

(1)	2 (2)	3 (0.60)	4. (2)	5 (2)	6 (1)	7 (4)	Q (1)
. (1) . (2) ^{nathon}	2. (2) 10. (1) athor	3. (0.60) mgo ///. mathongo	` '	5. (3) ///. mathongo	6. (1) ///. mathongo	7. (4) /// mathongo	8. (1) ///. mathongo //
u = 10 $u = 10$	$x_{10} x + \log 10 + \log$	$x + \log_{10} 10$					
- 10	$\log_{-}x$	$\log_x x + \log_{10} 10$					
$\Rightarrow \frac{dy}{dx} = \frac{1}{x}$	$-\log_{10}e-rac{\log_e 10}{x(\log_e x)^2}$	go ///. mathongo					
/ math <u>o</u> n	$a(x) = f(\sin^{-1} x) =$	$f(x) = \sin^{-1} x$ and $h(x) = e^{\sin^{-1} x}$					
$\Rightarrow I$ mathon $\Rightarrow \frac{1}{2}$	$a'(x) = e^{\sin^{-1}x} imes rac{1}{\sqrt{1-x^2}}$	$\frac{1}{1-x^2}$ /// mathongo					
(0.60) Given that							
	$\tan^{-1}y = \tan^{-1}\left(\frac{1}{2}\right)$	$\left(\frac{x-y}{1+xy}\right); \ x>0 \ \& \ y>0.$					
	$rac{1}{1+\left(2^{x+1} ight)^2} 2. 2^x \ln(2)$	$(2^x) - rac{1}{1+(2^x)^2} 2^x \ln(2)$					
Put $x = 0$ $\frac{dy}{dx} = \frac{2\ln(5)}{5}$ $= \frac{3}{5}(-\ln(6))$	$(\frac{2}{2}) - \frac{\ln(2)}{1} = \ln(2)$ $(\frac{3}{5}\ln(\frac{1}{2}))$	$0\left(\frac{-3}{5}\right)$ mathongo					
So require	d value of $k = \frac{3}{5} =$	e 0.6 ago /// mathongo					
	have,						
• ($e^{x} = e^{x} + x$ where e^{x} erentiating both significant e^{x}	mathongo x mathongo x les w.r.t. x , we get					
mathLet		of $f(x)$. Then,					
	$egin{align} f'(x))&=x\ f'(g(x))g'(x)&=1\ e^{g(x)}&+1)g'(x)&=1 \ \end{array}$	go /// mathongo					
→ ($ag(f(\log 2)) + 1) a' f$						
$\Rightarrow \varrho$	$g'\Big(f\Big(\log 2\Big)\Big) = \frac{1}{3}$						

Answer Keys and Solutions

