Crittosistemi asimmetrici

Sommario

- Scambio di chiave:
 - Diffie-Hellman (logaritmo discreto)
- Cifratura asimmetrica:
 - RSA (fattorizzazione di interi)
 - ElGamal (logaritmo discreto)
- Firma digitale:
 - RSA (fattorizzazione di interi)
 - ElGamal (logaritmo discreto)
 - DSA (logaritmo discreto)

Diffie-Hellman

 Nel loro celebre lavoro del 1976 [1], Whitfield Diffie e Martin Hellman introdussero il paradigma della crittografia asimmetrica come soluzione per scambio di chiavi, cifratura e autenticazione (firma digitale).

[1] W. Diffie and M. Hellman, "New directions in cryptography," in *IEEE Transactions on Information Theory*, vol. 22, no. 6, pp. 644-654, November 1976.

RSA

- In termini pratici, Diffie e Hellman introdussero una procedura per lo scambio di chiavi basata sul logaritmo discreto.
- Nel 1977 Ronald Rivest, Adi Shamir e Leonard Adleman proposero un metodo per la cifratura asimmetrica basato sulla fattorizzazione di numeri interi.

Prima di loro...

- GCHQ
- James Henry Ellis nel 1970 concepì l'idea di una "cifratura non segreta", ovvero della crittografia a chiave pubblica
- Clifford Cocks nel 1973 ideò lo schema che noi oggi conosciamo come RSA

- Malcolm John Williamson nel 1974 ideò lo schema che noi oggi conosciamo come "scambio di chiavi Diffie-Hellman"
- Tutte queste informazioni furono considerate classificate, pertanto rimasero segrete
- Solo nel 1997 il governo Britannico le ha declassificate, rendendo pubblico il contributo di Ellis, Cocks e Williamson

Diffie-Hellman: procedura

- 1. Alice sceglie un numero primo p per cui sia difficile calcolare il logaritmo discreto (mod p) e una radice primitiva α (mod p).
- 2. Alice pubblica $p \text{ ed } \alpha$.
- 3. Alice sceglie a caso un esponente x segreto, con $1 \le x \le p-2$, ed invia α^x (mod p) a Bob
- 4. Bob sceglie a caso un esponente y segreto, con $1 \le y \le p 2$, ed invia α^y (mod p) ad Alice.
- 5. Alice calcola $(\alpha^y)^x = \alpha^{xy}$
- 6. Bob calcola $(\alpha^x)^y = \alpha^{xy}$

Diffie-Hellman: sicurezza

- Eve conosce α^x e α^y
- Se Eve è in grado di calcolare logaritmi discreti può violare il sistema, in quanto può calcolare x oppure y e ricavare α^{xy} .
- Ma Eve potrebbe non avere necessariamente bisogno di calcolare x o y per recuperare il segreto.

Problema computazionale di Diffie-Hellman: Sia p un primo e sia α una radice primitiva (mod p). Dati α^x (mod p) e α^y (mod p), trovare α^{xy} (mod p).

- Non è noto se questo problema sia più facile del calcolo del logaritmo discreto.
- Certamente non è più difficile.

Attacco man-in-the-middle (MITM)

Diffie-Hellman: attacco MITM

RSA

RSA: generazione delle chiavi

- RSA si basa sulla difficoltà di fattorizzare gli interi in fattori primi.
- Bob sceglie due primi p e q grandi e distinti e li moltiplica per formare il numero semiprimo n = pq (detto modulo)
- Bob sceglie un intero e (detto **esponente di cifratura**) tale che MCD(e, (p-1)(q-1)) = 1
- Conoscendo p e q, Bob può calcolare $\varphi(n) = (p-1)(q-1)$ e può quindi calcolare d (detto **esponente di decifratura**) tale per cui $de \equiv 1 \pmod{(p-1)(q-1)}$
- La coppia di chiavi di Bob è
 - chiave pubblica: {n, e}
 - chiave privata: $\{p, q, d\}$

RSA: cifratura e decifratura

- Alice scrive il messaggio come un numero m.
- Se *m* è più grande di *n*, Alice spezza il messaggio in blocchi, ognuno rappresentato da un numero < *n*.
- Per il momento supponiamo che m < n.
- Alice cifra m calcolando: $c \equiv m^e \pmod{n}$ e invia c a Bob.
- Bob decifra c calcolando $m \equiv c^d \pmod{n}$.

