Commutative Algebra

Swayam Chube

May 10, 2023

Abstract

This document mainly contains terse notes of commutative algebra and solutions to exercises from [1]. The three main references were [1], [3] and [4].

Except for in the chapter on modules, all rings are assumed to be commutative unless stated otherwise. We use a uniform convention to represent a commutative ring with A and a general ring with R. Similarly, we represent modules by one of M, N, P. A maximal ideal is generally denoted by \mathfrak{m} while a prime ideal is denoted by \mathfrak{p} .

Contents

Ι	Th	eory Building
1	Ring	gs and Ideals
	1.1	Nilradical and Jacobson radical
	1.2	Operations on Ideals
	1.3	The Zariski Topology
2	Mod	dules
	2.1	Introduction
	2.2	Free Modules
	2.3	Finitely Generated Modules
	2.4	Hom Modules and Functors
	2.5	Exact Sequences
		2.5.1 Diagram Chasing Poster Children
	2.6	Tensor Product
	2.7	Right Exactness
	2.8	Flat Modules
	2.9	Projective Modules

Part I Theory Building

Chapter 1

Rings and Ideals

- 1.1 Nilradical and Jacobson radical
- 1.2 Operations on Ideals
- 1.3 The Zariski Topology

Chapter 2

Modules

2.1 Introduction

Throughout this section, *R* denotes a general ring which need not be commutative.

Definition 2.1 (Module). A left *R*-module is an abelian group (M, +) along with a ring action, that is, a ring homomorphism $\mu : R \to \text{End}(M)$.

Henceforth, unless specified otherwise, an R-module refers to a left R-module. Trivially note that R is an R-module, so is any ideal in R and so is every quotient ring R/I where I is an ideal in R. When R is a field, an R-module is the same as a vector space.

Every abelian group *G* trivially forms a **Z**-module. Using this and the forthcoming *Structure Theorem for Finitely Generated Modules over a PID*, we obtain the *Structure Theorem for Finitely Generated Abelian Groups*.

Definition 2.2 (Submodule). Let *M* be an *R*-module. An *R*-submodule of *M* is a subgroup *N* of *M* which is closed under the action of *R*.

Proposition 2.3 (Submodule Criteria). *Let* M *be an* R-module. Then $\varnothing \subsetneq N \subseteq M$ *is a submodule if and only if for all* $x,y \in N$ *and* $r \in R$, $x + ry \in N$.

Proof. Straightforward definition pushing.

Definition 2.4 (Module Homomorphism). Let M, N be R-modules. A *module homomorphism* is a group homomorphism $\phi: M \to N$ such that for all $x \in M$ and $r \in R$, $\phi(rx) = r\phi(x)$.

In other words, a module homomorphism is simply an *R*-linear map.

Proposition 2.5 (Homomorphism Criteria). *Let* M, N *be* R-modules. Then $\phi : M \to N$ *is an* R-module homomorphism if and only if for all $x, y \in M$ and $r \in R$, $\phi(x + ry) = \phi(x) + r\phi(y)$.

Proof. Straightforward definition pushing.

It is not hard to see, using the above proposition and the submodule criteria that the image of an *R*-module under a homomorphism is a submodule.

Definition 2.6 (Kernel, Cokernel). Let $\phi: M \to N$ be an R-module homomorphism. We define

$$\ker \phi = \{x \in M \mid \phi(x) = 0\}$$
 $\operatorname{coker} \phi = N/\phi(M)$

For an *R*-module *M*, define the annihilator of *M* in *R* as

$$Ann_R(M) = \{ r \in R \mid rx = 0 \, \forall x \in M \}$$

It is trivial to check that Ann(M) is a left ideal in R, and if R were commutative, it would be an ideal.

Proposition 2.7. *If I is an ideal contained in* $Ann_A(M)$, *then M is naturally an* A/I*-module.*

Proof. Define the action $(a + I) \cdot m = a \cdot m$. It is easy to check that this action is well defined. Further,

$$(a+I) \cdot ((b+I) \cdot m) = (a+I) \cdot (bm) = (ab) \cdot m = ((a+I)(b+I)) \cdot m$$

This completes the proof.

