제2회 유통데이터 활용 경진대회

데이터를 활용한 중소 유통물류 수요판매량 예측

#유통 꿈나무

목차

1. 분석 개요

- 연구 요약
- 연구 배경 및 필요성

2. 분석 방법 및 절차

- 데이터 탐색
- 활용 데이터 탐색
- 결측치 처리
- 내부 변수 및 외부 변수
- 가중치 부여
- Trend(추세) 변수

3. 분석 모형 적용 및 결과

- 외부 변수 추가 및 선정 방법
- 모델링 (XGBoost, Random Forest, Light GBM, Gradient Boost)
- 결과

4. 활용 방안

5. 활용 데이터 참고 문헌 및 출처

연구 요약

현재 매우 빠른 속도로 성장하고 있는 유통 물류 시장에서 정확한 수요 예측은 재고 최적화, 공급망 관리, 고객 서비스 향상 등 다양한 비즈니스 의사 결정 과정에서 중요한 역할을 한다. 본 연구에서는 유통 물류 판매 데이터와 시장 환경의 변화를 반영하기 위한 다양한 소비자, 유통업자, 소매업, 환경 및 경제지수 등의 외부 데이터를 활용하여 판매량 수요 예측을 진행하였다. 기존 시계열 분석에 사용 되는 전통적인 알고리즘이 아닌 XGBoost, Random Forest, Light GBM, Gradient Boost 등 다양한 회귀 모델을 사용하여 최적의 모델을 선정하였다. 이는 시장의 환경을 반영하여 오차를 개선한 정확한 수요예측 모델을 통해, 물류센터 내 다양한 운영 비용을 절감하고, 고객사별 주문량 예측 서비스를 마케팅/영업에서 활용하는 방안을 제안한다.

1. 분석 개요

연구 배경 및 필요성

물류 서비스 산업은 빠르게 성장하고 변화하므로 AI와 데이터 분석을 활용한 수요 예측과 운송 및 인력 공급 계획을 효율적으로 수립하고, 환경변수를 고려한 운영의 필요성 존재

전략적 의사 결정 및 경쟁 우위 확보

재고와 생산 계획을 효율적으로 조정함으로써 경쟁에서의 우위를 점하기 위함

고객 서비스 향상

처리 및 배송 시간을 줄여 고객 만족을 상시키고, 재고 부족으로 인한 고객 불만을 방지하기 위함

e커머스 풀필먼트

짧은 시간에 배송을 완료 해야하는 사업의 특성을 만족시키기 위함

데이터 탐색 - 자료 파악

제공 데이터 (필수 데이터) 2021-01-04 ~ 2022-07-03 (78주)

구분	판매일	정보						
1	구분	매출, 반품						
2	우편번호	소매점 위치 정보						
3	판매수량	상품이 판매된 수량						
4	옵션코드	EA : 최소 단위, CS: 묶음 단위, BX : 박스 단위						
5	규격	상품 입고 시 박스에 담겨져있는 수량						
6	입수	해당 옵션 코드에 상품이 들어있는 EA 수량						
7	상품 바코드	상품에 부여되는 코드 번호						
8	상품명	상품 이름						

데이터 특성 파악

● 구분

'판매 수량'을 예측하기 위해 반품 데이터를 제외하고 매출 데이터만 사용

● 우편번호

대부분의 소매점 위치가 **경북 지역**에 위치하고 있음을 확인

● 상품바코드, 상품명

총 8716개의 상품 정보 중, 제품명은 같지만 묶음과 낱개가 다른 상품들이 있다는 것을 확인

데이터 탐색 - EDA

1. 일별 총 판매 수량

2. 주별 판매량 평균

* EDA 란? 탐색적 데이터 분석을 의미하며, 시각화를 통해 데이터의 특성을 파악하는 것

데이터 특성 파악

- 일별 판매수량과 주별 판매수량모두 7 8월에 급증하는 것을 확인
- 각 상품의 모든 일자에 대한 판매량이 존재하지 않음 품목별 판매수량 중 NaN 값이 → 존재하는 일자가 존재
- 일별 판매수량은 변동성이 크기에
 주별 판매수량으로 분석을 진행하는
 것이 더 유의미하다고 판단

데이터 탐색 - EDA

데이터 특성 파악

- EA(최소 단위)에 비해 CS나 BX의 판매 수량이 적음
- 삼다수와 가야산천년수와 같이
 동일 분류인 상품이더라도 판매수량의
 유사성이 떨어져, Train data를
 예측 상품인 10개의 품목만으로 구성

4 8.801094e+12

결측치 처리

판매 수량 데이터에 **결측치**를 갖는 '**주차'** 존재

(2021-01-04 ~ 2022-07-03 (78주)동안주(일주일)를 나타냄)

