

Nombre y apellidos:_____

Asignatura: Álgebra Lineal

Titulación: Grado en Matemáticas

Curso: PRIMERO

Fecha: Convocatoria Extraordinaria Julio 2023

EJERCICIO 1

RESPONDA A LAS SIGUIENTES PREGUNTAS JUSTIFICANDO BREVEMENTE LA RESPUESTA: (1 punto)

A. Dado el SEV
$$L\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
 se verifica:

b) La ecuación implícita que describe el SEV viene dada por: x - 2y + z = 0

c) La ecuación implícita que describe el SEV viene dada por: -x - 2y + z = 0

d) La ecuación implícita que describe el SEV viene dada por: x-2y-z=0

e) La ecuación implícita que describe el SEV viene dada por: x + 2y + z = 0

B. Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$ lineal tal que f(1,0) = (-1,2,1) y f(1,1) = (-1,2,4). Entonces se verifica:

a)
$$f(2,1) = (-2,4)$$

b)
$$f(2,1) = (-2,4,5)$$

c) No podemos calcular f(2,1) porque no nos dan la imagen de la base canónica.

d)
$$f(2,1) = (-2,4,1)$$

EJERCICIO 2

(1 punto)

Dada la siguiente forma cuadrática $Q(x, y, z) = 6x^2 - 6xy + 1y^2 - 4yz + 1z^2$, se pide:

- a) Su expresión matricial.
- b) Clasificarla según su signo.

EJERCICIO 3

(1.5 puntos)

Determina la veracidad o falsedad de las siguientes afirmaciones, justificando la respuesta:

- a) Dos autovectores asociados a distintos autovalores son siempre LI.
- b) Dos autovectores asociados a un mismo autovalor son siempre LD.

EJERCICIO 4

(1.5 puntos)

Determinar <u>tres</u> vectores que generen la misma variedad lineal que los siguientes vectores: $\{(1,2,3),(1,1,1)\}$. Hallar la dimensión de ambas variedades.

EJERCICIO 5

(4 puntos)

Dada la aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que su expresión funcional tiene la forma f(x,y,z) = (2y+z, 2x+3y+2z, x+2y), se pide:

- a) (0.5p) ¿Es un endomorfismo? Obtener la matriz asociada a la aplicación lineal respecto a la base canónica del espacio y la imagen de $\overline{v} = (1,2,0)$.
- b) (1.5p) Hallar la matriz asociada al endomorfismo respecto a la base $\mathscr{B}' = \{(0,1,1), (1,-1,-2), (-1,1,1)\}$ y la imagen del vector \overline{w} con coordenadas $[\overline{w}]_{\mathscr{B}'} = (0,1,3)$ respecto a esta base. Hallar también las coordenadas de \overline{w} respecto a la base canónica.
- c) (1p) Justificar por qué la aplicación es diagonalizable y hallar sus autovalores.
- d) (1p) Determinar la base respecto a la cual el endomorfismo tiene como matriz asociada una matriz diagonal A' y escribir también esta matriz.