Praktikum Rechnerstrukturen 01

Jan Lukas Deichmann / Jan-Tjorve Sobieski 11. Mai 2015

<u>1.2c i</u>

Gesucht: $X_3 \wedge X_2 \wedge X_1 \wedge X_0$ (4AND)

$$(X_3 \wedge X_2) \wedge (X_1 \wedge X_0)$$
 (Assoziativität)
 $\Leftrightarrow X_3 \wedge X_2 \wedge (X_1 \wedge X_0)$ (Assoziativität)
 $\Leftrightarrow X_3 \wedge X_2 \wedge X_1 \wedge X_0$

Gesucht: $X_2 \wedge X_1 \wedge X_0$ (3AND)

$$(X_2 \wedge X_1) \wedge X_0$$
 (Assoziativität) $\Leftrightarrow X_2 \wedge X_1 \wedge X_0$

<u>1.2c ii</u>

Die Tiefe des Ausdrucks verändert sich nicht, da ein normaler Operatorbaum mit einem erweiterten Operatorbaum nicht verglichen werden kann.

$\underline{1.2d}$

Sei
$$\mathbb{B}=\{0,1\}$$
 und $\mathbb{D}\subseteq\mathbb{B}^n$
Sei $\mathbb{B}_{4,1}:=\{$ f; f: $\mathbb{B}^4\to\mathbb{B}^1\}$

$$f(X_3,X_2,X_1,X_0)=(\neg X_2\wedge X_1\wedge X_0)\vee(\neg X_3\wedge X_1\wedge X_0)\vee(\neg X_3\wedge X_2\wedge X_0)\vee(X_2\wedge \neg X_1\wedge X_0)$$

$\underline{1.2e}$

Sei
$$\mathbb{B}=\{0,1\}$$
 und $\mathbb{D}\subseteq\mathbb{B}^n$
Sei $\mathbb{B}_{4,1}:=\{$ f; f: $\mathbb{B}^4\to\mathbb{B}^1\}$

$$f(X_3,X_2,X_1,X_0)=\\ (\neg X_2\wedge X_1\wedge X_0)\vee(\neg X_3\wedge X_1\wedge X_0)\vee(\neg X_3\wedge X_2\wedge X_0)\vee(X_2\wedge \neg X_1\wedge X_0)\\ \vee(\neg X_3\wedge \neg X_2\wedge X_1\wedge \neg X_0)$$

<u>1.3</u>

Beschreibung der Funktion:

Ein Volladdierer, aufgebaut aus zwei Halbaddierern.

<u>1.4a i</u>

X_3	X_2	X_1	X_0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0

<u>1.4a ii</u>

$$(X_3 \wedge X_x) \vee (X_3 \wedge X_1) \vee (X_3 \wedge X_2) \vee (X_1 \wedge X_0) \vee (X_2 \wedge X_0) \vee (X_2 \wedge X_1)$$