Efektywność Inwestycji i Systemów Transportowych - Wykład System popytu i podaży

dr inż. Rafał Kucharski¹

¹ Katedra Systemów Transportowych Politechnika Krakowska

Kraków, 2017

1 / 30

KST. L-2. WIL. PK

Wstęp

Popyt and Podaż Wstęp

Popyt

chęć zakupu dobra bądź usługi o określonych cenach w danym miejscu i czasie

Podaż

ilość dóbr bądź usług oferowanych przez producenta do sprzedaży po określonej cenie, danym miejscu i czasie.

Popyt and Podaż

System transportowy

Zwyczajowo w systemie transportowym możemy wyodrębnić:

Podaż

+

Popyt

Plan

Wprowadzamy system Podaży i Popytu na przykładzie z życia

następnie pokazujemy analogię z systemem, transportowym.

Studium przypadku

6 / 30

Głodni studenci PK wyrażają Popyt, który może zaspokoić Podaż jedzenia w porze obiadowej.

Podaż

wszystkie podmioty oferujące jedzenie

Podaż

wszystkie podmioty oferujące jedzenie

Popyt

Podaż

wszystkie podmioty oferujące jedzenie

podział

Popyt

podział

Popyt

podział

Popyt

podział

Popyt

podział

Popyt głodni studenci PK chcący zasopoić głód w trakcie 20 minutowej przerwy. Studenci Każdy student podejmuje decyzję dla siebie optmalną, tj. wybiera jak najlepiej.

Opcje, decyzje i użyteczność

Proces decyzyjny

Każdy student s spośród wszystkich studentów ${m S}$ podejmuje subiektywnie optymalną decyzję, t.j. wybiera opcję a ze zbioru dostępnych (**rozważanych**) opcji ${m A}$ dla której jego **odczuwalna** użyteczność U^s_a jest największa spośóród wszystkich opcji: $\forall s \in {m S}: s_a = \mathop{\rm argmax}_{a \in {m A}} U^s_a$

Użyteczność

Atrakcyjność (użyteczność) opcji (decyzji) dla danego studenta.

W rzeczywistości złożona i trudna do opisu i formalizacji.

W uproszczeniu może być wyrażana jako funkcja kryteriów dla danej opcji k_i oraz ich wag w_i przypisanych przez każdego studenta niezależnie:

$$U_a^s = \sum_{k_i \in K} w_i^s \cdot k_i$$

Opis opcji

Opisujemy każdą z opcji $a \in A$ poprzez przypisanie (oszacowanie) wartości dla każdego z istotnych kryteriów wyboru. Załóżmy, że kryteria istotne dla studentów w tej sytuacji to:

- cena,
- jakość,
- możliwość wybór ,
- czas dojścia
- czas oczekiwania na obsługę.

Ta lista może być poszerzona. Wartości kryteriów powinny być znormalizowane (dla możliwości porównania) im większa wartość kryterium, tym większa użyteczność.

Przykład przypisania wartości krytriom dla 3 wybranych opcji:

орсја	Żabka	Galeria	Expo
cena	1	0.3	0.5
jakość	0.3	0.7	0.7
różnorodność	0.3	0.9	0.6
odległość	0.3	0.1	0.9
czas oczekiwania	0.4	0.3	0.4

Wagi kryteriów, ich subiektywność i losowość.

Przypisanie wartości jest obiektywne, ale ich ważenie w wyborze, już nie. Studenci mogą różnić się podejściem do czasu, pieniądza, itp.

Przykład wag nadanych przez różnych studentów kryteriom:

w_i^s	a^1	b^2	losowy student ³	losowy zamożny student ⁴
cena	0.3	0.9	N(0.5, 0.1)	N(0.3, 0.05)
jakość	0.7	0.3	N(0.5, 0.1)	N(0.7, 0.05)
różnorodność	0.7	0.3	N(0.5, 0.1)	N(0.7, 0.0.5)
odległość	0.7	0.3	N(0.5, 0.1)	N(0.7, 0.05)
czas oczekiwania	0.8	0.1	N(0.5, 0.1)	N(0.8, 0.1)

Dwie ważne idee:

różnorodność studenci są różni i mają różne postawy.

losowość nie jesteśmy w stanie oszacować wag kryteriów dokładnie - są one traktowane jak zmienne losowe.

Popyt i podaż

¹dla tego studenta nie liczy się cena, ceni sobie bardziej jakość i czas.

 $^{^{2}}$ ten z kolei odwrotnie, liczy każdy grosz, nawet kosztem jakości.

