Q1) we can see through correlation matrix that Cancer Volume, Weight, and Penetration seems to have correlation values away from 0. It hints that there is a strong linear relationship between the PSA level and the three variables. While the correlation between PSA and Age and Benign doesn't seem to be that strong. Similarly Scatterplot also points to that result.

Q2) $Y^{\circ} \approx 17.60290 \text{ X0} + 2.46112X1 + 0.00470X2 - 0.31140X3 + 1.14931X4 + 2.52247X5}$ is the required equation as per the Multiple linear regression model mentioned below where Cancer Volume is X1, Weight is X2, Age is X3, Hyperplasia is X4 and Penetration is X5 while Y predictor value is PSA.

Lack of Fit:-

H0:- there is no lack of fit in the simple linear regression model

HA:- there is lack of fit in the simple linear regression model

Since p value is less than .05 and is actually .001 we reject H0 that there is no lack of fit in the simple linear regression model

Residual vs. Predicted Values:-

we can see that all the data points in the residual vs. fitted scatter plot form a fan-shaped pattern. Hence errors are not independent.

Absolute Residuals vs. Fitted Values Plot:

There is no independence of error as we can see that data points begin to scatter everywhere in the plot, and data points form an upward slope fan-shaped pattern. Hence, that homogeneity assumption is not satisfied.

Brown-Forsythe Test

since p-value $\approx 0.0029 \le 0.05$, we must reject H0 meaning we conclude that the given data doesn't meet the assumption of the homogeneity of variance.

Breush-Pagan Test

Result of Breusch-Pagan test was do not reject Ho because the pvalue=0.009 is small, so Variance Homogeneity does not hold.

Similarly Shapiro Wilks value for both error and PSA itself is less than 0.05 and we can clearly see that from QQ plot that data is not normal.

Q3)

Non-normality can be affected by outliers as well as We can see that there is an outlier at obs 94 and 96 and we cannot delete it as it is influential which is proven by below diagram.

I have used log transformation to remedy the situation.

After using log transformation, QQ plot is perfectly normal, Shapiro Wilks Value is above 0.05 and Brown -Forsythe shows homogeneity of variance.

Q4)

We can see from Output of the Type I SS and Type III SS of the Transformed Full Model that Age , Weight and Capsular are not significant as their p-value is 0.1125, 0.0899, 0.0124, and 0.2880 respectively. Hence after removing these variables one by one we arrive at the conclusion that the final model should contain benign and cancer variables.

Q4 Second part) Now we can see if these variables can be dropped from the model or not.

SSR(X2,X3,X5 | X1, X4) = SSE(X1, X4) - SSE(All)

 $SSR(X2,X3,X5 | X1, X4) \approx 64.80167 - 63.42966$

 $SSR(X2,X3,X5 | X1, X4) \approx 1.37201$

Similarly,

 $MSR(X2,X3 | X1,X4,X5) \approx 1.37201 / 3 \approx 0.45734$

 $MSE(X1, X2, X3, X4, X5) = 63.42966/91 \approx 0.69703$ (because 97-5-1=91)

F * = 0.45734 / 0.69703

= 0.65612

Finding F value $P(F_{3,89})=.5812$

Since $F_{3,89} < F^*$ we can conclude that H0: $\beta 2 = \beta 3 = \beta 5 = 0$.

Hence these variables can be dropped.

Q5)

Here we have $R = \sqrt{R^2} \approx \sqrt{0.4928} \approx 0.7019$.

And SSE(X1,X4) = 64.80167

SSE(X4) = 124.60324

So $R^2_{Y(1|4)} = (SSE(X4) - SSE(X1, X4)) / SSE(X4) = 0.47994$

SSE(X1) = 72.60508

So $R^2_{Y(4|1)} = (SSE(X1) - SSE(X1, X4)) / SSE(X4) = 0.10748$

If we square them they will be . .69278 and .32784

we do have R² as .479 as per SAS output. Thus we have found that the coefficient of simple determination, R ², is approximately 0.4799, which matches the value of our largest coefficient of partial determination, R $_{Y_{1}|4}$ ² \approx 0.4799.

Hence verified.

Q6)

95% interval estimates for the mean response, 95% interval estimates for the mean response for a future observation and 95% interval estimates for the mean response for a future observation has been created, each of the 3 plots, working Hoelting is the largest interval and can take the largest number of possible values. PI is the next largest interval estimate of possible predictions, and CI is the smallest and takes the smallest number of possible values.

Q7) we have Test statistic at 657.0637 while critical value is at 8.06259. Hence we reject H0 meaning that the regression coefficients, β 0, β 1, and β 2, are all not equal to 0.

Simultaneous CI has been attached to output below.

Q8) We know that Bonferroni CI is $b0 \pm t (1-\alpha/2)*n-p S*sq rt(((X'X)^{-1})$

Outputs for Q1)

The CORR Procedure

2 Variables: PSA CANCER

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	
PSA	97	23.73013	40.78292	2302	0.65100	265.07200	
CANCER	97	6.99868	7.88087	678.87220	0.25920	45.60420	

Pearson Correlation Coefficients, N = 97 Prob > r under H0: Rho=0					
	PSA	CANCER			
PSA	1.00000	0.62415 <.0001			
CANCER	0.62415 <.0001	1.00000			

The CORR Procedure

2 Variables: PSA WT

	Simple Statistics					
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
PSA	97	23.73013	40.78292	2302	0.65100	265.07200
WT	97	45.49136	45.70505	4413	10.69700	450.33900

Pearson Correlation Coefficients, N = 97 Prob > r under H0: Rho=0					
	PSA	WT			
PSA	1.00000	0.02621 0.7988			
WT	0.02621 0.7988	1.00000			

The CORR Procedure

2 Variables: PSAAGE

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	
PSA	97	23.73013	40.78292	2302	0.65100	265.07200	
AGE	97	63.86598	7.44512	6195	41.00000	79.00000	

Pearson Correlation Coefficients, N = 97 Prob > r under H0: Rho=0				
	PSA	AGE		
PSA	1.00000	0.01720 0.8672		
AGE	0.01720	1.00000		

The CORR Procedure

2 Variablee: PSA BENIGN

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	
PSA	97	23.73013	40.78292	2302	0.65100	265.07200	
BENIGN	97	2 53472	3.03118	245.86830	0	10.27790	

Pearson Correlation Coefficients, N = 97 Prob > r under H0: Rho=0					
	PSA	BENIGN			
PSA	1.00000	-0.01649 0.8727			
BENIGN	-0.01649 0.8727	1.00000			

The CORR Procedure

2 Variablea: PSA CAPSULAR

Simple Statistics						
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
PSA	97	23.73013	40.78292	2302	0.65100	265.07200
CAPSULAR	97	2.24537	3.78333	217.80060	0	18.17410

Pearson Correlation Coefficients, N = 97 Prob > r under H0: Rho=0				
	PSA	CAPSULAR		
PSA	1.00000	0.55079 <.0001		
CAPSULAR	0.55079	1.00000		

Pearson Correlation Coefficients, N = 97 Prob > r under H0: Rho=0							
	PSA	CANCER	WT	AGE	BENIGN	CAPSULAR	
PSA	1.00000	0.62415 <.0001	0.02621 0.7988	0.01720 0.8672	-0.01649 0.8727	0.55079 <.0001	
CANCER	0.62415 <.0001	1.00000	0.00511 0.9604	0.03909 0.7038	-0.13321 0.1933	0.69290 <.0001	
WT	0.02621 0.7988	0.00511 0.9604	1.00000	0.16432 0.1078	0.32185 0.0013	0.00158 0.9878	
AGE	0.01720 0.8672	0.03909 0.7038	0.16432 0.1078	1.00000	0.36634 0.0002	0.09956 0.3319	
BENIGN	-0.01649 0.8727	-0.13321 0.1933	0.32185 0.0013	0.36634 0.0002	1.00000	-0.08301 0.4189	
CAPSULAR	0.55079 <.0001	0.69290 <.0001	0.00158 0.9878	0.09956 0.3319	-0.08301 0.4189	1.00000	

Heteroscedasticity Test							
Equation	Test	Statistic	DF	Pr > ChiSq	Variables		
PSA	White's Test	47.13	20	0.0006	Cross of all vars		
	Breusch-Pagan	20.67	5	0.0009	CANCER, WT, AGE, BENIGN, CAPSULAR, 1		

Brow forsythe

Shapiro Wilk value disproving normality

Tests for Normality									
Test	Statistic p Value								
Shapiro-Wilk	W	0.599447	Pr < W	<0.0001					
Kolmogorov-Smirnov	D	0.274372	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	2.044775	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	10.71163	Pr > A-Sq	<0.0050					

Intercept

b0	17.6029	29.3494	0.60	0.5502
b1	2.461119	0.5750	4.28	<.0001
b2	0.004697	0.0752	0.06	0.9503
b3	-0.3114	0.4738	-0.66	0.5127
b4	1.149309	1.2178	0.94	0.3478
b5	2.522469	1.1966	2.11	0.0378

Lack of fit

The REG Procedure Model: MODEL1 Dependent Variable: PSA

Number of Observations Read	97
Number of Observations Used	97

Analysis of Variance											
Source	F Value	Pr > F									
Model	5	67617	13523	13.37	<.0001						
Error	91	92055	1011.58897								
Corrected Total	96	159672									

Normality of errors

Shapiro wilk of value

Tests for Normality									
Test	St	atistic	p Value						
Shapiro-Wilk	W	0.599447	Pr < W	<0.0001					
Kolmogorov-Smirnov	D	0.274372	Pr > D	<0.0100					
Cramer-von Mises	W-Sq	2.044775	Pr > W-Sq	<0.0050					
Anderson-Darling	A-Sq	10.71163	Pr > A-Sq	<0.0050					

Output for q 3

		The GLM	Procedure		
		d Forsythe's Test f A of Absolute Devia			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Group	1	0.1140	0.1140	0.37	0.5427
Error	95	29.0156	0.3054		

outlier

Obs	RStudent
96	7.3552
97	5.7914

Tests for Normality									
Test	St	atistic	p Value						
Shapiro-Wilk	W	0.988353	Pr < W	0.5568					
Kolmogorov-Smirnov	D	0.049001	Pr > D	>0.1500					
Cramer-von Mises	W-Sq	0.033205	Pr > W-Sq	>0.2500					
Anderson-Darling	A-Sq	0.244165	Pr > A-Sq	>0.2500					

Output for q 4)

Source	DF	Type I SS	Mean Square	F Value	Pr > F
CANCER	1	55.16366330	55.16366330	79.77	<.0001
AGE	1	2.66154139	2.66154139	3.85	0.0528
BENIGN	1	5.53795385	5.53795385	8.01	0.0057
CAPSULAR	1	0.78686427	0.78686427	1.14	0.2889

All variables

The GLM Procedure Dependent Variable: PSA_log Source DF Sum of Squares Mean Square F Value Pr > F Model 5 12.8678164 <.0001 64.3390818 18.46 63.4296599 0.6970292 Error 91 **Corrected Total** 127.7687418 96 Coeff Var Root MSE R-Square PSA_log Mean 0.503559 33.68271 0.834883 2.478669 DF F Value Pr > F Source Type I SS Mean Square CANCER 1 55.16366330 55.16366330 79.14 <.0001 WT 1.79012117 1.79012117 1 2.57 0.1125 AGE 1 2.04804244 2.04804244 2.94 0.0899 BENIGN 1 4.54092031 4.54092031 6.51 0.0124 **CAPSULAR** 1 0.79633462 0.79633462 1.14 0.2880 Source DF Type III SS Mean Square F Value Pr > FCANCER 24.19708704 24.19708704 <.0001 1 34.71 WT 1 0.18905903 0.18905903 0.27 0.6038 AGE 1 0.26255102 0.26255102 0.38 0.5409 **BENIGN** 4.62314516 4.62314516 6.63 0.0116 **CAPSULAR** 1 0.79633462 0.79633462 1.14 0.2880 Standard Parameter Estimate t Value Pr > |t| Error Intercept 1.037960824 0.77041185 1.35 0.1812 **CANCER** 0.088925427 0.01509280 5.89 <.0001 0.001028133 0.00197413 0.52 0.6038 AGE 0.007633541 0.01243783 0.61 0.5409 0.03196595 **BENIGN** 0.082324845 2.58 0.0116 0.033572074 CAPSULAR 0.03140913 1.07 0.2880

Age ommited

Source	DF	Sum of Sq	uares	Mean	1 Squ	are	F Value		Pr > F
Model	3	63.86	44394	1394 21.288		81465 30		98	<.0001
Error	93	63.90	43024	0	6871	430			
Corrected Total	96	127.76	37418						
R-5	quare	Coeff Var	Root	MSE	PSA	_log I	Mean		
0.4	99844	33.44299	0.82	8941		2.47	8669		
						Lev			
Source	DF			ean Sq		F V			r > F
CANCER	1			5.1636		100	0.28		0001
BENIGN	1	7.8034079	90	7.80340790		11	11.36		1011
CAPSULAR	1	0.8973681	17	0.8973	6817		1.31	0.2	2561
Source	DF	Type III S	S M	ean Sq	uare	FV	lue	Pi	> F
CANCER	1	24.4110440		4 4110		3.5	5.53	< (0001
BENIGN	1			7.7334	3098		1.25		012
CAPSULAI	-		22	0.8973			1.31		561
Parame	ter	Estimate		tandar Erro		Value	Pr	> t	
Interce	pt	1.535040380	0.13	392166	1	11.03	<.0	001	
CANCE	R	0.089237854	0.0	149719	9	5.96	<.0	001	
BENIG	¥	0.094485229	0.02	281644	6	3.35	0.0	012	
CAPSI	LAR	0.035444990	0.03	310165			0.2	561	

Weight omitted

Department Westerland DCA Lea											
Dependent Variable: PSA_log											
Source		DF	Sum of Sq	uares	Mear	Sq:	uare	F١	Value		Pr > F
Model		4	64.150	00228	16.	0375	5057		23.19		<.0001
Error		92	63.618	37190	0.	6915	5078				
Correcte	d Total	96	127.768	37418	3						
	R-So	uare	Coeff Var	Roc	ot MSE	PS	A_log	Me	an		
	0.50	2079	33.54904	0.8	31569		2.4	786	69		
Sour	ce	DF	Type I S	S	Mean Sq	uare	F۱	/alu	ie	Pr >	> F
CAN	CER	1	55.1636633	30	55.1636	6330) 7	79.7	7 <	.00	01
AGE		1	2.6615413	39	2.6615413		9	3.85		0.0528	
BEN	GN	1	5.5379538	35	5.5379538		5	8.01		.00	57
CAP	SULAR	1	0.7868642	27	0.7868642		7	1.14		.28	89
Sour	ce	DF	Type III SS		Mean Square		F۱	/alu	ie	Pr >	> F
CAN	CER	1	24.4216206	52	24.42162062		35.32		2 <	<.0001	
AGE		1	0.2855834	13	0.2855	.28558343 0.41		1 (.52	21	
BEN	GN	1	5.6464615	59	5.6464	6159)	8.1	7 (00.0	53
CAP	SULAR	1	0.7868642	27	0.7868	6427	7	1.1	4 (.28	89
F	Parameter		Estimate		Standar Erro	-	t Value	е	Pr>	t	
1	ntercep	t	1.050383935	0.7	7669865	3	1.37	7	0.174	12	
(CANCER	1	0.089257366	0.0	0150195	0	5.94	4	<.000	1	
1	\GE		0.007951721	0.0	0123735	2	0.64	4	0.522	21	
E	BENIGN		0.087121969	0.0	0304886	4	2.86	6	0.005	53	
	CAPSUL	AR	0.033369286	0.0	0312820	7	1.07 0.28		0.288	39	

Final model

The GLM Procedure Dependent Variable: PSA_log DF F Value Pr > F Source Sum of Squares Mean Square Model 2 <.0001 62.9670712 31.4835356 45.67 Error 94 64.8016706 0.6893795 **Corrected Total** 96 127.7687418 PSA_log Mean R-Square Coeff Var Root MSE 0.492821 33.49737 0.830289 2.478669 Type I SS Source DF Mean Square F Value Pr > F CANCER 55.16366330 1 55.16366330 80.02 <.0001 BENIGN 1 7.80340790 7.80340790 0.0011 11.32 Source DF Pr > F Type III SS Mean Square F Value CANCER 1 59.80156779 59.80156779 86.75 <.0001 BENIGN 1 7.80340790 7.80340790 11.32 0.0011 Standard Pr > |t|Parameter **Estimate** Error t Value 1.530900278 0.13939576 <.0001 Intercept 10.98 CANCER 0.101049555 0.01084944 9.31 <.0001

0.02820787

3.36

0.0011

Output for Q5

BENIGN

0.094903724

Transformed Y and Final chosen model Yhat

The REG Procedure Model: MODEL1 Dependent Variable: PSA_log

Number of Observations Read 97

Number of Observations Used 97

Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	2	62.96707	31.48354	45.67	<.0001						
Error	94	<mark>64.</mark> 80167	0.68938								
Corrected Total	96	127.76874									

Root MSE	0.83029	R-Square	0.4928
Dependent Mean	2.47867	Adj R-Sq	0.4820
Coeff Var	33.49737		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	1.53090	0.13940	10.98	<.0001
CANCER	1	0.10105	0.01085	9.31	<.0001
BENIGN	1	0.09490	0.02821	3.36	0.0011

BENIGN regressed on **CANCER**

The REG Procedure Model: MODEL1 Dependent Variable: PSA_log

Number of Observations Read	97
Number of Observations Used	97

		Analysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	62.96707	31.48354	45.67	<.0001
Error	94	64.80167	0.68938		
Corrected Total	96	127.76874			

