1 Основные классы неорганических соединений

- Простые
 - Металлы
 - Неметаллы
- Сложные
 - Оксиды E*O*
 - Основания Me(OH)
 - Кислоты H(KO)
 - Соли Ме(КО)

2 Оксиды

2.1 Классификация

- Безразличные
 - CO

NO

- Солеобразующие
 - Основные MeO(I, II)
 - Амфотерные $MeO(III) \mid BeO, ZnO$

2.2 Получение

- 1. Окисление
 - (а) Простых

$$S + 0_2 = SO_2 \uparrow$$

(b) Сложных
$$2H_2S + 3O_2 = 2H_2O + 2SO_2 \uparrow$$

- 2. Разложение сложных веществ
 - (а) Некоторых солей
 - (b) Некоторых кислот
 - (c) Всех нерастворимых оснований $E(OH) \xrightarrow{t} EO + H_2O$

2.3 Химические свойства

2.3.1 Основные

1. Вода (если Ме-активный)

основный оксид
$$+$$
 вода \to основание $CaO + H_2O \to Ca(OH)_2$

2. Кислоты

основный оксид
$$+$$
 кислота \to соль $+$ сода $CuO + H_2SO_4 \to CuSO_4 + H_2O$

3. Кислотные оксиды

основный оксид
$$+$$
 кислотный оксид \to соль

$$CaO + Al_2O_3 \xrightarrow{t} Ca(AlO_2)_2$$

2.3.2 Кислотные

1. Вода

кислотный оксид
$$+$$
 вода \to кислота $SO_3 + H_2O \to H_2SO_4$

2. Щелочь

кислотный оксид
$$+$$
 щелочь \rightarrow соль $+$ вода $SiO_2 + H_2O \not\rightarrow$

3. Основные оксиды

кислотный оксид
$$+$$
 основный оксид \to соль $CO_2 + CaO \to CaCO_3$

3 Основания

3.1 Классификация

- Щелочи (растворимые в воде)
- Нерастворимые (в воде)

3.2 Получение

3.2.1 Щелочи

1. Вода с активными Ме
$$2Na + 2H_2O \rightarrow 2NaOH + H_2 \uparrow Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2 \uparrow$$

2. Вода с оксидами активных Ме
$$Li_2O + H_2O \rightarrow 2LiOH$$
 $CaO + H_2O \rightarrow Ca(OH)_2$

3. Электролиз раствора хлорида натрия или калия
$$2NaCl + 2H_2O \overset{\text{эл.ток}}{\to} 2NaOH + H_2 \uparrow + Cl_2 \uparrow 2KCl + 2H_2O \overset{\text{эл.ток}}{\to} 2KOH + H_2 \uparrow + Cl_2 \uparrow$$

4.
$$\boxed{ {\rm соль} + {\rm щелочь} \to {\rm соль} + {\rm щелочь} }$$
 $K_2SO_4 + Ba(OH)_2 = BaSO_4 \downarrow + KOH$

3.2.2 Нерастворимые

1. Раствор соли и раствор щелочи
$$CuCl_2 + 2KOH \rightarrow Cu(OH)_2 \downarrow + 2KCl$$
 $FeCl_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaCl$

3.3 Химические свойства

3.4 Щелочи

1. Изменение окраски индикаторов растворами шелочей

residential outpassing implimatores passing position						
Индикатор\Среда	Нейтральная	Кислая	Щелочная			
Лакмус	фиолетовый	красный	синий			
Фенолфталеин	_	_	малиновый			
Метилоранж	оранжевый	розовый	желтый			

2. Кислоты (Нейтрализация)

$$NaOH + HCl \rightarrow NaCl + H_2O$$

$$Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2H_2O$$

3. Кислотные оксиды

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow +H_2O$$

 $2KOH + CO_2 \rightarrow K_2CO_3 + H_2O$

4. Растворимые в воде соли

$$HCl_3 + 3KOH \rightarrow Al(OH)_3 + 3KCl$$

3.5 Нерастворимые

- 1. Термическое разложение основание $\stackrel{t}{\rightarrow}$ основный оксид + вода
 - $2Al(OH)_3 \xrightarrow{t} Al_2O_3 + 3H_2O$
- 2. Кислоты (Нейтрализация) $Cu(OH)_2 + 2HNO_3 \to Cu(NO_3)_2 + 2H_2O$

4 Кислоты

4.1 Классификация

4.1.1 По содержанию кислорода

- Бескислородные H_2S , HCl, HI
- Кислородосодержащие $HClO_4, CH_3COOH, H_2SO_4$

4.1.2 По числу атомов водорода

- ullet Одноосновные HCl
- Многоосновные H_2S, H_3PO_4

4.2 Номенкулатура

4.2.1 Бескислородные

название элемента + "водородная"

 \overline{HF} — фтороводородная

HCl- хлоро**водородная**

 H_2S — сероводородная

4.2.2 Кислородосодержащие

название элемента + суффикс + кислота

Выбор суффикса зависит от степени окисления элемента. Суффиксы в порядке уменьшения степени окисления:

- 1. -ная, -вая (максимальная, соответствует номеру группы в таблице Менделеева)
- 2. -оватая
- 3. -истая
- 4. -оватистая

 $HCl^{+7}O_4$ — хлор**ная** кислота

 $HCl^{+5}O_3$ — хлор**новатая** кислота

 $HCl^{+3}O_2$ — хлор**истая** кислота

 $HCl^{+1}O$ — хлорн**оватистая** кислота

Содержание

1	Осн	новные классы неорганических соединений	1
2	Окс	сиды	1
	2.1	Классификация	-
	2.2	Получение	
	2.3	Химические свойства	
		2.3.1 Основные	-
		2.3.2 Кислотные	4
3	Осн	ования	•
	3.1	Классификация	•
	3.2	Получение	
	J	3.2.1 Щелочи	•
		3.2.2 Нерастворимые	,
	3.3	Химические свойства	
	3.4	Щелочи	
	3.5		
	5.5	Нерастворимые	٠
4	Кис	слоты	•
	4.1	Классификация	
		4.1.1 По содержанию кислорода	
		4.1.2 По числу атомов водорода	
	4.2	Номенкулатура	•
	_	4.2.1 Бескислородные	
		4.2.2 Кислородосодержащие	