HOMEWORK 5

LEANDRO RIBEIRO (WORKED WITH KYLE FRANKE AND JOYCE GOMEZ)

Proposition 4.32. For all $k,m \in \mathbb{N}$, f_{mk} is divisible f_m .

Proof. Let P(k) be the statement " f_{mk} is divisible f_m ." Let's first observe P(1).

Base. k = 1. $f_{m(1)} = f_m = f_m \cdot 1$.

Successor. Assume P(k). That is, f_{mk} is divisible f_m . Consider $f_{m(k+1)}$. $f_{m(k+1)} = f_{mk+m}$. By proposition 4.30, we can rewrite this as $f_{mk}f_{m-1} + f_{mk+1}f_m$. By induction, we have that $f_{mk} = f_mj$ for some $j \in \mathbb{Z}$. Hence, $f_mjf_{m-1} + f_{mk+1}f_m = f_m(jf_{m-1} + f_{mk+1})$. We have proven P(k+1), and thus proven the proposition by induction.

Project 5.16. Someone tells you that the following equalities are true for all sets A,B,C. In each case, either prove the claim or provide a counterexample.

(i)
$$A - (B \cup C) = (A - B) \cup (A - C)$$
.
(ii) $A \cap (B - C) = (A \cap B) - (A \cap C)$.

(i) Say A = $\{1,2,3,4\}$, B = $\{3,4,5\}$, and C = $\{1,6,7\}$. $A - (B \cup C) = \{2\}$. On the other hand, $(A - B) \cup (A - C) = \{1,2,3,4\}$. Thus, the claim does not hold

Proof. (ii) $A \cap (B-C)$ is the intersection between A and B not including the elements in B that are also in C. Suppose we have an $\mathbf{x} \in A \cap (B-C)$, by definition of intersection, we know $\mathbf{x} \in A$ and $\mathbf{x} \in (B-C)$. If $\mathbf{x} \in (B-C)$, by definition, $\mathbf{x} \in B$ but $\mathbf{x} \notin C$. Because $\mathbf{x} \in A$, $\mathbf{x} \in B$, and $\mathbf{x} \notin C$, $\mathbf{x} \in (A \cap B)$ and $\mathbf{x} \notin (A \cap C)$. By definition of set subtraction, $\mathbf{x} \in (A \cap B) - (A \cap C)$. Thus, $A \cap (B-C) \subseteq (A \cap B) - (A \cap C)$.

Now assume $x \in (A \cap B) - (A \cap C)$. By definition, this means $x \in (A \cap B)$ and $x \notin (A \cap C)$. Because $x \in (A \cap B)$, this means $x \in A$ and $x \in B$ by definition of intersection. Because $x \in A$ but $x \notin (A \cap C)$, this means $x \notin C$. Because $x \in B$ but $x \notin C$, $x \in (B - C)$ by definition of set subtraction. Since we already know $x \in A$ and $x \in (B - C)$, we can conclude $x \in A \cap (B - C)$ by definition of intersection. Hence, $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$. Since $(A \cap B) - (A \cap C) \subseteq A \cap (B - C)$

Date: February 20, 2017.

and
$$A \cap (B-C) \subseteq (A \cap B) - (A \cap C)$$
, we may conclude $A \cap (B-C) = (A \cap B) - (A \cap C)$.

Proposition 5.20. Let A, B, C be sets.

- (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Proof. (i) Let $x \in A \times (B \cup C)$. By definition, this means x = (y,z) where $y \in A$ and $z \in (B \cup C)$. By definition of union, this means $z \in B$ or $z \in C$.

Case 1: $z \in B$. Since $y \in A$ and $z \in B$, $x \in (A \times B)$. Thus by definition of union $x \in (A \times B) \cup (A \times C)$.

Case 2: $z \in C$. Since $y \in A$ and $z \in C$, $x \in (A \times C)$. Thus by definition of union $x \in (A \times B) \cup (A \times C)$.

We've proven that in both cases $x \in (A \times B) \cup (A \times C)$. Therefore, $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$.

Now let $x \in (A \times B) \cup (A \times C)$. This means $x \in (A \times B)$ or $x \in (A \times C)$.

Case 1: $x \in (A \times B)$. This means x = (y,z) where $y \in A$ and $z \in B$. By definition of union, because $z \in B$, $z \in (B \cup C)$. Because $y \in A$ and $z \in (B \cup C)$, $x \in A \times (B \cup C)$ By definition of x.

Case 2: $x \in (A \times C)$. This means x = (y,z) where $y \in A$ and $z \in C$. By definition of union, because $z \in C$, $z \in (B \cup C)$. Because $y \in A$ and $z \in (B \cup C)$, $x \in A \times (B \cup C)$ By definition of x.

We've proven that in both cases $\mathbf{x} \in A \times (B \cup C)$. Therefore, $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$. Because $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$ and $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$, $A \times (B \cup C) = (A \times B) \cup (A \times C)$ by mutual inclusion.

Proposition 6.6. (i) Given an equivalence relation on A, its equivalence classes form a partition of A.

(ii) Conversely, given a partition Π of A, define \sim by $a \sim b$ if and only if a and b lie in the same element of Π . Then \sim is an equivalence relation.

Proof. (i) Set $\Pi = \{[a] | a \in A\}$. Let's first argue every $a \in A$ is in some member of Π . Clearly $[a] \in \Pi$ and by proposition 6.4, $a \in [a]$. Hence every $a \in A$ lies in some $P \in \Pi$. By 6.5 for any [a], $[b] \in \Pi$ either [a] = [b] or $[a] \cap [b] = \emptyset$. If $[a] \neq [b]$, then $[a] \cap [b] = \emptyset$, by 6.5. Thus Π is a partition.

(ii) We define $a \sim b$ if and only if $a,b \in P \in \Pi$. Reflexivity: Since a is in the same part of the partition as itself, $a \sim a$. Symmetry: If a

and b are in the same part $P \in \Pi$, then b and a are in the same part. Hence $a \sim b$ if and only if $b \sim a$. **Transitivity:** If a and b are in the same part $P \in \Pi$, and if b and c are in the same part $P \in \Pi$, then a and c are in the same part. Thus, $a \sim c$.

Proposition 6.18. (Division Algorithm for Polynomials). Let n(x) be a polynomial that is not zero. For every polynomial m(x), there exist polynomials q(x) and r(x) such that

$$m(x) = q(x)n(x) + r(x)$$

and either r(x) is zero or the degree of r(x) is smaller than the degree of n(x).

Proof. By definition, $m(x) = a_d x^d + \cdots + a_0$. Let P(d) be the statement "m(x) = q(x)n(x) + r(x)." Let's first observe P(0).

Base. d = 0. This means $m(x) = a_0$. a_0 is a constant, so by proposition 6.13 (the division algorithm) we know that $a_0 = qn + r$ for constants q(x) = q, n(x) = n, and r(x) = r.

Successor. Assume P(n) holds. That is, $m(x) = a_n x^n + \cdots + a_0 = q(x)n(x) + r(x)$. Consider $m(x) = a_{n+1}x^{n+1} + \cdots + a_0$. I'm unsure what to do from this point on. But we must apply induction to prove P(n+1) holds.

Proposition 6.25. If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

Proof. By definition, $a \equiv a' \pmod{n}$ means a - a' = qn, and $b \equiv b' \pmod{n}$ means b - b' = rn for some $q,r \in \mathbb{Z}$. If we add these equations together, we have a - a' + b - b' = qn + rn. We can rewrite this as (a + b) - (a' + b') = (q + r)n. By definition of \equiv , $a + b \equiv a' + b' \pmod{n}$.

Consider ab - a'b'. Adding and subtracting ab', we have ab + ab' - ab' -a'b' = a(b - b') + (a - a')b'. Substituting, we have a(rn) + (qn)b'. This is equal to n(ar + qb'). Since, the expression is divisible by n, we can conclude $ab \equiv a'b' \pmod{n}$.

Sources.

http://zimmer.csufresno.edu/ sdelcroix/sol111home6.pdf http://zimmer.csufresno.edu/ sdelcroix/sol111home8.pdf