(12) INTERNATIONAL APLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

10/540769 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881) 1 (1881)

(43) International Publication Date 15 July 2004 (15.07.2004)

PCT

(10) International Publication Number

(51) International Patent Classification7:

WO 2004/058712 A2

C07D 213/00

(21) International Application Number:

PCT/EP2003/014949

(22) International Filing Date:

29 December 2003 (29.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2217/02

30 December 2002 (30.12.2002)

(71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **BEAUDEG-**NIES, Renaud [BE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). ED-MUNDS, Andrew [GB/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). LÜTHY, Christoph [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). HALL, Roger, Graham [GB/CH]; Syngenta Crop Protection AG, Schwarwaldallee 215, CH-4058 Basel (CH). WENDEBORN, Sebastian [DE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). SCHAETZER, Jürgen [DE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH).

- (74) Agent: SYNGENTA PARTICIPATIONS AG; Intellectual Property, P.O. Box, 4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL HERBICIDES

(57) Abstract: Compounds of formula (I), wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts and all stereoisomers and tautomeric forms of the compounds of formula I are suitable for use as herbicides.

Novel herbicides

The present invention relates to novel, herbicidally active nicotinoyl derivatives, to processes for their preparation, to compositions comprising those compounds, and to their use in controlling weeds, especially in crops of useful plants, or in inhibiting plant growth.

Nicotinoyl derivatives having herbicidal action are described, for example, in WO 00/15615 and WO 01/94339.

There have now been found novel nicotinoyl derivatives having herbicidal and growth-inhibiting properties, the structures of which are distinguished by a double bond in the 6,7-position of the bicyclo[3.2.1]oct-3-en-2-one, bicyclo[3.2.1]nona-3-en-2-one, 8-oxa-bicyclo-[3.2.1]octa-3-en-2-one, 8-aza-bicyclo[3.2.1]octa-3-en-2-one, 8-thia-bicyclo[3.2.1]octa-3-en-2-one and bicyclo[3.2.1]octa-3-ene-2,8-dione group. Some of the compounds of that kind are covered by WO 00/15615 but none of those compounds is specifically disclosed. WO 01/66522 includes pyridine ketones having bicyclo[3.2.1]oct-3-en-2-one groups as intermediates in the preparation of aroyl ketones. There is no mention therein of those compounds having a herbicidal action.

The present invention accordingly relates to compounds of formula I

$$\begin{array}{c|c}
R_2 & R_3 \\
\hline
 & Q \\
R_1 & Q
\end{array}$$

wherein

Y is oxygen, NR_{4a} , sulfur, sulfonyl, sulfinyl, C(O), $C(=NR_{4b})$, $C(=CR_{6a}R_{6b})$ or a C_1 - C_4 alkylene or C_2 - C_4 alkenylene chain, which may be interrupted by oxygen, NR_{5a} , sulfur, sulfonyl, sulfinyl, C(O) or $C(=NR_{5b})$ and/or mono- or poly-substituted by R_6 ;

A₁ is nitrogen or CR₇;

A₂ is nitrogen or CR₈;

 R_1 , R_2 , R_6 , R_7 and R_8 are each independently of the others hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, oxyiminomethylene, C_1 - C_6 alkoxyiminomethylene, C_1 - C_6 alkoxyl, C_2 - C_6 alkoxyl, C_2 - C_6 alkoxyl, C_2 - C_6 alkoxyl, C_2 - C_6 alkoxyl, C_3 - C_6 Alxoxyl, C_3 - C_6 Alxoxyl,

 $C_1-C_6\text{haloalkoxy}, \ C_3-C_6\text{alkenyloxy}, \ C_3-C_6\text{alkynyloxy}, \ C_3-C_6\text{oxacycloalkyl}, \ C_3-C_6\text{thiacycloalkyl}, \ C_3-C_6\text{dioxacycloalkyl}, \ C_3-C_6\text{dithiacycloalkyl}, \ C_3-C_6\text{oxathiacycloalkyl}, \ C_1-C_6\text{alkoxycarbonyl}, \ C_1-C_6\text{alkylcarbonyl}, \ C_1-C_6\text{alkoxycarbonyloxy}, \ C_1-C_6\text{alkylcarbonyloxy}, \ C_1-C_6\text{alkylsulfinyl}, \ C_1-C_6\text{alkylsulfinyl}, \ C_2-C_6\text{alkylsulfinyl}, \ C_3-C_6\text{cycloalkyl}, \ tri(C_1-C_6\text{alkyl})\text{silyl}, \ di(C_1-C_6\text{alkyl})\text{phenylsilyl}, \ tri(C_1-C_6\text{alkyl})\text{silyloxy}, \ di(C_1-C_6\text{alkyl})\text{phenylsilyloxy} \ or \ Ar_1; \ or \ R_1, \ R_2, \ R_6, \ R_7, \ R_8 \ are \ each \ independently \ of \ the \ others \ a \ C_1-C_6\text{alkyl}, \ C_2-C_6\text{alkenyl}, \ C_2-C_6\text{alkenyl}, \ c_2-C_6\text{alkynyl} \ or \ C_3-C_6\text{cycloalkyl} \ group, \ which \ may \ be \ interrupted \ by \ oxygen, \ sulfur, \ sulfonyl, \ sulfinyl, \ -NR_{11}-\ or \ -C(O)-\ and/or \ mono-, \ di-\ or \ tri-substituted \ by \ hydroxy, \ mercapto, \ NO_2, \ cyano, \ halogen, \ formyl, \ C_1-C_6\text{alkoxy}, \ C_3-C_6\text{alkenyloxy}, \ C_3-C_6\text{alkynyloxy}, \ C_1-C_6\text{haloalkoxy}, \ C_1-C_2\text{alkoxy-}C_1-C_2\text{alkoxy-}C_1-C_2\text{alkoxy-}C_1-C_4\text{alkoxy-}carbonyloxy}, \ C_1-C_4\text{alkylcarbonyl}, \ C_1-C_6\text{alkylhin}, \ C_1-C_6\text{alkylhin}, \ C_1-C_6\text{alkylhin}, \ C_1-C_6\text{alkylhin}, \ C_1-C_6\text{alkylhin}, \ C_1-C_6\text{alkylhin}, \ tri(C_1-C_6\text{alkylhin}, \ tri(C_1-C_6\text{alkylhin}), \ tri(C_1-C_6\text{alkylhin}), \ tri(C_1-C_6\text{alkylhin}), \ tri(C_1-C_6\text{alkylhin}), \ tri(C_1-C_6\text{alkylhin})$

or two substituents R_8 at the same carbon atom together form a $-CH_2O$ - or a C_2 - C_5 alkylene chain, which may be interrupted once or twice by oxygen, sulfur, sulfinyl or sulfonyl and/or mono- or poly-substituted by R_{8c} , with the proviso that two hetero atoms may not be located next to one another;

or two substituents R_6 at different carbon atoms together form an oxygen bridge or a C_1 - C_4 alkylene chain, which may in turn be substituted by R_{6c} ;

or R_7 and R_8 together form a -CH₂CH=CH-, -OCH=CH- or -CH=CH-CH=CH- bridge or a C_3 -C₄alkylene chain, which may be interrupted by oxygen or -S(O)_{n1}- and/or mono- or polysubstituted by R_{8d} ;

 R_3 is hydroxy, halogen, mercapto, $C_1\text{-}C_8$ alkylthio, $C_1\text{-}C_8$ alkylsulfinyl, $C_1\text{-}C_8$ alkylsulfonyl, $C_1\text{-}C_8$ haloalkylsulfinyl, $C_1\text{-}C_8$ haloalkylsulfonyl, $C_1\text{-}C_4$ alkoxy- $C_1\text{-}C_4$ alkoxy- $C_1\text{-}C_4$ alkoxy- $C_1\text{-}C_4$ alkylsulfonyl, $C_3\text{-}C_8$ alkenylthio, $C_3\text{-}C_8$ alkynylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_3\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylsulfinyl, $C_1\text{-}C_4$ alkoxycarbonyl- $C_1\text{-}C_4$ alkylsulfonyl, $C_3\text{-}C_8$ cycloalkylsulfinyl, $C_3\text{-}C_8$ cycloalkylsulfonyl, phenyl- $C_1\text{-}C_4$ alkylsulfinyl, phenyl- $C_1\text{-}C_4$ alkylsulfonyl, s(O)n_1-Ar_3, phenylthio, phenylsulfinyl, phenylsulfonyl, it being possible for the phenyl-containing groups to be substituted by one or more $C_1\text{-}C_3$ alkyl, $C_1\text{-}C_3$ haloalkyl, $C_1\text{-}C_3$ alkoxy, $C_1\text{-}C_3$ haloalkoxy, $C_1\text{-}C_4$ alkoxycarbonyl, halogen, cyano, hydroxy or nitro groups;

or R_3 is $\mathsf{O}^{\text{-}}\mathsf{M}^{\text{+}}$, wherein $\mathsf{M}^{\text{+}}$ is an alkali metal cation or an ammonium cation;

Q is a radical

$$(Z_1)m_1 \qquad \qquad (Q_1), \qquad \qquad (Q_2) \text{ or } \\ X_1 \qquad N \qquad \qquad (Q_2) \text{ or } \\ (O)p_1 \qquad \qquad (Q_2) \text{ or } \\ (O)p_2 \qquad \qquad (Q_2) \text{ or } \\ (O)p_$$

$$(Z_3)m_3$$
 (Q_3) , wherein X_3

 p_1 , p_2 and p_3 are 0 or 1;

m₁, m₂ and m₃ are 1, 2 or 3;

 X_1 , X_2 and X_3 are hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkynyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl or C_1 - C_6 haloalkylsulfonyl;

 Z_1 , Z_2 and Z_3 are C_1 - C_6 alkyl which is substituted by the following substituents: C_3 - C_4 cycloalkyl or C_3 - C_4 cycloalkyl substituted by halogen, C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkoxy- C_1 - C_3 alkyl; oxiranyl or oxiranyl substituted by C_1 - C_6 alkyl or C_1 - C_3 alkoxy- C_1 - C_3 alkyl; 3-oxetanyl or 3-oxetanyl substituted by C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkyl; 3-oxetanyloxy or 3-oxetanyloxy substituted by C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkoxy or C_3 - C_6 cycloalkyloxy or C_3 - C_4 cycloalkyloxy substituted by halogen, C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkoxy- C_1 - C_3 alkoxy; C_1 - C_6 alkylsulfonyloxy; C_1 - C_6 haloalkylsulfonyloxy; phenylsulfonyloxy; benzylsulfonyloxy; benzoyloxy; phenoxy; phenylthio; phenylsulfinyl; phenylsulfonyl; C_1 - C_6 alkyl)silyl or tri(C_1 - C_6 alkyl)silyloxy, it being possible for the phenyl-containing groups to be mono- or poly-substituted by C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano, hydroxy or nitro;

or Z_1 , Z_2 and Z_3 are 3-oxetanyl; 3-oxetanyl substituted by C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 -alkyl or C_1 - C_6 alkyl; C_3 - C_6 cycloalkyl substituted by halogen, C_1 - C_3 alkyl or C_1 - C_3 alkoxy- C_1 - C_3 -alkyl; tri(C_1 - C_6 alkyl)silyl; tri(C_1 - C_6 alkyl)silyloxy or CH=P(phenyl)3;

or Z_1 , Z_2 and Z_3 are a C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl group, which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₁₄)O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈- and is mono- or poly-substituted by L₁; it also being

possible for L_1 to be bonded at the terminal carbon atom of the C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl group;

or Z_1 , Z_2 and Z_3 are hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylthio, C₁-C₆alkylsulfonyl, C₁-C₆alkylsulfinyl, NR₂₂R₂₃, phenyl which may be mono- or poly-substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkoxy, halogen, cyano, hydroxy or nitro, C₃-C₆cycloalkyl, C₅-C₆cycloalkyl substituted by C₁-C₃alkoxy, C₁-C₃alkoxy, C₁-C₃alkoxy-C₁-C₃alkyl or C₁-C₆alkyl, or Ar₅, O-Ar₆, N(R₂₄)Ar₇ or S(O)n₆Ar₈;

 $L_1 \text{ is hydrogen, halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, } P(O)(OC_1-C_6alkyl)_2, C_1-C_6alkoxy, C_1-C_6haloalkoxy, C_1-C_6alkoxycarbonyl, C_2-C_6alkenyl, } C_2-C_6haloalkenyl, C_2-C_6alkynyl, C_2-C_6haloalkynyl, C_3-C_6cycloalkyl, halo-substituted } C_3-C_6cycloalkyl, C_3-C_6alkenyloxy, C_3-C_6alkynyloxy, C_3-C_6haloalkenyloxy, cyano-C_1-C_6alkoxy, } C_1-C_6alkoxy-C_1-C_6alkoxy, C_1-C_6alkylylthio-C_1-C_6alkoxy, C_1-C_6alkylsulfinyl-C_1-C_6alkoxy, } C_1-C_6alkylsulfonyl-C_1-C_6alkoxy, } C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-C_1-C_6alkylsulfonyl-c_1-C_6alkylsulfonyl-c_1-C_6alkyl-c_1-C_6$

 R_{4a} and R_{5a} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, cyano, formyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, carbamoyl, C_1 - C_6 alkylamino)carbonyl, di(C_1 - C_6 alkylamino)sulfonyl, C_3 - C_6 cycloalkylcarbonyl, C_1 - C_6 -alkylsulfonyl, phenylcarbonyl, phenylaminocarbonyl or phenylsulfonyl, it being possible for the phenyl groups to be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro;

 R_{4b} and R_{5b} are each independently of the other hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy or benzyloxy, it being possible for the benzyl group to be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro;

 R_9 , R_{11} , R_{13} , R_{16} , R_{17} , R_{18} , R_{20} , R_{23} and R_{24} are each independently of the others hydrogen, C_1 - C_6 alkyl, Ar_9 , C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl,

phenyl, it being possible for the phenyl group in turn to be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyloarbonyl; or together with R_{6b} is a C_2 - C_5 alkylene chain;

R_{6b}, R_{6d}, R₁₀, R₁₂ and R₂₂ are each independently of the others hydrogen or C₁-C₆alkyl; R_{8c}, R₁₄, R₁₅, R₁₉ and R₂₁ are each independently of the others C₁-C₆alkyl or C₁-C₆haloalkyl; Ar₁, Ar₂, Ar₃, Ar₄, Ar₅, Ar₆, Ar₇, Ar₈, Ar₉, Ar₁₀, Ar₁₁ and Ar₁₂ are each independently of the others a five- to ten-membered, monocyclic or fused bicyclic ring system, which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, C(O) and C(=NR₂₅), and each ring system may contain not more than two oxygen atoms, not more than two sulfur atoms, not more than two C(O) groups and not more than one C(=NR₂₅) group, and each ring system may itself be mono- or poly-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, amino, hydroxy, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₁-C₃alkoxy-C₁-C₃alkylthio, C₁-C₄alkylcarbonyl-C₁-C₃alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, it being possible for the phenyl group in turn to be substituted by hydroxy, C₁-C₆alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano or nitro, and the substituents at the nitrogen atom in the heterocyclic ring being other than halogen, and two oxygen atoms not being located next to one another;

 R_{25} is hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl; and n_1 is 0, 1 or 2; and n_8 is 0, 1 or 2; and agronomically acceptable salts/isomers/enantiomers/tautomers of those compounds.

The alkyl groups appearing in the substituent definitions may be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl and octyl and the branched isomers thereof. Alkoxy, alkenyl and alkynyl radicals are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may

be mono- or poly-unsaturated. C_1 - C_4 alkylene and C_2 - C_4 alkenylene chains may likewise be straight-chain or branched.

Halogen is generally fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine. The same is true of halogen in conjunction with other meanings, such as haloalkyl or halophenyl.

Haloalkyl groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl or 2,2,2-trichloroethyl; preferably trichloromethyl, difluoromethyl, trifluoromethyl or dichlorofluoromethyl.

In the context of the present invention, the term "mono- or poly-substituted" is generally to be understood as meaning mono- to penta-substituted, especially mono- to tri-substituted.

As haloalkenyl there come into consideration alkenyl groups mono- or poly-substituted by halogen, halogen being fluorine, chlorine, bromine or iodine, and especially fluorine or chlorine, for example 2,2-difluoro-1-methylvinyl, 3-fluoropropenyl, 3-chloropropenyl, 3-bromopropenyl, 2,3,3-trifluoropropenyl, 2,3,3-trichloropropenyl and 4,4,4-trifluoro-but-2-en-1-yl. Of the C₃-C₈alkenyl groups mono-, di- or tri-substituted by halogen preference is given to those having a chain length of from 3 to 5 carbon atoms.

As haloalkynyl there come into consideration, for example, alkynyl groups mono- or polysubstituted by halogen, halogen being bromine, iodine and especially fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluoro-but-2-yn-1-yl. Of the alkynyl groups mono- or poly-substituted by halogen preference is given to those having a chain length of from 3 to 5 carbon atoms.

Ar₁, Ar₂, Ar₃, Ar₄, Ar₅, Ar₆, Ar₇, Ar₈, Ar₉, Ar₁₀, Ar₁₁ and Ar₁₂ are, for example, phenyl, naphthyl or the following heterocyclic groups: (1-methyl-1H-pyrazol-3-yl)-; (1-ethyl-1H-pyrazol-3-yl)-; (1-propyl-1H-pyrazol-3-yl)-; (1H-pyrazol-3-yl)-; (1,5-dimethyl-1H-pyrazol-3-yl)-; (4-chloro-1-methyl-1H-pyrazol-3-yl)-; (1H-pyrazol-1-yl)-; (3-methyl-1H-pyrazol-1-yl)-; (3,5-dimethyl-1H-pyrazol-1-yl)-; (3-isoxazolyl)-; (5-methyl-3-isoxazolyl)-; (3-methyl-5-isoxazolyl)-; (5-isoxazolyl)-; (1H-pyrrol-2-yl)-; (1H-pyrrol-1-yl)-; (1-methyl-1H-pyrrol-3-yl)-; (2-furanyl)-; (5-methyl-2-furanyl)-; (3-furanyl)-; (5-methyl-2-thienyl)-; (3-thienyl)-; (1-methyl-1H-imidazol-2-yl)-; (1-methyl-1H-imidazol-4-yl)-; (1-me

methyl-1H-imidazol-5-yl)-; (4-methyl-2-oxazolyl)-; (5-methyl-2-oxazolyl)-; (2-oxazolyl)-; (2methyl-5-oxazolyl)-; (2-methyl-4-oxazolyl)-; (4-methyl-2-thiazolyl)-; (5-methyl-2-thiazolyl)-; (2thiazolyl)-; (2-methyl-5-thiazolyl)-; (2-methyl-4-thiazolyl)-; (3-methyl-4-isothiazolyl)-; (3methyl-5-isothiazolyl)-; (5-methyl-3-isothiazolyl)-; (1-methyl-1H-1,2,3-triazol-4-yl)-; (2-methyl-2H-1,2,3-triazol-4-yl)-; (4-methyl-2H-1,2,3-triazol-2-yl)-; (1-methyl-1H-1,2,4-triazol-3-yl)-; (1,5dimethyl-1H-1,2,4-triazol-3-yl)-; (3-methyl-1H-1,2,4-triazol-1-yl)-; (5-methyl-1H-1,2,4-triazol-1-yl)-; (4,5-dimethyl-4H-1,2,4-triazol-3-yl)-; (4-methyl-4H-1,2,4-triazol-3-yl)-; (4H-1,2,4-triazol-4-yl)-; (5-methyl-1,2,3-oxadiazol-4-yl)-; (1,2,3-oxadiazol-4-yl)-; (3-methyl-1,2,4-oxadiazol-5yl)-; (5-methyl-1,2,4-oxadiazol-3-yl)-; (4-methyl-3-furazanyl)-; (3-furazanyl)-; (5-methyl-1,2,4oxadiazol-2-yl)-; (5-methyl-1,2,3-thiadiazol-4-yl)-; (1,2,3-thiadiazol-4-yl)-; (3-methyl-1,2,4thiadiazol-5-yl)-; (5-methyl-1,2,4-thiadiazol-3-yl)-; (4-methyl-1,2,5-thiadiazol-3-yl)-; (5-methyl-1,3,4-thiadiazol-2-yl)-; (1-methyl-1H-tetrazol-5-yl)-; (1H-tetrazol-5-yl)-; (5-methyl-1H-tetrazol-1-yl)-; (2-methyl-2H-tetrazol-5-yl)-; (2-ethyl-2H-tetrazol-5-yl)-; (5-methyl-2H-tetrazol-2-yl)-; (2H-tetrazol-2-yl)-; (2-pyridyl)-; (6-methyl-2-pyridyl)-; (4-pyridyl)-; (3-pyridyl)-; (6-methyl-3pyridazinyl)-; (5-methyl-3-pyridazinyl)-; (3-pyridazinyl)-; (4,6-dimethyl-2-pyrimidinyl)-; (4methyl-2-pyrimidinyl)-; (2-pyrimidinyl)-; (2-methyl-4-pyrimidinyl)-; (2-chloro-4-pyrimidinyl)-; (2,6-dimethyl-4-pyrimidinyl)-; (4-pyrimidinyl)-; (2-methyl-5-pyrimidinyl)-; (6-methyl-2-pyrazinyl)-; (2-pyrazinyl)-; (4,6-dimethyl-1,3,5-triazin-2-yl)-; (4,6-dichloro-1,3,5-triazin-2-yl)-; (1,3,5-triazin-2-yl)-; (4-methyl-1,3,5-triazin-2-yl)-; (3-methyl-1,2,4-triazin-5-yl)-; (3-methyl-1,2,4-triazin-6-yl)-;

and Ar₁₀ may also be, for example, a carbonyl-containing heterocyclic group

$$X_4$$
 S R_{26} X_4 R_{26} R_{26} R_{26} R_{27} R_{27} R_{27} R_{28} R_{28} R_{27} R_{28} R_{28} R_{28} R_{27} R_{28} $R_{$

wherein each R_{26} is methyl, each R_{27} and each R_{28} are independently hydrogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio or trifluoromethyl, X_4 is oxygen or sulfur and r = 1, 2, 3 or 4.

Where no free valency is indicated in those definitions of Ar₁, Ar₂, Ar₃, Ar₄, Ar₅, Ar₆, Ar₇, Ar₈,

 Ar_{9} , Ar_{10} , Ar_{11} and Ar_{12} , for example as in O, the linkage site is located at the carbon

atom labelled "CH" or in a case such as, for example, at the bonding site indicated at the bottom left.

The alkali metal cation M⁺ (for example in the meaning of O⁻M⁺ in R₃) denotes in the context of the present invention preferably the sodium cation or the potassium cation.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy and the isomers of pentyloxy and hexyloxy; preferably methoxy and ethoxy. Alkyl-carbonyl is preferably acetyl, propionyl or pivaloyl. Alkoxycarbonyl is, for example, methoxy-carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl; preferably methoxycarbonyl or ethoxycarbonyl. Haloalkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkoxy is e.g. fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy and trifluoromethoxy.

Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms. Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio and ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-

butylsulfinyl, tert-butylsulfinyl; preferably methylsulfinyl and ethylsulfinyl. Alkylsulfonyl is, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl; preferably methylsulfonyl or ethylsulfonyl.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or the isomers of butylamine. Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, di-butylamino and di-isopropylamino. Preference is given to alkylamino and dialkylamino groups – including as a component of (N-alkyl)sulfonylamino and N-(alkylamino)sulfonyl groups, such as (N,N-dimethyl)sulfonylamino and N,N-(dimethyl-amino)sulfonyl – each having a chain length of from 1 to 4 carbon atoms.

Alkoxyalkoxy groups preferably have a chain length of from 1 to 8 carbon atoms. Examples of alkoxyalkoxy are: methoxymethoxy, methoxyethoxy, methoxypropoxy, ethoxymethoxy, ethoxyethoxy, propoxymethoxy and butoxybutoxy. Alkoxyalkyl groups have a chain length of preferably from 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.

Alkylthioalkyl groups preferably have from 1 to 8 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, n-propylthiomethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl.

The cycloalkyl groups having up to 8 carbon atoms preferably have from 3 to 6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. A cycloalkyl group having up to 8 carbon atoms also includes a C_3 - C_6 alkyl group bonded by way of a methylene or ethylene bridge, for example cyclopropylmethyl, cyclobutylmethyl and cyclopentylmethyl. Cycloalkyl groups, as well as, for example, the oxygen-containing oxiranyl, oxiranylmethyl, 3-oxetanyl, 2- and 3-tetrahydrofuranyl, 2-(2- and 3-tetrahydrofuranyl)methyl, 2-, 3- and 4-tetrahydropyranyl, 2-(2-tetrahydropyranyl)methyl, 1,3-dioxolanyl, 2-(1,3-dioxolanyl)methyl, 4-(1,3-dioxolanyl)methyl, 1,3-dioxanyl, 1,4-dioxanyl and similar saturated groups — especially as a component of Ar_5 in L_1 — can also be mono- or poly-substituted by C_1 - C_3 alkyl, preferably mono- to tetra-substituted by methyl.

Phenyl, including as a component of a substituent such as phenoxy, benzyl, benzyloxy, benzyl, phenylthio, phenylalkyl, phenoxyalkyl, may be in substituted form. The substituents may in that case be in the ortho-, meta- and/or para-position(s). Preferred substituent positions are the ortho- and para-positions relative to the ring linkage site. The phenyl groups are preferably unsubstituted or mono- or di-substituted, especially unsubstituted or mono-substituted.

 Z_1 , Z_2 and Z_3 as a C_1 - C_6 alkyl group which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₁₄)O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈- and may be mono- or poly-substituted by a group L₁ when that C₁-C₆alkyl group is interrupted by oxygen, -O(CO)O-, sulfur, sulfinyl or sulfonyl, is to be understood as meaning, for example, a bidentate bridging member -CH2OCH2-, -CH2CH2OCH2-, -CH2OCH2CH2-, $-CH_{2}OCH_{2}CH_{2}CH_{2}-, -CH_{2}OC(O)CH_{2}-, -CH_{2}(CO)OCH_{2}-, -CH_{2}O(CO)OCH_{2}-, -CH_{2}SCH_{2}-, -CH_{2}CH_{2}-, -CH_{2}-, -CH_{2}-,$ -CH₂S(O)CH₂-, -CH₂SO₂CH₂-, -CH₂SCH₂CH₂-, -CH₂S(O)CH₂CH₂-, -CH₂SO₂CH₂CH₂-, $-CH_2N(CH_3)SO_2CH_2-, -CH_2N(SO_2CH_3)CH_2-, -CH_2N(C(O)CH_3)CH_2-, \\$ -CH₂N(COOCH₂CH₃)CH₂- or -CH₂N(COOCH₃)CH₂-, the left-hand bonding site being bonded to the pyridine moiety and the right-hand side to the substituent L_1 . And Z_1 , Z_2 and Z_3 as a C2-C6alkenyl or C2-C6alkynyl group which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₁₄)O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈- and may be mono- or poly-substituted by a group L₁ is to be understood as meaning, for example, a bidentate bridging member -CH=CHCH₂OCH₂- or -C≡CCH₂OCH₂-. Such an unsubstituted or L₁-substituted C₁-C₆alkyl, C₂-C₆alkenyl or C₂-C₆alkynyl group Z₁, Z₂ or Z₃ which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₁₄)O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈- can be either straight-chain or branched, for example as in the case of the bidentate bridging members -CH(CH₃)OCH₂- and -CH₂OCH(CH₃)CH₂-.

The compounds of formula I may occur in various tautomeric forms such as, for example, when R_3 is hydroxy and Q is Q_1 , in formulae I', I", I" and I"", preference being given to formulae I' and I".

Since compounds of formula I may also contain asymmetric carbon atoms, for example in the case of R_1 , R_2 , A_1 , A_2 and Y, their substituents R_6 , R_7 and R_8 , and also in the case of carbon atoms carrying X_1 , X_2 , X_3 , Z_1 , Z_2 and Z_3 , and accordingly in any sulfoxides, all the stereoisomers and all chiral <R> and <S> forms are also included. Also included are all constitutional isomeric <E> and <Z> forms in respect of any -C=C- and -C=N- double bonds.

Since R_1 and R_2 , like R_7 and R_8 in A_1 and A_2 , may each independently of the other have the same or different meanings, the compound of formula I may also occur in various constitutional isomeric forms. The invention therefore relates also to all those constitutional isomeric forms in respect of the spatial arrangement of A_1 and A_2 and the substituents R_1 and R_2 in respect of the substituent R_3 as shown in formulae D_1 to D_4 .

The same applies also to the spatial arrangement of the bridging member Y in respect of the carbon atoms carrying R_1 and R_2 when Y is a C_1 - C_4 alkylene or C_2 - C_4 alkenylene chain which may be interrupted by oxygen, NR_{5a} , sulfur, sulfonyl, sulfinyl, C(O) or $C(=NR_{5b})$ and/or monoor poly-substituted by R_6 .

The substituent R_3 may also be located on the bridging member, as has already been shown above in formula I" wherein R_3 is hydroxy. The present invention relates also to those constitutional isomeric forms D_5

$$\begin{array}{c|c}
R_3 & O \\
Q & & R_2 \\
O & & A_1
\end{array}$$

$$\begin{array}{c|c}
R_2 & & (D_6) \\
\hline
R_1 & & A_1
\end{array}$$

of the compounds of formula I.

That arrangement of A₁, A₂, Y and the substituents R₁, R₂, R₄, R₅, R₆, R₇ and R₈ relates accordingly also to all possible tautomeric and stereoisomeric forms of the compounds used as intermediates.

The present invention relates also to the salts which the compounds of formula I are able to form with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases. Among the alkali metal and alkaline earth metal bases as salt formers, special mention should be made of the hydroxides of lithium, sodium, potassium, magnesium, barium and calcium, but especially the hydroxides of sodium, barium and potassium.

Examples of amines suitable for ammonium salt formation include ammonia as well as primary, secondary and tertiary C₁-C₁₈alkylamines, C₁-C₄hydroxyalkylamines and C₂-C₄-alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methylethylamine, methylisopropylamine, methylhexylamine, methylnonylamine, methylpentadecylamine, methyloctadecylamine, ethylbutylamine, ethylheptylamine, ethyloctylamine, diethylamine, diethylamine, di-n-propylamine, disopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2-amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tri-n-amylamine, methoxyethylamine

and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines, for example anilines, methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylene-diamines, benzidines, naphthylamines and o-, m- and p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

Preferred quaternary ammonium bases suitable for salt formation correspond, for example, to the formula $[N(R_a\,R_b\,R_c\,R_d)]OH$ wherein R_a , R_b , R_c and R_d are each independently of the others C_1 - C_4 alkyl. Further suitable tetraalkylammonium bases with other anions can be obtained, for example, by anion exchange reactions.

Preference is given to compounds of formula I wherein

 $R_1,\,R_2,\,R_6,\,R_7$ and R_8 are each independently of the others hydrogen, hydroxy, mercapto, NO $_2$, cyano, halogen, formyl, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ haloalkenyl, $C_2\text{-}C_6$ haloalkynyl, $C_2\text{-}C_6$ haloalkynyl, $C_1\text{-}C_6$ alkoxy, $C_1\text{-}C_6$ haloalkoxy, $C_3\text{-}C_6$ alkenyloxy, $C_3\text{-}C_6$ -alkynyloxy, $C_3\text{-}C_6$ -coxacycloalkyl, $C_3\text{-}C_6$ thiacycloalkyl, $C_3\text{-}C_6$ dioxacycloalkyl, $C_3\text{-}C_6$ dithiacycloalkyl, $C_3\text{-}C_6$ coxathiacycloalkyl, $C_1\text{-}C_6$ alkoxycarbonyl, $C_1\text{-}C_6$ alkylcarbonyl, $C_1\text{-}C_6$ alkylcarbonyloxy, $C_1\text{-}C_6$ alkylcarbonyl, $C_1\text{-}C_6$ alkylcarbonyloxy, or A_1 ; or $R_1,\,R_2,\,R_6,\,R_7,\,R_8$ are each independently of the others a $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl or $C_3\text{-}C_6$ cycloalkyl group, which may be interrupted by oxygen, sulfur, sulfonyl, sulfinyl, -NR $_{11}$ - or -C(O)- and/or mono-, di- or tri-substituted by hydroxy, mercapto, NO $_2$, cyano, halogen, formyl, $C_1\text{-}C_6$ alkoxy, $C_3\text{-}C_6$ alkenyloxy, $C_3\text{-}C_6$ alkynyloxy, $C_1\text{-}C_6$ haloalkoxy, $C_1\text{-}C_2$ alkoxy- $C_1\text{-}C_2$ alkoxy, $C_1\text{-}C_4$ alkoxy-carbonyloxy, $C_1\text{-}C_4$ alkylcarbonyl, $C_1\text{-}C_6$ alkylthio, $C_1\text{-}C_6$ alkylsulfinyl, $C_1\text{-}C_6$ alkylsulfonyl, NR $_12$ R $_13$, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkylloilyl, tri($C_1\text{-}C_6$ alkyl).

or two substituents R_6 at the same carbon atom together form a $-CH_2O$ - or a C_2 - C_5 alkylene chain, which may be interrupted once or twice by oxygen, sulfur, sulfonyl or sulfinyl and/or mono- or poly-substituted by R_{6c} , with the proviso that two hetero atoms may not be located next to one another;

or two substituents R_6 at different carbon atoms together form an oxygen bridge or a C_1 - C_4 alkylene chain, which may in turn be substituted by R_{6c} ;

or R_7 and R_8 together form an oxygen bridge, a --CH=CH-CH=CH- bridge or a C_3 -C₄alkylene chain, which may be interrupted by oxygen or --S(O)_{n1}- and/or mono- or poly-substituted by R_{8d} ;

Z₁, Z₂ and Z₃ are each independently of the others C₁-C₃alkoxy-C₁-C₃alkyl-substituted C_3 - C_6 cycloalkyl, tri(C_1 - C_6 alkyl)silyl, tri(C_1 - C_6 alkyl)silyloxy or CH=P(phenyl)₃: or Z₁, Z₂ and Z₃ are a C₁-C₆alkyl, C₂-C₆alkenyl or C₂-C₆alkynyl group, which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₁₄)-O-, -O-NR₁₅-, sulfur, sulfinyl, sulfonyl, $-SO_2NR_{16}$ -, $-NR_{17}SO_2$ - or $-NR_{18}$ - and is mono- or poly-substituted by L₁; L₁ is halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, $P(O)(OC_1-C_6alkyl)_2,\ C_1-C_6alkoxy,\ C_1-C_6haloalkoxy,\ C_1-C_6alkoxycarbonyl,\ C_2-C_6alkenyl,$ $C_2\text{-}C_6\text{haloalkenyl, }C_2\text{-}C_6\text{alkynyl, }C_2\text{-}C_6\text{haloalkynyl, }C_3\text{-}C_6\text{cycloalkyl, halo-substituted }C_3\text{-}C_6$ cycloalkyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_3 - C_6 haloalkenyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_1 - C_6 alkylthio- C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkoxy, $C_1-C_6 alkylsulfonyl-C_1-C_6 alkoxy, \ C_1-C_6 alkoxycarbonyl-C_1-C_6 alkoxy, \ C_1-C_6 alkylcarbonyloxy-C_1-C_6 alkyl$ $C_1-C_6 alkylcarbonyl,\ C_1-C_6 alkylthio,\ C_1-C_6 alkylsulfinyl,\ C_1-C_6 alkylsulfonyl,\ C_1-C_6 haloalkylthio,$ C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl or oxiranyl, which may in turn be substituted by C₁-C₀alkyl, C₁-C₃alkoxy or C₁-C₃alkoxy-C₁-C₃alkyl, or (3-oxetanyl)-oxy, which may in turn be substituted by C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkyl, or benzoyloxy, benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, R₁₉S(O)₂O, $R_{20}N(R_{21})SO_{2}$ -, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl or Ar₄, it being possible for the phenyl-containing groups in turn to be substituted by one or more C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano, hydroxy or nitro groups;

or, when R_1 and R_2 are hydrogen, methyl, halogen or C_1 - C_3 alkoxycarbonyl and at the same time Y is other than C_1 - C_2 alkylene which may be substituted by hydrogen, halogen or methyl, or is other than oxygen, sulfur, sulfonyl, sulfinyl, C(O) or NR_{4a} wherein R_{4a} is hydrogen, C_1 - C_4 alkyl, formyl or C_1 - C_4 alkylcarbonyl,

 L_1 may additionally be hydrogen and Z_1 , Z_2 and Z_3 may additionally be hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkynyl, C_1 - C_6 alkylcarbonyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl, 3-oxetanyl, 3-oxetanyl substituted by C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; or C_1 - C_6 alkyl; or C_1 - C_6 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; or C_1 - C_6 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; or C_1 - C_6 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; or C_1 - C_6 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; or C_1 - C_6 alkyl, C_1 - C_3 alkoxy- C_1 - C_3 alkoxy- C_1 - C_3 alkyl or C_1 - C_6 alkyl; or C_1 - C_6 alkyl, C_1

 R_9 , R_{11} , R_{13} , R_{23} , R_{16} , R_{17} , R_{18} , R_{20} and R_{24} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylsulfonyl, phenyl, it being possible for the phenyl group in turn to be mono- or poly-substituted by

 C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro, or Ar_9 ;

 R_{6a} and R_{6b} are each independently of the other hydrogen or C_1 - C_6 alkyl; or R_{6a} and R_{6b} together are a C_2 - C_6 alkylene chain;

 R_{6c} , R_{14} , R_{15} , R_{19} and R_{21} are each independently of the others C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; R_{6d} , R_{10} , R_{12} and R_{22} are each independently of the others hydrogen or C_1 - C_6 alkyl; Ar₁, Ar₂, Ar₃, Ar₄, Ar₅, Ar₆, Ar₇, Ar₈ and Ar₉ are each independently of the others a five- to tenmembered, monocyclic or fused bicyclic ring system, which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, C(O) and C(=NR₂₅), and each ring system contains not more than two oxygen atoms and not more than two sulfur atoms, and each ring system may itself be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, $C_2-C_6 alkynyl,\ C_2-C_6 haloalkynyl,\ C_1-C_6 alkoxy,\ C_1-C_6 haloalkoxy,\ C_3-C_6 alkenyloxy,\ C_3-C_6 alkynyl-C_6 haloalkynyl-C_6 haloa$ oxy, mercapto, amino, hydroxy, C₁-C₀alkylthio, C₁-C₀haloalkylthio, C₃-C₀alkenylthio, C₃-C₀haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, it being possible for the phenyl group in turn to be substituted by hydroxy, C₁-C₆alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_1 - C_3 $alkoxy-C_1-C_3alkylthio,\ C_1-C_4alkylcarbonyl-C_1-C_3alkylthio,\ C_1-C_4alkoxycarbonyl-C_1-C_3alkylthio,\ C_1-C_4alkoxycarbonyl-C_1-C_3alkylthio,\ C_1-C_4alkylcarbonyl-C_1-C_3alkylthio,\ C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_4alkylcarbonyl-C_1-C_$ $cyano-C_1-C_3 \\ alkylthio, \ C_1-C_6 \\ alkylsulfinyl, \ C_1-C_6 \\ haloalkylsulfinyl, \ C_1-C_6 \\ alkylsulfonyl, \ C_1-C_6 \\ haloalkylsulfinyl, \ C_1-C_6 \\ haloalkylsulfinyl, \ C_2-C_6 \\ haloalkylsulfinyl, \ C_3-C_6 \\ haloalkylsulfinyl, \ C_4-C_6 \\ haloalkylsulfinyl, \ C_5-C_6 \\ haloalkylsulfinyl, \ C_6-C_6 \\ haloalkylsulfinyl, \ C_6-C_6$ alkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, N_1N -di(C_1 - C_2 alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano or nitro, and the substituents at the nitrogen atom in the heterocyclic ring being other than halogen.

Special mention should be made of compounds of formula I wherein L_1 is hydrogen only when Z_1 , Z_2 and Z_3 are a C_1 - C_6 alkyl group which is interrupted by -O(CO)-, -(CO)O-, -N(R₁₄)O-, -ONR₁₅-, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈-, or is a C_2 - C_6 alkenyl or C_2 - C_6 alkynyl group which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R₁₄)O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈-; and when, further, either R₁ and R₂ are hydrogen or methyl, or R₁ is halogen or R₂ is C_1 - C_3 alkoxycarbonyl, and at the same time Y is other than C_1 - C_2 alkylene which may be substituted by halogen or methyl, or Y is other than oxygen, sulfur, sulfonyl, sulfinyl, C(O) or NR_{4a} wherein R_{4a} is hydrogen, C₁-C₄alkyl, formyl or C₁-C₄alkylcarbonyl.

alkyl, formyl or C₁-C₄alkylcarbonyl,

An outstanding group of compounds of formula I comprises those compounds wherein Z_1 , Z_2 , Z_3 are C_1 - C_3 alkylene which is substituted by the following substituents: halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl, P(O)(OC₁-C₆alkyl)₂, C₁-C₆alkoxy, $C_1-C_6 haloalkoxy,\ C_1-C_6 alkoxycarbonyl,\ C_2-C_6 alkenyl,\ C_2-C_6 haloalkenyl,\ C_2-C_6 alkynyl,\ C_2-C_6-C_6 haloalkenyl,\ C_2-C_6 haloalkenyl,\$ haloalkynyl, C₃-C₆cycloalkyl, halo-substituted C₃-C₆cycloalkyl, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, C_3 - C_6 haloalkenyloxy, cyano- C_1 - C_6 alkoxy, C_1 - C_6 Alxoxy, C_1 - C_6 Alxoxy, C_1 - C_6 A C_1 - C_6 alkoxy, C_1 - C_6 alkylsulfinyl- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkoxycarbonyl-C₁-C₆alkoxy, C₁-C₆alkylcarbonyloxy, C₁-C₆alkylcarbonyl, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl or oxiranyl, which may in turn be substituted by C1-C3alkyl, C1-C3alkoxy or C1-C3alkoxy-C₁-C₃alkyl, or (3-oxetanyl)-oxy, which may in turn be substituted by C₁-C₀alkyl, C₁-C₃alkoxy or C₁-C₃alkoxy-C₁-C₃alkyl, or benzoyloxy, benzyloxy, benzylthio, benzylsulfinyl, benzylsulfonyl, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, R₁₉S(O)₂O, R₂₀N(R₂₁)SO₂-, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl or Ar4, it being possible for the phenylcontaining groups in turn to be substituted by one or more C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C1-C3haloalkoxy, halogen, cyano, hydroxy or nitro groups; or, when R₁ and R₂ are hydrogen, methyl, halogen or C₁-C₃alkoxycarbonyl and at the same time Y is other than C1-C2alkylene which may be substituted by halogen or methyl, or is

 L_1 may additionally be hydrogen and Z_1 , Z_2 and Z_3 may additionally be hydrogen, hydroxy, mercapto, NO_2 , cyano, halogen, formyl, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkynyl, C_1 - C_6 alkynyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfinyl, $NR_{22}R_{23}$, phenyl which may be mono- or poly-substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 -haloalkoxy, halogen, cyano, hydroxy or nitro, or C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl substituted by C_1 - C_3 alkoxy, C_1 - C_3 alkyl or C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkoxy, C_1 - C_3 alkyl or C_1 - C_6 alkyl, or C_1 - C_6 0.

other than oxygen, sulfur, sulfonyl, sulfinyl, C(O) or NR_{4a} wherein R_{4a} is hydrogen, C₁-C₄-

Preferred compounds of formula I are those wherein p is 0. Preferably at least one group Z_1 , Z_2 or Z_3 is in the ortho-position relative to the carbonyl group; in preferred compounds, in addition, m_1 , m_2 and m_3 are the number 1. Also preferred are compounds of formula I wherein Q is a group Q_1 or Q_2 , especially the group Q_1 .

