

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00 psf
g _{мім}	=	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C _s =	0.73	
$C_e =$	0.90	

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applica array ironi are samaser

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>160.55</u>	6220.23	k
Compressive Load =	3462.94	<u>4885.58</u>	k
Lateral Load =	<u>18.29</u>	<u>3861.51</u>	k
Moment (Weak Axis) =	0.04	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 175897.3 in-lbs Resisting Force Required = 2460.10 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4100.17 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 928.21 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2320.53 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 928.21 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	<u>38 in</u>	
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs	

ASD LC		1.0D	+ 1.0S	1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W						
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1226 lbs	1226 lbs	1226 lbs	1226 lbs	1268 lbs	1268 lbs	1268 lbs	1268 lbs	1741 lbs	1741 lbs	1741 lbs	1741 lbs	-71 lbs	-71 lbs	-71 lbs	-71 lbs
F _B	1213 lbs	1213 lbs	1213 lbs	1213 lbs	2112 lbs	2112 lbs	2112 lbs	2112 lbs	2366 lbs	2366 lbs	2366 lbs	2366 lbs	-2985 lbs	-2985 lbs	-2985 lbs	-2985 lbs
F_V	171 lbs	171 lbs	171 lbs	171 lbs	1681 lbs	1681 lbs	1681 lbs	1681 lbs	1373 lbs	1373 lbs	1373 lbs	1373 lbs	-1856 lbs	-1856 lbs	-1856 lbs	-1856 lbs
P _{total}	9998 lbs	10214 lbs	10430 lbs	10646 lbs	10940 lbs	11156 lbs	11372 lbs	11588 lbs	11667 lbs	11883 lbs	12099 lbs	12315 lbs	1479 lbs	1609 lbs	1739 lbs	1868 lbs
M	3224 lbs-ft	3224 lbs-ft	3224 lbs-ft	3224 lbs-ft	3096 lbs-ft	3096 lbs-ft	3096 lbs-ft	3096 lbs-ft	4399 lbs-ft	4399 lbs-ft	4399 lbs-ft	4399 lbs-ft	5536 lbs-ft	5536 lbs-ft	5536 lbs-ft	5536 lbs-ft
е	0.32 ft	0.32 ft	0.31 ft	0.30 ft	0.28 ft	0.28 ft	0.27 ft	0.27 ft	0.38 ft	0.37 ft	0.36 ft	0.36 ft	3.74 ft	3.44 ft	3.18 ft	2.96 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft						
f _{min}	240.9 psf	240.3 psf	239.7 psf	239.1 psf	269.9 psf	268.4 psf	267.1 psf	265.8 psf	272.0 psf	270.4 psf	269.0 psf	267.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	334.4 psf	331.1 psf	328.0 psf	325.1 psf	359.6 psf	355.6 psf	351.9 psf	348.4 psf	399.4 psf	394.4 psf	389.6 psf	385.0 psf	152.6 psf	142.0 psf	135.5 psf	131.3 psf

Maximum Bearing Pressure = 399 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1078.2 \text{ ft-lbs}$

Resisting Force Required = 739.35 lbs S.F. = 1.67

Weight Required = 1232.25 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	260 lbs	635 lbs	260 lbs	756 lbs	2049 lbs	756 lbs	76 lbs	186 lbs	76 lbs		
F _V	2 lbs	0 lbs	2 lbs	7 lbs	0 lbs	7 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	9619 lbs	7560 lbs	9619 lbs	9665 lbs	7560 lbs	9665 lbs	2813 lbs	7560 lbs	2813 lbs		
M	7 lbs-ft	0 lbs-ft	7 lbs-ft	24 lbs-ft	0 lbs-ft	24 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	276.3 psf	217.5 psf	276.3 psf	276.6 psf	217.5 psf	276.6 psf	80.8 psf	217.5 psf	80.8 psf		
f _{max}	277.2 psf	217.5 psf	277.2 psf	279.5 psf	217.5 psf	279.5 psf	81.0 psf	217.5 psf	81.0 psf		

Maximum Bearing Pressure = 280 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.664 k	Maximum Axial Load =	4.182 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>36%</u>	Utilization =	<u>56%</u>
Diagonal Strut			
Maximum Axial Load =	2.613 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>35%</u>		
		Struts under compression are transfer from the girder. Sing	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 60.93 in

Allowable Story Drift for All Other
Structures, Δ = {
0.020 h_{sx} 1.219 in

Max Drift, $\Delta_{MAX} =$ 0.04 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 105 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 290.479 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 105 \\ J &= & 0.432 \\ & 184.727 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 28.9 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.8 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b[Bbr-mDbr^*h/t]$$

$$\varphi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc \text{-} 1.6 Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.0 \text{ ksi}$$

3.4.16

$$L_b = 104.56$$

 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 =$ 28.9

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$2 = \frac{k_1 B p}{12.2}$$

$$\varphi F_L = 31.6 \text{ ksi}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$ S1 = 12.2

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 3.4.18 7.4 16.2 h/t =h/t = $\frac{\theta_y}{2}$ 1.3Fcy $Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy$ Bbr -S1 = S1 = 36.9 35.2 m = 0.68 m = 0.65 $C_0 = 41.067$ 40 $C_0 =$ Cc = 43.717Cc = $S2 = \frac{k_1 Bbr}{}$ $S2 = \frac{k_1 Bbr}{}$ mDbrmDbrS2 = 73.8 S2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ $\phi F_L = 1.3 \phi y F c y$ $\phi F_L =$ 43.2 ksi $\varphi F_L =$ 43.2 ksi $\phi F_L St =$ 29.0 ksi $\phi F_L W k =$ 33.3 ksi $lx = 984962 \text{ mm}^4$ $ly = 923544 \text{ mm}^4$ 2.366 in⁴ 2.219 in⁴ y = 43.717 mm 40 mm x = 1.409 in³ Sx = 1.375 in³ Sy= $M_{max}St =$ 3.323 k-ft $M_{max}Wk =$ 3.904 k-ft

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1 $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$ S1 = 6.87 S2 = 131.3 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L = 31.09 \text{ ksi}$ $\phi F_L = 31.09 \text{ ksi}$ $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\varphi F_L = 31.4 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &=& 28.2 \text{ ksi} \\ lx &=& 279836 \text{ mm}^4 \\ && 0.672 \text{ in}^4 \\ y &=& 27.5 \text{ mm} \\ Sx &=& 0.621 \text{ in}^3 \end{aligned}$$

$$M_{max}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 24.8 \\ \mathsf{J} &= & 0.942 \\ & & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi \mathsf{b} [\mathsf{Bc-1.6Dc^*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_L} &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t = 24.5

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F C V$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 28.2 \text{ ksi}$$

$$\varphi F_L W k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mD^{1/2}}$

m =

 $C_0 =$

Cc =

mDbr

0.65

27.5

27.5

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.25 \text{ ksi}$$

$$\varphi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.2 ksi

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942	J = 0.942
152.985	152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$	$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)}}]$	$ \varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] $
$\phi F_L = 29.4 \text{ ksi}$	$\phi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_{L} = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_{L} = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$SI = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = \frac{36.9}{m} = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

x =

Sy=

 $M_{max}Wk =$

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 78.35 $L_b =$ 78.35 in $L_b =$ 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 29.8 \text{ ksi}$ 29.8

3.4.16

$$5.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$3.4.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S1 = \left(\frac{1.6Dt}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$φF_L$$
= 1.3 $φyFcy$
 $φF_L$ = 43.2 ksi

$$\phi F_L St = 28.2 \text{ ksi}$$
 $1x = 279836 \text{ mm}^4$

$$M_{\text{max}}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 1.8125$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.83375$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

3.4.9

 $\phi F_L = 8.88278 \text{ ksi}$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

S1.16
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ \text{ly} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{x} = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕyFcy} \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-59.239	-59.239	0	0
2	M14	V	-59.239	-59.239	0	0
3	M15	V	-95.298	-95.298	0	0
4	M16	V	-95.298	-95.298	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	133.932	133.932	0	0
2	M14	٧	103.025	103.025	0	0
3	M15	V	56.664	56.664	0	0
4	M16	V	56 664	56 664	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	В	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations (Continued)

	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	791.19	2	1197.763	2	.698	1	.003	1	0	1	Ó	1
2		min	-966.731	3	-1503.902	3	.038	15	0	15	0	1	0	1
3	N7	max	.034	9	1035.813	1	677	15	001	15	0	1	0	1
4		min	225	2	-7.27	3	-14.072	1	027	1	0	1	0	1
5	N15	max	.013	9	2663.797	1	0	1	0	1	0	1	0	1
6		min	-2.302	2	-123.5	3	0	14	0	14	0	1	0	1
7	N16	max	2747.408	2	3758.136	2	0	9	0	2	0	1	0	1
8		min	-2970.391	3	-4784.792	3	0	3	0	3	0	1	0	1
9	N23	max	.034	9	1035.813	1	14.072	1	.027	1	0	1	0	1
10		min	225	2	-7.27	3	.677	15	.001	15	0	1	0	1
11	N24	max	791.19	2	1197.763	2	038	15	0	15	0	1	0	1
12		min	-966.731	3	-1503.902	3	698	1	003	1	0	1	0	1
13	Totals:	max	4327.036	2	10254.731	2	0	1	·				·	
14		min	-4903.99	3	-7930.636	3	0	14						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
1	M13	1	max	80.526	1	406.928	2	-8.558	15	0	15	.226	1	0	1
2			min	3.786	15	-686.711	3	-183.801	1	015	2	.011	15	0	3
3		2	max	80.526	1	283.584	2	-6.561	15	0	15	.068	1	.569	3
4			min	3.786	15	-483.645	3	-140.731	1	015	2	.003	15	336	2
5		3	max	80.526	1	160.24	2	-4.564	15	0	15	.001	3	.94	3
6			min	3.786	15	-280.579	3	-97.66	1	015	2	048	1	551	2
7		4	max	80.526	1	37.119	1	-2.567	15	0	15	004	12	1.114	3
8			min	3.786	15	-77.513	3	-54.59	1	015	2	122	1	647	2
9		5	max	80.526	1	125.553	3	571	15	0	15	007	12	1.091	3
10			min	3.786	15	-86.448	2	-11.519	1	015	2	154	1	623	2
11		6	max	80.526	1	328.619	3	31.551	1	0	15	007	15	.87	3
12			min	3.786	15	-209.792	2	.094	3	015	2	144	1	479	2
13		7	max	80.526	1	531.685	3	74.622	1	0	15	004	15	.452	3
14			min	3.786	15	-333.136	2	2.177	12	015	2	093	1	217	1
15		8	max	80.526	1	734.751	3	117.692	1	0	15	.004	2	.169	2
16			min	3.786	15	-456.481	2	4.206	12	015	2	006	3	163	3
17		9	max	80.526	1	937.817	3	160.763	1	0	15	.136	1	.672	2
18			min	3.786	15	-579.825	2	6.236	12	015	2	.002	12	977	3
19		10	max	80.526	1	1140.883	3	203.833	1	.015	2	.313	1	1.296	2
20			min	3.786	15	-703.169	2	8.265	12	002	3	.009	12	-1.987	3
21		11	max	80.526	1	579.825	2	-6.236	12	.015	2	.136	1	.672	2
22			min	3.786	15	-937.817	3	-160.763	1	0	15	.002	12	977	3
23		12	max	80.526	1	456.481	2	-4.206	12	.015	2	.004	2	.169	2
24			min	3.786	15	-734.751	3	-117.692	1	0	15	006	3	163	3
25		13	max	80.526	1	333.136	2	-2.177	12	.015	2	004	15	.452	3
26			min	3.786	15	-531.685	3	-74.622	1	0	15	093	1	217	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	80.526	1	209.792	2	094	3	.015	2	007	15	.87	3
28			min	3.786	15	-328.619	3	-31.551	1	0	15	144	1	479	2
29		15	max	80.526	1	86.448	2	11.519	1	.015	2	007	12	1.091	3
30		4.0	min	3.786	15	-125.553	3	.571	15	0	15	154	1	623	2
31		16	max	80.526	1	77.513	3	54.59	1	.015	2	004	12	1.114	3
32			min	3.786	15	-37.119	1	2.567	15	0	15	122	1	647	2
33		17	max	80.526	1	280.579	3	97.66	1	.015	2	.001	3	.94	3
34		4.0	min	3.786	15	-160.24	2	4.564	15	0	15	048	1	<u>551</u>	2
35		18	max	80.526	1	483.645	3	140.731	1_	.015	2	.068	1	.569	3
36		4.0	min	3.786	15	-283.584	2	6.561	15	0	15	.003	15	336	2
37		19	max	80.526	1	686.711	3	183.801	1	.015	2	.226	1	0	1
38			min	3.786	15	-406.928	2	8.558	15	0	15	.011	15	0	3
39	M14	1	max	47.443	1	461.07	2	-8.897	15	.012	3	.268	1	0	1
40			min	2.232	15	-556.649	3	-191.101	1	014	2	.013	15	0	3
41		2	max	47.443	1	337.726	2	-6.901	15	.012	3	.103	1	.466	3
42			min	2.232	15	-401.661	3	-148.031	1	014	2	.005	15	388	2
43		3	max	47.443	1	214.382	2	-4.904	15	.012	3	.004	3	.781	3
44			min	2.232	15	-246.672	3	-104.96	1	014	2	02	1	657	2
45		4	max	47.443	1_	91.038	2	-2.907	15	.012	3	003	12	.945	3
46			min	2.232	15	-91.684	3	-61.89	1	014	2	101	1	805	2
47		5	max	47.443	1	63.304	3	91	15	.012	3	006	12	.959	3
48			min	2.232	15	-34.796	1_	-18.819	1	014	2	14	1	834	2
49		6	max	47.443	1	218.293	3	24.251	1	.012	3	006	15	.822	3
50			min	2.232	15	-155.651	2	437	3	014	2	137	1	742	2
51		7	max	47.443	1	373.281	3	67.322	1	.012	3	004	15	.535	3
52			min	2.232	15	-278.995	2	1.824	12	014	2	093	1	531	2
53		8	max	47.443	1	528.27	3	110.392	1	.012	3	.001	10	.097	3
54			min	2.232	15	-402.339	2	3.853	12	014	2	007	1	2	2
55		9	max	47.443	1	683.258	3	153.463	1	.012	3	.122	1	.271	1
56			min	2.232	15	-525.683	2	5.883	12	014	2	.001	12	492	3
57		10	max	47.443	1	838.247	3	196.533	1	.014	2	.292	1	.832	1
58			min	2.232	15	-649.027	2	7.912	12	012	3	.008	12	-1.232	3
59		11	max	47.443	1	525.683	2	-5.883	12	.014	2	.122	1	.271	1
60			min	2.232	15	-683.258	3	-153.463	1	012	3	.001	12	492	3
61		12	max	47.443	1	402.339	2	-3.853	12	.014	2	.001	10	.097	3
62			min	2.232	15	-528.27	3	-110.392	1	012	3	007	1	2	2
63		13	max	47.443	1	278.995	2	-1.824	12	.014	2	004	15	.535	3
64			min	2.232	15	-373.281	3	-67.322	1	012	3	093	1	531	2
65		14	max	47.443	1	155.651	2	.437	3	.014	2	006	15	.822	3
66			min	2.232	15	-218.293	3	-24.251	1	012	3	137	1	742	2
67		15			1	34.796	1	18.819	1	.014	2	006	12	.959	3
68			min	2.232	15	-63.304	3	.91	15	012	3	14	1	834	2
69		16	max	47.443	1	91.684	3	61.89	1	.014	2	003	12	.945	3
70			min	2.232	15	-91.038	2	2.907	15	012	3	101	1	805	2
71		17	max	47.443	1	246.672	3	104.96	1	.014	2	.004	3	.781	3
72			min	2.232	15	-214.382	2	4.904	15	012	3	02	1	657	2
73		18	max	47.443	1	401.661	3	148.031	1	.014	2	.103	1	.466	3
74		'	min	2.232	15	-337.726	2	6.901	15	012	3	.005	15	388	2
75		19	max	47.443	1	556.649	3	191.101	1	.014	2	.268	1	0	1
76		13	min	2.232	15	-461.07	2	8.897	15	012	3	.013	15	0	3
77	M15	1	max	-2.379	15	650.427	2	-8.893	15	.015	2	.268	1	0	2
78	IVITO		min	-50.44	1	-313.833	3	-191.053	1	01	3	.013	15	0	3
79		2	max	- <u>30.44</u> - <u>2.379</u>	15	470.991	2	-6.896	15	.015	2	.103	1	.265	3
80			min	-2.379 -50.44	1	-230.962	3	-147.982	1	01	3	.005	15	545	2
81		3	max	-50.44 -2.379	15	291.555	2	-4.899	15	.015	2	.003	3	545 .449	3
82		٦	min	-2.379 -50.44	1	-148.091	3	-104.912		01	3	02	1	916	2
83		4		-30.44 -2.379	15	112.12	2		15	.015	2	003	12	.553	3
೦೨		4	max	-2.3/9	LIO	112.12		-2.902	LIO	C10.		003	14	.၁၁১	_ ວ

