Topología Algebraica

Ejercicios para Entregar - Prácticas 2 y 3 Guido Arnone

Sobre los Ejercicios

Con la intención de hacer más legibles a las resoluciones, algunos argumentos están escritos en forma de lemas que preceden a cada ejercicio.

Lema 1. Sea φ una función de los CW-complejos finitos a los enteros que cumple las hipótesis del ejercicio 8. Entonces,

- (i) Si D es un CW-complejo finito de dimensión 0, entonces $\varphi(D) = \varphi(S^0) \cdot (\#D 1)$.
- (ii) Si X es un CW-complejo finito y A, B \subset X son subcomplejos de X tales que X = A \vee B, entonces $\phi(X) = \phi(A) + \phi(B)$.
- (iii) Para cada $d\in \mathbb{N}_0$ tenemos que $\phi(\mathbb{S}^d)=(-1)^d\cdot \phi(\mathbb{S}^0).$
- (iv) Para cada $d \in \mathbb{N}_0$ y $k \in \mathbb{N}$, es $\phi(\vee_{i=1}^k \mathbb{S}^d) = k \cdot (-1)^d \cdot \phi(\mathbb{S}^0)$.

Demostración. Hacemos cada inciso por separado.

(i) Hacemos inducción en el tamaño de D. Sea $e_0^1 \sqcup e_0^2$ una estructura celular para S^0 . Si #D = 1, luego D $\equiv e_0^1$. Por otro lado, el cociente de un espacio por el subespacio de un punto es siempre homeomorfo al espacio mismo. Tenemos entonces $\varphi(S^0) = \varphi(S^0/e_0^1) + \varphi(e_0^1) = \varphi(S^0) + \varphi(D)$. Restando, tenemos que $\varphi(D) = 0$. Si #D = 2, es D $\simeq S^0$ y $\varphi(D) = \varphi(S^0)$. Por último, cuando #D > 2, si tomamos x, y \in D dos 0-celdas, el cociente D' := D/{x, y} por el subcomplejo {x, y} $\equiv S^0$ corresponde a indentificar x con y, de forma que resulta un espacio discreto de un punto menos. Es decir, es un CW-complejo finito de dimensión cero con una 0-celda menos. Inductivamente, tenemos

$$\begin{split} \phi(D) &= \phi(D/\{x,y\}) + \phi(\{x,y\}) = \phi(D') + \phi(\mathbb{S}^0) \\ &= \phi(\mathbb{S}^0)(\#D'-1) + \phi(\mathbb{S}^0) = \phi(\mathbb{S}^0)\#D' \\ &= \phi(\mathbb{S}^0)(\#D-1). \end{split}$$

(ii) Basta probar que X/A \equiv B. En tal caso, tendremos en efecto $\varphi(X) = \varphi(A) + \varphi(X/A) =$ $\varphi(A) + \varphi(B)$. Consideramos la función $f: B \to X/A$ definida como la composición entre la inclusión B \hookrightarrow X y la proyección q : X \rightarrow X/A. Como B es compacto pues es un CWcomplejo finito y X/A es Hausdorff ya que es CW-complejo, resta ver que f es biyectiva. Sea $p \in X$ el punto de pegado entre A y B. Es decir, $A \cap B = \{p\}$. Ahora,

- La función f es invectiva: sean $x, y \in B$ con [x] = f(x) = [y]. Por definición de X/A, o bien x = y o bien $x, y \in A$. Esto último implica $x, y \in A \cap B = \{p\}$. En cualquier caso, es x = y.
- La función f es sobreyectiva: sea $[x] \in A$ con $x \in X = A \vee B$. Si $x \in B$ es [x] = f(x). De lo contrario, necesariamente es $x \in A \setminus \{p\}$. Pero entonces basta notar que como $p \in B$, es f(p) = [p] = [x] pues $p, x \in A$.
- (iii) Hacemos inducción en d. El caso base d=0 es trivial. Si d=1, construimos a \mathbb{S}^1 como la adjunción de dos 1-celdas e_1^1 y e_1^2 a $\mathbb{S}^0 = e_0^1 \sqcup e_0^2$. Luego $\mathbb{S}^1/\mathbb{S}^0 \equiv \mathbb{S}^1 \vee \mathbb{S}^1$ y $\varphi(\mathbb{S}^1) = \varphi(\mathbb{S}^1/\mathbb{S}^0) +$ $\phi(S^0) \stackrel{(ii)}{=} 2\phi(\mathbb{S}^1) + \phi(\mathbb{S}^0). \ \text{Restando, obtenemos} \ \phi(\mathbb{S}^1) = -\phi(\mathbb{S}^0). \ \text{Cuando } d > 2 \text{, usamos}$ una idea similar: consideramos la estructura celular para S^d que consiste en adjuntar dos d-discos a \mathbb{S}^{d-1} . Es decir, tenemos una cero celda e_0 , una (d-1)-celda e_{d-1} que corresponde a pegar el borde de un (d-1)-disco en e_0 , y dos d-celdas e_d^1 y e_d^2 que coresponden a pegar el borde cada d-disco en la (d-1)-esfera sin identificar puntos del borde entre sí. Así, \mathbb{S}^{d-1} resulta el "ecuador" de S^d y entonces, el cociente S^d/e_{d-1} es homeomorfo al wedge de dos d-esferas. Por lo tanto,

$$\begin{split} \phi(S^d) &= \phi(\mathbb{S}^d/e_{d-1}) + \phi(e_{d-1}) = \phi(\mathbb{S}^d \vee \mathbb{S}^d) + \phi(\mathbb{S}^{d-1}) \stackrel{\text{(ii)}}{=} 2\phi(\mathbb{S}^d) + \phi(\mathbb{S}^{d-1}), \\ \text{lo que implica } \phi(\mathbb{S}^d) &= -\phi(\mathbb{S}^{d-1}) = -(-1)^{d-1}\phi(\mathbb{S}^0) = (-1)^d\phi(\mathbb{S}^0). \end{split}$$

(iv) Hacemos inducción en k. El caso base cuando k = 1 se verifica por (iii). Si ahora k > 1, fijamos $d \in \mathbb{N}_0$ Ahora, consideramos la siguente estructura celular del wedge: tenemos una cero celda e_0 y k celdas de dimensión d, con funciónes de adjunción $f_i: \mathbb{D}^k \xrightarrow{!} e_0$ para cada i ∈ [k]. Luego cada esfera es un subcomplejo y entonces usando (ii), (iii) y la hipótesis inductiva, tenemos que

$$\begin{split} \phi(\vee_{j=1}^k \mathbb{S}^d) &= \phi(\mathbb{S} \vee \vee_{j=1}^{k-1} \mathbb{S}^d) = \phi(\mathbb{S}^d) + \phi(\vee_{j=1}^{k-1} \mathbb{S}^d) \\ &= (-1)^d \phi(\mathbb{S}^0) + (k-1)(-1)^d \phi(\mathbb{S}^0) = k \cdot (-1)^d \cdot \phi(\mathbb{S}^0). \end{split}$$

Lema 2. Sea X un CW-complejo finito de dimensión d y sea i < d. Si X tiene c_i celdas de dimensión i, entonces $X^i/X^{i-1} \equiv \bigvee_{i \in \mathbb{I}_{C_i}} \mathbb{S}^i$.

