

CFA 二级学习笔记

CFA Level 2 Learning Notes

作者: Ethan Wang

组织: 纽约大学

时间: February 27, 2020

版本: 0

鸣谢:特别感谢本笔记模板制作者: Elegant ETFX Program

目录

1	INTRODUCTION TO LINEAR REGRESSION				
	1.1	Linear Regression Introduction	1		
	1.2	ANOVA Table	1		

第一章 INTRODUCTION TO LINEAR REGRESSION

1.1 Linear Regression Introduction

一元回归模型应该看起来长这样:

$$\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i + \epsilon_i, i = 1, \dots, n \tag{1.1}$$

其中,

 \hat{Y}_i (Predicted Value) 是对第 i 个因变量 (dependent variable) 的估计 \hat{b}_1 的置信区间是

$$\hat{Y} \pm (t_c \times s_f)$$

 t_c 是 two-tailed t-value 检验值,自由度 (degree of freedom) 是 n-2 $s_f = \mathrm{SEE}^2[1 + \frac{1}{n} + \frac{(X - \overline{X})^2}{(n-1)s_x^2}]$ 是 standard error of the forecast,一般题目中会给 s_{x}^{2} \not E variance of the independent variable

 \hat{X}_i 是对第 i 个自变量 (independent variable) 的估计

 $\hat{b}_1 = ext{COV}_{XY}/\delta_X^2$ 是模型的坡度,slope coefficient.

 \hat{b}_1 的置信区间是

$$\hat{b}_1 \pm (t_c \times s_{\hat{b}_1})$$

 t_c 是 two-tailed t-value 检验值,自由度 (degree of freedom) 是 n-2所以检验 \hat{b}_1 用 $t_{b_1}=\frac{\hat{b}_1-b_1}{s_{\hat{b}_1}}$,并且拒绝 H_0 如果 $t>|t_{critical}|$ $s_{\hat{b}_1}$ 是 standard error of regression coefficient

 $\hat{b}_0 = \overline{Y} - \hat{b}_1 \overline{X}$ 是模型的交点,intercept term.

1.2 ANOVA Table

首先,我们先看看 ANOVA Table 是什么样子的,再解释里面的各项是什么意思 k is

表 1.1: ANOVA Table

Source of Variation	DoF (k)	Sum of Squares	Mean Sum of Squares
Regression (explained) Error (unexplained)	1 n - 2	RSS SSE	$\begin{aligned} & \text{MSR} = RSS/k = RSS \\ & \text{MSE} = \frac{SSE}{n-2} \end{aligned}$
Total	n - 1	SST	

the number