Exercice 1 On munit l'espace \mathbb{R}^n d'une norme quelconque et on note B_r la boule de centre 0 et de rayon r. Soit f un C^1 difféomorphisme entre deux ouverts U et V de \mathbb{R}^n contenant l'origine. On supposera pour simplifier que f(0) = 0.

a) Soit $\epsilon \in]0,1[$ fixé. Montrer qu'il existe R>0 tel que pour tout $x\in B_R$,

$$\| df(0)^{-1}(f(x)) - x \| \le \epsilon \|x\|$$

b) Montrer qu'il existe R' > 0 tel que, pour $0 \le r \le R'$,

$$(1 - \epsilon) df(0)(B_r) \subset f(B_r) \subset (1 + \epsilon) df(0)(B_r)$$

Indication : Pour la première inclusion, observer que $f(B_R)$ est un voisinage de 0.

c) Soit λ la mesure de Lebesgue sur \mathbb{R}^n dont on admet qu'elle satisfait la relation $\lambda(AX) = |det(A)|\lambda(X)$ pour tout ensemble Lebesgue-mesurable X et toute application linéaire $A \in \mathcal{L}(\mathbb{R}^n)$. Montrer alors que :

$$|\det df(0)| = \lim_{r \to 0} \frac{\lambda(f(B_r))}{\lambda(B_r)}$$

Exercice 2 – Théorème de Whitney. Soit F un fermé de \mathbb{R}^n . On va montrer qu'il existe une fonction f de classe C^{∞} de \mathbb{R}^n dans \mathbb{R}^+ dont l'ensemble des zéros est exactement F. On supposera dans la suite que $F \neq \mathbb{R}^n$.

- a) Donner l'exemple d'une fonction de classe C^{∞} strictement positive à l'intérieur de la boule unité et nulle partout en dehors.
- **b)** Justifier l'existence d'une suite de boules ouvertes $(B_i)_{i\in\mathbb{N}}$ telles que $F = \mathbb{R}^n \setminus \bigcup_{i\in\mathbb{N}} B_i$ ainsi que d'une suite d'applications $(\phi_i)_{i\in\mathbb{N}}$ de \mathbb{R}^n dans \mathbb{R}^+ telle que chaque ϕ_i s'annule uniquement sur $\mathbb{R}^n \setminus B_i$.
- c) Déterminer alors une fonction f satisfaisant au problème. Indication : Exprimer f comme une série pondérée des fonctions ϕ_i de façon à obtenir une convergence normale de toutes les séries dérivées.

Exercice 3 – Un peu de calcul des variations. Le calcul des variations est une généralisation du calcul différentiel en dimension finie à des espaces de Banach de dimension infinie, typiquement des espaces de fonctions, de courbes, etc... Pour un espace de Banach E quelconque et f une application de E dans un evn F, on définit la différentiabilité de f en un point $x_0 \in E$ par l'existence d'une application linéaire **continue** $df(x_0) \in \mathcal{L}_c(E, F)$ telle que :

$$f(x_0 + h) - f(x_0) - df(x_0)(h) = o(||h||_E)$$

On se place désormais dans le cas où E est l'espace des fonctions C^1 sur un intervalle compact I = [a, b] à valeurs réelles, muni de la norme $||f|| = ||f||_{\infty} + ||f'||_{\infty}$. Soit $L : \mathbb{R}^3 \to \mathbb{R}$ de classe C^1 qui définit une fonctionnelle \mathcal{F} sur E par :

$$\mathcal{F}(f) = \int_{a}^{b} L(x, f(x), f'(x)) dx$$

Montrer que \mathcal{F} est différentiable sur E et exprimer sa différentielle à partir des dérivées partielles de L.