

Unidad 1: BITS Y BYTES

BLOQUE I - Los fundamentos de la Informática y de la Seguridad

CONTENIDOS

- 1. Introducción.
- 2. Representación de la información.
- 3. Código binario, hexadecimal y ASCII.
- 4. Imágenes y gráficos.
- 5. ¿Qué es la criptografía?
- 6. Esteganografía.

1. Introducción

• ¿Qué tienen en común?

IC, Beltrán 2022-2023

1. Introducción

Operaciones aritméticas y lógicas Transformaciones y desplazamientos Ordenaciones y búsquedas

IC, Beltrán 2022-2023

1. Introducción

Hardware

Software

Comunicaciones

Datos/información

Cinco aves

IIIII para las culturas más antiguas V para los romanos 5 para nosotros

Pero también 101₂ o 12₃

¿Qué significa esto? En base 2, en base 3, etc.

- Nosotros utilizamos habitualmente el sistema decimal: sistema de numeración posicional en el que las cantidades se representan utilizando como base aritmética las potencias del número diez (unidades, decenas, centenas, millares, etc.).
- En Informática se utiliza el sistema binario: la base aritmética son las potencias del número 2.
 - Todo se representa con 0s y 1s.

Número en binario	Operaciones	Número en decimal
0	0 x 2 ⁰	0
1	1 x 2 ⁰	1
10	$1 \times 2^{1} + 0 \times 2^{0}$	2
11	$1 \times 2^{1} + 1 \times 2^{0}$	3
100	$1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$	4
101	$1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$	5
110	$1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$	6
111	$1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$	7

• Pregunta: ¿Qué número es el 110010100₂?

• Respuesta:

$$1 \times 2^{8} + 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$= 256 + 128 + 16 + 4 = 404$$

Os será muy útil saberos las potencias de 2, las doce primeras: 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2 y 1.

• ¿Cómo se traducen estos 0s y 1s a algo físico dentro de un sistema informático?

No pasa corriente/pasa corriente No se almacena carga/se almacena carga Carga negativa/carga positiva Agujero/elevación en un material

- La unidad mínima de información en un computador es un 0 o un 1: un bit.
- Un grupo de 8 bits es denominado un Byte.

$$= 0$$
, 1 bit (b) $= 1$, 1 bit (b)

10001101, 1 Byte (B)

Cantidad de información	Equivalencia	En Bytes
Byte	8 bits	1 B
Kilobyte	1024 bytes	1024 B
Megabyte	1024 KB	1.048.576 B
Gigabyte	1024 MB	1.073.741.824 B
Terabyte	1024 GB	1.099.511.627.778 B
Petabyte	1024 TB	1.125.899.906.842.624 B
Exabyte	1024 PB	1.152.921.504.606.846.976 B

- Una vez que hemos comprendido cómo se procesa y almacena la información en un sistema informático mediante el sistema de numeración binario, debemos saber que es necesario definir formatos estándar para que todos trabajemos de la misma forma.
- Por ejemplo ¿cómo se representa el signo de un número entero, cómo distingo el +1 del -1? ¿cómo se representa un número con decimales?

- En muchos casos se manejan grupos de 64, 32 ó 16 ceros y unos (un número, una dirección de memoria, una instrucción en ensamblador).
 - Las arquitecturas actuales suelen tener este ancho, ya lo iréis comprendiendo.
- Para ahorrar espacio y simplificar la representación, se suele recurrir el sistema hexadecimal.
 - Es decir, se trabaja con base 16.

• Pregunta: ¿Cómo representamos el número 110010100₂ en hexadecimal?

• Respuesta:

1. Se agrupan los bits de 4 en 4, si hace falta, se rellena con ceros a la izquierda:

0001 1001 0100

2. Se pasa cada uno de estos grupos de 4 bits al sistema decimal:

194

3. Como estamos trabajando en base 16, podemos necesitar letras además de números. Por ejemplo:

1111 0111 1101 0110 En hexadecimal sería: F 7 D 6

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

- En un sistema informático también necesitamos manejar caracteres alfabéticos, no sólo numéricos: textos.
- Uno de los códigos de caracteres más extendidos es el ASCII (American Standard Code for Information Interchange), que asigna (versión extendida) a cada carácter una secuencia única de 8 bits (ceros y unos).
- Cómo esto limitaba mucho los caracteres alfanuméricos que se podían representar, poco a poco se ha ido evolucionando hacia el formato Unicode, que puede utilizar hasta 16 dígitos binarios.

Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación
0010 0000	32	20	espacio ()	0100 0000	64	40	<u>@</u>
0010 0001	33	21	<u>!</u>	0100 0001	65	41	A
0010 0010	34	22	 -	0100 0010	66	42	<u>B</u>
0010 0011	35	23	<u>#</u>	0100 0011	67	43	C
0010 0100	36	24	<u>\$</u>	0100 0100	68	44	D
0010 0101	37	25	<u>%</u>	0100 0101	69	45	<u>E</u>
0010 0110	38	26	<u>&</u>	0100 0110	70	46	<u></u>
0010 0111	39	27	<u> </u>	0100 0111	71	47	<u>G</u>
0010 1000	40	28	<u>(</u>	0100 1000	72	48	H
0010 1001	41	29	<u>)</u>	0100 1001	73	49	Ī
0010 1010	42	2A	*	0100 1010	74	4A	J
0010 1011	43	2B	<u>+</u>	0100 1011	75	4B	K
0010 1100	44	2C	1	0100 1100	76	4C	L
0010 1101	45	2D	<u> </u>	0100 1101	77	4D	M
0010 1110	46	2E	2	0100 1110	78	4E	N
0010 1111	47	2F	<u>/</u>	0100 1111	79	4F	<u>O</u>
0011 0000	48	30	<u>0</u>	0101 0000	80	50	P
0011 0001	49	31	<u>1</u>	0101 0001	81	51	Q
0011 0010	50	32	<u>2</u>	0101 0010	82	52	<u>R</u>
0011 0011	51	33	<u>3</u>	0101 0011	83	53	<u>S</u>
0011 0100	52	34	<u>4</u>	0101 0100	84	54	T
0011 0101	53	35	<u>5</u>	0101 0101	85	55	U
0011 0110	54	36	<u>6</u>	0101 0110	86	56	V
0011 0111	55	37	<u>7</u>	0101 0111	87	57	W
0011 1000	56	38	<u>8</u>	0101 1000	88	58	X
0011 1001	57	39	<u>9</u>	0101 1001	89	59	<u>Y</u>
0011 1010	58	3A	1	0101 1010	90	5A	<u>Z</u>
0011 1011	59	3B	1	0101 1011	91	5B	1
0011 1100	60	3C	<u>≤</u>	0101 1100	92	5C	_
0011 1101	61	3D		0101 1101	93	5D	1
0011 1110	62	3E	<u>></u>	0101 1110	94	5E	^
0011 1111	63	3F	?	0101 1111	95	5F	_

Binario	Dec	Hex	Representación	
0110 0000	96	60	<u>`</u>	
0110 0001	97	61	<u>a</u>	
0110 0010	98	62	<u>b</u>	
0110 0011	99	63	<u>C</u>	
0110 0100	100	64	<u>d</u>	
0110 0101	101	65	<u>e</u>	
0110 0110	102	66	<u>f</u>	
0110 0111	103	67	g	
0110 1000	104	68	<u>h</u>	
0110 1001	105	69	<u>i</u>	
0110 1010	106	6A	j	
0110 1011	107	6B	<u>k</u>	
0110 1100	108	6C	<u> </u>	
0110 1101	109	6D	<u>m</u>	
0110 1110	110	6E	<u>n</u>	
0110 1111	111	6F	<u>O</u>	
0111 0000	112	70	<u>p</u>	
0111 0001	113	71	<u>q</u>	
0111 0010	114	72	<u>r</u>	
0111 0011	115	73	<u>s</u>	
0111 0100	116	74	<u>†</u>	
0111 0101	117	75	U	
0111 0110	118	76	<u>V</u>	
0111 0111	119	77	W	
0111 1000	120	78	<u>X</u>	
0111 1001	121	79	У	
0111 1010	122	7A	<u>Z</u>	
0111 1011	123	7B	{	
0111 1100	124	7C		
0111 1101	125	7D	}	
0111 1110	126	7E	<u>~</u>	

IC, Beltrán 2022-2023

Unicode es compatible con ASCII, simplemente añade nuevos caracteres y símbolos utilizando para ello más bits

https://www.w3.org/International/articles/definitions-characters/index.es

4. Imágenes y gráficos

- Las imágenes y los gráficos también deben representarse con ceros y unos dentro de un computador y también necesitan formatos estándar.
 - o JPG, PNG, GIF, etc.
- Se distinguen dos tipos de imágenes:
 - Mapas de bits (producidas por el propio computador o escaneadas, tomadas con una cámara, etc.). Se caracterizan por presentar variaciones continuas en el color, las formas, las texturas, etc.
 - Objetos gráficos o imágenes vectoriales (producidas por el propio computador). Se caracterizan por estar formadas por formas geométricas puras.

4. Imágenes y gráficos

- Mapas de bits
 - Se representan con una matriz de píxeles, la imagen se divide en filas y columnas.
 - Para cada píxel se almacena, en binario, información sobre el color, su intensidad, transparencia, etc.

https://commons.wikimedia.org/wiki/File:Bitmap_vs_vector.png IC, Beltrán 2022-2023

4. Imágenes y gráficos

- Objetos gráficos o imágenes vectoriales
 - En este caso lo que se representa en binario son tipos de formas geométricas, sus tamaños, sus rotaciones y ángulos, sus posiciones relativas, etc.

https://commons.wikimedia.org/wiki/File:Bitmap_vs_vector.png

- La criptografía es una de las ciencias más antiguas, se utiliza desde antes de Cristo con objetivos militares y estratégicos.
- Es una de las herramientas fundamentales de la ciberseguridad actual.

Asignatura completa: **Criptografía**, este mismo curso pero en el segundo cuatrimestre

Criptografía: Del griego kryptós (oculto) y gráphein (escribir), es el estudio de los principios y mecanismos necesarios para establecer procesos de cifrado, descifrado y generación de claves necesarias para ellos.

Criptoanálisis: Del griego kryptós (oculto) y analýein (desatar), es el estudio de los principios y mecanismos necesarios para descifrar mensajes sin conocer las claves de cifrado

• Se puede considerar la criptografía como una rama de las Matemáticas, y en la actualidad también de la Informática y la Telemática, que hace uso de métodos y técnicas con el objeto principal de cifrar, y por tanto proteger, un mensaje o archivo por medio de un algoritmo, usando una o más claves.

Datos almacenados Datos en tránsito

Datos que se están procesando

Control acceso

No repudio

Disponibilidad

Integridad

Confidencialidad

CRIPTOGRAFÍA

CRIPTOANÁLISIS

Mecanismos clásicos/modernos Cifrado flujo/bloque Clave privada/pública Protocolos, firmas, autenticación, certificados

Internet, redes sociales, métodos de pago, móviles

 Según Shannon (padre de la criptografía moderna), un buen criptosistema es el que cumple estas características:

Los recursos y esfuerzo consumido para cifrar/descifrar deben ajustarse al grado de seguridad necesario

Los mecanismos de cifrado/descifrado y generación de claves deben ser sencillos

La implementación de los algoritmos debe ser sencilla

Un error en el cifrado no debería propagarse y corromper el resto del mensaje

El tamaño del mensaje cifrado no debería superar al del mensaje original

6. Esteganografía

- La esteganografía es la ciencia que permite ocultar una información dentro de otra, que haría la función de tapadera o canal encubierto, con la intención de que no se perciba ni siquiera la existencia de dicha información.
- La "tapadera" suele denominarse estego-medio.
 - Así se habla de estego-imágenes (si se usa una imagen inofensiva para ocultar la información), estego-vídeo, estego-audio, estego-texto, etc.

6. Esteganografía

• La utilidad de un sistema esteganográfico depende de tres factores:

Capacidad (cantidad de información que puede ser ocultada)

Seguridad/invisibilidad (probabilidad de detección)

Robustez (ante alteraciones del estegomedio)

Para practicar un poco

- 1. Prueba a construir un "conversor" rudimentario de decimal a binario, de binario a hexadecimal, de texto a ASCII etc. No hace falta programar, inténtalo con Excel.
- 2. Este tutorial explica muy bien Unicode: https://r12a.github.io/scripts/tutorial/
- 3. El código/cifra de Julio César es uno de los más antiguos de la historia. Intenta comprender cómo funciona, busca un cifrador on-line (por ejemplo, https://cryptii.com/pipes/caesar-cipher) y juega un poco con él.
- 4. En este enlace tienes un listado actualizado de herramientas útiles en esteganografía, prueba alguna de ellas e investiga cómo se puede esconder información en una imagen: https://resources.infosecinstitute.com/steganography-and-tools-to-perform-steganography/#gref

Referencias

- Fotografías
 - https://unsplash.com
- Iconos
 - https://www.flaticon.es/

Reconocimiento-CompartirIgual 3.0 España (CC BY-SA 3.0 ES)

©2019-2022 Marta Beltrán URJC (marta.beltran@urjc.es) Algunos derechos reservados.

Este documento se distribuye bajo la licencia "Reconocimiento-Compartirlgual 3.0 España" de Creative Commons, disponible en https://creativecommons.org/licenses/by-sa/3.0/es/