Demostración. Sea $W := \bigvee_{i \in [\![c_i]\!]} S^i$. Notemos que X^i / X^{i-1} es Hausdorff al ser un CW-complejo y Wes compacto, así que basta con dar una función $W \to X^i/X^{i-1}$ continua y biyectiva. Consideramos primero la función $g: \bigsqcup_{j \in \llbracket c_i \rrbracket} \mathbb{D}^i_j \to X^i/X^{i-1}$ dada por la composición entre la función de adjunción de las i-celdas $f := \bigsqcup_{i \in [\![c_i]\!]} f_i$ y la proyección al cociente $q : X^i \to X^i/X^{i-1}$. Notemos que si x e y son puntos que pertenecen al borde de dos discos $\mathbb{D}^i_{k'}\mathbb{D}^i_{l'}$ luego sus imagenes via f caen en el borde de dos i-celdas. En particular caen en el (i-1)-esqueleto de X^i , así que al proyectar obtenemos que g(x) = g(y). Esto dice que g pasa al cociente por la relación que identifica todos los bordes de los discos. Como $\mathbb{D}^i/\partial\mathbb{D}^{\bar{i}} \equiv \mathbb{S}^i$, luego $\bigsqcup_{i \in [\![c_i]\!]} \mathbb{D}^i_i / \bigsqcup_{i \in [\![c_i]\!]} \partial\mathbb{D}^i_i \equiv W$ y por lo tanto g induce una función continua $\hat{q}: W \to X^i/X^{i-1}$. Para terminar, veamos que es biyectiva:

• La función \hat{g} es inyectiva: sean $x' \neq y' \in W$ y $x,y \in \bigsqcup_{j \in \mathbb{L}_i \mathbb{D}} \mathbb{D}_j^i$ preimganes de x' e y' respectivamente por la proyección a W. En particular no solo es $x \neq y$ si no que alguno de los puntos debe estar en el interior de algún disco, ya que todos los bordes se proyectan a un mismo punto de W. Suponemos sin pérdida de generalidad que $x \in \mathbb{D}_j^{i^0}$, $y \in \mathbb{D}_j^{i_0}$ con $j,j' \in \mathbb{L}_i$. Ahora, para ver que $[f(x)] = g(x) = \hat{g}(x') \neq \hat{g}(y') = g(y) = [f(y)]$ alcanza probar que f(x) y f(y) no están relacionados. Si $f(y) \in X^{i-1}$ luego $f(y) \not = f(x)$ pues $f(x) \notin X^{i-1}$. Caso contrario, es $y \in \mathbb{D}_j^{i_0}$ y entonces f(x) y f(y) pertenecen a interiores de celdas disjuntos. En consecuencia, tenemos $f(x) \neq f(y)$ y f(x), $f(y) \notin X^{i-1}$ así que en cualquier caso obtuvimos $f(x) \not= f(y)$.

• La función \hat{g} es sobreyectiva: sea $[z] \in X^i/X^{i-1}$. Si $z \in X^{i-1}$, tomamos $p \in W$ el punto de pegado de las esferas. Luego $\hat{g}(p) = g(x)$ para cierto $x \in \mathbb{D}^i_j$ con $j \in [c_i]$. Por lo tanto, f(x) está en el borde de una i-celda y entonces $f(x) \in X^{i-1}$. De esta forma, tenemos que $f(x) \sim z$ y entonces $\hat{g}(p) = g(x) = qf(x) = q(z) = [z]$. Si en cambio $z \in X^i \setminus X^{i-1}$, luego z está en el interior de una i-celda y es imagen de cierto punto $x \in \mathbb{D}^{i^0}_j$ con $j \in [c_i]$. Si proyectamos x a W, su imagen por \hat{g} es g(x) = qf(x) = q(z) = [z]. En cualquier caso [z] es imagen por \hat{g} de algún punto de W.

