

Olimpiada de Fizică Etapa pe județ 24 februarie 2007

Barem

Pagina 1 din 4

Subject	Parțial	Punctaj
1. Barem subject 1	1 ai çiai	10
a) Mişcarea centrului de masă este rectilinie uniformă $\vec{v}_{CM} = \frac{\vec{p}_0}{2M\Delta_{min}} = ct$	2p	2p
b) Mişcarea relativă a corpurilor este armonică.		4 p
Ecuația de mișcare este :		
$\mu_r a_r = -k \cdot x$ unde $\mu_r = \frac{m_z m_z}{m_1 + m_z}$ este masa redusă a sistemului	0.5	
Soluția ecuației este:	0.5	
$x(t) = A \sin(\omega t + \varphi)$, iar viteza $v(t) = \omega A \cos(\omega t + \varphi)$	0.5	
unde		
$\omega = \sqrt{\frac{k}{\mu_*}} \operatorname{deci} \ \omega = \sqrt{\frac{k(2M+m)}{M(M+m)}}$	0.5	
Din condițiile inițiale se determină φ și A:		
La $t=0$, $x=0$, deci $\phi=0$,		
$v_{max} = \omega A$, $v_{max} = \frac{p_0}{M}$, deci $A = \frac{p_0}{M\omega}$	0.5	
	0.5	
$A = p_0 \sqrt{\frac{(M+m)}{kM(2M+m)}},$		
Ecuațiile mișcării și ale vitezei sunt:		
$x(t) = p_0 \sqrt{\frac{(M+m)}{kM(2M+m)}} \sin\left(\sqrt{\frac{k(2M+m)}{M(M+m)}}t\right)$	0.5	
$v_r(t) = \frac{p_0}{M} \cos\left(\sqrt{\frac{k(2M+m)}{M(M+m)}}t\right)$	0.5	
Condiția cerută este ca A < l_0 , adică $p_0 < l_0 \sqrt{\frac{k(2M+m)}{(M+m)}}$	0.5	
c) Deducerea accelerației corpului 2 :		3p
-,		_ F
$\vec{a}_{CM} = 0$, relația implică		
	1,5	
$\vec{a}_r = \vec{a}_1 - \vec{a}_2$ Rezultă		
$\vec{a}_2 = -\frac{M}{2M+m}\vec{a}_r$		
Pentru condiția		
$F_{f} \ge m a_{2max} - \frac{mM}{2M + m} a_{rmax}$	1p	
$\mu_{min} = \frac{p_0}{g} \sqrt{\frac{k}{M(M+m)(2M+m)}}$	0,5	
5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
OFICIU		1p
011010		14

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ

Pagina 2 din 4

Subject Officiu 2. Barem subject 2 a. Pentru expresia energiei transmise elementului de masă Δm la distanța r de sursă este $\Delta W = \frac{dv}{2}A_{(p)}^2\omega^2$ Pentru expresia intensității undei: $I_{(r)} - \frac{\Delta W}{S \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} \frac{A_{(p)}^2\omega^2}{\rho \cdot \omega} - \frac{\rho \cdot c}{2}A_{(p)}^2\omega^2$ Pentru expresia intensității undei: $I_{(r)} - \frac{\Delta W}{S \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} - \frac{\rho \cdot c}{2}A_{(p)}^2\omega^2$ 1p Pentru prag $A_{prag} = \frac{1}{\omega} \sqrt{\frac{2 \cdot 5p \cdot ag}{\rho \cdot \omega}}$ 0.5p b. Pentru relația dintre $I_{(r)} \notin P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(p)}^2 \cdot r^2$ 1p De unde $A_{(r)} = \frac{1}{\omega r} \sqrt{\frac{P}{2\pi c p \cdot c}} = \frac{\cos nx}{r}$ 0.5p Pentru ceuția undei sferice sinusoidale progresive $y(r,t) = \frac{1}{\omega r} \sqrt{\frac{P}{2\pi c p \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ 1p c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_1)}{c} = \frac{P}{2\pi c p \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c}\right)$ 1p unde $r_2 - r_1 = \delta \approx 2 \cdot c \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ in $r_1^2 \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r_2} \approx \frac{1}{r_$		•	gina 2 din 4
2. Barem subject 2 a. Pentru expresia energiei transmise elementului de masă Δm la distanța r de sursă este $\Delta W = \frac{dr^2}{2}A_{(r)}^2\omega^2$ lp Pentru expresia intensității undei: $I_{(r)} - \frac{\Delta W}{S} \frac{\rho + 4\pi r^2 dr}{2t} \frac{A_{(r)}^2\omega^2}{4\pi r^2 dt} - \frac{\rho \cdot c}{2}A_{(r)}^2\omega^2$ lp Pentru prag $A_{prag} = \frac{1}{\omega} \sqrt{\frac{2t_{prag}}{\rho \cdot c}}$ 0.5p b. Pentru relația dintre $I_{(r)}$ și P : $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ lp De unde $A_{(r)} = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2\pi \cdot p \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ lp 0.5p Pentru ecuația undei sferice sinusoidale progresive $y(r,t) = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2\pi \cdot p \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ lp 0.5p c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega (r_2 - r_2)}{c} = \frac{P}{2\pi \cdot p \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \delta}{c}\right)$ lp unde $r_2 - r_1 = \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ lp 0.5p Expresia îinală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot p \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c}\theta\right)$ 0.5p Expresia intensității în M $I_{M(r)\theta} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{r \cdot c}{\omega \cdot d}, k \in N$ lp 1p $I_M = \min \Rightarrow \cos^2 \left(\frac{\omega \cdot d}{c}\theta^2\right) = 0 \Rightarrow \theta^i_k = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \omega}{\omega \cdot d}, k \in N$ lp	Subject	Parțial	Punctaj
a. Pentru expresia energiei transmise elementului de masă Δm la distanța r de sursă este $\Delta W = \frac{dm^2}{2}A_{(r)}^2\omega^2$ Pentru expresia intensității undei : $I_{(r)} - \frac{\Delta W}{S \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} - \frac{\rho \cdot c}{2}A_{(r)}^2\omega^2$ 1p			10
sursă este $\Delta W = \frac{d_P}{2} A_{(Y)}^2 \omega^2$ Pentru expresia intensității undei : $I_{(Y)} - \frac{\Delta W}{S \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} - \frac{\rho \cdot c}{2} A_{(Y)}^2 \omega^2$ lp $Pentru prag A_{prag} = \frac{1}{\omega} \sqrt{\frac{2 I_{prag}}{\rho \cdot c}}$ 0.5p $Pentru relația dintre I_{(Y)} \not\equiv I P : P = I_{(Y)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(Y)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(Y)}^2 \cdot r^2$ lp $Pentru ecuația undei sferice sinusoidale progresive y(r,t) = \frac{1}{\omega r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ lp $C. \text{ Amplitudinea undei rezultante} A_N^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c}\right)$ lp $Unde r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ o.5p $Expresia finală a amplitudinii A_N^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c}\theta\right)$ 0.5p $Expresia intensității in M I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot e}{\omega \cdot d}, k \in N$ lp $I_N = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c}\theta^r\right) = 0 \Rightarrow \theta^r_k = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot e}{\omega \cdot d}, k \in N$			2.7
$\Delta W = \frac{\Delta m}{2} A_{(r)}^2 \omega^2$ Pentru expresia intensității undei: $I_{(r)} - \frac{\Delta W}{S \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} - \frac{\rho \cdot c}{2} A_{(r)}^2 \omega^2$ $\text{Pentru prag } A_{prag} = \frac{1}{\omega} \sqrt{\frac{2^2 prag}{\rho \cdot c}}$ $\text{D. Pentru relația dintre } I_{(r)} \not \in P :$ $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $\text{De unde } A_{(r)} = \frac{1}{\omega r} \sqrt{\frac{P}{2\pi r \rho \cdot c}} = \frac{const}{r}$ $\text{Pentru ecuația undei sferice sinusoidale progresive}$ $y(r, t) = \frac{1}{\omega r} \sqrt{\frac{P}{2\pi r \rho \cdot c}} \sin \omega \left(t - \frac{r}{c} \right)$ Ip $\text{C. Amplitudinea undei rezultante}$ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2\pi r \rho \cdot c} \omega^2 \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 v r_2} \cos \frac{\omega \cdot \delta}{c} \right)$ Ip O.5p $\text{inar } \frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_1 v_2} \approx \frac{1}{r_2^2}$ $\text{Expresia finală a amplitudinii}$ $A_M^2 = \frac{2 \cdot P}{\pi \cdot r \cdot c} \cdot \omega^2 \cdot r^2 \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Expresia intensității în M}$ $I_M(r,\theta) = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta^i \right) = 0 \Rightarrow \theta^i_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$,		2.5 p
Pentru expresia intensității undei : $I_{(r)} - \frac{\Delta W}{s \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} - \frac{\rho \cdot c}{2} A_{(r)}^2 \omega^2$		1	
$I_{(r)} - \frac{\Delta W}{S \cdot \Delta t} \frac{\rho \cdot 4\pi r^2 dr}{2 \cdot 4\pi r^2 dt} - \frac{\rho \cdot c}{2} A_{(r)}^2 \omega^2$ $\text{Pentru prag } A_{prag} = \frac{1}{\omega} \sqrt{\frac{2 \cdot t_{prag}}{\rho \cdot c}}$ $0.5p$ $\text{D. Pentru relatia dintre } I_{(r)} \notin P :$ $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $\text{De unde } A_{(r)} = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} = \frac{connt}{r}$ $\text{Pentru ecuația undei sferice sinusoidale progresive}$ $y(r, t) = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} \sin \omega \left(t - \frac{r}{c} \right)$ Ip $\text{c. Amplitudinea undei rezultante}$ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega (r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c} \right)$ Ip $\text{unde } r_2 - r_1 \equiv \delta \otimes 2 \cdot d \cdot \sin \theta \otimes 2 \cdot d \cdot \theta$ $\text{iar } \frac{1}{r_2^2} \approx \frac{1}{r_2} \approx \frac{1}{r_2} \frac{\pi^2}{r_2} \approx \frac{1}{r_2} \frac{\pi^2}{r_2} \cos \frac{\omega^2}{c} \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Expresia finală a amplitudinii}$ $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Expresia intensității în M}$ $I_{M(r;\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Delfinul receptor ,, simter maximele și minimele alternante ale intensității:}$ $I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_P = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta^T \right) = 0 \Rightarrow \theta^T_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$	$\Delta W = \frac{2\pi \epsilon}{2} A_{(r)}^2 \omega^2$	1p	
Pentru prag $A_{prag} = \frac{1}{\omega} \sqrt{\frac{2I_{prag}}{\rho \cdot c}}$ 0.5p b. Pentru relația dintre $I_{(r)}$ șt P : $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ 1p De unde $A_{(r)} = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} = \frac{const}{r}$ 0.5p Pentru ecuația undei sferice sinusoidale progresive $y(r, t) = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ 1p c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^3} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c}\right)$ 1p unde $r_2 - r_1 = \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ 0.5p iar $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ Expresia finală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ 0.5p Delfinul receptor coss' ($\frac{\omega \cdot d}{c}\theta$) 1p $I_M = \max \cos \cos^2\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$ 1p	Pentru expresia intensității undei :		
Pentru prag $A_{prag} = \frac{1}{\omega} \sqrt{\frac{2I_{prag}}{\rho \cdot c}}$ 0.5p b. Pentru relația dintre $I_{(r)}$ șt P : $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ 1p De unde $A_{(r)} = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} = \frac{const}{r}$ 0.5p Pentru ecuația undei sferice sinusoidale progresive $y(r, t) = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ 1p c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^3} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c}\right)$ 1p unde $r_2 - r_1 = \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ 0.5p iar $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ Expresia finală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ 0.5p Delfinul receptor coss' ($\frac{\omega \cdot d}{c}\theta$) 1p $I_M = \max \cos \cos^2\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$ 1p	$\Delta W \rho \cdot 4\pi r^2 dr A_{(r)}^2 \omega^2 \rho \cdot c$	1n	
Pentru prag $A_{prag} = \frac{1}{\omega} \sqrt{\frac{2I_{prag}}{\rho \cdot c}}$ 0.5p b. Pentru relația dintre $I_{(r)}$ șt P : $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ 1p De unde $A_{(r)} = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} = \frac{const}{r}$ 0.5p Pentru ecuația undei sferice sinusoidale progresive $y(r, t) = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}} \sin \omega \left(t - \frac{r}{c}\right)$ 1p c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^3} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c}\right)$ 1p unde $r_2 - r_1 = \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ 0.5p iar $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ Expresia finală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ 0.5p Delfinul receptor coss' ($\frac{\omega \cdot d}{c}\theta$) 1p $I_M = \max \cos \cos^2\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$ 1p	$I_{(r)} = \frac{1}{S \cdot \Delta t} \frac{1}{2 \cdot 4\pi r^2 dt} = \frac{1}{2} \frac{A_{(r)}^2 \omega^2}{2}$	19	
