Abstract Interpretation Semantics and applications to verification

Xavier Rival

École Normale Supérieure

April 15th, 2016

Program of this lecture

Studied so far:

- semantics: behaviors of programs
- properties: safety, liveness, security...
- approaches to verification: typing, use of proof assistants, model checking

Today's lecture: introduction to abstract interpretation

- a general framework for comparing semantics introduced by Patrick Cousot and Radhia Cousot (1977)
- abstraction: use of a lattice of predicates
- computing abstract over-approximations, while preserving soundness
- computing abstract over-approximations for loops

- Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections
- 2 Abstract interpretation
- 3 Application of abstract interpretation
- 4 Conclusion

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:

- objects under study: sets of mathematical integers
- abstract elements: signs

Lattice of signs

- \bullet \perp denotes only \emptyset
- ullet denotes any set of positive integers
- $\underline{0}$ denotes any subset of $\{0\}$
- ullet _ denotes any set of negative integers
- ullet T denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...

Abstraction example 1: signs

Definition: abstraction relation

- concrete elements: elements of the original lattice $(c \in \mathcal{P}(\mathbb{Z}))$
- abstract elements: predicate (a: " $\cdot \in \{+, 0, ...\}$ ")
- abstraction relation: $c \vdash_S a$ when a describes c

Examples:

- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_{S} +$
- $\{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots\} \vdash_{\mathcal{S}} \top$

We use abstract elements to reason about operations:

- if $c_0 \vdash_S +$ and $c_1 \vdash_S +$, then $\{x_0 + x_1 \mid x_i \in c_i\} \vdash_S +$
- if $c_0 \vdash_S +$ and $c_1 \vdash_S +$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S +$
- if $c_0 \vdash_S +$ and $c_1 \vdash_S 0$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S 0$
- if $c_0 \vdash_S +$ and $c_1 \vdash_S \bot$, then $\{x_0 \cdot x_1 \mid x_i \in c_i\} \vdash_S \bot$

Abstraction example 1: signs

We can also consider the union operation:

- if $c_0 \vdash_{\mathcal{S}} \underline{+}$ and $c_1 \vdash_{\mathcal{S}} \underline{+}$, then $c_0 \cup c_1 \vdash_{\mathcal{S}} \underline{+}$
- if $c_0 \vdash_{\mathcal{S}} \underline{+}$ and $c_1 \vdash_{\mathcal{S}} \underline{+}$, then $c_0 \cup c_1 \vdash_{\mathcal{S}} \underline{+}$

But, what can we say about $c_0 \cup c_1$, when $c_0 \vdash_{\mathcal{S}} \underline{0}$ and $c_1 \vdash_{\mathcal{S}} \underline{+}$?

- clearly, $c_0 \cup c_1 \vdash_{\mathcal{S}} \top ...$
- but no other relation holds
- in the abstract, we do not rule out negative values

We can extend the initial lattice:

- $\bullet \ge 0$ denotes any set of positive or null integers
- $\bullet \le 0$ denotes any set of negative or null integers
- ullet \neq 0 denotes any set of non null integers
- if $c_0 \vdash_{\mathcal{S}} \underline{+}$ and $c_1 \vdash_{\mathcal{S}} \underline{0}$, then $c_0 \cup c_1 \vdash_{\mathcal{S}} \underline{>} 0$

Abstraction example 2: constants

Definition: abstraction based on constants

- concrete elements: $\mathcal{P}(\mathbb{Z})$
- abstract elements: \bot, \top, n where $n \in \mathbb{Z}$ $(D_C^{\sharp} = \{\bot, \top\} \cup \{n \mid n \in \mathbb{Z}\})$
- abstraction relation: $c \vdash_{\mathcal{C}} n \iff c \subseteq \{n\}$

We obtain a flat lattice:

Abstract reasoning:

• if $c_0 \vdash_{\mathcal{C}} n_0$ and $c_1 \vdash_{\mathcal{C}} n_1$, then $\{k_0 + k_1 \mid k_i \in c_i\} \vdash_{\mathcal{C}} n_0 + n_1$

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- concrete elements: $\mathcal{P}(\mathcal{A}^*)$ (sets of words over alphabet \mathcal{A})
- abstract elements: $\{\bot, \top\} \cup (A \to \mathbb{N})$
- abstraction relation: $c \vdash_{\mathfrak{P}} \phi : \mathcal{A} \to \mathbb{N}$ if and only if:

$$\forall w \in c, \forall a \in A, a \text{ appears } \phi(a) \text{ times in } w$$

Abstract reasoning:

concatenation:

if
$$\phi_0, \phi_1 : \mathcal{A} \to \mathbb{N}$$
 and c_0, c_1 are such that $c_i \vdash_{\mathfrak{P}} \phi_i$,

$$\{w_0\cdot w_1\mid w_i\in c_i\}\vdash_{\mathfrak{P}}\phi_0+\phi_1$$

Information preserved, information deleted:

very precise information about the number of occurrences

Abstract Interpretation: Introduction

the order of letters is totally abstracted away (lost)

