

Applications

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dv/dt and di/dt Capability
- Pb-Free; RoHS Compliant; Halogen-Free

V _{DSS}	200V
R _{DS(on) typ} .	14m Ω
max	16.9m Ω
I _D	90A

G	D	S		
Gate	Drain	Source		

Base part number	Packago Typo	Standard Pack	(Orderable Part Number	
base part number	Package Type	Form	Quantity	Orderable Part Number	
IRF200S234	D2-PAK	Tape and Reel	800	IRF200S234	

Figure 1 Typical On-Resistance vs. Gate Voltage

Figure 2 Maximum Drain Current vs. Case Temperature

IRF200S234

Table of Contents

pplications	1
enefits	
Ordering Table	
able of Contents	2
Parameters	3
Maximum ratings, Thermal, and Avalanche characteristics	4
Electrical characteristics	5
Electrical characteristic diagrams	6
ackage Information	14
Qualification Information	16
Pevision History	17

IRF200S234

Parameters

1 Parameters

Table1 Key performance parameters

Parameter	Values	Units
V _{DS}	200	V
R _{DS(on) max}	16.9	mΩ
I _D	90	A

Maximum ratings and thermal characteristics

2 Maximum ratings and thermal characteristics

Table 2 Maximum ratings (at T_J=25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Values	Unit	
Continuous Drain Current	I _D	$T_C = 25^{\circ}C, V_{GS} @ 10V$	90		
Continuous Drain Current	I _D	T _C = 100°C, V _{GS} @ 10V	61	Α	
Pulsed Drain Current ①	I _{DM}	T _C = 25°C	312		
Maximum Power Dissipation	P _D	T _C = 25°C	417	W	
Linear Derating Factor		T _C = 25°C	2.8	W/°C	
Gate-to-Source Voltage	V_{GS}	-	± 20	V	
Operating Junction and Storage Temperature Range	T _J T _{STG}	-	-55 to + 175		
Soldering Temperature, for 10 seconds (1.6mm from case)	-	-	300	°C	

Table 3 Thermal characteristics

Parameter	Symbol	bol Conditions		Тур.	Max.	Unit
Junction-to-Case ⑦	$R_{ heta JC}$	T」approximately 90°C	-	-	0.36	
Case-to-Sink, Flat Greased Surface	$R_{ heta CS}$	-	-	0.50	-	°C/W
Junction-to-Ambient ®	$R_{\theta JA}$	(PCB Mount) (D2-Pak)	-	-	40	

Table 4 Avalanche characteristics

Parameter	Symbol	Values	Unit
Single Pulse Avalanche Energy ②	Eas (Thermally limited)	574	
Single Pulse Avalanche Energy	E _{AS (Thermally limited)}	693	mJ
Avalanche Current ①	I _{AR}		А
Repetitive Avalanche Energy ①	E _{AR}	See Fig 16, 17, 23a, 23b	mJ

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_{Jmax} , starting $T_J = 25$ °C, $L = 0.436\mu H$, $R_G = 50\Omega$, $I_{AS} = 51A$, $V_{GS} = 10V$.
- ③ $I_{SD} \le 51A$, $di/dt \le 1899A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175$ °C.
- @ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- © C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- \mathcal{D} R_{θ} is measured at T_{J} approximately 90°C.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.:
- @ Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 37$ A, $V_{GS} = 10$ V

IRF200S234

Electrical characteristics

3 Electrical characteristics

Table 5 Static characteristics

Parameter	Symbol	Conditions		Unit			
Parameter	Syllibot	Colluitions	Min.	Тур.	Max.	Oilit	
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250 \mu A$	200	-	ı	V	
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/\Delta T_J$	Reference to 25°C, I _D = 3.0mA ①	-	0.18	ı	V/°C	
Static Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_D = 51A$	-	14	16.9	mΩ	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3.0	-	5.0	V	
	_	$V_{DS} = 200V, V_{GS} = 0V$	-	-	20		
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	-	-	250	μA	
Gate-to-Source Forward Leakage	I _{GSS}	V _{GS} = 20V	-	-	100	nA	
Gate-to-Source Reverse Leakage	I _{GSS}	V _{GS} = -20V	-	-	-100	nA	
Gate Resistance	R_{G}		-	2.4	-	Ω	

Table 6 Dynamic characteristics

Davamatar	Symbol Conditions —		Values			11
Parameter			Min.	Тур.	Max.	Unit
Forward Trans conductance	gfs	$V_{DS} = 50V, I_{D} = 51A$	96	-	-	S
Total Gate Charge	Qg		-	108	162	
Gate-to-Source Charge	Q_{gs}	$I_D = 51A$ $V_{DS} = 100V$	-	26	-	nC
Gate-to-Drain Charge	$Q_{\rm gd}$	$V_{GS} = 100V$ $V_{GS} = 10V$	-	37	-	IIC
Total Gate Charge Sync. (Qg– Qgd)	Q _{sync}	1	-	71	-	
Turn-On Delay Time	t _{d(on)}	V _{DD} = 100V	-	21	-	
Rise Time	t _r	$I_D = 51A$	-	58	-	
Turn-Off Delay Time	t _{d(off)}	$R_G = 2.7\Omega$	-	67	-	ns
Fall Time	t _f	V _{GS} = 10V	-	37	-	
Input Capacitance	C _{iss}	$V_{GS} = 0V$	-	6484	-	
Output Capacitance	Coss	V _{DS} = 50V	-	462	-	
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz, See Fig.7	-	142	-	pF
Effective Output Capacitance (Energy Related)	Coss eff.(ER)	V _{GS} = 0V, V _{DS} = 0V to 160V ⑥	-	356	-	Ρ'
Output Capacitance (Time Related)	Coss eff.(TR)	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $	-	491	-	

Table 7 Reverse Diode

Parameter	Symbol	Conditions	Values			I I mid
Parameter	Symbol	Conditions	Min. Typ. Max.		Max.	Unit
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the	-	-	90	А
Pulsed Source Current (Body Diode) ①	I _{SM}	integral reverse p-n junction diode.	1	1	312	^
Diode Forward Voltage	V_{SD}	$T_J = 25$ °C, $I_S = 51A, V_{GS} = 0V$ 4	-	-	1.3	V
Peak Diode Recovery dv/dt ③	dv/dt	$T_J = 175$ °C, $I_S = 51A, V_{DS} = 200V$	-	26	-	V/ns
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$ $V_{DD} = 170V$	-	117	-	ns
Reverse Recovery Time	L _{rr}	$T_1 = 125^{\circ}C$ $I_F = 51A$,	-	140	-	115
Poverse Pecevery Charge	0	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s 4	-	563	-	nC
Reverse Recovery Charge	Qrr	T _J = 125°C	-	801	-	IIC
Reverse Recovery Current	I _{RRM}	T _J = 25°C	-	8.7	-	Α

4 Electrical characteristic diagrams

Figure 3 Typical Output Characteristics

Figure 4 Typical Output Characteristics

Figure 5 Typical Transfer Characteristics

Figure 6 Normalized On-Resistance vs. Temperature

V2.0

Figure 7 Typical Capacitance vs. Drain-to-Source Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage

Figure 9 Typical Source-Drain Diode Forward Voltage

Figure 10 Maximum Safe Operating Area

Figure 11 Drain-to-Source Breakdown Voltage

Figure 12 Typical Coss Stored Energy

Figure 13 Typical On-Resistance vs. Drain Current

Figure 14 Threshold Voltage vs. Temperature

Figure 15 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 16 **Avalanche Current vs. Pulse Width**

Figure 17 Maximum Avalanche Energy vs. **Temperature**

Notes on Repetitive Avalanche Curves, Figures 16, 17: (For further info, see AN-1005 at www.infineon.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. DT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{thJC}(D, t_{av}) = Transient thermal resistance, see Figures 14)$

PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T / Z_{thJC}$

 $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

 $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

Figure 18 Typical Recovery Current vs. dif/dt

Figure 19 Typical Recovery Current vs. dif/dt

Figure 20 Typical Stored Charge vs. dif/dt

Figure 21 Typical Stored Charge vs. dif/dt

Figure 22 Peak Diode Recovery dv/dt Test Circuit for N-Channel Power MOSFETs

Figure 23a Unclamped Inductive Test Circuit

Figure 23b Unclamped Inductive Waveforms

Figure 24a Switching Time Test Circuit

Figure 24b Switching Time Waveforms

Figure 25a Gate Charge Test Circuit

Figure 25b Gate Charge Waveform

Package Information

5 Package Information

D2Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

SY		DIMEN	1:	SIONS		Ñ
М В О	MILLIM	ETERS		INC	O T E S	
L	MIN.	MAX.		MIN.	MAX.	E S
Α	4.06	4.83		.160	.190	
A1	_	0.254		-	.010	
b	0.51	0.99		.020	.039	
b1	0.51	0.89		.020	.035	5
b2	1.14	1.78		.045	.070	
b3	1.14	1.73		.045	.068	5
С	0.38	0.74		.015	.029	
с1	0.38	0.58		.015	.023	5
c2	1.14	1.65		.045	.065	
D	8.38	9.65		.330	.380	3
D1	6.86	7.42		.270	.292	4
E	9.65	10.54		.380	.415	3,4
E1	8.00	9.00		.315	.354	4
е	5.08 BSC			.200 BSC		
Н	14.61	15.88		.575	.625	
L	1.78	2.79		.070	.110	
L1	_	1.68		-	.066	4
L3	0.25 BSC			.010	BSC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3\\dimension D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH
 SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS
 ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC
 BODY AT DATUM H.
- A. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB EXCEPT FOR DIM E1.

D2Pak (TO-263AB) Part Marking Information

TOP MARKING (LASER)

Note: For the most current drawing please refer to website at http://www.irf.com/package/

D2Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- COMFORMS TO EIA-418.

- 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION MEASURED @ HUB.

 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to website at http://www.irf.com/package/

Final Datasheet 15

IRF200S234

6 Qualification Information

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †	
Moisture Sensitivity Level	D2Pak	MSL1 (per JEDEC J-STD-020D [†])
RoHS Compliant	Yes	

[†] Applicable version of JEDEC standard at the time of product release.

IRF200S234

Revision History

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Date Description of changes	
All pages	1.0	2016-09-23	First release Provisional data sheet.	
All pages	2.0	2017-06-30	First release Final data sheet.	

Final Datasheet 17

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithiC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE

Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.