



B6

## DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                             |  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) Classification internationale des brevets <sup>7</sup> :<br><br>C07D 205/06, 401/06, 409/06, 409/14,<br>417/06, A61K 31/397                                                                                                                                                                                                                                                            |  | A1                                                          | (11) Numéro de publication internationale: <b>WO 00/15609</b><br><br>(43) Date de publication internationale: 23 mars 2000 (23.03.00)                                                                                                                                                                                                                                                                                                                                                                             |
| (21) Numéro de la demande internationale: PCT/FR99/02147                                                                                                                                                                                                                                                                                                                                    |  |                                                             | Choisy le Roi (FR). MALLERON, Jean-Luc [FR/FR]; 2 Allée Renoir, F-91460 Marcoussis (FR).                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (22) Date de dépôt international: 9 septembre 1999 (09.09.99)                                                                                                                                                                                                                                                                                                                               |  |                                                             | (74) Mandataire: MORVAN, Michèle; Aventis Pharma S.A., Direction Brevets – Tri LE1 144, 20, avenue Raymond Aron, F-92165 Antony Cedex (FR).                                                                                                                                                                                                                                                                                                                                                                       |
| (30) Données relatives à la priorité:<br>98/11342 11 septembre 1998 (11.09.98) FR<br>60/119,929 12 février 1999 (12.02.99) US                                                                                                                                                                                                                                                               |  |                                                             | (81) Etats désignés: AE, AL, AU, BA, BB, BG, BR, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZA, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). |
| (71) Déposant ( <i>pour tous les Etats désignés sauf US</i> ): AVEN-TIS PHARMA S.A. [FR/FR]; 20 avenue Raymond Aron, F-92160 Antony (FR).                                                                                                                                                                                                                                                   |  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (71)(72) Déposants et inventeurs: MIGNANI, Serge [FR/FR]; 14 Avenue de Robinson, F-92290 Chatenay-Malabry (FR). HITTINGER, Augustin [FR/FR]; 11 rue Galliéni, F-91430 Igny (FR).                                                                                                                                                                                                            |  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (72) Inventeurs; et                                                                                                                                                                                                                                                                                                                                                                         |  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (75) Inventeurs/Déposants ( <i>US seulement</i> ): ACHARD, Daniel [FR/FR]; 26 rue Adrien Tessier, F-94320 Thiais (FR). BOUCHARD, Hervé [FR/FR]; 7 Allée de la Prévôté, F-94320 Thiais (FR). BOUQUEREL, Jean [FR/FR]; 40 rue de l'Emancipation, F-93700 Drancy (FR). CAPET, Marc [FR/FR]; 27 Allée des Abeilles, F-91170 Viry-Chatillon (FR). GRISONI, Serge [FR/FR]; 17 rue Babeuf, F-94600 |  | Publiée<br><i>Avec rapport de recherche internationale.</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

(54) Title: AZETIDINE DERIVATIVES, PREPARATION AND MEDICINES CONTAINING THEM

(54) Titre: DERIVES D'AZETIDINE, LEUR PREPARATION ET LES MEDICAMENTS LES CONTENANT



## (57) Abstract

The invention concerns compounds of formula (1) wherein: R represents an chain (A) or (B); R<sub>1</sub> is methyl or ethyl; R<sub>2</sub> is either an optionally substituted aromatic or an optionally substituted heteroaromatic; R<sub>3</sub> and R<sub>4</sub>, identical or different, are either an optionally substituted aromatic or an optionally substituted heteroaromatic; R' represents a hydrogen atom or a -CO-alk radical, their optical isomers, their salts, their preparation and medicines containing them.

(57) Abrégé

Composés de formule: (1) dans laquelle R représente une Chaîne (A) ou (B); R<sub>1</sub> est méthyle ou éthyle, R<sub>2</sub> est soit un aromatique éventuellement substitué soit un hétéroaromatique éventuellement substitué, R<sub>3</sub> et R<sub>4</sub>, identiques ou différents, sont soit un aromatique éventuellement substitué soit un hétéroaromatique éventuellement substitué, R' représente un atome d'hydrogène ou un radical -CO-alk, leurs isomères optiques, leurs sels, leur préparation et les médicaments les contenant.

**UNIQUEMENT A TITRE D'INFORMATION**

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

|    |                           |    |                                               |    |                                          |    |                       |
|----|---------------------------|----|-----------------------------------------------|----|------------------------------------------|----|-----------------------|
| AL | Albanie                   | ES | Espagne                                       | LS | Lesotho                                  | SI | Slovénie              |
| AM | Arménie                   | FI | Finlande                                      | LT | Lituanie                                 | SK | Slovaquie             |
| AT | Autriche                  | FR | France                                        | LU | Luxembourg                               | SN | Sénégal               |
| AU | Australie                 | GA | Gabon                                         | LV | Lettone                                  | SZ | Swaziland             |
| AZ | Azerbaïdjan               | GB | Royaume-Uni                                   | MC | Monaco                                   | TD | Tchad                 |
| BA | Bosnie-Herzégovine        | GE | Géorgie                                       | MD | République de Moldova                    | TG | Togo                  |
| BB | Barbade                   | GH | Ghana                                         | MG | Madagascar                               | TJ | Tadjikistan           |
| BE | Belgique                  | GN | Guinée                                        | MK | Ex-République yougoslave<br>de Macédoine | TM | Turkménistan          |
| BF | Burkina Faso              | GR | Grèce                                         | ML | Mali                                     | TR | Turquie               |
| BG | Bulgarie                  | HU | Hongrie                                       | MN | Mongolie                                 | TT | Trinité-et-Tobago     |
| BJ | Bénin                     | IE | Irlande                                       | MR | Mauritanie                               | UA | Ukraine               |
| BR | Brésil                    | IL | Israël                                        | MW | Malawi                                   | UG | Ouganda               |
| BY | Bélarus                   | IS | Islande                                       | MX | Mexique                                  | US | Etats-Unis d'Amérique |
| CA | Canada                    | IT | Italie                                        | NE | Niger                                    | UZ | Ouzbékistan           |
| CF | République centrafricaine | JP | Japon                                         | NL | Pays-Bas                                 | VN | Viet Nam              |
| CG | Congo                     | KE | Kenya                                         | NO | Norvège                                  | YU | Yougoslavie           |
| CH | Suisse                    | KG | Kirghizistan                                  | NZ | Nouvelle-Zélande                         | ZW | Zimbabwe              |
| CI | Côte d'Ivoire             | KP | République populaire<br>démocratique de Corée | PL | Pologne                                  |    |                       |
| CM | Cameroun                  | KR | République de Corée                           | PT | Portugal                                 |    |                       |
| CN | Chine                     | KZ | Kazakhstan                                    | RO | Roumanie                                 |    |                       |
| CU | Cuba                      | LC | Sainte-Lucie                                  | RU | Fédération de Russie                     |    |                       |
| CZ | République tchèque        | LI | Liechtenstein                                 | SD | Soudan                                   |    |                       |
| DE | Allemagne                 | LK | Sri Lanka                                     | SE | Suède                                    |    |                       |
| DK | Danemark                  | LR | Libéria                                       | SG | Singapour                                |    |                       |
| EE | Estonie                   |    |                                               |    |                                          |    |                       |

DERIVES D'AZETIDINE, LEUR PREPARATION ET  
LES MEDICAMENTS LES CONTENANT

La présente invention concerne des dérivés d'azétidine de formule :



5     leurs isomères optiques, leurs sels, leur préparation et les médicaments les contenant.

- Dans la formule (I),

R représente une chaîne



R<sub>1</sub> représente un radical méthyle ou éthyle,

10    R<sub>2</sub> représente soit un aromatique choisi parmi phényle, naphtyle ou indényle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, -CO-alk, hydroxy, -COOR<sub>3</sub>, formyle, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, nitro, -NR<sub>6</sub>R<sub>7</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, -N(alk)COOR<sub>3</sub>, cyano, -CONHR<sub>9</sub>, -CO-NR<sub>10</sub>R<sub>11</sub>, alkylsulfanyle, hydroxyalkyle, -O-alk-NR<sub>12</sub>R<sub>13</sub> ou alkylthio-  
15    alkyle soit un hétéroaromatique choisi parmi les cycles benzofuryle, benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle, 2,3-dihydrobenzothiényle, indolinyle, indolyle, isochromannyle, isoquinolyle, pyridyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, 1,2,3,4-tétrahydroquinolyle, thiazole-

lyle, thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, -COOR<sub>5</sub>, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, nitro, -NR<sub>6</sub>R<sub>7</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, cyano, -CONHR<sub>9</sub>, alkylsulfanyle, hydroxyalkyle ou alkylthioalkyle,

5 R<sub>3</sub> et R<sub>4</sub>, identiques ou différents, représentent soit un aromatique choisi parmi phényle, naphtyle ou indényle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, formyle, hydroxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -COOR<sub>5</sub>, -CONR<sub>10</sub>R<sub>11</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, alkylsulfanyle, hydroxyalkyle, -alk-NR<sub>6</sub>R<sub>7</sub> ou alkylthioalkyle; soit un hétéroaromatique choisi parmi  
10 les cycles benzofuryle, benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle, 2,3-dihydrobenzothiényle, furyle, isochromannyle, isoquinolyle, pyrrolyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, thiazolyle, thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, cyano, -COOR<sub>5</sub>,  
15 -CO-NH-NR<sub>6</sub>R<sub>7</sub>, -CONR<sub>10</sub>R<sub>11</sub>, -alk-NR<sub>6</sub>R<sub>7</sub>, alkylsulfanyle, hydroxyalkyle ou alkylthioalkyle,

R<sub>5</sub> est un radical alkyle ou phényle éventuellement substitué par un ou plusieurs atomes d'halogène,

20 R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R<sub>6</sub> et R<sub>7</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle, -COOalk, -COOalk,  
25 -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub>, oxo, hydroxyalkyle, -alk-O-alk, -CO-NH<sub>2</sub>,

R<sub>9</sub> représente un radical alkyle,

R<sub>9</sub> représente un atome d'hydrogène ou un radical alkyle ou alkyle substitué par dialkylamino, phényle, cycloalkyle (éventuellement substitué par -COOalk) ou un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un ou plusieurs hétéroatomes choisis parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle,

5 R<sub>10</sub> et R<sub>11</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R<sub>10</sub> et R<sub>11</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle,

10 R<sub>12</sub> et R<sub>13</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle ou bien R<sub>12</sub> et R<sub>13</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub> ou un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons et contenant un hétéroatome choisi parmi oxygène, soufre et azote,

15 R<sub>14</sub> et R<sub>15</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou -COOalk,

20 R<sub>16</sub> et R<sub>17</sub>, forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote,

R' représente un atome d'hydrogène ou un radical -CO-alk,

25 alk représente un radical alkyle ou alkylène.

Dans les définitions précédentes et celles qui suivent, sauf mention contraire, les radicaux et portions alkyle et alkylène et les radicaux et portions alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone.

Parmi les radicaux alkyle on peut citer les radicaux méthyle, éthyle, n-propyle, iso-propyle, n-butyle, sec-butyle, iso-butyle, tert-butyle, pentyle, hexyle. Parmi les radicaux alcoxy on peut citer les radicaux méthoxy, éthoxy, n-propoxy, iso-propoxy, n-butoxy, iso-butoxy, sec-butoxy, tert-butoxy, pentyloxy.

Le terme halogène comprend chlore, fluor, brome et iodé.

Lorsque R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent indépendamment un phényle substitué 10 celui-ci est de préférence mono, di ou trisubstitué.

Lorsque R<sub>6</sub> et R<sub>7</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique, saturé ou insaturé ayant 3 à 10 chainons celui-ci est de préférence un cycle azétidinyle, pyrrolidinyle, pipérazinyle, pipéridyle, morpholinyle, imidazolyle, thiomorpholinyle ou furyle, ces cycles étant éventuellement substitués par un radical alkyle, hydroxyalkyle, -alk-O-alk, -CONH<sub>2</sub>, -COalk, -COOalk, oxo, -CSNHalk, -CONHalk ou -CO-alk-NR<sub>14</sub>R<sub>15</sub> et, en particulier, par un radical méthyle, éthyle, propyle, isobutyl, acétyle, N,N-diméthylamino-méthylcarbonyle, méthyoxy carbonyle, méthylcarbamoyle, méthylthiocarbamoyle, N-méthylamino-méthylcarbonyle, N-méthyl N-tertbutoxycarbonylaminométhylcarbonyle, oxo, 15 -CSNHCH<sub>3</sub>, -CONHCH<sub>3</sub>.

Lorsque R<sub>10</sub> et R<sub>11</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé et ayant 3 à 10 chainons, celui-ci est de préférence un cycle azétidinyle, pyrrolidinyle, pipérazinyle, pipéridyle, morpholinyle ou thiomorpholinyle, ces cycles étant éventuellement substitués par un alkyle.

25 Lorsque R<sub>12</sub> et R<sub>13</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé et ayant 3 à 10 chainons, celui-ci est de préférence un cycle azétidinyle, pyrrolidinyle, pipérazinyle, pipéridyle, morpholinyle ou

thiomorpholinyle, ces cycles étant éventuellement substitués par un radical alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>16</sub>R<sub>17</sub>, ou un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons et contenant un hétéroatome choisi parmi oxygène, soufre et azote, et, en particulier, par un radical thiomorpholinyle.

5 Lorsque R<sub>16</sub> et R<sub>17</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé et ayant 3 à 10 chaînons, celui-ci est de préférence un cycle pipéridyle.

Lorsque R<sub>1</sub> représente un radical alkyle substitué par un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un ou 10 plusieurs hétéroatomes choisis parmi oxygène, soufre et azote, ce dernier est, de préférence, un cycle pyrrolidinyle, tétrahydrofuryle, morpholinyle, pyrrolyle, ces cycles étant éventuellement substitués par un ou plusieurs radicaux alkyle.

Les composés de formule (I) peuvent se présenter sous forme d'énanthiomères et de diastéréoisomères. Ces isomères optiques et leurs mélanges font partie de l'invention.

15 Les composés de formule (I) pour lesquels R représente une chaîne de formule (A) peuvent être préparés par déshydratation d'un composé de formule (Ia) correspondant :



dans laquelle R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> ont les mêmes significations que dans la formule (I) et 20 R'' représente un radical hydroxy, méthanesulfonyloxy ou acétyloxy.

Cette déshydratation s'effectue par toute méthode connue de l'homme de l'art permettant de déshydrater un alcool ou un de ses dérivés pour obtenir l'alcène correspondant. De préférence, on utilise les dérivés pour lesquels R" est un radical méthanesulfonyloxy ou acétyloxy obtenus à partir du dérivé correspondant pour lequel R"

5 est un radical hydroxy par action de chlorure de méthane sulfonyle ou de chlorure d'acétyle, au sein d'un solvant inerte tel que la pyridine, le tétrahydrofurane, le dioxane, un solvant chloré (dichlorométhane, chloroforme par exemple), à une température comprise entre 5°C et 20°C puis on traite avec une base telle qu'un hydroxyde de métal alcalin (soude par exemple), un carbonate de métal alcalin

10 (carbonate de sodium ou de potassium par exemple), une amine telle qu'une trialkylamine (triéthylamine par exemple), la 4-diméthylaminopyridine, le diaza-1,8-bicyclo[5.4.0]undécène-7, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel. Le méthanesulfonyloxy et l'acétyloxy peuvent être isolés ou non.

15 Les composés de formule (I) pour lesquels R représente une chaîne (B) dans laquelle R' est un atome d'hydrogène peuvent être préparés par action du dérivé  $R_1SO_2CH_2R_2$ , (II) pour lequel  $R_1$  et  $R_2$  ont les mêmes significations que dans la formule (I) sur une azétidinone de formule :



20 dans laquelle  $R_1$  et  $R_2$  ont les mêmes significations que dans la formule (I).

On opère généralement au sein d'un solvant inerte tel qu'un éther (tétrahydrofurane par exemple), en présence d'une base forte telle que le diisopropylamidure de lithium,

le tert-butylate de potassium ou le n-butyllithium, à une température comprise entre -70°C et -15°C.

Les dérivés de formule (II) peuvent être obtenus par application ou adaptation des méthodes décrites dans les exemples. Notamment on opère selon les schémas réac-

5 tionnels suivants :



dans ces formules Hal représente un atome d'halogène et, de préférence, chlore, brome ou iodé, R<sub>1</sub> et R<sub>2</sub> ont les mêmes significations que dans la formule (I).

La réaction (a) s'effectue généralement au sein d'un solvant inert tel que le dimé-  
10 thylformamide ou un alcool aliphatique 1-4C, à une température comprise entre 20 et 30°C.

La réaction (b) s'effectue par toutes méthodes connues permettant d'oxyder un dérivé soufré sans toucher au reste de la molécule comme celles décrites par M.  
15 HUDLICKY, Oxidations in Organic Chemistry, ACS Monograph, 186, 252-263 (1990). Par exemple, on opère par action d'un peroxyacide organique ou un sel d'un tel peroxyacide (acides peroxycarboxyliques ou peroxyulfoniques, notamment l'acide peroxybenzoïque, l'acide 3-chloroperoxybenzoïque, l'acide 4-nitroperoxybenzoïque, l'acide peroxyacétique, l'acide trifluoroperoxyacétique, l'acide peroxyformique, l'acide monoperoxyphthalique) ou les peracides minéraux ou  
20 un sel d'un tel acide (par exemple l'acide périodique ou persulfurique), au sein d'un solvant inert tel qu'un solvant chloré (chloroforme, dichlorométhane par exemple), à une température comprise entre 0 et 25°C. On peut utiliser également le peroxyde

d'hydrogène ou un periodate (periodate de sodium par exemple), au sein d'un solvant inert tel qu'un alcool aliphatique 1-4C (méthanol, éthanol par exemple), l'eau ou un mélange de ces solvants, à une température comprise entre 0 et 20°C. Il est également possible d'opérer au moyen de tertiobutylhydroperoxyde en présence de tétraisopro-

5 pylate de titane au sein d'un alcool aliphatique 1-4C (méthanol, éthanol par exemple) ou un mélange eau-alcool, à une température voisine de 25°C ou au moyen d'oxone® (peroxymonosulfate de potassium), au sein d'un alcool aliphatique 1-4C (méthanol, éthanol par exemple), en présence d'eau, d'acide acétique ou d'acide sulfurique, à une température voisine de 20°C.

10 La réaction (c) s'effectue de préférence au sein d'un solvant inert tel qu'un alcool aliphatique 1-4C (méthanol, éthanol par exemple), à une température comprise entre 20°C et la température d'ébullition du milieu réactionnel.

Les dérivés de formule (IV) sont commercialisés ou peuvent être obtenus par application ou adaptation des méthodes décrites dans les exemples. En particulier, on halo-

15 gène le dérivé méthylé ou l'alcool correspondant, au moyen d'un agent d'halogénéation tel que l'acide bromhydrique, au sein de l'acide acétique, à une température voisine de 20°C ou le N-bromo ou N-chlorosuccinimide en présence de peroxyde de benzoyle, au sein d'un solvant inert tel que le tétrachlorométhane, à la température d'ébullition du milieu réactionnel. Les dérivés méthylés ou les alcools  
20 correspondants sont commercialisés ou peuvent être obtenus selon les méthodes décrites par BRINE G. A. et coll., J. Heterocycl. Chem., 26, 677 (1989) et NAGARATHNAM D., Synthesis, 8, 743 (1992) et dans les exemples.

Les azétidinones de formule (III) peuvent être obtenues par application ou adaptation des méthodes décrites par KATRITZKY A.R et coll., J. Heterocycl. Chem., 271

25 (1994), ou DAVE P.R., J. Org. Chem., 61, 5453 (1996) et dans les exemples. On opère généralement selon le schéma réactionnel suivant :



dans ces formules R<sub>3</sub> et R<sub>4</sub> ont les mêmes significations que dans la formule (I) et X représente un atome de chlore ou de brome.

Dans l'étape A, on opère de préférence au sein d'un solvant inerte tel qu'un alcool aliphatique 1-4C (éthanol, méthanol par exemple), éventuellement en présence d'un hydroxyde de métal alcalin, à la température d'ébullition du milieu réactionnel.

Dans l'étape B, la réduction s'effectue généralement, au moyen d'hydrure de lithium et d'aluminium, au sein du tétrahydrofurane à la température d'ébullition du milieu réactionnel.

Dans l'étape C, on opère de préférence au sein d'un solvant inerte tel qu'un alcool aliphatique 1-4C (éthanol, méthanol par exemple), en présence d'hydrogénocarbonate de sodium, à une température comprise entre 20°C et la température d'ébullition du milieu réactionnel.

Dans l'étape D on oxyde de préférence au sein de DMSO, au moyen du complexe trioxyde de soufre-pyridine, à une température voisine de 20°C ou au moyen de diméthylsulfoxyde, en présence de chlorure d'oxalyle et de triéthylamine, à une température comprise entre -70 et -50°C.

5     Dans l'étape E, on opère selon la méthode décrite par GRISAR M. et coll. dans J. Med. Chem., 885 (1973). On forme le magnésien du dérivé bromé puis on fait réagir le nitrile, au sein d'un éther tel que l'éther éthylique, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel. Après hydrolyse avec un alcool, l'imine intermédiaire est réduite *in situ* par du borohydrure de sodium à une  
10    température comprise entre 0°C et la température d'ébullition du milieu réactionnel.

Les dérivés R<sub>3</sub>CO-R<sub>4</sub> sont commercialisés ou peuvent être obtenus par application ou adaptation des méthodes décrites par KUNDER N.G. et coll. J. Chem. Soc. Perkin Trans 1, 2815 (1997); MORENO-MARRAS M., Eur. J. Med. Chem., 23 (5) 477 (1988); SKINNER et coll., J. Med. Chem., 14 (6) 546 (1971); HURN N.K., Tet. Lett.,  
15    36 (52) 9453 (1995); MEDICI A. et coll., Tet. Lett., 24 (28) 2901 (1983); RIECKE R.D. et coll., J. Org. Chem., 62 (20) 6921 (1997); KNABE J. et coll., Arch. Pharm., 306 (9) 648 (1973); CONSONNI R. et coll., J. Chem. Soc. Perkin Trans 1, 1809 (1996); FR-96-2481 et JP-94-261393.

Les dérivés R<sub>3</sub>Br sont commercialisés ou peuvent être obtenus par application ou  
20    adaptation des méthodes décrites par BRANDSMA L. et coll., Synth. Comm., 20 (11) 1697 et 3153 (1990); LEMAIRE M. et coll., Synth. Comm., 24 (1) 95 (1994); GODA H. et coll., Synthesis, 9 849 (1992); BAEUERLE P. et coll., J. Chem. Soc. Perkin Trans 2, 489 (1993).

Les dérivés R<sub>3</sub>CN sont commercialisés ou peuvent être obtenus par application ou  
25    adaptation des méthodes décrites par BOUYSSOU P. et coll., J. Het. Chem., 29 (4) 895 (1992); SUZUKI N. et coll., J. Chem. Soc. Chem. Comm., 1523 (1984); MARBURG S. et coll., J. Het. Chem., 17 1333 (1980); PERCEC V. et coll., J. Org. Chem., 60 (21) 6895 (1995).

Les composés de formule (I) pour lesquels R représente une chaîne (B) dans laquelle R' est un atome d'hydrogène peuvent également être préparés par action d'un dérivé  $R_3CH(Br)R_4$  (VI) pour lequel  $R_3$  et  $R_4$  ont les mêmes significations que dans la formule (I) sur un dérivé de formule :



5

dans laquelle  $R_1$  et  $R_2$  ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue généralement en présence d'une base telle qu'un carbonate de métal alcalin (carbonate de potassium par exemple), au sein d'un solvant inerte tel que l'acétonitrile, à la température d'ébullition du milieu réactionnel.

- 10 Les dérivés de formule (VI) sont commercialisés ou peuvent être obtenus par application ou adaptation de la méthode décrite par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933). Généralement, on brome l'alcool correspondant  $R_3CHOHR_4$  au moyen d'acide bromhydrique, au sein de l'acide acétique, à une température comprise entre 0°C et la température d'ébullition du milieu réactionnel.
- 15 Les alcools correspondants  $R_3CHOHR_4$  sont commercialisés ou peuvent être obtenus par application ou adaptation des méthodes décrites par PLASZ A.C. et coll., J. Chem. Soc. Chem. Comm., 527 (1972).

Les dérivés de formule (VII) peuvent être obtenus par hydrolyse d'un dérivé de formule :



dans laquelle R<sub>1</sub> et R<sub>2</sub> ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue généralement au moyen d'acide chlorhydrique, au sein d'un solvant inert tel qu'un éther (dioxanne par exemple), à une température voisine de  
5 20°C.

Les dérivés de formule (VIII) sont obtenus par action de chloroformiate de vinyle sur un composé de formule (I) correspondant pour R représente une chaîne de formule (B), R' représente un radical hydroxy, R<sub>1</sub> et R<sub>2</sub> sont des radicaux phényle, au sein d'un solvant inert tel qu'un solvant chloré (dichlorométhane, chloroforme par exemple), à  
10 une température comprise entre 0°C et la température d'ébullition du mélange réactionnel.

Les composés de formule (I) pour lesquels R est une chaîne (B) dans laquelle R' est un radical -CO-alk peuvent être préparés par action d'un halogénure Hal-CO-alk dans lequel Hal représente un atome d'halogène et, de préférence, un atome de chlore et alk  
15 représente un radical alkyle sur un composé de formule (I) correspondant pour lequel R est une chaîne (B) dans laquelle R' est un atome d'hydrogène.

Cette réaction s'effectue généralement au sein d'un solvant inert tel que le tétrahydrofuranne, le dioxanne, un solvant chloré (dichlorométhane, chloroforme par exemple), à une température comprise entre -50°C et 20°C, en présence de n-butyllithium.  
20 Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par -NR<sub>6</sub>R<sub>7</sub>, dans lequel R<sub>6</sub> et R<sub>7</sub> représentent chacun un atome d'hydrogène peuvent également être préparés par réduction d'un composé de formule

(I) correspondant pour lequel R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par nitro.

Cette réaction s'effectue par toute méthode connue permettant de réduire un nitro en amino sans toucher au reste de la molécule. De préférence, on utilise du fer en présence d'acide chlorhydrique au sein d'un alcool aliphatique 1-4C tel que l'éthanol, à la température d'ébullition du milieu réactionnel.

5 Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique ou hétéroaromatique substitué par -CONHR<sub>3</sub>, et/ou R<sub>4</sub> et/ou R<sub>5</sub> représentent un aromatique ou un hétéroaromatique substitué par -CONR<sub>10</sub>R<sub>11</sub>, peuvent être également préparés par action d'un composé de formule (I) correspondant pour lequel R<sub>2</sub>, et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par -COOR<sub>5</sub>, pour lequel R<sub>5</sub> est alkyle ou phényle éventuellement substitué par des halogènes, avec respectivement une amine H<sub>2</sub>NR<sub>6</sub> ou HNR<sub>10</sub>R<sub>11</sub>, pour lesquelles R<sub>9</sub>, R<sub>10</sub> et R<sub>11</sub> ont les mêmes significations que dans la formule (I).

10 15 Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane, chloroforme par exemple) ou un alcool aliphatique 1-4C (méthanol, éthanol par exemple), à une température comprise entre 0°C et la température d'ébullition du mélange réactionnel.

20 Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique substitué par hydroxy et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par hydroxy peuvent être également préparés par hydrolyse d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un aromatique substitué par alcoxy et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par alcoxy.

25 25 Cette réaction s'effectue par toute méthode d'hydrolyse d'un alcoxy en hydroxy sans toucher au reste de la molécule. De préférence, on hydrolyse au moyen de tribromure

de bore, au sein d'un solvant chloré tel que le dichlorométhane, à une température voisine de 20°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique substitué par -NR<sub>6</sub>R<sub>7</sub> pour lequel R<sub>6</sub> représente un radical alkyle et R<sub>7</sub> représente un atome d'hydrogène peuvent également être préparés par déprotection d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un aromatique substitué par un -N(alk)COOR<sub>8</sub> dans lequel R<sub>8</sub> représente un radical tertbutyle.

Cette réaction s'effectue généralement au moyen d'acide chlorhydrique, au sein d'un solvant tel que le dioxanne, à une température voisine de 20°C.

10 Les composés de formule (I) pour lesquels R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par -COOR<sub>9</sub> peuvent également être préparés par estérification d'un dérivé de formule :



pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub> ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R<sub>1</sub>, R'<sub>2</sub>, R'<sub>3</sub> et R'<sub>4</sub> ont les mêmes significations que les substituants R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R'<sub>2</sub>, R'<sub>3</sub>, R'<sub>4</sub> représente un aromatique ou un hétéroaromatique substitué par carboxyle, au moyen d'un dérivé de formule R<sub>9</sub>OH pour lequel R<sub>9</sub> est alkyle ou phényle éventuellement substitué par un ou plusieurs halogène.

20 Lorsque R<sub>2</sub> est alkyle, cette réaction s'effectue généralement en présence d'un acide minéral (acide sulfurique par exemple), à une température comprise entre 20°C et la température d'ébullition du milieu réactionnel. Lorsque R<sub>2</sub> est phényle éventuellement substitué, cette réaction s'effectue de préférence en présence d'un carbodiimide (1-(3-

diméthylaminopropyl)-3-éthylcarbodiimide, N,N'-dicyclohexyl-carbodiimide par exemple), dans un solvant inerte tel qu'un amide (diméthylformamide) ou un solvant chloré (chlorure de méthylène, dichloro-1,2 éthane, chloroforme par exemple), à une température comprise entre 0°C et la température d'ébullition du mélange réactionnel.

5 Les dérivés de formule (IX) pour lesquels R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R', R<sub>1</sub>', R<sub>2</sub>', R<sub>3</sub>' et R<sub>4</sub>' représente un aromatique ou un hétéroaromatique substitué par carboxyle peuvent être obtenus selon les méthodes décrites précédemment pour la 10 préparation des composés de formule (I) à partir des intermédiaires correspondants et notamment selon la méthode décrite dans l'exemple 29.

Les composés de formule (I) pour lesquels R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par alkylthioalkyle peuvent également être préparés par action d'un dérivé de formule (IX) pour lequel R représente une chaîne 15 C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R<sub>2</sub>', R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R<sub>2</sub>', R<sub>3</sub>', R<sub>4</sub>' représente un aromatique ou un hétéroaromatique substitué par halogénoalkyle sur un alkylthiolate de sodium.

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un amide 20 (diméthylformamide par exemple), à une température voisine de 20°C.

Les dérivés de formule (IX) pour lesquels R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R<sub>2</sub>', R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R<sub>2</sub>', R<sub>3</sub>', R<sub>4</sub>' représente un aromatique ou un hétéroaromatique substitué par 25 halogénoalkyle peuvent être obtenus par action d'un trihalogénure de phosphore (tribromure de phosphore de préférence) sur un composé de formule (I) correspondant pour lequel R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par hydroxyalkyle, au sein d'un solvant inerte tel qu'un solvant chloré

(tétrachlorure de carbone, chloroforme par exemple, à une température voisine de 20°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique substitué par hydroxyalkyle dans lequel l'alkyle contient un atome de carbone peuvent également être préparés par réduction d'un composé de formule (I) pour lequel au moins un des substituants R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub> représente un aromatique substitué par formyle.

Cette réaction s'effectue généralement au moyen de borohydrure de sodium, au sein d'un alcool aliphatique 1-4C (méthanol, éthanol par exemple), à une température voisine de 0°C.

Les composés de formule (I) pour lesquels R<sub>5</sub> et/ou R<sub>6</sub> représente un aromatique substitué par -alk-NR<sub>6</sub>R<sub>5</sub> pour lequel alk est un alkyle contenant un atome de carbone peuvent également être préparés par action d'un composé de formule (I) pour lequel au moins un des substituants R<sub>5</sub>, R<sub>6</sub> représente un aromatique substitué par formyle sur une amine HNR<sub>6</sub>R<sub>5</sub> dans laquelle R<sub>6</sub> et R<sub>5</sub> ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue généralement au sein d'un solvant inert tel qu'un solvant chloré (dichloroéthane par exemple), à une température voisine de 20°C en présence de triacétoxyborohydrure de sodium ou de cyanoborohydrure de sodium.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par -CONHR<sub>9</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représente un aromatique ou un hétéroaromatique substitué par -CO-NR<sub>10</sub>R<sub>11</sub> peuvent également être préparés par action d'un dérivé de formule (IX) pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R<sub>2</sub>' ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R<sub>2</sub>', R', R<sub>1</sub>, R<sub>2</sub>', R<sub>3</sub>', et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R<sub>2</sub>', R<sub>3</sub>', R<sub>4</sub>' représente un aromatique ou un hétéroaroma-

tique substitué par carboxyle sur respectivement une amine  $H_2NR_9$  ou  $HNR_{10}R_{11}$ , dans lesquelles  $R_9$ ,  $R_{10}$  et  $R_{11}$  ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue de préférence soit en présence d'un agent de condensation utilisé en chimie peptidique tel qu'un carbodiimide (par exemple le 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide, le N,N'-dicyclohexylcarbodiimide) ou le 5 N,N'-diimidazole carbonyle, dans un solvant inert tel qu'un éther (tétrahydrofurane, dioxanne par exemple), un amide (diméthylformamide) ou un solvant chloré (chlorure de méthylène, dichloro-1,2 éthane, chloroforme par exemple) à une température comprise entre 0°C et la température d'ébullition du mélange réactionnel, soit après 10 liaison préalable de l'acide sur une résine de type TFP de formule :



dans laquelle S représente une résine aminopolystyrène, au sein d'un solvant inert tel que le diméthylformamide, en présence de 4-diméthylaminopyridine, à une température voisine de 20°C. La liaison sur résine s'effectue généralement au sein du 15 diméthylformamide, en présence de 4-diméthylaminopyridine et de 1,3-diisopropylcarbodiimide, à une température voisine de 20°C.

Les composés de formule (I) pour lesquels  $R_2$  et/ou  $R_3$  et/ou  $R_4$  représentent un aromatique ou un hétéroaromatique substitué par -CO-NH-NR<sub>6</sub>R, peuvent également être préparés par action d'un composé de formule (I) correspondant pour lequel  $R_2$  et/ou 20  $R_3$  et/ou  $R_4$  représentent un aromatique ou un hétéroaromatique substitué par -COOR, et  $R_5$  représente un radical alkyle ou phényle éventuellement substitué par des halogènes, sur une hydrazine  $H_2N-NR_6R$ , pour laquelle  $R_6$  et  $R_7$  ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue généralement au sein d'un solvant inert tel que le diméthylformamide, à une température voisine de 20°C. 25

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par -CO-NHR, dans lequel R<sub>3</sub> représente un atome d'hydrogène et/ou R<sub>4</sub> et/ou R<sub>5</sub> représentent un aromatique ou un hétéroaromatique substitué par -CO-NR<sub>10</sub>R<sub>11</sub> dans lequel R<sub>10</sub> et R<sub>11</sub> sont des atomes d'hydrogène peuvent également être préparés par hydrolyse d'un composé de formule (I) correspondant pour lequel R<sub>2</sub>, et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par cyano.

Cette réaction s'effectue par toute méthode connue permettant de passer d'un nitrile au carbamoyle correspondant sans toucher au reste de la molécule. De préférence, on opère au moyen d'acide chlorhydrique, au sein de l'acide acétique, à une température voisine de 20°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un aromatique substitué par -O-alkNR<sub>12</sub>R<sub>13</sub> peuvent également être préparés par action d'un dérivé de formule (IX) pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub> ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R'<sub>2</sub>, R'<sub>3</sub> et R'<sub>4</sub> ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R'<sub>2</sub>, R'<sub>3</sub>, R'<sub>4</sub> représente un aromatique substitué par -O-alk-Hal dans lequel alk représente un radical alkyle et Hal représente un atome d'halogène et, de préférence, un atome de chlore ou de brome, sur une amine HNR<sub>12</sub>R<sub>13</sub> dans laquelle R<sub>12</sub> R<sub>13</sub> ont les mêmes significations que dans la formule (I).

Cette réaction s'effectue généralement au sein d'un solvant inert tel que l'acetonitrile, en présence d'un carbonate de métal alcalin (carbonate de potassium par exemple), à une température voisine de 20°C.

Les dérivés de formule (IX) pour lesquels R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub> ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R'<sub>2</sub>, R'<sub>3</sub> et R'<sub>4</sub> ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R'<sub>2</sub>, R'<sub>3</sub>, R'<sub>4</sub> représente un aromatique substitué par -O-alk-Hal dans lequel alk représente un radical alkyle et Hal représente un atome d'halogène peuvent être obte-

nus par action d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un aromatique substitué par hydroxy avec un dérivé Hal-alk-Hal dans lequel Hal représente un halogène.

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'une cétone  
5 (méthyléthylcétone par exemple), en présence d'une base telle qu'un carbonate de métal alcalin (carbonate de potassium par exemple), à la température d'ébullition du milieu réactionnel.

Les composés de formule (I) pour lesquels R<sub>1</sub> et/ou R<sub>4</sub> représente un aromatique substitué par -alk-NR<sub>6</sub>R<sub>7</sub> peuvent également être préparés par action d'un dérivé de  
10 formule (IX) pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R<sub>2</sub>', R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R<sub>3</sub>', R<sub>4</sub>' représente un aromatique substitué -alk-Cl dans lequel alk représente un radical alkyle sur une amine HNR<sub>6</sub>R<sub>7</sub>, dans laquelle R<sub>6</sub> R<sub>7</sub> ont les mêmes significations que dans la formule (I).  
15

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane par exemple), éventuellement en présence d'une base azotée telle que la diméthylaminopyridine, la diisopropyléthylamine, à une température comprise entre 5 et 25°C.

20 Les dérivés de formule (IX) pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R<sub>2</sub>', R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la formule (I) sous réserve qu'au moins un des substituants R<sub>3</sub>', R<sub>4</sub>' représente un aromatique substitué par -alk-Cl peuvent être obtenus par action du chlorure de thionyle sur un composé de formule (I) correspondant pour  
25 lequel au moins un des substituants R<sub>3</sub>, R<sub>4</sub> représente un aromatique substitué par un ou plusieurs radicaux hydroxyalkyle.

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane par exemple), à une température comprise entre 10 et 30°C.

Les composés de formule (I) pour lesquels R représente une chaîne B, R' représente un atome d'hydrogène et R<sub>4</sub> représente un aromatique substitué par hydroxyalkyle dans lequel le reste alkyle contient 1 atome de carbone peuvent également être préparés par action d'hydrure de diisobutylaluminium sur un composé de formule (I) correspondant pour lequel R représente une chaîne B, R' représente un atome d'hydrogène et R<sub>4</sub> représente un aromatique substitué par un ou plusieurs radicaux -COOR<sub>3</sub>, dans lequel R<sub>3</sub> est un radical alkyle.

5  
10 Cette réaction s'effectue généralement au sein du toluène, à une température comprise entre -30°C et 0°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par un radical alkyle peuvent également être préparés par action d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl sur un dérivé alk-CHO dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée contenant 1 à 5 atomes de carbone.

15  
20  
25 Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichloroéthane, chloroforme par exemple), en présence de NaBH(OCOCH<sub>3</sub>)<sub>3</sub>, à une température voisine de 20°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par un radical -COOalk peuvent également être préparés par action d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl sur un dérivé de formule Hal-COOalk

dans lequel alk représente un radical alkyle et Hal représente un atome d'halogène et, de préférence, un atome de chlore.

Cette réaction s'effectue généralement au sein de la pyridine, à une température voisine de 20°C.

5 Les composés de formule (I) pour lesquels R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par un radical -CO-NHalk ou -CS-NHalk peuvent également être préparés par action d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl sur un dérivé de formule Y=C=Nalk dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée contenant 1 à 10 6 atomes de carbone et Y représente un atome de soufre ou d'oxygène.

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichlorométhane par exemple), à une température voisine de 20°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un radical phényle substitué 15 par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par un radical -CO-alk-NR<sub>14</sub>R<sub>15</sub>, peuvent également être préparés par action d'un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl avec un acide de formule R<sub>15</sub>R<sub>14</sub>N-alk-COOH dans lequel alk représente un radical alkyle et R<sub>14</sub> et R<sub>15</sub> ont les 20 mêmes significations que dans la formule (I) suivi éventuellement d'une déprotection du produit pour lequel R<sub>14</sub> est un radical tert-butoxycarbonyle pour obtenir les composés pour lesquels R<sub>14</sub> est un atome d'hydrogène.

Cette réaction s'effectue généralement au sein d'un solvant inerte tel qu'un solvant chloré (dichloroéthane par exemple, à une température voisine de 20°C. La déprotection 25 s'effectue au moyen d'acide formique à une température voisine de 20°C.

Les composés de formule (I) pour lesquels R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par

un radical -CO-alk dans lequel alk représente un radical méthyle peuvent également être préparés par action d'un composé de formule (I) correspondant pour lequel R, représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl avec l'anhydride acétique.

5 Cette réaction s'effectue généralement en présence de pyridine, à une température voisine de 20°C.

Il est entendu pour l'homme du métier que, pour la mise en oeuvre des procédés selon l'invention décrits précédemment, il peut être nécessaire d'introduire des groupes protecteurs des fonctions amino, hydroxy et carboxy afin d'éviter des réactions secondaires. Ces groupes sont ceux qui permettent d'être éliminés sans toucher au reste de la molécule. Comme exemples de groupes protecteurs de la fonction amino on peut citer les carbamates de tert-butyle ou de méthyle qui peuvent être régénérées au moyen d'iodotriméthylsilane ou d'allyle au moyen de catalyseurs du palladium. Comme exemples de groupes protecteurs de la fonction hydroxy, on peut citer les triéthylsilyle, tert-butyldiméthylsilyle qui peuvent être régénérés au moyen de fluorure de tétrabutylammonium ou bien les acétals dissymétriques (méthoxyméthyle, tétrahydrodropyranyle par exemple) avec régénération au moyen d'acide chlorhydrique. Comme groupes protecteurs des fonctions carboxy, on peut citer les esters (allyle, benzyle par exemple), les oxazoles et les 2-alkyl-1,3-oxazolines. D'autres groupes protecteurs utilisables sont décrits par GREENE T.W. et coll., Protecting Groups in Organic Synthesis, second edition, 1991, John Wiley & Sons.

Les composés de formule (I) peuvent être purifiés par les méthodes connues habituelles, par exemple par cristallisation, chromatographie ou extraction.

Les énantiomères des composés de formule (I) peuvent être obtenus par dédoublement des racémiques par exemple par chromatographie sur colonne chirale selon PIRCKLE W.H. et coll., asymmetric synthesis, vol. 1, Academic Press (1983) ou par formation de sels ou par synthèse à partir des précurseurs chiraux. Les diastéréoisomères

mères peuvent être préparés selon les méthodes classiques connues (cristallisation, chromatographie ou à partir des précurseurs chiraux).

Les composés de formule (I) peuvent être éventuellement transformés en sels d'addition avec un acide minéral ou organique par action d'un tel acide au sein d'un solvant organique tel qu'un alcool, une cétone, un éther ou un solvant chloré. Ces sels font également partie de l'invention.

Comme exemples de sels pharmaceutiquement acceptables, peuvent être cités les sels suivants : benzènesulfonate, bromhydrate, chlorhydrate, citrate, éthanesulfonate, fumarate, gluconate, iodate, iséthionate, maléate, méthanesulfonate, méthylène-bis- $\beta$ -oxynaphtoate, nitrate, oxalate, pamoate, phosphate, salicylate, succinate, sulfate, tartrate, théophyllinacétate et p-toluènesulfonate.

Les composés de formule (I) présentent des propriétés pharmacologiques intéressantes. Ces composés possèdent une forte affinité pour les récepteurs cannabinoïdes et particulièrement ceux de type CB1. Ce sont des antagonistes du récepteur CB1 et sont donc utiles dans le traitement et la prévention des désordres touchant au système nerveux central, au système immunitaire, au système cardio-vasculaire ou endocrinien, au système respiratoire, à l'appareil gastrointestinal et aux désordres de la reproduction (Hollister, Pharm. Rev.; 38, 1986, 1-20, Reny et Sinha, Prog. Drug Res., 36, 71-114 (1991), Consroe et Sandyk, in Marijuana/Cannabinoids, Neurobiology and Neurophysiology, 459, Murphy L. and Barthe A. Eds, CRC Press, 1992), des infections bactériennes, virales et parasitaires.

C'est ainsi que ces composés peuvent être utilisés pour le traitement ou la prévention des psychoses y compris la schizophrénie, des troubles anxieux, de la dépression, de l'épilepsie, de la neurodégénération, des désordres cérébelleux et spinocérébelleux, des désordres cognitifs, du trauma crânien, des attaques de panique, des neuropathies périphériques, des glaucomes, de la migraine, de la maladie de Parkinson, de la maladie d'Alzheimer, de la chorée de Huntington, du syndrome de Raynaud, des tremblements, du désordre compulso-obsessionnel, de la démence sénile, des désordres thymiques, du syndrome de Tourette, de la dyskinésie tardive, des désordres bipolai-

res, des cancers, des désordres du mouvement induit par les médicaments, des dystonies, des chocs endotoxémiques, des chocs hémorragiques, de l'hypotension, de l'insomnie, des maladies immunologiques, de la sclérose en plaques, des vomissements, de l'asthme, des troubles de l'appétit (boulimie, anorexie), de l'obésité, des 5 troubles de la mémoire, dans le sevrage aux traitements chroniques et abus d'alcool ou de médicaments (opioïdes, barbituriques, cannabis, cocaïne, amphétamine, phencyclide, hallucinogènes, benzodiazépines par exemple), comme analgésiques ou potentialisateurs de l'activité analgésique des médicaments narcotiques et non narcotiques. Ils peuvent également être utilisés pour le traitement ou la prévention des 10 désordres du transit intestinal, comme antibactériens, antiviraux et antiparasitaire.

L'affinité des composés de formule (I) pour les récepteurs du cannabis a été déterminée selon la méthode décrite par KUSTER J.E., STEVENSON J.I., WARD S.J., D'AMBRA T.E., HAYCOCK D.A. dans *J. Pharmacol. Exp. Ther.*, 264 1352-1363 (1993).

15 Dans ce test, la CI<sub>50</sub> des composés de formule (I) est inférieure ou égale à 100 nM. Leur activité antagoniste a été montrée au moyen du modèle d'hypothermie induite par un agoniste des récepteurs du cannabis (CP-55940) chez la souris, selon la méthode décrite par Pertwee R.G. dans *Marijuana*, Harvey D.J. eds, 84 Oxford IRL Press, 263-277 (1985).

20 Dans ce test, la DE<sub>50</sub> des composés de formule (I) est inférieure ou égale à 50 mg/kg.

Les composés de formule (I) présentent une toxicité faible. Leur DL<sub>50</sub> est supérieure à 40 mg/kg par voie sous cutanée chez la souris.

Les composés de formule (I) préférés sont ceux pour lesquels

25 R représente une chaîne (A) ou (B) et R' représentant un atome d'hydrogène ou un radical -COalk,

R<sub>1</sub> représente un radical méthyle ou éthyle,

R<sub>2</sub> représente soit un aromatique choisi parmi phényle et naphtyle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, hydroxy, -COOR<sub>3</sub>, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, -NR<sub>6</sub>R<sub>7</sub>,

- 5 -CO-NH-NR<sub>6</sub>R<sub>7</sub>, cyano, -CONHR<sub>8</sub>, alkylsulfanyle, hydroxyalkyle, nitro, -CO-NR<sub>16</sub>R<sub>17</sub>, -O-alkNR<sub>12</sub>R<sub>13</sub> ou alkylthioalkyle ou un hétéroaromatique choisi parmi isoquinolyle, pyridyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, 1,2,3,4-tétrahydroquinolyle, thiényle, ces hétéroaromatiques étant non substitués ou substitués par un halogène, alkyle, alcoxy, -COOR<sub>3</sub>, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, -NR<sub>6</sub>R<sub>7</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, cyano, -CONHR<sub>8</sub>, alkylsulfanyle, hydroxyalkyle, nitro ou alkylthioalkyle,

R<sub>3</sub> et R<sub>4</sub>, identiques ou différents, représentent soit un aromatique choisi parmi phényle ou naphtyle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CONR<sub>10</sub>R<sub>11</sub>,

- 15 -alk-NR<sub>6</sub>R<sub>7</sub>, hydroxyalkyle, formyle, -COOR<sub>3</sub>, soit un hétéroaromatique choisi parmi les cycles thiazolyle ou thiényle, ces hétéroaromatiques étant non substitués ou substitués par un halogène, alkyle, alcoxy, -CONR<sub>10</sub>R<sub>11</sub>, -alk-NR<sub>6</sub>R<sub>7</sub>, hydroxyalkyle ou -COOR<sub>3</sub>,

R<sub>5</sub> est alkyle ou phényle éventuellement substitué par un ou plusieurs halogène,

- 20 R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R<sub>6</sub> et R<sub>7</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant
- 25 éventuellement substitué par un ou plusieurs radicaux alkyle, -COOalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub>, oxo, hydroxyalkyle, -alk-O-alk, -CO-NH,

R<sub>9</sub> représente un atome d'hydrogène ou un radical alkyle ou alkyle substitué par dialkylamino, phényle, cycloalkyle (éventuellement substitué par -COOalk) ou un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un ou plusieurs hétéroatomes choisis parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle,

R<sub>10</sub> et R<sub>11</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R<sub>10</sub> et R<sub>11</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle,

R<sub>12</sub> et R<sub>13</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle ou bien R<sub>12</sub> et R<sub>13</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub> ou un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons et contenant un hétéroatome choisi parmi oxygène, soufre et azote,

R<sub>14</sub> et R<sub>15</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou -COOalk,

R<sub>16</sub> et R<sub>17</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote,

alk représente un radical alkyle ou alkylène,

25 leurs isomères optiques et leurs sels avec un acide minéral ou organiques.

Les composés de formule (I) particulièrement préférés sont ceux pour lesquels

R représente une chaîne (A) ou (B),

R' représentant un atome d'hydrogène ou un radical -COalk,

R<sub>1</sub> représente un radical méthyle ou éthyle,

R<sub>2</sub> représente soit un aromatique choisi parmi

5 naphtyle,

phényle,

phényle substitué par un ou plusieurs halogène, alkyle, alcoxy, hydroxy, -COOR,  
(dans lequel R<sub>3</sub> représente un radical alkyle ou phényle éventuellement substitué par  
plusieurs halogènes), trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy,

10 -NR<sub>6</sub>R<sub>7</sub> (dans lequel R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome  
d'hydrogène ou un radical alkyle ou -COOalk ou bien R<sub>6</sub> et R<sub>7</sub>, forment ensemble avec  
l'atome d'azote auquel ils sont rattachés un hétérocycle choisi parmi pyrrolidinyle,  
pipéridyle, pipérazinyle ou pipérazinyle substitué par un ou plusieurs radicaux alkyle,  
-COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub>, dans lequel R<sub>14</sub> et R<sub>15</sub>,  
15 identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle),  
-CO-NH-NR<sub>6</sub>R<sub>7</sub> (R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène  
ou un radical alkyle ou bien R<sub>6</sub> et R<sub>7</sub>, forment ensemble avec l'atome d'azote auquel  
ils sont rattachés un hétérocycle choisi parmi pipéridyle, pipérazinyle ou pipérazyle  
substitué par un ou plusieurs radicaux alkyle), cyano, -CONHR<sub>9</sub> (dans lequel R<sub>9</sub>  
20 représente un atome d'hydrogène ou un radical alkyle ou alkyle substitué par dial-  
kylamino, phényle, cycloalkyle (éventuellement substitué par -COOalk) ou un hété-  
rocycle choisi parmi pyrrolidinyle (éventuellement substitué par alkyle),  
tétrahydrofuryle, morpholinyle ou pyrrolyle), alkylsulfanyle, hydroxyalkyle, nitro,  
-CO-NR<sub>16</sub>R<sub>17</sub> (dans lequel R<sub>16</sub> et R<sub>17</sub>, forment ensemble avec l'atome d'azote auquel ils  
25 sont rattachés un cycle pipéridyle), -O-alkNR<sub>12</sub>R<sub>13</sub> (dans lequel R<sub>12</sub> et R<sub>13</sub> forment  
ensemble avec l'atome d'azote auquel ils sont rattachés un cycle morpholino) ou  
alkylthioalkyle,

soit un hétéroaromatique choisi parmi

isoquinolyle,

pyridyle,

quinolyle,

5      1,2,3,4-tétrahydroisoquinolyle,

1,2,3,4-tétrahydroquinolyle,

thiényle, ou

thiényle substitué par un -COOR<sub>5</sub> (dans lequel R<sub>5</sub> représente un radical alkyle) ou -CONHR<sub>6</sub> (dans lequel R<sub>6</sub> représente un radical alkyle),

10     R<sub>7</sub> et R<sub>8</sub>, identiques ou différents, représentent soit un aromatique choisi parmi

phényle ou

phényle substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, hydroxyalkyle, formyle, -COOR<sub>9</sub> (dans lequel R<sub>9</sub> est un radical alkyle), -CONR<sub>10</sub>R<sub>11</sub> (dans lequel R<sub>10</sub> et R<sub>11</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle), -alk-NR<sub>6</sub>R<sub>7</sub>, (dans lequel R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R<sub>8</sub> et R<sub>9</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle choisi parmi pipéridyle (éventuellement substitué par alkyle, oxo), pyrrolidinyle (éventuellement substitué par alkyle, hydroxyalkyle, -alk-O-alk, -CO-NH<sub>2</sub>), thiomorpholinyle, morpholinyle, pyrrolyle, pipérazinyle éventuellement substitué par oxo, alkyle, hydroxyalkyle, -COOR<sub>9</sub> (dans lequel R<sub>9</sub> est un radical alkyle),

20     soit un hétéroaromatique choisi parmi

thiazolyde ou

thiényle,

alk représente un radical alkyle ou alkylène,

leurs isomères optiques et leurs sels avec un acide minéral ou organiques.

