Started on Saturday, 3 December 2016, 9:01 PM

State Finished

Completed on Sunday, 4 December 2016, 1:42 AM

Time taken 4 hours 41 mins

Grade 100.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P10.01b_9ed

For the following set of values, calculate P, Q and state whether the circuit inside the box is absorbing or delivering (1) average power and (2) magnetizing vars.

b)
$$v = 40 \cos(\omega t - 15^{\circ}) V$$
 $i = 20 \cos(\omega t + 60^{\circ}) A$

$$P = \boxed{103.53}$$
 Watts

Numeric Answer

b) P = 103.53W abs Q = -386.37 VAR del

Correct

Correct

Mark 10.00 out of 10.00

P10.01b_6ed

Calculate P and Q of the following voltage and current. State whether the element is absorbing or delivering average power and magnetizing VARs.

Numeric Answer

P = 155.3 W abs Q = -579.6 VAR del

Correct

${\tt Question}~3$

Correct

Mark 10.00 out of 10.00

P10.01a_6ed

Calculate P and Q of the following voltage and current. State whether the element is absorbing or delivering average power and magnetizing VARs.

$$v = 340 \cos(\omega t + 60^{\circ}) V$$
 $i = 20 \cos(\omega t + 15^{\circ}) A$
 $P = 2404.16$ \checkmark W Absorbing \diamondsuit Watts
 $Q = 2404.16$ \checkmark VAR

Numeric Answer

P = 2,404.16 abs Q = 2404.16 VAR abs

Correct

Correct

Mark 10.00 out of 10.00

P10.01d_9ed

For the following set of values, calculate P, Q and state whether the circuit inside the box is absorbing or delivering (1) average power and (2) magnetizing vars.

d)
$$v = 200 \sin(\omega t + 250^{\circ}) \text{ V}$$
 $i = 5 \cos(\omega t + 40^{\circ}) \text{ A}$

$$P = \boxed{-250} \quad \text{W} \quad \boxed{\text{Delivering}} \quad \text{Watts}$$

$$Q = \boxed{433.01} \quad \text{VAR} \quad \boxed{\text{Absorbing}} \quad \text{VARs}$$

Numeric Answer

d)
$$P = -250W$$
 del $Q = 433.01$ VAR abs

Correct

Correct

Mark 10.00 out of 10.00

P10.01d_6ed

Calculate P and Q of the following voltage and current. State whether the element is absorbing or delivering average power and magnetizing VARs.

$$v = 180 \sin(\omega t + 220^{\circ}) \text{ V} \qquad i = 10 \cos(\omega t + 20^{\circ}) \text{ A}$$

$$P = \boxed{-307.82} \qquad \checkmark \text{ W} \qquad \boxed{\text{Delivering} \qquad } \checkmark \text{ Watts}$$

$$Q = \boxed{845.72} \qquad \checkmark \text{ VAR} \qquad \boxed{\text{Absorbing} \qquad } \checkmark \text{ VARs}$$

Numeric Answer

P = -307.8 W delivering Q = 845.7 VAR absorbing

Correct

Correct

Mark 10.00 out of 10.00

P10.07_9ed

The opamp is ideal. $v_g = \cos(1,000t) V$

Calculate the average power dissipated by the 1 k Ω (kilo Ohm) resistor.

$$P_{avg,1k\Omega} = \begin{bmatrix} 5 \\ \end{bmatrix}$$
 mW (milli Watt) ("+" = absorbed, "-" = delivered)

Numeric Answer

 $P_{avg,1kW} = 5 \text{ mW} \text{ (milli Watt)}$

Correct

Marks for this submission: 10.00/10.00.

Question 7

Correct

Mark 10.00 out of 10.00

$$p_{\rm max} = P_{\rm avg} + \sqrt{P^2 + Q^2}$$

$$p_{\min} = P_{\text{avg}} - \sqrt{P^2 + Q^2}$$

P10.04_9ed

A load consisting of a 480 Ω (Ohm) resistor in parallel with a (5/9) μF (micro Farad) capacitor is connected across the terminals of a sinusoidal voltage source $v_g = 240 \cos(5,000t) \text{ V}$.

a) What is the average power absorbed/delivered by the load?

$$P_{avg} = 60$$
 \checkmark W

b) What is the reactive power absorbed/delivered by the load?

$$Q = \boxed{-80}$$
 \checkmark VAR

c) What is the peak value of the instantaneous power <u>delivered</u> by the source?

The figure shows the result of a derivation for p_{max} .

$$p_{max} = \begin{bmatrix} -160 \\ \checkmark \end{bmatrix}$$
 W ("+" = absorbed, "-" = delivered)

d) What is the peak value of the instantaneous power absorbed by the source?

The figure shows the result of a derivation for p_{min} .

$$p_{min} = 40$$
 $\sqrt{W ("+" = absorbed, "-" = delivered)}$

e) What is the power factor of the load?

f) What is the reactive factor of the load?

rf =
$$\boxed{-0.8}$$
 ("+" = inductive, "-" = capacitive)

Numeric Answer

a)
$$P_{avg} = 60 \text{ W}$$

b)
$$Q = -80 \text{ VAR}$$

f)
$$rf = -0.8$$

Correct

Marks for this submission: 10.00/10.00.

Question 8

Correct

Mark 10.00 out of 10.00

P10.11b 9ed

A laser printer is rated at 90 W at $115V_{rms}$.

a) Calculate the rms value of the current drawn by the laser printer.

$$i_{printer,rms} = \boxed{.78}$$
 Arms

b) Calculate the peak magnitude of the voltage fed to the laser printer.

$$V_{\text{peak}} = \boxed{162.6}$$

Numeric Answer

a)
$$i_{printer,rms} = 0.7826A_{rms}$$

b)
$$V_{peak} = 162.6346V$$

Correct

Correct

Mark 10.00 out of 10.00

P10.11a 9ed

A personal computer with a monitor and keyboard voltage and current are:

$$v(t) = 115 \cos(2\pi 60 + 0^{\circ}) V_{rms}$$

$$i(t) = 0.5 \cos(2\pi 60 - 25^{\circ})$$
 Arms

Calculate the real power absorbed by the computer system.

$$P_{computer} = 52.11$$
 W ("+" = absorbed, "-" = delivered)

Numeric Answer

 $P_{computer} = 52.1127W$

Correct

Marks for this submission: 10.00/10.00.

Question 10

Correct

Mark 10.00 out of 10.00

P10.5 6ed

Given: The period of the waveform is 50 ms (milli sec).

a) Find the rms value of the periodic current shown in the figure.

$$i_{\rm rms} = \boxed{17.32} \qquad \checkmark A_{\rm rms}$$

b) Given that the periodic waveform dissipates an average power of 24 kW in a resistor.

What is the value of the resistor?

Numeric Answer

a)
$$i_{rms} = 17.321 A_{rms}$$

b)
$$R = 80.0 \Omega$$
 (Ohm)

Correct