2. Brojevni sustavi i kodovi (1)

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje

Tipovi i prikaz podataka

- prikaz podataka u digitalnom obliku
 niz bitova, bitovni vektor
- značenja bitovnog vektora:
 - broj
 - znak/simbol
 - specijalni znakovi: upravljački, instrukcije, ...

Tipovi i prikaz podataka

- bitovni vektor ~ "tipiziran":
 - pripada nekom tipu podataka (engl. data type)
 - nametanje discipline manipuliranja s podacima
- osnovni tipovi podataka:
 - brojevi: prirodni, cijeli, realni, ...
 - znak/simbol: pojedine abecede (~ znakovni kodovi)
 - specijalni znakovi ~ posebno značenje: logičke varijable
- značenje bitovnog vektora
 utvrđeno interpretacijom, kontekstom obrade

Tipovi i prikaz podataka

- zapis podataka (~ zapis bitovnog vektora): utvrđeni oblik = format
 - organizacija niza bitova (grupe bitova ~ polja)
 - značenje pojedinih bitova/grupa bitova
- najjednostavniji zapis: prirodni binarni brojevi
 - vrijednost bita u broju = pozicija bita u binarnom vektoru
- posve općenito: pridruživanje značenja binarnom vektoru = kôd
 - broj
 - nešto drugo (~ simbol)

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
 - pozicijski brojevni sustavi
 - pretvorba iz jednog sustava u drugi sustav
 - oktalni i heksadekadski sustav
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje

Pozicijski brojevni sustavi

- pozicija znamenke određuje njenu težinu
 - faktor kojim se znamenka množi
- težina potencija baze brojevnog sustava
- dekadski sustav:

$$234 = 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$$

baza sustava može općenito biti bilo koji cijeli broj

Pozicijski brojevni sustavi

prikaz n-znamenkastih cijelih brojeva:

$$\begin{split} N_{B} &= a_{n-1} \cdot B^{n-1} + a_{n-2} \cdot B^{n-2} + \dots + a_{1} \cdot B^{1} + a_{0} \cdot B^{0} \\ &= \sum_{i=0}^{n-1} a_{i} \cdot B^{i} \\ &= a_{n-1} a_{n-2} \dots a_{1} a_{0} \end{split}$$

B: baza ili korijen brojevnog sustava

a_i: koeficijent uz \dot{F} tu potenciju (težinu); a_i = {0, 1,, B-1}, i = 0, 1,, n-1 ~ znamenke

Prikaz razlomljenih brojeva

princip prikaza kao za cijele brojeve:
 težine znamenki iza zareza ~ negativne potencije baze

$$n_{B} = a_{-1} \cdot B^{-1} + a_{-2} \cdot B^{-2} + \dots + a_{-(m-1)} \cdot B^{-m+1} + a_{-m} \cdot B^{-m}$$

$$= \sum_{i=-m}^{-1} a_{i} \cdot B^{i}$$

$$= 0, a_{-1} a_{-2} \dots a_{-(m-1)} a_{-m}$$

Miješani ili racionalni brojevi

prikaz s fiksnim zarezom (engl. fixed-point notation)
 "miješani" ili racionalni brojevi =
 cijeli broj + razlomljeni broj

$$\begin{split} N &= N_B + n_B \\ &= \sum_{i=-m}^{n-1} a_i \cdot B^i \\ &= a_{n-1} a_{n-2} \dots a_1 a_0, a_{-1} a_{-2} \dots a_{-(m-1)} a_{-m} \end{split}$$

- pretvorba:
 - posebno cjelobrojni dio broja
 - posebno razlomljeni dio broja

Neki brojevni sustavi

baza B	brojevni sustav	znamenke sustava (B)
2	binarni	0,1
3	ternarni	0,1,2
8	oktalni	0,1,2,3,4,5,6,7
10	dekadski	0,1,2,3,4,5,6,7,8,9
16	heksadekadski	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

dekadski	binarni	oktalni	heksadekadski
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Pretvorba brojeva u različitim sustavima

- pretvorba *cijelog* dekadskog broja u neki drugi sustav
 uzastopno dijeljenje bazom tog sustava
 - ostaci dijeljenja s bazom ~ znamenke
 - ostatak prvog dijeljenja ~ najmanje značajna znamenka

Primjer:
$$N_{10} \rightarrow N_2 = b_{s-1}b_{s-2}\cdots b_1b_0$$

$$N_{10} = b_{s-1} \cdot 2^{s-1} + b_{s-2} \cdot 2^{s-2} + \dots + b_1 \cdot 2^1 + b_0 \cdot 2^0$$

$$= 2 \cdot \left(b_{s-1} \cdot 2^{s-2} + b_{s-2} \cdot 2^{s-3} + \dots + b_1 \cdot 2^0 \right) + b_0$$

$$= 2 \cdot A_1 + b_0$$

Pretvorba dekadskog broja u binarni

Primjer: $345_{10} \rightarrow ?_2$

$$345:2=172$$

$$172:2=86$$

$$86:2=43$$

$$43:2=21$$

$$21:2=10$$

$$10:2=5$$

$$5:2=2$$

$$2:2=1$$

$$1:2=0$$

$$\Rightarrow$$
 345₁₀ = 101011001₂

Pretvorba dekadskog broja u ternarni

Primjer: $345_{10} \rightarrow ?_{3}$

$$345:3=115$$
 0
 $115:3=38$ 1
 $38:3=12$ 2
 $12:3=4$ 0
 $4:3=1$ 1
 $1:3=0$ 1

$$\Rightarrow$$
 345₁₀ = 110210₃

Pretvorba dekadskog broja u heksadekadski

Primjer: $345_{10} \rightarrow ?_{16}$

$$345:16=21$$
 9
 $21:16=1$ 5
 $1:16=0$ 1

$$\Rightarrow$$
 345₁₀ = 159₁₆

Pretvorba binarnog broja u dekadski

- "direktna" pretvorba:
 - odrediti dekadski zapis težina (~ potencija baze) izvornog sustava
 - pomnožiti vrijednost svake znamenke s odgovarajućom težinom
 - sumirati

Primjer:
$$10010_2 \rightarrow ?_{10}$$

$$10010_2 = 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0$$

= 1*16 + 1*2 = 18

$$\Rightarrow 10010_2 = 18_{10}$$

Rekurzivno množenje i pribrajanje

- računanje težina, množenjem znamenkama, pribrajanje
 ~ ∀ znamenku:
 - posmak za 1 mjesto ~ množenje s 2
 - pribrajanje ~ "normiranje" na niže brojno mjesto

Rekurzivno množenje i pribrajanje

Hornerova shema:

- osnovni korak:
- korak rekurzije:

$$s_{s-1} = a_{s-1}$$

$$s_{i-1} = 2 \cdot s_i + a_{i-1}$$

$$s_{s-1} = a_{s-1}$$

$$s_{s-2} = 2 \cdot s_{s-1} + a_{s-2}$$

$$= 2 \cdot a_{s-1} + a_{s-2}$$

$$s_{s-3} = 2 \cdot s_{s-2} + a_{s-3}$$

$$= 2^{2} \cdot a_{s-1} + 2^{1} \cdot a_{s-2} + a_{s-3}$$

$$s_{s-s} = 2^{s-1} \cdot a_{s-1} + \cdots + 2^{s-s} \cdot a_{s-s}$$

$$= \sum_{s-1}^{s-1} a_{s-1} \cdot 2^{s-1}$$

Rekurzivno množenje i pribrajanje

Primjer: $10011101_2 \rightarrow ?_{10}$

$$(((1 \cdot 2 \cdot 2 \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 \cdot 2 + 1 =$$

$$((9 \cdot 2 + 1) \cdot 2 + 1) \cdot 2 \cdot 2 + 1 =$$

$$(19 \cdot 2 + 1) \cdot 2 \cdot 2 + 1 =$$

$$39 \cdot 2 \cdot 2 + 1 = 157_{10}$$

postupak vrijedi za cijele brojeve

Oktalni i heksadekadski sustav

- pozicijski brojevni sustavi, baza 8 odnosno 16
- baza = potencija broja 2 ~ jednostavna pretvorba u binarni sustav
- veća baza

					-	
	manı	hrai	znamena	V \sim \sim \sim	72DIC	hraia
\sim	111/01/11		. /	Ka /a		111011
	1114111			I LA	Zapis	

000

- oktalni sustav:
 - 001
 - znamenke 0-7

010

prikaz nizom od 3 bita

100

011

- 101
- 110

Oktalni i heksadekadski sustav

Primjer: $101111011001100_2 \rightarrow ?_8$

Primjer: $765432_8 \rightarrow ?_2$

$$7$$
 6 5 4 3 2 111 110 101 100 011 010 $765432_8 = 1111110101100011010_2$

Heksadekadski sustav

- baza sustava 16:
 znamenke 0 "15", tj. 0-9, A, B,..., F
- znamenka ~ 4 bita = 1/2 okteta
- vrlo rasprostranjen brojevni sustav:
 - sažeti zapis binarnog:
 2 heksa znamenke ~ 1 oktet
 - jednostavna pretvorba