5 De préférence, lorsque R<sub>1</sub> est un radical phényle substitué, ce dernier est monosubstitué et, en particulier, en position 3 ou bien disubstitué et, en particulier, en positions 3,5; 2,5 ou 2,3.

De préférence, lorsque R<sub>1</sub> est un radical phényle substitué, ce dernier est monosubstitué et, en particulier, en position 4 ou disubstitué et, en particulier, en positions 2,4.

10 De préférence, lorsque R<sub>4</sub> est un radical phényle substitué, ce dernier est monosubstitué et, en particulier, en position 4 ou disubstitué et, en particulier, en positions 2,4.

Parmi les composés préférés, on peut citer les composés suivants :

1-benzhydryl-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthylphényl)(méthylsulfonyl)méthylène]azétidine,

15 1-benzhydryl-3-[(3-chlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(2,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(2,3-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-benzhydryl-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-bromophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-iodophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhoxyphényl)méthylène]azétidine,

1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylphényl)méthylène]azétidine,

1-benzhydryl-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthylène}azétidine,  
5

1-benzhydryl-3-[(3,5-dibromophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-carbamoylphényl)(méthylsulfonyl)méthylène]azétidine,  
10

1-benzhydryl-3-[(méthylsulfonyl)(napht-1-yl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]  
azétidine,

1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]  
azétidine,  
15

1-[bis(4-méthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]  
azétidine,

(RS)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-[(4-méthoxyphényl)  
phényl)méthyl]azétidine,

(R)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-[(4-méthoxyphényl)  
phényl)méthyl]azétidine,  
20

(S)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-[(4-méthoxyphényl)  
phényl)méthyl]azétidine,

1-[bis(4-trifluorométhoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-trifluorométhylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-[bis(4-chlorophényl) méthyl]3-[(3,5-bis(trifluorométhyl) phényl)méthylsulfonyl méthylène}azétidine,

(RS)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 (R)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(3,5-difluorophén-  
yl)(méthylsulfonyl)méthylène]azétidine,

15 (R)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(3,5-difluorophé-  
nyl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(3,5-difluorophé-  
nyl)(méthylsulfonyl)méthylène]azétidine,

20 (RS)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényl]méthyl}-3-[(3,5-difluoro-  
phényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényl]méthyl}-3-[(3,5-difluorophé-  
nyl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényl]méthyl}-3-[(3,5-difluorophé-  
nyl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{(S)-(4-chlorophényl)[4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(thiomorpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{(R)-(4-chlorophényl)[4-(thiomorpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(thiomorpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-{(R)-(4-chlorophényl)[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-{(RS)-(4-chlorophényl){4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl){4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl){4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{(S)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{(R)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(RS)-(4-chlorophényl)}{4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-{{(R)-(4-chlorophényl)}{4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(S)-(4-chlorophényl)}{4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-{(RS)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{(S)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{(R)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-{(RS)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-{(S)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(diéthylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(diéthylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

25 1-{(S)-(4-chlorophényl)[4-(diéthylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{(S)-(4-chlorophényl)[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(imidazol-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{(R)-(4-chlorophényl)[4-(imidazol-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(imidazol-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-{(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 (R)-1-{(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-{(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 (RS)-1-{(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-{(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-{(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5   (S)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthylsulfanylphényl)(méthylsulfonyl)méthylène]azétidine,

10   1-benzhydryl-3-[(3-méthylsulfanylphényl)phényl](méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine,

15   1-[bis(4-chlorophényl)méthyl]-3-[(3-carbamoylphényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyphényl)(méthylsulfonyl)méthylène]azétidine,

20   1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-pyrrolidinylphényl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyméthylphényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]3-[(méthylsulfonyl)[3-(N-pipéridylcarbamoyl)phényl]méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-trifluorométhylsulfanylphényle)(méthylsulfonyl)méthylène]azétidine,

5 1-[bis(4-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(2-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(3-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]

10 azétidine,

(RS)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

(R)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

15 (S)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

(RS)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 (S)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(éthylsulfonyl)(phényl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-{ {3-[N-(4-méthylpipérazinyl)carbamoyl]phényl} (méthylsulfonyl)méthylène}azétidine,

1-[bis(4-chlorophényl)méthyl]-3-{[3-(2,2-diméthylcarbohydrido)phényl](méthylsulfonyl)méthylène}azétidine,

5 1-[bis(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(p-tolyl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

1-[(4-chlorophényl)(4-hydroxyméthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthylaminophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 (R)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthylène]azétidine,

20 1-[bis(4-chlorophényl)méthyl]-3-hydroxy-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthyl]azétidine-(RS),

1-[bis(4-chlorophényl)méthyl]-3-[(2-isobutylaminocarbonylthién-5-yl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol,

1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(pyridin-4-yl)méthyl-(RS)]azétidin-3-ol,

5 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(pyridin-3-yl)méthyl-(RS)]azétidin-3-ol,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-morpholin-4-yl-propyl)benzamide,

10 3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-diméthylamino-propyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-pyrrolidin-1-yl-éthyl)benzamide,

15 3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-diméthylamino-1-méthyl-éthyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-pipéridin-1-yl-benzamide,

20 3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-isobutyl-benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-imidazol-1-yl-propyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-diméthylamino-éthyl)benzamide,

N'-méthyl-hydrazide de l'acide 3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque,

3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2-morpholin-4-yl-éthyl)benzamide,

3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(1-éthyl-pyrrolidin-2-ylméthyl)benzamide,

5    3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2,2-diméthyl-propyl)benzamide,

          3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-cyclohexylméthyl-benzamide,

          3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-

10    cyclopropylméthyl-benzamide,

          3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2-méthyl-butyl)benzamide,

          3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2-phényl-propyl)benzamide,

15    3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(tetrahydro-furan-2-ylméthyl)benzamide,

          3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2,2-diphényl-éthyl)benzamide,

          3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-

20    (2-éthyl-butyl)benzamide,

          ester méthylique de l'acide 4-{[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)benzoylamino]méthyl}-cyclohexanecarboxylique,

          2-amino-1-{4-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazin-1-yl}-éthanone,

ester tert-butylique de l'acide (2-{4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl}pipérazin-1-yl}-2-oxo-éthyl)carbamique,

1-{4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl}pipérazin-1-yl}-2-méthylamino-éthanone,

5 ester ter-butylique de l'acide (2-{4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl}pipérazin-1-yl}-2-oxo-éthyl)N-méthyl-carbamique,

N-méthylamide de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]pipérazine-1-carbothioic,

10 N-méthylamide de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]pipérazine-1-carboxylique,

ester de méthyl de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]pipérazine-1-carboxylique,

15 1-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]-4-isobutyl-pipérazine,

1-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]-4-éthyl-pipérazine,

4-acétyl 1-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]pipérazine,

20 1-{4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl}pipérazin-1-yl}-2-diméthylamino-éthanone,

1-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl]pipérazine,

ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidene)-méthanesulfonyl-méthyl]phényl]pipérazine-1-carboxylique,

1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 3-acétoxy-1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine,

(RS)-4-[4-((4-chlorophényl){3-[(3,5-difluorophényl)méthanesulfonyl-méthylene]azétidin-1-yl}-méthyl)benzyl]morpholine,

10 4-(4-{3-[(1-benzhydryl-azétidin-3-ylidene)méthanesulfonyl-méthyl]phénoxy}butyl)morpholine,

4-(4-{3-[(1-benzhydryl-azétidin-3-ylidene)méthanesulfonyl-méthyl]phénoxy}-propyl)morpholine,

leurs isomères optiques et leurs sels.

Parmi ces composés sont particulièrement préférés les composés suivants :

15 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol,

20 3-acétoxy-1-[bis-(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl sulfonyméthyl-(RS)]azétidine

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

Les exemples suivants illustrent l'invention sans la limiter.

Exemple 1

A une solution de 1 g de 1-benzhydryl-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol dans 10 cm<sup>3</sup> de pyridine, refroidie à 5°C, on ajoute 0,3 cm<sup>3</sup> de chlorure de méthanesulfonyle. On agite 2 heures à 5°C puis on ajoute 1 g de 4-diméthylamino pyridine dans 10 cm<sup>3</sup> de dichlorométhane à 5°C. La solution est agitée 15 heures à température ambiante puis concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm), en éluant sous une pression de 0,5 bar d'azote par du dichlorométhane et en recueillant des fractions de 80 cm<sup>3</sup>. Les fractions 17 à 20 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). Le résidu est cristallisé dans 10 cm<sup>3</sup> d'éther éthylique. On obtient 0,14 g de 1-benzhydryl-3-[(méthylsulfonyl)(phényl)méthylène]azétidine fondant à 210°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>2</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), entre 7,40 et 7,60 (9H, m, 9 CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : à une solution de 1,4 cm<sup>3</sup> de diisopropylamine dans 10 cm<sup>3</sup> de tétrahydrofurane, sous atmosphère d'argon, refroidie à 0°C, on ajoute 6,25 cm<sup>3</sup> de n-butyl lithium 1,6N en solution dans l'hexane puis refroidie à -70°C. On ajoute ensuite un mélange de 1,7 g de benzyl méthyl sulfone dans 30 cm<sup>3</sup> de tétrahydrofurane et maintient l'agitation 45 minutes à -70°C. On additionne 2,4 g de 1-benzhydryl azétidin-3-one puis agite 20 minutes en laissant le mélange revenir à température ambiante. Le mélange réactionnel est filtré, puis concentré à sec sous pression réduite (2,7 kPa). Le résidu est repris par 50 cm<sup>3</sup> d'acétate d'éthyle, 30 cm<sup>3</sup> d'eau et 20 cm<sup>3</sup> d'acide chlorhydrique normal. Le précipité est filtré, lavé par 30 cm<sup>3</sup> d'eau distillée, essoré et séché. On obtient 2 g de 1-benzhydryl-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol fondant à 260°C.

La 1-benzhydryl azétidin-3-one peut être préparée selon le mode opératoire décrit par KATRITZKY A.R. et coll. dans J. Heterocycl. Chem., 271 (1994).

**Exemple 2**

En opérant selon le mode opératoire de l'exemple 1 à partir de 1,9 g de 1-benzhydryl-3-[(3-méthylphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,52 cm<sup>3</sup> de chlorure de méthanesulfonyle et de 1,7 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 17 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (98,5/1,5 en volumes) comme éluants et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 5 et 6 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 2 cm<sup>3</sup> de dichlorométhane et 20 cm<sup>3</sup> d'oxyde de diisopropyle. On obtient 0,9 g de 1-benzhydryl-3-[(3-méthylphényle)(méthylsulfonyl)méthylène]azétidine fondant à 180°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,35 (3H, s, PhCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (5H, m, 5CH arom.), 7,30 (5H, t, J=7Hz, 5CH arom.), 7,50 (4H, d, J=7Hz, 4 CH arom.)].

Le 1-benzhydryl-3-[(3-méthylphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 2,8 g de méthyl(3-méthylbenzyl)sulfone et de 3,6 g de 1-benzhydryl azétidin-3-one, on obtient après purification sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (98,5/1,5 en volumes) comme éluant, 2,6 g d'un solide. Celui-ci est repris par 25 cm<sup>3</sup> d'oxyde de diisopropyle. Après filtration, essorage et séchage, on obtient 1,9 g de 1-benzhydryl-3-[(3-méthylphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol fondant à 170°C.

La méthyl(3-méthylbenzyl)sulfone peut être préparée de la manière suivante : à une solution de 30 cm<sup>3</sup> d'eau, 30 cm<sup>3</sup> d'acide acétique et 15 cm<sup>3</sup> d'acide sulfurique 36N, on ajoute, à température ambiante, 10,5 g d'oxone® puis 2,6 g de méthyl(3-méthylbenzyl)sulfure et 30 cm<sup>3</sup> d'éthanol. Le mélange est agité 48 heures à température ambiante puis repris par 100 cm<sup>3</sup> d'eau et 100 cm<sup>3</sup> d'acétate d'éthyle. La phase organique

est lavée par une solution aqueuse saturée de bicarbonate de sodium, décantée, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). On obtient 2,8 g de méthyl(3-méthylbenzyl)sulfone sous forme d'une gomme.

Le méthyl(3-méthylbenzyl)sulfure peut être préparé de la manière suivante : à une

5 solution de 3,7 g de bromure de 3-méthylbenzyle dans 25 cm<sup>3</sup> de diméthylformamide, on ajoute en maintenant la température inférieure à 30°C, 1,7 g de méthylthiolate de sodium. Le mélange est agité 2 heures à une température proche de 20°C puis repris par 50 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est lavée par 3 fois 100 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa).

10 On obtient 2,6 g de méthyl(3-méthylbenzyl)sulfure sous forme d'une huile.

### Exemple 3

A une solution de 3,3 g de 1-benzhydryl-3-[(4-méthylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol dans 10 cm<sup>3</sup> de pyridine, refroidie à 5°C, on ajoute 0,3 cm<sup>3</sup> de chlorure de méthanesulfonyle. On agite 2 heures à 5°C puis on ajoute 1 g de 4-diméthylamino pyridine dans 10 cm<sup>3</sup> de dichlorométhane à 5°C. La solution est agitée 15 heures à température ambiante puis concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm), en éluant sous une pression de 0,5 bar d'azote avec du dichlorométhane et en recueillant des fractions de 20 80 cm<sup>3</sup>. Les fractions 17 à 20 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 30 cm<sup>3</sup> d'acetonitrile. On obtient 0,14 g de 1-benzhydryl-3-[(4-méthylphényl)(méthylsulfonyl)méthylène]azétidine fondant à 210°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,30 (3H, s, PhCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (4H, m, 4CH arom.), 7,30 (6H, t, J=7Hz, 6CH arom.), 7,45 (4H, d, J=7Hz, 4 CH arom.)].

25

Le 1-benzhydryl-3-[(4-méthylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple

1 à partir de 4 g de méthyl(4-méthylbenzyl)sulfone et 5,1 g de 1-benzhydryl azétidin-3-one, on obtient 3 g de 1-benzhydryl-3-[(4-méthylphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol fondant à 226°C.

La méthyl(4-méthylbenzyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,5 g de méthyl(4-méthylbenzyl)sulfure et 12,3 g d'oxone<sup>R</sup>, on obtient 3,5 g de méthyl(4-méthylbenzyl)sulfone sous forme d'un solide.

Le méthyl(4-méthylbenzyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5,6 g de bromure de 4-méthylbenzyle et 2,3 g de méthyl thiolate de sodium, on obtient 4,7 g de méthyl(4-méthylbenzyl)sulfure sous forme d'un solide.

#### Exemple 4

A une solution de 3,3 g de 1-benzhydryl-3-[(2-méthylphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol dans 50 cm<sup>3</sup> de dichlorométhane, à température ambiante, on ajoute 0,7 cm<sup>3</sup> de chlorure de méthanesulfonyle puis 3,8 g de 4-diméthylaminopyridine. La solution est agitée 3 heures au reflux puis reprise par 2 fois 50 cm<sup>3</sup> d'eau. La phase organique est décantée, séchée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm), en éluant sous une pression de 0,5 bar d'azote par du dichlorométhane puis par un mélange dichlorométhane et éthanol (mélange 99/1 en volumes) et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 6 à 17 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 50 cm<sup>3</sup> d'éther éthylique. On obtient 2,6 g de 1-benzhydryl-3-[(2-méthylphényle)(méthylsulfonyl)méthylène]azétidine sous forme de meringue [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,30 (3H, s, PhCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,50 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), entre 7,10 et 7,35 (10H, m, 10CH arom.), 7,45 (4H, m, 4CH arom.)].

Le 1-benzhydryl-3-[(2-méthylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,4 g de méthyl(2-méthylbenzyl)sulfone et 4,3 g de 1-benzhydryl azétidin-3-one, on obtient 3,4 g de 1-benzhydryl-3-[(2-méthylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol fondant à 218°C.

La méthyl(2-méthylbenzyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4,5 g de méthyl(2-méthylbenzyl)sulfure et 16,2 g d'oxone®, on obtient 3,4 g de méthyl(2-méthylbenzyl)sulfone sous forme d'un solide.

10 Le méthyl(2-méthylbenzyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5,6 g de bromure de 2-méthylbenzyle et 2,1 g de méthyl thiolate de sodium, on obtient 4,5 g de méthyl(2-méthylbenzyl)sulfure sous forme d'un solide.

#### Exemple 5

15 En opérant selon le mode opératoire de l'exemple 4 à partir de 2,1 g de 1-benzhydryl-3-[(2-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,55 cm<sup>3</sup> de chlorure de méthanesulfonyle et 2,3 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 12 à 18 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 3 cm<sup>3</sup> de dichlorométhane et 40 cm<sup>3</sup> d'éther éthylique. On obtient 1,1 g de 1-benzhydryl-3-[(2-chlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 204°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,60 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (7H, m, 7CH arom.), 7,55 (1H, d, J=7Hz, CH arom.)].

Le 1-benzhydryl-3-[(2-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4 g de (2-chlorobenzyl)méthylsulfone et 4,6 g de 1-benzhydryl azétidin-3-one, le résidu obtenu est repris par 50 cm<sup>3</sup> d'acétate d'éthyle, filtré et séché. On obtient 2,4 g de 1-benzhydryl-3-[(2-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (2-chlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,4 g de (2-chlorobenzyl)méthylsulfure et 12 g d'oxone<sup>R</sup>, on obtient 4 g de (2-chlorobenzyl)méthylsulfone sous forme d'une huile qui cristallise.

Le (2-chlorobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4 g de bromure de 2-chlorobenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 3,4 g de (2-chlorobenzyl)méthylsulfure sous forme d'une huile.

### 15 Exemple 6

En opérant selon le mode opératoire de l'exemple 4 à partir de 3 g de 1-benzhydryl-3-[(3-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,79 cm<sup>3</sup> de chlorure de méthanesulfonyle et 3,3 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 2 à 5 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 40 cm<sup>3</sup> d'éther éthylique. On obtient 1,7 g de 1-benzhydryl-3-[(3-chlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 205°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (8H, m, 8CH arom.)].

Le 1-benzhydryl-3-[(3-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,1 g de (3-chlorobenzyl)méthylsulfone et 3,4 g de 1-benzhydryl azétidin-3-one, on obtient 3,4 g de 1-benzhydryl-3-[(3-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (3-chlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,2 g de (3-chlorobenzyl)méthylsulfure et 12 g d'oxone<sup>R</sup>, on obtient 3,2 g de (3-chlorobenzyl)méthylsulfone sous forme d'un solide blanc.

10 Le (3-chlorobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4 g de bromure de 3-chlorobenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 3,2 g de 3-chlorobenzyl méthyl sulfure sous forme d'une huile.

#### Exemple 7

15 En opérant selon le mode opératoire de l'exemple 4 à partir de 3,3 g de 1-benzhydryl-3-[(4-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,87 cm<sup>3</sup> de chlorure de méthanesulfonyle et 3,6 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 8 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 3 cm<sup>3</sup> et 30 cm<sup>3</sup> d'éther éthylique. On obtient 0,5 g de 1-benzhydryl-3-[(4-chlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 192°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), entre 7,40 et 7,55 (8H, m, 8CH arom.)].

Le 1-benzhydryl-3-[(4-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 2,8 g de (4-chlorobenzyl)méthylsulfone et 3,24 g de 1-benzhydryl azétidin-3-one, on obtient après cristallisation dans 80 cm<sup>3</sup>, 3,4 g de 1-benzhydryl-3-[(4-chlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (4-chlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,5 g de (4-chlorobenzyl)méthylsulfure et 12,3 g d'oxone<sup>R</sup>, on obtient 3,5 g de (4-chlorobenzyl)méthylsulfone sous forme d'un solide.

#### Exemple 8

En opérant selon le mode opératoire de l'exemple 4 à partir de 3,1 g de 1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,75 cm<sup>3</sup> de chlorure de méthanesulfonyle et 3,1 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 6 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 2 cm<sup>3</sup> de dichlorométhane et 30 cm<sup>3</sup> d'éther éthylique. On obtient 0,8 g de 1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 204°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz): 2,95 (3H, s, SCH<sub>3</sub>), 3,85 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (6H, m, 6CH arom.), 7,70 (1H, s, CH arom.)].

Le 1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4 g de (3,5-dichlorobenzyl)méthylsulfone et 4 g de 1-benzhy-

drylazétidin-3-one, on obtient 3,2 g de 1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (3,5-dichlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5,3 g de (3,5-dichlorobenzyl)méthylsulfure et 17 g d'oxone<sup>R</sup>, on obtient 5 g de (3,5-dichlorobenzyl)méthylsulfone sous forme d'un solide blanc.

Le (3,5-dichlorobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5 g de chlorure de 3,5-dichlorobenzyle et 2 g de méthyl thiolate de sodium, on obtient 5,3 g de (3,5-dichlorobenzyl)méthylsulfure sous forme d'une huile.

#### Exemple 9

En opérant selon le mode opératoire de l'exemple 4 à partir de 5 g de 1-benzhydryl-3-[(3,4-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,2 cm<sup>3</sup> de chlorure de méthanesulfonyle et 3,8 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) comme éluant et en recueillant des fractions de 35 cm<sup>3</sup>. Les fractions 30 à 55 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 50 cm<sup>3</sup> d'éther éthylique. On obtient 1,5 g de 1-benzhydryl-3-[(3,4-dichlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 170°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), entre 7,35 et 7,50 (5H, m, 5CH arom.), 7,65 (2H, m, 2CH arom.)].

Le 1-benzhydryl-3-[(3,4-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4,5 g de (3,4-dichlorobenzyl)méthylsulfone et 4,3 g de

1-benzhydryl azétidin-3-one, on obtient 5 g de 1-benzhydryl-3-[(3,4-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (3,4-dichlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4,3 g de (3,4-dichlorobenzyl)méthylsulfure et 13 g d'oxone<sup>R</sup>, on obtient 4,7 g de (3,4-dichlorobenzyl)méthylsulfone sous forme d'un solide blanc.

Le (3,4-dichlorobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 2,8 cm<sup>3</sup> de chlorure de 3,4-dichlorobenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 4,3 g de (3,4-dichlorobenzyl)méthylsulfure sous forme d'une huile.

#### Exemple 10

En opérant selon le mode opératoire de l'exemple 4 à partir de 1,8 g de 1-benzhydryl-3-[(2,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,4 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,8 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 8 à 14 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 2 cm<sup>3</sup> de dichlorométhane et 30 cm<sup>3</sup> d'éther éthylique. On obtient 1,2 g de 1-benzhydryl-3-[(2,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 202°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (250 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,70 (2H, m, NCH<sub>2</sub>), 4,25 (2H, m, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), entre 7,55 et 7,70 (3H, m, 3CH arom.)].

Le 1-benzhydryl-3-[(2,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de

l'exemple 1 à partir de 1,2 g de (2,5-dichlorobenzyl)méthylsulfone et 1,2 g de 1-benzhydryl azétidin-3-one, on obtient 1,8 g de 1-benzhydryl-3-[(2,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (2,5-dichlorobenzyl)méthylsulfone peut être préparée de la manière suivante : on ajoute, à température ambiante, 1,9 g de méthanesulfinate de sodium à une solution de 2,7 g de chlorure de 2,5-dichlorobenzyle dans 30 cm<sup>3</sup> d'éthanol. Le mélange est chauffé au reflux 5 heures, refroidi à température ambiante puis repris par 50 cm<sup>3</sup> d'eau et 50 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est décantée, lavée par 20 cm<sup>3</sup> d'une solution aqueuse saturée par du chlorure de sodium, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). On obtient 1,2 g de (2,5-dichlorobenzyl)méthylsulfone sous forme d'un solide blanc.

#### Exemple 11

En opérant selon le mode opératoire de l'exemple 4 à partir de 9,1 g de 1-benzhydryl-3-[(2,4-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 2,2 cm<sup>3</sup> de chlorure de méthanesulfonyle et 7 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5,5 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>. Les fractions 27 à 39 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 20 cm<sup>3</sup> d'éther éthylique. On obtient 1,5 g de 1-benzhydryl-3-[(2,4-dichlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 165°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,65 (2H, m, NCH<sub>2</sub>), 4,25 (2H, m, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (6H, m, 6CH arom.), 7,80 (1H, s, CH arom.)].

Le 1-benzhydryl-3-[(2,4-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4,8 g de (2,4-dichlorobenzyl)méthylsulfone et 4,7 g de

1-benzhydryl azétidin-3-one, on obtient 9,1 g de 1-benzhydryl-3-[(2,4-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue brune.

La (2,4-dichlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4 g de (2,4-dichlorobenzyl)méthylsulfure et 13 g d'oxone®, on obtient 4,8 g de (2,4-dichlorobenzyl)méthylsulfone sous forme d'un solide blanc fondant à 111°C.

Le (2,4-dichlorobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 2,8 cm<sup>3</sup> de chlorure de 2,4-dichlorobenzyle et 1,5 g de méthylthiolate de sodium, on obtient 4 g de (2,4-dichlorobenzyl)méthylsulfure sous forme d'une huile.

#### Exemple 12

En opérant selon le mode opératoire de l'exemple 4 à partir de 3 g de 1-benzhydryl-3-[(2,3-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,1 g de chlorure de méthanesulfonyle et 3 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (98/2 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 10 à 20 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 40 cm<sup>3</sup> d'éther éthylique. On obtient 1,6 g de 1-benzhydryl-3-[(2,3-dichlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 201°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,60 (2H, m, NCH<sub>2</sub>), 4,20 (2H, m, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (6H, m, 6CH arom.), 7,70 (1H, dd, J=8 et 2Hz, CH arom.)].

Le 1-benzhydryl-3-[(2,3-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,6 g de (2,3-dichlorobenzyl)méthylsulfone et 3,6 g de

1-benzhydryl azétidin-3-one, on obtient 5,4 g de 1-benzhydryl-3-[(2,3-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidino-3-ol sous forme d'un solide blanc.

La (2,3-dichlorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 10 à partir de 3 g de chlorure de 5 2,3-dichlorobenzyle et 2,4 g de méthanesulfinate de sodium, on obtient 3,6 g de (2,3-dichlorobenzyl)méthylsulfone sous forme d'un solide blanc.

#### Exemple 13

En opérant selon le mode opératoire de l'exemple 4 à partir de 2,5 g de 1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,72 cm<sup>3</sup> de chlore 10 rure de méthanesulfonyle et 2,9 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 2 à 6 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu 15 est cristallisé dans 40 cm<sup>3</sup> d'éther éthylique. On obtient 1,5 g de 1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 210°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), entre 7,10 et 7,30 (9H, m, 9CH arom.), 7,45 (5H, m, 5CH arom.)].

20 Le 1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 2,6 g de 3-fluorobenzyl méthyl sulfone et 3,3 g de 1-benzhydryl azétidin-3-one, on obtient 2,9 g de 1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc fondant à 200°C.

25 La 3-fluorobenzyl méthyl sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,1 g de 3-fluorobenzyl mé-

thyl sulfure et 13 g d'oxone<sup>8</sup>, on obtient 2,7 g de 3-fluorobenzyl méthyl sulfone sous forme d'un solide blanc.

Le 3-fluorobenzyl méthyl sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 2,6 cm<sup>3</sup> de bromure de 5 3-fluorobenzyle et 1,6 g de méthyl thiolate de sodium, on obtient 3,1 g de 3-fluorobenzyl méthyl sulfure sous forme d'une huile.

#### Exemple 14

En opérant selon le mode opératoire de l'exemple 4 à partir de 4,3 g de 1-benzhydryl-3-[(2-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,2 cm<sup>3</sup> de chlorure 10 de méthanesulfonyle et 3,7 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,5 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 28 à 58 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide 15 obtenu est cristallisé dans 100 cm<sup>3</sup> d'éther éthylique. On obtient 2,3 g de 1-benzhydryl-3-[(2-fluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 188°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,65 (2H, m, NCH<sub>2</sub>), 4,20 (2H, m, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (6H, m, 6CH arom.), 7,50 (6H, m, 6CH arom.)].

20 Le 1-benzhydryl-3-[(2-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,4 g de 2-fluorobenzyl méthyl sulfone et 4,2 g de 1-benzhydryl azétidin-3-one, on obtient 4,3 g de 1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

25 La 2-fluorobenzyl méthyl sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3 g de 2-fluorobenzyl méthyl

sulfure et 13 g d'oxone<sup>R</sup>, on obtient 3,6 g de 3-fluorobenzyl méthyl sulfone sous forme d'un solide blanc.

Le 2-fluorobenzyl méthyl sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 2,4 cm<sup>3</sup> de bromure de 5 2-fluorobenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 3 g de 2-fluorobenzyl méthyl sulfure sous forme d'une huile.

#### Exemple 15

En opérant selon le mode opératoire de l'exemple 4 à partir de 1 g de 1-benzhydryl-3-[(4-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,3 cm<sup>3</sup> de chlorure 10 de méthanesulfonyle et 0,9 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 20 à 35 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide 15 obtenu est cristallisé dans 50 cm<sup>3</sup> d'éther éthylique. On obtient 0,4 g de 1-benzhydryl-3-[(4-fluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 186°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, m, NCH<sub>2</sub>), 4,20 (2H, m, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,15 et 7,35 (8H,m, 8CH arom.), 7,45 (6H, m, 6CH arom.)].

20 Le 1-benzhydryl-3-[(4-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 2,8 g de 4-fluorobenzyl méthyl sulfone et 3,6 g de 1-benzhydryl azétidin-3-one, on obtient 1 g de 1-benzhydryl-3-[(4-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

25 La 4-fluorobenzyl méthyl sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3 g de 4-fluorobenzyl méthyl

sulfure et 13 g d'oxone<sup>R</sup>, on obtient 3 g de 4-fluorobenzyl méthyl sulfone sous forme d'un solide blanc fondant à 110°C.

Le 4-fluorobenzyl méthyl sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 2,5 cm<sup>3</sup> de chlorure de 5 4-fluorobenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 3 g de 4-fluorobenzyl méthyl sulfure sous forme d'une huile.

#### Exemple 16

En opérant selon le mode opératoire de l'exemple 4 à partir de 3,8 g de 1-benzhydryl-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1 cm<sup>3</sup> de chlore 10 de méthanesulfonyle et 4,2 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 5 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide 15 obtenu est cristallisé dans 30 cm<sup>3</sup> d'éther éthylique. On obtient 0,8 g de 1-benzhydryl-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 172°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,85 (2H, m, NCH<sub>2</sub>), 4,20 (2H, m, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,10 et 7,40 (9H,m, 9CH arom.), 7,50 (4H, d, J=7Hz, 4CH arom.)].

20 Le 1-benzhydryl-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,2 g de 3,5-difluorobenzyl méthyl sulfone et 3,7 g de 1-benzhydryl azétidin-3-one, on obtient 3,9 g de 1-benzhydryl-3-[(3,5-difluorophén-25 yl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La 3,5-difluorobenzyl méthyl sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4,2 g de

3,5-difluorobenzyl méthyl sulfure et 16 g d'oxone<sup>8</sup>, on obtient 3,3 g de 3,5-difluorobenzyl méthyl sulfone sous forme d'un solide blanc.

Le 3,5-difluorobenzyl méthyl sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5 g de bromure de 5 3,5-difluorobenzyle et 2 g de méthyl thiolate de sodium, on obtient 4,9 g de 3,5-difluorobenzyl méthyl sulfure sous forme d'une huile.

#### Exemple 17

En opérant selon le mode opératoire de l'exemple 4 à partir de 5,2 g de 1-benzhydryl-3-[(2,3-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 2,3 cm<sup>3</sup> de 10 chlorure de méthanesulfonyle et 7,3 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 6 cm, hauteur 40 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et méthanol (98/2 en volumes) comme éluant et en recueillant des fractions de 50 cm<sup>3</sup>. Les fractions 65 à 87 sont réunies et concentrées à 15 sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 75 cm<sup>3</sup> d'éther éthylique. On obtient 2,5 g de 1-benzhydryl-3-[(2,3-difluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 208°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (400 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,70 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,15 et 7,55 (13H, m, 13CH arom.)].

20 Le 1-benzhydryl-3-[(2,3-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4 g de (2,3-difluorobenzyl)méthylsulfone et 4,8 g de 1-benzhydryl azétidin-3-one, on obtient 5,5 g de 1-benzhydryl-3-[(2,3-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide beige.

25 La (2,3-difluorobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 10 à partir de 4,1 g de bromure de

2,3-difluorobenzyle et 4,1 g de méthanesulfinate de sodium, on obtient 4 g de (2,3-difluorobenzyl)méthyl sulfone sous forme d'un solide blanc.

#### Exemple 18

En opérant selon le mode opératoire de l'exemple 4 à partir de 5,2 g de 1-benzhydryl-  
5 3-[(2,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 2,3 cm<sup>3</sup> de  
chlorure de méthanesulfonyle et 7,3 g de 4-diméthylaminopyridine, le résidu obtenu  
est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-  
0,06 mm, diamètre 6 cm, hauteur 40 cm) sous une pression de 0,5 bar d'azote avec un  
mélange dichlorométhane et méthanol (98/2 en volumes) comme éluant et en  
10 recueillant des fractions de 50 cm<sup>3</sup>. Les fractions 73 à 90 sont réunies et concentrées à  
sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 75 cm<sup>3</sup>  
d'éther éthylique. On obtient 2,6 g de 1-benzhydryl-3-[(2,5-difluorophé-  
nyl)(méthylsulfonyl)méthylène]azétidine fondant à 176°C.

Le 1-benzhydryl-3-[(2,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol  
15 peut être obtenu de la manière suivante : en opérant selon le mode opératoire de  
l'exemple 1 à partir de 4 g de (2,5-difluorobenzyl)méthyl sulfone et 4,8 g de  
1-benzhydryl azétidin-3-one, on obtient 5,9 g de 1-benzhydryl-3-[(2,5-difluorophé-  
nyl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc crème.

La (2,5-difluorobenzyl)méthyl sulfone peut être préparée de la manière suivante : en  
20 opérant selon le mode opératoire de l'exemple 10 à partir de 4,1 g de bromure de  
2,5-difluorobenzyle et 4,1 g de méthanesulfinate de sodium, on obtient 4,8 g de (2,5-  
difluorobenzyl)méthyl sulfone sous forme d'un solide blanc fondant à 95°C.

#### Exemple 19

En opérant selon le mode opératoire de l'exemple 4 à partir de 7,7 g de 1-benzhydryl-  
25 3-[(3-bromophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,8 cm<sup>3</sup> de chlo-  
rure de méthanesulfonyle et 5,8 g de 4-diméthylaminopyridine, le résidu obtenu est  
purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-

0,06 mm, diamètre 3 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (99,5/0,5 en volumes) comme éluants et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 17 à 28 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est  
5 cristallisé dans un mélange de 5 cm<sup>3</sup> de dichlorométhane et 50 cm<sup>3</sup> d'éther éthylique. On obtient 3,5 g de 1-benzhydryl-3-[(3-bromophényl)(méthylsulfonyl)méthylène]azétidine fondant à 200°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t,  
10 J=7Hz, 4CH arom.), entre 7,35 et 7,55 (6H, m, 6CH arom.), 7,65 (2H, m, 2CH arom.)].

Le 1-benzhydryl-3-[(3-bromophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 8 g de 3-bromobenzyl méthyl sulfone et 7,6 g de 1-benzhydryl azétidin-15 3-one, on obtient 8 g de 1-benzhydryl-3-[(3-bromophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La 3-bromobenzyl méthyl sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 9 g de 3-bromobenzyl méthyl sulfure et 27 g d'oxone<sup>R</sup>, on obtient 8,2 g de 3-bromobenzyl méthyl sulfone sous 20 forme d'un solide blanc.

Le 3-bromobenzyl méthyl sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 10 g de bromure de 3-bromobenzyle et 3,1 g de méthyl thiolate de sodium, on obtient 9 g de 3-bromobenzyl méthyl sulfure sous forme d'une huile.

## 25 Exemple 20

En opérant selon le mode opératoire de l'exemple 4 à partir de 1,5 g de 1-benzhydryl-3-[(3-iodophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,3 cm<sup>3</sup> de chlorure

de méthanesulfonyle et 1,4 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (99,7/0,3 en volumes) comme élavants et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 16 à 24 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 1,5 cm<sup>3</sup> de dichlorométhane et 25 cm<sup>3</sup> d'éther éthylique. On obtient 0,5 g de 1-benzhydryl-3-[(3-iodophényl)(méthylsulfonyl)méthylène]azétidine fondant à 198°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,10 et 7,30 (7H,m, 7CH arom.), 7,45 (5H, m, 5CH arom.), 7,80 (2H, m, 2CH arom.)].

Le 1-benzhydryl-3-[(3-iodophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,7 g de 3-iodobenzyl méthyl sulfone et 3 g de 1-benzhydryl azétidin-3-one, on obtient 1,5 g de 1-benzhydryl-3-[(3-iodophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La 3-iodobenzyl méthyl sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,6 g de 3-iodobenzyl méthyl sulfure et 10,3 g d'oxone®, on obtient 3,7 g de 3-iodobenzyl méthyl sulfone sous forme d'un solide blanc.

Le 3-iodobenzyl méthyl sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5 g de bromure de 3-iodobenzyle et 1,3 g de méthyl thiolate de sodium, on obtient 4 g de 3-iodobenzyl méthyl sulfure sous forme d'une huile.

25 Exemple 21

En opérant selon le mode opératoire de l'exemple 4 à partir de 2,4 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhoxyphényle)méthyl-(RS)]azétidin-3-ol, de 0,6 cm<sup>3</sup>

de chlorure de méthanesulfonyle et 2,3 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (99,7/0,3 en volumes) comme éluants et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 12 à 25 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 2 cm<sup>3</sup> de dichlorométhane et 30 cm<sup>3</sup> d'éther éthylique. On obtient 0,7 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhoxyphényle)méthylène]azétidine fondant à 162°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,15 et 7,40 (6H,m, 6CH arom.), entre 7,45 et 7,55 (7H, m, 7CH arom.), 7,60 (1H, t, J=7Hz, CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhoxyphényle)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 2,4 g de méthyl(3-trifluorométhoxybenzyl)sulfone et 2,2 g de 1-benzhydryl azétidin-3-one, on obtient 2,4 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhoxyphényle)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La méthyl(3-trifluorométhoxybenzyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 2,6 g de méthyl(3-trifluorométhoxybenzyl)sulfure et 7,2 g d'oxone<sup>R</sup>, on obtient 2,4 g de méthyl(3-trifluorométhoxybenzyl)sulfone sous forme d'un solide blanc.

Le méthyl(3-trifluorométhoxybenzyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3 g de bromure de 3-trifluorométhoxybenzyle et 1 g de méthyl thiolate de sodium, on obtient 3,3 g de méthyl(3-trifluorométhoxybenzyl)sulfure sous forme d'une huile.

#### Exemple 22

En opérant selon le mode opératoire de l'exemple 4 à partir de 4,1 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylphényle)méthyl-(RS)]azétidin-3-ol, de 1 cm<sup>3</sup> de chlorure de méthanesulfonyle et 4,2 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 5 10 à 14 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 2 cm<sup>3</sup> de dichlorométhane et 30 cm<sup>3</sup> d'éther éthylique. On obtient 1,2 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylphényle)méthylène]azétidine fondant à 178°C [Spectre RMN dans DMSO-d6, 10 T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,15 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), entre 7,60 et 7,80 (4H, m, 4CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylphényle)méthyl-(RS)]azétidin-15 3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,4 g de méthyl(3-trifluorométhylbenzyl)sulfone et 3,4 g de 1-benzhydryl azétidin-3-one, on obtient 4,2 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylphényle)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La méthyl(3-trifluorométhylbenzyl)sulfone peut être préparée de la manière suivante : 20 en opérant selon le mode opératoire de l'exemple 2 à partir de 3,3 g de méthyl(3-trifluorométhylbenzyl)sulfure et 10 g d'oxone®, on obtient 3,4 g de méthyl(3-trifluorométhylbenzyl)sulfone sous forme d'un solide blanc.

Le méthyl(3-trifluorométhylbenzyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,9 g de bromure de 25 3-trifluorométhylbenzyle et 1,4 g de méthyl thiolate de sodium, on obtient 3,3 g de méthyl(3-trifluorométhylbenzyl)sulfure sous forme d'une huile.

### Exemple 23

En opérant selon le mode opératoire de l'exemple 4 à partir de 2,7 g de 1-benzhydryl-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthyl-(RS)}azétidin-3-ol, de 0,6 cm<sup>3</sup> de chlorure de méthanesulfonyle et 2,4 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 6 cm, hauteur 40 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 7 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 10 cm<sup>3</sup> d'éther éthylique. On obtient 1 g de 1-benzhydryl-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthylène}azétidine fondant à 192°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,85 (2H, s, NCH<sub>2</sub>), 4,15 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,15 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,40 (4H, d, J=7Hz, 4CH arom.), 8,05 (2H, s, 2CH arom.), 8,15 (1H, s, CH arom.)].

Le 1-benzhydryl-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthylène}azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,1 g de méthyl[3,5-bis(trifluorométhyl)benzyl]sulfone et 2,4 g de 1-benzhydryl azétidin-3-one on obtient 2,8 g de 1-benzhydryl-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthylène}azétidin-3-ol sous forme d'un solide blanc.

La méthyl[3,5-bis(trifluorométhyl)benzyl]sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 10 à partir de 3 g de chlorure de 3,5-bis(trifluorométhyl)benzyle et 2 g de méthanesulfinate de sodium, on obtient 3,1 g de méthyl[3,5-bis(trifluorométhyl)benzyl]sulfone sous forme d'un solide blanc fondant à 132°C.

#### 25 Exemple 24

En opérant selon le mode opératoire de l'exemple 4 à partir de 10,7 g de 1-benzhydryl-3-[(3,5-dibromophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 2,2 cm<sup>3</sup> de chlorure de méthanesulfonyle et 7 g de 4-diméthylaminopyridine, le résidu obtenu est

purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5,5 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 35 cm<sup>3</sup>. Les fractions 40 à 58 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 50 cm<sup>3</sup> d'éther éthylique. On obtient 1,5 g de 1-benzhydryl-3-[(3,5-dibromophényl)(méthylsulfonyl)méthylène]azétidine fondant à 209°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,88 (2H, s, NCH<sub>2</sub>), 4,22 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,22 (2H, t, J=7Hz, 2CH arom.), 7,33 (4H, t, J=7Hz, 4CH arom.), 7,48 (4H, d, J=7Hz, 4CH arom.), 7,68 (2H, s, 2CH arom.), 7,95 (1H, s, CH arom.)].

Le 1-benzhydryl-3-[(3,5-dibromophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 6,2 g de (3,5-dibromobenzyl)méthylsulfone et 4,5 g de 1-benzhydryl azétidin-3-one, on obtient 10,7 g de 1-benzhydryl-3-[(3,5-dibromophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue.

La (3,5-dibromobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5,8 g de (3,5-dibromobenzyl)méthylsulfure et 13 g d'oxone<sup>R</sup>, on obtient 6,2 g de (3,5-dibromobenzyl)méthylsulfone sous forme d'un solide blanc.

Le (3,5-dibromobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 6,6 g de bromure de 3,5-dibromobenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 5,8 g de (3,5-dibromobenzyl)méthylsulfure sous forme d'une huile.

#### Exemple 25

En opérant selon le mode opératoire de l'exemple 4 à partir de 4,2 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-nitrophényl)méthyl-(RS)]azétidin-3-ol, de 1,1 cm<sup>3</sup> de chlorure de méthanesulfonyle et 2,5 g de 4-diméthylaminopyridine, le résidu obtenu est purifié

par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (50/50 en volumes) comme éluants en recueillant des fractions de 400 cm<sup>3</sup>. Les fractions 17 à 33 sont réunies et concentrées à sec sous 5 pression réduite (2,7 kPa). Le solide obtenu est recristallisé dans 15 cm<sup>3</sup> d'acétate d'éthyle. On obtient 0,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-nitrophényle)méthylène]azétidine fondant à 184°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,85 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,75 10 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,75 (1H, t, J=7Hz, CH arom.), 7,85 (1H, d, J=7Hz, CH arom.), 8,25 (2H, m, 2CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(3-nitrophényle)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,9 g de méthyl(3-nitrobenzyl)sulfone et 4,2 g de 1-benzhydryl azétidin-15 3-one, on obtient 4,2 g de 1-benzhydryl 3-[(méthylsulfonyl)(3-nitrophényle)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue.

La méthyl(3-nitrobenzyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 18,1 g de méthyl(3-nitrobenzyl)sulfure et 68 g d'oxone<sup>R</sup>, on obtient 13,9 g de méthyl(3-nitrobenzyl)sulfone sous 20 forme d'une meringue.

Le méthyl(3-nitrobenzyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 17,2 g de chlorure de 3-nitrobenzyle et 7,7 g de méthyl thiolate de sodium, on obtient 18,2 g de méthyl(3-nitrobenzyl)sulfure sous forme d'une huile.

## 25 Exemple 26

Un mélange de 0,34 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-nitrophényle)méthylène]azétidine, 16 cm<sup>3</sup> d'acide chlorhydrique 1N dans 8 cm<sup>3</sup> d'éthanol et

16 cm<sup>3</sup> de tétrahydrofurane est chauffé au reflux. On ajoute 0,17 g de fer en poudre et maintient le reflux durant 3 heures. Le mélange est ensuite refroidi à température ambiante, l'insoluble est filtré. La solution est reprise par 10 cm<sup>3</sup> de soude 1N et 50 cm<sup>3</sup> d'une solution aqueuse saturée de chlorure de sodium. La phase aqueuse est  
5 extraite par 3 fois 40 cm<sup>3</sup> de dichlorométhane, les extraits sont réunis, séchés sur du sulfate de sodium et concentrés à sec sous pression réduite (2,7kPa). Le résidu est purifié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (50/50 en volumes) comme éluant en recueillant des fractions de  
10 20 cm<sup>3</sup>. Les fractions 13 à 31 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 15 cm<sup>3</sup> d'éther éthylique. On obtient 0,17 g de 3-[(3-aminophényl)(méthylsulfonyl)méthylène]-1-benzhydrylazétidine fondant à 197°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 5,25  
15 (2H, s, NH<sub>2</sub>), 6,55 (3H, m, 3CH arom.), 7,05 (1H, t, J=7Hz, CH arom.), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.)].

#### Exemple 27

En opérant selon le mode opératoire de l'exemple 4 à partir de 1,2 g de 1-benzhydryl-  
20 3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,3 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,3 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et acétate d'éthyle (99,5/0,5 en  
25 volumes) comme éluants et en recueillant des fractions de 100 cm<sup>3</sup>. La fraction 18 est concentrée à sec sous pression réduite (2,7 kPa). Le solide obtenu est précipité dans 5 cm<sup>3</sup> d'éther éthylique. On obtient 0,13 g de 1-benzhydryl-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide meringué [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz): 2,95 (3H, s, SCH<sub>3</sub>),

3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,60 (1H, t, J=7Hz, CH arom.), 7,70 (1H, d, J=7Hz, CH arom.), 8,00 (2H, m, 2CH arom.)].

Le 1-benzhydryl-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3 g de (3-méthoxycarbonylbenzyl)méthylsulfone et 3,6 g de 1-benzhydryl azétidin-3-one, on obtient après purification par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (99/1 en volumes) comme éluants, 1,2 g de 1-benzhydryl-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue.

La (3-méthoxycarbonylbenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4,3 g de (3-méthoxycarbonylbenzyl)méthylsulfure et 13,4 g d'oxone<sup>R</sup>, on obtient 3,4 g de (3-méthoxycarbonylbenzyl)méthylsulfone sous forme d'un solide blanc.

Le (3-méthoxycarbonylbenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5 g de bromure de 3-méthoxycarbonylbenzyle et 1,7 g de méthyl thiolate de sodium, on obtient 4,3 g de (3-méthoxycarbonylbenzyl)méthylsulfure sous forme d'une huile.

#### Exemple 28

En opérant selon le mode opératoire de l'exemple 4 à partir de 6,2 g de 1-benzhydryl-3-[(3-cyanophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,6 cm<sup>3</sup> de chlorure de méthanesulfonyle et 6,8 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et acétate d'éthyle (99,5/0,5 en

volumes) comme éluants et en recueillant des fractions de 250 cm<sup>3</sup>. Les fractions 10 à 15 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange de 5 cm<sup>3</sup> de dichlorométhane et 70 cm<sup>3</sup> d'éther éthylique. On obtient 2,9 g de 1-benzhydryl-3-[(3-cyanophényle)(méthylsulfonylméthylène]azétidine fondant à 152°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,65 (1H, t, J=7Hz, CH arom.), 7,75 (1H, d, J=7Hz, CH arom.), 7,90 (2H, m, 2CH arom.)].

5 10 Le 1-benzhydryl-3-[(3-cyanophényle)(méthylsulfonylméthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,9 g de (3-cyanobenzyl)méthylsulfone et 4,7 g de 1-benzhydryl azétidin-3-one, on obtient 6,2 g de 1-benzhydryl-3-[(3-cyanophényle)(méthylsulfonylméthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

15 15 La (3-cyanobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 6,7 g de (3-cyanobenzyl)méthylsulfure et 27,6 g d'oxone<sup>R</sup>, on obtient 3,9 g de (3-cyanobenzyl)méthylsulfone sous forme d'un solide blanc.

20 20 Le (3-cyanobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 8 g de bromure de 3-cyanobenzyle et 3,1 g de méthyl thiolate de sodium, on obtient 6,8 g de (3-cyanobenzyl)méthylsulfure sous forme d'une huile.

Exemple 29

On agite à température ambiante pendant 15 heures un mélange de 3 g de chlorhydrate de 25 1-benzhydryl-3-[(3-carboxyphényle)(méthylsulfonylméthylène]azétidine, 1,3 g de pentafluorophénol, 1,4 g de chlorhydrate de 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide dans 30 cm<sup>3</sup> de diméthylformamide. Le mélange est repris par 100

cm<sup>3</sup> d'eau et 100 cm<sup>3</sup> d'une solution aqueuse saturée avec du chlorure de sodium et 50 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est décantée, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5 3 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et méthanol (99,4/0,6 en volumes) comme éluants et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 13 à 16 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 10 cm<sup>3</sup> d'éther éthylique. On obtient 0,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-pentafluorophénoxycarbonylphényl)méthylène]azétidine fondant à 182°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (400 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,85 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,70 (1H, t, J=7Hz, CH arom.), 8,20 (2H, m, 2CH arom.)].

