CS 228 : Logic in Computer Science

Krishna. S

GNBA

- Generalized NBA, a variant of NBA
- Only difference is in acceptance condition
- ▶ Acceptance condition in GNBA is a set $\mathcal{F} = \{F_1, \dots, F_k\}$, each $F_i \subseteq Q$
- ▶ An infinite run ρ is accepting in a GNBA iff

$$\forall F_i \in \mathcal{F}, Inf(\rho) \cap F_i \neq \emptyset$$

- ▶ Note that when $\mathcal{F} = \emptyset$, all infinite runs are accepting
- ► GNBA and NBA are equivalent in expressive power.

Word View (On the board)

- $w = \{a\}\{a,b\}\{\}\dots$
- $\varphi = a U(\neg a \wedge b)$
- ▶ Subformulae of $\varphi = \{a, \neg a, b, \neg a \land b, \varphi\}$
- ▶ Parse trees to compute all subformulae

Closure of φ , $cl(\varphi)$

- $cl(\varphi)$ =all subformulae of φ and their negations, identifying $\neg\neg\psi$ to be ψ .
- Example for $\varphi = a U(\neg a \land b)$
- $cl(\varphi) = \{a, \neg a, b, \neg b, \neg a \land b, \neg (\neg a \land b), \varphi, \neg \varphi\}$

Elementary Sets

Let φ be an LTL formula. Then $B \subseteq cl(\varphi)$ is elementary provided:

- ▶ *B* is propositionally and maximally consistent : for all $\varphi_1 \wedge \varphi_2, \psi \in cl(\varphi)$,
 - $\varphi_1 \land \varphi_2 \in B \Leftrightarrow \varphi_1 \in B \land \varphi_2 \in B$
 - $\psi \in B \Leftrightarrow \neg \psi \notin B$
 - $true \in cl(\varphi) \Rightarrow true \in B$
- ▶ *B* is locally consistent wrt U. That is, for all $\varphi_1 \cup \varphi_2 \in cl(\varphi)$,
 - $\varphi_2 \in B \Rightarrow \varphi_1 \cup \varphi_2 \in B$
 - $\varphi_1 \cup \varphi_2 \in B, \varphi_2 \notin B \Rightarrow \varphi_1 \in B$
- B is elementary: B is propositionally, maximally and locally consistent
- ▶ Given a $B \subseteq cl(\varphi)$, how can you check if B is elementary?

Let
$$\varphi = a U(\neg a \wedge b)$$

 $B_1 = \{a, b, \neg a \land b, \varphi\}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- $B_2 = \{ \neg a, b, \varphi \}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- ▶ $B_2 = \{ \neg a, b, \varphi \}$ No, not maximal as $\neg a \land b \notin B_2$, $\neg (\neg a \land b) \notin B_2$
- $B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- ▶ $B_2 = \{ \neg a, b, \varphi \}$ No, not maximal as $\neg a \land b \notin B_2$, $\neg (\neg a \land b) \notin B_2$
- ▶ $B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$ No, not locally consistent for U
- $B_4 = \{ \neg a, \neg b, \neg (\neg a \land b), \neg \varphi \}$

Let
$$\varphi = a U(\neg a \wedge b)$$

- ▶ $B_1 = \{a, b, \neg a \land b, \varphi\}$ No, propositionally inconsistent
- ▶ $B_2 = \{ \neg a, b, \varphi \}$ No, not maximal as $\neg a \land b \notin B_2$, $\neg (\neg a \land b) \notin B_2$
- ▶ $B_3 = \{ \neg a, b, \neg a \land b, \neg \varphi \}$ No, not locally consistent for U
- ▶ $B_4 = \{ \neg a, \neg b, \neg (\neg a \land b), \neg \varphi \}$ Yes, elementary

LTL φ to GNBA G_{φ}

- States of G_φ are elementary sets B_i
- For a word $w = A_0 A_1 A_2 \dots$ the sequence of states $\sigma = B_0 B_1 B_2 \dots$ will be a run for w
- σ will be accepting iff $w \models \varphi$ iff $\varphi \in B_0$
- ▶ In general, a run B_iB_{i+1} ... for A_iA_{i+1} ... is accepting iff A_iA_{i+1} ... $\models \psi$ for all $\psi \in B_i$.

