

NTE128P (NPN) & NTE129P (PNP) Silicon Complementary Transistors General Purpose Amp

Description:

The NTE128P (NPN) and NTE129P (PNP) are silicon complemed tary transistors designed for use in general purpose power amplifier and switching applications.

Features:

- High V_{CE} Ratings
- Exceptional Power Dissipation Capability

Absolute Maximum Ratings: (T _A = +25°C unless otherwise specified)
Collector–Base Voltage, V _{CBO}
Collector–Emitter Voltage, V _{CEO}
Emitter–Base Voltage, V _{EBO} 5V
Continuous Collector Current , I _C
Power Dissipation, P _{TOT}
$T_A = +25^{\circ}C$
$T_{C}^{\cap} = +25^{\circ}C$ 2W
Operating Junction Temperature Range, T _J
Storage Temperature Range, T _{stg}
Thermal Resistance, Junction–to–Ambient, R _{thJA}
Thermal Resistance, Junction–to–Case, R _{thJC}

Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	BV _{CEO}	$I_C = 10 \text{mA}, I_B = 0$	80	_	_	V
Collector Cutoff Current	I _{CBO}	$V_{CB} = 80V$	_	_	100	nA
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 4V$	_	_	100	nA
DC Current Gain	h _{FE}	$I_C = 10$ mA, $V_{CE} = 2$ V	100	_	_	
		$I_C = 350 \text{mA}, V_{CE} = 2V$	100	_	300	
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 350mA	_	_	0.35	V
Current Gain Bandwidth Product	f _T	$I_C = 50mA$	50	_	_	
Output Capacitance	C _{ob}	$V_{CB} = 10V, I_{E} = 0, f = 1MHz$	_	_	15	pF

