

Rotational spectra and structures of Rg–C6H6–H2O trimers and the Ne–C6H6 dimer (Rg=Ne, Ar, or Kr)

E. Arunan, T. Emilsson, and H. S. Gutowsky

Citation: The Journal of Chemical Physics 101, 861 (1994); doi: 10.1063/1.467738

View online: http://dx.doi.org/10.1063/1.467738

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/101/2?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Rotational spectra and structures of the C6H6-HCN dimer and Ar3-HCN tetramer

J. Chem. Phys. 103, 3917 (1995); 10.1063/1.469579

Calculations of the spectra of rare gas dimers and trimers: Implications for additive and nonadditive intermolecular forces in Ne2–Ar, Ne2–Kr, Ne2–Xe, Ar2–Ne, Ar3, Ar2–Kr and Ar2–Xe

J. Chem. Phys. 103, 3386 (1995); 10.1063/1.470223

Rotational spectra of the mixed rare gas dimers Ne-Kr and Ar-Kr

J. Chem. Phys. 103, 2827 (1995); 10.1063/1.470518

Rotational spectra and structures of small clusters containing the HCN dimer: (HCN)2–Ar, a Tshaped trimer

J. Chem. Phys. 88, 1557 (1988); 10.1063/1.454135

Rotational spectra and structures of the Ar2–H/DF trimers

J. Chem. Phys. 86, 569 (1987); 10.1063/1.452309

Rotational spectra and structures of Rg- $C_6H_6-H_2O$ trimers and the Ne- C_6H_6 dimer (Rg=Ne, Ar, or Kr)

E. Arunan, T. Emilsson, and H. S. Gutowsky Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois 61801

(Received 14 December 1993; accepted 30 March 1994)

Rotational spectra of $Rg-C_6H_6-H_2O$ isotopomers, where Rg=Ne, Ar, or Kr, have been observed with a Balle-Flygare Fourier transform microwave spectrometer. In these trimers the benzene is sandwiched between the rare gas and H_2O . Isotopic substitution and inertial analyses show that the $Rg-C_6H_6$ distance in the trimer is reduced by about 0.01 Å for Ne, Ar, and Kr compared to the corresponding distance in the $Rg-C_6H_6$ dimer. On the other hand, the c.m. (C_6H_6) to c.m. (H_2O) distance in the trimers is increased by only about 0.003 Å from its distance in the dimer. Symmetric top spectra of $^{20}Ne-C_6H_6$ and $^{22}Ne-C_6H_6$ were observed as an aid in the comparison. Hyperfine structure (hfs) and substitution analyses with HDO/D_2O containing isotopomers reveal that the m=0 and 1 states of H_2O in the trimer are virtually unchanged from those in the $C_6H_6-H_2O$ dimer, including essentially free rotation. In addition, analyses are made of the root-mean square (rms) deviation for the benzene C_6 axis from the **a** axis in the dimers (\sim 19 deg) and trimers (\sim 21 deg) and of the displacement of the C_2 axis of the water from the **a** axis in the trimers (\sim 37 deg).

I. INTRODUCTION

We recently reported preliminary observations of the rotational spectrum for Ne– C_6H_6 – H_2O , a symmetric top trimer in which C_6H_6 is sandwiched between Ne and H_2O . Here we give a detailed account of our studies on Ne– C_6H_6 – H_2O as well as similar results for Ar– C_6H_6 – H_2O and Kr– C_6H_6 – H_2O . The trimers may be thought of as a composite of the Rg– C_6H_6 and C_6H_6 – H_2O dimers, where Rg=Ne, Ar, or Kr. Of the dimers, rotational spectra have been reported for Ar– C_6H_6 , Kr– C_6H_6 , and C₆H₆– H_2O . However, at the time of our initial work on the Ne– C_6H_6 – H_2O sandwich, the rotational spectrum of Ne– C_6H_6 was not yet available. So, for comparative purposes, we observed and analyzed rotational spectra for the 20 Ne– C_6H_6 and 22 Ne– C_6H_6 dimers, the result of which are included here

The Rg-C₆H₆-H₂O trimer system is interesting for various reasons. It includes the weak Rg-C₆H₆ van der Waals interaction on one side of the benzene ring and the stronger C₆H₆-H₂O hydrogen bonding on the other side. Thus, studies of Rg-C₆H₆-H₂O trimers could not only improve our understanding of these two interactions but also shed some light on the effect of these interactions on one another. For example, Weber and Neusser reported rotationally resolved ultraviolet spectra⁶ of Ar-C₆H₆-Ar in which they found the two Ar-C₆H₆ distances to be the same as that observed in the dimer, i.e., there is no third-body effect due to the weak Ar-C₆H₆ interaction. On the other hand, in linear trimers containing (HCN)2, all involving H bonding, it was found that the distance between any two successive monomers was significantly shorter than the corresponding value in the dimer.^{7.8}

The $C_6H_6-H_2O$ dimer has attracted attention recently, 4,5,9,10 because studies of it can help clarify the hydrophobic interactions between C_6H_6 and H_2O in bulk. 11 Moreover, our results 4 on the low J rotational spectra of the $C_6H_6-H_2O$ dimer exhibited several unusual features. The

 H_2O is virtually free to rotate internally, leading to a symmetric top ground-state (m=0) spectrum, even though the rigid dimer is an asymmetric top. Also, spectra were observed for the first excited internal rotation state (m=1) of the H_2O and D_2O isotopic species, where relaxation to the m=0 ground state is spin-forbidden.

It was found for the dimer⁴ that the rotational spectra for both m=0 and m=1 states could be fitted to the following equation used by Fraser *et al.*¹² for the CF₃H-NH₃ dimer:

$$\nu = 2(J+1)(B-D_{JK}K^2 - D_{Jm}m^2 - D_{JKm}Km - H_{JKm}K^2m^2) - 4D_I(J+1)^3.$$
 (1)

However, an independent fit of the m=1 lines showed that the fit could be improved significantly by replacing D_J in Eq. (1) with an m dependent term, $D_J - D_{JJm}m^2$. In the m=1 progression, the highest frequency line was missing at each $J \ge 1$ and then there was an odd line just above the m=0 symmetric top lines. We assigned this to be the missing m=1 line. Finally the H_2O/D_2O hyperfine structure observed for the m=1 state differs from predictions based on a model in which the benzene and water rotate about coaxial C_6 and C_2 axes. Though most of these features are still not understood, observation of their counterparts in the trimers, as reported in this paper, is convincing evidence for their reality.

