# Indexação e Tratamento de Dados Heterogêneos: Variedade

Mecanismos de Busca

#### Conteúdo do Bloco

Indexação

Recuperação de Informação

Solr

Elasticsearch



#### Aula 2

Métricas em information retrieval

Um pouco mais sobre modelo vetorial

Brincando com NLTK



#### Relembrando









#### Relembrando



Similaridade entre consulta e documento no modelo vetorial

Cosseno

Algoritmos de similaridade diferentes interferem no resultado final

Existem outras métricas de similaridade?

#### Outras técnicas de similaridade



Coeficiente de Jaccard 
$$s_{AB} = \frac{|A \cap B|}{|A \cup B|}$$

Qual a distância entre dois objetos? Qual a similaridade entre eles?

- D1 = {aula, mba, bigdata, infnet}
- D2 = {aula, analise, sistemas, infnet}
  - $\circ$  S(d1, d2) = {aula, infnet} / {aula, mba, bigdata, analise, sistemas, infnet} =  $\frac{1}{3}$
  - Coeficiente de Jaccard = ⅓ (similaridade)
  - Distância de Jaccard =  $\frac{2}{3}$  (não similaridade)

Coeficiente de Pearson

Distância Euclidiana



Como saber se um sistema de busca e recuperação da informação está se comportando bem?

- Quão preciso é o meu buscador?
- Quantos documentos relevantes meu buscador exibe como resultado?
- Existe uma hierarquia de relevância dentro dos documentos relevantes, o buscador exibe o resultado na ordem correta?

Precisão e revocação (precision and recall)

- Precision = relevantes / todos documentos
  - Quão útil foi o resultado?
- Recall = relevantes / todos relevantes
  - Quão completo foi o resultado?

#### Precision @ K

 K documentos relevantes na primeira página de resultado da consulta

F1 score = 2 \* ((precision+recall) / (precision\*recall))





Interpolação de 11 pontos de recall e precision

- Precision e recall s\u00e3o inversamente proporcionais
- Quanto mais documentos retornados:
   Maior fica o recall e menor fica o precision



Mean Average Precision (MAP)

 Precisão média de cada consulta / total de consultas









#### DCG (Discounted Cumulative Gain)

- Ganho cumulativo descontado
  - o Páginas relevantes que aparecem com ranqueamento baixo são penalizadas

| Rank | Relevância | Ganho descontado | DCG |
|------|------------|------------------|-----|
| 1    | 2          | 2/1              | 2   |
| 2    | 0          | 0/2              | 2   |
| 3    | 3          | 3/3              | 3   |
| 4    | 2          | 2/4              | 3,5 |

## increase 1994 Printing

#### NDCG (Normalized DCG)

- NDCG = DCG/IDCG
  - o IDCG = Ideal discounted cumulative gain

| Rank | Relevância | Ganho<br>descontado | DCG | Ganho ideal descontado | IDCG | NDCG |
|------|------------|---------------------|-----|------------------------|------|------|
| 1    | 2          | 2/1                 | 2   | 3/1                    | 3    | 0,67 |
| 2    | 0          | 0/2                 | 2   | 2/2                    | 4    | 0,5  |
| 3    | 3          | 3/3                 | 3   | 2/3                    | 4,67 | 0,64 |
| 4    | 2          | 2/4                 | 3,5 | 0/4                    | 4,67 | 0,75 |

### Part of speech tag

Serve para diminuir ambiguidades

Melhora pré-processamento

| Word   | Tag              |
|--------|------------------|
| heat   | verb (noun)      |
| water  | noun (verb)      |
| in     | prep (noun, adv) |
| a      | det (noun)       |
| large  | adj (noun)       |
| vessel | noun             |
|        |                  |













Algoritmos comumente usados em Information Retrieval

- K-NN (K nearest neighbor)
  - Por exemplo, usado para classificar documentos dentro de uma categoria
- Outros métodos serão descritos no decorrer do curso



Fonte: http://www.statsoft.com/textbook/k-nearest-neighbors

#### Praticando com o NLTK



Vamos testar o NLTK segundo o livro da ferramenta

- http://www.nltk.org/book/
  - Capítulo 1
  - Capítulo 3
  - Capítulo 5
- Capítulos acima nortearão a implementação do segundo trabalho semanal
- Praticando enquanto construímos nosso próprio sistema de IR





#### Criar uma lista invertida em python:

- Pegar 3 textos da imagem seguinte e inicializar cada um em um arquivo diferente
- Extrair o texto desses arquivos para dentro do python (3 variáveis ou array)
- Aplicar o tratamento aprendido na aula 1 e praticado na aula 2 para criação dos termos e remoção de stopwords
- Criar a lista de ocorrências de termos dentro dos moldes de uma lista invertida e salvar em arquivo
- Usar a figura seguinte como gabarito (aproximado)

#### Exercício

#### Document 1

search around.









Sugestão para estrutura a ser salva em arquivo

- Chave é o termo, valor é um array de documento/ocorrências desses termos
  - blue;['1', '3']

Enviar arquivo (zipado) com código do exercício

- <u>raul.ferreira@prof.infnet.edu.br</u>
- Colocar no assunto do email "Trabalho 2 Turma de quinta Infnet"
- Colocar identificação no corpo do email (nome e sobrenome)

Trabalho individual. Trabalhos copiados = zero

#### Próxima aula

Recuperação da informação

Mais implementações em sala usando python

Continuar a construção de parte do nosso buscador

