

Summer 2017 Summer Institutes 165

Hypothesis Testing Motivation

- 1. Is the chance of getting a cold different when subjects take vitamin C than when they take placebo? (Pauling 1971 data).
- 2. Suppose that 6 out of 15 students in a grade-school class develop influenza, whereas 20% of grade-school children nationwide develop influenza. Is there evidence of an excessive number of cases in the class?

Hypothesis Testing Motivation

- 3. In a study of 25 hypertensive people we find a mean serum-cholesterol level of 220 mg/ml. In the population the mean serum cholesterol is 211 mg/ml with standard deviation of 46 mg/ml.
- Is the data consistent with that model?
- What if $\overline{X} = 230 \text{ mg/ml}$?
- What if $\overline{X} = 250 \text{ mg/ml}$?
- What if the sample was of n=100 instead of 25?

Define:

μ = <u>population</u> mean serum cholesterol for male hypertensives

Hypothesis:

1. <u>Null Hypothesis</u>: Generally, the hypothesis that the unknown parameter equals a fixed value.

$$H_0$$
: $\mu = 211 \text{ mg/ml}$

2. <u>Alternative Hypothesis</u>: contradicts the null hypothesis.

$$H_A$$
: $\mu \neq 211$ mg/ml

Decision / Action:

We assume that either H_0 or H_A is true. Based on the data we will choose one of these hypotheses.

	H ₀ Correct	H _A Correct
Decide H ₀	1-α	β
Decide H _A	α	1-β

$$\alpha$$
 = "size"
1 - β = "power"

Let's fix α , for example, $\alpha = 0.05$.

$$0.05 = \alpha = P[\text{ choose } H_A \mid H_0 \text{ true }]$$

 $\alpha = P[\text{ reject } H_0 \mid H_0 \text{ true }]$

Q: How to construct a procedure that makes this error with only 0.05 probability?

A: Suppose we assume H_0 is true and suppose that, using that assumption, the data should give us a standard normal, Z.

If $\mu=0$ then |Z| is rarely "large". A "large" |Z| would make me question whether $\mu=0$.

Therefore, we reject H_0 if |Z| > 1.96.

$$\alpha = P[\text{reject H}_0 | H_0 \text{ true}] = 0.05$$

Then if we do find a large value of |Z| we can claim that:

- •**Either** H_0 is true and something unusual happened (with probability α)...
- •or, H_0 is not true.

Given α and H_0 we can construct a test of H_0 with a specified significance level. But remember, we start by assuming that H_0 is true - we haven't proved it is true. Therefore, we usually say

- |Z| > 1.96 then we **reject** H₀.
- |Z| < 1.96 then we **fail to reject** H_0 .

Cholesterol Example:

Let μ be the mean serum cholesterol level for male hypertensives. We observe

$$\overline{X} = 220 \text{ mg/ml}$$

Also, we are told that for the general population...

 μ_0 = mean serum cholesterol level for males = 211 mg/ml

 σ = std. dev. of serum cholesterol for males = 46 mg/ml

NULL HYPOTHESIS: mean for male hypertensives is the same as the general male population.

ALTERNATIVE HYPOTHESIS: mean for male hypertensives is different than the mean for the general male population.

$$H_0: \mu = \mu_0 = 211 \text{ mg/ml}$$

$$H_A: \mu \neq \mu_0 \ (\mu \neq 211 \text{ mg/ml})$$

Cholesterol Example:

Test H_0 with significance level α .

Under H_0 we know:

$$\frac{\overline{X} - \mu_o}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Therefore,

- •**Reject** H₀ if $\left| \frac{X \mu_0}{\sigma / \sqrt{n}} \right| > 1.96$ gives an $\alpha = 0.05$ test.
- •Reject H₀ if

$$\overline{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}}$$
 or $\overline{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}}$

$$\overline{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}}$$

Cholesterol Example:

TEST: **Reject** H_0 if

$$\overline{X} > 211 + 1.96 \frac{46}{\sqrt{25}}$$
 or $\overline{X} < 211 - 1.96 \frac{46}{\sqrt{25}}$

$$\overline{X} > 228.03$$
 or $\overline{X} < 192.97$

In terms of Z ...

