

CS602-Computer Graphics Solved MCQ(S)

From Midterm Papers (1 TO 22 Lectures) BY Arslan

Oct 18,2017

V-U

For Updated Files Visit Our Site:

Www.VirtualUstaad.blogspot.com

Updated.

In the Name of Allah, the Most Gracious, the Most Merciful

MidTerm Papers Solved MCQS with Reference (1 to 22 lectures)

- 1. Monochrome Adapter (MA) is a single color adapter **True**
 - 0

PG#38

- False 0
- 2. We can explain relationship between X, Y and Z coordinates using the left hand rule.
 - **False**
 - True
- 3. The last column of an affine transform matrix does not affect vectors.
 - 0 True
 - False
- 4. Plasma-panel Displays use a gas mixture and phosphorus coating for showing display.
 - **False**
 - True

5.	$(x^2/a^2) - (y^2/b^2) = 1$ is an equatio	n of
	o Circle	
	o Parabola	
	o <mark>Hyperbola</mark>	PG # 70
	o Ellipse	
6.	There are basic types of	polygon.
	0 2	
	o 3	PG # 81
	0 4	
	0 10	
7.		ly concave polygons that may have self-intersecting edges.
	o <mark>Complex</mark>	PG # 81
	 None of the given 	
	o Hybrid	
	o Convex	
8.	The actual filling process in bounda selected.	ry filling algorithm begins when a point of the figure is
	 Outside the boundary 	
	o Inside the boundary	PG # 102
	o At boundary	
	o None of the given	

9. In Trivial acceptance/reject test there are four bits of nine regions, Bit 1 represent	ts condition
 Outside half plane of left edge, to the left of left edge X < Xmin 	
 Outside half plane of right edge, to the right of right edge X > Xrnax 	
 Outside half plane of bottom edge, below bottom edge Y < Ymin 	
 Outside half plane of top edge, above top edge Y > Ymax 	PG # 143
10. In Trivial acceptance/reject test there are four bits of nine regions, Bit 2 representations of nine regions, Bit 2 representations of nine regions.	ts condition
 Outside half plane of left edge, to the left of left edge X < Xmin 	
 Outside half plane of right edge, to the right of right edge X > Xmax 	
 Outside half plane of bottom edge, below bottom edge Y < Ymin 	PG # 143
 Outside half plane of top edge, above top edge Y > Ymax 	
11. In Trivial acceptance/reject test there are four bits of nine regions, Bit 3 represen	ts condition
 Outside half plane of left edge, to the left of left edge X < Xmin 	
\circ Outside half plane of right edge, to the right of right edge X > Xmax	PG # 143
 Outside half plane of right edge, to the right of right edge X > Xmax Outside half plane of bottom edge, below bottom edge Y < Ymin 	PG # 143
	PG # 143
Outside half plane of bottom edge, below bottom edge Y < Ymin	
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 	
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 representations. 	ts condition
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 represent Outside half plane of left edge, to the left of left edge X < Xmin 	ts condition
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 represen Outside half plane of left edge, to the left of left edge X < Xmin Outside half plane of right edge, to the right of right edge X > Xmax 	ts condition
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 represent Outside half plane of left edge, to the left of left edge X < Xmin Outside half plane of right edge, to the right of right edge X > Xmax Outside half plane of bottom edge, below bottom edge Y < Ymin 	ts condition
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 represent Outside half plane of left edge, to the left of left edge X < Xmin Outside half plane of right edge, to the right of right edge X > Xmax Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 	ts condition
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 represent Outside half plane of left edge, to the left of left edge X < Xmin Outside half plane of right edge, to the right of right edge X > Xmax Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 13. Polygons consisting of can cause problems when rendering. 	ts condition
 Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 12. In Trivial acceptance/reject test there are four bits of nine regions, Bit 4 represen Outside half plane of left edge, to the left of left edge X < Xmin Outside half plane of right edge, to the right of right edge X > Xmax Outside half plane of bottom edge, below bottom edge Y < Ymin Outside half plane of top edge, above top edge Y > Ymax 13. Polygons consisting of can cause problems when rendering. Non-co-planar vertices 	ts condition

14. T	14. The homogeneous coordinates for 3D translation can be expressed as		
	0	None of the given	
	0	P' = T(tx, tx, tx) + P	
	0	P' = T(0, 0, 0) + P	
	0	P' = T (tx, ty, tz) . P PG # 179	
15		is the tendency of the text to flash as it moves up or down.	
	0	Flickering PG # 38	
	0	Snow	
	0	Distortion	
	0	None of the given	
16		is the flurry of bright dots that can appear anywhere on the screen.	
	0	Flickering	
	0	Snow effect PG # 38	
	0	Distortion	
	0	None of the given	
17. In	vid	eo text memory, are used to display a character.	
	0	2 bytes PG # 43	
	0	4 bytes	
	0	8 bytes	
	0	16 bytes	

18. In _		algorithm, old color must be read before it is invoked.
	0	Scan line filling
	0	Flood fill PG # 104
	0	Both scan line and flood fill
	0	None of the given
19. In _ shif	ted	transformation one coordinate is held fixed and the other coordinate or coordinates are d.
	0	Rotation
	0	Reflection
	0	Shear Click Here For More Detail
	0	None of the given
		ot product of two vectors A and B is, if the angle between them is less than 90 or greater 70 degrees.
	0	Greater than zero (0) PG # 177
	0	Less than zero (0)
	0	Equal to Zero (0)
	0	None of the given
21. In _ leng	gth.	projection, all lines perpendicular to the projection plane are projected with no change in .
	0	Cavalier and Cabinet
	0	Cabinet
	0	Cavalier PG # 199
	0	None of the given

22. First s	tep of triangle rasterization is to be able to	a solid filled triangle.
0	Rotate	
0	Render	PG # 216
0	Redraw	
0	None of the given	
23. If the	value of scaling factors S_x and S_y is greater th	an 1, then size of objects will be
0	Reduced	
0	Enlarged	PG # 121
0	Remain same	
0	None of the given	
	-	creased than original size; whereas; in reverse case that is ginal size and obviously there will be no change occur in
	g factor equal 1.	
24. Interla	cing the horizontal refresh	
0	Is no longer used in any system	
	is no longer used in any system	
0	Is necessary because of the shape of the rod	s in the human eye
0		s in the human eye
	Is necessary because of the shape of the rod	
0	Is necessary because of the shape of the rod. Is distracting and can cause eye fatigue	izontal refresh rate is faster
0	Is necessary because of the shape of the rod. Is distracting and can cause eye fatigue Fools the human eye into thinking the hor	izontal refresh rate is faster
o 25. It is sa	Is necessary because of the shape of the rod. Is distracting and can cause eye fatigue Fools the human eye into thinking the horate to assume that all raster-type monitors can	izontal refresh rate is faster
25. It is sa	Is necessary because of the shape of the rod. Is distracting and can cause eye fatigue Fools the human eye into thinking the house to assume that all raster-type monitors can False	rizontal refresh rate is faster accept the same input
25. It is sa	Is necessary because of the shape of the rod. Is distracting and can cause eye fatigue Fools the human eye into thinking the house to assume that all raster-type monitors can False True	rizontal refresh rate is faster accept the same input
25. It is sa 0 26. Both I	Is necessary because of the shape of the rod. Is distracting and can cause eye fatigue Fools the human eye into thinking the horate to assume that all raster-type monitors can False True Boundary Filling and Flood filling algorithms	rizontal refresh rate is faster accept the same input

