INFO3406 Introduction to Data Analytics

W4: Data Extract, Data
Transformation and Storage

Presented by

Dr Ali Anaissi School of IT

Overview of Week 4

Today: Data Transformation and Storage with Python and SQL

Objective

Use Python and PostgreSQL to extract, clean, transform and store data.

Lecture

- DB Access from Python
- Data cleaning and preprocessing
- Data Modeling and DB Creation
- Data Loading/Storage

Readings

Data Science from Scratch: Ch 9 + 10

Exercises

- Python / Jupyter to load data
- psycopg2
- PostgreSQL to store data

TODO in W4

- Grok Python modules
- Grok SQL modules
- Summarise and prepare data

Exploratory Analysis Workflow

New Scenario

New Data Set

- Water measurements:
 - automatic monitoring stations that are distributed over a larger area
 - Periodically send their measured values to a central authority
 - Time-series data of:
 - water level
 - water flow
 - water temperature
 - salinity (via measuring electric conductivity) or other hydraulic properties

Example: Murray River Basin in NSW

[Source: www.waterinfo.nsw.gov.au]

Where do we get data from?

- You or your organization might have it already, or a colleagues provides you access to data.
 - Typical exchange formats: CSV, Excel, XML/JSON
- Or: Download from an online data server
 - Still typically in CSV or Excel etc, but now problems with meta-data
- Or: Scrap the web yourself or use APIs of resources
 - Cf. textbook, chapter 9

Our data set comes from a colleague in Excel format

Water dataset

Contains five CSV data files:

- Measurements.csv
- Organisations.csv
- Sensors.csv
- Stations.csv

Lets have a look

Relational Databases

- Today's goal is to store the data in a relational database

- Relational data model is the most widely used model today
 - Main concept: relation, basically a table with rows and columns
 - Every relation has a **schema**, which describes the columns, or fields

 This sounds like a spreadsheet, but as we will see, it has some differences

Definition of Relation

Informal Definition:

A *relation* is a named, two-dimensional table of data

Table consists of rows (record) and columns (attribute or field)

– Example:

Some Remarks

- Not all tables qualify as a relation:
 - Every relation must have a unique name.
 - Attributes (columns) in tables must have unique names.
 - => The order of the columns is irrelevant.
 - All tuples in a relation have the same structure;
 constructed from the same set of attributes
 - Every attribute value is atomic (not multivalued, not composite).
 - Every row is unique (can't have two rows with exactly the same values for all their fields)
 - The order of the rows is immaterial

First attempt for database storage

- Our first attempt is for just a 1:1 mapping
 - Still: separate tables need to go to separate database relations
 - Note: CSV headers are not allowed to contain spaces or '
- Connection to Postgresql with psql shell tool
- Create 1:1 mapping tables in SQL
- Load CSV directly to SQL tables
 - We first try COPY command from psql
 http://www.postgresql.org/docs/current/interactive/sql-copy.html

DB Creation and Data Import using pgsql

Here we can work with a postgresal database using the 'psal' command.

```
psql -h soit-db-pro-2.ucc.usyd.edu.au -U y18s2i3406_< your_unikey >
```

We give the following SQL create table statement:

DROP TABLE IF EXISTS Organisation;

CREATE TABLE IF NOT EXISTS Organisation (
code VARCHAR(20) PRIMARY KEY,
organisation VARCHAR(150));

- Next we want to load data from an external CSV file.
- We will use psql's \copy command for this.

\copy Organisation (code,organisation) FROM 'Organisations.csv' WITH CSV HEADER

 Psql's \copy command is quite useful -- as long as table and CSV files directly match, and as long as the CSV file's content is in good shape. Otherwise it soon reaches its limits.

Issues with DB Loaders

- DB Loading tools such as psql
 - good for administration of server
 - good for bulk-loading of exported data in clean csv format (db export)
 - needs terminal access (both an advantage and a disadvantage)
 - has its limitations if format and structure of data files do not match the actual database schema
 - => cleaning and transformation of data needed
- Could we do so in a programming language such as Python?

