МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет имени Н.И.Лобачевского

С.Ю. Галкина, О.Е. Галкин

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ

Курс лекций

Рекомендовано методической комиссией механико-математического факультета для студентов ННГУ, обучающихся по направлениям подготовки 011200 «Физика», 210100 «Электроника и наноэлектроника», 230400 «Информационные системы и технологии», 222900 «Нанотехнологии и микросистемная техника».

Нижний Новгород 2015 год УДК 517.38

Галкина С.Ю., Галкин О.Е. «Определенный интеграл и его приложения». Курс лекций. – Нижний Новгород: Нижегородский университет, 2015. – 40 с.

Рецензент – к.ф.-м.н, доцент кафедры дифференциальных уравнений и математического анализа механико-математического факультета A.M. Терентьев

В настоящем методическом пособии содержатся различные определения интеграла Римана, методы его вычисления, а также рассмотрены разнообразные геометрические и физические приложения. Приведено много примеров с подробными решениями. Курс лекций составлен в соответствии с действующей программой по математическому анализу для физического факультета ННГУ. Данное пособие рекомендуется для использования не только студентами физического, но также радиофизического и химического факультетов ННГУ.

Работа выполнена на кафедре теории функций механико-математического факультета ННГУ, заведующий кафедрой д.ф.-м.н., профессор М.И. Сумин

Ответственный за выпуск:

Председатель методической комиссии механико-математического факультета ННГУ, к.ф.-м.н., доцент Денисова Н.А.

УДК 517.38

© Нижегородский государственный университет имени Н.И.Лобачевского, 2015

Определенный интеграл и его приложения

§1. Понятие определенного интеграла

1.1. Определение определённого интеграла через суммы Римана.

Пусть f(x) — произвольная, ограниченная на отрезке [a,b] функция. Рассмотрим разбиение T отрезка [a,b] на конечное число частей:

$$T: a = x_0 < x_1 < x_2 < \ldots < x_{k-1} < x_k < \ldots < x_n = b \; .$$

В каждом частичном отрезке $[x_{k-1},x_k]$ (k=1,...,n) выберем произвольную точку ξ_k и составим сумму, зависящую от разбиения T и выбора точек $\{\xi_k\}_{k=1,...,n}$. Сумма произведений значения функции в точке ξ_k на длину соответствующего частичного

отрезка разбиения $\sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$ — это интегральная сумма Римана для

функции f(x), составленная по данному разбиению T.

Обозначим через $\lambda = \max_{k=1,...,n} (x_k - x_{k-1})$ мелкость разбиения T.

Определение.

Если существует конечный предел интегральных сумм при $\lambda \to 0$, и этот предел на зависит ни от выбора разбиения, ни от выбора точек ξ_k внутри каждого частичного отрезка разбиения, то такой предел называется определённым интегралом Римана от функции f(x) на отрезке [a,b]

$$\left| \int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \left(\sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) \right) \right|.$$

 ${\bf R}[a,b]$ – класс функций, интегрируемых по Риману на отрезке [a,b].

1.2. Физический смысл определенного интеграла. Задача о массе стержня.

Рассмотрим сначала однородный стержень длины L, имеющий постоянную линейную плотность P. Тогда масса стержня находится по формуле $m = L \cdot P$.

Пусть теперь стержень неоднородный, имеющий длину L и переменную линейную плотность. Выведем формулу для массы такого стержня. Расположим стержень на оси OX. Начало стержня обозначим точкой x=a, конец стержня в точке x=b. Плотность стержня в точке $x\in [a,b]$ обозначим P(x). Рассмотрим случай, когда функция P(x) непрерывна на отрезке [a,b]. Разобьем отрезок [a,b] на конечное число частей точками $a=x_0< x_1< x_2< ... < x_n=b$. Обозначим через m_k массу стержня, соответствующую частичному отрезку разбиения

 $\left[x_{k-1},x_k\right](k=1,...,n)$. Тогда масса стрежня равна сумме масс всех таких его частей $m=\sum_{k=1}^n m_k$. Если части достаточно маленькие, то функция P(x) в силу

непрерывности не может сильно измениться на отрезке $[x_{k-1},x_k]$ (k=1,...,n), поэтому на каждом таком отрезке функцию P(x) можно считать постоянной, и равной значению в любой точке отрезка. Выберем внутри каждого отрезка точку $\xi_k \in [x_{k-1},x_k]$. Будем считать плотность стержня на отрезке $[x_{k-1},x_k]$ постоянной и равной $P(\xi_k)$. Тогда верно приближенное равенство

 $m_k \approx P(\xi_k) \cdot (x_k - x_{k-1})$. Масса всего стержня тогда приблизительно равна

$$m \approx \sum_{k=1}^{n} P(\xi_k) \cdot (x_k - x_{k-1}).$$

Если длину наибольшего из частичных отрезков разбиения $\lambda = \max_{k=1,...,n} (x_k - x_{k-1})$

устремить к нулю, то приближенное равенство для массы становится точным и верна формула

$$m = \lim_{\lambda \to 0} \sum_{k=1}^{n} P(\xi_k)(x_k - x_{k-1}) = \int_{a}^{b} P(x) dx.$$

1.3. Геометрический смысл определенного интеграла.

Пусть задана y = f(x) – непрерывная функция на отрезке [a,b], эта функция неотрицательна, то есть $f(x) \ge 0 \quad \forall x \in [a,b]$.

Криволинейная трапеция – это

фигура, которая ограничена снизу осью $OX\left(y=0\right)$, сверху графиком непрерывной неотрицательной

функции y = f(x), по бокам вертикальными прямыми x = a, x = b.

Рассмотрим произвольное разбиение T отрезка [a,b] точками

$$a = x_0 < x_1 < x_2 < \ldots < x_{k-1} < x_k < \ldots < x_n = b \,.$$

Выберем точки $\xi_k \in [x_{k-1}, x_k]$ (k=1,...,n) внутри

каждого частичного отрезка разбиения. Произведение значения функции в точке ξ_k на длину частичного отрезка $f(\xi_k)\cdot (x_k-x_{k-1})$ геометрически является площадью прямоугольника с основанием $\left[x_{k-1},x_k\right]$ и длиной высоты $f(\xi_k)$. Тогда

интегральная сумма Римана $\sum_{k=1}^n f(\xi_k)(x_k-x_{k-1})$ представляет собой площадь ступенчатой фигуры, составленной из таких прямоугольников. При измельчении

разбиения, то есть при $\lambda \to 0$, площадь ступенчатой фигуры стремится к площади криволинейной трапеции:

$$\lim_{\lambda \to 0} \left(\sum_{k=1}^{n} f(\xi_k) (x_k - x_{k-1}) \right) = S_{\text{крив. трап.}}.$$

Геометрический смысл определённого интеграла.

Определенный интеграл от неотрицательной непрерывной функции f(x) на отрезке [a,b] равен площади криволинейной трапеции, лежащей под графиком

этой функции
$$S_{\text{кр.тр.}} = \int_{a}^{b} f(x) dx$$
.

Иногда можно вычислить определенный интеграл, пользуясь только его геометрическим смыслом.

Пример 1. Вычислить интеграл
$$\int_{1}^{2} (2x-1)dx$$
.

Решение. Подынтегральная функция y = 2x - 1 непрерывна и положительна на отрезке [1,2]. Тогда величина интеграла равна площади фигуры под графиком этой функции. Эта фигура является обычной трапецией, по формуле площади трапеции находим

$$\int_{1}^{2} (2x-1)dx = S_{mp} = \frac{1}{2} \cdot (1+3) \cdot 1 = 2.$$

Пример 2. Вычислить интеграл
$$\int_{0}^{R} \sqrt{R^2 - x^2} dx$$
.

Решение. Подынтегральная функция $y = \sqrt{R^2 - x^2}$ непрерывна и неотрицательна на отрезке [0,R]. Тогда величина интеграла равна площади фигуры под графиком этой функции. Эта фигура является четвертью круга радиуса R.

По формуле площади круга, находим значение интеграла

$$\int_{0}^{R} \sqrt{R^2 - x^2} dx = \frac{\pi R^2}{4}.$$

1.4. Суммы Дарбу. Второе определение интеграла Римана

Пусть функция y = f(x) ограничена на отрезке [a,b]. Рассмотрим $T: a = x_0 < x_1 < x_2 < ... < x_{k-1} < x_k < ... < x_n = b$ произвольное разбиение [a,b]. Обозначим через $\tau[a,b]$ семейство всех разбиений отрезка [a,b].

Так как функция ограничена на всём отрезке [a,b], то она ограничена на каждом частичном отрезке $[x_{k-1},x_k]$, поэтому существуют точные верхняя и нижняя грани функции на этом отрезке:

$$M_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$$
; $m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$.

Второе определение интеграла Римана вводится с помощью величин:

$$\overline{D}(f,T) = \sum_{k=1}^{n} M_k (x_k - x_{k-1})$$
 – верхняя интегральная сумма Дарбу;

$$\underline{D}(f,T) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$
 – нижняя интегральная сумма Дарбу.

Эти суммы, в отличие от интегральных сумм Римана зависят только от разбиения.

Свойства сумм Дарбу

- 1) Для одной и той же функции и конкретного разбиения верхняя сумма Дарбу всегда не меньше, чем нижняя: $\overline{D}(f,T) \ge \underline{D}(f,T)$.
- 2) При измельчении разбиения, то есть при добавлении новых точек к исходному разбиению, верхние суммы Дарбу для одной и той функции не увеличиваются, а нижние суммы Дарбу не уменьшаются.
- 3) Для одной и той же функции и любых разбиений T_1 и T_2 верхняя сумма Дарбу, соответствующая разбиению T_1 , не меньше, чем нижняя сумма Дарбу, соответствующая разбиению T_2 :

$$\forall T_1, T_2 \in \tau[a,b] : \overline{D}(f,T_1) \ge \underline{D}(f,T_2).$$

Доказательства этих свойств можно найти в литературе.

Зафиксируем некоторое разбиение T_0 . Рассмотрим семейство всех верхних сумм Дарбу $\{\overline{D}(f,T) | T \in \tau[a,b]\}$. В силу свойства 3) сумм Дарбу,

 $\forall T \in \tau[a,b]$: $\overline{D}(f,T) \ge \underline{D}(f,T_0)$, то есть множество всех верхних сумм Дарбу ограничено снизу, поэтому существует конечная точная нижняя грань у этого множества и эта величина называется верхним интегралом Римана от функции

$$f(x)$$
 по отрезку $[a,b]$:
$$\int_{a}^{b} f(x)dx = \inf_{T \in \tau[a,b]} \overline{D}(f,T).$$

Аналогично существует конечная точная верхняя грань у множества всех нижних сумм Дарбу и эта величина называется нижним интегралом Римана от функции

$$f(x)$$
 по отрезку $[a,b]$:
$$\int_{\overline{a}}^{b} f(x)dx = \sup_{T \in \tau[a,b]} \underline{D}(f,T).$$

Определение. Если верхний интеграл равен нижнему, то функция f(x) является интегрируемой по Риману на отрезке [a,b] и интеграл Римана равен любому из этих значений. То есть из равенства

$$\int_{a}^{b} f(x)dx = \int_{\overline{a}}^{b} f(x)dx$$
 следует, что $f(x) \in \mathbf{R}[a,b]$ и выполняется равенство
$$\int_{a}^{b} f(x)dx = \int_{\overline{a}}^{b} f(x)dx = \int_{\overline{a}}^{b} f(x)dx.$$

Геометрический смысл сумм Дарбу

Верхняя интегральная сумма Дарбу

$$\overline{D}(f,T) = \sum_{k=1}^{n} M_k (x_k - x_{k-1})$$
 равна площади

ступенчатой фигуры, внутри которой лежит криволинейная трапеция.

