Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs.

Цыбакин Александр, гр. 162.

Вступление.

- Лосс-функции невыпуклые и зависят от большого количества параметров.
- Геометрические свойства поверхностей лосс-функций плохо изучены.
- Огромное количество локальных оптимумов и седловых точек экспоненциально зависит от числа параметров модели.

Вступление.

Визуализация поверхности лосс-функции ResNet-56. [Visualizing the Loss Landscape of Neural Nets, 2018 у.]

Вступление.

• Оптимумы изолированы друг от друга, например:

Проекция поверхности Кросс-Энтропии с L2регуляризатором ResNet-164 на датасете CIFAR-100.

Построение кривых между оптимумами.

- Наблюдение: между оптимумами существуют кривые, для которых значение лосс-функции практически всегда низкое (mode connectivity).
- Более того, такие кривые имеют простой вид, например, ломаной кривой.
- Можно использовать для построения ансамблей.

Примеры построения кривых между двумя фиксированными оптимумами в пространстве весов.

Построение кривых между оптимумами.

- Пусть у нас есть w_0 и w_1 из $\mathbb{R}^{|net|}$, где |net| количество весов модели.
- *L(w)* некоторая лосс-функция, например, кросс-энтропия.
- Введем функцию $\phi_{\theta}(t)$: $[0,1] \to \mathbb{R}^{|net|}$, $\phi_{\theta}(0) = w_0$ и $\phi_{\theta}(1) = w_1$.
- Авторы предлагают ввести новую лосс-функцию $l(\theta)$, которая минимизирует мат. ожидание значений исходной лосс-функции от равномерно распределенной на кривой величины.
- Вспомним, что $p(x) = \frac{1}{b-a}$, где $x \sim U[a, b]$.
- В нашем случае $p(\phi_{\theta}) = \frac{1}{\int d\phi_{\theta}}$, для равномерно распределенной величины ϕ_{θ} на кривой.
- $E(f(x)) = \int f(x) p(x) dx$ Мат. ожидание непрерывной величины.
- Значит, $l(\theta) = \frac{\int L(\phi_{\theta})d\phi_{\theta}}{\int d\phi_{\theta}} = \frac{\int_{0}^{1}L(\phi_{\theta}(t))\,||\phi_{\theta'}(t)||dt}{\int_{0}^{1}||\phi_{\theta'}(t)||dt} = \int_{0}^{1}L\Big(\phi_{\theta}(t)\Big)q_{\theta}(t)dt = E_{t\sim q_{\theta}(t)}[L(\phi_{\theta}(t))],$ где $q_{\theta}(t) = ||\phi_{\theta'}(t)||/\int_{0}^{1}||\phi_{\theta'}(t)||dt$, $t\in [0,1].$

Построение кривых между оптимумами.

- В итоге , $l(\theta)=E_{t\sim q_{\theta}(t)}[L(\phi_{\theta}(t))].$ Посчитать градиент $l(\theta)$ сложно, т.к. $q_{\theta}(t)$ зависит от $\theta.$
- Авторы предлагают использовать U[0,1] вместо $q_{\theta}(t)$.

Тогда
$$l(\theta) = E_{t \sim U[0,1]}[L(\phi_{\theta}(t))].$$

• Оптимизация: градиентный спуск.

Шаг: генерируется \tilde{t} из U[0,1] и рассчитывается $\nabla_{\theta}L(\phi_{\theta}(\tilde{t}))$.

Т.к.
$$\nabla_{\theta}l(\theta) = \nabla_{\theta}E_{t \sim U[0,1]} \big[L\big(\phi_{\theta}(t)\big)\big] = E_{t \sim U[0,1]} \big[\nabla_{\theta}L\big(\phi_{\theta}(t)\big)\big] \cong \nabla_{\theta}L(\phi_{\theta}(\tilde{t}))$$

Примеры параметризации.

1. Ломаная.

$$\phi_{\theta}(t) = \begin{cases} 2(t\theta + (0.5 - t)w_1, & 0 \le t \le 0.5\\ 2((t - 0.5)w_2 + (1 - t)\theta), & 0.5 < t \le 1 \end{cases}$$

2. Кривая Безье.

$$\phi_{\theta}(t) = (1-t)^2 w_1 + 2t(1-t)\theta + t^2 w_2, \ \ 0 \le t \le 1.$$

Эксперименты с построением.

- Два раза независимо обучили модель, получили w_0 и w_1 .
- Знаем, что можно построить кривую с низким лоссом между двумя оптимумами.
- Попробуем построить простой ансамбль из двух моделей.
- Первая модель: зафиксируем первую точку $\phi_{\theta}(0) = w_0$.
- Вторая модель: $\phi_{\theta}(t)$ при переборе $t \in [0, 1]$.

Результат:

ResNet-164 на датасете CIFAR-100.

(Слева) Значение кросс-энтропии с L2-регуляризатором на трейне.

