035MAT013 - F - 24 - 6766

FIFTH SEMESTER B.SC. (NEP) DEGREE EXAMINATION, FEBRUARY 2024 MATHEMATICS (DSC – 2) Vector Calculus and Analytical Geometry

Time: 2 Hours]

[Max. Marks: 60

Instruction : Answer all questions.

I. Answer any five of the following.

 $(5 \times 2 = 10)$

- 1) Find the unit normal vector to the surface $x^2 y^2 + z = 3$ at (1, 0, 2).
- 2) Show that the vector $\overrightarrow{f} = (6xy + z^3) \overrightarrow{i} + (3x^2 z) \overrightarrow{j} + (3xz^2 y) \overrightarrow{k}$ is irrotational.
- 3) If $\overrightarrow{F} = 3xy \hat{i} y^2 \hat{j}$, evaluate $\int_{C} \overrightarrow{F} \cdot dr$, where C is the path along the parabola $y = 2x^2$ from (0, 0) to (1, 1).
- 4) Find the equations of the straight line through the point (2, 1, -2) and equally inclined the axes.
- 5) Define ruled surfaces.
- 6) Show that the plane x + 2y + 3z = 2 touches the conicoid $x^2 2y^2 + 3z^2 = 2$.

II. Answer any four of the following.

 $(4 \times 5 = 20)$

- 7) Find the directional derivative of $\phi(x, y, z) = x^2yz + 4xz^2$ at (1, -2, -1) in the direction $2\hat{i} \hat{j} 2\hat{k}$.
- 8) Evaluate $\iint_{S} [(x+z)\hat{i} + (y+z)\hat{j} + (x+y)\hat{k}].$ n ds, where s is the surface of the sphere $x^2 + y^2 + z^2 = 4$ by using Gauss' divergence theorem.
- 9) Show that the equation $6x^2 + 4y^2 10z^2 + 3yz + 4zx 11xy = 0$ represents a pair of planes and find angle between them.
- 10) Find the equation of the tangent planes to the sphere $x^2 + y^2 + z^2 + 2x 4y + 6z 7 = 0$ which intersect in the line 6x 3y 2z = 0 = 3z + 2.
- 11) Find the point of intersection of the line $\frac{x+5}{-3} = \frac{y+4}{1} = \frac{z-11}{7}$ with the conicoid $12x^2 17y^2 + 7z^2 = 7$.

035MAT013 - F - 24 - 6766

T IN BANK BERKER BANKE BANKERA KAN <mark>adalah an banda kana</mark> adalah anah adalah anah adala adak adak adak adak adak

III. Answer any three of the following.

 $(3 \times 10 = 30)$

- 12) a) Prove that the necessary and sufficient condition for the vector function $f(\vec{t})$ to have a constant magnitude is $\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$.
 - b) If $\vec{f} = (y^2 + z^2 x^2) \hat{i} + (z^2 + x^2 y^2) \hat{j} + (x^2 + y^2 z^2) \hat{k}$, find div \vec{f} and
- 13) a) State and prove Stokes theorem.
 - b) Verify Green's theorem in the plane for $\int_{C} (3x^2 8y^2) dx + (4y 6xy)dy$ where C is the closed curve bounded by $y = x^2$ and $x = y^2$.
- 14) a) Prove that the equation $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ represents a sphere. Find its centre and radius.
 - b) Find the equation of the plane which bisects the acute angle between the planes 3x + 6y 2z + 5 = 0 and 4x 12y + 3z 3 = 0.
- 15) a) Find the equation of the surface generated by the lines which passes through a fixed point (α, β, γ) and intersect the curve $ax^2 + by^2 = 1$, z = 0.
 - b) Find the equations to the tangent planes to conicoid $7x^2 3y^2 z^2 + 21 = 0$ which passes through the line 7x y + 9 = 0, z = 3.

a alamby and first angle to versus as