Learning Semantic Relations from Text

Preslav Nakov¹ Diarmuid Ó Séaghdha² Vivi Nastase³ Stan Szpakowicz⁴

Lisboa, Portugal September 18, 2015

Semantic Relations Between Nominals

Vivi Nastase Preslav Nakov Diarmuid Ó Séaghdha Stan Szpakowicz

SYNTHESIS LECTURES ON HUMAN LANGUAGE TECHNOLOGIES

Graeme Hirst, Series Editor

¹ Qatar Computing Research Institute, HBKU

² University of Cambridge

³ Fondazione Bruno Kessler

⁴ University of Ottawa

- Introduction
- Semantic Relations
- Features
- Supervised Methods
- Unsupervised Methods
- 6 Wrap-up

Introduction

- Introduction
- 2 Semantic Relations
- 3 Features
- Supervised Methods
- Unsupervised Methods
- 6 Wrap-up

Motivation

Introduction

OOOOOO

The connection is indispensable to the expression of thought. Without the connection, we would not be able to express any continuous thought, and we could only list a succession of images and ideas isolated from each other and without any link between them. [Tesnière, 1959]

What Is It All About?

0000000

Opportunity and Curiosity find similar rocks on Mars.

What Is It All About?

Introduction 0000000

Semantic relations

Introduction

- matter a lot
- connect up entities in a text
- together with entities make up a good chunk of the meaning of that text
- are not terribly hard to recognize

What Is It All About? (2)

Introduction

Semantic relations between nominals

- matter even more in practice
- are the target for knowledge acquisition
- are key to reaching the meaning of a text
- their recognition is fairly feasible

Historical Overview (1)

Capturing and describing world knowledge

- Artistotle's Organon
 - includes a treatise on Categories
 - objects in the natural world are put into categories called $\tau \grave{\alpha} \lambda \varepsilon \gamma \acute{o} \mu \varepsilon \nu \alpha$ (ta legomena, things which are said)
 - organization based on the class inclusion relation
- then, for 20 centuries:
 - other philosophers
 - some botanists, zoologists
- in the 1970s: realization that a robust Artificial Intelligence (AI) system needs the same kind of knowledge
 - capture and represent knowledge: machine-friendly
 - intersection with language: inevitable

Historical Overview (2)

Indian linguistic tradition

- Pāṇini's Aṣṭādhyāyī
 - rules describing the process of generating a Sanskrit sentence from a semantic representation
 - semantics is conceptualized in terms of kārakas, semantic relations between events and participants, similar to semantic roles
 - covers noun-noun compounds comprehensively from the perspective of word formation, but not semantics
 - later, commentators such as Kātyāyana and Patañjali: compounding is only supported by the presence of a semantic relation between entities

Introduction 0000000

Historical Overview (3)

[de Saussure, 1959]

- Course in General Linguistics: two types of relations which "correspond to two different forms of mental activity, both indispensable to the workings of language"
 - syntagmatic relations
 - hold in context
 - associative (paradigmatic) relations
 - come from accumulated experience
- BUT no explicit list of relations was proposed

Historical Overview (4)

[de Saussure, 1959]

 Syntagmatic relations hold between two or more terms in a sequence in praesentia, in a particular context: "words as used in discourse, strung together one after the other, enter into relations based on the linear character of languages – words must be arranged consecutively in spoken sequence. Combinations based on sequentiality may be called syntagmas."

Historical Overview (5)

[de Saussure, 1959]

• Associative (paradigmatic) relations come from accumulated experience and hold in absentia: "Outside the context of discourse, words having something in common are associated together in the memory. [...] All these words have something or other linking them. This kind of connection is not based on linear sequence. It is a connection in the brain. Such connections are part of that accumulated store which is the form the language takes in an individual's brain."

Historical Overview (6)

Syntagmatic vs. paradigmatic) relations

- Harris [1987]: frequently occurring instances of syntagmatic relations may become part of our memory, thus becoming paradigmatic
- Gardin [1965]: instances of paradigmatic relations are derived from accumulated syntagmatic data
- This reflects current thinking on relation extraction from open texts.

Historical Overview (7)

Predicate logic [Frege, 1879]

- inherently relational formalism
- e.g., the sentence "Google buys YouTube." is represented as

buy(Google, YouTube)

Historical Overview (8)

Neo-Davidsonian logic representation

- additional variables represent the event or relation
- it can thus be explicitly modified and subject to quantification

```
∃e InstanceOfBuying(e) ∧ agent(e, Google) ∧ patient(e, YouTube)
Or perhaps
∃e InstanceOf(e, Buying) ∧ agent(e, Google) ∧ patient(e, YouTube)
```

existential graphs [Peirce, 1909]

Historical Overview (9)

The dual nature of semantic relations

- in logic: predicates
 - used in AI to support knowledge-based agents and inference
- in graphs: arcs connecting concepts
 - used in NLP to represent factual knowledge
 - thus, mostly binary relations
 - in ontologies
 - as the target in IE
 - **.**..

Introduction

Historical Overview (10)

The rise of reasoning systems

- (McCarthy, 1958): logic-based reasoning, no language
- early NLP systems with semantic knowledge
 - (Winograd, 1972): interactive English dialogue system
 - (Charniak, 1972): understanding children's stories
 - conceptual shift from the "shallow" architecture of primitive conversation systems such as ELIZA [Weizenbaum, 1966]
- large-scale hand-crafted ontologies
 - Cyc
 - OpenMind Common Sense
 - MindPixel
 - FreeBase truly large-scale

Historical Overview (11)

At the cross-roads between knowledge and language

- Spärck-Jones [1964]: lexical relations found in a dictionary can be learned automatically from text
- Quillian [1962]: semantic network
 - a graph in which meaning is modelled by labelled associations between words
 - vertices are concepts onto which words in a text are mapped
 - connections relations between such concepts
- WordNet [Fellbaum, 1998]
 - 155,000 words (nouns, verbs, adjectives, adverbs)
 - a dozen semantic relations, e.g., synonymy, antonymy, hypernymy, meronymy

Introduction

(12)

Automating knowledge acquisition

- learning ontological relations
 - **is-a** [Hearst, 1992]
- part-of [Berland & Charniak, 1999]
- bootstrapping [Patwardhan & Riloff, 2007; Ravichandran & Hovy, 2002]
- open relation extraction
 - no pre-specified list/type of relations
 - learn patterns about how relations are expressed, e.g.,
 - POS [Fader et al., 2011]
 - paths in a syntactic tree [Ciaramita et al., 2005]
 - sequences of high-frequency words [Davidov & Rappoport, 2008]
 - hard to map to "canonical" relations

Why Should We Care about Semantic Relations?

Relation learning/extraction can help

- building knowledge repositories
- text analysis
- NLP applications
 - Information Extraction
 - Information Retrieval
 - Text Summarization
 - Machine Translation
 - Question Answering
 - Paraphrasing
 - Recognizing Textual Entailment
 - Thesaurus Construction
 - Semantic Network Construction
 - Word-Sense Disambiguation
 - Language Modelling

Example Application: Information Retrieval

[Cafarella et al., 2006]

- list all X such that X causes cancer
- list all X such that X is part of an automobile engine
- list all X such that X is material for making a submarine's hull
- list all X such that X is a type of transportation
- list all X such that X is produced from cork trees

Example Application: Statistical Machine Translation

[Nakov, 2008]

- if the SMT system knows that
 - oil price hikes is translated to Spanish as alzas en los precios del petróleo
 - Note: this is hard to get word-for-word!
- if we further interpret/paraphrase oil price hikes as
 - hikes in oil prices
 - hikes in the prices of oil
 - ...
- then we can use the same fluent Spanish translation for the paraphrases

Outline

- Semantic Relations

Relations between concepts

... arise from, and capture, knowledge about the world

Relations between nominals

... arise from, and capture, particular events/situations expressed in texts

Relations between concepts

- ... arise from, and capture, knowledge about the world
- ... can be found in texts!

Relations between nominals

- ... arise from, and capture, particular events/situations expressed in texts
- ...can be found using information from knowledge bases

[Casagrande & Hale, 1967]

Asked speakers of an exotic language to give definitions for a given list of words, then extracted 13 relations from these definitions.

Relation	Example
attributive	toad - small
function	ear - hearing
operational	shirt - wear
exemplification	circular - wheel
synonymy	thousand - ten hundred
provenience	milk - cow
circularity	X is defined as X
contingency	lightning - rain
spatial	tongue - mouth
comparison	wolf - coyote
class inclusion	bee - insect
antonymy	low - high
grading	Monday - Sunday

[Chaffin & Hermann, 1984]

Asked humans to group instances of 31 semantic relations. Found five coarser classes.

Relation	Example
constrasts	night - day
similars	car - auto
class inclusion	vehicle - car
part-whole	airplane - wing
case relations – agent, instrument	

Noun compounds (NCs)

- Definition: sequences of two or more nouns that function as a single noun, e.g.,
 - silkworm
 - olive oil
 - healthcare reform
 - plastic water bottle
 - colon cancer tumor suppressor protein

Properties of noun compounds

- Encode implicit relations: hard to interpret
 - taxi driver is 'a driver who drives a taxi'
 - embassy driver is 'a driver who is employed by/drives for an embassy'
 - embassy building is 'a building which houses, or belongs to, an embassy'
- Abundant: cannot be ignored
 - cover 4% of the tokens in the Reuters corpus
- Highly productive: cannot be listed in a dictionary
 - 60% of the NCs in BNC occur just once

Semantic Relations in Noun Compounds (3)

Noun compounds as a microcosm: representation issues reflect those for general semantic relations

voluminous literature on their semantics

www.cl.cam.ac.uk/~do242/Resources/compound bibliography.html

- two complementary perspectives
 - linguistic: find the most comprehensive explanatory representation
 - NLP: select the most useful representation for a particular application
 - computationally tractable
 - giving informative output to downstream systems

Do the relations in noun compounds come from a small closed inventory?

In other words, is there a (reasonably) small set of relations which could cover completely what occurs in texts in the vicinity of (simple) noun phrases?

