

Report No.: FR381602C

FCC RF Test Report

APPLICANT : Brightstar Corporation

EQUIPMENT: Mobile Phone

BRAND NAME : Avvio

MODEL NAME : Avvio 792S/Avvio 792

FCC ID : WVBA792X

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Aug. 16, 2013 and testing was completed on Aug. 27, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 1 of 66
Report Issued Date : Sep. 16, 2013

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SL	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Site	7
	1.7	Applied Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Pre-Scanned RF Power	9
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	11
	2.5	Support Unit used in test configuration and system	12
	2.6	Description of RF Function Operation Test Setup	12
	2.7	Measurement Results Explanation Example	12
3	TES1	RESULT	13
	3.1	6dB Bandwidth Measurement	
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	20
	3.5	Radiated Band Edges and Spurious Emission Measurement	33
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	64
4	LIST	OF MEASURING EQUIPMENT	65
5	UNC	ERTAINTY OF EVALUATION	66
Α	PPEN	DIX A. SETUP PHOTOGRAPHS	

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 2 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR381602C	Rev. 01	Initial issue of report	Sep. 16, 2013

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 3 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	45 247(4)	Conducted Band Edges	< 20 d D =	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.17 dB at 2388.570 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.87 dB at 0.330 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 4 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

1 General Description

1.1 Applicant

Brightstar Corporation

9725 NW 117th Ave., Miami, Florida, FL 33178, United States

1.2 Manufacturer

Konka Telecommunications Techenology co., LTD.

Overseas Chinese Town, Nanshan District, Shenzhen, China

1.3 Feature of Equipment Under Test

Product Feature							
Equipment	Mobile Phone						
Brand Name	Avvio						
Model Name	Avvio 792S/Avvio 792						
FCC ID	WVBA792X						
EUT supports Radios application	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink Only)/WLAN 2.4GHz 802.11bgn/Bluetooth v3.0 + EDR/Bluetooth v4.0						
HW Version	V1.2						
SW Version	KAAW991_SAPB_PT_EN_0.02.725_test						
EUT Stage	Production Unit						

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two different types of EUT. They are single SIM card mobile (Model Name: Avvio 792) and dual SIM card mobile (Model Name: Avvio 792S). The others are the same including circuit design, PCB board, structure and all components. It is special to declare. After pre-scan two types of EUT, we found test result of the sample that dual SIM (Model Name: Avvio 792S) was the worst, so we choose dual SIM card mobile to perform all test.
- **3.** For dual SIM card mobile, SIM1 supports GSM and WCDMA functions, and SIM2 only supports GSM function.

FCC ID: WVBA792X

Page Number : 5 of 66

Report Issued Date : Sep. 16, 2013

Report Version : Rev. 01

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard							
Tx/Rx Channel Frequency Range	802.11b/g/n : 2412 MHz ~ 2462 MHz						
	802.11b : 17.59 dBm (0.0574 W)						
Maximum Output Power to Antenna	802.11g : 20.01 dBm (0.1002 W)						
	802.11n HT20 : 19.83 dBm (0.0962 W)						
	802.11n HT40 : 17.29 dBm (0.0536 W)						
Antenna Type	FPC Antenna with gain -3.00 dBi						
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK)						
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)						

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 6 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

1.6 Testing Site

Test Site SPORTON INTERNATIONAL (SHENZHEN) INC.							
Test Site Location		trict, Shenzher	or of south, Sha n, Guangdong, F	he River west, Fengzeyuan warehouse, P.R.C.			
Test Site No.		Sporton Site N	No.	FCC Registration No.			
rest site No.	TH01-SZ	CO01-SZ	03CH01-SZ	831040			

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.4-2003

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 7 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400-2483.5 MHz	3	2422	9	2452
2400-2403.5 IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437		

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 8 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and the highest data rates of peak power were chosen for full test shown in the following tables.

		2.4GHz 802.11b RF Power (dBm)						
Channel	Frequency		DSSS Data Rate					
		1 Mbps	2 Mbps	5.5 Mbps	11 Mbps			
CH 01	2412 MHz	17.03	17.00	17.01	16.87			
CH 06	2437 MHz	17.05	17.03	16.98	16.89			
CH 11	2462 MHz	<mark>17.59</mark>	17.56	17.54	17.45			

		2.4GHz 802.11g RF Power (dBm)								
Channel	Frequency									
		6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps	
CH 01	2412 MHz	19.29	19.27	19.26	19.24	19.23	19.19	19.22	19.24	
CH 06	2437 MHz	19.59	19.57	19.56	19.53	19.49	19.52	19.46	19.48	
CH 11	2462 MHz	20.01	19.96	19.92	19.90	19.89	19.87	19.78	19.82	