RSA: razionale

- Per il Teorema di Eulero, se MCD(a, n) = 1, allora $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- Nel caso in esame, $\varphi(n) = \varphi(pq) = (p-1)(q-1)$.
- Dal momento che p e q sono grandi, probabilmente m non contiene nessuno di essi come fattori, e MCD (m, n) = 1.
- Poiché $de \equiv 1 \pmod{\varphi(n)} \rightarrow de = 1 + k\varphi(n)$, con k intero.
- Ne segue che: $c^d \equiv (m^e)^d \equiv m^{1+k\varphi(n)} \equiv m \cdot \left(m^{\varphi(n)}\right)^k \equiv m \cdot (1)^k \equiv m \pmod{n}$
- È molto probabile che Bob possa recuperare il messaggio anche se $MCD(m, n) \neq 1$.

RSA: esempio

$$p = 885320963, q = 238855417$$
 $\rightarrow n = pq = 211463707796206571$
 $e = 9007$

Alice deve inviare cat .

Convenzione: $a = 01$
 $b = 02$
...
 $z = 26$
 $\rightarrow cat = 030120 = 30120$

 $c \equiv m^e \equiv 30120^{9007} \equiv 113535859035722866 \pmod{n}$

RSA: esempio (cont.)

Mediante l'algoritmo Euclideo esteso, Bob calcola:

d = 116402471153538991

Infine:

 $c^d \equiv 113535859035722866^{116402471153538991} \equiv 30120 \pmod{n}$

coincidente con il messaggio originale.

RSA: sicurezza

- Eve conosce *n* ed *e* e può intercettare *c*.
- Eve non conosce *p*, *q* e *d*.
- *d* va mantenuto segreto perché la fattorizzazione di *n* è possibile se si conosce *d*.
- Eve conosce $c = m^e$; non può fare la radice e-sima?
 - se non si lavora in aritmetica modulare questo è banale, ma...
 - nel contesto in esame, questo è oltremodo complesso (se n è grande).

RSA: sicurezza

- Bob sceglie *p* e *q* a caso, e indipendentemente l'uno dall'altro.
- I valori di *p* e *q* sono molto grandi: almeno 100 cifre.
- È preferibile sceglierli con lunghezze lievemente diverse tra loro.
- Alcuni valori di *p* e *q* devono essere evitati perché facilitano la fattorizzazione.

RSA: sicurezza

- Trovare $\varphi(n)$ o l'esponente di decifratura è difficile quanto fattorizzare n.
- Se fattorizzare è difficile allora non dovrebbero esistere metodi veloci ed ingegnosi per trovare d.
- Sia n = pq il prodotto di due primi distinti. Se $n \in \varphi(n)$ sono noti, allora $p \in q$ possono essere calcolati rapidamente. Infatti:

$$p, q = \frac{n - \varphi(n) + 1 \pm \sqrt{(n - \varphi(n) + 1)^2 - 4n}}{2}$$

come radici del polinomio:

$$X^{2} - (n - \varphi(n) + 1)X + n = X^{2} - (pq - (p - 1)(q - 1) + 1)X + pq$$

= $X^{2} - (p + q)X + pq = (X - p)(X - q)$

• Se *d* ed *e* sono noti, allora *n* può essere probabilmente fattorizzato (metodo dell'esponente universale).

RSA: velocità

- Cifratura e decifratura richiedono il calcolo di potenze in aritmetica modulare, come m^e (mod n).
- Questo calcolo può essere svolto rapidamente e senza troppa memoria, ad esempio mediante quadrature successive.
- Se invece si tentasse di calcolare prima m^e e poi ridurlo (mod n) probabilmente si incapperebbe in un overflow di memoria.
- Le operazioni richieste da RSA richiedono un tempo pari a una potenza di log(n).
- Sono tempi accettabili se la mole di dati da cifrare (o firmare) è contenuta.

Attacchi a RSA

Teorema:

Sia t il numero delle cifre di n = pq. Se si conoscono le prime t/4, o le ultime t/4, cifre di p, allora si può fattorizzare n in modo efficiente.