- affirmative: most linguists
 - early descriptive work [Grimm, 1826; Jespersen, 1942; Noreen, 1904]
 - generative linguistics [Levi, 1978; Li, 1971; Warren, 1978]
- negative: some linguists e.g., [Downing, 1977]

Relations arising from a comprehensive study of the Brown corpus:

- a four-level hierarchy of relations
- six major semantic relations

Relation	Example
Possession	family estate
Location	water polo
Purpose	water bucket
Activity-Actor	crime syndicate
Resemblance	cherry bomb
Constitute	clay bird

[Warren, 1978] (2)

A four-level hierarchy of relations

- L1: Constitute
 - L2: Source-Result
 - L2: Result-Source
 - L2: Copula
 - L3: Adjective-Like_Modifier
 - L3: Subsumptive
 - L3: Attributive
 - L4: Animate_Head (e.g., girl friend)
 - L4: Inanimate_Head (e.g., house boat)

Relations (Recoverable Deletable Predicates) which underlie all compositional non-nominalized compounds in English

RDP	Example	Role	Traditional name
CAUSE ₁	tear gas	object	causative
CAUSE ₂	drug deaths	subject	causative
HAVE ₁	apple cake	object	possessive/dative
HAVE ₂	lemon peel	subject	possessive/dative
MAKE ₁	silkworm	object	productive/composit.
MAKE ₂	snowball	subject	productive/composit.
USE	steam iron	object	instrumental
BE	soldier ant	object	essive/appositional
IN	field mouse	object	locative
FOR	horse doctor	object	purposive/benefactive
FROM	olive oil	object	source/ablative
ABOUT	price war	object	topic

Nominalizations

	Subjective	Objective	Multi-modifier
Act	parental refusal	dream analysis	city land acquisition
Product	clerical errors	musical critique	student course ratings
Agent	_	city planner	_
Patient	student inventions	_	_

Problem: spurious ambiguity

- horse doctor is for (RDP)
- horse healer is agent (nominalization)

Relation	Question	Example
Subject	Who/what?	press report
Object	Whom/what?	accident report
Locative	Where?	field mouse
Time	When?	night attack
Possessive	Whose?	family estate
Whole-Part	What is it part of?	duck foot
Part-Whole	What are its parts?	daisy chain
Equative	What kind of?	flounder fish
Instrument	How?	paraffin cooker
Purpose	What for?	bird sanctuary
Material	Made of what?	alligator shoe
Causes	What does it cause?	disease germ
Caused-by	What causes it?	drug death

Desiderata for Building a Relation Inventory

- the inventory should have good coverage
- 2 relations should be disjoint, and should each describe a coherent concept
- the class distribution should not be overly skewed or sparse
- 4 the concepts underlying the relations should generalize to other linguistic phenomena
- the guidelines should make the annotation process as simple as possible
- the categories should provide useful semantic information

[adapted from (Ó Séaghdha, 2007)]

- **BE** (identity, substance-form, similarity)
- HAVE (possession, condition-experiencer, property-object, part-whole, group-member)
- IN (spatially located object, spatially located event, temporarily located object, temporarily located event)
- ACTOR (participant-event, participant-participant)
- INST (participant-event, participant-participant)
- ABOUT (topic-object, topic-collection, focus-mental activity, commodity-charge)

e.g., tax law is topic-object, crime investigation is focus-mental activity, and they both are also ABOUT.

[Barker & Szpakowicz, 1998]

An inventory of 20 semantic relations.

Relation	Example	Relation	Example
Agent	student protest	Possessor	company car
Beneficiary	student price	Product	automobile factory
Cause	exam anxiety	Property	blue car
Container	printer tray	Purpose	concert hall
Content	paper tray	Result	cold virus
Destination	game bus	Source	north wind
Equative	player coach	Time	morning class
Instrument	laser printer	Topic	safety standard
Located	home town		
Location	lab printer		
Material	water vapor		
Object	horse doctor		

A two-level hierarchy of 31 semantic relations

Causal (4 relations)

cause: flu virus,

effect: exam anxiety, ...

Participant (12 relations)

Agent: student protest, **Instrument**: laser printer, ...

Quality (8 relations)

Manner: stylish writing, *Measure*: expensive book, ...

Spatial (4 relations)

Direction: outgoing mail, **Location**: home town, ...

Temporal (3 relations)

Frequency: daily experience, **Time at**: morning exercise, ...

[Girju, 2005]

A list of 21 noun compound semantic relations: a subset of the 35 general semantic relations of Moldovan & al. (2004).

Relation	Example	Relation	Example
Possession	family estate	Manner	style performance
Attribute-Holder	quality sound	Means	bus service
Agent	crew investigation	Experiencer	disease victim
Temporal	night flight	Recipient	worker fatalities
Depiction-Depicted	image team	Measure	session day
Part-Whole	girl mouth	Theme	car salesman
Is-a	Dallas city	Result	combustion gas
Cause	malaria mosquito		
Make/Produce	shoe factory		
Instrument	pump drainage		
Location/Space	Texas university		
Purpose	migraine drug		
Source	olive oil		
Topic	art museum		

- Tratz and Hovy [2010]
 - new inventory
 - 43 relations in 10 categories
 - developed through an iterative crowd-sourcing
 - maximize agreement between annotators
- Analysis: all previous inventories have commonalities
 - e.g., have categories for locative, possessive, purpose, etc.
 - cover essentially the same semantic space
 - BUT differ in the exact way of partitioning that space

[Rosario, 2001]: Biomedical Relations (1)

18 biomedical noun compound relations (initially 38).

Relation	Example
Subtype	headaches migraine
Activity/Physical_process	virus reproduction
Produce_genetically	polyomavirus genome
Cause	heat shock
Characteristic	drug toxicity
Defect	hormone deficiency
Person_Afflicted	AIDS patient
Attribute_of_Clinical_Study	headache parameter
Procedure	genotype diagnosis
Frequency/time_of	influenza season
Measure_of	relief rate
Instrument	laser irradiation
•••	•••

[Rosario, 2001]: Biomedical Relations (2)

18 biomedical noun compound relations (initially 38).

Relation	Example
Object	bowel transplantation
Purpose	headache drugs
Topic	headache questionnaire
Location	brain artery
Material	aloe gel
Defect_in_location	lung abscess

The Opposite View: No Small Set of Semantic Relations

Much opposition to the previous work

- (Zimmer, 1971): so much variety of relations that it is simpler to categorize the semantic relations that CANNOT be encoded in compounds
- (Downing, 1977)
 - plate length ("what your hair is when it drags in your food")
 - "The existence of numerous novel compounds like these guarantees the futility of any attempt to enumerate an absolute and finite class of compounding relationships."

Lexical items instead of abstract relations

The hidden relation in a noun compound can be made explicit in a paraphrase.

- e.g., weather report
 - abstract
 - topic
 - lexical
 - report about the weather
 - report forecasting the weather

Using prepositions: the idea

- (Lauer, 1995) used just eight prepositions
 - of, for, in, at, on, from, with, about
 - olive oil is "oil from olives"
 - night flight is "flight at night"
 - odor spray is "spray for odors"
 - easy to extract from text or the Web [Lapata & Keller, 2004]

Using prepositions: the issues

- prepositions are polysemous, e.g., different of
 - school of music
 - theory of computation
 - bell of (the) church
- unnecessary distinctions, e.g., in vs. on vs. at
 - prayer in (the) morning
 - prayer at night
 - prayer on (a) feast day
- some compounds cannot be paraphrased with prepositions
 - woman driver
- strange paraphrases
 - honey bee is it "bee for honey"?

Noun Compounds: Using Lexical Paraphrases (4)

Using paraphrasing verbs

- (Nakov, 2008): a relation is represented as a distribution over verbs and prepositions which occur in texts
 - e.g., olive oil is "oil that is extracted from olives" or "oil that is squeezed from olives"
 - rich representation, close to what Downing [1977] demanded
 - allows comparisons, e.g., olive oil vs. sea salt
 - similar: both match the paraphrase "N1 is extracted from N2"
 - different: salt is not squeezed from the sea

Abstract Relations vs. Prepositions vs. Verbs

- Abstract relations [Nastase & Szpakowicz, 2003; Kim & Baldwin, 2005; Girju, 2007; Ó Séaghdha & Copestake, 2007]
 - malaria mosquito: Cause
 - olive oil: Source
- Prepositions [Lauer, 1995]
 - malaria mosquito: with
 - olive oil: from
- Verbs [Finin, 1980; Vanderwende, 1994; Kim & Baldwin 2006; Butnariu & Veale 2008; Nakov & Hearst 2008]
 - malaria mosquito: carries, spreads, causes, transmits, brings, has
 - olive oil: comes from, is made from, is derived from

Noun Compounds: Using Lexical Paraphrases (6)

Note 1 on paraphrasing verbs

- Can paraphrase a noun compound
 - chocolate bar: be made of, contain, be composed of, taste like
- Can also express an abstract relation
 - MAKE₂: be made of, be composed of, consist of, be manufactured from
- ... but can also be NC-specific
 - orange juice: be squeezed from
 - bacon pizza: be topped with
 - chocolate bar: taste like

Note 2 on paraphrasing verbs

- Single verb
 - malaria mosquito: cause
 - olive oil: be extracted from
- Multiple verbs
 - malaria mosquito: cause, carry, spread, transmit, bring, ...
 - olive oil: be extracted from, come from, be made from, ...
- Distribution over verbs (SemEval-2010 Task 9)
 - malaria mosquito: carry (23), spread (16), cause (12), transmit (9), bring (7), be infected with (3), infect with (3), give (2), ...
 - olive oil: come from (33), be made from (27), be derived from (10), be made of (7), be pressed from (6), be extracted from (5), ...

Free paraphrases at SemEval-2013 Task 4 [Hendrickx & al., 2013]

- e.g., for onion tears
 - tears from onions
 - tears due to cutting onion
 - tears induced when cutting onions
 - tears that onions induce
 - tears that come from chopping onions
 - tears that sometimes flow when onions are chopped
 - tears that raw onions give you
 - ...

The easy ones:

- is-a
- part-of

The backbone of any ontology.

Relations between Concepts: Semantic Relations in Ontologies

The easy ones?

- is-a
 - CHOCOLATE is-a FOOD class inclusion
 - TOBLERONE is-a CHOCOLATE class membership

and also [Wierzbicka, 1984]

- CHICKEN is-a BIRD taxonomic (is-a-kind-of)
- ADORNMENT is-a DECORATION functional (is-used-as-a-kind-of)
- ...
- part-of

Relations between Concepts: Semantic Relations in Ontologies

The easy ones?

- is-a
- part-of [Winston & al., 1987]

Relation	Example
component-integral object	pedal - bike
member-collection	ship - fleet
portion-mass	slice - pie
stuff-object	steel - car
feature-activity	paying - shopping
place-area	Everglades - Florida

The easy ones?

