Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 28.04.2015r	Dzień: Wtorek								
Grupa: VII	Godzina: 12:15-15:00								
Temat ćwiczenia:									
Wzmacniacz tranzystorowy									
Dane projektowe:									
$I_{CQ} = 3.5mA$	$R_{B1} = 49.718k\Omega$	Ucc = 12V							
$K_{u12} = 100 \frac{V}{V}$	$R_{B2} = 15.077k\Omega$	$C_E = 144uF$							
$R_w = 1.596k\Omega$	$R_C = 557\Omega$	$C_1 = C_2 = 0.9464nF$							
$R_g = 1.196k\Omega$									
l.p	Nazwisko i imię	Oceny							
1	Arkadiusz Ziółkowski								
2	Jakub Koban								

1 Zadanie projektowe

Zaprojektować wzmacniacz tranzystorowy o zadanych parametrach:

- $I_{CQ} = 3.5mA$
- $K_{U12} = 100 \frac{V}{V}$
- $R_w = 1.6k\Omega$
- $R_g = 1.2k\Omega$

2 Obliczenia projektowe

• Dane katalogowe tranzystora (BC527 II)

$$\beta_0 = 200$$

$$\varphi_T = 26.5mV$$

$$U_{BEQ} = 0.65V$$

$$U_{CEsat} = 0.25V$$

$$U_Y = 100V$$

• Obliczenia

$$g_m = \frac{I_{CQ}}{\varphi_T} = \frac{3. * 10^{-3}}{26.5 * 10^{-3}} = 0.1321S$$
 (1)

$$r_{ce} = \frac{U_Y}{I_{CO}} = \frac{100}{3.5 * 10^{-3}} = 28.571k\Omega$$
 (2)

$$\mathbf{R_C} = \left(\frac{g_m}{K_{U12}} - r_{ce}^{-1} - R_w^{-1}\right)^{-1} = \left(\frac{0.1321}{100} - (28.571^3)^{-1} - 1600^{-1}\right)^{-1} \approx \mathbf{1.5k\Omega}$$
(3)

$$Przyjmujemy \quad U_{RE} = 3*U_{BEQ} = 3*0.65 = 1.95V, \quad oraz \quad U_{CEQ} = 1.753V$$
(4)

$$Ucc = I_{CQ} * R_C + U_{CEQ} + U_{RE} = 3.5 * 10^{-3} * 1500 + 1.753 + 1.95 = 12V$$
(5)

$$\mathbf{R_E} = \frac{U_{RE}}{I_{CQ}} = \frac{1.95}{3.5 * 10^{-3}} \approx 557\Omega \tag{6}$$

$$I_{BQ} = \frac{I_{CQ}}{\beta_0} = \frac{3.5 * 10^{-3}}{200} = 1.75 * 10^{-5} A$$
 (7)

$$PrzyjmujemyI_{RB2} = 10 * I_{BQ} = 10 * 1.75 * 10^{-5} = 1.75 * 10^{-4}A$$
 (8)

$$I_{RB1} = I_{RB2} + U_{BQ} = 1.75 * 10^{-4} + 1.75 * 10^{-5} = 1.925 * 10^{-4} A$$
 (9)

$$\mathbf{R_{B1}} = \frac{Ucc - U_{BEQ} - U_{RE}}{I_{RB1}} = \frac{12 - 0.65 - 1.95}{1.925 * 10^{-4}} \approx 48.83 k\Omega \quad (10)$$

$$\mathbf{R_{B2}} = \frac{U_{BEQ} + U_{RE}}{I_{RB2}} = \frac{0.65 + 1.95}{1.75 * 10^{-4}} \approx \mathbf{14.86k\Omega}$$
 (11)

