Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

zeros	n performing logistic regression on sentiment analysis, you represented each tweet as a vector of ones and s. However your model did not work well. Your training cost was reasonable, but your testing cost was just not ptable. What could be a possible reason?	1/1 point
	The vector representations are sparse and therefore it is much harder for your model to learn anything that could generalize well to the test set.	
_	You probably need to increase your vocabulary size because it seems like you have very little features. Logistic regression does not work for sentiment analysis, and therefore you should be looking at other	
	models. Sparse representations require a good amount of training time so you should train your model for longer	
	oparse representations require a good anitount of daining time so you should dain your moder for longer	
	This is correct.	
2. Whic	th of the following are examples of text preprocessing?	1/1 point
	Stemming, or the process of reducing a word to its word stem.	2,250
⊘	Correct This is correct.	
~	Lowercasing, which is the process of removing changing all capital letter to lower case.	
⊘	Correct This is correct.	
~	Removing stopwords, punctuation, handles and URLs	
⊘	Correct This is correct.	
	Adding new words to make sure all the sentences make sense	
3. The	sigmoid function is defined as $h(x^{(i)}, heta) = rac{1}{1+e^{-g r_{x}(i)}}$. Which of the following is true.	1/1 point
	Large positive values of $ heta^Tx^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 1 and large negative values of $ heta^Tx^{(i)}$ will make $h(x^{(i)}, heta)$ close to -1.	
	Large positive values of $ heta^Tx^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 1 and large negative values of $ heta^Tx^{(i)}$ will make $h(x^{(i)}, heta)$ close to 0.	
	Small positive values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 1 and large positive values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ close to 0.	
	Small positive values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ closer to 0 and large negative values of $ heta^T x^{(i)}$ will make $h(x^{(i)}, heta)$ close to -1.	
\odot	Correct This is correct.	
J(heta)	cost function for logistic regression is defined as $)=-\frac{1}{m}\sum_{i=1}^{m}\left[y^{(i)}\log h\left(x^{(i)},\theta\right)+\left(1-y^{(i)}\right)\log\left(1-h\left(x^{(i)},\theta\right)\right)\right].$ Which of the following is about the cost function above. Mark all the correct ones.	1/1 point
	When $y^{(i)}=1$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches ∞ .	
(Correct This is correct.	
	When $y^{(i)}=1$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches 0 . When $y^{(i)}=0$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches 0 .	
	Correct	
	This is correct. When $y^{(i)}=0$, as $h(x^{(i)}, heta)$ goes close to 0, the cost function approaches ∞ .	
	o, as n(e , y) per assert as fair continuous appointments.	
5. For v	what value of $ heta^T x$ in the sigmoid function does $h(x^{(i)}, heta)=0.5.$	1/1 point
0		
\odot	Correct	
- 0.		
week	ct all that apply. When performing logistic regression for sentiment analysis using the method taught in this c's lecture, you have to:	1/1 point
	Perform data processing.	
	This is correct.	
	Create a dictionary that maps the word and the class that word is found in to the number of times that word is found in the class.	

	(Correct This is correct.	
		Create a dictionary that maps the word and the class that word is found in to see if that word shows up in the class.	
	~	For each tweet, you have to create a positive feature with the sum of positive counts of each word in that tweet. You also have to create a negative feature with the sum of negative counts of each word in that tweet.	
	(Correct This is correct.	
7.		en training logistic regression, you have to perform the following operations in the desired order.	1/1 point
		Initialize parameters, get gradient, classify/predict, update, get loss, repeat	
	_	Initialize parameters, classify/predict, get gradient, update, get loss, repeat	
	_	Initialize parameters, get gradient, update, classify/predict, get loss, repeat	
	Ē.	Initialize parameters, get gradient, update, get loss, classify/predict, repeat Correct	
		This is correct.	
8.		suming we got the classification correct, where $y^{(i)}=1$ for some specific example i. This means that $x^{(i)}, heta)>0.5$. Which of the following has to hold:	1/1 point
	0	Our prediction, $h(x^{(i)}, \theta)$ for this specific training example is exactly equal to its corresponding label $y^{(i)}$.	
	0	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is less than $(1-y^{(i)})$.	
	0	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is less than $(1 - h(x^{(i)}, heta))$.	
	0	Our prediction, $h(x^{(i)}, heta)$ for this specific training example is greater than $(1 - h(x^{(i)}, heta))$.	
	(Correct This is correct.	
9.	Wh	at is the purpose of gradient descent? Select all that apply.	1/1 point
9.	_	at is the purpose of gradient descent? Select all that apply. Gradient descent allows us to learn the parameters $ heta$ in logistic regression as to minimize the loss function J.	1/1 point
9.	V	Gradient descent allows us to learn the parameters $ heta$ in logistic regression as to minimize the loss function	1/1 point
9.	✓	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J.	1/1 point
9.		Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function	1/1 point
9.		Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing	1/1 point
9.		Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$	1/1 point
		Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$ Correct This is correct. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing θ and θ are θ are θ and θ are θ by computing θ and θ are θ are θ and θ by computing θ and θ are θ are θ and θ are θ by computing θ and θ are θ are θ are θ and θ are θ by computing θ and θ are θ and θ are θ are θ are θ are θ and θ are θ and θ are	1/1 point
	Wh app	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$ Correct This is correct. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing θ and θ are θ are θ and θ are θ by computing θ and θ are θ are θ and θ by computing θ and θ are θ are θ and θ are θ by computing θ and θ are θ are θ are θ and θ are θ by computing θ and θ are θ and θ are θ are θ are θ are θ and θ are θ and θ are	
	Who app	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$ Correct This is correct. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ and $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ and $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ and $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_the$	
	who app	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$ Correct This is correct. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ and it is a good metric that allows you to decide when to stop training/trying to get a good model? Select all that ply. When your accuracy is good enough on the test set.	
	who app	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$ Correct This is correct. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ and is a good metric that allows you to decide when to stop training/trying to get a good model? Select all that poly. When your accuracy is good enough on the test set. Correct This is correct.	
	Who app	Gradient descent allows us to learn the parameters θ in logistic regression as to minimize the loss function J. Correct This is correct. Gradient descent allows us to learn the parameters θ in logistic regression as to maximize the loss function J. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta - \alpha * grad_theta$ Correct This is correct. Gradient descent, $grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ allows us to update the parameters θ by computing $\theta = \theta + \alpha * grad_theta$ Lat is a good metric that allows you to decide when to stop training/trying to get a good model? Select all that ply. When your accuracy is good enough on the test set. Correct This is correct. When your accuracy is good enough on the train set. When you plot the cost versus (# of iterations) and you see that your the loss is converging (i.e. no longer	