Examen Final Regular

Apellido y Nombre:	
Mail:	LU:

- 1. Sea \mathcal{E} la elipse que tiene vértices en $P_1(-3,1)$ y $P_2(-1,4)$.
 - a) Dar la ecuación de la elipse, determinar en qué puntos corta al eje y.
 - b) Dar la ecuación de la parábola \mathcal{P} que corta al eje y en los mismos puntos que \mathcal{E} y su vértice coincide con el centro de la elipse.
 - c) Sea Q el punto superior donde se cortan \mathcal{E} y \mathcal{P} . Dar la ecuación simétrica de la tangente a \mathcal{E} y la segmentaria de la tangente de \mathcal{P} en dicho punto.
 - d) Graficar \mathcal{E} , \mathcal{P} , los focos, la directriz de \mathcal{P} y las tangentes.
- 2. Sea π_1 el plano que pasa por los puntos $P_1(1,0,-1)$, $P_2(2,-1,3)$ y $P_3(2,1,1)$, y sea π_2 el plano que pasa por P_1 y P_2 y es perpendicular a π_1 .
 - a) Dar la ecuación segmentaria de π_1 y π_2 .
 - b) Determinar las trazas de π_2 . Graficar las trazas, \mathbf{n}_1 y \mathbf{n}_2 .
- 3. a) Dar la ecuación de la cuádrica S, que pasa por los puntos $P_1(1,2,2)$ y $P_2(2,-1,-2)$, y su traza con el plano coordenado xy es la parábola $\mathcal{C}: x^2 2x + y + 1 = 0$.
 - b) Determinar el tipo de cuádrica e indicar si tiene simetría respecto de algún plano coordenado. Justificar.
 - c) Graficar la superficie S y sus trazas con los planos coordenados, indicando qué tipo de cónicas son.
- 4. Sea la superficie de revolución $S: x^2 + y^2 + z^4 z^2 = 0$.
 - a) Determinar el eje de rotación y una curva generatriz \mathcal{C} .
 - b) Determinar el volumen del sólido limitado por S.
 - c) Graficar la superficie, el sólido y la curva $\mathcal{C}.$
 - d) Dar la ecuación de la superficie en coordenadas esféricas.

Justificar todas las respuestas.

Hojas entregadas: Firma: