Visualization Analysis & Design

Defining visualization (vis)

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Why?...

Data Abstraction

- Data Types
- Dataset types
 - -Tables, Networks and Trees, Fields Spatial fields, Grid types
 - -Geometry
 - Other combinations

Attribute types

Categorical, ordinal, quantitative, sequential and cyclic

Hierarchical

Why have a human in the loop?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities pather than replace people with computational decision-making methods.

- don't need vis when fully automatic solution exists and is trusted
- many analysis problems ill-specified
 - don't know exactly what questions to ask in advance
- possibilities
 - -long-term use for end users (e.g. exploratory analysis of scientific data)
 - -presentation of known results
 - -stepping stone to better understanding of requirements before developing models
 - -help developers of automatic solution refine/debug, determine parameters
 - -help end users of automatic solutions verify, build trust

Why use an external representation?

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

external representation: replace cognition with perception

Why have a computer in the loop?

Computer-based risualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

 beyond human patience: scale to large datasets, support interactivity

[Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Barsky, Gardy, Hancock, and Munzner.

Bioinformatics 23(8):1040-1042, 2007.]

Why depend on vision?

Computer-based visualization systems provide visual tepresentations of datasets designed to help people carry out tasks more effectively.

- human visual system is high-bandwidth channel to brain
 - -overview possible due to background processing
 - subjective experience of seeing everything simultaneously
 - significant processing occurs in parallel and pre-attentively
- sound: lower bandwidth and different semantics
 - overview not supported
 - subjective experience of sequential stream
- touch/haptics: impoverished record/replay capacity
 - -only very low-bandwidth communication thus far
- taste, smell: no viable record/replay devices

Why show the data in detail?

- summaries lose information
 - -confirm expected and find unexpected patterns
 - -assess validity of statistical model

Anscombe's Quartet

Identical statistics

x mean	9
x variance	10
y mean	8
y variance	4
x/y correlation	1

Idiom design space

The design space of possible vis idioms is huge, and includes the considerations of both how to create and how to interact with visual representations.

• idiom: distinct approach to creating or manipulating visual

representation

- -how to draw it: **visual encoding** idiom
 - many possibilities for how to create
- -how to manipulate it: interaction idiom
 - even more possibilities
 - -make single idiom dynamic
 - link multiple idioms together through interaction

Why focus on tasks and effectiveness?

Computer-based visualization systems provide visual representations of datasets designed to help people carry ou tasks nor effectively.

- tasks serve as constraint on design (as does data)
 - -idioms do not serve all tasks equally!
 - -challenge: recast tasks from domain-specific vocabulary to abstract forms
- most possibilities ineffective
 - -validation is necessary, but tricky
 - increases chance of finding good solutions if you understand full space of possibilities
- what counts as effective?
 - -novel: enable entirely new kinds of analysis
 - -faster: speed up existing workflows

Resource limitations

Vis designers must take into account three very different kinds of resource limitations: those of computers, of humans, and of displays.

- computational limits
 - -processing time
 - -system memory
- human limits
 - -human attention and memory
- display limits

cnarca

- -pixels are precious resource, the most constrained resource
- information density: ratio of space used to encode info vs unused whitespace
 - tradeoff between clutter and wasting space, find sweet spot between dense and

Analysis: What, why, and how

- what is shown?
 - -data abstraction
- why is the user looking at it?
 - -task abstraction
- how is it shown?
 - -idiom: visual encoding and interaction
- abstract vocabulary avoids domain-specific terms
 - -translation process iterative, tricky
- what-why-how analysis framework as scaffold to think systematically about design space

What? Why? How?

Datasets

Attributes

- Data Types

 - → Items → Attributes
- → Links
- → Positions
- → Grids

Clusters,

Sets, Lists

Items

- → Attribute Types
 - → Categorical

- → Ordered
 - → Ordinal

→ Quantitative

Data and Dataset Types

Dataset Types

→ Tables

→ Networks

→ Fields (Continuous)

- Ordering Direction
 - → Sequential
 - → Diverging

→ Cyclic

- → Multidimensional Table
 - Key 2 the oriental to

→ Trees

→ Geometry (Spatial)

Attributes

- Dataset Availability
 - → Static

→ Dynamic

Dataset types

- Dataset Types
 - → Tables

→ Networks

→ Fields (Continuous)

→ Geometry (Spatial)

→ Multidimensional Table

→ Trees

Dataset and data types

Data and Dataset Types

- Data Types
 - → Items → Attributes → Links → Positions → Grids
- Dataset Availability
 - → Static → Dynamic

 •••••••

Attribute types

- → Attribute Types
 → Categorical
 - + • 4

→ Ordered

→ Ordinal
→ Quantitative

→ ★

- Ordering Direction

Search

{action, target} pairs

Why?

- discover distribution
- compare trends
- locate outliers
- browse topology

All Data

Why?

Attributes

Network Data

→ Paths

Spatial Data

→ Shape

High-level actions: Analyze

- consume
 - -discover vs present
 - classic split
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social
- produce
 - -annotate, record
 - -derive
 - crucial design choice

Actions: Mid-level search, low-level query

- what does user know? ⊕ Search
 - -target, location
- how much of the data matters?
 - -one, some, all

Why: Targets

Trends

→ Outliers

→ Features

- ATTRIBUTES
 - → One
 - Dotsbutton

→ Many

+ Sinnistry

- NETWORK DATA
 - → Topology

Paths

- SPATIAL DATA
 - Shape

How?

