系统工程第5次作业

张博睿 自75 2017011537

程序详见

./code/..

1.

(1) 使用 PCA+线性回归结果

算法流程

输入:数据data和标签Y。

(1) 对数据进行归一化并保存数据的均值和方差

$$\tilde{X} = \frac{X - \bar{X}}{std(X)}$$

(2) 计算归一化数据的协方差矩阵

$$\Sigma = \frac{1}{n-1} X^T X$$

- (3)对协方差矩阵进行特征值分解,并根据rerr选择占比较大的特征值和特征向量(主成分)pcs。
- (4) 计算降维后的数据

$$\hat{X} = \tilde{X} \times pcs$$

- (5) 通过 OLS 计算 \hat{X} 和 \tilde{Y} 的回归系数并进行 F 检验。
- (6) 根据保存的均值和方差恢复X关于Y的回归系数。

输出: 最终的回归系数和相关中间过程结果。

最终结果如下

项目	结果
显著性水平α	0.05
显著性检验 F_0	1.69
计算F	208.45
显著性检验	存在线性
病态特征值阈值	0.95
降维维度	10
置信区间	$y \in [\hat{y} - 10.724, \hat{y} + 10.724]$

回归系数为

项目	pop. density	pop	pop. change	age6574
系数	-0.000378817	-2.16E - 06	-0.001496108	0.607704585

项目	age75	crime	college	income
系数	0.680461857	-0.000420616	0.329745055	0.000252818
项目	farm	democrat	republican	Perot
系数	0.161117621	-0.000167626	-0.096145826	0.155669417
项目	white	black	intercept	
系数	0.05514121	-0.030452773	19.589064	

运行的原始结果如下

(2) 直接使用病态回归建模

最终结果如下

项目	结果
显著性水平α	0.05
显著性检验 F_0	1.83
计算F	292.21
显著性检验	存在线性
病态特征值阈值	0.95
降维维度	10
置信区间	$y \in [\hat{y} - 10.717, \hat{y} + 10.717]$

回归系数为

项目	pop. density	pop	pop. change	age6574
系数	-0.000378817	-2.16E - 06	-0.001496108	0.607704585
项目	age75	crime	college	income
系数	0.680461857	-0.000420616	0.329745055	0.000252818
项目	farm	democrat	republican	Perot
系数	0.161117621	-0.000167626	-0.096145826	0.155669417
项目	white	black	intercept	
系数	0.05514121	-0.030452773	19.589064	

运行的原始结果如下

```
Decomposed dimension: 10
Linearity is considered under the condition of significance 0.05
              0.20013795 0.20374793 -0.24534054 0.0444032 -0.05773427 0.18024992
 0.27955154 -0.12137926 0.19162341 -0.00420912]
            [-7.14372789e-02 -7.51337839e-02 -3.99718610e-03 1.72879389e-01
re_omega
  2.11106945e-01 -1.27942808e-01 2.84949246e-01 2.33785569e-01
 1.55614234e-01 -2.37453228e-04 -1.08535378e-01 1.40831051e-01
  1.12213217e-01 -5.75733293e-02]
final omega [-3.78816653e-04 -2.15781284e-06 -1.49610831e-03 6.07704585e-01
 6.80461857e-01 -4.20616476e-04 3.29745055e-01 2.52818439e-04 1.61117621e-01 -1.67626174e-04 -9.61458256e-02 1.55669417e-01
  5.51412104e-02 -3.04527729e-02]
             19.589064434611366
intercept
S_sigma
              0.7189139358874499
              1.959963984540054
error
              10.716676172135639
```

(3) 分析

可以看到,使用 **PCA+线性回归**和**直接使用病态回归**的结果基本一致,下面对比分析两者的不同点和相同点。

不同点:

	PCA+线性回归	病态回归
优化目标	$\max \sum_{t=1}^{N} \sum_{k=1}^{m} (y_k(t))^2$ $\begin{cases} y_k(t) = \sum_{i=1}^{n} l_i(k)\tilde{x}_i(t) \\ \sum_{i=1}^{n} (l_i(k))^2 = 1 \end{cases}$	$\sum_{i=1}^{N} (x(t) - Lv(t))^{T} (x(t) - Lv(t))$
	$\left(\sum_{i=1}^{n} l_i(k)l_i(j) = 0 \right)$	
特征分解	计算协方差矩阵(除以 n-1)	没有除以 n-1

相同点:

在处理实际问题是,两者都是通过计算协方差矩阵的特征分解,并通过选择较大特征值 的方式来达到优化目标。

分析:

通过实验发现,两种方法得到的结果基本是一致的。回到两种方法的目标函数可以发现,尽管两种方法的优化目标存在一定的差异,但是在实际运算的时候可以用相似的方法(特征值分解)来优化目标函数。

由于主成分分析的时候强调了协方差矩阵,计算时除以了系数 n-1,而病态回归问题没有。但是这在选择特征值和特征向量(主成分)时并没有太多的影响(可能存在数值计算的差别)。最终导致两种方法的效果基本是一致的。