Week 9 Exercises: Propositional Logic - Detailed Solutions

Note: This document provides comprehensive step-by-step solutions for all exercises in Week 9. These solutions are intended for instructor reference and can be shared with students as needed.

Part I: Translation from English to Logic

Translate each sentence into propositional logic using noun-based propositional atoms taken directly from the sentence.

- 1. If it rains, the sky is cloudy.
- 2. If An had a lot of money, she would go shopping.
- 3. Monkeys are not literate.
- 4. The server is online and the database is accessible.
- 5. Either the model overfits or the dataset is too small.
- 6. If the lecture starts late, the lab session will be shorter.
- 7. The patient has a fever if and only if the thermometer reads above 38°C.
- 8. It is not the case that both the code compiles and the tests fail.
- 9. If the assignment is submitted, then the checker runs, and if it runs, a report is generated.
- 10. Either the network is down or the credentials are incorrect, but not both.

Part II: Convert to CNF (revised, higher difficulty)

For each formula, convert to CNF showing standard steps in solutions: eliminate \Leftrightarrow , \Rightarrow , push negations inward, remove double negations, and distribute V over Λ until CNF is reached.

11.
$$(P \Rightarrow (Q \land R)) \lor (S \Rightarrow Q)$$
.

12. ((P V Q)
$$\Rightarrow$$
 (R \land S)).

13.
$$(P \Leftrightarrow (Q \lor R)) \land (\neg R \lor S)$$
.

14.
$$\neg(P \Rightarrow (Q \Rightarrow R)) \lor S$$
.

15.
$$(P \Leftrightarrow Q) \Rightarrow (R \lor S)$$
.

16.
$$(P \Rightarrow Q) \land (Q \Leftrightarrow (R \land S))$$
.

17.
$$(P \Rightarrow (Q \Leftrightarrow R)) \vee (S \land \neg R)$$
.

18.
$$\neg$$
((P V Q) \Leftrightarrow R).

19. (P V (Q
$$\Rightarrow$$
 R)) \Rightarrow (S V R).

20. ((P
$$\land \neg Q$$
) \Rightarrow (R \lor S)) \land (Q \lor R).

Part III: Inference rule proofs

Use rules such as Modus Ponens, And-Elimination/Introduction, and Resolution to derive the target conclusion from the premises.

- 21. Premises: $P \Rightarrow Q$; $Q \Rightarrow R$; P Prove: R.
- 22. Premises: P \land Q; P \Rightarrow R; Q \Rightarrow S Prove: R \land S.
- 23. Premises: $P \Leftrightarrow Q$; P Prove: Q.
- 24. Premises: P V Q; ¬P V R; ¬Q Prove: R.
- 25. Premises: $P \Rightarrow (Q \lor R); \neg Q; R \Rightarrow S; P \longrightarrow Prove: S$.

Part IV: Translation + CNF (combined)

For each item, first translate the English sentence into logic using noun-based atoms, then convert that translation to CNF using the standard procedure; show both steps in your solution write-up.

- 26. If the sensor detects smoke, then the alarm sounds and the sprinklers activate.
- 27. The system is online if and only if the database is reachable or the cache is warm.
- 28. It is not the case that both the model converges and the validation error increases.
- 29. If the user is authenticated and not banned, then the action is permitted or audited.
- 30. Either the API returns 200 or, if it returns 500, then alerts trigger.
- 31. If the build passes, then deployment proceeds if and only if approvals are granted.
- 32. Unless the battery is charged, the device powers off.
- 33. The dataset is large if and only if the sample size is above 10k and the features exceed 100.
- 34. The lab is open implies the TA is present or the sign shows remote support, and the TA being present implies the lab is open.
- 35. It is not the case that if the server is down or the firewall blocks traffic, then the website is reachable.

Detailed Solutions

Part I: Translation from English to Logic

Exercise 1: If it rains, the sky is cloudy.

- **Solution:** This is a conditional statement (if-then).
- **Atoms:** Rains = "It rains", SkyCloudy = "The sky is cloudy"
- **Answer:** Rains ⇒ SkyCloudy

Exercise 2: If An had a lot of money, she would go shopping.

• **Solution:** Conditional statement with proper nouns.

- **Atoms:** AnHasALotOfMoney = "An had a lot of money", AnGoesShopping = "An would go shopping"
- Answer: AnHasALotOfMoney ⇒ AnGoesShopping

Exercise 3: Monkeys are not literate.

- Solution: Negation of a statement.
- **Atoms:** MonkeysAreLiterate = "Monkeys are literate"
- **Answer:** ¬MonkeysAreLiterate

Exercise 4: The server is online and the database is accessible.

- Solution: Conjunction (and) of two statements.
- **Atoms:** ServerOnline = "The server is online", DatabaseAccessible = "The database is accessible"
- **Answer:** ServerOnline Λ DatabaseAccessible

Exercise 5: Either the model overfits or the dataset is too small.

- **Solution:** Disjunction (or) of two statements.
- Atoms: ModelOverfits = "The model overfits", DatasetTooSmall = "The dataset is too small"
- **Answer:** ModelOverfits **V** DatasetTooSmall

Exercise 6: If the lecture starts late, the lab session will be shorter.

- Solution: Conditional statement.
- **Atoms:** LectureStartsLate = "The lecture starts late", LabSessionShorter = "The lab session will be shorter"
- **Answer:** LectureStartsLate ⇒ LabSessionShorter

Exercise 7: The patient has a fever if and only if the thermometer reads above 38°C.

- **Solution:** Biconditional (if and only if).
- **Atoms:** PatientHasFever = "The patient has a fever", ThermometerAbove38C = "The thermometer reads above 38°C"

Exercise 8: It is not the case that both the code compiles and the tests fail.

- **Solution:** Negation of a conjunction.
- **Atoms:** CodeCompiles = "The code compiles", TestsFail = "The tests fail"
- **Answer:** ¬(CodeCompiles ∧ TestsFail)

Exercise 9: If the assignment is submitted, then the checker runs, and if it runs, a report is generated.

• **Solution:** Conjunction of two conditional statements.

- **Atoms:** AssignmentSubmitted = "The assignment is submitted", CheckerRuns = "The checker runs", ReportGenerated = "A report is generated"
- **Answer:** (AssignmentSubmitted ⇒ CheckerRuns) ∧ (CheckerRuns ⇒ ReportGenerated)

Exercise 10: Either the network is down or the credentials are incorrect, but not both.

- **Solution:** Exclusive or (XOR) can be expressed as (A \vee B) $\wedge \neg$ (A \wedge B).
- **Atoms:** NetworkDown = "The network is down", CredentialsIncorrect = "The credentials are incorrect"
- **Answer:** (NetworkDown V CredentialsIncorrect) ∧ ¬(NetworkDown ∧ CredentialsIncorrect)

Part II: Convert to CNF

Exercise 11: $(P \Rightarrow (Q \land R)) \lor (S \Rightarrow Q)$

Step-by-step solution:

- 1. **Eliminate implications:** Replace $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$
 - $\circ P \Rightarrow (Q \land R) \text{ becomes } \neg P \lor (Q \land R)$
 - \circ S \Rightarrow Q becomes \neg S \vee Q
 - \circ Result: ($\neg P \lor (Q \land R)) \lor (\neg S \lor Q)$
- 2. **Distribute V over A:** Apply α V (β \wedge γ) = (α V β) \wedge (α V γ)
 - \circ ($\neg P \lor (Q \land R)$) \lor ($\neg S \lor Q$) = ($\neg P \lor Q \land R \lor \neg S \lor Q$)
 - \circ Distribute: ($\neg P \lor Q \lor \neg S \lor Q$) $\land (\neg P \lor R \lor \neg S \lor Q)$
- 3. **Simplify:** Remove duplicate literals

$$\circ (\neg P \lor Q \lor \neg S \lor Q) = (\neg P \lor Q \lor \neg S)$$

$$\circ (\neg P \lor R \lor \neg S \lor Q) = (\neg P \lor Q \lor R \lor \neg S)$$

Final CNF: $(\neg P \lor Q \lor \neg S) \land (\neg P \lor Q \lor R \lor \neg S)$

Exercise 12: $((P \lor Q) \Rightarrow (R \land S))$

Step-by-step solution:

- 1. Eliminate implication: $\neg(P \lor Q) \lor (R \land S)$
- 2. Move negation inward (De Morgan's): $\neg (P \lor Q) = \neg P \land \neg Q$
 - \circ Result: $(\neg P \land \neg Q) \lor (R \land S)$

3. Distribute V over A:

$$\circ (\neg P \land \neg Q) \lor (R \land S) = (\neg P \lor R \land S) \land (\neg Q \lor R \land S)$$