Observación 3. Como lo necesitaremos a continuación, recordamos el siguiente resultado visto en clase: sea $0 \to \cdots \xrightarrow{d_q} C_{q+1} \xrightarrow{d_{q+1}} C_q \xrightarrow{d_q} C_{q-1} \xrightarrow{d_{q-1}} \cdots \xrightarrow{d_1} C_0 \xrightarrow{d_0} 0$ un complejo de cadenas de \mathbb{Z} -módulos finitamente generado. Entonces,

$$\sum_{q>0} (-1)^q \operatorname{rg} C_q = \sum_{q>0} (-1)^q H_q C$$

En efecto, para cada $q \in \mathbb{N}$ tenemos las sucesiones exactas cortas

$$\begin{split} 0 \to im \, d_{q+1} &\hookrightarrow ker \, d_q \to ker \, d_q / \, im \, d_{q+1} = H_q \, C \to 0, \\ 0 \to ker \, d_q &\hookrightarrow C_q \xrightarrow{d_q} im \, d_q \to 0. \end{split}$$

Por lo tanto, $\operatorname{rg} C_q = \operatorname{rg} \ker d_q + \operatorname{rg} \operatorname{im} d_q = (\operatorname{rg} \operatorname{im} d_{q+1} + \operatorname{rg} H_q C) + \operatorname{rg} \operatorname{im} d_q$. Entonces,

$$\begin{split} \sum_{q \geq 0} (-1)^q \, rg \, C_q &= \sum_{q \geq 0} (-1)^q (rg \, im \, d_{q+1} + rg \, H_q C + rg \, im \, d_q) \\ &= \sum_{q \geq 0} (-1)^q H_q C + \sum_{q \geq 0} (-1)^q (rg \, im \, d_{q+1} + rg \, im \, d_q) \\ &= \sum_{q \geq 0} (-1)^q H_q C + \sum_{q \geq 0} (-1)^q \, rg \, im \, d_{q+1} + \sum_{q \geq 0} (-1)^q \, rg \, im \, d_{q+1} \\ &= \sum_{q \geq 0} (-1)^q H_q C + \sum_{q \geq 1} (-1)^{q+1} \, rg \, im \, d_q + \sum_{q \geq 0} (-1)^q \, rg \, im \, d_{q+1} \\ &= \sum_{q \geq 0} (-1)^q H_q C + rg \, im \, d_0 = \sum_{q \geq 0} (-1)^q H_q C \end{split}$$

como afirmamos.

Ejercicio 8. Sea $n \in \mathbb{Z}$. Probar que existe una única función ϕ que le asigna a cada CW-complejo finito un entero tal que

- (a) $\varphi(X) = \varphi(Y)$ si X e Y son homeomorfos.
- (b) $\varphi(X) = \varphi(A) + \varphi(X/A)$ si A es subcomplejo de X.
- (c) $\varphi(\mathbb{S}^0) = n$.

Probar además que una tal función debe cumplir que $\phi(X) = \phi(Y)$ si $X \simeq Y$

Demostración. Probamos en primera instancia la unicidad, y luego la existencia. Fijemos $n \in \mathbb{Z}$ y supongamos que existe una tal función φ como en el enunciado. Ahora, sea X un CW-complejo finito de dimensión $d \in \mathbb{N}_0$. Por (b), obtenemos

$$\phi(X) = \phi(X^d) = \phi(X^d/X^{d-1}) + \phi(X^{d-1}) = \dots = \sum_{i=1}^d \phi(X^i/X^{i-1}) + \phi(X^0).$$

Como por el Lema 2 es $X^i/X^{i-1} \equiv \bigvee_{j \in [\![c_i]\!]} S^i$ con c_i la cantidad de i-celdas, luego usando (a) y los ítems (i) y (iv) del Lema 1 tenemos que

$$\begin{split} \phi(X) &= \sum_{i=1}^d \phi(\vee_{j \in \llbracket c_i \rrbracket} S^i) + \phi(S^0) \cdot (\# X^0 - 1) = \sum_{i=1}^d c_i \phi(S^i) + (c_0 - 1) \phi(S^0) \\ &= \sum_{i=0}^d c_i \phi(S^i) - \phi(S^0) = \sum_{i=0}^d c_i (-1)^i \phi(S^0) - \phi(S^0) \\ &= \phi(S^0) \sum_{i=0}^d (-1)^i c_i - \phi(S^0). \end{split}$$

Observando que $c_i = rg(C_iX)$, es entonces

$$\phi(X) = \phi(\mathbb{S}^0) \sum_{i=0}^d (-1)^i \, rg(C_i X) - \phi(\mathbb{S}^0) = \phi(\mathbb{S}^0) \chi(X) - \phi(\mathbb{S}^0) = \phi(\mathbb{S}^0) (\chi(X) - 1).$$

Esto prueba la unicidad, pues una tal función queda unívocamente determinada por su valor en la 0-esfera. Además, como la característica de Euler es un invariante homotópico, vemos que si $X \simeq Y$ luego $\phi(X) = \phi(S^0)(\chi(X)-1) = \phi(S^0)(\chi(Y)-1) = Y$. Para terminar, veamos la existencia: dado $n \in \mathbb{Z}$, por lo anterior necesariamente debemos definir $\phi(X) := n(\chi(X)-1)$ para cada CW-complejo finito X. Observemos también que si una función ψ cumple las condiciones (a) χ (b) χ m χ es un entero, la función χ es un invariante homotópico, en particular χ 1 verifica (a), χ (c) es cierto pues $\chi(S^0) - 1 = 2 - 1 = 1$. Para terminar basta ver que si χ es un CW-complejo finito χ un subcomplejo de χ , entonces $\chi(\chi) - 1 = \chi(\chi) + \chi(\chi/\chi) - \chi(\chi/\chi) - \chi(\chi/\chi) = \chi(\chi/\chi) + \chi(\chi/\chi) - \chi(\chi$

$$0 \to S_q A \to S_q X \to S_q(X,A) \to 0.$$

para cada $q \ge 0$ con los morfismos de inclusión y proyección canónicos, ya que por definicion es $S_q(X,A) = S_qX/S_qA$. En particular sabemos que $\operatorname{rg} S_qX = \operatorname{rg} S_qX + \operatorname{rg} S_q(X,A)$. Ahora usando la

Observación 3 se tiene que

$$\begin{split} \chi(X) &= \sum_{i \geq 0} (-1)^i \, \text{rg} \, S_i X = \sum_{i \geq 0} (-1)^i (\text{rg} \, S_i A + \text{rg} \, S_i (X,A)) \\ &= \chi(A) + \sum_{i \geq 0} (-1)^i \, \text{rg} \, S_i (X,A) = \chi(A) + \sum_{i \geq 0} (-1)^i \, \text{rg} \, H_i (X,A). \end{split}$$

Como (X,A) es un par bueno, como consecuencia de escisión tenemos que $H_i(X,A) = \tilde{H}_i(X/A)$ para todo $i \ge 0$. Observando que para cualquier espacio Y es $\tilde{H}_0(Y) \oplus \mathbb{Z} \simeq H_0(Y)$, en particular rg $H_0(X,A) = \operatorname{rg} \tilde{H}_0(X/A) = \operatorname{rg} H_0(X/A) - 1$ y entonces

$$\chi(X) = \chi(A) + \sum_{i \ge 0} (-1)^i \operatorname{rg} H_i(X, A)$$

$$= \chi(A) + \sum_{i \ge 0} (-1)^i \operatorname{rg} H_i(X/A) - 1$$

$$= \chi(X) + \chi(X/A) - 1,$$

lo que concluye la demostración.

Lema 4. Sean $n \in \mathbb{N}$ y f, $g : \mathbb{S}^n \to \mathbb{S}^n$ dos funciones continuas. Si $f(x) \neq -g(x)$ para todo $x \in \mathbb{S}^n$, entonces f y g son homotópicas.

Demostración. Consideremos primero dos puntos $x,y \in \mathbb{S}^n$ y $t \in [0,1]$ tal que tx + (1-t)y = 0. Como

$$t = ||x|| = ||(t-1)y|| = |t-1| = 1-t$$

necesariamente es t=1/2. Reemplazando en la ecuación original obtenemos $\frac{1}{2}x+\frac{1}{2}y=0$, y por un cálculo directo es x=-y.

