Attention and it's different types

Dr. Avinash Kumar Singh

AI Consultant and Coach, Robaita

Dr. Avinash Kumar Singh

- ☐ Possess 15+ years of hands-on expertise in Machine Learning, Computer Vision, NLP, IoT, Robotics, and Generative AL
- ☐ **Founded** Robaita—an initiative **empowering** individuals and organizations to build, educate, and implement AI solutions.
- ☐ **Earned** a Ph.D. in Human-Robot Interaction from IIIT Allahabad in 2016.
- ☐ **Received** postdoctoral fellowships at Umeå University, Sweden (2020) and Montpellier University, France (2021).
- ☐ Authored 30+ research papers in high-impact SCI journals and international conferences.
- ☐ Unlearning, learning, making mistakes ...

https://www.linkedin.com/in/dr-avinash-kumar-singh-2a570a31/

Discussion Points

- Attention
 - Self Attention
 - Multi Head Attention
 - Cross Attention
- Transformers
 - Basic idea
 - Decoder Only Network (GPT-2)
 - Encode Only Network (BERT)
 - Encode-Decoder Network (Machine Translation)

Self Attention

Self Attention: Example

Let's take an example, sentence and find out how attention works

"The cat sat on the mat"

Let's assume that every words is represented in R^7

$$Q = [0, 1, 0, 1, 1, 0, 0] # "cat"$$

Dot Products:

- with The:
$$0 \times 1 + 1 \times 0 + 0 \times 0 + 1 \times 1 + 1 \times 0 + 0 \times 0 + 0 \times 1 = 1$$

- with Cat: self-dot =
$$0 \times 0 + 1 \times 1 + 0 \times 0 + 1 \times 1 + 1 \times 1 + 0 \times 0 + 0 \times 0 = 3$$

- with Sat:
$$0 \times 0 + 1 \times 0 + 0 \times 1 + 1 \times 0 + 1 \times 1 + 0 \times 1 + 0 \times 0 = 1$$

- with On:
$$0 \times 1 + 1 \times 0 + 0 \times 1 + 1 \times 0 + 1 \times 0 + 0 \times 1 + 0 \times 0 = 0$$

- with The: same as before = 1

- with Mat:
$$0 \times 0 + 1 \times 1 + 0 \times 1 + 1 \times 0 + 1 \times 0 + 0 \times 1 + 0 \times 0 = 1$$

Word	7-D Embedding (Vector)
The (1)	[1, 0, 0, 1, 0, 0, 1]
Cat	[0, 1, 0, 1, 1, 0, 0]
Sat	[0, 0, 1, 0, 1, 1, 0]
On	[1, 0, 1, 0, 0, 1, 0]
The (2)	[1, 0, 0, 1, 0, 0, 1] (same as The (1))
Mat	[0, 1, 1, 0, 0, 1, 0]

Row attention Score: [1, 3, 1, 0, 1, 1], $softmax([1, 3, 1, 0, 1, 1]) \approx [0.089, 0.659, 0.089, 0.033, 0.089, 0.089]$ New "cat" representation = $0.089 \times The + 0.659 \times Cat + 0.089 \times Sat + 0.033 \times On + 0.089 \times The + 0.089 \times Mat$

What Does Dot Product do?

At its core, attention answers this question:

"For each word (or token), which other words in the sequence are important to look at?"

To do this, each token (say, "cat") becomes a query vector, and it compares itself to all other tokens (which are key vectors) — the more similar a key is to the query, the more the query "attends" to that token.

Dot Product: $Q * K^T$

If a query vector and a key vector point in the same direction, their dot product is large \rightarrow the query "likes" that key.

Robotics and Artificial Intelligence Training Academy

Why

- It's fast, differentiable, and scales with vector similarity.
- $Higher\ dot\ product \rightarrow higher\ alignment \rightarrow more\ attention\ paid\ to\ that\ token.$

What Does \sqrt{dk} and Softmax, do?

The effect of Normalization

If the vectors are high-dimensional, their dot product values can get large, causing softmax to **saturate** (outputs close to 0 or 1). That leads to:

Robotics and Artificial Intelligence Training Academy

- Vanishing gradients
- Unstable training

So, we **normalize** the dot product: $\frac{Q*K^T}{\sqrt{dL}}$

• This keeps values in a range where softmax gradients are useful.

Softmax: attention weights = softmax($\frac{Q*K^T}{\sqrt{dk}}$)

Softmax turns the "similarity" numbers into how much focus a token gives to each other token.

Why

- Converts raw scores into probabilities
- Ensures the weights:
 - are non-negative
 - sum to 1
- Let's each token compute a weighted average of value vectors

Mult Head Attention

- Input Embedding
- Output Embedding
- Position Encoding
- Add & Norm
- Feed forward
- Cross Attention
- Multi Head Attention
- Masked Multi Head Attention
- Linear Layer

Figure 1: The Transformer - model architecture.

