INTELLIGENCE SURVEILLANCE CAMERA

Submitted By:

REGIDI. MADHAVI

23MH1A4453

Abstract

- The project presents the design and implementation of an intelligent surveillance camera system aimed at enhancing security and monitoring capabilities through realtimes analysis
- The surveillance systems typically employed are CCTV-based monitoring systems which require an administrator to scan the footage or manual monitoring of the area to detect.

Introduction

 The intelligent surveillance system uses advanced video analysis technologies, such as object detection, behavior recognition, face recognition, etc., to automatically identify and analyze targets in the surveillance scene.

Problem Statement

PROBLEM FACED IN AI BIAS DATA SECURITY RISK ANDDATA COLLECTION AND AND MISIDENTIFICATION ? CYBER SECURITY RISK? TRACKING?

System Requirements

- Hardware: 4GB RAM, 2GHz CPU
- Software: Windows/Linux,
 Python 3.x, Jupyter Notebook
- Libraries: pandas, numpy, matplotlib, seaborn.

DATA SOURCE The data source is explicitly defined in the following line:

Fields include: Daily Dataset downloaded Activity Trends, Peak from Kaggle. hour analysis, high risk activity, location wise security

Toata Source in the Notebook*

python df = pd.read csv('Intelligent Surveillance Dataset.csv')

Details:

Description	F
CSV (Comma-Separated Values)	
Intelligent_Surveillance_Dataset.csv	Ī
nod* Loaded using pandas.read_csv()	* I
Expected to be in the same directory	as notebook
Python pandas library	I
	CSV (Comma-Separated Values) Intelligent_Surveillance_Dataset.csv Loaded using pandas.read_csv() Expected to be in the same directory

📝 Summary:

- * The dataset is likely a structured table with columns such as:
- * Timestamp
- * People Count
- * Motion Score
- * Alert_Flag
- * Activity_Type
- * Location

Architecture

1. DATA 2. DATA 3. DATA 4. QUERY COLLECTION CLEANING EXPLORATION ANALYSIS

5. VISUALIZATION 6. CONCLUSION& REPORTING.

Data Cleaning

1. *Date-Time Conversion*

python df['Timestamp'] = pd.to_datetime(df['Timestamp']) * Converts timestamp to a proper datetime format. #### 2. *Feature Engineering from Timestamp* python df['Hour'] = df['Timestamp'].dt.hour df['Day'] = df['Timestamp'].dt.day df['DayOfWeek'] = df['Timestamp'].dt.day name() df['Date'] = df['Timestamp'].dt.date #### 3. *Categorization and Mapping* * *Day/Night Classification* python df['Time Period'] = df['Hour'].apply(categorize time) * *Weekend Identification* python df['IsWeekend'] = df['DayOfWeek'].isin(['Saturday', 'Sunday']) * *Crowd Size Labeling* df['Crowd_Size'] = df['People_Count'].apply(categorize_crowd) * *Activity Type Mapping* python df['Activity_Category'] = df['Activity_Type'].apply(lambda

Handled missing values & duplicates.

Verified data types and ensured proper data formatting for analysis.

- Peak Hours Analysis - When is the facility busiest?
- Location-wise Security Analysis
- High-Risk Activity Detection
- Temporal Pattern Analysis - Day vs Night Activity
- Crowding Events Analysis
- Motion Score Anomaly Detection
- Daily Activity Trends
- Alert Correlation Analysis
- Loitering Incidents Analysis

Sample Queries (1-10)

- Running Activity Security Assessment
- Weekend vs Weekday Patterns
- Low-Occupancy High-Alert Events
- Activity Type Transition Patterns
- Motion Score vs People Count Relationship
- Location Security Risk Ranking
- Time-based Alert Clustering
- Standing vs Moving Activity Analysis

- Temporal Alert Prediction Indicators
- COMPREHENSIVE SECURITY DASHBOARD SUMMARY

Kaggle Dataset

References

Python Libraries Documentation

Impact of intelligence surveillance camera on society.