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

86		Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]							LC
86	-			min		_								_		
88			5													
88				min		_						_				
89			6	max		15		3			.015			15		3
90	88			min	-50.44	1			251	3	01	3	138	1	981	
91	89		7	max	-2.379	15	183.394	3	67.37	1	.015	2	004	15	.38	3
92	90			min	-50.44	1	-426.188	2	1.941	12	01	3	093	1	654	2
92	91		8	max	-2.379	15	266.266	3	110.441	1	.015	2	.001	10	.162	3
93						1				12		3		1	152	
94			9			15								1		
95										12				12		
96	-		10													
98																
98			11			_										
99														_		
100			12													
101			12													
102			12			_										-
104			13													
105			4.4													
106			14													
106			4.5											_		
108			15													
108						_										
109			16													
110				min						15				_		
111			17	max		15		3				3		3		3
112	110			min	-50.44	1	-291.555	2	4.899	15	015	2	02	1	916	2
113	111		18	max	-2.379	15	230.962	3	147.982	1	.01	3	.103	1	.265	3
114	112			min	-50.44	1	-470.991	2	6.896	15	015	2	.005	15	545	2
114	113		19	max	-2.379	15	313.833	3	191.053	1	.01	3	.268	1	0	2
115 M16				min	-50.44	1		2		15	015	2		15	0	3
116	-	M16	1	max		15						1			0	
117 2 max -4.278 15 419.316 2 -6.578 15 .01 1 .07 1 .223 3 118 min -90.903 1 -188.096 3 -141.267 1 013 3 .003 15 -495 2 119 3 max -4.278 15 239.88 2 -4.581 15 .01 1 0 3 .366 3 120 min -90.903 1 -105.225 3 -98.196 1 013 3 046 1 815 2 121 4 max -4.278 15 60.444 2 -2.585 15 .01 1 005 12 .428 3 122 min -90.903 1 -18.992 2 -12.055 1 013 3 153 1 907 15 .31 3 125 6 <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td>												3				
118			2												223	
119												_		_		
120			3			_				_						
121 4 max -4.278 15 60.444 2 -2.585 15 .01 1 005 12 .428 3 122 min -90.903 1 -22.354 3 -55.126 1 013 3 121 1 961 2 123 5 max -4.278 15 60.517 3 588 15 .01 1 007 12 .409 3 124 min -90.903 1 -118.992 2 -12.055 1 013 3 153 1 933 2 125 6 max -4.278 15 143.389 3 31.015 1 .01 1 007 15 .31 3 126 min -90.903 1 -298.428 2 .509 12 013 3 144 1 73 2 127 7 max -4.																
122			1			_										-
123 5 max -4.278 15 60.517 3 588 15 .01 1 007 12 .409 3 124 min -90.903 1 -118.992 2 -12.055 1 013 3 153 1 933 2 125 6 max -4.278 15 143.389 3 31.015 1 .01 1 007 15 .31 3 126 min -90.903 1 -298.428 2 .509 12 013 3 144 1 73 2 127 7 max -4.278 15 226.26 3 74.086 1 .01 1 004 15 .13 3 128 min -90.903 1 -477.864 2 2.539 12 013 3 093 1 -353 2 129 8 max -4.278			_													
124 min -90.903 1 -118.992 2 -12.055 1 013 3 153 1 933 2 125 6 max -4.278 15 143.389 3 31.015 1 .01 1 007 15 .31 3 126 min -90.903 1 -298.428 2 .509 12 013 3 144 1 73 2 127 7 max -4.278 15 226.26 3 74.086 1 .01 1 004 15 .13 3 128 min -90.903 1 -477.864 2 2.539 12 013 3 093 1 -353 2 129 8 max -4.278 15 309.131 3 117.156 1 .01 1 .003 2 .199 2 130 min -90.903			-													
125 6 max -4.278 15 143.389 3 31.015 1 .01 1 007 15 .31 3 126 min -90.903 1 -298.428 2 .509 12 013 3 144 1 73 2 127 7 max -4.278 15 226.26 3 74.086 1 .01 1 004 15 .13 3 128 min -90.903 1 -477.864 2 2.539 12 013 3 093 1 -353 2 129 8 max -4.278 15 309.131 3 117.156 1 .01 1 .003 2 .199 2 130 min -90.903 1 -657.3 2 4.568 12 013 3 004 3 13 3 131 9 max -4.278 <td></td> <td></td> <td>5</td> <td></td>			5													
126 min -90.903 1 -298.428 2 .509 12 013 3 144 1 73 2 127 7 max -4.278 15 226.26 3 74.086 1 .01 1 004 15 .13 3 128 min -90.903 1 -477.864 2 2.539 12 013 3 093 1 353 2 129 8 max -4.278 15 309.131 3 117.156 1 .01 1 .003 2 .199 2 130 min -90.903 1 -657.3 2 4.568 12 013 3 004 3 13 3 131 9 max -4.278 15 392.003 3 160.227 1 .01 1 .135 1 .926 2 132 min -90.903 1 </td <td></td> <td></td> <td>6</td> <td></td> <td></td> <td>_</td> <td></td>			6			_										
127 7 max -4.278 15 226.26 3 74.086 1 .01 1 004 15 .13 3 128 min -90.903 1 -477.864 2 2.539 12 013 3 093 1 353 2 129 8 max -4.278 15 309.131 3 117.156 1 .01 1 .003 2 .199 2 130 min -90.903 1 -657.3 2 4.568 12 013 3 004 3 13 3 131 9 max -4.278 15 392.003 3 160.227 1 .01 1 .135 1 .926 2 132 min -90.903 1 -836.736 2 6.598 12 013 3 .311 1 1.826 2 134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12			О													
128 min -90.903 1 -477.864 2 2.539 12 013 3 093 1 353 2 129 8 max -4.278 15 309.131 3 117.156 1 .01 1 .003 2 .199 2 130 min -90.903 1 -657.3 2 4.568 12 013 3 004 3 13 3 131 9 max -4.278 15 392.003 3 160.227 1 .01 1 .135 1 .926 2 132 min -90.903 1 -836.736 2 6.598 12 013 3 .003 12 471 3 133 10 max -4.278 15 474.874 3 203.297 1 .013 3 .311 1 1.826 2 134 min -90.903 <												_		_		
129 8 max -4.278 15 309.131 3 117.156 1 .01 1 .003 2 .199 2 130 min -90.903 1 -657.3 2 4.568 12 013 3 004 3 13 3 131 9 max -4.278 15 392.003 3 160.227 1 .01 1 .135 1 .926 2 132 min -90.903 1 -836.736 2 6.598 12 013 3 .003 12 471 3 133 10 max -4.278 15 474.874 3 203.297 1 .013 3 .311 1 1.826 2 134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12 892 3 135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 <t< td=""><td></td><td></td><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			/													
130 min -90.903 1 -657.3 2 4.568 12 013 3 004 3 13 3 131 9 max -4.278 15 392.003 3 160.227 1 .01 1 .135 1 .926 2 132 min -90.903 1 -836.736 2 6.598 12 013 3 .003 12 471 3 133 10 max -4.278 15 474.874 3 203.297 1 .013 3 .311 1 1.826 2 134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12 892 3 135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 1 .926 2 136 min -90.903						_								_		
131 9 max -4.278 15 392.003 3 160.227 1 .01 1 .135 1 .926 2 132 min -90.903 1 -836.736 2 6.598 12 013 3 .003 12 471 3 133 10 max -4.278 15 474.874 3 203.297 1 .013 3 .311 1 1.826 2 134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12 892 3 135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 1 .926 2 136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003			8													
132 min -90.903 1 -836.736 2 6.598 12 013 3 .003 12 471 3 133 10 max -4.278 15 474.874 3 203.297 1 .013 3 .311 1 1.826 2 134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12 892 3 135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 1 .926 2 136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3																
133 10 max -4.278 15 474.874 3 203.297 1 .013 3 .311 1 1.826 2 134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12 892 3 135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 1 .926 2 136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3			9											_		
134 min -90.903 1 -1016.172 2 8.627 12 01 1 .01 12 892 3 135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 1 .926 2 136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3																
135 11 max -4.278 15 836.736 2 -6.598 12 .013 3 .135 1 .926 2 136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3			10			15										
136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3				min		1				12				12		
136 min -90.903 1 -392.003 3 -160.227 1 01 1 .003 12 471 3 137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3	135		11	max	-4.278	15	836.736	2	-6.598	12	.013	3	.135	1	.926	
137 12 max -4.278 15 657.3 2 -4.568 12 .013 3 .003 2 .199 2 138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3	136			min	-90.903	1	-392.003	3	-160.227	1	01	1	.003	12	471	3
138 min -90.903 1 -309.131 3 -117.156 1 01 1 004 3 13 3 139 13 max -4.278 15 477.864 2 -2.539 12 .013 3 004 15 .13 3			12			15		2		12	.013	3	.003	2	.199	2
139																
			13			_						3				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LIC	v-v Mome	LC	z-z Mome	. LC
141			max	-4.278	15	298.428	2	509	12	.013	3	007	15	.31	3
142			min	-90.903	1	-143.389	3	-31.015	1	01	1	144	1	73	2
143		15	max	-4.278	15	118.992	2	12.055	1	.013	3	007	12	.409	3
144			min	-90.903	1	-60.517	3	.588	15	01	1	153	1	933	2
145		16	max	-4.278	15	22.354	3	55.126	1	.013	3	005	12	.428	3
146			min	-90.903	1	-60.444	2	2.585	15	01	1	121	1	961	2
147		17	max	-4.278	15	105.225	3	98.196	1	.013	3	0	3	.366	3
148			min	-90.903	1	-239.88	2	4.581	15	01	1	046	1	815	2
149		18	max	-4.278	15	188.096	3	141.267	1	.013	3	.07	1	.223	3
150			min	-90.903	1	-419.316	2	6.578	15	01	1	.003	15	495	2
151		19	max	-4.278	15	270.968	3	184.337	1	.013	3	.228	1	0	2
152			min	-90.903	1	-598.752	2	8.575	15	01	1	.011	15	0	3
153	M2	1		1014.469	2	2.023	4	.449	1	0	3	0	3	0	1
154	1712		min	-1314.307	3	.476	15	.021	15	0	1	0	2	0	1
155		2		1014.998	2	1.952	4	.449	1	0	3	0	1	0	15
156			min	-1313.91	3	.459	15	.021	15	0	1	0	15	0	4
157		3		1015.527	2	1.881	4	.449	1	0	3	0	1	0	15
158			min	-1313.513	3	.442	15	.021	15	0	1	0	15	001	4
159		4	_	1016.057	2	1.81	4	.449	1	0	3	0	1	0	15
160			min	-1313.116	3	.426	15	.021	15	0	1	0	15	002	4
161		5		1016.586	2	1.739	4	.449	1	0	3	0	1	0	15
162			min	-1312.719	3	.409	15	.021	15	0	1	0	15	003	4
163		6		1017.115	2	1.668	4	.449	1	0	3	0	1	0	15
164		-	min	-1312.322	3	.392	15	.021	15	0	1	0	15	003	4
165		7		1017.644	2	1.597	4	.449	1	0	3	0	1	0	15
166			min	-1311.925	3	.376	15	.021	15	0	1	0	15	004	4
167		8		1018.174	2	1.526	4	.449	1	0	3	.001	1	004 001	15
168		0	min	-1311.528	3	.359	15	.021	15	0	1	0	15	004	4
169		9	_	1018.703	2	1.455	4	.449	1	0	3	.001	1	004 001	15
170		9	min	-1311.131	3	.342	15	.021	15	0	1	0	15	005	4
171		10		1019.232	2	1.384	4	.449	1	0	3	.001	1	003 001	15
172		10	min	-1310.734	3	.325	15	.021	15	0	1	0	15	005	4
173		11		1019.762	2	1.313	4	.449	1	0	3	.002	1	003 001	15
174			min	-1310.337	3	.309	15	.021	15	0	1	0	15	006	4
175		12		1020.291	2	1.242		.449	1		3	.002	1	002	
176		12	min	-1309.94	3	.292	<u>4</u> 15	.021	15	<u>0</u> 	1	0	15	002	15
177		13	max		2	1.171	4	.449	1	0	3	.002	1	002	15
178		13	min	-1309.543	3	.275	15	.021	15	0	1	0	15	002	4
179		14	max	1021.35	2	1.1	4	.449	1	0	3	.002	1	007	15
180		14	min	-1309.146	3	.259	15	.021	15	0	1	0	15	002	4
181		15		1021.879		1.029	4	.449	1	0	3	.002	1	007	15
182		10	min		3	.232	12	.021	15	0	1	0	15	002	4
183		16		1022.408	2	.958	4	.449	1		3	.002	1	008	15
184		10	min		3	.204	12	.021	15	0 0	1	.002	15	002	4
		17										_			
185 186		17	min	1022.937 -1307.955	3	.887 .177	2 12	.449 .021	15	<u> </u>	3	.003	15	002 008	1 <u>5</u>
		10		1023.467		.832					3	_		008	_
187		Ιδ			2		2	.449 .021	1 15	0		.003	1		15
188		10	min		3	.149	12			0	1		15	009	4
189		19		1023.996 -1307.161	2	.776	2	.449	1	0	3	.003	1	002	15
190	MO	4	min		3	.121	12	.021	15	0	1 5	0	15	009	4
191	<u>M3</u>	1		707.143	2	8.875	4	.362	1	0	5	0	1	.009	4
192			min		3	2.086	15	.017	15	0	1	0	15	.002	15
193		2		706.973	2	8.006	4	.362	1	0	5	0	1	.005	2
194			min		3	1.882	15	.017	15	0	1	0	15	0	12
195		3	max		2	7.137	4	.362	1	0	5	0	1	.002	2
196			min	-855.559	3	1.678	15	.017	15	0	1	0	15	0	3
197		4	max	706.632	2	6.268	4	.362	1	0	5	0	1	0	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
198			min	-855.687	3	1.474	15	.017	15	0	1	0	15	002	3
199		5	max	706.462	2	5.399	4	.362	1	0	5	0	1	001	15
200			min	-855.814	3	1.269	15	.017	15	0	1	0	15	005	4
201		6	max		2	4.53	4	.362	1	0	5	.001	1	002	15
202			min	-855.942	3	1.065	15	.017	15	0	1	0	15	007	4
203		7	max		2	3.661	4	.362	1	0	5	.001	1	002	15
204			min	-856.07	3	.861	15	.017	15	0	1	0	15	009	4
205		8	max		2	2.793	4	.362	1	0	5	.002	1	002	15
206			min	-856.198	3	.657	15	.017	15	0	1	0	15	01	4
207		9	max	705.78	2	1.924	4	.362	1	0	5	.002	1	003	15
208		9		-856.325	3	.452	15	.017	15	0	1	0	15	003 011	4
		40	min												
209		10	max		2	1.055	4	.362	1	0	5	.002	1	003	15
210			min		3	.248	15	.017	15	0	1_	0	15	012	4
211		11	max	705.44	2	.294	2	.362	1	0	5	.002	1	003	15
212			min	-856.581	3	097	3	.017	15	0	1	0	15	012	4
213		12	max		2	16	15	.362	1	0	5	.002	1	003	15
214			min	-856.709	3	683	4	.017	15	0	1	0	15	012	4
215		13	max	705.099	2	365	15	.362	1	0	5	.002	1	003	15
216			min	-856.837	3	-1.552	4	.017	15	0	1	0	15	012	4
217		14	max	704.929	2	569	15	.362	1	0	5	.003	1	003	15
218			min	-856.964	3	-2.421	4	.017	15	0	1	0	15	011	4
219		15	max		2	773	15	.362	1	0	5	.003	1	002	15
220			min		3	-3.29	4	.017	15	0	1	0	15	009	4
221		16	max		2	977	15	.362	1	0	5	.003	1	002	15
222		10	min	-857.22	3	-4.159	4	.017	15	0	1	0	15	008	4
223		17			2	-1.182	15	.362	1	0	5	.003	1	001	15
		17	max										-		
224		4.0	min	-857.348	3	-5.027	4	.017	15	0	1	0	15	006	4
225		18	max		2	-1.386	15	.362	1	0	5	.003	1	0	15
226		4.0	min	-857.475	3	-5.896	4	.017	15	0	1	0	15	003	4
227		19	max		2	-1.59	15	.362	1	0	5	.003	1	0	1
228			min	-857.603	3	-6.765	4	.017	15	0	1	0	15	0	1
229	<u>M4</u>	1		1032.747	_1_	0	1_	678	15	0	1_	.003	1	0	1
230			min	-9.569	3	0	1	-14.48	1	0	1	0	15	0	1
231		2	max	1032.917	_1_	0	1	678	15	0	1	.001	1	0	1
232			min	-9.442	3	0	1	-14.48	1	0	1	0	15	0	1
233		3	max	1033.088	1	0	1	678	15	0	1	0	15	0	1
234			min	-9.314	3	0	1	-14.48	1	0	1	0	1	0	1
235		4	max	1033.258	1	0	1	678	15	0	1	0	15	0	1
236			min	-9.186	3	0	1	-14.48	1	0	1	002	1	0	1
237		5		1033.428	1	0	1	678	15	0	1	0	15	0	1
238				-9.058	3	0	1	-14.48	1	0	1	004	1	0	1
239		6		1033.599	1	0	1	678	15	0	1	0	15	0	1
240			min	-8.93	3	0	1	-14.48	1	0	1	006	1	0	1
241		7	+	1033.769		0	1	678	15	0	1	0	15	0	1
242		- '	min	-8.803	3	0	1	-14.48	1	0	1	007	1	0	1
		8					1		_		_		15		-
243		-		1033.939	1	0		678	15	0	1	0		0	1
244			min		3	0	1_	-14.48	1_	0	1_	009	1	0	1
245		9	max		1_	0	1	678	15	0	1	0	15	0	1
246			min	-8.547	3	0	1	-14.48	1_	0	1	011	1	0	1
247		10	max		1_	0	1	678	15	0	1	0	15	0	1
248			min	-8.419	3	0	1	-14.48	1	0	1	012	1	0	1
249		11	max	1034.45	1	0	1	678	15	0	1	0	15	0	1
250			min	-8.292	3	0	1	-14.48	1	0	1	014	1	0	1
251		12		1034.621	1	0	1	678	15	0	1	0	15	0	1
252			min	-8.164	3	0	1	-14.48	1	0	1	016	1	0	1
253		13		1034.791	1	0	1	678	15	0	1	0	15	0	1
254			min		3	0	1	-14.48	1	0	1	017	1	0	1
			1111111	0.000				1 1.70		•		.017			

