CAPÍTULO 3: TRANSFORMADA DISCRETA DE FOURIER

Transformada de Fourier

Transformada Discreta de Fourier

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

$$(X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi \frac{kn}{N}} \quad k = 0,1,...,N-1$$

EJEMPLO

$$x(t) = \cos(2\pi f_0 t)$$
 $f_0 = 100 \text{ Hz}$ $f_s = 1000 \text{ Hz}$

TF de la señal:

clear all

% Generación de la señal % discreta en el tiempo

f0=100 % Hz fs= 1000 % Hz n=0:999; x=cos(2*pi*(f0/fs)*n);

%obtención de la TDF Xk=fft(x); plot(abs(Xk)) **TDF** de la señal:

Transformada de Fourier

Transformada Discreta de Fourier

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi \frac{kn}{N}} \quad k = 0, 1, \dots, N-1$

PROCESOS INVOLUCRADOS:

Muestreo temporal:

$$x(t) \rightarrow x(nT_s) -\infty < n < \infty$$

> Señales discretas en el tiempo de duración finita:

$$x(nT_s)$$
 $-\infty < n < \infty$ \rightarrow $x(nT_s)$ $0 < n < N-1$

Muestreo del espectro:

$$X(f) - \infty < f < \infty \rightarrow X(k\Delta f) \quad 0 < k < N-1$$

¿Implicaciones?

3.1 Transformada de Fourier Discreta en el Tiempo (TFDT)

Muestreo temporal:

$$x(t) \rightarrow x(nT_s) -\infty < n < \infty$$

Transformada de Fourier

Transformada de Fourier Discreta en el Tiempo

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

$$X(f) = \sum_{n=-\infty}^{\infty} x(nT_s)e^{-j2\pi fnT_s} -\infty < f < \infty$$

Si consideramos, en general, un $T_s=1$ (un espaciamiento unitario entre cada muestra):

$$X(f) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi fn} \qquad \text{o} \qquad X(e^{j\omega}) = X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

Primero que nada recordemos cuál es el espectro de una señal discreta en el tiempo, utilicemos de nuevo el ejemplo anterior:

$$x(t) = \cos(2\pi f_0 t)$$
 $f_0 = 100 \text{ Hz}$ $f_s = 1000 \text{ Hz}$
 $x(nTs) = \cos(2\pi f_0 nTs) = \cos(\pi (f_0 / f_s)n)$

¿Cumple con esto la Transformada de Fourier Discreta en el Tiempo? Determinando si es periódica o no:

$$X(\omega + \omega_T) = \sum_{n = -\infty}^{\infty} x(n)e^{-j(\omega + \omega_T)n} = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega_T n}e^{-j\omega_T n}$$
$$e^{-j\omega_T n} = \cos(\omega_T n) - j\sin(\omega_T n) = 1$$
$$\Rightarrow \omega_T n = 2\pi k \quad \Rightarrow \omega_T = 2\pi k$$

De esto, el espectro dado por la TFDT se repite cada $2\pi k$:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} = X(\omega + 2\pi k)$$

Entonces si incluimos un Ts diferente de 1 en la formula de la TFDT, obtenemos que el espectro se repite cada múltiplo entero de fs:

$$X(f+f_T) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi(f+f_T)nT_s} = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi f_T nT_s} e^{-j2\pi f_n T_s}$$

$$e^{-j2\pi f_T nT_s} = \cos(2\pi f_T nT_s) - j\sin(2\pi f_T nT_s) = 1$$

$$\Rightarrow 2\pi f_T nT_s = 2\pi k \quad \Rightarrow f_T = \frac{k}{T_s} = kf_s$$

Las dos escalas frecuenciales, en Hz o rad/s, son coincidentes

$$x(n) = \delta(n)$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} \delta(n)e^{-j\omega n} = e^{-j\omega(0)} = 1$$

Espectro similar al de una delta de Dirac

$$X(n) = \delta(n - n_0)$$

$$X(\omega) = \sum_{n = -\infty}^{\infty} \delta(n - n_0) e^{-j\omega n} = e^{-j\omega(n_0)}$$

$$X(\omega) = (1) e^{-j\omega n_0} = |X(\omega)| e^{j\arg[X(\omega)]}$$

$$\max_{\text{magnitud}} \max_{\text{fase}} \sum_{n = -\infty}^{|X(\omega)|} |X(\omega)| = 1$$

$$\max_{\text{rad}} |X(\omega)| = 1$$

$$x(n) = a^{n}u(n) \quad |a| < 1$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} a^{n}u(n)e^{-j\omega n} = \sum_{n=0}^{\infty} a^{n}e^{-j\omega n} = \sum_{n=0}^{\infty} (ae^{-j\omega})^{n}$$

$$X(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\infty}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{1}{1 - ae^{-j\omega}}$$

$$x(\omega) = \frac{(ae^{-j\omega})^{0} - (ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{(ae^{-j\omega})^{\omega}}{1 - ae^{-j\omega}} = \frac{(ae$$

$$x(n) = \text{rect}_{N}(n) = u(n) - u(n - N)$$

$$x(n) = \text{rect}_{N}(n)$$

$$x(n) = \text{rect}_{N}(n)$$

$$x(n) = \text{rect}_{N}(n)$$

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} = \sum_{n=-\infty}^{\infty} \operatorname{rect}_{N}(n)e^{-j\omega n} = \sum_{n=0}^{N-1} (1)e^{-j\omega n}$$

$$X(\omega) = \frac{e^{-j\omega(0)} - e^{-j\omega(N-1+1)}}{1 - e^{-j\omega}} = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = \frac{e^{-j\omega \frac{N}{2}} \left[e^{j\omega \frac{N}{2}} - e^{-j\omega \frac{N}{2}} \right]}{e^{-j\frac{\omega}{2}} \left[e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}} \right]}$$

3.2 *Ventaneo* de la señal discreta en el tiempo

> Señales discretas en el tiempo de duración finita:

$$x(nT_s) - \infty < n < \infty \rightarrow x(nT_s) \quad 0 < n < N-1$$

Transformada de Fourier Discreta en el Tiempo

Obteniendo la TFDT de la señal truncada y utilizando la propiedad de convolución:

$$X_{T}(\omega) = \text{TFDT}\{x(n)\} * \text{TFDT}\{w(n)\}$$

$$X_{T}(\omega) = X(\omega) * W(\omega)$$

Espectro Original de la señal sin truncar

Espectro de la ventana de truncamiento

EJEMPLO

$$x(t) = \cos(2\pi f_0 t)$$
 $f_0 = 100$ Hz $f_s = 1000$ Hz $x(nTs) = \cos(2\pi f_0 nTs) = \cos(\pi (f_0 / f_s)n)$

$$X_{nT_s}(f) = \sum_{k=-\infty}^{\infty} \left[\frac{1}{2} \delta(f - f_0 - kf_s) + \frac{1}{2} \delta(f + f_0 + kf_s) \right] \qquad \text{o} \quad X(\omega) = \sum_{k=-\infty}^{\infty} \left[\pi \delta(\omega - \omega_0 - 2\pi k) + \pi \delta(\omega + \omega_0 + 2\pi k) \right]$$

$$\delta \quad X(\omega) = \sum_{k=-\infty}^{\infty} \left[\pi \delta(\omega - \omega_0 - 2\pi k) + \pi \delta(\omega + \omega_0 + 2\pi k) \right]$$

En este caso:

$$X_T(\omega) = \text{TFDT}\{x(n)\} * \text{TFDT}\{w(n)\}$$

$$X_{T}(\omega) = X(\omega) * W(\omega) = \sum_{k=-\infty}^{\infty} (\pi \delta(\omega - \omega_{0} - 2\pi k) + \pi \delta(\omega + \omega_{0} + 2\pi k)) * \left[e^{-j\omega \frac{(N-1)}{2}} \frac{\operatorname{sen}\left(\frac{\omega N}{2}\right)}{\operatorname{sen}\left(\frac{\omega}{2}\right)} \right]$$

$$|X_{T}(\omega)| = \sum_{k=-\infty}^{\infty} \left(\pi \frac{\operatorname{sen}\left(\frac{(\omega - \omega_{0} - 2\pi k)N}{2}\right)}{\operatorname{sen}\left(\frac{(\omega - \omega_{0} - 2\pi k)}{2}\right)} + \pi \frac{\operatorname{sen}\left(\frac{(\omega + \omega_{0} + 2\pi k)N}{2}\right)}{\operatorname{sen}\left(\frac{(\omega + \omega_{0} + 2\pi k)}{2}\right)} \right)$$

