МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

АДЫГЕЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Инженерно-физический факультет Кафедра автоматизированных систем обработки информации и управления

ОТЧЕТ ПО ПРАКТИКЕ

Программаная реализация ранга матрицы. Bapuahm 6

1 курс, группа 1ИВТ1-2

Выполнил:	
	_ Н. С. Сергеев
«»	_ 2023 г.
Руководитель:	
	_ С.В. Теплоухов
« »	2023 г.

Майкоп, 2023 г.

1. Введение

1.1. Формулировка цели

Целью данной работы является написание программы для нахождение ранга матрицы.

1.1.1. Теория

Нахождение ранга матрицы способом элементарных преобразований (методом Гаусса). Под элементарными преобразованиями матрицы понимаются следующие операции:

- 1) умножение на число, отличное от нуля;
- 2) прибавление к элементам какой-либо строки или какого-либо столбца;
- 3) перемена местами двух строк или столбцов матрицы;
- 4) удаление "нулевых"строк, то есть таких, все элементы которых равны нулю;
- 5) удаление всех пропорциональных строк, кроме одной.

Для любой матрицы A всегда можно прийти к такой матрице B, вычисление ранга которой не представляет затруднений. Для этого следует добиться, чтобы матрица B была трапециевидной. Тогда ранг полученной матрицы будет равен числу строк в ней кроме строк, полностью состоящих из нулей.

Ступенчатую матрицу называют трапециевидной или трапецеидальной, если для ведущих элементов a1k1, a2k2, ..., arkr выполнены условия k1=1, k2=2,..., kr=r, т.е. ведущими являются диагональные элементы. В общем виде трапециевидную матрицу можно записать так:

$$A_{m imes n} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} & \dots & a_{1n} \ 0 & a_{22} & \dots & a_{2r} & \dots & a_{2n} \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & a_{rr} & \dots & a_{rn} \ 0 & 0 & \dots & 0 & \dots & 0 \ \dots & \dots & \dots & \dots & \dots \ 0 & 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

Рис. 1. Трапециевидная матрица

2. Ход работы

2.1. Код выполненной программы

```
#include <iostream>
#include <vector>
#include <stdlib.h>
#include <Windows.h>
#include <cmath>
using namespace std;
int main()
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
int height, width, sum = 0, step = 0, sort1, sort2, rank;
int i, j, k, p, e;
double tempmath, eps = 0.00001;
cout << "Введите количество строк матрицы: ";
cin >> height;
cout << "Введите количество столбцов матрицы: ";
cin >> width;
if (height <= 0 || width <= 0)
cout << "Ошибка. Неверные параметры матрицы." << endl;
return 0;
rank = height;
vector <vector <double>> matrix;
for (i = 0; i < height; i++)
vector <double> temp;
for (j = 0; j < width; j++)
cout << "Введите элемент матрицы (" << i + 1 << ", " << j + 1 << "): ";
cin >> e;
temp.push_back(e);
}
matrix.push_back(temp);
cout << "\n";
```

```
cout << "Заданная матрица: ";
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
cout << matrix[i][j] << "\t";</pre>
cout << endl;</pre>
if (width > height - 1)
for (k = 0; k < height - 1; k++)
{
j = k;
for (sort1 = k; sort1 < height; sort1++) {</pre>
for (sort2 = k; sort2 < height - 1; sort2++) {</pre>
if (abs(matrix[sort2][j]) < abs(matrix[sort2 + 1][j]))</pre>
for (j = 0; j < width; j++) swap(matrix[sort2][j], matrix[sort2 + 1][j]);
j = k;
}
for (i = k + 1; i < height; i++)
j = k;
tempmath = matrix[i][j] / matrix[i - 1 - step][j];
if (matrix[i][j] == 0)
{
step++;
continue;
}
else
{
for (j = k; j < width; j++)
matrix[i - step - 1][j] = matrix[i - step - 1][j] * tempmath;
matrix[i][j] = matrix[i][j] - matrix[i - step - 1][j];
step++;
}
}
step = 0;
```

```
for (p = 0; p < width; p++)
if (matrix[k + 1][p] == 0) sum++;
if (sum == width)
{
for (p = 0; p < width; p++)
swap(matrix[height - 1][p], matrix[k + 1][p]);
}
}
sum = 0;
}
}
else
{
for (k = 0; k < width; k++)
{
j = k;
for (sort1 = k; sort1 < height; sort1++) {</pre>
for (sort2 = k; sort2 < height - 1; sort2++) {</pre>
if (matrix[sort2][j] < matrix[sort2 + 1][j])</pre>
for (j = 0; j < width; j++) swap(matrix[sort2][j], matrix[sort2 + 1][j]);
}
j = k;
}
for (i = k + 1; i < height; i++)
j = k;
tempmath = matrix[i][j] / matrix[i - 1 - step][j];
if (matrix[i][j] == 0)
{
step++;
continue;
}
else
{
for (j = k; j < width; j++)
matrix[i - step - 1][j] = matrix[i - step - 1][j] * tempmath;
matrix[i][j] = matrix[i][j] - matrix[i - step - 1][j];
step++;
```

```
}
}
step = 0;
for (p = 0; p < width; p++)
if (matrix[k + 1][p] == 0) sum++;
if (sum == width)
{
for (p = 0; p < width; p++)
swap(matrix[height - 1][p], matrix[k + 1][p]);
}
}
sum = 0;
}
}
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
if (abs(matrix[i][j]) < eps) matrix[i][j] = 0;</pre>
}
cout << "\nПриведенная матрица:" << endl;
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
cout << matrix[i][j] << "\t";</pre>
cout << endl;</pre>
for (i = 0; i < height; i++)
for (j = 0; j < width; j++)
if (matrix[i][j] == 0) sum++;
if (sum == width) rank--;
sum = 0;
}
cout << "\nРанг матрицы: " << rank;
```

```
return 0;
}
```

```
🖾 Консоль отладки Microsoft Visual Studio
Введите количество строк матрицы: 3
Введите количество столбцов матрицы: 4
Введите элемент матрицы (1, 1): 5
Введите элемент матрицы (1, 2): 2
Введите элемент матрицы (1, 3): 1
Введите элемент матрицы (1, 4): 0
Введите элемент матрицы (2, 1): 4
Введите элемент матрицы (2, 2): 6
Введите элемент матрицы (2, 3): 4
Введите элемент матрицы (2, 4): 7
Введите элемент матрицы (3, 1): 0
Введите элемент матрицы (3, 2): 3
Введите элемент матрицы (3, 3): 4
Введите элемент матрицы (3, 4): 2
Заданная матрица:
          2
                    1
4
          6
                    4
                               2
0
                     4
Приведенная матрица:
4
          1.6
                     0.8
                               0
0
                     2.18182 4.77273
          0
                    1.81818 -2.77273
Ранг матрицы: 3
```

Рис. 2. Результат работы