

● 万北乙業大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY

子群的定义及其判定

子群

定义6.17 设G是群,H是G的非空子集,

- (1) 如果H关于G中的运算构成群,则称H是G的子群,记作 $H \le G$.
- (2) 若H是G的子群,且HCG,则称H是G的真子群,记作H<G.

例如 nZ (n是自然数) 是整数加群<Z,+> 的子群. 当 $n\neq1$ 时, nZ是Z的真子群.

对任何群G都存在子群. G和 $\{e\}$ 都是G的子群,称为G的平凡子群.

2

子群判定定理1

定理6.19(判定定理一)

设G为群,H是G的非空子集,则H是G的子群当且仅当

- $(1) \forall a,b \in H$ 有 $a \circ b \in H$
- $(2) \forall a \in H$ 有 $a^{-1} \in H$.

证 必要性是显然的. 为证明充分性,只需证明 $e \in H$.

因为H非空,存在 $a \in H$. 由条件(2) 知 $a^{-1} \in H$,根据条件(1) $a \circ a^{-1} \in H$,即 $e \in H$.

子群判定定理2

定理6.20 (判定定理二)

设G为群,H是G的非空子集.H是G的子群当且仅当 $\forall a,b \in H$ 有 $a \circ b^{-1} \in H$.

证 必要性: H为群必有 $b^{-1} \in H$,从而有 $a \circ b^{-1} \in H$.

充分性. 因为H非空,必存在 $a \in H$.

根据给定条件得 $a \circ a^{-1} \in H$,即 $e \in H$, $^{\text{单位元存在性}}$

逆元存在性

任取 $a \in H$, 由 $e,a \in H$ 根据给定条件 $e \circ a^{-1} \in H$, 即 $a^{-1} \in H$)

任取 $a,b \in H$,由逆元存在,知 $b^{-1} \in H$. 再利用给定条件得 $a \circ (b^{-1})^{-1} \in H$,即 $a \circ b \in H$ 。运算封闭

综合上述,可知H是G的子群.

面北フま大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY

子群判定定理3

定理6.21 (判定定理三)

设G为群,H是G的非空 有限 子集,则H是G的子群当且仅当 $\forall a,b \in H$ 有 $a \circ b \in H$.

证 必要性显然.为证充分性,只需证明有限集H是一个代数系统,并且满足结合律和消去律即可.

由于G满足结合律和消去律,H是G的子集,故也满足;由 $a \circ b \in H$ 可知H是一个代数系统,故得证.

典型子群的实例:子群的交

例7 设G是群,H,K是G的子群.证明

- (1) H∩K也是G的子群
- (2) $H \cup K$ 是G的子群当且仅当 $H \subseteq K$ 或 $K \subseteq H$

证 (1) 由 $e \in H \cap K$ 知 $H \cap K$ 非空.

任取 $a, b \in H \cap K$,则 $a \in H, a \in K, b \in H, b \in K$.

必有 $a \circ b^{-1} \in H$ 和 $a \circ b^{-1} \in K$,从而 $a \circ b^{-1} \in H \cap K$. 因此 $H \cap K \leq G$.

(2) 充分性显然,只证必要性.用反证法.

假设 $H \nsubseteq K \perp LK \nsubseteq H$, 那么存在 $h \cap R \notin H$ $h \in H \land h \notin K$, $k \in K \land k \notin H$

推出 $h \circ k \notin H$. 否则由 $h^{-1} \in H$ 得 $k = h^{-1} \circ (h \circ k) \in H$,与假设矛盾.

同理可证 $h \circ k \notin K$. 从而得到 $h \circ k \notin H \cup K$, 与 $H \cup K$ 是子群矛盾.

THE END

● 再业工業大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY