Fairness in Al

Responsible Al

Paul-Louis Pröve – ARIC Brown Bag Session - 03.02.2022

tensora

! Fairness

Mitigate bias in the algorithm and data

Reliability

Uncertainty of the model is realistic

Privacy

Confidential user data is always protected

Explainability

Understanding how decisions are made

Security

third parties

Responsible

Protected from

Accountability

Who is responsible if something goes wrong

Sources of Unfairness

Unfairness can emerge at every step of the ML pipeline

Unfairness from task definitions

Play stupid games, win stupid prizes

AI can tell from photo whether you're gay or straight

Stanford University study acertained sexuality of people on a dating site with up to 91 per cent accuracy

① Fri, Sep 8, 2017, 10:14 Updated: Fri, Sep 8, 2017, 11:11

Facial recognition to 'predict criminals' sparks row over AI bias

③ 24 June 2020

Unfairness from data collection

Be aware of the sampling bias or it will haunt your dreams

Boston releases Street Bump app that automatically detects potholes while driving

The next time your car hits a pothole, a new technology could help you immediately tell someone who can do something about it.

Boston officials are testing an app called Street Bump that allows drivers to automatically report the road hazards to the city as soon as they hear that unfortunate 'thud,' with their smartphones doing all the work.

The app's developers say their work has already sparked interest from other cities in the U.S., Europe, Africa and elsewhere that are imagining other ways to harness the technology.

Unfairness from data labelling

When your "ground truth" is actually an opinion

Unfairness from the wrong model

Understand the assumptions you introduce with your model

Evaluating Fairness

Looking at fairness from the statistical perspective

Demographic Parity

Equality of Opportunity

Predictive Parity

$$P(\hat{Y} = 1 | S = 0)$$

$$P(\widehat{Y}=1|S=0,Y=1)$$

$$P(Y=1|S=0, \hat{Y}=1)$$

$$P(\widehat{Y} = 1 | S = 1)$$

$$P(\hat{Y} = 1 | S = 1, Y = 1)$$

$$P(Y=1|S=1, \hat{Y}=1)$$

Both groups have the same probability for a **positive prediction**

Both groups have the same **recall** or **sensitivity**

Both groups have the same **precision** and therefore the same FDR

Example: ARIC University

We only have **1100** seats ® Who should we accept?

Demographic Parity

We are all created equal

A n=1000	Qualified	Not Qualified
Accept	440	0
Reject	210	350

440	acce	pted
1 10	accc	

B n=1500	Qualified	Not Qualified
Accept	525	135
Reject	0	840

660 accepted

- The same percentage is accepted in each group (44%)
- It is completely ignored how qualified someone is
- This can cause a problem but it also may be wanted

Equality of Opportunity

= =

If you're qualified, you'll have equal chances

A n=1000	Qualified	Not Qualified
Accept	600	20
Reject	200	180

B n=1500	Qualified	Not Qualified
Accept	225	255
Reject	75	945

620 accepted

480 accepted

- Both groups have the same probability of being accepted, given that they are qualified (75%)
- Equality of opportunity only looks at the qualified cases

Predictive Parity

= =

Everyone we pick is equally likely to be qualified

A n=1000	Qualified	Not Qualified
Accept	600	200
Reject	50	150

B n=1500	Qualified	Not Qualified
Accept	225	75
Reject	300	900

800 accepted

300 accepted

- Out of those that were accepted, both groups have the same probability of being qualified (75%)
- The same ratio is also true for the negative cases

Fairness in Al Summary

- Unfairness can emerge at every step of the data science process
- · Removing sensitive features is not enough
- Fairness can be expressed mathematically
- There are different types of fairness and we cannot guarantee them all at once
- Which one to use depends on the purpose

Thank You

References & Further Reading

- Novi Quadrianto Fairness in ML Workshop
- Thomas Kehrenberg Fairness/Accuracy Tradeoff
- ACM/IEEE 2018 Fairness Definitions Explained
- [1609.07236] On the (im)possibility of fairness
- <u>Cathy O'Neil Weapons of Math</u> <u>Destruction</u>

Contact

Paul-Louis Pröve Geschäftsführer

<u>paul-louis.proeve@tensora.co</u> <u>linkedin.com/in/gopietz/</u>

Tensora GmbH Axel-Springer-Platz 3 20355 Hamburg tensora.co