15 Le chlorhydrate de 1-benzhydryl-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine peut être préparé de la manière suivante : on chauffe à 45°C pendant 7 jours un mélange de 10 g de 1-benzhydryl-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine dans 40 cm<sup>3</sup> d'acide acétique et 40 cm<sup>3</sup> d'acide chlorhydrique concentré (d=1,18). Le milieu réactionnel est refroidi dans un bain d'eau glacée et le précipité 20 formé est filtré sur verre fritté. Le solide est lavé par 20 cm<sup>3</sup> d'un mélange d'acide acétique et d'acide chlorhydrique concentré (50-50 en volumes) puis par 3 fois 20 cm<sup>3</sup> d'eau et finalement par 20 cm<sup>3</sup> d'éthanol. Le solide blanc obtenu est sous pression réduite (2,7 kPa) à 45°C et l'on obtient 2,5 g de chlorhydrate de 1-benzhydryl-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc.

25 Exemple 30

On agite pendant 4 heures à température ambiante une solution de 0,65 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-pentafluorophénoxycarbonylphényl)méthylène]azétidine dans 25 cm<sup>3</sup> d'éthanol ammoniacal 6,2N. Le mélange est concentrée à sec sous pression réduite (2,7 kPa) puis le résidu est purifié par chromatographie sur co-

lonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (99/1 en volumes) puis un mélange dichlorométhane et éthanol (98/2 en volumes) comme éluants et en recueillant des fractions de 60 cm<sup>3</sup>. Les fractions 18 à 30 sont  
5 réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,2 g de 1-benzhydryl-3-[(3-carbamoylphényl)(méthylsulfonyl)méthylène]azétidine fondant à 140°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,25 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), entre 7,45 et 7,65 (7H, m, 6CH 10 arom. et ½ CONH<sub>2</sub>), 7,95 (2H, m, 2CH arom.), 8,10 (1H, s, ½ CONH<sub>2</sub>)].

### Exemple 31

En opérant selon le mode opératoire de l'exemple 4 à partir de 4,6 g de 1-benzhydryl-3-[(3-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,2 cm<sup>3</sup> de chlorure de méthanesulfonyle et 3,8 g de 4-diméthylaminopyridine, on obtient après re-cristallisation dans 150 cm<sup>3</sup> d'acétonitrile 2,6 g de 1-benzhydryl-3-[(3-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine fondant à 179°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,75 (3H, s, OCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,00 (3H, m, 3 CH arom.), entre 7,20 et 7,12 (11H, m, 10H Phenyles et 1 CH arom.)].

20 Le 1-benzhydryl-3-[(3-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,4 g de (3-méthoxybenzyl)méthylsulfone et 4 g de 1-benzhydryl azétidin-3-one, on obtient 4,6 g de 1-benzhydryl-3-[(3-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

25 La (3-méthoxybenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,4 g de (3-méthoxybenzyl)méthylsulfure et 13 g d'oxone®, on obtient 4 g de (3-méthoxybenzyl)méthylsulfone sous forme d'un solide blanc fondant à 71°C.

Le (3-méthoxybenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,1 g de bromure de 3-méthoxybenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 3,4 g de (3-méthoxybenzyl)méthylsulfure sous forme d'une huile.

### 5 Exemple 32

On ajoute, sous agitation, 10 cm<sup>3</sup> d'une solution 1M de tribromure de bore dans le dichlorométhane à une solution de 1,3 g de 1-benzhydryl-3-[(3-méthoxyphényle)(méthysulfonyl)méthylène]azétidine dans 100 cm<sup>3</sup> de dichlorométhane. L'agitation est maintenue 16 heures à température ambiante. Le milieu réactionnel est 10 repris par 100 cm<sup>3</sup> d'eau glacée. La phase organique est lavée par 3 fois 50 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est précipité dans 150 cm<sup>3</sup> d'éther d'isopropyle puis dissous dans 50 cm<sup>3</sup> de dichlorométhane. La phase organique est lavée par 3 fois 30 cm<sup>3</sup> d'une solution aqueuse saturée de bicarbonate de sodium, décantée, séchée sur sulfate de magnésium 15 et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est précipité dans 80 cm<sup>3</sup> d'éther éthylique. On obtient 0,36 g de 1-benzhydryl-3-[(3-hydroxyphényle)(méthysulfonyl)méthylène]azétidine d'un solide fondant à 248°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 6,85 (3H, m, 3 CH arom.), 7,25 (3H, m, 3 CH arom.), 7,35 (4H, t, J=7Hz, 4CH arom.), 7,50 (4H, d, J=7Hz, 4CH arom.), 20 9,50 (1H, s, OH)].

### Exemple 33

En opérant selon le mode opératoire de l'exemple 32 à partir de 1,4 g de 1-benzhydryl-3-[(4-méthoxyphényle)(méthysulfonyl)méthylène]azétidine, de 10 cm<sup>3</sup> 25 d'une solution 1M de tribromure de bore et 100 cm<sup>3</sup> dichlorométhane, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3,5 cm, hauteur 24 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (50/50 en volumes) comme éluants et en

recueillant des fractions de 25 cm<sup>3</sup>. Les fractions 21 à 37 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 30 cm<sup>3</sup> d'éther éthylique. On obtient 0,6 g de 1-benzhydryl-3-[(4-hydroxyphényle)(méthylsulfonyl)méthylène]azétidine fondant à 211°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 2,90 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 6,80 (2H, d, J=7Hz, 2CH arom.), entre 7,10 et 7,35 (8H, m, 8CH arom.), 7,48 (4H, d, J=7Hz, 4CH arom.), 9,80 (1H, s, OH)].

Le 1-benzhydryl-3-[(4-méthoxyphényle)(méthylsulfonyl)méthylène]azétidine peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 4 à partir de 3,5 g de 1-benzhydryl-3-[(4-méthoxyphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,9 cm<sup>3</sup> de chlorure de méthanesulfonyle et 2,9 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par recristallisation dans 100 cm<sup>3</sup> d'acetonitrile. On obtient 1 g de 1-benzhydryl-3-[(4-méthoxyphényle)(méthylsulfonyl)méthylène]azétidine fondant à 181°C.

Le 1-benzhydryl-3-[(4-méthoxyphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,5 g de (4-méthoxybenzyl)méthylsulfone et 4 g de 1-benzhydryl azétidin-3-one, on obtient 3,6 g de 1-benzhydryl-3-[(4-méthoxyphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc.

La (4-méthoxybenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,4 g de (4-méthoxybenzyl)méthylsulfure et 13 g d'oxone®, on obtient 3,5 g de (3-méthoxybenzyl)méthylsulfone sous forme d'un solide blanc fondant à 113°C.

Le (4-méthoxybenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 3,1 g de chlorure de 4-méthoxybenzyle et 1,5 g de méthyl thiolate de sodium, on obtient 3,4 g de (4-méthoxybenzyl)méthylsulfure sous forme d'une huile.

**Exemple 34**

En opérant selon le mode opératoire de l'exemple 32 à partir de 1,4 g de 1-benzhydryl-3-[(2-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine, de 10 cm<sup>3</sup> d'une solution 1M de tribromure de bore et 100 cm<sup>3</sup> dichlorométhane, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>. Les fractions 5 à 34 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 40 cm<sup>3</sup> d'éther éthylique. On obtient 0,7 g de 1-benzhydryl-10 3-[(2-hydroxyphényl)(méthylsulfonyl)méthylène]azétidine fondant à 196°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,60 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 6,85 (1H, t, J=7Hz, CH arom.), 6,90 (1H, d, J=7Hz, CH arom.), 7,20 (4H, m, 4CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,48 (4H, d, J=7Hz, 4CH arom.), 9,90 (1H, s, OH)].

15 Le 1-benzhydryl-3-[(2-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 4 à partir de 4,2 g de 1-benzhydryl-3-[(2-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,1 cm<sup>3</sup> de chlorure de méthanesulfonyle et 3,5 g de 20 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et acétate d'éthyle (50/50 en volumes) comme éluants et en recueillant des fractions de 40 cm<sup>3</sup>. Les fractions 23 à 54 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 40 cm<sup>3</sup> d'éther éthylique. On obtient 1,9 g de 25 1-benzhydryl-3-[(2-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine fondant à 204°C.

Le 1-benzhydryl-3-[(2-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4 g de (2-méthoxybenzyl)méthylsulfone et 4,5 g de 1-ben-

zhydryl azétidin-3-one, on obtient 4,3 g de 1-benzhydryl-3-[(2-méthoxyphényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue brune.

La (2-méthoxybenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 10 à partir de 3,1 g de chlorure de 5 2-méthoxybenzyle et 4,1 g de méthanesulfinate de sodium, on obtient 4 g de (2-méthoxybenzyl)méthylsulfone sous forme d'un solide blanc.

#### Exemple 35

En opérant selon le mode opératoire de l'exemple 4 à partir de 2,1 g de 1-benzhydryl-3-[(méthylsulfonyl)(napht-2-yl)méthyl-(RS)]azétidin-3-ol, de 0,5 cm<sup>3</sup> de chlorure de 10 méthanesulfonyle et 2,2 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 6 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est 15 cristallisé dans 20 cm<sup>3</sup> d'éther éthylique. On obtient 0,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(napht-2-yl)méthylène]azétidine fondant à 178°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (4H, m, 4CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,52 (3H, m, 3CH arom.), 7,90 20 (4H, m, 4CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(napht-2-yl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 3,5 g de méthyl(napht-2-ylméthyl)sulfone et 3,8 g de 1-benzhydryl azétidin-3-one, on obtient 2,2 g de 1-benzhydryl-3-[(méthylsulfonyl)(napht-2-yl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc fondant à 196°C. 25

La méthyl(napht-2-ylméthyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4,2 g de méthyl(napht-2-

ylméthyl)sulfure et 13,7 g d'oxone<sup>R</sup>, on obtient 3,6 g de méthyl(napht-2-ylméthyl)sulfone sous forme d'un solide crème.

Le méthyl(napht-2-ylméthyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 5 g de 2-bromométhyl naphtalène et 1,8 g de méthyl thiolate de sodium, on obtient 4,2 g de méthyl(napht-2-ylméthyl)sulfure sous forme d'une huile.

#### Exemple 36

En opérant selon le mode opératoire de l'exemple 4 à partir de 4,3 g de 1-benzhydryl-3-[(méthylsulfonyl)(napht-1-yl)méthyl-(RS)]azétidin-3-ol, de 1,1 cm<sup>3</sup> de chlorure de méthanesulfonyle et 4,6 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 6 à 14 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 30 cm<sup>3</sup> d'éther éthylique. On obtient 2,5 g de 1-benzhydryl-3-[(méthylsulfonyl)(napht-1-yl)méthylène]azétidine fondant à 196°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,35 et 3,50 (1H chacun, dd, J=16 et 3Hz, NCH<sub>2</sub>), 4,35 (2H, m, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,10 et 7,70 (14H, m, 14CH arom.), 8,00 (3H, m, 3CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(napht-1-yl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 4,1 g de méthyl(napht-1-ylméthyl)sulfone et 4,4 g de 1-benzhydryl azétidin-3-one, on obtient 4,3 g de 1-benzhydryl-3-[(méthylsulfonyl)(1-naphtyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide.

La méthyl(napht-1-ylméthyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4,3 g de méthyl(napht-1-

ylméthyl)sulfure et 13,9 g d'oxone<sup>R</sup>, on obtient 4,1 g de méthyl(napht-1-ylméthyl)sulfone sous forme d'un solide blanc.

Le méthyl(napht-1-ylméthyl)sulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 4 g de chlorure de 1-chlorométhyl naphtalène et 1,8 g de méthyl thiolate de sodium, on obtient 4,5 g de méthyl(napht-1-ylméthyl)sulfure sous forme d'une huile.

#### Exemple 37

En opérant selon le mode opératoire de l'exemple 4 à partir de 0,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-pyrrolidinophényl)méthyl-(RS)]azétidin-3-ol, de 0,15 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,6 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et méthanol (98/2 en volumes) comme éluants et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 8 à 13 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 8 cm<sup>3</sup> d'éther éthylique. On obtient 0,36 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-pyrrolidinophényl)méthylène]azétidine fondant à 153°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 1,95 (4H, m, 2 CH<sub>2</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,20 (4H, m, 2 NCH<sub>2</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 6,60 (3H, m, 3CH arom.), 7,20 (3H, m, 3CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,48 (4H, d, J=7Hz, 4CH arom.)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(3-pyrrolidinophényl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 0,77 g de 3-pyrrolidinobenzyl méthyl sulfone et 0,76 g de 1-benzhydryl azétidin-3-one, on obtient 0,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-pyrrolidinophényl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide.

La méthyl(3-pyrrolidinobenzyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 1 g de méthyl(3-pyrrolidinobenzyl)sulfure et 3,3 g d'oxone®, on obtient 0,8 g de méthyl(3-pyrrolidinobenzyl)sulfone sous forme d'un solide.

- 5 Le méthyl(3-pyrrolidinobenzyl)sulfure peut être préparé de la manière suivante : on chauffe à reflux, sous un courant d'azote, pendant 3 heures un mélange de 2g de (3-iodobenzyl)méthylsulfure, 1,3 cm<sup>3</sup> de pyrrolidine, 1,1 g de tertiobutylate de sodium, 0,28 g de chlorure de 1,1'-bis(diphénylphosphino)ferrocényl palladium, 0,63 g de 1,1'-bis(diphénylphosphino)ferrocène et 60 cm<sup>3</sup> de tétrahydrofurane. Le milieu réactionnel est refroidi à température ambiante et filtré sur verre fritté. Le précipité est lavé par 20 cm<sup>3</sup> de tétrahydrofurane et 10 cm<sup>3</sup> de dichlorométhane puis le filtrat est concentré à sec sous pression réduite (2,7 kPa). Le résidu est repris par 30 cm<sup>3</sup> d'acétate d'éthyle et 30 cm<sup>3</sup> d'acide chlorhydrique 3N. La phase aqueuse est décantée, neutralisée (pH=7-8) par 35 cm<sup>3</sup> de soude 3N et reprise par 50 cm<sup>3</sup> d'acétate d'éthyle.
- 10 15 La phase organique est extraite; 4g de silice sont ajoutés puis le mélange est concentré à sec sous pression réduite (2,5 kPa). La poudre obtenue est éluee sur verre fritté contenant 20 g de silice par un mélange cyclohexane et acétate d'éthyle (90/10 en volumes). Le filtrat est concentré à sec sous pression réduite (2,7 kPa). On obtient 1,2 g de méthyl(3-pyrrolidinobenzyl)sulfure sous forme d'huile.
- 15 20 Le chlorure de 1,1'-bis(diphénylphosphino)ferrocényl palladium peut être préparé selon Hayashi T. et coll., J. Am. Chem. Soc., 106, 158 (1984).

#### Exemple 38

##### Méthode 1

- 25 A une solution de 2,94 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol dans 250 cm<sup>3</sup> de dichlorométhane à 22°C, on ajoute 0,65 cm<sup>3</sup> de chlorure de méthanesulfonyle puis, par petites portions en 15 minutes, 2,42 g de 4-diméthylamino pyridine; la solution orange est agitée

2 heures à température ambiante. Le mélange réactionnel est lavé 3 fois avec 150 cm<sup>3</sup> d'eau distillée et une fois avec 150 cm<sup>3</sup> d'une solution saturée de chlorure de sodium, puis séchée avec du sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5,5 cm, hauteur 15 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (1/9 en volumes) comme éluants et en recueillant des fractions de 70 cm<sup>3</sup>. Les fractions 15 à 36 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,86 g d'une meringue blanche qui est cristallisée dans de l'éther isopropylique pour obtenir un solide fondant à 190°C. Une recristallisation dans 145 cm<sup>3</sup> d'éthanol conduit à 1,08 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 206°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,87 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,15 (2H, d, J=8Hz, 2CH arom.), 7,30 (5H, m, 5CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.)].

## Méthode 2

A une solution de 2,2 g de 3-acétoxy-1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine dans 25 cm<sup>3</sup> de dioxane à température ambiante, on ajoute 0,80 g de soude broyée. Après 16 heures à température ambiante, on ajoute 50 cm<sup>3</sup> d'eau et 100 cm<sup>3</sup> d'acétate d'éthyle. Le mélange est décanté, la phase organique relavée avec 100 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient une meringue blanche qui est cristallisée dans de l'éther d'isopropyle pour obtenir 0,85 g d'un solide fondant à 190°C. Une recristallisation dans 20 cm<sup>3</sup> d'éthanol conduit à 0,70 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 205°C.

## Exemple 39

A une solution de 6,8 g de bis(4-chlorophényl)bromométhane dans 300 cm<sup>3</sup> d'acétonitrile, on ajoute 6,75 g de chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol puis 2,97 g de carbonate de potassium. Le mélange réactionnel est chauffé 1 heure au reflux, refroidi à température ambiante, filtré et concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 8,5 cm, hauteur 22 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) comme éluants et en recueillant des fractions de 250 cm<sup>3</sup>. Les fractions 11 à 48 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 5,3 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol [Spectre de R.M.N. <sup>1</sup>H (300 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, δ en ppm) : 2,00 (s : 3H); 2,94 (s : 3H); 3,25 (mt : 2H); 3,48 (d, J = 9 Hz : 1H); 3,80 (d, J = 9 Hz : 1H); 4,54 (s : 1H); 5,34 (s : 1H); 7,15 (d, J = 8,5 Hz : 2H); de 7,20 à 7,40 (mt : 8H); 7,50 (t large, J = 9 Hz : 1H)].

Le bis(4-chlorophényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933).

Le chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : à une solution de 37 g de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol dans 160 cm<sup>3</sup> de dioxane on ajoute 160 cm<sup>3</sup> d'une solution 6,2N d'acide chlorhydrique dans le dioxane. Après 16 heures à température ambiante, le mélange réactionnel est concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est repris avec 320 cm<sup>3</sup> d'éthanol, chauffé 1 heure au reflux et refroidi dans un bain d'eau glacée. Le solide apparu est filtré, lavé à l'éther éthylique et séché à 40°C sous pression réduite (2,7 kPa). On obtient 29,85 g de cristaux blancs dont la température de fusion est supérieure à 260°C.

Le 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol peut être obtenu de la manière suivante : à une solution de 60,18 g de 1-benzhydryl-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol dans

1000 cm<sup>3</sup> de dichlorométhane on ajoute à 5°C une solution de 14,0 cm<sup>3</sup> de chloroformiate de vinyle dans 35 cm<sup>3</sup> de dichlorométhane. Après 20 heures à température ambiante, le mélange réactionnel est concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 5 0,04-0,06 mm, diamètre 11 cm, hauteur 32 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (3/7 en volumes) comme éluants et en recueillant des fractions de 1000 cm<sup>3</sup>. Les fractions 8 à 18 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 37 g de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol 10 sous forme de cristaux blancs fondants à 195°C.

#### Exemple 40

A une solution de 4,77 g de (3,5-difluorobenzyl)méthylsulfone dans 70 cm<sup>3</sup> de tétrahydrofurane sous atmosphère d'argon, on ajoute à -70°C, 14 cm<sup>3</sup> d'une solution 1,6N de n butyllithium dans l'hexane. Après 1 heure à -70°C, une solution de 6,8 g de 15 1-[bis(4-chlorophényl)méthyl]azétidin-3-one dans 30 cm<sup>3</sup> de tétrahydrofurane est additionnée puis, 1 heure après, une solution de 2,34 cm<sup>3</sup> de chlorure d'acétyle dans 20 cm<sup>3</sup> de tétrahydrofurane et la température du mélange réactionnel est élevée à 20°C pendant 1 heure. On ajoute 50 cm<sup>3</sup> d'eau et 200 cm<sup>3</sup> d'acétate d'éthyle. Le mélange est décanté, la phase organique lavée avec 100 cm<sup>3</sup> d'eau, 100 cm<sup>3</sup> d'une solution 20 saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 14,4 g de 3-acétoxy-1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl]méthyl sulfonylméthyl-(RS)azétidine sous forme d'une huile jaune [Spectre de R.M.N <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,79 (s : 3H); 3,04 (AB, J = 9 Hz : 2H); 3,27 (d, J = 9 Hz : 1H); 3,45 25 (s : 1H); 3,81 (d, J = 9 Hz : 1H); 4,32 (s : 1H); 4,49 (s : 1H); 6,88 (tt, J = 9 et 2,5 Hz : 1H); de 7,20 à 7,35 (mt : 10H)].

La 1-[bis(4-chlorophényl)méthyl]azétidin-3-one peut être préparée selon le mode opératoire suivant : à une solution de 5,0 cm<sup>3</sup> de chlorure d'oxalyle dans 73 cm<sup>3</sup> de dichlorométhane refroidie à -78°C, on additionne une solution de 8,1 cm<sup>3</sup> de diméthylsulfoxyde dans 17,6 cm<sup>3</sup> de dichlorométhane. Après 0,5 heure à -78°C, on coule 30 une solution de 16,0 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol dissous dans

50 cm<sup>3</sup> de dichlorométhane. Après 5 heures à -78°C, 26,6 cm<sup>3</sup> de triéthylamine sont ajoutés goutte à goutte et on laisse le mélange réactionnel revenir à température ambiante. Après 16 heures, le mélange réactionnel est lavé par 4 fois 200 cm<sup>3</sup> d'eau puis par 200 cm<sup>3</sup> d'une solution saturée de chlorure de sodium, séché sur sulfate de magnésium, filtré et concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu 5 est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 9,2 cm, hauteur 21 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (40/60 en volumes) comme éluants et en recueillant des fractions de 200 cm<sup>3</sup>. Les fractions 15 à 25 sont réunies puis concentrées 10 à sec sous pression réduite (2,7 kPa). On obtient 8,9 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one sous forme de cristaux jaunes pâle fondants à 111°C.

Le 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol peut être préparée selon le mode opératoire décrit par KATRITZKY A.R. et coll., J. Heterocycl. Chem., (1994), 271 en partant de 35,5 g de chlorhydrate de [bis(4-chlorophényl)méthyl]amine et 11,0 cm<sup>3</sup> 15 d'épichlorhydrine. On isole 9,0 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-ol.

Le chlorhydrate de [bis(4-chlorophényl)méthyl]amine peut être préparé selon la méthode décrite par GRISAR M. et coll., J. Med. Chem., 885 (1973).

#### Exemple 41

En opérant selon le mode opératoire de l'exemple 38 (méthode 1), à partir de 0,72 g 20 de 1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,0 cm, hauteur 16,5 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>, on obtient 0,10 g 25 d'une meringue blanche. Après cristallisation dans un mélange d'acétate d'éthyle et cyclohexane on obtient 60 mg de 1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'un solide fondant à 180°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,00 (3H,s,

SCH<sub>3</sub>), 3,70 (6H,s, 2 OCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,15 (2H, s, NCH<sub>2</sub>), 4,58 (1H, s, NCH), 6,85 (4H, d, J=7Hz, 4CH arom.), 7,15 (2H, d, J=8Hz, 2CH arom.), 7,30 (5H, m, 5CH arom.)].

Le 1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon l'exemple 39 à partir de 1,2 g de bis(4-méthoxyphényl)bromométhane et 1,2 g de chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,8 cm, hauteur 18 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) comme éluant et en recueillant des fractions de 50 cm<sup>3</sup>, les fractions 9 à 18 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,55 g de 1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol .

Le bis(4-méthoxyphényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933).

#### Exemple 42

En opérant selon l'exemple 38 (méthode 1), à partir de 0,47 g de 1-[bis(4-méthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3,2 cm, hauteur 18,5 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (1/9 en volumes) comme éluant et en recueillant des fractions de 35 cm<sup>3</sup>, on obtient 0,30 g d'un solide blanc. Après cristallisation dans de l'oxyde de diisopropyle on obtient 0,20 g de 1-[bis(4-méthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'aiguilles blanches fondant à 200°C.

Le 1-[bis(4-méthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant comme à

l'exemple 39 à partir de 0,7 g de bis(4-méthylphényl)bromométhane et 0,8 g de chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,0 cm, hauteur 19 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>, les fractions 35 à 40 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,47 g de 1-[bis(4-méthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol.

Le bis(4-méthylphényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933).

#### Exemple 43

En opérant selon l'exemple 38 (méthode 1), à partir de 1,42 g de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]-1-[(4-méthoxyphényl)(phényl)méthyl-(RS)]azétidin-3-ol, mélange des deux diastéréoisomères, et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,0 cm, hauteur 21 m), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>, on obtient 0,10 g d'un solide blanc. Après cristallisation dans de l'oxyde de diisopropyle on obtient 50 mg de (RS)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-(4-méthoxyphényl)(phényl)méthyl]azétidine sous la forme d'un solide blanc [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,23 (6H,s, 2 PhCH<sub>3</sub>), 3,00 (3H,s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,12 (2H, s, NCH<sub>2</sub>), 4,58 (1H, s, NCH), 7,08 (4H, d, J=7Hz, 4CH arom.), 7,15 (2H, d, J=8Hz, 2CH arom.), 7,25 (5H, m, 5CH arom.)].

Le mélange de diastéréoisomères 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]-1-[(4-méthoxyphényl)(phényl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon l'exemple 39 à partir de 2,52 g (RS)-bromo(4-méthoxyphényl)(phényl)méthane et 2,85 g de chlorhydrate de 3-[(3,5-difluorophén-

nyl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5,6 cm, hauteur 19 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>, les 5 fractions 11 à 18 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,16 g du mélange de diastéréoisomères 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]-1-[(4-méthoxyphényl)(phényl)méthyl-(RS)]azétidin-3-ol.

Le (RS)-bromo(4-méthoxyphényl)(phényl)méthane peut être préparé selon le mode 10 opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933).

#### Exemple 44

En opérant comme à l'exemple 38 (méthode 1), à partir de 0,47 g de 1-[bis(4-trifluorométhoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,2 cm, hauteur 14 cm), sous une pression de 0,5 bar d'argon 15 avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 25 cm<sup>3</sup>, on obtient 0,28 g de 1-[bis(4-trifluorométhoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'un solide [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 20 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,95 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,90 (1H, s, NCH), 7,20 (2H, d, J=8Hz, 2CH arom.), 7,32 (5H, m, 5CH arom.), 7,60 (4H, d, J=7Hz, 4CH arom.)].

Le 1-[bis(4-trifluorométhoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant 25 comme à l'exemple 39 à partir de 1,59 g de bis(4-trifluorométhoxyphényl)bromométhane et 1,2 g de chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,8 cm, hauteur 17 cm), sous

une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) comme éluant et en recueillant des fractions de 50 cm<sup>3</sup>, les fractions 15 à 23 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,49 g de 1-[bis(4-trifluorométhoxyphényl)méthyl]-3-[(3,5-difluorophén-5 nyl)(méthylsulfonyl)méthyl]azétidin-3-ol.

Le bis(4-trifluorométhoxyphényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933), en partant de 1,39 g de bis(4-trifluorométhoxyphényl)méthanol, 3 cm<sup>3</sup> d'acide bromhydrique à 33% dans l'acide acétique et 0,6 cm<sup>3</sup> de bromure d'acétyle. On obtient 1,59g de 10 bis(4-trifluorométhoxyphényl)bromométhane sous la forme d'une huile marron.

Le bis(4-trifluorométhoxyphényl)méthanol est préparé selon PAVIA M.R. et coll., J. Med. Chem., 4238 (1992).

#### Exemple 45

En opérant comme à l'exemple 38 (méthode 1), à partir de 0,25 g de 1-[bis(4-trifluorométhylphényl)méthyl]-3-[(3,5-difluorophén-yl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2,4 cm, hauteur 14 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 20 cm<sup>3</sup>, on obtient 0,12 g de 1-[bis(4-trifluorométhylphényl)méthyl]-3-[(3,5-difluorophén-yl)(méthylsulfonyl)méthylène]azétidine sous la forme d'un solide blanc [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,95 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,90 (1H, s, NCH), 7,20 (2H, d, J=8Hz, 2CH arom.), 7,32 (5H, m, 5CH arom.), 7,60 (4H, d, J=7Hz, 4CH arom.)].

25 Le 1-[bis(4-trifluorométhylphényl)méthyl]-3-[(3,5-difluorophén-yl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant comme à l'exemple 39 à partir de 1,46 g de bis(4-trifluorométhylphén-

nyl)bromométhane et 1,2 g de chlorhydrate de 3-[(3,5-difluorophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,8 cm, hauteur 17 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (30/70 en volumes) comme éluant et en recueillant des fractions de 50 cm<sup>3</sup>, les fractions 9 à 14 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,25 g de 1-[bis(4-trifluorométhylphényle)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol .

Le bis(4-trifluorométhylphényle)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933), en partant de 2,5 g de bis(4-trifluorométhylphényle)méthanol, 6 cm<sup>3</sup> d'acide bromhydrique à 33% dans l'acide acétique et 1,2 cm<sup>3</sup> de bromure d'acétyle. On obtient 2,9 g de bis(4-trifluorométhylphényle)bromométhane sous la forme d'une huile marron.

Le bis(4-trifluorométhylphényle)méthanol est préparé selon PAVIA M.R. et coll., J. Med. Chem., 4238 (1992).

#### Exemple 46

En opérant selon l'exemple 38 (méthode 2), à partir de 3,16 g de 3-acétoxy-1-[bis(4-chlorophényle)méthyl]-3-{[3,5-bis(trifluorométhyl)phényle](méthylsulfonyl)méthyl-(RS)}azétidine et 0,96 g de soude broyée, on obtient, après 16 heures à température ambiante, une meringue jaune qui est chromatographiée sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,8 cm, hauteur 14 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (15/85 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>. On obtient ainsi 1,49 g de 1-[bis(4-chlorophényle)méthyl]-3-{[3,5-bis(trifluorométhyl)phényle](méthylsulfonyl)méthylène}azétidine sous la forme d'une meringue blanche [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,30 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,40 (2H, d, J=7Hz, 2CH arom.), 7,50 (2H, d, J=7Hz, 2CH arom.), 8,10 (2H, s, 2CH arom.), 8,20 (1H, s, CH arom.)].

Le 3-acétoxy-1-[bis(4-chlorophényl)méthyl]-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthyl-(RS)}azétidine peut être obtenu de manière suivante : en opérant comme à l'exemple 40 à partir de 2,0 g de [3,5-bis(trifluorométhyl)benzyl]méthylsulfone, 4,1 cm<sup>3</sup> d'une solution 1,6N de nbutyllithium dans l'hexane, 2,0 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one et 0,77 cm<sup>3</sup> de chlorure d'acétyle dans 20 cm<sup>3</sup> de diisopropyl oxyde anhydre, on obtient, après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5,6 cm, hauteur 16 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (1/9 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>, 3,56 g de 3-acétoxy-1-[bis(4-chlorophényl)méthyl]-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthyl-(RS)}azétidine sous forme d'une meringue blanche.

La [3,5-bis(trifluorométhyl)benzyl]méthylsulfone est préparée de la manière suivante : en opérant selon l'exemple 10 à partir de 1,8 g de chlorure de 15 3,5-bis(trifluorométhyl)benzyle et 1,22 g de méthanesulfinate de sodium, on obtient 1,86 g de [3,5-bis(trifluorométhyl)benzyl]méthylsulfone sous forme d'un solide blanc.

#### Exemple 47

En opérant comme à l'exemple 38 (méthode 1), à partir de 0,27 g du mélange des 20 deux diastéréoisomères 1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2,4 cm, hauteur 7,5 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (15/85 en volumes) comme éluant et en recueillant des fractions de 20 cm<sup>3</sup>, on obtient 0,10 g de (RS)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'un solide blanc [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (250 MHz) : 3,02 (3H,s, SCH<sub>3</sub>), 3,82 (1H, dd, J=3 et 16Hz, NCHH), 4,04 (1H, dd, J=3 et 16Hz, NCHH), 4,10 (1H, dd, J=3 et 16Hz, NCHH), 4,35 (1H, dd, J=3 et 16Hz,

NCHH), 5,12 (1H, s, NCH), 7,18 (2H, d, J=8Hz, 2CH arom.), 7,32 (1H, t, J=8Hz, CH arom.), 7,38 (2H, d, J=7Hz, 2CH arom.), 7,45 (2H, d, J=7Hz, 2CH arom.), 7,48 (1H, dd, J=2 et 7Hz, CH arom.), 7,58 (1H, d, J=2Hz, CH arom.), 7,80 (1H, d, J=7Hz, CH arom.)].

5 Le mélange des deux diastéréoisomères 1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon l'exemple 39 à partir de 0,56 g de (RS)-bromo(4-chlorophényl)(2,4-dichlorophényl)méthane et 0,50 g de chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et  
10 après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,0 cm, hauteur 13 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (20/80 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>, les fractions 9 à 14 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,27 g du mélange des deux diastéréoisomères 1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol.  
15

Le (RS)-bromo(4-chlorophényl)(2,4-dichlorophényl)méthane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933) en partant de 4,05 g de (RS)-(4-chlorophényl)(2,4-dichlorophényl)méthanol, 10 cm<sup>3</sup> d'acide bromhydrique à 33% dans l'acide acétique et 2,1 cm<sup>3</sup> de bromure d'acétyle.  
20 On obtient 4,6 g de (RS)-bromo(4-chlorophényl)(2,4-dichlorophényl)méthane sous la forme d'une huile verdâtre.

Le (RS)-(4-chlorophényl)(2,4-dichlorophényl)méthanol est préparé selon PAVIA M.R. et coll., J. Med. Chem., 4238 (1992).

25 Exemple 48

A une solution de 18,9 g de 1-{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine dans 80 cm<sup>3</sup> de

tétrahydrofurane, on ajoute 75,6 cm<sup>3</sup> d'acide chlorhydrique 5N. Après 3 heures à température ambiante, le mélange est repris par du dichlorométhane et l'eau distillée puis amené à pH 14 par ajout de soude 30% et décanté. La phase organique est lavée 2 fois avec 100 cm<sup>3</sup> d'eau puis 100 cm<sup>3</sup> d'une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 16 g de (RS)-1-[(4-chlorophényl)(4-formylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'une meringue blanche [Spectre dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,06 (3H, s, SCH<sub>3</sub>), 3,95 (2H, m, NCH<sub>2</sub>), 4,26 (2H, m, NCH<sub>2</sub>), 4,91 (1H, s, NCH), 7,20 5 (2H, d, J=8Hz, 2CH arom.), 7,36 (1H, t, J=8 Hz, 1CH arom.), 7,40 et 7,52 (4H, 2d, J=7,5Hz, 4CH arom.), 7,70 et 7,88 (4H, 2d, J=7,5Hz, 4CH arom.), 9,97(1H, s, CH aldéhydique)].

La 1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine peut être préparé selon la méthode 15 suivante : à une solution de 34,45 g du mélange des deux diastéréoisomères 3-acétoxy-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine dans 400 cm<sup>3</sup> de tétrahydrofurane sous argon à 0°C, on ajoute goutte à goutte 13,0 cm<sup>3</sup> de 1,8-diazabicyclo[5.4.0]undec-7-ène et après traitement habituel et après chromatographie sur colonne de 20 gel de silice (granulométrie 0,04-0,06 mm, diamètre 10,2 cm, hauteur 23 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 250 cm<sup>3</sup>, on obtient 16,6 g de 1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'un solide 25 blanc.

Le mélange des deux diastéréoisomères 3-acétoxy-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine peut être obtenu de la manière suivante : en opérant selon l'exemple 40, à partir de 11,6 g de (3,5-difluorobenzyl)méthylsulfone, 35,1 cm<sup>3</sup> d'une solution

1,6N de n butyllithium dans l'hexane, 19,3 g de 1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}azétidin-3-one et 8,8 cm<sup>3</sup> de chlorure d'acétyle dans 500 cm<sup>3</sup> de tétrahydrofurane, on obtient 37,8 g du mélange des deux diastéréoisomères 3-acétoxy-1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine sous forme d'une meringue blanche.

La 1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}azétidin-3-one peut être préparée de la manière suivante : à une solution de 28,32 g de 1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}azétidin-3-ol dans 200 cm<sup>3</sup> de 10 diméthylsulfoxyde, on ajoute à température ambiante 46 cm<sup>3</sup> de triéthylamine puis on additionne goutte à goutte une solution de 34 g du complexe trioxyde de soufre-pyridine dans 100 cm<sup>3</sup> diméthylsulfoxyde. Après 0,25 heure à température ambiante, le mélange réactionnel est versé sur de la glace, extrait avec de l'acétate d'éthyle, lavé par 3 fois 400 cm<sup>3</sup> d'eau puis par 400 cm<sup>3</sup> d'une solution saturée de chlorure de 15 sodium, séché sur sulfate de magnésium, filtré et concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 9,2 cm, hauteur 21 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (20/80 en volumes) comme éluant et en recueillant des fractions de 250 cm<sup>3</sup>. Les fractions 9 à 20 18 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 20,4 g de 1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}azétidin-3-one sous la forme d'une huile jaune.

Le 1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}azétidin-3-ol peut être préparé selon le mode opératoire décrit par KATRITZKY A.R. et coll., J. Heterocycl. Chem., 271 (1994) en partant de 35,0 g de {(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}amine, 8,3 g d'épibromhydrine, 5,1 g 25 d'hydrogénocarbonate de sodium et 400 cm<sup>3</sup> d'éthanol. On isole 30,3 g de 1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(RS)}azétidin-3-ol.

Le chlorhydrate de  $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényl}]méthyl\text{-}(RS)\}$  amine peut être préparé selon la méthode décrite par GRISAR M. et coll., J. Med. Chem., 885 (1973) à partir de 67,2 g de 4-(1,3-dioxolan-2-yl)benzonitrile, 88,2 g de 1-bromo-4-chlorobenzène, 11 g de magnésium et 600 cm<sup>3</sup> d'éther éthylique. On obtient 42,3 g de  $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényl}]méthyl\text{-}(RS)\}$  amine sous forme d'une huile jaune.

#### Exemple 49

A une solution de 0,50 g de (RS)-1- $\{(4\text{-chlorophényle})(4\text{-formylphényl})méthyl\}\text{-}3\text{-[}(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]azétidine$  dans 15 cm<sup>3</sup> de méthanol à 10 °C, on ajoute 0,020 g de borohydrure de sodium. Après 1 heure à 0°C, 40 cm<sup>3</sup> d'eau sont additionnées et le produit extrait avec 100 cm<sup>3</sup> de dichlorométhane. La phase organique est lavée 2 fois avec 40 cm<sup>3</sup> d'eau puis 40 cm<sup>3</sup> d'une solution saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel 15 de silice (granulométrie 0,04-0,06 mm, diamètre 3,2 cm, hauteur 14 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (30/70 en volumes) et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 20 à 25 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,29 g de (RS)-1- $\{(4\text{-chlorophényle})[4\text{-(hydroxyméthyl)phényl}]méthyl\}\text{-}3\text{-[}(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]azétidine$  sous forme d'une meringue blanche [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,02 (3H, s, SCH<sub>3</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,42 (2H, d, J=5Hz, OCH<sub>2</sub>), 4,75 (1H, s, NCH), 5,10 (1H, t, J=5Hz, OH), entre 7,10 et 7,50 (11H, m, 11CH arom.)].

#### Exemple 50

25 A une solution de 0,10 g de pyrrolidine dans 20 cm<sup>3</sup> de 1,2-dichloroéthane, on ajoute 0,75 g de (RS)-1- $\{(4\text{-chlorophényle})(4\text{-formylphényl})méthyl\}\text{-}3\text{-[}(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]azétidine$  puis 0,68 g de triacétoxyborohydrure de sodium. Après 20 heures à température ambiante, on additionne 2 cm<sup>3</sup> de soude 1N, le

produit est extrait avec 100 cm<sup>3</sup> de dichlorométhane, la phase organique est lavée 2 fois avec 50 cm<sup>3</sup> d'eau puis 50 cm<sup>3</sup> d'une solution saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice 5 (granulométrie 0,04-0,06 mm, diamètre 4,1 cm, hauteur 13 cm), sous une pression de 0,5 bar d'argon avec de l'acétate comme éluant et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 10 à 18 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,39 g de (RS)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényle]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azéti-dine 10 sous forme d'une meringue blanche [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 1,65 (4H,m, 2CH<sub>2</sub>), 2,40 (4H,m, 2NCH<sub>2</sub>), 3,02 (3H,s, SCH<sub>3</sub>), 3,50 (2H, s, NCH<sub>2</sub>Ph), 3,85 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,15 et 7,40 (9H, m, 9CH arom.), 7,48 (2H, d, J=7Hz, 2CH arom.)].

#### Exemple 51

15 En opérant comme à l'exemple 50 à partir de 0,93 cm<sup>3</sup> d'une solution de diméthylamine 2M dans le méthanol, 30 cm<sup>3</sup> de 1,2-dichloroéthane, 0,75 g de (RS)-1-{(4-chlorophényl)(4-formylphényle)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine puis 0,9 g de triacétoxyborohydrure de sodium on obtient après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 20 4 cm, hauteur 17,5 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (30/70 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>, 0,46 g de (RS)-1-[(4-chlorophényl)(4-diméthylaminométhyl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'un solide blanc [Spectre RMN dans DMSO-d6, T=300K, δ en ppm 25 (300 MHz) : 2,12 (6H,s, N(CH<sub>3</sub>)<sub>2</sub>), 3,02 (3H,s, SCH<sub>3</sub>), 3,32 (2H, s, NCH<sub>2</sub>Ph), 3,90 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,18 (2H, d, J=8Hz, 2CH arom.), 7,22 (2H, d, J=8Hz, 2CH arom.), 7,35 (1H, t, J=8Hz, CH arom.), 7,39 (4H, m, 4CH arom.), 7,48 (4H, d, J=7Hz, 4CH arom.)].

## Exemple 52

On agite une solution de 0,5 g de (RS)-1-{(4-carboxyphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine dans 10 cm<sup>3</sup> de dichlorométhane à 0°C, avec 0,5 cm<sup>3</sup> d'une solution (2M) de diméthylamine dans l'éthanol. On additionne ensuite 13 mg d'hydroxybenzotriazole, 0,2 g de chlorhydrate de 1,3-diméthylaminopropyl 3-éthyl carbodiimide et 0,18 cm<sup>3</sup> de diisopropyléthylamine. Après 20 heures à température ambiante, le mélange réactionnel est dilué avec du dichlorométhane, lavé 2 fois avec 80 cm<sup>3</sup> d'eau puis 80 cm<sup>3</sup> d'une solution saturée de chlorure de sodium, séché sur sulfate de magnésium, filtré et concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,1 cm, hauteur 13 cm), sous une pression de 0,5 bar d'argon avec un mélange dichlorométhane/acetonitrile/méthanol (98/1/1 en volumes) comme éluant et en recueillant des fractions de 15 cm<sup>3</sup>. Les fractions 13 à 15 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,16 g d'un solide crème qui, après reprise par de l'éther isopropylique et séchage, conduit à 0,11 g de (RS)-1-{(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 2,85 (3H, s large, NCH<sub>3</sub>), 2,95 (3H, s large, NCH<sub>3</sub>), 3,00 (3H, s, SCH<sub>3</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,15 (2H, d, J=8Hz, 2CH arom.), 7,30 (1H, t, J=8Hz, CH arom.), 7,35 (4H, m, 4CH arom.), 7,50 (4H, d, J=7Hz, 4CH arom.)].

Le (RS)-1-{(4-carboxyphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine peut être préparé de la façon suivante : A une solution de 0,50 g de (RS)-1-{(4-chlorophényl)(4-formylphényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine dans 10 cm<sup>3</sup> d'acétone à 0°C, on ajoute 1,0 cm<sup>3</sup> du réactif de Jones. Après 5 heures, le mélange réactionnel est versé dans de l'eau distillée, le produit est extrait avec 50 cm<sup>3</sup> d'acétate d'éthyle, la phase organique est lavée 2 fois avec 50 cm<sup>3</sup> d'eau puis 50 cm<sup>3</sup> d'une solution saturée de

chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans un mélange acétate d'éthyle-cyclohexane, filtré et séché. On obtient 0,50 g de (RS)-1-{(4-carboxyphényl)(4-chlorophényl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc.

#### Exemple 53

On opère comme à l'exemple 52, à partir de 1 g de (RS)-1-{(4-carboxyphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azéti-dine, 0,38 g de chlorhydrate de 1,3-diméthylaminopropyl 3-éthyl carbodiimide, 22 mg d'hydrate d'hydroxybenzotriazole, de 30 cm<sup>3</sup> de dichlorométhane, et 0,83 cm<sup>3</sup> d'une solution 2M d'éthylamine dans le THF, en chromatographiant sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,1 cm, hauteur 15 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (45/55 en volumes) comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 22 à 32 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,29 g de (RS)-1-{(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 1,07 (3H, t, J=6Hz, CH<sub>3</sub>), 3,00 (3H, s, SCH<sub>3</sub>), 3,35 (2H, m, NCH<sub>2</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,15 (2H, d, J=8Hz, 2CH arom.), 7,30 (1H, t, J=8Hz, CH arom.), 7,35 (2H, d, J=7Hz, 2CH arom.), 7,48 (4H, m, 4CH arom.), 7,74 (2H, d, J=7Hz, 2CH arom.), 8,37 (1H, t, CONH)].

#### Exemple 54

On opère selon l'exemple 52, à partir de 1 g de (RS)-1-{(4-carboxyphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, 0,38 g de chlorhydrate de 1,3-diméthylaminopropyl 3-éthyl carbodiimide, 22 mg d'hydrate d'hydroxybenzotriazole, de 40 cm<sup>3</sup> de dichlorométhane et 0,24 cm<sup>3</sup> d'une

solution 7N d'ammoniaque dans le méthanol et en chromatographiant sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,1 cm, hauteur 15 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (60/40 en volumes) comme éluant et en recueillant des fractions de 35 cm<sup>3</sup>. Les fractions 5 à 48 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,29 g d'un solide qui, après reprise par de l'éther isopropylique et séchage, conduit à 0,22 g de (RS)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,82 (1H, s, NCH), 7,17 (2H, d, J=8Hz, 2CH arom.), 7,30 (1H, t, J=8Hz, CH arom.), 7,38 (2H, d, J=7Hz, 2CH arom.), 7,50 (5H, m, 4CH arom. et ½ CONH<sub>2</sub>), 7,80 (2H, d, J=7Hz, 2CH arom.), 7,90 (1H, s, ½ CONH<sub>2</sub>)].

#### Exemple 55

15 On opère selon le mode opératoire de l'exemple 4 à partir de 1,7 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,35 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,5 g de 4-diméthylaminopyridine. Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 35 cm) sous une pression de 20 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (99,5/0,5 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 7 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide est cristallisé dans 15 cm<sup>3</sup> d'éther éthylique. On obtient 0,2 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine fondant à 200°C [Spectre 25 RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,35 (4H, d, J=7Hz, 4CH arom.), 7,45 (6H,m, 6CH arom.), 7,67 (1H, s, CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode

opératoire de l'exemple 39 à partir de 4 g de bis(4-chlorophényl)bromométhane et 3 g de chlorhydrate de 3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 40 cm) sous une pression de 5 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (99/1 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 15 à 19 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,7 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azéti-din-3-ol sous forme d'une meringue.

10 Le bis(4-chlorophényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933).

Le chlorhydrate de 3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 39 à partir de 5,6 g de 3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol et 56 cm<sup>3</sup> d'une solution de dioxane chlorhydrique 6,2N dans 56 cm<sup>3</sup> de dioxane, on obtient 5,1 g de chlorhydrate de 3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue.

15 20 Le 3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin 3-ol peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 39 à partir de 7,4 g de 1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol et 1,6 cm<sup>3</sup> de chloroformate de vinyle dans 75 cm<sup>3</sup> de dichlorométhane, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 40 cm) sous une pression de 0,5 bar d'azote avec un mélange d'acétate d'éthyle et cyclohexane (30/70 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 4 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 5,6 g de 3-[(3,5-dichlorophényl)(méthylsulfonyl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol sous forme d'une meringue.

**Exemple 56**

En opérant selon le mode opératoire de l'exemple 4 à partir de 0,5 g de 1-benzhydryl-3-[(3-diméthylaminophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,1 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,5 g de 4-diméthylaminopyridine, le résidu obtenu  
5 est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (98/2 en volumes) comme éluant et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 8 à 13 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 8 cm<sup>3</sup> d'éther  
10 éthylique. On obtient 0,3 g de 1-benzhydryl-3-[(3-diméthylaminophényl)(méthylsulfonyl)méthylène]azétidine fondant à 176°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 2,90 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 6,70 (3H, m, 3CH arom.), 7,20 (3H, m, 3CH arom.), 7,30 (4H, t, J=7Hz, 4CH arom.), 7,48 (4H, d, J=7Hz, 4CH arom.)].  
15

Le 1-benzhydryl-3-[(3-diméthylaminophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 0,4 g de (3-diméthylaminobenzyl)méthylsulfone, de 0,4 g de 1-benzhydryl azétidin-3-one et 1,2 cm<sup>3</sup> d'une solution 1,6M de nbutyllithium dans  
20 l'hexane, on obtient 0,5 g de 1-benzhydryl-3-[(3-diméthylaminophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide fondant à 185°C.

La (3-diméthylaminobenzyl)méthylsulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 2 à partir de 1,4 g de  
25 (3-diméthylaminobenzyl)méthylsulfure et 5,1 g d'oxone®, on obtient 1,1 g de (3-diméthylaminobenzyl)méthylsulfone sous forme d'un solide blanc fondant à 195°C.

Le (3-diméthylaminobenzyl)méthylsulfure peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 37 à partir de 4g de (3-iodobenzyl)méthylsulfure, de 1,4 g de diméthylamine en solution dans 5 cm<sup>3</sup> de tétrahydrofurane, de 2,9 g de tertiobutylate de sodium, de 0,56 g de chlorure de 5 1,1'-bis(diphénylphosphino)ferrocényle palladium et 1,3 g de 1,1'-bis(diphénylphosphino)ferrocène dans 35 cm<sup>3</sup> de tétrahydrofurane, on obtient 0,9 g de (3-diméthylaminobenzyl)méthylsulfure sous forme d'une huile.

#### Exemple 57

En opérant selon le mode opératoire de l'exemple 4 à partir de 1,3 g de 1-benzhydryl-10 3-[(3-méthylsulfanylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,3 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,4 g de 4-di-néthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (98/2 en volumes) comme éluant et en re-15 cueillant des fractions de 20 cm<sup>3</sup>. Les fractions 11 à 13 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 15 cm<sup>3</sup> d'éther éthylique. On obtient 0,6 g de 1-benzhydryl-3-[(3-méthylsulfanylphényl)(méthylsulfonyl)méthylène]azétidine fondant à 146°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,45 (3H, s, PhSCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,10 et 7,50 20 (14H, m, 14CH arom.)].

Le 1-benzhydryl-3-[(3-méthylsulfanylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 1,1 g de méthyl(3-méthylsulfanylbenzyl)sulfone, de 1,2 g de 1-benzhydryl azétidin-3-one, on obtient 1,3 g de 1-benzhydryl-3-[(3-méthylsulfanylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide.

La méthyl(3-méthylsulfanylbenzyl)sulfone peut être préparée de la manière suivante : on chauffe à une température proche de 100°C, sous un courant d'argon, pendant

1 heure un mélange de 5g de (3-iodobenzyl)méthylsulfone et 1g de tétrakistriphénylphosphine palladium dans 250 cm<sup>3</sup> de diméthylsulfoxyde. 2,5 g de méthylthiolate de sodium sont ajoutés puis le chauffage à 100°C est maintenu 18 heures. Le milieu réactionnel est refroidi à température ambiante, repris par 700 cm<sup>3</sup> d'acétate d'éthyle et 500 cm<sup>3</sup> d'eau. La phase organique est décantée, lavée par 10 fois 500 cm<sup>3</sup> d'eau, 500 cm<sup>3</sup> d'une solution aqueuse saturée en chlorure de sodium, filtrée sur verre fritté et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (70/30 puis 60/40 puis 50/50 en volumes) comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 26 à 30 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,2 g de méthyl(3-méthylsulfanylbenzyl)méthylsulfone sous forme d'huile.

