Programowanie dynamiczne

Ciąg Fibonacciego

$$F_n := \left\{ egin{array}{ll} 0 & ext{dla } n = 0; \ 1 & ext{dla } n = 1; \ F_{n-1} + F_{n-2} & ext{dla } n > 1. \end{array}
ight.$$

Programowanie dynamiczne Ciąg Fibonacciego rekurencyjnie

$$(3) t[i]=t[i-1]+t[i-2]$$

$$(4) i=i+1$$

0	1	2	3	4	5	6	7	 n
0	1	1	-	-	-	-	-	 -

$$(3) t[i]=t[i-1]+t[i-2]$$

$$(4) i=i+1$$

$$i=n$$
 $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & ... & n \\ \hline 0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & ... & F_n \end{bmatrix}$

Czy można to zrobić lepiej?

Złożoność czasowa zmniejszyła się do O(n), ale pamięciowa wynosi także O(n)

Korzystamy z tylko dwóch poprzednich pól tablicy

Zatem tablicę mogą zastąpić trzy zmienne i złożoność pamięciowa wyniesie O(1)

- (1) i=3; a=1; b=1; c=1;
- (2) dopóki (i<=n):
 - (3) c = a + b
 - (4) a = b
 - (5) b=c
 - (6) i = i + 1
- (7) wynikiem jest c

Programowanie dynamiczne Truskawkowe żniwa

40	38	35	30	35	16
11	7	20	18	1	6
34	2	25	9	3	28
0	23	15	16	9	17
21	37	2	34	6	1

Programowanie dynamiczne Truskawkowe żniwa

0	0	0	0	0	0	0
0	40	38	35	30	35	16
0	11	7	20	18	1	6
0	34	2	25	9	3	28
0	0	23	15	16	9	17
0	21	37	2	34	6	1

Programowanie dynamiczne Truskawkowe żniwa

0	0	0	0	0	0	0
0	40	38	35	30	35	16
0	11	7	<u>20</u>	18	1	6
0	34	<u>2</u>	25	9	3	28
0	0	23	15	16	9	17
0	21	37	2	34	6	1

T[i][j]=T[i][j]+max(T[i-1][j],T[i][j-1])