

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

#### ОТЧЕТ

по лабораторной работе № 2 по курсу «Анализ Алгоритмов» на тему: «Умножение матриц (сложность)»

| Студент   | ИУ7-53Б<br>(Группа) | - | (Подпись, дата) | <u>Лысцев Н. Д.</u> (И. О. Фамилия) |
|-----------|---------------------|---|-----------------|-------------------------------------|
| Преподава | атель               |   | (Подпись, дата) | Волкова Л. Л.<br>(И. О. Фамилия)    |

## СОДЕРЖАНИЕ

| B] | вед | ЕНИЕ   |                                                           | 4  |
|----|-----|--------|-----------------------------------------------------------|----|
| 1  | Ана | алитич | неский раздел                                             | 5  |
|    | 1.1 | Матр   | ица                                                       | 5  |
|    | 1.2 | Класс  | сический алгоритм умножения двух матриц                   | 6  |
|    | 1.3 | Алгор  | оитм Винограда для умножения двух матриц                  | 6  |
|    | 1.4 | Оптиг  | мизированный алгоритм Винограда для умножения двух матриц | 7  |
|    | 1.5 | Алгор  | оитм Штрассена для умножения двух матриц                  | 8  |
|    | 1.6 | Опти   | мизированный алгоритм Штрассена для умножения двух        |    |
|    |     | матри  | щ                                                         | 10 |
| 2  | Кон | нструк | кторский раздел                                           | 11 |
|    | 2.1 | Разра  | ботка алгоритма классического умножения матриц            | 11 |
|    | 2.2 | Разра  | ботка алгоритма Винограда умножения матриц                | 12 |
|    | 2.3 | Разра  | ботка алгоритма Штрассена умножения матриц                | 15 |
|    | 2.4 | Оцени  | ка трудоемкости алгоритмов                                | 16 |
|    |     | 2.4.1  | Модель вычислений для проведения оценки трудоемкости      |    |
|    |     |        | алгоритмов                                                | 16 |
|    |     | 2.4.2  | Трудоемкость классического алгоритма умножения двух       |    |
|    |     |        | матриц                                                    | 17 |
|    |     | 2.4.3  | Трудоемкость алгоритма Винограда умножения двух матриц    | 17 |
|    |     | 2.4.4  | Трудоемкость оптимизированного алгоритма Винограда        |    |
|    |     |        | умножения двух матриц                                     | 19 |
|    |     | 2.4.5  | Трудоемкость алгоритма Штрассена умножения двух матриц    | 20 |
|    |     | 2.4.6  | Трудоемкость оптимизированного алгоритма Штрассена        |    |
|    |     |        | умножения двух матриц                                     | 22 |
| 3  | Tex | нолог  | ический раздел                                            | 23 |
|    | 3.1 | Средо  | ства реализации                                           | 23 |
|    | 3.2 | Сведе  | ения о модулях программы                                  | 23 |
|    | 3.3 | Реали  | ізации алгоритмов                                         | 24 |

|              | 3.4 | Функциональные тесты         | 31 |
|--------------|-----|------------------------------|----|
| 4            | Исс | следовательский раздел       | 33 |
|              | 4.1 | Технические характеристики   | 33 |
|              | 4.2 | Время выполнения алгоритмов  | 33 |
|              | 4.3 | Использование памяти         | 35 |
| 3            | АКЛ | ЮЧЕНИЕ                       | 38 |
| $\mathbf{C}$ | пис | ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ | 40 |

## ВВЕДЕНИЕ

Матрица в математике – таблица чисел, состоящая из определенного количества строк и столбцов.

Умножение матриц – одна из основных операций над матрицами. Оно используется в различных областях, включая машинное обучение, обработку изображений и многие другие.

Целью данной лабораторной работы является исследование классического алгоритма умножения матриц, умножения матриц с использованием алгоритма Винограда, а также с использованием его оптимизированной версии согласно варианту.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1) Изучить и описать алгоритмы классического умножения матриц и умножения матриц с использованием алгоритма Винограда и Штрассена.
- 2) Создать программное обеспечение, реализующее следующие алгоритмы:
  - классический алгоритм умножения матриц;
  - умножение матриц с использованием алгоритма Винограда;
  - умножение матриц с использованием оптимизированной версии алгоритма Винограда;
  - умножение матриц с использованием алгоритма Штрассена.
- 3) Провести анализ эффективности реализаций алгоритмов по памяти и по времени.
- 4) Провести оценку сложности алгоритмов и сказать влияние оптимизаций на характеристики программной реализации.
- 5) Обосновать полученные результаты в отчете к выполненной лабораторной работе.

#### 1 Аналитический раздел

В данном разделе будут рассмотрены понятия матрицы, умножения двух матриц, классический алгоритм умножения матриц и умножение матриц с помощью алгоритма Винограда и Штрассена.

## 1.1 Матрица

Матрица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы [1].

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Для матрицы определены следующие алгебраические операции:

- 1) Сложение матриц, имеющих один и тот же размер.
- 2) Умножение матрицы на число.
- 3) Умножение матриц подходящего размера.

Умножение двух матриц (обозначается: AB, реже  $A \times B$ ) определяется следующим образом: каждый элемент результирующей матрицы — это сумма произведений элементов соответствующих строк первой матрицы и столбца второй матрицы. При этом количество столбцов в первой матрице должно совпадать с количеством строк во второй матрице. Операция умножения матриц в общем случае не коммутативна, то есть  $AB \neq BA$ .

#### 1.2 Классический алгоритм умножения двух матриц

Классический алгоритм умножение двух матриц вытекает из определения умножения двух матриц и реализует формулу 1.1. Асимптотическая сложность такого алгоритма  $O(n^3)$  для двух матриц порядка  $n \times n$  [2].

Пусть даны две прямоугольные матрицы A и B размерности  $m \times n$  и  $n \times q$  соответственно:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \cdots & a_{lm} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix}.$$

Тогда матрица C размерностью  $m \times q$ :

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mq} \end{pmatrix}$$

где элемент результирующей матрицы  $c_{ij}$  определяется так:

$$c_{ij} = \sum_{k=1}^{m} a_{ik} \cdot b_{kj} \tag{1.1}$$

#### 1.3 Алгоритм Винограда для умножения двух матриц

Анализируя классический алгоритм умножения двух матриц, можно увидеть, что каждый элемент результирующей матрицы представляет собой скалярное произведение соответствующей строки и соответствующего столбца исходной матрицы. Можно заметить также, что такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее [3].

Рассмотрим 2 вектора: 
$$V = (v_1, v_2, v_3, v_4)$$
 и  $W = (w_1, w_2, w_3, w_4)$ .

Их скалярное произведение равно:

$$V \cdot W = v_1 \cdot w_1 + v_2 \cdot w_2 + v_3 \cdot w_3 + v_3 \cdot w_3 \tag{1.2}$$

Это равенство можно переписать в виде:

$$V \cdot W = (v_1 + w_2) \cdot (v_2 + w_1) + (v_3 + w_4) \cdot (v_4 + w_3)$$

$$-v_1 \cdot v_2 - v_3 \cdot v_4 - w_1 \cdot w_2 - w_3 \cdot w_4$$

$$(1.3)$$

Несмотря на то что второе выражение требует вычисления большего количества операций, чем стандартный алгоритм: вместо четырех умножений - шесть, а вместо трех сложений - десять, последние слагаемые в формуле 1.3 допускают предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй матрицы, что позволит для каждого элемента выполнять лишь два умножения и пять сложений, складывая затем только лишь с 2 предварительно посчитанными суммами соседних элементов текущих строк и столбцов. Из-за того, что операция сложения быстрее операции умножения в ЭВМ, на практике алгоритм должен работать быстрее стандартного.

В случае нечетного значения размера изначальной матрицы следует произвести еще одну операцию - добавление произведения последних элементов соответствующих строк и столбцов.

Алгоритм Винограда имеет асимптотическую сложность  $O(n^{2.3755})$  для двух матриц порядка  $n \times n$  [4].

## 1.4 Оптимизированный алгоритм Винограда для умножения двух матриц

При программной реализации алгоритма Винограда предлагается выполнить следующие оптимизации:

- 1) Заменить умножение на 2 на побитовый сдвиг влево.
- 2) Заменить выражение вида x = x + k на выражение вида x + k = k.

3) Значение  $\frac{Q}{2}$ , используемое в циклах расчета предварительных данных, вычислить заранее.

### 1.5 Алгоритм Штрассена для умножения двух матриц

Алгоритм Штрассена – альтернатива классическому алгоритму умножения матриц. Суть данного алгоритма заключается в сокращении числа умножений (вместо 8-ми умножений в классическом алгоритме 7 в алгоритме Штрассена) путем подсчета дополнительных сумм и разностей. Если классический алгоритм для умножения двух матриц порядка  $n \times n$  имеет сложность  $O(n^3)$ , то метод Штрассена требует  $O(n^{2.807})$  [5].

Алгоритм Штрассена работает с квадратными матрицами, размер которых можно представить в виде степени двойки. В случае, если это не так, то матрица дополняется нулевыми элементами до квадратной матрицы ближайшего корректного размера.

Пусть матрицы A и B – квадратные матрицы размером  $n \times n$ , матрица C – матрица размером  $n \times n$ , являющаяся результатом умножения матриц A и B, где n – число, являющееся степенью двойки.

Алгоритм действий в алгоритме Штрассена:

1) Разделить входные матрицы A и B и выходную матрицу C на подматрицы размером  $\frac{n}{2} \times \frac{n}{2}$ :

$$A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}, \quad B = \begin{pmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{pmatrix}, \quad C = \begin{pmatrix} c_{00} & c_{01} \\ c_{10} & c_{11} \end{pmatrix}.$$

где  $a_{ij}, b_{ij}, c_{ij}$   $i, j = \overline{0,1}$  – подматрицы размером  $\frac{n}{2} \times \frac{n}{2}$ ;

2) Вычислить матрицы  $M_i$ ,  $i = \overline{1,7}$  по следующим формулам:

$$M_1 = (a_{00} + a_{11}) \cdot (b_{00} + b_{11}) \tag{1.4}$$

$$M_2 = (a_{10} + a_{11}) \cdot b_{00} \tag{1.5}$$

$$M_3 = (b_{01} - b_{11}) \cdot a_{00} \tag{1.6}$$

$$M_4 = a_{11} \cdot (b_{10} - b_{00}) \tag{1.7}$$

$$M_5 = (a_{00} + a_{01}) \cdot b_{11} \tag{1.8}$$

$$M_6 = (a_{10} - a_{00}) \cdot (b_{00} + b_{01}) \tag{1.9}$$

$$M_7 = (a_{01} - a_{11}) \cdot (b_{10} + b_{11}) \tag{1.10}$$

3) Вычислить подматрицы  $c_{00}, c_{01}, c_{10}, c_{11}$  результирующей матрицы C по следующим формулам:

$$c_{00} = M_1 + M_4 - M_5 + M_7 \tag{1.11}$$

$$c_{01} = M_3 + M_5 (1.12)$$

$$c_{10} = M_2 + M_4 (1.13)$$

$$c_{11} = M_1 + M_3 - M_2 + M_6 (1.14)$$

В программной реализации данного алгоритма используется рекурсия. Метод позволяет рекурсивно делить матрицы на подматрицы до тех пор, пока порядок не сранет равным 2. Далее происходит классическое умножение [6].

Пусть M(n) – количество умножений, выполняемых алгоритмом Штрассена для умножения двух матриц размерами  $n \times n$ . Тогда для алгоритма Штрассена справедливо следующее рекуррентное соотношение [5]:

$$M(n) = 7 \cdot M(\frac{n}{2})$$
 при  $n \ge 1, M(1) = 1$  (1.15)

## 1.6 Оптимизированный алгоритм Штрассена для умножения двух матриц

При программной реализации алгоритма Штрассена предлагается выполнить следующие оптимизации:

- 1) Заменить умножение на 2 на побитовый сдвиг влево.
- 2) Заменить выражение вида x = x + k на выражение вида x + k = k.

## Вывод

В данном разделе были рассмотрены понятия матрицы и операции умножения, классического алгоритма умножения матриц и алгоритма умножения матриц с помощью алгоритма Винограда и Штрассена, а также были приведены варинты оптимизаций алгоритма Винограда и алгоритма Штрассена.

