Appunti per il 1° Anno - 2° Semestre - Gruppo C2

Geometria

Dalle lezioni della prof.ssa Cioffi Francesca

Anno 2023/24 - Di Tota Gaetano

Geometria - a.a. 2023/2024

Simboli

Lezione 1° del 04/03/2024	1
Vettore libero	1
Definizioni e Notazioni	1
Prodotto Cartesiano	2
Principio di Induzione	2
Relazione tra insiemi	
Classe di equivalenza	
Lezione 2° del 06/03/2024	5
Relazione di Parallelismo	
Direzione e Verso	
Applicazione	6
Lezione 3° del 11/03/2024	7
Restrizione e Riduzione	
Cardinalità di un'insieme	
Operazioni binarie	
Struttura algebrica / Spazio Vettoriale	8
Lezione 4° del 13/03/2024	10
Sotto-spazio Vettoriale / Linearmente Chiuso	
Combinazione lineare	13
Chiusura lineare	
Sistema di Generatori	13
Matrici	15
Lezione 5° del 18/03/2024	15
Linearmente Dipendente	15
Linearmente Indipendente	15
Lezione 6° del 20/03/2024	17
Base di uno Spazio-Vettoriale	17
Dimensione	19
Lezione 7° del 25/03/2024	20
Isomorfismo associato ad una Base	21
Lezione 8° del 27/05/2024	22
Somma Diretta	24
Lezione 9° del 03/04/2024	26
Applicazioni Lineari	26
Lezione 10° del 08/04/2024	29
Matrice	
Trasformazioni elementari	32
Lezione 11° del 10/04/2024	33
Sistemi di Equazioni Lineari	36

Simboli

U unione	
∩ intersezione	
∀ per ogni	
∃ esiste	
∈ appartiene	
∉ non appartiene	
V o disgiunzione	
∧ e congiunzione	
⇔ equivalente	
¬ negazione	
⇒ implica	
⊆ inclusione	
\triangle differenza simmetrica	
\ differenza insiemistica	
U unione unaria	
∩ intersezione unaria	

Lezione 1° del 04/03/2024

Vettore libero

Definizione - Vettore libero

Un vettore rappresenta lo spostamento da un punto ad un altro, esso ha come caratteristiche: direzione, verso e lunghezza.

Definizioni e Notazioni

Definizione - Simboli

- ∅ = Insieme vuoto
- $A \subseteq B \Leftrightarrow \forall x \in A(x \in B)$
- $A = B \Leftrightarrow A \subset B \land B \subset A$
- $A \cap B \Leftrightarrow \{x \mid x \in A \land x \in B\}$
- $A \cup B \Leftrightarrow \{x \mid x \in A \lor x \in B\}$
- $B \setminus A \Leftrightarrow \{x \mid x \in B \land x \notin A\}$

Domanda - Come assegnare un'insieme?

Per assegnare degli oggetti ad un'insieme abbiamo due modi distinti

- 1. Elencare gli elementi che appartengono all'insieme
 - $x \in A$ oppure $y \notin A$
- 2. Caratterizzare gli elementi che appartengono all'insieme mediante una proprietà

 $B = \{x \mid x \text{ è uno studente del corso di Geometria}\}$

Definizione - Complemento

Prendiamo $A \subseteq X$ e chiamiamo l'operazione $X \setminus A$ complemento di A in X che indichiamo con $C_X(A)$

Definizione - Leggi di De Morgan sul Complemento

Unione dei Complementi
$$C_X(A \cup B) = C_X(A) \cap C_X(B)$$

Dimostrazione

$$y \in C_X(A \cup B) \Leftrightarrow y \in X \land y \not \in A \cup B \Leftrightarrow y \in X \land (y \not \in A \lor y \not \in B) \Leftrightarrow (y \in X \lor y \not \in A) \land (y \in X \lor y \not \in b) \Leftrightarrow y \in C_X(A) \land y \in C_X(B) \Leftrightarrow y \in C_X(A) \cap C_X(B)$$

Intersezione dei Complementi
$$C_X(A \cap B) = C_X(A) \cup C_X(B)$$

Dimostrazione

$$y \in C_X(A \cap B) \Leftrightarrow y \in X \land y \not\in A \cap B \Leftrightarrow y \in X \land (y \not\in A \lor y \not\in B) \Leftrightarrow (y \in X \land y \not\in A) \lor (y \in X \land y \not\in b) \Leftrightarrow y \in C_X(A) \lor y \in C_X(B) \Leftrightarrow y \in C_X(A) \cup C_X(B)$$

Prodotto Cartesiano

Definizione - Prodotto Cartesiano

Siani $A, B \neq \emptyset$ allora definiamo prodotto cartesiano tra due insiemi $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Esempio - Prodotto Cartesiano

Siano
$$A = \{1, 2, 3\}$$
 e $B = \{x, y\}$ allora otteniamo $A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$

Sia $A_1, A_2, ..., A_n \neq \emptyset$ abbiamo che $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1 \land a_2 \in A_2 \land ... \land a_n \in A_n\}$ allora

- Preso il polinomio $3x_1 x_2 + 4x_3 + x_5 = 1$
- Definiamo l'insieme di soluzioni $S = \{(\overline{x_1}, \overline{x_2}, \overline{x_3}, \overline{x_4}, \overline{x_5}) \in \mathbb{R}^5 \mid 3\overline{x_1} \overline{x_2} + 4\overline{x_3} + \overline{x_5} = 1\}$
- Dove sappiamo che $(1, 3, -1, 0, 5) \in S$

Principio di Induzione

Definizione - Principio di Induzione

 $\forall n \in \mathbb{N}^*$ sia P(n) un'affermazione che dipende da n allora

- 1. **Base induttiva**: $\exists \overline{n} \in \mathbb{N}^*$ ($P(\overline{n} \text{ è verificata})$)
- 2. Passo induttivo: $\forall n > \overline{n} \quad (P(n-1) \Rightarrow P(n))$

Esempio - Principio di Induzione

Sia P(n) = "Se A ha n elementi allora $\mathcal{P}(A)$ ha 2^n elementi" allora abbiamo

- Base induttiva: $\overline{n} = 0$ allora $P(0): A = \emptyset$ e $\mathcal{P}(A) = \{\emptyset\}$ esattamente $2^0 = 1$ elementi
- Passo induttivo: $\forall n > 0$ $P(n-1) \Rightarrow P(n)$

Siano $A = \{\alpha_1, \alpha_2, ..., \alpha_{n-1}\} \subseteq B = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ allora so che

- 1. $\mathcal{P}(A) = \{x \mid x \subseteq A\} = \{x \mid x \subseteq B \land \alpha_n \notin x\} \subseteq \mathcal{P}(B)$
- 2. $\mathcal{P}(B) \setminus \mathcal{P}(A) = \{x \mid x \subseteq B \land \alpha_n \in x\}$
- 3. $\mathcal{P}(B) = \mathcal{P}(A) \cup \{x \cup \{\alpha_n\} \mid x \subseteq A\}$

Concludo quindi che $\mathfrak{P}(A)$ ha $2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$ elementi

Relazione tra insiemi

Definizione - Relazione

Siano $A, B \neq \emptyset$ chiamiamo relazione (oppure corrispondenza) di A in B un sottoinsieme $\rho \subseteq A \times B$

Sia $a \in A$ e $b \in B$ allora indichiamo $a \rho b \Leftrightarrow (a, b) \in \rho$

Chiamiamo **relazione capovolta** la sua inversa $\widehat{\rho} = \{(b, a) \mid (a, b) \in \rho\}$

$$\forall a, b \in A(a \stackrel{\frown}{\rho} b \Leftrightarrow b \rho a)$$

Definizione - Relazione di equivalenza

Sia $A = B = \emptyset$ è detta relazione binaria in A ed è di equivalenza se rispetta le seguenti proprietà

1. Riflessiva: $\forall a \in A(a \rho a)$

in termini di coppia ordinata $(a, a) \in \rho$

2. **Simmetrica**: $\forall a, b \in A(a \rho b \wedge b \rho a)$

in termini di coppia ordinata $(a, b) \Rightarrow (b, a) \in \rho$

3. Transitiva: $\forall a, b, c \in A(a \rho b \wedge b \rho c \Rightarrow a \rho c)$

in termini di coppia ordinata $(a,b) \in \rho \land (b,c) \in \rho \Rightarrow (a,c) \in \rho$

Esempio - Relazione di equivalenza

Sia
$$A = \{1, 3, 5\}$$
 allora $\rho = \{(1, 1), (3, 3), (5, 5), (3, 5), (5, 3)\}$

Sia
$$A = \mathbb{N}^*$$
 allora $\rho = \{(x, y) \mid |x - y| \text{ è pari o nullo}\}$

Sia
$$A = \mathbb{Z} \times \mathbb{N}^*$$
 allora $\rho \subseteq A \times A$ abbiamo che $\rho = \{(m, n), (m', n') \mid m \cdot n' = m' \cdot n\} = \mathbb{Q}$

Teorema - $\rho = \stackrel{\frown}{\rho}$ quando ρ è di equivalenza

Sia
$$\rho \subseteq A \times A$$
 posso dimostrare una sola inclusione perché $(\stackrel{\longleftarrow}{\rho}) = \rho$

Dimostrazione Sia
$$(a, b) \in \rho \Rightarrow (b, a) \in \rho \Rightarrow (a, b) \in \rho$$

Domanda - Quale relazione identifica due vettori applicati uguali?

È chiamata relazione di equipollenza quella che identifica due coppie di punti sul piano che hanno stessa direzione, verso e lunghezza.

Definiamo quindi ho che identifica due vettori applicati uguali:

- $F = \{P \mid P \text{ è un punto nello spazio della geometria elementare}\}$
- $A = F \times F = \{(P, Q) \mid P, Q \in F\}$ ottenendo l'insieme dei vettori applicati
- Sia poi $\rho \subseteq A \times A$ ottenendo $\rho = \{((P,Q),(P',Q')) \mid (P,Q) \in (P',Q') \text{ abbiamo stessa direzione, verso e lunghezza}\}$

Classe di equivalenza

Definizione - Classe di equivalenza

Sia $A \neq \emptyset$ e ρ una relazione di equivalenza su A allora chiamo classe di equivalenza

$$\forall a \in A \quad [a]_{\rho} := \{x \in A \mid x \rho a\}$$

Le classi di equivalenza hanno le seguenti proprietà

- 1. $\forall a \in A \quad a \in [a]_{\rho}$
- 2. $\forall a, b \in A$ $a \in [b]_{\rho} \Rightarrow [a]_{\rho} = [b]_{\rho}$
- 3. $\forall a, b \in A$ $[a]_{\rho} \cap [b]_{\rho} = \emptyset \vee [a]_{\rho} = [b]_{\rho}$

Dimostrazione

- 1. $(a, a) \in \rho$
- 2. Qui dobbiamo osservare una doppia inclusione
 - " \subseteq " $z \in [a]_{\rho} \Rightarrow z \ \rho \ a \Rightarrow (z, a) \in \rho$ per ipotesi $a \in [b]_{\rho} \Rightarrow (a, b) \in \rho$ $\Rightarrow (z, b) \in \rho \Rightarrow z \in [b]_{\rho}$
 - " \supseteq " $z \in [b]_{\rho} \Rightarrow z \ \rho \ b \Rightarrow (z, b) \in \rho$ per ipotesi $a \in [b]_{\rho} \Rightarrow (a, b) \in \rho \Rightarrow (b, a) \in \rho$ $\Rightarrow (z, a) \in \rho \Rightarrow z \in [a]_{\rho}$
- 3. Se $\exists z \in [a]_{\rho} \cap [b]_{\rho}$ allora sappiamo che $z \in [a]_{\rho}$ e $z \in [b]_{\rho} \Rightarrow [a]_{\rho} = [z]_{\rho} = [b]_{\rho}$

Domanda - Qual'è l'insieme delle classi di equivalenza?

Se ρ è una relazione di equivalenza su A allora definiamo insieme quoziente (oppure partizione) $\frac{A}{\rho} := \{[a]_{\rho} \mid a \in \rho\}$ l'insieme di tutte le classi di equivalenza, questo ci dice due cose

- $\bullet \ \ A = \bigcup_{[a]_{\rho} \in \frac{A}{\rho}} [a]_{\rho}$
- Se $[a]_{\rho} \cap [b]_{\rho} = \emptyset \Rightarrow [a]_{\rho} \neq [b]_{\rho}$

Esempio - Classi di Equivalenza

Sia $A = \{1, 3, 5\}$ e la relazione $\rho = \{(1, 1), (3, 3), (5, 5), (3, 5), (5, 3)\}$ allora abbiamo le seguenti classi di equivalenza

- [1] = {1}
- [3] = {3,5}
- [5] = {5,3}

Dove otteniamo che [3] = [5] e inoltre che [1] \cup [3] = A

Lezione 2° del 06/03/2024

Relazione di Parallelismo

Definizione - Relazione di Parallelismo

Siano r_1 e r_2 due rette distinte, allore diciamo che sono parallele se sono complanari, cioè se esiste un piano che contiene sia r_1 e r_2 dove la loro intersezione risulta vuota.

NOTA una retta si dice sempre parallela a se stessa.

Definiamo quindi l'insieme delle rette $A = \{r \mid \text{retta dello spazio nella geometria elementare}\}$ e su questo costruiamo $\rho \subseteq A \times A$ che definiamo usando la relazione di parallelismo $\rho = \{(r_1, r_2) \mid r_1, r_2 \text{ sono parallele}\}$

Sappiamo che la relazione di parallelismo è di equivalenza perché:

• Riflessiva: $\forall r \in A \quad (r, r) \in \rho$

• Simmetrica: $\forall r, r_1 \in A \quad (r, r_1) \in \rho \Rightarrow (r_1, r) \in \rho$

• Transitiva: $\forall r, r_1, r_2 \in A$ (r, r_1) e $(r_1, r_2) \in \rho \Rightarrow (r, r_2) \in \rho$

Direzione e Verso

Definizione - Direzione

Per dare la definizione di direzione, dobbiamo partire dalla definizione di retta per poi usare questo strumento per definire la direzione, vediamo come

- 1. **Retta**: usiamo le classi di equivalenza per definire se due rette hanno la stessa direzione, ovvero se sono parallele, quindi $[r]_{\rho} = \{r_1 \in A \mid r_1 \ \rho \ r\}$
- 2. **Vettore applicato**: due vettori applicati (P,Q) e (R,T) hanno la stessa direzione se sono contenuti in rette parallele
- 3. **Vettore libero**: due vettori liberi \overrightarrow{PQ} e \overrightarrow{RT} hanno la stessa direzione se si possono disegnare su rette parallele

Nota - Vettore Nullo

Definiamo (P, P) il vettore nullo che ha direzione e verso indefinite.

Definizione - Verso

Per questa definizione dobbiamo sfruttare come strumento la retta e le classi di equivalenza, perché

- **Vettore applicato**: siano (P,Q) e (R,T) due vettori applicati paralleli, allora hanno lo stesso verso se applicando uno dei due nel punto di applicazione dell'altro, otteniamo che i due secondi estremi si trovano nella stessa parte della retta individuata rispetto al comune punto di applicazione
- **Vettore libero**: siano \overrightarrow{PQ} e \overrightarrow{RT} due vettori liberi paralleli, allora hanno lo stesso verso se lo hanno i loro rappresentati (P,Q) e (R,T)

Applicazione

Definizione - Applicazione

Siano $A, B \neq \emptyset$ allora definiamo una corrispondenza $f \subseteq A \times B$ che chiamiamo applicazione (oppure funzione) di A in B che indichiamo con $f : A \rightarrow B$ se verifica la seguente condizione:

$$\forall a \in A \quad \exists! b \in B \quad (a, b) \in f$$

Chiamiamo A dominio e B codominio di f, inoltre questa applicazione si dice

• Iniettiva: due elementi distinti di A corrispondono a due elementi distinti di B

$$\forall a, b \in A \quad f(a) = f(b) \Rightarrow a = b$$

• Suriettiva: ogni elemento di B è immagine di almeno un elemento di A

$$\forall b \in B \quad \exists a \in A \quad f(a) = b$$

• Biettiva: se è sia iniettiva che suriettiva

$$\forall b \in B \quad \exists! a \in A \quad f(a) = b$$

Definizione - Applicazione inversa

Sia $f:A\to B$ allora definiamo $f^{-1}=\{(b,a)\mid f(a)=b\}$ applicazione inversa che indichiamo con $f^{-1}:B\to A$ ed esiste quando

- $f_o f^{-1}: B \xrightarrow{f^{-1}} A \xrightarrow{f} B$ quindi $f_o f^{-1} = id_B$
- $f_o^{-1}f: A \xrightarrow{f} B \xrightarrow{f^{-1}} A$ quindi $f_o^{-1}f = id_A$

Nota - Se f è biettiva allora anche f^{-1} è biettiva

Sia $f:A\to B$ un'applicazione biettiva allora sappiamo dire per f^{-1} che è un'applicazione biettiva perché

$$f^{-1} \subseteq B \times A$$
 biettiva $\Leftrightarrow \forall b \in B \quad \exists ! a \in A \quad (b, a) \in f^{-1} \Leftrightarrow \forall b \in B \quad \exists ! a \in A \quad (a, b) \in f \Leftrightarrow f \subseteq A \times B$ è biettiva

Esempio - Applicazione

Siano $A = \{1, 3, 5\}$ e $B = \{x, y\}$ allora data $f : A \to B$ composta in questo modo $f = \{(1, x), (3, x), (5, y)\}$ sappiamo che è un'applicazione.

Attenzione che l'applicazione inversa $f^{-1} = \{(x, 1), (x, 3), (y, 5)\}$ non è un'applicazione

Esempio - Suriettività e Iniettività

Siano $A = \{1, 3, 5\}$ e $B = \{x, y\}$ osserviamo le seguenti applicazioni

- $g: B \to A$ composta in questo modo $g = \{(x, 1), (y, 5)\}$ vediamo che
 - è iniettiva
 - non è suriettiva perché 3 ∈ A ma $\nexists y \in B$: g(y) = 3
- $h: A \to A$ composta in questo modo $h = \{(1,3), (3,5), (5,1)\}$ vediamo che

- è iniettiva
- è suriettiva
- è biettiva
- $k: A \rightarrow A$ composta in questo modo $k = \{(1,5), (3,5), (5,3)\}$ vediamo che
 - non è iniettiva
 - non è suriettiva perché $1 \in A$ ma $\nexists y \in A : k(y) = 1$

Domanda - Cosa succede se considerano l'applicazione f e f^{-1} su una singola parte?

Andiamo prima a considerare una parte del dominio e poi del codominio applicate rispettivamente all'applicazione f e poi alla sua inversa f^{-1}

- $\forall X \subseteq A$ $f(X) = \{f(a) \mid a \in X\} \subseteq B$
- $\forall Y \subseteq B$ $f^{-1}(Y) = \{a \in A \mid f(a) \in Y\} \subseteq A$

NOTA da questo deduciamo che $Im\ f = \{f(a) \mid a \in A\}$ ovvero esattamente $Im\ f := f(A)$

Definizione - Applicazione composta

Siano $f:A\to B$ e $g:B\to C$ allora possiamo definire l'applicazione composta l'unione di più applicazioni

$$g_{o}f:A\rightarrow C$$

Questa applicazione segue il seguente schema $A \xrightarrow{f} B \xrightarrow{g} C$ ovvero $g_0 f(a) = g(f(a))$

Domanda - Cosa posso dire sulle proprietà della composizione di applicazioni?

Se prese le singole applicazioni f e g osservando la loro composta $g_{o}f$ posso dire

f e g	$g_o f$
iniettiva	iniettiva
suriettiva	suriettiva
biettiva	biettiva

Lezione 3° del 11/03/2024

Restrizione e Riduzione

Definizione - Restrizione

Una restrizione è una sostituzione del dominio con un suo sottoinsieme non vuoto, sia $f:A\to B$ e un suo sottinsieme $\emptyset\neq X\subseteq A$, chiamo restrizione di f a X l'applicazione

$$f_{|X}: X \to B$$
 con la proprietà che $\forall x \in X \quad f_{|X}(x) = f(x)$

Definizione - Riduzione

Una riduzione è una sostituzione del codominio con un suo sottoinsieme non vuoto, sia $f:A\to B$ e un suo sottinsieme $\emptyset\neq Y\subseteq B$, chiamo riduzione di f a Y l'applicazione

$$f^{|Y|}: X \to Y$$
 con la proprietà che $f(X) \subseteq Y$

Cardinalità di un'insieme

Definizione - Insiemi equipotenti

Siano A e B due insiemi, li definiamo equipotenti (ovvero hanno la stessa potenza o ordine) se esiste un'applicazione biettiva $f: A \to B$ con la proprietà che $\exists ! f^{-1}: B \to A$

Nota - Potenze numerabil

Sono dette potenze numerabili tutti gli insiemi equipotenti ad \mathbb{N} , infatti possiamo prendere in esempio $|\mathbb{Z}| = |\mathbb{N}| = |\mathbb{Q}|$ ma sappiamo anche che $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}| > |\mathbb{N}|$, da questo deduciamo che "infinito" è solo un aggettivo e non una cardinalità.

Operazioni binarie

Definizione - Operazione binaria

Siano A, B, $C \neq \emptyset$ chiamiamo operazione binaria un'applicazione $\bot: A \times B \to C$ e ne distinguiamo due tipi

- 1. **Interna** quando A = B = C
- 2. **Esterna** quando B = C e si dice che ha operatori in A

Domanda - Qual è insieme dei vettori liberi?

Sfruttando le classi di equivalenza e l'insieme quoziente, usiamo la relazione di equipollenza ρ e il prodotto cartesiano $F \times F$ dove F è l'insieme dei punti, definendo così l'insieme dei vettori liberi V:

$$\frac{F \times F}{2} = V = \{ \overrightarrow{PQ} \mid P, Q \text{ sono punti dello spazio della geometria elementare} \}$$

Nota - Operazioni tra vettori liberi

Definiamo adesso le operazioni tra vettori liberi usando lo strumento delle operazioni binarie

- $+: V \times V \rightarrow V \quad (u, v) \rightsquigarrow w$
- $\cdot : \mathbb{R} \times \mathbb{V} \to \mathbb{V} \quad (\alpha, u) \leadsto \alpha u$

Andiamo ad osservare più nel dettaglio queste operazioni e le loro proprietà

- + è un'operazione interna che restituisce un vettore libero ottenuto prendendo come rappresentati di u e v coppie del tipo (P,Q),(Q,R) tali che w=[(P,R)]
- · è un'operazione esterna tale che αu è un vettore che ha stessa direzione di u, la sua lunghezza è calcolata come $|\alpha||u|$ e stesso verso se $\alpha \geq 0$ oppure opposto se $\alpha < 0$

NOTA Se $\alpha = 0 \Rightarrow \alpha u = 0 = (P, P)$ ovvero il vettore nullo con verso, direzione e lunghezza indefinita

Struttura algebrica / Spazio Vettoriale

Definizione - Struttura algebrica

Si tratta di una n-upla $(n \in \mathbb{N})$ costituita da insiemi e operazioni definite su questi insiemi.

Definizione - Gruppoide

Una struttura algebrica dalla forma (A, \bot) con l'insieme $A \neq \emptyset$ e l'operazione $\bot : A \times A \rightarrow A$ della quale possiamo analizzare le seguenti proprietà:

- Associativa $\forall a, b, c \in A \quad (a \perp b) \perp c = a \perp (b \perp c)$
- Commutativa $\forall a, b \in A \quad a \perp b = b \perp a$
- Neutro $\exists t \in A \quad \forall x \in A \quad x \perp t = x = t \perp x$
- Simmetrici $\forall a \in A \quad \exists \overline{a} \in A \quad a \perp \overline{a} = t = \overline{a} \perp a$

Definizione - Gruppo

Sia data la struttura algebrica (A, \bot) si dice gruppo se \bot è associativa, ammette neturo e simmetrici, inoltre se è anche commutativa è detto **Abeliano**

Definizione - Anello

Sia data la struttura algebrica $(A, +, \cdot)$ con le operazioni definite così $+: A \times A \rightarrow \cdots : A \times A \rightarrow A$, allora si chiama anello se

- 1. + è un gruppo Abeliano
- 2 è associativa
- 3. è distributiva rispetto a +

Inoltre distinguiamo anche i seguenti tipi di anelli

- Commutativo è commutativa
- Unitario · ammette neutro
- Campo anello commutativo unitario dove ogni elemento, tranne lo 0_A , ha inverso rispetto a \cdot

Definizione - Spazio vettoriale

Sia $(K, +, \cdot)$ un campo e V un'insieme non vuoto, definiamo le seguenti operazioni

- ullet $\boxplus: V \times V \to V$ come operazione interna
- $\Box: K \times V \to V$ come operazione esterna

Allora la struttura algebrica $(K, V, \boxplus, \boxdot)$ è chiamata spazio vettoriale su K quando

- 1. (V, \boxplus) è un gruppo Abeliano
- 2. $\forall \alpha \in K \quad \forall u, v \in V \quad \alpha \boxdot (u \boxplus v) = (\alpha \boxdot u) \boxplus (\alpha \boxdot v)$
- 3. $\forall \alpha, \beta \in K \quad \forall u \in V \quad u \boxdot (\alpha + \beta) = (\alpha \boxdot u) \boxplus (\beta \boxdot u)$
- 4. $\forall \alpha, \beta \in K \quad \forall u \in V \quad (\alpha \cdot \beta) \boxdot u = \alpha \boxdot (\beta \boxdot u)$
- 5. $\forall u \in V$ $1_K \square u = u$

NOTA! Gli elementi di K sono detti scalari e gli elementi di V vettori

Teorema - Sui Gruppoidi

Sia (A, \perp) un gruppoide allora sappiamo che

1. Se \perp ammette neutro t esso è unico

$$\forall a \in A \quad a \perp t = x = t \perp a$$

2. Se \perp ammette neutro t ed è associativa, allora se $a \in A$ ha un simmetrico a', esso è unico

$$a \in A \quad \exists a' \in A \quad a \perp a' = t = a' \perp a$$

3. Se \perp ammette neutro t ed è associativa, con $a_1, a_2 \in A$ simmetrizzabili, allora $a_1 \perp a_2$ ha come simmetrico $a'' \perp a'$ $a_1, a_2, \in A$ $\exists a', a'' \in A$ $a_1 \perp a' = t = a' \perp a_1$ $a_2 \perp a'' = t = a'' \perp a_2$

Dimostrazione

- 1. Se esiste $t' \in A$ con le stesse proprietà di t allora abbiamo $t = t \perp t' = t'$
- 2. Se esiste $a'' \in A$ con le stesse proprietà di a' allora abbiamo $a' = a' \bot t = a' \bot (a \bot a'') = (a' \bot a) \bot a'' = t \bot a'' = a''$
- 3. $(a_1 \perp a_2) \perp (a'' \perp a') = a_1 \perp (a_2 \perp a'') \perp a' = a_1 \perp t \perp a' = a_1 \perp a' = t$

Lezione 4° del 13/03/2024

Teorema - Sugli Spazi Vettoriali

Sia $(K, +, \cdot)$ un campo e $V = K^n$ con $n \in \mathbb{N}^*$, sappiamo che $(K, K^n, \boxplus, \boxdot)$ è uno spazio vettoriale su K, definiamo le operazioni dello spazio vettoriale:

- $\boxplus : K^n \times K^n \to K^n$ $((a_1, ..., a_n 2), (b_1, ..., b_n)) \rightsquigarrow (a_1 + b_1, ..., a_n + b_n)$
- $\Box : K \times K^n \to K^n$ $(\alpha, (a_1, ..., a_n)) \leadsto (\alpha a_1, ..., \alpha a_n)$

Dimostrazione per il caso in cui n = 2

- (K^2, \boxplus) è un gruppo abeliano
 - \boxplus è commutativa $\forall (a_1, a_2), (b_1, b_2) \in K^2$

$$(a_1, a_2) \boxplus (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (b_1 + a_1, b_2 + a_2) = (b_1, b_2) \boxplus (a_1, a_2)$$

- \boxplus è associativa $\forall (a_1, a_2), (b_1, b_2), (c_1, c_2) \in K^2$

$$((a_1, a_2) \boxplus (b_1, b_2)) \boxplus (c_1, c_2) = ((a_1 + b_1) + c_1, (a_2 + b_2) + c_2) = (a_1 + (b_1 + c_1), a_2 + (b_2 + c_2)) = (a_1, a_2) \boxplus ((b_1, b_2) \boxplus (c_1, c_2))$$

- \blacksquare ha elemento neutro $\forall (a_1, a_2) \in K^2$ $\exists (t_1, t_2) \in K^2$

$$(a_1, a_2) \boxplus (t_1, t_2) = (a_1 + t_1, a_2 + t_2) = (a_1, a_2) \Leftrightarrow \begin{cases} a_1 + t_1 = a_1 \Leftrightarrow t_1 = 0_K \\ a_2 + t_2 = a_2 \Leftrightarrow t_2 = 0_K \end{cases} \Leftrightarrow (t_1, t_2) = (0_K, 0_K)$$

- \boxplus ammette simmetrici $\forall (a_1, a_2) \in K^2$ $\exists (a'_1, a'_2) \in K^2$

$$(a_1, a_2) \boxplus (a'_1, a'_2) = (a_1 + a'_1, a_2 + a'_2) = (0_K, 0_K) \Leftrightarrow \begin{cases} a_1 + a'_1 = 0_K \Leftrightarrow a'_1 = -a_1 \\ a_2 + a'_2 = 0_K \Leftrightarrow a'_2 = -a_2 \end{cases} \text{ in } K$$

- $\forall \alpha \in K \quad \forall (a_1, a_2), (b_1, b_2) \in K^2 \quad \alpha \boxdot ((a_1, a_2) \boxplus (b_1, b_2)) = (\alpha \boxdot (a_1, a_2)) \boxplus (\alpha \boxdot (b_1, b_2))$
 - $\alpha \boxdot ((a_1, a_2) \boxplus (b_1, b_2)) = \alpha \boxdot (a_1 + b_1, a_2 + b_2) = (\alpha a_1 + \alpha b_1, \alpha a_2 + \alpha b_2) = (\alpha a_1, \alpha a_2) \boxplus (\alpha b_1, \alpha b_2) = (\alpha \boxdot (a_1, a_2)) \boxplus (\alpha \boxdot (b_1, b_2))$
- $\forall \alpha, \beta \in K \quad \forall (a_1, a_2) \in K^2 \quad (a_1, a_2) \boxdot (\alpha + \beta) = ((a_1, a_2) \boxdot \alpha) \boxplus ((a_1, a_2) \boxdot \beta)$

$$(\alpha+\beta)\boxdot(a_1,a_2)=((\alpha+\beta)a_1,(\alpha+\beta)a_2)=(\alpha a_1+\beta a_1,\alpha a_2+\beta a_2)=(\alpha a_1,\alpha a_2)\boxplus(\beta a_1,\beta a_2)=(\alpha\boxdot(a_1,a_2))\boxplus(\beta\boxdot(a_1,a_2))$$

• $\forall \alpha, \beta \in K \quad \forall (a_1, a_2) \in K^2 \quad (\alpha \cdot \beta) \boxdot (a_1, a_2) = \alpha \boxdot (\beta \boxdot (a_1, a_2))$

$$(\alpha \cdot \beta) \boxdot (a_1, a_2) = ((\alpha \cdot \beta) \cdot a_1, (\alpha \cdot \beta) \cdot a_2) = (\alpha \cdot (\beta \cdot a_1), \alpha \cdot (\beta \cdot a_2)) = \alpha \boxdot (\beta \boxdot (a_1, a_2))$$

• $\forall (a_1, a_2) \in K^2$ $1_a \Box (a_1, a_2) = (a_1, a_2)$

$$1_K \boxdot (a_1, a_2) = (1_K \cdot a_1, 1_K \cdot a_2) = (a_1, a_2)$$

Teorema - Propietà Aritmetiche sugli Spazi Vettoriali

- 1. $\forall \alpha \in K \quad \forall u \in V \quad \alpha \boxdot u = 0 \Leftrightarrow \alpha = 0 \text{ oppure } u = 0$
- 2. $\forall \alpha \in K \quad \forall u \in V \quad -(\alpha \boxdot u) = -(\alpha) \boxdot u = \alpha \boxdot -(u)$
- 3. $\forall \alpha \neq 0 \quad \forall u, v \in V \quad \alpha \boxdot u = \alpha \boxdot v \Rightarrow u = v$
- 4. $\forall \alpha, \beta \in K \quad \forall u \in V \setminus \{0\} \quad \alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha = \beta$

Dimostrazione

- 1. " ⇐ "
 - Sia $\alpha=0$ ed osserviamo che $0 \boxdot u=(0+0) \boxdot u=(0\boxdot u)\boxplus (0\boxdot u)$ quindi so che $\exists -(0\boxdot u)$

$$\underline{0} = (0 \boxdot u) - (0 \boxdot u) = ((0 \boxdot u) \boxplus (0 \boxdot u)) - (0 \boxplus u) = 0 \boxdot u$$

- Sia $u = \underline{0}$ ed osserviamo che $\alpha \boxdot \underline{0} = \alpha \boxdot (\underline{0} + \underline{0}) = (\alpha \boxdot \underline{0}) \boxplus (\alpha \boxdot 0)$ quindi so che ∃ - $(\alpha \boxdot \underline{0})$

$$\underline{0} = (\alpha \boxdot \underline{0}) - (\alpha \boxdot \underline{0}) = ((\alpha \boxdot \underline{0}) \boxplus (\alpha \boxdot \underline{0})) - (\alpha \boxdot \underline{0}) = \alpha \boxdot \underline{0}$$

- " ⇒ "
 - Se $\alpha \neq 0 \Rightarrow \exists \alpha^{-1}$ allora

$$u = 1 \boxdot u = (\alpha^{-1}\alpha) \boxdot u = \alpha^{-1} \boxdot (\alpha \boxdot u) = \alpha^{-1} \boxdot \underline{0} = \underline{0}$$

2. $\forall \alpha \in K \quad \forall u \in V \quad -(\alpha \boxdot u) = -(\alpha) \boxdot u = \alpha \boxdot -(u)$

$$(-(\alpha) \boxdot u) \boxplus (\alpha \boxdot u) = (-\alpha + \alpha) \boxdot u = 0 \boxdot u = \underline{0}$$

$$(\alpha \boxdot -(u)) \boxplus (\alpha \boxdot u) = \alpha \boxdot (-(u) \boxplus u) = \alpha \boxdot 0 = 0$$

3. $\forall \alpha \neq 0 \quad \forall u, v \in V \quad \alpha \boxdot u = \alpha \boxdot v \Rightarrow u = v$

$$u = 1 \boxdot u = (\alpha^{-1} \cdot \alpha) \boxdot u = \alpha^{-1} \boxdot (\alpha \boxdot u) = \alpha^{-1} \boxdot (\alpha \boxdot v) = (\alpha^{-1} \cdot \alpha) \boxdot v = 1 \boxdot v = v$$

4. $\forall \alpha, \beta \in K \quad \forall u \in A \setminus \{0\} \quad \alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha = \beta$

$$\alpha\boxdot u=\beta\boxdot u\Rightarrow\alpha\boxdot u\boxplus -(\beta)\boxdot u=\underline{0}\Rightarrow(\alpha-\beta)\boxdot u=\underline{0}\Rightarrow\alpha-\beta=\underline{0}\Rightarrow\alpha=\beta$$

Sotto-spazio Vettoriale / Linearmente Chiuso

Definizione - Linearmente Chiuso

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e $X \subseteq V$ questo si dice Linearmente chiuso se

- 1. $X \neq \emptyset$
- 2. $\forall u, v \in X \quad u \boxplus v \in X$
- 3. $\forall \alpha \in K \quad \forall u \in X \quad \alpha \boxdot u \in X$

Esempio - Linearmente Chiuso

Sia $(\mathbb{R}, \mathbb{R}^2, +, \cdot)$ uno spazio vettoriale su un campo \mathbb{R} allora siano

- $H = \{(\alpha, 0) \mid \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^2$
- $U = \{(\alpha, 3) \mid \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^2$

Sappiamo che H è linearmente chiuso mentre U non lo è perché non è chiuso rispetto alle operazioni

Domanda - Ma $\underline{0}$ e l'opposto di u appartengono a X?

- Se $X \neq \emptyset$ allora sappiamo che $\exists u \in X$ con la proprietà che $\underline{0} = 0 \square u \in X$
- Se $u \in X$ e $-u \in V$ allora sappiamo che $-u = (-1) \boxdot u \in X$

Definizione - Sotto-Spazio Vettoriale

Un sottoinsieme $X\subseteq V$ linearmente chiuso si dice sotto-spazio vettoriale di V se $(K,X,\boxplus_{|X},\boxdot_{|X})$ è uno spazio vettoriale su K

Esempio - Sotto-Spazio Vettoriale

Sia $(R, R^3, +, \cdot)$ uno spazio vettoriale, allora preso $H = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid a_3 = a_1, a_2\} = \{(a_1, a_2, a_1 + a_2) \in R^3\}$ osserviamo che sia un sotto-spazio vettoriale

- $(\mathbb{R}, +)$ è ancora un gruppo abeliano
- Le proprietà di distributività della · rispetto all' + sono ancora rispettate perché ogni vettore di H è vettore di \mathbb{R}^3
- La proprietà di associatività della \cdot è ancora rispettata perché ogni vettore di H è vettore di \mathbb{R}^3
- La proprietà di neutro di R rispetto alla \cdot è conservata perché ogni vettore di H è vettore di \mathbb{R}^3

Ci resta solo da controllare la chiusura lineare di H

- $H \neq \emptyset$ perché se prendiamo $a_1 = a_2 = 0$ otteniamo il vettore $(0,0,0) \in H$
- $(a_1, a_2, a_1 + a_2) + (b_1, b_2, b_1 + b_2) = (a_1 + b_1, a_2 + b_2, a_1 + a_2 + b_1 + b_2) \in H$
- $\alpha \in \mathbb{R}$ $\alpha(a_1, a_2, a_1 + a_2) = (\alpha \cdot a_1, \alpha \cdot a_2, \alpha(a_1 + a_2)) \in H$

Quindi $(\mathbb{R}, H, +, \cdot)$ è un sotto-spazio vettoriale

Combinazione lineare

Definizione - Combinazione lineare

Sia $(K, V, \boxplus, \square)$ uno spazio vettoriale e preso una *n*-upla di vettori $(u_1, ..., u_n)$ definiamo una sua combinazione lineare

un vettore
$$u = \alpha_1 \boxdot u_1 \boxplus ... \boxplus \alpha_n \boxdot u_n$$
 dove $(\alpha_1, ..., \alpha_n) \in K$

Chiusura lineare

Definizione - Chiusura lineare

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e $X \subseteq V$ allora chiamiamo chiusura lineare di X l'insieme di tutte le combinazioni lineari

$$\mathcal{L}(X) = \left\{ \begin{array}{l} \{\underline{0}\}, \text{ se } X = \emptyset \\ \{\alpha_1 \boxdot u_1 \boxplus ... \boxplus \alpha_n \boxdot u_n \mid n \in \mathbb{N}^* \quad u_1, ..., u_n \in X \quad \alpha_1, ..., \alpha_n \in K \} \end{array} \right\}$$

NOTA! Si dice $\mathcal{L}(X)$ è il sotto-spazio vettoriale generato da X

Sistema di Generatori

Definizione - Sistema di Generatori

Sia $S \subseteq V$ allora si dice sistema di generatori di V se $V = \mathcal{L}(S)$, ossia ogni vettore di V è combinazione lineare dei vettori di S

S è sistema di generatori di $V \Leftrightarrow \forall u \in V \quad u \in \mathcal{L}(S)$

NOTA! V si dice finitamente generato se ha un sistema di generatori finito

Esempio - Sistema di Generatori

Osservando il caso di K^n sappiamo che preso $S = \{(1,0,...,0),(0,1,0,...,0),(0,...,0,1)\}$ è un sistema di generatori di K^n perché

- $S \subset K^n$
- |S| = n
- $\forall (\alpha_1,...,\alpha_n) \in K^n$ $(a_1,a_2,...,a_n) = a_1(1,0,...,0) + a_2(0,1,0,...,0) + a_3(0,...,0,1)$

Se osserviamo il campo dei polinomi abbiamo che se $K[x] \le h$ sappiamo che preso $S = \{ , x, ..., x^h \}$ è un sistema di generatori di $K[x] \le h$ perché

- |S| = h + 1
- Sia $a_i \in K$ allora $a_0 + a_1x + ... + a_hx^h = a_0 \cdot 1 + a_1 \cdot x + ... + a_h \cdot x^h$ che è combinazione lineare di S

 $(\mathbb{R}, \mathbb{R}^2, +, \cdot)$ uno spazio vettoriale, sappiamo allora che $S = \{(1,0), (0,1)\}$ è un sistema di generatori di \mathbb{R}^2 , osserviamo allora che $S' = \{(2,2), (3,1)\}$ sia un sistema di generatori di \mathbb{R}^2

- Siamo certi che $S' \subseteq \mathcal{L}(S) = \mathbb{R}^2$
- Vediamo che $S \subseteq \mathcal{L}(S')$

$$-(1,0) = \alpha_1(2,2) + \alpha_2(3,1) = (2\alpha_1, 2\alpha_1) + (3\alpha_2, \alpha_2)$$

$$\begin{cases} 1 = 2\alpha_1 + 3\alpha_2 \\ 0 = 2\alpha_1 + \alpha_2 \end{cases} \Rightarrow \begin{cases} 1 = 2\alpha_1 - 6\alpha_1 \\ \alpha_2 = -2\alpha_1 \end{cases} \Rightarrow \begin{cases} 1 = 4\alpha_1 \\ \alpha_2 = -2\alpha_1 \end{cases} \Rightarrow \begin{cases} \alpha_1 = -\frac{1}{4} \\ \alpha_2 = \frac{1}{2} \end{cases}$$

Quindi
$$(1,0) = -\frac{1}{4}(2,2) + \frac{1}{2}(3,1)$$

$$-(0,1) = \alpha_1(2,2) + \alpha_2(3,1) = (2\alpha_1, 2\alpha_1) + (3\alpha_2, \alpha_2)$$

$$\begin{cases} 0 = 2\alpha_1 + 3\alpha_2 \\ 1 = 2\alpha_1 + \alpha_2 \end{cases} \Rightarrow \begin{cases} 0 = 2\alpha_1 + 3 - 6\alpha_1 \\ \alpha_2 = 1 - 2\alpha_1 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{3}{4} \\ \alpha_2 = 1 - \frac{6}{4} \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{3}{4} \\ \alpha_2 = -\frac{1}{2} \end{cases}$$

Quindi
$$(0,1) = \frac{3}{4}(2,2) - \frac{1}{2}(3,1)$$

S' è un sistema di generatori di \mathbb{R}^2

Nota - K[x] non è finitamente generato

Sappiamo che $K[x] \neq \emptyset$ perché ha sicuramente x al suo interno, ma vediamolo perché

- Preso $X = \{p_1(x), ..., p_m(x)\}$ con $m \in \mathbb{N}^*$ pongo $d_1 = gr(p_1(x))$... $d_m = gr(p_m(x))$
- allora $\forall \alpha_1, ..., \alpha_m \in K$ abbiamo che $gr(\alpha_1 \cdot p_1(x) + ... + \alpha_m \cdot p_m(x)) \leq max(d_1, ..., d_m)$
- Posto $d = max(d_1, ..., d_m)$ allora so per certo che $x^{d+1} \notin \mathcal{L}(X)$ ma $x^{d+1} \in K[x]$

Nota - Allegeriamo la notazione!

Da ora in poi useremo i simboli usuali anche per l'addizione e la motiplicazione dello spazio vettoriale, quindi per distinguerli da quelli del campo basterà confrontare gli operandi, se le operazioni hanno come operando un vettore stiamo usando l'operazione dello spazio vettoriale

Teorema - Sulla Chiusura Lineare

- 1. $X \subseteq \mathcal{L}(X)$
- 2. $\mathcal{L}(X)$ è linearmente chiuso
- 3. Comunque prendo un sottospazio vettoriale $W \subseteq V$ con la proprietà che $X \subseteq W$ allora $\mathcal{L}(X) \subseteq W$

Dimostrazione

- 1. $u \in X \Rightarrow u = 1 \cdot u \in \mathcal{L}(X)$
- 2. Osserviamo la chiusura lineare di entrambe le operazioni
 - Addizione siano $v, w \in \mathcal{L}(X) \Rightarrow \begin{cases} \exists u_1, ..., u_n \in X & \exists \alpha_1, ..., \alpha_n \in V & v = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n \\ \exists k_1, ..., k_m \in X & \exists \beta_1, ..., \beta_m \in V & w = \beta_1 \cdot k_1 + ... + \beta_m \cdot k_m \end{cases}$

Quindi
$$v + w = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n + \beta_1 \cdot k_1 + ... + \beta_m \cdot k_m \in \mathcal{L}(X)$$

• Moltiplicazione Sia $\gamma \in K$ e $v \in \mathcal{L}(X)$ allora $\gamma \cdot v = \gamma(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = \gamma(\alpha_1 \cdot u_1) + ... + \gamma(\alpha_1 \cdot u_n)$

Quindi
$$\gamma \cdot v = (\gamma \cdot \alpha_1) \cdot u_1 + ... + (\gamma \cdot \alpha_n) \cdot u_n \in \mathcal{L}(X)$$

3. Sia $v \in \mathcal{L}(X)$ allora $\exists u_1, ..., u_n \in X \quad \exists \alpha_1, ..., \alpha_n \in K \quad v = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$

$$\left. \begin{array}{cccc} u_1 \in X & \Rightarrow & \alpha_1 \cdot u_1 \in W \\ & \vdots & & \vdots \\ & u_1 \in X & \Rightarrow & \alpha_1 \cdot u_1 \in W \end{array} \right\} \Rightarrow v = \alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n \in W$$

Matrici

Definizione - Matrici

Sia K un'insieme non vuoto e presi $n, m \in \mathbb{N}^*$ chiamiamo matrice su K di tipo $n \times m$ l'applicazione

Lezione 5° del 18/03/2024

Linearmente Dipendente

Definizione - Linearmente Dipendente

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa una n-upla $(u_1, ..., u_n)$ di vettori di V si dice lienearmente dipendente se il vettore nullo si può scrivere come una combinazione lineare di vettori della n-upla anche con scalari non tutti nulli

$$\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{\underline{0}\} \quad \underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$$

Esempio - Linearmente Dipendente

 $S = \{(1,0),(1,1),(0,2)\}$ è un sistema di generatori, ma è linearmente dipendente?

$$\exists \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \setminus \{0\} : \alpha_1(1,0) + \alpha_2(1,1) + \alpha_3(0,2) = (\alpha_1,0) + (\alpha_2,\alpha_2) + (0,2\alpha_3) = (0,0)$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} 0 = \alpha_1 + \alpha_2 \\ 0 = \alpha_2 + 2\alpha_3 \end{cases} \Rightarrow \begin{cases} \alpha_2 = -\alpha_1 \\ \alpha_2 = -2\alpha_3 \end{cases} \Rightarrow \begin{cases} \alpha_2 = -\alpha_1 \\ \alpha_3 = -\frac{\alpha_1}{2} \end{cases}$$

Quindi S è linearmente dipendente perché $\forall \alpha_1 \in \mathbb{R} \setminus \{0\}$ $-\alpha_1(1,0) + \alpha_1(1,1) - \frac{\alpha_1}{2}(0,2) = (0,0)$

Linearmente Indipendente

Definizione - Lienearmente Indipendente

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa una n-upla $(u_1, ..., u_n)$ di vettori di V si dice linearmente indipendente se il vettore nullo si può scrivere come combinazione lineare di vettori della n-upla solo con scalari tutti nulli

$$(\alpha_1, \dots, \alpha) \in K^n$$
 $0 = \alpha_1 \cdot u_1 + \dots + \alpha_n \cdot u_n \Rightarrow \alpha_1 = \dots = \alpha_n = 0$

NOTA! L'insieme vuoto è linearmente indipendente

Domanda - Come posso capire velocemente se un'insieme è linearmente dipendente?

Sia $X \subseteq V$ allora X si dice linearmente dipendente se esiste un sotto-insieme finito di X linearmente dipendente

Sia $S = \{u_1, ..., u_n\}$ linearmente dipendente allora vediamo che se $T = S \cup \{u_{n+1}, ..., u_m\}$ allora T è linearmente dipendente, siccome S è linearmente dipendente allora

$$\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{\underline{0}\} \quad \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n = \underline{0} \Rightarrow \alpha_1 \cdot u_1 + ... + \alpha_{n+1} \cdot u_{n+1} + ... + \alpha_m \cdot u_m = \underline{0}$$

Esempio - Linearmente Indipendente

 $S = \{(2,1),(1,-2)\}$ è un sistema di generatori di \mathbb{R}^2 ma è linearmente indipendente?

$$\exists \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} : \alpha_1(2,1) + \alpha_2(1,-2) = (2\alpha_1, \alpha_1) + (\alpha_2, -2\alpha_2) = (0,0) \Rightarrow \alpha_1 = \alpha_2 = 0$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} 0 = 2\alpha_1 + \alpha_2 \\ 0 = \alpha_1 - 2\alpha_2 \end{cases} \Rightarrow \begin{cases} 0 = 2\alpha_1 + \alpha_2 \\ \alpha_1 = 2\alpha_2 \end{cases} \Rightarrow \begin{cases} 0 = 4\alpha_2 + \alpha_2 \\ \alpha_1 = 2\alpha_2 \end{cases} \Rightarrow \begin{cases} \alpha_2 = 0 \\ \alpha_1 = 0 \end{cases}$$

Quindi S è linearmente indipendente

Teorema - Sulla Dipendenza Lineare

Sia $(K, V, +, \cdot)$ con $X \subseteq V$ sappiamo che X è linearmente dipendente $\Leftrightarrow \exists u \in X \quad \mathscr{L}(X) = \mathscr{L}(X \setminus \{u\})$

Unico caso particolare da osservare è se $X = \{\underline{0}\}$ sappiamo che $X \setminus \{\underline{0}\} = \emptyset$ ed abbiamo che $\mathcal{L}(X) = \{\underline{0}\} = \mathcal{L}(\emptyset)$

Dimostrazione Se $|X| \ge 2$ osserviamo entrambi i lati della dell'implicazione

• " \Rightarrow " per ipotesi X è linearmente dipendente, ovvero $\exists (\alpha_1,...,\alpha_n) \in \mathcal{K}^n \setminus \{\underline{0}\}$ $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$ Sia allora $\alpha_1 \neq 0$ e questo ci dice che $\exists \alpha_1^{-1} \quad \alpha_1^{-1}(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = \alpha_1^{-1} \cdot \underline{0} = \underline{0}$ sfruttando la distributività e l'associatività abbiamo $(\alpha_1^{-1} \cdot \alpha_1)u_1 + ... + (\alpha_1^{-1} \cdot \alpha_n)u_n = u_1 + ... + (\alpha_1^{-1} \cdot \alpha_n)u_n$

Sfruttando l'uguaglianza precedente abbiamo che $u_1=-(\alpha_1^{-1}\cdot\alpha_2)-....-(\alpha_1^{-1}\cdot\alpha_n)u_n\in\mathscr{L}(X\setminus\{u_1\})$

• " \Leftarrow " per ipotesi $\exists u \in X \quad \mathscr{L}(X) = \mathscr{L}(X \setminus \{u\})$

Allora sappiamo che $\exists v_1,...,v_n \in X \setminus \{u\} \quad \exists \beta_1,...,\beta_n \in A \quad u=\beta_1 \cdot v_1+...+\beta_n \cdot v_n$

Ma questo ci porta a dire che $1 \cdot u - (\beta_1) \cdot u_1 - \dots - (\beta_n) \cdot u_n = \underline{0}$ e quindi X è linearmente dipendente

Esempio - Teorema sulla Dipendenza Lineare

Sia $S = \{(1,0,1),(1,1,0),(2,2,0)\} \subseteq \mathbb{R}^3$ so che è linearmente dipendente perché

- 1. (0,0,0) = 0(1,0,1) 2(1,1,0) + (2,2,0)
- 2. Inoltre (2, 2, 0) = 0(1, 0, 1) + 2(1, 1, 0)

Sia $S' = \{(1,0,1), (1,1,0)\}$ allora $(2,2,0) \in \mathcal{L}(S')$ quindi $\mathcal{L}(S) = \mathcal{L}(S \setminus \{(2,2,0)\}) = \mathcal{L}(S')$

Lezione 6° del 20/03/2024

Domanda - Quando due chiusure lineari coincidono?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e $S, T \subseteq V$ allora sappiamo che $\mathcal{L}(S) = \mathcal{L}(T) \Leftrightarrow S \subseteq \mathcal{L}(T)$ e $T \subseteq \mathcal{L}(S)$

- " \Rightarrow " $S \subseteq \mathcal{L}(S) = \mathcal{L}(T)$ e $T \subseteq \mathcal{L}(T) = \mathcal{L}(S)$
- " \Leftarrow " $S \subseteq \mathcal{L}(T) \Rightarrow \mathcal{L}(S) \subseteq \mathcal{L}(T)$ $T \subseteq \mathcal{L}(S) \Rightarrow \mathcal{L}(T) \subseteq \mathcal{L}(S)$ $\Rightarrow \mathcal{L}(S) = \mathcal{L}(T)$

Base di uno Spazio-Vettoriale

Definizione - Base di uno Spazio-Vettoriale

Una base di uno spazio vettoriale V è un sistema di generatori di V linearmente indipendente

NOTA! è chiamata base canonica la base composta da $\{(1,0,...,0),(0,1,0,...,0),(0,....,0,1)\}$

Base ordinata (oppure riferimento), dove l'unica *n*-upla di scalari che da luogo a un vettore è detta *n*-upla delle componenti

Teorema - Di estrazione di una Base

Sia V uno spazio vettoriale finitamente generato su un campo K e sia $S = \{u_1, ..., u_n\}$ un suo sistema di generatori finito, allora sappiamo che esiste una base B di V tale che $B \subseteq S$

Dimostrazione Per ipotesi sappiamo che $\mathcal{L}(S) = V$

- 1. Se S è linearmente indipendente allora B = S ed è base di V
- 2. Altrimenti $\exists u \in S \quad \mathcal{L}(S) = \mathcal{L}(S \setminus \{u\})$ e sia $u = u_1$
- 3. Allora $S' = S \setminus \{u\} = \{u_2, ..., u_n\}$ se è linearmente indipendente e anche un sistema di generatori di V

Ripetiamo il processo finché non si trova un base di V

Esempio - Estrazione di una base

Sia $S = \{(1,1),(2,2),(2,3),(0,1)\}$ sistema di generatori di \mathbb{R}^2 , sappiamo che è linearmente dipendente perché

$$(2,2) = 2(1,1) + 0(2,3) + 0(0,1)$$

Quindi sia $S' = S \setminus \{(2,2)\} = \{(1,1),(2,3),(0,1)\}$ sappiamo che è linearmente dipendente perché

$$(1,1) = \frac{1}{2}(2,3) - \frac{3}{2}(0,1)$$

Quindi sia $S'' = S' \setminus \{(1,1)\} = \{(2,3),(0,1)\}$ sappiamo che è linearmente indipendente perché

$$(0,0) = \alpha(2,3) + \beta(0,1) = (2\alpha,3\alpha) + (0,\beta)$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} 0 = 2\alpha_1 \\ 0 = 3\alpha_1 + \beta \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

S'' è sistema di generatori e linearmente indipendente \Rightarrow base di \mathbb{R}^2

Nota - Cosa succede nel caso di un'insieme linearmente dipendente con due vettori?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale con $S \subseteq V$ dove $S = \{u, v\}$ allora

S è linearmente dipendente $\Leftrightarrow \exists \gamma \in K \quad u = \gamma \cdot v$ oppure $v = \gamma \cdot u$

Infatti per ipotesi $\exists (\alpha, \beta) \in K^2 \setminus \{(0, 0)\}$ $\alpha u + \beta v = \underline{0}$ ma questo ci dice che $\alpha \neq 0$ oppure $\beta \neq 0$

- Se $\alpha \neq 0$ allora $\exists \alpha^{-1}$ ottenendo $\frac{\alpha^{-1}(\alpha \cdot u + \beta \cdot v) = \alpha^{-1} \cdot \underline{0} = \underline{0}}{(\alpha^{-1} \cdot \alpha)u + (\alpha^{-1} \cdot \beta)v = 1 \cdot u + (\alpha^{-1} \cdot \beta)v}$ $\Rightarrow u = -(\alpha^{-1} \cdot \beta)v$
- Se $\beta \neq 0$ allora $\exists \beta^{-1}$ ottenendo $\begin{cases} \beta^{-1}(\alpha \cdot u + \beta \cdot v) = \beta^{-1} \cdot \underline{0} = \underline{0} \\ (\beta^{-1} \cdot \alpha)u + (\beta^{-1} \cdot \beta)v = (\beta^{-1} \cdot \alpha)u + 1 \cdot v \end{cases} \Rightarrow v = -(\beta^{-1} \cdot \alpha)u$

Nota - Se poniamo lo stesso caso sui vettori?

Sia V uno spazio vettoriale su ℝ allora sappiamo che

- $u, v \in V \setminus \{u, v\}$ è linearmente dipendente $\Leftrightarrow u \parallel v$
- $u, v, w \in V \setminus \{u, v, w\}$ è linearmente dipendente $\Leftrightarrow u, v, w$ sono complanari

Teorema - Sull'Indipendenza Lineare

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa $S \subseteq V$, sia S linearmente indipendente allora $\exists u \in V \quad u \notin \mathcal{L}(S) \Rightarrow S \cup \{u\}$ è linearmente indipendente

Dimostrazione Sia $S \cup \{u\} = \{u, v_1, ..., v_n\}$ allora $\alpha, \alpha_1, ..., \alpha_n \in K$ $\alpha \cdot u + ... + \alpha_n \cdot v_n = \underline{0}$ con la proprietà che $\alpha = ... = \alpha_n = \underline{0}$

Supponiamo per assurdo che $\alpha \neq 0$ allora $\exists \alpha^{-1} \in K$ allora abbiamo la seguente uguaglianza

$$1 \cdot u + (\alpha^{-1} \cdot \alpha_1)v_1 + \dots + (\alpha^{-1} \cdot \alpha^n)v_n = \alpha^{-1}(\alpha \cdot u + \dots + \alpha_n \cdot v_n) = \alpha^{-1} \cdot \underline{0} = \underline{0}$$

Quindi $u=-(\alpha^{-1}\cdot\alpha_1)v_1+...+-(\alpha^{-1}\cdot\alpha_n)v_n\in \mathscr{L}(\{v_1,...,v_n\})=\mathscr{L}(S)$ ma questo è impossibile

Esempio - Teorema sull'Indipendenza Lineare

Sia $S = \{(1,0,0),(0,0,1)\} \subseteq \mathbb{R}^3$ è linearmente indipendente perché

$$\forall (a_1, a_2, a_3) \in \mathbb{R}^3 \quad \exists \alpha, \beta \in \mathbb{R} : \alpha(1, 0, 0) + \beta(0, 0, 1) = (\alpha, 0, \beta)$$

Ma $(0,1,0) \notin \mathcal{L}(S)$ quindi $S \cup \{(0,1,0)\}$ è linearmente indipendente

Teorema - di Steinitz

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K allora sappiamo che

- $S = \{u_1, ..., u_n\} \subseteq V$ con la proprietà che $V = \mathcal{L}(S)$
- $X = \{v_1, ..., v_m\} \subset V$

Allora sappiamo che se $|X| = m > n = |S| \Rightarrow X$ è linearmente dipendente

Domanda - Cosa succede nel caso opposto?

Dal teorema di Steinitz ricaviamo che se $Y \subseteq V$ con la proprietà che Y è linearmente indipendente $\Rightarrow |Y| \leq |S|$

Teorema - Di Equipotenza delle Basi

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K allora ogni base di V è finita ed ha lo stesso numero di vettori (sono equipontenti)

Dimostrazione Sia S un sistema di generatori finito di V allora

- 1. Presa B una base estratta da S allora $|B| = n < +\infty$
- 2. Sia B' un'altra base di V
- 3. B' è linearmente indipendente e sistema di generatori di V, ovvero $\mathscr{L}(B') = V = \mathscr{L}(B)$

Quindi per il teorema di Steinitz abbiamo che

$$|B'| \le |B|$$
 altrimenti avremmo $B' = \{v_1, ..., v_{n+1}\}$ linearmente indipendente B è linearmente indipendente $\mathscr{L}(B') = V$ $\Rightarrow |B| = |B'|$

Esempio - Teorema Equipotenza delle Basi

Sia $S = \{(1,1),(2,2),(2,3),(0,1)\} \subseteq \mathbb{R}^2$ tale che $\mathcal{L}(S) = \mathbb{R}^2$, S è linearmente dipendente perché

$$S' = S \setminus \{(2,2)\} = \{(1,1),(2,3),(0,1)\}$$
 allora sappiamo che $\mathcal{L}(S') = \mathcal{L}(S \setminus \{(2,2)\})$

Sappiamo che S' è linearmente dipendente perché

$$S'' = S' \setminus \{(1,1)\} = \{(2,3), (0,1)\}$$
 allora sappiamo oche $\mathcal{L}(S'') = \mathcal{L}(S' \setminus \{(1,1)\})$

Sappiamo che S" è linearmente indipendente perché $(0,0) = \alpha(2,3) + \beta(0,1) = (2\alpha,3\alpha), (0,\beta)$

$$\begin{cases} 2\alpha = 0 \\ 3\alpha + \beta = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \end{cases}$$

S'' è sistema di generatori e linearmente indipendente, ovvero base di \mathbb{R}^2

Dimensione

Definizione - Dimensione

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, sia V finitamente generato su K allora la cardinalità comune alle sue basi si dice dimensione di V e si indica con dim(V)

Teorema - sui Sistemi di Generatori Linearmente Indipendenti

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, sia V finitamente generato su K con dim(V) = n

Allora preso $S = \{u_1, ..., u_n\} \subseteq V$ ottengo che S è linearmente indipendente $\Leftrightarrow S$ è un sistema di generatori di V

Dimostrazione

• " \Rightarrow " Per assurdo supponiamo che $\mathscr{L}(S) \subset V$, ovvero $\exists u \in V \quad u \notin \mathscr{L}(S)$ quindi otteniamo che

$$S \text{ è linearmente indipendente} \\ u \not\in \mathcal{L}(S) \\ u \in V \end{cases} \Rightarrow S \cup \{u\} \text{ è linearmente indipendente}$$

ma questo è assurdo perché $|S \cup \{u\}| = n + 1 > n = dim(V)$

• " \Leftarrow " Per assurdo S è linearmente dipendente, quindi $\exists u \in S$ $\mathscr{L}(S \setminus \{u\}) = \mathscr{L}(S) = V$ allora per il teorema di estrazione di una base sappiamo che

$$\exists B \subseteq S \setminus \{u\}$$
 tale che B è una base di V con la proprietà che $|B| \leq |S \setminus \{u\}| = n-1$

Ma questo è assurdo proprio per il teorema di equipotenza delle basi

Lezione 7° del 25/03/2024

Teorema - Di Completamento di una Base

Sia $(K, V, +, \cdot)$ finitamente generato su un campo K dove n = dim(V)