Benzene-rare gas clusters have been studied theoretically $^{13-16}$ and experimentally $^{2,3,6,17-20}$ as models for van der Waals interactions in aromatic systems and in dimers between two nonpolar units. Rotational spectra were obtained 2,3 for Ar-C₆H₆ and Kr-C₆H₆ to pinpoint their structures. However, initial attempts to observe the rotational spectrum for the Ne-C₆H₆ dimer by Bauder and co-workers were not successful. Hencouraged by our observations of the Ne-C₆H₆-H₂O trimer and by reliable rotationally resolved UV spectroscopy results we observed the rotational spectra of 20 Ne-C₆H₆ and 22 Ne-C₆H₆. Later, we learned that Bauder's group had also observed the rotational spectrum of 20 Ne-C₆H₆. Our results on the 20 Ne-C₆H₆ dimers

give us an accurate intermolecular distance as well as the "tilt" angle, the rms deviation of the benzene C_6 axis from the **a** axis. Both of these serve as a useful basis for an extensive comparison of the properties for the dimers and trimers incorporating the three rare gases.

II. EXPERIMENT

Rotational spectra of the Rg-C₆H₆-H₂O trimers and the Ne-C₆H₆ dimer were observed with the Mark II Balle/ Flygare Fourier transform microwave spectrometer.²² The complexes were formed typically in first run neon with 1.5 to 2.0 atm backing pressure. The C₆H₆ and H₂O were added by bubbling 1% and 2% of the carrier gas through the liquids at ambient conditions. For Ar-C₆H₆-H₂O and Kr-C₆H₆-H₂O, some 5% to 10% of Ar/Kr was mixed with the carrier gas. The pulsed nozzle (General Valve) has a diameter of ~ 1 mm and was operated typically at 10 Hz. Sixteen microwave pulses were applied during each gas pulse. Polarizing microwave pulses of 0.3 μ s were optimal for Rg-C₆H₆-H₂O trimers while 5-6 μ s pulses were needed for the Ne-C₆H₆ dimers. Amplification of the microwave power improved the Ne-C₆H₆ signal by a factor of 20, though the signal could be seen without an amplifier.

The $J=0\rightarrow 1$ transitions for Ne-C₆H₆-H₂O occur at frequencies (1.8 to 1.9 GHz) which are below our previous operating limit of 2280 MHz set by a transition reported²³ for ⁸²Kr-HC¹⁵N. The problem is that at low frequencies the "Q" of the Fabry-Perot resonator deteriorates rapidly. As the wavelength increases the microwave beam waist becomes wide enough for energy to be lost from the edges of the mirrors. To prevent this loss, the mirrors were fitted with 8 in. wide, tight fitting aluminum sheet collars. With these in place, good sharp resonances were observed down to 1.7 GHz. We do not know whether the resonator itself functions at lower frequencies. Most of the microwave components in the system are rated only to 2 GHz and, at 1.7 GHz, are operating well outside their design limits.

Coupling of the resonator to the microwave source required modification for the lower frequencies. Extension downward of the frequency range with waveguides would be impractical because of the sheer size of low-frequency waveguides. A coupling accessory was built using 0.141 in. semirigid coaxial cable as shown in Fig. 1. For convenience it was designed so that it could be slipped through the existing X-band waveguide, simplifying the installation and removal. (W) is the waveguide which butts against the coupling iris (H) on the mirror (M). The microwave wave signal is coupled to or from the resonator by the antenna (A), made from two 1/4 wavelength pieces of silvered wire. The antenna is a balanced device which needs a "balun" transformer (B) to be properly connected to the unbalanced coaxial transmission line.

The balun transformer is simply a piece of 3/8 in. diameter brass rod with a 1/4 wave deep well at the output end. Although the dimensions of the antenna and balun are wavelength specific, good performance can be had over a range of more than one octave. Two couplers have covered the range from 1.7 to 8 GHz. Not shown on Fig. 1 are the provisions for accurately adjusting the distance between the antenna and

FIG. 1. Details of the coaxial coupler to the cavity. (M) is the mirror with a coupling hole (H) and (W) is the X-band waveguide. (A) is the antenna, fed by the semirigid coaxial cable (C), connected through the balun (B).

the mirror. This allows adjustment of the coupling coefficient and makes it easier to obtain critical coupling to the resonator. Also not shown in Fig. 1 is a provision for rotating the coupler and antenna about the axis. By adjusting the rotation angle it is usually possible to get rid of spurious cavity ringing which sometimes overwhelms the molecular signal.

The search for Ne-C₆H₆-H₂O isotopomers was described in our preliminary communication.¹ The Ar-C₆H₆-H₂O and Kr-C₆H₆-H₂O spectra were predicted by assuming the trimer geometry to be the composite of the free Rg-C₆H₆ and C₆H₆-H₂O⁴ dimers.²⁻⁵ In the predictions both the Rg and the O atoms were assumed to be on the C_6 axis of the benzene. It was found that using a hypothetical C_{4v} H₂O molecule with 1/2 the H mass on each corner served as a good model for predicting symmetric top spectra of all the Rg-C₆H₆-H₂O isotopomers studied. Once the m=0 symmetric top transitions were observed, the m=1 lines for the lowest J were searched for with Eq. (1) as a guide. The higher J transitions were then predicted and observed.

The argon was obtained from Liquid Air. Neon and krypton were purchased from MG Industries. Fisher's reagent grade C_6H_6 was used. The $H_2^{\ 18}O$ with 92.5% $^{\ 18}O$ was obtained from Isotec, Inc. The D_2O (99.9% D) was obtained from Sigma and HDO was produced by mixing equal amounts of H_2O and D_2O in the bubbler.