- ▶ Let $\varphi = \bigcirc a$.
- ▶ Subformulae of φ : $\{a, \bigcirc a\}$. Let $A = \{a, \bigcirc a, \neg a, \neg \bigcirc a\}$.
- Possibilities at each state
 - ► {*a*, ()*a*}

 - \triangleright { $a, \neg \bigcirc a$ }
- ▶ Our initial state(s) must guarantee truth of $\bigcirc a$. Thus, initial states: $\{a, \bigcirc a\}$ and $\{\neg a, \bigcirc a\}$

{*a*, *○a*}

 $\{a, \neg \bigcirc a\}$

{¬*a*, *○a*}

 $\{\neg a, \neg \bigcirc a\}$

$$\rightarrow \{\neg a, \bigcirc a\}$$

- Claim: Runs from a state labelled set B indeed satisfy B
- No good states. All words having a run from a start state are accepted.
- ▶ Automaton for $\neg \bigcirc a$ same, except for the start states.

- ▶ Let $\varphi = a \cup b$.
- Subformulae of φ : $\{a, b, a \cup b\}$. Let $B = \{a, \neg a, b, \neg b, a \cup b, \neg (a \cup b)\}$.
- Possibilities at each state
 - {a, ¬b, a Ub}
 - $\blacktriangleright \{ \neg a, b, a \cup b \}$
 - ▶ {a, b, a Ub}
 - $\blacktriangleright \{a, \neg b, \neg (a \cup b)\}$
 - {¬a, ¬b, ¬(a Ub)}
- Our initial state(s) must guarantee truth of $a \cup b$. Thus, initial states: $\{a, b, a \cup b\}$ and $\{\neg a, b, a \cup b\}$ and $\{a, \neg b, a \cup b\}$.

$$\rightarrow \{a, b, a \cup b\}$$

 $\{a, \neg b, \neg (a \cup b)\}$

 $\{\neg a, \neg b, \neg (a \cup b)\}$

 $\rightarrow \{a, b, a \cup b\}$

LTL to GNBA : Accepting States

$$\rightarrow \overline{\{a,b,a\,\mathsf{U}b\}}$$

$$\{a, \neg b, \neg (a \cup b)\}$$

Construct GNBA for $\neg(a \cup b)$.

- ▶ Let $\varphi = a U(\neg a Uc)$. Let $\psi = \neg a Uc$
- Subformulae of φ : $\{a, \neg a, c, \psi, \varphi\}$. Let $B = \{a, \neg a, c, \neg c, \psi, \neg \psi, \varphi, \neg \varphi\}$.
- Possibilities at each state
 - $\{a, c, \psi, \varphi\}$
 - $\blacktriangleright \ \{\neg \textit{a}, \textit{c}, \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \varphi\}$
 - $\{a, \neg c, \neg \psi, \neg \varphi\}$
 - $\{\neg a, \neg c, \psi, \varphi\}$
 - $\qquad \qquad \{ \neg a, \neg c, \neg \psi, \neg \varphi \}$

$$\longrightarrow \{a, c, \psi, \varphi\}$$

$$\left[\left\{ \neg \mathbf{a}, \neg \mathbf{c}, \psi, \varphi \right\} \right] \longleftarrow$$

$$\rightarrow \left[\{ \neg a, c, \psi, \varphi \} \right]$$

$$\{ {\it a}, \neg {\it c}, \neg \psi, \neg \varphi \}$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\}$$

$$\rightarrow \boxed{\{a, \neg c, \neg \psi, \varphi\}}$$

GNBA Acceptance Condition

- $\psi = \neg a Uc$
- $ightharpoonup \varphi = a U \psi$
- ▶ $F_1 = \{B \mid \psi \in B \to c \in B\}$
- $F_2 = \{B \mid \varphi \in B \rightarrow \psi \in B\}$
- ▶ $\mathcal{F} = \{F_1, F_2\}$

