

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 03-289779
 (43)Date of publication of application : 19.12.1991

(51)Int.Cl. H04N 5/335
 A61B 1/04

(21)Application number : 01-317127 (71)Applicant : TEXAS INSTR JAPAN LTD
 OLYMPUS OPTICAL CO LTD
 (22)Date of filing : 04.12.1989 (72)Inventor : JIYAROSURABU HINECHIEKU
 UEHARA MASAO

(54) LOW POWER CONSUMPTION TYPE IMAGE PICKUP DEVICE

(57)Abstract:

PURPOSE: To reduce heat generation in the buffer means of a solid-state image pickup element by providing a means to reduce the power consumption of the buffer means in a non-signal readout period prohibiting the output of a signal contrary to a signal readout period when the signal is outputted from the solid-state image pickup element.

CONSTITUTION: A control part outputs a control signal synchronized with the signal readout period, and performs the on/off control of a transistor 51. In other words, the transistor 51 is turned on in the signal readout period, and a power is supplied to a transistor 34, and the function of a buffer amplifier 23 is executed, and in the nonsignal readout period, the transistor 51 is turned off. therefore, no power is supplied. In the period, no current flows between the collector and the emitter of the transistor 34, which reduces the power consumption to zero in the buffer amplifier 23. Thereby, the heat generation in the buffer means of the solid-state image pickup element can be reduced.

⑪ 公開特許公報 (A) 平3-289779

⑤Int.Cl.⁵H 04 N 5/335
A 61 B 1/04

識別記号

Z
370

序内整理番号

8838-5C
8406-4C

⑩公開 平成3年(1991)12月19日

審査請求 未請求 請求項の数 1 (全14頁)

⑥発明の名称 低消費電力撮像装置

⑦特 願 平1-317127

⑧出 願 平1(1989)12月4日

⑨発明者 ジヤロスラブ・ヒネチ
エク 茨城県稻敷郡美浦村木原2355 日本テキサス・インスツル
メンツ株式会社内

⑩発明者 上原 政夫 東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学工業
株式会社内

⑪出願人 日本テキサス・インス
ツルメンツ株式会社 東京都港区北青山3丁目6番12号 青山富士ビル

⑫出願人 オリンパス光学工業株
式会社 東京都渋谷区幡ヶ谷2丁目43番2号

⑬代理人 弁理士 伊藤 進

明細書

[産業上の利用分野]

1. 発明の名称

低消費電力撮像装置

2. 特許請求の範囲

被写体を撮像するために用いられ、光電変換機能を有する固体撮像素子と、該固体撮像素子で光電変換された信号を出力させるためのドライブ信号を供給するドライブ手段と、前記固体撮像素子から出力された信号を少なくとも電流増幅するバッファ手段と、該バッファ手段の出力信号を伝送するための信号伝送ケーブルと、該信号伝送ケーブルで伝送された信号に対し、信号処理してモニタ手段に映像表示するための映像信号を生成する信号処理手段とを備えた撮像装置において、

前記固体撮像素子から信号を出力させる信号読み出し期間に対し、信号を出力させない非信号読み出し期間での前記バッファ手段の電力消費を低減化する電力消費低減化手段を設けたことを特徴とする低消費電力撮像装置。

3. 発明の詳細な説明

本発明は信号読み出しを行わない期間における撮像手段での電力消費を低減する低消費電力撮像装置に関する。

[従来技術]

近年、CCD(電荷結合素子)等の固体撮像素子を用いた撮像装置が種々提案されている。又、特殊な撮像装置として、前記固体撮像素子を用いた内視鏡も種々提案されている。このような内視鏡に於いてCCDと一緒に又は別体に色フィルタを設ける方法と、3原色光を順次切換えてCCDに照射する方法が知られている。これらの詳細な構成については、例えば特開昭51-65962及び特開昭55-54933号公報に記載されている。

又、これら装置の固体撮像素子周辺の実装及び出力信号の伝送に関しては、例えば本出願人による実公昭57-19122及び特開昭61-61588号公報に詳しく記載されている。

第15図は例えば特開昭51-65932号に

開示されたものと類似した従来の電子内視鏡装置1を示す。

この電子内視鏡装置1は、電子スコープ2と、この電子スコープ2に照明光を供給する光源部3及び電子スコープ2の撮像手段に対する信号処理を行う信号処理部4を内蔵したビデオプロセッサ(装置本体とも呼ぶ)5と、信号処理部4で信号処理して生成した標準的な映像信号を表示するカラーモニタ6とから構成される。

上記電子スコープ2は、細長の挿入部7を有し、この挿入部7の後端に太幅の操作部8が形成されている。挿入部7内には照明光を伝送するライトガイド9が挿通され、操作部8から延出されたライトガイド9の端部を光源部3に装着することにより、光源部3から照明光が供給される。

