DCE692 - Pesquisa Operacional

Atualizado em: 22 de agosto de 2023

Iago Carvalho

Departamento de Ciência da Computação

Apesar deste curso ser sobre Pesquisa Operacional, nós vamos nos concentrar em tópicos de Otimização Linear

O objetivo da otimização linear é resolver modelos matemáticos lineares

- Sistema de equações lineares
- Uma (ou mais) funções objetivo
- Conjunto de restrições
- $\, igcup \,$ Variáveis no domínio dos reais (\mathbb{R})

Deve-se atribuir um valor para cada uma das variáveis do problema de tal forma que

- A função objetivo seja minimizada (ou maximizada)
- Todas as restrições sejam respeitadas

PROGRAMAÇÃO LINEAR

$$\begin{array}{rrr} \min & 2x + y \\ & x + y & \leq 6 \\ & x - y & \leq 4 \\ & x & \geq 0 \\ & y & \geq 0 \end{array}$$

O principal uso de modelos de programação linear é para otimizar (encontrar o mínimo ou o máximo) de algo

- Maximizar o lucro
- Minimizar as perdas
- Minimizar o tempo gasto
- Minimizar número de funcionários
- Maximizar o número de produtos produzidos
- Minimizar gasto de combustível
- O ...

Modelos de otimização linear normalmente tentam representar um problema de mundo real através de um sistema de equações

A função objetivo representa aquilo que você quer otimizar

Minimizar ou maximizar

As variáveis representam a tomada de decisão

- Vou utilizar esta rota ou aquela?
- Quantos produtos deste tipo eu vou produzir?

As **restrições** representam as limitações existentes

- Qual é o número máximo de horas por dia que estes funcionários podem trabalhar?
- Quantos metros cúbicos de madeira eu tenho para produzir estes móveis?
- Quantos caminhões eu possuo para fazer entregas?

```
\begin{array}{rcl}
\min & 2x + y \\
 & x + y & \leq 6 \\
 & x - y & \leq 4 \\
 & x & \geq 0 \\
 & y & \geq 0
\end{array}
```

Função objetivo Restrições

```
\begin{array}{cccc} \text{min} & 2x + y & \\ & x + y & \leq 6 \\ & x - y & \leq 4 \\ & x & \geq 0 \\ & y & \geq 0 \end{array}
```

Direção da função objetivo Função objetivo Restrições Variáveis (em negrito) Restrições de domínio das variáveis

$$x + y \le 6$$

$$x - y \le 4$$

Soluções viáveis

O espaço azul representa o conjunto de soluções viáveis de nosso problema

- Soluções ótimas
- Soluções sub-ótimas

Solução ótima está em um vértice

 Encontro de duas ou mais restrições

min
$$2x + y$$

X	у	resultado
0	0	0
0	6	6
5	1	11
4	0	8

Uma fábrica produz dois produtos, A e B.

 \bigcirc Cada um deve ser processado por duas máquinas M_1 e M_2

Devido à programação de outros produtos que também usam estas máquinas, estão disponíveis para os produtos A e B apenas 24 horas da máquina M_1 e 16 horas da máquina M_2 .

Para produzir uma unidade do produto A são necessárias

- 4 horas da máquina M₁
- 4 horas da máquina M₂

Para produzir uma unidade do produto B são necessárias

- 6 horas da máquina M₁
- 2 horas da máquina M₂

O produto *A* é vendido com um lucro de R\$ 80,00, enquanto o produto *B* é vendido com um lucro de R\$ 60,00

Existe uma previsão de demanda máxima de 3 unidades para *B*, mas nenhuma restrição de demanda para *A*.

Deseja-se saber: quanto produzir de cada produto para maximizar o lucro?

Produto	Horas de M ₁	Horas deM₂	Demanda Max	Lucro Unitário
Α	4	4	-	80
В	6	2	3	60
Horas Disp.	24	16	-	-

max	80 Xa + 60 Xb	
	4 Xa + 6 Xb	≤ 24
	4 Xa + 2 Xb	≤ 16
	Xb	≤ 3
	Xa	≥ 0
	Xb	≥ 0

Direção da função objetivo Função objetivo Restrições Variáveis (em negrito) Restrições de domínio das variáveis

MODELAGEM DE PROBLEMAS COMO PROGRAMAÇÃO LINEAR

É possível modelar problemas polinomiais

- A resolução de um modelo de programação linear é um problema polinomial
- Não é possível utilizar programação linear para modelar problemas NP-Completos

Exemplos de problemas

- Problema da árvore geradora mínima
- Problema do caminho mínimo
- Problemas de sequenciamento
- Problemas de atribuição
- Problemas de roteamento
- Problemas de fluxo em redes

Veremos alguns destes com o decorrer da disciplina