Also preferred are those compounds of formula I wherein Y is oxygen, NCO₂methyl, NSO₂CH₃, NC(O)CH₃, sulfur, sulfuryl, sulfonyl, C(O) or a C₁-C₂alkylene chain. Outstanding

compounds are those wherein Y is a C_1 - C_2 alkylene chain or oxygen, and wherein A_1 is CR_7 , A_2 is CR_8 and R_1 , R_2 , R_6 , R_7 , R_8 are each independently of the others hydrogen or methyl, especially Y is methylene or ethylene and R_1 , R_2 , R_6 , R_7 , R_8 are each hydrogen.

Especially interesting compounds of formula I are those wherein Z_1 is C_1 - C_3 alkylene which may be interrupted by oxygen, especially a bidentate group of form -CH2-, -CH2CH2-, $-\mathsf{OCH_{2}}\text{--}, -\mathsf{OCH_{2}}\mathsf{CH_{2}}\text{--}, -\mathsf{CH_{2}}\mathsf{O-}, -\mathsf{CH_{2}}\mathsf{OCH_{2}}\text{--} \text{ or } -\mathsf{CH_{2}}\mathsf{CH_{2}}\mathsf{CH_{2}}\mathsf{O-}, \text{ and } \mathsf{L_{1}} \text{ is preference}$ ably hydrogen, halogen, cyano, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy. Especially preferred are compounds of formula I wherein Z₁ or Z₁-L₁ is CH₃, CH₂CH₃, CH₂CH₂CH₃, $CHC(CH_3)_2,\ CH_2OCH_2CH_2OCH_3,\ CH_2OCH_2CH_2OCH_2CH_3,\ CH_2OCH_3,\ CH_2OCH_2CH_3,$ $CH_2OCH_2CH_3)_2,\ CH_2OCH_2CF_3,\ CH_2OCH_2CH=CH_2,\ CH_2OCH_2CCH,\ CH_2OCH_2CCCH_3,$ $CH_2OCH_2CH_2CCH,\ CH_2OCH_2CN,\ CH_2OCH_2CQCN,\ CH_2OCH_2CH_2CH_2CH_2OCH_3,$ $CH_2OCH_2CH_2OCH_2CH_2OCH_3,\ CH_2OCH_2CH_2CH_2OCF_3,\ CH_2CH_2OCH_3,\ CH_2CH_2OCH_2CH_3,$ CH₂CH₂CH₂OCH₃, CH₂CH₂CH₂OCH₂CH₃ or CH₂CH₂OCH₂CH₂OCH₃, more especially CH₃, CH₂CH₂CH₂OCH₃ or CH₂OCH₂CH₂OCH₃, especially prominent compounds being those wherein Y is methylene, ethylene or oxygen, A₁ is CR₇, A₂ is CR₈ and R₁, R₂, R₆, R₇, R₈ are each independently of the others hydrogen or methyl. Of that group, preference is given to those compounds wherein Q is Q_1 , p_1 is 0 and m_1 is 1, the group $(Z_1)m_1$ is in the orthoposition relative to the carbonyl group, and R₃ is hydroxy.

wherein R_{26} is hydrogen or methyl, R_{27} is hydrogen, C_1 - C_3 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 alkylthio or trifluoromethyl and X_4 is oxygen or sulfur.

Where no free valency is indicated in those preferred definitions of L_1 , for example as in CH, the linkage site is located at the carbon atom labelled "CH" or in the case of CH_2 at the carbon atom labelled "CH₂" or in a case such as, for example,

in a further preferred group of compounds of formula I, X_1 , X_2 and X_3 are C_1 - C_3 haloalkyl, especially CF_3 , CF_2CF_3 , CF_2CI or CF_2H , more especially CF_3 or CF_2H .

at the bonding site indicated at the bottom left.

An especially preferred group of compounds of formula I comprises those compounds wherein

Y is oxygen, $C(=CR_{6a}R_{6b})$ or a C_1 - C_4 alkylene chain which may be mono- or poly-substituted by R_6 ;

A₁ is CR₇;

A₂ is CR₈;

 R_1 , R_2 , R_6 , R_{6a} , R_{6b} , R_7 and R_8 are each independently of the others hydrogen, C_1 - C_6 alkyl or C_1 - C_6 alkoxycarbonyl;

or two substituents R₆ at the same carbon atom together form a C₂-C₅alkylene chain;

R₃ is hydroxy;

Q is the radical Q1;

p₁ is 0;

m₁ is 1;

X₁ is C₁-C₆haloalkyl;

 Z_1 is a C_1 - C_6 alkyl group which is interrupted by oxygen and is mono- or poly-substituted by L_1 ; it also being possible for L_1 to be bonded at the terminal carbon atom of the C_1 - C_6 alkyl group;

or Z₁ is C₁-C₆alkyl;

and L₁ is C₁-C₆alkoxy;

and agronomically acceptable salts/isomers/enantiomers/tautomers of those compounds.

The compounds of formula I can be prepared by means of processes known *per se*, e.g. as described in WO/0039094, as indicated below with reference to the examples of compounds of formula la

wherein R_1 , R_2 , A_1 , A_2 , Y, X_1 , Z_1 , m_1 and p_1 are as defined above.

In a preferred process, for example in the case of compounds of formula la

wherein R_1 , R_2 , A_1 , A_2 and Y are as defined above and Q is a group Q_1 , a) a compound of formula Q_1a

$$(Z_1)m_1$$
 X_1
 N
 $(Q_1a),$
 $(Q_1a),$

wherein Z_1 , m_1 , X_1 and p_1 are as defined above and E_1 is a leaving group, for example halogen or cyano, is reacted in an inert organic solvent, in the presence of a base, with a compound of formula Da

$$R_2$$
 A_2
 Y
 O
 O
 O
 O
 O

wherein Y, R_1 , R_2 , A_2 and A_1 are as defined for formula I, to form compound(s) of formula IIa and/or IIb

$$(Z_1)m_1 \qquad (Z_1)m_1 \qquad (Z_1)m_1$$

and the latter is(are) then isomerised, for example in the presence of a base and a catalytic amount of an acylating agent, for example dimethylaminopyridine (DMAP), or a cyanide source, e.g. acetone cyanohydrin, potassium cyanide or trimethylsilyl cyanide; or

b) a compound of formula Q_1b

$$(Z_1)m_1$$
 OH X_1 N $(O)p_1$ $(Q_1b),$

wherein Z_1 , m_1 , p_1 and X_1 are as defined for formula I, is reacted with a compound of formula Da

wherein Y, R_1 , R_2 , A_1 and A_2 are as defined for formula I, in an inert organic solvent, in the presence of a base and a coupling reagent, to form compound(s) of formula IIa and/or IIb

$$(Z_1)m_1$$
 $(O)p_1$
 $(Z_1)m_1$
 $(O)p_1$
 $(Z_1)m_1$
 $(O)p_1$
 $(O)p_1$

and the latter is(are) then isomerised, for example as described under Route a).

The intermediates of formulae Da, IIa and IIb are novel and have been developed especially for the preparation of the compounds of formula I. The present invention therefore relates also thereto. The novel intermediates of formulae Da, IIa, IIb correspond, in summary, to the general formulae IIIa and IIIb

$$R_2$$
 R_{29} (IIIa) and R_2 R_{1} R_{1} R_{1} R_{1} R_{1}

wherein R_1 , R_2 , Y, A_1 and A_2 are as defined above and R_{29} is OH or OC(O)Q wherein Q is as defined for formula I.

The preparation of the compounds of formula I is illustrated in greater detail in the following Reaction Schemes.

Reaction Scheme 1

Route a):
$$\begin{array}{c} \text{solvent e.g. } \text{CH}_2\text{Cl}_2 \\ \text{or } \text{CH}_3\text{CN} \\ \text{base e.g. } (\text{C}_2\text{H}_5)_3\text{N}, \\ \text{(Q}_1\text{a)} \\ \text{base e.g. } (\text{C}_2\text{H}_5)_3\text{N}, \\ \text{solvent e.g. } \text{CH}_2\text{Cl}_2 \\ \text{or } \text{CH}_3\text{CN} \\ \text{base e.g. } (\text{C}_2\text{H}_5)_3\text{N}, \\ \text{(O)p}_1 \\ \text{(Ila)} \\ \end{array}$$

Route b):
$$(Z_1)m_1 \longrightarrow OH + A_2 \longrightarrow OH + A_3 \longrightarrow OH + A_4 \longrightarrow$$

According to Reaction Scheme 1 it is preferable to prepare the compounds of formula I having the group Q_1 , Q_2 and Q_3 wherein R_3 is hydroxy and p_1 , p_2 and p_3 are 0.

Compounds of formula I wherein p_1 , p_2 and p_3 are 1, that is to say the corresponding N-oxides of formula I, can be prepared by reacting a compound of formula I wherein p_1 , p_2 and p_3 are 0 with a suitable oxidising agent, for example with the H_2O_2 -urea adduct in the

presence of an acid anhydride, e.g. trifluoroacetic anhydride. Such oxidations are known in the literature, for example from *J. Med. Chem.*, 32 (12), 2561-73, 1989 or WO 00/15615.

For the preparation of the compounds of formula I wherein Q is the groups Q_1 , Q_2 and Q_3 and R_3 is hydroxy, for example in accordance with Reaction Scheme 1, Route a), the carboxylic acid derivatives of formula Q_1 a wherein E_1 is a leaving group, e.g. halogen, for example iodine, bromine and especially chlorine, N-oxyphthalimide or N,O-dimethylhydroxylamino, or part of an activated ester, e.g. $\bigcap_{N} \bigcap_{N} \bigcap_{N}$

diimide (DCC) and the corresponding carboxylic acid) or CHN NH(CH),N(CH)₂ (formed from N-

ethyl-N'-(3-dimethylaminopropyl)-carbodiimide (EDC) and the corresponding carboxylic acid) are used as starting materials. They are reacted in an inert, organic solvent, e.g. a halogenated hydrocarbon, for example dichloromethane, a nitrile, for example acetonitrile, or an aromatic hydrocarbon, for example toluene, and in the presence of a base, e.g. an alkylamine, for example triethylamine, an aromatic amine, for example pyridine or 4-dimethylaminopyridine (DMAP), with the dione derivatives of formula Da to form the isomeric enol esters of formula IIa or IIb. That esterification can be carried out at temperatures of from 0°C to 110°C.

The isomerisation of the enol ester derivatives of formulae IIa and IIb to form the derivatives of formula I wherein R_3 is hydroxy can be carried out, for example, analogously to EP-A-0 353 187, EP-A-0 316 491 or WO 97/46530 in the presence of a base. e.g. an alkylamine, for example triethylamine, a carbonate, for example potassium carbonate, and a catalytic amount of DMAP or a catalytic amount of a cyanide source, for example acetone cyanohydrin, potassium cyanide or trimethylsilyl cyanide. The two reaction steps can be carried out in situ, especially when a cyanide compound of formula Q_1 a (E_1 = cyano) is used, or in the presence of a catalytic amount of acetone cyanohydrin or potassium cyanide, without isolation of the intermediates IIa and IIb.

According to Reaction Scheme 1, Route b), the desired derivatives of formula I wherein R₃ is hydroxy can be obtained e.g. analogously to E. Haslem, *Tetrahedron*, 2409-2433, 36, 1980 by first preparing enol esters of formula IIa and/or IIb by means of esterification of the carboxylic acids of formula Q₁b with the dione derivatives of formula Da in an inert solvent, for example a halogenated hydrocarbon, for example dichloromethane, a nitrile, for example acetonitrile, or an aromatic hydrocarbon, for example toluene, in the presence of a base, e.g.

an alkylamine, for example triethylamine, and a coupling agent, for example 2-chloro-1-methyl-pyridinium iodide, which enol esters are then converted *in situ* or in a second step into the compounds of formula I. That reaction takes place, depending upon the solvent used, at temperatures of from 0°C to 110°C and yields first, as described under Route a), the isomeric esters of formulae IIa and IIb, which can be isomerised to the desired derivatives of formula I (R₃ = hydroxy) as described under Route a), for example in the presence of a base and a catalytic amount of DMAP, or a cyanide source, e.g. acetone cyanohydrin.

The activated carboxylic acid derivatives of formula Q₁a in Reaction Scheme 1 (Route a) wherein E₁ is a leaving group, e.g. halogen, for example bromine, iodine or especially chlorine, can be prepared according to known standard methods, as described e.g. in C. Ferri "Reaktionen der organischen Synthese", Georg Thieme Verlag, Stuttgart, 1978, page 460 ff.. Such reactions are generally known and various variations in respect of the leaving group E₁ are described in the literature.

Compounds of formula I wherein R₃ is other than hydroxy or halogen can be prepared in accordance with conversion reactions generally known from the literature by nucleophilic substitution reactions on chlorides of formula I wherein R₃ is chlorine, which are readily obtainable from compounds of formula I wherein R₃ is hydroxy, likewise in accordance with known processes, by reaction with a chlorinating agent, such as phosgene, thionyl chloride or oxalyl chloride. In such a reaction there are used, for example, mercaptans, thiophenols or heterocyclic thiols in the presence of a base, for example 5-ethyl-2-methylpyridine, diisopropyl-ethylamine, triethylamine, sodium hydrogen carbonate, sodium acetate or potassium carbonate.

Compounds of formula I wherein the substituent R₃ contains thio groups can be oxidised to the corresponding sulfones and sulfoxides of formula I analogously to known standard methods, e.g. with peracids, for example meta-chloroperbenzoic acid (m-CPBA) or peracetic acid. In that reaction the degree of oxidation at the sulfur atom (SO- or SO₂-) can be controlled by the amount of oxidising agent. Other sulfur-containing groups, for example those in the meanings of R₁, R₂, R₆, R₇, R₈, L₁, X₁, X₂, X₃ or Y, or in alkyl groups and chains interrupted by sulfur, as may occur, for example, in Z₁, Z₂ and Z₃, can be oxidised with a suitable oxidising agent, such as m-CPBA or sodium periodate, to the corresponding sulfone and sulfine (sulfoxido) groups directly in compounds of formula I, as well as in intermediates of formulae IIa, IIb, Da and Db (hereinbelow).

The derivatives of formula I so obtained wherein R_3 is other than hydroxy can also be in various isomeric forms, which can optionally be isolated in pure form. The invention therefore includes all those stereoisomeric forms. Examples of those isomeric forms are the following formulae I', I" and I", as shown with reference to compounds of formula I wherein Q is group Q_1 .

$$(Z_{1})m_{1} \longrightarrow (Z_{1})m_{1} \longrightarrow (Z_{$$

The compounds of formula Da used as starting materials can be prepared, for example, by treating a compound of formula Db

$$R_2$$
 A_2
 A_1
 R_1
 R_3
 A_2
 A_1
 A_2
 A_1
 A_2
 A_3
 A_4
 A_4
 A_5
 A_5

wherein A_1 , A_2 , R_1 , R_2 and Y are as defined for formula I, Xa is chlorine or bromine and R_3 is hydroxy or C_1 - C_6 alkoxy, in the presence of a suitable reducing agent, e.g. tributyltin hydride, or zinc in acetic acid, optionally followed, when R_3 is C_1 - C_6 alkoxy, by aftertreatment in the presence of a hydrolysing agent, e.g. dilute hydrochloric acid or aqueous p-toluenesulfonic acid.

Specifically the compounds of formula Db above wherein R_1 and R_2 are each hydrogen or methyl, A_1 and A_2 are each methylene, Y is oxygen, methylene or ethylene, R_3 is chlorine, bromine or hydroxy and Xa is chlorine or bromine are known from Organic Letters 2002, 4, 1997; Archiv der Pharmazie 1987, 320, 1138; J. Amer. Chem. Soc. 1968, 90 2376 and from US-A-3 538 117 and can be prepared in accordance with the methods described therein.

The compounds of formula Da used as starting materials can accordingly also be prepared very generally in accordance with those known methods, by reacting a dienophilic compound of formula IV

$$\begin{array}{c|c}
R_2 \\
\downarrow \\
R_1
\end{array}$$
(IV)

wherein A_1 , A_2 , R_1 , R_2 and Y are as defined above, in an inert solvent, such as dichloromethane, 1,2-dichloroethane, toluene or chlorobenzene, optionally at elevated temperature or under elevated pressure, in a reaction similar to a Diels-Alder reaction, with a tetrahalocyclopropene of formula V

wherein Xa is chlorine or bromine, and then hydrolysing the resulting bicyclic compound of formula VI

wherein A₁, A₂, R₁, R₂, Xa and Y are as defined above, optionally in the presence of a suitable catalyst, for example silver nitrate or the silver tetrafluoroborate salt, or an acid, such as 90-98% sulfuric acid, 90% trifluoroacetic acid or p-toluenesulfonic acid, or reacting it with an alcoholate, for example sodium methanolate, potassium ethanolate or lithium isopropanolate, in order thus to obtain a compound of formula Db

wherein A_1 , A_2 , R_1 , R_2 , X_3 and Y_4 are as defined above, and R_3 depending upon the reaction conditions is either hydroxy, C_1 - C_6 alkoxy, chlorine or bromine, which is then further reduced and/or hydrolysed to form a novel compound of formula Da

$$R_2$$
 A_2
 Y
 A_1
 R_1
 O (Da),

wherein A₁, A₂, R₁, R₂ and Y are as defined above.

Compounds of formula VI can thus be reacted further, for example in the presence of 90-98% sulfuric acid at elevated temperature of about $80\text{-}100^{\circ}\text{C}$, to form compounds of formula Db wherein R_3 is hydroxy and Xa is chlorine or bromine, as described in greater detail in J. Amer. Chem. Soc. 1968, 90, 2376.

It is also possible for compounds of formula VI to be converted into compounds of formula Db wherein R₃ and Xa are both chlorine or bromine, for example in the presence of 90% trifluoroacetic acid at boiling temperature or in the presence of aqueous silver nitrate at ambient temperature, as described in Archiv der Pharmazie 1987, 320, 1138 and in Organic Letters 2002, 4, 1997.

On the other hand, compounds of formula VI can be converted into compounds of formula Db wherein R_3 is C_1 - C_6 alkoxy and Xa is chlorine or bromine in good yields at ambient temperature in the presence of alcoholates of formula $R_{3a}O^*M^*$ wherein R_{3a} is accordingly C_1 - C_6 alkyl and M^* is an alkali metal salt, in a solvent, such as an alcohol $R_{3a}OH$, toluene or ether, e.g. tetrahydrofuran, dimethoxyethane.

It is also possible for compounds of formula Db wherein Xa is chlorine or bromine and R₃ is hydroxy or C₁-C₆alkoxy to be reduced in the presence of reducing agents, e.g. tributyltin hydride, in an organic solvent, such as toluene or tetrahydrofuran, to form compounds of formula Db wherein Xa is hydrogen, as is well known according to general methods from the literature for the reduction of a halogen in a position adjacent to a carbonyl group (see e.g. *Comprehensive Org. Funct. Group. Transformations*, Vol. 1. ed. S.M. Roberts, Pergamon Press Oxford, **1995**, pages 1-11).

Finally, compounds of formula Db wherein R_3 is C_1 - C_6 alkoxy, chlorine or bromine and Xa is hydrogen can be hydrolysed to compounds of formula Da in the presence of acids, e.g. dilute hydrochloric acid, dilute sulfuric acid or p-toluenesulfonic acid.

The general reaction sequences for the preparation of compounds of formulae Da and Db from compounds of formulae IV and V *via* intermediates of formula VI are shown in the following Scheme.

In the reaction of compounds of formula VI and/or Db wherein A_1 , A_2 , R_1 , R_2 , Xa and Y are as defined above and R_3 is C_1 - C_6 alkoxy with alcoholates of formula $R_{3a}O^*M^*$, it is also possible for compounds of formula VII to be formed

$$R_3$$
a R_3 a

wherein A_1 , A_2 , R_1 , R_2 , Xa and Y are as defined above and R_{3a} is C_1 - C_6 alkyl or, when glycol is used, two R_{3a} together are $-CH_2CH_2$ -. Those compounds too can be reacted under the reduction conditions mentioned above, for example with tributyltin hydride or with zinc in the presence of acetic acid, by way of a compound of formula VIIa

$$R_3$$
a R_3 a

wherein A_1 , A_2 , R_1 , R_2 , R_{3a} and Y are as defined above, and subsequent hydrolysis, for example with dilute hydrochloric acid or a catalytic amount of p-toluenesulfonic acid in water, to form the compounds of formulae Da and Db

wherein A_1 , A_2 , R_1 , R_2 and Y are as defined above and R_3 is hydroxy and Xa is hydrogen, as is shown generally in the following Scheme.

In a further process, compounds of formula Da can also be prepared either by conversion of a compound of formula VIII

$$R_2$$
 A_2
 A_1
 A_1
 A_1
 A_1
 A_2
 A_3
 A_4
 A_4
 A_4
 A_5
 A_5

wherein R_1 , R_2 , A_1 , A_2 , Y are as defined above and Ra is C_1 - C_6 alkyl or, when glycol is used, two R_{3a} together are $-CH_2CH_2$ -, by hydrolysis, e.g. by treatment with an aqueous acid, Route c),

or by conversion of a compound of formula IX

$$R_2$$
 A_1
 R_1
 R_1
 R_1

wherein R_1 , R_2 , A_1 , A_2 , Y are as defined above, by means of oxidation, e.g. with selenium dioxide, Route d), first into a diketo compound of formula X

$$R_2$$
 A_2
 Y
 A_1
 A_1
 A_1
 A_1
 A_2
 A_3
 A_4
 A_4
 A_5
 A_5

wherein R_1 , R_2 , A_1 , A_2 , Y are as defined above, and subsequent conversion of that compound by carbene insertion, e.g. with diazomethane or with trimethylsilyl-diazomethane, into the 1,3-dione compound Da.

Those processes are also known *per se* to the person skilled in the art; the compounds can be prepared, depending upon the functionality of the groups R_1 , R_2 , A_1 , A_2 and Y, by general reaction routes shown in the following Scheme:

Using such routes it is readily possible to obtain, in particular, those compounds of formula VIII wherein Y is a C_2 alkylene chain substituted by R_6 , wherein R_6 is for example alkoxy, benzyloxy, alkylcarbonyl, alkoxycarbonyl, alkylthio or alkylsulfonyl.

Methods of obtaining the starting compounds of formula VIII used in the above-mentioned process are known, for example, from Acc. Chem. Res. 2002, 856; J.O.C. 2002, 67, 6493; Organic Letters 2002, 2477; Synlett, 2002, 1520; Chem. Commun. 2001, 1624; Synlett,

2000, 421; Tetrahedron Letters, 1999, 8431; J.O.C. 1999, *64*, 4102; J.A.C.S. 1998, *129*, 13254; Tetrahedron Letters, 1998, 659; Synlett, 1997, 1351. Methods of obtaining the starting compounds of formula IX are described, for example, in Org. Lettr. 2002, 2063; Synthetic Commun. 2001, 707; J.A.C.S. 2001, *123*, 1569; Synlett, 1999, 225; Synlett, 1997, 786; Tetrahedron Letters, 1996, 7295; Synthesis, 1995, 845. Compounds of formula X are known, for example, from Synthesis, 2000, 850.

The transformations according to Route d) are likewise known, for example from Tetr. 1986, 42, 3491. Oxidation is preferably carried out with selenium dioxide in a solvent, such as acetic acid, at temperatures of from about 20°C to about 120°C and the carbene insertion with diazomethane is preferably effected at from about -40°C to about 50°C in a solvent, such as dichloromethane or diethyl ether. The carbene insertion can also be carried out with trimethylsilyldiazomethane, it having proved advantageous to work in the presence of a Lewis acid catalyst, such as boron trifluoride etherate, for example at temperatures of from about -15°C to about +25°C.

In principle, however, the compounds of formulae Da, Db, VII, VIIa, VIII, IX and X used as starting materials and as intermediates can be prepared, in dependence upon the substituent pattern A₁, A₂, R₁, R₂ and Y and also in dependence upon the availability of the starting materials, according to any desired methods and reaction routes, there being no limitation in respect of the process variants indicated above.

The compounds of formula Da wherein R₁, R₂, A₁, A₂ and Y are as defined above, and also compounds of formula Db wherein R₁, R₂, A₁, A₂ and Y are as defined above and R₃ is chlorine, bromine, hydroxy or C₁-C₆alkoxy and Xa is hydrogen, chlorine or bromine, with the exception of the compounds 3-chloro-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione; 3-chloro-bicyclo[3.2.1]oct-6-ene-2,4-dione; 3-chloro-4-hydroxy-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-1,5-dimethyl-8-oxa-bicyclo-[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-1,5-dimethyl-8-oxa-bicyclo-[3.2.1]octa-3,6-dien-2-one; 3,4-dichloro-bicyclo[3.2.1]octa-3,6-dien-2-one and 7,8-dibromo-5,9-dihydro-5,9-methano-benzocyclohepten-6-one, and also the compounds of formula VII are novel and constitute valuable intermediates for the preparation of compounds of formula I. The present invention accordingly relates likewise thereto.

The compounds of formulae Q_{1a} , Q_{2a} and Q_{3a} used as starting materials and their corresponding acids Q_{1b} , Q_{2b} and Q_{3b} are known from the publications WO 00/15615 and WO 01/94339 or can be prepared in accordance with the methods described therein.

The compounds of formula V used as starting material are likewise known, for example from Synthesis 1987, 260 and from J. Amer. Chem. Soc. 1968, 90 2376.

A large number of known standard methods are available for the preparation of all further compounds of formula I functionalised in accordance with the definition of A_1 , A_2 , R_1 , R_2 , Y and Q, for example alkylation, halogenation, acylation, amidation, oximation, oxidation and reduction, the choice of a suitable preparation process being governed by the properties (reactivities) of the substituents in question in the respective intermediates of formulae I, Da, Db, VI, VII and VIIa, and especially the starting materials of formulae IV and V an

The reactions to form compounds of formula I are advantageously carried out in aprotic, inert organic solvents. Such solvents are hydrocarbons, such as benzene, toluene, xylene or cyclohexane, chlorinated hydrocarbons, such as dichloromethane, trichloromethane, tetrachloromethane or chlorobenzene, ethers, such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran or dioxane, nitriles, such as acetonitrile or propionitrile, amides, such as N,N-dimethylformamide, diethylformamide or Nmethylpyrrolidinone. The reaction temperatures are preferably from -20°C to +120°C. The reactions generally proceed slightly exothermically and can generally be carried out at room temperature. In order to shorten the reaction time or to initiate the reaction, brief heating, up to the boiling point of the reaction mixture, can be carried out. The reaction times can likewise be shortened by the addition of a few drops of base as reaction catalyst. Suitable bases are especially tertiary amines, such as trimethylamine, triethylamine, quinuclidine, 1,4diazabicyclo[2.2.2]octane, 1,5-diazabicyclo[4.3.0]non-5-ene or 1,5-diazabicyclo[5.4.0]undec-7-ene. It is also possible, however, to use as bases inorganic bases, such as hydrides, e.g. sodium or calcium hydride, hydroxides, e.g. sodium or potassium hydroxide, carbonates, e.g. sodium or potassium carbonate, or hydrogen carbonates, e.g. potassium or sodium hydrogen carbonate. The bases can be used as such or alternatively with catalytic amounts of a phase transfer catalyst, e.g. crown ethers, especially 18-crown-6, or tetraalkylammonium salts.

The end products of formula I can be isolated in conventional manner by concentration or

evaporation of the solvent and purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons, by distillation or by means of column chromatography or by means of the HPLC technique using a suitable eluant.

The sequence in which the reactions should be carried out in order as far as possible to avoid secondary reactions will be familiar to the person skilled in the art. Unless the synthesis is specifically aimed at the isolation of pure isomers, the product may be obtained in the form of a mixture of two or more isomers, for example chiral centres in the case of alkyl groups or cis/trans isomerism in the case of alkenyl groups or <E> or <Z> forms. All such isomers can be separated by methods known *per se*, for example chromatography, crystallisation, or produced in the desired form by means of a specific reaction procedure.

For the use according to the invention of the compounds of formula I, or of compositions comprising them, there come into consideration all methods of application customary in agriculture, for example pre-emergence application, post-emergence application and seed dressing, and also various methods and techniques such as, for example, the controlled release of active ingredient. For that purpose a solution of the active ingredient is applied to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. If required, it is additionally possible to apply a coating (coated granules), which allows the active ingredient to be released in metered amounts over a specific period of time.

The invention therefore relates also to a herbicidal and plant-growth-inhibiting composition comprising a herbicidally effective amount of a compound of formula I according to claim 1 on an inert carrier.

The compounds of formula I can be used as herbicides in unmodified form, that is to say as obtained in the synthesis, but they are preferably formulated in customary manner together with the adjuvants conventionally employed in formulation technology e.g. into emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, suspensions, mixtures of a suspension and an emulsion (suspoemulsions), wettable powders, soluble powders, dusts, granules or microcapsules. Such formulations are described, for example, on pages 9 to 13 of WO 97/34485. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are selected in accordance with the intended objectives and the prevailing circumstances.

The formulations, that is to say the compositions, preparations or mixtures comprising the compound (active ingredient) of formula I or at least one compound of formula I and, usually, one or more solid or liquid formulation adjuvants, are prepared in known manner, e.g. by homogeneously mixing and/or grinding the active ingredients with the formulation adjuvants, for example solvents or solid carriers. Surface-active compounds (surfactants) may also be used in addition in the preparation of the formulations. Examples of solvents and solid carriers are given, for example, on page 6 of WO 97/34485.

Depending upon the nature of the compound of formula I to be formulated, suitable surfaceactive compounds are non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties.

Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, on pages 7 and 8 of WO 97/34485.

In addition, the surfactants conventionally employed in formulation technology, which are described, *inter alia*, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna 1981, and M. and J. Ash, "Encyclopedia of Surfactants", Vol. I-III, Chemical Publishing Co., New York, 1980-81, are also suitable for the preparation of the herbicidal compositions according to the invention.

The compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters thereof or mixtures of such oils and oil derivatives.

The amount of oil additive in the composition according to the invention is generally from 0.01 to 2 %, based on the spray mixture. For example, the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared.

Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® obtainable from Rhône-Poulenc Canada Inc., alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. A preferred additive contains as active components essentially 80 % by weight alkyl esters of fish oils

and 15 % by weight methylated rapeseed oil, and also 5 % by weight of customary emulsifiers and pH modifiers.

Especially preferred oil additives comprise alkyl esters of higher fatty acids (C₈-C₂₂), especially the methyl derivatives of C₁₂-C₁₈ fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid. Those esters are known as methyl laurate (CAS-111-82-0), methyl palmitate (CAS-112-39-0) and methyl oleate (CAS-112-62-9). A preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Henkel subsidiary Cognis GMBH, DE).

The application and action of the oil additives can be improved by combining them with surface-active substances, such as non-ionic, anionic or cationic surfactants. Examples of suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485.

Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C₁₂-C₂₂ fatty alcohols having a degree of ethoxylation of from 5 to 40. Examples of commercially available, preferred surfactants are the Genapol types (Clariant AG, Muttenz, Switzerland). Also preferred for use as surface-active substances are silicone surfactants, especially polyalkyl-oxide-modified heptamethyltrisiloxanes, such as are commercially available as e.g. Silwet L-77®, and also perfluorinated surfactants. The concentration of surface-active substances in relation to the total additive is generally from 1 to 30 % by weight.

Examples of oil additives that consist of mixtures of oils or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Zeneca Agro, Stoney Creek, Ontario, CA) and Actipron® (BP Oil UK Limited, GB).

The addition of an organic solvent to the oil additive/surfactant mixture can also bring about a further enhancement of action. Suitable solvents are, for example, Solvesso® (ESSO) and Aromatic Solvent® (Exxon Corporation) types.

The concentration of such solvents can be from 10 to 80 % by weight of the total weight.

Such oil additives, which are also described, for example, in US-A-4 834 908, are suitable for the composition according to the invention. A commercially available oil additive is known by the name MERGE®, is obtainable from the BASF Corporation and is essentially described,

for example, in US-A-4 834 908 in col. 5, as Example COC-1. A further oil additive that is preferred according to the invention is SCORE® (Novartis Crop Protection Canada.)

In addition to the oil additives listed above, in order to enhance the action of the compositions according to the invention it is also possible for formulations of alkyl pyrrolidones, such as are commercially available e.g. as Agrimax®, to be added to the spray mixture. Formulations of synthetic latices, such as, for example, polyacrylamide, polyvinyl compounds or poly-1-p-menthene, such as are commercially available as e.g. Bond®, Courier® or Emerald®, can also be used to enhance action. Solutions that contain propionic acid, for example Eurogkem Pen-e-trate®, can also be added as action-enhancing agent to the spray mixture.

The herbicidal formulations generally contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of herbicide, from 1 to 99.9 % by weight, especially from 5 to 99.8 % by weight, of a solid or liquid formulation adjuvant, and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further ingredients, such as stabilisers, for example vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), anti-foams, for example silicone oil, preservatives, viscosity regulators, binders, tackifiers, and also fertilisers or other active ingredients.

The compounds of formula I are generally applied to the plant or to the locus thereof at rates of application of from 0.001 to 4 kg/ha, especially from 0.005 to 2 kg/ha. The concentration required to achieve the desired effect can be determined by experiment. It is dependent upon the nature of the action, the stage of development of the cultivated plant and of the weed and on the application (place, time, method) and may vary within wide limits as a function of those parameters.

The compounds of formula I are distinguished by herbicidal and growth-inhibiting properties, allowing them to be used in crops of useful plants, especially cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice, and also for non-selective weed control. The term "crops" is to be understood as including also crops that have been rendered tolerant to herbicides or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors) as a result of conventional methods of

breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®.

Crops are also to be understood as being those which have been rendered resistant to harmful insects by genetic engineering methods, for example Bt maize (resistant to European corn borer), Bt cotton (resistant to cotton boll weevil) and also Bt potatoes (resistant to the Colorado beetle). Examples of Bt maize are the Bt 176 maize hybrids of NK® (Syngenta Seeds). The Bt toxin is a protein that is formed naturally by *Bacillus thuringiensis* soil bacteria. Examples of toxins, or transgenic plants able to synthesise such toxins, are described in EP-A-0 451 878, EP-A-0 374 753, WO 93/07278, WO 95/34656 and EP-A-0 427 529.

Plant crops or seed material thereof can be both herbicide-tolerant and at the same time resistant to insect feeding ("stacked" transgenic events).

The weeds to be controlled may be both monocotyledonous and dicotyledonous weeds, such as, for example, Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

The compositions according to the invention may additionally comprise growth regulators, for example trinexapac (744), chlormequat chloride (129), clofencet (148), cyclanilide (170), ethephon (281), flurprimidol (355), gibberellic acid (379), inabenfide (421), maleic hydrazide (449), mefluidide (463), mepiquat chloride (465), paclobutrazol (548), prohexadione-calcium (595), uniconazole (746) or thidiazuron (703). It is also possible for a composition according to the invention to comprise fungicides, for example azoxystrobin (43), epoxiconazole (48), benomyl (60), bromuconazole (89), bitertanol (77), carbendazim (107), cyproconazole (189), cyprodinil (190), diclomezine (220), difenoconazole (228), diniconazole (247), epoxiconazole (48), ethirimol (284), etridiazole (294), fenarimol (300), fenbuconazole (302), fenpiclonil (311), fenpropidin (313), fenpropimorph (314), ferimzone (321), fludioxonil (334), fluquinconazole (349), flutolanil (360), flutriafol (361), imazalil (410), ipconazole (426),

iprodione (428), isoprothiolane (432), kasugamycin (438), kresoxim-methyl (439), spiroxamine (441), mepronil (466), myclobutanil (505), nuarimol (528), pefurazoate (554), pencycuron (556), phthalide (576), probenazole (590), prochloraz (591), propiconazole (607), pyrazophos (619), pyroquilone (633), quinoxyfen (638), quintozene (639), tebuconazole (678), tetraconazole (695), thiabendazole (701), thifluzamide (705), triadimeron (720), triadimenol (721), tricyclazole (734), tridemorph (736), triflumizole (738), triforine (742), triticonazole (745) or vinclozolin (751). The number in brackets after each active ingredient refers to the entry number of that active ingredient in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997.

The following Examples further illustrate the invention but do not limit the invention.

<u>Preparation Example 1: Preparation of 2,3,4,4-tetrachloro-1,5-dimethyl-8-oxa-bicyclo-[3.2.1]octa-2,6-diene:</u>

6.49 g (67.48 mmol) of 2,5-dimethylfuran and 10 g (56.23 mmol) of tetrachlorocyclopropene are heated at boiling temperature in 70 ml of toluene for 16 hours. The toluene and excess 2,5-dimethylfuran are then removed under reduced pressure. The product, 14.77 g (95.9% of theory) of 2,3,4,4-tetrachloro-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-2,6-diene, which remains behind in the form of an oil, can be transferred to the next reaction step without further purification (¹H NMR).

 $^1 H$ NMR (300 MHz; CDCl₃) δ 6.50 (d, 1H); 6.15 (d, 1H); 1.82 (s, 3H); 1.63 (s, 3H).

<u>Preparation Example P2: Preparation of 3,4-dichloro-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one:</u>

14 g (51.1 mmol) of unpurified 2,3,4,4-tetrachloro-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-2,6-diene and 17.36 g (102.2 mmol) of silver nitrate are dissolved in 500 ml of acetone/water 1:1

mixture and heated for 15 hours at a temperature of 65-70°C until the reaction of the reactants is complete (thin-layer chromatography (TLC) monitoring (mobile phase hexane / ethyl acetate 4:1)). After the reaction mixture has cooled to ambient temperature, solid sodium hydrogen carbonate is then stirred into the mixture in portions in order to neutralise the nitric acid. The precipitated silver bromide is filtered off and most of the acetone is distilled off under reduced pressure. The aqueous phase that remains behind is extracted three times with ethyl acetate. The organic extract is washed with water, dried over sodium sulfate and concentrated by evaporation. The oily residue is purified by means of silica gel chromatography (eluant gradient: 3-50% ethyl acetate in hexane). 6.1 g (54%) of pure 3,4-dichloro-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one are obtained in the form of a pale yellow solid.

¹H NMR (300 MHz; CDCl₃) δ 6.65 (d, 1H); 6.23 (d, 1H); 1.72 (s, 3H); 1.61 (s, 3H).

<u>Preparation Example P3: Preparation of 3-chloro-1,5-dimethyl-4-methoxy-8-oxa-bicyclo-[3.2.1]octa-3,6-dien-2-one and 3-chloro-4,4-dimethoxy-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-2-one:</u>

6.0 g (27.39 mmol) of 3,4-dichloro-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one is introduced into 39 ml of anhydrous methanol. At a temperature of 0°C, the reaction mixture is further diluted dropwise with a solution of 15.2 ml of 5.4M sodium methanolate (82.17 mmol) and treated with 10 ml of absolute methanol. The reaction mixture is then heated to ambient temperature with 35 minutes' stirring. Using thin-layer chromatography (hexane/ethyl acetate 8:2) it can be established that reaction of the starting material is complete. The reaction solution is then concentrated under reduced pressure. The residue is then extracted by means of carbon tetrachloride against water. The aqueous phase is extracted a further three times using fresh carbon tetrachloride. The combined organic extracts are dried over sodium sulfate and concentrated by evaporation under reduced pressure; with ice-cooling, the oily product that remains behind crystallises out in the form of a ~1:1 mixture. The mixture is separated by means of column chromatography on silica gel (eluant: gradient from 1-5% ethyl acetate / hexane). 3.1 g (52.9%) of pure 3-chloro-1,5-dimethyl-4-methoxy-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one are isolated.

¹H NMR (300 MHz; CDCl₃) δ 6.48 (d, 1H); 6.24 (d, 1H); 4.24 (s, 3H); 1.60 (s, 3H); 1.56 (s, 3H).

A second fraction yields 3.17 g (46.9%) of pure 3-chloro-4,4-dimethoxy-1,5-dimethyl-8-oxabicyclo[3.2.1]oct-6-en-2-one.

 1 H NMR (300 MHz; CDCl₃) δ 6.25 (d, 1H); 6.05 (d, 1H); 5.15 (s, 1H); 3.48 (s, 3H); 3.46 (s, 3H); 1.53 (s, 3H); 1.51 (s, 3H).

<u>Preparation Example P4: Preparation of 4,4-dimethoxy-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-2-one:</u>

2.2 g (8.92 mmol) of 3-chloro-4,4-dimethoxy-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-2-one in 240 ml of toluene are degassed, with heating at reflux temperature, and a catalytic amount of 66 mg of azaisobutyronitrile (AIBN) and a solution of 5.9 ml (22.3 mmol) of tributyltin hydride are added in succession. The reaction mixture is maintained at reflux temperature for a further 20 minutes to complete the reaction (TLC monitoring: hexane/ethyl acetate 4:1). The reaction mixture is then concentrated by evaporation under reduced pressure. The residue is then taken up in acetonitrile and the tin-containing residues are extracted by means of hexane. The acetonitrile phase is concentrated by evaporation *in vacuo*, 1.56 g (82.4% of theory) of 4,4-dimethoxy-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-2-one remaining behind in the form of a yellow oil, which can be used for the next reaction step without further purification.

 1 H NMR (300 MHz; CDCl₃) δ 6.22 (d, 1H); 5.90 (d, 1H); 3.41 (s, 3H); 3.25 (s, 3H); 2.92 and 2.84 (AB syst., 2H, J = 16.5 Hz); 1.55 (s, 3H); 1.45 (s, 3H).

Preparation Example P5: Preparation of 1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione:

1.61 g (7.59 mmol) of 4,4-dimethoxy-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-en-2-one and 0.432 g (2.28 mmol) of p-toluenesulfonic acid are dissolved in a 2:1 mixture of acetone and water and heated for 50 minutes at a temperature of 70°C (TLC monitoring: hexane/ethyl acetate 9:1). The acetone is then removed under reduced pressure. The aqueous phase is then adjusted to pH 9 with saturated sodium hydrogen carbonate solution and extracted three times with ethyl acetate to remove neutral components. The aqueous phase is then adjusted to pH 5 with dilute hydrochloric acid and extracted three times with fresh ethyl acetate. The organic phase is dried over sodium sulfate and concentrated by evaporation under reduced pressure, there being obtained 1.04 g (82.5%) of technically pure 1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione in the form of a yellowish product, which can be used without further purification in the next reaction step to form compounds of formula I.

