g003.sas: The odds ratio, empirical logistic transform (fixed effects) Variables

variable	LABEL
id	Study ID
n	Sample size
oddsratio	Odds ratio
or95cil	Odds ratio, 95% CI, lower limit
or95ciu	Odds ratio, 95% CI, upper limit
p1	Prevalence of + for rsfMRI
p2	Prevalence of + for comparative
se	SE of the log odds ratio

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by id

	_		,				
Obs	id	n	p1	p2	oddsratio	or95cil	or95ciu
1	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10
2	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34
3	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27
4	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98
5	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71
6	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23
7	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28
8	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86
9	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88
10	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95
11	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90
12	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35
13	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66
14	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82
15	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94
16	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54
17	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87
18	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53
19	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22
20	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26
21	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87
22	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92
23	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53
24	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94
25	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by \boldsymbol{n}

Obs	id	n	p1	p2	oddsratio	or95cil	or95ciu
1	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10
2	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87
3	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87
4	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26
5	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92
6	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28
7	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94
8	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53
9	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94
10	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88
11	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90
12	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35
13	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86
14	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53
15	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95
16	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88
17	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22
18	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34
19	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82
20	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54
21	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98
22	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23
23	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27
24	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66
25	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by odds ratio

Obs	id	n	р1	р2	oddsratio	or95cil	or95ciu
1	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88
2	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86
3	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98
4	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28
5	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54
6	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92
7	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82
8	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95
9	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10
10	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27
11	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53
12	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53
13	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66
14	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35
15	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87
16	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87
17	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26
18	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23
19	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34
20	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94
21	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94
22	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88
23	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90
24	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22
25	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71

g003.sas: The odds ratio, empirical logistic transform (fixed effects) Sorted by se

Obs	id	n	p1	p2	oddsratio	or95cil	or95ciu	se
1	Khoo 2019	49	0.48980	0.46939	4.788	1.4637	15.66	0.60468
2	Bettus 2010	44	0.59091	0.50000	3.022	0.8890	10.27	0.62425
3	Chen 2017	42	0.76190	0.85714	8.446	1.4491	49.23	0.89936
4	Boerwinkle 2019	64	0.39063	0.35938	165.000	22.7310	1197.71	1.01134
5	Lee 2014	29	0.79310	0.89655	2.345	0.2521	21.82	1.13798
6	Hunyadi 2015a	18	0.61111	0.61111	0.040	0.0018	0.88	1.57762
7	Boerwinkle 2017	36	0.94444	0.80556	0.733	0.0317	16.98	1.60303
8	Reyes 2016	34	0.91176	0.91176	1.163	0.0491	27.54	1.61447
9	Hunyadi 2014	10	0.70000	0.70000	0.184	0.0069	4.86	1.67142
10	Gnanadas 2017	6	0.83333	0.83333	1.000	0.0248	40.28	1.88562
11	Hunyadi 2015b	12	1.00000	0.75000	2.714	0.0447	164.95	2.09547
12	Barron 2014	23	1.00000	0.91304	8.600	0.1379	536.34	2.10868
13	Yang 2015	11	1.00000	0.81818	3.800	0.0593	243.53	2.12256
14	Kang 2003	8	1.00000	0.87500	5.000	0.0682	366.35	2.19089
15	Stufflebeam 2011	6	0.83333	1.00000	3.667	0.0490	274.53	2.20193
16	Weaver 2013	4	0.75000	1.00000	2.333	0.0298	182.92	2.22539
17	Su 2015	21	1.00000	1.00000	43.000	0.3470	5328.22	2.45897
18	Jann 2008	8	1.00000	1.00000	17.000	0.1334	2166.90	2.47339
19	vanHoudt 2015	7	1.00000	1.00000	15.000	0.1170	1923.88	2.47656
20	Morgan 2003	6	1.00000	1.00000	13.000	0.1005	1680.94	2.48069
21	Zhao 2019	6	1.00000	1.00000	13.000	0.1005	1680.94	2.48069
22	Tavares 2017	3	1.00000	1.00000	7.000	0.0514	953.26	2.50713
23	Song 2006	2	1.00000	1.00000	5.000	0.0351	711.87	2.52982
24	Wang 2007	2	1.00000	1.00000	5.000	0.0351	711.87	2.52982
25	Anzellotti 2010	1	1.00000	1.00000	3.000	0.0190	473.10	2.58199