Climate Modeling

November 12, 2024

PRACTICAL REPORT

CHAOS: LORENZ ATTRACTOR

By:

Duong Thu Phuong

22BI13362

Contents

1	Practice 9.1	3
2	Practice 9.2	5
	 Re-plot the figures shown in previous slides with Euler forward in time in 3D, in xy, xz, yz plans and slightly change the initial conditions and plot the difference. Centered difference scheme? Runge-Kutta method? 	15
3	Practice 9.3	21
4	Conclusion	23

1 Practice 9.1

• The prognostic variable "V" is calculated with time step of "n" following the below equation:

$$V_{n+1} = \frac{21}{8}V_n - \frac{28}{8}V_n^3$$

knowing that n = 0, 1, 2, ...

- In the control calculation, V(0) = 0.1.
- Perturb the initial condition V(0) and examine the difference in time between the control and the perturbation runs.

```
[1]: import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
```

Set two initial values for two trajectories as 0.1 and 0.10001 to see how it reacts to minor different starting conditions.

```
[2]: n = np.arange(0,100,1)
V1 = np.zeros(len(n))
V2 = np.zeros(len(n))

V1[0] = 0.1
for i in range (0,len(n)-1):
        V1[i+1] = (21/8) * V1[i] - (28/8) * V1[i]**3

V2[0] = 0.10001
for i in range (0,len(n)-1):
        V2[i+1] = (21/8) * V2[i] - (28/8) * V2[i]**3

plt.figure(figsize=(10,5))
plt.plot(n, V1, label = '0.1')
plt.plot(n, V2, label = '0.10001')
plt.grid(True)
plt.legend()
```

[2]: <matplotlib.legend.Legend at 0x7c3d600bfb30>

It can be seen that the two curves overlay at the beginning, with difference = 0. But after about 10 iterations, it starts to change and the difference curve starts to fluctuate a lot. This demonstrates that a minor variation in the starting conditions can result in significant differences in the outcomes.

2 Practice 9.2

Solve Lorenz equations

$$\frac{dx}{dt} = P(y - x)$$

$$\frac{dy}{dt} = Rx - y - xz$$

$$\frac{dz}{dt} = xy - Bz$$

where P = 10, R = 28, B = 8/3, x[0]=1, y[0]=1, z[0]=1, dt = 0.01, 10000 time steps.

2.1 Re-plot the figures shown in previous slides with Euler forward in time in 3D, in xy, xz, yz plans and slightly change the initial conditions and plot the difference.

```
[4]: dt = 0.01
     num\_steps = 10000
     x = np.zeros(10000)
     y = np.zeros(10000)
     z = np.zeros(10000)
     def lorenz(xyz, p = 10, r = 28, b = 8/3):
         x, y, z = xyz
         x_{dot} = p*(y - x)
         y_dot = r*x - y - x*z
         z_dot = x*y - b*z
         return np.array([x_dot, y_dot, z_dot])
     xyzs = np.empty((num_steps + 1, 3))
     xyzs[0] = (1, 1, 1)
     for i in range(num_steps):
         xyzs[i + 1] = xyzs[i] + lorenz(xyzs[i]) * dt
     ax = plt.figure(figsize=(8,8)).add_subplot(projection='3d')
     ax.plot(*xyzs.T, color = 'deeppink')
     ax.set_xlabel('x')
     ax.set_ylabel('y')
     ax.set_zlabel('z')
     ax.set_title('3D View')
     ax.grid(True)
     ax1 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 2)
     ax1.plot(xyzs[:,0], xyzs[:,1], color = 'deeppink')
     ax1.set_xlabel('x')
     ax1.set_ylabel('y')
     ax1.set_title('XY plane')
```

```
ax1.grid(True)

ax2 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 3)
ax2.plot(xyzs[:,0], xyzs[:,2], color = 'deeppink')
ax2.set_xlabel('x')
ax2.set_ylabel('z')
ax2.set_title('XZ plane')
ax2.grid(True)

ax3 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 4)
ax3.plot(xyzs[:,1], xyzs[:,2], color = 'deeppink')
ax3.set_xlabel('y')
ax3.set_ylabel('z')
ax3.set_title('YZ plane')
ax3.grid(True)
```


The outcome has a double-spiral form. The coordinates seem to move in trajectories that is spiraling around two points, create two wings, create a peculiar and distinctive shape.

