

Predation II

BIOL/BOT 160 – Ecology

Drs. Lawrence <u>Uricchio & Scott Shaffer</u>

Learning objectives

- Students should be able to:
 - Explain the concept of the Rosenzweig and MacArthur (1963) predator prey model
 - Analyze vector plots with the Rosenzweig and MacArthur (1963) model
 - Predict how predation may affect competitive relationships between prey species

- Last time we introduced a model for interactions between predators and prey
 - Prey equation: $dV/dt = rV \alpha VP$
 - Predator equation: $dP/dt = -qP + \beta VP$

Putting prey and predator isoclines together:

- Last time we introduced a model for interactions between predators and prey
 - Prey equation: $dV/dt = rV \alpha VP$
 - Predator equation: $dP/dt = -qP + \beta VP$
- Why might this not be realistic?
 - Does not include intraspecies competition
 - Very small populations likely not sustainable in the long run

Vector Plot – Species A

 Rosenzweig and MacArthur (1963) modifications

N_{Pred}
When
predators are
absent, prey
can increase or
decrease
normally

 Rosenzweig and MacArthur (1963) modifications

 K_Pred

 $\mathsf{N}_{\mathsf{Pred}}$

When prey is above the minimum, the predator population will increase or decrease normally

Lotka Volterra vector model

Rosenzweig and MacArthur (1963) modifications

When prey is below the minimum, the predator population will always decrease

 N_{Pred}

Lotka Volterra vector model

Lotka Volterra vector model

Let's see what happens if the predator is really good at catching prey?

 $\mathsf{N}_{\mathsf{Pred}}$

Let's see what happens if the predator is really good at catching prey?

 $\mathsf{N}_{\mathsf{Pred}}$

$$dP/dt = \beta VP - qP$$

Predator iscoline occurs at

$$V = q/\beta$$

Rosenzweig and MacArthur (1963) modifications

Let's see what happens if the predator is really good at catching prey?

 $\mathsf{N}_{\mathsf{Pred}}$

 $dP/dt = \beta VP - qP$

Predator iscoline occurs at

$$V = q/\beta$$

So what do you think might happen if you introduce a very efficient predator into a system?

Nile Perch

So what do you think might happen if you introduce a very efficient predator into a system?

Nile Perch

Gause 1934 Paramecium caudatum **PREY** Didinium nasutum **PREDATOR** Population size P. caudatum D. nasutum Time Photos by Marcel Holyoak

Gause 1934 Paramecium caudatum **PREY** Didinium nasutum **PREDATOR** Population Population size **ALL DIED!** Time

Gause 1934

- Gause 1934
 - Allowed immigration of prey

Population size

- Gause 1934
 - Allowed immigration of prey

Time

Photos by Marcel Holyoak

Population size

Paramecium caudatum PREY

Paramecium caudatum PREY

Didinium nasutum PREDATOR

D. nasutum

Time

Photos by Marcel Holyoak

- Gause 1934
 - Sediment in bottom

Populatio size

Prey survived Predator died!

Time

Photos by Marcel Holyoak

PREDATOR

What did the sediment do?

 Provided a refuge that would allow the population of *Paramecium caudatum* to increase without having the predator

- With refuge
- In essence, the predator becomes extremely inefficient because only small portion of prey are accessible

- With refuge
- In essence, the predator becomes extremely inefficient because only small portion of prey are accessible

- With refuge
- A certain amount of the prey population will never be preyed upon so they can always reproduce regardless of the presence of the predator

How does predation affect competition?

Vector Plot - two strong competitors (suppose both are prey species)

Switching

Vector Plot - Let's look at two strong competitors

Vector Plot - Let's look at two strong competitors

Vector Plot - Let's look at two strong competitors

Predators regulating prey can increase prey coexistence

 If the predator can switch and has a large enough impact on the prey, the predator can coexist with both prey.

Keystone Predator

The
 presence of
 the
 predator
 allows
 competing
 species to
 coexist.

http://nathistoc.bio.uci.edu/Molluscs/ Mytilus1a.jpg

http://www.dereila.ca/dereilaimages/weedv2.ipg