DISCRETE Integration Bayle's e's I'' Posson Posson Norman WAzegrefian Joint Aribution

Trial & Events

some conditions and it result in any one of the several possible outcomes, then the experiment is called a trial and the possible outcomes are known as events.

Eg: Tossing of a coin Trial

H

Events

Sample Space

The set of all possible outcomes of an exposiment is called sample space. It is denoted by S.

eg: Tossing of a coin S= 2H,T)

2(H,T)) = SHT)

Exhaustive Events

The outcomes of a random experiment is called exhaultive event it it covers all the possible outcomes of the event.

Throwing a die $S = \{1, 2, 3, 4, 5, 6\}$ $E_1 = \text{getting} \text{ an even no.}$ $E_2 = \text{getting} \text{ an odd no.}$ $E_1 = \{2, 4, 6\}$, $E_2 = \{1, 3, 5\}$ $E_1 = \{1, 2, 3, 4, 5, 6\}$ = $S = \{1, 2, 3, 4, 5, 6\}$

Tossing a coin

S= {H,T}

Er = getting a head

Ez = getting a fail.

E1 U = S

= 7 E. I I z on oxfore the cont

Farowable Events

The events which entail the required happening are called Barowable events.

eq: In throwing of a part of dice, the number of favourable events of getting a sum I is 6.

(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)

Mutually Exclusive Events

Independent Events

H/T independent H/T

1. H/T

1. H/T

Independent events

Mutually Exclusive Events

two or more events are said to be mutually exclusive if occurrence of one of them excludes the occurrence of the other. eg: while tossing a coin we either get a head or a tail but not both.

Independent Events

Two or more events are said to be independent

If occurrence or non-occurrence of one doesn't depend
on occurrence or non-occurrence of the other, eq: Two coins

tossed of the same time, the outcome of one is independent of the outcome of the other.

Equally likely events

Two events are soid to be equally likely it there is no reason to expect amone with preference to other. eg: Head and fail are equally likely to come.