БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Бенорусского государственного университета А.Д.Король Веристранионный № 13644/гэ.

ПРОГРАММА ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

по специальности

1-31 03 07 Прикладная информатика (по направлению)

Направление специальности:
1-31 03 07 - 01 Прикладная информатика (программное обеспечение компьютерных систем)

Программа государственного экзамена составлена на основе ОСВО 1-31 03 07-2021, № G 31-1-034/уч. от 23.07.2021 и G 31-1-023/уч.ин от 09.08.2021 и учебных планов учебных программ по дисциплинам: «Математический анализ» (от 12.06.2019 №УД-28.06.2018 7952/уч.); «Алгебра И теория чисел» (OT №УД-5260/уч.); «Дифференциальные уравнения» (от 30.06.2022 №УД-12610/уч.), Основы и методологии программирования» (от 08.07.2022 №УД-11252/уч.); «Разработка кроссплатформенных приложений» (от 01.12.2022 №УД-11328/уч.); «Промышленное программирование» (от 08.07.2022 №УД-11380/уч.); «Технологии программирования мобильных приложений» (от 08.07.2022 №УД-11361/уч.); «Системное программирование» (от 05.07.2023 №УД-12710/уч.); «Дискретная математика и математическая логика» (от 09.08.2021 №УД-10231/уч.); «Алгоритмы и структуры данных» (от 06.03.2018 №УД-4937/уч.); «Теория графов» (от 30.06.2022 №УД-10866/уч.); «Архитектура компьютеров» (OT 05.07.2023 №УД-13332/уч.); «Компьютерные сети» (от 30.06.2023 №УД-12483/уч.); «Операционные системы» (от 05.07.2023 №УД-12474/уч.); «Математические модели компьютерной графики» (от №УД-10438/уч.); «Программирование компьютерной графики» (от 02.12.2021 08.07.2022 №УД-11121/уч.); «Методы вычислений» (от 08.07.2022 №УД-11560/уч.); «Теория вероятности и математическая статистика» (от 30.06.2020 №УД-9555/уч.); «Распределенные и параллельные системы» (от 01.12.2023 №УД-12628/уч.); «Web-(от 30.06.2023 №УД-15552/уч.); «Методы трансляции» (от программирование» 27.12.2017 №УД 1772/уч.), «Модели данных и СУБД» (от 01.12.2022 №УД-11600/уч.); «Безопасность информационных систем» (№УД-13134/уч. от 10.06.2024 г.), «Исследование операций» (от 10.06.2024 №УД-13294/уч.).

составители:

В.В.Краснопрошин — заведующий кафедрой информационных систем управления факультета прикладной математики и информатики Белорусского государственного университета, доктор технических наук, профессор;

И.С.Козловская — доцент кафедры компьютерных технологий и систем факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент; *Т.В.Соболева* — заместитель декана по учебной работе и образовательным инновациям, доцент кафедры многопроцессорных систем и сетей факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент;

Е.П.Соболевская – доцент кафедры дискретной математики и алгоритмики факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент;

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Советом факультета прикладной математики и информатики БГУ

(протокол № 4 от 24.12.2024)

Председатель Совета Облист Ю.Л.Орлович

Научно-методическим советом БГУ (протокол № 6 от 16.01.2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Государственный экзамен является одной из обязательных составляющих итоговой аттестации студентов. Программа государственного экзамена по специальности 1-31 03 07 «Прикладная информатика» по направлению 1-31 03 07-01 «Программное обеспечение компьютерных систем», разработана в соответствии с требованиями государственного образовательного стандарта I ступени высшего образования и действующими Правилами проведения аттестации студентов, курсантов, слушателей при освоении содержания образовательных программ высшего образования.

Программа государственного экзамена определяет и регламентирует структуру и содержание государственного экзамена по специальности 1-31 03 07 Прикладная информатика.

В программу государственного экзамена включаются следующие учебные модули: «Высшая математика», «Программирование», «Дискретная математика и алгоритмы», «Информатика и компьютерные системы», «Методы вычислений», «Теория вероятности и математическая статистика», «Прикладное программирование», «Информационные системы», «Интеллектуальные системы», «Компьютерная графика».

Государственный экзамен проводится на заседании государственной экзаменационной комиссии.

Цель проведения государственного экзамена по специальности – выявление компетенций специалиста, т. е. теоретических знаний и практических умений, необходимых для решения теоретических и практических задач специалиста с высшим образованием.

Программа государственного экзамена носит системный, междисциплинарный характер и ориентирована на выявление у выпускника общепрофессиональных и специальных знаний и умений. Выпускник должен:

знать:

- актуальные классы прикладных задач, их особенности и свойства;
- методологию формализации предметных областей при решении прикладных задач;
- программно-компьютерные технологии для организации безопасной передачи, хранения и использования различных типов данных;
 - программные технологии для построения компьютерных систем.

уметь:

- использовать программно-компьютерные технологии для эффективной реализации процесса решения прикладных задач;
- решать практические задачи с использованием формальных методов и программно-компьютерных технологий;

владеть:

- современными информационными технологиями и средствами телекоммуникаций;
- современными технологиями проектирования и реализации компьютерных систем;

Освоение образовательной программы по специальности 1-31 03 07 «Прикладная информатика (по направлениям)» должно обеспечить формирование следующих компетенций:

универсальные компетенции:

- УК. Владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации,
- УК. Решать стандартные задачи профессиональной деятельности на основе применения информационно-коммуникационных технологий,

базовые профессиональные компетенции:

- БПК. Применять аппарат дифференциального и интегрального исчисления, методы аналитической геометрии и линейной алгебры для построения математических моделей и решения прикладных задач,
- БПК. Строить, анализировать и тестировать алгоритмы и программы решения типовых задач обработки информации с использованием структурного, объектно-ориентированного и иных парадигм программирования,
- БПК. Понимать предмет и объекты дискретной математики и математической логики, использовать основные приемы разработки эффективных алгоритмов и знания об основных структурах данных для решения прикладных задач,
- БПК. Применять знания в области принципов функционирования, архитектур и программных реализаций операционных систем, структурной организации компьютеров и компьютерных систем, методах обработки данных для выбора вычислительных средств решения практических задач

специализированные компетенции:

- СК. Применять полученные теоретические и практические навыки для решения задач компьютерной графики в профессиональной деятельности,
- СК. Использовать вычислительные методы линейной алгебры и анализа для решения прикладных задач в различных сферах человеческой деятельности, применять навыки программной реализации вычислительных алгоритмов и анализа полученных результатов,
- СК. Применять основные методы математической статистики для решения задач оценивания параметров моделей и проверки гипотез по наблюдаемым данным, применять знания вероятностно-статистического анализа случайных процессов, возникающих при решении прикладных задач,
- СК. Использовать программные средства и технологии для создания прикладного программного обеспечения,
- СК. Создавать модели данных и проектировать базы данных для разработки систем разного типа, тестировать и оценивать качество и безопасность информационных систем,
- СК. Строить и анализировать математические модели для задач принятия оптимальных решений в различных прикладных областях, обосновывать методы теоретического исследования моделей, включающие аппарат математического программирования, теории игр, вариационного исчисления, оптимального управления, использовать основные методы и модели искусственного интеллекта для различных типов данных, строить интеллектуальные системы и

определять их структурные свойства, использовать современные эффективные алгоритмы для решения прикладных задач на многоядерных вычислительных устройствах.

