*)TAMB
           IF(TAMB.EQ.1000)
                               GO TO 1000
           GO TO 40
         ENDIF
 1000
         CONTINUE
         END
С
```

C END OF SUBROUTINE

INPUT

APPENDIX B

SAMPLE INPUT DATA FILE

SAMPLE INPUT DATA FILE

	0.140			0.178									
1	HEATER	LEN	GTH	F000	LEN	GTH							
		2010.0	1:	340.0	29	30.0	1340.	.0 2010	.0	3200.0	4180.0		
1		CPB	C	PC	CF	Н	CPK	CPP		CPF	CPW		
	0.01		10.0		2.4E	5							
1	1 ERRLMT HA		HAMB	AMB H		HFG		,					
	,	0.3	0.5	,	0.	68		0.2	. 0	.3	0.58	0.68	
1		K-BAG	K-C	K-COVER		K-HEATER		K-CARTON	K	K-POUCH	K-F000	K-WATER	
	10												
1	NUMBER	OF	NODES	IN	F000								
	220	0.00	,	930.0		1300.0	0	160.0		2200.0	900.0	1000	0
1	1 RH-BAG		Ri	I-COVER	RH-HEATE		ATER.	RH-CARTON		RH-POUCH RH-FOOD		RH-WA	TER
	30.0	1.0											
1	TAMB	TSTE	P								•		
	0	.000022		0.000	12	0.0	02	0.00022		0.00008	0.0125	0.00005	
1	1 W-BAG		1	N-COVER	W-HEAT		ATER	R W-CARTON		W-POUCH	W-F000	W-WATER	GAP
	9:	95.0 600.0											
1	1 THEATR		ı	MUMIXAN	1 1	IME	IN SECO	NDS					
	60.0							•					
1	1 TIME ELAPSED		SED	BEFORE	THE HEATER		ATER	REACTION IS IN		INITIATED, SEC		ONDS	

APPENDIX C

SAMPLE OUTPUT FILE

SAMPLE OUTPUT FILE

	ME IN SECONDS	AND TEMPER	ATLIDEC	AT 14	NODES	ARE AS	FOLLOWS:		
TI			30.000				30.000	30.000	30.000
0.0			30.000	30.000	30.000	30.000	30.000	30.000	
	30.000 30.000		30.000	30 000	30 000	30,000	30.000	30.000	30.000
60.0	-		30.000	30.000	30.000	30.000	30.000	20.000	30.000
30.000	30.000 30.000 95.000 81		E1 975	40 778°	34 670	31.790	30.611	30.188	30.052
80.0	30.004 30.003		31.007	40.770	34.070	311170			
30.013	95.000 85		61.918	50.757	42.561	37.071	33.705	31.810	30.829
100.0	30.180 30.159		01.710	30.731	42.30.	3			
120.0		7.043 79.098	67.212	56.918	48.553	42.173	37.603	34.530	32.599
31.492	30.971 30.906		011212	3017.0					
140.0			70.587	61.108	53.004	46.404	41.288	37.528	34.934
33.308			701301	011.00					
		8.782 82.569	72.981	64.192	56,450	49.899	44.589	40.488	37.512
	34.532 34.371		121701	• • • • • • • • • • • • • • • • • • • •					
	95.000 89		74.805	66,601	59.237	52.858	47.543	43.317	40.160
38.031		94.845							
200.0			76.271	68.575	61.582	55.431	50.218	45.997	42.787
40.584	39.374 39.142								
	95.000 90	0.093 85.190	77.502	70.256	63.617	57.721	52.668	48.528	45.342
	41.893 41.631								
	95.000 90		78.569	71.729	65.429	59.796	54.933	50.916	47.798
	44.374 44.085					.`			
260.0	95.000 90	0.664 86.331	79.514	73.046	67.066	61.695	57.033	53.161	50.137
48.001	46.775 46.461	94.845							
280.0	95.000 90	0.905 86.814	80.369	74.244	68.5 66	63.450	58.9 94	55.276	52.3 59
50.283	49.075 48.739	94.845						•	
300.0	95.000 9	1.126 87.2 56	81.154	75.348	69.9 55	65.085	60.831	57.270	54.463
52.453	51.267 50.910	94.845							
320.0	95.000 9	1.331 87.664	81.882	76.373	71.250	66.615	62.5 56	59.150	56.454
	53.348 52.972								
	95.000 9		82.559	77.3 30	72.461	68.049	64.179	60.922	58.334
	55.319 54.925								
3 60.0	95.000 9	1.699 88.400	83.193	78.226	73.5 97	69.397	65.7 06	62.592	60.109
58.298	57.183 56.771								
380.0	95.000 9	1.865 88.733	83.7 87	7 9.067	74.664	70.664	67.143	64.166	61.784
	58.943 58.515								
400.0	95.000 92	2.022 89.046	84.346	7 9.857	75.667	71.857	68.497	65.649	63.363
	60.604 60.161								
420.0	. 95.000 92	2.169 89.340	84.871	80.601	76.612	72.98 0	69.773	67.048	64.8 52
63.219	62.171 61.713	94.845		•					

440.0	95.000 9	2 .3 07 8 9.617	85.365	81.301	77.501	74.038	70.975	68.366	6 6. 2 56
64.677	63.649 63.178	94.845					•		
460.0	95.000 9	2.438 89.877	85.830	81.960	78.339	75.035	72.107	69.609	67.580
66.051	65.042 64.558	94.845	•						
480.0	95.000 9	2.561 90.123	86.269	82.581	79.128	75.974	73.175	70.780	68.827
67.347	66.356 65.860	94.845							
500.0	95.000 9	2.676 9 0.354	86.682	83.166	79.872	76.859	74.181	71.884	70.003
68.568	67.594 67.087	94.845							
520.0	95.000 93	2.785 90.572	87.071	83.718	80.573	77.693	75.129	72.924	71.112
69.719	68.761 68.244	94.845							
540.0	95.000 9	2.888 90.777	87.438	84.237	81.233	78.480	76.023	73.905	72.157
70.804	69.862 69.334	94.845							
560.0	95.000 9	2.985 90.971	87.784	84.727	81.856	79.221	76.866	74.829	73.142
71.827	70.899 70.362	94.845							
580.0	95.000 9	3.076 91.153	88.109	85.189	82.443	79.919	77.659	75.700	74.070
72.791	71.877, 71.331	94.845							
600.0	95.000 93	3.162 91.325	88.416	85.624	82.99 6	80.577	78.408	76.521	74.945
73.700	72.798 72.244	94.845							

TIME	IN MINUTES	AVERAGE	FOOD	TEMPERATURE,	С
	1		.0		
	2		42.7		
	3		49.1		
	4		54.0		
	5		57.9		
	6		61.2		
	7		63.9		
	8		66.2		
	9		68.1		
	10		69.7		

HEAT	LOSSES	IN	KILOJOULES	FROM	THE	CARTON	ARE-	
	TOP	S	DE	BOTTOM	SID	Ε	TOTAL	
			1 74		5	1/4		4 88

BLANK PAGE

APPENDIX D

