Procesamiento de la señal de voz

Leandro Vignolo Diego Milone

Procesamiento Digital de Señales Ingeniería Informática FICH-UNL

9 de mayo de 2013

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído
 - Percepción del sonido
- Organización estructural del habla
 - Niveles de la estructura
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
 - Estimación de F0

Procesamiento homomórfico

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído
 - Percepción del sonido
- Organización estructural del habla
 - Niveles de la estructura
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
 - Estimación de F0

Aparato fonador

Diagrama esquemático del aparato fonador

Estructura anatómica del tracto vocal

Fuentes principales del sonido

Tipos de entrada

- Tren de pulsos cuasiperiódicos (sonidos sonoros)
- Ruido de banda ancha

Modificadores del sonido

- Restricciones en el flujo de aire
- Labios, lengua, dientes, etc.

Pulsos glóticos

Energía y entonación

Modificadores del sonido

- Morfología del tracto vocal
- Circuito nasal
- Radiación en los labios
- Posición de la lengua

Análisis de la señal de voz

Vocal sostenida - Período y Frecuencia fundamental (F_0) - Formantes

La frecuencia fundamental F_0 corresponde a la frecuencia glótica, presente en los fonemas sonoros, y es una componente importante de la entonación en el habla.

Las frecuencias formantes (F_1, F_2, F_3, \cdots) permiten discriminar entre las vocales. Su variación temporal posibilita también diferenciar entre los diferentes fonemas sonoros.

Análisis de la señal de voz

Sonograma y espectrograma

Espectro de una vocal

Espectro de una vocal

Triángulo de las vocales

Partes del oído

Cóclea

Onda viajera

Principio de tonotopía

Frecuencia y Pitch

- A menudo confundidos en la literatura, el pitch no es igual a la frecuencia fundamental.
- La frecuencia, intensidad y las propiedades espectrales de un sonido interactúan en formas muy complejas para dar una percepción de pitch que puede ser un reflejo muy pobre de la F_0 . El pitch percibido cambia con la intensidad.
- El pitch se refiere a un atributo perceptual del sonido, mientras que a frecuencia es un atributo físico de las señales.

Escala de mel

Mel

La unidad del pitch percibido de un tono puro es el mel. No se corresponde linealmente con la frecuencia física del tono. Stevens y Volkman (1940) establecieron arbitrariamente: $1000~{\rm Hz}=1000~{\rm mel}$.

Escala de mel

$$F_{mel} = \frac{1000}{\log(2)} \log\left(1 + \frac{F_{Hz}}{1000}\right)$$
 (Fant, 1973)

Otras variantes

- O'Shaugnessy (1987)
- Umesh (1999)

Banco de filtros en escala de mel

Organización de la clase

- Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído
 - Percepción del sonido
- Organización estructural del habla
 - Niveles de la estructura
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
 - Estimación de F0

Aclaró que un Aleph es uno de los puntos del espacio que contiene a todos los puntos.

¿/pred./-/sujeto/-/pred./? ¿/pred./? /pred./-/subordinadas/-/sujeto/.

¿Existe ese Aleph en lo íntimo de una piedra? ¿Lo he visto cuando vi todas las cosas y lo he olvidado? Nuestra mente es porosa para el olvido; yo mismo estoy falseando y perdiendo, baja la trágica erosión de los años, los rasgos de Beatriz.

- Pero, ¿no es muy oscuro el sótano?
- La verdad no penetra en un entendimiento rebelde. Si todos los lugares de la tierra están en el Aleph, ahí estarán todas la luminarias...
- ¡Qué observatorio formidable, che Borges! O God!, I could be bounded in a nutshell, and count myself a King of infinite space...

Análisis por tramos

- Necesidad
- Ventanas cuadradas
- Técnicas de ventaneo
- Solapado en el tiempo
- Análisis de las ventanas independientes

