知乎LIVE

机器学习入门之特征工程

http://jd92.wang

20:30-21:30 2017.03.19

目录

特征工程简介

- •什么是特征工程?
- •为什么特征工程很重要?

特征工程处理方法

- •数据预处理的有效方法
- •如何获取重要特征?
- •如何进行有效的特征选择?
- •常用的降维方法

实践中的应用

- •实战:自行车租赁比赛、豆瓣电影评分预测
- •推荐的其他学习资源与工具

特征工程简介(1)

- •什么是特征工程?
 - 小李相亲回来,别人问:对方有什么特点?
 - 小白兔, 白又白, 两只耳朵竖起来
 - "你化成灰我也认识你!"

共有的一能进行概括

•我们根据事物所具有的<u>共性</u>所<u>抽象</u>出来的能 <u>代表</u>这一事物的概念,就叫特征

能代表这一类事物

特征工程简介(2)

- •为什么特征工程是重要的?
 - "数据和特征<u>决定了</u>机器学习的上限,而模型和算法 只是逼近这个上限而已。"
 - •除了数据和模型外,特征是影响学习效果的重要因素。

我们本次Live重点

特征工程——预处理

预处理:

- 现实世界数据是"肮脏"的,好数据→好结果
- 对原始数据的清洗、过滤、缺失值处理、标准化、归一化等,使其更方便做后期的特征处理和机器学习。

•常用预处理方法:

- 去重:去掉重复的数据
- 过滤: 把反常值(极高/极低)用平滑的值代替
- ■标准化:把数据放缩到同样的范围(比如0均值、最大最小归一化)
- 缺失值处理:用已有的数据补全丢掉的数据(如均值)
- 离散化:把数据按不同区间(箱子)划分(分箱)

特征工程——特征提取

- •如何获取重要特征?
 - 相关领域的专家知识
 - 行为识别领域,加速度提取时域和频率信息
 - 深度学习自动学习特征
 - 人脸识别、图片识别等应用,依赖卷积神经网络
 - 有时原始数据本身是特征
 - 时间序列预测时,原始数据本身就是特征
 - 实验、经验与发现
 - 不断尝试新的特征
 - 深度学习并不是万能的

特征工程——特征选择

•特征选择方法:

- 过滤法:
 - 方差选择法:计算各个特征方差,选择方差大于阈值的特征
 - 相关系数法:计算各个特征的Pearson相关系数
 - 互信息法:计算各个特征的信息增益
- 封装法:
 - 递归消除法:使用基模型(如LR)在训练中进行迭代,选择不同 特征
- 嵌入法:
 - 使用带惩罚项的基模型进行特征选择(比如LR加入正则)
 - 树模型的特征选择(随机森林、决策树)

特征工程——降维

- 常用特征降维方法:
 - 线性降维
 - 主成分分析(PCA):选择方差最大的K个特征[无监督]
 - 线性判别分析(LDA):选择分类性能最好的特征[有监督]
 - 非线性降维(大多是流形学习)
 - 核主成分分析(KPCA): 带核函数的PCA
 - 局部线性嵌入(LLE):利用流形结构进行降维
 - 还有拉普拉斯图、MDS等
 - 迁移成分分析(TCA):不同领域之间迁移学习降维

实际应用——自行车租赁(1)

- Kaggle自行车租赁预测
 - 给定不同的条件(天气、假期、温度、湿度等),预测 未来租赁自行车的数量
 - https://www.kaggle.com/c/bike-sharing-demand

datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	δ
2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40
2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32
2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13
2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1

实际应用——自行车租赁(2)

•特征构建:

• 然后进行特征选择与降维

自己提取特征

- 平均一周(月)的人数、温度等
- 对数据做不同阶的差分
- 自己爬取空气质量信息(如果有)
- 节假日详细信息
- 节假日数据的统计信息

实际应用——自行车租赁(3)

- •模型构建:
 - SVM for regression
 - GBR
 - XGBOOST
 - Random Forest
 - KNN
- 训练多模型时,先选大步长大范围调参,第二遍再选小范围小步长调一次
- 重视Stack的作用

模型stack

- Linear regression
- Ridge regression
- Lasso
- SVR
- KNN
-

实际应用——豆瓣电影评分(1)

- •豆瓣电影评分预测:
 - 根据之前已有电影数据信息,预测即将上映电影的豆瓣评分

一条狗的使命 A Dog's Purpose (2017)

导演: 拉斯·霍尔斯道姆

编剧: W·布鲁斯·卡梅伦/凯瑟琳·迈克/奥黛丽· 威尔斯/玛雅·福布斯/沃利·亚历斯戴尔

主演: 布丽特·罗伯森 / 丹尼斯·奎德 / 佩吉·利普

顿/乔什·加德/K·J·阿帕/更多...

类型: 剧情 / 喜剧 / 冒险

官方网站: www.adogspurposemovie.com

制片国家/地区:美国

• 如何爬取合适的信息进行预测?

实际应用——豆瓣电影评分(2)

-分析:

实际应用——豆瓣电影评分(3)

•我们提取的特征:

实际应用——豆瓣电影评分(4)

- •处理流程:
 - 提取上述特征并做规范化;
 - 建立2个模型分别进行评测:
 - SVM for regression
 - 余弦相似度模型
 - 最后的结果较为满意

```
<movie>
  <id>6875263</id>
  <name>灰姑娘 Cinderella</name>
  <rating>6.5</rating>
</movie>
<movie>
  <id>11026735</id>
  <name>超能陆战队 Big Hero 6</name>
  <rating>7.6</rating>
</movie>
<movie>
  <id>5154799</id>
  <name>木星上行 Jupiter Ascending</name>
  <rating>5.7</rating>
</movie>
<movie>
  <id>3993588</id>
  <name>狼图腾</name>
  <rating>7.7</rating>
</movie>
```

•总结:提取适合的特征,很重要!

实际应用——推荐工具和资源

- •进一步了解特征工程:
 - http://www.cnblogs.com/jasonfreak/p/5448385.html
 - http://www.csuldw.com/2015/10/24/2015-10-24%20feature%20engineering/
- •工具
 - Python中的Scikit-learn,可以特征选择、降维
 - Matlab下的各种降维函数的使用
- •实战
 - Kaggle 竞赛入门:
 https://www.kaggle.com/competitions?sortBy=prize&group=active&page=1&segment=gettingStarted

知乎LIVE

机器学习中的特征工程

http://jd92.wang

2017.03.19 20:30-21:30