³ nie wiemy kim on jest, więc wartości kryteriów są losowe (rozkład normalny)

⁴również losowe wartości, ale jednak cena gra mniejszą rolę niż jakość.

Szacowanie Użyteczności

Możemy w sposób matematyczny wyrazić to jak każdy student szacuje użyteczność poprzez następującą formułę:

$$U_a^s = \sum_{k_i \in K} w_i^s \cdot k_i$$

Szacowanie użyteczności 3 wybranych opcji przez studenta a:

орсја	Żabka	Galeria	Expo	w_i^s
cena	1	0.3	0.5	0.3
jakość	0.3	0.7	0.7	0.7
różnorodność	0.3	0.9	0.6	0.7
odległość	0.3	0.1	0.9	0.7
czas oczekiwania	0.4	0.3	0.4	0.8
Użyteczność	12.5	15.2	24.1	

'Expo' jest **opcją** z **maksymalną** użytecznością dla **tego studenta** - on najpewniej pójdzie na obiad od Expo.

dr inż. Rafał Kucharski Popyt i podaż KST, L-2, WIL, PK 12 / 30

Losowość i zmienność użyteczności.

Decyzje przedsiębiorców (oferta)

14 / 30

Decyzje przedsiębiorców (oferentów)

Dostawca

Przygotowuje ofertę, t.j.

- określa cenę ,
- dba (albo nie) o różnorodność,
- dba (albo nie) o jakość, itp.

Jago celem jest przyciągnięcie jak największej liczby studentów maksymalizować do swojej oferty. Spójnie z poprzednimi formułami, możemy to wyrazić w ten sposób, że każdy dostawca przygotowuję ofertę która maksymalizuję liczbę studentów którzy ja wybiorą (przy pewnych warunkach granicznych - np. zysk):

$$\boldsymbol{k^a} = \operatorname*{argmax}_{s \in \boldsymbol{S}} \left(U_a^s = \sum_{k_i^a \in K} w_i^s \cdot k_i \right)$$

Kryteria dla studentów i dla dostawców są w gruncie rzeczy podobne:

- Studenci szukają oferty która ma dla nich najwiekszą użyteczność,
 - Dostawcy przygotowują ofertę tak, żeby była wybrana przez jak największą liczbę studentów.

Efektywność systemu

17 / 30

Całkowita użyteczność systemu

Total welfare

System jako całość możemy opisać poprzez sumę użyteczności wszystkich klientów:

$$W = \sum_{s \in \mathbf{s}} U_{a^*}^s$$

, gdzie a^* to wybrana opcja przez studenta s, t.j. ta o największej użyteczności.

Usprawnienie systemu

Czy omawiany system usprawni otwarcie nowej restauracji "U Babci Maliny" nieopodal? Jeśli ktoś ze studentów wybierze to znaczy, że ma ona dla niego największą użyteczność, a więc W się zwiększy, usprawniając tym samym system.

Ograniczona pojemność (przepustowość)

W rzeczywistości pewne elementy formuły na użyteczność mogą być zmienne, np:

Czas oczekiwania

Jaki jest czas oczekiwania na jedzenie w Żabce?

$$t_z = f(q_z)$$

 t_z czas oczekiwania w Żabce.

 q_z liczba klientów (studentów) w Żabce.

czas oczekiwania jest rosnącą funkcją liczby studentów (liczby studentów dla których Żabka manajwiększą użyteczność.

Ograniczona pojemność (przepustowość)

- lacksquare Liczba studentów w f Zabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;

- lacksquare Liczba studentów w Żabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;
- **@** Użyteczność Żabki: $U_z=f(\dots,t_z)$ jest funkcją czasu oczekiwania w Żabce;
- § Czas oczekiwania w Żabce: $t_z=f(q_z)$ jest funkcją liczby studentów wybierających Żabkę;

- **①** Liczba studentów w Żabce: $q_z = f(U_z)$ jest funkcją jej Użyteczności;
- **@** Użyteczność Żabki: $U_z=f(\dots,t_z)$ jest funkcją czasu oczekiwania w Żabce;
- lacktriangle Czas oczekiwania w $\dot{\mathbf{Z}}$ abce: $t_z=f(q_z)$ jest funkcją liczby studentów wybierających $\dot{\mathbf{Z}}$ abkę;

- ① Liczba studentów w Żabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;
- **Q** Użyteczność Żabki: $U_z=f(\dots,t_z)$ jest funkcją czasu oczekiwania w Żabce;
- **3** Czas oczekiwania w Żabce: $t_z = f(q_z)$ jest funkcją liczby studentów wybierających Żabkę;
- Liczba studentów w Żabce: $q_z = f(U_z)$ jest funkcją jej Użyteczności;
- **⑤** ...