si si

	defining a mesh of triangles that the skin are ordered	define the boundary of a solid, you set it up so that all of the triangles when viewed from the outside.
0	Perpendicular	
0	Parallel	
0	Clockwise	PG # 208
0	Anticlockwise	
28. We ca	an not explain relationship betwee	n X, Y and Z coordinates using the left hand rule.
0	False	
0	True	
29. A		(x, y) that are the same distance from the directrix and focus not on the
0	Circle	
0	Hyperbola	
0	Parabola	PG # 73
30. Rotati	ing a point requires that you know	the coordinates for the point, and also know the rotation angles.
0	False	
0	True	PG # 180
31. The bo	oundary-fill method requires the c	coordinates of
0	Starting point	
0	Filling colour	
0	Boundary colour	
0	All of the given	PG # 102
<mark>he boundary</mark> -	-fill method requires the coordinate	es of a starting point, a fill color, and a boundary color as arguments.

Soundary Filling and Flood filling algorithm	is are	than scan line filling algorithm.
None of the given		
Better		
Worse		
Almost same		
d a line with both endpoints outside clippin	g boundaries is calle	ed as
Trivial Reject	PG # 142	
Trivial Accept		
None of the given		
Total outside		
	of all others, so it is	impossible to arrange the clipping stages
True		
False	PG # 150	
False ng against one edge is independent of all other		rrange the clipping stages in a pipeline.
	ers, it is possible to a	
ng against one edge is independent of all other	ers, it is possible to a	
ng against one edge is independent of all other	ers, it is possible to a	
ng against one edge is independent of all other polygons are filled, line-clipping techniques True	ers, it is possible to an are sufficient to clip PG # 248	p it.
ng against one edge is independent of all other polygons are filled, line-clipping techniques True False are unfilled, line-clipping techniques are sur	ers, it is possible to an are sufficient to clip PG # 248 Efficient however, if the	p it. ne polygons are filled, the process in more
ng against one edge is independent of all other polygons are filled, line-clipping techniques True False are unfilled, line-clipping techniques are sure unfilled, line-clipping techniques are sure unfilled.	ers, it is possible to an are sufficient to clip PG # 248 Efficient however, if the	p it. ne polygons are filled, the process in more
ng against one edge is independent of all other polygons are filled, line-clipping techniques True False are unfilled, line-clipping techniques are sure unfilled, line-clipping techniques are sure unfilled.	ers, it is possible to an are sufficient to clip PG # 248 Efficient however, if the estem, display process	p it. ne polygons are filled, the process in more
ng against one edge is independent of all other polygons are filled, line-clipping techniques. True False Sare unfilled, line-clipping techniques are sure unfilled, line-clipping techniques are sure unfilled. System memory	ers, it is possible to an are sufficient to clip PG # 248 Efficient however, if the	p it. ne polygons are filled, the process in more
ng against one edge is independent of all other polygons are filled, line-clipping techniques True False are unfilled, line-clipping techniques are sure unfilled, line-clipping techniques are sure unfilled.	ers, it is possible to an are sufficient to clip PG # 248 Efficient however, if the estem, display process	p it. ne polygons are filled, the process in more
•	Better Worse Almost same d a line with both endpoints outside clippin Trivial Reject Trivial Accept None of the given Total outside se clipping against one edge is independent peline.	Better Worse Almost same d a line with both endpoints outside clipping boundaries is called Trivial Reject PG # 142 Trivial Accept None of the given Total outside se clipping against one edge is independent of all others, so it is peline.

27 Vori		us gurrus functions are useful in
		us curve functions are useful in
	0	Object modeling
	0	Graphics applications
	0	All of the given PG # 69
	0	Animation path specifications
		functions are useful in object modeling, animation path specifications, data, function graphing, and other
graphics app		
38		transformation produces shape distortions as if objects were composed of layers that are caused e over each other.
	0	Translation
	0	Reflection
	0	Shear PG # 129
		Rotation
	0	
39. In _		projection, lines which are perpendicular to the projection plane are projected at
	0	Cabinet , 1/2 length PG # 199
	0	Cavalier, 1/2 length
	0	Cabinet , No change in length
	0	Cavalier, No change in length
	_	projection technique has the direction of projection perpendicular to the viewing plane, and the viewing on is perpendicular to one of the principle faces.
	0	Axonometric Parallel Projection
	0	Oblique Parallel Projection
	0	Orthographic Parallel Projection PG # 194
	0	None of the given

41. Comp	outer Graphics are used in		
0	Game development		
0	Movies development		
0	Simulations		
0	All of the given	PG # 6	
42. (x^2/x^2)	$(a^2) + (y^2/b^2) = 1$ is an equation of		
0	Parabola		
0	Hyperbola		
0	Ellipse	PG # 70	
0	Circle		
	ight line can be moved to another location by aparawing the line between the new coordinates.	oplying	_ to each of the line endpoints
0	Rotation		
0	Translation	PG # 118	
0	Reflection		
0	Scaling factor		
44. Bound	dary Filling Algorithm cannot work for	polygons.	
0	Convex		
0	Concave		
0	Complex		
0	All of the given		

45. To m	ove a from one location new center point.	on to another, we translate the center point and redraw the same
0	Arc	
0	Parabola	
0	All of the given	
0	Circle	PG # 119
46. For n	nodifying object shapes,	_ transformations can be used.
0	Rotation	
0	Translation	
0	Shearing	PG # 192
0	both translation and shearing	
47. The b	oundary-fill method requires	
0	Coordinates of starting point	
0	Filling colour	
0	Boundary colour	
0	All of the given	PG # 102
48. In 2D	transformations, two successive rotations	applied to a point P can be denoted as
0	$\mathbf{P'} = \mathbf{R} \ (\mathbf{\Theta}_1 + \mathbf{\Theta}_2). \ \mathbf{P}$	PG # 124
0	$P' = (R (\Theta_1) - R (\Theta_2)). P$	
0	$P' = R(\Theta_1 \times \Theta_2) . P$	
0	$P' = R (\Theta_1). P$	

49. We ca	an draw 8 points corresponding to ea	ach (x. y) point in drawing	algorithm.
0	Triangle		
0	Parabola		
0	Circle		
0	Hyperbola		
50. If a lin	ne connecting any two points withinpolygon.	a polygon does not intersect any edge, then i	t will be a
0	Convex	PG # 79	
0	Concave		
0	Complex		
0	Hybrid		
51. A col	umn matrix is also known as	. (Choose best suitable answer)	
0	Column vector	PG # 107	
0	Row vector		
0	Vector		
0	Unit vector		
A column ma	atrix is also called column vector and	d call a row matrix a row vector.	
	use clipping against one edge is inde s in a pipeline.	pendent of all others, so it is to	arrange the clipping
0	Possible	PG # 150	
0	Impossible		
0	Impossible sometimes impossible		
0	sometimes impossible		

53. We ca	an explain relationship between X. Y and Z coordinates using
0	Left hand rule
0	Pump rule
0	Jaw rule
0	Right hand rule
54. The h	nomogeneous coordinates for 3D translation can be expressed as
0	P' = T(0, 0, 0) - P
0	P' = T(tx, tx, tx) + P
0	P' = T(0, 0, 0) + P
0	P' = T (tx, ty, tz) . P PG # 179
55. A	system (or frame) is an affine, euclidean vector space.
0	Number
0	Coordinate
0	Unit
0	Vector
56. A thre	ee-dimensional reflection can be performed relative to a selected reflection
0	Point
0	
0	
0	Both Axis and plane
three-dimei lane.	nsional reflection can be performed relative to a selected reflection axis or with respect to a selected reflection

Note: Give me a feedback and your Suggestion also If you find any mistake in mcqz plz inform me Viva Contact us Page on our Site. And tell me your answer with references.

For More Solved Papers By Arslan Visit Our Website: Www.VirtualUstaad.blogspot.com

Winning is not everything, but wanting to win is everything.....
Go Ahead..... Best Of Luck!