

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS DE CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

IGOR ABEL DOS SANTOS BORDIN MATHEUS SLAMA RIBAS PABLO RICARDO LODI DE LIMA

CONVERSOR BRAILLE

2018

SUMÁRIO

1. OBJETIVOS	3
2. METODOLOGIA	4
3. DESENVOLVIMENTO	5
3.1. Conversor de Letras para Código ASCII	5
3.2. Alfabeto Braille	6
3.3. Teste de Mesa	6
3.4. Mapa de Karnaugh	7
3.5. Explicação do circuito	7
4. CONCLUSÃO	
REFERÊNCIA BIBLIOGRÁFICA	11

1. OBJETIVOS

O objetivo do trabalho foi criar um tradutor de palavras do alfabeto latino para a sintaxe Braille. Devido a falta de recursos, a letra em Braille foi formada de forma luminosa (LED) ao invés de forma tátil. Cada palavra traduzida poderia conter no máximo 32 letras.

O projeto foi dividido em três partes. A primeira sendo desenvolvida num programa em Python, enquanto a segunda e a terceira foram desenvolvidas usando um software simulador de circuitos integrados (LogiSim).

O fundamento do projeto era aplicar conceitos básicos para que fosse possível a construção do projeto por inteiro. Embasando-se no conteúdo estudado visto anteriormente e também exigindo do aluno o estudo sobre, principalmente, os componentes disponíveis no software simulador.

2. METODOLOGIA

Neste trabalho foi utilizado um sistema que desenvolve um circuito lógico utilizando o simulador LogiSim para a geração de um sistema Braille .

Foi utilizado um programa desenvolvido em Python que converte letras do alfabeto para os códigos da tabela ASCII, o qual sua saída é inserida em uma memória usada para interpretar e enviar comandos para o circuito, que usa um conversor, um registrador, um decodificador e entre outros componentes, processando o comando que foi dado e mostrando ao usuário um sistema Braille com a utilização de LEDs.

3. DESENVOLVIMENTO

O projeto foi dividido em três partes:

1. Um programa na linguagem Python que converte palavras para a tabela ASCII.

(A frase convertida deve conter no máximo 32 caracteres.)

- O conversor de ASCII para LEDs (Braile).
- 3. O conversor de LEDs (Braile) para palavras.

3.1. Conversor de Letras para Código ASCII

O código desenvolvido na linguagem Python (versão 3.6.5) armazena um texto inserido pelo usuário usando o terminal dentro de uma variável. Criando um arquivo de imagem de memória ROM no disco compatível com o LogiSim, o programa converte usando um laço de repetição cada caractere encontrado no que foi digitado para o seu respectivo em ASCII.

Por último, ele retorna a conversão para o arquivo no disco e imprime na tela do terminal o seu conteúdo final.

```
print("Digite o texto a ser convertido para ASCII (sem acentos):"); x = input(); cont = 0; dat=open('texto','w')
texto= ""; texto+= "v2.0 raw\n"
for a in x:
    b = list(str(hex(ord(a.lower()))[2:])); c = str(int(b.pop(0)) - 2); b.insert(0,c); d = "".join(b); texto+=d;
    cont+=1;
    if cont < 8: texto+=" ";
    else: texto+=" \n"; cont=0;
dat.write(texto); dat.close();
print(texto);</pre>
```

Código fonte do software criado

3.2. Alfabeto Braille

Comparando com o alfabeto Braille, a tabela verdade foi montada usando a entrada dos valores da tabela ASCII para que na saída, os LEDs sejam acesos de acordo com a determinada letra em Braille:

	Α	В	С	D	F	LO	L1	L2	L3	L4	L5
	0	0	0	0	0	35	2 5 8	7	37	200	-
Α	0	0	0	0	1	1	0	0	0	0	0
В	0	0	0	1	0	1	1	0	0	0	0
С	0	0	0	1	1	7	0	0	1	0	0
D	0	0	1	0	0	1	0	0	1	1	0
E	0	0	1	0	1	1	0	0	0	1	0
F	0	0	1	1	0	1	1	. 0	1	0	0
G	0	0	1	1	1	1	1	0	1	1	0
Н	0	1	0	0	0	1	1	0	0	1	0
1.7	0	1	0	0	1	0	1	0	1	0	0
J	0	1	0	1	0	0	1	0	1	1	0
K	0	1	0	1	1	1	0	1	0	0	0
L	0	1	1	0	0	1	1	1	0	0	0
M	0	1	1	0	1	1	0	1	1	0	0
N	0	1	1	1	0	1	0	1	1	1	0
0	0	1	1	. 1	1	.1	0	. 1	0	. 1	0
Р	1	0	0	0	0	1	1	1	1	0	0
Q	1	0	0	0	1	1	1	1	1	1	0
R	1	0	0	1	0	1	1	1	0	1	0
S	. 1	0	0	. 1	1	0	. 1	. 1	1	0	0
Т	1	0	1	0	0	0	1	1	1	1	0
U	1	0	1	0	1	1	0	1	0	0	1
V	1	0	1	1	0	1	1	1	0	0	1
W	. 1	0	1	. 1	1	0	1	0	1	1	. 1
X	1	1	0	0	0	1	0	1	1	0	1
Υ	1	1	0	0	1	1	0	1	1	1	1
Z	1	1	0	1	0	1	0	1	0	1	1