- is-a
- part-of [Winston & al., 1987]
 - motivation: lack of transitivity
 - Simpson's arm is part of Simpson('s body).
 - Simpson is part of the Philosophy Department.
 - *Simpson's arm is part of the Philosophy Department.
 - component-object is incompatible with member-collection

Relation	Example
Synonym	day (Sense 2) / time
Antonym	day (Sense 4) / night
Hypernym	berry (Sense 2) / fruit
Hyponym	fruit (Sense 1) / berry
Member-of holonym	Germany / NATO
Has-member meronym	Germany / Sorbian
Part-of holonym	Germany / Europe
Has-part meronym	Germany / Mannheim
Substance-of holonym	wood (Sense 1) / lumber
Has-substance meronym	lumber (Sense 1) / wood
Domain - TOPIC	line (Sense 7) / military
Domain - USAGE	line (Sense 21) / channel
Domain member - TOPIC	ship / porthole
Attribute	speed (Sense 2) / fast
Derived form	speed (Sense 2) / quick
Derived form	speed (Sense 2) / accelerate

- No consensus on a comprehensive list of relations fit for all purposes and all domains.
- Some shared properties of relations, and of relation schemata.

Properties of Relations (1)

Useful distinctions

- Ontological vs. Idiosyncratic
- Binary vs. n-ary
- Targeted vs. Emergent
- First-order vs. Higher-order
- General vs. Domain-specific

Properties of Relations (2)

Ontological vs. Idiosyncratic

- Ontological
 - come up practically the same in numerous contexts
 - e.g., is-a(apple, fruit)
 - can be extracted with both supervised and unsupervised methods
- Idiosyncratic
 - highly sensitive to the context
 - e.g., Content-Container(apple, basket)
 - best extracted with supervised methods

Note: Parallel to paradigmatic vs. syntagmatic relations in the Course in General Linguistics [de Saussure, 1959].

Binary vs. n-ary

- Binary
 - most relations
 - our focus here
- n-ary
 - good for verbs that can take multiple arguments, e.g., sell
 - can be represented as *frames*
 - e.g., a selling event can invoke a frame covering relations between a buyer, a seller, an object bought and price paid

Properties of Relations (4)

Targeted vs. Emergent

- Targeted
 - coming from a fixed inventory
 - e.g., {Cause, Source, Target, Time, Location}
- Emergent
 - not fixed in advance
 - can be extracted using patterns over parts-of-speech
 - e.g., (V | V (N | Adj | Adv | Pron | Det)* PP)
 can extract invented. is located in or made a deal with
 - could also use clustering to group similar relations
 - but then naming the clusters is hard

First-order vs. Higher-order

- First-order
 - e.g., is-a(apple, fruit)
 - most relations
- Higher-order
 - e.g., believes(John, is-a(apple, fruit))
 - can be expressed as conceptual graphs [Sowa, 1984]
 - important in semantic parsing [Liang & al., 2011; Lu & al., 2008]
 - also in biomedical event extraction [Kim & al., 2009]
 - e.g., "In this study we hypothesized that the phosphorylation of TRAF2 inhibits binding to the CD40 cytoplasmic domain."
 - E1: phosphorylation(Theme:TRAF2),
 - E2: binding(Theme1:TRAF2, Theme2:CD40, Site:cytoplasmic domain),
 - E3: negative regulation(Theme:E2, Cause:E1).

General vs. Domain-specific

- General
 - likely to be useful in processing all kinds of text or in representing knowledge in any domain
 - e.g., location, possession, causation, is-a, or part-of
- Domain-specific
 - only relevant to a specific text genre or to a narrow domain
 - e.g., inhibits, activates, phosphorylates for gene/protein events

Properties of Relation Schemata (1)

Useful distinctions

- Coarse-grained vs. Fine-grained
- Flat vs. Hierarchical
- Closed vs. Open

Coarse-grained vs. Fine-grained

- Coarse-grained
 - e.g., 5 relations
- Fine-grained
 - e.g., 30 relations
- Infinite, in the extreme
 - every interaction between entities is a distinct relation with unique properties
 - not very practical as there is no generalization
 - however, a distribution over paraphrases is useful

Flat vs. Hierarchical

- Flat
 - most inventories
- Hierarchical
 - e.g., Nastase & Szpakowicz's [2003] schema has 5 top-level and 30 second-level relations
 - e.g., Warren's [1978] schema has four levels:
 e.g., Possessor-Legal Belonging is a subrelation of
 Possessor-Belonging, which is a subrelation of Whole-Part under the top-level relation Possession

Properties of Relation Schemata (4)

Closed vs. Open

- Closed
 - most inventories
- Open
 - used for Web

Reflects the distinction between targeted and emergent relations.

Our focus

- relations between entities mentioned in the same sentence
- expressed linguistically as nominals
- Terminology
 - Relation type
 - *e.g.*, hyponymy, meronymy, *container*, *product*, *location*
 - Relation instance
 - e.g., "chocolate contains caffeine"

The standard definition

 a phrase that behaves syntactically like a noun or a noun phrase [Quirk & al., 1985]

Our narrower definition

- a common noun (chocolate, food)
- a proper noun (Godiva, Belgium)
- a multi-word proper name (United Nations)
- a deverbal noun (cultivation, roasting)
- a deadjectival noun ([the] rich)
- a base noun phrase built of a head noun with optional premodifiers (processed food, delicious milk chocolate)
- (recursively) a sequence of nominals (cacao tree, cacao tree growing conditions)

Some Clues for Extracting Semantic Relations (1)

Explicit clue

- A phrase linking the entity mentions in a sentence
 - e.g., "Chocolate is a raw or processed food produced from the seed of the tropical Theobroma cacao tree."
 - issue 1: ambiguity
 - in may indicate a temporal relation (chocolate *in* the 20th century)
 - but also a spatial relation (chocolate in Belgium)
 - issue 2: over-specification
 - the relation between chocolate and cultures in "Chocolate was prized as a health food and a divine gift by the Mayan and Aztec cultures."

Some Clues for Extracting Semantic Relations (2)

Implicit clue

- The relation can be implicit
 - e.g., in noun compounds
 - clues come from knowledge about the entities
 - e.g., cacao tree: CACAO are SEEDS produced by a TREE

Some Clues for Extracting Semantic Relations (3)

Implicit clue

When an entity is an occurrence (event, activity, state) expressed by a deverbal noun such as cultivation

- The relation mirrors that between the underlying verb and its arguments
 - e.g., in "the ancient Mayans cultivated chocolate", chocolate is the theme
 - thus, a theme relation in chocolate cultivation
- We do not treat nominalizations separately: typically, they can be also analyzed as normal nominals
 - but they are treated differently
 - in some linguistic theories [Levi, 1978]
 - in some computational linguistics work [Lapata, 2002]

- Entities are given
 - no entity identification
 - no entity disambiguation
- Entities in the same sentence, no coreference, no ellipsis

Angela Merkel's spokesman has insisted that the German chancellor's first meeting with François Hollande, France's president-elect, will be a "getting to know you" exercise, and not "decision making" [meeting].

- Not of direct interest: existing ontologies, knowledge bases and other repositories
 - though useful as seed examples or training data

Outline

- 3 Features

Learning Relations

Methods of Learning Semantic Relations

- Supervised
 - PROs: perform better
 - CONs: require labeled data and feature representation
- Unsupervised
 - PROs: scalable, suitable for open information extraction
 - CONs: perform less well

- Purpose: map a pair of terms to a vector
- Entity features and relational features [Turney, 2006]

Features

Entity features

... capture some representation of the meaning of an entity – the arguments of a relation

Relational features

... directly characterize the relation – the interaction between its arguments

Basic entity features

- The string value of the argument (possibly lemmatized or stemmed)
- Examples:
 - string value
 - individual words/stems/lemmata

PROs: often informative enough for good relation assignment

CONs: too sparse

- Syntactic information (e.g., grammatical role) or semantic information (e.g., semantic class)
- Can use task-specific inventories, e.g.,
 - ACE entity types
 - WordNet features

PROs: solve the data sparseness problem

CONs: manual resources required

- clusters as semantic class information
 - Brown clusters [Brown et al., 1992]
 - Clustering By Committee [Pantel & Lin, 2002]
 - Latent Dirichlet Allocation [Blei et al., 2003]

- Direct representation of co-occurrences in feature space
 - coordination (and/or) [Ó Séaghdha & Copestake, 2008],
 e.g., dog and cat
 - distributional representation
 - relational-semantic representation

Distributional representation

Word	Syntactic relation	Co-occurring words
paper-n	coordination	pen-n:69, pencil-n:51, paper-n:32, glass-n:22, ink-
		n:20,
	subject_of	say-v:86, make-v:39, propose-v:39, describe-v:31, set-
		v:30,
	object_of	publish-v:147, read-v:129, use-v:78, write-v:62, take-
		43,
	modified_by_adj	white-j:923; local-j:159, green-j:63, brown-j:56, non-
		stick-j:71
	modified_by_n	consultation-n:117, government-n:94, discussion-
		n:84, tissue-n:71, blotting-n:59,
	modifies_n	bag-n:150, money-n:44, cup-n:37, mill-n:36, work-n:34,
	pp_with	number-n:6, address-n:3, title-n:2, note-n:2, word-n:2,
	pp_on	reform-n:13, future-n:13, policy-n:10, environment-
		n:9, subject-n:8,
	•••	

Entity Features (6)

- Distributional representation for the noun paper
 - what a paper can do: propose, say
 - what one can do with a paper: read, publish
 - typical adjectival modifiers: white, recycled
 - noun modifiers: toilet, consultation
 - nouns connected via prepositions: on environment, for meeting, with a title
- PROs: captures word meaning by aggregating all interactions (found in a large collection of texts)
- CONs: lumps together different senses
 - ink refers to the medium for writing
 - propose refers to writing/publication/document

 Relational-semantic representation: it uses related concepts from a semantic network or a formal ontology

PROs: based on word senses, not on words CONs: word-sense disambiguation required

- Determining the semantic class of relation arguments
 - Clustering
 - The descent of hierarchy
 - Iterative semantic specialization
 - Semantic scattering

Entity Features (9)

- The descent of hierarchy [Rosario & Hearst, 2002]: the same relation is assumed for all compounds from the same hierarchies
 - e.g., the first noun denotes a Body Region, the second noun denotes a *Cardiovascular System*: limb vein, scalp arteries, finger capillary, forearm microcirculation
 - generalization at levels 1-3 in the MeSH hierarchy
 - generalization done manually
 - 90% accuracy

Entity Features (10)

- Iterative Semantic Specialization [Girju & al., 2003]
 - fully automated
 - applied to Part-Whole
 - given positive and negative examples
 - generalize up in WordNet from each example
 - 2 specialize so that there are no ambiguities
 - produce rules
- Semantic Scattering [Moldovan & al., 2004]
 - learns a boundary (a cut)

Relational Features (1)

Relational features

characterize the relation directly
 (as opposed to characterizing each argument in isolation)

Relational Features (2)