 1 H NMR (300 MHz; CDCl₃) δ 6.46 (d, 1H); 6.23 (d, 1H); 5.54 (hept., 1H); 1.58 (d, 6H); 1.40 (d, 3H); 1.25 (d, 3H).

<u>Preparation Example P6: Preparation of 3-bromo-1,5-dimethyl-4-isopropoxy-8-oxa-bicyclo-</u>[3.2.1]octa-3,6-dien-2-one

A solution of 2.74 g (8.9 mmol) of 3,4-dibromo-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one (prepared according to *Organic Lett.* 4(12), 1997 (2002)) dissolved in 10 ml of tetrahydrofuran is added dropwise at ambient temperature to a solution of 5.4 ml (10.7 mmol) of 2M lithium isopropanolate diluted with 10 ml of tetrahydrofuran. The mixture is stirred for 3 hours at ambient temperature until the starting material has reacted completely (TLC monitoring: hexane/ethyl acetate/hexane 4:1). The reaction solution is then treated at a temperature of 0°C with a 10% sodium dihydrogen phosphate solution (20 ml) and water (30 ml) and extracted three times with ethyl acetate. Drying over sodium sulfate and concentration by evaporation are carried out. For further purification, the dark oil so obtained is purified by chromatography over silica gel with 5% ethyl acetate in hexane.

1.73 g (68% of theory) of pure 3-bromo-1,5-dimethyl-4-isopropoxy-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one are isolated.

¹H NMR (300 MHz; CDCl₃) δ 6.46 (d, 1H); 6.23 (d, 1H); 5.54 (hept., 1H); 1.58 (d, 6H); 1.40 (d, 3H); 1.25 (d, 3H).

<u>Preparation Example P7: Preparation of 3-bromo-4,4-(1',2'-ethylenedioxy)-bicyclo[3.2.1]oct-6-en-2-one:</u>

A sodium glycolate solution is prepared by stirring 124 mg (5.4 mmol) of metallic sodium into 2.7 ml (42.42 mmol) of anhydrous ethylene glycol at ambient temperature and, when the sodium has completely dissolved, 1.5 ml of tetrahydrofuran are added. To the resulting monosodium glycolate solution there is then added dropwise a solution of 1 g (3.6 mmol) of 3,4-dibromo-bicyclo[3.2.1]octa-3,6-dien-2-one (prepared according to *Organic Lett. 4*(12), 1997 (2002)) dissolved in 5 ml of tetrahydrofuran. The reaction mixture is then stirred at ambient temperature for 90 minutes with TLC monitoring (mobile phase hexane/ethyl acetate 4:1). The reaction mixture is then treated with 8 ml of 10% sodium dihydrogen phosphate solution and extracted with ethyl acetate (3x). The organic phase is washed with water to remove ethylene glycol, then dried and concentrated by evaporation. 930 mg (~100%) of 3-bromo-4,4-ethylenedioxy-bicyclo[3.2.1]oct-6-en-2-one are obtained in the form of a white solid.

 1H NMR (300 MHz; CDCl₃) δ 6.38 (m, 1H); 6.25 (m, 1H); 5.46 (s, 1H); 4.25 (m, 2H); 4.04 (m, 2H); 3.38 (m, 1H); 2.98 (m, 1H); 2.40 (m, 1H); 2.25 (m, 1H).

<u>Preparation Example P8: Preparation of 4,4-(1',2'-ethylenedioxy)-bicyclo[3.2.1]oct-6-en-2-one:</u>

A degassed solution of 920 mg (3.55 mmol) of 3-bromo-4,4-(1',2'-ethylenedioxy)-bicyclo-[3.2.1]oct-6-en-2-one in 90 ml of toluene is treated at boiling temperature in succession with a catalytic amount (30 mg) of AIBN and with 2.35 ml (8.88 mmol) of tributyltin hydride. To

complete the reaction, the reaction mixture is maintained at reflux for a further 20 minutes, with TLC monitoring (mobile phase hexane/ethyl acetate 1:1). The reaction mixture is then concentrated by evaporation under reduced pressure. The residue is taken up in a small amount of acetonitrile and extracted five times with a small amount of hexane in order to remove tin-containing secondary products. The acetonitrile phase is then again concentrated by evaporation. 800 mg of 4,4-(1',2'-ethylenedioxy)-bicyclo[3.2.1]oct-6-en-2-one are obtained in the form of a yellow oil, which can be transferred directly to the next reaction step without further purification.

 1 H NMR (300 MHz; CDCl₃) δ 6.30 (m, 1H); 6.12 (m, 1H); 4.02-3.90 (m, 2 x 2H); 3.10 (m, 1H); 3.06 (d, 1H); 2.83 (m, 1H); 2.45 (d, 1H); 2.40-2.25 (m, 2 x 1H).

Preparation Example P9: Bicyclo[3.2.1]oct-6-ene-2,4-dione:

a) 640 mg (3.55 mmol) of 4,4-(1',2'-ethylenedioxy)-bicyclo[3.2.1]oct-6-en-2-one are heated for 16 hours at a temperature of 70°C in the presence of 200 mg of p-toluenesulfonic acid in a 2:1 mixture of acetone and water. After hydrolysis is complete (TLC monitoring: ethyl acetate / hexane 1:1), the acetone is distilled off under reduced pressure and the aqueous phase is adjusted to pH 9 with saturated sodium hydrogen carbonate solution. After extraction of the aqueous phase three times with ethyl acetate, it is acidified to pH 5 with dilute hydrochloric acid. Extraction is carried out three times with fresh ethyl acetate, followed by drying over sodium sulfate and concentration by evaporation *in vacuo*. 364 mg (75%) of pure bicyclo[3.2.1]oct-6-ene-2,4-dione are obtained in the form of a yellow oil for further reaction to form compounds of formula I.

 1 H NMR (300 MHz; CDCl₃) δ 6.22 (m, 2H); 3.50 (d, 1H); 3.45 (m, 2H); 3.22 (d, 1H); 2.60-2.45 (m, 2 x 1H).

b) One-pot process: 100 mg (0.39 mmol) of 3-bromo-4,4-(1',2'-ethylenedioxy)-bicyclo[3.2.1]-oct-6-en-2-one are taken up in concentrated acetic acid and treated at ambient temperature with 80 mg (1.16 mmol) of zinc powder. The progress of the reaction is monitored by means of thin-layer chromatography (mobile phase: hexane/ethyl acetate 1:1). When after 2 hours brominated starting material can no longer be detected, the reaction mixture is heated cont-

inuously at a temperature of 95°C. After a further 2 hours, according to thin-layer chromatography all the reference material 4,4-(1',2'-ethylenedioxy)-bicyclo[3.2.1]oct-6-en-2-one has reacted. The reaction mixture is filtered and concentrated *in vacuo*. The residue is treated with saturated sodium hydrogen carbonate solution and extracted three times with ethyl acetate. The alkaline aqueous phase is adjusted to pH 3-4 with dilute hydrochloric acid and extracted three times with fresh ethyl acetate. After drying of the organic phase over sodium sulfate and subsequent concentration by evaporation, 45 mg (85% of theory) of technically pure bicyclo[3.2.1]oct-6-ene-2,4-dione are obtained.

<u>Preparation Example P10: Preparation of 3-[2-(2-methoxy-ethoxymethyl)-6-trifluoromethyl-pyridine-3-carbonyl]-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione:</u>

146 mg (0.879 mmol) of 1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione and 245 mg (0.879 mmol) of 2-(2-methoxy-ethoxymethyl)-6-trifluoromethyl-nicotinic acid (preparation as described in WO 01/94339) are dissolved in 29 ml of acetonitrile and treated at ambient temperature with 199 mg (0.966 mmol) of dicyclohexylcarbodiimide. The reaction mixture is stirred for 2 hours and then 0.184 ml (1.318 mmol) of triethylamine and 0.08 ml (0.879 mmol) of acetone cyanohydrin are added. Stirring is carried out for a further 16 hours at ambient temperature, followed by concentration under reduced pressure. The residue that remains behind is chromatographed over silica gel (eluant: toluene / ethanol / dioxane / triethylamine / water 20:8:4:4:1). The product-containing fraction is concentrated. The oily residue is again dissolved in fresh ethyl acetate and washed with 10 ml of dilute hydrochloric acid (pH 1), and then with water (2x) and sodium chloride solution (2x). After the solution has been dried over sodium sulfate and concentrated by evaporation under reduced pressure, 128 mg (34%) of 3-[2-(2-methoxy-ethoxymethyl)-6-trifluoromethyl-pyridine-3-carbonyl]-1,5-dimethyl-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione are obtained in the form of a yellow oil.

¹H NMR (300 MHz; CDCl₃) δ 16.1 (br. s, 1H); 7.68 (m, 2 x 1H); 6.29 (d, 1H); 6.22 (d, 1H); 4.72 (m, 2H); 3.48 (m, 2H); 3.37 (m, 2H); 3.32 (s, 3H); 1.68 (s, 3H); 1.48 (s, 3H).

Preparation Example P11: 3-Chloro-bicyclo[3.2.2]non-6-ene-2,4-dione:

0.7 g (2.7 mmol) of 2,3,4,4-tetrachloro-bicyclo[3.2.2]nona-2,6-diene (known from US-A-3 538 117) is heated in a mixture of 1 ml of trifluoroacetic acid, 4 ml of acetic acid and 1 ml of water for 18 hours at a temperature of 70°C. The cooled reaction solution is then taken up in diethyl ether and extracted first with water and then with saturated sodium chloride solution. After chromatographic purification (ethyl acetate/hexane 1:4), 0.33 g of 3-chloro-bicyclo-[3.2.2]non-6-ene-2,4-dione is obtained as a tautomeric mixture of the forms Da and Db.

 $^{1}\text{H-NMR}$ (300 MHz; CDCl₃) δ 8.58 (b, 1H); 6.38 (m, 2H); 3.78 (m, 2H); 2.05 to 1.80 (m, 4H); tautomeric form Db.

Preparation Example P12: Bicyclo[3.2.2]non-6-ene-2,4-dione:

0.19 g (1 mmol) of 3-chloro-bicyclo[3.2.2]non-6-ene-2,4-dione is treated in the presence of 4 ml of acetic acid with 0.27 g (4 mmol) of zinc and the mixture is heated for 3 hours at a temperature of 95°C. The cooled reaction mixture is then extracted with ethyl acetate against water and then washed again with saturated sodium chloride solution. 0.14 g of amorphous bicyclo[3.2.2]non-6-ene-2,4-dione is obtained as tautomeric form Da.

¹H-NMR (300 MHz; CDCl₃) δ 6.22 (m, 2H); 3.58 to 3.51 (m, 2H); 2.12 (m, 2H); 1.92 (m, 2H).

Preparation Example P13: 5-Bromo-7,8-dioxo-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid methyl ester:

3 g (9.4 mmol) of 5-bromo-8,8-dimethoxy-7-oxo-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid methyl ester (J.O.C. (202), 67, 6493) are stirred in a mixture of 15 ml of trifluoroacetic acid and 1 ml of water for 12 hours at room temperature. Extraction is then carried out with dichloromethane against water. The organic phase is dried over sodium sulfate and yields, after removal of the solvent, the 5-bromo-7,8-dioxo-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid methyl ester in the form of an orange-coloured oil and as a pure isomer.

¹H-NMR (300 MHz; CDCl₃) δ 6.62 (d, 1H); 3.97 (d, 1H); 3.80 (s, 3H); 3.70 (m, 1H); 3.20 (d, 1H); 2.63 (m, 1H); 2.40 (m, 1H).

Preparation Example P14: 8-Bromo-2,4-dioxo-bicyclo[3.2.2]non-8-ene-6-carboxylic acid

4.2 ml of trimethylsilyl-diazomethane are added dropwise at a temperature of -10°C to a solution of 1.91 g (7 mmol) of 5-bromo-7,8-dioxo-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid methyl ester in 20 ml of dichloromethane and 0.089 ml (0.7 mmol) of boron trifluoride etherate. The cooling is removed and the reaction mixture is stirred for 4 hours at a temperature of 20°C. The reaction solution is then extracted with water, the organic phase is dried over sodium sulfate and concentrated by evaporation using a rotary evaporator, and the residue is purified by silica gel chromatography. An isomer of 8-bromo-2,4-dioxo-bicyclo[3.2.2]non-8-ene-6-carboxylic acid methyl ester is obtained.

 1 H-NMR (300 MHz; CDCl₃) δ 6.42 (d, 1H); 3.86 (d, 1H); 3.75 (d, 1H); 3.68 (s, 3H); 3.65 (m, 1H); 3.43 (d, 1H); 3.10 (m, 1H); 2.52 (m, 1H); 2.34 (m, 1H); tautomeric form Da.

<u>Preparation Example P15: 3-(2-Methyl-6-difluoromethyl-pyridine-3-carbonyl)-2,4-dioxo-bicyclo[3.2.2]non-8-ene-6-carboxylic acid methyl ester</u>

Catalytic amounts (10 mg) of azaisobutyronitrile are added to a solution of 0.10 g (0.24 mmol) of 8-bromo-3-(2-methyl-6-difluoromethyl-pyridine-3-carbonyl)-2,4-dioxo-bicyclo-[3.2.2]non-8-ene-6-carboxylic acid methyl ester (Example 1.1155) and 0.149 ml (0.48 mmol) of tris(trimethylsilyl)silane in 3.5 ml of toluene and the reaction mixture is stirred at a temperature of 80°C. 5 mg portions of fresh azaisobutyronitrile dissolved in a small amount of toluene are then added four times until, after 6 days, the reaction has come to a complete standstill (LC-MS monitoring). The solvent is then removed under reduced pressure and the residue is purified by silica gel chromatography (eluant: gradient mixture of ethyl acetate / tetrahydrofuran / hexane and 3% triethylamine). After removal of the solvents the triethylammonium salt of 3-(2-methyl-6-difluoromethyl-pyridine-3-carbonyl)-2,4-dioxo-bicyclo-[3.2.2]non-8-ene-6-carboxylic acid methyl ester is obtained.

 1 H-NMR (300 MHz; CDCl₃) δ 7.30 (m, 2H); 6.51 (t, 1H); 6.35 (m, 1H); 6.18 (m, 1H); 3.68 (m, 1H); 3.52 (s, 3H); 3.35 (m, 1H); 3.24 (m, 1H); 3.00 (q, 6H); 2.40 (s, 3H); 2.38 (m, 1H); 2.14 (m, 1H); 1.18 (t, 9H).

The following Tables 1 to 3 list preferred compounds of formula I. The linkage site of the substituent Z_1 to the pyridine ring is the unsaturated valency; the free bonds represent methyl groups. For example, in the group

the $-CH_2$ group at the nitrogen atom adjacent to the keto group is the linkage site; the free bond at the nitrogen atom represents methyl. That group can also be depicted as follows:

Table 1: Compounds of formula lb:

$$\begin{array}{c|cccc} OH & O & Z_1 \\ \hline R_1 & & & \\ \hline R_2 & & R_{30} & F \end{array} (Ib)$$

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0000	Н	Н	CH₃	Н	F	NSO₂CH₃	0
1.0001	Н	Н	CH₃	Н	Cl	NSO₂CH₃	0
1.0002	Н	Н	CH₃	Н	H	NSO₂CH₃	0
1.0003	Н	Н	CH₃	CH₃	F	NSO₂CH₃	0
1.0004	Н	Н	CH₃	CH₃	Cl	NSO₂CH₃	0
1.0005	Н	Н	CH₃	CH₃	Н	NSO₂CH₃	0
1.0006	Н	Н	CH₂CH₃	Н	F	NSO₂CH₃	0
1.0007	Н	Н	CH₂CH₃	Н	Cl	NSO₂CH₃	0
1.0008	Н	Н	CH₂CH₃	Н	Н	NSO₂CH₃	0
1.0009	Н	Н	CH ₂ CH ₂ CH ₃	Н	F	NSO₂CH₃	0
1.0010	Н	H	CH ₂ CH ₂ CH ₃	Н	CI	NSO₂CH₃	0
1.0011	Н	Н	CH ₂ CH ₂ CH ₃	Н	Н	NSO₂CH₃	0
1.0012	Н	Н	CH₂OCH₃	Н	F	NSO₂CH₃	0
1.0013	Н	Н	CH₂OCH₃	Н	CI	NSO₂CH₃	0
1.0014	Н	Н	CH₂OCH₃	Н	Н	NSO₂CH₃	0
1.0015	Н	Н	CH2OCH2CH3	Н	F	NSO₂CH₃	0
1.0016	Н	Н	CH2OCH2CH3	Н	CI	NSO₂CH₃	0
1.0017	Н	Н	CH₂OCH₂CH₃	Н	Н	NSO₂CH₃	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0018	Н	Н	CH₂OCH₂CH₂OCH₃	Η.	F	NSO₂CH₃	0
1.0019	Н	Н	CH₂OCH₂CH₂OCH₃	Н	CI	NSO₂CH₃	0
1.0020	Н	Н	CH2OCH2CH2OCH3	Н	Н	NSO₂CH₃	0 .
1.0021	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	NSO₂CH₃	0
1.0022	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	NSO₂CH₃	0
1.0023	Н	Н	CH2OCH2CH2OCH2CH3	Н	Н	NSO₂CH₃	0
1.0024	Н	Н	CH₂CH₂OCH₃	Н	F	NSO₂CH₃	0
1.0025	Н	Н	CH₂CH₂OCH₃	Н	CI	NSO₂CH₃	0
1.0026	Н	Н	CH₂CH₂OCH₃	Н	Н	NSO ₂ CH ₃	0
1.0027	Н	Н	CH ₂ OCH ₂ C≡CH	Н	F	NSO₂CH₃	0
1.0028	Н	Н	CH₂OCH₂C≡CH	Н	CI	NSO₂CH₃	0
1.0029	Н	Н	CH₂OCH₂C≡CH	Н	Н	NSO₂CH₃	0
1.0030	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	Н	F	NSO₂CH₃	0
1.0031	Н	Н	CH₂OCH₂C≡CCH₃	Н	CI	NSO₂CH₃	0
1.0032	Н	Н	CH₂OCH₂C≡CCH₃	Н	Н	NSO ₂ CH ₃	0
1.0033	Н	Н		Н	F	NSO₂CH₃	0
1.0034	Н	Н	CH2CH2CH2OCH3	Н	CI	NSO₂CH₃	0
1.0035	Н	Н	CH2CH2CH2OCH3	Н	Н	NSO ₂ CH₃	0
1.0036	H	Н	CH ₂ OCH ₂ OCH ₃	Н	F	NSO₂CH₃	0
1.0037	Н	Н	CH₂OCH₂OCH₃	Н	CI	NSO ₂ CH ₃	0
1.0038	Н	Н	CH₂OCH₂OCH₃	Н	Н	NSO₂CH₃	0
1.0039	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	NSO₂CH₃	0
1.0040	H	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NSO₂CH₃	0
1.0041	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	NSO ₂ CH ₃	0
1.0042	2 H	Н	CF ₃	Н	F	NSO₂CH₃	0
1.0043	3 H	Н	CF₃	Н	CI	NSO₂CH₃	0
1.0044	4 H	Н	CF ₃	Н	Н	NSO₂CH₃	0
1.004	5 H	Н	CH ₂ OCH ₂ CF ₃	Н	F	NSO₂CH₃	0
1.0046	3 H	Н	CH₂OCH₂CF₃	Н	CI	NSO₂CH₃	0
1.004	7 H	I Н	CH₂OCH₂CF₃	Н	Н	NSO₂CH₃	0
1.004	в Н	н н	CH₂OCH₂Ph	Н	F	NSO₂CH₃	0
1.004	9 F	l H	CH₂OCH₂Ph	Н	CI	NSO₂CH₃	0
1.005	0 F	l H	CH₂OCH₂Ph	Н	Н	NSO₂CH₃	0

No.	R₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0051	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	F	NSO ₂ CH₃	0
1.0052	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	CI	NSO₂CH₃	0
1.0053	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	H	NSO₂CH₃	0
1.0054	Н	Н	CH ₂ N N O	Н	F	NSO₂CH₃	0
1.0055	Н	Н	CH ₂ N N N O	Н	CI	NSO₂CH₃	0
1.0056	Н	Н	CH ₂ N N N O	Н	н	NSO₂CH₃	0
1.0057	Н	Н	CH ₂ O	Н	F	NSO₂CH₃	0
1.0058	н	Н	CH ₂ O	Н	CI	NSO₂CH₃	0 .
1.0059	Н	Н	CH ₂ O	н	н	NSO₂CH₃	0
1.0060	ЭН	Н	CH ₂	Н	F	NSO₂CH₃	0
1.006	1 H	Н	CH ₂	Н	CI	NSO₂CH₃	0
1.006	2 H	Н	CH ₂	Н	Н	NSO₂CH₃	0
1.006	3 H	Н	CH ₂ OCH ₂ OO	Н	F	NSO₂CH₃	0
1.006	4 H	н	CH ₂ OCH ₂	Н	CI	NSO₂CH₃	0

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0065	Н	Н	CH ₂ OCH ₂	Н	Н	NSO ₂ CH ₃	0
4 0000			0	Н	F	NSO₂CH₃	0
1.0066	Н	Н	CH ₂ O		•	140020113	· ·
1.0067	Н	Н	· ^^	Н	CI	NSO₂CH₃	0
1,0001	••	•	CH ₂ O ✓				
1.0068	H	н	^ 0	Н	Н	NSO₂CH₃	0
			CH ₂ O ✓				
1.0069	Н	Н		Н	F	NSO₂CH₃	0
			CH ₂ O CH ₂ O				
1.0070	Н	Н		Н	CI	NSO₂CH₃	0
			CH ₂ O O				
4 0074	Н	н	O11,20	Н	Н	NSO₂CH₃	0
1.0071	П	п		.,	•••	110020113	J
			CH ₂ O				
1.0072		Н	CH₃	Н	F -	NSO ₂ CH ₃	1
1.0073		Н	CH ₂ OCH ₃	Н	F -	NSO ₂ CH₃	1
1.0074	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	NSO ₂ CH ₃	1
1.0075	Н	Н	CH₂CH₂CH₂OCH₃	H	F	NSO₂CH₃	1
1.0076	Н	Н	CH₂CH₃	Н	F	NSO₂CH₃	1
1.0077	' H	Н	CH₃	Н	Н	NSO₂CH₃	1
1.0078	3 H	Н	CH₂OCH₃	Н	Н	NSO₂CH₃	1
1.0079	ЭН	н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	NSO₂CH₃	1
1.0080) Н	Н	CH2CH2CH2OCH3	Н	Н	NSO₂CH₃	1
1.008	1 H	н	CH₂CH₃	Н	Н	NSO₂CH₃	1
1.0082	2 CH	l₃ CH₃	СН₃	Н	F	NSO₂CH₃	0
		I₃ CH₃	CH₃	Н	CI	NSO₂CH₃	0
		l₃ CH₃	СН₃	Н	Н	NSO₂CH₃	0
		l₃ CH₃	CH₃	CH	l ₃ F	NSO₂CH₃	0
		H₃ CH₃	CH₃	CH	l₃ CI	NSO₂CH₃	0
		H₃ CH₃	CH₃	CH	1 ₃ H	NSO₂CH₃	0
		H₃ CH₃	CH₂CH₃	Н	F	NSO₂CH₃	0

No. R ₁ R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0122 CH ₃ CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NSO₂CH₃	0
1.0123 CH₃ CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	NSO₂CH₃	0
1.0124 CH ₃ CH ₃	CF ₃	Н	F	NSO₂CH₃	0
1.0125 CH₃ CH₃	CF ₃	Н	CI	NSO₂CH₃	0
1.0126 CH ₃ CH ₃	CF ₃	Н	Н	NSO₂CH₃	0
1.0127 CH₃ CH₃	CH ₂ OCH ₂ CF ₃	Н	F	NSO₂CH₃	0
1.0128 CH₃ CH₃	CH₂OCH₂CF₃	Н	CI	NSO₂CH₃	0
1.0129 CH₃ CH₃	CH ₂ OCH ₂ CF ₃	Н	Н	NSO₂CH₃	0
1.0130 CH₃ CH₃	CH ₂ OCH ₂ Ph	Н	F	NSO ₂ CH₃	0
1.0131 CH₃ CH₃	CH ₂ OCH ₂ Ph	Н	CI	NSO₂CH₃	0
1.0132 CH₃ CH₃	CH₂OCH₂Ph	Н	Н	NSO₂CH₃	0
1.0133 CH₃ CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	NSO₂CH₃	0
1.0134 CH₃ CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	NSO₂CH₃	0
1.0135 CH₃ CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	NSO₂CH₃	0
1.0136 CH ₃ CH ₃	CH-N-N-	Н	F	NSO₂CH₃	0
1.0137 CH₃ CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	CI	NSO₂CH₃	0
1.0138 CH₃ CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	н.	н	NSO₂CH₃	0
1.0139 CH ₃ CH ₃	N-N CH ₂ O	Н	F	NSO₂CH₃	0
1.0140 CH ₃ CH ₃	N-N CH ₂ O	н	CI	NSO₂CH₃	0
1.0141 CH ₃ CH ₃	CH ₂ O	н	Н	NSO₂CH₃	0

No. R ₁ R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0142 CH ₃ CH ₃	CH ₂ O	Н	F	NSO ₂ CH₃	0
1.0143 CH₃ CH₃	CH ₂	Н	CI	NSO₂CH₃	0
1.0144 CH ₃ CH ₃	CH ₂	Н	Н	NSO₂CH₃	0
1.0145 CH ₃ CH ₃	CH ₂ OCH ₂	Н	F	NSO₂CH₃	0
1.0146 CH ₃ CH ₃	CH ₂ OCH ₂	Н	CI	NSO₂CH₃	0
1.0147 CH ₃ CH ₃	CH ₂ OCH ₂	Н	Н	NSO₂CH₃	0
1.0148 CH ₃ CH ₃	CH ₂ O	Н	F	NSO₂CH₃	0
1.0149 CH ₃ CH ₃	CH ₂ O 0	Н	CI	NSO₂CH₃	0
1.0150 CH₃ CH₃	CH ₂ O 0	Н	Н	NSO₂CH₃	0
1.0151 CH ₃ CH ₃	CH ₂ O O	Н	F	NSO₂CH₃	0
1.0152 CH ₃ CH ₃	CH,0 0	Н	CI	NSO₂CH₃	0
1.0153 CH ₃ CH ₃	CH ₂ O O	Н	н	NSO₂CH₃	0
1.0154 CH₃ CH₃	CH₃	Н	F	NSO ₂ CH ₃	1
1.0155 CH₃ CH₃	CH₂OCH₃	Н	F	NSO₂CH₃	1
1.0156 CH₃ CH₃	CH2OCH2CH2OCH3	Н	F	NSO₂CH₃	1
1.0157 CH₃ CH₃	CH₂CH₂CH₂OCH₃	Н	F	NSO₂CH₃	1
1.0158 CH ₃ CH ₃	CH₂CH₃	Н	F	NSO₂CH₃	1
1.0159 CH ₃ CH ₃	CH₃	Н	Н	NSO₂CH₃	1
1.0160 CH₃ CH₃	CH₂OCH₃	Н	Н	NSO₂CH₃	1

No.	R₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0161	CH₃	CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	NSO₂CH₃	1
1.0162	CH ₃	CH ₃	CH₂CH₂CH₂OCH₃	Н	Н	NSO₂CH₃	1
1.0163	СН3	CH ₃	CH₂CH₃	Н	Н	NSO₂CH₃	1
1.0164	Н	CH ₃	CH₃	Н	F	NSO₂CH₃	0
1.0165	Н	CH₃	CH₃	Н	CI	NSO₂CH₃	0
1.0166	Н	CH₃	CH₃	Н	Н	NSO₂CH₃	0
1.0167	Н	CH ₃	CH₃	CH ₃	F	NSO₂CH₃	0
1.0168	Н	CH ₃	CH₃	CH₃	CI	NSO₂CH₃	0
1.0169	Н	CH₃	CH₃	CH₃	Н	NSO₂CH₃	0
1.0170	Н	CH₃	CH₂CH₃	Н	F	NSO₂CH₃	0 .
1.0171	Н	CH ₃	CH₂CH₃	Н	CI	NSO ₂ CH ₃	0
1.0172	Н	CH₃	CH₂CH₃	Н	Н	NSO₂CH ₃	0
1.0173	Н	CH₃	CH₂CH₂CH₃	H	F	NSO₂CH₃	0
1.0174	Н	CH₃	CH₂CH₂CH₃	Н	CI	NSO₂CH₃	0
1.0175	Н	CH₃	CH₂CH₂CH₃	Н	Н	NSO ₂ CH₃	0
1.0176	Н	CH ₃	CH₂OCH₃	Н	F	NSO₂CH₃	0
1.0177	Ή	CH₃	CH₂OCH₃	Н	CI	NSO₂CH₃	0
1.0178	Н	CH₃	CH₂OCH₃	Н	Н	NSO₂CH₃	0
1.0179	H	CH₃	CH₂OCH₂CH₃	H	F	NSO₂CH₃	0
1.0180	H	CH₃	CH₂OCH₂CH₃	Н	CI	NSO₂CH₃	0
1.0181	Н	CH₃	CH₂OCH₂CH₃	Н	Н	NSO₂CH₃	0
1.0182	2 H	CH₃	CH2OCH2CH2OCH3	Н	F	NSO₂CH₃	0
1.0183	3 H	CH₃		Н	CI	NSO ₂ CH₃	0
1.018	4 H	CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	NSO₂CH₃	0
1.018	5 H	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	NSO₂CH₃	0
1.018	6 H	CH₃	CH2OCH2CH2OCH2CH3	Н	CI	NSO₂CH₃	0
1.018	7 H	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	NSO₂CH₃	0
1.018	8 H	CH₃	CH ₂ CH ₂ OCH ₃	Н	F	NSO₂CH₃	0
1.018	9 H	CH₃	CH₂CH₂OCH₃	Н	CI	NSO₂CH₃	0
1.019	0 H	I CH₃	CH₂CH₂OCH₃	Н	Н	NSO₂CH₃	0
1.019	1 H	I CH₃	CH₂OCH₂C≡CH	Н	F	NSO₂CH₃	0
1.019	2 H	I CH₃	CH₂OCH₂C≡CH	Н	CI	NSO₂CH₃	0
1.019	3 F	ł CH₃	CH ₂ OCH ₂ C≡CH	Н	Н	NSO₂CH₃	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0194	Н	CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	F	NSO ₂ CH ₃	0
1.0195	Н	CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	NSO₂CH₃	0
1.0196	Н	CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	Н	NSO ₂ CH ₃	0
1.0197	Н	CH₃	CH ₂ CH ₂ CH ₂ OCH ₃	Н	F	NSO₂CH₃	0
1.0198	Н	CH ₃	CH₂CH₂CH₂OCH₃	Н	CI	NSO ₂ CH ₃	0
1.0199	Н	CH ₃	CH ₂ CH ₂ CH ₂ OCH ₃	Н	Н	NSO ₂ CH₃	0
1.0200	Н	CH₃	CH ₂ OCH ₂ OCH ₃	Н	F	NSO₂CH₃	0
1.0201	Н	CH ₃	CH ₂ OCH ₂ OCH ₃	Н	Cl	NSO₂CH₃	0
1.0202	Н	CH₃	CH₂OCH₂OCH₃	Н	Н	NSO₂CH₃	0
1.0203	Н	CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	NSO₂CH₃	0
1.0204	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NSO₂CH₃	0
1.0205	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	NSO₂CH₃	0
1.0206	Н	CH₃	°CF₃	Н	F	NSO ₂ CH ₃	0
1.0207	Н	CH₃	CF₃	Н	CI	NSO₂CH₃	0
1.0208	Н	СН₃	CF₃	Н	Н	NSO₂CH₃	0
1.0209	Н	CH ₃	CH ₂ OCH ₂ CF ₃	Н	F	NSO₂CH₃	0
1.0210	Н	CH₃	CH₂OCH₂CF₃	Н	CI	NSO ₂ CH₃	0
1.0211	Н	CH₃	CH₂OCH₂CF₃	Н	Н	NSO₂CH₃	0
1.0212	Н	CH₃	CH ₂ OCH ₂ Ph	Н	F	NSO₂CH₃	0
1.0213	Н	CH₃	CH₂OCH₂Ph	Н	Cl	NSO₂CH₃	0
1.0214	Н	CH₃	CH ₂ OCH ₂ Ph	Н	Н	NSO₂CH₃	0
1.0215	Н	CH₃	CH2OCH2CH=CH2	Н	F	NSO₂CH₃	0
1.0216	в н	CH₃	CH2OCH2CH=CH2	Н	CI	NSO₂CH₃	0
1.0217	7 H	CH₃	CH ₂ OCH ₂ CH=CH ₂	H	Н	NSO₂CH₃	0
1.0218	3 H	I CH₃	· FN	Н	F	NSO₂CH₃	0
			CH ₂ N N			•	
1.0219	9 ⊦	I CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	CI	NSO₂CH₃	0

No.	R₁	R ₂	Z ₁	R ₃₀		Υ	p Physical data
1.0220	H	CH ₃	CH ₂ N N O	Н	Н	NSO₂CH₃	0
1.0221	Н	CH₃	CH ₂ O O	Н	F	NSO₂CH₃	0
1.0222	Н	СН₃	CH ₂ OOO	Н	CI	NSO₂CH₃	0
1.0223	Н	CH₃	CH ₂ OOO	н	Н	NSO₂CH₃	0
1.0224	Н	CH₃	CH ₂	Н	F	NSO₂CH₃	0
1.0225	Н	CH₃	CH ₂	Н	CI	NSO ₂ CH₃	0
1.0226	Н	CH₃	CH ₂ O	Н	Н	NSO₂CH₃	0
1.0227	Н	CH ₃	CH₂OCH₂ O	Н	F	NSO₂CH₃	0
1.0228	Н	CH₃	CH ₂ OCH ₂	Н	CI	NSO₂CH₃	0
1.0229	Н	CH₃	CH ₂ OCH ₂ OO	Н	Н	NSO₂CH₃	0
1.0230	Н	I CH₃	CH₂O CO	Н	F	· NSO₂CH₃	0
1.0231	H	I CH₃	CH₂O CO	Н	CI	NSO ₂ CH₃	. 0
1.0232	2 -	H CH₃	CH ₂ O	Н	Н	NSO₂CH₃	0
1.0233	3 F	I CH₃	CH ₂ O O	Н	F	NSO₂CH₃	0

No.	R ₁	R ₂	Z ₁ ·	R ₃₀	X	Υ	p Physical data
1.0234	Н	CH₃		Н	CI	NSO₂CH₃	0
			CH ₂ O				
1.0235	Н	CH₃	· _	Н	н	NSO₂CH₃	0
			CH ₂ O O				
1.0236	Н	СН₃	CH₃	Н	F	NSO₂CH₃	1
1.0237	Н	СН₃	CH₂OCH₃	Н	F	NSO ₂ CH₃	1
1.0238	Н	СН₃	CH2OCH2CH2OCH3	Н	F	NSO₂CH₃	1
1.0239	Н	CH₃		Н	F	NSO₂CH₃	1
1.0240	Н	CH₃	CH₂CH₃	Н	F	NSO₂CH₃	1
1.0241	Н	CH₃	CH₃	Н	Н	NSO₂CH₃	1
1.0242	Н	CH₃	CH₂OCH₃	Н	Н	NSO₂CH₃	1
1.0243	Н	СН₃	CH₂OCH₂CH₂OCH₃	Н	Н	NSO₂CH₃	1
1.0244	Н	CH₃	CH₂CH₂CH₂OCH₃	Н	Н	NSO₂CH₃	1
1.0245	Н	СН₃	CH₂CH₃	Н	Н	NSO₂CH₃	1
1.0246	Н	Н	CH₂OCH₂CH₂OCH₃	Н	F	0	0
1.0247	Н	Н		Н	CI	0	0
1.0248	Н	Н	CH₂OCH₂CH₂OCH₃	Н	Н	0	0
1.0249	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	0	0
1.0250	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	0	0
1.0251	Н	Н	CH2OCH2CH2OCH2CH3	Н	Н	0	0
1.0252	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	0	0
1.0253	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	0	0
1.0254	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	0	0
1.0255	Н	Н	CH₂OCH₂Ph	Н	F	0	0 .
1.0256	: H	Н	CH₂OCH₂Ph	Н	CI	0	0
1.0257	' Н	Н	CH₂OCH₂Ph	Н	Н	0	0
1.0258	в н	Н	CH₂OCH₂CH₂OH	Н	F	0	0
1.0259	ЭН	Н	CH₂OCH₂CH₂OH	Н	CI	0	0
1.0260) Н	Н	CH ₂ OCH ₂ CH ₂ OH	Н	Н	. 0	0
1.026	I H	Н	CH2OCH2CH2CI	Н	F	0	0
1.0262	2 H	н	CH₂OCH₂CH₂ CI	Н	CI	0	0

No.	R₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0263	Н	Н	CH₂OCH₂CH₂ CI	Н	Н	0	0
1.0264	Н	Н	CH₂OCH₂CF₃	Н	F	0	0
1.0265	Н	Н	CH ₂ OCH ₂ CF ₃	Н	CI	0	0
1.0266	Н	Н	CH ₂ OCH ₂ CF ₃	Н	Н	0	0
1.0267	Н	Н	CH2OCH2CH=CH2	Н	F	0	0
1.0268	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	CI	0	0
1.0269	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	Н	0	0
1.0270	Н	Н	CH₂O(CO)CH₃	Н	F	0	0
1.0271	Н	Н	CH₂O(CO)CH₃	Н	CI	Ο	0
1.0272	Н	Н	CH₂O(CO)CH₃	Н	Н	0	0
1.0273	Н	Н	CH₂OCH₂C≡CH	Н	F	0	0
1.0274	Н	Н	CH₂OCH₂C≡CH	Н	CI	0	0
1.0275	Н	Н	CH ₂ OCH ₂ C≡CH	Н	Н	0	0
1.0276	Н	Н	CH₂OCH₂C≡CCH₃	Н	F	0	0
1.0277	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	Н	Ci	0	0
1.0278	Н	Н	CH₂OCH₂C≡CCH₃	Н	Н	0	0
1.0279	Н	Н	CH ₂ N N	Н	F	0	0
1.0280	Н	Н	CH ₂ N N O	Н	CI	0	0
1.0281	Н	Н	CH ₂ N N O	Н	Н	0	0
1.0282	Н	Н	CH ₂ O	Н	F	0	0
1.0283	в Н	Н	CH ₂ O	Н	CI	0	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physic	cal data
1.0284	Н	Н	CH ₂ O O	Н	Н	0	0	
1.0285	Н	Н	CH ₂ O	Н	F	0	0	
1.0286	Н	Н	CH ₂	Н	CI	0	0	
1.0287	Н	Н	CH ₂	Η.	н	0	0	
1.0288	Н	Н	CH ₂ OCH ₂	Н	F	0	0	
1.0289	Н	Н	CH ₂ OCH ₂ OO	Н	CI	0	0	
1.0290	Н	Н	CH ₂ OCH ₂ OO	Н	Н	0	0	20
1.0291	Н	Н	CH ₂ O	Н	F	0	0	
1.0292	Н	Н	CH ₂ O O	Н	CI	0	0	
1.0293	Н	Н	CH ₂ O	Н	Н	0	0	
1.0294	Н	Н	CH ₂ O O	Н	F	0	0	
1.0295	Н	Н	CH ₂ O O	Н	CI	0	0	
1.0296	Н	Н	CH ₂ O O	Н	Н	0	0	
1.0297	' Н	Н		Н	F	0	1	
1.0298			CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	0	1	
1.0299	ЭН	н	CH2OCH2CH2OCH2CH3	Н	F	0	1	
1.0300) Н	н	CH2OCH2CH2OCH2CH3	Н	Н	0	1	

No. R ₁ R	₂ Z ₁	R ₃₀	X	Υ	p Physical data
1.0301 CH ₃ Ch	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	0	0 see Example
					P10
1.0302 CH₃ Cł	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	CI	. 0	0
1.0303 CH₃ CH	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	0	0
1.0304 CH ₃ CH	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	0	0
1.0305 CH₃ CI	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	0	0
1.0306 CH₃ CI	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	0	0 .
1.0307 CH ₃ Cl	H ₃ CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	0	0
1.0308 CH ₃ Cl	H ₃ CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	0	0
1.0309 CH₃ C	H ₃ CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	0	0
1.0310 CH ₃ C	H₃ CH₂OCH₂Ph	Н	F	0	0
1.0311 CH₃ C	H₃ CH₂OCH₂Ph	Н	CI	0	0
1.0312 CH₃ C	H ₃ CH ₂ OCH ₂ Ph	Н	Н	0	0
1.0313 CH ₃ C	H ₃ CH ₂ OCH ₂ CH ₂ OH	Н	F	0	0
1.0314 CH ₃ C	H ₃ CH ₂ OCH ₂ CH ₂ OH	Н	CI	0	0
1.0315 CH ₃ C	CH ₂ OCH ₂ CH ₂ OH	Н	Н	0	0
1.0316 CH ₃ C	CH ₂ OCH ₂ CH ₂ CI	Н	F	0	0
1.0317 CH₃ C	CH3 CH2OCH2CH2 CI	Н	Cl	0	0
1.0318 CH₃ C	CH3 CH2OCH2CH2 CI	Н	H	0	0 .
1.0319 CH₃ C	CH ₃ CH ₂ OCH ₂ CF ₃	Н	F	0	0
1.0320 CH ₃ C	CH ₃ CH ₂ OCH ₂ CF ₃	Н	CI	0	0
1.0321 CH₃ C	CH ₃ CH ₂ OCH ₂ CF ₃	Н	Н	0	0
1.0322 CH ₃ C	CH ₃ CH ₂ OCH ₂ CH=CH ₂	Н	F	0	0
1.0323 CH ₃ C	CH ₃ CH ₂ OCH ₂ CH=CH ₂	Н	Cl	0	0
1.0324 CH ₃ (CH ₃ CH ₂ OCH ₂ CH=CH ₂	Н	Н	0	0
1.0325 CH₃ (CH₃ CH₂O(CO)CH₃	Н	F	0	0
1.0326 CH ₃ C	CH ₃ CH ₂ O(CO)CH ₃	Н	CI	0	0
1.0327 CH ₃ (CH₃ CH₂O(CO)CH₃	Н	Н	0	0
1.0328 CH ₃ (CH₃ CH₂OCH₂C≡CH	Н	F	O	0
1.0329 CH ₃	CH₃ CH₂OCH₂C≡CH	Н	l CI	0	0
1.0330 CH₃	CH₃ CH₂OCH₂C≡CH	H	1 Н	0	0
1.0331 CH₃	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	F	F	0	0
1.0332 CH ₃	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	H	l CI	0	0

