Asymptotic Genealogies of Sequential Monte Carlo Algorithms

Suzie Brown

University of Warwick, U.K. with Paul Jenkins, Adam Johansen & Jere Koskela

24 February 2021

Outline

- 1. Sequential Monte Carlo
- 2. Resampling & Genealogies
- 3. Results
- 4. Examples

▶ Monte Carlo = approximating probability distributions via sampling

- ▶ Monte Carlo = approximating probability distributions via sampling
- ► Sequence of probability distributions

- ▶ Monte Carlo = approximating probability distributions via sampling
- ► Sequence of probability distributions
- ▶ Dimension of distributions increases along the sequence

- ▶ Monte Carlo = approximating probability distributions via sampling
- Sequence of probability distributions
- ▶ Dimension of distributions increases along the sequence
- ▶ Strong dependence between consecutive distributions

$$X_0 \sim \mu(\cdot)$$

$$X_{t+1} \mid X_t$$

$$Y_t \mid X_t$$

Inference problems (s < t): $p(x_t \mid y_{1:s}) \qquad \text{``prediction''}$ $p(x_t \mid y_{1:t}) \qquad \text{``filtering''}$ $p(x_s \mid y_{1:t}) \qquad \text{``smoothing''}$

► Kalman filter and Rauch-Tung-Striebel smoother give exact solutions, but only for linear Gaussian models

- ► Kalman filter and Rauch-Tung-Striebel smoother give exact solutions, but only for linear Gaussian models
- ► Markov chain Monte Carlo fails due to high dimension and high correlation between dimensions

- ► Kalman filter and Rauch-Tung-Striebel smoother give exact solutions, but only for linear Gaussian models
- Markov chain Monte Carlo fails due to high dimension and high correlation between dimensions
- ▶ Sequential Monte Carlo has computational complexity that is linear in t, and can update posteriors on-line

Importance sampling

Importance sampling

Importance sampling

Sequential importance sampling

▶ Idea: use weighted samples from one time step to construct a proposal for the next step

Sequential importance sampling

- ▶ Idea: use weighted samples from one time step to construct a proposal for the next step
- ▶ Multiplying weights over time causes weight degeneracy

Sequential importance sampling

- ▶ Idea: use weighted samples from one time step to construct a proposal for the next step
- ▶ Multiplying weights over time causes weight degeneracy
- Can avoid this problem by resampling

Resampling

Stochastically map continuous weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to discrete offspring counts $(\nu_t^{(1)}, \ldots, \nu_t^{(N)})$

Resampling

Stochastically map continuous weights $(w_t^{(1)}, \ldots, w_t^{(N)})$ to discrete offspring counts $(\nu_t^{(1)}, \ldots, \nu_t^{(N)})$

Properties:

- Number of particles constant $\sum_{i=1}^{N} \nu_{t}^{(i)} = N$
- ► Equal weights after resampling $w_{t\perp}^{(i)} = 1/N$
- Unbiased $\mathbb{E}[\nu_t^{(i)}|w_t^{(1:N)}] = Nw_t^{(i)}$

Initialise by sampling N particles from $\mu(\cdot)$.

Iterate these steps:

- 1. Mutate particles via Markov transition kernel M_t
- 2. Weight particles by potential function g_t
- 3. Resample particles in proportion to their weights

Ancestral degeneracy: for $t \ll T$, few distinct samples are available

Resample less often?

Resample less often?

Adaptive resampling: only resample when effective sample size falls below some threshold.

Resample more cleverly?

Resample more cleverly?

Low-variance resampling: resample in a way that reduces the extra randomness added by the resampling step.

Make use of killed samples?

Make use of killed samples?

Backward sampling: use a backward pass to sample new ancestors for the terminal particles.

Analysing genealogies

Analysing genealogies

- \blacktriangleright How many particles should I use to maintain k distinct trajectories across time horizon T?
- ▶ How big a lag can I use in fixed-lag smoothing?
- ► How reliable is my smoothing estimator?
- ▶ How do resampling schemes compare?

Encoding genealogies

Encoding genealogies

▶ Label time in reverse

- Label time in reverse
- ▶ Population of *N* particles; $N \to \infty$
- ▶ Sample $n \le N$ terminal particles at random

- ▶ Label time in reverse
- ▶ Population of *N* particles; $N \to \infty$
- ▶ Sample $n \le N$ terminal particles at random
- lacktriangle Describe genealogy by stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$ on space of partitions of $\{1,\ldots,n\}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t

- ▶ Label time in reverse
- ▶ Population of *N* particles; $N \to \infty$
- ▶ Sample $n \le N$ terminal particles at random
- lacktriangle Describe genealogy by stochastic process $(G_t^{(n,N)})_{t\in\mathbb{N}_0}$ on space of partitions of $\{1,\ldots,n\}$
- ▶ Elements i, j are in the same block of the partition $G_t^{(n,N)}$ iff particles i and j share a common ancestor at time t
- ▶ Initially $G_0^{(n,N)} = \{\{1\}, \dots, \{n\}\}$
- ▶ The only possible non-identity transitions are those that merge blocks
- ▶ The trivial partition $\{\{1, ..., n\}\}$ is an absorbing state

Kingman's *n*-coalescent¹

- Continuous-time Markov chain on the space of partitions of $\{1, \ldots, n\}$
- ► Single pair mergers only
- ► Each pair merges independently at rate 1 (total merge rate $\binom{k}{2}$) while there are k distinct lineages)

¹JFC Kingman, Stochastic Processes & their Applications, 1982.