Database Loading with Python

Accessing PostgreSQL from Python: psycopg2

- First, we need to import the psycopg2 module, then connect to Postgresql
- Note: You need obviously to provide you own login name
 - Username and password are prepared by us as your unikey and your SID

```
import psycopg2
def pgconnect():
    # please replace <your unikey> and <your SID> with your own details
   YOUR UNIKEY = '<your unikey>'
   YOUR PW = '<your SID>'
   trv:
        conn = psycopg2.connect(host='soit-db-pro-2.ucc.usyd.edu.au',
                                database='y18s2i3406 '+YOUR UNIKEY,
                                user='y18s2i3406 '+YOUR UNIKEY,
                                password=YOUR PW)
        print('connected')
    except Exception as e:
        print("unable to connect to the database")
        print(e)
    return conn
```

Accessing PostgreSQL from Python: psycopg2 (cont'd)

- How to execute an SQL statement on an open connection 'conn'
 - we prepared a helper function which encapsulates all the error handling:

```
def pgexec( conn, sqlcmd, args, msg ):
   """ utility function to execute some SQL statement
       can take optional arguments to fill in (dictionary)
       error and transaction handling built-in """
  retval = False
  with conn:
      with conn.cursor() as cur:
         trv:
            if args is None:
               cur.execute(sqlcmd)
            else:
               cur.execute(sglcmd, args)
            print("success: " + msq)
            retval = True
         except Exception as e:
            print("db error: ")
            print(e)
   return retval
```

Accessing PostgreSQL from Python: psycopg2 (cont'd)

Example: Creating a table and loading some data

```
data organisations = list(csv.DictReader(open('water data/Organisations.csv')))
# 1st: login to database
conn = pgconnect()
# 2nd: ensure that the schema is in place
organisation schema = """CREATE TABLE IF NOT EXISTS Organisation (
                         code VARCHAR(20) PRIMARY KEY,
                         orgName VARCHAR(150)
pgexec (conn, organisation schema, None, "Create Table Organisation")
# 3nd: Load data
# IMPORTANT: make sure the header line of CSV is without spaces!
insert stmt = """INSERT INTO Organisation(code,orgName)
                      VALUES (%(Code)s, %(Organisation)s)"""
for row in data organisations:
    pgexec (conn, insert stmt, row, "row inserted")
```

Issues could be encountered

- Interpretation of data format and meta-data
- Differences in naming conventions
 - Excel headers with spaces and quotes, which both are not allowed to DBMS
- Inconsistent or missing data entries
- 'shape' of data

Transforming and Cleaning Data

Cleaning and Transforming Data

- Real data is often 'dirty'
- Important to do some data cleaning and transforming first
 - remember last week, when we had to convert strings to float
- Typical steps involved:
 - type and name conversion
 - filtering of missing or inconsistent data
 - unifying semantic data representations
 - matching of entries from different sources
- Later also:
 - Rescaling and optional dimensionality reduction

ETL Process

- This problem is well known from data warehousing
- ETL Process: Capture/Extract Data Cleansing Transform Load

Model/query results

Data Cleaning in Python

- Yes, there are powerful ETL tools out there, but we do it for free in Python:
 - (1) type and name conversion
 - (2) filtering of missing or inconsistent data
 - (3) unifying semantic data representations
 - (4) matching of entries from different sources
- Last week's clean() function deals with Tasks (1) and (2)
 - int() creates integer objects, e.g., -1, 101
 - float() creates floating point object, e.g., 3.14, 2.71
 - datetime.strptime() creates datetime objects from strings
 - Filters missing / wrongly formatted data and replaces with default value
- For more complex cases (3) and (4), you would need special code though

Repeat from Week 3: A function to convert values

Use "not a number" as default value numpy knows to ignore for some stats

```
import numpy as np
DEFAULT VALUE = np.nan
def clean(data, column key, convert function, default value):
    special values= {} # no special values yet
    for row in data:
        old value = row[column key]
        new value = default value
        try:
            if old value in special values.keys():
                new value = special values[old value]
            else:
                new value = convert function(old value)
        except (ValueError, TypeError):
            print('Replacing {} with {} in column {}'.format(row[column key], new value, column key))
        row[column key] = new value
# the following converts the two measurement columns to float values - or NaN
clean(data measurements, 'Discharge', float, DEFAULT VALUE)
clean(data measurements, 'MeanDischarge', float, DEFAULT VALUE)
```

Data Modeling

Relation Database Theory and Issues

- The modelling process in relational database known as OLTP (Online Transactional Processing) focuses on normalization process which yields to a flexible model
 - making it easy to maintain dynamic relationships between business entities
- So it is effective and efficient for operational databases a lot of updates
- However, a fully normalized data model can perform very inefficiently for queries.
- Historical data are usually large with static relationships:
 - Unnecessary joins may take unacceptably long time
- So how to proceed with a database approach?
 - => OLAP: Online Analytical Processing (Data Warehousing Approach)

What is a Data Warehouse?

"A data warehouse is simply a single, complete, and consistent store of data obtained from a variety of sources and made available to end users in a way they can understand and use it in a business context."
 Barry Devlin, IBM Consultant

- A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data that is used primarily in organizational decision making.
 --W. H. Inmon
 - OLTP is trying to run a business, while;
 - OLAP is trying to improve/optimize a business

» is an element of decision support systems (DSS)

What is a Data Warehouse?

