

Random Forest Hyperparameters (Classification &

Regression)

Random Forest has many hyperparameters, but only a few matter the most. They control tree size, randomness, number of trees, and splits.

1. Number of Trees → n estimators

- What it does: Number of decision trees in the forest.
- Larger = more stable, less variance, but slower.
- Trade-off: Too few trees → high variance. Too many trees → more training time but not much accuracy gain after a point.
- Rule of Thumb: Start with 100–500, increase if needed.

2. Tree Depth → max_depth

- Limits how deep each tree can grow.
- Deep trees → more complex, risk of overfitting.
- Shallow trees → risk of underfitting.
- Tune depending on dataset complexity.

3. Minimum Samples to Split → min_samples_split

- Minimum number of samples required to split a node.
- Small value → more splits → complex trees (risk overfitting).
- Large value → fewer splits → simpler trees (risk underfitting).

4. Minimum Samples per Leaf → min samples leaf

- Minimum samples required to be at a leaf node (end node).
- Helps avoid leaves with only 1–2 samples (which overfit).
- Larger datasets → keep higher values (e.g., 5, 10).

5. Number of Features → max_features

- Number of features considered at each split.
 - 1. Classification: default = $\sqrt{(n_{\text{features}})}$.
 - 2. **Regression**: default = all features.
- More features → less randomness, stronger trees but more correlation.

Fewer features → more randomness, trees less correlated, improves ensemble diversity.

6. Bootstrap Sampling → bootstrap

- Whether to use bootstrap samples (sampling with replacement).
- Default = True → standard Random Forest.
- If False → trees trained on full dataset (less randomness).

7. Random State → random_state

Ensures reproducibility. Same random state → same results.

8. Others (Less common but useful)

- max samples: Fraction/number of samples drawn for each tree.
- class_weight: Helps with imbalanced datasets (important in classification).
- oob_score: Out-of-bag score → gives internal validation accuracy without test set.

Bias-Variance Intuition

- More trees (n_estimators) → lower variance, stabler model.
- **Deeper trees (max_depth)** → lower bias but higher variance.
- **Higher min_samples_split or min_samples_leaf** → higher bias but lower variance.
- Lower max_features → more randomness, less variance, but slightly higher bias.

Summary (Easy to Remember)

- n_estimators: How many trees?
- max_depth: How deep can trees grow?
- min_samples_split / min_samples_leaf: Prevent overfitting by controlling splits.
- max_features: Adds randomness, reduces correlation among trees.
- bootstrap: Whether to use bootstrapping.

For Classification & Regression, the hyperparameters are the same — the only difference is the **default max_features setting** ($\sqrt{}$ for classification, all for regression).