				2.4GHz 802.11n HT20 RF Power (dBm)					
Channel	Frequency	OFDM Data Rate							
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
CH 01	2412 MHz	19.19	19.16	19.15	19.12	19.10	19.15	19.13	19.07
CH 06	2437 MHz	19.63	19.60	19.53	19.56	19.52	19.58	19.61	19.62
CH 11	2462 MHz	<mark>19.83</mark>	19.70	19.73	19.71	19.66	19.69	19.68	19.63

		2.4GHz 802.11n HT40 RF Power (dBm)									
Channel	Frequency	uency OFDM Data R						9			
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
CH 03	2422 MHz	16.86	15.79	15.52	15.37	15.29	15.08	15.09	15.34		
CH 06	2437 MHz	16.95	15.97	15.63	15.44	15.37	15.49	15.43	15.52		
CH 09	2452 MHz	<mark>17.29</mark>	16.23	15.94	15.71	15.63	15.42	15.43	15.64		

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 9 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
		802.11b	1 Mbps	1/6/11
	6dB BW	802.11g	6 Mbps	1/6/11
	Power Spectral Density	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/6/11
	Output Barrer	802.11g	6 Mbps	1/6/11
	Output Power	802.11n HT20	MCS0	1/6/11
Conducted		802.11n HT40	MCS0	3/6/9
TCs		802.11b	1 Mbps	1/11
	Outdoord Board Educ	802.11g	6 Mbps	1/11
	Conducted Band Edge	802.11n HT20	MCS0	1/11
		802.11n HT40	MCS0	3/9
		802.11b	1 Mbps	1/6/11
	Conducted Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/11
	Dedicted David Educ	802.11g	6 Mbps	1/11
	Radiated Band Edge	802.11n HT20	MCS0	1/11
Radiated		802.11n HT40	MCS0	3/9
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
AC				
Conducted	Mode 1 : GSM850 Idle + B	luetooth Link + WLAN Link + E	Earphone + USB Cable (Char	ging from Adapter)
Emission				

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 10 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Report No.: FR381602C

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-3320-2398 FCC ID: WVBA792X

Page Number : 11 of 66 Report Issued Date : Sep. 16, 2013 Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-Link	DIR-612	FCC DoC	N/A	Unshielded, 1.8 m
						AC I/P:
	Natabask	DELL	P08S	FCC DoC	NI/A	Unshielded, 1.8 m
4.	Notebook	DELL	P085	FCC DOC	N/A	DC O/P:
						Shielded, 1.8 m
5.	Bluetooth Earphone	Nokia	BH-108	FCC DoC	N/A	N/A

2.6 Description of RF Function Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 7.5 + 10 = 17.5 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

FCC ID: WVBA792X

Page Number : 13 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Test Band :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	9.56	0.5	Pass
11b	1Mbps	1	6	2437	10.00	0.5	Pass
11b	1Mbps	1	11	2462	10.00	0.5	Pass
11g	6Mbps	1	1	2412	15.64	0.5	Pass
11g	6Mbps	1	6	2437	15.32	0.5	Pass
11g	6Mbps	1	11	2462	15.80	0.5	Pass
HT20	MCS0	1	1	2412	16.08	0.5	Pass
HT20	MCS0	1	6	2437	15.64	0.5	Pass
HT20	MCS0	1	11	2462	15.96	0.5	Pass
HT40	MCS0	1	3	2422	36.32	0.5	Pass
HT40	MCS0	1	6	2437	36.32	0.5	Pass
HT40	MCS0	1	9	2452	36.00	0.5	Pass

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 14 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Report No.: FR381602C

: 15 of 66

Page Number

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755-3320-2398 Report Issued Date : Sep. 16, 2013 FCC ID: WVBA792X Report Version : Rev. 01

FCC RF Test Report

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	17.03	30	-3.00	Pass
11b	1Mbps	1	6	2437	17.05	30	-3.00	Pass
11b	1Mbps	1	11	2462	17.59	30	-3.00	Pass
11g	6Mbps	1	1	2412	19.29	30	-3.00	Pass
11g	6Mbps	1	6	2437	19.59	30	-3.00	Pass
11g	6Mbps	1	11	2462	20.01	30	-3.00	Pass
HT20	MCS0	1	1	2412	19.19	30	-3.00	Pass
HT20	MCS0	1	6	2437	19.63	30	-3.00	Pass
HT20	MCS0	1	11	2462	19.83	30	-3.00	Pass
HT40	MCS0	1	3	2422	16.86	30	-3.00	Pass
HT40	MCS0	1	6	2437	16.95	30	-3.00	Pass
HT40	MCS0	1	9	2452	17.29	30	-3.00	Pass

Note: Measured power (dBm) has offset with cable loss.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 16 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

