ECE 469/ECE 568 - Machine Learning

Southern Illinois University

September 27, 2024

- Regression can be viewed from a probabilistic perspective.
- Our goal is to make predictions for the output variable y given some new value of the input variable x on the basis of a set of training data set consisting of N for a single feature x. The data set for feature x is denoted as $(x_1, \dots, x_N)^T$ and their corresponding output values as $(y_1, \dots, y_N)^T$.
- Recall, our polynomial curve/model is

$$g(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

• Note that we would like to train this model based on our date set such that we compute the optimal values for the weights $\mathbf{w} = [w_0, w_1, \cdots, w_k, \cdots, w_M]^T$.

- We wish to express our uncertainty over the value of the output variable using a probability distribution.
- To this end, we can assume that given the value of x, the corresponding value of y has a Gaussian distribution with a mean equal to the model value $g(x, \mathbf{w})$.

$$y|(x, \mathbf{w}) \sim \mathcal{N}(g(x, \mathbf{w}), \sigma^2)$$

- The variance is also inverse of the precision parameter $\sigma^2 = \beta^{-1}$.
- The above probabilistic approach can be viewed as

$$y = g(x, \mathbf{w}) + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma^2)$

- Recall that for our model: $y = g(\mathbf{x}, \mathbf{w}) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$, the output available is conditionally Gaussian given the input variables \mathbf{x} : That is $y|\mathbf{x} \sim \mathcal{N}(g(\mathbf{x}, \mathbf{w}), \sigma^2)$.
- ullet Then it follows that the conditional mean of the output variable given the input variables ${f x}$ is

$$\mathbb{E}[y|\mathbf{x}] = g(\mathbf{x}, \mathbf{w})$$

• Notice that the optimal prediction, for a new value of \mathbf{x} , is given by the conditional mean of the output variable.

- We can now use the training data $\{x,y\}$ to determine the values of the unknown parameters **w** and σ^2 (or β^{-1}) by the maximum likelihood estimation technique.
- If the data are drawn i.i.d. from the Gaussian distribution, then the likelihood function is given by

$$f(\mathbf{y}|\mathbf{x}, \mathbf{w}, \sigma^2) = \prod_{n=1}^{N} \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_n - g(x_n, \mathbf{w}))^2}{2\sigma^2}\right) \right)$$

• The log-likelihood function is

$$\ln(f(\mathbf{y}|\mathbf{x}, \mathbf{w}, \sigma^2)) = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_n - g(x_n, \mathbf{w}))^2 - \frac{N}{2} \ln(\sigma^2) - \frac{N}{2} \ln(2\pi)$$

- To estimate w, we can maximize the log-likelihood function.
- The log-likelihood function is

$$\mathbf{w}_{\text{MLE}} = \operatorname{argmax}_{\mathbf{w}} \ln(f(\mathbf{y}|\mathbf{x}, \mathbf{w}, \sigma^2))$$

where

$$\ln(f(\mathbf{y}|\mathbf{x}, \mathbf{w}, \sigma^2)) = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_n - g(x_n, \mathbf{w}))^2 - \frac{N}{2} \ln(\sigma^2) - \frac{N}{2} \ln(2\pi)$$

 We have already shown that this maximization is equivalent to minimization of the sum squared error.

$$\mathbf{w}_{\text{MLE}} = \left(\operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{N} (y_n - g(x_n, \mathbf{w}))^2 \right)$$

- Similarly, we can also use maximum likelihood estimation to estimate the variance of the Gaussian conditional distribution.
- Maximizing $\ln(f(\mathbf{y}|\mathbf{x},\mathbf{w},\sigma^2))$ with respect to σ^2 yields

$$\sigma_{\text{MLE}}^2 = \frac{1}{N} \sum_{n=1}^{N} (y_n - g(x_n, \mathbf{w}_{\text{MLE}}))^2$$

- After estimating the parameters **w** and σ^2 , we can now make predictions for new values of x.
- This is because now we have a probabilistic model.
- The predictive distribution that gives the probability distribution over y can be found by substituting the corresponding estimates for σ_{MLE}^2 and \mathbf{w}_{MLE} .

$$y \sim \mathcal{N}(g(x, \mathbf{w}_{\text{MLE}}), \sigma_{\text{MLE}}^2)$$

Bias-variance trade-off

• Recall that quantifying the mean square error (MSE) incorporates both the bias and the variance.

$$MSE = \underbrace{\mathbb{E}[(\hat{x} - \mathbb{E}[\hat{x}])^2]}_{Var[\hat{x}]} + \underbrace{(\mathbb{E}[\hat{x}] - x)^2}_{bias^2(\hat{x})}$$

• We would like our estimators to have small MSE, and the estimators should manage to keep both their bias and variance smaller too.

Bias-variance trade-off

- Generally, relationship between bias and variance is tightly linked to the machine learning concepts of capacity, underfitting and overfitting.
- When the test/generalization error is measured by MSE, increasing capacity leads to increase variance and decrease bias.

