Lecture 7.1.

Question 4 from Lab 6

n	i	j	total
_			

Question 4. Nested Summation

Given an n, implement:

$$sum_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{i} i$$

For example, for n=4:

```
sum_ij = 1 + 2+2 + 3+3+3 + 4+4+4+4
sum_ij = 30
```

```
1 def summ(n):
2
      total = 0
3
       i = 1
4
     while i <= n:
5
          j = 1
          while j <= i:
 7
              total = total + i
 8
              j = j + 1
9
           i = i + 1
10
       return total
```