- Subject-oriented
 - Organized by subject, not by application
 - Used for analysis, data mining, etc.
- Integrated
 - Constructed by integrating multiple, heterogeneous data sources
 - · relational databases, flat files, on-line transaction record
- Time Variant
 - Large volume of historical data (Gb, Tb)
 - Time attributes are important
- Non-volatile
 - Updates infrequent or does not occur
 - May be append-only

Conceptual Modeling of Data Warehouses

- Modeling data warehouses: dimensions & measures instead of relational model
- Data warehouse contains a large central table (fact table)
 - Contains the data without redundancy
- A set of dimension tables

Data Warehouses: Fact Tables

- Relational 'data warehouse' applications are centered around a fact table
 - For example, a supermarket application might be based on a table
 Sales (Market_Id, Product_Id, Time_Id, Sales_Amt)

market_id	product_id	time_id	sales_amt
M1	P1	T1	3000
M1	P2	T1	1000
M1	P3	T1	500
M2	P1	T1	100
M2	P2	T1	1100
M2	P3		

- The table can be viewed as multidimensional
 - Collection of numeric <u>measures</u>, which depend on a set of <u>dimensions</u>
 - E.g. Market_Id, Product_Id, Time_Id are the dimensions that represent specific supermarkets, products, and time intervals
 - The University of Sydney Amt is a function of the other three

Data Warehousing: Star Schema

- The fact and dimension relations linked to it looks like a star;
- this is called a star schema
- Most common modeling paradigm

- If we map this to relations
 - 1 central fact table
 - n dimension tables with foreign key relationships from the fact table

Data Warehousing: Snowflake Schema

- Snowflake schema: A refinement of star schema where some dimensional hierarchy is **normalized** into a set of smaller dimension tables, forming a shape similar to snowflake
- measurements are the facts, rest describes the dimensions

Example of Snowflake Schema

Modeling our Water Data Set

Data Warehousing: Fact constellations

Fact constellations: Multiple fact tables share dimension tables,
 viewed as a collection of stars, therefore called galaxy schema or fact constellation

DB Creation

SQL – The Structured Query Language

- SQL is the standard declarative query language for RDBMS
- Supported commands from roughly two categories:
 - DDL (Data Definition Language)
 - Create, drop, or alter the relation schema
 - Example:

```
CREATE TABLE name ( list of columns )
```

- DML (Data Manipulation Language)
 - for <u>retrieval</u> of information also called <u>query language</u>
 - INSERT, DELETE, UPDATE
 - SELECT ... FROM ... WHERE

Table Constraints and Relational Keys

- When creating a table, we can also specify Integrity Constraints for columns
 - eg. domain types per attribute, or NULL / NOT NULL constraints
- Primary key: <u>unique</u>, <u>minimal</u> identifier of a relation.
 - Examples include employee numbers, social security numbers, etc. This is how we can guarantee that all rows are unique.
- Foreign keys are identifiers that enable a <u>dependent relation</u> (on the many side of a relationship) to refer to its <u>parent relation</u> (on the one side of the relationship)
 - Must refer to a candidate key of the parent relation
 - Like a `logical pointer'

Keys can be simple (single attribute) or composite (multiple attributes)

Example: Relational Keys

Foreign key is a (set of) attribute(s) in one relation that 'refers' to a tuple in another relation (like a 'logical pointer').

SQL Domain Constraints

SQL supports various domain constraints to restrict attribute to valid domains

NULL / NOT NULL whether an attribute is allowed to become NULL (unknown)

DEFAULT to specify a default value

CHECK(condition) a Boolean condition that must hold for every tuple in the db instance

Example:

```
CREATE TABLE Student
    sid
                INTEGER
                                PRIMARY KEY,
                VARCHAR (20)
                               NOT NULL,
    name
    gender
                CHAR
                                CHECK (gender IN ('M, 'F', 'T')),
    birthday
                DATE
                               NULL,
                VARCHAR (20),
    country
                               DEFAULT 1 CHECK (level BETWEEN 1 and 5)
    level
                INTEGER
```

Data Loading / Storage

Data Storing

- Where are we now?
 - We have analysed our given data set
 - Cleaned it
 - Transformed it and created a corresponding relational database
- Next, we want to store the given data in our database.
- Main approaches:
 - 1. Command line tools
 - 2. Python loader
 - 3. (Combination of Python loader and stored procedures)

Approach 1: PSQL Data Loader

Postgresql offers a command to load data directly from a CSV file into a database table

```
\COPY tablename FROM filename CSV [HEADER] [NULL '...']
```

- Many further options
- Try \help COPY

— Pros:

- Relatively fast and straight-forward
- No programming needed

- Cons:

- Only 1:1 mapping of CSV to tables; no data cleaning or transformation
- Stops at the first error...

