Branch: CSE/IT

Discrete Mathematics

Graph Theory

DPP-08

[MCQ]

- **1.** Consider the following statements:
 - S₁: If a connected graph G has a cut vertex, then G has a cut edge.
 - S₂: If a connected graph G has a cut edge then G has a cut vertex.

Which of the following is true?

- (a) S₁ only
- (b) S₂ only
- (c) Both S_1 and S_2
- (d) Neither S₁ nor S₂

[NAT]

2. For the graph shown below, the chromatic number is

[NAT]

3. If G is a connected graph with 10 vertices and vertex connectivity is 3, then minimum number of edges necessary in G is_____.

[MSQ]

- **4.** which of the following options is/are correct?
 - (a) The chromatic number of a graph with at least 1 edge is at least 2.

(b) A graph is null graph if and only if its chromatic number is 2.

Batch: English

- (c) For any graph, $K_G \le 1 + \Delta(G) \le n$, where $\Delta(G)$ is maximum degree and K_G is chromatic number.
- (d) The chromatic number of a multi graph is equal to its equivalent simple graph chromatic number.

[MCQ]

- **5.** Consider the following statements:
 - S₁: A graph is bipartite graph if and only if its chromatic number is 2.
 - S_2 : The chromatic number of a tree is 2. Thus, every tree is bipartite graph.

Which of the following statement is False?

- (a) S1 only
- (b) S2 only
- (c) Both S_1 and S_2
- (d) Neither S_1 nor S_2

[NAT]

6. What is the chromatic number of the given graph?

Answer Key

- **(d)** 1.
- (2) 2.
- 3. (15)
- 4. (a, c, d)

- 5. (a) 6. (3)

Hints and Solutions

1. (d)

Statement S1: False

Example:

In the above graph G has cut vertex (V_3) but it does not has cut edge.

Hence, the statement S_1 is false.

Statement S_2 : False

Example:

$$V_1$$
 V_2

The complete graph with 2 vertices have only cut edge (V_1, V_2) . It does not have cut vertex.

Hence, statement S2 is also false.

2. (2)

Hence, we need only 2 color to completely cover the vertices. So, the chromatic number is 2.

3. (15)

In the problem, we have a connected graph G with 10 vertices and VC = 3.

As we know that the relation between VC, EC and minimum degree is:

$$VC \le EC \le \delta(G)$$

$$\therefore$$
 3 \leq EC \leq \delta G

From the above equation, we can conclude that the minimum degree of vertex would be 3.

$$\delta(G) = 3$$

Now, by using handshaking lemma:

Sum of degree = 2 * |E|

$$\therefore$$
 10 * 3 = 2 * |E|

:.
$$|E| = \frac{30}{2} = 15 \text{ edges}$$

Hence, 15 edges necessary in graph G to have vertex connectivity = 3.

4. (a, c, d)

Option A: Correct

The chromatic number of a graph with at least 1 edge is at least 2.

Example,

$$V_1$$
 V_2 Red Green

Option B: Incorrect

A graph is null graph if and only if its chromatic number is 1.

Example:

$$\begin{array}{ccc}
V_1 & V_2 \\
\mathring{R} & \mathring{R} & \mathring{R}
\end{array}$$

Option C : Correct

The chromatic number will be less than or equal to " $1 + \Delta(G)$ ".

Example: The complete graph (K_4) have $\Delta(G) = 3$.

Option d: Correct

Example

5. (a)

Statement S₁: False

Null graph is a graph with no edges and 1 or n vertices and every null graph is bipartite graph.

As we know that a null graph is 1 colorable.

Note: A non – null graph is bipartite graph iff its chromatic number is 2.

Statement S2: True

Every tree is a bipartite graph. So, the chromatic number is 2.

Example

6. (3)

The given graph have complete graph with 3 vertices (K_3) .

Thus, the chromatic number will be ≥ 3 .

Hence, the chromatic number is 3.

Any issue with DPP, please report by clicking here: $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4