PLC connection diagram:

Arduino connection diagram:

Assumptions

- $\mbox{I1} \ \ \mbox{P}_{\mbox{\scriptsize 1}}$ button for sending the elevator to the 0th floor
- I2 P_2 button for sending elevator to the 1st floor

13 P₃ - button for sending elevator to the 2nd floor

14 P₄ - przycisk wysyłania windy na 3 kondygnację

15 P₅ - elevator presence sensor on the 0th floor

16 P₆ - elevator presence sensor on the 1st floor

17 P_7 - elevator presence sensor on the 2nd floor

18 P₈ - elevator presence sensor on the 3rd floor

Controlling the elevator motor

F/R, S/S – motor control inputs connected to PLC outputs

F/R output Q1

S/S z output Q2

F/R	S/S	Reaction		
(direction bit)	(stop bit)			
0	1	stop		
0	0	个(go up)		
1	0	↓(go down)		
1	1	forbidden combination		

Controlling the elevator motor (ARDUINO)

Pin 5 - F/R (direction bit) - Q1

Pin 4 - S/S (stop bit) - Q2

The #define directives in Arduino sketch

#define Button1Pin A0

#define Button2Pin A1

#define Button3Pin A2

#define Button4Pin A3

#define Sensor1Pin A4

#define Sensor2Pin A5

#define Sensor3Pin 12

#define Sensor4Pin 13

#define OutputQ1Pin 5

#define OutputQ2Pin 4

Definition of state machine states

- 0 elevator sets on the 3rd floor initial state
- 1 elevator is on the 0th floor
- 2 elevator is on the 1st floor
- 3 the elevator is on the 3rd floor
- 4 elevator moves from 0 to 1 floor
- 5 elevator moves from 0 to 3rd floor
- 6 elevator moves from 1st to 3rd floor
- 7 elevator moves from 1 to 0 floor
- 8 elevator moves from 3 to 1 floor
- 9 elevator moves from 3 to 0 floor

The way to encode the states of a state machine

Stan	X1	X2	Х3	X4
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

State machine transition diagram

Table of state transitions

X1(t)	X2(t)	X3(t)	X4(t)	l1	12	14	15	16	18	X1(t+1)	X2(t+1)	X3(t+1)	X4(t+1)
0	0	0	0	-	-	-	-	-	0	0	0	0	0
0	0	0	0	1	ı	-	ı	ı	1	0	0	1	1
0	0	0	1	1	1	-	ı	ı	1	0	1	0	0
0	0	0	1	1	ı	1	ı	ı	ı	0	1	0	1
0	0	1	0	1	-	-	-	-	1	0	1	1	1
0	0	1	0	1	-	1	-	-	1	0	1	1	0
0	0	1	1	1	-	-	-	-	-	1	0	0	1
0	0	1	1	-	1	-	-	-	-	1	0	0	0
0	1	0	0	-	-	-	-	1	-	0	0	1	0
0	1	0	0	-	-	-	-	0	-	0	1	0	0
0	1	0	1	-	-	-	-	-	1	0	0	1	1
0	1	0	1	-	-	-	-	-	0	0	1	0	1
0	1	1	0	-	-	-	-	-	1	0	0	1	1
0	1	1	0	-	-	-	-	-	0	0	1	1	0
0	1	1	1	-	-	-	1	-	-	0	0	0	1
0	1	1	1	-	-	-	0	-	-	0	1	1	1
1	0	0	0	-	-	-	-	1	-	0	0	1	0
1	0	0	0	1	ı	ı	ı	0	ı	1	0	0	0
1	0	0	1	1	ı	ı	1	ı	ı	0	0	0	1
1	0	0	1	1	ı	ı	0	ı	ı	1	0	0	1
0	0	0	1	1	0	0	-	-	ı	0	0	0	1
0	0	1	0	0	-	0	-	-	ı	0	0	1	0
0	0	1	1	0	0	-	-	-	-	0	0	1	1

State transition functions:

The expressions highlighted in red can be simplified as follows ABC(!D) + ABC(D) = ABD(D + !D) = ABC1 = ABC

X1 state transition function::

X1 = |X1|X2X3X4|1 + |X1|X2X3X4|2 + X1|X2|X3|X4||6 + X1|X2|X3X4||5

X2 state transition function::

X2 = !X1!X2!X3X4I2 + !X1!X2!X3X4I4 + !X1!X2X3!X4I1 + !X1!X2X3!X4I4 + !X1X2!X3!X4II6 + !X1X2!X3X4!I8 + !X1X2X3!X4!I8 + !X1X2X3X4!I5

X3 state transition function::

X3 = !X1!X2!X3!X4I8 + !X1!X2X3!X4I1 + !X1!X2X3!X4I4 + !X1X2!X3!X4I6 + !X1X2!X3X4I8 + |X1X2X3!X4I8 + |X1X2X3!X4!I8 + !X1X2X3X4!I5 + X1!X2!X3!X4I6 = !X1!X2!X3!X4I8 + !X1!X2X3!X4I1 + !X1!X2X3!X4I4 + !X1X2!X3!X4I6 + !X1X2!X3X4I8 + !X1X2X3!X4 + !X1X2X3X4!I5 + X1!X2!X3!X4I6 + !X1!X2X3!X4!I1!I4 + !X1!X2X3X4!I1!I2

X4 state transition function::

X4 = !X1!X2!X3!X4I8 + !X1!X2!X3X4I4 + !X1!X2X3!X4I1 + !X1!X2X3X4I1 + <mark>!X1X2!X3X4I8</mark> + |X1X2!X3X4!I8 + !X1X2X3!X4I8 + |X1X2X3X4I5 + |X1X2X3X4!I5 + |X1!X2!X3X4II + |X1!X2!X3X4II + |X1!X2!X3X4II + |X1!X2!X3X4II + |X1!X2!X3X4II + |X1!X2X3X4II + |X1X2X3X4II + |X1X2X3X4II + |X1X2X3X4II + |X1X2X3X4IIIII + |X1!X2X3X4IIIIII + |X1!X2X3X4III + |X1!X2X3X4III + |X1!X2X3X4III + |X1!X2X3X4II + |X1!X2X3XII + |X1!X2X3XXIII + |X1!X2XXXXIII + |X1!XXXXXIII

Output function table:

X1	X2	Х3	X4	F/R (Q1)	S/S (Q2)
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	1	0
1	0	0	0	1	0
1	0	0	1	1	0

Output functions:

The expressions $\frac{\text{highlighted in red}}{\text{lo}}$ can be simplified as follows ABC(!D) + ABC(D) = ABD(D + !D) = ABC1 = ABC

Q1 output function:

 $Q1 = \frac{1}{2}X1X2X3X4 + \frac{1}{2}X2\frac{1}{2}X3\frac{1}{2}X4 + \frac{1}{2}X2\frac{1}{2}X3X4 = \frac{1}{2}X1X2X3X4 + \frac{1}{2}X1X2X1X4 + \frac{1}{2}X1X2X1X4 + \frac{1}{2}X1X2X1X4 + \frac{1}{2}X1X2X1X4 + \frac{1}{2}X1X2X1X4 + \frac{1}{2}X1X2X1X4 + \frac{1}{2$

Q2 output function:

Q2 = |X1|X2|X3X4 + |X1|X2X3|X4 + |X1|X2X3X4