Corpora

- corpus: text that has been collected for some purpose.
- balanced corpus: texts representing different genres genre is a type of text (vs domain)
- tagged corpus: a corpus annotated with POS tags
- treebank: a corpus annotated with parse trees
- specialist corpora e.g., collected to train or evaluate particular applications
 - Movie reviews for sentiment classification
 - Data collected from simulation of a dialogue system

Part of speech tagging

They can fish.

- They_pronoun can_modal fish_verb. ('can' meaning 'are able to')
- They_pronoun can_verb fish_plural-noun. ('can' meaning 'put into cans')

Ambiguity

can: modal verb, verb, singular noun fish: verb, singular noun, plural noun

Tagset

tagset: standardized codes for fine-grained parts of speech. CLAWS 5: over 60 tags, including:

```
NN1 singular noun
PNP personal pronoun
VM0 modal auxiliary verb
VVB base form of verb
VVI infinitive form of verb
```

- They_PNP can_VM0 fish_VVI ._PUN
- ► They PNP can VVB fish NN2 . PUN
- They_PNP can_VM0 fish_NN2 ._PUN no full parse
- etc

Why POS tag?

Coarse-grained syntax / word sense disambiguation: fast, so applicable to very large corpora.

- Some linguistic research and lexicography: e.g., how often is tango used as a verb? dog?
- Named entity recognition and similar tasks (finite state patterns over POS tagged data).
- Features for machine learning e.g., sentiment classification. (e.g., stink_V vs stink_N).
- Fast preliminary processing for full parsing: provide guesses at unknown words, cut down search space.

Stochastic part of speech tagging using Hidden Markov Models (HMM)

- 1. Start with untagged text.
- 2. Assign all possible tags to each word in the text on the basis of a lexicon that associates words and tags.
- 3. Find the most probable sequence (or n-best sequences) of tags, based on probabilities from the training data.
 - lexical probability: e.g., is can most likely to be VM0, VVB, VVI or NN1?
 - and tag sequence probabilities: e.g., is VM0 or NN1 more likely after PNP?

Assigning probabilities

Estimate tag sequence: *n* tags with the maximum probability, given *n* words:

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

By Bayes theorem:

$$P(t_1^n|w_1^n) = \frac{P(w_1^n|t_1^n)P(t_1^n)}{P(w_1^n)}$$

but $P(w_1^n)$ is constant:

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Bigrams

Bigram assumption: probability of a tag depends on previous tag, hence product of bigrams:

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

Probability of word estimated on basis of its tag alone:

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

Hence:

$$\hat{t}_1^n = \operatorname{argmax} \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-1})$$

Example

Tagging: *they fish* (ignoring punctuation)

Assume PNP is the only tag for *they*, and that *fish* could be NN2 or VVB.

Then the estimate for PNP NN2 will be:

P(they|PNP) P(NN2|PNP) P(fish|NN2)

and for PNP VVB:

P(they|PNP) P(VVB|PNP) P(fish|VVB)

Training stochastic POS tagging

They_PNP used_VVD to_TOO can_VVI fish_NN2 in_PRP those_DTO towns_NN2 ._PUN But_CJC now_AVO few_DTO people_NN2 fish_VVB in_PRP these_DTO areas_NN2 ._PUN

Training stochastic POS tagging

They_PNP used_VVD to_TOO can_VVI fish_NN2 in_PRP those_DTO towns_NN2 ._PUN But_CJC now_AVO few_DTO people_NN2 fish_VVB in_PRP these_DTO areas_NN2 ._PUN

sequence	count	bigram probability
NN2	4	
NN2 PRP	1	0.25
NN2 PUN	2	0.5
NN2 VVB	1	0.25

Training stochastic POS tagging

They_PNP used_VVD to_TOO can_VVI fish_NN2 in_PRP those_DTO towns_NN2 ._PUN But_CJC now_AVO few_DTO people_NN2 fish_VVB in_PRP these_DTO areas_NN2 ._PUN

sequence	count	bigram probability
NN2	4	
NN2 PRP	1	0.25
NN2 PUN	2	0.5
NN2 VVB	1	0.25

Also lexicon: fish NN2 VVB

Assigning probabilities, more details

- Maximise the overall tag sequence probability e.g., use Viterbi.
- Actual systems use trigrams smoothing and backoff are critical.
- Unseen words: these are not in the lexicon, so use all possible open class tags, possibly restricted by morphology.

Evaluation of POS tagging

- percentage of correct tags
- one tag per word (some systems give multiple tags when uncertain)
- over 95% for English on normal corpora (but note punctuation is unambiguous)
- performance plateau about 97% on most commonly used test set for English
- baseline of taking the most common tag gives 90% accuracy
- different tagsets give slightly different results: utility of tag to end users vs predictive power

Evaluation in general

- Training data and test data Test data must be kept unseen, often 90% training and 10% test data.
- Baseline
- Ceiling Human performance on the task, where the ceiling is the percentage agreement found between two annotators (interannotator agreement)
- Error analysis Error rates are nearly always unevenly distributed.
- Reproducibility

Representative corpora and data sparsity

- test corpora have to be representative of the actual application
- POS tagging and similar techniques are not always very robust to differences in genre
- balanced corpora may be better, but still don't cover all text types
- communication aids: extreme difficulty in obtaining data, text corpora don't give good prediction for real data