Total Bebek

Pak Dengklek memiliki A ekor bebek jantan dan B ekor bebek betina. Tentukan banyaknya total bebek yang dimiliki Pak Dengklek.

Batasan
Contoh input
51 5
Contoh output
56
Contoh input 2
101 5
Contoh output 2
106
Contoh input 3
21 12
Contoh output 3
33

Suit

Budi dan Dani ingin membeli makan siang. Untuk menentukan siapa yang pergi ke warung untuk membeli makanan, mereka melakukan penjumlahan 3 bilangan bulat. Jika hasil penjumlahan genap, Budi yang pergi. Jika ganjil, Dani yang pergi.

Contoh input 1
11 6 13
Contoh output 1
Budi
Contoh input 2
20 15 22
Contoh output 2
Dani
Contoh input 3
20 15 101
Contoh output 3
Budi

Cek Segitiga

Angga sedang kebingungan mengerjakan soal matematika, dalam soal itu diketahui 3 sisi segitiga dan dia disuruh menetukan jenis dari segitiga itu jika diketahui sisi-sisinya. Ia sudah menemukan jawabannya, namun karena soalnya banyak, Angga memutuskan untuk membuatnya dalam bentuk program. Bantulan Angga membuatnya dimana jika

c2 < a2 + b2 merupakan "Segitiga Lancip"
c2 > a2 + b2 merupakan "Segitiga Tumpul"
c2 = a2 + b2 merupakan "Segitiga Siku-Siku"
Contoh input 1
3 4
5
Contoh output 1
Segitiga Siku-Siku
Contoh input 2
5 8
9
Contoh output 2
Segitiga Lancip
Contoh input 3
5 7
10
Contoh output 3
Segitiga Tumpul

Bunyi Pantul (B1)

Sasi ingin menghitung jarak antar dua tebing menggunakan pantulan suara. Dengan mengukur kecepatan rambat bunyi udara dan waktu dimana pantulan bunyi kembali terdengar, ia harus mengkalkulasi jarak dengan rumus yang telah ada:

Rumus Jarak Bunyi Pantul
$s = (v \times t)/2$
Dimana :
s adalah jarak
v adalah cepat rambat bunyi di udara
t adalah waktu
Batasan:
v <u>≤</u> 330
Contoh input
60 2
2
Contoh output
60
Contoh input 2
350 5
5
Contoh output 2
Pengukuran tidak di bumi!