- ① Liczba studentów w Żabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;
- **@** Użyteczność Żabki: $U_z=f(\dots,t_z)$ jest funkcją czasu oczekiwania w Żabce;
- ullet Czas oczekiwania w Żabce: $t_z=f(q_z)$ jest funkcją liczby studentów wybierających Żabkę;
- lacktriangle Liczba studentów w Żabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;
- **⑤** ..

- ① Liczba studentów w Żabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;
- **Q** Użyteczność Żabki: $U_z=f(\dots,t_z)$ jest funkcją czasu oczekiwania w Żabce;
- ullet Czas oczekiwania w $\dot{\mathsf{Z}}$ abce: $t_z = f(q_z)$ jest funkcją liczby studentów wybierających $\dot{\mathsf{Z}}$ abkę;
- lacktriangle Liczba studentów w Żabce: $q_z=f(U_z)$ jest funkcją jej Użyteczności;
- **⑤** ..

Zagadnienie punktu stałego⁵

$$q_z^n = f(q_z^{n-1})$$

- ilu Studentów wybierze dziś Żabkę (dzień n)?
- $oldsymbol{0}$ to zależy od tego jak zadowoloeni byli ze swojej wczorajszej decyzji (dzień n-1).
- w momencie gdy liczba studentów wybierających Zabkę dziś jest taka sama jak wczoraj, wówczas proces zbiegł do punktu stałego (ustaliblizował się - equilibrium).
- to również oznacza, że czas oczekiwania w Żabce jest dziś taki sam jak wczoraj, oraz: faktyczny czas oczekiwania jest taki sam, jak spodziewany.

21 / 30

Koniec przykładu głodnych studentów

22 / 30

Przenieśmy to na system transportowy

Podaż i Popyt w inżynierii systemów transportowych

dr inż. Rafał Kucharski Popyt i podaż KST, L-2, WIL, PK 24 / 30

Zagadnienie punktu stałego w transporcie

Ograniczona przepustowość

Czas przejazdu jest zmienny i ściesle zależy od popytu.

Czas przejazdu

Ile czasu zajmie przejazd przez Aleje?

Czas przejazdu **nieliniowo** rośnie wraz ze wzrostem liczby pojazdów w Alejach.

Zagadnienie punktu stałego w transporcie

$$q_z^n = f(q_z^{n-1})$$

- \bullet ilu pasażerów wybierze dzisiaj przejazd samochodem przez Aleję (dzień n)?
- ② to zależy od tego jak zadowoleni byli ze swojej wczorajszej decyzji (dzień n-1).
- jeśli liczba pojazdów w Alejach w kolejnych dniach jest stała, wówczas system jest ustabilizowany, w punkcie stałym equilibrated.
- oznacza to, że faktyczny czas przejazdu jest taki jak oczekiwany.

26 / 30

Podsumowanie

27 / 30

System transportowy jako system podaży i podróży.

- Popyt jest zaspokojony.
- Klienci systemu maksymalizują subiektywną użyteczność i podejmują racjonalne decyzje.
- Dostawcy oferują swoje usługi tak, by wybrało je jak najwięcej klientów.
- Jeśli efekty naszych decyzji wpływają na ich użyteczność, wówczas mamy do czynienia z zagadnieniem punktu stałego, rozwiązywanym iteracyjnie.
- System taki równoważy się (**equilibrium**) gdy każdy kolejny dzień jest taki jak poprzedni, a klienci nie zmieniają swoich decyzji.

System transportowy jako system podaży i podróży.

W transporcie:

- ullet Popyt to potrzeba przemieszczenia ze źródła do celu q_{od} .
- Podaż to sieć drogowa, rowerowa, piesza, oraz oferta komunikacji zbiorowej.
- Decyzje dotyczą środka transportu, trasy, godziny rozpoczęcia podróży itp.
- Czas przejazdu przez sieć drogową, zatłoczenie w autobusie to funkcje decyzji podjętych przez innych użytkowników systemu.
- User Equilibrium to stan gdy żaden z użytkowników nie może podjąć lepszej decyzji (o większej użyteczności) a jego faktyczna użyteczność jest taka jak się spodziewał.

Dziękuję za uwagę

Rafał Kucharski, rkucharski(at)pk.edu.pl, ©2018