## 2 Конструкторский раздел

В данном разделе будут разработаны алгоритмы классического умножения матриц, умножения матриц с использованием алгоритма Винограда и его оптимизированной версии, а так же алгоритма Штрассена **для** умножения матриц и его оптимизированной версии и приведены схемы алгоритмов их реализации. Также будет приведена оценка трудоемкости данных алгоритмов.

## 2.1 Разработка алгоритма классического умножения матриц

На рисунке 2.1 приведена схема алгоритма классического умножения двух матриц.



Рисунок 2.1 – Схема алгоритма классического умножения двух матриц

# 2.2 Разработка алгоритма Винограда умножения матриц

На рисунке 2.2 приведена схема алгоритма Винограда умножения двух матриц.



Рисунок 2.2 – Схема алгоритма Винограда умножения двух матриц

На рисунке 2.3 приведена схема подпрограммы вычисления сумм произведений пар соседних элементов строк матрицы.



Рисунок 2.3 – Схема подпрограммы вычисления сумм произведений пар соседних элементов строк матрицы

На рисунке 2.4 приведена схема подпрограммы вычисления сумм произведений пар соседних элементов строк матрицы.



Рисунок 2.4 — Схема подпрограммы вычисления сумм произведений пар соседних элементов столбцов матрицы

# 2.3 Разработка алгоритма Штрассена умножения матриц

На рисунке 2.5 приведена схема алгоритма Штрассена умножения двух матриц.



Рисунок 2.5 – Схема алгоритма Штрассена умножения двух матриц

## 2.4 Оценка трудоемкости алгоритмов

## 2.4.1 Модель вычислений для проведения оценки трудоемкости алгоритмов

Была введена модель вычислений для определения трудоемкости каждого отдельного взятого алгоритма сортировки.

- 1) Трудоемкость базовых операций имеет:
  - равную 1:

$$+, -, =, + =, - =, ==, ! =, <, >, <=, >=, [], ++, --,$$
 $\&\&, >>, <<, |], \&, |$ 

$$(2.1)$$

— равную 2:

$$*,/,\%, *=,/=,\%=$$
 (2.2)

2) Трудоемкость условного оператора:

$$f_{if} = f_{\text{условия}} + \begin{cases} min(f_1, f_2), & \text{лучший случай} \\ max(f_1, f_2), & \text{худший случай} \end{cases}$$
 (2.3)

3) Трудоемкость цикла:

$$f_{for} = f_{\text{инициализация}} + f_{\text{сравнения}} + M_{\text{итераций}} \cdot (f_{\text{тело}} + f_{\text{инкремент}} + f_{\text{сравнения}})$$
 (2.4)

4) Трудоемкость передачи параметра в функции и возврат из функции равны 0.

# 2.4.2 Трудоемкость классического алгоритма умножения двух матриц

Для стандартного алгоритма умножения матриц трудоемкость будет слагаться из:

- внешнего цикла по  $i \in [1 \dots N]$  , трудоёмкость которого:  $f = 2 + N \cdot (2 + f_{body});$
- цикла по  $j \in [1 \dots P]$  , трудоёмкость которого:  $f = 2 + 2 + P \cdot (2 + f_{body});$
- цикла по  $k \in [1...M]$ , трудоёмкость которого: f = 2 + 2 + 14M;

Поскольку трудоемкость стандартного алгоритма равна трудоемкости внешнего цикла, то:

$$f_{standart} = 2 + N \cdot (2 + 2 + P \cdot (2 + 2 + M \cdot (2 + 8 + 1 + 1 + 2))) =$$

$$= 2 + 4N + 4NP + 14NMP \approx 14NMP = O(N^3)$$
(2.5)

## 2.4.3 Трудоемкость алгоритма Винограда умножения двух матриц

При вычислении трудоемкости алгоритма Винограда учитывается следующее:

— создание и инициализация массивов rowFactor и colFactor, трудоёмкость которых указана в формуле (2.6);

$$f_{init} = N + M \tag{2.6}$$

— заполнение массива rowFactor, трудоёмкость которого указана в формуле (2.7);

$$f_{rowFactor} = 2 + N \cdot \left(4 + \frac{M}{2} \cdot \left(4 + 6 + 1 + 2 + 3 \cdot 2\right)\right) =$$

$$= 2 + 4N + \frac{19NM}{2} = 2 + 4N + 9,5NM$$
(2.7)

— заполнение массива colFactor, трудоёмкость которого указана в формуле (2.8);

$$f_{colFactor} = 2 + P \cdot \left(4 + \frac{M}{2} \cdot \left(4 + 6 + 1 + 2 + 3 \cdot 2\right)\right) =$$

$$= 2 + 4P + \frac{19PM}{2} = 2 + 4P + 9,5PM$$
(2.8)

 цикл заполнения для чётных размеров, трудоёмкость которого указана в формуле (2.9);

$$f_{cycle} = 2 + N \cdot (4 + P \cdot (2 + 7 + 4 + \frac{M}{2} \cdot (4 + 28))) =$$

$$= 2 + 4N + 13NP + \frac{32NPM}{2} = 2 + 4N + 13NP + 16NPM$$
(2.9)

 цикла, который дополнительно нужен для подсчёта значений при нечётном размере матрицы, трудоемкость которого указана в формуле (2.10);

$$f_{check} = 3 + \begin{cases} 0, & \text{чётная} \\ 2 + M \cdot (4 + P \cdot (2 + 14)), & \text{иначе} \end{cases}$$
 (2.10)

Тогда для худшего случая (нечётный общий размер матриц) имеем:

$$f_{worst} = f_{init} + f_{rowFactor} + f_{colFactor} + f_{cycle} + f_{check} \approx 16NMP = O(N^3)$$
 (2.11)

Для лучшего случая (чётный общий размер матриц) имеем:

$$f_{best} = f_{init} + f_{rowFactor} + f_{colFactor} + f_{cycle} + f_{check} \approx 16NMP = O(N^3)$$
 (2.12)

## 2.4.4 Трудоемкость оптимизированного алгоритма Винограда умножения двух матриц

Трудоемкость оптимизированного алгоритма Винограда состоит из:

- кэширования значения  $\frac{M}{2}$  в циклах, которое равно 3;
- создания и инициализации массивов rowFactor и colFactor (2.6);
- заполнения массива rowFactor, трудоёмкость которого (2.7);
- заполнения массива colFactor, трудоёмкость которого (2.8);
- цикла заполнения для чётных размеров, трудоёмкость которого указана в формуле (2.13);

$$f_{cycle} = 2 + N \cdot (4 + P \cdot (4 + 7 + \frac{M}{2} \cdot (2 + 10 + 5 + 2 + 4))) =$$

$$= 2 + 4N + 11NP + \frac{23NPM}{2} = 2 + 4N + 11NP + 11, 5 \cdot NPM$$
(2.13)

 условия, которое нужно для дополнительных вычислений при нечётном размере матрицы, трудоемкость которого указана в формуле (2.14);

$$f_{check} = 3 + \begin{cases} 0, & \text{чётная} \\ 2 + N \cdot (4 + P \cdot (2 + 10)), & \text{иначе} \end{cases}$$
 (2.14)

Тогда для худшего случая (нечётный общий размер матриц) имеем:

$$f_{worst} = 3 + f_{init} + f_{atmp} + f_{btmp} + f_{cycle} + f_{check} \approx 11NMP = O(N^3)$$
 (2.15)

Для лучшего случая (чётный общий размер матриц) имеем:

$$f_{best} = 3 + f_{init} + f_{rowFactor} + f_{colFactor} + f_{cycle} + f_{check} \approx 11NMP = O(N^3)$$
(2.16)

## 2.4.5 Трудоемкость алгоритма Штрассена умножения двух матриц

Пусть

- *REC* трудоемкость рекурсивного алгоритма;
- *DIR* трудоемкость прямого решения;
- -DIV трудоемкость разбиения ввода (N) на несколько частей;
- СОМ трудоемкость объединения решений.

Тогда трудоемкость рекурсивного алгоритма считается по следующей формуле:

$$REC(N) = \begin{cases} DIR(N), & N \le N_0 \\ DIV(N) + \sum_{i=1}^{n} REC(F[i]) + COM(N), & N > N_0 \end{cases}$$
 (2.17)

где N — число входных элементов,  $N_0$  — наибольшее число, определяющее тривиальный случай (прямое решение), n — число рекурсивных вызовов для данного N, F[i] — число входных элементов для данного i.

Для расчета трудоемкости алгоритма Штрассена предположим, что размеры переданных матриц – степени двойки.

Тогда трудоемкость алгоритма Штрассена определяется следующим образом:

- Для матрицы, размером  $N \leq 2$  трудоемкость определяется как и в случае классического алгоритма умножения матриц, то есть согласно формуле 2.5
- Для матриц размером N>2 определяется так:
  - 1) Трудоемкость разбиения ввода (N) на части. Каждый следующий вызов берется размерность матрицы в 2 раза меньше предыдущей,

и происходит создание соответствующих подматриц и заполнение их значениями.

$$DIV(N) = 1 + 8 \cdot (3 + \frac{N}{2} \cdot ((3 + \frac{N}{2} \cdot (5 + 2 + 1)) + 2 + 1) =$$

$$16 \cdot N^2 + 24 \cdot N + 25$$
(2.18)

2) Трудоемкость вычисления матриц  $M_i$ ,  $i = \overline{1,7}$  (обозначим ее буквой G = G(N)):

$$G(N) = 10 \cdot \left(2 + \frac{N}{2} \cdot \left(2 + \frac{N}{2} \cdot (8 + 1 + 1) + 1 + 1\right)\right) +$$

$$+7 \cdot REC(\frac{N}{2})$$
(2.19)

где, так как  $N=2^k$  и согласно с 1.15

$$REC(\frac{N}{2}) = REC(2^{k-1}) = 7 \cdot M(2^{k-2}) = \dots 7^{i-1}M(2^{k-i}) = \dots$$

$$7^{k-1}M(2^{k-k}) = 7^{k-1}$$
(2.20)

подставляя  $k = \log_2(N)$  получаем, что

$$REC(\frac{N}{2}) = \frac{N^{\log_2(7)}}{7}$$
 (2.21)

Таким образом, трудоемкость вычисления матриц  $M_i$ ,  $i = \overline{1,7}$  определяется следующей формулой:

$$G(N) = 10 \cdot (10 \cdot (\frac{N}{2})^2 + 4 \cdot \frac{N}{2} + 2) + N^{\log_2(7)} =$$

$$25 \cdot N^2 + 20 \cdot N + 20 + N^{\log_2(7)}$$
(2.22)

3) Трудоемкость объединения решений, а именно формирование результирующей матрицы из вычисленных матриц  $M_i,\ i=\overline{1,7}$ 

$$COM(N) = 8 \cdot \left(2 + \frac{N}{2} \cdot \left(2 + \frac{N}{2} \cdot (8 + 1 + 1) + 1 + 1\right)\right) + 4 \cdot \left(3 + \frac{N}{2} \cdot \left(\left(3 + \frac{N}{2} \cdot (5 + 2 + 1)\right) + 2 + 1\right)\right) = 28 \cdot N^2 + 28 \cdot N + 28$$

$$(2.23)$$

Таким образом, для матриц размером N>2 трудоемкость алгоритма Штрассена согласно 2.17 определяется так:

$$f_{strassen}(N) = DIV(N) + G(N) + COM(N) =$$

$$16 \cdot N^{2} + 24 \cdot N + 25 + 25 \cdot N^{2} + 20 \cdot N + 20 + N^{\log_{2}(7)} +$$

$$28 \cdot N^{2} + 28 \cdot N + 28 =$$

$$N^{\log_{2}(7)} + 69 \cdot N^{2} + 72 \cdot N + 73 \approx N^{\log_{2}(7)} = O(N^{\log_{2}(7)})$$

$$(2.24)$$

## 2.4.6 Трудоемкость оптимизированного алгоритма Штрассена умножения двух матриц

При программной реализации алгоритма Штрассена не нашлось мест для применения предложенных по варианту оптимизаций, поэтому трудоемкость алгоритма Штрассена осталасть такой же, как и в предыдущем пункте.

### Вывод

В данном разделе были построены схемы алгоритмов классического умножения матриц, умножения матриц с использованием алгоритма Винограда и алгоритма Штрассена. Также были приведены оценки трудоемкости этих алгоритмов.

Согласно расчетам трудоемкости, наиболее эффективным оказался алгоритм Штрассена. Трудоемкость оптимизированной версии алгоритма Винограда в 1.5 раза меньше, чем у его неоптимизированной версии и в 1.27 раз маньше, чем у классического алгоритма.