Sia
$$X = \{v_1, ..., v_n\} \subseteq V$$
 linearmente indipendente con $|X| < n$

Allora sappiamo che $\exists v_{t+1},...,v_n \in V$ tali che $X \cup \{v_{t+1},...,v_n\}$ è base di K

Dimostrazione

Siccome |X| < n sappiamo che X non è un sistema di generatori di V e non una base perché $dim(V) = n \neq t$ allora seguiamo i seguenti passaggi

- 1. Allora $\mathcal{L}(X) \subset V$ quindi $\exists v_{t+1} \in V \setminus \mathcal{L}(X)$ per cui $X' = X \cup \{v_{t+1}\}$ è linearmente dipendente
- 2. Se t + 1 = n allora X' è una base di V è abbiamo terminato
- 3. Altrimenti X' è un sistema di generatori di V, ovvero $\mathcal{L}(X') \subset V$, e ripetiamo il procedimento dal passaggio $\widehat{\mathbb{T}}$

Esempio - Teorema di Completamento di una Base

Trovare una base di \mathbb{R}^2 che contenga (2,7)

- 1. Partiamo da $S = \{(2,7)\}$ che sappiamo essere linearmente indipendente ma non sistema di generatori di \mathbb{R}^2
- 2. inoltre $\forall \alpha \in \mathbb{R}$ sappiamo che $\alpha(2,7) \neq (0,1)$ allora $(0,1) \notin \mathcal{L}(S) \Rightarrow S' = S \cup \{(0,1)\} = \{(2,7),(0,1)\}$
- 3. S' è linearmente indipendente e sappiamo che $|S'|=2=dim(\mathbb{R}^2)$

Teorema - sulle Basi Ordinate

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K con dim(V) = n

Sia $B = (u_1, ..., u_n)$ un'insieme ordinato con la proprietà che |B| = n allora abbiamo che

B è base di
$$K \Leftrightarrow \forall v \in V \quad \exists ! (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n$$

Dimostrazione

- \Leftarrow per ipotesi $\forall v \in V \quad \exists ! (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n \in \mathcal{L}(B)$ quindi sappiamo che
 - 1. B è un sistema di generatori di V
 - 2. B è linearmente indipendente perché se $v = \underline{0}$ allora $\underline{0} = 0 \cdot u_1 + ... + 0 \cdot u_n$ ma $\exists ! (0, ..., 0)$
- \bullet \Rightarrow Siccome B è una base di V allora è anche un suo sistema di generatori, guindi
 - 1. $\forall v \in V \quad \exists (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n \in \mathcal{L}(B)$ ma questa *n*-upla è unica
 - 2. Se prendiamo una n-upla con le stesse proprietà $(\beta_1,...,\beta_n) \in K^n$ $v = \beta_1 \cdot u_1 + ... + \beta_n \cdot u_n$ otteniamo
 - (a) v v = 0
 - (b) $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n (\beta_1 \cdot u_1 + ... + \beta_n \cdot u_n) = (\alpha_1 \beta_1)u_1 + ... + (\alpha_n \beta_n)u_n$

Ma essendo
$$B$$
 linearmente indipendente $\Rightarrow \begin{cases} \alpha_1 - \beta_1 = 0 \\ \dots \\ \alpha_n - \beta_n = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \beta_1 \\ \dots \\ \alpha_n = \beta_n \end{cases}$

Esempio - Teorema Basi Ordinate

Sia $V = \mathbb{R}[x] \le 2$ allora questo mi dice che dim(V) = 3

Sia $B = (1 + x, 1 - x, 1 + x^2)$ andiamo a determinare il vettore delle componenti di $u = 3 + 2x - x^2$

$$u = 3 + 2x - x^2 = \alpha_1(1+x) + \alpha_2(1-x) + \alpha_3(1+x^2) = (\alpha_1 + \alpha_2 + \alpha_3) + (\alpha_1 - \alpha_2)x + \alpha_3x^2$$

Allora giungiamo al seguente sistema lineare

$$\begin{cases} 3 = \alpha_1 + \alpha_2 + \alpha_3 \\ 2 = \alpha_1 - \alpha_2 \\ -1 = \alpha_3 \end{cases} \Rightarrow \begin{cases} 3 = 2\alpha_2 + 1 \\ \alpha_1 = 2 + \alpha_2 \\ \alpha_3 = -1 \end{cases} \Rightarrow \begin{cases} \alpha_2 = 1 \\ \alpha_1 = 2 + \alpha_2 \\ \alpha_3 = -1 \end{cases}$$

Questo ci dice che le componenti di u in B sono (3,1,-1)

Isomorfismo associato ad una Base

Definizione - Isomorfismo associato ad una Base

Sia $(V, K, +, \cdot)$ uno spazio vettoriale finitamente generato su K con n = dim(V)

Sia $B = (u_1, ..., u_n)$ una base ordinata di V allora definiamo osomorfismo associato a B l'applicazione:

$$\phi_B: V \rightarrow K^n$$
 $u \rightsquigarrow (\alpha_1, ..., \alpha_n)$

Ovvero ad ogni vettore associa i suoi componenti in B

Esempio - Omomorfismo associato ad una base

Sia $B = \{(1,1), (-1,1)\} \subseteq \mathbb{R}^2$ quindi abbiamo che $|B| = 2 = dim(\mathbb{R}^2)$, determiniamo ϕB

$$\forall (a_1, a_2) \quad \exists ! (\alpha_1, \alpha_2) \in \mathbb{R} : (a_1, a_2) = \alpha_1(1, 1) + \alpha_2(-1, 1) = (\alpha_1, \alpha_1) + (-\alpha_2, \alpha_2)$$

Risolviamo il sistema lineare e troviamo la nostra soluzione

$$\begin{cases} a_1 = \alpha_1 + \alpha_2 \\ a_2 = \alpha_1 - \alpha_2 \end{cases} \Rightarrow \begin{cases} \alpha_1 = a_1 - \alpha_2 \\ a_2 = a_1 - 2\alpha_2 \end{cases} \Rightarrow \begin{cases} \alpha_1 = a_1 - \alpha_2 \\ 2\alpha_2 = a_1 - a_2 \end{cases} \Rightarrow \begin{cases} \alpha_1 = a_1 - \frac{a_1}{2} + \frac{a_2}{2} \\ \alpha_2 = \frac{a_1}{2} - \frac{a_2}{2} \end{cases} \Rightarrow \begin{cases} \alpha_1 = \frac{a_1}{2} + \frac{a_2}{2} \\ \alpha_2 = \frac{a_1}{2} - \frac{a_2}{2} \end{cases}$$

Quindi otteniamo il seguente omomorfismo

$$\begin{array}{cccc} \phi_B: & \mathbb{R}^2 & \rightarrow & \mathbb{R}^2 \\ & (a_1, a_2) & \rightsquigarrow & \left(\frac{a_1}{2} + \frac{a_2}{2}, \frac{a_1}{2} - \frac{a_2}{2}\right) \end{array}$$

Teorema - sui Sottospazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato con dim(V) = n e W un sottospazio vettoriale di V allora

- 1. $dim(W) = 0 \Leftrightarrow W = \{0\}$
- 2. $dim(W) \leq dim(V)$
- 3. $dim(W) = dim(V) \Leftrightarrow W = V$

Dimostrazione

- 1. " \Rightarrow " Se dim(W) = 0 allora \emptyset è una base di W per cui $\mathcal{L}(W) = W = \{\underline{0}\}$
 - " \Leftarrow " Se $W = \{\underline{0}\}$ allora $W = \{\underline{0}\} = \mathcal{L}(W)$ percui
- 2. Sia $B_w = \{u_1, ..., u_t\}$ una base di W, allora B_w è un sottoinsieme di V linearmente indipendente percui $|B_w| = t \le n = dim(V)$
- 3. Sia $B_w = \{u_1, ..., u_t\}$ una base di W allora
 - " \Rightarrow " per ipotesti t = dim(W) = dim(V) = n ma B_w allora

 $\left. \begin{array}{l} B_w \text{ è linearmente indipendente} \\ B_w \text{ è sistema di generatori di } V \end{array} \right\} \Rightarrow V = \mathcal{L}(B_w) = W$

• " \Rightarrow " per ipotesi ogni base di W è base di V e viceversa e quindi |W| = dim(V)

Lezione 8° del 27/05/2024

Teorema - Intersezione di due Spazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale su un campo K

Presi due sottospazi vettoriali W_1 , W_2 di V allora sappiamo che $W_1 \cap W_2$ è un sottospazio vettoriale

Dimostrazione

• $W_1 \cap W_2$ non è vuoto

$$0 \in W_1$$
 $0 \in W_2 \Rightarrow 0 \in W_1 \cap W_2 \neq \emptyset$

• $W_1 \cap W_2$ è linearmente chiuso rispetto alla somma

Siano $u, v \in W_1 \cap W_2 \Rightarrow u, v \in W_1$ $u, v \in W_2 \Rightarrow u + v \in W_1$ $u, v \in W_2 \Rightarrow u + v \in W_1 \cap W_2$

• $W_1 \cap W_2$ è linearmente chiuso rispetto al prodotto

Sia $\alpha \in K$ allora $u \in W_1 \cap W_2 \Rightarrow u \in W_1$ $u \in W_2 \Rightarrow \alpha \cdot u \in W_1$ $\alpha \cdot uW_2 \Rightarrow \alpha \cdot u \in W_1 \cap W_2$

Esempio - Intersezione di due Spazi Vettoriali

Siano $W_1 = \mathcal{L}((1,0,2),(0,1,1))$ e $W_2 = \mathcal{L}((1,1,1),(2,0,1))$

Quindi sappiamo che $u \in W_1 \cap W_2 \Leftrightarrow u \in W_1$ e $u \in W_2$ ovvero

- $u \in W_1$ $\exists \alpha, \beta \in \mathbb{R} : \alpha(1,0,2) + \beta(0,1,1) = (\alpha,0,2\alpha) + (0,\beta,\beta) = (\alpha+\beta,\beta,2\alpha+\beta)$
- $u \in W_2$ $\exists \gamma, \delta \in \mathbb{R} : \gamma(1, 1, 1) + \delta(2, 0, 1) = (\gamma, \gamma, \gamma) + (2\delta, 0, \delta) = (\gamma + 2\delta, \gamma, \gamma + \delta)$

Allora $u=(\alpha,\beta,2\alpha+\beta)=(\gamma+2\delta,\gamma,\gamma+\delta)$ quindi risolviamo il sistema lineare

$$\begin{cases} \alpha = \gamma + 2\delta \\ \beta = \gamma \\ 2\alpha + \beta = \gamma + \delta \end{cases} \Rightarrow \begin{cases} \alpha = \beta + 2\delta \\ \beta = \gamma \\ 2\alpha + \beta = \beta + \delta \end{cases} \Rightarrow \begin{cases} \delta = \frac{\alpha - \beta}{2} \\ \beta = \gamma \\ 2\alpha = \frac{\alpha - \beta}{2} \end{cases} \Rightarrow \begin{cases} \delta = \frac{\alpha - \beta}{2} \\ \beta = \gamma \\ 2\alpha = -\frac{\beta}{2} \end{cases} \Rightarrow \begin{cases} \delta = \frac{\alpha - \beta}{2} \\ \beta = \gamma \\ -3\alpha = \beta \end{cases}$$

Ricaviamo quindi che $W_1 \cap W_2 = \mathcal{L}((1,3,-1))$ perché

$$u \in W_1 \cap W_2 \Leftrightarrow u = \alpha(1,0,2) - 3\alpha(0,1,1) = (\alpha,0,2\alpha) + (0,-3\alpha,-3\alpha) = (\alpha,-3\alpha,-\alpha) = \alpha(1,-3,-1)$$

Teorema - Somma (Unione) di due Spazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale su un campo K

Presi due sottospazi vettoriali W_1 , W_2 di V allora sappiamo che W_1+W_2 in generale non è un sottospazio vettoriale

Infatti è un sottospazio vettoriale soltanto in due casi

- 1. $W_1 \subseteq W_2 \Rightarrow W_1 \cup W_2 = W_2$
- 2. $W_2 \subseteq W_1 \Rightarrow W_1 \cup W_2 = W_1$

La soluzione è definire l'unione come la somma sapendo che questo è un sottospazio vettoriale

Dimostrazione È un sottospazio vettoriale $W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1 \in W_2 \in W_2\}$

• $W_1 + W_2$ non è vuoto

$$\underline{0} \in W_1 \quad \underline{0} \in W_2 \Rightarrow \underline{0} \in W_1 + W_2 \neq \emptyset$$

• $W_1 + W_2$ è linearmente chiuso rispetto alla somma

Siano
$$u, v \in W_1 + W_2 \Rightarrow w_1, w_1' \in W_1$$
 $w_2, w_2' \in W_2$ $u = w_1 + w_1'$ $v = w_2 + w_2'$

Ma allora
$$u + v = w_1 + w_1' + w_2 + w_2' = (w_1 + w_2) + (w_1' + w_2') \in W_1 + W_2$$

• $W_1 + W_2$ è linearmente chiuso rispetto al prodotto

Sia
$$\alpha \in K$$
 allora $\alpha \cdot u = \alpha(w_1 + w_1') = \alpha \cdot w_1 + \alpha \cdot w_1' \in W_1 + W_2$

Adesso vediamo che se $W_1=\mathcal{L}(S_1)$ e $W_2=\mathcal{L}(S_2)$ allora $W_1+W_2=\mathcal{L}(S_1\cup S_2)$

• " \supseteq " Sia $u \in \mathcal{L}(S_1 \cup S_2)$ allora

$$\exists v_1, \dots, v_n \in S_1 \quad \exists \alpha_1, \dots, \alpha_n \in K \\ \exists u_1, \dots, u_m \in S_2 \quad \exists \beta_1, \dots, \beta_m \in K \end{cases} u = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n + \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m \in W_1 + W_2$$

• " \subseteq " Sia $u \in W_1 + W_2$ allora $\exists w_1 \in W_1$ e $\exists w_2 \in W_2$ $u = w_1 + w_2$ con $W_1 = \mathcal{L}(S_1)$ e $W_2 = \mathcal{L}(S_2)$

$$\exists v_1, \dots, v_n \in S_1 \\ \exists \alpha_1, \dots, \alpha_n \in K$$

$$w_1 = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n$$

$$\Rightarrow u = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n + \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m \in \mathcal{L}(S_1 \cup S_2)$$

$$\exists u_1, \dots, u_m \in S_2 \\ \exists \beta_1, \dots, \beta_m \in K$$

$$w_2 = \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m$$

Teorema - Relazione di Grassmann

Sia $(K, V, +, \cdot)$ e siano W_1 e W_2 sottospazio vettoriali finitamente generati di V allora sappiamo che

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

Somma Diretta

Definizione - Somma Diretta

Sia $(K, V, +, \cdot)$ e siano W_1 e W_2 sottospazio vettoriali di V allora si dice somma diretta quando

$$W_1 + W_2 = W_1 \boxplus W_2 \text{ se } W_1 \cap W_2 = \{0\}$$

Nel caso avessimo $W_1 + \dots + W_n$ dove n > 2 allora si dice somma diretta se

$$\forall i \in \{1,2,...,n\} \quad W_i \cap (W_1 \boxplus ... \boxplus W_{i-1} \boxplus W_{i+1} \boxplus ... \boxplus W_n) = \{\underline{0}\}$$

Domanda - Cosa succede se applico la relazione di Gaussmann alla somma diretta?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e $W_1, ..., W_n$ sottospazio vettoriale di V tali che abbiano una somma diretta, allora

1.
$$dim(W_1 \boxplus ... \boxplus W_n) = dim(W_1) + ... + dim(W_n)$$

$$\left. \begin{array}{c} B_1 \text{ base di } W_1 \\ 2. \ldots \\ B_n \text{ base di } W_n \end{array} \right\} \Rightarrow B_1 \cup \ldots \cup B_n \text{ base di } W_1 \boxplus \ldots \boxplus W_n$$