Нижняя интегральная сумма Дарбу

$$\underline{D}(f,T) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$
 задаёт площадь

ступенчатой фигуры, которая содержится внутри криволинейной трапеции. Для непрерывной функции при измельчении разбиения площади обеих этих ступенчатых фигур стремятся к площади криволинейной трапеции.

Теорема (критерий интегрируемости Риману).

Функция f(x) интегрируема по Риману на отрезке [a,b], тогда и только тогда, когда для любого сколь угодно малого $\varepsilon > 0$, найдётся разбиение T_{ε} , такое, что разность

$$\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$$
.

Доказательство.

Необходимость.

Пусть функция f(x) интегрируема на отрезке [a,b]. Тогда верхний интеграл Римана совпадает с нижним и выполняется равенство $D(f,T_1)$ $\overline{D}(f,T_2)$

$$\sup_{T \in \tau[a,b]} \underline{D}(f,T) = \inf_{T \in \tau[a,b]} \overline{D}(f,T) = I.$$

Зафиксируем $\varepsilon > 0$.

$$\frac{\underline{D}(f,T_1)}{\overline{D}(f,T_2)}$$

$$I - \frac{\varepsilon}{2} \qquad I \qquad I + \frac{\varepsilon}{2}$$

По определению точной верхней грани для $\frac{\mathcal{E}}{2} > 0 \ \exists T_1 \in \tau[a,b]: \ I - \frac{\mathcal{E}}{2} < \underline{D}(f,T_1) \leq I$.

По определению точной нижней грани для $\frac{\mathcal{E}}{2} > 0 \ \exists T_2 \in \tau[a,b] \colon I \leq \overline{D}(f,T_2) < I + \frac{\mathcal{E}}{2}$.

Построим новое разбиение $T_{\varepsilon}=T_1 \cup T_2$, состоящее из всех точек как разбиения T_1 , так и разбиения T_2 . Разбиение T_{ε} является более мелким, чем каждое из разбиений T_1 и T_2 . Поскольку при измельчении разбиения верхние суммы Дарбу не увеличиваются, а нижние суммы Дарбу не уменьшаются, то

 $\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) \leq \overline{D}(f,T_{2}) - \underline{D}(f,T_{1}) < \varepsilon$. Значит, разбиение T_{ε} является искомым.

Достаточность.

Пусть $\forall \varepsilon > 0 \ \exists T_{\varepsilon} \in \tau[a,b] : \overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$.

Докажем, что для функции f(x) верхний интеграл совпадает с нижним интегралом.

Из определения точных верхней и нижней граней следует

неравенство
$$\inf_{T \in \tau[a,b]} \overline{D}(f,T) - \sup_{T \in \tau[a,b]} \underline{D}(f,T) \leq \overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$$
.

Отсюда получаем оценку для разности верхнего и нижнего интегралов

$$0 \le \int_a^b f(x) dx - \int_{\overline{a}}^b f(x) dx < \varepsilon$$
 . Так как число ε произвольно мало, то
$$\int_a^b f(x) dx = \int_{\overline{a}}^b f(x) dx$$
 и функция $f(x)$ интегрируема по Риману, что и требовалось доказать.

1.5. Классы интегрируемых функций

<u>Необходимое условие интегрируемости</u> – ограниченность функции. Суммы Дарбу можно составить только для ограниченных функций, так как величины m_k и M_k не определены в случае неограниченности функции.

Условие ограниченности функции не является достаточным для её интегрируемости. Есть функции ограниченные, но не интегрируемые.

Пример функции, не интегрируемой по Риману на отрезке [a,b].

Рассмотрим функцию Дирихле, которая в рациональных точках отрезка [a,b] принимает значение 1, а в иррациональных точках отрезка [a,b] принимает значение 0:

$$f(x) = \begin{cases} 1, & x \in [a,b] \cap \mathbf{Q} \\ 0, & x \in [a,b] \setminus \mathbf{Q}. \end{cases}$$

Очевидно, что эта функция ограниченна. Покажем, что она не является интегрируемой.

Пусть $T: a = x_0 < x_1 < x_2 < ... < x_{k-1} < x_k < ... < x_n = b$ – произвольное разбиение отрезка [a,b]. В силу свойства всюду плотности множества рациональных чисел во множестве действительных чисел, в каждом частичном отрезке разбиения найдется рациональное число, поэтому верхние суммы Дарбу для любого разбиения равны

$$\overline{D}(f,T) = \sum_{k=1}^{n} 1 \cdot (x_k - x_{k-1}) = b - a.$$

Отсюда верхний интеграл Римана равен $\int_{a}^{b} f(x)dx = b - a$.

Поскольку иррациональные числа также обладают свойством всюду плотности во множестве действительных чисел, то для любого разбиения нижние суммы Дарбу

равны
$$\underline{D}(f,T) = \sum_{k=1}^{n} 0 \cdot (x_k - x_{k-1}) = 0$$

и, следовательно, нижний интеграл Римана $\int_{\overline{a}}^{b} f(x)dx = 0$.

Поскольку для функции Дирихле верхний интеграл Римана не совпадает с нижним интегралом, то функция Дирихле не интегрируема по Риману.

Достаточные условия интегрируемости по Риману могут быть различными.

Теорема 1 (достаточное условие интегрируемости).

Если функция непрерывна на отрезке [a,b], то она интегрируема по Риману на этом отрезке.

Доказательство. Покажем, что функция интегрируема по Риману по критерию интегрируемости.

Зафиксируем $\varepsilon > 0$ и найдём разбиение $T_{\varepsilon} \in \tau[a,b]$ такое, что

$$\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$$
.

Так как функция непрерывна на отрезке [a,b], то она равномерно непрерывна на нем. Тогда для числа

$$\frac{\varepsilon}{b-a} > 0 \exists \delta > 0 \forall x_1 \in [a,b] \forall x_2 \in [a,b]: |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}.$$

Возьмём такое разбиение T_{ε} : $a=x_0 < x_1 < x_2 < ... < x_{k-1} < x_k < ... < x_n = b$, что мелкость разбиения $\lambda = \max_{k=1,...,n} (x_k - x_{k-1}) < \delta$. Покажем, что это разбиение будет искомым.

Оценим разность между верхней и нижней суммами Дарбу

$$\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) = \sum_{k=1}^{n} (M_{k} - m_{k})(x_{k} - x_{k-1}),$$
 где
$$M_{k} = \sup_{x \in [x_{k-1},x_{k}]} f(x) , \quad m_{k} = \inf_{x \in [x_{k-1},x_{k}]} f(x).$$

Так как функция непрерывна на отрезке [a,b], то она непрерывна на каждом частичном отрезке $[x_{k-1},x_k]$, k=1,...,n. Поскольку непрерывная функция на отрезке достигает своих верхней и нижней граней, то

$$\exists \zeta_k \in [x_{k-1}, x_k]: f(\zeta_k) = M_k;$$

$$\exists \eta_k \in [x_{k-1}, x_k]: f(\eta_k) = m_k.$$

В силу равномерной непрерывности функции f(x) из того, что

$$\left|\zeta_{k}-\eta_{k}\right| \leq x_{k}-x_{k-1} < \delta$$
, следует что $\left|f(\zeta_{k})-f(\eta_{k})\right| < \frac{\varepsilon}{b-a}$.

Тогда разность между верхней и нижней суммами Дарбу оценивается как

$$\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) = \sum_{k=1}^{n} (f(\zeta_{k}) - f(\eta_{k}))(x_{k} - x_{k-1}) \le$$

$$\leq \frac{\varepsilon}{b-a} \sum_{k=1}^{n} (x_k - x_{k-1}) = \frac{\varepsilon}{b-a} (x_n - x_0) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

Итак, $\forall \varepsilon > 0 \ \exists T_{\varepsilon} \in \tau[a,b]$, такое что $\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$. По критерию интегрируемости из этого следует, что функция интегрируема по Риману на отрезке [a,b], что и требовалось доказать.

Теорема 2 (достаточное условие интегрируемости).

Если функция f(x) определена на всем отрезке [a,b] и возрастает на этом отрезке, то функция будет интегрируема по Риману на отрезке [a,b].

Доказательство. Покажем, что функция интегрируема по Риману по критерию интегрируемости.

Зафиксируем $\varepsilon > 0$ и найдём разбиение $T_{\varepsilon} \in \tau[a,b]$ такое, что

$$\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$$
.

Возьмём такое разбиение $T: a = x_0 < x_1 < x_2 < ... < x_{k-1} < x_k < ... < x_n = b$, что

мелкость разбиения
$$\lambda = \max_{k=1,\dots,n} (x_k - x_{k-1}) < \frac{\mathcal{E}}{f(b) - f(a)}$$
.

Так как функция f(x) возрастает, то

$$M_k = \sup_{x \in [x_{k-1}, x_k]} f(x) = f(x_k) , \qquad m_k = \inf_{x \in [x_{k-1}, x_k]} f(x) = f(x_{k-1}).$$

Тогда разность между верхней и нижней суммами Дарбу оценивается как

$$\begin{split} &\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) = \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1}))(x_{k} - x_{k-1}) \leq \\ &\leq \frac{\varepsilon}{f(b) - f(a)} \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1})) = \frac{\varepsilon}{f(b) - f(a)} (f(x_{n}) - f(x_{0})) = \\ &= \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon. \end{split}$$

Итак, для любого $\varepsilon>0$ нашли разбиение T_{ε} , такое, что разность между верхней и нижней суммами Дарбу, соответствующими этому разбиению, меньше ε . Тогда функция интегрируема по критерию интегрируемости.

Пример. Рассмотрим функцию, заданную формулами

пример. 1 ассмотрим функцию, заданную ф
$$f(x) = \begin{cases} \frac{n}{n+1}, & \text{при } x \in \left[\frac{n-1}{n}, \frac{n}{n+1}\right), n \in \mathbb{N}, \\ 1, & \text{при } x = 1. \end{cases}$$

Функция определена и возрастает на всем отрезке [0,1]. Тогда, по теореме 2 она будет интегрируема на нем, хотя имеет бесконечное число точек разрыва.

Критерий Лебега интегрируемости функции по Риману.

Функция интегрируема по Риману на отрезке [a,b] тогда и только тогда, когда множество её точек разрыва можно покрыть системой конечного или счётного числа интервалов, сумма длин которых меньше \mathcal{E} , где \mathcal{E} - сколь угодно малое число.

1.6. Свойства определённого интеграла.

- 1) Если функция интегрируема на отрезке [a,b], то она интегрируема на любом отрезке, лежащем в отрезке [a,b].
- 2) (аддитивность интеграла по множеству) Если функция интегрируема на отрезках [a,b] и [b,c] то она интегрируема и на отрезке [a,c]. При этом выполняется равенство

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

3) Если функция f(x) интегрируема на отрезке [a,b] и k – произвольная константа, то функция $k \cdot f(x)$ также интегрируема на отрезке [a,b]. При этом выполняется равенство

$$\int_{a}^{b} k \cdot f(x) dx = k \cdot \int_{a}^{b} f(x) dx.$$

Это свойство обычно формулируют так: постоянный множитель можно выносить за знак определённого интеграла.