#### 3 Технологический раздел

В данном разделе будут перечислены средства реализации, листинги кода и функциональные тесты.

### 3.1 Средства реализации

В качестве языка программирования для этой лабораторной работы был выбран C++[7] по следующим причинам:

- в C++ есть встроенный модуль ctime, предоставляющий необходимый функционал для замеров процессорного времени;
- в стандартной библиотеке C++ есть оператор sizeof, позволяющий получить размер переданного объекта в байтах. Следовательно, C++ предоставляет возможности для проведения точных оценок по используемой памяти.

В качестве функции, которая будет осуществлять замеры процессорного времени, будет использована функция  $clock\_gettime$  из встроенного модуля ctime [8].

## 3.2 Сведения о модулях программы

Программа состоит из шести модулей:

- 1) algorithms.cpp модуль, хранящий реализации алгоритмов умножения матриц;
- 2) processTime.cpp модуль, содержащий функцию для замера процессорного времени;
- 3) memoryMeasurements.cpp модуль, содержащий функции, позволяющие провести сравнительный анализ использования памяти в реализациях алгоритмов умножения матриц;

- 4) timeMeasurements.cpp модуль, содержащий функции, позволяющие провести сравнительный анализ использования времени в реализациях алгоритмов умножения матриц;
- 5) таіп.срр файл, содержащий точку входа в программу;
- 6) task7 модуль, содержащий набор скриптов для проведения замеров программы по времени и памяти и построения графиков по полученным данным.

## 3.3 Реализации алгоритмов

В листингах 3.1 - 3.7 приведены реализации алгоритмов умножения матриц. Листинг 3.1 – Реализация классического алгоритма умножения двух матриц

```
vector < int >> matrixMulClassic(
   vector < vector < int >> &mtr1,
   vector < vector < int >> &mtr2,
   int cRow, int cCol, int cColRes)
{

  vector < vector < int >> mtrRes(cRow, vector < int > (cColRes, 0));

  for (int i = 0; i < cRow; ++i)
      for (int j = 0; j < cColRes; ++j)
            for (int k = 0; k < cCol; ++k)
            mtrRes[i][j] = mtrRes[i][j] + mtr1[i][k] *
            mtr2[k][j];

  return mtrRes;
}</pre>
```

Листинг 3.2 – Реализация алгоритма Винограда для умножения двух матриц

```
vector < vector < int >> matrixMulVinograd(
    vector < vector < int >> &mtr1,
    vector < vector < int >> &mtr2,
    int cRow, int cCol, int cColRes)
{
   vector < vector < int >> mtrRes(cRow, vector < int > (cColRes, 0));
    vector < int > rowFactor(cRow, 0), colFactor(cRow, 0);
    for (int i = 0; i < cRow; ++i)
        for (int j = 0; j < cCol / 2; ++ j)
            rowFactor[i] = rowFactor[i] + mtr1[i][2 * j] *
               mtr1[i][2 * j + 1];
    for (int j = 0; j < cColRes; ++j)
        for (int i = 0; i < cCol / 2; ++i)
            colFactor[j] = colFactor[j] + mtr2[i * 2][j] * mtr2[i
               * 2 + 1][j];
    for (int i = 0; i < cRow; ++i)
        for (int j = 0; j < cColRes; ++j)
        {
            mtrRes[i][j] = -rowFactor[i] - colFactor[j];
            for (int k = 0; k < cCol / 2; ++k)
                mtrRes[i][j] = mtrRes[i][j] + (mtr1[i][2 * k] +
                   mtr2[2 * k + 1][j]) * (mtr1[i][2 * k + 1] +
                   mtr2[2 * k][j]);
        }
    if (cCol % 2 != 0)
        for (int i = 0; i < cCol; ++i)
            for (int j = 0; j < cColRes; ++j)
                mtrRes[i][j] = mtrRes[i][j] + mtr1[i][cCol - 1] *
                   mtr2[cCol - 1][j];
   return mtrRes;
}
```

Листинг 3.3 – Реализация оптимизированного алгоритма Винограда для умножения двух матриц

```
vector < vector < int >> matrixMulVinogradWithOpt(
    vector < vector < int >> &mtr1,
    vector < vector < int >> &mtr2,
    int cRow, int cCol, int cColRes)
{
    vector < vector < int >> mtrRes(cRow, vector < int > (cColRes, 0));
    vector < int > rowFactor(cRow, 0), colFactor(cRow, 0);
    int cCol_half = cCol / 2;
    for (int i = 0; i < cRow; ++i)
        for (int j = 0; j < cCol_half; ++j)
            rowFactor[i] += mtr1[i][j << 1] * mtr1[i][(j << 1) +
               1];
    for (int j = 0; j < cColRes; ++j)
        for (int i = 0; i < cCol_half; ++i)</pre>
            colFactor[j] += mtr2[i << 1][j] * mtr2[(i << 1) +</pre>
               1][j];
    for (int i = 0; i < cRow; ++i)
        for (int j = 0; j < cColRes; ++j)
        {
            mtrRes[i][j] = -rowFactor[i] - colFactor[j];
            for (int k = 0; k < cCol_half; ++k)</pre>
                 mtrRes[i][j] += (mtr1[i][k << 1] + mtr2[(k << 1) +
                    1][j]) * (mtr1[i][(k << 1) + 1] + mtr2[k <<
                    1][j]);
        }
    if (cCol % 2 != 0)
        for (int i = 0; i < cCol; ++i)
            for (int j = 0; j < cColRes; ++j)
                 mtrRes[i][j] += mtr1[i][cCol - 1] * mtr2[cCol -
                    1][j];
    return mtrRes;
}
```

Листинг 3.4 — Реализация функций, необходимых для работы алгоритма Штрассена

```
void split(vector<vector<int>> &A, vector<vector<int>> &B,
           int row, int col, int d)
{
    for (int i1 = 0, i2 = row; i1 < d; i1++, i2++)
        for (int j1 = 0, j2 = col; j1 < d; j1++, j2++)
            B[i1][j1] = A[i2][j2];
}
void join(vector<vector<int>> &A, vector<vector<int>> &B,
          int row, int col, int d)
{
    for (int i1 = 0, i2 = row; i1 < d; i1++, i2++)
        for (int j1 = 0, j2 = col; j1 < d; j1++, j2++)
            B[i2][j2] = A[i1][j1];
}
void add(vector<vector<int>> &A,
         vector < vector < int >> &B,
         vector < vector < int >> &C, int d)
{
    for (int i = 0; i < d; i++)
        for (int j = 0; j < d; j++)
            C[i][j] = A[i][j] + B[i][j];
}
void sub(vector<vector<int>> &A,
         vector < vector < int >> &B,
         vector < vector < int >> &C, int d)
{
    for (int i = 0; i < d; i++)
        for (int j = 0; j < d; j++)
            C[i][j] = A[i][j] - B[i][j];
}
```

Функции split выполняет заполнение переданной подматрицы B необходимыми значениями из основной матрицы A, а функция join выполняет заполнение

переданной результирующей матрицы B необходимыми значениями из подматрицы A. Функции add и sub выполняют сложение и вычитание матриц A и B, и результат записывается в матрицу C.

