高斯積分程式

01057033 洪銘均

Friday 25th October, 2024

Contents

1	檔案與功能	2
	1.1 C++ 標頭檔案	2
	1.2 C++ 實作檔案	2
2	函式功能描述	2
	2.1 func.cpp	2
	2.2 tabulation.cpp	2
	2.3 main.cpp	3
3	運行結果	3
	3.1 積分正確答案與函數圖形	3
	3.2 P-Refinement	4
	3.3 H-Refinement	5
	3.4 Refinement	5
	3.5 Visualize	6
4	心得	6
5	參考資料	6

1 檔案與功能

以下是每個原始碼檔案的簡要描述:

1.1 C++ 標頭檔案

- func.h:定義函數 f(x),並新增以下常數:
 - PI:定義 PI 常數,使用 cmath.h 的 aros(),傳入參數-1。
 - FUNCSTR:定義函數 f(x) 的字串表示,用於 GnuPlot 繪圖。
- tabulation.h:定義計算高斯積分的權重和採樣點

1.2 C++ **實作檔案**

- func.cpp:實作函數 f(x)
- tabulation.cpp:實作高斯積分的權重和採樣點。
- main.cpp:主程式,呼叫 compute_weights 計算權重及採樣點,並計算積分值。

2 函式功能描述

以下是主要函式的功能說明:

2.1 func.cpp

• double F(double, double): 計算函數 F(x,y) 的值。

2.2 tabulation.cpp

使用 Pomax 所提供的方法計算 [1]

1. 取得 Legender Polynomial 的值。

$$P_n(x) = \frac{2n-1}{n}x * P_{n-1}(x) - \frac{n-1}{n}P_{n-2}(x) \quad (n \ge 2)$$

2. 使用牛頓法計算根。

$$x_0 = \cos(\pi * (n - i - 0.25)/(n + 0.5))$$

$$x_{j+1} = x_j - P_n(x_j)/P'_n(x_j)$$

3. 計算權重。

$$w_i = 2/((1-x_i^2)*(P_n'(x_i))^2)$$

- double legendre(int, doulbe): 計算勒讓德多項式的值。
- double legendre_derivative(int, double): 計算勒讓德多項式的導數值。
- std::vector<double> legendre_roots(int, int, double): 計算勒讓德多項式的根。
- std::vector<double> compute_weights(int, const std::vector<double>): 計算高斯積分的權重。

2.3 main.cpp

- main(): 主程式,呼叫 compute_weights 計算權重及採樣點,並計算積分值,最後使用 gnuplot 繪圖。
- gauss_quadrature_2D(int, double(*)(double, double), double, double, double, double, double): 計算二維高斯積分。 $\int_a^b \int_c^d f(x,y) dx dy \approx \sum_{i=0}^n \sum_{j=0}^n w_i w_j f(x_i,y_j) * \tfrac{b-a}{2} * \tfrac{d-c}{2}$
- gauss_quadrature_2D_grid(int, double(*)(double, double), double, double,

$$\begin{split} g_x &= \frac{|a-b|}{G} \quad g_y = \frac{|c-d|}{G} \\ \int_a^b \int_c^d f(x,y) dx \, dy &\approx \sum_{i=0}^{\frac{b-a}{g_x}-1} \sum_{j=0}^{\frac{d-c}{g_y}-1} \sum_{k=0}^n \sum_{l=0}^n w_k w_l f\left(x_k \cdot \frac{(a+g_x(i+1))-(a+g_xi)}{2} + \frac{(a+g_x(i+1))+(a+g_xi)}{2}, y_l \cdot \frac{(c+g_y(j+1))-(c+g_yj)}{2} + \frac{(c+g_y(j+1))+(c+g_yj)}{2} \right) \\ \cdot \frac{(a+g_x(i+1))-(a+g_xi)}{2} \cdot \frac{(c+g_y(j+1))-(c+g_yj)}{2} \\ &= \sum_{i=0}^{\frac{b-a}{g_x}-1} \sum_{j=0}^{\frac{d-c}{g_y}-1} \sum_{k=0}^n \sum_{l=0}^n w_k w_l f\left(x_k \cdot \frac{g_x}{2} + (a+g_xi+\frac{g_x}{2}), y_l \cdot \frac{g_y}{2} + (c+g_yj+\frac{g_y}{2})\right) \cdot \frac{g_x}{2} \cdot \frac{g_y}{2} \end{split}$$

