CS/ECE/ISyE 524 Final Exam Preparation

Details!

Final Exam

- 07:45AM-09:45AM, May 10, 2024.
- Van Vleck B102
- McBurney Students: 7:45AM-10:45AM, 3126 Mechanical Engineering Building
- Closed Book, Closed Notes, Closed Everything!
- Calculators are allowed, but not your phones.
- I will provide the Slide of Trix (and other notes)—final standard "cheat sheet" posted by next Tuesday

Other Announcements

• Prof. L Office Hours: May 7, 9AM-10AM

Today's Docket

- Final Details
- Review Course Topics
- Questions
- Practice Problems?

Final Exam

- Coverage: Everything in Lecture Notes (Lecture 1-Lecture 18)
- Probably Six Problems
 - True/False
 - Short Answer
 - Ouality
 - Modeling
 - Modeling
 - Modeling

Final Exam

- No Note Sheet Allowed
- No calculators or other electronic devices
- Bring your ID to the exam and place it out. We will be checking IDs during the exam.
 - Also remember to take it with you
- Spread out in the room! (We may ask you to move)

Final Exam

- No Note Sheet Allowed
- No calculators or other electronic devices
- Bring your ID to the exam and place it out. We will be checking IDs during the exam.
 - Also remember to take it with you
- Spread out in the room! (We may ask you to move)

When Exam is Over...

- I will ask everyone to put their pencils down
- You are not to pick up your pencil again, even to write your name.
- If you pick up your pencil again, I will take off 10% of grade.

Math Modeling—Being More Strict

- You must write proper mathematical notation and syntax to get credit. We will give less partial credit.
 - Writing JuMP code @constraint(m, sum(x) == 1) is not mathematical syntax
- You have to write specifically the set of entities over which you are doing a sum.
 - $\sum_i x_i$ is incorrect. i is an index, not a set
 - $\sum x_i \forall i \in S$ is incorrect
 - $\sum_{i=1}^{4} x_i$ or $\sum_{i \in S} x_i$ is proper notation
- $x_k \ge 42 \forall k$ is also incorrect notation. k is an index. For all k in what set?

- Geometeric properties of LP Feasible Region
- Graphing and Solving Linear Programs

- Linear Algebra, Matrices, and Definitions
 - Linear Combinations, Convex combinations, Polyhedra
- Converting LP to Standard Form

- Input-Output Linear Programs
- General Modeling:
 - Sets, Parameters, Vars
 - \bullet When to use Σ , when to use \forall
- Infeasible, Unbounded, Optimal Solution

- Blending Constraints
- Multiperiod Planning
 - Backlogging

- Modeling epigraph of convex piecewise linear-functions
 - | |
 - Mini-max (Maxi-Min)
- CPM/Project Scheduling

- (More) Multiperiod
- Networks
- Min-Cost Network Flow
 - Transportation Problem, Assignment Problem
 - Shortest Path, Longest Path (DAG)
 - Max FLow
- Integer Properties of Solutions

- Duality
 - Taking dual
 - Weak duality
 - Strong Duality
 - Complementary Slackness
- Economic Interpretation: Shadow Prices

- Duality / Complementary Slackness
- Network Duality (and Interpretation)
- Max-Flow Min Cut.

- Quadratic Functions/Quadratic Forms
- Spectral Theorem
- PSD Matrices
- Definition of Convex and Concave Functions
- Examples of convex and concave functions

- Least Squares is a (Convex) Optimization Problem
- Geometry of Least Sqaures
- Regression and Curve fitting
- Multiobjectve and Tradeoffs
- Pareto Cuirves
- Regularization
- Norm balls
- Hierarchical Optimization

- Ellipsoids
- Degenerate ellipsoids
- Shifted Ellipdoids
- Quadraic Programs: Solution properties (Convex/Nonconvex)
- Where do Quadratic occur?
- Portfolio Optimization

- Definition of Cone
- Types of Cones
- Second Order Cone
- Rotated Second Order Cone
- Modeling them wuth Julia/JuMP
- Rational Powers
- Semidefinite Cone

Lectures 14 and 15

- Geometry of Feasible Region
- Relaxations and LP relaxation and Convex hull
- IP Modeling: Fixed Costs. Big M
- IP Modeling Variable Lower Bounds
- IP Modeling: "Simple" Logic