Final States

$$\rightarrow$$
 $\{a, c, \psi, \varphi\} \in F_1, F_2$

$$|\{\neg a, \neg c, \psi, \varphi\} \in F_2|$$
 \longleftarrow

$$\{a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow \left[\{ \neg a, c, \psi, \varphi \} \in F_1, F_2 \right]$$

$$\{\neg a, \neg c, \neg \psi, \neg \varphi\} \in F_1, F_2$$

$$\rightarrow$$
 $\{a, \neg c, \neg \psi, \varphi\} \in F_1$

▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations

23/3

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B$ and $\psi \notin B \rightarrow \neg \psi \in B$

- ▶ Given φ , build $CI(\varphi)$, the set of all subformulae of φ and their negations
- ▶ Consider those $B \subseteq CI(\varphi)$ which are consistent
 - $\varphi_1 \land \varphi_2 \in B \leftrightarrow \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \rightarrow \neg \psi \notin B \text{ and } \psi \notin B \rightarrow \neg \psi \in B$
 - Whenever $\psi_1 \cup \psi_2 \in Cl(\varphi)$,
 - $\psi_2 \in B \rightarrow \psi_1 \ U\psi_2 \in B$
 - ψ_1 U $\psi_2 \in B$ and $\psi_2 \notin B \rightarrow \psi_1 \in B$

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^Q$ is such that

Given φ over AP, construct $A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$,

- ▶ $Q = \{B \mid B \subseteq CI(\varphi) \text{ is consistent } \}$
- ▶ $Q_0 = \{B \mid \varphi \in B\}$
- ▶ $\delta: Q \times 2^{AP} \rightarrow 2^{Q}$ is such that
 - ▶ For $C = B \cap AP$, $\delta(B, C)$ is enabled and is defined as :
 - If $\bigcirc \psi \in Cl(\varphi)$, $\bigcirc \psi \in B$ iff $\psi \in \delta(B, C)$
 - If $\varphi_1 \cup \varphi_2 \in Cl(\varphi)$, $\varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}),

• Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}

• Q_0 = \{B \mid \varphi \in B\}

• \delta: Q \times 2^{AP} \to 2^Q \text{ is such that}

• For C = B \cap AP, \delta(B, C) is enabled and is defined as:

• If \bigcirc \psi \in Cl(\varphi), \bigcirc \psi \in B \text{ iff } \psi \in \delta(B, C)

• If \varphi_1 \cup \varphi_2 \in Cl(\varphi), \varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))

• \mathcal{F} = \{F_{\varphi_1 \cup \{\varphi_2\}} \mid \varphi_1 \cup \varphi_2 \in Cl(\varphi)\}, with
```

 $F_{\varphi_1 \sqcup \varphi_2} = \{B \in Q \mid \varphi_1 \sqcup \varphi_2 \in B \rightarrow \varphi_2 \in B\}$

• Prove that $L(\varphi) = L(A_{\varphi})$

```
Given \varphi over AP, construct A_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F}), 