III. RESULTS AND ANALYSIS

A. Rg-C₆H₆-H₂O sandwich trimers

1. Assignments and rotational constants

a. m=0 ground state. The ground-state, m=0 transitions could be fitted accurately for all three Rg-C₆H₆-H₂O trimers with the standard symmetric top equation²⁴

$$\nu = 2(J+1)(B-D_{IK}K^2) - 4D_I(J+1)^3. \tag{2}$$

The frequencies observed for the parent isotopic species $(Rg=^{20}Ne, ^{40}Ar, or ^{84}Kr)$ are listed in Table I. Some of the low J transitions for $Kr-C_6H_6-H_2O$ were not well resolved

TABLE I. Observed frequencies (MHz) of rotational transitions for the parent Rg-C	₆ H ₆ -H ₂ O trimers in the
$m=0$ state (Rg= 20 Ne, 40 Ar, or 84 Kr).	0 0 2

$J \rightarrow J'$	K	Ne-C ₆ H ₆ -H ₂ O	Ar-C ₆ H ₆ -H ₂ O	$J{ ightarrow}J'$	K	Kr-C ₆ H ₆ -H ₂ O
0 1	0	1918.6911	•••	4 5	3	4677.4343
					2	4677.5315
1 2	1	3837.2725	2691.0795		1	4677.5866
	0	3837.3210	2691.0934		0	•••
2 3	2	5755.5183	4036.5164	5 6	4	•••
	1	5755.7606	4036.5766		3	5612.8443
	0	5755.8388	4036.6043		2	5612.9599
					1	5613.0266
3 4	3	7673.2200	5381.7805		0	5613.0535
	2	7673.7540	5381.9394			
	1	7674.0755	5382.0349	6 7	4	6548.0243
	0	7674.1829	5382.0695		3	6548.2119
					2	6548.3478
4 5	4	9590.1474	6726.8470		1	6548.4283
	3	9591.0854	6727.1175		0	6548.4530
	2	9591.7558	6727.3142			
	1	9592.1583	6727.4331	7 8	3	7483.5313
	0	9592.2934	6727.4738		2	7483.6854
					1	7483.7780
5 6	4	•••	8072.0455		0	7483.8065
	3	11 508.6618	8072.3778			
	2	11 509.4649	8072.6140			
	1	11 509.9490	8072.7572			
	0	11 510.1110	8072.8049			

because of the small D_{JK} (~2 kHz). They are not included in the table or in the fit. The $J=4\rightarrow 5$ transitions for $^{82}{\rm Kr-C_6H_6-H_2O}$ and $^{83}{\rm Kr-C_6H_6-H_2O}$ were found in predicted regions but they were not cataloged or analyzed. A search for $^{36}{\rm Ar-C_6H_6-H_2O}$ was not successful due to its very low (0.34%) natural abundance.

TABLE II. Symmetric top rotational constants determined for the $Rg-C_6H_6-H_2O$ trimers in the m=0 state.^a

Trimer	B (MHz)	D _J (kHz)	D_{JK} (kHz)	σ (kHz)
	Ne	on		-
20 Ne- C_6H_6 - H_2O	959.3504(1)	2.425(2)	13.385(5)	1.4
²⁰ Ne-C ₆ H ₆ -HDO	944.4244(1)	2.332(1)	14.925(5)	1.8
²⁰ Ne-C ₆ H ₆ -D ₂ O	927.2092(2)	2.237(3)	13.21(2)	0.9
²⁰ Ne-C ₆ H ₆ -H ₂ ¹⁸ O	918.3755(1)	2.146(2)	12.04(1)	1.1
²² Ne-C ₆ H ₆ -H ₂ O	921.3840(1)	2.349(1)	12.744(7)	0.8
²² Ne-C ₆ H ₆ -HDO	907.0947(7)	2.24(3)	13.57(7)	1.3
$^{22}Ne-C_6H_6-D_2O$	890.6366(3)	2.12(1)	12.62(3)	3.2
• • -	Arg	on		
$Ar-C_6H_6-H_2O$	672.7784(2)	0.621(4)	3.96(2)	1.2
$Ar-C_6H_6-HDO$	662.6071(2)	0.585(3)	4.52(1)	1.3
$Ar-C_6H_6-D_2O$	650.8974(2)	0.574(3)	3.97(1)	1.2
$Ar - C_6H_6 - H_2^{18}O$	645.7760(2)	0.556(3)	3.62(2)	1.7
	Kryp	oton		
⁸⁴ Kr-C ₆ H ₆ -H ₂ O	467.7753(1)	0.291(8)	1.919(5)	1.0
⁸⁴ Kr–C ₆ H ₆ –HDO	460.4453(1)	0.276(1)	2.107(9)	1.1
⁸⁴ Kr-C ₆ H ₆ -D ₂ O	452.1356(1)	0.2697(6)	1.867(7)	1.2
⁸⁴ Kr–C ₆ H ₆ –H ₂ ¹⁸ O	449.1324(1)	0.261(1)	1.76(1)	1.5
86 Kr- C_6 H_6 - H_2 O	463.3386(1)	0.286(1)	1.884(8)	1.0

The standard deviation of the fit is given in parentheses for the last decimal; σ is the rms value of the residues.

The rotational constants found by fitting the observed frequencies to Eq. (2) are included in Table II. The residues (not given) are within the 2 kHz experimental error. Similar measurements and analyses were made for 13 other H₂O and Rg isotopomers, including several with HDO. For all of them we give only the fitted rotational constants and rms deviations included in Table II. Several trends are apparent in the table, as described in Sec. IV.

b. m=1 excited state. The symmetric top spectra exhibited by the m=0 state of the trimers show that in them the various isotopic species of H_2O are virtually free to rotate, as was found in the corresponding $C_6H_6-H_2O$ dimers. Our primary objective in observing the m=1 state transitions was to determine whether the trimer spectra retain the other dynamic features reported for the dimers.^{4,5}

In the dimer studies, m=1 transitions were found for the H_2O , D_2O , and $H_2^{-18}O$ isotopomers but not for the HDO, which has distinguishable H/D nuclei. The difference is attributable to the spin statistics of the homonuclear water species which prohibit relaxation of the excited, high-energy m=1 state to the m=0 ground state, but allow it for HDO. The current experiments on the trimers also failed to turn up m=1 transitions for the HDO species.

Spectra of the m=1 state were observed for the three parent isotopic species at low J; the results are listed in Table III. As in the case of $C_6H_6-H_2O$ dimers, it was noted that an independent fit of the m=1 transitions to Eq. (1) resulted in a much smaller D_J , even in negative values. This was accommodated in the simultaneous fit of m=0 and m=1 states by modifying the D_J term in Eq. (1) to read $(D_J-D_{JJm}m^2)$.

TABLE III. Observed frequencies (MHz) of rotational transitions for the parent $Rg-C_6H_6-H_2O$ trimers in the m=1 state ($Rg=^{20}Ne$, ⁴⁰Ar, or ⁸⁴Kr).

