Z-Transform

Definitions

- 1. The Z- transform of the sequence $\{f(k)\}\$ is defined as $Z\{f(k)\} = F(z) = \sum_{k=-\infty}^{\infty} f(k)z^{-k}$
- 2. The Z- transform of the causal sequence $\{f(k)\}_{k=0}^{\infty}$ is $Z\{f(k)\} = F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$

Note:

- 1. $Z\{f(k)\} = \sum_{k=-\infty}^{\infty} f(k)z^{-k} = \dots + f(-2)z^{-2} + f(-1)z^{1} + f(0)z^{-k} + f(1)z^{-1} + f(2)z^{-2} + \dots$
- 2. $Z\{f(k)\} = \sum_{k=-\infty}^{\infty} f(k)z^{-k} = \underbrace{\sum_{k=-\infty}^{-1} f(k)z^{-k}}_{Non\ Causal} + \underbrace{\sum_{k=0}^{\infty} f(k)z^{-k}}_{Causal}$
- 3. $\frac{1}{1-x} = 1 + x + x^2 + ..., |x| < 1, \frac{1}{1-x} = 1 x + x^2 \mp ..., |x| < 1$
- **4.** $\cos x = \frac{e^{ix} + e^{-ix}}{2}$, $\sin x = \frac{e^{ix} e^{-ix}}{2i}$, $\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x e^{-x}}{2}$

Multiple Choice Questions:

$$Z{\delta(k)} = \dots$$

- A) $\frac{z}{z-1}$ B) $\frac{z}{1-z}$ C) 1 D) 0
- 1) $Z\{U(k)\} = ...$
 - **A)** $\frac{z}{z-1}$ **B)** $\frac{z}{1-z}$ **C)** 1 **D)** 0
- 2) $Z\{1\} = ...$
 - **A)** $\frac{z}{z-1}$ B) $\frac{z}{1-z}$ C) 1 D) 0
- 3) If $f(k) = a^k$, $k \ge 0$ then $Z\{f(k)\}$ in ROC |z| > |a| is
 - A) $\frac{z}{z-1}$ **B**) $\frac{z}{z-a}$ C) $\frac{-z}{z-a}$ D) $\frac{az}{1-az} + \frac{z}{z-a}$
- 4) If $f(k) = a^k$, k < 0 then $Z\{f(k)\}$ in Roc |z| < |a| is
 - A) $\frac{z}{z-1}$ B) $\frac{z}{z-a}$ C) $\frac{-z}{z-a}$ D) $\frac{az}{1-az} + \frac{z}{z-a}$
- 5) If $f(k) = a^{|k|}$, $\forall k$ then $Z\{f(k)\}$ in Roc $|a| < |z| < \frac{1}{|a|}$ is
 - A) $\frac{z}{z-1}$ B) $\frac{z}{z-a}$ C) $\frac{-z}{z-a}$ **D**) $\frac{az}{1-az} + \frac{z}{z-a}$
- 6) If $f(k) = \cos \alpha k$, $k \ge 0$ then $Z\{f(k)\}$ in Roc |z| > 1 is
 - A) $\frac{z(z-\cos\alpha)}{z^2-2z\cos\alpha+1}$ B) $\frac{z\sin\alpha}{z^2-2z\cos\alpha+1}$ C) $\frac{z(z-\cosh\alpha)}{z^2-2z\cosh\alpha+1}$ D) $\frac{z\sinh\alpha}{z^2-2z\cosh\alpha+1}$
- 7) If $f(k) = \sin \alpha k$, $k \ge 0$ then $Z\{f(k)\}$ in Roc |z| > 1 is
 - A) $\frac{z(z-\cos\alpha)}{z^2-2z\cos\alpha+1}$ B) $\frac{z\sin\alpha}{z^2-2z\cos\alpha+1}$ C) $\frac{z(z-\cosh\alpha)}{z^2-2z\cosh\alpha+1}$ D) $\frac{z\sinh\alpha}{z^2-2z\cosh\alpha+1}$

8) If $f(k) = \cosh(\alpha k)$, $k \ge 0$ then $Z\{f(k)\}$ in Roc $|z| > \max(|e^{\alpha}|, |e^{-\alpha}|)$ is

