CmpE 220 – HW #1

FULL NAME / STUDENT ID NO:

QUESTION # 1 (24) Write the following statements with variables and quantifiers and then negate them.	
a)	"L in $\mathbb R$ is the limit of the sequence S_n iff For all positive epsilon, There exists N_0 in $\mathbb N$, $n>N_0$ implies $ S_n-L $ is less than epsilon"
	Original : Negation :
b)	"if a natural number n is prime, then 2^n-1 is also an element of the set of prime numbers "
	Original : Negation :
c)	"If f is an element of the set of continuous and real-valued function on [a,b] and k is some number between $f(a)$ and $f(b)$, then there exists some number $c \in [a,b]$ such that $f(c) = k$ "
	Original : Negation :
QUESTION # 2 (16) Complete the following definitions	
a)	To prove two sets, let's say A and B , are equal, we need to show: i)
b)	Let A be a set. The power set of A is the
c)	A real number x is called rational if $\exists \; a,b \in \mathbb{Z} \;$ such that
d)	Modus Ponens inference rule says:
e)	To prove $p\Rightarrow q$ with direct proof : first, then reach
f)	To prove $p\Rightarrow q$ with contrapositive technique: first, then reach,
g)	To prove $p\Rightarrow q$ with contradiction technique: first, then reach,
	To prove $p\Rightarrow q$ with contradiction technique: first, then reach, then reach, then reach
h) QU	To prove p with contradiction technique: first, then reach, then reach
h) QU (W	To prove p with contradiction technique: first, then reach, then reach
h) QU (W	To prove p with contradiction technique: first, then reach, then reach