中国西部数学奥林匹克-几何 (2009 年-2014 年)

1 2014年

1.1 Q2

AB 是半圆 O 的直径,C、D 是 $\stackrel{\frown}{AB}$ 上两点,P、Q 分别是 $\triangle OAC$ 与 $\triangle OBD$ 的外心。证明: $CP\cdot CQ=DP\cdot DQ$ 。

1.2 Q7

平面上,点 O 是正三角形 ABC 的中心,点 P、Q 满足 $\overrightarrow{OQ}=2\overrightarrow{PO}$ 。证明:

$$|PA|+|PB|+|PC| \leq |QA|+|QB|+|QC|$$

2 2013 年

2.1 Q3

在 $\triangle ABC$ 中,点 B_2 是 AC 边上旁切圆圆心 B_1 关于 AC 中点的对称点,点 C_2 是 AB 边上旁切圆圆心 C_1 关于 AB 中点的对称点,BC 边上旁切圆切 BC 边于点 D。求证: $AD \perp B_2C_2$ 。

2.2 Q6

PA、PB 为圆 O 的切线,点 C 在劣弧 $\stackrel{\frown}{AB}$ 上 (不含点 A、B)。过点 C 作 PC 的垂线 l,与 $\angle AOC$ 的平分线交于点 D,与 $\angle BOC$ 的平分线交于点 E。求证: CD = CE。

3 2012 年

3.1 Q4

已知点 P 为锐角 $\triangle ABC$ 内部任意一点,点 E、F 分别为 P 在边 AC、AB 上的射影。BP、CP 的延长线分别交 $\triangle ABC$ 的外接圆于点 B_1 、 C_1 ,设 $\triangle ABC$ 的外接圆和内切圆的半径分别为 R 和 r。求证: $\frac{EF}{B_1C_1} \geq \frac{r}{R}$,并确定等号成立时点 P 的位置。

3.2 Q5

在锐角 $\triangle ABC$ 中,H 是垂心,O 是外心(A、H、O 三点不共线),点 D 是 A 在 边 BC 上的射影,线段 AO 的中垂线交直线 BC 于点 E。求证:线段 OH 的中点在 $\triangle ADE$ 的外接圆上。

4 2011 年

4.1 Q4

线段 AB、CD 是 $\odot O$ 中长度不相等的两条弦,AB 与 CD 的交点为 E, $\odot I$ 内切 $\odot O$ 于点 F,且分别与弦 AB、CD 相切于点 G、H。过点 O 的直线 l 分别交 AB、CD 于点 P、Q,使得 EP=EQ。直线 EF 与直线 l 交于点 M,求证:过点 M 且与 AB 平行的直线是 $\odot O$ 的切线。

4.2 Q7

在 $\triangle ABC$ 中,AB > AC,内切圆 $\odot I$ 与边 BC、CA、AB 分别相切于点 D、E、F,M 是边 BC 的中点, $AH \perp BC$ 于点 H。 $\angle BAC$ 的平分线 AI 分别与直线 DE、DF 交于点 K、L。求证: M、L、H、K 四点共圆。

5 2010年

5.1 Q2

AB 是 $\odot O$ 的直径,C、D 是圆周上异于 A、B 且在 AB 同侧的两点,分别过点 C、D 作圆的切线,它们相交于点 E,线段 AD 与 BC 的交点为 F,直线 EF 与 AB 相交于点 M,求证: E、C、M、D 四点共圆。

5.2 Q6

在 $\triangle ABC$ 中, $\angle ACB=90^\circ$ 。以 B 为圆心、BC 为半径作圆,点 D 在边 AC 上,直线 DE 切 $\odot B$ 于点 E。过点 C 垂直于 AB 的直线与直线 BE 交于点 F,AF 交 DE 于点 G,作 $AH \parallel BG$ 交 DE 于点 H。求证: GE=GH。

6 2009 年

6.1 Q3

H 为锐角 $\triangle ABC$ 的垂心,D 为边 BC 的中点。过点 H 的直线分别交边 AB、AC 于点 F、E,使得 AE=AF。射线 DH 与 $\triangle ABC$ 的外接圆交于点 P。求证: P、A、E、F 四点共圆。

6.2 Q6

设点 D 是锐角 $\triangle ABC$ 的边 BC 上一点,以线段 BD 为直径的圆分别交直线 AB、AD 于点 X、P (异于点 B、D),以线段 CD 为直径的圆分别交直线 AC、AD 于点 Y、Q (异于点 C、D)。过点 A 作直线 PX、QY 的垂线,垂足分别为 M、N。证明: $\triangle AMN \sim \triangle ABC$ 的充分必要条件是直线 AD 经过 $\triangle ABC$ 的外心。