Dimostrazione Per induzione su *n*

• Se n = 2 basta usare la relazione di Gaussmann e otteniamo

$$dim(W_1 \boxplus W_2) = dim(W_1) + dim(W_2)$$

Inoltre
$$\begin{cases} \text{Se } B_1 \text{ è base di } W_1 \\ \text{Se } B_2 \text{ è base di } W_2 \end{cases} \Rightarrow W_1 \boxplus W_2 = \mathcal{L}(B_1 \cup B_2)$$

Ossia $B_1 \cup B_2$ è base di $W_1 \boxplus W_2$ perché

- 1. $B_1 \cup B_2$ è sistema di generatori di $W_1 \boxplus W_2$
- 2. $|B_1 \cup B_2| = dim(W_1 \boxplus W_2)$
- Se n > 2 per ipotesi di induzione $dim(W_1 \boxplus ... \boxplus W_{n-1}) = d_1 + ... + d_{n-1}$ con base $B_1 \cup ... \cup B_{n-1}$ Per Grassmann $(W_1 \boxplus ... \boxplus W_{n-1}) \boxplus W_n = (d_1 + ... + d_{n-1}) + d_n = |(B_1 \cup ... \cup B_{n-1}) \cup B_n|$

Domanda - Quando so che una somma è una somma diretta?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e W_1 e W_2 sottospazi vettoriali di V

Allora so che è una somma diretta quando $W_1 \cap W_2 = \{\underline{0}\} \Leftrightarrow \forall u \in W_1 + W_2 \quad \exists ! (w_1, w_2) \in W_1 \times W_2 \quad u = w_1 + w_2$

Dimostrazione

• " \Rightarrow " Per ipotesi $W_1 \cap W_2 = \{\underline{0}\}$ quindi $u \in W_1 + W_2 \Rightarrow \exists w_1 \in W_1 \quad \exists w_2 \in W_2 \quad u = w_1 + w_2$ Siano allora $w_1' \in W_1$ e $w_2' \in W_2$ tali che $u = w_1' + w_2'$ osserviamo che

$$\underline{0} = u - u = w_1 + w_2 - (w_1' + w_2') = w_1 + w_2 - w_1' - w_2' \Rightarrow w_1 - w_1' = w_2 - w_2' \in W_1 \cap W_2 = \{\underline{0}\}$$

Perché se $w_1 - w_1' = \underline{0} \Rightarrow w_1 = w_1'$ e analogamente $w_2 - w_2' = \underline{0} \Rightarrow w_2 = w_2'$

• " \Leftarrow " Quindi $u \in W_1 \cap W_2 \Rightarrow u \in W_1$ e $u \in W_2 \Rightarrow \underline{0} = u + \underline{0} = \underline{0} + u$ Per ipotesi sappiamo che $(u,\underline{0}) = (\underline{0},u) \Rightarrow u = \underline{0}$

Esempio - Somma Diretta tra due Spazi Vettoriali

Siano $W_1 = \mathcal{L}((2,0,1),(1,-1,2))$ e $W_2 = \mathcal{L}((1,1,-1),(0,0,1))$ cerchiamone la base

- Le loro rispettive basi $B_1 = \{(2,0,1), (1,-1,2)\}\ e\ B_2 = \{(1,1,-1), (0,0,1)\}$
- Allora $W_1 + W_2 = \mathcal{L}(B_1 \cup B_2) = \mathcal{L}((2,0,1),(1,1,-2),(1,1,-1),(0,0,1))$
- Controlliamo che $B = B_1 \cup B_2$ è linearmente dipendente

Sappiamo che B è linearmente dipendente perché (1,1,-1)=(1)(1,1,-2)+(1)(0,0,1)

Allora $B' = B \setminus \{(1, 1, -1)\} = \{(2, 0, 1), (1, 1, -2), (0, 0, 1)\}$ che è linearmente indipendente perché

$$\exists \alpha, \beta, \gamma \in \mathbb{R} : \alpha(2,0,1) + \beta(1,1,-2) + \gamma(0,0,1) = (2\alpha,0,\alpha) + (\beta,\beta,-2\beta) + (0,0,\gamma)$$

Risolviamo il sistema lineare

$$\begin{cases} 2\alpha + \beta = 0 \\ \beta = 0 \\ \alpha - 2\beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$$

Osserviamo il caso $\mathbb{R}[x] \le 2$ e sia $W_1 = \mathcal{L}(B_1)$ con $B_1 = \{1 - x, 1 + x\}$ e determiniamo uno sotto-spazio vettoriale $W_2 \subseteq \mathbb{R}[x] \le 2$ tale che la somma sia diretta

Se prendiamo $W_2 = \mathcal{L}(B_2)$ con $B_2 = \{x^2\} \not\in \mathcal{L}(B_1)$ abbiamo che $B = B_1 \cup B_2 = \{1 - x, 1 + x, x^2\}$ è linearmente indipendente

Lezione 9° del 03/04/2024

Applicazioni Lineari

Definizione - Applicazione Lineare

Siano $(K, V, +, \cdot)$ e $(K, W, +, \cdot)$ definiamo $T: V \to W$ un'applicazione lineare quando

- 1. $\forall u, v \in V$ T(u+v) = T(u) + T(v)
- 2. $\forall u \in V \quad \forall \alpha \in K \quad T(\alpha \cdot u) = \alpha \cdot T(u)$

Inoltre diciamo che questa applicazione è

- Monomorfismo: Se T è iniettiva
- **Epimorfismo**: Se *T* è suriettiva
- **Isomorfismo**: Se T è biettiva
- Endomorfismo: Se dominio e codominio coincidono
- Automorfismo: Se dominio e codominio coincidono e T è biettiva

Esempio - Applicazione Lineare

$$f: V \rightarrow w \\ u \rightsquigarrow \underline{0}_W$$
 è l'unica applicazione costante lineare

$$\begin{array}{ccccc} h: & \mathbb{R}[x] \leq 2 & \to & \mathbb{R}^2 \\ & a_0 + a_1 x + a_2 x^2 & \leadsto & \left(a_0 + 3 a_1, a_2 - a_0\right) \end{array} \ \ \text{\'e lineare}$$

Teorema - Proprietà delle Applicazioni Lineari

Sia $T: V \to W$ un'applicazione lineare

- 1. $T(\underline{0}_{V}) = \underline{0}_{W}$
- 2. T conserva le combinazioni lineari, ovvero

$$\forall u_1, ..., u_n \in V \quad \forall \alpha_1, ..., \alpha_n \in K \quad T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n))\alpha_1 \cdot T(u_1) + ... + \alpha_n \cdot T(u_n)$$

Dimostrazione

- 1. $T(\underline{0}_V) = T(0 \cdot \underline{0}_V) = \underline{0}_W$
- 2. Per induzione su *n* abbiamo che
 - n = 1 $T(\alpha_1 \cdot u_1) = \alpha_1 \cdot T(u_1)$
 - n > 1 $n-1 \Rightarrow n$

$$T((\alpha_1 \cdot u_1 + \dots + \alpha_{n-1} \cdot u_{n-1}) + \alpha_n \cdot u_n) =$$

$$= T(\alpha_1 \cdot u_1 + \dots + \alpha_{n-1} \cdot u_{n-1}) + T(\alpha_n + u_n) =$$

$$= \alpha_1 \cdot T(u_1) + \dots + \alpha_{n-1} \cdot T(u_{n-1}) + \alpha_n + T(u_n)$$

Domanda - Come caratterizziamo iniettività e suriettività di un'applicazione lineare?

Data $T: V \to W$ applicazione lineare. caratterizziamo la suriettività secondo la classica definizione.

Per l'iniettività? T è iniettiva $\Leftrightarrow Kern(T) = \{u \in V \mid T(u) = \underline{0}_W\} = \{\underline{0}_V\}$

Dimostrazione

- " \Rightarrow " Prendiamo $v \in V \setminus \{\underline{0}_v\}$ $v \neq \underline{0}_v \Rightarrow T(v) \neq \underline{0}_W \Rightarrow v \notin Kern(T)$
- " \Leftarrow " Presi $u, v \in V : T(u) = T(v)$ sappiamo che

$$\underline{0}_W = T(u) - T(v) = T(u - v) \Rightarrow u - v \in Kern(T) = \{\underline{0}_v\} \Rightarrow u - v = \underline{0}_v \Rightarrow u = v$$

Teorema - Le Applicazioni Lineari conservano Sotto-Spazi Vettoriali

Sia $T: V \to W$ un'applicazione lineare

- 1. Sia $X \subseteq V$ dove X è sotto-spazio vettoriale di $V \Rightarrow T(X)$ è sotto-spazio vettoriale di W
- 2. Sia $Y \subseteq W$ dove Y è sotto-spazio vettoriale di $W \Rightarrow T^{-1}(Y)$ è sotto-spazio vettoriale di V

Dimostrazione

- 1. Verifichiamo che T(X) sia un sotto-spazio vettoriale sapendo che X è sotto-spazio vettoriale
 - T(X) non è vuoto perché possiamo prendere $u \in X$ ma allora $T(u) \in T(X) \Rightarrow T(X) \neq \emptyset$
 - Prendiamo $u', v' \in T(X)$ con la proprietà che $\exists u, v \in X : T(u) = u'$ e T(v) = v'

Allora
$$u' + v' \Rightarrow T(u) + T(v) \Rightarrow T(u + v) \in T(X)$$

- Preso $\alpha \in K$ abbiamo che $\alpha \cdot u' = \alpha \cdot T(u') = T(\alpha \cdot u') \in T(X)$
- 2. Verifichiamo che $T^{-1}(Y)$ sia un sotto-spazio vettoriale sapendo che Y è sotto-spazio vettoriale
 - $T^{-1}(Y)$ non è vuoto perché $T(\underline{0}_V)=\underline{0}_W\in Y\Rightarrow T^{-1}(Y)\neq\emptyset$
 - Prendiamo $u, v \in T^{-1}(Y)$ e sappiamo che $T(u), T(v) \in Y$

Allora
$$T(u) + T(v) \in Y \Rightarrow T(u+v) \in Y \Rightarrow u+v \in T^{-1}(Y)$$

• Preso $\alpha \in K$ abbiamo che $\alpha \cdot T(u) \in Y \Rightarrow T(\alpha \cdot u) \in Y \Rightarrow \alpha \cdot u \in T^{-1}(Y)$

Nota - Sotto-spazi vettoriali conservati dalle Applicazioni Lineari

Sappiamo che sono sotto-spazio vettoriali

- Im(T) = T(V) è un sotto-spazio vettoriale di W
- $Kern(T) = T^{-1}(\{\underline{0}_W\})$ è un sotto-spazio vettoriale di V

Teorema - Le Applicazioni Lineari conservano Sistemi di Generatori

Sia $T: V \to W$ un'applicazione lineare

- 1. Sia $X = \mathcal{L}(S)$ sotto-spazio vettoriale di $V \Rightarrow T(X) = \mathcal{L}(T(S))$
- 2. $(u_1, ..., u_n)$ una n upla di vettori di V linearmente dipendente $\Rightarrow (T(u_1), ..., T(u_n))$ è linearmente dipendente
- 3. Se T è iniettiva allora $(u_1, ..., u_n)$ una n upla di vettori di V linearmente indipendente $\Rightarrow (T(u_1), ..., T(u_n))$ è

linearmente indipendente

Dimostrazione

- 1. Controlliamo la doppia inclusione
 - " \supset " Essendo $S \subset X$ allora $T(S) \subset T(X) \Rightarrow \mathcal{L}(T(S)) \subset T(X)$
 - " \subset " Sia $u' \in T(\mathcal{L}(S))$ allora sappiamo che $\exists u \in \mathcal{L}(S) : T(u) = u'$ allora

$$\begin{cases} \exists u_1, ..., u_n \in S \\ \exists \alpha_1, ..., \alpha_n \in K \end{cases} : u = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n \Rightarrow u' = T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n)$$

Ma allora $u' = \alpha_1 \cdot T(u_1) + ... + \alpha_n \cdot T(u_n) \in \mathcal{L}(T(S))$

2. Per ipotesi $\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{0\} : \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n = \underline{0}_V \Rightarrow T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = T(0_V)$

Allora $T(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = T(\alpha_1 \cdot u_1) + ... + T(\alpha_n \cdot u_n) \Rightarrow (T(u_1), ..., T(u_n))$ è linearmente dipendente

3. Per ipotesi T è iniettiva, siano $\exists \alpha_1, ..., \alpha_n \in K : \alpha_1 \cdot T(u_1) + ... + \alpha_n \cdot T(u_n) = 0_M$ allora

$$T(\alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n) = T(\underline{0}_V) \Rightarrow \alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n \in Kern(T) = \{\underline{0}_V\} \Rightarrow \alpha_1 \cdot u_1 + \ldots + \alpha_n \cdot u_n = \underline{0}_V$$

Ma $\alpha_1 = ... = \alpha_n = 0$ quindi $(u_1, ..., u_n)$ è linearmente indipendente

Esempio - Iniettività e Suriettività delle Applicazioni Lineari

Sia
$$T : \mathbb{R}[x] \le 2 \to \mathbb{R}^3$$
 ovvero che ad ogni $a_0 + a_1 x + a_2 x^2 \leftrightarrow (a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2)$

Controlliamo se sia lineare, suriettiva ed iniettiva

- Controlliamo conservi l'operazione di addizione
 - Sia $u = a_0 + a_1 x + a_2 x^2$
 - Sia $v = b_0 + b_1 x + b_2 x^2$
 - Sia $u + v = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2$

$$T(u) + T(v) = (a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2) + (b_1 + 3b_2, -b_0 + b_1, b_0 + 3b_2) = (a_1 + b_1 + 3(a_2 + b_2), -(a_0 + b_0) + a_1 + b_1, a_0 + b_0 + 3(a_2 + b_2) = T(u + v)$$

- Controlliamo conservi l'operazione di moltiplicazione
 - $\forall \alpha \in K$
 - Sia $u = a_0 + a_1 x + a_2 x^2$
 - Sia $\alpha \cdot u = \alpha \cdot a_0 + \alpha \cdot a_1 x + \alpha \cdot a_2 x^2$

$$T(\alpha \cdot u) = (\alpha \cdot a_1 + 3\alpha \cdot a_2, -\alpha \cdot a_0 + \alpha \cdot a_1, \alpha \cdot a_0 + 3\alpha \cdot a_2) = \alpha(a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2) = \alpha \cdot T(u)$$

- Controlliamo sia suriettiva
 - Sia $Im(T) = \{T(u) \mid u \in V\} = T(V) = T(\mathbb{R}[x] \le 2) = \mathcal{L}(T(1), T(x), T(x^2))$
 - Calcolate le immagini della base canonica T(1)=(0,-1,1) T(x)=(1,1,0) $T(x^2)=(3,0,3)$
 - Controlliamo che sia suriettiva ottenendo che $\mathcal{L}((0,-1,1),(1,1,0),(3,0,3))$ sia base di \mathbb{R}^3
 - Risolviamo il sistema di $\alpha(0, -1, 1) + \beta(1, 1, 0) + \gamma(3, 0, 3) = (0, 0, 0)$

$$\begin{cases} \beta + 3\gamma = 0 \\ -\alpha + \beta = 0 \\ \alpha + 3\gamma = 0 \end{cases} \Rightarrow \begin{cases} \beta + 3\gamma = 0 \\ \alpha = \beta \end{cases} \Rightarrow \begin{cases} \gamma = -\frac{1}{3}\beta \\ \alpha = \beta \end{cases} \quad \forall \beta \in \mathbb{R}$$

Questa n-upla è linearmente dipendente quindi non è una base di \mathbb{R}^3 e la nostra applicazione non è suriettiva

- Controlliamo che sia iniettiva
 - Sia $Kern(T) = \{u \in V \mid T(u) = \underline{0}_W\} = \{a_0 + a_1x + a_2x^2 \mid (a_1 + 3a_2, -a_0 + a_1, a_0 + 3a_2) = (0, 0, 0)\}$
 - Risolviamo il sistema

$$\begin{cases} a_1 + 3a_2 = 0 \\ -a_0 + a_1 = 0 \\ a_0 + 3a_2 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = -\frac{1}{3}a_1 \\ a_0 = a_1 \end{cases}$$