ПОРЯДОК ПРОВЕДЕНИЯ ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

Экзамен (ответы студентов и беседа с экзаменующимися) проводится на русском или белорусском языке.

В ходе подготовки экзаменующиеся имеют право использовать учебные программы соответствующих дисциплин, научную и справочную литературу. Также в процессе подготовки может быть использован эвристический подход, осуществление студентами личностно-значимых предполагает: мира; демонстрацию многообразия открытий окружающего большинства профессиональных задач и жизненных проблем; творческую обучающихся процессе создания образовательных самореализацию В продуктов; индивидуализацию обучения через возможность самостоятельно осуществлять рефлексию собственной ставить цели, образовательной деятельности.

На подготовку к ответу на государственном экзамене обучающемуся при освоении содержания образовательных программ высшего образования I ступени отводится не менее 30 минут не более одного астрономического часа, на сдачу государственного экзамена отводится до 30 минут.

СТРУКТУРА ЭКЗАМЕНАЦИОННОГО БИЛЕТА

Вопросы экзаменационного билета по учебным модулям: ««Высшая математика», «Программирование», «Дискретная математика и алгоритмы», «Информатика и компьютерные системы», «Методы вычислений», «Теория вероятности и математическая статистика», «Прикладное программирование», «Информационные системы», «Интеллектуальные системы», «Компьютерная графика» – отражают содержание образовательной программы по специальности 1-31 03 07 «Прикладная информатика».

Экзаменационный билет включает темы теоретического материала (два вопроса), позволяющие оценить полученные в процессе обучения знания.

Характеристика теоретической части:

Первый вопрос билета включает разделы фундаментальных математических знаний, необходимых для решения прикладных задач, второй — знания из области программно-компьютерных технологий, необходимые для построения соответствующего программного комплекса, автоматизирующего процесс решения задачи.

Для уточнения экзаменационной отметки члены ГЭК могут задавать обучающемуся дополнительные вопросы в соответствии с программой государственного экзамена. Количество дополнительных вопросов не должно превышать трех.

СОДЕРЖАНИЕ ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Раздел 1. Учебная дисциплина «Математический анализ», «Дифференциальные уравнения», «Алгебра и теория чисел» модуля «Высшая математика»

Тема 1. Способы задания и исследования функций.

Явное задание функций, их исследование методами дифференциального исчисления. Неявное задание функций. Функции, задаваемые как сумма ряда, как предел функциональной последовательности, как интегралы, зависящие от параметра.

Tema 2. Интеграл. Вычисление интегралов. Использование интегралов при моделировании и решении прикладных задач.

Определение интеграла по Риману и Лебегу. Кратные, криволинейные и поверхностные интегралы. Вычисление интегралов. Несобственные интегралы. Примеры использования интегралов при решении технических, физических, экономических и др. задач. Приближенное вычисление интегралов: основные типы квадратурных формул; оценка погрешности квадратур.

Tema 3. Линейные дифференциальные уравнения и системы с постоянными коэффициентами.

Однородные линейные дифференциальные уравнения п-го порядка с постоянными коэффициентами. Неоднородные линейные дифференциальные дифференциальных уравнения. Исследование линейных уравнений постоянными коэффициентами. Однородные линейные векторные уравнения размерности п (однородные линейные системы). Неоднородные линейные векторные уравнения Исследование размерности П дифференциальных уравнений с постоянными коэффициентами. Однородные линейные векторные уравнения размерности п (однородные линейные системы). Неоднородные линейные векторные уравнения размерности п. Исследование линейных векторных уравнений размерности *n*.

Тема 4. Сравнения в кольце целых чисел.

Полная и приведённая система вычетов. Функция Эйлера. Кольцо классов вычетов. Теоремы Эйлера и Ферма. Сравнения первой степени с одним неизвестным.

Тема 5. Многочлены от одной переменной.

Теорема Безу. Схема Горнера. Корни многочлена. Теорема о делении с остатком. НОД многочленов, алгоритм Евклида. Приводимые и неприводимые многочлены.

Примерный перечень вопросов по разделу 1

для подготовки к государственному экзамену:

- 1. Способы задания и исследования функций.
- 2. Интеграл. Вычисление интегралов. Использование интегралов при моделировании и решении прикладных задач.

- 3. Линейные дифференциальные уравнения и системы с постоянными коэффициентами.
 - 4. Сравнения в кольце целых чисел.
 - 5. Многочлены от одной переменной.

Раздел 2. Учебные дисциплины «Основы и методологии программирования», «Разработка кроссплатформенных приложений», «Промышленное программирование», «Технологии программирования для мобильных приложений», «Системное программирование» модуля «Программирование»

Tema 1. Основные типы данных в языках программирования и операции над ними.

Определение типа. Базовые типы данных и их характеристики. Структурированные типы. Построение пользовательских типов данных на основе базовых типов.

Тема 2. Модульное программирование

Функции. Объявление и определение функции. Формальные и фактические параметры. Способы передачи параметров. Рекурсивные функции. Перегрузка функций. Указатели на функцию. Передача функции в качестве параметра. Встроенные функции. Шаблоны функций.

Тема 3. Основы объектно-ориентированного программирования.

Класс как абстрактный тип, классы и объекты. Члены класса, управление доступом. Конструкторы, деструкторы. Перегрузка операторов.

Тема 4. Наследование и полиморфизм как базовые понятия в парадигме объектно-ориентированного программирования

Основные принципы и правила наследования. Понятие производного класса. Базовый класс и атрибуты его доступа. Иерархия производных классов. Конструкторы производных классов. Основные принципы и правила полиморфизма. Виртуальные функции. Виртуальные деструкторы. Указатели объектов производного и базовых классов. Статическое и динамическое связывание.

Тема 5. *Реализация концепций ООП в различных языках программирования* Создание класса. Доступ к элементам класса. Спецификаторы доступа. Инкапсуляция и полиморфизм в языках C++ и Java.

Тема 6. Паттерны проектирования

Понятие паттерна проектирования Классификация паттернов объектно-ориентированного проектирования. Порождающие паттерны. Структурные паттерны. Паттерны поведения. Методология решения задач проектирования с помощью паттернов. Технология использования паттерна.