FCC RF Test Report

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	24~26℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.09	14.37	30	-3.00	Pass
11b	1Mbps	1	6	2437	0.09	14.41	30	-3.00	Pass
11b	1Mbps	1	11	2462	0.09	14.90	30	-3.00	Pass
11g	6Mbps	1	1	2412	0.50	9.95	30	-3.00	Pass
11g	6Mbps	1	6	2437	0.50	11.96	30	-3.00	Pass
11g	6Mbps	1	11	2462	0.50	10.46	30	-3.00	Pass
HT20	MCS0	1	1	2412	0.53	9.84	30	-3.00	Pass
HT20	MCS0	1	6	2437	0.53	11.92	30	-3.00	Pass
HT20	MCS0	1	11	2462	0.53	10.24	30	-3.00	Pass
HT40	MCS0	1	3	2422	1.00	5.85	30	-3.00	Pass
HT40	MCS0	1	6	2437	1.00	5.95	30	-3.00	Pass
HT40	MCS0	1	9	2452	1.00	6.26	30	-3.00	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 17 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- Measure and record the results in the test report.

3.3.4 Test Setup

 SPORTON INTERNATIONAL (SHENZHEN) INC.
 F

 TEL: 86-755-3320-2398
 F

 FCC ID: WVBA792X
 F

Page Number : 18 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Fly Chen	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-8.92	8	-3.00	Pass
11b	1Mbps	1	6	2437	-8.73	8	-3.00	Pass
11b	1Mbps	1	11	2462	-7.58	8	-3.00	Pass
11g	6Mbps	1	1	2412	-14.72	8	-3.00	Pass
11g	6Mbps	1	6	2437	-12.29	8	-3.00	Pass
11g	6Mbps	1	11	2462	-14.29	8	-3.00	Pass
HT20	MCS0	1	1	2412	-14.83	8	-3.00	Pass
HT20	MCS0	1	6	2437	-13.46	8	-3.00	Pass
HT20	MCS0	1	11	2462	-14.78	8	-3.00	Pass
HT40	MCS0	1	3	2422	-23.02	8	-3.00	Pass
HT40	MCS0	1	6	2437	-22.57	8	-3.00	Pass
HT40	MCS0	1	9	2452	-23.44	8	-3.00	Pass

Note: Measured power density (dBm) has offset with cable loss.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 19 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Report No.: FR381602C

3.4 Conducted Band Edges and Spurious Emission Measurement

Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 **Measuring Instruments**

See list of measuring instruments of this test report.

3.4.3 **Test Procedures**

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 4. kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: WVBA792X

Page Number : 20 of 66 Report Issued Date: Sep. 16, 2013 Report Version : Rev. 01

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Fly Chen

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 21 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Chen

Page Number : 22 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Fly Chen

Page Number : 23 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Fly Chen

Page Number : 24 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Chen

Page Number : 25 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Fly Chen

Page Number : 26 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Fly Chen

Page Number : 27 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Chen

Page Number : 28 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Fly Chen

Page Number : 29 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	03	Test Engineer :	Fly Chen

Page Number : 30 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Chen

Page Number : 31 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	09	Test Engineer :	Fly Chen

Page Number : 32 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 33 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.989	8.380	0.119	300Hz
802.11g	89.186	1.402	0.713	1kHz
2.4GHz 802.11n HT20	88.498	1.308	0.765	1kHz
2.4GHz 802.11n HT40	79.469	0.658	1.520	3kHz

802.11b Duty Cycle

Date: 24.AUG.2013 14:48:06

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 35 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 36 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 37 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Report No.: FR381602C

2.4GHz 802.11n HT40 Duty Cycle

Note:

The total loss is 17.5dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer by setting into the amplitude level offset. That means the measured result shown on the spectrum analyzer has added the total loss and been compliance with the limit line.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 38 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 39 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 40 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	01	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2389.02	57.1	-16.9	74	49.16	32.14	5.59	29.79	106	261	Peak	
2385.69	48.34	-5.66	54	40.4	32.14	5.59	29.79	106	261	Average	

	ANTENNA POLARITY : VERTICAL											
Frequency	requency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2386.14	50.7	-23.3	74	42.76	32.14	5.59	29.79	114	291	Peak		
2387.31	42.15	-11.85	54	34.21	32.14	5.59	29.79	114	291	Average		

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	11	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2484.01	54.06	-19.94	74	45.84	32.27	5.71	29.76	129	234	Peak	
2483.5	46.27	-7.73	54	38.05	32.27	5.71	29.76	129	234	Average	

	ANTENNA POLARITY : VERTICAL												
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2483.56	51.35	-22.65	74	43.13	32.27	5.71	29.76	136	291	Peak			
2483.5	43.39	-10.61	54	35.17	32.27	5.71	29.76	136	291	Average			

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID: WVBA792X

Page Number : 41 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	01	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2383.35	60.43	-13.57	74	52.51	32.12	5.59	29.79	200	264	Peak		
							1	1	1	1		

	ANTENNA POLARITY: VERTICAL											
Frequency	Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Rem											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	57.18	-16.82	74	49.24	32.14	5.59	29.79	200	286	Peak		
2389.74	44.37	-9.63	54	36.43	32.14	5.59	29.79	200	286	Average		

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	11	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL											
Frequency	requency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.19	64.14	-9.86	74	55.92	32.27	5.71	29.76	193	264	Peak		
2483.86	47.47	-6.53	54	39.25	32.27	5.71	29.76	193	264	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.13	54.93	-19.07	74	46.71	32.27	5.71	29.76	200	277	Peak		
2483.68	40.42	-13.58	54	32.2	32.27	5.71	29.76	200	277	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page NumberTEL: 86-755-3320-2398Report IssueFCC ID: WVBA792XReport Version

Page Number : 42 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	01	Test Engineer :	Gavin Chen

Report No.: FR381602C

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	64.81	-9.19	74	56.87	32.14	5.59	29.79	107	270	Peak		

	ANTENNA POLARITY: VERTICAL										
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark										
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2390.01	60.51	-13.49	74	52.53	32.14	5.62	29.78	200	287	Peak	
2389.74	44.95	-9.05	54	37.01	32.14	5.59	29.79	200	287	Average	

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	11	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.71	69.7	-4.3	74	61.48	32.27	5.71	29.76	100	239	Peak		
2483.59	48.16	-5.84	54	39.94	32.27	5.71	29.76	100	239	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.53	63.91	-10.09	74	55.69	32.27	5.71	29.76	200	272	Peak		
2483.74	42.75	-11.25	54	34.53	32.27	5.71	29.76	200	272	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755-3320-2398

 TEL: 86-755-3320-2398
 Report Issued Date : Sep. 16, 2013

 FCC ID: WVBA792X
 Report Version : Rev. 01

Page Number

: 43 of 66

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	49~53%
Test Channel :	03	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2387.85	63.02	-10.98	74	55.08	32.14	5.59	29.79	105	263	Peak		
2388.57	50.83	-3.17	54	42.89	32.14	5.59	29.79	105	263	Average		
2484.91	56.9	-17.1	74	48.68	32.27	5.71	29.76	105	263	Peak		
2483.77	42.23	-11.77	54	34.01	32.27	5.71	29.76	105	263	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.02	65.01	-8.99	74	57.07	32.14	5.59	29.79	200	293	Peak		
2388.39	49.48	-4.52	54	41.54	32.14	5.59	29.79	200	293	Average		
2493.91	51.51	-22.49	74	43.23	32.29	5.74	29.75	200	293	Peak		
2485.96	38.34	-15.66	54	30.12	32.27	5.71	29.76	200	293	Average		

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 44 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	49~53%
Test Channel :	09	Test Engineer :	Gavin Chen

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2390.01	51.9	-22.1	74	43.92	32.14	5.62	29.78	107	258	Peak		
2388.84	40.55	-13.45	54	32.61	32.14	5.59	29.79	107	258	Average		
2485.84	61.54	-12.46	74	53.32	32.27	5.71	29.76	107	258	Peak		
2483.56	44.99	-9.01	54	36.77	32.27	5.71	29.76	107	258	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2377.14	46.74	-27.26	74	38.82	32.12	5.59	29.79	137	291	Peak		
2387.85	37.13	-16.87	54	29.19	32.14	5.59	29.79	137	291	Average		
2485.27	57.36	-16.64	74	49.14	32.27	5.71	29.76	137	291	Peak		
2483.5	41.04	-12.96	54	32.82	32.27	5.71	29.76	137	291	Average		

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 45 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	802.	.11b	Temperature :	23~25°C			
Test Channel :	01		Relative Humidity :	49~53%			
Test Engineer :	Gav	in Chen	Polarization :	Horizontal			
	1.	2412 MHz is fundamental signal which can be ignored.					
	2.	7236MHz is not within	a restricted band, and	d its limit line is 20dB below the			
Remark :		highest emission level. For example, $109dB\mu V/m - 20dB = 89dB\mu V/m$.					
	3.	Average measurement was not performed if peak level went lower than the					
		average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	109	-	-	100.99	32.17	5.62	29.78	106	261	Peak
2412	106.53	-	-	98.52	32.17	5.62	29.78	106	261	Average
4824	39.99	-34.01	74	55.21	33.68	8.36	57.26	105	198	Peak
7236	40.38	-48.62	89	52.36	35.29	9.97	57.24	189	185	Peak

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	01	Relative Humidity :	49~53%				
Test Engineer :	Gavin Chen	Polarization :	Vertical				
	. 2412 MHz is fundamental signal which can be ignored.						
	2. 7236MHz is not within a	a restricted band, and	its limit line is 20dB below the				
Remark :	highest emission level.	highest emission level.					
	3. Average measurement	Average measurement was not performed if peak level went lower than th					
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	102.64	-	-	94.63	32.17	5.62	29.78	114	291	Peak
2412	100.57	-	-	92.56	32.17	5.62	29.78	114	291	Average
4824	39	-35	74	54.22	33.68	8.36	57.26	105	198	Peak
7236	40.01	-42.63	82.64	51.99	35.29	9.97	57.24	189	185	Peak