Teorema:

Sia (n, e) una chiave pubblica RSA, sia t il numero delle cifre di n e sia d l'esponente di decifratura. Se si hanno almeno le ultime t/4 cifre di d, allora si può trovare d in modo efficiente in un tempo che è lineare in $e \cdot \log_2 e$.

 Se e è piccolo, allora è piuttosto veloce trovare d quando si conosce una parte consistente di esso. Se e è grande (Es.: circa n) il teorema non dà un risultato più favorevole di una ricerca di d caso per caso.

Scelta degli esponenti e e d

- Esponenti di cifratura e decifratura bassi sono attraenti perché accelerano i tempi di elaborazione.
- Ci sono però alcuni pericoli, che devono essere evitati.
- Queste "trappole" possono essere evitate usando esponenti grandi.
- Scelta abbastanza comune: $e = 2^{16} + 1 = 65537$.
- Questo numero è primo e quindi la condizione MCD(e, (p-1)(q-1)) = 1 è molto probabilmente verificata.
- Poiché è più grande di 1 di una potenza di 2, l'elevamento a potenza per questo numero può essere eseguito rapidamente:

$$m^{65537} = \left\{ \left\{ \left[(m^2)^2 \right]^2 \right\}^{\cdot \cdot} \right\}^2 \cdot m$$

dove l'elevamento al quadrato è fatto 16 volte.

Attacchi con esponenti bassi

- L'esponente di decifratura *d* dovrebbe essere sufficientemente grande in modo che sia impossibile trovarlo con la sola forza bruta.
- Considerare gli attacchi a forza bruta non è sufficiente.

Teorema.

Siano p e q due primi con q . Sia <math>n = pq, e siano $1 \le d$, $e \le \varphi(n)$ tali che $de \equiv 1 \pmod{(p-1)(q-1)}$. Se $d < 1/3n^{1/4}$, allora d può essere calcolato rapidamente (in un tempo polinomiale in $\log(n)$).

- Rilassando le ipotesi del teorema (cioè imponendo condizioni meno stringenti), Eva può usare il metodo per calcolare d in molti casi.
- Per questo motivo, si consiglia di scegliere d sempre molto grande.

Testo in chiaro corto

- Un uso comune di RSA è per trasmettere chiavi da usare con cifrari simmetrici come DES o AES.
- Essendo la chiave DES lunga 56 bit ed essendo $2^{56} 1 \approx 7.2 \cdot 10^{16}$, si può pensare di scrivere la chiave come un numero $m < 10^{17}$.
- *m* viene cifrato con RSA ottenendo $c \equiv m^e \pmod{n}$.
- Anche se *m* è "piccolo", *c* è probabilmente un numero della stessa grandezza di *n* (per esempio di circa 200 cifre).
- Tuttavia, la dimensione ridotta di *m* rende efficiente un attacco specifico da parte di Eva.

Testo in chiaro corto (2)

- Eva genera due liste:
 - 1. cx^{-e} (mod n) per ogni x con $1 \le x \le 10^9$.
 - 2. $y^e \pmod{n}$ per ogni $y \pmod{1} \le y \le 10^9$.
- Poi cerca una corrispondenza tra un elemento della prima lista e un elemento della seconda lista.
- Se ne trova una, allora $cx^{-e} \equiv y^e \pmod{n}$ per qualche $x \in y$.
- Pertanto: $c \equiv (xy)^e \pmod{n}$.
- E quindi: m = xy.
- Se m è il prodotto di due interi < 10⁹ l'attacco ha successo.

Testo in chiaro corto (3)

- Questo attacco è molto più efficiente della prova di tutte le 10^{17} possibilità per m.
- L'attacco è molto simile al meet-in-the-middle che si usa per attaccare l'algoritmo DES.
- Si previene aggiungendo a caso qualche cifra all'inizio o alla fine di m in modo da formare un testo in chiaro molto più lungo.
- Quando Bob decifra, rimuove queste cifre casuali e riottiene *m*.