#### Exemple 58

15 A une solution refroidie à 5°C de 1,1 g 1-benzhydryl-3-{{[3-(tert-butyldiméthylsilyloxyméthyl)phényl](méthylsulfonyl)méthylène}azétidine dans 10 cm<sup>3</sup> de tétrahydrofurane, on ajoute 4 cm<sup>3</sup> d'une solution 1M de fluorure de tétrabutylammonium dans le tétrahydrofurane. Le mélange est agité 3 heures à une température proche de 20°C puis est repris par 100 cm<sup>3</sup> d'acétate d'éthyle et 2 fois 50 cm<sup>3</sup> d'eau. La phase organique est décantée, extraite, séchée sur du sulfate de magnésium anhydre et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (95/5 en volumes) comme éluant et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 4 à 6 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,5 g de 1-benzhydryl-3-[(3-hydroxyméthylphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc fondant à 152°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,50 (2H, d, J=5Hz, OCH<sub>2</sub>), 4,75 (1H,

s, NCH), 5,25 (1H, t, J=5Hz, OH), 7,20 (2H, t, J=7Hz, 2CH arom.), 7,30 (8H, m, 8CH arom.), 7,45 (4H, d, J=7Hz, 4 CH arom.)].

Le 1-benzhydryl-3-{{[3-(tert-butyldiméthylsilyloxyméthyl)phényl](méthylsulfonylméthylène)azétidine peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 4 à partir de 1,6 g de 1-benzhydryl-3-{{[3-(tert-butyldiméthylsilyloxyméthyl)phényl](méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,3 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,4 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>. Les fractions 15 à 30 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,1 g de 1-benzhydryl-3-{{[3-(tert-butyldiméthylsilyloxyméthyl)phényl](méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc fondant à 148°C.

Le 1-benzhydryl-3-{{[3-(tert-butyldiméthylsilyloxyméthyl)phényl](méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 2 g de [3-(tert-butyldiméthylsilyloxy-méthyl)benzyl]méthylsulfone et 1,5 g de 1-benzhydryl azétidin-3-one, on obtient 1,6 g de 1-benzhydryl-3-{{[3-(tert-butyldiméthylsilyloxyméthyl)phényl](méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc fondant à 175°C.

La [3-(tert-butyldiméthylsilyloxyméthyl)benzyl]méthylsulfone peut être préparée de la manière suivante : on agite 18 heures à une température proche de 20°C un mélange de 13,4 g de (3-hydroxyméthylbenzyl)méthylsulfone, 11 g d'imidazole et 12 g de chlorure de tert-butyldiméthylsilane. La solution est concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5 cm, hauteur 50 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 7 à 14 sont réunies et concentrées à sec sous pres-

sion réduite (2,7 kPa). On obtient 5,7 g de [3-(tert-butylidiméthylsilyloxyméthyl)benzyl]méthylsulfone sous forme d'un solide blanc fondant à 80°C.

La (3-hydroxyméthylbenzyl)méthylsulfone peut être préparée de la manière suivante : on agite 18 heures à une température proche de 20°C un mélange de 26 g d'acide 5 3-(méthylsulfonylméthyl)benzoïque et 4,6 g d'hydrure de lithium et d'aluminium dans 600 cm<sup>3</sup> de tétrahydrofurane. La solution est refroidie à 0°C puis on ajoute successivement 15 cm<sup>3</sup> d'acétate d'éthyle, 5 cm<sup>3</sup> d'eau, 5 cm<sup>3</sup> d'une solution aqueuse à 15% de soude et enfin 30 cm<sup>3</sup> d'eau. Le mélange est filtré sur céléite, le filtrat repris par 600 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est reprise par 500 cm<sup>3</sup> d'eau puis 10 200 cm<sup>3</sup> d'une solution aqueuse saturée par du chlorure de sodium, décantée, séchée sur du sulfate de magnésium anhydre, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 10,4 g de (3-hydroxyméthylbenzyl)méthylsulfone sous forme d'une gomme.

L'acide 3-(méthylsulfonylméthyl)benzoïque peut être préparé de la manière suivante : 15 en opérant selon le mode opératoire de l'exemple 10 à partir de 23,3 g d'acide 3-chlorométhylbenzoïque et 23,3 g de méthanesulfinate de sodium, on obtient 26 g d'acide 3-(méthylsulfonylméthyl)benzoïque sous forme d'un solide blanc fondant à 210°C.

#### Exemple 59

20 A une solution de 0,8 g de 1-benzhydryl-3-[(3-bromométhylphényle)(méthylsulfonylméthylène]azétidine dans 8 cm<sup>3</sup> de diméthylformamide, on ajoute en maintenant la température inférieure à 30°C, 0,13 g de méthylthiolate de sodium. Le mélange est agité 18 heures à une température proche de 20°C puis repris par 30 cm<sup>3</sup> d'acétate d'éthyle et 50 cm<sup>3</sup> d'eau. La phase organique est décantée, extraite et lavée par 3 fois 50 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium et concentrée 25 à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 28 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et

acétate d'éthyle (90/10 en volumes) comme éluant et en recueillant des fractions de 50 cm<sup>3</sup>. Les fractions 8 à 14 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,3 g de 1-benzhydryl-3-{[3-(méthylsulfanyl-méthyl)phényl](méthylsulfonyl)méthylène}azétidine sous forme d'un solide blanc  
5 fondant à 150°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 1,95 (3H, s, SCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,75 (2H, s, SCH<sub>2</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,20 (2H, t, J=7Hz, CH arom.), 7,30 (8H, d, J=7Hz, 8CH arom.), 7,45 (4H, d, J=7Hz, 4 CH arom.)].

La 1-benzhydryl-3-[(3-bromométhylphényl)(méthylsulfonyl)méthylène]azétidine peut  
10 être préparée de la manière suivante : à un mélange de 1 g de 1-benzhydryl-3-[(3-hydroxyméthylphényl)(méthylsulfonyl)méthylène]azétidine dans 10 cm<sup>3</sup> de dichlorométhane, on ajoute à une température proche de 20°C, 0,23 cm<sup>3</sup> de tribromure de phosphore puis une goutte de pyridine. L'agitation est maintenue 18 heures à la même température. Le milieu réactionnel est repris par 20 cm<sup>3</sup> d'eau et 10 cm<sup>3</sup> d'une  
15 solution aqueuse saturée avec du chlorure de sodium. La phase organique est décantée, extraite, séchée sur du sulfate de magnésium anhydre, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 1g de 1-benzhydryl-3-[(3-bromométhylphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'une meringue utilisée à l'état brut dans les synthèses ultérieures.

20 Exemple 60

En opérant selon le mode opératoire de l'exemple 4 à partir de 6,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(quinol-8-yl)méthyl-(RS)]azétidin-3-ol, de 1,7 cm<sup>3</sup> de chlorure de méthanesulfonyle et 5,2 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 6,5 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et méthanol (95/5 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>. Les fractions 7 à 15 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 100 cm<sup>3</sup> d'éther éthylique. On obtient 4,4 g de 1-benzhydryl-3-[(méthylsulfonyl)(quinol-8-

yl)méthylène]azétidine fondant à 212°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (250 MHz) : 3,15 (3H, s, SCH<sub>3</sub>), 3,55 (2H, s large, NCH<sub>2</sub>), 4,30 (2H, s, NCH<sub>2</sub>), 4,70 (1H, s, NCH), 7,18 (2H, t, J=7Hz, 2CH arom.), 7,25 (4H, t, J=7Hz, 4CH arom.), 7,43 (4H, d, J=7Hz, 4 CH arom.), 7,62 (2H, m, 2CH quinoléine), 7,75 (1H, dd, J=2 et 7Hz, CH quinoléine), 8,05 (1H, dd, J=2 et 7Hz, CH quinoléine), 8,43 (1H, dd, J=2 et 8Hz, CH quinoléine), 9,00 (1H, dd, J=2 et 5Hz, CH quinoléine)].

Le 1-benzhydryl-3-[(méthylsulfonyl)(quinol-8-yl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 5,5 g de méthyl(quinol-8-ylméthyl)sulfone, de 5,9 g de 1-benzhydryl azétidin-3-one et 18,8 cm<sup>3</sup> d'une solution 1,6 M de nbutyllithium dans l'hexane, on obtient 6,6 g de 1-benzhydryl-3-[(méthylsulfonyl)(quinol-8-yl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide beige.

La méthyl(quinol-8-ylméthyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 10 à partir de 4,5 g de 8-chlorométhylquinoléine et 4,4 g de méthanesulfinate de sodium, on obtient 5,7 g de méthyl(quinol-8-ylméthyl)sulfone sous forme d'un solide beige.

La 8-chlorométhylquinoléine peut être préparée de la manière suivante : à un mélange de 7,1 g de 8-méthylquinoléine dans 250 cm<sup>3</sup> de tétrachlorure de carbone, on ajoute à une température proche de 20°C, 6,7 g de N-chlorosuccinimide puis 250 mg de peroxyde de benzoyle. Le milieu réactionnel est chauffé à reflux du solvant 36 heures puis refroidi à 20°C. Le mélange est filtré sur verre fritté, le filtrat est concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 5,5 cm, hauteur 32 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>. Les fractions 21 à 40 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 4,5 g de 8-chlorométhylquinoléine sous forme d'une huile brune utilisée à l'état brut dans les synthèses ultérieures.

**Exemple 61**

En opérant selon le mode opératoire de l'exemple 4 à partir de 6,2 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 1,4 cm<sup>3</sup> de chlorure de méthanesulfonyle et 6,1 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, hauteur 60 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 4 à 7 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 25 cm<sup>3</sup> d'éther éthylique. On obtient 0,7 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide fondant à 178°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), 7,30 (4H, d, J=7Hz, 4CH arom.), 7,40 (4H, d, J=7Hz, 4CH arom.), 7,60 (1H, t, J=7Hz, CH arom), 7,70 (1H, d, J=7Hz, CH arom.), 7,85 (2H, m, 2CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 5,5 g de (3-cyanophényl)méthylsulfone, de 6,1 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one et 13,8 cm<sup>3</sup> d'une solution 1,6 M de nbutyllithium dans l'hexane, on obtient 6,3 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'une meringue.

**Exemple 62**

On chauffe à 50°C pendant 20 heures un mélange de 4,5 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine dans 50 cm<sup>3</sup> d'acide acétique et 50 cm<sup>3</sup> d'acide chlorhydrique concentré (d=1,18). Le milieu réactionnel est refroidi à température ambiante et concentré à sec sous pression réduite (2,7 kPa). L'huile obtenue est reprise par 100 cm<sup>3</sup> d'éthanol puis la solution est concentrée à sec sous pression réduite (2,7 kPa). Le résidu est précipité dans

60 cm<sup>3</sup> d'éther éthylique. Le solide obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 25 cm, hauteur 40 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane puis un mélange dichlorométhane et éthanol (99,5/0,5 en volumes) comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 35 à 46 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 15 cm<sup>3</sup> d'éther éthylique. On obtient 0,2 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-carbamoylphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide fondant à 192°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 10 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,35 (4H, d, J=7Hz, 4CH arom.), 7,45 (5H, d, J=7Hz, 4 CH arom. et ½ CONH<sub>2</sub>), . 7,50 (2H, m, 2CH arom.), 7,85 (2H, m, 2CH arom.)].

### Exemple 63

En opérant selon le mode opératoire de l'exemple 1 à partir de 0,8 g de 1-benzhydryl-15 3-{[3-(N-tert-butyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthyl-(RS)}azétidin-3-ol, de 0,2 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,7 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol 20 (98/2 en volumes) comme éluant en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 4 à 8 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est recristallisé dans 10 cm<sup>3</sup> d'acétate d'éthyle. On obtient 0,5 g de 1-benzhydryl-3-{[3-(N-tert-butyloxycarbonyl-N-méthylamino)phényl](méthyl-sulfo-25 nyl)méthylène}azétidine sous forme d'un solide fondant à 161°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 1,30 (9H, s, (CH<sub>3</sub>)<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,15 (3H, s, NCH<sub>3</sub>), 3,75 (2H, s, SCH<sub>2</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 (1H, s, NCH), entre 7,15 et 7,50 (14H, m, 14CH arom.)].

Le 1-benzhydryl-3-{[3-(N-tert-butyloxycarbonyl-N-méthylamino)phényl](méthyl-sulfonyl)méthyl-(RS)}azétidin-3-ol peut être obtenu de la manière suivante : en

opérant selon le mode opératoire de l'exemple 1 à partir de 1,6 g de [3-(N-tert-butyloxycarbonyl-N-méthylamino)benzyl]méthylsulfone, de 1,3 g de 1-benzhydryl azétidin-3-one et 3,8 cm<sup>3</sup> d'une solution 1,6 M de nbutyllithium dans l'hexane, on obtient 0,8 g 1-benzhydryl-3-{[3-(N-tert-butyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthyl-(RS)}azétidin-3-ol sous forme d'un solide blanc.

La [3-(N-tert-butyloxycarbonyl-N-méthylamino)benzyl]méthylsulfone peut être préparée de la manière suivante : à une solution refroidie à 0°C de méthyl(3-méthylaminobenzyl)sulfone dans 30 cm<sup>3</sup> de dioxane, on ajoute 2,5 g de ditertiobutyldicarbonate dans 40 cm<sup>3</sup> de dioxane. L'agitation est maintenue 18 heures à température ambiante. Le milieu réactionnel est repris par 75 cm<sup>3</sup> de dichlorométhane; la phase organique est lavée par 75 cm<sup>3</sup> d'eau puis par 75 cm<sup>3</sup> d'une solution aqueuse saturée par du chlorure de sodium. La phase organique est décantée, extraite, séchée sur du sulfate de sodium anhydre, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 35 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (50/50 en volumes) comme éluant en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 5 à 10 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,8 g de [3-(N-tert-butyloxycarbonyl-N-méthylamino)benzyl]méthylsulfone sous forme d'une huile incolore.

La méthyl(3-méthylaminobenzyl)sulfone peut être préparée de la manière suivante : on chauffe pendant 3 heures à 50°C un mélange de 9,7 cm<sup>3</sup> d'acide formique ( $d=1,22$ ) et 19,6 cm<sup>3</sup> d'anhydride acétique ( $d=1,08$ ) puis laisse revenir à température ambiante la solution. On ajoute 40 cm<sup>3</sup> de tétrahydrofurane et refroidi à -20°C. On ajoute ensuite 14,8 g de (3-aminobenzyl)méthylsulfone et 200 cm<sup>3</sup> de tétrahydrofurane. L'agitation est maintenue 2 heures à -20°C puis 48 heures à température ambiante. Le mélange est filtré sur verre fritté, le précipité est lavé par 3 fois 50 cm<sup>3</sup> d'oxyde de diisopropyle puis séché. Le filtrat est concentré de moitié en volume (2,7 kPa), le

précipité obtenu est filtré sur verre fritté et lavé par 3 fois 30 cm<sup>3</sup> d'oxyde de diisopropyle puis séché. Les deux précipités sont réunis et dissous dans 375 cm<sup>3</sup> de tétrahydrofurane. La solution est refroidie à 0°C; on ajoute 100 cm<sup>3</sup> d'une solution 2 M de borane diméthylsulfure dans le tétrahydrofurane puis chauffe à reflux 5 3 heures. Le mélange est refroidi à 5°C puis on ajoute en 20 minutes 60 cm<sup>3</sup> de méthanol. L'agitation est maintenue 1 heure à température ambiante. On fait barboter un courant de chlorure d'hydrogène dans la solution pendant 5 minutes. Le milieu réactionnel est ensuite chauffé à reflux 1 heure, refroidi à température ambiante et repris par 300 cm<sup>3</sup> d'eau. La solution est alcalinisée par de la soude 3 N puis par une 10 solution aqueuse saturée de bicarbonate de sodium. La phase organique est extraite par 2 fois 250 cm<sup>3</sup> d'acétate d'éthyle, lavée par 300 cm<sup>3</sup> d'une solution aqueuse saturée de bicarbonate de sodium et 2 fois 300 cm<sup>3</sup>. Elle est concentrée à sec sous pression réduite (2,7 kPa). L'huile obtenue est reprise par 100 cm<sup>3</sup> d'acide chlorhydrique 4N, puis par 100 cm<sup>3</sup> d'acétate d'éthyle. La phase aqueuse est alcalinisée par 15 120 cm<sup>3</sup> de soude 3 N, puis par une solution aqueuse de bicarbonate de sodium. La phase organique est extraite par 2 fois 75 cm<sup>3</sup> d'acétate d'éthyle, séchée sur du sulfate de magnésium anhydre, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 9 g de méthyl(3-méthylaminobenzyl)sulfone sous forme d'un solide rose.

La (3-aminobenzyl)méthylsulfone peut être préparée de la manière suivante : on 20 chauffe à reflux 15 minutes un mélange de 23,7 g de méthyl(3-nitrobenzyl)sulfone, 65 cm<sup>3</sup> d'acide chlorhydrique ( $d=1,18$ ) et 150 cm<sup>3</sup> de méthanol. On ajoute en 10 minutes 18,5 g de fer et maintient au reflux pendant 4 heures puis 18 heures à température ambiante. Le milieu réactionnel est alcalinisé par une solution aqueuse d'ammoniaque puis par une solution aqueuse de bicarbonate de sodium. La phase organique est 25 extraite par 3 fois 250 cm<sup>3</sup> d'acétate d'éthyle, séchée sur du sulfate de magnésium, filtrée sur verre fritté et concentrée à sec sous pression réduite (2,7 kPa). On obtient 14,9 g de (3-aminobenzyl)méthylsulfone sous forme d'un solide beige utilisé à l'état brut dans les synthèses ultérieures.

#### Exemple 64

On agite 18 heures à température ambiante un mélange de 0,3 g de 1-benzhydryl-3-  
 {[3-(N-tert-butylloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthylène}  
 azétidine, 4 cm<sup>3</sup> d'une solution 4,7 N de dioxane chlorhydrique et 4 cm<sup>3</sup> de dioxane.  
 Le milieu réactionnel est concentré à sec sous pression réduite (2,7 kPa). Le résidu est  
 5 repris par 100 cm<sup>3</sup> d'eau et 20 cm<sup>3</sup> d'oxyde de diéthyle. La phase aqueuse est al-  
 calinisée par 30 cm<sup>3</sup> d'une solution aqueuse de bicarbonate de sodium. La phase or-  
 ganique est extraite par 2 fois 40 cm<sup>3</sup> d'acétate d'éthyle, lavée par 2 fois 30 cm<sup>3</sup> d'eau,  
 décantée, séchée sur du sulfate de magnésium anhydre, filtrée et concentrée à sec sous  
 pression réduite (2,7 kPa). Le résidu est cristallisé dans 20 cm<sup>3</sup> d'oxyde de diéthyle.  
 10 On obtient 0,16 g de 1-benzhydryl-3-[(3-  
 méthylaminophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide  
 fondant à 161°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) :  
 2,65 (3H, d, J=5Hz, NCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s,  
 NCH<sub>2</sub>), 4,75 (1H, s, NCH), 5,80 (1H, q, J=5Hz, NH), 6,60 (3H, m, 3CH arom.), 7,15  
 15 (1H, t, J=7Hz, CH arom.), 7,22 (2H, t, J=7Hz, 2CH arom.), 7,30 (4H, t, J=7Hz, 4CH  
 arom.), 7,48 (4H, d, J=7Hz, 4 CH arom.)].

#### Exemple 65

En opérant selon le mode opératoire de l'exemple 4 à partir de 11,3 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 2,6 cm<sup>3</sup> de chlorure de méthanesulfonyle et 10,9 g de 4-diméthylaminopyridine, on obtient après recristallisation dans 20 cm<sup>3</sup> d'oxyde de diéthyle 5 g 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine fondant à 181°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,77 (3H, s, OCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 6,95 (3H, m, 3CH arom.), 7,35 (5H, m, 5CH arom.), 7,45 (4H, d, J=7Hz, 4 CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 6,6 g de (3-méthoxybenzyl)méthylsulfone, de

10 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one et 23 cm<sup>3</sup> d'une solution 1,6 N de nbutyllithium dans l'hexane, on obtient 11,4 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc fondant à 130°C.

5 Exemple 66

En opérant selon le mode opératoire de l'exemple 32 à partir de 4,8 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine, de 32 cm<sup>3</sup> d'une solution 1 M de tribromure de bore dans le dichlorométhane, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 10 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol comme éluant (98/2 en volumes) et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 16 et 17 sont concentrées à sec sous pression réduite (2,7 kPa). On obtient après recristallisation dans 5 cm<sup>3</sup> d'oxyde de diéthyle 0,1 g 1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide fondant à 114°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 2,92 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 6,80 (3H, m, 3CH arom.), 7,20 (1H, t, J=7Hz, CH arom.), 7,37 (4H, t, J=7Hz, 4CH arom.), 7,47 (4H, d, J=7Hz, 4 CH arom.)].

20 Exemple 67

En opérant selon le mode opératoire de l'exemple 4 à partir de 0,6 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-pyrrolidinylphényl)méthyl-(RS)]azétidin-3-ol, de 0,1 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,5 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 25 0,5 bar d'azote avec un mélange dichlorométhane et éthanol comme éluant (98,5/1,5 en volumes) et en recueillant des fractions de 10 cm<sup>3</sup>. La fraction 4 est concentrée à sec sous pression réduite (2,7 kPa). On obtient après recristallisation dans 5 cm<sup>3</sup>

d'oxyde de diéthyle 0,5 g 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-pyrrolidinylphényl)méthylène]azétidine sous forme d'un solide fondant à 133°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (400 MHz) : 2,00 (4H, m, 2 CH<sub>2</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,20 (4H, m, 2 NCH<sub>2</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 5 4,80 (1H, s, NCH), 6,50 (1H, s, CH arom.), 6,60 (1H, d, J=7Hz, CH arom.), 6,65 (1H, d, J=7Hz, CH arom.), 7,20 (1H, t, J=7Hz, CH arom.), 7,40 (4H, d, J=7Hz, 4 CH arom.), 7,50 (4H, d, J=7Hz, 4 CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-pyrrolidinylphényl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode 10 opératoire de l'exemple 1 à partir de 0,5 g de méthyl(3-pyrrolidinylbenzyl)sulfone, de 0,6 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one et 1,4 cm<sup>3</sup> d'une solution 1,6 N de n butyllithium dans l'hexane, on obtient 0,6 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-pyrrolidinylphényl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide crème.

15 Exemple 68

En opérant selon le mode opératoire de l'exemple 58 à partir de 5,1 g de 1-[bis(4-chlorophényl)méthyl]-3-{{[3-(tert-butyl)diméthylsilyloxy]méthyl}phényl}(méthylsulfonyl)méthylène}azétidine et 17 cm<sup>3</sup> d'une solution 1M de fluorure de tétrabutylammonium dans le tétrahydrofurane, le résidu obtenu est 20 purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (97/3 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 10 à 14 sont réunies, concentrées à sec sous pression réduite (2,7 kPa). Le solide jaune obtenu est repris par 2 cm<sup>3</sup> de dichlorométhane et 10 cm<sup>3</sup> d'acétate d'éthyle puis filtré sur verre fritté et lavé par 25 2 cm<sup>3</sup> d'acétate d'éthyle. On obtient 1,6 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyméthylphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide blanc fondant à 214°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (400 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,50 (2H, d, J=5Hz,

OCH<sub>2</sub>), 4,80 (1H, s, NCH), 5,25 (1H, t, J=5Hz, OH), 7,30 (1H, d, J=7Hz, CH arom.), entre 7,35 et 7,45 (7H, m, 7CH arom.), 7,50 (4H, d, J=7Hz, 4CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-{[3-(tert-butyldiméthylsilyloxy)méthyl]phényl}(méthylsulfonyl)méthylène}azétidine peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 4 à partir de 10,8 g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(tert-  
5 butyldiméthylsilyloxy)méthyl]phényl}(méthylsulfonyl)méthyl-(RS)}azétidin-3-ol, de 2 cm<sup>3</sup> de chlorure de méthanesulfonyle et 8,5 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie  
10 0,04-0,06 mm, diamètre 4 cm, hauteur 40 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 12 à 29 sont réunies, concentrées à sec sous pression réduite (2,7 kPa). On obtient 5,2 g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(tert-butyldiméthylsilyloxy)méthyl]phényl}(méthylsulfonyl)méthylène}azétidine sous forme d'une gomme.  
  
15 Le 1-[bis(4-chlorophényl)méthyl]-3-{[3-(tert-butyldiméthylsilyloxy)méthyl]phényl}(méthylsulfonyl)méthyl-(RS)}azétidin-3-ol peut être obtenu de la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 5,8 g de [3-(tert-  
butyldiméthylsilyloxy)méthyl]benzyl)méthylsulfone et 5,6 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one, on obtient 10,8 g de 1-[bis(4-chlorophényl)méthyl]-3-  
20 {[3-(tert-butyldiméthylsilyloxy)méthyl]phényl}(méthylsulfonyl)méthyl-(RS)}azétidin-3-ol sous forme d'une gomme.

#### Exemple 69

On agite pendant 18 heures à température ambiante un mélange de 0,45 g de 1-[bis(4-chlorophényl)méthyl]-3-{(méthylsulfonyl)[3-(pentafluorophénoxy carbonyl)phényl]  
25 méthylène}azétidine, 0,07 cm<sup>3</sup> de 1-aminopipéridine dans 4 cm<sup>3</sup> de diméthylformamide. Le mélange est repris par 30 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est lavée par 3 fois 50 cm<sup>3</sup> d'eau, séchée sur du sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). On obtient 0,2 g de 1-[bis(4-chlorophé-

nyl)méthyl]-3-{(méthylsulfonyl)[3-(N-pipéridylcarbamoyl)phényl]méthylène} azétidine fondant à 175°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (400 MHz) : 1,40 (2H, m, CH<sub>2</sub>), 1,60 (4H, m, 2CH<sub>2</sub>), 2,85 (4H, m, 2NCH<sub>2</sub>), 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), entre 7,45 et 7,60 5 (10H, m, 10CH arom.), 7,75 (2H, m, 2CH arom.), 9,45 (1H, s, NH)].

Le 1-[bis(4-chlorophényl)méthyl]-3-{(méthylsulfonyl)[3-(pentafluorophénoxy-carbonyl)phényl]méthylène}azétidine peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 29 à partir de 2,6 g de chlorhydrate de 1-[bis(4-chlorophényl)méthyl]-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine, 0,9 g de pentafluorophénol, 0,9 g de chlorhydrate de 1-(3-diméthylaminopropyl)3-éthylcarbodiimide dans 25 cm<sup>3</sup> de diméthylformamide, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 30 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol (99/1 en volumes) comme éluant et en re-10 cueillant des fractions de 30 cm<sup>3</sup>. Les fractions 7 à 12 sont réunies et concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,9 g de 1-[bis(4-chlorophényl)méthyl]-3-{(méthylsulfonyl)[3-(pentafluorophénoxycarbonyl)phényl]méthylène}azéti-dine sous forme d'une meringue.

La 1-[bis(4-chlorophényl)méthyl]-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine peut être préparée de la manière suivante : à un mélange de 0,5 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyméthylphényl)(méthylsulfonyl)méthylène]azétidine dans 9 cm<sup>3</sup> d'acétone, refroidie à 5°C, on ajoute 2 cm<sup>3</sup> de réactif de Jones. L'agitation est maintenue 2 heures à cette température puis on ajoute 50 cm<sup>3</sup> d'un mélange d'eau et glace et 50 cm<sup>3</sup> d'acétate d'éthyle. La phase 20 organique est décantée, lavée par 50 cm<sup>3</sup> d'une solution aqueuse saturée de chlorure de sodium, séchée sur du sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 25 cm) sous une pression de 0,5 bar d'azote avec un mélange dichlorométhane et éthanol 25

comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>. Les fractions 12 à 14 sont réunies, concentrées à sec sous pression réduite (2,7 kPa). Le solide obtenu est cristallisé dans 10 cm<sup>3</sup> d'éther éthylique. On obtient 32 mg de 1-[bis(4-chlorophényl)méthyl]-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine sous forme d'un solide fondant à 205°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (400 MHz) : 2,90 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,33 (4H, d, J=7Hz, 4CH arom.), 7,39 (1H, d, J=7Hz, CH arom.), 7,42 (4H, d, J=7Hz, 4CH arom.), 7,49 (1H, t, J=7Hz, CH arom.), 7,57 (1H, d, J=7Hz, CH arom.), 7,90 (2H, s, CH arom. et NH')].

10 Exemple 70

En opérant selon le mode opératoire de l'exemple 4 à partir de 0,8 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-trifluorométhylsulfanylphényl)méthyl-(RS)]azétidin-3-ol, de 0,24 g de chlorure de méthanesulfonyle et 0,7 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 18 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 50 cm<sup>3</sup>. Les fractions 12 à 17 sont réunies, concentrées à sec sous pression réduite (2,7 kPa). Le résidu obtenu est purifié à nouveau par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2 cm, hauteur 20 cm) sous une pression de 0,5 bar d'azote avec du dichlorométhane comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 15 à 28 sont réunies, concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,25 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-trifluorométhylsulfanylphényl)méthylène]azétidine fondant à 70°C [Spectre RMN dans DMSO-d6 + CD<sub>3</sub>CO<sub>2</sub>D, T=300K, δ en ppm (300 MHz) : 3,00 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,35 (4H, d, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,60 (2H, m, 2CH arom), 7,75 (2H, m, 2CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-trifluorométhylsulfanylphényl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : en opérant

selon le mode opératoire de l'exemple 1 à partir de 2 g de méthyl(3-trifluorométhylsulfanylbenzyl)sulfone, de 2,3 g de 1-[bis(4-chlorophényle)méthyl]azétidin-3-one et 5,5 cm<sup>3</sup> d'une solution de n butyllithium 1,6M dans l'hexane, on obtient 0,9 g de 1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylsulfanylphényle)méthyl-(RS)]azétidino-3-ol sous forme d'un solide blanc.

La méthyl(3-trifluorométhylsulfanylbenzyl)sulfone peut être préparée de la manière suivante : en opérant selon le mode opératoire de l'exemple 10 à partir de 5 g de chlorure de 3-trifluorométhylsulfanylbenzyle et 3,2 g de méthanesulfinate de sodium, on obtient 5,2 g de méthyl(3-trifluorométhylsulfanylbenzyl)sulfone sous forme d'un solide blanc fondant à 125°C.

#### Exemple 71

En opérant comme à l'exemple 38 (méthode 1), à partir de 0,72 g de 1-[bis(4-fluorophényle)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,18 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,66 g de 4-diméthylaminopyridine, on obtient après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 2,5 cm, hauteur 15 cm), sous une pression de 1 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (15/85 en volumes) comme éluant et en recueillant des fractions de 25 cm<sup>3</sup>, 0,42 g de 1-[bis(4-fluorophényle)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine sous la forme d'une meringue blanche [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,15 (6H, m, 6CH arom.), 7,35 (1H, t, J=8Hz, CH arom.), 7,50 (4H, dd, J=6 et 8Hz, 4CH arom.)].

Le 1-[bis(4-fluorophényle)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : on opère comme à l'exemple 39 à partir de 2,25 g de bis(4-fluorophényle)bromométhane, de 1,1 g de carbonate de potassium, et 2,5 g de chlorhydrate de 3-[(3,5-difluorophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol. Après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4,4 cm, hauteur 25 cm), sous

une pression de 0,9 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>, les fractions 23 à 39 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,72 g de 1-[bis(4-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide blanc.

Le bis(4-fluorophényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933) à partir de 4 g de 4,4'-difluorobenzydrol, de 2,70 cm<sup>3</sup> de bromure d'acétyle et 14 cm<sup>3</sup> d'une solution d'acide bromhydrique à 33% dans l'acide acétique.

#### 10 Exemple 72

En opérant comme à l'exemple 38 (méthode 1), à partir de 1,22 g de 1-[bis(2-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,29 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,1 g de 4-diméthylaminopyridine, on obtient après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 23 cm), sous une pression de 1 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (15/85 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>, 0,177 g de 1-[bis(2-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous la forme d'une meringue blanche [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,95 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 5,35 (1H, s, NCH), 7,20 (6H, m, 6CH arom.), 7,35 (3H, m, 3CH arom.), 7,55 (2H, m, 2CH arom.)].

Le 1-[bis(2-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être obtenu de la manière suivante : on opère comme à l'exemple 39 à partir de 2 g de bis(2-fluorophényl)bromométhane, de 1,0 g de carbonate de potassium et 2,22 g de chlorhydrate de 3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol. Après chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 17 cm), sous une pression de 1 bar d'argon avec un mélange d'acétate d'éthyle et de cyclohexane

(2/8 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>, les fractions 6 à 10 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,22 g de 1-[bis(2-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide blanchâtre.

5 Le bis(2-fluorophényl)bromométhane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933), à partir de 1,80 g de 2,2'-difluorobenzydrol, de 1,22 cm<sup>3</sup> de bromure d'acétyle et 6,5 cm<sup>3</sup> d'une solution d'acide bromhydrique à 33% dans l'acide acétique.

Le 2,2'-difluorobenzydrol peut être préparé selon la méthode suivante : à une solution 10 refroidie à -70°C sous argon de 8,8 g de 2-bromofluorobenzène dans 100 cm<sup>3</sup> de tétrahydrofurane, on coule goutte à goutte 32 cm<sup>3</sup> de n-butyllithium en solution 1,6M dans l'hexane. Après 10 minutes d'agitation à -70°C, on ajoute lentement 1,6M dans l'hexane. Après 10 minutes d'agitation à -70°C, on ajoute lentement 2,1 cm<sup>3</sup> de formiate d'éthyle puis agite le mélange à -70°C pendant 30 minutes. Le milieu réactionnel est ensuite amené à 0°C puis additionné de 50 cm<sup>3</sup> d'acétate 15 d'éthyle et 100 cm<sup>3</sup> de solution saturée de chlorure d'ammonium. Après agitation, la phase organique est séparée, séchée sur sulfate de magnésium, concentrée à sec à 55°C, sous pression réduite, (2,7 Kpa). On obtient 3,63 g de 2,2'-difluorobenzydrol, sous la forme d'une huile jaune.

#### Exemple 73

20 En opérant comme à l'exemple 38 (méthode 1), à partir de 1,15 g de 1-[bis(3-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,264 cm<sup>3</sup> de chlorure de méthanesulfonyle, et 0,98 g de 4-diméthylaminopyridine, on obtient après chromatographie sur colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 2,8 cm, hauteur 25 cm), sous une pression de 1 bar d'argon avec 25 un mélange d'acétate d'éthyle et cyclohexane (15/85 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>, 0,55 g de 1-[bis(3-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène] azétidine sous la forme d'un solide blanc fondant à 178°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (250 MHz) :

3,05 (3H, s, SCH<sub>3</sub>), 3,95 (2H, s, NCH<sub>2</sub>), 4,25 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,10 (2H, m, 2CH arom.), 7,20 (2H, m, 2CH arom.), entre 7,30 et 7,50 (7H, m, 7CH arom.)].

Le 1-[bis(3-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être préparé de la manière suivante : en opérant selon l'exemple 1 à partir de 1,2 g de (3,5-difluorobenzyl)méthylsulfone et 1,5 g de 1-[bis(3-fluorophényl)méthyl]azétidin-3-one, on obtient après purification sur colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 3,2 cm, hauteur 30 cm), sous une pression de 1 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (2/8 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>, 1,95 g de 1-[bis(3-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide blanc, fondant à 170°C (décomposition).

La 1-[bis(3-fluorophényl)méthyl]azétidin-3-one peut être préparée en opérant de façon identique au mode opératoire décrit par KATRITZKY A.R. et coll., J. Heterocycl. Chem., 271 (1994), à partir de 4,9 g de [bis(3-fluorophényl)méthyl]amine et 1,78 cm<sup>3</sup> d'épichlorhydrine.

La [bis(3-fluorophényl)méthyl]amine peut être préparée de la façon suivante : à une suspension de 1,27 g d'hydrure de lithium et d'aluminium dans 80 cm<sup>3</sup> de tétrahydrofurane, on coule sous atmosphère d'argon en 30 minutes une solution de 5,17 g de 3,3'-difluorobenzophénone oxime dans 30 cm<sup>3</sup> de tétrahydrofurane. Après 5 heures d'agitation au reflux, on ajoute successivement 1,3 cm<sup>3</sup> d'eau, 1,3 cm<sup>3</sup> de soude 4N, 2,6 cm<sup>3</sup> d'eau puis 50 cm<sup>3</sup> d'acétate d'éthyle. Après séchage sur sulfate de magnésium et concentration à sec sous pression réduite (2,7 kPa), on obtient 4,9 g de [bis(3-fluorophényl)méthyl]amine, sous la forme d'une huile jaune.

La 3-3'-difluorobenzophénone oxime peut être préparée selon le mode opératoire suivant : dans une solution de 5,0 g de 3,3'-difluorobenzophénone dans 10 cm<sup>3</sup> d'éthanol, on coule goutte à goutte une solution de 1,6 g de chlorhydrate

d'hydroxylamine dans 8 cm<sup>3</sup> d'eau, puis ajoute par petites fractions 1,2 g de soude en pastilles. Le mélange réactionnel, porté au reflux pendant 10 minutes est refroidi à 20°C puis acidifié par 7,5 cm<sup>3</sup> d'acide chlorhydrique 4N. Le précipité huileux obtenu une fois tritiqué devient un solide blanc que l'on filtre, lave par de l'eau puis sèche à 5 35°C sous pression réduite (2,7 kPa). On obtient 5,17 g de 3,3'-difluorobenzophénone oxime, sous la forme d'un solide blanc.

#### Exemple 74

En opérant comme à l'exemple 1, à partir de 1,30 g d'un mélange de deux diastéréoisomères 1-[(4-chlorophényl)(thiazol-2-yl)méthyl-(RS)]-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol, de 0,35 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,22 g de 10 4-diméthylaminopyridine, on obtient après chromatographie sur colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 2,4 cm, hauteur 25 cm), sous une pression de 1 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (1/1 en volumes) comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>, 0,7 g de (RS)-1-[(4-15 chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine, sous la forme d'un solide rosâtre [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,95 (3H, s, SCH<sub>3</sub>), 3,95 (2H, m, NCH<sub>2</sub>), 4,35 (2H, m, NCH<sub>2</sub>), 5,25 (1H, s, NCH), 7,45 (9H, m, 9CH arom.), 7,65 (1H, d, J=2Hz, CH thiazole), 7,70 (1H, d, J=2Hz, CH thiazole)].

20 Le mélange des deux diastéréoisomères 1-[(4-chlorophényl)(thiazol-2-yl)méthyl-(RS)]-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol, peut être obtenu de la manière suivante : en opérant comme à l'exemple 39 à partir de 4,47 g de (RS)-bromo(4-chlorophényl)(thiazol-2-yl)méthane et 4,31 g de chlorhydrate de 25 [(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 5,6 cm, hauteur 40 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) jusqu'à la fraction 35 puis par de l'acétate d'éthyle pur comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>, les fractions 38 à 40 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,3 g du

mélange des deux diastéréoisomères 1-[(4-chlorophényl)(thiazol-2-yl)méthyl-(RS)]-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide blanchâtre.

Le (RS)-bromo(4-chlorophényl)(thiazol-2-yl)méthane peut être préparé selon le mode opératoire décrit par BACHMANN W.E., J. Am. Chem. Soc., 2135 (1933), à partir de 5 3,5g de (RS)-(4-chlorophényl)(2-thiazolyl)méthanol, de 3,81 g de bromure d'acétyle et 12,0 cm<sup>3</sup> d'une solution d'acide bromhydrique à 33% dans l'acide acétique.

Le (RS)-(4-chlorophényl)(thiazol-2-yl)méthanol peut être préparé selon le mode opératoire décrit par G. EVAN BOSWELL et coll, J. Heterocyclic Chem., 32, 1801 10 10 (1995), à partir de 4,22 g de 4-chlorobenzaldéhyde et 4,92 g de 2-bromothiazole.

#### Exemple 75

En opérant comme à l'exemple 1, à partir de 0,52 g d'un mélange des deux diastéréoisomères 1-[(4-chlorophényl)(thien-2-yl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, de 0,14 cm<sup>3</sup> de chlorure de méthane-sulfonyle et 0,49 g de 4-diméthylaminopyridine, on obtient après chromatographie sur colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 2,4 cm, hauteur 20 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (20/80 en volumes) comme éluant et en recueillant des fractions de 30 cm<sup>3</sup>, 0,32 g de (RS)-1-[(4-chlorophényl)(thien-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, sous la forme d'un solide blanc, fondant à 176°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,98 (3H, s, SCH<sub>3</sub>), 3,90 (2H, m, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 5,03 (1H, s, NCH), 6,85 (1H, dd, J=3 et 5Hz, CH thiophene), 7,08 (3H, m, 2CH arom. et 1CH thiophene), 7,22 (1H, t, J=8Hz, CH arom.), 7,32 (3H, m, 2CH arom. et 1CH thiophene), 7,40 (2H, d, J=7Hz, 25 2CH arom.)].

Le mélange des deux diastéréoisomères 1-[(4-chlorophényl)(thien-2-yl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut être préparé

de la manière suivante : en opérant comme à l'exemple 1 à partir de 1,60 cm<sup>3</sup> de n-butyllithium 1,6N en solution dans l'hexane, de 0,83 g de (3,5-difluorobenzyl)méthylsulfone et 1,06 g de 1-[(4-Chlorophényl)(thién-2-yl)méthyl-(RS)]azétidin-3-one, on obtient après purification sur colonne de gel de 5 silice (granulométrie 0,06-0,200 mm, diamètre 2,8 cm, hauteur 30 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) comme éluant et en recueillant des fractions de 40 cm<sup>3</sup>, 0,55 g du mélange de diastéréoisomères 1-[(4-chlorophényl)(thién-2-yl)méthyl-(RS)]-3-[(3,5-di-fluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide 10 blanc cassé.

La 1-[(4-chlorophényl)(thién-2-yl)méthyl-(RS)]azétidin-3-one peut être préparé en opérant de la façon suivante : à une solution refroidie à -70°C de 1,83 cm<sup>3</sup> de chlorure d'oxalyle dans 20 cm<sup>3</sup> de dichlorométhane sous argon, on coule en 10 minutes 3,04 cm<sup>3</sup> de diméthylsulfoxyde. Après 30 minutes d'agitation à -60°C, on coule en 15 20 minutes une solution de 5,2 g de 1-[(4-chlorophényl)(thién-2-yl)méthyl-(RS)]azétidin-3-ol dans 80 cm<sup>3</sup> de dichlorométhane, agite le mélange pendant 3 heures à une température comprise entre -60° et -70°C, puis ajoute 9,12 cm<sup>3</sup> de triéthylamine. Le mélange est alors laissé revenir à température ambiante, puis dilué avec de l'eau. La phase organique est séparée, séchée sur sulfate de magnésium, puis concen- 20 trée sous pression réduite à sec. Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 4 cm, hauteur 36 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (1/9 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>. On obtient 3,3 g de 1-[(4-chlorophényl)(thién-2-yl)méthyl-(RS)]azétidin-3-one, sous la forme d'une huile 25 jaune qui cristallise à température ordinaire.

Le 1-[(4-chlorophényl)(thién-2-yl)méthyl-(RS)]azétidin-3-ol peut être préparé de la façon suivante : à une solution de 11,0 g de [(4-chlorophényl)(thién-2-yl)méthyl-(RS)]amine dans 80 cm<sup>3</sup> d'éthanol on ajoute 4,12 g de bicarbonate de sodium. Le mélange chauffé à 65°C est additionné de 4,03 cm<sup>3</sup> d'épibromhydrine. Après 20 heu-

res d'agitation à 65°C, le mélange refroidi est filtré et le filtrat concentré à sec sous pression réduite (2,7 Kpa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 3,6 cm, hauteur 32 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (25/75 en volumes) comme éluant et en recueillant des fractions de 60 cm<sup>3</sup>. On obtient 6,3 g de 1-[(4-chlorophényl)(thién-2-yl)méthyl-(RS)]azétidin-3-ol, sous la forme d'une huile jaune pâle.

La [(4-chlorophényl)(thién-2-yl)méthyl-(RS)]amine peut être préparée de la façon suivante : à une suspension refroidie à 10°C de bromure de 4-chlorophénylmagnésien (préparée à partir de 19,15 g de 4-bromochlorobenzène et 2,43 g de magnésium) dans 120 cm<sup>3</sup> d'éther éthylique anhydre, on coule lentement une solution de 10,92 g de 2-thiophénecarbonitrile dans 80 cm<sup>3</sup> d'éther éthylique. Après une heure de reflux, le mélange est refroidi à 10°C, additionné lentement de 40 cm<sup>3</sup> de méthanol et ensuite filtré sur supercel. On ajoute sous argon et par petites fractions en 15 minutes 4,54 g de borohydrure de sodium puis agite le milieu réactionnel pendant 20 heures à 20°C. Le mélange obtenu est dilué avec de l'acétate d'éthyle, puis lavé avec de l'eau. La phase organique est séchée sur sulfate de magnésium, concentrée à sec à 50°C sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 5 cm, hauteur 42 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (4/6 en volumes) comme éluant et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 6 à 12 concentrées à sec correspondent à 13 g d'imine sous la forme d'une huile jaune que l'on reprend dans 100 cm<sup>3</sup> de méthanol. La solution obtenue est additionnée de 2,4 g de borohydrure de sodium, et agitée pendant une heure à 5°C. Le mélange obtenu est dilué avec de l'acétate d'éthyle, puis lavé avec de l'eau. La phase organique est séchée sur sulfate de magnésium, concentrée à sec à 50°C sous pression réduite (2,7 Kpa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 3,2 cm, hauteur 40 cm), sous une pression de 0,5 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (4/6 en volumes) comme

éluant et en recueillant des fractions de 60 cm<sup>3</sup>. On obtient 11,0 g de [(4-chlorophényl)(thién-2-yl)méthyl-(RS)]amine, sous la forme d'une huile jaune.

#### Exemple 76

En opérant comme décrit dans l'exemple 75, à partir de 1,66 g du mélange des deux diastéréoisomères chiraux 1-[(4-chlorophényl)(thién-2-yl)méthyl-(R\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(R\*)]azétidin-3-ol et 1-[(4-chlorophényl)(thién-2-yl)méthyl-(R\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidin-3-ol, 50 cm<sup>3</sup> de dichlorométhane, 0,45 cm<sup>3</sup> de chlorure de méthanesulfonyle, et 1,64 g de 4-diméthylaminopyridine, on obtient 0,6 g de (+)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, sous forme de cristaux blancs fondant à 136°C,  $[\alpha]^{20}_D = +3,2^\circ$  (c = 0,5% dans le dichlorométhane).

Le mélange des deux diastéréoisomères chiraux 1-[(4-chlorophényl)(thién-2-yl)méthyl-(R\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(R\*)]azétidin-3-ol et 1-[(4-chlorophényl)(thién-2-yl)méthyl-(R\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidin-3-ol peut être préparé comme il est décrit dans l'exemple 75, à partir de 1,06 g de (+)-1-[(4-chlorophényl)(thién-2-yl)méthyl]azétidin-3-one, 0,82 g de (3,5-difluorobenzyl)méthylsulfone, 2,5 cm<sup>3</sup> de solution de nbutyllithium 1,6N dans l'hexane, et 25 cm<sup>3</sup> de tétrahydrofurane. On obtient après purification par chromatographie, 1,7 g du mélange des deux diastéréoisomères chiraux 1-[(4-chlorophényl)(thién-2-yl)méthyl-(R\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(R\*)]azétidin-3-ol et 1-[(4-chlorophényl)(thién-2-yl)méthyl-(R\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidin-3-ol, sous la forme d'un solide blanc.

Le (+)-1-[(4-chlorophényl)(thién-2-yl)méthyl]azétidin-3-one peut être préparé comme il est décrit dans l'exemple 75, à partir de 12,4 g de (+)-1-[(4-chlorophényl)(thién-2-yl)méthyl]azétidin-3-ol, 220 cm<sup>3</sup> de dichlorométhane, 7,1 cm<sup>3</sup> de diméthylsulfoxyde, 4,4 cm<sup>3</sup> de chlorure d'oxalyle, et 21,5 cm<sup>3</sup> de triéthylamine. On obtient 9,2 g de (+)-1-

[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-one, sous la forme d'une huile jaune pâle cristallisant à 20°C.

Le (+)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-ol peut être préparé comme il est décrit dans l'exemple 75, à partir de 16,1 g de (+)-[(4-chlorophényl)(thièn-2-yl)méthyl]amine, 130 cm<sup>3</sup> d'éthanol, 5,9 cm<sup>3</sup> d'épibromhydrine, et 6,05 g de bicarbonate de sodium. On obtient après purification par chromatographie, 11,5 g de (+)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-ol, sous la forme d'une huile de couleur crème.

La (+)-4-[(chlorophényl)(thièn-2-yl)méthyl]amine peut être préparée de la façon suivante : à une solution de 109 g de [(4-chlorophényl)(thièn-2-yl)méthyl-(RS)]amine dans 500 cm<sup>3</sup> de méthanol, on ajoute 73 g d'acide D-(-)-tartrique. Le mélange est concentré à sec sous pression réduite (2,7 kPa). La meringue obtenue est reprise par 2,05 litres d'un mélange éthanol-eau 90/10 en volumes. Après 20 heures d'agitation lente à 20°C, la suspension cristalline obtenue est filtrée, les cristaux lavés avec le minimum du même mélange de solvants, puis séchés. Une nouvelle recristallisation est effectuée dans les mêmes conditions avec 1,5 litres du même mélange de solvants. On obtient 44,9 g de cristaux du tartrate acide de l'amine.  $[\alpha]^{20}_D = +10,3^\circ$  ( $c = 0,5\%$  dans le diméthylformamide). Ce composé est recristallisé dans 600 cm<sup>3</sup> d'un mélange éthanol-eau 80/20 en volumes (les cristaux sont filtrés et lavés par 2 fois 30 cm<sup>3</sup> du même mélange de solvants puis essorés), puis recristallisé dans les mêmes conditions avec 400 cm<sup>3</sup> d'un mélange éthanol-eau 78/22. On obtient 28,2 g de D-(-)-tartrate acide de (+)-[(4-chlorophényl)thièn-2-yl)méthyl]amine, sous la forme de cristaux blancs  $[\alpha]^{20}_D = +10,8^\circ$  ( $c = 0,5\%$  dans le diméthylformamide).

Ce sel est repris par 400 cm<sup>3</sup> d'une solution aqueuse d'hydroxyde de sodium 1N et par 100 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est séparée, lavée avec 100 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, puis concentrée à sec sous pression réduite (2,7 kPa). On obtient 16,1 g de (+)-[(4-chlorophényl)(thièn-2-yl)méthyl]amine, sous la

forme d'une huile qui cristallise à 20°C.  $[\alpha]^{20}_D = +32,7^\circ$  ( $c = 0,5\%$  dans le dichlorométhane).

#### Exemple 77

En opérant comme décrit dans l'exemple 75, à partir de 1,30 g du mélange des deux diastéréoisomères chiraux 1-[(4-chlorophényl)(thièn-2-yl)méthyl-(S\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(R\*)]azétidin-3-ol et 1-[(4-chlorophényl)(thièn-2-yl)méthyl-(S\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)] azétidin-3-ol, 5 40 cm<sup>3</sup> de dichlorométhane, 0,35 cm<sup>3</sup> de chlorure de méthanesulfonyle et 1,28 g de 4-diméthylaminopyridine, on obtient 0,97 g de (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène] zétidine, sous la forme 10 de cristaux blancs fondant à 135°C,  $[\alpha]^{20}_D = -3,4^\circ$  ( $c = 0,5\%$  dans le dichlorométhane).

Le mélange des deux diastéréoisomères chiraux 1-[(4-chlorophényl)(thièn-2-yl)méthyl-(S\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(R\*)]azétidin-3-ol et 15 1-[(4-chlorophényl)(thièn-2-yl)méthyl-(S\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidin-3-ol peut être préparé comme il est décrit dans l'exemple 75, à partir de 1,06 g de (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-one, 0,82 g de (3,5-difluorobenzyl)méthylsulfone, 2,5 cm<sup>3</sup> de solution de nbutyllithium 0,82 dans l'hexane, et 25 cm<sup>3</sup> de tétrahydrofurane. On obtient après purification par chromatographie, 1,3 g du mélange des deux diastéréoisomères chiraux 1-[(4-chlorophényl)(thièn-2-yl)méthyl-(S\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(R\*)]azétidin-3-ol et 20 1-[(4-chlorophényl)(thièn-2-yl)méthyl-(S\*)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidin-3-ol, sous la forme d'un solide blanc.

Le (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-one peut être préparé comme il est décrit dans l'exemple 75, à partir de 11,4 g de (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-ol, 200 cm<sup>3</sup> de dichlorométhane, 4,0 cm<sup>3</sup> de diméthylsulfoxyde, 25 4,0 cm<sup>3</sup> de chlorure d'oxalyle, et 19,5 cm<sup>3</sup> de triéthylamine. On obtient 8,3 g de (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-one, sous la forme d'une huile jaune pâle cristallisant à 20°C.

Le (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-ol peut être préparé comme il est décrit dans l'exemple 75, à partir de 15,4 g de (-)-[(4-chlorophényl)(thièn-2-yl)méthyl]amine, 120 cm<sup>3</sup> d'éthanol, 5,8 cm<sup>3</sup> d'épibromhydrine, et 5,8 g de bicarbonate de sodium. On obtient après purification par chromatographie, 10,7 g de (-)-1-[(4-chlorophényl)(thièn-2-yl)méthyl]azétidin-3-ol, sous la forme d'une huile de couleur crème.

La (-)-[(4-chlorophényl)(thièn-2-yl)méthyl]amine peut être préparée de la façon suivante: à une solution de 43 g de [(4-chlorophényl)(thièn-2-yl)méthyl-(RS)]amine dans 200 cm<sup>3</sup> de méthanol, on ajoute 29 g d'acide L-(+)-tartrique. Le mélange obtenu 10 cristallise en 2 heures à température ambiante. Les cristaux sont filtrés, lavés par 2 fois 10 cm<sup>3</sup> de méthanol. Une recristallisation est effectuée avec 500 cm<sup>3</sup> d'un mélange d'éthanol-eau 80/20 en volumes, les cristaux sont filtrés, lavés par 2 fois avec 30 cm<sup>3</sup> du même mélange de solvants, puis séchés sous vide à 45°C. Une dernière recristallisation est effectuée avec 350 cm<sup>3</sup> d'un mélange éthanol-eau 78/22 en volumes, 15 en laissant agiter 20 heures à 20°C. Les cristaux obtenus sont essorés, séchés sous pression réduite (2,7 kPa). On obtient 26 g de L-(+)-tartrate acide de (-)-[(4-chlorophényl)(thièn-2-yl)méthyl]amine.  $[\alpha]^{20}_D = -10,7^\circ$  (c = 0,5% dans le diméthyl-formamide).

Ce sel est repris par 400 cm<sup>3</sup> d'une solution aqueuse d'hydroxyde de sodium 1N et par 20 100 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est séparée, lavée avec 100 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, puis concentrée à sec sous pression réduite (2,7 kPa). On obtient 15,4 g de (-)-[(4-chlorophényl)(thièn-2-yl)méthyl]amine, sous la forme d'une huile qui cristallise à 20°C.  $[\alpha]^{20}_D = -31,7^\circ$  (c = 0,5% dans le dichlorométhane).

25 Exemple 78

En opérant selon le mode opératoire de l'exemple 1 à partir de 3,4 g de 1-benzhydryl-3-[(éthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol, de 0,72 cm<sup>3</sup> de chlorure de methanesulfonyle et 3,8g de 4-diméthylaminopyridine, on obtient, après recristal-

lisation dans 40 cm<sup>3</sup> d'acétonitrile, 1,9 g de 1-benzhydryl-3-[(éthylsulfonyl)(phényl)méthylène]azétidine sous la forme de cristaux fondant à 210°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 Mhz) : 1,15 (3H, t, J=6Hz, CH<sub>3</sub>), 2,92 (2H, q, J=6Hz, CH<sub>2</sub>), 3,83 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,75 5 (1H, s, NCH), entre 7,20 et 7,50 (15H, m, 3 phényles)].

Le 1-benzhydryl-3-[(éthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol peut-être obtenu en opérant selon le mode opératoire décrit dans l'exemple 1 à partir de 2,4g de benzyléthylsulfone, de 2,2 cm<sup>3</sup> de diisopropylamine, de 10 cm<sup>3</sup> de n-butyl lithium 10 1,6N en solution dans l'hexane, 65 cm<sup>3</sup> de tétrahydrofurane et 3,1 g de 1-benzhydryl azétidin-3-one. On obtient après recristallisation dans 30cm<sup>3</sup> d'acétonitrile, 3,6 g de 1-benzhydryl-3-[(éthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol sous la forme de cristaux blancs fondant à 222°C.

La benzyléthylsulfone peut-être préparée en opérant selon le mode opératoire de l'exemple 2 à partir de 6,3 g de benzyléthylsulfure, de 50 cm<sup>3</sup> d'acide acétique, 15 50 cm<sup>3</sup> d'eau, 25 cm<sup>3</sup> d'acide sulfurique 36N et 24,8 g d'oxone<sup>R</sup>. On obtient 3,2 g de benzyléthylsulfone, par recristallisation dans 20cm<sup>3</sup> d'éther éthylique, sous la forme d'un solide fondant à 86°C.

Le benzyléthylsulfure peut-être préparé de la manière suivante : à une solution de 5 g de benzylmercaptopan dans 50 cm<sup>3</sup> de diméthylformamide sous argon, on ajoute par 20 petites portions 1,2 g d'hydrure de sodium puis coule 3,36 cm<sup>3</sup> d'iodure d'éthyle, en maintenant une température inférieure à 45°C. Le mélange est agité pendant 2 heures puis repris par 200 cm<sup>3</sup> d'éther éthylique. La phase organique est lavée par 200 cm<sup>3</sup> d'eau puis par 3 fois 100 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7kPa). On obtient 6,3 g de benzyléthylsulfure sous la 25 forme d'un liquide jaune pâle.

#### Exemple 79

A une solution de 0,45 g de 1-[bis(4-chlorophényl)méthyl]-3-((méthylsulfonyl)[3-(pentafluorophénoxy carbonyl)phényl]méthylène]azétidine dans 5 cm<sup>3</sup> de diméthylformamide, on ajoute 0,083 g de 1-amino-4-méthylpipérazine. On agite 20 heures à température ambiante puis on ajoute 40 cm<sup>3</sup> d'acétate d'éthyle. La phase organique  
5 est lavée par 4 fois 20 cm<sup>3</sup> d'eau, séchée sur du sulfate de magnésium et concentrée à sec sous pression réduite (2,7kPa). Le résidu est trituré avec 10cm<sup>3</sup> d'éther éthylique, filtré, puis séché. On obtient 0,2 g de 1-[bis(4-chlorophényl)méthyl]-3-((méthylsulfonyl)[(N-4-méthylpipérazinylcarbamoyl)phényl]méthylène}azétidine sous la forme d'un solide jaune, fondant à 162°C [Spectre RMN dans DMSO-d<sub>6</sub>,  
10 T=300K, δ en ppm (300 MHz) : 2,20 (3H, s, NCH<sub>3</sub>), 2,40 (4H, m, 2 NCH<sub>2</sub>), 2,90 (4H, m, 2 NCH<sub>2</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 7,40 (4H, d, J=7Hz, 4CH arom.), 7,50 (4H, d, J=7Hz, 4CH arom.), 7,55 (2H, m, 2CH arom.), 7,80 (2H, m, 2CH arom.), 9,50 (1H, s, CONH)].

Le 1-[bis(4-chlorophényl)méthyl]-3-((méthylsulfonyl)[3-(pentafluorophénoxy carbonyl)phényl]méthylène]azétidine peut être préparé de la façon suivante : A une solution de 2,9g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine dans 25 cm<sup>3</sup> de diméthylformamide, on ajoute 0,94 g de chlorhydrate de N-(3-diméthylaminopropyl)N'-éthylcarbodiimide et 0,89 g de pentafluorophénol. On agite 20 heures à température ambiante puis on reprend par 50 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est lavée par 100 cm<sup>3</sup> d'eau, 200 cm<sup>3</sup> d'une solution aqueuse saturée de bicarbonate de sodium puis par deux fois 50 cm<sup>3</sup> d'eau distillée, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7kpa). Le résidu est chromatographié sur une colonne de silice (gralunométrie 0,04-0,006mm, diamètre 2 cm), en éluant par un mélange dichlorométhane et éthanol (99/1 en volume). On obtient 0,92 g de 1-[bis(4-chlorophényl)méthyl]-3-((méthylsulfonyl)[3-(pentafluorophénoxy carbonyl)phényl]méthylène]azétidine, sous la forme d'une meringue blanche.  
20  
25

Le 1-[bis(4-chlorophényl)méthyl]-3-[(3-carboxyphényl)(méthylsulfonyl)méthylène]azétidine peut être préparé de la manière suivante : A une solution de 3,8 g 1-[bis(4-

chlorophénylméthyl]-3-[(3-cyanophényl)(méthylsulfonylméthylène]azétidine dans 5 cm<sup>3</sup> d'acide acétique est ajoutée une solution d'acide chlorhydrique à 36% à une température de 50°C. Le chauffage est poursuivi 48 heures puis le mélange est évaporé à sec sous pression réduite (2,7 Kpa). Le résidu est repris par 30 cm<sup>3</sup> d'éthanol et 5 évaporé à sec de nouveau. Le résidu est tritiqué dans 35 cm<sup>3</sup> d'éther éthylique. On obtient 3,8 g de 1-[bis(4-chlorophénylméthyl]-3-[(3-carboxyphényl)(méthylsulfonylméthylène]azétidine, sous la forme d'un solide beige.

Le 1-[bis(4-chlorophénylméthyl]-3-[(3-cyanophényl)(méthylsulfonylméthylène]azétidine peut être préparé selon le mode opératoire de l'exemple 4, à partir de 11 g 10 de 1-[bis(4-chlorophénylméthyl]-3-[(3-cyanophényl)(méthylsulfonylméthyl-(RS)]azétidin-3-ol, de 150 cm<sup>3</sup> de dichlorométhane, de 2,54 cm<sup>3</sup> de chlorure de méthanesulfonyle et 10,7 g de 4-diméthylaminopyridine, à température ambiante pendant 3 heures. Le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,04-0,06mm, diamètre 4,5 cm) et élut avec du dichlorométhane 15 puis avec un mélange dichlorométhane et éthanol (99,6/0,4 en volume). Les fractions sont évaporées à sec sous pression réduite (2,7 Kpa). On obtient 3,8 g de 1-[bis(4-chlorophénylméthyl]-3-[(3-cyanophényl)(méthylsulfonylméthylène]azétidine, sous la forme d'une meringue blanche .

Le 1-[bis(4-chlorophénylméthyl]-3-[(3-cyanophényl)(méthylsulfonylméthyl-(RS)]azétidin-3-ol peut-être préparé de la façon suivante : A une solution de 17,6 cm<sup>3</sup> 20 de n-butyllithium à 1,6M dans l'hexane, dans 30 cm<sup>3</sup> de tétrahydrofurane sous argon, et refroidie à -70°C, est ajoutée une solution de 5 g de 3-cyanobenzyl méthyl sulfone dans 500 cm<sup>3</sup> de tétrahydrofurane en 15minutes. Le mélange est agité pendant 1 heure 30 minutes. Ensuite on coule une solution de 7,8 g de 1-[bis(4-chlorophénylméthyl]azétidin-3-one dans 80 cm<sup>3</sup> de tétrahydrofurane en 10 minutes. Après 25 1 heure 30 minutes d'agitation, on coule 60 cm<sup>3</sup> d'une solution aqueuse saturée de chlorure d'ammonium, puis laisse revenir à température ambiante. Le mélange est repris par 300 cm<sup>3</sup> d'acétate d'éthyle, la phase organique lavée avec 200 cm<sup>3</sup> d'une solution aqueuse saturée de chlorure de sodium, sèchée sur sulfate de magnésium et

évaporée sous pression réduite (2,7 Kpa). On obtient 11 g de 1-[bis(4-chlorophényle)méthyl]-3-[(3-cyanophényle)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous la forme d'une meringue.

La (3-cyanobenzyl)méthylsulfone peut-être préparée de la façon suivante : A partir  
5 d'une solution de 20,2 g de 3-chlorométhylbenzonitrile dans 200 cm<sup>3</sup> d'éthanol, on ajoute 17,4 g de méthanesulfinate de sodium à 85%. On agite 20 heures au reflux, puis on reprend par 500 cm<sup>3</sup> d'acétate d'éthyle et 500 cm<sup>3</sup> d'eau. L'insoluble est filtré, la phase organique dans le filtrat est séchée sur sulfate de magnésium et évaporée à sec sous pression réduite (2,7 Kpa). Le solide obtenu est trituré avec 100 cm<sup>3</sup> d'éther  
10 éthylique. Après filtration et séchage du solide, on obtient 21 g de (3-cyanobenzyl)méthylsulfone sous la forme de cristaux blancs fondant à 165°C.

Le 3-chlorométhylbenzonitrile peut-être préparé de la façon suivante : Pendant 3 heures on chauffe à 95°C 32 g de 3-chlorométhylbenzoamide dans 200 cm<sup>3</sup> d'oxychlorure de phosphore, puis charge 1 litre de glace, agite 1 heure, extrait le mélange par 500 cm<sup>3</sup> de dichlorométhane. La phase organique est lavée par 200 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium et évaporée à sec sous pression réduite (2,7 Kpa). On obtient 20,2 g de 3-chlorométhylbenzonitrile sous la forme d'un solide blanc.  
15

Le 3-chlorométhylbenzoamide peut-être préparé de la façon suivante : A une solution  
20 de 50 g de chlorure de 3-chlorométhylbenzoyle dans 150 cm<sup>3</sup> d'éther éthylique, on coule 150 cm<sup>3</sup> d'une solution d'ammoniaque (d=0,90), refroidit, agite 1 heure, filtre et lave avec 2 fois 200 cm<sup>3</sup> d'éther éthylique. On obtient 32 g de 3-chlorométhylbenzoamide sous la forme de cristaux blancs.

#### Exemple 80

25 En opérant selon le mode opératoire de l'exemple 79 à partir de 0,5g de 1-[bis(4-chlorophényle)méthyl]-3-[(méthylsulfonyl)[3-(pentafluorophénoxy carbonyl)phényle]méthylène}azétidine, 0,06 cm<sup>3</sup>, 1,1-diméthylhydrazine et 5 cm<sup>3</sup> de diméthylforma-

amide, on obtient 0,125 g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(2,2-diméthylcarbohydrazido)phényl](méthylsulfonyl)méthylène]azétidine, sous la forme d'un solide blanc, fondant à 134°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 Mhz) : 2,60 (6H, s, N(CH<sub>3</sub>)<sub>2</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 5 4,80 (1H, s, NCH), 7,35 (4H, d, J=7Hz, 4CH arom.), 7,45 (4H, d, J=7Hz, 4CH arom.), 7,50 (2H, m, 2CH arom.), 7,80 (2H, m, 2CH arom.), 9,50 (1H, s, CONH)].

### Exemple 81

En opérant selon le mode opératoire décrit dans l'exemple 1 à partir de 2,2 g de 1-[bis(thién-2-yl)méthyl]-3-{[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-10 10-ol, 0,64 cm<sup>3</sup> de chlorure de méthanesulfonyle, 2,3 g de 4-diméthylaminopyridine et 75 cm<sup>3</sup> de dichlorométhane, on obtient, après purification par chromatographie et cristallisation dans le diisopropyl oxyde, 1,3 g de 1-[bis(thién-2-yl)méthyl]-3-{(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, sous la forme de cristaux blancs fondant à 165°C [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 Mhz) : 3,00 15 (3H, s, SCH<sub>3</sub>), 3,92 (2H, s, NCH<sub>2</sub>), 4,28 (2H, s, NCH<sub>2</sub>), 5,40 (1H, s, NCH), 6,95 (2H, dd, J=5 et 2Hz, 2CH thio.), 7,15 (2H, d, J=2Hz, 2CH thio.), 7,20 (2H, m, 2CH arom.), 7,35 (1H, t, J=8Hz, CH arom.), 7,50 (2H, d, J=5Hz, 2CH thio.)].

Le 1-[bis(thién-2-yl)méthyl]-3-{[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol peut-être obtenu selon le mode opératoire décrit dans l'exemple 1, 20 à partir de 1,5 g de 1-[bis(thién-2-yl)méthyl]azétidin-3-one, 4 cm<sup>3</sup> de n-butyl lithium à 1,6 N dans l'hexane, 1,3 g de (3,5-difluorobenzyl)méthylsulfone et 40 cm<sup>3</sup> de tétrahydrofurane. On obtient, après purification par chromatographie, 2,2 g de 1-[bis(thién-2-yl)méthyl]-3-{[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, sous la forme de cristaux blancs fondant à 145°C 25 25 Le 1-[bis-thién-2-yl)méthyl]azétidin-3-one peut-être préparé en opérant comme il est décrit dans l'exemple 75, à partir de 4 g de 1-[bis(thién-2-yl)méthyl]azétidin-3-ol, 2,6 cm<sup>3</sup> de diméthylsulfoxyde, 7,7 cm<sup>3</sup> de triéthylamine, 7,7 cm<sup>3</sup> de chlorure d'oxalyle, et 100 cm<sup>3</sup> de dichlorométhane. Le résidu obtenu est purifié par chroma-

tographie sur colonne de gel de silice (granulométrie 0,04-0,06mm, diamètre 3 cm, hauteur 30 cm) avec comme éluant un mélange cyclohexane et acétate d'éthyle (1/1 en volume). Les fractions obtenues sont évaporées à sec sous pression réduite (2,7 Kpa). On obtient 3,2 g de 1-[bis(thién-2-yl)méthyl]azétidin-3-one, sous la forme  
5 de cristaux crèmes fondant à 70°C.

Le 1-[bis(thién-2-yl)méthyl]azétidin-3-ol peut-être préparé en opérant comme il est décrit dans l'exemple 75, à partir de 6 g de 1-[bis(thién-2-yl)méthyl]amine, 2,5 cm<sup>3</sup> d'épibromhydrine, 2,6g de bicarbonate de sodium et 50 cm<sup>3</sup> d'éthanol. On obtient 4 g  
10 de 1-[bis(thién-2-yl)méthyl]azétidin-3-ol sous la forme de cristaux beiges fondant à 115°C.

La 1-[bis(thién-2-yl)méthyl]amine peut -être préparée de la manière suivante : à une suspension refroidie sous argon à 10°C de bromure de thién-2-ylmagnésien (préparée à partir de 1,29 g de magnésium et 3,22 cm<sup>3</sup> 2-bromothiophène dans 75 cm<sup>3</sup> de diéthyl oxyde), on coule goutte à goutte une solution de 5cm<sup>3</sup> de thién-2-ylcarbonitrile dans  
15 50 cm<sup>3</sup> de diéthyle oxyde. Après 1 heure et 30 minutes de reflux, le milieu réactionnel est refroidi à 5°C puis on coule goutte à goutte 20 cm<sup>3</sup> de méthanol, filtre la suspension, lave le solide avec du méthanol. Le filtrat obtenu une solution marron . Sous argon, on ajoute à cette solution 2,45 g de borohydrure de sodium, en plusieurs fois.  
20 Le mélange est agité à température ambiante pendant 16 heures, puis est dilué par de l'éthyle acétate et additionné d'eau lentement. la phase organique est extraite, lavée avec de l'eau, sèchée sur sulfate de magnésium et évaporée à sec sous pression réduite (2,7 kpa) à 55°C. On obtient une huile marron qui est chromatographiée sur colonne de gel de silice(granulométrie 0,2-0,063 mm, diamètre 8 cm, hauteur 25 cm) et élué par un mélange cyclohexane et acétate d'éthyle (90/10 puis 85/15 en volume). Les  
25 fractions 21à 30 sont réunies et évaporées à sec sous pression réduite (2,7 kpa) . On obtient 11g de 1-[bis(thién-2-yl)méthyl]amine sous la forme d'un solide cristallisé.

#### Exemple 82

En opérant selon le mode opératoire décrit dans l'exemple 1 à partir de 0,47 g de 4-diméthylaminopyridine, 0,13 cm<sup>3</sup> de chlorure de méthanesulfonyle, 25 cm<sup>3</sup> de dichlorométhane et 0,48 g de 1-(bis-p-tolylméthyl)-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol, on obtient, après purification par chromatographie et cristallisation dans l'oxyde de diisopropyle, 0,25 g de 1-(bis-p-tolylméthyl)-3-[(méthylsulfonyl)(phényl)méthylène]azétidine, sous la forme d'un solide blanc [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (250 Mhz) : 2,23 (6H, s, 2 Ph-CH<sub>3</sub>), 2,98 (3H, s, SCH<sub>3</sub>), 3,76 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 5,55 (1H, s, NCH), 7,10 (4H, d, J=7Hz, 4 CH arom.), 7,32 (4H, d, J=7Hz, 4 CH arom.), 7,43 (5H, s, Phényle)].

1-(bis-p-tolylméthyl)-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol peut-être préparé selon le mode opératoire décrit dans l'exemple 39, à partir de 0,59 g de bromo(bis-p-tolyl)méthane, 20 cm<sup>3</sup> d'acetonitrile, 0,3 g de carbonate de potassium et 0,6 g de chlorhydrate de 3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol. Le résidu obtenu est chromatographié sur colonne de gel de silice (granulométrie 0,04-0,06mm, diamètre 4 cm, hauteur 16 cm) avec comme éluant un mélange cyclohexane/acétate d'éthyle (7/3 en volume). Les fractions sont concentrées à sec sous pression réduite (2,7 Kpa). On obtient 0,48 g de 1-(bis-p-tolylméthyl)-3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol sous la forme d'un solide blanc.

20 Le bromo(di-p-tolyl)méthane peut-être préparé selon le mode opératoire décrit par BACHMANN W.E., J.Am.Chem.Soc., 2135, (1933).

Le chlorhydrate de 3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol peut-être préparé selon le mode opératoire décrit dans l'exemple 39 à partir de 7 g de 3-[(méthylsulfonyl)(phényl)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol, 35 cm<sup>3</sup> de 25 dioxane, 35 cm<sup>3</sup> d'une solution 6,2N d'acide chlorhydrique dans le dioxane. On obtient 5 g de chlorhydrate de 3-[(méthylsulfonyl)(phényl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide blanc.

Le 3-[(méthylsulfonyl)(phényle)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol peut-être préparé selon le mode opératoire décrit dans l'exemple 38 (méthode 1), à partir de 10 g de 1-benzhydryl-3-[(méthylsulfonyl)(phényle)méthyl-(RS)]azétidin-3-ol, 600 cm<sup>3</sup> de dichlorométhane et 2,52 cm<sup>3</sup> de chloroformiate de vinyle. Le résidu est chromatographié sur colonne de gel de silice (granulométrie 0,06-0,2mm, diamètre 5,2 cm, hauteur 36 cm avec comme éluant un mélange cyclohexane et acétate d'éthyle (7/3 en volume). Les fractions sont évaporées à sec sous pression réduite (2,7 Kpa). On obtient 7 g de 3-[(méthylsulfonyl)(phényle)méthyl-(RS)]-1-(vinyloxycarbonyl)azétidin-3-ol sous la forme d'un solide blanc.

#### 10 Exemple 83

A une solution de 0,77 g de (-)-1-[(4-chlorophényle)(4-formylphényle)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine dans 20 cm<sup>3</sup> de méthanol à 0°C sous argon, on coule une solution de 30 mg de borohydrure de sodium dans 2 cm<sup>3</sup> de méthanol. Après agitation pendant 4 heures à 0°C on ajoute de l'eau puis extrait par du dichlorométhane. La phase organique est lavée avec une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium, puis évaporée à sec sous pression réduite (2,7 kpa). La meringue blanche obtenue est purifiée sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3,2 cm, hauteur 17 cm) avec comme éluant un mélange cyclohexane et acétate d'éthyle (60/40 en volume) . On obtient après cristallisation dans 1,5 cm<sup>3</sup> d'éthanol absolu 0,1 g de (+)-1-[(4-chlorophényle)(4-hydroxyméthylphényle)méthyl]-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, sous la forme de cristaux blancs fondant à 190°C,  $[\alpha]^{20}_D = +4.2^\circ$  (c = 0,5% dans le méthanol) [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 3,05 (3H, s, SCH<sub>3</sub>), 3,95 (2H, s, NCH<sub>2</sub>), 4,22 (2H, s, NCH<sub>2</sub>), 4,48 (2H, d, J=6Hz, CH<sub>2</sub>O), 4,75 (1H, s, NCH), 5,15 (1H, t, J=6Hz, OH), 7,20 (2H, m, 2CH arom.), 7,28 (2H, d, J=7Hz, 2CH arom.), 7,40 (5H, m, 5 CH arom.), 7,50 (2H, d, J=7Hz, 2CH arom.)].

Le (-)-1-[(4-chlorophényle)(4-formylphényle)méthyl]-3-[(3,5-difluorophényle)méthylsulfonylméthylène]azétidine peut-être préparé de la manière suivante : A une solution

de 0,83 g de (+)-1- $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényle}]méthyl\}$ -3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]\}azétidine dans 5 cm<sup>3</sup> de tétrahydrofurane, on coule 3,32 cm<sup>3</sup> d'une solution d'acide chlorhyrique 5N puis laisse agiter pendant 20 heures. Au milieu réactionnel sont ajoutés du dichlorométhane et l'eau puis une 5 solution aqueuse d'hydroxyde de sodium à 30% jusqu'à l'obtention d'un pH 14. La phase aqueuse est extraite par du dichlorométhane, la phase organique est lavée successivement avec de l'eau, avec une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et évaporée à sec sous pression réduite (2,7 kpa). On obtient 0,8 g de (-)-1- $\{[(4\text{-chlorophényle})(4\text{-formylphényle})méthyl]\}$ -10 3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]\}azétidine, sous la forme d'une meringue blanche.$$

Le (+)-1- $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényle}]méthyl\}$ -3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]\}azétidine peut-être obtenu de la manière suivante : A une solution de 2,42 g du mélange des deux diastéréoisomères 3-acétoxy-1- $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényle}]méthyl\}\text{-}(R^*)$ -3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthyl\text{-}(R^*)]\}azétidine et 3-acétoxy-1- $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényle}]méthyl\}\text{-}(R^*)$ -3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthyl\text{-}(S^*)]\}azétidine dans 25 cm<sup>3</sup> de tétrahydrofurane sous argon à 0°C, on coule goutte à goutte 0,93 g de 1,8-diazabicyclo[5.4.0]undec-7-ène . Après agitation 1 heure et 30 15 minutes à 0°C, le milieu réactionnel est dilué avec de l'acétate d'éthyle, lavé avec de l'eau et avec une solution aqueuse saturée de chlorure de sodium. La phase organique est séchée sur sulfate de magnésium, filtrée et évaporée à sec sous pression réduite. Le produit brut est purifié sur une colonne de gel de silice (granulométrie 0,04-0,06mm, diamètre 4,8 cm, hauteur 17,5 cm) avec comme éluant un mélange 20 cyclohexane et acétate d'éthyle (80/20 en volumes). On obtient 1,21g de (+)-1- $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényle}]méthyl\}$ -3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthylène]\}azétidine, sous la forme d'une meringue jaune.$$$$

Le mélange des deux diastéréoisomères 3-acétoxy-1- $\{(4\text{-chlorophényle})[4\text{-(1,3-dioxolan-2-yl)phényle}]méthyl\}\text{-}(R^*)$ -3- $\{[(3,5\text{-difluorophényle})(méthylsulfonyl)méthyl\text{-}(S^*)]\}azétidine,$

(R\*)]azétidine et 3-acétoxy-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(R\*)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidine peut-être préparé de la manière suivante : à une solution de 1,08 g de 3,5 difluorobenzyl méthyl sulfone sous argon refroidie à -70°C, on coule goutte à goutte 3,27 cm<sup>3</sup> de n-butyllithium,

5 laisse agiter 1 heure à -70°C puis coule goutte à goutte une solution de 1,80 g de (+)-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl]azétidin-3-one dans 10 cm<sup>3</sup> de tétrahydrofurane. Après agitation 3 heures à -70°C et 1 heure à -20°C, on coule une solution de 0,74 cm<sup>3</sup> de chlorure d'acétyle dans 10 cm<sup>3</sup> de diéthyl oxyde anhydre à -20°C et agite 2 heures à -20°C. Le milieu réactionnel est jetté sur de l'eau, le

10 mélange est extrait par de l'acétate d'éthyle, la phase organique lavée avec de l'eau et avec une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kpa). On obtient 2,42 g du mélange des deux diastéréoisomères 3-acétoxy-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(R\*)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-

15 (R\*)]azétidine et 3-acétoxy-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl-(R\*)}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(S\*)]azétidine, sous la forme d'une huile jaune.

Le (+)-1-[(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl]azétidin-3-one peut-être préparé de la manière suivante : à une solution de 1,38 g de (+)-1-[(4-chlorophén-20 yl)[4-(1,3-dioxolan-2-yl)phényl]méthyl]azétidin-3-ol dans 20 cm<sup>3</sup> de diméthylsulfoxide anhydre sous argon, on coule 2,24 cm<sup>3</sup> de triéthylamine puis goutte à goutte 1,65 g une solution de complexe sulfure trioxyde pyridine dans 20 cm<sup>3</sup> de diméthylsulfoxide anhydre. Après 1 heure et 15 minutes d'agitation à température ambiante, le milieu réactionnel est jetté sur de la glace, extrait avec de l'acétate d'éthyle, la phase organique est lavée avec de l'eau, avec une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kpa). Le résidu huileux obtenu (1,31 g), réuni avec un autre lot du même composé brut (1,21 g) sont purifiés ensemble sur une colonne de gel de silice (granulométrie 0,04-0,06mm, diamètre 4,8 cm, hauteur 18 cm) avec comme éluant un mélange cyclohexane et acétate d'éthyle (80/20 en volume). On obtient 1,87 g de (+)-

1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}azétidin-3-one, sous la forme d'une huile jaune.  $[\alpha]^{20}_{D} 365\text{nm} = +5,9^\circ$  ( $c = 0,5$ ; méthanol)

Le (+)-1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}azétidin-3-ol peut être décrit selon le mode opératoire décrit dans l'exemple 75, à partir de 4,43 g de (+)-5 <{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}amine, 40 cm<sup>3</sup> d'éthanol absolu, 1,25 cm<sup>3</sup> d'épibromhydrine, et 1,28 g de bicarbonate de sodium. On obtient 1,66 g de (+)-1-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}azétidin-3-ol, sous la forme d'une huile jaune.

La (+)-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}amine chirale, peut-10 être obtenue de la manière suivante : à une suspension de 18,16 g de chlorhydrate de (R\*)-[(4-chlorophényl)(4-formylphényl)méthyl]amine chirale, dans 1000 cm<sup>3</sup> de toluène, on coule 3,95 cm<sup>3</sup> d'éthylène glycol et ajoute 0,82 g d'acide paratoluènesulfonique monohydrate. Après 20 heures d'agitation à la température du reflux, le milieu réactionnel est refroidi, lavé avec une solution aqueuse saturée de bicarbonate de sodium, avec de l'eau et avec une solution aqueuse saturée de chlorure de sodium. La 15 phase organique est séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite. Le résidu obtenu est purifié sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 8,4 cm, hauteur 21,5 cm) avec comme éluant un mélange cyclohexane et acétate d'éthyle (30/70 en volume), en recueillant des fractions de 250 cm<sup>3</sup>. les fractions 23 à 30 sont concentrées à sec sous pression réduite 20 (2,7 kpa). On obtient 1,39 g de (+)-<{(4-chlorophényl)[4-(1,3-dioxolan-2-yl)phényl]méthyl}amine chirale, sous la forme d'une huile jaune.

Le chlorhydrate de (R\*)-[(4-chlorophényl)(4-formylphényl)méthyl]amine chirale, peut-être préparé de la manière suivante : à une solution de 51,4 g du diastéréoisomère 25 N-<{(4-chlorophényl)[4-(diéthoxyméthyl)phényl]méthyl-(R\*)}-(R)-2-phényl-glycinol dans 660 cm<sup>3</sup> de dichlorométhane anhydre, on coule 330 cm<sup>3</sup> de méthanol, refroidit le mélange avec un bain de glace, ajoute 60,96 g de tétraacétate de plomb, agite 5 minutes puis coule 1 litre d'une solution tampon phosphate pH 7. Après agitation 30 minutes à température ambiante, le mélange est filtré, la phase aqueuse ex-

traite avec du dichlorométhane. La phase organique est concentrée à sec sous pression réduite (2,7 kpa). Le résidu est repris avec 1 litre de diéthyl oxyde et additionné de 1 litre d'une solution aqueuse d'acide chlorhydrique 3N, le mélange est agité 15 minutes à température ambiante, la phase aqueuse est séparée, lavée avec de 5 l'acétate d'éthyle, puis concentrée à sec sous pression réduite (2,7 kpa). On obtient 18,16 g de chlorhydrate de (R\*)-[(4-chlorophényl)(4-formylphényl)méthyl]amine chirale, sous la forme d'un solide blanc.

Le N-[(4-chlorophényl)[4-(diéthoxyméthyl)phényl]méthyl-(R\*)}-(R)-2-phénylglycinol peut être préparé de la façon suivante : à une solution refroidie à -70°C, sous 10 argon, de 87,7 g de 4-bromochlorobenzène, on coule goutte à goutte 286 cm<sup>3</sup> de n butyl lithium à 1,6M dans l'hexane, agite 15 minutes à -70°C. Cette solution obtenue est ensuite ajoutée goutte à goutte à la solution refroidie à 0°C suivante : 30 g de (R)-N-[4-(diéthoxyméthyl)benzylidène]-2-phénylglycinol dans 300 cm<sup>3</sup> de diéthyl oxyde. 15 Le mélange est agité 2 heures à 0°C puis jetté sur de l'eau. La phase organique est lavée avec de l'eau, puis avec une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée et concentrée à sec sous pression réduite (2,7 kpa). On obtient 71,5 g d'une huile rougeâtre qui est purifiée sur une colonne de 20 gel de silice (granulométrie 0,04-0,06 mm, diamètre 11 cm, hauteur 45 cm), avec comme éluant un mélange cyclohexane et acétate d'éthyle (85/15 en volume, puis 80/20 et 75/25), en recueillant des fractions de 1 litre. Les fractions 11 à 17 sont concentrées à sec sous pression réduite (2,7kpa). On obtient 39,85g du seul diastéréoisomère N-[(4-chlorophényl)[4-(diéthoxyméthyl)phényl]méthyl-(R\*)}-(R)-2-phénylglycinol, sous la forme d'une huile orangée rouge.

Le (R)-N-[4-(diéthoxyméthyl)benzylidène]-2-phénylglycinol peut être préparé de la 25 façon suivante : A une suspension blanche de 24,7g de (R)-(-)-2-phényl glycinol dans 500 cm<sup>3</sup> de toluène on coule 35,9 cm<sup>3</sup> de 4-(diéthoxyméthyl)benzaldéhyde. La solution jaune trouble est chauffée au reflux pendant 6 heures 30 minutes, puis agitée à température ambiante pendant 20 heures. Après concentration à sec du milieu réac-

tionnel sous pression réduite (2,7 kpa), on obtient 61,6 g de (R)-N-[4-(diéthoxyméthyl)benzylidène]-2-phénylglycinol, sous la forme d'une huile jaune.

#### Exemple 84

En opérant selon le mode opératoire de l'exemple 1, à partir de 5,6g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(N-tertbutyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthyl-(RS)}azétidin-3-ol, 100 cm<sup>3</sup> de dichlorométhane, 1,59 g de chlorure de méthanesulfonyle et 4,5 g de 4-diméthylaminopyridine. On laisse agiter 3 heures à température ambiante. Le produit brut obtenu est purifié par chromatographie sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm et poids en silice 250g), en éluant sous une pression de 0,5 bar d'azote avec un mélange d'acétate d'éthyle/ cyclohexane (30/70 en volumes) et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 12 à 18 sont réunies, concentrées à sec sous pression réduite (2,7 kpa). On obtient 3,2g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(N-tertbutyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthyléne} azétidine sous la forme d'une meringue blanche [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 1,30 (9H, s, OC(CH<sub>3</sub>)<sub>3</sub>), 2,65 (3H, s, J=6Hz, NCH<sub>3</sub>), 2,85 (3H, s, SCH<sub>3</sub>), 3,50 (2H, s, NCH<sub>2</sub>), 3,90 (2H, s, NCH<sub>2</sub>), 4,45 (1H, s, NCH), entre 6,85 et 7,05 (8H, m, 8 CH arom.), 7,10 (4H, d, J=7Hz, 4 CH arom.)].

Le 1-[bis(4-chlorophényl)méthyl]-3-{[3-(N-tertbutyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthyl-(RS)}azétidin-3-ol peut-être préparé selon le mode opératoire décrit dans l'exemple 1 à partir de 3,8 g de [3-(N-tertbutyloxycarbonyl-N-méthylamino)benzyl]méthylsulfone, 50 cm<sup>3</sup> de tétrahydrofurane, 9,5 cm<sup>3</sup> d'une solution de n-butyl lithium 1,6N dans l'hexane, 3,82 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one. Le produit brut est purifié par chromatographie sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 4 cm, poids en silice 250 g), en éluant sous une pression de 0,5 bar d'azote avec du dichlorométhane puis avec un mélange dichlorométhane et éthanol (99/1 en volumes) et en recueillant des fractions de 500 cm<sup>3</sup>. Les fractions 10 à 16 sont réunies, concentrées à sec sous pres-

sion réduite (2,7 kPa). On obtient 5,6 g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(N-tertbutyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthyl-(RS)}azétidin-3-ol, sous la forme d'une meringue.

#### Exemple 85

5 On agite pendant 20 heures 2,7 g de 1-[bis(4-chlorophényl)méthyl]-3-{[3-(N-tertbutyloxycarbonyl-N-méthylamino)phényl](méthylsulfonyl)méthylène}azétidine dans 30 cm<sup>3</sup> de dioxane et 30 cm<sup>3</sup> d'une solution de dioxane chlorhydrique 4,7N . Le milieu réactionnel est évaporé à sec sous pression réduite (2,7 kpa), repris par 50 cm<sup>3</sup> d'eau et 50 cm<sup>3</sup> d'acétate d'éthyle, agité et neutralisé avec précaution par une solution 10 aqueuse saturée de bicarbonate de sodium. La phase organique est séparée, séchée sur sulfate de magnésium, traitée au noir animal puis concentrée sous pression réduite (2,7 kpa) jusqu'à un volume d'environ 25 cm<sup>3</sup>, ensuite filtrée, concentrée à sec sous pression réduite. On obtient 1,3 g de 1-[bis(4-chlorophényl)méthyl]-3-{(3-méthylaminophényl)(méthylsulfonyl)méthylène}azétidine, sous la forme de cristaux 15 blancs fondant à 228°C [Spectre RMN dans DMSO-d6, T=300K, δ en ppm (300 MHz) : 2,65 (3H, s, J=6Hz, NCH<sub>3</sub>), 2,95 (3H, s, SCH<sub>3</sub>), 3,80 (2H, s, NCH<sub>2</sub>), 4,20 (2H, s, NCH<sub>2</sub>), 4,80 (1H, s, NCH), 5,85 (1H, q, J=6Hz, NH), 6,55 (3H, m, 3 CH arom.), 7,15 (1H, t, J=7Hz, CH arom.), 7,40 (4H, d, J=7Hz, 4CH arom.), 7,50 (4H, m, 4CH arom.)].

20 Exemple 86

On opère comme à l'exemple 1, à partir de 0,40 g d'un mélange de deux diastéréoisomères 1-[(4chlorophényl)(thiazol-2-yl)méthyl-(RS)]-3-{(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)}azétidin-3-ol, de 0,10 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,37 g de 4-diméthylaminopyridine, on obtient après chromatographie sur 25 colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,2 cm, hauteur 20 cm), sous une pression de 1 bar d'argon avec un mélange d'acétate d'éthyle et cyclohexane (40/60 en volumes) comme éluant et en recueillant des fractions de 20 cm<sup>3</sup>, 0,13 g de (RS)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-{(3,5-difluorophényl)

nyl)(méthylsulfonyl)méthylène]azétidine, sous la forme d'un solide rosâtre [Spectre RMN dans DMSO-d<sub>6</sub>, T=300K, δ en ppm (300 MHz) : 3,05 (3H,s, SCH<sub>3</sub>), 4,05 (2H, s, NCH<sub>2</sub>), 4,35 (2H, m, NCH<sub>2</sub>), 5,25 (1H, s, NCH), 7,20 (2H, d, J=8Hz, 2CH arom.), 7,35 (1H, t, J=8Hz, CH arom.), 7,45 (2H, d, J=7Hz, 2CH arom.), 7,50 (2H, d, J=7Hz, 2CH arom.), 7,70 (1H, d, J=2Hz, CH thiazole), 7,75 (1H, d, J=2Hz, CH thiazole)].

Le mélange des deux diastéréoisomères 1-[(4-chlorophényl)(thiazol-2-yl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, peut être obtenu de la manière suivante : en opérant comme à l'exemple 72, à partir de 1,01 g de (RS)-bromo(4-chlorophényl)thiazol-2-ylméthane et 0,55 g de chlorhydrate de (RS)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol et après chromatographie sur colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 4,4 cm, hauteur 38 cm), sous une pression de 0,5 bar d'argon en éluant avec un mélange d'acétate d'éthyle et cyclohexane (30/70 en volumes puis 40/60 dès la fraction 16) et en recueillant des fractions de 60 cm<sup>3</sup>, les fractions 21 à 35 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,40 g du mélange des deux diastéréoisomères 1-[(4-chlorophényl)(thiazol-2-yl)méthyl-(RS)]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol, sous la forme d'un solide blanchâtre.

#### Exemple 87

A une solution de 0,32 g de 1-{(R\*)-[4-(chlorométhyl)phényl]}-(4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A et 5 mg d'iodure de sodium dans 10 cm<sup>3</sup> de dichlorométhane, on ajoute 50 mm<sup>3</sup> de pyrrolidine. Après 20 heures d'agitation à 20°C, on ajoute au mélange 50 mm<sup>3</sup> de pyrrolidine, agite pendant 8 heures puis ajoute à nouveau 50 mm<sup>3</sup> de pyrrolidine et 25 agite pendant 20 heures à 20°C. On lave le mélange réactionnel par de l'eau puis séche la phase organique sur sulfate de magnésium, concentre à sec sous vide (2,7 kPa). Le résidu obtenu est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,2 cm, hauteur 30 cm), sous une pression de 0,1 bar d'argon en éluant avec du dichlorométhane puis avec un mélange dichlorométhane et

méthanol (97,5/2,5 en volumes) et en recueillant des fractions de 3 cm<sup>3</sup>. Les fractions 12 à 40 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,18 g de 1-{(R\*)-(4-chlorophényl)[4-(pyrrolidinylméthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme 5 d'une meringue blanche [ $\alpha$ ]<sup>20</sup>365nm = -22,5° +/- 0,7 (c = 0,5 %; dichlorométhane) [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 1,78 (mt : 4H); 2,51 (mt : 4H); 2,81 (s : 3H); 3,58 (s : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

Le 1-{(R\*)-[(4-chlorométhyl)phényl](4-chlorophényle)méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, isomère forme A, peut être préparé en opérant de la façon suivante : A une solution de 28,0 g du mélange des 2 diastéréoisomères (formes A) 1-{(R\*)-[(4-chlorométhyl)phényl]-[4-chlorophényle)méthyl}-3-[(R)-(3,5-difluorophényle)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-{(R\*)-[(4-chlorométhyl)phényl]-[4-chlorophényle)méthyl}-3-[(S)-(3,5-difluorophényle)(méthylsulfonyl)méthyl]azétidin-3-ol, de 32 g de 4-diméthylaminopyridine, dans 500 cm<sup>3</sup> de dichlorométhane, on ajoute 12,4 cm<sup>3</sup> de chlorure de méthanesulfonyle. Après une heure d'agitation à 10°C, puis une heure à 20°C, le mélange réactionnel est lavé par 500 cm<sup>3</sup> d'eau, la phase organique séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de 10 gel de silice (granulométrie 0,06-0,200 mm, diamètre 6 cm, hauteur 30 cm), sous une pression de 0,2 bar d'argon en éluant avec du dichlorométhane et en recueillant des fractions de 250 cm<sup>3</sup>. Les fractions 9 à 25 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 6,3 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényle)méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, 15 isomère forme A, sous la forme d'une meringue blanche.

Le mélange des 2 diastéréoisomères (formes A) 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényle)méthyl}-3-[(R)-(3,5-difluorophényle)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényle)méthyl}-3-[(S)-(3,5-difluorophényle)(méthylsulfonyl)méthyl]azétidin-3-ol, peut être préparé en opérant de 20 la façon suivante : A une solution de 0,20 g du mélange des 2 diastéréoisomères

(formes A) 1-<{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-<{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, dans 10 cm<sup>3</sup> de dichlorométhane, on ajoute 60 mm<sup>3</sup> de chlorure de thionyle. Après 20 heures d'agitation à 20°C, on ajoute au mélange réactionnel 5 cm<sup>3</sup> d'une solution aqueuse saturée d'hydrogénocarbonate de sodium, puis agite pendant 15 minutes. Le mélange est décanté, la phase organique est lavée avec de l'eau, séchée sur sulfate de magnésium, puis concentrée à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 1,0 cm, hauteur 20 cm), sous une pression de 0,2 bar d'argon en éluant avec un mélange cyclohexane et acétate d'éthyle (75/25 en volumes) et en recueillant des fractions de 20 cm<sup>3</sup>. Les fractions 4 à 7 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,17 g du mélange des 2 diastéréoisomères (formes A) 1-<{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-<{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, sous la forme d'une meringue blanche.

Le mélange des 2 diastéréoisomères (formes A) 1-<{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol et 1-<{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, peut être préparé en opérant de la façon suivante : A une solution maintenue sous argon et refroidie à -30°C de 0,58 g du mélange des 2 diastéréoisomères (formes A) 3-acétoxy-1-<{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, et 3-acétoxy-1-<{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, dans 10 cm<sup>3</sup> de toluène anhydre, on ajoute 1,6 cm<sup>3</sup> d'une solution 1,5M dans le toluène d'hydrure de diisobutylaluminium. Après 15 minutes d'agitation à -30°C, on ajoute à nouveau 1,0 cm<sup>3</sup> de cette même solution d'hydrure, puis laisse le mélange revenir à 0°C. Après 30 minutes d'agitation, le mélange agité est additionné

de 3 cm<sup>3</sup> d'eau et 6 cm<sup>3</sup> d'hydroxyde de sodium 1N puis extrait par 25 cm<sup>3</sup> de dichlorométhane. La phase organique est lavée par 5 cm<sup>3</sup> d'eau, 5 cm<sup>3</sup> de saumure, puis séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur une colonne de gel de silice (granulométrie 5 0,06-0,200 mm, diamètre 1,2 cm, hauteur 30 cm), sous une pression de 0,1 bar d'argon en éluant avec un mélange cyclohexane et acétate d'éthyle (50/50 en volumes) et en recueillant des fractions de 30 cm<sup>3</sup>. Les fractions 4 à 12 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,42 g du mélange des 2 diastéréoisomères (formes A) 1-{(R\*)-(4-chlorophényl)[4-10 (hydroxyméthyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[  
15 (S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, sous la forme d'une laque blanche.

Le mélange des 2 diastéréoisomères (formes A) 3-acétoxy-1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, et 3-acétoxy-1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, peut être préparé en opérant comme il est décrit dans l'exemple 40, à partir de 1,0 g de (3,5-difluorobenzyl)méthylsulfone, 30 cm<sup>3</sup> de 20 tétrahydrofurane, 3 cm<sup>3</sup> d'une solution 1,6N de n butyllithium dans l'hexane, de 1,45 g de 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-one, isomère forme A, et 0,43 cm<sup>3</sup> de chlorure d'acétyle. On obtient 1,28 g du mélange des 2 diastéréoisomères (formes A) 3-acétoxy-1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, et 3-acétoxy-1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[  
25 (S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, sous la forme d'une meringue beige.

Le 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-one, isomère forme A, peut être préparé en opérant comme il est décrit dans l'exemple 40,

à partir de 0,55 cm<sup>3</sup> de chlorure d'oxalyle, de 25 cm<sup>3</sup> de dichlorométhane, de 0,90 cm<sup>3</sup> de diméthylsulfoxyde, de 1,75 g de 1-{(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl} azétidin-3-ol, et 2,70 cm<sup>3</sup> de triéthylamine. On obtient 1,45 g de 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-one, isomère forme A, sous la forme d'une meringue jaune.

Le 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-ol, isomère forme A, peut être préparé en opérant selon le mode opératoire décrit par KATRITZKY A.R. et coll., dans J. Heterocycl. Chem., (1994), 271 à partir de 2,0 g de (+)-4-[(R\*)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, de 30 cm<sup>3</sup> d'éthanol, 0,60 g d'hydrogénocarbonate de sodium, et 0,60 cm<sup>3</sup> d'épibromhydrine. On obtient 1,76 g de 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-ol, isomère forme A, sous la forme d'un solide pâteux.

Le (+)-4-[(R\*)-amino-(4-chlorophényl)méthyl]benzoate de méthyle peut être préparé en opérant de la façon suivante : A une solution de 9,2 g de 4-[(RS)-amino-(4-chlorophényl)méthyl]benzoate de méthyle dans 10 cm<sup>3</sup> de méthanol, on ajoute 2,51 g d'acide D-(-)-tartrique. La solution est concentrée à sec sous pression réduite (2,7 kPa). La meringue crème obtenue est dissoute dans 50 cm<sup>3</sup> d'éthanol contenant 5% d'eau et la solution résultante est laissée cristalliser pendant 20 heures à 20°C. Les cristaux sont filtrés, lavés avec l'éthanol à 5% d'eau, essorés, puis séchés sous pression réduite (2,7 kPa). On obtient 3,4 g de cristaux blancs que l'on nomme « cristaux A » [et que l'on conserve pour la préparation ultérieure du deuxième énantiomère (-)-4-[(R\*)-amino-(4-chlorophényl)méthyl]benzoate de méthyle]. Les liqueurs mères sont concentrées à sec, et on obtient une meringue blanche (8,1 g) qui est dissoute dans 100 cm<sup>3</sup> d'acétate d'éthyle. La solution obtenue est additionnée de 50 cm<sup>3</sup> d'hydroxyde de sodium 1N, agitée, décantée. La phase organique est lavée avec 50 cm<sup>3</sup> d'eau, puis séchée sur sulfate de magnésium, et concentrée à sec sous pression réduite (2,7 kPa). On obtient un solide jaune, que l'on dissout dans 100 cm<sup>3</sup> de méthanol. La solution obtenue est additionnée de 1,85 g d'acide L-(+)-tartrique et la solution résultante est concentrée à sec sous pression réduite (2,7 kPa). On obtient

une meringue crème qui, une fois dissoute dans 27 cm<sup>3</sup> d'éthanol à 4% d'eau, est laissée cristalliser pendant 20 heures à 20°C. Les cristaux sont filtrés, lavés avec de l'éthanol à 4% d'eau, essorés, puis séchés sous pression réduite (2,7 kPa). On obtient 3,4 g de cristaux de L-(+)-tartrate de (+)-4-[(R\*)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, que l'on recristallise dans 60 cm<sup>3</sup> d'éthanol à 5% d'eau. Après essorage, puis séchage, on obtient 2,78 g de cristaux blancs que l'on dissout dans 50 cm<sup>3</sup> d'acétate d'éthyle. La solution obtenue est additionnée de 100 cm<sup>3</sup> d'hydroxyde de sodium 1N, agitée, décantée. La phase organique est lavée avec 50 cm<sup>3</sup> d'eau, puis séchée sur sulfate de magnésium, et concentrée à sec sous pression réduite (2,7 kPa). On obtient 2,1 g de (+)-4-[(R\*)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, sous la forme d'un solide blanc.

Le 4-[(RS)-amino-(4-chlorophényl)méthyl]benzoate de méthyle peut être préparé en opérant de la façon suivante : A une suspension de 16,3 g de 4-[(RS)-phtalimido-(4-chlorophényl)méthyl]benzoate de méthyle dans 200 cm<sup>3</sup> de méthanol, on ajoute 15 3,9 cm<sup>3</sup> d'hydrate d'hydrazine. Après 5 heures d'agitation à la température du reflux puis 20 heures à 20°C, le mélange réactionnel est filtré, le filtrat est concentré à sec sous pression réduite (2,7 kPa). Le résidu obtenu est repris par un mélange de 200 cm<sup>3</sup> d'eau et 200 cm<sup>3</sup> d'acétate d'éthyle. Après 15 minutes d'agitation, la suspension résultante est filtrée, le filtrat décanté en ampoule à décanter, et la phase organique est lavée par 50 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, et concentré à sec sous pression réduite (2,7 kPa). On obtient 8,4 g de 4-[(RS)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, sous la forme d'une huile jaune pâle.

