Equation fonctionnelle

L'objectif de ce problème est la détermination des applications $f: \mathbb{R}^+ \to \mathbb{R}$ vérifiant les deux propriétés suivantes :

- (1) $\forall x, y \in \mathbb{R}^+, f(x+y) \ge f(x) + f(y)$ (on dit que f est sur-additive),
- (2) $\forall x, y \in \mathbb{R}^+, f(xy) = f(x)f(y)$ (on dit que f est multiplicative).

Partie I: Un exemple

Soit α un réel supérieur ou égal à 1.

- 1. Montrer que pour tout réel $x \ge 0$, $(1+x)^{\alpha} \ge 1 + \alpha x$.
- 2. En déduire que pour tout $x, y \ge 0$, $(x+y)^{\alpha} \ge x^{\alpha} + y^{\alpha}$.
- 3. On considère la fonction $f: \mathbb{R}^+ \to \mathbb{R}$ définie par $f(x) = x^{\alpha}$. Justifier que f est solution du problème posé.

Partie II: Quelques propriétés

- 1. Quelles sont les fonctions constantes solutions du problème étudié ? Désormais f désigne une fonction non constante solution du problème étudié.
- 2. Montrer que f(0) = 0, f(1) = 1.
- 3.a Etablir: $\forall x \in \mathbb{R}^+, \forall n \in \mathbb{N}, f(x^n) = f(x)^n$.
- 3.b Etablir aussi: $\forall x \in \mathbb{R}^+, x \neq 0 \Rightarrow f(x) \neq 0 \text{ et } f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$.
- 3.c Etablir enfin: $\forall x \in \mathbb{R}^+, x > 0 \Rightarrow f(x) > 0$.
- 4. Montrer que f est croissante.

Partie III : Détermination des solutions

A nouveau f désigne une fonction non constante solution du problème étudié.

- 1. Etablir que $\ln f(2)$ est bien défini et que $\ln f(2) \ge \ln 2$.
- 2. Justifier: $\forall x > 0, \exists ! q \in \mathbb{Z}$ tel que $2^q \le x < 2^{q+1}$.
- 3. Soit un réel x > 0 et p un entier naturel. On convient de noter q_p l'unique entier tel que $2^{q_p} \le x^p < 2^{q_p+1}$.
- 3.a Déterminer la limite du rapport q_p/p quand p tend vers $+\infty$.
- 3.b En observant l'encadrement $f(2)^{q_p} \le f(x)^p \le f(2)^{q_p+1}$,

justifier:
$$\frac{q_p}{p} \le \frac{\ln f(x)}{\ln f(2)} \le \frac{q_p + 1}{p}$$
.

- 3.c En déduire que $\frac{\ln f(x)}{\ln x} = \frac{\ln f(2)}{\ln 2}$.
- 4. On pose $\alpha = \frac{\ln f(2)}{\ln 2} \ge 1$.

Justifier que pour tout réel $x \ge 0$, $f(x) = x^{\alpha}$.

Correction

Partie I

Pour commencer, rappelons que la fonction $t \mapsto t^a$ définie sur \mathbb{R}^+ est croissante lorsque $a \ge 0$.

- 1. Introduisons la fonction $\varphi: x \mapsto (1+x)^{\alpha} (1+\alpha x)$ définie sur $\left[0, +\infty\right[$. φ est dérivable et $\varphi'(x) = \alpha(1+x)^{\alpha-1} \alpha \geq 0$ car $(1+x)^{\alpha-1} \geq 1$. Par suite φ est croissante et puisque $\varphi(0) = 0$, $\varphi(x) \geq 0$ pour tout $x \geq 0$. L'inégalité demandée en découle de manière immédiate.
- 2. L'inégalité est immédiate quand x=0 ou y=0. Il reste à l'établir quand x,y>0. Sans perte de généralités, on peut supposer $x \ge y$.

$$(x+y)^{\alpha} = x^{\alpha} \left(1 + \frac{y}{x}\right)^{\alpha} \text{ et } \left(1 + \frac{y}{x}\right)^{\alpha} \ge 1 + \alpha \frac{y}{x} \text{ donc } (x+y)^{\alpha} \ge x^{\alpha} + \alpha y x^{\alpha-1}.$$

Or
$$\alpha \ge 1$$
 et $x^{\alpha-1} \ge y^{\alpha-1}$ donc $(x+y)^{\alpha} \ge x^{\alpha} + y^{\alpha}$.