$J{ ightarrow}J'$	K	$Ne-C_6H_6-H_2O$	$Ar-C_6H_6-H_2O$	$Kr-C_6H_6-H_2O$
0 1	0	1912.6470	***	•••
1 2	-1	3824.2940	2684.5117	•••
	0	3825.2963	2684.9146	1868.0138
	1	3837.8851 ^a	2691.3505 ^a	•••
2 3	-2	5734.6690	4026.0870	2801.5093
	-1	5736.3657	4026.7536	2801.7750
	0	5737.9479	4027.3907	2802.0305
	1	5739.1910	4028.1942	2802.3529
	2	5756.6777ª	4036.9910*	2806.8023a
3 4	-3	•••	•••	•••
	-2	7646.0507	5368.0829	3735.3135
	-1	7648.3564	5368.9877	3735.6834
	0	7650.5998	5369.8893	3736.0455
	1	7652.4297	5370.7436	3736.4044
	2	7653.8694	5371.3997	3736.6627
	3	7675.2983ª	5382.5786a	3742.3721 ^a
4 5	-4		•••	•••
	-3		6708.8292	•••
	-2		6710.0484	4669.1088
	-1		6711.2073	4669.5821
	0		6712.4178	4670.0667
	1		6713.1556	4670.3949
	2		6714.0588	4670.7390
	3		6714.7090	4670.9852
	4		6728.1185 ^a	4677.9122ª

^{*}These lines are displaced by some as yet unknown perturbation.

The rotational and centrifugal distortion constants for both m=0 and m=1 states are given in Table IV.

For m=1, Eq. (1) predicts a K=0 line that is displaced from the m=0, K=0 symmetric top lines by the term $2(J+1)D_{Jm}m^2$. Also, it predicts progressions of lines with |mK|=1,2,...,J on each side of the K=0 line. Most of these lines were observed for the Rg-C₆H₆-H₂O trimers as well as the C₆H₆-H₂O dimers. However, in all cases, the line with mK=+J was missing and an odd line was observed above the symmetric top lines. This odd line was assigned as the mK=+J line in the m=1 progressions of Table III. How-

TABLE V. Observed and fitted deuterium hfs in the $J=0\rightarrow 1$ transition for the m=0 state of the Ne-C₆H₆-HDO trimer.

$F \rightarrow F'$	Obs. (MHz)	Res. (kHz)	Parameters determined		
1→0	1888.7580	0.5	Line center (MHz)	1888.8402	
12	0.8306	-1.3	$\chi_{aa}(D)$ (kHz)	165.51	
1→1	0.8824	0.8	β (deg)	34.2	

ever, an independent fit of them as K=0 gives B and D_J values that are very similar to the symmetric top constants in each case. These results are also included in Table IV.

The sign of m and hence of D_{JKm} is not determined from fitting the spectra. We have arbitrarily chosen m to be positive and D_{JKm} to be negative, so that the m=1 progression could be labeled as K=-J to 0 to +J as frequency increases. The standard deviation of the fits to the m=1 lines is about 50 kHz, which is 50 times our spectral resolution. However, these are significantly better than the standard deviation for the m=1 lines of the dimers (~ 320 kHz).

2. Nuclear hyperfine structure (hfs)

The deuterium quadrupole and H-H dipole-dipole interactions of the water's isotopic species were useful indicators of its dynamic state in the benzene-water dimer, as described in detail previously. However, these hyperfine interactions are small, of the order of 100 kHz, and we have observed and analyzed the resultant splittings only in the $J=0\rightarrow1$ and $1\rightarrow2$ transitions. For the trimers this has limited our hfs studies to the Ne species (B=910 to 960 MHz) and to the Ar $J=1\rightarrow2$ transitions even though the Kr-C₆H₆ interactions are stronger and more likely to affect the dynamic state of the water. In any event, the results outlined below clearly indicate that the state of the water in the trimer does not differ appreciably from that in the dimer, either dynamically or structurally.

a. $Ne-C_6H_6$ -HDO. The most direct information about the dynamic state of the water in the trimer comes from the deuterium (I=1) quadrupolar hfs for the HDO isotopomer. The hfs observed in the $J=0\rightarrow 1$ transition of

TABLE IV. Rotational constants obtained by a simultaneous fit of the m=0 and m=1 states for the $C_6H_6-H_2O$ dimer^a compared with those for the $Rg-C_6H_6-H_2O$ trimers ($Rg={}^{20}Ne$, ${}^{40}Ar$, or ${}^{84}Kr$).

Constant	Units	$C_6H_6-H_2O$	$Ne-C_6H_6-H_2O$	$Ar-C_6H_6-H_2O$	$Kr-C_6H_6-H_2O$
В	MHz	1994.7735(2)	959.3504(1)	672.7784(2)	467.776 6(2)
D_J	kHz	3.354(1)	2.425(2)	0.621(4)	0.291(8)
D_{JK}		37.91(2)	13.385(5)	3.96(2)	1.919(5)
D_{Im}	MHz	13.05(7)	3.021(7)	1.529(8)	0.760(3)
D_{JKm}	kHz	-1840(10)	-243(1)	-100(1)	-41.3(5)
H_{JKm}		36(7)	4(1)	2.0(8)	1.1(3)
D_{JJm}		14(3)	2.0(2)	0.25(18)	0.06(6)
$\sigma(m=0)$		1.3	1.4	1.2	1.0
$\sigma(m=1)$		320	58.4	74	28
		Displaced	m=1, K=+J component ^b		
В	MHz	1995.3856(1)	959.4907(6)	672.8423(3)	467.805 74(3)
D_J	kHz	3.440(2)	2.45(2)	0.612(9)	0.290 0(3)

aFrom Ref. 4.

^bFitted as a K=0 transition.

Ne-C₆H₆-HDO is given in Table V along with its fit using the basis set $I_D+J=F$. ^{4,24} The quadrupole coupling constant $\chi_{aa}(D)$ found in the fit is 165.5 kHz. It is the projection of $\chi_0(D)$ for free HDO onto the **a** axis of the trimer, averaged over its motions.

$$\chi_{aa}(D) = (1/2)\chi_0(D)(3 \cos^2 \beta - 1),$$
 (3)

where β is the projection angle between the O-D bond axis and the **a** axis. The $\chi_0(D)$ of free HDO is reported to be 315 kHz,²⁵ leading to a β of 34.2°. The corresponding values for $\chi_{aa}(D)$ and β in the dimer⁴ are 168.3 kHz and 33.9 deg, differing only slightly and confirming that the benzene—water interaction is monodentate in character with the D preferentially bonded to the benzene aromatic ring.

b. $Ne-C_6H_6-H_2O/D_2O$. The trimers and dimers with H_2O or D_2O have two identical water nuclei and the total wave function of the species should be antisymmetric (symmetric) with respect to the exchange of the H(D). Thus the parity of the total wave function is determined by the product of the nuclear spin function ψ_n and rotational function ψ_r . In favorable circumstances ψ_n can be found from the hfs or lack of it, and conclusions drawn about the nature of ψ_r .