A)
$$\frac{z(z-\cos\alpha)}{z^2-2z\cos\alpha+1}$$
 B) $\frac{z\sin\alpha}{z^2-2z\cos\alpha+1}$ C) $\frac{z(z-\cosh\alpha)}{z^2-2z\cosh\alpha+1}$ D) $\frac{z\sinh\alpha}{z^2-2z\cosh\alpha+1}$

9) If $f(k) = \sinh(\alpha k)$, $k \ge 0$ then $Z\{f(k)\}$ in Roc $|z| > \max(|e^{\alpha}|, |e^{-\alpha}|)$ is

A)
$$\frac{z(z-\cos\alpha)}{z^2-2z\cos\alpha+1}$$
 B) $\frac{z\sin\alpha}{z^2-2z\cos\alpha+1}$ C) $\frac{z(z-\cosh\alpha)}{z^2-2z\cosh\alpha+1}$ **D**) $\frac{z\sinh\alpha}{z^2-2z\cosh\alpha+1}$

10) If
$$f(k) = \frac{a^k}{k!}$$
, $k \ge 0$ then $Z\{f(k)\}$ is

A)
$$e^{z/a}$$
 B) $e^{-a/z}$ C) $e^{-z/a}$ **D**) $e^{a/z}$

Properties:

11) If $Z\{af(k) + bg(k)\} = ...$

A)
$$aZ\{f(k)\}+bZ\{g(k)\}$$
 B) $aZ\{f(k)\}-bZ\{g(k)\}$ **C)** $aZ^{-1}\{f(k)\}+bZ^{-1}\{g(k)\}$ **D)** $aZ^{-1}\{f(k)\}-bZ^{-1}\{g(k)\}$

12) If $Z^{-1}\{af(k)+bg(k)\}=...$

A)
$$aZ\{f(k)\}+bZ\{g(k)\}$$
 B) $aZ\{f(k)\}-bZ\{g(k)\}$ C) $aZ^{-1}\{f(k)\}+bZ^{-1}\{g(k)\}$ D) $aZ^{-1}\{f(k)\}-bZ^{-1}\{g(k)\}$

13) If $Z\{f(k)\} = F(z)$, then $Z\{a^k f(k)\} = ...$

A)
$$F\left(\frac{z}{a}\right)$$
 B) $F\left(\frac{a}{z}\right)$ C) $F\left(e^{a}z\right)$ D) $F\left(e^{-a}z\right)$

14) If $Z\{f(k)\} = F(z)$, then $Z\{e^{-ak}f(k)\} = ...$

A)
$$F\left(\frac{z}{a}\right)$$
 B) $F\left(\frac{a}{z}\right)$ C) $F\left(e^{a}z\right)$ D) $F\left(e^{-a}z\right)$

15) If $Z\{f(k)\} = F(z)$, then $Z\{kf(k)\} = ...$

A)
$$F\left(\frac{z}{a}\right)$$
 B) $-z\frac{d}{dz}F(z)$ C) $\left(-z\frac{d}{dz}\right)^n F(z)$ D) $F\left(e^{-a}z\right)$

16) If $Z\{f(k)\} = F(z)$, then $Z\{kf(k)\} = ...$

A)
$$F\left(\frac{z}{a}\right)$$
 B) $-z\frac{d}{dz}F(z)$ C) $\left(-z\frac{d}{dz}\right)^n F(z)$ D) $-\int_{-\infty}^{z} z^{-1}F(z)dz$

17) If
$$Z\{f(k)\} = F(z)$$
, then $Z\left\{\frac{f(k)}{k}\right\} =$

A)
$$F\left(\frac{z}{a}\right)$$
 B) $-z\frac{d}{dz}F(z)$ C) $\left(-z\frac{d}{dz}\right)^n F(z)$ D) $-\int_{-\infty}^{z} z^{-1}F(z)dz$

18) If $Z\{f(k)\} = F(z), k \ge 0$, then $Z\{f(k+1)\} = ...$

A)
$$zF(z) + zf(0)$$
 B) $zF(z) - zf(0)$ C) $zF(z) - f(0)$ D) $z^2F(z) - f(0)$

19) If $Z\{f(k)\} = F(z)$, $k \ge 0$, then $Z\{f(k+2)\} = ...$

A)
$$z^2F(z)-zf(0)-f(1)$$
 B) $z^2F(z)+z^2f(0)+zf(1)$ C) $z^2F(z)+zf(0)+f(1)$ D) $z^2F(z)-z^2f(0)-zf(1)$