Тема 7. Кроссплатформенное программирование

Определение кроссплатформенности. Уровни кроссплатформенности: аппаратный, программный, компиляции, выполнения. Проблемы кроссплатформенной разработки. Реализация кроссплатформенности на уровне

компиляции и на уровне выполнения. Кроссплатформенные среды разработки. Подходы к кроссплатформенному программированию. Кроссплатформенный пользовательский интерфейс и проблемы его создания.

Тема 8. Управление кодом и документирование проекта в продуктовой разработке

Системы контроля версий (СКВ) для управления исходным кодом приложений. Типы СКВ. Распределенная система контроля версий и управления кодом git. Установка git. Создание и инициализация репозитория. Клонирование репозитория. Состояния файлов под управлением git. Запись и фиксация изменений в локальный репозитории. Внешние репозитории, подключение и настройка. Публикация изменений во внешний репозиторий и получение изменений из репозитория. Управление локальными и внешними ветками. Консольный клиент git. Графические клиентские приложения управления версиями. Язык разметки Markdown. Документирование проекта с помощью файла README. Документирование проекта в wiki. Github Pages и другие сервисы документирования проектов.

Тема 9. Введение в разработку мобильных приложений для операционной системы *iOS*

Введение в операционную систему iOS. Архитектура iOS. Типы API в macOS и iOS. Springboard как сервис, отвечающий за пользовательский интерфейс в iOS, и Backboard как сервис, отвечающий за обработку сообщений от оборудования. Этапы загрузки iOS. Слои абстракции iOS: 8 CoreOS, Core Services, Media и Cocoa Touch. Стандартные системные библиотеки и SDK в iOS. Инструменты для разработки iOS-приложений. Возможности IDE Xcode. Конфигурирование и настройка проекта, файл списка свойств формата .plist. Возможности и настройка симулятора. Редактирование, документирование и комментирование кода. Управление версиями, подключение локальных и внешних репозиториев. Отладка в Xcode. Правила публикации приложений в AppStore.

Тема 10. Системное программирование в среде ОС Linux

Стандартизация как основа для упрощения портирования приложений. Стандарты в основе Linux API. Задачи Linux API. Ядро, его концепция и выполняемые задачи. Режим ядра и пользовательский режим. Модель памяти процесса, его создание и выполнение. Отличия пользовательских процессов и процессов ядра. Особенности выполнения системных вызовов Linux API. Инструментарий для разработки, отладки и сборки.

Примерный перечень вопросов по разделу 2 для подготовки к государственному экзамену:

- 1. Основные типы данных в языках программирования и операции над ними.
- 2. Функции. Способы передачи параметров. Рекурсивные и встроенные функции. Перегрузка функций. Шаблоны функций.

- 3. Класс как абстрактный тип, классы и объекты. Члены класса, управление доступом. Конструкторы, деструкторы. Перегрузка операторов.
- 4. Наследование и полиморфизм как базовые понятия в парадигме объектно-ориентированного программирования.
 - 5. Реализация концепций ООП в различных языках программирования.
- 6. Паттерны проектирования. Классификация паттернов объектноориентированного проектирования. Технология использования паттерна.
- 7. Кроссплатформенное программирование. Определение. Уровни кроссплатформенности. Проблемы кроссплатформенной разработки. Кроссплатформенные среды разработки.
 - 8. Системы контроля версий для управления исходным кодом приложений.
 - 9. Распределенная система контроля версий и управления кодом git.
 - 10. Введение в операционную систему iOS. Архитектура iOS.
- 11. Этапы загрузки iOS. Слои абстракции iOS. Стандартные системные библиотеки.
- 12. Редактирование, документирование и комментирование кода. Управление версиями, подключение локальных и внешних репозиториев.
 - 13. Стандарты в основе Linux API. Задачи Linux API.
- 14. Ядро, его концепция и выполняемые задачи. Режим ядра и пользовательский режим.

Раздел 3. Учебные дисциплины «Дискретная математика и математическая логика», «Теория графов», «Алгоритмы и структуры данных» модуля «Дискретная математика и алгоритмы»

Тема 1. Основные комбинаторные конфигурации и их свойства.

Перестановки, сочетания и размещения, формулы для подсчета их числа. Бином Ньютона и биномиальные коэффициенты. Мультимножества, сочетания с повторениями, их связь с сочетаниями без повторений.

Тема 2. Алгоритмически неразрешимые проблемы.

Машина Тьюринга как формальная модель алгоритма. Понятие асимптотической временной сложности. Полиномиальные и экспоненциальные алгоритмы. Класс Р. NP-полные задачи. Соотношения между классами.

Тема 3. Основные классы графов (деревья, двудольные, к-связные, планарные, эйлеровы и гамильтоновы). Их структурные свойства.

Определение графа. Изоморфизм графов. Деревья и их свойства. Двудольные графы, критерий двудольности. k-связные графы и реберно k-связные графы. Плоские и планарные графы, критерии планарности. Эйлеровы графы, критерий эйлеровости. Гамильтоновы циклы и цепи, условия гамильтоновости.

Тема 4. Структуры данных. Базовые операции и их трудоемкость.

Списки, стеки, очереди, кучи, система непересекающихся множеств. Базовые операции и их трудоемкость.

Тема 5. Организация поиска. Хеш-таблицы. Сбалансированные поисковые деревья. Базовые операции и их трудоемкость.

Структуры данных для выполнения словарных операций. Хеш-таблицы. Методы разрешения коллизий. Бинарные поисковые деревья. Инварианты сбалансированности. АВЛ-дерево, поддержка инвариантов сбалансированности и их трудоемкость.

Тема 6. Базовые алгоритмы поиска на графах.

Поиск в ширину и глубину в графе и их приложения (определение двудольности и связности графа, выделение сильно-связных компонент ориентировнаного графа). Топологическая сортировка вершин ориентированного графа. Алгоритмы построения минимального остовного дерева. Алгоритмы построения кратчайших маршрутов в графе.

Примерный перечень вопросов по разделу 3 для подготовки к государственному экзамену:

- 1. Основные комбинаторные конфигурации и их свойства.
- 2. Алгоритимически неразрешимые проблемы.
- 3. Основные классы графов и их структурные свойства.
- 4. Деревья и их свойства.
- 5. Плоские и планарные графы, критерии планарности.
- 6. Простейшие структуры данных. Специализированные структуры данных. Базовые операции и их трудоемкость. Выбор структуры данных для разработки эффективного алгоритма решения задачи.
- 7. Структуры данных для организации поиска элемента. Хеш-таблицы. Сбалансированные поисковые деревья.
 - 8. Базовые алгоритмы поиска на графах и их вычислительная сложность.

Раздел 4. Учебные дисциплины «Архитектура компьютеров», «Компьютерные сети», «Операционные системы» модуля «Информатика и компьютерные системы»

Тема 1. Архитектура фон Неймана. CISC и RISC – архитектура.

Основные принципы архитектуры фон Неймана, Особенности CISCархитектуры. Сравнение CISC и RISC архитектур и сферы их применения.

Тема 2. *Иерархическая организация памяти компьютера.*

Уровни памяти и их характеристики. Назначение и функционирование КЭШ – памяти. Стратегии замены блоков.

Tema 3. Модели, протоколы и технические средства для построения компьютерных сетей.

Сетевые модели. Базовые технологии локальных сетей. Коммутация и маршрутизация. IP-сети. Прикладные протоколы Internet.

Тема 4. Процессы. Концепция процесса.

Системные и пользовательские процессы. Адресное пространство процесса. Динамически связываемые модули. Порождение процессов. Нормальное и принудительное завершение процесса. Концепция наследования.

Тема 5. Ядро операционной системы

Концепция ядра. Основные функции и компоненты ядра. Объекты ядра. Понятие таблицы процесса, дескрипторов и описателей объектов. Порождение и освобождение объектов. Наследование объектов. Разделение объектов между процессами. Передача информации в дочерний процесс. Синхронизация процессов «по завершению».

Тема 6. Потоки.

Концепция потока. Параллелизм и параллельное исполнение потоков. Многопоточность процессов. Порождение и завершение потоков. Состояния потока. Блокирование и возобновление функционирования потока. Понятие контекста и переключение контекста. Основные условия переключения состояний потоков.

Примерный перечень вопросов по разделу 4 для подготовки к государственному экзамену:

- 1. Основные принципы архитектуры фон Неймана. Особенности CISCархитектуры. Сравнение CISC и RISC архитектур, сферы их применения.
- 2. Уровни памяти, их характеристики. Назначение и функционирование КЭШ – памяти. Стратегии замены блоков.
- 3. Модели, протоколы и технические средства для построения компьютерных сетей.
- 4. Концепция процесса в операционной системе. Адресное пространство процесса. Динамически связываемые модули.
- 5. Концепция ядра в операционной системе. Основные функции и компоненты ядра. Объекты ядра.
- 6. Концепция потока в операционной системе. Параллелизм и параллельное исполнение потоков. Многопоточность процессов. Порождение и завершение потоков.

Раздел 5 Учебные дисциплины «Математические методы компьютерной графики», «Программирование компьютерной графики» модуля «Компьютерная графика»

Тема 1. Математические основы компьютерной графики

Моделирование элементарных объектов: прямая, луч, отрезок, плоскость, полигон, полиэдр. Алгоритмы определения свойств и взаимного расположения объектов на плоскости и в пространстве. Аффинные преобразования и их свойства. Матрица аффинного преобразования. Примеры элементарных аффинных преобразований. Проективные преобразования, их классификация и свойства. Матрицы проективных преобразований.

Тема 2. Основные алгоритмы отсечения и удаления

Основные алгоритмы отсечения и удаления на плоскости и в трёхмерном пространстве. Алгоритмы отсечения отрезка на плоскости. Алгоритмы отсечения полигонов. Алгоритмы отсечения и удаления в трёхмерном пространстве (алгоритм Робертса, алгоритм художника, алгоритм z-буфера, алгоритм Варнока).

Тема 3. Модели цвета и освещения

Цвет как характеристика восприятия света зрением человека. Аддитивная цветовая модель RGB. Субтрактивная цветовая модель CMY и ее модификация CMYK. Абстракции «цветовое пространство», «куб цветов». Палитры. Стандартные цветовые пространства и преобразования между ними. Проблема ограниченности точного перевода цвета между моделями RGB и CMY. Модели HSB и HSL и их геометрическая интерпретация.

Тема 4. Основы обработки цифровых изображений

Линейные фильтры (сглаживающие, контрастоповышающие, разностные). Примеры нелинейных фильтров. Морфологические операторы. Пороговая обработка. Поиск границ на основе градиента: анализ длины градиента, учет направления градиента. Поиск границ на основе лапласиана.

Примерный перечень вопросов по разделу 5 для подготовки к государственному экзамену:

- 1. Математические основы компьютерной графики.
- 2. Основные алгоритмы отсечения и удаления.
- 3. Модели цвета и освещения.
- 4. Основы обработки цифровых изображений.

5. Раздел 6. Учебные дисциплины «Методы вычислений»

Тема 1. Приближение функций

Постановка задачи интерполирования и ее разрешимость. Алгебраическое интерполирование. Интерполяционный многочлен в форме Лагранжа. Остаток интерполирования в форме Лагранжа. Разделенные разности и их свойства. Интерполяционный многочлен в форме Ньютона. Многочлены Чебышева. Минимизация остатка интерполирования. Основные сведения о сходимости алгебраической интерполяции.

Понятие проекции. Среднеквадратичные приближения функций. Метод наименьших квадратов.

Тема 2. Приближенное вычисление интегралов

Интерполяционные квадратурные формулы. Квадратурные формулы типа Гаусса.

Тема 3. Численные методы решения дифференциальных уравнений

Методы решения задачи Коши. Одношаговые и многошаговые методы. Методы решения краевых задач.

Примерный перечень вопросов по разделу 6 для подготовки к государственному экзамену:

- 1. Приближение функций: интерполяция, среднеквадратичные приближения.
- 2. Приближенное вычисление интегралов, основные квадратурные формулы.
 - 3. Численные методы решения дифференциальных уравнений.
 - 4. Интерполяционный многочлен в формах Лагранжа и Ньютона.

Раздел 7. Учебная дисциплина «Теория вероятности и математическая статистика»

Тема 1. Понятие о вероятности. Случайные величины, их распределения вероятностей и числовые характеристики.

Простейшие вероятностные модели. Формулы полной вероятности и Байеса. Понятие случайной величины. Функция распределения и ее свойства. Плотность распределения. Независимость случайных величин. Числовые характеристики случайных величин и их свойства.

Тема 2. Статистические оценки параметров, свойства и методы построения.

Понятие и свойства статистических оценок. Интервальное оценивание параметров. Методы: моментов, максимального правдоподобия, наименьших квадратов.

Примерный перечень вопросов по разделу 7 для подготовки к государственному экзамену:

- 1. Понятие о вероятности. Случайные величины, их распределения вероятностей и числовые характеристики.
 - 2. Статистические оценки параметров, свойства и методы построения.

Раздел 8. Учебные дисциплины «Распределенные и параллельные системы», «Web-программирование», «Методы трансляции», модуля «Прикладное программирование»

Тема 1 Этапы разработки параллельных алгоритмов.

Разделение вычислений на независимые части. Выделение информационных зависимостей. Масштабирование набора подзадач. Распределение подзадач между вычислительными элементами.