Root MSE	0.83029	R-Square	0 <mark>.49</mark> 28
Dependent Mean	2.47867	Adj R-Sq	0.4820
Coeff Var	33 <mark>.49</mark> 737		

The REG Procedure Model: MODEL1 Dependent Variable: PSA_log

Number of Observations Read 97 Number of Observations Used 97

	Į	Analysis of Va	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	3.16550	3.16550	2.41	0.1236
Error	95	124.60324	1.31161		
Corrected Total	96	127.76874			

Root MSE	1.14526	R-Square	0.0248
Dependent Mean	2.47867	Adj R-Sq	0.0145
Coeff Var	46.20451		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	2.32682	0.15191	15.32	<.0001
BENIGN	1	0.05991	0.03856	1.55	0.1236

The REG Procedure Model: MODEL1 Dependent Variable: PSA_log

Number of Observations Read 97 Number of Observations Used 97

		Analysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	55.16366	55.16366	<mark>72.</mark> 18	<.0001
Error	95	<mark>72.</mark> 60508	0.76426		
Corrected Total	96	127.76874			

Root MSE	0.87422	R-Square	0.4317
Dependent Mean	2.47867	Adj R-Sq	0.4258
Coeff Var	35.26982		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	1.80549	0.11899	15.17	<.0001
CANCER	1	0.09619	0.01132	8.50	<.0001

СО

Obs	ID	PSA	CANCER	BENIGN	Group	PSA_log	res1	res12	res13	res14	res15	р	lwrbnd_ci	uprbnd_ci	lwrbnd_pi	uprbnd_pi	se
1	1	0.651	0.5599	0.0000	0	-0.42925	-2.28859	-2.28859	-2.75607	-2.28859	-2.75607	1.58748	1.31793	1.85703	-0.08297	3.25793	0.84131
2	2	0.852	0.3716	0.0000	0	-0.16017	-2.00140	-2.00140	-2.48699	-2.00140	-2.48699	1.56845	1.29651	1.84039	-0.10239	3.23929	0.84151
3	3	0.852	0.6005	0.0000	0	-0.16017	-2.02341	-2.02341	-2.48699	-2.02341	-2.48699	1.59158	1.32254	1.86062	-0.07879	3.26195	0.84127
4	4	0.852	0.3012	0.0000	0	-0.16017	-1.99463	-1.99463	-2.48699	-1.99463	-2.48699	1.56134	1.28849	1.83418	-0.10965	3.23232	0.84158
5	5	1.448	2.1170	0.0000	0	0.37018	-1.63893	-1.63893	-1.95664	-1.63893	-1.95664	1.74482	1.49341	1.99623	0.07720	3.41244	0.83989
6	6	2.160	0.3499	0.0000	0	0.77011	-1.06903	-1.06903	-1.55671	-1.06903	-1.55671	1.56626	1.29404	1.83848	-0.10462	3.23714	0.84153
7	7	2.160	2.0959	1.8589	0	0.77011	-1.23698	-1.23698	-1.66807	-1.23698	-1.66807	1.91911	1.71497	2.12324	0.25796	3.58025	0.83663
8	8	2.340	1.9937	4.6646	0	0.85015	-1.14710	-1.14710	-1.75611	-1.14710	-1.75611	2.17505	1.95045	2.39965	0.51126	3.83884	0.83796
9	9	2.858	0.4584	0.0000	0	1.05012	-0.79946	-0.79946	-1.27670	-0.79946	-1.27670	1.57722	1.30639	1.84805	-0.09344	3.24788	0.84142
10	10	2.858	1.2461	0.0000	0	1.05012	-0.87522	-0.87522	-1.27670	-0.87522	-1.27670	1.65682	1.39564	1.91800	-0.01230	3.32594	0.84064
11	11	3.561	1.2840	0.0000	0	1.27004	-0.65895	-0.65895	-1.05678	-0.65895	-1.05678	1.66065	1.39991	1.92138	-0.00840	3.32970	0.84061
12	12	3.561	0.2592	3.5609	0	1.27004	-0.56038	-0.56038	-1.27010	-0.56038	-1.27010	1.89503	1.67104	2.11903	0.23133	3.55874	0.83792
13	13	3.561	5.0028	0.0000	0	1.27004	-1.01665	-1.01665	-1.05678	-1.01665	-1.05678	2.03643	1.80917	2.26369	0.37228	3.70058	0.83814
14	14	3.857	4.3929	0.0000	0	1.34989	-0.87814	-0.87814	-0.97693	-0.87814	-0.97693	1.97480	1.74362	2.20598	0.31011	3.63949	0.83841
15	15	4.055	3.3535	0.0000	0	1.39995	-0.72810	-0.72810	-0.92687	-0.72810	-0.92687	1.86977	1.63038	2.10916	0.20392	3.53562	0.83900
16	16	4.263	4.6646	0.0000	0	1.44997	-0.80419	-0.80419	-0.87685	-0.80419	-0.87685	2.00226	1.77291	2.23161	0.33782	3.66669	0.83829
17	17	4.349	0.6570	3.4556	0	1.46995	-0.39873	-0.39873	-1.06389	-0.39873	-1.06389	1.92524	1.70738	2.14310	0.26235	3.58813	0.83751
18	18	4.437	9.8749	0.0000	0	1.48998	-1.26535	-1.26535	-0.83684	-1.26535	-0.83684	2.52875	2.30589	2.75162	0.86520	4.19231	0.83784
19	19	4.759	0.5712	0.0000	0	1.56004	-0.30039	-0.30039	-0.76678	-0.30039	-0.76678	1.58862	1.31921	1.85803	-0.08181	3.25905	0.84130
20	20	4.953	1.1972	5.2593	0	1.59999	-0.32065	-0.32065	-1.04190	-0.32065	-1.04190	2.15100	1.90232	2.39968	0.48380	3.81821	0.83968

Confidence Band

Prediction interval

Q7 output

			X'X	Mat	rix				
0	bs _	NAME_	Inte	rcept	CAN	CER	BE	NIGN	
	1 I	ntercept	9	7.000	67	78.87	2	45.87	
	2 (CANCER	678	8.872	1071	13.59	14	15.27	
	3 E	BENIGN	24	5.868	141	15.27	15	05.26	
	gress	sion C		and \$		d crit			
Reg Obs	gress	sion C	oeffs	and \$	5 and	d crit	ical	v alu	

Codes:-

DATA D; INFILE "/home/u59316208/Prostate.dat";

INPUT ID PSA CANCER WT AGE BENIGN SEMINAL CAPSULAR GLEASON;

RUN;

/* DROPPING QUALTITATIVE VARIABLES */

data C; set D;

drop SEMINAL GLEASON;

run;

/* scatterplot matrix */

PROC CORR DATA=C PLOTS=MATRIX;


```
PARMS b0 b1 b2 b3 b4 b5;
PSA = b0 + b1*CANCER + b2*WT + b3*AGE + b4*BENIGN+b5*CAPSULAR;
fit PSA /WHITE BREUSCH=(CANCER WT AGE BENIGN CAPSULAR);
fit PSA /BREUSCH=(CANCER);
fit PSA /BREUSCH=(WT);
fit PSA /BREUSCH=(AGE);
fit PSA /BREUSCH=(BENIGN);
fit PSA /BREUSCH=(CAPSULAR);
RUN;
/*Brown-Forsythe Test*/
DATA C;set C;
Group = (PSA > 13.3); /* median r = -0.0333717 from above */
RUN;
Proc print data=X(obs=15);
run;
PROC GLM Data=A;
class Group;
model R=Group;
means Group / hovtest=BF; /*Brown-Forsythe Test*/
run;
/*checks for normality of errors*/
proc univariate data=A normal plot;
var r;
run;
proc univariate data=C normal plot;
var PSA;
run;
PROC plot Data=C;
PLOT PSA*(CANCER WT AGE BENIGN CAPSULAR);
RUN;
```

```
/*Find residual and predicted values with plots*/
PROC PLOT Data=A HPERCENT=50 VPERCENT=50; /* Residual plot of each variables */
plot R*(CANCER WT AGE BENIGN CAPSULAR);
RUN:
DATA A; SET A;
absR = abs(R); /* save absolute value of residuals */
RUN;
PROC PLOT DATA = A HPERCENT=50 VPERCENT=50;
PLOT R*P; /* residuals vs fitted values */
RUN;
PROC PLOT DATA = A HPERCENT=50 VPERCENT=50:
PLOT absR*P; /* absolute residuals vs fitted values to check homogeneity assumption */
RUN;
/*Question 3*/
/*checking for outliers*/
PROC REG DATA=C;
MODEL PSA = CANCER WT AGE BENIGN CAPSULAR / INFLUENCE R;
ods output outputstatistics=results;
RUN;
PROC PRINT Data=results (obs=10);
RUN;
DATA results; set results; /* Test for outliers using Bonferroni method 95% C-level, 4 variables*/
tvalue = tinv(0.999742268, 91);/*.999528302=1-.05/(2*97) and df=n-p-1=97-5-1=91*/
if (abs(RStudent)) > tvalue then outlier=1;
else outlier=0;
RUN;
```

```
PROC PRINT data=results;
where outlier=1;
var RStudent;
RUN;
/*notice outliers at Obs 96 97*/
proc print data=results(obs=10);
run;
/*remedy Non-Normality to make it follow normality*/
/*before*/
proc univariate data=A plot normal;
var r;
run;
/*remedy Non-Normality to make it follow normality*/
/*before*/
proc univariate data=A plot normal;
var r;
run;
/*now*/
DATA C1; SET C;
PSA_log = LOG(PSA);
RUN;
PROC REG Data=C1 noprint;
MODEL PSA_log = CANCER WT AGE BENIGN CAPSULAR;