For the dimer, Gotch and Zwier⁹ assumed the water to be freely rotating about its C_2 axis, coaxial with the benzene. Here the dimer belongs to the G_{24} molecular symmetry group for which the isotopomer with $H_2O(D_2O)$ is predicted to have an antisymmetric (symmetric) ψ_n for the m=0 state and a symmetric (antisymmetric) ψ_n for the m=1 state. The hfs reported⁴ for the m=0 state of $C_6H_6-H_2O/D_2O$ agrees with these predictions. However, for the m=1 state it was found that different spin states were required for the K=0 and the $K=\pm 1$ levels of each isotopomer.

In the present study the hfs of the trimers, primarily Ne-C₆H₆-H₂O, was found to be consistent with that obtained for the dimers. With the H₂O containing trimer we found no evidence of hfs in transitions of the m=0 state or in the K=0 transitions of the m=1 state, showing that these two protons are in the singlet, antisymmetric spin state $I_{\rm H}$ =0. But the $J=1\rightarrow 2$, K=-1 and +1 transitions for the m=1 state, at 3824.294 and 3837.885 MHz, are both close "doublets" with splittings of 17.5 and 14.5 kHz, respectively. They are the strongest hf components $(F=1\rightarrow 2 \text{ and }$ $2\rightarrow 3$) for the symmetric $I_H=1$ triplet spin state. Virtually identical results were obtained for the $J=1\rightarrow 2, K=0,\pm 1$ transitions of the Ar containing trimer. The doublets have somewhat different splittings of 21.2 and 13.9 kHz in the dimer (Table VIII, Ref. 4). The D₂O containing dimer has hfs in both the symmetric $(I_D=0,2)$ and antisymmetric $(I_D=1)$ states.4 It was present as expected however S/N, resolution, and overlap limitations discouraged analysis.

3. Structural analysis

The structural analysis given here for the trimers and in the next section for the Rg-C₆H₆ dimers neglects the effects of intermolecular as well as intramonomer vibrations. This introduces appreciable model error because the potential energy surfaces for the complexes have relatively shallow minima, giving large amplitude intermolecular modes. Cor-

FIG. 2. Molecular geometry and structural parameters used to describe the m=0 state of the Rg-C₆H₆-H₂O sandwich trimers. The small barrier to internal rotation of the water makes the trimer behave like a symmetric top.

rections for such effects were not attempted so it should be kept in mind that the structural parameters obtained are approximate.

In analyzing the structures of the trimers we focus on the m=0 ground state and treat it as a symmetric top even though, without "free" internal rotation of the H_2O , it is an asymmetric top. As noted above, the trimers may be viewed as composites of the $Rg-C_6H_6$ and $C_6H_6-H_2O$ dimers, with the same approximate set of structural parameters. These include the Rg to c.m. (C_6H_6) distance r_1 , the c.m. (C_6H_6) to c.m. (H_2O) distance r_2 , the rms tilt angle γ between the C_6 axis of the benzene and the α axis, and the rms angle θ between the C_2 axis of water and the α axis, as given in Fig. 2.

An analysis based on isotopic substitution was used to determine most of these parameters for the three trimers, with $^{20}\mathrm{Ne}$, $^{40}\mathrm{Ar}$, $^{84}\mathrm{Kr}$, $\mathrm{H_2}$, and $^{16}\mathrm{O}$ as the parent isotopic species and $^{22}\mathrm{Ne}$, $^{86}\mathrm{Kr}$, $\mathrm{D_2}$, and $^{18}\mathrm{O}$ as the species substituted. An attempt was made to observe $^{36}\mathrm{Ar}$ - $\mathrm{C_6H_6}$ - $\mathrm{H_2O}$ but it was unsuccessful because of the very low natural abundance (\sim 0.34%) of $^{36}\mathrm{Ar}$. Isotopic substitution of the Rg or O gives its distance a_X along the a axis from the c.m. of the trimer to be $\Delta I_b = \mu_s a_X^2$, where $\Delta I_b = I_b' - I_b$ and $\mu_s = M\Delta m/(M+\Delta m)$ is the reduced mass for the substitution. 24

The ¹⁸O substitution gives the oxygen position a_O but for our purposes we need $a_{\rm H_2O}$, the position of the $\rm H_2O$ c.m. The conversion requires that the orientation (θ) of the $\rm H_2O$ be determined and that the symmetric top behavior of the trimer be addressed. The same problems arose with the $\rm C_6H_6-H_2O$ dimer⁴ and the same approximate approach is used here. We treat the $\rm H_2O$ and $\rm D_2O$ as rotors with threefold symmetry. Thereby the substitution of $\rm D_2O$ for $\rm H_2O$ is a multiple off-axis substitution of $\rm \Delta m' = \frac{2}{3}(m_D - m_H) = \frac{2}{3}\Delta m$. This enables us to obtain a_H and b_H from the $\rm H_2O/D_2O$ substitution data with the following relation:

TABLE VI. Structural parameters found for the $Rg-C_6H_6-H_2O$ trimers compared with those in the $Rg-C_6H_6$ and $C_6H_6-H_2O$ dimers.^a

Parameters	Units	$Ne-C_6H_6-H_2O$	$Ar-C_6H_6-H_2O$	$Kr-C_6H_6-H_2O$
r_1	Å	3.391	3.554	3.659
δr_i		-0.017	-0.005	-0.004
r_2		3.334	3.332 ^b	3.330
δr_2		+0.005	+0.003	+0.001
θ	deg	36.8	37.6	38.4
$\Delta heta$	_	0	+0.8	+1.6
γ		22.9	22.3	21.2
$\Delta \gamma$		+2.2	~+4.3	+4.6

^aThe parameters are defined in Fig. 2. The changes in the parameters are those occurring upon trimer formation. Vibrational effects are neglected. ^bThis value was assumed by reference to the results for the Ne and Kr containing trimers in order to get a value for r_1 .

$$\Delta I_b = \Delta m b_H^2 + \left[2\Delta m M / (M + 2\Delta m) \right] a_H^2, \tag{4}$$

where $b_{\rm H}^2 + \Delta a_{\rm H}^2 = r({\rm OH})^2$. Here r (OH) is the O-H distance in free H₂O and $\Delta a_{\rm H} = a_{\rm O} - a_{\rm H}$ is its projection onto the **a** axis of the trimer.

