1 Directed Graphs

A directed graph an be thought of as a graph of dependencies.

Definition 1.1: Topological Ordering

A **topological ordering** of a directed graph is an ordering of the vertices so that for each edge (v, w), v comes before w in the ordering.

1.1 Cycles

Definition 1.2: Cycle

A cycle in a directed graph is a sequence of vertices v_1, v_2, \ldots, v_n so that there are edges:

$$(v_1, v_2), (v_2, v_3), \dots, (v_n, v_1)$$

1.1.1 Obstacle

Proposition. If G is a directed graph with a cycle, then G has no topological ordering.

Proof. Suppose we have a cycle v_1, \ldots, v_n . Assume for the sake of contradiction taht we have an ordering. Then, we can find the earliest v_i in the ordering. But, the v_i comes before v_{i-1} , in contradiction to the order property.

1.2 Directed Acyclic Graph (DAG)

Definition 1.3

A directed acylic graph (DAG) is a directed graph which contains no cycles.

The previous result said that only DAGs can be topologically ordered. However, is the reverse true? Yes.

1.3 Existence of Orderings

Theorem 1.1

Let G be a finite DAG. Then, G has a topological ordering.

Proof. We consider the last vertex in the ordering. This must be a sink, or a vertex with no outgoing edges. So, once we find the sink, we can put the graph at the end of the topological graph, and then order the remaining vertices. \Box

1.3.1 Sinks

Lemma 1.1

Every finite DAG contains at least one sink.

Proof. Start at a vertex $v = v_1$. Then, we can "follow the trail," or in other words follow the edges. Eventually, we will either find:

- Some vertices repeat (which creates a cycle).
- Gets stuck (found a sink).

So, we are done.

1.4 Algorithm

Suppose we want to design an algorithm that, given a DAG G, computes a topological ordering on G. We can use the proof to create a naive algorithm.

```
TopologicalOrdering(G)
   If |G| = 0
      Return {}
   Let v in G
   While there is an edge (v, w)
      v = w
   Return (Ordering(G - v), v)
```

The runtime is $O(|V|^2)$. This is because we need |V| time to find each sink and have |V| sinks. This is suboptimal, however.

```
TopologicalOrdering(G)
Run DFS(G) w/ Pre/Post Numbers
Return Vertices in Reverse Postorder
```

This runs in O(|V| + |E|).

1.5 Topological Sort

This is a particularly useful algorithm.

- Many graph algorithms are relatively easy to find the answer for v if you've already found the answer for everything downstream of v.
 - We can topologically sort G.
 - Then, solve for v in reverse topological order.

1.6 Connectivity in Digraphs

In undirected graphs, we had a very clean description of reachability: v was reachable from w if and only if they were in the same connected component. Well, this no longer works for digraphs.