Classical Planning in Deep Latent Space: From Unlabeled Images to PDDL (and back) The University of Tokyo

Masataro Asai. Alex Fukunaga

1. Background

- Symbols: Labels for distinguishing entities
- Symbols in PDDL: Propositions (handempty) Objects A, B, C, D Predicates (clear ?x) Actions (pick-up?x)
- Existing Action Model Learning (AML) systems ALL require symbolic (or near-symbolic) inputs
- Cannot directly handle complex unstructured high-dimensional data e.g. images, audio

Action-Relation Modelling System [Yang et al 07] input: symbolic relations (predicates, actions)

Semi-MDP→Classical Planning [Konidaris et al 14,15]

Not entirely subsymbolic: converts probabilistic → propositional model

Symbolic action labels: **given** (SMDP option e.g. move,interact) given, structured, low-dim Input sensors:

(set of 33 real/int variables with distinct meanings:x/y distance, light level, whether monkey cries)

Learning from Observation: [Argall et al 09, Mourao et al 12] Noisy, incomplete, but symbolic states/actions

Learns the preconditions from state/action sequence Object/predicate/action labels: given

Learning from Video for board game: Images with strong assumptions (almost symbol)

e.g. 3x3 Ellipse Detector [Barbu et al 10; Kaiser12; Kirk&Laird16] almost immediately provides propositions

2. Our Objectives

Visually presented classical planning domains

The system should have no idea that this is an 8-puzzle

Initial state Goal state image (black/white) image

 with NO prior assumptions/symbolic descriptions ("grids", "tiles", "disks", "move", "toggle") i.e. domain-independent

• with **NO** expert plan traces

Goal Image

Input1: State Transition (before/after images of randomly generated action)

A visualized optimal plan for8-puzzle

Existing AML systems cannot handle raw images

- High-dimensional input (42x42 pixels = 1764)
- Each pixel does not have a significant meaning
- "Meaning" emerges from nonlin. entanglements
- No simple detector (e.g. stone exisitence)
 Need Robustness & Generalization for noisy inputs

3. OPEN PROBLEM: Convert images/ arbitrary unstructured data to/from symbols

Generate the symbolic inputs for AML Systems!

Raw data → Symbolic data

- → Exisiting AML methods
- → Symbolic Planning → Symbolic plan → Raw output

4. Solution: State AutoEncoder

- A neural network that learns a bidirectional mapping **z=Encode(x)** and **x=Decode(z)** between a subsymbolic input x and a discrete boolean vector z
- The only specification is the number of bits: An upper bound of state encoding length $log_2(|S|)$

 For training, optimize the loss via Stoc. Grad. Descent Minimize reconstruction loss $||x-\tilde{x}||$ (Binary crossentropy etc.) + variational loss KL(Z, Categorical(49))

(KL divergence: distance between distributions)

SAE: A Variational AutoEncoder w/ Gumbel-Softmax

Allows NNs to learn a categorical/discrete distribution

Effective in Latent-Space Planning

Somewhat surprising result: Heuristics reduce search in domains based on features

PDBs can underperform blind search in

some standard IPC domains (Edelkamp12)

generated by neural networks

(e.g. abstraction)

Exploit common characteristics

Number of categories = 2: Propositional variables

• the "meaning" of the propositions may or may not correspond to human intuitions about the domain

6. Domain-Independent SearchHeuristics are

5. Image-based planning architecture: LatPlan

A First Implementation: LatPlan α

- SAE: Trained w/ smaller subset of states (cross validated, SAE learns a generalized/robust state encoding)
- Trivial AML method: action = individual state transition we provide all state transitions (i.e. no action generalization Future work: adapt existing AML method

Demonstrations Optimal solutions to 8-puzzle instances

Handling of Noisy Inputs (benefit of using NN)

Example latent-space domain

Example with |z| = 25bits pre: before-state

eff: state diff