# ELEN90051 ADVANCED COMMUNICATION SYSTEMS 2018 SEMESTER 1 TUTORIAL 6 CHANNEL CAPACITY SOLUTIONS

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING UNIVERSITY OF MELBOURNE

1/05/2018

### **Instructions:**

Only look at these solutions after you have had a go at solving the questions yourself. The solutions provided below enable you to find out whether your answers are correct.

1 Let X and Y be two binary random variables, distributed according to the joint distributions

$$P(X = Y = 0) = P(X = 0, Y = 1) = P(X = Y = 1) = \frac{1}{3}.$$

Compute H(X), H(Y), H(X|Y), H(Y|X), H(XY) and I(X,Y).

### Solution:

Clearly  $H(XY) = \log_2 3 \approx 1.585$ . The marginal probabilities are given by

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) = \frac{2}{3}$$

$$P(X = 1) = P(X = 1, Y = 1) = \frac{1}{3}$$

$$P(Y = 0) = P(X = 0, Y = 0) = \frac{1}{3}$$

$$P(Y = 1) = P(X = 0, Y = 1) + P(X = 1, Y = 1) = \frac{2}{3}$$

Hence,

$$\begin{split} H(X) &= -\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right) = -\left(\log_2\frac{1}{3} + \frac{2}{3}\right) \approx 0.9183 \\ H(Y) &= -\left(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}\right) = H(X) \approx 0.9183 \\ H(X|Y) &= H(XY) - H(Y) = \log_2 3 - \left(\log_2\frac{1}{3} + \frac{2}{3}\right) = \frac{2}{3} \approx 0.6667 \\ H(Y|X) &= H(X,Y) - H(X) = \frac{2}{3} \approx 0.6667 \\ I(X,Y) &= H(X) - H(X|Y) = H(Y) - H(Y|X) \approx 0.252 \end{split}$$

2 Compute the capacity of the BSC.

# Solution:

Denote P(X=0) by  $\epsilon$ .

| x | y | P(y x) | P(x,y)              |
|---|---|--------|---------------------|
| 0 | 0 | 1-p    | $(1-p)\epsilon$     |
| 0 | 1 | p      | $p\epsilon$         |
| 1 | 0 | p      | $p(1-\epsilon)$     |
| 1 | 1 | 1-p    | $(1-p)(1-\epsilon)$ |

$$I(X,Y) = H(Y) - H(Y|X)$$
  
$$H(Y) = -\alpha \log \alpha - (1 - \alpha) \log(1 - \alpha) = H_b(\alpha),$$

where  $\alpha = P(Y = 0)$  is given by

$$\alpha = P(Y = 0|X = 0)P(X = 0) + P(Y = 0|X = 1)P(X = 1) = (1 - p)\epsilon + p(1 - \epsilon).$$

Note that  $\alpha = \frac{1}{2}$  for  $\epsilon = \frac{1}{2}$ . Because of  $H(Y|X=0) = H(Y|X=1) = H_b(p)$ , we have  $H(Y|X) = \epsilon H_b(p) + (1-\epsilon)H_b(p) = H_b(p)$ . Therefore

$$I(X,Y) = H_b((1-p)\epsilon + p(1-\epsilon)) - H_b(p)$$
$$C = \max_{\epsilon} I(X,Y) = 1 - H_b(p)$$

Note: an alternative less straightforward solution method is via I(X,Y) = H(X) - H(X|Y).

# 3 Compute the capacity of the BEC.

### **Solution:**

Denote P(X=0) by  $\epsilon$ .

| x | y | P(x y)         | P(y x) | P(x,y)              |
|---|---|----------------|--------|---------------------|
| 0 | 0 | 1              | 1-p    | $(1-p)\epsilon$     |
| 0 | 1 | 0              | 0      | 0                   |
| 0 | e | $\epsilon$     | p      | $p\epsilon$         |
| 1 | 0 | 0              | 0      | 0                   |
| 1 | 1 | 1              | 1-p    | $(1-p)(1-\epsilon)$ |
| 1 | e | $1 - \epsilon$ | p      | $p(1-\epsilon)$     |

$$I(X,Y) = H(X) - H(X|Y) = H_b(\epsilon) - H(X|Y)$$

There are two ways to obtain H(X|Y):

(a)

$$H(X|Y) = -\sum_{x,y} P(x,y) \log P(x|y)$$
$$= -p\epsilon \log \epsilon - p(1-\epsilon) \log(1-\epsilon)$$
$$= pH_b(p)$$

(b) 
$$H(X|Y=0) = H(X|Y=1) = 0$$

• 
$$H(X|Y=e) = H_b(\epsilon)$$

Therefore  $H(X|Y) = P(Y = e)H(X|Y = e) = pH_b(\epsilon)$ .

