Implementing the Adaptation Procedure in Misinformation Games

Merkouris Papamichail, Constantinos Varsos, Giorgos Flouris

Information Systems Laboratory, Institute of Computer Science Foundation for Research and Technology-Hellas

SETN 2022, Corfu 7-9 September

Table of Contents

- Preliminaries
 - Motivation
 - Misinformation Games
 - Natural Misinformed Equilibria
- 2 Adaptation Procedure
 - Introduction
 - Update Operation
 - Recursive definition
 - Stable Misinformed Equilibria

- 3 Algorithm
 - The Problem
 - Adaptation Graph
 - Algorithm
- 4 Conclusions & Future Work
- Appendix
 - Experiments
 - Logic Programming
 - MG-Pool Data Structure
 - Bibliography

Table of Contents

- Preliminaries
 - Motivation
 - Misinformation Games
 - Natural Misinformed Equilibria
- 2 Adaptation Procedure
 - Introduction
 - Update Operation
 - Recursive definition
 - Stable Misinformed Equilibria

- Algorithm
 - The Problem
 - Adaptation Graph
 - Algorithm
- 4 Conclusions & Future Work
- 6 Appendix
 - Experiments
 - Logic Programming
 - MG-Pool Data Structure
 - Bibliography

SETN 2022

Classic Game Theory: Normal Form Games

- We have n agents (players).
- ② Each player has a finite number of strategies S_i , $i \in [n]$.
- The players can play:
 - either one of their strategies deterministically (pure strategy),
 - or chose randomly from a subset of strategies (mixed strategy).
- **①** With Σ_i , $i \in [n]$ we denote the set of mixed strategies.
- The game is played in a single turn.
- **o** Each player chooses a mixed strategy *simultaneously*.
- The players are getting payed from mutually known n-dimensional payoff matrices $P^i \in \mathbb{R}^{|S_i| \times |S_2| \times \cdots \times |S_n|}, i \in [n]$.
- **3** A strategy profile $\sigma \in \Sigma_1 \times \cdots \times \Sigma_n$ characterises a strategic state.
- The behaviour of the players is predicted by the Nash Equilibria (NE).
- Theorem: A Nash Equilibrium always exists [1].

What happens if the players are *misinformed* about their expected payoffs?

Misinformation Games

A (canonical) Misinformation Game [2] (MG) is:

- **1** A tuple of n+1 NFGs, i.e. $mG = \langle G^0, G^1, \dots, G^n \rangle$.
- ② G^0 is called *objective* or *actual* game.
- **3** We call games G^i , $i \in [n]$ subjective.
- Each player, in each game has the same strategy set.
- **5** All G^i s differ *only* in the payoff matrices P^i .
- Player i only knows about her subjective payoff matrix Pi.

6/31

Predicting the Behaviour of the Misinformed Players

- Consider a strategy profile $\sigma = (\sigma_1, \dots, \sigma_n)$, where for each player i:
 - There is a Nash Equilibrium τ of the subjective game G^i .
 - Player *i* plays σ_i in the NE τ , i.e. $\tau = (\sigma_i, \sigma_{-i})$.
- We call σ a Natural Misinformed Equilibrium (NME).
- We assume that NMEs predict the behaviour of the players under misinformation.

Corollary: Every Misinformation game has a Natural Misinformed Equilibrium.

Consider the Misinformation Game $mG = \langle G^0, G^1, G^2 \rangle$ with payoff matrices

$$P^{0} = \begin{pmatrix} (5,1) & (3,1) \\ (4,5) & (1,0) \end{pmatrix}, P^{1} = \begin{pmatrix} (3,6) & (0,6) \\ (3,4) & (5,3) \end{pmatrix}, P^{2} = \begin{pmatrix} (4,9) & (3,1) \\ (5,3) & (1,7) \end{pmatrix}$$

