PREDICTING THE ENERGY OUTPUT OF WIND TURBINE BASED ON WEATHER CONDITIONS TECHNICAL ARCHITECTURE

TABLE: COMPONENTS & TECHNOLOGIES

S.No	Component	Description	Technology
1.	User Interface	Through Mobile app or Web Application the	HTML, CSS, JavaScript / Angular
		information processed will be sent to the user through message or mail.	Js / React Js etc.
2.	Application Logic-1	Predicting system is developed with a method	Machine learning
		of combining statistical models and physical	
		models. The inlet condition of the wind farm	
		is forecasted by the auto regressive model.	
3.	Application Logic-2	Here we can develop the software process like	IBM Watson STT service
		creating a web application/mobile application	
		to interface with users.	
4.	Application Logic-3	Here the predicted data is checked with actual	IBM Watson Assistant
		output to increase the power output and	
		efficiency.	
5.	Database	We can save all the data in SQL or any other	MySQL, NoSQL, etc.
		database so that the user can retrieve data	
		whenever required.	
6.	Cloud Database	The database we created and the predefined	IBM DB2, IBM Cloudant etc.
		data's like power output from external API	
		can be combined here and can be stored	
		safely with security for future purpose.	
7.	File Storage	File storage requirements	IBM Block Storage or Other
			Storage Service or Local Filesystem
8.	External API-1	With the help of external API only we can	IBM Weather API, etc.
		know the weather condition and compare with	
		our actualoutput.	
9.	External API-2	Purpose of External API used in the	Aadhar API, etc.
		application	

10.	Machine Learning Model	Purpose of Machine Learning Model	Prediction of wind output power,
			etc.
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System /	Local, Cloud Foundry, Kubernetes,
		Cloud Local Server Configuration: Through	etc.
		our ideas Cloud Server Configuration:	
		Through IBM	

Table-2: Application characteristics

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	MIT App Inventor, Python, Weather App API.	Technology of Opensource framework
2.	Security Implementations	Here we are using IBM Cloud and it is the very	IBM Cloud, MIT App Invertor, IBM
		secured place where we can store the data and	Watson Assistant
		retrieve the information whenever needed.	
3.	Scalable Architecture	Machine learning is becoming an increasingly	IBM Cloud
		popular and desirable solution. This work	
		presents a specially designed architecture based	
		on IBM Cloud services for predicting the output	
		power of wind turbine. Used services in IBM a	
		stress test to prove the ability of the developed	
		architecture for data processing was completed	
4.	Availability	Many important features are available in this	Python for data analysis , IBM
		application instead of using the repaired	Watson, IBM Cloud, Weather API'S,
		windmill, we can easily find the fault in	Analytics
		windmill by comparing actual output with	
		predicted output through machine learning in	
		python, with this we can improve efficiency by	
		adding components and optimize the condition	
		of windmills and batteries.	

Performance **Excelled efficiency**: Our aim is to map weather data to energy production. Learning technique to predict the energy output of wind turbine. The model is deployed on IBM cloud to get scoring end point which can be used as API in mobile app or web app building. We are developing a web application which is built using node red service. We make use of the scoring end point to give user input values to the deployed model. The model prediction is then showcased on User Python for data analysis, IBM Interface to predict the energy output of wind Watson, IBM Cloud, Weather API'S, turbine Applied data science using machine Analytics learning. **Expansion:** Some 1.3 million people worldwide already work in the wind sector, but five times as many will be needed as the shift to renewable energy gather pace. Job prospects are increasing as the sector picks up worldwide. **Scalability**: To mitigate uncertainties in wind resource assessments and to improve the estimation of energy production of a wind project, this work uses a decision tree machine learning model to assess the effectiveness of hub-height wind speed, rotor-equivalent wind speed, and lapse rate as variables in power prediction. **Advances in technology:** As technology improves, so do the

	functionalities of the structure itself, creating designs that will generate even more electricity, require less maintenance, and run more quietly and safely.	

References:

- https://www.energy.gov/eere/wind/wind-energy-basics
- https://www.energy.gov/eere/wind/maps/wind-vision
- https://justenergy.com/blog/wind-energy-pros-and-cons/