b. Pentru relația dintre $I_{(r)}$ și P : $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $De unde A_{(r)} = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} = \frac{const}{r} v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) c. Amplitudinea undei rezultante A_N^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_t)}{c} = \frac{P}{2 \cdot \pi_r \rho_{rr} \cdot \omega^2} \left(\frac{1}{r_t^2} + \frac{1}{r_t^2} + \frac{2}{r_2 \cdot r_1} \cos \frac{\omega \cdot \delta}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot $			
b. Pentru relația dintre $I_{(r)}$ și P : $P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $De unde A_{(r)} = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} = \frac{const}{r} v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) c. Amplitudinea undei rezultante A_N^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_t)}{c} = \frac{P}{2 \cdot \pi_r \rho_{rr} \cdot \omega^2} \left(\frac{1}{r_t^2} + \frac{1}{r_t^2} + \frac{2}{r_2 \cdot r_1} \cos \frac{\omega \cdot \delta}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{\omega_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot \pi_r \rho_{rr}}} \sin \omega \left(t - \frac{r}{c}\right) v(r,t) = \frac{1}{v_{rr}} \sqrt{\frac{P}{2 \cdot $	Pontru prog 4 _ 1 2 Iprag	0.5p	
$P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $\text{De unde } A_{(r)} = \frac{1}{\omega_r \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}}} = \frac{comst}{r}$ $\text{Pentru ecuația undei sferice sinusoidale progresive}$ $y(r,t) = \frac{1}{\omega_r \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}}} \sin \omega \left(t - \frac{r}{c} \right)$ Ip $\text{c. Amplitudinea undei rezultante}$ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c} \right)$ Ip $\text{unde } r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ $\text{unde } \frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ $\text{Expresia finală a amplitudinii}$ $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Expresia intensității în M}$ $I_{M(r)\theta} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Delfinul receptor ,,simte" maximele și minimele alternante ale intensității:}$ $I_M = \max \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$	Pentru prag $=\frac{1}{\omega}\sqrt{\frac{\rho \cdot c}{\rho \cdot c}}$	1	
$P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $\text{De unde } A_{(r)} = \frac{1}{\omega_r \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}}} = \frac{comst}{r}$ $\text{Pentru ecuația undei sferice sinusoidale progresive}$ $y(r,t) = \frac{1}{\omega_r \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}}} \sin \omega \left(t - \frac{r}{c} \right)$ Ip $\text{c. Amplitudinea undei rezultante}$ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c} \right)$ Ip $\text{unde } r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ $\text{unde } \frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ $\text{Expresia finală a amplitudinii}$ $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Expresia intensității în M}$ $I_{M(r)\theta} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Delfinul receptor ,,simte" maximele și minimele alternante ale intensității:}$ $I_M = \max \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$			
$P = I_{(r)} \cdot S = 4 \cdot \pi \cdot r^2 \cdot I_{(r)} = 2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2 \cdot A_{(r)}^2 \cdot r^2$ $\text{De unde } A_{(r)} = \frac{1}{\omega_r \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}}} = \frac{comst}{r}$ $\text{Pentru ecuația undei sferice sinusoidale progresive}$ $y(r,t) = \frac{1}{\omega_r \sqrt{\frac{P}{2 \cdot \pi \cdot \rho \cdot c}}} \sin \omega \left(t - \frac{r}{c} \right)$ Ip $\text{c. Amplitudinea undei rezultante}$ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot \pi \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c} \right)$ Ip $\text{unde } r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ $\text{unde } \frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ $\text{Expresia finală a amplitudinii}$ $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Expresia intensității în M}$ $I_{M(r)\theta} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ $\text{Delfinul receptor ,,simte" maximele și minimele alternante ale intensității:}$ $I_M = \max \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$	b. Pentru relația dintre $I_{(a)}$ și P :		2.5 p
De unde $A_{(r)} = \frac{1}{\omega r} \sqrt{\frac{P}{2\pi r_1 \rho_r \sigma}} = \frac{const}{r}$ Pentru ecuația undei sferice sinusoidale progresive $y(r,t) = \frac{1}{\omega r} \sqrt{\frac{P}{2\pi r_1 \rho_r \sigma}} \sin \omega \left(t - \frac{r}{\sigma}\right)$ 1p c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{\sigma} = \frac{P}{2\pi r_1 \rho_r \sigma_r \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 r_2} \cos \frac{\omega \sigma}{\sigma}\right)$ 1p unde $r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ o.5p iar $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 r_2} \approx \frac{1}{r^2}$ 0.5p Expresia finală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot \sigma \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{\sigma}\theta\right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{\sigma}\theta\right)$ Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_M = \max \cos \cos^2 \left(\frac{\omega \cdot d}{\sigma}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{\sigma}\theta'\right) = 0 \Rightarrow \theta'_R = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$	No. of	1p	1