Encode

- Arrange
 - → Express
- → Separate

- → Order
- → Align

→ Use

Map

from categorical and ordered attributes

→ Color

Size, Angle, Curvature, ...

→ Shape

Motion Direction, Rate, Frequency, ...

Manipulate

Change

Select

Navigate

Facet

Juxtapose

- Reduce
- Filter

ect

Partition

Aggregate

Superimpose

Embed

Analysis example: Compare idioms

SpaceTree

@Kangaroo @Kaola Amphibians Marsupial @Opussum Birds Invertebrates @Platypus Vertebrates Fishes @Wombat Bats Mammals Carnivores Reptiles Herbivores insectivores Marine 🚞

TreeJuxtaposer

[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57-64.] [TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453-462, 2003.1

What?

Tree

Why?

Primates 📟

Shrews

Actions

SpaceTree

How?

TreeJuxtaposer

→ Encode → Navigate → Select → Arrange

→ Path between two nodes

Chained sequences

- output of one is input to next
 - -express dependencies
 - -separate means from ends

Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

[Using Strahler numbers for real time visual exploration of huge graphs. Auber. Proc. Intl. Conf. Computer Vision and Graphics, pp. 56–69, 2002.]

Visual encoding

• analyze idiom structure

Definitions: Marks and channels

- marks
 - –geometric primitives
- channels
 - -control appearance of marks
 - –can redundantly code with multiple channels
- interactions
 - -point marks only convey position; no area constraints
 - can be size and shape coded
 - –line marks convey position and length
 - can only be size coded in 1D (width)
 - -area marks fully constrained

Visual encoding

- analyze idiom structure
 - -as combination of marks and channels

1: vertical position

2: vertical position horizontal position

3:
vertical position
horizontal position
color hue

4:
vertical position
horizontal position
color hue
size (area)

mark: line

mark: point

mark: point

mark: point

Channels: Expressiveness types and effectiveness rankings

Effectiveness and expressiveness principles

- effectiveness principle
 - -encode most important attributes with highest ranked channels
- expressiveness principle
 - -match channel and data characteristics

[Automating the Design of Graphical Presentations of Relational Information. Mackinlay. ACM Trans. on Graphics (TOG) 5:2 (1986), 110–141.]

- rankings: where do they come from?
 - -accuracy
 - -discriminability
 - -separability
 - -popou

Accuracy: Fundamental Theory

Steven's Psychophysical Power Law: S= I*

Accuracy: Vis experiments

after Michael McGuffin course slides, http://profs.etsmtl.ca/mmcguffin/

Cleveland & McGill's Results Positions TS. T3 1.0 1.5 2.0 2.5 3.0 Log Error T4 Crowdsourced Results T5 T2 Angles T6 Circular T7 areas T8 Rectangular areas (alligned or in a T9 treemap) T9

1.5

2.0

Log Error

2.5

3.0

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010. p. 203–212.1

Discriminability: How many usable steps?

• linewidth: only a few

Separability vs. Integrality

+ Hue (Color)

Fully separable

2 groups each

Size

+ Hue (Color)

Some interference

2 groups each

Width

+ Height

Some/significant interference

3 groups total: integral area

Red

+ Green

Major interference

4 groups total: integral hue

Popout

- find the red dot
 - -how long does it take?
- parallel processing on many individual channels
 - -speed independent of distractor count
 - speed depends on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - -speed depends on number of distractors

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Grouping

- containment
- connection

- proximity
 - -same spatial region
- similarity
 - –same values as other categorical channels

Marks as Links

Containment

Connection

Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Relative vs. absolute judgements

- perceptual system mostly operates with relative judgements, not absolute
 - -that's why accuracy increases with common frame/scale and alignment
 - -Weber's Law: ratio of increment to background is constant
 - filled rectangles differ in length by 1:9, difficult judgement

common scale

after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association

References

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - -Chap 1: What's Vis, and Why Do It?
- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 2: What: Data Abstraction
 - Chap 3: Why: Task Abstraction
- A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis) 19:12 (2013), 2376–2385.
- Low-Level Components of Analytic Activity in Information Visualization. Amar, Eagan, and Stasko. Proc. IEEE InfoVis 2005, p 111–117.

References

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 5: Marks and Channels
- On the Theory of Scales of Measurement. Stevens. Science 103:2684 (1946), 677–680.
- Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects. Stevens. Wiley, 1975.
- Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.
- Perception in Vision. Healey. http://www.csc.ncsu.edu/faculty/healey/PP
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan

References

- A taxonomy of tools that support the fluent and flexible use of visualizations. Heer and Shneiderman. Communications of the ACM 55:4 (2012), 45–54.
- Rethinking Visualization: A High-Level Taxonomy. Tory and Möller. Proc. IEEE InfoVis 2004, p 151–158.
- Visualization of Time-Oriented Data. Aigner, Miksch, Schumann, and Tominski. Springer, 2011.