$$M_{0} = \frac{\left[\cos\left(\pi \frac{f_{\text{US}}}{f_{r}}\right)\right]^{2} + \left[\frac{\rho_{p} \vartheta_{p}}{\rho_{\text{Si}} \vartheta_{\text{Si}}} \sin\left(\pi \frac{f_{\text{US}}}{f_{r}}\right)\right]^{2}}{\left[\sin\left(\frac{\pi}{2} \frac{f_{\text{US}}}{f_{r}}\right)\right]^{4}}.$$
(2.2)

Параметри використаних перетворювачів зведено у таблиці 2.1.

Таблиця 2.1 – Параметри п'єзоелектричних перетворювачів

Перетво	Матаріал	f_r ,	$f_{ m US}$,	Тип	C_p ,	A_p ,
рювач	Матеріал	МΓц	МΓц	хвиль*	пΦ	MM^2
L2d4	ЦТС19	2,23	2,39	1	6250	314
		0,32	0,31	t		
L4d1	LiNbO ₃	4,02	4,09	1	135	178
		13,41	13,60	1		
L5d4	LiNbO ₃	5,33	5,40	1	288	283
		18,90	17,87	1		
L9d0	LiNbO ₃	8,53	8,98	1	378	225
		30,42	30,74	1		
T5d5	LiNbO ₃	5,55	5,94	t	480	200
		17,27	20,74	t		
T5d2	LiNbO ₃	4,95	5,23	t	520	192
		15,89	16,03	t		
		26,83	26,80	t		
T8d9	LiNbO ₃	8,94	8,96	t	1040	192
		27,54	28,02	t		

^{* 1 –} повздовжні хвилі, t – поперечні хвилі

При аналізі можливих механізмів виявлених акустоїндукованих ефектів проводилися також розрахунки відносної деформації гратки при поширенні УЗ: