

传输层概述

传输层的作用

- 网络层提供点到点的连接
- 传输层提供端到端的连接

传输层的协议

- TCP (Transmission Control Protocol)
 - 传输控制协议
 - 可靠的、面向连接的协议
 - 传输效率低

- UDP (User Datagram Protocol)
 - 用户数据报协议
 - 不可靠的、无连接的服务
 - 传输效率高

TCP的封装格式

TCP的连接与断开

• TCP的连接 - 三次握手

Host A

Host B

发送 SYN ,请求建立连接 (seq=100, ctl=SYN)

3 发送ACK (seq=101 ack = 301 ctl=ACK) 发送 SYN 、ACK (seq=300, ack = 101, ctl=SYN、ACK)

TCP的连接与断开(续1)

• TCP的四次断开

TCP的应用

端口	协议	说明
21	FTP	文件传输协议,用于上传、下载
23	Telnet	用于远程登录,通过连接目标计算机的这一端口,得到脸证后可以远程控制管理目标计算机
25	SMTP	简单邮件传输协议,用于发送邮件
53	DNS	域名服务,当用户输入网站的名称后,由DNS负责将它解析成IP地址,这个过程中用到的端口号是53
80	HTTP	超文本传输协议,通过HTTP实现网络上超文本的传输

UDP协议工作原理

UDP的封装格式

0 15	16 31			
16位源端口号	16位目标端口号			
16位UDP长度	16位UDP校验和			
数据				

UDP的应用

端口	协 议	说 明
69	TFTP	简单文件传输协议
53	DNS	域名服务
123	NTP	网络时间协议

UDP的流控和差错控制

- UDP缺乏可靠机制
- UDP只有校验和来提供差错控制
 - 需要上层协议来提供差错控制:例如TFTP协议

访问控制列表概述

访问控制列表作用

- 访问控制列表(ACL)
 - 读取第三层、第四层 头部信息
 - 根据预先定义好的规则对数据进行过滤

访问控制列表的工作原理

• 访问控制列表在接口应用的方向

- 出:已经过路由器的处理,正离开路由器接口的数据

包

- 入:已到达路由器接口的数据包,将被路由器处理

- 列表应用到接口的方向与数据方向有关

访问控制列表的工作原理(续1)

• 访问控制列表的处理过程

访问控制列表的类型

- 标准访问控制列表
 - 基于源IP地址过滤数据包
 - 标准访问控制列表的访问控制列表号是1~99
- 扩展访问控制列表
 - 基于源IP地址、目的IP地址、指定协议、端口来过滤数据包
 - 扩展访问控制列表的访问控制列表号是100~199

标准ACL配置

标准访问控制列表的配置

• 创建ACL

Router(config)#access-list access-list-number { permit | deny } source [source-wildcard] 允许数据包通过 拒绝数据包通过

标准访问控制列表的配置(续1)

• 应用实例

Router(config)# access-list 1 permit 192.168.1.0 0.0.0.255 Router(config)# access-list 1 permit 192.168.2.2 0.0.0.0

- 允许192.168.1.0/24和主机192.168.2.2的流量通过

标准访问控制列表的配置(续2)

- 隐含的拒绝语句 Router(config)# access-list 1 deny 0.0.0.0 255.255.255.255
- 关键字
 - host
 - any

标准访问控制列表的配置(续3)

• 将ACL应用于接口

Router(config-if)# ip access-group access-list-number {in out}

• 在接口上取消ACL的应用

Router(config-if)# no ip access-group access-list-number {in out}

标准访问控制列表的配置(续4)

• 查看访问控制列表

Router(config)# Show access-lists

删除ACL

Router(config)# no access-list access-list-number

标准ACL的配置

- 需求描述
 - 禁止主机PC2访问主机PC1, 而允许所有其他的流量

需求描述

- 只允许主机PC2访问主机PC1,而禁止所有其他的流量

扩展访问控制列表的配置

创建ACL

Router(config)# access-list access-list-number { permit | deny } protocol { source source-wildcard destination destination-wildcard } [operator operan]

应用实例

Router(config)# access-list 101 deny tcp 192.168.1.0 0.0.0.255 host 192.168.2.2 eq 80

Router(config)# access-list 101 permit ip any any

• 通过配置扩展acl禁止pc2访问pc1的ftp服务,禁止pc3 访问pc1的www服务器,所有主机的其他服务不受任何 限制

NAT概述

NAT作用

- NAT
 - Network Address Translation,网络地址转换
- 作用
 - 通过将内部网络的私有IP地址翻译成全球唯一的公网IP地址,使内部网络可以连接到互联网等外部网络上。