Model Name

Schletter, Inc. HCV

110 V

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14		1034.961	1	0	1	678	<u>15</u>	0	1	0	15	0	1
256 257		15	min	-7.908 1035.132	<u>3</u>	0	1	-14.48 678	<u>1</u> 15	0	<u>1</u> 1	019 0	1 15	0	1
258		13	min	-7.781	3	0	1	-14.48	1	0	1	021	1	0	1
259		16		1035.302	_ <u></u>	0	1	678	15	0	1	001	15	0	1
260		10	min	-7.653	3	0	1	-14.48	1	0	1	022	1	0	1
261		17		1035.472	1	0	1	678	15	0	1	001	15	0	1
262			min	-7.525	3	0	1	-14.48	1	0	1	024	1	0	1
263		18	_	1035.643	1	0	1	678	15	0	1	001	15	0	1
264			min	-7.397	3	0	1	-14.48	1	0	1	026	1	0	1
265		19		1035.813	1	0	1	678	15	0	1	001	15	0	1
266			min	-7.27	3	0	1	-14.48	1	0	1	027	1	0	1
267	M6	1		3149.433	2	2.244	2	0	1	0	1	0	1	0	1
268			min	-4182.431	3	.264	12	0	1	0	1	0	1	0	1
269		2		3149.962	2	2.188	2	0	1	0	1	0	1	0	12
270			min	-4182.034	3	.236	12	0	1	0	1	0	1	0	2
271		3		3150.491	2	2.133	2	0	_1_	0	_1_	0	1	0	12
272				-4181.637	3	.209	12	0	1_	0	1	0	1	002	2
273		4		3151.02	2	2.078	2	0	_1_	0	1	0	1	0	12
274			min	-4181.24	3	.181	12	0	1_	0	1	0	1	002	2
275		5	max		2	2.022	2	0	1	0	1	0	1	0	12
276			min	-4180.843	3	.153	12	0	1_	0	1	0	1	003	2
277		6		3152.079	2	1.967	2	0	1_	0	1	0	1	0	12
278		_	_	-4180.446	3	.126	12	0	1_	0	1	0	1	004	2
279		7		3152.608	2	1.912	2	0	1_	0	1_	0	1	0	12
280			_	-4180.049	3	.095	3	0	1_	0	1_	0	1	004	2
281		8		3153.138 -4179.652	2	1.856	2	0	1_4	0	1	0	1	0	12
282		_			3	.053	3	0	1	0	<u>1</u> 1	0	1	005	2
283		9		3153.667 -4179.255	3	1.801	3	0	1	0	1	0	1	0	12
284 285		10	min	3154.196	2	.012 1.746	2	0	1	0	1	0	1	006 0	12
286		10	min	-4178.858	3	03	3	0	1	0	1	0	1	006	2
287		11		3154.725	2	1.69	2	0	1	0	1	0	1	0	12
288				-4178.461	3	071	3	0	1	0	1	0	1	007	2
289		12	_	3155.255	2	1.635	2	0	1	0	1	0	1	0	12
290		12		-4178.064	3	113	3	0	1	0	1	0	1	008	2
291		13	_	3155.784	2	1.58	2	0	1	0	1	0	1	0	3
292				-4177.667	3	154	3	0	1	0	1	0	1	008	2
293		14		3156.313	2	1.524	2	0	1	0	1	0	1	0	3
294				-4177.27	3	196	3	0	1	0	1	0	1	009	2
295		15		3156.843	2	1.469	2	0	1	0	1	0	1	0	3
296			min		3	237	3	0	1	0	1	0	1	009	2
297		16		3157.372	2	1.413	2	0	1	0	1	0	1	0	3
298			min	-4176.476	3	279	3	0	1	0	1	0	1	01	2
299		17		3157.901	2	1.358	2	0	1_	0	1	0	1	0	3
300				-4176.079	3	321	3	0	1_	0	1	0	1	01	2
301		18		3158.43	2	1.303	2	0	_1_	0	1	0	1	0	3
302				-4175.682	3	362	3	0	1_	0	1	0	1	011	2
303		19		3158.96	2	1.247	2	0	_1_	0	1	0	1	0	3
304			min	-4175.285	3	404	3	0	1_	0	1	0	1	011	2
305	<u>M7</u>	1		2496.309	2	8.904	4	0	1	0	_1_	0	1	.011	2
306			min	-2610.855	3	2.091	15	0	_1_	0	_1_	0	1	0	3
307		2		2496.139	2	8.035	4	0	1_	0	1	0	1	.008	2
308		_		-2610.982	3	1.887	15	0	1_	0	1	0	1	002	3
309		3		2495.969	2	7.166	4	0	1	0	<u>1</u> 1	0	1	.005	2
310		1		-2611.11	3	1.682	<u>15</u>	0	<u>1</u> 1	0		0		004	3
311		4	шах	2495.798	2	6.297	4	0		0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2611.238	3	1.478	15	0	1	0	1	0	1	006	3
313		5		2495.628	2	5.428	4	0	1	0	1	0	1	0	2
314			min	-2611.366	3	1.274	15	0	1	0	1	0	_1_	007	3
315		6		2495.458	2	4.559	4	0	1	0	1	0	1_	002	15
316			min	-2611.494	3	1.07	15	0	1	0	1	0	1_	008	3
317		7		2495.287	2	3.69	4	0	1	0	1	0	_1_	002	15
318		_	min	-2611.621	3	.865	15	0	1	0	1	0	1_	009	3
319		8		2495.117	2	2.821	4	0	1	0	1	0	1	002	15
320			min	-2611.749	3	.661	15	0	1	0	1	0	1_	01	4
321		9_		2494.947	2	2.008	2	0	1	0	1	0	1_	003	15
322		1.0	min	-2611.877	3	.35	12	0	1	0	1	0	1_	011	4
323		10		2494.776	2	1.331	2	0	1	0	1	0	_1_	003	15
324			min	-2612.005	3	023	3	0	1	0	1	0	1_	012	4
325		11		2494.606	2	.654	2	0	1	0	1	0	1	003	15
326		1.0	min	-2612.132	3	531	3	0	1	0	1	0	1_	012	4
327		12		2494.436	2	024	2	0	1	0	1	0	1	003	15
328		1.0	min	-2612.26	3	-1.038	3	0	1	0	1	0	1	012	4
329		13		2494.265	2	36	15	0	1	0	1	0		003	15
330			min	-2612.388	3	-1.546	3	0	1	0	1	0	1	012	4
331		14		2494.095	2	564	15	0	1	0	1	0	_1_	003	15
332			min	-2612.516	3	-2.392	4	0	1	0	1	0	1_	011	4
333		15		2493.924	2	769	15	0	1	0	1	0	_1_	002	15
334		1.0	min	-2612.643	3	-3.261	4	0	1	0	1	0	1_	009	4
335		16		2493.754	2	973	15	0	1	0	1	0	1	002	15
336		4-	min	-2612.771	3	-4.13	4	0	1	0	1	0	1_	008	4
337		17		2493.584	2	-1.177	15	0	1	0	1	0	_1_	001	15
338			min	-2612.899	3	-4.999	4	0	1	0	1	0	<u>1</u>	006	4
339		18		2493.413	2	-1.381	15	0	1	0	1	0		0	15
340			min	-2613.027	3	-5.867	4	0	1	0	1	0	1_	003	4
341		19		2493.243	2	-1.586	15	0	1	0	1	0	1_	0	1
342	140		min	-2613.154	3	-6.736	4	0	1	0	1	0	1_	0	1
343	M8	1_		2660.731	1	0	1	0	1	0	1	0	1	0	1
344			min	-125.799	3	0	1	0	1	0	1	0	1	0	1
345		2		2660.902	1	0	1	0	1	0	1	0	1	0	1
346			min	-125.672	3	0	1	0	1	0	1	0	1_	0	1
347		3		2661.072	1	0	1	0	1	0	1	0	1	0	1
348		1	min	-125.544	3	0	1	0	1	0	1	0	1_	0	1
349		4		2661.242	1	0	1	0	1	0	1	0	1	0	1
350		_	min		3	0	1	0	1	0	1	0	1_	0	1
351		5		2661.413	1	0	1	0	1	0	1	0	1	0	1
352				-125.288		0	1	0	1	0	1	0	1	0	1
353		6		2661.583	1	0	1	0	1	0	1	0	1_1	0	1
354		7	min		3	0	1	0	1	0	1	0	<u>1</u> 1	0	1
355		-		2661.753	3	0	1	0	1	0	1	0	1	0	1
356 357		0		-125.033	<u>3</u> 1	0	1	0	1	0	1	0	<u>1</u> 1	0	1
358		8		2661.924 -124.905		0	1	0	1	0	1	0	1	0	1
359		9		2662.094	<u>3</u> 1	0	1	0	1	0	1	0	1	0	1
360		1 9		-124.777	3	0	1	0	1	0	1	0	1	0	1
361		10		2662.264			1		1		1		1		1
362		10		-124.65	3	0	1	0	1	0	1	0	1	0	1
363		11		2662.435		0	1	0	1	0	1	0	1	0	1
		11			1	0	1	0	1	0	1	0	1	0	1
364 365		10	min	-124.522 2662.605	<u>3</u> 1		1		1		1		1		1
		12				0	1	0	1	0	1	0	1	0	1
366 367		13		-124.394 2662.775		0	1	0	1	0	1	0	<u>1</u> 1	0	1
368		13				0	1	0	1	0	1	0	1	0	1
308			HIIII	-124.266	3	0		0		0		0		0	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC		LC
369		14		2662.946	<u>1</u>	0	1	0	1	0	1	0	1	0	1
370 371		15	min	-124.139 2663.116	<u>3</u> 1	0	1	0	1	0	1	0	1	0	1
372		10		-124.011	3	0	1	0	1	0	1	0	1	0	1
		16		2663.286	<u>ა</u> 1		1	-	1	-	1	0	1	0	1
373 374		16		-123.883	3	0	1	0	1	0	1	0	1	0	1
		17							1	_	_	_	1		1
375		17		2663.457	1	0	1	0	1	0	<u>1</u> 1	0	1	0	1
376		4.0		-123.755	3	0	1		1	0	1	0	1	0	
377		18		2663.627	1_	0		0		0		0		0	1
378		40		-123.627	3	0	1	0	1_	0	1_	0	1	0	1
379		19		2663.797	1	0	1	0	1	0	1	0		0	1
380	N440	4	min	-123.5	3	0	1	0	1_	0	1_	0	1	0	1
381	M10	1_		1014.469	2	2.023	4	021	15	0	1_	0	2	0	1
382			min	-1314.307	3	.476	15	449	1_	0	3	0	3	0	1
383		2		1014.998	2	1.952	4	021	15	0	1	0	15	0	15
384				-1313.91	3	.459	15	449	1_	0	3	0	1_	0	4
385		3		1015.527	2	1.881	4	021	15	0	1	0	15	0	15
386			min	-1313.513	3_	.442	15	449	1_	0	3	0	1_	001	4
387		4		1016.057	2	1.81	4	021	15	0	1_	0	15	0	15
388			min	-1313.116	3	.426	15	449	1	0	3	0	1	002	4
389		5		1016.586	2	1.739	4	021	15	0	_1_	0	15	0	15
390			min	-1312.719	3	.409	15	449	1	0	3	0	1	003	4
391		6	max	1017.115	2	1.668	4	021	15	0	<u>1</u>	0	15	0	15
392			min	-1312.322	3	.392	15	449	1	0	3	0	1	003	4
393		7	max	1017.644	2	1.597	4	021	15	0	_1_	0	15	0	15
394			min	-1311.925	3	.376	15	449	1	0	3	0	1	004	4
395		8	max	1018.174	2	1.526	4	021	15	0	1	0	15	001	15
396			min	-1311.528	3	.359	15	449	1	0	3	001	1	004	4
397		9	max	1018.703	2	1.455	4	021	15	0	1	0	15	001	15
398			min	-1311.131	3	.342	15	449	1	0	3	001	1	005	4
399		10	max	1019.232	2	1.384	4	021	15	0	1	0	15	001	15
400			min	-1310.734	3	.325	15	449	1	0	3	001	1	005	4
401		11	max	1019.762	2	1.313	4	021	15	0	1	0	15	001	15
402			min	-1310.337	3	.309	15	449	1	0	3	002	1	006	4
403		12	max	1020.291	2	1.242	4	021	15	0	1	0	15	002	15
404				-1309.94	3	.292	15	449	1	0	3	002	1	006	4
405		13	max	1020.82	2	1.171	4	021	15	0	1	0	15	002	15
406			min	-1309.543	3	.275	15	449	1	0	3	002	1	007	4
407		14	max		2	1.1	4	021	15	0	1	0	15	002	15
408			min	-1309.146	3	.259	15	449	1	0	3	002	1	007	4
409		15		1021.879	2	1.029	4	021	15	0	1	0	15	002	15
410			min	-1308.749	3	.232	12	449	1	0	3	002	1	008	4
411		16		1022.408	2	.958	4	021	15	0	1	0	15	002	15
412				-1308.352	3	.204	12	449	1	0	3	002	1	008	4
413		17		1022.937	2	.887	2	021	15	0	1	0	15	002	15
414		17		-1307.955	3	.177	12	449	1	0	3	003	1	002	4
415		18		1023.467	2	.832	2	021	15	0	1	0	15	002	15
416		10		-1307.558	3	.149	12	449	1	0	3	003	1	002	4
417		19		1023.996	2	.776	2	021	15	0	<u> </u>	0	15	009	15
417		19	min	-1307.161	3	.176	12	021 449	1	0	3	003	1	002	4
	N/11	4							_		<u> </u>				
419	<u>M11</u>	1_		707.143	2	8.875	4	017	15	0		0	15	.009	4
420		2		-855.303	3	2.086	15	362	1_	0	5	0	1_	.002	15
421		2		706.973	2	8.006	4	017	<u>15</u>	0	1	0	15	.005	2
422				-855.431	3	1.882	15	362	1_	0	5	0	1_	0	12
423		3		706.802	2	7.137	4	017	15	0	1_	0	15	.002	2
424				-855.559	3	1.678	15	362	1_	0	5	0	1_	0	3
425		4	max	706.632	2	6.268	4	017	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-855.687	3	1.474	15	362	1	0	5	0	1	002	3
427		5	max	706.462	2	5.399	4	017	15	0	1	0	15	001	15
428			min	-855.814	3	1.269	15	362	1	0	5	0	1	005	4
429		6	max	706.291	2	4.53	4	017	15	0	1	0	15	002	15
430			min	-855.942	3	1.065	15	362	1	0	5	001	1	007	4
431		7	max	706.121	2	3.661	4	017	15	0	1	0	15	002	15
432			min	-856.07	3	.861	15	362	1	0	5	001	1_	009	4
433		8	max	705.951	2	2.793	4	017	15	0	1	0	15	002	15
434			min	-856.198	3	.657	15	362	1	0	5	002	1_	01	4
435		9	max	705.78	2	1.924	4	017	15	0	1	0	15	003	15
436			min	-856.325	3	.452	15	362	1	0	5	002	1	011	4
437		10	max	705.61	2	1.055	4	017	15	0	_1_	0	<u>15</u>	003	15
438			min	-856.453	3	.248	15	362	1	0	5	002	1_	012	4
439		11	max	705.44	2	.294	2	017	15	0	1	0	15	003	15
440			min	-856.581	3	097	3	362	1	0	5	002	1	012	4
441		12	max	705.269	2	16	15	017	15	0	1	0	<u> 15</u>	003	15
442			min	-856.709	3	683	4	362	1	0	5	002	1	012	4
443		13	max	705.099	2	365	15	017	15	0	1	0	15	003	15
444			min	-856.837	3	-1.552	4	362	1	0	5	002	1	012	4
445		14	max	704.929	2	569	15	017	15	0	1	0	15	003	15
446			min	-856.964	3	-2.421	4	362	1	0	5	003	1	011	4
447		15	max	704.758	2	773	15	017	15	0	1	0	15	002	15
448			min	-857.092	3	-3.29	4	362	1	0	5	003	1	009	4
449		16	max	704.588	2	977	15	017	15	0	1	0	15	002	15
450			min	-857.22	3	-4.159	4	362	1	0	5	003	1	008	4
451		17	max	704.417	2	-1.182	15	017	15	0	1	0	15	001	15
452			min	-857.348	3	-5.027	4	362	1	0	5	003	1	006	4
453		18	max	704.247	2	-1.386	15	017	15	0	1	0	15	0	15
454			min	-857.475	3	-5.896	4	362	1	0	5	003	1	003	4
455		19	max	704.077	2	-1.59	15	017	15	0	1	0	15	0	1
456			min	-857.603	3	-6.765	4	362	1	0	5	003	1	0	1
457	M12	1	max	1032.747	1	0	1	14.48	1	0	1	0	15	0	1
458			min	-9.569	3	0	1	.678	15	0	1	003	1	0	1
459		2	max	1032.917	1	0	1	14.48	1	0	1	0	15	0	1
460			min	-9.442	3	0	1	.678	15	0	1	001	1	0	1
461		3	max	1033.088	1_	0	1	14.48	1	0	1	0	1	0	1
462			min	-9.314	3	0	1	.678	15	0	1	0	15	0	1
463		4	max	1033.258	1	0	1	14.48	1	0	1	.002	1	0	1
464			min	-9.186	3	0	1	.678	15	0	1	0	15	0	1
465		5	max	1033.428	_1_	0	1	14.48	1	0	1	.004	1_	0	1
466			min		3	0	1	.678	15	0	1	0	15	0	1
467		6		1033.599	_1_	0	1	14.48	1	0	1	.006	1_	0	1
468			min	-8.93	3	0	1	.678	15	0	1	0	15	0	1
469		7		1033.769		0	1	14.48	1	0	1	.007	1_	0	1
470			min	-8.803	3	0	1	.678	15	0	1	0	15	0	1
471		8	max	1033.939	_1_	0	1	14.48	1	0	1	.009	_1_	0	1
472			min	-8.675	3	0	1	.678	15	0	1	0	15	0	1
473		9	max		_1_	0	1	14.48	1	0	1	.011	1_	0	1
474			min	-8.547	3	0	1	.678	15	0	1	0	15	0	1
475		10	max		_1_	0	1	14.48	1	0	1	.012	1_	0	1
476			min		3	0	1	.678	15	0	1	0	15	0	1
477		11	max		1_	0	1	14.48	1	0	1	.014	1_	0	1
478			min	-8.292	3	0	1	.678	15	0	1	0	15	0	1
479		12	max	1034.621	1	0	1	14.48	1	0	1	.016	1	0	1
480			min	-8.164	3	0	1	.678	15	0	1	0	15	0	1
481		13	max	1034.791	1	0	1	14.48	1	0	1	.017	1	0	1
482			min	-8.036	3	0	1	.678	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