Time scale

Pair merger probability conditional on $(\nu_t^{(1)}, \dots, \nu_t^{(N)})$:

$$c_{N}(t) = rac{1}{(N)_{2}} \sum_{i=1}^{N} (
u_{t}^{(i)})_{2}$$

Time scale

Pair merger probability conditional on $(\nu_t^{(1)}, \dots, \nu_t^{(N)})$:

$$c_{\mathcal{N}}(t) = rac{1}{(\mathcal{N})_2} \sum_{i=1}^{\mathcal{N}} (
u_t^{(i)})_2$$

Rescale time by inverse:

$$au_{\mathit{N}}(t) := \inf \left\{ s \geq 1 : \sum_{r=1}^{s} c_{\mathit{N}}(r) \geq t
ight\}$$

Conditions:

▶ Parent-offspring assignments are uniform given offspring counts

28 / 41

²S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Conditions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- ▶ Time scale does not explode (i.e. $\mathbb{P}[\tau_N(t) = \infty] = 0$ for all finite t)

²S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Conditions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- lacktriangle Time scale does not explode (i.e. $\mathbb{P}[au_N(t)=\infty]=0$ for all finite t)
- ▶ There exists a sequence (b_N) such that $\lim_{N\to\infty} b_N = 0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

²S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Conditions:

- ▶ Parent-offspring assignments are uniform given offspring counts
- lacktriangle Time scale does not explode (i.e. $\mathbb{P}[au_N(t)=\infty]=0$ for all finite t)
- ▶ There exists a sequence (b_N) such that $\lim_{N\to\infty} b_N = 0$ and

$$\frac{1}{(N)_3} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_3] \leq b_N \frac{1}{(N)_2} \sum_{i=1}^{N} \mathbb{E}_t[(\nu_t^{(i)})_2]$$

Then the time-rescaled genealogies $\left(G_{\tau_N(t)}^{(n,N)}\right)_{t\geq 0}$ converge weakly to Kingman's *n*-coalescent as $N\to\infty$.

²S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Examples

- Multinomial resampling
- ► Stochastic rounding
- ► (Conditional SMC with multinomial resampling)

Multinomial resampling

Resample from a Categorical distribution, so offspring counts are Multinomial:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

³ J Koskela, PA Jenkins, AM Johansen, D Spanò. *Annals of Statistics*, 2020.

Multinomial resampling

Resample from a Categorical distribution, so offspring counts are Multinomial:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

Suppose the transition kernels M_t admit densities m_t , and $\forall x, x'$,

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon h(x') \leq m_t(x, x') \leq \frac{1}{\varepsilon} h(x')$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probability distribution $h(\cdot)$.

³J Koskela, PA Jenkins, AM Johansen, D Spanò. Annals of Statistics, 2020.

Multinomial resampling

Resample from a Categorical distribution, so offspring counts are Multinomial:

$$(
u_t^{(1)}, \dots,
u_t^{(N)}) \sim \mathsf{Multinomial}\left(N, (w_t^{(1)}, \dots, w_t^{(N)})\right)$$

Suppose the transition kernels M_t admit densities m_t , and $\forall x, x'$,

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon h(x') \leq m_t(x, x') \leq \frac{1}{\varepsilon} h(x')$

for constants $0 < \varepsilon \le 1 \le a < \infty$, and probability distribution $h(\cdot)$.

Then the rescaled genealogies converge to the *n*-coalescent.³

³J Koskela, PA Jenkins, AM Johansen, D Spanò. *Annals of Statistics*, 2020.