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Reject H_0 if Z<-1.96 or Z> 1.96

p-value:

- smallest possible α for which the observed sample would still reject H_0 .
- probability of obtaining a result as extreme or more extreme than the actual sample (give H₀ true).

p-value: Cholesterol Example

$$\overline{X} = 220 \text{ mg/ml}$$
 $n = 25$ $\sigma = 46 \text{ mg/ml}$

 $H_0: \mu = 211 \text{ mg/ml}$

 $H_A: \mu \neq 211 \text{ mg/ml}$

p-value is given by:

$$2 * P[\overline{X} > 220] = .33$$

Determination of Statistical Significance for Results from Hypothesis Tests

Either of the following methods can be used to establish whether results from hypothesis tests are statistically significant:

- (1) The test statistic Z can be computed and compared with the critical value $Q_z^{(1-\alpha/2)}$ at an α level of .05. Specifically, if H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ are being tested and |Z| > 1.96, then H_0 is rejected and the results are declared statistically significant (i.e., p < .05).

 Otherwise, H_0 is accepted and the results are declared not statistically significant (i.e., p \geq .05). We refer to this approach as the critical value method
- (2) The exact p-value can be computed, and if p < .05, then H_0 is rejected and the results are declared *statistically significant*. Otherwise, if $p \ge .05$ then H_0 is accepted and the results are declared *not statistically significant*. We will refer to this approach as the **p-value method**.

Guidelines for Judging the Significance of p-value

If $.05 \le p < .10$, than the results are marginally significant.

If $.01 \le p < .05$, then the results are *significant*.

If $.001 \le p < .01$, then the results are *highly significant*.

If p < .001, then the results are very highly significant.

If p > .1, then the results are considered *not* statistically significant (sometimes denoted by NS).

Significance is not everything!

Summer 2017 Summer Institutes 179

Hypothesis Testing and Confidence Intervals

Hypothesis Test: Fail to reject H_0 if

$$\overline{X} < \mu_0 + Q_Z^{1 - \frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

and
$$\overline{X} > \mu_0 - Q_Z^{1 - \frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

Confidence Interval: Plausible values for μ are given by

$$\mu < \overline{X} + Q_Z^{1 - \frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

and
$$\mu > \overline{X} - Q_Z^{1 - \frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

Hypothesis Testing "how many sides?"

Depending on the alternative hypothesis a test may have a **one-sided alternative** or a **two-sided alternative**. Consider

$$H_0$$
: $\mu = \mu_0$

We can envision (at least) three possible alternatives

$$H_A: \mu \neq \mu_0 \qquad (1)$$

$$H_A: \mu < \mu_0 \qquad (2)$$

$$H_A : \mu > \mu_0$$
 (3)

- (1) is an example of a "two-sided alternative"
- (2) and (3) are examples of "one-sided alternatives"

The distinction impacts

- Rejection regions
- p-value calculation

Hypothesis Testing "how many sides?"

Cholesterol Example: Instead of the two-sided alternative considered earlier we may have only been interested in the alternative that hypertensives had a higher serum cholesterol. When do one vs two

$$H_0: \mu = 211$$

$$H_A : \mu > 211$$

 H_0 : $\mu = 211$ sided? If a small or large value would change the direction of your research?

Given this, an $\alpha = 0.05$ test would reject when

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = Z > Q_Z^{(1-0.05)} = 1.65$$

We put all the probability on "one-side".

The <u>p-value</u> would be half of the previous,

p-value = P[
$$\bar{X} > 220$$
]
= .163

Summer 2017 **Summer Institutes**

Through this worked example we have seen the basic components to the statistical test of a scientific hypothesis.

Summary

- 1. Identify H_0 and H_A
- 2. Identify a test statistic
- 3. Determine a significance level, $\alpha = 0.05$, $\alpha = 0.01$
- 4. Critical value determines rejection / acceptance region
- 5. p-value
- 6. Interpret the result

Other things to note

- General idea (compare p-value of test statistic to cutoff) is same for all hypothesis tests
- The test stat and distribution changes for different tests (regression parameters, proportions, etc.)
- Bayesians take a different approach to hypothesis testing