Lab 6: Ionic Compounds

Data:

Data Table 1. Conductivity of Solutions

Sample	Conductivity (μS/cm)		
0.10 M NaCl	10400.0		
Saturated Ca(OH) _{2(aq)}	5000.0		
0.10 M HCI	23900.0		
0.10 M H ₂ SO ₄	24017.0		
0.10 M HC ₂ H ₃ O ₂	402.0		
0.10 M NaC ₂ H ₃ O ₂	5497.5		
0.10 M C ₁₂ H ₂₂ O _{11(aq)} (dextrose)	2.5		

Data Table 2. Relative Hardness, Solubility, and Melting Point

Sample	Relative Hardness	Relative Solubility	Relative Melting Point
Compound 1	Hard/Granular	Completely Soluble	High
Compound 2	Soft/Powdery	Completely Soluble	Low
Compound 3	Very Hard/Granular	Completely Soluble	High

Concentration of $AgNO_3$: 0.1 M

Data Table 3. Solution Reaction to AgNO₃

Sample Drops AgNO ₃ Trial 1		Drops AgNO ₃ Trial 2	Drops AgNO ₃ Trial 3	
NaCl _(aq)	28	29	20	
Tap Water	1	1	1	
Ocean Water	46	38	28	

Calculations:

Part C: Calculations for Trial 1 of $NaCl_{(aq)}$

Water Volume (L) = 21 drops * (1 ml/ 20 drops) * (1 L/ 1000mL) = 0.0011 L

Volume AgNO₃ (L) = 28 drops * (1 mL/ 20 drops) * (1 L/ 1000mL) = 0.0014 L

Moles $AgNO_3 = 0.1 \text{ mols } AgNO_3/L * 0.0014 \text{ L} = 0.00014 \text{ mols } AgNO_3$

Moles Ag⁺¹ = Moles AgNO₃

Moles Cl⁻¹ = Moles Ag⁺¹

Molarity $Cl^{-1} = 0.00014$ mols $Cl^{-}/0.0011$ L $NaCl_{(aq)} = 0.13$ mols Cl^{-}/L $NaCl_{(aq)}$

Results:

Results Table 1. Part A

Sample	Electrolyte Type	Dissociation		
0.10 M NaCl	Strong Electrolytes	$NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$		
Saturated Ca(OH) _{2(aq)}	Strong Electrolytes	$Ca(OH)_{2(s)} \rightarrow Ca^{2+}_{(aq)} + 2OH^{-}_{(a)}$		
0.10 M HCI	Strong Electrolytes	$HCI_{(s)} \to H^{\scriptscriptstyle +}_{\;(aq)} + CI^{\scriptscriptstyle -}_{\;(aq)}$		
0.10 M H ₂ SO ₄	Strong Electrolytes	$H_2SO_{4(s)} \rightarrow 2H^+_{(aq)} + SO_4^{-2}_{(aq)}$		
0.10 M HC ₂ H ₃ O ₂	Weak Electrolytes	$HC_2H_3O_{2(s)} \longleftrightarrow C_2H_3O_{2(aq)}^{-} + H_3O_{(l)}^{+}$		
0.10 M NaC ₂ H ₃ O ₂	Strong Electrolytes	$NaC_2H_3O_{2(s)} \rightarrow Na^+_{(aq)} + C_2H_3O_2^{(aq)}$		
0.10 M C ₁₂ H ₂₂ O _{11(aq)} (dextrose)	Non-electrolytes			

Part B:

Compound 1: Ionic

Compound 2: Covalent

Compound 3: Ionic

Results Table 2. Part C

Sample	Test Tube	Water Volume (L)	Volume AgNO ₃ (L)	Moles AgNO₃ (mols)	Moles Ag ⁺¹ (mols)	Moles Cl ⁻¹ (mols)	Molarity CI ⁻¹ (M)
NaCl _(aq)	1	0.0011	0.0014	0.00014	0.00014	0.00014	0.13
NaCl _(aq)	2	0.0011	0.0015	0.00015	0.00015	0.00015	0.14
NaCl _(aq)	3	0.0011	0.001	0.0001	0.0001	0.0001	0.095
Тар	1	0.0011	0.00005	0.000005	0.000005	0.000005	0.0048
Тар	2	0.0011	0.00005	0.000005	0.000005	0.000005	0.0048
Тар	3	0.0011	0.00005	0.000005	0.000005	0.000005	0.0048
Ocean	1	0.0011	0.0023	0.00023	0.00023	0.00023	0.2
Ocean	2	0.0011	0.0019	0.00019	0.00019	0.00019	0.18
Ocean	3	0.0011	0.0014	0.00014	0.00014	0.00014	0.13

Discussion and Conclusion:

This lab's aim was to test various compounds in solid and aqueous states to understand the nature of how the elements are bonded and test the theoretical qualities of such bonds. In Part A various solutions were tested for their conductivity, ionic compounds are understood to dissociate in a solution and the aqueous ions make the solution conductive. In Part B three compounds were tested for hardness, solubility and melting point. In Part C the molarity of Chloride in a solution was estimated using the theoretical understanding of how Ag⁺ and Cl⁻ will react and form AgCl when dissociated in a solution. Part C demonstrates a method for estimating other ions in a particular solution.

In Part A, the solutions made from ionic compounds showed greater conductivity when compared to covalent compounds in solution. In Part B, the compound-type identification was based on the trend that ionic compounds tend to have higher melting points when compared to covalent compounds. In Part C, the difference between the average molarity of Cl⁻ calculated between Tap Water and Ocean Water is about .1652, with Ocean Water having the larger molarity. The molarity of chloride in potable water is approximately 0.0014 M, the value found in this lab was 0.0048 M, the tap water is likely potable. The molarity of chloride in ocean water is approximately 0.479 M, this is 2.8 times larger than the average found in this lab.

Supplementary Problems:

A.

- 1. NaC₂H₃O₂
- 2. CoO
- 3. ZnCrO₄
- 4. HI
- 5. Ca(OH)₂
- 6. $Ba(NO_2)_2(H_2O)_8$
- 7. AuCl₃
- 8. $CdO(H_2O)_6$
- 9. H₂CO₃
- 10. HNO₂
- 11. Pb(CN)₂
- 12. Li₂S
- 13. Ag₂Cr₂O₇
- 14. Sn(HSO₄)₂
- 15. ZnSO₃
- 16. P(BrO₄)₃
- 17. FrMnO₄
- 18. AI(CIO₃)₃
- 19. CuF₂
- 20. Be(CIO₂)₂
- 21. Pt(NO₃)₄
- 22. Ag₂HPO₄
- 23. Mn(NO₂)₄
- 24. NaH₂PO₄

B.

- 1. Chloric Acid
- 2. Manganese (II) Carbonate
- 3. Lithium Hydroxide
- 4. Rubidium Fluoride
- 5. Zinc (II) Perchlorate
- 6. Nickel (IV) Sulfite
- 7. Strontium Phosphate
- 8. Ammonium Hypochlorite
- 9. Bromic Acid
- 10. Silver Permanganate Hexahydrate
- 11. Beryllium Chloride
- 12. Strontium Iodide
- 13. Chlorous Acid
- 14. Gold (III) Phosphide

- 15. Nickel (II) Sulfate
- 16. Lithium Dichromate
- 17. Cesium Hydrogen Phosphate
- 18. Ammonium Sulfate
- 19. Zinc (II) Acetate
- 20. Silver (I) Phosphate
- 21. Lithium Dihydrogen Phosphate
- 22. Potassium Hypobromite Heptahydrate
- 23. Tin (II) Fluoride
- 24. Hydrogen Monobromide