 \circ Further distribute: $(\neg P \lor R) \land (\neg P \lor S) \land (\neg Q \lor R) \land (\neg Q \lor S)$

Final CNF: $(\neg P \lor R) \land (\neg P \lor S) \land (\neg Q \lor R) \land (\neg Q \lor S)$

Exercise 13: $(P \Leftrightarrow (Q \lor R)) \land (\neg R \lor S)$

Step-by-step solution:

- 1. Eliminate biconditional: $P \Leftrightarrow (Q \lor R) \text{ becomes } (P \Rightarrow (Q \lor R)) \land ((Q \lor R) \Rightarrow P)$
 - ∘ Result: $((P \Rightarrow (Q \lor R)) \land ((Q \lor R) \Rightarrow P)) \land (\neg R \lor S)$

2. Eliminate implications:

- $\circ P \Rightarrow (Q \lor R) \text{ becomes } \neg P \lor Q \lor R$
- \circ (Q \lor R) \Rightarrow P becomes \neg (Q \lor R) \lor P = (\neg Q \land \neg R) \lor P
- \circ Result: $(\neg P \lor Q \lor R) \land ((\neg Q \land \neg R) \lor P) \land (\neg R \lor S)$

3. Distribute V over A:

$$\circ ((\neg Q \land \neg R) \lor P) = (\neg Q \lor P) \land (\neg R \lor P)$$

$$\circ$$
 Result: $(\neg P \lor Q \lor R) \land (\neg Q \lor P) \land (\neg R \lor P) \land (\neg R \lor S)$

Final CNF: $(\neg P \lor Q \lor R) \land (\neg Q \lor P) \land (\neg R \lor P) \land (\neg R \lor S)$

Exercise 14:
$$\neg(P \Rightarrow (Q \Rightarrow R)) \lor S$$

Step-by-step solution:

- 1. Eliminate inner implication: $Q \Rightarrow R$ becomes $\neg Q \lor R$
 - \circ Result: $\neg(P \Rightarrow (\neg Q \lor R)) \lor S$
- 2. **Eliminate outer implication:** $P \Rightarrow (\neg Q \lor R)$ becomes $\neg P \lor \neg Q \lor R$
 - \circ Result: $\neg(\neg P \lor \neg Q \lor R) \lor S$
- 3. Move negation inward (De Morgan's): $\neg(\neg P \lor \neg Q \lor R) = P \land Q \land \neg R$
 - \circ Result: (P \land Q \land \neg R) \lor S
- 4. Distribute V over Λ:

$$\circ$$
 (P \land Q \land \neg R) \lor S = (P \lor S) \land (Q \lor S) \land (\neg R \lor S)

Final CNF: $(P \lor S) \land (Q \lor S) \land (\neg R \lor S)$

Exercise 15: $(P \Leftrightarrow Q) \Rightarrow (R \lor S)$

Step-by-step solution:

1. **Eliminate biconditional:** $P \Leftrightarrow Q$ becomes $(P \Rightarrow Q) \land (Q \Rightarrow P)$

$$\circ$$
 Result: $((P \Rightarrow Q) \land (Q \Rightarrow P)) \Rightarrow (R \lor S)$

- 2. Eliminate outer implication: $\neg((P \Rightarrow Q) \land (Q \Rightarrow P)) \lor (R \lor S)$
 - \circ Eliminate inner implications: ($\neg P \lor Q$) $\land (\neg Q \lor P)$
 - \circ Result: $\neg((\neg P \lor Q) \land (\neg Q \lor P)) \lor (R \lor S)$
- 3. Move negation inward (De Morgan's): $\neg((\neg P \lor Q) \land (\neg Q \lor P)) = \neg(\neg P \lor Q) \lor \neg(\neg Q \lor P)$

$$\circ \neg (\neg P \lor Q) = P \land \neg Q$$

$$\circ \neg (\neg Q \lor P) = Q \land \neg P$$

- \circ Result: (P $\land \neg Q$) \lor (Q $\land \neg P$) \lor (R \lor S)
- 4. Distribute **V** over Λ:
 - $\circ (P \land \neg Q) \lor (Q \land \neg P) \lor (R \lor S) = (P \lor Q \lor R \lor S) \land (\neg Q \lor Q \lor R \lor S) \land (P \lor \neg P \lor R \lor S) \land (\neg Q \lor \neg P \lor R \lor S)$
 - \circ Simplify: (P V Q V R V S) \wedge (R V S) \wedge (R V S) \wedge (\neg Q V \neg P V R V S)
 - \circ Further simplify: (P V Q V R V S) \wedge (R V S) \wedge (\neg P V \neg Q V R V S)

