Formal Languages and Abstract Machines Take Home Exam 2

Ugur Duzel 2171569

1 Context-Free Grammars

(10 pts)

a) Give the rules of the Context-Free Grammars to recognize strings in the given languages where $\Sigma = \{a, b\}$ and S is the start symbol.

$$L(G) = \{ w \mid w \in \Sigma^*; \ |w| \ge 3;$$
 the first and the second from the last symbols of w are the same \} (2/10 \text{ pts})

$$R = \{S \to Xaa|Xbb, X \to Ya|Yb, Y \to Ya|Yb|e\} \text{ where } X, Y \in V - \Sigma$$

$$L(G) = \{ w \mid w \in \Sigma^*; \text{ the length of w is odd} \}$$
 (2/10 pts)

$$R = \{S \rightarrow aX|bX, \ X \rightarrow aS|bS|e\}$$
 where $X \in V - \Sigma$

 $L(G) = \{w \mid w \in \Sigma^*; \ n(w, a) = 2 \cdot n(w, b)\}$ where n(w, x) is the number of x symbols in w (3/10 pts)

3 possible orderings we accept, (aab, aba, baa) and also e. We need to permute them in every possible way.

$$R = \{S \to Saab|aSab|aaSb|X|Y|e,$$

$$X \to Xaba|aXba|abXa|S|Y,$$

$$Y \to Ybaa|bYaa|baYa|S|X\} \quad \text{where } X, Y \in V - \Sigma$$

$$(1)$$

$$\begin{split} S &\to X \mid Y \\ X &\to aXb \mid A \mid B \\ A &\to aA \mid a \\ B &\to Bb \mid b \\ Y &\to CbaC \\ C &\to CC \mid a \mid b \mid \varepsilon \end{split}$$

$$L(G) = \{a^{n}b^{m} \mid n \neq m, \ 0 < n + m; \ n, m \in \mathbb{N}\} \cup \{a^{k}ba^{k+1} \mid 0 \leq k, \ k \in \mathbb{N}\} \cup \{b^{k+1}ab^{k} \mid 0 \leq k, \ k \in \mathbb{N}\}$$

$$= \{a^{n}b^{m} \mid n \neq m, \ 0 < n + m; \ n, m \in \mathbb{N}\} \cup \{w \mid w \in \Sigma^{*}; \ \text{w contains ba }\}$$

$$(2)$$

2 Parse Trees and Derivations

(20 pts)

Given the CFG below, provide parse trees for given sentences in **a** and **b**.

```
S \rightarrow NP VP

VP \rightarrow V NP | V NP PP

PP \rightarrow P NP

NP \rightarrow N | D N | NP PP

V \rightarrow wrote | built | constructed

D \rightarrow a | an | the | my

N \rightarrow John | Mary | Jane | man | book | automata | pen | class

P \rightarrow in | on | by | with
```

a) Jane constructed automata with a pen

(4/20 pts)

b) my book in the man built a Jane by a pen

(4/20 pts)

Given the CFG below, answer c, d and e

c) Provide the left-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

 $S\Rightarrow E\Rightarrow E-T\Rightarrow T-T\Rightarrow I-T\Rightarrow 7-T\Rightarrow 7-T*I\Rightarrow 7-I*I\Rightarrow 7-4*I\Rightarrow 7-4*3$! The parse tree is identical to the parse tree in part d. (I was not able to paste it here as well due to some tcolorbox error I couldn't solve)

d) Provide the right-most derivation of 7 - 4 * 3 step-by-step and plot the final parse (4/20 pts) tree matching that derivation

e) Are the derivations in c and d in the same similarity class? (4/20 pts)

Yes. If we have to elaborate, we can go from c to d or from d to c by repeatedly following either a \prec , or an inverted \prec .

Also, we can say that if two derivations have the same parse tree then they are in the same similarity class. In this case both c and d have the same parse tree.