100	Member	Sec		Axial[lb]						Torque[k-ft]				_	1
483		14		1034.961	1_	0	1	14.48	1_	0	1_	.019	1	0	1
484		4.5	min	-7.908	3	0	1_	.678	<u>15</u>	0	1_	0	15	0	1
485		15		1035.132	1	0	1	14.48	1_	0	1	.021	1	0	1
486		4.0	min	-7.781	3	0		.678	<u>15</u>	0		0	15	0	
487		16	max	1035.302	<u>1</u> 3	0	1	14.48	<u>1</u> 15	0	1	.022	15	0	1
488		17	min	-7.653		0		.678		0	_	.001		0	
489		17		1035.472	1_	0	1	14.48	1_	0	1_	.024	1	0	1
490		40	min	-7.525	3	0	1_	.678	<u>15</u>	0	1_	.001	15	0	1
491		18		1035.643	1	0	1_	14.48	1_	0	1_	.026	1	0	1
492		40	min	-7.397	3	0	1_	.678	15	0	1_	.001	15	0	1
493		19			1_	0	_1_	14.48	1_	0	1	.027	1	0	1
494			min	-7.27	3	0	1	.678	15	0	1_	.001	15	0	1_
495	<u>M1</u>	1	max	183.808	_1_	686.643	3	-3.786	15	0	1_	.226	1	0	15
496			min	8.558	15	-405.932	2	-80.386	1_	0	3	.011	15	015	2
497		2	max	184.65	_1_	685.549	3_	-3.786	<u>15</u>	0	1_	.176	1	.237	2
498			min	8.812	15	-407.391	2	-80.386	1_	0	3	.008	15	427	3
499		3	max	552.182	3	512.623	2	-3.765	15	0	3	.126	1	.481	2
500			min	-334.298	2	-520.647	3	-80.154	1_	0	2	.006	15	839	3
501		4	max	552.814	3	511.164	2	-3.765	15	0	3	.076	1	.175	1
502			min	-333.456	2	-521.741	3	-80.154	1_	0	2	.004	15	516	3
503		5	max	553.446	3_	509.705	2	-3.765	<u> 15</u>	0	3	.026	1	005	15
504			min	-332.613	2	-522.835	3	-80.154	1_	0	2	.001	15	192	3
505		6	max	554.078	3	508.246	2	-3.765	15	0	3	001	15	.133	3
506			min	-331.771	2	-523.93	3	-80.154	1	0	2	023	1	47	2
507		7	max	554.709	3	506.787	2	-3.765	15	0	3	003	15	.459	3
508			min	-330.929	2	-525.024	3	-80.154	1	0	2	073	1	785	2
509		8	max	555.341	3	505.328	2	-3.765	15	0	3	006	15	.785	3
510			min	-330.086	2	-526.118	3	-80.154	1	0	2	123	1	-1.099	2
511		9	max	571.63	3	47.65	2	-5.997	15	0	9	.078	1	.915	3
512			min	-250.618	2	.446	15	-127.653	1	0	3	.004	15	-1.257	2
513		10	max	572.262	3	46.191	2	-5.997	15	0	9	0	15	.894	3
514			min	-249.776	2	.006	15	-127.653	1	0	3	001	1	-1.286	2
515		11	max	572.894	3	44.732	2	-5.997	15	0	9	004	15	.874	3
516				-248.933	2	-1.756	4	-127.653	1	0	3	081	1	-1.314	2
517		12	max	588.998	3	350.671	3	-3.618	15	0	2	.12	1	.764	3
518				-169.412	2	-604.932	2	-77.259	1	0	3	.006	15	-1.165	2
519		13	max	589.63	3	349.577	3	-3.618	15	0	2	.072	1	.547	3
520			min	-168.569	2	-606.391	2	-77.259	1	0	3	.003	15	789	2
521		14	max		3	348.482	3	-3.618	15	0	2	.025	1	.331	3
522				-167.727	2	-607.85	2	-77.259	1	0	3	.001	15	412	2
523		15		590.893	3	347.388	3	-3.618	15	0	2	001	15	.115	3
524				-166.885	2	-609.309	2	-77.259	1	0	3	023	1	06	1
525		16		591.525	3	346.294	3	-3.618	15	0	2	003	15	.344	2
526				-166.042	2	-610.768	2	-77.259	1	0	3	071	1	101	3
527		17	max		3	345.199	3	-3.618	15	0	2	006	15	.723	2
528		- ' '	min		2	-612.227	2	-77.259	1	0	3	119	1	315	3
529		18	max		15	601.078	2	-4.278	15	0	3	008	15	.363	2
530		10		-185.174	1	-270.003	3	-91.035	1	0	2	172	1	155	3
531		19	max		15	599.619	2	-4.278	15	0	3	011	15	.013	3
532		13		-184.331	1	-271.097	3	-91.035	1	0	2	228	1	01	1
533	M5	1		407.653	1	2281.639	3	0	1	0	1	0	1	.03	2
534	IVIO		min	16.532	12	-1401.576	2	0	1	0	1	0	1	0	15
535		2		408.495	1	2280.544	3	0	1	0	1	0	1	.9	
					12	-1403.035	2	0	1	0	1	0	1		3
536		2		16.953					1	_		_		-1.413	
537 538		3		1726.853 -1107.154	<u>3</u> 2	1431.067 -1580.927	3	0	1	0	1	0	1	1.741	3
		1							•				_	-2.785	
539		4	шах	1727.484	3	1429.608	2	0	_1_	0	1_	0	1	.856	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1106.312	2	-1582.022	3	0	1	0	1	0	1	-1.804	3
541		5	max	1728.116	3	1428.149	2	0	1	0	1	0	1	.032	9
542			min	-1105.469	2	-1583.116	3	0	1	0	1	0	1	822	3
543		6	max	1728.748	3	1426.69	2	0	1	0	1	0	1	.161	3
544			min	-1104.627	2	-1584.21	3	0	1	0	1	0	1	92	2
545		7	max	1729.38	3	1425.231	2	0	1	0	1	0	1	1.145	3
546			min	-1103.785	2	-1585.304	3	0	1	0	1	0	1	-1.805	2
547		8	max	1730.012	3	1423.772	2	0	1	0	1	0	1	2.129	3
548			min	-1102.942	2	-1586.399	3	0	1	0	1	0	1	-2.689	2
549		9		1754.125	3	160.629	2	0	1	0	1	0	1	2.452	3
550			min	-935.168	2	.442	15	0	1	Ö	1	0	1	-3.074	2
551		10	_	1754.757	3	159.17	2	0	1	0	1	0	1	2.373	3
552		1.0	min	-934.325	2	.002	15	0	1	0	1	0	1	-3.174	2
553		11		1755.388	3	157.711	2	0	1	0	1	0	1	2.295	3
554			min	-933.483	2	-1.57	4	0	1	0	1	0	1	-3.272	2
555		12		1779.871	3	1032.616	3	0	1	0	1	0	1	2.013	3
556		12	min		2	-1746.899	2	0	1	0	1	0	1	-2.926	2
557		13		1780.502	3	1031.522	3	0	1	0	1	0	1	1.372	3
558		13	min	-764.972	2	-1748.359	2	0	1	0	1	0	1	-1.841	2
559		14		1781.134	3	1030.428	3	0	1	0	1	0	1	.732	3
560		14	min	-764.13	2	-1749.818	2	0	1	0	1	0	1		2
		1.5								_	_			756	
561		15		1781.766	3	1029.333	3	0	1	0	<u>1</u>	0	1	.331	2
562		10	min	-763.288	2	-1751.277	2	0		0		0	1	0	15
563		16		1782.398	3_	1028.239	3	0	1_	0	1_	0	1	1.418	2
564			min	-762.445	2	-1752.736	2	0	1	0	1	0	1	<u>545</u>	3
565		17	max		3	1027.145	3	0	1	0	1	0	1	2.506	2
566			min	-761.603	2	-1754.195	2	0	1	0	<u>1</u>	0	1	-1.183	3
567		18	max		12	2037.542	2	0	1	0	_1_	0	1	1.283	2
568			min	-407.449	1_	-949.224	3	0	1	0	1	0	1	616	3
569		19	max	-17.253	12	2036.082	2	0	1	0	_1_	0	1	.02	1
570			min	-406.607	_1_	-950.318	3	0	1	0	_1_	0	1	026	3
571	<u>M9</u>	1	max		_1_	686.643	3	80.386	1	0	3	011	15	0	15
572			min	8.558	15	-405.932	2	3.786	15	0	1_	226	1	015	2
573		2	max	184.65	_1_	685.549	3	80.386	1	0	3	008	15	.237	2
574			min	8.812	15	-407.391	2	3.786	15	0	1	176	1	427	3
575		3	max	552.182	3	512.623	2	80.154	1	0	2	006	15	.481	2
576			min	-334.298	2	-520.647	3	3.765	15	0	3	126	1	839	3
577		4	max	552.814	3	511.164	2	80.154	1	0	2	004	15	.175	1
578			min	-333.456	2	-521.741	3	3.765	15	0	3	076	1	516	3
579		5	max	553.446	3	509.705	2	80.154	1	0	2	001	15	005	15
580			min	-332.613	2	-522.835	3	3.765	15	0	3	026	1	192	3
581		6		554.078	3	508.246	2	80.154	1	0	2	.023	1	.133	3
582			min	-331.771	2	-523.93	3	3.765	15	0	3	.001	15	47	2
583		7	max		3	506.787	2	80.154	1	0	2	.073	1	.459	3
584			min	-330.929	2	-525.024	3	3.765	15	0	3	.003	15	785	2
585		8	max		3	505.328	2	80.154	1	0	2	.123	1	.785	3
586			min		2	-526.118	3	3.765	15	0	3	.006	15	-1.099	2
587		9	max		3	47.65	2	127.653	1	0	3	004	15	.915	3
588			min	-250.618	2	.446	15	5.997	15	0	9	078	1	-1.257	2
589		10	max		3	46.191	2	127.653	1	0	3	.001	1	.894	3
590		10	min	-249.776	2	.006	15	5.997	15	0	9	0	15	-1.286	2
591		11		572.894	3	44.732	2	127.653	1	0	3	.081	1	.874	3
592		11		-248.933	2	-1.756	4	5.997	15	0	9	.004	15	-1.314	2
		10						77.259				006			
593		12	max		3_	350.671	3		1	0	3		15	.764	3
594		10	min		2	-604.932	2	3.618	15	0	2	12	1	-1.165	2
595		13	max		3	349.577	3	77.259	1	0	3	003	15	.547	3
596			mın	-168.569	2	-606.391	2	3.618	15	0	2	072	1	789	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	590.261	3	348.482	3	77.259	1	0	3	001	15	.331	3
598			min	-167.727	2	-607.85	2	3.618	15	0	2	025	1	412	2
599		15	max	590.893	3	347.388	3	77.259	1	0	3	.023	1	.115	3
600			min	-166.885	2	-609.309	2	3.618	15	0	2	.001	15	06	1
601		16	max	591.525	3	346.294	3	77.259	1	0	3	.071	1	.344	2
602			min	-166.042	2	-610.768	2	3.618	15	0	2	.003	15	101	3
603		17	max	592.157	3	345.199	3	77.259	1	0	3	.119	1	.723	2
604			min	-165.2	2	-612.227	2	3.618	15	0	2	.006	15	315	3
605		18	max	-8.829	15	601.078	2	91.035	1	0	2	.172	1	.363	2
606			min	-185.174	1	-270.003	3	4.278	15	0	3	.008	15	155	3
607		19	max	-8.575	15	599.619	2	91.035	1	0	2	.228	1	.013	3
608			min	-184.331	1	-271.097	3	4.278	15	0	3	.011	15	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotat	e [r L0	C (n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.191	2	.011	3 1.321			1	NC	1
2			min	0	15	047	3	006	2 -3.285	5e-3 3		1	NC	1
3		2	max	0	1	.174	3	.031	1 1.45	e-2 2	NC NC	4	NC	2
4			min	0	15	.003	15	0	10 -3.149	9e-3 3	951.801	3	6856.812	1
5		3	max	0	1	.353	3	.072	1 1.579	e-2 2	NC NC	5	NC	3
6			min	0	15	015	1	.003	10 -3.014	le-3 3	525.223	3	2916.193	1
7		4	max	0	1	.463	3	.107	1 1.708	e-2 2		5	NC	3
8			min	0	15	056	1	.005	15 -2.878			3	1968.315	
9		5	max	0	1	.49	3	.124	1 1.837			5	NC	3
10			min	0	15	05	1	.006	15 -2.743		000.0.	3	1700.3	1
11		6	max	0	1	.437	3	.118	1 1.966			5	NC	5
12			min	0	15	012	9	.005	10 -2.608			3	1785.402	1
13		7	max	0	1	.32	3	.091	1 2.095	e-2 2	NC NC	4	NC	5
14			min	0	15	.003	15	0	10 -2.472	2e-3 3	572.131	3	2320.528	1
15		8	max	0	1	.228	2	.05	1 2.224			1	NC	2
16			min	0	15	.006	15	006	10 -2.337	'e-3 3	966.666	3	4207.194	1
17		9	max	0	1	.32	2	.033	3 2.353		NC NC	4	NC	1
18			min	0	15	.008	15	014	2 -2.201		1636.489	2	9424.251	3
19		10	max	0	1	.36	2	.032	3 2.482	e-2 2	NC NC	3	NC	1
20			min	0	1	028	3	023	2 -2.066			2	9702.996	3
21		11	max	0	15	.32	2	.033	3 2.353	e-2 2		4	NC	1
22			min	0	1	.008	15	014	2 -2.201			2	9424.251	3
23		12	max	0	15	.228	2	.05	1 2.224			1	NC	2
24			min	0	1	.006	15	006	10 -2.337		966.666	3	4207.194	1
25		13	max	0	15	.32	3	.091	1 2.095	e-2 2	NC NC	4	NC	5
26			min	0	1	.003	15	0	10 -2.472	2e-3 3		3	2320.528	1
27		14	max	0	15	.437	3	.118	1 1.966	e-2 2		5	NC	5
28			min	0	1	012	9	.005	10 -2.608	3e-3	433.727	3	1785.402	1
29		15	max	0	15	.49	3	.124	1 1.837	e-2 2	NC NC	5	NC	3
30			min	0	1	05	1	.006	15 -2.743			3	1700.3	1
31		16	max	0	15	.463	3	.107	1 1.708			5	NC	3
32			min	0	1	056	1	.005	15 -2.878			3	1968.315	
33		17	max	0	15	.353	3	.072	1 1.579			5	NC	3
34			min	0	1	015	1	.003	10 -3.014			3	2916.193	1
35		18	max	0	15	.174	3	.031	1 1.45			4	NC	2
36			min	0	1	.003	15	0	10 -3.149			3	6856.812	1
37		19	max	0	15	.191	2	.011	3 1.321			1	NC	1
38			min	0	1	047	3	006	2 -3.285		NC	1	NC	1
39	M14	1	max	0	1	.382	3	.009	3 7.472			1	NC	1
40			min	0	15	582	2	005	2 -5.722	2e-3 3	NC NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.646	3	.02	1 8.687e-3	2	NC	5	NC	1
42			min	0	15	845	2	002	10 -6.775e-3	3	795.044	3	NC	1
43		3	max	0	1	.876	3	.055	1 9.903e-3	2	NC	5	NC	3
44			min	0	15	-1.08	2	.002	10 -7.828e-3	3	421.31	2	3821.394	1
45		4	max	0	1	1.049	3	.088	1 1.112e-2	2	NC	15	NC	3
46			min	0	15	-1.267	2	.004	15 -8.881e-3	3	306.581	2	2385.806	1
47		5	max	0	1	1.151	3	.107	1 1.233e-2	2	NC	15	NC	3
48			min	0	15	-1.394	2	.005	15 -9.934e-3	3	258.666	2	1973.468	1
49		6	max	0	1	1.183	3	.105	1 1.355e-2	2	9529.964	15	NC	3
50			min	0	15	-1.459	2	.005	10 -1.099e-2	3	239.464	2	2015.086	
51		7	max	0	1	1.154	3	.082	1 1.476e-2	2	9560.829	<u> 15</u>	NC	3
52			min	0	15	-1.469	2	0	10 -1.204e-2	3	236.719	2	2566.44	1
53		8	max	0	1	1.085	3	.046	1 1.598e-2	2	NC	<u>15</u>	NC	2
54			min	0	15	-1.44	2	005	10 -1.309e-2	3	244.694	2	4569.674	1
55		9	max	0	1	1.01	3	.029	3 1.72e-2	2	NC	<u> 15</u>	NC	1_
56			min	0	15	-1.397	2	013	2 -1.415e-2	3	257.65	2	NC	1
57		10	max	0	1	.974	3	.029	3 1.841e-2	2	NC	<u> 15</u>	NC	1_
58			min	0	1	-1.373	2	02	2 -1.52e-2	3	265.319	2	NC	1
59		11	max	0	15	1.01	3	.029	3 1.72e-2	2	NC	15	NC	1
60			min	0	1	-1.397	2	013	2 -1.415e-2	3	257.65	2	NC	1
61		12	max	0	15	1.085	3	.046	1 1.598e-2	2	NC	15	NC	2
62			min	0	1	-1.44	2	005	10 -1.309e-2	3	244.694	2	4569.674	1
63		13	max	0	15	<u> 1.154</u>	3	.082	1 1.476e-2	2	9560.829	15	NC	3
64			min	0	1	-1.469	2	0	10 -1.204e-2	3	236.719	2	2566.44	1
65		14	max	0	15	1.183	3	.105	1 1.355e-2	2	9529.964	15	NC	3
66			min	0	1	-1.459	2	.005	10 -1.099e-2	3	239.464	2	2015.086	1
67		15	max	0	15	<u> 1.151</u>	3	.107	1 1.233e-2	2	NC	15	NC	3
68			min	0	1	-1.394	2	.005	15 -9.934e-3	3	258.666	2	1973.468	
69		16	max	0	15	1.049	3	.088	1 1.112e-2	2	NC	15	NC	3
70			min	0	1	-1.267	2	.004	15 -8.881e-3	3	306.581	2	2385.806	
71		17	max	0	15	.876	3	.055	1 9.903e-3	2	NC	5_	NC	3
72			min	0	1	<u>-1.08</u>	2	.002	10 -7.828e-3	3	421.31	2	3821.394	1
73		18	max	0	15	.646	3	.02	1 8.687e-3	2	NC	5_	NC	1_
74			min	0	1	845	2	002	10 -6.775e-3	3	795.044	3	NC	1
75		19	max	00	15	.382	3	.009	3 7.472e-3	2	NC	_1_	NC	1_
76			min	0	1	582	2	005	2 -5.722e-3	3	NC	1_	NC	1
77	<u>M15</u>	1	max	0	15	.39	3	.009	3 4.892e-3	3	NC	1	NC	1
78			min	0	1	58	2	005	2 -7.78e-3	2	NC	_1_	NC	1
79		2	max	0	15	.579	3	.02	1 5.789e-3	3_	NC	5	NC	1
80			min	0	1	904	2	001	10 -9.054e-3	2	649.38	2	NC	1
81		3	max	0	15	.749	3	.056	1 6.686e-3	3_	NC 0.45.00	5_	NC 0700 400	3
82			min	0	1	<u>-1.187</u>	2	.002	10 -1.033e-2	2	345.98	2	3799.496	
83		4	max	0	15	.885	3	.089	1 7.582e-3	3_	NC 055.477	<u>15</u>	NC	3
84			min	0	1	<u>-1.403</u>	2	.004	15 -1.16e-2	2	255.177	2	2374.741	1
85		5	max	0	15	.98	3	.107	1 8.479e-3	3	NC 040.500	<u>15</u>	NC 1001.700	3
86			min	0	1	<u>-1.537</u>	2	.005	15 -1.287e-2	2	219.523	2	1964.796	
87		6	max	0	15	1.033	3	.105	1 9.376e-3	3_	9555.412	<u>15</u>	NC	3
88		-	min	0	1	-1.587	2	.005	10 -1.415e-2	2	208.679		2005.417	
89		7	max	0	15	1.048	3	.083	1 1.027e-2	3_	9590.027	<u>15</u>	NC OFFO 07	3
90			min	0	1	<u>-1.564</u>	2	.001	10 -1.542e-2	2	213.515	2	2550.37	1
91		8	max	0	15	1.034	3	.047	1 1.117e-2	3	NC 200,007	<u>15</u>	NC	2
92			min	0	1	-1.493	2	005	10 -1.67e-2	2	230.067	2	4518.922	_
93		9	max	0	15	1.008	3	.027	3 1.207e-2	3_	NC OFO FOO	<u>15</u>	NC NC	1
94		40	min	0	1	-1.412	2	012	2 -1.797e-2	2	252.503	2	NC NC	1
95		10	max	0	1	.994	3	.026	3 1.296e-2	3_	NC OCE 54	15	NC NC	1
96		4.4	min	0	1	-1.371	2	019	2 -1.924e-2	2	265.51	2	NC NC	1
97		11	max	0	1	1.008	3	.027	3 1.207e-2	3	NC	15	NC	_1_