• Q = \{B \mid B \subseteq Cl(\varphi) \text{ is consistent } \}
• Q_0 = \{B \mid \varphi \in B\}
• \delta: Q \times 2^{AP} \to 2^Q \text{ is such that}
• For C = B \cap AP, \delta(B, C) is enabled and is defined as:
• If \bigcirc \psi \in Cl(\varphi), \bigcirc \psi \in B \text{ iff } \psi \in \delta(B, C)
• If \varphi_1 \cup \varphi_2 \in Cl(\varphi), \varphi_1 \cup \varphi_2 \in B \text{ iff } (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in \delta(B, C)))
• \mathcal{F} = \{F_{\varphi_1 \cup \varphi_2} \mid \varphi_1 \cup \varphi_2 \in Cl(\varphi)\}, with F_{\varphi_1 \cup \varphi_2} = \{B \in Q \mid \varphi_1 \cup \varphi_2 \in B \to \varphi_2 \in B\}
```

$$L(\varphi) \subseteq L(A_{\varphi})$$

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

Structural induction on φ

- $\varphi = a$. All starting states contain a, and can go to all successor states with all combinations of propositions.
- ▶ If $a \in B_i$, every run starting at B_i starts with a. Hence, $A_i A_{i+1} ... \models a$

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

- $\varphi = \bigcirc a$, then all initial states contain $\bigcirc a$, and all successor states contain a by construction.
- ▶ If $\bigcirc a \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, B_i \cap AP)$ iff $a \in B_{i+1}$, for every successor B_{i+1} . Then $A_{i+1} \dots \models a$, and hence $A_i A_{i+1} \dots \models \bigcirc a$.

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \cdots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \cdots \models \psi \}$.

▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then by construction, either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_2$ by induction hypothesis, and hence, $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \cdots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \cdots \models \psi \}$.

- ▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then by construction, either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_2$ by induction hypothesis, and hence, $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, B_i \cap AP)$ iff $\varphi_2 \in B_{i+1}$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}$. How long can we go like this?

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \cdots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \cdots \models \psi \}$.

- ▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then by construction, either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_2$ by induction hypothesis, and hence, $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, B_i \cap AP)$ iff $\varphi_2 \in B_{i+1}$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}$. How long can we go like this?
- ▶ If $\varphi_2 \in B_k$ for k > i, and $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}, \dots, B_{k-1}$ then $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ When is $B_i B_{i+1} B_{i+2} ...$ an accepting run?
- ▶ $B_i \in F_{\omega_1 \cup \omega_2}$ for infinitely many $j \ge i$.

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

- ▶ If $\varphi_1 \cup \varphi_2 \in B_i$, then by construction, either $\varphi_2 \in B_i$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$. If $\varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \varphi_2$ by induction hypothesis, and hence, $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, B_i \cap AP)$ iff $\varphi_2 \in B_{i+1}$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}$. How long can we go like this?
- ▶ If $\varphi_2 \in B_k$ for k > i, and $\varphi_1, \varphi_1 \cup \varphi_2 \in B_{i+1}, \dots, B_{k-1}$ then $A_i A_{i+1} \dots \models \varphi_1 \cup \varphi_2$.
- ▶ When is $B_i B_{i+1} B_{i+2} \dots$ an accepting run?
- ▶ $B_i \in F_{\varphi_1 \cup \varphi_2}$ for infinitely many $j \ge i$.
- $\varphi_2 \notin B_i$ or $\varphi_2, \varphi_1 \cup \varphi_2 \in B_i$ for infinitely many $i \geqslant i$.
- ▶ By construction, there is an accepting run where $\varphi_2 \in B_k$ for some $k \ge i$. Hence, $A_i A_{i+1} ... \models \varphi_1 \cup \varphi_2$.

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

▶ If $\neg(\varphi_1 \cup \varphi_2) \in B_i$, then either $\neg \varphi_1, \neg \varphi_2 \in B_i$ or $\varphi_1, \neg \varphi_2 \in B_i$. If $\neg \varphi_1, \neg \varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \neg(\varphi_1 \cup \varphi_2)$.

