EXERCISES on REORDER BUFFER (V2022)

ACA2020_EXAM_PART2_25June2020

Question 1 (format open text)

Let's consider the following code:

LOOP: LD \$F0, 0 (\$R1)

MULTD \$F4, \$F0, \$F2

SD \$F4, 0 (\$R1)

SUBI \$R1, \$R1, 8

BNEZ \$R1, LOOP

executed by the Speculative Tomasulo architecture with:

2 load buffers (Load1, Load2),

2 multiply RS (Mult1, Mult2),

2 integer RS (Int1, Int2)

and 8-entry ReOrder Buffer.

Let's consider the following situation when the ROB is FULL:

ROB#	Instruction	Dest.	Ready	SPECUL.	
ROB0	LD \$F0, 0 (\$R1)	\$F0	No (in exec.	No	HEAD
			Dcache miss)		
ROB1	MULTD \$F4, \$F0, \$F2	\$F4	No (issued)	No	
ROB2	SD \$F4, 0 (\$R1)	MEM	No (issued)	No	
ROB3	SUBI \$R1, \$R1, 8	\$R1	No (in exec.)	No	
ROB4	BNEZ \$R1, LOOP (pred. taken)		No (issued	No	
ROB5	LD \$F0, 0 (\$R1) (2 [^] iter.)	\$F0	No (issued)	Yes	
ROB6	MULTD \$F4, \$F0, \$F2 (2^ iter.)	\$F4	No(issued)	Yes	
ROB7	SD \$F4, 0 (\$R1) (2 ^{iter.})	MEM	No (issued)	Yes	

Rename Table:

\$F0	ROB5
\$F2	
\$F4	ROB6

Let's explain what happens in the ROB and in the Rename Table if the branch (allocated in ROB4) is mispredicted.

Open text answer: (max 50 words)

Solution:

Let's assume the value of \$R1 has been initialized at 0 and \$F2 at 20, this is the situation when the ROB is full:

Reservation Stations:

Load1	LD \$F0, 0 (\$R1) 1 st iter.	0	0	ROB0
Load2	LD \$F0, 0 (\$R1) 2nd iter.	0	ROB3	ROB5
Mult1	MULTD \$F4, \$F0, \$F2 1 st iter.	ROB0	20	ROB1
Mult2	MULTD \$F4, \$F0, \$F2 2 nd iter.	ROB5	20	ROB6
Int1	SUBI \$R1, \$R1, 8	0	8	ROB3
Int2	BNEZ \$R1, LOOP	ROB3	0	ROB4

Rename Table:

\$F0	ROB5
\$F2	
\$F4	ROB6

When the 1^h branch is mispredicted, the entries ROB5, ROB6 and ROB7 must be flushed.

Reservation Stations:

Load1	LD \$F0, 0 (\$R1) 1 st iter.	0	0	ROB0	
Load2					
Mult1	MULTD \$F4, \$F0, \$F2 1 st iter.	ROB0	20	ROB1	
Mult2					
Int1	SUBI \$R1, \$R1, 8.	0	8	ROB3	
Int2	BNEZ \$R1, LOOP	ROB3	0	ROB4	

Therefore, the Rename Table is updated as follow: \$F0 points to ROB0 and \$F4 points to ROB1:

Rename Table:

\$F0	ROB5-ROB0
\$F2	
\$F4	ROB6 ROB1

See also L07: Reorder Buffer & Speculation

ACA2020_EXAM_PART1_16July2020

Question 2 (format Multiple Choice – Single answer) ReOrder Buffer

Let's consider the following code:

LOOP: LD \$F0, 0 (\$R0)

MULTD \$F4, \$F0, \$F2

SD \$F4, 0 (\$R0) SUBI \$R0, \$R0, 8 BNEZ \$R0, LOOP

executed by the **Speculative Tomasulo** architecture with 2 load buffers (Load1, Load2), 2 multiply RS (Mult1, Mult2), 2 integer RS (Int1, Int2) and 6-entry ROB which is FULL in the following situation:

ROB#	Instruction	Dest.	Ready	SPECUL.	
ROB0	MULTD \$F4, \$F0, \$F2	\$F4	No (issued)	Yes	
ROB1	MULTD \$F4, \$F0, \$F2	\$F4	No (in exec.)	No	HEAD
ROB2	SD \$F4, 0 (\$R0)	MEM	No (issued)	No	
ROB3	SUBI \$R0, \$R0, 8	\$R0	No (issued)	No	
ROB4	BNEZ \$R0, LOOP (pred. taken)		No (issued)	No	
ROB5	LD \$F0, 0 (\$R0)	\$F0	No (issued)	Yes	

In the Rename Table, what are the pointer values used for \$F0 and \$F4? (SINGLE ANSWER)

Answer 1: ROB5 for \$F0; ROB0 for \$F4 (TRUE)

Answer 2: ROB5 for \$F0; ROB1 for \$F4 Answer 3: ROB5 for \$F0; ROB2 for \$F4

Feedback:

Rename Table:

\$F0	ROB5
\$F2	
\$F4	ROB0

In the Rename Table, \$F0 points to ROB5 because the second LD has been issued speculatively while \$F4 points to ROB0 because the second MULTD has been issued speculatively. See also L07: Reorder Buffer & Speculation

ACA2020_EXAM_PART1_31Aug2020

Question 5 (format Multiple Choice – Single answer)

Let's consider the following code:

IO: LD \$F6, VECTA (\$R6)
I1 ADDD \$F4, \$F0, \$F2
I2 SUBD \$F8, \$F4, \$F6
I3 MULD \$F4, \$F4, \$F8
I4 SD \$F4, VECTA (\$R6)

LD \$F6, VECTB (\$R6)

15:

executed by the **Speculative Tomasulo** architecture with 2 load buffers (Load1, Load2), 2 MUL FP RS (Mult1, Mult2), 2 ADD FP RS (ADD1, ADD2) and 6-entry ROB which is FULL in the following situation:

ROB#	Instruction	Dest.	Ready	SPECUL.	
ROB0	I5: LD \$F6, VECTB (\$R6)	\$F6	No (issued)	No	
ROB1	I0: LD \$F6, VECTA (\$R6)	\$F6	No (in exec.)	No	HEAD
ROB2	I1: ADDD \$F4, \$F0, \$F2	\$F4	No (issued)	No	
ROB3	I2: SUBD \$F8, \$F4, \$F6	\$F8	No (issued)	No	
ROB4	I3: MULD \$F4, \$F4, \$F8	\$F4	No (issued)	No	
ROB5	I4: SD \$F4, VECTA (\$R6)	MEM	No (issued)	No	

In the Rename Table, what are the pointers used for \$F6 and \$F4? (SINGLE ANSWER)

Answer 1: ROB0 for \$F6; ROB4 for \$F4 (TRUE)

Answer 2: ROB1 for \$F6; ROB2 for \$F4 Answer 3: ROB0 for \$F6; ROB5 for \$F4 Answer 4: ROB1 for \$F6; ROB5 for \$F4

Feedback:

Rename Table:

\$F0	
\$F2	
\$F4	ROB4
\$F6	ROB0
\$F8	ROB3

In the Rename Table, \$F6 points to ROB0 because the second LD has been issued by solving the WAW, while \$F4 points to ROB4 because the MULTD has been issued by solving the WAW. See also L07: Reorder Buffer & Speculation

ACA2020_EXAM_PART2_11Jan2021

Question 1 (format Multiple Choice – Single answer)

Let's consider the following code:

I0: LD \$F6, VECTA (\$R1)
I1 SUBD \$F6, \$F4, \$F6
I2 SD \$F6, VECTA (\$R1)
I3 LD \$F8, VECTB (\$R1)
I4 SUBD \$F8, \$F4, \$F8
I5 SD \$F8, VECTB (\$R1)

executed by the **Speculative Tomasulo** architecture with 2 load buffers (Load1, Load2), 2 FP RS (FP1, FP2) and 6-entry ROB which is FULL in the following situation:

ROB#	Instruction	Dest.	Ready	SPECUL.	
	I0: LD \$F6, VECTA (\$R1)	\$F6	No (in exec.)	No	HEAD
ROB1	I1: SUBD \$F6, \$F4, \$F6	\$F6	No (issued)	No	
ROB2	I2: SD \$F6, VECTA (\$R1)	MEM	No (issued)	No	
ROB3	I3: LD \$F8, VECTB (\$R1)	\$F8	No (issued)	No	
ROB4	I4: SUBD \$F8, \$F4, \$F8	\$F8	No (issued)	No	
ROB5	I5: SD \$F8, VECTB (\$R1)	MEM	No (issued)	No	

In the Rename Table, what are the pointers used for \$F6 and \$F8? (SINGLE ANSWER)

Answer 1: ROB1 for \$F6; ROB4 for \$F8 (TRUE)

Answer 2: ROB0 for \$F6; ROB3 for \$F8 **Answer 3:** ROB2 for \$F6; ROB5 for \$F8

Feedback:

Rename Table:

\$F0	
\$F2	
\$F4	
\$F6	ROB1
\$F8	ROB4

In the Rename Table, \$F6 points to ROB1 because I1 has been issued by solving the WAW with I0; \$F8 points to ROB4 because I4 has been issued by solving the WAW with I3. See also L07: Reorder Buffer & Speculation

ACA2020_EXAM_PART2_8Feb2021

Question 1 (format Multiple Choice – Single answer)

Let's consider the following code:

I0: LD \$F6, VECTA (\$R1)

I1 LD \$F4, VECTB (\$R1)

12 ADDD \$F6, \$F6, \$F8

I3 SUBD \$F4, \$F4, \$F8

I4 SD \$F6, VECTA (\$R1)

I5 SD \$F4, VECTB (\$R1)

executed by the **Speculative Tomasulo** architecture with 2 load buffers (Load1, Load2), 2 FP RS (FP1, FP2) and 6-entry ROB which is FULL in the following situation:

ROB#	Instruction	Dest.	Ready	SPECUL.	
ROB0	I0: LD \$F6, VECTA (\$R1)	\$F6	No (in exec.)	No	HEAD
ROB1	I1: LD \$F4, VECTB (\$R1)	\$F4	No (issued)	No	
ROB2	I2: ADDD \$F6, \$F6, \$F8	\$F6	No (issued)	No	
ROB3	I3: SUBD \$F4, \$F4, \$F8	\$F4	No (issued)	No	
ROB4	I4: SD \$F6, VECTA (\$R1)	MEM	No (issued)	No	
ROB5	I5: SD \$F4, VECTB (\$R1)	MEM	No (issued)	No	

In the Rename Table, what are the pointers used for \$F4 and \$F6? (SINGLE ANSWER)

Answer 1: ROB3 for \$F4; ROB2 for \$F6 (TRUE)

Answer 2: ROB1 for \$F4; ROB0 for \$F6 Answer 3: ROB5 for \$F4; ROB4 for \$F6

Feedback:

Rename Table:

\$F0	
\$F2	
\$F4	ROB3
\$F6	ROB2
\$F8	

In the Rename Table, \$F4 points to ROB3 because I3 has been issued by solving the WAW with I1; \$F6 points to ROB2 because I2 has been issued by solving the WAW with I0. See also L07: Reorder Buffer & Speculation

ACA2020_EXE_SESSION_03May2021

Question ROB (format OPEN TEXT)

Let's consider the following code:

I0: LOOP: LD \$F6, VECTA (\$R1)
I1: SUBD \$F6, \$F4, \$F6
I2: SD \$F6, VECTA (\$R1)
I3: SUBI \$R1, \$R1, 8
I4: BNEZ \$R1, LOOP

executed by the **Speculative Tomasulo** architecture with 2 load buffers (Load1, Load2), 2 FP RS (FP1, FP2), 2 integer RS (Int1, Int2) and 6-entry ROB.