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 46 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Horizontal					
	1. 2437 MHz is fundament	2437 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	107.85	-	-	99.75	32.22	5.65	29.77	133	249	Peak
2437	105.44	-	-	97.34	32.22	5.65	29.77	133	249	Average
4874	37.86	-36.14	74	52.82	33.8	8.41	57.17	145	265	Peak
7311	40.17	-33.83	74	52.03	35.31	9.99	57.16	174	321	Peak

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the						
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	102.2	-	-	94.1	32.22	5.65	29.77	136	291	Peak
2437	100.16	-	-	92.06	32.22	5.65	29.77	136	291	Peak
4874	38.53	-35.47	74	53.49	33.8	8.41	57.17	145	265	Peak
7311	40.63	-33.37	74	52.49	35.31	9.99	57.16	174	321	Peak

Page Number : 47 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Horizontal					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	105.99	-	-	97.83	32.24	5.68	29.76	129	233	Peak
2462	103.57	-	-	95.41	32.24	5.68	29.76	129	233	Average
4924	37.92	-36.08	74	52.62	33.92	8.46	57.08	146	347	Peak
7386	40.07	-33.93	74	51.75	35.35	10.02	57.05	145	274	Peak

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the						
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	102.11	-	-	93.95	32.24	5.68	29.76	135	291	Peak
2462	100.19	-	-	92.03	32.24	5.68	29.76	135	291	Average
4924	38.31	-35.69	74	53.01	33.92	8.46	57.08	146	347	Peak
7386	40.6	-33.4	74	52.28	35.35	10.02	57.05	145	274	Peak

Page Number : 48 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802	2.11g	Temperature :	23~25°C			
Test Channel :	01		Relative Humidity :	49~53%			
Test Engineer :	Ga	vin Chen	Polarization :	Horizontal			
	1.	2412 MHz is fundamental signal which can be ignored.					
	2.	7236MHz is not within	a restricted band, and	its limit line is 20dB below the			
Remark :		highest emission level.					
	3.	Average measurement	was not performed if	peak level went lower than the			
		average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
	,,	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	106.06	-	-	98.05	32.17	5.62	29.78	200	264	Peak
2412	97.66	-	-	89.65	32.17	5.62	29.78	200	264	Average
4824	39.99	-34.01	74	55.21	33.68	8.36	57.26	105	198	Peak
7236	40.38	-45.68	86.06	52.36	35.29	9.97	57.24	189	185	Peak

Test Mode :	802	2.11g	Temperature :	23~25°C			
Test Channel :	01		Relative Humidity :	49~53%			
Test Engineer :	Ga	vin Chen	Polarization :	Vertical			
	1.	. 2412 MHz is fundamental signal which can be ignored.					
	2.	7236MHz is not within	a restricted band, and	its limit line is 20dB below the			
Remark :		highest emission level.					
	3.	Average measurement	was not performed if	peak level went lower than the			
		average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
((15) ()	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	102.3	-	-	94.29	32.17	5.62	29.78	200	285	Peak
2412	93.36	-	-	85.35	32.17	5.62	29.78	200	285	Average
4824	39	-35	74	54.22	33.68	8.36	57.26	105	198	Peak
7236	40.01	-42.29	82.3	51.99	35.29	9.97	57.24	189	185	Peak

Page Number : 49 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	49~53%				
Test Engineer :	Gavin Chen	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.67	-	-	100.57	32.22	5.65	29.77	133	239	Peak
2437	99.75	-	-	91.65	32.22	5.65	29.77	133	239	Average
4874	37.86	-36.14	74	52.82	33.8	8.41	57.17	145	265	Peak
7311	40.17	-33.83	74	52.03	35.31	9.99	57.16	174	321	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	103.2	-	-	95.1	32.22	5.65	29.77	200	289	Peak
2437	94.2	-	-	86.1	32.22	5.65	29.77	200	289	Average
4874	38.53	-35.47	74	53.49	33.8	8.41	57.17	145	265	Peak
7311	40.63	-33.37	74	52.49	35.31	9.99	57.16	174	321	Peak

Page Number : 50 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	49~53%				
Test Engineer :	Gavin Chen	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	106.35	-	-	98.19	32.24	5.68	29.76	192	264	Peak
2462	97.88	-	-	89.72	32.24	5.68	29.76	192	264	Average
4924	37.92	-36.08	74	52.62	33.92	8.46	57.08	146	347	Peak
7386	40.07	-33.93	74	51.75	35.35	10.02	57.05	145	274	Peak