3 Pushdown Automata

(30 pts)

a) Find the language recognized by the PDA given below

(5/30 pts)

where the transition $((q_i, \alpha, \beta), (q_j, \gamma))$ is represented as:

$$\overbrace{q_i} \xrightarrow{\alpha,\beta \to \gamma}
\overbrace{q_j}$$

$$L=\{x^ny^nz^m\mid n,m\geq 0;\ n,m\in\mathbb{N}\}\cup\{x^ny^mz^n\mid n,m\geq 0;\ n,m\in\mathbb{N}\}$$

b) Design a PDA to recognize language $L = \{x^n y^{m+n} x^m \mid n, m \ge 0; n, m \in \mathbb{N}\}$ (5/30 pts)

c) Design a PDA to recognize language $L = \{x^n y^m \mid n < m \le 2n; n, m \in \mathbb{N}^+\}$ (10/30 pts) Do not use multi-symbol push/pop operations in your transitions. Simulate the PDA on strings xxy (with only one rejecting derivation) and xxyyyyy (accepting derivation)

tion) with transition tables. $M = (K, \Sigma, \Gamma, \Delta, q_0, \{q_6\})$ where $K = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$ and $\Sigma = \{a, b\}$ $\Delta = \{((q_0, \varepsilon, \varepsilon), (q_1, \#)), (1)\}$ $((q_1, x, \varepsilon), (q_2, x)), (2)$ $((q_2, \varepsilon, \varepsilon), (q_1, x)), (3)$ $((q_1, y, x), (q_3, x)), (4)$ $((q_3, y, x), (q_4, \varepsilon)), (5)$ (3) $((q_4,\varepsilon,x),(q_3,\varepsilon)), (6)$ $((q_3, y, x), (q_5, \varepsilon)), (7)$ $((q_5, y, x), (q_3, \varepsilon)), (8)$ $((q_3,\varepsilon,\#),(q_6,\varepsilon))\}$ (9) (8) $y, x \rightarrow \varepsilon$ (7) $y, x \rightarrow \varepsilon$ $(4) y, x \rightarrow x$ (2) $x, \varepsilon \rightarrow x$ (3) ε , $\varepsilon \to x$ (5) $y, x \rightarrow \varepsilon$ (6) ε , $x \to \varepsilon$

State	Unread Input	Stack	Transition
q_0	xxy	e	-
q_1	xxy	#	1
q_2	xy	x#	2
q_1	хy	xx#	3
q_2	У	xxx#	2
q_1	У	xxxx#	3
q_3	e	xxxx#	4

Input xxy is not accepted.

$\underline{\mathbf{State}}$	Unread Input	$\underline{\mathbf{Stack}}$	Transition
q_0	xxyyyy	e	-
q_1	xxyyyy	#	1
q_2	хуууу	x#	2
q_1	хуууу	xx#	3
q_2	уууу	xxx#	2
q_1	уууу	xxxx#	3
q_3	ууу	xxxx#	4
q_4	уу	xxx#	5
q_3	уу	xx#	6
q_5	y	x#	7
q_3	е	#	8
q_6	е	e	9

Input xxyyyy is accecpted.

d) Given two languages L' and L as $L' = \{w \mid w \in L; |w| = 4n + 2 \text{ for } n \in \mathbb{N}\}$ (10/30 pts) If L is a CFL, show that L' is also a CFL by constructing an automaton for L' in terms of another automaton that recognizes L.

The given language $L' = L \cap L''$ where $L'' = \{w \mid |w| = 4n + 2 \text{ for } n \in \mathbb{N}\}.$

Lets say that $L = L(M_1)$ for some pushdown automaton $M_1 = (K_1, \Sigma, \Gamma_1, \Delta_1, s_1, F_1)$.

Furthermore, we can easily show that L'' is a regular language by constructing a deterministic finite automaton as follows:

Let $M_2 = (K_2, \Sigma, \delta, s_2, F_2)$ where $K_2 = \{q_0, q_1, q_2, q_3\}, \Sigma = \{\sigma_1, ..., \sigma_n\}, s_2 = q_0, F_2 = \{q_2\}$

$$\delta(q_0, \sigma_i) = q_1$$

$$\delta(q_1, \sigma_i) = q_2$$

$$\delta(q_2, \sigma_i) = q_3$$

$$\delta(q_3, \sigma_i) = q_0 \text{ for any } \sigma_i \in \Sigma$$

$$(4)$$

and we say that $L'' = L(M_2)$. To illustrate,

We need to construct a pushdown automaton by combining these two automata (M_1, M_2) into a single pushdown automaton so that we can show L' is a context free language. Let this automaton be $M = (K, \Sigma, \Gamma, \Delta, s, F)$,

$$K = K_1 \times K_2$$

$$\Gamma = \Gamma_1$$

$$s = (s_1, s_2)$$

$$F = F_1 \times F_2$$
(5)