Approach 2: Python Loading Code

Example: Creating a table and loading some data

- Pros: Full flexibility; data cleaning and transformation possible
- Cons: Has to be hand-coded for each case

SQL DML Statements

- Insertion of new data into a table / relation
 - Syntax: INSERT INTO table ["("list-of-columns")"] VALUES "(" list-of-expression ")"
 - Example:

INSERT INTO Students (sid, name) VALUES (53688, 'Smith')

- Updating of tuples in a table / relation
 - Syntax:

```
UPDATE table SET column"="expression {","column"="expression}
    [ WHERE search_condition ]
```

– Example: UPDATE students

- Deleting of tuples from a table / relation
 - Syntax:
 DELETE FROM table [WHERE search_condition]
 - Example:

DELETE FROM Students WHERE name = 'Smith'

Database Creation

The full SQL schema for the given data model

```
DROP TABLE IF EXISTS Organisation CASCADE;
CREATE TABLE IF NOT EXISTS Organisation (
 code VARCHAR(20) PRIMARY KEY,
 organisation VARCHAR(150)
);
DROP TABLE IF EXISTS Station CASCADE:
CREATE TABLE IF NOT EXISTS Station (
   station VARCHAR(50) PRIMARY KEY,
   siteName VARCHAR(50),
   commence Date,
   oraCode VARCHAR(50),
   CONSTRAINT orgCodeFK
      FOREIGN KEY (orgCode)
      REFERENCES Organisation (code)
);
```

```
DROP TABLE IF EXISTS Sensor CASCADE:
CREATE TABLE IF NOT EXISTS Sensor (
   sensor VARCHAR(20) PRIMARY KEY,
   description VARCHAR(150),
   metric VARCHAR(20)
 );
DROP TABLE IF EXISTS Measurement CASCADE;
CREATE TABLE IF NOT EXISTS Measurement (
   station VARCHAR(20),
   sensor VARCHAR(20).
   date DATE,
   value FLOAT,
   CONSTRAINT stationFK
      FOREIGN KEY (station)
      REFERENCES Station (Station),
   CONSTRAINT sensorFK
     FOREIGN KEY (sensor)
     REFERENCES sensor (sensor)
 );
```

Review

Reprise Participation Marking

Requirements

- Submit code at end of each week
- Jupyter Notebooks:
 - The various exercises have placeholder cells marked as TODO:

TODO: replace the content of this cell
raise NotImplementedError

The content of these cells needs to
 be replaced with your own solution
 basis for participation marking

Output

Code/spreadsheets from exercises

Marking

- 10% of overall mark
- each week's participation assessed as:
 all done, partially done, no participation

Submit your Jupyter notebooks in Canvas by next Friday

Tips and Tricks

- Real data is 'dirty' data cleaning and transformation essential
- Database systems are great for shared, persistent storage of structured data, and also for consistent updating ('life' data)
- But some caveats:
 - Schema-first
 - Relational model quite restrictive (1 NF, no lists, collections etc)
 - Not too intuitive; 1:1 mapping from spreadsheets doomed to fail
 - Type-mismatches between programming languages and SQL
 - Needs to be installed and maintained (though much better nowadays for SQLite and PostgreSQL)
- What's the benefit?

Next Time

Next Lecture: Querying and Summarising Data

Objective

To be able to extract a data set from a database, as well as to leverage on the SQL capabilities for in-database data summarisation and analysis.

Lecture

- Data Gathering reprise
- SQL querying
- Summarising data with SQL
- Statistic functions support in SQL

Readings

Data Science from Scratch, Ch 23

Exercises

– [TODO]

TODO in W5

- Finish Grok Python modules
- Finish Grok SQL modules
- project data

Many Good Python Resources

- Hard to make recommendations given different backgrounds
- Look online, there are many free resources and example code
- A few lists:
 - https://www.fullstackpython.com/best-python-resources.html
 - https://www.quora.com/Learning-Python/How-should-I-start-learning-Python-1

Project Stage 1

Project Stage 1: Explore, Clean, Pitch

Objective

Explore a data set and define a research question based on research/business requirement.

Activities

- Choose a data set
- Explore and summarise data set
- Clean and prepare data
- Define problem

Output

- 2-page report summarising data, problem and explorative analysis
 - how did you acquire the data?
 - which tools did you use to clean and explore the data set?
 - with title page & references: max4p

Marking

13% of overall mark

SUGGESTED Timeline for Project Stage 1

- W1: Identify possible data sets
- W2: Identify and Explore possible data sets
- W3: Select project data set, define problem, complete exploration
- W4: Draft summary (problem & exploratory analysis)
- W5: Clean and prepare data
- W6: Descriptive Stats, justification of suitability