

732G12 Data Mining

Föreläsning 10

Josef Wilzén IDA, Linköping University, Sweden

Dagens föreläsning

- K-medoid klustring
- Densitetsbaserade metoder
- Faktorer som påverkar klusteranalys
- Utvärdera klusteranalys

Information Kandidatuppsats

Kommer (troligtvis) vara ett informationsmöte om kandidatuppsatsen på torsdag nästa vecka.

K-medoid klustring

Använder medoider som center/prototyp vid klustring.

- En medoid är en representativ observation inom ett dataset/kluster.
- Medoid är inte samma som centroid, median, geometrisk median etc.
- Medoider är lätta att tolka
 - centroider kan vara punkter som inte liknar någon av observationerna i data.
- k-medoids:
 - minimerar summan av parvisa avstånd.
 - kan använda godtyckligt avståndsmått.
 - mer robust med brus och extremvärden.
- k-means: använder oftast euklidiskt avstånd.
- k-medoid klustring kallas också Partitioning Around Medoids (PAM)

K-medoid klustring

Algorithm 14.2 K-medoids Clustering.

1. For a given cluster assignment C find the observation in the cluster minimizing total distance to other points in that cluster:

$$i_k^* = \underset{\{i:C(i)=k\}}{\operatorname{argmin}} \sum_{C(i')=k} D(x_i, x_{i'}).$$
 (14.35)

Then $m_k = x_{i_k^*}$, k = 1, 2, ..., K are the current estimates of the cluster centers.

2. Given a current set of cluster centers $\{m_1, \ldots, m_K\}$, minimize the total error by assigning each observation to the closest (current) cluster center:

$$C(i) = \underset{1 \le k \le K}{\operatorname{argmin}} D(x_i, m_k). \tag{14.36}$$

3. Iterate steps 1 and 2 until the assignments do not change.

Densitetsbaserade metoder

Kluster kan formas baserat på hur densiteten på punkter varierar över variablerna: Täta områden kan defineras som ett kluster.

DBSCAN

- Algoritm för att skapa kluster baserat på punkternas täther.
- Använder två begrepp:
 - eps, en sökradie där vi letar efter punkter.
 - minPts, minsta antal punkter.

Från detta kan vi klassa observation i någon av följande:

Kärnpunkt Punkter med fler än minPts punkter inom sökradien eps.

Gränspunkt Inte en kärnpunkt men hamnar inom sökradien från en kärnpunkt.

Bruspunkt Varken kärnpunkt eller gränspunkt.

Illustration

DBSCAN Algoritmen

Algorithm 8.4 DBSCAN algorithm.

- 1: Label all points as core, border, or noise points.
- 2: Eliminate noise points.
- 3: Put an edge between all core points that are within Eps of each other.
- 4: Make each group of connected core points into a separate cluster.
- 5: Assign each border point to one of the clusters of its associated core points.

Val av eps och minPts

Hyperparametrar som vi måste välja.

- 1. Definera ett nummer k.
- 2. Beräkna avståndet mellan varje punkt och dess *k*-närmaste granne och sortera punkterna enligt ökande avstånd.
- 3. Definera eps som värdet där skarp förändring märks (armbågsmetoden).
- 4. minPts = k.

k-värdet vi valt i steg 1 påverkar **inte** eps-värdet mycket om k inte är extremt (för litet eller för stort).

DBSCAN - Exempel

Figure 8.22. Sample data.

Figure 8.23. K-dist plot for sample data.

DBSCAN - Exempel

(a) Clusters found by DBSCAN.

(b) Core, border, and noise points.

DBSCAN - För och nackdelar

- Brusbeständig.
- Behandlar kluster av olika former och storlekar.
- Problem med kluster som har betydligt varierande t\u00e4theter.
 - Svårt att välja ett bra eps.
- Problem i stora dimensioner.

K-means och DBSCAN

Egenskap	K-means	DBSCAN
Тур А	Partitionell	Partitionell
Тур С	Fullständig	Ofullständig
Klustertyp	Prototyp	Densitet
Klusterform	Klot	Olika
Närhetsmått	Olika	Olika
Användande av attribut	Alla	Alla
Upprepade körningar	Kluster beror på start- centroider	Samma kluster bildas
Algoritmbehov	k för antal kluster	eps och minPts
Optimeringsmodell	Ja	Nej
Tidskomplexitet	O(m)	$O(m^2)$

Faktorer som påverkar klusteranalys

- Dimensionalitet (problem för täthetsbaserade metoder).
- Datamängdens storlek (stora datamängder är svåra att skala upp).
- Brus och extremvärden.
- Skalan på data: numerisk, kategorisk.
 - problem att välja närhetsmått för datamängder med blandade attribut.
- Standardisering av variabler.

Egenskaper

- Fördelningar Olika metoder passar bättre på vissa fördelningar.
- Form Godtyckliga former är svårare att klustra.
- Storlek K-means, problem med olika storlekar.
- Täthet Olika täthet problem för K-means, DBSCAN.
- Dåligt separerade kluster Vissa metoder slår ihop överlappande kluster eller kluster som ligger nära varandra

Ingen klustermetod passar för alla dataset!

Utvärdera klusteranalys

- Cluster tendency: Finns det kluster i data? Eller har observationerna bara slumpmässiga värden?
- Avgöra rätt antal kluster.
- Interna mått på hur bra klusteranalysen är.
- Externa mått på hur bra klusteranalysen är \rightarrow om vi har tillgång till sanna klasser/grupper.
- Jämföra olika metoder för klusteranalys på samma dataset.
- Kontext och problembeskrivning, avgör om vi har en bra klustring.

