CDS6214 Data Science Fundamentals

Lecture 7
Data Visualization

Outline

- * Why Visualize?
- Storytelling with Data
- Types of Visualizations
- Best Practices for Data Visualization
- Visualization Dashboards
- Law of Simplicity

Data Science Process

What should we do next?

- Identify the question
- Collect and pre-process the data
- Explore and analyze the data
- · Model the data
- · Infer and visualize results

Napoleon's March

Why Visualize?

- To explore the unknown
- To analyze a hypotheses
- To present "everything" known about the data, and communicate the results

Storytelling with Data

- It is important to have a cohesive narrative. You must have a storyboard.
- Before creating a storyboard, preliminary exploration of the data is required.
- You will then need to (temporarily ignoring the numbers), focus on the flow of arguments..

- Once a reasonable narrative is in place, drill down into the data to extract and generate the information required.
- Know what you're trying to say, inject emotion and suspense and interest into your narrative whenever possible

Varying stories for different audience

Storyboard 1

Storyboard 2

Good data visualization should...

- Help the audience think about the the important message(s) from the data, rather than about methodology (graphic design, the technology of graphic production etc), or something else
- Avoid distorting what the data have to say report the truth
- Present many numbers in a small space but also emphasize the important numbers
- Make large data sets coherent, and encourage the audience to compare different pieces of data
- Reveal the data at several levels of detail, from a broad overview to the fine structure

Design for your audience

- Test your visualisation with the key audience
- Limit the number of categories shown in a visualisation
 - be selective in what you present and emphasise the key message(s)
- Handy considerations:
 - Know when to use charts, and when to use tables*
 - Try to avoid using pie charts (unless your audience really does not like bar-charts!)*

Tables

- Tables are useful when:
 - You want to show individual data values, and allow audience to compare between individual values
 - Precise values are required
 - The quantitative information to be communicated involves more than one unit of measure

Ice Cream Sales vs Temperature	
Temperature °C	Ice Cream Sales
14.2°	\$215
16.4°	\$325
11.9°	\$185
15.2°	\$332
18.5°	\$406
22.1°	\$522
19.4°	\$412
25.1°	\$614
23.4°	\$544
18.1°	\$421
22.6°	\$445
17.2°	\$408

Graphs

- Graphs are useful when:
 - You want to reveal relationships between multiple values, for example broad comparison of trends over time or differences between areas
 - General patterns are the key point you want to present, rather than the exact data values

World's Biggest Solar Manufacturers (MW in 2013)

China based manufacturers in red, others in green

Seven Common Relationships in Graphs

- Nominal Comparison
- * Time-series
- Ranking
- Part-to-Whole
- Deviation
- Frequency Distribution
- Correlation

Nominal Comparison

Description	Methods
A simple comparison of the	Bars only (horizontal or vertical)
categorical subdivisions of one or	
more measures in no particular	
order	

Time-Series

Description	Methods
Multiple instances of one or more measures taken at equidistant points in time	 Lines to emphasize overall pattern Bars to emphasize individual values Points connected by lines to slightly emphasize individual values while still highlighting the overall pattern Always place time on the horizontal axis

Ranking

Description	Methods
Categorical subdivisions of a measure ordered by size (either descending or ascending)	 Bars only (horizontal or vertical) To highlight high values, sort in descending order To highlight low values, sort in ascending order

Absences Today by County

Part-to-Whole

Description	Methods
Measures of individual categorical subdivisions as ratios to the whole	 Bars only (horizontal or vertical) Use stacked bars only when you must display measures of the whole as well as the parts

Deviation

Description

Categorical subdivisions of a measure compared to a reference measure, expressed as the differences between them

Methods

- Lines to emphasize the overall pattern only when displaying deviation and time-series relationships together
- Points connected by lines: slightly emphasize individual data points while also highlighting the overall pattern when displaying deviation and time-series relationships together
- Bars: Emphasize individual values, but limit to vertical bars when a time-series relationship is included
- Always include a reference line to compare the measures of deviation

Frequency Distribution

Description	Methods
Counts of something per categorical subdivisions (intervals) of a quantitative range	 Vertical bars to emphasize individual values (called a histogram) Lines to emphasize the overall pattern (called a frequency polygon)

Correlation

Description

Comparisons of two paired sets of measures to determine if one set goes up, the other set goes either up or down in a corresponding manner, and if so, how strongly

Relationship between Median Income and Achivement

Methods

- Points and a trend line in the form of a scatter plot
- Bars may be used, arranged as a paired bar graph or a correlation bar graph, if scatter plots are unfamiliar

Correlation bar graph

Pie-Charts: Dubious Message

What "trick" is Steve Jobs using here to convey what message? What is the weakness of a pie chart in this instance at communicating accurate data?

Pie-Charts: Dubious Message

- · The pie chart distorts the data in Steve Jobs' favour
- The pie chart makes it difficult to visually compare—in an instant—the relative rankings of Smartphone market share

Accurately Represent the Data

- * Keep the zero on the axis scale*
- For bar charts, set the base of the bars to zero (not the lowest value)*
- Avoid varying the size of objects in graphs, except to convey difference in values
- Avoid using line charts where data is only available for a small number of time points*

Keep the zero on the axis scale

Set the base of the bars to zero

Avoid line charts if only few time points available

Keep it clear

- Avoid using visualisation effects such as 3D that can hide the data*
- When choosing colours to use, limit the number of colours used and ensure that different colours can be distinguished.
- Where colour is needed, use solid blocks of colour and avoid fill patterns
- Avoid using strong or bold colours for the background in a visualisation*
- When creating choropleth maps, choose colours to help users identify patterns and relationships between areas

Using Colors

(Grey)Value is perceived as ordered (O)

Can encode quantitative values (Q) [not as well]

Hue is normally perceived as unordered (N)

- Ordinal data: Use colors of different brightness (intensity) or saturation (shade).
- * Nominal data: Use different hues since ordering is not important. Different hues will set apart each data.

Avoid Visualization Effects

Choropleth Map

 A choropleth map is a thematic map where areas are coloured/shaded/pat terned in proportion to the measurement of a variable displayed

- Crucial when creating: Choose a good range of colours to help users identify patterns and relationship between areas
- Values of the variable of interest should also be normalized

Dashboards

- "A dashboard is a visual display of the most important information needed to achieve one or more objective; consolidated and arranged on a single screen so the information can be monitored at a glance."
 - Stephen Few,Information DashboardDesign (2006)

Interactive Visualization: http://www.opendataexplorer.ca/toronto-parking-tickets-study.html

Dashboards Design Issues

- They don't say enough
- What they do say is not said well.
- Lack context
- When monitoring what's going on, people usually need answers to these questions:
 - Are we doing well or poorly?
 - How well or how poorly?
 - What has led to what's happening today?

Netherlands

1.12%

8

Joe's Diner Feedback Analytics

What, will the line stretch out to th' crack of doom?

1.12%

8

Entries by Software September 2010 Internet Browser Firefox 42.13% 300 Chrome 19.24% 137 Safari 15.73% 112 Opera 0.14% 1 Internet Explorer 20.79% 148 Other 1.83% 13 Desktop Operating System Linux 0.84% 6 Mac OS X 36.80% 262 Windows 60.39% 430 Other 0.00% 0 Mobile Operating System iPhone OSX 0.70% 5

Unknown Platform

Brooklyn

1.26%

9

Digital Dashboard, Education Metrics

Law of Simplicity

John Maeda, in The Laws of Simplicity, offers a maxim about design simplicity, which Stephen Few (2008) has massaged into the following statement:

"Simplicity is about eliminating the obvious (and everything else that doesn't support your purpose), and enhancing the meaningful."

Maximize Data-Ink Ratio

One of Edward Tufte's Principles

Data-Ink Ratio =
$$\frac{\text{Data ink}}{\text{Total ink used in graphic}}$$

Lie Factor

 Distorting the data with graphics that aren't accurate or representative of scale

Size of effect shown in graphic
Size of effect in data

Reading Material

- Edward Tufte, "<u>The Visual Display of Quantitative Information</u>",
 1983 (original), 2001 reprint.
- Stephen Few, <u>"Show me the numbers: Designing tables and graphs to enlighten"</u>, 2005, (slides!)
- Bill Shander, "How to tell stories and weave cohesive narrative with data"
- Unilytics, "Top 7 Tips for Dashboard Visualization", 2015.
- Tableau, "<u>Data is beautiful: 10 of the best data visualization</u> examples from history to today"