7 FA->RE

2) State-Elimination Method =

Step 1: - Simplify in such a way that the transition graph contain only one install a state and one final state.

Step 2 i= Shoplify the transsition graph is such a way it has different inflat and Final States

$$\rightarrow 0 \Rightarrow \rightarrow 0 \neq 0$$

Parallel edges (going in same direction)

State Elimphation :=

a)
$$A$$
 B C

Step 5 = repeat step 4 only 2 states remained In one of the Following forms-15tep 5 = a) 1 1 0 2 3 => 1 x 2 3 * => 7 (23) * 2 74 (n+243) 124 * Precedence order = > Kleene closure 1 = conscatternation a union 1 the (aatba)b*bb

> R.E ->F.A

State creation method :=

R. E without operators

F.A

~= 0

0 0

~- ^

->> 6

-X)~(0)

· = a

RE with operators

) mt

a) 73

3) ~*

* NFA oubten bar

E Transition & "E-NFA"

7 p & Annihilator over concatenation.

* E-NFA = NFA which has E Transitions.

=> E-NFA to NFA conversion =

=> E FS not part of the Plp symbol

0	1	2
202,22	2,22	92
-	2,22	22
	-	9_
	909,92	

on reading

The states from aubich Tepsilon (c)

Transpersons are where to final state of

we reach the Final state then that

State about read the E is considered

as Final state

Regular Languages:=

A Language for consent a regular expression is constructed a Firste Automata

Albroperties of Regular Languages.

- 12= {ambn | mzn}

Along ablts the pattern when memorizing concept comes then Finite Automata & minimate for the sufficient.

there, in the above, pattern is considered and we need to memorize the m. so, it is non-Regular Language

If the Language fitself is Finite to even even be the condition, even if there is memorizing concept also, it is a regular Language (upper Limites Fito Guests)

1001 Ed and 2001-3 51 611 1- 31

- > All intirste 5things are Languages may be
 Regular may not be regular, [
- > All Fiste Languages are always Regular.

A Language for which finite automata

can be constructed.

Regular Languages :=

Not regular Not upper rendet

15= fambro | m≥n}

Not requiar Language

L6 = fall p 15 Prense but pe 100}

Not all Profisse set are not regular Languages (all tissete are regular Languages)

-Exc:= 1= {anso m, 0>0}

	0	1
-> A	E	В
B	· C	9
* (C	A
D	G	C
E	F	H
F	G	C
61	F	G
H	C	9

1) zero Equilalent State Sois [A,B,C,D,E,F,G,H]

differentiate between final and non-final

Level 1: 503 [A, B, D, D, E, F, G, H]

Level 2: {c} {B,H} {A,D, E, F,G}

If on all the lips the behanfour is same then they are not separated.

on 11

Level 3: hc} {B, H} {D, F} {A, E, G1}

Typot defferent table.

(A, E, G) OD'O' Level 4: { C} {B, H} {D, F} {A, E} {G}

A and E on I going to B, H respectively But B, H are Equevalent SOA, E are not deflerent fated.

Insthal state: 14,E3
Final state: 103

Transftfon Table :=

	0	1
$S_0 \rightarrow [A, E]$	[D,F]	[B, H] Automata
Si [B, H]		[G]
S ₂ * [c]		[A,E]
S ₃ [P,F]	G	
s ₄ [G]	[A,E]	ا الله والمساولة الما الما الما الما الما الما الما ال

2: {92,93,95} {90,94,94}

onla

2: {92} {9395} {95} {95} {90,94}

3: 19, 193, 25) [2,] 19094]

* context Free Grammar (CFG)

- 2) PDA -> FA + SLACK memory
 - $\widehat{\mathcal{D}}$
- T) CFG
- 3) CFL

STABC ATOP C>> Pladj

- => Grammar := Set of products/rules
 - > Productions are desorted by "p"

→ (N,T,P,S)

capital letters of terminals asking small

N: non-Terminals (capital tettes)

T: Terminals (small tetters)

P: productions

s: starting Non-Termerale

- I ar generate the stortings using the Grammar.
- -> Grammans are generators
- => Automatais are recognizers

7 X-7B

where, a Ps non-Terminal (single n.T)

B FS (T+NI)* (Termshall son-Termshall

including E and also

Corobbation) OFTHNT

=> Every product non-terminals have production

Ex:= ({S,A,B}, {a,b}, P, S)

P:S->AB

A-raa|bb => A-raa
B-rbb
A-rbb

=7 B-7 b

BZE

Derivation represented in the

>> ParseTree :=

5 Forms of True B aac bb aa

bbb

aat

will is the

Derfration :=

S-7AB

· aaB

Ly all are Terminals

=> LMD = { Left most perévations}

always the left most non-Termosal

substituted First.

=> Rmp = {Right most Derivation}

always the Right most pon-terminal

substituted first

Eq:=1) S-ras a

5-7a 5-ras 5-ras
aa aas
aas

L= {an | 10>0}

3) s→as|€ L= fan[n20].

3) L={ap|p>1}

S->as/aa

4)
$$L = \{a^{2}n \mid n \geq 0\}$$

$$S \rightarrow aas \mid \epsilon$$

=> Every Regular Language PS content Free Language.

8)
$$18 = \{ampb|m>n, m, n>0\}$$

10)
$$L_{10} = \{ \omega | \omega \in [a,b]^*, \omega \text{ bas } \text{ equal no. of } a's \text{ and b's} \}$$

```
3) s-ras bs E (a+b)* (Any string over 96) 5*
4) 5-> 00 abs/ = (ab)
=> s-ras|b (a*b) (Any number of als ending
                     costb b.
                    5-ras aB
      A -> aA/a (or) B -> bB/b
      B -> bB b
    S-> asble
     rt = {amp, | w= 1, w, v= 1}
            s-rasbab
               10-211 an custon of any - 37. (8
       S-> AB Localing den den den les
      A-raAla
     B-> aBb/e . 00 / 10 10 100 100 - 011 (01
         (OD - | Jamps | w>n, w, n >0}
    + 15- asb as a: 10. 100 2000 11-
        S-> asBaco
         B->6/6
        5-7aab as asb + f m7n, m, n>0}
         (Or)
            5- asB aab
            B->ble
```

(OT)

s-raaAb aA la

(00)

STAB

A-TaAla

B-rabblab.

- La) s-> asb | sb | abb.
- 40) S-> asbs/bsas/e
- Lu) s-> asalbsblæc abcba
- 10) {\$-12 ambmondn[m,n \ \ \]
- Lis) ' {wwk } we {a,b} * } (length &s even)
 (no odd length strings)
- Ly) of wolfs a palindrome over fa, bz. }

 (Both Even 4 odd covers)
- 43) S-rasalbsb/c
- 44) s -> asa[bsb| a|b| e
- L12) S-7AB

 A-> worn generate Equal no. of all folls

 B-> will generate Equal no. of els folls.

STAB AT aAb ab BT CBd cd

one parse tree thes the Grammar es said to be "Ambigous Grammar".

> LMP :=

ETETE

ate

ate*E

ata*E

=> RMD ==

E-7:E+E-11 1 A long about the best of

EtE*Ein III III III III III

EtE*a

Eta*a

Tata*a

- * Assignment :=
 - 1) sempleffication of CFGi?-
 - 2) chomsky normal Form Gransmar (CNF)
 - 3) Grelbach normal Form (GNF)

S-yasB|t

B-yb)

Lyuntt production

removing unnecessary

E-symbols

unreachable from

Starting Jymbol

nongenerated

> s-rab|bA A-ra|as|bAA B-rb|bs|aBB

string "aaabbabbba"
construct parse Tree
LMD
RMD.

=> Push Doors Automata (PDA)

M=(0, 5, 7, 8, 90, 70, F)

Q: Firste set of states

E: input alphabet

T: stack Alphabet

8: transitton Function S: QXZXT -> Q,T*)

90 : Instral states

Zo: Instead stack symbol bottom

F: Firste state.

$$\Rightarrow \mu = \left\{a^{m}b^{m} \mid m > 0\right\}$$

$$\Rightarrow \lambda = \left\{a^{m}b^{m} \mid m > 0\right\}$$

$$\Rightarrow \lambda = \left\{a^{m}b^{m} \mid m > 0\right\}$$

$$b, A \to E$$

$$\begin{cases} (a_{0}, a_{1}, E_{2}) \to (a_{0}, A Z_{2}) \\ (a_{0}, A_{1}) \to (a_{1}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{0}, a_{1}, A_{1}) \to (a_{1}, E_{2}) \\ (a_{1}, b_{1}, A_{1}) \to (a_{1}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{1}, b_{1}, A_{1}) \to (a_{1}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{1}, b_{1}, A_{2}) \to (a_{1}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{1}, b_{2}, A_{2}) \to (a_{2}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{1}, b_{2}, A_{2}) \to (a_{1}, E_{2}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{1}, b_{2}, A_{2}) \to (a_{1}, E_{2}, E_{2}, E_{2})
\end{cases}$$

$$\begin{cases} (a_{1}, b_{2}, A_{2}) \to (a_{1}, E_{2}, E_{2}$$

$$S(a_{0}, a, \pm_{0}) \rightarrow (a_{0}, A \pm_{0})$$

$$S(a_{0}, a, A) \rightarrow (a_{0}, A A)$$

$$S(a_{0}, b, A) \rightarrow (a_{0}, E)$$

$$S(a_{0}, b, A) \rightarrow (a_{0}, E)$$

$$S(a_{0}, b, A) \rightarrow (a_{0}, E)$$

$$S(a_{0}, E, A_{0}) \rightarrow (a_{2}, A)$$