Basic relational features

- model the context
 - words between the two arguments
 - words from a fixed window on either side of the arguments
 - a dependency path linking the arguments
 - an entire dependency graph
 - the smallest dominant subtree

Relational Features (3)

Basic relational features: examples

Bag of words {2006, bought, Google, in, YouTube}

Word sequence (Google, bought, YouTube, in, 2006)

Google

Dependency path Google $\stackrel{nsubj}{\longleftarrow}$ bought $\stackrel{dobj}{\longrightarrow}$ YouTube

Dependency graph

bought YouTube in

Constituent tree

2006

Relational Features (4)

Background relational features

- encode knowledge about how entities typically interact in texts beyond the immediate context, e.g.,
 - paraphrases which characterize a relation
 - patterns with place-holders
 - clustering to find similar contexts

Background relational features

- characterizing noun compounds using paraphrases
 - Nakov & Hearst [2007] extract from the Web verbs, prepositions and coordinators connecting the arguments
 - "X that * Y"
 - "Y that * X"
 - "X * Y"
 - "Y * X"
 - Butnariu & Veale [2008] use the Google Web 1T n-grams

Relational Features (6)

Background relational features

• [Nakov & Hearst, 2007]: example for committee member

Freq.	Pattern	POS	Direction
2205	of	P	$2 \rightarrow 1$
1923	be	V	$1 \rightarrow 2$
771	include	V	$1 \rightarrow 2$
382	serve on	V	$2 \rightarrow 1$
189	chair	V	$2 \rightarrow 1$
189	have	V	$1 \rightarrow 2$
169	consist of	V	$1 \rightarrow 2$
148	comprise	V	$1 \rightarrow 2$
106	sit on	V	$2 \rightarrow 1$
81	be chaired by	V	$1 \rightarrow 2$
78	appoint	V	$1 \rightarrow 2$
77	on	P	$2 \rightarrow 1$
66	and	C	$1 \rightarrow 2$
66	be elected	V	$1 \rightarrow 2$
58	replace	V	$1 \rightarrow 2$
48	lead	V	$2 \rightarrow 1$
47	be intended for	V	$1 \rightarrow 2$
45	join	V	$2 \rightarrow 1$

Relational Features (7)

Background relational features

- using features with placeholders: Turney [2006] mines from the Web patterns like
 - "Y * causes X" for Cause (e.g., cold virus)
 - "Y in * early X" for **Temporal** (e.g., morning frost).

Relational Features (8)

Background relational features

- can be distributional
 - Turney & Littman [2005] characterize the relation between two words as a vector with coordinates corresponding to the Web frequencies of 128 fixed phrases like "X for Y" and "Y for X" (for is one of a fixed set of 64 joining terms: such as, not the, is *, etc. etc.)
 - can be used directly, or
 - in singular value decomposition [Turney, 2006]

Outline

- Supervised Methods

Supervised relation extraction: setup

- Task: given a piece of text, find instances of semantic relations
- Subtasks
 - argument identification (often ignored)
 - relation classification (core subtask)
- Needed
 - an inventory of possible semantic relations
 - annotated positive/negative examples: for training, tuning and evaluation

Data

Annotated data for learning semantic relations

- small-scale / large-scale
- general-purpose / domain-specific
- arguments marked / not marked
- additional information about the arguments (e.g., senses) / no additional information

Data: MUC and ACE

Relation Type Subtypes **Physical** Located

Near

Part-Whole Geographical Subsidiary

Personal-Social Business

Family

Lasting-Personal

Organization- Employment Affiliation Ownership

Founder ^{*} Student-Alum

Student-Alum Sports-Affiliation Investor-Shareholder

Membership

Agent-Artifact User-Owner-Inventor-Manufacturer General Affiliation Citizen-Resident-Religion-Ethnicity

Organization-Location-Origin

Data: MUC and ACE

Relation Type Subtypes Physical

Located Near

Part-Whole Geographical Subsidiary Personal-Social **Business**

Family Lasting-Personal

Organization-**Employment Affiliation** Ownership Founder

> Student-Alum Sports-Affiliation Investor-Shareholder

Membership User-Owner-Inventor-Manufacturer Agent-Artifact General Affiliation Citizen-Resident-Religion-Ethnicity Organization-Location-Origin

<PER>He</PER> had previously worked at <ORG>NBC

Entertainment</ORG>.

Near(Person, Facility): <PER>Muslim youths</PER> recently staged a half dozen

Employment(Person, Organization):

rallies in front of <FAC>the embassy</FAC>.

The arguments of relations are tagged for type!

Citizen-Resident-Religion-Ethnicity(Person, Geo-political entity):

Some < GPE>Missouri < / GPE> < PER>voters < / PER>...

Learning Semantic Relations from Text

Data: SemEval

- a small number of relations
- annotated entities
- additional entity information (WordNet senses)
- sentential context + mining patterns

SemEval-2007 Task 4 (1)

Semantic relations between nominals: inventory

Relation	Training		Test	
	positive	size	positive	size
Cause-Effect laugh [Cause] wrinkles [Effect]	52.1%	140	51.3%	80
Instrument-Agency laser [Instrument] printer [Agency]	50.7%	140	48.7%	78
Product-Producer honey [Product] bee [Producer]	60.7%	140	66.7%	93
Origin-Entity message [Entity] from outer-space [Origin]	38.6%	140	44.4%	81
Theme-Tool news [Theme] conference [Tool]	41.4%	140	40.8%	71
Part-Whole the door [Part] of the car [Whole]	46.4%	140	36.1%	72
Content-Container the apples [Content] in the basket [Container]	46.4%	140	51.4%	74
Average	48.0%	140	48.5%	78

SemEval-2007 Task 4 (2)

Semantic relations between nominals: examples

"Among the contents of the <e1>vessel</e1> were a set of carpenter's <e2>tools</e2>, several large storage jars, ceramic utensils, ropes and remnants of food, as well as a heavy load of ballast stones."

```
WordNet(e1) = "vessel%1:06:00::",

WordNet(e2) = "tool%1:06:00::",

Content-Container(e2, e1) = "true",

Query = "contents of the * were a"
```

"<e1>Batteries</e1> stored in <e2>contact</e2> with one another can generate heat and hydrogen gas."

```
WordNet(e1) = "battery%1:06:00::",
WordNet(e2) = "contact%1:26:00::",
Content-Container(e1, e2) = "false,"
Query = "batteries stored in"
```

SemEval-2010 Task 8 (1)

Multi-way semantic relations between nominals: inventory

Relation	Training		Test	
	positive	size	positive	size
Cause-Effect radiation [Cause] cancer [Effect]	12.5%	1003	12.1%	328
Instrument-Agency phone [Instrument] operator[Agency]	6.3%	504	5.7%	156
Product-Producer suits [Product] factory [Producer]	9.0%	717	8.5%	231
Content-Container wine [Content] is in the bottle [Container]	6.8%	540	7.1%	192
Entity-Origin letters [Entity] from the city [Origin]	9.0%	716	9.5 %	258
Entity-Destination boy [Entity] went to bed [Destination]	10.6%	845	10.8%	292
Component-Whole kitchen [Component] apartment [Whole]	11.8%	941	11.5 %	312
Member-Collection tree [Member] forest [Collection]	8.6%	690	8.6%	233
Message-Topic lecture [Message] on semantics [Topic]	7.9%	634	9.6 %	261
Other people filled with joy	17.6%	1410	16.7%	454
Total		8000		2717

SemEval-2010 Task 8 (2)

Multi-way semantic relations between nominals: examples

The <e1>collision</e1> resulted in two more <e2>crashes</e2> in the intersection, including a Central Concrete truck that was about to turn left onto College Ave.

Relation = Cause-Effect(e1, e2)

Entity-Origin(e_1 , e_2)

He removed the <e1>apples</e1> from the <e2>basket</e2> and put them on the table.

Content-Container(e_1, e_2)

When I entered the room, the <e1>apples</e1> were put in the <e2>basket</e>.

Entity-Destination(e_1 , e_2)

Then, the <e1>apples</e1> were put in the <e2>basket</e2> once again.

Pretty much any machine learning algorithm can work, but some are better for relation learning.

Classification with kernels is appropriate because relational features (in particular) may have complex structures.

Sequential labelling methods are appropriate because the arguments of a relation have variable span.

Classification with kernels: overview

- idea: the similarity of two instances can be computed in a high-dimensional feature space without the need to enumerate the dimensions of that space (e.g., using dynamic programming)
- convolution kernels: easy to combine features, e.g., entity and relational
- kernelizable classifiers: SVM, logistic regression, kNN, Naïve Bayes

Algorithms for Relation Learning (3)

Kernels for linguistic structures

- string sequencies [Cancedda & al., 2003]
- dependency paths [Bunescu & Mooney, 2005]
- shallow parse trees [Zelenko & al., 2003]
- constituent parse trees [Collins & Duffy, 2001]
- dependency parse trees [Moschitti, 2006]
- directed acyclic graphs [Suzuki & al., 2003]

Algorithms for Relation Learning (4)

Sequential labelling methods

- HMMs / MEMMs / CRFs [Bikel & al., 1999; Lafferty & al., 2001; McCallum & Li, 2003]
- useful for
 - argument identification
 - e.g., born-in holds between Person and Location
 - relation extraction
 - argument order matters for some relations

Algorithms for Relation Learning (5)

Sequential labelling: argument identification

- words: individual words, previous/following two words, word substrings (prefixes, suffixes of various lengths), capitalization, digit patterns, manual lexicons (e.g., of days, months, honorifics, stopwords, lists of known countries, cities, companies, and so on)
- *labels*: individual labels, previous/following two labels
- combinations of words and labels

```
W. Bush , son of the Republican president George H.
B-PER I-PER I-PER O O O
                                        B-PER I-PER I-PER
 Bush , was born in New Haven , Connecticut ,
I-PER O O O B-LOC I-LOC I-LOC
```

Algorithms for Relation Learning (6)

Sequential labelling: relation extraction

- when one argument is known: the task becomes argument identification
 - e.g., this GeneRIF is about COX-2
 - COX-2 expression is significantly more common in endometrial adenocarcinoma and ovarian serous cystadenocarcinoma, but not in cervical squamous carcinoma, compared with normal tissue.
- some relations come in order
 - e.g., Party, Job and Father below

```
George W. Bush , son of the Republican president George H. W.
B-Target I-Target O O O O B-Party B-Job B-Father I-Father I-Father

Bush , was born in New Haven , Connecticut .

I-Father O O O B-BirthPlace I-BirthPlace I-BirthPlace O
```

Algorithms for Relation Learning (7)

Sequential labelling: relation extraction

- HMMs, CRFs [Culotta & al., 2006; Bundschus & al., 2008]
- Dynamic graphical model [Rosario & Hearst, 2004]

Beyond Binary Relations (1)

Non-binary relations

- Some relations are not binary
 - Purchase (Purchaser, Purchased_Entity, Price, Seller)
- Previous methods generally apply
- but there are some issues
 - Features: not easy to use the words between entity mentions, or the dependency path between mentions, or the least common subtree
 - Partial mentions
 - Sparks Ltd. bought 500 tons of steel from Steel Ltd.
 - Steel Ltd. bought 200 tons of coal.

