数据挖掘 Data Mining

模型的评价

数据挖掘 Data Mining

模型的评价

分类问题 Recap

■ 数据预处理→模型训练→模型调整→对新数据分类→模型评价

→新数据预测

内容提纲

1准确率的局限

2不平衡分类

3过拟合和欠拟合

1准确率的局限

1.1准确率评价

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLAGO	Class=No	c (FP)	d (TN)

准确率 (Accuracy) =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

- 考虑一个二分类问题
 - 0类的实例数 = 9990
 - 1类的实例数 = 10
- 如果模型预测每个实例为0类,则准确率为[填空1]
 - 准确率是误导
 - 模型不能正确预测任何1类实例
 - 而在疾病检测中,1类更需要被关心

正常使用填空题需3.0以上版本雨课堂

1.2其它度量

混淆矩阵

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLAGO	Class=No	c (FP)	d (TN)

真阳历TP, 真阳性(True positive rate, TPR) 或灵敏度(sensitivity)、查全率(recall)

$$TPR = TP/(TP + FN)$$

- 真阴历TN, 真阴性 (True negative rate, TNR) 或特指度 (specificity)

 TNR = TN/(TN+FP)
- 假阳历FP,假阳性(False positive rate, FPR)或 误报率 FPR = FP/(TN+FP)
- 假阴历FN,假阴性(False negative rate, FNR)漏报率(与查全率此消彼长)
 FNR = FN/(TP + FN)

TPR是指

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
OLAGO	Class=No	c (FP)	d (TN)

- A 真阳性
- ₿ 灵敏度
- c 漏报率
- 查全率 (recall)

TNR是指

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
OLAGO	Class=No	c (FP)	d (TN)

- A 真阴性
- B 灵敏度
- ちゅう 特指度
- □ 查全率 (recall)

FPR是指

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLACO	Class=No	c (FP)	d (TN)

A 假阴性

B 假阳性

□ 漏报率

□ 误报率

FNR是指

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLAGO	Class=No	c (FP)	d (TN)

- 4 假阴性
- B 假阳性
- □ 漏报率
- □ 误报率

1.2其它度量(续)

- 两个广泛使用的度量
 - 召回率(查全率, recall)和精确率(查准率, precision)

$$recall = \frac{TP}{TP + FN}$$

$$precision = \frac{TP}{TP + FP}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

- 假设我们手上有60个正样本,40个负样本,我们要找出所有的正样本, 系统查找出50个,其中只有40个是真正的正样本,计算上述各指标。
 - TP: 将正类预测为正类数: [填空1]
 - FN: 将正类预测为负类数:[填空2]
 - FP: 将负类预测为正类数:[填空3]
 - TN: 将负类预测为负类数: [填空4]
 - 准确率(accuracy) = 预测对的/所有 = (TP+TN)/(TP+FN+FP+TN) = [填空5
 - 精确率(precision)=TP/(TP+FP)=[填空6]
 - 召回率(recall)=TP/(TP+FN)=[填空7]

正常使用填空题需3.0以上版本雨课堂

1.2其它度量(续)

- 假设我们手上有60个正样本,40个负样本,我们要找出所有的正样本, 系统查找出50个,其中只有40个是真正的正样本,计算上述各指标。
 - TP: 将正类预测为正类数 40
 - FN: 将正类预测为负类数 20 (60-40, 剩余没正确分类的正样本)
 - FP: 将负类预测为正类数 10
 - TN: 将负类预测为负类数 30
 - 准确率(accuracy) = 预测对的/所有 = (TP+TN)/(TP+FN+FP+TN) = 70%
 - 精确率(precision) = TP/(TP+FP) = 80%
 - 召回率(recall) = TP/(TP+FN) = 2/3

✓1.3查全率vs. 查准率

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLAGG	Class=No	c (FP)	d (TN)

- 下面是两个场景:
 - 1. **地震的预测**,对于地震的预测,我们希望的是recall非常高,也就 是说每次地震我们都希望预测出来。这个时候我们可以牺牲 precision。情愿发出1000次警报,把10次地震都预测正确了

■ 2. 嫌疑人定罪,基于不错怪一个好人的原则(无罪推定原则, presumption of innocence),对于嫌疑人的定罪我们希望是非常准确 的(precision高),及时有时候放过了一些罪犯(recall低),但也 是值得的。

$$F_1 = \frac{2rp}{r+p} = \frac{2 \times TP}{2 \times TP + FP + FN}$$

正常使用填空题需3.0以上版本雨课堂

- 前面分类器性能评价的局限性:分类器预测结果为离散的1 或者0
- 朴素贝叶斯输出? p(x|y)=?
- 其他分类器输出?

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

- 前面分类器性能评价的局限性:分类器预测结果为离散的1 或者0
- 朴素贝叶斯输出? p(x|y)=?
- 其他分类器输出?

输出是一个连续的概率值,且同我们仅仅关系"1"类别的概率

A\P	С	¬C	
С	TP	FN	P
¬C	FP	TN	N
	P'	N'	All

- 前面分类器性能评价的局限性:分类器预测结果为离散的1
 - 或者0
- 朴素贝叶斯输出? p(x|y)=?
- 其他分类器输出?

输出是一个连续的概率值,且同我们仅仅关系"1"类别的概率

A\P	С	¬C	
С	TP	FN	P
¬C	FP	TN	N
	P'	N'	All

Instance	P(+ A)
1	0.95
2	0.93
3	0.87
4	0.85
5	0.85
6	0.85
7	0.76
8	0.53
9	0.43
10	0.25

前面分类器性能评价的局限性:分类器预测结果为离散的1

或者0

■ 朴素贝叶斯输出? p(x|y)=?

■ 其他分类器输出

■ 解决方法:连续的值离散化

■ 导致的问题: 离散阈值难以确定

输出是一个连续的概率值,且同我们仅仅关系"1"类别的概率

A\P	С	¬C		
С	TP	FN	P	
¬C	FP	TN	N	
	P'	N'	All	

Instance	P(+ A)
1	0.95
2	0.93
3	0.87
4	0.85
5	0.85
6	0.85
7	0.76
8	0.53
9	0.43
10	0.25

- 接收者操作特征曲线(Receiver Operating Characteristic Curve, 或者叫ROC曲线)是一种坐标图式的分析工具,用 干
 - (1) 选择最佳的分类模型、舍弃次佳的模型。
 - (2) 在同一模型中设定最佳阈值。
- 给定一个二元分类模型和它的阈值,就能从所有样本的(阳 性 / 阴性)真实值和预测值计算出一个 (X=FPR, Y=TPR) 坐 标点。

A\P	С	¬C		
С	TP	FN	Р	
¬C	FP	TN	N	
	P'	N'	All	

$$TPR = TP/(TP + FN)$$

$$FPR = FP/(TN + FP)$$

$$TNR = TN/(TN + FP)$$

$$FNR = FN/(TP + FN)$$

单选题 1分

(FPR, TPR):

- (0,0): 任何分类都是阴性
- (1,1):任何分类都是【选择题】
- (0,1): 理想分类

$$TPR = TP/(TP + FN)$$

- 对角线: FPR = FP/(TN+FP)
 - 随机猜测结果
 - 对角线以下:
 - 预测结果与真实结果相反

A\P	С	¬C		
С	TP	FN	Р	
¬C	FP	TN	N	
	P'	N'	All	

A 阴性

1 阳性

提交

- ROC曲线下方的区域称为 AUC, Area Under the ROC curve
 - Ideal:
 - Area = [填空1]
 - Random guess:
 - Area =[填空2]

A\P	С	¬C		
С	TP	FN	Р	
¬C	FP	TN	N	
	P'	N'	All	

$$TPR = TP/(TP + FN)$$

正常使用填空题需3.0以上版本雨课堂FPR = FP/(TN + FP)

1.4如何构建ROC曲线

- 首先利用分类器计算每个数据记录的后 验概率P(+|A)
- 将这些数据记录对应的P(+|A)从高到低排列(如右表):
 - 由低到高,对于每个P(+|A)值 (threshold,阈值),把对应的记录 以及那些值高于或等于阈值指派为 阳性类positive,把那些值低于阈值指 派为阴性类negative
 - 统计 TP, FP, TN, FN
 - 计算TPR = TP/(TP+FN)和 FPR = FP/(FP+TN)
- · 绘出诸点(FPR, TPR)并连接它们

Instance	P(+ A)	True Class		
1	0.95	+		
2	0.93	+		
3	0.87	_		
4	4 0.85 -			
5	0.85 -			
6	0.85	+		
7	0.76	-		
8	0.53	+		
9	0.43	-		
10	0.25	+		

	Class	+		+		*	*	+	•	+	+	
Thresholo	d>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
5: 5 16	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	A	0
-	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	D	0

A= [填空1] B= [填空2]

nstance	P(+ A)	True Class		
1	0.95	+		
2	0.93	+		
3	0.87	-		
4	4 0.85			
5	0.85 -			
6	0.85 +			
7	0.76	=		
8	0.53	+		
9	0.43	-		
10	0.25	+		

	Class	+		+	- ·	*		+	-	+	+	
Threshold	d >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
a 6 8	TPR	1	0.8	8.0	0.6	0.6	0.6	0.6	0.4	Α	0.2	0
→	FPR	1	1	8.0	0.8	0.6	0.4	0.2	0.2	D	0	0
						II.						

A= [填空1] B= [填空2]

Instance	P(+ A)	True Class	
1	0.95	+	
2	0.93	+	
3	0.87	-	
4	0.85		
5	0.85	=	
6	0.85	+	
7	0.76	=	
8	0.53	+	
9	9 0.43		
10	0.25	+	

	Class	+		+	n - 1	* 1		+	•	+	+	
Threshold	d>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
a - 6 00	TPR	1	0.8	8.0	0.6	0.6	0.6	0.6	Α	0.4	0.2	0
→	FPR	1	1	8.0	0.8	0.6	0.4	0.2	D	0	0	0
								-				

A= [填空1] B= [填空2]

Instance	P(+ A)	True Class		
1	0.95	+		
2	0.93	+		
3	0.87	-		
4	0.85 -			
5	0.85	=		
6	0.85	+		
7	7 0.76 -			
8	8 0.53			
9	9 0.43 -			
10	0.25	+		

作答

1.4如何构建ROC曲线

ŝ	Class	+		+	-	-	0-0	+	-	+	+	
Threshold	d>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
a - 5 6	TPR	1	0.8	8.0	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
 - :	FPR	1	1	8.0	0.8	0.6	0.4	0.2	0.2	0	0	0
												_

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	1										7
0.7 0.6 0.5 0.4 0.3 0.2 0.1	0.9										-
0.6 0.5 0.4 0.3 0.2 0.1	0.8								X		_
0.5 0.4 0.3 0.2 0.1	0.7							/			136
0.4 0.3 0.2 0.1	0.6				•		/		4		G
0.3 0.2 0.1	0.5					/					83
0.1	0.4				/						889
0.1	0.3			/				\rightarrow	ΑU	C	88
	0.2		/								y.
	0.1	_									8
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0								-		

Instance	P(+ A)	True Class				
1	0.95	+				
2	0.93	+				
3	0.87	-				
4	0.85					
5	0.85	=				
6	0.85	+				
7	0.76	=				
8	0.53	+				
9	0.43	=				
10	0.25	+				

2不平滑分类

2 Imbalanced Data Mining

■ 数据不平衡问题

29

2020年5月6日星期三 数据挖掘导论

基于抽样的方法

- 考虑一个包含100个正样本和1000个负样本的数据集
- Oversampling 过采样
 - 复制正样本,直到训练集中正样本和负样本一样多
 - 可能导致模型过分拟合,因为一些噪声样本也可能被复制多次

■ Undersampling欠采样

- 随机抽取100个负样本,与所有的正样本一起形成训练集
- 问题: 一些有用的负样本可能没有选出来用于训练, 因此导致一个不太优的模型
- 解决问题的方法: 多次执行不充分抽样,并归纳类似于组合学习方法的多分类器
- Oversampling + Undersampling

- 基于抽样的方法
 - 考虑一个包含100个正样本和1000个负样本的数据集
 - Oversampling 过采样
 - 复制正样本,直到训练集中正样本和负样本一样多
 - 可能导致模型过分拟合,因为一些噪声样本也可能被复制多次

噪声样本也可能 被复制多次

- 基于抽样的方法
 - 考虑一个包含100个正样本和1000个负样本的数据集
 - Oversampling 过采样
 - Undersampling欠采样
 - 随机抽取100个负样本,与所有的正样本一起形成训练集
 - 问题: 一些有用的负样本可能没有选出来用于训练, 因此导致一个不太优的模型
 - 解决问题的方法:多次执行不充分抽样,并归纳类似于组合学习方法的多分类器

有用的负样本可能 没有选出来用于训 练

基于抽样的方法

- 考虑一个包含100个正样本和1000个负样本的数据集
- Oversampling 过采样
 - 复制正样本,直到训练集中正样本和负样本一样多
 - 可能导致模型过分拟合,因为一些噪声样本也可能被复制多次

■ Undersampling欠采样

- 随机抽取100个负样本,与所有的正样本一起形成训练集
- 问题: 一些有用的负样本可能没有选出来用于训练, 因此导致一个不太优的模型
- 解决问题的方法: 多次执行不充分抽样,并归纳类似于组合学习方法的多分类器
- Oversampling + Undersampling

2.2两阶段学习

- 两阶段学习: PN-Rules
 - 是基于规则的分类
 - 学习分两个阶段,每个阶段学习一组规则

- 训练
 - 阶段I: 学习一组规则,尽可能覆盖正类(少的那一类)
 - 阶段II: 使用阶段I覆盖的正类和负类样本+部分其它负类样本,学习一组规则

2.2两阶段学习(续)

- 分类
 - 用第一组规则对x分类,如果分到负类,则x属于负类
 - 否则,用第二组规则确定x所属的类
- R. Agarwal, and M. V. Joshi. PNrule: A New Framework for Learning Classifier Models in Data Mining (A Case-Study in Network Intrusion Detection). In Proc. of the First SIAM Conference on Data Mining. Chicago, USA, April 2001

Rakesh Agrawal

Computer scientist

Rakesh Agrawal is a computer scientist who until recently was a Technical Fellow at the Microsoft Search Labs. Wikipedia

Education: Indian Institute of Technology Roorkee

Books: 23 European Symposium on Computer Aided Process Engineering: GWh Level Renewable Energy Storage and Supply Using Liquid CO2, MORE

Awards: SIGMOD Edgar F. Codd Innovations Notable student: Ramakrishnan Srikant

3过拟合和欠拟合

3.1模型过分拟合和拟合不足

- 分类模型的误差大致分为两种:
 - 训练误差: 是在训练记录上误分类样本比例
 - 泛化误差: 是模型在未知记录上的期望误差
- 一个好的分类模型不仅要能够很好的拟合训练数据,而且对未知样本也要能准确分类。
- 换句话说,一个好的分类模型必须具有低训练误差和低泛化误差。
- 当训练数据拟合太好的模型(较低训练误差),其泛化误差可能比具有较高训练误差的模型高,这种情况成为模型过分拟合。
- 数据预处理→模型训练→模型调整→对新数据分类→模型评价

3.1模型过分拟合和拟合不足

- 以决策树算法为例
 - 当决策树很小时,训练和检验误差都很大,这种情况称为模型拟合不足。 出现拟合不足的原因是模型尚未学习到数据的真实结构。
 - 随着决策树中结点数的增加,模型的 训练误差和泛化误差都会随之下降。
 - 当树的规模变得太大时,即使训练误差还在继续降低,但是泛化误差开始增大,导致模型过分拟合。

3.1模型过分拟合和拟合不足

39

2020年5月6日星期三 数据挖掘导论

填空题 2分

表 4-3 哺乳类动物分类的训练数据集样本。打星号的类标号代表错误标记的记录

名称	体温	胎生	4条腿	冬眠	类标号
豪猪	恒温	是	是	是	是
猫	恒温	是	是	否	是
蝙蝠	恒温	是	否	是	否*
鲸	恒温	是	否	否	否*
蝾螈	冷血	否	是	是	否
科莫多巨蜥	冷血	否	是	否	否
蟒蛇	冷血	否	否	是	否
鲑鱼	冷血	否	否	否	否
應	恒温	否	否	否	否
虹鳉	冷血	是	否	否	否

表 4-4 哺乳类动物分类的检验数据集样本

	名称	体温	胎生	4 条腿	冬眠	类标号
-	人	恒温	是	否	否	是
	鸽子	恒温	否	否	否	否
27 - 72	象	恒温	是	是	否	是
	豹纹鲨	冷血	是	否	否	否
80 98	海龟	冷血	否	是	否	否
	企鹅	冷血	否	否	否	• 否
	鳗	冷血	否	否	否	否
	海豚	恒温	是	否	否	是
	针鼹	恒温	否	是	是	是
	希拉毒蜥	冷血	否	是	是	否

决策树M1的训练误差为 [填空1],但它在检验数 据上的误差达 [填空2]

