ELC 2137 Lab 08: 4-digit Display

Yiting Wang

October 21, 2020

Summary

Type the summary of your experiment and results here.

Q&A

There is no question in the lab 08 assignment.

Results

Firgure 1 is the simulation waveform and ERT of the mux2.

Figure 1: the simulation waveform and ERT of the mux2

Firgure 2 is the simulation waveform and ERT of the mux4.

.

Firgure 3 is the simulation waveform and ERT of the anode decoder.

.

Time (ns):	0	10	20	600	610	620	630
Bin	000000	000001	000010	111100	111101	111110	111111
ones tens	0000	0001 0000		0000 0110		0010 0110	0011 0110

Value	0.000 ns	10.000 ns	20.000 ns	30.000 ns 40	
3	0	1	2	3	
7	e	d d	ь	7	
00000004	00000000	00000001	00000002	00000003	
	3	3 0 0 7 e	3 0 1 7 e d	3 0 1 2 7 7 e d b	

Figure 2: the simulation waveform and ERT of the mux4

Time (ns):	0	10	20	30	40	50	20430	20440	20450	20460
Bin	000	001	002	003	004	005	$7 \mathrm{fb}$	$7 \mathrm{fc}$	7fd	7fe
ones	0000	0001	0010	0011	0100	0101	0011	0100	0101	0110
tens	0000	0000	0000	0000	0000	0000	0100	0100	0100	0100
hund	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
thou	0000	0000	0000	0000	0000	0000	0010	0010	0010	0010

Figure 3: the simulation waveform and ERT of the anode decoder

Code

Listing 1: mux2 Verilog code

```
(
  input [BIT-1:0] in1,
  input [BIT-1:0] in0,
  input sel,
  output [BIT-1:0] out
  );
  assign out = sel ? in1 : in0;
endmodule
```

Listing 2: mux2 Test Benches Verilog code

```
'timescale 1ns / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/15/2020
  module mux2_test();
localparam BIT=4;
  reg [BIT-1:0] in1_t, in0_t;
  reg sel_t;
  wire [BIT-1:0] out_t;
  mux2 dut(
   .in1(in1_t),
   .in0(in0_t),
   .sel(sel_t),
   .out(out_t)
  );
   initial begin
      in1_t = 16'h1111; in0_t = 16'h0000; sel_t = 0; #10;
      sel_t = 1; #10;
      in1_t = 16'h1013; in0_t = 16'h0105; sel_t = 0; #10;
      sel_t = 1; #10;
      $finish;
   end
endmodule
```

Listing 3: mux4 Verilog code

```
'timescale 1ns / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/15/2020
  module mux4
  #(parameter BIT=4)
  input [BIT-1:0] in3, in2, in1, in0,
  input [1:0] sel,
  output reg [BIT-1:0] out
  );
  always @*
     case(sel)
        2'b11: out = in3;
        2'b10: out = in2;
        2'b01: out = in1;
        default: out = in0;
     endcase
endmodule
```

Listing 4: mux4 Test Benches Verilog code

```
.sel(sel_t),
.out(out_t)
);
integer i;
initial begin
    in3_t = 16'h1111; in2_t = 16'h0000; in1_t = 16'h1013; in0_t = 16'
        h0105;
    for (i=0; i<=8'h3; i=i+1) begin
        sel_t = i;
        #10;
    end
    $finish;
end</pre>
```

Listing 5: anode decoder Verilog code

```
'timescale 1ns / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/15/2020
  module anode_decoder(
  input [1:0] in,
  output reg [3:0] out
  );
  always @*
     case(in)
       2'b11: out = 4'b0111;
       2'b10: out = 4'b1011;
       2'b01: out = 4'b1101;
       default: out = 4'b1110;
     endcase
endmodule
```

Listing 6: anode decoder Test Benches Verilog code

```
'timescale 1ns / 1ps
```

```
// Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/15/2020
  module anode_decoder_test();
  reg [1:0] in_t;
  wire [3:0] out_t;
  anode_decoder dut(
  .in(in_t),
  .out(out_t)
  );
  integer i;
  initial begin
     for (i=0; i<=8'h3; i=i+1) begin
       in_t = i;
       #10;
     end
     $finish:
  end
endmodule
```

Listing 7: sseg4 Verilog code

```
input clk,
output reg [6:0] seg,
output dp,
output reg [3:0] an
);
wire [15:0] out_bcd11, out_mux2;
wire [3:0] out_mux4;
wire [6:0] out_sseg_decoder;
bcd11 dut0(
    .in(data[10:0]),
    .ones(out_bcd11[3:0]), .tens(out_bcd11[7:4]), .hund(out_bcd11
       [11:8]), .thou(out_bcd11[15:12])
);
mux2 dut1(
    .in1(data), .in0(out_bcd11), .sel(hex_dec),
    .out(out_mux2)
);
mux4 dut2(
    .in3(out_mux2[15:12]),
    .in2(out_mux2[11:8]),
    .in1(out_mux2[7:4]),
    .in0(out_mux2[3:0]),
    .sel(digit_sel),
    .out(out_mux4)
);
sseg_decoder dut3(
    .num(out_mux4),
    .sseg(out_sseg_decoder)
);
anode_decoder dut4(
    .in(digit_sel),
    .out(an)
);
wire nan;
assign nan = ~an[3];
wire sel_mux2;
assign sel_mux2 = sign & nan;
mux2 dut5(
    .in1(7'b0111111), .in0(out_sseg_decoder), .sel(sel_mux2),
    .out(seg)
);
```

```
assign dp = 1;
assign clk = 1;
endmodule
```

Listing 8: sseg4 manual Verilog code

```
'timescale 1ns / 1ps
  // Company: ELC 2137
// Engineer: Yiting Wang
// Create Date: 10/15/2020
  module sseg4_manual(
  input [15:0] sw,
  input clk,
  output [6:0] seg,
  output dp,
  output [3:0] an
  );
  sseg4 my_sseg(
     .data({ 4'b0000, sw[11:0] }), .hex_dec(sw[15]), .sign(sw[14]), .
       digit_sel(sw[13:12]), .clk(clk),
     .seg(seg), .dp(dp), .an(an)
  );
endmodule
```