Change the initial conditions slightly different to (1.0001, 1.0001, 1.0001).

```
[5]: xyzs2 = np.empty((num_steps + 1, 3))
     xyzs2[0] = (1.0001, 1.0001, 1.0001)
     for i in range(num_steps):
         xyzs2[i + 1] = xyzs2[i] + lorenz(xyzs2[i]) * dt
     ax = plt.figure(figsize=(8,8)).add_subplot(projection='3d')
     ax.plot(*xyzs2.T, color = 'deeppink')
     ax.set_xlabel('x')
     ax.set_ylabel('y')
     ax.set_zlabel('z')
     ax.set_title('3D View')
     ax.grid(True)
     ax1 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 2)
     ax1.plot(xyzs2[:,0], xyzs2[:,1], color = 'deeppink')
     ax1.set_xlabel('x')
     ax1.set_ylabel('y')
     ax1.set_title('XY plane')
     ax1.grid(True)
```

```
ax2 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 3)
ax2.plot(xyzs2[:,0], xyzs2[:,2], color = 'deeppink')
ax2.set_xlabel('x')
ax2.set_ylabel('z')
ax2.set_title('XZ plane')
ax2.grid(True)

ax3 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 4)
ax3.plot(xyzs2[:,1], xyzs2[:,2], color = 'deeppink')
ax3.set_xlabel('y')
ax3.set_ylabel('z')
ax3.set_title('YZ plane')
ax3.grid(True)
```

3D View


```
[6]: ax = plt.figure(figsize=(8,8)).add_subplot(projection='3d')
ax.plot(*xyzs.T, label = '(1, 1, 1)')
ax.plot(*xyzs2.T, label = '(1.0001, 1.0001, 1.0001)')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.grid(True)
ax.legend()
```

[6]: <matplotlib.legend.Legend at 0x7c3d57d8d400>

It can be seen that the two curves do not totally overlay.

```
[7]: ax = plt.figure(figsize=(8,8)).add_subplot(projection='3d')
ax.plot(xyzs2[:,0] - xyzs[:,0], xyzs2[:,1] - xyzs[:,1], xyzs2[:,2] - xyzs[:,2],
color = 'deeppink', linewidth = 0.5)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('y')
ax.set_zlabel('z')
ax.set_title('Difference')
ax.grid(True)
```

Difference

When the initial condition changes just a little bit, the outcome leads to a significant shift.

2.2 Centered difference scheme?

2.3 Runge-Kutta method?

I use fourth-order Runge-Kutta method. For each step, computes four intermediate slopes and update the next state using weighted average of these slopes.

```
[8]: xyzs3 = np.empty((num_steps + 1, 3))
    xyzs3[0] = (1, 1, 1)

for i in range(num_steps):
    k1 = lorenz(xyzs3[i])
    k2 = lorenz(xyzs3[i] + k1 * dt/2)
    k3 = lorenz(xyzs3[i] + k2 * dt/2)
    k4 = lorenz(xyzs3[i] + k3 * dt)
    xyzs3[i + 1] = xyzs3[i] + (k1 + 2*k2 + 2*k3 + k4) * dt/6

ax = plt.figure(figsize=(8,8)).add_subplot(projection='3d')
ax.plot(*xyzs3.T, color = 'deeppink')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.set_title('3D View')
ax.grid(True)
```

```
ax1 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 2)
ax1.plot(xyzs3[:,0], xyzs3[:,1], color = 'deeppink')
ax1.set_xlabel('x')
ax1.set_ylabel('y')
ax1.set_title('XY plane')
ax1.grid(True)
ax2 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 3)
ax2.plot(xyzs3[:,0], xyzs3[:,2], color = 'deeppink')
ax2.set_xlabel('x')
ax2.set_ylabel('z')
ax2.set_title('XZ plane')
ax2.grid(True)
ax3 = plt.figure(figsize=(15,8)).add_subplot(2, 2, 4)
ax3.plot(xyzs3[:,1], xyzs3[:,2], color = 'deeppink')
ax3.set_xlabel('y')
ax3.set_ylabel('z')
ax3.set_title('YZ plane')
ax3.grid(True)
```


The overall shape are the same as Euler, but this one is missing some information in the middle of the right wing.

```
[9]: ax = plt.figure(figsize=(8,8)).add_subplot(projection='3d')
    ax.plot(*xyzs.T, label = 'Euler')
    ax.plot(*xyzs3.T, label = 'Runge-Kutta')
    ax.set_title('Difference between Runge-Kutta and Euler')
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')
    ax.grid(True)
    ax.legend()
```

[9]: <matplotlib.legend.Legend at 0x7c3d571ed400>

Difference between Runge-Kutta and Euler

It can be seen that the Runge-Kutta wings are smaller than Euler.

Difference between Runge-Kutta and Euler

3 Practice 9.3

Display the Bifurcation Diagrams of the Verhulst model.

$$x_{n+1} = a \cdot x_n \cdot (1 - x_n)$$

For a in range (0,1), it can be seen that the outcome is 0. When a is from 1 to 3, the curve seems to be some kind of a stable fixed function of a. When a in range 3 to nearly 3.5, x converges to two branches and when a larger than 3.5, the value points fill almost the whole region. It can be concluded that small changes in the parameter a lead to highly unpredictable behavior of the variable x.

4 Conclusion

- Such small variation in starting condition can lead to a significant shift in the outcome, this is reminiscent of the "Butterfly Effect".
- When calculating Lorenz equations, the Runge-Kutta method's wings are smaller than Euler method's.
- Slightly changing one parameter can switch a system from predictable to chaotic.
- Together, these practices highlight the nature of chaos in mathematical models.

[]: