ROBEM I

- 1. Assume $\{Y_i(n): n \geq 0\}$, $\{Y_2(n): n \geq 0\}$ are two independent migrating branch process with descending distribution $(p(i): i \in \mathbb{Z}_+)$ and the migrating probability respectively are $(\gamma_1(i): i \in \mathbb{Z}_+), (\gamma_2(i): i \in \mathbb{Z}_+)$. Prove: $\{Y_1(n) + Y_2(n): n \geq 0\}$ is migrating branching process with descending distribution $p(i): i \in \mathbb{Z}_+$ and migrating probability $\gamma_1 * \gamma_2(i): i \in \mathbb{Z}_+$.
- 2. Let $\{Y(n): n \in \mathbb{Z}_+\}$ be migrating branch process with descending distribution $p(j): j \in \mathbb{Z}_+$ and the migrating distribution $\gamma(i): i \in \mathbb{Z}_+$. $P_n^{\gamma} = (p_n^{\gamma}(i,j); i, j \in \mathbb{Z}_+)$ is the *n*-th transition matrix. Prove: $\forall i, n \geq 1$

$$\sum_{j=0}^{\infty} p_n^{\gamma}(i,j)z^j = g_n(z)^i \prod_{k=1}^n h(g_{k-1}(z)), |z| \le 1$$

where h is the generating function of $(\gamma(j): j \in \mathbb{Z}_+)$. g is the generating function of $(p(j): j \in \mathbb{Z}_+)$.

3. h,g are defined as above. Assume $m:=g'(1-)<\infty, \mu:=h'(1-)<\infty.$ Prove: $\forall i,n\geq 1,$

$$\mathbb{P}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$$

 $\mathbb{R}^{\!\!\!\text{OBEM II Assume }}b \in (0,1), p \in (0,1). \text{ Let } \mu(0) = \tfrac{1-b-p}{1-p}\mu(j) = bp^{j-1}, j \geq 1. \text{ Prove: }$

1. $(\mu(j): j \in \mathbb{Z}_+)$ is probability distribution and

$$g(z) := \sum_{j=0}^{\infty} \mu(j)z^j = \frac{1-b-p}{1-p} + \frac{bz}{1-pz}.$$

- 2. Let $b = (1 p)^2$. Prove:
 - (a) g'(1) = 1 and

$$g(z) = p + \frac{(1-p)^2 z}{1-pz} = \frac{p - (2p-1)z}{1-pz}.$$

(b) $\forall n \geq 1$, then

$$g_n(z) = \frac{np - ((n+1)p - 1)z}{1 + (n-1)p - npz}.$$

ROBEM III Let $\{Y(n):n\in\mathbb{Z}_+\}$ be branch process with descending distribution $p(j):j\in\mathbb{Z}_+$. And g is the generating function. Let $m_2:=g'(1)+g''(1)<\infty$. $\forall k\geq 1,\ X_n^{(k)}=k^{-1}X_n$. Prove: $\forall \varepsilon>0, i,n\geq 1,\ \mathbb{P}(|X_n^{(k)}-im^n|\geq \varepsilon\mid X_0^{(k)}=i)\to 0, k\to\infty$. ROBEM IV Let $\{Y(n):n\in\mathbb{Z}_+\}$ be branch process with descending distribution $p(j):j\in\mathbb{Z}_+$. And g is the generating function, where $m:=g'(1)\in(1,\infty), m_2:=g'(1)+g''(1)<\infty$. Let $\sigma^2:=m_2-m^2=\mathbb{D}(Y(1))$. Prove:

$$\lim_{n \to \infty} \mathbb{E}_1[(m^{-n}X_n - W)^2] = 0, \, \mathbb{D}_1(W) = \sigma^2 m^{(-1)}(m-1)^{-1}$$

ROBEM V Let $\{Y(n): n \in \mathbb{Z}_+\}$ be branch process with descending distribution $p(j): j \in \mathbb{Z}_+$. And g is the generating function, where $m:=g'(1)\leq 1$. Prove $(p^{\gamma}(j): j \in \mathbb{Z}_+)$ is the steady-state vector of transition matrix P_n^{γ} , that is $\sum_{i=0}^{\infty} p^{\gamma}(i) p_n^{\gamma}(i,j) = p^{\gamma}(j), i \geq 0$. ROBEM VI Let $\{Y(n): n \in \mathbb{Z}_+\}$ be branch process with descending distribution $p(j): j \in \mathbb{Z}_+$. And g is the generating function, where $m:=g'(1)\leq 1$. Discuss $\lim_{n\to\infty} \mathbb{E}(Y_n\mid Y_0=i)$.