Pentru ecuația undei sferice sinusoidale progresive $y(r,t) = \frac{1}{\omega \cdot r} \sqrt{\frac{P}{2 \cdot m \cdot \rho \cdot c}} \sin \omega \left(t - \frac{r}{c} \right) $ lp $ C. \text{ Amplitudinea undei rezultante} $ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega(r_2 - r_2)}{c} = \frac{P}{2 \cdot m \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c} \right) $ lp $ \text{unde } r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta $ $ \text{iar } \frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2} $ 0.5p $ \text{Expresia finală a amplitudinii} $ $ A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p $ \text{Expresia intensității în M} $ $ I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p $ \text{Delfinul receptor } r, \text{simte" maximele și minimele alternante ale intensității:} $ $ I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{r \cdot c}{\omega \cdot d}, k \in \mathbb{N} $ lp $ I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N} $			
$y(r,t) = \frac{1}{\omega r r} \sqrt{\frac{P}{2 \cdot m \cdot \rho \cdot \sigma}} \sin \omega \left(t - \frac{r}{c} \right) $ 1p $c. \text{ Amplitudinea undei rezultante}$ $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2 \cos \frac{\omega (r_2 - r_2)}{c} = \frac{P}{2 \cdot m \cdot \rho \cdot c \cdot \omega^2} \left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2 \cdot r_2} \cos \frac{\omega \cdot \delta}{c} \right) $ 1p $\text{unde } r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta $ $\text{iar } \frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2} \approx \frac{1}{r^2} $ $\text{Expresia finală a amplitudinii}$ $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) $ $\text{Expresia intensității în M}$ $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) $ $\text{Delfinul receptor ,,simte'' maximele și minimele alternante ale intensității:}$ $I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$	De unde $A_{(r)} = \frac{1}{\omega \cdot r} \sqrt{\frac{2 \cdot \pi \cdot \rho \cdot \sigma}{r}} = \frac{1}{r}$	0.5p	
c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\frac{\omega(r_2-r_2)}{c} = \frac{P}{2\cdot \pi\cdot\rho\cdot\varepsilon\cdot\omega^2}\left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2\cdot r_2}\cos\frac{\omega\cdot\delta}{c}\right) \qquad \text{lp}$ unde $r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin\theta \approx 2 \cdot d \cdot \theta$ 0.5p arr $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2\cdot r_2} \approx \frac{1}{r^2} \approx$	Pentru ecuația undei sferice sinusoidale progresive		
c. Amplitudinea undei rezultante $A_M^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\frac{\omega(r_2-r_2)}{c} = \frac{P}{2\cdot \pi\cdot\rho\cdot\varepsilon\cdot\omega^2}\left(\frac{1}{r_2^2} + \frac{1}{r_2^2} + \frac{2}{r_2\cdot r_2}\cos\frac{\omega\cdot\delta}{c}\right) \qquad \text{lp}$ unde $r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin\theta \approx 2 \cdot d \cdot \theta$ 0.5p arr $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2\cdot r_2} \approx \frac{1}{r^2} \approx$	$y(r,t) = \frac{1}{r} \left(\frac{p}{r} \sin \omega \left(t - \frac{r}{r} \right) \right)$	1n	
$A_{M}^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\frac{\omega(r_{2}-r_{2})}{c} = \frac{P}{2\pi r_{2}r_{2}\cos^{2}}\left(\frac{1}{r_{2}^{2}} + \frac{1}{r_{2}^{3}} + \frac{2}{r_{2}r_{2}}\cos\frac{\omega\delta}{c}\right) \qquad 1p$ $\text{unde } r_{2} - r_{1} \equiv \delta \approx 2 \cdot d \cdot \sin\theta \approx 2 \cdot d \cdot \theta$ $\text{iar } \frac{1}{r_{2}^{2}} \approx \frac{1}{r_{2}^{2}} \approx \frac{1}{r_{2}r_{2}} \approx \frac{1}{r^{2}} \qquad 0.5p$ $\text{Expresia finală a amplitudinii}$ $A_{M}^{2} = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^{2} \cdot r^{2}}\cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) \qquad 0.5p$ $\text{Expresia intensității în M}$ $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^{2}}\cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) \qquad 0.5p$ $\text{Delfinul receptor ,,,simte'' maximele și minimele alternante ale intensității:}$ $I_{M} = \max \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$ $I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$	$\omega_{r}\sqrt{2\pi\rho_{r}\sigma} = \omega_{r}\sqrt{2\pi\rho_{r}\sigma}$	19	
$A_{M}^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos\frac{\omega(r_{2}-r_{2})}{c} = \frac{P}{2\pi r_{2}r_{2}\cos^{2}}\left(\frac{1}{r_{2}^{2}} + \frac{1}{r_{2}^{3}} + \frac{2}{r_{2}r_{2}}\cos\frac{\omega\delta}{c}\right) \qquad 1p$ $\text{unde } r_{2} - r_{1} \equiv \delta \approx 2 \cdot d \cdot \sin\theta \approx 2 \cdot d \cdot \theta$ $\text{iar } \frac{1}{r_{2}^{2}} \approx \frac{1}{r_{2}^{2}} \approx \frac{1}{r_{2}r_{2}} \approx \frac{1}{r^{2}} \qquad 0.5p$ $\text{Expresia finală a amplitudinii}$ $A_{M}^{2} = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^{2} \cdot r^{2}}\cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) \qquad 0.5p$ $\text{Expresia intensității în M}$ $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^{2}}\cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) \qquad 0.5p$ $\text{Delfinul receptor ,,,simte'' maximele și minimele alternante ale intensității:}$ $I_{M} = \max \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$ $I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in N$			
unde $r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ iar $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ Expresia finală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ 1p			4p
unde $r_2 - r_1 \equiv \delta \approx 2 \cdot d \cdot \sin \theta \approx 2 \cdot d \cdot \theta$ iar $\frac{1}{r_2^2} \approx \frac{1}{r_2^2} \approx \frac{1}{r_2 \cdot r_2} \approx \frac{1}{r^2}$ Expresia finală a amplitudinii $A_M^2 = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^2 \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right)$ Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ 1p	$A_M^2 = A_1^2 + A_2^2 + 2A_1A_2\cos\frac{\omega(r_2-r_2)}{2} = \frac{P}{2}\left(\frac{1}{2} + \frac{1}{2} + \frac{2}{2}\cos\frac{\omega\delta}{2}\right)$	1p	
Expresia finală a amplitudinii $A_{M}^{2} = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^{2} \cdot r^{2}} \cos^{2} \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^{2}} \cos^{2} \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_{M} = \max \Leftrightarrow \cos^{2} \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N} $ 1p $I_{M} = \min \Leftrightarrow \cos^{2} \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N} $	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.5	
Expresia finală a amplitudinii $A_{M}^{2} = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^{2} \cdot r^{2}} \cos^{2} \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^{2}} \cos^{2} \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_{M} = \max \Leftrightarrow \cos^{2} \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N} $ 1p $I_{M} = \min \Leftrightarrow \cos^{2} \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N} $	$\lim_{n\to\infty} \frac{1}{n} \otimes \frac{1}{n} \otimes \frac{1}{n} \otimes \frac{1}{n} \otimes \frac{1}{n}$		
$A_{M}^{2} = \frac{2 \cdot P}{\pi \cdot \rho \cdot c \cdot \omega^{2} \cdot r^{2}} \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right)$ Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^{2}} \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right)$ Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_{M} = \max \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $1p$		0.5p	
Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ 1p $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$	Expresia finală a amplitudinii		
Expresia intensității în M $I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) $ 0.5p Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_M = \max \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta \right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ 1p $I_M = \min \Leftrightarrow \cos^2 \left(\frac{\omega \cdot d}{c} \theta' \right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2} \right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$	$A_{ro}^{2} = \frac{2 \cdot P}{\cos^{2}(\omega \cdot d)}$	0.5n	
$I_{M(r,\theta)} = \frac{P}{\pi \cdot r^2} \cos^2\left(\frac{\omega \cdot d}{c}\theta\right)$ Delfinul receptor ,,simte" maximele şi minimele alternante ale intensității: $I_M = \max \Leftrightarrow \cos^2\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_k = k \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ $I_M = \min \Leftrightarrow \cos^2\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$ 1p		0.5р	
Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_{M} = \max \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $1p$			
Delfinul receptor "simte" maximele și minimele alternante ale intensității: $I_{M} = \max \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $1p$	$I_{M(r,\theta)} = \frac{P}{2} \cos^2(\frac{\omega \cdot a}{\theta})$	0.5p	
$I_{M} = \max \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta\right) = 1 \Rightarrow \theta_{k} = k \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ $I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c}\theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot \sigma}{\omega \cdot d}, k \in \mathbb{N}$ 1p			
$I_{M} = \min \Leftrightarrow \cos^{2}\left(\frac{\omega \cdot d}{c} \theta'\right) = 0 \Rightarrow \theta'_{k} = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot c}{\omega \cdot d}, k \in \mathbb{N}$			
$I_M = \min \Leftrightarrow \cos^2\left(\frac{\omega}{c}\theta'\right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2}\right) \cdot \frac{\kappa c}{\omega \cdot d}, k \in \mathbb{N}$		1n	
	$I_M = \min \Leftrightarrow \cos^2\left(\frac{\omega \cdot d}{\omega}\theta'\right) = 0 \Rightarrow \theta'_k = \left(k + \frac{1}{2}\right) \cdot \frac{\pi \cdot \varepsilon}{\omega}, k \in \mathbb{N}$	14	
OFICIU 1p	··· \ ε / ··· \ 2/ ω·α·		
	OFICIU	1p	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2007 Barem

