

บทที่ 1

บทน้ำ

886494 Quantitative Analysis

การวิเคราะห์เชิงปริมาณเบื้องต้น ตัวแบบทฤษฎีการแข่งขัน ตัวแบบทฤษฎีการตัดสินใจ ตัวแบบการพยากรณ์ ตัวแบบ การควบคุมสินค้าคงคลัง ตัวแบบการ โปรแกรมเชิงเส้น ตัวแบบปัญหาการขนส่ง ตัวแบบการบริหาร โครงการ และ ทฤษฎีแถวคอย

การวัดผล

สอบกลางภาค	35%
สอบปลายภาค	35%
งานที่ได้รับมอบหมาย + ปฏิบัติการ	30%

วัตถุประสงค์

- ✓ บอกความหมายของการวิเคราะห์เชิงปริมาณได้
- ✓ อธิบายความสำคัญและประโยชน์ของการวิเคราะห์เชิงปริมาณได้
- ✓ บอกขั้นตอนการวิเคราะห์เชิงปริมาณได้
- ✓ ศึกษาตัวอย่างการวิเคราะห์เชิงปริมาณ "การวิเคราะห์จุดคุ้มทุน" (Break-even analysis)
- ✓ อธิบายลักษณะพื้นฐานและประโยชน์ของการวิเคราะห์จุดคุ้มทุนและสามารถ
 แก้โจทย์ปัญหาเกี่ยวกับการวิเคราะห์จุดคุ้มทุนได้
- ✓ ยกตัวอย่างการประยุกต์การวิเคราะห์เชิงปริมาณกับปัญหาต่างๆได้

QA กับ ชีวิตประจำวัน

"การวิเคราะห์เชิงปริมาณ" เป็นศาสตร์ที่เกี่ยวเนื่องหรือเป็นส่วนหนึ่ง ในชีวิตประจำวัน แต่คนส่วนใหญ่ไม่ได้ตระหนักถึงความสำคัญ ตัวอย่างเช่น

- การจัดคิวของรถโดยสารทั้งสาชารณะหรือส่วนตัวองค์กร
- การจัดการจำนวนเจ้าหน้าที่ที่พร้อมให้บริการของธนาคาร
- การบริหารปริมาณการสั่งซื้อสินค้าในร้านค้า

การวิเคราะห์เชิงปริมาณ

- เป็นวิธีการหาคำตอบเพื่อแก้ปัญหาที่เกิดขึ้นโดยอาศัยหลักการทางคณิตศาสตร์และ สถิติ ที่ใช้ช่วยในการตัดสินใจเกี่ยวกับปัญหาเชิงธุรกิจ
- เครื่องมือที่สำคัญของการวิเคราะห์เชิงปริมาณคือ การสร้างตัวแบบ (Model) ทาง คณิตศาสตร์เพื่อจำลองสภาพของปัญหา
- ผลที่ได้จากการวิเคราะห์เชิงปริมาณ สามารถนำไปใช้ร่วมกับสารสนเทศอื่นๆเพื่อช่วย สนับสนุนการตัดสินใจ

ความสำคัญของ

การวิเคราะห์เชิงปริมาณ

ข้อมูลเชิงปริมาณ

ใช้วิเคราะห์ สังเคราะห์

ร่วมกับข้อมูลเชิงคุณภาพ

เพื่อประกอบการตัดสินใจทางธุรกิจ

ข้อมูลเชิงปริมาณ

นำมาช่วยวิเคราะห์รากเหง้าปัญหาองค์กร

ความไม่ต่อเนื่องของกระบวนการทำงาน และ

ความเสี่ยง จุดรั่วไหล ความสูญเปล่าองค์กรได้

ข้อมูลเชิงปริมาณ

นำมาช่วยเสริมเทคนิคบริหารเชิงคุณภาพ

เพื่อรองรับการเปลี่ยนแปลงและ

ความเสี่ยงภายนอก

ประเภท

ของ

ข้อมูลเชิงปริมาณ

1. ข้อมูลที่ได้จากการสังเกตเบื้องต้น (Nominal Data)

เช่น ข้อมูลร้อยละของเพศชายที่ใช้สิทธิเลือกตั้งจริง

ณ เขตวัฒนา กรุงเทพฯ

2. ข้อมูลลำดับ แยกแยะเป็นระบบ (Ordinal Data)

เช่น ข้อมูลระดับความพึงพอใจของลูกค้า ตั้งแต่ค่า 1

คือ พอใจน้อย ถึง ค่า 5 คือ พอใจมาก

3. ข้อมูลวัดผลไม่ต่อเนื่อง (Discrete Data)

เช่น ข้อมูลรหัสบาร์โค้ดของสินค้าแต่ละชิ้น

ณ นิทรรศการแสดงสินค้าแห่งหนึ่ง

4. ข้อมูลวัดผลต่อเนื่อง (Continuous Data)

เช่น ข้อมูลน้ำหนักของนักเรียนผู้ชาย ณ โรงเรียนแห่งหนึ่ง

ตั้งแต่ชั้นประถมศึกษาถึงมัธยมศึกษา

5. ข้อมูลปฐมภูมิ (Primary Data)

เช่น ข้อมูลของโพลแห่งหนึ่งแสดงผลสำรวจความนิยมพรรค

การเมืองพรรคหนึ่ง ณ ปี 2558

6. ข้อมูลทุติยภูมิ (Secondary Data)

เช่น ข้อมูลสถิตินำเข้าส่งออกของประเทศไทย

ตั้งแต่ปี 2550 จนถึงปัจจุบัน

ข้นตอนการวิเคราะห์เชิงปริมาณ

- 1. การกำหนดหรือการวิเคราะห์ปัญหา (Problem definition or analysis)
- 2. การสร้างตัวแบบ (Model development)
- 3. การรวบรวมข้อมูล (Acquiring or Collecting data)
- 4. การหาผลลัพธิ์ (Solving or Calculating data)
- 5. การทดสอบผลลัพธ์ (Testing the solution)
- 6. การนำผลลัพธ์ไปใช้แก้ปัญหา (Implement the selected solution)

ขั้นตอนที่หนึ่ง

กำหนดปัญหา (Define/Analyze the Problem)

โดยพยายามที่จะเข้าใจถึงสาเหตุของปัญหา

เพื่อกำหนดเป้าหมายและแก้ปัญหาตรงจุด

1.การกำหนดหรือการวิเคราะห์ปัญหา (Problem definition or analysis)

- ระบุลักษณะปัญหาและขอบเขตให้ชัดเจน โดยสังเกตการณ์และจดบันทึก เหตุการณ์ที่เกิดขึ้นจริง เช่น
 - พัสดุคงคลังมีมาก
 - ค่าใช้จ่ายในการขนส่งสูง
 - การประสานงานระหว่างฝ่ายผลิตกับพนักงานขายไม่ราบรื่น
- รวมทั้งศึกษาถึงค่าใช้จ่ายที่จะเกิดขึ้นในการนำเทคนิคเชิงปริมาณมาใช้เพื่อ ช่วยแก้ปัญหา โดยใช้หลักการวิเคราะห์ต้นทุน-กำไรเพื่อประมาณค่าใช้จ่ายและ ผลตอบแทนที่จะได้รับว่าคุ้มค่าหรือไม่

ขั้นตอนที่สอง

สร้างตัวแบบเพื่อแก้ปัญหา (Develop the Model)

โดยที่กำหนดตัวแปร อธิบายความสัมพันธ์

และส่วนประกอบ เพื่ออธิบายปัญหามากขึ้น

2. การสร้างตัวแบบ (Model development)

ตัวแบบ (Model) คือ แบบจำลองของระบบจริง กล่าวคือ การจำลองระบบจริงให้อยู่ ในรูปแบบที่เข้าใจได้ง่าย ตัวแบบแบ่งออกเป็นชนิดต่างๆ เช่น