28/33

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

- ▶ If $\neg(\varphi_1 \cup \varphi_2) \in B_i$, then either $\neg \varphi_1, \neg \varphi_2 \in B_i$ or $\varphi_1, \neg \varphi_2 \in B_i$. If $\neg \varphi_1, \neg \varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \neg(\varphi_1 \cup \varphi_2)$.
- ▶ If $\varphi_1, \neg \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, B_i \cap AP)$ iff $\varphi_1, \neg \varphi_2 \in B_{i+1}$ or $\neg \varphi_1, \neg \varphi_2 \in B_{i+1}$.

Let $\sigma = A_0 A_1 A_2 \cdots \in L(\varphi)$. Show that there is an accepting run $B_0 A_0 B_1 A_1 B_2 A_2 \ldots$ in A_{φ} for σ , B_i are the states, such that $B_i = \{ \psi \mid A_i A_{i+1} \ldots \models \psi \}$.

- ▶ If $\neg(\varphi_1 \cup \varphi_2) \in B_i$, then either $\neg \varphi_1, \neg \varphi_2 \in B_i$ or $\varphi_1, \neg \varphi_2 \in B_i$. If $\neg \varphi_1, \neg \varphi_2 \in B_i$ then $A_i A_{i+1} \dots \models \neg(\varphi_1 \cup \varphi_2)$.
- ▶ If $\varphi_1, \neg \varphi_2 \in B_i$, then by construction, $B_{i+1} \in \delta(B_i, B_i \cap AP)$ iff $\varphi_1, \neg \varphi_2 \in B_{i+1}$ or $\neg \varphi_1, \neg \varphi_2 \in B_{i+1}$.
- ▶ Either case, $A_i A_{i+1} ... \models \neg(\varphi_1 \cup \varphi_2)$

$L(A_{\varphi}) \subseteq L(\varphi)$

For a sequence $B_0B_1B_2...$ of states satisfying

- ▶ $B_{i+1} \in \delta(B_i, A_i)$,
- ▶ $\forall F \in \mathcal{F}, B_i \in F$ for infinitely many j,

we have $\psi \in B_0 \leftrightarrow A_0 A_1 \ldots \models \psi$

- ▶ Structural Induction on ψ . Interesting case : $\psi = \varphi_1 \ U\varphi_2$
- Assume $A_0A_1 \ldots \models \varphi_1 \cup \varphi_2$. Then $\exists j \geqslant 0$, $A_jA_{j+1} \ldots \models \varphi_2$ and $A_iA_{i+1} \ldots \models \varphi_1, \varphi_1 \cup \varphi_2$ for all $i \leqslant j$.
- ▶ By induction hypothesis (applied to φ_1, φ_2), we obtain $\varphi_2 \in B_j$ and $\varphi_1 \in B_i$ for all $i \leq j$
- ▶ By induction on j, $\varphi_1 \cup \varphi_2 \in B_i, \dots, B_0$.

$L(A_{\varphi}) \subseteq L(\varphi)$

For a sequence $B_0B_1B_2...$ of states satisfying

- (a) $B_{i+1} \in \delta(B_i, A_i)$,
- (b) $\forall F \in \mathcal{F}, B_j \in F$ for infinitely many j,

we have $\psi \in B_0 \leftrightarrow A_0 A_1 \ldots \models \psi$

- ▶ Conversely, assume $\varphi_1 \cup \varphi_2 \in B_0$. Then $\varphi_2 \in B_0$ or $\varphi_1, \varphi_1 \cup \varphi_2 \in B_0$.
- ▶ If $\varphi_2 \in B_0$, by induction hypothesis, $A_0A_1 ... \models \varphi_2$, and hence $A_0A_1 ... \models \varphi_1 \cup \varphi_2$
- ▶ If $\varphi_1, \varphi_1 \cup \varphi_2 \in B_0$. Assume $\varphi_2 \notin B_j$ for all $j \ge 0$. Then $\varphi_1, \varphi_1 \cup \varphi_2 \in B_j$ for all $j \ge 0$.
- ▶ Since B_0B_1 ... satisfies (b), $B_j \in F_{\varphi_1 \cup \varphi_2}$ for infinitely many $j \ge 0$, we obtain a contradiction.
- ▶ Thus, \exists a smallest k s.t. $\varphi_2 \in B_k$. Then by induction hypothesis, $A_iA_{i+1} \dots \models \varphi_1$ and $A_kA_{k+1} \models \varphi_2$ for all i < k
- ▶ Hence, $A_0A_1... \models \varphi_1 \cup \varphi_2$.

• States of A_{φ} are subsets of $CI(\varphi)$

31/3

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$

31/3

- ▶ States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- ▶ Number of sets in $\mathcal{F} = |\varphi|$

- States of A_{φ} are subsets of $CI(\varphi)$
- ▶ Maximum number of states $\leq 2^{|\varphi|}$
- Number of sets in $\mathcal{F} = |\varphi|$
- ▶ LTL $\varphi \sim \text{NBA } A_{\varphi}$: Number of states in $A_{\varphi} \leq |\varphi|.2^{|\varphi|}$
- ▶ There is no LTL formula φ for the language

$$L = \{A_0A_1A_2 \cdots | a \in A_{2i}, i \geqslant 0\}$$

31/33

Complexity of LTL Modelchecking

- ▶ Given φ , $A_{\neg \varphi}$ has $\leq 2^{|\varphi|}$ states
 - $\blacktriangleright |\varphi|$ = size/length of φ , the number of operators in φ
- ▶ $TS \otimes A_{\neg \varphi}$ has $\leq |TS|.2^{|\varphi|}$ states
- ▶ Persistence checking : Checking $\Box \Diamond \eta$ on $TS \otimes A_{\neg \varphi}$ takes time linear in $\eta.|TS \otimes A_{\neg \varphi}|$

∃∀ Automata and the LTL connection

► For finite words