

15-424: Final Project

Abhishek Bhargava Michael You

Markets are becoming more complex

- Big data and more financial assets
- Difficult to accurately model
- Global models don't perform well
 - Need local models based on world state
- 2008 Recession
- 2010 Flash Crash

Brownian Motion is Essential to Market Simulation

- Random evolution
 - Suspended particles in fluid
- $dS_t = S_t(\mu dt + \sigma dB_t)$
- Stock prices follow correlated GBMs

SMC can make safety guarantees about trading strategies

- Markov Decision Process
- Bound the probability that we lose money
- Henriques et al. 2012: resolve nondeterminism

Definitions

Trader and Scheduler

- Trader
 - Chooses a strategy
 - How to allocate wealth in each time period
 - Goal: Make as much money as possible
- Scheduler
 - Chooses "world state" how the market behaves
 - Tries to make trader lose money

Assets and Portfolio

- Controlled by the trader
- 8 assets
 - 7 stocks
 - 1 risk-free
- Allocation vector

World States

- Influences how stock prices behave
 - μ : drift
 - Σ: volatility
- Based on S&P500
 - Ex: S&P500 going up in price
- Transition to other world states

$$\boldsymbol{C} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Transition matrix for 4 world states

Model

New probabilistic syntax to SdL

$$\llbracket [\alpha]_{\theta} P \rrbracket = \begin{cases} \omega \mid \nu \in \llbracket P \rrbracket \text{ for at most } \theta \text{ proportion} \\ \text{ of all } \nu \text{ such that } (\omega, \nu) \in \llbracket \alpha \rrbracket \end{cases}$$

Defined for a finite state space

Model

- Preconditions
- Hybrid Program
- Postcondition

Preconditions

- $T_0 > 0$: duration of each iteration
- X > 0: Starting portfolio value
- $J \in \{J_1, J_2, ..., J_{N_I}\}$: starting world state
- $S_i > 0$: all stock prices are positive

Hybrid Program

Postcondition and Formula

- $\varphi := X < X_0$: trader loses money
- Let θ be the probability we want to prove

$$PRE \rightarrow [\![HP]\!]_{\theta} \varphi$$

Simulation & Training

Market Simulation

- Given a set of world transitions, for each transition:
 - Let trader choose portfolio allocation
 - Stock prices evolve according to correlated GBMs.
 - Stock returns \rightarrow portfolio returns $(\alpha^T \cdot R)$
- Use historical data to compute parameters for each world state
- Calculate Sharpe ratio

Making an Evil Scheduler

- Find optimal adversarial scheduler
- Algorithm based on Henriques et al. 2012
- Reinforcement learning
 - Evaluate
 - Improve
 - Optimize

Training example: Evaluate

[0.08	0.92	0	0	0	0	0	07	
0.04	0.15	0.81	0	0	0	0	0	
0	0.05	0.15	0.80	0	0	0	0	
0	0	8.0	0.18	0.02	0	0	0	
0	0	0	0.55	0.27	0.18	0	0	
0	0	0	0	0.98	0.02	0	0	
0	0	0	0	0	0.85	0.15	0	
L 0	0	0	0	0	0	1	0]	

Training example: Improve

$$q = \begin{bmatrix} 1 & 0.98 & 0 & 0 & 0 & 0 & 0 \\ 0.88 & 099 & 0.99 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.99 & 0.99 & 0.99 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.99 & 0.99 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

New Scheduler

Training example: Evaluate

Γ	0.04	0.96	0	0	0	0	0	0
	0.03	0.56	0.42	0	0	0	0	0
	0	0.02	0.66	0.32	0	0	0	0
	0	0	0.8	0.2	0	0	0	0
	0	0	0	0.2	0.28	0.52	0	0
	0	0	0	0	0.96	0.04	0	0
	0	0	0	0	0	0.55	0.45	0
L	0	0	0	0	0	0	1	0

Training example: Converge

Γ0.02	0.98	0	0	0	0	0	0]
0.09	0.90	0.01	0	0	0	0	0
0	0.57	0.16	0.27	0	0	0	0
0	0	0.66	0.32	0.02	0	0	0
0	0	0	0.69	0.06	0.25	0	0
0	0	0	0	0.60	0.14	0.26	0
0	0	0	0	0	0.64	0.29	0.07
0	0	0	0	0	0	0.92	0.08

$$p=1$$

Results

Sampling and Metric

- Monte Carlo sampling
- Trading strategy metric m

$$Pr(Sharpe < -m) = 0.4$$

Results: Optimal Scheduler

[0.02	0.98	0	0	0	0	0	0]
0.09	0.90	0.01	0	0	0	0	0
0	0.57	0.16	0.27	0	0	0	0
0	0	0.66	0.32	0.02	0	0	0
0	0	0	0.69	0.06	0.25	0	0
0	0	0	0	0.60	0.14	0.26	0
0	0	0	0	0	0.64	0.29	0.07
0	0	0	0	0	0	0.92	0.08

$$m = -1.95$$

Results: Optimal Scheduler

Γ 0.02		0	0	0	0	0	0]
0.09		0.01	0	0	0	0	0
0		0.16	0.27	0	0	0	0
0	0		0.32	0.02	0	0	0
0	0	0		0.06	0.25	0	0
0	0	0	0		0.14	0.26	0
0	0	0	0	0		0.29	0.07
0	0	0	0	0	0		0.08

$$m = -1.95$$

Results: Optimal Scheduler Moves

Results: Optimal Scheduler Moves

Tweaks to Strategy

- Trader was losing money when S&P500 performed poorly
 - Take on less risk during bad market conditions
- Scheduler illuminated certain orderings of world states that made trader lose money
 - Modify trader to account for these orderings

Results: Optimal Scheduler Improved

$$\begin{bmatrix} 0.62 & 0.38 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.01 & 0.27 & 0.72 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.02 & 0.75 & 0.23 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.36 & 0.63 & 0.1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.75 & 0.20 & 0.05 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.91 & 0.09 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$m = -1.00$$

Results: Metric Improvement

	Long Short	Improved Long Short
m	-1.95	-1.00

Discussion

Discussion

- Buy and hold does reasonably well in real life
 - Beats most active mutual funds
- Reinforcement learning made strong schedulers
- Schedulers gave insight into constructing better trading strategies
- Real life is not that evil (usually)

Backtesting on real data

- Buy and hold does better than most strategies
- Our system helped us come up with a decent long-short strategy
- Our modified long-short strategy was even better
 - Constructed based on what the scheduler told us about original strategy

Backtesting on real data

Conclusion

- Statistical model checking can be used in portfolio optimization
- Optimal schedulers give good real-world insight into when a trading strategy loses money
 - Extremely important for hedge funds and investment banks.

- Can be extended to virtually anything that can be expressed as an MDP or state transition diagram
 - Mortgage pricing, options pricing, lattice-based term-structure modeling

Future Work

- Simulate Brownian Motion more accurately
 - Brownian bridge rather than sequential simulation
- Experiment with different world states and trading strategies
- Optimize trading strategies with trader and scheduler locked in a two-player zero-sum game
 - Generative Adversarial Networks (zero-sum game between neural networks)

References

- [1] Ermogenous Angeliki. Brownian motion and its applications in the stock market. http://ecommons.udayton.edu/mth_epumd/15, 2006.
- [2] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–654, 1973.
- [3] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307 327, 1986.
- [4] Gavin Cassar and Joseph J. Gerakos. Do risk management practices work? evidence from hedge funds. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1722250, Dec 2010.
- [5] Joe Chang. Brownian motion conditional distributions. http://disi.unal.edu.co/~gjhernandezp/mathcomm/slides/bm.pdf. Accessed: 2018-11-18.
- [6] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke. Statistical model checking for markov decision processes. In 2012 Ninth International Conference on Quantitative Evaluation of Systems, pages 84–93, Sept 2012.
- [7] D. Henriques, J. G. Martins, P. Zuliani, A. Platzer, and E. M. Clarke. Statistical model checking for markov decision processes. In 2012 Ninth International Conference on Quantitative Evaluation of Systems, pages 84–93, Sept 2012.
- [8] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic symbolic model checker. In Tony Field, Peter G. Harrison, Jeremy Bradley, and Uli Harder, editors, Computer Performance Evaluation: Modelling Techniques and Tools, pages 200–204, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
- [9] Andrew W. Lo. Risk management for hedge funds: Introduction and overview. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=283308, Sep 2001.
- [10] Grant Olney Passmore and Denis Ignatovich. Formal verification of financial algorithms. In Leonardo de Moura, editor, Automated Deduction CADE 26, pages 26–41, Cham, 2017. Springer International Publishing.
- [11] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: An adventure in financial engineering (functional pearl). SIGPLAN Not., 35(9):280–292, September 2000.
- [12] André Platzer. Stochastic differential dynamic logic for stochastic hybrid programs. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Automated Deduction CADE-23, pages 446–460, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg, 17
- [13] Dr Reddy and V Clinton. Simulating stock prices using geometric brownian motion: Evidence from australian companies. 10:23–47, 01 2016.
- [14] Karl Sigman. Simulating normal (gaussian) rvs with applications to simulating brownian motion and geometric brownian motion in one and two dimensions. http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-BM-GBM-I.pdf. Accessed: 2018-11-18.

Acknowledgments

- Professor André Platzer
- TAs Yong Kiam, Irene, Brandon, CPS Lab
- Sponsors

galois

DAIMLER • APTIV•