Cohesion och Separation

Interna mått.

Cohesion: Hur tight eller sammanhållet ett kluster är med sig själv.

Separation: Hur väl separerat ett kluster är från övriga kluster.

När vi har beräknat mått för ett kluster kan vi väga samman alla dessa mått till ett mått.

Cohesion och Separation

$$cohesion(C_i) = \sum_{x \in C_i, y \in C_i} proximity(x, y)$$
$$proximity(C_i, C_j) = \sum_{x \in C_i, y \in C_j} proximity(x, y)$$

Figure 7.27. Graph-based view of cluster cohesion and separation.

proximity(x, y) kan vara både närhetsmått eller avståndsmått.

The Silhouette Coefficient

Använder både cohesion och separation för att beräkna ett mått.

- 1. Beräkna medelavståndet från observation; till alla andra observationer i dess kluster, kalla det *a*_i.
- 2. Beräkna nu medelavståndet från observation; till alla kluster som inte innehåller denna observation.
- 3. Hitta det minsta av dessa avstånd kalla det b_i .
- 4. Silhouette coefficient för observation, defineras som,

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

The Silhouette Coefficient

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

- s_i kan ta värden mellan -1 och 1.
- 1 är bästa möjliga värde.
 - Vill ha $a_i < b_i$ och att a_i ska vara nära noll.
- Average silhouette coefficient.
 - Ta medelvärdet över alla s_i
 - Ger ett mått på hur bra klustringen är.

The Silhouette Coefficient - Exempel

Figure 7.29. Silhouette coefficients for points in ten clusters.

Välja antal kluster

- K-means: vi kan använda total SSE och average silhouette coefficient.
- Plotta dessa mot antal kluster.
 - Kolla efter böjar och toppar.
 - SSE planar ut efter en böj: ta antal kluster vid böjen.
 - Average silhouette coefficient: Kolla om det finns en eller flera toppar.

Välja antal kluster - Exempel

Figure 7.32. SSE versus number of clusters for the data of Figure 7.29 on page 582.

Figure 7.33. Average silhouette coefficient versus number of clusters for the data of Figure 7.29.

Calinski-Harabasz Index

Inter-cluster dispersion

$$BGSS = \sum_{k=1}^{K} n_k ||C_k - C||^2.$$

Intra-cluster dispersion

$$WGSS_k = \sum_{i=1}^{n_k} \|x_{i,k} - C_k\|^2, \qquad WGSS = \sum_{k=1}^K WGSS_k.$$

Calinski-Harabasz Index

$$\mathsf{CH} = \frac{\mathsf{BGSS}}{\mathsf{WGSS}} \cdot \frac{\mathit{N} - \mathit{K}}{\mathit{K} - 1}.$$

Höga värden är bra för CH.

Davies-Bouldin Index är ett liknande mått. Där ska man ha låga värden.

Välja antal kluster

- Vi kan beräkna närhetsmatrisen eller avståndsmatrisen för alla datapunkter.
 - Matris med alla parvisa n\u00e4rheter/avst\u00e4nd mellan observationer.
- Notera att detta är dyrt!
 - Kostar $O(n^2)$
 - Svårt att plotta med många observationer.
 - En lösning är att ta ett slumpmässigt urval av data.
- Sortera närhetsmatrisen baserat på kluster.
 - Först kommer kluster 1, sen kluster 2, osv.
- Om vi har väl separerade kluster och valt ett bra antal kluster kommer den sorterade matrisen vara ungefär blockdiagonal.

Välja antal kluster - Exempel

Figure 7.30. Similarity matrix for well-separated clusters.

cluster labels.

(b) Similarity matrix sorted by K-means

(a) Similarity matrix sorted by DBSCAN cluster labels.

(a) Well-separated clusters.

- (b) Similarity matrix sorted by K-means cluster labels.
- (c) Similarity matrix sorted by complete link cluster labels.

Cluster Tendency

- Har vi slumpmässig data eller finns det något mönster? (kluster)
- Sampla två grupper om p datapunkter
 - Uniformt f\u00f6rdelade fr\u00e4n datarymden.
 - Från datasetet utan återläggning.
- Beräkna avståndet till närmaste granne i datasetet.
 - u_i är minsta avståndet från en uniform datapunkt till en observation.
 - w_i är minsta avståndet från en samplad datapunkt till en icke-samplad datapunkt.
- Hopkins statistic:

$$H 0 \frac{\sum_{i=1}^{p} w_{i}}{\sum_{i=1}^{p} u_{i} + \sum_{i=1}^{p} w_{i}}$$

- Nollhypotesen är att datasetet följer en uniform fördelning. H_0 kommer då vara Beta(p, p) fördelat.
- Värden nära 1 indikerar att data inte är uniformt fördelat.

Extern validering

- Jämför med sanna klasser/kluster.
- Vi kan ta resultatet från vår klusteranalys som våra "predikterade värden"
- Kan då jämföra med sanna klasserna.
 - Vi kan då beräkna förväxlingsmatris och liknande mått.
- Notera:
 - Vi har inte de "rätta namnen" på våra kluster.
 - Vi vill ofta att klustren ska vara så rena som möjligt, dvs. domineras av en klass.