Tочната формула за оценка се формира в зависимост от резултатите. За приблизителна, може да използвате 2+ брой точки. Време за работа: 3 часа. Успех.

Ще считаме, че навсякъде работим върху вероятностно пространство $(\Omega, \mathcal{F}, \mathbb{P})$.

Задача 1. Играч в "Треска за злато" ¹ пуска топче в пирамидата на късмета в най-горния триъгълник, като то пада в един от долните два с равна вероятност.

- 1. (0.5 т.) Каква е разпределението и очакваната печалба при едно пускане?
- 2. (0.5 т.) Ако регламентът е, че имате право да пускате топчета докато някое попадне при печалба 1000лв, колко средно топчета ще пуснете? Колко ще е очакваната Ви печалба?
- 3. (0.5 т.) При началната наредеба водещият Ви предлага да пермутира случайно печалбите. Бихте ли се съгласили или бихте останали с началното разпределение? А как бихте наредили печалбите, ако имахте тази възможност?

Поради различни аномалии се усъмнявате, че топчето пада вляво/вдясно с равна вероятност. Нека p е вероятността да се отклони наляво.

- 4. (0.25 т.) Пускате 3 топчета и те се озовават при печалба 100 лв. Кое е това p, за което това е най-вероятно?
- 5. (0.5 т.) Получавате информация, че предаването разполага с две пирамиди: една с p=1/2 и една с p=1/3. Тъй като не знаете коя използват в момента, можете да приемете, че вероятността е равна за коя да е от тях. Ако при две пускания топчетата се озовават по средата (700 лв), каква е апостериорната вероятност да е избрана машината с p=1/3

Задача 2. (1 т.) Някои от стандартните разпределения, с които сме се запознали са $Ber(p), Bin(n, p), Ge(p), Poi(\lambda)$.

Нека X_1 и X_2 са независими и еднакво разпределени случайни величини с някой от горните закони (т.е. имаме 4 различни възможности). Изпълнено ли е, че X_1X_2 или X_1+X_2 имат същия тип разпределение като X_1 (евентуално с други параметри)? Аргументирайте се напълно.

Ако отговорът е не във всички случаи, можете ли да дадете пример, в който имаме подобна ситуация?

Задача 3. Нека X_1, X_2 и X_3 са независими и еднакво разпределени сл. вел. с очакване μ и дисперсия σ^2 . Страничен наблюдател иска да оцени очакването $\mathbb{E} f := \mathbb{E} f(X_1, X_2, X_3)$, но вижда една тяхна реализация: (x_1, x_2, x_3) . Една възможност е да оцени $\mathbb{E} f$ чрез $f(x_1, x_2, x_3)$. Друга такава е да опита изкуствено да увеличи наблюденията си, като разгледа и допълнителни три наредби $(x_2, x_1, x_3), (x_3, x_2, x_1)$ и (x_1, x_3, x_2) и осредни резултата и по тях. Преценете има ли разлика в точността на оценките от двете процедури, като пресметнете съответните очаквани стойности и дисперсии, ако:

- 1. $(0.1 \text{ T.}) f(X_1, X_2, X_3) = X_1 + X_2 + X_3;$
- 2. $(0.2 \text{ T.}) f(X_1, X_2, X_3) = X_1 + X_2 X_3;$
- 3. (0.7 T.) $f(X_1, X_2, X_3) = X_1X_2 X_3$.

Пример: При наблюдение (3,8,1), за функцията в точка 3, едната оценка е $3\cdot 8-1=23$, а другата, след добавянето на (8,3,1),(1,8,3) и (3,1,8) е $((3\cdot 8-1)+(8\cdot 3-1)+(1\cdot 8-3)+(3\cdot 1-8))/4=11.5$

¹https://bit.ly/3nRl2pG, https://bit.ly/3Bc0bj0.