No. R ₁ R ₂	Z ₁	R ₃₀ X	Y	p Physical data
1.0333 CH ₃ CH ₃	CH ₂ OCH ₂ C≡CCH ₃	н н	0	0
1.0334 CH₃ CH₃	CH ₂ N N O	н F	0	0
1.0335 CH₃ CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	H CI	0	0
1.0336 CH ₃ CH ₃	CH ₂ N N N O	н н	0	0
1.0337 CH ₃ CH ₃	CH ₂ OOO	H F	0	0
1.0338 CH ₃ CH ₃	CH ₂ O O	H CI	0	0
1.0339 CH ₃ CH ₃	CH ₂ O O	н н	0	0
1.0340 CH₃ CH₃	CH ₂	H F	0	O
1.0341 CH₃ CH₃	CH ₂ O	H CI	0	0
1.0342 CH ₃ CH ₃	CH ₂	н н	0	0
1.0343 CH₃ CH₃	CH ₂ OCH ₂	H F	. 0	0
1.0344 CH₃ CH₃	CH ₂ OCH ₂	H CI	0	0
1.0345 CH₃ CH₃	CH ₂ OCH ₂	н н	0	0

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0346	CH	CH₃	CH ₂ O	Н	F	0	0
1.0347	CH	CH ₃	CH ₂ O	Н	CI	0	0
1.0348	CH:	₃ CH₃	CH ₂ O	Н	Н	0	0
1.0349	CH	₃ CH₃	CH2O 0	н	F	0	0
1.0350	СН	₃ CH₃	CH,0 0	Н	CI	0	0
1.0351	СН	₃ CH₃	CH ₂ O	Н	Н	0	0
1.0352	: CH	l ₃ CH ₃	_	Н	F	0	1
1.0353				Н	Н	0	1
			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	0	1
			CH2OCH2CH2OCH2CH3		Н	0	1
1.0356				Н	F	0	0
1.0357	7 H	CH	CH₂OCH₂CH₂OCH₃	Н	CI	0	0
1.0358	3 H	CH:	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	0	0
1.0359)	CH:	CH2OCH2CH2OCH2CH3	Н	F	0	0
1.036) F	I CH	3 CH2OCH2CH2OCH2CH3	Н	CI	0	0
1.036	1 F	н сн	3 CH2OCH2CH2OCH2CH3	Н	Н	0	0
1.036	2 F	н сн	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	0	0
1.036	3 F	н сн	3 CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	0	0
1.036	4 H	н сн	3 CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	0	0
1.036	5 H	н сн	3 CH ₂ OCH ₂ Ph	Н	F	0	0
1.036	6 ł	н сн	3 CH ₂ OCH ₂ Ph	Н	CI	0	0
1.036	7 H	н сн	3 CH₂OCH₂Ph	Н	Н	0	0
1.036	8 1	H CH	3 CH2OCH2CH2OH	Н	F	0	0
1.036	9 1	H CH	I ₃ CH₂OCH₂CH₂OH	Н	CI	0	0
1.037	'O 1	H CH	I ₃ CH₂OCH₂CH₂OH	Н	Н	0	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0371	Н	CH₃	CH ₂ OCH ₂ CH ₂ CI	Н	F	0	0
1.0372	Н	CH₃	CH2OCH2CH2 CI	Н	Cl	0	0
1.0373	Н	CH₃	CH₂OCH₂CH₂ CI	Н	Н	0	0
1.0374	Н	CH ₃	CH₂OCH₂CF₃	Н	F	0	0
1.0375	Н	CH₃	CH₂OCH₂CF₃	Н	CI	0	0
1.0376	Н	CH₃	CH₂OCH₂CF₃	Н	Н	0	0
1.0377	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	H	F	0	0
1.0378	Н	CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	0	0
1.0379	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	0	0
1.0380	Н	CH ₃	CH ₂ O(CO)CH ₃	Н	F	0	0
1.0381	Н	CH₃	CH₂O(CO)CH₃	Н	CI	0	0
1.0382	Н	CH₃	CH ₂ O(CO)CH ₃	Н	Н	0	0
1.0383	Н	CH₃	CH ₂ OCH ₂ C≡CH	Н	F	0	0
1.0384	Н	CH₃	CH₂OCH₂C≡CH	Н	CI	0	0
1.0385	Н	CH ₃	CH₂OCH₂C≡CH	Н	Н	0	0
1.0386	Н	CH ₃	CH₂OCH₂C≡CCH₃	Н	F	0	0
1.0387	Н	CH₃	CH₂OCH₂C≡CCH₃	Н	CI	0	0
1.0388	Н	CH ₃	CH₂OCH₂C≡CCH₃	Н	Н	0	0
1.0389	Н	CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	F	0	0
1.0390	Н	CH₃	CH ₂ N N N O	Н	CI	0	0
1.0391	i iH	CH₃	CH ₂ N N N O	н	Н	0	0
1.0392	2 F	I CH₃	CH ₂ O	Н	F	0	0

No.	R ₁	R ₂	Z ₁	R ₃₀		Y	p Physical data
1.0393	Н	CH₃	N-N CH ₂ 0	Н	Cl	0	
1.0394	Н	CH₃	CH ₂ OOO	Н	Н	0	0
1.0395	Н	CH₃	CH ₂	Н	F	0	0
1.0396	Н	CH ₃	CH ₂	Н	CI	0	0
1.0397	Н	CH ₃	CH ₂	Н	Н	0	0
1.0398	Н	CH₃	CH ₂ OCH ₂	Н	F	0 .	0
1.0399	Н	CH₃	CH ₂ OCH ₂ OO	Н	CI	0	0
1.0400	Н	CH₃	CH ₂ OCH ₂ OO	Н	Н	0	0
1.0401	Н	CH₃	CH ₂ O	Н	F	0	0
1.0402	. H	CH₃	CH ₂ O	Н	CI	0	0
1.0403	3 H	CH₃	CH ₂ O	Н	Н	0	0
1.0404	ŧ Н	I CH₃	· CH ₂ O	Н	F	0	0
1.040	5 H	I CH₃	CH ₂ O O	Н	CI	0	0
1.040	6 F	d CH₃	CH ₂ O	Н	Н	0	0 .
1.040	7 H	H CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	0	1

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	. p l	Physical data
1.0408	Н	CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	0	1	
1.0409	Н	СН3	CH2OCH2CH2OCH2CH3	Н	F	0	1	
1.0410	Н	CH ₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	0	1	
1.0411	Н	Н	CH₂OCH₂CH₂OCH₃	Н	F	CH₂	- ((H NMR (300 MHz; CDCl ₃) δ 17.0 (broad s, 1H); 7.62 (s, 2H); 6.47 (m, 1H); 6.35 (m, 1H); 4.73 (m, 2H); 3.50 (m, 3H); 3.39 (m, 2H); 3.31 (s, 3H); 3.30 (m, 1H); 2.72-2.50 (m, 2H).
1.0412	Н	Н	CH2OCH2CH2OCH3	Н	CI	CH₂	0	
1.0413	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	CH ₂	0	
1.0414	H	Н	CH2OCH2CH2OCH2CH3	Н	F	CH₂	0	
1.0415	Н	Н	CH₂OCH₂CH₂OCH₂CH₃	Н	CI	CH₂	0	
1.0416	Н	Н	CH2OCH2CH2OCH2CH3	Н	Н	CH₂	0	
1.0417	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂	0	
1.0418	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH ₂	0	
1.0419	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	H	CH ₂	0	
1.0420	Н	Н	CH₂OCH₂Ph	Н	F	CH₂	0	
1.0421	Н	Н	CH₂OCH₂Ph	Н	CI	CH₂	0	
1.0422	Н	Н	CH₂OCH₂Ph	Н	Н	CH₂	0	
1.0423	Н	Н	CH₂OCH₂CH₂OH	Н	F	CH ₂	0	
1.0424	Н	Н	CH₂OCH₂CH₂OH	Н	CI	CH ₂	0	
1.0425	Н	Н	CH₂OCH₂CH₂OH	Н	Н	CH₂	0	
1.0426	Н	Н	CH ₂ OCH ₂ CH ₂ CI	Н	F	CH₂	0	
1.0427	Н	Н	CH₂OCH₂CH₂ CI	Н	CI	CH₂	0	
1.0428	Н	Н	CH₂OCH₂CH₂ CI	Н	Н	CH ₂	0	
1.0429	Н	Н	CH₂OCH₂CF₃	Н	F	CH ₂	0	
1.0430	Н	Н	CH ₂ OCH ₂ CF ₃	Н	CI	CH ₂	0	
1.0431	Н	Н	CH₂OCH₂CF₃	Н	Н	CH ₂	0	
1.0432	2 H	Н	CH ₂ OCH ₂ CH=CH ₂	Н	F	CH ₂	0	
1.0433	в н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	CI	CH ₂	0	
1.0434	, H	Н	CH2OCH2CH=CH2	Н	Н	CH₂	0	
1.0435	5 H	Н	CH ₂ O(CO)CH ₃	Н	F	CH₂	0	

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0436	Н	Н	CH₂O(CO)CH₃	Н	CI	CH₂	0
1.0437	Н	Н	CH ₂ O(CO)CH ₃	Н	Н	CH₂	0
1.0438	Н	· H	CH₂OCH₂C≡CH	Н	F	CH₂	0
1.0439	Н	Н	CH₂OCH₂C≡CH	Н	CI	CH₂	0
1.0440	Н	Н	CH ₂ OCH ₂ C≡CH	Н	Н	CH₂	0
1.0441	Н	Н	CH₂OCH₂C≣CCH₃	Н	F	CH ₂	0
1.0442	Н	Н	CH₂OCH₂C≡CCH₃	Н	CI	CH₂	0
1.0443	Н	Н	CH₂OCH₂C≣CCH₃	Н	Н	CH₂	0
1.0444	Н	H	CH ₂ N N O	Н	F	CH₂	0
1.0445	н	Н	CH ₂ N N	Н	Cl	CH₂	0
1.0446		Н	CH ₂ N N	н	Н	CH₂	0
1.0447	Н	Н	CH ₂ O O	H	F	CH₂	0
1.0448	Н	Н	CH ₂ O O	Н	Cl	CH₂	0
1.0449	Н	Н	CH ₂ O		Н	CH₂	0
1.0450	Н	Н	CH ₂ OOO	Н	F	CH₂	0
1.0451	Н	Н	CH ₂	Н	CI	CH ₂	0
1.0452	. H	Н	CH ₂ O	Н	Н	CH₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	p Physica	l data
1.0453	Н	Н	CH ₂ OCH ₂	Н	F	CH₂	0	
1.0454	Н	Н	CH ₂ OCH ₂	Н	Cl	CH ₂	0	
1.0455	н	Н	CH ₂ OCH ₂	Н	Н	CH₂	0	
1.0456	н	Н	CH ₂ O	Н	F	CH₂	0	
1.0457	н	Н	CH,0	Н	Cl	CH₂	0	
1.0458	н	Н	сн,о	Н	Н	CH₂	0	
1.0459	н	н	CH,0 0	Н	F	CH₂	0	
1.0460	H	Н	CH ₂ O O	Н	CI	CH₂	0	
1.0461	Н	н	CH ₂ O O	Н	Н	CH₂	0	
1.0462	Н	Н	CH2OCH2CH2OCH3	Н	F	CH₂	1	
1.0463	Н	Н	CH₂OCH₂CH₂OCH₃	Н	Н	CH₂	1	
1.0464	Н	Н	CH2OCH2CH2OCH2CH3	Н	F	CH₂	1	
1.0465	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂	1	
1.0466	СН₃	CH₃	CH₂OCH₂CH₂OCH₃	Н	F	CH ₂	0	1
1.0467	СН₃	CH ₃	CH2OCH2CH2OCH3	Н	CI	CH₂	0	
1.0468	CH₃	СНз	CH2OCH2CH2OCH3	Н	Н	CH₂	0	
1.0469	CH ₃	CH₃	CH2OCH2CH2OCH2CH3	Н	F	CH₂	0	
1.0470	CH₃	СН₃	CH2OCH2CH2OCH2CH3	Н	CI	CH ₂	0	
1.0471	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH₂	0	
1.0472	. CH₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂	0	
1.0473	CH₃	CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH₂	0	
1.0474	CH ₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	CH₂	0	

No. R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0475 CH ₃ C	CH ₃	CH ₂ OCH ₂ Ph	Н	F	CH₂	0
1.0476 CH ₃ C	CH₃	CH₂OCH₂Ph	Н	CI	CH ₂	0
1.0477 CH₃ C	CH₃	CH₂OCH₂Ph	Н	Н	CH₂	0
1.0478 CH ₃ C	CH₃	CH₂OCH₂CH₂OH	Н	F	CH ₂	0
1.0479 CH₃ C	CH₃	CH₂OCH₂CH₂OH	Н	CI	CH₂	0
1.0480 CH ₃ C	CH₃	CH₂OCH₂CH₂OH	Н	Н	CH₂	0
1.0481 CH ₃ C	CH₃	CH ₂ OCH ₂ CH ₂ CI	Н	F	CH₂	0
1.0482 CH ₃ C	CH₃	CH2OCH2CH2 CI	Н	CI	CH₂	Ö
1.0483 CH ₃ C	CH₃	CH2OCH2CH2 CI	Н	Н	CH ₂	0
1.0484 CH₃ (CH₃	CH ₂ OCH ₂ CF ₃	Н	F	CH₂	0
1.0485 CH₃ (CH₃	CH ₂ OCH ₂ CF ₃	Н	CI	CH₂	0
1.0486 CH₃ (СН₃	CH ₂ OCH ₂ CF ₃	Н	Н	CH ₂	0
1.0487 CH ₃ (CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	CH₂	0
1.0488 CH ₃	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	CH₂	0
1.0489 CH ₃	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	CH₂	0
1.0490 CH ₃	CH₃	CH ₂ O(CO)CH ₃	Н	F	CH₂	0 .
1.0491 CH ₃	CH₃	CH ₂ O(CO)CH ₃	Н	CI	CH ₂	0
1.0492 CH₃	CH₃	CH ₂ O(CO)CH ₃	Н	Н	CH ₂	0
1.0493 CH ₃	CH₃	CH₂OCH₂C≡CH	Н	F	CH ₂	0
1.0494 CH₃	CH₃	CH₂OCH₂C≡CH	Н	CI	CH₂	0
1.0495 CH₃	CH₃	CH ₂ OCH ₂ C≡CH	Н	Н	CH₂	0
1.0496 CH ₃	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	F	CH₂	0
1.0497 CH₃	CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	CH₂	0
1.0498 CH₃	CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	Н	CH₂	0
1.0499 CH₃	CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	F	CH₂	0
1.0500 CH₃	CH₃	CH ₂ N N N O	Н	Cl	CH₂	0

No. R ₁ R ₂	Z ₁	R ₃₀ X	Υ	p Physical data
1.0501 CH ₃ CH ₃	CH ₂ N N O	н н	CH₂	0
1.0502 CH₃ CH₃	CH ₂ OOO	H F	CH₂	0
1.0503 CH₃ CH₃	CH ₂ O	H CI	CH₂	0
1.0504 CH ₃ CH ₃	CH ₂ O O	н н	CH₂	0
1.0505 CH ₃ CH ₃	CH ₂	H F	CH₂	0
1.0506 CH ₃ CH ₃	CH ₂	H CI	CH ₂	0
1.0507 CH ₃ CH ₃	CH ₂	н н	CH₂	0 .
1.0508 CH ₃ CH ₃	CH ₂ OCH ₂ OO	H F	CH₂	0
1.0509 CH ₃ CH ₃	CH ₂ OCH ₂ OO	H CI	CH ₂	0
1.0510 CH ₃ CH ₃	CH ₂ OCH ₂	н н	CH₂	0
1.0511 CH₃ CH₃	CH ₂ O	H F	CH₂	0
1.0512 CH ₃ CH ₃	CH ₂ O	H Cl	CH ₂	0
1.0513 CH₃ CH₃	CH₂O O	н н	CH ₂	0
1.0514 CH ₃ CH ₃	CH ₂ O O	н ғ	CH₂	0

No.	R₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0515	CH₃	CH₃	T .	Н	CI	CH ₂	0
			CH ₂ O				
1.0516	СНа	CH₃		Н	Н	CH₂	0
		_	сн,о , о				
	011	011	-	Н	F	CH₂	1
1.0517	_		CH₂OCH₂CH₂OCH₃	Н	Н	CH ₂	1
1.0518	_	-	CH₂OCH₂CH₂OCH₃		F	CH ₂	1
			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н		_	1
1.0520			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	H	CH₂	·
1.0521	Н	CH ₃	CH₂OCH₂CH₂OCH₃	Н	F	CH ₂	0
1.0522	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	CI	CH₂	0
1.0523	Н	CH₃	CH2OCH2CH2OCH3	H	Н	CH₂	0
1.0524	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH ₂	0
1.0525	Н	CH ₃	$CH_2OCH_2CH_2OCH_2CH_3$	Н	CI	CH₂	0
1.0526	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂	0
1.0527	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂	0
1.0528	в	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH₂	0
1.0529	н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	CH ₂	0
1.0530	Н	CH₃	CH₂OCH₂Ph	Н	F	CH ₂	0
1.053	ı H	CH₃	CH₂OCH₂Ph	Н	CI	CH ₂	0
1.0532	2 H	CH₃	CH₂OCH₂Ph	Н	Н	CH ₂	0
1.053		CH₃		Н	F	CH ₂	0
1.053		CH₃		Н	CI	CH₂	0
1.053			-	Н	Н	CH ₂	0
1.053				Н	F	CH ₂	0
1.053				Н	CI	CH ₂	0
1.053				Н	н	CH₂	0
1.053				Н		CH ₂	0
1.054			_	Н		CH ₂	0
1.054				H		CH ₂	0
1.054				ŀ		CH₂	0
1.054				F			0

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0544	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	CH ₂	0
1.0545	Н	CH₃	CH₂O(CO)CH₃	Н	F	CH ₂	0
1.0546	Н	CH ₃	CH₂O(CO)CH₃	Н	CI	CH ₂	0
1.0547	Н	CH ₃	CH₂O(CO)CH₃	Н	Н	CH ₂	0
1.0548	Н	CH₃	CH ₂ OCH ₂ C≡CH	Н	F	CH ₂	0
1.0549	Н	CH₃	CH₂OCH₂C≡CH	Н	CI	CH₂	0
1.0550	Н	CH ₃	CH₂OCH₂C≡CH	Н	Н	CH₂	0
1.0551	Н	CH₃	CH₂OCH₂C≡CCH₃	Н	F	CH₂	0
1.0552	Н	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	CH₂	0
1.0553	Н	CH₃	CH₂OCH₂C≡CCH₃	Н	Н	CH₂	0
1.0554	Н	CH₃	FN.	Н	F	CH₂	0
			CH ₂ N				
1.0555	Н	CH₃	N N-	Н	CI	CH₂	0
			CH ₂				
1.0556	Н	CH₃	N N-	Н	Н	CH₂	0
	•		CH ₂	0.	_		
1.0557	' H	CH₃	N-N O	Н	F	CH₂	0
1.0558	3 H	l CH₃	CH ₂ O	Н	CI	CH₂	0
			CH ₂ OOO				
1.0559	9 ⊦	I CH₃	CH ₂ O	Н	Н	CH₂	0
			CH ₂ OOO				
1.056	0 H	H CH₃	CH ₂	Н	F	CH ₂	0
1.056	1 H	H CH₃	CH ₂	Н	CI	CH ₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0562	Н	CH₃	CH ₂ O	Н	Н	CH₂	0
1.0563	Н	CH ₃	CH ₂ OCH ₂	Н	F	CH₂	0
1.0564	Н	CH ₃	CH ₂ OCH ₂	Н	CI	CH₂	0
1.0565	Н	CH₃	CH ₂ OCH ₂	Н	Н	CH₂	0
1.0566	Н	CH₃	CH ₂ O	Н	F	CH₂	0
1.0567	Н	CH₃	CH ₂ O	Н	CI	CH₂	0
1.0568	Н	CH ₃	CH ₂ O O	Н	н	CH ₂	0
1.0569	Н	CH₃	CH ₂ O 0	Н	F	CH₂	0
1.0570	Н	CH₃		Н	CI	CH ₂	0
1.0571	Н	CH₃	CH ₂ O	Н	н	CH₂	0
1.0572	н	CH₃	CH₂OCH₂CH₂OCH₃	Н	F	CH₂	1
1.0573	Н	CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	CH₂	1
1.0574	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH₂	1
1.0575	Н	CH ₃	CH2OCH2CH2OCH2CH3	Н	Н	CH₂	1
1.0576	Н	ı H	CH₂OCH₂CH₂OCH₃	Н	F	CH₂CH₂	0 resin
1.0577	' -	l H	CH₂OCH₂CH₂OCH₃	Н	CI	CH₂CH₂	0
1.0578	3 -	н н	CH2OCH2CH2OCH3	Н	Н	CH₂CH₂	0
1.0579) F	н н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH ₂ CH ₂	0
1.0580)	н н	CH2OCH2CH2OCH2CH3	Н	CI	CH₂CH₂	0
1.0581	! +	н н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	H	CH₂CH₂	0
1.0582	2 F	н н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂CH₂	0 .

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0583	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH₂CH₂	0
1.0584	Н	Н	CH₂N(CH₃)SO₂CH₃	Н	Н	CH₂CH₂	0
1.0585	Н	Н	CH₂OCH₂Ph	Н	F	CH ₂ CH ₂	0
1.0586	Н	Н	CH₂OCH₂Ph	Н	CI	CH ₂ CH ₂	0
1.0587	Н	Н	CH₂OCH₂Ph	Н	Н	CH₂CH₂	0
1.0588	Н	Н	CH₂OCH₂CH₂OH	Н	F	CH₂CH₂	0
1.0589	Н	Н	CH₂OCH₂CH₂OH	Н	CI	CH₂CH₂	0
1.0590	Н	Н	CH₂OCH₂CH₂OH	Н	Н	CH₂CH₂	0
1.0591	Н	Н	CH₂OCH₂CH₂CI	Н	F	CH₂CH₂	0
1.0592	Н	Н	CH₂OCH₂CH₂ CI	Н	CI	CH ₂ CH ₂	0
1.0593	Н	Н	CH₂OCH₂CH₂ CI	Н	Н	CH₂CH₂	0
1.0594	Н	Н	CH ₂ OCH ₂ CF ₃	Н	F	CH₂CH₂	0
1.0595	Н	Н	CH ₂ OCH ₂ CF ₃	Н	CI	CH₂CH₂	0
1.0596	Н	Н	CH₂OCH₂CF₃	Н	Н	CH₂CH₂	0
1.0597	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	F	CH₂CH₂	0
1.0598	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	CI	CH₂CH₂	0
1.0599	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	Н	CH₂CH₂	0
1.0600	Н	Н	CH₂O(CO)CH₃	Н	F	CH₂CH₂	0
1.0601	Н	Н	CH₂O(CO)CH₃	Н	CI	CH₂CH₂	0
1.0602	Н	Н	CH ₂ O(CO)CH ₃	Н	Н	CH₂CH₂	0
1.0603	Н	Н	CH₂OCH₂C≡CH	Н	F	CH₂CH₂	0
1.0604	Н	Н	CH ₂ OCH ₂ C≡CH	Н	CI	CH₂CH₂	0
1.0605	Н	н .	CH ₂ OCH ₂ C≡CH	Н	Н	CH₂CH₂	0
1.0606	Н	Н	CH₂OCH₂C≡CCH₃	Н	F	CH₂CH₂	0
1.0607	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	CH₂CH₂	0
1.0608	В Н	Н	CH ₂ OCH ₂ C≡CCH ₃	Н	Н	CH₂CH₂	0
1.0609) H	Н	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	F	CH₂CH₂	0
1.0610	ЭН	Н	CH ₂ N N N	Н	CI	CH₂CH₂	0

No.	R ₁	R ₂	· Z ₁	R ₃₀	X	Y	p Physical data
1.0611	Н	Н	CH ₂ N N O	Н	Н	CH₂CH₂	0
1.0612	Н.	Н	CH ₂ O O	Н	F	CH₂CH₂	0
1.0613	Н	Н	CH ₂ O	Н	CI	CH ₂ CH ₂	0
1.0614	Н	Н	CH ₂ O O	Н	Н	CH₂CH₂	0
1.0615	Н	Н	CH ₂	Н	F	CH₂CH₂	0
1.0616	Н	Н	CH ₂	Н	CI	CH ₂ CH ₂	0
1.0617	Н	Н	CH ₂	Н	Н	CH₂CH₂	0
1.0618	н	Н	CH ₂ OCH ₂	Н	F	CH₂CH₂	0
1.0619	Н	Н	CH ₂ OCH ₂ OO	Н	CI	CH₂CH₂	0
1.0620	Н	Н	CH₂OCH₂ O	Н	Н	CH₂CH₂	0
1.0621	Н	Н	CH₂O CO	Н	F	CH ₂ CH ₂	0
1.0622	2 H	Н	CH₂O CO	Н	CI	CH₂CH₂ ·	0
1.0623	3 H	Н	CH₂O O	Н	Н	CH₂CH₂	0
1.0624	4 H	Н	CH₂O O	Н	F	CH₂CH₂	0

No.	R₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0625	Н	Н		Н	CI	CH ₂ CH ₂	0
			CH ₂ O				
1.0626	н	Н		Н	Н	CH ₂ CH ₂	0
1.0020	П			••	••	0.120.12	•
			CH ₂ O				
1.0627	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	CH₂CH₂	1
1.0628	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	CH ₂ CH ₂	1
1.0629	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	H	F	CH₂CH₂	1
1.0630	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂ CH ₂	1
1.0631	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	CH ₂ CH ₂	0
1.0632	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	CI	CH ₂ CH ₂	0
1.0633	CH₃	CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	CH ₂ CH ₂	0
1.0634	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH₂CH₂	0
1.0635	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	CH₂CH₂	0
1.0636	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH₂CH₂	0
1.0637	CH	, CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂CH₂	0
1.0638	CH	, CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH₂CH₂	0
1.0639	CH	₃ CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	CH₂CH₂	0
1.0640	CH:	₃ CH₃	CH₂OCH₂Ph	Н	F	CH₂CH₂	0
1.0641	CH	₃ CH₃	CH₂OCH₂Ph	Н	CI	CH₂CH₂	0
1.0642	CH	₃ CH₃	CH₂OCH₂Ph	Н	Н	CH₂CH₂	0
1.0643	CH	3 CH3	CH₂OCH₂CH₂OH	Н	F	CH₂CH₂	0
1.0644	F CH	₃ CH₃	CH₂OCH₂CH₂OH	Н	CI	CH ₂ CH ₂	0
1.0645	5 CH	3 CH3	CH₂OCH₂CH₂OH	Н	Н	CH ₂ CH ₂	0
1.0646	CH	3 CH	CH₂OCH₂CH₂CI	Н	F	CH ₂ CH ₂	0
1.064	7 CH	3 CH	CH2OCH2CH2 CI	Н	CI	CH₂CH₂	0
1.064	в СН	B CH	CH2OCH2CH2 CI	Н	Н	CH₂CH₂	0
1.064	9 CH	l₃ CH	3 CH₂OCH₂CF3	Н	F	CH ₂ CH ₂	0
1.065	O CH	I ₃ CH	3 CH ₂ OCH ₂ CF ₃	Н	CI	CH₂CH₂	0
1.065	1 CH	I₃ CH	3 CH ₂ OCH ₂ CF ₃	Н	Н	CH ₂ CH ₂	0
1.065	2 CH	I₃ CH	3 CH ₂ OCH ₂ CH=CH ₂	Н	F	CH₂CH₂	0
1.065	3 CH	l₃ CH	3 CH ₂ OCH ₂ CH=CH ₂	Н	i Ci	CH ₂ CH ₂	0

No. R ₁ R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0654 CH ₃ CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	CH₂CH₂	0
1.0655 CH₃ CH₃	CH ₂ O(CO)CH ₃	Н	F	CH₂CH₂	0
1.0656 CH ₃ CH ₃	CH ₂ O(CO)CH ₃	Н	CI	CH₂CH₂	0
1.0657 CH ₃ CH ₃	CH ₂ O(CO)CH ₃	Н	Н	CH ₂ CH ₂	0
1.0658 CH ₃ CH ₃	CH ₂ OCH ₂ C≡CH	Н	F	CH ₂ CH ₂	0
1.0659 CH ₃ CH ₃	CH₂OCH₂C≡CH	Н	CI	CH ₂ CH ₂	0
1.0660 CH ₃ CH ₃	CH₂OCH₂C≡CH	Н	Н	CH ₂ CH ₂	0
1.0661 CH ₃ CH ₃	CH₂OCH₂C≡CCH₃	Н	F	CH ₂ CH ₂	0
1.0662 CH ₃ CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	CH₂CH₂	0
1.0663 CH ₃ CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н	Н	CH₂CH₂	0 .
1.0664 CH ₃ CH ₃	FN.	Н	F	CH₂CH₂	0
	CH ₂ NN-				
	0	, ,	01	CH CH	0
1.0665 CH₃ CH₃	N-N-	Н	CI	CH₂CH₂	O
	CH ₂				
4 0000 011 011	.N	н	Н	CH₂CH₂	0
1.0666 CH₃ CH₃	N-N-	"	••	01120112	v
	CH ₂				
	O		_		0
1.0667 CH ₃ CH ₃	N-N	Н	F	CH₂CH₂	0
	1 >0				
	CH ₂ O				
1.0668 CH ₃ CH ₃	N-N	Н	CI	CH₂CH₂	0
	Ch ₂ O			CU CH	0
1.0669 CH ₃ CH ₃	N-N	н	Н	CH₂CH₂	0
•					
	CH ₂ O				
1.0670 CH ₃ CH ₃	CH ₂	Н	F	CH ₂ CH ₂	0
	0				•
1.0671 CH ₃ CH ₃	CH ₂	Н	l CI	CH₂CH₂	0
	U .				

No. R ₁ R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0672 CH ₃ CH ₃	CH ₂	Н	Н	CH₂CH₂	0
1.0673 CH₃ CH₃		Н	F	CH₂CH₂	0
1.0674 CH₃ CH₃		Н	CI	CH₂CH₂	0
1.0675 CH ₃ CH ₅	CH₂OCH₂ O	Н	Н	CH₂CH₂	0
1.0676 CH₃ CH₃	CH ₂ O O	Н	F	CH₂CH₂	. 0
1.0677 CH₃ CH	-	Н	CI	CH₂CH₂	0
1.0678 CH₃ CH	3 CH ₂ O	Н	н	CH₂CH₂	0
1.0679 CH₃ CH	3 0	H	F	CH₂CH₂	0
1.0680 CH₃ CH	CH₂O CH₂O	Н	CI	CH₂CH₂	0
1.0681 CH₃ CH	<u>-</u>	н	Н	CH₂CH₂	0
1.0682 CH₃ CH	I ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	CH₂CH₂	1
1.0683 CH₃ CH	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	CH ₂ CH ₂	1
1.0684 CH₃ Ch	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	₃ H	F	CH ₂ CH ₂	1
1.0685 CH₃ Cl	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	з Н	Н	CH₂CH₂	1
1.0686 H C	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	CH₂CH₂	0
1.0687 H CI	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Cl	CH ₂ CH ₂	0
1.0688 H CI	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	CH ₂ CH ₂	0
1.0689 H CI	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH	з Н	F	CH₂CH₂	0
1.0690 H C	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH	₃ H	Cl	CH ₂ CH ₂	0
1.0691 H C	H ₃ CH ₂ OCH ₂ CH ₂ OCH ₂ CH			CH₂CH₂	0
1.0692 H C	H ₃ CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂CH₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0693	Н	CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH₂CH₂	0
1.0694	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	CH₂CH₂	0
1.0695	Н	CH₃	CH₂OCH₂Ph	Н	F	CH₂CH₂	0
1.0696	Н	CH ₃	CH ₂ OCH ₂ Ph	Н	CI	CH₂CH₂	0
1.0697	Н	CH ₃	CH ₂ OCH ₂ Ph	Н	Н	CH ₂ CH ₂	0
1.0698	Н	CH₃	CH ₂ OCH ₂ CH ₂ OH	Н	F	CH ₂ CH ₂	0
1.0699	Н	CH₃	CH ₂ OCH ₂ CH ₂ OH	Н	CI	CH₂CH₂	0
1.0700	Н	CH₃	CH ₂ OCH ₂ CH ₂ OH	Н	Н	CH₂CH₂	0
1.0701	Н	CH₃	CH ₂ OCH ₂ CH ₂ Cl	Н	F	CH ₂ CH ₂	0
1.0702	Н	CH₃	CH2OCH2CH2 CI	Н	CI	CH ₂ CH ₂	0
1.0703	Н	СН₃	CH2OCH2CH2 CI	Н	Н	CH₂CH₂	0
1.0704	Н	CH ₃	CH ₂ OCH ₂ CF ₃	Н	F	CH ₂ CH ₂	0
1.0705	Н	CH₃	CH ₂ OCH ₂ CF ₃	Н	CI	CH ₂ CH ₂	0
1.0706	Н	CH₃	CH ₂ OCH ₂ CF ₃	Н	Н	CH ₂ CH ₂	0
1.0707	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	CH ₂ CH ₂	0
1.0708	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	CH ₂ CH ₂	0
1.0709	Н	CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	CH ₂ CH ₂	0
1.0710	Н	CH₃	CH ₂ O(CO)CH ₃	Н	F	CH ₂ CH ₂	0
1.0711	Н	CH₃	CH ₂ O(CO)CH ₃	Н	CI	CH₂CH₂	0
1.0712	Н	CH₃	CH ₂ O(CO)CH ₃	Н	Н	CH ₂ CH ₂	0
1.0713	Н	CH₃	CH₂OCH₂C≡CH	Н	F	CH₂CH₂	0
1.0714	Н	CH₃	CH ₂ OCH ₂ C≡CH	Н	Cl	CH₂CH₂	0
1.0715	5 H	CH₃	CH₂OCH₂C≡CH	Н	Н	CH₂CH₂	0
1.0716	6 H	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	F	CH₂CH₂	0
1.0717	7 1-	I CH₃	CH₂OCH₂C≡CCH₃	Н	CI	CH₂CH₂	0
1.0718	3 H	I CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	Н	CH ₂ CH ₂	0
1.0719	€ F	I CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	l F	CH₂CH₂	0
1.072	0 H	H CH₃	CH ₂ N N N	ŀ	l Cl	CH₂CH₂	0

No. R ₁ R ₂	Z ₁	R ₃₀ X	Υ	p Physical data
1.0721 H CH₃	CH ₂ N N O	нн	CH₂CH₂	0
1.0722 H CH₃	CH ₂ O O	H F	CH₂CH₂	0
1.0723 H CH₃	CH ₂ O	H CI	CH₂CH₂	0
1.0724 H CH₃	CH ₂ OOO	н н	CH₂CH₂	0
1.0725 H CH₃	CH ₂	H F	CH ₂ CH ₂	0
1.0726 H CH₃	CH ₂	H CI	CH ₂ CH ₂	0
1.0727 H CH₃	CH ₂	н н	CH₂CH₂	o _
1.0728 H CH₃	CH ₂ OCH ₂	H F	CH₂CH₂	0
1.0729 H CH₃	CH ₂ OCH ₂ OO	H CI	CH₂CH₂	0
1.0730 H CH ₃	CH ₂ OCH ₂ OO	н н	CH₂CH₂	0
1.0731 H CH ₃	CH ₂ O	H F	CH ₂ CH ₂	0
1.0732 H CH₃	CH ₂ O	H CI	CH₂CH₂	0
1.0733 H CH₃	CH ₂ O	н н	CH ₂ CH ₂	0
1.0734 H CH₃	CH ₂ O O	H F	CH₂CH₂	0

No.	R ₁	R₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0735	Н	CH₃	T 6	Н	CI	CH ₂ CH ₂	0 .
			CH ₂ O				
1.0736	Н	СН₃		Н	Н	CH ₂ CH ₂	0
			CH ₂ O O				
4 0707		011		Н	F	CH₂CH₂	1
1.0737	Н	CH₃		Н	Н	CH ₂ CH ₂	1
1.0738	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH₂CH₂	1
1.0739	H H	_	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂ CH ₂	1
1.0740 1.0741	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	н	CI	CH ₂ CH ₂	1
1.0741	Н	С⊓₃ Н	CH ₂ OCH ₂ CH ₂ OCH ₃	н	F.	NC(O)C(CH ₃) ₃	0
1.0742	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	н	Cl	NC(O)C(CH ₃) ₃	0
1.0743	Н	Н		Н	Н	NC(O)C(CH ₃) ₃	0
1.0744	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃		F	NC(O)C(CH ₃) ₃	0
1.0745		'' H	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃		CI	NC(O)C(CH ₃) ₃	0
1.0740	Н	'' H	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃		Н	NC(O)C(CH ₃) ₃	0
1.0747		н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	NC(O)C(CH ₃) ₃	0
1.0749		н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NC(O)C(CH ₃) ₃	0
1.0750		н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	NC(O)C(CH ₃) ₃	0
1.0751		Н	CH₂OCH₂Ph	Н	F	NC(O)C(CH ₃) ₃	0
1.0752		Н	CH₂OCH₂Ph	Н	CI	NC(O)C(CH ₃) ₃	0
1.0753		Н	CH₂OCH₂Ph	Н	Н	$NC(O)C(CH_3)_3$	0
1.0754			CH ₂ OCH ₂ CH ₂ OH	Н	F	NC(O)C(CH ₃) ₃	0
1.0755		Н	CH₂OCH₂CH₂OH	Н	CI	NC(O)C(CH ₃) ₃	0
1.0756		н	CH₂OCH₂CH₂OH	Н	Н	NC(O)C(CH ₃) ₃	0
1.0757	7 H	н	CH₂OCH₂CH₂CI	Н	F	$NC(O)C(CH_3)_3$	0
1.0758		Н	CH₂OCH₂CH₂ CI	Н	CI	NC(O)C(CH ₃) ₃	0
1.0759	э н	н	CH2OCH2CH2 CI	Н	Н	NC(O)C(CH ₃) ₃	0
1.0760	о н	і н	CH ₂ OCH ₂ CF ₃	Н	F	NC(O)C(CH ₃) ₃	0
1.076	1 H	і н	CH ₂ OCH ₂ CF ₃	Н	CI	$NC(O)C(CH_3)_3$	0
1.076	2 F	1 Н	CH ₂ OCH ₂ CF ₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.076	3 H	і н	CH ₂ OCH ₂ CH=CH ₂	Н	F	$NC(O)C(CH_3)_3$	0

1.0764 H H CH ₂ OCH ₂ CH=CH ₂ H CI NC(O)C(CH ₃) ₃ 0 1.0765 H H CH ₂ OCH ₂ CH=CH ₂ H H NC(O)C(CH ₃) ₃ 0 1.0766 H H CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0767 H H CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0768 H H CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0769 H H CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0770 H H CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0771 H H CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0772 H H CH ₂ OCH ₂ C≡CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0775 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0776 H H NC(O)C(CH ₃) ₃ 0 1.0777 H H NC(O)C(CH ₃) ₃ 0 1.0777 H H NC(O)C(CH ₃) ₃ 0 1.0777 H NC(O)C(CH ₃) ₃ 0 1.0777 H NC(O)C(CH ₃) ₃ 0	data
1.0766 H H CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0767 H H CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0768 H H CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0769 H H CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0770 H H CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0771 H H CH ₂ OCH ₂ C≡CH H NC(O)C(CH ₃) ₃ 0 1.0772 H H CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0775 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0776 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0777 H H NC(O)C(CH ₃) ₃ 0	*
1.0767 H H CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0768 H H CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0769 H H CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0770 H H CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0771 H H CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0772 H H CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0775 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0776 H H H NC(O)C(CH ₃) ₃ 0 1.0777 H H NC(O)C(CH ₃) ₃ 0	
1.0768 H H CH₂O(CO)CH₃ H H NC(O)C(CH₃)₃ 0 1.0769 H H CH₂OCH₂C≡CH H F NC(O)C(CH₃)₃ 0 1.0770 H H CH₂OCH₂C≡CH H CI NC(O)C(CH₃)₃ 0 1.0771 H H CH₂OCH₂C≡CH H H NC(O)C(CH₃)₃ 0 1.0772 H H CH₂OCH₂C≡CH₃ H F NC(O)C(CH₃)₃ 0 1.0773 H H CH₂OCH₂C≡CCH₃ H CI NC(O)C(CH₃)₃ 0 1.0774 H H CH₂OCH₂C≡CCH₃ H H NC(O)C(CH₃)₃ 0 1.0775 H H CH₂OCH₂C≡CCH₃ H NC(O)C(CH₃)₃ 0 1.0776 H H H NC(O)C(CH₃)₃ 0 1.0777 H H H NC(O)C(CH₃)₃ 0 1.0777 H H H NC(O)C(CH₃)₃ 0	
1.0769 H H CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0770 H H CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0771 H H CH ₂ OCH ₂ C≡CH H NC(O)C(CH ₃) ₃ 0 1.0772 H H CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0775 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0776 H H H NC(O)C(CH ₃) ₃ 0 1.0777 H H H NC(O)C(CH ₃) ₃ 0	
1.0770 H H CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0771 H H CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0772 H H CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0775 H H H NC(O)C(CH ₃) ₃ 0 1.0776 H H H NC(O)C(CH ₃) ₃ 0 1.0777 H H H NC(O)C(CH ₃) ₃ 0 1.0777 H H NC(O)C(CH ₃) ₃ 0	
1.0771 H H CH₂OCH₂C≡CH H H NC(O)C(CH₃)₃ 0 1.0772 H H CH₂OCH₂C≡CCH₃ H F NC(O)C(CH₃)₃ 0 1.0773 H H CH₂OCH₂C≡CCH₃ H CI NC(O)C(CH₃)₃ 0 1.0774 H H CH₂OCH₂C≡CCH₃ H H NC(O)C(CH₃)₃ 0 1.0775 H H F NC(O)C(CH₃)₃ 0 1.0776 H H F NC(O)C(CH₃)₃ 0 1.0777 H H H CI NC(O)C(CH₃)₃ 0 1.0777 H H H NC(O)C(CH₃)₃ 0	
1.0772 H H CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0775 H H CH ₂ N CH ₂ N H F NC(O)C(CH ₃) ₃ 0 1.0776 H H CH ₂ N CH ₂ N H CI NC(O)C(CH ₃) ₃ 0 1.0777 H H CH ₂ N CH ₃ N CH ₃ O	
1.0773 H H CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0775 H H 1.0776 H H 1.0777 H H	
1.0774 H H CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0775 H H 1.0776 H H 1.0777	
1.0775 H H CH ₂ N H F NC(O)C(CH ₃) ₃ 0 1.0776 H H CH ₂ N H CI NC(O)C(CH ₃) ₃ 0 CH ₂ N H H NC(O)C(CH ₃) ₃ 0 CH ₂ N CH ₂ O CH ₃ O CH ₂ O CH ₃ O	
1.0776 H H CH ₂ N CH ₂ N H CI NC(O)C(CH ₃) ₃ 0 CH ₂ N CH ₂ CH ₂ N CH ₂ CH ₂ N CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH	
1.0777 H H CH ₂ N H H NC(O)C(CH ₃) ₃ 0 CH ₂ O	
1.0777 H H CH ₂ N H H NC(O)C(CH ₃) ₃ 0 CH ₂ O	
CH ₂ N N N N N N N N N N N N N N N N N N N	
CH ₂ N N N N N N N N N N N N N N N N N N N	
1.0778 H H	
1.0778 H H H H F NC(O)C(CH ₃) ₃ 0	
CH ₃ OOO	
CH ₂ O	
4	
1.0779 H H CI NC(O)C(CH ₃) ₃ 0	
CH ₂ O	
1.0780 H H NC(O)C(CH₃)₃ 0	
CH ₂ O	
1.0781 H H CH₂ H F NC(O)C(CH₃)₃ 0	
O	

No.	R₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0782	Н	Н	CH ₂	Н	CI	NC(O)C(CH₃)₃	0
1.0783	Н	Н	CH ₂	Н	Н	NC(O)C(CH ₃) ₃	0
1.0784	Н	н	CH ₂ OCH ₂	Н	F	NC(O)C(CH ₃) ₃	0
1.0785	Н	H [']	CH ₂ OCH ₂	Н	CI	NC(O)C(CH ₃) ₃	0
1.0786	Н	Н	CH ₂ OCH ₂	Н	Н	NC(O)C(CH ₃) ₃	0
1.0787	Н	Н	CH ₂ O O	Н	F	NC(O)C(CH ₃) ₃	0
1.0788	Н	Н	CH₂O CO	Н	CI	NC(O)C(CH ₃) ₃	0
1.0789	Н	н	CH ₂ O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0790	Н	Н	CH₂O O	Н	F	NC(O)C(CH ₃) ₃	0
1.0791	Н	Н	CH ₂ O O	Н	CI	NC(O)C(CH ₃) ₃	0
1.0792	Н	Н	CH ₂ O O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0793	н	Н	CH₂OCH₂CH₂OCH₃	Н	F	NC(O)C(CH ₃) ₃	1
1.0794		н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	Н	NC(O)C(CH ₃) ₃	1
1.0795	5 Н	Н	CH2OCH2CH2OCH2CH3	Н	F	NC(O)C(CH ₃) ₃	1
1.0796	S Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	$NC(O)C(CH_3)_3$	1
1.0797	CH	₃ CH₃	CH2OCH2CH2OCH3	Н	F	$NC(O)C(CH_3)_3$	0
1.0798	3 CH	l₃ CH₃	CH2OCH2CH2OCH3	Н	CI	NC(O)C(CH ₃) ₃	0
1.079	OH	I₃ CH₃	CH2OCH2CH2OCH3	Н	Н	$NC(O)C(CH_3)_3$	0
			CH2OCH2CH2OCH2CH3				0
1.080	1 CH	I₃ CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	, H	l Cl	NC(O)C(CH ₃) ₃	0

No.	R₁	R_2	Z ₁	R ₃₀	X	Υ	p Physical data
1.0802	CH₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	NC(O)C(CH ₃) ₃	0
1.0803	CH₃	CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	$NC(O)C(CH_3)_3$	0
1.0804	CH₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NC(O)C(CH ₃) ₃	0
1.0805	CH ₃	СН₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	H	NC(O)C(CH ₃) ₃	0
1.0806	CH ₃	CH₃	CH₂OCH₂Ph	Н	F	NC(O)C(CH ₃) ₃	0
1.0807	CH ₃	CH ₃	CH₂OCH₂Ph	Н	CI	NC(O)C(CH ₃) ₃	0
1.0808	CH ₃	CH ₃	CH₂OCH₂Ph	Н	Н	NC(O)C(CH ₃) ₃	0
1.0809	CH₃	CH ₃	CH₂OCH₂CH₂OH	Н	F	NC(O)C(CH ₃) ₃	0
1.0810	CH₃	CH ₃	CH₂OCH₂CH₂OH	Н	Cl	NC(O)C(CH ₃) ₃	0
1.0811	CH₃	CH ₃	CH₂OCH₂CH₂OH	Н	Н	$NC(O)C(CH_3)_3$	0
1.0812	CH₃	CH₃	CH₂OCH₂CH₂CI	Н	F	$NC(O)C(CH_3)_3$	0
1.0813	CH₃	CH₃	CH₂OCH₂CH₂ CI	Н	CI	$NC(O)C(CH_3)_3$	0
1.0814	CH₃	CH₃	CH₂OCH₂CH₂ CI	Н	Н	$NC(O)C(CH_3)_3$	0
1.0815	CH₃	CH₃	CH₂OCH₂CF₃	Н	F	$NC(O)C(CH_3)_3$	0
1.0816	CH₃	CH₃	CH₂OCH₂CF₃	Н	CI	$NC(O)C(CH_3)_3$	0
1.0817	CH	, CH₃	CH ₂ OCH ₂ CF ₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.0818	CH	, CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	NC(O)C(CH ₃) ₃	0
1.0819	CH	CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	NC(O)C(CH ₃) ₃	0
1.0820	CH:	CH:	CH ₂ OCH ₂ CH=CH ₂	Н	Н	$NC(O)C(CH_3)_3$	0
1.0821	CH	3 CH	CH ₂ O(CO)CH ₃	Н	F	NC(O)C(CH ₃) ₃	0
1.0822	CH	3 CH	3 CH₂O(CO)CH₃	Н	CI	$NC(O)C(CH_3)_3$	0
1.0823	CH.	₃ CH	3 CH₂O(CO)CH₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.0824	1 CH	3 CH	3 CH₂OCH₂C≡CH	Н	F	$NC(O)C(CH_3)_3$	0
1.082	5 CH	₃ CH	3 CH₂OCH₂C≡CH	Н	CI	$NC(O)C(CH_3)_3$	0
1.0826	6 CH	₃ CH	3 CH2OCH2C≡CH	Н	Н	NC(O)C(CH ₃) ₃	0
1.082	7 CH	₃ CH	3 CH2OCH2C≡CCH3	Н	F	$NC(O)C(CH_3)_3$	0
1.082	в СН	₃ CH	3 CH2OCH2C≡CCH3	Н	Cl	$NC(O)C(CH_3)_3$	0
1.082	9 CH	l₃ CH	3 CH ₂ OCH ₂ C≡CCH ₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.083	0 CH	l₃ CH	CH ₂ NNN-	Н	F	NC(O)C(CH ₃) ₃	0

No. R ₁ R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0831 CH ₃ CH ₃	CH ₂ N N	Н	CI	NC(O)C(CH ₃) ₃	0
1.0832 CH₃ CH₃	CH ₂ N N O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0833 CH ₃ CH ₃	CH ₂ O O	Н	F	NC(O)C(CH ₃) ₃	0
1.0834 CH ₃ CH ₃	CH ₂ O	н	CI	NC(O)C(CH ₃) ₃	0
1.0835 CH ₃ CH ₃	CH ₂ O O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0836 CH ₃ CH ₃	CH ₂	Н	F	NC(O)C(CH ₃) ₃	0
1.0837 CH ₃ CH ₃	CH ₂	Н	Cl	NC(O)C(CH ₃) ₃	0
1.0838 CH ₃ CH ₃	CH ₂	Н	Н	NC(O)C(CH ₃) ₃	0
1.0839 CH₃ CH₃	CH ₂ OCH ₂ OCH ₂ O	Н	F	NC(O)C(CH ₃) ₃	0
1.0840 CH ₃ CH ₃	CH ₂ OCH ₂ OO	Н	CI	NC(O)C(CH ₃) ₃	0
1.0841 CH ₃ CH ₃	CH₂OCH₂ O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0842 CH ₃ CH ₃	CH₂O O	н	F	NC(O)C(CH₃)₃	0
1.0843 CH₃ CH₃	CH₂O CH₂O	Н	CI	NC(O)C(CH₃)₃	0

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0844	CH₃	CH₃	/0	Н	Н	NC(O)C(CH ₃) ₃	0
			CH ₂ O				
1.0845	CH₃	CH₃		Н	F	$NC(O)C(CH_3)_3$	0
			сн,о , о				
1.0846	СП	CH.		Н	Cl	NC(O)C(CH ₃) ₃	0
1.0040	O1 13	O1 13	$\int_{\mathcal{C}}$	• •	•	(-)-(-)-0,-	
			CH ₂ O				
1.0847	CH ₃	CH₃		Н	Н	NC(O)C(CH ₃) ₃	0
			сн,о				
1.0848	CH-	CH	CH₂OCH₂CH₂OCH₃	н	F	NC(O)C(CH ₃) ₃	1
1.0849	_		CH ₂ OCH ₂ CH ₂ OCH ₃	Н	H	NC(O)C(CH ₃) ₃	1
		_	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	NC(O)C(CH ₃) ₃	1
			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	NC(O)C(CH ₃) ₃	1
1.0852		CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	NC(O)C(CH ₃) ₃	0
1.0853		CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	CI	NC(O)C(CH ₃) ₃	0
1.0854		CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.0855	5 H	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	$NC(O)C(CH_3)_3$	0
1.0856	з н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	$NC(O)C(CH_3)_3$	0
1.0857	7 H	СН₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.0858	3 H	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	$NC(O)C(CH_3)_3$	0
1.0859	э н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Cl	$NC(O)C(CH_3)_3$	0
1.0860	о н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.086	1 H	CH₃	CH₂OCH₂Ph	Н	F	NC(O)C(CH ₃) ₃	0
1.086	2 H	CH₃	CH₂OCH₂Ph	Н	CI	NC(O)C(CH ₃) ₃	0
1.086	3 H	CH₃	CH₂OCH₂Ph	Н	Н	NC(O)C(CH ₃) ₃	0
1.086	4 H	CH₃	CH ₂ OCH ₂ CH ₂ OH	Н		NC(O)C(CH ₃) ₃	0
1.086	5 H	CH ₃		Н		NC(O)C(CH₃)₃	0
1.086	6 H	CH ₃		Н		NC(O)C(CH ₃) ₃	0
1.086	7 H			Н		NC(O)C(CH ₃) ₃	0
1.086	8 F			Н			
1.086				H		NC(O)C(CH ₃) ₃	
1.087	'0 H	I CH	3 CH₂OCH₂CF3	Н	F	NC(O)C(CH ₃) ₃	0

1.0871 H CH ₃ CH ₂ OCH ₂ CF ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0872 H CH ₃ CH ₂ OCH ₂ CF ₅ H H NC(O)C(CH ₃) ₃ 0 1.0873 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H F NC(O)C(CH ₃) ₃ 0 1.0874 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H CI NC(O)C(CH ₃) ₃ 0 1.0875 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H H NC(O)C(CH ₃) ₃ 0 1.0876 H CH ₃ CH ₂ OCO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0877 H CH ₃ CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0878 H CH ₃ CH ₂ OCH ₂ CECH H NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ OCH ₂ CECH H NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ CECH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ CECH H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ CECH ₃ H NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ CECH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0	No.	R₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0873 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H F NC(O)C(CH ₃) ₃ 0 1.0874 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H CI NC(O)C(CH ₃) ₃ 0 1.0875 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H NC(O)C(CH ₃) ₃ 0 1.0876 H CH ₃ CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0877 H CH ₃ CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ O(CO)CH ₃ H NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C≡CH H NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CH ₃ H NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ CH ₂ C≡CCH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	1.0871	Н	CH ₃	CH ₂ OCH ₂ CF ₃	Н	CI	NC(O)C(CH ₃) ₃	0
1.0874 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H CI NC(O)C(CH ₃) ₃ 0 1.0875 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H H NC(O)C(CH ₃) ₃ 0 1.0876 H CH ₃ CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0877 H CH ₃ CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0878 H CH ₃ CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ C≡CH H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C≡CCH H NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H CH ₃ H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0872	Н	CH ₃	CH ₂ OCH ₂ CF ₃	Н	Н	NC(O)C(CH ₃) ₃	0
1.0875 H CH ₃ CH ₂ OCH ₂ CH=CH ₂ H H NC(O)C(CH ₃) ₃ 0 1.0876 H CH ₃ CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0877 H CH ₃ CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0878 H CH ₃ CH ₂ OCO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ OCH ₂ C=CH H F NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ C=CH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ C=CH H N NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H P NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ CH ₂ OCH ₂ C=CCH ₃ CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0873	Н	CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	$NC(O)C(CH_3)_3$	0
1.0876 H CH ₃ CH ₂ O(CO)CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0877 H CH ₃ CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0878 H CH ₃ CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ OCH ₂ CECH H F NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ CECH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ CECH H H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ CECH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0874	Н	CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	$NC(O)C(CH_3)_3$	0
1.0877 H CH ₃ CH ₂ O(CO)CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0878 H CH ₃ CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ OCH ₂ CECH H F NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ CECH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ CECH H H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ CECH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ OCH ₂ CECCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0	1.0875	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	Н	$NC(O)C(CH_3)_3$	0
1.0878 H CH ₃ CH ₂ O(CO)CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0879 H CH ₃ CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C≡CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ N H CH ₃ N H CI NC(O)C(CH ₃) ₃ 0	1.0876	Н	CH ₃	CH ₂ O(CO)CH ₃	Н	F	$NC(O)C(CH_3)_3$	0
1.0879 H CH ₃ CH ₂ OCH ₂ C≡CH H F NC(O)C(CH ₃) ₃ 0 1.0880 H CH ₃ CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0877	Н	CH ₃	CH ₂ O(CO)CH ₃	Н	CI	$NC(O)C(CH_3)_3$	0
1.0880 H CH ₃ CH ₂ OCH ₂ C≡CH H CI NC(O)C(CH ₃) ₃ 0 1.0881 H CH ₃ CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0878	Н	CH₃	CH₂O(CO)CH₃	Н	Н	$NC(O)C(CH_3)_3$	0
1.0881 H CH ₃ CH ₂ OCH ₂ C≡CH H H NC(O)C(CH ₃) ₃ 0 1.0882 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0879	Н	CH₃	CH ₂ OCH ₂ C≡CH	Н	F	$NC(O)C(CH_3)_3$	0
1.0882 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0880	Н	CH₃	CH₂OCH₂C≡CH	Н	CI	$NC(O)C(CH_3)_3$	0
1.0883 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H CH ₃ H CH ₃ H CH ₂ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CI NC(O)C(CH ₃) ₃ 0	1.0881	Н	CH ₃	CH ₂ OCH ₂ C≡CH	Н	Н	$NC(O)C(CH_3)_3$	0
1.0884 H CH ₃ CH ₂ OCH ₂ C≡CCH ₃ H H NC(O)C(CH ₃) ₃ 0 1.0885 H CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ H CH ₃ H CH ₃ H CH ₂ N H H NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ H H H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H F NC(O)C(CH ₃) ₃ 0 1.0889 H CH ₃ H CH ₃ H CH ₃ H CH ₃ D H C	1.0882	Н	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	F	$NC(O)C(CH_3)_3$	0
1.0885 H CH ₃ CH ₂ N H F NC(O)C(CH ₃) ₃ 0 1.0886 H CH ₃ CH ₂ N H CI NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ CH ₂ N CH ₂ N H F NC(O)C(CH ₃) ₃ 0 H F NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H F NC(O)C(CH ₃) ₃ 0 H F NC(O)C(CH ₃) ₃ 0 H F NC(O)C(CH ₃) ₃ 0	1.0883	Н	CH₃	CH₂OCH₂C≡CCH₃	Н	CI	$NC(O)C(CH_3)_3$	0
1.0886 H CH ₃ CH ₂ N CH ₂ N H CI NC(O)C(CH ₃) ₃ 0 1.0887 H CH ₃ N CH ₂ N CH ₂ N H H NC(O)C(CH ₃) ₃ 0 1.0888 H CH ₃ H F NC(O)C(CH ₃) ₃ 0 CH ₂ O H CI NC(O)C(CH ₃) ₃ 0	1.0884	Н	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	Н	NC(O)C(CH₃)₃	0
1.0887 H CH ₃ 1.0888 H CH ₃ 1.0889 H CH ₃	1.0885	Н	CH₃	FN N-	Н	F	$NC(O)C(CH_3)_3$	0
1.0887 H CH ₃ CH ₂ N H H NC(O)C(CH ₃) ₃ 0 CH ₂ O 1.0888 H CH ₃ CH ₂ O H F NC(O)C(CH ₃) ₃ 0 CH ₂ O H CI NC(O)C(CH ₃) ₃ 0				CH ₂ N				
1.0888 H CH ₃ CH ₂ H F NC(O)C(CH ₃) ₃ 0 CH ₂ O H CI NC(O)C(CH ₃) ₃ 0	1.0886	Н	CH₃	FN	Н	CI	$NC(O)C(CH_3)_3$	0
1.0888 H CH ₃ CH ₂ N-N CH ₂ H F NC(O)C(CH ₃) ₃ 0 CH ₂ O H CI NC(O)C(CH ₃) ₃ 0				CH ₂ N				
1.0888 H CH ₃ CH ₂ H F NC(O)C(CH ₃) ₃ 0 CH ₂ O H CI NC(O)C(CH ₃) ₃ 0	4 0007	, 11	СH	N	н	н	NC(O)C(CH ₂) ₂	0
1.0889 H CH ₃ OH ₂ OH ₂ OH ₃	1.0887	Н	CH ₃	N. N-	11	11	110(0)0(0113)3	
1.0889 H CH ₃ OH ₂ OH ₂ OH ₃				CH ₂				
1.0889 H CH ₃ CH ₂ O H CI NC(O)C(CH ₃) ₃ O CH ₂ O CH ₂ O O CH ₃ O O CH ₂ O O CH ₃ O CH ₂ O O CH ₃ O	1.0888	3 H	CH₃	/	Н	F	NC(O)C(CH ₃) ₃	0
CH ₂ OO				N-N				
CH ₂ OO				CH ₂ O				
1.0890 H CH ₃ CH ₂ O H H NC(O)C(CH ₃) ₃ O CH ₂ O	1.0889	9 H	I CH₃	N-N	Н	CI	$NC(O)C(CH_3)_3$	0
1.0890 H CH ₃ N-N CH ₂ O				CH, OOO				
CH ₂ OOO	1.089	0 H	I CH₃	- /	Н	н	NC(O)C(CH ₃) ₃	0
CH ₂ O				N-N				
•				CH ₂ O				

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0891	Н	CH₃	CH ₂	Н	F	NC(O)C(CH ₃) ₃	0
1.0892	Н	CH₃	CH ₂	Н	CI	NC(O)C(CH ₃) ₃	0
1.0893	Н	CH₃	CH ₂	Н	Н	NC(O)C(CH ₃) ₃	0
1.0894	Н	CH ₃	CH ₂ OCH ₂	Н	F	NC(O)C(CH ₃) ₃	0
1.0895	Н	CH ₃	CH ₂ OCH ₂	Н	Cl	NC(O)C(CH ₃) ₃	0
1.0896	Н	CH ₃	CH ₂ OCH ₂	Н	Н	NC(O)C(CH ₃) ₃	0
1.0897	н	CH₃	CH ₂ O	Н	F	NC(O)C(CH ₃) ₃	0 .
1.0898	Н	CH₃	CH,O O	Н	CI	NC(O)C(CH ₃) ₃	0
1.0899	Н	CH₃	CH ₂ O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0900	Н	CH₃	CH ₂ O O	Н	F	NC(O)C(CH₃)₃	0
1.0901	Н	CH₃	CH ₂ O O	Н	CI	NC(O)C(CH ₃) ₃	0
1.0902	: Н	CH ₃	CH ₂ O O	Н	Н	NC(O)C(CH ₃) ₃	0
1.0903	3 H	CH₃	CH₂OCH₂CH₂OCH₃	н	F	NC(O)C(CH ₃) ₃	1 .
1.0904		_	CH₂OCH₂CH₂OCH₃	Н	Н	NC(O)C(CH ₃) ₃	1
1.0905	5 H	_	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	NC(O)C(CH ₃) ₃	1
1.0906	6 H	CH₃		, н	Н	NC(O)C(CH₃)₃	1
1.0907	7 H	н н	CH ₃	Н	F	$NSO_2N(CH_3)_2$	0
1.0908	3 H	Н	CH₃	Н	Cl	NSO ₂ N(CH ₃) ₂	0
1.0909	9 F	I Н	CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.0910	Н	Н	CH₃	CH₃	F	NSO ₂ N(CH ₃) ₂	0
1.0911	Н	Н	CH₃	CH₃	CI	NSO ₂ N(CH ₃) ₂	0
1.0912	Н	Н	CH₃	CH₃	Н	NSO₂N(CH₃)₂	0
1.0913	Н	Н	CH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0914	Н	Н	CH₂CH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0915	Н	Н	CH₂CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0916	Н	Н	CH₂CH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0917	Н	Н	CH₂CH₂CH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0918	Н	Н	CH₂CH₂CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0919	Н	Н	CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0920	Н	Н	CH₂OCH₃	Н	CI	$NSO_2N(CH_3)_2$	0
1.0921	Н	Н	CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0922	Н	Н	CH₂OCH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0923	Н	Н	CH₂OCH₂CH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0924	Н	H	CH ₂ OCH ₂ CH ₃	Н	Н	NSO ₂ N(CH ₃) ₂	O .
1.0925	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0926	Н	Н	CH2OCH2CH2OCH3	Н	CI	$NSO_2N(CH_3)_2$	0
1.0927	Н	Н	CH2OCH2CH2OCH3	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0928	Н	Н	CH2OCH2CH2OCH2CH3	Н	F	NSO₂N(CH₃)₂	0
1.0929	Н	н	CH2OCH2CH2OCH2CH3	Н	CI	NSO₂N(CH₃)₂	0
1.0930	Н	Н	CH2OCH2CH2OCH2CH3	, Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0931	Н	Н	CH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0932	2 H	Н	CH₂CH₂OCH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0933	з н	Н	CH₂CH₂OCH₃	Н	Н	$NSO_2N(CH_3)_2$	0
1.0934	ŧ Н	н	CH₂OCH₂C≣CH	Н	F	$NSO_2N(CH_3)_2$	0
1.093	5 H	Н	CH₂OCH₂C≡CH	Н	CI	$NSO_2N(CH_3)_2$	0
1.093	5 H	н	CH₂OCH₂C≡CH	Н	Н	$NSO_2N(CH_3)_2$	0
1.093	7 H	н н	CH ₂ OCH ₂ C≡CCH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.093	8 H	н	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.093	9 -	н н	CH₂OCH₂C≡CCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.094	0 F	н н	CH ₂ CH ₂ CH ₂ OCH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.094	1 H	н н	CH ₂ CH ₂ CH ₂ OCH ₃	Н	I CI	NSO₂N(CH₃)₂	0
1.094	2 F	1. H	CH2CH2CH2OCH3	Н	ı H	$NSO_2N(CH_3)_2$	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.0943	Н	Н	CH₂OCH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0944	Н	Н		Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0945	Н	Н		Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0946	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0947	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NSO₂N(CH₃)₂	0
1.0948	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0949	Н	Н	CF ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0950	Н	Н	CF ₃	H	CI	NSO ₂ N(CH ₃) ₂	0
1.0951	Н	Н	CF₃	Н	Н	$NSO_2N(CH_3)_2$	0
1.0952	Н	Н	CH ₂ OCH ₂ CF ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0953	Н	Н	CH ₂ OCH ₂ CF ₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0954	Н	Н	CH ₂ OCH ₂ CF ₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0955	Н	Н	CH₂OCH₂Ph	Н	F	$NSO_2N(CH_3)_2$	0
1.0956	Н	Н	CH₂OCH₂Ph	Н	CI	$NSO_2N(CH_3)_2$	0
1.0957	Н	Н	CH ₂ OCH ₂ Ph	Н	Н	$NSO_2N(CH_3)_2$	0
1.0958	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	F	$NSO_2N(CH_3)_2$	0
1.0959	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0960	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0961	Н	Н	CH ₂ N N	Н	F	NSO₂N(CH₃)₂	0
1.0962	Н	Н	CH ₂ N N O	Н	CI	NSO₂N(CH₃)₂	0
1.0963	в Н	н	CH ₂ N N	Н	Н	NSO₂N(CH₃)₂	0
1.0964	1 H	Н	CH_2 $N-N$ O	Н	F	NSO ₂ N(CH ₃) ₂	0

No.	R₁		R ₂	Z ₁	R ₃₀	X	Y	p Physical data
1.0965			Н	CH ₂ OOO	Н	Cl	NSO₂N(CH₃)₂	0
1.0966	Н		Н	CH ₂ O O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0967	Н	İ	Н	CH ₂	Н	F	NSO₂N(CH₃)₂	0
1.0968	Н	I	Н	CH ₂	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.0969	H	ł	Н	CH ₂	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0970	ŀ	ł	Н	CH ₂ OCH ₂	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0971	ŀ	1	Н	CH ₂ OCH ₂	Н	Cl	NSO ₂ N(CH ₃) ₂	0
1.0972	ŀ	4	Н	CH ₂ OCH ₂ OCH ₂ O	Н	Н	NSO₂N(CH₃)₂	0
1.0973	ŀ	1	Н	CH₂O O	Н	F	NSO₂N(CH₃)₂	0
1.0974	! 1	Н	Н	CH ₂ O O	Н	CI	NSO₂N(CH₃)₂	0
1.0975	5	Н	Н	CH₂O O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0976	6	Н	Н	CH ₂ O O	Н	F	NSO₂N(CH₃)₂	0
1.0977	7	Н	Н	CH ₂ O O	Н	CI	NSO₂N(CH₃)₂	0
1.0978	В	Н	Н	CH ₂ O O	Н	Н	NSO₂N(CH₃)₂	0
1.097	9	Н	Н	CH₃	Н	I F	NSO ₂ N(CH ₃) ₂	1

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.0980	Н	Н	CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.0981	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.0982	Н	Н	CH₂CH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.0983	Н	Н	CH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.0984	Н	Н	CH₃	Н	Н	NSO₂N(CH₃)₂	1
1.0985	Н	Н	CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.0986	Н	Н	CH2OCH2CH2OCH3	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.0987	Н	Н	CH2CH2CH2OCH3	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.0988	Н	Н	CH₂CH₃	H	Н	NSO ₂ N(CH ₃) ₂	1
1.0989	CH₃	CH₃	CH ₃	Н	F	NSO ₂ N(CH₃) ₂	0
1.0990	CH ₃	CH ₃	CH₃	Н	Cl	NSO ₂ N(CH ₃) ₂	0
1.0991	СН₃	CH ₃	CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.0992	СН₃	CH ₃	CH₃	CH ₃	F	NSO ₂ N(CH ₃) ₂	0
1.0993	CH₃	CH₃	CH₃	CH₃	CI	NSO ₂ N(CH ₃) ₂	0
1.0994	СН₃	CH ₃	CH₃	СНз	Н	$NSO_2N(CH_3)_2$	0 .
1.0995	CH₃	CH₃	CH₂CH₃	Н	F	$NSO_2N(CH_3)_2$	0
1.0996	CH₃	CH₃	CH₂CH₃	Н	CI	$NSO_2N(CH_3)_2$	0
1.0997	CH₃	CH₃	CH₂CH₃	Н	Н	NSO₂N(CH₃)₂	0
1.0998	CH₃	CH ₃	CH₂CH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.0999	CH₃	CH ₃	CH₂CH₂CH₃	Н	CI	NSO₂N(CH₃)₂	0
1.1000	CH3	CH₃	CH₂CH₂CH₃	H	Н	NSO ₂ N(CH ₃) ₂	0
1.1001	CH	CH₃	CH₂OCH₃	Н	F	NSO₂N(CH₃)₂	0
1.1002	CH	, CH₃	CH₂OCH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1003	CH	3 CH₃	CH ₂ OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1004	CH:	₃ CH₃	CH₂OCH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1005	CH:	₃ CH₃	CH₂OCH₂CH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1006	CH.	₃ CH₃	CH₂OCH₂CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1007	CH	₃ СН₃	CH₂OCH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1008	з СН	₃ CH₃	CH₂OCH₂CH₂OCH₃	Н	CI	NSO₂N(CH₃)₂	0
1.1009) CH	₃ CH₃		Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1010	СН	₃ CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃		CI	NSO ₂ N(CH ₃) ₂	0
1.101	2 CH	3 CH ₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	NSO ₂ N(CH ₃) ₂	0

No. R ₁ R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.1013 CH ₃ CH ₃	CH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1014 CH ₃ CH ₃	CH₂CH₂OCH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1015 CH₃ CH₃	CH₂CH₂OCH₃	Н	Н	$NSO_2N(CH_3)_2$	0
1.1016 CH ₃ CH ₃	CH₂OCH₂C≡CH	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1017 CH ₃ CH ₃	CH₂OCH₂C≡CH	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1018 CH₃ CH₃	CH ₂ OCH ₂ C≡CH	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1019 CH ₃ CH ₃	CH₂OCH₂C≡CCH₃	Н	F	NSO₂N(CH₃)₂	0
1.1020 CH ₃ CH ₃	CH₂OCH₂C≡CCH₃	Н	CI	NSO₂N(CH₃)₂	0
1.1021 CH ₃ CH ₃	CH₂OCH₂C≣CCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1022 CH ₃ CH ₃	CH₂CH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1023 CH ₃ CH ₃	CH2CH2CH2OCH3	Н	Cl	NSO ₂ N(CH ₃) ₂	0
1.1024 CH ₃ CH ₃	CH₂CH₂CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1025 CH₃ CH₃	CH ₂ OCH ₂ OCH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1026 CH ₃ CH ₃	CH₂OCH₂OCH₃	Н	Cl	NSO ₂ N(CH ₃) ₂	0
1.1027 CH ₃ CH ₃	CH₂OCH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1028 CH ₃ CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1029 CH ₃ CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	H	Cl	NSO ₂ N(CH ₃) ₂	0
1.1030 CH ₃ CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	н	Н	NSO ₂ N(CH ₃) ₂	0 .
1.1031 CH ₃ CH ₃	CF₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1032 CH ₃ CH ₃	CF ₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1033 CH ₃ CH ₃	CF₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1034 CH ₃ CH ₃	CH ₂ OCH ₂ CF ₃	Н	F	$NSO_2N(CH_3)_2$	0
1.1035 CH₃ CH₃	CH₂OCH₂CF₃	Н	CI	$NSO_2N(CH_3)_2$	0
1.1036 CH₃ CH₃	CH ₂ OCH ₂ CF ₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1037 CH ₃ CH ₃	CH₂OCH₂Ph	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1038 CH ₃ CH ₃	CH₂OCH₂Ph	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1039 CH ₃ CH ₃	CH₂OCH₂Ph	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1040 CH ₃ CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1041 CH ₃ CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1042 CH ₃ CH ₃	CH ₂ OCH ₂ CH=CH ₂	Н	I Н	NSO ₂ N(CH ₃) ₂	0
1.1043 CH₃ CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	l F	NSO₂N(CH₃)₂	0
	•				

No. R ₁ R ₂	Z ₁	R ₃₀	X	Υ	p Physical data
1.1044 CH ₃ CH ₃	CH ₂ N N O	Н	Cl	NSO₂N(CH₃)₂	0
1.1045 CH₃ CH₃	CH ₂ N N O	н	Н	NSO₂N(CH₃)₂	0
1.1046 CH₃ CH₃	CH ₂ O	H	F	NSO ₂ N(CH ₃) ₂	0
1.1047 CH ₃ CH ₃	CH ₂ O	н	Cl	NSO₂N(CH₃)₂ ·	0
1.1048 CH ₃ CH ₃	CH ₂ O O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1049 CH₃ CH₃	CH ₂	Н	F	NSO₂N(CH₃)₂	0
1.1050 CH ₃ CH ₃	CH ₂	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1051 CH ₃ CH ₃	CH ₂	Н	Н	NSO₂N(CH₃)₂	0
1.1052 CH₃ CH₃	CH ₂ OCH ₂ OO	Н	F	NSO₂N(CH₃)₂	0 .
1.1053 CH ₃ CH ₃	CH ₂ OCH ₂	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1054 CH ₃ CH ₃	CH ₂ OCH ₂ OCH	Н	Н	NSO₂N(CH₃)₂	0
1.1055 CH ₃ CH ₃	CH₂O CO	Н	F	NSO₂N(CH₃)₂	0
1.1056 CH ₃ CH ₃	CH₂O CH₂O	Н	CI	NSO₂N(CH₃)₂	0

No.	R	1	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.1057	CH	13 (CH ₃	CH ₂ O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1058	Cł	d₃ (CH₃	CH₂O CH₂O	Н	F	NSO₂N(CH₃)₂	0
1.1059	Cł	∃ 3 '	CH₃	CH ₂ O O	Н	CI	NSO₂N(CH₃)₂	0
1.1060	CI	Ⅎ₃	CH₃	CH ₂ O O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1061	CI	Нз	CH₃	CH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1062	C	Нз	CH₃	CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1063	C	Нз	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	$NSO_2N(CH_3)_2$	1
1.1064	C	Нз	CH₃	CH₂CH₂CH₂OCH₃	Н	F	$NSO_2N(CH_3)_2$	1
1.1065	C	Нз	CH ₃	CH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1066	C	Нз	CH ₃	CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.1067	C	Нз	CH₃	CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.1068	3 C	Нз	CH ₃	CH2OCH2CH2OCH3	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.1069	C	Нз	CH₃	CH₂CH₂CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.1070	C	Нз	CH₃	CH₂CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.107	1	Н	CH ₃	CH₃	Н	F	NSO₂N(CH₃)₂	0
1.1072	2	Н	CH ₃	CH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1073	3	Н	CH₃	CH₃	Н	Н	NSO₂N(CH₃)₂	0
1.1074	4	Н	CH ₃	CH₃	CH	, F	NSO ₂ N(CH ₃) ₂	0
1.107	5	Н	CH₃	CH₃	CH:	3 CI	NSO ₂ N(CH ₃) ₂	0
1.107	6	Н	CH ₃	CH₃	CH:	₃ H	NSO ₂ N(CH ₃) ₂	0
1.107	7	Н	CH₃	CH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.107	8	Н	CH ₃	CH₂CH₃	Н	Cl	$NSO_2N(CH_3)_2$	0
1.107	9	Н	CH₃	CH₂CH₃	Н	Н	$NSO_2N(CH_3)_2$	0
1.108	0	Н	СН₃	CH₂CH₂CH₃	Н	F	$NSO_2N(CH_3)_2$	0
1.108	1	Н	CH₃	CH₂CH₂CH₃	Н	C	NSO ₂ N(CH ₃) ₂	0
1.108	2	Н	CH₃	CH₂CH₂CH₃	Н	Н	$NSO_2N(CH_3)_2$	0
1.108	3	Н	CH₃	CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Y	p Physical data
1.1084	Н	CH ₃	CH₂OCH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1085	Н	CH ₃	CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1086	Н	CH ₃	CH₂OCH₂CH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1087	Н	CH ₃	CH₂OCH₂CH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1088	Н	CH ₃	CH₂OCH₂CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1089	Н	CH ₃	CH₂OCH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1090	Н	CH ₃	CH₂OCH₂CH₂OCH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1091	Н	CH ₃	CH2OCH2CH2OCH3	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1092	Н	CH ₃	$CH_2OCH_2CH_2OCH_2CH_3$	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1093	Н	CH ₃	$CH_2OCH_2CH_2OCH_2CH_3$	Н	CI	NSO₂N(CH₃)₂	0
1.1094	Н	CH ₃	CH2OCH2CH2OCH2CH3	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1095	Н	СН₃	CH₂CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1096	Н	СН₃	CH₂CH₂OCH₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1097	Н	CH ₃	CH₂CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0 .
1.1098	Н	CH₃	CH₂OCH₂C≡CH	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1099	Н	CH ₃	CH₂OCH₂C≡CH	Н	CI	$NSO_2N(CH_3)_2$	0
1.1100	н	CH₃	CH₂OCH₂C≡CH	Н	Н	$NSO_2N(CH_3)_2$	0
1.1101	Н	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	F	$NSO_2N(CH_3)_2$	0
1.1102	Н	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	$NSO_2N(CH_3)_2$	0
1.1103	Н	CH ₃	CH₂OCH₂C≡CCH₃	Н	H	NSO ₂ N(CH ₃) ₂	0
1.1104	Н	CH₃	CH₂CH₂CH₂OCH₃	Н	F	NSO₂N(CH₃)₂	0
1.1105	i Н	CH₃	CH ₂ CH ₂ CH ₂ OCH ₃	Н	CI	NSO₂N(CH₃)₂	0
1.1106	в н	CH₃	CH₂CH₂CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1107	7 H	CH₃	CH₂OCH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1108	3 H	CH	CH₂OCH₂OCH₃	Н	CI	NSO₂N(CH₃)₂	0
1.1109	ЭН	CH ₃	GH₂OCH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1110	o H	CH:	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.111	1 F	CH:	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.111	2 F	CH:	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.111	3 F	I CH	S CF₃	Н	F	NSO ₂ N(CH ₃) ₂	0
1.111	4 H	I CH	₃ CF₃	Н	CI	NSO₂N(CH₃)₂	0
1.111	5 H	н сн	₃ CF ₃	Н	ı H	NSO ₂ N(CH ₃) ₂	0
1.111	6 H	н сн	3 CH ₂ OCH ₂ CF ₃	Н	l F	NSO ₂ N(CH ₃) ₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.1117	Н	CH ₃	CH ₂ OCH ₂ CF ₃	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1118	Н	CH₃	CH₂OCH₂CF₃	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1119	Н	CH ₃	CH₂OCH₂Ph	Н	F	$NSO_2N(CH_3)_2$	0
1.1120	Н	CH ₃	CH₂OCH₂Ph	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1121	Н	CH₃	CH₂OCH₂Ph	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1122	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1123	Н	CH₃	CH ₂ OCH ₂ CH=CH ₂	Н	CI	NSO₂N(CH₃)₂	0
1.1124	Н	CH ₃	CH₂OCH₂CH=CH₂	Н	Н	NSO₂N(CH₃)₂	0
1.1125	Н	CH ₃	CH ₂ N N	Н	F	NSO₂N(CH₃)₂	0
1.1126	Н	CH₃	CH ₂ NNN	Н	CI	NSO₂N(CH₃)₂	0
1.1127	Н	CH₃	CH ₂ NN-	Н	Н	NSO₂N(CH₃)₂	0
1.1128	Н	CH₃	CH ₂ O	Н	F	NSO ₂ N(CH₃) ₂	0
1.1129	Н	CH₃	CH ₂ O		CI	NSO ₂ N(CH ₃) ₂	0
1.1130	Н	CH₃	CH ₂ OOO	Н	Н	NSO ₂ N(CH ₃)₂	0
1.1131	Н	CH₃	CH ₂	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1132	2 H	CH₃	CH ₂	Н	CI	NSO₂N(CH₃)₂	0
1.1133	3 H	I CH₃	CH ₂	Н	H	NSO₂N(CH₃)₂	0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	p Physical data
1.1134	Н	CH₃	CH ₂ OCH ₂	Н	F	NSO₂N(CH₃)₂	0
1.1135	Н	CH₃	CH ₂ OCH ₂ OO	Н	CI	NSO ₂ N(CH₃) ₂	0
1.1136	Н	CH ₃	CH ₂ OCH ₂ OO	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1137	Н	CH₃	CH ₂ O	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1138	Н	CH₃	CH ₂ O	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1139	н	CH₃	CH ₂ O O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1140	Н	CH₃	CH ₂ O O	Н	F	NSO ₂ N(CH ₃) ₂	0
1.1141	Н	CH₃	CH ₂ O O	Н	CI	NSO ₂ N(CH ₃) ₂	0
1.1142	Н	СН₃	CH ₂ O O	Н	Н	NSO ₂ N(CH ₃) ₂	0
1.1143	н	CH₃	CH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1144	Н	CH₃	CH₂OCH₃	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1145	i Н	CH₃	CH2OCH2CH2OCH3	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1146	В	CH₃	CH2CH2CH2OCH3	Н	F	NSO ₂ N(CH ₃) ₂	1
1.1147	7 H	CH₃	CH₂CH₃	Н	. F	$NSO_2N(CH_3)_2$	1
1.1148	3 H	CH₃	CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.1149	9 H	l CH₃	CH ₂ OCH ₃	Н	Н	NSO₂N(CH₃)₂	1
1.1150) H	I CH₃	CH2OCH2CH2OCH3	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.115	1 H	I CH₃	CH₂CH₂CH₂OCH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.115	2 F	I CH₃	CH₂CH₃	Н	Н	NSO ₂ N(CH ₃) ₂	1
1.115	3 ⊦	н	CH₃	Н	F	'c<	0 ¹ H NMR (300 MHz; CDCl ₃) δ 16.58 (s, 1H); 7.55 (m, 2H); 6.48 (m, 1H); 6.40 (m, 1H); 2.94

No.	R₁	R ₂	Z ₁	R ₃₀	X	Y	р	Physical data
1.1154	Н	H	CH₃	Н	F	C(=C(CH ₃) ₂)	0	(m, 1H); 2.72 (m, 1H); 2.50 (s, 3H); 0.90-0.65 (m, 4H). ¹ H NMR (300 MHz; CDCl ₃) ō 16.25 (s, 1H); 7.56 (m, 2H); 6.52 (m, 1H); 6.45 (m, 1H); 4.20
1.1155	н	н	CH₃	Н	н	CH₂CH(COOCH₃)	0	(m, 1H); 3.98 (m, 1H); 2.45 (s, 3H); 1.80 (s, 3H); 1.71 (s, 3H). R ₇ = Br; ¹ H NMR (300 MHz; CDCl ₃) i.a. ō 7.44 (d, 2H); 6.54 (t, 1H); 6.53 + 6.42 (2d, 1H); 3.71 + 3.68 (2s, 3H); 2.41 +
1.1156	н	н	СН₃	Н	н	CH₂CH(COOCH₃)	C	2.40 (2s, 3H); tautomeric mixture. R ₇ =H; NEt ₃ salt (Example P14)

Table 2: Compounds of formula Ic:

No.	R ₁	R ₂	Z_1	R ₃₀	Х	Υ	Physical data
2.0000	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	CH₂	
2.0001	Н	Н	CH2OCH2CH2OCH3	Н	CI	CH ₂	
2.0002	Н	Н	CH2OCH2CH2OCH3	Н	Н	CH ₂	
2.0003	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH ₂	
2.0004	Н	Н	CH2OCH2CH2OCH2CH3	Н	CI	CH ₂	
2.0005	Н	Н	CH2OCH2CH2OCH2CH3	Н	Н	CH ₂	

No.	R ₁	R ₂ Z ₁	R ₃₀ X Y	Physical data
2.0006	Н	H CH ₂ N(CH ₃)SO ₂ CH ₃	H F CH ₂	
2.0007	Н	H CH ₂ N(CH ₃)SO ₂ CH ₃	H CI CH ₂	
2.0008	Н	H CH ₂ N(CH ₃)SO ₂ CH ₃	H H CH ₂	
2.0009	Н	H CH₂OCH₂Ph	H F CH₂	
2.0010	Н	H CH₂OCH₂Ph	H CI CH ₂	
2.0011	Н	H CH₂OCH₂Ph	H H CH₂	
2.0012	Н	H · CH ₂ OCH ₂ CH ₂ OH	H F CH₂	
2.0013	Н	H CH2OCH2CH2OH	H CI CH₂	
2.0014	Н	H CH2OCH2CH2OH	H H CH₂	
2.0015	Н	H CH ₂ OCH ₂ CH ₂ CI	H F CH₂	
2.0016	Н	H CH ₂ OCH ₂ CH ₂ CI	H CI CH₂	
2.0017	Н	H CH ₂ OCH ₂ CH ₂ Cl	H H CH₂	
2.0018	Н	H CH ₂ OCH ₂ CF ₃	H F CH₂	
2.0019	Н	H CH ₂ OCH ₂ CF ₃	H CI CH₂	
2.0020	Н	H CH₂OCH₂CF₃	H H CH₂	
2.0021	Н	H CH ₂ OCH ₂ CH=CH ₂	H F CH₂	
2.0022	Н	H CH₂OCH₂CH=CH₂	H CI CH₂	
2.0023	Н	H CH ₂ OCH ₂ CH=CH ₂	H H CH₂	
2.0024	Н	H CH₂O(CO)CH₃	H F CH₂	
2.0025	Н	H CH₂O(CO)CH₃	H CI CH₂	
2.0026	Н	H CH ₂ O(CO)CH ₃	H H CH₂	
2.0027	Н	H CH ₂ OCH ₂ C≡CH	H F CH₂	
2.0028	Н	H CH₂OCH₂C≡CH	H Cl CH₂	
2.0029	Н	H CH₂OCH₂C≡CH	H H CH ₂	
2.0030	Н	H CH ₂ OCH ₂ C≡CCH ₃	H F CH₂	
2.0031	Н	H CH ₂ OCH ₂ C≡CCH ₃	H CI CH₂	
2.0032	Н	H CH ₂ OCH ₂ C≡CCH ₃	H H CH₂	
2.0033	Н	H CH ₂ N N	H F CH₂	
2.0034	Н	H CH ₂ N N O	H CI CH₂	

No.	R ₁	R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0035	Н	Н	CH ₂ N N N O	H H CH₂	
2.0036	Н	Н	CH ₂ O O	H F CH₂	
2.0037	Н	Н	CH ₂ O O	H CI CH₂	
2.0038	Н	Н	CH ₂ O	н н сн₂	
2.0039	Н	Н	CH ₂ O	H F CH₂	
2.0040	Н	Н	CH ₂ O	H CI CH ₂	
2.0041	Н	Н	CH_{2}	H H CH₂	
2.0042	Н	Н	CH ₂ OCH ₂ OCH	H F CH₂	
2.0043	Н	Н	CH ₂ OCH ₂ OO	H CI CH₂	
2.0044	Н	Н	CH ₂ OCH ₂ OO	H H CH ₂	•
2.0045	Н	Н	CH₂O CO	H F CH₂	
2.0046	Н	Н	CH ₂ O O	H CI CH₂	
2.0047	Н	Н	CH ₂ O	H H CH₂	
2.0048	Н	Н	CH ₂ O O	H F CH₂	

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	Physical data
2.0049	Н	Н		Н	CI	CH₂	
			сн,о ,о				
			J.120	Н	ш	CH₂	
2.0050	Н	Н		П	п	C1 12	
			CH ₂ O				
2.0051	CH₃	CH₃	CH2OCH2CH2OCH3	Н	F	CH ₂	
2.0052	CH₃	CH ₃	CH2OCH2CH2OCH3	Н	CI	CH ₂	
2.0053	CH₃	CH₃	CH2OCH2CH2OCH3	Н	Н	CH ₂	
2.0054	CH ₃	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH ₂	
2.0055	CH₃	СН₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	CH ₂	
2.0056	CH₃	CH₃	CH2OCH2CH2OCH2CH3	Н	Н	CH ₂	
2.0057	CH₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH ₂	
2.0058	CH₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Ci	CH ₂	
2.0059	CH₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	CH ₂	
2.0060	СН₃	CH	CH₂OCH₂Ph	Н	F	CH ₂	
2.0061	CH₃	CH	CH₂OCH₂Ph	Н	C	CH ₂	
2.0062	CH ₃	CH	, CH₂OCH₂Ph	Н	Н	CH ₂	
2.0063	CH	CH:	3 CH2OCH2CH2OH	Н	F	CH ₂	
2.0064	CH	CH:	3 CH2OCH2CH2OH	Н	С	I CH₂	
2.0065	CH	CH	3 CH2OCH2CH2OH	Н	Н	I CH₂	
2.0066	CH:	, CH	3 CH2OCH2CH2CI	Н	F	CH ₂	
2.0067	CH	₃ CH	3 CH2OCH2CH2 Cl	Н	С	I CH ₂	
2.0068	CH	₃ CH	3 CH2OCH2CH2 CI	Н	۲	I CH ₂	
2.0069	CH	₃ CH	3 CH2OCH2CF3	Н	F	: CH₂	
2.0070	CH	₃ CH	3 CH2OCH2CF3	Н	C	I CH ₂	
2.0071	СН	з СН	3 CH2OCH2CF3	Н	H	H CH₂	
2.0072	CH	3 CH	3 CH2OCH2CH=CH2	Н	F	CH ₂	
2.0073	з сн	3 CH	I ₃ CH ₂ OCH ₂ CH=CH ₂	Н	C	CH ₂	
2.0074	F CH	l₃ C⊦	I₃ CH2OCH2CH=CH2	Н	ł	H CH₂	
2.007	5 CH	l₃ C⊦	I₃ CH₂O(CO)CH₃	Н	I	= CH₂	
2.007	CH	l₃ Ch	I₃ CH₂O(CO)CH₃	Н	(CI CH ₂	
2.007	7 CH	l₃ Ch	I ₃ CH ₂ O(CO)CH ₃	Н	l I	H CH₂	

No.	R ₁	R ₂	Z ₁	R ₃₀	X		Physical data
2.0078	CH₃	CH ₃	CH₂OCH₂C≡CH	Н	F	CH ₂	
2.0079	CH₃	CH₃	CH₂OCH₂C≡CH	Н	CI	CH ₂	
2.0080	CH ₃	CH₃	CH₂OCH₂C≡CH	Н	Н	CH ₂	
2.0081	CH ₃	CH ₃	CH₂OCH₂C≡CCH₃	Н	F	CH ₂	
2.0082	CH₃	CH₃	CH ₂ OCH ₂ C≡CCH ₃	Н	CI	CH ₂	
2.0083	CH₃	CH ₃	CH ₂ OCH ₂ C≡CCH ₃	Н		CH₂	
2.0084	CH₃	CH₃	CH ₂ N N	Н	F	CH₂	
2.0085	CH₃	CH₃	CH ₂ N N O	Н	CI	CH₂	
2.0086	CH₃	CH₃	CH ₂ N N O	Н	Н	CH ₂	•
2.0087	CH₃	CH ₃	CH ₂ O	Н	F	CH₂	
2.0088	CH	CH:	CH ₂ O	Н	CI	CH ₂	
2.0089	CH	3 CH	3 CH ₂ 0	Н	Н	CH ₂	
2.0090	СН	₃ СН	CH ₂	Н	F	CH₂	
2.0091	СН	з СН	CH ₂	Н	С	I CH₂	
2.0092	CH	₃ CH	GH ₂	Н	۲	I CH₂	
2.0093	CH	l₃ CH	H ₃ CH ₂ OCH ₂ O	н	F	CH ₂	

No.	R₁	R ₂	Z ₁	R ₃₀		Υ	Physical data
2.0094	CH₃	CH₃	CH ₂ OCH ₂	Н	CI	CH ₂	
2 0005	СН₃	СП	CH ₂ OCH ₂	Н	н	CH ₂	
2.0095	CH3	CI 13	0	••	••	J. 12	
2.0096	CH ₃	CH₃	/ 0	Н	F	CH ₂	
			CH ₂ O				
2.0097	CH₃	CH₃		Н	CI	CH₂	
			CH ₂ O			011	
2.0098	CH₃	CH₃	CH ₂ O O	Н	Н	CH₂	
2.0099	CH _°	СН₃		Н	F	CH₂	
2.0000	O,	.	CH ₂ O O			_	
2.0100	СП	CH	01120	Н	CI	CH ₂	
2.0100	СПз	O1 13		••	٥.	J. 1,2	
			CH₂O ✓				
2.0101	CH	CH ₃		Н	Н	CH₂	
			CH ₂ O				•
2.0102	Н	CH₃	CH2OCH2CH2OCH3	Н	F	CH ₂	
2.0103	Н	CH ₃	CH₂OCH₂CH₂OCH₃	Н	CI	CH ₂	
2.0104	Н	CH₃	CH₂OCH₂CH₂OCH₃	Н	Н	CH ₂	
2.0105	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH₂	
2.0106	Н	CH₃	$CH_2OCH_2CH_2OCH_2CH_3$	Н	С	I CH₂	
2.0107	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂	
2.0108	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH ₂	
2.0109	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	С	I CH₂	
2.0110	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	H	I CH₂	
2.0111	Н	CH₃	CH₂OCH₂Ph	Н	F	CH₂	
2.0112	Н	CH₃	, CH₂OCH₂Ph	Н	С	I CH ₂	
2.0113	в Н	CH	, CH₂OCH₂Ph	Н	ŀ	H CH ₂	
2.0114	Н	CH	CH ₂ OCH ₂ CH ₂ OH	Н	F	CH ₂	
2.0115	5 Н	CH	3 CH2OCH2CH2OH	Н	C	I CH2	
2.0116	в н	CH	3 CH2OCH2CH2OH	Н	l F	H CH₂	

No.	R ₁	R_2 Z_1	R ₃₀	Х	Y	Physical data
2.0117	Н	CH ₃ CH ₂ OCH ₂ CH ₂ CI	Н	F	CH ₂	
2.0118	Н	CH ₃ CH ₂ OCH ₂ CH ₂ CI	Н	CI	CH ₂	
2.0119	H	CH ₃ CH ₂ OCH ₂ CH ₂ CI	Н	Н	CH ₂	
2.0120	Н	CH ₃ CH ₂ OCH ₂ CF ₃	H	F	CH ₂	
2.0121	Н	CH ₃ CH ₂ OCH ₂ CF ₃	Н	C	CH₂	
2.0122	Н	CH ₃ CH ₂ OCH ₂ CF ₃	Н	Н	CH ₂	
2.0123	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	Н	F	CH ₂	
2.0124	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	Н	С	I CH₂	
2.0125	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	Н	Н	CH₂	
2.0126	Н	CH₃ CH₂O(CO)CH₃	Н	F	CH₂	
2.0127	Н	CH₃ CH₂O(CO)CH₃	Н	С	I CH₂	
2.0128	Н	CH₃ CH₂O(CO)CH₃	Н	H	I CH₂	
2.0129	Н	CH₃ CH₂OCH₂C≡CH	Н	F	CH₂	
2.0130	Н	CH₃ CH₂OCH₂C≡CH	Н	C	I CH ₂	
2.0131	Н	CH₃ CH₂OCH₂C≡CH	Н	H	I CH₂	
2.0132	Н	CH₃ CH₂OCH₂C≡CCH₃	Н	F	CH₂	
2.0133	Н	CH₃ CH₂OCH₂C≡CCH₃	Н	C	CH₂	
2.0134	Н	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	Н	ł	H CH₂	
2.0135	Н	CH ₃	Н	I	F CH ₂	
2.0136	Н	CH ₂ N N O	Н	C	CI CH₂	
2.0137	Н	CH ₂ N N O	Н]	H CH₂	
2.0138	Н	CH ₃	}-	!	F CH₂	

No.	R ₁	R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0139	Н	CH₃	CH ₂ OOO	H CI CH₂	
2.0140	Н	CH₃	CH ₂ OOO	H H CH₂	
2.0141	Н	CH₃	CH ₂ O	H F CH₂	
2.0142	Н	CH₃	CH ₂ O	H CI CH₂	
2.0143	Н	CH ₃	CH ₂	H H CH₂	
2.0144	Н	CH₃	CH ₂ OCH ₂ OO	H F CH₂	
2.0145	Н	CH₃	CH ₂ OCH ₂ OO	H CI CH₂	
2.0146	Н	CH ₃	CH ₂ OCH ₂	H H CH₂	
2.0147	Н	CH₃	CH ₂ O	H F CH₂	
2.0148	Н	CH₃	CH ₂ O	H Cl CH ₂	
2.0149	Н	CH₃	CH ₂ O	H H CH₂	
2.0150	Н	CH₃	CH ₂ O O	H F CH₂	
2.0151	Н	CH₃	CH ₂ O O	H CI CH₂	
2.0152	2 H	I CH₃	CH ₂ O O	н н сн₂	
2.0153	3 F	н н	CH ₂ OCH ₂ CH ₂ OCH ₃	CH₃ F CH₂	

No.	R ₁	R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0154	Н	Н	CH₂OCH₂CH₂OCH₃	CH₃ CI CH₂	
2.0155	Н	Н	CH₂OCH₂CH₂OCH₃	CH₃ H CH₂	
2.0156	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH₃ F CH₂	
2.0157	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH ₃ CI CH ₂	
2.0158	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH₃ H CH₂	
2.0159	Н	Н	CH₂N(CH₃)SO₂CH₃	CH ₃ F CH ₂	
2.0160	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ CI CH₂	
2.0161	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ H CH₂	
2.0162	Н	Н	CH ₂ OCH ₂ Ph	CH₃ F CH₂	
2.0163	Н	Н	CH₂OCH₂Ph	CH ₃ CI CH ₂	
2.0164	Н	Н	CH₂OCH₂Ph	CH₃ H CH₂	•
2.0165	Н	Н	CH₂OCH₂CH₂OH	CH ₃ F CH ₂	
2.0166	Н	Н	CH ₂ OCH ₂ CH ₂ OH	CH₃ CI CH₂	
2.0167	Н	Н	CH ₂ OCH ₂ CH ₂ OH	CH₃ H CH₂	
2.0168	Н	Н	CH₂OCH₂CH₂CI	CH₃ F CH₂	
2.0169	Н	Н	CH2OCH2CH2 CI	CH ₃ CI CH ₂	
2.0170	Н	Н	CH ₂ OCH ₂ CH ₂ CI	CH₃ H CH₂	
2.0171	Н	Н	CH₂OCH₂CF₃	CH₃ F CH₂	
2.0172	Н	Н	CH₂OCH₂CF₃	CH₃ CI CH₂	
2.0173	Н	Н	CH₂OCH₂CF₃	CH₃ H CH₂	
2.0174	Н	Н	CH₂OCH₂CH=CH₂	CH₃ F CH₂	
2.0175	Н	Н	CH ₂ OCH ₂ CH=CH ₂	CH₃ CI CH₂	•
2.0176	Н	Н	CH ₂ OCH ₂ CH=CH ₂	CH₃ H CH₂	
2.0177	Н	Н	I CH ₂ O(CO)CH ₃	CH₃ F CH₂	
2.0178	Н	Н	I CH ₂ O(CO)CH ₃	CH₃ CI CH₂	
2.0179	Н	۲	I CH₂O(CO)CH₃	CH₃ H CH₂	
2.0180	Н	F	H CH₂OCH₂C≡CH	CH₃ F CH₂	
2.0181	Н	. 1	H CH2OCH2C≡CH	CH₃ CI CH₂	
2.0182	Н	ŀ	H CH₂OCH₂C≡CH	CH₃ H CH₂	
2.0183	Н	H	H CH₂OCH₂C≡CCH₃	CH₃ F CH₂	
2.0184	Н	ŀ	H CH2OCH2C≡CCH3	CH₃ CI CH₂	
2.0185	Н	H	H CH2OCH2C≡CCH3	CH₃ H CH₂	

No.	R₁	R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0186	Н	Н	CH ₂ N N N N N N N N N N N N N N N N N N N	CH₃ F CH₂	
2.0187	Н	Н	CH ₂ N N O	CH ₃ CI CH ₂	
2.0188	Н	Н	CH ₂ N N N N N N N N N N N N N N N N N N N	CH₃ H CH₂	
2.0189	Н	Н	CH ₂ O O	CH₃ F CH₂	
2.0190	Н	н	CH ₂ O	CH₃ CI CH₂	
2.0191	Н	Н	CH ₂ O O	CH₃ H CH₂	
2.0192	Н	Н	CH ₂	CH₃ F CH₂	
2.0193	Н	Н	CH ₂	CH₃ CI CH₂	
2.0194	Н	Н	CH ₂	CH₃ H CH₂	
2.0195	Н	. Н	CH ₂ OCH ₂ OO	CH₃ F CH₂	
2.0196	Н	Н	CH ₂ OCH ₂ OO	CH₃ CI CH₂	
2.0197	Н	Н	CH ₂ OCH ₂ OO	CH₃ H CH₂	
2.0198	Н	Н	CH₂O CO	CH₃ F CH₂	

No.	R₁	R ₂	Z ₁	R ₃₀ X		Y	Physical data
2.0199	Н	Н		CH₃ CI	(CH ₂	
0.0000	LJ	ы	CH₂O ∼	CH₃ H		CH.	
2.0200	Н	Н	CH ₂ O	Ong 11	,	01 12	
2.0201	Н	Н		CH₃ F	(CH ₂	
			CH₂O CH₂O				
2.0202	Н	Н		CH₃ CI		CH ₂	
			CH ₂ O				
2.0203	Н	Н		CH₃ H		CH ₂	
			CH ₂ O				
2.0204	CH ₃	CH₃	CH2OCH2CH2OCH3	CH₃ F		CH ₂	
2.0205	CH ₃	CH ₃	3 CH2OCH2CH2OCH3	CH₃ C	l	CH₂	
2.0206	CH₃	CH	3 CH2OCH2CH2OCH3	CH₃ H	1	CH₂	
2.0207	CH₃	CH	3 CH2OCH2CH2OCH2CH3	CH₃ F	•	CH ₂	
2.0208	CH₃	CH	3 CH2OCH2CH2OCH2CH3	CH₃ C	1	CH₂	
2.0209	CH₃	CH	3 CH2OCH2CH2OCH2CH3	CH₃ F	ł	CH₂	
2.0210	CH ₃	CH	3 CH2N(CH3)SO2CH3	CH₃ F	=	CH ₂	
2.0211	CH₃	CH	3 CH2N(CH3)SO2CH3	CH₃ C	;l	CH₂	
2.0212	CH₃	CH	3 CH2N(CH3)SO2CH3	CH₃ F	1	CH ₂	
2.0213	CH₃	СН	₃ CH₂OCH₂Ph	CH₃ F	=	CH ₂	
2.0214	CH₃	CH	₃ CH₂OCH₂Ph	CH₃ C	Cl	CH ₂	
2.0215	CH	CH	₃ CH₂OCH₂Ph	CH₃ I	1	CH ₂	
2.0216	CH	CH	I₃ CH₂OCH₂CH₂OH	CH₃ I	=	CH ₂	
2.0217	CH	, CH	I₃ CH₂OCH₂CH₂OH	CH₃ (Cl	CH ₂	
2.0218	CH:	, CH	I ₃ CH ₂ OCH ₂ CH ₂ OH	CH₃ I	Н	CH ₂	
2.0219	CH:	3 CH	I₃ CH₂OCH₂CH₂CI	CH₃	F	CH₂	
2.0220	CH:	3 CH	13 CH2OCH2CH2 CI	CH₃ (CI	CH₂	
2.0221	CH	₃ C⊦	I₃ CH₂OCH₂CH₂ CI	CH ₃	Н	CH ₂	
2.0222	СН	3 CH	I₃ CH₂OCH₂CF₃	CH₃	F	CH ₂	
2.0223	СН	₃ CH	I₃ CH₂OCH₂CF₃	CH ₃	CI	CH ₂	
2.0224	СН	₃ C⊦	H ₃ CH ₂ OCH ₂ CF ₃	CH₃.	Н	CH ₂	

No.	R ₁ R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0225	CH ₃ CH ₃ Cl	H ₂ OCH ₂ CH=CH ₂	CH₃ F CH₂	
2.0226	CH ₃ CH ₃ C	H₂OCH₂CH=CH₂	CH ₃ Cl CH ₂	
2.0227	CH ₃ CH ₃ C	H₂OCH₂CH=CH₂	CH ₃ H CH ₂	
2.0228	CH ₃ CH ₃ C	H₂O(CO)CH₃	CH₃ F CH₂	
2.0229	CH ₃ CH ₃ C	H₂O(CO)CH₃	CH ₃ Cl CH ₂	
2.0230	CH₃ CH₃ C	H₂O(CO)CH₃	CH₃ H CH₂	
2.0231	CH₃ CH₃ C	H₂OCH₂C≡CH	CH₃ F CH₂	
2.0232	CH₃ CH₃ C	H₂OCH₂C≣CH	CH₃ CI CH₂	
2.0233	CH ₃ CH ₃ C	H₂OCH₂C≡CH	CH₃ H CH₂	
2.0234	CH₃ CH₃ C	H ₂ OCH ₂ C≡CCH ₃	CH₃ F CH₂	
2.0235	CH ₃ CH ₃ C	H ₂ OCH ₂ C≡CCH ₃	CH₃ CI CH₂	
2.0236	CH ₃ CH ₃ C	H ₂ OCH ₂ C≡CCH ₃	CH₃ H CH₂	
2.0237	CH₃ CH₃	CH ₂ N N	CH₃ F CH₂	
2.0238	CH₃ CH₃	CH ₂ N N N O	CH₃ CI CH₂	
2.0239	CH₃ CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	CH₃ H CH₂	
2.0240	CH₃ CH₃	CH ₂ O O	CH₃ F CH₂	
2.0241	CH₃ CH₃	CH ₂ O	CH₃ CI CH₂	•
2.0242	2 CH₃ CH₃	CH ₂ O	CH₃ H CH₂	
2.0243	3 CH₃ CH₃	CH ₂	CH₃ F CH₂	

No.	R ₁	R ₂		R ₃₀ X		Physical data
2.0244	CH₃ (CH₃	CH ₂ O	CH₃ CI C	CH ₂	
2.0245	CH₃ (CH₃	CH ₂	CH₃ H C	CH ₂	
2.0246	CH ₃	CH₃	CH ₂ OCH ₂	CH₃ F C	CH ₂	
2.0247	CH ₃	CH₃	CH ₂ OCH ₂	CH₃ CI C	CH ₂	
2.0248	CH ₃	CH₃	CH ₂ OCH ₂	CH₃ H C	CH₂	
2.0249	CH ₃	CH₃	CH ₂ O	CH₃ F (CH₂	
2.0250	CH ₃	CH₃	CH ₂ O O	CH₃ CI (CH₂	
2.0251	CH₃	CH₃	CH ₂ O	CH₃ H (CH₂	
2.0252	СН₃	CH₃	CH₂O O	CH₃ F	CH₂	
2.0253	CH₃	CH₃	CH₂O O	CH₃ CI	CH₂	
2.0254	CH₃	CH₃	CH ₂ O O	CH₃ H	CH₂	
2.0255	Н	СН₃	CH₂OCH₂CH₂OCH₃	CH₃ F	CH₂	
2.0256	н	CH₃	CH₂OCH₂CH₂OCH₃	CH₃ CI	CH ₂	
2.0257	' Н	CH₃	CH₂OCH₂CH₂OCH₃	CH₃ H	CH ₂	
2.0258	в н	СН₃	CH2OCH2CH2OCH2CH3	CH₃ F	CH ₂	
2.0259	Н	CH₃	CH2OCH2CH2OCH2CH3	CH₃ CI	CH ₂	
2.0260	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH₃ H	CH ₂	
2.026	н н	CH₃	CH₂N(CH₃)SO₂CH₃	CH₃ F	CH ₂	
2.026	2 H	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	CH ₃ CI		
2.026	3 H	CH₃	CH₂N(CH₃)SO₂CH₃	CH₃ H	CH ₂	

No.	R ₁	R_2 Z_1	R ₃₀ X Y	Physical data
2.0264	Н	CH₃ CH₂OCH₂Ph	CH₃ F CH₂	
2.0265	Н	CH₃ CH₂OCH₂Ph	CH₃ CI CH₂	
2.0266	Н	CH₃ CH₂OCH₂Ph	CH ₃ H CH ₂	
2.0267	Н	CH₃ CH₂OCH₂CH₂OH	CH ₃ F CH ₂	
2.0268	Н	CH3 CH2OCH2CH2OH	CH₃ CI CH₂	
2.0269	Н	CH3 CH2OCH2CH2OH	CH₃ H CH₂	
2.0270	Н	CH3 CH2OCH2CH2CI	CH₃ F CH₂	
2.0271	Н	CH ₃ CH ₂ OCH ₂ CH ₂ CI	CH₃ CI CH₂	
2.0272	H	CH ₃ CH ₂ OCH ₂ CH ₂ CI	CH₃ H CH₂	
2.0273	H	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ F CH₂	
2.0274	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ CI CH₂	
2.0275	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ H CH₂	
2.0276	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ F CH₂	
2.0277	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ CI CH₂	
2.0278	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ H CH₂	
2.0279	Н	CH₃ CH₂O(CO)CH₃	CH₃ F CH₂	
2.0280	Н	CH₃ CH₂O(CO)CH₃	CH₃ CI CH₂	
2.0281	Н	CH₃ CH₂O(CO)CH₃	CH₃ H CH₂	
2.0282	Н	CH₃ CH₂OCH₂C≣CH	CH₃ F CH₂	
2.0283	Н	CH₃ CH₂OCH₂C≡CH	CH₃ CI CH₂	
2.0284	Н	CH ₃ CH ₂ OCH ₂ C≡CH	CH₃ H CH₂	
2.0285	Н	CH₃ CH₂OCH₂C≡CCH₃	CH ₃ F CH ₂	
2.0286	Н	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	CH₃ CI CH₂	
2.0287	Н	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	CH₃ H CH₂	
2.0288	Н	CH₃ =N	CH₃ F CH₂	
2.0289	Н	CH ₃ CH ₂ N CH ₃ N	CH₃ CI CH₂	
2.0200		CH ₃ CH ₂ N N		

No.	R₁	R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0290	Н (CH₃	CH ₂ NNN	CH₃ H CH₂	
2.0291	н	СН₃	CH ₂ O	CH₃ F CH₂	
2.0292	Н	СН₃	CH ₃ O	CH₃ CI CH₂	
2.0293	н	CH₃	CH ₂ O	CH₃ H CH₂	
2.0294	н	CH₃	CH ₂	CH ₃ F CH ₂	
2.0295	Н	СН₃	CH ₂	CH₃ CI CH₂	
2.0296	Н	CH₃	CH ₂ O	CH₃ H CH₂	
2.0297	Н	CH ₃	CH ₂ OCH ₂	CH₃ F CH₂	
2.0298	Н	CH₃	CH ₂ OCH ₂	CH₃ CI CH₂	
2.0299	Н	CH₃	CH ₂ OCH ₂ OO	CH₃ H CH₂	
2.0300	Н	CH₃	CH ₂ O	CH₃ F CH₂	
2.0301	Н	CH₃	CH ₂ O 0	CH ₃ CI CH ₂	
2.0302	н	CH₃	CH ₂ O	CH₃ H CH₂	
2.0303	Н	CH ₃	CH ₂ O O	CH₃ F CH₂	

No.	R₁	R ₂	Z ₁	R ₃₀ X Y	Physical data
2.0304	Н	CH₃	CH ₂ O O	CH₃ CI CH₂	
2.0305	н	CH₃	CH ₂ O O	CH₃ H CH₂	

Table 3: Compounds of formula Id:

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	р	Phys. data, remarks
3.0000	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	F	CH₂	0	
3.0001	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₃	Н	CI	CH ₂	0	
3.0002	Н	Н	CH₂OCH₂CH₂OCH₃	Н	Н	CH₂	0	
3.0003	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH₂	0	
3.0004	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	CH ₂	0	
3.0005	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂	0	
3.0006	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH₂	0	
3.0007	Н	H	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	CI	CH₂	0	
3.0008	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	Н	CH₂	0	
3.0009	Н	Н	CH₂OCH₂Ph	Н	F	CH₂	0	
3.0010	Н	Н	CH₂OCH₂Ph	. Н	CI	CH₂	0	
3.0011	Н	Н	CH₂OCH₂Ph	Н	Н	CH ₂	0	
3.0012	Н	Н	CH₂OCH₂CH₂OH	Н	F	_		
3.0013	Н	Н	CH₂OCH₂CH₂OH	Н	C	CH₂	0	
3.0014	Н	Н	CH₂OCH₂CH₂OH	Н	Н	CH ₂	0	
3.0015	Н	Н	CH₂OCH₂CH₂CI	Н	F	CH₂	. 0	
3.0016	Н	Н	CH ₂ OCH ₂ CH ₂ CI	Н	C	I CH₂	0	

No.	R₁	R ₂	Z ₁		Х	Υ	р	Phys. data, remarks
3.0017	Н	Н	CH₂OCH₂CH₂ CI	Н		_	0	
3.0018	Н	Н	CH ₂ OCH ₂ CF ₃	Н		CH ₂		
3.0019	Н	Н	CH₂OCH₂CF₃	Н		CH ₂		
3.0020	Н	Н	CH ₂ OCH ₂ CF ₃	Н		_		
3.0021	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н		CH₂		
3.0022	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н		CH ₂		
3.0023	Н	Н	CH ₂ OCH ₂ CH=CH ₂	Н	H	_		
3.0024	Н	Н	CH ₂ O(CO)CH ₃	Н	F	CH₂		
3.0025	Н	Н	CH ₂ O(CO)CH ₃	Н		CH₂		
3.0026	Н	Н	CH₂O(CO)CH₃	Н		CH ₂		
3.0027	Н	Н	CH₂OCH₂C≡CH	Н		CH ₂		
3.0028	Н	Н	CH₂OCH₂C≡CH	Н		CH ₂		
3.0029	Н	Н	CH₂OCH₂C≡CH	Н		CH₂		
3.0030	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	Н		CH₂		
3.0031	Н	H		Н		CH₂		
3.0032	Н	Н		Н		CH ₂		
3.0033	H	Н	CH ₂ N N	Н	F	CH ₂	. 0	
3.0034	Н	Н	CH ₂ N N N N N N N N N N N N N N N N N N N	Н	С	I CH₂	2 0	
3.0035	Н	Н	CH ₂ N N	Н	ŀ	H CH	2 0	
3.0036	Н	H	N-N	Н	ì F	F CH	2 0	
3.0037	· н	F	CH ₂ OOO	-	I C	CI CH	0	

No.	R ₁	R ₂	Z ₁		Х	Υ	р	Phys. data, remarks
3.0038	Н	Н	CH ₂ O O	Н	Н	CH₂	0	
3.0039	Н	Н	CH ₂	Н	F	CH₂	0	
3.0040	Н	Н	CH ₂ O	Н	Ci	CH ₂	0	
3.0041	Н	Н	CH ₂ O	Н	Н	CH ₂	0	
3.0042	Н	Н	CH ₂ OCH ₂	Н	F	CH ₂	0	
3.0043	Н	Н	CH ₂ OCH ₂	Н	CI	CH ₂	0	
3.0044	Н	Н	CH ₂ OCH ₂ OO	Н	Н	CH₂	0	
3.0045	Н	Н	CH ₂ O	Н	F	CH ₂	0	
3.0046	Н	Н	CH ₂ O	Н	CI	CH₂	0	
3.0047	н	Н	CH ₂ O	Н	Н	CH ₂	. 0	
3.0048	Н	н	CH ₂ O O	Н	F	CH	2 0	
3.0049	Н	Н	CH ₂ O O	н	С	I CH	2 0	
3.0050	Н	Н	CH ₂ O O	Н	Н	CH	2 0	
3.0051	CH₃	СН₃	CH2OCH2CH2OCH3	Н	F	СН	2 0	
3.0052			CH₂OCH₂CH₂OCH₃	Н	С	I CH	2 0	
3.0053			CH₂OCH₂CH₂OCH₃	Н	-	і СН	2 0	
3.0054			CH2OCH2CH2OCH2CH3	, н	F	СН	2 0	

No.	R ₁	R ₂	Z ₁		R ₃₀	X	Υ	р	Phys. data, remarks
3.0055	СН₃	CH₃	CH ₂ OCH ₂ CH ₂	OCH ₂ CH ₃	Н	CI	CH ₂	0	
3.0056	СН₃	CH₃	CH2OCH2CH2	OCH ₂ CH ₃	Н	Н	CH₂	0	
3.0057	СН₃	CH₃	CH₂N(CH₃)S(O₂CH₃	Н	F	CH ₂	0	
3.0058	CH ₃	CH ₃	CH₂N(CH₃)S(D₂CH₃	Н	CI	CH ₂	0	
3.0059	CH ₃	СН₃	CH₂N(CH₃)S(O₂CH₃	Н	Н	CH ₂	0	
3.0060	CH ₃	CH₃	CH₂OCH₂Ph		Н	F	CH ₂	0	
3.0061	CH ₃	CH ₃	CH₂OCH₂Ph		H	CI	CH ₂	0	
3.0062	CH₃	CH₃	CH₂OCH₂Ph		Н	Н	CH₂	0	
3.0063	CH₃	CH₃	CH ₂ OCH ₂ CH	₂OH	Н	F	CH ₂	0	
3.0064	CH₃	CH₃	CH ₂ OCH ₂ CH	₂OH	Н	CI	CH ₂	0	
3.0065	CH ₃	CH₃	CH ₂ OCH ₂ CH	₂ OH	Н	Н	CH ₂	0	
3.0066	CH₃	CH ₃	CH ₂ OCH ₂ CH	₂ Ci	Н	F	CH ₂	0	
3.0067	CH₃	CH₃	CH ₂ OCH ₂ CH	₂ Cl	Н	CI	CH₂	0	
3.0068	CH₃	CH₃	CH₂OCH₂CH	l₂ CI	Н	Н	CH₂	0	
3.0069	CH	CH₃	CH₂OCH₂CF	3	Н	F	CH ₂	0	
3.0070	CH	CH ₃	CH ₂ OCH ₂ CF	3 ·	Н	CI	CH ₂	0	
3.0071	CH	CH ₃		3	Н	Н	CH ₂	0	
3.0072	CH	CH:	3 CH2OCH2CH	I=CH ₂	Н	F	CH ₂	0	
3.0073	CH:	CH	3 CH2OCH2CH	I=CH ₂	Н	CI	CH ₂	0	
3.0074	CH	GH:	3 CH2OCH2CH	i=CH₂	Н	Н	CH ₂	0	
3.0075	СН	3 CH	3 CH ₂ O(CO)C	H ₃	Н	F	CH ₂	0	
3.0076	СН	3 CH	3 CH ₂ O(CO)C	H ₃	Н	C	CH ₂	0	
3.0077	СН	₃ CH	3 CH2O(CO)C	H ₃	Н	Н	CH ₂	2 0	
3.0078	CH	₃ СН	3 CH2OCH2C	€CH	Н	F	CH ₂	2 0	
3.0079	CH	₃ СН		€CH	Н	С	I. CH	2 0	
3.0080	CH	₃ CH	3 CH2OCH2C	€CH	Н	Н	CH	2 0	
3.0081	СН	₃ CH	3 CH2OCH2C	ECCH₃	Н	F	CH	2 0	
3.0082	2 CH	l₃ CH	3 CH2OCH2C	ECCH₃	Н	С	I CH	2 0	
3.0083	3 CH	l₃ CH	I ₃ CH ₂ OCH ₂ C	≡CCH₃	Н	H	I CH	2 0	
3.0084	4 CH	l₃ CH	l ₃ [=N	Н	F	CH	2 0	
			l₃ CH₂ ^N	10 / N-					

No. R ₁ R ₂	Z ₁	R ₃₀ X Y p Phys. data, remarks
3.0085 CH ₃ CH ₃	CH ₂ N N	H CI CH₂ 0
3.0086 CH ₃ CH ₃	CH ₂ N N O	H H CH₂ 0
3.0087 CH ₃ CH ₃	CH ₂ O O	H F CH₂ 0
3.0088 CH ₃ CH ₃	CH ₂ O O	H CI CH₂ 0
3.0089 CH ₃ CH ₃	CH ₂ O	H H CH₂ 0
3.0090 CH ₃ CH ₃	CH ₂ O	H F CH ₂ 0
3.0091 CH ₃ CH ₃	CH ₂ O	H CI CH ₂ 0
3.0092 CH ₃ CH ₃	CH ₂ O	H H CH₂ 0
3.0093 CH ₃ CH ₃	CH ₂ OCH ₂ OO	H F CH₂ 0
3.0094 CH ₃ CH ₃	CH ₂ OCH ₂	H CI CH₂ 0
3.0095 CH ₃ CH ₃	CH ₂ OCH ₂ OO	H H CH₂ 0
3.0096 CH ₃ CH ₃	CH ₂ O	H F CH₂ 0
3.0097 CH ₃ CH ₃	CH ₂ O 0	H CI CH₂ 0

No.	R ₁	R ₂	Z ₁	R ₃₀	Х	Υ	р	Phys. data, remarks
3.0098	CH₃	CH₃	CH ₂ O	Н	Н	CH₂	0	
3.0099	СН₃	СН₃	CH ₂ O O	Н	F	CH ₂	0	
3.0100	СН₃	CH₃	CH ₂ O O	Н	CI	CH₂	0	
3.0101	CH₃	СН₃	CH ₂ O O	Н	Н	CH ₂	0	
3.0102	Н	СН₃	CH₂OCH₂CH₂OCH₃	Н	F	CH ₂	0	
3.0103	Н	CH₃	CH2OCH2CH2OCH3	Н	CI	CH ₂	0	
3.0104	Н	CH₃	CH2OCH2CH2OCH3	Н	Н	CH ₂	0	
3.0105	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	F	CH ₂	0	
3.0106	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	CI	CH ₂	0	
3.0107	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	Н	Н	CH ₂	0	
3.0108	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	Н	F	CH ₂	0	
3.0109	Н	CH	, CH₂N(CH₃)SO₂CH₃	Н	C	I CH ₂	0	
3.0110	Н	CH	$_{3}$ CH $_{2}$ N(CH $_{3}$)SO $_{2}$ CH $_{3}$	Н	Н	CH₂	. 0	
3.0111	Н	CH	₃ CH₂OCH₂Ph	Н	F	CH ₂	2 0	
3.0112	: H	CH	₃ CH₂OCH₂Ph	Н	С	I CH ₂	2 0	
3.0113	в Н	CH:	₃ CH₂OCH₂Ph	Н	H	I CH	2 0	
3.0114	Н	CH	3 CH2OCH2CH2OH	Н	F	CH	2 0	
3.0115	5 Н	CH	3 CH2OCH2CH2OH	Н	С	I CH	2 0	
3.0116	6 H	СН	3 CH2OCH2CH2OH	Н	ŀ	H CH	2 0	•
3.0117	7 H	CH	3 CH2OCH2CH2CI	Н		F CH		
3.0118	3 H	CH	3 CH2OCH2CH2 CI	Н	C	CH CH	2 0	
3.0119	э н	CH	3 CH2OCH2CH2 CI	Н		H CH		
3.012	о н	CH	₃ CH ₂ OCH ₂ CF ₃	Н	F	- CH	2 ()
3.012	1 H	I CH	I₃ CH₂OCH₂CF₃	Н		CH CH		
3.012	2 H	I CH	I₃ CH₂OCH₂CF₃	Н	ŀ	н сн	_	
3.012	3 H	I CH	I ₃ CH ₂ OCH ₂ CH=CH ₂	Н			2	
3.012	4 F	I CH	I ₃ CH ₂ OCH ₂ CH=CH ₂	Н	(CI CH	l ₂ ()

No.	R₁	R ₂	Z ₁	R ₃₀	X	Υ	р	Phys. data, remarks
3.0125	Н	CH ₃ CH ₂ OCH ₂ C	H=CH ₂	Н	Н	CH ₂	0	
3.0126	Н	CH ₃ CH ₂ O(CO)	CH₃	Н	F	CH ₂	0	
3.0127	Н	CH ₃ CH ₂ O(CO)	CH₃	Н		CH ₂		
3.0128	Н	CH ₃ CH ₂ O(CO)	CH₃	Н		CH ₂		
3.0129	Н	CH ₃ CH ₂ OCH ₂ C	ECH	Н		CH ₂		
3.0130	Н	CH ₃ CH ₂ OCH ₂ C	ECH	Н		CH₂		
3.0131	Н	CH ₃ CH ₂ OCH ₂ C	C≡CH	Н		CH₂		
3.0132	Н	CH ₃ CH ₂ OCH ₂ O	C≣CCH₃	Н		CH₂		
3.0133	Н	CH ₃ CH ₂ OCH ₂ O		Н		CH₂		
3.0134	Н	CH ₃ CH ₂ OCH ₂ O	C≣CCH₃	Н	Н	_		
3.0135	Н	CH₃	N N-	Н	F	CH₂	0	
		CH ₂	A. A.					•
3.0136	Н	CH₃	FN N-	Н	CI	CH ₂	0	
		CH ₂	N N N N N N N N N N N N N N N N N N N					
3.0137	Н	CH₃	FN	Н	Н	CH₂	0	
		CH ₂	N X					
3.0138	Н		/	Н	F	CH ₂	2 0	
0.0100	••	C. 13	N-N					
		CH ₂	~o/~0					
3.0139	Н	CH₃	/	Н	C	I CH	2 0	
		CU						
0.0440	•	OH ₂	,	н	L	н сн	. 0	
3.0140	Н	CH₃	N-N	17	•	. 011	2 0	
		CH ₂						
3.0141	H		120	Н	F	- CH	0	
3.0142	2 F	I CH₃ CI	H ₂	Н	(CICH	l ₂ 0	
						<u></u>		

No.	R ₁	R ₂	Z ₁	R ₃₀			р	Phys. data, remarks
3.0143	Н	CH₃	CH ₂	Н	Н	CH₂	0	
			0		_	~	•	
3.0144	Н	CH₃	CH ₂ OCH ₂	Н	F	CH₂	U	
3.0145	Н	СН₃	CH ₂ OCH ₂	Н	CI	CH ₂	0	
3.0140	••	01.13	2 2 7			_		
3.0146	Н	СН3	CH ₂ OCH ₂	Н	Н	CH ₂	0	
			0					
3.0147	Н	CH₃		Н	F	CH₂	0	
			CH ₂ O	1.	~ !	CLI	^	
3.0148	Н	CH₃	CH ₂ O	H	Ci	CH₂	U	
		011	CH ₂ O	Н	u	CH₂	0	
3.0149	Н	CH₃	CH ₂ O			O1 12	J	
3.0150	Н	CH₃		Н	F	CH ₂	0	
3.0130	• • •	O1 13			·	2		
			CH₂O ✓	1.1		- CH	0	
3.0151	Н	CH₃		Н	U	l CH₂	. 0	
			CH ₂ O					
3.0152	Н	СН₃	$\bigcap_{\mathcal{O}}$	Н	Н	CH ₂	2 0	
5			CH ₂ O					
3.0153	Н	Н	CH₂OCH₂CH₂OCH₃	СН	3 F	CH	2 0	
3.0154	Н	Н	CH2OCH2CH2OCH3	СН	_з С	I CH	2 0	
3.0155	Н	Н	CH2OCH2CH2OCH3	СН	3 F	I CH	2 0	
3.0156	Н	Н	$CH_2OCH_2CH_2OCH_2CH_3$					
3.0157	Н	i H	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃			I CH		
3.0158	Н	ı H	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃		-	1 CH		
3.0159	H	ı H	CH ₂ N(CH ₃)SO ₂ CH ₃			- CH		
3.0160	H	н н	CH ₂ N(CH ₃)SO ₂ CH ₃		_	CH		
3.0161	۲	H H	CH ₂ N(CH ₃)SO ₂ CH ₃			H CH		
3.0162	. F	н н	CH₂OCH₂Ph		-	F CH		
3.0163	. -	ı H	CH₂OCH₂Ph	CH	l ₃ (CI CH	₂ 0	