 $\mathbf{Y}: \mathbb{R}_+^{N} o \mathbb{N}^{N}$ is a *stochastic rounding* of \mathbf{X} if for $i = 1, \dots, N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

 $\mathbf{Y}: \mathbb{R}_+^{N} o \mathbb{N}^{N}$ is a *stochastic rounding* of \mathbf{X} if for $i=1,\ldots,N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

- ▶ Take $X_i = Nw_t^{(i)}$ and $Y_i = v_t^{(i)}$
- ▶ By construction $\mathbb{E}[Y_i \mid \mathbf{X}] = X_i$
- ▶ Require further constraint $Y_1 + \cdots + Y_N = N$

 $\mathbf{Y}: \mathbb{R}_+^{\textit{N}}
ightarrow \mathbb{N}^{\textit{N}}$ is a *stochastic rounding* of \mathbf{X} if for $i=1,\ldots,N$

$$Y_i \mid X_i = egin{cases} \lfloor X_i
floor & ext{with probability } 1 - X_i + \lfloor X_i
floor \\ \lfloor X_i
floor + 1 & ext{with probability } X_i - \lfloor X_i
floor \end{cases}$$

- lacksquare Take $X_i = Nw_t^{(i)}$ and $Y_i =
 u_t^{(i)}$
- ▶ By construction $\mathbb{E}[Y_i \mid \mathbf{X}] = X_i$
- ▶ Require further constraint $Y_1 + \cdots + Y_N = N$
- **Examples:** systematic resampling, residual-stratified resampling, ...

Resample using any stochastic rounding procedure.

Suzie Brown Genealogies of SMC Algorithms 24 February 2021

32 / 41

⁴S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Resample using any stochastic rounding procedure.

Suppose the transition kernels M_t admit densities m_t , and $\forall x, x'$,

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon \leq m_t(x, x') \leq \frac{1}{\varepsilon}$

for constants $0 < \varepsilon \le 1 \le a < \infty$.

⁴S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Resample using any stochastic rounding procedure.

Suppose the transition kernels M_t admit densities m_t , and $\forall x, x'$,

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon \leq m_t(x, x') \leq \frac{1}{\varepsilon}$

for constants $0 < \varepsilon \le 1 \le a < \infty$.

Then the rescaled genealogies converge to the n-coalescent⁴.

⁴S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Quantities of interest

- ► Time to MRCA: first time when there is only one distinct lineage
- ► *t_k*: for how long are there exactly *k* distinct lineages
- ▶ Total branch length

▶ Adaptive resampling: should slow down the time-scale on which the coalescent is recovered (it may have some other effect)

- ▶ Adaptive resampling: should slow down the time-scale on which the coalescent is recovered (it may have some other effect)
- ▶ Low-variance resampling: stochastic rounding schemes have minimal variance

- ▶ Adaptive resampling: should slow down the time-scale on which the coalescent is recovered (it may have some other effect)
- ▶ Low-variance resampling: stochastic rounding schemes have minimal variance
- ▶ Backward simulation: the backward-in-time process is not a pure coalescent, and is not induced by resampling

In conclusion...

- ► Genealogies can help us to analyse performance of SMC algorithms which suffer ancestral degeneracy
- ▶ We have simple conditions under which these genealogies converge to Kingman's *n*-coalescent
- ▶ These conditions are verified for some important classes of SMC algorithms

Open questions

- ▶ Other resampling schemes (stratified, residual-multinomial, ...)
- ► Effect of adaptive resampling
- \blacktriangleright Estimating the time scale τ_N a priori (since it depends on observed offspring counts)

Thank you!

Comparing resampling schemes

- ▶ The expected time scale is the same for every stochastic rounding scheme
- ▶ Coalescence is faster for multinomial resampling than for stochastic rounding

A particle Gibbs⁵ scenario...

▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$

Suzie Brown Genealogies of SMC Algorithms

24 February 2021

39 / 41

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- ► Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)
- Standard SMC updates don't target the correct distribution

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)
- ► Standard SMC updates don't target the correct distribution
- ▶ Use SMC updates that are *conditioned* on the previous $X_{0:T}$ trajectory (states and ancestors)

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

- ▶ Want to target $p(\theta, x_{0:T} \mid y_{0:T})$
- ► Gibbs sampler: alternate samples from $p(\theta \mid x_{0:T}, y_{0:T})$ (easy) and $p(x_{0:T} \mid \theta, y_{0:T})$ (using SMC)
- ▶ Standard SMC updates don't target the correct distribution
- ▶ Use SMC updates that are *conditioned* on the previous $X_{0:T}$ trajectory (states and ancestors)
- Resampling must deterministically propagate this "immortal lineage"

⁵C Andrieu, A Doucet, R Holenstein. *Journal of the Royal Statistical Society B*, 2010.

Consider a conditional SMC algorithm with multinomial resampling.

Suzie Brown Genealogies of SMC Algorithms 24 February 2021

41 / 41

⁶S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Consider a conditional SMC algorithm with multinomial resampling.

Assume

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon h(x') \leq m_t(x, x') \leq \frac{1}{\varepsilon} h(x').$

⁶S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.

Consider a conditional SMC algorithm with multinomial resampling.

Assume

$$\frac{1}{a} \leq g_t(x, x') \leq a$$
 $\varepsilon h(x') \leq m_t(x, x') \leq \frac{1}{\varepsilon} h(x').$

Then the rescaled genealogies converge to the n-coalescent⁶.

⁶S Brown, PA Jenkins, AM Johansen, J Koskela, *Electronic Journal of Probability*, 2021.