即ち、ランプ11から発せられた白色光は、レンズ12で集光され、モータ13によって回転駆動される回転フィルタ14を通してにより、この回転フィルタ14の周方向に取付けられた赤(R)、緑(G)、青(B)の各波長域の光を透

を経てビデオプロセッサ5内のプリプロセス回路25に伝送される。

このプリプロセス回路25では、CCDドライブ信号の水平転送クロックと同期してCCD21から出力された信号からベースバンド信号を抽出し、プリプロセス回路25内の図示しないガンマ回路でガンマ補正が行われる。このガンマ補正された信号は、A/Dコンバータ26によってデジタル信号に変換され、同時化のためのR、G、Bメモリ27R、27G、27Bに制御部28の制御信号で順次書き込まれる。

例えば、赤の色透過フィルタ15を通した赤の照明光のもとでCCD21で光電変換された信号はRメモリ27Rに書き込まれる。

これらメモリ27R、27G、27Bに一時的に書き込まれた各信号は、同時に読み出されて同時化されたデジタルRGB信号に変換され、これらデジタルRGB信号はD/Aコンバータ29R、29G、29Bによって、標準的なアナログRGB信号に変換される。これらRGB信号は視覚的

通する色透過フィルタ15R、15G、15Bが光路中に順次介装されることによって、RGBシーケンシャル光に変換される。このRGB(シーケンシャル)光は、レンズ16により集光され、ライトガイド9の一方の端面に照射される。このライトガイド9によって、RGB光は伝送され、スコープ先端部17側の端面からさらに照明レンズ18を経て被写体側に出射される。

被写体からの反射光は、スコープ先端部17に取付けられた対物レンズ19によって、その焦点面に配設された固体撮像素子としてのCCD21に被写体像を結ぶ。このCCD21によって光電変換され、被写体像に対応した電荷として蓄積される。

上記CCD21は、ビデオプロセッサ5内のCCDドライバ22からのCCDドライブ信号の印加により、電荷が読み出され、この読み出された信号はバッファアンプ23により電流増幅され、スコープ2内、つまり挿入部7内及び操作部8から延出されたコード内を神通された伝送ケーブル24

に鮮銳度を改善するためのエンハンス回路31R、31G、31Bに入力され、輪郭強調が行われた後、バッファアンプ32R、32G、32Bを経てカラーモニタ6に出力され、被写体像がカラー表示される。

尚、制御部28には、同期信号発生器33から同期信号が入力され、この同期信号と同期してA/Dコンバータ26のA/D変換、メモリ27R、27G、27Bのリード/ライト、D/Aコンバータ29R、29G、29BのD/A変換、モータ13の回転速度、CCDドライバ22のドライブ信号のタイミングの制御を行う。

この図に示す従来例を含めて、一般に電子内視鏡装置では、電子スコープ2を体内に挿入して、各種の部位を診断或いは処置具等を用いて処置することが行われる。これらの機能を十分に發揮できるようにするために先端径及び硬性部長は細く、短いことが要求され、このため使用できる固体撮像素子の大きさが制約される。この制約から、固体撮像素子の画素数も制約されることになる。ま

た、患者データ等、必要とされる情報を見易く表示するためにも、観察モニタにおいて、固体撮像素子で撮像した被写体像を全画面に表示することは行われず、この従来例では通常行われている場合と同様に第16図に示すように1/2程度の表示サイズで表示される。尚、第16図において画面の左側には上記患者データ等が同時に表示されるようにしてある。

又、この従来例では白黒（モノクロ）の固体撮像素子（具体的にはCCD21）を用いてR、G、Bの3原色光をシーケンシャルに照射する、いわゆる面順次方式を採用しているので、適正な明るさで観察できる距離範囲を確保するために照明期間を長くして1フレーム/フィールド当たりでの照明光量を大きくすることが望ましく、CCD21からは高速で信号読み出しを行って、読み出し期間を短くし、読み出した信号を同時化のためのR、Bメモリ27R、27G、27Bに一時書き込み、該R、G、Bメモリ27R、27G、27Bから読み出す時に標準のビデオ信号速度で読み出すようにし

ヒアース間に接続した抵抗Rはマッチング抵抗である。

ところで、特性的に数MHzの帯域を有するCCD21の出力信号を50Ωから75Ωのケーブル24で伝送するためには、バッファアンプ23を構成するトランジスタ34に数mAから数十mAの電流を流す必要があり、この電流によるパワー消費はトランジスタ34とエミッタ抵抗R1による消費の和、つまり $P = I_c \times V_{ce} + I_e \times R_1$ となって、その発熱量が直近に配設されたCCD21の温度上昇をもたらす。ここで I_c はトランジスタ34のコレクタ電流、 V_{ce} はコレクタ・エミッタ間電圧、 I_e はエミッタ電流である。

[発明が解決しようとする問題点]

一般にCCD21等の固体撮像素子は温度上昇と共に、暗電流が増加し、画質の劣化を招く。通常、この固体撮像素子の動作保証温度は絶対最大定格としてほぼ55℃前後であり、特に高画素数のものであって、複数の水平転送方式の固体撮像素子では上記バッファアンプ23が複数回路必要

ている。

ところで、第15図のスコープ2内のCCD21の出力信号の伝送系は第17図のようになる。

スコープ先端部17からビデオプロセッサ（本体装置）5に至る伝送ケーブル24の長さは、通常2mから3m程度であり、この間を特性の劣化を極力少なくして伝送する為に、同軸ケーブル24が使用され、この同軸ケーブル24をドライブするためにCCD21の直近に配設したエミッタフォロワ接続のトランジスタ34及びエミッタ抵抗R1からなるバッファアンプ23が必要となる。

CCD21の信号出力端はトランジスタ34のベースに接続され、CCD21の電源端及びトランジスタ34のコレクタは電源線35を介して表示しない電源回路の電源端+Vccに接続されている。

上記同軸ケーブル24の特性インピーダンスは通常50Ωから75Ω程度であり、エミッタと同軸ケーブル24の一端との間に介装した抵抗Rとビデオプロセッサ5側の同軸ケーブル24の端部

となり、この絶対最大定格の上限温度範囲を越えてしまう事があった。

上述のように従来方式にあっては伝送ケーブル24の駆動用バッファアンプ23による発熱が大きくなり、暗電流の増加による画質の劣化を招いたり、固体撮像素子の絶対最大定格の上限温度範囲を越えてしまい寿命を短くしてしまうという致命的なダメージを与えるという問題があった。

本発明は上述した点にかんがみてなされたもので、伝送される信号に対する特性を確保でき、固体撮像素子のバッファ手段での発熱を低減化できる低消費電力撮像装置を提供することを目的とする。

[問題点を解決する手段及び作用]

本発明では、固体撮像素子と、その付近に設けられたバッファ手段と、該バッファ手段で電流增幅された信号を信号処理手段側に伝送する信号伝送ケーブルとを備えた撮像装置において、前記バッファ手段を固体撮像素子に対する信号読み出しを行わない非読み出し期間での電力消費を低くする電

力消費低減化手段を設けることにより、バッファ手段での電力消費を低減化して固体撮像素子の温度上昇を抑えたり、暗電流を低減化できるようにしている。

[実施例]

以下、図面を参照して本発明を具体的に説明する。

第1図ないし第5図は本発明の第1実施例に係り、第1図は第1実施例における信号伝送系の主要部を示し、第2図は第1実施例の全体構成を示し、第3図はCCDの概略の内部構造を示し、第4図はスイッチ回路の具体的構成例を示し、第5図は第1実施例の動作説明図を示す。

第2図に示すように第1実施例の撮像装置としての電子内視鏡装置41は、第15図に示す従来例において、バッファアンプ23の電源端がスコープ2内を挿通された電源線42を介してビデオプロセッサ5内に設けたスイッチ回路43の一端に接続され、このスイッチ回路43の他端は図示しない電源回路の電源端Vccに接続されている。

とを構え、パラレル転送クロック ϕ_D の印加により水平（横）方向の1ライン画素分づつ垂直方向に転送され、最も下の1ライン画素分の電荷はシリアルレジスタに転送される。このシリアルレジスタに転送された電荷はシリアル転送クロック ϕ_s の印加により、1画素ごとの電荷が電荷検出回路50により電圧信号に変換され、信号出力端からバッファアンプ23を構成するトランジスタ34のベースに順次出力される。

尚、イメージエリアには黒レベルの基準値を与えるために、遮光されたダークリファレンスエリアが設けてある。

又、イメージエリアにはアンチブルーミング信号 ϕ_{ABG} により、ブルーミングが抑制される。

又、パラレル転送クロック ϕ_D は、シリアルレジスタに残った電荷をダンプドレインに移すゲートにも印加される。

上記CCD44の電荷検出回路50の電源端は電源線35と接続され、電源電圧Vccが印加され、サブストレートはGNDに接続される。

このスイッチ43は例えば制御部28からの切換を行う制御信号により、ON/OFFされる。

又、第15図に示すCCD21の代りに第3図にその概略を示す内部構造のCCD44が用いてある。

従来技術の所で説明したように、撮像のために用いる固体撮像元素（この実施例ではCCD44）の大きさは細く短いスコープ先端部17内に収納できることが必要とされるので、この実施例では小型化等に適した第3図に示すCCD44を用いている。

