

Seasonal variation in ectoparasite load in Malagasy fruit bats

Angelo Andrianiaina

Mention Zoologie et Biodiversité Animale, University of Antananarivo (C4C student 2022)

Introduction

• Play important roles in maintain and transmission of the pathogens in host population (Brook et al, 2015, Wilkinson et al 2016)

- Bat ectoparasites are specific
- Limited information available in their ecology: information limited to some older taxonomic works (Theodor 1957,1968a,1968b;Maa1971) and a recent genetic study (Tortosa et al. 2013, Brook et al,2015)

Research question

What are the main factors influencing the abundance of ectoparasites on Malagasy fruit bats through year?

Specific objectives

- Listing the diversity of ectoparasite hosted by the two cave roosting fruit bat species;
- Determining the pattern of the abundance of three species of bat flies though year
- Determining the main factor influencing the abundance of those ectoparasites

Hypotheses

- There is a seasonal pattern on the ectoparasite;
- Body mass and forearm have influence on abundance of ectoparasites
- The climate influence the seasonal pattern

Methodology

A longitudinal study was carried out in 2 districts of Madagascar:
Manjakandriana and Moramanga

Collection time: 2013-2020

Methodology

collection_date	bat_sex	bat_age_d	body_length_cm	bat_forearm_mm	bat_tibia_mm	ear_length_mm
Aug 22 2013	male	Α	20	130	60	30
Aug 22 2013	male	Α	24.5	130	63	27
Aug 22 2013	male	Α	24	136	65	27
Aug 22 2013	male	Α	23.4	128	60	21
Aug 22 2013	male	Α	29	126	62	28
Nov 04 2013	male	Α	37	150	77	36
Nov 04 2013	female	L	34.5	153	80	35
Nov 04 2013	female	L	38	147	85	31
Nov 04 2013	female	J	23	91	61	19
Nov 04 2013	male	J	23.5	87	55	22
Nov 06 2013	male	Α	33	155	84.3	28.1
Nov 07 2013	female	L	32.5	165	79	25
Nov 07 2013	male	Α	32	170	88	22.9
Nov 07 2013	male	J	24.3	98	50	18.8
Nov 08 2013	female	L	28	154	76	24
Nov 08 2013	female	L	31	168	86.4	24
Nov 08 2013	female	J	20	89	45	21

- Traps: mist nets
- Sample collected:
 - Body measurements (forearm, weight)
 - Ectoparasites (in ethanol 70%)

Methodology

Data analysis

Seasonal variation

❖ abundance/count of each species or group of ectoparasites

GAM: general additive model

Formula:

```
Count_of_ectoparasites_by_bat_species ~ s(day of the year, k=7,bs="cc")+ s(year,bs="re")+s(forearm,bs="tp",k=7)+s(body mass,bs="tp",k=7)
```

Results

Ectoparasite community in relation to bat community

4 groups of ectoparasite found :

- Bat flies
- Flea
- Mites
- Ticks

Ectoparasites community

Host: Eidolon dupreanum

Mites (2) **Tick (1)** Fleas (2) Bat flie (1) Echidnophagea sp Mite 2 (Spinturinix sp) Ornithodoros sp Cyclopodia dubia Thaumapsylla sp *Meristapsis* spp

Ectoparasites community

Host: Rousettus madagascariensis

Study populations

Host

Meristapsis spp.

Mite 7

(Acystopus sp??)

Host: Rousettus madagascariensis

Host: *Eidolon dupreanum*

Echidnophagea sp

Thaumapsylla sp

Meristapsis spp

Seasonal variation of the ectoparasites abundance

Variation of the abundance of bat flies (Nycteribiidae & Megastreblidae) hosting by Eidolon dupreanum (A &B) and Rousettus madagascariensis (C,D,E,F) through the year

Blue shade : dry season

Pink shade: gestation period

Dast line: start of dry season (Andrianiaina & Andry et al, 2022)

Basic spline= "cc"

Knot number= 7

Y= field count of the ectoparasite

Fixed effect= day of the year (1-365 days)

Partial effect= year of collection

Model1=gam (count~s(day of the year,bs=cc,k=7)+s(year,bs=re)+s(weight,k=7,bs="tp")+s(forearm,k=7,bs="tp",data)


```
Approximate significance of smooth terms:

edf Ref.df F p-value
s(yday) 3.667 5 37.243 1.75e-05 ***
s(year) 4.968 6 5.513 1.90e-06 ***
s(bat_forearm_mm) 1.000 1 0.427 0.514
s(bat_weight_g) 1.000 1 0.513 0.474
---
```



```
Approximate significance of smooth terms:

edf Ref.df F p-value
s(yday) 4.250 5 71.626 8.63e-07 ***
s(year) 5.083 6 8.844 < 2e-16 ***
s(bat_forearm_mm) 1.000 1 0.454 0.501
s(bat_weight_g) 1.000 1 0.013 0.910
---
```


Approximate significance of smooth terms:										
	edf Ref	f.df	F	p-value						
s (yday)	2.502	5	6.756	2.96e-05	***					
s (year)	2.935	5	0.819	0.209						
s(bat_forearm_mm)	1.000	1	17.698	3.64e-05	***					
s(bat_weight_g)	1.000	1	0.359	0.549						

Partial effects

Eucampsipoda madagascariensis (host male)

Partial effect of the year, bat forearm length, weight, on the ectoparasite count


```
Approximate significance of smooth terms:

edf Ref.df F p-value
s(yday) 4.050 5.000 116.540 < 2e-16 ***
s(year) 4.477 5.000 6.445 2.16e-06 ***
s(bat_forearm_mm) 1.000 1.000 3.379 0.0669 .
s(bat_weight_g) 1.567 1.982 3.368 0.0371 *
```

Body mass (g)

Model1=gam (count~s(day of the year,bs=cc,k=7)+s(year,bs=re)+s(weight,k=7,bs="tp")+s(forearm,k=7,bs="tp"),data)

Forearm length (mm)

```
Approximate significance of smooth terms:

edf Ref.df F p-value
s(yday) 0.7587 5.000 0.367 0.279
s(year) 4.5156 5.000 6.531 2.06e-06 ***
s(bat_forearm_mm) 1.0000 1.000 0.524 0.470
s(bat_weight_g) 4.0359 4.828 2.033 0.098 .
```

Model1=gam (count~s(day of the year,bs=cc,k=7)+s(year,bs=re)+s(weight,k=7,bs="tp")+s(forearm,k=7,bs="tp"),data)

70

Forearm length (mm)


```
Approximate significance of smooth terms:
                    edf Ref.df
                                      p-value
                  1.752
s (yday)
                                        0.0455 *
                  3.700
s (year)
                             5 5.342 3.65e-06 ***
s(bat_forearm_mm) 1.000
                             1 0.174
                                        0.6768
s(bat_weight_g)
                  1.000
                             1 0.514
                                        0.4739
```

Next step

- Phylogeny of Bat flies
- Add climate as predictor variable