Optimal Asymmetric Encryption Padding (OAEP)

• $n \in I$ modulo RSA di k bit (quindi $< 2^k$)

Mihir Bellare

Philip Rogaway

- Si fissano due interi positivi k_0 e k_1 con k_0 + k_1 < k.
- m può essere formato da $k k_0 k_1$ bit.
- Valori tipici: k = 1024, $k_0 = k_1 = 128$, $k k_0 k_1 = 768$.
- Sia G una funzione che prende in input stringhe di k_0 bit e restituisce in output stringhe di $k-k_0$ bit.
- Sia H una funzione che prende in input stringhe di $k-k_0$ bit e restituisce in output stringhe di k_0 bit.

OAEP (2)

- G e H sono costruite mediante funzioni hash.
- Quando Alice deve cifrare m:
 - 1. Lo allunga a $k-k_0$ bit aggiungendo k_1 bit uguali a zero: $m0^{k_1}$
 - 2. Sceglie a caso una stringa r di k_0 bit e calcola:

$$x_1 = m0^{k_1} \oplus G(r), \qquad x_2 = r \oplus H(x_1)$$

- 3. Se $x_1 \mid x_2 < n$, Alice forma il testo cifrato: $E(m) = (x_1 \mid x_2)^e \pmod{n}$
- 4. Altrimenti Alice fa un nuovo tentativo cambiando *r*.

OAEP (3)

- In decifratura: $c^d \pmod{n} = y_1 || y_2 = x_1 || x_2$, con y_1 formato da $k k_0$ bit e y_2 formato da k_0 bit.
- Bob calcola:

$$y_1 \oplus G(H(y_1) \oplus y_2) = y_1 \oplus G(H(x_1) \oplus r \oplus H(x_1))$$
$$= y_1 \oplus G(r) = x_1 \oplus G(r) = m0^{k_1}$$

• Bob rimuove i k_1 bit nulli finali e ottiene m.

OAEP

Vantaggi OAEP (cifratura plaintext-aware)

- 1. Controllo sull'integrità (se non ci sono gli zeri finali il testo cifrato non corrisponde a una cifratura valida)
- 2. Il riempimento con x_2 dipende dal messaggio m e dal parametro casuale r
 - → più difficili gli attacchi di testo cifrato scelto.

Attacchi basati sul tempo di esecuzione

- Attacco proposto da Paul Kocher nel 1995.
- Si supponga che Eva sia in grado di osservare (a distanza) Bob mentre decifra diversi testi cifrati y.

- Eva misura il tempo utilizzato per ogni y.
- La misurazione del tempo di decifratura è possibile, ad esempio, quando il terminale che decifra manda un ACK al mittente. È sufficiente la misura dei tempi di risposta.
- La conoscenza di ogni y e del tempo necessario per la decifratura permette ad Eva di trovare d.
- Bisogna conoscere l'hardware usato per calcolare y^d .

Esempio

• Possibile algoritmo per il calcolo di y^d (mod n).

Let $d = b_1b_2$.. b_w be written in binary (for example, when x = 1011, we have $b_1 = 1, b_2 = 0, b_3 = 1, b_4 = 1$) Let y and n be integers. Perform the following procedure:

- 1. Start with k = 1 and $s_1 = 1$.
- 2 If $b_k = 1$, let $r_k \equiv s_k y \pmod{n}$. If $b_k = 0$, let $r_k = s_k$.
- 3. Let $s_{k+1} \equiv r_k^2 \pmod{n}$.
- 4. If k = w, stop. If k < w, add 1 to k and go to (2)

Then $r_w \equiv y^d \pmod{n}$.

- Si vede che la moltiplicazione $s_k y$ viene effettuata solo quando $b_k = 1$.
- Conoscendo l'hardware, si può allora avere immediatamente un'idea del numero di bit 1 presenti in d, ma questo non è sufficiente per conoscere d.

