Checkerboard Switch Block Topologies for Routing Diversity

by Guy Lemieux and David Lewis

University of Toronto

Switch Block Background

Three switch block types...

- 1. disjoint (Xilinx)
- O has structure, easy to layout
 O simple: net on track t always stays on track t
 - universal \dot{c}
- O has structure, easy to layout O routable: isolated switch blocks can route any valid set of 2-point nets
 - Wilton 33
- O no structure? hard to layout?
- O most routable: net on track t changes to track t+1 or W-t-1 during a turn
 - call this diversity
- Comments:
- all have similar area per track
- Wilton requires fewest tracks
- how to increase diversity?
- is diversity good?

disjoint

Wilton

Switch Block Models

How to work with long wire segments?

From most flexible to least flexible:

- traditional (Brown/Rose)
- O in general, may lead to difficult layout structures?

J

- O too flexible
- crossing locations 7
- O better layout structure?
- midpoint/endpoint segregation 3
- O midpoint connections separate from endpoints
 - O no extra connections on endpoints, saves area O suggested by Imran
- track group segregation (new model) 4
- O wires with same start, end points form a group O easier mathematical analysis later O includes Imran switch block O used here

Track group segregation model used here.

SE

model

Switch Block Midpoints

with same (disjoint) endpoint pattern: Consider two switch blocks, both

- 1. midpoint switch blocks with **no diversity**

- O same midpoint pattern everywhere
 O track t connects to track t
 O different global routes reach same track
- 2. midpoint switch blocks with diversity
- O same midpoint pattern everywhere
 O track t connects to track t+1
 O different global routes reach **different** track
- O example: reaches 3 different tracks
 O note: can also use **different** midpoint pattern along length of

Checkerboard Patterns

Additional diversity can be obtained using two switch block layout tiles.

works with length 1 and 4 wires

checkerboard layout pattern,

Commutative Switch Blocks

- turn order is not important commutative switch blocks

- a state diagram can be used to represent a sequence of turns

 easier mathematical analysis

must check each switch block:

- disjoint is commutative
- new switch block shifty similar to Wilton,
- shifty performance equivalent to Wilton

commutative

Commutative Design Framework (CDF)

- 1. any two-point net may take a **complex**, arbitrary path
- a path is represented by a sequence of turns
 each turn is a permutation (mapping) function, from track t to track f(t)
 - if commutative, the turn sequence can be rewritten in any order

- 5. choose one order corresponding to a **canonical form**6. numerous complex, arbitrary paths are reduced to same canonical expression
 7. **but** different canonical expressions represent **different** paths to same destination O choose permutation functions to make canonical expressions diverse,
 - i.e. reach different tracks

Checkerboard, Commutative Design Framework Switch Block Design Problem

TIVE'N'

length 4 wires + checkerboard = 8x8 grid

Consider all possible two-turn paths:

- 8 choose 2 = 28 pairs of paths to same output
 - 7 possible output rows
- 6 types of two-point turns
- $6 \times 7 \times 28 = 1176 \text{ pairs of canonical expressions}$
- note: without checkerboard, only $6 \times 3 \times 6 = 108$ pairs more pairs => greater diversity potential

Find:

mapping functions f, g for two switch blocks

Goal:

• choose *f*, *g* for maximum diversity, such that each pair of canonical expressions maps to a different track

Checkerboard, Commutative Design Framework

Solution

 cannot always find perfect solution

Wrote equation solver for CDF design

problem.

e.g, small channel width often maps to same track Sample solution on right for channel width 20 (track group width 5).

Note the solution is very diverse.

CDF Solution: Diversity Results

Design f, g switch blocks for each track group width.

Plot diversity versus track group width.

Maximum diversity = 1176 (no pairs reach same track).