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

99		Member	Sec		x [in]	LC	y [in]	LC	z [in]	I.C.	x Rotate [r	I.C.	(n) I /v Ratio	I.C.	(n) I /z Ratio	
99	98	WICHIDO		min												
100			12							1		3				2
101										10						1
103			13		0					1						3
104	102			min	0	15	-1.564	2	.001	10	-1.542e-2	2	213.515	2	2550.37	1
105	103		14	max	0	1	1.033	3	.105	1	9.376e-3	3	9555.412	15	NC	3
106				min	0	15			.005	10		2				1
107			15	max	0	_				1		3				3
108				min	0	15				15						
109			16			_										
1110				min												-
111			17													
1112																
1113			18													
114			10													
115			19													
116		MAC	4											•		
117		<u>M16</u>	1													
118														•		
119			2													
120			2			_										-
121			3													3
122			1													1
123			4								1.2476-2					
124			-			_										
125			5													-
126			6													
127			0													
128			7													
129																
130			0													
131			0													
132			0													•
133			9													
134			10													
135 11 max 0 1 .246 1 .023 3 1.812e-2 3 NC 4 NC 1 136 min 0 15 263 3 009 2 -1.751e-2 2 1632.299 3 NC 1 137 12 max 0 1 .139 1 .052 1 1.699e-2 3 NC 4 NC 2 138 min 0 15 199 3 003 10 -1.671e-2 2 3247.966 3 4064.772 1 139 13 max 0 1 .029 9 .092 1 1.586e-2 3 NC 5 NC 3 NC 5 NC 3 14 14 1 <td></td> <td></td> <td>10</td> <td></td>			10													
136 min 0 15 263 3 009 2 -1.751e-2 2 1632.299 3 NC 1 137 12 max 0 1 .139 1 .052 1 1.699e-2 3 NC 4 NC 2 138 min 0 15 199 3 003 10 -1.671e-2 2 3247.966 3 4064.772 1 139 13 max 0 1 .029 9 .092 1 1.586e-2 3 NC 3 NC 3 140 min 0 15 125 3 .003 10 -1.59e-2 2 1035.926 2 2288.397 1 141 max 0 1 .003 13 1.1479e-2 3 NC 5 NC 3 142 min 0 15 216 2 .006 15			11											_		
137 12 max 0 1 .139 1 .052 1 1.699e-2 3 NC 4 NC 2 138 min 0 15 199 3 003 10 -1.671e-2 2 3247.966 3 4064.772 1 139 13 max 0 1 .029 9 .092 1 1.586e-2 3 NC 3 NC 3 140 min 0 15 125 3 .003 10 -1.59e-2 2 1035.926 2 2288.397 1 141 max 0 1 .003 13 .119 1 1.473e-2 3 NC 5 NC 3 142 min 0 15 151 2 .006 15 -1.509e-2 2 653.994 2 1774.274 1 143 15 max 0 1 0 15 .124 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								_								
138 min 0 15 199 3 003 10 -1.671e-2 2 3247.966 3 4064.772 1 139 13 max 0 1 .029 9 .092 1 1.586e-2 3 NC 3 NC 3 140 min 0 15 125 3 .003 10 -1.59e-2 2 1035.926 2 2288.397 1 141 14 max 0 1 .003 13 .119 1 1.473e-2 3 NC 5 NC 3 142 min 0 15 151 2 .006 15 -1.509e-2 2 653.994 2 1774.274 1 143 15 max 0 1 0 15 .124 1 1.36e-2 3 NC 5 NC 3 144 min 0 15 216			12													
139 13 max 0 1 .029 9 .092 1 1.586e-2 3 NC 3 NC 3 140 min 0 15 125 3 .003 10 -1.59e-2 2 1035.926 2 2288.397 1 141 max 0 1 .003 13 .119 1 1.473e-2 3 NC 5 NC 3 142 min 0 15 151 2 .006 15 -1.509e-2 2 653.994 2 1774.274 1 143 15 max 0 1 0 15 .124 1 1.36e-2 3 NC 5 NC 3 144 min 0 15 216 2 .006 15 -1.429e-2 2 544.282 2 1697.16 1 145 16 max 0 1 0 12			1,2													
140 min 0 15 125 3 .003 10 -1.59e-2 2 1035.926 2 2288.397 1 141 max 0 1 .003 13 .119 1 1.473e-2 3 NC 5 NC 3 142 min 0 15 151 2 .006 15 -1.509e-2 2 653.994 2 1774.274 1 143 15 max 0 1 0 15 .124 1 1.36e-2 3 NC 5 NC 3 144 min 0 15 216 2 .006 15 -1.429e-2 2 544.282 2 1697.16 1 145 16 max 0 1 0 12 .107 1 1.247e-2 3 NC 5 NC 3 146 min 0 15 212 2			13													
141 max 0 1 .003 13 .119 1 1.473e-2 3 NC 5 NC 3 142 min 0 15 151 2 .006 15 -1.509e-2 2 653.994 2 1774.274 1 143 15 max 0 1 0 15 .124 1 1.36e-2 3 NC 5 NC 3 144 min 0 15 216 2 .006 15 -1.429e-2 2 544.282 2 1697.16 1 145 16 max 0 1 0 12 .107 1 1.247e-2 3 NC 5 NC 3 146 min 0 15 212 2 .005 15 -1.348e-2 2 550.208 2 1971.611 1 147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>																
142 min 0 15 151 2 .006 15 -1.509e-2 2 653.994 2 1774.274 1 143 15 max 0 1 0 15 .124 1 1.36e-2 3 NC 5 NC 3 144 min 0 15 216 2 .006 15 -1.429e-2 2 544.282 2 1697.16 1 145 16 max 0 1 0 12 .107 1 1.247e-2 3 NC 5 NC 3 146 min 0 15 212 2 .005 15 -1.348e-2 2 550.208 2 1971.611 1 147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 148 min 0 15 137			14													
143 15 max 0 1 0 15 .124 1 1.36e-2 3 NC 5 NC 3 144 min 0 15 216 2 .006 15 -1.429e-2 2 544.282 2 1697.16 1 145 16 max 0 1 0 12 .107 1 1.247e-2 3 NC 5 NC 3 146 min 0 15 212 2 .005 15 -1.348e-2 2 550.208 2 1971.611 1 147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 148 min 0 15 137 2 .004 15 -1.267e-2 2 685.149 2 2932.662 1 149 18 max 0 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						_										
144 min 0 15 216 2 .006 15 -1.429e-2 2 544.282 2 1697.16 1 145 16 max 0 1 0 12 .107 1 1.247e-2 3 NC 5 NC 3 146 min 0 15 212 2 .005 15 -1.348e-2 2 550.208 2 1971.611 1 147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 148 min 0 15 137 2 .004 15 -1.267e-2 2 685.149 2 2932.662 1 149 18 max 0 1 .025 1 .03 1 1.022e-2 3 NC 4 NC 2 150 min 0 15 072			15													
145 16 max 0 1 0 12 .107 1 1.247e-2 3 NC 5 NC 3 146 min 0 15 212 2 .005 15 -1.348e-2 2 550.208 2 1971.611 1 147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 148 min 0 15 137 2 .004 15 -1.267e-2 2 685.149 2 2932.662 1 149 18 max 0 1 .025 1 .03 1 1.022e-2 3 NC 4 NC 2 150 min 0 15 072 3 0 10 -1.187e-2 2 1226.161 2 6940.916 1 151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-1.429e-2</td><td></td><td></td><td></td><td></td><td>1</td></td<>											-1.429e-2					1
146 min 0 15 212 2 .005 15 -1.348e-2 2 550.208 2 1971.611 1 147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 148 min 0 15 137 2 .004 15 -1.267e-2 2 685.149 2 2932.662 1 149 18 max 0 1 .025 1 .03 1 1.022e-2 3 NC 4 NC 2 150 min 0 15 072 3 0 10 -1.187e-2 2 1226.161 2 6940.916 1 151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135			16													3
147 17 max 0 1 .001 13 .072 1 1.135e-2 3 NC 5 NC 3 148 min 0 15 137 2 .004 15 -1.267e-2 2 685.149 2 2932.662 1 149 18 max 0 1 .025 1 .03 1 1.022e-2 3 NC 4 NC 2 150 min 0 15 072 3 0 10 -1.187e-2 2 1226.161 2 6940.916 1 151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC 1 153 M2 1 max .008 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>						_										
148 min 0 15 137 2 .004 15 -1.267e-2 2 685.149 2 2932.662 1 149 18 max 0 1 .025 1 .03 1 1.022e-2 3 NC 4 NC 2 150 min 0 15 072 3 0 10 -1.187e-2 2 1226.161 2 6940.916 1 151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC 1 153 M2 1 max .008 2 .011 2 .011 1 -1.138e-5 15 NC 1 NC 2			17		0											3
149 18 max 0 1 .025 1 .03 1 1.022e-2 3 NC 4 NC 2 150 min 0 15 072 3 0 10 -1.187e-2 2 1226.161 2 6940.916 1 151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC 1 153 M2 1 max .008 2 .01 2 .011 1 -1.138e-5 15 NC 1 NC 2																
150 min 0 15 072 3 0 10 -1.187e-2 2 1226.161 2 6940.916 1 151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC 1 153 M2 1 max .008 2 .01 2 .011 1 -1.138e-5 15 NC 1 NC 2			18											4		2
151 19 max 0 1 .17 2 .007 3 9.087e-3 3 NC 1 NC 1 152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC 1 153 M2 1 max .008 2 .01 2 .011 1 -1.138e-5 15 NC 1 NC 2																
152 min 0 15 135 3 005 2 -1.106e-2 2 NC 1 NC 1 153 M2 1 max .008 2 .01 2 .011 1 -1.138e-5 15 NC 1 NC 2			19													
153 M2 1 max .008 2 .01 2 .011 1 -1.138e-5 15 NC 1 NC 2						_										
		M2	1											1		2
<u> </u>	154			min	01	3	016	3	0	15	-2.421e-4		7705.949	2	7353.389	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

				x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
155		2	max	.007	2	.009	2	.01	1	-1.081e-5	<u>15</u>	NC	_1_	NC	2
156			min	009	3	016	3	0	15	-2.3e-4	1_	9083.695	2	8013.187	1
157		3	max	.007	2	.007	2	.009	1	-1.024e-5	15	NC	_1_	NC	2
158			min	009	3	015	3	0	15	-2.178e-4	1_	NC	1	8798.096	
159		4	max	.006	2	.006	2	.008	1	-9.667e-6	<u>15</u>	NC	1_	NC	2
160			min	008	3	015	3	0	15	-2.057e-4	1_	NC	1_	9740.888	1
161		5	max	.006	2	.004	2	.007	1	-9.097e-6	<u>15</u>	NC	<u>1</u>	NC	1
162			min	008	3	014	3	0	15	-1.936e-4	1_	NC	1_	NC	1
163		6	max	.005	2	.003	2	.006	1	-8.528e-6	15	NC	1_	NC	1
164			min	007	3	014	3	0	15	-1.814e-4	1	NC	1	NC	1
165		7	max	.005	2	.002	2	.006	1	-7.958e-6	15	NC	1	NC	1
166			min	007	3	013	3	0	15	-1.693e-4	1	NC	1	NC	1
