离散数学第六次作业

Problem 1

设 a, b, c, d 均为正整数,	下列 岛斯旦不 中 有 9	型 4 1 1 1 1	沙中江田,	不同	松山巨伽
\mathcal{U} a, b, c, a 以为止整数、	卜列節剝是否为具:	右刃具,	给出证明;	省则,	给出尺例:

a) 若 a | c, b | c, 则 ab | c

b) 若 a | c, b | d, 则 ab | cd

c) 若 ab | c, 则 a | c

d) 若 a | bc, 则 a | b 或 a | c

答案:

a) 假。

b) 真。证明: 由题设,存在整数 k_1 , k_2 使得 $c=k_1a, d=k_2b$, 从而有 $cd=k_1k_2ab$, 得证 ab|cd。

c) 真。证明:存在整数 k 使得 c = k(ab) = (kb)a,得证 a|c。

d) 假。

Problem 2

证明:任何3个连续整数的乘积可以被6整除。

证明:

任意两个连续整数中必有一个能被 2 整数 (为偶数),任意三个连续整数中必有一个能被 3 整除,所以三个连续整数的乘积能同时被 2 和 3 整除,因此能被 6 整除。

Problem 3

计算:

a) 23300 mod 11

b) $2^{3300} \mod 31$

c) $3^{516} \mod 7$

答案:

a) $2 \cdot 23300 = 233 \cdot 10 \cdot 10 = (21 \cdot 11 + 2) \cdot 10 \cdot 10 \equiv 2 \cdot (-1) \cdot (-1) \equiv 2 \pmod{11}$

b) $1_{\circ} \ 2^{23300} \equiv 2^{5*4660} \equiv 32^{4660} \equiv 1^{4660} \equiv 1 \pmod{31}$

c) $1_{\circ} 3^{6} \equiv 1 \pmod{7}, 3^{516} \equiv 3^{6*86} \equiv 1 \pmod{7}$

Problem 4

证明: 如果 a 和 b 为正整数,则 $(2^a-1) \operatorname{mod}(2^b-1) = 2^{a \operatorname{mod} b} - 1$ 。证明:

分情况讨论:

(1) $\stackrel{\text{def}}{=} a < b \text{ pt}$, $a \mod b = a$, $2^a - 1 < 2^b - 1$, $(2^a - 1) \mod (2^b - 1) = 2^a - 1 = 2^{a \mod b} - 1$;

(2) 当 $a \ge b$ 时,设 $a \mod b = r$,即 a = nb + r, $0 \le r < b$,再对 r 进行讨论:

(i) 当 r = 0 时,a = nb,此时有 $(2^a - 1) \operatorname{mod}(2^b - 1) = (2^{nb} - 1) \operatorname{mod}(2^b - 1) = 0$ (由 $x^n - 1 = (x - 1)(x^0 + x^1 + \ldots + x^{n-1})$ 易得),此时 $a \operatorname{mod} b = 0$, $2^{a \operatorname{mod} b} - 1 = 0$;

(ii) 当 0 < r < b 时,

$$\begin{aligned} (2^a - 1) \operatorname{mod}(2^b - 1) &= (2^{nb+r} - 1) \operatorname{mod}(2^b - 1) \\ &= (2^{nb} \cdot 2^r - 2^r + 2^r - 1) \operatorname{mod}(2^b - 1) \\ &= ((2^{nb} - 1) \cdot 2^r + (2^r - 1)) \operatorname{mod}(2^b - 1) \\ &= (2^r - 1) \operatorname{mod}(2^b - 1) \\ &= 2^{a \operatorname{mod} b} - 1 \end{aligned}$$

综上,对所有的情形,都有 $(2^a-1) \mod (2^b-1) = 2^{a \mod b} - 1$ 成立。

Problem 6

证明:对于任意的整数 n

a) $6 \mid n(n+1)(n+2)$

b) $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ 是整数.

证明:

a) $6|n(n+1)(n+2) \Leftrightarrow 2|n(n+1)(n+2) \wedge 3|n(n+1)(n+2)$,而 n 与 n+1 中必有一个被 2 整除,故 2|n(n+1)(n+2)。

再设 n=3k+i, i=0,1,2. 若 i=0,则 3|n;若 i=1,则 3|n+2;若 i=2,则 3|n+1. 总有 3|n(n+1)(n+2)。证毕。

b) 要证 $15|3n^5 + 5n^3 + 7n$, 只需证 $3|5n^3 + 7n$ 且 $5|3n^5 + 7n$

证 $3|5n^3+7n$ 。因为 $5n^3+7n$ 是奇函数,只需证对非负整数 n 成立. 用归纳法. 当 n=0 时,3|0,结论成立。假设当 $n=k(k\geq 0)$ 时结论成立,

 $5(k+1)^3+7(k+1)=(5k^3+7k)+3(5k^2+5k+4)$ 由归纳假设, $3|5k^3+7k$,故 $3|5(k+1)^3+7(k+1)$,即当 n=(k+1) 时结论也成立。 类似可证 $5|3n^5+7n$ 。

Problem 7

证明:

- a) $\mathfrak{P}_{d} \in \mathbb{N}$ and $a \equiv b \pmod{m} \Rightarrow a \equiv b \pmod{d}$.
- b) $\[\[\] \] d \geq 1, \[\] \] a \equiv b \pmod{m} \Leftrightarrow da \equiv db \pmod{dm}. \]$
- c) 设 c 与 m 互素, 则 $a \equiv b \pmod{m} \Leftrightarrow ca \equiv cb \pmod{m}$.