- o ตัวแบบสัญรูป(Iconic model) คือ ตัวแบบที่เป็นรูปจำลองของสิ่งต่างๆโดยแสดงอยู่ใน ลักษณะที่เหมือนตัวจริงแต่ใช้มาตรส่วนที่ต่างกัน เช่น ตัวแบบของรถยนต์ แบบบ้านจำลอง การ จำลองการจัดภูมิทัศน์
- o ตัวแบบอนุมาน(Analog model) คือ ตัวแบบที่ใช้สิ่งอื่นเป็นตัวแทน แสดงให้เห็นถึง คุณลักษณะของสิ่งต่างๆ เช่น หน้าปัดวัดความเร็วของรถยนต์ ปรอทวัดอุณหภูมิ ผังการจัด องค์การ
- o ตัวแบบเชิงคณิตศาสตร์ (Mathematical model) คือตัวแบบที่ใช้ตัวเลข ตัวแปร และ สัญลักษณ์ทางคณิตศาสตร์มาเขียนให้อยู่ในรูปความสัมพันธ์ทางคณิตศาสตร์ เช่น สมการ อสมการ เพื่อแสดงให้เห็นถึงลักษณะปัญหาที่เกิดขึ้นในธุรกิจ ตัวอย่าง เช่น ตัวแบบจำลอง สถานการณ์ (Simulation model) ตัวแบบพีชคณิต (Algebraic model) ตัวแบบตาราง ทำงาน (Spreadsheet model)

ขั้นตอนที่สาม

การรวบรวมข้อมูล (Acquire or collect the Data)

ที่เกี่ยวข้องกับตัวแปรที่ใช้ตัดสินใจ

ซึ่งส่งผลต่อการกำหนดทางเลือกแก้ปัญหา

3. การรวบรวมข้อมูล (Collecting data)

- ต้องรวบรวมข้อมูลทั้ง
 - · จากภายนอกองค์กรและภายในองค์กร โดยรวบรวมจากรายงานและเอกสาร
 - จากประสบการณ์ จากการสอบถามพนักงาน จากการสังเกตการณ์ หรือ
 - จากข้อมูลทางสถิติ เช่น จำนวนพนักงาน อัตราการลาออกของพนักงาน รายละเอียดเกี่ยวกับสินค้าคงคลัง เป็นต้น
- เป็นขั้นตอนที่ใช้เวลามาก อาจทำควบคู่ไปกับการสร้างตัวแบบได้
- อาจเกิดปัญหา เช่น ข้อมูลที่ต้องการไม่เคยถูกเก็บมาก่อน หรือมีการ จัดเก็บกระจายอยู่ในแผนกต่างๆในรูปแบบที่แตกต่างกัน หน่วยวัดที่ แตกต่างกัน

ขั้นตอนที่สี่

การคำนวณผลลัพธ์ (Solve the Solution or Calculating the data)

จากตัวแบบแก้ปัญหาตามที่กำหนด

เพื่อหาทางเลือกแก้ปัญหาที่ดีที่สุด

4. การหาผลลัพธ์ (Calculating data)

- นำตัวแบบที่สร้างไว้มาทำการคำนวณด้วยวิธีการทางคณิตศาสตร์ เพื่อหาผลลัพธ์ที่เหมาะสมในการแก้ปัญหา
- โดยการหาผลลัพธ์หรือผลเฉลยนั้นมีวิธีการคำนวณที่กำหนดไว้เป็น ขั้นตอนที่ชัดเจน แต่ละตัวแบบจะมีวิธีการคำนวณหาผลเฉลยที่ แตกต่างกัน
- อาจใช้โปรแกรมคอมพิวเตอร์ช่วย เพื่อความรวดเร็วและถูกต้อง
 แม่นยำ

ขั้นตอนที่ห้า

การตรวจสอบผลลัพธ์ (Test the Solution)

โดยพิจารณาว่าผลลัพธ์ดังกล่าวเป็นผลเฉลย

ที่เหมาะสมที่สุดหรือไม่

5. การทดสอบผลลัพธ์ (Testing the solution)

- ทดสอบและวิเคราะห์ว่าเป็นผลลัพธ์ที่ดีจริง
- ทบทวนความเป็นไปได้และความมีเหตุมีผลของผลลัพธ์อีกครั้ง ก่อน นำไปใช้ โดยลองใช้กับปัญหาขนาดเล็กหรือใช้กับบางแผนกก่อน เพื่อ หาจุดบกพร่องของผลลัพธ์ ของตัวแบบและข้อมูลที่ใช้ และทำการ แก้ไขปรับปรุง

