МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №7

по дисциплине «Машинное обучение»

Тема: Классификация (Байесовские методы, деревья)

Студент гр. 8304	 Холковский К.В
Преподаватель	 Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами классификации модуля Sklearn.

Ход работы

Байесовские методы

1) Провели классификацию наблюдений наивным Байесовским методом. Количество наблюдений, который были неправильно определены 5

Рис 1 – Количество наблюдений, который были неправильно определены

Таблица 1 – Атрибуты

Атрибуты	Смысл атрибута
class_count_	Количество обучающих выборок, наблюдаемых в
	каждом классе.
class_prior_	Вероятность каждого класса.
classes_	Метки классов, известные классификатору.
epsilon_	Фбсолютная аддитивная величина к отклонениям.
n_features_in_	Количество деталей, видимых во время посадки.
feature_names_in_	Названия особенностей, замеченных во время посадки.
	Определяется только тогда, когда Х имеет имена
	функций, которые являются строками.
var_	Дисперсия каждого объекта по классу.
theta_	Среднее значение каждой функции по классу.

2) Вывели точность классификации

Точность классификации 0.96

Рис 2 - Точность классификации

3) Построили графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки.

Рис 3— Графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки GaussianNB

Рис 4— Графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки MultinomialNB

Рис 5— Графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки ComplementNB

Рис 5– Графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки BernoulliNB

Таблица 2 – Особенности методов

MultinomialNB	Наивный байесовский классификатор для		
	полиномиальных моделей.		
	Полиномиальный наивный байесовский классификатор		
	подходит для классификации с дискретными функциями		
	(например, подсчетом слов для классификации текста).		
	Полиномиальное распределение обычно требует		
	целочисленного подсчета признаков. Однако на практике		
	дробные подсчеты, такие как tf-idf, также могут работать.		
ComplementNB	Наивный байесовский классификатор комплемента,		
	описанный у Rennie et al. (2003).		
	Дополнительный наивный байесовский классификатор		
	был разработан для исправления «серьезных допущений»,		
	сделанных стандартным полиномиальным наивным байесовским классификатором. Он особенно подходит для		
	несбалансированных наборов данных.		
BernoulliNB	Наивный байесовский классификатор для многомерных		
Demounive	моделей Бернулли.		
	моделен вернулын.		
	Как и MultinomialNB, этот классификатор подходит для		
	дискретных данных. Разница в том, что в то время как		
	MultinomialNB работает с подсчетом вхождений,		
	BernoulliNB предназначен для двоичных / логических		
	функций.		

Классифицирующие деревья

1) Провели классификацию на тех же данных

Количество наблюдений, который были неправильно определены 4 Точность классификации 1.0 Листьев: 5 ; Глубина: 4

Рис 6 – Результаты классификации

Рис 7 – Построенное дерево

2) Построили графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки

Рис 8 - Графики зависимости неправильно классифицированных наблюдений и точности классификации от размера выборки

3) Исследовали работу дерева при различных параметрах

Таблица 3 – Параметры дерева

Параметры	Смысл	
criterion	Функция измерения качества раскола. Поддерживаемые	
	критерии: «Джини» для примеси Джини и «энтропия» для	
	получения информации.	
splitter	Стратегия, используемая для выбора разделения на	
	каждом узле. Поддерживаемые стратегии являются	
	«лучшими» для выбора лучшего разбиения и	
	«случайными» для выбора наилучшего случайного	
	разбиения.	
max_depth	Максимальная глубина дерева. Если None, то узлы	
	расширяются до тех пор, пока все листья не станут	
	чистыми или пока все листья не будут содержать менее	
	min_samples_split выборок.	
min_samples_split	1	
	разделения внутреннего узла.	
min_samples_leaf	Минимальное количество выборок, которое требуется для	
	конечного узла. Точка разделения на любой глубине будет	
	учитываться только в том случае, если она оставляет по	
	крайней мере обучающие образцы min_samples_leaf в	
	каждой из левой и правой ветвей. Это может привести к	
	сглаживанию модели, особенно при регрессии.	

Вывод Ознакомились с методами классификации модуля Sklearn.