(Посередине) Ошибка на тесте.

(Справа) Ошибка ансамбля на тесте при переборе t.

- Теперь имеем одну предобученную модель w_0 .
- Знаем, что между оптимумами существуют кривые с низким лоссом.
- Как увидели ранее, даже при небольшом отступе от оптимума в пространстве весов модель уже имеет другие предсказания, а значит и другое представление о данных.

Общая идея:

- Необходимо без построения самой кривой перемещаться от предобученной модели(w_0) небольшими шагами (learning rate) без большого увеличения лосса по пространству весов.
- На некоторых шагах "собирать" модели в ансамбль.
- Усреднить предсказания собранных моделей (учитываем разное представление данных).

Изменение размера шагов (learning rate).

Авторы вводят циклическое изменение шага.

Пусть есть $\alpha_1 > \alpha_2$ — два learning rate, тогда изменение шага:

$$\alpha(i) = \begin{cases} (1 - 2t(i))\alpha_1 + 2t(i)\alpha_2, 0 < t(i) \le 0.5\\ (2 - 2t(i))\alpha_2 + (2t(i) - 1)\alpha_1, 0.5 < t(i) \le 1. \end{cases}$$

Где i = 1,2... - номер итерации.

 $t(i) = \frac{1}{c}(mod(i-1,c)+1), \ c$ – количество итераций в одном цикле(обычно 2-4 эпохи).

На каждой середине цикла (т.е. при $t(i)=\frac{1}{2}$, $\alpha(i)=\alpha_2$) модели с текущими весами добавляются в ансамбль.

Такое изменение вызвано балансом между двумя фазами: исследованием (большие шаги - значения близкие к α_1) и уточнением (маленькие шаги — значения близкие к α_2).

(Сверху) Циклическое изменение шага. (Посередине) Ошибка на тесте при циклическом изменении шага.

(Снизу) Расстояние (по Евклиду) между зафиксированными моделями, которые добавляются в ансамбль.

• Общее описание алгоритма.

Algorithm 1 Fast Geometric Ensembling

```
Require: weights \hat{w}, LR bounds \alpha_1, \alpha_2, cycle length c (even), number of iterations n

Ensure: ensemble w \leftarrow \hat{w} {Initialize weight with \hat{w}} ensemble \leftarrow []

for i \leftarrow 1, 2, \ldots, n do \alpha \leftarrow \alpha(i) {Calculate LR for the iteration} \alpha \leftarrow \alpha(i) {Calculate LR for the iteration} \alpha \leftarrow \alpha(i) {Stochastic gradient update} if mod(i, c) = c/2 then ensemble \leftarrow ensemble \leftarrow [w] {Collect weights} end if end for
```

Эксперименты с FGE.

		CIFAR-100			CIFAR-10		
DNN (Budget)	method	1B	2B	3B	1B	2B	3B
VGG-16 (200)	Ind SSE FGE	27.4 ± 0.1 26.4 ± 0.1 25.7 ± 0.1	25.28 25.16 24.11	24.45 24.69 23.54	6.75 ± 0.16 6.57 ± 0.12 6.48 ± 0.09	5.89 6.19 5.82	5.9 5.95 5.66
ResNet-164 (150)	Ind SSE FGE	21.5 ± 0.4 20.9 ± 0.2 $\mathbf{20.2 \pm 0.1}$	$19.04 \\ 19.28 \\ 18.67$	$18.59 \\ 18.91 \\ 18.21$	4.72 ± 0.1 4.66 ± 0.02 4.54 ± 0.05	4.1 4.37 4.21	3.77 4.3 3.98
WRN-28-10 (200)	Ind SSE FGE	19.2 ± 0.2 17.9 ± 0.2 17.7 ± 0.2	17.48 17.3 16.95	17.01 16.97 16.88	3.82 ± 0.1 3.73 ± 0.04 3.65 ± 0.1	3.4 3.54 3.38	3.31 3.55 3.52

Сравнительная таблица ошибок (в %) по трем разным подходам трех архитектур на двух датасетах.

Методы: *Ind* — независимо обученные модели, *SSE* — SnapShot Ensembling(также основан на циклическом изменении шага с использованием косинуса), *FGE* — Fast Geometric Ensambling.

Заключение.

- Между оптимумами существуют кривые, вдоль которых лосс практически постоянно низкий.
- Такие кривые имеют простой вид (ломаная, кривая Безье).
- На этом наблюдении основан алгоритм построения ансамблей FGE.
- Цикл FGE ставится обычно 2-4 эпохи (например, для Snapshot Ensabmling 20-40 эпох).
- FGE способен улучшать SOTA-архитектуры.

Спасибо за внимание!

Вопросы?

Вопросы!

• В чем заключается идея поиска кривых между оптимумами функции потерь? Какие кривые предлагают строить между оптимумами потерь авторы статьи?

• Опишите алгоритм Fast Geometric Ensembling.