6주차 2차시 SONET/SDH

[학습목표]

- 1. SONET/SDN의 구성방법을 설명할 수 있다.
- 2. SONET/SDH의 각 계층 및 프레임에 대해 설명할 수 있다.

학습내용1: SONET/SDH의 정의 및 구성

1. 개요

- 광대역 통신에 주로 사용
- SONET/SDH는 동기식 전송방식을 사용
- 정수 배의 데이터율로 보다 쉬운 다중화를 지원
- ADM(Add/Drop Multiplexer)를 이용하여 빠른 Add/Drop을 수행
- 최소 51.84Mbps에서 최대 2.5Gbps까지 전송 가능
- 현재까지 광 통신의 표준으로 여겨짐

2. 동기식 전송

- 동기식은 하나의 클럭(Clock)을 이용하여 전체 네트워크간의 전송 및 장비 타이밍을 처리

SONET(북미식)	OC(Optical Carrier)	건송 속도(Mbps)	SDH(유럽식)
STS-1	OC-1	51.84 Mbps	STM-0
STS-3	OC-3	155.52 Mbps	STM-1
STS-12	OC-12	622.08 Mbps	STM-4
STS-24	OC-24	1,244.16 Mbps	-
STS-48	OC-48	2,488.32 Mbps	STM-16
STS-192	OC-192	9,953.28 Mbps	STM-64
STS-768	OC-768	39,813.12 Mbps	STM-256

- 동기식 다중화는 다중화와 역 다중화 과정이 기술적으로 쉽고 단순하고, 모든 신호들이 다중화 과정을 거치지 않아도 저속 계위로 직접 엑세스 함

- SONET/SDH는 유사한 계위를 갗음
- 동일 계위에서 SDH가 사용하는 STM이 SONET의 STS보다 대역폭이 3배 크다.
 - STS-1 3개가 STM-1 1개가 됨
- SONET과 SDH 모두 동기식 전송 방식을 따른다.

- * 장점
- 125 us 단위로 구성
 - 프레임은 125 µs 단위로 구성
 - DS-0(64kbps) 신호로 접근이 용이
- 계층화 구조
 - IP 네트워크와 같이 다중화기 사이의 네트워크 요소들 간에 계층이 구분
 - 각 노드들은 필요한 오버헤드만을 검사하여 투명한 데이터 전송이 가능

3. 네트워크 구성

- ① STS MUX(다중화기/역 다중화기)
- STS의 계위에 따라 다중화 및 역 다중화를 수행
- ② 재생기(Regenerator)
- 광 신호를 재생한다. 일종의 리피터인데, 단순히 재생 기능만 하는 것이 아니라, 기존 오버헤드 정보를 일부 변경하는 기능도 수행
- ③ ADM(Add/Drop Multiplexer)
- SONET/SDH 선로로부터 유입되는 데이터 중 자신과 연결되어 있는 노드를 향하여 전송되고 있는 데이터는 해당 노드로 빼주고(Drop) 해당 노드에서 SONET/SDH 선로로 전송하는 데이터들을 ADM에서 선로에 더하면서(Add) ADM을 그냥 지나가는(Bypass) 데이터들과 다중화

- SONET 네트워크는 STS MUX와 ADM, 재생기가 상호 연결되어 있는 망
- 이중 링 구조의 SONET/SDH 네트워크는 일반적으로 사용되는 MAN 또는 백본망을 간략히 표현한 것

④ 단방향 링형 망

- 데이터를 전송하는 워킹 채널과 망 복구를 위해 사용되는 보호 채널이 이중 링 상에서 각각 반대 방향으로 하나의 링에 하나의 채널만이 사용되는 방식

⑤ 양방향 링형 망

- 이중 링에 하나의 링에서 워킹 채널과, 보호 채널이 반반씩 대역폭을 나누어 사용하는 것
- 4중 링(4 Fiber Ring)에서는 두 개의 선로는 워킹 채널로, 나머지 두 개의 선로는 보호 채널로 전송이 가능

