Controllers

Analogue vs Digital Signals Reminder

For this lesson we are focusing on electrical signals which are split into two forms:

- Analogue signals are continuous and change smoothly over time
- Digital signals are discrete and therefore have set values which they change between

PWM Reminder

- A technique to control power by rapidly switching a signal between ON and OFF states.
- Simulates an analogue output using a digital signal
- Used for controlling motors, LEDs, and power regulation

What are controllers?

 Controllers are objects that link to sensors and actuators

 They facilitate communication between sensors and actuators

 They allow us to perform calculations with sensor inputs

What are microcontrollers?

- Microcontrollers are small computers that act as controllers
- They differ from most regular computers as they are optimised for a specific task
- They often have lots of I/O (input/output) ports for communicating with lots of sensors and actuators

Components of a microcontroller

- Micro controllers are made of the following key components:
 - Central Processing Unit (CPU):
 - The brain of the microcontroller
 - Processes instructions and controls everything
 - Memory:
 - ROM (Read-Only Memory): Stores the program/code permanently.
 - RAM (Random Access Memory): Temporary memory for running tasks.
 - I/O Pins:
 - Connects to the actuators and sensors

Most Common Microcontrollers

- ATmega328P (Arduino Uno) the most used microcontroller by both hobbyists and industry
- ESP32 much more powerful than the ATmega328P includes built in Wi-Fi and Bluetooth capabilities
- STM32 Used a lot for industrial and high-performance applications

Picking a microcontroller

Microcontroller (price)	Clock Speed	Memory	Bit Size	GPIO Pins	Wifi/Bluetooth built-in	Power Usage	Use cases	Usability
ATmega328P (£22-£25)	16MHz	32KB Flash 2KB RAM	8-bit	23	No	Low Power (15 mA)	Low power or battery powered	Easiest
ESP32 (£7-£9)	Up to 240MHz	4MB Flash 520KB RAM	32-bit	34+	Yes	Higher Power (160 mA)	Anything that needs wireless	Moderate
STM32 (£30-£35)	Up to 72MHz	64-512KB Flash 20KB RAM	32-bit	37+	No	Middle Power (30-100mA)	Industrial control	Difficult

MicroComputers

- Microcomputers are miniaturised computers that are used for specific tasks
- They have a full OS allowing us to do much more complex tasks
- Most common are Raspberry Pi Series, BeagleBone Series and Jetson Nano
- They have higher power requirements than microcontrollers

Picking a MicroComputer

Microcontroller	Price	Power Consumption	Processing Power	GPIO Pins	Best for
Raspberry pi 4/5	£50-£100	Most Power Hungry	Medium Power	40 Pins	General purpose, all rounder
BeagleBone Black	£50-70	Least Power Hungry	Least Powerful	69 Pins	Industrial Control, Automation, Robotics
Jetson Nano	£80-£120	Medium Power Hungry	Most Powerful	40 Pins	AI, Machine Learning, Computer Vision

Microcontroller vs Microcomputers

- We need a microcomputer when we are doing anything which needs significant processing power
- For instance, if we wanted to detect an animal on a video feed, we would need a microcomputer as microcontrollers are not powerful enough

