17/11/2024, 21:35 2024-11-17-derivee

Derivatives Course

Join our course to understand derivatives!

Function	Derivative
f(x) = c	f'(x)=0
f(x) = x	f'(x)=1
$f(x)=x^n$	$f^{\prime}(x)=nx^{n-1}$
$f(x)=e^x$	$f'(x)=e^x$
$f(x) = \ln(x)$	$f'(x)=rac{1}{x}$
$f(x)=\sin(x)$	$f'(x)=\cos(x)$
$f(x)=\cos(x)$	$f'(x) = -\sin(x)$
$f(x)=\tan(x)$	$f'(x) = \sec^2(x)$

Function	Derivative	Name
$f(x) = c \cdot g(x)$	$f'(x) = c \cdot g'(x)$	onstant Multiple Rule
f(x) = g(x) + h(x)	f'(x)=g'(x)+h'(x)	Sum Rule
$f(x) = g(x) \cdot h(x)$	$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$	Product Rule
$f(x) = \frac{g(x)}{h(x)}$	$f'(x) = rac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2}$	Quotient Rule
f(x)=g(h(x))	$f'(x) = g'(h(x)) \cdot h'(x)$	Chain Rule

Derivative Exercises

1. Basic Derivatives:

- Calculate the derivative of the following functions:
 - $f(x) = 2x^3 5x^2 + 3x 7$
 - $g(x) = \sin(x) + \cos(x)$
 - $\bullet \ h(x) = e^x \ln(x)$

2. Product and Quotient Rules:

- Use the product rule to find the derivative of $f(x)=(3x^2+2x)(x^3-x+1).$
- Use the quotient rule to find the derivative of $g(x)=rac{x^2+1}{x^3-2x}$.

3. Chain Rule:

• Find the derivative of $f(x) = \sin(x^2 + 3x)$ using the chain rule.

17/11/2024, 21:35 2024-11-17-derivee

• Find the derivative of $g(x)=e^{x^2+1}$ using the chain rule.

4. Higher-Order Derivatives:

- Calculate the second derivative of $f(x) = x^4 3x^3 + 2x^2 x + 5$.
- Calculate the second derivative of $g(x) = \ln(x^2 + 1)$.

Derivative Interpretation

1. Understanding the Function:

- What is the mathematical expression for the cubic function defined in the cell?
- How is the derivative of the cubic function calculated?

2. Plot Interpretation:

- What do the solid and dashed lines represent in the plot?
- How does f' behave when f increases or decreases?

3. Mathematical Concepts:

- What is the significance of the derivative of a function in calculus?
- What is the mathematical expression for the second derivative of the cubic function?
- How does f'' behave when f' increases or decreases?

Demonstration of Derivative Functions

Derivative of Simple Functions Using Limits

17/11/2024, 21:35 2024-11-17-derivee

The derivative of a function f(x) at a point x is defined as the limit of the average rate of change of the function as the interval around x approaches zero. The derivative of a function f(x) at a point x is denoted as f'(x) or $\frac{df}{dx}$.

The derivative of a function f(x) at a point x is defined as:

$$f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

To understand the concept of derivatives, let's start with some simple functions and calculate their derivatives using the limit definition.

1. Derivative of $f(x)=x^2$

The derivative of $f(x)=x^2$ using the limit definition is:

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

Simplifying the expression inside the limit:

$$f'(x) = \lim_{h o 0} rac{x^2 + 2xh + h^2 - x^2}{h} = \lim_{h o 0} rac{2xh + h^2}{h} = \lim_{h o 0} (2x + h) = 2x$$

2. Derivative of f(x) = x

The derivative of f(x) = x using the limit definition is:

$$f'(x) = \lim_{h o 0} rac{(x+h) - x}{h}$$

Simplifying the expression inside the limit:

$$f'(x)=\lim_{h o 0}rac{x+h-x}{h}=\lim_{h o 0}rac{h}{h}=\lim_{h o 0}1=1$$

3. Derivative of $f(x) = c \cdot g(x)$

The derivative of $f(x) = c \cdot g(x)$ using the limit definition is:

$$f'(x) = \lim_{h o 0} rac{c\cdot g(x+h) - c\cdot g(x)}{h}$$

Factoring out the constant *c*:

$$f'(x) = c \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

By definition, this is:

$$f'(x) = c \cdot g'(x)$$