20) If $Z\{f(k)\} = F(z), k \ge 0$, then $Z\{f(k-1)\} = ...$

A)
$$z^{-1}F(z)$$
 B) $z^{-1}F(z)-f(0)$ **C)** $z^{-2}F(z)-z^{-1}f(0)$ **D)** $zF(z)$

21) If $Z\{f(k)\} = F(z)$, $k \ge 0$, then $Z\{f(k-2)\} = ...$

A)
$$z^{-2}F(z)$$
 B) $z^{-2}F(z)-f(0)$ **C)** $z^{-2}F(z)-z^{-1}f(0)$ **D)** $zF(z)$

22) Convolution of two sequences $\{f(k)\}$ and $\{g(k)\}$ is $\{h(k)\}=\{f(k)\}*\{g(k)\}$. Then $Z\{h(k)\}$ is

A)
$$F(z)+G(z)$$
 B) $F(z)G(z)$ C) $F(z)-G(z)$ D) $\frac{F(z)}{G(z)}$

23) If $f(k) = \cos \pi k$, $k \ge 0$ then $Z\{f(k)\}$ in Roc |z| > 1 is

A)
$$\frac{z(z-1)}{(z+1)^2}$$
 B) 0 C) $\frac{(z-1)}{(z+1)^2}$ D) $\frac{z}{z+1}$

24) If $f(k) = \sin \pi k$, $k \ge 0$ then $Z\{f(k)\}$ in Roc |z| > 1 is

A)
$$\frac{z(z-1)}{(z+1)^2}$$
 B) 0 C) $\frac{(z-1)}{(z+1)^2}$ D) $\frac{z}{z+1}$

25) If $f(k) = \cos\left(\frac{\pi}{2}\right)k$, $k \ge 0$ then $Z\{f(k)\}$ in Roc |z| > 1 is

A)
$$\frac{z^2}{z^2+1}$$
 B) $\frac{z^2}{z^2-1}$ C) $\frac{z}{z-1}$ D) $\frac{z}{z+1}$

26) If $f(k) = \sin\left(\frac{\pi}{2}\right)k$, $k \ge 0$ then $Z\{f(k)\}$ in Roc |z| > 1 is

A)
$$\frac{z}{z^2+1}$$
 B) $\frac{z}{z^2-1}$ C) $\frac{z}{z-1}$ **D**) $\frac{z}{z^2+1}$

27) If $f(k) = 2^k \sin\left(\frac{\pi}{2}\right) k$, $k \ge 0$ then $Z\{f(k)\}$ is

A)
$$\frac{2z}{z^2-4}$$
, $|z| > 2$ B) $\frac{2z}{z^2-4}$, $|z| < 2$ C) $\frac{2z}{z^2+4}$, $|z| < 2$ **D**) $\frac{2z}{z^2+4}$, $|z| > 2$

28) If $f(k) = 2^k \cosh 3k$, $k \ge 0$ then $Z\{f(k)\}$ is

A)
$$\frac{z(z-2\cosh 3)}{z^2-4z\cosh 3+4}$$
, $|z| > max(|e^2|, |e^{-2}|)$

C)
$$\frac{z(z+2\cosh 3)}{z^2+4z\cosh 3+4}$$
, $|z| < max(|e^3|, |e^{-3}|)$ D) $\frac{z(z+2\sinh 3)}{z^2+4z\sinh 3+4}$, $|z| > max(|e^3|, |e^{-3}|)$

29) If $f(k) = 2^k \sinh 3k$, $k \ge 0$ then $Z\{f(k)\}$ is

A)
$$\frac{z(z-2\cosh 3)}{z^2-4z\cosh 3+4}$$
, $|z| > max(|e^2|, |e^{-2}|)$

C)
$$\frac{3z \sinh 3}{z^2 - 6z \cosh 3 + 9}$$
, $|z| > max(|e^3|, |e^{-3}|)$ D) $\frac{z(z + 2 \sinh 3)}{z^2 + 4z \sinh 3 + 9}$, $|z| > max(|e^3|, |e^{-3}|)$