このCCD44は、バーチャルエーブ構造により、電極が1層構造であることに加えて、ブルーミング抑制に、OFL（オーバーフロードライン）の必要のない独自の方法を用いており、現在実現されているイメージセンサの中では最も小型である。又、温度上昇による暗電流の増加も他の方式のCCDに比べ少ない利点を有している。

第3図において、イメージエリアは光電変換して電荷として蓄積する機能と、パラレル転送機能

この第1実施例におけるCCD44から出力される信号をビデオプロセッサ5間に伝送する伝送系の構成を第1図に示す。（第3図では送電端側を示す。）

第1図に示す伝送系は、第17図に示す伝送系において、CCD21の代りにCCD44を用い、トランジスタ34のコレクタを電源線42、スイッチ回路43を介して電源端Vccに接続した構造になっている。

上記スイッチ回路43は、例えば第4図(a)に示すバイポーラトランジスタ51及び抵抗52で構成したり、同図(b)に示す電界効果型トランジスタ(FET)53で構成することができる。

トランジスタ51のコレクタは電源端Vccに接続され、エミッタは電源線42を介してバッファアンプ23を構成するトランジスタ34のコレクタに接続され、ベースは抵抗52を介して制御部28と接続されている。この制御部28は、第5図(c)に示す信号読み出し期間と同期した同図(d)に示す制御信号を出力し、この制御信号によりト

ランジスタ51をON/OFFして、バッファアンプ23(のトランジスタ34)に電力を供給したり、電力供給を停止する。

つまりトランジスタ51は、信号読み出し期間ではONされてトランジスタ34に電力を供給して、バッファアンプ23の本来の機能(同軸ケーブル24を介して受電端部に信号伝送を行い得るよう電流増幅する機能)を行い、信号読み出し期間以外の期間(非読み出し期間と記す。)ではトランジスタ51がOFFにされて電力が供給されなくなり、この非読み出し期間ではトランジスタ34のコレクタ・エミッタ間に電流が流れなくなり、バッファアンプ23での電力消費をほぼ零にできるようにしている。

第4図(b)に示すFET53を用いてスイッチ回路43を形成した場合には、例えばNチャンネルのエンハンスタイプMOS形FETのドレインは電源端Vccに、ソースは電源線42を介してバッファアンプ23に、ゲートは制御部28に接続され、制御信号によりソース・ドレイン間がON

/OFFされる。接合形のFETを用いて制御信号をON/OFFさせても良い。

その他の構成は第15図に示す従来例と同一であり、同一構成要素には同符号で示してある。

次にこの第1実施例の作用を以下に説明する。

この第1実施例は面順次方式の電子内視鏡装置41であり、第5図(a)に示すように、垂直同期信号に同期して、回転カラーフィルタ14はモータ13により回転されるので、被写体は色透過フィルタ15R, 15G, 15Bを透過したR, G, Bの色光でシーケンシャルに照明され、従ってCCD44はこれらの各色光のもとでの成分画像の電荷が蓄積されることになる。これを第5図(b)ではR露光、G露光、B露光で示している。色透過フィルタ15R, 15G, 15Bが照明光路中に介装されていない各露光期間では、第5図(c)に示すようにCCD44に蓄積された電荷を読み出す信号読み出し期間となり、CCDドライバ22からのドライブ信号によりCCD44から電荷が読み出される。

第5図に示す状態は、露光期間と信号読み出し期間とがほぼ等しい場合、つまり露光期間と信号読み出し期間はこれらを合わせた全期間のほぼ50%であることを示している。

上記信号読み出し期間に同期して、制御部28は、スイッチ回路43に第5図(d)に示す制御信号を出力し、信号読み出し期間のみスイッチ回路43をONして、バッファアンプ23に電力を供給し、CCD44から読み出された信号をバッファアンプ23で電流増幅して低インピーダンスに変換し、同軸ケーブル24を経て受電端に接続されたアリプロセス回路25に伝送する。この伝送された信号は信号処理部4で信号処理されて標準的な映像信号に変換され、カラー モニタ6で被写体像をカラー表示する。

この信号読み出し期間から露光期間(又は非読み出し期間)になると、スイッチ回路43はOFFとなり、バッファアンプ23には電力が供給されなくなり、この期間バッファアンプ23での電力消費は殆ど零となる。信号読み出し期間は非読み出し期

間とほぼ等しいので、バッファアンプ23での電力消費量は従来例に比べてほぼ1/2に低減化でき、発熱量もこれと等しい値に低減化できる。

このバッファアンプ23での発熱量を大幅に低減化できるので、特に小さいスペース内にバッファアンプ23とCCD44とが接近して配設されるような実装が行なわれる場合、CCD44が加熱されて温度上昇することを有効に抑制できることになる。

