HOME CHAPTERS LOGIN

7. Measuring Distances

🖶 Print

To measure distances, land surveyors once used 100-foot long **metal tapes** that are graduated in hundredths of a foot. (This is the technique I learned as a student in a surveying class at the University of Wisconsin in the early 1980s. The picture shown below is slightly earlier.) Distances along slopes are measured in short horizontal segments. Skilled surveyors can achieve accuracies of up to one part in 10,000 (1 centimeter error for every 100 meters distance). Sources of error include flaws in the tape itself, such as kinks; variations in tape length due to extremes in temperature; and human errors such as inconsistent pull, allowing the tape to stray from the horizontal plane, and incorrect readings.

Figure 5.8.1 Surveying team measuring a baseline distance with a metal (Invar) tape.

Credit: Hodgson, 1916

Since the 1980s, **electronic distance measurement** (EDM) devices have allowed surveyors to measure distances more accurately and more efficiently than they can with tapes. To measure the horizontal distance between two points, one surveyor uses an EDM instrument to shoot an energy wave toward a reflector held by the second surveyor. The EDM records the elapsed time between the wave's emission and its return from the reflector. It then calculates distance as a function of the elapsed time. Typical short-range EDMs can be used to measure distances as great as 5 kilometers at accuracies up to one part in 20,000, twice as accurate as taping.

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- Chapter 4: TIGER, Topology and Geocoding
- ▼ Chapter 5: Land Surveying and GPS
 - 1. Overview
 - 2. Geospatial Data Quality
 - 3. Error and Uncertainty
 - 4. Systematic vs. Random Errors
 - 5. Survey
 Control
 - 6. Measuring Angles
 - 7. Measuring Distances
 - 8. Horizontal Positions
 - 9. Traverse
 - 10. Triangulation
 - 11. Trilateration
 - 12. Vertical Positions
 - 13. Global Positioning System
 - 14. Space Segment

Figure 5.8.2 Total station.

Instruments called **total stations** combine electronic distance measurement and the angle measuring capabilities of theodolites in one unit. Next, we consider how these instruments are used to measure horizontal positions in relation to established control networks.

< 6. Measuring Angles

up

8. Horizontal Positions >

- 15. Control Segment
- 16. User
 Segment
- 17. Satellite Ranging
- 18. GPS Error Sources
- 19. User
 Equivalent
 Range Errors
- 20. Dilution of Precision
- 21. GPS Error Correction
- 22. Differential Correction
- 23. Real-Time Differential Correction
- 24. Post-Processed Differential Correction
- 25. Summary
- 26.Bibliography
- Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

Navigation

- Home
- News
- AboutContact Us
- People
- Resources
- Services
- Login

 College of Earth and Mineral Sciences

EMS

- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- iMPS in Renewable Energy and Sustainability Policy Program
- Office

 BA in Energy and Sustainability Policy Program

Office

Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Penn State
 World Campus
- Web Learning@ Penn State

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802 Contact Us Privacy & Legal Statements | Copyright Information The Pennsylvania State University © 2023