	Solution	Marks	Remarks
1.	$\frac{a+4}{3} = \frac{b+1}{2}$ $2(a+4) = 3(b+1)$	1M	
	2a+8=3b+3 3b=2a+5 , $2a+5$	1M	for putting b on one side
	$b = \frac{2a+5}{3}$	1A	or equivalent
	$\frac{a+4}{3} = \frac{b+1}{2}$ $2\left(\frac{a+4}{3}\right) = b+1$ $\frac{2a+8}{3} = b+1$	1 M	
	$b = \frac{2a + 8}{3} - 1$	1M	for putting b on one side
	$b = \frac{2a+5}{3}$	1A	or equivalent
		(3)	
2.	$\frac{xy^{7}}{(x^{-2}y^{3})^{4}}$		
	$\frac{xy^{7}}{x^{-8}y^{12}}$	1M	for $(a^h)^k = a^{hk}$ or $(ab)^l = a^l b^l$
	$=\frac{x^{1+8}}{y^{12-7}}$	1M	for $(a^h)^k = a^{hk}$ or $(ab)^l = a^l b^l$ for $\frac{c^p}{c^q} = c^{p-q}$ or $d^{-r} = \frac{1}{d^r}$
	$=\frac{x^9}{y^5}$	1A	
		(3)
3.	(a) 266	1A	
	(b) 265.4	1A	
	(c) 270	1A (3)
	44		

Solution	Marks	Remarks
Solution	IVILIKS	Remarks
4. Note that the probability of drawing a red ball is $\frac{8}{n+5+8}$.	1M	for denominator
$\frac{8}{n+5+8} = \frac{2}{5}$ $2n+26 = 40$	1A	
n = 7	1A (3)	
(a) $9r^3 - 18r^2s$ = $9r^2(r - 2s)$	1A	or equivalent
(b) $9r^3 - 18r^2s - rs^2 + 2s^3$		
$= 9r^{2}(r-2s) - rs^{2} + 2s^{3}$ $= 9r^{2}(r-2s) - s^{2}(r-2s)$	1M	for using the result of (a)
$=(r-2s)(9r^2-s^2)$	1M	
=(r-2s)(3r+s)(3r-s)	iA (4)	or equivalent
(a) $\frac{3-x}{2} > 2x + 7$		
$ \begin{array}{c} 2 \\ 3 - x > 4x + 14 \\ -5x > 11 \end{array} $	1M	for mutting a
$x < \frac{-11}{5}$		for putting x on one side $x < -2.2$
x+8≥0		
$x \ge -8$	1A	-8 ≤ x < -2.2
Thus, the required range is $-8 \le x < \frac{-11}{5}$.		-6 ≤ x < -2.2
b) -3	1A (4)	

	Solution	Marks	Remarks	
7.	Let x be the marked price of the vase. The cost of the vase $= \frac{x}{1+30\%}$ $= \$\left(\frac{10x}{13}\right)$	1M		
	The selling price of the vase $= (1 - 40\%)x$ $= \$\left(\frac{3x}{5}\right)$	1M		
	$\frac{10x}{13} - \frac{3x}{5} = 88$	1M+1A		
	$\frac{11x}{65} = 88$ $x = 520$ Thus, the marked price of the vase is \$520.	1A		
	Let c be the cost of the vase. The marked price of the vase $c = (1+30\%)c$ $c = 1.3c$ The selling price of the vase $c = (1-40\%)(1.3c)$	1M		
	c - 0.78c = 88 $0.22c = 88$ $c = 400$	1M+1A		
	The marked price of the vase = 1.3(400) = \$520	1A	5)	
8.	x $= 180^{\circ} - \theta$ $\angle ADE$ $= x$ $= 180^{\circ} - \theta$	1A 1M		
	$\angle BED$ = x = $180^{\circ} - \theta$	1M		
	$y = 180^{\circ} - \angle ADE - \angle BED$ = 180° - (180° - \theta) - (180° - \theta) = 2\theta - 180°	1M	(5)	