Xavier Rival

8 / 54

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- concrete elements: P(Z)
- abstract elements: $\bot, \top, (a, b)$ where $a \in \{-\infty\} \cup \mathbb{Z}$, $b \in \mathbb{Z} \cup \{+\infty\}$ and $a \leq b$
- abstraction relation:

$$\emptyset \vdash_{\mathcal{I}} \bot
S \vdash_{\mathcal{I}} \top
S \vdash_{\mathcal{I}} (a, b) \iff \forall x \in S, \ a \leq x \leq b$$

Operations: TD

Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- concrete elements: $\mathcal{P}(X \to Y)$, inclusion ordering
- abstract elements: $X \to \mathcal{P}(Y)$, pointwise inclusion ordering
- abstraction relation: $c \vdash_{\mathcal{NR}} a \iff \forall \phi \in c, \ \forall x \in X, \ \phi(x) \in a(x)$

Information preserved, information deleted:

- very precise information about the image of the functions in c
- relations such as (for given $x_0, x_1 \in X, y_0, y_1 \in Y$) the following are lost:

$$\forall \phi \in c, \ \phi(x_0) = \phi(x_1)$$
$$\forall \phi \in c, \ \forall x, x' \in X, \ \phi(x) \neq y_0 \lor \phi(x') \neq y_1$$

Notion of abstraction relation

Concrete order: so far, always inclusion

- the tighter the concrete set, the fewer behaviors
- smaller concrete sets correspond to more precise properties

Abstraction relation: $c \vdash a$ when c satisfies a

• if $c_0 \subseteq c_1$ and c_1 satisfies a, in all our examples, c_0 also satisfies a

Abstract order: in all our examples,

- it matches the abstraction relation as well. if $a_0 \sqsubseteq a_1$ and c satisfies a_0 , then c also satisfies a_1
- great advantage: we can reason about implication in the abstract, without looking back at the concrete properties

We will now formalize this in detail...

Outline

- Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections

Towards adjoint functions

We consider a concrete lattice (C,\subseteq) and an abstract lattice (A,\sqsubseteq) .

So far, we used abstraction relations, that are consistent with orderings:

Abstraction relation compatibility

- $\forall c_0, c_1 \in C, \forall a \in A, c_0 \subseteq c_1 \land c_1 \vdash a \Longrightarrow c_0 \vdash a$
- $\forall c \in C, \forall a_0, a_1 \in A, c \vdash a_0 \land a_0 \sqsubseteq a_1 \Longrightarrow c \vdash a_1$

When we have a c (resp., a) and try to map it into a compatible a (resp. a c), the abstraction relation is not a convenient tool.

Hence, we shall use adjoint functions between C and A.

- from concrete to abstract: abstraction
- from abstract to concrete: concretization

Concretization function

Our first adjoint function:

Definition: concretization function

Concretization function $\gamma:A\to C$ (if it exists) maps abstract a into the weakest (i.e., most general) concrete c that satisfies a (i.e., $c\vdash a$).

Note: in common cases, there exists a γ .

• $c \vdash a$ if and only if $c \subseteq \gamma(a)$

Concretization function: a few examples

Signs abstraction:

$$\begin{array}{ccccc} \gamma_{\mathcal{S}}: & \top & \longmapsto & \mathbb{Z} \\ & \stackrel{+}{\underline{\cup}} & \longmapsto & \mathbb{Z}_{+}^{\star} \\ & \stackrel{\underline{0}}{\underline{\cup}} & \longmapsto & \{0\} \\ & \stackrel{-}{\underline{\smile}} & \longmapsto & \mathbb{Z}_{-}^{\star} \\ & \stackrel{\perp}{\underline{\smile}} & \longmapsto & \emptyset \end{array}$$

Constants abstraction:

Non relational abstraction:

$$\begin{array}{ccc} \gamma_{\mathcal{NR}}: & (X \to \mathcal{P}(Y)) & \longrightarrow & \mathcal{P}(X \to Y) \\ & \Phi & \longmapsto & \{\phi: X \to Y \mid \forall x \in X, \ \phi(x) \in \Phi(x)\} \end{array}$$

Parikh vector abstraction: exercise!

Abstraction function

Our second adjoint function:

Definition: abstraction function

Abstraction function $\alpha: C \to A$ (if it exists) maps concrete c into the most precise abstract a that soundly describes c (i.e., $c \vdash a$).

Note: in quite a few cases (including some in this course), there is no α .

Summary on adjoint functions:

- α returns the most precise abstract predicate that holds true for its argument this is called the best abstraction
- $oldsymbol{\circ}$ γ returns the most general concrete meaning of its argument hence, is called the concretization

Abstraction: a few examples

Constants abstraction:

$$lpha_{\mathcal{C}}: \ \ (c\subseteq \mathbb{Z}) \ \longmapsto \ \left\{ egin{array}{ll} \bot & ext{if } c=\emptyset \\ \underline{n} & ext{if } c=\{n\} \\ \top & ext{otherwise} \end{array}
ight.$$

Non relational abstraction:

$$\alpha_{\mathcal{NR}}: (c \subseteq (X \to Y)) \longmapsto (x \in X) \mapsto \{\phi(x) \mid \phi \in c\}$$

Signs abstraction and Parikh vector abstraction: exercises

Outline

- Abstraction
 - Notion of abstraction
 - Abstraction and concretization functions
 - Galois connections
- Abstract interpretation
- 3 Application of abstract interpretation
- 4 Conclusion

Definition

So far, we have:

- abstraction $\alpha: C \to A$
- concretization $\gamma: A \to C$

How to tie them together?

