ANSWER ALL THE QUESTIONS

TIME ALLOWED: 1 hour

INSTRUCTIONS: You must show your method.

TOTAL MARKS = 40

Formulae

Algebra

Quadratic Equation:

The roots of the equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Trigonometry

$$\frac{a}{\sin} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of a triangle = $\frac{1}{2}ab \sin C$

Questions

- 1 (a) Simplify $\sqrt{48}$ [3 marks] (You must show your method.)
 - (b) Rationalise and simplify $\frac{1}{2-\sqrt{3}}$
- 2 [2 marks] $\frac{(3m^2)^3}{6m^4}$ Simplify
- 3 Fully factorise [4 marks]
 - (a) $2x^2 + 3x 20$
 - (b) $2x^2 8$
- 4 Transpose $T = 2\pi \sqrt{\frac{l}{g}}$ for l[2 marks]
- Solve $\frac{12}{x} = \frac{x}{3}$ 5 [2 marks]
- Use the quadratic formula to find the roots of $2x^2 5x + 1 = 0$ 6 [3 marks] giving your correct to 3 decimal places.

- Use Pascal's triangle to find the expansion of $(3 4x)^4$ 7 [2 marks]
- 8 Solve the simultaneous equations [3 marks]

$$2x + 3y = 4$$
$$5x - 2y = -9$$

- 9 (a) Convert 120° to radians giving your answer as a multiple of π . [2 marks]
 - (b) Convert 2.5 radians into degrees giving your answer correct to 1 decimal place.
- 10 Find the two angles in the range 0° to 360° whose tangent is -0.4[1 mark]
- In triangle ABC, AB = 15cm, BC = 12cm and angle A = 40°. 11 [7 marks]

- (b) Find the length of AC
- (c) Find the area of the triangle.

 $B\P$

- 12 If $y = \frac{6}{\sqrt{x}}$ find $\frac{dy}{dx}$ [4 marks]
- If $y = 3x^2 + 6x 2$ find the co-ordinates of the point where $\frac{dy}{dx} = 0$ 13 [5 marks]

Answers:

1)(a)
$$4\sqrt{3}$$
, (b) $2 + \sqrt{3}$, 2) $\frac{9}{2}m^2$,

3)(a)
$$(2x-5)(x+4)$$
, (b) $2(x+2)(x-2)$, 4) $g = \frac{lT^2}{4\pi^2}$

5)
$$x = \pm 6$$
 6) 0.219 and 2.281, 7) $81 - 432x + 864x^2 - 768x^3 + 256x^4$,

8)
$$x = -1$$
 $y = 2$ 9)(a) $\frac{2}{\pi}\pi$ (b) 143

8)
$$x = -1$$
, $y = 2$,
10) 158.2° and 338.2°,
9)(a) $\frac{2}{3}\pi$, (b) 143.2°
11)(a) 86.5°, (b) 18.6 cm, (c) 89.8 cm²

12)
$$-3x^{-\frac{3}{2}}$$
 or $\frac{-3}{\sqrt{x^3}}$ 13) $(-1, -5)$