Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos Profesor. Ing. Carlos Mauricio Segura Quirós II Semestre 2019



# **Experimento 8**

# El inductor en CA, Circuito RL serie y paralelo

## I. Objetivo:

Al finalizar este experimento, el estudiante estará en capacidad de analizar el comportamiento de la tensión y la corriente en un inductor, en función de la frecuencia y la inductancia. Además, podrá analizar la relación de voltaje y corriente con respecto a la magnitud y la fase en un circuito.

## II. Cuestionario previo:

- 1. ¿Cómo se calcula la impedancia de un inductor? Justifique por medio del procedimiento matemático.
- 2. Analice matemáticamente el circuito de la figura 2 y obtenga la expresión para  $I_L$  y  $V_L$ . Calcule el valor de ambas magnitudes para  $V_T = 6V_{PP}$ , f=1kHz, L=10H y  $R_M=100\Omega$ .
- 3. Simule todos los circuitos utilizando un software de su predilección y obtenga las gráficas (utilizando el mismo sistema de referencia) para V<sub>T</sub>, V<sub>L</sub>, V<sub>R</sub> e I<sub>T</sub>, I<sub>L</sub>, I<sub>R</sub>.
- 4. Investigue acerca de los diferentes tipos de inductores y los materiales con los que se fabrican.
- 5. Proponga un circuito de medición. El circuito deberá ser un circuito RL paralelo para el cual se pueda medir, por medio del ORC, las corrientes por cada rama y el voltaje del mismo, con los valores del apartado 3 de materiales y equipo.
- 6. Analice matemáticamente el circuito propuesto y obtenga  $I_T$ ,  $I_L$  e  $I_R$ . Asigne valores a los componentes y al voltaje  $V_T$  de manera que sea posible obtener valores numéricos.
- 7. Simule el circuito y obtenga las gráficas (utilizando el mismo sistema de referencia) para I<sub>T</sub>, I<sub>L</sub>, I<sub>R</sub> y V.



# III. Materiales y equipo:

- 1 generador de ondas,
- 1 Osciloscopio,
- 1 multímetro,
- 1 regleta de cables,
- 1 placa universal,
- 1 juego de puentes,
- 1 resistencias de  $100\Omega$ ,
- 1 resistencia de 3 k $\Omega$
- 1 resistencia de  $5k\Omega$ ,
- 1 bobina de 10H.

### IV. Circuitos de medición:



Figura 1 Circuito de Medición 1



Figura 2 Circuito de medición 2



Figura 3 Circuito de medición 3

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos Profesor. Ing. Carlos Mauricio Segura Quirós II Semestre 2019



#### V. Procedimiento:

1. <u>Proponga</u> un circuito de medición para obtener el valor real de la inductancia y el valor de la resistencia del devanado. Compare los resultados mediante los equipos de medición.

# 2. **Dependencia de V**<sub>L</sub> con la frecuencia en un inductor (l<sub>L</sub> constante, circuito #1): Recurra a un mismo inductor en cada una de las mediciones según la tabla #1; verifique que l<sub>Lpp</sub> = 0,5mA. Ajuste los valores de frecuencia indicados y complete los datos de la tabla.

Tabla #1 (I<sub>Lpp</sub>=0,5mA)

| f (Hz)               | 60 | 100 | 150 | 200 | 250 | 300 |
|----------------------|----|-----|-----|-----|-----|-----|
| V <sub>LPP</sub> (V) |    |     |     |     |     |     |

3. Dependencia de V<sub>L</sub> con la corriente en un inductor (circuito #1): Calcule los valores de V<sub>RMpp</sub> y mida V<sub>Lpp</sub> en cada caso hasta completar la tabla #2.

Tabla #2 (f=60Hz)

| I <sub>LPP</sub> (mA)  | 0,5 | 1 | 2 | 3 | 4 | 5 |
|------------------------|-----|---|---|---|---|---|
| V <sub>RMpp</sub> (mV) |     |   |   |   |   |   |
| V <sub>LPP</sub> (V)   |     |   |   |   |   |   |

4. Dependencia de V<sub>L</sub> con la inductancia L (I<sub>L</sub> y f constantes, circuito #1): Utilice para esta medición el generador de señales y verifique que I<sub>Lpp</sub> = 0,5mA en cada medición. Recurra a la conexión múltiple de inductores para completar la tabla #3.