For each transition of form $((q_x, \sigma, \beta), (p_x, \gamma)) \in \Delta_1$, and for each state $q_0, q_1, q_2, q_3 \in K_2$ we add the following transition to Δ :

$$(((q_x,q_i),\sigma,\beta),((p_x,\delta(q_i,\sigma))),\gamma)$$
 for any $\sigma\in\Sigma$ and for each $q_i\in K_2=\{q_0,q_1,q_2,q_3\}$

For each transition of form $((q_x, e, \beta), (p_x, \gamma)) \in \Delta_1$, and for each state $q_0, q_1, q_2, q_3 \in K_2$ we add the following transition to Δ :

 $(((q_x,q_i),e,\beta),((p_x,q_i),\gamma)\quad\text{for any }\sigma\in\Sigma\text{ and }\underline{\text{for each}}\ q_i\in K_2=\{q_0,q_1,q_2,q_3\}$

$$\Delta = \{((q_x, q_0), \sigma, \beta), ((p_x, q_1)), \gamma)$$

$$((q_x, q_1), \sigma, \beta), ((p_x, q_2)), \gamma)$$

$$((q_x, q_2), \sigma, \beta), ((p_x, q_3)), \gamma)$$

$$((q_x, q_3), \sigma, \beta), ((p_x, q_0)), \gamma) \}$$
 for every $\beta, \gamma \in \Gamma_1$
and so on... (there may need to be additions to them depending on M_1)

We now can easily see that $w \in L(M)$ if and only if $w \in L(M_1) \cap L(M_2)$. Meaning, $L(M) = L \cap L''$ and L' = L(M).

4 Closure Properties

(20 pts)

Let L_1 and L_2 be context-free languages which are not regular, and let L_3 be a regular language. Determine whether the following languages are necessarily CFLs or not. If they need to be context-free, explain your reasoning. If not, give one example where the language is a CFL and a counter example where the language is not a CFL.

a)
$$L_4 = L_1 \cap (L_2 \setminus L_3)$$
 (10/20 pts)

 L_4 is not necessarily context-free.

 $(L_2 \setminus L_3)$ this part can be written as $(L_2 \cap L_3')$. Since L_3 is a regular language we know from the second chapter that regular languages are closed under complementation, meaning L_3' is also regular. That's why $(L_2 \cap L_3')$ can be interpreted as the intersection of a context-free language and a regular language. From the textbook Theorem 3.5.2 we know that intersection of a context-free language and a regular language is context-free language.

$$L_4 = L_1 \cap (L_2 \cap L_3')$$
= Context-free \cap (Context-free \cap Regular)
= Context-free \cap Context-free \neq Context-free (not necessarily) (7)

Not necessarily context-free because the class of context-free languages is not closed under intersection.

CFL example:

 $L_1 = a^*b^*$ is both regular and context-free because the class of regular languages is the proper subset of the class of context-free languages. $L_2 = \{a^nb^n \mid n \geq 0, n \in \mathbb{N}\}$. $L_1 \cap L_2 = \{a^nb^n \mid n \geq 0, n \in \mathbb{N}\}$ which is a context-free language.

Counter example:

 $L_1 = \{a^m b^n c^n \mid n, m \geq 0; n, m \in \mathbb{N}\}$ and $L_2 = \{a^n b^n c^m \mid n, m \geq 0; n, m \in \mathbb{N}\}.$ $L_1 \cap L_2 = \{a^n b^n c^n \mid n \geq 0, n \in \mathbb{N}\}$ which is not a context free language.

Therefore L_4 is not necessarily context-free.

b)
$$L_5 = (L_1 \cap L_3)^*$$
 (10/20 pts)

 L_5 is context-free.

From the textbook Theorem 3.5.2 we know that intersection of a context-free language and a regular language is context-free language.

