HUMBOLDT UNIVERSITY OF BERLIN

Projektpraktikum

Documentation of qr.py

Christian Parpart & Kei Thoma

CONTENTS

Contents

1	$\operatorname{qr}(\mathbf{A})$	2
2	$\mathrm{full_rank}(\mathrm{A})$	2
3	$\operatorname{solve_QR}(A,\mathrm{b})$	2
4	norm(A, b)	2
5	$\operatorname{condition}(\mathbf{A})$	3
6	$input_data(file_name, indices=None)$	3
7	draw(data)	3
8	$norm_residuals(data)$	3
9	main()	3

1. QR(A) CONTENTS

The following is the documentation for the module qr.py.

$1 \quad qr(A)$

This function computes the QR-decomposition.

Arguments

A (ndarray): Two dimensional ndarray.

Returns

```
(ndarray): Two dimensional ndarray of the QR-decomposition, Q. (ndarray): Two dimensional ndarray of the QR-decomposition, R.
```

$2 \quad full_rank(A)$

A boolean-function to check if the matrix has full column rank.

Arguments

A (ndarray): Two dimensional ndarray.

Returns

(boolean): True if A has full column rank and False otherwise.

3 solve_QR(A, b)

Solves the equation Ax = b for x with the QR-decomposition.

Arguments

```
A (ndarray): Two dimensional ndarray. Should have full column rank. b (ndarray): One dimensional ndarray.
```

Returns

(ndarray): One dimensional ndarray for x.

4 norm(A, b)

Computes the normed error induced by solving the linear equation with the function above.

Arguments

```
A (ndarray): Two dimensional ndarray. Should have full column rank. b (ndarray): One dimensional ndarray.
```

Returns

(float): The normed difference between Ax and b.

5. CONDITION(A) CONTENTS

5 condition(A)

Calculates the condition of A and A^TA .

Arguments

A (ndarray): Two dimensional ndarray.

Returns

(float, float): The condition of A and A^TA .

$6 \quad input_data(file_name, indices=None)$

Takes a properly formated text file and builds a two dimensional ndarray. Additionally, a list of indices can be passed to return specific entries.

Arguments

file_name (String): The path and the name of the text file. indices (list): List of indices.

Returns

(ndarray): The entries of the matrix with the passed indices. If the argument indices were left out, this returns the entire matrix.

7 draw(data)

Draws the plot of the linear regression according to the data passed.

Arguments

data (ndarray): Two dimensional ndarray.

8 norm_residuals(data)

Computes the residuals for the solution with and without p_2 .

Arguments

data (ndarray): Two dimensional ndarray.

Returns

(float, float): The residuals for Ax = b without taking p2 into consideration and with.

9 main()

The main-function to demonstrate the capabilities of the module.