They should agree on a same abstraction relation \vdash !

Definition: Galois connection

A Galois connection is defined by a concrete lattice (C, \subseteq) , an abstract lattice (A, \sqsubseteq) , an abstraction function $\alpha : C \to A$ and a concretization function $\gamma : A \to C$ such that:

$$\forall c \in C, \forall a \in A, \ \alpha(c) \sqsubseteq a \iff c \subseteq \gamma(a) \qquad (\iff c \vdash a)$$

Notation: $(C,\subseteq) \xrightarrow{\gamma} (A,\sqsubseteq)$

Note: in practice, we shall rarely use \vdash ; we use α, γ instead

Example: constants abstraction and Galois connection

Constants lattice $D_{\mathcal{C}}^{\sharp} = \{\bot, \top\} \uplus \{\underline{n} \mid n \in \mathbb{Z}\}$

$$\begin{array}{llll} \alpha_{\mathcal{C}}(c) &=& \bot & \text{if } c = \emptyset & & \gamma_{\mathcal{C}}(\top) &\longmapsto & \mathbb{Z} \\ \alpha_{\mathcal{C}}(c) &=& \underline{n} & \text{if } c = \{n\} & & \gamma_{\mathcal{C}}(\underline{n}) &\longmapsto & \{n\} \\ \alpha_{\mathcal{C}}(c) &=& \top & \text{otherwise} & & \gamma_{\mathcal{C}}(\bot) &\longmapsto & \emptyset \end{array}$$

Thus:

- if $c = \emptyset$, $\forall a, c \subseteq \gamma_{\mathcal{C}}(a)$, i.e., $c \subseteq \gamma_{\mathcal{C}}(a) \iff \alpha_{\mathcal{C}}(c) = \bot \sqsubseteq a$
- if $c = \{n\}$, $\alpha_{\mathcal{C}}(\{n\}) = n \sqsubseteq c \iff c = n \lor c = \top \iff c = \{n\} \subseteq \gamma_{\mathcal{C}}(a)$
- if c has at least two distinct elements $n_0, n_1, \alpha_{\mathcal{C}}(c) = \top$ and $c \subseteq \gamma_{\mathcal{C}}(a) \Rightarrow a = \top$, i.e., $c \subseteq \gamma_{\mathcal{C}}(a) \iff \alpha_{\mathcal{C}}(c) = \bot \sqsubseteq a$

Constant abstraction: Galois connection

$$c \subseteq \gamma_{\mathcal{C}}(a) \iff \alpha_{\mathcal{C}}(c) \sqsubseteq a$$
, therefore, $(\mathcal{P}(\mathbb{Z}), \subseteq) \stackrel{\gamma_{\mathcal{C}}}{\longleftarrow} (\mathcal{D}_{\mathcal{C}}^{\sharp}, \sqsubseteq)$

Example: non relational abstraction Galois connection

We have defined.

$$\alpha_{\mathcal{NR}}: (c \subseteq (X \to Y)) \longmapsto (x \in X) \mapsto \{f(x) \mid f \in c\}$$

$$\gamma_{\mathcal{NR}}: (\Phi \in (X \to \mathcal{P}(Y))) \longmapsto \{f: X \to Y \mid \forall x \in X, f(x) \in \Phi(x)\}$$

Let $c \in \mathcal{P}(X \to Y)$ and $\Phi \in (X \to \mathcal{P}(Y))$; then:

$$\alpha_{\mathcal{N}\mathcal{R}}(c) \sqsubseteq \Phi \iff \forall x \in X, \ \alpha_{\mathcal{N}\mathcal{R}}(c)(x) \subseteq \Phi(x)$$

$$\iff \forall x \in X, \ \{f(x) \mid f \in c\} \subseteq \Phi(x)$$

$$\iff \forall f \in c, \ \forall x \in X, \ f(x) \in \Phi(x)$$

$$\iff \forall f \in c, \ f \in \gamma_{\mathcal{N}\mathcal{R}}(\Phi)$$

$$\iff c \subseteq \gamma_{\mathcal{N}\mathcal{R}}(\Phi)$$

Non relational abstraction: Galois connection

$$c \subseteq \gamma_{\mathcal{N}\mathcal{R}}(a) \iff \alpha_{\mathcal{N}\mathcal{R}}(c) \sqsubseteq a$$
, therefore,

$$(\mathcal{P}(X \to Y), \subseteq) \xrightarrow{\gamma_{\mathcal{NR}}} (X \to \mathcal{P}(Y), \sqsubseteq)$$

Galois connections have many useful properties.

In the next few slides, we consider a Galois connection $(C,\subseteq) \stackrel{\checkmark}{\longleftarrow} (A,\sqsubseteq)$ and establish a few interesting properties.

Extensivity, contractivity

- $\alpha \circ \gamma$ is contractive: $\forall a \in A, \ \alpha \circ \gamma(a) \sqsubseteq a$
- $\gamma \circ \alpha$ is extensive: $\forall c \in C, c \subseteq \gamma \circ \alpha(c)$

Proof:

- let $a \in A$; then, $\gamma(a) \subseteq \gamma(a)$, thus $\alpha(\gamma(a)) \sqsubseteq a$
- let $c \in C$; then, $\alpha(c) \sqsubseteq \alpha(c)$, thus $c \subseteq \gamma(\alpha(a))$

Monotonicity of adjoints

- \bullet α is monotone
- \bullet γ is monotone

Proof:

- monotonicity of α : let $c_0, c_1 \in C$ such that $c_0 \subseteq c_1$; by extensivity of $\gamma \circ \alpha$, $c_1 \subseteq \gamma(\alpha(c_1))$, so by transitivity, $c_0 \subseteq \gamma(\alpha(c_1))$ by definition of the Galois connnection, $\alpha(c_0) \sqsubseteq \alpha(c_1)$
- monotonicity of γ : same principle

Note: many proofs can be derived by duality

Duality principle applied for Galois connections

If
$$(C,\subseteq) \stackrel{\gamma}{\longleftrightarrow} (A,\sqsubseteq)$$
, then $(A,\supseteq) \stackrel{\alpha}{\longleftrightarrow} (C,\supseteq)$

Iteration of adjoints

- $\bullet \ \alpha \circ \gamma \circ \alpha = \alpha$
- $\bullet \ \gamma \circ \alpha \circ \gamma = \gamma$
- $\alpha \circ \gamma$ (resp., $\gamma \circ \alpha$) is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha = \alpha$: let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$ hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \sqsubseteq \alpha(c)$ moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \sqsubseteq \alpha \circ \gamma \circ \alpha(c)$ thus, $\alpha \circ \gamma \circ \alpha(c) = \alpha(c)$
- the second point can be proved similarly (duality); the others follow

Properties on iterations of adjoint functions:

α preserves least upper bounds

$$\forall c_0, c_1 \in C, \ \alpha(c_0 \cup c_1) = \alpha(c_0) \sqcup \alpha(c_1)$$

By duality:

$$\forall a_0, a_1 \in A, \ \gamma(c_0 \sqcap c_1) = \gamma(c_0) \sqcap \gamma(c_1)$$

Proof:

First, we observe that $\alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq \alpha(c_0 \cup c_1)$, i.e. $\alpha(c_0 \cup c_1)$ is an upper bound of $\{\alpha(c_0), \alpha(c_1)\}$.

We now prove it is the *least* upper bound. For all $a \in A$:

$$\alpha(c_0 \cup c_1) \sqsubseteq a \iff c_0 \cup c_1 \subseteq \gamma(a)$$

$$\iff c_0 \subseteq \gamma(a) \land c_1 \subseteq \gamma(a)$$

$$\iff \alpha(c_0) \sqsubseteq a \land \alpha(c_1) \sqsubseteq a$$

$$\iff \alpha(c_0) \sqcup \alpha(c_1) \sqsubseteq a$$

Note: when C, A are complete lattices, this extends to families of elements

Uniqueness of adjoints

- given $\gamma: C \to A$, there exists at most one $\alpha: A \to C$ such that $(C, \subseteq) \stackrel{\gamma}{\longleftrightarrow} (A, \sqsubseteq)$, and, if it exists, $\alpha(c) = \sqcap \{a \in A \mid c \subseteq \gamma(a)\}$
- similarly, given $\alpha:A\to C$, there exists at most one $\gamma:C\to A$ such that $(C,\subseteq)\stackrel{\gamma}{\longleftarrow}(A,\sqsubseteq)$, and it is defined dually

Proof of the first point (the other follows by duality): we assume that there exists an α so that we have a Galois connection and prove that, $\alpha(c) = \bigcap \{a \in A \mid c \subseteq \gamma(a)\}$ for a given $c \in C$.

- if $a \in A$ is such that $c \subseteq \gamma(a)$, then $\alpha(a) \sqsubseteq c$ thus, $\alpha(a)$ is a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
- let $a_0 \in A$ be a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$. since $\gamma \circ \alpha$ is extensive, $c \subseteq \gamma(\alpha(c))$ and $\alpha(c) \in \{a \in A \mid c \subseteq \gamma(a)\}$. hence, $a_0 \sqsubseteq \alpha(c)$

Thus, $\alpha(c)$ is the least upper bound of $\{a \in A \mid c \subseteq \gamma(a)\}$

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:

- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let (C,\subseteq) and (A,\sqsubseteq) be two lattices, such that any subset of A as a greatest lower bound and let $\gamma: (A, \sqsubseteq) \to (C, \subseteq)$ be a monotone function.

Then, the function below defines a Galois connection:

$$\alpha(c) = \sqcap \{a \in A \mid c \subseteq \gamma(a)\}$$

Example of abstraction with no α : when \square is not defined on all families, e.g., lattice of convex polyedra, abstracting sets of points in \mathbb{R}^2 .

