```
In [1]: import pandas as pd import numpy as np
```

In [2]: df = pd.read_csv(r'E:\csv\water.csv')
df

Out[2]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon
0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783
1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013
2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419
3272	7.808856	193.553212	17329.802160	8.061362	NaN	392.449580	19.903225
3273	9.419510	175.762646	33155.578218	7.350233	NaN	432.044783	11.039070
3274	5.126763	230.603758	11983.869376	6.303357	NaN	402.883113	11.168946
3275	7.874671	195.102299	17404.177061	7.509306	NaN	327.459760	16.140368

3276 rows × 10 columns

In [3]: df.columns

Out[45]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279
5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735
6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695
7	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817
3267	8.989900	215.047358	15921.412018	6.297312	312.931022	390.410231	9.899115
3268	6.702547	207.321086	17246.920347	7.708117	304.510230	329.266002	16.217303
3269	11.491011	94.812545	37188.826022	9.263166	258.930600	439.893618	16.172755
3270	6.069616	186.659040	26138.780191	7.747547	345.700257	415.886955	12.067620
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419

2011 rows × 10 columns

In [48]: df = df.drop_duplicates()
df

Out[48]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279
5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735
6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695
7	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817
						•••	
3267	8.989900	215.047358	15921.412018	6.297312	312.931022	390.410231	9.899115
3268	6.702547	207.321086	17246.920347	7.708117	304.510230	329.266002	16.217303
3269	11.491011	94.812545	37188.826022	9.263166	258.930600	439.893618	16.172755
3270	6.069616	186.659040	26138.780191	7.747547	345.700257	415.886955	12.067620
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419

2011 rows × 10 columns

In [32]: df.head()

Out[32]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	
5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735	
6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695	
7	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817	~
4							•	

In [33]: df.describe()

Out[33]:

Organic_ca	Conductivity	Sulfate	Chloramines	Solids	Hardness	ph	
2011.00	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	2011.000000	count
14.35	426.526409	333.224672	7.134338	21917.441374	195.968072	7.085990	mean
3.32	80.712572	41.205172	1.584820	8642.239815	32.635085	1.573337	std
2.20	201.619737	129.000000	1.390871	320.942611	73.492234	0.227499	min
12.12	366.680307	307.632511	6.138895	15615.665390	176.744938	6.089723	25%
14.32	423.455906	332.232177	7.143907	20933.512750	197.191839	7.027297	50%
16.68	482.373169	359.330555	8.109726	27182.587067	216.441070	8.052969	75%
27.00	753.342620	481.030642	13.127000	56488.672413	317.338124	14.000000	max
>							4

```
In [34]: X=df.drop(['Potability'],axis=1)
X
```

Out[34]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279
5	5.584087	188.313324	28748.687739	7.544869	326.678363	280.467916	8.399735
6	10.223862	248.071735	28749.716544	7.513408	393.663396	283.651634	13.789695
7	8.635849	203.361523	13672.091764	4.563009	303.309771	474.607645	12.363817
3267	8.989900	215.047358	15921.412018	6.297312	312.931022	390.410231	9.899115
3268	6.702547	207.321086	17246.920347	7.708117	304.510230	329.266002	16.217303
3269	11.491011	94.812545	37188.826022	9.263166	258.930600	439.893618	16.172755
3270	6.069616	186.659040	26138.780191	7.747547	345.700257	415.886955	12.067620
3271	4.668102	193.681735	47580.991603	7.166639	359.948574	526.424171	13.894419

2011 rows × 9 columns

Out[35]:

	Potability
3	0
4	0
5	0
6	0
7	0
3267	1
3268	1
3269	1
3270	1
3271	1

2011 rows × 1 columns

```
In [36]: X = X.values
Out[36]: array([[8.31676588e+00, 2.14373394e+02, 2.20184174e+04, ...,
                 1.84365245e+01, 1.00341674e+02, 4.62877054e+00],
                [9.09222346e+00, 1.81101509e+02, 1.79789863e+04, ...,
                 1.15582794e+01, 3.19979927e+01, 4.07507543e+00
                [5.58408664e+00, 1.88313324e+02, 2.87486877e+04, ...,
                 8.39973464e+00, 5.49178618e+01, 2.55970823e+00],
                [1.14910109e+01, 9.48125452e+01, 3.71888260e+04, ...,
                 1.61727554e+01, 4.15585007e+01, 4.36926431e+00],
                 [6.06961576e+00, 1.86659040e+02, 2.61387802e+04, ...,
                 1.20676196e+01, 6.04199211e+01, 3.66971170e+00],
                [4.66810169e+00, 1.93681735e+02, 4.75809916e+04, ...,
                 1.38944185e+01, 6.66876948e+01, 4.43582091e+00]])
In [37]:
         Y = Y.values
Out[37]: array([[0],
                [0],
                [0],
                [1],
                [1],
                [1]], dtype=int64)
In [38]: from sklearn.model selection import train test split
         X train,X test,Y train,Y test=train test split(X,Y,test size=0.2,random state=0)
         X train
Out[38]: array([[8.73352533e+00, 2.03396130e+02, 2.45784212e+04, ...,
                 1.67019202e+01, 6.87930618e+01, 3.14920180e+00],
                [6.59244251e+00, 2.42480473e+02, 9.38123993e+03, ...,
                 1.40272968e+01, 7.09298795e+01, 3.06082735e+00],
                [6.81760838e+00, 2.19337429e+02, 2.75486142e+04, ...,
                 1.94867910e+01, 6.85687912e+01, 3.04829206e+00],
                [7.11757866e+00, 1.86199680e+02, 3.15289487e+04, ...,
                 1.90739955e+01, 7.59030721e+01, 4.33340174e+00],
                [1.02820680e+01, 1.98546363e+02, 8.10829732e+03, ...,
                 1.56616923e+01, 2.87706188e+01, 4.57292300e+00],
                [7.26965225e+00, 1.55157520e+02, 3.11613684e+04, ...,
                 1.73855150e+01, 7.31150528e+01, 3.78923676e+00]])
In [39]: X test.shape
Out[39]: (403, 9)
```

```
In [40]: Y train
Out[40]: array([[1],
                [0],
                [1],
                [0],
                [0],
                [1]], dtype=int64)
In [41]: from sklearn.tree import DecisionTreeClassifier
         dc=DecisionTreeClassifier()
         dc.fit(X_train,Y_train)
Out[41]: DecisionTreeClassifier()
In [42]:
         pred=dc.predict(X_test)
         pred
Out[42]: array([1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0,
                0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
                1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1,
                0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,
                1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
                0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1,
                1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0,
                1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,
                0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,
                0, 0, 0, 1, 1, 0, 0], dtype=int64)
In [43]: | from sklearn.metrics import accuracy_score
         accuracy=accuracy_score(Y_test,pred)
         accuracy
Out[43]: 0.6153846153846154
In [44]: from sklearn.metrics import confusion_matrix
         confusion matrix(Y test,pred)
Out[44]: array([[168,
                       84],
                       80]], dtype=int64)
                [71,
```

```
In [49]: df1 = pd.DataFrame({'Actual':Y_test.flatten(),'Predict':pred.flatten()})
df1
```

Out[49]:

	Actual	Predict
0	1	1
1	1	1
2	0	0
3	1	1
4	0	1
398	0	0
399	1	1
400	0	1
401	0	0
402	0	0

403 rows × 2 columns

```
In [50]: from sklearn import metrics
print("mean absolute error:", metrics.mean_absolute_error(Y_test,pred))
mean absolute error: 0.38461538461538464
In [ ]:
```