

METODE KALIBRASI DIMENSI

(INSTRUKSI KERJA FEELER GAUGE)

STM/IK-DIMENSI/06

APPROVAL BY:

PREPARED	CHECKED
MT	Wakil Kepala Lab

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 2 dari 9
Tgl. Revisi : 06 Mei 2019 Revisi : 04 Dibuat :Ria Fitri		Diperiksa :Dian P	Disahkan :I. Iman	
KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

Urutan Revisi	Tanggal	Rincian	Oleh
Pertama diterbitkan	20 October 2014	Prinsip metode kalibrasi mengacu pada ISO/IEC 17025:2005	Dian
Revisi 01	04 Juni 2015	Penentuan titik ukur dijabarkan dalam IK	Dian
Revisi 02	08 Juli 2015	Menambahkan worksheet dalam intruksi kerja	Dian
Revisi 03	27 Februari 2017	Memperbaharui referensi Acuan Standard yang sebelumnya menggunakan ISO GUM tahun 1995 menjadi "JCGM 100 : 2008 "Evaluation of measurement Data - Guide to the expression of uncertainty in measurement "	Dian
Revisi 04	06 Mei 2019	Merevisi acuan standar kalibrasi yang sebelumnya menggunakan Micrometer standar menjadi Menggunakan Gauge Block dan menguraikan tata cara pengambilan data.	Dian

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 3 dari 9	
Tgl. Revisi : 06 Mei 2019 Revisi : 04 Dibuat :Ria Fitri		Diperiksa :Dian P	Disahkan :I. Iman		
	KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

A. Tujuan

Menerangkan standar metode kalibrasi untuk pengkalibrasian feeler gauge.

B. Ruang Lingkup

Metode kalibrasi ini berlaku untuk feeler gauge. sesuai dengan persyaratan yang mengacu pada standar JIS B 7524 tahun 2008 untuk feeler gauge dengan maksimal kapasitas 10 mm yang dilakukan oleh laboratorium kalibrasi PT. Sentral Tehnologi Managemen.

C. Jenis & Spesifikasi Alat yang Dikalibrasi

Untuk Feeler dengan range pengukuran sampai dengan 10 mm.

Satuan pengukuran: millimeter (mm).

D. Daftar Acuan Kalibrasi

- [1] JIS B 7524 Tahun 2008
- [2] JCGM 100 : 2008 "Evaluation of measurement Data Guide to the expression of uncertainty in measurement"

E. Alat Standar

[1] Standard Micrometer CSD003.

F. Perlengkapan Kalibrasi dan Aksesoris

- Tissue halus/ Lap Pembersih
- Alkohol
- Sarung Tangan Karet

G. Kondisi Lingkungan

Kalibrasi dikondisikan dan dijaga pada spesifikasi berikut :

Suhu : $20 \,^{\circ}\text{C} \pm 1 \,^{\circ}\text{C}$

Kelembapan : $50 \% \pm 10 \%$ R.H.

Jika dilaksanakan In-Situ Kalibrasi dengan suhu diluar spesifikasi, maka pengukuran tetap dilakukan dengan suhu tersebut, dan dalam perhitungannya nanti dikonversikan ke suhu standar ($20~^{\circ}$ C) dan dimasukan ke dalam program ketidakpastian.

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 4 dari 9
Tgl. Revisi : 06 Mei 2019 Revisi : 04 Dibuat :Ria Fitri		Diperiksa :Dian P	Disahkan :I. Iman	
KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

H. Teori Ringkas

Feeler gauge adalah alat ukur yang digunakan untuk mengukur jarak antara 2 bidang yang sangat sempit. Dalam pengkalibrasian feeler gauge dapat menggunakan metode dengan menggunakan metode kalibrasi langsung dengan standar.

Istilah yang digunakan selanjutnya:

- Feeler Gauge, sebagai **UUT** (Unit Under Test)
- Standar Micrometer, sebagai **STD**.

I. Ketidakpastian Pengukuran

- Ketidakpastian pengukuran dalam kalibrasi didasarkan pada prosedur laboratorium STM/IK-DIMENSI/06.
- Untuk perhitungan yang terperinci mengenai ketidakpastian dalam pengukuran dapat dilihat pada Lampiran.

J. Langkah Kalibrasi

J.1 Persiapan & Function Test

- Kondisikan suhu ruang dan kelembaban, catat suhu dan kelembaban di worksheet.
- 2) Pastikan lingkungan sekitar area pengukuran bersih dari kotoran terutama debu,sehingga kemungkinan menempelnya debu yang terbang saat pengukuran berlangsung dapat dihindari.
- 3) Gunakan selalu sarung tangan kain dan karet untuk menghambat perambatan panas suhu badan.
- 4) Periksa fungsi mekanik dan cek kondisi fisik standard micrometer dan feeler gauge.