Exercise: state the dual property and apply the same principle to the concretization

Galois connection characterization

A characterization of Galois connections

Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, and $\alpha : C \to A$ and $\gamma : A \to C$ be two monotone functions, such that:

- $\alpha \circ \gamma$ is contractive
- $\gamma \circ \alpha$ is extensive

Then, we have a Galois connection

$$(C,\subseteq) \stackrel{\gamma}{\Longleftrightarrow} (A,\sqsubseteq)$$

Proof:

- let $c \in C$ and $a \in A$ such that $\alpha(c) \sqsubseteq a$. then: $\gamma(\alpha(c)) \subseteq \gamma(a)$ (as γ is monotone) $c \subseteq \gamma(\alpha(c))$ (as $\gamma \circ \alpha$ is extensive) thus, $c \subseteq \gamma(a)$, by transitivity
- the other implication can be proved by duality

Outline

- Abstraction
- 2 Abstract interpretation
 - Abstract computation
 - Fixpoint transfer
- Application of abstract interpretation
- 4 Conclusion

Constructing a static analysis

We have set up a notion of abstraction:

- it describes sound approximations of concrete properties with abstract predicates
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to compute sound abstract predicates

In the following, we assume

a Galois connection

$$(C,\subseteq) \xrightarrow{\gamma} (A,\sqsubseteq)$$

• a concrete semantics $[\![.]\!]$, with a constructive definition i.e., $[\![P]\!]$ is defined by constructive equations $([\![P]\!] = f(\ldots))$, least fixpoint formula $([\![P]\!] = \mathbf{lfp}_\emptyset f)$...

Abstract transformer

A fixed concrete element c_0 can be abstracted by $\alpha(c_0)$.

We now consider a monotone concrete function

$$f: C \rightarrow C$$

- given $c \in C$, $\alpha \circ f(c)$ abstracts the image of c by f
- if $c \in C$ is abstracted by $a \in A$, then f(c) is abstracted by $\alpha \circ f \circ \gamma(a)$:

$$c \subseteq \gamma(a)$$
 by assumption $f(c) \subseteq f(\gamma(a))$ by monotonicity of f and $\alpha(f(c)) \subseteq \alpha(f(\gamma(a)))$ by monotonicity of α

Definition: best and sound abstract transformers

- the best abstract transformer approximating f is $f^{\sharp} = \alpha \circ f \circ \gamma$
- a sound abstract transformer approximating f is any operator $f^{\sharp}: A \to A$, such that $\alpha \circ f \circ \gamma \sqsubseteq f^{\sharp}$ (or equivalently, $f \circ \gamma \subseteq \gamma \circ f^{\sharp}$)

Example: lattice of signs

- $f: D_{\mathcal{C}}^{\sharp} \to D_{\mathcal{C}}^{\sharp}, c \mapsto \{-n \mid n \in c\}$
- $f^{\sharp} = \alpha \circ f \circ \gamma$

Lattice of signs:

Abstract negation operator:

а	$\ominus^\sharp(a)$
\perp	Т
_	<u>+</u>
<u>0</u>	<u>0</u>
<u>+</u>	_
T	Т

- here, the best abstract transformer is very easy to compute
- no need to use an approximate one

Abstract *n*-ary operators

We can generalize this to *n*-ary operators, such as boolean operators and arithmetic operators

Definition: sound and exact abstract operators

Let $g: C^n \to C$ be a monotone *n*-ary operator.

Then:

• the **best abstract operator** approximating g is defined by:

$$g^{\sharp}: A^{n} \longmapsto A$$

 $(a_{0},\ldots,a_{n-1}) \longmapsto \alpha \circ g(\gamma(a_{0}),\ldots,\gamma(a_{n-1}))$

• a sound abstract transformer approximating g is any operator $g^{\sharp}:A^{n}\rightarrow A$, such that

$$\forall (a_0,\ldots,a_{n-1}) \in A^n, \ \alpha \circ g(\gamma(a_0),\ldots,\gamma(a_{n-1})) \sqsubseteq g^{\sharp}(a_0,\ldots,a_{n-1})$$

Example: lattice of signs arithmetic operators

Application:

- \oplus : $C^2 \to C$, $(c_0, c_1) \mapsto \{n_0 + n_1 \mid n_i \in c_i\}$
- $\bullet \; \otimes : \mathit{C}^2 \to \mathit{C}, (\mathit{c}_0, \mathit{c}_1) \mapsto \{\mathit{n}_0 \cdot \mathit{n}_1 \mid \mathit{n}_i \in \mathit{c}_i\}$

Best abstract operators:

\oplus^{\sharp}		=	<u>0</u>	<u>+</u>	Т
			T	\perp	T
=	1	=	=	Τ	Τ
<u>0</u>	上	_	<u>0</u>	+	Τ
<u>+</u>	T	T	<u>+</u>	<u>+</u>	T
Т	L	T	Т	Т	T