Final CNF: $(P \lor Q \lor R \lor S) \land (R \lor S) \land (\neg P \lor \neg Q \lor R \lor S)$

Part III: Inference Rule Proofs

Exercise 21: Premises: $P \Rightarrow Q$; $Q \Rightarrow R$; P— Prove: R

Solution using Modus Ponens:

- 1. $P \Rightarrow Q$ (Premise 1)
- 2. $Q \Rightarrow R$ (Premise 2)
- 3. P (Premise 3)
- 4. Q (From 1,3 by Modus Ponens)
- 5. R (From 2,4 by Modus Ponens)

Answer: R

Exercise 22: Premises: P \land Q; P \Rightarrow R; Q \Rightarrow S — Prove: R \land S

Solution:

1. P \(\dagger \) Q (Premise 1)

- 2. $P \Rightarrow R$ (Premise 2)
- 3. $Q \Rightarrow S$ (Premise 3)
- 4. P (From 1 by And-Elimination)
- 5. Q (From 1 by And-Elimination)
- 6. R (From 2,4 by Modus Ponens)
- 7. S (From 3,5 by Modus Ponens)
- 8. R A S (From 6,7 by And-Introduction)

Answer: R \wedge S

Exercise 23: Premises: $P \Leftrightarrow Q$; P — Prove: Q

Solution:

- 1. $P \Leftrightarrow Q$ (Premise 1)
- 2. P (Premise 2)
- 3. $P \Rightarrow Q$ (From 1 by Biconditional-Elimination)
- 4. Q (From 2,3 by Modus Ponens)

Answer: Q

Exercise 24: Premises: P V Q; ¬P V R; ¬Q — Prove: R

Solution using Resolution:

- 1. P V Q (Premise 1)
- 2. ¬P V R (Premise 2)
- 3. $\neg Q$ (Premise 3)
- 4. Q V R (From 1,2 by Resolution on P)
- 5. R (From 3,4 by Resolution on Q)

Answer: R

Exercise 25: Premises: $P \Rightarrow (Q \lor R); \neg Q; R \Rightarrow S; P \longrightarrow Prove: S$

Solution:

- 1. $P \Rightarrow (Q \lor R)$ (Premise 1)
- 2. ¬Q (Premise 2)
- 3. $R \Rightarrow S$ (Premise 3)
- 4. P (Premise 4)
- 5. Q V R (From 1,4 by Modus Ponens)
- 6. R (From 2,5 by Disjunctive Syllogism)
- 7. S (From 3,6 by Modus Ponens)

Answer: S

Part IV: Translation + CNF (Combined)

Exercise 26: If the sensor detects smoke, then the alarm sounds and the sprinklers activate.

Translation:

- **Atoms:** SensorDetectsSmoke = "The sensor detects smoke", AlarmSounds = "The alarm sounds", SprinklersActivate = "The sprinklers activate"
- **Logical form:** SensorDetectsSmoke ⇒ (AlarmSounds ∧ SprinklersActivate)

CNF Conversion:

- 1. Eliminate implication: ¬SensorDetectsSmoke V (AlarmSounds ∧ SprinklersActivate)
- 2. Distribute V over Λ: (¬SensorDetectsSmoke V AlarmSounds) Λ (¬SensorDetectsSmoke V SprinklersActivate)

Final Answer: Translation: SensorDetectsSmoke \Rightarrow (AlarmSounds \land SprinklersActivate); CNF: (\neg SensorDetectsSmoke \lor AlarmSounds) \land (\neg SensorDetectsSmoke \lor SprinklersActivate)

Exercise 27: The system is online if and only if the database is reachable or the cache is warm.