Positional Embedding

- Transformers process inputs in parallel (no recurrence, no convolution).
- Therefore, they need positional information to understand the order of tokens in a sequence.

Without it

"I ate pizza" vs "Pizza ate I" would be indistinguishable to the model. **Even Indices**

Odd

pos = position in sequence Indices (e.g., 0, 1, 2, ...)

• i = dimension index in the vector (e.g., 0, 1, 2, ..., d_model - 1)

d_model = embedding size (e.g., 8, 16, 512)

Robotics and Artificial Intelligence Training Academy

 $10000^{\frac{2}{d_{\mathrm{model}}}}$

Output

Figure 1: The Transformer - model architecture.

Positional Embedding

Input: "the cat sat on the mat"

$$ext{PE}(pos, 2i) = \sin\left(rac{pos}{10000^{rac{2i}{d_{ ext{model}}}}}
ight)$$

Let's calculate the encoding for "cat'

Word: "cat"

$$ext{PE}(pos, 2i+1) = \cos\left(rac{pos}{10000^{rac{2i}{d_{ ext{model}}}}}
ight)$$

• Position: pos = 1

Model dimension: $d \mod el = 4$

■ Indices: i = 0 to 3

$$ext{PE}(1,0) = \sin\left(rac{1}{10000^{0/4}}
ight) = \sin(1/1) = \sin(1) pprox 0.84147$$

$$ext{PE}(1,1) = \cos\left(rac{1}{10000^{0/4}}
ight) = \cos(1/1) = \cos(1) pprox 0.54030$$

$$ext{PE}(1,2) = \sin\left(rac{1}{10000^{2/4}}
ight) = \sin(1/100) = \sin(0.01) pprox 0.0099998$$

$$ext{PE}(1,3) = \cos\left(rac{1}{10000^{2/4}}
ight) = \cos(1/100) = \cos(0.01) pprox 0.99995$$

[0.84147, 0.54030, 0.0099998, 0.99995]

Output

Figure 1: The Transformer - model architecture.

Input Embedding

= Word Embedding + Positional Encoding

Word Embedding

Each word is converted into a dense vector using a learned embedding layer.

 $Word \rightarrow Index \rightarrow Vector$

Token	Token ID	Embedding Vector (d_model=4)
the	5	[0.1, 0.3, 0.5, 0.2]
cat	42	[0.6, 0.4, 0.2, 0.9]
sat	33	[0.3, 0.8, 0.6, 0.1]
on	14	[0.9, 0.2, 0.1, 0.5]
mat	71	[0.7, 0.1, 0.3, 0.4]

Figure 1: The Transformer - model architecture.

Input Embedding

Token	Token ID	Embedding Vector (d_model=4)	
the	5	[0.1, 0.3, 0.5, 0.2]	
cat	42	[0.6, 0.4, 0.2, 0.9]	
sat	33	[0.3, 0.8, 0.6, 0.1]	
on	14	[0.9, 0.2, 0.1, 0.5]	
mat	71	[0.7, 0.1, 0.3, 0.4]	

Positional Embedding Vector (d_model=4)

[0.375 0.951 0.732 0.599]

[0.841, 0.540, 0.010, 0.999]

[0.156 0.058 0.866 0.601]

[0.708 0.021 0.97 0.832]

[0.212, 0.183, 0.304, 0.525]

Output

Figure 1: The Transformer - model architecture.

Output Embedding = Word Embedding + Positional Encoding

In a Transformer, **output embedding** refers to the **embedding of** the target tokens (i.e., the tokens the model is supposed to generate), typically used in the **decoder** during training.

Input Embedding \rightarrow for the input sequence (e.g., "The cat sat...") **Output Embedding** \rightarrow for the output sequence (e.g., "Le chat s'est...")

Word Embedding [French]

During **training**, the decoder receives the correct target tokens (i.e., ground truth). These are tokenized and then passed through an **embedding layer** (just like the input side).

- a token ID
- then embedded to a vector of dimension d model

Figure 1: The Transformer - model architecture.

Encoder Block

"The cat sat on the mat"

- Number of tokens (sequence length) = 6
- Vector dimension (d_model) = 4
- Input matrix = $X \in \mathbb{R}^{6x^4}$

Token	Vector [word+pos]			
the	0.1	0.3	0.5	0.2
cat	0.6	0.4	0.2	0.9
sat	0.3	8.0	0.6	0.1
on	0.9	0.2	0.1	0.5
the	0.1	0.3	0.5	0.2
mat	0.7	0.1	0.3	0.4

Add & Nor

- First Dense: $W_1 \in \mathbb{R}^{4x8} \rightarrow \text{expands to 8 dimensions}$
 - Second Dense: $W_2 \in \mathbb{R}^{8x^4} \to \text{projects back to } 4$

Encoder Block

Step	Shape	Description
Input	(6, 4)	6 tokens, 4-dim vectors
Q, K, V projection	(6, 4) each	Linear projections
Split into heads	(1, 2, 6, 2)	2 heads, each of depth 2
Attention per head	(6, 2)	Each head computes its attention output
Concatenate heads	(6, 4)	Join outputs of 2 heads
Dense after concat	(6, 4)	Output of MHA
Add & Norm	(6, 4)	Residual + LayerNorm
Feed Forward	(6, 4)	$Dense \to ReLU \to Dense$
Add & Norm again	(6, 4)	Residual + LayerNorm

Masked Multi Head Attention

- Masked attention ensures that each position in the decoder can only attend to earlier positions (and itself).
- This is **essential during training** so the model **doesn't cheat** by looking ahead at future tokens.

