Problem 1 23 points

PART A

1-1. Determine the molecular formula and write a balanced equation with correct state of matters for the combustion of Q.

Mole C: H: O =
$$\underbrace{(1.5144)(12.0/44.0)}_{12.0}$$
: $\underbrace{(0.2656)(2.0/18.0)}_{1.0}$: $\underbrace{(0.1575)}_{16.0}$

$$= 0.0344 : 0.0295 : 0.00984 = 7 : 6 : 2$$

The formula mass of $C_7H_6O_2 = 122$ which is the same as the molar mass given. (2)

$$C_7H_6O_2(s) + \underline{15} O_2(g) ----> 7CO_2(g) + 3H_2O(l)$$
 or (1)

$$[2C_7H_6O_2(s) + 15O_2(g) \quad -----> \ 14CO_2(g) + 6H_2O(l)]$$

3 marks

2 marks for correct formula of Q.

1 mark for correct balanced equation with proper states.

1-2. Calculate the heat capacity of the calorimeter (excluding the water). Calculation with proper units:

Mole Q =
$$\frac{0.6000}{122.0}$$
 = 4.919×10^{-3} (0.5)

$$q_v = n\Delta U^o = \frac{0.6000}{122.0} \times (-3079) = -15.14 \text{ kJ}$$
 (2)

Total heat capacity =
$$-q_v = 15.14 = 6.730 \text{ kJ K}^{-1}$$
 (1.5)
 $\Delta T = 2.250$

$$= 6730 \text{ J K}^{-1}$$

Heat capacity of water =
$$710.0 \times 4.184$$
 = 2971 J K^{-1} (1)

Heat capacity of calorimeter =
$$6730-2971 = 3759 \text{ J K}^{-1}$$
 (1)

6 marks

The heat capacity of calorimeter is

3759

J K⁻¹

Version 22.30 Page 1 of 20

Problem 1

1-3. Calculate the standard enthalpy of formation (ΔH^{o}_{f}) of Q. Calculation with proper units:

$$\Delta n_g = 7 - \underline{15} = -0.5 \text{ mol}$$

$$\Delta H^0 = \Delta U^0 + RT \Delta n_g$$

$$= -3079 + (8.314 \times 10^{-3})(298)(-0.5)$$

$$= -3080$$

$$\Delta H^0 = (7\Delta H^0_f, CO_2(g) + 3\Delta H^0_f, H_2O(1)) - (\Delta H^0_f, Q)$$

$$\Delta H^0_f \text{ of } Q = 7(-393.51) + 3(-285.83) - (-3080)$$

$$= -532 \text{ kJ mol}^{-1}$$

$$(0.5)$$

5 marks

 ΔH^{0} f of Q is -532 kJ mol⁻¹

Version 22.30 Page 2 of 20

Name:	Student Code:

PART **B**

1-4. Show whether Q is monomer or dimer in benzene by calculation assume that Q is a monomer in water.

Calculation:

3 marks

1-5. Calculate the freezing point (T_f) of a solution containing 0.244 g of Q in 5.85 g of benzene at 1 atm.

Calculation

If Q is completely dimerized in benzene, the apparent molecular mass should be 244.

Mole fraction of
$$Q_2 = \underline{0.244/244}$$
 = 1.32x10⁻² (0.01316) (3)
 $\underline{(0.244 + 5.85)}$
 $\underline{244}$ 78.0

$$\Delta T_{f} = (8.314)(278.55)^{2} \cdot 1.32 \times 10^{-2} = 0.861$$
 (2)
 9.89×10^{3}

$$T_f = 5.40 - 0.861 = 4.54 \, {}^{\circ}\text{C}$$
 (1)

T_f of solution is

4.54
°C
6 marks

- -1 mark for incorrect temperature.
- -1 mark for incorrect heat of fusion.

Version 22.30 Page 3 of 20

Name:	Student Code:
name:	Student Code:

Problem 2 20 points

PART A

2-1. On adding 1.00 mL of HCl, what species reacts first and what would be the product?

Species which reacts first is

A ²⁻ 0.5 mark

The product is

HA[—]

0.5 mark

2-2. What is the amount (mmol) of the product formed in (2-1)?

mmol of product =

$$1.00 \times 0.300 = 0.300$$

0.5 mark

2-3. Write down the main equilibrium of the product from (2-1) reacting with the solvent?

 $HA^- + H_2O \longrightarrow H_2A + OH^-$

1 mark

2-4. What are the amounts (mmol) of Na₂A and NaHA initially present?

