Package 'hdtrd'

November 8, 2024

dimensional linear regression with applications to detect transferability

Type Package

Title Testing relevant difference in high-

Version 1.0.1
Author Xu Liu [aut,cre]
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>
Description Provide the p-value of the test statistic for high-dimensional relevant difference in the generalized linear regression models and its application to transfer learning. In the paper Liu(2024), we propose novel statistics to test relevant difference of two high-dimensional coefficients in the generalized linear regression models. The proposed method can serve as a means for high-dimensional transfer learning the generalized linear regression models.
License GPL (>= 2)
Depends R (>= 3.2.0), Matrix, glmnet, limSolve
NeedsCompilation yes
Repository github
<pre>URL https://github.com/xliusufe/hdtrd</pre>
Encoding UTF-8
R topics documented:
hdtrd-package
bandmatrix
eigmax
predict_utr 5 projection 6
pvalcle
pvalge
pvalrd
pvaltrans
pvaltrans_cv
simulData
utrans
Index 19

2 hdtrd-package

hdtrd-package	Testing relevant difference in high-dimensional linear regression with applications to detect transferability
	applications to detect transferdottily

Description

Provide the p-value of the test statistic for high-dimensional relevant difference in the generalized linear regression models and its application to transfer learning. In the paper Liu(2024), we propose novel statistics to test relevant difference of two high-dimensional coefficients in the generalized linear regression models. The proposed method can serve as a means for high-dimensional transfer learning the generalized linear regression models.

Details

Package: hdtrd
Type: Package
Version: 1.0.1
Date: 2024-06-08
License: GPL (>= 2)

References

Cui, H., Guo, W. and Zhong, W. (2018). Test for high-dimensional regression coefficients using refitted cross-validation variance estimation. The Annals of Statistics, 46, 958-988.

Chen, Z., Cheng, V. X. and Liu, X. (2024). Hypothesis testing on high dimensional quantile regression. Journal of Econometrics.

Chen, J., Li, Q., and Chen, H. Y. (2022). Testing generalized linear models with highdimensional nuisance parameters. Biometrika, 110. 83-99.

Guo, B.and Chen, S. X. (2016). Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society, Series B, 78, 1079-1102.

Karoui, N, E. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.

Kong, W. and Valiant, G. (2017). Spectrum estimation from samples. Annals of Statistics. 45, 2218-2247.

Liu, S. (2024). Unified Transfer Learning Models for High-Dimensional Linear Regression. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR. 238, 1036-1044.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Liu, X., Zheng, S. and Feng, X. (2020). Estimation of error variance via ridge regression. Biometrika. 107, 481-488.

Tian, Y. and Feng, Y. (2023) Transfer Learning Under High-Dimensional Generalized Linear Models. Journal of the American Statistical Association, 118, 2684-2697.

bandmatrix 3

Yang, W., Guo, X. and Zhu, L. (2023). Score function-based tests for ultrahigh-dimensional linear models. arXiv:2212.08446.

Zhang, X. and Cheng, G. (2017). Simultaneous inference for high-dimensional linear models. Journal of the American Statistical Association, 112, 757-768.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

bandmatrix

Construct a sparse banded matrix.

Description

Provide a sparse banded matrix.

Usage

```
bandmatrix(rho, p, T = 5)
```

Arguments

rho	A vector with length T .
p	The dimension of the banded matrix.
T	The width of band. Default is $T = 5$.

Value

```
sighalf The matrix \Gamma \in \mathcal{R}^{(p+T) \times p} satisfying \Sigma = \Gamma^T \Gamma.
sigma The sparse banded matrix \Sigma \in \mathcal{R}^{p \times p}.
```

References

Chen, Z., Cheng, V. X. and Liu, X. (2024). Hypothesis testing on high dimensional quantile regression. Journal of Econometrics.

Examples

```
p <- 6
T <- 3
rho <- seq(T)/(T+1)
fit <- bandmatrix(rho, p, T)
fit$sigma</pre>
```

4 eigmax

eigmax	Estimation of the largest eigenvalue of covariance of a high-dimensional vector

Description

Provide the estimator of the largest eigenvalue of covariance of a high-dimensional vector (Liu (2024)), as well as all estimated eigenvalues.