학습내용2: SONET/SDH의 계층 및 프레임

1. SONET/SDH 계층

- SONET/SDH 망의 네트워크 구성 요소들은 각각이 서로 다른 계층을 다룸

0의 7 계층	SONET 계층	
	패스 계층	
데이터 링크 계층	라인 계층	
	색선 계층	
물리 계층	포토닉 계층	

① 포토닉 계층(Photonic Layer)

- OSI 7 계층의 물리 계층에 해당하는 것으로 광섬유를 통하여 전달하고자 하는 신호들의 코딩방식이나 채널 등의 물리적 규격을 포함
- 전자신호를 광 신호로 변화하여 0/1의 신호를 전송

② 섹션 계층(Section Layer)

- OSI 7 계층의 데이터 링크 계층이 수행하는 에러제어(Error Control), 프레이밍(Framing) 및 스크램블링(Scrambling) 등의 처리를 수행

③ 라인 계층(Line Layer)

- STS MUX가 다중화 기능을 위해 사용하는 층으로 통신 신호를 제어

④ 패스 계층(Pass Layer)

- SONET 계층의 마지막 층으로 SONET 망의 양단간에 송신단과 수신단을 구별하며 STS가 목적지를 판단하여 다중화하는 역할을 수행

2. STS-n 프레임

- STS-n 프레임은 125us 동안에 9*90*n 바이트 크기의 공간을 점유하므로 n*51.84Mbps의 비트율을 갖게 된다. 즉, STS-1을 기준으로 할 때 125us마다 6,480 비트를 전송하는 구조를 가지며, 데이터 전송률은 51.84Mbps가 됨

* SONET 데이터 캡슐화

* STS-1 프레임 구조

- STS-1 프레임의 기본적인 형식은 STS-n을 n분의 1로 축소한 것과 같으므로 그 구조는 가로 90바이트, 세로 9바이트의 구조이며 왼쪽에서 오른쪽으로 위에서 아래의 순서대로 전송

* STS-1 오버헤드

① 섹션 오버헤드

- 섹션 오버헤드는 9바이트로 구성되며 재생기에서마다 오버헤드를 확인
- 정렬바이트(A1과 A2: Alignment byte)
- 식별바이트(C1: Identification)
- 패리티바이트(B1: Parity byte)
- 오더와이어바이트(E1: OrderWire byte)
- 사용자바이트(F1: User)
- 데이터 통신 바이트

(D1, D2와 D3: Management)

② 라인 오버헤드

- 포인터바이트(H1, H2, H3: Pointers)

- 라인 패리티바이트(B2: Line Parity byte)
- 자동보호 절체바이트(K1과 K2

Automatic Protection Switching byte)

- 데이터 통신 채널바이트(D4~D12)
- 성장바이트(Z1과 Z2: Growth byte)
- 오더와이어바이트

(E2: Orderwire byte)

③ 패스 오버헤드

- 패스 추적바이트(J1: Path trace byte)
- 패스 패리티바이트(B3: Path Parity byte)
- 패스 신호표지바이트(C2: Path Signal Label byte)
- 패스 상태바이트(G1: Path status byte)
- 패스 사용자 채널바이트(F2: Path User Channel byte)
- 가상종속 지시자(H4: Virtual tributary indicator)
- 성장바이트(Z3, Z4와Z5: Growth byte)

④ 가상 종속의 종류

가상종속의 종류	기존의 디지털 계위	전송 속도
VT1,5	DS-1	1,544Mbps
VT2	CEPT-1	2,048Mbps
VT3	DS-1C	3,152Mbps
VT6	DS-2	6,312Mbps

3. STS 프레임 다중화

- STS-1 데이터율을 더 높은 데이터율을 지원하는 장비와 호환하기 위하여 다중화 될 수 있음

[학습정리]

- 1. SONET/SDH는 광대역 통신에 주로 사용되며, 동기식 전송방식을 사용하며 현재까지 광 통신의 표준으로 여겨지는 방식이다.
- 2. SONET/SDH의 계층은 포토닉/섹션/라인/패스/SONET 계층을 이루어지며 STS(동기전송신호)를 따른다.