OUTPUT OUT=Q RSTUDENT=R PREDICTED=P; /*predicted (yhat) and residuals*/
RUN:
proc univariate data=q plot normal;
var r;
run;
proc print data=C(obs=20);
run;
```

```
proc print data=C1(obs=20);
run;
proc univariate data=C1;
var PSA_log;
run;
DATA X1; SETC1;
Group = (PSA_log > 2.5); /* median r = 2.5 from above */
RUN;
PROC GLM Data=X1;
class Group;
model R=Group;
means Group / hovtest=BF; /*Brown-Forsythe Test*/
run;
/*Question 4*/
PROC GLM DATA=C1; /* both Type-I and Type-III SS along with partial F tests */
MODEL PSA_log = CANCER WT AGE BENIGN CAPSULAR;
RUN;
PROC GLM DATA=C1; /* both Type-I and Type-III SS along with partial F tests */
MODEL PSA_log = CANCER AGE BENIGN CAPSULAR;
RUN;
PROC GLM DATA=C1; /* both Type-I and Type-III SS along with partial F tests */
MODEL PSA_log = CANCER BENIGN CAPSULAR;
RUN;
PROC GLM DATA=C1; /* both Type-I and Type-III SS along with partial F tests */
```

```
MODEL PSA_log = CANCER BENIGN;
RUN;
/*Question 5*/
/* gives partial correlation coefficient for all combos*/
proc corr data=C1;
var PSA_log CANCER;
partial WT AGE BENIGN CAPSULAR;
run;
proc corr data=C1;
var PSA_log WT;
partial CANCER AGE BENIGN CAPSULAR;
run;
proc corr data=C1;
var PSA_log AGE;
partial CANCER WT BENIGN CAPSULAR;
run;
proc reg data=C1;
model PSA_log= CANCER WT AGE BENIGN CAPSULAR;
run;
/* second part of q 5 */
proc reg data=C1;
model PSA_log =CANCER;
output out=c1 residual=res1;
run;
proc reg data=C1;
model PSA_log =BENIGN;
output out=c1 residual=res1;
run;
proc reg data=C1;
```

```
model BENIGN=CANCER;
output out=c2 residual=res2;
run;
proc print data=c1(obs=10);
Title "Y regressed on CANCER AND BENIGN";
run;
proc print data=c2(obs=10);
Title "BENIGN regressed on CANCER";
run;
data ress; merge c1 c2;
run;
proc corr data=ress;
var res1 res2;
run;
/*next part*/
proc reg data=C1;
model PSA_LOG=CANCER BENIGN;
output out=d1 predicted=p;
run;
proc print data=d1(obs=10);
Title "Transformed Y and Final chosen model Yhat";
run;
proc corr data=d1;
var p PSA_LOG;
run;
/* other way to do it*/
PROC CORR DATA=C1;
VAR PSA_log CANCER;
PARTIAL BENIGN;
RUN; /* Partial correlation coeff for horsepower */
```

```
PROC CORR DATA=C1;
VAR PSA_log BENIGN;
PARTIAL CANCER;
RUN; /* Partial correlation coeff for weight */
/* Alt explanantion of partial determination for var = weight */
PROC REG DATA=C1 NOPRINT;
MODEL PSA_log = CANCER;
OUTPUT OUT=R23 RESIDUAL=Res23;
RUN;
PROC REG DATA=C1 NOPRINT;
MODEL BENIGN = CANCER;
OUTPUT OUT=R1 RESIDUAL=Res1;
RUN;
DATA q4; MERGE R1 R23;
OUTPUT;
PROC CORR DATA=q4;
VAR Res1 Res23;
RUN:
PROC REG DATA=q4;
MODEL PSA_log = CANCER BENIGN;
OUTPUT OUT=q4 PREDICTED=P;
RUN:
PROC CORR DATA=q4;
VAR PSA_log P;
RUN;
/*Question 6*/
data C2; set C1;
drop WT AGE CAPSULAR;
run;
proc print data=C2(obs=20);
run;
```

```
/*95% interval estimates*/