In this question we see that $L_1 \cap L_3$ is context-free since L_1 is context-free and L_3 is regular. Context free languages are closed under Kleene star operation. Meaning,

$$L_5 = (L_1 \cap L_3)^*$$
= (Context-free)*
= Context-free

Therefore L_5 is indeed a context-free language.

5 Pumping Theorem

(20 pts)

a) Show that $L = \{a^n m^n t^i \mid n \le i \le 2n\}$ is not a Context Free Language using Pumping Theorem for CFLs.

(10/20 pts)

Assume that language L is a context-free language then the pumping theorem would apply. Given pumping constant $K \geq 1$,

$$w = a^K m^K t^K \in L, \quad |w| = 3K > K$$

Then by the pumping theorem w can be written as follows,

$$w = uvxyz$$
 such that $vy \neq e, \ w' = |vxy| \leq K$

Now we have two general cases,

w' contains only 1 symbol

 $\overline{w'=a^j}$

 $w' = m^j$

 $w' = t^j$ where $1 \le j \le K$

w' contains 2 symbols

 $\overline{w' = a^j m^l}$

 $w' = m^j t^l$ where $1 \le j + l \le K$

w' cannot contain at or amt because $|w'| \leq K$

By the pumping theorem we can say that $uv^n xy^n z \in L$ must be true for all $n \geq 0$,

Case 1:

 $w' = a^j$ where $1 \le j \le K$. Take n=0,

$$uxz = a^{K'}m^Kt^K$$
, where $K' < K$ therefore $uxz \notin L$

 $w' = m^j$ where $1 \le j \le K$. Take n=0,

$$uxz = a^K m^{K'} t^K$$
, where $K' < K$ therefore $uxz \notin L$

 $w' = t^j$ where $1 \le j \le K$. Take n=0,

$$uxz = a^K m^K t^{K'}$$
, where $K' < K$ therefore $uxz \notin L$

Case 2:

 $w' = a^j m^l$ where $1 \le j + l \le K$. Take n=0,

$$uxz = a^{K'}m^{K''}t^K$$
, where $K' < K$ and $K'' < K$ therefore $uxz \notin L$

 $w' = m^j t^l$ where $1 \le j + l \le K$. Take n=0,

$$uxz = a^K m^{K'} t^{K''}$$
, where $K' < K$ and $K'' < K$ therefore $uxz \notin L$

There exists a contradiction with the assumption we made.

Therefore, L is not context-free.

b) Show that $L = \{a^n b^{2n} a^n \mid n \in \mathbb{N}+\}$ is not a Context Free Language using Pumping Theorem for CFLs. (10/20 pts)

Assume that language L is a context-free language then the pumping theorem would apply. Given pumping constant $K \geq 1$,

$$w = a^K b^{2K} a^K \in L, \quad |w| = 4K > K$$

Then by the pumping theorem w can be written as follows,

$$w = uvxyz$$
 such that $vy \neq e$, $w' = |vxy| \leq K$

Now we have two general cases,

w' contains only 1 symbol

 $\overline{w'=a^j}$

 $w' = b^j$ where $1 \le j \le K$

w' contains 2 symbols

 $\overline{w' = a^j b^l}$

 $w' = b^j a^l$ where $1 \le j + l \le K$

w' cannot contain aa or aba because $|w'| \leq K$

By the pumping theorem we can say that $uv^n xy^n z \in L$ must be true for all $n \geq 0$,

Case 1:

 $w' = a^j$ where $1 \le j \le K$. Take n=0.

 $uxz = a^{K'}b^{2K}a^{K}$ or $uxz = a^{K}b^{2K}a^{K'}$, for both of the cases K' < K therefore $uxz \notin L$

 $w' = b^j$ where 1 < j < K. Take n=0,

$$uxz = a^K b^T a^K$$
, where $T < 2K$ therefore $uxz \notin L$

Case 2:

 $w' = a^j b^l$ where $1 \le j + l \le K$. Take n=0,

$$uxz = a^{K'}b^Ta^K$$
, where $K' < K$ and $T < 2K$ therefore $uxz \notin L$

 $w' = b^j a^l$ where $1 \le j + l \le K$. Take n=0,

$$uxz = a^K b^T a^{K'}$$
, where $K' < K$ and $T < 2K$ therefore $uxz \notin L$

There exists a contradiction with the assumption we made.

Therefore, L is not context-free.