従って、この第1実施例によればCCD44の暗電流の増大を抑制でき、映像信号の劣化を防止でき、S/Nの良い画像を得ることができることになる。又、温度上昇を抑制できるので、CCD44が最大定格の温度以上に加熱されるのを防止でき、CCD44の熱破損とか寿命の低下を防止できることになる。

尚、非信号読み出し期間にバッファアンプ23への電力供給を停止しても、信号を転送する必要がないので問題はない。しかし、例えば非信号読み出し期間から信号読み出し期間へ切換を行った場合又

はこの逆の切換を行った場合、バッファアンプ23に供給される電源電圧にトランジメント部分が発生して、伝送信号にスパイク状ノイズが発生する場合には、第5図(d')に示すように、信号読み出し期間より少し前に制御信号をアクティブにすると共に、信号読み出し期間後、少し経過するまでアクティブに保つようにすれば良い。この場合には、スパイク状ノイズが伝送系に発生しても、信号の読み込みは行われないので支障ない。

又、第6図に示すようにスイッチ回路43の負荷側端子にスパイク状ノイズの発生を防止する為の抵抗55a及びコンデンサ55bからなる箇分回路55を設けるようにしても良い。この場合のスイッチ回路43への制御信号は、第5図(d')を用いたり、立上がりはこの図(d')と同じで立下がりは同図(d)と一致させても良い。

第7図は本発明の第2実施例における撮像系及びバッファ手段を示す。

この第2実施例は、第2図に示す第1実施例において、CCD44の代りに第7図に示すCCD

61が用いてあり、このCCD61に対応したバッファアンプ62を用いている。

第7図に示すCCD61は、第3図に示すCCD44と同じバーチャルフェーズ構造による、より高画素化を図ったCCDである。一般に面類次方式の電子内視鏡装置においては、CCDからの読み出し時間によって体内被写体への照明時間が決定されており、読み出し時間は直接的にシステムの明るさを左右している。本実施例のCCD61では高画素でありながら読み出し時間の短縮を行えるように、第1及び第2シリアルレジスタからなる2つのシリアルレジスタを備えている。

これら第1及び第2シリアルレジスタには、イメージエリアの各ラインの奇数画素及び偶数画素が転送され、転送された奇数画素及び偶数画素はシリアル転送クロックφSA、φSBにより順次シリアル転送され、電荷検出回路50A、50Bを経て信号出力端OUTA、OUTBから第1バッファアンプ23A、第2バッファアンプ23Bにそれぞれ出力される。

上記第1、第2バッファアンプ23A、23Bは同一回路構成であり、第1実施例のバッファアンプ23を2組設けてバッファアンプ62が形成されている。

第1及び第2バッファアンプ23A、23Bを構成する両トランジスタ34A、34Bのコレクタは接続され、電源線42を介してビデオプロセッサ5内のスイッチ回路43の一端に接続され、このスイッチ回路43の他端は電源端Vccに接続されている。

このスイッチ回路43は、第1実施例と同様に制御部28からの制御信号によってON/OFF制御される。

この第2実施例では、2つのシリアルレジスタを用いることにより、1つのシリアルレジスタの場合よりも読み出し時間を半分に短縮でき、照明期間（露光期間）を長くして、S/Nの良い明るい画像を得られるようにしている。

2つのシリアルレジスタを設けたために、第1及び第2バッファアンプ23A、23Bが必要と

なり、2つのバッファアンプ23A、23Bでの電力消費あるいは発热量は1つのバッファアンプ23の場合の倍となる。

この実施例では、第1及び第2バッファアンプ23A、23Bをそれぞれ構成するトランジスタ34A、34Bの各コレクタをスイッチ回路43を経て電源端Vccに接続して、第5図(d)又は(d')のように、少なくとも信号読み出し期間にONして電力が供給されるようにし、非読み出し期間にはOFFして電力が供給されるのを停止して、発热量の低減化を図っている。

上記各バッファアンプ23A、23Bで電流増幅された信号は、それぞれ同軸ケーブル24A、24Bを経てビデオプロセッサ5内の信号処理部に入力される。

この実施例の信号処理部は、例えば2つのプリプロセス回路（図示略）を有し、各プリプロセス回路でベースバンドの信号を生成し、その後サンプルホールドのタイミングを半画素分ずらしたサンプルホールド処理した両信号を加算し、1ライ

ンの画素信号を生成し、第2図に示すA/Dコンバータ26を経て各メモリ27R, 27G, 27Bに一時蓄込まれる。

その他は第1実施例と同様の構成である。

この第2実施例によれば、画素数が多くなった場合に特に顕著になり易い暗電流の増大とか発熱量の増大による温度上昇を友好に防止できる。

尚、第1及び第2実施例におけるスイッチ回路43としては第4図に示すものに限らず、これらをIC化して汎用のアナログスイッチでも良い。又、スイッチ回路43をONした場合におけるスイッチ回路43のON抵抗による電圧降下が問題となる場合には、確気接点を有するメカニカルなリレーを用いても良い。

第8図は本発明の第3実施例の電子内視鏡装置71を示す。

この第3実施例は、第1図に示す第1実施例において、モザイクフィルタ72が取付けられたCCD73を内蔵した同時式電子スコープ2' と、白色光を出射する光源部3' 及び同時方式の信号

この実施例では、ランプ11は常時発光され、被写体はライトガイド9を経て常時照明されている。従って、この実施例に用いられているCCD73はイメージエリアに垂直転送レジスタを設けたインタライン転送型のCCDが用いてあり、またCCD73は1フィールド毎に垂直転送を行えるタイプである。

この実施例でのモニタ表示例は第9図(a)に示すように、モニタ画面の右側寄りの中央部に内視鏡画像81が表示され、左側等には文字信号発生回路77を経て患者データ等を表示できるようにしてある。

又、第1実施例と同様に、CCD73の出力信号を増幅するバッファアンプ23は、スイッチ回路43を介して電力の供給が制御される。

この実施例では第10図(b)に示すように、CCD73は常時露光される。

一方、第10図(a)に示す垂直同期信号に同期して、第9図(a)の内視鏡画像81を表示するタイミングT1でCCD73には1フィールド分の

処理部4' からなるビデオプロセッサ5' と、カラーモニタ6とから構成される。

上記光源部3' は、光源ランプ11の白色光をコンテンツレンズ16によりライトガイド9に供給している。このライトガイド9により伝送された白色光で照明された被写体は対物レンズ19によってCCD73に結像される。この結像される光学像は色分離フィルタによって光学的に色分離される。

しかし、CCDドライバ22からのドライブ信号により、CCD73から読み出され、バッファアンプ23、同軸ケーブル24を経て信号処理部4' 内の輝度信号生成回路74及び色信号生成回路75に入力され、それぞれ輝度信号Yと色差信号R-Y, B-Yが生成され、輝度信号は混合器76で文字信号発生回路77からの文字信号と加算されて色差信号R-Y, B-Y及び同期信号と共に、エンコーダ78に入力され、コンポジットビデオ信号に変換され、カラーモニタ6に入力される。

信号を読み出すドライブ信号が印加される。このタイミングT1は第9図(b)のT1にほぼ相当し、内視鏡画像81の表示が終了するT2のタイミングでドライブ信号は出力されなくなる。

このT1からT2までが第10図(c)に示す信号読み出し期間となり、この信号読み出し期間に同期して、同図(d)に示すように制御信号が出力され、バッファアンプ23には電力が供給され、CCD73から出力される信号を増幅し、同軸ケーブル24を経て受電端間に伝送する。

上記信号読み出しが行われない非読み出し期間では、制御信号は出力されなくなり、バッファアンプ23には電力が供給されないので、この期間での電力消費は殆ど零となる。

尚、上記非読み出し期間でも患者データ等の信号は出力され、モニタ画面は第9図のように表示されることになる。

この第3実施例の効果は第1実施例とほぼ同様である。

第1実施例で説明したように、信号読み出し期間

と一致して制御信号を出力した場合、スパイク状ノイズが伝送信号に混入する場合には、第10図(d')に示すようにすれば良い。

尚、第9図(a)から分るように内視鏡画像81は水平方向の右側に表示されるので、この内視鏡画像81に対応する映像信号は各水平期間の後半部分に出力され、前半部分ではCCD73から信号が出力されない。

従って、第10図(d)に示す制御信号の出力期間においても第9図(d)に示すように内視鏡画像81に対応する映像信号が実際にCCD73から読み出される期間(時刻t1からt2まで)のみ制御信号を出力するようにすることができる。

尚、制御信号を信号読み出し期間に一致させると、スパイク状ノイズが発生して映像信号に悪影響が生じる場合には、前述のように制御信号の出力期間を広げたり、第9図(d')に示すように立上がり及び立下がりを遅くした制御信号を出力して、スパイク状ノイズの発生を抑止するようにしても良い。

一方、バッファアンプ23を構成するトランジスタ34のコレクタは、電源線35に接続される。

その他の構成は第1実施例と同様である。

この構成によれば、信号読み出し状態ではCCD44の出力信号はバッファアンプ23を構成するトランジスタ34により低インピーダンスに変換され、同軸ケーブル24、スイッチ回路43を経て抵抗R1'、コンデンサC1、抵抗Rからなる受動素子に供給される。ここで抵抗R1'は第1実施例におけるエミッタ抵抗R1に対応し、バッファアンプを駆動に動作させるための直流バイアス電流を流すためのものとなる。