Consider the Misinformation Game $mG = \langle G^0, G^1, G^2 \rangle$ with payoff matrices

$$P^0 = \left(\begin{array}{cc} (5,1) & (3,1) \\ (4,5) & (1,0) \end{array} \right), \ P^1 = \left(\begin{array}{cc} (3,6) & (0,6) \\ (3,4) & (5,3) \end{array} \right), \ P^2 = \left(\begin{array}{cc} (4,9) & (3,1) \\ (5,3) & (1,7) \end{array} \right)$$

The Nash equilibria from G^1 and G^2 are

$$\textit{NE}(\textit{G}^1) = \{((1,0),(1,0)),((0,1),(1,0))\}, \;\; \textit{NE}(\textit{G}^2) = \{((1/3,2/3),(2/3,1/3))\}$$

Consider the Misinformation Game $mG = \langle G^0, G^1, G^2 \rangle$ with payoff matrices

$$P^0 = \left(\begin{array}{cc} (5,1) & (3,1) \\ (4,5) & (1,0) \end{array} \right), \ P^1 = \left(\begin{array}{cc} (3,6) & (0,6) \\ (3,4) & (5,3) \end{array} \right), \ P^2 = \left(\begin{array}{cc} (4,9) & (3,1) \\ (5,3) & (1,7) \end{array} \right)$$

The Nash equilibria from G^1 and G^2 are

$$\textit{NE}(\textit{G}^1) = \{(\textcolor{red}{(1,0)}, \textcolor{blue}{(1,0)}, \textcolor{blue}{(1,$$

The nmes are

$$\Sigma = NME(mG) = \{((1,0), (2/3,1/3)), ((0,1), (2/3,1/3))\}$$

Table of Contents

- Preliminaries
 - Motivation
 - Misinformation Games
 - Natural Misinformed Equilibria
- 2 Adaptation Procedure
 - Introduction
 - Update Operation
 - Recursive definition
 - Stable Misinformed Equilibria

- Algorithm
 - The Problem
 - Adaptation Graph
 - Algorithm
- 4 Conclusions & Future Work
- 6 Appendix
 - Experiments
 - Logic Programming
 - MG-Pool Data Structure
 - Bibliography

Adaptation Procedure

▶ We now let the agents *adapt* and *reconsider* from their payoffs.

Consider a game played in *multiple turns*:

- We start from a *root* Misinformation Game.
- In each turn the players choose and play a natural misinformed equilibrium.
- The players get paid from the actual game (but base their strategies on their respective subjective games).
- After receiving their payments, the players update their subjective views.
- We call this process Adaptation Procedure.

Position Vectors & Update Operation

Position Vectors:

- Consider a NME σ .
- $\chi(\sigma)$ denotes the positions of the strategies, played with *positive* probability.
- We call $\vec{v} \in \chi(\sigma)$ position vectors.

Update Operation:

- Let a position vector \vec{v} .
- ② Let $u = P^0(\vec{v})$ be the *objective* payment of the players.
- We update the subjective payoff matrices of the players Pⁱ,
 i.e. Pⁱ(v̄) ← u.
- **1** We denote the *resulting* Misinformation Game with $mG_{\vec{v}}$.

Consider the Misinformation Game $mG = \langle G^0, G^1, G^2 \rangle$ with payoff matrices

$$P^0 = \left(\begin{array}{cc} (5,1) & (3,1) \\ (4,5) & (1,0) \end{array} \right), \ \ P^1 = \left(\begin{array}{cc} (3,6) & (0,6) \\ (3,4) & (5,3) \end{array} \right), \ \ P^2 = \left(\begin{array}{cc} (4,9) & (3,1) \\ (5,3) & (1,7) \end{array} \right)$$

The Nash equilibria from G^1 and G^2 are

$$\textit{NE}(\textit{G}^1) = \{(\textcolor{red}{(1,0)}, \textcolor{blue}{(1,0)}), \textcolor{blue}{(0,1)}, \textcolor{blue}{(1,0)}\}, \;\; \textit{NE}(\textit{G}^2) = \{(\textcolor{blue}{(1/3,2/3)}, \textcolor{blue}{(2/3,1/3)})\}$$

