

شبکههای کامپیوتری

مسعود صبائی دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

معماري لايهاي

فهرست مطالب:

- دلایل استفاده از معماری لایهای
 - کلیات معماری لایهای
 - مدل مرجع OSI
 - نگاه واحد به لایهها
 - پروتکلها و سرویسها
- مدلهای سرویس اتصالگرا و سرویس بدون اتصال
 - قطعهسازی و بازسازی
 - مالتىپلكسينگ و دىمالتىپلكسينگ
 - مدل TCP/IP •

• شبکههای کامپیوتری سیستمهای پیچیدهای هستند:

- یک شبکه کامپیوتری یک سیستم توزیعشده که از اتصال کامپیوترها از طریق شبکههای ارتباطی ایجاد شده است.
 - تنوع در سختافزار و سیستم عامل (Platform) (ویندوز، لینوکس، و ...)
 - تنوع در رسانههای ارتباطی (سیم مسی، فیبرنوری، ارتباطات بیسیم، و ...)
 - تنوع در نیازمندهای کیفیت سرویس (حساس به خطا، حساس به تأخیر، و ...)
 - مسیریابی و هدایت بستهها بر روی مسیر
 - مدیریت ترافیک (مهندسی ترافیک، کنترل ازدحام، و ...)
 - کنترل امنیت (محرمانگی، دردسترس بودن و تصدیق هویت)
 - كنترل خطا (تشخيص و تصحيح خطا)

 - طراحی، پیادهسازی، عیبیابی و بروزرسانی پرهزینه

استفاده از معماری لایهای برای پیادهسازی شبکههای کامپیوتری

• معماري لايهاي:

- هر لایه فقط با دو لایه پایینی و بالایی در ارتباط است.
- هر لایه به لایه بالایی خود سرویس میدهد و از لایه پایینی خود سرویس میگیرد.
 - سرویس هر لایه به لایه بالاتر انتقال دادهها است.
 - هر لایه یک وظیفه مشخص دارد (مثلاً مسیریابی، کنترل خطا یا ...)
- هر لایه در گره مبدأ برای انجام وظایف خود یک پروتکل با لایه متناظر خود در گره مقصد دارد.

مزایا و معایب معماری لایهای

• مزایا:

- سادگی طراحی و پیادهسازی
- سادگی بروزرسانی (متناسب با پیشرفت فناوری)
 - سادگی نگهداری، عیبیابی و رفع مشکلات
 - معایب:
 - کاهش بهرهوری بدلیل سربار معماری لایهای

موازنه (Trade-off) بین مزایا و معایب تعداد لایهها

مدلهای لایهای استاندارد

- مدل لایهای OSI
- استاندارد رسمی (dejure)
 - مدل مرجع
- استاندارد شده توسط موسسه استاندارد جهانی (International Organization for Standardization)
 - عمومیت کمتر نسبت به مدل TCP/IP

• مدل TCP/IP ·

- استاندارد عرفی (defacto)
- معماری لایهای شبکه اینترنت
- هماهنگی پیادهسازی توسط سازمان IETF (Internet Engineering Task Force)
 - RFCxxx •

مدل مرجع OSI Reference Model) OSI

معماری لایهای

نگاه واحد (کلی) به معماری لایهای

CI: Interface Control Information

SDU: Service Data Unit **PDU**: Protocol Data Unit

PDU(K+1)

II

SDU(K)

مدلهای سرویس در معماری لایهای

• سرویس اتصالگرا (Connection-oriented):

- قبل ارسال داده، لایه متناظر از دریافت اطلاعات مطلع میشود.
- دارای سه مرحله (Phase) برقراری ارتباط، انتقال دادهها و رهاسازی
- فرستنده و گیرنده منابعی را برای هر ارتباط تخصیص میدهند (نگهداری وضعیت ارتباط).
 - پروتکلهای مطمئن (بدون خطا)، اتصالگرا هستند.

• سرویس بدون اتصال (Connectionless):

- فرستنده بدون هماهنگی با گیرنده، دادهها را اسال میکند.
- عموماً پروتکلهای بدون اتصال مطمئن نیستند و سرویس بیشترین تلاش (Best effort) را ارائه میدهند.