30) If $f(k) = 2^k$, $k \ge 0$ then $Z\{f(k)\}$ is

A)
$$\frac{z}{z-4}$$
, $|z| > 2$ **B)** $\frac{z}{z-4}$, $|z| < 2$ **C)** $\frac{z}{z+4}$, $|z| > 2$ **D)** $\frac{z}{z+4}$, $|z| < 2$

31) If $f(k) = k, k \ge 0$ then $Z\{f(k)\}$ is

A)
$$\frac{z}{(z-1)^2}$$
, $|z| > 1$ **B)** $\frac{z}{(z-1)^2}$, $|z| < 1$ **C)** $\frac{z}{(z-1)}$, $|z| > 1$ **D)** $\frac{z}{(z-1)}$, $|z| < 1$

32) If $f(k) = k5^k$, $k \ge 0$ then $Z\{f(k)\}$ is

A)
$$\frac{z}{(z-1)^2}$$
, $|z| > 1$ B) $\frac{z}{(z-1)^2}$, $|z| < 1$ C) $\frac{5z}{(z-5)^2}$, $|z| > 5$ D) $\frac{5z}{(z-5)^2}$, $|z| < 5$

A)
$$\frac{z(z-2\cosh 3)}{z^2-4z\cosh 3+4}$$
, $|z| > max(|e^2|, |e^{-2}|)$ B) $\frac{z(z-2\cosh 3)}{z^2-4z\cosh 3+4}$, $|z| > max(|e^3|, |e^{-3}|)$

D)
$$\frac{z(z+2\sinh 3)}{z^2+4z\sinh 3+4}$$
, $|z| > max(|e^3|, |e^{-3}|)$

A)
$$\frac{z(z-2\cosh 3)}{z^2-4z\cosh 3+4}$$
, $|z| > max(|e^2|, |e^{-2}|)$ B) $\frac{3z\sinh 3}{z^2+6z\cosh 3+9}$, $|z| > max(|e^3|, |e^{-3}|)$

D)
$$\frac{z(z+2\sinh 3)}{z^2+4z\sinh 3+9}$$
, $|z| > max(|e^3|, |e^{-3}|)$

C)
$$\frac{z}{z+4}$$
, $|z| > 2$ D) $\frac{z}{z+4}$, $|z| < 2$

C)
$$\frac{z}{(z-1)}$$
, $|z| > 1$ D) $\frac{z}{(z-1)}$, $|z| < 1$

33) If
$$f(k) = \left(\frac{1}{3}\right)^k$$
, $k < 0$ then $Z\{f(k)\}$ is

A)
$$\frac{3z}{3z-1}$$
, $|z| > \frac{1}{3}$ B) $\frac{3z}{3z-1}$, $|z| < \frac{1}{3}$ C) $\frac{3z}{1-3z}$, $|z| < \frac{1}{3}$ D) $\frac{3z}{1-3z}$, $|z| > \frac{1}{3}$

34) If
$$\{f(k)\} = \left\{\frac{1}{1^k}\right\} * \left\{\frac{1}{2^k}\right\}$$
 then $Z\{f(k)\}$ is

A)
$$\left(\frac{z}{z-1}\right)\left(\frac{2z}{2z-1}\right)$$
, $|z|>1$ **B)** $\left(\frac{z}{z-1}\right)\left(\frac{2z}{2z-1}\right)$, $|z|<1$ **C)** $\left(\frac{z}{z-1}\right)+\left(\frac{2z}{2z-1}\right)$, $|z|>1$ **D)** $\left(\frac{z}{z-1}\right)\left(\frac{2z}{2z+1}\right)$, $|z|>1$

Inverse Z-Transform:

35) If
$$F(z) = \frac{z}{z-a}$$
, then $Z^{-1}\{F(z)\}$ for $|z| > |a|$ is

A)
$$a^k$$
, $k \ge 0$ **B)** $-a^k$, $k < 0$ **C)** $-a^{k-1}$, $k < 0$ **D)** a^{k-1} , $k \ge 0$

C)
$$-a^{k-1}$$
, $k < 0$

D)
$$a^{k-1}$$
, $k \ge 0$

36) If
$$F(z) = \frac{z}{z-a}$$
, then $Z^{-1}\{F(z)\}$ for $|z| < |a|$ is

A)
$$a^k$$
, $k \ge 0$

B)
$$-a^k$$
, $k < 0$

A)
$$a^k$$
, $k \ge 0$ **B**) $-a^k$, $k < 0$ C) $-a^{k-1}$, $k < 0$ D) a^{k-1} , $k \ge 0$

