Theory of Statistical Practice

Derek Li

Contents

1	Pro	bability Review
	1.1	Basic Definition
	1.2	Probability Function/Measure
	1.3	Conditional Probability
	1.4	Independence
	1.5	Interpretation of Probability
	1.6	Random Variable
	1.7	Expected Value
	1.8	Independent Random Variable
	1.9	Convergence of Random Variable
		1.9.1 Convergence in Probability
		1.9.2 Convergence in Distribution
		1.9.3 Quality of Normal Approximation
		1.9.4 Distribution Approximation
_	~ .	
2	Stat	tistical Models
	2.1	Probability versus Statistics
	2.2	Bayesian Models

1 Probability Review

1.1 Basic Definition

Definition 1.1. Random experiment is a mechanism producing an outcome (result) perceived as random or uncertain.

Definition 1.2. Sample space is a set of all possible outcomes of the experiment:

$$\mathcal{S} = \{\omega_1, \omega_2, \cdots\}.$$

Example 1.1. Waiting time until the next bus arrives: $S = \{t : t \ge 0\}$.

1.2 Probability Function/Measure

Definition 1.3. Given a sample space S, define A to be a collection of subsets (events) of S satisfying the following conditions:

- 1. $\mathcal{S} \in \mathcal{A}$;
- 2. $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$;
- 3. $A_1, A_2, \dots \in \mathcal{A} \Rightarrow A_1 \cup A_2 \cup \dots \in \mathcal{A}$.

If \mathcal{S} is finite or countably infinite, then \mathcal{A} could consist of all subsets of \mathcal{S} including \emptyset .

Definition 1.4. The *probability function* (*measure*) P on A satisfies the following conditions:

- 1. $P(A) \ge 0, \forall A \in \mathcal{A};$
- 2. $P(\emptyset) = 0 \text{ and } P(S) = 1;$
- 3. If A_1, A_2, \cdots are disjoint (mutually exclusive) events, i.e., $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Property 1.1. $P(A^C) = 1 - P(A)$.

Proof.
$$1 = P(S) = P(A \cup A^C) = P(A) + P(A^C)$$
.

Property 1.2. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Proof.
$$P(A) = P(A \cap B) + P(A \cap B^C)$$
 and $P(A \cup B) = P(B) + P(A \cap B^C)$.

Property 1.3. $P(A \cup B) \le P(A) + P(B)$.

Property 1.4. In general,

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) - \dots - (-1)^{n} P(A_{1} \cap \dots \cap A_{n}).$$

Property 1.5 (Bonferroni's Inequality). In general,

$$P\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} P(A_i).$$

1.3 Conditional Probability

Definition 1.5. The probability of A conditional on B is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

if P(B) > 0. Note that if P(B) = 0, we can still define P(A|B) but we need to be more careful mathematically.

Theorem 1.1 (Bayes Theorem). If B_1, \dots, B_k are disjoint events with $B_1 \cup \dots \cup B_k = \mathcal{S}$, then

$$P(B_{j}|A) = \frac{P(A|B_{j})P(B_{j})}{\sum_{i=1}^{k} P(A|B_{i})P(B_{i})}.$$

1.4 Independence

Definition 1.6. Two events A and B are *independent* if

$$P(A \cap B) = P(A)P(B).$$

When P(A), P(B) > 0, we can also say

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$.

Events A_1, \dots, A_k are independent if

$$P\left(\bigcap_{i=1}^{k} A_i\right) = \prod_{i=1}^{k} P(A_i).$$

1.5 Interpretation of Probability

- Long-Run frequencies: If we repeat the experiment many times, then P(A) is the proportion of times the event A occurs.
- Degrees of belief (subjective probability): If P(A) > P(B), then we believe that A is more likely to occur than B.
- Frequentist versus Bayesian statistical methods:
 - * Frequentists: Pretend that an experiment is at least conceptually repeatable.
 - * Bayesians: Use subjective probability to describe uncertainty in parameters and data.

1.6 Random Variable

Definition 1.7. Random variable is a real-valued function defined on a sample space $S, X : S \to \mathbb{R}$. In other words, for each outcome $\omega \in S, X(\omega)$ is a real number.

Definition 1.8. The *probability distribution* of X depends on the probabilities assigned to the outcomes in S.

Definition 1.9. The *cumulative distribution function* (CDF) of X is

$$F(x) = P(X \le x) = P(\omega \in \mathcal{S} : X(\omega) \le x).$$

We denote it $X \sim F$.

Property 1.6. CDF satisfies:

- 1. If $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- 2. $F(x) \to 0$ as $x \to -\infty$ and $F(x) \to 1$ as $x \to \infty$;
- 3. F is right-continuous with left-hand limits:

$$\lim_{y \to x^{+}} F(y) = F(x), \lim_{y \to x^{-}} F(y) = F(x-) = P(X < x);$$

4.
$$P(X = x) = F(x) - F(x-)$$
.

