IFT2105-Introduction à l'informatique théorique (Devoir #5 – Automne 2018)

Louis Salvail¹

Université de Montréal (DIRO), QC, Canada salvail@iro.umontreal.ca Bureau: Pavillon André-Aisenstadt, #3369

La remise du devoir est le vendredi 7 décembre au plus tard à 18:00 sans faute.... vous pouvez remettre le devoir par courriel à Charles, charles.menard@live.fr. Si vous voulez le remettre en version papier alors il vous faudra le remettre sous ma porte ou en mains propres.

NOTE: Par la suite, "MT" signifie machine de Turing et "GHC" signifie Grammaire HC.

1. Considérez le langage suivant:

$$INCL_{GHC} = \{\langle G_1, G_2 \rangle | G_1 \text{ et } G_2 \text{ sont des GHCs avec } L(G_1) \subset L(G_2) \}.$$

Montrez que $INCL_{GHC}$ est indécidable en exhibant la réduction $TOUT_{GHC} \leq INCL_{GHC}$.

Solution: Soit $G_+ = (\Sigma, V, R, S)$ une GHC telle que $\forall w \in \Sigma^*, w \neq \varepsilon \Rightarrow w \in L(G_+)$ et $\varepsilon \notin L(G_+)$. La grammaire G_+ génère tous les mots non-nuls de l'alphabet Σ . La fonction f est telle que

- Si y n'est pas de la forme $\langle G \rangle$ pour G une GHC alors $f(y) = \varepsilon$.
- Si $y = \langle G \rangle$ pour G une GHC alors $f(y) = \langle G_+, G \rangle$.

Notons que si $\langle G \rangle \in \text{TOUT}_{\text{GHC}}$ alors $L(G_+) \subset L(G)$ et $\langle G_+, G \rangle \in \text{INCL}_{\text{GHC}}$. Si $\langle G \rangle \notin \text{TOUT}_{\text{GHC}}$ avec G une GHC alors $L(G_+) \not\subset L(G)$ et $\langle G_+, G \rangle \notin \text{INCL}_{\text{GHC}}$. Si y n'est pas de la forme d'une GHC alors $y \notin \text{TOUT}_{\text{GHC}}$ et $f(y) \notin \text{INCL}_{\text{GHC}}$. La fonction f est certainement calculable et $\text{TOUT}_{\text{GHC}} \leq \text{INCL}_{\text{GHC}}$. Nous concluons que $\text{INCL}_{\text{GHC}} \notin \text{DEC}$.

2. Montrez que

$$L_{\overline{\mathrm{HC}}} = \{\langle M \rangle | L(M) \notin \mathsf{HC} \}$$

est indécidable...

Solution: Nous montrons que $L_{\overline{HC}}$ est un ensemble d'indices non trivial. Clairement, pour M_1 et M_2' sont telles que $L(M_1) = L(M_2)$ alors ou bien $L(M_1) = L(M_2) \notin \mathsf{HC}$ et $M_1, M_2 \in L_{\overline{HC}}$ ou $L(M_1) = L(M_2) \in \mathsf{HC}$ et $M_1, M_2 \notin L_{\overline{HC}}$. $L_{\overline{HC}}$ est donc un ensemble d'indices. Nous montrons maintenant qu'il est non trivial. En effet, il existe une machine $M \in L_{\overline{HC}}$, en particulier celle pour laquelle $L(M) = a^n \cdot b^n \cdot c^n$. Il existe également une machine $M' \notin L_{\overline{HC}}$, en particulier celle pour laquelle $L(M') = a^n \cdot b^n$. Le théorème de Rice nous permet de conclure que $L_{\overline{HC}} \notin \mathsf{DEC}$.

3. Pouvez-vous utiliser le théorème de Rice pour montrer que

$$L_{<29} = \{\langle M \rangle | (\exists MT M')[L(M') = L(M) \text{ et } M' \text{ possède moins de 29 états}] \}$$

est indécidable? Si oui alors faites-le et sinon montrez pourquoi.

Solution: Oui, montrons que $L_{<29}$ est un ensemble d'indices non trivial. En premier lieu, montrons que $L_{<29}$ est un ensemble d'indice. Clairement, pour M_1 et M_2' sont telles que $L(M_1) = L(M_2)$ alors ou bien il existe une MT M' telle que $L(M') = L(M_1) = L(M_2)$ et M' possède moins de 29 états et $M_1, M_2 \in L_{<29}$ ou bien il n'existe pas de MT M' avec moins de 29 états telle que $L(M') = L(M_1) = L(M_2)$ auquel cas, $M_1, M_2 \notin L_{<29}$. $L_{<29}$ est donc un ensemble d'indices.

Montrons maintenant que $L_{<29}$ est un ensemble d'indices non triviale. Il existe certainement une machine M qui possède moins de 29 états et $M \in L_{<29}$. Maintenant, montrons qu'il existe une MT M pour laquelle aucune machine M' avec L(M') = L(M) qui possède moins de 29 états. Considérons les MT avec $\Sigma = \{0,1\}$ et $\Gamma = \Sigma \cup \{\underline{\cdot}\}$ Le nombre de fonctions de transition $\delta: Q \times \Gamma \to Q \times \Gamma \times \{\langle \text{gauche} \rangle, \langle \text{droite} \rangle\}$ pour une MT de moins de 29 états est moindre que $(\#Q \cdot \#\Gamma \cdot 2)^{\#Q \cdot \#\Gamma} < (29 \cdot 3 \cdot 2)^{29 \cdot 3} = 174^{87}$. Pourtant, le nombre de langages reconnaissables sur $\Sigma = \{0,1\}$ est infini. Il y a donc une machine M^* telle qu'aucune MT M' avec moins de 29 états satisfait $L(M^*) = L(M')$. Donc, $M^* \notin L_{<29}$ est donc un ensemble d'indices non trivial. Le théorème de Rice nous permet de conclure que $L_{<29} \notin \mathsf{DEC}$.

