© DLSI (Univ. Alicante)

TEMA 4 El tipo conjunto

PROGRAMACIÓN Y ESTRUCTURAS DE DATOS

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

Tipo conjunto

- # 1. Definiciones generales
- # 2. Diccionario
 - = 2.1. Tabla de dispersión
 - = 2.2. Trie
 - 2.3. Árboles de búsqueda digitales
- - **■** 3.1. Montículo
 - 3.2. Cola de prioridad doble
 - 3.2.1. Montículo doble
 - 3.3. Árbol izquierdista o leftist

1. Tipo Conjunto

- Un conjunto es una colección de elementos, cada uno de los cuales puede ser un conjunto, o un elemento primitivo que recibe el nombre de átomo
- ***** Todos los miembros del conjunto son distintos
- **El orden de los elementos no es importante (distinto de las listas)**

Notación de Conjuntos

- Se representa encerrando sus miembros entre llaves {1,2,5}
- Relación fundamental, la de pertenencia: $\in \{x \mid x \in \text{Naturales}\}, \{x \mid x < 8\}$
- Existe un conjunto especial sin elementos: Ø
- A ⊂ B si todo elemento de A también lo es de B
- Conjunto Universal: formado por todos los posibles elementos que puede contener

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

1. Tipo Conjunto

MODULO GENERICO ModuloConjunto MODULO Conjunto USA Boolean, Natural SINTAXIS

Crear () → Conjunto
Insertar(Conjunto, Ítem) → Conjunto
Eliminar(Conjunto, Ítem) → Conjunto
Pertenece(Conjunto, Ítem) → Boolean
EsVacíoConjunto(Conjunto) → Boolean
Cardinalidad(Conjunto) → Natural
Unión(Conjunto, Conjunto) → Conjunto
Intersección(Conjunto, Conjunto) → Conjunto
Diferencia(Conjunto, Conjunto) → Conjunto

VAR

C, D: Conjunto; x, y: Ítem;

4

1. Tipo Conjunto SEMÁNTICA (I)

```
EsVacíoConjunto( Crear ) ←→ Cierto
EsVacíoConjunto(Insertar(C, x)) \leftarrow \rightarrow Falso
Insertar( Insertar( C, x ), y ) \leftarrow \rightarrow
          si ( x == y ) entonces Insertar( C, x ) //no se permiten elementos repetidos
          sino Insertar( C, y ), x )
                                                      //da igual el orden de inserción de los elem.
Eliminar( Crear, x ) \leftarrow \rightarrow Crear
Eliminar(Insertar(C, x), y) \leftarrow \rightarrow
          si (x == y) entonces C
                                                      // ¿y si permitieran elementos repetidos?
          sino Insertar(Eliminar(C, y), x)
Pertenece( Crear, x ) \leftarrow \rightarrow Falso
Pertenece(Insertar(C, x), y) \leftarrow \rightarrow
          si (x == y) entonces Cierto
          sino Pertenece(C, y)
Cardinalidad( Crear ) \leftrightarrow 0
Cardinalidad(Insertar(C,x)) \longleftrightarrow 1+Cardinalidad(C)
Unión( Crear, C ) \leftarrow \rightarrow C
Unión(Insertar(C,x), D) \leftarrow \rightarrow
          si (Pertenece(D, x)) entonces Unión(C, D)
          sino Insertar( Unión( C, D ), x )
```

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

1. Tipo Conjunto SEMÁNTICA (II)

```
Diferencia( Crear, C ) \leftarrow \rightarrow Crear

Diferencia( Insertar( C,x ), D ) \leftarrow \rightarrow

si ( Pertenece( D, x ) )

entonces Diferencia( C, D )

sino Insertar( Diferencia( C, D ), x )

Intersección( Crear, D ) \leftarrow \rightarrow Crear

Intersección( Insertar( C,x ), D ) \leftarrow \rightarrow

si ( Pertenece( D, x ) )

entonces Insertar( Intersección( C, D ), x )

sino Intersección( C, D )
```

0 1 2 3 4 5

1. Tipo Conjunto IMPLEMENTACIÓN

- **Mediante un vector**
 - -Vector de bits/enteros (cada componente corresponde a un elemento del conjunto universal) 1 0 0 1 0
 - -Vector de elementos

1 9 0 4 2

Almacenar los elementos conforme se inserten (mediante listas, árboles, ...):

Espacio proporcional al conjunto representado

,

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

1. Tipo Conjunto EJERCICIO

Rellenar la siguiente tabla de complejidades (peor caso):

m=elem. conjto. n=elem. conjto. Univ.	Vector de Bits	Lista ordenada	Lista desordenada
Búsqueda			
Inserción			
Unión			

2. DICCIONARIO DEFINICIÓN

- **Subtipo del CONJUNTO, con las operaciones:**
 - **# CREAR**
 - **# INSERTAR**
 - **# BORRAR**
 - **♯ BÚSQUEDA**

9

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2. DICCIONARIO IMPLEMENTACIÓN

Implementaciones sencillas:

- · Mediante listas o vectores
 - Búsqueda, Inserción y Borrado:

Listas: O(n)

Vector Bits: O (1)

Vector Elementos: O (n)

· Mediante TAD Tabla de Dispersión (HASHING)

Tema 4. Tipo conjunto

2.1. TABLA DE DISPERSIÓN (HASHING) DEFINICIÓN

* HASHING: Utilizaremos la información del elemento a almacenar para buscar su posición dentro de la estructura

Operaciones:

- #Búsqueda. O(1)
- **#Inserción.** O(1)
- #Borrado. O(1)

11

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. TABLA DE DISPERSIÓN (HASHING) MÉTODO

- Dividir el conjunto en un número finito "B" de clases
- ♯ Se usa función de dispersión H, tal que H(x) será un valor entre 0 y B-1

Formas de dispersión:

Abierta: No impone tamaño límite al conjunto

<u>Cerrada</u>: usa un tamaño fijo de almacenamiento (limita el tamaño)

2.1. Tabla Hash. Dispersión Cerrada DEFINICIÓN

- # Los elementos se almacenan en tabla de tamaño fijo (TABLA DE DISPERSIÓN)
- # La tabla se divide en B clases, y cada una podrá almacenar S elementos
- ****** La Función de dispersión se implementa mediante una función aritmética

$$H(x)=x MOD B$$

13

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada INSERCIÓN

Caso COLISIÓN: x1, x2

(SINONIMOS/H(x1) = H(x2))

ESTRATEGIA DE REDISPERSION:

• Elegir sucesión de localidades alternas dentro de la tabla, hasta encontrar una vacía

H(x), h1(x), h2(x), h3(x), ...

• Si ninguna está vacía: no es posible insertar

2.1. Tabla Hash. Dispersión Cerrada INSERCIÓN. EJEMPLO

Ejemplo. Insertar en una tabla de dispersión cerrada de tamaño B=7, con función de dispersión H(x)=x MOD B, y con estrategia de redispersión la siguiente posición de la tabla, los siguientes elementos: 23, 14, 9, 6, 30, 12, 18, 25

5

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada BÚSQUEDA. BORRADO

BÚSQUEDA DE ELEMENTOS

Buscar en sucesión de localidades alternas dentro de la tabla, hasta encontrar una vacía:

H(x), h1(x), h2(x), h3(x), ...

BORRADO DE ELEMENTOS

Hay que distinguir durante la búsqueda:

- Casillas vacías
- Casillas suprimidas

Durante la inserción las casillas suprimidas se tratarán como espacio disponible.

2.1. Tabla Hash. Dispersión Cerrada ANÁLISIS (I)

* ESTRATEGIA DE REDISPERSIÓN LINEAL ("siguiente posición"):

- No eficiente. Larga secuencia de intentos

$$h_i(x) = (H(x) + 1 \cdot i) \text{ MOD B}$$
 / c=1 $h_i(x) = (h_{i-1}(x) + 1) \text{ MOD B}$

♯ ESTRATEGIA DE REDISPERSIÓN ALEATORIA:

$$h_i(x) = (H(x) + c \cdot i) \text{ MOD B}$$
 / c>1 $h_i(x) = (h_{i-1}(x) + c) \text{ MOD B}$

Sigue produciendo AMONTONAMIENTO: siguiente intento sólo en función del anterior

c y B no deben tener factores primos comunes mayores que 1

E.R. CON 2ª FUNCION DE HASH:

$$k(x) = (x \text{ MOD (B-1)}) + 1$$

$$h_i(x) = (H(x) + k(x) \cdot i) \text{ MOD B}$$
 $h_i(x) = (h_{i-1}(x) + k(x)) \text{ MOD B}$

B debe ser primo

17

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada ANÁLISIS (II)

♯ LA MEJOR FUNCIÓN DE DISPERSIÓN:

- Que sea fácil de calcular
- Que minimice el nº de colisiones
- Que distribuya los elementos de forma azarosa
- Debe hacer uso de toda la información asociada a las etiquetas

2.1. Tabla Hash. Dispersión Cerrada ANÁLISIS (III)

Estrategia de redispersión aleatoria

- c y B no deben tener factores primos comunes mayores que 1 para que busque en todas las posiciones de la tabla
 - \blacksquare Ejemplo → c=4; B=6

$$h_i(x) = (H(x) + c \cdot i) \text{ MOD B} = (h_{i-1}(x) + c) \text{ MOD B}$$

 $H(10)=10 \text{ MOD } 6=4$

X X X X 0 1 2 3 4 5

 $h_1(10)=(4+4 \cdot 1) \text{ MOD } 6=(4+4) \text{ MOD } 6=2$

h₂(10)=(4+4 •2) MOD 6=(2+4) MOD 6=0

h₃(10)=(0+4) MOD 6=4; h₄(10)=(4+4) MOD 6=2

■ Ejemplo \rightarrow ¿c=6; B=9? ¿c=2; B=9?

Estrategia de redispersión con 2ª función hash

- B debe ser primo para que busque en todas las posiciones de la tabla
 - $^{\bullet}$ c=k(x) → 1...B-1

$$// k (x) = (x MOD (B-1)) + 1$$

 $h_i(x) = (H(x) + k(x) \cdot i) \text{ MOD B} = (h_{i-1}(x) + k(x)) \text{ MOD B}$

B=7; k(x)=1...6

B=11;k(x)=1...10

19

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash. Dispersión Cerrada

1) Insertar en una tabla de dispersión cerrada de tamaño B=7, con función de dispersión H(x)=x MOD B, y con estrategia de redispersión segunda función hash, los siguientes elementos: 23, 14, 9, 6, 30, 12, 18

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash. Dispersión Abierta

DEFINICIÓN

- Elimina el problema del CLUSTERING SECUNDARIO (colisiones entre claves no sinónimas)
- Las colisiones se resuelven utilizando una lista enlazada

21

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash

FACTOR DE CARGA (I)

$$\alpha = \frac{n}{|B|}$$

 $n = n^{\circ}$ elem. de la tabla. B = tamaño de la tabla

HASH CERRADO: $0 \le \alpha \le 1$

HASH ABIERTO: $\alpha \ge 0$ (No hay límite en el nº de elementos en cada casilla).

Teorema:

En **Hash Abierto** con factor de carga α :

- el nº esperado de pruebas en inserción o búsqueda sin éxito es '1+α', y
- el nº esperado de pruebas para borrado o búsqueda con éxito es '1+1/2 $(1+\alpha)$ '

2.1. Tabla Hash

FACTOR DE CARGA (II)

Teorema:

En Hash Cerrado con resolución lineal de colisiones, con factor de carga α :

• el nº esperado de pruebas en inserción o búsqueda

sin éxito es
$$\frac{1}{2} \cdot \left(1 + \left(\frac{1}{1-\alpha}\right)^2\right)$$
, y

• el nº esperado de pruebas para borrado o búsqueda

con éxito es
$$\frac{1}{2} \cdot \left(1 + \frac{1}{1 - \alpha}\right)$$

2

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash

FACTOR DE CARGA (III)

Teorema:

En Hash Cerrado con resolución aleatoria de colisiones, con factor de carga α:

• el nº esperado de pruebas en inserción o búsqueda

$$\sin \text{ éxito es } \frac{1}{1-\alpha}$$

 \bullet el nº esperado de pruebas para borrado o búsqueda

con éxito es
$$\frac{-1}{\alpha} \cdot \log(1-\alpha)$$

2.1. Tabla Hash FACTOR DE CARGA (IV)

E: Nº Esperado de Intentos. c.éx: con éxito. s.éx: sin éxito.

	H.	H.C.L.		H.C.Aleat.		H.Abierto	
α	E c.éx	E s.éx.	E c.éx	E s.éx.	E c.éx	E s.éx.	
0.1	1.06						
0.25	1.17						
0.5	1.50						
0.75	2.50	8.5	1.9	4.0	1.8	2.0	
0.9	5.50	50.5	2.6	10.0	1.9	2.0	
0.95	10.50						

25

© DLSI (Univ. Alicante)

Tema 4. Tipo conjunto

2.1. Tabla Hash

COMPARACIÓN HASH ABIERTO Y CERRADO

- $\bullet~$ H.A. es más eficiente y con menor degradación (cuanto más lleno funciona mejor que el H.C.)
- H.A. requiere espacio para los elementos de la lista, por lo que H.C. es más eficiente espacialmente
 - Reestructuración de las tablas de dispersión:

 $n \ge 0.9 B (H.C.)$

 $n \ge 2 B (H.A.)$

→ Nueva tabla con el doble de posiciones