一方、この抵抗R1と直列のコンデンサC1及び抵抗Rは交流成分、つまりCCD44の出力信号を受けるための終端抵抗(終端素子)となる。

この実施例では、1本の電源線35とし、ビデオプロセッサ5側で信号伝送のための同軸ケーブル24をバイアス電流の流路として兼用させ、その受電端に介装したスイッチ回路43をON/OFFすることにより、実質上バッファアンプ23

第11図は本発明の第4実施例の主要部を示す。

上述の各実施例では、CCD44、61、73とバッファアンプ23、62の各々に電源線35、42を必要とし、これら電源線35、42をスコープ内に挿通しなければならない。又、バッファアンプ23、62のエミッタ抵抗R1をCCD44、61、73の近くに設けているので、この抵抗R1での電力消費 $I_e \times R_1$ が発生してしまう。

これら2点を改善したのが、この実施例である。

例えば第1実施例において、エミッタ抵抗R1をビデオプロセッサ5内の受電端側に移して(移した抵抗をR1'で表わす。)この抵抗R1'での電力消費による発熱がCCD44に影響しないようにし、スイッチ回路43をこの抵抗R1と直列に設けて電源線42を削減している。

つまり、同軸ケーブル24の受電端はスイッチ回路43及びエミッタ抵抗R1'の直列回路を介して接地され、このスイッチ回路43と抵抗R1'の接続点は、直流阻止コンデンサC1を介してプリプロセス回路25の入力端に接続される。

への電力の供給を制御する。つまり、ON時には本来のバッファアンプの機能を行わせ、OFF時には実質上電力が供給されないようにしている。

従って、この第1実施例は、第1実施例の効果を有すると共に、さらに上記2点を改善できる効果を有する。

この第4実施例は、第1実施例に適用したが、他の実施例にも適用できることは明らかである。

第12図は第5実施例における主要部を示す。

前述の実施例では、信号読み出し期間と一致するように供給電力をON/OFFした場合には、厳密に考えると、ON/OFFの時点でバッファアンプ23、62は定常動作とは異なる過渡的動作を行い、CCD44、61、73から読み出された信号に影響を及ぼす虞れがある。

この第5実施例ではこの点を改善するためのものである。

第11図に示す第4実施例において、スイッチ回路43を抵抗R1'とアースとの間に移し、且つこの抵抗R1'より大きな抵抗値の抵抗R2を

抵抗R1'及びスイッチ回路43と並列に設けた構成にしている。

この構成では、非読み出し期間では、第12図に示すようにスイッチ回路43はOFFであり、バイアス電流はR1' < R2の関係の抵抗R2を介して流れれる。

一方、信号読み出し時にはスイッチ回路43はONとなり、抵抗R1'及びR2の並列合成抵抗を介して正規のバイアス電流が流れるようにしてスイッチ回路43のON/OFF時にトランジエントな動作状態が生じるのを抑圧している。

尚、この動作からも明らかかなように、第11図の抵抗R1'は第12図の抵抗R1'及び抵抗R2の並列合成抵抗に対応する。

尚、第12図のようにする代りに第11図において、スイッチ回路43をONからOFF及びこの逆にする場合、連続的に変化させるようにしても良い。

上述した各実施例では、電気信号で信号伝送を行っているが、第13図に示す第6実施例のよう

にファイバケーブル91を用いて信号伝送を行うようにしても良い。

CCD44の出力信号は電流ブースト回路92で電流増幅され、LED93等の発光素子に供給され、電気信号から光信号に変換される。このLED93の光信号は、レンズ94で集光されファイバケーブル91の一端に供給される。このファイバケーブル91によってビデオプロセッサ5に接続された他端まで光信号は伝送され、この他端に対向配置したレンズ95で集光され、フォトトランジスタ96等の受光素子で受光され、光電変換される。このフォトトランジスタ96のコレクタは電源端Vccに接続され、エミッタは抵抗rを介して接地されると共に、プリアプロセス回路25の入力端に接続されている。

尚、電流ブースト回路92の電源端は、第1実施例と同様に電源線42を介してビデオプロセッサ5内のスイッチ回路43の一端に接続されている。

この第6実施例は第1実施例とほぼ同様の作用

効果を有する。

尚、例えば第6実施例において、第14図に示す変形例のようにスイッチ回路43をスコープ側に移し、CCD44をドライブするドライブ信号線97a, 97bを利用して切換信号で例えば NANDゲート98を介して駆動するようにしても良い。

上記信号線97a, 97bは例えば垂直転送クロックと水平転送クロックを伝送するもので、CCD44をドライブする場合、両信号は共に“H”となる期間がない信号線であり、これらの信号線97a, 97bは、ビデオプロセッサ5内で切換スイッチ99を介してCCDドライバ22及び（抵抗r1, r2を介して）電源端Vccに接続される。この切換スイッチ99は、制御信号によって切換えられ、信号読み出し期間にはドライバ22側が選択され、この状態では共に“H”となる信号レベル期間がないので、NANDゲート97の出力は“H”であり、スイッチ回路43はON状態を保持し、電流ブースト回路92には電力が供給

