

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 11

Aufgabe 41 (b)

(b) Zeigen Sie, dass für jedes $\sigma \in S_m$ (und jeden Körper K) genau eine Matrix $A_{\sigma} \in \operatorname{Mat}_m(K)$ existiert mit

$$A_{\sigma} \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} = \begin{pmatrix} c_{\sigma(1)} \\ \vdots \\ c_{\sigma(m)} \end{pmatrix}$$

für alle $(c_1, \ldots, c_m)^t \in K^m$.

Lösung. Die Matrix A_{σ} definieren wir wie folgt: Für $i \in \{1, \ldots, \}$ gilt $(A_{\sigma})_{i,\sigma(i)} = 1$, ansonsten sind alle Einträge gleich null. So definiert, hat A_{σ} offensichtlich die gewünschte Eigenschaft.

Um zu beweisen, dass diese Matrix einzig ist, nehmen wir an, eine Matrix B habe dieselbe Eigenschaft. Es gilt:

$$(A_{\sigma} - B)(c_1, \dots, c_m)^t = (c_{\sigma(1)}, \dots, c_{\sigma(m)})^t - (c_{\sigma(1)}, \dots, c_{\sigma(m)})^t = 0,$$

für alle $(c_1, \ldots, c_m)^t \in K^m$. $A_{\sigma} - B$ muss also die Nullmatrix sein und es folgt, dass $A_{\sigma} = B$ gilt.

Aufgabe 42 (b)

(b) Sei $A \in \operatorname{Mat}_m(\mathbb{Z})$. Zeigen Sie, dass $A \in \operatorname{GL}_m(\mathbb{Q})$ genau dann wenn $A \in \operatorname{GL}_m(\mathbb{Z}/p\mathbb{Z})$ für alle bis auf endlich viele Primzahlen p.

Lösung. " \Leftarrow " $A \in GL_m(\mathbb{Q})$ gilt genau dann, wenn det(A), über \mathbb{Q} berechnet, von 0 verschieden ist. Da A ganzzahlige Einträge hat, ist auch die Determinante dieser Matrix eine ganze Zahl.

Ist $\det(A) = 0$, so gilt dies auch modulo p, für jede Primzahl p. Also impliziert $A \notin \mathrm{GL}_m(\mathbb{Q})$, dass für alle Primzahlen p gilt: $A \notin \mathrm{GL}_m(\mathbb{Z}/p\mathbb{Z})$.

" \Longrightarrow " Umgekehrt, nehmen wir an, $\det(A)$ sei (über $\mathbb Q$ berechnet) von null verschieden. Dann kann diese Zahl modulo einer Primzahl p dennoch null sein, wenn p ein Teiler von $\det(A)$ ist. Jede ganze Zahl hat aber höchstens endlich viele Teiler. Also ist $\det(A)$ für alle Primzahlen p, bis auf endlich viele Ausnahmen, auch modulo p von null verschieden.

1