167		8	max	.005	2	0	2	.005	1	-7.388e-6	15	NC	1_	NC	1
168			min	006	3	012	3	0	15	-1.571e-4	1	NC	1	NC	1
169		9	max	.004	2	0	2	.004	1	-6.819e-6	15	NC	1	NC	1
170			min	005	3	012	3	0	15	-1.45e-4	1	NC	1	NC	1
171		10	max	.004	2	001	2	.003	1	-6.249e-6	15	NC	1	NC	1
172			min	005	3	011	3	0	15	-1.329e-4	1	NC	1	NC	1
173		11	max	.003	2	002	15	.003	1	-5.68e-6	15	NC	1	NC	1
174			min	004	3	01	3	0	15	-1.207e-4	1	NC	1	NC	1
175		12	max	.003	2	002	15	.002	1	-5.11e-6	15	NC	1	NC	1
176			min	004	3	009	3	0	15	-1.086e-4	1	NC	1	NC	1
177		13	max	.003	2	002	15	.002	1	-4.54e-6	15	NC	1	NC	1
178			min	003	3	008	3	0	15	-9.646e-5	1	NC	1	NC	1
179		14	max	.002	2	002	15	.001	1	-3.971e-6	15	NC	1	NC	1
180		1-7	min	003	3	007	3	0	15	-8.433e-5	1	NC	1	NC	1
181		15	max	.002	2	001	15	0	1	-3.401e-6	15	NC	1	NC	1
182		10	min	002	3	006	3	0	15	-7.219e-5	1	NC	1	NC	1
183		16	max	.002	2	001	15	0	1	-2.831e-6	15	NC	1	NC	1
184		10	min	002	3	005	4	0	15	-6.006e-5	1	NC	1	NC	1
185		17	max	0	2	- <u>005</u> 0	15	0	1	-2.262e-6	15	NC	1	NC	1
186		17	min	001	3	003	4	0	15	-4.792e-5	1	NC	1	NC	1
187		18		<u>001</u> 0	2	<u>003</u> 0	15	0	1	-1.692e-6	15	NC NC	1	NC	1
188		10	max	0	3	002		0	15	-3.579e-5	1	NC NC	1	NC NC	1
		40	min				4				-				•
189		19	max	0	1	0	1	0	1	-1.123e-6	<u>15</u>	NC NC	1	NC NC	1
190	MO	4	min	0		0	1	0	1	-2.365e-5	1_	NC NC		NC NC	•
191	M3	1	max	0	1	0	1	0	1	4.618e-6	1_	NC NC	1_	NC NC	1
192			min	0	1	0	1	0	1_	2.198e-7	15	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	0	15	3.165e-5	1_	NC	1_	NC NC	1
194		_	min	0	2	003	4	0	1_	1.483e-6	15	NC	1_	NC NC	1
195		3	max	0	3	001	15	0		5.867e-5	1_	NC	1	NC NC	1
196			min	0	2	006	4	0	1	2.745e-6	<u>15</u>	NC	1_	NC NC	1
197		4	max	.001	3	002	15	0	15	8.57e-5	1_	NC	1_	NC NC	1
198			min	001	2	009	4	0	1	4.008e-6	15	NC	1_	NC	1
199		5	max	.002	3	003	15	0	15		_1_	NC	_1_	NC	1
200			min	002	2	012	4	0	1	5.271e-6		8386.489	4	NC	1
201		6	max	.002	3	004	15	0	15	1.398e-4	1_	NC	5	NC	1
202			min	002	2	015	4	0	1	6.534e-6	15	6805.47	4	NC	1
203		7	max	.003	3	004	15	0	15	1.668e-4	1_	NC	5	NC	1
204			min	002	2	018	4	0	1	7.797e-6	15	5852.844	4	NC	1
205		8	max	.003	3	005	15	0	1	1.938e-4	1_	NC	5	NC	1
206			min	003	2	02	4	0	3	9.059e-6	15	5265.476	4	NC	1
207		9	max	.004	3	005	15	0	1	2.208e-4	1	NC	5	NC	1
208			min	003	2	021	4	0	12	1.032e-5	15	4919.483	4	NC	1
209		10	max	.004	3	005	15	0	1	2.479e-4	1	NC	5	NC	1
210			min	003	2	022	4	0	15	1.158e-5	15	4754.868	4	NC	1
211		11	max	.005	3	005	15	.001	1	2.749e-4	1	NC	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			LC
212			min	004	2	022	4	0	15	1.285e-5	15	4747.469	4	NC	1
213		12	max	.005	3	005	15	.002	1	3.019e-4	_1_	NC	5	NC	1
214			min	004	2	021	4	0	15	1.411e-5	15	4899.697	4	NC	1
215		13	max	.006	3	005	15	.002	1	3.289e-4	1	NC	5	NC	1
216			min	005	2	02	4	0	15	1.537e-5	15	5242.657	4	NC	1
217		14	max	.006	3	004	15	.003	1	3.56e-4	1	NC	5	NC	1
218			min	005	2	018	4	0	15	1.664e-5	15	5852.152	4	NC	1
219		15	max	.007	3	004	15	.004	1	3.83e-4	1	NC	3	NC	1
220			min	005	2	015	4	0	15	1.79e-5	15	6895.725	4	NC	1
221		16	max	.007	3	003	15	.005	1	4.1e-4	1	NC	1	NC	1
222			min	006	2	012	4	0	15	1.916e-5	15	8778.799	4	NC	1
223		17	max	.007	3	002	15	.007	1	4.371e-4	1	NC	1	NC	1
224			min	006	2	009	4	0	15	2.042e-5	15	NC	1	NC	1
225		18	max	.008	3	001	15	.008	1	4.641e-4	1	NC	1	NC	1
226			min	007	2	005	1	0	15	2.169e-5	15	NC	1	NC	1
227		19	max	.008	3	0	10	.01	1	4.911e-4	1	NC	1	NC	1
228			min	007	2	002	3	0	15	2.295e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.007	2	0	15	1.795e-4	1	NC	1	NC	3
230			min	0	3	009	3	01	1	8.425e-6	15	NC	1	2529.669	1
231		2	max	.002	1	.006	2	0	15	1.795e-4	1	NC	1	NC	3
232			min	0	3	008	3	009	1	8.425e-6	15	NC	1	2744.895	1
233		3	max	.002	1	.006	2	0	15	1.795e-4	1	NC	1	NC	3
234			min	0	3	008	3	008	1	8.425e-6	15	NC	1	3001.419	
235		4	max	.002	1	.006	2	0	15	1.795e-4	1	NC	1	NC	3
236			min	0	3	007	3	007	1	8.425e-6	15	NC	1	3309.905	1
237		5	max	.002	1	.005	2	0	15	1.795e-4	1	NC	1	NC	3
238			min	0	3	007	3	007	1	8.425e-6	15	NC	1	3684.847	1
239		6	max	.002	1	.005	2	0	15	1.795e-4	1	NC	1	NC	2
240			min	0	3	006	3	006	1	8.425e-6	15	NC	1	4146.348	
241		7	max	.002	1	.004	2	0	15	1.795e-4	1	NC	1	NC	2
242			min	0	3	006	3	005	1	8.425e-6	15	NC	1	4722.943	1
243		8	max	.002	1	.004	2	0	15	1.795e-4	1	NC	1	NC	2
244			min	0	3	005	3	005	1	8.425e-6	15	NC	1	5456.242	1
245		9	max	.001	1	.004	2	<u>.000</u>	15	1.795e-4	1	NC	1	NC	2
246		Ť	min	0	3	005	3	004	1	8.425e-6	15	NC	1	6408.876	1
247		10	max	.001	1	.003	2	<u>.004</u>	15	1.795e-4	1	NC	1	NC	2
248		10	min	0	3	004	3	003	1	8.425e-6	15	NC	1	7678.725	1
249		11	max	.001	1	.003	2	0	15	1.795e-4	1	NC	1	NC	2
250			min	0	3	004	3	003	1	8.425e-6	15	NC	1	9425.861	1
251		12	max	0	1	.003	2	<u>003</u> 0	15	1.795e-4	1	NC	1	NC	1
252		14	min		3	003	3	002	1	8.425e-6	15	NC	1	NC	1
253		13	max	0	1	.002	2	0	15	1.795e-4	1	NC	1	NC	1
254		10	min	0	3	003	3	002	1	8.425e-6	15	NC	1	NC	1
255		14	max	0	1	.002	2	<u>002</u> 0		1.795e-4	1	NC	1	NC	1
256		14	min	0	3	002	3	001	1	8.425e-6	15	NC	1	NC	1
257		15	max	0	1	.002	2	<u>001</u> 0	15	1.795e-4	1	NC	1	NC	1
258		13	min	0	3	002	3	0	1	8.425e-6	15	NC	1	NC	1
259		16		0	1	.002	2	0	15	1.795e-4	1 <u>15</u> 1	NC NC	1	NC NC	1
260		10	max min	0	3	001	3	0	1	8.425e-6	15	NC NC	1	NC NC	1
261		17		0	1	001 0	2	<u></u> 0	15	1.795e-4	<u>15</u> 1	NC NC	1	NC NC	1
262		17	max min	0	3	0	3	0	15		15	NC NC	1	NC NC	1
		40		_	1					8.425e-6	10		1		1
263		18	max	0	3	0 0	3	0 0	15	1.795e-4	1 =	NC NC	1	NC NC	1
264		10	min						1 1	8.425e-6	<u>15</u>				
265		19	max	0	1	0	1	0	1	1.795e-4	1 1E	NC NC	1	NC NC	1
266	Me	4	min	0	1	0	1	0	1	8.425e-6	<u>15</u>	NC NC	1	NC NC	1
267	<u>M6</u>	1	max	.024	2	.035	2	0	1	0	1	NC	3	NC NC	1
268			min	031	3	049	3	0	1	0	_1_	2185.801	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio L			
269		2	max	.022	2	.032	2	0	1	0	1		3	NC	1
270			min	029	3	047	3	0	1	0	1_		2	NC NC	1
271		3	max	.021	2	.029	2	0	1	0	1_		3	NC_	1
272			min	028	3	044	3	0	1	0	1_		2	NC	1
273		4	max	.02	2	.026	2	0	1	0	_1_		3	NC	1
274		_	min	026	3	041	3	0	1	0	1_		2	NC	1
275		5	max	.018	2	.023	2	0	1	0	1_		3	NC_	1
276			min	024	3	039	3	0	1	0	1_		2	NC	1
277		6	max	.017	2	.02	2	0	1	0	1_		3	NC	1
278		_	min	023	3	036	3	0	1	0	1_		2	NC	1
279		7	max	.016	2	.017	2	0	1	0	_1_		1	NC	1
280			min	021	3	033	3	0	1	0	1_		2	NC NC	1
281		8	max	.014	2	.014	2	0	1	0	1_		1	NC_	1
282			min	019	3	031	3	0	1	0	1_		2	NC	1
283		9	max	.013	2	.012	2	0	1	0	_1_		1	NC	1
284			min	017	3	028	3	0	1	0	1_		2	NC	1
285		10	max	.012	2	.009	2	0	1	0	1_		1	NC_	1
286			min	016	3	025	3	0	1	0	1_		2	NC	1
287		11	max	.01	2	.007	2	0	1	0	1_		1	NC	1
288			min	014	3	022	3	0	1	0	1_		1	NC	1
289		12	max	.009	2	.005	2	0	1	0	1_		1	NC	1
290			min	012	3	02	3	0	1	0	1_		1	NC	1
291		13	max	.008	2	.004	2	0	1	0	1		1	NC	1
292			min	01	3	017	3	0	1	0	1_		1	NC	1
293		14	max	.007	2	.002	2	0	1	0	_1_		1	NC_	1
294			min	009	3	014	3	0	1	0	1_	110	1	NC	1
295		15	max	.005	2	.001	2	0	1	0	_1_		1	NC	1_
296			min	007	3	011	3	0	1	0	1_		1	NC	1
297		16	max	.004	2	0	2	0	1	0	_1_		1	NC	1_
298			min	005	3	008	3	0	1	0	1_		1	NC	1
299		17	max	.003	2	0	2	0	1_	0	_1_		1	NC	1_
300			min	003	3	006	3	0	1	0	1_		1	NC	1
301		18	max	.001	2	0	2	0	1_	0	_1_		1	NC	1_
302			min	002	3	003	3	0	1	0	1_		1	NC	1
303		19	max	0	1	0	1	0	1	0	_1_		1	NC	1_
304			min	0	1	0	1	0	1	0	1	110	1	NC	1
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	_1_		1	NC	1_
306			min	0	1	0	1	0	1	0	1_		1	NC	1
307		2	max	.001	3	0	15	0	1	0	_1_		1	NC	1_
308			min	001	2	004	3	0	1	0	1_	110	1	NC NC	1
309		3	max	.003	3	001	15	0	1	0	1	NC	1	NC	_1_
310			min	003	2	007	3	0	1	0	1_		1	NC NC	1
311		4	max	.004	3	002	15	0	1	0	1		1	NC	1
312			min	004	2	011	3	0	1	0	1_		1	NC	1
313		5	max	.006	3	003	15	0	1	0	1_		1	NC	1
314			min	005	2	014	3	0	1	0	1_		3	NC	1
315		6	max	.007	3	004	15	0	1	0	1		1	NC_	1
316			min	007	2	016	3	0	1	0	1_		4	NC	1
317		7	max	.009	3	004	15	0	1	0	1_		2	NC	1
318			min	008	2	018	3	0	1	0	1_		4	NC	1
319		8	max	.01	3	005	15	0	1	0	1		2	NC	1
320			min	009	2	02	3	0	1	0	1_		4	NC	1
321		9	max	.011	3	005	15	0	1	0	1		5	NC	1_
322			min	011	2	021	3	0	1	0	1_		4	NC	1
323		10	max	.013	3	005	15	00	1	0	1_		5	NC	1_
324			min	012	2	022	4	0	1	0	1_		4	NC	1
325		11	max	.014	3	005	15	0	1	0	1_	NC :	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