Тема 2. Клиент – серверные web-технологии.

Программы, выполняющиеся на клиент-машине. Web-сервер и серверные технологии. Взаимодействие между браузером и web-сервером.

Тема 3. Процесс трансляции.

Понятие входного и выходного языка. Языковые процессоры. Компиляторы и интерпретаторы. Основные блоки трансляторов (лексический, синтаксический и семантический анализаторы, генератор команд, оптимизация программ).

Примерный перечень вопросов по разделу 8 для подготовки к государственному экзамену:

- 1. Этапы разработки параллельных алгоритмов.
- 2. Клиент серверные web-технологии.
- 3. Понятие входного и выходного языка.
- 4. Языковые процессоры. Компиляторы и интерпретаторы.
- 5. Основные блоки трансляторов

Раздел 9. Учебные дисциплины «Модели данных и СУБД», «Безопасность информационных систем» модуля «Информационные системы»

Tema 1. Понятие и классификация моделей данных. Реляционная модель данных.

Классификация моделей. Иерархическая, сетевая, реляционная модели данных. Объектно-ориентированная, многомерная, постреляционная модели данных. Основные понятия и определения реляционной модели. Определение атрибута, домена, отношения, кортежа, ключа. Ограничения целостности, целостность сущностей и целостность ссылок. Математические основы реляционной модели данных. Реляционная алгебра и реляционное исчисление. Теоретико-множественные операции реляционной алгебры. Операции проекции и выборки. Операция соединения, деления.

Tema 2. Проектирование реляционных баз данных и нормализация отношений.

Понятие предметной области. Формулирование и анализ требований к модели. Модель "сущность-связь". Понятия сущности, атрибута, связи. Характеристики атрибутов. Идентификаторы и ключи. Методология построения ER-диаграмм. CASE-средства проектирования баз данных. Проектирование реляционных баз данных на основе нормализации отношений. Нормальные формы.

Тема 3. Классификация угроз, методы обнаружения вторжений, методы и средства защиты данных.

Внутренние и внешние угрозы, классификация вредоносного программного обеспечения: вирусы, логические бомбы, «шпионские программы». Резидентные программы и средства их обнаружения и локализации, описание основных антивирусных программных средств.

Тема 4. Программные и аппаратные средства защиты данных в информационных системах.

Методы и средства защиты данных, основанные на использовании криптографии. Стеганография. Основные стандарты, применяемые в программных средствах шифрования данных (AES, belt, ГОСТ 28147). Аппаратные средства защиты данных на примере использования переносимых устройств хранения данных (flash-накопителей). Программные и аппаратные средства защиты данных от копирования.

Примерный перечень вопросов по разделу 9 для подготовки к государственному экзамену:

- 1. Классификация моделей данных. Реляционная модель.
- 2. Определение атрибута, домена, отношения, кортежа, ключа. Ограничения целостности.
- 3. Проектирование реляционных баз данных на основе нормализации отношений. Нормальные формы.
- 4. Внутренние и внешние угрозы, классификация вредоносного программного обеспечения.

- 5. Резидентные программы, средства их обнаружения и локализации, описание основных антивирусных программных средств.
- 6. Методы и средства защиты данных, основанные на использовании криптографии. Стеганография.

Раздел 10. Учебная дисциплина «Исследование операций» модуля «Интеллектуальные системы»

Тема 1. Задача о максимальном потоке.

Определение понятий стационарного потока и разреза. Теорема о максимальном потоке и минимальном разрезе. Алгоритм Форда-Фалкерсона.

Тема 2. Математические модели конфликтных ситуаций и их анализ.

Понятие игры. Решение матричных игр в чистых и смешанных стратегиях. Теорема о разрешимости матричных игр.

Примерный перечень вопросов по разделу 10 для подготовки к государственному экзамену:

- 1. Задача о максимальном потоке.
- 2. Математические модели конфликтных ситуаций и их анализ.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Боровков, А. А. Теория вероятностей: учебное пособие для студентов высших учебных заведений, обучающихся по направлению подготовки 010100 "Математика" / А. А. Боровков. Изд. стер. Москва: URSS: Либроком, 2023. 652 с.
- 2. Бухгольц, Н. Н. Основной курс теоретической механики : [в 2 ч.] / Н. Н.Бухгольц. Изд. 11-е, стер. Санкт-Петербург ; Москва ; Краснодар : Лань, 2021–Ч. 1 : Кинематика, статика, динамика материальной точки : учебное пособие. -2021. 467 с.
- 3. Бухгольц, Н. Н. Основной курс теоретической механики : [в 2 ч.] / Н. Н. Бухгольц. Изд. 9-е, стер. Санкт-Петербург ; Москва ; Краснодар : Лань, 2022. Ч. 2 : Динамика системы материальных точек : учебное пособие. 2022. 332с.
- 4. Волк, В. К. Базы данных. Проектирование, программирование, управление и администрирование : учебник для вузов / В. К. Волк. 3-е изд., стер. Санкт-Петербург: Лань, 2022. 244 с.
- 5. Воронов, М В. Системы искусственного интеллекта: учебник и практикум для студентов высших учебных заведений, обучающихся по ИТ и математическим направлениям / М. В. Воронов, В. И. Пименов, И. А. Небаев. Москва: Юрайт, 2022. 256 с.
- 6. Вярьвильская, О.Н. Краткий курс теоретической механики : учеб. пособие / О.Н. Вярьвильская, Д.Г. Медведев, В.П. Савчук; под ред. Д.Г. Медведева. Минск : БГУ, 2020. 207 с.
- 7. Гнеденко, Б. В. Курс теории вероятностей: учебник для студ. мат. спец. ун-тов / Б. В. Гнеденко; [предисл. А. Н. Ширяева]; МГУ им. М. В. Ломоносова. Изд. 13-е. Москва: URSS, 2022.
- 8. Горлач, Б. А. Математическое моделирование. Построение моделей и численная реализация: учебное пособие для студентов вузов, / Б. А. Горлач, В.Г. Шахов. Изд. 5-е, стер. Санкт-Петербург; Москва; Краснодар: Лань, 2023. 291с.
- 9. Донкова, И. А. Исследование операций и методы оптимизации: учебное пособие / И. А. Донкова; Тюменский гос. ун-т. Москва: Проспект, 2023. 195 с.
- 10. Калинин, А.И. Теоретическая механика. Учебное пособие. / А.И.Калинин, Н.М.Дмитрук. Минск: БГУ, 2022. 120 с.
- 11. Котов, В. М. Теория алгоритмов. Организация перебора и приближенные алгоритмы: учеб. -метод. пособие / В. М. Котов, Е. П. Соболевская, Г. П. Волчкова. Минск: БГУ, 2022. 151 с.
- 12. Курош А. Г. Курс высшей алгебры: учебник для вузов / Курош А. Г. 25-е изд., стер. Санкт-Петербург: Лань, 2024. 432 с.
- 13. Лафоре, Р. Объектно-ориентированное программирование в С++ / Р. Лафоре ; [пер. с англ.: А. Кузнецов, М. Назаров, В. Шрага]. 4-е изд Санкт-Петербург ; Москва ; Минск : Питер, 2022. 923 с.
- 14. Лафоре, Р. Структуры данных и алгоритмы Java / Роберт Лафоре; [пер. с англ. Е. Матвеев]. 2-е изд. Санкт-Петербург; Москва; Минск: Питер, 2023. 701с.