No.	R₁	R ₂	Z ₁	R ₃₀ X Y p Phys. data, remarks
3.0164	Н	НС	CH ₂ OCH ₂ Ph	CH₃ H CH₂ 0
3.0165	Н	н	CH ₂ OCH ₂ CH ₂ OH	CH₃ F CH₂ 0
3.0166	Н	Н	CH2OCH2CH2OH	CH₃ CI CH₂ 0
3.0167	Н	Н	CH2OCH2CH2OH	CH₃ H CH₂ 0
3.0168	Н	н	CH ₂ OCH ₂ CH ₂ CI	CH₃ F CH₂ 0
3.0169	Н	н	CH2OCH2CH2 CI	CH₃ CI CH₂ 0
3.0170	H	Н	CH2OCH2CH2 CI	CH₃ H CH₂ 0
3.0171	Н	H	CH₂OCH₂CF₃	CH₃ F CH₂ 0
3.0172	Н	Н	CH₂OCH₂CF₃	CH₃ CI CH₂ 0
3.0173	Н	Н	CH ₂ OCH ₂ CF ₃	CH ₃ H CH ₂ 0
3.0174	Н	н	CH ₂ OCH ₂ CH=CH ₂	CH ₃ F CH ₂ 0
3.0175	Н		CH ₂ OCH ₂ CH=CH ₂	CH ₃ Cl CH ₂ 0
3.0176	Н	Н	CH ₂ OCH ₂ CH=CH ₂	CH ₃ H CH ₂ 0
3.0177	Н	Н	CH ₂ O(CO)CH ₃	CH ₃ F CH ₂ 0
3.0178	Н		CH ₂ O(CO)CH ₃	CH ₃ CI CH ₂ 0
3.0179	Н	Н	CH ₂ O(CO)CH ₃	CH ₃ H CH ₂ 0
3.0180	Н	Н	CH ₂ OCH ₂ C≡CH	CH ₃ F CH ₂ 0
3.0181	Н	Н	CH ₂ OCH ₂ C≡CH	CH ₃ CI CH ₂ 0
3.0182	Н	Н	CH ₂ OCH ₂ C≡CH	CH₃ H CH₂ 0
3.0183	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	CH₃ F CH₂ 0
3.0184	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	CH₃ CI CH₂ 0
3.0185	Н	Н	CH ₂ OCH ₂ C≡CCH ₃	CH₃ H CH₂ 0
3.0186	Н	Н	CH ₂ N N N N N N N N N N N N N N N N N N N	CH₃ F CH₂ 0
3.0187	н	Н	CH ₂ N N -	CH₃ CI CH₂ 0
3.0188	Н	Н	CH ₂ N N O	CH₃ H CH₂ 0

No.	R ₁	R ₂	Z ₁	R ₃₀ X Y p	Phys. data, remarks
3.0189	Н	Н	CH ₂ O O	CH₃ F CH₂ 0	
3.0190	н	Н	CH ₂ OOO	CH ₃ CI CH ₂ 0	
3.0191	Н	Н	CH ₂ O	CH₃ H CH₂ 0	
3.0192	Н	н	CH ₂	CH ₃ F CH ₂ 0	
3.0193	H .	ŀН	CH ₂ O	CH₃ CI CH₂ 0	
3.0194	Н	Н	CH ₂ O	CH₃ H CH₂ 0	
3.0195	Н	Н	CH ₂ OCH ₂ OO	CH ₃ F CH ₂ 0	
3.0196	Н	Н	CH ₂ OCH ₂ OO	CH ₃ Cl CH ₂ 0	
3.0197	Н	Н	CH ₂ OCH ₂	CH₃ H CH₂ 0	,
3.0198	Н	Н	CH₂O O	CH ₃ F CH ₂ 0	
3.0199	Н	н	CH ₂ O O	CH₃ CI CH₂ 0	
3.0200	Н	н	CH₂O O	CH₃ H CH₂ 0	
3.0201	Н	Н	CH ₂ O O	CH₃ F CH₂ 0	
3.0202	Н	Н	CH ₂ O O	CH₃ CI CH₂ 0	•

No.	R ₁	R ₂	Z ₁		Х	Υ	p	Phys. data, remarks
3.0203	Н	Н	T.	CH₃	Н	CH ₂	0	
			CH ₂ O					
3.0204	CH ₃	СН₃	_ CH₂OCH₂CH₂OCH₃	CH₃	F	CH ₂	0	
				CH ₃	CI	CH ₂	0	
			CH₂OCH₂CH₂OCH₃	CH ₃	Н	CH ₂	0	
3.0207	CH₃	СН₃	CH2OCH2CH2OCH2CH3	CH ₃	F	CH ₂	0	
3.0208	CH₃	CH ₃	CH2OCH2CH2OCH2CH3	CH ₃	CI	CH ₂	0	
3.0209	СН₃	CH ₃	CH2OCH2CH2OCH2CH3	CH₃	Н	CH ₂	0	
3.0210	CH₃	CH ₃	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃	F	CH ₂	0	
3.0211	CH₃	СН₃	CH₂N(CH₃)SO₂CH₃	CH₃	Cl	CH ₂	0	
3.0212	СН₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃	Н	CH₂	0	
3.0213	CH₃	CH₃	CH₂OCH₂Ph .	CH₃	F	CH₂	0	
3.0214	CH₃	CH₃	CH₂OCH₂Ph	CH₃	CI	CH ₂	0	
3.0215	CH ₃	CH₃	CH₂OCH₂Ph	CH₃	Н	CH ₂	0	
3.0216	CH	CH₃	CH ₂ OCH ₂ CH ₂ OH	CH ₃	F	CH₂	0	
3.0217	CH	CH ₃	CH ₂ OCH ₂ CH ₂ OH			CH ₂		
3.0218	CH:	CH:	3 CH2OCH2CH2OH			CH ₂		
3.0219	CH	3 CH	3 CH2OCH2CH2CI			CH ₂		
3.0220			3 CH2OCH2CH2 CI			I CH2		
3.0221			3 CH2OCH2CH2 CI			CH ₂		
			3 CH2OCH2CF3			CH ₂		
3.0223	CH	3 CH	₃ CH₂OCH₂CF₃			I CH		
3.0224			3 CH2OCH2CF3		_	I CH		
3.022			3 CH2OCH2CH=CH2		_	CH		
3.0226			3 CH2OCH2CH=CH2			CH		
3.022			3 CH2OCH2CH=CH2		_	H CH		
3.022		-	l₃ CH₂O(CO)CH₃			CH		
3.022			I ₃ CH ₂ O(CO)CH ₃			CH CH		
3.023		_	I ₃ CH ₂ O(CO)CH ₃		-	- CH	_	
3.023		_	I ₃ CH ₂ OCH ₂ C≡CH		_	F CH		
			H₃ CH₂OCH₂C≡CH			CI CH		
3.023	3 CH	13 CH	H₃ CH2OCH2C≡CH	CF	13 i	- CF	12 U	

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Y	р	Phys. data, remarks
3.0234	CH₃	CH₃ CH	₂OCH₂C≣CCH₃	CH₃	F	CH₂	0	
3.0235	СН₃	CH ₃ CH ₅	₂OCH₂C≣CCH₃	CH ₃	CI	CH ₂	0	
3.0236	СН₃	CH ₃ CH	₂ OCH ₂ C≣CCH₃	CH₃	Н	CH₂	0	
3.0237	CH₃	CH₃	CH ₂ N N O	CH₃	F	CH ₂	0	
3.0238	СН₃	CH₃	CH ₂ N N N N N N N N N N N N N N N N N N N	CH₃	CI	CH ₂	0	
3.0239	CH₃	CH₃	CH ₂ NNN	CH ₃	Н	CH₂	0	
3.0240	CH₃	CH₃	N-N CH ₂ O	CH₃	F	CH₂	0	•
3.0241	CH	₃ CH₃	N-N CH ₂ 0	CH₃	CI	CH ₂	0	
3.0242	CH	3 CH ₃	CH ₂ O O	СН₃	Н	CH ₂	. 0	
3.0243	СН	₃ CH₃	CH ₂	CH₃	F	CH	2 0	
3.0244	CH	₃ CH₃	CH ₂	CH₃	С	I CH	2 0	
3.0245	5 CH	l₃ CH₃	CH ₂	CH₃	Н	I CH	2 0	
3.0246	6 CH	l₃ CH₃	CH ₂ OCH ₂	CH₃	F	CH	2 0	
3.0247	7 CH	I₃ CH₃	CH ₂ OCH ₂	CH₃	C	I CH	2 0	

No.	R ₁	R ₂	Z ₁	R ₃₀	X	Υ	р	Phys. data, remarks
3.0248	CH ₃	CH ₃	CH ₂ OCH ₂	CH₃	Н	CH ₂	0	
			0	011	_	011	_	
3.0249	CH₃	CH₃	CH,O O	CH ₃	۲	CH₂	U	
0.0050	C LL	CH	511 ₂ 5	CH.	CI	CH₂	n	
3.0250	СПз	СПз	CH,O O	Orig	O.	0.12		
3.0251	СН₃	CH₃	~~	СН₃	Н	CH₂	0	
0.0207		J	CH ₂ O					
3.0252	СН₃	СН₃	$ \wedge $	CH ₃	F	CH ₂	0	
			сн,о					
3.0253	CH ₂	CH₃	,	CH₃	CI	CH₂	0	
0.0200	.							
			CH₂O ✓	011		011	•	
3.0254	CH₃	CH₃	\int_{0}^{∞}	CH ₃	Н	CH ₂	U	
			CH ₂ O					
3.0255	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃			CH₂		
3.0256	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₃	CH₃	CI	CH ₂	0	
3.0257	Н	CH₃	CH₂OCH₂CH₂OCH₃	CH₃	Н	CH	0	
3.0258	Н	CH₃	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH ₃	F	CH ₂	2 0	
3.0259	Н	CH₃	CH2OCH2CH2OCH2CH3	CH	, CI	CH;	2 0	
3.0260	Н	CH₃	$CH_2OCH_2CH_2OCH_2CH_3$	CH	, H	CH:	2 0	
3.0261	Н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	CH	₃ F	CH	2 0	
3.0262	: Н	СН₃	CH ₂ N(CH ₃)SO ₂ CH ₃	CH:	3 C	CH	2 0	
3.0263	в н	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃	CH:	з Н	CH	2 0	
3.0264	н	CH₃	CH₂OCH₂Ph	CH:	_s F	CH	2 0	
3.0265	5 Н	CH₃	, CH₂OCH₂Ph	CH	з С	I CH	2 0	
3.0266	6 Н	CH ₃	, CH₂OCH₂Ph	CH	з Н	I CH	2 0	
3.0267	7 H	CH	3 CH2OCH2CH2OH	СН	_з F	CH	2 0	
3.0268	3 H	CH	3 CH2OCH2CH2OH	СН	3 C	I CH	2 0	
3.0269	э н	CH	3 CH2OCH2CH2OH	СН	3 F	i CH	2 0	
3.027	о н	CH:	₃ CH₂OCH₂CH₂CI	СН	3 F	CH	0 0	
3.027	1 H	CH	3 CH2OCH2CH2 CI	СН	l₃ C	CH	0 0	

No.	R ₁	R_2 Z_1	R ₃₀ X Y p Phys. data, remarks	s
3.0272	Н	CH ₃ CH ₂ OCH ₂ CH ₂ CI	CH₃ H CH₂ 0	
3.0273	Н	CH₃ CH₂OCH₂CF₃	CH ₃ F CH ₂ 0	
3.0274	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ CI CH₂ 0	
3.0275	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ H CH₂ 0	
3.0276	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ F CH₂ 0	
3.0277	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ CI CH₂ 0	
3.0278	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ H CH₂ 0	
3.0279	Н	CH ₃ CH ₂ O(CO)CH ₃	CH₃ F CH₂ 0	
3.0280	Н	CH₃ CH₂O(CO)CH₃	CH₃ CI CH₂ 0	
3.0281	Н	CH₃ CH₂O(CO)CH₃	CH₃ H CH₂ 0	
3.0282	Н	CH₃ CH₂OCH₂C≡CH	CH₃ F CH₂ 0	
3.0283	Н	CH₃ CH₂OCH₂C≡CH	CH₃ CI CH₂ 0	
3.0284	Н	CH₃ CH₂OCH₂C≡CH	CH₃ H CH₂ 0	
3.0285	Н	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	CH₃ F CH₂ 0	
3.0286	Н	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	CH₃ CI CH₂ 0	
3.0287	Н	CH₃ CH₂OCH₂C≡CCH₃	CH₃ H CH₂ 0	
3.0288	Н	CH ₃	CH₃ F CH₂ 0	
3.0289	Н	CH ₂ N N N O	CH₃ CI CH₂ 0	
3.0290	Н	CH ₂ N N N O	CH₃ H CH₂ 0	
3.0291	Н	CH ₂ O	CH₃ F CH₂ 0	
3.0292	! -	I CH₃ CH₂ O	CH₃ CI CH₂ 0	

No.	R ₁	R ₂	Z ₁		X	Y	р	Phys. data, remarks
3.0293	Н	CH₃	CH ₂ O	CH₃ I	Н	CH₂	0	
3.0294	Н	СН₃		СН₃	F	CH ₂	0	
3.0295	H	CH₃	CH ₂	CH ₃	CI	CH ₂	0	
3.0296	Н	CH₃	CH ₂ O	CH₃	Н	CH₂	0	
3.0297	Н	CH₃	CH ₂ OCH ₂	CH₃	F	CH₂	0	
3.0298	Н	CH₃	CH ₂ OCH ₂ OO	CH₃	CI	CH ₂	0	
3.0299	Н	CH₃	CH ₂ OCH ₂	CH₃	Н	CH₂	0	
3.0300	Н	CH ₃	CH ₂ O	CH₃	F	CH₂	0	
3.0301	Н	CH₃	CH ₂ O	CH ₃	CI	CH ₂	0	
3.0302	Н	CH₃	сн,о	CH₃	Н	CH₂	0	
3.0303	Н	CH₃	CH ₂ O O	CH₃	F	CH ₂	0	
3.0304	Н	СН₃	CH ₂ O O	CH₃	CI	CH ₂	0	
3.0305	Н	СН₃	_	CH₃	Н	CH	2 0	
3.0306	Н	Н	CH₂OCH₂CH₂OCH₃	СН₃	F	CH	2 1	
3.0307			CH ₂ OCH ₂ CH ₂ OCH ₃	CH₃	CI	CH	2 1	
3.0308	Н	Н	CH2OCH2CH2OCH3	CH₃	Н	CH	2 1	
3.0309	Н	н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH₃	F	CH	2 1	

No.	R₁	R ₂	Z ₁	R ₃₀ X Y p Phys. data, remarks
3.0310	Н	Н	CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃	CH₃ CI CH₂ 1
3.0311	Н	Н	CH2OCH2CH2OCH2CH3	CH₃ H CH₂ 1
3.0312	Н	Н	CH₂N(CH₃)SO₂CH₃	CH ₃ F CH ₂ 1
3.0313	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ CI CH₂ 1
3.0314	Н	Н	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ H CH₂ 1
3.0315	Н	Н	CH₂OCH₂Ph	CH₃ F CH₂ 1
3.0316	Н	Н	CH₂OCH₂Ph	CH₃ CI CH₂ 1
3.0317	Н	Н	CH₂OCH₂Ph	CH₃ H CH₂ 1
3.0318	Н	Н	CH₂OCH₂CH₂OH	CH₃ F CH₂ 1
3.0319	Н	Н	CH₂OCH₂CH₂OH	CH₃ CI CH₂ 1
3.0320	Н	Н	CH₂OCH₂CH₂OH	CH₃ H CH₂ 1
3.0321	. Н	Н	CH₂OCH₂CH₂CI	CH₃ F CH₂ 1
3.0322	Н	Н	CH ₂ OCH ₂ CH ₂ Cl	CH₃ CI CH₂ 1
3.0323	Н	Н	CH2OCH2CH2 CI	CH ₃ H CH ₂ 1
3.0324	Н	Н	CH₂OCH₂CF₃	CH ₃ F CH ₂ 1
3.0325	Н	Н	CH₂OCH₂CF₃	CH ₃ CI CH ₂ 1
3.0326	Н	Н	CH ₂ OCH ₂ CF ₃	CH₃ H CH₂ 1
3.0327	Н	Н	CH ₂ OCH ₂ CH=CH ₂	CH₃ F CH₂ 1
3.0328	Н	Н	CH ₂ OCH ₂ CH=CH ₂	CH₃ CI CH₂ 1
3.0329	Н	Н	CH ₂ OCH ₂ CH=CH ₂	CH₃ H CH₂ 1
3.0330	Н	Н	CH₂O(CO)CH₃	CH₃ F CH₂ 1
3.0331	Н	Н	I CH₂O(CO)CH₃	CH₃ CI CH₂ 1
3.0332	Н	۲	I CH ₂ O(CO)CH ₃	CH₃ H CH₂ 1
3.0333	Н	H	H CH₂OCH₂C≡CH	CH₃ F CH₂ 1
3.0334	Н	H	H CH₂OCH₂C≡CH	CH₃ CI CH₂ 1
3.0335	Н	ŀ	H CH2OCH2C≡CH	CH₃ H CH₂ 1
3.0336	Н	ŀ	H CH2OCH2C≡CCH3	CH ₃ F CH ₂ 1
3.0337	Н	ŀ	H CH2OCH2C≣CCH3	CH₃ CI CH₂ 1
3.0338	В	ŀ	H CH2OCH2C≣CCH3	CH₃ H CH₂ 1
3.0339	Н	l 1	CH ₂ NNN	CH₃ F CH₂ 1

No.	R₁	R ₂	Z ₁	R ₃₀ X Y p Phys. data, remarks
3.0340	Н	Н	CH ₂ N N O	CH₃ CI CH₂ 1
3.0341	Н	Н	CH ₂ N N N N N N N N N N N N N N N N N N N	CH₃ H CH₂ 1
3.0342	Н	Н	CH ₂ O O	CH ₃ F CH ₂ 1
3.0343	Н	н	CH ₂ O O	CH ₃ CI CH ₂ 1
3.0344	н	Н	CH ₂ O	CH₃ H CH₂ 1
3.0345	Н	Н	CH ₂	CH ₃ F CH ₂ 1
3.0346	Н	Н	CH ₂	CH₃ CI CH₂ 1
3.0347	Н	Н	CH ₂	CH₃ H CH₂ 1
3.0348	Н	Н	CH ₂ OCH ₂ OO	CH₃ F CH₂ 1
3.0349	Н	Н	CH ₂ OCH ₂	CH₃ Cl CH₂ 1
3.0350	Н	Н	CH ₂ OCH ₂ OO	CH₃ H CH₂ 1
3.0351	Н	Н	CH ₂ O O	CH₃ F CH₂ 1
3.0352	: H	Н	CH ₂ O O	CH₃ Cl CH₂ 1

No.	R ₁	R₂	Z ₁	R ₃₀		Υ	р	Phys. data, remarks
3.0353	Н	Н		CH₃	Н	CH₂	1	
			CH ₂ O					
3.0354	Н	Н		CH₃	F	CH₂	1	
			CH ₂ O					
3.0355	Н	Н		CH ₃	CI	CH ₂	1	
			CH,O O					
			CH ₂ O	CU	ы	СП	1	
3.0356	Н	Н		СП3	П	CH₂	1	
			CH ₂ O					
3.0357	CH ₃	CH₃	CH₂OCH₂CH₂OCH₃	CH₃	F	CH₂	1	
3.0358	CH ₃	CH₃	CH₂OCH₂CH₂OCH₃	CH₃	CI	CH₂	1	
3.0359	_		CH₂OCH₂CH₂OCH₃			CH₂		
3.0360			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃			CH₂		
3.0361			CH ₂ OCH ₂ CH ₂ OCH ₂ CH ₃			CH₂		
3.0362	CH₃	CH₃	CH2OCH2CH2OCH2CH3					
3.0363	CH₃	CH₃	CH ₂ N(CH ₃)SO ₂ CH ₃			CH ₂		
3.0364	CH₃	CH	CH ₂ N(CH ₃)SO ₂ CH ₃			CH ₂		
3.0365	CH₃	CH	3 CH ₂ N(CH ₃)SO ₂ CH ₃			CH ₂		
3.0366	CH₃	CH	3 CH2OCH2Ph			CH ₂		
3.0367	CH	CH	₃ CH ₂ OCH ₂ Ph			CH ₂		
			₃ CH ₂ OCH ₂ Ph			CH ₂		
			3 CH2OCH2CH2OH			CH:		
			3 CH2OCH2CH2OH			I CH		
			3 CH2OCH2CH2OH			CH		
			3 CH2OCH2CH2CI			СН		
			3 CH2OCH2CH2 CI			I CH		
3.0374			3 CH2OCH2CH2 CI			I CH		
3.0375	CH	₃ CH	3 CH2OCH2CF3			CH		
3.0376		-	3 CH2OCH2CF3		_	I CH	_	
3.0377		•	3 CH ₂ OCH ₂ CF ₃			I CH		
3.0378			3 CH2OCH2CH=CH2			: CH	-	
3.0379	СН	₃ CH	I ₃ CH ₂ OCH ₂ CH=CH ₂	СН	l₃ C	I CH	12 1	

					$\overline{}$	~		Phys. data, remarks
No.	R₁	R ₂	Z ₁	R ₃₀			p	riiys. uala, lelilaiks
3.0380	_		OCH ₂ CH=CH ₂			CH ₂		
3.0381	•		₂ O(CO)CH₃			CH₂		
3.0382			₂O(CO)CH₃			CH ₂		
			₂O(CO)CH₃			CH₂		
			2OCH2C≡CH			CH ₂		
			2OCH2C≡CH			CH ₂		
			2OCH2C≡CH	_		CH ₂		
			2OCH2C≡CCH3			CH ₂		
			2OCH2C≡CCH3			CH₂		
3.0389	CH₃	CH₃ CH	2OCH2C≡CCH3			CH ₂		
3.0390	CH₃	CH₃	CH ₂ N N O	CH₃	F	CH₂	1	
3.0391	CH	, CH₃	CH ₂ N N	CH₃	CI	CH₂	1	
3.0392	CH:	₃ CH₃	CH ₂ NNN	CH₃	, Н	CH₂	1	
3.0393	CH	₃ CH₃	CH ₂ OOO	CH ₃	₃ F	CH ₂	, 1	
3.0394	СН	3 CH ₃	CH ₂ O	СН	₃ C	I CH	2 1	
3.0395	5 CH	l₃ CH₃	CH ₂ O O	СН	3 F	i CH	2 1	
3.0396	6 CF	l₃ CH₃	CH ₂ O	СН	l ₃ F	CH	2 1	
3.0397	7 CH	l₃ CH₃	CH ₂ O	CH	l ₃ C	СН	1 1	

No.	R ₁	R ₂	Z ₁	R ₃₀ X	Υ	p	Phys. data, remarks
3.0398	CH ₃ (CH₃	CH ₂	CH₃ H (CH₂	1	
3.0399	CH ₃	CH₃	CH ₂ OCH ₂	CH₃ F (CH₂	1	
3.0400	CH₃ (СН₃	CH ₂ OCH ₂ OO	CH₃ CI	CH₂	1	
3.0401	CH₃	СН₃	CH ₂ OCH ₂	CH₃ H	CH₂	1	
3.0402	СН₃	СН₃	CH ₂ O O	CH₃ F	CH₂	1	
3.0403	CH₃	CH₃	CH2O O	CH₃ CI	CH₂	1	·
3.0404	CH₃	CH₃	CH ₂ O	CH₃ H	CH ₂	1	•
3.0405	CH₃	CH₃	CH,O CO	CH₃ F	CH ₂	1	
3.0406	CH₃	CH₃	CH ₂ O O	CH₃ CI	CH₂	1	
3.0407	CH₃	СН₃	CH ₂ O O	CH₃ H	CH ₂	1	
3.0408	в	CH₃ C	H ₂ OCH ₂ CH ₂ OCH ₃	CH ₃ F	CH ₂	1	
3.0409	н	CH₃ C	CH2OCH2CH2OCH3	CH₃ CI	CH ₂	1	
3.0410	Н	CH₃ C	CH2OCH2CH2OCH3	CH₃ H			
3.041	i H	CH₃ C	CH2OCH2CH2OCH2CH3	CH₃ F	CH ₂	2 1	
3.0412	2 H	CH ₃ C	CH2OCH2CH2OCH2CH3				
3.041	3 H	CH₃ C	CH2OCH2CH2OCH2CH3				
3.041	4 H	CH₃ C	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ F			
3.041	5 H	CH₃ C	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ Ci			
3.041	6 H	CH ₃ C	CH ₂ N(CH ₃)SO ₂ CH ₃	CH₃ H			
3.041	7 H	CH ₃ C	CH₂OCH₂Ph	CH₃ F			
3.041	8 H	CH₃ (CH₂OCH₂Ph	CH₃ C	СН	2 1	

No.	R ₁	R_2 Z_1	R ₃₀ X Y p Phys. data, remarks
3.0419	Н	CH ₃ CH ₂ OCH ₂ Ph	CH₃ H CH₂ 1
3.0420	Н	CH ₃ CH ₂ OCH ₂ CH ₂ OH	CH₃ F CH₂ 1
3.0421	Н	CH₃ CH₂OCH₂CH₂OH	CH₃ CI CH₂ 1
3.0422	Н	CH ₃ CH ₂ OCH ₂ CH ₂ OH	CH₃ H CH₂ 1
3.0423	Н	CH ₃ CH ₂ OCH ₂ CH ₂ CI	CH₃ F CH₂ 1
3.0424	Н	CH ₃ CH ₂ OCH ₂ CH ₂ CI	CH₃ CI CH₂ 1
3.0425	Н	CH₃ CH₂OCH₂CH₂ CI	CH₃ H CH₂ 1
3.0426	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ F CH₂ 1
3.0427	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH ₃ CI CH ₂ 1 ·
3.0428	Н	CH ₃ CH ₂ OCH ₂ CF ₃	CH₃ H CH₂ 1
3.0429	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH ₃ F CH ₂ 1
3.0430	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ CI CH₂ 1
3.0431	Н	CH ₃ CH ₂ OCH ₂ CH=CH ₂	CH₃ H CH₂ 1
3.0432	Н	CH ₃ CH ₂ O(CO)CH ₃	CH ₃ F CH ₂ 1 .
3.0433	Н	CH ₃ CH ₂ O(CO)CH ₃	CH₃ CI CH₂ 1
3.0434	Н	CH ₃ CH ₂ O(CO)CH ₃	CH₃ H CH₂ 1
3.0435	Н	CH₃ CH₂OCH₂C≡CH	CH ₃ F CH ₂ 1
3.0436	Н	CH₃ CH₂OCH₂C≡CH	CH ₃ CI CH ₂ 1
3.0437	Н	CH ₃ CH ₂ OCH ₂ C≡CH	CH₃ H CH₂ 1
3.0438	Н	CH ₃ CH ₂ OCH ₂ C≡CCH ₃	CH₃ F CH₂ 1
3.0439	Н	CH₃ CH₂OCH₂C≡CCH₃	¹ CH ₃ CI CH ₂ 1
3.0440	Н	CH₃ CH₂OCH₂C≡CCH₃	CH₃ H CH₂ 1
3.0441	Н	CH ₂ N N N O	CH₃ F CH₂ 1
3.0442	Н	CH ₃ CH ₂ N N O	CH₃ Cl CH₂ 1
3.0443	Н	CH ₃ CH ₂ N N	CH₃ H CH₂ 1

No.	R ₁ R ₂	Z ₁	R ₃₀ X Y p Phys. data, remarks
3.0444	Н СН₃	CH ₂ O O	CH₃ F CH₂ 1
3.0445	н сн₃	CH ₂ O	CH₃ CI CH₂ 1
3.0446	H CH₃	CH ₂ O O	CH₃ H CH₂ 1
3.0447	H CH₃	CH ₂	CH₃ F CH₂ 1
3.0448	н сн₃	CH ₂	CH ₃ CI CH ₂ 1
3.0449	н сн₃	CH ₂	CH ₃ H CH ₂ 1
3.0450	H CH₃	CH ₂ OCH ₂	CH ₃ F CH ₂ 1
3.0451	н сн₃	CH ₂ OCH ₂ OCH	CH ₃ CI CH ₂ 1
3.0452	H CH₃	CH ₂ OCH ₂ OO	CH ₃ H CH ₂ 1
3.0453	H CH₃	CH₂O O	CH₃ F CH₂ 1
3.0454	H CH₃	CH ₂ O CO	CH₃ CI CH₂ 1
3.0455	5 H CH₃	CH₂O O	CH₃ H CH₂ 1
3.0456	6 H CH₃	CH₂O O	CH₃ F CH₂ 1
3.0457	7 H CH₃	CH ₂ O O	CH ₃ CI CH ₂ 1

No.	R₁	R ₂	Z ₁	R ₃₀	Х	Υ	р	Phys. data, remarks
3.0458	Н	CH₃	CH ₂ O O	CH₃	Н	CH₂	1	

Table 4: Intermediates of formulae Da and Db:

No.	R₁	R ₂	R ₃	Υ	Xa Physical data
4.0001	Н	Н	ОН	CH ₂	H see Example P9; tautomeric form Da
4.0002	Н	Н	OCH ₃	CH₂	Н
4.0003	Н	Н	OCH₂CH₃	CH₂	Н
4.0004	Н	Н	$OC(CH_3)_2$	CH₂	Н
4.0005	Н	Н	ОН	CH₂CH₂	H see Example P12; tautomeric form Da
4.0006	Н	Н	OCH ₃	CH₂CH₂	Н
4.0007	Н	Н	OCH₂CH₃	CH₂CH₂	Н
4.0008	Н	Н	$OC(CH_3)_2$	CH₂CH₂	H
4.0009	Н	Н	ОН	0	H ¹ H NMR (300 MHz; CDCl ₃) ō 6.35 (s, 2H); 5.66 (s, 1H); 3.78 (d, 1H); 3.43 (d, 1H); tautomeric form Da
4.0010	Н	Н	OCH₃	0	Н
4.0011	Н	Н	OCH ₂ CH ₃	0	Н
4.0012	Н	Н	OC(CH ₃) ₂	0	Н
4.0013	Н	Н	ОН	NSO₂CH₃	н
4.0014	Н	Н	OCH₃	NSO₂CH₃	Н
4.0015	H	Н	OCH₂CH₃	NSO₂CH₃	н
4.0016	з н	Н	OC(CH ₃) ₂	NSO₂CH₃	н
4.0017	7 H	Н	ОН	NC(O)C(CH ₃) ₃	н
4.0018	3 H	Н	OCH₃	NC(O)C(CH ₃) ₃	Н
4.0019	9 H	H	OCH₂CH₃	NC(O)C(CH ₃) ₃	н
4.0020) F	l	OC(CH ₃) ₂	NC(O)C(CH ₃) ₃	. Н

No.	R ₁	R ₂	R ₃	Υ	Xa Physical data
4.0021	Н	Н	ОН	CH₂	CI
4.0022	Н	Н	OCH₃	CH₂	CI
4.0023	Н	Н	OCH₂CH₃	CH₂	CI
4.0024	Н	Н	$OC(CH_3)_2$	CH₂	CI
4.0025	Н	Н	ОН	CH₂CH₂	CI see Preparation Example P11
4.0026	Н	Н	OCH₃	CH₂CH₂	CI
4.0027	Н	Н	OCH ₂ CH ₃	CH₂CH₂	CI
4.0028	Н	Н	$OC(CH_3)_2$	CH₂CH₂	CI
4.0029	Н	Н	ОН	0	CI
4.0030	Н	Н	OCH₃	0	CI
4.0031	Н	Н	OCH₂CH₃	0	CI
4.0032	Н	Н	$OC(CH_3)_2$	0	CI
4.0033	H	Н	ОН	NSO₂CH₃	CI
4.0034	Н	Н	OCH₃	NSO₂CH₃	CI
4.0035	і Н	Н	OCH₂CH₃	NSO₂CH₃	CI
4.0036	Н	Н	$OC(CH_3)_2$	NSO₂CH₃	CI
4.0037	' H	Н	OH	$NC(O)C(CH_3)_3$	CI
4.0038	3 H	Н	OCH₃	$NC(O)C(CH_3)_3$	CI
4.0039	ЭН	Н	OCH₂CH₃	$NC(O)C(CH_3)_3$	CI
4.0040	ЭН	Н	OC(CH ₃) ₂	$NC(O)C(CH_3)_3$	CI
4.004	1 H	Н	ОН	CH₂	Br
4.0042	2 H	Н	OCH ₃	CH₂	Br
4.004	3 H	Н	OCH ₂ CH ₃	CH₂	Br
4.004	4 H	ı H	OC(CH ₃) ₂	CH₂	Br
4.004	5 H	i H	OH	CH₂CH₂	Br
4.004	6 F	1 -	I OCH₃	CH₂CH₂	Br
4.004	7 H	1 F	OCH ₂ CH ₃	CH₂CH₂	Br
4.004	8 F	1 F	I OC(CH ₃) ₂	CH₂CH₂	Br
4.004	9 F	1 H	H OH	0	Br
4.005	io F	1 F	I OCH₃	0	Br
4.005	i1 F	1 H	H OCH2CH3	0	Br
4.005	52 H	1 H	H OC(CH ₃) ₂	0	Br
4.005	53 H	-l	H OH	NSO₂CH₃	Br

No.	R ₁	R ₂	R ₃	Υ	Ха	Physical data
4.0054	Н	Н	OCH₃	NSO₂CH₃	Br	
4.0055	Н	Н	OCH₂CH₃	NSO₂CH₃	Br	
4.0056	Н	Н	$OC(CH_3)_2$	NSO₂CH₃	Br	
4.0057	Н	Н	ОН	$NC(O)C(CH_3)_3$	Br	
4.0058	Н	Н	OCH ₃	$NC(O)C(CH_3)_3$	Br	
4.0059	Н	Н	OCH₂CH₃	$NC(O)C(CH_3)_3$	Br	·
4.0060	Н	Н	OC(CH ₃) ₂	$NC(O)C(CH_3)_3$	Br	
4.0061	Н	CH₃	ОН	CH₂	Н	^{1}H NMR (300 MHz; CDCl ₃) δ 6.30 (m, 1H); 6.10 (m, 1H); 3.73 (d, 1H); 3.44 (d, 1H); 1.62 (s, 3H); tautomeric form Db
4.0062	Н	CH₃	OCH₃	CH ₂	Н	
4.0063	Н	CH	OCH ₂ CH ₃	CH ₂	Н	
4.0064	Н	CH	OC(CH ₃) ₂	CH ₂	Н	
4.0065	Н	CH	3 OH	CH₂CH₂	Н	
4.0066	Н	CH	3 OCH₃	CH₂CH₂	Н	
4.0067	Н	CH	3 OCH2CH3	CH₂CH₂	Н	
4.0068	н	СН	3 OC(CH ₃) ₂	CH₂CH₂	Н	
4.0069	Н	СН	3 OH	0	Н	
4.0070) H	СН	3 OCH3	0	Н	
4.0071	Н	СН	3 OCH2CH3	0	Н	
4.0072	2 H	СН	3 OC(CH ₃) ₂	0	Н	l
4.0073	3 H	СН	I ₃ OH	NSO₂CH₃	Н	I
4.0074	4 H	CH	l₃ OCH₃	NSO₂CH₃	۲	I
4.007	5 H	CH	I₃ OCH₂CH₃	NSO ₂ CH₃	H	1
4.007	6 H	CH	1 ₃ OC(CH ₃) ₂	NSO₂CH₃	H	i
4.007	7 H	l ·CH	l₃ OH	NC(O)C(CH ₃) ₃	H	·
4.007	8 F	I CH	I₃ OCH₃	NC(O)C(CH ₃) ₃	, F	1
4.007	9 F	l Ch	H₃ OCH₂CH₃	NC(O)C(CH ₃) ₃	, F	1
4.008	0 F	ı Cı	H ₃ OC(CH ₃) ₂	NC(O)C(CH ₃);	, ł	1
4.008	1 F	l Cl	H₃ OH	CH₂	C	CI
4.008	2 F	H CH	H ₃ OCH ₃	CH ₂	(OI .
4.008	3 F	l CI	H ₃ OCH ₂ CH ₃	₃ · CH₂	(CI .
4.008	34 H	H CI	H ₃ OC(CH ₃):	CH ₂	(

No.	R ₁	R ₂	R ₃	Υ	Xa Physical data
4.0085	Н	CH ₃	ОН	CH ₂ CH ₂	Cl
4.0086	Н	СH ₃	OCH ₃	CH₂CH₂	CI
4.0087	Н	CH ₃	OCH₂CH₃	CH₂CH₂	CI
4.0088	Н	CH ₃	$OC(CH_3)_2$	CH₂CH₂	CI
4.0089	Н	CH ₃	ОН	0	CI
4.0090	Н	CH₃	OCH₃	0	CI
4.0091	Н	CH ₃	OCH₂CH₃	0	CI
4.0092	Н	CH ₃	$OC(CH_3)_2$	0	CI
4.0093	Н	CH ₃	ОН	NSO₂CH₃	CI
4.0094	Н	CH₃	OCH₃	NSO ₂ CH₃	CI
4.0095	Н	CH₃	OCH ₂ CH ₃	NSO₂CH₃	CI
4.0096	Н	CH₃	$OC(CH_3)_2$	NSO₂CH₃	CI
4.0097	Н	CH₃	OH	$NC(O)C(CH_3)_3$	CI
4.0098	Н	CH₃	OCH₃	NC(O)C(CH ₃) ₃	CI
4.0099	Н	CH₃	OCH ₂ CH ₃	$NC(O)C(CH_3)_3$	Cl
4.0100	Н	CH₃	OC(CH ₃) ₂	$NC(O)C(CH_3)_3$	Cl
4.0101	Н	CH₃	ОН	CH₂	Br
4.0102	H	CH₃	OCH ₃	CH₂	Br
4.0103	В	CH₃	OCH ₂ CH ₃	CH₂	Br
4.0104	Н	CH	$OC(CH_3)_2$	CH₂	Br
4.0105	5 Н	CH	OH	CH ₂ CH ₂	Br
4.0106	з Н	CH	, OCH₃	CH ₂ CH ₂	Br
4.0107	7 H	CH	OCH ₂ CH ₃	CH ₂ CH ₂	Br
4.0108	3 H	CH:	3 OC(CH ₃) ₂	CH ₂ CH ₂	Br
4.0109	ЭН	CH:	3 OH	Ο.	Br
4.0110	ОН	CH	3 OCH3	0	Br
4.011	1 H	CH	3 OCH2CH3	0	Br
4.011	2 H	I CH	$_{3}$ OC(CH $_{3}$) $_{2}$	0	Br
4.011	3 -	і СН	₃ OH	NSO₂CH₃	Br
4.011	4 H	1 СН	3 OCH3	NSO₂CH₃	Br
4.011	5 H	н сн	3 OCH2CH3	NSO₂CH₃	Br
4.011	6 F	н сн	3 OC(CH ₃) ₂	NSO₂CH₃	Br
4.011	7 H	I CH	з ОН	NC(O)C(CH ₃) ₃	Br

No. R ₁ R ₂ R ₃ .	Υ	Xa Physical data
4.0118 H CH ₃ OCH ₃	NC(O)C(CH ₃) ₃	Br
4.0119 H CH ₃ OCH ₂ CH ₃	$NC(O)C(CH_3)_3$	Br
4.0120 H CH ₃ OC(CH ₃) ₂	$NC(O)C(CH_3)_3$	Br
4.0121 CH ₃ CH ₃ OH	CH₂	Н
4.0122 CH ₃ CH ₃ OCH ₃	CH ₂	Н
4.0123 CH ₃ CH ₃ OCH ₂ CH ₃	CH₂	Н
4.0124 CH ₃ CH ₃ OC(CH ₃) ₂	CH₂	н
4.0125 CH ₃ CH ₃ OH	CH₂CH₂	н
4.0126 CH ₃ CH ₃ OCH ₃	CH₂CH₂	н
4.0127 CH ₃ CH ₃ OCH ₂ CH ₃	CH ₂ CH ₂	н
4.0128 CH ₃ CH ₃ OC(CH ₃) ₂	CH₂CH₂	н
4.0129 CH ₃ CH ₃ OH	0	н
4.0130 CH ₃ CH ₃ OCH ₃	0	H
4.0131 CH ₃ CH ₃ OCH ₂ CH ₃	0	Н
4.0132 CH ₃ CH ₃ OC(CH ₃) ₂	0	H
4.0133 CH ₃ CH ₃ OH	NSO₂CH₃	Н
4.0134 CH ₃ CH ₃ OCH ₃	NSO₂CH₃	Н
4.0135 CH ₃ CH ₃ OCH ₂ CH ₃	NSO₂CH₃	Н
4.0136 CH ₃ CH ₃ OC(CH ₃) ₂	NSO₂CH₃	Н
4.0137 CH ₃ CH ₃ OH	$NC(O)C(CH_3)_3$	Н
4.0138 CH ₃ CH ₃ OCH ₃	$NC(O)C(CH_3)_3$	Н
4.0139 CH ₃ CH ₃ OCH ₂ CH ₃	$NC(O)C(CH_3)_3$	н
4.0140 CH ₃ CH ₃ OC(CH ₃) ₂	NC(O)C(CH ₃) ₃	н
4.0141 CH ₃ CH ₃ OH	CH₂	CI
4.0142 CH ₃ CH ₃ OCH ₃	CH₂	CI see Preparation Example P3
4.0143 CH ₃ CH ₃ OCH ₂ CH ₃	3 CH₂	CI
4.0144 CH ₃ CH ₃ OC(CH ₃);	cH₂	CI
4.0145 CH ₃ CH ₃ OH	CH₂CH₂	CI
4.0146 CH ₃ CH ₃ OCH ₃	CH₂CH₂	CI
4.0147 CH ₃ CH ₃ OCH ₂ CH	3 CH₂CH₂	CI
4.0148 CH ₃ CH ₃ OC(CH ₃)	₂ CH₂CH₂	CI
4.0149 CH ₃ CH ₃ OH	0	CI
4.0150 CH ₃ CH ₃ OCH ₃	0	Cl

