Mixed-Membership Stochastic Block-Models for Transactional Networks

BIHAN ZHUANG

LIN ZUO

Transactional Data

- A list of one-to-many communications (e.g. email) among nodes in a social network
- The assumptions that relations are binary-valued and occur between pairs of nodes no longer holds
- Depending on the type of transactional data, additional information on each transaction include: timestamps, message content, recipient classes(To/Cc/Bcc)

Transactional Data

- Structure of the network data we seek to model
 - M nodes (people)
 - N transactions, each of which involves 1 to (M-1) recipients and one sender
 - Additional transactional information will not be used

• Assumptions:

- Each node can play different roles while interacting with different nodes
- Likelihood of interaction between two nodes depend on the roles they play at the time of their interaction (e.g. phd/RA/TA)

(a) Transactions (b) Transaction counts (c) Binary relations

Sender A B C D (recipients) (recipients)

A . 1 0 0 (sender) A B C D (sender) A B C D

A . 1 0 1 A . 2 0 1 A . 1 0 1

C 0 1 . 0 B 1 . 0 1 B 1 . 0 1

B 1 . 0 1 C 0 2 . 0 C 0 1 . 0

C 0 1 . 0 D 0 0 0 . D 0 0 0 .

Related Research

Problems with previous work about transactional data

- Lost information about co-recipient of the same message
- Lost information about frequency of interactions between nodes
 - Counts thresholded in socio-matrix

Work that inspired this paper to build network model for transactional data

- Mixed membership stochastic block-model
 - -- E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9:1981–2014, 2008.
- Network transactional feature in the network is important for predicting links
 - -- I. Kahanda and J. Neville. Using transactional information to predict link strength in online social networks. In Proceedings of the 4th International AAAI Conference on Weblogs and Social Media
- Frequency of interactions could improve the accuracy of modeling
 - -- K. Kurihara, Y. Kameya, and T. Sato. A frequency-based stochastic blockmodel. In Workshop on Information Based Induction Sciences, 2006.

Transactional Mixed Membership Stochastic Block-Model Set-up

- N messages are sent within a network of M nodes
- Each message **n** has a sender **Sn** and **Sn** itself can't be a recipient
- Each message $\bf n$ has a recipient list represented by $\bf M$ binary variables $\bf Y_{n1},...,\bf Y_{nM}$
 - Y_{nm} = 1 when node m received message n from Sn
 - Y_{nm} = 0 when node m didn't receive message n from Sn
- **K** groups in the network
- Each node **i** has a K-dimensional membership probability π_i , with $\sum_{k=1}^K \pi_{ik} = 1$
- Each element \mathbf{B}_{kl} in the interaction matrix \mathbf{B} represents the probability of a node \mathbf{i} in group \mathbf{k} sending a message to a node \mathbf{j} in group \mathbf{l} .

TMMSB Generating Process

- 1. For each node i, draw mixed-membership vector $\pi_i \sim \text{Dirichlet}(\alpha)$
- 2. For each node i, draw its friendship value $\lambda_i \sim N(\mu, \delta)$
- 3. Choose $N \sim Poisson(\varepsilon)$: number of emails
- 4. For each email n
 - (a) For each node i, draw $z_{ni} \sim \text{Multinomial}(\pi_i)$
 - (b) Pick node u as sender (i.e., $S_n = u$) among all the nodes with probability $\frac{exp(\lambda_u)}{\sum_j exp(\lambda_j)}$
 - (c) For each node $j \neq u$, draw $Y_{n,j} \sim \text{Bernoulli}(z_{nu}Bz_{nj}^T)$

Inference

- $\{\pi_{M*K}, Z_{N*M*K}\} \equiv \theta$ as random latent variables
- $\{\alpha, B\} \equiv \beta$ as fixed parameters that we need to estimate
- Estimate the posterior distribution

$$p(\theta \mid Y, \beta) = \frac{p(Y \mid \theta, \beta)p(\theta \mid \beta)}{p(Y \mid \beta)}$$

by using Mean-field Variational Bayesian approximation

Variational distribution

$$q(\pi_{1:M}, Z_{1:N,1:M}) = \prod_{m=1}^{M} q_1(\pi_m | \gamma_m) \prod_{n=1}^{N} \prod_{m=1}^{M} q_2(z_{n,m} | \phi_{n,m})$$

where q_1 is a Dirichlet and q_2 is a Multinomial, approximates the posterior distribution in terms of Kullback-Leibler divergence

