Real-World Use Case of Airflow

Session-03

SESSION OVERVIEW

01 **Data Architecture Explanation** 02 **Demonstration of Batch ETL Orchestration** 03 More Advanced Topics in Airflow 04 **Best Practices in Airflow** 05 **Advantages and Limitations of Airflow**

PROBLEM DESCRIPTION

- Enable efficient OLAP on the trips and bookings data for a ride hailing company
- O Design and schedule a data pipeline to generate the following insights:
 - O Get the car types involved with the highest number of trips for each city
 - O Get the **throughput of the trips** (no. of trips / no. of bookings) for each city

TABLES

```
mysql> show tables;
 Tables_in_events
 booking
  trip
2 rows in set (0.00 sec)
```

BOOKING TABLE DESCRIPTION

```
mysql> desc booking;
  Field
                             | Null | Key | Default |
               Type
                                                       Extra
  booking id | int(11)
                             YES
                                             NULL
  city
                varchar (50)
                             YES
                                             \mathtt{NULL}
  booking ts | timestamp
                              YES
                                             _{
m NULL}
                varchar(10)
  car type
                             YES
                                             NULL
 rows in set (0.01 sec)
```

BOOKING TABLE SAMPLE RECORDS

```
mysql> select * from booking LIMIT 10;
                           booking ts
  booking id | city
                                                  car type
               mumbai
                           2020-09-16 10:00:10
                                                  economy
               bangalore |
                           2020-09-16 14:10:09
                                                  sedan
               chennai
                           2020-09-16 18:09:15
                                                  economy
               chennai
                           2020-09-16 11:11:19 |
                                                  sedan
               bangalore |
                           2020-09-16 12:16:11 I
                                                  sedan
               mumbai
                           2020-09-16 19:27:58 I
                                                  sedan
               mumbai
                           2020-09-16 19:27:58 |
                                                  NULL
               mumbai
           8
                           2020-09-16 10:00:10 I
                                                  economy
               mumbai
                           2020-09-16 10:00:12 |
                                                  sedan
           9
               bangalore |
                           2020-09-16 04:10:15 |
          10
                                                  sedan
10 rows in set (0.00 sec)
```

TRIP TABLE DESCRIPTION

```
mysql> desc trip;
 Field
                      Type
                                 Null | Key | Default |
 trip id
                     | int(11)
                                 YES
                                              \mathtt{NULL}
 booking id
                     | int(11)
                                 YES
                                              NULL
 pickup location id | int(11)
                                YES
                                              NULL
                                 YES
 dropoff location id | int(11)
                                              NULL
 trip start ts
                    | timestamp |
                                 YES
                                              NULL
 trip end ts | timestamp
                                  YES
                                              NULL
 trip distance
                     | int(11)
                                  YES
                                              NULL
 rows in set (0.00 sec)
```

TRIP TABLE SAMPLE RECORDS

rip_id	booking_id	pickup_location_id	dropoff_location_id	trip_start_ts	trip_end_ts	trip_distanc
1 1	1	101	102	2020-09-16 10:05:10	2020-09-16 10:15:10	
3	3	113	111	2020-09-16 18:19:15	2020-09-16 18:59:15	1
4	4	111	114	2020-09-16 11:14:19	2020-09-16 11:34:19	
5	5	108	106	2020-09-16 12:15:11	2020-09-16 12:19:11	
6	6	101	101	2020-09-16 19:47:58	2020-09-16 20:27:58] 3
8	8	105	101	2020-09-16 10:04:10	2020-09-16 10:12:10	
9	9	101	104	2020-09-16 10:01:12	2020-09-16 10:10:12	
10	10	106	108	2020-09-16 04:15:15	2020-09-16 04:20:15	
11	11	106	108	2020-09-16 17:09:00	2020-09-16 17:28:00	2
12	12	108	109	2020-09-16 16:13:09	2020-09-16 16:19:09	

STEPS INVOLVED

- Bring data from MySQL to HDFS via Sqoop
- Create necessary directories in HDFS
- Create Hive tables on the data imported
- Construct partitions in the Hive table
- Filter invalid records using Spark
- O Run analysis to generate aggregated result using Spark
- View the result

DAG ARCHITECTURE

SubDAGs

- SubDAGs are widely used to group logically similar or parallel tasks in a DAG.
- SubDAG is defined as a function that returns a DAG object.
- In terms of a graph, each SubDAG behaves like a vertex (a single node) in a graph.
- For example:

SubDAG SAMPLE CODE

SubDAG function:

The SubDAG and its operators are defined and returned in this function.

```
extraction_subdag_operator = SubDagOperator(
    task_id='extract',
    subdag = gen_subdag(DAG_NAME,'extract', args),
    dag=dag,
```

SubDAG task: This can be used as a single task in the parent DAG.