No. R ₁ R	R ₃	Y	Xa Physical data
4.0151 CH₃ Ch	I ₃ OCH₂CH ₃	0	CI
4.0152 CH₃ CH	I ₃ OC(CH ₃) ₂	0	CI
4.0153 CH₃ CH	l₃ OH	NSO₂CH₃	CI
4.0154 CH₃ Ch	I ₃ OCH ₃	NSO₂CH₃	Cl
4.0155 CH₃ CH	H₃ OCH₂CH₃	NSO₂CH₃	CI
4.0156 CH₃ Cl	H ₃ OC(CH ₃) ₂	NSO₂CH₃	Cl
4.0157 CH ₃ Ci	H₃ OH	$NC(O)C(CH_3)_3$	CI
4.0158 CH ₃ CI	H₃ OCH₃	NC(O)C(CH ₃) ₃	CI
4.0159 CH₃ Cl	H₃ OCH₂CH₃	NC(O)C(CH ₃) ₃	Cl
4.0160 CH₃ C	H ₃ OC(CH ₃) ₂	$NC(O)C(CH_3)_3$	CI
4.0161 CH ₃ C	H₃ OH	CH ₂	Br
4.0162 CH₃ C	H₃ OCH₃	CH ₂	Br
4.0163 CH₃ C	H₃ OCH₂CH₃	CH ₂	Br
4.0164 CH₃ C	H ₃ OC(CH ₃) ₂	CH ₂	Br
4.0165 CH₃ C	H₃ OH	CH ₂ CH ₂	Br
4.0166 CH₃ C	H₃ OCH₃	CH ₂ CH ₂	Br
4.0167 CH ₃ C	H₃ OCH₂CH₃	CH ₂ CH ₂	Br
4.0168 CH₃ C	H ₃ OC(CH ₃) ₂	CH₂CH₂	Br
4.0169 CH₃ C	H₃ OH	0	Br
4.0170 CH₃ C	H₃ OCH₃	0	Br
4.0171 CH₃ C	H₃ OCH₂CH₃	0	Br
4.0172 CH ₃ C	H ₃ OC(CH ₃) ₂	. 0	Br see Preparation Example P6
4.0173 CH ₃ C	CH₃ OH	NSO₂CH₃	Br
4.0174 CH ₃ C	CH ₃ OCH ₃	NSO₂CH₃	Br
4.0175 CH₃ (CH3 OCH2CH3	3 NSO₂CH₃	Br
4.0176 CH₃ (CH3 OC(CH3)	NSO₂CH₃	Br
4.0177 CH₃ (CH₃ OH	NC(O)C(CH ₃):	₃ Br
4.0178 CH₃ (CH₃ OCH₃	NC(O)C(CH ₃):	₃ Br
4.0179 CH ₃ (CH₃ OCH₂CH	3 NC(O)C(CH ₃)	₃ Br
4.0180 CH ₃	CH3 OC(CH3)	2 NC(O)C(CH ₃)	
4.0181 H	н он	'c<	H ¹ H NMR (300 MHz; CDCl ₃) δ 6.30 (sxm, 2H); 3.60 (d, 1H) 3.23 (d, 1H); 2.82 (s, 1H); 0.75 (m, 4H); tautomeric form Db

No.	R₁	R ₂	R ₃	Y Xa Physical data
4.0182	Н	Н	ОН	C(=C(CH ₃) ₂) H ¹ H NMR (300 MHz; CDCl ₃) δ 6.82 (sxm, 2H); 4.14 (sxm, 2H); 3.60 (d, 1H); 3.13 (d, 1H); 1.75 (s, 6H); tautomeric form Db
4.0183	Н	Н	ОН	CH₂CH(COOCH₃) H R₁= Br, see Preparation Example P13
4.0184	Н	Н	ОН	CH ₂ CH(COOCH ₃) H R ₇ = CH

Table 5: Intermediates of formulae VII:

$$R_3$$
 R_4 X_4 (VII) R_1

No.	R ₁	R ₂	R ₃	R ₄	Υ	Xa Physical data
5.0000	Н	Н	OCH₃	OCH₃	CH₂	Н
5.0001	Н	Н	OCH₂CH₃	OCH₂CH₃	CH₂	Н
5.0002	Н	Н	-OCH ₂	CH₂O-	CH₂	H see Example P8
5.0003	Н	Н	OCH₃	OCH ₃	0	Н
5.0004	Н	Н	OCH ₂ CH ₃	OCH ₂ CH ₃	0	Н
5.0005	Н	Н	-OCH ₂	CH ₂ O-	0	Н
5.0006	Н	Н	OCH ₃	OCH₃	NSO₂CH₃	Н
5.0007	Н	Н	OCH ₂ CH ₃	OCH ₂ CH ₃	NSO₂CH₃	Н
5.0008	Н	Н	-OCH	₂ CH ₂ O-	NSO₂CH₃	Н
5.0009	Н	Н	OCH₃	OCH₃	$NC(O)C(CH_3)_3$	Н
5.0010	Н	Н	OCH₂CH₃	OCH ₂ CH ₃	$NC(O)C(CH_3)_3$	Н
5.0011	Н	Н	-OCH	₂ CH ₂ O-	NC(O)C(CH ₃) ₃	Н
5.0012	Н	Н	OCH₃	OCH ₃	CH₂CH₂	Н
5.0013	Н	Н	OCH₂CH₃	OCH₂CH₃	CH₂CH₂	Н
5.0014	Н	Н	-OCH	₂ CH ₂ O-	CH₂CH₂	Н
5.0015	Н	Н	OCH ₃	OCH₃	CH ₂	CI
5.0016	Н	Н	OCH₂CH₃	OCH₂CH₃	CH₂	Cl
5.0017	Н	н	-OCH	₂ CH ₂ O-	CH₂	Cl

No.	R ₁	R ₂	R ₃	R ₄	Υ	Xa Physical data
5.0018	Н	Н	OCH ₃	OCH₃	0	Cl
5.0019	Н	Н	OCH₂CH₃ (OCH₂CH₃	0	Cl
5.0020	Н	Н	-OCH₂C	H ₂ O-	0	CI
5.0021	Н	Н	OCH₃	OCH₃	NSO₂CH₃	Cl
5.0022	Н	Н	OCH ₂ CH ₃ (OCH₂CH₃	NSO₂CH₃	CI
5.0023	Н	Н	-OCH₂C	CH ₂ O-	NSO₂CH₃	Cl
5.0024	Н	Н	OCH₃	OCH₃	$NC(O)C(CH_3)_3$	CI
5.0025	Н	Н	OCH ₂ CH ₃	OCH₂CH₃	$NC(O)C(CH_3)_3$	Cl
5.0026	Н	Н	-OCH ₂ C	CH ₂ O-	$NC(O)C(CH_3)_3$	CI
5.0027	Н	Н	OCH ₃	OCH₃	CH₂CH₂	CI
5.0028	Н	Н	OCH ₂ CH ₃	OCH₂CH₃	CH₂CH₂	CI
5.0029	Н	Н	-OCH₂0	CH₂O-	CH₂CH₂	Cl
5.0030	н	Н	OCH₃	OCH₃	CH₂	Br
5.0031	н	Н	OCH ₂ CH ₃	OCH₂CH₃	CH₂	Br
5.0032	Н	Н	-OCH ₂ (CH₂O-	CH₂	Br
5.0033	Н	Н	OCH ₃	OCH₃	0	Br
5.0034	Н	Н	OCH₂CH₃	OCH ₂ CH ₃	0	Br
5.0035	Н	Н	-OCH₂	CH₂O-	0	Br
5.0036	Н	Н	OCH₃	OCH₃	NSO₂CH₃	Br
5.0037	Н	Н	OCH₂CH₃	OCH ₂ CH ₃	NSO₂CH₃	Br
5.0038	н	н	-OCH₂	CH₂O-	NSO₂CH₃	Br
5.0039	Н	Н	OCH₃	OCH₃	NC(O)C(CH ₃) ₃	Br
5.0040	Н	н	OCH ₂ CH ₃	OCH ₂ CH ₃	NC(O)C(CH ₃) ₃	, Br
5.0041	Н	Н	-OCH ₂	CH ₂ O-	NC(O)C(CH ₃)	₃ Br
5.0042	н	Н	OCH₃	OCH₃	CH₂CH₂	Br
5.0043	н	Н	OCH₂CH₃	OCH₂CH₃	CH₂CH₂	Br
5.0044	н	Н	-OCH	₂CH₂O-	CH₂CH₂	Br
5.0045	Н	CH₃	OCH₃	OCH ₃	CH ₂	н
5.0046	Н	CH₃	OCH₂CH₃	OCH ₂ CH ₃	CH₂	Н
5.0047	Н	CH₃	-OCH	₂ CH ₂ O-	CH₂	Н
5.0048	Н	CH₃	OCH₃	OCH₃	0	н
5.0049	Н	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	0	Н
5.0050	Н	CH₃	-OCH	₂ CH ₂ O-	0	Н

No.	R ₁	R ₂	R ₃	R ₄	Υ	Xa Physical data
5.0051	Н	CH ₃	OCH₃	OCH₃	NSO ₂ CH ₃	Н
5.0052	Н	CH ₃	OCH₂CH₃	OCH ₂ CH ₃	NSO₂CH₃	Н
5.0053	Н	CH ₃	-OCH ₂	CH₂O-	NSO₂CH₃	Н
5.0054	Н	CH₃	OCH₃	OCH₃	NC(O)C(CH ₃) ₃	Н
5.0055	Н	CH ₃	OCH ₂ CH ₃	OCH₂CH₃	NC(O)C(CH ₃) ₃	Н
5.0056	Н	CH ₃	-OCH ₂	CH ₂ O-	$NC(O)C(CH_3)_3$	н .
5.0057	Н	CH₃	OCH₃	OCH₃	CH₂CH₂	Н
5.0058	, H	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	CH₂CH₂	н .
5.0059	Н	CH₃	-OCH ₂	CH₂O-	CH₂CH₂	Н
5.0060	Н	CH₃	OCH₃	OCH₃	CH ₂	Cl
5.0061	Н	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	CH₂	Cl
5.0062	Н	CH₃	-OCH	₂CH₂O-	CH₂	Cl
5.0063	Н	CH₃	OCH ₃	OCH₃	0	CI
5.0064	Н	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	0	CI
5.0065	Н	CH₃	-OCH	₂CH₂O-	0	CI
5.0066	Н	CH₃	OCH₃	OCH₃	NSO₂CH₃	CI
5.0067	Н	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	NSO₂CH₃	CI
5.0068	Н	CH₃	-OCH	₂ CH ₂ O-	NSO₂CH₃	Cl
5.0069	Н	CH₃	OCH₃	OCH₃	NC(O)C(CH ₃) ₃	Cl
5.0070	Н	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	NC(O)C(CH ₃) ₃	, CI
5.0071	Н	CH₃	-OCH	I ₂ CH ₂ O-	NC(O)C(CH ₃) ₃	3 CI
5.0072	Н	CH₃	OCH₃	OCH₃	CH₂CH₂	CI
5.0073	Н	CH₃	OCH₂CH₃	OCH ₂ CH ₃	CH₂CH₂	Cl
5.0074	Н	CH₃	-OCH	I₂CH₂O-	CH₂CH₂	CI
5.0075	Н	CH₃	OCH₃	OCH₃	CH₂	Br
5.0076	Н	CH₃	OCH₂CH;	OCH2CH3	CH₂	Br
5.0077	Н	CH₃	-OCH	H₂CH₂O-	CH₂	Br
5.0078	н	CH₃	OCH₃	OCH₃	0	Br
5.0079	Н	CH₃	OCH₂CH	3 OCH2CH3	0	Br
5.0080	Н	CH₃	-OCI	H₂CH₂O-	0	Br
5.0081	н	CH₃	OCH₃	OCH₃	NSO₂CH₃	Br
5.0082	Н	CH₃	OCH ₂ CH	3 OCH2CH3	NSO₂CH₃	Br
5.0083	Н	CH₃	-OC	H₂CH₂O-	NSO₂CH₃	Br

No.	R ₁	R ₂	R ₃	R ₄	Υ	Xa	Physical data
5.0084	H	CH₃	OCH₃	OCH ₃	NC(O)C(CH ₃) ₃	Br	
5.0085	Н	-	OCH₂CH₃	OCH₂CH₃	NC(O)C(CH ₃) ₃	Br	
5.0086	Н	CH₃	-OCH₂0		NC(O)C(CH ₃) ₃	Br	
5.0087	н	CH₃	OCH₃	OCH₃	CH ₂ CH ₂	Br	
5.0088	Н	CH₃	OCH₂CH₃	OCH₂CH₃	CH ₂ CH ₂	Br	
5.0089	Н	СН₃	-OCH ₂ (CH₂O-	CH₂CH₂	Br	
5.0090	CH₃	СН₃	OCH₃	OCH₃	CH ₂	Н	
5.0091	CH₃	CH₃	OCH₂CH₃	OCH₂CH₃	CH ₂	Н	
5.0092	СН₃	СН₃	-OCH₂	CH₂O-	CH₂	Н	
5.0093	СН₃	CH₃	OCH₃	OCH₃	Ο	Н	see Example P5
5.0094	СН₃	CH₃	OCH ₂ CH ₃	OCH₂CH₃	0	Н	
5.0095	СН₃	CH₃	-OCH ₂	CH₂O-	0	Н	
5.0096	СН₃	CH₃	OCH₃	OCH ₃	NSO₂CH₃	Н	
5.0097	CH₃	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	NSO₂CH₃	Н	
5.0098	СН₃	СН₃	-OCH	₂CH₂O-	NSO₂CH₃	Н	
5.0099	СН₃	CH₃	OCH₃	OCH₃	$NC(O)C(CH_3)_3$	Н	
5.0100	СН₃	СН₃	OCH₂CH₃	OCH₂CH₃	NC(O)C(CH ₃) ₃	Н	
5.0101	СН₃	CH₃	-OCH	₂ CH ₂ O-	NC(O)C(CH ₃) ₃	Н	
5.0102	СН₃	CH₃	OCH₃	OCH₃	CH ₂ CH ₂	Н	
5.0103	CH₃	CH₃	OCH₂CH₃	OCH ₂ CH ₃	CH ₂ CH ₂	Н	
5.0104	CH₃	CH₃	-OCH	₂ CH ₂ O-	CH₂CH₂	Н	l
5.0105	CH₃	CH₃	OCH₃	OCH ₃	CH₂	С	l
5.0106	CH₃	CH₃	OCH₂CH₃	OCH ₂ CH ₃	CH₂	С	1
5.0107	CH₃	CH₃	-OCH	l₂CH₂O-	CH₂	С	l
5.0108	CH₃	СН₃	OCH ₃	OCH₃	0	С	I see Example P3
5.0109	CH₃	CH₃	OCH₂CH₃	OCH ₂ CH ₃	0	С	: 1
5.0110	CH₃	CH₃	-OCH	I₂CH₂O-	0	С	
5.0111	CH₃	CH₃	OCH₃	OCH ₃	NSO₂CH₃	С	
5.0112	CH₃	CH₃	OCH ₂ CH ₃	och₂ch₃	NSO₂CH₃	C	
5.0113	CH₃	CH ₃	-OCH	H ₂ CH ₂ O-	NSO₂CH₃	C	
5.0114	CH₃	CH ₃	oCH₃	OCH₃	NC(O)C(CH ₃)	3 C	
5.0115	CH ₃	CH ₃	OCH ₂ CH ₃	3 OCH2CH	3 NC(O)C(CH ₃)	з С)
5.0116	CH	CH:	-OCI	H₂CH₂O-	NC(O)C(CH ₃)	3 (

No.	R ₁	R ₂	R ₃	R ₄	Y	Xa Physical data
5.0117	CH ₃	CH₃	OCH ₃	OCH₃	CH ₂ CH ₂	Ci
5.0118	CH₃	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	CH ₂ CH ₂	CI
5.0119	CH₃	CH₃	-OCH2	CH ₂ O-	CH₂CH₂	CI
5.0120	CH₃	CH₃	OCH₃	OCH₃	CH ₂	Br
5.0121	CH₃	CH₃	OCH ₂ CH ₃	OCH₂CH₃	CH ₂	Br
5.0122	CH₃	CH₃	-OCH	₂CH₂O-	CH ₂	Br
5.0123	CH₃	CH₃	OCH₃	OCH₃	0	Br
5.0124	CH₃	CH₃	OCH ₂ CH ₃	OCH₂CH₃	0	Br
5.0125	CH₃	CH₃	-OCH	₂CH₂O-	0	Br
5.0126	CH₃	CH₃	OCH ₃	OCH ₃	NSO₂CH₃	Br
5.0127	СН₃	CH₃	OCH ₂ CH ₃	OCH ₂ CH ₃	NSO₂CH₃	Br
5.0128	СН₃	СН₃	-OCH	₂ CH ₂ O-	NSO₂CH₃	Br
5.0129	CH₃	CH₃	OCH₃	OCH₃	NC(O)C(CH ₃) ₃	Br
5.0130	CH₃	CH₃	OCH ₂ CH ₃	OCH₂CH₃	$NC(O)C(CH_3)_3$	Br
5.0131	CH ₃	CH₃	-OCH	l₂CH₂O-	NC(O)C(CH ₃) ₃	Br
5.0132	CH₃	CH₃	OCH₃	OCH₃	CH₂CH₂	Br
5.0133	CH₃	CH₃		OCH₂CH₃	CH₂CH₂	Br
5.0134	CH₃	CH₃	-OCH	I₂CH₂O-	CH ₂ CH ₂	Br
5.0135	Н	Н	-OCH	l₂CH₂O-	'c<	CI Amorphous crystals

Table 6: Intermediates of formula VI:

 No.
 A1
 A2
 R1
 R2
 Y
 Xa Physical data

 6.0000 CH CH H H C(=CH(OAc))
 CI major isomer I: ¹H NMR (300 MHz; CDCl₃) δ 7.12 (s, 1H); 6.77 (dxd, 1H); 6.35 (dxd, 1H); 4.02 (d, 1H); 3.95 (d, 1H); 2.18 (s, 3H).

 6.0001 CH CH H H C(=CH(OAc))
 CI minor isomer II: ¹H NMR (300 MHz; CDCl₃) δ 7.14 (s, 1H); 6.84 (dxd, 1H); 6.29 (dxd, 1H); 4.55 (d, 1H); 3.54 (d, 1H); 2.19 (s, 3H).

Biological Examples

Example B1: Herbicidal action prior to emergence of the plants (pre-emergence action) Monocotyledonous and dicotyledonous test plants are sown in standard soil in plastic pots. Immediately after sowing, the test compounds, in the form of an aqueous suspension (prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or in the form of an emulsion (prepared from a 25 % emulsifiable concentrate (Example F1, c)), are applied by spraying in a concentration corresponding to 125 g or 250 g of active ingredient/ha (500 litres of water/ha). The test plants are then grown in a greenhouse under optimum conditions. After a test duration of 3 weeks, the test is evaluated in accordance with a scale of ten ratings (10 = total damage, 0 = no action). Ratings of from 10 to 6 (especially from 10 to 8) indicate good to very good herbicidal action. The compounds of formula I exhibit strong herbicidal action in this test. Examples of the good herbicidal action of the compounds are given in Table B1:

Table B1: Pre-emergence herbicidal action:

Е	Ex. No.	gr/ha	Panicum	Echinochloa	Abutilon	Amaranthus	Chenopodium	Kochia
	1.0301		7	7	7	8	9	8
	1.0411	250	10	9	10	10	10	10

Example B2: Post-emergence herbicidal action

In a greenhouse, monocotyledonous and dicotyledonous test plants are grown in standard soil in plastic pots and at the 4- to 6-leaf stage are sprayed with an aqueous suspension of the test compounds of formula I prepared from a 25 % wettable powder (Example F3, b) according to WO 97/34485) or with an emulsion of the test compounds of formula I prepared from a 25 % emulsifiable concentrate (Example F1, c) according to WO 97/34485), in a concentration corresponding to 125 g or 250 g of active ingredient/ha (500 litres of water/ha). The test plants are then grown on in a greenhouse under optimum conditions. After a test duration of about 18 days, the test is evaluated in accordance with a scale of ten ratings (10 = total damage, 0 = no action). Ratings of from 10 to 6 (especially from 10 to 7) indicate good to very good herbicidal action. The compounds of formula I exhibit a strong herbicidal action in this test. Examples of the good herbicidal action of the compounds are given in Table B2:

Table B2: Post-emergence herbicidal action:

Ex.	No.	gr/ha	Abutilon	Ipomea	Amaranthus	Chenopodium	Stellaria	Abutilon
		250	9	8	8	8	8	8
		250	9	10	9	10	9	9
		250	7	8	7	8	10	8

Example B3: Comparison test with a compound from the prior art: post-emergence herbicidal action:

The post-emergence herbicidal action of compound No. 1.0411 according to the invention is compared with compound "A" from WO 01/94339:

Table B3: Post-emergence action:

Fx No.	gr/ha	Brachiaria	Rottboelia	Sida	Polygonum	Sinapis	Galium
1.0411		10	3	8	8	8	. 6
A	15	4	0	7	5	6	5

It can be seen from Table B3 that compound No. 1.0411 according to the invention at a rate of application of 15 g/ha exhibits considerably better herbicidal action on the weeds than compound "A" from the prior art. This enhanced action was not to be expected in view of the structural similarity of the compounds.

What is claimed is:

1. A compound of formula I

$$\begin{array}{c|c}
R_2 & R_3 \\
R_1 & Q
\end{array}$$

$$\begin{array}{c|c}
Q & (I)
\end{array}$$

wherein

Y is oxygen, NR_{4a} , sulfur, sulfonyl, sulfinyl, C(O), C(= NR_{4b}), C(= $CR_{6a}R_{6b}$) or a C_1 - C_4 alkylene or C_2 - C_4 alkenylene chain, which may be interrupted by oxygen, NR_{5a} , sulfur, sulfonyl, sulfinyl, C(O) or C(= NR_{5b}) and/or mono- or poly-substituted by R_6 ;

A₁ is nitrogen or CR₇;

A₂ is nitrogen or CR₈;

R₁, R₂, R₆, R₇ and R₈ are each independently of the others hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, oxyiminomethylene, C₁-C₆alkoxyiminomethylene, C₁-C₆alkyl, $C_1-C_6 haloalkyl,\ C_2-C_6 alkenyl,\ C_2-C_6 haloalkenyl,\ C_2-C_6 alkynyl,\ C_2-C_6 haloalkynyl,\ C_1-C_6 alkoxy,$ $C_{1}\text{-}C_{6}\text{haloalkoxy},\ C_{3}\text{-}C_{6}\text{alkenyloxy},\ C_{3}\text{-}C_{6}\text{alkynyloxy},\ C_{3}\text{-}C_{6}\text{oxacycloalkyl},\ C_{3}\text{-}C_{6}\text{thiacycloalkyl},$ C_3 - C_6 dioxacycloalkyl, C_3 - C_6 dithiacycloalkyl, C_3 - C_6 oxathiacycloalkyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyloxy, C_1 - C_6 alkylcarbonyloxy, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfinyl, NR_9R_{10} , C_3 - C_6 cycloalkyl, $tri(C_1$ - C_6 alkyl)silyl, $di(C_1$ - C_6 alkyl)phenylsilyl, tri(C_1 - C_6 alkyl)silyloxy, di(C_1 - C_6 alkyl)phenylsilyloxy or Ar₁; or R_1 , R_2 , R_8 , R_7 , R_8 are each independently of the others a C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C₂-C₆alkynyl or C₃-C₆cycloalkyl group, which may be interrupted by oxygen, sulfur, sulfonyl, sulfinyl, -NR₁₁- or -C(O)- and/or mono-, di- or tri-substituted by hydroxy, mercapto, NO₂, cyano, halogen, formyl, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_6 haloalkoxy, $C_1-C_2\\alkoxy-C_1-C_2\\alkoxy,\ C_1-C_4\\alkoxycarbonyloxy,\ C_1-C_4\\alkylcarbonyloxy,\ C_1-C_4\\alkoxy-C_4\\alkoxy-C_4\\alkoxy-C_4\\alkylcarbonyloxy,\ C_1-C_4\\alkoxy-C_4\\alkoxy-C_4\\alkylcarbonyloxy,\ C_1-C_4\\alkoxy-C_4\\alkylcarbonyloxy,\ C_1-C_4\\alkylcarbonyloxy,\ C$ $carbonyl,\ C_1\text{-}C_4 alkylcarbonyl,\ C_1\text{-}C_6 alkylthio,\ C_1\text{-}C_6 alkylsulfinyl,\ C_1\text{-}C_6 alkylsulfonyl,\ NR_{12}R_{13},$ $C_1-C_6 alkyl,\ C_2-C_6 alkenyl,\ C_2-C_6 alkynyl,\ C_3-C_6 cycloalkyl,\ tri(C_1-C_6 alkyl)silyl,\ tri(C_1-C_6 alkyl)-c_6 alkyl)-c_6 alkyl,\ tri(C_1-C_6 alkyl)-c_6 alkyl)-c_6 alkyl)-c_6 alkyl,\ tri(C_1-C_6 alkyl)-c_6 alky$ silyloxy or Ar₂;

or two substituents R_6 at the same carbon atom together form a -CH₂O- or a C₂-C₅alkylene chain, which may be interrupted once or twice by oxygen, sulfur, sulfinyl or sulfonyl and/or mono- or poly-substituted by R_{6c} , with the proviso that two hetero atoms may not be located next to one another;

or two substituents R_6 at different carbon atoms together form an oxygen bridge or a C_1 - C_4 alkylene chain, which may in turn be substituted by R_{6c} ;

or R_7 and R_8 together form a -CH₂CH=CH-, -OCH=CH- or -CH=CH-CH=CH- bridge or a C_3 -C₄alkylene chain, which may be interrupted by oxygen or -S(O)_{n1}- and/or mono- or polysubstituted by R_{6d} ;

 R_3 is hydroxy, halogen, mercapto, $C_1\text{-}C_8$ alkylthio, $C_1\text{-}C_8$ alkylsulfinyl, $C_1\text{-}C_8$ alkylsulfinyl, $C_1\text{-}C_8$ haloalkylsulfinyl, $C_1\text{-}C_8$ haloalkylsulfonyl, $C_1\text{-}C_4$ alkoxy- $C_1\text{-}C_4$ alkylsulfonyl, $C_3\text{-}C_8$ alkenylthio, $C_3\text{-}C_4$ alkylsulfinyl, $C_1\text{-}C_4$ alkylsulfonyl, $C_3\text{-}C_8$ alkenylthio, $C_3\text{-}C_8$ alkynylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_3\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylthio, $C_1\text{-}C_4$ alkylsulfinyl, $C_1\text{-}C_4$ alkylsulfonyl, $C_3\text{-}C_8$ cycloalkylsulfinyl, $C_3\text{-}C_8$ cycloalkylsulfonyl, $C_3\text{-}C_8$ cycloalkylsulfinyl, $C_3\text{-}C_8$ cycloalkylsulfonyl, phenyl- $C_1\text{-}C_4$ alkylsulfonyl, it being possible for the phenyl-containing groups to be substituted by one or more $C_1\text{-}C_3$ alkyl, $C_1\text{-}C_3$ haloalkyl, $C_1\text{-}C_3$ alkoxy, $C_1\text{-}C_3$ haloalkoxy, $C_1\text{-}C_4$ alkoxycarbonyl, halogen, cyano, hydroxy or nitro groups;

or R_3 is O^*M^* , wherein M^* is an alkali metal cation or an ammonium cation; Q is a radical

$$(Z_1)m_1$$
 (Q_1) , $(Z_2)m_2$ (Q_2) or (Q_2) or (Q_2) (Q_3) (Q_4)

$$(Z_3)m_3$$
 (Q_3) , wherein X_3

 p_1 , p_2 and p_3 are 0 or 1;

m₁, m₂ and m₃ are 1, 2 or 3;

 X_1 , X_2 and X_3 are hydroxy, halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl or C_1 - C_6 haloalkylsulfonyl;

 Z_1 , Z_2 and Z_3 are C_1 - C_6 alkyl which is substituted by the following substituents: C_3 - C_4 cycloalkyl or C_3 - C_4 cycloalkyl substituted by halogen, C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy-

C₁-C₃alkyl; oxiranyl or oxiranyl substituted by C₁-C₆alkyl or C₁-C₃alkoxy-C₁-C₃alkyl; 3oxetanyl or 3-oxetanyl substituted by C₁-C₆alkyl, C₁-C₃alkoxy or C₁-C₃alkoxy-C₁-C₃alkyl; 3oxetanyloxy or 3-oxetanyloxy substituted by C_1 - C_6 alkyl, C_1 - C_3 alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkyl; C₃-C₀cycloalkyloxy or C₃-C₄cycloalkyloxy substituted by halogen, C₁-C₀alkyl, C₁-C₃alkoxy or C_1 - C_3 alkoxy- C_1 - C_3 alkyl; C_1 - C_6 haloalkoxy; C_1 - C_6 alkylsulfonyloxy; C_1 - C_6 haloalkylsulfonyloxy; phenylsulfonyloxy; benzylsulfonyloxy; benzoyloxy; phenoxy; phenylthio; phenylsulfinyl; phenylsulfonyl; Ar₁₀; OAr₁₂; tri(C₁-C₆alkyl)silyl or tri(C₁-C₆alkyl)silyloxy, it being possible for the phenyl-containing groups to be mono- or poly-substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano, hydroxy or nitro; or Z_1 , Z_2 and Z_3 are 3-oxetanyl; 3-oxetanyl substituted by C_1 - C_3 alkoxy, C_1 - C_3 alkoxy-C₁-C₃alkyl or C₁-C₀alkyl; C₃-C₀cycloalkyl substituted by halogen, C₁-C₃alkyl or C₁-C₃alkoxy- $C_1-C_3 alkyl; tri(C_1-C_6 alkyl) silyl; tri(C_1-C_6 alkyl) silyloxy or CH=P(phenyl)_3;$ or Z_1 , Z_2 and Z_3 are a C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl group, which is interrupted by oxygen, -O(CO)-, -(CO)O-, -O(CO)O-, -N(R_{14})O-, -ONR₁₅-, sulfur, sulfinyl, sulfonyl, -SO₂NR₁₆-, -NR₁₇SO₂- or -NR₁₈- and is mono- or poly-substituted by L₁; it also being possible for L₁ to be bonded at the terminal carbon atom of the C₁-C₆alkyl, C₂-C₆alkenyl or C2-C6alkynyl group;

or Z_1 , Z_2 and Z_3 are hydrogen, hydroxy, mercapto, NO₂, cyano, halogen, formyl, C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylsulfinyl, NR₂₂R₂₃, phenyl which may be mono- or poly-substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano, hydroxy or nitro, C₃-C₆cycloalkyl, C₅-C₆cycloalkyl substituted by C₁-C₃alkoxy, C₁-C₃alkoxy-C₁-C₃alkyl or C₁-C₆alkyl, or Ar₅, O-Ar₆, N(R₂₄)Ar₇ or S(O)n₆Ar₈;

 $\begin{array}{l} L_1 \text{ is hydrogen, halogen, hydroxy, amino, formyl, nitro, cyano, mercapto, carbamoyl,} \\ P(O)(OC_1\text{-}C_6\text{alkyl})_2, \ C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{haloalkoxy, } C_1\text{-}C_6\text{alkoxycarbonyl, } C_2\text{-}C_6\text{alkenyl, } \\ C_2\text{-}C_6\text{haloalkenyl, } C_2\text{-}C_6\text{alkynyl, } C_2\text{-}C_6\text{haloalkynyl, } C_3\text{-}C_6\text{cycloalkyl, halo-substituted} \\ C_3\text{-}C_6\text{cycloalkyl, } C_3\text{-}C_6\text{alkenyloxy, } C_3\text{-}C_6\text{alkynyloxy, } C_3\text{-}C_6\text{haloalkenyloxy, cyano-}C_1\text{-}C_6\text{alkoxy, } \\ C_1\text{-}C_6\text{alkoxy-}C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{alkylthio-}C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{alkylsulfinyl-}C_1\text{-}C_6\text{alkoxy, } \\ C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{alkoxy, } C_1\text{-}C_6\text{alkylsulfinyl-} \\ C_1\text{-}C_6\text{alkylsulfinyl, } C_1\text{-}C_6\text{alkylsulfinyl, } C_1\text{-}C_6\text{alkylsulfinyl, } \\ C_1\text{-}C_6\text{haloalkylsulfinyl, } C_1\text{-}C_6\text{haloalkylsulfonyl or oxiranyl, which may in turn be substituted by } \\ C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_3\text{alkoxy or } C_1\text{-}C_3\text{alkoxy-}C_1\text{-}C_3\text{alkyl, or (3-oxetanyl)-oxy, which may in turn be } \\ \text{substituted by } C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_3\text{alkoxy or } C_1\text{-}C_3\text{alkoxy-}C_1\text{-}C_3\text{alkyl, or benzoyloxy, benzyloxy, } \\ \text{benzylthio, benzylsulfinyl, benzylsulfonyl, } C_1\text{-}C_6\text{alkylamino, } \text{di}(C_1\text{-}C_6\text{alkyl})\text{amino, } R_{19}S(O)_2O_1, \\ \\ R_{20}N(R_{21})SO_2\text{-, rhodano, phenyl, phenoxy, phenylthio, phenylsulfinyl, phenylsulfonyl, } A_{14}\text{ or } \\ \end{array}$

OAr₁₁, it being possible for the phenyl-containing groups in turn to be substituted by one or more C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano, hydroxy or nitro groups;

 R_{4a} and R_{5a} are each independently of the other hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, cyano, formyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, carbamoyl, C_1 - C_6 alkylaminocarbonyl, di(C_1 - C_6 alkylamino)sulfonyl, C_3 - C_6 cycloalkylcarbonyl, C_1 - C_6 -alkylsulfonyl, phenylcarbonyl, phenylaminocarbonyl or phenylsulfonyl, it being possible for the phenyl groups to be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro;

 R_{4b} and R_{5b} are each independently of the other hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy or benzyloxy, it being possible for the benzyl group to be mono- or polysubstituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro;

 R_9 , R_{11} , R_{13} , R_{16} , R_{17} , R_{18} , R_{20} , R_{23} and R_{24} are each independently of the others hydrogen, C_1 - C_6 alkyl, Ar_9 , C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl, phenyl, it being possible for the phenyl group in turn to be mono- or poly-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, halogen, cyano, hydroxy or nitro; R_{6a} is hydrogen, C_1 - C_6 alkyl or C_1 - C_6 alkylcarbonyl; or together with R_{6b} is a C_2 - C_5 alkylene chain;

 R_{6b} , R_{6d} , R_{10} , R_{12} and R_{22} are each independently of the others hydrogen or C_1 - C_6 alkyl; R_{6c} , R_{14} , R_{15} , R_{19} and R_{21} are each independently of the others C_1 - C_6 alkyl or C_1 - C_6 haloalkyl; Ar₁, Ar₂, Ar₃, Ar₄, Ar₅, Ar₆, Ar₇, Ar₈, Ar₉, Ar₁₀, Ar₁₁ and Ar₁₂ are each independently of the others a five- to ten-membered, monocyclic or fused bicyclic ring system, which may be aromatic, partially saturated or fully saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen, sulfur, C(O) and C(=NR₂₅), and each ring system may contain not more than two oxygen atoms, not more than two sulfur atoms, not more than two C(O) groups and not more than one C(=NR₂₅) group, and each ring system may itself be mono- or poly-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, amino, hydroxy, C_1 - C_6 alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C₃-C₆alkynylthio, C₁-C₃alkoxy-C₁-C₃alkylthio, C₁-C₄alkylcarbonyl-C₁-C₃alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C₁-C₀alkylsulfonyl, C₁-C₀haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, N,N-di(C₁-C₂alkyl)aminosulfonyl, di(C₁-C₄alkyl)amino, halogen, cyano, nitro or phenyl, it being possible for the phenyl group in turn to be substituted by hydroxy, C₁-C₆alkylthio, C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio,

 C_1 - C_3 alkoxy- C_1 - C_3 alkylthio, C_1 - C_4 alkylcarbonyl- C_1 - C_3 alkylthio, C_1 - C_4 alkoxycarbonyl- C_1 - C_3 -alkylthio, cyano- C_1 - C_3 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_1 - C_2 alkyl)aminosulfonyl, di(C_1 - C_4 alkyl)amino, halogen, cyano or nitro, and the substituents at the nitrogen atom in the heterocyclic ring being other than halogen, and two oxygen atoms not being located next to one another;

 R_{25} is hydrogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkoxycarbonyl or C_1 - C_6 alkylsulfonyl; and n_1 is 0, 1 or 2; and n_6 is 0, 1 or 2; or an agronomically acceptable salt/isomer/enantiomer/tautomer of such a compound.

2. A compound of formula Da

$$\stackrel{\stackrel{\cdot}{R_2}}{\underset{A_1}{\bigvee}} O$$
 (Da),

wherein Y, R₁, R₂, A₁ and A₂ are as defined for formula I in claim 1.

3. A compound of formula Db

$$R_2$$
 A_2
 A_1
 A_1
 A_1
 A_1
 A_1
 A_1
 A_2
 A_3
 A_4
 A_1
 A_2
 A_3
 A_4
 A_4
 A_5
 wherein A_1 , A_2 , R_1 , R_2 and Y are as defined for formula I in claim 1, Xa is hydrogen, chlorine or bromine and R_3 is hydroxy or C_1 - C_6 alkoxy, with the exception of the compounds 3-chloro-8-oxa-bicyclo[3.2.1]oct-6-ene-2,4-dione; 3-chloro-bicyclo[3.2.1]oct-6-ene-2,4-dione; 3-chloro-4-hydroxy-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-1,5-dimethyl-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dibromo-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dichloro-8-oxa-bicyclo[3.2.1]octa-3,6-dien-2-one; 3,4-dichloro-bicyclo[3.2.1]octa-3,6-dien-2-one and 7,8-dibromo-5,9-dihydro-5,9-methano-benzo-cyclohepten-6-one.

4. A compound of formula VII

$$R_3$$
a R_3 a

wherein A_1 , A_2 , R_1 , R_2 , Y are as defined for formula I in claim 1, Xa is hydrogen, chlorine or bromine and R_3 a is C_1 - C_6 alkyl or two R_3 a together are $-CH_2CH_2$ -.

- 5. A herbicidal and plant-growth-inhibiting composition, comprising a herbicidally effective amount of a compound of formula I according to claim 1 on an inert carrier.
- 6. A method of controlling undesired plant growth, which method comprises applying a compound of formula I according to claim 5, or a composition comprising such a compound, in a herbicidally effective amount to a plant or to the locus thereof.
- 7. A method of inhibiting plant growth, which method comprises applying a compound of formula I according to claim 5, or a composition comprising such a compound, in a herbicidally effective amount to a plant or to the locus thereof.

(19) World Intellectual Property Organization

International Bureau

1 (1818) BURLUN K STUTE KINI BUKA BUKA BUKA KI KA BURA BUKA BUKA INI KATAN KABANTA KATANTA BUKA BUKA BUKA BUKA

(43) International Publication Date 15 July 2004 (15.07.2004)

(10) International Publication Number WO 2004/058712 A3

(51) International Patent Classification7: 213/50, 213/89

C07D 451/02,

(21) International Application Number:

PCT/EP2003/014949

(22) International Filing Date:

29 December 2003 (29.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 2217/02

30 December 2002 (30.12.2002)

- (71) Applicant (for all designated States except US): SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **BEAUDEG-**NIES, Renaud [BE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). ED-MUNDS, Andrew [GB/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). LÜTHY, Christoph [CH/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). HALL, Roger, Graham [GB/CH]; Syngenta Crop Protection AG, Schwarwaldallee 215, CH-4058 Basel (CH). WENDEBORN, Sebastian [DE/CH]; Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4058 Basel (CH). SCHAETZER, Jürgen [DE/CH]; Syngenta Crop

Protection AG, Schwarzwaldallee 215, CH-4058 Basel

- (74) Agent: SYNGENTA PARTICIPATIONS AG; Intellectual Property, P.O. Box, 4002 Basel (CH).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 16 September 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HERBICIDALLY ACTIVE NICOTINOYL DERIVATES

(57) Abstract: Compounds of formula (I), wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts and all stereoisomers and tautomeric forms of the compounds of formula I are suitable for use as herbicides.

International Application No PCT/EP 03/14949

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D451/02 C07D213/50 C07D213/89 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data, WPI Data, PAJ, EMBASE, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ° 1-7 WO 00/15615 A (NOVARTIS ERFIND VERWALT Υ GMBH; KUNZ WALTER (CH); NOVARTIS AG (CH); EDM) 23 March 2000 (2000-03-23) cited in the application the whole document, sp. claims page 130 1-7 WO 01/94339 A (EDMUNDS ANDREW; LUETHY Υ CHRISTOPH (CH); MESMAEKER ALAIN DE (CH); SYNGE) 13 December 2001 (2001-12-13) cited in the application the whole document, claims page 156 and compound 1007 page 133 1-7 WO 01/66522 A (EDMUNDS ANDREW; LUETHY Y CHRISTOPH (CH); SYNGENTA PARTICIPATIONS AG (CH) 13 September 2001 (2001-09-13) cited in the application the whole document, claims page 53 Patent family members are listed in annex. Further documents are listed in the continuation of box C. X ° Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. O document referring to an oral disclosure, use, exhibition or *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 26/07/2004 1 July 2004 Authorized officer Name and malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Frelon, D

International Application No PCT/EP 03/14949

Relevant to claim No.
3
3
3
3

International Application No PCT/EP 03/14949

Information on patent family members

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0015615	A	23-03-2000	AU	755721 B2 5862999 A	19-12-2002 03-04-2000
			AU BR	9913745 A	05-06-2001
			CA	2341291 A1	23-03-2000
			CN	1143849 C	31-03-2004
			WO	0015615 A1	23-03-2000
			EP	1114030 A1	11-07-2001
			JΡ	2002524554 T	06-08-2002
			ÜS	2002016345 A1	07-02-2002
			ZA	200101859 A	02-01-2002
WO 0194339	A	13-12-2001	AU	6234401 A	17-12-2001
WO 0134303	••	20 21 1100	CA	2410345 A1	13-12-2001
			CN	1436184 T	13-08-2003
			CZ	20023979 A3	16-04-2003
			WO	0194339 A1	13-12-2001
			EP	1286985 A1	05-03-2003
			HU	0301243 A2	28-08-2003
			JP	2003535858 T	02-12-2003
			SK	17232002 A3	03-06-2003
			US	2004097729 A1	20-05-2004
WO 0166522	Α	13-09-2001	AU	4245101 A	17-09-2001
			WO	0166522 A1	13-09-2001