Beyond Binary Relations (2)

Non-binary relations

- Coping with partial mentions
 - treat partial mentions as negatives
 - ignore partial mentions
 - train a separate model for each combination of arguments
 - McDonald & al. (2005)
 - predict whether two entities are related to each other
 - use strong argument typing and graph-based global optimization to compose n-ary predictions
 - many solutions for Semantic Role Labeling [Palmer et al., 2010]

Supervised Methods: Practical Considerations (1)

Some very general advice

- Favour high-performing algorithms such as SVM, logistic regression or CRF (CRF only if it makes sense as a sequence-labelling problem)
- entity and relational features are almost always useful
- the value of background features varies across tasks
 - e.g., for noun compounds, background knowledge is key, while context is not very useful

Supervised Methods: Practical Considerations (2)

Performance depends on a number of factors

- the number and nature of the relations used
- the distribution of those relations in data
- the source of data for training and testing
- the annotation procedure for data
- the amount of training data available
- ...

Conservative conclusion: state-of-the-art systems perform well above random or majority-class baseline.

Supervised Methods: Practical Considerations (3)

Performance at SemEval

- SemEval-2007 Task 4
 - winning system: F=72.4%, Acc=76.3%, using resources such as WordNet [Beamer & al., 2007]
 - later: similar performance, using corpus data only [Davidov & Rappoport, 2008; Ó Séaghdha & Copestake, 2008; Nakov & Kozareva, 2011]
- SemEval-2010 Task 8
 - winning system: F=82.2%, Acc=77.9%, using many manual resources
 [Rink & Harabagiu, 2010]
 - later: similar performance, corpus data only [Socher & al., 2012]

Supervised Methods: Practical Considerations (4)

Performance at ACE

- Different task
 - full documents rather than single sentences
 - relations between specific classes of named entities
- F-score
 - low-to-mid 70s [Jiang & Zhai, 2007; Zhou & al., 2007, 2009]
- Granularity matters
 - moving from <10 ACE relation types to >20 relation subtypes (on the same data!) decreases F1 by about 20%

Outline

- Unsupervised Methods

Mining Very Large Corpora (1)

Very large corpora

- examples
 - GigaWord (news texts)
 - PubMed (scientific articles)
 - World-Wide Web
- contain massive amounts of data
 - cannot all be encoded to train a supervised model

Mining Very Large Corpora (2)

Very large corpora

- suitable for unsupervised relation mining
- useful in extracting relational knowledge
 - Taxonomic
 - e.g., What kinds of animals exist?
 - Ontological
 - e.g., Which cities are located in the United Kingdom?
 - Event
 - e.g., Which companies have bought which other companies?
- needed because manual knowledge bases are inherently incomplete, e.g., Cyc and Freebase

Mining Very Large Corpora (3)

Example

- Swanson (1987) discovered a connection between migraines and magnesium
- Swanson linking
 - publication 1: illness A is caused by chemical B
 - publication 2: drug C reduces chemical B in the body
 - linking: connection between illness A and drug C

Mining Very Large Corpora (4)

Challenges

- a lot of irrelevant information
- high precision is key
- a supervised model might not be feasible
 - new relations, not seen in training
 - deep features too expensive

Historically important: Crafted patterns

- very high precision
- low recall
 - not a problem because of the scale of corpora
- low coverage
 - cover only a small number of relations

Mining Very Large Corpora (6)

Brief history

- pioneered by Hearst (1992)
- initially, taxonomic relations the backbone of any taxonomy or ontology
 - is-a: hyponymy/hypernymy
 - part-of: meronymy/holonymy
- gradually expanded
 - more relations
 - larger scale of corpora Web-scale now within reach
 - the Never-Ending Language Learner project
 - the Machine Reading project

Early Work: Mining Dictionaries (1)

Extracting taxonomic relations from dictionaries

- popular in 1980s
 - [Ahlswede & Evens, 1988; Alshawi, 1987; Amsler, 1981;
 Chodorow & al., 1985; Ide & al., 1992; Klavans & al., 1992]
- focus on is-a
 - hypenymy/hyponymy
 - subclass/superclass
- used dictionaries such as Merriam-Webster
- pattern-based

Merriam-Webster: GROUP and related concepts

[Amsler, 1981]

- GROUP 1.0A a number of individuals related by a common factor (as physical association, community of interests, or blood)
- CLASS 1.1A a group of the same general status or nature
- TYPE 1.4A a class, kind, or group set apart by common characteristics
- KIND 1.2A a group united by common traits or interests
- KIND 1.2B CATEGORY
- CATEGORY .0A a division used in classification
- CATEGORY .0B CLASS, GROUP, KIND
- DIVISION .2A one of the parts, sections, or groupings into which a whole is divided
- *GROUPING <== W7 a set of objects combined in a group</p>
- SET 3.5A a group of persons or things of the same kind or having a common characteristic usu. classed together
- SORT 1.1A a group of persons or things that have similar characteristics
- SORT 1.1B CLASS
- SPECIES .IA SORT, KIND
- SPECIES .IB a taxonomic group comprising closely related organisms potentially able to breed with one another

Merriam-Webster: GROUP and related concepts

[Amsler, 1981]

Early Work: Mining Dictionaries (4)

Mining dictionaries: summary

- PROs
 - short, focused definitions
 - standard language
 - limited vocabulary
- CONs
 - circularity
 - hard to identify the key terms
 - group of persons
 - number of individuals
 - limited coverage

Mining Relations with Patterns (1)

Relation mining patterns

- when matched against a text fragment, identify relation instances
- can involve
 - lexical items
 - wildcards
 - parts of speech
 - syntactic relations
 - flexible rules, e.g., as in regular expressions
 - **.**..

Mining Relations with Patterns (2)

Hearst's (1992) lexico-syntactic patterns

- NP such as {NP,}* {(or|and)} NP
 "... bow lute, such as Bambara ndang ..."
 → (bow lute, Bambara ndang)
- such NP as {NP,}* {(or|and)} NP
 "... works by such authors as Herrick, Goldsmith, and Shakespeare"
 → (authors, Herrick); (authors, Goldsmith); (authors, Shakespeare)
- NP {, NP}* {,} (or|and) other NP
 "... temples, treasuries, and other important civic buildings..."
 → (important civic buildings, temples); (important civic buildings, treasuries)
- NP{,} (including|especially) {NP,}* (or|and) NP
 ... most European countries, especially France, England and Spain
 ... "
 ⇒ (European countries, Erance): (European countries, England):
 - \rightarrow (European countries, France); (European countries, England); (European countries, Spain)

Hearst's (1992) lexico-syntactic patterns

- designed for very high precision, but low recall
- only cover is-a
- later, extended to other relations, e.g.,
 - part-of [Berland & Charniak, 1999]
 - protein-protein interactions
 [Blaschke & al., 1999; Pustejovsky & al., 2002]
 - N1 inhibits N2
 - N2 is inhibited by N1
 - inhibition of N2 by N1
- unclear if such patterns can be designed for all relations

Hearst's (1992) lexico-syntactic patterns

- ran on Grolier's American Academic Encyclopedia
 - small by today's standards
 - still, large enough: 8.6 million tokens
- very low recall
 - extracted just 152 examples (but with very high precision)
- increase recall
 - bootstrapping

Bootstrapping (1)

Bootstrapping (2)

```
Require:
     P—a set of seed patterns
     R-a set of seed relation instances
     C—a corpus
     N—maximum number of iterations
Ensure: R-a set of relation instances
  1: for i = 1...N do
        \mathcal{P}' = \{\}
        \mathcal{R}' = \{\}
        for p \in \mathcal{P} do
           match p in C
           add matched pairs: \mathcal{R}' = \{(np_i, np_i)\} \cup \mathcal{R}'
        end for
        \mathcal{R} = \mathcal{R} \cup Top_k(rankInstances(\mathcal{R}'))
        for (np_i, np_j) \in \mathcal{R} do
           match np_i(.*)np_i in C
 10-
           add matched pattern (.*) to \mathcal{P}'
 11:
 12.
        end for
        \mathcal{P} = \mathcal{P} \cup Top_k(rankPatterns(\mathcal{P}'))
 14: end for
15: return R.
```

Bootstrapping

- Initialization
 - few seed examples
 - e.g., for is-a
 - cat-animal
 - car-vehicle
 - banana-fruit
- Expansion
 - new patterns
 - new instances
- Several iterations
- Main difficulty
 - semantic drift

Bootstrapping

- Context-dependency
 - not good for context-dependent relations
 - in one newspaper: "Manchester United defeated Chelsea"
 - six months later: "Chelsea defeated Manchester United"
- Specificity
 - good for specific relations such as birthdate
 - cannot distinguish between fine-grained relations
 - e.g., different kinds of Part-Whole maybe Component-Integral Object, Member-Collection, Portion-Mass, Stuff-Object, Feature-Activity and Place-Area
 - would share the same patterns

Tackling Semantic Drift (1)

Example of semantic drift

Seeds	Patterns	Added examples
London Paris New York	$\begin{array}{c} \longrightarrow & \text{mayor of } X \\ & \underline{\text{lives in } X} \end{array}$	→ California Europe

Tackling Semantic Drift (2)

Some strategies

- Limit the number of iterations
- Select a small number of patterns/examples per iteration
- Use semantic types, e.g., the SNOWBALL system

```
⟨Organization⟩'s headquarters in ⟨Location⟩
\langle Location 
angle -based \langle Organization 
angle
⟨Organization⟩, ⟨Location⟩
```

acking Semantic Diff (5)

More strategies

- scoring patterns/instances
 - specificity: prefer patterns that match less contexts
 - confidence: prefer patterns with higher precision
 - reliability: based on PMI
- argument type checking
- coupled training

Coupled training [Carlson & al., 2010]

Krzyzewski coaches the Blue Devils.

Krzyzewski coaches the Blue Devils.

(A) A difficult semi-supervised learning problem

(B) An easier semi-supervised learning problem

Used in the Never-Ending Language Learner

Distant Supervision (1)

Distant supervision

- Issue with bootstrapping: starts with a small number of seeds
- Distant supervision uses a huge number [Craven & Kumlien, 1999]
 - Get huge seed sets, e.g., from WordNet, Cyc, Wikipedia infoboxes. Freebase
 - Find contexts where they occur
 - Use these contexts to train a classifier

Example: experiments of Mintz & al. [2009]

- 102 relations from Freebase, 17,000 seed instances
- mapped them to Wikipedia article texts
- extracted
 - 1.8 million instances
 - connecting 940,000 entities
- Assumption: all co-occurrences of a pair of entities express the same relation
 - Later, Riedel & al. [2010] assume that at least one context expresses the target relation (rather than all)

Distant Supervision (3)

Dr. Henry Walton "Indiana" Jones, Jr., Ph.D. [12] is a fictional character and the protagonist of the Indiana lones franchise. George Lucas and Steven Spielberg created the character in homage to the action heroes of 1930s film serials. The character first appeared in the 1981. film Raiders of the Lost Ark, to be followed by Indiana lones and the Temple of Doom in 1984. Indiana Jones and the Last Crusade in 1989. The Young Indiana Jones Chronicles from 1992 to 1996, and Indiana Jones and the Kingdom of the Crystal Skull in 2008. Alongside the more widely known films and television programs, the character is also featured in povels, comics, video games, and other media, lones is also featured in the theme park attraction indiana Jones Adventure, which exists in similar forms at Disneyland and Tokyo DisneySea.

Jones is most famously played by Harrison Ford and has also been portrayed by River Phoenix (as the young jones in The Last Crusade), and in the television series The Young indiada jones Chronicles by Corey Carrier, Sean Patrick/Flanery, and George Hall, Doug Lee has supplied jones's voice to two LucasArts video games, Indiana Jones and the Fate of Atlantis and Indiana Jones and the Infernal Machine, while David Esch supplied his voice to Indiana Jones and the

Particularly notable facets of the character include his iconic look (bullwhip, fedora, and leather jacket), sense of humor, deep knowledge of many ancient civilizations and languages and fear of snakes Indiana Jones remains one of cinema's most reveted movie characters. In 2003, he was ranked

as the second greatest movie hero of all time by the American Film Institute.[13] He was also named the sixth greatest movie character by Empire reagazine. [14] Entertainment Weekly ranked Indy 2nd on their list of The All-Time Coolest Heroes in Pop Culture. [15] Premiere magazine also placed Indy at number 7 on their list of The 190 Greatest Movie Characters of All Time. [35] Since his first appearance in Raiders of the Lost Ark; be has become a worldwide star. On their list of the 200 Greatest Fictional Characters, Fandomania.com ranked Indy at number 10.[17] In 2010, he ranked #2 on Time Magazine's list of the greatest fictional characters of all time, surpassed only by Sherlock Holmes. [Otation needed]

Contents [hide]

appearance Created by

- training sentences
 - positive: with the relation
 - negative: without the relation
- train a two-stage classifier:
 - identify the sentences with a relation instance
 - extract relations from these sentences

Unsupervised Relation Extraction

- Other issues with bootstrapping
 - uses multiple passes over a corpus
 - often undesirable/unfeasible, e.g., on the Web
 - if we want to extract all relations
 - no seeds for all of them
- Possible solution
 - unsupervised relation extraction
 - no pre-specified list of relations, seeds or patterns

Extracting *is-a* Relations (1)

Pantel & Ravichandran [2004]

- cluster nouns using cooccurrence as in [Pantel & Lin, 2002]
 - Apple, Google, IBM, Oracle, Sun Microsystems, ...
- extract hypernyms using patterns
 - Apposition (N:appo:N), e.g., ... Oracle, a company known for its progressive employment policies ...
 - Nominal subject (-N:subj:N), e.g., ... Apple was a hot young company, with Steve Jobs in charge ...
 - Such as (-N:such as:N), e.g., ... companies such as IBM must be wearv ...
 - Like (-N:like:N), e.g., ... companies like Sun **Microsystems** do not shy away from such challenges . . .
- is-a between the hypernym and each noun in the cluster

[Kozareva & al., 2008]

- uses a doubly-anchored pattern (DAP)
 - "sem-class such as term1 and *"
- similar to the Hearst pattern
 - NP_0 such as $\{NP_1, NP_2, ..., (and | or)\}$ NP_n
- but different
 - exactly two arguments after such as
 - and is obligatory
- prevents sense mixing
 - cats-jaguar-puma
 - predators—jaguar—leopard
 - cars-jaguar-ferrari

Extracting is-a Relations (3)

[Kozareva & Hovy, 2010]: DAPs can yield a taxonomy

Extracting is-a Relations (4)

[Kozareva & Hovy, 2010]: DAPs can yield a taxonomy

Emergent Relations (1)

Emergent relations in open relation extraction

- no fixed set of relations
- need to identify novel relations
 - use verbs, prepositions
 - different verbs, same relation: shot against the flu, shot to prevent the flu
 - verb, but no relation: "It rains." or "I do."
 - no verb, but relation: flu shot
 - use clustering
 - string similarity
 - distributional similarity

Emergent Relations (2)

Clustering with distributional similarity

- using paraphrases from dependency parses
 [Lin & Pantel, 2001; Pasca, 2007]
 - e.g., DIRT for X solves Y
 - Y is solved by X, X resolves Y, X finds a solution to Y, X tries to solve Y, X deals with Y, Y is resolved by X, X addresses Y, X seeks a solution to Y, X does something about Y, X solution to Y, Y is resolved in X, Y is solved through X, X rectifies Y, X copes with Y, X overcomes Y, X eases Y, X tackles Y, X alleviates Y, X corrects Y, X is a solution to Y, X makes worse Y, X irons out Y
- extracted shared property model [Yates & Etzioni, 2007]
 - e.g., if (lacks, Mars, ozone layer) and (lacks, Red Planet, ozone layer), then Mars and Red Planet share the property (lacks, *, ozone layer)

Emergent Relations (3)

[Davidov & Rappoport, 2008]

Prefix CW_1 Infix CW_2 Postfix

```
label
(pets, dogs)
(phone, charger)
(phone, charger)

(phone, charger)

(phone, charger)

(phone, charger)

(phone, charger)

(phone, charger)

(purple X as Y, X such as Y, Y and other X }

(buy Y accessory for X!, shipping Y for X, Y is available for X, Y are available for X, Y are available for X systems, Y for X }

(posterior X as Y, X such as Y, Y and other X }

(phone, charger)

(patterns
(purple X as Y, X such as Y, Y and other X }

(phone, charger)

(purple X as Y, X such as Y, Y and other X }

(phone, charger)

(phone, charger)

(purple X as Y, X such as Y, Y and other X }

(phone, charger)

(phone, charger)

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other X }

(purple X as Y, X such as Y, Y and other Y, Y as Y, Y and other Y, Y as Y, Y and other Y, Y as Y, Y as Y, Y and other Y, Y as Y, Y and other Y
```

These (CW₁, CW₂) clusters are efficient as background features for supervised models.

Self-Supervised Relation Extraction (1)

Self-supervision

- algorithm
 - parse a small corpus
 - extract and annotate relation instances: e.g., based on heuristics and the connecting path between entity mentions
 - train relation extractors on these instances
 - not guided by or assigned to any particular relation type
 - features: shallow lexical and POS, dependency path
- applicable on the Web
- used in the Machine Reading project at U Washington

Self-Supervised Relation Extraction (2)

Self-supervision

- Issues with the extracted relations
 - not coherent
 - e.g., The Mark 14 was central to the torpedo scandal of the fleet. → was central torpedo
 - uninformative
 - e.g., . . . is the author of . . . \rightarrow is
 - too specific
 - e.g., is offering only modest greenhouse gas reductions targets at

Self-Supervised Relation Extraction (3)

Self-supervision

- Improving the relation quality
 - constraints: syntactic, positional and frequency [Fader & al., 2011]
 - focus on functional relations, e.g., birthplace [Lin & al., 2010]
 - use redundancy: the "KnowItAll hypothesis" [Downey & al., 2005, 2010] — extractions from more distinct sentences in a corpus are more likely to be correct
 - high frequency is not enough though:
 - "Elvis killed JFK" yields 19,300 hits (in October 2012)
 - still, "Oswald killed JFK" had 39,200 hits

Two large-scale knowledge acquisition projects that harvest the Web continuously

- Never-Ending Language Learner (NELL)
 - at Carnegie-Mellon University
 - http://rtw.ml.cmu.edu/rtw/
- Machine Reading
 - at the University of Washington
 - http://ai.cs.washington.edu/projects/ open-information-extraction

Web-Scale Relation Extraction (2)

Never-Ending Language Learner [Mohamed & al., 2011]

- starting with a seed ontology
 - 600 categories and relations
 - each with 20 seed examples
- learns
 - new concepts
 - new concept instances
 - new instances of the existing relations
 - new novel relations
- approach: bootstrapping, coupled learning, manual intervention, clustering
- learned (as of September 2012)
 - 15 million confidence-scored relations (beliefs)
 - 1.4 million with high confidence scores, 85% precision

Web-Scale Relation Extraction (3)

Machine Reading at U Washington

- KnowItAll [Etzioni & al., 2005] bootstrapping using Hearst patterns
- TextRunner [Banko & al., 2007] self-supervised, specific relation models from a small corpus, applied to a large corpus
- Kylin [Wu & Weld, 2007] and WPE [Hoffmann & al., 2010] bootstrapping starting with Wikipedia infoboxes and associated articles
- WOE [Wu & Weld, 2010] extends Kylin to open information extraction, using part-of-speech or dependency patterns
- ReVerb [Fader & al., 2011] lexical and syntactic constraints on potential relation expressions
- OLLIE [Mausam & al., 2012] extends WOE with better patterns and dependencies (e.g., some relations are true for some period of time, or are contingent upon external conditions)

Unsupervised Methods: Summary

Unsupervised relation extraction

- good for
 - large text collections or the Web
 - context-independent relations
- methods
 - bootstrapping (but semantic drift)
 - distant supervision
 - semi-supervision
 - self-supervision
- applications
 - continuous open information extraction
 - NFII
 - Machine Reading

- - Wrap-up

Lessons Learned

Semantic relations

- are an open class
- just like concepts, they can be organized hierarchically
- some are ontological, some idiosyncratic
- the way we work with them depends on
 - the application
 - the method

Lessons Learned

Learning to identify or discover relations

- investigate many detailed features in a (small) fully-supervised setting, and try to port them into an open relation extraction setting
- set an inventory of targeted relations, or allow them to emerge from the analyzed data
- use (more or less) annotated data to bootstrap the learning process
- exploit resources created for different purposes for our own ends (Wikipedia!)

Extracting Relational Knowledge from Text

The bigger picture: NLP finds knowledge in a lot of text and then gets the deeper meaning of a little text

- Manual construction of knowledge bases
 - PROs: accurate (insofar as people who do it do not make mistakes)
 - CONs: costly, inherently limited in scope
- Automated knowledge acquisition
 - PROs: scalable, e.g., to the Web
 - CONs: inaccurate, e.g., due to semantic drift or inaccuracies in the analyzed text
- Learning relations
 - PROs: reasonably accurate
 - CONs: needs relation inventory and annotated training data, does not scale to large corpora

Hot research topics and future directions

- Web-scale relation mining
- continuous, never-ending learning
- distant supervision
- use of large knowledge sources such as Wikipedia, DBpedia
- semi-supervised methods
- combining symbolic and statistical methods
 - e.g., ontology acquisition using statistics

Read the Book!

www.morganclaypool.com/doi/abs/10.2200/ S00489ED1V01Y201303HLT019

Thank you!

Questions?

Bibliography I

Thomas Ahlswede and Martha Evens

Parsing vs. text processing in the analysis of dictionary definitions.

In Proc. 26th Annual Meeting of the Association for Computational Linguistics, Buffalo, NY, USA, pages 217-224, 1988.

Hivan Alshawi.

Processing dictionary definitions with phrasal pattern hierarchies.

Americal Journal of Computational Linguistics, 13(3):195-202, 1987.

Robert Amsler

A taxonomy for English nouns and verbs.

In Proc. 19th Annual Meeting of the Association for Computational Linguistics, Stanford University, Stanford, CA, USA, pages 133-138, 1981.

Michele Banko, Michael Cafarella, Stephen Sonderland, Matt Broadhead, and Oren Etzioni.

Open information extraction from the Web.

In Proc. 22nd Conference on the Advancement of Artificial Intelligence, Vancouver, BC, Canada, pages 2670-2676, 2007.

Ken Barker and Stan Szpakowicz.

Semi-automatic recognition of noun modifier relationships.

In Proc. 36th Annual Meeting of the Association for Computational Linguistics, Montréal, Canada, pages 96-102, 1998,

Bibliography II

Brandon Beamer, Suma Bhat, Brant Chee, Andrew Fister, Alla Rozovskaya, and Roxana Girju.

UIUC: a knowledge-rich approach to identifying semantic relations between nominals.

In Proc. 4th International Workshop on Semantic Evaluations (SemEval-1), Prague, Czech Republic, pages 386-389, 2007.

Matthew Berland and Eugene Charniak.

Finding parts in very large corpora.

In Proc. 37th Annual Meeting of the Association for Computational Linguistics, College Park, MD, USA, pages 57-64, 1999.

Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel.

An algorithm that learns what's in a name.

Machine Learning, 34(1-3):211-231, February 1999. URL http://dx.doi.org/10.1023/A:1007558221122.

Christian Blaschke, Miguel A. Andrade, Christos Ouzounis, and Alfonso Valencia.

Automatic extraction of biological information from scientific text: protein-protein interactions. In Proc. 7th International Conference on Intelligent Systems for Molecular Biology (ISMB-99), Heidelberg,

Germany, 1999.

David M. Blei, Andrew Y. Ng. and Michael I. Jordan.

Latent Dirichlet allocation

Journal of Machine Learning Research, 3:993-1022, 2003.

Bibliography III

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.

Class-Based n-gram Models of Natural Language.

Razvan Bunescu and Raymond J. Mooney.

A shortest path dependency kernel for relation extraction.

In Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (HLT-EMNLP-05), Vancouver, Canada, 2005.

Cristina Butnariu and Tony Veale.

A concept-centered approach to noun-compound interpretation.

In Proc. 22nd International Conference on Computational Linguistics, pages 81–88, Manchester, UK, 2008.

Michael Cafarella, Michele Banko, and Oren Etzioni.

Relational Web search

Technical Report 2006-04-02, University of Washington, Department of Computer Science and Engineering, 2006.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and Jean-Michel Renders.

Word-sequence kernels.

Journal of Machine Learning Research, 3:1059-1082, 2003.

URL http://jmlr.csail.mit.edu/papers/v3/cancedda03a.html.

Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr., and Tom M. Mitchell.

Coupled semi-supervised learning for information extraction.

In Proc. Third ACM International Conference on Web Search and Data Mining (WSDM 2010), 2010.

Bibliography IV

Joseph B. Casagrande and Kenneth Hale.

Semantic relationships in Papago folk-definition.

In Dell H. Hymes and William E. Bittleolo, editors, *Studies in southwestern ethnolinguistics*, pages 165–193. Mouton, The Hague and Paris, 1967.

Roger Chaffin and Douglas J. Herrmann.

The similarity and diversity of semantic relations.

Memory & Cognition, 12(2):134-141, 1984.

Eugene Charniak.

Toward a model of children's story comprehension.

Technical Report AITR-266 (hdl.handle.net/1721.1/6892), Massachusetts Institute of Technology, 1972.

Martin S. Chodorow, Roy Byrd, and George Heidorn.

Extracting semantic hierarchies from a large on-line dictionary.

In Proc. 23th Annual Meeting of the Association for Computational Linguistics, Chicago, IL, USA, pages 299–304, 1985.

Massimiliano Ciaramita, Aldo Gangemi, Esther Ratsch, Jasmin Šarić, and Isabel Rojas.

Unsupervised learning of semantic relations between concepts of a molecular biology ontology.

In Proc. 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, pages 659–664, 2005.

Bibliography V

Michael Collins and Nigel Duffy.

Convolution kernels for natural language.

In *Proc. 15th Conference on Neural Information Processing Systems (NIPS-01)*, Vancouver, Canada, 2001. URL http://books.nips.cc/papers/files/nips14/AA58.pdf.

M. Craven and J. Kumlien.

Constructing biological knowledge bases by extracting information from text sources.

In Proc. Seventh International Conference on Intelligent Systems for Molecular Biology, pages 77–86, 1999.

Dmitry Davidov and Ari Rappoport.

Classification of semantic relationships between nominals using pattern clusters.

In Proc. 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Columbus, OH, USA, pages 227–235, 2008.

Ferdinand de Saussure.

Course in General Linguistics.

Philosophical Library, New York, 1959.

Edited by Charles Bally and Albert Sechehaye. Translated from the French by Wade Baskin.

Doug Downey, Oren Etzioni, and Stephen Soderland.

A probabilistic model of redundancy in information extraction.

In Proc. 9th International Joint Conference on Artificial Intelligence, Edinburgh, UK, pages 1034–1041, 2005.

Doug Downey, Oren Etzioni, and Stephen Soderland.

Analysis of a probabilistic model of redundancy in unsupervised information extraction.

Artificial Intelligence, 174(11):726-748, 2010.

Pamela Downing.

On the creation and use of English noun compounds. *Language*, 53(4):810–842, 1977.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soderland,

Daniel S. Weld, and Alexander Yates.

Unsupervised named-entity extraction from the web: an experimental study.

Artificial Intelligence, 165(1):91–134, June 2005. ISSN 0004-3702.

Anthony Fader, Stephen Soderland, and Oren Etzioni.

Identifying relations for open information extraction.

In Proc. Conference of Empirical Methods in Natural Language Processing (EMNLP '11), Edinburgh, Scotland, UK, July 27-31 2011.

Christiane Fellbaum, editor.

WordNet - An Electronic Lexical Database.

MIT Press, 1998.

Timothy Finin.

The semantic interpretation of nominal compounds.

In Proc. 1st National Conference on Artificial Intelligence, Stanford, CA, USA, 1980.

Gottlob Frege.

Begriffschrift.

Louis Nebert, Halle, 1879.

Bibliography VII

Jean Claude Gardin.

SYNTOL.

Graduate School of Library Service, Rutgers, the State University (Rutgers Series on Systems for the Intellectual Organization of Information, Susan Artandi, ed.). New Brunswick, New Jersey, 1965.

Roxana Giriu.

Improving the Interpretation of Noun Phrases with Cross-linguistic Information.

In Proc. 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, pages 568–575, 2007.

Roxana Girju, Adriana Badulescu, and Dan Moldovan.

Learning semantic constraints for the automatic discovery of part-whole relations.

In Proc. Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, Edmonton, Alberta, Canada, 2003.

Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel Antohe.

On the semantics of noun compounds.

Computer Speech and Language, 19:479-496, 2005.

Roy Harris.

Reading Saussure: A Critical Commentary on the Cours le Linquistique Generale. Open Court, La Salle, Ill., 1987.

Bibliography VIII

Marti Hearst.

Automatic acquisition of hyponyms from large text corpora.

In Proc. 15th International Conference on Computational Linguistics, Nantes, France, pages 539–545, 1992.

Raphael Hoffmann, Congle Zhang, and Daniel Weld.

Learning 5000 relational extractors.

In Proc. 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, pages 286–295, 2010.

Nancy Ide, Jean Veronis, Susan Warwick-Armstrong, and Nicoletta Calzolari.

Principles for encoding machine-readable dictionaries.

In Fifth Euralex International Congress, pages 239–246, University of Tampere, Finland, 1992,

Jing Jiang and ChengXiang Zhai.

Instance Weighting for Domain Adaptation in NLP.

In Proc. 45th Annual Meeting of the Association for Computational Linguistics, ACL '07, pages 264–271, Prague, Czech Republic, 2007.

URL http://www.aclweb.org/anthology/P07-1034.

Karen Spärck Jones.

Synonymy and Semantic Classification.

PhD thesis, University of Cambridge, 1964.

Bibliography IX

Su Nam Kim and Timothy Baldwin.

Automatic Interpretation of noun compounds using WordNet::Similarity.

In Proc. 2nd International Joint Conference on Natural Language Processing, Jeju Island, South Korea, pages 945–956, 2005.

Su Nam Kim and Timothy Baldwin.

Interpreting semantic relations in noun compounds via verb semantics.

In Proc. 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Sydney, Australia, pages 491–498, 2006.

Judith L. Klavans, Martin S. Chodorow, and Nina Wacholder.

Building a knowledge base from parsed definitions.

In George Heidorn, Karen Jensen, and Steve Richardson, editors, *Natural Language Processing: The PLNLP Approach*. Kluwer, New York, NY, USA, 1992.

Zornitsa Kozareva and Eduard Hovy.

A Semi-Supervised Method to Learn and Construct Taxonomies using the Web.

In Proc. 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, USA, pages 1110–1118, 2010.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy.

Semantic class learning from the Web with hyponym pattern linkage graphs.

In Proc. 46th Annual Meeting of the Association for Computational Linguistics ACL-08: HLT, pages 1048–1056, 2008.