Usage

```
eigmax(X, zK = NULL, tJ = NULL, K = 1000, J = 1000, method = 'mpmo', nmoms = NULL, timeout = 0L)
```

Arguments

Χ	A data matrix with dimension $n \times p$.
zK	A matrix with dimension $K \times 2$, a given complex number, where the first column is the real part and the second column is the imaginary part. Default is $zK = NULL$, where $zK[,1] = rnorm(K)$ is generated from standard normal distribution, and $zK[,2] = rep(1,K)/sqrt(n)$.
tJ	A J -vector. Default is tJ = NULL, where tJ is a grid of points in the interval $[\lambda_{\min}(\Sigma), \lambda_{\max}(\Sigma)]$.
K	A positive integer, which is the number of complex numbers zK. Default is K = 1000.
J	A positive integer, which is the length of tJ . Default is $J = 1000$.
method	There are three methods, 'mpmo', 'mplp' and 'empi', to estimate the largest eigenvalue of Σ , see details in Liu (2024). Default is method = 'mpmo'.
nmoms	The number of moments. Default is nmoms = NULL, where nmoms = 7 if method = 'mpmo', nmoms = 4 if method = 'mplp', and nmoms is useless if method = 'empi'.
timeout	An integer: timeout variable in seconds, defaults to 0L which means no limit is set, see details in the function 1inp of R package "limSolve".

Details

See details in the paper Liu (2024).

Here, for the methods to estimate the largest eigenvalue of Σ , 'mpmo' denotes the MPMO method; 'mplp' denotes the MPLP method; and 'empi' denotes the EMPI method.

Value

Lammax Estimator of the largest eigenvalue o	1 2	2	ì.
--	-----	---	----

lamest All estimated eigenvalues of Σ .

predict_utr 5

References

Karoui, N, E. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.

Kong, W. and Valiant, G. (2017). Spectrum estimation from samples. Annals of Statistics. 45, 2218-2247.

Liu, X. (2024). High-dimensional test of relevant difference and its application totransfer learning. Manuscript.

Tian, X., Lu, Y., and Li, W. (2015). A robust test for sphericity of high-dimensional covariance matrices. Journal of Multivariate Analysis, 141, 217-227.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

Examples

```
p = 300
n = 200
sig = toeplitz(0.5^(c(1:p)-1))
sighalf = chol( sig )
X = matrix(rnorm(n*p), nrow = n)
eigens = eigmax(X = X, method = 'mpmo')
eigens$lammax
```

predict_utr

Prediction of a new predictor

Description

Provide the prediction for a new predictor.

Usage

```
predict_utr(fittrans, X, type = "response")
```

Arguments

fittrans An object from fitting utrans.

X A new predictor, a matrix with dimension $n \times p$.

type The type of prediction, including "response" (Default) and "class". Here "re-

sponse" provides the predicted probability when family = "binomial". "class"

predict 0/1 response for logistic regression. Applies only when family = "binomial".

Details

See details in the paper Liu (2024).

Value

yhat

The new response \hat{y} based on the new predictor x.

6 projection

References

Liu, S. (2024). Unified Transfer Learning Models for High-Dimensional Linear Regression. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR. 238, 1036-1044.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Tian, X., Lu, Y., and Li, W. (2015). A robust test for sphericity of high-dimensional covariance matrices. Journal of Multivariate Analysis, 141, 217-227.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

Examples

```
data(simulData_trans_gauss)
fittrans <- utrans(target = dataset[[1]], source = dataset[-1], idtrans = seq(5))

p = ncol(dataset[[1]]$X)
n = 5
sig = toeplitz(0.5^(c(1:p)-1))
sighalf = chol( sig )
x = matrix(rnorm(n*p), nrow = n)

predict_utr(fittrans, x)</pre>
```

projection

Projection of y onto the closure of covariates x

Description

Provide the projection of y onto the closure of covariates x.

