Nombre de la asignatura: Procesos y uso eficiente de la energía

Línea de trabajo: Básica

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; TIS: Trabajo independiente significativo; TPS: Trabajo profesional supervisado

1. Historial de la asignatura.

Fechas revisión	Participantes	Observaciones, cambios o
/actualización		justificación
Marzo 2017	Dr. Iván Valencia Salazar	Análisis y conformación del
Instituto	Dra. Genoveva Domínguez Sánchez	programa. Metodología del
Tecnológico de		desarrollo del curso,
Veracruz		prácticas propuestas

2. Pre-requisitos y correquisitos.

Pre-requisito:

Haber tomado un curso a nivel licenciatura de máquinas eléctricas

Correquisito

Transferencia de calor y principios básicos de la termodinámica

3. Objetivo de la asignatura.

Proporcionar al alumno los conocimientos técnicos necesarios para el análisis y evaluación de sistemas térmicos y mecánicos utilizados para la transformación y generación de energía. Se provee además al profesional los elementos mínimos requeridos para diseñar y proponer sistemas alternativos de conversión, conservación y uso racional de la energía.

4. Aportación al perfil del graduado.

El alumno será capaz de formular, gestionar, evaluar y administrar proyectos relacionados con el uso y generación de energías que propicien el desarrollo sustentable. Así mismo será capaz de proyectar, seleccionar y calcular los elementos que integran los sistemas convencionales y alternativos para generación de energía, así como para participar en servicios de asesoría, peritaje, certificación o capacitación, relacionadas con la generación y uso eficiente de la energía.

5. Contenido temático.

Unidad	Temas	Subtemas
1	Calidad energética	1.1. Escalas para la medida de la
		energía.
		1.2. Balances de materia.
		1.3. Balances de energía.
2	Análisis y cálculo de consumos	2.1. Análisis termodinámico de
	energéticos	sistemas energéticos.
		2.2. Análisis termodinámico de
		sistemas innovadores de
		transformación de energía.
3	Sistemas energéticos y la	3.1. Diseño termodinámico de
	generación de energía	sistemas energéticos.
		3.2. Conocimientos básicos de
		bombas de calor y refrigeración
		3.3. Recursos energéticos,
		3.4. La energía y la exergía,
		balances y rendimientos
		correspondientes
4	Uso eficiente de energía eléctrica	4.1. Descripción general de un
		sistema eléctrico.
		4.2. Conocimientos básicos de las
		máquinas eléctricas.
		4.3. Aspectos tecnológicos
		destacados en la explotación de
		centrales eléctricas.

Unidad	Temas	Subtemas
		4.4. Aspectos tecnológicos
		destacados en la explotación de
		subestaciones.
		4.5. Selección de motores.
5	Balances energéticos	5.1. Relación entre el equilibrio
		termodinámico y eléctrico
		5.2. Reacciones químicas: Cinética
		y calor de reacción

6. Metodología de desarrollo del curso.

- El profesor analizará y discutirá con los alumnos los conceptos fundamentales del curso, reforzándolos con ejercicios propuestos y dinámicas de grupo.
- El contenido del curso será teórico.
- Fuera de clase, el afianzamiento de los temas puede ser abordado por medio de tutorías con el profesor.

7. Sugerencias de evaluación.

- Constará de tres evaluaciones parciales y una evaluación final.
- Los alumnos reforzarán el aprendizaje con exposiciones y ejercicios teóricos de los temas vistos en clase.
- A través de la participación en clase con la discusión de artículos relacionados con el tema.
 Informe y análisis de la visita industrial.

8. Bibliografía y Software de apoyo.

- Stephen J. Chapman. Máquinas eléctricas, McGarw-Hill, 3era Edición, 2000
- Irving L. Kosow. Máquinas eléctricas y transformadores, Reverte, 1975
- Adrian Bejan. Advanced Engineering Thermodynamics, Wiley-Interscience, 2nd edition, 1997
- Frank Incropera, David De Witt: Fundamentals of heat and mass transfer & Introduction to heat
- transfer.Prentice Hall, 1999.
- T.D. Eastop and D.R. Croft. Energy Efficiency for Engineers and Technologists, Longman Pub Group, 1990.
- J.M. Smith, H.C. Van Ness, M.M. Abbott. Introducción a la termodinámica en ingeniería química. McGraw-Hill, 1996.
- Yunus A. Çengel, Michael A. Boles. Termodinámica, McGraw-Hill, 2011.

9. Actividades propuestas.

Se desarrollarán las actividades que se consideren necesarias por tema.

10. Nombre y firma de los catedráticos responsables.

Dr. Iván Valencia Salazar	
Dra. Genoveva Domínguez Sánchez	