Example

Let's say the decoder has seen only the first 3 tokens of a sentence during generation:

"Le chat dort" ("The cat sleeps")

- sequence length = 3
- d model = 4
- num_heads = 1
- depth = 4

Q = K = V		
[0.1, 0.0, 0.3, 0.7]		
[0.4, 0.1, 0.2, 0.6]		
[0.8, 0.2, 0.1, 0.5]		

Token	Token ID	Embedding Vector (d_model=4)
le	5	[0.1, 0.3, 0.5, 0.2]
chat	16	[0.6, 0.4, 0.2, 0.9]
dort	23	[0.3, 0.8, 0.6, 0.1]

Masked Multi Head Attention

Example: "Le chat dort" ("The cat sleeps")

Scaled Dot Product (Q&K)

$\mathrm{score}_{i,j} = 0$	$rac{Q_i \cdot K_j^T}{\sqrt{d_k}}$
----------------------------	-------------------------------------

	Token 1 ("Le")	Token 2 ("chat")	Token 3 ("dort")
Token 1	$(0.1 \times 0.1 +) = $ 0.63 $\rightarrow \div 2$ = 0.315	0.54	0.45
Token 2	0.54	0.61	0.56
Token 3	0.45	0.56	0.54

Attention Score Matrix
[0.315, 0.270, 0.225]
[0.270, 0.305, 0.280]
[0.225, 0.280, 0.270]

Look-Ahead Mask

Masked Score

 $[0.315, -\infty, -\infty]$

 $[0.270, 0.305, -\infty]$

[0.225, 0.280, 0.270]

Attention Score

[1.0, 0.0, 0.0]

[0.491, 0.509, 0.0]

[0.326, 0.347, 0.327]

Masked Multi Head Attention

Example: "Le chat dort" ("The cat sleeps")

Final Attention Output

№3x4

Multiply Attention Scores with Value Vector

output[1] = 1.0 * V[0] = V[0]

output[2] = 0.491 * V[0] + 0.509 * V[1]

output[3] = 0.326 * V[0] + 0.347 * V[1] + 0.327 * V[2]

Step	Role
Dot Product (QK ^T)	Measures similarity between tokens
Scaling (÷√d_k)	Prevents large softmax values
Masking	Ensures no peeking ahead
Softmax	Produces attention weights
MatMul with V	Weighted average of value vectors

Cross Multi-Head Attention

Let decoder attend to encoder outputs (i.e., from "the cat sat on the mat")

Robotics and Artificial Intelligence Training Academy

Let:

■ Encoder output = $E \in (6, 4)$

Here:

- Q = from decoder (shape = (3, 4))
- K, V = from encoder output E (shape = (6, 4))
- → Attention shape:
- Each head: (3, 2)
- Concatenated: (3, 4)

Output shape: (3, 4)

Linear Layer (Dense Layer)

After the final decoder block:

A tensor of shape: (batch_size, target_seq_len, d_model)

This tensor contains the decoder's output.

■ A sequence of context-rich vectors, one per position in the output sentence (e.g., "Le chat dort...").

□ 3x4

We need to convert each of those vectors into probabilities over the vocabulary — to predict the next word.

The linear layer acts as a projection from d_model to the vocabulary size (vocab_size): $\frac{\text{logits} = \text{decoder_output} \times W_{\text{output}} + b}{\text{logits} = \text{decoder_output} \times W_{\text{output}} + b}$

- Decoder final output
 - (batch_size, target_seq_len, d_model)
- Output Dense (Linear)
 - projects to → (batch_size, target_seq_len, vocab_size)

Generative Pre-trained Transformer Architecture

BERT (Bidirectional Encoder Representations from Transformers)

^{*}Illustrative example, exact model architecture may vary slightly

References

- Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- "GPT-2" explanation, https://jalammar.github.io/illustrated-gpt2/
- "GPT" architecture animation, https://bbycroft.net/llm
- "Let's Build GPT: from spelled out.", Karpathy, scratch. in code, Andrei https://www.youtube.com/watch?v=kCc8FmEb1nY
- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers). 2019.

- https://huggingface.co/blog/bert-101?
- https://jalammar.github.io/illustrated-bert/

Thanks for your time

