Chapitre 29

Groupe symétrique

29	Groupe symétrique	1
2	29.26Lemme 26	2
2	29.29Propriété fondamentale de la signature	2

29.26 Lemme 26

Lemme 29.26

Soit $\sigma \in \mathcal{S}_n$. On a :

$$\left| \prod_{1 \le i < j \le n} (\sigma(i) - \sigma(j)) \right| = \prod_{X \in \mathcal{P}_2(\llbracket 1, n \rrbracket)} \delta_{\sigma}(X) = \prod_{1 \le i < j \le n} (j - i)$$

- La première égalité est justifiée car on a une bijection entre $\{(i,j) \mid 1 \le i < j \le n\}$ et $\mathcal{P}_2(\llbracket 1,n \rrbracket)$.
- La seconde égalité est justifiée d'après (28.23).

29.29 Propriété fondamentale de la signature

Théorème 29.29

La signature est un morphisme de groupe de (S_n, \circ) dans $(\{-1, 1\}, \times)$.

Montrons que $\epsilon(\sigma \circ \xi) = \epsilon(\sigma) \times \epsilon(\xi)$.

Pour $\sigma, \xi \in \mathcal{S}_n$:

$$\begin{split} \epsilon(\sigma \circ \xi) &= \frac{\prod\limits_{1 \leq i < j \leq n} (\sigma \circ \xi(j) - \sigma \circ \xi(i))}{\prod\limits_{1 \leq i < j \leq n} (j - i)} \times \frac{\prod\limits_{1 \leq i < j \leq n} (\xi(j) - \xi(i))}{\prod\limits_{1 \leq i < j \leq n} (\xi(j) - \xi(i))} \\ &= \epsilon(\xi) \times \prod\limits_{X \in \mathcal{P}([\![1,n]\!])} \tau_{\sigma}(\xi(X)) \\ &= \epsilon(\xi) \times \prod\limits_{X \in \mathcal{P}([\![1,n]\!])} \tau_{\sigma}(X) \\ &= \epsilon(\xi) \times \epsilon(\sigma) \end{split}$$