第七章光与物质的相互作用

第一节 光的吸收和色散

Optics

- 7.1 光的吸收
- 7.1.1 吸收的线性规律
- 7.1.2 复数折射率的意义
- 7.1.3 光的吸收与波长的关系
- 7.1.4 吸收光谱

7.1.1 吸收的线性规律

光强随穿进媒质的深度而减弱的现象称为媒质对光的吸收。

7.1.1 吸收的线性规律

$$-dI = \alpha I dx$$

布格尔 (P.Bouguer , 1729) 定律 朗伯 (J.H.Lambert , 1760) 定律

$$I = I_0 e^{-\alpha x}$$

α:吸收系数

溶液中:比尔(A.Beer, 1852)定律

 $\alpha = AC$

A:吸光度

C:浓度

7.1.2 复数折射率的意义

折射率:真空光速与媒质光速之比 $n = \frac{c}{v}$

$$\widetilde{E} = \widetilde{E}_0 e^{-i\omega(t-x/v)} = \widetilde{E}_0 e^{-i\omega(t-nx/c)}$$

可以用复折射率同时表示折射和吸收 实部→折射(位相推进),虚部→吸收(强度衰减)

$$\widetilde{n} = n(1 + i\kappa)$$

$$\widetilde{E} = \widetilde{E}_0 e^{-i\omega(t - \widetilde{n}x/c)} = \widetilde{E}_0 e^{-n\kappa\omega x/c} e^{-i\omega(t - nx/c)}$$

$$I = |E_0|^2 e^{-2n\kappa\omega x/c}$$

$$\alpha = 2n\kappa\omega/c = 4\pi n\kappa/\lambda$$

7.1.3 光的吸收与波长的关系

分区:普遍吸收,与波长几乎无关

选择吸收,依赖于波长

普遍吸收,强度下降,不改变颜色(空气、玻璃、水)选择吸收,强度下降,颜色改变(彩色玻璃)

所有电磁波段考虑,选择吸收是光和物质作用的普遍规律。任何介质都有吸收限,吸收限的长波—侧表现普遍吸收,短波—侧表现为选择吸收。

吸收系数对波长的依赖关系 $\alpha(\lambda)$

电子能级(内层电子、价电子) 振动能级

元激发

转动能级

选择吸收反映了物质的能级结构

- 介质中的原子吸收入射光,发生跃迁
- 能级间隔与入射光子能量匹配,受激吸收

孤立原子 固体中稀土离子 分立能级

凝聚态物质 能带

• 大气层对不同波段的电磁辐射选择吸收

7.1.4 吸收光谱 大气窗口与温室气体

• 大气层对不同波段的电磁辐射选择吸收

水的吸收

太阳光谱的夫琅和费线(574条)

Designation	Element	Wavelength(nm)	Designation	Element	Wavelength(nm)	
у	O ₂	898.765	С	Fe	495.761	
Z	O ₂	822.696	F	Нβ	486.134	
Α	O ₂	759.370	d	Fe	466.814	
В	O ₂	686.719	е	Fe	438.355	
С	Ηα	656.281	G'	Нү	434.047	
а	O ₂	627.661	G	Fe	430.790	
D_1	Na	589.592	G	Ca	430.774	
D_2	Na	588.995	h	Ηδ	410.175	
D ₃ or d	Не	587.5618	Н	Ca ⁺	396.847	
е	Hg	546.073	K	Ca⁺	393.368	
E ₂	Fe	527.039	L	Fe	382.044	
b ₁	Mg	518.362	N	Fe	358.121	
b ₂	Mg	517.270	Р	Ti+	336.112	
b_3	Fe	516.891	Т	Fe	302.108	
b ₄	Fe	516.891	t	Ni	299.444	
b ₄	Mg	516.733				

Kirchhoff 和 Bunsen 指出每个化学元素都具有一套特有的谱线,并推断出太阳光谱的黑线来自太阳大气层的一些元素的吸收。

He元素的发现:法国人严森(J.P.Jensen,1868)观察太阳光谱,发现一些不知来源的暗线,英国天文学家洛克厄(J.N.Lockyer)将其归因于一种未知元素,取名为Helium,词源于希腊文helios太阳。1894年英国化学家莱姆赛(W.Ramsay)从钇铀矿物蜕变出的气体中发现,说明地球上也存在He。

原子吸收光谱的灵敏度是相当高的,混合物或化合物中极少含量的原子及其变化,将导致光谱吸收线的出现及其光密度的很大变化。历史上就曾依据这吸收光谱分析方法发现了铯、铷、铊、铟、镓等多种新元素,这一方法已广泛应用于化学的定量分析,并成为研究宇宙空间物质分布的重要手段。

吸收光谱的测量

Optics

- 7.2 光的色散
- 7.2.1 正常色散
- 7.2.2 反常色散
- 7.2.3 一种物质的全部色散曲线
- 7.2.4 经典色散理论

光在媒质中的传播速度或折射率随波长改变,称为**色散**。

(不是由衍射引起的)

$$v = v(\lambda)$$
 $n = n(\lambda)$ 色散率 $\frac{\mathrm{d}n}{\mathrm{d}\lambda}$

牛顿正交棱镜实验

折射率对波长的依赖关系 $n(\lambda)$

折射率随波长单调下降,且下降率在短波侧更大 $\frac{dh}{d\lambda} < 0$

科希 (A.L.Cauchy, 1836) 经验公式:

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$

在可见光波段,考察的波长范围不太大时,前两项就够了:

$$n = A + \frac{B}{\lambda^2} \qquad \frac{dn}{d\lambda} = -2\frac{B}{\lambda^3}$$

常用的一些光学玻璃的参数

Material	\mathbf{A}	\mathbf{B} (μ m ²)
Fused silica	1.4580	0.00354
Borosilicate glass BK7	1.5046	0.00420
Hard crown glass K5	1.5220	0.00459
Barium crown glass BaK4	1.5690	0.00531
Barium flint glass BaF10	1.6700	0.00743
Dense flint glass SF10	1.7280	0.01342

Cauchy公式形式非常简单,具有很多应用。Cauchy公式只使用于正常色散区,在可见光波段和实际情况吻合的比较好, 红外波段误差较大。

Sellmeier (W. Sellmeier, 1871)经验公式:

$$n^{2} = 1 + \frac{B_{1}\lambda^{2}}{\lambda^{2} - C_{1}} + \frac{B_{2}\lambda^{2}}{\lambda^{2} - C_{2}} + \frac{B_{3}\lambda^{2}}{\lambda^{2} - C_{3}}$$

Table of coefficients of Sellmeier equation										
Material	\mathbf{B}_1	B_2	B_3	$C_1 (\times 10^{-3} \mu m^2)$	$C_2 (\times 10^{-2} \mu m^2)$	$C_3 (\times 10^2 \mu m^2)$				
BK7	1.03961212	0.231792344	1.01046945	6.00069867	2.00179144	1.03560653				
sapphire (o wave)	1.43134930	0.65054713	5.3414021	5.2799261	1.42382647	3.25017834				
sapphire e wave)	1.5039759	0.55069141	6.5927379	5.48041129	1.47994281	4.0289514				
fused silica	0.69616630	0.40794260	0.89747940	4.67914826	1.35120631	97.9340025				

7.2.2 反常色散

折射率随波长单调上升

$$\frac{dn}{d\lambda} > 0$$

正常色散

在吸收带中,光不能通过,无法测折射率,是反常色散伍德(R.W.Wood,1904)在钠蒸气首次观察到。

7.2.3 一种物质的全部色散曲线

特点:一系列正常色散段和反常色散段构成

不同正常色散段的常数 A, B, C不同。

7.2.3 一种物质的全部色散曲线

7.2.4 经典色散理论

- 当电荷的运动速度、方向改变时,将会产生交变电场、并向 外辐射电磁波
- 原子、分子核外电子都被束缚在原子附近,无外加电场时。在外场的作用下,正负电中心分离,介质被极化,形成电偶极子。
- 将电偶极子作为弹性振子处理,电偶极子在入射光电场的作用下,将会作受迫振动,并辐射出电磁波。这就是经典的受激原子发光的洛仑兹模型。

7.2.4 经典色散理论 电偶极子的极化

• 电偶极子在外场的作用下做受迫振动

$$m\ddot{x} + g\dot{x} + kx = -eE$$
 $x = \frac{eE_0}{m} \frac{1}{(\omega^2 - \omega_0^2) + i\omega\gamma} e^{-i\omega t}$ $\ddot{x} = -\frac{eE}{m} - \omega_0^2 x - \gamma \dot{x}$ $\gamma = g / m$ 为阻尼常数 $\omega_0 = \sqrt{k / m}$ 外电场 $E = E_0 e^{-i\omega t}$ 极化强度 $P = -NZex$ 极化率 $\chi = \frac{P}{\varepsilon_0 E}$ 相对介电常量 $\varepsilon_r = 1 + \chi = 1 - \frac{ZNe^2}{\varepsilon_0 m} \frac{1}{(\omega^2 - \omega_0^2) + i\omega\gamma}$ 折射率 $\tilde{n}^2 = \varepsilon_r = 1 - \frac{ZNe^2}{\varepsilon_0 m} \frac{1}{(\omega^2 - \omega_0^2) + i\omega\gamma}$

7.2.4 经典色散理论 折射率

$$\tilde{n}^2 = 1 - \frac{ZNe^2}{\varepsilon_0 m} \frac{\omega^2 - \omega_0^2}{(\omega^2 - \omega_0^2)^2 + (\gamma \omega)^2} + i \frac{ZNe^2}{\varepsilon_0 m} \frac{\gamma \omega}{(\omega^2 - \omega_0^2)^2 + (\gamma \omega)^2}$$

复折射率
$$\tilde{n} = n(1+i\kappa)$$
 $\tilde{n}^2 = n^2(1-\kappa^2) + i2n^2\kappa$

实部
$$n^2(1-\kappa^2) = 1 - \frac{ZNe^2}{\varepsilon_0 m} \frac{\omega^2 - \omega_0^2}{(\omega^2 - \omega_0^2)^2 + (\gamma \omega)^2}$$

虚部
$$2n^2\kappa = \frac{ZNe^2}{\varepsilon_0 m} \frac{\gamma \omega}{(\omega^2 - \omega_0^2)^2 + (\gamma \omega)^2}$$

7.2.4 经典色散理论

在损耗很低的情况下
$$\kappa << 1$$
 $n^2 = 1 + \frac{ZNe^2}{\varepsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2}$

介质的折射率可能大于1,也可能小于1,甚至可能是负值

$$0 \le \omega \le \omega_0 \qquad n^2 (1 - \kappa^2) = 1 + \frac{ZNe^2}{\varepsilon_0 m} \frac{1}{\omega_0^2 - \omega^2}$$

n > 1 n 随着 ω 增加而增加,正常色散区域

$$\omega = \omega_0$$
 共振吸收 n 随着 ω 增加而减小,反常色散区域

$$\omega_0 \le \omega \le \infty$$
 $n < 1$ X射线在介质中的折射率小于1

作业

p.234: 1, 2

p.244: 1, 3

重排版:

P429,1,2

P437, 1, 3

• 已知光学纤维的折射率n沿径向的分布为 $n^2=n_0^2(1-a^2r^2)$, 其中 n_0 为中心的折射率,a为比1小得多的正数。试求光线在纤维中的传播轨迹。

