MOBILE ROBOTICS

Eric dubreuil : eric.dubreuil@umontpellier.fr

Goals of the day:

- Analyze three kinds of mobile robots :
 - Dual-wheel unicycle
 - Three-wheel omnidirectionnal
 - Four-wheel mecanum
- Wheels
 - Classic
 - Swedish wheel
 - Mecanum wheel
- Control processes
 - Mathematical model
 - Vector control
 - Command programming

Dual-wheeled unicycle Robot

Classic wheel

- rotates on itself
- moves on u
- DOES NOT move on v

Dual-wheeled unicycle Robot

Using Thales's theorem

$$\frac{V_r}{R+L} = \frac{V_l}{R-L} = \frac{V}{R}$$

and

$$V = R.\omega$$

$$V_r = R_w.\omega_r$$
 and $V_l = R_w.\omega_l$

Dual-wheeled unicycle Robot

Control parameters : \vec{V} , R

Control vectors :
$$\vec{V}$$
 , $\vec{\omega}$

$$\omega_r = \frac{R + L}{R_w \cdot R} V$$

$$\omega_r = \frac{V + L.\omega}{R_w}$$

$$\omega_l = \frac{R - L}{R_w \cdot R} V$$

$$\omega_l = \frac{V - L.\omega}{R_w}$$

OMNIDIRECTIONAL Robot

Omnidirectional wheel (Swedish wheel)

Bottom view

- rotates on itself
- moves on U (controlled)
- moves on V (free)

OMNIDIRECTIONAL Robot

Independant control vectors:

$$\vec{u}$$
, \vec{v} , $\vec{\omega}$

Any translation, rotation When and where you want...

HOW IT WORKS...

Speed equation:

$$v_1 = -u.\sin(0) + v.\cos(0) + d.\omega$$

 $v_2 = -u.\sin(\frac{2\pi}{3}) + v.\cos(\frac{2\pi}{3}) + d.\omega$
 $v_3 = -u.\sin(\frac{-2\pi}{3}) + v.\cos(\frac{-2\pi}{3}) + d.\omega$

Motor command:

$$\omega_1 = \frac{V_1}{R} \qquad \qquad \omega_2 = \frac{V_2}{R} \qquad \qquad \omega_3 = \frac{V_3}{R}$$

$$\omega_2 = \frac{v_2}{R}$$

$$\omega_3 = \frac{V_3}{R}$$

Robot MECANUM

Mecanum wheel

Bottom view

Robot MECANUM

Speed motor equation

$$\begin{bmatrix} \omega_2 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{bmatrix} = rac{1}{r} egin{pmatrix} 1 & 1 & -(L_1 + L_2) \\ -1 & 1 & -(L_1 + L_2) \\ 1 & -1 & -(L_1 + L_2) \\ -1 & -1 & -(L_1 + L_2) \end{bmatrix} \cdot egin{pmatrix} u \\ v \\ omega \end{bmatrix}$$

$$\begin{pmatrix} u \\ v \\ omega \end{pmatrix} = \frac{r}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & -1 \\ -\frac{1}{L_1 + L_2} & \frac{1}{L_1 + L_2} & -\frac{1}{L_1 + L_2} & \frac{1}{L_1 + L_2} \end{pmatrix} \cdot \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ \omega_4 \end{pmatrix}$$

The BeagleBoneBlue

The BeagleBoneBlue

Code example in tutorial, and in the BeagleBone...

Quadrature encoders

http://www.creative-robotics.com/quadrature-intro

Counter up

Counter down

To Work!

- Choose your robot
- Follow the tutorial
- And make them move correctly

