5 - FUNCTIONS - SOLUTIONS

5.1

(i) $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = \frac{1}{1+x^2}$

f is not a function because not every arbitrary real number in the domain is assigned to a unique real number in the co-domain, i.e there exists real numbers in the domain which map to the same element in the co-domain, such as when $x = \pm 1$

(iii) $f: \mathbb{Z} \to \mathbb{Z}$ with $f(x) = \frac{1}{2}x$

f is not a function as each integer in the domain map doesn't map to an integer in the co-domain, rather it is assigned to a unique real number in the co-domain.

5.2

(i) $f_1(x) = 2x + 5$

 f_1 is (1-1) as $\forall x, y \in A, (f_1(x) = f_1(y)) \Rightarrow (x = y)$ holds:

$$2x + 5 = 2y + 5$$
$$2x = 2y$$
$$x = y$$

(iii) $f_3(x) = x^2 - 2x$

 f_3 is onto, as it is not a 1-1 function.

1-1 contrapositive : $\exists x, y \in A, (x \neq y) \Rightarrow (f_3(x) \neq f_3(y))$

this is false, as there exists different x and y values which their image are equal. so therefore, f_3 is onto

5.5

(i) If $g \circ f$ is (1-1), then f is (1-1)

Proof.

$$g \circ f(x) = g \circ f(y)$$
$$g(f(x)) = g(f(y))$$
$$f(x) = f(y)$$
$$x = y$$

Therefore If $q \circ f$ is 1-1, then f is 1-1

(ii) If $g \circ f$ is onto, then g is onto.

Proof.

$$g \circ f = g(f(x)) = g(y) = z,$$

 $\exists x \in A, f(x) = y$

Since $g \circ f$ is onto, then there exists an $x \in A$ such that f(x) = y meaning it is also onto \Box

(i)
$$(124)(25)(58) = (12)(58)$$