proc reg data=C2 ALPHA=0.05;
model PSA_log=CANCER BENIGN/clm cli;
output out=xx predicted=p stdi=se lclm=lwrbnd_ci uclm=uprbnd_ci lcl=lwrbnd_pi ucl=uprbnd_pi;
run;
proc print data=xx(obs=20);
run;
/*add working hoelting confidence bands*/
data xx; set xx;
WHLwr=p-(sqrt(finv(0.95,3,97-3)*4)*se);
WHUpr=p+(sqrt(finv(0.95,3,97-3)*4)*se);
run;
proc print data=xx(obs=10);
Title "Table of Lower and Upper Bounds for CI, PI, and Working Hoelting Conf.Bands";
run;
proc sgplot data=xx;
Title "95% Interval Est. of Mean Resp vs cancer";
scatter x=CANCER y=p/ yerrorlower=lwrbnd_ci yerrorupper=uprbnd_ci markerattrs= (COLOR=red) legendlabel="CI est";
scatter x=CANCER y=p/ yerrorlower=lwrbnd_pi yerrorupper=uprbnd_pi markerattrs= (COLOR=blue) legendlabel="PI est";
scatter x=CANCER y=p/ yerrorlower=WHLwr yerrorupper=WHUpr markerattrs= (COLOR=green) legendlabel="Work_Hoel est";
run;
proc sgplot data=xx;
Title "95% Interval Est. of Mean Resp vs bENIGN";
scatter x=BENIGN y=p/ yerrorlower=lwrbnd_ci yerrorupper=uprbnd_ci markerattrs= (COLOR=red) legendlabel="CI est";
scatter x=BENIGN y=p/ yerrorlower=lwrbnd_pi yerrorupper=uprbnd_pi markerattrs= (COLOR=blue) legendlabel="PI est";
scatter x=BENIGN y=p/ yerrorlower=WHLwr yerrorupper=WHUpr markerattrs= (COLOR=green) legendlabel="Work_Hoel est";
run;
PROC CAPABILITY DATA=C2;
INTERVALS BENIGN/METHOD=2;
RUN;
PROC SGPLOT DATA=C2;
REG X=BENIGN Y=PSA_LOG/CLM CLI;
RUN;
```

```
/*CONFIDENCE BAND*/
PROC SGPLOT DATA=C2;
REG X=CANCER Y=PSA_LOG/CLM CLI;
RUN;
/*q 7*/
PROC REG DATA=C2;
MODEL PSA_LOG=CANCER BENIGN/XPX;
RUN;
/*Question 7*/
DATA C1; SET C;
PSA_log = LOG(PSA);
RUN;
PROC REG DATA=C1 OUTEST=est1;
MODEL PSA_log=CANCER BENIGN;
RUN:
/*reg coeff and s*/
data est1; set est1;
s = _rmse_; /* root MSE = estimated standard deviation */
b0 = intercept; /* estimated intercept b0 */
b1 = CANCER; /* estimated slope b1 */
b4 = BENIGN; /* estimated slope b4 */
KEEP s b0 b1 b4;
RUN;
/*reg coeff and s*/
proc print data=est1;
Title "Regression Coeffs and S";
run;
proc reg data=C1 OUTSSCP= est3 ;
```

```
MODEL PSA_log= CANCER BENIGN/XPX;
run;
data est3; set est3;
drop PSA_log;
run;
/*deleting unneeded rows and columns*/
data est3; set est3;
if _NAME_ = 'PSA_log' then delete;
if _TYPE_ ='N' then delete;
drop _TYPE_;
run;
proc print data=est3;
Title "X'X Matrix";
run;
data est1; set est1;
critval=finv(0.95,5,97-5)*5*(0.83488)**2;
run;
proc print data=est1;
Title "Regression Coeffs and S and critical value";
run;
proc iml;
XX={97 678.87 245.87 678.87 10713.59 1415.7 245.868 1415.27 1505.26};
b = \{1.53090, 0.10105, 0.094904\};
/*test if slopes equal to zero*/
teststat=b`XX*b;
print teststat;
run;
PROC REG DATA=C1;
MODEL PSA_log= CANCER BENIGN / XPX;
RUN;
PROC REG DATA=C1;
MODEL PSA_log= CANCER BENIGN / I;
```

