1st Internal Test -2019

Subject - Mathematics, B.Sc./B.A. (Voc.) In Computer Applications B.N. College, Patna University Full Marks 7.5

Time - 30 minutes

Group A (Multiple Choice Questions.) (Answer all) (0.5 marks each):

1) (i) If
$$y = x^n$$
 then y_n

(a)
$$n!$$
 (b) $(n+1)!$ $(c)0$ (d) None of the these

(ii) If
$$y = \log x$$
 then y_1

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{1}{x}$ (c) 0 (d) None of the

(iii) Which of the following is an empty set?

(a)
$$A=\{x: x \text{ is a prime number greater than 99}\}.$$
 (b) $B=\{x: x^2=4, x \text{ is even}\}.$

(c)
$$C = \{x: x^2-2=0 \text{ and } x \text{ is rational number}\}$$
. (d) $D = \{x: 1 < x < 3 \text{ and } x \text{ is a natural number}\}$

(iv) Which of the following is an infinite set?

- (a) The set of all trees on earth
- (b) The set of all water drops in an ocean.
- (c) The set of solutions of the equation x^2 -16=0. (d)None of the above.
- (v) The value of $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ is

- (b) e (c) o (d) None of the

Group B (Short Type Question)- Answer any two questions. (1.5 marks each):

(2) (i) Find (nth derivative) i.e. y_n if $y = x^m$

(ii)) If
$$y = \sin^{-1} x$$
 then prove that $(1-x^2)y_2 - xy_1 = 0$. (iii) Evaluate $\lim_{x \to 0} \left(\frac{\tan}{x}\right)^{\frac{1}{x}}$

(iv) If $A = \{-1, 1\}$. Find A X A

(v) Show that $X \cup Y = X \cap Y$ implies X = Y.

Group C (Long Type Question)- Answer any one question. (2 marks each):

3. (i) State and prove Leibnitz theorem on successive differentiation.

(ii) State and prove Euler's theorem on homogeneous function of two variables.

(iii) If
$$y = \sin(m\sin^{-1}x)$$
, prove that $(1-x^2)y_{n+2} - (2x+1)xy_{n+1} + (m^2 - n^2)y_n = 0$

(iv) If
$$u = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
 prove that $x \frac{du}{dx} + y \frac{du}{dy} = \tan u$

(v) A college awarded 38 medals in football, 15 in basketball and 20 in cricket. If these medals to a total of 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

semester-I, 2ndInternal Test (GE), 2619

programme- B.Sc./B.A.(Voc.) in Computer Application B. N. College, Patna University, Patna

Full Marks: 7.5 Marks

Mathematics

Duration: 45 min.

Group A: Multiple Choice Question – Answer All Questions (5 x 0.5 = 2.5)

- 1. (i) Scalar matrices have
 - (a) All elements Zero
- (b) diagonal elements Zero
- (c) All elements Zero except diagonal elements (d) None of these
- (ii) The product of two matrices A and B i.e. AB is defined only if
 - (a) Number of Rows of A= Number of Column of B
 - (b) Number of Columns of A= Number of Rows of B
 - (c)A and be are have equal elements
 - (d) None of these
- (iii) A matrix A is said to be Transpose if (a) A = A' (b) A = A'' (c) A = (A')' (d) N ne of these
- (iv) If $y = \log x$ then y_2 (a) $\frac{\pi}{2}$ (b) $\frac{1}{r}$ (c) 0 (d) None of the
- (v) Which of the following is not a set?
 - a) The collection of all boys in B. N. College Patna.
 - b) The collection of all even integers.
 - c) The collection of ten most talented writers of India.
 - d) The collection of all natural numbers less than hundred

Group B: Short Type Question - Answer Any two Question

Group B: Short Type Question – Answer Any Execution (2) (i) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, and $AB = \begin{bmatrix} 6 \\ 3 \\ 1 \end{bmatrix}$, find the value of x , y and z .

(ii) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}$ the fina AB

(iii) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $AB = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}$ the fina AB

$$A = \{1, 2\}$$
 and $B = \{1, 2, 3\}$. Find A X B

Group C: Long Type Question – Answer Any One Question (2 marks each): $(1 \times 2.0 = 3.0)$

3. Find the inverse of the Matrix.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 7 & 9 \end{bmatrix}$$

- 4. Solve by matrix method x + y + z = 1, x + 2y + z = 2 and x + y + 2z = 0
- 5. State and prove Euler's theorem on homogeneous function of two variables.