2021 Fall AMC 10B Problems/Problem 6

Contents

- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Solution 3
- 5 Video Solution by Interstigation
- 6 See Also

Problem

The least positive integer with exactly 2021 distinct positive divisors can be written in the form $m\cdot 6^k$, where m and k are integers and 6 is not a divisor of m. What is m+k?

(A) 47

(B) 58 **(C)** 59 **(D)** 88

(E) 90

Solution 1

Let this positive integer be written as $p_1^{e_1} \cdot p_2^{e_2}$. The number of factors of this number is therefore $(e_1+1) \cdot (e_2+1)$, and this must equal 2021. The prime factorization of 2021 is $43\cdot 47$, so $e_1+1=43\implies e_1=42$ and $e_2+1=47 \implies e_2=46$. To minimize this integer, we set $p_1=3$ and $p_2=2$. Then this integer is $3^{42} \cdot 2^{46} = 2^4 \cdot 2^{42} \cdot 3^{42} = 16 \cdot 6^{42}$. Now m=16 and k=42 so m+k=16+42=58=

~KingRavi

Solution 2

Recall that 6^k can be written as $2^k \cdot 3^k$. Since we want the integer to have 2021 divisors, we must have it in the form $p_1^{42}\cdot p_2^{46}$, where p_1 and p_2 are prime numbers. Therefore, we want p_1 to be 3 and p_2 to be 2. To make up the remaining 2^4 , we multiply $2^{42} \cdot 3^{42}$ by m, which is 2^4 which is 16. Therefore, we have 42+16=(B)58

~Arcticturn

Solution 3

If a number has prime factorization $p_1^{k_1}p_2^{k_2}\cdots p_m^{k_m}$, then the number of distinct positive divisors of this number is $(k_1+1)\,(k_2+1)\cdots(k_m+1)$.

We have $2021=43\cdot 47$. Hence, if a number N has 2021 distinct positive divisors, then N takes one of the following forms: p_1^{2020} , $p_1^{42}p_2^{46}$.

Therefore, the smallest N is $3^{42}2^{46}=2^4\cdot 6^{42}=16\cdot 6^{42}$

Therefore, the answer is (\mathbf{B}) 58

~Steven Chen (www.professorchenedu.com)

Video Solution by Interstigation

https://youtu.be/p9_RH4s-kBA?t=530

See Also

2021 Fall AMC 10B (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community /c13))	
Preceded by Problem 5	Followed by Problem 7
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25	
All AMC 10 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_Fall_AMC_10B_Problems/Problem_6&oldid=166457"

Copyright © 2022 Art of Problem Solving