The nmes are $\Sigma = NME(mG) = \{((1,0),(2/3,1/3)),((0,1),(2/3,1/3))\}$ and the characteristic is $\chi(\Sigma) = \{(1,1),(1,2),(2,1),(2,2)\}$

Consider the Misinformation Game $mG = \langle G^0, G^1, G^2 \rangle$ with payoff matrices

$$P^0 = \left(\begin{array}{cc} (5,1) & (3,1) \\ (4,5) & (1,0) \end{array} \right), \ \ P^1 = \left(\begin{array}{cc} (3,6) & (0,6) \\ (3,4) & (5,3) \end{array} \right), \ \ P^2 = \left(\begin{array}{cc} (4,9) & (3,1) \\ (5,3) & (1,7) \end{array} \right)$$

The Nash equilibria from G^1 and G^2 are

$$\textit{NE}(\textit{G}^1) = \{(\textcolor{red}{(1,0)}, \textcolor{blue}{(1,0)}), \textcolor{blue}{((0,1)}, \textcolor{blue}{(1,0))}\}, \;\; \textit{NE}(\textit{G}^2) = \{(\textcolor{blue}{(1/3,2/3)}, \textcolor{blue}{(2/3,1/3)})\}$$

The nmes are $\Sigma = NME(mG) = \{((1,0), (2/3,1/3)), ((0,1), (2/3,1/3))\}$ and the characteristic is $\chi(\Sigma) = \{(1,1), (1,2), (2,1), (2,2)\}$ Update at $\vec{v} = (1,1)$

$$P^{0} = \begin{pmatrix} (5,1) & (3,1) \\ (4,5) & (1,0) \end{pmatrix}, P^{1} = \begin{pmatrix} (5,1) & (0,6) \\ (3,4) & (5,3) \end{pmatrix}, P^{2} = \begin{pmatrix} (5,1) & (3,1) \\ (5,3) & (1,7) \end{pmatrix}$$

Adaptation Procedure

We define the Adaptation Procedure recursively:

$$\mathcal{AD}^t(M) = \{ \textit{mG}_{\vec{u}} \mid \textit{mG} \in \mathcal{AD}^{t-1}(M), \vec{u} \in \chi(\sigma), \sigma \in \textit{NME}(\textit{mG}) \}$$

- End Criterion: The Adaptation Procedure concludes when, $\mathcal{A}\mathcal{D}^{\ell+1}(M) = \mathcal{A}\mathcal{D}^{\ell}(M)$, for some $\ell < \infty$.
- We call length the smallest $\ell \in \mathbb{N}$, s.t. the end criterion holds. i.e. $\mathcal{AD}^{\ell+1}(S) = \mathcal{AD}^{\ell}(S)$.
- Theorem: For ever finite mG, the procedure terminates after a finite number of steps.

Predicting the Points of Stability

- Let *mG* be the *root* of the Adaptation Procedure.
- \bullet Let ℓ be the length of the Adaptation Procedure.
- Let $\widehat{mG} \in \mathcal{AD}^{\ell}(\{mG\})$.
- Also let σ be a NME of \widehat{mG} , such that: For every position vector $\overrightarrow{v} \in \chi(\sigma)$, $\widehat{mG}_{\overrightarrow{v}} = \widehat{mG}$.
- We call σ a *Stable Misinformed Equilibrium* (SME) of the Adaption Procedure on mG.

Theorem: Every Misinformation Game has a Stable Misinformed Equilibrium.

SME Example

Consider another Misinformation Game mG^* :

$$P^{0} = \begin{pmatrix} (5,1) & (3,1) \\ (4,5) & (1,0) \end{pmatrix}, P^{1} = \begin{pmatrix} (5,1) & (0,6) \\ (4,5) & (5,3) \end{pmatrix}, P^{2} = \begin{pmatrix} (5,1) & (3,1) \\ (4,5) & (1,7) \end{pmatrix}$$

We have the NMEs:

- $\sigma_1 = ((0.28, 0.72), (0, 1)), \ \chi(\sigma_1) = \{(1, 2), (2, 2)\}$
- $\sigma_2 = ((0.28, 0.72), (1, 0)), \ \chi(\sigma_2) = \{(1, 1), (2, 1)\}$

Hence, σ_2 is a Stable Misinformed Equilibrium.