4. Montrez que le langage

$$L_{\cap} = \{ \langle M, M' \rangle | \text{les MTs } M \text{ et } M' \text{ sont telles que } L(M) \cap L(M') = \emptyset \}$$

n'est pas reconnaissable.

Solution: Nous montrons que $L_{\cap} \notin \mathsf{REC}$ en exhibant la réduction $\overline{A_{\mathrm{MT}}} \leq L_{\cap}$. Posons M_{rien} une MT telle que $L(M_{\mathrm{rien}}) = \emptyset$. Soit f la fonction donnée par

- $-f(y) = \langle M_{\text{rien}}, M_{\text{rien}} \rangle$ si y n'est pas de la forme $\langle M, w \rangle$ pour M une MT et $w \in \Sigma^*$ pour Σ l'alphabet de M. Dans cas, nous avons $f(y) \in L_{\cap}$ pour une tel y qui satisfait $y \in \overline{A_{\text{MT}}}$.
- Pour $y = \langle M, w \rangle$ pour M une MT, définissons M'_x la MT telle que M'_x accepte si la chaîne en entrée est égale à x et rejette sinon: $L(M'_x) = \{x\}$. Nous posons $f(y) = f(\langle M, x \rangle) = \langle M, M'_x \rangle$.

Si y n'est pas de la forme $\langle M, x \rangle$ alors $y \in \overline{A_{MT}}$ et $f(y) = \langle M_{rien}, M_{rien} \rangle \in L_{\cap}$. Si $y = \langle M, x \rangle \in \overline{A_{MT}}$ alors $f(y) = \langle M, M'_x \rangle$ et puisque $x \notin L(M)$, nous avons $L(M) \cap L(M'_x) = \emptyset$ et $\langle M, M'_x \rangle \in L_{\cap}$. Si $\langle M, x \rangle \notin \overline{A_{MT}}$ nous avons $\langle M, x \rangle \in A_{MT}$ et $L(M) \cap L(M'_x) = \{x\}$ et $\langle M, M'_x \rangle \notin L_{\cap}$.

La fonction f est donc telle que $y \in \overline{\mathcal{A}_{\mathrm{MT}}} \Leftrightarrow f(y) \in L_{\cap}$ en plus d'être calculable. Nous concluons que $L_{\cap} \notin \mathsf{DEC}$.

5. Montrez que le langage

 $L_{\neq} = \{\langle M, M', x \rangle | \text{les MTs } M \text{ et } M' \text{ sont telles que } M \text{ accepte } x \text{ si et seulement si } M' \text{ rejette } x \}$

est indécidable. Est-ce que L_{\neq} est reconnaissable? Prouvez votre réponse.

Solution: Nous montrons que $L_{\neq} \notin \mathsf{DEC}$ en donnant la réduction $A_{\mathsf{MT}} \leq L_{\neq}$. Soit f la fonction suivante:

- Si y n'est pas de la forme $\langle M, x \rangle$ alors $f(y) = \varepsilon \notin L_{\neq}$.
- Si $y=\langle M,x\rangle$ alors $f(y)=\langle M,M_{\rm rej},x\rangle$ où $M_{\rm rej}$ est la MT qui rejette toujours. Nous avons,
- Pour $\langle M, x \rangle \in \mathcal{A}_{\mathrm{MT}}$ alors $f(\langle M, x \rangle) = \langle M, M_{\mathrm{rej}}, x \rangle \Rightarrow M$ accepte x et M_{rej} rejette $x \Rightarrow \langle M, M_{\mathrm{rej}}, x \rangle \in L_{\neq}$.
- Pour $\langle M, x \rangle \notin A_{MT}$ alors

$$f(\langle M, x \rangle) = \langle M, M_{\text{rej}}, x \rangle \Rightarrow M$$
 rejette ou boucle sur x et M_{rej} rejette $x \Rightarrow \langle M, M_{\text{rej}}, x \rangle \notin L_{\neq}$.

La fonction f est certainement calculable. Nous avons montré que $A_{MT} \leq L_{\neq}$ et nous concluons que $L_{\neq} \notin \mathsf{DEC}$.

J'ai fait une erreur en donnant la définition du langage L_{\neq} en utilisant si et seulement si, qui n'était pas ce que je voulais. En fait j'aurais voulu écrire

$$L'_{\neq} := \{ \langle M, M', x \rangle | \text{les MTs } M \text{ et } M' \text{ sont telles que } M \text{ accepte } x \text{ et } M' \text{ rejette } x \text{ ou } M \text{ rejette } x \text{ et } M' \text{ accepte } x \}$$
.

Nous avons alors que $L'_{\neq} \in \mathsf{REC}$ parce que la machine suivante sur entrée $\langle M, M', x \rangle$ reconnaît L'_{\neq} :

- (a) Simule \dot{M} sur x.
- (b) Simule M' sur x.
- (c) Si (M accepte et M' rejette) ou (M rejette et M' accepte) alors accepte
- (d) Sinon rejette,

Le langage L_{\neq} , quant à lui, est tel que $L_{\neq} \notin \mathsf{REC}$... Désolé de mon erreur d'amateur!