Lecture 3 Complexity Analysis

EECS 281: Data Structures & Algorithms

What Affects Runtime?

- · The algorithm
- Implementation details
- Skills of the programmer CPU Speed / Memory Speed
- Compiler (Options used)
- - g++ -g3 (for debugging, highest level of information) g++ -03 (Optimization level 3 for speed)
- Other programs running in parallel
- Amount of data processed (Input size)

Common Orders of Functions

Notation	Name
O(1)	Constant
O(log n)	Logarithmic
O(n)	Linear
O(n log n)	Loglinear, Linearithmic
O(n2)	Quadratic
O(n³), O(n⁴),	Polynomial
O(c ⁿ)	Exponential
O(n!)	Factorial
O(2 ^{2ⁿ})	Doubly Exponential

Input Size Example

Graph G = (V, E): V = 5 Vertices E = 6 Edges

When in doubt, measure

10

input size in bits

What should we measure?

- Vertices?
- Edges?
- · Vertices and Edges?

Use V and E to determine which contributes more to the total number of steps

Big-O examples: E log V, EV, V² log E

Metrics of Algorithm Complexity

Worst-case: n comparisons Average-case: n/2 comparisons

Using a linear search over n items, how many comparisons will it take to find item x?

- Best-Case
 - Least number of comparisons required, given ideal input
 - Analysis performed over inputs of a given size
 - Example: Data is found in the first place you look
- Worst-Case
 - Most number of comparisons required, given hard input
 - Analysis performed over inputs of a given size
 - Example: Data is found in the last place you could possibly look
 - Average-Case 4
 - Average number of comparisons required, given any input
 - Average performed over all possible inputs of a given size

Measuring & Using Input Size

- · Number of bits
 - In an int, a double? (32? 64?)
- Number of items: what counts as an item?
 - Array of integers? One integer? One digit? ...
 - One string? Several strings? A char?
- Notation and terminology
 - Input size
 - Maximum number of steps taken by an -f(n)algorithm when input has size n ("f of n")
 - O(f(n)) Complexity class of f(n) ("Big-O of f of n")

Graphing f(n) Runtimes

From Analysis to Application

- · Algorithm comparisons are independent of hardware, compilers and implementation tweaks
- Predict which algorithms will eventually be faster
 - For large enough inputs
 - $-O(n^2)$ time algorithms will take longer than O(n)algorithms
- Constants can often be ignored because they do not affect asymptotic comparisons

Q: What counts as one step in a program?

A: Primitive operations

- Variable assignment
- Arithmetic operation
- Comparison
- Array indexing or pointer reference /
- Function(call) (not counting the data)
- Function return (not counting the data)

Runtime of 1 step is independent on input

Counting Steps: Polynomial

```
for (int i = 0; i < n; ++i) {
                                               2n + 2 steps
                                                 1 step (loop n times)
         sum += i;
      // for
    return sum;
    // func1()
                                                 Total steps: 3n + 4
   int func2(int n) {
     int sum = 0;
                                              1 step
     for (int i = 0; i < n; ++i) {</pre>
                                               2n + 2 steps
                                                2n + 2 steps (inside loop)
          for (int j = 0; j < n; ++j)
                                           11
             ++sum;
                                           12
                                                   1 step (inside 2 loops)
     } // for i
13
                                            14 \ 2n + 2 \text{ steps}
     for (int k = 0; k < n; ++k) {
14
                                                 1 step (inside loop)
15
         --sum;
                                           15
     return sum:
18 } // func2()
                                              Total steps: 3n^2 + 7n + 6
```

Examples of O(log n) Time

```
uint32_t logB(uint32_t n) {
  // find binary log, round up
 uint32 t r = 0;
  while (n > 1) {
   n /= 2
    r++;
                         int *bsearch(int *lo, int *hi, int val) {
 } // while
                              // find position of val between lo,hi
  return r;
                              while (hi >= lo) {
} // logB()
                                int *mid = lo + (hi - lo) / 2;
                                if (*mid == val)
                                  return mid;
                                else if (*mid > val)
                                  hi = mid - 1:
                                else
                                  lo = mid + 1;
                              } // while
                              return nullptr:
                         77 } // bsearch()
```

Big-O Definition

18

f(n) = O(g(n)) if and only if there are constants c > 0 $n_0 \ge 0$ such that $f(n) \le c * g(n)$ whenever $n \ge n_0$

Counting Steps: for Loop

- The basic form of a for-loop: for (initialization; test; update)
- The initialization is performed once (1)
- The test is performed every time the body of the loop runs, plus once for when the loop ends (n + 1)
- The update is performed every time the body of the loop runs (n)
- Total is **2***n* **+ 2** steps (used a lot next slide)

Counting Steps: Logarithmic

k times

n items	= 1*...*2*2
n/2 items	= 1*...*2*2
n/4 items	= 1*...*2
1 item	= 1
Remember that $k = \log_2 n$ iff $2^k = n$	

Algorithm Exercise

How many multiplications, if size = n?

```
// REQUIRES: in and out are arrays with size elements
  // MODIFIES: out
  // EFFECTS: out[i] = in[0] *...* in[i-1] * in[i+1] *...* in[size-1]
  void f(int *out, const int *in, int size) {
     for (int i = 0; i < size; ++i) {</pre>
       out[i] = 1;
       for (int j = 0; j < size; ++j) {
                                                      in[1]
                                                                in[2]
         if (i != j)
                                                      1
                                                               2
           out[i] *= in[j];
       } // for j
                                             out[0]
                                                      out[1]
                                                                out[2]
   } // for i
11
                                                      6
                                                                3
12 } // f()
```

Big-O: Sufficient (but not necessary) Condition

$$\log_2 n = O(2n)? \qquad \lim_{n \to \infty} \left(\frac{-3}{2n}\right) : \frac{\omega}{\omega}$$

$$f(n) = \log_2 n$$

$$g(n) = 2n \qquad \lim_{n \to \infty} \left(\frac{1}{2n}\right) \qquad \text{: Use L'Hôpital's Rule}$$

$$0 = d < \infty$$

$$: \log_2 n = O(2n) \checkmark$$

$$\frac{\sin\left(\frac{n}{100}\right) = O(100)?}{f(n) = \sin\left(\frac{n}{100}\right)}$$

$$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{n}{100}\right)}{100}\right) : \text{ Condition does not hold, but it is true that } f(n) = O(g(n))$$

$$g(n) = 100$$

Log Identities

Identity	Example
$\log_a(xy) = \log_a x + \log_a y$	log ₂ (3*4)
$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$	log ₂ (4/3)
$\log_a(x^r) = r \log_a x$	log ₂ x ³
$\log_a\left(\frac{1}{x}\right) = -\log_a x$	log ₂ 1/3
$\log_a x = \frac{\log x}{\log a} = \frac{\ln x}{\ln a}$	log ₂ 1024
$\log_a a = 1$	
$\log_a 1 = 0$	

Power Identities

Identity	Example
$a^{(m+n)} = a^m \cdot a^n$	22+3
$a^{(m-n)} = \frac{a^m}{a^n}$	23-2
$(a^m)^n = a^{mn}$	(22)3
$a^{-n} = \frac{1}{a^n}$	2-4
$a^{-1} = \frac{1}{a}$	
$a^0 = 1$	
$a^1 = a$	

Big-O, Big-Theta, and Big-Omega

	Big-O (O)	Big-Theta (Θ)	Big-Omega (Ω)
Defines	Asymptotic upper bound	Asymptotic tight bound	Asymptotic lower bound
Definition	f(n) = O(g(n)) if and only if there exists an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$	f(n) = O(g(n)) if and only if there exists an integer n_0 and real constants c_1 and c_2 such that for all $n \ge n_0$: $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$	$f(n) = \Omega(g(n))$ if and only if there exists an integer n_0 and a real number c such that for all $n \ge n_0$, $f(n) \ge$ $c \cdot g(n)$
Mathematical Definition	In₀ ČZ∄c ČR: Vn≯n₀,f(n)£c∎g(n)	$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$	3 n₀ EZ3c ER: ∀n≥n₀,f(n)≥c×g(n)
	a, , a, a,	0(-)	a, , a, ,
$f_1(n)=2n+1$	O(n) or O(n²) or O(n³)	Q(n)	Ω(n) or Ω(1)
$f_2(n)=n^2+n+5$	O(n²) or O(n³)	Q(n²)	$\Omega(n^2)$ or $\Omega(n)$ or $\Omega(1)$

Amortized Complexity

- Considers the average cost of one operation over a sequence of operations
 - Best/Worst/Average-case only consider operations independently
 - Different from average-case complexity!
- Average case complexity is ONE event that is representative of all possible events
- Amortized complexity is an average of a sequence of events that ALL occur
- Key to understanding expandable arrays and STL vectors, priority queues, and hash tables

Common Amortized Complexity

Analyze the asymptotic runtime complexity of the push operation for a stack implemented using an array/vector

Method	Implementation	
1 ' '	If needed, allocate a bigger array and copy data Add new element at top_ptr, increment top_ptr	

Exercise

True or False?

- $10^{100} = O(1)$
- $3n^4 + 45n^3 = O(n^4)$
- $3^n = O(2^n) \times$
- $2^n = O(3^n)$
- $45 \log(n) + 45n = O(\log(n))$
- $\log(n^2) = O(\log(n))$
- $[\log(n)]^2 = O(\log(n))$

Can you?

Find f(n) and g(n), such that $f(n) \neq O(g(n))$

and $g(n) \neq O(f(n))$

f(x)=sinx |qcx)=cosx

2

Amortized Complexity

- A type of worst-case complexity
- Used when the work/time profile is "spiky" (sometimes it is very expensive, but most times it is a small expense)
- Analysis performed over a sequence of operations covering of a given range
 - The sequence selected includes expensive and cheap operations

Cell Phone Bill Example

- Pay \$100 once per month, each call and text has no added cost (unlimited plan)
- If you make 1000 calls/texts during the month, each one effectively costs \$0.10
 - This is the "sequence of events that all occur"
- The rate at which money leaves your pocket is very "spiky"
- But each call or text appears to have basically a constant cost: the amortized cost per text is O(1)

3

Exercise

Analyze the asymptotic runtime complexity of the push operation for a stack implemented using an array/vector

Amortized $\Theta(1)$

37

Assume vector is filled with n elements Double vector size $(1 + \Theta(n))$ steps $\Theta(1)$ push n times until full

Amortized cost: $\frac{(1 + \Theta(n)) + n_*\Theta(1)}{n \text{ push operations}} = \Theta(1)$

38

Container Growth Options

1. Constant Growth

- When container fills, increase size by c

- Amortized cost:
$$\frac{(1 + \Theta(n)) + c * \Theta(1)}{\text{cpush operations}} = \Theta(n)$$

Amortized linear

2. Linear Growth

- When container fills, increase size by *n*

– Amortized cost:
$$\frac{(1 + \Theta(n)) + n \cdot \Theta(1)}{n \text{ push operations}} = \Theta(1)$$

Amortized constant

Two $O(\log n)$ solutions

• Two groups: $\log_2(n) = O(\log_3 n)$

• Three groups: $\log_3(n) = O(\log_2 n) \checkmark$

• True or False? Why?

18

Exercise

- You have n billiard balls. All have equal weight, except for one which is heavier.
 Find the heavy ball using only a balance.
- Describe an $O(n^2)$ algorithm
- Describe an **O(n)** algorithm
- Describe an O(log n) algorithm
 → ⇒
- Describe another **O(log n)** algorithm

43