

Lecture 24 Multiple Testing

STAT 8010 Statistical Methods I October 18, 2019

> Whitney Huang Clemson University

Recall the overall F-test in (one-way) ANOVA

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_J$$

 $H_a:$ at least a pair μ 's differ

• If we reject H_0 in the overall F-test, then we need to perform multiple $\binom{J}{2} = \frac{J \times (J-1)}{2}$ pairwise t-tests:

$$egin{aligned} H_0: \mu_1 &= \mu_2 \ ext{VS.} \ H_a: \mu_1
eq \mu_2 \ H_0: \mu_1 &= \mu_3 \ ext{VS.} \ H_a: \mu_1
eq \mu_3 \end{aligned}$$
 \vdots \vdots $H_0: \mu_{J-1} = \mu_J \ ext{VS.} \ H_a: \mu_{J-1}
eq \mu_J \end{aligned}$

 In this lecture we will learn how to conduct multiple testing while controlling the family-wise type I error

Review: Type I and II Errors

True State	Decision		
True State	Reject H_0	Fail to reject H_0	
H_0 is true	Type I error	Correct	
H_0 is false	Correct	Type II error	

Errors in a single hypothesis test:

- \bullet The probability of a type I error is denoted by α
- The probability of a type II error is denoted by β

In multiple testing, we have an α chance of making a type I error **on each test**. However we would like to control the family-wise type I error rate

Family-Wise Error Rate (FWER)

Family-Wise Error Rate (FWER) $\bar{\alpha}$: the probability of making 1 or more type I errors in a set of hypothesis tests

For m independent tests, each with individual type I error rate α , then we have

$$\bar{\alpha} = 1 - (1 - \alpha)^m$$

Suppose we are comparing 3 treatment groups (i.e. J=3) and if we reject $H_0: \mu_1=\mu_2=\mu_3$, then we need to perform $\binom{3}{2}=3$ hypotheses tests (m=3). Then we will have

$$\bar{\alpha} = 1 - (1 - 0.05)^3 = 0.1426$$

if we use $\alpha = 0.05$ for each test

FWERs for m Independent Tests Each at α Level

	α				
m	0.1	0.05	0.01		
1	0.100	0.050	0.010		
3	0.271	0.143	0.030		
6	0.469	0.265	0.059		
10	0.651	0.401	0.096		
15	0.794	0.537	0.140		
21	0.891	0.659	0.190		

 $\bar{\alpha}$ increases fairly quickly with J, the number of treatment groups

The Bonferroni Correction

If we would like to control the FWER to be α , then we adjust the significant level for each of the m tests to be $\frac{\alpha}{m}$

$$FWER = \mathbb{P}(\bigcup_{i=1}^{m} p_i \le \frac{\alpha}{m}) \le \sum_{i=1}^{m} \mathbb{P}(p_i \le \frac{\alpha}{m}) = m \frac{\alpha}{m} = \alpha$$

For example, if we have 4 treatment groups (m=6), then we will need to set the significant level for each individual pairwise t-test, to be $\frac{0.05}{6}=0.0083$ to ensure that FWER is less than 0.05

The Bonferroni Correction Cont'd

Me and the significant boys

Me and the significant boys after Bonferroni correction

Example

A researcher who studies sleep is interested in the effects of ethanol on sleep time. She gets a sample of 20 rats and gives each an injection having a particular concentration of ethanol per body weight. There are 4 treatment groups, with 5 rats per treatment. She records Rapid eye movement (REM) sleep time for each rat over a 24-period.

7	Treatment	Control	1g/kg	2g/kg	4g/kg
	Mean	82.2	81.0	73.8	65.7
	Std	9.6	5.3	9.4	7.9

Recall in last lecture we reject $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

Example: Multiple Testing

P-value	μ_1, μ_2	μ_1, μ_3	μ_1, μ_4	μ_2, μ_3	μ_2, μ_4	μ_3, μ_4
Pooled	0.816	0.202	0.018	0.175	0.007	0.179
Non-pooled	0.818	0.202	0.019	0.185	0.009	0.180