Usage

```
projection(x, y, family = "gaussian", method = 'lasso', isresid = TRUE)
```

Arguments

X	Covariates, a $n \times p$ -matrix.
У	Response, a <i>n</i> -vector.
family	Family for the generalized linear models, including 'gaussian', 'binomial', and 'poisson'. Default is family = "gaussian".
method	There are two methods, "qfabs" and "lasso", to estimate the nuisance parameter α in quantile regression. Default is method = 'lasso'.
isresid	logical. Projected residual $\hat{\eta} = x - \hat{H}z$ is output if is resid = TRUE. Coefficient matrix \hat{H} is calculated if is resid = FALSE. Default is resids = TRUE.

Details

High-dimensional test of relevant difference and its application to transferability test in the generalized Linear regression models (see details in the paper Liu (2024))

$$y_i = H\boldsymbol{X}_i^T.$$

pvalclc 7

Value

proj Projection.

References

Cheng, C., Feng, X., Huang, J. and Liu, X. (2022). Regularized projection score estimation of treatment effects in high-dimensional quantile regression. Statistica Sinica. 32, 23-41.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Examples

```
data(simulData_test_gauss)
x <- datahb$X
y <- datahb$Y
proj <- projection(x, y)</pre>
```

pvalclc

P-value for high-dimensional test in the generalized linear regression models

Description

Provide p-value for high-dimensional test in the generalized linear regression models when the nuisance parameter is high-dimensional, see Chen et. al. (2022) for details.

Usage

```
pvalclc(data, family = 'gaussian', method = 'lasso', resids = NULL, psi = NULL)
```

Arguments

data	A list, including Y (response), X , Z , where Z can be NULL.
family	Family for the generalized linear models, including 'gaussian', 'binomial', and 'poisson'. Default is family = "gaussian".
method	There are two methods, "gfabs" and "lasso", to estimate the nuisance parameter α in GLMs. Default is method = 'lasso', which calls glmnet.
resids	An n -vector, which is residual of the GLM. Default is resids = NULL. The canonical link function is used if resids and psi are NULL.
psi	An <i>n</i> -vector, which is $\psi(X_i, \beta_0, \phi) = g'(X_i^{\top}\beta_0)/V(\mu_i(\beta_0); \phi)$, see Guo and Chen (2016) for the details. Default is psi = NULL. The canonical link function is used if both resids and psi are NULL. Here, psi = rep(1, n) if psi = NULL.

8 pvalgc

Details

The generalized linear regression models (see details in the paper Guo and Chen (2016))

$$\mu_i = \boldsymbol{X}_i^T \boldsymbol{\beta} + \boldsymbol{Z}_i^T \boldsymbol{\gamma},$$

where $\boldsymbol{Z}_{i}^{T}\boldsymbol{\gamma}$ is the control mean function.

The hypothesis test problem is

$$H_0: \boldsymbol{\beta} = \mathbf{0} \quad versus \quad H_1: \boldsymbol{\beta} \neq \mathbf{0}.$$

One can input estimated residual resids = $y_i - \hat{\mu}_i$ and psi = NULL which produces the test statistic and p-value given by Chen et. al. (2022), where $\hat{\mu}_i$ is an estimator of μ_i according to Chen et. al. (2023).

Value

pvals P-value of the corresponding test statistic.

Tn Test statistic $|\hat{U}_n|/\sqrt{2\hat{R}_n}$. Reject H_0 if $|\hat{U}_n|/\sqrt{2\hat{R}_n} > z_{1-\alpha/2}$.

References

Guo, B.and Chen, S. X. (2016). Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society, Series B, 78, 1079-1102.

Chen, J., Li, Q., and Chen, H. Y. (2023). Testing generalized linear models with highdimensional nuisance parameters. Biometrika. 110, 83-99.

Examples

```
data(simulData_test_gauss)
pvals <- pvalclc(data = datahb, family = "gaussian")
pvals$pvals</pre>
```

pvalgc

P-value for high-dimensional test in the generalized linear regression models

Description

Provide p-value for high-dimensional test in the generalized linear regression models, see Guo and Chen (2016) for details.

