University of California, Davis Department of Statistics

Nam	е.	 	 		 	 	
				P			

STA 135

Sample **Midterm I**

Instructions: 1. **WORK ALL PROBLEMS**. Please, give details and explanations and **SHOW ALL YOUR WORK** so that partial credits can be given.

2. You may use **two** sheets of **notes** and a **calculato**r but **no** other reference materials.

Points

- 1. Let A be an nxn matrix and Q an nxn orthogonal matrix.
 - (a) Show that tr(Q' A Q) = tr(A).
 - (b) Find the determinant of Q.
 - (c) Show that Q' A Q and A have the same eigenvalues.

(25)

2. A is a 2x2 symmetric matrix with $a_{11} = 1$, $a_{12} = 2$ and $a_{22} = -2$.

- (a) Find A⁻¹.
- (b) Compute eigenvalues and normalized eigenvectors of A⁻¹.
 (c) Write down the spectral decomposition of A⁻¹.

(25)

3. The following data matrix is observed for a three-dimensional random vector \underline{X} .

$$\mathbf{X} = \left[\begin{array}{rrr} 1 & 4 & 3 \\ 6 & 2 & 6 \\ 8 & 3 & 3 \end{array} \right]$$

- (a) Compute the sample mean vector and sample covariance matrix of \underline{X} .
- (b) Let $\underline{b}' = [1 \ 2 \ -3]$ and compute sample mean vector and sample covariance matrix of $\underline{b}' \underline{X}$.

(20)

- The three-dimensional random vector $\underline{\mathbf{X}}$ has a multivariate normal distribution. The means of X_1 , and X_2 are 1, and the mean of X_3 is 0. Variance of X_1 is 6, variance of X_2 is 4 and variance of X_3 is 2. X_2 and X_3 are uncorrelated, but the correlation between X_1 and X_2 is $1/\sqrt{24}$, and the correlation between X_1 and X_3 is $-1/\sqrt{12}$.
 - (a) Find the distribution of X_2 given X_3 .

 - (b) Find the distribution of X₁ + 2X₂ + 3X₃.
 (c) Partition X into X⁽¹⁾ and X⁽²⁾, where X⁽²⁾ is a 2x1 vector. Find the distribution of X⁽²⁾.
 - (d) Find the conditional distribution of $\underline{X}^{(2)}$ given $X_1 = 2$.

(30)