Calculation:

At pH 8.34 which is equal to $(pK_{a1} + pK_{a2})/2$ all A^{2-} are protonated as HA $^-$.

Therefore no. of A^{2-} initially present in the solution = 0.300×10.00 = 3.00 mmol

At pH 10.33 , the system is a buffer in which the ratio of $[A^{2-}]$ and $[HA^{-}]$ is equal to 1. Thus

 $[HA^-]_{initial} + [HA^-]_{formed} = [A^{2-}]_{initial} - [HA^-]_{formed}$

The amount of initial $HA^- = 3.00 - 0.300 - 0.300 \mod = 2.40 \mod$

Version 22.30 Page 4 of 20

Name:	Student Code:
runie.	Student Code.

$$mmol of Na2A = 3.00 2.0 marks$$

$$mmol of NaHA = 2.40 2.5 marks$$

2-5. Calculate the total volume of HCl required to reach the second equivalence point. Calculation:

Total volume of HCl required =
$$[(2 \times 3.00) + 2.40]/0.300$$

= 28.00 mL

1.5 marks

Version 22.30 Page 5 of 20

Name: Studen	t Code:
--------------	---------

PART B

2-6. Calculate the absorbance at 400 nm of Solution III. Calculation:

Solution III is the indicator solution at 10⁻⁵ M in a solution containing 1.0 M CH₃COOH.

To obtain the absorbance of the solution, it is necessary to calculate the concentration of the basic form of the indicator which is dependent on the $[H^+]$ of the solution.

Whereas

$$[HIn] + [In^{-}] = 10^{-5}$$

$$10[In^{-}] + [In^{-}] = 10^{-5}$$

$$[In^{-}] = 0.091 \times 10^{-5}$$
(1.5 mark)

:. Absorbance of solution III = $\frac{0.091 \times 10^{-5}}{1.00 \times 10^{-5}} \times 0.300$ = 0.027 (1.0 mark)

-0.5 mark for incorrect unit

The absorbance at 400 nm of Solution III =

0.027

5 marks

Version 22.30 Page 6 of 20

Problem 2

2-7. Apart from H⁺, OH⁻, and H₂O, what are all the chemical species present in the solution resulting from mixing Solution II and Solution III at 1:1 volume ratio?

$$CH_3COOH$$
, CH_3COO^- , Na^+ , HIn , In^-

1.5 marks

2-8. What is the absorbance at 400 nm of the solution in (2-7)? Calculation:

When solutions II and III are mixed at 1:1 volume ratio, a buffer solution of 0.05 M CH₃COO⁻ / 0.45 M CH₃COOH is obtained.

[H⁺] of mixture solution =
$$Ka \frac{[CH_3COOH]}{[CH_3COO^-]}$$

= $1.75 \times 10^{-5} \times \frac{0.45}{0.05}$
= 15.75×10^{-5} (1.0 mark)
therefore $\frac{[In^-]}{[HIn]} = \frac{K_{In}}{[H^+]}$
= $\frac{10^{-3.38}}{15.75 \times 10^{-5}}$
 $\frac{[In^-]}{[HIn]} = 2.65$ (1.0 mark)
Whereas [HIn] + [In^-] = 10^{-5}
 $\frac{[In^-]}{2.65} + [In^-] = 10^{-5}$
[In^-] = 0.726×10^{-5} (1.5 marks)
∴ Absorbance of solution = $\frac{0.726 \times 10^{-5}}{1.0 \times 10^{-5}} \times 0.300$
= 0.218

-0.5 mark for incorrect unit

(0.5 mark)

Version 22.30 Page 7 of 20

Name:	Student Code:

2-9. What is the transmittance at 400 nm of the solution in (2-7)? <u>Calculation:</u>

-0.5 mark for incorrect unit

Transmittance of the solution = 0.605 or 60.5% 1 mark

Version 22.30 Page 8 of 20

Problem 3 20 points

3-1. How many beta decays in this series? Show by calculation.

Calculation:

A = 232 - 208 = 24;
$$24/4 = 6$$
 alpha particles
The nuclear charge is therefore reduced by 2 x 6 = 12 units, however, the difference in nuclear charges is only 90 - 82 = 8 units. Therefore there must be $12 - 8 = 4\beta^-$ emitted.

(1)

2 marks

Number of beta decays = 4

3-2. How much energy in MeV is released in the complete chain?

Calculation:

$$^{232}_{90} \text{Th} \rightarrow ^{208}_{82} \text{Pb} + 6 \, ^{4}_{2} \text{He} + 4 \beta^{-}$$
Energy released is Q value
$$Q = [m(^{232} \text{Th}) - m(^{208} \text{Pb}) - 6m(^{4} \text{He})]c^{2}$$
(the mass of 4e⁻ are included in daughters)
$$= [232.03805 \text{ u} - 207.97664 \text{ u} - 6 \text{ x} 4.00260 \text{ u}] \text{ x} 931.5 \text{ MeVu}^{-1}$$

$$= (0.04581 \text{u})(931.5 \text{ MeVu}^{-1}) = 42.67 \text{ MeV}$$
(2)

4 marks

Energy released = 42.67 MeV

Version 22.30 Page 9 of 20

Problem 3

3-3. Calculate the rate of production of energy (power) in watts ($1W = Js^{-1}$) produced by 1.00 kilogram of 232 Th ($t_{1/2} = 1.40 \times 10^{10}$ years). Calculation:

1.00 kg contains =
$$\frac{1000 \text{ g x } 6.022 \text{ x } 10^{23} \text{ atoms mol}^{-1}}{232 \text{ g mol}^{-1}}$$
$$= 2.60 \text{ x } 10^{24} \text{ atoms}$$
(1)

Decay constant for 232 Th

$$\lambda = \frac{0.693}{(1.40 \times 10^{10} \text{y})(3.154 \times 10^7 \text{s y}^{-1})}$$

$$= 1.57 \times 10^{-18} \text{ s}^{-1}$$
(1)

A = N
$$\lambda$$
 = (2.60 x 10²⁴)(1.57 x 10⁻¹⁸) where A is activity
= 4.08 x 10⁶ dps (disintegrations s⁻¹)
Each decay liberates 42.67 MeV (1)

Rate of production of energy (power)

$$4.08 \times 10^6 \text{ dis s}^{-1} \times 42.67 \text{ MeV dis}^{-1} \times 1.602 \times 10^{-13} \text{ J Mev}^{-1}$$

= $2.79 \times 10^{-5} \text{ J s}^{-1} = 2.79 \times 10^{-5} \text{ W}$ (2)

5 marks

Rate of production of energy =
$$2.79 \times 10^{-5}$$
 W

Version 22.30 Page 10 of 20

Problem 3

3-4. What volume in cm³ of helium at 0 °C and 1 atm collected when 1.00 gram of 228 Th ($t_{1/2} = 1.91$ years) is stored in a container for 20.0 years. Calculation:

$$^{228}\text{Th} \rightarrow ^{208}\text{Pb} + 5^{4}\text{He}$$
 (1)

The half-lives of various intermediates are relatively short compared that of 228 Th.

$$A = \lambda N = \left(\frac{0.693}{1.91 \text{ y}}\right) \left[\frac{(1.00 \text{ g})(6.022 \text{ X} 10^{23} \text{ mol}^{-1})}{228 \text{ g mol}^{-1}}\right]$$
$$= 9.58 \text{ x} 10^{20} \text{ y}^{-1} \tag{1}$$

Number of He collected

$$N_{\text{He}} = (9.58 \text{ x } 10^{20} \text{ y}^{-1})(20.0 \text{ y})(5 \text{ particles})$$

= 9.58 x 10²² particles of He (1)

$$V_{He} = \frac{(9.58 \times 10^{22})(22.4 \text{ L mol}^{-1})(10^{3} \text{ cm}^{3} \text{ L}^{-1})}{6.022 \times 10^{23} \text{ mol}^{-1}}$$

$$= 3.56 \times 10^{3} \text{ cm}^{3}$$
(2)

5 marks

Volume of He at 0 °C and 1 atm =
$$3.56 \times 10^3$$
 cm³

3-5. One member of thorium series, after isolation, is found to contain 1.50×10^{10} atoms of the nuclide and decays at the rate of 3440 disintegrations per minute. What is the half-life in years? Calculation:

A =
$$\lambda N$$
;
 $t_{1/2} = \frac{0.693}{\lambda} = \frac{0.693 \text{ N}}{\text{A}}$ (1.5)
= $\frac{(0.693)(1.50 \times 10^{10} \text{ atoms})}{3440 \text{ atoms min}^{-1}}$ (1.5)
= $3.02 \times 10^6 \text{ min}$
= 5.75 years (1)

4 marks

Version 22.30 Page 11 of 20

Name:	Student Code:
	2000000

Problem 4 28 points

4-1. The molecular formula of L is $C_{10}H_8N_2O_2$ 2 marks

> Knowing that L was synthesized from bipyridine and during the reaction bipyridine was simply oxidized to bipyridine oxide. The molecular mass of bipyridine is 156 (for C₁₀ H₈ N₂) while the molecular mass of L is 188. The difference of 32 is due to 2 atoms of oxygen. Therefore, the molecular formula of L is $C_{10}H_8N_2O_2$.

4-2. The structures of bipyridine and L

4-3. Does the ligand L have any charge, i.e., net charge? (Please tick).

- 2 charge	- 1 c	harge	no c	harge	+ 1 charg	e	+	- 2 charge
				$\sqrt{}$				
							1 1	mark

4-4. Draw the structure when one molecule of L binds to metal ion (M).

2 marks

Version 22.30 Page 12 of 20 Name:

Problem 4

Student Code:

4-5. Determine the empirical formula of A.

Calculation:

The empirical formula of A is

 $FeC_{30}H_{30}Cl_{3}N_{6}O_{21}$

3 marks

What are the values of m and n in FeL_m(ClO₄)_n.3H₂O?

$$m = \begin{bmatrix} 3 \\ 1 \text{ mark} \end{bmatrix} \qquad n = \begin{bmatrix} 3 \\ 1 \text{ mark} \end{bmatrix}$$

Since the molecular formula contains one atom of Fe , so in this case the empirical formula is equivalent to the molecular formula. The molecular formula of L has been obtained previously in (4a) and (4b) , therefore we can work to find m=3. Having obtained the value of m, one can work out for n and find that n=3.

The complete formula of A is

 $[FeL_3](ClO_4)_3.3H_2O$

1 mark

The ratio of cation to anion is

1:3

1 mark

Version 22.30 Page 13 of 20

Name:	Student Code:
Name:	Student Code:

The three $(ClO_4)^-$ groups will dissociate as free ion in solution. So the entire complex will be in the ion forms as $[FeL_3]^{3+}$ and $3 (ClO_4)^-$ in solution.

4-6. The oxidation number of Fe in complex **A** is +3 or III

0.5 marks

The number of *d*-electrons in Fe ion in the complex = $\begin{bmatrix} 5 \\ 0.5 \end{bmatrix}$ marks

Write the high spin and the low spin configuration that may exist for this complex.

Which configuration, high or low spin, is the correct one (please tick)?

√ High spin
Low spin

1 mark

Version 22.30 Page 14 of 20

Name:	Student Code:
-------	---------------

The best evidence to support your answer for this high/low spin selection:

Color

Elemental analysis data

√ Magnetic moment

Molar conductance

1 mark

We can use a simple relation between number of unpaired electrons and the magnetic moment as follows.

$$\mu \quad = \quad \sqrt{n(n+2)}$$

where μ is the so-called 'spin-only' magnetic moment and n is the number of unpaired electrons. Thus , for high spin case ,

$$\mu = \sqrt{5(5+2)} = \sqrt{35} = 5.92 \text{ B.M.}$$

And for low spin case , $\mu = \sqrt{1(1+2)} = \sqrt{3} = 1.73$ B.M

The measured magnetic moment , μ , of A given in Table 4b is 6.13 B.M. which is in the range for high spin case . Therefore , we can conclude that A would exist as a high spin complex.

4-7. λ_{max} of complex **A** is 450 nm.

1 mark

From Table 4c , the color absorbed is complementary to the color seen.

Version 22.30 Page 15 of 20

Problem 4

4-8 Calculate the 'spin-only'magnetic moment of complex **B**:

Calculation:

From
$$\mu = \sqrt{n(n+2)}$$
 For Cr^{3+} , $n=3$ 1 mark Therefore,
$$\mu = \sqrt{3(3+2)} = \sqrt{15} = 3.87$$
 B.M.

The 'spin-only' magnetic moment of complex $\mathbf{B} =$

3.87 M.

1 mark

4-9 The empirical formula of **B** is

$$CrC_{20}H_{18}N_4Cl_3O_9$$

1 mark

$$\mathbf{x}$$
 =

1 mark

1 mark

Version 22.30 Page 16 of 20

Problem 5 23 points

5-1. Write structures of **A - D** with appropriate stereochemistry in Haworth projection, except for **B**.

5-2. Write molecular formula each for compounds **F** and **G** and structural formula for compound **H** and **I** and indicate stereochemistry of **H**.