Usage

```
pvalgc(data, family = "gaussian", resids = NULL, psi = NULL)
```

pvalgc 9

Arguments

data	A list, including Y (response), X , Z , where Z can be NULL.
family	Family for the generalized linear models, including 'gaussian', 'binomial', and 'poisson'. Default is family = "gaussian".
resids	An n -vector, which is residual of the GLM. Default is resids = NULL. The canonical link function is used if resids and psi are NULL.
psi	An <i>n</i> -vector, which is $\psi(X_i, \beta_0, \phi) = g'(X_i^{\top}\beta_0)/V(\mu_i(\beta_0); \phi)$, see Guo and Chen (2016) for the details. Default is psi = NULL. The canonical link function is used if resids and psi are NULL. psi = rep(1,n) if psi = NULL.

Details

The generalized Linear regression models (see details in the paper Guo and Chen (2016))

$$\mu_i = \boldsymbol{X}_i^T \boldsymbol{\beta} + \boldsymbol{Z}_i^T \boldsymbol{\gamma},$$

where $Z^T \gamma$ is the control mean function.

The hypothesis test problem is

$$H_0: \boldsymbol{\beta} = \mathbf{0} \quad versus \quad H_1: \boldsymbol{\beta} \neq \mathbf{0}.$$

One can input estimated residual resids = $y_i - \hat{\mu}_i$ and psi = NULL which produces the test statistic and p-value given by Chen et. al. (2022), where $\hat{\mu}_i$ is an estimator of μ_i according to Chen et. al. (2023).

Value

pvals	P-value of the corresponding test statistic.
Tn	test statistic $\hat{U}_n/\sqrt{2\hat{R}_n}$. Reject H_0 if $\hat{U}_n/\sqrt{2\hat{R}_n}>z_{1-\alpha}$.

References

Guo, B.and Chen, S. X. (2016). Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society, Series B, 78, 1079-1102.

Chen, J., Li, Q., and Chen, H. Y. (2023). Testing generalized linear models with highdimensional nuisance parameters. Biometrika. 110, 83-99.

Examples

```
data(simulData_test_gauss)
pvals <- pvalgc(data = datahb, family = "gaussian")
pvals$pvals</pre>
```

10 pvalrd

pvalrd	P-value for high-dimensional testing of relevant difference in the generalized linear regression models when the nuisance parameter is
	high-dimensional

Description

Provide p-value for high-dimensional testing of relevant difference in generalized linear regression models (Liu (2024)) when the nuisance parameter is high-dimensional.

Usage

Arguments

data	A list, including Y (response), X , Z , where Z is high-dimensional.
family	Family for the generalized linear models, including 'gaussian', 'binomial', and 'poisson'. Default is family = "gaussian".
delta0	Relevant difference, a given value by hypothesis test problem $H_0: \ \beta\ _2 \leq \delta_0$. Default is delta0 = 0.1.
method	There are two methods, "qfabs" and "lasso", to estimate the nuisance parameter α in quantile regression. Default is method = 'lasso'.
resids	An n -vector, which is residual of the GLM under H_0 . Default is resids = NULL, where the canonical link function is used if resids and psi are NULL.
sigma2	Estimator of error's variance if family = "gaussian". Default is sigma2 = NULL, where sigma2 = 1.
lammax	Estimator of the largest eigenvalue $\sup_{\ \beta\ _2 \le \delta_0} \beta^T \Sigma^2 \beta$. Default is lammax = NULL, which is estimated empirically by $\lambda_{\max}(S_n)/(1+\sqrt{p/n})$, see details in Liu (2024).

Details

High-dimensional test of relevant difference and its application to transferability test in the generalized Linear regression models (see details in the paper Liu (2024))

$$\mu_i = \boldsymbol{X}_i^T \boldsymbol{\beta} + \boldsymbol{Z}_i^T \boldsymbol{\gamma},$$

where $Z^T \gamma$ is the control mean function, and X is high-dimensional.

The hypothesis test problem is

$$H_0: \|\boldsymbol{\beta}\| \leq \delta_0 \quad versus \quad H_1: \|\boldsymbol{\beta}\| > \delta_0.$$

Value

pvals P-value of the corresponding test statistic.