\otimes^{\sharp}		_	<u>0</u>	<u>+</u>	Т
\perp	1	1	Τ	Τ	1
=	上	<u>+</u>	0	_	T
0	上	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>+</u>			0	<u>+</u>	T
Т		Т	0	T	T

Example of loss in precision:

- $\{8\} \in \gamma_{\mathcal{S}}(\underline{+}) \text{ and } \{-2\} \in \gamma_{\mathcal{S}}(\underline{-})$
- $\oplus^{\sharp}(\underline{+},\underline{-}) = \top$ is a lot worse than $\alpha_{\mathcal{S}}(\oplus(\{8\},\{-2\})) = \underline{+}$

Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap :

U [#]	上	_	<u>0</u>	<u>+</u>	T
		_	<u>0</u>	<u>+</u>	Т
_	_	_	Т	Т	T
0	0	Т	0	Т	Т
<u>+</u>	<u>+</u>	Т	Т	<u>+</u>	Т
Т	T	Т	Т	Т	T

∩#		_	<u>0</u>	<u>+</u>	Т
\perp			1	Τ	
	上	_		\perp	_
0	1	1	0	1	0
<u>+</u>		1	1	<u>+</u>	<u>+</u>
T	上	=	0	<u>+</u>	Т

Example of loss in precision:

•
$$\gamma(\underline{-}) \cup \gamma(\underline{+}) = \{ n \in \mathbb{Z} \mid n \neq 0 \} \subset \gamma(\top)$$

Outline

- Abstraction
- 2 Abstract interpretation
 - Abstract computation
 - Fixpoint transfer
- Application of abstract interpretation
- 4 Conclusion

Fixpoint transfer

What about loops? semantic functions defined by fixpoints?

Theorem: exact fixpoint transfer

We consider a Galois connection $(C,\subseteq) \stackrel{\gamma}{\longleftarrow} (A,\sqsubseteq)$, two functions $f: C \to C$ and $f^{\sharp}: A \to A$ and two elements $c_0 \in C, a_0 \in A$ such that:

- f is continuous
- f^{\sharp} is monotone
- $\alpha \circ f = f^{\sharp} \circ \alpha$
- \bullet $\alpha(c_0) = a_0$

Then:

- both f and f^{\sharp} have a least-fixpoint (Tarski's fixpoint theorem)
- \bullet $\alpha(\mathsf{lfp}_{c_0} f) = \mathsf{lfp}_{a_0} f^{\sharp}$

Fixpoint transfer: proof

• $\alpha(\mathsf{lfp}_{c_0} f)$ is a fixpoint of f^{\sharp} since:

$$\begin{array}{lll} f^{\sharp}(\alpha(\mathbf{lfp}_{c_0}\,f)) & = & \alpha(f(\mathbf{lfp}_{c_0}\,f)) & & \text{since } \alpha\circ f = f^{\sharp}\circ\alpha \\ & = & \alpha(\mathbf{lfp}_{c_0}\,f) & & \text{by definition of the fixpoints} \end{array}$$

- To show that $\alpha(\mathsf{lfp}_{c_0} f)$ is the least-fixpoint of f^{\sharp} , we assume that X is another fixpoint of f^{\sharp} greater than a_0 and we show that $\alpha(\mathbf{lfp}_{c_0} f) \sqsubseteq X$, i.e., that $\mathbf{lfp}_{c_0} f \subseteq \gamma(X)$. As $\mathbf{lfp}_{c_0} f = \bigcup_{n \in \mathbb{N}} f_0^n(c_0)$, it amounts to proving that $\forall n \in \mathbb{N}, f_0^n(c_0) \subseteq \gamma(X).$ By induction over *n*:
 - $f^0(c_0) = c_0$, thus $\alpha(f^0(c_0)) = a_0 \sqsubseteq X$; thus, $f^0(c_0) \subseteq \gamma(X)$.
 - ▶ let us assume that $f^n(c_0) \subseteq \gamma(X)$, and let us show that $f^{n+1}(c_0) \subseteq \gamma(X)$, i.e. that $\alpha(f^{n+1}(c_0)) \sqsubseteq X$:

$$\alpha(f^{n+1}(c_0)) = \alpha \circ f(f^n(c_0)) = f^{\sharp} \circ \alpha(f^n(c_0)) \sqsubseteq f^{\sharp}(X) = X$$

as $\alpha(f^n(c_0)) \sqsubseteq X$ and f^{\sharp} is monotone.

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

• lattice A is of finite height

We compute the sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_{n+1}=a_n\sqcup f^\sharp(a_n)$.

Then, $(a_n)_{n\in\mathbb{N}}$ converges and its limit a_∞ is such that $\alpha(\mathsf{Ifp}_{c_0}\,f)=a_\infty$.

Proof: exercise.

Note:

- the assumptions we have made are too restrictive in practice
- more general fixpoint abstraction methods in the next lectures

Outline

- Abstraction
- Abstract interpretation
- 3 Application of abstract interpretation
- 4 Conclusion

Comparing existing semantics

- **①** A concrete semantics [P] is given: e.g., big steps operational semantics
- ② An abstract semantics $[P]^{\sharp}$ is given: e.g., denotational semantics
- **3** Search for an abstraction relation between them e.g., $[\![P]\!]^{\sharp} = \alpha([\![P]\!])$, or $[\![P]\!] \subseteq \gamma([\![P]\!]^{\sharp})$

Examples:

- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics
- ...