4) (аддитивность интеграла по функции) Если функции f(x) и g(x) интегрируемы на отрезке [a,b], то их сумма f(x)+g(x) также интегрируема на отрезке [a,b] и при этом выполняется равенство

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

5) Интеграл от функции f(x) = 1 по отрезку [a,b] равен длине отрезка

$$\int_{a}^{b} 1 dx = b - a.$$

6) При изменении порядка пределов интегрирования меняется знак определенного интеграла

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

7) Если функция f(x) интегрируема на отрезке [a,b], то её модуль|f(x)| также интегрируем на отрезке [a,b] и модуль интеграла не превосходит интеграла от модуля

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

8) Если функция f(x) интегрируема на отрезке [a,b] и неотрицательна, то ее интеграл также неотрицателен

$$f(x) \ge 0 \ \forall x \in [a,b], \ f \in R[a,b] \Rightarrow \int_a^b f(x) dx \ge 0.$$

9) Если функции f(x) и g(x) интегрируемы на отрезке [a,b] и функция f(x) не превосходит функцию g(x), то можно переходить к интегралу в неравенстве

$$f, g \in \mathbf{R}[a,b]; \ f(x) \le g(x) \ \forall x \in [a,b] \implies \int_a^b f(x) dx \le \int_a^b g(x) dx.$$

10) (оценка интеграла)

$$f \in \mathbf{R}[a,b]; m \le f(x) \le M \ \forall x \in [a,b] \Rightarrow m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

11) Теорема о среднем.

Пусть $f \in \mathbf{R}[a,b], \ m \le f(x) \le M \ \forall x \in [a,b].$ Тогда $\exists \mu \in [m,M],$ такое

что
$$\int_{a}^{b} f(x)dx = \mu \cdot (b-a).$$

В случае если f(x) непрерывна на отрезке [a,b], найдется точка

$$\xi \in [a,b]$$
, такая что $\int_a^b f(x)dx = f(\xi) \cdot (b-a)$.

12) Обобщённая теорема о среднем.

Пусть $f \cdot g \in \mathbf{R}[a,b], g \in \mathbf{R}[a,b]$; кроме того $m \le f(x) \le M \ \forall x \in [a,b]$. Тогда существует число $\mu \in [m,M]$ такое что

$$\int_{a}^{b} f(x) \cdot g(x) dx = \mu \cdot \int_{a}^{b} g(x) dx.$$

В случае если f(x) непрерывна на отрезке [a,b], найдется точка $\xi \in [a,b]$ такая что

$$\int_{a}^{b} f(x) \cdot g(x) dx = f(\xi) \int_{a}^{b} g(x) dx.$$

Пример. При расчёте нагрузки, на определённый узел конструкции получили следующий интеграл $\int_{10}^{16} \frac{\sin x}{1+x^8} dx$ (в тоннах). Не вычисляя интеграл, оценить нагрузку на узел.

Решение. Так как $|\sin x| \le 1$, то при $10 \le x \le 16$ справедлива оценка для подынтегральной функции $\left|\frac{\sin x}{1+x^8}\right| \le \frac{1}{1+x^8} \le \frac{1}{1+10^8} < 10^{-8}$. Тогда, по свойствам 7)

и 10), абсолютная величина интеграла оценивается $\left|\int_{10}^{16} \frac{\sin x}{1+x^8} dx\right| \le \int_{10}^{16} \left|\frac{\sin x}{1+x^8}\right| dx < 6 \cdot 10^{-8}$.

Отсюда видно, что нагрузка на узел не превосходит $6 \cdot 10^{-8}$ тонн или 0,06 грамм, значит эта нагрузка незначительна и ее можно не учитывать.

§2. Вычисление определенного интеграла

2.1. Интеграл с переменным верхним пределом

Пусть задана функция, интегрируемая на отрезке [a,b]. Тогда по свойству 1 определенного интеграла для любой точки $x \in [a,b]$ функция также будет

интегрируема на отрезке [a,x]. Поэтому определена функция $F(x) = \int_{a}^{x} f(t)dt$, она называется интегралом с переменным верхним пределом.

Теорема 1. Пусть функция f(x) интегрируема на отрезке [a,b]. Тогда функция $F(x) = \int_{a}^{x} f(t) dt$ будет непрерывной на отрезке [a,b].

Доказательство. Докажем, что F(x) непрерывна в любой точке $x \in [a,b]$. Для этого покажем, что приращение ΔF функции стремится к нулю, если приращение Δx аргумента стремится к нулю.

$$\Delta X = F(x + \Delta x) - F(x) = \int_{a}^{x + \Delta x} f(t)dt - \int_{a}^{x} f(t)dt$$
.

Если $\Delta x > 0$, то

$$\Delta F = \int_{a}^{x} f(t)dt + \int_{x}^{x + \Delta x} f(t)dt - \int_{a}^{x} f(t)dt = \int_{x}^{x + \Delta x} f(t)dt$$

Если же $\Delta x < 0$, то

$$\Delta F = \int_{a}^{x} f(t)dt - \int_{x}^{x + \Delta x} f(t)dt - \int_{x}^{x} f(t)dt = \int_{x}^{x + \Delta x} f(t)dt$$

$$\Delta F = \int_{a}^{x + \Delta x} f(t)dt - \int_{a}^{x + \Delta x} f(t)dt = \int_{x + \Delta x}^{x + \Delta x} f(t)dt$$

$$\Delta F = \int_{a}^{x + \Delta x} f(t)dt - \int_{x + \Delta x}^{x + \Delta x} f(t)dt = \int_{x + \Delta x}^{x + \Delta x} f(t)dt$$

Таким образом, при любом приращении переменной приращение функции выражается формулой

$$\Delta F = \int\limits_{x}^{x+\Delta x} f(t)dt$$
. По теореме о среднем $\Delta F = \mu \cdot \Delta x \to 0$ при $\Delta x \to 0$, что и требовалось доказать.

Теорема 2. Пусть функция f(x) непрерывна на отрезке [a,b]. Тогда функция $F(x) = \int_a^x f(t) dt$ будет дифференцируема на интервале (a,b), причём выполняется равенство F'(x) = f(x).

То есть интеграл с переменным верхним пределом является первообразной для подынтегральной функции, в случае, если она непрерывна.

Доказательство. Зафиксируем точку $x \in (a,b)$. Покажем, что в этой точке существует конечная производная.

$$F'(x) = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x}.$$

Также как в предыдущей теореме выводится формула для приращения функции

$$\Delta F = \int_{x}^{x+\Delta x} f(t)dt.$$

Отсюда по теореме о среднем в случае непрерывной функции получаем $\Delta F = f(\xi) \cdot \Delta x$, где точка ξ является промежуточной между x и $x + \Delta x$.

Подставляя выражение для приращения функции в ее производную, получаем

$$F'(x) = \lim_{\Delta x \to 0} \frac{f(\xi) \cdot \Delta x}{\Delta x}.$$

Так как при $\Delta x \to 0$ точка $\xi \to x$, а функция f(x) непрерывна в точке ξ , то $f(\xi) \to f(x)$ и тогда справедлива формула F'(x) = f(x), что и требовалось доказать.

Теорема 3. Формула Ньютона – Лейбница.

Пусть функция f(x) непрерывна на отрезке [a,b].

Функция F(x) – любая из первообразных функции f(x).

Тогда
$$\int_{a}^{b} f(t)dt = F(b) - F(a) = F(t)\Big|_{a}^{b}.$$

Доказательство. Из теоремы 2 следует, что интеграл с переменным верхним пределом является первообразной функции f(x). Поскольку F(x) также является первообразной и две различные первообразные отличаются только на константу, то

$$\int_{0}^{x} f(t)dt - F(x) = C.$$
 (1)

Найдем костанту C. Положим в последнем равенстве x = a:

 $\ddot{\int} f(t)dt - F(a) = C$. Отсюда находим значение константы C = -F(a). Подставив его в равенство (1), получаем

$$\int_{a}^{x} f(t)dt = F(x) - F(a) .$$

Полагая в этом равенстве x = b, получаем искомую формулу $\int_{a}^{b} f(t)dt = F(b) - F(a)$.

2.2. Правило интегрирования по частям в определённом интеграле.

Пусть функции u(x) и v(x) имеют непрерывные производные на отрезке [a,b].

Тогда справедлива формула интегрирования по частям

$$\int_{a}^{b} u(x)dv(x) = u(x) \cdot v(x) \Big|_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
15

Пример 1. Вычислить интеграл $\int_{0}^{\pi} x \cos x \, dx$.

Решение. Обозначим через

$$u = x$$
; $du = dx$

$$dv = \cos x \, dx$$
; $v = \sin x$.

Подставляя эти выражения в формулу интегрирования по частям, получаем

$$\int_{0}^{\pi} x \cos x \, dx = x \sin x \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin x \, dx = \cos x \Big|_{0}^{\pi} = -2.$$

Пример 2. Вывести рекуррентную формулу для вычисления интеграла

$$I_n = \int_{0}^{\frac{\pi}{2}} (\cos x)^n dx \quad (n = 0,1,2,...).$$

Решение. Обозначим через

$$u = (\cos x)^{n-1};$$
 $du = -(n-1)(\cos x)^{n-2} \sin x \, dx;$

$$dv = \cos x \, dx;$$
 $v = \sin x$

Подставляя эти выражения в формулу интегрирования по частям, получаем

$$I_n = (\cos x)^{n-1} \sin x \Big|_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} (\cos x)^{n-2} \cdot \sin^2 x dx = (n-1) \int_0^{\frac{\pi}{2}} (\cos x)^{n-2} \cdot \sin^2 x dx \ .$$

Воспользовавшись основным тригонометрическим тождеством $\sin^2 x = 1 - \cos^2 x$, сводим вычисление данного интеграла к таким же интегралам меньшего порядка

$$I_n = (n-1) \left(\int_0^{\pi/2} (\cos x)^{n-2} dx - \int_0^{\pi/2} (\cos x)^n dx \right),$$

$$I_n = (n-1)I_{n-2} - (n-1)I_n$$
.

Отсюда находим рекуррентную формулу для вычисления искомого

интеграла
$$I_n = \frac{n-1}{n} I_{n-2}$$
 ($n \ge 2$).

Начальные значения интегралов для этой формулы

$$I_0 = \int_0^{\pi/2} dx = \frac{\pi}{2}$$
, $I_1 = \int_0^{\pi/2} \cos x \, dx = \sin x \Big|_0^{\pi/2} = 1$.

Пример 3. Вычислить интегралы $\int_{0}^{\frac{\pi}{2}} (\cos x)^{2k+1} dx$, $\int_{0}^{\frac{\pi}{2}} (\cos x)^{2k} dx$.

Решение. Применим рекуррентную формулу, выведенную в примере 2:

$$I_{2k+1} = \frac{2k}{2k+1} \cdot I_{2k-1} = \frac{2k}{2k+1} \cdot \frac{2k-2}{2k-1} \cdot I_{2k-3} = \ldots = \frac{2k \cdot (2k-2) \cdot \ldots \cdot 4 \cdot 2}{(2k+1) \cdot (2k-1) \cdot \ldots \cdot 5 \cdot 3} \cdot I_1 \quad .$$

Учитывая, что
$$I_1 = 1$$
, получаем
$$\int_0^{\pi/2} (\cos x)^{2k+1} dx = \frac{(2k)!!}{(2k+1)!!}.$$

Применим рекуррентную формулу, выведенную в примере 2, при n = 2k:

$$\begin{split} I_{2k} &= \frac{2k-1}{2k} \cdot I_{2k-2} = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \ldots \cdot \frac{1}{2} \cdot I_0 \,. \\ \text{Учитывая, что } I_0 &= \frac{\pi}{2} \text{, получаем } \int\limits_0^{\frac{\pi}{2}} (\cos x)^{2k} \, dx = \frac{(2k-1)!!}{(2k)!!} \cdot \frac{\pi}{2} \,. \end{split}$$

2.3. Замена переменной в определённом интеграле.