Translation:

- **Atoms:** SystemOnline = "The system is online", DatabaseReachable = "The database is reachable", CacheWarm = "The cache is warm"

CNF Conversion:

- Eliminate biconditional: (SystemOnline ⇒ (DatabaseReachable V CacheWarm)) Λ
 ((DatabaseReachable V CacheWarm) ⇒ SystemOnline)
- Eliminate implications: (¬SystemOnline V DatabaseReachable V CacheWarm) Λ (¬(DatabaseReachable V CacheWarm) V SystemOnline)
- 3. Move negation inward: (\neg SystemOnline \lor DatabaseReachable \lor CacheWarm) \land ((\neg DatabaseReachable \land \neg CacheWarm) \lor SystemOnline)
- Distribute V over Λ: (¬SystemOnline V DatabaseReachable V CacheWarm) Λ
 (¬DatabaseReachable V SystemOnline) Λ (¬CacheWarm V SystemOnline)

Final Answer: Translation: SystemOnline ⇔ (DatabaseReachable V CacheWarm); CNF: (¬SystemOnline V DatabaseReachable V CacheWarm) Λ (¬DatabaseReachable V SystemOnline) Λ (¬CacheWarm V SystemOnline)

Exercise 28: It is not the case that both the model converges and the validation error increases.

Translation:

- **Atoms:** ModelConverges = "The model converges", ValidationErrorIncreases = "The validation error increases"
- **Logical form:** ¬(ModelConverges ∧ ValidationErrorIncreases)

CNF Conversion:

1. Apply De Morgan's law: ¬ModelConverges ∨ ¬ValidationErrorIncreases

Final Answer: Translation: ¬(ModelConverges Λ ValidationErrorIncreases); CNF: (¬ModelConverges V ¬ValidationErrorIncreases)

Exercise 29: If the user is authenticated and not banned, then the action is permitted or audited.

Translation:

- **Atoms:** UserAuthenticated = "The user is authenticated", UserBanned = "The user is banned", ActionPermitted = "The action is permitted", ActionAudited = "The action is audited"
- **Logical form:** (UserAuthenticated ∧ ¬UserBanned) ⇒ (ActionPermitted ∨ ActionAudited)

CNF Conversion:

- Eliminate implication: ¬(UserAuthenticated Λ ¬UserBanned) V (ActionPermitted V ActionAudited)
- 2. Apply De Morgan's law: (¬UserAuthenticated V ¬¬UserBanned) V (ActionPermitted V ActionAudited)
- 3. Remove double negation: (¬UserAuthenticated V UserBanned) V ActionPermitted V ActionAudited
- 4. Rearrange: ¬UserAuthenticated V UserBanned V ActionPermitted V ActionAudited

Final Answer: Translation: (UserAuthenticated Λ ¬UserBanned) ⇒ (ActionPermitted V ActionAudited); CNF: (¬UserAuthenticated V UserBanned V ActionPermitted V ActionAudited)

Exercise 30: Either the API returns 200 or, if it returns 500, then alerts trigger.

Translation:

- **Atoms:** APIReturns200 = "The API returns 200", APIReturns500 = "The API returns 500", AlertsTrigger = "Alerts trigger"
- **Logical form:** APIReturns200 **V** (APIReturns500 ⇒ AlertsTrigger)

CNF Conversion:

- 1. Eliminate implication: APIReturns200 V (¬APIReturns500 V AlertsTrigger)
- 2. Rearrange: APIReturns200 V ¬APIReturns500 V AlertsTrigger

Final Answer: Translation: APIReturns200 V (APIReturns500 ⇒ AlertsTrigger); CNF: APIReturns200 V ¬APIReturns500 V AlertsTrigger

Exercise 31: If the build passes, then deployment proceeds if and only if approvals are granted.

Translation:

- **Atoms:** BuildPasses = "The build passes", DeploymentProceeds = "Deployment proceeds", ApprovalsGranted = "Approvals are granted"
- **Logical form:** BuildPasses ⇒ (DeploymentProceeds ⇔ ApprovalsGranted)

CNF Conversion:

- Eliminate biconditional: BuildPasses ⇒ ((DeploymentProceeds ⇒ ApprovalsGranted) Λ
 (ApprovalsGranted ⇒ DeploymentProceeds))
- 2. Eliminate implications: ¬BuildPasses V ((¬DeploymentProceeds V ApprovalsGranted) Λ (¬ApprovalsGranted V DeploymentProceeds))
- 3. Distribute V over Λ: (¬BuildPasses V ¬DeploymentProceeds V ApprovalsGranted) Λ (¬BuildPasses V ¬ApprovalsGranted V DeploymentProceeds)

Final Answer: Translation: BuildPasses ⇒ (DeploymentProceeds ⇔ ApprovalsGranted); CNF: (¬BuildPasses V ¬DeploymentProceeds V ApprovalsGranted) Λ (¬BuildPasses V ¬ApprovalsGranted V DeploymentProceeds)

Exercise 32: Unless the battery is charged, the device powers off.