3 運行結果

3.1 積分正確答案與函數圖形

Figure 1: 積分正確答案-使用 Geogebra 計算

Figure 2: $f(x,y) = (\sin(4*pi*x) + 1)*(\cos(4*pi*y) + 1)$

3.2 P-Refinement

N 為 Legendre 多項式次數,Result 為積分值,Error 為誤差。

N	Result	Error		Result	Error	
2	9.1188491146e-01	3.5088115089e+01	18	1.8413133260e+01	1.7586866740e+01	
3	3.9999637870e+01	3.9996378703e+00	19	4.6208395774e+01	1.0208395774e+01	
4	6.4994893227e+01	2.8994893227e+01	20	3.1395581187e+01	4.6044188129e+00	
5	4.0440463347e+01	4.4404633474e+00	21	3.7696229819e+01	1.6962298190e+00	
6	2.8290249855e+01	7.7097501451e+00	22	3.5473701296e+01	5.2629870408e-01	
7	1.9756218686e+01	1.6243781314e+01	23	3.6140478205e+01	1.4047820528e-01	
8	5.4755662235e+01	1.8755662235e+01	24	3.5967235045e+01	3.2764954577e-02	
9	5.6083021904e+01	2.0083021904e+01	25	3.6006759412e+01	6.7594119433e-03	
10	4.6797642332e+01	1.0797642332e+01	26	3.5998754483e+01	1.2455171449e-03	
11	3.4682639395e+01	1.3173606046e+00	27	3.6000206651e+01	2.0665102727e-04	
12	2.4753251334e+01	1.1246748666e+01	28	3.5999968916e+01	3.1083542787e-05	
13	3.5058279612e+01	9.4172038778e-01	29	3.6000004264e+01	4.2635055522e-06	
14	5.0119759982e+01	1.4119759982e+01	30	3.5999999464e+01	5.3598760275e-07	
15	3.1362156500e+01	4.6378434996e+00	31	3.6000000062e+01	6.2035162784e-08	
16	2.2474694991e+01	1.3525305009e+01	32	3.5999999993e+01	6.6364975737e-09	
17	5.7341100010e+01	2.1341100010e+01	33	3.6000000001e+01	6.5857364007e-10	

3.3 H-Refinement

G*G 為 Grid 數量,Result 為積分值,Error 為誤差,N=8。

G	Result	Error	G	Result	Error	
1	5.4755662235e+01	1.8755662235e+01	17	3.6000000000000000000000000000000000000	7.1054273576e-15	
2	1.0081204098e+01	2.5918795902e+01	18	3.6000000000000000000000000000000000000	1.4210854715e-14	
3	3.4499874630e+01	1.5001253702e+00	19	3.600000000000e+01	2.1316282073e-14	
4	3.6043462043e+01	4.3462043139e-02	20	3.600000000000e+01	0.00000000000e+00	
5	3.600000000000e+01	0.00000000000000000000000000000000000	21	3.600000000000e+01	7.1054273576e-15	
6	3.5999864294e+01	1.3570560129e-04	22	3.600000000000e+01	4.9737991503e-14	
7	3.600000000000e+01	7.1054273576e-15	23	3.6000000000000000000000000000000000000	2.8421709430e-14	
8	3.600000000000e+01	2.8421709430e-14	24	3.600000000000e+01	4.9737991503e-14	
9	3.6000000000000000000000000000000000000	1.4210854715e-14	25	3.6000000000000000000000000000000000000	2.1316282073e-14	
10	3.600000000000e+01	1.4210854715e-14	26	3.600000000000e+01	3.5527136788e-14	
11	3.6000000000000000000000000000000000000	1.4210854715e-14	27	3.6000000000000000000000000000000000000	2.8421709430e-14	
12	3.6000000003e+01	3.1435547498e-09	28	3.600000000000e+01	7.1054273576e-15	
13	3.6000000000000000000000000000000000000	7.1054273576e-15	29	3.6000000000000000000000000000000000000	1.4210854715e-14	
14	3.6000000000000000000000000000000000000	7.1054273576e-15	30	3.60000000000e+01	7.1054273576e-15	
15	3.6000000000000000000000000000000000000	4.2632564146e-14	31	3.6000000000000000000000000000000000000	3.5527136788e-14	
16	3.6000000000000000000000000000000000000	9.9475983006e-14	32	3.6000000000000000000000000000000000000	1.2789769244e-13	

3.4 Refinement

横軸為網格數量,縱軸為 N,表格內容為誤差值。

	3	4	5	6	7	8	9	10
2	2.03e+01	2.40e+01	7.11e-15	3.18e+01	2.13e-14	1.42e-14	1.42e-14	1.42e-14
3	3.05e+00	2.65e+01	2.84e-14	1.91e+01	3.55e-14	6.39e-14	1.42e-14	2.84e-14
4	1.22e+01	2.67e+01	7.11e-15	4.53e+00	7.11e-15	4.26e-14	0.00e+00	2.13e-14
5	2.88e+01	1.09e+01	7.11e-15	6.00e-01	7.11e-15	2.13e-14	7.11e-15	7.11e-15
6	1.83e+01	2.56e+00	1.42e-14	5.12e-02	1.42e-14	7.11e-15	0.00e+00	2.84e-14
7	6.45e + 00	3.94e-01	7.11e-15	3.06e-03	1.42e-14	0.00e+00	2.13e-14	2.13e-14
8	1.50e+00	4.35e-02	0.00e+00	1.36e-04	7.11e-15	2.84e-14	1.42e-14	1.42e-14
9	2.52e-01	3.62e-03	7.11e-15	4.65e-06	1.42e-14	1.42e-14	7.11e-15	3.55e-14
10	3.22e-02	2.36e-04	1.42e-14	1.27e-07	4.26e-14	1.42e-14	7.11e-15	4.26e-14
11	3.26e-03	1.24e-05	0.00e+00	2.82e-09	4.26e-14	2.13e-14	7.11e-15	2.13e-14

3.5 Visualize

Figure 3: Visualize

4 心得

這次作業實做了高斯積分,並透過網格量分段積分的方式 (H-Refinement) 和多項式次數的增加 (P-Refinement) 來進行誤差分析,最後透過 Refinement 來找比較哪個方法的誤差較小。

在實做過程中,原本是打算使用建表的方式來計算高斯積分的權重和採樣點,但在上網尋找資源時看到有人提供計算權重和採樣點的 psuedo code,因此改用這個方法來計算,得到相比建表的方法更精確且彈性的結果。

在結果視覺化中,原本打算使用 OpenGL, 但後來想說嘗試看看使用 gnuplot, 因此最後使用 gnuplot 來繪製函數圖形以及誤差。

5 參考資料

References

[1] Pomax, "Gaussian Quadrature Weights and Abscissae", https://pomax.github.io/bezierinfo/legendre-gauss.html