Lecture 15

Central Limit Theorem

STAT 330 - Iowa State University

Central Limit Theorem (CLT)

Suppose X_1, X_2, \dots, X_n are iid random variables. For $i = 1, \dots, n$,

$$X_i \stackrel{iid}{\sim} \text{distribution}$$

Any function of $\{X_i\}$ is also a random variable. Specifically,

- $S_n = \sum_{i=1}^n X_i$ is a R.V (with some distribution)
- $\overline{X_n} = \frac{\sum_{i=1}^{n} X_i}{n}$ is a R.V (with some distribution)

For large sample size n, the distribution of S_n and \overline{X} both follow normal distributions!

Even without knowing the distribution of $\{X_i\}$, we can calculate probabilities for its sample mean and sample sum using the normal distribution. (extremely useful for real life problems)!

Central Limit Theorem (CLT)

 Sums and averages of RVs from any distribution have approximately normal distributions for large sample sizes

Central Limit Theorem (CLT)

Suppose $X_1, X_2, ..., X_n$ are iid random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for i = 1, ..., n.

Define:

1. sample mean:
$$\overline{X_n} = \frac{\sum_{i=1}^n X_i}{n}$$

2. sample sum:
$$S_n = \sum_{i=1}^n X_i$$

Then, for large n,

$$\overline{X_n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $S_n \sim N(n\mu, n\sigma^2)$

How to Use CLT for Means

• For large n,

$$\overline{X_n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

- How to calculate probabilities involving $\overline{X_n}$?
- Standardize $\overline{X_n}$ to turn it into a standard normal random variable Z, and use the z-table! (lecture notes 14)
- Standardize any normal random variable by subtracting its mean, and dividing by its standard deviation.

$$Z = \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}}$$
$$Z \sim N(0, 1)$$

How to Use CLT for Means Cont.

- Ex: $P(a < \overline{X_n} < b) = ?$
- Standardize all of the quantities involved in the above probability. Then use Z-table to obtain probabilities.

$$P(a < \overline{X_n} < b) = P\left(\frac{a - \mu}{\sigma/\sqrt{n}} < \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} < \frac{b - \mu}{\sigma/\sqrt{n}}\right)$$

$$= P\left(\frac{a - \mu}{\sigma/\sqrt{n}} < Z < \frac{b - \mu}{\sigma/\sqrt{n}}\right)$$

$$= P\left(Z < \frac{b - \mu}{\sigma/\sqrt{n}}\right) - P\left(Z < \frac{a - \mu}{\sigma/\sqrt{n}}\right)$$

$$= \Phi\left(\frac{b - \mu}{\sigma/\sqrt{n}}\right) - \Phi\left(\frac{a - \mu}{\sigma/\sqrt{n}}\right)$$

How to Use CLT for Sums

For large n,

$$S_n \sim N(n\mu, n\sigma^2)$$

• Standardize S_n by subtracting its mean, and dividing by its standard deviation.

$$Z = \frac{S_n - n\mu}{\sqrt{n\sigma^2}} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$
$$Z \sim N(0, 1)$$

- Then, use the Z-table to obtain desired probabilities.
- Ex: $P(S_n < a) = P\left(\frac{S_n n\mu}{\sigma\sqrt{n}} < \frac{a n\mu}{\sigma\sqrt{n}}\right)$ $= P\left(Z < \frac{a n\mu}{\sigma\sqrt{n}}\right)$ $= \Phi\left(\frac{a n\mu}{\sigma\sqrt{n}}\right)$

Example 1: The time you spend waiting for the bus each day has a uniform distribution between 2 minutes and 5 minutes. Suppose you wait for the bus every day for a month (30 days).

1. Let $X_i = \text{time spent waiting for the bus on the } i^{th} \text{ day for } i = 1, \dots, 30.$

What is the distribution of each X_i ?

What is it's expected value and variance?

2. Let $\overline{X_n}$ be the average time spent waiting for the bus over the month. $\overline{X_n} = \frac{\sum_{i=1}^n X_i}{n} = \frac{\sum_{i=1}^{30} X_i}{30}$

What is the (approximate) probability that the average time you spent waiting for the bus is less than 4 min?

3. How much time do you expect to spend waiting for the bus in total for a month?

4. What is the (approximate) probability that you spend more than 2 hours waiting for a bus in total for a month?

Example 2: Suppose an image has an expected size 1 megabyte with a standard deviation of 0.5 megabytes. A disk has 330 megabytes of free space. Is this disk likely to be sufficient for 300 independent images?

Example 3: An astronomer wants to measure the distance, d, from the observatory to a star. The astronomer plans to take n measurements of the distance and use the sample mean to estimate the true distance. From past records of these measurements the astronomer knows the standard deviation of a single measurement is 2 parsecs. How many measurements should the astronomer take so that the chance that his estimate differs by d by more than 0.5 parsecs is at most 0.05?