FJFI ČVUT

MATEMATICKÉ METODY V BIOLOGII A MEDICÍNĚ

Seminární práce

Úvod do Floquetovy teorie

Autor Vladislav Belov

1 Úvodní vztahy a definice

Floquetova teorie zkoumá lineární diferenciální rovnice tvaru $\dot{\xi} = A(t)\xi$, které se obecně objevují při řešení úloh ve variacích jak pro autonomní, tak i pro neautonomní dynamické systémy. A je v tomto případě periodická s periodou T matice vyjádřující Jacobiho matici pravé strany f(x) dynamického systému $\dot{x} = f(x)$. Tato teorie poskytuje matematický aparát pro analýzu existence a stability periodických řešení.

Příklad 1.1. Lineární obyčejná diferenciální rovnice (ODR) v \mathbb{R}^1 : $\dot{\xi} = a(t)\xi$, kde a(t) je reálná funkce.

- a(t) = 1 je periodická s libovolnou periodou \implies řešení $\xi(t) = \xi_0 \cdot e^t$ není periodické.
- $a(t) = \sin t^2$ je periodická s periodou $\pi \implies$ řešení $\xi(t) = \xi_0 \cdot e^{\int_{t_0}^t \sin t^2 dt}$ není periodické.

Tedy obecně periodicita matice A(t) neimplikuje periodicitu řešení.

Definice 1.1. (Fundamentální matice)

Nechť $(y_1, y_2, \dots y_n)$ je systém řešení pro rovnici $\dot{\xi} = A(t)\xi$. Pokud $y_1, y_2, \dots y_n$ jsou lineárně nezávislá, pak matice

$$\Phi(t) = \begin{pmatrix} y_1^1(x) & y_2^1(x) & \dots & y_n^1(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^d(x) & y_2^d(x) & \dots & y_n^d(x) \end{pmatrix}$$
(1)

je fundamentální matice pro danou lineární diferenciální rovnici.

Lemma 1.1. Nechť $\Phi(t)$ je fundamentální matice a B je libovolná regulární matice. Potom $\Psi(t) = \Phi(t) \cdot B$ je také fundamentální matice.

Důkaz. Tvrzení je patrné z faktu, že lineární kombinace řešení soustavy lineárních ODR je také řešení (viz předmět 01DIFR). □

Lemma 1.2. Označíme-li W(t) Wronskián fundamentální matice $\Phi(t)$, pak $W(t) = W(t_0) \exp \left(\int_{t_0}^{t} \operatorname{tr}(A(s)) ds \right)$.

 $D\mathring{u}kaz$. Aplikujeme-li Taylor \mathring{u} v rozvoj na $\Phi(t)$, dostaneme:

$$\Phi(t) = \Phi(t_0) + (t - t_0) \dot{\Phi}(t_0) + o(t - t_0) = \Phi(t_0) + (t - t_0) A(t_0) \Phi(t_0) + o(t - t_0) =
= (I + (t - t_0) A(t_0)) \Phi(t_0) + o(t - t_0).$$
(2)

Navíc víme, že Wronskián W(t) je podle definice roven $\det(\Phi(t))$. Potom pomocí (2) po zanedbání členů $o(t-t_0)$ asymptotického rozvoje obdržíme:¹

$$\det(W(t)) = \det(I + (t - t_0)A(t_0)) \cdot \det(\Phi(t_0)) = (1 + (t - t_0)\operatorname{tr}(A(t_0))) \cdot W(t_0). \tag{3}$$

Na druhou stranu, Taylorův polynom prvního řádu pro Wronskián je roven $W(t) = W(t_0) + (t - t_0) \dot{W}(t_0)$, a tedy z (3) dostaneme $\dot{W}(t_0) = \text{tr}(A(t_0)) W(t_0)$. Tato rovnost je platná pro všechny hodnoty t_0 , což implikuje

$$\dot{W}(t) = \operatorname{tr}(A(t)) W(t). \tag{4}$$

Z řešení separovatelné ODR (4) plyne tvrzení daného lemmatu.

¹Zde taky využijeme faktu, že stopa matice $A(t_0)$ je první derivace ve směru determinantu $\det(I + (t - t_0) A(t_0))$. Jinými slovy: $\det(I + (t - t_0) A(t_0)) = 1 + (t - t_0) \operatorname{tr}(A(t_0)) + o(t - t_0)$.