

University of Cambridge

Systems Research Group (SRG)
Department of Computer Science

Distributed Global Scheduling in Datacenters

Smita Vijayakumar

First Year Ph.D. Student sv440@cst.cam.ac.uk

Evangelia Kalyvianaki

Ph.D. Supervisor ek264@cst.cam.ac.uk

Anil Madhavapeddy

Ph.D. Supervisor avsm2@cst.cam.ac.uk

Hybrid

State of the Art Scheduling

Underutilised Datacenter Resources Azure¹ * 60% VMs have <= 20% CPU usage! Alibaba² * Average server CPU 50% * Memory <= 60% Underutilisation is expensive!³ ¹[Resource Central, SOSP,'17] ²[https://github.com/alibaba/clusterdata] ³[Scalable system scheduling for HPC and big data, JPDC,17]

Examples - Mesos [NSDI'11], Yarn, Apollo [OSDI'14]

- ☑ Global resource view
- **X** Scheduler can be a bottleneck
- **X** Delayed, high volumes of resource updates

Decentralised

Example - Sparrow [NSDI'14]

- **☑** Fast and simple
- **X** Unsuitable for long running jobs
- **X** Not globally optimal

Example - Hydra [NSDI'19], Medea [EuroSys'18], Borg [EuroSys'15]

Policy-driven job/task placement

Centralized

Scheduler/

Proposed Direction

Up-to-Date Global View at each Node

Inspired by routing protocols

⊠ BGP, OSPF, ...

- **☑** Resource data propagation
- **Global view convergence** ✓
- ☑ Same ranking policy across nodes

Scheduling Using "Up-to-Date" Global View **Intra-DC Scheduling Inter-DC Scheduling** 1. Table ranked according to policy 2. Local and remote DCs' information 2. Job arrives at the node Node Challenges Node Node 3. Request sent to the highly ranked node Collision avoidance **▼**Request is accepted **★** Request is rejected 1. Resource-related Minimise inter-DC traffic Job Queue **DC** information . Sent to next highly ranked node Minimise scheduling time Node **▼**Request is accepted Node Node Node 2. Local and remote DCs' information