Inference

Brief VB Algorithm

- 1. Initialize $B^{(0)}$, $\alpha^{(0)}$, $\gamma_{1:M}^{(0)}$, $\phi_{1:N,1:M}^{(0)}$
- 2. E-step:
 - i. Update $\gamma_i^{(j)}$ for i = 1, ..., N
 - ii. Update $\phi_{n,m}^{(j)}$ for all n,m
 - iii. Until convergence
- 3. M-step: Update $B^{(j)}$
- 4. Until convergence

$$\phi_{nm,k} \propto \mathbb{E}_{q}(\log(\pi_{m,k})) \times$$

$$\mathbb{1}_{[m \neq S_{n}]} \cdot \prod_{l=1}^{K} \left(B_{lk}^{Y_{nm}} \cdot (1 - B_{lk})^{1 - Y_{nm}} \right)^{\phi_{nS_{n},l}} \times$$

$$\mathbb{1}_{[m=S_{n}]} \cdot \prod_{m' \neq m} \prod_{l=1}^{K} \left(B_{kl}^{Y_{nm'}} \cdot (1 - B_{kl})^{1 - Y_{nm'}} \right)^{\phi_{nm',l}}$$

$$\gamma_{m,k} = \alpha_{k} + \sum_{n=1}^{N} \phi_{nm,k}$$

$$B_{k,l} = \frac{\sum_{n=1}^{N} \sum_{m=1, m \neq S_n}^{M} \phi_{nS_n,k} \phi_{nm,l} Y_{nm}}{\sum_{n=1}^{N} \sum_{m=1, m \neq S_n}^{M} \phi_{nS_n,k} \phi_{nm,l}}$$

Model Choice

• A BIC criterion was developed in order to choose the number of clusters

$$BIC = 2.\log \mathcal{L} - (K^2 + K).\log(|Y|)$$

where
$$\mathcal{L} = \prod_{n=1}^{N} \prod_{j \in 1...M, j \neq S_n} p_{ij}^{y_{nj}} (1 - p_{ij})^{1 - y_{nj}}$$
 and $p_{ij} = Pr(j \text{ receives } | i \text{ sends}) = \pi_i B \pi_j^T$

Simulation Results from paper

0.01	0.2	0.01	0.01
0.01	0.3	0.2	0.1
0.1	0.01	0.01	0.3
0.1	0.01	0.01	0.3

0.0127	0.2012	0.0149	0.0115
0.0064	0.3055	0.2064	0.0802
0.0964	0.0207	0.0146	0.2959
0.0979	0.0243	0.0164	0.2733

Simulation Input

M < -65

N <- 650

 α <- 0.25

K <- 4

True B matrix

True Adjacency Matrix

Estimated B matrix

Recovered Adjacency Matrix

Reproduce results

Simulation Input

0.1345

0.0703

0.1796

0.1115

M < -65

N <- 650

 $\alpha < 0.25$

K <- 4

0.1332

0.0696

0.1779

0.1104

0.01	0.2	0.01	0.01
0.01	0.3	0.2	0.1
0.1	0.01	0.01	0.3
0.1	0.01	0.01	0.3

0.0127	0.2012	0.0149	0.0115
0.0064	0.3055	0.2064	0.0802
0.0964	0.0207	0.0146	0.2959
0.0979	0.0243	0.0164	0.2733

True B matrix

0.0937	0.0562	0.1137	0.1661
0.1251	0.0758	0.1506	0.2162
0.0781	0.0465	0.0951	0.1403
0.0469	0.0276	0.0575	0.0866

Estimated B matrix TMMSB from paper

0.7	0.3175	0.1778	0.2837
0.9925	0.9809	0.8319	0.9386
0.6120	0.5932	0.0274	0.4708
0.0206	0.009	0	0.0029

Estimated B matrix TMMSB (randomly initialize B)

0.0619

0.0311

0.0849

0.0506

0.0972

0.0498

0.1315

0.0799

Estimated B matrix TMMSB (randomly initialize B, phi)

Estimated B matrix MMSB with 100,000 iterations