Ph20 - Assignment 3

Mai H Nguyen

30 April 2018

1 Explicit and implicit Euler methods

Analytic solution to equation of a mass on a spring:

$$F = ma = -kx$$

$$a + \frac{k}{m}x = 0$$

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

Let $\frac{k}{m} = 1$, the equation becomes:

$$\frac{d^2x}{dt^2} + x = 0$$

The characteristic equation: $r^2 + 1 = 0$ has complex roots $r_{1,2} = \pm i$. Solutions to the differential equation are: $x_1(t) = e^{it} = \cos(t) + i\sin(t)$ and $x_2(t) = e^{-it} = \cos(t) - i\sin(t)$. The general solution has the form: $x(t) = c_1x_1(t) + c_2x_2(t)$.

$$u(t) = \frac{1}{2}x_1(t) + \frac{1}{2}x_2(t) = \cos(t)$$

$$v(t) = \frac{1}{2i}x_1(t) + \frac{-1}{2i}x_2(t) = \sin(t)$$

General solution:

$$x(t) = c_1 \cos(t) + c_2 \sin(t)$$

$$\Rightarrow x_0 = c_1$$

$$x'(t) = -c_1 \sin(t) + c_2 \cos(t)$$

$$\Rightarrow v_0 = c_2$$

Equations of simple harmonic motion of a mass attached to a spring:

$$x(t) = x_0 \cos(t) + v_0 \sin(t)$$

$$v(t) = -x_0 \sin(t) + v_0 \cos(t)$$

Figure 1: x(t) and v(t) of a mass attached to a spring in simple harmonic motion ($x_0 = -2, v_0 = 0$) computed using the analytic, explicit and implicit Euler methods.

Figure 2: Truncation error in computing x(t) of a simple harmonic oscillator using the explicit Euler method is proportional to h for reasonably small values of h (h < 0.02).

Equations for implicit Euler method:

$$\begin{cases} x_{i+1} - hv_{i+1} = x_i \\ hx_{i+1} + v_{i+1} = v_i \end{cases}$$
$$\begin{cases} x_{i+1} - hv_{i+1} = x_i \\ h^2x_{i+1} + hv_{i+1} = hv_i \end{cases}$$

$$(1+h^2)x_{i+1} = x_i + hv_i$$

$$\Rightarrow x_{i+1} = \frac{x_i + hv_i}{1+h^2}$$

$$v_{i+1} = v_i - hx_{i+1}$$

$$\Rightarrow v_{i+1} = v_i - h\frac{x_i + hv_i}{1+h^2}$$

$$\Rightarrow v_{i+1} = \frac{v_i - hx_i}{1+h^2}$$

Figure 3: Evolution of global errors with time of x(t) (h = 0.02) of a simple harmonic oscillator computed using the explicit and implicit Euler method.

Figure 4: Evolution of the total energy with time of a mass attached to a spring $(x_0 = -2, v_0 = 0, h = 0.02)$ computed using the analytical and explicit and implicit Euler methods.

Method	Long-range trend for E	Evolution of global error
Explicit Euler	Greater than E_a	Error grows as a cubic function of time
	Rate of deviation from E_a increases with time	
Implicit Euler	Smaller than E_a	Error grows as a 1/3 power function of time
	Rate of deviation from E_a decreases with time	Error stops increasing after sufficiently large time
	Energy stops decreasing after sufficiently large time	

2 Symplectic Euler method

Total energy obtained using the symplectic Euler method varies periodically compared to the total energy obtained using the analytic solution. Since $E = x^2 + v^2$, \sqrt{E} is the radius of the circle centered at the origin of the phase space diagram.

One circle corresponds to 2 periods. Over 2 periods,

- the two sections of E_{sym} where $E_{sym} > E_a$ correspond to two bulges (increased 'radius' from the circle of the phase space of the analytic solutions).
- the two sections of E_{sym} where $E_{sym} < E_a$ correspond to two dents (decreased 'radius' from the circle of the phase space of the analytic solutions)

Figure 5: Phase-space of a simple harmonic oscillator (t = 20) showing the positions and velocities of a mass attached to a spring computed using the analytic, explicit, implicit and symplectic Euler methods.

Figure 6: Evolution of total energy of a mass attached to a spring under simple harmonic motion computed using the symplectic Euler method in comparison with the total energy derived analytically.

Figure 7: Long-term evolution of x(t) and v(t) of a simple harmonic oscillator computed using the symplectic Euler method. At large t, there is a visible lag between the solutions computed by the symplectic Euler method and those computed analytically.