3 Schemat projektowy

4 Część laboratoryjna

4.1 Charakterystyka częstotliwościowa wzmacniacza

$\mathrm{C_E} = 144 \mathrm{uF}, \mathrm{R_w} = 1.596 [\mathrm{k}\Omega]$									
$ m R_g=1.196[k\Omega]$				$ ho_{f w} = 0$					
f[kHz]	$U_{we}[mV]$	$\mathbf{U_{wy}[V]}$	$\mathrm{K_{U12}}[rac{\mathrm{V}}{\mathrm{V}}]$		f[kHz]	$U_{\rm we}[{ m mV}]$	$\mathbf{U_{wy}[V]}$	$\mathrm{K}_{\mathrm{USK}}[rac{\mathrm{V}}{\mathrm{V}}]$	
0,25	74,0	0,398	53,73		0,15	72,8	0,210	28,85	
0,35	73,6	0,448	60,87		0,35	74,0	0,272	36,76	
0,48	73,6	0,500	67,93		0,55	73,0	0,288	39,45	
0,60	73,0	0,545	74,66		5,00	74,4	0,300	40,32	
30,00	72,5	0,569	78,48		70,00	73,6	0,300	40,76	
150,00	72,4	0,568	78,48		85,00	73,6	0,300	40,76	
330,00	74,0	0,550	74,32		220,00	74,0	0,272	36,76	
525,00	72,4	0,506	69,89		440,00	73,0	0,212	29,04	
840,00	73,6	0,442	60,05		-				
1000,00	72,0	0,392	54,44		-				
$\mathbf{R_w} = \infty$									
150,00	72,2	1,050	-		85,00	73,0	0,544	-	
$ m C_E=0, R_w=1.596[k\Omega]$									
0,06	1,44	0,138	0,96		0,06	1,44	0,122	0,85	
0,22	1,44	0,180	1,25		0,09	1,44	0,144	1,00	
50,00	1,44	0,200	1,39		0,15	1,44	0,160	1,11	
130,00	1,44	0,200	1,39		10,00	1,44	0,172	1,19	
460,00	1,44	0,180	1,25		30,00	1,44	0,172	1,19	
1000,00	1,44	0,142	0,99		515,00	1,44	0,158	1,10	
-				785,00	1,44	0,140	0,97		
-				1150,00	1,44	0,120	0,83		
$ m R_{ m w}=\infty$									
130,00	1,46	0,60	-		30	1,44	0,330	-	

Rysunek 1: Charakterystyka częstotliow
śiowa wzmocnienia przy $C_E=144uF$

Na powyższjej charakterystyce widzimy, że zasilacz poprawnie stabilizuje napięcie wyjściowe na zadanym poziomie dla napięcia wejściowego mieszczącego się w przedziale od 8.5V do 15V.

Rysunek 2: Charakterystyka częstotliowsiowa wzmocnienia przy $C_E = 0$

Z powyższego wykresu widzimy, iż przy natężeniu prądu wyjściowego przekraczającemu wartość ok 225 mA napięcie na wyjściu zasilacza spada poniżej 6V.

Rysunek 3: Wykres sprawności od natężenia prądu wyjściowego

Tutaj możemy zauważyć, że sprawność zasilacza w warunkach pracy tj. dla natężenia prądu wyjściowego w zakresie od kilkudziesięciu mili amperów do około 250mA utrzymuje się na poziomie powyżej 0.74, gdzie maksimum osiąga dla ok. 100mA natężenia prądu wyjściowego i wynosi około 0.79. Warto też dodać, iż dla niskich natężeń prądu wyjściowego zmiany sprawności są bardzo szybkie.

5 Wnioski

- Na podstawie Rysunku nr 4 widzimy, iż zasilacz pracuje zgodnie z oczekiwaniami teoretycznymi, ponieważ dla napięcia nominalnego $U_{we} = 9V$ na wyjściu otrzymujemy zadane napięcie ok. 6V.
- Wykres z rysunku nr 5 wskazuje na to, że układ został zaprojektowany

i wykonany zgodnie z założeniami projektowymi, gdyż dla wartości od kilkudziesięciu mA do ok. 225mA natężenia prądu wyjściowego układ utrzymuje zadane napięcie wyjściowe na poziomie ok. 6V. Zakres ten jest o ok. 25mA mniejszy od założonego $I_{max}=250mA$. Wynika to najprawdopodobniej z użycia nieco innych wartości elementów niż zakłdają obliczenia projektowe.

• Sprawność wyrysowana w zależności od natężenia prądu wyjściowego na rystunku nr 6 przyjmuje wartości na poziomie 0.7 - 0.8 co możemy uznać za wartości mieszczące się w normach tego typu układów.