	Solution	Marks	Remarks
9. Let x minutes be the time requirement. Then, the time required for the car (161-x) minutes.	ed for the car to travel from city P to city Q ir to travel from city Q to city R is	1A	
$72\left(\frac{x}{60}\right) + 90\left(\frac{161 - x}{60}\right) = 210$		1M+1A+1N	1 1M for changing unit 1M for getting a linear equation in one unknown
18x = 1890 $x = 105$ Thus, the car takes 105 minutes t	to travel from city P to city Q .	1A	
72 km/h $= \frac{72}{60} \text{ km/min}$ $= 1.2 \text{ km/min}$		1M	
90 km/h $= \frac{90}{60} \text{ km/min}$			either one
city P to city Q and from city Q So, we have $x+y=161$ and 1.2 Therefore, we have $1.2x+1.5(161$ Solving, we have $x=105$ and y	x+1.5y=210. -x) = 210. = 56.	1A+1A 1M 1A	for getting a linear equation in x or y only
Thus, the car takes 105 minutes to			
Let x hours be the time required for Then, the car takes $\left(\frac{161}{60} - x\right)$ hour	or the car to travel from city P to city Q .	1M+1A	1M for changing unit
$72x + 90\left(\frac{161}{60} - x\right) = 210$		1A+1M	1M for getting a linear equation in one unknown
x = 1.75 Thus, the car takes 1.75 hours to tr	avel from city P to city Q .	1A	
The time required for the car to tr	avel from city P to city Q		
$= \frac{90\left(\frac{161}{60}\right) - 210}{90 - 72}$ = 1.75 hours		1M+1A +1M+1A 1A	\[\begin{aligned} 1M for fraction + 1A for numerator \\ + 1M for changing unit + 1A for denominator \end{aligned}
Let y km be the distance between ci	the P and city O		
Then, the distance between city Q a		1A	
$\begin{vmatrix} \frac{y}{72} + \frac{210 - y}{90} = \frac{161}{60} \\ y = 126 \end{vmatrix}$		1M+1A+1M	1M for changing unit 1M for getting a linear equation in one unknown
The time required for the car to tra $= \frac{126}{72}$	vel from city P to city Q		
= 1.75 hours		1A	
		(5)	

	Solution	Marks	Remarks
0. (a)	a-27=21 $a=48$	1M 1A	either one
	b-19=43 $b=62$	1A (3)	
(b)	Note that $38-20=18$. Therefore, the least possible age of the clerks in team Y is 18. The greatest possible range of the distribution of the ages of the clerks in the section = $62-18$ = 44	1M	
	≠ 43 Thus, the claim is disagreed.	1A	f.t.
	Suppose that the ages of the clerks in team Y are 18, 19, 38, 38 and 38. Note that the range of the ages of the clerks in team Y is 20. The range of the ages of the clerks in the section = $62-18$ = 44	1M	
	≠ 43 Thus, the claim is disagreed.	1A	f.t.
l. (a)	(i) 1	1A	
	(ii) 8	1A (2)
(b)	(i) 3	1A	
	(ii) 19	1A (2	2)
(c)	$\frac{0(k)+1(2)+2(9)+3(6)+4(7)}{k+2+9+6+7} = 2$	1M	
	$\frac{66}{k+24} = 2$ $2k+48 = 66$ $k = 9$	1A (2)
	48		

	Solution	Marks	Remarks
12. (a)	f(3) = 0 $4(3)(3+1)^2 + a(3) + b = 0$	1M	
	3a+b=-192		
	f(-2) = 2b + 165	1M	
	$4(-2)(-2+1)^2 + a(-2) + b = 2b + 165$		
	2a+b=-173		
	Solving, we have $a = -19$ and $b = -135$.	1A (3)	for both correct
(b)	f(x) = 0		
	$4x(x+1)^2 - 19x - 135 = 0$		
	$4x^3 + 8x^2 - 15x - 135 = 0$		
	$(x-3)(4x^2+20x+45)=0$	1M	for $(x-3)(px^2 + qx + r)$
	$x = 3$ or $4x^2 + 20x + 45 = 0$		
	$20^2 - 4(4)(45)$	1M	
	= -320 < 0		
	So, the equation $4x^2 + 20x + 45 = 0$ has no real roots.	1M	
į	Note that 3 is not an irrational number. Thus, the claim is disagreed.	1A	f.t.
	. mas, and status to clouds social	(4)	
		1	