Le 4-[(RS)-phtalimido-(4-chlorophényl)méthyl]benzoate de méthyle, peut être préparé en opérant de la façon suivante : A une solution de 11,6 g de 4-[(RS)-bromo-(4-chlorophényl)méthyl]benzoate de méthyle, dans 70 cm<sup>3</sup> de diméthylformamide, on ajoute 12,6 g de phtalimide de potassium. Après 3 heures d'agitation à la température du reflux, le mélange réactionnel est refroidi à 20°C puis additionné de 300 cm<sup>3</sup> d'acétate d'éthyle et 300 cm<sup>3</sup> d'eau. Après agitation, le mélange est décanté, la phase aqueuse réextraites par 2 fois 100 cm<sup>3</sup> d'acétate d'éthyle, les phases organiques réunies

sont lavées par 2 fois 400 cm<sup>3</sup> d'eau, puis séchées sur sulfate de magnésium, et concentrées à sec sous pression réduite (2,7 kPa). On obtient 16,3 g de 4-[(RS)-phtalimido-(4-chlorophényl)méthyl]benzoate de méthyle, sous la forme d'un solide jaune pâteux.

5 Le 4-[(RS)-bromo-(4-chlorophényl)méthyl]benzoate de méthyle, peut être préparé en opérant de la façon suivante : A une solution de 17,4 g de 4-[(RS)-(4-chlorophényl)(hydroxy)méthyl]benzoate de méthyle dans 200 cm<sup>3</sup> d'acetonitrile, on ajoute 10,18 g de NN'-carbonyldiimidazole, et 54,3 cm<sup>3</sup> de bromure d'allyle. Après 30 minutes d'agitation à 20°C, le mélange réactionnel est porté au reflux pendant 2 heures,

10 agité pendant 20 heures à 20°C et concentré presqu'à sec sous pression réduite (2,7 kPa). Le mélange, repris par du dichlorométhane, est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 7 cm, hauteur 30 cm), sous une pression de 0,5 bar d'argon en éluant avec du dichlorométhane, et en recueillant des fractions de 500 cm<sup>3</sup>. Les fractions 3 à 6 sont réunies puis concentrées

15 à sec sous pression réduite (2,7 kPa). On obtient 11,6 g de 4-[(RS)-bromo-(4-chlorophényl)méthyl]benzoate de méthyle, sous la forme d'une huile qui sera utilisée telle quelle à l'étape suivante.

Le 4-[(RS)-(4-chlorophényl)(hydroxy)méthyl]benzoate de méthyle peut être préparé en opérant de la façon suivante : A une suspension de 2,75 g de 4-(4-chlorobenzoyl)benzoate de méthyle, dans 200 cm<sup>3</sup> de méthanol à 20°C, on ajoute lentement par petites fractions (il se produit un échauffement du milieu jusqu'à 50°C), 1,21 g de borohydrure de sodium. Après 20 heures d'agitation à 20°C, le mélange réactionnel est concentré à volume réduit puis additionné de 150 cm<sup>3</sup> de dichlorométhane et en agitant de 100 cm<sup>3</sup> d'acide chlorhydrique 0,5N. Après décantation, la phase organique

20 est séchée sur sulfate de magnésium, concentrée à sec sous pression réduite (2,7 kPa). On obtient 2,5 g de 4-[(RS)-(4-chlorophényl)(hydroxy)méthyl]benzoate de méthyle, sous la forme d'une huile incolore qui cristallise lentement à 20°C, et qui sera utilisée

25 telle quelle à l'étape suivante.

Le 4-(4-chlorobenzoyl)benzoate de méthyle, peut être préparé en opérant de la façon suivante : A une solution refroidie à -22°C de 19,3 g de chlorure de l'acide téraphthalique monométhylester dans 200 cm<sup>3</sup> de tétrahydrofurane, on ajoute sous argon 27,4 cm<sup>3</sup> de tri n-butylphosphine. Après 20 minutes d'agitation à -22°C, on coule en 5 maintenant cette température, une solution de bromure de 4-chlorophénylmagnésien (préparée à partir de 19,15 g de bromo-4-chlorobenzène, de 2,43 g de magnésium et un cristal d'iode dans 100 cm<sup>3</sup> d'oxyde de diéthyle au reflux). Après 30 minutes d'agitation à -22°C, on ajoute lentement 150 cm<sup>3</sup> d'acide chlorhydrique 1N, laisse le mélange revenir à 20°C puis dilue le milieu avec 200 cm<sup>3</sup> d'oxyde de diéthyle. La 10 suspension blanche obtenue est filtrée, le solide est lavé par 2 fois 50 cm<sup>3</sup> d'eau, puis par 2 fois 50 cm<sup>3</sup> de d'oxyde de diéthyle. On obtient après essorage puis séchage sous pression réduite (2,7 kPa), 16,2 g de 4-(4-chlorobenzoyl)benzoate de méthyle, sous la forme d'un solide blanc fondant à 170°C

#### Exemple 88

15 On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-(4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,025 g de 3,3-diméthylpipéridine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 20 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane puis en éluant avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,040g de 1-{(R\*)-[4-chlorophényl][4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 0.94 (s : 6H); 1,21 (mt : 2H); de 1,50 à 1,65 (mt : 2H); 1,99 (s large : 2H); 2,27 (mf : 2H); 2,81 (s : 3H); 3,36 (s : 2H); 3,85 (mt : 2H); 4,33 (mt : 2H); 4,49 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

**Exemple 89**

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]-3-[[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A) méthylsulfonylméthyl, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,025 g de thiomorpholine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,038g de 1- $\{(R^*)\}$ -[4-chlorophényl][4-(thiomorpholin-4-yl-méthyl)phényl]méthyl]-3-[[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : de 2,60 à 2,75 (mt : 8H); 2,80 (s : 3H); 3,44 (s : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,83 (tt, J = 8,5 et 2,5 Hz : 1H); 6,97 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

**Exemple 90**

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]-3-[[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,025 g de N-cyclohexyl-N-éthyl-amine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 5 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,022g de 1- $\{(R^*)\}$ -[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub> avec ajout de quelques gouttes de CD<sub>3</sub>COOD d4, δ en ppm) : de 1,15 à 1,25 (mt : 2H); 1,29 (t, J = 7,5 Hz : 3H); de 1,45 à 1,65

(mt : 4H); 1,88 (mt : 2H); 2,17 (mt : 2H); 2,81 (s : 3H); 3,05 (q, J = 7,5 Hz : 2H); 3,27 (mt : 1H); 3,95 (mt : 2H); 4,18 (s : 2H); 4,40 (mt : 2H); 4,66 (s : 1H); 6,82 (tt, J = 8,5 et 2,5 Hz : 1H); 7,00 (mt : 2H); de 7,20 à 7,40 (mt : 4H); 7,41 (d, J = 8 Hz : 2H); 7,53 (d, J = 8 Hz : 2H)].

#### Exemple 91

5 On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-(4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,032 g de 4-(éthoxycarbonyl)pipérazine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,021 g de 1-{(R\*)-[4-chlorophényl]{4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 1,25 (t, J = 7 Hz : 3H); 2,36 (mt : 4H); 2,80 (s : 3H); 3,44 (s : 2H); 3,46 (mt : 4H); 3,85 (mt : 2H); 4,13 (q, J = 7 Hz : 2H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,83 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

10 15

15 20

#### Exemple 92

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-(4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,023 g de N-cyclopropyl-N-propyl-amine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,026 g de 1-{(R\*)-(4-chlorophényl)[4-N-cy-

25

clopropyl-N-propyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $\text{CDCl}_3$  avec ajout de quelques gouttes de  $\text{CD}_3\text{COOD}$  d4,  $\delta$  en ppm) : 0,34 (mt : 2H); 0,70 (mt : 2H); 0,91 (t,  $J$  = 7 Hz : 3H); 1,08 (mt : 1H); 1,76 (mt : 2H); 2,82 (s : 3H); 2,92 (d,  $J$  = 7 Hz : 2H); 3,00 (mt : 2H); 3,90 (mt : 2H); 4,25 (s : 2H); 4,37 (mt : 2H); 4,59 (s : 1H); 6,83 (tt,  $J$  = 9 et 2,5 Hz : 1H); 7,00 (mt : 2H); de 7,20 à 7,45 (mt : 8H)].

#### Exemple 93

On opère comme il est décrit dans l'exemple 87, mais en agitant le mélange réactionnel pendant 6 jours à 20°C, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, 5 mg d'iodure de sodium et 0,020 g de diisopropylamine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,028g de 1-{(R\*)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N.  $^1\text{H}$  (300 MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : 1,00 (mf : 12H); 2,80 (s : 3H); de 2,90 à 3,10 (mf : 2H); 3,58 (mt : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,48 (s : 1H); 6,82 (tt,  $J$  = 8,5 et 2,5 Hz : 1H); 6,97 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 94

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,027 g de bis-(2-méthoxyéthyl)amine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en

éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 10 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,014 g de 1-{(R\*)-(4-chlorophényl){4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,70 (t large, J = 5,5 Hz : 4H); 2,81 (s : 3H); 3,29 (s : 6H); 3,46 (t large, J = 5,5 Hz : 4H); 3,65 (s large : 2H); 3,85 (mt : 2H); 4,33 (mt : 2H); 4,49 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 10 7,40 (mt : 8H)].

#### Exemple 95

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,020 g de di-n-propylamine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,025 g de 1-{(R\*)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 0,85 (t, J = 7,5 Hz : 6H); 1,45 (mt : 4H); 2,34 (t, J = 7,5 Hz : 4H); 2,80 (s : 3H); 3,48 (s : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,83 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 96

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,017

g de pipéridine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 5 à 10 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,035 g de 1-{(R\*)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : de 1,35 à 1,65 (mt : 6H); 2,35 (mf : 4H); 2,80 (s : 3H); 3,41 (s large : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 97

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,020 g de N-méthylpipérazine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,025 g de 1-{(R\*)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,28 (s : 3H); de 2,30 à 2,60 (mf : 8H); 2,80 (s : 3H); 3,45 (s : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 98

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl]méthyl}-3-[(3,5-difluorophényl)(méthyl-

sulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,018 g de morpholine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,022 g de 1-{(R\*)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène] azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,41 (t, J = 5 Hz, : 4H); 2,80 (s : 3H); 3,43 (s : 2H); 3,69 (t, J = 5 Hz : 4H); 3,85 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 99

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,020 cm<sup>3</sup> de D-prolinol. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,025 g de 1-{(R\*)-(4-chlorophényl)[4-((2R)-hydroxyméthyl-pyrrolidin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6 avec ajout de quelques gouttes de CD<sub>3</sub>COOD d4, δ en ppm) : de 1,60 à 2,15 (mt : 4H); de 2,90 à 3,05 (mt : 1H); 2,98 (s : 3H); 3,13 (mt : 1H); 3,38 (mt : 1H); de 3,50 à 3,60 (mt : 1H); 3,56 (d, J = 5 Hz : 2H); 3,90 (mt : 2H); 4,04 (d, J = 13,5 Hz : 2H); 4,21 (mt : 2H); 4,40 (d, J = 13,5 Hz : 2H); 4,78 (s : 1H); 7,14 (mt : 2H); 7,27 (tt, J = 9 et 2,5 Hz : 1H); de 7,30 à 7,55 (mt : 8H)].

## Exemple 100

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,015 g de diéthylamine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 4 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,025 g de 1- $\{(R^*)\}$ -[4-(chlorophényl)[4-(diéthylaminométhyl)phényl)méthyl}-3-[[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 1,03 (t, J = 7 Hz : 6H); 2,50 (q, J = 7 Hz : 4H); 2,81 (s : 3H); 3,50 (s : 2H); 3,85 (mt : 2H); 4,34 (mt : 2H); 4,49 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,99 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

## Exemple 101

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,026 g de N-(hydroxyéthyl)pipérazine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 10 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,032 g de 1- $\{(R^*)\}$ -[4-(hydroxyéthyl)-pipérazin-1-yl-méthyl]phényl)méthyl}-3-[[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : de 2,40 à 2,60 (mt : 8H); 2,54 (t, J = 5,5 Hz : 2H); 2,80 (s : 3H); 3,44 (s : 2H); 3,60 (t, J = 5,5 Hz : 2H); 3,84 (mt :

2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

### Exemple 102

On opère comme il est décrit dans l'exemple 87, mais en agitant le mélange réactionnel pendant 4 jours à 20°C, à partir de 0,05 g de 1- $\{(R^*)-[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine$ , isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,023 g de 2(RS),6(RS)-diméthylpipéridine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,024 g de 1- $\{(R^*)-(4-chlorophényl)[4-(2(RS),6(RS)-diméthylpipéridin-1-yl-méthyl)phénylméthyl]-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine$ , mélange d'isomères, forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub> avec ajout de quelques gouttes de CD<sub>3</sub>COOD d<sub>4</sub>, à une température de 353 K, δ en ppm) : de 1,20 à 1,45 (mt : 2H); 1,60 (d, J = 7 Hz : 6H); de 1,80 à 2,10 (mt : 4H); 2,80 (s : 3H); 3,17 (mt : 2H); 3,90 (mt : 2H); 4,34 (d large, J = 16 Hz : 1H); 4,40 (mt : 2H); 4,43 (d large, J = 16 Hz : 1H); 4,62 (s : 1H); 6,82 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,50 (mt : 8H)].

### Exemple 103

On opère comme il est décrit dans l'exemple 87, mais en agitant le mélange réactionnel pendant 4 jours à 20°C, à partir de 0,05 g de 1- $\{(R^*)-[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine$ , isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,024 g de pipérazin-2-one. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange

éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,022 g de 1- $\{(R^*)\text{-(4-chlorophényl)}\}\text{[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}\}-3\text{-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]} azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : 2,62 ( $t$ ,  $J = 5,5$  Hz : 2H); 2,80 ( $s$  : 3H); 3,11 ( $s$  : 2H); 3,34 ( $mt$  : 2H); 3,51 ( $s$  : 2H); 3,85 ( $mt$  : 2H); 4,34 ( $mt$  : 2H); 4,51 ( $s$  : 1H); 5,76 ( $mf$  : 1H); 6,84 ( $t$  large,  $J_{HF} = 9$  Hz : 1H); 6,98 ( $mt$  : 2H); de 7,20 à 7,40 ( $mt$  : 8H)].$

#### Exemple 104

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\text{-[4-(chlorométhyl)phényl]-}(4\text{-chlorophényl})\text{méthyl}\}\text{-3\text{-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,020 g de L-prolinol. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,028 g de 1- $\{\{(R^*)\text{-(4-chlorophényl)}\}\text{[4-[(2S)\text{-(hydroxyméthyl)pyrrolidin-1-yl-méthyl]phényl]\text{méthyl}\}\text{-3\text{-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N.  $^1\text{H}$  (300 MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : de 1,50 à 2,00 ( $mt$  : 4H); 2,24 ( $mt$  : 1H); 2,71 ( $mt$  : 1H); 2,80 ( $s$  : 3H); 2,93 ( $mt$  : 1H); 3,28 ( $d$ ,  $J = 13,5$  Hz : 1H); 3,45 ( $mt$  : 1H); 3,65 ( $d$ ,  $J = 11$  et 4 Hz : 1H); 3,84 ( $mt$  : 2H); 3,91 ( $d$ ,  $J = 13,5$  Hz : 1H); 4,33 ( $mt$  : 2H); 4,50 ( $s$  : 1H); 6,83 ( $tt$ ,  $J = 8,5$  et 2,5 Hz : 1H); 6,98 ( $mt$  : 2H); de 7,20 à 7,40 ( $mt$  : 8H)].

#### Exemple 105

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\text{-[4-(chlorométhyl)phényl]-}(4\text{-chlorophényl})\text{méthyl}\}\text{-3\text{-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,023 g de (2S)-(méthoxyméthyl)pyrrolidine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8

cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 6 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,037 g de 1-{(R\*)-(4-chlorophényl){4-[(2S)-(méthoxyméthyl)pyrrolidin-1-yl-méthyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 1,66 (mt : 2H); 1,90 (mt : 1H); 2,16 (mt : 1H); 2,68 (mt : 1H); 2,80 (s : 3H); 2,89 (mt : 1H); de 3,25 à 3,45 (mt : 4H); 3,31 (s : 3H); 3,84 (mt : 2H); 4,04 (d, J = 13,5 Hz : 1H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 106

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-(4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,020 g de 2(RS),5(RS)-diméthylpyrrolidine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 6 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,024 g de 1-{(R\*)-(4-chlorophényl)[4-(2(RS),5(RS)-diméthylpyrrolidin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, mélange d'isomères, forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub> avec ajout de quelques gouttes de CD<sub>3</sub>COOD d4, δ en ppm) : 1,68 (d, J = 7 Hz : 6H); de 2,00 à 2,15 (mt : 4H); 2,82 (s : 3H); 3,22 (mt : 2H); 3,92 (mt : 2H); 4,30 (s : 2H); 4,33 (mt : 1H); 4,45 (d, J = 16,5 et 3 Hz : 1H); 4,63 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 7,00 (mt : 2H); de 7,20 à 7,55 (mt : 8H)].

#### Exemple 107

On opère comme il est décrit dans l'exemple 87, à partir de 0,05 g de 1- $\{(R^*)\}$ -[(4-chlorométhyl)phényl]-4-(chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,023 g de L-prolinamide. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 5 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,028 g de 1- $\{(R^*)\}$ -(4-chlorophényl)[4-((2S)-carbamoylpyrrolidin-1-yl-méthyl)phényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : de 1,65 à 1,85 (mt : 2H); 1,92 (mt : 1H); de 2,15 à 2,35 (mt : 2H); 2,80 (s : 3H); 3,00 (mt : 1H); 3,16 (dd, J = 10 et 5,5 Hz : 1H); 3,41 (d, J = 13,5 Hz : 1H); 3,86 (mt : 2H); 3,89 (d, J = 13,5 Hz : 1H); 4,33 (mt : 2H); 4,51 (s : 1H); 5,23 (mf : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); 7,17 (mf : 1H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 108

On opère comme il est décrit dans l'exemple 87, mais en agitant le mélange réactionnel pendant 4 jours à 20°C, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine, isomère forme A, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,021 g de diéthanolamine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 8 cm), en éluant avec 80 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 2,5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,004 g de 1- $\{(R^*)\}$ -(4-chlorophényl)[4-(dihydroxyéthylamino-méthyl)phényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène] azétidine, isomère forme A, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,69 (t, J = 5,5 Hz : 4H); 2,80 (s : 3H); 3,61 (t, J = 5,5 Hz : 4H); 3,65

(s : 2H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,83 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H).

#### Exemple 109

A une solution de 0,24 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]-3-[3,5-difluorophényl](méthylsulfonylméthylène]azétidine, isomère forme A, dans 5 cm<sup>3</sup> de dichlorométhane, on ajoute 0,055 g d'imidazole. Après 3 heures de reflux, le mélange est additionné de 5 mg d'iodure de sodium. Après 20 heures d'agitation au reflux, le mélange réactionnel est refroidi à 20°C, puis chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,0 cm, hauteur 20 cm), en éluant avec 120 cm<sup>3</sup> de dichlorométhane sans fractionner, puis avec un mélange dichlorométhane et méthanol (98/2 puis 96/4 en volumes), en recueillant des fractions de 4 cm<sup>3</sup>. Les fractions 12 à 14 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,039 g de 1- $\{(R^*)\}$ -[4-chlorophényl][4-(imidazol-1-yl-méthyl)phénylméthyl]-3-[3,5-difluorophényl](méthylsulfonylméthylène]azétidine, isomère forme A, sous la forme d'une meringue blanche.

#### Exemple 110

On opère comme il est décrit dans l'exemple 87, à partir de 0,50 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]-3-[3,5-difluorophényl](méthylsulfonylméthylène]azétidine, isomère forme B, 5 mg d'iodure de sodium, 15 cm<sup>3</sup> de dichlorométhane, et 0,190 g de pyrrolidine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,5 cm, hauteur 20 cm), sous une pression de 0,1 bar d'argon en éluant avec du dichlorométhane puis avec un mélange dichlorométhane et méthanol (95/5 en volumes) et en recueillant des fractions de 25 cm<sup>3</sup>. Les fractions 20 à 40 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,28 g de 1- $\{(R^*)\}$ -[4-chlorophényl][4-(pyrrolidin-1-yl-méthyl)phénylméthyl]-3-[3,5-difluorophényl](méthylsulfonylméthylène]azétidine, isomère forme B, sous la forme d'une meringue blanche.

$[\alpha]^{20}_{\text{365nm}} = +26,8^\circ \pm 0,8$  ( $c = 0,5$  %; dichlorométhane) [Spectre de R.M.N.  $^1\text{H}$  (300 MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : 1,78 (mt : 4H); 2,50 (mt : 4H); 2,80 (s : 3H); 3,57 (s : 2H); 3,84 (mt : 2H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (tt,  $J = 9$  et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

- 5 Le 1- $\{(R^*)-[4-(\text{chlorométhyl})\text{phényl}]-(\text{4-chlorophényl})\text{méthyl}\}-3-[ (3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthylène}] \text{jazétidine}$ , isomère forme B, peut être préparé en opérant comme il est décrit dans l'exemple 87, à partir de 7,3 g du mélange des 2 diastéréoisomères (formes B) 1- $\{(R^*)-[4-(\text{chlorométhyl})\text{phényl}]-(\text{4-chlorophényl})\text{méthyl}\}-3-[ (R)-(3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthyl}] \text{jazétidin-3-ol}$  et 1- $\{(R^*)-[4-(\text{chlorométhyl})\text{phényl}]-(\text{4-chlorophényl})\text{méthyl}\}-3-[ (S)-(3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthyl}] \text{jazétidin-3-ol}$ , de 8,2 g de 4-diméthylaminopyridine, de 150 cm<sup>3</sup> de dichlorométhane, et 3,2 cm<sup>3</sup> de chlorure de méthanesulfonyle. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm), sous une pression de 0,2 bar d'argon en éluant avec du dichlorométhane et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 15 à 30 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 2,50 g de 1- $\{(R^*)-[4-(\text{chlorométhyl})\text{phényl}]-(\text{4-chlorophényl})\text{méthyl}\}-3-[ (3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthylène}] \text{jazétidine}$ , isomère forme B, sous la forme d'une meringue blanche.
- 10
- 15
- 20
- 25
- 30

- Le mélange des 2 diastéréoisomères 1- $\{(R^*)-[4-(\text{chlorométhyl})\text{phényl}]-(\text{4-chlorophényl})\text{méthyl}\}-3-[ (R)-(3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthyl}] \text{jazétidin-3-ol}$ , et 1- $\{(R^*)-[4-(\text{chlorométhyl})\text{phényl}]-(\text{4-chlorophényl})\text{méthyl}\}-3-[ (S)-(3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthyl}] \text{jazétidin-3-ol}$ , peut être préparé en opérant comme il est décrit dans l'exemple 87, à partir de 11,0 g du mélange des 2 diastéréoisomères 1- $\{(R^*)-(4-\text{chlorophényl})[4-(\text{hydroxyméthyl})\text{phényl}]\text{méthyl}\}-3-[ (R)-(3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthyl}] \text{jazétidin-3-ol}$  et 1- $\{(R^*)-(4-\text{chlorophényl})[4-(\text{hydroxyméthyl})\text{phényl}]\text{méthyl}\}-3-[ (S)-(3,5-\text{difluorophényl})(\text{methylsulfonyl})\text{méthyl}] \text{jazétidin-3-ol}$ , de 250 cm<sup>3</sup> de dichlorométhane, et 3,1 cm<sup>3</sup> de chlorure de thionyle. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,04-0,06 mm, diamètre 3 cm, hauteur 30 cm), sous une pression de

0,2 bar d'argon en éluant avec un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 50 cm<sup>3</sup>. Les fractions 9 à 25 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 7,3 g du mélange des 2 diastéréoisomères (formes B) 1-{(R\*)-[4-(chlorométhyl)phényl]-(4-chlorophényl)méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-{(R\*)-[4-(chlorométhyl)phényl]-(4-chlorophényl)méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, sous la forme d'une meringue blanche.

Le mélange des 2 diastéréoisomères (formes B) 1-{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol et 1-{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, peut être préparé en opérant comme il est décrit dans l'exemple 87, à partir de 18,0 g du mélange des 2 diastéréoisomères formes B) 3-acétoxy-1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, et 3-acétoxy-1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, 150 cm<sup>3</sup> de toluène anhydre, et 100 cm<sup>3</sup> d'une solution à 20% dans le toluène d'hydrure de diisobutylaluminium. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 3 cm, hauteur 30 cm), sous une pression de 0,1 bar d'argon en éluant avec un mélange cyclohexane et acétate d'éthyle (50/50 en volumes) et en recueillant des fractions de 50 cm<sup>3</sup>. Les fractions 15 à 30 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 11,0 g du mélange des 2 diastéréoisomères (formes B) 1-{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, et 1-{(R\*)-(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidin-3-ol, sous la forme d'une meringue blanche.

Le mélange des 2 diastéréoisomères (formes B) 3-acétoxy-1- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, et 3-acétoxy-1- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, peut être préparé en opérant comme il est décrit dans l'exemple 40, à partir de 11,2 g de (3,5-difluorobenzyl)méthylsulfone, 350 cm<sup>3</sup> de tétrahydrofurane, 34 cm<sup>3</sup> d'une solution 1,6N de n butyllithium dans l'hexane, de 11,2 g de 1- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl} azétidin-3-one, isomère forme B, et 5,5 cm<sup>3</sup> de chlorure d'acétyle. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 4 cm, hauteur 40 cm), en éluant avec un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 10 à 30 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 21 g d'une meringue crème encore impure que l'on chromatographie sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 4 cm, hauteur 40 cm), en éluant avec du dichlorométhane et en recueillant des fractions de 100 cm<sup>3</sup>. Les fractions 11 à 30 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 20,0 g du mélange des 2 diastéréoisomères (formes B) 3-acétoxy-1- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(R)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, et 3-acétoxy- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}-3-[(S)-(3,5-difluorophényl)(méthylsulfonyl)méthyl]azétidine, sous la forme d'une meringue blanche.

Le 1- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl} azétidin-3-one, isomère forme B, peut être préparé en opérant comme il est décrit dans l'exemple 40, à partir de 8,7 cm<sup>3</sup> de chlorure d'oxalyle, de 350 cm<sup>3</sup> de dichlorométhane, de 14,2 cm<sup>3</sup> de diméthylsulfoxyde, de 29,0 g de 1- $\{(R^*)\}$ -(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl} azétidin-3-ol, isomère forme B, et 43 cm<sup>3</sup> de triéthylamine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 4 cm, hauteur 40 cm), en éluant avec du dichlorométhane et en recueillant des fractions de 250 cm<sup>3</sup>. Les fractions 7 à 25 sont

réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 15,5 g de 1- $\{(R^*)-(4\text{-chlorophényl})[4\text{-(méthoxycarbonyl)phényl}]méthyl\}$ azétidin-3-one, isomère forme B, sous la forme d'une huile orange.

Le 1- $\{(R^*)-(4\text{-chlorophényl})[4\text{-(méthoxycarbonyl)phényl}]méthyl\}$ azétidin-3-ol,  
 5 isomère forme B, peut être préparé selon le mode opératoire décrit par KATRITZKY  
 A.R. et coll., dans J. Heterocycl. Chem., (1994), 271, à partir de 25,5g de (-)-4-[1-  
 (R<sup>\*</sup>)-amino-1-(4-chlorophényl)méthyl]benzoate de méthyle, de 250 cm<sup>3</sup> d'éthanol,  
 7,9 g d'hydrogénocarbonate de sodium, et 7,7 cm<sup>3</sup> d'épibromhydrine. On obtient 29 g  
 de 1- $\{(R^*)-(4\text{-chlorophényl})[4\text{-(méthoxycarbonyl)phényl}]méthyl\}$ azétidin-3-ol,  
 10 isomère forme B, sous la forme d'une huile jaune.

Le (-)-4-[(R<sup>\*</sup>)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, peut être préparé en effectuant deux recristallisations successives des cristaux blancs (3,4 g) nommés « cristaux A » de l'exemple 87, dans 68 cm<sup>3</sup> d'éthanol à 5% d'eau au reflux. Les cristaux obtenus sont filtrés, essorés puis séchés sous pression réduite (2,7 kPa). On  
 15 obtient 2,2 g de D-(-)-tartrate de (-)-4-[(R<sup>\*</sup>)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, sous la forme de cristaux blancs que l'on dissout dans 50 cm<sup>3</sup> d'acétate d'éthyle. La solution obtenue est additionnée de 50 cm<sup>3</sup> d'hydroxyde de sodium 1N, agitée, puis décantée. La phase organique est lavée avec 50 cm<sup>3</sup> d'eau, puis séchée sur sulfate de magnésium, et concentrée à sec sous pression réduite (2,7 kPa). On obtient  
 20 1,9 g de (-)-4-[(R<sup>\*</sup>)-amino-(4-chlorophényl)méthyl]benzoate de méthyle, sous la forme d'un solide blanc.  $[\alpha]_{D}^{20} = -58,1^\circ \pm 1$  (c = 0,5%)

### Exemple 111

On opère comme il est décrit dans l'exemple 110, mais en agitant le mélange réactionnel pendant 48 heures à 20°C, à partir de 0,05 g de 1- $\{(R^*)-[4\text{-}(chlorométhyl)phényl]-[4\text{-chlorophényl}]méthyl\}-3-[(3,5\text{-difluorophényl})(méthylsulfonyl)méthylène]$ azétidine, isomère forme B, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,030 cm<sup>3</sup> de N-méthylpipérazine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur

5 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 3 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 4 à 10 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,025 g de 1-{(R\*)-(4-chlorophényle)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, isomère forme B, sous la forme d'une meringue crème [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,28 (s : 3H); 2,44 (mf : 8H); 2,80 (s : 3H); 3,45 (s : 2H); 3,85 (mt : 2H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,99 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### 10 Exemple 112

On opère comme il est décrit dans l'exemple 110, mais en agitant le mélange réactionnel pendant 48 heures à 20°C, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophényle]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, isomère forme B, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,030 cm<sup>3</sup> de L-Prolinol. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 5 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 3 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 8 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,025 g de 1-{{(R\*)-(4-chlorophényle)}{4-[(2S)-(hydroxyméthyl)pyrrolidin-1-yl-méthyl]phényl}méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, isomère forme B, sous la forme d'une meringue crème [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : de 1,80 à 2,00 (mt : 4H); 2,24 (mt : 1H); 2,72 (mt : 1H); 2,80 (s : 3H); 2,94 (mt : 1H); 3,28 (d, J = 13,5 Hz : 1H); 3,45 (mt : 1H); 3,65 (d, J = 10,5 et 3,5 Hz : 1H); 3,85 (mt : 2H); 3,92 (d, J = 13,5 Hz : 1H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 8,5 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,15 à 7,40 (mt : 8H)].

#### Exemple 113

On opère comme il est décrit dans l'exemple 110, mais en agitant le mélange réactionnel pendant 48 heures à 20°C, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl]-3-[3,5-difluorophényl](méthylsulfonyl)méthylène]azétidine, isomère forme B, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,030 cm<sup>3</sup> de D-Prolinol. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 5 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 3 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,029 g de 1- $\{(R^*)\}$ -[4-(chlorophényl){4-[(2R)-(hydroxyméthyl)pyrrolidin-1-yl-méthyl]phényl)méthyl}-3-[3,5-difluorophényle](méthylsulfonyl)méthylène]azétidine, isomère forme B, sous la forme d'une meringue crème [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : de 1,50 à 2,00 (mt : 4H); 2,24 (mt : 1H); 2,71 (mt : 1H); 2,81 (s : 3H); 2,93 (mt : 1H); 3,28 (d, J = 13,5 Hz : 1H); 3,44 (t dédoublé, J = 10,5 et 2,5 Hz : 1H); 3,66 (dd, J = 10,5 et 3,5 Hz : 1H); 3,85 (mt : 2H); 3,92 (d, J = 13,5 Hz : 1H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,15 à 7,40 (mt : 8H)].

#### Exemple 114

On opère comme il est décrit dans l'exemple 110, mais en agitant le mélange réactionnel pendant 48 heures à 20°C, à partir de 0,05 g de 1- $\{(R^*)\}$ -[4-(chlorométhyl)phényl]-[4-chlorophényl)méthyl]-3-[3,5-difluorophényl](méthylsulfonyl)méthylène]azétidine, isomère forme B, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,030 cm<sup>3</sup> de morpholine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 5 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 3 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,047 g de 1- $\{(R^*)\}$ -[4-(morpholin-1-yl-méthyl)phényl)méthyl]-3-[3,5-difluorophényle](méthylsulfonyl)méthylène]azétidine, isomère forme B, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300

MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : 2,40 (mt : 4H); 2,81 (s : 3H); 3,43 (s : 2H); 3,69 (mt : 4H); 3,84 (mt : 2H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (tt,  $J = 8,5$  et 2,5 Hz : 1H); 6,99 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

#### Exemple 115

5 On opère comme il est décrit dans l'exemple 110, mais en agitant le mélange réactionnel pendant 48 heures à 20°C, à partir de 0,05 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme B, 1,0 cm<sup>3</sup> de dichlorométhane, et 0,030 cm<sup>3</sup> de thiomorpholine. Le produit brut est chromatographié sur une colonne de 10 gel de silice (granulométrie 0,06-0,200 mm, diamètre 8 mm, hauteur 5 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 3 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 2 à 9 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,047 g de 1-{(R\*)-(4-chlorophényl)[4-(thiomorpholin-15 4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme B, sous la forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : de 2,60 à 2,75 (mt : 8H); 2,81 (s : 3H); 3,44 (s : 2H); 3,85 (mt : 2H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (tt,  $J = 8,5$  et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,15 à 7,40 (mt : 8H)].

20 Exemple 116

On opère comme il est décrit dans l'exemple 110, mais en agitant le mélange réactionnel pendant 48 heures à 20°C, à partir de 0,200 g de 1-{(R\*)-[4-(chlorométhyl)phényl]-[4-chlorophénylméthyl]}-3-[(3,5-difluorophényl)(méthylsulfonylméthylène]azétidine, isomère forme B, 5,0 cm<sup>3</sup> de dichlorométhane, et 25 0,120 g de pipérazin-2-one. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,0 cm, hauteur 10 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 3 à 13 sont réunies puis concentrées à sec sous pres-

sion réduite (2,7 kPa). On obtient 0,090 g de 1- $\{(R^*)\text{-(4-chlorophényle)}\}\text{[4-(pipérazin-2-on-4-yl-méthyl)phényle]méthyl}\}-3\text{-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme B, sous la forme d'une poudre blanche.

#### Exemple 117

5 On opère comme il est décrit dans l'exemple 110, à partir de 0,200 g de 1- $\{(R^*)\text{-[4-(chlorométhyl)phényle]-}(4\text{-chlorophényle})\text{méthyl}\}\text{-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme B, 5,0 cm<sup>3</sup> de dichlorométhane, et 0,120 g de 3,3-diméthylpipéridine. Le produit brut est chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,0 cm, hauteur 10 cm), en éluant avec 50 cm<sup>3</sup> de dichlorométhane, puis avec un mélange dichlorométhane et méthanol (95/5 en volumes), en recueillant des fractions de 5 cm<sup>3</sup> dès l'utilisation de ce mélange éluant. Les fractions 4 à 11 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,120 g de 1- $\{(R^*)\text{-(4-chlorophényle)}\}\text{[4-(3,3-diméthylpipéridinyl-méthyl)phényle]méthyl}\}-3\text{-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme B, sous la forme d'une poudre blanche.

10 15

#### Exemple 118

On opère comme dans l'exemple 110, en agitant pendant 72 heures à 20°C, à partir de 0,200 g de 1- $\{(R^*)\text{-[4-(chlorométhyl)phényle]-}(4\text{-chlorophényle})\text{méthyl}\}\text{-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine}$ , isomère forme B, 5,0 cm<sup>3</sup> de dichlorométhane, et 0,080 g d'imidazole. Le mélange réactionnel est directement chromatographié sur une colonne de gel de silice (granulométrie 0,06-0,200 mm, diamètre 1,0 cm, hauteur 10 cm), en éluant avec 100 cm<sup>3</sup> de dichlorométhane sans fractionner, puis avec un mélange dichlorométhane et méthanol (98/2 puis 96/4 en volumes), en recueillant des fractions de 5 cm<sup>3</sup>. Les fractions 5 à 12 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 0,035 g de 1- $\{(R^*)\text{-(4-chlorophényle)}\}\text{[4-(imidazol-1-yl-méthyl)phényle]méthyl}\}-3\text{-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine}$ .

20 25

nyl)(méthylsulfonyl)méthylène]}azétidine, isomère forme B,sous la forme d'une poudre blanche.  $[\alpha]^{20}\text{D} = -6,7^\circ$  ( $c = 0,5\%$  dichlorométhane)

Exemple 119

A une suspension de 6,12 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one et 5,15 g  
5 de 5-(méthylsulfonylméthyl)thiophène-2-carboxylate de méthyle dans 200 cm<sup>3</sup> de tétrahydrofurane, sous atmosphère d'argon, refroidie à -70°C, on ajoute 2,47 g de *tert*-butylate de potassium. Le mélange est agité 1 heure 30 à une température voisine de -70°C, puis on ajoute 1,7 cm<sup>3</sup> de chlorure de méthanesulfonyle en solution dans 8 cm<sup>3</sup> d'éther éthylique. Après 1 heure d'agitation à une température voisine de -70°C  
10 le mélange est laissé revenir à température ambiante, puis on ajoute 80 cm<sup>3</sup> d'eau distillée. Le mélange est concentré au rotavapor jusqu'au tiers de son volume initial, puis est extrait par 500 cm<sup>3</sup> de dichlorométhane. La phase organique est lavée par 3 fois 80 cm<sup>3</sup> d'eau distillée, séchée sur sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). Le résidu obtenu est chromatographié sur colonne de gel  
15 de silice (granulométrie 0,02-0,04 mm, diamètre 7,5 cm, hauteur 35 cm), en éluant sous une pression de 0,5 bar d'azote par un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de 40 cm<sup>3</sup>. Les fractions 19 à 29 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 1,6 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthylène]azétidine sous forme d'une meringue crème [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,91 (s : 3H); 3,88 (s : 3H); 4,08 (mt : 2H); 4,37 (mt : 2H); 4,53 (s : 1H); de 7,25 à 7,45 (mt : 9H); 7,71 (d, J = 3,5 Hz : 1H)].  
20

Les fractions 34 à 48 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). On obtient 2,6 g de 1-[bis(4-chlorophényl)méthyl]-3-hydroxy-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthyl]azétidine-(RS) sous forme d'une poudre crème [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, δ en ppm) : 2,87 (s : 3H); 2,89 (d, J = 8 Hz : 1H); 2,96 (d, J = 8 Hz : 1H); 3,21 (d, J = 8 Hz : 1H); 3,76 (d, J = 8 Hz : 1H); 3,82 (s : 3H); 4,55 (s : 1H); 4,86 (s : 1H); 6,86 (s : 1H); de 7,35 à 7,45 (mt : 9H); 7,73 (d, J = 4 Hz : 1H)].  
25

Le 5-(méthylsulfonylméthyl)thiophène-2-carboxylate de méthyle peut être préparé de la façon suivante : A une solution de 16 g de 5-bromométhyl-thiophène-2-carboxylate de méthyle dans 150 cm<sup>3</sup> de tétrahydrofurane on ajoute, à température ambiante, 6,94 g de méthanesulfinate de sodium. La suspension est agitée 2 heures 30 au reflux,

5 puis après addition de 50 cm<sup>3</sup> d'éthanol est agitée à nouveau 3 heures au reflux. Le mélange est concentré à sec sous pression réduite (2,7 kPa) et le résidu obtenu est additionné de 150 cm<sup>3</sup> d'eau distillée, puis est extrait par 2 fois 300 cm<sup>3</sup> d'acétate d'éthyle. La phase organique est lavée successivement par 100 cm<sup>3</sup> d'eau distillée et 2 fois 50 cm<sup>3</sup> de solution aqueuse saturée de chlorure de sodium, puis séchée sur

10 sulfate de magnésium et concentrée à sec sous pression réduite (2,7 kPa). On obtient ainsi 14 g de 5-(méthylsulfonylméthyl)thiophène-2-carboxylate de méthyle sous forme d'un solide jaune fondant vers 133°C [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, à une température de 373K, δ en ppm) : 3,05 (s : 3H); 4,22 (mt : 2H); 4,40 (mt : 2H); 4,98 (s large : 1H); 7,30 (d, J = 3,5 Hz : 1H); 7,39 (d, J = 8 Hz : 4H); 7,50 (d, J = 8 Hz : 4H); 7,66 (d, J = 3,5 Hz : 1H)].

15

Le 5-bromométhyl-thiophène-2-carboxylate de méthyle peut être préparé selon Curtin M. L., Davidsen, S. K., Heyman H. R., Garland R. B., Sheppard G. S., J. Med. Chem.; 1998, 41 (1), 74-95.

#### Exemple 120

20 A une solution de 163,5 mg du chlorhydrate de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-hydroxycarbonylthién-5-yl)méthylène]azétidine dans 3 cm<sup>3</sup> de dichlorométhane, à température ambiante, on ajoute 47 µl de *N,N'*-diisopropylcarbo-diimide, 3,66 mg de 4-diméthylaminopyridine et 60 µl d'isobutylamine. Le mélange est agité pendant 18 heures à température ambiante, puis chromatographié sur colonne

25 de gel de silice (granulométrie 0,04-0,06 mm), en éluant par un mélange dichlorométhane et acétate d'éthyle (90/10 en volumes). On obtient ainsi 60 mg de 1-[bis(4-chlorophényl)méthyl]-3-[(2-isobutylaminocarbonylthién-5-yl)(méthylsulfonyl)méthylène]azétidine sous forme d'une laque incolore [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 0,97 (d, J = 7 Hz : 6H); 1,88 (mt : 1H); 2,90 (s : 3H); 3,25 (t, J = 7 Hz : 2H);

4,08 (mt : 2H); 4,36 (mt : 2H); 4,52 (s : 1H); 4,56 (t large, J = 7 Hz : 1H); de 7,20 à 7,40 (mt : 10H)].

Le chlorhydrate de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-hydroxycarbonylthién-5-yl)méthylène]azétidine peut être préparé de la manière suivante : à 5 une solution de 14 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthylène]azétidine dans 250 cm<sup>3</sup> de d'acide acétique, à température ambiante, on ajoute 250 cm<sup>3</sup> d'acide chlorhydrique concentré. Le mélange est agité pendant 38 heures à une température de 50°C, puis est concentré à sec sous pression réduite (2,7 kPa). Par trois fois le résidu est additionné de 250 cm<sup>3</sup> de 10 toluène et concentré à sec sous pression réduite (2,7 kPa). Après trituration du résidu dans 400 cm<sup>3</sup> d'éther éthylique on obtient 14,2 g du chlorhydrate de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-hydroxycarbonylthién-5-yl)méthylène]azétidine sous forme d'une poudre beige.

#### Exemple 121

15 A une solution de 0,92 g de 1-[bis(4-chlorophényl)méthyl]-azétidin-3-one et 0,75 g de [(3-méthoxycarbonylphényl)méthyl]méthylsulfone dans 30 cm<sup>3</sup> de tétrahydrofurane, sous atmosphère d'argon, refroidie à -70°C, on ajoute 0,37 g de tert-butylate de potassium et agite 2 heures à -70°C. On ajoute ensuite 10 cm<sup>3</sup> d'une solution d'acide chlorhydrique 0,1N et on laisse le mélange revenir à température ambiante. Après 20 ajout de 50 cm<sup>3</sup> d'acétate d'éthyle, le mélange réactionnel est décanté, séché sur sulfate de magnésium, filtré puis concentré à sec sous pression réduite (2,7 kPa). Le résidu est chromatographié sur colonne de gel de silice (granulométrie 0,20-0,06 mm, diamètre 3 cm, hauteur 50 cm), en éluant sous une pression de 0,8 bar d'azote par un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) et en recueillant des 25 fractions de 120 cm<sup>3</sup>. Les fractions 11 à 18 sont réunies puis concentrées à sec sous pression réduite (2,7 kPa). Le résidu est cristallisé dans 10 cm<sup>3</sup> d'éther isopropylique et 30 cm<sup>3</sup> de pentane. On obtient ainsi 0,30 g de 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol sous forme d'un solide blanc [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,73 (s : 3H); 3,05 (AB, J =

9 Hz : 2H); 3,27 (d, J = 9 Hz : 1H); 3,63 (s : 1H); 3,79 (d, J = 9 Hz : 1H); 3,95 (s : 3H); 4,32 (s : 1H); 4,59 (s : 1H); de 7,15 à 7,35 (mt : 8H); 7,51 (t, J = 8 Hz : 1H); 7,94 (d large, J = 8 Hz : 1H); 8,10 (d large, J = 8 Hz : 1H); 8,32 (s large : 1H)].

#### Exemple 122

5 En opérant selon le mode opératoire de l'exemple 1 à partir de 0,66 g de méthyl-(pyridin-4-yl-méthyl)sulfone et 1,18 g de 1-[bis(4-chlorophényl)méthyl]-azétidin-3-one, on obtient après purification sur colonne de gel de silice (granulométrie 0,20-0,06 mm, diamètre 3 cm, hauteur 50 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) comme éluant et en  
10 recueillant des fractions de 120 cm<sup>3</sup>, 0,20 g d'un solide blanc. Celui-ci est repris par 20 cm<sup>3</sup> d'oxyde de diisopropyle. Après filtration, essorage et séchage, on obtient 0,16 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(pyridin-4-yl)méthyl-(RS)]-azétidin-3-ol [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,76 (s : 3H); 3,03 (AB, J = 9 Hz : 2H); 3,27 (d, J = 9 Hz : 1H); 3,53 (s : 1H); 3,83 (d, J = 9 Hz : 1H); 4,32 (s : 1H); 4,51 (s : 1H); de 7,20 à 7,30 (mt : 8H); 7,63 (d, J = 6 Hz : 2H); 8,68 (d, J = 6 Hz : 2H)].  
15

La méthyl-(pyridin-4-yl-méthyl)sulfone peut être préparée selon la référence JP43002711

#### Exemple 123

En opérant selon le mode opératoire de l'exemple 1 à partir de 0,47 g de méthyl-(pyridin-3-yl-méthyl)sulfone et 0,83 g de 1-[bis(4-chlorophényl)méthyl]-azétidin-3-one, on obtient après purification sur colonne de gel de silice (granulométrie 0,20-0,06 mm, diamètre 3 cm, hauteur 50 cm) sous une pression de 0,5 bar d'azote avec un mélange cyclohexane et acétate d'éthyle (70/30 en volumes) comme éluant et en  
20 recueillant des fractions de 120 cm<sup>3</sup>, 0,50 g d'un solide blanc. Celui-ci est repris par 30 cm<sup>3</sup> d'oxyde de diisopropyle. Après filtration, essorage et séchage, on obtient 0,40 g de 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(pyridin-3-yl)méthyl-(RS)]-azétidin-3-ol [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,77 (s : 3H); 3,03 (AB, J = 9 Hz : 2H); 3,28 (d, J = 9 Hz : 1H); 3,66 (s : 1H); 3,83 (d, J = 9 Hz : 1H); 4,33 (s : 1H); 4,55  
25

(s : 1H); de 7,20 à 7,30 (mt : 8H); 7,37 (dd, J = 8 et 5 Hz : 1H); 8,16 (dt, J = 8 et 2 Hz : 1H); 8,68 (dd, J = 5 et 1,5 Hz : 1H); 8,83 (d, J = 2 Hz : 1H)].

La méthyl-(pyridin-3-yl-méthyl)sulfone peut être préparée selon la référence JP43002711.

5 Exemple 124

A une suspension de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165 µM) dans 3 cm<sup>3</sup> de dichlorométhane, pré-agitée 90 minutes à une température voisine de 20°C, est ajouté à la même température 0,0388 cm<sup>3</sup> de N-(3-aminopropyl)morpholine. La 10 suspension est agitée à une température voisine de 20 °C pendant 22 heures, puis filtrée sur fritté. Le résidu solide est relavé avec 2 fois 1,5 cm<sup>3</sup> de dichlorométhane. Les filtrats sont réunis et concentrés à sec sous pression réduite (2,7 kPa) à une température voisine de 40°C. On obtient ainsi 60 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-morpholin-4-yl-propyl)benzamide 15 sous forme d'une meringue jaune pâle.

Le 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-morpholin-4-yl-propyl)benzamide peut également être préparé de la manière suivante : A une solution de 300 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque dans 10 cm<sup>3</sup> de dichlorométhane anhydre (sur chlorure de calcium) et 5 cm<sup>3</sup> de diméthylformamide, sous atmosphère inerte d'azote, à une température voisine de 20°C, sont ajoutés successivement 0,083 cm<sup>3</sup> de N-(3-aminopropyl)morpholine, 110 mg de chlorhydrate de 1-(3-diméthylaminopropyl)3-éthylcarbodiimide et 5 mg de 4-diméthylaminopyridine. La 20 solution obtenue est agitée à une température voisine de 20°C pendant environ 22 heures, puis concentré à sec sous pression réduite (0,27 kPa) à une température voisine de 40°C. Le résidu solide est repris avec 25 cm<sup>3</sup> de dichlorométhane, lavé avec 2 fois 20 cm<sup>3</sup> d'une solution saturée aqueuse de bicarbonate de sodium. Après décantation, la phase organique est séchée sur sulfate de magnésium, filtrée, et concentrée à 25 sec sous pression réduite (2,7 kPa) à une température voisine de 40°C. On obtient

ainsi 400 mg d'une huile jaune que l'on purifie par chromatographie sous pression d'azote (0,8 bar) sur 60 cm<sup>3</sup> de silice (0,040-0,063 mm) contenus dans une colonne de 2,2 cm de diamètre en éluant avec un mélange méthanol-dichlorométhane (2-98 en volumes). Les fractions ne contenant que le produit cherché sont réunies et concen-  
5 trées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 130 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-morpholin-4-yl-propyl)benzamide sous forme d'une poudre blanche cristalline [Spectre de R.M.N. <sup>1</sup>H (300 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,68 (mt : 2H); de 2,25 à 2,40 (mt : 6H); 2,97 (s : 3H); de 3,20 à 3,35 (mt : 2H); 3,57 (t, J = 4,5 Hz : 10 4H); 3,81 (mt : 2H); 4,22 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8,5 Hz : 4H); 7,46 (d, J = 8,5 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,86 (d large, J = 8 Hz : 1H); 8,53 (t, J = 5,5 Hz : 1H)].

#### Exemple 125

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-  
15 ({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque actiivé sur résine TFP (165 µM) et 0,033 cm<sup>3</sup> de N,N-diméthyl-1,3-propanediamine. On obtient ainsi 52 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-diméthylamino-propyl)benzamide sous forme d'une poudre blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,65 (mt : 2H); 2,18 (s : 6H); de 2,20 à 2,35 (mt : 2H); 2,98 (s : 3H); de 3,25 à 3,45 (mt : 2H); 3,82 (mt : 2H); 4,23 (mt : 2H); 4,80 (s : 1H); 7,36 (d, J = 8,5 Hz : 4H); 7,46 (d, J = 8,5 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,86 (d large, J = 8 Hz : 1H); 8,57 (t, J = 5,5 Hz : 1H)].

#### Exemple 126

25 On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165 µM) et 0,0333 cm<sup>3</sup> 1-(aminoéthyl)pyrrolidine. On obtient ainsi 39 mg de 3-({1-[bis-(4-

chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-pyrrolidin-1-yl-éthyl)benzamide sous forme d'une poudre jaune pâle [Spectre de R.M.N.  $^1\text{H}$  (300 MHz,  $(\text{CD}_3)_2\text{SO}$  d6 avec ajout de quelques gouttes de  $\text{CD}_3\text{COOD}$  d4, d en ppm) : de 1,80 à 2,00 (mt : 4H); 2,97 (s : 3H); 3,20 (mt : 6H); 3,57 (t, J = 6,5 Hz : 2H); 3,80 5 (mt : 2H); 4,23 (mt : 2H); 4,77 (s : 1H); 7,35 (d, J = 8,5 Hz : 4H); 7,45 (d, J = 8,5 Hz : 4H); de 7,50 à 7,65 (mt : 2H); 7,87 (s large : 1H); 7,90 (d large, J = 7,5 Hz : 1H)].