In particular, if $I = \mathfrak{m}$ for some maximal ideal \mathfrak{m} , then M forms a vector space over A/\mathfrak{m} .

2.2 Free Modules

Throughout this section, *R* denotes a general ring which need not be commutative. The content of this section is taken from [2].

We define the free module using a universal property and then provide a construction for it. This should establish uniqueness.

Definition 2.8 (Universal Property of Free Modules). Let S be a non-empty set. A *free module on* S is an R-module F together with a mapping $f: S \to F$ such that for every R-module M and every set map $g: S \to M$, there is a unique R-module homomorphism $h: F \to M$ such that the following diagram commutes:

$$\begin{array}{ccc}
S & \xrightarrow{g} & M \\
f \downarrow & & \exists !h
\end{array}$$

Let *F* be the set of all set functions $\phi : S \to R$ which takes nonzero values at finitely many elements of *S*. This has the structure of an *R*-module. Define the set map $f : S \to F$ by

$$f(s)(t) = \begin{cases} 1 & s = t \\ 0 & \text{otherwise} \end{cases}$$

We contend that (F, f) is a free module on S. Indeed, let $g: S \to M$ be a set map where M is an R-module. Define the linear map $h: F \to M$ by

$$h(f(s)) = g(s)$$

Since every element in F can uniquely be written as a linear combination of elements in $\{f(s)\}_{s\in S}$, we have successfully defined a module homomorphism $h: F \to M$ such that $g = h \circ f$. The uniqueness of this map is quite obvious. Hence, (F, f) is a free module on S.

Definition 2.9 (Basis). Let M be an R-module. Then $S \subseteq M$ is said to be a *basis* if it is linearly independent and generates M.

It is important to note that not every minimal generating set is a basis. Take for example the \mathbb{Z} -module \mathbb{Z} . Notice that $\{2,3\}$ is a minimal generating set but is not a basis for it is not linearly independent.

2.3 Finitely Generated Modules

Definition 2.10 (Finitely Generated Module). An *R*-module *M* is said to be finitely generated if there is a finite subset *S* of *M* which generates *M*. That is, there is no proper submodule *N* of *M* containing *S*.

Proposition 2.11. An R-module M is finitely generated if M is isomorphic to a quotient of $R^{\oplus n}$ for some positive integer n.

Proof. We shall only prove the forward direction since the converse is trivial to prove. Suppose M is finitely generated. Then, it is generated by a finite subset $S = \{x_1, \ldots, x_m\}$. Define the R-module homomorphism $\phi: R^{\oplus n} \to M$ by $(r_1, \ldots, r_n) \mapsto r_1 x_1 + \cdots + r_n x_n$. From the first isomorphism theorem, we have $M \cong R^{\oplus n} / \ker \phi$.

Proposition 2.12. Let M be a finitely generated A-module and $\mathfrak a$ an ideal of A. Let $\phi \in \operatorname{End}(M)$ such that $\phi(M) \subseteq \mathfrak a M$. Then, there are $a_0, \ldots, a_{n-1} \in \mathfrak a$ such that

$$\phi^n + a_{n-1}\phi^{n-1} + \dots + a_0 = 0$$

as an element of End(M), where a_k is treated as the homomorphism $x \mapsto a_k x$ in End(M).

Proof. Let $\{x_1, \ldots, x_n\}$ be a generating set for M. Then, for all $1 \le i \le n$, there are coefficients $\{a_{i1}, \ldots, a_{in}\}$ in a such that

$$\phi(x_i) = \sum_{j=1}^n a_{ij} x_j$$

We may rewrite this as

$$\sum_{i=1}^{n} (\phi \delta_{ij} - a_{ij}) x_j = 0$$

Let B denote the matrix $(\phi \delta_{ij} - a_{ij})_{1 \le i,j \le n}$. Then, multiplying by $\operatorname{adj}(B)$, we see that $\det(B)(x_j) = 0$ for all $1 \le j \le n$ where $\det(B)$ is viewed as an element in $\operatorname{End}(M)$ and thus, is the zero map in $\operatorname{End}(M)$. It is not hard to see that $\det(B)$ is in the required form.

