DÉRIVÉE D'UNE FONCTION

CALCUL DES DÉRIVÉES

1 Règles de dérivation

1.0.1 Dérivées des fonctions usuelles

Fonction	Fonction dérivée	f est dérivable sur l'intervalle
$k, k \in \mathbb{R}$	0	\mathbb{R}
x	1	\mathbb{R}
$x^{\alpha}, \alpha \in \mathbb{R}^{\star}$	$\alpha x^{\alpha-1}$	\mathbb{R} ($lpha > 0$) ou \mathbb{R}^{\star} ($lpha < 0$)
$\frac{1}{x}$	$-\frac{1}{x^2}$	$]-\infty,0[\cup]0,+\infty[$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0,+\infty[$
$\sin x$	$\cos x$	\mathbb{R}
$\cos x$	$-\sin x$	R

2 Dérivées et opérations sur les fonctions

Proposition 1 Soient u et v deux fonctions dérivables sur un intervalle I et k un réel. Alors ku, u+v et uv sont dérivables sur I et :

$$(ku)' = ku',$$

 $(u+v)' = u'+v',$
 $(uv) = u'v + uv'.$

Si, de plus v ne s'annule pas sur I, alors $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables sur I et :

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2} \ et \ \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Corollaire 1 Les fonctions polynômes et rationnelles sont dérivables sur leur domaine de définition.

1 IONISX

DÉRIVÉE D'UNE FONCTION

CALCUL DES DÉRIVÉES

3 Composition

3.1 Dérivée d'une fonction composée

Proposition 2 Soient v une fonction dérivable sur un intervalle J et u une fonction dérivable sur un intervalle I telles que pour tout x de I, u(x) appartient à J. Alors, la fonction f définie par $f(x) = (v \circ u)(x) = v(u(x))$ est dérivable sur I et pour tout x de I,

$$f'(x) = u'(x) \times v'(u(x)).$$

3.2 Exemples de fonctions composées

Proposition 3 Soit u une fonction strictement positive et dérivable sur un intervalle I. Alors, la fonction f définie sur I par $f(x) = \sqrt{u(x)}$ est dérivable sur I, et pour tout x de I:

$$\left(\sqrt{u(x)}\right)' = \frac{u'(x)}{2\sqrt{u(x)}}.$$

Proposition 4 Soient u une fonction dérivable sur un intervalle I et n un entier naturel non nul. Alors, la fonction f définie par $f(x) = [u(x)]^n$ est dérivable sur I et pour tout x de I:

$$f'(x) = n [u(x)]^{n-1} \times u'(x).$$

4 Dérivée de la fonction réciproque

Proposition 5 Soient I et J deux parties de \mathbb{R} et f une fonction de I dans J. Si f est bijective de I dans J, alors f admet une unique fonction réciproque f^{-1} de J dans I telle que

$$\forall x \in I, \ \forall y \in J, \ y = f(x) \Leftrightarrow x = f^{-1}(y).$$

Théorème 1 Soient I un intervalle ouvert et $f:I\to J$ dérivable et bijective. Si f' ne s'annule pas sur I alors f^{-1} est dérivable et on a pour tout $x\in J$:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

5 Dérivées successives

Soit f une fonction dérivable sur un intervalle I. On dit que f est deux fois dérivable sur I si :

2 IONISX

DÉRIVÉE D'UNE FONCTION

CALCUL DES DÉRIVÉES

- -f est dérivable sur I.
- et f' est dérivable sur I.

Sa fonction dérivée f' s'appelle fonction dérivée première (ou d'ordre 1) de f. De manière récurrente, pour tout entier naturel $n \geq 2$, on definit la fonction dérivée $n^{\text{ième}}$ (ou d'ordre n) comme étant la fonction dérivée de la fonction d'ordre n-1.

$$f^{(0)} = f,$$

 $f^{(1)} = f',$
...
...
 $f^{(n)} = (f^{(n-1)})'.$

Théorème 2 (Formule de Leibniz) Soit n un entier positif. Soient f, g deux fonctions dérivables jusqu'à l'ordre n sur un intervalle I. Alors, le produit $f \times g$ est dérivable jusqu'à l'ordre n et

$$(f \times g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}.$$

3 IONISX