Tabla #3 (f=60Hz)

|                      | 1 410 141 11 0 | · •• |     |
|----------------------|----------------|------|-----|
|                      | 1*L            | 2*L  | 3*L |
| Inductancia (H)      |                |      |     |
| V <sub>LPP</sub> (V) |                |      |     |

- 5. Utilizando el circuito de medición #2, a una frecuencia de 1kHz y una tensión de generador con valor pico de 6V, obtenga en el ORC y dibuje en un mismo sistema de ejes de coordenadas, las formas de onda de la tensión y la corriente en el inductor.
- 6. Mida el desfase entre V<sub>L</sub> e I<sub>L</sub>. Sugerencia: haga los ajustes necesarios en el osciloscopio para que un período de la señal abarque 6 divisiones horizontales (60° por división).
- 7. Obtenga en el ORC para el circuito de medición #3 las tensiones  $V_T$ ,  $V_R$  y  $V_L$ , para  $R = 3k\Omega$ . Mida el desfase existente entre la corriente I y V.
- 8. Para el circuito propuesto en el punto 5 del cuestionario previo, ajuste la frecuencia a 1kHz, y una amplitud pico-pico de 10V.
- 9. Obtenga el oscilograma de IT, IR e IL. Mida el desfase entre estas corrientes, entre IT y VT.

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL2111 Laboratorio de Circuitos Eléctricos Profesor. Ing. Carlos Mauricio Segura Quirós II Semestre 2019



#### VI. Evaluación:

- 1. Con los datos de la tabla #1 realice el gráfico  $V_L = f(f)$  para  $I_L$  y L constantes.
- 2. De acuerdo con el punto anterior, ¿cuál relación matemática se deduce entre V<sub>L</sub> y f?
- 3. Con las mediciones de la tabla #2 grafique la dependencia correspondiente.
- 4. De acuerdo con el punto anterior, ¿qué relación se cumple entre V<sub>L</sub> y I<sub>L</sub>?
- 5. De los datos experimentales de la tabla #3, grafique la dependencia  $V_L = f(L)$  para  $I_L$  y f constantes.
- 6. Según el punto anterior, deduzca la relación matemática  $V_L = f(L)$ .
- 7. De los resultados de los puntos 2, 4 y 6 de la evaluación, ¿qué relación existe entre la tensión y la corriente en un inductor? ¿Qué representa el cociente V<sub>L</sub>/I<sub>L</sub>? ¿Cómo se denomina este parámetro? ¿Qué unidad tiene?
- 8. Establezca y analice la Ley de Ohm aplicada a un inductor con corriente alterna senoidal.
- 9. ¿Cuál es el valor de X<sub>L</sub>?
- 10. Utilice el gráfico obtenido en el punto 5 del procedimiento y <u>compruebe</u> la validez de la ecuación  $V_L = L \frac{\mathrm{d} I}{\mathrm{d} t}$  Justifique el ángulo de fase entre la tensión y corriente en una bobina. Relacione su justificación con el punto anterior. Indique dicho ángulo en el gráfico del punto 5 del procedimiento y exprese su valor en grados y en radianes.
- 11. De los gráficos del punto 7 del procedimiento, determine el ángulo de fase entre la tensión  $V_L$  y la corriente I.
- 12. De esos mismos gráficos, determine el ángulo de fase entre la tensión total de alimentación del circuito y la corriente del circuito. Relacione con el valor del ángulo medido en el punto anterior.
- 13. Dibuje el diagrama fasorial de voltajes correspondientes con el circuito R<sub>L</sub> serie de acuerdo con los gráficos en el procedimiento. Como magnitudes utilice los valores pico-pico de las tensiones.
- 14. Relacione la tensión total con la corriente total del circuito R<sub>L</sub> serie. ¿Qué representa esta relación? ¿Cómo se denomina?
- 15. ¿Cómo se relaciona el punto anterior con R y X<sub>L</sub> en el circuito RL serie?
- 16. Realice el diagrama de impedancia para el circuito R<sub>L</sub> serie investigado. ¿Cómo se puede obtener el ángulo del punto 12 anterior en este diagrama?
- 17. Explique la relación que existe entre I<sub>T</sub>, I<sub>R</sub> e I<sub>L</sub> hallados en el punto 8 del procedimiento. Determine el ángulo de desfase entre la tensión y la corriente en la bobina. Además, obtenga el desfase entre tensión y corriente totales.
- 18. Dibuje el diagrama fasorial de corrientes correspondientes con el circuito RL paralelo de acuerdo con el oscilograma obtenido en el procedimiento. Como magnitudes utilice los valores pico-pico de las tensiones. ¿Cómo se puede obtener el ángulo medido en el punto 2 del procedimiento en este diagrama?
- 19. Relacione la corriente total con el voltaje total del circuito RL paralelo. ¿Qué representa esta relación?
- 20. ¿Cómo se relaciona el punto anterior con la recíproca R y X<sub>L</sub> en el circuito R<sub>L</sub> paralelo? ¿Cómo se denomina a la recíproca de X<sub>L</sub>?
- 21. Realice el diagrama de admitancias. ¿Cómo se pueden obtener aquí los ángulos medidos en el punto 9 del procedimiento?