Translation:

- **Note:** "Unless A, B" means "If not A, then B" or equivalently "A V B"
- **Atoms:** BatteryCharged = "The battery is charged", DevicePowersOff = "The device powers off"
- **Logical form:** ¬BatteryCharged ⇒ DevicePowersOff (or equivalently BatteryCharged **V** DevicePowersOff)

CNF Conversion:

1. Using equivalence: BatteryCharged V DevicePowersOff

Final Answer: Translation: ¬BatteryCharged ⇒ DevicePowersOff (equivalently BatteryCharged **V** DevicePowersOff); CNF: BatteryCharged **V** DevicePowersOff

Exercise 33: The dataset is large if and only if the sample size is above 10k and the features exceed 100.

Translation:

- **Atoms:** DatasetLarge = "The dataset is large", SampleAbove10k = "The sample size is above 10k", FeaturesExceed100 = "The features exceed 100"
- **Logical form:** DatasetLarge ⇔ (SampleAbove10k ∧ FeaturesExceed100)

CNF Conversion:

- Eliminate biconditional: (DatasetLarge ⇒ (SampleAbove10k Λ FeaturesExceed100)) Λ
 ((SampleAbove10k Λ FeaturesExceed100) ⇒ DatasetLarge)
- 2. Eliminate implications: (¬DatasetLarge V (SampleAbove10k Λ FeaturesExceed100)) Λ (¬(SampleAbove10k Λ FeaturesExceed100) V DatasetLarge)
- 3. Apply De Morgan's law: (¬DatasetLarge V SampleAbove10k Λ FeaturesExceed100) Λ ((¬SampleAbove10k V ¬FeaturesExceed100) V DatasetLarge)
- 4. Distribute V over Λ: (¬DatasetLarge V SampleAbove10k) Λ (¬DatasetLarge V FeaturesExceed100) Λ (¬SampleAbove10k V ¬FeaturesExceed100 V DatasetLarge)

Final Answer: Translation: DatasetLarge ⇔ (SampleAbove10k Λ FeaturesExceed100); CNF: (¬DatasetLarge V SampleAbove10k) Λ (¬DatasetLarge V FeaturesExceed100) Λ (¬SampleAbove10k V ¬FeaturesExceed100 V DatasetLarge)

Exercise 34: The lab is open implies the TA is present or the sign shows remote support, and the TA being present implies the lab is open.

Translation:

- **Atoms:** LabOpen = "The lab is open", TAPresent = "The TA is present", SignShowsRemoteSupport = "The sign shows remote support"
- Logical form: (LabOpen ⇒ (TAPresent V SignShowsRemoteSupport)) ∧ (TAPresent ⇒ LabOpen)

CNF Conversion:

1. Eliminate implications: (¬LabOpen V TAPresent V SignShowsRemoteSupport) ∧ (¬TAPresent V LabOpen)

Final Answer: Translation: (LabOpen ⇒ (TAPresent ∨ SignShowsRemoteSupport)) Λ (TAPresent ⇒ LabOpen); CNF: (¬LabOpen ∨ TAPresent ∨ SignShowsRemoteSupport) Λ (¬TAPresent ∨ LabOpen)

Exercise 35: It is not the case that if the server is down or the firewall blocks traffic, then the website is reachable.

Translation:

• **Atoms:** ServerDown = "The server is down", FirewallBlocksTraffic = "The firewall blocks traffic", WebsiteReachable = "The website is reachable"

• Logical form: ¬((ServerDown V FirewallBlocksTraffic) ⇒ WebsiteReachable)

CNF Conversion:

- 1. Eliminate implication: ¬(¬(ServerDown ∨ FirewallBlocksTraffic) ∨ WebsiteReachable)
- 2. Move negation inward: ¬¬(ServerDown V FirewallBlocksTraffic) Λ ¬WebsiteReachable
- 3. Remove double negation: (ServerDown V FirewallBlocksTraffic) A ¬WebsiteReachable

Final Answer: Translation: ¬((ServerDown V FirewallBlocksTraffic) ⇒ WebsiteReachable); CNF: (ServerDown V FirewallBlocksTraffic) ∧ (¬WebsiteReachable)