- Quindi otteniamo che $Kern(T) = \{a_1 + a_1x \frac{1}{3}a_1x^2 \mid a_1 \in \mathbb{R}\} = \{a_1(1 + x \frac{1}{3}x^2 \mid a_1 \in \mathbb{R}\} = \mathcal{L}(1 + x \frac{1}{3}x^2)\}$
- Quindi T non è iniettiva perché dim(Kern(T)) = 1

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ un'applicazione lineare che ad ogni $(a_1, a_2) \rightsquigarrow (2a_1 - a_2, a_1 + a_2)$

- Controlliamo che sia iniettiva
 - Sia $Kern(T) = \{u \in V \mid T(u) = \underline{0}_W\} = \{(a_1, a_2) \mid (2a_1 a_2, a_1 + a_2) = (0, 0)\}$
 - Risolviamo il sistema

$$\begin{cases} 2a_1 - a_2 = 0 \\ a_1 + a_2 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = 2a_1 \\ a_1 + 2a_1 = 0 \end{cases} \Rightarrow \begin{cases} a_2 = 0 \\ a_1 = 0 \end{cases}$$

- Quindi otteniamo che $Kern(T) = \{(0,0)\}$ è questo ci dice che T è iniettiva
- Controlliamo sia suriettiva
 - Sia $Im(T) = \{T(u) \mid u \in V\} = T(V) = T(\mathbb{R}^2) = \mathcal{L}(T((1,0)), T((0,1)))$
 - Calcolate le immagini della base canonica T((1,0)) = (2,1) T((0,1)) = (-1,1)
 - Controlliamo che sia suriettiva ottenendo che $\mathcal{L}((2,1),(0,1))$ sia base di \mathbb{R}^2
 - Risolviamo il sistema di $\alpha(2,1) + \beta(0,1)$

$$\begin{cases} 2\beta - \beta = 0 \\ \alpha + \beta = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha + \alpha = 0 \\ \alpha = -\beta \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \alpha = -\beta \end{cases}$$

 $\mathbb{R}^2 = 2 = dim(\mathcal{L}((2,1),(0,1)))$ ed è linearmente indipendente e la nostra applicazione è suriettiva

Lezione 10° del 08/04/2024

Teorema - Dell'Equazione Dimensionale

Sia $T: V \to W$ un'applicazione lineare dove dim(V) = n

$$dim(V) = dim(Kern(T)) + dim(Im(T))$$

Domanda - Cosa so dire sulla dim(V) se T è iniettiva o suriettiva?

Sia $T: V \to W$ un'applicazione lineare dove dim(V) = n vediamo che

- 1. Se T è iniettiva $\Rightarrow dim(V) < dim(W)$
- 2. Se T è suriettiva $\Rightarrow dim(V) > dim(W)$

Dimostrazione

1. Se T è iniettiva allora $Kern(T) = \{\underline{0}_V\}$ quindi dim(Kern(T)) = 0 e riscrivendo l'equazione dimensionale

$$dim(V) = 0 + dim(Im(T)) = dim(Im(T)) \le dim(W)$$

2. Se T è suriettiva allora Im(T) = W e riscrivendo l'equazione dimensionale

$$dim(V) = Kern(T) + dim(Im(T)) = Kern(T) + dim(W) \ge dim(W)$$

Teorema - Una *n*-upla di vettori è linearmente indipendente solo se lo sono i suoi componenti

Sia V uno spazio vettoriale su K dove dim(V) = n allora sappiamo che $V \simeq K^n$

Una *n*-upla di vettori di $V(u_1,...,u_n)$ è linearmente indipendente $\Leftrightarrow (\phi_B(u_1),...,\phi_B(u_n))$ è linearmente indipendente

Dimostrazione

- " \Rightarrow " Basta ricordarsi che ϕ_B è un omomorfismo è quindi ad ogni vettore associa una sola coppia di componenti
- " \Leftarrow " ϕ_B^{-1} è un isomorfismo allora $(\phi_B^{-1}(\phi_B(u_1)),...,\phi_B^{-1}(\phi_B(u_n))=(u_1,...,u_n)$

Esempio - Una n-upla di vettori è linearmente indipendente solo se lo sono i suoi componenti Sia $\mathbb{R}[x] \leq 3$ uno spazio vettoriale su R quindi $dim(\mathbb{R}[x] \leq 3) = 4 = \mathbb{R}^4$ allora $\mathbb{R}[x] \leq 3 \simeq \mathbb{R}^4$

Presa $B = \{1-x, 1+x, x^2-x^3, 1+x^3\}$ base di $\mathbb{R}[x] \leq 3$ vediamo che è linearmente indipendente tramite l'isomorfismo associato alla base

- 1. Prendiamo $\overline{B} = \{1, x, x^2, x^3\}$ base canonica
- 2. Prendiamo l'isomorfismo associato $\phi_{\overline{B}}$ che ad ogni $a_0+a_1x+a_2x^2+a_3x^3 \rightsquigarrow (a_0,a_1,a_2,a_3) \in \mathbb{R}^4$
- 3. Prendiamo l'immagine dei vettori di B ottenendo
 - (a) $\phi_{\overline{B}}(1-x) = (1,-1,0,0)$
 - (b) $\phi_{\overline{B}}(1+x) = (1,1,0,0)$
 - (c) $\phi_{\overline{B}}(x^2 x^3) = (0, 1, -1, 0)$
 - (d) $\phi_{\overline{B}}(1+x^3) = (1,0,0,1)$
- 4. Essendo B una base sappiamo che ((1, -1, 0, 0), (1, 1, 0, 0), (0, 1, -1, 0), (1, 0, 0, 1)) è linearmente indipendente
- 5. Risolviamo il sistema $\alpha(1,-1,0,0)+\beta(1,1,0,0)+\gamma(0,1,-1,0)+\delta(1,0,0,1)$

$$\begin{cases} \alpha + \beta + \delta = 0 \\ -\alpha + \beta + \gamma = 0 \\ -\gamma = 0 \\ \delta = 0 \end{cases} \Rightarrow \begin{cases} \alpha + \beta = 0 \\ \beta = \alpha \\ \gamma = 0 \\ \delta = 0 \end{cases} \Rightarrow \begin{cases} 2\alpha = 0 \\ \beta = \alpha \\ \gamma = 0 \\ \delta = 0 \end{cases} \Rightarrow \begin{cases} \alpha = 0 \\ \beta = \alpha \\ \gamma = 0 \\ \delta = 0 \end{cases}$$

Allora B è linearmente indipendente

Calcoliamo adesso l'isomorfismo associato a B ovvero $\phi_B:\mathbb{R}[x]\leq 3\to\mathbb{R}^4$

- 1. Allora noi associamo ad ogni $a_0 + a_1x + a_2x^2 + a_3x^3$ il corrispettivo $\alpha(1-x) + \beta(1+x) + \gamma(x^2-x^3) + \delta(1+x^3)$
- 2. Risolviamo il sistema

$$\begin{cases} \alpha + \beta + \delta = a_0 \\ \alpha - \beta = a_1 \\ \gamma = a_2 \\ -\gamma + \delta = a_3 \end{cases} \Rightarrow \begin{cases} 2\beta = a_0 - a_1 - a_2 - a_3 \\ \alpha = \beta + a_1 \\ \gamma = a_2 \\ \delta = a_3 + a_2 \end{cases} \Rightarrow \begin{cases} \beta = \frac{1}{2}(a_0 - a_1 - a_2 - a_3) \\ \alpha = \frac{1}{2}(a_0 + a_1 - a_2 - a_3) \\ \gamma = a_2 \\ \delta = a_3 + a_2 \end{cases}$$

3. Allora ϕ_B associa $a_0 + a_1x + a_2x^2 + a_3x^3 \rightsquigarrow (\frac{1}{2}(a_0 + a_1 - a_2 - a_3), \frac{1}{2}(a_0 - a_1 - a_2 - a_3), a_2, a_2 + a_3)$

Matrice

Definizione - Matrice

Siano $m, n \in \mathbb{N}$ e dato il campo $(K, +, \cdot)$ chiamiamo $A \in M_{m \times n}$ una matrice su K

$$A = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & & \vdots \\ a_1^m & \dots & a_n^m \end{pmatrix} = (a_j^i)$$

Indicando le righe come $\begin{cases} a^{1} = (a_{1}^{1}, ..., a_{n}^{1}) \\ \vdots \\ a^{m} = (a_{1}^{m}, ..., a_{n}^{m}) \end{cases}$ e le colonne come $\begin{cases} a_{1} = (a_{1}^{1}, ..., a_{1}^{m}) \\ \vdots \\ a_{n} = (a_{n}^{1}, ..., a_{n}^{m}) \end{cases}$

Definizione - Matrice Trasposta

Data una matrice A chiamiamo la sua trasposta ${}^tA = B \in M_{m \times n}(K)$ tale che $b^1 = a_1, ..., b^m = a_n$

Esempio - Matrice Trasposta

$$A = \begin{pmatrix} 2 & 0 & 7 \\ -\pi & 1 & -5 \end{pmatrix} \quad B = \begin{pmatrix} 2 & -\pi \\ 0 & 1 \\ 7 & -5 \end{pmatrix}$$

Definizione - Rango di una matrice

Il rango di A che indichiamo con rango(A) è la dimensione dello spazio vettoriale generato dalle colonne di A

Esempio - Rango di una matrice

$$rango\left(\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}\right) = 2$$

Teorema - Una matrice ha lo stesso rango della sua trasposta

Data una matrice $A \in M_{m \times n}(K)$ allora sappiamo che

$$rango(A) = rango(^tA)$$

Esempio - Una matrice ha lo stesso rango della sua trasposta

Presa la matrice
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} = 2$$
 sappiamo che il $rango(A) = 2$

Osserviamo che la dimensione dello spazio vettoriale delle colonne è uguale a quello delle righe

$$\mathbb{R}^2 \cong \mathcal{L}((1,2,3,4),(0,1,2,3),(1,1,1,1)) = \mathcal{L}((1,0,1),(2,1,1),(3,2,1),(4,3,1)) \cong \mathbb{R}^2$$

Trasformazioni elementari

Definizione - Trasformazioni elementari

Sono chiamate Trasformazioni elementari le seguenti operazioni effettuabili sulle matrici

- Scambio di una riga: $h, k \in \{1, ..., m\}$ $a^h \Leftrightarrow a^k$
- Moltiplicazione di una riga per uno scalare: $h \in \{1, ..., m\}$ $\alpha \in K \setminus \{0\}$ $a^h \to \alpha \cdot a^h$
- Somma di una riga moltiplicata per uno scalare: $h, k \in \{1, ..., m\} : h \neq k \quad \beta \in K \quad a \to a^h + \beta \cdot a^k$

Nota - Le Trasformazioni elementari sono invertibili

Questo vuol dire che posso sempre riottenere la matrice di partenza applicando le operazioni inverse!

Esempio - Trasformazioni elementari

Data la matrice
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
 allora possiamo applicare una serie di trasformazioni elementari

1. Somma di una riga moltiplicata per uno scalare dove h=2 k=1 $\beta=-1$

$$a^{2} \rightarrow a^{2} + (-1)a^{1} \qquad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

2. Moltiplicazione di una riga per uno scalare dove h=2 $\alpha=-\frac{1}{2}$

$$a^{2} \to \left(-\frac{1}{2}\right)a^{2} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

3. Somma di una riga moltiplicata per uno scalare dove h=4 k=1 $\beta=-1$

$$a^{4} \rightarrow a^{4} + (-1)a^{1} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

4. Somma di una riga moltiplicata per uno scalare dove h=4 k=2 $\beta=1$

$$a^{4} \rightarrow a^{4} + 1 \cdot a^{2} \qquad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Effettuando le operazioni inverse troviamo la matrice originale A

Lezione 11° del 10/04/2024

Definizione - Matrice Ridotta a Scalini

Sia $A \in M_{m \times n}$ allora si dice ridotta a scalini se $\exists h : 0 \le h \le m$ tale che

- 1. $\forall r \in \{1, ..., h\}$ e posto $j_r = min(\{j \in \{1, ..., n\}\} \mid a_j^r \neq 0)$ e $j_1 < j_2 < ... < j_h$ (Per ogni riga da 1 a h il minimo della riga diverso da 0 si trova "più a sinistra" del minimo della prossima riga)
- 2. $\forall r \in \{h+1,...,m\}$ $a^r = \underline{0}$ (Tutte le righe successive a quella di h sono uguali al vettore nullo)

Pivot: Viene chiamato pivot l'elemento più "più a sinistra" di ogni riga che indichiamo con a_{i}^{r}

Esempio - Matrice Ridotta a Scalini

$$\begin{pmatrix} 0 & 2 & 3 & 0 & 4 \\ 0 & 0 & -3 & 7 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Definizione - Matrice Completamente Ridotta

Sia $A \in M_{m \times n}$ allora si dice completamente ridotta se, già ridotta a scalini, e inoltre

• $\forall r \in \{1, ..., h\}$ $a_{j_r}^r = 1$ e $\forall i < r$ $a_{j_r}^i = 0$ (Ovvero ogni elemento nella colonna del pivot che si trova sopra di lui è uguale a zero)

Esempio - Matrice Completamente Ridotta

$$\begin{pmatrix}
1 & 7 & 0 & 3 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Teorema - Algoritmo di Gauss

Ogni matrice su un campo K può essere trasformata in una matrice a gradini oppure in una matrice completamente ridotta mediante un numero finito di trasformazioni elementari

Dimostrazione

Data la matrice
$$A = \begin{pmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^m & a_2^m & \dots & a_n^m \end{pmatrix}$$
 e allora definiamo

- Il minimo indice di colonna con elementi non nulli $k = min(\{j \in \{1, ..., n\} \mid a_j \neq 0\})$
- Il minimo indice di riga con elementi non nulli $h = min(\{i \in \{1, ..., m\} \mid a_k^i \neq 0\})$

Allora eseguiamo i passi dell'algoritmo

1. Scambio di una riga (dove indichiamo con P il pivot di ogni riga)

$$a^{1} \leftrightarrow a^{h} \quad A = \begin{pmatrix} 0 & \dots & 0 & P & \dots \\ \vdots & & \vdots & \vdots & \vdots \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & \vdots \end{pmatrix}$$

2. Somma di una riga moltiplicata per uno scalare (rendendo nulli tutti gli elementi sotto il pivot)

$$\forall i \in \{2, ..., m\} \quad a^{i} \leftrightarrow a^{i} + \beta_{i} \cdot a^{1} \quad A = \begin{pmatrix} 0 & ... & 0 & P & ... \\ \vdots & & \vdots & 0 & \\ \vdots & & \vdots & \vdots & \\ 0 & ... & 0 & 0 & \end{pmatrix}$$

Tale che $a_k^i + \beta_i \cdot a_k^1 = 0 \Rightarrow \beta_i = -a_k^i \cdot (a_k^1)^{-1}$

3. Ripetiamo questo tipo di trasformazioni fino a quando non si ottiene una matrice a scalini

$$a^{1} \leftrightarrow a^{h} \quad A = \begin{pmatrix} 0 & \dots & 0 & P & \dots \\ \vdots & & \vdots & 0 & P \\ \vdots & & \vdots & \vdots & 0 \\ 0 & \dots & 0 & 0 & 0 \end{pmatrix}$$

- 4. Per trasformare questa matrice a gradini in matrice completamente ridotta eseguiamo le seguenti trasformazioni
 - (a) Normalizziamo i pivot (indichiamo con p il numero di pivot): $\forall i \in \{1,...,p\}$ $a^i \rightarrow \frac{1}{a^i_{ii}} \cdot a^i$
 - (b) $\forall r = p, ..., 2 \quad \forall i = 1, ..., r 1 \quad a^i \to a^1 a^i_r \cdot a^r$