Table of Contents

- Preliminaries
 - Motivation
 - Misinformation Games
 - Natural Misinformed Equilibria
- 2 Adaptation Procedure
 - Introduction
 - Update Operation
 - Recursive definition
 - Stable Misinformed Equilibria

- 3 Algorithm
 - The Problem
 - Adaptation Graph
 - Algorithm
- 4 Conclusions & Future Work
- 6 Appendix
 - Experiments
 - Logic Programming
 - MG-Pool Data Structure
 - Bibliography

The Problem

The Problem

Input: A *root* Misinformation Game mG_0 .

Output: All the SMEs of mG_0 .

(b) A more "economic" approach.

Number of Nodes: 8

Figure 1: The naive approach is inefficient.

Adaptation Graph

Adaptation Graph

Let a directed graph D = (V, A), s.t.

- $V = \cup_{\ell=1}^{\infty} \mathcal{AD}^{\ell}(\{mG_0\}),$
- and $(mG_1, mG_2) \in A$ iff $mG_2 \in \mathcal{AD}^1(mG_1)$.

Figure 2: The "minimal" tree and the corresponding graph.

Adaptation Graph: Loops, Diamonds and Terminal Nodes

The Adaptation Graph is almost a DAG.

- We can't have directed circles (the agents don't forget).
- There are loops. The agents are stabilising in this MG.
- There are diamonds. The agents may arrive to the same MG following different routes.

Terminal Nodes: We call the nodes that have at least one self-loop terminal.

Terminal Node Example

Consider *another* Misinformation Game mG^{**} :

$$P^{0} = \left(\begin{array}{cc} (5,1) & (3,1) \\ (4,5) & (1,0) \end{array} \right), \quad P^{1} = \left(\begin{array}{cc} (5,1) & (0,6) \\ (3,4) & (1,0) \end{array} \right), \quad P^{2} = \left(\begin{array}{cc} (5,1) & (3,1) \\ (5,3) & (1,0) \end{array} \right)$$

We have the NMEs:

- $\sigma_1 = ((0.44, 0.56), (1, 0)), \ \chi(\sigma_1) = \{(1, 1), (2, 1)\}$
- $\sigma_2 = ((0.44, 0.56), (0, 1)), \ \chi(\sigma_2) = \{(1, 2), (2, 2)\}$

For $\vec{v}=(1,1)$, we have $(mG^{\star\star})_{\vec{v}}=mG^{\star\star}$. Hence, $mG^{\star\star}$ is *Terminal Node. None* of σ_1,σ_2 is an SME. With L we denote the *Terminal Set*

Terminal Set & Stable Misinformed Equilibria

- The Terminal Set is a weaker notion of stability.
- For some SME σ , if $\sigma \in NME(mG)$, then $mG \in L$.
- The oposite *does not* hold.

From the above we have a strategy for computing the SMEs efficiently:

- Compute the terminal set L.
- From the terminal set, compute the SMEs.

The Algorithm

Traverse Adaptation Graph

- **1** $L \leftarrow \varnothing$ // Terminal Set
- $V \leftarrow \emptyset$ // Visited
- \bigcirc $Q \leftarrow \{mG_0\}$ // Queue
- \bullet while $Q \neq \varnothing$:

 - for each position vector $\vec{v} \in \chi(\mathsf{NME}(mG))$:
 - $\mathbf{0} \quad mG' \leftarrow (mG)_{\vec{v}}$
 - ② if mG' = mG: $L \leftarrow L \cup \{mG'\}$
- o return L