	Solution		Marks	Remarks
13. (a)	$\angle ABE = 90^{\circ}$ $\angle DCE = 180^{\circ} - \angle ABE$ $\angle DCE = 90^{\circ}$	(given) (int. ∠s, AB // DC)		
	$\angle BAE = 90^{\circ} - \angle AEB$	$(\angle sum of \Delta)$		
	$\angle AED = 90^{\circ}$ $\angle CED = 180^{\circ} - \angle AED - \angle AEB$ $\angle CED = 90^{\circ} - \angle AEB$	(given) (adj. ∠ s on st. line)		
	$\angle BAE = \angle CED$ $\angle AEB = \angle CDE$ $\triangle ABE \sim \triangle ECD$	(∠sum of ∆) (AAA)		(AA) (equiangular)
	Marking Scheme: Case 1 Any correct proof with correct proof without the correct proof with the cor		2	
	<u> </u>		(2)	
(b)	(i) BE = $\sqrt{AE^2 - AB^2}$ = $\sqrt{25^2 - 15^2}$ = 20 cm			
	$\frac{CD}{BE} = \frac{CE}{AB} \qquad \text{(by (a))}$ $\frac{CD}{20} = \frac{36}{15}$ $CD = 48 \text{ cm}$		1M 1A	for using (a)
	(ii) The area of $\triangle ADE$			
	$= \frac{1}{2}(AB + CD)(BC) - \frac{1}{2}(AB)(BC) - 1$	-	1M	
	$= 750 \text{ cm}^2$	_	1A	
	(iii) AD = $\sqrt{BC^2 + (CD - AB)^2}$ = $\sqrt{(20 + 36)^2 + (48 - 15)^2}$			
	= 65 cm The shortest distance from $= \frac{2(750)}{65}$	E to AD	1M	
	$= \frac{300}{13}$ $\approx 23.07692308 \text{ cm}$			
	> 23 cm Thus, there is no point F lyin between E and F is less than	g on AD such that the distance 23 cm.	1A (0	f.t.
		50		

Solution	Marks	Remarks
14. (a) The volume of water in the vessel $= \pi (8^2)(64)$ $= 4.096\pi \text{ cm}^3$	1M 1A (2)	
(b) Let h cm be the depth of water in the vessel.		
Then, the radius of the water surface is $\frac{h}{3}$ cm.	1M	
$\frac{1}{3}\pi\left(\frac{h}{3}\right)^2h=4\ 096\pi$	1M+1A	
$h^3 = 110592$ h = 48 Thus, the depth of water in the vessel is 48 cm.	1A	
Let $h \text{ cm}$ be the depth of water in the vessel.		
The capacity of the vessel is $\frac{1}{3}\pi(20)^2(60)$ cm ³ .	1M	
$\left \frac{1}{3}\pi(20)^2(60)\left(\frac{h}{60}\right)^3 = 4096\pi\right $	1M+1A	1M for $\left(\frac{h}{60}\right)^3$
$h^3 = 110592$		
h = 48 Thus, the depth of water in the vessel is 48 cm.	1A	
Thus, and depart of the first the fi	(4)	
(c) The volume not occupied by water in the vessel		
$=\frac{1}{3}\pi(20^2)(60)-4096\pi$	1M	
$= 3.904 \pi \text{ cm}^3$		
The volume of the metal sphere		
$= \frac{4}{3}\pi(14^3)$	1M	
-		
$=\frac{10976}{3}\pi\mathrm{cm}^3$		
$< 3.904 \pi \text{ cm}^3$ Thus, the water will not overflow.	1A (3)	f.t.
	(3)	
51	1	

	Solution	Marks	Remarks
15. (a)	The required number $= P_8^8$ $= 40 320$	1A (1)	
(b)	The required number $= (P_2^4)(P_6^6)$ $= 8 640$	1M 1A (2)	
6. (a)	Let a and r be the 1st term and the common ratio of the sequence respectively. So, we have $ar^2 = 720$ and $ar^3 = 864$. Solving, we have $a = 500$. Thus, the 1st term is 500.	1M 1A (2)	for either one
(b)	Note that $r = 1.2$. $500(1.2^n) + 500(1.2^{2n}) < 5 \times 10^{14}$ $(1.2^n)^2 + (1.2^n) - 10^{12} < 0$ $\frac{-1 - \sqrt{1^2 - 4(1)(-10^{12})}}{2(1)} < 1.2^n < \frac{-1 + \sqrt{1^2 - 4(1)(-10^{12})}}{2(1)}$	1M	
	$\log 1.2^{n} < \log \left(\frac{-1 + \sqrt{4 \times 10^{12} + 1}}{2} \right)$ $n \log 1.2 < \log \left(\frac{-1 + \sqrt{4 \times 10^{12} + 1}}{2} \right)$ $n < 75.77551608$	1M	
	Note that <i>n</i> is an integer. Thus, the greatest value of <i>n</i> is 75.	1A (3	
	52	l	1

Solution	Marks	Remarks
7. (a) By sine formula, we have $\frac{AD}{\sin \angle ABD} = \frac{AB}{\sin \angle ADB}$ $AD \qquad 60$	1M	
$\frac{AD}{\sin 20^{\circ}} = \frac{60}{\sin(180^{\circ} - 120^{\circ} - 20^{\circ})}$ $AD \approx 31.92533317 \text{ cm}$ $AD \approx 31.9 \text{ cm}$	1A	r.t. 31.9 cm
(b) (i) By cosine formula, we have $\cos \angle ABC = \frac{AB^2 + BC^2 - AC^2}{2(AB)(BC)}$	1M	2)
$\cos \angle ABC \approx \frac{60^2 + (31.92533317)^2 - 40^2}{2(60)(31.92533317)}$ $\angle ABC \approx 37.99207534^{\circ}$ $\angle ABC \approx 38.0^{\circ}$	1A	r.t. 38.0°
 (ii) In Figure 3(a), AP produced meets CD at Q, where P is the foot of the perpendicular from A to BD. Note that the required angle is ∠APQ in Figure 3(b). 	1M	for identifying the required angle
AP = $AD \sin \angle ADP$ $\approx 31.92533317 \sin(180^{\circ} - 120^{\circ} - 20^{\circ})$ $\approx 20.5212086 \text{ cm}$	1M	
$DP^2 = AD^2 - AP^2$ $DP^2 \approx (31.92533317)^2 - (20.5212086)^2$ $DP \approx 24.45622407 \text{ cm}$		
PQ = $DP \tan \angle PDQ$ ≈ (24.45622407) tan 20° ≈ 8.901337605 cm		either one
$DQ^2 = DP^2 + PQ^2$ $DQ^2 \approx (24.45622407)^2 + (8.901337605)^2$ $DQ \approx 26.02577006 \text{ cm}$		
Note that $\angle ADC = \angle ABC \approx 37.99207534^{\circ}$. By cosine formula, we have $AQ^{2} = AD^{2} + DQ^{2} - 2(AD)(DQ)\cos \angle ADC$ $AQ^{2} \approx (31.92533317)^{2} + (26.02577006)^{2} - 2(31.92533317)(26.02577006)\cos 37.99207534^{\circ}$ $AQ \approx 19.67076991 \text{ cm}$		
By cosine formula, we have $\cos \angle APQ = \frac{AP^2 + PQ^2 - AQ^2}{2(AP)(PQ)}$		
$\cos \angle APQ \approx \frac{(20.5212086)^2 + (8.901337605)^2 - (19.67076991)^2}{2(20.5212086)(8.901337605)}$ $\angle APQ \approx 71.91411397^{\circ}$ $\angle APQ \approx 71.9^{\circ}$	1 A	r.t. 71.9°
Thus, the required angle is 71.9°.	(5)	/ 4.12
53		

	Solution	Marks	Remarks
(a)	Let $f(x) = ax^2 + bx$, where a and b are non-zero constants.	1A	
	So, we have $4a + 2b = 60$ and $9a + 3b = 99$.	1M	for either substitution
	Solving, we have $a = 3$ and $b = 24$.	1A	for both correct
	Thus, we have $f(x) = 3x^2 + 24x$.	(2)	
		(3)	
(b)	(i) $f(x)$		
0.00 10.0	$=3x^2+24x$		
	$=3(x^2+8x)$		
	$=3(x^2+8x+16-16)$	1M	
	$=3(x+4)^2-48$		
	Thus, the coordinates of Q are $(-4, -48)$.	1A	
	mus, the coordinates of g are (17, 16).		
	(ii) (-4, 75)	1M	
	(iii) The slope of QS		
	$=\frac{-48-0}{-4-56}$		
	-4-56		
	$=\frac{4}{5}$		
	5		
	The slope of RS		
	*		
	$=\frac{75-0}{-4-56}$		
	$=\frac{-5}{4}$		
	= 4		
	Honge the product of the clare of OS and the clare of PS is 1	1114	
	Hence, the product of the slope of QS and the slope of RS is -1 . So, $\angle QSR$ is a right angle.	1M	
	Therefore, QR is a diameter of the circumcircle of ΔQRS .		
	Note that P is the circumcentre of $\triangle QRS$.		
	Thus, P is the mid-point of the line segment joining Q and R .	1A	f.t.
	$QS^2 + RS^2$		
	$= ((-4-56)^2 + (-48-0)^2) + ((-4-56)^2 + (75-0)^2)$		
	9000000 900 3000 4000 400 400000 90 80000 90 80000 90 800000 90 800000 90 800000 90 800000 90 800000 90 800000		
	=15129		
	QR^2		
	$=(-48-75)^2$		
	=15129		
	Hence, we have $QS^2 + RS^2 = QR^2$.	1M	
	So, $\angle QSR$ is a right angle.	*	
	Therefore, QR is a diameter of the circumcircle of ΔQRS .		
	Note that P is the circumcentre of ΔQRS .		
	Thus, P is the mid-point of the line segment joining Q and R .	1A	f.t.
		(5	
		İ	
	54		

Solution	Marks	Remarks
9. (a) The equation of C is $(x-8)^2 + (y-2)^2 = r^2$.	1A	$x^2 + y^2 - 16x - 4y + 68 - r^2 = 0$
Putting $y = \frac{kx - 21}{5}$ in $(x - 8)^2 + (y - 2)^2 = r^2$, we have		
$(x-8)^2 + \left(\frac{kx-21}{5} - 2\right)^2 = r^2$	1M	
$(k^2 + 25)x^2 + (-62k - 400)x + 2561 - 25r^2 = 0$ Note that L is a tangent to C.		
So, we have $(-62k - 400)^2 - 4(k^2 + 25)(2561 - 25r^2) = 0$.	1M	
Thus, we have $r^2 = \frac{64k^2 - 496k + 961}{k^2 + 25}$.	1A (4	$r^2 = \frac{(8k-31)^2}{k^2+25}$
(b) (i) Since L passes through D, we have $18k - 5(39) - 21 = 0$. Solving, we have $k = 12$.	1M	
By (a), we have $r^2 = \frac{64(12)^2 - 496(12) + 961}{12^2 + 25}$.	1M	for using the result of (a)
Thus, we have $r = 5$.	1A	
(ii) Let G be the centre of C .		
Note that the coordinates of E are $\left(0, \frac{-21}{5}\right)$.	1M	
Also note that G is the in-centre of $\triangle DEF$.		4
$DG^{2} = (18 - 8)^{2} + (39 - 2)^{2}$ $DG = \sqrt{1469}$	1M	
$\sin \angle EDG = \frac{r}{DG}$	1M	,
		either one
$\sin \angle EDG = \frac{3}{\sqrt{1469}}$		enner one
∠EDG ≈ 7.49585764°		
$EG^2 = (8-0)^2 + \left(2 + \frac{21}{5}\right)^2$		either or
$EG = \frac{\sqrt{2561}}{5}$		
$\sin \angle DEG = \frac{r}{EG}$		
$\sin \angle DEG = \frac{25}{\sqrt{2561}}$		
∠DEG ≈ 29.60445074°	1 114	6 - 14
Note that $\angle EDG = \angle FDG$ and $\angle DEG = \angle FEG$. $\angle DFE$	1M	for either one
= $180^{\circ} - (\angle EDG + \angle FDG) - (\angle DEG + \angle FEG)$ $\approx 180^{\circ} - 2(7.49585764^{\circ}) - 2(29.60445074^{\circ})$		
≈105.7993832°		
> 90° Thus, ΔDEF is an obtuse-angled triangle.	lA	f.t.
inal, 222. Is an obtain angled analysis.	(8)	
55		

Paper 2

Question No.	Key	Question No.	Key
1.	B (71)	26.	C (40)
2.	D (80)	27.	C (43)
3.	C (80)	28.	A (50)
4.	A (74)	29.	C (78)
5.	A (61)	30.	A (43)
6.	D (22)	31.	C (66)
7.	D (73)	32.	C (34)
8.	C (51)	33.	D (30)
9.	D (72)	34.	C (35)
10.	B (72)	35.	B (40)
11.	D (67)	36.	A (49)
12.	A (62)	37.	D (44)
13.	C (69)	38.	B (41)
14.	B (42)	39.	B (28)
15.	D (83)	40.	A (20)
16.	A (39)	41.	D (35)
17.	B (28)	42.	A (51)
18.	B (78)	43.	C (26)
19.	D (24)	44.	B (78)
20.	B (48)	45.	A (51)
21.	C (45)		
22.	B (45)		
23.	B (75)		
24.	A (56)		
25.	D (41)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.