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	49~53%				
Test Engineer :	Gavin Chen	Polarization :	Vertical				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	100.24	-	-	92.08	32.24	5.68	29.76	200	276	Peak
2462	91.98	-	-	83.82	32.24	5.68	29.76	200	276	Average
4924	38.31	-35.69	74	53.01	33.92	8.46	57.08	146	347	Peak
7386	40.6	-33.4	74	52.28	35.35	10.02	57.05	145	274	Peak

Page Number : 51 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4	GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	01		Relative Humidity :	49~53%				
Test Engineer :	Ga	vin Chen	Polarization :	Horizontal				
	1.	2412 MHz is fundamental signal which can be ignored.						
	2.	7236MHz is not within	7236MHz is not within a restricted band, and its limit line is 20dB below the					
Remark :		highest emission level.						
	3.	Average measurement	Average measurement was not performed if peak level went lower than the					
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2412	106.22	-	- -	98.21	32.17	5.62	29.78	106	269	Peak
2412	98.01	-	-	90	32.17	5.62	29.78	106	269	Average
4824	39.99	-34.01	74	55.21	33.68	8.36	57.26	105	198	Peak
7236	40.38	-45.84	86.22	52.36	35.29	9.97	57.24	189	185	Peak

Test Mode :	2.4	GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	01		Relative Humidity :	49~53%				
Test Engineer :	Ga	vin Chen	Polarization :	Vertical				
	1.	1. 2412 MHz is fundamental signal which can be ignored.						
	2.	7236MHz is not within	a restricted band, and	its limit line is 20dB below the				
Remark :		highest emission level.						
	3.	Average measurement	was not performed if	peak level went lower than the				
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	101.55	-	-	93.54	32.17	5.62	29.78	200	286	Peak
2412	93.05	-	-	85.04	32.17	5.62	29.78	200	286	Average
4824	39	-35	74	54.22	33.68	8.36	57.26	105	198	Peak
7236	40.01	-41.54	81.55	51.99	35.29	9.97	57.24	189	185	Peak

Page Number : 52 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Horizontal					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	107.1	-	-	99	32.22	5.65	29.77	200	265	Peak
2437	98.29	-	-	90.19	32.22	5.65	29.77	200	265	Average
4874	37.86	-36.14	74	52.82	33.8	8.41	57.17	145	265	Peak
7311	40.17	-33.83	74	52.03	35.31	9.99	57.16	174	321	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the						
	average limit.	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	102.92	-	-	94.82	32.22	5.65	29.77	200	280	Peak
2437	93.42	-	-	85.32	32.22	5.65	29.77	200	280	Average
4874	38.53	-35.47	74	53.49	33.8	8.41	57.17	145	265	Peak
7311	40.63	-33.37	74	52.49	35.31	9.99	57.16	174	321	Peak

Page Number : 53 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	49~53%				
Test Engineer :	Gavin Chen	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	105.32	-	-	97.16	32.24	5.68	29.76	100	239	Peak
2462	97.12	-	-	88.96	32.24	5.68	29.76	100	239	Average
4924	37.92	-36.08	74	52.62	33.92	8.46	57.08	146	347	Peak
7386	40.07	-33.93	74	51.75	35.35	10.02	57.05	145	274	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2462 MHz is fundament	tal signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	101.11	-	-	92.95	32.24	5.68	29.76	200	271	Peak
2462	92.67	-	-	84.51	32.24	5.68	29.76	200	271	Average
4924	38.31	-35.69	74	53.01	33.92	8.46	57.08	146	347	Peak
7386	40.6	-33.4	74	52.28	35.35	10.02	57.05	145	274	Peak

Page Number : 54 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	03	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Horizontal					
	1. 2422 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
111.54	16.54	-26.96	43.5	33.64	12.2	1.33	30.63	-	-	Peak
171.75	25.4	-18.1	43.5	44.62	9.63	1.58	30.43	200	360	Peak
237.09	23.75	-22.25	46	40.58	11.57	1.81	30.21	-	-	Peak
478.5	27.71	-18.29	46	37.45	17.2	2.47	29.41	-	-	Peak
741.7	26.26	-19.74	46	31.66	20.56	3.05	29.01	-	-	Peak
942.6	27.07	-18.93	46	30.28	22.1	3.44	28.75	-	-	Peak
2422	101.47	-	-	93.4	32.19	5.65	29.77	104	262	Peak
2422	93.21	-	-	85.14	32.19	5.65	29.77	104	262	Average
4844	38.84	-35.16	74	53.97	33.72	8.38	57.23	126	248	Peak
7266	40.05	-33.95	74	51.97	35.3	9.98	57.2	164	305	Peak