Листинг 3.5 – Реализация алгоритма Штрассена (начало)

```
void matrixMulStrassen(vector<vector<int>> &A.
                         vector < vector < int >> &B,
                         vector < vector < int >> &C, int d)
{
    if (!(d && !(d & (d - 1)))) // если d не степень двойки
    {
        d = pow(2, ceil(log2(d)));
        A.resize(d), B.resize(d), C.resize(d);
        for (int i = 0; i < d; ++i)
             A[i].resize(d), B[i].resize(d), C[i].resize(d);
    }
    if (d \le 86)
        C = classicMul::matrixMulClassic(A, B, d, d);
        return;
    }
    int new_d = d / 2;
    vector < int > inside(new_d);
    vector < vector < int >> A11(new_d, inside);
    vector < vector < int >> A12(new_d, inside);
    vector < vector < int >> A21(new_d, inside);
    vector < vector < int >> A22(new_d, inside);
    vector < vector < int >> B11(new_d, inside);
    vector < vector < int >> B12(new_d, inside);
    vector < vector < int >> B21(new_d, inside);
    vector < vector < int >> B22(new_d, inside);
    vector < vector < int >> C11(new_d, inside);
    vector < vector < int >> C12(new_d, inside);
    vector < vector < int >> C21(new_d, inside);
    vector < vector < int >> C22(new_d, inside);
```

Листинг 3.6 – Реализация алгоритма Штрассена (продолжение)

```
split(A, A11, 0, 0, new_d);
split(A, A12, 0, new_d, new_d);
split(A, A21, new_d, 0, new_d);
split(A, A22, new_d, new_d, new_d);
split(B, B11, 0, 0, new_d);
split(B, B12, 0, new_d, new_d);
split(B, B21, new_d, 0, new_d);
split(B, B22, new_d, new_d, new_d);
vector < vector < int >> result1(new_d, inside);
vector < vector < int >> result2(new_d, inside);
add(A11, A22, result1, new_d);
add(B11, B22, result2, new_d);
vector < vector < int >> M1(new_d, inside);
matrixMulStrassen(result1, result2, M1, new_d);
add(A21, A22, result1, new_d);
vector < vector < int >> M2(new_d, inside);
matrixMulStrassen(result1, B11, M2, new_d);
sub(B12, B22, result2, new_d);
vector < vector < int >> M3(new_d, inside);
matrixMulStrassen(A11, result2, M3, new_d);
sub(B21, B11, result2, new_d);
vector < vector < int >> M4(new_d, inside);
matrixMulStrassen(A22, result2, M4, new_d);
add(A11, A12, result1, new_d);
vector < vector < int >> M5(new_d, inside);
matrixMulStrassen(result1, B22, M5, new_d);
sub(A21, A11, result1, new_d);
add(B11, B12, result2, new_d);
vector < vector < int >> M6(new_d, inside);
matrixMulStrassen(result1, result2, M6, new_d);
```

#### Листинг 3.7 – Реализация алгоритма Штрассена (конец)

```
sub(A12, A22, result1, new_d);
    add(B21, B22, result2, new_d);
    vector < vector < int >> M7 (new_d, inside);
    matrixMulStrassen(result1, result2, M7, new_d);
    add(M1, M4, result1, new_d);
    add(result1, M7, result2, new_d);
    sub(result2, M5, C11, new_d);
    add(M3, M5, C12, new_d);
    add(M2, M4, C21, new_d);
    sub(M1, M2, result1, new_d);
    add(M3, M6, result2, new_d);
    add(result1, result2, C22, new_d);
    join(C11, C, 0, 0, new_d);
    join(C12, C, 0, new_d, new_d);
    join(C21, C, new_d, 0, new_d);
    join(C22, C, new_d, new_d, new_d);
}
```

## 3.4 Функциональные тесты

В таблице 3.1, 3.2 и 3.3 приведены функциональные тесты для разработанных алгоритмов умножения матриц. Все тесты пройдены успешно.

Таблица 3.1 – Функциональные тесты для классического алгоритма умножения матриц

| Входные                                                                          | е данные                                                              | Результат для классического алгоритма                               |                                                                     |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Матрица 1   Матрица 2                                                            |                                                                       | Ожидаемый результат                                                 | Фактический результат                                               |  |
| $ \begin{pmatrix} 1 & 5 & 7 \\ 2 & 6 & 8 \\ 3 & 7 & 9 \end{pmatrix} $            | ( )                                                                   | Сообщение об ошибке                                                 | Сообщение об ошибке                                                 |  |
| $\begin{array}{c cccc} \hline (1 & 5 & 7) & & (1 & 2 & 3) \\ \hline \end{array}$ |                                                                       | Сообщение об ошибке                                                 | Сообщение об ошибке                                                 |  |
| $ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $            | $ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ | $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ |  |
| $ \begin{pmatrix} 3 & 5 \\ 2 & 1 \\ 9 & 7 \end{pmatrix} $                        | $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$                | $ \begin{pmatrix} 23 & 31 & 39 \\ 6 & 9 & 12 \end{pmatrix} $        | $\begin{pmatrix} 23 & 31 & 39 \\ 6 & 9 & 12 \end{pmatrix}$          |  |
| $(10) \qquad (35)$                                                               |                                                                       | (350)                                                               | (350)                                                               |  |