Bibliography X

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

Conditional random fields: Probabilistic models for segmenting and labeling sequence data.

In Proc. Eighteenth International Conference on Machine Learning, ICML '01, pages 282–289, San Francisco, OA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-778-1.

URL http://dl.acm.org/citation.cfm?id=645530.655813.

Maria Lapata.

The disambiguation of nominalizations.

Computational Linguistics, 28(3):357–388, 2002.

Mirella Lapata and Frank Keller.

The Web as a baseline: Evaluating the performance of unsupervised Web-based models for a range of NLP tasks.

In Proc. Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pages 121–128. Boston, USA, 2004.

Mark Lauer.

Designing Statistical Language Learners: Experiments on Noun Compounds.

Judith N. Levi.

The Syntax and Semantics of Complex Nominals.

Academic Press, New York, 1978.

PhD thesis, Macquarie University, 1995.

Bibliography XI

Dekang Lin and Patrick Pantel.

Discovery of inference rules for question-answering.

Natural Language Engineering, 7(4):343–360, 2001. ISSN 1351-3249

Thomas Lin, Mausam, and Oren Etzioni.

Identifying functional relations in web text.

In *Proc. 2010 Conference on Empirical Methods in Natural Language Processing*, pages 1266–1276, Cambridge, MA, October 2010.

Mausam, Michael Schmitz, Robert Bart, Stephen Soderland, and Oren Etzioni.

Open language learning for information extraction.

In Proc. 2012 Conference on Empirical Methods in Natural Language Processing, Jeju Island, Korea, pages 523–534, 2012.

Andrew McCallum and Wei Li.

Early results for Named Entity Recognition with Conditional Random Fields, feature induction and Web-enhanced lexicons.

In Proc. 7th Conference on Natural Language Learning at HLT-NAACL 2003 – Volume 4, CONLL '03, pages 188–191, 2003.

doi: 10.3115/1119176.1119206.

URL http://dx.doi.org/10.3115/1119176.1119206.

John McCarthy.

Programs with common sense.

In Proc. Teddington Conference on the Mechanization of Thought Processes, 1958.

Ryan McDonald, Fernando Pereira, Seth Kulik, Scott Winters, Yang Jin, and Pete White.

Simple Algorithms for Complex Relation Extraction with Applications to Biomedical IE.

In Proc. 43rd Annual Meeting of the Association for Computational Linguistics (ACL-05), Ann Arbor, MI, 2005.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.

Distant supervision for relation extraction without labeled data.

In Proc. Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2, ACL '09, pages 1003–1011, 2009.

Thahir Mohamed, Estevam Hruschka Jr., and Tom Mitchell.

Discovering relations between noun categories.

In Proc. 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, pages 1447–1455, 2011.

Dan Moldovan, Adriana Badulescu, Marta Tatu, Daniel Antohe, and Roxana Girju.

Models for the semantic classification of noun phrases.

In Proc. HLT-NAACL Workshop on Computational Lexical Semantics, pages 60–67. Association for Computational Linguistic, 2004.

Alessandro Moschitti.

Efficient convolution kernels for dependency and constituent syntactic trees.

Proc. 17th European Conference on Machine Learning (ECML-06), 2006. URL http://dit.unitn.it/~moschitt/articles/ECML2006.pdf.

Bibliography XIII

Preslav Nakov.

Improved Statistical Machine Translation using monolingual paraphrases.

Preslav Nakov and Marti Hearst.

UCB: System description for SemEval Task #4.

In Proc. 4th International Workshop on Semantic Evaluations (SemEval-2007), pages 366–369, Prague, Czech Republic, 2007.

Preslav Nakov and Marti Hearst.

Solving relational similarity problems using the Web as a corpus.

In Proc. 6th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Columbus, OH, USA, pages 452–460, 2008.

Preslav Nakov and Zornitsa Kozareva.

Combining relational and attributional similarity for semantic relation classification.

In Proc. International Conference on Recent Advances in Natural Language Processing, Hissar, Bulgaria, pages 323–330, 2011.

Vivi Nastase and Stan Szpakowicz.

Exploring noun-modifier semantic relations.

In Proc. 6th International Workshop on Computational Semantics, Tilburg, The Netherlands, pages 285–301, 2003

Bibliography XIV

Diarmuid Ó Séaghdha and Ann Copestake.

Semantic classification with distributional kernels.

In Proc. 22nd International Conference on Computational Linguistics, pages 649–656, Manchester, UK, 2008

Marius Paşca.

Organizing and searching the World-Wide Web of facts – step two: harnessing the wisdom of the crowds. In 16th International World Wide Web Conference, Banff, Canada, pages 101–110, 2007.

Martha Palmer, Daniel Gildea, and Nianwen Xue.

Semantic Role Labeling.

Synthesis Lectures on Human Language Technologies. Morgan & Claypool, 2010.

Patrick Pantel and Dekang Lin.

Discovering word senses from text.

In Proc. 8th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pages 613–619, 2002.

Patrick Pantel and Deepak Ravichandran.

Automatically labeling semantic classes.

In Proc. Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, Boston, MA, USA, pages 321–328, 2004.

Bibliography XV

Siddharth Patwardhan and Ellen Riloff.

Effective information extraction with semantic affinity patterns and relevant regions.

In Proc. 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Language Learning. Prague. Czech Republic, pages 717–727, 2007.

Charles Sanders Peirce

Existential graphs (unpublished 1909 manuscript).

In Justus Buchler, editor, The philosophy of Peirce: selected writings. Harcourt, Brace & Co., 1940.

James Pustejovsky, José M. Castaño, Jason Zhang, M. Kotecki, and B. Cochran.

Robust relational parsing over biomedical literature: Extracting *inhibit* relations.

M. Ross Quillian.

A revised design for an understanding machine.

Mechanical Translation, 7:17-29, 1962.

Randolph Quirk, Sidney Greenbaum, Geoffrey Leech, and Jan Svartvik.

A comprehensive grammar of the English language. Longman, 1985.

Deepak Ravichandran and Eduard Hovy.

Learning surface text patterns for a Question Answering system.

In Proc. 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA< USA, pages 41–47, 2002.

Bibliography XVI

Sebastian Riedel, Limin Yao, and Andrew McCallum.

Modeling relations and their mentions without labeled text.

In Proc. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD '10), volume 6232 of Lecture Notes in Computer Science, pages 148–163. Springer, 2010.

Bryan Rink and Sanda Harabagiu.

UTD: Classifying Semantic Relations by Combining Lexical and Semantic Resources.

In *Proc. 5th International Workshop on Semantic Evaluation*, pages 256–259, Uppsala, Sweden, July 2010. Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/S10-1057.

Barbara Rosario and Marti Hearst.

Classifying the semantic relations in noun compounds via a domain-specific lexical hierarchy.

In Proc. 2001 Conference on Empirical Methods in Natural Language Processing, Pittsburgh, PA< USA, pages 82–90, 2001.

Barbara Rosario and Marti Hearst.

The descent of hierarchy, and selection in relational semantics.

In Proc. 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, pages 247–254, 2002.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng.

Semantic compositionality through recursive matrix-vector spaces.

In Proc. 2012 Conference on Empirical Methods in Natural Language Processing, Jeju, Korea, 2012.

Bibliography XVII

Jun Suzuki, Tsutomu Hirao, Yutaka Sasaki, and Eisaku Maeda.

Hierarchical directed acyclic graph kernel: Methods for structured natural language data.

In Proce. 41st Annual Meeting of the Association for Computational Linguistics (ACL-03), Sapporo, Japan, 2003

Don R. Swanson.

Two medical literatures that are logically but not bibliographically connected.

JASIS, 38(4):228-233, 1987.

Diarmuid Ó Séaghdha.

Designing and Evaluating a Semantic Annotation Scheme for Compound Nouns.

In *Proc. 4th Corpus Linguistics Conference (CL-07)*, Birmingham, ÜK, 2007. URL www.cl.cam.ac.uk/~do242/Papers/dos cl2007.pdf.

Diarmuid Ó Séaghdha and Ann Copestake.

Co-occurrence contexts for noun compound interpretation.

In Proc. ACL Workshop on A Broader Perspective on Multiword Expressions, pages 57–64. Association for Computational Linguistics, 2007.

Lucien Tesnière.

Éléments de syntaxe structurale.

C. Klincksieck, Paris, 1959.

Bibliography XVIII

Stephen Tratz and Eduard Hovy.

A taxonomy, dataset, and classifier for automatic noun compound interpretation.

In Proc. 48th Annual Meeting of the Association for Computational Linguistics, pages 678–687, Uppsala, Sweden. 2010.

Peter Turney.

Similarity of semantic relations.

Computational Linguistics, 32(3):379-416, 2006,

Peter Turney and Michael Littman.

Corpus-based learning of analogies and semantic relations.

Lucy Vanderwende.

Algorithm for the automatic interpretation of noun sequences.

In Proc. 15th International Conference on Computational Linguistics, Kyoto, Japan, pages 782–788, 1994.

Beatrice Warren.

Semantic Patterns of Noun-Noun Compounds.

In Gothenburg Studies in English 41, Goteburg, Acta Universitatis Gothoburgensis, 1978.

Joseph Weizenbaum.

ELIZA – a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1):36–45, 1966.

Bibliography XIX

Terry Winograd.

Understanding natural language.

Cognitive Psychology, 3(1):1–191, 1972.

Fei Wu and Daniel S. Weld.

Autonomously Semantifying Wikipedia.

In Proc. ACM 17th Conference on Information and Knowledge Management (CIKM 2008), Napa Valley, CA, USA, pages 41–50, 2007.

Fei Wu and Daniel S. Weld

Open information extraction using Wikipedia.

In Proc. 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, pages 118–127, 2010.

Alexander Yates and Oren Etzioni

Unsupervised resolution of objects and relations on the Web.

In Proc. Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, Rochester, NY, USA, pages 121–130, 2007.

Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella.

Kernel methods for relation extraction.

Journal of Machine Learning Research, 3:1083-1106, 2003.

Bibliography XX

Guo Dong Zhou, Min Zhang, Dong Hong Ji, and Qiao Ming Zhu.

Tree kernel-based relation extraction with context-sensitive structured parse tree information.

In Proc. 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL-07), pages 728–736, Prague, Czech Republic, 2007.

Guo Dong Zhou, Long Hua Qian, and Qiao Ming Zhu.

Label propagation via bootstrapped support vectors for semantic relation extraction between named entities. Computer Speech and Language, 23(4):464–478, 2009.

Karl E. Zimmer.

Some General Observations about Nominal Compounds.

Working Papers on Language Universals, Stanford University, 5, 1971.