Payoff:

- better understanding of ties across semantics
- chance to generalize existing definitions

Derivation of a static analysis

- Start from a concrete semantics [P]
- Choose an abstraction defined by a Galois connection or a concretization function (usually)
- **3** Derive an abstract semantics $[\![P]\!]^{\sharp}$ such that $[\![P]\!] \subseteq \gamma([\![P]\!]^{\sharp})$

Examples:

- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language

Payoff:

- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis step by step, from a concrete semantics and an abstraction.

- we assume a fixed set of n integer variables x_0, \ldots, x_{n-1}
- we consider the language defined by the grammar below:

$$\begin{array}{lll} P & ::= & \mathtt{x}_i = n & \text{where } n \in \mathbb{Z} \\ & \mid & \mathtt{x}_i = \mathtt{x}_j + \mathtt{x}_k & \text{basic, three-addresses arithmetics} \\ & \mid & \mathtt{x}_i = \mathtt{x}_j - \mathtt{x}_k & \text{basic, three-addresses arithmetics} \\ & \mid & \mathtt{x}_i = \mathtt{x}_j \cdot \mathtt{x}_k & \text{basic, three-addresses arithmetics} \\ & \mid & P; P & \text{concatenation} \\ & \mid & \text{input}(\mathtt{x}_i) & \text{reading of a positive input} \\ & \mid & \text{if}(\mathtt{x}_i > 0) P \text{ else } P \\ & \mid & \text{while}(\mathtt{x}_i > 0) P \end{array}$$

- a state is a vector $\sigma = (\sigma_0, \dots, \sigma_{n-1}) \in \mathbb{Z}^n$
- a single initial state $\sigma_{init} = (0, ..., 0)$

Concrete semantics

Concrete semantics

We let $\llbracket P \rrbracket : \mathcal{P}(\mathbb{Z}^n) \to \mathcal{P}(\mathbb{Z}^n)$ be defined by:

• given a complete program P, the **reachable states** are defined by $[\![P]\!](\{\sigma_{\mathbf{init}}\})$

Abstraction

We compose two abstractions:

- non relational abstraction: the values a variable may take is abstracted separately from the other variables
- sign abstraction: the set of values observed for each variable is abstracted into the lattice of signs

Abstraction

- concrete domain: $(\mathcal{P}(\mathbb{Z}^n),\subseteq)$
- abstract domain: $(D^{\sharp}, \sqsubseteq)$, where $D^{\sharp} = (D^{\sharp}_{\mathcal{S}})^n$ and \sqsubseteq is the pointwise ordering
- Galois connection $(\mathcal{P}(\mathbb{Z}),\subseteq) \stackrel{\gamma}{\longleftrightarrow} (D^{\sharp},\sqsubseteq)$, defined by

$$\alpha: S \longmapsto (\alpha_{\mathcal{S}}(\{\sigma_0 \mid \sigma \in S\}), \dots, \alpha_{\mathcal{S}}(\{\sigma_{n-1} \mid \sigma \in S\}))$$

$$\gamma: S^{\sharp} \longmapsto \{\sigma \in \mathbb{Z}^n \mid \forall i, \ \sigma_i \in \gamma_{\mathcal{S}}(S_i^{\sharp})\}$$

Example

Factorial function:

```
\begin{split} & \text{input}(x_0); \\ & x_1 = 1; \\ & x_2 = 1; \\ & \text{while}(x_0 > 0) \{ \\ & x_1 = x_0 \cdot x_1; \\ & x_0 = x_0 - x_2; \\ \} \end{split}
```

Abstraction of the semantics:

- abstract pre-condition: (\top, \top, \top)
- abstract state before the loop: (+,+,+)
- abstract post-condition (after the loop): $(\top, +, +)$

Computation of the abstract semantics

We search for an abstract semantics $[\![P]\!]^{\sharp}:D^{\sharp}\to D^{\sharp}$ such that:

$$\alpha \circ \llbracket P \rrbracket = \llbracket P \rrbracket^{\sharp} \circ \alpha$$

We observe that:

$$\alpha(S) = (\alpha_{S}(\{\sigma_{0} \mid \sigma \in S\}), \dots, \alpha_{S}(\{\sigma_{n-1} \mid \sigma \in S\}))$$

$$\alpha \circ \llbracket P \rrbracket(S) = (\alpha_{S}(\{\sigma_{0} \mid \sigma \in \llbracket P \rrbracket(S)\}), \dots, \alpha_{S}(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(S)\}))$$