BACKFILLING

- Backfilling is used to run the DAGs for older schedules.
- For example, let's say we have a DAG that runs daily and we wish to re-run the DAG from some a start_date to an end_date, we can backfill the DAG to reprocess the data
- It is useful to reprocess the data if application code has been updated or the data in the source has been corrected/refreshed
- O Backfilling using CLI :
 - airflow backfill -s START_DATE -e END_DATE dag_id
- Airflow supports automatic backfilling of data according to start time, current time and the schedule
- O To disable it, set **catchup=False** in the DAG object

AIRFLOW VARIABLES

- O Variables are **key-value stores** in Airflow's metadata database.
- They are a generic way to store and retrieve arbitrary content or settings within Airflow.
- Airflow will mask all sensitive values in these variables (e.g., passwords).
- They can be JSON (deserialized as a Python dictionary), a string or of None type.
- Apart from variables, we can also make use of jinja templating, by the use of reference parameters like {{ ds }} (for execution date),{{run_id }} (the id of the current run) etc. and macros

AIRFLOW VARIABLES

- They are accessible through the Airflow UI(Admin -> Variables), CLI and can be referred inside the DAG code
- We can import and export a set of variables together using CLI.
- Sample use of variable:

```
from airflow.models import Variable
foo = Variable.get("foo")
```

XComs

- Tasks in Airflow use XComs or 'cross-communications' to communicate with each other.
- A task can push and also pull XCom(s) generated by other tasks
- You can create XComs through the UI or code.
- Sample use of XComs :

```
#Pushing (Generating) XCom
context['task_instance'].xcom_push(<key>, <value>)
#Pulling (Accessing) XCom
context['task_instance'].xcom_pull(<key>,
task_ids=<ids of tasks generating XCom>)
```

TRIGGER RULES

- In general, a task is triggered when all directly upstream tasks have succeeded but Airflow allows for more complex dependency settings.
- All operators have a trigger_rule argument that decides when the task will get triggered.
- By default, trigger_rule = all_success.
- Some common trigger_rule values are as follows:
 - all_failed
 - all_done
 - one_success
 - none_failed
 - none_failed_or_skipped

MONITORING AND ALERTING

O Monitoring:

- Using the Airflow UI, we can monitor the task statuses(running, success, failed, skipped etc.)
- We can monitor the time taken to execute dependency tasks
- We can monitor any delays in DAG execution with SLA duration
- Health checks of workers and scheduler can be configured
- The StatsD package helps in collecting Airflow statistics.

ALERTING:

- Email operator can be used to send automated emails whenever a task fails or is completed at the DAG level.
- Airflow can also send notifications to popular online services such as
 Slack and HipChat

TIPS AND BEST PRACTICES

Do not use Airflow to debug your application code.

The start date and the actual execution of a DAG differ by one schedule interval. Consider this while creating/scheduling your DAG.

Never store any config file in the local file system. If possible, use XCOM to communicate small messages.

By default, the DAGs are turned off as a cautionary measure. Make sure that you turn them ON.

Sensors are mostly idle processes; So, do not use unnecessarily.

TIPS AND BEST PRACTICES

Use static start_date for the DAGs.

80

Ensure that DAGs are as independent as possible.

Make DAGs idempotent; running multiple times is the same as running once.

09 Renaming a DAG will introduce a new DAG.

Run different components on different machines.

ADVANTAGES AND LIMITATIONS OF AIRFLOW

Advantages Limitations Not for scheduling streaming jobs; tools such as Best suited for batch ETL process orchestration Nifi/StreamSets can be used for stream process scheduling or Supervisor for monitoring **Extensive UI and connectors** No native support for Windows Plenty of retry options, visual DAGs for There is no standby process for the scheduler. troubleshooting in the UI **Supports complex workflows**

SESSION SUMMARY

01 **Demonstration of Batch Process Orchestration Demonstration of Hive Table Creation** 02 **Orchestration** 03 **Demonstration of ETL Orchestration** 04 **Best Practices in Airflow** 05 **Advantages and Limitations of Airflow**

THANK YOU