#### Exemple 127

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165  $\mu\text{M}$ ) et 0,033  $\text{cm}^3$  1-(diméthylamino)-2-propylamine. On obtient ainsi 49 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-diméthylamino-1-méthyl-éthyl)benzamide sous forme d'une poudre blanche [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $(\text{CD}_3)_2\text{SO}$  d6, d en ppm) : 1,13 (d, J = 6,5 Hz : 3H); de 2,10 à 2,25 (mt : 1H); 2,15 (s : 6H); 2,38 (dd, J = 13 et 8 Hz : 1H); 2,98 (s : 3H); 3,80 (mt : 2H); 4,14 (mt : 1H); 4,23 (mt : 2H); 4,79 10 (s : 1H); 7,36 (d, J = 8 Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,46 (d, J = 8 Hz : 4H); 15 7,83 (s large : 1H); 7,87 (d large, J = 8 Hz : 1H); 8,16 (d large, J = 8 Hz : 1H)].

#### Exemple 128

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165  $\mu\text{M}$ ) et 0,026  $\text{cm}^3$  de pipéridine. On obtient ainsi 56 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-pipéridin-1-yl-benzamide sous forme d'une poudre blanche [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $(\text{CD}_3)_2\text{SO}$  d6, d en ppm) : de 1,45 à 1,70 (mt : 6H); de 2,90 à 3,05 (mt : 2H); 2,98 (s : 3H); 3,19 (mf : 1H); 3,57 (mf : 1H); 3,85 (mt : 2H); 4,23 (mt 25 : 2H); 4,80 (s : 1H); de 7,30 à 7,55 (mt : 12H)].

#### Exemple 129

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165 µM) et 0,0265 cm<sup>3</sup> d'isobutylamine. On obtient ainsi 46 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-isobutyl-benzamide sous forme d'une poudre blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 0,89 (d, J = 7 Hz : 6H); 1,85 (mt : 1H); 2,98 (s : 3H); 3,09 (t, J = 6,5 Hz : 2H); 3,82 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8,5 Hz : 4H); 7,46 (d, J = 8,5 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,84 (s large : 1H); 7,88 (d large, J = 8 Hz : 1H); 8,51 (t, J = 6 Hz : 1H)].

#### 10 Exemple 130

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165 µM) et 0,0316 cm<sup>3</sup> de N-(3-aminopropyl)imidazole. On obtient ainsi 54 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-imidazol-1-yl-propyl)benzamide sous forme d'une meringue jaune [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,97 (mt : 2H); 2,98 (s : 3H); 3,25 (mt : 2H); 3,81 (mt : 2H); 4,02 (t, J = 7 Hz : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); de 6,85 à 6,95 (mt : 2H); 7,36 (d, J = 8,5 Hz : 4H); 7,46 (d, J = 8,5 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,84 (s large : 1H); 7,88 (d large, J = 8 Hz : 1H); 8,56 (t, J = 5,5 Hz : 1H)].

#### Exemple 131

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (165 µM) et 0,030 cm<sup>3</sup> de N,N-(diméthyl)éthylènediamine. On obtient ainsi 53 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-diméthyl-amino-éthyl)benzamide sous forme d'une meringue ocre [Spectre de R.M.N. <sup>1</sup>H (400

MHz,  $(CD_3)_2SO$  d6, d en ppm) : 2,18 (2s : 6H); de 2,35 à 2,45 (mt : 2H); 2,98 (s : 3H); de 3,25 à 3,50 (mt : 2H); 3,81 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8 Hz : 4H); 7,46 (d, J = 8 Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,86 (d large, J = 8 Hz : 1H); 8,43 (t, J = 6,5 Hz : 1H)].

5 Exemple 132

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (165  $\mu M$ ) et 0,0141  $cm^3$  de méthyl-hydrazine. On obtient ainsi 42 mg de N'-méthyl-hydrazide de l'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque sous forme d'une meringue jaune pâle [Spectre de R.M.N.  $^1H$  (400 MHz,  $(CD_3)_2SO$  d6, d en ppm) : 2,96 (s : 3H); 3,18 (s large : 3H); 3,83 (mt : 2H); 4,22 (mt : 2H); 4,80 (s large : 2H); de 7,35 à 7,65 (mt : 12H)].

Exemple 133

15 On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (165  $\mu M$ ) et 0,0345  $cm^3$  de N-(2-aminoéthyl)morpholine. On obtient ainsi 62 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-morpholin-4-yl-éthyl)benzamide sous forme d'une meringue ocre [Spectre de R.M.N.  $^1H$  (400 MHz,  $(CD_3)_2SO$  d6, d en ppm) : de 2,30 à 2,45 (mt : 4H); 2,46 (t, J = 7,5 Hz : 2H); 2,98 (s : 3H); 3,38 (mt : 2H); de 3,50 à 3,65 (mt : 4H); 3,82 (mt : 2H); 4,24 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8,5 Hz : 4H); 7,46 (d, J = 8,5 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,85 (dd, J = 8 et 2 Hz : 1H); 8,45 (t, J = 6,5 Hz : 1H)].

25 Exemple 134

On opère dans les conditions décrites dans l'exemple 124 à partir de 150 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (165 µM) et 0,0396 cm<sup>3</sup> de 2-(aminométhyl)N-éthyl-pyrrolidine. On obtient ainsi 58 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(1-éthyl-pyrrolidin-2-ylméthyl)benzamide sous forme d'une meringue ocre.

Le 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(1-éthyl-pyrrolidin-2-ylméthyl)benzamide peut être également préparé dans les conditions décrites dans l'exemple 126 à partir de 700 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (770 µM), 0,324 cm<sup>3</sup> de triéthylamine et 0,25 cm<sup>3</sup> de 2-(aminométhyl)N-éthyl-pyrrolidine. On obtient ainsi 370 mg d'un solide que l'on purifie par chromatographie sous pression d'azote (0,7 bar) sur 100 cm<sup>3</sup> de silice (0,040-0,063 mm) contenus dans une colonne de 2,5 cm de diamètre en éluant avec un mélange méthanol-dichlorométhane (15-85 en volumes). Les fractions ne contenant que le produit cherché sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 160 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(1-éthyl-pyrrolidin-2-ylméthyl)benzamide sous forme d'une poudre jaune pâle [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,04 (t, J = 7 Hz : 3H); de 1,50 à 1,70 (mt : 3H); 1,78 (mt : 1H); 2,14 (mt : 1H); 2,28 (mt : 1H); 2,59 (mt : 1H); 2,83 (mt : 1H); 2,98 (s : 3H); de 3,00 à 3,15 (mt : 2H); de 3,30 à 3,45 (mt : 1H); 3,82 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8,5 Hz : 4H); 7,46 (d, J = 8,5 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,86 (s large : 1H); 7,85 (d large, J = 8 Hz : 1H); 8,41 (t, J = 6 Hz : 1H)].

### Exemple 135

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)

benzoïque activé sur résine TFP (121 µM) et 0,023 cm<sup>3</sup> de néo-pentylamine. On obtient ainsi 69 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2,2-diméthyl-propyl)benzamide sous forme d'une poudre jaune pâle [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 0,90 (s : 9H); 5 2,98 (s : 3H); 3,11 (d, J = 6,5 Hz : 2H); 3,82 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8 Hz : 4H); 7,46 (d, J = 8 Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,86 (d large, J = 8 Hz : 1H); 8,37 (t, J = 6,5 Hz : 1H)].

#### Exemple 136

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 10 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (121 µM) et 0,025 cm<sup>3</sup> d'amino-méthyl-cylohexane. On obtient ainsi 44 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-cyclohexylméthyl-benzamide sous forme d'une poudre jaune pâle dont les caractéristiques sont les suivantes [Spectre de R.M.N. <sup>1</sup>H (400 15 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 0,92 (mt : 2H); 1,17 (mt : 4H); de 1,45 à 1,80 (mt : 5H); 2,97 (s : 3H); 3,10 (d, J = 6 Hz : 2H); 3,80 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8 Hz : 4H); 7,46 (d, J = 8 Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,86 (d large, J = 8 Hz : 1H); 8,47 (t, J = 6 Hz : 1H)].

#### Exemple 137

20 On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (121 µM), 0,026 cm<sup>3</sup> de triéthylamine et 21 mg de chlorhydrate d'amino-méthyl-cylopropane. On obtient ainsi 68 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-cyclopro- 25 pylméthyl-benzamide sous forme d'une meringue jaune [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 0,24 (mt : 2H); 0,44 (mt : 2H); 1,03 (mt : 1H); 2,98 (s : 3H); 3,15 (t, J = 6 Hz : 2H); 3,82 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d,

$J = 8,5$  Hz : 4H); 7,46 (d,  $J = 8,5$  Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,86 (s large : 1H); 7,89 (d large,  $J = 8$  Hz : 1H); 8,64 (t,  $J = 6$  Hz : 1H)].

#### Exemple 138

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide  
 5 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (121  $\mu$ M) et 0,023 cm<sup>3</sup> de 2-méthylbutylamine. On obtient ainsi 49 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-méthyl-butyl)benzamide [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : de 0,80 à 0,95 (mt : 6H); de 1,05 à  
 10 1,20 (mt : 1H); 1,41 (mt : 1H); 1,64 (mt : 1H); 2,98 (s : 3H); 3,06 (mt : 1H); 3,19 (mt : 1H); 3,81 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d,  $J = 8$  Hz : 4H); 7,46 (d,  $J = 8$  Hz : 4H); de 7,35 à 7,60 (mt : 2H); 7,84 (s large : 1H); 7,87 (d large,  $J = 8$  Hz : 1H); 8,49 (t,  $J = 5,5$  Hz : 1H)].

#### Exemple 139

15 On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (121  $\mu$ M) et 0,028 cm<sup>3</sup> de 2-méthyl-phénéthylamine. On obtient ainsi 42 mg de 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-phényl-propyl)benzamide sous forme d'une pâte jaune  
 20 [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,24 (d,  $J = 7$  Hz : 3H); 2,97 (s : 3H); 3,07 (mt : 1H); de 3,20 à 3,50 (mt : 2H); 3,80 (mt : 2H); 4,23 (mt : 2H); 4,80 (s : 1H); de 7,10 à 7,40 (mt : 5H); 7,38 (d,  $J = 8$  Hz : 4H); 7,47 (d,  $J = 8$  Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,77 (s large : 1H); 7,79 (d large,  $J = 8$  Hz : 1H); 8,55 (t,  $J = 6$  Hz : 1H)].

25 Exemple 140

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (121 µM) et 0,020 cm<sup>3</sup> de tétrahydrofurfurylméthylamine. On obtient ainsi 42 mg de 3-( {1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(tetrahydrofuran-2-ylméthyl)benzamide sous forme d'une pâte jaune [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,58 (mt : 1H); de 1,75 à 2,00 (mt : 3H); 2,98 (s : 3H); de 3,20 à 3,40 (mt : 2H); 3,63 (mt : 1H); 3,77 (mt : 1H); 3,82 (mt : 2H); 3,98 (mt : 1H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d, J = 8 Hz : 4H); 7,46 (d, J = 8 Hz : 4H); de 7,50 à 7,60 (mt : 2H); 7,84 (s large : 1H); 7,88 (d large, J = 8 Hz : 1H); 8,60 (t, J = 6 Hz : 1H)].

#### Exemple 141

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-( {1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (121 µM) et 39 mg de 2,2-diphénylethylamine. On obtient ainsi 39 mg de 3-( {1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2,2-diphénylethyl)benzamide sous forme d'une pâte jaune [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 2,95 (s : 3H); 3,77 (mt : 2H); 3,90 (dd, J = 8 et 6,5 Hz : 2H); 4,22 (mt : 2H); 4,42 (t, J = 8 Hz : 1H); 4,79 (s : 1H); de 7,10 à 7,40 (mt : 10H); 7,38 (d, J = 8,5 Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,48 (d, J = 8,5 Hz : 4H); 7,70 (mt : 2H); 8,56 (t, J = 6,5 Hz : 1H)].

#### Exemple 142

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-( {1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl) benzoïque activé sur résine TFP (121 µM) et 19 mg de 2-éthyl-butylamine. On obtient ainsi 47 mg de 3-( {1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-éthyl-butyl)benzamide sous forme d'une poudre jaune

pâle [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $(\text{CD}_3)_2\text{SO}$  d6, d en ppm) : 0,86 (t,  $J = 7$  Hz : 6H); de 1,20 à 1,40 (mt : 4H); 1,50 (mt : 1H); 2,98 (s : 3H); 3,19 (t,  $J = 6$  Hz : 2H); 3,82 (mt : 2H); 4,24 (mt : 2H); 4,79 (s : 1H); 7,36 (d,  $J = 8,5$  Hz : 4H); 7,46 (d,  $J = 8,5$  Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,86 (d large,  $J = 8$  Hz : 1H); 8,42 (t,  $J = 6$  Hz : 1H)].

#### Exemple 143

On opère dans les conditions décrites dans l'exemple 124 à partir de 110 mg d'acide 3-( $\{\text{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}\}$ -méthanesulfonyl-méthyl)benzoïque activé sur résine TFP (121  $\mu\text{M}$ ), 0,026 cm<sup>3</sup> de triéthylamine et 39 mg de chlrohydrate de l'ester méthylique de l'acide 4-aminométhyl-cyclohexanecarboxylique. On obtient ainsi 47 mg de l'ester méthylique de l'acide 4- $\{[3-(\{\text{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}\}$ -méthanesulfonyl-méthyl)benzoylamino]-méthyl}-cyclohexanecarboxylique sous forme d'une pâte jaune pâle [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $(\text{CD}_3)_2\text{SO}$  d6, d en ppm) : de 0,90 à 1,05 (mt : 2H); de 1,20 à 1,40 (mt : 2H); 1,52 (mt : 1H); de 1,70 à 2,00 (mt : 4H); 2,27 (mt : 1H); 2,98 (s : 3H); 3,12 (t,  $J = 6,5$  Hz : 2H); 3,60 (s : 3H); 3,80 (mt : 2H); 4,23 (mt : 2H); 4,79 (s : 1H); 7,36 (d,  $J = 8$  Hz : 4H); 7,46 (d,  $J = 8$  Hz : 4H); de 7,45 à 7,60 (mt : 2H); 7,83 (s large : 1H); 7,87 (d large,  $J = 8$  Hz : 1H); 8,50 (t,  $J = 6$  Hz : 1H)].

L'acide 3-( $\{\text{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}\}$ -méthanesulfonyl-méthyl)benzoïque activé sur résine TFP peut être préparé dans les conditions suivantes : A une suspension de 1,07 g de résine TFP (fonction phénol libre, 1,1 mmole/g, soit 1,17 mM) dans 15 cm<sup>3</sup> de diméthylformamide anhydre, préagitée pendant 10 minutes à une température voisine de 20°C, est ajouté, à la même température, 1,18 g d'acide 3-( $\{\text{1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}\}$ -méthanesulfonyl-méthyl)benzoïque. Après 10 minutes d'agitation à une température voisine de 20°C, on ajoute 14 mg de 4-diméthylaminopyridine, puis après 10 minutes d'agitation à la même température, 0,185 cm<sup>3</sup> de 1,3-diisopropylcarbodiimide. Après 23 heures d'agitation à une température voisine de 20°C, la suspension est filtrée, la

résine est lavée avec 45 cm<sup>3</sup> de diméthylformamide, 45 cm<sup>3</sup> de tétrahydrofurane, 45 cm<sup>3</sup> de dichlorométhane, puis séchée sous vide à poids constant. On obtient ainsi 1,5 g d'acide 3-((1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl)benzoïque activé sur résine TFP sous forme d'une résine jaune pâle.

5 La résine TFP (structure ci-dessous) peut être préparée de la manière suivante :



A une suspension de 2 g de résine aminométhyl polystyrène commerciale (0,39 mmol/g; 0,78 mmol) dans 15 cm<sup>3</sup> de diméthylformamide, pré-agitée 5 minutes à une température voisine de 20°C, on ajoute successivement 492 mg de diisopropyl-carbodiimide, 819,3 mg d'acide 2,3,5,6-tétrafluoro-4-hydroxy-benzoïque et 50 mg de 4-diméthylaminopyridine. Après environ 20 heures d'agitation, à une température voisine de 20°C, la suspension est filtrée, et la résine est rincée avec 3 fois 20 cm<sup>3</sup> de diméthylformamide, 3 fois 20 cm<sup>3</sup> de tétrahydrofurane et 3 fois 20 cm<sup>3</sup> de dichlorométhane. La résine obtenue est séchée sous pression réduite à une température voisine de 40°C. La résine obtenue est ensuite agitée, à une température voisine de 20°C, pendant environ 20 heures, en suspension dans un mélange pipéridine/diméthylformamide (10/90 en volumes). La suspension est filtrée, et la résine est rincée avec 3 fois 20 cm<sup>3</sup> de diméthylformamide, 3 fois 20 cm<sup>3</sup> de tétrahydrofurane et 3 fois 20 cm<sup>3</sup> de dichlorométhane. La résine obtenue est séchée sous pression réduite à une température voisine de 40°C et est utilisée en l'état.

#### Exemple 144

Une solution de 76 mg de l'ester ter-butylique de l'acide (2-{4-[3-((1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl)phényl]-piperazin-1-yl}-2-oxo-éthyl)carbamique dans 2,5 cm<sup>3</sup> d'acide formique est agitée 1 heure à une température voisine de 45°C. Le milieu réactionnel est concentré à sec sous pression réduite (5 kPa) à une température voisine de 30°C, repris avec 10 cm<sup>3</sup>

d'acétate d'éthyle et alcalinisé avec 10 cm<sup>3</sup> d'une solution aqueuse saturée en bicarbonate de sodium. Après décantation, la phase organique est lavée avec 10 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, filtrée, et concentré à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 51 mg de

5 2-amino-1-{4-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle}-éthanone sous forme d'une laque beige [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, d en ppm) : de 1,95 à 2,25 (mf étalé : 2H); 2,77 (s : 3H); de 3,10 à 3,30 (mt : 4H); de 3,50 à 3,60 (mt : 2H); 3,56 (s large : 2H); de 3,75 à 3,90 (mt : 4H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (d large, J = 8 Hz : 1H); 6,91 (dd, J = 8 et 2 Hz : 1H); 7,01 (mt : 1H); de 7,20 à 7,40 (mt : 9H)].

10

#### Exemple 145

A 108,5 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine est ajouté successivement, à une température voisine de 20°C, 1,02 g d'EDCI supporté (5 mM), 44 mg de N-Boc-glycine puis 10 cm<sup>3</sup> de dichlorométhane. Après 20 heures d'agitation, à une température voisine de 20°C, le mélange réactionnel est filtré sur verre fritté. La résine est rincée avec 3 fois 5 cm<sup>3</sup> de dichlorométhane. Les filtrats réunis sont lavés avec 20 cm<sup>3</sup> d'eau, séchés sur sulfate de magnésium, filtrés sur verre fritté, et concentrés à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 143 mg de l'ester terbutylique de l'acide (2-{4-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle}-piperazin-1-yl)-2-oxo-éthyl)carbamique sous forme d'une laque crème [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm) : 1,40 (s : 9H); 2,93 (s : 3H); de 3,05 à 3,20 (mt : 4H); 3,57 (mt : 4H); 3,80 (mt : 2H); 3,84 (d, J = 6 Hz : 2H); 4,19 (mt : 2H); 4,78 (s : 1H); 6,79 (t, J = 6 Hz : 1H); 6,82 (d, J = 8 Hz : 1H); 6,93 (s large : 1H); 6,99 (dd, J = 8 et 2,5 Hz : 1H); 7,27 (t, J = 8 Hz : 1H); 7,36 (d, J = 8 Hz : 4H); 7,46 (d, J = 8 Hz : 4H)].

15

20

25

Le réactif EDCI supporté est commercial, et peut être également préparé selon la référence suivante : M. Desai, L. Stramiello, *Tetrahedron Letters*, 34, 48, 7685-7688 (1993).

## Exemple 146

Une solution de 81 mg de l'ester ter-butylique de l'acide (2-{4-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényl]-piperazin-1-yl}-2-oxo-éthyl)N-méthyl-carbamique dans 2,5 cm<sup>3</sup> d'acide formique est  
5 agitée 1 heure à une température voisine de 45°C. Le milieu réactionnel est concentré à sec sous pression réduite (5 kPa) à une température voisine de 30°C, repris avec 10 cm<sup>3</sup> d'acétate d'éthyle et alcalinisé avec 10 cm<sup>3</sup> d'une solution aqueuse saturée en bicarbonate de sodium. Après décantation, la phase organique est lavée avec 10 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, filtrée, et concentré à sec sous pression  
10 réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 58 mg de 1-{4-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényl]-piperazin-1-yl}-2-méthylamino-éthanone sous forme d'une laque beige[Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, d en ppm) : de 1,95 à 2,15 (mf étalé : 1H); 2,51 (s large : 3H); 2,77 (s : 3H); de 3,10 à 3,30 (mt : 4H); 3,49 (s large : 2H);  
15 3,58 (mt : 2H); de 3,75 à 3,90 (mt : 4H); 4,33 (mt : 2H); 4,49 (s : 1H); 6,83 (d large, J = 8 Hz : 1H); 6,90 (dd, J = 8 et 2 Hz : 1H); 7,00 (mt : 1H); de 7,20 à 7,40 (mt : 9H)].

## Exemple 147

A 108,5 mg de 1-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényl]-piperazine est ajouté successivement, à une température voisine de 20°C, 1,02 g d'EDCI supporté (5 mM), 47,3 mg de N-Boc-sarcosine puis 10 cm<sup>3</sup> de dichlorométhane. Après 20 heures d'agitation, à une température voisine de 20°C, le mélange réactionnel est filtré sur verre fritté. La résine est rincée avec 3 fois 5 cm<sup>3</sup> de dichlorométhane. Les filtrats réunis sont lavés avec 20 cm<sup>3</sup> d'eau, séchés sur sulfate de magnésium, filtrés sur verre fritté, et concentrés à sec sous pression réduite  
20 (1 kPa) à une température voisine de 40°C. On obtient ainsi 143 mg de l'ester ter-butylique de l'acide (2-{4-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényl]-piperazin-1-yl}-2-oxo-éthyl)N-méthyl-carbamique sous forme d'une laque crème [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, d en ppm). Nous observons un mélange de rotamères à température ambiante; 1,31 et 1,41

(2s : 9H en totalité); 2,78 et 2,81 (2s : 3H en totalité); 2,93 (2s : 3H); de 3,10 à 3,25 (mf : 4H); de 3,45 à 3,65 (mt : 4H); 3,80 (mt : 2H); 4,06 et 4,09 (2s : 2H en totalité); 4,19 (mt : 2H); 4,78 (s : 1H); 6,83 (d large, J = 8 Hz : 1H); 6,93 (s large : 1H); 7,00 (dd, J = 8 et 2,5 Hz : 1H); 7,27 (t, J = 8 Hz : 1H); 7,36 (d, J = 8 Hz : 4H); 7,46 (d, 5 J = 8 Hz : 4H)].

#### Exemple 148

A 54,25 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl-piperazine est ajouté successivement, à une température voisine de 20°C, 2 cm<sup>3</sup> de dichlorométhane puis 11 mg d'isothiocyanate de méthyle.

10 Après 6 heures d'agitation, à une température voisine de 20°C, on ajoute au mélange réactionnel 0,05 cm<sup>3</sup> d'eau. Après 15 minutes d'agitation à la même température, le milieu réactionnel est séché sur sulfate de magnésium, filtré, et concentré à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 61 mg du N-méthylamide de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl-piperazine-1-carbothioïc sous forme d'une laque beige [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,77 (s : 3H); 3,20 (d, J = 5 Hz : 3H); 3,32 (t, J = 5,5 Hz : 4H); 3,81 (mt : 2H); 4,00 (t, J = 5,5 Hz : 4H); 4,33 (mt : 2H); 4,49 (s : 1H); 5,63 (q large, J = 5 Hz : 1H); 6,80 (d, J = 8 Hz : 1H); 6,85 (dd, J = 8 et 2,5 Hz : 1H); 6,94 (s large : 1H); de 7,20 à 7,30 (mt : 5H); 7,32 (d, 15 J = 8 Hz : 4H)].

15

20

#### Exemple 149

A 54,25 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényl-piperazine est ajouté successivement, à une température voisine de 20°C, 2 cm<sup>3</sup> de dichlorométhane puis 11,5 mg d'isocyanate de méthyle.

25 Après 4 heures d'agitation, à une température voisine de 20°C, on ajoute au mélange réactionnel 0,05 cm<sup>3</sup> d'eau. Après 15 minutes d'agitation à la même température, le milieu réactionnel est séché sur sulfate de magnésium, filtré sur papier, et concentré à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi

66 mg du N-méthylamide de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine-1-carboxylique sous forme d'une laque beige [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $\text{CDCl}_3$ , d en ppm) : 2,75 (s : 3H); 2,85 (d,  $J = 5$  Hz : 3H); 3,19 (t large,  $J = 5,5$  Hz : 4H); 3,52 (t large,  $J = 5,5$  Hz : 4H); 5 3,80 (mt : 2H); 4,33 (mt : 2H); 4,45 (q large,  $J = 5$  Hz : 1H); 4,49 (s : 1H); 6,81 (d,  $J = 8$  Hz : 1H); 6,89 (dd,  $J = 8$  et 2,5 Hz : 1H); 6,98 (s large : 1H); de 7,20 à 7,30 (mt : 5H); 7,32 (d,  $J = 8$  Hz : 4H)].

#### Exemple 150

A 54,25 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine est ajouté successivement, à une température voisine de 20°C, 2 cm<sup>3</sup> de pyridine puis 10,4 mg de chloroformate de méthyle. Après 6 heures d'agitation, à une température voisine de 20°C, le milieu réactionnel est concentré à sec sous pression réduite (5 kPa) à une température voisine de 30°C. Le résidu obtenu est repris avec 5 cm<sup>3</sup> d'acétate d'éthyle et 5 cm<sup>3</sup> d'eau. Après décantation, 15 la phase organique est lavée avec 2 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, filtrée, et concentrée à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 62 mg de l'ester de méthyl de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine-1-carboxylique sous forme d'une laque beige [Spectre de R.M.N.  $^1\text{H}$  (400 20 MHz,  $\text{CDCl}_3$ , d en ppm) : 2,75 (s : 3H); 3,15 (t large,  $J = 5,5$  Hz : 4H); 3,62 (mt : 4H); 3,74 (s : 3H); 3,80 (mt : 2H); 4,32 (mt : 2H); 4,49 (s : 1H); 6,81 (d,  $J = 8$  Hz : 1H); 6,90 (dd,  $J = 8$  et 2,5 Hz : 1H); 6,99 (s large : 1H); de 7,20 à 7,40 (mt : 9H)].

#### Exemple 151

A une solution de 54,25 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine dans 2 cm<sup>3</sup> de 1,2-dichloroéthane est ajouté successivement, à une température voisine de 20°C, 32 mg d'acétoxyborohydure de sodium puis 22 mg d'isobutyraldéhyde. Après 4 heures d'agitation, à une température voisine de 20°C, on ajoute au milieu réactionnel 3 cm<sup>3</sup> de

dichlorométhane et 2 cm<sup>3</sup> d'une solution aqueuse saturée en bicarbonate de sodium. Après décantation, la organique est séchée sur sulfate de magnésium, filtrée, et concentrée à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 63 mg de la 1-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényle]-4-isobutyl-piperazine sous forme d'une laque beige [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, d en ppm) : 0,92 (d, J = 7 Hz : 6H); 1,82 (mt : 1H); 2,14 (d, J = 8 Hz : 2H); 2,54 (t, J = 5,5 Hz : 4H); 2,75 (s : 3H); 3,18 (t, J = 5,5 Hz : 4H); 3,81 (mt : 2H); 4,32 (mt : 2H); 4,49 (s : 1H); 6,78 (d, J = 8 Hz : 1H); 6,89 (dd, J = 8 et 2,5 Hz : 1H); 6,97 (s large : 1H); de 7,15 à 7,30 (mt : 5H); 7,32 (d, J = 8 Hz : 4H)].

#### Exemple 152

A une solution de 54 mg de 1-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényle]-piperazine dans 2 cm<sup>3</sup> de 1,2-dichloroéthane est ajouté successivement, à une température voisine de 20°C, 32 mg d'acétoxyborohydrure de sodium puis 13 mg d'acétaldéhyde. Après 21 heures d'agitation, à une température voisine de 20°C, on ajoute au milieu réactionnel 2 cm<sup>3</sup> d'une solution aqueuse saturée en bicarbonate de sodium. Après décantation, la phase aqueuse est réextrait avec 2 cm<sup>3</sup> de dichlorométhane. Les phases organiques rassemblées sont séchées sur sulfate de magnésium, filtrées, et concentrées à sec sous pression réduite (1 kPa) à une température voisine de 20°C. On obtient ainsi 60 mg d'un résidu solide qui est repris avec 2 cm<sup>3</sup> de méthanol et 0,5 cm<sup>3</sup> de dichlorométhane. La solution obtenue est déposée sur une cartouche de silice (500 mg de phase SCX). La cartouche est lavée avec 5 cm<sup>3</sup> de méthanol, puis le produit attendu est élué avec 5 cm<sup>3</sup> de méthanol ammoniacal (2N) puis 5 cm<sup>3</sup> de méthanol supplémentaire. Le filtrat est concentré à sec sous pression réduite (1 kPa) à une température voisine de 30°C. On obtient ainsi 42 mg de la 1-[3-({1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène}-méthanesulfonyl-méthyl)phényle]-4-éthyl-piperazine sous forme d'une laque incolore [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, d en ppm) : 1,14 (t, J = 7,5 Hz : 3H); 2,48 (q, J = 7,5 Hz : 2H); 2,60 (t large, J = 5 Hz : 4H); 2,77 (s : 3H); 3,22 (t large, J = 5 Hz

: 4H); 3,82 (mt : 2H); 4,33 (mt : 2H); 4,49 (s : 1H); 6,79 (d large, J = 8 Hz : 1H); 6,91 (dd, J = 8 et 2 Hz : 1H); 6,98 (mt : 1H); de 7,20 à 7,40 (mt : 9H)].

#### Exemple 153

A 54 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine est ajouté successivement, à une température voisine de 20°C, 2 cm<sup>3</sup> de pyridine puis 11,5 mg d'anhydride acétique. Après 23 heures d'agitation, à une température voisine de 20°C, le milieu réactionnel est concentré à sec sous pression réduite (1 kPa) à une température voisine de 30°C. Le résidu obtenu est repris avec 5 cm<sup>3</sup> d'acétate d'éthyle et 2 cm<sup>3</sup> d'eau. Après décantation, la phase organique est lavée avec 2 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, filtrée, et concentrée à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 52 mg de 4-acétyl 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine sous forme d'une meringue beige [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, d en ppm) : 2,16 (s : 3H); 2,77 (s : 3H); de 3,10 à 3,25 (mt : 4H); 3,63 (t large, J = 5,5 Hz : 2H); 3,78 (t large, J = 5,5 Hz : 2H); 3,82 (mt : 2H); 4,34 (mt : 2H); 4,50 (s : 1H); 6,84 (d large, J = 8 Hz : 1H); 6,92 (dd, J = 8 et 2 Hz : 1H); 7,02 (mt : 1H); de 7,20 à 7,40 (mt : 9H)].

#### Exemple 154

A 54 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-méthyl]phényle-piperazine est ajouté successivement, à une température voisine de 20°C, 511 mg d'EDCI supporté (2,5 mM), 11,5 mg de N,N-diméthylglycine puis 5 cm<sup>3</sup> de dichlorométhane. Après 24 heures d'agitation, à une température voisine de 20°C, on ajoute 35 mg de N,N-diméthylglycine. Après 96 heures d'agitation, à une température voisine de 20°C, le mélange réactionnel est filtré sur verre fritté. La résine est rincée avec 3 fois 2,5 cm<sup>3</sup> de dichlorométhane. Les filtrats réunis sont lavés avec 10 cm<sup>3</sup> d'eau, séchés sur sulfate de magnésium, filtrés, et concentrés à sec sous pression réduite (5 kPa) à une température voisine de 20°C. On obtient ainsi 53 mg de la 1-{4-[3-(1-[bis-(4-chlorophényl)méthyl]-azétidin-3-ylidène)-méthanesulfonyl-

méthyl)phényl]-piperazin-1-yl}-2-diméthylamino-ethanone sous forme d'une meringue beige [Spectre de R.M.N.  $^1\text{H}$  (400 MHz,  $(\text{CD}_3)_2\text{SO}$  d6, d en ppm) : 2,20 (s : 6H); 2,94 (s : 3H); 3,12 (s : 2H); 3,16 (mt : 4H); 3,58 (mt : 2H); 3,68 (mt : 2H); 3,80 (mt : 2H); 4,19 (mt : 2H); 4,78 (s : 1H); 6,81 (d large,  $J = 8$  Hz : 1H); 6,93 (s large : 5 1H); 6,99 (dd,  $J = 8$  et 2,5 Hz : 1H); 7,26 (t,  $J = 8$  Hz : 1H); 7,36 (d,  $J = 8$  Hz : 4H); 7,46 (d,  $J = 8$  Hz : 4H)].

#### Exemple 155

Une solution de 320 mg de l'ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)méthanesulfonylméthyl]phényl]pipérazine-10 1-carboxylique dans 5 cm<sup>3</sup> d'acide formique est agitée 5 heures à une température voisine de 20°C, puis 1 heure à une température voisine de 45°C. Le milieu réactionnel est concentré à sec sous pression réduite (5 kPa) à une température voisine de 30°C, repris avec 20 cm<sup>3</sup> d'acétate d'éthyle et alcalinisé avec 10 cm<sup>3</sup> d'une solution aqueuse saturée en bicarbonate de sodium. Après décantation, la phase organique est lavée 15 avec 3 fois 10 cm<sup>3</sup> d'eau, séchée sur sulfate de magnésium, filtrée, et concentré à sec sous pression réduite (1 kPa) à une température voisine de 40°C. Le résidu obtenu est purifié par dépôt en solution dans un minimum de dichlorométhane sur gel de silice déposé sur plaque [(gel de 0,5 mm d'épaisseur, 5 plaques de 20 x 20 cm, éluant : dichlorométhane-méthanol (80-20 en volumes)]. La zone correspondant au produit 20 cherché adsorbé, localisée aux rayons U.V., est grattée et la silice recueillie est lavée sur verre fritté par un mélange dichlorométhane-méthanol (75-25 en volumes). Les filtrats sont réunis et concentrés à sec sous pression réduite (1 kPa) à une température voisine de 30°C. On obtient ainsi 180 mg de 1-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)méthanesulfonyl-méthyl]phényl]pipérazine 25 sous forme d'une poudre blanche [Spectre de R.M.N.  $^1\text{H}$  (300 MHz,  $\text{CDCl}_3$ ,  $\delta$  en ppm) : 2,77 (s : 3H); 3,05 (mt : 4H); 3,16 (mt : 4H); 3,81 (mt : 2H); 4,33 (mt : 2H); 4,49 (s : 1H); 6,79 (d large,  $J = 8$  Hz : 1H); 6,90 (dd,  $J = 8$  et 2,5 Hz : 1H); 6,98 (mt : 1H); de 7,20 à 7,40 (mt : 9H)].

L'ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)méthanesulfonylméthyl]phényl]pipérazine-1-carboxylique peut être préparé de la manière suivante : en opérant selon le mode opératoire de l'exemple 4 à partir de 1,32 g de l'ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]-3-hydroxy-azétidin-3-yl)-méthanesulfonylméthyl]phényl]pipérazine-1-carboxylique,

5 de 0,232 cm<sup>3</sup> de chlorure de méthanesulfonyle et 0,733 g de 4-diméthylaminopyridine, le résidu obtenu est purifié par chromatographie sur colonne de gel de silice (granulométrie 0,063-0,200 mm, diamètre 2 cm, hauteur 25 cm) à pression atmosphérique avec un mélange dichlorométhane-méthanol (99,5-0,5 en volumes) comme éluant et en recueillant des fractions de 15 cm<sup>3</sup>. Les fractions contenant le produit recherché sont réunies et concentrées à sec sous pression réduite (5 kPa) à une température voisine de 30°C. On obtient ainsi 0,86 g de l'ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène)-méthanesulfonylméthyl]phényl]pipérazine-1-carboxylique sous forme d'une

10 meringue blanche [Spectre de R.M.N <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 1,50 (s : 9H); 2,77 (s : 3H); 3,14 (t, J = 5 Hz : 4H); 3,57 (t, J = 5 Hz : 4H); 3,81 (mt : 2H); 4,34 (mt : 2H); 4,49 (s : 1H); 6,81 (d, J = 8 Hz : 1H); 6,90 (dd, J = 8 et 2,5 Hz : 1H); 6,99 (s large : 1H); de 7,20 à 7,30 (mt : 5H); 7,32 (d, J = 8 Hz : 4H)].

15

L'ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]-3-hydroxy-azétidin-3-yl)-méthanesulfonylméthyl]phényl]pipérazine-1-carboxylique peut être préparé selon la manière suivante : en opérant selon le mode opératoire de l'exemple 1 à partir de 0,886 g de l'ester tert-butylique de l'acide 4-(3-méthanesulfonylméthylphényle)pipérazine-1-carboxylique, de 0,765 g de 1-[bis(4-chlorophényl)méthyl]azétidin-3-one et 1,72 cm<sup>3</sup> d'une solution 1,6 M de n.butyllithium dans l'hexane, on obtient 1,37 g de l'ester tert-butylique de l'acide 4-[3-(1-[bis-(4-chlorophényl)méthyl]-3-hydroxy-azétidin-3-yl)-méthanesulfonylméthyl]phényl]pipérazine-1-carboxylique sous forme d'une poudre beige.

20

25

L'ester tert-butylique de l'acide 4-(3-méthanesulfonylméthylphényle)pipérazine-1-carboxylique peut être préparé selon la manière suivante : en opérant selon le mode

opératoire de l'exemple 10 à partir de 1,55 g de l'ester tert-butylique de l'acide 4-(3-chlorométhylphényle)pipérazine-1-carboxylique et 0,766 g de méthanesulfinate de sodium, on obtient 0,9 g de l'ester tert-butylique de l'acide 4-(3-méthanesulfonylméthylphényle)pipérazine-1-carboxylique sous forme d'une poudre beige.

5 L'ester tert-butylique de l'acide 4-(3-chlorométhylphényle)pipérazine-1-carboxylique peut être préparé selon la manière suivante : par réaction de 16,4 g de l'ester tert-butylique de l'acide 4-(3-hydroxyméthylphényle)pipérazine-1-carboxylique dans 150 cm<sup>3</sup> de dichlorométhane, à une température voisine de 20°C, avec 29 cm<sup>3</sup> de diisopropyléthylamine et 8,7 cm<sup>3</sup> de chlorure de méthanesulfonyle, on obtient après purification sur colonne de chromatographie (silice 0,063-0,200 mm, diamètre 6 cm, hauteur 45 cm, fractions de 100 cm<sup>3</sup>) en éluant avec du dichlorométhane, 15 g de l'ester tert-butylique de l'acide 4-(3-chlorométhylphényle)pipérazine-1-carboxylique sous forme d'une poudre beige.

15 L'ester tert-butylique de l'acide 4-(3-hydroxyméthylphényle)pipérazine-1-carboxylique peut être préparé de la manière suivante : par réaction de 15,8 g d'un mélange d'esters tert-butyliques des acides 4-(3-éthoxycarbonylphényle)pipérazine-1-carboxylique et 4-(3-n.butyloxycarbonylphényle)pipérazine-1-carboxylique en solution dans 500 cm<sup>3</sup> de THF anhydre, à une température voisine de -10°C, et 102 cm<sup>3</sup> d'hydrure de diisobutylaluminium en solution dans le toluène (20% en poids), on obtient 12,8 g de l'ester tert-butylique de l'acide 4-(3-hydroxyméthylphényle)pipérazine-1-carboxylique sous forme d'une huile beige.

Le mélange d'esters tert-butyliques des acides 4-(3-éthoxycarbonylphényle)pipérazine-1-carboxylique et 4-(3-n.butyloxycarbonylphényle)pipérazine-1-carboxylique peut être préparé selon la méthode décrite dans le brevet WO 9726250.

En opérant selon l'exemple 38 (méthode 2), à partir de 0,3 g de 3-acétoxy-1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine et 105 mg d'hydroxyde de lithium monohydrate dans 10 cm<sup>3</sup> d'acétonitrile, à une température voisine de 70°C, on obtient 0,24 g de 1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine sous forme d'une meringue orange [Spectre de R.M.N. <sup>1</sup>H (300 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,81 (s : 3H); de 3,85 à 3,95 (mt : 2H); 3,89 (s : 6H); 4,37 (mt : 2H); 4,67 (s : 1H); 6,84 (tt, J = 9 et 2,5 Hz : 1H); 6,99 (mt : 2H); 7,50 (d, J = 8 Hz : 4H); 7,97 (d, J = 8 Hz : 4H)].

#### 10 Exemple 157

En opérant selon le mode opératoire de l'exemple 40 à partir de 4,45 g de (3,5-difluorobenzyl)méthylsulfone, 6,36 g de 1-[bis(4-méthoxycarbonylphényl)méthyl]azétidin-3-one, 2,18 cm<sup>3</sup> de chlorure d'acétyle et 17 cm<sup>3</sup> d'une solution 1,6 M de n.butyllithium dans l'hexane, on obtient 10,8 g de 3-acétoxy-1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine sous forme d'une meringue jaune pâle [Spectre de R.M.N. <sup>1</sup>H (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, δ en ppm) : 2,03 (s : 3H); 2,96 (s : 3H); de 3,25 à 3,40 (mt : 2H); 3,52 (d large, J = 8 Hz : 1H); de 3,75 à 3,90 (mt : 1H); 3,82 (s : 3H); 3,83 (s : 3H); 4,72 (s : 1H); 5,36 (s : 1H); 7,27 (d, J = 8 Hz : 2H); de 7,35 à 7,45 (mt : 2H); 7,43 (d, J = 8 Hz : 2H); 7,54 (tt, J = 9,5 et 2,5 Hz : 1H); 7,81 (d, J = 8 Hz : 2H); 7,88 (d, J = 8 Hz : 2H)].

La 1-[bis(4-méthoxycarbonylphényl)méthyl]azétidin-3-one peut être préparée de la même manière que la 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-one (exemple 110) à partir du 1-[bis(4-méthoxycarbonylphényl)méthyl]azétidin-3-ol.

25 Le 1-[bis(4-méthoxycarbonylphényl)méthyl]azétidin-3-ol peut être préparé de la même manière que la 1-{(R\*)-(4-chlorophényl)[4-(méthoxycarbonyl)phényl]méthyl}azétidin-3-ol (exemple 110) à partir de la bis(4-méthoxycarbonylphényl)méthylamine.

La bis(4-méthoxycarbonylphényl)méthylamine peu être préparée de la même manière que le 4-[(RS)-amino-(4-chlorophényl)méthyl]benzoate de méthyle (exemple 87) à partir de la 4,4'-diméthoxycarbonyl-benzophénone.

Exemple 158

5 En opérant selon le mode opératoire de l'exemple 110, à partir de 40 mg de (RS)-1-{[4-(chlorométhyl)phényl](4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl)méthylsulfonyl méthylène]azétidine, 0,25 cm<sup>3</sup> de dichlorométhane et 0,0196 cm<sup>3</sup> de morpholine, on obtient 35,8 mg de (RS)-4-[4-((4-chlorophényl){3-[(3,5-difluorophényl)méthanesulfonyl-méthylène]azétidin-1-yl}-méthyl)benzyl]morpholine sous forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 2,41 (mt : 4H); 2,80 (s : 3H); 3,42 (s : 2H); 3,69 (t, J = 4,5 Hz : 4H); 3,84 (mt : 2H); 4,33 (mt : 2H); 4,50 (s : 1H); 6,83 (tt, J = 9 et 2,5 Hz : 1H); 6,98 (mt : 2H); de 7,20 à 7,40 (mt : 8H)].

15 La (RS)-1-{[4-(chlorométhyl)phényl](4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl)méthylsulfonyl méthylène]azétidine peut être préparée de la manière suivante : en opérant selon l'exemple 87, à partir de 415 mg de (RS)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl)méthyl}-3-[(3,5-difluorophényle)(méthylsulfonyl)méthylène]azétidine, 5 cm<sup>3</sup> de dichlorométhane, 0,19 cm<sup>3</sup> de chlorure de méthane sulfonyle, et 0,53 cm<sup>3</sup> de diisopropyléthylamine, on obtient 20 421,2 mg de (RS)-1-{[4-(chlorométhyl)phényl](4-chlorophényl)méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl)méthylsulfonyl méthylène]azétidine sous forme d'une meringue crème.

Exemple 159

A une solution de 33 mg de 1-benzhydryl-3-{[3-(4-bromo-butoxy)phényl)méthane-sulfonyl-méthylène}-azétidine dans 2 cm<sup>3</sup> d'acetonitrile anhydre, sont ajoutés successivement, à une température voisine de 20°C, sous atmosphère inerte d'argon, 25 mg

de carbonate de potassium puis 0,016 cm<sup>3</sup> de morpholine. Après 17 heures d'agitation à une température voisine de 20°C, le milieu réactionnel est dilué avec 10 cm<sup>3</sup> d'acétate d'éthyle et 4 cm<sup>3</sup> d'eau. La phase organique, séparée, est lavée avec 4 cm<sup>3</sup> d'une solution aqueuse saturée en chlorure de sodium, séchée sur sulfate de magnésium,

5 filtrée sur verre fritté, puis concentrée à sec sous pression réduite (1 kPa) à une température voisine de 40°C. Le résidu obtenu est purifié par dépôt en solution dans un minimum de dichlorométhane sur chromatographie sur gel de silice déposé sur plaque [(gel de 0,5 mm d'épaisseur, 2 plaques de 20 x 20 cm, éluant : dichlorométhane-méthanol (92,5-7,5 en volumes)]. La zone correspondant au produit cherché adsorbé,

10 localisée aux rayons U.V., est grattée et la silice recueillie est lavée sur verre fritté par un mélange dichlorométhane-méthanol (80-20 en volumes). Les filtrats sont réunis et concentrés à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 25,2 mg de 4-(4-{3-[(1-benzhydryl-azétidin-3-ylidene)méthanesulfonyl-méthyl]phénoxy}-butyl)morpholine sous forme d'une meringue jaune pâle [Spectre de

15 R.M.N. <sup>1</sup>H (400 MHz, CDCl<sub>3</sub>, δ en ppm) : 1,66 (mt : 2H); 1,81 (mt : 2H); 2,40 (t, J = 7,5 Hz : 2H); 2,46 (mt : 4H); 2,77 (s : 3H); 3,72 (t, J = 5 Hz : 4H); 3,84 (mt : 2H); 3,96 (t, J = 6,5 Hz : 2H); 4,36 (mt : 2H); 4,53 (s : 1H); 6,87 (dd, J = 8 et 2 Hz : 1H); 6,93 (d, J = 8 Hz : 1H); 6,96 (d, J = 2 Hz : 1H); de 7,10 à 7,35 (mt : 7H); 7,42 (d, J = 8 Hz : 4H)].

20 La 1-benzhydryl-3-{[3-(4-bromo-butoxy)phényle]méthanesulfonyl-méthylène}-azétidine peut être préparée de la manière suivante : A une solution de 500 mg de 1-benzhydryl-3-[(3-hydroxyphényle)(méthylsulfonyl)méthylène]azétidine dans 10 cm<sup>3</sup> de méthyl-éthylcétone, on ajoute successivement à une température voisine de 20°C, sous atmosphère inerte d'argon, 0,586 cm<sup>3</sup> de 1,4-dibromobutane et 255 mg de carbonate de potassium. Le mélange réactionnel est porté au reflux du solvant, sous atmosphère inerte d'argon, pendant 7 heures, puis laissé à une température voisine de 20°C pendant environ 4 jours. Le mélange réactionnel est filtré sur verre fritté garni de cérite. Le résidu solide est rincé avec de l'acétate d'éthyle, puis le filtrat est concentré à sec sous pression réduite (10 kPa) à une température voisine de 40°C.

25 30 L'huile brune obtenue est purifiée par chromatographie à pression atmosphérique sur

40 g de silice (0,063-0,200 mm) contenus dans une colonne de 3 cm de diamètre en éluant avec un mélange méthanol-dichlorométhane (0,5-99,5 en volumes). Les fractions (10 cm<sup>3</sup>) ne contenant que le produit cherché sont réunies et concentrées à sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 5 408,4 mg de 1-benzhydryl-3-{{[3-(4-bromo-butoxy)phényl]méthanesulfonylméthylene}-azétidine sous forme d'une meringue brune.

#### Exemple 160

A une solution de 45 mg de 1-benzhydryl-3-{{[3-(4-bromo-propyloxy)phényl]méthanesulfonylméthylene}-azétidine dans 3,5 cm<sup>3</sup> d'acétonitrile anhydre, sont ajoutés 10 successivement, à une température voisine de 20°C, sous atmosphère inerte d'argon, 0,110 cm<sup>3</sup> de morpholine puis 35 mg de carbonate de potassium. Après 20 heures d'agitation à une température voisine de 20°C, le milieu réactionnel est dilué avec 40 cm<sup>3</sup> d'acétate d'éthyle et 10 cm<sup>3</sup> d'eau. La phase organique, séparée, est lavée avec 10 cm<sup>3</sup> d'eau, puis 2 fois 10 cm<sup>3</sup> d'une solution aqueuse saturée en chlorure de sodium, 15 séchée sur sulfate de magnésium, filtrée sur verre fritté, puis concentrée à sec sous pression réduite (9 kPa) à une température voisine de 40°C. La laque jaune obtenue est purifiée par dépôt en solution dans un minimum de dichlorométhane sur chromatographie sur gel de silice déposé sur plaque [(gel de 0,5 mm d'épaisseur, 2 plaques de 20 x 20 cm, éluant : dichlorométhane-méthanol (97,5-2,5 en volumes)]. La zone 20 correspondant au produit cherché adsorbé, localisée aux rayons U.V., est grattée et la silice recueillie est lavée sur verre fritté par un mélange dichlorométhane-méthanol (85-15 en volumes). Les filtrats sont réunis et concentrés à sec sous pression réduite (1 kPa) à une température voisine de 40°C. On obtient ainsi 33 mg de 4-{4-{{[1-benzhydryl-azétidin-3-ylidene]méthanesulfonylméthyl]phénoxy}-propyl)morpholine 25 sous forme d'une meringue blanche [Spectre de R.M.N. <sup>1</sup>H (300 MHz, (CD<sub>3</sub>)<sub>2</sub>SO d6, δ en ppm) : 1,87 (mt : 2H); 2,37 (mt : 4H); 2,42 (t, J = 7,5 Hz : 2H); 2,94 (s : 3H); 3,58 (mt : 4H); 3,80 (mt : 2H); 4,02 (t, J = 7 Hz : 2H); 4,20 (mt : 2H); 4,74 (s : 1H); 6,97 (mt : 3H); 7,22 (t, J = 7,5 Hz : 2H); de 7,25 à 7,40 (mt : 1H); 7,32 (t, J = 7,5 Hz : 4H); 7,48 (d, J = 7,5 Hz : 4H)].

