Završni ispit iz Elektromagnetskih polja

1.2.2021.

- 1. Vodljiva petlja nalazi se u ravnini beskonačno dugog ravnog vodiča na udaljenosti d od osi vodiča. Ukoliko struje ravnog vodiča i vodljive petlje iznose $I_1 = I_2 = 1$ A gdje je smjer prikazan slikom i ako je zadano d = 1 m, a = 0.5 m, b = 0.75 m, odredite:
 - a. međuinduktivitet vodiča i petlje
 - b. silu između vodiča i petlje

- 2. Neki generator signala u vakuumu proizvodi ravni val duljine 3m. Ako taj isti generator stavimo u prostor ispunjen dielektrikom (ε_r , μ_r , $\kappa=0$) valna duljina proizvedenog vala padne na 1m. U tom je materijalu amplituda jakosti električnog polja 120π V/m, a amplituda jakosti magnetskog polja 0.5 A/m. Odredite ε_r i μ_r .
- 3. Za magnetski krug prema slici odredite magnetsku indukciju i energiju magnetskoga polja u zračnom rasporu. Krivulja magnetiziranja feromagnetskoga materijala zadana je grafički. Zadatak riješite grafoanalitičkom metodom. Zadano je: $S = 4 \text{ cm}^2$, $l_{sr} = 20 \text{ cm}$, $\delta = 0,27 \text{ mm}$, I = 1 A i broj zavoja N=280.

4. Elektromagnetski val u nemagnetskom materijalu ima električno polje

$$\vec{E} = 15\sin(2\pi * 10^7 t - 3x)\vec{a_z}$$
 V/m. Odredite:

- a. ε_r i Z
- b. prosječnu snagu vala
- c. ukupnu snagu koja prolazi kroz 200 cm² površine ravnine 2x+y=5
- 5. Signal u zraku $(z \ge 0)$, $(\varepsilon_0, \mu_0, \kappa = 0)$ s jakosti električnog polja $\vec{E} = 10\sin{(\omega t + 3z)}\vec{a_x}$ V/m nailazi okomito na površinu vodiča $(\varepsilon = \varepsilon_0, \mu = \mu_0, \kappa = 4,5*10^7 \text{ S/m})$ na z=0. Odredite:
 - a. koeficijente refleksije i prolaza na granici zraka i vodiča za frekvenciju 5MHz
 - b. približne gubitke po jedinici površine vodiča pri frekvenciji 10MHz