Tn Standardized test statistic.

pvaltrans 11

References

Karoui, N, E. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.

Kong, W. and Valiant, G. (2017). Spectrum estimation from samples. Annals of Statistics. 45, 2218-2247.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Tian, X., Lu, Y., and Li, W. (2015). A robust test for sphericity of high-dimensional covariance matrices. Journal of Multivariate Analysis, 141, 217-227.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

Examples

```
data(simulData_test_gauss)
pvals <- pvalrd(data = datahb)
pvals$pvals</pre>
```

pval	tr	ans
PVUI	···	uno

P-value for high-dimensional testing of relevant difference in high-dimensional transfer learning in the generalized linear regression models.

Description

Provide p-value for high-dimensional testing of relevant difference in high-dimensional transfer learning in the generalized linear regression models (Liu (2024)).

Usage

Arguments

target	The target dataset, a list, including Y (response), \boldsymbol{X} (covariates).
source	The source dataset, a list with sublist. Each sublist includes Y (response), \boldsymbol{X} (covariates).
family	Family for generalized linear models, including 'gaussian', 'binomial', and 'poisson'. Default is family = "gaussian".
delta0	Relevant difference, a given value by hypothesis test problem $H_0: \ \beta\ _2 \le \delta_0$. Default is delta0 = 0.1.
nsource	The number of source datasets. Default is nsource = 10.
testmethd	There are two methods, "pvalrd" and "pvalclc", to calculate the p-value. Default is testmethd = 'pvalrd', see details in Liu (2024).

12 pvaltrans

method	There are two methods, "glm" and "lasso", to estimate the nuisance parameter α under the null hypothesis in the generalized linear regression models, where "glm" method estimates nuisance parameter for classic low-dimensional setting, and "lasso" for high-dimensional setting. Default is method = 'lasso' for high-dimensional setting.
resids	An n -vector, which is residual of GLM under H_0 . Default is resids = NULL, where the canonical link function is used if resids and psi are NULL.
isproj	logical. Projection score method is applied if isproj = TRUE. Default is isproj = FALSE, which means that no projection score is applied.
proj	The estimated residual of projection score, a list, where each element is a $n \times p$ -matrix, $\hat{\eta} = x - \hat{H}z$. Default is proj = NULL, which means that projection score is calculated.
sigma2	Estimator of error's variance if family = "gaussian". Default is sigma2 = NULL, where sigma2 = 1.
lammax	Esimator of the largest eigenvalue $\sup_{\ \beta\ _2 \le \delta_0} \beta^T \Sigma^2 \beta$, see details in eigmax. Default is lammax = NULL, where lammax is estimated by EMPI method, see eigmax. If testmethd = 'pvalrd', there are two choices lammax = 'mpmo' or lammax = 'mplp'. It is useless if testmethd = 'pvalclc'.
nmoms	The number of moments. Default is nmoms = NULL, where nmoms = 7 if method = 'mpmo', nmoms = 4 if method = 'mplp', and nmoms is useless if method = 'empi'.
zK	A matrix with dimension $K \times 2$, a given complex number, where the first column is the real part and the second column is the imaginary part. Default is zK = NULL, where zK[,1] = rnorm(K) is generated from standard normal distribution, and zK[,2] = rep(1,K)/sqrt(n).
J	A positive integer, which is the length of tJ. Default is $J = NULL$, which means $J = max(500, 3*n, 2*p) + 200$.
K	A positive integer, which is the number of complex numbers zK. Default is $K = NULL$, which means $K = max(500, 3*n, 2*p)+200$.
timeout	An integer: timeout variable in seconds, defaults to 0L which means no limit is set, see details in the function linp of R package "limSolve".

Details

High-dimensional test of relevant difference and its application to transferability test in the generalized Linear regression models (see details in the paper Liu (2024)).

Linear regression model for target data:

$$Y_{0i} = \boldsymbol{X}_{0i}^T \boldsymbol{\beta}_0 + \epsilon_{0i},$$

and

linear regression model for the kth source data:

$$Y_{ki} = \boldsymbol{X}_{ki}^T \boldsymbol{\beta}_k + \epsilon_{ki},$$

where $X^T \beta$ is a baseline mean function, and X is high-dimensional.