Page Number : 55 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	03	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2422 MHz is fundament	2422 MHz is fundamental signal which can be ignored.						
Remark: 2. Average measurement was not performed if peak level went low								
	average limit.	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
112.35	18.47	-25.03	43.5	35.62	12.15	1.33	30.63	-	-	Peak
177.15	18.8	-24.7	43.5	38.55	9.05	1.61	30.41	-	-	Peak
274.89	22.37	-23.63	46	37.72	12.8	1.93	30.08	-	-	Peak
418.3	27.85	-18.15	46	38.38	16.74	2.34	29.61	-	-	Peak
743.1	26.18	-19.82	46	31.52	20.62	3.05	29.01	-	-	Peak
934.9	28.41	-17.59	46	31.82	21.92	3.42	28.75	100	360	Peak
2422	97.32	-	-	89.25	32.19	5.65	29.77	200	293	Peak
2422	89.14	-	-	81.07	32.19	5.65	29.77	200	293	Average
4844	38.66	-35.34	74	53.79	33.72	8.38	57.23	100	300	Peak
7266	39.69	-34.31	74	51.61	35.3	9.98	57.2	200	100	Peak

Page Number : 56 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Horizontal					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	98.6	-	-	90.5	32.22	5.65	29.77	156	253	Peak
2437	89.37	-	-	81.27	32.22	5.65	29.77	156	253	Average
4874	38.77	-35.23	74	53.73	33.8	8.41	57.17	132	224	Peak
7311	40.49	-33.51	74	52.35	35.31	9.99	57.16	130	300	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	94.83	-	-	86.73	32.22	5.65	29.77	136	290	Peak
2437	86.55	-	-	78.45	32.22	5.65	29.77	136	290	Average
4874	39.11	-34.89	74	54.07	33.8	8.41	57.17	200	360	Peak
7311	40.04	-33.96	74	51.9	35.31	9.99	57.16	119	347	Peak

Page Number : 57 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	09	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Horizontal					
	1. 2452 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	97.99	-	-	89.85	32.22	5.68	29.76	107	258	Peak
2452	89.57	-	-	81.43	32.22	5.68	29.76	107	258	Average
4904	39.05	-34.95	74	53.84	33.88	8.44	57.11	125	360	Peak
7356	41.05	-32.95	74	52.81	35.33	10.01	57.1	127	315	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C					
Test Channel :	09	Relative Humidity :	49~53%					
Test Engineer :	Gavin Chen	Polarization :	Vertical					
	1. 2452 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	95.34	-	-	87.2	32.22	5.68	29.76	136	290	Peak
2452	86.55	-	-	78.41	32.22	5.68	29.76	136	290	Average
4904	38.65	-35.35	74	53.44	33.88	8.44	57.11	125	214	Peak
7356	40.12	-33.88	74	51.88	35.33	10.01	57.1	127	315	Peak

Page Number : 58 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

FCC ID : WVBA792X

Page Number : 59 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

Report Version : Rev. 01

Report No.: FR381602C

3.6.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 60 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 61 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode :	Mode 1		Temperatu	re:	23~24°ℂ			
Test Engineer :	Henry Chen		Relative Humidity :		49~50%			
Test Voltage :	120Vac / 60Hz		Phase :	Phase :		Neutral		
Function Type :	GSM850 Idle from Adapter)	+ Bluetooth L	ink + WLAN	Link + Ea	rphone	+ USB Ca	able (Charging	
100L	evel (dBuV)	. ,						
90								
80			1					
70			-					
60				0 8 0 0	2 100 200	FCC 15C_C	P	
	0.4					FCC 15C_AV	'G	
50	a with the	10 m m	alleg arts art, as allette to a all the	nach & White at		J. A.	6	
40	1 M M M M M M M M M M M M M M M M M M M	WAY MASKET WAS	78/2022/2268/30	324	white the state of	Water Hall	(de la	
30	AND IN THE	9 11 12 15	17 1921 2227 29	383				
30						100	200	
20								
10					2 (03/0)			
0								
0.	15 .2 .	5 1	2 Frequency (MHz	5	10	20	30	
Site Conditio	: CO01-SZ on: FCC 15C_QP I	ISN_N_2000601	NEUTRAL					
	Freq Leve		mit Read Line Level		Cable Loss R	emark		
-	MHz dBu	V dB d	lBuV dBuV	dB	dB _		<u>.</u>	
1,527 186								
1 *	0.33 41.4		31.39 33.35 38.09		10.07 A			
3	0.33 48.1 0.37 39.5		38.09 3.47 29.50		10.07 Q 10.07 A			
4			1.47 38.10		10.07 A	-		
5			.68 26.09		10.08 A			
6	0.41 45.5	9 -12.09 57	.68 35.49	0.02	10.08 Q	P		
7	0.49 35.1		.23 25.00		10.08 A	The state of the s		
8			.23 34.00		LO.08 Q			
9	0.68 32.1		22.00		10.10 A			
10 11		2 -12.68 56 3 -16.17 46						
12		3 -14.77 56						
13		4 -19.06 46						
14		4 -15.46 56						
15	1.24 27.2	5 -18.75 46	.00 17.11	0.02				
16		5 -16.45 56						
17		5 -17.55 46			10.12 A			
18		5 -15.25 56						
19 20		6 -17.04 46				_		
21		6 -15.84 56 7 -16.63 46						
22		7 -16.23 56						

