

VÉRIFICATION DES APTITUDES ET DES CONNAISSANCES

▼

DATE: 6 novembre 2023

UE: Logique (L3 informatique)

page 1/6

Partiel

Durée : 1h. Tous documents papier autorisés ; appareils électroniques (y compris téléphones portables) interdits.

Répondre dans les espaces prévus, ou au besoin en page 6. Le barême sur 20 points donné en marge est indicatif.

Exercice 1. Algorithme DPLL

On considère la formule propositionnelle φ_1 ci-dessous.

$$\varphi_1 \stackrel{\text{def}}{=} ((Q \Rightarrow \neg R) \Rightarrow \neg S) \land (R \Rightarrow (S \land P)).$$

[1,5] (a) Mettre φ_1 sous forme normale négative : calculer $\operatorname{nnf}(\varphi_1)$.

ļ				

page 2/6

[1]	(b) Mettre $nnf(\varphi_1)$ sous forme clausale.
2,5]	(c) Appliquer l'algorithme DPLL sur la forme clausale obtenue en (b). Plus précisément, dessiner un arbre de recherche DPLL complet comme vu en cours (c.f. figures 15 à 18 des notes de cours).

1] (d) Dire si la formule φ_1 est satisfiable, et si oui, fournir un modèle. Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} ((P \Rightarrow Q) \Rightarrow R)) \Rightarrow (P \wedge R).$ (a) Mettre φ_2 sous forme normale négative : calculer $\inf(\varphi_2)$.		pa	age 3/
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$			
Exercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\mathrm{def}}{=} \left((P \Rightarrow Q) \Rightarrow R) \right) \Rightarrow (P \land R) .$	 [1]	(d) Dire si la formula co cot satisfiable et si qui fournir un modèle	
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$	[1]	(d) Dife si la formule φ_1 est satisfiable, et si oui, fourmi un modele.	
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$			
On considère la formule propositionnelle φ_2 ci-dessous. $\varphi_2 \stackrel{\text{def}}{=} \big((P \Rightarrow Q) \Rightarrow R)\big) \Rightarrow (P \land R) \; .$	_		
$\varphi_2 \stackrel{\text{def}}{=} ((P \Rightarrow Q) \Rightarrow R)) \Rightarrow (P \land R) .$	Εz	xercice 2. Calcul des séquents propositionnel On considère la formule propositionnelle φ_2 ci-dessous.	
5] (a) Mettre φ_2 sous forme normale négative : calculer $\mathrm{nnf}(\varphi_2)$.			
	5]	(a) Mettre φ_2 sous forme normale négative : calculer $\mathrm{nnf}(\varphi_2)$.	

[3]	(b) Faire une recherche de preuve dans le calcul des séquents propositionnel vu en cours sur la formule $\operatorname{nnf}(\varphi_2)$ obtenue à la question (a); plus précisément, dessiner un arbre de recherche de preuve $\operatorname{complet}$.				
[1]	(c) Dire si la formule φ_2 est valide, et si non, fournir un contre-modèle.				

Exercice 3. Modélisation en logique propositionnelle

Le problème qui nous intéresse est le problème du sous-graphe transitif. L'entrée du problème est un entier naturel K et un graphe fini orienté G=(V,A) comme celui de gauche dans la figure 1, où V est l'ensemble des sommets et A l'ensemble des arcs. On souhaite décider s'il existe une relation $R\subseteq A$ (c'est-à-dire un sous-ensemble des arcs) de taille au moins K qui soit transitive, c'est-à-dire telle que si u,v,w sont trois sommets de V et $(u,v)\in R$ et $(v,w)\in R$, alors $(u,w)\in R$, comme la relation indiquée en gras à droite dans la figure 1.

Figure 1. Un graphe orienté avec un sous-graphe transitif contenant 4 arcs, mais aucun contenant 5 arcs.

Le but de cet exercice est d'écrire une formule propositionnelle (pas nécessairement sous forme normale conjonctive) $\varphi_3 \stackrel{\text{def}}{=} \alpha \wedge \theta \wedge \sigma \wedge \kappa$ qui dépend de K et du graphe d'entrée G = (V, A), et qui est satisfiable si et seulement s'il existe un sous-graphe transitif de taille au moins K dans G.

(a) Sous-graphe transitif. On commence par se concentrer sur l'existence d'un sous-graphe transitif, sans se préoccuper de la taille de l'ensemble d'arcs R. On travaille pour cela avec des propositions $P_{u,v}$ où $u,v\in V$. À toute interprétation I des propositions, on peut alors associer un sousensemble $R_I \subseteq V \times V$ par

$$R_I \stackrel{\text{def}}{=} \{(u, v) \in V \times V \mid I \models P_{u, v}\}$$

	$R_I \stackrel{\text{def}}{=} \{(u, v) \in V \times V \mid I \models P_{u, v}\} .$
[1,5]	i. Donner une formule propositionnelle α (qui dépend de $G=(V,A)$) telle que $I \vDash \alpha$ si et seulement si $R_I \subseteq A$, autrement dit telle que $I \not\vDash P_{u,v}$ pour tout $(u,v) \in V \times V \setminus A$.
[9]	ii. Donner une formule propositionnelle θ (qui dépend de $G=(V,A)$) telle que $I\vDash\theta$ si et
[2]	seulement si R_I est transitive.

(b) Contrainte sur le nombre d'arcs. On ajoute maintenant des contraintes pour garantir $|R_I| \geq K$. On introduit pour cela des propositions auxiliaires $Q_{i,u,v}$ pour $1 \leq i \leq K$ et $u,v \in V$. Pour toute interprétation I, on obtient ainsi une relation ternaire dans $\{1,\ldots,K\} \times V \times V$ ainsi que sa projection sur $V \times V$:

$$\begin{split} S_I & \stackrel{\text{def}}{=} \left\{ (i, u, v) \in \left\{ 1, \dots, K \right\} \times V \times V \mid I \vDash Q_{i, u, v} \right\}, \\ R_I' & \stackrel{\text{def}}{=} \left\{ (u, v) \in V \times V \mid \text{il existe } i \in \left\{ 1, \dots, K \right\} \text{ tel que } (i, u, v) \in S_I \right\}. \end{split}$$

i. Donner une formule propositionnelle σ (qui dépend de G=(V,A) et de K) telle que $I \vDash \sigma$ [2] si et seulement si $R'_I \subseteq R_I$.

3]	ii. Il nous reste à nous assurer que $ R'_I \geq K$. Donner une formule propositionnelle κ (q dépend de $G = (V, A)$ et de K) telle que $I \models \kappa$ si et seulement si S_I , vue comme un relation entre des indices $i \in \{1, \ldots, K\}$ et des paires $(u, v) \in V \times V$, est — totale : pour tout $1 \leq i \leq K$, il existe $(u, v) \in V \times V$ tels que $(i, u, v) \in S_I$ et — injective : pour tous $1 \leq i < j \leq K$, il n'existe pas $(u, v) \in V \times V$ tels que $(i, u, v) \in S_I$ et $(j, u, v) \in S_I$.					
1						