Motion

Optical Flow

Video

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Slide credit: Kristen Grauman

Uses of motion in computer vision

- 3D structure reconstruction
- Object segmentation from motion
- Learning and tracking of dynamical models
- Event and activity recognition
- Improving video quality

Motion Field

The motion field is the projection of the 3D scene motion into the image.

Optical Flow

- Definition: optical flow is the apparent motion of brightness patterns in the image.
- Note: apparent motion can be caused by lighting changes without any actual motion
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

Optical Flow

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT

Estimating optical flow

- Given two subsequent frames, estimate the apparent motion field u(x, y) and v(x, y) between them.
- Key assumptions
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

I(x,y,t-1)

I(x,y,t)

Slide credit: Kristen Grauman

Color/Brightness Constancy

Figure 1.5: Data conservation assumption. The highlighted region in the right image looks roughly the same as the region in the left image, despite the fact that it has moved.

$$I(x, y, t) = I(x + u(x, y), y + v(x, y), t + 1)$$

Slide credit: Kristen Grauman

The brightness constancy constraint

$$(x + u, y + v)$$

$$I(x,y,t)$$

Brightness Constancy Equation:

$$I(x, y, t - 1) = I(x + u, y + v, t)$$

Linearizing the right side using Taylor expansion:

$$I(x,y,t-1) \approx I(x,y,t) + I_x u + I_y v$$

Hence,
$$I_x u + I_y v + I_t \approx 0$$

The brightness constancy constraint

- How many equations and unknowns per pixel?
 - One equation per pixel
 - u and v are unknown!

$$I_x u + I_y v + I_t = 0$$

$$\nabla I \cdot (u, v) + I_t = 0$$

The aperture problem

Slide credit: Kristen Grauman

The aperture problem

Actual motion

Silde credit: Kristen Grauman

The barber pole illusion

The barber pole illusion

Solving the aperture problem

- How to get more equations for a pixel?
- Spatial coherence constraint: pretend the pixel's neighbors have the same (u,v)
 - E.g., if we use a 5x5 window, that gives us 25 equations per pixel

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$\begin{array}{ccc}
A & d = b \\
25 \times 2 & 2 \times 1 & 25 \times 1
\end{array}$$

Solving the aperture problem

Prob: we have more equations than unknowns

$$A \quad d = b$$
 ——— minimize $||Ad - b||^2$

Solution: solve least squares problem

minimum least squares solution given by solution (in d) of:

$$(A^{T}A) d = A^{T}b$$

$$\begin{bmatrix} \sum_{x} I_{x} I_{x} & \sum_{x} I_{x} I_{y} \\ \sum_{x} I_{x} I_{y} & \sum_{x} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{x} I_{x} I_{t} \\ \sum_{x} I_{y} I_{t} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)

Conditions for solvability

$$\begin{bmatrix} \sum_{i=1}^{T} I_{x} I_{x} & \sum_{i=1}^{T} I_{x} I_{y} \\ \sum_{i=1}^{T} I_{x} I_{y} & \sum_{i=1}^{T} I_{y} I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum_{i=1}^{T} I_{x} I_{t} \\ \sum_{i=1}^{T} I_{y} I_{t} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

When is this solvable?

- A^TA should be invertible
- A^TA should not be very small
 - eigenvalues λ_1 and λ_2 of **A**^T**A** should not be very small
- A^TA should be well-conditioned
 - λ_1/λ_2 should not be too large (λ_1 = larger eigenvalue)

Recall: Harris Corner Detector...

Edge

- gradients very large or very small
- large λ_1 , small λ_2

Low-texture region

- gradients have small magnitude
- small λ_1 , small λ_2

Slide credit: Kristen Grauman

High-texture region

- gradients are different, large magnitudes
- large λ_1 , large λ_2

Background Subtraction

Video as an "Image Stack"

- Can look at video data as a spatio-temporal volume
 - If camera is stationary, each line through time corresponds to a single ray in space

Background Subtraction

► Given an image (mostly likely to be a video frame), we want to identify the **foreground objects** in that image!

Motivation

- ▶ In most cases, objects are of interest, not the scene.
- Makes our life easier: less processing costs, and less room for error.

Slide credit: Birgi Tamersoy

Background subtraction

- Simple techniques can do ok with static camera
- ...But hard to do perfectly
- Widely used:
 - Traffic monitoring (counting vehicles, detecting & tracking vehicles, pedestrians),
 - Human action recognition (run, walk, jump, squat),
 - Human-computer interaction
 - Object tracking

Simple Approach

Background at time t:

$$B(x,y,t)$$
 \downarrow

Mecidiyeköy

> *Th*

- 1. Estimate the background for time *t*.
- 2. Subtract the estimated background from the input frame.
- 3. Apply a threshold, *Th*, to the absolute difference to get the **foreground mask**.

But, how can we estimate the background?

Slide credit: Birgi Tamersoy

Frame Differencing

Background is estimated to be the previous frame. Background subtraction equation then becomes:

$$B(x, y, t) = I(x, y, t - 1)$$

$$\downarrow \downarrow$$

$$|I(x, y, t) - I(x, y, t - 1)| > Th$$

Depending on the object structure, speed, frame rate and global threshold, this approach may or may **not** be useful (usually **not**).

> *Th*

Slide credit: Birgi Tame

Frame Differencing

Th = 25

Th = 100

$$Th = 200$$

Slide credit: Birgi Tame

Mean Filter

▶ In this case the background is the mean of the previous *n* frames:

$$B(x, y, t) = \frac{1}{n} \sum_{i=0}^{n-1} I(x, y, t - i)$$

$$|I(x, y, t) - \frac{1}{n} \sum_{i=0}^{n-1} I(x, y, t - i)| > Th$$

▶ For n = 10:

Estimated Background

Foreground Mask

Slide credit: Birgi Tame

Median Filter

Assuming that the background is more likely to appear in a scene, we can use the median of the previous n frames as the background model:

$$B(x, y, t) = median\{I(x, y, t - i)\}$$

$$\downarrow \downarrow$$

$$|I(x, y, t) - median\{I(x, y, t - i)\}| > Th \text{ where }$$

$$i \in \{0, \dots, n - 1\}.$$

▶ For n = 10:

Estimated Background

Foreground Mask

Slide credit: Birgi Tamersoy

Average/Median Image

Alyosha Efros, CMU