Formas funcionales: interpretación

Erika R. Badillo

erika.badilloen@unaula.edu.co

Facultad de Economía

Universidad Autónoma Latinoamericana

1/7

Erika R. Badillo - UNAULA Econométría I Facultad de Economía

En este tema

• Formas funcionales en el modelo de regresión

Lecturas

- Wooldridge, Jeffrey (2013). Introducción a la econometría. 5a edición, Cengage Learning. Cap. 2.4, 6.2
- Gujarati, D. y Porter, D. (2010). Econometría. 5a edición, Mc Graw Hill.
 Cap. 6

(ロ) 4 II) 6 II) 7 II] 7 II

Variable dependiente Regresor X_j		β_j	Interpretación		
NI' I	NII I	Efecto mg en Y ante un	Y aumenta o disminuye		
Niveles	Niveles	cambio unitario en X_j	eta_j veces cuando aumenta X_j		
			Un incremento en 1% en X_j genera		
Logaritmo	Logaritmo	Elasticidad X_j de Y	un incremento o disminución de β_j % en Y		
		Tasas de crecimiento o retorno	Un incremento en una unidad de X_j genera		
Logaritmo	Niveles		un incremento o disminución en $\beta_j*100\%$ en Y		
		Respuesta de ${\cal Y}$ ante una variación de ${\cal X}_j$	Un incremento en 1% en X_j genera		
Niveles	Logaritmo		un incremento o disminución en $\beta_j/100$ en Y		

Erika R. Badillo - UNAULA Econometría I Facultad de Economía 4 / 7

Ejemplo - Stata

Se tienen datos sobre 526 trabajadores de EEUU en 1976, sobre su salario en dólares por hora (wage), años de escolaridad (educ), años de experiencia (exper), entre otra información. Se trata de determinar los retornos de la educación con base en los salarios.

Source	55	ar	MS	Numi	er or ops	3 =	526
					524)		103.36
Model	1179.73204		1179.73204	Prok			0.0000
Residual	5980.68225	524	11.4135158	R-sc	quared		0.1648
				Adj	R-squared		0.1632
	7160.41429	525	13.6388844	Root	MSE		3.3784
wage	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
educ	.5413593	.053248	10.17	0.000	.43675	34	.6459651
	9048516	.6849678	-1.32	0.187	-2.250	172	.4407687

5 / 7

Erika R. Badillo - UNAULA Econometría I Facultad de Economía

- * Un año adicional de educación hace que el salario por hora aumente 54 centávos US\$ por hora
 - * Debido al caracter lineal, cada año adicional de educación hace que el salario aumente en una misma cantidad, independiente del nivel inicial de educación

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.5413593	.053248	10.17	0.000	.4367534	.6459651
_cons	9048516	.6849678	-1.32	0.187	-2.250472	.4407687

- * Creando la variable en logaritmos
- g lwage=ln(wage)
- * Corriendo el modelo con el logaritmo del salario reg lwage educ

Source	SS	df	MS		per of c
Model	27.5606288		27.5606288		> F
Residual	120.769123	524	.230475425		quared
Total	148.329751	525	.28253286		R-squa
lwage	Coef.	Std. Err.			[95%
educ	.0827444	.0075667	10.94	0.000	.067
_cons	.5837727	.0973358	6.00	0.000	.392

- * El salario por hora aumenta 8.3 % por cada año adicional de educación
- * En este caso, el salario aumenta en un porcentaje constante

4 D > 4 A > 4 B > 4 B > 9 Q Q

6 / 7

5563

Conf. Interval

- ¿Qué tipos de variables son a menudo utilizadas en forma logarítmica?
 - -Montos en dólares que tienen que ser positivos
 - -Variables muy grandes, como la población
- ¿Qué tipos de variables son a menudo utilizadas en niveles?
 - -Variables medidas en años
 - -Variables que son una proporción o un porcentaje

Erika R. Badillo - UNAULA Economéa 7 / 7