Ventaneo

$$v(t;n) = \omega(n; N_{\omega})x(tN_d + n), \quad 0 < n \le N_{\omega}$$
$$\omega_H(m; N_{\omega}) = \frac{27}{50} - \frac{23}{50}\cos(2\pi m/N_{\omega})$$

$$X(t;k) = \mathcal{T}(k) \left\{ v(t;n) \right\}, \quad 0 < k \le N_x$$

Transformaciones de dominio

CE:

$$\mathbf{x}_t = [u(t;k)] = \mathcal{T}_F(k) \left\{ v(t;n) \right\},\,$$

II) CPL:

$$\mathbf{x}_t = [a(t;k)] = \mathcal{T}_L(k) \left\{ v(t;n) \right\},\,$$

III) CC:

$$\mathbf{x}_t = [c(t;k)] = \mathcal{T}_C(k) \left\{ v(t;n) \right\}$$

Organización de la clase

- 1 Producción y percepción de la voz
 - Generalidades del aparato fonador
 - Fuentes y modificadores del sonido de la voz
 - Generalidades del oído
 - Percepción del sonido
- Organización estructural del habla
 - Niveles de la estructura
 - Análisis por tramos
- Procesamiento homomórfico
 - Definición de los coeficientes cepstrales
 - Procesamiento homomórfico de la voz
 - Estimación de F0

Espectro de una vocal

Organización estructural del habla

Procesamiento homomórfico

Otra elocución de la misma vocal

Coeficientes cepstrales

$$c(m) = \mathcal{T}_F^{-1} \left\{ \log |\mathcal{T}_F \left\{ v(m) \right\}| \right\}$$

Espectral → Cepstral

Espectro \rightarrow Cepstro

Frcuencias → Cuefrencias

Filtro, filtrado → Liftro, liftrado

Armónicas ightarrow Ramónicas

Coeficientes cepstrales

$$c(m) = \mathcal{T}_F^{-1} \left\{ \log |\mathcal{T}_F \left\{ v(m) \right\}| \right\}$$

Espectral \rightarrow Cepstral

 $\mathsf{Espectro} \to \mathsf{Cepstro}$

 $\mathsf{Frcuencias} \to \mathsf{Cuefrencias}$

Filtro, filtrado \rightarrow Liftro, liftrado

Armónicas → Ramónicas

Separación de fuentes y modificadores del sonido

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

Separación de fuentes y modificadores del sonido

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

Separación de fuentes y modificadores del sonido

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

Producción y percepción de la voz

Separación de fuentes y modificadores del sonido

$$\hat{v}(n) = g(n) * h(n)$$

$$\hat{V}(k) = G(k) \times H(k)$$

$$\hat{\log}|V(k)| = \log|G(k) \times H(k)|$$

$$\hat{\log}|V(k)| = \log|G(k)| + \log|H(k)|$$

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

Separación de fuentes y modificadores del sonido

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

Separación de fuentes y modificadores del sonido

$$\hat{v}(m) = \mathcal{T}_F^{-1} \{ \log |G(k)| \} + \mathcal{T}_F^{-1} \{ \log |H(k)| \}$$

G y H ocupan partes diferentes del eje de cuefrencias. Podemos separar la parte que varía rápidamente (correspondiente a la excitación del tracto vocal) de la que varía lentamente (la respuesta en frecuencia del tracto).

Fuentes y modificadores de sonido en el espectro

Fuentes y modificadores de sonido en el espectro

(esquema representativo)

Procesamiento homomórfico

- Banco de filtros en escala de mel
- Integración por bandas del espectro
- Coeficientes de energía por cada banda
- Transformación inversa

Escala de mel

$$F_{mel} = 1000 \log_2 \left(1 + \frac{F_{Hz}}{1000} \right)$$

Organización estructural del habla

El espectro de magnitud

$$X[k] = \log_e |TDF\{x[n]\}|,$$

Organización estructural del habla

es integrado en bandas

$$U[i] = \sum_{k} W_i[k]X[k],$$

y luego se calcula la transformada inversa

$$C = TDFI\{U\}.$$

Integración por bandas

Estimación de F0 por cepstrum

Estimación de F0 por autocorrelación

Bibliografía básica

- L. R. Rabiner y B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, 1975.
 - Secciones: 12.1, 12.2, 12.3 y 12.13.
- J. R. Deller, J. G. Proakis, J. H. Hansen, Discrete-Time Processing of Speech Signals, Prentice Hall, 1993.
 - Secciones: 4.1, 4.2.1, 4.2.2, 6.1 y 6.2.
 - \rightarrow Error en la figura 6.3 (c), pp 361.
- H.L. Rufiner, "Análisis y modelado digital de la voz: Técnicas recientes y aplicaciones",
 Editorial UNL, 2009. (Capítulo 3).
- J. Makhoul, "Linear Prediction: A Tuturial Review," Proc. IEEE, vol 63, no. 4, páginas 561-580, 1975.

Bibliografía básica

Producción y percepción de la voz

c[n] 2P 3P [n]

Bibliografía básica

FIGURE 6.3. The motivation behind the RC, and some of the accompanying