填空题 2分

表 4-3 哺乳类动物分类的训练数据集样本。打星号的类标号代表错误标记的记录

名称	体温	胎生	4条腿	冬眠	类标号
豪猪	恒温	是	是	是	是
猫	恒温	是	是	否	是
蝙蝠	恒温	是	否	是	否*
鲸	恒温	是	否	否	否*
蝾螈	冷血	否	是	是	否
科莫多巨蜥	冷血	否	是	否	否
蟒蛇	冷血	否	否	是	否
鲑鱼	冷血	否	否	否	否
鹰	恒温	否	否	否	否
東工修	冷血	是	否	否	否

表 4-4 哺乳类动物分类的检验数据集样本

	名称	体温	胎生	4 条腿	冬眠	类标号	
9	人	恒温	是	否	否	是	
	鸽子	恒温	否	否	否	否	
372 - 10	象	恒温	是	是	否	是	
	豹纹鲨	冷血	是	否	否	否	
ST 58	海龟	冷血	否	是	否	否	
	企鹅	冷血	否	否	否	• 否	
	鳗	冷血	否	否	否	否	
	海豚	恒温	是	否	否	是	
	针鼹	恒温	否	是	是	是	
	希拉毒蜥	冷血	否	是	是	否	

决策树M2的训练误差为 [填空1],但它在检验数 据上的误差达 [填空2]

导致过拟合的原因

- A 训练集规模太大
- 」 训练集中存在大量噪音数据
- 」 训练集规模太小,训练模型过于复杂

3.2噪声导致的过分拟合

2020年5月6日星期三 数据挖掘导论

3.3缺乏代表性样本导致的过分拟合

- 根据少量训练记录做出分类决策的模型也容易受过分拟合的影响。
- 由于训练数据缺乏具有代表性的样本,在没有多少训练记录的情况下, 学习算法仍然细化模型就会产生过分拟合。

名称	体温	胎生	4条腿	冬眠	类标号
蝾螈	冷血	否	是	是	否
虹鳉	冷血	是	否	否	否
鹰	恒温	否	否	否	否
弱夜鹰	恒温	否	否	是	否
鸭嘴兽	恒温	否	是	是	是

表 4-5 哺乳动物分类的训练集样本

图 4-26 根据表 4-5 中的数据集建立的决策树 数据挖掘导论

训练集太少,

模型太复杂

3.4减少泛化误差

- 过分拟合的主要原因一直是个争辩的话题,但数据挖掘研究界普遍认为模型的复杂度对模型的过分拟合有影响。
- 如何确定正确的模型复杂度?理想的复杂度是能产生最低泛化误差的模型的复杂度。

■ 奥卡姆剃刀定律

___ 3.4奥卡姆剃刀(Occam's Razor)

- 奥卡姆剃刀(Occam's Razor),拉丁文为lex parsimoniae,意思是简约之法则。
- 是由14世纪逻辑学家、圣方济各会修士威廉奥卡姆William of Occam (约1287年至1347年)提出的一个解决问题的法则。
- 他在《箴言书注》第2卷15章说"切勿浪费较多东西,去做:用较少的东西,同样可以做好的事情"。
- 奥卡姆剃刀定律被广泛运用在多个学科的逻辑定律, 它的简单表述:
 - 如无必要,勿增实体
 - Entities should not be multiplied unnecessarily

3.4.1减少泛化误差

- 根据奥卡姆剃刀原则
 - 引入惩罚项, 使较简单的模型比复杂的模型更可取
 - 引入正则项
 - 神经网络中,引入dropout机制

(a) Standard Neural Net

(b) After applying dropout.

2020年5月6日星期三

数据挖掘导论

3.4.2减少泛化误差

- 使用确认集
 - 该方法中,不是用训练集估计泛化误差,而是把原始的训练数据集 分为两个较小的子集,一个子集用于训练,而另一个称为确认集, 用于估计泛化误差。
 - 该方法为评估模型在未知样本上的性能提供了较好办法。

下列说法正确的是

- A 过拟合是由于训练集多,模型过于简单
- 过拟合是由于训练集少,模型过于复杂
- 欠拟合是由于训练集多,模型过于简单
- 欠拟合是由于训练集少,模型过于简单

总结

使用确认集,基于抽样的方法

统计查全率vs. 查准率

2020年5月6日星期三 数据挖掘导论 50

Any Questions?

谢谢!