Let's consider this starting situation:

ROB#	Instruction	Dest.	Ready	SPECUL.	
ROB0					
ROB1	I1: SUBD \$F6, \$F4, \$F6	\$F6	No (In exec.)	No	HEAD
ROB2	I2: SD \$F6, VECTA (\$R1)	MEM	No (Issued)	No	
ROB3					TAIL
ROB4					
ROB5					

Rename Table:

\$F0	
\$F2	
\$F4	
\$F6	ROB1
\$F8	

Please complete the ROB entries and the RENAME TABLE after I1: SUBD has been committed, while I2: SD is in execution and the next instructions have been issued until the ROB is FULL;

Feedback:

ROB#	Instruction	Dest.	Ready	SPECUL.	
ROB0	I1: SUBD \$F6, \$F4, \$F6	\$F6	No (Issued)	Yes	
ROB1	I2: SD \$F6, VECTA (\$R1)	MEM	No (Issued)	Yes	
ROB2	I2: SD \$F6, VECTA (\$R1)	MEM	No (In exec.)	No	HEAD
ROB3	I3: SUBI \$R1, \$R1, 8	\$R1	No (Issued)	No	
ROB4	I4: BNEZ \$R1, LOOP (pred. taken)		No (Issued)	No	
ROB5	I0: LD \$F6, VECTA (\$R1)	\$F6	No (Issued)	Yes	

Rename Table:

\$F0	
\$F2	
\$F4	
\$F6	ROB1 ROB5 ROB0
\$F8	

In the Rename Table, \$F6 points to ROB0 because I1 at the 2nd iteration has been issued by solving the WAW with I0 at the 2nd iteration issued in ROB5. See also L07: Reorder Buffer & Speculation

ACA2021_EXAM_PART2_10Jan2022

Question 3 (format open text MAX 15 ROWS)

Let's consider the following code:

I0: LD.D \$FP0, 0(\$R1)I1: ADDI.D \$FP0, \$FP0, 4I2: SD.D \$FP0, 4(\$R1)

IF: BEQ \$R1, \$R2, ELSE /* branch predicted as NOT TAKEN */

THEN: LD.D \$FP6, 8(\$R1) T1: SD.D \$FP6, 8(\$R6)

T2: J EXIT

ELSE: LD.D \$FP2, 8(\$R1)

E1: ADD.D \$FP2, \$FP2, \$FP0 E2: MUL.D \$FP4, \$FP2, \$FP2 E3: SD.D \$FP2, 12(\$R1)

EXIT: LD.D \$FP0, 4(\$R5)

executed by the **Speculative Tomasulo** architecture with 5 load buffers (Load0, Load1, Load2, Load3, Load4), 2 FP RS (FPU1, FPU2), 2 integer RS (Int1, Int2).

Assuming the first LOAD instruction I0 is in execution to manage a long cache data cache miss until the ROB becomes **FULL**.

Please complete the 8-entry ROB table and the Rename Table:

ROB Table:

ROB#	Instruction	Dest.	Ready	SPECUL.	HEAD
ROB0	I0: LD.D \$FP0, 0(\$R1)	\$FP0	No (in exec)	No	Yes
ROB1	I1: ADDI.D \$FP0, \$FP0, 4	\$FP0	No (issued)	No	No
ROB2					
ROB3					
ROB4					
ROB5					
ROB6					
ROB7					

Rename Table:

\$FP0	ROB0-ROB1
\$FP2	
\$FP4	
\$FP6	

Open text answer (please copy/paste the two tables and complete them) 2 points

Feedback:

ROB Table:

ROB#	Instruction	Dest.	Ready	SPECUL	HEA
					D
ROB0	I0: LD.D \$FP0, 0(\$R1)	\$FP0	No (in exec)	No	Yes
ROB1	I1: ADDI.D \$FP0, \$FP0, 4	\$FP0	No (issued)	No	No
ROB2	I2: SD.D \$FP0, 4(\$R1)	MEM	No (issued)	No	No
ROB3	IF: BEQ \$R1, \$R2, ELSE	None	No (issued)	No	No
ROB4	THEN: LD.D \$FP6, 8(\$R1)	\$FP6	No (issued)	Yes	No
ROB5	T1: SD.D \$FP6, 8(\$R6)	MEM	No (issued)	Yes	No
ROB6	T2: J EXIT	None	No (issued)	Yes	No
ROB7	EXIT: LD.D \$FP0, 4(\$R5)	\$FP0	No (issued)	Yes	No

Rename Table:

\$FP0	\$FP0 ROB1 ROB7	
\$FP2	None	
\$FP4	None	
\$FP6	ROB4	

ACA2021_EXAM_PART2_25Aug2021

Question 6 (format open text)

Let's consider the following code:

I0: LD.D \$FP0, 0(\$R1)I1: ADDI.D \$FP0, \$FP0, 4I2: SD.D \$FP0, 4(\$R1)

IF: BEQ \$R1, \$R2, ELSE /* branch predicted as TAKEN */

THEN: LD.D \$FP6, 8(\$R1)

T1: ADD.D \$FP6, \$FP6, \$FP0 T2: MUL.D \$FP6, \$FP6, \$FP0 T3: SD.D \$FP6, 12(\$R1)

ELSE: LD.D \$FP2, 8(\$R1)

E1: ADD.D \$FP2, \$FP2, \$FP0 E2: MUL.D \$FP4, \$FP2, \$FP2 E3: SD.D \$FP2, 12(\$R1)

executed by the **Speculative Tomasulo** architecture with 2 load buffers (Load1, Load2), 4 FP RS (FPU1, FPU2, FP3, FP4), 2 integer RS (Int1, Int2).

Please complete the 8-entry ROB table and the Rename Table up to when the ROB becomes FULL:

ROB Table:

ROB#	Instruction	Dest.	Ready	SPECUL.	HEAD
ROB0	I0: LD.D \$FP0, 0(\$R1)	\$FP0	No (in exec)	No	Yes
ROB1	I1: ADDI.D \$FP0, \$FP0, 4	\$FP0	No (issued)	No	No
ROB2					
ROB3					
ROB4					
ROB5					
ROB6					
ROB7					

Rename Table:

\$F0	ROB0 ROB1
\$F2	
\$F4	
\$F6	

Open text answer (please copy/paste the two tables and complete them) 2 points

Feedback:

ROB Table:

ROB#	Instruction	Dest.	Ready	SPECUL	HEA
				•	D
ROB0	I0: LD.D \$FP0, 0(\$R1)	\$FP0	No (in exec)	No	Yes
ROB1	I1: ADDI.D \$FP0, \$FP0, 4	\$FP0	No (issued)	No	No
ROB2	I2: SD.D \$FP0, 4(\$R1)	MEM	No (issued)	No	No
ROB3	IF: BEQ \$R1, \$R2, ELSE	None	No (issued)	No	No
ROB4	ELSE: LD.D \$FP2, 8(\$R1)	\$FP2	No (issued)	Yes	No
ROB5	E1: ADD.D \$FP2, \$FP2, \$FP0	\$FP2	No (issued)	Yes	No
ROB6	E2: MUL.D \$FP4, \$FP2, \$FP2	\$FP4	No (issued)	Yes	No
ROB7	E3: SD.D \$FP2, 12(\$R1)	MEM	No (issued)	Yes	No

Rename Table:

\$F0	ROB0 ROB1
\$F2	ROB4 ROB5
\$F4	ROB6
\$F6	None