

Onset Effects on a Tautosyllabic Vowel: Implications for Weight

Miran Oh

Department of Linguistics, University of Southern California, USA, miranoh@usc.edu

INTRODUCTION

- It has been claimed that onsets, in addition to rimes, contribute to syllable weight [1, 2, 3].
 - Previous studies have examined the effects of onset size and/or voicing [2, 3].
 - Gordon [3] observed that syllables with less sonorous (voiceless) onsets are heavier than more sonorous (voiced) ones by calculating perceptual energy from changes in intensity over time.
- This study investigates the effect of onset sonority on acoustics of the tautosyllabic vowel, specifically pitch and duration.
- If vowels with less sonorous onsets have higher pitch and longer duration, this would implies that vowels with a low sonority onset may have heavier weight than those with a high sonority onset.
- Data from languages both with and without lexical stress systems—English and Korean—are examined to compare onset effect.

METHODS

<u>Participants</u>

14 native English speakers & 20 native Korean speakers (balanced for gender)

<u>Materials</u>

6 onsets for English and for Korean with different levels of sonority

English: /t, s, d, v, n, l/ Korean: /th, t*, t, č, s, n/ (lowest to highest)

- Target English onsets are placed initially in a bi-syllabic word with initial stress. For Korean, target onsets initiate a tri-syllabic word.
- Onsets occur in an open syllable and in syllables closed with a nasal coda and a stop coda.
- 3 tokens of each onset were recorded.

Measurements

- Pitch: Mean pitch value during the tautosyllabic vowel
- Vowel duration:
 - For syllables with non-stop onsets, from the beginning of vocalic voicing to the end of vocalic voicing
 - For syllables with stop onsets, from the release of the stop closure to the end of vocalic voicing

RESULT I - PITCH

Figure 1. English female speakers (EF; left) and English male speakers' (EM; right) mean F0 from lowest to highest onset sonority

Figure 2. Korean female speakers (KF; left) and Korean male speakers' (KM; right) mean F0 in syllables with varying onset sonority

↑ Increasing sonority of the onset is accompanied by a decrease in mean pitch values

English: t > s > d > v,n,l; Korean: tense/aspirated $(t^h, t^*, s^{(h)}) > lenis <math>(t, \check{c}, n)$

RESULT II – VOWEL DURATION

Vowel

DISCUSSION

- As predicted, syllables with less sonorous onsets have higher pitch and longer vowel duration in general.
- English pitch (high to low): voiceless stop onsets > voiceless fricatives > voiced stops > voiced fricatives & sonorants
- Korean: tense & aspirated onsets + /s/ (high pitch) vs. lenis (low pitch) stop onsets (long vowel duration) vs. non-stop onsets (short)
- In English, onset /t/ had a longest tautosyllabic vowel followed by /d/,
 /v, n, l/, and /s/, respectively, in both open and closed syllables.
- Why does onset /s/ have an exceptionally short tautosyllabic vowel?

Figure 5. Mean onset duration and vowel duration in English

Onset duration (ms)
Figure 6. The correlation plot for onset duration and vowel duration

↑ Shorter duration of the onset is compensated by longer duration of a tautosyllabic vowel

CONCLUSION

- Onset duration and vowel duration stand in a compensatory relationship.
 - → This can be further explored with articulatory measurements of timing and duration of onsets and vowels.
- Although the rimes are traditionally the most important contributors to syllable weight, the results show that onset sonority can affect the nuclear vowel's pitch and duration in a systematic way.
- The findings imply that phonological weight, and consequently processes sensitive to weight such as stress, may be influenced by the relation of onsets and their tautosyllabic vowels.

References

longer vowel duration

than other onsets

 $(t^h, t^*, t) > (\check{c}, s, n)$

[1] Davis, S. (1988). Syllable onsets as a factor in stress rules. *Phonology, 5*(1), 1-19. [2] Gordon, M. (2005). A perceptually-driven account of onset-sensitive stress. *Natural Language & Linguistic Theory, 23*(3), 595-653. [3] Ryan, Kevin M. 2014. Onsets contribute to syllable weight: Statistical evidence from stress and meter. *Language, 90*(2), 309–341.