数据挖掘竞赛案例2 <重复购买预测>

数据描述

- 0 数据处
- 3 理
- 9 特征提
 - 4 取

- 模型训
- 5 练
- 0 模型结
- 6 果

01 赛题介绍

商家有时会在特定日期(例如"Boxing-day", "黑色星期五"或"双11")进行大促销(例如折扣或现金券),以吸引大量新买家。许多吸引的买家都是一次性交易猎人,这些促销可能对销售产生很小的长期影响。为了缓解这个问题,商家必须确定谁可以转换为重复买家。通过瞄准这些潜力忠诚的客户,商家可以大大降低促销成本,提高投资回报率(ROI)。

题目提供了一套商家及其在"双11"日促销期间获得的相应新买家。任务是预测对于指定商家的新买家将来是否会成为忠实客户。即预测这些新买家在6个月内再次从同一商家购买商品的概率。一个包含大约20万用户的数据集用于训练,还有一个类似大小的数据集用于测试。

02 数据描述

数据格式

官方给了数据: data format1

data format1: user log format1, user info format1, test format1, train format1

用户行为日志:包含用户ID、商品ID、商品类别、商户ID、商品品牌、时间和用户行为

类别7个特征。

用户信息:包含用户ID、用户年龄段和用户性别信息。

训练集和测试集:分别包含用户ID、商户ID和是否为重复买家标签,其中训练集标签为

0-1,测试集标签为空,需要预测。

数据量

Name 🔺	Type	Size	Value
data1	DataFrame	(54925330, 7)	Column names: user_id, item_id, cat_id, seller_id, brand_id, time_stam

步骤2: 数据清洗

进行brand_id缺失值(91015)填充,并使用pickle模块进行序列化,加快速度读写

压缩csv中的数据,通过改变扫描每列的dtype,转换成适合的大小。

步骤3:数据可视化

读取训练集,对正 负样本、正负样本 与性别的比例、正 负样本与年龄段的 比例进行可视化。

数据可视化

训练集正负样本可 视化:

训练集中label取值 范围 {0, 1}, 1表示 重复购买, 0 表示 非重复购买。

03 数据处理

数据可视化

读取用户信息数据, 并与训练集数据进行合并; 展示正负样本与用户性别的比例; 顾客性别: 0 表示女性, 1 表示男性, 2 and NULL表示未知.

数据处理

数据可视化

展示正负样本与用 户年龄段的比例;

顾客年龄范围: 1

表示<18; 2 表示

[18,24]; 3 表示

[25,29]; 4 表示

[30,34]; 5 表示

[35,39]; 6 表示

[40,49]; 7 and 8 表

示 50; >=

0 and NULL 表示未

知

04 特征提取

0	age_0.0 q	111	save_days q	
1	age_1.0 q	112	item_click_count	q
2	age_2.0 q	113	item_add_count q	
3	age_3.0 q	114	item_buy_count q	
4	age_4.0 q	115	item_save_count q	
5	age_5.0 q	116	cat_click_count q	
6	age_6.0 q	117	cat_add_count q	
7	age_7.0 q	118	cat_buy_count q	
8	age_8.0 q	119	cat_save_count q	
9	female q	120	brand_click_count	q
10	male q	121	brand_add_count q	
11	unknown q	122	brand_buy_count q	
12	userTotalAction_0 q	123	brand_save_count	q

基模型:

LGBM 、 XGBoost 、 MLP 、 GBDT 、 RandomForest

集成学习:

GBM

06 模型结果

	train	test	final
AUC	0.7112	0.6731	0.6775

43	_sssssyy	浙江大学	0.681079	2018-01-10
44	大西瓜瓜	盒子科技	0.681011	2018-10-07
45	大厉	浙江大学	0.680769	2017-12-21
46	控几我客几	University of Aberdeen	0.679506	2018-05-31
47	DeepDarkFantasy j	其它-上海科技大学	0.679450	2018-06-17
48	小七要读博	天津理工	0.678982	2018-05-31
49	凉口三三	重庆邮电大学	0.678950	2018-05-31
50	Iccc0312	某厂	0.678352	2017-04-21
51	美帝掌握核心科技	电子科技大学	0.678300	2018-05-31
52	zweiHasen_rcababitt	其它-上海科技大学	0.678231	2018-06-17
53	downle	Downle	0.678102	2017-03-14
54	zweiHasen_meeto	其它-上海科技大学	0.677829	2018-06-17
55	Texas_2019	University of Toronto	0.677663	2018-06-08
56	丁兆云dm杨凯晶	国防科大	0.677507	2018-11-21