Sistemi e Applicazioni Cloud - Esercizio

Esercizio simulatore reti sbilanciate [Tempo consegna: 2h 30m]

Parte 1: rete base

Si simuli una rete a code che implementa modelli un sistema di calcolo composto da:

- scheda di rete
- processore
- disco fisso.

Il sistema è mostrato nella figura.

Figure 1: Modello di rete

Il carico in ingresso è $\lambda=6$ richieste al secondo. Il processing rate dei veri sever è come segue:

- scheda di rete $\mu_n = 20$ richieste al secondo.
- processore $\mu_c = 10$ richieste al secondo.
- disco fisso $\mu_d = 15$ richieste al secondo.

Identificare il tempo di risposta complessivo e le utilizzazioni dei componenti. Indicare anche l'intervallo di confidenza del 67% per tali valori.

Metrica	
$\overline{T_r}$	
$\rho(CPU)$	
$\rho(Net)$	
$\rho(Disk)$	

Parte 2: Riflessioni

Sulla base di quanto visto discutere e dimostrare mediante simulazione

- Qual è il componente collo di bottiglia?
- Qual è il valore massimo di λ che garantisce un valore di tempo di risposta $T_r < 0.7s$? Usare la teoria delle reti di code per trovare una stima e poi validarla con il simulatore

Parte 3: configuraizone avanzata

Considerare la possibilità di raddoppiare un componente

- Studiare l'uso del componente Router (per le policy di routing vanno bene tanto Round Robin quanto Random)
- Modificare la rete per raddoppiare il componente collo di bottiglia
- Ri-valutare i tempi di risposta medi nello scenario limite del punto precedente
- Ri-valutare il massimo λ nel nuovo scenario. Qual è il nuovo componente collo di bottiglia?