Пусть функция f(t) определена и непрерывна на отрезке [A, B]. Функция g(x) определена и непрерывна вместе со своей производной на отрезке [a,b], причем $A \le g(x) \le B$, g(a) = A, g(b) = B. Тогда справедлива формула замены переменной

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{A}^{B} f(t) dt, \text{ где } t = g(x).$$
 Пример 1. Вычислить интеграл $I = \int_{1}^{\sqrt{3}} \frac{\sqrt{1 + x^2}}{x^2} dx$.

Решение.

Первый способ. Перепишем подынтегральную функцию в виде

$$\int_{1}^{\sqrt{3}} \frac{\sqrt{1+x^2}}{x^2} dx = \int_{1}^{\sqrt{3}} x^{-2} (1+x^2)^{1/2} dx.$$

Этот интеграл является интегралом от дифференциального бинома

$$\int x^m (a+bx^n)^p dx$$
. В данном примере $m=-2, n=2, p=\frac{1}{2}$.

Число p не является целым; число $\frac{m+1}{n} = -\frac{1}{2}$ также не является целым;

число $\frac{m+1}{n} + p = 0$ — целое. Значит, исходя из общей теории, подходит подстановка

$$t = \sqrt{x^{-2} + 1} = \frac{\sqrt{x^2 + 1}}{x} \ .$$

Возводим в квадрат и выражаем подынтегральные выражения

$$x^{2} = \frac{1}{t^{2} - 1}; \quad \sqrt{x^{2} + 1} = \frac{t}{\sqrt{t^{2} - 1}}; \quad dx = \frac{-t dt}{\sqrt{(t^{2} - 1)^{3}}}.$$

Пересчитаем пределы интегрирования из формулы $t = \frac{\sqrt{x^2 + 1}}{x}$:

при
$$x = 1$$
: $t = \sqrt{2}$; при $x = \sqrt{3}$: $t = \frac{2}{\sqrt{3}}$.

Подставляя эти выражения в первоначальный интеграл, получаем

$$I = \int_{\sqrt{2}}^{2/\sqrt{3}} \frac{t}{\sqrt{t^2 - 1}} \cdot (t^2 - 1) \cdot \frac{-t}{\sqrt{(t^2 - 1)^3}} dt = -\int_{\sqrt{2}}^{2/\sqrt{3}} \frac{t^2}{t^2 - 1} dt = \int_{2/\sqrt{3}}^{\sqrt{2}} \left(1 + \frac{1}{t^2 - 1}\right) dt =$$

$$= \left(t + \frac{1}{2} \ln \left|\frac{t - 1}{t + 1}\right|\right)\Big|_{2/\sqrt{3}}^{\sqrt{2}} = \sqrt{2} - \frac{2}{\sqrt{3}} + \frac{1}{2} \ln \left|\frac{\sqrt{2} - 1}{\sqrt{2} + 1}\right| - \frac{1}{2} \ln \left|\frac{2 - \sqrt{3}}{2 + \sqrt{3}}\right| = \sqrt{2} - \frac{2}{\sqrt{3}} + \ln \frac{\sqrt{2} - 1}{2 - \sqrt{3}}.$$

Второй способ. В этом интеграле можно избавиться от иррациональности с помощью тригонометрической подстановки. Сделаем замену

$$x = tg\varphi$$
, $dx = \frac{d\varphi}{\cos^2 \varphi}$, $\sqrt{1 + x^2} = \frac{1}{\cos \varphi}$.

Пересчитаем пределы интегрирования. Если x = 1, то $\varphi = \frac{\pi}{4}$;

если $x = \sqrt{3}$, то $\varphi = \frac{\pi}{3}$. Подставляя эти значения в интеграл, получаем

$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{d\varphi}{\cos^3 \varphi \cdot tg^2 \varphi} = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\cos \varphi \cdot d\varphi}{\cos^2 \varphi \cdot \sin^2 \varphi}.$$

Сделаем еще одну замену переменной $t = \sin \varphi$, $dt = \cos \varphi$.

Если
$$\varphi = \frac{\pi}{4}$$
, то $t = \frac{\sqrt{2}}{2}$; если $\varphi = \frac{\pi}{3}$, то $t = \frac{\sqrt{3}}{2}$. Тогда $I = \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} \frac{dt}{(1-t^2)\cdot t^2} = \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} \frac{dt}{(1-t^2)\cdot t^2} = \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} \frac{dt}{t^2} + \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} \frac{dt}{1-t^2} =$

$$= -\frac{1}{t} \left| \frac{\sqrt{3}}{2} + \frac{1}{2} \ln \left| \frac{t+1}{t-1} \right| \right|_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}} = \sqrt{2} - \frac{2}{\sqrt{3}} + \ln \frac{\sqrt{2}-1}{2-\sqrt{3}}.$$

Отметим два основных отличия замены переменной в определённом интеграле от замены переменной в неопределённом интеграле:

- 1) надо пересчитывать пределы интегрирования;
- 2) не нужно возвращаться к старой переменной.

Следующий пример показывает, что формальное применение формулы замены переменной, без учета условий ее применимости, может привести к неверному результату.

Пример 2. Интеграл $I = \int_{-1}^{1} \frac{dx}{1+x^2} = arctgx\Big|_{-1}^{1} = \frac{\pi}{2}$. Сделаем в этом интеграле замену

$$x=rac{1}{t}$$
. Тогда $I=\int\limits_{-1}^{1}rac{1}{1+rac{1}{t^2}}\cdot\left(-rac{dt}{t^2}
ight)=-\int\limits_{-1}^{1}rac{dt}{1+t^2}=-rac{\pi}{2}$. Получили противоречие, так как

один и тот же интеграл не может принимать два разных значения. Это произошло потому, что при изменении переменной $-1 \le x \le 1$ новая переменная t изменяется на лучах $t \le -1$, $t \ge 1$. А согласно теореме о замене переменной она должна изменяться на отрезке $-1 \le t \le 1$.

При замене переменной определенный интеграл Римана может перейти в несобственный интеграл и наоборот. Поэтому введем понятие несобственного интеграла. Позднее этот интеграл будет изучаться более подробно.

2.4. Несобственный интеграл

Интеграл Римана рассматривается от ограниченной функции на отрезке. Этот интеграл можно обобщить в двух направлениях: сделать неограниченным промежуток или функцию неограниченной.

Несобственный интеграл первого рода — это интеграл по неограниченому промежутку. Пусть функция f(x) интегрируема по Риману в собственном смысле на любом отрезке [a,b] при всяком значении b>a. Несобственным интегралом от функции f(x) по лучу $[a,\infty)$ называется следующий предел от определенного интеграла

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$

Возможны следующие случаи. Если предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если же предел равен бесконечности или вообще не существует, то говорят, что несобственный интеграл расходится.

Пример 1. Исследовать на сходимость в зависимости от параметра p

несобственный интеграл
$$I_p = \int_1^{+\infty} \frac{dx}{x^p} = \lim_{b \to +\infty} \int_1^b \frac{dx}{x^p}$$
.

Решение. Рассмотрим сначала случай, когда p = 1. Тогда

$$I_1 = \lim_{b \to +\infty} \int_1^b \frac{dx}{x} = \lim_{b \to +\infty} \ln x \Big|_1^b = \lim_{b \to +\infty} \ln b = +\infty.$$

В этом случае интеграл расходится.

Пусть теперь $p \neq 1$. Тогда

$$I_p = \lim_{b \to +\infty} \int_1^b x^{-p} dx = \lim_{b \to +\infty} \left(\frac{x^{1-p}}{1-p} \Big|_1^b \right) = \lim_{b \to +\infty} \left(\frac{b^{1-p}-1}{1-p} \right) = \begin{cases} \frac{1}{p-1} & \text{при } p > 1 \text{ ;} \\ \infty & \text{при } p < 1. \end{cases}$$
 Итак,
$$\int_1^{+\infty} \frac{dx}{x^p} \text{ сходится при } p > 1 \text{ и расходится при } p \leq 1.$$

Это важный интеграл, он широко используется при исследовании на сходимость других несобственных интегралов, а также в теории рядов.

Пример 2. Исследовать на сходимость несобственный интеграл $\int_{0}^{+\infty} \cos x \, dx$.

Решение. Запишем несобственный интеграл по определению

$$\int_{1}^{+\infty} \cos x \, dx = \lim_{b \to +\infty} \int_{1}^{b} \cos x \, dx = \lim_{b \to +\infty} (\sin b - \sin 1).$$

Полученный предел не существует, следовательно, интеграл расходится.

Несобственный интеграл второго рода

Пусть задан отрезок [a,b] и функция f(x), такая что для всякого достаточно малого $\varepsilon > 0$ функция f(x) интегрируема по Риману на отрезке $[a+\varepsilon,b]$; кроме того $\lim_{x \to a+0} f(x) = \infty$. Тогда несобственный интеграл второго рода определяется по формуле

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to +0} \int_{a+\varepsilon}^{b} f(x)dx.$$

Если предел существует и конечен, то говорят, что несобственный интеграл сходится. Если же предел бесконечный либо вообще не существует, то говорят, что интеграл расходится.

К несобственным интегралам применимы методы замены переменной и интегрирования по частям.

Пример 3. Исследовать на сходимость интеграл $I = \int_{0}^{1} \frac{dt}{t^{p}}$.

Решение. Если $p \le 0$, то подынтегральная функция ограниченна, интеграл является собственным и принимает конечное значение.

При p>0 подынтегральная функция $f(t)=\frac{1}{t^p}$ имеет особенность в точке t=0, она обращается в бесконечность в этой точке $\lim_{t\to 0+0} f(t)=+\infty$. Значит, это несобственный интеграл второго рода.

Сделаем в нем замену переменной $x = \frac{1}{t}$, $dt = -\frac{dx}{x^2}$.

Пересчитаем пределы интегрирования. При t = 0: $x = \infty$; при t = 1: x = 1.

Подставляя эти выражения в первоначальный интеграл, получаем

$$I = -\int_{-\infty}^{1} x^{p} \cdot \frac{dx}{x^{2}} = \int_{1}^{\infty} \frac{dx}{x^{2-p}}$$
. Этот несобственный интеграл первого рода исследован на сходимость в примере 1. Он сходится при $2-p > 1$, $p < 1$;

сходимость в примере 1. Он сходится при
$$2-p>1$$
, $p<1$, расходится при $2-p\le 1$; $p\ge 1$.

Итак, интеграл
$$\int_0^1 \frac{dt}{t^p}$$
 сходится при $p<1$ и расходится при $p\ge 1$.

Этот интеграл также имеет большое значение для исследования на сходимость других несобственных интегралов.

§3. Приложения определённого интеграла

Общая схема приложений определённого интеграла

Пусть задана некоторая величина A (физическая или геометрическая). Нужно найти её значение на отрезке [a,b]. Пусть величина A является непрерывной и аддитивной по множеству, то есть из того, что $[a,b] = [a,c] \cup [c,b]$ следует, что $A_{[a,b]} = A_{[a,c]} + A_{[c,b]}$.

- 1) Разбиваем отрезок [a,b] на n частей $a = x_0 < x_1 < x_2 < ... < x_{k-1} < x_k < ... < x_n = b$.
- 2) Пусть удается подобрать такую непрерывную функцию f(x), что значение величины A на каждом частичном отрезке разбиения представимо в виде $A_k = A_{[x_{k-1},x_k]} \approx f(\xi_k)(x_k x_{k-1})$, где $\xi_k \in [x_{k-1},x_k]$.
- 3) Тогда, в силу аддитивности величины A, верно приближенное равенство

$$A = \sum_{k=1}^{n} A_k \approx \sum_{k=1}^{n} f(\xi_k) \cdot (x_k - x_{k-1}).$$

Сумма, стоящая в правой части этого равенства, является интегральной суммой Римана для функции f(x).

