

Project Initialization and Planning Phase

Date	10 July 2024
Team ID	739837
Project Title	Sepsis Survival Minimal Clinical Records
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) Report

The proposal report aims to transform sepsis survival prediction using Machine learning, boosting efficiency and accuracy. It tackles system inefficiencies, promising better clinical outcomes, reduced risks, and happier patients. Key features include a machine learning -based decision-making.

Project Overview

Objective	The primary objective is to revolutionize sepsis survival prediction by implementing advanced machine learning techniques, ensuring faster and more accurate assessments.
Scope	The project comprehensively assesses and enhances the sepsis survival prediction process, incorporating machine learning for a more robust and efficient system.

Problem Statement

Description	Addressing inaccuracies and inefficiencies in the current sepsis survival prediction system adversely affects operational efficiency and patient outcomes.
Impact	Solving these issues will result in improved clinical efficiency, reduced risks, and an overall enhancement in the clinical decision-making process, contributing to patient satisfaction and healthcare success.

Proposed Solution

Approach	Employing machine learning techniques to analyze and predict sepsis survival, creating a dynamic and adaptable clinical prediction system.
Key Features	Implementation of a machine learning-based sepsis survival prediction model. Real time decision-making for quicker clinical interventions. Continuous learning to adapt to evolving clinical landscapes.

Resource Requirements

Resource Type	Description	Specification/Allocation
Hardware		
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU
Memory	RAM specifications	8 GB
Storage	Disk space for data, models, and logs	8 GB
Software		
Frameworks	Python frameworks	Flask

Libraries	Additional Libraries	Scikit-learn, pandas, NumPy, matplotlib, seaborn
Development	IDE	Jupiter Notebook, PyCharm
Environment		
Data		
Data	Source, size, format	Kaggle dataset