Problem background:

Take smartphone market as an example, there is different models of smartphone $(D = \{r_1, r_2, ..., r_n\})$. Each model has different price, pixel, battery capacity, cooling capacity and etc $(r_i = [r_i^1, r_i^2, ..., r_i^d])$.

Now brand P has m models $(P = \{p_1, p_2, ..., p_m\} \subset D)$, and have user data set $W = \{w_1, w_2, ..., w_x\}$. Each $w_i = [w_i^1, w_i^2, ..., w_i^d]$ present the preference weight vector of a single user.

The score of a model r_i respecting to a user w_i is the dot product $r_i \cdot w_i$. A model covers a user when the score of it ranks top k among D.

Q: How to introduce a new product p such that maximizes the cover ratio $cp(p,P,k) = \frac{|\{w|\forall w\in W,\{P\cup\{p\}\}\cap TopK(w)\neq\emptyset\}|}{|W|}$ and the product creation cost C(p) is no greater than creation budget B?

Problem Definition:

Input:

The score of a model r_i respecting to a user w_i is the dot product $r_i \cdot w_i$ A model covers a user when the score of it ranks top k among D.

Output:

find a new product p such that satisfies the constrain $C(p) \leq B$ and maximize $P \cup \{p\}$'s cover ratio $cp(p, P, k) = \frac{|\{w \mid \forall w \in W, \{P \cup \{p\}\} \cap TopK(w) \neq \emptyset\}|}{|W|}$

Baseline solution example

Take d = 2 as example,

where S_{ik} is the score to rank top k respecting to w_i

- 1. In model space, only the half-space C(p)≤B is valid
- 2. If we want to cover w_1 , the score of new model p should greater than S_{1k} . The line $w_1 \cdot p = S_{1k}$ divides the space $C(p) \leq B$ into 2 part. One is h_1^+ , where any model in it could cover w_1 ; Another is h_1^- , where any model in it couldn't cover w_1 .
- If we want to cover w₂, the score of new model p should greater than S_{2k}. The line w₂ · p = S_{1k} divides the space h₁⁺ into 2 part.
 One is h₁⁺ ∩ h₂⁺, where any model in it could cover w₁, w₂; Another is h₁⁺ ∩ h₂⁻, where any model in it could only cover w₁. The line w₂ · p = S_{2k} divides the space h₁⁻ into 2 part. One is h₁⁻ ∩ h₂⁺, where any model in it could only cover w₂; Another is h₁⁻ ∩ h₂⁻, where any model in it couldn't only any user.

4. Return region $h_1^+ \cap h_2^+$

Baseline solution:

- 1. For each w_i in W, based on $w_i \cdot p \leq S_{ik}$ using cell tree divide model space $C(p) \leq B$, where S_{ik} is the score to rank top k respecting to w_i
- 2. count each divided region's user cover number
- 3. Return the region that satisfies $C(p) \leq B$ and with the greatest cover count

Advance solution example:

Take d = 2 as example,

where S_{ik} is the score to rank top k respecting to w_i

1. discard all weight vectors such that have been cover by P:

$$W = W - \{w | \forall w \in W, P \cap TopK(w) \neq \emptyset\}$$

- 2. In model space, only consider the space C(p) = B
- 3. The line $w_1 \cdot p = S_{1k}$ divides the line C(p) = B into 2 part. One is h_1^+ , where could cover w_1 ; Another is h_1^- , where couldn't cover w_1 .
- 4. The line $w_2 \cdot p = S_{2k}$ divides the space h_1^+ into 2 part. One is $h_1^+ \cap h_2^+$, could cover w_1, w_2 ; Another is $h_1^+ \cap h_2^-$, where could only cover w_1 .
- 5. Return line $h_1^+ \cap h_2^+$

Advance solution:

1. Preprocessing I, discard all user that P already covers:

$$W = W - \{w | \forall w \in W, P \cap TopK(w) \neq \emptyset\}$$

- 2. we only consider C(p) = B
- 3. Preprocessing II, discard all w such that $w \cdot p = S_{ik}$ doesn't intersect with C(p) = B $W = W \{w | \forall w \in W, \{p | w \cdot p = S_k\} \cap \{p | C(p) = B\} = \emptyset\}$
- 4. For each w_i in W, based on $w_i \cdot p \leq S_{ik}$ using cell tree divide model space C(p) = B, where S_{ik} is the score to rank top k respecting to w_i
- 5. count each divided region's user cover number
- 6. Return the region that satisfies C(p) = B and with the greatest cover count

Advance solution version-2 example:

Suppose d=2 and $\{p_1,p_2,p_3\} \subset P$

1. Preprocessing I, discard all user that P already covers:

$$W = W - \{w | \forall w \in W, P \cap TopK(w) \neq \emptyset\}$$

- 2. we only consider C(p) = B
- 3. Find the biggest convex hull of point set P (name it as B_CH)
- 4. Preprocessing II, on C(p) = B, discard the part which cover by convex hull (see proof 1)

$$A = \{p | C(p) = B\}$$
$$A = A - B_CH$$

5. Preprocessing III, discard all w such that $w \cdot p = S_{ik}$ doesn't intersect with A

$$W = W - \{w | \forall w \in W, \{p | w \cdot p = S_k\} \cap \{p | A\} = \emptyset\}$$

As shown below, we only need the solid part of C(p) = B

Because $w_1 \cdot p = S_{1k}$ doesn't intersect with A, we discard and don't need to consider w_1

6. Add cover count for each piece of A based on $w \cdot p = S_k$ intersect with C(p) = B but not A

Here all region of A plus 1 count because of w_1

7. The line $w_2 \cdot p = S_{2k}$ divides the line A into 2 part.

One is h_2^+ , could cover w_2 ; Another is h_2^- , where couldn't cover w_2 .

8. Return segmentation h_2^+

Advance solution version-2:

1. Preprocessing I, discard all user that P already covers:

$$W = W - \{w | \forall w \in W, P \cap TopK(w) \neq \emptyset\}$$

- 2. we only consider C(p) = B
- 3. Find the biggest convex hull of point set P (name it as B_CH)
- 4. Preprocessing II, on C(p) = B, discard the part which cover by convex hull (see proof 1)

$$A = \{p | C(p) = B\}$$
$$A = A - B_CH$$

5. Preprocessing III, discard all w such that $w \cdot p = S_{ik}$ doesn't intersect with A

$$W = W - \{w | \forall w \in W, \{p | w \cdot p = S_k\} \cap \{p | A\} = \emptyset\}$$

- 6. Add cover count for each piece of A based on $w \cdot p = S_k$ intersect with C(p) = B but not A
- 7. For each w_i in W, based on $w_i \cdot p \leq S_{ik}$ using cell tree divide model space A, where S_{ik} is the score to rank top k respecting to w_i
- 8. count each divided region's user cover number
- 9. Return the region that with the greatest cover count