Lemma 2.13 (Nakayama). *Let* M *be a finitely generated module and* $\mathfrak{a} \subseteq \mathfrak{R}$ *be an ideal such that* $M = \mathfrak{a}M$. *Then,* M = 0.

Proof. Let $\phi = \mathbf{id}$ be the identity homomorphism in End(M). Using Proposition 2.12, there are coefficients $a_0, \ldots, a_{n-1} \in \mathfrak{a}$ satisfying the statement of the proposition. As a result, $x = 1 + a_{n-1} + \ldots + a_0$ is the zero endomorphism. But since $a_{n-1} + \ldots + a_0 \in \mathfrak{a} \subseteq \mathfrak{R}$, x is a unit and hence, M = 0.

Corollary. Let M be a finitely generated A-module, N a submodule of M and $\mathfrak{a} \subseteq \mathfrak{R}$ an ideal. If $M = \mathfrak{a}M + N$ then M = N.

Proof. We have $M/N = \mathfrak{a}M/N$, consequently, M/N = 0 and M = N due to Lemma 2.13.

Lemma 2.14. Let (A, \mathfrak{m}) be local and $k = A/\mathfrak{m}$. Let M be a finitely generated A-module. Let $\{\overline{x}_1, \ldots, \overline{x}_n\}$ be elements in M/\mathfrak{m} that form a basis for M/\mathfrak{m} as a k-vector space. Then, $\{x_1, \ldots, x_n\}$ generates M.

Proof. Let N be the submodule generated by $\{x_1, \ldots, x_n\}$. Then, the composition $N \hookrightarrow M \twoheadrightarrow M/\mathfrak{m}M$ is surjective, consequently, $M = N + \mathfrak{m}M$ whence, it follows that M = N.

Over a PID

Throughout this section, let *R* denote a principal ideal domain.

2.4 Hom Modules and Functors

For R-modules M, N, we denote the set of all R-module homomorphisms from M to N by $\operatorname{Hom}_R(M,N)$. When the choice of the ring R is clear from the context, we shall denote this set by $\operatorname{Hom}(M,N)$.

Proposition 2.15. *Let* M, N *be* A-*modules. Then* Hom(M, N) *has the structure of an* A-*module.*

Proof. It is obvious that Hom(M, N) has the structure of an abelian group. Define the natural action by (af)(x) = af(x). It is not hard to see that this action is well defined.

Proposition 2.16. Let $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of A-modules. Then, for any A-module N, we have a natural isomorphism

$$\operatorname{Hom}_A\left(\bigoplus_{\lambda\in\Lambda}M_\lambda,N\right)=\prod_{\lambda\in\Lambda}\operatorname{Hom}_A(M_\lambda,N)$$

Proof. Since the direct sum is the product in $A - \mathbf{Mod}$, the conclusion follows from the universal property.

Theorem 2.17. Let $\phi: M \to N$ be an A-module homomorphism. Then, for every R-module P, there is an induced A-module homomorphism $\overline{\phi}: \operatorname{Hom}(N,P) \to \operatorname{Hom}(M,P)$ and an induced A-module homomorphism $\widetilde{\phi}: \operatorname{Hom}(P,M) \to \operatorname{Hom}(P,N)$.

Equivalently phrased, Hom(-, P) is a contravariant functor while Hom(P, -) is a covariant functor.

Proof. We shall prove only the first half of the assertion since the second half follows from a similar proof. Define $\overline{\phi}$ using the following commutative diagram:

$$M \xrightarrow{\phi} N \downarrow f \\ f \circ \phi \downarrow f \\ P$$

To see that this is indeed an R-module homomorphism, we need only verify that for all $f,g \in \text{Hom}(N,P)$ and all $r \in R$, $(f+rg) \circ \phi = f \circ \phi + rg \circ \phi$ which is trivial to check.

2.5 Exact Sequences

Definition 2.18. A sequence of module homomorphisms

$$M \xrightarrow{f} N \xrightarrow{g} P$$

is said to be exact at N if $\operatorname{im} f = \ker g$. A short exact sequence is a sequence of module homomorphisms:

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} P \longrightarrow 0$$

which is exact at *M*, *N* and *P*.

It is not hard to see that the sequence in the definition is short exact if and only if f is injective, g is surjective and im $f = \ker g$.

2.5.1 Diagram Chasing Poster Children

2.6 Tensor Product

Definition 2.19 (Bilinear Map). Let M, N, P be A-modules. A map $T: M \times N \to P$ is said to be bilinear if for each $x \in M$, the mapping $T_x: N \to P$ given by $y \mapsto T(x,y)$ is A-linear and for each $y \in N$, the mapping $T_y: M \to P$ given by $x \mapsto T(x,y)$ is A-linear.

Fix two *A*-modules *M* and *N*. Let $\mathscr C$ denote the category of bilinear maps $T: M \times N \to P$ where *P* is any *A*-module. A morphism between two bilinear maps $f: M \times N \to P_1$ and $g: M \times N \to P_2$ in this category is a module homomorphism $\phi: P_1 \to P_2$ such that the following diagram commutes:

$$M \times N \xrightarrow{f} P_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

A universal object in $\mathscr C$ is called the tensor product of M and N and is denoted by $M\otimes N$. In other words, the tensor product is an initial object in the category $\mathscr C$.

Definition 2.20 (Universal Property of the Tensor Product). Let M, N, P be A-modules and $T: M \times N \to P$ be a bilinear map. Then, there is a unique A-module homomorphism $\phi: M \otimes N \to P$ such that the following diagram commutes:

$$\begin{array}{c}
M \times N \xrightarrow{T} P \\
\downarrow \phi \\
M \otimes N
\end{array}$$

Of course, having the universal property would imply that the tensor product, if it exists, is unique upto a unique isomorphism. We shall now construct a tensor product of M and N.

8

Constructing the Tensor Product

Let *F* be the free *A*-module on $M \times N$. Let us denote the basis elements of *F* by $e_{(x,y)}$ where $x \in M$ and $y \in N$. Now, for all $x, x_1, x_2 \in M$, $y, y_1, y_2 \in N$ and $a \in A$, let *D* denote the submodule generated by elements of the form:

$$e_{(x_1+x_2,y)} - e_{(x_1,y)} - e_{(x_2,y)}$$

$$e_{(x,y_1+y_2)} - e_{(x,y_1)} - e_{(x,y_2)}$$

$$e_{(ax,y)} - ae_{(x,y)}$$

$$e_{(x,ay)} - ae_{(x,y)}$$

Let G = F/D and let $\varphi : M \times N \to G$ be the composition of the following maps:

$$M \times N \hookrightarrow F \twoheadrightarrow G$$

Let $T: M \times N \to P$ be a bilinear map. Consider the following commutative diagram:

$$\begin{array}{ccc}
M \times N & \xrightarrow{T} P \\
\downarrow & & & & & & \\
\downarrow & & & & & & \\
F & \xrightarrow{\pi} & & & & & \\
\end{array}$$

To show that existence of ϕ , we must show that $D \subseteq \ker f$, since we can then finish using the universal property of the kernel. But this is trivial to check and follows from the fact that T is a bilinear map and completes the construction.

Similarly, we define the tensor product for a finite sequence of A-modules $\{M_i\}_{i=1}^n$. That is, given a multilinear map $T:\prod_{i=1}^n M_i \to P$, there is a unique A-module homomorphism ϕ such that the following diagram commutes:

$$M_1 \times \cdots \times M_n \xrightarrow{T} P$$
 $\varphi \downarrow \qquad \exists! \phi$
 $M_1 \otimes \cdots \otimes M_n$

Properties of Tensor Product

Given two modules M and N with the canonical map $\varphi: M \times N \to M \otimes N$, we denote by $m \otimes n$, the element $\varphi(m,n)$ in $M \otimes N$.

Proposition 2.21. *Let M, N, P be A-modules. Then,*

- (a) $M \otimes N \cong N \otimes M$
- (b) $(M \otimes N) \otimes P \cong M \otimes (N \otimes P) \cong M \otimes N \otimes P$
- (c) $M \oplus N \otimes P \cong (M \otimes P) \oplus (N \otimes P)$
- (d) $A \otimes M \cong M$

Proof. (a) First, we shall show that there are well defined homomorphisms $M \otimes N \to N \otimes M$ and $N \otimes M \to M \otimes N$ mapping $m \otimes n \mapsto n \otimes m$ and $n \otimes m \mapsto m \otimes n$ respectively. This is best done using the

universal property. Let $T: M \times N \to N \times M$ be the isomorphism $m \times n \mapsto n \times m$. Consider now the following commutative diagram:

$$\begin{array}{ccc}
M \times N & \xrightarrow{T} N \times M \\
\varphi \downarrow & & & \downarrow \varphi' \\
M \otimes N & & N \otimes M
\end{array}$$

Since both φ' and T are bilinear, so is $\varphi \circ T$, consequently, there is a unique induced homomorphism $f: M \otimes N \to N \otimes M$ making the diagram commute, consequently, $f(m \otimes n) = \varphi'(T(m \times n)) = n \otimes m$. Similarly, there is a homomorphism $g: N \otimes M \to M \otimes N$ such that $g(n \otimes m) = m \otimes m$. It is not hard to see that $g \circ f = \mathbf{id}_{M \otimes N}$ and $g \circ f = \mathbf{id}_{M \otimes M}$ consequently, they are isomorphisms.

- (b)
- (c)
- (d) Consider the map $T: A \times M \to M$ given by $(a, m) \mapsto am$. It is not hard to see that this map is bilinear, consequently, there is a map $f: A \otimes M \to M$ such that the following diagram commutes:

$$\begin{array}{ccc}
A \times M & \xrightarrow{T} M \\
\varphi \downarrow & & f \\
A \otimes M
\end{array}$$

Note that $f(a \otimes m) = am$ by definition. Consider the map $g : M \to A \otimes M$ given by $g(m) = 1 \otimes m$. It is not hard to see that g is a well defined module homomorphism. Further, since $f \circ g$ and $g \circ f$ are the identity homomorphisms, they both must be isomorphisms.

Example 1. Show that $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/\gcd(m,n)\mathbb{Z}$ for all $m,n \in \mathbb{N}$. In particular, if m and n are coprime, then $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} = 0$.

Proof. Consider the module homomorphism $T: \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z}$.

Let $f: M \to M'$ and $g: N \to N'$ be A-module homomorphisms. Then, the map $\Phi: M \times N \to M' \otimes N'$ given by $\Phi(m,n) = f(m) \otimes g(n)$. It is not hard to see that Φ is bilinear. Consequently, it induces a map $f \otimes g: M \otimes N \to M' \otimes N'$ such that

$$(f \otimes g)(x \otimes y) = f(x) \otimes g(y)$$

Further, if $f': M' \to M''$ and $g': N' \to N''$ are A-module homomorphisms, then we have another map $f' \otimes g': M' \otimes N' \to M'' \otimes N''$ such that

$$(f' \otimes g')(x \otimes y) = f'(x) \otimes g'(y)$$

Now, it is not hard to see that $(f' \circ f') \otimes (g' \circ g)$ and $(f' \otimes g') \circ (f \otimes g)$ agree on the elementary tensors, therefore, agree on all of $M \otimes N$.

2.7 Right Exactness

Proposition 2.22. *Let M, N, P be A-modules. Then, there is a natural isomorphism:*

$$\operatorname{Hom}_A(M,\operatorname{Hom}_A(N,P)) \cong \operatorname{Hom}_A(M \otimes_A N,P)$$

Proof. Consider the map

$$\theta: \operatorname{Hom}_A(M \otimes_A N, P) \longrightarrow \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P))$$

given by $\theta(\alpha)(m)(n) = \alpha(m \otimes n)$. Now, pick some $\eta \in \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P))$. Define the map $\zeta : M \times N \to P$ given by $\zeta(m, n) = \eta(m)(n)$. Obviously, ζ is bilinear and induces a map $\delta : M \otimes_A N \to P$ such that $\delta(m \otimes n) = \eta(m)(n)$. Call the map sending $\eta \mapsto \delta$ as β where

$$\beta: \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P)) \to \operatorname{Hom}_A(M \otimes_A N, P)$$

and $\beta(\eta)(m \otimes n) = \eta(m)(n)$.

