Inventory Formulas

Basic E.O.Q. (Economic Oreder Quantity)

D Annual demand	D	Annual	demand
-----------------	---	--------	--------

Annual holding cost.

 c_h Annual holding cost. c_o Ordering cost. Q Order quantity. Q^* Optimal order quantity TC Total annual inventory cost.

$$TC = c_h \frac{Q}{2} + c_o \frac{D}{Q};$$

$$Q^* = \sqrt{\frac{2Dc_o}{c_h}};$$

 $TC = c_h \frac{Q}{2} + c_o \frac{D}{Q};$ $Q^* = \sqrt{\frac{2Dc_o}{c_h}};$ Ordering $\frac{D}{Q^*}$ times a year.

Discount Pricing

Q	TC	Purchase $cost \times D$	Total

Stochastic Demand

7	T) '1 1 1
d	Daily demand

Reordering point.

Ex Extra cost per year.

$$R = Ld + z\sigma\sqrt{L};$$
 $Ex = c_h \times z\sigma\sqrt{L}$

Production Model

P	Daily production rate of Machine I

Daily demand by Machine II.

Daily holding cost.

Set-up cost.

Order quantity.

Optimal order quantity

Total daily inventory cost.

$$TC = c_h \frac{Q}{2} \left(1 - \frac{D}{P} \right) + c_o \frac{D}{Q}; \qquad Q^* = \sqrt{\frac{2Dc_o}{c_h \left(1 - \frac{D}{P} \right)}}; \qquad \text{Production time } \frac{Q^*}{P}; \qquad \text{Idle time } \frac{Q^*}{D} - \frac{Q^*}{P}.$$