ArgonCube 2x2 Physics Study

P. P. Koller^{*1}

¹ University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland

April 11, 2019

- 6 0.1 Introduction
- 7 EM Showers
- π^0 Showers
- 9 Proton Induced Showers

 $^{{\}rm *Corresponding\ author:\ patrick.koller@lhep.unibe.ch}$

Figure 1: Fraction of kinetic shower energy (e^{\pm} mass ignored) deposited within the active detector volume.

Figure 2: Shower-containment efficiency. A shower is classed as contained if at least 90% of the kinetic shower energy (e^{\pm} mass ignored) is deposited within the active detector volume.

Figure 3: Fraction of total shower energy (including the π^0 mass) deposited within the active detector volume.

Figure 4: Shower-containment efficiency. A shower is classed as contained if at least 90% of the total shower energy (including the π^0 mass) is deposited within the active detector volume.

Figure 5: Fraction of initial proton kinetic energy deposited within the active detector volume.

Figure 6: Shower-containment efficiency. A shower is classed as contained if at least 90% of the initial proton kinetic energy is deposited within the active detector volume.