3. Par l'inégalité de 2. $f(x+y) = (x+y)^{\alpha} \ge x^{\alpha} + y^{\alpha} = f(x) + f(y)$. De plus $f(xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = f(x)f(y)$.

Partie II

- 1. Si f est constante égale à C, la sur-additivité de f donne $C \ge C + C$ donc $C \le 0$; la multiplicativité de f donne $C = C^2$ d'où C = 0 ou C = 1. On conclut alors C = 0. Par suite une fonction constante solution ne peut être que la fonction nulle. Inversement la fonction nulle est bien solution.
- 2. En exploitant la sur-additivité et la multiplicativité de f avec x = y = 0, on obtient $f(0) \ge f(0) + f(0)$ et $f(0) = f(0)^2$. Comme ci-dessus, on conclut f(0) = 0. En exploitant la multiplicativité de f avec x = y = 1, on obtient $f(1) = f(1)^2$ d'où f(1) = 0 ou f(1) = 1. Mais si f(1) = 0 alors pour tout réel x et par multiplicativité de f: $f(x) = f(x \times 1) = f(x)f(1) = 0$ et f apparaît alors comme étant une fonction constante. Ceci étant exclu, il reste f(1) = 1.
- 3.a Il suffit de raisonner par récurrence sur $n \in \mathbb{N}$.
- 3.b Pour $x \neq 0$, $1 = f(1) = f\left(x \times \frac{1}{x}\right) = f(x)f\left(\frac{1}{x}\right)$ d'où $f(x) \neq 0$ et $f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$.
- 3.c Pour x > 0, on a déjà $f(x) \neq 0$. De plus $f(x) = f(\sqrt{x}^2) = f(\sqrt{x})^2 \ge 0$ donc f(x) > 0.
- 4. Soit $x \le y \in \mathbb{R}^+$. $f(y) = f(x+y-x) \ge f(x) + f(y-x)$ avec $f(y-x) \ge 0$ donc $f(y) \ge f(x)$. Ainsi f est croissante.

Partie III

- 1. $f(2) \ge f(1) + f(1) = 2$ donc $\ln f(2)$ existe et $\ln f(2) \ge \ln 2 > 0$.
- $2. \qquad 2^q \le x < 2^{q+1} \Leftrightarrow q \ln 2 \le \ln x < (q+1) \ln 2 \Leftrightarrow q \le \frac{\ln x}{\ln 2} < q+1 \Leftrightarrow q = E\left(\frac{\ln x}{\ln 2}\right)$
- $3. \text{a} \qquad 2^{q_p} \leq x^p < 2^{q_p+1} \ \, \text{donne} \ \, \frac{q_p}{p} \leq \frac{\ln x}{\ln 2} \leq \frac{q_p+1}{p} \ \, \text{d'où} \ \, \frac{\ln x}{\ln 2} \frac{1}{p} \leq \frac{q_p}{p} \leq \frac{\ln x}{\ln 2}.$

Par le théorème des gendarmes, on obtient $\frac{q_p}{p} \xrightarrow{p \to +\infty} \frac{\ln x}{\ln 2}$.

3.b Par croissance de f, $f(2^{q_p}) \le f(x^p) \le f(2^{q_p+1})$ puis $f(2)^{q_p} \le f(x)^p \le f(2)^{q_p+1}$ via II.3.b. En appliquant le logarithme néperien, on obtient $q_p \ln f(2) \le p \ln f(x) \le (q_p+1) \ln f(2)$ sachant f(x) > 0

et
$$f(2) > 0$$
.

De plus, puisque
$$\ln f(2) > 0$$
, on obtient $\frac{q_p}{p} \le \frac{\ln f(x)}{\ln f(2)} \le \frac{q_p + 1}{p}$.

3.c En passant cette encadrement à la limite quand
$$p \to +\infty$$
 on obtient $\frac{\ln x}{\ln 2} \le \frac{\ln f(x)}{\ln f(2)} \le \frac{\ln x}{\ln 2}$ d'où l'égalité
$$\frac{\ln f(x)}{\ln x} = \frac{\ln f(2)}{\ln 2}.$$

4. Notons que
$$\alpha \ge 1$$
, puisqu'on a vu $\ln f(2) \ge \ln 2$

Par 3.c, on a $\ln f(x) = \alpha \ln x \ \text{donc} \ f(x) = x^{\alpha} \ \text{pour tout} \ x > 0$. De plus l'égalité $f(x) = x^{\alpha}$ est aussi vraie pour x = 0.