معماری لایهای

مدلهای سرویس در معماری لایهای – سرویس اتصالگرا

مدلهای سرویس در معماری لایهای – سرویس بدون اتصال

وظايف عمومي لايهها

- مالتىپلكسىنگ/دىمالتىپلكسىنگ (Multiplexing/Demultiplexing):
 - به اشتراکگذاری سرویس بین چند موجودیت (Entity) لایه بالاتر
 - نیاز به شناسه مالتیپلکسینگ (Multiplexing ID) دارد.
 - قطعهسازی و بازسازی (Segmentation & Reassembly):
 - محدودیت اندازه واحد اطلاعاتی سرویس لایه پایینتر
 - شکستن واحد اطلاعاتی دریافتی از لایه بالاتر به چندین قطعه در مبدأ
 - ارسال هر قطعه به عنوان یک واحد اطلاعاتی پروتکل
 - دریافت همه قطعات، بازسازی واحد اطلاعاتی اصلی و تحویل آن به لایه بالاتر در مقصد

وظایف عمومی لایهها - مالتیپلکسینگ/دیمالتیپلکسینگ

وظایف عمومی لایهها - قطعهسازی و بازسازی

مدل TCP/IP

لایه کاربرد Application Layer

لايه انتقال Transport Layer

لایه اینترنت (شبکه) Internet (Network) Layer

لايه واسط شبکه Network Interface Layer

- لايه كاربرد
- ارائهدهنده یا دریافتکننده سرویس (در اختیار کاربر)
 - لايه انتقال
 - انتقال پیام کاربران (TCP یا TCP)
 - لایه اینترنت (شبکه)
- مسیریابی (پروتکلهای مسیریابی) و جلورانی (IP)
 - لايه واسط شبكه
- انتقال اطلاعات از یک گره به گره مجاور (در اختیار کاربر)

مقایسه مدل TCP/IP و مدل

مدل OSI مدل TCP/IP لایه ۷ (لایه کاربرد) **Application Layer** لایه کاربرد لایه ۶ (لایه ارائه) **Application Layer Presentation Layer** لایه ۵ (لایه نشست) **Session Layer** لايه انتقال لایه ۴ (لایه انتقال) **Transport Layer Transport Layer** لایه اینترنت (شبکه) لایه ۳ (لایه شبکه) Network Layer **Internet (Network) Layer** لایه ۲ (لایه پیوند داده) **Data Link Layer** لايه واسط شبكه لایه ۱ (لایه فیزیکی) **Network Interface Layer Physical Layer**

معماری لایهای مدل TCP/IP

لایه کاربرد Application Layer

Message

لايه انتقال Transport Layer

Segment

لايه اينترنت (شبكه) Internet (Network) Layer

Packet

پیوند داده Data Link Layer

Frame

لایه فیزیکی Physical Layer

Bit

مدل لایهای TCP/IP

سرویسهای لایه انتقال مدل TCP/IP

- سرویس اتصالگرا توسط پروتکل TCP
- **(Transmission Control Protocol)**
 - اتصالگرا
- سرویس مطمئن (بدون خطا) انتقال دادههای لایه کاربرد به صورت رشته بایت
 - انتقال صحیح فقط یکبار داده
 - حفظ ترتیب ارسال بایتها
 - مرزبندی پیامها به عهده پروتکل لایه کاربرد است.
- تعیین اینکه از کدام بایت تا کدام بایت یک پیام است به عهده لایه کاربرد است.
 - کنترل جریان
 - كنترل ازدحام

سرویسهای لایه انتقال مدل TCP/IP

• سرویس بدون اتصال توسط پروتکل UDP

(User Datagram Protocol)

- بدون اتصال
- ارسال پیامهای مجزا
 - بیشترین تلاش
- عدم تضمین حفظ ترتیب و عدم تضمین تحویل پیام به گیرنده

سرويس لايه اينترنت

• سرویس بدون اتصال توسط پروتکل IP

(Internet Protocol)

- بدون اتصال
- ارسال مستقل بستهها
 - بیشترین تلاش
- عدم تضمین حفظ ترتیب و عدم تضمین تحویل پیام به گیرنده

پیادهسازی لایهها در گرههای شبکه

- برنامههای کاربردی فقط در گرههای انتهایی وجود دارند.
- پیادهسازی همه لایههای پشته پروتکلی (Protocol Stack) در گرههای انتهایی (میزبان)
 - لایههای ۴ به بالا در گرههای میانی پیادهسازی نمیشوند.
 - با توجه به وظیفه گره میانی ممکن است تا سه لایه پایین در آنها پیادهسازی میشود.
 - مسیریاب (Router) یا سوییچ لایه ۳ : سه لایه پایین
 - سوییچ (Switch) و پل (Bridge): دو لایه پایین
 - تكرا ركننده (Repeater): فقط لايه فيزيكي

خلاصه:

- دلایل استفاده از معماری لایهای
 - کلیات معماری لایهای
 - مدل مرجع OSI
 - نگاه واحد به لایهها
 - پروتکلها و سرویسها
- مدلهای سرویس اتصالگرا و سرویس بدون اتصال
 - قطعهسازی و بازسازی
 - مالتى پلكسينگ و دىمالتى پلكسينگ
 - مدل TCP/IP •