For example, if the C_2 and C_6 axes of H_2O and C_6H_6 were coincident, Δa_H should be the same as the altitude observed in free H_2O , which is 0.595 Å. For the $C_6H_6-H_2O$ dimer this type of analysis gave Δa_H to be 0.477 Å. It corresponds to a projection angle $\theta=36.7$ deg, the on average angle between the C_2 axis of H_2O and the **a** axis of the axially symmetric dimer. Similar analyses for the trimers gave values for θ of 36.8, 37.6, and 38.4 deg for the Ne, Ar, and Kr species. With values for θ in hand, a_O can be converted to a_{H_2O} by using them to project the O to c.m. (H_2O) distance of 0.0666 Å onto the **a** axis. The value of $a_{C_6H_6}$ can now be determined from a_{Rg} and a_{H_2O} with the first moment condition

$$a_{\rm Rg}m_{\rm Rg} + a_{\rm C_6H_6}m_{\rm C_6H_6} + a_{\rm H_2O}m_{\rm H_2O} = 0.$$
 (5)

Finally r_1 and r_2 are obtained readily from the three a_X values, giving the results listed in Table VI.

In order to find γ we used the parallel axis theorem to write the following inertial equation for the trimeric symmetric tops:

$$\begin{split} I_b &= m_{\rm Rg} a_{\rm Rg}^2 + m_{\rm C_6 H_6} a_{\rm C_6 H_6}^2 + m_{\rm H_2 O} a_{\rm H_2 O}^2 \\ &+ I_b ({\rm C_6 H_6}) \langle 1 + \frac{1}{2} \sin^2 \gamma \rangle + I_0 ({\rm H_2 O}) \langle 1 + \frac{1}{2} \sin^2 \theta \rangle. \end{split} \tag{6}$$

It is similar to that used for the Kr- C_6H_6 dimer³ but with terms for the H_2O . The symmetric top behavior of H_2O is accommodated by redistributing the H_2 mass with threefold symmetry about the C_2 axis of the H_2O , as in the derivation of Eq. (4). $I_0(H_2O)$ is then the moment of inertia about axes perpendicular to the original C_2 axis. It is small and has little effect on the values of γ , the results for which are also given in Table VI.

TABLE VII. Observed frequencies of rotational transitions for the $Ne-C_6H_6$ dimers and their fit as symmetric tops.

J-	$\rightarrow J'$	K	20 Ne- C_6 H ₆ (MHz)	Residue (kHz)	22 Ne-C ₆ H ₆ (MHz)	Residue (kHz)
0	1	0	3 620.4346	2.3	a	
1	2	1	7 240.0460	-0.3	6 884.5933	-0.3
		0	7 240.3992	-1.2	6 884.9206	-1.4
2	3	2	10 857.3157	0.1	10 324.3225	-1.1
		1	10 858.9076	0.1	10 325.7999	-1.1
		0	10 859.4397	-0.1	10 326.2949	0.1
3	4	3	14 470.7194	0.1	13 760.4495	0.4
		2	14 474.2448	-0.7	13 763.7257	0.7
		1	14 476.3762	1.6	13 765.7029	1.6
		0	14 477.0856	-0.9	13 766.3640	2.2
4	5	4	b		17 191.5556	-0.3
		3			17 197.2667	0.8
		2			17 201.3769	-1.1
		1			17 203.8573	-0.3
		0			17 204.6876	-0.1
C	onstant	Units				
	В	MHz	1 810.254 8(3)		1 721.375 6(2)	
	D_J	kHz	19.344 71(1)		18.136 53(1)	
	D_{JK}		88.434 9(2)		82.012 50(5)	
	H_{JK}	Hz	-20(6)		-19(1)	
	H_{KJ}		70(11)		56(2)	

^aObscured by a transition of the benzene dimer.

B. Rg-C₆H₆ Dimers

Comparative study of the $Rg-C_6H_6-H_2O$ trimer is facilitated by a good data base for the $Rg-C_6H_6$ and $C_6H_6-H_2O$ dimers. In this section we report our results for the $Ne-C_6H_6$ dimer and compile corresponding properties for the Ar and Kr containing dimers.

1. Spectra and analysis for Ne-C₆H₆

A search for the $J=0\rightarrow 1$ transitions of $^{20}\text{Ne-C}_6\text{H}_6$ was based on the ground-state rotational constant reported to be 1808.978 MHz from rotationally resolved UV spectra. The search was lengthened by the weakness of the transition but it was shortly found at 3620.4346 MHz. The higher J symmetric top transitions were then readily observed through $J=3\rightarrow 4$, limited by the spectrometer range. Also, transitions for the ^{22}Ne isotopic species were observed from $J=1\rightarrow 2$ through $J=4\rightarrow 5$. The results are listed in Table VII. Our findings for the ^{20}Ne isotopomer are consistent with those determined by Bauder's group. 21

Initially Eq. (2), the standard symmetric top equation, was used to fit the observed transitions. But the residues for the $J=3\rightarrow 4$ and $J=4\rightarrow 5$ transitions of the two isotopomers were significantly higher (~ 10 kHz) than the experimental resolution (~ 1 kHz) clearly indicating a model deficiency. Therefore the higher order terms in H_{JK} and H_{KJ} were included.²⁴ They improved the fits significantly, giving the residues included in Table VII, which are now within experimental uncertainty.

With the reasonable assumption that the structure of the benzene is not distorted significantly by the weak intermo-

^bAbove our present frequency range.

TABLE VIII. Rotational, structural, and potential constants determined for the Rg-C₆H₆ dimers.