226	Member	Sec	min	x [in] 014	LC 2	y [in] 022	LC 4	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 4	(n) L/z Ratio	LC 1
326 327		12	min max	014 .016	3	022 005	15	<u> </u>	1	0	+	NC	5	NC NC	1
328		12	min	015	2	021	4	0	1	0	1	4958.698	4	NC	1
329		13	max	.017	3	005	15	0	1	0	1	NC	5	NC	1
330			min	016	2	02	3	0	1	0	1	5303.264	4	NC	1
331		14	max	.018	3	004	15	0	1	0	1	NC	2	NC	1
332			min	018	2	019	3	0	1	0	1	5917.462	4	NC	1
333		15	max	.02	3	004	15	0	1	0	1	NC	1	NC	1
334			min	019	2	017	3	0	1	0	1	6970.428	4	NC	1
335		16	max	.021	3	003	15	0	1	0	_1_	NC	_1_	NC	1
336			min	02	2	015	3	0	1	0	1_	8871.643	4	NC	1
337		17	max	.023	3	002	15	0	1	0	1	NC	1	NC	1
338		40	min	022	2	012	3	0	1	0	1_	NC NC	1_	NC NC	1
339		18	max	.024	3	001	15	0	1	0	1	NC NC	1	NC	1
340		19	min	023 .026	3	009 0	10	<u> </u>	1	0	1	NC NC	1	NC NC	1
342		19	max	024	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.024	2	0	1	0	1	NC	1	NC	1
344	IVIO		min	0	3	026	3	0	1	0	1	NC	1	NC	1
345		2	max	.006	1	.022	2	0	1	0	1	NC	1	NC	1
346			min	0	3	025	3	0	1	Ö	1	NC	1	NC	1
347		3	max	.006	1	.021	2	0	1	0	1	NC	1	NC	1
348			min	0	3	023	3	0	1	0	1	NC	1	NC	1
349		4	max	.005	1	.02	2	0	1	0	1	NC	1	NC	1
350			min	0	3	022	3	0	1	0	1_	NC	1	NC	1
351		5	max	.005	1	.018	2	0	1	0	_1_	NC	1_	NC	1
352			min	0	3	02	3	0	1	0	1_	NC	1_	NC	1
353		6	max	.005	1	.017	2	0	1	0	1_	NC	1	NC	1
354		_	min	0	3	019	3	0	1	0	1_	NC	1_	NC	1
355		7	max	.004	3	.016	2	0	1	0	<u>1</u> 1	NC NC	1	NC NC	1
356 357		8	min max	<u> </u>	1	018 .014	2	0	1	0	1	NC NC	1	NC NC	1
358		0	min	<u>.004</u>	3	014 016	3	0	1	0	1	NC NC	1	NC	1
359		9	max	.004	1	.013	2	0	1	0	1	NC	1	NC	1
360			min	0	3	015	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.012	2	0	1	0	1	NC	1	NC	1
362			min	0	3	013	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.011	2	0	1	0	1	NC	1	NC	1
364			min	0	3	012	3	0	1	0	1	NC	1	NC	1
365		12	max	.002	1	.009	2	0	1	0	_1_	NC	1	NC	1
366			min	0	3	01	3	0	1	0	1_	NC	1	NC	1
367		13	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
368		4.4	min	0	3	009	3	0	1	0	1_	NC NC	1_	NC NC	1
369		14	max	.002	3	.007	2	0	1	0	1	NC NC	1_4	NC	1
370 371		15	min	<u> </u>	1	007 .005	2	<u> </u>	1	0	1	NC NC	1	NC NC	1
372		15	max	0	3	006	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.003	2	0	1	0	1	NC	1	NC	1
376			min	0	3	003	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
378			min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.008	2	.01	2	0	15	2.421e-4	1_	NC	1	NC	2
382			min	01	3	016	3	011	1	1.138e-5	15	7705.949	2	7353.389	1

