

MFA	Mercedes Front-Wheel Architecture				
MRA	Mercedes Rear-Wheel Architecture				
MSA	Mercedes Sports Architecture				
МНА	Mercedes High Architecture				
SUV	Sport Utility Vehicle				
EVA	Electric Vehicle Architecture				
MMA	Mercedes Modular Architecture				

Mercedes-Benz Cars (MBC) Product Portfolio

Body Style								
W	Sedan / Hatchback / Sports Tourer	Χ	Special Version					
V	Extended Sedan	S	Estate (Station Wagon)					
Α	Cabriolet (Convertible)	С	Coupé					
Н	City SUV (Crossover)	R	Roadster					
		Z	Special Version					

MBC Platform Architectures - ICE

3-4-8

Mercedes
Front Wheel Drive
Architecture

Mercedes Rear Wheel Drive Architecture

Mercedes High Architecture

Der mds definiert, Wer Was Wann mit wem Wie tun muss,

damit ein neues Fahrzeug entsteht.

Defines WHO does WHAT, WHEN with WHOM & HOW - to create a new Mercedes vehicle

Vehicle Lifecycle – Phases of Development

A Brief History Of DiFa NextGeneration

2015	2016	2017	2018	2019	2020	2021	
				SCON Systems NETALLIED The Digital Twin Company			
Benchmark	Proof-of- Concept Development and Integration		tegration	alization with ASCon cus <i>DiFa</i> Product	Focus DiFa Planni	ng Roll	
SIEMENS		SIEME	NS	-67676-	/ > >	575FC	

- Sun-Down Delmia v5 was announced in 2014
- Saving on running-costs > 1 M€ / year
- Allow suppliers to inquire without licensing costs
- Create modern system for data throughput and continuity
- Descibility for more efficient processes

nternal

■ DiFa PROJECT

- · Uniform project concept for the planning projects
- Planning premises available at a central location for all users
- · Standardized project milestones
- · Synchronization of user rights

DiFa LIBRARY

- · Uniform library of planning resources
- Partially uniform objects across different trades
- Configurable equipment modules
- Unified library together with Fapli's objects
- Live Library

■ DiFa COSTS

- Central office for planning costs (depending on the project)
- · Synchronization with reference costing

DiFa Planning

DifaPlanning is the central tool for digital plant engineering.

Here, quantity structures are set up on the basis of the standardized equipment from DifaLibrary and the associated 3D layouts are created in order to derive cost and space requirements.

DiFa Product

Product data import & analysis Component & VE geometries Code, buildability, NICE Component planning mapping VE planning including NICE variant management

- Factory filter
- · Basic model
- Joining step variants

nternal

DiFa Product - Classification

With the joint sequence and variant management, DiFa Product forms the basis for all further planning activities

Planning Components

Planning Joint Technology

Factory filter

Assignment of the basic model

Calculation Variant

Fully Automated

Partially automated

Variant Concept DiFa Product basis model

- All variants of the SW inside and pre-ZBs go into the joint level 141.091; output: side wall inside for all variants
- In order to be able to work efficiently in the joint stage, filtering on the 6 basic models is necessary (using the given code)

EBOM

MBOM

About DiFaPROJECT

- Uniform project terminology for the planning projects
- Planning premises available at a central location for all users ("Prämissendatenbank")
- Standardized project milestones
- Synchronization of user rights
- · Standardized supplier packages

nternal

DiFa Planning User Interface

Structure of the training

Configuration of equipment

DiFa Library

Creating
Single
Components

Creating
Group
Components

Modifying/ Managing Components

Destination of the library:

- Uniform library of planning resources
- · Partially uniform objects across different shops
- · Configurable equipment modules
- Unified library together with Faplis objects
- Live Library

Management and sorting logic - Structure of a library element

nternal

DiFa Cost

Current situation: cooperation AKV costs PCE (FMC/EA) with PP

Mercedes-Benz

DiFa Cost

Interaction TRECA & Difa for component connection (G-REC hardware) and quantity structure binding (Detail-REC hardware & DL)

DiFa Cost