Constant	Units	20 Ne- $C_6H_6^{\ a}$	40 Ar $-$ C $_{6}$ H $_{6}$ b	⁸⁴ Kr–C ₆ H ₆ ^c
В	MHz	1810.254 8(3)	1181.2595(1)	795.6821(1)
D_J	kHz	19.344 71(1)	3.258(2)	1.325(1)
D_{JK}		88.434 9(2)	17.801(8)	7.895(4)
H_{JK}	Hz	-19(6)	•••	•••
H_{KJ}		70(10)	•••	•••
R_0	Å	3.408	3.559	3.663
R_e^{-d}		3.308	3.520	3.635
$R_0 - R_c$		0.100	0.039	0.028
γ	deg	20.7	~18	16.6
k,	mdyn/Å	0.008 6	0.0277	0.0349
v_s	cm ⁻¹	30.3	42.2	38.3
υ, e ^d		66	240	324

^{*}This research, Table VII.

lecular forces in the dimer, two parameters are needed to describe the dimer structure. These are the ground-state distance R_0 between the Rg and the c.m. (C_6H_6) , and the on average tilt angle γ between R and the sixfold axis of the benzene. In this event, B for the dimer is given by the expression³

$$I_b = I_c = I_b (C_6 H_6) \langle 1 + \frac{1}{2} \sin^2 \gamma \rangle + \mu_d R^2,$$
 (7)

where μ_d is the reduced mass of the dimer, treated as pseudodiatomic and $I_b(C_6H_6)$ is reported²⁷ to be 88.830 087 μ Å². If ²⁰Ne/²²Ne isotopic substitution has a negligible effect upon R and the tilt angle γ , both parameters can be estimated from the experimental B_0 's for the two isotopic species.

This can be done via Eq. (7) by first finding R using a substitution analysis²⁴ for a_{Ne} and then applying the first moment condition for R. Alternatively, Eq. (7) for the parent (unprimed) species can be subtracted from that for the isotopically substituted (primed) species, giving the following simple equation in R^2 :

$$I_b' - I_b = (\mu_d' - \mu_d)R^2. \tag{8}$$

Either method leads to 3.408 Å for R which in turn gives γ =20.7°. In our initial analysis of the Ne-C₆H₆ dimer we did not have the ²²Ne-C₆H₆ results.¹ Instead, we neglected the term for γ in Eq. (7) and used the simplified form to determine R. The resulting value of 3.458 Å is significantly longer indicating the importance of the term in $\sin^2 \gamma$ in Eq. (7).

2. Comparison of Rg-C₆H₆ dimers

Considerable data are available for the Ar and Kr containing $Rg-C_6H_6$ dimers. They include not only the rotational and structural constants but also several derived constants related to the potential function, in particular the equilibrium internuclear distance (R_e) , the stretching force constant (k_s) , the stretching frequency (ν_s) , and the well depth (ϵ) . These earlier results^{2,3} are collected in Table VIII which includes the same set of parameters for Ne-C₆H₆, determined in the same manner.

Although the results were obtained by approximate analyses they provide a semiquantitative picture of the $Rg-C_6H_6$ potentials. Both the ϵ and R_0-R_e values for $Ne-C_6H_6$ point to a much shallower and more anharmonic potential surface compared with those for the Ar and Kr containing dimers. The *ab initio* calculations of Hobza *et al.* ¹³ clearly show this trend which closely parallels the Rg-HCN interaction found for Rg=Ne, Ar, and Kr. ²⁸

IV. DISCUSSION

The symmetric top rotational spectra and substitution analyses for the $Rg-C_6H_6-H_2O$ trimers establish their structure to be that in which the benzene is sandwiched between the Rg atom and the H_2O molecule with effective axial symmetry. So the trimers can be considered as composites of the $Rg-C_6H_6$ and $C_6H_6-H_2O$ dimers and one expects any trends in the properties of the trimers upon changing Rg to parallel those for the $Rg-C_6H_6$ dimer. With this in mind we first review the dimer properties summarized in Table VIII.

The dominant feature of the dimers is the strength of the Rg-benzene interaction, with the experimental well depth ϵ increasing from 66 to 240 to 324 cm⁻¹ for Ne, Ar, and Kr. Ab initio calculations¹³ give systematically larger (3/2) values of 99, 426, and 485 cm⁻¹. In either case, we see that Ar and Kr are quite similar, both having much stronger interactions with benzene than Ne does. This is evident also in D_J , D_{JK} , and k_s . The shallowness of the potential energy surface for Ne-C₆H₆ is shown by the need in it for the H_{JK} and H_{KJ} centrifugal distortion terms. Similar trends are evident for the Rg-HCN dimers. Also, less striking systematics are present in the Rg to c.m. C₆H₆ distance R_0 and in the benzene tilt angle γ .

Trimer formation, as shown by the results summarized in Table VI, has surprisingly little effect upon the four structural parameters $(r_1\gamma;r_2\theta)$ of the dimers even though all four are affected systematically by changing Rg in the Ne, Ar, Kr sequence. It is seen that the Rg-C₆H₆ distance r_1 is decreased somewhat in the trimer, the decrease being largest (-0.017 Å) in the case of Ne. On the other hand there is an even smaller *increase* in the C₆H₆-H₂O distance r_2 , the increase being largest (+0.005) for Ne. Qualitatively these trends could be attributed to "third-body" effects in which the relatively very strong C₆H₆-H₂O interaction, in the 630 to 1300 cm⁻¹ range, ^{5,10} strengthens the weak Rg-C₆H₆ interaction and is itself affected in the process. Moreover, the weakest Rg-C₆H₆ interaction, that of Ne-C₆H₆, would be affected most

The angular changes are also systematic, with θ increasing in the Ne \rightarrow Kr sequence and γ decreasing. The magnitudes of θ and γ are 37 and 21 deg, respectively, indicating large amplitude zero-point bending vibrations. Apparently the benzene "tilt" is reduced by the Rg-C₆H₆ interaction which increases in the Ne \rightarrow Kr sequence. However, θ is increased (H₂O flattened) by the third-body effects of the Rg-C₆H₆ interaction.

In all three trimers the centrifugal distortion constants are much smaller than for the corresponding dimers. The trends shown for $Rg-C_6H_6$ in Table VIII and for $Rg-C_6H_6-H_2O$ in Table IV are due to strengthening of the

^bFrom Refs. 2 and 3.

From Ref. 3.

^dBased on a Lennard-Jones 6-12 potential.

Rg-C₆H₆ interaction as the Rg changes from Ne to Ar to Kr. Also, the change in D_J and D_{JK} for Ne-C₆H₆ as it forms Ne-C₆H₆-H₂O is worth mentioning. For Ne-C₆H₆ the centrifugal distortion constants are large, and even at J=3 or 4, higher order terms were needed in fitting the spectra. But for Ne-C₆H₆-H₂O even at $J=8\rightarrow 9$ (the highest transitions observable in our instrument) the standard symmetric top equation gives a very good fit. The change in D_1 appears to be a good indicator of the additional stabilization of a given dimer by trimer formation. For example, D_I decreases from 3.354 for $C_6H_6-H_2O$ to 2.425 kHz in Ne- $C_6H_6-H_2O$. However, it changes from 19.345 kHz for Ne-C₆H₆ to 2.425 kHz for Ne-C₆H₆-H₂O even though the increase in mass is roughly the same for the addition of Ne/H₂O.