证明:

- a) 设 $a \equiv b (mod \ m)$, 有 m|a-b. 又已知 d|m, 由性质 "如果 a|b 且 b|c, 则 a|c", 得到 d|a-b, 故有 $a \equiv b (mod \ d)$
- b) 因为 $d \neq 0$,根据性质"设 $m \neq 0$,则 a|b 当且仅当则 ma|mb",

 $m|a-b \leftrightarrow dm|d(a-b)$,

从而 $a \equiv b \pmod{m} \leftrightarrow da \equiv db \pmod{dm}$ 。

c) $\boxplus m|a-b \Rightarrow m|ca-cb$,

有 $a \equiv b \pmod{m} \Rightarrow ca \equiv cb \pmod{m}$ 。

反之,设定 $ca \equiv cb (mod\ m)$,有 m|ca-cb.已知 c与 m 互素,由 "如果 a|bc 且 a,b 互素,则 a|c",必有 m|a-b,得证 $a \equiv b (mod\ m)$ 。

Problem 8

借助于费马小定理证明如果 n 是一个正整数,则 42 能整除 $n^7 - n$ 。

证明:

只需证明 7 能整除 $n^7 - n$ 且 6 能整除 $n^7 - n$

先证 7 能整除 n^7-n : 根据费马小定理,若 a 不是 p 的倍数,则 $a^{p-1}\equiv 1\pmod p$,取 $a=n,\ p=7$,若 n 是 7 的倍数 7 能整除 n^7-n 显然成立,若 n 不是 7 的倍数,则 $a^6\equiv 1\pmod 7$,即 7 $\lfloor (n^6-1),7$ 能整除 n^7-n 也同样成立。

再证明 6 能整除 $n^7 - n$: $n^7 - n = n(n-1)(n^2 + n + 1)(n+1)(n^2 - n + 1)$, (n-1)n(n+1) 必然被 2 和 3 整除,所以 6 能整除 $n^7 - n$ 。

综上, 42 能整除 $n^7 - n$ 。

Problem 9

试证明: 若 $p \ge 7$ 为质数,则 240 | (p^4-1) 。

证明:

因为 $p \ge 7$ 为质数,所以 p 为奇数。又因为 $p^4-1 = (p-1)(p+1)(p^2+1)$,且 p-1 与 p+1 为相邻偶数, p^2+1 亦为偶数,故 $2 \cdot 2 \cdot 4 \mid (p-1)(p+1)(p^2+1)$ 。由费马小定理,(3,p) = (5,p) = 1,所以 $3 \mid (p^2-1), 5 \mid (p^4-1)$,又因为 $2 \cdot 2 \cdot 4 = 16$ 与 3, 5 两两互质,所以 $16 \cdot 3 \cdot 5 \mid p^4-1$,即 $240 \mid (p^4-1)$ 。

Problem 10

证明: 若m和n互素,则 $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$.

证明:

由欧拉定理, $m^{\phi(n)} \equiv 1 \pmod{n}$, 即 $n \mid m^{\phi(n)} - 1$. 同理 $m \mid n^{\phi(m)} - 1$.

从而, $mn|(m^{\phi(n)}-1)(n^{\phi(m)}-1)$,即 $mn|m^{\phi(n)}n^{\phi(m)}-(m^{\phi(n)}+n\phi(m)-1)$. 而 $mn|m^{\phi(n)}n^{\phi(m)}$,故有 $mn|m^{\phi(n)}+n^{\phi(m)}-1$

得证 $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$ 。

Problem 5

记 n=pq(p 为 n 的一个质因子且 q 为正整数),那么 $2^n-1=2^{pq}-1=(2^p-1)(2^{(q-1)p}+2^{(q-2)p}+\cdots+1)$ 为质数,由质数的性质可知, $2^p-1=1$ 或 $2^{(q-1)p}+2^{(q-2)p}+\cdots+1=1$,因为 $2^p-1=1$ 与 p 为质数矛盾,所以 $2^{(q-1)p}+2^{(q-2)p}+\cdots+1=1$,即 $q=1,2^n-1=2^p-1$ 满足质数的性质,此时 n=p 为质数,得证