If you followed the advice outlined in the preface and installed the Anaconda stack, you already have NumPy installed and ready to go. If you're more the do-it-yourself type, you can go to the NumPy website and follow the installation instructions found there. Once you do, you can import NumPy and double-check the version:

```
In[1]: import numpy
       numpy.__version__
Out[1]: '1.11.1'
```

For the pieces of the package discussed here, I'd recommend NumPy version 1.8 or later. By convention, you'll find that most people in the SciPy/PyData world will import NumPy using np as an alias:

```
In[2]: import numpy as np
```

Throughout this chapter, and indeed the rest of the book, you'll find that this is the way we will import and use NumPy.

Reminder About Built-In Documentation

As you read through this chapter, don't forget that IPython gives you the ability to quickly explore the contents of a package (by using the tab-completion feature) as well as the documentation of various functions (using the? character). Refer back to "Help and Documentation in IPython" on page 3 if you need a refresher on this.

For example, to display all the contents of the numpy namespace, you can type this:

```
In [3]: np.<TAB>
```

And to display NumPy's built-in documentation, you can use this:

```
In [4]: np?
```

More detailed documentation, along with tutorials and other resources, can be found at http://www.numpy.org.

Understanding Data Types in Python

Effective data-driven science and computation requires understanding how data is stored and manipulated. This section outlines and contrasts how arrays of data are handled in the Python language itself, and how NumPy improves on this. Understanding this difference is fundamental to understanding much of the material throughout the rest of the book.

Users of Python are often drawn in by its ease of use, one piece of which is dynamic typing. While a statically typed language like C or Java requires each variable to be explicitly declared, a dynamically typed language like Python skips this specification. For example, in C you might specify a particular operation as follows:

```
/* C code */
int result = 0:
for(int i=0; i<100; i++){</pre>
    result += i;
```

While in Python the equivalent operation could be written this way:

```
# Python code
result = 0
for i in range(100):
    result += i
```

Notice the main difference: in C, the data types of each variable are explicitly declared, while in Python the types are dynamically inferred. This means, for example, that we can assign any kind of data to any variable:

```
# Python code
x = 4
x = "four"
```

Here we've switched the contents of x from an integer to a string. The same thing in C would lead (depending on compiler settings) to a compilation error or other unintended consequences:

```
/* C code */
int x = 4;
x = "four"; // FAILS
```

This sort of flexibility is one piece that makes Python and other dynamically typed languages convenient and easy to use. Understanding how this works is an important piece of learning to analyze data efficiently and effectively with Python. But what this type flexibility also points to is the fact that Python variables are more than just their value; they also contain extra information about the type of the value. We'll explore this more in the sections that follow.

A Python Integer Is More Than Just an Integer

The standard Python implementation is written in C. This means that every Python object is simply a cleverly disguised C structure, which contains not only its value, but other information as well. For example, when we define an integer in Python, such as x = 10000, x is not just a "raw" integer. It's actually a pointer to a compound C structure, which contains several values. Looking through the Python 3.4 source code, we find that the integer (long) type definition effectively looks like this (once the C macros are expanded):