Next, we use H(X|Y) in calculating I(X,Y):

$$I(X,Y) = H_b(\epsilon) - pH_b(\epsilon) = (1-p)H_b(\epsilon)$$
$$C = \max_{\epsilon} I(X,Y) = 1-p$$

Note: an alternative solution method is via I(X,Y) = H(Y) - H(Y|X).

4 Consider a discrete memoryless channel given by the figure below. Determine the channel's capacity.



# Solution:

Denote P(X=0) by  $\epsilon$ .

| x | y | P(y x)        | P(x,y)                      | P(y)                      |
|---|---|---------------|-----------------------------|---------------------------|
| 0 | A | $\frac{1}{2}$ | $\frac{1}{2}\epsilon$       | $\frac{1}{2}\epsilon$     |
| 0 | B | $\frac{1}{2}$ | $rac{	ilde{1}}{2}\epsilon$ | $\frac{1}{2}$             |
| 0 | C | $\bar{0}$     | 0                           | $\frac{1}{2}(1-\epsilon)$ |
| 1 | A | 0             | 0                           | _                         |
| 1 | B | $\frac{1}{2}$ | $\frac{1}{2}(1-\epsilon)$   |                           |
| 1 | C | $\frac{1}{2}$ | $\frac{1}{2}(1-\epsilon)$   |                           |

$$H(Y|X=0) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = 1$$

Similarly,

$$H(Y|X=1) = -\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = 1$$

Therefore

$$H(Y|X) = 1$$
 
$$I(X,Y) = H(Y) - H(Y|X) = H(Y) - 1$$

Page 3 of 5

where

$$H(Y) = -\frac{1}{2}\epsilon\log\frac{1}{2}\epsilon - \frac{1}{2}\log\frac{1}{2} - \frac{1}{2}(1-\epsilon)\log\frac{1}{2}(1-\epsilon)$$

which is maximal for  $\epsilon = \frac{1}{2}$ . Then

$$H(Y) = -\frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{2}\log\frac{1}{2} = \frac{3}{2}$$

Therefore,

$$C = \max_{\epsilon} I(X, Y) = \frac{3}{2} - 1 = \frac{1}{2}$$

5 Let X and Y be random variables. Show that

$$H(XY) \le H(X) + H(Y).$$

Also show that equality holds if and only if X and Y are independent random variables.

Hint 1: First show that

$$H(X) = -\sum_{x,y} P(x,y) \log_2 P(x).$$

**Hint 2:** Then use the inequality  $\ln w \le w - 1$ .

### Solution:

To prove the first Hint, observe that

$$P(x) = \sum_{y} P(x, y) \qquad P(y) = \sum_{x} P(x, y),$$

so that

$$\begin{split} H(X) &= -\sum_{x} \sum_{y} P(x,y) \log_2 P(x) = -\sum_{x,y} P(x,y) \log_2 P(x) \\ H(Y) &= -\sum_{y} \sum_{x} P(x,y) \log_2 P(y) = -\sum_{x,y} P(x,y) \log_2 P(y) \end{split}$$

Next, it is clearly sufficient to prove that

$$H(XY) - H(X) - H(Y) \le 0.$$

The proof is as follows:

$$\begin{split} H(XY) - H(X) - H(Y) &= -\sum_{x,y} P(x,y) \log_2 P(x,y) + \sum_{x,y} P(x,y) \log_2 P(x) + \sum_{x,y} P(x,y) \log_2 P(y) \\ &= \sum_{x,y} P(x,y) \log_2 \frac{P(x)P(y)}{P(x,y)} \\ &= \log_2 e \sum_{x,y} P(x,y) \ln \frac{P(x)P(y)}{P(x,y)} \\ &\leq \log_2 e \sum_{x,y} P(x,y) \left[ \frac{P(x)P(y)}{P(x,y)} - 1 \right] \\ &= 0. \end{split}$$

Equality holds if and only if

$$\frac{P(x)P(y)}{P(x,y)} = 1,$$

that is, if X and Y are independent.

6 Let X and Y be random variables. Show that

$$H(XY) = H(X) + H(Y|X)$$

Solution:

$$\begin{split} H(Y|X) &= -\sum_{x,y} P(x,y) \log P(y|x) \\ &= -\sum_{x,y} P(x,y) \log \left(\frac{P(x,y)}{P(x)}\right) \\ &= -\sum_{x,y} P(x,y) \log P(x,y) + \sum_{x,y} P(x,y) \log P(x) \\ &= H(XY) - H(X) \end{split}$$

Here we used that  $P(x) = \sum_{y} P(x, y)$ .

7 Let X and Y be random variables. Show that

When does equality hold?

# Solution:

Use previous results

$$H(Y|X) = H(XY) - H(X) \le H(X) + H(Y) - H(X) = H(Y)$$

Equality holds if and only if X and Y are independent.