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 62 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

Test Mode: Mode 1 Temperature: **23~24**℃ Test Engineer : Henry Chen Relative Humidity: 49~50% 120Vac / 60Hz Test Voltage: Phase: Neutral GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging Function Type: from Adapter) 100 Level (dBuV) Date: 2013-08-22 Time: 16:54:59 90 80 70 FCC 15C_QP 60 FCC 15C_ 50 40 30 20 10 0^L.15 .2 20 10 Frequency (MHz) : C001-SZ Condition: FCC 15C QP LISN N 2000601 NEUTRAL Over Limit Read LISN Cable Line Level Factor Freq Level Limit Loss Remark dB dBuV dBuV dB dBuV MHz dB 2.24 29.10 -16.90 46.00 18.90 2.24 38.70 -17.30 56.00 28.50 0.04 10.16 Average 0.04 10.16 QP 23 24 2.35 29.51 -16.49 46.00 19.30 0.04 10.17 Average 2.35 39.21 -16.79 56.00 29.00 0.04 10.17 QP 26 2.46 29.21 -16.79 46.00 19.00 0.04 10.17 Average 38.71 -17.29 2.46 56.00 28.50 0.04 10.17 QP 28 29 30 3.01 29.23 -16.77 3.01 37.53 -18.47 46.00 18.99 56.00 27.29 0.05 10.19 Average 10.19 QP 4.29 29.26 -16.74 46.00 19.00 31 0.07 10.19 Average 32 4.29 38.26 -17.74 56.00 28.00 0.07 10.19 QP 4.43 29.56 -16.44 46.00 19.30 10.19 Average 33 0.07 34 4.43 38.26 -17.74 56.00 28.00 0.07 10.19 QP 27.27 36.34 -13.66 50.00 25.01 27.27 43.74 -16.26 60.00 32.41 0.90 10.43 Average 0.90 10.43 QP 35 36

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 63 of 66
Report Issued Date : Sep. 16, 2013
Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-3320-2398 FCC ID: WVBA792X Page Number : 64 of 66
Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

Report Version : Rev. 01

List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Aug. 27, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Aug. 27, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Aug. 27, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
AC LISN	ETS-LINDGRE N	3816/2SH	00103912	0.1MHz~108MH z	Feb. 28, 2013	Aug. 22, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	ETS-LINDGRE N	3816/2SH	00103892	0.1MHz~108MH z	Feb. 28, 2013	Aug. 22, 2013	Feb. 27, 2014	Conduction (CO01-SZ)
ESCIO TEST Receiver	R&S	1142.8007.03	100724	9kHz-3GHz	Mar. 08, 2013	Aug. 22, 2013	Mar. 07, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891N/A	N/A	Oct. 12, 2012	Aug. 22, 2013	Oct. 11, 2013	Conduction (CO01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	Apr. 04, 2013	Aug. 24, 2013	Apr. 03, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 12, 2012	Aug. 24, 2013	Oct. 11, 2013	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz ~2GHz	Nov. 03, 2012	Aug. 24, 2013	Nov. 02, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz-3000MHz GAIN 30db	Mar. 28, 2013	Aug. 24, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Aug. 24, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Horn	Schwarzbeck	BBHA9170	BBHA9170 249	14GHz~40GHz	Nov. 23, 2012	Aug. 24, 2013	Nov. 22, 2013	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz-30MHz	Oct. 22, 2012	Aug. 24, 2013	Oct. 21, 2013	Radiation (03CH01-SZ)
Turn Table	EM Electronice	EM 1000	N/A	0 ~ 360 degree	N/A	Aug. 24, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronice	EM 1000	N/A	1 m - 4 m	N/A	Aug. 24, 2013	N/A	Radiation (03CH01-SZ)

TEL: 86-755-3320-2398 FCC ID: WVBA792X

: 65 of 66 Page Number Report Issued Date : Sep. 16, 2013

Report No.: FR381602C

Report Version : Rev. 01

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of	2.26
Confidence of 95% (U = 2Uc(y))	2.20

Report No.: FR381602C

<u>Uncertainty of Radiated Emission Measurement (30MHz ~ 1000MHz)</u>

Measuring Uncertainty for a Level of	2.54
Confidence of 95% (U = 2Uc(y))	2.54

Uncertainty of Radiated Emission Measurement (1GHz ~ 40GHz)

Measuring Uncertainty for a Level of	4.72
Confidence of 95% (U = 2Uc(y))	4.72

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 66 of 66TEL: 86-755-3320-2398Report Issued Date: Sep. 16, 2013FCC ID: WVBA792XReport Version: Rev. 01