Several lines of evidence show that axial addition of the Rg has little effect upon the C₆H₆-H₂O structure or on the dynamic state of the water in it. The C_6H_6 to H_2O distance r_2 in the three trimers is the same within model error as in the dimer. Also, the orientation of the H₂O molecule is little affected, the angle θ between its C_2 axis and the **a** axis increasing only by 0, 0.8, and 1.6 deg for Ne, Ar, and Kr. Similarly, the hfs from the water, to the degree that it could be observed, was virtually identical to that reported⁴ for the C₆H₆-H₂O dimer. Observations included the H-H hfs in the $J=0\rightarrow 1$ and $1\rightarrow 2$ transitions of Ne-C₆H₆-H₂O and the $J=1\rightarrow 2$ transition of Ar-C₆H₆-H₂O. Attempts to analyze the deuterium quadrupole hfs for the corresponding transitions of the D₂O isotopomers were unsuccessful because of poor S/N. The hfs depends on the spin statistics and symmetry as well as on the dynamic state of the H₂O/D₂O, both aspects of which were confirmed for the H₂O containing trimer. Also confirmed for the trimer and still unexplained is the displacement of the K = +J, m=1 transitions.

In closing, mention should be made of the rapidly increasing variety of exotic trimers containing a planar aromatic molecule which are being investigated. These include not only the symmetric $Ar-C_6H_6-Ar$ trimer^{6,29,30} but an asymmetric conformer as well.³⁰ Similarly, two stable conformers have been predicted for the furan-Ar₂ trimer by molecular mechanics calculations, one a symmetric sandwich and the other with both argon atoms on the same side of the furan ring.³¹ The sandwich form has been identified by its rotational spectrum.

ACKNOWLEDGMENTS

We thank Professor W. Klemperer for fruitful discussions. This material is based on work supported by the National Science Foundation under Grant No. CHE 91-17199. In addition, acknowledgment is made to the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

- ¹E. Arunan, T. Emilsson, and H. S. Gutowsky, J. Chem. Phys. 99, 6208
- ²Th. Brupbacher and A. Bauder, Chem. Phys. Lett. 173, 435 (1990).
- ³T. D. Klots, T. Emilsson, and H. S. Gutowsky, J. Chem. Phys. 97, 5335
- ⁴H. S. Gutowsky, T. Emilsson, and E. Arunan, J. Chem. Phys. 99, 4883
- ⁵S. Suzuki, P. G. Green, R. E. Bumgarner, S. Dasgupta, W. A. Goddard III, and G. A. Blake, Science 257, 942 (1992).
- ⁶Th. Weber and H. J. Neusser, J. Chem. Phys. 94, 7689 (1991).
- ⁷R. S. Ruoff, T. Emilsson, T. D. Klots, C. Chuang, and H. S. Gutowsky, J. Chem. Phys. 89, 138 (1988).
- ⁸R. S. Ruoff, T. Emilsson, C. Chuang, T. D. Klots, and H. S. Gutowsky, J. Chem. Phys. 90, 4069 (1989); 93, 6363 (1990).
- ⁹ A. J. Gotch and T. S. Zwier, J. Chem. Phys. 96, 3388 (1992).
- ¹⁰ J. D. Augspurger, C. E. Dykstra, and T. S. Zwier, J. Phys. Chem. 96, 7252
- 11 A. Ben-Naim, Hydrophobic Interactions (Plenum, New York, 1980). ¹²G. T. Fraser, F. J. Lovas, R. D. Suenram, D. D. Nelson, Jr., and W. Klemperer, J. Chem. Phys. 84, 598 (1986).
- ¹³P. Hobza, O. Bludský, H. L. Selzle, and E. W. Schlag, J. Chem. Phys. 97, 335 (1992).
- ¹⁴Th. Brupbacher, H. P. Lüthi, and A. Bauder, Chem. Phys. Lett. 195, 482
- ¹⁵J. Jortner, U. Even, S. Leutwyler, and Z. Berkovitch-Yellin, J. Chem. Phys. 78, 309 (1983).
- ¹⁶H.-Y. Kim and M. W. Cole, J. Chem. Phys. 90, 6055 (1989).
- ¹⁷Th. Weber, A. Von Bargen, E. Riedle, and H. J. Neusser, J. Chem. Phys. 92, 90 (1990).
- ¹⁸Th. Weber, E. Riedle, H. J. Neusser, and E. W. Schlag, J. Mol. Struct. 249, 69 (1991).
- ¹⁹Th. Weber, E. Riedle, H. J. Neusser, and E. W. Schlag, Chem. Phys. Lett. 183, 77 (1991).
- ²⁰S. M. Beck, M. G. Liverman, D. L. Monts, and R. E. Smalley, J. Chem. Phys. 70, 232 (1979).
- ²¹ A. Bauder (personal communication).
- ²²T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 53, 33 (1981); C. Chuang, C. J. Hawley, T. Emilsson, and H. S. Gutowsky, ibid. 61, 1629
- ²³T. C. Germann, T. Emilsson, and H. S. Gutowsky, J. Chem. Phys. 95, 6302 (1991).
- ²⁴W. Gordy and R. L. Cook, *Microwave Molecular Spectra*, 3rd ed. (Wiley, New York, 1984).
- ²⁵ D. Yaron, K. I. Peterson, D. Zolandz, W. Klemperer, F. J. Lovas, and R. D. Suenram, J. Chem. Phys. 92, 7095 (1990).
- ²⁶R. L. Cook, F. C. DeLucia, and P. Helminger, J. Mol. Spectrosc. 53, 62 (1974).
- ²⁷M.-L. Junttila, J. L. Domeneck, G. T. Fraser, and A. S. Pine, J. Mol. Spectrosc. 147, 513 (1991).
- ²⁸ H. S. Gutowsky, J. D. Keen, T. C. Germann, T. Emilsson, J. D. Augspurger, and C. E. Dykstra, J. Chem. Phys. 98, 6801 (1993).
- ²⁹ M. Schmidt, M. Mons, and J. LeCalvé, Chem. Phys. Lett. 177, 371
- 30 M. Schmidt, M. Mons, J. LeCalvé, P. Millié, and C. Cossart-Magos, Chem. Phys. Lett. 183, 69 (1991).
- ³¹R. M. Spycher, P. M. King, and A. Bauder, Chem. Phys. Lett. 191, 102