

$ \begin{cases} Q_{11} \times_1 + \dots + Q_{1m} \times_m = Q_n \\ Q_{m1} \times_1 + \dots + Q_{mm} \times_m = Q_m \end{cases} $
E = P + E o C A ^M -s i une Mosio affine une solusione dal colusione on experso oto was experso
Restrictive $ \begin{cases} x - y = 1 \\ y + y = 3 \end{cases} $ $ \begin{cases} x = y + 1 \\ y = -y + 3 \end{cases} $ $ \begin{cases} x = y + 1 \\ y = y + 3 \end{cases} $
$= \left\{ \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + y \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \middle y \in R \right\} = \left(\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} + \left< \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right>$ note of line
É = D + M A nothernogio directore
dim 5 = dim H
Quindi 5 è un punto re din H = 0
reette re dimH=1 piomo re dimH=2
yea spoère de dim H= m-4
Exemplio:
$P = (1, 2, 3, 9) \in A$
$V = (\Lambda, 0, 0, 1)$
$P + \langle v \rangle \leq A^{\alpha}$
rette in uno sposio quodridimensionale

Forme Coctesione Forme pareometrice & = P + <u1, ..., Um> Exemplo Cortiesiene - poeometreice $E = \begin{cases} x + 7 = 1 \\ y - 2 = 0 \end{cases} \subseteq A^3$ $\begin{cases} \times + 7 = 1 \\ 2 + 2 = 0 \end{cases} \Rightarrow \begin{cases} \times = 1 - 7 \\ 2 + 7 = 3 \end{cases} = \begin{cases} \begin{pmatrix} 1 - 7 \\ 4 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \end{pmatrix} + 4$ $= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \langle \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \rangle$ -> contarione Exemplo posometrice $\mathcal{E} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \langle \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \rangle \in A$ $H = man \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = man \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $= \left\{ \begin{array}{c} \times + 2\gamma = 0 \\ = \end{array} \right\} \begin{array}{c} A \\ \times = -2\gamma \\ = \end{array} = \left\{ \begin{array}{c} -2\gamma \\ \gamma \\ 2 \end{array} \right\}$ $= \left\langle \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \right| \left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\rangle = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \left\langle \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\rangle$ Uno sposo offine i una sposo sottoriale organo Per un punto

