基于Motif Entropy的WL-Kernel方案

首先给定8种Motif的实例,图G=(V,E),对于节点 $n=\{n_1,n_2,\ldots,n_k\}$ 中的每个节点,分别对k个节点进行度排序,得到排序后从小到大的序列 $n'=\{n'_1,n'_2,\ldots,n'_k\}$ 。

构造一个8维的向量 $\mathbf{V}_{\mathbf{num-motif}}$,标号0-7,分别对应图中8种Motif,通过对序列n'依次计算Motif 出现的次数得出8种Motif的总次数填入向量中,如图所示:

构造k个8维的向量 $\mathbf{V_1}$, $\mathbf{V_2}$, ..., $\mathbf{V_k}$, 分别对应序列n'中的节点 n_1' , n_2' , ..., n_k' 。同理对每个维度标号0-7,分别对应8中Motif,对于向量 $\mathbf{V_1}$,统计节点 n_1' 是否出现在8种Motif中,出现标记为1,否则为0,得到一个Multi-Hot的8维向量。同理可以得到剩余k-1个向量的表达,如图所示:

	0	1	2	3	4	5	6	7
V1	1	1	0	1	0	0	0	0
	0	1	2	3	4	5	6	7
V2	1	1	0	1	0	1	0	0
•				•				
•				•				
•				•				
•				•				
•:				•				
	0	1	2	3	4	5	6	7
Vk	1	1	1	1	1	1	0	0

对向量 ${f V}_{{f num-motif}}$ 进行entropy运算,得到Motif的entropy表示的熵向量 ${f V}'_{{f num-motif}}$,如图所示:

对向量 $\mathbf{V_1},\mathbf{V_2},\ldots,\mathbf{V_k}$ 的八列分别求和得到向量 $\mathbf{V_{count}}$, $\mathbf{V_{count}}$ 的每一列代表Motif的节点出现的总次数,分别记为 $Count=\{count_1,count_2,\ldots,count_8\}$,如图所示:

对于熵向量 $\mathbf{V}'_{\mathbf{num-motif}}$,分别把对应列0-7与向量 $\mathbf{V}_{\mathbf{count}}$ 的 \mathbf{count}_i 的值相除,记为 $entropy_{count} = \{enco_1, enco_2, \dots, enco_k\}$,其中 $enco_i = \frac{entro_i}{count_i}$,然后依次分配到对应列值为1的 向量 $\mathbf{V}'_{\mathbf{k}}$,如图所示:

	0	1	2	3	4	5	6	7
V'1	enco1	enco2	0	enco4	0	0	0	0
	0	1	2	3	4	5	6	7
V'2	enco1	enco2	0	enco4	0	enco6	0	0
•								
•				•				
•				•				
•				•				
				•				
	0	1	2	3	4	5	6	7
V'k	enco1	enco2	enco3	enco4	enco5	enco6	0	0

接下来是对WL-Kernel通过随机游走得到概率分布的方法的改进,为了区分同一标签的节点,我们 给其赋予不同的概率,概率分布是通过先前得到的全局的向量 $\mathbf{V}_{\mathbf{k}}'$ 进行局部的概率计算。假设分为m类标 签,其中 $\mathbf{V}_1',\mathbf{V}_3',\mathbf{V}_4'$ 属于标签a类,那么我们分别将 $\mathbf{V}_1',\mathbf{V}_3',\mathbf{V}_4'$ 每一列求和分别得到每个向量对应的 一个熵值和,记为 $entropy^a_{sum}=\{sum^a_1,sum^a_3,sum^a_4\}$,表示a类标签下对应向量 ${f V}_{f i}$ 的熵值和 sum^a_i

。记
$$a$$
类标签节点 i 概率为 P_i^a ,则 $P_1^a=\dfrac{sum_1^a}{sum_1^a+sum_3^a+sum_4^a}$,可归纳为 $P_i^a=\dfrac{sum_i^a}{\sum_j sum_j^a}$ 。