- 15. Лекции по теории графов: учебное пособие для студ., обуч. по спец. "Математика" и "Прикладная математика" / В. А. Емеличев [и др.]. Изд. стер. Москва: URSS: ЛЕНАНД, 2021. 383 с.
- 16. Лимановская, О. В. Основы машинного обучения : учебное пособие / О. В. Лимановская, Т. И. Алферьева. 2-е изд. Москва : ФЛИНТА, 2022. 88 с.
- 17. Мазалов, В. В. Математическая теория игр и приложения: учебное пособие [для вузов] / В. В. Мазалов. Изд. 6-е, стер. Санкт-Петербург; Москва; Краснодар: Лань, 2024. 496 с.
- 18. Марчук, Г.И. Методы вычислительной математики: учебное пособие / Г.И. Марчук. 4-е изд., стер. Санкт-Петербург: Лань, 2022.-608 с.
- 19. Мэрфи, К. П. Вероятностное машинное обучение. Введение / К. П. Мэрфи ; перевод с английского А. А. Слинкина. Москва : ДМК Пресс, 2022. 940 с.
- 20. Митина, О. А. Технологии и инструментарий машинного обучения : учебное пособие / О. А. Митина, В. В. Жаров. Москва : РТУ МИРЭА, 2023. 203 с.
- 21. Николенко С. Глубокое обучение. (Серия «Библиотека программиста») / С. Николенко, А. Кадурин, Е. Архангельская. Санкт-Петербург: Питер, 2020. 480 с.
- 22. Олифер, В. Г. Компьютерные сети. Принципы, технологии, протоколы / Виктор Олифер, Наталья Олифер Санкт-Петербург [и др.] : Питер, 2020.
- 23. Парлог, Н. Система модулей Java = The Java Module System / Н. Парлог предисл. Кевлина Хенни ; [пер. с англ. А. Павлов]. Санкт-Петербург [идр.] : Питер, 2021. 463 с.
- 24. Размыслович, Γ . П. Аналитическая геометрия: учебные материалы для студентов факультета прикладной математики и информатики. В 2 ч. Ч.1. истемы координат. Векторы / Γ . П. Размыслович, А. В. Филипцов. Минск : БГУ, 2022.
- 25. Размыслович, Г. П. Аналитическая геометрия: учебные материалы для студентов факультета прикладной математики и информатики. В 2 ч. Ч.2. Линии и поверхности первого и второго порядков / Г. П. Размыслович, А. В. Филипцов. Минск: БГУ, 2022. 57с.
- 26. Сборник задач по теории алгоритмов. Структуры данных: учеб. -метод. пособие / С. А. Соболь [и др.] Минск: БГУ, 2020. 159 с.
- 27. Таненбаум, Э. С. Современные операционные системы =ModernOperatingSystems / Э. Таненбаум, Х. Бос; [пер. с англ.: А.Леонтьева, М. алышева, Н. Вильчинский]. 4-е изд. Санкт-Петербург[и др.] : Питер, 2020. 1119 с.
- 28. Таненбаум, Э. Компьютерные сети / Э. Таненбаум, Н. Фимстер, Д. Уэзеролл. 6-е изд. Санкт-Петербург; Москва; Минск: Питер, 2023. 989 с
- 29. Таненбаум, Э.Архитектура компьютера / Э. Таненбаум, Т. Остин; [пер. с англ. Е. Матвеева]. 6-е изд. Санкт-Петербург: Питер, 2024. 811 с.
- 30. Урма, Р.-Г. Современный язык Java. Лямбда-выражения, потоки и функциональное программирование = Modern Java in Action. Lambdas, Streams,

- Functional and Reactive Programming / Рауль-Габриэль Урма, Марио Фуско, Алан Майкрофт; [пер. И. Пальти]. Санкт-Петербург [и др.]: Питер, 2020. 592 с
- 31. Флах Петер. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных / пер. с англ. А. А. Слинкина. 2-е изд., эл. Москва: ДМК Пресс, 2023. 401 с.
- 32. Фримен, Э.HeadFirst. Паттерны проектирования / Эрик Фримен, Элизабет Робсон [при участнии] Кэти Сьерра и Берта Бейтса; [пер. с англ. Е. Матвеев]. 2-е изд. Санкт-Петербург; Москва; Минск: Питер, 2022. 633 с.
- 33. Хуторецкий, А. Б. Математические модели и методы исследования операций: учебное пособие для вузов / А. Б. Хуторецкий, А. А. Горюшкин Санкт-Петербург: Лань, 2024. 204 с.
- 34. Чеб, Е. С. Интегральные преобразования: учеб. материалы для студ. фак. прикладной математики и информатики: в 2 ч. / Е. С. Чеб; БГУ, Фак. Прикладной математики и информатики, Каф. компьютерных технологий и систем. Минск: БГУ, Ч. 2:. 2022. 61 с.
- 35. Шолле Франсуа. Глубокое обучение на Python. 2-е межд. издание. (Серия «Библиотека программиста»). Санкт-Петербург : Питер, 2023. 576 с
- 36. Эккель, Б. Философия Java = Thinking in Java / Брюс Эккель; [пер. с англ. Е. Матвеев]. 4-е полное изд. Санкт-Петербург [и др.] : Питер, 2023. 1168с.