The hypothesis test problem is

$$H_0: \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\| \le \delta_0 \quad versus \quad H_1: \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\| > \delta_0.$$

Here, for the methods to estimate the largest eigenvalue of Σ , 'mpmo' denotes the MPMO method; 'mplp' denotes the MPLP method; and 'empi' denotes the EMPI method.

pvaltrans_cv 13

Value

pvals

P-value of the corresponding test statistic, which is a vector with length nsource.

References

Chen, Z., Cheng, V. X. and Liu, X. (2024). Hypothesis testing on high dimensional quantile regression. Journal of Econometrics.

Karoui, N, E. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.

Kong, W. and Valiant, G. (2017). Spectrum estimation from samples. Annals of Statistics. 45, 2218-2247.

Liu, S. (2024). Unified Transfer Learning Models for High-Dimensional Linear Regression. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR. 238, 1036-1044.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Liu, X., Zheng, S. and Feng, X. (2020). Estimation of error variance via ridge regression. Biometrika. 107, 481-488.

Tian, Y. and Feng, Y. (2023) Transfer Learning Under High-Dimensional Generalized Linear Models. Journal of the American Statistical Association, 118, 2684-2697.

Yang, W., Guo, X. and Zhu, L. (2023). Score function-based tests for ultrahigh-dimensional linear models. arXiv:2212.08446.

Zhang, X. and Cheng, G. (2017). Simultaneous inference for high-dimensional linear models. Journal of the American Statistical Association, 112, 757-768.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

Examples

```
data(simulData_trans_gauss)
pvals <- pvaltrans(target = dataset[[1]], source = dataset[-1])
pvals</pre>
```

pvaltrans_cv

P-value for high-dimensional testing of relevant difference in high-dimensional transfer learning in the generalized linear regression models via cross validation method.

Description

Provide p-value for high-dimensional testing of relevant difference in high-dimensional transfer learning in the generalized linear regression models via cross validation method (Liu (2024)).

Usage

```
pvaltrans_cv(target, source, family = "gaussian", delta0 = 0.1, nsource = 10,
    method = 'lasso', ncv = 10, alpha = 0.05, resids = NULL,
    isproj = FALSE, proj = NULL, sigma2 = NULL, lammax = NULL,
    nmoms = NULL, zK = NULL, J = NULL, timeout = 0)
```

14 pvaltrans_cv

Arguments

target The target dataset, a list, including Y (response), X (covariates). source The source dataset, a list with sublist. Each sublist includes Y (response), X (covariates). family Family for generalized linear models, including 'gaussian', 'binomial', and 'poisson'. Default is family = "gaussian". delta0 Relevant difference, a given value by hypothesis test problem $H_0: \|\beta\|_2 \leq \delta_0$. Default is delta0 = 0.1. nsource The number of source datasets. Default is nsource = 10. method There are two methods, "glm" and "lasso", to estimate the nuisance parameter α under the null hypothesis in the generalized linear regression models, where "glm" method estimates nuisance parameter for classic low-dimensional setting, and "lasso" for high-dimensional setting. Default is method = 'lasso' for highdimensional setting. Number of folds in the cross-validation, which is used to select transferable level ncv δ_0 . Default is ncv = 10. alpha logical. Projection score method is applied if isproj = TRUE. Default is isproj = FALSE, which means that no projection score is applied. resids An *n*-vector, which is residual of GLM under H_0 . Default is resids = NULL, where the canonical link function is used if resids and psi are NULL. isproj logical. Projection score method is applied if isproj = TRUE. Default is isproj = FALSE, which means that no projection score is applied. The estimated residual of projection score, a list, where each element is a $n \times p$ proj matrix, $\hat{\eta} = x - Hz$. Default is proj = NULL, which means that projection score is calculated. sigma2 Estimator of error's variance if family = "gaussian". Default is sigma2 = NULL, where sigma2 = 1. Esimator of the largest eigenvalue $\sup_{\|\beta\|_2 \le \delta_0} \beta^T \Sigma^2 \beta$, see details in eigmax. lammax Default is lammax = NULL, where lammax is estimated by EMPI method, see eigmax. If testmethd = 'pvalrd', there are two choices lammax = 'mpmo' or lammax = 'mplp'. It is useless if testmethd = 'pvalclc'. nmoms The number of moments. Default is nmoms = NULL, where nmoms = 7 if method = 'mpmo', nmoms = 4 if method = 'mplp', and nmoms is useless if method = 'empi'. zΚ A matrix with dimension $K \times 2$, a given complex number, where the first column is the real part and the second column is the imaginary part. Default is zK = NULL, where zK[,1] = rnorm(K) is generated from standard normal distribution, and zK[,2] = rep(1,K)/sqrt(n). J A positive integer, which is the length of tJ. Default is J = NULL, which means J = max(500, 3*n, 2*p) + 200.Κ A positive integer, which is the number of complex numbers zK. Default is K = NULL, which means K = max(500, 3*n, 2*p)+200. timeout An integer: timeout variable in seconds, defaults to 0L which means no limit is