3.3.Teste de Mesa

O resultado é uma tabela verdade formada por 27 linhas.
Foram adicionadas todas as possibilidades (incluindo as possibilidades que tem resultado 0).

Como existem várias maneiras de gerar uma expressão usando a tabela verdade, optou-se por usar o Mapa de Karnaugh com 5 variáveis, pois sua aplicação é mais simples do que uma de 8 variáveis.

3.4. Mapa de Karnaugh

Foi utilizado o mapa de karnaugh do próprio logisim, que entregou o circuito pronto

utilizando as opções de "usar somente porta NAND" e "usar apenas portas com duas entradas" fizemos o circuito Letras/LED. Utilizando 5 variáveis já que $2^5=32$, só precisamos de 23 caracteres que corresponde a letras do alfabeto criamos esse circuito

3.5. Explicação do circuito

- **1-On/Off.** Botão que liga e desliga o circuito e limpa o contador (3) e os leds (9).
- **2-Clock**. O pulso de clock que vai aumentando em 1 o valor do contador (3).
- **3-Contador**. O valor do contador reflete na posição da memória ROM (4) e quando chega ao final da memória ROM (4) dá um pulso para o led de Recomeço de frase (10) e reinicia a contagem a partir do 00, a primeira casa da memória ROM (4).
- **4-memória ROM**. Armazena o código da tabela ASK e manda o sinal referente a ele para o conversor (5) e para o codificador de 32 letras (8).
- **5-conversor 8X5.** A memória ROM (4) tem o pulso de saída de 8 bits então o conversor transforma em 5 já que só precisamos de 5 para ligar todos os LEDs (9).

- **6-Registrador de letra**. Recebe o pulso de 5 bits e passa por um contador e irá para o letras/LED (7).
- **7-Letras/LED.** Recebe os valores que vão ser ligados de acordo com a tabela verdade e o mapa de Karnaugh e vai selecionar quais os LEDs (9) que deve acender.
- **8-Codificador de 32 Letras**. Os dados chegam nele onde passam para um decodificador que vai mandar o sinal em ordem e irão para uma porta OR que só é para mandar um sinal por vez.
- **9-Conjunto de LEDs.** Ele receberá o sinal para ligar do Letras/LED (7) e ligar somente os que estiverem de acordo com a letra em braille.
- **10-Recomeço de frase**. Toda vez que a memória ROM (4) chegar ao final irá emitir um pulso para esse LED mostrando que a frase irá recomeçar.

Imagens dos circuitos:

Parte do circuito de Letras/LED (7)

Circuito Braile para Letra:

- 1-On/Off.Liga a memória ROM (4) para que o circuito funcione.
- **2-Braile.**Leds que representam os caracteres bailes que serão convertidos em letras.
- **3-Enter.**Após escrever no braile(2) aperta o enter para enviar a posição do caractere para a memória ROM (4).
- **4-Memória ROM.** onde estão gravados os dados do caracteres em ascii e a encia para a TTY (5).
- 5-TTY. Tela que recebe o valor em ascii da ROM (4) e mostra em letra.
- **6-Clear.**Limpa a TTY(5) apagando tudo que foi escrito.

4. CONCLUSÃO

Na execução dos testes, foi utilizado o alfabeto com suas 26 letras, sendo elas representadas em Braille de seis pontos. Por meio da execução do sistema pôde-se verificar que o Codificador Braille desempenho as funções esperadas, que são: Leitura de informação textuais a partir de uma memória, conversão em sinais analógicos, leitura dos sinais analogicos (Braile) armazenando-os em uma memória, apresentação das informações, desenvolvida em forma de caracteres.

REFERÊNCIAS BIBLIOGRÁFICAS

Documentação do logisim. Disponível em:

http://www.cburch.com/logisim/pt/docs.html. Acesso em 22 set. 2018.

Braille Virtual. Para aprender Braille na Internet. Disponível em: http://www.braillevirtual.fe.usp.br/pt/index.html Acesso em: 25 set. 2018.