

SESA6085 – Advanced Aerospace Engineering Management

Lecture 11

2024-2025

Landing Gear Example

- An aircraft landing gear has 4 tyres
- Tyre bursts probability is a function of the load
- How would you solve this system?
 - 2-out-of-4 redundant?
 - Parallel?
 - Serial?

Power Station Example

 A power station has 5 steam turbines providing electricity to the national grid

Power Station Example

- The power station must provide a certain amount of electricity to the grid and the reliability of the turbines is affected by their load
- How would you model the reliability of such a system?
 - Series?
 - Parallel?
 - m-out-of-n redundant?

Steel Cable Example

- A steel cable is constructed by winding together 10 solid steel wires
- The failure of each of these wires is described by a known PDF and is a function of the load the wire is subjected to
- How would you model the reliability of the cable?
 - Series?
 - Parallel?
 - m-out-of-n redundant?

Steel Cable Tension Test

Carefully watch the following video...

Issues?

 Do these examples and videos highlight any issues or limitations with our current approaches to reliability modelling?

Load Sharing Systems

Load-Sharing Systems

- The three previous reliability problems are all examples of load-sharing systems
- Such systems include n components each sharing a load and if one or more component fails then the load on the remaining components increases accordingly
- Naturally this type of situation is encountered throughout engineering e.g.
 - Mechanical & electronic systems
 - Manufacturing

Load-Sharing Systems

- Modelling the reliability of load sharing systems is therefore extremely important
- But we need a new process in order to achieve this modelling
 - Now the failures of components are no longer independent

Notation & Assumptions

- Before continuing let's first define our notation and assumptions
- n, defines the number of components in our system which are equally sharing the load
- Overall the system fails when every component within it fails but as a component fails its load is now shared amongst the remaining components

Notation & Assumptions

- L, defines the **load per component** ($L \ge 0$)
 - Note we use load per component and not total applied load as it makes the notation much easier
- F(L), defines a failure distribution for individual components
 - -F(L) is therefore the probability of a component failing due to load L
- $G_n(L)$, defines the probability of failure of a system of n components due to a load L per component

The Daniels Model

- Developed by H.E. Daniels in 1945^[1]
- Originally this model was developed for textiles but can be used for composite materials
- Fibres are not its only applications and the technique could easily be applied to any load sharing system
- Let's now look at formulating $G_n(L)$ for small values of n

Simple Cases (n = 1)

- The simplest case is when there is only a single component under load
- In this case the:
 - The load per component is L
 - -F(L) describes the failure distribution
- What is the probability of failure for the whole system, $G_1(L)$?

$$G_1(L) = F(L)$$

Simple Cases (n = 2)

- Now consider a case with 2 components with a load L per component
- What are the situations that the system will fail?
 - If component #1 fails under a load L & component #2 fails under a load 2L
 - If component #2 fails under a load L & component #1 fails under a load 2L

Simple Cases (n = 2)

• This leads us to a probability of failure $G_2(L)$ of:

$$G_2(L) = 2F(L)F(2L) - F(L)^2$$

- The probability of component 1 failing under L and component two under 2L equals the probability of component 2 failing under L and component one under 2L
- Remember that these are cumulative probabilities hence the case where both fail under L is counted twice by the first term and so we need to subtract $F(L)^2$

- Now consider the case with 3 components
- Again each component sees a load of L
- What are the conditions for failure?
- How many conditions for failure are there?
 - There are a total of 4 conditions

1. All 3 components fail under *L*

2. 2 components fail under L and the third between L and 3L

3. 1 fails under L and the remaining two between L and 3L/2

4. 1 fails under L, another between L and 3L/2 and the third between 3L/2 and 3L

All 3 components fail under L

$$F(L)^3$$

• 2 components fail under L and the third between L and 3L

$$3 \times F(L)^2 \big(F(3L) - F(L) \big)$$

• 1 fails under L and the remaining two between L and 3L/2

$$3 \times F(L)(F(3L/2) - F(L))^2$$

• 1 fails under L, another between L and 3L/2 and the third between 3L/2 and 3L

$$6 \times F(L)(F(3L/2) - F(L))(F(3L) - F(3L/2))$$

The probability of system failure therefore becomes:

$$G_3(L) = 6F(L)(F(3L/2) - F(L))(F(3L) - F(3L/2)) +$$

$$3F(L)(F(3L/2) - F(L))^2 +$$

$$3F(L)^2(F(3L) - F(L)) +$$

$$F(L)^3$$

Cases for n > 3

- Clearly as the number of components, n, increases the complexity of this calculation increases quite considerably
- We therefore require a method of solving such systems more efficiently
- This is achieved via a recursive formula

 The generalised probability of system failure for a system with n components is given by the following recursive formula:

$$G_n(L) = \sum_{r=1}^n \binom{n}{r} (-1)^{r+1} F^r(L) G_{n-r} \left(\frac{nL}{n-r}\right)$$

- If r components fail then this leaves n-r components each with a load of $\frac{nL}{n-r}$
- The binomial coefficient here denotes the number of ways that a particular combination of failures occurs

- Lets use this recursive formula to define the equation for 2 components
- First let us recall that: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$
- Filling in n=2 into our recursive formula gives us:

$$G_2(L) = \sum_{r=1}^{2} {2 \choose r} (-1)^{r+1} F^r(L) G_{2-r} \left(\frac{2L}{2-r} \right)$$

Expanding this out we obtain:

$$G_2(L) = {2 \choose 1} (-1)^2 F^1(L) G_1(2L) + \cdots$$
$${2 \choose 2} (-1)^3 F^2(L) G_0$$

- We can observe that we need to use our general formula again to calculate $G_1(2L)$
- What is G_0 equal to?
- What should $G_1(2L)$ equal?

- $G_0 = 1$
- $G_1(2L)$ should equal F(2L) but lets confirm it

$$G_1(2L) = {1 \choose 1} (-1)^2 F^1(2L) G_0$$

 $G_1(2L) = F(2L)$

• Substituting this back into our expression for $G_2(L)$ we obtain:

$$G_2(L) = 2F(L)F(2L) - F^2(L)$$

- Which matches the formula we obtained previously for $G_2(L)$ just by considering the different potential failure modes
- Now lets try the case where n=3

This time our expression is given by:

$$G_3(L) = \sum_{r=1}^{3} {3 \choose r} (-1)^{r+1} F^r(L) G_{3-r} \left(\frac{3L}{3-r} \right)$$

Which after expanding out equals:

$$G_3(L) = 3F(L)G_2\left(\frac{3L}{2}\right) - 3F^2(L)G_1(3L) + F^3(L)$$

• Once again we need to recursively calculate both $G_2\left(\frac{3L}{2}\right)$ and $G_1\left(3L\right)$

- Fortunately we've just calculated an expression for G_2 which we can reuse replacing L with $\frac{3L}{2}$
- We also know the expression for G_1
- Hence G₃ is calculated to be:

$$G_3 = 6F(L)F\left(\frac{3L}{2}\right)F(3L) - 3F(L)F^2\left(\frac{3L}{2}\right) - \dots$$
$$3F^2(L)F(3L) + F^3(L)$$

 Previously we saw that the probability of failure for 3 load sharing components was:

$$G_3(L) = 6F(L)(F(3L/2) - F(L))(F(3L) - F(3L/2)) +$$

$$3F(L)(F(3L/2) - F(L))^2 +$$

$$3F(L)^2(F(3L) - F(L)) +$$

$$F(L)^3$$

 While these look very different they are actually equivalent results. I would encourage you to confirm this for yourself

 An engineer is tasked with designing a powerplant capable of producing 1.5 MW of electricity with a reliability of >95%

- The engineer has a model of gas turbine available to him whose failures are normally distributed with $\mu = 1.0$ MW and $\sigma = 0.25$ MW
- How many of these gas turbines are required for the plant to produce 1.5MW with >95% reliability?

- How would you solve this problem?
- What is the load on the system?
 - 1.5MW
- How many gas turbines do we have?
 - Unknown so lets try a number of different options
- What is the load per turbine?
 - Depends on the number of turbines
- How do we define the reliability of the system?

$$R(L) = 1 - G_n(L)$$

- Let's consider *n*=1, 2 & 3
- We already know the expressions for these cases
- It's therefore only a matter of calculating:
 - F(L) = ?
 - F(2L) = ?
 - F(3L) = ?
 - F(3L/2) = ?

• Where L=1.5/n in our case

How do we calculate these values?

- The values for these expressions come from the CDF for our gas turbine
- Hence, for example,

$$F(L) = \int_0^L f(l)dl$$

$$F(2L) = \int_0^{2L} f(l)dl$$

And so on...

 The reliabilities for n=1, 2 & 3 systems can be calculated and used to identify those which give the desired reliability

Recall each turbine has reliability described by $\mu = 1.0 \text{MW } \& \sigma = 0.25 \text{MW}$

- Remember that for each case the initial load per gas turbine will change
- The required load is 1.5MW
 - If n=1, the load per turbine is 1.5MW
 - If n=2, the load per turbine is 0.75MW
 - If n=3, the load per turbine is 0.5MW
- Hence there are large changes in reliability as the number of turbines increases

- Lets make this example a little harder...
- The engineer has two additional models of gas turbine to choose from with failures defined by normal distributions

Model	μ	σ	Cost (£m)
Α	1.0	0.25	1.5
В	0.5	0.1	0.5
С	2.0	0.3	3.0

- The power plant must achieve >95% reliability at 1.5MW
- But the cost of power plant should be minimal
- How can we solve this case?
- What do you think the answer might be and why?

• Plotting out the reliability for power plants using the three models with different numbers of turbines and the costs:

We therefore have the following results:

Model	Reliability	n	Cost (£m)
Α	0.982	3	4.5
В	0.969	5	2.5
C	0.955	1	3

- With a power plant constructed from 5 gas turbines of model
 B being the cheapest and meeting the reliability requirement
- Of course this is a simple case and we've not considered...
 - Other costs e.g. maintenance, infrastructure etc.

 The recursive formula is relatively easy to program and fast to compute

$$G_n(L) = \sum_{r=1}^n \binom{n}{r} (-1)^{r+1} F^r(L) G_{n-r} \left(\frac{nL}{n-r}\right)$$

- However the above formula can become unstable as n increases
 - Why might this be the case?
- For cases with more than 40 components the formula produces long series of terms with alternating signs

- For cases with large n values this numerical instability is a serious problem
- For these cases there are a number of numerical approximations which can be used to calculate failure probabilities
- These approximations, of which the Daniels model is one, vary in complexity and accuracy

Extensions of Load Sharing Systems

- Beyond the basic load sharing system described there are a number of further extensions in the literature
 - The inclusion of random slack into fibre bundles
 - The inclusion of random changes in material properties e.g. change from elastic to plastic
 - See Crowder et al. for more information on this
- Of course, we've assumed that the components in the system are identical in terms of their failure distribution which may not always be the case
 - Monte Carlo analysis can help in these situations