Definition 1.10. If $X \sim F$ where F is a continuous function, then X is a **continuous r.v.**, and we can typically find a non-negative **probability density function** (PDF) f s.t.

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

Definition 1.11. If X takes only a finite or countably infinite number of possible values, then X is a **discrete r.v.**, and F is a step function. We can define its **probability mass function** (PMF) by

$$f(x) = F(x) - F(x-) = P(X = x).$$

1.7 Expected Value

Definition 1.12. Suppose X with PDF f(x) and Y with PMF f(y). We can define the **expected** value of h(X) and h(Y) by

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x)\mathrm{d}x \text{ and } \mathbb{E}[h(Y)] = \sum_{y} h(y)f(y).$$

We can also write $h(x) = h^+(x) - h^-(x)$ where $h^+(x) = \max\{h(x), 0\}$ and $h^-(x) = \max\{-h(x), 0\}$, then $\mathbb{E}[h(X)] = \mathbb{E}[h^+(X)] - \mathbb{E}[h^-(X)]$:

- 1. If $\mathbb{E}[h^+(X)]$ and $\mathbb{E}[h^-(X)]$ are finite, then $\mathbb{E}[h(X)]$ is well defined.
- 2. If $\mathbb{E}[h^+(X)] = \infty$ and $\mathbb{E}[h^-(X)]$ is finite, then $\mathbb{E}[h(X)] = \infty$.
- 3. If $\mathbb{E}[h^+(X)]$ is finite and $\mathbb{E}[h^-(X)] = \infty$, then $\mathbb{E}[h(X)] = -\infty$.
- 4. If $\mathbb{E}[h^+(X)]$ and $\mathbb{E}[h^-(X)]$ are infinite, then $\mathbb{E}[h(X)]$ does not exist.

Example 1.2 (Expected Values of Cauchy Distribution). X is a continuous r.v. with

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

We have

$$\mathbb{E}[X^+] = \mathbb{E}[X^-] = \int_0^\infty \frac{x}{\pi(1+x^2)} dx = \lim_{x \to \infty} \frac{1}{2\pi} \ln(1+x^2) = +\infty.$$

Thus, $\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-]$ does not exist.

1.8 Independent Random Variable

Definition 1.13. R.v.s. X_1, X_2, \cdots are *independent* if the events $[X_1 \in A_1], [X_2 \in A_2], \cdots$ are independent events for any A_1, A_2, \cdots .

If X_1, \dots, X_n are independent r.v.s. with PDF or PMF f_1, \dots, f_n , then the joint PDF or PMF of (X_1, \dots, X_n) is

$$f(x_1, \cdots, x_n) = \prod_{i=1}^n f_i(x_i).$$

Suppose X_1, \dots, X_n are independent r.v.s. with mean μ_1, \dots, μ_n and variance $\sigma_1^2, \dots, \sigma_n^2$. Define $S = X_1 + \dots + X_n$, then $\mathbb{E}[S] = \mu_1 + \dots + \mu_n$ (which is true even if X_1, \dots, X_n are not independent) and $\text{Var}[S] = \sigma_1^2 + \dots + \sigma_n^2$.

1.9 Convergence of Random Variable

Theorem 1.2 (Markov's Inequality). Suppose Y is a random variable with $\mathbb{E}[|Y|^r] < \infty$ for some r > 0, then

$$P(|Y| > \varepsilon) \leqslant \frac{\mathbb{E}[|Y|^r]}{\varepsilon^r}.$$

Proof. For any $\varepsilon > 0$,

$$\mathbb{E}[|Y|^r] = \mathbb{E}[|Y|^r I(|Y| \leqslant \varepsilon)] + \mathbb{E}[|Y|^r I(|Y| > \varepsilon)] \geqslant 0 + \varepsilon^r P(|Y| > \varepsilon),$$

then
$$P(|Y| > \varepsilon) \leq \frac{\mathbb{E}[|Y|^r]}{\varepsilon^r}$$
.

Theorem 1.3 (Chebyshev's Inequality).

$$P(|X - \mathbb{E}[X]| > \varepsilon) \le \frac{\operatorname{Var}[X]}{\varepsilon^2}.$$

Proof. Take $r = 2, Y = X - \mathbb{E}[X]$ in Markov's Inequality.

1.9.1 Convergence in Probability

Definition 1.14. A sequence of r.v.s. $\{Y_n\}$ converges in probability to a r.v. Y (denoted $Y_n \stackrel{p}{\to} Y$) if for each $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|Y_n - Y| > \varepsilon) = 0.$$

Typically, the limiting r.v. Y is a constant.