set, see details in the function linp of R package "limSolve".

pvaltrans_cv 15

Details

High-dimensional test of relevant difference and its application to transferability test in the generalized Linear regression models (see details in the paper Liu (2024)).

Linear regression model for target data:

$$Y_{0i} = \boldsymbol{X}_{0i}^T \boldsymbol{\beta}_0 + \epsilon_{0i},$$

and

linear regression model for the kth source data:

$$Y_{ki} = \boldsymbol{X}_{ki}^T \boldsymbol{\beta}_k + \epsilon_{ki},$$

where $X^T\beta$ is a baseline mean function, and X is high-dimensional.

The hypothesis test problem is

$$H_0: \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\| \le \delta_0 \quad versus \quad H_1: \|\boldsymbol{\beta} - \boldsymbol{\beta}_0\| > \delta_0.$$

Here, for the methods to estimate the largest eigenvalue of Σ , 'mpmo' denotes the MPMO method; 'mplp' denotes the MPLP method; and 'empi' denotes the EMPI method.

Value

pvals P-value of the corresponding test statistic, which is a vector with length nsource.

s_opt The s_optth δ_0 is Selected.

References

Chen, Z., Cheng, V. X. and Liu, X. (2024). Hypothesis testing on high dimensional quantile regression. Journal of Econometrics.

Karoui, N, E. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. The Annals of Statistics, 36(6), 2757-2790.

Kong, W. and Valiant, G. (2017). Spectrum estimation from samples. Annals of Statistics. 45, 2218-2247.

Liu, S. (2024). Unified Transfer Learning Models for High-Dimensional Linear Regression. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR. 238, 1036-1044.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Liu, X., Zheng, S. and Feng, X. (2020). Estimation of error variance via ridge regression. Biometrika. 107, 481-488.

Tian, Y. and Feng, Y. (2023) Transfer Learning Under High-Dimensional Generalized Linear Models. Journal of the American Statistical Association, 118, 2684-2697.

Yang, W., Guo, X. and Zhu, L. (2023). Score function-based tests for ultrahigh-dimensional linear models. arXiv:2212.08446.

Zhang, X. and Cheng, G. (2017). Simultaneous inference for high-dimensional linear models. Journal of the American Statistical Association, 112, 757-768.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

16 simulData

Examples

```
data(simulData_trans_gauss)
np <- dim(dataset[[1]]$X)
delta0 <- c(1:10)*log(np[1])/np[2]
## pvals <- pvaltrans_cv(target = dataset[[1]], source = dataset[-1], delta0 = delta0, nsource = 1)</pre>
```

simulData

Simulated data for generalized linear regression models

Description

Simulated data for generalized linear regression models.

- 'Linear regression' for testing relevant difference (simulData_test_gauss),
- 'Poisson regression' for testing relevant difference (simulData_test_poiss),
- 'Logistic regression' for testing relevant difference (simulData_test_binom).
- 'Linear regression' for transfer learning (simulData_trans_gauss),
- 'Poisson regression' for transfer learning (simulData_trans_poiss), and
- 'Logistic regression' for transfer learning (simulData_trans_binom).

