Элементы теории поля

Определение. Пусть G область в пространстве \mathbb{R}^3 . Говорят, что в области G задано скалярное поле, если каждой точке $M \in G$ поставлено в соответствие число u(M) = u(x,y,z). В области G заданно векторное поле, если каждой точке $M \in G$ поставлен в соответствие вектор $\vec{a}(M) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$. Аналогично определяются скалярные и векторные поля в области $G \subset \mathbb{R}^2$. Будем говорить, что скалярные и векторные поля u(M) и $\vec{a}(M)$ обладают некоторым свойством, если этим свойством обладают функции u(x,y,z), P(x,y,z), Q(x,y,z), R(x,y,z).

Определение. Векторное поле называется дифференцируемым в области G, если дифференцируемы P, Q, R.

Определение. Пусть u(M) дифференцируема в области $G \subset \mathbb{R}^3$ скалярное поле. Векторное поле

$$\operatorname{grad}(u) = \frac{\partial u}{\partial x}\vec{i} + \frac{\partial u}{\partial y}\vec{j} + \frac{\partial u}{\partial z}\vec{k}$$

называется градиентом скалярного поля u(M) в G.

Замечание. Многие понятия теории поля удобно записывать, используя символический вектор Гамильтона "набла" ∇ :

$$\nabla = \vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}.$$

Замечание. Тогда получим, что

$$\operatorname{grad}(u) = \nabla u.$$

Правая часть понимается как умножение вектора на "число". Сам вектор набла не имеет реального значения, а приобретает это значение комбинацией со скалярными или векторными функциями.

Определение. Пусть даны скалярное поле u(M) дифференцируемое в области G, точка $M_0 \in G$ и направление $\vec{e}(\cos(\alpha), \cos(\beta), \cos(\gamma))$. Производной поля u(M) в точке M_0 по направлению \vec{e} называется число

$$\frac{\partial u}{\partial \vec{e}}(M_0) = \frac{\partial u}{\partial x}(M_0)\cos(\alpha) + \frac{\partial u}{\partial y}(M_0)\cos(\beta) + \frac{\partial u}{\partial z}(M_0)\cos(\gamma).$$

Замечание.

$$\frac{\partial u}{\partial \vec{e}} = \operatorname{grad}(u) \cdot \vec{e},$$

Здесь \cdot — скалярное произведение в \mathbb{R}^3 .

Теорема. Производная скалярного поля u(M) в точке M_0 по направлению, определяемому вектором $\operatorname{grad}(u)$ в точке M_0 имеет наибольшее значение по сравнению с производной u(M) в точке M_0 по любому другому направлению. Значение производной u(M) в точке M_0 по направлению $\operatorname{grad}(u(M_0))$ равно $|\operatorname{grad}(u(M_0))|$.

Доказательство. Пусть φ угол между \vec{e} и $\vec{\mathrm{grad}}(u(M_0))$. Тогда

$$\frac{\partial u}{\partial \vec{e}}(M_0) = \vec{\operatorname{grad}}u(M_0) \cdot \vec{e} = |\vec{\operatorname{grad}}u(M_0)||\vec{e}|\cos\varphi = |\vec{\operatorname{grad}}u(M_0)|\cos\varphi.$$

Значение производной максимально, если $\cos \varphi = 1$. Тогда $\varphi = 0$. Значит направление вектора $\vec{\text{grad}}(u(M_0))$ совпадает с направлением вектора \vec{e} и

$$\frac{\partial u}{\partial \vec{e}}(M_0) = |\vec{\operatorname{grad}}u(M_0)|.$$

Определение. Пусть в области G заданно векторное поле $\vec{a} = \vec{a}(M)$ и существует определенная в G функция u = u(M) такая, что

$$\vec{a} = \vec{\text{grad}}u.$$

Тогда функция u называется потенциалом векторного поля \vec{a} .

Пример. Пусть дан вектор \vec{r} . Разложим его по базису:

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}, \qquad |\vec{r}| = \sqrt{x^2 + y^2 + z^2}.$$

$$\vec{a} = \frac{\vec{r}}{|\vec{r}|^3} = \frac{x}{|\vec{r}|^3} \vec{i} + \frac{y}{|\vec{r}|^3} \vec{j} + \frac{z}{|\vec{r}|^3} \vec{k}.$$

Пусть $G = \mathbb{R}^3 \setminus (0,0,0)$. Тогда функция $u == \frac{1}{|\vec{r}|}$ является потенциалом векторного поля \vec{a} в множестве G.

Определение. Пусть векторное поле $\vec{a} = P\vec{i} + Q\vec{j} + R\vec{k}$ дифференцируемо в области G. Тогда скалярное поле

$$\operatorname{div}\vec{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

называется дивергенцией векторного поля \vec{a} в области G.

Замечание. Дивергенция поля может быть записана как "скалярное произведение" векторов набла и \vec{a} :

$$\operatorname{div} \vec{a} = \nabla \cdot \vec{a}$$
.

Определение. Пусть векторное поле $\vec{a} = P\vec{i} + Q\vec{j} + R\vec{k}$ дифференцируемо в области G. Ротором (вихрем) векторного поля \vec{a} называется векторное поле:

$$\operatorname{rot} \vec{a} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \vec{k}.$$

Замечание. Ротор поля \vec{a} можно записать как "векторное произведение" оператора набла на \vec{a} :

$$\operatorname{rot} \vec{a} = \nabla \times \vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}.$$

Определение. Векторное поле \vec{a} , заданное в области G называется без вихревым, если

$$rot \vec{a} = \vec{0}$$
.

Определение. Пусть $\vec{a} = P\vec{i} + Q\vec{j} + R\vec{k}$ векторное поле непрерывное в области G, γ ориентированный гладкий контур G. Интеграл

$$\oint_{\gamma} Pdx + Qdy + Rdz$$

называется циркуляцией векторного поля \vec{a} по контуру γ . Обозначение:

$$\oint_{\gamma} \vec{a} \cdot d\vec{r}, \qquad d\vec{r} = dx\vec{i} + dy\vec{j} + dz\vec{k}.$$

Определение. Векторное поле \vec{a} заданное в области G называется потенциальным, если циркуляция \vec{a} по любому гладкому контуру, лежащему в G равна нулю.

Определение. Говорят, что поверхность S натянута на гладкий контур Γ , если существует ориентированная гладкая поверхность, лежащая в G и имеющая контур Γ своей границей.

Определение. Пусть $G \subset \mathbb{R}^3$ заданно непрерывное векторное поле $\vec{a} = P\vec{i} + Q\vec{j} + R\vec{k}$. S — гладкая ориентированная поверхность G, ориентация которой определяется единичным вектором нормали $\vec{n}(\cos\alpha,\cos\beta,\cos\gamma)$. Потоком векторного поля \vec{a} через поверхность S называется

$$\iint\limits_{S} \left(P \cos(\alpha) + Q \cos(\beta) + R \cos(\gamma) \right) ds = \iint\limits_{S} \vec{a} \cdot \vec{n} ds.$$

Теорема. Пусть область $V \subset \mathbb{R}^3$ правильная относительно всех координатных плоскостей. Пусть границей V является гладкая поверхность S, ориентированная вектором внешней нормали \vec{n} . Пусть в V заданно дифференцируемое векторное поле \vec{a} . Тогда

$$\iint\limits_{S} \vec{a} \cdot \vec{n} ds = \iiint\limits_{V} \text{div} \vec{a} dx dy dz$$

формула Остроградского-Гаусса в терминах теории поля. Поток векторного поля через границу S области V равняется тройному интегралу от дивергенции поля \vec{a} .

Пример. Найти поток векторного поля $\vec{a}=(x-1)^3\vec{i}+(y+2)^3\vec{j}+(z-2)^3\vec{k}$ через внешнюю сторону сферы $(x-1)^2+(y+2)^2+(z-2)^2=R^2$.

$$V = \{(x, y, z) \in \mathbb{R}^3 : (x-1)^2 + (y+2)^2 + (z-2)^2 \le R^2\}, \qquad S = \{(x, y, z) \in \mathbb{R}^3 : (x-1)^2 + (y+2)^2 + (z-2)^2 = 1\}$$

$$\iint_{\mathcal{S}} \vec{a} \vec{n} ds = \iiint_{\mathcal{S}} \operatorname{div} \vec{a} dx dy dz = \iiint_{\mathcal{S}} \left(3(x-1)^2 + 3(y+2)^2 + 3(z-2)^2\right) dx dy dz = 1$$

Сделаем замену $x-1=2\cos\varphi\cos\psi,\,y+2=2\sin\varphi\cos\psi,\,z-2=2\sin\psi$:

$$=3\int_{0}^{2\pi} d\varphi \int_{-\pi/2}^{\pi/2} d\psi \int_{0}^{R} r^{2} \cos \gamma r^{2} dr = \frac{12}{5}\pi R^{5}.$$