4) Если мелкость разбиения $\lambda = \max_{k=1,\dots,n} (x_k - x_{k-1})$ устремить к нулю, то интегральные суммы Римана стремятся к интегралу от функции f(x) и приближенное равенство становится точным $A = \int_{-\infty}^{b} f(x) dx$.

Более краткое изложение этой схемы.

Приращение величины A представляем в виде $\Delta A \approx f(x)\Delta x$; отсюда дифференциал величины A равен dA = f(x)dx;

затем находим
$$A = \int_{a}^{b} f(x)dx$$
.

3.1. Длина дуги

Понятие длины дуги

Пусть кривая γ задана уравнениями

$$\gamma: \begin{cases} x = x(t) \\ y = y(t), & \text{где } t \in [a, b]. \\ z = z(t) \end{cases}$$

Разобьем отрезок [a,b] на конечное число частей точками

 $T: \ a=t_0 < t_1 < t_2 < ... < t_{k-1} < t_k < ... < t_n = b$. Значению параметра t_k на кривой соответствует точка A_k . Таким образом, каждое разбиение T отрезка задает ломаную $A_0A_1...A_n$, вписанную в данную кривую.

Обозначим через L(T) длину этой вписанной ломаной. Тогда, по определению, длина кривой — это точная верхняя грань длин всевозможных вписанных в кривую ломаных $l(\gamma) = \sup_{T \in \tau[a,b]} L(T)$.

Вычисление длины дуги

Рассмотрим общий случай, когда кривая задана параметрическими уравнениями

$$\gamma: \begin{cases} x = x(t) \\ y = y(t), & \text{где } t \in [a, b]. \\ z = z(t) \end{cases}$$

Обозначим через l(t) переменную длину дуги на отрезке [a, t].

Известна формула для дифференциала длины дуги

 $dl = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt$. Отсюда длина дуги, соответствующая изменению параметра t на отрезке [a,b], вычисляется по формуле

$$l = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$
(8.1)

Пример. Найти длину одной арки циклоиды.

Решение. Циклоида – это траектория фиксированной точки, находящейся на ободе колеса, катящегося без проскальзывания. Параметрические $(x - a(t - \sin t))$:

уравнения циклоиды
$$\begin{cases} x = a(t - \sin t); \\ y = a(1 - \cos t). \end{cases}$$

Одна арка задается изменением параметра $0 \le t \le 2\pi$. Найдем производные координатных функций: $x'(t) = a \cdot (1 - \cos t)$; $y'(t) = a \cdot \sin t$.

Упростим подынтегральное выражение в формуле для вычисления длины дуги

$$\sqrt{(x'(t))^2 + (y'(t))^2} = \sqrt{a^2(1 - 2\cos t + \cos^2 t + \sin^2 t)} = \sqrt{2a^2(1 - \cos t)} = 2a\sin\frac{t}{2}.$$

Подставляя в формулу и вычисляя интеграл, получаем:

$$l = 2a \int_0^{2\pi} \sin \frac{t}{2} dt = 8a.$$

Длина дуги плоской кривой, заданной явно

Рассмотрим часто встречающийся случай, когда плоская кривая задана явно уравнением y = y(x), $a \le x \le b$. В этом случае можно в качестве параметра взять переменную x. Подставляя уравнения $\{x = t, y = y(t)\}$ в формулу (8.1) длины дуги параметрически заданной кривой, и заменяя t на x, получаем:

$$l = \int_{a}^{b} \sqrt{1 + (y'(x))^{2}} dx$$

Пример. Пусть по внутренней части обруча большого радиуса R движется колесо меньшего радиуса a. Точка, отмеченная на ободе колеса меньшего радиуса, будет описывать линию, называемую гипоциклоидой. Если R=4a, то такая гипоциклоида называется астроидой. Уравнение астроиды $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.

Найдем длину астроиды. Поскольку эта кривая симметрична относительно осей OX и OY, то будем искать длину l_1 части кривой, находящейся в первой четверти. Она задается уравнением $y = (a^{\frac{2}{3}} - x^{\frac{2}{3}})^{\frac{3}{2}}$, $0 \le x \le a$. Сделаем необходимые вычисления

$$y' = \frac{3}{2} (a^{\frac{2}{3}} - x^{\frac{2}{3}})^{\frac{1}{2}} \cdot \left(\frac{-2}{3\sqrt[3]{x}}\right);$$

$$1 + (y')^2 = 1 + \frac{a^{\frac{2}{3}} - x^{\frac{2}{3}}}{x^{\frac{2}{3}}} = \frac{a^{\frac{2}{3}}}{x^{\frac{2}{3}}}.$$

Подставив это выражение в формулу для вычисления длины дуги, найдем длину части кривой, лежащей в первой четверти

$$l_1 = \int_0^a \sqrt{1 + (y'(x))^2} dx = \int_0^a \frac{a^{\frac{1}{3}}}{x^{\frac{1}{3}}} dx = \frac{3a}{2}.$$

Длина всей астроиды $l = 4l_1 = \frac{4 \cdot 3 \cdot a}{2} = 6a$.

Длина дуги кривой, заданной в полярных координатах

Рассмотрим случай, когда кривая задана в полярных координатах уравнением $\rho = \rho(\varphi)$ ($\alpha \le \varphi \le \beta$).

В этом случае в качестве параметра можно взять переменную φ . Найдем параметрические выражения для координатных функций. Связь декартовых координат с полярными задается формулами $x = \rho \cos \varphi$, $y = \rho \sin \varphi$.

Известно, что длина дуги кривой, заданной параметрическими уравнениями,

вычисляется по формуле
$$l = \int_{\alpha}^{\beta} \sqrt{(x'(\varphi))^2 + (y'(\varphi))^2} d\varphi$$
.

Вычислим производные координатных функций $x'(\varphi) = \rho' \cos \varphi - \rho \sin \varphi$; $y'(\varphi) = \rho' \sin \varphi + \rho \cos \varphi$.

Подставим их в подкоренное выражение и упростим его

$$(x'(\varphi))^2 + (y'(\varphi))^2 = (\rho'\cos\varphi)^2 + (\rho\sin\varphi)^2 - 2\rho\rho'\sin\varphi\cos\varphi +$$

 $+ (\rho \cos \varphi)^2 + (\rho' \sin \varphi)^2 + 2\rho \rho' \sin \varphi \cos \varphi = (\rho')^2 + \rho^2.$

Подставляя это выражение в формулу длины дуги кривой, заданной параметрическими уравнениями, получаем формулу длины дуги, заданной

$$l = \int_{\alpha}^{\beta} \sqrt{(\rho'(\varphi))^2 + (\rho(\varphi))^2} d\varphi.$$

Пример. Пусть по внешней части колеса радиуса R движется колесо меньшего радиуса a. Точка, зафиксированная на ободе колеса меньшего радиуса, будет

описывать линию, называемую эпициклоидой. Если R = a, то такая эпициклоида называется кардиоидой. Уравнение кардиоиды в полярных координатах $\rho = a(1 + \cos \varphi)$.

Так как кривая симметрична относительно оси OX, то можно найти длину l_1 половины кривой, расположенную выше оси OX. Формула длины дуги в полярных координатах

$$l = \int_{\alpha}^{\beta} \sqrt{(\rho'(\varphi))^2 + (\rho(\varphi))^2} d\varphi.$$

Вычислим производную $\rho' = -a \sin \varphi$ и упростим подкоренное выражение

$$(\rho'(\varphi))^2 + (\rho(\varphi))^2 = a^2(\sin^2\varphi + 1 + 2\cos\varphi + \cos^2\varphi) = 2a^2(1 + \cos\varphi) = 4a^2\cos^2\frac{\varphi}{2}.$$

Подставляя в формулу, находим половину длины кривой

$$l_1 = \int_0^{\pi} 2a \cdot \cos \frac{\varphi}{2} d\varphi = 4a.$$

Тогда длина всей кардиоиды $l = 2l_1 = 8a$.

3.2. Площадь плоской фигуры

Понятие площади плоской фигуры

1) Площадь элементарной плоской фигуры

Назовем плоскую фигуру элементарной, если она является объединением конечного

числа квадратов со сторонами, параллельными осям координат. Площадь элементарной фигуры P обозначим через S(P).

Поскольку любой прямоугольник является объединением конечного числа квадратов, то в определении элементарной фигуры можно вместо квадратов брать прямоугольники.

2) Площадь произвольной плоской фигуры

Пусть D – произвольная плоская фигура. *Нижней площадью* фигуры D будем называть точную верхнюю грань площадей всевозможных

элементарных фигур, лежащих в $D: S_*(D) = \sup_{P \in D} S(P)$.

Верхней площадью фигуры D будем называть точную верхнюю нижнюю грань площадей всевозможных элементарных фигур, содержащих $D: S^*(D) = \inf_{Q \supset D} S(Q)$.

Определение. Если нижняя и верхняя площади фигуры совпадают, то фигура называется квадрируемой, а их общее значение называется ее площадью.

Теорема (критерий квадрируемости).

Плоская фигура D квадрируема тогда и только тогда, когда для любого сколь угодно малого $\varepsilon>0$ найдутся многоугольники P_ε и Q_ε , такие, что $P_\varepsilon\subset D\subset Q_\varepsilon$ и $S_{Q_\varepsilon}-S_{P_\varepsilon}<\varepsilon$.

Доказательство.

Необходимость. Пусть фигура квадрируема, то есть $\sup_{P\subset D}S_P=\inf_{D\subset Q}S_Q=S$.

Зафиксируем $\varepsilon > 0$. По определению точной верхней грани для $\frac{\varepsilon}{2} > 0$ найдется вписанный многоугольник P_{ε} , такой, что $P_{\varepsilon} \subset D$ и $S_{P_{\varepsilon}} > S - \frac{\varepsilon}{2}$.

По определению точной нижней грани для $\frac{\mathcal{E}}{2}>0$ найдется описанный многоугольник $Q_{\mathcal{E}}$, такой, что $D \subset Q_{\mathcal{E}}$ и $S_{\mathcal{Q}_{\mathcal{E}}} < S + \frac{\mathcal{E}}{2}$.

Тогда разность площадей описанного и вписанного многоугольников

$$S_{Q_{\varepsilon}} - S_{P_{\varepsilon}} < S + \frac{\varepsilon}{2} - S + \frac{\varepsilon}{2} = \varepsilon.$$

Достаточность. Пусть нашлись многоугольники P_{ε} , Q_{ε} такие, что $P_{\varepsilon} \subset D \subset Q_{\varepsilon}$ и $S_{Q_{\varepsilon}} - S_{P_{\varepsilon}} < \varepsilon$. Из определения точных верхней и нижней граней следует оценка $0 \leq \inf_{D \subset \mathcal{Q}} S_{Q} - \sup_{P \subset D} S_{p} \leq S_{Q_{\varepsilon}} - S_{P_{\varepsilon}} < \varepsilon$.

Так как $\mathcal E$ - сколь угодно мало, то $\sup_{P\subset D}S_P$ и $\inf_{D\subset \mathcal Q}S_{\mathcal Q}$ совпадают, следовательно, фигура квадрируема.

Теорема 1. Криволинейная трапеция, то есть фигура G, ограниченная линиями $y=0,\ x=a,\ x=b,\ y=f(x)$, где f(x) – непрерывна на отрезке [a,b] и $f(x)\geq 0$, является квадрируемой фигурой и ее площадь находится по формуле

$$S_{\text{кр. тр.}} = \int_{a}^{b} f(x) dx$$

Доказательство. Зафиксируем $\varepsilon > 0$. Так как f(x) — непрерывна на отрезке [a,b], то она интегрируема на этом отрезке и существует $I = \int_{a}^{b} f(x) dx$.

Тогда по критерию интегрируемости

 $\forall \varepsilon > 0 \ \exists T_{\varepsilon} \in \tau[a,b]$ такое что $\overline{D}(f,T_{\varepsilon}) - \underline{D}(f,T_{\varepsilon}) < \varepsilon$.

Величина верхней суммы Дарбу $\overline{D}(f,T_{\varepsilon}) = \sum_{k=1}^n M_k(x_k-x_{k-1})$ равна площади ступенчатой фигуры Q_{ε} , описанной вокруг криволинейной трапеции G.

Величина нижней суммы Дарбу $\underline{D}(f,T_{\varepsilon}) = \sum_{k=1}^n m_k (x_k - x_{k-1})$ равна площади

ступенчатой фигуры P_{ε} , вписанной в криволинейную трапецию G.

Так как нашли многоугольники P_{ε} , Q_{ε} такие, что $P_{\varepsilon} \subset G \subset Q_{\varepsilon}$ и $S_{Q_{\varepsilon}} - S_{P_{\varepsilon}} < \varepsilon$,

то по критерию квадрируемости криволинейная трапеция G является квадрируемой фигурой.

Для оценки площади криволинейной трапеции справедливы неравенства

$$\sup_{T\in\tau[a,b]}\underline{\underline{D}}(f,T)\leq S_{\hat{\mathbb{C}}\check{\mathbb{O}}\check{\mathbb{O}}}\leq\inf_{T\in\tau[a,b]}\overline{\underline{D}}(f,T)\,.$$
 Учитывая, что
$$\inf_{T\in\tau[a,b]}\overline{\underline{D}}(f,T)=\int\limits_a^bf(x)dx=I$$
 и
$$\sup_{T\in\tau[a,b]}\underline{\underline{D}}(f,T)=\int\limits_{\overline{a}}^bf(x)dx=I\,,$$

получаем формулу $S_{\text{кр.тр.}} = \int_{a}^{b} f(x) dx$.

Вычисление площадей плоских фигур

Площадь плоской фигуры в декартовых координатах

1) Пусть плоская фигура представляет собой криволинейную трапецию то есть фигуру, ограниченную линиями y=0, x=a, x=b, y=f(x), где f(x) непрерывна на отрезке [a,b] и $f(x) \ge 0$. Тогда ее площадь находится по формуле

$$S_{\text{крив. трап.}} = \int_{a}^{b} f(x) dx$$
.

2) Пусть фигуру можно разбить на две криволинейные трапеции: под графиком y = f(x) на отрезке [a,b] и под графиком y = g(x) на отрезке [b,c]. Тогда ее площадь вычисляется по формуле

$$S = \int_{a}^{b} f(x)dx + \int_{b}^{c} g(x)dx.$$

Пример. Вычислить площадь сектора с углом α и радиусом R .

Решение.

Расположим сектор на координатной плоскости так, чтобы его вершина находилась с начале координат, и один из его радиусов лежал в положительной части оси OX . Тогда сектор можно разбить на две криволинейные трапеции, соответственно его площадь $S_{\text{сект.}} = S_1 + S_2$.

Здесь первое слагаемое является площадью криволинейной трапеции под графиком линейной функции $y = x \cdot tg \alpha$ и вычисляется по формуле

$$S_1 = \int_0^{R\cos\alpha} x \cdot tg\alpha \, dx = \frac{R^2}{2} \sin\alpha\cos\alpha = \frac{R^2}{4} \sin2\alpha.$$

Второе слагаемое представляет собой площадь под дугой окружности, задаваемой уравнением $y = \sqrt{R^2 - x^2}$. Вычислим эту площадь:

$$S_2 = \int_{R\cos\alpha}^{R} \sqrt{R^2 - x^2} dx.$$

Сделаем в интеграле замену переменной $x = R \cos t$, $dx = -R \sin t dt$.

Пересчитаем пределы интегрирования: при $x = R\cos\alpha$: $t = \alpha$; при

x = R: t = 0. Подставляя в интеграл, получаем

$$S_2 = -\int_{\alpha}^{0} R^2 \sin^2 t \, dt = \frac{R^2}{2} \int_{0}^{\alpha} (1 - \cos 2t) \, dt = \frac{R^2}{2} (t - \frac{1}{2} \sin 2t) \, |_{0}^{\alpha} = \frac{R^2}{2} \alpha - \frac{R^2}{4} \sin 2\alpha.$$

Складывая две вычисленные площади, находим площадь сектора

$$S_{\text{cekt.}} = S_1 + S_2 = \frac{1}{2}R^2\alpha$$
.

3) Пусть плоская фигура ограничена: сверху - графиком функции y = f(x), $a \le x \le b$; снизу - графиком функции y = g(x), $a \le x \le b$; по бокам - вертикальными отрезками x = a и x = b, которые могут вырождаться в точку. Тогда площадь этой фигуры равна разности площадей соответствующих криволинейных трапеций и вычисляется по формуле

$$S = \int_{a}^{b} (f(x) - g(x)) dx.$$

Пример. Найти площадь фигуры, ограниченной линиями $y = x^2 - 6$ и $y = -x^2 + 5x - 6$.

Решение. Найдем сначала абсциссы точек пересечения графиков данных функций. Для этого решаем систему уравнений

$$\begin{cases} y = x^2 - 6, \\ y = -x^2 + 5x - 6. \end{cases}$$

Отсюда находим $x_1 = 0, \ x_2 = 2,5$. Искомая площадь вычисляется по формуле

$$S = \int_{0}^{2.5} ((-x^2 + 5x - 6) - (x^2 - 6)) dx = \int_{0}^{2.5} (-2x^2 + 5x) dx = 5\frac{5}{24}.$$

Площадь фигуры, под графиком функции, заданной параметрически.

Пусть плоская фигура представляет собой криволинейную трапецию, верхняя граница которой задана параметрическими уравнениями

$$y(x):\begin{cases} x = x(t) \\ y = y(t) \end{cases}, t \in [t_1, t_2].$$

В этом случае площадь вычисляется по формуле
$$S_{\text{крив. трап.}} = \int\limits_{t_1}^{t_2} y(t) \cdot x'(t) dt \ .$$

Пример. Вычислить площадь эллипса.

Решение. Зададим эллипс параметрическими уравнениями

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \ 0 \le t \le 2\pi.$$

Поскольку эллипс симметричен относительно координатных осей, то можно искать площадь четверти эллипса, расположенной в первой координатной четверти. Эта фигура представляет собой криволинейную трапецию, у которой абсцисса меняется

от x = 0, что соответствует значению параметра $t = \frac{\pi}{2}$, до x = a, что соответствует значению параметра t = 0. Подставляя в формулу, находим

$$S_1 = \int_{\pi/2}^{0} b \sin t \cdot (-a \sin t) dt = \frac{ab}{2} \int_{0}^{\pi/2} (1 - \cos 2t) dt = \frac{\pi ab}{4}.$$

Отсюда площадь всего эллипса равна $S = \pi ab$.

Площадь плоской фигуры в полярных координатах.

В полярных координатах через определенный интеграл находится площадь криволинейного сектора.

Определение

Криволинейный сектор – это фигура, ограниченная в полярных координатах лучами $\varphi = \alpha$, $\varphi = \beta$ и графиком функции $\rho = \rho(\varphi)$.

Теорема. Если функция $\rho(\varphi)$ - непрерывна, то криволинейный сектор – квадрируемая фигура и площадь его находится по формуле

$$S_{\text{крив. сектора}} = \frac{1}{2} \int_{\alpha}^{\beta} \rho(\varphi)^2 d\varphi \, .$$

Доказательство.

Пусть T – разбиение отрезка $[\alpha, \beta]$ конечным набором точек

$$T: \quad \alpha = t_0 < t_1 < t_2 < \dots < t_{k-1} < t_k < \dots < t_n = \beta.$$

Тогда площадь криволинейного сектора разбилась на п частей. Обозначим через S_k часть площади криволинейного сектора, ограниченного линиями $\varphi = t_{k-1}, \ \varphi = t_k$, $\rho = \rho(\varphi)$. Если мелкость разбиения $\lambda = \max_{k=1,\dots,n} (t_k - t_{k-1})$ достаточно мала, то S_k приближенно равна площади обычного кругового сектора с углом $t_k - t_{k-1}$ и радиусом $\rho(\zeta_k)$, где ζ_k — произвольная точка из интервала $t_{k-1} < \zeta_k < t_k$. Тогда верно приближенное равенство $S_k \approx \frac{1}{2} (\rho(\zeta_k))^2 \cdot (t_k - t_{k-1})$. А так как площадь криволинейного сектора равна $S_{\text{крив. сектора}} = \sum_{k=1}^n S_k$, то получаем приближенное

равенство

$$S_{\text{крив. сектора}} \approx \sum_{k=1}^{n} \frac{1}{2} (\rho(\zeta_k))^2 \cdot (t_k - t_{k-1}) .$$

Здесь в правой части интегральная сумма Римана для функции $\frac{1}{2}(\rho(\pmb{\varphi}))^2$.

Поскольку функция $\rho(\varphi)$ - непрерывна, то $\frac{1}{2}(\rho(\varphi))^2$ интегрируема и при $\lambda \to 0$ интегральные суммы стремятся к интегралу Римана. Таким образом получаем формулу $S_{\text{крив. сектора}} = \frac{1}{2} \int\limits_{\alpha}^{\beta} (\rho(\varphi))^2 \, d\varphi$.

Пример. Найти площадь фигуры, ограниченной лемнискатой Бернулли, задаваемой

уравнением $(x^2 + y^2)^2 = a^2(x^2 - y^2)$.

Решение. Перейдем к полярным координатам $x = \rho \cos \varphi$, $y = \rho \sin \varphi$. Тогда уравнение кривой примет вид $\rho^4 = a^2 \rho^2 (\cos^2 \varphi - \sin^2 \varphi)$ или $\rho = a \sqrt{\cos 2\varphi}$.

Найдем область определения функции из условия $\cos 2\varphi \ge 0$.

Решая это неравенство, находим $-\frac{\pi}{4} + \pi n \le \varphi \le \frac{\pi}{4} + \pi n, n \in \mathbb{Z}$.

Функция имеет период π , значит ее график симметричен относительно начала координат.

Так как $\rho(-\varphi) = \rho(\varphi)$, то график функции также симметричен относительно оси OX. В силу симметрии достаточно найти площадь части фигуры, расположенной в первой четверти

$$S_1 = \frac{a^2}{2} \cdot \int\limits_0^{\pi/4} \cos 2\varphi \, d\varphi = \frac{a^2}{4} \,.$$
 Тогда площадь фигуры, ограниченной лемнискатой
$$S = 4S_1 = a^2 \,.$$

3.3. Вычисление объёмов

Телом назовём часть пространства, ограниченную замкнутой несамопересекающейся поверхностью. Понятие объема пространственного тела вводится аналогично понятию площади плоской фигуры.

Пусть F — некоторое тело в пространстве. Его нижний объем определяется по формуле $V_*(F) = \sup_{G \subset F} V_G$, где $\{G\}_{G \subset F}$ — множество всех многогранников, лежащих

внутри F . Верхний объем равен $V^*(F) = \inf_{F \subset R} V_R$, где $\{R\}_{F \subset R}$ — множество всех многогранников, содержащих в себе F .

