Réalité virtuelle et réalité augmentée

Reconnaissance des feuilles pour la classification des plantes à l'aide du modèle Bag of Words

MBIAYA KWUITE Franck Anael Promotion : SIM 24

Le travail expliqué dans cette présentation est disponible ici

Décembre 2021

Décembre 2021

Apprentissage (1/2)

Etape 1: Chargement des données

- Le jeux de données est constitué de 32 classes, mais nous avons utilisé 10 classes pour notre travail
 - Nous avons ainsi travaillé avec 670 images

Etape 3: Extraction des descripteurs SIFT

- Nous avons calculé les descripteurs des images du train
 - Nous avons utilisé le descripteur SIFT
 - Nous avons utilisé la librairie OpenCV
 - Chaque descripteur est un vecteur de 128 valeurs

Etape 2: Division des données en Train/Test

- Nous avons divisé les images en train et test
 - Train: 80 %Test: 20 %

Etape 4: Construction du dictionnaire de mots visuels (BoW)

- Nous avons utilisé l'algorithme K-Means avec tous les descripteurs calculés précédemment (1 233 224 descripteurs)
 - Nous avons regrouper en 96 clusters
 - Nous avons recupérer les centres des clusters pour la suite de notre travail

Apprentissage (2/2)

Etape 5: Description de chaque image

- Nous avons créé un descripteur pour chaque image avec le modèle BoW obtenu précédemment
 - Chaque descripteur est un histogramme de distribution des descripteurs SIFT en fonction des clusters du modèle BoW
 - Nous avons calculé les descripteurs des images du train et du test

Etape 7: Evaluation du modèle (1/2)

 Nous avons obtenue la matrice de confusion suivante pour le meilleur modèle
 Confusion Matrix

Etape 6: Construction du modèle de classification

- Nous avons créer un modèle de classification basé sur les histogrammes de chaque image nouvellement créé
 - Nous avons utilisé le modèle SVC de la librairie SKLearn
- Nous avons utilisé la fonction GridSearchCV pour trouver les meilleurs paramètres du modèle. Ces paramètre sont:
 - C:1
 - decision_function_shape : ovo
 - gamma : auto
 - kernel : linear
- Nous avons obtenue les précisions suivantes avec le meilleur modèle obtenu
 - Sur les données d'entrainnement : 99.25 %
 - Sur les données de test : 98.51 %

Etape 7: Evaluation du modèle (2/2)

- Nous avons obtenu à partir de la matrice de confusion les statistiques suivantes de notre modèle
 - Précision : 98 %
 Rappel : 99 %
 - F1-score : 98 %
 Accuracy : 99 %
 - Accuracy : 99 %

Décembre 2021

Test (1/1)

Etape 1: Chargement de l'image de test

- Notre objectif ici est de prédire le type de plante à partir de l'image d'une feuille
- La première étape consiste à charger l'image de la feuille dans une variable

Etape 3: Calcul de l'histogramme

 Nous calculons l'histogramme de l'image à prédire à partir du modèle BoW précédemment créé

Etape 2: Calcul des descripteurs SIFT

Nous calculons les descripteurs SIFT de l'image à prédire
 Points clé de l'image à prédire

Etape 4: Prédiction du type de plante

 Nous utilisons le modèle SVC précédemment créé pour prédire le type de plante

