

Utkarsh Upadhyaya Electrical Engineering Indian Institute of Technology, Bombay Specialization: Microelectronics and VLSI 183079019 M.Tech. Gender: Male DOB: 02-05-1995

Examination	University	Institute	Year	CPI / %
Post Graduation	IIT Bombay	IIT Bombay	2021	9.49
Graduation	IIIT Delhi	Indraprastha Institute of Information	2017	7.89
		Technology, Delhi		
Graduation Specializ	zation: Electronics and Communication			

SCHOLASTIC ACHIEVEMENTS

• Achieved 99.46 percentile in EC-GATE examination, 2018 among 1,25,870 candidates.

(Feb'18)

• Secured **AA** grade in all the courses in the first semester.

(Aug'18 - Nov'18)

AREAS OF INTEREST

CMOS Analog VLSI Design, RF VLSI Design, Mixed Signal VLSI Design, Digital VLSI Design.

MAJOR PROJECT AND SEMINAR

• M.Tech. RA work + M.Tech. thesis work:

A half-rate, 8-16 Gbps, 10:1 serializing transmitter in a SerDes system

(Dec'18 - Present)

Guide: Prof. Shalabh Gupta, Electrical Engineering, IIT Bombay

Objectives:

- Design an **8-16 Gbps**, NRZ 10:1 serializing transmitter (Tx) in CMOS 65 nm technology.
- Achieve good channel performance of the Tx, with low jitter and discernible eye-opening at the output.

Completed work:

- Designed, laid-out different circuit blocks, and hence the serializing Tx.
- Performed simulations across the PVT variants with the parasitics back-extracted.
- Proposed an active inductive-peaking CTLE that obviates the need for an FFE for the targeted channel losses.
- Simulation results articulated the good performance of the Tx with 0.36 UI_{PP} timing margin and 3.3 ps rms jitter, at the bit error rate (BER) of 10^{-12} for the channel loss of 17 dB at the $f_{Nyquist}$ of 8 GHz.
- Contributed to the final integration of all the blocks, after which the chip was sent to the foundry for fabrication.

Ongoing and future work:

- Designing the PCBs, ensued by the test of the ICs.
- Power reduction of the transmitter and optimization of the performance.

A linear, quarter-rate PAM4 transmitter for high data rates

(Jun'20 - Present)

Guide: Prof. Shalabh Gupta, Electrical Engineering, IIT Bombay

Objectives:

- Target the data-rates from **50-112 Gbps**.
- Achieve RLM > 95% and perform equalization for the channel losses up to $10 \, dB$ at Nyquist frequency.
- Achieve energy efficiency in compliance with the standards.
- Avoid data corruption, clocks' duty-cycle, and quadrature-phase mismatches, using the delay calibration blocks.

Completed work:

- Reviewed the literature for various techniques to achieve the aforementioned targets.
- Characterized the CMOS FDSOI 28 nm technology.

Ongoing and future work:

- Designing and simulating the circuits at the schematic level across the PVT variants.
- Lay the design out and perform the post-layout simulations across the PVT variants.

Testing of the procured 5 Gbps SerDes ICs

(Jun'20 - Present)

Guide: Prof. Shalabh Gupta, Electrical Engineering, IIT Bombay

Completed work:

- Designed PCBs using Altium to test the procured **5 Gbps** SerDes ICs, fabricated in CMOS 180 nm technology. **Ongoing and future work:**
- DC characterization of the ICs.
- Test the ICs to validate their performance.

• M.Tech Seminar:

High-speed Pulse Amplitude Modulation-4 (PAM4) transmitter architectures

(Aug'19 - Nov'19)

Guide: Prof. Shalabh Gupta, Electrical Engineering, IIT Bombay

- Reviewed state-of-the-art linear PAM4 Tx architectures that achieve high data-rates with equalization.
- Explored different circuit techniques to achieve high linearity (better RLM) and equalization techniques.
- The Tx with hybrid current-mode (CM)-voltage-mode (VM) driver based 4-tap FFE achieves appreciable linearity with RLM > 94%, and FoM of 2.6 pJ/bit, operating at 45 Gbps. (JSSC by Matteo Bassi).

PUBLICATIONS

- Utkarsh Upadhyaya, Souradip Sen, Sandeep Goyal, and Shalabh Gupta, "A 16 Gbps 10:1 Serializer with Active Inductor Based CTLE for High Frequency Boosting", submitted for review in 27th IEEE International Conference on Electronics Circuits and Systems (ICECS'20).
- Souradip Sen, Utkarsh Upadhyaya, Krishna Reddy Kondreddy, Arun Goyal, Sandeep Goyal, and Shalabh Gupta, "A Low Jitter Digital loop CDR Based 8-16 Gbps SerDes in 65 nm CMOS Technology", submitted for review in 34th International Conference on VLSI Design & the 20th International Conference on Embedded Systems (VLSID'21).