Esempio (2)

- Il tempo richiesto da una moltiplicazione (come pure da altre operazioni coinvolte nel calcolo) può presentare una variabilità molto grande.
- Necessità di un'analisi statistica.
- Eva osserva n testi cifrati y_1 , ..., y_n e determina i tempi t_i necessari per calcolare ogni y_i^d (mod n).
- Eva stima:
 - valore medio: $\mu = \frac{t_1 + \dots + t_n}{n}$
 - varianza: $Var(\{t_i\}) = \frac{(t_1 \mu)^2 + \dots + (t_n \mu)^2}{n}$

Esempio (3)

- Supponiamo che per ogni y_i Eva sappia stimare il tempo t_i ' necessario per effettuare la moltiplicazione $s_k y_i$, pur non sapendo se essa viene eseguita o meno.
- Di conseguenza, Eva può anche stimare il tempo $t_i^{"}=t_i-t_i^{"}$ necessario per tutte le altre operazioni.
- Eva stima:
 - valore medio: $\mu'' = \frac{t_1'' + \dots + t_n''}{n}$
 - varianza: $Var(\{t_i''\}) = \frac{(t_1'' \mu'')^2 + \dots + (t_n'' \mu'')^2}{n}$

Esempio (4)

• Se la moltiplicazione viene eseguita, è ragionevole supporre che t'_i e t''_i siano tra loro **statisticamente indipendenti**. Essendo $t_i = t'_i + t''_i$, si ha allora:

$$Var(\{t_i'\}) \approx Var(\{t_i''\}) + Var(\{t_i''\}) > Var(\{t_i''\})$$

• Se la moltiplicazione non viene eseguita, t_i' è il tempo necessario per un'operazione che non ha legami con il calcolo, e quindi è ragionevole supporre che t_i e t_i' siano tra loro statisticamente indipendenti. Essendo $t_i'' = t_i - t_i'$, si ha allora:

$$Var(\{t_i''\}) \approx Var(\{t_i\}) + Var(\{-t_i'\}) > Var(\{t_i\})$$

poiché la varianza è sempre positiva.

Esempio (5)

• In sintesi:

$$Var(\lbrace t_i \rbrace) > Var(\lbrace t_i^{\prime\prime} \rbrace) \rightarrow b_k = 1$$
$$Var(\lbrace t_i \rbrace) < Var(\lbrace t_i^{\prime\prime} \rbrace) \rightarrow b_k = 0$$

- Eva dunque deve calcolare $Var(\{t_i\})$ e $Var(\{t_i''\})$ e procedere al confronto.
- La procedura è ricorsiva: Eva cerca di ricostruire i bit b_k uno alla volta.
- L'attacco presuppone che la decifratura non abbia una durata fissa.

Side channel attacks

- Attacchi come i precedenti, basati su «informazioni laterali» (tempo di esecuzione, consumo di potenza, emissioni elettromagnetiche...), si definiscono side channel attacks.
- Essi presuppongono la conoscenza del software e/o hardware su cui si esegue la decifratura.
- Sono fattibili quando software e/o hardware variano il loro funzionamento in funzione della chiave segreta.
- Devono essere prevenuti con opportune scelte implementative (implementazioni a tempo/potenza costante, indipendenti dalla chiave segreta).

Attacchi basati su fattorizzazione

- RSA si può attaccare fattorizzando n, almeno in principio
- Fattorizzare un numero e testarne la primalità non sono la stessa cosa

• È molto più facile testare se un numero è composto che non fattorizzarlo

• Esistono molti grandi interi che non sono mai stati fattorizzati, anche se si sa che sono composti

Accorgimenti

- Bisogna garantire che p-1 abbia almeno un fattore molto grande.
- Supponiamo di volere che p abbia circa 100 cifre.
- Si sceglie un primo $p_0 \approx 10^{40}$ (grande).
- Si cercano gli interi della forma: $kp_0 + 1$, con k che varia tra alcuni interi attorno a 10^{60} .
- Si controlla la primalità.
- In media si ottiene un valore di p in meno di 100 passi.
- Si ripete la procedura per q.
- In questo modo n = pq sarà difficile da fattorizzare usando metodi noti.

Test di primalità

- Si supponga di avere un intero *n* di 200 cifre e di dover stabilire se è o meno un numero primo.
 - Metodo a forza bruta: si divide n per tutti i numeri primi che gli sono minori.
 - Metodo a forza bruta migliorato: si considerano solo i numeri primi minori o uguali alla radice quadrata di n.
- Ci sono circa 4·10⁹⁷ numeri primi minori di 10¹⁰⁰ e testarli tutti in un tempo accettabile è infattibile.
- **Esempio**. Capacità di elaborazione di 10⁹ numeri primi al secondo: tempo stimato: 10⁸¹ anni!

Test di primalità di Fermat

- Sia n > 1 un intero. Sia a un intero casuale tale che 1 < a < n 1. Se $a^{n-1} \neq 1 \pmod{n}$, allora $n \in \text{composto}$. Se invece $a^{n-1} \equiv 1 \pmod{n}$, allora $n \in \text{probabilmente primo}$.
- **Esempio**: n = 35, a = 2, $2^{34} \equiv 9 \pmod{35} \rightarrow 35$ è composto.
- Il test di Fermat è molto accurato per *n* grande.
- Può essere eseguito rapidamente poiché l'elevamento a potenza modulare è veloce.
- Se gli elevamenti a potenza sono eseguiti opportunamente, il test di Fermat può essere combinato con il Principio Fondamentale per ottenere un risultato più forte.

Altri test di primalità

- I test di Miller-Rabin e di Solovay-Strassen possono essere eseguiti rapidamente.
- Questi test non danno una dimostrazione rigorosa del fatto che un numero sia primo.
- Questi metodi sono quasi tutti probabilistici: non garantiscono il successo, anche se la probabilità di successo è normalmente molto alta.
- Esistono test che danno una dimostrazione rigorosa della primalità ma sono in generale molto più lenti.
- Un algoritmo deterministico con tempo polinomiale è stato introdotto da Agrawal, Kayal e Saxena nel 2002, ma non è stato ancora migliorato al punto da poter competere con gli algoritmi probabilistici.

Record di fattorizzazione

 Nell'ultima metà del ventesimo secolo si sono fatti enormi progressi nella fattorizzazione, in parte per lo sviluppo dei computer e in parte per il miglioramento degli algoritmi.

Anno	Numero di cifre
1964	20
1974	45
1984	71
1994	129
1999	155
2003	174
2005	200
2009	232

RSA challenge

- Nel 1991, la RSA Laboratories (http://www.rsa.com/rsalabs/)
 pubblicò 54 semiprimi con numero di cifre decimali compreso tra
 100 e 617.
- La sfida, che consisteva nel trovare la fattorizzazione di tali numeri, è stata dichiarata conclusa nel 2007.
- Ad alcuni di questi semiprimi fu associato un premio in denaro da destinare a chi ne avesse trovato per primo la fattorizzazione.
- La cifra nel nome dei primi numeri RSA generati, da RSA-100 a RSA-500, indica il numero delle cifre decimali; successivamente, a partire da RSA-576, quello indicato è il numero di cifre binarie.
- Il numero RSA-617 rappresenta un'eccezione, in quanto creato prima del cambiamento nel sistema di numerazione.

RSA challenge (2)

- Il primo dei numeri RSA fu fattorizzato in pochi giorni, ma per la maggior parte degli altri numeri il problema è ancora aperto e per molti di loro ci si aspetta che rimanga aperto ancora a lungo.
- Fino a giugno 2010, sono stati fattorizzati 15 dei 54 numeri RSA, ossia tutti i 12 più piccoli (da RSA-100 a RSA-180), oltre che RSA-640, RSA-768 (232 cifre decimali, nel 2009) e RSA-200.
- RSA-768 ha richiesto la raccolta di oltre 64 miliardi di relazioni e la soluzione di una matrice 192.796.550×192.795.550.

RSA 129

- Non faceva propriamente parte della sfida RSA.
- È stato fattorizzato nell'aprile 1994 da un team diretto da D. Atkins, M. Gradd, A. K. Lenstra e P. Lyland, usando approssimativamente 1600 computer con la collaborazione di circa 600 volontari connessi tramite Internet.
- Un premio di \$100 è stato assegnato dalla RSA Security per la sua fattorizzazione, il quale è stato donato alla Free Software Foundation.
- La fattorizzazione è stata calcolata usando l'algoritmo del crivello quadratico.

RSA 129 (2)

- La fattorizzazione di RSA-129 è la seguente:
- RSA-129 =

1143816257578888676692357799761466120102182967212423625625618429357069 35245733897830597123563958705058989075147599290026879543541

- **=** 3490529510847650949147849619903898133417764638493387843990820577
- × 32769132993266709549961988190834461413177642967992942539798288533

 La sfida per la fattorizzazione includeva un messaggio da decriptare con RSA-129. Una volta decriptato usando la fattorizzazione il messaggio trovato fu "the magic words are squeamish ossifrage" (le parole magiche sono gipeto ipersensibile).

Crittosistema di ElGamal

- Sistema proposto nel 1985 da Taher ElGamal
- La sua sicurezza si basa sulla difficoltà di calcolare logaritmi discreti.
- Insieme dei possibili testi in chiaro = interi (mod p).
- Insieme dei possibili testi cifrati = coppie di interi (r, t) (mod p).
- Ne segue che il testo in chiaro risulta espanso nel testo cifrato.
- In RSA invece i due insiemi coincidono (interi mod n).

ElGamal – generazione delle chiavi

- Bob sceglie un primo p grande e una radice primitiva α (mod p).
- Bob sceglie un intero a e calcola $\beta \equiv \alpha^a$ (mod p).
- Chiave **pubblica** di Bob: (p, α, β)
- Chiave privata di Bob: a

ElGamal - cifratura

- Alice vuole inviare un messaggio m a Bob.
- Si assume 0 ≤ m < p, altrimenti si spezza il messaggio in blocchi tali che ciascun blocco corrisponda ad un numero
- Alice ottiene la chiave pubblica di Bob (p, α , β).
- Alice Sceglie a caso un intero k segreto e calcola:
 - $-r \equiv \alpha^k \pmod{p}$
 - $-t \equiv \beta^k m \pmod{p}$
- Il testo cifrato è la coppia (*r*, *t*).

ElGamal – decifratura

Bob decifra calcolando:

$$tr^{-a} \equiv \beta^k m (\alpha^k)^{-a} \equiv$$

$$\equiv (\alpha^a)^k m \alpha^{-ak} \equiv$$

$$\equiv \alpha^{ak} m \alpha^{-ak} \equiv$$

$$\equiv m \pmod{p}$$

ElGamal – basi della sicurezza

- Se Eva determina *q* viola il sistema.
- Se Eva determina k viola il sistema ($m = \beta^{-k}t$).
- m = 0 deve essere evitato perché risulta in t = 0.
- Per ogni messaggio, è importante usare un k diverso.
- Supponiamo che Alice codifichi due messaggi m_1 e m_2 usando lo stesso k:
 - $m_1 \rightarrow (r, t_1)$
- $m_2 \rightarrow (r, t_2)$
- Se Eva trova m_1 può determinare m_2 :

$$t_1/m_1 \equiv \beta^k \equiv t_2/m_2 \pmod{p} \rightarrow m_2 \equiv t_2 m_1/t_1 \pmod{p}$$
.

RSA – problema di decisione

 Eva afferma di possedere il testo in chiaro m corrispondente ad un testo cifrato c con RSA.

Si può verificare la sua affermazione?

• Sì, è facile, dal momento che *n* ed *e* sono pubblici

 Basta calcolare m^e (mod n) e controllare se coincide con c o meno

ElGamal – problema di decisione

- Eva afferma di possedere il testo in chiaro *m* corrispondente ad un testo cifrato (*r*, *t*) con ElGamal.
- Si può verificare la sua affermazione?
- Il problema ha difficile soluzione in quanto non si conosce il valore di *k* usato per la cifratura.
- Questa verifica è difficile quanto il

Problema di decisione di Diffie-Hellman. Sia p un primo e sia α una radice primitiva (mod p). Dati α^x (mod p), α^y (mod p) e $c \neq 0$ (mod p), decidere se $c \equiv \alpha^{xy}$ (mod p).

ElGamal – differenze con RSA

- Il problema decisionale di RSA è di facile soluzione, mentre quello di ElGamal no.
- Questo perché la cifratura con RSA è deterministica, mentre quella con ElGamal è statistica per via di k.
- Il carattere casuale si recupera in RSA con OAEP o protocolli simili.
- Inoltre, in RSA l'insieme dei testi in chiaro e quello dei testi cifrati coincidono, proprietà che facilita l'ottenimento di uno schema di firma a partire dallo schema di cifratura asimmetrica.