Pagina 3 din 4

Subject 3.	Parțial	Punctaj
Barem subject x		10
a) Locul geometric al punctelor în care se află locul produceri cutremurului față de un observator care înregistrează intervalul de timp $\Delta t_{sp} = t_{s} - t_{p}$ (între momentele recepționării celor două tipuri de unde seismice), este, potrivit simplifcărilor considerate, o sferă. Proiecția sferei pe suprafața Pământului reprezintă un cerc pe care se poate afla epicentrul cutremurului	1 p	4 p
Calculul distanței: din $\Delta t_{pS} = \frac{d}{v_{S}} - \frac{d}{v_{P}} \implies d = \Delta t_{pS} \cdot \frac{v_{S}v_{p}}{v_{p} - v_{S}}$	1 p	
$d_{lt} = 656km \qquad d_{Gr} = 800km \qquad d_{Ro} = 520km$ Figură $\frac{50^{0} \phi}{40^{0}}$ $It \qquad Gr$ $\frac{40^{0}}{30^{0}}$ Gr	1 p	
$\frac{20^{\circ}}{10}$ $\frac{1}{20^{\circ}}$ $\frac{1}{30^{\circ}}$ λ aproximarea plauzibilă a punctului de intersecție a celor trei circumferințe (coordonatelor geografice ale epicentrului): epicentrul se află pe teritoriul țărilor din fosta Jugoslavie, în locul de coordonate geografice aproximative $\varphi = 42^{\circ} N$ și $\lambda = 22^{\circ} E$.	1 p	
b) Unda s este o undă transversală, în consecință ea nu apare în regiunea S ₁ , S ₂ dacă se presupune că nucleul este lichid. Astfel numai unda p traversează nucleul lichid al Pământului (unda s se propagă numai prin partea solidă a Pământului)	1 p	2 p

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Olimpiada de Fizică Etapa pe județ 24 februarie 2007

Barem

Pagina 4 din 4

		ragilla 4 ulli 4	
Subject 3.		Parțial	Punctaj
c) desen		1 p	3 p
	S C		
$OT = R_n$ raza nucleului.			
$OT = R_{n} = R \sin \frac{\alpha}{2}$		1 p	
Valoarea lui R _n		1 p	
Oficiu			1

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.