Pattern Recognition: Homework 5

Due date: 2023.3.28

Problem 1 (20 pt)

In this problem, you need to deduce a closed-form Bayesian classifier for a synthetic distribution. Suppose we have two class ω_1, ω_2 , and the prior probability is $P(\omega_1) = \frac{2}{3}$, $P(\omega_2) = \frac{1}{3}$. We can observe a two-dimensional feature $(x,y) \in \mathbb{R}^2$ for each data. The class-conditional feature density follows the Gaussian distribution below

$$P(x, y | \omega = \omega_1) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}}$$

$$P(x,y|\omega=\omega_2) = \frac{1}{2\pi}e^{-\frac{(x-2)^2+(y-2)^2}{2}}$$

Please give a Bayesian optimal classifier $f(\cdot): \mathbb{R}^2 \mapsto \{\omega_1, \omega_2\}$ that predicts the class from the observable feature (x, y), and draw its decision boundary on the \mathbb{R}^2 plane.

Problem 2 (20 pt)

In the class, we introduce non-uniform loss, where the cost of making different mistakes differs. Now let's formalize it. Suppose the cost(loss) for making a decision $\omega = \omega_2$ while the real type is ω_1 equals λ_1 , and the cost for deciding $\omega = \omega_1$ when the real type is ω_2 equals λ_2 . Recall that the goal of the Bayesian decision is to achieve minimum expected cost, which is

$$f^* = \min_{f} \int_{\boldsymbol{x}} \sum_{i=1}^{2} \lambda_i \cdot \mathbb{I}(f(x) \neq \omega_i) \cdot P(\omega_i, \boldsymbol{x}) dx.$$

Please prove that the final classifier outputs $f^*(x) = \omega_1$ if and only if $\frac{P(\omega_1|x)}{P(\omega_2|x)} \ge \frac{\lambda_2}{\lambda_1}$. Specially, when $\lambda_1 = \lambda_2$, this corresponds to our original max-posterior-solution. (Don't be scared, it is an easy problem.)

Problem 3 (20 pt)

Suppose the hypothesis class is $\mathcal{H} = \{h(x) = (-1)^{k+\mathbb{I}[a \le x \le b]} : k \in \{0,1\}, a,b \in \mathbb{R}, a \le b\}$. Intuitively, you can understand it as an "interval predictor", which selects an interval [a,b] as one class and predicts the remaining real numbers $(-\infty,a) \cup (b,\infty)$ as another class. Prove that the VC dimension of \mathcal{H} is 3.

Problem 4, Programming (40 pt)

Generate 1000 samples from the distribution of \boldsymbol{x} in problem 1. You can first sample a random variable that has 2/3 probability to be 0, and 1/3 probability to be 1. If it is 0, then generate $\boldsymbol{x}=(x,y)$ from $P(x,y|\omega=\omega_1)$, otherwise from distribution $P(x,y|\omega=\omega_2)$.

- Use Parzen window of proper width to estimate the density function of P(x,y). Plot the twodimensional density as heatmap. (hint: you can only care about a bounded region like $[-5,5] \times [-5,5]$ and discretize it into grids of width 0.02. Finally, draw that matrix as a heatmap.)
- Change the window width and kernel function, plot the heatmap, and calculate the mean density error $\int_x \int_y |f(x,y) P(x,y)| dx dy$, where f(x,y) is your predicted density at certain grid $(x,x+\delta x) \times (y,y+\delta y)$ and P(x,y) is real density. What are the best compositions?