KEY COURSE PROJECTS AND ASSIGNMENTS

- A two-stage, Operational Transconductance Amplifier (OTA) | Prof. Rajesh Zele (Oct'18)
 - Designed and laid-out a two-stage, miller compensated, OTA with single-ended output in CMOS 180 nm technology for the targeted specifications. The common-centroid technique was used for the layout.
 - Improved the ICMR by including a circuit that would not disturb the operating point of the OTA. Post-layout simulations were performed over the PVT variants to validate the performance.
- A wide-band Low Noise Amplifier (LNA) with Noise and Distortion cancellation in CMOS 65 nm technology | Prof. Rajesh Zele
 - Optimized the design to achieve the targeted specs of voltage gain, S_{11} , Noise Figure (NF), and P_{DC} .
 - Evaluated the performance of the LNA at the schematic level and reported the results.
- A double-balanced direct down conversion mixer in CMOS 65 nm technology | Prof. Rajesh Zele (Mar'19)
 - Optimized the design to meet the target specifications of conversion gain, NF, IIP_3 , P_{1dB} , and P_{DC} .
- An narrow-band CS cascode LNA in CMOS 65 nm technology | Prof. Rajesh Zele (Mar'19)

 Optimized the design of a CS cascode LNA with inductive degeneration, to achieve the target specs of
 - voltage gain, S_{11} , NF, IIP_3 , P_{1dB} , and P_{DC} at the schematic level.
- The LNA was laid-out, and the post-layout simulations were performed over the PVT variants.
 A current-reuse LC-Voltage Controlled Oscillator (LC-VCO) and integration with a Phase Locked Loop (PLL) in CMOS 65 nm technology | Prof. Rajesh Zele
 - Optimized the VCO design to meet the target specs of the tuning range, phase noise, VCO gain, and peak-topeak swing with discrete coarse-fine tuning. Post-layout simulations were performed over the PVT.
 - Implemented a system-level integer-N, type-2 PLL using the LC-VCO designed.
- A 6-bit, first-order discrete-time Delta-Sigma Modulator (DSM) in CMOS 45 nm technology | Prof. Maryam S. Baghini
 - Designed the forward-euler SC integrator, an MSB comparator, and the whole DSM loop, maintaining stability.
 - Passed the DSM output through a moving average filter implemented in MATLAB for further calculations.
 - Optimized the design for the Over-Sampling Ratio (OSR) of 64, the sampling frequency of 640 MHz, and achieved the resolution (ENOB) > 6 bits, SQNR of 48.96 dB, SINAD of 42.96 dB, and THD of -44.2 dB.
- A digital Low Dropout Regulator (LDO) in CMOS 45 nm technology | Prof. Maryam S. Baghini (Mar'20)
 - Designed a comparator, shift register, transistor array, and the whole LDO.
 - Optimized the design for the voltage conversion from 0.65 V to 0.6 V with output ripples < the max of $\mathbf{5} \, \mathbf{mV}_{PP}$, for an I_{LOAD} of $\mathbf{200} \, \mu \mathbf{A}$, f_{clock} of $\mathbf{10} \, \mathbf{MHz}$, and C_L of $\mathbf{100} \, \mathbf{nF}$, while evaluating for different $I_{LOAD}s$.

SELF PROJECT

A 3-bit, mod-3, CIFB continuous-time $\Delta - \Sigma$ modulator in CMOS 45 nm technology (Auq'20)

- Designed a comparator, Flash ADC, thermometer coded current-steering DAC for the final mod-3, CIFB CT-DSM, followed by optimization, and performed the simulations.

RELEVANT COURSES

- CMOS Analog VLSI Design
 - RF Microelectronics Chip Design
- Mixed Signal VLSI Design

- VLSI Design
- VLSI Design Lab
- Processor Design
- Delta Sigma Data Converters Solid State Devices
- Microelectronics Simulation Lab

TECHNICAL SKILLS

Languages Python, MATLAB, VHDL, Verilog, VerilogA.

Cadence Virtuoso, Sentarus TCAD, Altera Quartus II, ModelSim.

POSITIONS OF RESPONSIBILITY

• Research Assistant, Communication Lab, IIT Bombay

(Jul'18 - Present)

- Work as a team player in carrying out research in the lab.
- Responsible for maintaining a record of the experimental components in the lab and scheduling experiments.
- Volunteering in International Microwave and RF Conference (IMaRC), 2019 at IIT Bombay (Dec'19) - Assisted the participants and ensured the smooth conduction of the three-day-long conference.
- Academic Unit Representative of Academic Affairs (AURAA), Dept. of EE

- Deal with the M.Tech. students' academic and non-academic issues.
- Organize workshops, seminars, outreach programs, and talks by the researchers, professors, and alumni at the departmental and institute level to foster great learning.

CO & EXTRA CURRICULAR ACTIVITIES

• Participated in National Science, Cyber, and Maths Olympiads at various levels in school.

(2006-07)

(2015)

- Community work at Udayan Care.
- Hobbies: Cooking, Badminton, Swimming, Reading books.