- 0 0000
- 1 0001
- 2 0010
- 3 0011
- 4 0100
- 5 0101
- 6 0110
- 7 0111
- 8 0100
- 9 1001
- A 1010
- B 1011
- C 1100
- D 1101
- E 1110
- F 1111

Heksadekadski sustav

Primjer:
$$010111100011100_11100_2 \rightarrow ?_{16}$$

Primjer: $76A4C2_{16} \rightarrow ?_2$

7 6 A 4 C 2 0111 0110 1010 0100 1100 0010 76A4C2₁₆ = 011101101010010011000010₂

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
 - binarno zbrajanje
 - binarno oduzimanje
- modul i komplementi brojeva
- binarno množenje

- binarna aritmetika
 - ~ aritmetičke operacije u binarnom sustavu (zbrajanje, oduzimanje, množenje, ...)
 - specifičnosti u odnosu na dekadsku aritmetiku
 - binarno zbrajanje
 - ~ osnovna operacija u digitalnim sustavima (računalima)

- binarno zbrajanje
 - najjednostavnije
 ~ zbrajanje *dviju* binarnih znamenki: suma *mod 2*: operator ⊕

- rezultat: 2₁₀ = 10₂
 ~ pojava *prijenosa* (engl. carry) na višu bitovnu poziciju
- oznake:S: suma, zbroj; C: prijenos

- binarno zbrajanje dvaju binarnih brojeva :
 - općenito *n*-bitni binarni *brojevi*
 - prijenos pribrojiti višoj bitovnoj poziciji
 zbrajanje *triju* binarnih znamenki

	101111010	
\oplus	11011	
	101100001	S ₁
\oplus	11 1	C_1
	101010101	S ₂
\oplus	1	C_2
	100010101	S ₃
\oplus	1	C_4
	110010101	

- binarno zbrajanje dvaju binarnih brojeva :
 - *n*-bitni binarni *brojevi*~ općenito promatrati *i*-ti bit

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = ?$$

posebna tablica zbrajanja*Primjer*: prethodni

A_i	Bi	C _{i-1}	Si	Ci
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- binarno oduzimanje dvaju binarnih znamenki :
 - diferencija = minuend suptrahend

b a	0	1
0	0	1
1	11	0

D: diferencija

- *n*-bitni binarni *brojevi*~ općenito promatrati *i*-ti bit
- diferencija = suma !!!

$$D_{i} = A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = ?$$

- posebna tablica oduzimanja
- stvarna izvedba
 ~ pribrajanje komplementa broja (vidi kasnije)

A_i	Bi	C _{i-1}	Di	C_{i}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
 - prikaz brojeva u modulu
 - komplementi brojeva
 - zbrajanje i oduzimanje komplementom
- binarno množenje

Prikaz brojeva u modulu

- digitalni sustavi (računala):
 - pohranjivanje brojeva u *registrima*

- ograničeni broj mjesta
 ~ *n*-znamenkasti brojevi
- broj mogućih *n*-znamenkastih brojeva kod baze B:

Bⁿ = m : *modul* ~ broj stanja registra, "kapacitet" registra od n mjesta

 $W = B^n - 1$: najveći *n*-znamenkasti broj

Prikaz brojeva u modulu

- prikaz *n*-znamenkastih brojeva:
 - ograničenje na brojeve < m = Bⁿ
 - grafički prikaz ~"brojna kružnica"

• uočiti:
$$a = k \cdot B^n + b$$
, $a = k \cdot B^n + b$
 $b < B^n = m, k = 0, 1, 2, ...$
 $b = a \pmod{m}$

Prikaz brojeva u modulu

- prikaz *n*-znamenkastih brojeva:
 - interpretacija relacije

$$b = a \pmod{m}$$

"b je ostatak dijeljenja broja a s modulom m"

Primjeri:

$$23 \mod 17 = 6$$

$$35 \mod 16 = 3$$

Modulo-aritmetika

- umjesto jednakosti relacija kongruencije,
 - npr. za m = 10:

$$1 \equiv 1 \equiv 11 \equiv -9 \equiv 21 \equiv -19 \equiv \dots$$

općenito:

$$a \equiv a + k \cdot 10, \quad k = \dots -2, -1, 0, 1, 2, \dots$$

Primjer: zbrajanje i oduzimanje mod 10:

$$4+5 \equiv 9 \equiv 19 \equiv -1 \equiv \dots$$
 $5-4 \equiv 11 \equiv -9 \equiv \dots$
 $5+5 \equiv 0 \equiv 10 \equiv -10 \equiv \dots$ $5-5 \equiv 0 \equiv 10 \equiv -10 \equiv \dots$
 $6+5 \equiv 1 \equiv 11 \equiv -9 \equiv \dots$ $5-6 \equiv 9 \equiv 19 \equiv -1 \equiv \dots$

Modulo-aritmetika

zapis proizvoljnog izraza:
 radi jasnoće se na kraju izraza piše (mod m)

npr.
$$5 \equiv 15 \pmod{10}$$

algebarski izrazi, npr:

$$a \equiv b + 2 \pmod{10}$$

jednadžbu zadovoljavaju:

$$a = b + 2, b - 8, b + 12, b - 18, ...$$

- komplementi brojeva:
 - u odnosu na modul brojevnog sustava m = Bⁿ
 u odnosu na broj mjesta n za prikaz brojeva u registru
 - u odnosu na najveći n-znamenkasti broj W = Bⁿ 1
- značaj komplementa brojeva:
 - pojednostavljivanje obavljanja aritmetičkih operacija
 - npr. korištenje istog sklopovlja za obavljanje zbrajanja i oduzimanja

• $\forall a, 0 \le a < m, \exists komplement \overline{a}$:

$$a + \overline{a} = m$$

• komplement srodan pojmu *suprotnog* broja (-a):

$$a + (-a) = 0$$
$$a + \overline{a} \equiv 0 \pmod{m}$$

- korist od komplementa:
 - oduzimanje pretvara u zbrajanje!

$$a-b = a-b+0 \equiv a-b+(b+\overline{b}) = a+\overline{b}$$
$$a-b \equiv a+\overline{b}$$

 omogućuje korištenje istog sklopovlja za zbrajanje i oduzimanje

- B-komplement
 - ~ komplement u odnosu na $m = B^n$:

$$\overline{N}_B \equiv B^n - N = m - N = W - N + 1$$

B = 10: *10-komplement*

$$n = 2$$
: $(35)_{10} = 10^2 - 35 = 65$

$$n = 3$$
: $\overline{(35)}_{10} = 10^3 - 35 = 965$

• *B* = 2: *2-komplement*

$$\overline{(010101)_2} = 2^6 - 010101 = 1000000 - 010101 = 101011$$

vrijedi: komplement komplementa je sam broj

$$\overline{\overline{N}}_B = (\overline{B^n - N})_B = B^n - (B^n - N) = N$$

praktični algoritam za dobivanje 2-komplementa:

"Počev od najmanje značajnog bita broja, invertirati svaki bit nakon prve 1."

Primjer:

 $00010110 \rightarrow 11101010$

 $00100101 \rightarrow 11011011$

- (B-1)-komplement
 - ~ komplement u odnosu na W

$$\overline{N} \equiv B^n - N - 1 = \overline{N}_B - 1 = W - N$$

• B = 10: *9-komplement*

n = 2:
$$\overline{(35)} = 10^2 - 35 - 10^0 = 64 = (10^2 - 10^0) - 35 = 99 - 35$$

n = 3: $\overline{(35)} = 10^3 - 35 - 10^0 = 964 = (10^3 - 10^0) - 35 = 999 - 35$

• B = 2: 1-komplement

$$\overline{(010101)} = 2^6 - 010101 - 1 = 1111111 - 010101 = 101010$$

- dobivanje (B-1)-komplementa:
 - svaku znamenku broja oduzeti od W = B − 1
 - dobivanje 1-komplementa
 - ~ *komplementiranje* (inverzija) pojedinih bitova: vrlo jednostavna sklopovska izvedba!
- dobivanje 2-komplementa iz 1-komplementa:

$$\overline{B_2} = \overline{B_1} + 1$$

 u odnosu na B-komplement je kod (B-1)-komplementa znamenka najmanje težine umanjena za 1

- razlika D = M S za *binarne* brojeve:
 ~ računanjem komplementa:
 - 1-komplement ~ komplement svih pojedinačnih bitova
 - 2-komplement ~ 1-komplement + 1
- potreban sklop koji podržava:
 - zbrajanje
 - komplementiranje (inverziju) svih bitova u broju
- u nastavku: oduzimanje komplementom u proizvoljnoj bazi B

• oduzimanje B-komplementom: računanje $M + \overline{S}_R$ sklopom!

$$M + \overline{S}_B = M + (B^n - S) = (M - S) + B^n = D + B^n$$

$$D = (M + \overline{S}_B) - B^n$$

$$D = M + \overline{S}_B$$

dva slučaja:

- $M > S \Rightarrow D > 0$
- $M < S \Rightarrow D < 0$

- $M > S \Rightarrow D > 0$ $M + \overline{S}_B = M + B^n - S = D + B^n = D + W + 1 > W$
 - $M + \overline{S}_B > W$: preljev (engl. overflow) ~ zanemaruje se!
 - sadržaj registra: $M + \overline{S}_B B^n \equiv M + \overline{S}_B$
 - znamenka najviše težine Bⁿ nije upisana
 bila bi n+1 znamenka!
 - preljev narušava jednakost, ali ne i kongruenciju!
 - sadržaj registra je upravo traženi rezultat:

$$(M + \overline{S}_B) - B^n = (D + B^n) - B^n = D$$

Primjer: B = 2, n = 8 (8-bitno binarno računalo)

$$W = B^n - 1 = 2^8 - 1 = 256 - 1 = 255$$

D =
$$3-2 \Rightarrow M = 3$$
, S = 2
 $\overline{S}_B = B^n - S = 256 - 2 = 254$
 $M + \overline{S}_B = 3 + 254 = 257 > W$
 $257 \equiv 1$ preljev!

registri: A = 3, B = 2

A: 00000011 B: 00000010
$$\overline{B}_2 = 111111110$$

ne stane u registar – preljev!

složenost operacije:

2 x zbrajanje

1 x inverzija bitova

• $M < S \implies D < 0$

$$M + \overline{S}_{R} = D + B^{n} = D + W + 1 \le W$$

- $M + \overline{S}_R \le W$: *nema* preljeva
- sadržaj registra: $M + \overline{S}_B$
- oduzimanje Bⁿ od rezultata: $D = (M + \overline{S}_B) B^n$
 - oduzeti komplement
 - negativni predznak

$$= -(M + \overline{S}_B) B$$

$$= -(B^n - (M + \overline{S}_B))$$

$$= -(B^n - X)$$

$$= -\overline{X}_B$$

$$= -(M + \overline{S}_B)_B$$

registri: A = 2, B = 3

A: 00000010 B: 00000011
$$\overline{B}_2 = 111111101$$

$$A + \overline{B}_2 : \boxed{00000010}$$

$$+ \boxed{11111111} \longleftarrow \text{novi sadržaj registra A}$$

$$-(111111111)_2 = -00000001$$
traženi rezultat

složenost operacije:

3 x zbrajanje

2 x inverzija bitova

- *algoritam* oduzimanja B-komplementom:
 - pribrojiti minuendu komplement suptrahenda
 - ako se pojavi preljev, to je rezultat
 - ako nema preljeva, još jednom komplementirati te promijeniti predznak

Operacije nad brojevima s predznakom

- prikaz negativnih brojeva:
 - predznak i veličina
 - predznak i 2-komplement
 - predznak i 1-komplement
- zapis brojeva s predznakom:
 - veličina broja ~ iznos
 - predznak
 - ~ još jedan bit: najznačajniji (najlijeviji) bit
 - tipično:

Prikaz brojeva s predznakom

- prikaz brojeva predznakom i veličinom:
 - odvojeno manipuliranje predznaka i veličine
 - relativno složeno izvođenje računskih operacija
 - problem "negativne nule"

Primjer: prikaz jednim oktetom

$$+63 = 001111111$$
 $-63 = 101111111$
 $+114 = 01110010$ $-114 = 11110010$
 $+0 = 00000000$ $-0 = 10000000$

Prikaz brojeva s predznakom

- prikaz brojeva predznakom i 2-komplementom:
 - pozitivni brojevi: predznak i veličina
 - negativni brojevi: predznak i 2-komplement
 - komplementiranje predznaka i veličine zajedno
 - nema problema "negativne nule"
 nula je jedinstvena!

Primjer: prikaz jednim oktetom

$$+63 = 001111111$$
 $-63 = 11000001$
 $+114 = 01110010$ $-114 = 10001110$
 $+0 = 00000000$ $-0 = 00000000$

Prikaz brojeva s predznakom

- prikaz brojeva predznakom i 1-komplementom:
 - slično prikazu predznakom i 2-komplementom
 komplementiranje predznaka i veličine zajedno
 - (također!) problem "negativne nule"

Primjer: prikaz jednim oktetom

$$+63 = 001111111$$
 $-63 = 11000000$
 $+114 = 01110010$ $-114 = 10001101$
 $+0 = 00000000$ $-0 = 111111111$

Usporedba 1 i 2 komplementa

- prikaz predznakom i 2-komplementom praktičniji!
 - nema "negativne nule"
 - asimetrični raspon
 pozitivnih i negativnih brojeva
 ~ nula je "pozitivna"

broj	predznak i veličina	2- komplement	1- komplement
-8	-	1000	-
-7	1111	1001	1000
-6	1110	1010	1001
-5	1101	1011	1010
-4	1100	1100	1011
3	1011	1101	1100
-2	1010	1110	1101
-1	1001	1111	1110
0	0000 ili 1000	0000	0000 ili 1111
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

Aritmetički preljev

- zbrajanje u 2-komplementu
 - ~ moguća pojava *aritmetičkog* preljeva (engl. arithmetic overflow) zbog "nedostatka" 1 bita
 - pribrojnici istog predznaka (+ ili –),
 a predznak rezultata se razlikuje (– ili +)
 - suma premašuje broj mjesta veličine (n-1)
 - potreba detekcije aritmetičkog preljeva

Aritmetički preljev

- oduzimanje u 2-komplementu
 - kod dobivanja suptrahenda 2-komplementa moguća promjena predznaka!
 - 2-komplement suptrahenda pribrojiti minuendu

Primjer:

preljev se zanemaruje *nema* preljeva!(rezultat je negativan:1 na najznačajnijem mjestu)

Sadržaj predavanja

- tipovi i prikaz podataka
- brojevni sustavi
- binarna aritmetika
- modul i komplementi brojeva
- binarno množenje

Binarno množenje

- binarno množenje
 - ~ prema pravilima za dekadsko množenje:

		mu	ltip	lika	nd	multiplikator				ator
			1	1	0	×	0	1	0	
		•	0	0	0	n o	roll	•		
		1	1	0		μα	parcijalni produkti			
+	0	0	0			produkti				
	0	1	1	0	0	pr	odu	ıkt		

Binarno množenje

- mogućnosti ostvarivanja binarnog množenja:
 - uzastopna zbrajanja
 - parcijalna množenja s 2 (~ "posmak") i zbrajanje $M = m_3 m_2 m_1 m_0 \rightarrow$ multiplikand

$$N = n_3 n_2 n_1 n_0 \rightarrow \text{multiplikator}$$

$$M \times N = M \cdot (n_3 \cdot 2^3 + n_2 \cdot 2^2 + n_1 \cdot 2^1 + n_0 \cdot 2^0)$$

$$= M \cdot n_3 \cdot 2^3 + M \cdot n_2 \cdot 2^2 + M \cdot n_1 \cdot 2^1 + M \cdot n_0 \cdot 2^0$$

$$= \sum_{i=0}^{3} M \cdot n_i \cdot 2^i$$

• efikasnije primjenom *Hornerove sheme*:

$$M \times N = ((M \cdot n_3 \cdot 2 + M \cdot n_2) \cdot 2 + M \cdot n_1) \cdot 2 + M \cdot n_0, n_i \in \{0,1\}$$

Binarno množenje

Primjer: množenje 4-bitnih brojeva

$$M = 1011_2 \equiv 11_{10}$$

$$N = 1001_2 \equiv 9_{10}$$

$$P = M \times N = 01100011_2 \equiv 99_{10}$$

$$P = M \times N = ((M \cdot n_3 \cdot 2 + M \cdot n_2) \cdot 2 + M \cdot n_1) \cdot 2 + M \cdot n_0, n_i \in \{0,1\}$$

$n_0 = 1$				1	0	1	1
				1	0	1	
$n_1 = 0$			0	0	0	0	
			0	1	0		
$n_2 = 0$		0	0	0	0		
		0	0	1			
$n_3 = 1$	1	0	1	1		lacktriangle	lacktriangle
produkt:	1	1	0	0	0	1	1

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 2: Digitalni podaci: tipovi, operacije, algoritmi
- tipovi i prikaz podataka
- brojevni sustavi: str. 31-42
- binarna aritmetika: str. 42-45
- modul i komplementi brojeva: str. 45-56
- binarno množenje: str. 56-57