The binomial theorem gives a way to expand out an expression of the form $(a+b)^n$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

For example, if we wanted to expand the polynomial $(x+2)^3$ we could apply the binomial theorem and find that

$$(x+2)^3 = {3 \choose 0} x^3 2^0 + {3 \choose 1} x^2 2^1 + {3 \choose 2} x^1 2^2 + {3 \choose 3} x^0 2^3$$

= $1x^3 2^0 + 3x^2 2^1 + 3x^1 2^2 + 1x^0 2^3$
= $x^3 + 6x^2 + 12x + 8$.

Use the binomial theorem to answer the following questions. This lab is broken into a group portion (worth 4 points) and an individual portion (worth 6 points).

Group Questions: Hand the solutions in for these questions by the end of the lab period.

- 1. (1/2 point) Expand $(x+y)^5$. What is the degree of this polynomial?
- 2. (1/2 point) What is the coefficient of $x^{101}y^{99}$ in the expansion of $(2x-3y)^{200}$?
- 3. (1 point) Give a formula for the coefficient of x^k in the expansion of $(x+1/x)^{100}$, where k is an integer.
- 4. (2 points) Prove the binomial theorem using mathematical induction.

Individual Questions: On back. Due in two weeks.

Individual Questions:

- 1. (2 points) A polynomial in any number of variables is called *homogeneous* if the sums of the exponents on the variables in each term add up to the same number. For example, $x^2 + 2xy + y^2$ is homogeneous because the exponents on x and y in each term add to 2. For which values of k is $(x+y)^k$ homogeneous? Prove your answer (using full sentences!).
- 2. (1 point) For what values of k, if any, is $(x+y+z)^k$ a homogeneous polynomial? When the polynomial is homogeneous, what is the degree of the polynomial? You do not have to prove your answer, just state it.
- 3. (3 points) What is the coefficient of w^4x^2yz in the expansion of $(w+2x+y-z)^8$? You do not need to write a proof, but please explain your answer well.