私有ip地址分类

- A类 10.0.0.0~10.255.255.255
- B类 172.16.0.0~172.31.255.255
- C类 192.168.0.0~192.168.255.255

NAT的特性

- NAT的优点
 - 节省公有合法IP地址
 - 处理地址重叠
 - 安全性

NAT的特性(续1)

- NAT的缺点
 - 延迟增大
 - 配置和维护的复杂性

NAT实现方式

- NAT实现方式
 - 静态转换(Static Translation)
 - 端口多路复用(Port Address Translation,PAT)

NAT的工作过程

静态

协议	内部局部IP地址	内部全局IP地址	外部IP地址
ТСР	10.1.1.1	125.25.65.3	203.51.23.55

知识讲解

NAT的工作过程(续1)

PAT

协议	内部局部IP地址	内部全局IP地址	外部IP地址
TCP	10.1.1.1:1492	125.25.65.3:1492	203.51.23.55:23
TCP	10.1.1.2:1493	125.25.65.3:1493	203.51.23.55:80

静态转换

静态NAT

- 静态转换
 - IP地址的对应关系是一对一,而且是不变的,借助静态转换,能实现外部网络对内部网络中某些特设定服务器的访问。

静态NAT的配置

- 静态NAT配置步骤
 - 接口IP地址配置
 - 决定需要转换的主机地址
 - 决定采用什么公有地址
 - 在内部和外部端口上启用NAT

Router(config)#ip nat inside source static *local-ip global-ip*

静态NAT的配置(续1)

· 将内网地址192.168.1.1静态转换为合法的外部地址 100.0.0.2以便访问外网。

静态NAT配置(续2)

• 设置外部端口的IP地址:

Router(config)#interface g0/1
Router(config-if)#ip address 100.0.0.1 255.0.0.0
Router(config-if)#no shut

• 设置内部端口的IP地址:

Router(config)#interface g0/0
Router(config-if)#ip address 192.168.1.254 255.255.255.0
Router(config-if)#no shut

• 建立静态地址转换

Router(config)#ip nat inside source static 192.168.1.1 100.0.0.2

静态NAT配置(续3)

· 在内部和外部端口上启用NAT

Router(config)#interface g0/1
Router(config-if)#ip nat outside
Router(config)#interface g0/0
Router(config-if)#ip nat inside

案例1:配置静态NAT

在R1上配置静态NAT使192.168.1.1转换为100.0.0.2, 192.168.1.2转换为100.0.0.3, 实现外部网络访问。

NAT端口映射

NAT端口映射配置

- 建立NAT端口映射关系
- 配置实例

Router(config)#ip nat inside source static tcp 192.168.1.6 80 61.159.62.133 80

192.168.1.6 **80**

61.159.62.133 80

192.168.1.6

协议	内部用局部IP地址	内部用全局IP地址	外部用全局IP地址
ТСР	192.168.1.6:80	61.159.62.133:80	155.34.2.3

案例2:配置端口映射

在R1上配置端口映射将192.168.1.1的80端口映射为100.0.0.2的80端口,将其web服务发布到Internet。

端口多路复用(PAT)

PAT

- · PAT(端口多路复用)
 - 通过改变外出数据包的源IP地址和源端口并进行端口转换,内部网络的所有主机均可共享一个合法IP地址实现 互联网的访问,节约IP。

PAT的配置

- PAT配置步骤
 - 接口IP地址配置
 - 使用访问控制列表定义哪些内部主机能做PAT
 - 确定路由器外部接口在内部和外部端口上启用NAT

Tedu.cn

PAT的配置(续1)

• 定义内部ip地址

Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255

• 设置复用动态IP地址转换

外部接口

Router(config)#ip nat inside source list 1 interface g 0/1 overload

- · 在内部和外部端口上启用NAT,以及配置默认路由
 - 与静态NAT配置相同

案例4:PAT配置

在R1配置PAT端口多路复用使企业内网192.168.1.0/24复用g0/1端口的IP,实现外部网络的访问。

跟踪NAT

• debug ip nat命令跟踪NAT操作

R1#debug ip nat IP NAT debugging is on

*Mar 1 00:03:56.875: NAT: s=192.168.4.2->145.52.23.2, d=1.1.1.1 52225]

Mar 1 00:03:57.667: NAT: s=192.168.4.2->145.52.23.2, d=1.1.1.1 [52481]

Mar 1 00:03:57.811: NAT: s=1.1.1.1, d=145.52.23.2->192.168.4.2 [52481]

s = 192.168.4.2表示源地址是192.168.4.2

d = 1.1.1.1表示目的地址是1.1.1.1

192.168.4.2->145.52.23.2表示将地址192.168.4.2转换为

145.52.23.2

