Synergy between Quantum Circuits and Tensor Networks

Abhishek Abhishek, Daniel Kong, Harmeeta Dahiya, Mushahid Khan

Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the Race to Practical Quantum Advantage

Manuel S. Rudolph ¹ Jacob Miller ¹ Jing Chen ² Atithi Acharva ^{2,3} and Aleiandro Perdomo-Ortiz^{1,*} **Decomposition of Matrix Product States into Shallow Quantum Circuits**

Manuel S. Rudolph, Jing Chen, Jacob Mille

Unsupervised Generative Modeling Using Matrix Product States

ARTICLE OPEN

A generative modeling approach for benchmarking and training shallow quantum circuits

Marcello Benedetti^{1,2}, Delfina Garcia-Pintos³, Oscar Perdomo^{3,4,5}, Vicente Leyton-Ortega^{3,4}, Yunseong Nam⁶ and Alejandro Perdomo-Ortiz^{1,3,4,7,8}

ng Fan,^{2,4} Lei Wang,^{2,4,*} and Pan Zhang^{3,†} g University, Beijing 100871, China cademy of Sciences, Beijing 100190, China l Physics, Institute of Theoretical Physics, Sciences, Beijing 100190, China in Topological Quantum Computation, my of Sciences, Beijing 100190, China

Main idea

- Generic initialization schemes for parameterized quantum circuits (PQCs)
 - **barren plateaus**
 - **local minima**

Use classical resources to find good task-specific initializations and further optimize using quantum hardware

Overview of Approach

- Train a Tensor Network (TN) called Matrix Product State (MPS) as a generative model on the bars and stripes dataset
- Transfer the trained MPS to a MPS-PQC circuit
- Extend and train the MPS-PQC circuit with additional gates
- Generate bars and stripes images

4

Train MPS

- TNs are linear algebraic models for classically simulating complex many-body quantum systems, that have been employed recently as machine learning models
- No. of nodes in a TN = No. of qubits in the quantum computer
- the topology of the N-node graph determines the forms of entanglement
- MPS are computationally tractable TN models whose cores are connected along a line graph

MPS to PQC

How do we map a Matrix Product State (MPS) tensor network to a parameterized quantum circuit?

- The parameters of the model are stored in the tensor cores
- 2. These 3-d tensors are clearly not **unitaries** but can be converted to one

MPS to PQC

Two key steps:

- Left-normalization of the MPS via iterated QR factorizations
- Extend the left-isometries in the MPS to multi-qubit unitaries

QR-factorization

$$egin{aligned} Q^\dagger Q &= I_{D' imes D'} \ QQ^\dagger &
eq I_{D imes D} \ \end{pmatrix}$$

Left-normalization

Code Overview

- → Existing codebase for MPS training and normalization.
- → Numpy.linalg and scipy.linalg for extracting the multi-qubit unitaries from the MPS.
- → Pennylane to define and further train parameterized quantum circuits

Results

Kullback-Leibler (KL) Divergence

Future Work

- To have a chance at improving the previously found MPS results, one needs to extend the linear layers with additional gates and train gates generated by MPS
- This will require increasing the circuit depth, more flexible entangling topologies, or both
- Train the unitary matrices generated by MPS alongside the additional gates added
- After training extended PQC, compare results with a randomly initialized circuit