Q=1(A)

-> with some degree

After Some minutes = L1, L2, L3

Grew member = L4, L5

-> With full degree of-Automation.

After Some minutes = L1, L2, 24, L5 Crew members = L3.

Lead (MU)	I= (13x33x 103)	I = I 2 (Kw)
2	34.99	6-09
3	52.48	13.77
y	69.98	24.48
5	87.47	38.25
6	104.97	55.09

Energy losses without DSI.

= 8x6.09 + 12 x = +4 x 55.09

= 562.84 Kwh

Energy loss with DSI

= 8x 13.77 + 12x 24.48 + 4 x 38.25

= 556.92 KWh.

 $\frac{1}{2}$ Reduction = $\frac{562 - 556.92}{562.89}$ x 100

= 1.1%

$$8-12 \text{ hr} \Rightarrow 4\text{MVA} \Rightarrow 6\text{MVA}$$

$$12-14\text{m} \Rightarrow 6\text{MVA}$$

$$14-16 \Rightarrow (6+4)\text{MVA}$$

$$16-18 \Rightarrow 6\text{MVA}$$

Arual Interface factor: a is interference (1 factor 1= No (1- a) a= No-Y Speed derease No (1-a) = 1 (No + N2) at wind turbine 21/0 - 20/0 = 10 + 12 $\sqrt{\lambda} = \sqrt{\omega} - 2\alpha\sqrt{\omega}$ V2 = Va(1-2a) extracted. (Dowed $P = \frac{1}{2} \int AN \left(N_{\infty}^2 - N_z^2 \right)$ P. J. J. A. V. (1-a) [V2- V2 (1-2 a)] $= \frac{1}{2} \int AV_{\infty}^{3}(1-\alpha) \left[1 - 1 + 4\alpha - 4\alpha^{2} \right]$

(6)

$$\left(49 \left(1-a5^{2}\right)\right)
 a, /4$$

$$1 \left(3/4\right)^{2} = 9/16 = .56$$

$$\begin{pmatrix}
 49 (1-a)^{2} \\
 a = 1/5
 \end{pmatrix}$$

$$45 (45)^{2} = .512$$

Ser as a Nature increase Power cofficent decrease.

Case 3:

DVAR

M.Cr.

Case 4:

Load is 20 KW:

Nore

NOR

NOR