Определение. Тело F кубируемо, если $V_*(F) = V^*(F)$, тогда объем тела равен $V_F = V_*(F) = V^*(F)$.

Критерий кубируемости. Тело F кубируемо тогда и только тогда, когда для любого $\varepsilon>0$ найдутся многогранники G_ε и R_ε такие что $G_\varepsilon\subset F\subset R_\varepsilon$ и $V_{R_\varepsilon}-V_{G_\varepsilon}<\varepsilon$.

Доказательство проводится аналогично доказательству критерия квадрируемости.

Пример. Пусть F - прямая призма, то есть тело, у которого верхнее основание $D_{\rm B}$ получено из нижнего основания D сдвигом на вектор \vec{h} , перпендикулярный нижнему основанию (при этом, конечно, фигуры $D_{\rm B}$ и D равны). Докажем, что если основание D квадрируемо, то сама призма F кубируема, и ее объем вычисляется по формуле $V_F = S_D \cdot h$, где h — высота призмы, то есть длина вектора \vec{h} .

Доказательство. Зафиксируем $\varepsilon > 0$. Так как фигура D квадрируема, то по критерию квадрируемости для

 $\frac{\mathcal{E}}{h} > 0$ найдутся многоугольники P_{ε} и Q_{ε}

такие, что $P_{\varepsilon} \subset D \subset Q_{\varepsilon}$ и $S_{Q_{\varepsilon}} - S_{P_{\varepsilon}} < \frac{\varepsilon}{h}$.

Многогранник с высотой h и основанием P_{ε} лежит внутри призмы, а многогранник с основанием Q_{ε} и высотой h содержит призму. Тогда разность объемов внешнего и внутреннего многогранников $\Delta V = S_{Q_{\varepsilon}} \cdot h - S_{P_{\varepsilon}} \cdot h = h \cdot (S_{Q_{\varepsilon}} - S_{P_{\varepsilon}}) < \frac{h \cdot \varepsilon}{h} = \varepsilon$.

Тогда, по критерию кубируемости, призма кубируема.

По определению объема $V_F = \inf_{F \subset R} V_R \leq \inf_{D \subset Q} (S_Q \cdot h) = S_D \cdot h$. С другой стороны,

 $V_F = \sup_{G \subset F} V_G \geq \sup_{P \subset D} (S_P \cdot h)$. Отсюда видно, что $V_F = S_D \cdot h$, что и требовалось доказать.

Теорема (вычисление объёма через площадь поперечных сечений).

Пусть тело ограничено плоскостями x=a и x=b. Пусть каждое сечение тела плоскостью x=const есть квадрируемая фигура D(x), причем ее площадь S(x) является непрерывной функцией на отрезке [a,b]. Тогда тело будет кубируемо и его объем вычисляется по формуле $V=\int\limits_a^b S(x)dx$.

Доказательство.

Рассмотрим разбиение отрезка [a,b] конечным набором точек

$$a=x_0 < x_1 < x_2 < ... < x_{k-1} < x_k < ... < x_n = b$$
 . Тогда $V=\sum_{k=1}^n V_k$, где V_k — объём части тела, заключённой между плоскостями $x=x_{k-1}$ и $x=x_k$. В каждом частичном отрезке разбиения выберем точку $\zeta_k \in [x_{k-1},x_k]$. Сечение тела плоскостью $x=\zeta_k$ есть квадрируемая фигура $D(\zeta_k)$. Площадь $S(x)$ — непрерывная функция, следовательно, если отрезок $[x_{k-1},x_k]$ достаточно мал, то $S(x)$ на нем изменяется мало, значит можно считать, что $S(x) \approx S(\zeta_k) \ \forall x \in [x_{k-1},x_k]$. Тогда объем V_k приблизительно равен объему призмы с площадью основания $S(\zeta_k)$ и высотой (x_k-x_{k-1}) . Учитывая формулу объема призмы, получаем $V_k \approx S(\zeta_k)(x_k-x_{k-1})$. Тогда объем всего тела приближенно равен $V \approx \sum_{k=1}^n S(\zeta_k)(x_k-x_{k-1})$. Так как в правой части этого равенства стоит интегральная сумма Римана для функции $S(x)$ на отрезке $[a,b]$, то при мелкости разбиения $\lambda = \max_{k=1,...,n} (x_k-x_{k-1})$ стремящейся к нулю, получаем формулу $V = \int_a^b S(x) dx$.

Пример. Найти объем эллипсоида.

Решение. Запишем уравнение эллипсоида: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Найдем сечение эллипсоида плоскостью x = const:

$$\frac{\frac{y^2}{b^2} + \frac{z^2}{c^2} = \frac{a^2 - x^2}{a^2};}{\left(\frac{b}{a}\sqrt{a^2 - x^2}\right)^2} + \frac{z^2}{\left(\frac{c}{a}\sqrt{a^2 - x^2}\right)^2} = 1.$$

В сечении эллипсоида плоскостью x = const получился эллипс с полуосями

$$\frac{b}{a}\cdot\sqrt{a^2-x^2}$$
 и $\frac{c}{a}\cdot\sqrt{a^2-x^2}$. Площадь этого эллипса равна

$$S(x) = \pi \cdot \frac{b}{a} \cdot \sqrt{a^2 - x^2} \cdot \frac{c}{a} \cdot \sqrt{a^2 - x^2} = \frac{\pi bc}{a^2} \cdot (a^2 - x^2)$$
. Подставляя $S(x)$ в формулу

вычисления объема тела через площадь поперечных сечений, получаем

$$V = \frac{\pi bc}{a^2} \int_{-a}^{a} (a^2 - x^2) dx = \frac{4}{3} \pi abc.$$

В частном случае, когда все полуоси эллипсоида одинаковы и равны R , получаем формулу объема шара $V_{\rm mapa}=\frac{4}{3}\pi\!R^3$.

Объём тела вращения

Рассмотрим тело, которое получается при вращении криволинейной трапеции,

ограниченной сверху графиком функции y = f(x), $a \le x \le b$, вокруг оси OX. Для вычисления его объема применим общую формулу объема тела через площадь поперечных сечений. В данном случае в сечении плоскостью x = const получается круг радиуса R = f(x). Тогда его площадь $S(x) = \pi R^2 = \pi (f(x))^2$. Соответственно

вращения вокруг оси OX .

Пример. Найти объём конуса радиуса R и высотой H. Решение. Конус — это тело, которое можно получить вращением вокруг оси OX криволинейной трапеции под графиком линейной функции $y = \frac{R}{H}x$, где

 $0 \le x \le H$. Подставляя $f(x) = \frac{R}{H}x$ в формулу объема тела вращения, получаем $V = \pi \int\limits_{-\infty}^{H} \left(\frac{R}{H}x\right)^2 dx = \frac{1}{3}\pi R^2 H \; .$

В случае вычисления объема тела, полученного вращением вокруг оси OX фигуры под графиком функции, заданной параметрическими уравнениями

$$y(x)$$
: $\begin{cases} y = y(t) \\ x = x(t) \end{cases}$ $(t_1 \le t \le t_2)$, формула имеет вид $V = \pi \int_{t_1}^{t_2} (y(t))^2 x'(t) dt$.

Пример. Найти объём тела, полученного вращением астроиды вокруг оси OX.

Решение. Параметрические уравнения астроиды $\begin{cases} x - a\cos^3 t \end{cases}$

$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases} \quad (0 \le t \le 2\pi).$$

Так как кривая симметрична относительно обеих координатных осей, то можно считать только половину объема тела — это объем тела, полученного вращением части кривой, соответствующей изменению параметра

от
$$t = \frac{\pi}{2}$$
 до $t = 0$. Подставив в формулу вычисления объема, получим

$$V_1 = \pi \int_{\pi/2}^{0} a^2 \sin^6 t \cdot 3a \cos^2 t \cdot (-\sin t) dt = 3\pi a^3 \int_{\pi/2}^{0} (1 - \cos^2 t)^3 \cdot \cos^2 t \cdot d(\cos t).$$

Сделаем в этом интеграле замену $z = \cos t$.

Пересчитаем пределы интегрирования: при $t = \frac{\pi}{2}$: z = 0; при t = 0: z = 1. Отсюда:

$$V_1 = 3\pi a^3 \int_0^1 (1 - z^2)^3 \cdot z^2 \cdot dz = 3\pi a^3 \int_0^1 (z^2 - 3z^4 + 3z^6 - z^8) dz = \frac{16\pi a^3}{105}.$$

Удваивая полученный результат, получаем окончательный ответ $V = \frac{32\pi a^3}{105}$.

3.4. Вычисление площади поверхности тела вращения

Рассмотрим поверхность, образованную вращением вокруг оси OX графика функции y = y(x), заданной на отрезке [a,b].

Найдём площадь малого элемента поверхности ΔP . Площадь ΔP приблизительно равна площади усечённого конуса, в основании которого круги радиуса y и $y + \Delta y$,

а образующая равна Δl . Площадь поверхности усеченного конуса с радиусом малого основания r, радиусом большого основания R и длиной образующей L

вычисляется по формуле $\pi(R+r)L$. Поэтому $\Delta P \approx \pi (y + y + \Delta y) \Delta l$. Отсюда $dP = 2\pi y \cdot dl$, так как слагаемое $\Delta y \cdot \Delta l$, которое является бесконечно малой более высокого порядка, чем остальные слагаемые, можно отбросить. Для разных случаев задания кривой дифференциал длины дуги dl записывается по-разному.

Если кривая задана явно, то $dP = 2\pi y \sqrt{1 + (y'(x))^2} dx$ и

$$P = 2\pi \int_{a}^{b} y(x) \cdot \sqrt{1 + (y'(x))^2} dx$$
 – площадь поверхности вращения кривой,

заданной явно уравнением y = y(x), $a \le x \le b$.

В случае, если кривая задана параметрическими уравнениями

$$y(x) = \begin{cases} y = y(t) \\ x = x(t) \end{cases} \quad (t_1 \le t \le t_2), \text{ TO}$$

$$y(x) = \begin{cases} y = y(t) \\ x = x(t) \end{cases} (t_1 \le t \le t_2), \text{ то}$$

$$P = 2\pi \int_{t_1}^{t_2} y(t) \cdot \sqrt{(x'(t))^2 + (y'(t))^2} dt - \text{площадь поверхности вращения кривой,}$$

заданной параметрическими уравнениями.

$$P = 2\pi \int_{\alpha}^{\beta} \rho(\varphi) \sin \varphi \cdot \sqrt{(\rho(\varphi))^2 + (\rho'(\varphi))^2} d\varphi$$
 – площадь поверхности вращения кривой,

заданной в полярных координатах уравнением $\rho = \rho(\varphi), \alpha \le \varphi \le \beta$.

Пример 1. Найти площадь шара радиуса R.

Решение. Поверхность шара можно получить вращением кривой, заданной уравнением $y = \sqrt{R^2 - x^2}$, $-R \le x \le R$. В силу симметрии можно считать площадь P_1 половины поверхности, полученной вращением части окружности, лежащей в первой четверти.

Вычислим подынтегральные выражения:

$$y' = -\frac{x}{\sqrt{R^2 - x^2}};$$

$$1 + (y')^2 = 1 + \frac{x^2}{R^2 - x^2} = \frac{R^2}{R^2 - x^2}.$$

Подставляя их в формулу $P = 2\pi \int_{0}^{b} y(x) \sqrt{1 + (y'(x))^{2}} dx$

площади поверхности кривой, заданной явными уравнениями,

получаем
$$P_1 = 2\pi \int_0^R \frac{\sqrt{R^2 - x^2}}{\sqrt{R^2 - x^2}} dx = 2\pi R^2$$
.