Дополнительная литература

- 1. Алгоритмы: построение и анализ / Т. Кормен [и др.]. М.: Вильямс, 2013.-1324 с.
- 2. Амосов, А. А. Вычислительные методы: Учебное пособие / А. А. Амосов, Ю. А. Дубинский, Н. В. Копченова. СПб.: Издательство «Лань», 2014. –672 с.
- 3. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы. Учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. Спб.: Лань, 2010.-368 с.
- 4. Axo, A. B. Структуры данных и алгоритмы / A. B. Axo, Д. Э. Хопкрофт, Д. Д. Ульман.— М.: Вильямс, 2016. 400 с.
- 5. Богданов, Ю. С. Лекции по математическому анализу/ Ю. С. Богданов. Мн.: изд-во БГУ, 1974, 1978. Ч. 1-2.
- 6. Богданов, Ю. С. Математический анализ / Ю. С. Богданов, О. А. Кастрица, Ю. Б. Сыроид. М.: ЮНИТИ-ДАНА, 2003. 351 с.
- 7. Богданов, Ю. С. Дифференциальные уравнения / Ю. С. Богданов, Ю. Б. Сыроид. –Мн.: Выш. школа, 1983. 239 с.
- 8. Богданов, Ю. С. Курс дифференциальных уравнений / Ю. С. Богданов, С. А. Мазаник, Ю. Б. Сыроид. Мн.: Университетское, 1996. 287 с.
- 9. Буза, М. К. Архитектура компьютеров: учебник / М. К. Буза Мн.: Вышэйшая школа, 2015.-414 с.
- 10. Булинский, А. В. Теория случайных процессов / А. В. Булинский, А. Н. Ширяев. Москва: ФИЗМАТЛИТ, 2003. 400 с.

- 11. Вагнер, Г. Основы исследования операций: в 3-х томах / Г. Вагнер. М.: Мир, 1972-73. –335 с., 487 с., 501 с.
- 12. Вентцель, Е. С. Исследование операций: задачи, принципы, методология: учебное пособие / Е. С. Вентцель. М.: КНОРУС, 2013. 192 с.
- 13. Воеводин, В. В. Параллельные вычисления / В. В. Воеводин, Вл. В. Воеводин. СПб.: БХВ-Петербург, 2002. 608 с.
- 14. Дейт, К. Дж. Введение в системы баз данных, 8-е изд. / К. Дж. Дейт. М.: Издательский дом «Вильяме», 2005. 1328 с.
- 15. Демидович, Б. П. Сборник задач и упражнений по математическому анализу: Учебное пособие 20-е изд., стер. / Б. П. Демидович. СПб.: Издательство «Лань», 2018-624 с.
 - 16. Зорич, В. А. Математический анализ. М.: Наука, 1997, 1998. Ч. 1-2.
- 17. Зуев, Ю. А. По океану дискретной математики: от перечислительной комбинаторики до современной криптографии. Т. 1: Основные структуры. Методы перечисления. Булевы функции / Ю. А. Зуев. М.: Книжный дом «ЛИБРОКОМ», 2012. 274 с.
- 18. Зуев, Ю. А. По океану дискретной математики: от перечислительной комбинаторики до современной криптографии. Т. 2: Графы. Алгоритмы. Коды, блок-схемы, шифры / Ю. А. Зуев. М.:Книжный дом «ЛИБРОКОМ», 2012. 368 с.
- 19. Игошин, В. И. Теория алгоритмов: учеб. пособие для студ. высш. учеб. заведений / В. И. Игошин. М.: ИНФРА-М, 2012. 318 с.
- 20. Игошин, В. И. Математическая логика. Учебное пособие / В. И. Игошин. М.: Инфра-М, 2016. 400 с.
- 21. Коберн, А. Быстрая разработка программного обеспечения / А. Коберн– М.: ЛОРИ, 2013. –314 с.
- 22. Компиляторы: принципы, технологии и инструментарий / А. Ахо [и др.]. –М.: Вильямс, 2018. 1184 с.
- 23. Котов, В. М. Алгоритмы и структуры данных: учеб. пособие / В. М. Котов, Е. П. Соболевская, А. А. Толстиков Минск: БГУ, 2011. 267 с.
- 24. Корзюк, В. И. Уравнения математической физики / В. И. Корзюк. Минск: «Издательский центр БГУ», 2011. –460 с.
- 25. Краснопрошин, В. В. Исследование операций: уч. пособие / В. В. Краснопрошин, Н. А. Лепешинский Мн.: БГУ, 2013.-191 с.
- 26. Крылов, В. И. Вычислительные методы высшей математики / В. И. Крылов, В. В. Бобков, П. И. Монастырный. Мн.: Выш. школа, 1972. 594 с
- 27. Кудрявцев, Л. Д. Курс математического анализа. М.: Высш. шк., 1988, 1989. Т. 1-3.
- 28. Куроуз, Д., Росс, К. Компьютерные сети: нисходящий подход / Д. Куроуз, К. Росс. М.:Эксмо, 2016. □ 912 с.
- 29. Лекции по теории графов: учебное пособие / В. А. Емеличев [и др.]. М.: Либроком, 2015. 390 с.
- 30. Макконнелл, С. Совершенный код. Мастер-класс / Пер. с англ. М.: Издательство «Русская редакция», 2010.-896 с.

- 31. Максимов, Н. В. Архитектура ЭВМ и вычислительных систем /Н. В. Максимов, Т. Л. Партыка, И. И Попов. М.: ФОРУМ, 2012 512 с.
- 32. Методы оптимизации: Учебное пособие / Р. Габасов [и др.]. Минск: Издательство «Четыре четверти», 2011.-472 с.
- 33. Милованов, М. В.Алгебра и аналитическая геометрия, Часть 1 /М. В. Милованов, Р. И. Тышкевич, А. С. Феденко.— Мн.: Выш. шк., 1984. 302 с.
- 34. Милованов, М. В.Алгебра и аналитическая геометрия, Часть 2 /М. В. Милованов, Р. И. Тышкевич, А. С. Феденко.— Мн.: Выш. шк., 1987. 269 с.
- 35. Пападимитриу, X. Комбинаторная оптимизация: Алгоритмы и сложность / X. Пападимитриу, К. Стайглиц. М.: Мир, 1971. 512 с.
- 36. Приемы объектно-ориентированного проектирования. Паттерны проектирования/ Э. Гамма [и др.]. –СПб.: Питер, 2015. 368 с.
- 37. Размыслович, Г. П. Геометрия и алгебра / Г. П. Размыслович, М. М. Феденя, В. М. Ширяев. Мн.: Университетское, 1987. 350 с.
- 38. Размыслович, Γ . Π . Сборник задач по геометрии и алгебре / Γ . Π . Размыслович, M. M. Феденя, B. M. Ширяев. Mн.: Университетское, 1999. 384с.
- 39. Рассел, С. Искусственный интеллект: современный подход / С. Рассел, П. Норвиг. М.: Издательский дом «Вильямс», 2007.–1424 с.
- 40. Рейнгольд, Э. Комбинаторные алгоритмы теория и практика/ Э. Рейнгольд, Ю. Нивергельт, Н. Део. –М.: Мир, 1980. 476 с.
- 41. Ржевский, С. В. Исследование операций: Учебное пособие / С. В. Ржевский. СПб.: Издательство «Лань», 2013. 480 с.
- 42. Сборник задач по теории алгоритмов : учеб.-метод. пособие / В.М. Котов, Ю.Л. Орлович, Е.П. Соболевская, С.А. Соболь Минск : БГУ, 2017.- 183с
- 43. Сидоров, Ю. В. Лекции по теории функций комплексного переменного / Ю. В. Сидоров, М. В. Федорюк, М. И. Шабунин. М.: Наука, 1989. 408 с.
- 44. Скиена, С. Алгоритмы. Руководство по разработке / С. Скиена. Издательство БХВ-Петербург, 2021. 720 с.
- 45. Таха, X. А. Введение в исследование операций / X. А. Таха. М.: Издательский дом «Вильямс», 2001. 912 с.
- 46. Теория алгоритмов: учеб. пособие / П. А. Иржавский [и др.]. Минск: БГУ, 2013.-159 с.
- 47. Тер-Крикоров, А.М. Курс математического анализа / А. М. Тер-Крикоров, М. И. Шабунин. М.: Наука, 1997. 720 с.
- 48. Функции комплексного переменного. Операционное исчисление. Теория устойчивости / М. Л. Краснов [и др.]. М.: Наука, 1981. 303 с.
- 49. Харин, Ю. С. Математическая и прикладная статистика / Ю. С. Харин, Е. Е. Жук Мн.: БГУ, 2005. 279 с.
- 50. Харин, Ю. С. Теория вероятностей / Ю. С. Харин, Н. М. Зуев. Мн.: БГУ, 2004.-199 с.
 - 51. Харари, Ф. Теория графов / Ф. Харари. М.: Ленанд, 2018. 304 с.
- 52. Хопкрофт, Дж. Э. Введение в теорию автоматов, языков и вычислений / Дж. Э. Хопкрофт, Р. Мотвани, Дж. Ульман. М.: Вильямс, 2008. 528 с.
- 53. Шагин, В. Л. Теория игр: учебник и практикум для академического бакалавриата / В. Л. Шагин. М.: Издательство Юрайт, 2015. 223 с.

