8.4 Composite and Inverse Functions

Composite Functions

Composite functions are *composed* of two other functions.

Definition 8.4.1 (Function Composition). Function composition uses the following notation:

$$(f \circ g)(x) = f(g(x))$$

which reads as "f composed with g at/of x". The domain of $f \circ g$ is the set of all values of x such that x is in the domain of g and g(x) is in the domain of f.

Example 8.4.1. Given f(x) = 5x + 6 and $g(x) = x^2 - 1$, find the following:

1.
$$(f \circ g)(x) =$$

2.
$$(g \circ f)(x) =$$

Math 0098 Page 1 of 5

Example 8.4.2. Given f(x) = -2x + 3 and $g(x) = 2x^2 - 4x$, find the following:

1.
$$(f \circ g)(x) =$$

2.
$$(g \circ f)(x) =$$

Inverse Functions

Two functions are said to be inverses if they undo each other; that is, if $(f \circ g)(x) = f(g(x)) = x$. We denote the inverse function of f(x) as $f^{-1}(x)$. The -1 in this notation is not an exponent.

Definition 8.4.2 (Function Inverse). Let f and g be two functions such that f(g(x)) = x for all x in the domain of g and g(f(x)) = x for all x in the domain of f. The functions f and g are then *inverses*.

If we notate the inverse of f as f^{-1} , we then have $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. The domain of f is the range of f^{-1} and the domain of f^{-1} is the range of f.

Math 0098 Page 2 of 5

Example 8.4.3. Show that the functions f(x) = 3x and $g(x) = \frac{x}{3}$ are inverses.

Example 8.4.4. Show that the functions f(x) = 4x - 7 and $g(x) = \frac{x+7}{4}$ are inverses.

Math 0098 Page 3 of 5

Finding the Inverse of a Function

- 1. Replace f(x) with y
- 2. Swap x with y
- 3. Solve the new equation for y
- 4. Replace y with f^{-1}
- 5. Verify that $(f \circ f^{-1})(x) = x$

Example 8.4.5. Find the inverse of f(x) = 4x + 5.

Example 8.4.6. Find the inverse of f(x) = -3x - 7.

Math 0098 Page 4 of 5

Example 8.4.7. Find the inverse of $f(x) = \frac{2}{x-1}$.

Example 8.4.8. Find the inverse of $f(x) = \frac{2x-1}{x+3}$.

Math 0098 Page 5 of 5