<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivat... / Lecture 4: Introduction to vectors and dot pro...

(3)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:18:18

☐ Bookmark this page

Reflect

There is a more geometric formula way to understand the dot product. Let's consider two vectors $ec{v}$ and $ec{w}$ where the angle between them is θ .

POLL

The geometric formula for the dot product is given by which one of the following?

RESULTS

[mathjaxinline]\vec{v} \cdot \vec{w} = \vec{v} \vec{w} \sin\theta[/mathjaxinline]	4%
<pre>[mathjaxinline]\vec{v} \cdot \vec{w} = \vec{v} \vec{w} \cos\theta[/mathjaxinline]</pre>	81%
<pre>[mathjaxinline]\vec{v} \cdot \vec{w} = \vec{v} \vec{w} \tan\theta[/mathjaxinline]</pre>	7%
I do not know how to think about this yet	9%

Submit

Results gathered from 621 respondents.

FEEDBACK

Your response has been recorded

Geometric formula of the dot product

STUDENT: Maybe compare it to that first formula you gave us?

PROFESSOR: Yeah.

Yeah.

Yeah, that's good.

That's good.

So something I like to do is to have

in mind a few examples, a few simple examples, where

we can work out these things.

And then I can test whatever I need to remember about dot products by looking

at the simple examples.

So can people think of an example

where it Galculator is Hide Notes out what

STUDENT: [INAUDIBLE]

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

To help us remember the geometric definition, we'll try some simple examples using the formula for the dot product

$$ec{v}\cdotec{w}=\langle v_1,v_2
angle\cdot\langle w_1,w_2
angle=v_1w_1+v_2w_2$$

and compare it to the above formulas.

A first example: One good case to consider is

$$ec{v} = \langle 1, 0
angle \quad ext{and} \quad ec{w} = \langle 0, 1
angle.$$

Equation for the dot products gives us

$$ec{v}\cdotec{w}=\langle 1,0
angle\cdot\langle 0,1
angle=0.$$

Drawing the two vectors, we see that $heta=\pi/2$.

This matches with the second choice since

$$|ec{v}||ec{w}|\cos\left(rac{\pi}{2}
ight)=0.$$

A second example: Consider the two vectors

$$ec{v} = \langle v_1, 0
angle \quad ext{and} \quad ec{w} = \langle w_1, w_2
angle,$$

which are sketched below.

Then

$$ec{v}\cdotec{w}=v_1w_1$$

Since $v_2=0$, we know that

$$v_1=|ec{v}|.$$

We also know that

$$w_1 = |ec{w}|\cos heta.$$

Putting this all together gives

$$ec{v}\cdotec{w}=v_1w_1=|ec{v}||ec{w}|\cos heta.$$

Where does the relationship between the algebraic definition and geometric interpretation come from?

√ (Optional) proof of equivalence

images need alt text

Proof that

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta \tag{3.24}$$

where $oldsymbol{ heta}$ is the angle between $oldsymbol{ec{v}}$ and $oldsymbol{ec{w}}$ as shown in the figure below.

To see this, let's use the vectors in the figure above to form a triangle with sides $ec v=\langle v_1,v_2
angle$, $ec w=\langle w_1,w_2
angle$, and ec u where

$$\vec{u} = \vec{w} - \vec{v} = \langle w_1 - v_1, w_2 - v_2 \rangle.$$
 (3.25)

The law of cosines tells us that

Note: When $heta=\pi/2$, the triangle is a right triangle and the law of cosines simplifies to the Pythagorean theorem. In our case, heta is not specified.

However, we also know from the properties of dot products that

$$|\vec{u}|^2 = \vec{u} \cdot \vec{u} \tag{3.27}$$

$$= (\vec{w} - \vec{v}) \cdot (\vec{w} - \vec{v}) \tag{3.28}$$

$$= \vec{\boldsymbol{w}} \cdot \vec{\boldsymbol{w}} + \vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{v}} - \vec{\boldsymbol{w}} \cdot \vec{\boldsymbol{v}} - \vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{w}}$$
 (3.29)

$$= |\vec{w}|^2 + |\vec{v}|^2 - 2\vec{v} \cdot \vec{w}. \tag{3.30}$$

using our previous definition of the dot product.

In summary, we just showed that the quantity $|ec{u}|^2$ satisfies two equalities. Namely,

$$|\vec{u}|^2 = |\vec{v}|^2 + |\vec{w}|^2 - 2|\vec{v}||\vec{w}|\cos\theta$$
 (3.31)

$$|\vec{u}|^2 = |\vec{w}|^2 + |\vec{v}|^2 - 2\vec{v} \cdot \vec{w}.$$
 (3.32)

Setting both expressions for $|ec{u}|^2$ equal to each other gives

$$|\vec{v}|^2 + |\vec{w}|^2 - 2|\vec{v}||\vec{w}|\cos\theta = |\vec{w}|^2 + |\vec{v}|^2 - 2\vec{v}\cdot\vec{w}.$$
 (3.33)

Solving for $ec{v} \cdot ec{w}$ then gives

$$\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta. \tag{3.34}$$

<u>Hide</u>

12. Dot product: geometric formula

Topic: Unit 2: Geometry of Derivatives / 12. Dot product: geometric formula

Hide Discussion

by recent activity >

Add a Post

Previous

Show all posts

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>