3.3 Observación (resolución) Espectral

Con base en lo anterior, se presenta un gran problema:

EJEMPLO 1

suma de dos cosenos muy cercanos

EJEMPLO 2

suma de dos cosenos, uno de ellos con poca

Analicemos en detalle el espectro de la ventana rectangular

$$|W(\omega)| = \frac{\left| \operatorname{sen}\left(\frac{\omega N}{2}\right) \right|}{\operatorname{sen}\left(\frac{\omega}{2}\right)}$$

y grafiquémoslo en un solo periodo $[-\pi, \pi]$ (ó [-fs/2, fs/2])

De aquí, el poder separar dos frecuencias cercanas depende del número de puntos N de la señal discreta (truncada), sin embargo separar dos frecuencias cercanas con diferentes potencias depende además de la amplitud relativa entre el lóbulo principal y el primer lóbulo secundario.

EJEMPLO: Cosenos de frecuencias cercanas y de la misma potencia

$$x(t) = \cos(2\pi f_0 t) + \cos(2\pi f_1 t)$$
 $f_0 = 100 \text{ Hz } f_1 = 110 \text{ Hz } f_s = 1000 \text{ Hz}$

EJEMPLO: Cosenos de frecuencias cercana y diferentes potencias

$$x(t) = \cos(2\pi f_0 t) + \cos(2\pi f_1 t)$$
 $f_0 = 100 \text{ Hz } f_1 = 110 \text{ Hz } f_s = 1000 \text{ Hz}$

¿Es posible tener una solución a este problema de **Resolución Espectral**?

¡Utilizar otras ventanas de ponderación!

Ventanas de ponderación (algunas)

Rectangular

$$w[n] = \begin{cases} 1, & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Bartlett (triangular)

$$w[n] = \begin{cases} 2n/M, & 0 \le n \le M/2, \\ 2 - 2n/M, & M/2 < n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hanning

$$w[n] = \begin{cases} 0.5 - 0.5\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hamming

$$w[n] = \begin{cases} 0.54 - 0.46\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

TABLE 7.1 COMPARISON OF COMMONLY USED WINDOWS

Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3.86	$5.01\pi/M$
Hamming	-41	$8\pi/M$	-53	4.86	$6.27\pi/M$
Blackman	-57	$12\pi/M$	-74	7.04	$9.19\pi / M$

Observación espectral con Matlab

Programa ventanas.m

Inicio Continuación

```
clear all
fs=1;
N=100;
x=blackman(N);
x2=hamming(N);
x3=hanning(N);
x4=ones(1,N);
hold on
plot(x)
plot(x2,'r-.')
plot(x3,'k--')
plot(x4,'m:')
xlabel('Tiempo [n]')
legend('Blackman','Hamming','Hanning','Recta
ngular')
hold off
```

```
%espectro
N1=10000;
f=(-N1/2:N1/2-1)*(fs/N1);
y=fftshift(fft(x,N1));
y2=fftshift(fft(x2,N1));
y3=fftshift(fft(x3,N1));
y4=fftshift(fft(x4,N1));
figure(2)
hold on
plot(f,20*log10(abs(y)/max(abs(y))))
plot(f,20*log10(abs(y2)/max(abs(y2))),'r-.')
plot(f,20*log10(abs(y3)/max(abs(y3))),'k--')
plot(f,20*log10(abs(y4)/max(abs(y4))),'m:')
grid
xlabel('Frecuencia [rad/s]')
ylabel('Densidad Espectral de Potencia en dB')
legend('Blackman','Hamming','Hanning','Rectang
ular')
hold off
```