ขั้นตอนที่หก

การนำผลลัพธ์ไปทดสอบสู่ผลเฉลยที่เหมาะสมที่สุดแล้วนำตัว

แบบนั้นไปใช้แก้ปัญหาจริง(Analyze/Implement the Result)

เป็นการพัฒนาการตัดสินใจที่ดีขึ้น

6. การนำผลลัพธ์ไปใช้แก้ปัญหา (Implementation)

- เป็นขั้นตอนของการทำให้เกิดการยอมรับและการนำไปปฏิบัติ เนื่องจากพนักงานใน องค์กรอาจต่อต้านการเปลี่ยนแปลง จึงจำเป็นต้องสร้างความเข้าใจ และสร้างความรู้สึกมี ส่วนร่วม เพื่อให้เห็นว่าแนวทางใหม่จะเป็นแนวทางที่ดีสำหรับองค์กร
- ขึ้นกับผู้บริหารและผู้ที่เกี่ยวข้อง ว่ามีความเข้าใจและมั่นใจว่าผลลัพธ์ที่ได้มานั้นสามารถ นำไปแก้ปัญหาได้อย่างมีประสิทธิภาพ
- การตัดสินใจทางธุรกิจ ผู้ตัดสินใจจะต้องคำนึงถึงปัจจัยทั้งในเชิงปริมาณและคุณภาพ โดยการวิเคราะห์เชิงปริมาณมุ่งเน้นเฉพาะสิ่งที่แสดงเป็นตัวเลขได้เท่านั้น ในขณะที่ยังมี ข้อมูลเชิงคุณภาพอื่นๆที่ไม่สามารถคำนวณเป็นตัวเลขได้ เช่น ความพอใจ ผลกระทบทาง การเมือง สภาพแวดล้อม เช่น ดินฟ้าอากาศ เป็นต้น

การประยุกต์ใช้เทคนิคเชิงปริมาณ

- ปัญหาการจัดสรร
- ปัญหาการกำหนดส่วนผสม
- ปัญหาการขนส่ง
- ปัญหาการกำหนดงาน
- การวิเคราะห์ข่ายงาน
- ปัญหาการควบคุมพัสดุคงคลัง
- ปัญหาแถวคอย
- ปัญหาการตัดสินภายใต้ความไม่แน่นอนและความเสี่ยง
- ปัญหาการแข่งขัน

ตัวอย่างหน่วยงานที่นำการวิเคราะห์เชิงปริมาณไปประยุกต์ใช้

Organization	Application Used	Saving/Increase Revenue	References
Hewlett-Packard	Optimization of supply chaing network analysis, Inventory optimization	\$130 million per year	Steven and Ozger (Interfaces 2002)
Canadian Pacific Railway	Optimization of the routing and classification plan for railcar scheduling	\$170 million per year	Steven and Ozger (Interfaces 2003)
UPS	Design of service networks for delivering express packages	\$87 million per year	Steven and Ozger (Interfaces 2004)
Dell Computers	Inventory decisions in supply chain	40% reduction in inventory and 67% improvement in inventory turn	_

ประโยชน์ของวิธีการเชิงปริมาณ

- ช่วยแก้ปัญหาที่มีความเฉพาะเจาะจงได้ดี เนื่องจากมีความใส่ใจและเห็น ความจำเป็นในการวิเคราะห์ก่อนการดำเนินการ
- ช่วยให้การวางแผนแม่นยำขึ้น ซึ่งเป็นการหลีกเลี่ยงปัญหาที่อาจเกิดขึ้นใน อนาคต
- ช่วยให้เห็นผลลัพธ์จากการตัดสินใจเป็นรูปธรรมมากกว่าการวิเคราะห์เชิง คุณภาพเพียงอย่างเดียว
- ช่วยในการแก้ปัญหาเชิงบริหารได้ โดยใช้งานร่วมกับเทคโนโลยีที่ทันสมัย