Esempio - Algoritmo di Gauss

Consideriamo
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix} \in M_{3\times 6}(\mathbb{R})$$
 allora

- 1. Individuiamo il minimo indice di una colonna non nulla, in guesto caso la 3
- 2. Individuiamo il minimo indice di riga di un elemento non nullo sulla colonna 3 in questo caso il 2
- 3. Scambio di una riga dove h = 1 e k = 2

$$a^1 \leftrightarrow a^2$$
 $\begin{pmatrix} 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$

4. Somma di una riga moltiplicata per uno scalare dove h=3 k=1 $\beta=-\frac{1}{2}$

$$a^{3} \rightarrow a^{3} + \left(-\frac{1}{2}\right)a^{1}$$
 $\begin{pmatrix} 0 & 0 & 2 & 0 & -1 & 1\\ 0 & 0 & 0 & 1 & 2 & -2\\ 0 & 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

5. Somma di una riga moltiplicata per uno scalare dove h=3 k=2 $\beta=-1$

$$a^{3} \rightarrow a^{3} + (-1)a^{2}$$

$$\begin{pmatrix} 0 & 0 & 2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & -\frac{3}{2} & \frac{5}{2} \end{pmatrix}$$

NOTA: Adesso la matrice è ridotta a scalini

6. Moltiplicazione di una riga per uno scalare dove h=1 $\alpha=\frac{1}{2}$

$$a^{1} \rightarrow \frac{1}{2} \cdot a^{1} \qquad \begin{pmatrix} 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & -\frac{3}{2} & \frac{5}{2} \end{pmatrix}$$

7. Moltiplicazione di una riga per uno scalare dove h=3 $\alpha=-\frac{2}{3}$

$$a^{3} \rightarrow -\frac{2}{3} \cdot a^{3} \quad \begin{pmatrix} 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 & -\frac{5}{3} \end{pmatrix}$$

8. Somma di una riga moltiplicata per uno scalare dove h=2 k=3 $\beta=-2$

$$a^{2} \rightarrow a^{2} + (-2)a^{3} \qquad \begin{pmatrix} 0 & 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0 & \frac{4}{3} \\ 0 & 0 & 0 & 1 & -\frac{5}{2} \end{pmatrix}$$

9. Somma di una riga moltiplicata per uno scalare dove h=2 k=3 $\beta=-2$

$$a^{1} \rightarrow a^{1} + \frac{1}{2} \cdot a^{3} \qquad \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & 1 & 0 & \frac{4}{3} \\ 0 & 0 & 0 & 0 & 1 & -\frac{5}{3} \end{pmatrix}$$

Teorema - Il rango di una matrice ridotta a gradini è uguale al numero di pivot

Sia $A \in M_{m \times n}$ allora rango(A) = numero di pivot = righe non nulle di A **Dimostrazione** Per induzione sul numero di pivot (che indichiamo con h)

• Se h = 0 allora la matrice A è nulla per cui rango(A) = 0

- Supponiamo verso l'enunciato, per ipotesi di induzione, per matrici h-1 pivot allora
 - Cancellando la prima riga otteniamo da A otteniamo che $\{a^2, ..., a^h\}$ è linearmente indipendete
 - Osserviamo che $a^1 \not\in \mathcal{L}(a^2, ..., a^h)$
 - Allora $\{a^1, a^2, ..., a^h\}$ è linearmente indipendente e rango(A) = h

Esempio - Teorema del rango di una matrice ridotta a scalini

Sia $K = \mathbb{R}[x] \le 3$ allora prendiamo $W = \mathcal{L}(1+x^2, 1-x-x^2)$ e $U = \mathcal{L}(2-x, x+x^2+x^3)$ e osserviamo se la loro somma è diretta.

Ricordiamo che per la relazione di Grassmann abbiamo che $dim(W+U)=dim(W)+dim(U)\Leftrightarrow W\boxplus U$

Procediamo quindi con l'esercizio

- 1. Osserviamo che dim(W) = 2 = dim(U) quindi $W \boxplus U \Leftrightarrow dim(W + U = 4)$
- 2. Calcoliamo la loro somma $W+U=\mathcal{L}(1+x^2,1-x-x^2,2-x,x+x^2+x^3)$
- 3. Presa la base canonica $B = (1, x, x^2, x^3)$ consideriamo le componenti di ogni vettore
 - $\phi_B(1+x^2) = (1,0,1,0)$
 - $\phi_B(1-x-x^2)=(1,-1,-1,0)$
 - $\phi_B(2-x) = (2,-1,0,0)$
 - $\phi_B(x + x^2 + x^3) = (0, 1, 1, 1)$
- 4. Adesso sappiamo che $\{1+x^2, 1-x-x^2, 2-x, x+x^2+x^3\}$ è linearmente indipendente \Leftrightarrow $\{(1,0,1,0), (1,-1,-1,0), (2,-1,0,0), (0,1,1,1)\}$ è linearmente indipendente
- 5. $\{(1,0,1,0),(1,-1,-1,0),(2,-1,0,0),(0,1,1,1)\}$ è linearmente indipendente $\Leftrightarrow rango(\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 0 \\ 2 & -1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}) = 4$
- 6. Riducendo la matrice precedente a scalini otteniamo $rango(\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}) = 3 \neq 4$

Quindi abbiamo che $W + U \neq W \boxplus U$

Sistemi di Equazioni Lineari

Definizione - Sistema di Equazioni Lineari

Sia $(K, +, \cdot)$ un campo e $m \in \mathbb{N}$ allora definiamo un sistema di equazioni lineari in questo modo

$$\Sigma \begin{cases} a_1^1 x_1 + \dots + a_n^1 x_n = b_1 \\ a_1^2 x_1 + \dots + a_n^2 x_n = b_2 \\ \vdots \\ a_1^m x_1 + \dots + a_n^m x_n = b_n \end{cases}$$

 Σ è un sistema di m equazioni con coefficienti in K in n incognite

Definizione - Sistema di Equazione in forma matriciale

Sia
$$\Sigma$$
:
$$\begin{cases} a_1^1x_1 + \ldots + a_n^1x_n = b_1 \\ a_1^2x_1 + \ldots + a_n^2x_n = b_2 \\ \vdots \\ a_1^mx_1 + \ldots + a_n^mx_n = b_m \end{cases}$$
 un sistema di m equazioni lineari in n incognite sul campo K (ovvero $a_j^i, b_i \in K$)

Allora possiamo osservare il sistema in forma matriciale come $\Sigma: A \cdot X = B$ dove

- Matrice dei coefficienti $A = \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ a_1^2 & \dots & a_n^2 \\ \vdots & \vdots \\ a_1^n & \dots & a_n^m \end{pmatrix}$
- Matrice delle incognite $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
- Matrice dei termini noti $B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$
- $\bullet \ \, \textbf{Matrice completa} \, \, \mathcal{C} = \begin{pmatrix} a_1^1 \, \ldots \, a_n^1 & b_1 \\ \vdots & \vdots & \vdots \\ a_1^n \, \ldots \, a_n^m & b_n \\ \end{pmatrix}$

Esempio - Sistema di Equazioni Lineari in forma matriciale

Sia
$$\Sigma:$$

$$\begin{cases} 2x_1-x_2+4x_3=1\\ -x_1+3x_2+2x_2=0 \end{cases}$$
 allora otteniamo che

- Matrice dei coefficienti $A = \begin{pmatrix} 2 & -1 & 4 \\ -1 & 3 & 2 \end{pmatrix}$
- Matrice delle incognite $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$
- Matrice dei termini noti $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- Matrice completa $C = \begin{pmatrix} 2 & -1 & 4 & 1 \\ -1 & 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Definizione - Soluzione di un sistema lineare

Una soluzione di un sistema lineare $\Sigma: A \cdot X = B$ di m equazioni in n incognite sul campo K è una n-upla di scalare $(y_1, ..., y_n) \in K^n$ tale che sostituiti ordinatamente alle n variabili soddisfano le equazioni del sistema, ovvero

$$\forall i \in \{1, ..., m\}$$
 $a_1^i \cdot y_1 + a_2^i \cdot y_2 + ... a_n^i \cdot y_n = b_i$ oppure più semplicemente $A \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = B$

Incompatibile o Impossibile Σ si dice incompatibile o impossibile se non ammette soluzioni ovvero, $S = \emptyset$ (se ammette soluzioni invece è detto compatibile)

Esempio - Soluzione di un sistema lineare

Sia
$$\Sigma:$$

$$\begin{cases} 2x_1-x_2+4x_3=1\\ -x_1+3x_2+2x_2=0 \end{cases}$$
 allora agiamo per sostituzione

$$\begin{cases} 2(3x_2 + 2x_3) - x_2 + 4x_3 = 1 \Rightarrow 6x_2 + 4x_3 - x_2 + 4x_3 = 1 \\ x_1 = 3x_2 + 2x_3 \end{cases}$$

$$\begin{cases} 5x_2 = 1 - 8x_3 \Rightarrow x_2 = \frac{1}{5} - \frac{8}{5}x_3 \\ x_1 = 3(\frac{1}{5} - \frac{8}{5})x_3 - 8x_3 = \frac{3}{5} - \frac{24}{5}x_3 - 8x_3 = \frac{3}{4} - \frac{32}{5}x_3 \end{cases}$$

Quindi l'insieme delle soluzioni di Σ è $S=\{(\frac{3}{5}-\frac{32}{5}x_3,\frac{1}{5}-\frac{8}{5}x_3,x_3)\mid x_3\in\mathbb{R}\}\subseteq\mathbb{R}^3$

Teorema - di Rouché-Capelli

Sia $\Sigma : A \cdot X = B$ allora abbiamo che

 Σ è compatibile $\Leftrightarrow rango(A) = rango(C)$

Esempio - Teorema di Rouché-Capelli

Sia
$$\Sigma:$$
 $\begin{cases} x_1+x_2=1\\ 2x_1+2x_2=3 \end{cases}$ sappiamo allora che Σ è incompatibile perché

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 allora $rango(A) = 1 \neq 2 = rango(C)$ che è uguale a $C = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \end{pmatrix}$

Definizione - Sistemi di equazioni lineari Equivalenti

Siano $\Sigma:A\cdot X=B$ e $\Sigma':A'\cdot X=B'$ sistemi lineari in n incognite su un campo K

Chiamiamo S l'insieme delle soluzioni di Σ e S' l'insieme delle soluzioni di Σ' allora

 Σ e Σ' sono equivalenti $\Leftrightarrow S = S'$

(Ovvero hanno le stesse soluzioni)

Teorema - Metodo di risoluzione di Gauss-Jordan

Sia $\Sigma : A \cdot X = B$ un sistema lineare di m equazioni in n incognite su K la cui matrice completa è C = (A|B)

Se $\Sigma': A' \cdot X = B'$ è un sistema lineare la cui matrice completa C' è ottenuta da C mediante un numero finito di operazioni elementari (di riga) allora Σ e Σ' sono equivalenti

Esempio - Metodo di rosluzione di Gauss-Jordan

Prendiamo in esempio il sequente sistema di equazioni

$$\Sigma : \begin{cases} x_2 + 2x_3 + x_4 = 1 \\ x_1 + x_2 - x_3 - 2x_4 = 0 \\ 2x_1 + 2x_2 + x_3 + x_4 = 1 \end{cases}$$

Dal quale abbiamo la seguente matrice completa

$$C = \begin{pmatrix} 0 & 1 & 2 & 1 & 1 \\ 1 & 1 & -1 & -2 & 0 \\ 2 & 2 & 1 & 1 & 1 \end{pmatrix}$$

La riduciamo quindi a gradini

$$C = \begin{pmatrix} 1 & 1 & -1 & -2 & 0 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 3 & 5 & 1 \end{pmatrix}$$

Otteniamo quindi il sistema di equazione Σ' che è equivalente a Σ

$$\Sigma : \begin{cases} x_1 + x_2 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + x_4 = 1 \\ 3x_3 + 5x_4 = 1 \end{cases}$$

Da qui abbiamo due possibilità

- 1. Sostituzione a ritroso
- 2. Continuiamo a ridurre completamente la matrice

Se adottiamo la prima possibilità otteniamo che

$$\begin{cases} x_1 = -x_2 + x_3 + 2x_4 = -x_2 - \frac{5}{3}x_4 + \frac{1}{3} + 2x_4 \\ x_2 = -2x_3 - x_4 + 1 = -2(-\frac{5}{3}x_2 + \frac{1}{3}) - x_4 + 1 \\ x_3 = -\frac{5}{3}x_4 + \frac{1}{3} \end{cases}$$

$$\begin{cases} x_1 = -\frac{7}{3}x_4 - \frac{1}{3} - \frac{5}{3}x_4 + \frac{1}{3} + 2x_4 = -2x_4 \\ x_2 = \frac{7}{3}x_4 + \frac{1}{3} \\ x_3 = -\frac{5}{3}x_4 + \frac{1}{3} \end{cases}$$

L'insieme delle soluzioni è quindi $S = \{(-2x_4, \frac{7}{3}x_4 + \frac{1}{3}, -\frac{5}{3}x_4 + \frac{1}{3}, x_4 \mid x_4 \in \mathbb{R}\}$

Se adottiamo la seconda soluzioni abbiamo che la matrice ridotta completamente è

$$C = \begin{pmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & -\frac{7}{3} & \frac{1}{3} \\ 0 & 0 & 1 & \frac{5}{3} & \frac{1}{3} \end{pmatrix}$$

Dandoci il seguente sistema di equazioni

$$\begin{cases} x_1 2x_2 = 0 \\ x_2 - \frac{7}{3}x_4 = \frac{1}{3} \\ x_3 + \frac{5}{3}x_4 = \frac{1}{3} \end{cases}$$

$$\begin{cases} x_1 = -2x_2 \\ x_2 = \frac{7}{3}x_4 + \frac{1}{3} \\ x_3 = -\frac{5}{3}x_4 + \frac{1}{3} \end{cases}$$

L'insieme delle soluzioni è quindi $S = \{(-2x_4, \frac{7}{4}x_4 + \frac{1}{3}, -\frac{5}{3}x_4 + \frac{1}{3}, x_4) \mid x_4 \in \mathbb{R}\}$

Risolviamo il seguente sistema lineare

$$\Sigma: \begin{cases} x_1 + x_2 - 2x_3 + x_4 + x_5 = 1 \\ -x_1 - 2x_2 - x_3 + 2x_4 = 2 \\ -x_2 - 3x_3 + 3x_4 + x_5 = 3 \\ x_2 + 2x_3 + x_5 = 0 \end{cases}$$

Ne ricaviamo la seguente matrice completa

$$C = \begin{pmatrix} 1 & 1 & -2 & 1 & 1 & 1 \\ -1 & -2 & -1 & 2 & 0 & 2 \\ 0 & -1 & -3 & 3 & 1 & 3 \\ 0 & 1 & 2 & 0 & 1 & 0 \end{pmatrix}$$

Che ridotta completamente diventa

$$C = \begin{pmatrix} 1 & 0 & 0 & -11 & -8 & -11 \\ 0 & 1 & 0 & 6 & 5 & 6 \\ 0 & 0 & 1 & -3 & -2 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Ne ricaviamo il seguente sistema d'equazione

$$\begin{cases} x_1 - 11x_4 - 8x_5 = -11 \\ x_2 + 6x_4 + 5x_5 = 6 \\ x_3 - 3x_4 - 2x_5 = -3 \end{cases}$$

$$\begin{cases} x_1 = 11x_4 + 8x_5 - 11 \\ x_2 = -6x_4 - 5x_5 + 6 \\ x_3 = 3x_4 + 2x_5 - 3 \end{cases}$$

L'insieme delle soluzioni è quindi $S = \{(11x_4 + 8x_5 - 11, -6x_4 - 5x_5 + 6, 3x_4 + 2x_5 - 3, x_4, x_5) \mid x_4, x_5 \in \mathbb{R}\} \subseteq \mathbb{R}^5$

Nota - Variabili Libere

Le variabili che corrispondono a colonne che non contengono pivot si dicono variabili libere esse sono esattamente n-rango(A)