- Logic Constraints and "Slide of Trix"
- Modeling restricted set of values (like SOS1)
- Sudoku

- Set Cover Formulations
 - Enumerate/encode "feasible" patterns
- Cutting stock (and column generation)
- Traveling Salesman Problem
 - Subtour elimination and cutting planes
 - Miller-Tucker Zemlin Constraints

lecture 18

- Quadratic Assignment Problem
- Linearize (0,1) quadratic term:

$$x,y \in \{0,1\}, z = xy \Leftrightarrow z \geq x+y-1, z \leq x, z \leq y$$

- Piecewise Linear Functions
 - SOS2
 - Convex Combination Model
 - Multiple Choice Model

Problem 1

Consider the following LP:

Problem 1, cont'd

- (a) Find a value of a such that there is a single optimal solution.
- (b) Find a value of *a* such that there are an infinite number of optimal solutions.
- (c) Find a value of *a* such that the problem is feasible but there are no optimal solutions.

Problem 2

Consider the following LP:

maximize
$$Z = 2x_1 + 5x_2 + 3x_3$$

s.t. $x_1 - 2x_2 + x_3 \ge 20$
 $2x_1 + 4x_2 + x_3 = 50$
 x_1 , x_2 , $x_3 \ge 0$

- (a) Write the dual LP.
- (b) Find the complementary dual solution to the primal solution $x_1 = 25, x_2 = 0, x_3 = 0$
- (c) Is $x_1 = 25, x_2 = 0, x_3 = 0$ an optimal solution to the problem?

Problem 1

- (a) a = 0
- (b) a = 8
- (c) a = -8

There are many possible answers for each. To see why these answers are valid, plot the lines.

Example

- Use a 0-1 variable δ to indicate whether *or not* the constraint $2x_1 + 3x_2 \le 1$ is satisfied.
 - x_1, x_2 are nonnegative continuous variables that cannot exceed 1.
- $\delta = 1 \Leftrightarrow 2x_1 + 3x_2 < 1$
- M: Upper Bound on $2x_1 + 3x_2 1$. 4 works
- m: Lower Bound on $2x_1 + 3x_2 1$. -1 works.
- ε : 0.1

Example, Cont.

- (\Rightarrow) Recall the trick.
 - $z = 1 \Rightarrow \sum_{j \in N} a_j x_j \le b \Leftrightarrow \sum_{j \in N} a_j x_j \le b + M(1 z)$
- $2x_1 + 3x_2 + 4z < 5$
- (⇐). Recall the trick.

•
$$\sum_{j \in N} a_j x_j \le b \Rightarrow z = 1 \Leftrightarrow \sum_{j \in N} a_j x_j \ge b + mz + \varepsilon (1 - z)$$

 $2x_1 + 3x_2 + 1.1z > 1.1$

$$2x_1 + 3x_2 + 4z \le 5$$
$$2x_1 + 3x_2 + 1.1z > 1.1$$

Slide o' Trix: Drink Production

- Facilities $F = B \cup V \cup G$
 - $B \cap V = B \cap G = V \cap G = \emptyset$
- $B \subset F$: Beer production
- $V \subset F$: Vodka production
- $G \subset F$: Gin production
- Drinks $D = \{ \text{Beer, Vodka, Gin} \}$
- Colleges $C = T \cup I$
- $T \subset C$: Big 10 Colleges
- $I \subset C$: Ivy league college

- a_{cd} : Amount of drink $d \in D$ required by college $c \in C$
- b_f: Maximum amount of production at facility F
- α_f : Per unit production cost at $f \in F$
- β_{fc} : Per unit tranportation cost from $f \in F$ to $c \in C$

A Linear Program

Meet college requirements for each drink at minimum cost

Some Problems of Varying Degrees of Difficulty

- You can open at most 4 Vodka Production Facilities
- \bullet If you open a vodka production facility, you must ship at least Δ units out of the facility
- If you open at least 3 vodka facilities, then you must open at least 6 Gin facilities
- You must open at least 2 beer facilities or 2 vodka facilities or 2 gin facilities
- If you ship more Gin to Big Ten College than to Ivy colleges, then you must ship less Beer to Ivy Colleges than Big 10 Colleges
- If Ivy League colleges drink more vodka and more Gin than Big Ten students, then the Big Ten students GET NO BEER!