D)
$$a^{k-1}$$
, $k \ge 0$

37) If
$$f(z) = \frac{1}{z-a}$$
, then $Z^{-1}\{F(z)\}$ for $|z| > |a|$ is

A)
$$a^k$$
, $k \ge 0$ B) $-a^k$, $k < 0$ C) $-a^{k-1}$, $k \le 0$ D) a^{k-1} , $k \ge 1$

C)
$$-a^{k-1}$$
, $k \le 0$

D)
$$a^{k-1}$$
, $k \ge 1$

38) If
$$Z^{-1}\left\{\frac{1}{z-a}\right\}$$
, then $Z^{-1}\left\{F(z)\right\}$ for $|z| < |a|$ is

A)
$$a^k$$
, $k \ge 0$

$$B) -a^k, k < 0$$

A)
$$a^k$$
, $k \ge 0$ B) $-a^k$, $k < 0$ C) $-a^{k-1}$, $k \le 0$ **D**) a^{k-1} , $k \ge 1$

D)
$$a^{k-1}$$
, $k \ge 1$

39) If
$$F(z) = \frac{z^2}{(z-a)^2}$$
, then $Z^{-1}{F(z)}$ for $|z| > |a|$ is

A)
$$(k+1)a^k$$
, $k \ge 0$ **B)** $-(k+1)a^k$, $k < 0$ **C)** $-a^{k-1}$, $k \le 0$ **D)** a^{k-1} , $k \ge 1$

B)
$$-(k+1)a^k$$
, $k < 0$

C)
$$-a^{k-1}, k \le 0$$

D)
$$a^{k-1}$$
, $k \ge 1$

40) If
$$F(z) = \frac{z^2}{(z-a)^2}$$
, then $Z^{-1}{F(z)}$ for $|z| < |a|$ is

A)
$$(k+1)a^k$$
, $k \ge 0$

A)
$$(k+1)a^k$$
, $k \ge 0$ **B**) $-(k+1)a^k$, $k < 0$ C) $-a^{k-1}$, $k \le 0$ D) a^{k-1} , $k \ge 1$

C)
$$-a^{k-1}$$
, $k \le 0$

D)
$$a^{k-1}$$
, $k \ge 1$

41) If
$$F(z) = \frac{z}{(z-a)^2}$$
, then $Z^{-1}{F(z)}$ for $|z| > |a|$ is

A)
$$(k+1)a^k$$
, $k \ge 0$

A)
$$(k+1)a^k$$
, $k \ge 0$ B) $-(k+1)a^k$, $k < 0$ C) ka^{k-1} , $k \ge 0$ D) $-ka^{k-1}$, $k < 0$

C)
$$ka^{k-1}$$
, $k \ge 0$

D)
$$-ka^{k-1}$$
, $k < 0$

42) If
$$F(z) = \frac{z}{(z-a)^2}$$
, then $Z^{-1}{F(z)}$ for $|z| < |a|$ is

A)
$$(k+1)a^{k}, k \ge 0$$

A)
$$(k+1)a^k$$
, $k \ge 0$ B) $-(k+1)a^k$, $k < 0$ C) ka^{k-1} , $k \ge 0$ **D**) $-ka^{k-1}$, $k < 0$

C)
$$ka^{k-1}, k \ge 0$$

D)
$$-ka^{k-1}$$
, $k < 0$

43) By Inversion integral formula
$$Z^{-1}{F(z)}$$
 is

$$\mathbf{A)} \quad \int F(z)z^{-k}dz$$

$$B) \frac{1}{2\pi} \int F(z) z^{-k} dz$$

A)
$$\int F(z)z^{-k}dz$$
 B) $\frac{1}{2\pi}\int F(z)z^{-k}dz$ C) $\frac{2\pi}{1}\int F(z)z^{-k}dz$ D) $\int F(z)z^{k}dz$

D)
$$\int F(z)z^k dz$$

44) By Inversion integral formula
$$Z^{-1}\{F(z)\}$$
 is

A)
$$2\pi i$$
 [sum of residues at $F(z)$]

B)
$$2\pi i$$
 [sum of residues at $F(z)z^k$]

C)
$$2\pi i$$
 [sum of residues at $F(z)z^{-k}$]

D)
$$2\pi i$$