J.2 Warming Up

- 1) Pasang standard micrometer pada micrometer stand.
- 2) Kondisi standard micrometer: power-on dan posisi zero (0.00 mm).
- 3) Lakukan warming-up standard micrometer dengan cara gerakan memutar thimble.

J.3 Pengukuran Feeler Gauge

- 1) Ukur dan catat suhu & kelembaban ruangan yang ditampilkan thermohygrometer.
- 2) Setting nol pada standard micrometer.
- 3) Lakukan pengukuran feeler gauge dengan mengukur feeler pada standard micrometer.
- 4) Lakukan pengukuran masing-masing ukuran sesuai dengan lembar feeler gauge, Catat hasil pengukuran pada worksheet yang tersedia.

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 5 dari 9
Tgl. Revisi : 06 Mei 2019	1. Revisi : 06 Mei 2019 Revisi : 04 Dibuat :Ria Fitri		Diperiksa :Dian P	Disahkan :I. Iman
KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

5) Pengambilan data diulangi sebannyak 5 kali pengulangan pada masing masing lembar feeler.

6) Selesai dipergunakan, bersihkan dan kembalikan standar pada tempatnya.

K. Analisis Pengukuran

- 1) Hitung kesalahan penunjukan alat (*indication error*) dari nilai rata-rata penunjukan, dikurangi penunjukan standar acuan. Pastikan bahwa nilai penunjukan standar telah dikoreksi berdasarkan sertifikat kalibrasi terakhirnya.
- 2) Hitung ketidakpastian pengukuran.

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 6 dari 9
Tgl. Revisi : 06 Mei 2019	Revisi: 04	Dibuat :Ria Fitri	Diperiksa :Dian P	Disahkan :I. Iman
KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

LAMPIRAN

PERHITUNGAN KETIDAKPASTIAN KALIBRASI FEELER GAUGE

A. Model Matematis Pengukuran

Model matematis pengukuran dari kalibrasi feeler gauge adalah sebagai berikut :

$$L_C = L_S - L_{fg}$$

Dengan, L_C : Kesaahan pembacaan feeler gauge

 L_S : Nilai pembacaan standar micrometer (STD)

 L_{fg} : Penunjukan pada lembar feeler gauge

B. Budget Uncertainty (u)

Persamaan ketidakpastian pengukuran dari L_{fg} sebagai berikut :

$$u^{2}(L_{c}) = u^{2}(L_{std\ miccro}) + u^{2}(L_{fg}) + u^{2}(L_{res}) + u^{2}(L_{koef\ muai}) + u^{2}(L_{temp}) + u^{2}(L_{geo}) + u^{2}(L_{drift})$$

Ketidakpastian pengukuran feeler gauge dipengaruhi oleh beberapa parameter sbb:

1. Sumber Ketidakpastian Pengukuran

a. Nilai Standard (L_{std})

Nilai standard mempunyai ketidakpastian bentangan hasil kalibrasi dengan tingkat kepercayaan 95% (U_{95}). Ketidakpastian standard ini mempunyai distribusi normal, dengan nilai k (coverage factor) pada sertifikat kalibrasi alat standard. Alat standar yang digunakan adalah standard micrometer. Ketidakpastian baku dari alat standard:

Ketidakpastian alat standar standard micrometer $u_{(L_{std\ micro})} = \frac{U_{95}}{k}$

derajat kebebasan $v_{(L_{std})} = 60$ (table student's t pada 95% confidence level)

koefisien sensitifitas $c_{(L_{std})} = 1$

b. Daya Ulang Pembacaan $\left(L_{fg}\right)$

Nilai yang terbaca pada pengukuran yang berulang mempunyai ketidakpastian baku sebesar ESDM (Experimental Standard Deviation of the Mean). Ketidakpastian baku akibat repeatability mempunyai distribusi tipe A, maka:

$$u_{(L_{fg})} = \frac{s}{\sqrt{n}}$$

Dengan, s : Standard deviasi dari pengukuran yang berulang, n : banyaknya pengukuran

derajat kebebasan $v_{(L_{fg})} = n - 1$

koefisien sensitifitas $c_{(L_{fg})} = 1$

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 7 dari 9
Tgl. Revisi: 06 Mei 2019	Revisi: 04	Dibuat :Ria Fitri	Diperiksa :Dian P	Disahkan :I. Iman
KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

c. Resolusi (L_{res})

Keterbatasan pembacaan akibat resolusi menimbulkan suatu ketidakpastian pengukuran. Batas kesalahan pembacaan akibat keterbatasan resolusi ditetapkan sebesar setengah dari resolusi.

Ketidakpastian baku akibat resolusi mempunyai distribusi rectangular, maka:

$$u_{(L_{res})} = \frac{\text{resolusi}}{2\sqrt{3}}$$

derajat kebebasan
$$v_{(L_{res})} = \frac{1}{2} \left(\frac{100}{R}\right)^2$$

koefisien sensitifitas $c_{(L_{res})} = 1$

d. Selisih Koeifisien Muai $(L_{koef\ muai})$

Temperatur laboratorium terkendali pada (20 ± 1) °C ,micrometer dan gauge block telah dikondisikan dalam waktu yang cukup untuk mencapai temperatur yang sama dalam rentang 0.2 °C, dan mengacu pada distribusi *rectangular*, Koefisien muai bahan Steel adalah 0.000012 sehingga:

$$u_{\left(L_{koef\,muai}\right)}=$$
 0,000012 °C⁻¹

derajat kebebasan
$$v_{(L_{koef muai})} = \frac{1}{2} \left(\frac{100}{R}\right)^2$$

koefisien sensitifitas $c_{(L_{koef muai})} = l_{GB_{max}} \times u_{GB_{max}}$

e. Pengaruh Suhu (L_{temp})

Temperatur laboratorium terkendali pada (20 ± 1) °C, alat UUT telah dikondisikan dalam waktu yang cukup untuk mencapai temperatur yang sama dengan alat Standar dalam rentang 0.2°C dan mengacu pada distribusi rectangular, sehingga :

$$u_{(L_{temp})} = 0.2 \, ^{\circ}\text{C}$$

derajat kebebasan
$$v_{(L_{temp})} = \frac{1}{2} \left(\frac{100}{R}\right)^2$$

koefisien sensitifitas $c_{(L_{temp})} = l_{\text{GB}_{\text{max}}} \times 11,5 \times 0,000001$

f. Koreksi Geometerik (L_{qeo})

Koreksi geometris dapat diasumsikan sama dengan 0,5μm dan mengacu pada distribusi *rectangular*,sehingga:

$$u_{(L_{geo})} = 0.5 \ \mu \text{m}$$

derajat kebebasan
$$v_{(L_{qeo})} = \frac{1}{2} \left(\frac{100}{R}\right)^2$$

koefisien sensitifitas
$$c_{(L_{geo})} = 1$$

Tgl. Penerbitan: 20 Oktober 2015		Doc. No. : STM/IK-DIMENSI/06		Halaman : 8 dari 9
Tgl. Revisi : 06 Mei 2019	Revisi: 04	Dibuat :Ria Fitri	Diperiksa :Dian P	Disahkan :I. Iman
KALIBRASI FEELER GAUGE			No. Salinan : -	Status Dokumen : Terkendali

g. Drift Standar (L_{drift})

Perhitungan drift standar di bedakan menjadi 2 yaitu jika alat standar sudah ada riwayat kalibrasi dan jika baru sekali di kalibrasi. Perhitungan komponen drift alat standar juga mengacu pada distribusi *rectangular*,sehingga:

• Perhitungan drift standar jika alat standar belum ada riwayat kalibrasi

$$u_{(L_{drift})} = \frac{y \times (0.05 + 0.0000005 \times L)}{\sqrt{3}}$$

Dengan y = rentang kalibrasi standar dan L = rentang ukur standar

• Perhitungan drift standar jika alat standar sudah ada riwayat kalibrasi

$$u_{(L_{drift})} = L_a - L_b$$

Dengan L_a = nilai panjang aktual dial calibration tester dari sertifikat kalibrasi terakhir Dan L_b = nilai panjang aktual dial calibration tester dari sertifikat kalibrasi sebelumnya

derajat kebebasan
$$v_{(L_{drift})} = \frac{1}{2} \left(\frac{100}{R}\right)^2$$

koefisien sensitifitas $c_{(L_{drift})} = 1$

2. Combined Uncertainty (U_c) , merupakan ketidakpastian gabungan dari seluruh sumber ketidakpastian yang ditentukan dengan persamaan berikut.

$$U_c = \sqrt{\sum_{i=1}^n (c_i U_i)^2}$$

3. *Effective Degrees of Freedom* (*v_{eff}*), merupakan komponen yang berfungsi untuk memberikan indikasi kehandalan penaksiran ketidakpastian. didapat dengan persamaan

$$v_{eff} = \frac{u_c^4(y)}{\sum_{1}^{n} \frac{u_1^4(y)}{v_i}}$$

- 4. *Coverage Factor* (*k*) atau tingkat kepercayaan, didapatkan dari tabel *student's t* dengan confidence level 95% untuk v_{eff} yang didapat.
- 5. Expanded Uncertainty: dari pengukuran didapat dengan $U_{95}=k.U_c$ pada 95% tingkat kepercayaan.