USER'S GUIDE FOR COMPUTER PROGRAM

USER'S GUIDE FOR COMPUTER PROGRAM

The computer program to simulate the transient thermal performance of the Flameless Ration Heater for heating an MRE pouch is available in an executable file called HEATER.EXE. A separate input file called INPUT.DAT is required to run the program. Although a user will not need the source code FORTRAN program called HEATER.FOR, it is included in the disk provided, and a listing of the program is given in APPENDIX A.

Following steps may be followed to run the program.

- Step 1 Using any ASCII editor, make the necessary changes in the input file INPUT.DAT to incorporate the geometrical conditions, food and material properties and the time duration for the heating process.
- Step 2 Make sure that the files HEATER.EXE and INPUT.DAT are in the same subdirectory or on the same floppy disk. Enter that subdirectory or floppy disk as your screen prompt.
- Step 3 At the screen prompt, enter "HEATER", and press RETURN key.
- Step 4 The computer will ask for the name of UNIT 20. Enter the name of the input file, INPUT.DAT and press ENTER key.
- Step 5 The computer will ask for the name of UNIT 10 which is an output file. Enter any name such as OUTPUT.OUT and press ENTER key.

WARNING: Any existing file with the same name as UNIT 20 name, OUTPUT.DAT in the above example will be erased and overwritten by the output from the program.

- Step 6 The output of the program is in OUTPUT.OUT file which can be printed using the PRINT OUTPUT.DAT command.
- Step 7 You may rerun the program by following steps 1 through 6.

BLANK PAGE

APPENDIX E

EXPERIMENTAL PROCEDURE

EXPERIMENTAL PROCEDURE

The procedure followed while conducting the experiments is described below.

Preparation

- Step 1. Place the food pouch in a refrigerator or at any other place to attain the desired initial temperature. Allow at least an hour in the controlled temperature environment before conducting a test. In case of the tests with the initial temperature as the room temperature, keep the food pouches in a room where there are no significant temperature changes (less than 1 C) for at least one hour prior to conducting experiments.
- Step 2. Place a bottle containing clean water in the controlled temperature environment to attain the desired initial temperature.
- Step 3. Keep a beaker handy to measure the required amount of water needed to start the chemical reaction in the heater.
- Step 4. Start the data acquisition system and make sure that it is functioning properly.
- Step 5. Label the thermocouples and connect them in the corresponding slots in the data acquisition system.

Conducting Experiment

- Step 4. Weigh the heater pad.
- Step 5. Instrument the heater pad with two thermocouples located on each side of

the pad between the pad and the cover, and two thermocouples each on the outer surfaces of the cover.

Step 6. Place the heater pad in the bag with the thermocouple wires coming out along one of the corner edges of the bag. Make sure that the edge coated with adipic acid is toward the bottom of the bag.

Step 7. Note all the thermocouple numbers and their corresponding locations.

Step 8. Take out the food pouch from a refrigerator if it is cooled prior to heating process, or from a place where it is kept to attain a certain initial temperature. Place it immediately in the bag on one side of the heater making sure that the two thermocouples on the outer cover of the heater are firmly in place.

Step 9. Start the data acquisition system.

Step 10. Take out the water bottle from the refrigerator or the controlled temperature enclosure, and measure 2 ozs. in a beaker.

Step 11. Raise the heater pad and the food pouch above the water level markings on the bag and pour 2 ozs. of water in the bag.

Step 12. Fold the bag over and lay it flat on a horizontal surface for about 1 minute while inserting it in a cardboard carton.

Step 13. Raise the bag about 15 degrees and rest it on a support so that the water is contained near the lower end of the bag.

Step 14. Run the test for the desired length of time while recording the thermocouple outputs every 20 seconds.

Step 15. At the end of the desired time period (5, 10 or 15 minutes), carefully remove the food pouch from the carton and the bag and knead it quickly to mix the food so that it attains an average temperature. Record the average temperature by inserting a thermocouple inside the pouch.

Step 16. Stop the data acquisition system, and remove all thermocouple connections from the heater and pouch.

Step 17. Discard the food, heater bag with heater, and carton.