Schletter, Inc.HCV

Job Number : Model Name : Standard PVN

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.007	2	.009	2	0	15	2.3e-4	<u>1</u>	NC	_1_	NC	2
384			min	009	3	016	3	01	1	1.081e-5	15	9083.695	2	8013.187	1
385		3	max	.007	2	.007	2	0	15	2.178e-4	1	NC	1	NC	2
386			min	009	3	015	3	009	1	1.024e-5	15	NC	1	8798.096	1
387		4	max	.006	2	.006	2	0	15	2.057e-4	1_	NC	1_	NC	2
388			min	008	3	015	3	008	1	9.667e-6	15	NC	1	9740.888	1
389		5	max	.006	2	.004	2	0	15	1.936e-4	_1_	NC	1_	NC	1
390			min	008	3	014	3	007	1	9.097e-6	15	NC	1	NC	1
391		6	max	.005	2	.003	2	0	15	1.814e-4	1	NC	1	NC	1
392			min	007	3	014	3	006	1	8.528e-6	15	NC	1	NC	1
393		7	max	.005	2	.002	2	0	15	1.693e-4	1_	NC	1_	NC	1
394			min	007	3	013	3	006	1	7.958e-6	15	NC	1	NC	1
395		8	max	.005	2	0	2	0	15	1.571e-4	1_	NC	1_	NC	1
396			min	006	3	012	3	005	1	7.388e-6	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.45e-4	1	NC	1_	NC	1
398			min	005	3	012	3	004	1	6.819e-6	15	NC	1	NC	1
399		10	max	.004	2	001	2	0	15	1.329e-4	1_	NC	1_	NC	1
400			min	005	3	011	3	003	1	6.249e-6	15	NC	1	NC	1
401		11	max	.003	2	002	15	0	15	1.207e-4	1	NC	1	NC	1
402			min	004	3	01	3	003	1	5.68e-6	15	NC	1	NC	1
403		12	max	.003	2	002	15	0	15	1.086e-4	1	NC	1	NC	1
404			min	004	3	009	3	002	1	5.11e-6	15	NC	1	NC	1
405		13	max	.003	2	002	15	0	15	9.646e-5	1	NC	1	NC	1
406			min	003	3	008	3	002	1	4.54e-6	15	NC	1	NC	1
407		14	max	.002	2	002	15	0	15	8.433e-5	1	NC	1	NC	1
408			min	003	3	007	3	001	1	3.971e-6	15	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	7.219e-5	1	NC	1	NC	1
410			min	002	3	006	3	0	1	3.401e-6	15	NC	1	NC	1
411		16	max	.001	2	001	15	0	15	6.006e-5	1	NC	1	NC	1
412			min	002	3	005	4	0	1	2.831e-6	15	NC	1	NC	1
413		17	max	0	2	0	15	0	15	4.792e-5	1	NC	1	NC	1
414			min	001	3	003	4	0	1	2.262e-6	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	3.579e-5	1_	NC	1	NC	1
416			min	0	3	002	4	0	1	1.692e-6	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.365e-5	1	NC	1	NC	1
418			min	0	1	0	1	0	1	1.123e-6	15	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-2.198e-7	15	NC	1	NC	1
420			min	0	1	0	1	0	1	-4.618e-6	1	NC	1	NC	1
421		2	max	0	3	0	15	0	1	-1.483e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	15	-3.165e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	1	-2.745e-6	15	NC	1	NC	1
424			min	0	2	006	4	0	15	-5.867e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	1	-4.008e-6	15	NC	1	NC	1
426			min	001	2	009	4	0	15	-8.57e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	0	1	-5.271e-6	15	NC	1	NC	1
428			min	002	2	012	4	0	15	-1.127e-4	1	8386.489	4	NC	1
429		6	max	.002	3	004	15	0	1	-6.534e-6	15	NC	5	NC	1
430			min	002	2	015	4	0	15		1	6805.47	4	NC	1
431		7	max	.003	3	004	15	0	1	-7.797e-6	15	NC	5	NC	1
432			min	002	2	018	4	0	15	-1.668e-4	1	5852.844	4	NC	1
433		8	max	.003	3	005	15	0	3	-9.059e-6	15	NC	5	NC	1
434			min	003	2	02	4	0	1	-1.938e-4	1	5265.476	4	NC	1
435		9	max	.004	3	005	15	0	12		15	NC	5	NC	1
436			min	003	2	021	4	0	1	-2.208e-4	1	4919.483	4	NC	1
437		10	max	.004	3	005	15	0	15	-1.158e-5	15	NC	5	NC	1
438			min	003	2	022	4	0	1	-2.479e-4	1	4754.868	4	NC	1
439		11	max	.005	3	005	15	0	15	-1.285e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	004	2	022	4	001	1	-2.749e-4	1_	4747.469	4	NC	1
441		12	max	.005	3	005	15	0	15		15	NC	5	NC	1
442			min	004	2	021	4	002	1	-3.019e-4	1_	4899.697	4	NC	1
443		13	max	.006	3	005	15	0	15		15	NC	_5_	NC	1
444			min	005	2	02	4	002	1	-3.289e-4	1_	5242.657	<u>4</u>	NC	1
445		14	max	.006	3	004	15	0	15		<u>15</u>	NC FOEO 4 FO	5_	NC NC	1
446		45	min	005	2	018	4	003	1	-3.56e-4	1_	5852.152	4	NC NC	1
447		15	max	.007	3	004	15	0	15	-1.79e-5	<u>15</u>	NC	3	NC	1
448		4.0	min	005	2	015	4	004	1_45	-3.83e-4	1_	6895.725	4	NC NC	1
449		16	max	.007	3	003 012	15	0 005	15	-1.916e-5	<u>15</u> 1	NC 8778.799	<u>1</u> 4	NC NC	1
450 451		17	min	006 .007	3	012	15	005 0	15	-4.1e-4	_	NC	_ 4 _	NC NC	1
451		17	max	007 006	2	002 009	4	007	15	-2.042e-5 -4.371e-4	<u>15</u> 1	NC NC	1	NC NC	1
452		18	max	.008	3	009 001	15	<u>007</u> 0	15		15	NC NC	1	NC NC	1
454		10	min	007	2	005	1	008	1	-4.641e-4	1	NC	1	NC	1
455		19	max	.007	3	<u>005</u> 0	10	<u>008</u> 0	15		15	NC	1	NC	1
456		13	min	007	2	002	3	01	1	-4.911e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.002	2	.01	1	-8.425e-6	15	NC	1	NC	3
458	IVITZ		min	0	3	009	3	0		-1.795e-4	1	NC	1	2529.669	1
459		2	max	.002	1	.006	2	.009	1	-8.425e-6	15	NC	1	NC	3
460			min	0	3	008	3	0	15		1	NC	1	2744.895	
461		3	max	.002	1	.006	2	.008	1	-8.425e-6	15	NC	1	NC	3
462			min	0	3	008	3	0	15	-1.795e-4	1	NC	1	3001.419	1
463		4	max	.002	1	.006	2	.007	1	-8.425e-6	15	NC	1	NC	3
464			min	0	3	007	3	0	15	-1.795e-4	1	NC	1	3309.905	1
465		5	max	.002	1	.005	2	.007	1	-8.425e-6	15	NC	1	NC	3
466			min	0	3	007	3	0	15	-1.795e-4	1	NC	1	3684.847	1
467		6	max	.002	1	.005	2	.006	1	-8.425e-6	15	NC	1	NC	2
468			min	0	3	006	3	0	15	-1.795e-4	1	NC	1	4146.348	1
469		7	max	.002	1	.004	2	.005	1	-8.425e-6	<u>15</u>	NC	1_	NC	2
470			min	0	3	006	3	0	15		1_	NC	1	4722.943	1
471		8	max	.002	1	.004	2	.005	1	-8.425e-6	15	NC	_1_	NC	2
472			min	0	3	005	3	0	15	-1.795e-4	1_	NC	1_	5456.242	1
473		9	max	.001	1	.004	2	.004	1	-8.425e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	005	3	0	15	-1.795e-4	_1_	NC	_1_	6408.876	1
475		10	max	.001	1	.003	2	.003	1	-8.425e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	004	3	0	15	-1.795e-4	_1_	NC	1_	7678.725	1
477		11	max	.001	1	.003	2	.003	1_	-8.425e-6	<u>15</u>	NC	1_	NC	2
478		40	min	0	3	004	3	0	15		1_	NC	1_	9425.861	1
479		12	max	0	1	.003	2	.002	1	-8.425e-6	<u>15</u>	NC	1_	NC NC	1
480		40	min	0	3	003	3	0		-1.795e-4		NC NC	1	NC NC	1
481		13	max	0	3	.002	2	.002	1	-8.425e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	1	<u>003</u>	2	0		-1.795e-4	1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	3	.002	3	.001	1	-8.425e-6		NC NC	1	NC NC	1
484 485		15	min max	0	1	002 .001	2	<u> </u>	1 <u>5</u>	-1.795e-4 -8.425e-6	1_	NC NC	1	NC NC	1
486		15	min	0	3	002	3	0		-1.795e-4	1	NC	1	NC	1
487		16	max	0	1	.002	2	0	1	-8.425e-6		NC	1	NC	1
488		10	min	0	3	001	3	0		-1.795e-4	1	NC	1	NC	1
489		17	max	0	1	001 0	2	0	1		15	NC NC	1	NC NC	1
490		17	min	0	3	0	3	0		-0.425e-0	1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-8.425e-6	-	NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-8.425e-6	•	NC	1	NC	1
494		1.0	min	0	1	0	1	0	1	-1.795e-4	1	NC	1	NC	1
495	M1	1	max	.011	3	.191	2	0	1	9.396e-3	1	NC	1	NC	1
496			min	006	2	047	3	0		-1.962e-2	3	NC	1	NC	1
											_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio LC		
497		2	max	.011	3	.092	2	0	15	4.572e-3	2	NC 5	NC	1
498			min	006	2	021	3	008	1	-9.74e-3	3	1372.048 2	NC	1
499		3	max	.011	3	.016	3	0	15	1.059e-5	10	NC 5	NC	1
500			min	006	2	013	2	011	1	-2.111e-4	1	663.676 2	NC	1
501		4	max	.01	3	.075	3	0	15	4.238e-3	2	NC 15	NC	1
502			min	006	2	13	2	01	1	-4.385e-3	3	421.575 2	NC	1
503		5	max	.01	3	.148	3	0	15	8.512e-3	2	NC 15	NC	1
504			min	006	2	252	2	007	1	-8.663e-3	3	305.722 2	NC	1
505		6	max	.01	3	.226	3	0	15	1.279e-2	2	8316.177 15	NC	1
506			min	006	2	369	2	003	1	-1.294e-2	3	241.655 2	NC	1
507		7	max	.01	3	.301	3	0	1	1.706e-2	2	7019.204 15	NC	1
508			min	006	2	474	2	0	3	-1.722e-2	3	203.73 2	NC	1
509		8	max	.01	3	.363	3	0	1	2.133e-2	2	6251.328 15	NC	1
510			min	005	2	557	2	0	15	-2.149e-2	3	181.257 2	NC	1
511		9	max	.009	3	.403	3	0	15	2.405e-2	2	5849.434 15	NC	1
512			min	005	2	609	2	0	1	-2.195e-2	3	169.531 2	NC	1
513		10	max	.009	3	.418	3	0	1	2.571e-2	2	5726.542 15	NC	1
514			min	005	2	626	2	0	15	-1.986e-2	3	166.096 2	NC	1
515		11	max	.009	3	.408	3	0	1	2.738e-2	2	5849.106 15	NC	1
516			min	005	2	608	2	0	15	-1.777e-2	3	170.139 2	NC	1
517		12	max	.009	3	.374	3	0	15	2.63e-2	2	6250.631 15	NC	1
518			min	005	2	554	2	001	1	-1.528e-2	3	183.059 2	NC	1
519		13	max	.008	3	.318	3	0	15	2.11e-2	2	7017.981 15	NC	1
520			min	005	2	467	2	0	1	-1.223e-2	3	208.02 2	NC	1
521		14	max	.008	3	.248	3	.003	1	1.591e-2	2	8314.105 15	NC	1
522			min	005	2	359	2	0	15	-9.17e-3	3	250.683 2	NC	1
523		15	max	.008	3	.168	3	.006	1	1.071e-2	2	NC 15	NC	1
524			min	005	2	239	2	0	15	-6.113e-3	3	324.051 2	NC	1
525		16	max	.008	3	.086	3	.009	1	5.515e-3	2	NC 15	NC	1
526		10	min	005	2	118	2	0	15	-3.056e-3	3	459.637 2	NC	1
527		17	max	.007	3	.006	3	.01	1	6.449e-4	1	NC 5	NC	1
528		17	min	005	2	007	2	0	15	9.547e-7	3	748.365 2	NC	1
529		18	max	.007	3	.087	2	.007	1	7.697e-3	2	NC 5	NC	1
530		10	min	005	2	067	3	0	15	-2.777e-3	3	1585.836 2	NC	1
531		19		.005	3	.17	2	0	15	1.53e-2	2	NC 1	NC	1
532		19	max	00 <i>7</i>	2	135	3	0	1	-5.659e-3	3	NC 1	NC NC	1
	NAE	1	min		3			_	1				NC NC	1
533	<u>M5</u>		max	.032	2	.36	2	0	1	0	<u>1</u> 1	NC 1	NC NC	1
534			min	023		028	3	0		0	•			•
535		2	max	.032	3	.173	2	0	1	0	1	NC 5	NC NC	1
536		0	min	023	2	008	3	0	1	0	1_	727.696 2	NC NC	1
537		3	max	.032	3	.05	3	0	1	0	1	NC 15		1
538			min	023	2	04	2	0	1	0	1	340.772 2	NC NC	1
539		4	max	.032	3	.179	3	0	1	0	1	8056.192 15	NC NC	1
540			min	022	2	296	2	0	1	0	1_	207.566 2	NC	1
541		5	max	.031	3	.358	3	0	1	0	1	5607.118 15	NC	1
542			min	022	2	<u>576</u>	2	0	1	0	<u>1</u>	145.415 2	NC	1
543		6	max	.03	3	.56	3	0	1	0	1	4299.362 15	NC	1
544			min	021	2	854	2	0	1	0	1	111.994 2	NC	1
545		7	max	.03	3	.757	3	0	1	0	1	3547.19 15	NC	1
546			min	021	2	-1.108	2	0	1	0	1	92.665 2	NC	1
547		8	max	.029	3	.922	3	0	1	0	1	3111.318 15	NC	1
548			min	021	2	-1.311	2	0	1	0	1	81.419 2	NC	1
549		9	max	.028	3	1.029	3	0	1	0	1	2888.084 15	NC	1
550			min	02	2	-1.44	2	0	1	0	1	75.644 2	NC	1
551		10	max	.027	3	1.068	3	0	1	0	1	2820.819 15	NC	1
552			min	02	2	-1.484	2	0	1	0	1	73.96 2	NC	1
553		11	max	.027	3	1.041	3	0	1	0	1	2888.245 15	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	02	2	-1.441	2	0	1	0	1	75.943	2	NC	1
555		12	max	.026	3	.95	3	0	1	0	1	3111.7	15	NC	1
556			min	019	2	-1.306	2	0	1	0	1	82.398	2	NC	1
557		13	max	.025	3	.804	3	0	1	0	1	3547.963	15	NC	1
558			min	019	2	-1.091	2	0	1	0	1	95.212	2	NC	1
559		14	max	.025	3	.62	3	0	1	0	1	4300.863	15	NC	1
560			min	019	2	824	2	0	1	0	1	117.784	2	NC	1
561		15	max	.024	3	.415	3	0	1	0	1	5610.076	15	NC	1
562			min	018	2	537	2	0	1	0	1	158.187	2	NC	1
563		16	max	.023	3	.208	3	0	1	0	1	8062.388	15	NC	1
564			min	018	2	259	2	0	1	0	1	236.895	2	NC	1
565		17	max	.023	3	.017	3	0	1	0	1	NC	15	NC	1
566			min	018	2	021	2	0	1	0	1	414.356	2	NC	1
567		18	max	.023	3	.155	2	0	1	0	1	NC	5	NC	1
568			min	018	2	146	3	0	1	0	1	930.989	2	NC	1
569		19	max	.023	3	.296	2	0	1	0	1	NC	1_	NC	1
570			min	018	2	291	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.011	3	.191	2	0	15	1.962e-2	3	NC	1_	NC	1
572			min	006	2	047	3	0	1	-9.396e-3	1	NC	1	NC	1
573		2	max	.011	3	.092	2	.008	1	9.74e-3	3	NC	5	NC	1
574			min	006	2	021	3	0	15	-4.572e-3	2	1372.048	2	NC	1
575		3	max	.011	3	.016	3	.011	1	2.111e-4	1	NC	5	NC	1
576			min	006	2	013	2	0	15	-1.059e-5	10	663.676	2	NC	1
577		4	max	.01	3	.075	3	.01	1	4.385e-3	3	NC	15	NC	1
578			min	006	2	13	2	0	15	-4.238e-3	2	421.575	2	NC	1
579		5	max	.01	3	.148	3	.007	1	8.663e-3	3	NC	15	NC	1
580			min	006	2	252	2	0	15	-8.512e-3	2	305.722	2	NC	1
581		6	max	.01	3	.226	3	.003	1	1.294e-2	3	8316.177	15	NC	1
582			min	006	2	369	2	0	15	-1.279e-2	2	241.655	2	NC	1
583		7	max	.01	3	.301	3	0	3	1.722e-2	3	7019.204	15	NC	1
584			min	006	2	474	2	0	1	-1.706e-2	2	203.73	2	NC	1
585		8	max	.01	3	.363	3	0	15	2.149e-2	3	6251.328	15	NC	1
586			min	005	2	557	2	0	1	-2.133e-2	2	181.257	2	NC	1
587		9	max	.009	3	.403	3	0	1	2.195e-2	3	5849.434	15	NC	1
588			min	005	2	609	2	0	15	-2.405e-2	2	169.531	2	NC	1
589		10	max	.009	3	.418	3	0	15	1.986e-2	3	5726.542	15	NC	1
590			min	005	2	626	2	0	1	-2.571e-2	2	166.096	2	NC	1
591		11	max	.009	3	.408	3	0	15	1.777e-2	3	5849.106	15	NC	1
592			min	005	2	608	2	0	1	-2.738e-2	2	170.139	2	NC	1
593		12	max	.009	3	.374	3	.001	1	1.528e-2	3	6250.631	15	NC	1
594			min	005	2	554	2	0	15		2	183.059	2	NC	1
595		13	max	.008	3	.318	3	0	1	1.223e-2	3	7017.981	15	NC	1
596			min	005	2	467	2	0	15		2	208.02	2	NC	1
597		14	max	.008	3	.248	3	0	15	9.17e-3	3	8314.105	15	NC	1
598			min	005	2	359	2	003	1	-1.591e-2	2	250.683	2	NC	1
599		15	max	.008	3	.168	3	0	15	6.113e-3	3	NC	15	NC	1
600			min	005	2	239	2	006	1	-1.071e-2	2	324.051	2	NC	1
601		16	max	.008	3	.086	3	0	15		3	NC	15	NC	1
602			min	005	2	118	2	009	1	-5.515e-3	2	459.637	2	NC	1
603		17	max	.007	3	.006	3	0	15	-9.547e-7	3	NC	5	NC	1
604			min	005	2	007	2	01	1	-6.449e-4	1	748.365	2	NC	1
605		18	max	.007	3	.087	2	0	15		3	NC	5	NC	1
606			min	005	2	067	3	007	1	-7.697e-3	2	1585.836	2	NC	1
607		19	max	.007	3	.17	2	0	1	5.659e-3	3	NC	1	NC	1
608			min	005	2	135	3	0	15		2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	3/5				
Project:	Standard PVMax - Worst Case, 32-40 Inch Width						
Address:							
Phone:							
E-mail:							

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	ť _c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	† short-term	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{al}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{\text{ed},Na} \Psi_{g,Na} \Psi_{\text{ec},Na} \Psi_{p,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\Psi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	5/5			
Project:	Standard PVMax - Worst Case, 32-40 Inch Width					
Address:						
Phone:						
E-mail:						

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.