

CLAIM AMENDMENTS

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims regarding the present application. In reading this, text added by the amendment is underlined, and cancelled text appears in ~~strikethrough~~.

1. 1. (Currently Amended) A high availability voice over internet protocol system coupled to a voice telephony network, comprising:
 2. a. a plurality of gateways configured to receive at least one voice call from the ~~public switched telephone~~ voice telephony network, wherein the plurality of gateways are coupled to at least one hub;
 3. b. a proxy table configured in each of the plurality of gateways, wherein the plurality of gateways send the at least one voice call to one of at least one proxy server; and
 4. c. a call restoration data table configured in each of the plurality of gateways, wherein the call restoration data table provides data to restore a lost voice call.
1. 2. (Original) The system as claimed in claim 1 wherein the at least one hub coupled to the plurality of gateways is configured to receive the at least one voice call from the plurality of gateways, further wherein the at least one voice call is divided by the plurality of gateways into a session initiation protocol portion and a real time protocol portion.
1. 3. (Original) The system as claimed in claim 2 wherein the at least one hub includes the at least one proxy server, the at least one proxy server configured to receive the session initiation protocol portion of the at least one voice call.
1. 4. (Original) The system as claimed in claim 2 further comprising at least one media server configured in the at least one hub, the at least one media server configured to receive the real time protocol portion for the at least one voice call.

- 1 5. (Currently Amended) The system as claimed in claim 1 wherein the at least one hub
2 includes an application server coupled by an interface logic device to communicate with
3 the at least one proxy server and the a media server.
- 1 6. (Original) The system as claimed in claim 1 further comprising at least one node coupled
2 to each of the at least one hub with a wide area network connection, wherein the at least
3 one node includes a single proxy server and a single media server.
- 1 7. (Currently Amended) The system as claimed in claim 6 1 wherein the further comprising
2 at least one node is coupled to each of the at least one hub with a local area network
3 connection, wherein the at least one node includes the a single proxy server and the a
4 single media server.
- 1 8. (Original) The system as claimed in claim 1 wherein the plurality of gateways are
2 configured such that when one of the plurality of gateways fails, the remainder of the
3 plurality of gateways remain operational.
- 1 9. (Currently Amended) The system as claimed in claim 1 further comprising a load
2 balancing switch for directing any of the at least one voice calls to the plurality of
3 gateways.
- 1 10. (Original) The system as claimed in claim 1 wherein the proxy table selects the
2 appropriate one of the at least one proxy server based on a priority scheme.
- 1 11. (Currently Amended) The system as claimed in claim 1 wherein the data provided to the
2 call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) SDP body.
- 1 12. (Original) The system as claimed in claim 11 wherein the data provided to the call
2 restoration data table is stored as a key value pair, further wherein the key value pair is
3 derived from the header and the SDP body.

1 13. (Previously Presented) A method of providing a high availability voice over internet
2 protocol system, comprising:
3 a. configuring a plurality of gateways between a voice telephony network and at
4 least one hub;
5 b. implementing a proxy table and a call restoration data table in each of the plurality
6 of gateways;
7 c. receiving in the plurality of gateways at least one voice call from the voice
8 telephony network;
9 d. dividing the at least one voice call into a session initiation protocol portion and a
10 real time protocol portion;
11 e. sending the session initiation protocol portion of the at least one voice call to one
12 of at least one proxy server, the at least one proxy server being located in the at
13 least one hub, according to the proxy table; and
14 f. sending the real time protocol portion of the at least one voice call to a media
15 server, the media server configured in the at least one hub.

1 14. (Original) The method as claimed in claim 13 further comprising restoring a lost call with
2 data provided to the call restoration data table.

1 15. (Original) The method as claimed in claim 13 wherein the at least one hub includes an
2 application server coupled by an interface logic device to communicate with the at least
3 one proxy server and the media server.

1 16. (Original) The method as claimed in claim 13 wherein at least one node is coupled to
2 each of the at least one hub with a wide area network connection, further wherein the at
3 least one node includes a single proxy server and a single media server.

1 17. (Currently Amended) The method as claimed in claim ~~16~~ 13 wherein the at least one
2 node is coupled to each of the at least one hub with a local area network connection,
3 further wherein the at least one node includes the a single proxy server and the a single
4 media server.

1 18. (Original) The method as claimed in claim 13 wherein the plurality of gateways are
2 configured such that when one of the plurality of gateways fails, the remainder of the
3 plurality of gateways remain operational.

1 19. (Original) The method as claimed in claim 13 further comprising directing any of the at
2 least one voice calls to the plurality of gateways with a load balancing switch.

1 20. (Original) The method as claimed in claim 13 wherein the proxy table selects the
2 appropriate one of the at least one proxy server based on a priority scheme.

1 21. (Currently Amended) The method as claimed in claim 13 wherein the data provided to
2 the call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) SDP body.

1 22. (Original) The method as claimed in claim 21 wherein the data provided to the call
2 restoration data table is stored as a key value pair, further wherein the key value pair is
3 derived from the header and the SDP body.

1 23. (Previously Presented) A high availability voice over internet protocol system coupled to
2 a voice telephony network, comprising:
3 a. means for configuring a plurality of gateways between a voice telephony network
4 and at least one hub;
5 b. means for implementing a proxy table and a call restoration data table in each of
6 the plurality of gateways;
7 c. means for receiving in the plurality of gateways at least one voice call from the
8 voice telephony network;
9 d. means for dividing the at least one voice call into a session initiation protocol
10 portion and a real time protocol portion;
11 e. means for sending the session initiation protocol portion of the at least one voice
12 call to one of at least one proxy server, the at least one proxy server being located
13 in the at least one hub, according to the proxy table; and

14 f. means for sending the real time protocol portion of the at least one voice call to a
15 media server, the media server configured in the at least one hub.

1 24. (Original) The system as claimed in claim 23 further comprising means for restoring a
2 lost call with data provided to the call restoration data table.

1 25. (Original) The system as claimed in claim 23 wherein the at least one hub includes an
2 application server coupled by an interface logic device to communicate with the at least
3 one proxy server and the media server.

1 26. (Original) The system as claimed in claim 23 wherein at least one node is coupled to each
2 of the at least one hub with a wide area network connection, further wherein the at least
3 one node includes a single proxy server and a single media server.

1 27. (Currently Amended) The system as claimed in claim 26 23 wherein the at least one node
2 is coupled to each of the at least one hub with a local area network connection, further
3 wherein the at least one node includes ~~the~~ a single proxy server and ~~the~~ a single media
4 server.

1 28. (Original) The system as claimed in claim 23 wherein the plurality of gateways are
2 configured such that when one of the plurality of gateways fails, the remainder of the
3 plurality of gateways remain operational.

1 29. (Original) The system as claimed in claim 23 further comprising means for directing any
2 of the at least one voice calls to the plurality of gateways with a load balancing switch.

1 30. (Original) The system as claimed in claim 23 wherein the proxy table selects the
2 appropriate one of the at least one proxy server based on a priority scheme.

1 31. (Currently Amended) The system as claimed in claim 23 wherein the data provided to the
2 call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) SDP body.

1 32. (Original) The system as claimed in claim 31 wherein the data provided to the call
2 restoration data table is stored as a key value pair, further wherein the key value pair is
3 derived from the header and the SDP body.

1 33. (Withdrawn) A method of routing session initiation protocol voice calls through a
2 plurality of gateways using a proxy server priority table having a proxy address for each
3 incoming call, comprising:
4 a. setting the proxy server priority table to a first level;
5 b. contacting a designated proxy when a pointer value is assigned to the proxy
6 address, the pointer value corresponding to the designated proxy;
7 c. contacting a first proxy in the first level;
8 d. attaching the proxy address through the first proxy in the first level when the first
9 proxy in the first level responds before a first time out value;
10 e. contacting a second proxy in the first level if the first proxy in the first level does
11 not respond before the first time out value; and
12 f. setting the proxy server priority table to a second level when the second proxy
13 does not exist in the first level.

1 34. (Withdrawn) The method as claimed in claim 33 further comprising attaching the proxy
2 address having the pointer value to the designated proxy when the designated proxy
3 responds before a second time out value.

1 35. (Withdrawn) The method as claimed in claim 34 further comprising incrementing the
2 pointer value to the next proxy address in the first level.

1 36. (Withdrawn) The method as claimed in claim 33 further comprising incrementing the
2 pointer value to an incremented pointer value when the designated proxy does not
3 respond before the second time out value, wherein the incremented pointer value
4 corresponds to an incremented designated proxy.

- 1 37. (Withdrawn) The method as claimed in claim 36 further comprising contacting the
2 incremented designated proxy, the incremented pointer value corresponding to the
3 incremented designated proxy.

- 1 38. (Withdrawn) A high availability voice over internet protocol system configured to route
2 session initiation protocol voice calls through a plurality of gateways using a proxy server
3 priority table having a proxy address for each incoming call, comprising:
4 a. means for setting the proxy server priority table to a first level;
5 b. means for contacting a designated proxy when a pointer value is assigned to the
6 proxy address, the pointer value corresponding to the designated proxy;
7 c. means for contacting a first proxy in the first level;
8 d. means for attaching the proxy address through the first proxy in the first level
9 when the first proxy in the first level responds before a first time out value;
10 e. means for contacting a second proxy in the first level if the first proxy in the first
11 level does not respond before the first time out value; and
12 f. means for setting the proxy server priority table to a second level when the second
13 proxy does not exist in the first level.

- 1 39. (Withdrawn) The system as claimed in claim 38 further comprising means for attaching
2 the proxy address having the pointer value to the designated proxy when the designated
3 proxy responds before a second time out value.

- 1 40. (Withdrawn) The system as claimed in claim 39 further comprising means for
2 incrementing the pointer value to the next proxy address in the first level.

- 1 41. (Withdrawn) The system as claimed in claim 38 further comprising means for
2 incrementing the pointer value to an incremented pointer value when the designated
3 proxy does not respond before the second time out value, wherein the incremented
4 pointer value corresponds to an incremented designated proxy.

- 1 42. (Withdrawn) The system as claimed in claim 41 further comprising means for contacting
2 the incremented designated proxy, the incremented pointer value corresponding to the
3 incremented designated proxy.

1 43. (Currently Amended) A high availability voice over internet protocol system coupled to a
2 voice telephony network, comprising:
3 a. a plurality of gateways configured to receive at least one voice call from the
4 ~~public switched telephone~~ voice telephony network, wherein the plurality of
5 gateways are coupled to at least one hub; and
6 b. a proxy table configured in each of the plurality of gateways, wherein the plurality
7 of gateways send the at least one voice call to one of at least one proxy server and
8 the proxy table selects the appropriate one of the at least one proxy server based
9 on a priority scheme.

1 44. (Currently Amended) The system as claimed in claim 43 further comprising a call
2 restoration data table configured in each of the plurality of gateways, wherein the call
3 restoration data table provides data to restore a lost voice call.

1 45. (Previously Presented) The system as claimed in claim 43 wherein the at least one hub
2 coupled to the plurality of gateways is configured to receive the at least one voice call
3 from the plurality of gateways, further wherein the at least one voice call is divided by the
4 plurality of gateways into a session initiation protocol portion and a real time protocol
5 portion.

1 46. (Previously Presented) The system as claimed in claim 45 wherein the at least one hub
2 includes the at least one proxy server, the at least one proxy server configured to receive
3 the session initiation protocol portion of the at least one voice call.

1 47. (Previously Presented) The system as claimed in claim 45 further comprising at least one
2 media server configured in the at least one hub, the at least one media server configured
3 to receive the real time protocol portion for the at least one voice call.

1 48. (Currently Amended) The system as claimed in claim 43 wherein the at least one hub
2 includes an application server coupled by an interface logic device to communicate with
3 the at least one proxy server and the a media server.

1 49. (Previously Presented) The system as claimed in claim 43 further comprising at least one
2 node coupled to each of the at least one hub with a wide area network connection,
3 wherein the at least one node includes a single proxy server and a single media server.

1 50. (Currently Amended) The system as claimed in claim ~~49~~ 43 wherein the further
2 comprising at least one node ~~is~~ coupled to each of the at least one hub with a local area
3 network connection, wherein the at least one node includes ~~the~~ a single proxy server and
4 ~~the~~ a single media server.

1 51. (Previously Presented) The system as claimed in claim 43 wherein the plurality of
2 gateways are configured such that when one of the plurality of gateways fails, the
3 remainder of the plurality of gateways remain operational.

1 52. (Currently Amended) The system as claimed in claim 43 further comprising a load
2 balancing switch for directing any of the at least one voice calls to the plurality of
3 gateways.

1 53. (Canceled).

1 54. (Currently Amended) The system as claimed in claim 44 wherein the data provided to the
2 call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) ~~SDP~~ body.

1 55. (Previously Presented) The system as claimed in claim 54 wherein the data provided to
2 the call restoration data table is stored as a key value pair, further wherein the key value
3 pair is derived from the header and the SDP body.

1 56. (Currently Amended) A high availability voice over internet protocol system coupled to a
2 voice telephony network, comprising:
3 a. a plurality of gateways configured to receive at least one voice call from the
4 public switched telephone voice telephony network, wherein the plurality of
5 gateways are coupled to at least one hub; and

6 b. a call restoration data table configured in each of the plurality of gateways,
7 wherein the call restoration data table provides data to restore a lost voice call.

1 57. (Previously Presented) The system as claimed in claim 56 further comprising a proxy
2 table configured in each of the plurality of gateways, wherein the plurality of gateways
3 send the at least one voice call to one of at least one proxy server.

1 58. (Previously Presented) The system as claimed in claim 57 wherein the at least one hub
2 coupled to the plurality of gateways is configured to receive the at least one voice call
3 from the plurality of gateways, further wherein the at least one voice call is divided by the
4 plurality of gateways into a session initiation protocol portion and a real time protocol
5 portion.

1 59. (Previously Presented) The system as claimed in claim 58 wherein the at least one hub
2 includes the at least one proxy server, the at least one proxy server configured to receive
3 the session initiation protocol portion of the at least one voice call.

1 60. (Previously Presented) The system as claimed in claim 58 further comprising at least one
2 media server configured in the at least one hub, the at least one media server configured
3 to receive the real time protocol portion for the at least one voice call.

1 61. (Currently Amended) The system as claimed in claim 57 wherein the at least one hub
2 includes an application server coupled by an interface logic device to communicate with
3 the at least one proxy server and ~~the~~ a media server.

1 62. (Previously Presented) The system as claimed in claim 56 further comprising at least one
2 node coupled to each of the at least one hub with a wide area network connection,
3 wherein the at least one node includes a single proxy server and a single media server.

1 63. (Currently Amended) The system as claimed in claim 62 56 wherein the further
2 comprising at least one node ~~is~~ coupled to each of the at least one hub with a local area
3 network connection, wherein the at least one node includes ~~the~~ a single proxy server and
4 ~~the~~ a single media server.

1 64. (Previously Presented) The system as claimed in claim 56 wherein the plurality of
2 gateways are configured such that when one of the plurality of gateways fails, the
3 remainder of the plurality of gateways remain operational.

1 65. (Currently Amended) The system as claimed in claim 56 further comprising a load
2 balancing switch for directing any of the at least one voice calls to the plurality of
3 gateways.

1 66. (Previously Presented) The system as claimed in claim 57 wherein the proxy table selects
2 the appropriate one of the at least one proxy server based on a priority scheme.

1 67. (Currently Amended) The system as claimed in claim 56 wherein the data provided to the
2 call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) SDP body.

1 68. (Previously Presented) The system as claimed in claim 67 wherein the data provided to
2 the call restoration data table is stored as a key value pair, further wherein the key value
3 pair is derived from the header and the SDP body.

1 69. (Currently Amended) A method of providing a high availability voice over internet
2 protocol system, comprising:
3 a. configuring a plurality of gateways between a voice telephony network and at
4 least one hub;
5 b. implementing a proxy table in each of the plurality of gateways;
6 c. receiving in the plurality of gateways at least one voice call from the voice
7 telephony network;
8 d. dividing the at least one voice call into a session initiation protocol portion and a
9 real time protocol portion;
10 e. sending the session initiation protocol portion of the at least one voice call to one
11 of at least one proxy server, the at least one proxy server being located in the at

12 least one hub, according to the proxy table, wherein the proxy table selects the
13 appropriate one of the at least one proxy server based on a priority scheme; and
14 f. sending the real time protocol portion of the at least one voice call to a media
15 server, the media server configured in the at least one hub.

1 70. (Previously Presented) The method as claimed in claim 69 further comprising
2 implementing a call restoration data table in each of the plurality of gateways.

1 71. (Previously Presented) The method as claimed in claim 70 further comprising restoring a
2 lost call with data provided to the call restoration data table.

1 72. (Previously Presented) The method as claimed in claim 69 wherein the at least one hub
2 includes an application server coupled by an interface logic device to communicate with
3 the at least one proxy server and the media server.

1 73. (Previously Presented) The method as claimed in claim 69 wherein at least one node is
2 coupled to each of the at least one hub with a wide area network connection, further
3 wherein the at least one node includes a single proxy server and a single media server.

1 74. (Currently Amended) The method as claimed in claim 73 69 wherein the at least one
2 node is coupled to each of the at least one hub with a local area network connection,
3 further wherein the at least one node includes the a single proxy server and the a single
4 media server.

1 75. (Previously Presented) The method as claimed in claim 69 wherein the plurality of
2 gateways are configured such that when one of the plurality of gateways fails, the
3 remainder of the plurality of gateways remain operational.

1 76. (Previously Presented) The method as claimed in claim 69 further comprising directing
2 any of the at least one voice calls to the plurality of gateways with a load balancing
3 switch.

1 77. (Canceled).

1 78. (Currently Amended) The method as claimed in claim 70 wherein the data provided to
2 the call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) SDP body.

1 79. (Previously Presented) The method as claimed in claim 78 wherein the data provided to
2 the call restoration data table is stored as a key value pair, further wherein the key value
3 pair is derived from the header and the SDP body.

1 80. (Currently Amended) A method of providing a high availability voice over internet
2 protocol system, comprising:
3 a. configuring a plurality of gateways between a voice telephony network and at
4 least one hub;
5 b. implementing a call restoration data table in each of the plurality of gateways;
6 c. receiving in the plurality of gateways at least one voice call from the voice
7 telephony network;
8 d. dividing the at least one voice call into a session initiation protocol portion and a
9 real time protocol portion;
10 e. sending the session initiation protocol portion of the at least one voice call to one
11 of at least one proxy server, the at least one proxy server being located in the at
12 least one hub; and
13 f. sending the real time protocol portion of the at least one voice call to a media
14 server, the media server configured in the at least one hub[.]; and
15 g. restoring a lost call with data provided to the call restoration data table.

1 81. (Previously Presented) The method as claimed in claim 80 further comprising
2 implementing a proxy table in each of the plurality of gateways, wherein the session
3 initiation protocol portion is sent according to the proxy table.

1 82. (Canceled).

- 1 83. (Previously Presented) The method as claimed in claim 80 wherein the at least one hub
2 includes an application server coupled by an interface logic device to communicate with
3 the at least one proxy server and the media server.

- 1 84. (Previously Presented) The method as claimed in claim 80 wherein at least one node is
2 coupled to each of the at least one hub with a wide area network connection, further
3 wherein the at least one node includes a single proxy server and a single media server.

- 1 85. (Currently Amended) The method as claimed in claim 84 80 wherein ~~the~~ at least one
2 node is coupled to each of the at least one hub with a local area network connection,
3 further wherein the at least one node includes ~~the~~ a single proxy server and ~~the~~ a single
4 media server.

- 1 86. (Previously Presented) The method as claimed in claim 80 wherein the plurality of
2 gateways are configured such that when one of the plurality of gateways fails, the
3 remainder of the plurality of gateways remain operational.

- 1 87. (Previously Presented) The method as claimed in claim 80 further comprising directing
2 any of the at least one voice calls to the plurality of gateways with a load balancing
3 switch.

- 1 88. (Previously Presented) The method as claimed in claim 81 wherein the proxy table selects
2 the appropriate one of the at least one proxy server based on a priority scheme.

- 1 89. (Currently Amended) The method as claimed in claim 80 wherein the data provided to
2 the call restoration data table is transmitted to the call restoration data table in a session
3 initiation protocol packet, further wherein the session initiation protocol packet includes a
4 header and an Session Description Protocol (SDP) SDP body.

- 1 90. (Previously Presented) The method as claimed in claim 89 wherein the data provided to
2 the call restoration data table is stored as a key value pair, further wherein the key value
3 pair is derived from the header and the SDP body.