Each dataset includes a list entitled

- datahb in simulData_test for linear regression models,
- data_binom in simulatedData_Binom for logistic regression models,
- data_poiss in simulatedData_Poiss for Poisson regression models,
- dataset in simulData_trans_gauss, simulData_trans_binom and simulData_trans_poiss for linear regression, logistic regression and Poisson regression models, respectively. dataset[[1]] is the target dataset, and dataset[-1] is the 10 source datasets.

Usage

```
data(simulData_test_gauss)
```

Details

For simulData_test_gauss, we simulated data generated from linear regression models

$$Y_i = \boldsymbol{X}_i^T \boldsymbol{\alpha} + \boldsymbol{Z}_i^T \boldsymbol{\beta} + \epsilon_i,$$

where $X^T \alpha$ is a baseline mean function.

- Y: the response, an n-vector,
- X: the baseline variable with dimension $n \times p$,
- Z: the interested variable with dimension $n \times q$.

For simulData_trans_gauss, we simulated data generated from linear regression models

$$Y_{0i} = \boldsymbol{X}_{0i}^T \boldsymbol{\beta}_0 + \epsilon_{0i},$$

and

Linear regression model for the kth source data:

$$Y_{ki} = \boldsymbol{X}_{ki}^T \boldsymbol{\beta}_k + \epsilon_{ki},$$

where $X^T\beta$ is a baseline mean function, and X is high-dimensional.

utrans 17

References

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Examples

```
data(simulData_test_gauss)
y <- datahb$Y[1:5]</pre>
dim(datahb$X)
dim(datahb$Z)
data(simulData_trans_gauss)
y <- dataset[[1]]$Y
dim(dataset[[1]]$X)
dim(dataset[[2]]$X)
```

utrans

Estimation of coefficient for the target data by transfer learning from the source data

Description

Provide the estimator of coefficient for the target data by transfer learning from the source data (Liu (2024)).

Usage

```
utrans(target, source, family = "gaussian", idtrans = NULL)
```

Arguments

The target dataset, a list, including Y (response), X (covariates). target The source dataset, a list with sublist. Each sublist includes Y (response), Xsource (covariates). source could be NULL, in which case utrans only fits the target data by glmnet. Family for generalized linear models, including 'gaussian', 'binomial', and 'poisfamily son'. Default is family = "gaussian". The transferable source indices. It can be either a subset of 1,..., length(source). idtrans

Default is idtrans = NULL, which is idtrans = seq(length(source)).

Details

See details in the paper Liu (2024)

Value

The object from fitting cv.glmnet by CV method, see details in R package fitglmnet

"glmnet".

beta The coefficient (including intercept term) of the GLMs to fit target data by trans-

fer learning.

family The response type. 18 utrans

References

Liu, S. (2024). Unified Transfer Learning Models for High-Dimensional Linear Regression. Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR. 238, 1036-1044.

Liu, X. (2024). Testing relevant difference in high-dimensional linear regression with applications to detect transferability. Manuscript.

Tian, X., Lu, Y., and Li, W. (2015). A robust test for sphericity of high-dimensional covariance matrices. Journal of Multivariate Analysis, 141, 217-227.

Van den Meersche, K., Soetaert, K., and Van Oevelen, D. (2009). xsample(): An R Function for Sampling Linear Inverse Problems. Journal of Statistical Software, Code Snippets, 30, 1-15.

Examples

```
data(simulData_trans_gauss)
fit <- utrans(target = dataset[[1]], source = dataset[-1], idtrans = seq(5))
fit$beta[1:10]</pre>
```

Index

```
* datasets
     simulData, 16
* package
     hdtrd-package, 2
bandmatrix, 3
eigmax, 4
\verb+hdtrd+(\verb+hdtrd-package+), 2
hdtrd-package, 2
predict_utr, 5
projection, 6
pvalclc, 7
\mathsf{pvalgc}, \textcolor{red}{8}
pvalrd, 10
pvaltrans, 11
pvaltrans_cv, 13
simulData, 16
utrans, 17
```