Overview

- ➤ Memory Hierarchy
- Main Memory
- > Auxiliary Memory
- > Associative Memory
- Cache Memory
- Virtual Memory

Auxiliary Memory

Information Organization on Magnetic Tapes

Organization of Disk Hardware

Fixed Head Disk

Associative Memory

- ✓ Many Data processing requires Search Operation
- ✓ The search procedure is strategy—for choosing a sequence of address, reading the content of the memory at each address and comparing the information read with item being searched until a Match occurs
- ✓ The number of accesses to memory depends on the location of the item and the efficiency of the search algorithm .
- ✓ Time can reduced if instead of address, content can be used.
- ✓ When a word is written in associative memory no address is given
- ✓ When a word is to be read from an associative memory ,the content of the word or part is specified .

Associative Memory

- ✓ Uniquely suited for parallel search by data association .
- ✓ AM is expensive than a random access memory because each cell must have storage capability as well as logic circuit for matching its content with and external argument .
- ✓ AM is used where search time is very critical and must be very short

Associative Memory

- Accessed by the content of the data rather than by an address
- Also called Content Addressable Memory (CAM)

Hardware Organization

- Compare each word in CAM in parallel with the content of A(Argument Register)
- If CAM Word[i] = A, M(i) = 1
- Read sequentially accessing CAM for CAM Word(i) for M(i) = 1
- K(Key Register) provides a mask for choosing a particular field or key in the argument in A (only those bits in the argument that have 1's in their corresponding position of K are compared)

Organization of CAM

Internal organization of a typical cell C_{ij}

Match Logic

Cache Memory

Locality of Reference

- The references to memory at any given time interval tend to be confined within a localized areas
- This area contains a set of information and the membership changes gradually as time goes by
- Temporal Locality
 The information which will be used in near future is likely to be in use already(e.g. Reuse of information in loops)
- Spatial Locality
 If a word is accessed, adjacent(near) words are likely accessed soon (e.g. Related data items (arrays) are usually stored together; instructions are executed sequentially)

Cache

- The property of Locality of Reference makes the cache memory systems work
- Cache is a fast small capacity memory that should hold those information which are most likely to be accessed

Performance of Cache

Memory Access

All the memory accesses are directed first to Cache
If the word is in Cache; Access cache to provide it to CPU
If the word is not in Cache; Bring a block (or a line) including
that word to replace a block now in Cache

- How can we know if the word that is required is there?
- If a new block is to replace one of the old blocks, which one should we choose

<u>Performance of Cache Memory System</u>

Hit Ratio - % of memory accesses satisfied by Cache memory system

Te: Effective memory access time in Cache memory system

Tc: Cache access time

Tm: Main memory access time

$$Te = Tc + (1 - h) Tm$$

Example: Tc = 0.4
$$\mu$$
s, Tm = 1.2 μ s, h = 0.85%
Te = 0.4 + (1 - 0.85) * 1.2 = 0.58 μ s

Lecture 42

Memory and Cache Mapping — (Associative Mapping)

Mapping Function

Specification of correspondence between main memory blocks and cache blocks

Associative mapping
Direct mapping
Set-associative mapping

Associative Mapping

- Any block location in Cache can store any block in memory
 - -> Most flexible
- Mapping Table is implemented in an associative memory
 - -> Fast, very Expensive
- Mapping Table
 Stores both address and the content of the memory word