La 1-benzhydryl-3-{{[3-(4-bromo-propyloxy)phényl]méthanesulfonyl-méthylene}-azétidine peut être préparée de la manière suivante : A une solution de 500 mg de 1-benzhydryl-3-[{(3-hydroxyphényl)(méthylsulfonyl)méthylène]azétidine dans 10 cm<sup>3</sup> de méthyl-éthylcétone, on ajoute successivement à une température voisine de 20°C,

5 sous atmosphère inerte d'argon, 0,5 cm<sup>3</sup> de 1,3-dibromopropane et 255 mg de carbonate de potassium. Le mélange réactionnel est porté au reflux du solvant, sous atmosphère inerte d'argon, pendant 7 heures, puis laissé à une température voisine de 20°C pendant environ 4 jours. Le mélange réactionnel est filtré sur verre fritté garni de cérite. Le résidu solide est rincé avec de l'acétate d'éthyle, puis le filtrat est

10 concentré à sec sous pression réduite (10 kPa) à une température voisine de 40°C. L'huile brune obtenue est purifiée par chromatographie à pression atmosphérique sur 40 g de silice (0,063-0,200 mm) contenus dans une colonne de 3 cm de diamètre en éluant avec un mélange méthanol-dichlorométhane (0,5-99,5 en volumes). Les fractions (10 cm<sup>3</sup>) ne contenant que le produit cherché sont réunies et concentrées à

15 sec sous pression réduite (0,27 kPa) à 40°C pendant 2 heures. On obtient ainsi 511,1 mg de 1-benzhydryl-3-{{[3-(4-bromo-propyloxy)phényl]méthanesulfonyl-méthylene}-azétidine sous forme d'une meringue brune.

Les médicaments selon l'invention sont constitués par un composé de formule (I) ou un isomère ou un sel d'un tel composé, à l'état pur ou sous forme d'une composition

20 dans laquelle il est associé à tout autre produit pharmaceutiquement compatible, pouvant être inerte ou physiologiquement actif. Les médicaments selon l'invention peuvent être employés par voie orale, parentérale, rectale ou topique.

Comme compositions solides pour administration orale, peuvent être utilisés des comprimés, des pilules, des poudres (capsules de gélatine, cachets) ou des granulés.+

25 Dans ces compositions, le principe actif selon l'invention est mélangé à un ou plusieurs diluants inertes, tels que amidon, cellulose, saccharose, lactose ou silice , sous courant d'argon. Ces compositions peuvent également comprendre des substances autres que les diluants, par exemple un ou plusieurs lubrifiants tels que le stéarate de magnésium ou le talc, un colorant, un enrobage (dragées) ou un vernis.

Comme compositions liquides pour administration orale, on peut utiliser des solutions, des suspensions, des émulsions, des sirops et élixirs pharmaceutiquement acceptables contenant des diluants inertes tels que l'eau, l'éthanol, le glycérin, les huiles végétales ou l'huile de paraffine. Ces compositions peuvent comprendre des 5 substances autres que les diluants, par exemple des produits mouillants, édulcorants, épaississants, aromatisants ou stabilisants.

Les compositions stériles pour administration parentérale, peuvent être de préférence des solutions aqueuses ou non aqueuses, des suspensions ou des émulsions. Comme solvant ou véhicule, on peut employer l'eau, le propyléneglycol, un polyéthyléneglycol, des huiles végétales, en particulier l'huile d'olive, des esters organiques injectables, par exemple l'oléate d'éthyle ou d'autres solvants organiques convenables. Ces 10 compositions peuvent également contenir des adjuvants, en particulier des agents mouillants, isotonisants, émulsifiants, dispersants et stabilisants. La stérilisation peut se faire de plusieurs façons, par exemple par filtration aseptisante, en incorporant à la 15 composition des agents stérilisants, par irradiation ou par chauffage. Elles peuvent également être préparées sous forme de compositions solides stériles qui peuvent être dissoutes au moment de l'emploi dans de l'eau stérile ou tout autre milieu stérile injectable.

Les compositions pour administration rectale sont les suppositoires ou les capsules 20 rectales qui contiennent, outre le produit actif, des excipients tels que le beurre de cacao, des glycérides semi-synthétiques ou des polyéthyléneglycols.

Les compositions pour administration topique peuvent être par exemple des crèmes, lotions, collyres, collutoires, gouttes nasales ou aérosols.

En thérapeutique humaine, les composés selon l'invention sont particulièrement utiles 25 pour le traitement et/ou la prévention des psychoses y compris la schizophrénie, des troubles anxieux, de la dépression, de l'épilepsie, de la neurodégénération, des désordres cérébelleux et spinocérébelleux, des désordres cognitifs, du trauma crânien, des attaques de panique, des neuropathies périphériques, des glaucomes, de la migraine,

de la maladie de Parkinson, de la maladie d'Alzheimer, de la chorée de Huntington, du syndrome de Raynaud, des tremblements, du désordre compulso-obsessionnel, de la démence sénile, des désordres thymiques, du syndrome de Tourette, de la dyskinésie tardive, des désordres bipolaires, des cancers, des désordres du mouvement induit  
5 par les médicaments, des dystonies, des chocs endotoxémiques, des chocs hémorragiques, de l'hypotension, de l'insomnie, des maladies immunologiques, de la sclérose en plaques, des vomissements, de l'asthme, des troubles de l'appétit (boulimie, anorexie), de l'obésité, des troubles de la mémoire, des troubles du transit intestinal, dans le sevrage aux traitements chroniques et abus d'alcool ou de médicaments (opioïdes,  
10 barbituriques, cannabis, cocaïne, amphétamine, phencyclidine, hallucinogènes, benzodiazépines par exemple), comme analgésiques ou potentialisateurs de l'activité analgésique des médicaments narcotiques et non narcotiques, comme antibactériens, antiviraux et antiparasitaires.

Les doses dépendent de l'effet recherché, de la durée du traitement et de la voie d'administration utilisée; elles sont généralement comprises entre 5 mg et 1000 mg par jour par voie orale pour un adulte avec des doses unitaires allant de 1 mg à 250 mg de substance active.

D'une façon générale, le médecin déterminera la posologie appropriée en fonction de l'âge, du poids et de tous les autres facteurs propres au sujet à traiter.

20 Les exemples suivants illustrent des compositions selon l'invention :

EXAMPLE A

On prépare, selon la technique habituelle, des gélules dosées à 50 mg de produit actif ayant la composition suivante :

|                               |       |
|-------------------------------|-------|
| - Composé de formule (I)..... | 50 mg |
| 25 - Cellulose.....           | 18 mg |
| - Lactose.....                | 55 mg |
| - Silice colloïdale.....      | 1 mg  |

201

|                                    |       |
|------------------------------------|-------|
| - Carboxyméthylamidon sodique..... | 10 mg |
| - Talc.....                        | 10 mg |
| - Stéarate de magnésium.....       | 1 mg  |

EXEMPLE B

5 On prépare selon la technique habituelle des comprimés dosés à 50 mg de produit actif ayant la composition suivante :

|                                                                                                                              |        |
|------------------------------------------------------------------------------------------------------------------------------|--------|
| - Composé de formule (I).....                                                                                                | 50 mg  |
| - Lactose.....                                                                                                               | 104 mg |
| - Cellulose.....                                                                                                             | 40 mg  |
| 10 - Polyvidone.....                                                                                                         | 10 mg  |
| - Carboxyméthylamidon sodique.....                                                                                           | 22 mg  |
| - Talc.....                                                                                                                  | 10 mg  |
| - Stéarate de magnésium.....                                                                                                 | 2 mg   |
| - Silice colloïdale.....                                                                                                     | 2 mg   |
| 15 - Mélange d'hydroxyméthylcellulose, glycérine, oxyde de titane (72-3,5-24,5) q.s.p. 1 comprimé pelliculé terminé à 245 mg |        |

EXEMPLE C

On prépare une solution injectable contenant 10 mg de produit actif ayant la composition suivante :

|                                  |         |
|----------------------------------|---------|
| 20 - Composé de formule (I)..... | 10 mg   |
| - Acide benzoïque.....           | 80 mg   |
| - Alcool benzylique.....         | 0,06 ml |
| - Benzoate de sodium.....        | 80 mg   |
| - Ethanol à 95 %.....            | 0,4 ml  |
| 25 - Hydroxyde de sodium.....    | 24 mg   |
| - Propylène glycol.....          | 1,6 ml  |
| - Eau.....q.s.p.                 | 4 ml    |

## REVENDICATIONS

1 - Composés de formule :



dans laquelle

5 R représente une chaîne



R<sub>1</sub> représente un radical méthyle ou éthyle,

R<sub>2</sub> représente soit un aromatique choisi parmi phényle, naphtyle ou indényle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle,  
 10 alcoxy, -CO-alk, hydroxy, -COOR<sub>3</sub>, formyle, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, nitro, -NR<sub>4</sub>R<sub>5</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, -N(alk)COOR<sub>8</sub>, cyano, -CONHR<sub>9</sub>, -CO-NR<sub>10</sub>R<sub>11</sub>, alkylsulfanyle, hydroxyalkyle, -O-alk-NR<sub>12</sub>R<sub>13</sub> ou alkylthio-alkyle soit un hétéroaromatique choisi parmi les cycles benzofuryle, benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle,  
 15 2,3-dihydrobenzothiényle, indolinyle, indolyle, isochromannyle, isoquinolyle, pyridyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, 1,2,3,4-tétrahydroquinolyle, thiazolyle, thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, -COOR<sub>3</sub>, trifluorométhyle, trifluorométhylsulfanyle, trifluo-

rométhoxy, nitro, -NR<sub>6</sub>R<sub>7</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, cyano, -CONHR<sub>8</sub>, alkylsulfanyle, hydroxyalkyle ou alkylthioalkyle,

R<sub>3</sub> et R<sub>4</sub>, identiques ou différents, représentent soit un aromatique choisi parmi phényle, naphtyle ou indényle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, formyle, hydroxy, trifluorométhyle, trifluorométhoxy, -CO-alk, cyano, -COOR<sub>9</sub>, -CONR<sub>10</sub>R<sub>11</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, alkylsulfanyle, hydroxyalkyle, -alk-NR<sub>6</sub>R<sub>7</sub> ou alkylthioalkyle; soit un hétéroaromatique choisi parmi les cycles benzofuryle, benzothiazolyle, benzothiényle, benzoxazolyle, chromannyle, 2,3-dihydrobenzofuryle, 2,3-dihydrobenzothiényle, furyle, isochromannyle, isoquinolyle, pyrrolyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, thiazolyle, thiényle, ces hétéroaromatiques pouvant être non substitués ou substitués par un halogène, alkyle, alcoxy, hydroxy, trifluorométhyle, trifluorométhoxy, cyano, -COOR<sub>9</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, -CONR<sub>10</sub>R<sub>11</sub>, -alk-NR<sub>6</sub>R<sub>7</sub>, alkylsulfanyle, hydroxyalkyle ou alkylthioalkyle,

15 R<sub>5</sub> est un radical alkyle ou phényle éventuellement substitué par un ou plusieurs atomes d'halogène,

R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R<sub>6</sub> et R<sub>7</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle, -COOalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub>, oxo, hydroxyalkyle, -alk-O-alk, -CO-NH<sub>2</sub>,

20 R<sub>8</sub> représente un radical alkyle,

25 R<sub>9</sub> représente un atome d'hydrogène ou un radical alkyle ou alkyle substitué par dialkylamino, phényle, cycloalkyle (éventuellement substitué par -COOalk) ou un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant

éventuellement un ou plusieurs hétéroatomes choisis parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle,

R<sub>10</sub> et R<sub>11</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R<sub>10</sub> et R<sub>11</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle,

R<sub>12</sub> et R<sub>13</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle ou bien R<sub>12</sub> et R<sub>13</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub> ou un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons et contenant un hétéroatome choisi parmi oxygène, soufre et azote,

R<sub>14</sub> et R<sub>15</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou -COOalk,

R<sub>16</sub> et R<sub>17</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote,

R' représente un atome d'hydrogène ou un radical -CO-alk,

alk représente un radical alkyle ou alkylène,

étant entendu que les radicaux et portions alkyle et alkylène et les radicaux et portions alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone,

25 leurs isomères optiques et leurs sels avec un acide minéral ou organique.

2 - Composés de formule (I) selon la revendication 1 pour lesquels lorsque R<sub>6</sub> et R<sub>7</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono

ou bicyclique, saturé ou insaturé ayant 3 à 10 chaînons celui-ci est un cycle azétidinyle, pyrrolidinyle, pipérazinyle, pipéridyle, morpholinyle, imidazolyle, thiomorpholinyle ou furyle, ces cycles étant éventuellement substitués par un radical alkyle, hydroxyalkyle, -alk-O-alk, -CONH<sub>2</sub>, -COalk, -COOalk, oxo, -CSNHalk, 5 -CONHalk ou -CO-alk-NR<sub>14</sub>R<sub>15</sub> dans lequels alk, R<sub>14</sub> et R<sub>15</sub> ont les mêmes significations que dans la revendication 1,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

3 - Composés de formule (I) selon l'une des revendications 1 ou 2 pour lesquels lorsque R<sub>10</sub> et R<sub>11</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un 10 hétérocycle mono ou bicyclique saturé et ayant 3 à 10 chaînons, celui-ci est un cycle azétidinyle, pyrrolidinyle, pipérazinyle, pipéridyle, morpholinyle ou thiomorpholinyle, ces cycles étant éventuellement substitués par un alkyle,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

4 - Composés de formule (I) selon l'une des revendications 1 à 3 pour lesquels lorsque 15 R<sub>12</sub> et R<sub>13</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé et ayant 3 à 10 chaînons, celui-ci est un cycle azétidinyle, pyrrolidinyle, pipérazinyle, pipéridyle, morpholinyle ou thiomorpholinyle, ces cycles étant éventuellement substitués par un radical alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub> ou un hétérocycle mono 20 ou bicyclique saturé ayant 3 à 10 chaînons et contenant un hétéroatome choisi parmi oxygène, soufre et azote, et, en particulier, par un radical thiomorpholinyle, alk, R<sub>14</sub> et R<sub>15</sub> ayant les mêmes significations que dans la revendication 1,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

5 - Composés de formule (I) selon l'une des revendications 1 à 4 pour lesquels lorsque 25 R<sub>16</sub> et R<sub>17</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé et ayant 3 à 10 chaînons, celui-ci est un cycle pipéridyle,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

6 - Composés de formule (I) selon l'une des revendications 1 à 5 pour lesquels R<sub>1</sub> représente un radical alkyle substitué par un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chainons, contenant éventuellement un ou plusieurs hétéroatomes choisis parmi oxygène, soufre et azote, ce dernier étant un cycle pyrrolidinyle, tétrahydrofuryle, morpholinyle, pyrrolyle et ces cycles étant éventuellement substitués par un ou plusieurs radicaux alkyle,

5 leurs isomères optiques et leurs sels avec un acide minéral ou organique.

7 - Composés de formule (I) selon la revendication 1 pour lesquels R représente une chaîne (A) ou (B),

10 R' représentant un atome d'hydrogène ou un radical -COalk,

R<sub>1</sub> représente un radical méthyle ou éthyle,

R<sub>2</sub> représente soit un aromatique choisi parmi phényle et naphtyle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, hydroxy, -COOR<sub>3</sub>, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, -NR<sub>6</sub>R<sub>7</sub>,

15 -CO-NH-NR<sub>6</sub>R<sub>7</sub>, cyano, -CONHR<sub>9</sub>, alkylsulfanyle, hydroxyalkyle, nitro, -CO-NR<sub>10</sub>R<sub>11</sub>, -O-alkNR<sub>12</sub>R<sub>13</sub> ou alkylthioalkyle ou un hétéroaromatique choisi parmi isoquinolyle, pyridyle, quinolyle, 1,2,3,4-tétrahydroisoquinolyle, 1,2,3,4-tétrahydroquinolyle, thiényle, ces hétéroaromatiques étant non substitués ou substitués par un halogène, alkyle, alcoxy, -COOR<sub>3</sub>, trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy,

20 -NR<sub>6</sub>R<sub>7</sub>, -CO-NH-NR<sub>6</sub>R<sub>7</sub>, cyano, -CONHR<sub>9</sub>, alkylsulfanyle, hydroxyalkyle, nitro ou alkylthioalkyle,

R<sub>3</sub> et R<sub>4</sub>, identiques ou différents, représentent soit un aromatique choisi parmi phényle ou naphtyle, ces aromatiques étant non substitués ou substitués par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, -CONR<sub>10</sub>R<sub>11</sub>,

25 -alk-NR<sub>6</sub>R<sub>7</sub>, hydroxyalkyle, formyle, -COOR<sub>3</sub>, soit un hétéroaromatique choisi parmi les cycles thiazolyle ou thiényle, ces hétéroaromatiques étant non substitués ou

substitués par un halogène, alkyle, alcoxy, -CONR<sub>10</sub>R<sub>11</sub>, -alk-NR<sub>6</sub>R<sub>7</sub>, hydroxyalkyle ou -COOR<sub>8</sub>,

R<sub>5</sub> est alkyle ou phényle éventuellement substitué par un ou plusieurs halogène,

R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, -COOalk, cycloalkyle, alkylcycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R<sub>6</sub> et R<sub>7</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle, -COOalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub>, oxo, hydroxyalkyle, -alk-O-alk, -CO-NH<sub>2</sub>,

R<sub>8</sub> représente un atome d'hydrogène ou un radical alkyle ou alkyle substitué par dialkylamino, phényle, cycloalkyle (éventuellement substitué par -COOalk) ou un hétérocycle mono ou bicyclique saturé ou insaturé ayant 3 à 10 chaînons, contenant éventuellement un ou plusieurs hétéroatomes choisis parmi oxygène, soufre et azote et étant éventuellement substitué par un ou plusieurs radicaux alkyle,

R<sub>10</sub> et R<sub>11</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou bien R<sub>10</sub> et R<sub>11</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle,

R<sub>12</sub> et R<sub>13</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle ou bien R<sub>12</sub> et R<sub>13</sub> forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chaînons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote et étant éventuellement substitué par un radical alkyle, -COOalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub> ou un hétérocycle mono ou bicyclique

saturé ayant 3 à 10 chainons et contenant un hétéroatome choisi parmi oxygène, soufre et azote,

$R_{14}$  et  $R_{15}$ , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle ou -COOalk,

5      $R_{16}$  et  $R_{17}$ , forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle mono ou bicyclique saturé ayant 3 à 10 chainons, contenant éventuellement un autre hétéroatome choisi parmi oxygène, soufre et azote,

alk représente un radical alkyle ou alkylène,

étant entendu que les radicaux et portions alkyle et alkylène et les radicaux et portions  
10    alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

8 - Composés de formule (I) selon la revendication 1 pour lesquels

$R$  représente une chaîne (A) ou (B),

$R'$  représentant un atome d'hydrogène ou un radical -COalk,

15     $R_1$  représente un radical méthyle ou éthyle,

$R_2$  représente soit un aromatique choisi parmi

naphtyle,

phényle,

phényle substitué par un ou plusieurs halogène, alkyle, alcoxy, hydroxy, -COOR,  
20    (dans lequel  $R$ , représente un radical alkyle ou phényle éventuellement substitué par plusieurs halogènes), trifluorométhyle, trifluorométhylsulfanyle, trifluorométhoxy, -NR<sub>6</sub>R<sub>7</sub>, (dans lequel R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle ou -COOalk ou bien R<sub>6</sub> et R<sub>7</sub>, forment ensemble avec

l'atome d'azote auquel ils sont rattachés un hétérocycle choisi parmi pyrrolidinyle, pipéridyle, pipérazinyle ou pipérazinyle substitué par un ou plusieurs radicaux alkyle, -COalk, -COOalk, -CO-NHalk, -CS-NHalk, -CO-alk-NR<sub>14</sub>R<sub>15</sub>, dans lequel R<sub>14</sub> et R<sub>15</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle),

5 -CO-NH-NR<sub>6</sub>R<sub>7</sub>, (R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle ou bien R<sub>6</sub> et R<sub>7</sub>, forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle choisi parmi pipéridyle, pyrrolyle, pipérazinyle ou pipérazyle substitué par un ou plusieurs radicaux alkyle), cyano, -CONHR<sub>9</sub>, (dans lequel R<sub>9</sub> représente un atome d'hydrogène ou un radical alkyle ou alkyle substitué par dialkylamino, phényle, cycloalkyle (éventuellement substitué par -COOalk) ou un hétérocycle choisi parmi pyrrolidinyle (éventuellement substitué par alkyle), tétrahydrofuryle, morpholinyle), alkylsulfanyle, hydroxyalkyle, nitro, -CO-NR<sub>16</sub>R<sub>17</sub>, (dans lequel R<sub>16</sub> et R<sub>17</sub>, forment ensemble avec l'atome d'azote auquel ils sont rattachés un cycle pipéridyle), -O-alkNR<sub>12</sub>R<sub>13</sub>, (dans lequel R<sub>12</sub> et R<sub>13</sub>, forment ensemble avec l'atome d'azote auquel ils sont rattachés un cycle morpholino) ou alkylthioalkyle,

10 soit un hétéroaromatique choisi parmi

isoquinolyle,

pyridyle,

quinolyle,

20 1,2,3,4-tétrahydroisoquinolyle,

1,2,3,4-tétrahydroquinolyle,

thiényle, ou

thiényle substitué par un -COOR<sub>3</sub>, (dans lequel R<sub>3</sub> représente un radical alkyle) ou -CONHR<sub>9</sub>, (dans lequel R<sub>9</sub> représente un radical alkyle),

25 R<sub>3</sub> et R<sub>4</sub>, identiques ou différents, représentent soit un aromatique choisi parmi

phényle ou

phényle substitué par un ou plusieurs halogène, alkyle, alcoxy, trifluorométhyle, trifluorométhoxy, hydroxyalkyle, formyle, -COOR<sub>s</sub> (dans lequel R<sub>s</sub> est un radical alkyle), -CONR<sub>10</sub>R<sub>11</sub> (dans lequel R<sub>10</sub> et R<sub>11</sub>, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle), -alk-NR<sub>6</sub>R<sub>7</sub>, (dans lequel R<sub>6</sub> et R<sub>7</sub>, identiques ou différents représentent un atome d'hydrogène ou un radical alkyle, cycloalkyle, -alk-O-alk, hydroxyalkyle ou bien R<sub>6</sub> et R<sub>7</sub>, forment ensemble avec l'atome d'azote auquel ils sont rattachés un hétérocycle choisi parmi pipéridyle (éventuellement substitué par alkyle, oxo), pyrrolidinyle (éventuellement substitué par alkyle, 10 hydroxyalkyle, -alk-O-alk, -CO-NH<sub>2</sub>), thiomorpholinyle, morpholinyle, pyrrolyle, pipérazinyle éventuellement substitué par oxo, alkyle, hydroxyalkyle, -COOR<sub>s</sub> (dans lequel R<sub>s</sub> est un radical alkyle),

soit un hétéroaromatique choisi parmi

thiazolyle ou

15 thiényle,

alk représente un radical alkyle ou alkylène,

étant entendu que les radicaux et portions alkyle et alkylène et les radicaux et portions alcoxy sont en chaîne droite ou ramifiée et contiennent 1 à 6 atomes de carbone,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

20 9 - Composés choisis parmi :

1-benzhydryl-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthylphényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-chlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(2,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(2,3-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-fluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-benzhydryl-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-bromophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-iodophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhoxyphényl)méthylène]azétidine,

1-benzhydryl-3-[(méthylsulfonyl)(3-trifluorométhylphényl)méthylène]azétidine,

10 1-benzhydryl-3-{[3,5-bis(trifluorométhyl)phényl](méthylsulfonyl)méthylène}azétidine,

1-benzhydryl-3-[(3,5-dibromophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-benzhydryl-3-[(3-carbamoylphényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(méthylsulfonyl)(napht-1-yl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-[bis(4-méthoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-méthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-[(4-méthoxyphényl)(phényl)méthyl]azétidine,

5 (R)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-[(4-méthoxyphényl)(phényl)méthyl]azétidine,

(S)-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]-1-[(4-méthoxyphényl)(phényl)méthyl]azétidine,

10 1-[bis(4-trifluorométhoxyphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-trifluorométhylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-[bis(4-chlorophényl)méthyl]-3-{[3,5-bis(trifluorométhyl)phényl]méthylsulfonyl)méthylène}azétidine,

(R)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 (S)-1-[(4-chlorophényl)(2,4-dichlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-{(4-chlorophényl)[4-(hydroxyméthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

(RS)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

5 (R)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

(S)-1-{(4-chlorophényl)[4-(pyrrolidylméthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

10 1-{(RS)-(4-chlorophényl)[4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

15 1-{(S)-(4-chlorophényl)[4-(3,3-diméthyl-pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(thiomorpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

20 1-{(R)-(4-chlorophényl)[4-(thiomorpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(thiomorpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[(3,5-difluorophényle)(méthylsulfonylméthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(N-éthyl-N-cyclohexyl-aminométhyl)phényl]méthyl}-3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(RS)-(4-chlorophényl){4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{{(R)-(4-chlorophényl){4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(S)-(4-chlorophényl){4-[(4-éthoxycarbonylpipérazinyl)méthyl]phényl}méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(RS)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{{(R)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(R)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(S)-(4-chlorophényl)[4-(N-cyclopropyl-N-propyl-aminométhyl)phényl]méthyl}-3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-{{(RS)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(R)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-{{(S)-(4-chlorophényl)[4-(diisopropylaminométhyl)phényl]méthyl}-3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(RS)-(4-chlorophényl){4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{{(R)-(4-chlorophényl){4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-  
3-[  
[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl){4-[bis-(2-méthoxyéthyl)aminométhyl]phényl}méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{(R)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(di-n-propylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{(RS)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-{(S)-(4-chlorophényl)[4-(pipéridin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-{(R)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(4-méthyl-pipérazin-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

25 1-{(R)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(morpholin-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(RS)-(4-chlorophényl)[4-(diéthylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 1-{(R)-(4-chlorophényl)[4-(diéthylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(diéthylaminométhyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 1-{(RS)-(4-chlorophényl)[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(S)-(4-chlorophényl)[4-(pipérazin-2-one-4-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-{(RS)-(4-chlorophényl)[4-(imidazol-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-{(R)-(4-chlorophényl)[4-(imidazol-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 1-{(S)-(4-chlorophényl)[4-(imidazol-1-yl-méthyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-{(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-{(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl}-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-[(4-chlorophényl)[4-(N,N-diméthylcarbamoyl)phényl]méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-[(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl]méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 (R)-1-[(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl]méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-[(4-chlorophényl)[4-(N-éthylcarbamoyl)phényl]méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

10 (RS)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-[(4-carbamoylphényl)(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-[bis(4-chlorophényl)méthyl]-3-[(3,5-dichlorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthylsulfanylphényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(3-méthylsulfanylméthyl)phényl](méthylsulfonyl)méthylène]azétidine,

20 1-[bis(4-chlorophényl)méthyl]-3-[(3-cyanophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-carbamoylphényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxyphényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyphényl)(méthylsulfonyl)méthylène]azétidine,

5 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-pyrrolidinylphényl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-hydroxyméthylphényl)(méthylsulfonyl)méthylène]azétidine,

10 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)[3-(N-pipéridylcarbamoyl)phényl]méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(3-trifluorométhylsulfanylphényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

15 1-[bis(2-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(3-fluorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

20 (R)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

(S)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

(RS)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(R)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

5 (S)-1-[(4-chlorophényl)(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-benzhydryl-3-[(éthylsulfonyl)(phényl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-{ {3-[N-(4-méthylpipérazinyl)carbamoyl]phényl} (méthylsulfonyl)méthylène}azétidine,

10 1-[bis(4-chlorophényl)méthyl]-3-{ [3-(2,2-diméthylcarbohydrazido)phényl](méthylsulfonyl)méthylène}azétidine,

1-[bis(thién-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(p-tolyl)méthyl]-3-[(méthylsulfonyl)(phényl)méthylène]azétidine,

15 1-[(4-chlorophényl)(4-hydroxyméthylphényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3-méthylaminophényl)(méthylsulfonyl)méthylène]azétidine,

(RS)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

20 (R)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

(S)-1-[(4-chlorophényl)(thiazol-2-yl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthylène]azétidine,

5 1-[bis(4-chlorophényl)méthyl]-3-hydroxy-3-[(méthylsulfonyl)(2-méthoxycarbonylthién-5-yl)méthyl]azétidine-(RS),

1-[bis(4-chlorophényl)méthyl]-3-[(2-isobutylaminocarbonylthién-5-yl)(méthylsulfonyl)méthylène]azétidine,

10 1-[bis(4-chlorophényl)méthyl]-3-[(3-méthoxycarbonylphényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol,

1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(pyridin-4-yl)méthyl-(RS)]azétidin-3-ol,

15 1-[bis(4-chlorophényl)méthyl]-3-[(méthylsulfonyl)(pyridin-3-yl)méthyl-(RS)]azétidin-3-ol,

3-( {1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-morpholin-4-yl-propyl)benzamide,

3-( {1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-diméthylamino-propyl)benzamide,

20 3-( {1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-pyrrolidin-1-yl-éthyl)benzamide,

3-( {1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-diméthylamino-1-méthyl-éthyl)benzamide,

3-( {1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-pipéridin-1-yl-benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-isobutyl-benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(3-imidazol-1-yl-propyl)benzamide,

5    3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-diméthylamino-éthyl)benzamide,

N'-méthyl-hydrazide de l'acide 3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)benzoïque,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-

10    (2-morpholin-4-yl-éthyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(1-éthyl-pyrrolidin-2-ylméthyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2,2-diméthyl-propyl)benzamide,

15    3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-cyclohexylméthyl-benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-cyclopropylméthyl-benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-

20    (2-méthyl-butyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(2-phényl-propyl)benzamide,

3-({1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène}-méthanesulfonyl-méthyl)N-(tetrahydro-furan-2-ylméthyl)benzamide,

3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2,2-diphényl-éthyl)benzamide,

3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)N-(2-éthyl-butyl)benzamide,

5 ester méthylique de l'acide 4- $\{[3-(\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)benzoylamino]méthyl-cyclohexanecarboxylique,

2-amino-1- $\{4-[3-(\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazin-1-yl\}-éthanone,

10 ester tert-butylique de l'acide (2- $\{4-[3-(\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazin-1-yl\}-2-oxo-éthyl)carbamique,

15 1- $\{4-[3-(\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazin-1-yl\}-2-méthylamino-éthanone,

ester ter-butylique de l'acide (2- $\{4-[3-(\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazin-1-yl\}-2-oxo-éthyl)N-méthyl-

carbamique,

N-méthylamide de l'acide 4-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazine-1-carbothioic,

N-méthylamide de l'acide 4-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazine-1-carboxylique,

20 ester de méthyl de l'acide 4-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazine-1-carboxylique,

1-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]-4-isobutyl-pipérazine,

1-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-mé-thyl)phényl]-4-éthyl-pipérazine,

4-acétyl 1-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazine,

5 1-{4-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazin-1-yl}-2-diméthylamino-éthanone,

1-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-mé-thyl)phényl]pipérazine,

10 ester tert-butylique de l'acide 4-[3-( $\{1-[bis-(4-chlorophényl)méthyl]azétidin-3-ylidène\}$ -méthanesulfonyl-méthyl)phényl]pipérazine-1-carboxylique,

1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[ $(3,5$ -difluorophényl)(méthylsulfonyl)méthylène]azétidine,

3-acétoxy-1-[bis(4-méthoxycarbonylphényl)méthyl]-3-[ $(3,5$ -difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidine,

15 (RS)-4-[4-((4-chlorophényl){3-[ $(3,5$ -difluorophényl)méthanesulfonyl-méthylene]azétidin-1-yl}-méthyl)benzyl]morpholine,

4-(4-{3-[(1-benzhydryl-azétidin-3-ylidene)méthanesulfonyl-méthyl]phénoxy}bu-tyl)morpholine,

20 4-(4-{3-[(1-benzhydryl-azétidin-3-ylidene)méthanesulfonyl-méthyl]phénoxy}-pro-pyl)morpholine,

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

10 - Les composés suivants :

1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthylène]azétidine,

1-[bis(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl-(RS)]azétidin-3-ol,

5 3-acétoxy-1-[bis-(4-chlorophényl)méthyl]-3-[(3,5-difluorophényl)(méthylsulfonyl)méthyl sulfonylméthyl-(RS)]azétidine

leurs isomères optiques et leurs sels avec un acide minéral ou organique.

11 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R représente une chaîne de formule (A) caractérisé en ce que l'on déhydrate  
10 un composé de formule (Ia) correspondant :



dans laquelle R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> ont les mêmes significations que dans la revendication 1 et R'' représente un radical hydroxy, méthanesulfonyloxy ou acétyloxy, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

15 12 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R représente une chaîne (B) dans laquelle R' est un atome d'hydrogène caractérisé en ce que l'on fait réagir un dérivé R<sub>1</sub>SO<sub>2</sub>CH<sub>2</sub>R<sub>2</sub> (II) pour lequel R<sub>1</sub> et R<sub>2</sub> ont les mêmes significations que dans la revendication 1 sur une azétidinone de formule :



dans laquelle R<sub>3</sub> et R<sub>4</sub> ont les mêmes significations que dans la revendication 1, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

13 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour  
5 lesquels R représente une chaîne (B) dans laquelle R' est un atome d'hydrogène caractérisé en ce que l'on fait réagir un dérivé R<sub>3</sub>CH(Br)R<sub>4</sub> pour lequel R<sub>3</sub> et R<sub>4</sub> ont les mêmes significations que dans revendication 1 sur un dérivé de formule :



10 dans laquelle R<sub>1</sub> et R<sub>2</sub> ont les mêmes significations que dans la revendication 1, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

14 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R est une chaîne (B) dans laquelle R' est un radical -CO-alk caractérisé en ce que l'on fait réagir un halogénure Hal-CO-alk dans lequel Hal représente un atome d'halogène et alk représente un radical alkyle en chaîne droite ou ramifiée et 15 contenant 1 à 6 atomes de carbone sur un composé de formule (I) correspondant pour lequel R est une chaîne (B) dans laquelle R' est un atome d'hydrogène, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

15 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par -NR<sub>6</sub>R<sub>7</sub> dans lequel R<sub>6</sub> et R<sub>7</sub> représentent chacun un atome d'hydrogène caractérisé en ce que l'on réduit un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par nitro, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

5

16 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un aromatique ou hétéroaromatique substitué par -CONHR<sub>8</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par -CONR<sub>10</sub>R<sub>11</sub> caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par -COOR<sub>9</sub> pour lequel R<sub>9</sub> est alkyle ou phényle éventuellement substitué par des halogènes, avec respectivement une amine H<sub>2</sub>NR<sub>10</sub> ou HNR<sub>10</sub>R<sub>11</sub> pour lesquelles R<sub>9</sub>, R<sub>10</sub> et R<sub>11</sub> ont les mêmes significations que dans la revendication 1, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

10

15

17 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un aromatique substitué par hydroxy et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par hydroxy caractérisé en ce que l'on hydrolyse un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un aromatique substitué par alcoxy et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par alcoxy, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

20

18 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un aromatique substitué par -NR<sub>6</sub>R<sub>7</sub> pour lequel R<sub>6</sub> représente un radical alkyle et R<sub>7</sub> représente un atome d'hydrogène caractérisé en ce que l'on déprotège un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un aromatique substitué par un -N(alk)COOR<sub>9</sub> dans lequel R<sub>9</sub> représente un radical

25

tertbutyle, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

19 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par -COOR, caractérisé en ce que l'on estérifie un dérivé de formule :



pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R<sub>1</sub>, R'<sub>2</sub>, R'<sub>3</sub> et R'<sub>4</sub> ont les mêmes significations que les substituants R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la revendication 1 sous réserve qu'au moins un des substituants R'<sub>2</sub>, R'<sub>3</sub>, R'<sub>4</sub> représente 10 un aromatique ou un hétéroaromatique substitué par carboxyle, au moyen d'un dérivé de formule R<sub>5</sub>OH pour lequel R<sub>5</sub> est alkyle ou phényle éventuellement substitué par un ou plusieurs halogène, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

20 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour 15 lesquels R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique ou un hétéroaromatique substitué par alkylthioalkyle caractérisé en ce que l'on fait réagir un dérivé de formule :



pour lequel R représente une chaîne  $C=C(SO_2R_1)R'_2$  ou  $C(OR')CH(SO_2R_1)R'_2$ , R', R<sub>1</sub>,

R<sub>2</sub>', R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la revendication 1 sous réserve qu'au moins un des substituants R<sub>2</sub>', R<sub>3</sub>', R<sub>4</sub>' représente un aromatique ou un hétéroaromatique substitué par halogénoalkyle sur un

5 alkylthiolate de sodium pour lequel la partie alkyle est en chaîne droite ou ramifiée et contient 1 à 6 atomes de carbone, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

21 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> et/ou R<sub>3</sub> et/ou R<sub>4</sub> représentent un aromatique substitué par hydroxyalkyle  
10 dans lequel l'alkyle contient un atome de carbone caractérisé en ce que l'on réduit un composé de formule (I) pour lequel au moins un des substituants R<sub>2</sub>, R<sub>3</sub>, R<sub>4</sub> représente un aromatique substitué par formyle, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

22 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> et/ou R<sub>4</sub> représente un aromatique substitué par -alk-NR<sub>6</sub>R<sub>7</sub> pour lequel alk est un alkyle contenant un atome de carbone caractérisé en ce que l'on fait réagir un composé de formule (I) pour lequel au moins un des substituants R<sub>3</sub>, R<sub>4</sub> représente un aromatique substitué par formyle sur une amine HNR<sub>6</sub>R<sub>7</sub> dans laquelle R<sub>6</sub> et R<sub>7</sub> ont les mêmes significations que dans la formule (I), isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.  
20

23 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un aromatique ou un hétéroaromatique substitué par -CONHR<sub>9</sub>, et/ou R<sub>3</sub> et/ou R<sub>4</sub> représente un aromatique ou un hétéroaromatique substitué par -CO-NR<sub>10</sub>R<sub>11</sub> caractérisé en ce que l'on fait réagir un dérivé de formule :



pour lequel R représente une chaîne  $C=C(SO_2R_1)R'_2$  ou  $C(OR')CH(SO_2R_1)R'_2$ ,  $R'$ ,  $R_1$ ,  $R'_2$ ,  $R'_3$ , et  $R'_4$ , ont les mêmes significations que les substituants  $R'$ ,  $R_1$ ,  $R_2$ ,  $R_3$  et  $R_4$  de la revendication 1 sous réserve qu'au moins un des substituants  $R'_2$ ,  $R'_3$ ,  $R'_4$

5 représente un aromatique ou un hétéroaromatique substitué par carboxyle sur respectivement une amine  $H_2NR_9$  ou  $HNR_{10}R_{11}$  dans lesquelles  $R_9$ ,  $R_{10}$  et  $R_{11}$  ont les mêmes significations que dans la formule (I), isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

24 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour  
10 lesquels  $R_2$  et/ou  $R_3$  et/ou  $R_4$  représentent un aromatique ou un hétéroaromatique substitué par  $-CO-NH-NR_6R$ , caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel  $R_2$  et/ou  $R_3$  et/ou  $R_4$  représentent un aromatique ou un hétéroaromatique substitué par  $-COOR$ , et  $R_5$  représente un radical alkyle ou phényle éventuellement substitué par des halogènes, sur une hydrazine  $H_2N-NR_6R$ ,  
15 pour laquelle  $R_6$  et R, ont les mêmes significations que dans la formule (I), isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

25 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels  $R_2$  représente un aromatique ou un hétéroaromatique substitué par  $-CO-NHR_9$ , dans lequel  $R_9$  représente un atome d'hydrogène et/ou  $R_3$  et/ou  $R_4$  représentent un aromatique ou un hétéroaromatique substitué par  $-CO-NR_{10}R_{11}$  dans lequel  $R_{10}$  et  $R_{11}$  sont des atomes d'hydrogène caractérisé en ce que l'on hydrolyse un composé de formule (I) correspondant pour lequel  $R_2$  et/ou  $R_3$  et/ou  $R_4$  représentent un aromatique ou un hétéroaromatique substitué par cyano, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

26 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un aromatique substitué par -O-alk-NR<sub>12</sub>R<sub>13</sub> caractérisé en ce que l'on fait réagir un dérivé de formule :



- 5 pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R'<sub>2</sub>, R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la revendication 1 sous réserve qu'au moins un des substituants R<sub>2</sub>', R<sub>3</sub>', R<sub>4</sub>' représente un aromatique substitué par -O-alk-Hal dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée et contenant 1 à 6 atomes de carbone et Hal
- 10 10 représente un atome d'halogène sur une amine HNR<sub>12</sub>R<sub>13</sub> dans laquelle R<sub>12</sub>, R<sub>13</sub> ont les mêmes significations que dans la revendication 1, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

27 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>3</sub> et/ou R<sub>4</sub> représente un aromatique substitué par -alk-NR<sub>6</sub>R<sub>7</sub> caractérisé en ce que l'on fait réagir un dérivé de formule :



pour lequel R représente une chaîne C=C(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, ou C(OR')CH(SO<sub>2</sub>R<sub>1</sub>)R'<sub>2</sub>, R', R<sub>1</sub>, R'<sub>2</sub>, R<sub>3</sub>' et R<sub>4</sub>' ont les mêmes significations que les substituants R', R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> et R<sub>4</sub> de la revendication 1 sous réserve qu'au moins un des substituants R<sub>3</sub>', R<sub>4</sub>' représente un

aromatique substitué par -alk-Cl dans lequel alk représente un radical alkyle contenant 1 à 6 atomes de carbone en chaîne droite ou ramifiée sur une amine HNR<sub>6</sub>R, dans laquelle R<sub>6</sub>R, ont les mêmes significations que dans la revendication 1, isole le produit et le transforme éventuellement en sel avec un acide minéral ou 5 organique.

28 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R représente une chaîne B, R' représente un atome d'hydrogène et R<sub>3</sub> et/ou R<sub>4</sub> représente un aromatique substitué par hydroxyalkyle dans lequel le reste alkyle contient 1 atome de carbone caractérisé en ce que l'on fait réagir de l'hydrure de 10 diisobutylaluminium sur un composé de formule (I) correspondant pour lequel R représente une chaîne B, R' représente un atome d'hydrogène et R<sub>3</sub> et/ou R<sub>4</sub> représente un aromatique substitué par un ou plusieurs radicaux -COOR, dans lequel R, est un radical alkyle, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

15 29 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par un radical alkyle caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl 20 sur un dérivé alk-CHO dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée contenant 1 à 5 atomes de carbone, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

30 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 25 1-pipérazinyl substitué en position -4 par un radical -COOalk caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl sur un dérivé de formule Hal-COOalk dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée contenant 1 à 6 atomes de carbone et Hal représente un

atome d'halogène, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

31 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 5 1-pipérazinyl substitué en position -4 par un radical -CO-NHalk ou -CS-NHalk caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl sur un dérivé de formule Y=C=Nalk dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée contenant 1 à 6 atomes de carbone et Y 10 représente un atome de soufre ou d'oxygène, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

32 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour lesquels R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 15 1-pipérazinyl substitué en position -4 par un radical -CO-alk-NR<sub>14</sub>R<sub>15</sub>, caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl avec un acide de formule R<sub>13</sub>R<sub>14</sub>N-alk-COOH dans lequel alk représente un radical alkyle en chaîne droite ou ramifiée contenant 1 à 6 atomes de carbone et R<sub>14</sub> et R<sub>15</sub> ont les mêmes significations que dans la revendication 1 suivi 20 éventuellement d'une déprotection du produit pour lequel R<sub>14</sub> est un radical tert-butoxycarbonyle pour obtenir les composés pour lesquels R<sub>14</sub> est un atome d'hydrogène, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

33 - Procédé de préparation des composés de formule (I) selon la revendication 1 pour 25 R<sub>2</sub> représente un radical phényle substitué par un radical -NR<sub>6</sub>R, représentant un cycle 1-pipérazinyl substitué en position -4 par un radical -CO-alk dans lequel alk représente un radical méthyle caractérisé en ce que l'on fait réagir un composé de formule (I) correspondant pour lequel R<sub>2</sub> représente un radical phényle substitué par

un radical -NR<sub>4</sub>R, représentant un cycle 1-pipérazinyl avec l'anhydride acétique, isole le produit et le transforme éventuellement en sel avec un acide minéral ou organique.

34 - Compositions pharmaceutiques contenant comme ingrédient actif au moins un composé de formule (I) selon l'une des revendications 1 à 10.

# INTERNATIONAL SEARCH REPORT

International Application No  
PCT/FR 99/02147

**A. CLASSIFICATION OF SUBJECT MATTER**  
 IPC 7 C07D205/06 C07D401/06 C07D409/06 C07D409/14 C07D417/06  
 A61K31/397

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
 IPC 7 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. |
|------------|------------------------------------------------------------------------------------|-----------------------|
| A          | US 4 242 261 A (CALE ALBERT D JR)<br>30 December 1980 (1980-12-30)<br>-----        |                       |
| A          | GB 2 055 818 A (ROBINS CO INC A H)<br>11 March 1981 (1981-03-11)<br>-----          |                       |
| A          | FR 2 388 793 A (ROBINS CO INC A H)<br>24 November 1978 (1978-11-24)<br>-----       |                       |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

\* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

11 November 1999

Date of mailing of the international search report

22/11/1999

Name and mailing address of the ISA  
 European Patent Office, P.B. 5818 Patentlaan 2  
 NL - 2280 HV Rijswijk  
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
 Fax: (+31-70) 340-3016

Authorized officer

Chouly, J

# INTERNATIONAL SEARCH REPORT

Information on patent family members

|        |                    |
|--------|--------------------|
| Interr | 1st Application No |
|        | PCT/FR 99/02147    |

| Patent document cited in search report |   | Publication date |  | Patent family member(s)                                                                                                                                                                                                                                                                                                                                                                                      | Publication date                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------|---|------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US 4242261                             | A | 30-12-1980       |  | AU 538138 B<br>AU 6061780 A<br>BE 884357 A<br>CA 1128939 A<br>CH 646954 A<br>DE 3027168 A<br>DK 311680 A,B,<br>EG 14720 A<br>ES 493498 A<br>FR 2461703 A<br>GB 2058049 A,B<br>HK 385 A<br>IE 49945 B<br>IL 60375 A<br>IT 1141609 B<br>JP 1003186 B<br>JP 1524424 C<br>JP 56025153 A<br>KR 8402233 B<br>NL 8004165 A<br>PH 15057 A<br>PT 71581 A<br>SE 448993 B<br>SE 8005235 A<br>SG 26284 G<br>ZA 8003778 A | 02-08-1984<br>22-01-1981<br>17-11-1980<br>03-08-1982<br>28-12-1984<br>12-02-1981<br>20-01-1981<br>31-03-1986<br>01-07-1981<br>06-02-1981<br>08-04-1981<br>11-01-1985<br>08-01-1986<br>31-07-1983<br>01-10-1986<br>19-01-1989<br>12-10-1989<br>10-03-1981<br>06-12-1984<br>21-01-1981<br>03-06-1982<br>01-08-1980<br>30-03-1987<br>20-01-1981<br>08-03-1985<br>30-09-1981 |
| GB 2055818                             | A | 11-03-1981       |  | US 4260606 A<br>AU 538139 B<br>AU 6061880 A<br>BE 884356 A<br>CH 647233 A<br>DE 3027169 A<br>DK 311680 A,B,<br>ES 493499 A<br>FR 2461699 A<br>HK 285 A<br>IE 50015 B<br>IL 60376 A<br>IT 1141608 B<br>JP 1480700 C<br>JP 56025152 A<br>JP 63028906 B<br>NL 8004163 A<br>PT 71582 A<br>SE 448994 B<br>SE 8005236 A<br>SG 26184 G<br>ZA 8003777 A                                                              | 07-04-1981<br>02-08-1984<br>22-01-1981<br>17-11-1980<br>15-01-1985<br>19-02-1981<br>20-01-1981<br>01-07-1981<br>06-02-1981<br>11-01-1985<br>22-01-1986<br>31-07-1983<br>01-10-1986<br>10-02-1989<br>10-03-1981<br>10-06-1988<br>21-01-1981<br>01-08-1980<br>30-03-1987<br>20-01-1981<br>29-03-1985<br>30-09-1981                                                         |
| FR 2388793                             | A | 24-11-1978       |  | US 4133881 A<br>CA 1103674 A<br>DE 2818672 A<br>GB 1598846 A<br>JP 1403376 C<br>JP 53137950 A<br>JP 62006545 B                                                                                                                                                                                                                                                                                               | 09-01-1979<br>23-06-1981<br>09-11-1978<br>23-09-1981<br>09-10-1987<br>01-12-1978<br>12-02-1987                                                                                                                                                                                                                                                                           |

# RAPPORT DE RECHERCHE INTERNATIONALE

Demar International No  
PCT/FR 99/02147

A. CLASSEMENT DE L'OBJET DE LA DEMANDE  
CIB 7 C07D205/06 C07D401/06 C07D409/06 C07D409/14 C07D417/06  
A61K31/397

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 C07D A61K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

| Catégorie * | Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents | no. des revendications visées |
|-------------|------------------------------------------------------------------------------------------------|-------------------------------|
| A           | US 4 242 261 A (CALE ALBERT D JR)<br>30 décembre 1980 (1980-12-30)<br>---                      |                               |
| A           | GB 2 055 818 A (ROBINS CO INC A H)<br>11 mars 1981 (1981-03-11)<br>---                         |                               |
| A           | FR 2 388 793 A (ROBINS CO INC A H)<br>24 novembre 1978 (1978-11-24)<br>---                     |                               |

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

\* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

"&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

11 novembre 1999

Date d'expédition du présent rapport de recherche internationale

22/11/1999

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Chouly, J

# RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

|      |                   |
|------|-------------------|
| Deme | Internationale No |
|------|-------------------|

PCT/FR 99/02147

| Document brevet cité<br>au rapport de recherche | Date de<br>publication | Membre(s) de la<br>famille de brevet(s)                                                                                                                                                                                                                                                                                                                                                                      | Date de<br>publication                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US 4242261 A                                    | 30-12-1980             | AU 538138 B<br>AU 6061780 A<br>BE 884357 A<br>CA 1128939 A<br>CH 646954 A<br>DE 3027168 A<br>DK 311680 A,B,<br>EG 14720 A<br>ES 493498 A<br>FR 2461703 A<br>GB 2058049 A,B<br>HK 385 A<br>IE 49945 B<br>IL 60375 A<br>IT 1141609 B<br>JP 1003186 B<br>JP 1524424 C<br>JP 56025153 A<br>KR 8402233 B<br>NL 8004165 A<br>PH 15057 A<br>PT 71581 A<br>SE 448993 B<br>SE 8005235 A<br>SG 26284 G<br>ZA 8003778 A | 02-08-1984<br>22-01-1981<br>17-11-1980<br>03-08-1982<br>28-12-1984<br>12-02-1981<br>20-01-1981<br>31-03-1986<br>01-07-1981<br>06-02-1981<br>08-04-1981<br>11-01-1985<br>08-01-1986<br>31-07-1983<br>01-10-1986<br>19-01-1989<br>12-10-1989<br>10-03-1981<br>06-12-1984<br>21-01-1981<br>03-06-1982<br>01-08-1980<br>30-03-1987<br>20-01-1981<br>08-03-1985<br>30-09-1981 |
| GB 2055818 A                                    | 11-03-1981             | US 4260606 A<br>AU 538139 B<br>AU 6061880 A<br>BE 884356 A<br>CH 647233 A<br>DE 3027169 A<br>DK 311680 A,B,<br>ES 493499 A<br>FR 2461699 A<br>HK 285 A<br>IE 50015 B<br>IL 60376 A<br>IT 1141608 B<br>JP 1480700 C<br>JP 56025152 A<br>JP 63028906 B<br>NL 8004163 A<br>PT 71582 A<br>SE 448994 B<br>SE 8005236 A<br>SG 26184 G<br>ZA 8003777 A                                                              | 07-04-1981<br>02-08-1984<br>22-01-1981<br>17-11-1980<br>15-01-1985<br>19-02-1981<br>20-01-1981<br>01-07-1981<br>06-02-1981<br>11-01-1985<br>22-01-1986<br>31-07-1983<br>01-10-1986<br>10-02-1989<br>10-03-1981<br>10-06-1988<br>21-01-1981<br>01-08-1980<br>30-03-1987<br>20-01-1981<br>29-03-1985<br>30-09-1981                                                         |
| FR 2388793 A                                    | 24-11-1978             | US 4133881 A<br>CA 1103674 A<br>DE 2818672 A<br>GB 1598846 A<br>JP 1403376 C<br>JP 53137950 A<br>JP 62006545 B                                                                                                                                                                                                                                                                                               | 09-01-1979<br>23-06-1981<br>09-11-1978<br>23-09-1981<br>09-10-1987<br>01-12-1978<br>12-02-1987                                                                                                                                                                                                                                                                           |