Como para cada $x \in \mathbb{S}^n$ tenemos que $f(x) \neq -g(x)$, el contrarrecíproco del argumento anterior asegura que $tf(x) + (1-t)g(x) \neq 0$ para cualquier $t \in [0,1]$. En consecuencia, la función

$$\begin{split} H: S^n \times [0,1] &\longrightarrow S^n \\ (x,t) &\mapsto \frac{tf(x) + (1-t)g(x)}{\|tf(x) + (1-t)g(x)\|} \end{split}$$

está bien definida y es continua. Como H(x,0) = f(x) y H(x,1) = g(x) para cada $x \in \mathbb{S}^n$, concluimos que f y g son homotópicas.

Ejercicio 10. Probar que toda función continua $f: \mathbb{S}^n \to \mathbb{S}^n$ es homotópica a una que tiene algún punto fijo.

Demostración. Si f tiene algún punto fijo, no hay nada que decir. En caso contrario, es

$$f(x) \neq x = -(-x) = -A(x) \quad (\forall x \in \mathbb{S}^n)$$

con $A: \mathbb{S}^n \to \mathbb{S}^n$ la antípoda de \mathbb{S}^n . Por el Lema 3, debe ser $f \simeq A$. Por lo tanto, basta probar el resultado para f = A.

Para cada $t \in [0, 1]$, definimos

$$R_t := \begin{pmatrix} \cos(\pi t) & \sin(\pi t) & 0_{1,n} \\ -\sin(\pi t) & \cos(\pi t) & 0_{1,n} \\ 0_{n,1} & 0_{n,1} & -I_{n-2} \end{pmatrix}$$

con $I_{n-2}\in M_{n-2}(\mathbb{R})$ la matriz identidad y $0_{k,l}\in \mathbb{R}^{k\times l}$ la matriz cero. Ahora, la función definida por

$$h: \mathbb{R}^{n+1} \times [0,1] \to \mathbb{R}^{n+1}$$
$$(x,t) \longmapsto R_t \cdot x$$

resulta continua, pues en cada coordenada es suma de productos de funciones continuas. Concretamente¹,

$$h(x_0, \dots, x_n, t) = (\cos(\pi t)x_0 + \sin(\pi t)x_1, \cos(\pi t)x_0 - \sin(\pi t)x_1, -x_2, \dots, -x_n). \tag{1}$$

Dado $t \in [0,1]$, la matriz R_t es diagonal por bloques con cada bloque ortogonal: esto dice que R_t es ortogonal. En particular, si $x \in \mathbb{R}^{n+1}$ es unitario entonces $R_t \cdot x$ resulta unitario. Podemos considerar entonces la (co)restricción

$$H: \mathbb{S}^n \times I \to \mathbb{S}^n$$

 $(x,t) \longmapsto h(t,x)$

que sigue siendo continua. Por (1) sabemos que

$$H(x,0) = (x_0, x_1, -x_2, \dots, -x_n)$$

y

$$H(x, 1) = (-x_0, -x_1, -x_2, \dots, -x_n) = A(x),$$

así que g := H(-, 0) y A son homotópicas. Para terminar, observemos que como

$$q(1,0,0,\ldots,0) = (1,0,-0,\ldots,-0) = (1,0,0,\ldots,0),$$

la función g tiene puntos fijos.

 $^{^1}$ En esta expresión y las siguientes asumimos que $n \ge 2$. Para el caso donde n = 1, las expresiones son análogas ignorando las coordenas siguientes. Por ejemplo, $h(x_0, x_1, t) = (\cos(\pi t)x_0 + \sin(\pi t)x_1, \cos(\pi t)x_0 + -\sin(\pi t)x_1)$