される。

一方、非読み出し期間では、切換スイッチ99が電源端Vcc側に切換えられるので、 NANDゲート98の出力は“L”となり、スイッチ回路43はOFFとなり、電流ブースト回路92での電力消費を殆ど零となる。

この変形例によれば電源線42を省くことができる。

尚、面順次方式の各実施例において、スイッチ回路43をON/OFFする制御信号は回転カラーフィルタ14における照明期間を検出するための図示しないセンサの出力で生成するようにしても良い。

又、上述した各実施例を部分的に組合わせて異なる実施例を構成することもできる。

尚、本発明はファイバスコープの接眼部にテレビカメラを装着したテレビカメラ外付けスコープにも適用できる。

又、バッファ手段を備えた任意のテレビカメラに適用した場合にも、バッファ手段での電力を低

減化できる利点を有する。

尚、本発明は第1及び第2実施例のCCD44, 61のようなライン転送タイプのCCDに限らず、インタライン転送タイプとかフレームトランスファタイプにも適用できる。又、CCDに限らずBDDその他の固体撮像素子の場合にも適用できる。

[発明の効果]

以上述べたように本発明によれば固体撮像素子の周辺部に配設されるバッファ手段に供給される電力をスイッチのON/OFF等で低減化する低減化手段と、その低減化手段を制御する制御手段とを設けて固体撮像素子から信号読み出しを行わない期間、バッファ手段での電力消費を低減化するようしているので、固体撮像素子の温度上昇を防ぎ、この温度上昇に伴う悪影響を防止できる。

4. 図面の簡単な説明

第1図ないし第5図は本発明の第1実施例に係り、第1図は第1実施例におけるCCD出力信号の信号伝送系の概略構成図、第2図は第1実施例の全体構成図、第3図はCCDの概略の内部構成

図、第4図(a), (b)はスイッチ回路の具体的構成を示す回路図、第5図は第1実施例の動作説明図、第6図は第1実施例の変形例におけるスイッチ回路周辺部を示す回路図、第7図は本発明の第2実施例における撮像手段周辺部を示す構成図、第8図ないし第10図は本発明の第3実施例に係り、第8図は第3実施例の全体構成図、第9図はモニタ画面等を示す説明図、第10図は動作説明図、第11図は本発明の第4実施例における信号伝送系の概略構成図、第12図は本発明の第5実施例における信号伝送系の受電端周辺部を示す回路図、第13図は本発明の第6実施例における信号伝送系部分を示す構成図、第14図は第6実施例の変形例の主要部を示す構成図、第15図は従来例の全体構成図、第16図は従来例におけるモニタ表示例を示す説明図、第17図は従来例における信号伝送系の概略構成図である。

2…電子スコープ	3…光源部
4…信号処理部	5…ビデオプロセッサ
6…カラー モニタ	23…バッファアンプ

24…同軸ケーブル 34…トランジスタ

35, 42…電線

41…電子内視鏡装置

43…スイッチ回路

44…CCD

代理人 弁理士 伊藤 遼

第1図

第3図

第 2 図

第 4 図

第 5 圖

第 6 図

第 7 図

第 10 図

第 8 図

第9図

第11図

第12図

第13図

第16図

第14図

第17図

第 15 図

手続補正書面(自発)

平成2年1月30日

特許庁長官 吉田文毅

1. 事件の表示 平成1年特許願第317127号

2. 発明の名称 低消費電力撮像装置

3. 補正をする者
事件との関係 特許出願人住 所 東京都港区北青山3丁目6番12号 青山富士ビル
名 称 日本テキサス・インスツルメンツ株式会社
代表者 石川 明(ほか1名)4. 代理人
住 所 東京都新宿区西新宿7丁目4番4号
武蔵ビル6階 ☎ (371) 3561
氏 名 (7623) 弁理士 伊藤 進

5. 補正命令の日付 (自発)

6. 補正の対象 明細書の「発明の詳細な説明」の欄

7. 補正の内容 別紙の通り

1. 明細書中第7ページの第1行目ないし第4行目に、「…見易く表示するためにも、…この従来例では…」とあるのを「…見易く表示するためにも、この従来例では…」に訂正します。

2. 明細書中第12ページの第7行目に、「…固体撮像要素…」とあるのを「…固体撮像素子…」に訂正します。

3. 明細書中第23ページの第7行目に、「…温度上昇を友好に防止…」とあるのを「…温度上昇を良好に防止…」に訂正します。

4. 明細書中第35ページの第5行目及び第6行目に、「…BDDその他…」とあるのを「…CMOSその他…」に訂正します。