누락된 주차에 대해 이전 값과 다음 주차 판매량 평균으로 결측치를 채움

	상품 바코드	상품명	옵션코드	date_w
0	8.801043e+12	농심]안성탕면 멀티<40>	ВХ	78
1	8.801043e+12	농심]신라면 멀티<40>	ВХ	77
2	8.801043e+12	농심]너구리 얼큰멀티<40>	ВХ	78
3	8.801043e+12	농심]짜파게티 멀티<40>	ВХ	78

EA

78

코카콜라<1.5*12>

범주형 데이터 처리 [옵션코드]

머신러닝에서는 범주형 변수를 사용할 수 없기 때문에 옵션코드에 수치형 변수 (0,1)로 변환하는 One hot encoding을 적용함

연속형 데이터 처리

변수들의 값의 범위가 일치하도록 조정하여, 연속형 데이터에 대해 정규화 기법인 **Min-max Scaling**을 사용함

(참고 데이터)

내부 변수

변수명
월
주
분기
년도
월_일_년도
주기성 변수
추세 변수 (Trend)

(필수 데이터)

변수명 변수명 주별_QUANTITY 주별_AMOUNT 주별_PRICE 원별_QUANTITY 분기별_AMOUNT 분기별_AMOUNT 분기별_PRICE (참고 데이터)

내부변수 중요도

상관분석

확률론과 통계학에서 두 변수 간에 어떤 선형적인 관계를 갖고 있는지분석하는 방법으로 **판매수량과의 상관도** 확인

Feature Importance

모델 학습 과정에서 각 변수들이 판매수량에 미치는 영향를 나타낸 지표

외부 변수

대/소형 마트
개인 대형마트/유통전문점 총액
개인 대형마트/유통전문점 월간 일평균
개인 신용카드 슈퍼마켓 총액
개인 신용카드 슈퍼마켓 월간 일평균
대형마트_주별_QUANTITY
대형마트_주별_AMOUNT
대형마트_주별_PRICE

주가

변수 선택 기준

- 유통 판매량은 다양한 요인에 영향을 받기 때문에, 유통 과정의 이해관계자인 소비자, 생산자, 소매업체와 관련된 지표를 외부 변수로 사용함
- 해당 데이터의 탐색 결과를 반영하여 **경북지역 데이터**를 수집
- 주가에 지연값(lag)을 추가하여 예측 상품과 상관분석을 해본 결과, 1,2,3 주차의 높은 상관관계를 보여 lag값을 3주로 설정함

가중치 부여

ex) 안성탕면 멀티<40>

변수		가중치 적용된 내부변수
월		월 * 0.0687
주		주 * 0.70139
분기	x 상관계수	분기 * 0.086273
공휴일_여부		공휴일_여부 * 0.079021
최고기온(°C)		최고기온(°C) * 0.082941
코로나 일별 확진자수		코로나 일별 확진자수 * 0.094216

* 가중치 부여 방법

- 1. 각각의 변수와 판매수량 간의 상관계수 계산
- 2. (품목별 변수) * (상관 계수) = 가중치 적용된 변수

상품명	공휴일_ 가중치	공휴일_ 여부_가 중치	최고기온 _가중치	patient_ 가중치	년도_가 중치	분기_가 중치	월_가중 치	주_가중 치	 stock_coke_mean_ 가중치
농심]안성탕 면 멀티 <40>	0.018935	0.028361	0.154700	-0.058148	0.014938	0.086273	0.068759	0.070139	 0.094216
농심]신라면 멀티<40>	0.045027	0.074867	-0.007921	0.020643	0.023976	0.325617	0.328592	0.342958	 0.160113
농심]너구리 얼큰멀티 <40>	-0.122665	-0.064674	0.021887	-0.012871	-0.064901	0.046221	0.001135	-0.004910	 -0.048674
농심]짜파게 티 멀티 <40>	-0.115347	-0.130636	0.066745	-0.109187	-0.132975	0.224395	0.203391	0.190037	 -0.036848

[품목별 가중치 예시]

- 모든 변수 (내부변수, 외부변수)에 대해 판매수량과 각 예측 상품에 대한 상관 관계를 구하기 위해 **상관 분석**을 수행
- 전체 판매 수량에 따른 중요도 (Feature Importance)를 통해 변수를 선택하는 대신, 품목별 판매수량에 대한 따른 영향도를 반영하기 위해 상관계수를 가중치로 적용

*상관 분석: 두 변수 간의 관련성을 평가하는 통계적 기법으로 1에 가까울수록 강한 관련성을 지님

Trend(추세) 변수

- 예측해야 하는 6개월의 기간에 대한 실제 판매수량 정보를 모르기 때문에, 시계열 예측 모델에 변수로 사용되는 판매 수량의 이동 평균이나 lag값 등을 사용하기에는 적합하지 않다고 판단함
- 따라서, 상품별 과거의 판매수량을 바탕으로 예측이 필요한 기간의 추세를 다항 회귀선을 통해 예측하여 모델이 함께 반영하도록 함

2차항 Fitting

3차항 Fitting

각 상품별로 2차, 3차, 4차 등 다항 회귀 모델을 활용하여 **추세**를 예측한 뒤, 'trend' 라는 변수로 추가하여 학습에 활용함

3. 분석 모형 적용 및 결과

모델 선정

4가지 모델에 대해 feature importance를 진행한 결과, 현재 사용 중인 변수에 LGBM 과 Random Forest Model이 가장 적합

LightGBM

트리 기반 Gradient Boosting 모형 Leaf-wise(리프 중심 트리 분할) 확장 방식으로 빠른 속도 대용량 데이터에 적합

Random Forest

트리 기반 Gradient Boosting 모형 예측 변동성이 작고, 과적합 가능성 낮음

3. 분석 모형 적용 및 결과

모덴 비교 및 결과 (RMSF)

-RMSE*라*? 예측 모델에서 예측한 값과 실제 값 사이의 평균 차이

	xg	LGBM	rf	gb
가야산천년수<2L*6>	279.042	142.907	221.346	285.717
삼다수2L	137.934	130.512	114.894	103.528
박카스F 120ml	29.216	33.181	30.855	42.209
레쓰비<175ml*30>	32.004	34.086	30.911	33.950
코카콜라<1.5*12>	284.170	311.480	274.699	258.295
농심]안성탕면 멀티<40>	31.949	24.637	23.728	21.023
농심]신라면 멀티<40>	16.355	18.622	14.623	10.476
농심]짜파게티 멀티<40>	6.431	6.474	9.277	9.871
오뚜기]진라면매운멀티<120g >	22.217	27.803	18.956	18.211
농심]너구리 얼큰멀티<40>	9.106	6.713	6.575	9.175
10개평균	84.843	73.642	74.586	79.246

Light GBM , Random Forest 예측 그래프

- 전체 변수에 대해 학습한 4개 모델 중 RMSE가 가장 낮은 2개 모델 Light gbm, Random Forest 로 검증 진행
- 각 품목 별로 Random Forest 과 Light GBM 보다추세를 반영하고 있음을 확인

3. 분석 모형 적용 및 결과

추가 조정 - 하이퍼 파라미터 조정(Pycaret)

→ 최종 선정 파라미터

RandomForestRegressor

*최적의 예측 모델을 도출하기 위해, Pycaret 라이브러리를 활용하여 하이퍼 파라미터를 조정

: 하이퍼 파라미터를 조정한 결과, Random Forest의 **RMSE 값**이 **74** → **65**로 개선됨

최종 모델 도출 과정

XGBoost, Random Forest, Light GBM, Gradient Boost 적용

RMSE값 기준으로 Random Forest, Light GBM Model 선택

Random Forest Model 하이퍼 파라미터 조정

최종 Random Forest, LGBM 하이브리드 모델

4. 활용 방안

기대효과

풀필먼트 센터 내 최적화된 작업 인력 확보 및 비즈니스 의사 결정을 통해 안정적인 상품 출고 가능

오차 개선을 통해 물류센터 내 다양한 **운영 비용 절감** 가능

고객사별 주문량 예측 서비스를 마케팅/영업 신규 상품 개발 및 프로모션에도 활용 가능

5. 활용 데이터 참고 문헌 및 출처

- 한국은행 경제통계시스템 ECOS (경제심리지수, 소비자심리지수, 개인대형마트 유통전문점, 개인 신용카드 슈퍼마켓 데이터)
- 인베스팅닷컴 (코카콜라 주가)
- KRX 정보데이터시스템 (삼다수, 가야천년수 주가)
- 한국천문연구원 특일 정보 (공휴일, 기념일)
- KDX 한국데이터거래소(경북 코로나 확진자 수)
- 기상청 기상자료 개방 포털(호미곶 날씨데이터)
- KOSIS(경북경제활동, 경북고용률, 광공업생산지수, 제조업가동률지수, 소비자물가지수, 생산자물가지수, 광공업-생산확산지수)
- KRX 정보데이터시스템(지수 및 보조자료, 구성지표 및 기타 경기지표, 경제활동 참가(%), 고용률(%))
- e커머스 풀필먼트 비즈니스를 위한 수요예측 모델 연구(논문) 김영남 1, 모혜란 1, 김현 2 1 숭실대학교 IT 정책경영학과 2 경희대학교 컴퓨터공학과

감사합니다