Compute SMEs

- **2** for each $mG \in L$:
 - for each $\sigma \in NME(mG)$
 - $\begin{array}{l} \textbf{if for all position} \\ \textit{vectors } \vec{v} \in \\ \chi(\sigma) \textit{mG} = (\textit{mG})_{\vec{v}} \text{:} \\ \textit{SME} \leftarrow \textit{SME} \cup \{\sigma\} \\ \end{array}$
- return SME

Table of Contents

- Preliminaries
 - Motivation
 - Misinformation Games
 - Natural Misinformed Equilibria
- 2 Adaptation Procedure
 - Introduction
 - Update Operation
 - Recursive definition
 - Stable Misinformed Equilibria

- Algorithm
 - The Problem
 - Adaptation Graph
 - Algorithm
- 4 Conclusions & Future Work
- 5 Appendix
 - Experiments
 - Logic Programming
 - MG-Pool Data Structure
 - Bibliography

Conclusions & Future Work

Conclusions

- We considered a model of non-cooperative games with misinformation.
- We presented an adaptation procedure in the above setting.
- We gave the first non-trivial algorithm for computing the stabilising points of the procedure.

Future Work

- Can the algorithm be fully parallelized?
- What is the complexity of computing a single SME?
- Can approximate techniques for finding NE improve the complexity?

Thank you for your time!

Thank you for your time!

I'll be happy to answer your questions :)

Table of Contents

- Preliminaries
 - Motivation
 - Misinformation Games
 - Natural Misinformed Equilibria
- 2 Adaptation Procedure
 - Introduction
 - Update Operation
 - Recursive definition
 - Stable Misinformed Equilibria

- 3 Algorithm
 - The Problem
 - Adaptation Graph
 - Algorithm
- 4 Conclusions & Future Work
- 6 Appendix
 - Experiments
 - Logic Programming
 - MG-Pool Data Structure
 - Bibliography

SETN 2022

Efficiency Experiments

		slow	mode	fast mode		
	no. strategy profiles	total time	CPU time	total time	CPU time	
2-pl.	2 × 2	0.170s	0.050s	0.151s	0.045s	
	3×2	0.439s	0.090s	0.437s	0.090s	
	3×3	0.883s	0.134s	1.129s	0.154s	
	4×3	68.81s	12.658s	31.373s	3.791s	
	4×4	_	_	3634.635s	454.232s	
3-pl.	$2 \times 2 \times 2$	_	_	26.963s	0.563s	

Properties of the Adaptation Procedure

mode	no. strategy profiles	no. nodes	no. unique <i>mG</i> s	no. leafs	no. (unique <i>mG</i> s ∧ leafs)	no. smes
slow	2×2	13.667	4.000	8.667	2.333	4.667
	3×2	20.333	7.333	11.667	6.000	2.000
	3×3	42.333	9.000	29.333	7.667	1.333
	4×3	9008.0	181.667	4694.00	144.00	4.000
fast	2 × 2	9.667	4.000	5.000	2.333	4.667
	3×2	17.667	7.333	9.333	6.000	2.000
	3×3	28.000	9.000	17.333	7.667	1.333
	4×3	543.00	180.00	191.667	143.00	4.000
	4×4	46285.333	9950.333	26830.667	9392.333	1584.667

Update Operation: Logic Program

Update Operation

- v(G, P, SP, V) :- pos(SP), u(0, P, SP, U), V = U.
 % the new payoff function if pos(SP).
- v(G, P, SP, V) :- not pos(SP), u(G, P, SP, U), V = U.
 % the new payoff function if not pos(SP)
- o changed :- v(G, P, SP, V), u(G, P, SP, U), V != U.
 unchanged :- not changed.
 - % check if child-mG != parent-mG

MG-Pool Data Structure

Figure 3: The MG-Pool Data Structure.

Bibliography

J. F. Nash, Non-cooperative games, The Annals of Mathematics, 54 (1951), pp. 286–295.

C. VARSOS, G. FLOURIS, M. BITSAKI, AND M. FASOULAKIS, *A study of misinformation games*, in PRICAI 2021, vol. 13031, 2021, pp. 76–87.