We start with $x_i = n$:

$$\alpha \circ \llbracket \mathbf{x}_{i} = n \rrbracket(S)$$

$$= (\alpha_{S}(\{\sigma_{0} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\})\}), \dots,$$

$$\alpha_{S}(\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\})\}))$$

$$= (\alpha_{S}(\{\sigma_{0} \mid \sigma \in S\}), \dots, \alpha_{S}(\{\sigma_{n-1} \mid \sigma \in S\}))[i \leftarrow \alpha_{S}(\{n\})]$$

$$= \alpha(S)[i \leftarrow \alpha_{S}(\{n\})]$$

$$= \llbracket \mathbf{x}_{i} = n \rrbracket^{\sharp}(\alpha(S))$$
where
$$\llbracket \mathbf{x}_{i} = n \rrbracket^{\sharp}(S^{\sharp}) = S^{\sharp}[i \leftarrow \alpha_{S}(\{n\})]$$

Xavier Rival

Computation of the abstract semantics

Other assignments are treated in a similar manner:

$$\begin{bmatrix}
\mathbf{x}_{i} = \mathbf{x}_{j} + \mathbf{x}_{k} \end{bmatrix}^{\sharp} (S^{\sharp}) = S^{\sharp} [i \leftarrow S_{j}^{\sharp} \oplus^{\sharp} S_{k}^{\sharp}] \\
\mathbf{x}_{i} = \mathbf{x}_{j} - \mathbf{x}_{k} \end{bmatrix} (S^{\sharp}) = S^{\sharp} [i \leftarrow S_{j}^{\sharp} \oplus^{\sharp} S_{k}^{\sharp}] \\
\mathbf{x}_{i} = \mathbf{x}_{j} \cdot \mathbf{x}_{k} \end{bmatrix}^{\sharp} (S^{\sharp}) = S^{\sharp} [i \leftarrow S_{j}^{\sharp} \otimes^{\sharp} S_{k}^{\sharp}] \\
\mathbf{nput}(\mathbf{x}_{i})]^{\sharp} (S^{\sharp}) = S^{\sharp} [i \leftarrow \underline{+}]$$

Proofs are left as exercises

Computation of the abstract semantics

We now consider the case of tests:

```
\begin{split} &\alpha \circ \llbracket \mathbf{if}(\mathbf{x}_{i} > 0) \, P_{0} \text{ else } P_{1} \rrbracket(S) \\ &= \alpha(\llbracket P_{0} \rrbracket(\{\sigma \in S \mid \sigma_{i} > 0\}) \, \cup \, \llbracket P_{1} \rrbracket(\{\sigma \in S \mid \sigma_{i} \leq 0\})) \\ &= \alpha(\llbracket P_{0} \rrbracket(\{\sigma \in S \mid \sigma_{i} > 0\})) \, \sqcup \, \alpha(\llbracket P_{1} \rrbracket(\{\sigma \in S \mid \sigma_{i} \leq 0\})) \\ &= \alpha \text{ preserves least upper bounds} \\ &= \llbracket P_{0} \rrbracket^{\sharp}(\alpha(\{\sigma \in S \mid \sigma_{i} > 0\})) \, \sqcup \, \llbracket P_{1} \rrbracket^{\sharp}(\alpha(\{\sigma \in S \mid \sigma_{i} \leq 0\})) \\ &= \llbracket P_{0} \rrbracket^{\sharp}(\alpha(S) \sqcap \top [i \leftarrow \pm]) \, \sqcup \, \llbracket P_{1} \rrbracket^{\sharp}(\alpha(S)) \\ &= \llbracket \mathbf{if}(\mathbf{x}_{i} > 0) \, P_{0} \, \mathbf{else} \, P_{1} \rrbracket^{\sharp}(\alpha(S)) \end{split} where  \llbracket \mathbf{if}(\mathbf{x}_{i} > 0) \, P_{0} \, \mathbf{else} \, P_{1} \rrbracket^{\sharp}(S^{\sharp}) = \llbracket P_{0} \rrbracket^{\sharp}(S^{\sharp} \sqcap \top [i \leftarrow \pm]) \, \sqcup \, \llbracket P_{1} \rrbracket^{\sharp}(S^{\sharp})
```

In the case of loops:

Proof: exercise

Abstract semantics

Abstract semantics and soundness

We have derived the following definition of $[P]^{\sharp}$:

Furthermore, for all program $P: \alpha \circ \llbracket P \rrbracket = \llbracket P \rrbracket^\sharp \circ \alpha$

An over-approximation of the final states is computed by $[P]^{\sharp}(\top)$.

Example

Factorial function:

```
\begin{split} & \text{input}(x_0); \\ & x_1 = 1; \\ & x_2 = 1; \\ & \text{while}(x_0 > 0) \{ \\ & x_1 = x_0 \cdot x_1; \\ & x_0 = x_0 - x_2; \\ \} \end{split}
```

Abstract state before the loop:

$$(\pm,\pm,\pm)$$

Iterates on the loop:

iterate	0	1	2
x ₀	<u>+</u>	Т	T
x ₁	<u>+</u>	<u>+</u>	<u>+</u>
x_2	<u>+</u>	<u>+</u>	<u>+</u>

Abstract state after the loop: $(\top, \underline{+}, \underline{+})$

Outline

- Abstraction
- 2 Abstract interpretation
- 3 Application of abstract interpretation
- 4 Conclusion

Summary

This lecture:

- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:

- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties

Update on projects...