

Lessons Learned Developing and Managing High Volume Apache Spark Pipelines in Production

Erni Durdevic, Quby B.V.

#SAISML4

Over 350,000 connected homes across Europe

Our partners:

Toon available

Toon in testphase

TOON

ENERGY INSIGHTS APP SMART METER **DONGLE & APP** **SMART THERMOSTAT &** APP

SECURITY PACKAGE & APP

DATA SERVICES

WATER INSIGHT

MONTHLY ENERGY INSIGHT

TOON SOLAR

BOILER MONITORING

>1200 TB in total

Batch pipeline

USE CASE #1 Waste Checker

Energy Waste Checker

"We don't always notice how much energy we're wasting. Toon can now expose the energy guzzlers in your home."

Launched in December 2017 to all Eneco Toon users

Quby's disaggregation algorithms

Patent pending algorithms can detect appliances from 10 second resolution electricity meter data

Use case example: Inefficient dishwasher diagnosis

Disaggregation algorithms run on the 10s electricity meter data

Compared with industry standards and peers

Toon det the appli

#SAISML4

Toon determines the "fingerprint" of the appliance through features

Translated to personalised advice for the end user

Scale of the Waste checker

Getting the data ready

- Extraction & Cleaning
- Resampling
- Vectorization

Detecting appliances

- Signal processing
- Machine learning (One Big model)

Finding user behavior

- Clustering per user
- Many, many, many (small) models

Detections

Behaviour

Drawing conclusions

- Comparing to other users
- Comparing to industry standards

The Data Pipeline

Managing jobs (Option 1)

Databricks Jobs & Notebook Workflows

https://databricks.com/blog/2016/08/30/notebook-workflows-the-easiest-way-to-implement-apache-spark-pipelines.html

Run	Run ID	Start Time	Launched	Duration	Spark	Status	
Run Now / Run N	low With Different Parameters						
Complete	d in past 60 day	'S					
	un (refreshes automatically)						
Previous 20							Next 20
Run	Run ID	Start Time	Launched	Duration	Spark	Status	
Run 206	114438	2018-09-28 11:21:46 CEST	Manually	47m 57s	Spark UI / Logs / Metrics	Succeeded	ж
Run 205	114350	2018-09-28 04:00:00 CEST	By scheduler	3m 26s	Spark UI / Logs / Metrics	Falled	×
	111100	2018-09-27 04:00:00 CEST	By scheduler	44m 54s	Spark UI / Logs / Metrics	Succeeded	×
Run 204	114109						
Run 204 Run 203	113874	2018-09-26 04:00:01 CEST	By scheduler	46m 27s	Spark UI / Logs / Metrics	Succeeded	×
			By scheduler By scheduler	46m 27s 46m 35s	Spark UI / Logs / Metrics Spark UI / Logs / Metrics	Succeeded Succeeded	×
Run 203	113874	2018-09-26 04:00:01 CEST					
Run 203 Run 202	113874 113635	2018-09-26 04:00:01 CEST 2018-09-25 04:00:00 CEST	By scheduler	46m 35s	Spark UI / Logs / Metrics	Succeeded	×

Managing jobs (Option 2)

Airflow DAGs

https://airflow.apache.org/

Must read:

#SAISML4

- ETL principles: https://gtoonstra.github.io/etl-with-airflow/principles.html
- Gotcha's: https://gtoonstra.github.io/etl-with-airflow/gotchas.html

When designing data pipelines

Enforce idempotent constraints

$$f(x) = y$$

Enforce reproducibility

Let data transformations be chainable

$$f(x) = y \qquad g(y) = z$$

Leverage partitioning and data locality

Monitoring

 Live dashboards with aggregated data

Monitoring and Validation

Daily email to Quby's VIP employees

Alerting

Alerting (via Email / Slack)

- If anything goes wrong
- If an independent monitoring job detects missing data

USE CASE #2

Detecting anomalies in heating systems

Structured Streaming

Multiple Streaming aggregations

When working with streams in spark it is not possible to do **multiple aggregations** on the same stream

- E.g. Forking a stream in multiple streams
- E.g. Do consecutive aggregations

Work around

Output the aggregations on a sink and read it back in Spark (E.g. Kafka, Kinesis, Delta tables)

Non time-based windows on streams

- When working with streams in spark it is not possible to compute non time-based window operations
 - E.g. Compute the derivative of a signal

timestamp	lag(timestamp)
2018-10-04 14:00:00	
2018-10-04 15:00:00	2018-10-04 14:00:00
2018-10-04 16:00:00	2018-10-04 15:00:00

Our solution

Compute **non time-based window** operations

- Use (Flat) mapGroupWithState (Beware: no ordering guarantee)
- Inside a time-based window by collecting a list of Struct(Timestamp, Value)

Stream to stream joins

 When doing stream to stream joins, keep an eye on the distinct key count on aggregation state

Streaming in production

- Structured Streaming in Production checklist
 - Setup recovery of queries from failure
 - Configure Checkpointing
 - Query restart
 - Configure Spark scheduler pool for efficiency
 - Optimize performance of stateful streaming queries
 - Configure multiple watermark policy

Reference: https://docs.databricks.com/spark/latest/structured-streaming/production.html

Erni Durdevic Machine Learning Engineer

+31 (0) 638 11 94 12 erni.durdevic@quby.com