- 54. Ширяев, А. Н. Вероятность. В 2-х кн./ А. Н. Ширяев. М.: МЦНМО, $2004.-928~\mathrm{c}.$
- 55. Яблонский, С. В. Введение в дискретную математику / С. В. Яблонский. М.: Высшая школа, 2003. 384 с.

ЭУМК

- 1. Алгоритмы и структуры данных : электронный учебно-методический комплекс для специальностей 6-05-0533-09 «Прикладная математика», 6-05-0533-10 «Информатика», 6-05-0533-11 «Прикладная информатика», 6-05-0533-12 «Кибербезопасность». В 3 ч. Ч. 2 / Е.П. Соболевская, В.М. Котов, А.А. Буславский ; БГУ, Фак. прикладной математики и информатики, Каф. дискретной математики и алгоритмики. Минск : БГУ, 2025. 153 с. : ил. Библиогр.: с. 147–148. https://elib.bsu.by/handle/123456789/324674
- 2. Дифференциальные уравнения в частных производных и их приложения : электронный учебно-методический комплекс для специальности: 1-31 03 04 «Информатика» / И. С. Козловская ; БГУ, Фак. прикладной математики и информатики, Каф. компьютерных технологий и систем. Минск: БГУ, 2023. 149 с. : ил. Библиогр.: с. 148—149. https://elib.bsu.by/handle/123456789/304443
- 3. Сборник задач по теории алгоритмов. Организация перебора и приближенные алгоритмы: электронный учебно-методический комплекс для специальности: 1-31 03 04 «Информатика» / В. М. Котов, Е. П. Соболевская, Г. П. Волчкова; БГУ, Фак. прикладной математики и информатики, Каф. дискретной математики и алгоритмики. Минск: БГУ, 2021. 144 с.: ил. Библиогр.: с. 143—144. https://elib.bsu.by/handle/123456789/272717
- 4. Математический анализ : электронный учебно-методический комплекс для специальности: 1-31 03 04 «Информатика». В 3 ч. Ч. 3 / С. А. Мазаник, О. А. Кастрица ; БГУ, Фак. прикладной математики и информатики, Каф. высшей математики. Минск : БГУ, 2021. 105 с. : ил. Библиогр.: с. 94—97. https://elib.bsu.by/handle/123456789/257817
- 5. Уравнения математической физики: электронный учебно-методический комплекс для специальностей: 1-31 03 04 «Информатика», 1-98 01 01 «Компьютерная безопасность (по направлениям)», направление специальности:1-98 01 01-01 «Компьютерная безопасность (математические методы и программные системы)» / И. С. Козловская; БГУ, Фак. прикладной математики и информатики, Каф. компьютерных технологий и систем. Минск: БГУ, 2021. 149 с.: ил. Библиогр.: с. 148—149. https://elib.bsu.by/handle/123456789/257012
- 6. Алгоритмы в биоинформатике : электронный учебно-методический комплекс для специальности: 1-31 03 04 «Информатика» / А. Ю. Хадарович ; БГУ, Фак. прикладной математики и информатики, Каф. биомедицинской информатики. Минск : БГУ, 2020. 44 с. : табл. Библиогр.: с. 40–41. https://elib.bsu.by/handle/123456789/246951
- 7. Математический анализ : электронный учебно-методический комплекс для специальности: 1-31 03 04 «Информатика». В 3 ч. Ч. 1 / С. А. Мазаник, О. А. Кастрица ; БГУ, Фак. прикладной математики и информатики, Каф. высшей

математики. — Минск : БГУ, 2020. — 75 с. — Библиогр.: с. 67–69. https://elib.bsu.by/handle/123456789/244693

8. Методы оптимизации : электронный учебно-методический комплекс для специальностей: 1-31 03 03 «Прикладная математика (по направлениям)»; 1-31 03 04 «Информатика»; 1-31 03 05 «Актуарная математика»; 1-31 03 06-01 «Экономическая кибернетика (по направлениям)», 1-98 01 01-01 «Компьютерная безопасность (по направлениям)» / В. В. Альсевич [и др.]; БГУ, Фак. прикладной математики и информатики, Каф. методов оптимального управления. — Минск : БГУ, 2020. — 203 с. : ил., табл. — Библиогр.: с. 202—203

https://elib.bsu.by/handle/123456789/243989

9. Геометрия и алгебра : электронный учебно-методический комплекс для специальностей: 1-31 03 03 «Прикладная математика (по направлениям)», 1-31 03 04 «Информатика», 1-31 03 05 «Актуарная математика», 1-31 03 06-01 «Экономическая кибернетика (по направлениям)», 1-98 01 01-01 «Компьютерная безопасность (по направлениям)» / БГУ, Фак. прикладной математики и информатики, Каф. высшей математики ; сост.: Г. П. Размыслович, А. В. Филипцов. – Минск : БГУ, 2020. – 2803 с. : ил. – Библиогр.: с. 2802–2803. http://elib.bsu.by/handle/123456789/242860