```
[16] import glob
    import matplotlib.image as mpimg
    nonCOVID_images = []
    for img_path in glob.glob(dataset + '/non-COVID/*'):
        nonCOVID_images.append(mpimg.imread(img_path))

fig = plt.figure()
    fig.suptitle('non-COVID')
    plt.imshow(nonCOVID_images[0], cmap='gray')

COVID_images = []
    for img_path in glob.glob(dataset + '/COVID/*'):
        COVID_images.append(mpimg.imread(img_path))

fig = plt.figure()
    fig.suptitle('COVID')
    plt.imshow(COVID_images[0], cmap='gray')
```

<matplotlib.image.AxesImage at 0x7fc69a707590>
non-COVID

Screenshots

```
[17] disease_types = ['COVID', 'non-COVID']

train_dir = data_dir = '/content/gdrive/MyDrive/dataset/CapstoneProject'

train_data = []

for index, sp in enumerate(disease_types):
    for file in os.listdir(os.path.join(train_dir, sp)):
        train_data.append([sp + "/" + file, index, sp])

train = pd.DataFrame(train_data, columns = ['File', 'ID','Disease Type'])
    train.head()
```

1

	File	ID	Disease Type
0	COVID/Covid (1).png	0	COVID
1	COVID/Covid (1005).png	0	COVID
2	COVID/Covid (1000).png	0	COVID
3	COVID/Covid (1004).png	0	COVID
4	COVID/Covid (1003).png	0	COVID

datagen.fit(X_train)

Model: "model_8"

Layer (type)	Output Shape	Param #				
input_18 (InputLayer)		0				
conv2d_8 (Conv2D)	(None, 64, 64, 3)	84				
resnet50 (Functional)	(None, None, None, 2048)	23587712				
<pre>global_average_pooling2d_8 (GlobalAveragePooling2D)</pre>	(None, 2048)	0				
<pre>batch_normalization_16 (Bat chNormalization)</pre>	(None, 2048)	8192				
dropout_16 (Dropout)	(None, 2048)	0				
dense_8 (Dense)	(None, 256)	524544				
<pre>batch_normalization_17 (Bat chNormalization)</pre>	(None, 256)	1024				
dropout_17 (Dropout)	(None, 256)	0				
root (Dense)	(None, 2)	514				
7 1						

Screenshots

```
[61] epochs = range(len(acc))
   plt.plot(epochs, loss, 'r', label='Training Loss')
   plt.plot(epochs, val_loss, 'b', label='Validation Loss')
   plt.title('TraiN & Val Loss VS Epochs')
   plt.legend(loc=0)
   plt.figure()
   plt.show()
```



```
[60] epochs = range(len(acc))
  plt.plot(epochs, acc, 'r', label='Training accuracy')
  plt.plot(epochs, val_acc, 'b', label='Validation accuracy')
  plt.title('TraiN & Val Acc VS Epochs')
  plt.legend(loc=0)
  plt.figure()
  plt.show()
```


Screenshots