We contend that θ and β are inverses to one another. Indeed,

$$((\beta \circ \theta)(\alpha))(m \otimes n) = \theta(\alpha)(m)(n) = \alpha(m \otimes n)$$

and

$$((\theta \circ \beta)(\eta))(m)(n) = \beta(\eta)(m \otimes n) = \eta(m)(n)$$

whence the conclusion follows.

In particular, we see that the functor $- \otimes_A N$ is the left adjoint of the functor $\operatorname{Hom}_A(N, -)$, consequently, $\operatorname{Hom}_A(N, -)$ is the right adjoint of $- \otimes_A N$.

Theorem 2.23. The functor $- \otimes_A N$ is right exact. That is, given a exact sequence

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

the sequence

$$M'\otimes_A N \xrightarrow{f\otimes 1} M\otimes_A N \xrightarrow{g\otimes 1} M''\otimes_A N \longrightarrow 0$$

Proof. Since the given sequence is exact, so is

 $\operatorname{Hom}_A(M'',\operatorname{Hom}_A(N,P)) \stackrel{\overline{g}}{\longrightarrow} \operatorname{Hom}_A(M,\operatorname{Hom}_A(N,P)) \stackrel{\overline{f}}{\longrightarrow} \operatorname{Hom}_A(M',\operatorname{Hom}_A(N,P)) \longrightarrow 0$ but from Proposition 2.22, so is

$$\operatorname{\mathsf{Hom}}_A(M''\otimes_A N,P)\longrightarrow \operatorname{\mathsf{Hom}}_A(M\otimes_A N,P)\longrightarrow \operatorname{\mathsf{Hom}}_A(M'\otimes_A N,P)\longrightarrow 0$$

Since the above sequence is exact for all modules *P*, we have the desired conclusion.

The tensor product is not left exact. Conider the sequence of **Z**-modules

$$0 \hookrightarrow \mathbb{Z} \stackrel{f}{\longrightarrow} \mathbb{Z}$$

where f(m) = 2m. Upon tensoring with $\mathbb{Z}/2\mathbb{Z}$, we get the sequence

$$0 \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \stackrel{f \otimes 1}{\longrightarrow} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$$

Note that

$$(f \otimes 1)(m \otimes \overline{n}) = 2m \otimes \overline{n} = m \otimes (2\overline{n}) = m \otimes 0 = 0$$

Therefore, the sequence cannot be exact.

2.8 Flat Modules

Definition 2.24 (Flat Module).

Theorem 2.25. *Let N be a A-module. Then, the following are equivalent*

(a) N is flat

(b) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of A-modules, then the tensored sequence

$$0 \longrightarrow M' \otimes_A N \xrightarrow{f \otimes 1} M \otimes_A N \xrightarrow{g \otimes 1} M'' \otimes_A N \longrightarrow 0$$

is exact.

(c) If $f: M' \to M$ is injective, then $f \otimes 1: M' \otimes N \to M \otimes N$ is injective

(d) If $f: M' \to M$ is injective and M, M' are finitely generated, then $f \otimes_A 1: M' \otimes_A N \to M \otimes_A N$ is injective.

Proof.

(a)

2.9 Projective Modules

Theorem 2.26. For an A-module P, the following are equivalent:

(a) Every map $f: P \to M''$ can be lifted to $\tilde{f}: P \to M$ in the following commutative diagram:

(b) Every short exact sequence $0 \to M' \to M \to P \to 0$ splits

(c) There is a module M such that $P \oplus M$ is free

(*d*) The functor $\operatorname{Hom}_A(P, -)$ is exact.

Proof.

 $(a) \Longrightarrow (b)$: Taking M'' = P and $f = id_P$, we have the desired conclusion.

(b) \Longrightarrow (c): Let F denote the free module on the set P. Then, the map $\Phi: F \to P$ given by $\Phi(e_x) = x$ for all $x \in P$ is a surjective A-module homomorphism. We have the following short exact sequence:

$$0 \to \ker \Phi \xrightarrow{\iota} F \xrightarrow{\Phi} P \to 0$$

This is known to split and thus, $F = \psi(P) \oplus \ker \Phi$ where $\psi : P \to F$ is the section.

(c) \Longrightarrow (d): Let $M' \to M \to M''$ be an exact sequence of modules and K be an A-module such that $P \oplus K = F \cong A^{\Lambda}$. Then, the induced sequence

$$\prod_{\lambda \in \Lambda} M' \to \prod_{\lambda \in \Lambda} M \to \prod_{\lambda \in \Lambda} M''$$

is exact. We have seen that there is a natural isomorphism $\operatorname{Hom}_A(A,M) \stackrel{\sim}{\longrightarrow} M$, consequently, there is a natural isomorphism

$$\operatorname{Hom}_A(A^{\oplus \Lambda}, M) \stackrel{\sim}{\longrightarrow} \prod_{\lambda \in \Lambda} M$$

whence it follows that the sequence

$$\operatorname{Hom}_A(A^{\oplus \Lambda}A, M') \to \operatorname{Hom}_A(A^{\oplus \Lambda}A, M) \to \operatorname{Hom}_A(A^{\oplus \Lambda}, M'')$$

But since $\operatorname{Hom}_A(A^{\oplus \Lambda}, M) \cong \operatorname{Hom}_A(P, M) \oplus \operatorname{Hom}_A(K, M)$, we have the desired conclusion.

 $(d) \Longrightarrow (a)$: Trivial.

Definition 2.27 (Projective Module). An *A*-module *P* satisfying any one of the four equivalent conditions of Theorem 2.26 is said to be a *projective A-module*.

In particular, from Theorem 2.26(c), we see that every free module is projective.

Lemma 2.28. A finitely generated projective module P over a local ring (A, \mathfrak{m}) is free.

Proof. Let $\{\overline{x}_1, \dots, \overline{x}_n\}$ be a basis for $M/\mathfrak{m}M$ as a k-vector space where $k = A/\mathfrak{m}$. As we have seen earlier, $\{x_1, \dots, x_n\}$ generates M. Let F be the free module with basis $\{e_1, \dots, e_n\}$ and $\Phi : F \to M$ be the module homomorphism given by $\Phi(e_i) = x_i$ and $K = \ker \Phi$. Since M is projective, there is a module homomorphism $\psi : M \to F$ satisfying $\Phi \circ \psi = \mathbf{id}_M$ and $F = K \oplus \psi(M)$.

We contend that $K = \mathfrak{m}K$. Indeed, let $x \in K$, then $x = \sum r_i e_i$ for a unique choice $\{r_1, \ldots, r_n\}$. Then, $\sum r_i x_i = 0$, consequently, $r_i \in \mathfrak{m}$ for all i. Since $F = K \oplus \psi(M)$, we may write $e_i = u_i + v_i$ for some $u_i \in K$ and $v_i \in \psi(M)$. As a result,

$$x - \sum r_i u_i = \sum r_i v_i \in \ker \Phi \cap \psi(M) = \{0\}$$

and the conclusion follows.

Finally due to Lemma 2.13, we must have that K = 0 whence M is free.

Bibliography

- [1] Michael Francis Atiyah and I. G. MacDonald. *Introduction to Commutative Algebra*. Addison-Wesley-Longman, 1969.
- [2] T. S. Blyth. Module Theory: An approach to linear algebra. 1990.
- [3] David S. Dummit and Richard M. Foote. Abstract algebra. Wiley, New York, 3rd ed edition, 2004.
- [4] Serge Lang. Algebra. Springer, New York, NY, 2002.