Molecular formula of compound F = HCN	COOH H ₂ N——H	HOOC NH NH
(0.5 mark)	CH ₂ CN	or
	Compound H (2 marks)	HOOC N NH2
Molecular formula of compound G = H ₂ S		Compound I (2 marks)
(0.5 mark)	Remark: 1 mark for structure 1 mark for correct stereochemistry	Remark: 2 marks for structure

(5 marks)

Version 22.30 Page 17 of 20

Name:	

Student Code:

Problem 5

5-3. Deduce the absolute configuration of (-) E and the structure with configuration of each intermediate (J-O) in the sequence with the proper R,S-assignment.

COOH H—OH C ₆ H ₅ (-) E R or S (2 marks) Remark: 1 mark for structure 0.5 mark for R, S 0.5 mark for correct stereochemistry	COOC ₂ H ₅ H OC ₂ H ₅ C ₆ H ₅ (-) J (1.5 mark) Remark: 0.5 mark for ester 0.5 mark for ether 0.5 mark for correct stereochemistry	CH ₂ OH H—OC ₂ H ₅ C ₆ H ₅ (-) K (1 mark) Remark: 0.5 mark for structure 0.5 mark for correct stereochemistry	CH ₂ OSO ₂ C ₆ H ₅ H—OC ₂ H ₅ C ₆ H ₅ Compound L (1 mark) Remark: 0.5 mark for structure 0.5 mark for correct stereochemistry
CH_3 H OC_2H_5 C_6H_5 C_9M C_1 C_1 C_2 C_3 C_4 C_5 C_6 C_6 C_7 C_8	CH ₃ H—OH C_6H_5 (-) N \square R or \square S (1.5 mark)	$\begin{array}{c c} CH_3 \\ H & OSO_2C_6H_5 \\ \hline C_6H_5 \\ Compound \ \mathbf{O} \\ (1 \ mark) \end{array}$	CH ₃ D—H C_6H_5 (-) 1-phenylethane- <i>1-d</i> \square R or \square S (0.5 mark)
Remark: 0.5 mark for structure 0.5 mark for correct stereochemistry	Remark: 0.5 mark for structure 0.5 mark for R, S 0.5 mark for correct stereochemistry	Remark: 0.5 mark for structure 0.5 mark for correct stereochemistry	Remark: 0.5 mark for R , S

5-4. The mechanism involved in the conversion of compound **O** to (-) **1-phenylethane-***1-d* is

	$S_N 1$
	S_N2
	$S_N i$
	E1
	E2

1 mark

Version 22.30 Page 18 of 20

Name:	Student Code:
Tunic.	Student Code.

Problem 6 16 points

6-1.

2 sulfonic acid groups are formed from oxidation of a disulfide bond.

1 mark

6-2. Complete structure of DNP-Asp at its isoelectric point is

$$O_2N \longrightarrow OH OH OH$$

$$NO_2 H O$$

2 marks

Remarks

- 2 marks for exactly the same structure
- -1 mark for the condensed structure
- -0.5 mark for Zwitterionic form
 - 0 mark for misplaced DNP group

6-3.

The sequence of B8 is Cya-Tyr-Ile-Glu

2 marks

Remarks

- -0.5 marks if the sequence is correct but the symbol "Cys" is used in place of "Cya"
- -1 mark if "Cya" is put correctly at N-terminus but the sequence is incorrect
- 0 mark for the reverse sequence

6-4.

The sequence of B9 is Asp-Cya-Pro-Leu

1 mark

Remarks

- -0.5 marks if the sequence is correct but the symbol "Cys" is used in place of "Cya"
- mark for wrong sequence even if Asp and Leu are placed correctly since the information is already provided in the question

Version 22.30 Page 19 of 20

Name:	Student Code:
	Probl
6-5. The <i>complete</i> structure of A is	
Cys-Tyr-Ile-Glu-Asp-Cys-Pro-Leu-	Gly-NH ₂
	5 marks
Remarks 5 marks for exactly the same sequence wi - 1 mark for missing or misplaced the disul - 0.5 marks for missing "NH ₂ " group at C-ter - 0.5 for using the symbol "Cya" is used in pl	fide bond. minus.

6-6. Write the revised structure of A below and circle the site(s) to indicate all the possible source of ammonia

3 marks

Remarks

0

mark if the sequence wrong.

- 0.5 marks for each correct position of the amide group (Glu->Gln, Asp->Asn and at C-terminus)
- 0.5 marks for each circle at appropriate places (circle at Gly is allowed)

6-7.

The isoelectric point of **A** is 9

2 marks

Version 22.30 Page 20 of 20