ตัวอย่างโปรแกรมที่ใช้ในการวิเคราะห์เชิงปริมาณ

- โปรแกรม LINDO (Linear Interactive Discrete Optimizer)
- โปรแกรม QSB+
- โปรแกรม QS
- โปรแกรม **D&D**
- โปรแกรม Micro Manager
- โปรแกรม QM for Windows
- โปรแกรม AB:QM
- โปรแกรม Crystal Ball
- โปรแกรม Microsoft Office Project Professional
- โปรแกรม Excel Spreadsheet

บทบาทของ Spreadsheets ในตัวแบบการตัดสินใจ

- โปรแกรมคอมพิวเตอร์สามารถใช้เป็นเครื่องมือเพื่อช่วยสนับสนุนการตัดสินใจ
- ตัวแบบคอมพิวเตอร์ (Computer Models) หมายถึง กลุ่มของความสัมพันธ์เชิงคณิตศาสตร์ และ สมมติฐานทางตรรก ที่ถูกนำมาสร้างการคำเนินการแบบอัตโนมัติด้วยคอมพิวเตอร์ เพื่อจำลองการ ทำงานของระบบในโลกของความเป็นจริงที่ต้องการแก้ปัญหา
- Spreadsheets เป็นเครื่องมือที่สามารถใช้ในการสร้างตัวแบบคอมพิวเตอร์ สำหรับบุคคลที่ ต้องการแก้ปัญหาทางธุรกิจได้อย่างสะดวก
- Spreadsheet packages -
 - สามารถใช้แก้ปัญหาด้วยการสร้างตัวแบบในการตัดสินใจได้
 - มี built-in functions ให้เลือกใช้งานมากมาย เช่น Goal Seek , Data Table, Chart Wizard

Components of Excel Spreadsheet

Functions Screen

Insert Function	1				?×
Search for a functi	on:				
Type a brief des click Go	cription of	what you w	ant to do and then	Go	
Or select a cateo	ory: Stat	istical	~		
Select a function:					
AVEDEV					<u> </u>
AVERAGE AVERAGEA BETADIST BETAINV BINOMDIST CHIDIST					
	age (arith s, arrays,	metic mean)	of its arguments, when the contain numb		
p on ctions	Funct		Syntax fo		Function list

Add-in Options: MS Excel

ตัวอย่างการวิเคราะห์เชิงปริมาณ

การวิเคราะห์จุดคุ้มทุน

- การวิเคราะห์จุดคุ้มทุน (Break-Even Point หรือ BEP)
 - เป็นการวิเคราะห์ค่าใช้จ่ายต่อปริมาณการใช้หรือการผลิต (cost-volume analysis)
 - เป็นการวิเคราะห์ความสัมพันธ์ระหว่างตัวแปรต่างๆ เช่น ค่าใช้จ่ายต่อปริมาณสินค้าที่ ผลิต หรือค่าใช้จ่ายต่อปริมาณการขาย และค่าใช้จ่ายต่อสัดส่วนกำไรที่ต้องการ
 - โดยปกติ จุดคุ้มทุน หมายถึง การคำนวณหาปริมาณการขายที่ทำให้รายได้รวมมีเท่ากับ ค่าใช้จ่ายรวม นั่นคือ การขายด้วยปริมาณดังกล่าวทำให้มีรายรับเท่ากับรายจ่าย
 - ณ จุดคุ้มทุนนี้ จะเป็นเส้นแบ่งระหว่างกำไรและขาดทุน กล่าวคือ ถ้ายอดขายสูงกว่า จุดคุ้มทุนจะทำให้เกิดกำไร แต่ถ้าต่ำกว่าจะทำให้ขาดทุน
- โดยมีการกำหนดสมมติฐานว่าจำนวนหน่วยที่ผลิตมานั้นขายได้ทั้งหมด

