

Objazd

Lord Hamilton chciałby objechać wszystkie swoje posiadłości w środkowej Anglii. Jest ich n, ponumerowanych od 1 do n. Dom lorda Hamiltona oznaczony jest numerem 0 - w nim rozpoczyna on i kończy swoją wycieczkę. Tylko między niektórymi z tych posiadłości prowadzi wygodna ścieżka, odpowiednia do konnej jazdy, i tylko takimi ścieżkami Hamilton będzie chciał się poruszać. Dodatkowo, żadnej posiadłości nie chce odwiedzać więcej niż raz - dwukrotna wizyta w tak krótkim czasie przyprawiłaby służbę o apopleksję.

Sprawdź, czy wycieczka lorda Hamiltona jest w ogóle możliwa.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2*10^9$) – liczbę zestawów danych, których opisy wystepują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszej linii zestawu znajdują się dwie liczby naturalne $n, m \ (3 \le n \le 15, 1 \le m \le 100)$ - liczba posiadłości (nie licząc domu lorda) oraz liczba dogodnych ścieżek. W kolejnych m liniach znajdują się pary liczb naturalnych - numery posiadłości, które łączy ścieżka. Może być wiele ścieżek między jedną parą posiadłości.

Wyjście

Dla każdego zestawu danych, jeśli lord Hamilton nie może zaplanować odpowiedniej wycieczki, wypisz pojedyncze słowo **NIE**. Jeśli wycieczka jest możliwa, wypisz w pierwszej linii **TAK**, a w drugiej opis wycieczki: numery kolejnych posiadłości oddzielone spacjami, bez posiadłości numer 0.

Objazd 1/2

Kraków

26 lutego 2018

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
2	TAK
5 10	2 3 4 5 1
0 1	NIE
1 2	
5 1	
2 0	
1 2	
2 3	
3 4	
0 4	
4 3	
5 4	
4 6	
0 1	
1 2	
2 3	
1 3	
0 4	
4 1	

2/2 Objazd