Таблица 3.2 — Функциональные тесты для умножения матриц по алгоритму Винограда

| Входные                                                                          | е данные                                                              | Результат для алгоритма Винограда                                   |                                                                     |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Матрица 1   Матрица 2                                                            |                                                                       | Ожидаемый результат                                                 | Фактический результат                                               |  |
| $ \begin{pmatrix} 1 & 5 & 7 \\ 2 & 6 & 8 \\ 3 & 7 & 9 \end{pmatrix} $            | ( )                                                                   | Сообщение об ошибке                                                 | Сообщение об ошибке                                                 |  |
| $\begin{array}{c cccc} \hline (1 & 5 & 7) & & (1 & 2 & 3) \\ \hline \end{array}$ |                                                                       | Сообщение об ошибке                                                 | Сообщение об ошибке                                                 |  |
| $ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $            | $ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ | $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ |  |
| $ \begin{pmatrix} 3 & 5 \\ 2 & 1 \\ 9 & 7 \end{pmatrix} $                        | $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$                | $\begin{pmatrix} 23 & 31 & 39 \\ 6 & 9 & 12 \end{pmatrix}$          | $\begin{pmatrix} 23 & 31 & 39 \\ 6 & 9 & 12 \end{pmatrix}$          |  |
| $(10) \qquad (35)$                                                               |                                                                       | (350)                                                               | (350)                                                               |  |

Таблица 3.3 – Функциональные тесты для умножения матриц по алгоритму Штрассена

| Входные                                                               | е данные                                                              | Результат для алгоритма Штрассена                                   |                                                                     |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Матрица 1   Матрица 2                                                 |                                                                       | Ожидаемый результат                                                 | Фактический результат                                               |  |
| $(1 \ 2) \qquad (5 \ 6)$                                              |                                                                       | $\begin{pmatrix} 19 & 22 \end{pmatrix}$                             | $\begin{pmatrix} 19 & 22 \end{pmatrix}$                             |  |
| $\begin{pmatrix} 3 & 4 \end{pmatrix}$                                 | (7 8)                                                                 | $\begin{pmatrix} 43 & 50 \end{pmatrix}$                             | $\begin{pmatrix} 43 & 50 \end{pmatrix}$                             |  |
| $\begin{pmatrix} 1 & 5 & 7 \end{pmatrix}$                             | $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$                             | Сообщение об ошибке                                                 | Сообщение об ошибке                                                 |  |
| $ \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} $ | $ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ | $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ |  |
| $ \begin{pmatrix} 3 & 5 \\ 2 & 1 \\ 9 & 7 \end{pmatrix} $             | $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$                | Сообщение об ошибке                                                 | Сообщение об ошибке                                                 |  |
| (10)                                                                  | (35)                                                                  | (350)                                                               | (350)                                                               |  |

## Вывод

В данном разделе были реализованы и протестированы 4 алгоритма: классический алгоритм умножения, алгоритм Винограда для умножения двух матриц, оптимизированный алгоритм Винограда умножения двух матриц и алгоритм Штрассена умножения двух матриц.

#### 4 Исследовательский раздел

В данном разделе будут проведены сравнения реализаций алгоритмов умножения матриц по времени работы и по затрачиваемой памяти.

## 4.1 Технические характеристики

Технические характеристики устройства, на котором проводились исследования:

- операционная система: Ubuntu 22.04.3 LTS x86\_64 [9];
- оперативная память: 16 Гб;
- процессор: 11th Gen Intel® Core™ i7-1185G7 @  $3.00\Gamma\Gamma$ ц × 8.

### 4.2 Время выполнения алгоритмов

Время работы алгоритмов измерялось с использованием функции  $clock\_gettime$  из встроенного модуля ctime.

Замеры времени для каждого размера матрицы проводились 1000 раз. На вход подавались случайно сгенерированные матрицы заданного размера.

Таблица 4.1 – Замер времени для матриц размером от 8 до 256

|                           | Время, мкс   |            |                |            |
|---------------------------|--------------|------------|----------------|------------|
| Линейный размер,<br>штуки | Классический | Виноград   | Виноград (опт) | Штрассен   |
| 8                         | 6.21         | 6.35       | 6.19           | 6.22       |
| 10                        | 14.27        | 10.63      | 9.60           | 49.77      |
| 16                        | 44.47        | 37.21      | 34.00          | 47.09      |
| 20                        | 92.43        | 78.02      | 66.18          | 364.69     |
| 32                        | 363.93       | 298.19     | 251.25         | 365.21     |
| 40                        | 707.57       | 565.64     | 489.92         | 2 820.93   |
| 50                        | 1 352.12     | 1 109.68   | 927.32         | 2 884.98   |
| 64                        | 2 867.77     | 2 238.58   | 1 920.84       | 2 877.87   |
| 80                        | 5 463.36     | 4 403.55   | 3 695.43       | 22 619.08  |
| 128                       | 27 344.14    | 21 422.10  | 18 168.62      | 25 578.16  |
| 256                       | 218 888.80   | 167 395.60 | 133 006.20     | 178 033.00 |



Рисунок 4.1 – Результаты замеров времени работы алгоритмов для матриц размером от 8 до 256

Исходя из полученных в таблице 4.1 данных можно понять, что наиболее быстрым алгоритмом умножения из всех четырех является оптимизированный алгоритм Винограда: на больших размерах он работает в 1.64 раза быстрее классического алгоритма, в 1.25 раз быстрее своей стандартной версии, в 1.33 раза быстрее алгоритма Штрассена.

Алгоритм Штрассена оказался самым неэффективным по времени среди всех алгоритмов: на размерах матриц, отличных от степени двойки, он проигрывает всем остальным алгоритмам, а на больших размерах, являющихся размерами двойки, данный алгоритм быстрее классического всего в 1.22 раза. Скачок на графике 4.1 у алгоритма Штрассена связан с тем, что на размерах, отличных от степени двойки, производится перевыделение памяти и увеличения размеров матриц до ближайшей большей степени двойки. Выиграть по времени у алгоритма Винограда и его оптимизированной версии не получилось ни на одной размерности матриц.

## 4.3 Использование памяти

Таблица 4.2 — Замер памяти для матриц размером от 10 до 100

|                           | Память, Кб   |          |                |          |
|---------------------------|--------------|----------|----------------|----------|
| Линейный размер,<br>штуки | Классический | Виноград | Виноград (опт) | Штрассен |
| 10                        | 1.51         | 1.63     | 1.64           | 17.45    |
| 20                        | 5.26         | 5.46     | 5.47           | 88.61    |
| 30                        | 11.36        | 11.63    | 11.64          | 106.89   |
| 40                        | 19.79        | 20.15    | 20.16          | 438.78   |
| 50                        | 30.57        | 31.01    | 31.06          | 481.90   |
| 60                        | 43.70        | 44.21    | 44.22          | 534.40   |
| 70                        | 59.17        | 59.76    | 59.77          | 2 031.60 |
| 80                        | 76.98        | 77.65    | 77.66          | 2 120.66 |
| 90                        | 97.13        | 97.88    | 97.89          | 2 221.45 |
| 100                       | 119.63       | 120.46   | 120.46         | 2 333.95 |



Рисунок 4.2 – Результаты замеров расходов памяти алгоритмов для матриц размером от 10 до 100

Анализируя таблицу 4.2 можно увидеть, что самым эффективным по памяти является классический алгоритм. Это обусловлено тем, что в этом алгоритме нет дополнительных переменных, которые нужны в других алгоритмах.

Алгоритм Штрассена, как и в случае с оценкой алгоритмов по времени, является самым не эффективным: при размере матриц  $10 \times 10$  он расходует памяти в среднем в 11 раз больше, чем любой другой алгоритм. Это связано с тем, что при каждом рекурсивном вызове для подматриц выделяется память под их хранение, а также выделяется память для хранения матриц  $M_i$ ,  $i=\overline{1,7}$ .

## Вывод

В данном разделе были проведены замеры времени работы, а также расчеты используемой памяти реализаций алгоритмов умножения матриц.

Исходя из результатов, полученных при оценках памяти и времени работы алгоритмов, можно сказать, что самым эффективным по времени и по памяти является оптимизированная версия алгоритма Винограда, а самым неэффективным по тем же характеристикам является алгоритм Штрассена.

Применение оптимизаций замены умножения на 2 на побитовый сдвиг влево и замены выражения вида x=x+k на выражение вида x+=k в алгоритме Винограда позволили существенно уменьшить время работы алгоритма по сравнению с его неоптимизированной версией, однако расход используемой памяти был незначительно увеличен дополнительной 4-x байтовой целочисленной переменной.

#### ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были решены следующие задачи:

- 1) Изучены и описаны алгоритмы классического умножения матриц и умножения матриц с использованием алгоритма Винограда и Штрассена.
- 2) Создано программное обеспечение, реализующее следующие алгоритмы:
  - классический алгоритм умножения матриц;
  - умножение матриц с использованием алгоритма Винограда;
  - умножение матриц с использованием оптимизированной версии алгоритма Винограда;
  - умножение матриц с использованием алгоритма Штрассена.
- 3) Проведен анализ эффективности реализаций алгоритмов по памяти и по времени.
- 4) Проведена оценка сложности алгоритмов и сказать влияние оптимизаций на характеристики программной реализации.
- 5) Подготовлен отчет по лабораторной работе.

Цель данной лабораторной работы, а именно исследование классического алгоритма умножения матриц, умножения матриц с использованием алгоритма Винограда, а также с использованием его оптимизированной версии согласно варианту, также была достигнута.

Согласно теоретическим расчетам трудоемкости алгоритмов умножения матриц наименее трудоемким оказался алгоритм Штрассена, наиболее трудоемким — неоптимизированная версия алгоритма Винограда, однако результаты оценок работы алгоритмов по памяти и по времени оказались противоположными: оптимизированная версия алгоритма Винограда оказалась самой эффективной по времени среди всех алгоритмов, в то время как алгоритм Штрассена оказался самым неэффективным по времени. По количеству расходуемой памяти самым

эффективным оказался классический алгоритм, а самым неээффективным – алгоритм Штрассена. Это связано с тем, что в классическом алгоритме умножения двух матриц не проиходит вычисления промежуточных слагаемых, в то время как при каждом рекурсивном вызове в алгоритме Штрассена для подматриц выделяется память под их хранение, а также выделяется память для хранения матриц  $M_i$ ,  $i = \overline{1,7}$ .

Для двух матриц порядка  $n \times n$  алгоритм Винограда имеет асимптотическую сложность  $O(n^{2.3755})$ , классический алгоритм –  $O(n^3)$ , алгоритм Штрассена –  $O(n^{2.807})$ .

Применение оптимизаций в алгоритме Винограда позволили уменьшить время работы алгоритма, но незначительно увеличить расход используемой памяти.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Матрица, её история и применение [Электронный ресурс]. Режим доступа: https://urok.1sept.ru/articles/637896 (дата обращения: 11.10.2022).
- 2. Развитие алгоритмов матричного умножения [Электронный ресурс]. Режим доступа: https://novainfo.ru/article/18648 (дата обращения: 4.11.2022).
- 3. Умножение матриц [Электронный ресурс]. Режим доступа: https://algolib.narod.ru/Math/Matrix.html (дата обращения: 04.11.2023).
- 4. Реализация алгоритма умножения матриц по винограду на языке Haskell [Электронный ресурс]. Режим доступа: https://cyberleninka.ru/article/n/realizatsiya-algoritma-umnozheniya-matrits-po-vinogradu-na-yazyke-haskell (дата обращения: 11.10.2022).
- 5. АЛГОРИТМ ШТРАССЕНА ДЛЯ УМНОЖЕНИЯ МАТРИЦ [Электронный pecypc]. Режим доступа: https://elibrary.ru/download/elibrary\_23140890\_32362344.pdf (дата обращения: 29.10.2022).
- 6. МЕТОД ШТРАССЕНА [Электронный ресурс]. Режим доступа: https://elib.belstu.by/bitstream/123456789/31480/1/Cherenkov\_Metod.pdf (дата обращения: 29.10.2022).
- 7. Справочник по языку C++ [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/cpp-language-reference?view= msvc-170 (дата обращения: 28.09.2022).
- 8. clock\_getres [Электронный ресурс]. Режим доступа: https://pubs.opengroup.org/onlinepubs/9699919799/functions/clock\_getres.html (дата обращения: 28.09.2022).
- 9. Ubuntu 22.04.3 LTS (Jammy Jellyfish) [Электронный ресурс]. Режим доступа: https://releases.ubuntu.com/22.04/ (дата обращения: 28.09.2022).