3. Semana 3. (del 15/03 al 23/03)

Se considera un producto de anillos $R=R_1\times R_2$, tenemos elementos idempotentes centrales $e_1=(1,0)$ y $e_2=(0,1)$. Prueba R_1 y R_2 , como R-módulos derecha, no tienen submódulos isomorfos no nulos.

Sea K un cuerpo. Se considera el anillo $R = \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}$ y los idempotentes e_{11} , e_{22} . Recuerda que no son centrales.

- (1) Prueba que $e_{ii}R$ son R-módulos derecha proyectivos y no son libres.
- (2) Prueba que $e_{22}R$ es simple, pero que $e_{11}(R)$ no es semisimple.
- (3) Se considera $e_{12}R$, prueba que $e_{12}R$ es un R-módulos derecha simple. ¿Son isomorfos $e_{12}R$ y $e_{22}R$?
- (4) Se considera $(e_{12} + ae_{22})R$, siendo $0 \neq a \in K$; su dimension sobre K es uno. ¿Es isomorfo a $e_{22}R$?
- (5) Si la respuesta a las dos últimas preguntas es afirmativa, determina $Soc(R_R)$.

Sea K un cuerpo. Se considera el anillo $R = \begin{pmatrix} K & K \\ K & K \end{pmatrix}$ y los idempotentes e_{11} , e_{22} . Recuerda que no son centrales.

- (1) Prueba que $e_{ii}R$ son R-módulos derecha proyectivos y no son libres.
- (2) Prueba que $e_{ii}R$ son R-módulos derecha simples, y por tanto R es un anillo semisimple.
- (3) Prueba que $e_{ii}R \cong e_{ji}R$ para todos i, j.