การวิเคราะห์จุดคุ้มทุน

```
กำไร = รายได้รวม - ค่าใช้จ่ายรวม
 กำไร = รายได้รวม - [ค่าใช้จ่ายคงที่ + ค่าใช้จ่ายผันแปร ]
ซึ่ง: รายได้รวม = [ราคาขายต่อหน่วย × จำนวนหน่วยที่ผลิต]
 ค่าใช้จ่ายผันแปร = [ค่าใช้จ่ายผันแปรต่อหน่วย × จำนวนหน่วยที่ผลิต]
 ค่าใช้จ่ายคงที่ = เป็นค่าใช้จ่ายที่จำเป็นต้องลงทุน เช่น ค่าเช่าอาคาร ค่าเช่าอุปกรณ์ เป็นต้น
 การหาจุดคุ้มทุนทำได้โดย กำหนดให้กำไรเท่ากับศูนย์
          O = [ราคาขายต่อหน่วย × จำนวนหน่วยที่ผลิต]

    – [ค่าใช้จ่ายคงที่ + (ค่าใช้จ่ายผันแปรต่อหน่วย × จำนวนหน่วยที่ผลิต) ]

 เขียนเป็นความสัมพันธ์ทางคณิตศาสตร์ได้ดังนี้:
          จำนวนหน่วยที่ขาย (ผลิต) เพื่อให้คุ้มทุน (BEP) = ค่าใช้จ่ายคงที่
                                                    [ราคาขายต่อหน่วย – ค่าใช้จ่ายผันแปรต่อหน่วย]
```


รายรับรวมที่เพิ่มขึ้นเชิงเส้น เมื่อปริมาณเพิ่มขึ้น

ค่าใช้จ่ายคงที่ (Fixed Costs)

ค่าใช้จ่ายผันแปรรวม

ต้นทุนรวม (Total Cost)

กำไรและจุดคุ้มทุน

Problem:

บริษัทของบิลชื่อ Pritchett's Precious Time Pieces เป็น

บริษัทที่ ซื้อ ขาย และซ่อมนาฬิกาเก่า และชิ้นส่วนนาฬิกา บิลผลิตและ

ขายสปริงหน่วยละ 10 เหรียญโดยมีค่าใช้จ่ายคงที่ในการผลิตสปริง

1,000 เหรียญ

ค่าใช้จ่ายผันแปรต่อหน่วยคือ 5 เหรียญเป็นค่าวัสดุที่ใช้ทำสปริง

ตัวแบบ Spreadsheet : การคำนวณหาจุดคุ้มทุน (BEP)

กำไร = รายได้รวม — [ค่าใช้จ่ายคงที่ + ค่าใช้จ่ายผันแปร]
จากโจทย์ตัวอย่างจะได้ว่า:

เมื่อ X คือ จำนวนหน่วยที่ขาย หรือผลิต

การหาจุดคุ้มทุน (BEP) ทำได้โดย กำหนดให้กำไรเท่ากับศูนย์

สำหรับตัวอย่าง Bill Pritchett's คำนวณ BEP (ยอดขายที่ทำให้คุ้มทุน) ได้ดังนี้:

$$0 = 10X - [1,000 + 5X]$$
$$1,000 = 10X - 5X$$

ดังนั้น

$$X = 1,000 / [10 - 5] = 200 springs$$

จุดคุ้มทุน (Break Even Point-BEP)

	A	В
1	Bill Pritchett's Shop	
2		<u>-</u>
3	Known parameters	
4	Selling price per unit	10
5	Fixed cost	1000
6	Variable cost per unit	5
7		
8	Input Data	
9	Number of units, X	
10		
11	Results	
12	Total revenue	=B4*B9
13	Fixed cost	=B5
	Total variable cost	=B6*B9
15	Total cost	=B13+B14
16	Profit	=B12-B15

มูลค่าคุ้มทุนสามารถคำนวณได้ ดังนี้:

มูลค่าคุ้มทุน = ค่าใช้จ่ายคงที่ +

(ค่าใช้จ่ายผันแปรต่อหน่วย * จำนวนที่ผลิต)

สำหรับตัวอย่าง Bill Pritchett's

คำนวณมูลค่าคุ้มทุนได้ดังนี้:

1,000 + 5 * 200 = 2,000 บาท

Profit is revenue – fixed cost – variable cost.

Input variable

cell

Q&A