Theorem 1.4 (Weak Law of Large Numbers). If X_1, X_2, \cdots are independent r.v.s. with finite mean μ , then

$$\overline{X} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{p}{\to} \mu.$$

1.9.2 Convergence in Distribution

Definition 1.15. A sequence of r.v.s. $\{X_n\}$ converges in distribution to a r.v. X if

$$\lim_{n \to \infty} F_n(x) = F(x),$$

for every $x \in \mathbb{R}$ at which F is continuous. F_n and F are CDF of X_n and X, respectively.

Let $S_n = \sqrt{n}(\overline{X}_n - \mu)$, then we have $\mathbb{E}[S_n] = 0$ and $\operatorname{Var}[S_n] = \sigma^2$. $\{S_n\}$ is bounded in probability since

$$P(|S_n| > M) \leqslant \frac{\mathbb{E}[S_n^2]}{\varepsilon^2} = \frac{\sigma^2}{M^2} \to 0 \text{ as } M \to \infty.$$

Theorem 1.5 (Basic Central Limit Theorem). If X_1, X_2, \cdots are independent r.v.s. with common CDF F with finite mean and variance μ and σ^2 , then

$$\lim_{n \to \infty} P(S_n \leqslant x) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2\sigma^2}} dt,$$

denoted as $S_n \stackrel{d}{\to} S \sim \mathcal{N}(0, \sigma^2)$.

As a consequence, the distribution of \overline{X}_n is approximately $\mathcal{N}(\mu, \frac{\sigma^2}{n})$, when n is sufficiently large, denoted as $\overline{X}_n \stackrel{\cdot}{\sim} \mathcal{N}(\mu, \frac{\sigma^2}{n})$.

We can approximate $g(\overline{X}_n)$ by Taylor's Formula. We have

$$g(\overline{X}_n) = g(\mu) + g'(\mu)(\overline{X}_n - \mu) + o(\overline{X}_n - \mu)$$

and thus

$$\sqrt{n}(g(\overline{X}_n) - g(\mu)) = g'(\mu)\sqrt{n}(\overline{X}_n - \mu) + \sqrt{n}o(\overline{X}_n - \mu)$$

with $o(\overline{X}_n - \mu) \to 0$, suggesting that

$$\sqrt{n}(g(\overline{X}_n) - g(\mu)) \stackrel{d}{\to} \mathcal{N}(0, [g'(\mu)]^2 \sigma^2).$$

Theorem 1.6 (General Central Limit Theorem). Suppose X_1, X_2, \cdots are independent with $\mathbb{E}[X_i] = \mu_i$ and $\text{Var}[X_i] = \sigma_i^2$ and let

$$S_n = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n \mu_i \right),$$

then

$$S_n \stackrel{d}{\to} \mathcal{N}\left(0, \frac{1}{n} \sum_{i=1}^n \sigma_i^2\right)$$

provided that $\sum_{i=1}^{n} \sigma_i^2$ is not dominated by a small number of terms and the tails of the distributions of $\{X_i\}$ are not too dissimilar.

1.9.3 Quality of Normal Approximation

Definition 1.16. Define **skewness** of X_i as

$$Skew(X_i) = \frac{\mathbb{E}[(X_i - \mu)^3]}{\sigma^3}.$$

Definition 1.17. Define *kurtosis* of X_i as

$$Kurt(X_i) = \frac{\mathbb{E}[(X_i - \mu)^4]}{\sigma^4}.$$

Let $S_n = \sqrt{n}(\overline{X}_n - \mu)$, where \overline{X}_n is the sample mean of independent X_1, \dots, X_n with CDF F with mean μ and variance σ^2 . The normal approximation works better for fixed n if Skew (X_i) and Kurt (X_i) are close to the values for normal distribution (0 and 3, respectively).

1.9.4 Distribution Approximation

Theorem 1.7 (Slutsky's Theorem). Suppose $X_n \stackrel{d}{\to} X \sim G$ and $Y_n \stackrel{p}{\to} \theta$, where θ is a constant, then as $n \to \infty$, $\psi(X_n, Y_n) \stackrel{d}{\to} \psi(X, \theta)$, where ψ is continuous.

Theorem 1.8 (Delta Method). Suppose $a_n(X_n - \theta) \stackrel{d}{\to} Z$ where $a_n \uparrow \infty$. If g(x) is differentiable at $x = \theta$, then

$$a_n(g(X_n) - g(\theta)) \stackrel{d}{\to} g'(\theta)Z.$$

Proof. By Taylor's Formula,

$$g(X_n) = g(\theta) + g'(\theta)(X_n - \theta) + \Delta(X_n)(X_n - \theta),$$

where $\Delta(X_n) \stackrel{p}{\to} 0$. Therefore,

$$a_n(g(X_n) - g(\theta)) = g'(\theta)a_n(X_n - \theta) + \Delta(X_n)a_n(X_n - \theta) \xrightarrow{d} g'(\theta)Z + 0 = g'(\theta)Z.$$

We can use the Delta Method to estimate standard errors of parameter estimators, and extend the Delta Method to functions of several sample means: $g(\overline{X}_n, \overline{Y}_n, \overline{Z}_n, \cdots)$.

Another application with the Delta Method is the variance stabilizing transformations for some distributions with $Var[X_i] = \phi(\mu)$.

Example 1.3. For the Poisson distribution, $Var[X_i] = \phi(\mu) = \mu$, then by CLT,

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} \mathcal{N}(0, \mu).$$

We find q s.t.

$$\sqrt{n}(g(\overline{X}_n) - g(\mu)) \stackrel{d}{\to} \mathcal{N}(0,1),$$

i.e.,

$$[g'(\mu)]^2 \mu = 1 \Rightarrow g'(\mu) = \frac{1}{\sqrt{\mu}}.$$

Thus, $g(x) = 2\sqrt{x} + C$ and

$$2\sqrt{\overline{X}_n} \stackrel{.}{\sim} \mathcal{N}\left(2\sqrt{\mu}, \frac{1}{n}\right)$$
.

2 Statistical Models

2.1 Probability versus Statistics

Suppose X_1, \dots, X_n are independent r.v.s., with some CDF F. For probability, F is known and we can calculate probabilities involving the r.v.s. $X_1, \dots X_n$. Knowledge of the population F gives information about the nature of samples from the population. For statistics, F is unknown and we observe outcomes of $X_1, \dots X_n : x_1, \dots, x_n$ (data).

Definition 2.1. Statistical inference uses the information in the data to estimate of infer properties of the unknown F.

Definition 2.2. Assume that the data x_1, \dots, x_n are outcomes of r.v.s. X_1, \dots, X_n whose joint distribution is F (which is assumed to be unknown to some degree). A **statistical model** is a family \mathcal{F} of probability distributions of (X_1, \dots, X_n) .

We assume that true distribution $F \in \mathcal{F}$ but in practice, \mathcal{F} typically represents only an approximation to the truth, i.e., $F \notin \mathcal{F}$ but F is close to some $F_0 \in \mathcal{F}$.

Definition 2.3. \mathcal{F} is called a *parametric model* if

$$\mathcal{F} = \{ F_{\theta} : \theta \in \Theta \}, \Theta \subset \mathbb{R}^p,$$

where θ is the parameter and Θ is the parameter space. We can write $\theta = (\theta_1, \dots, \theta_p)$.

Example 2.1. X_1, \dots, X_n are independent Poisson r.v.s. with unknown mean $\lambda > 0$.

Example 2.2. X_1, \dots, X_n are independent normal r.v.s. with unknown mean μ and variance σ^2 .

Example 2.3. Observe $(x_1, Y_1), \dots, (x_n, Y_n)$ with $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ where $\varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$. This is a parametric model with parameters $(\beta_0, \beta_1, \sigma^2)$.

Definition 2.4. The model is said to be **non-parametric** if the parameter space Θ is not finite dimensional.

Example 2.4. X_1, \dots, X_n are independent continuous r.v.s. with unknown PDF f(x).

Example 2.5. $Y_i = g(x_i) + \varepsilon_i$ for $i = 1, \dots, n$ where g is unknown.

In practice, we often approximate the infinite dimensional parameter by a finite dimensional parameter. For example, we assume $g(x) \approx \sum_{k=1}^{p} \beta_k \phi_k(x)$ for some functions ϕ_k 's and unknown parameters β_k 's.

Definition 2.5. The model is said to be *semi-parametric* if non-parametric model has a finite dimensional parametric component.

Example 2.6. X_1, \dots, X_n are independent continuous r.v.s. with unknown PDF f(x) on the interval $[0, \theta]$ where $\theta > 0$ is unknown.

Example 2.7. $Y_i = g(x_i) + \varepsilon_i$ for $i = 1, \dots, n$ with $\varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$ where g and σ^2 are unknown.

Example 2.8. Observe $(x_1, Y_1), \dots, (x_n, Y_n)$ with $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ where we make no assumptions about the distribution of ε_i apart from 0 mean and finite variance. This is a semi-parametric model.

2.2 Bayesian Models

Assume we have a parametric model with parameter space $\Theta \subset \mathbb{R}^p$. For each $\theta \in \Theta$, the joint CDF F_{θ} is the conditional distribution of (X_1, \dots, X_n) given θ . **Bayesian inference** is the process that we put a probability distribution on Θ - **prior distribution**, and then after observing $X_1 = x_1, \dots, X_n = x_n$, we can use Bayes Theorem to obtain a **posterior distribution** of θ .

Note that we can take Bayesian inference for non-parametric models.