Стек и Опашка

Лекция 5 по СДА, Софтуерно Инженерство Зимен семестър 2019-2020г Милен Чечев

Опашка и Стек (примери)

Дефиниции

Опашка - абстрактна структура от данни от линеен вид при която последователността на добавяне на елементи е същата като последователността на извличане на елементи от нея(FIFO)

Стек - абстрактна структура от данни от линеен вид при която последователността на добавяне на елементи е точно обратната на последователноста на извличане на елементи от нея (FILO)

Опашка

Операции

- create()
- enqueue()
- dequeue()
- peek()
- isEmpty()

Реализация

• С помощта на свързан списък

• С помощта на цикличен масив (възможно е, но реализацията със свързан списък е по-често използвана)

Реализация със свързан списък

enqueue = InsertAtEnd за свързан списък

dequeue = DeleteFromFront за свързан списък

Реализация със фиксиран масив

- Заделя се масив с определена големина N
- Използват се два брояча на индекси един за началото на опашката и един за края на опашката
- Enqieue -> записва елемента в масива спрямо стойността на брояча старт и учеличава брояча с 1
- Dequeue -> връща елемент от масива спрямо стойността на брояча end и намаля брояча с 1
- NB! трябват проверки за броя на елементите в масива за да не се получи достъп до памет извън масива

Реализация със масив с променлива дължина

- Заделяме първоначално масив с фиксирана дължина
- Ако масива се запълни заделяме нов масив с 2 пъти по-голяма дължина и копираме старият в него
- Ако масива остане запълнен на по-малко от 1/4 то създаваме нов с наполовина по-малък и копираме в него.

Свързан списък или масив за реализация?

• Със свързан списък за push и pull имаме гарантирана константна сложност в най-лошият случай.

 При реализацията със масив с променлива големина имаме амортизирана константна сложност на enqueue and dequeue

Задачи*

Числа на Hamming

Дефиниция

Казваме, че k е число на Hamming, ако простите делители на k са сред 2, 3 и 5, т.е. $k=2^{\times}3^{y}5^{z}$ за $x,y,z\geq0$.

Задача. Да се изведат в нарастващ ред първите n числа на Hamming.

*От лекциите на доц. Трифон Трифонов

Дефиниция

Казваме, че k е число на Hamming, ако простите делители на k са сред 2, 3 и 5, т.е. $k=2^x3^y5^z$ за $x,y,z\geq 0$.

Дефиниция

Казваме, че k е число на Hamming, ако простите делители на k са сред 2, 3 и 5, т.е. $k=2^{\times}3^{y}5^{z}$ за $x,y,z\geq0$.

Дефиниция

Казваме, че k е число на Hamming, ако простите делители на k са сред 2, 3 и 5, т.е. $k=2^x3^y5^z$ за $x,y,z\geq 0$.

Дефиниция

Казваме, че k е число на Hamming, ако простите делители на k са сред 2, 3 и 5, т.е. $k=2^{\times}3^{y}5^{z}$ за $x,y,z\geq0$.

Задача. Да се изведат в нарастващ ред първите n числа на Hamming. **Решение:**

1, 2, 3

Дефиниция

Казваме, че k е число на Hamming, ако простите делители на k са сред 2, 3 и 5, т.е. $k=2^{\times}3^{y}5^{z}$ за $x,y,z\geq0$.

Числа на Hamming: коректност

Да се докаже, че:

① се извеждат всички числа на Hamming

Доказателство.

Индукция: $2^x 3^y 5^z$ се извежда, понеже $2^{x-1} 3^y 5^z$ се извежда.

② се извеждат само числа на Hamming

Доказателство.

Ако извадим $2^x 3^y 5^z$, в опашките се записват $2^{x+1} 3^y 5^z$, $2^x 3^{y+1} 5^z$, $2^x 3^y 5^{z+1}$.

3 числата на Hamming се извеждат във възходящ ред

Доказателство.

Да допуснем, че на края на някоя опашка добавяме по-малко число. Тогава на предна стъпка трябва да сме добавили по-малко число!

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

Задача. Дадена е опашка q. Да се изключи от q най-малкият ѝ елемент, като всички останали елементи останат в опашката (не непременно в първоначалния ред).

		8		3.	8			3	
		\otimes			8	. S	33		8
				\otimes				\otimes	
			8		1	. 10	8		
\otimes			8		3	\otimes			\otimes
\otimes	\otimes		\otimes	\otimes		\otimes	\otimes		
	ė.	\otimes				\otimes	£ 5		\otimes
						\otimes			
			\otimes					\otimes	

7		\otimes			8				
		\otimes	17.		\otimes		0/0		8
				\otimes	2			\otimes	
			\otimes	2	1	2	\otimes		
\otimes			\otimes		2	\otimes			\otimes
\otimes	8	3 98 9 9	8	\otimes		\otimes	8		
3		\otimes		I F		\otimes	30	·	\otimes
						\otimes			
			8					\otimes	

		\otimes			\otimes				
		8	2.		8		15	8	8
				\otimes	2	3		\otimes	
			\otimes	2	1	2	\otimes		
\otimes			\otimes	3	2	\otimes			8
\otimes	\otimes		\otimes	\otimes	3	\otimes	\otimes		
	u e	\otimes				\otimes			\otimes
						\otimes			
			\otimes					\otimes	

<u> </u>		ē					Š.		
		8			8	ó			
		8			8	4			8
				\otimes	2	3	4	\otimes	
			\otimes	2	1	2	\otimes		
\otimes			\otimes	3	2	\otimes			\otimes
\otimes	\otimes		\otimes	\otimes	3	\otimes	\otimes		
		\otimes	8		4	\otimes			\otimes
						\otimes			
			8					\otimes	