

AS "ALFA RPAR" Joint Stock Company ALFA

Riga, Latvia www.alfarzpp.lv; alfa@alfarzpp.lv

AS3320 - Voltage controlled filter (VCF)

FEATURES APPLICATIONS for electronic music voltage controllable frequency - 12 octave range

- voltage controllable resonance from zero to
- oscillation
- accurate exponential frequency scale
- accurate linear resonance scale
- low control voltage feedthrough -45dB typical
- filter configurable into LPF, HPF, all pass, etc.
- low noise: -86dB typical
- low distortion in passband 0.1% typical
- low warm up drift
- configurable into low distortion voltage controlled sine wave oscillator
- bandwidth till 800kHz

General Description

The AS3320 is a high performance voltage controlled four-pole filter with on-chip voltage controllable resonance IC. The four independent sections may be interconnected to provide a wide variety of filter responses, such as low pass, high pass, band pass and all pass. A single input exponentially controls the frequency over greater than a ten octave range with little control voltage feedthrough. Another input controls the resonance in a modified linear manner from zero to low distortion oscillation. For those demanding applications, provision has been made to allow trimming for improved control voltage rejection. Each filter section features a variable gain cell which is fully temperature compensated, exhibits a better signal-to-noise ratio and generates its low distortion predominantly in the second harmonic. The device includes a minus two volt regulator to ensure low power dissipation and consequent low warm-up drift.

Power pad in QFN package highly improves thermal stability of parameters of AS3320F.

Pin Information

PDIP-18	QFN-24L	Pin	Description	
Pin No	Pin No	Name	•	
1	4	IN1	Input Stage 1	
2	5	IN2	Input Stage 2	
3	7	GND	Ground	
4	8	Cap2	Capacitor Stage 2	
5	9	Cap1	Capacitor Stage 1	
6	11	Out2	Output Stage 2	
7	12	Out1	Output Stage 1	
8	14	Vres	Resonance Input	
9	15	Ires	Resonance Control Input	
10	16	Out4	Output Stage 4	
11	17	Cap4	Capacitor Stage 4	
12	19	V _{CFI}	Voltage Control Frequency Input	
13	20	Vee	Negative power	
14	22	Vcc	Positive power	
15	23	Out3	Output Stage 3	
16	24	Cap3	Capacitor Stage 3	
17	2	IN3	Input Stage 3	
18	3	IN4	Input Stage 4	
-	Power pad	Power pad	Don't connect	

Circuit Block and Connection Diagram (PDIP-18)

Absolute Maximum Ratings

Voltage between Vcc and Vee pins +22V, -0,5V Voltage between Vcc and GND pins +18V, -0,5V Voltage between Vee and GND pins -4V, -0,5V Voltage between Cell Input and GND pins +0,5V, -6V Voltage between Frequency Control and GND pins ±6V Voltage between Resonance Control and GND pins +2V, -18V Current through any pin +40mA Storage Temperature Range - 55°C to 150°C **Operating Temperature Range** - 25°C to 75°C

AS "ALFA RPAR" Joint Stock Company ALFA

Riga, Latvia www.alfarzpp.lv; alfa@alfarzpp.lv

Electrical Characteristics *

 V_{CC} =+15 V_{F} = 100 K_{F} = 25 $^{\circ}C$

Parameter	Min.	Тур.	Max.	Units
Gain of Variable Gain Cell at V _{CFI} =0	0.7	1	1,3	
Input Bias Current of Frequency Control Input	0.2	1	1.5	μА
Input Impedance of Resonance Signal Input	2.7	3.6	4.5	ΚΩ
Output Swing At Clipping	10	12	14	V.P.P.
Output voltage DC ¹	5	6.5	9	V
Buffer Input Bias Current	±10	±30	±100	nA
Buffer Output Impedance ²	25	50	100	Ω
Voltage at the negative supply pin ³	-2.4	-2.7	-2.9	V
Positive Supply Current, I _{CC}	3.8	5	6.5	mA
Negative Supply Current, I _{EE} ³	8	8.4	8.8	mA

Typical Electrical Characteristics

Parameter	Min.	Тур.	Max.	Units
Pole Frequency Control Range 4	3500:1	10,000:1	-	
Sensitivity of Pole Frequency Control Scale, Midrange	57.5	60	62.5	mV/decade
Tempco of Pole Frequency Control Scale	3000	3300	3600	ppm
Exponential Error of Pole Frequency Control Scale ⁵	-	4	12	%
Max Gain of Variable Gain Cell	2.4	3	3.6	
Tempco of Variable Gain Cell ⁶	-	500	1500	ppm
Output Impedance of Gain Cell ⁶	0.5	1	2	ΜΩ
Pole Frequency Control Feedthrough	-	60	200	mV
Pole Frequency Warm-up Drift	-	0.5	1.5	%
Gm of Resonance Control Element at Icr=100µA	0.8	1	1.2	mmhos
Amount of Resonance Obtainable Before Oscillation	20	30	-	dB
Resonance Control Feedthrough ⁷	-	0.2	1,5	V
Output Noise re Max Output 8	-76	-86	-	dB
Rejection in Bandreject	73	83	-	dB
Distortion in Passband ^{9,11}	-	0.1	0.3	%
Distortion in Bandreject 10,11	-	0.3	1	%
Distortion of Sine Wave Oscillation 12	-	0.5	1.5	%
Internal Reference Current, I _{REF}	45	63	85	μА
Buffer Slew Rate	1.5	3	-	V/μS
Buffer Sink Capability	0.4	0.5	0.63	mA
Positive Supply Range, V _{CC}	+9	-	+18	V
Negative Supply Range, V _{EE} ³	-4	-	-18	V

*) Specifications subject to change without notice.

Note 1: $V_{IN} = 0$, $R_C = 91K\Omega$, $R_F = 100K\Omega$

Note 2: $V_{CFI} = 0$

Note 3: Current limiting resistor always required. $R_{EE} = (1.5 \div 2.2) K\Omega$

Note 4: -20mV < V_{CFI} < +160mV

Note 5: -16mV < V_{CFI} < +176mV. Most of this error occurs in upper two octaves. Note 6: V_{CFI} = 0

Note 7: Untrimmed. 0 < ICR < 100µA

Note 8: Filter is connected as low pass and set for 20 KHz cut-off frequency.

Note 9: Output signal is 3dB below clipping point.

Note 10: Output signal is 3dB below passband level, which is 3dB below clipping point. In general, this is worst case condition.

Note 11: Distortion is predominantly second harmonic.

Note 12: Sinewave is not clipped by first stage.

R

AS "ALFA RPAR" Joint Stock Company ALFA

Riga, Latvia www.alfarzpp.lv; alfa@alfarzpp.lv

Device type	Package		
AS3320	PDIP-18 (300 mil body)		
AS3320F	QFN-24L (4*4 mm 0.5 mm)		

Package Information

PDIP-18 (300 mil)

QFN-24 4x4 mm 0.5 mm

Revision history

SIDE VIEW-2

Date	Revision	Changes	
05-Oct-2016	1	Short version 1	
09-Jan-2017	2	QFN-24L – new package	
20-Mar-2017	3	Drawing and typical electrical characteristics updated	
09-May-2017	4	Block circuit and typical electrical characteristics updated	
29-May-2017	5	Minor changes	
21-May-2018	6	Minor changes	