Sistemas Digitais

Circuitos combinatórios MSI- soluções

1.

2.

3.
$$F = A\overline{B} + C$$

$A = C_i$	В	C = X1	$A \oplus C = A_{som}$	$S = B_{comp}$	$C_0 = A_{comp}$	F
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	0	1	0	0
0	1	1	1	0	1	1
1	0	0	1	0	1	1
1	0	1	0	1	0	1
1	1	0	1	1	1	0
1	1	1	0	0	1	1

A\BC	00	01	11	10
0	0	1	1	0
1	1	1	1	0

4. **Observação**: Para o circuito comparador estudado na aula, as entradas X1 e Y1 devem ter o valor 0. Existem outras soluções possíveis para este problema (trocando as entradas de selecção do multiplexer, o circuito comparador e somador estariam ligados a outras entradas de dados).

5. O circuito tem 4 entradas: A, B,C,D e 4 saídas (3 para o valor binário entre 0 e 5 e uma para indicar se o código apresentado à entrada é válido ou não).

$$\begin{split} S_2 &= \overline{C} \ \overline{D} + AC \\ S_1 &= AD + BC \\ S_0 &= \overline{C} \\ Val &= \overline{A} \ \overline{B}CD + AB\overline{C} \ \overline{D} + (A \oplus B)(C \oplus D) \end{split}$$

A	В	С	D	S_2	S_1	S_0	Val
0	0	0	0	X	X	X	0
0	0	0	1	X	X	X	0
0	0	1	0	X	X	X	0
0	0	1	1	0	0	0	1
0	1	0	0	X	X	X	0
0	1	0	1	0	0	1	1
0	1	1	0	0	1	0	1
0	1	1	1	X	X	X	0
1	0	0	0	X	X	X	0
1	0	0	1	0	1	1	1
1	0	1	0	1	0	0	1
1	0	1	1	X	X	X	0
1	1	0	0	1	0	1	1
1	1	0	1	X	X	X	0
1	1	1	0	X	X	X	0
1	1	1	1	X	X	X	0

6.

7. Completar a tabela de verdade existente no slide 25 dos circuitos combinatórios de modo à escrever no display 7 segmentos as letras "a", "b", "c", "d", "e"e "f"; refazer os mapas de Karnaugh e simplificar.

8.