

# مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۳

## ناحیهبندی تصویر

Image Segmentation

## ناحیهبندی تصویر



#### آستانه گذاری سطح خاکستری

- ساده ترین راه برای استخراج ناحیه از تصویر استفاده از مقادیر سطح خاکستری است
  - پس از این عملگر نقطهای، هر ناحیه به هم پیوسته یک ناحیه است





#### تعیین سطح آستانه

- سطح آستانه بهینه چه عددی است؟
- می توان با استفاده از دانش پیشین از یک عدد ثابت استفاده کرد
- می توان از مشخصه های آماری مانند میانگین یا میانه سطوح خاکستری استفاده کرد
  - می توان از استفاده از هیستوگرام استفاده کرد





- یک الگوریتم تعیین سطح مقدار آستانه بر حسب مشخصههای آماری است
- سلح آستانهای را انتخاب کنیم که واریانس بین پیکسلهای هر کلاس  $oldsymbol{\circ}$   $\sigma_w^2 = w_1 \sigma_1^2 + w_2 \sigma_2^2$

تعداد پیکسلهای کلاس ا $\sigma_i^2$  و  $\sigma_i^2$  واریانس پیکسلهای آن کلاس است  $w_i$  •

• برای یک تصویر ۸ بیتی سطح آستانه یکی از ۲۵۵ مقدار است



• برای یک تصویر ۸ بیتی سطح آستانه یکی از ۲۵۵ مقدار است



• برای یک تصویر ۸ بیتی سطح آستانه یکی از ۲۵۵ مقدار است



# 1 8 6 9 2 2 4 9 1 6 4 5 3 7 2 3 9 2 3 5 9 8 5 1 6 4 1 5 6 4

| 1 |   | 8 |   |   | 6 | 9 | 2 |   |
|---|---|---|---|---|---|---|---|---|
|   | 2 |   | 4 | Ø |   | 1 |   |   |
|   | 6 |   |   |   |   |   | 4 | 5 |
|   |   | 3 |   | 7 |   |   |   |   |
|   | 9 |   |   |   |   | 2 |   | 3 |
|   |   |   |   |   | 5 |   |   | ወ |
| 9 |   |   |   |   |   |   | 8 |   |
|   | 5 |   | 1 |   |   |   | 6 | 4 |
|   |   | i |   | 5 |   |   |   |   |



## الگوريتم Otsu

#### آستانه گذاری وفقی

- به منظور رفع چالش قبل، مناسب است تا برای هر ناحیه از تصویر یک آستانه متناسب تعریف شود
  - در حالت حدی می توان برای هر پیکسل یک آستانه تعریف کرد
    - البته این محاسبات پیچیده برای هر پیکسل هزینهبر است
  - می توان میانگین پیکسل های اطراف هر ناحیه را به عنوان معیاری برای مقدار آستانه محاسبه کرد







### آستانه گذاری وفقی

dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

```
// src:
// maxValue:
// adaptiveMethod:
// thresholdType:
// blockSize:
// C:
// dst:
```

Source 8-bit single-channel image

Non-zero value assigned to the pixels for which the condition is satisfied Adaptive thresholding algorithm to use (MEAN or GAUSSIAN)

Thresholding type that must be either THRESH\_BINARY or THRESH\_BINARY\_INV Size of a pixel neighborhood that is used to calculate a threshold value

Constant subtracted from the mean or weighted mean

Destination image of the same size and the same type as src



| 187 | HARD Answers to today a Montey on the precion |   |   |   |   |          |   |          |   |                                                                                                                                                       |  |
|-----|-----------------------------------------------|---|---|---|---|----------|---|----------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | 7                                             |   | 6 | 6 |   | 4        | 7 |          | 9 | a the bank spaces in the grid so that every vertical column, every horizontal row<br>1,1 ban contains the numbers 1 through 9, without repeating any. |  |
|     |                                               | 7 |   |   | 2 | 5        |   | 9        | 3 | the grid so that easies the numbers 1                                                                                                                 |  |
|     | 8<br>4                                        | 3 |   |   | 1 |          |   | 7        | 5 | very vertical polun<br>through 9, withou                                                                                                              |  |
|     |                                               | 5 |   | 2 |   |          |   |          |   | nn, every h<br>ut repeatin                                                                                                                            |  |
| -   | 3                                             | 1 | _ | _ |   |          | 2 | <u> </u> | 8 | arizontal n                                                                                                                                           |  |
| L   |                                               |   | 2 | 3 |   | <b>1</b> |   |          |   | ] *                                                                                                                                                   |  |