Умножая на два, находим площадь поверхности шара $P_{\text{шара}} = 4\pi R^2$.

Пример 2. Найти площадь поверхности, образованной вращением одной арки циклоиды вокруг оси OX.

Решение. Запишем параметрические уравнения циклоиды

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (0 \le t \le 2\pi).$$

Найдем производные $x'(t) = a(1 - \cos t)$, $y'(t) = a \sin t$. Упростим выражение

$$(x'(t))^{2} + (y'(t))^{2} = a^{2}(1 - 2\cos t + \cos^{2} t + \sin^{2} t) = 2a^{2}(1 - \cos t) = 4a^{2}\sin^{2}\frac{t}{2}.$$

Подставляя его в формулу $P=2\pi\int\limits_{t_1}^{t_2}y(t)\sqrt{(x'(t))^2+(y'(t))^2}\,dt$, получаем

$$P = 2\pi \int_{0}^{2\pi} a(1 - \cos t) \cdot 2a \cdot \sin \frac{t}{2} dt = -16\pi a^{2} \int_{0}^{2\pi} \left(1 - \cos^{2} \frac{t}{2}\right) d\left(\cos \frac{t}{2}\right) =$$

$$= -16\pi a^{2} \cdot \left(\cos \frac{t}{2} - \frac{1}{3}\cos^{3} \frac{t}{2}\right) \Big|_{0}^{2\pi} = \frac{64\pi a^{2}}{3}.$$

Пример 3. Найти площадь поверхности, полученной вращением лемнискаты Бернулли вокруг оси OX.

Решение. Запишем уравнение лемнискаты в полярных координатах:

$$\rho = a\sqrt{\cos 2\varphi} \ (a > 0) \ .$$

В силу симметрии можно искать площадь половины поверхности. Она получается при вращении части кривой, соответствующей значению аргумента $0 \le \varphi \le \frac{\pi}{4}$.

Воспользуемся формулой

$$P = 2\pi \int_{\alpha}^{\beta} \rho(\varphi) \sin \varphi \sqrt{(\rho(\varphi))^2 + (\rho'(\varphi))^2} d\varphi.$$

Производная от функции равна

$$\rho'(\varphi) = -\frac{a\sin 2\varphi}{\sqrt{\cos 2\varphi}}.$$

Упростим подкоренное выражение

$$(\rho(\varphi))^{2} + (\rho'(\varphi))^{2} = a^{2}\cos 2\varphi + \frac{a^{2}\sin^{2}2\varphi}{\cos 2\varphi} = a^{2}\frac{\cos^{2}2\varphi + \sin^{2}2\varphi}{\cos 2\varphi} = \frac{a^{2}}{\cos 2\varphi}.$$

Подставляя в формулу, находим площадь половины поверхности

$$P_{1} = 2\pi \int_{0}^{\pi/4} a \sqrt{\cos 2\varphi} \cdot \sin \varphi \cdot \frac{a}{\sqrt{\cos 2\varphi}} d\varphi = 2\pi a^{2} (-\cos \varphi) \Big|_{0}^{\pi/4} = \pi a^{2} \cdot (2 - \sqrt{2}).$$

Удваивая этот результат, получаем окончательный ответ $P = 2\pi a^2 \cdot (2 - \sqrt{2})$.

3.5. Некоторые физические приложения определенного интеграла

Вычисление массы плоской кривой

Пусть кривая γ задана параметрически уравнениями $x = x(t), \ y = y(t), \ a \le t \le b$, и пусть $\rho(x, y)$ – линейная плотность массы в точке (x,y) $\in \gamma$. Тогда масса кривой γ вычисляется по формуле

$$m = \int_{a}^{b} \rho(x(t), y(t)) \cdot \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

В случае если кривая γ задана явно уравнением y = y(x), $a \le x \le b$, масса кривой В случае если кривал , задани , вычисляется по формуле $m = \int_{a}^{b} \rho(x, y(x)) \cdot \sqrt{1 + (y'(x))^2} dx$.

Вычисление статических моментов и координат центра тяжести материальной кривой.

Статическим моментом точки относительно оси называется произведение массы точки на расстояние до прямой. Рассмотрим плоскую кривую, у которой плотность равна $\rho(x, y) = 1$, тогда масса кривой равна ее длине, найдём статический момент кривой относительно оси OX. Пусть кривая задана уравнением $y = y(x), a \le x \le b$. Возьмем на кривой точку (x, y) и вырежем из кривой элементарный участок длины dl, содержащий точку (x, y). Если считать массу участка, равную

dl, сосредоточенной в точке (x, y), то элементарный момент, то есть статический момент малого элемента кривой относительно оси OX равен $dS_x = y \cdot dl$. Тогда статический момент всей кривой относительно оси OX, находится по формуле

$$S_{x} = \int_{a}^{b} y(x) \cdot \sqrt{1 + (y'(x))^{2}} dx$$

Аналогично выводится формула для вычисления статического момента кривой

относительно оси
$$OY : S_y = \int_a^b x \sqrt{1 + (y'(x))^2} dx$$
.

Определение. Центр тяжести кривой (ζ, η) — это такая точка, что если в ней сосредоточить всю массу кривой, то ее статический момент относительно оси, не пересекающей кривую, будет равен статическому моменту всей кривой: $l \cdot \eta = S_x$; $l \cdot \zeta = S_y$.

Отсюда получаем формулы для нахождения координат центра тяжести однородной кривой $\zeta = \frac{S_y}{l}$, $\eta = \frac{S_x}{l}$.

В случае если кривая задана явно уравнением y = y(x), $a \le x \le b$, координаты центра тяжести кривой находятся по формулам

$$\zeta = \frac{\int_{a}^{b} x\sqrt{1 + (y'(x))^{2}} dx}{\int_{a}^{b} \sqrt{1 + (y'(x))^{2}} dx} ; \qquad \eta = \frac{\int_{a}^{b} y(x)\sqrt{1 + (y'(x))^{2}} dx}{\int_{a}^{b} \sqrt{1 + (y'(x))^{2}} dx} .$$

Пример 1. Найти статический момент полуокружности относительно её диаметра.

Решение. Расположим полуокружность так, чтобы её диаметр находился на оси OX, а центр в начале координат.

Уравнение верхней полуокружности $y = \sqrt{R^2 - x^2}$. Найдем значение подкоренного выражения в формуле для вычисления статистического момента

$$y' = \frac{-x}{\sqrt{R^2 - x^2}}, \quad 1 + (y'(x))^2 = \frac{R^2}{R^2 - x^2}.$$
 Подставляя в формулу, получаем ответ
$$S_x = \int\limits_{-R}^R \sqrt{R^2 - x^2} \cdot \frac{R}{\sqrt{R^2 - x^2}} \cdot dx = 2R^2.$$

Пример 2. Найти статический момент относительно оси OX и координаты центра тяжести дуги астроиды, расположенной в первой четверти.

Решение. Запишем параметрические уравнения астроиды

$$\begin{cases} x = a\cos^3 t \\ y = a\sin^3 t \end{cases} \qquad \left(0 \le t \le \frac{\pi}{2}\right).$$

Формула для вычисления статического момента в случае, если кривая задана

параметрическими уравнениями
$$S_x = \int_{t_1}^{t_2} y(t) \sqrt{(x'(t))^2 + (y'(t))^2} dt$$
.

Вычислим подкоренное выражение

$$(x'(t))^{2} + (y'(t))^{2} = (-3a\cos^{2}t\sin t)^{2} + (3a\sin^{2}t\cos t)^{2} = (3a\cos t\sin t)^{2}.$$

Подставив в формулу, находим значение статического момента

$$S_x = \int_0^{\pi/2} a \sin^3 t \cdot 3a \cos t \sin t \, dt = 3a^2 \int_0^{\pi/2} \sin^4 t \, d(\sin t) = \frac{3a^2}{5}.$$

Найдем координаты центра тяжести (ζ, η) кривой.

В силу симметрии $\zeta = \eta$. Найдем ординату центра тяжести по формуле

$$\eta = \frac{S_x}{l}$$
, где $l = \int_{0}^{\pi/2} \sqrt{(x'(t))^2 + (y'(t))^2} dt = 3a \int_{0}^{\pi/2} \sin t \, d(\sin t) = \frac{3a}{2}$.

Отсюда
$$\zeta = \eta = \frac{3a^2}{5} : \frac{3a}{2} = \frac{2a}{5}$$
.

Статические моменты и координаты центра тяжести плоских фигур

Рассматриваем случай, когда фигура является однородной, то есть ее плотность в каждой точке равна 1. Пусть фигура является криволинейной трапецией, ограниченной сверху графиком функции y = y(x), $a \le x \le b$. Выделим элементарную бесконечно узкую вертикальную полоску. Приняв эту полоску приближенно за прямоугольник, находим ее массу, равную площади $y \cdot dx$. Для определения соответствующих элементарных моментов предположим всю массу полоски сосредоточенной в ее центре тяжести, то есть центре прямоугольника. Полученная материальная точка отстоит от оси OX на расстояние $\frac{1}{2}y$, от оси OY на расстояние

 $\left(x + \frac{1}{2}dx\right)$, что приближенно равно x. Тогда элементарные моменты равны

 $dS_x = \frac{1}{2} y^2 dx$ и $dS_y = xy \cdot dx$. Отсюда получаем формулы

$$S_x = \frac{1}{2} \int_a^b y^2 dx \quad ; \quad S_y = \int_a^b xy dx$$

Координаты центра тяжести (ζ,η) однородной криволинейной трапеции определяются по формулам $\boxed{\zeta=\frac{S_y}{S_{\hat{0}}}}\;; \qquad \eta=\frac{S_x}{S_{\hat{0}}}$.

В случае явного задания функции уравнением y = y(x), $a \le x \le b$, имеем

$$\zeta = \frac{\int_{a}^{b} x \cdot y(x) dx}{\int_{a}^{b} y(x) dx} ; \qquad \eta = \frac{\frac{1}{2} \int_{a}^{b} (y(x))^{2} dx}{\int_{a}^{b} y(x) dx} .$$

Пример 3. Найти статический момент относительно оси OX и координаты центра тяжести фигуры ограниченной осью OX и одной аркой циклоиды.

Решение. Запишем параметрические уравнения циклоиды

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad (0 \le t \le 2\pi).$$

Подставим эти уравнения в формулу для вычисления статического момента фигуры относительно оси OX:

$$S_x = \frac{1}{2} \int_0^{2\pi} (y(t))^2 x'(t) dt = \frac{1}{2} \int_0^{2\pi} (a - a \cos t)^2 a (1 - \cos t) dt =$$

$$= \frac{a^3}{2} \int_0^{2\pi} (1 - \cos t)^3 dt = \frac{5\pi a^3}{2}.$$

Найдем координаты центра тяжести фигуры. Так как $y(\pi-t)=y(\pi+t)$, то фигура симметрична относительно прямой $x=\pi a$. Поэтому абсцисса центра тяжести

$$\zeta=\pi a$$
 . Ординату центра тяжести находим по формуле $\eta=\frac{S_x}{S_{\hat{0}}}$.

Вычислим площадь фигуры

$$S_{\hat{0}} = \int_{0}^{2\pi} y(t)x'(t)dt = a^{2} \int_{0}^{2\pi} (1 - \cos t)^{2} dt = a^{2} \int_{0}^{2\pi} (1 - 2\cos t + \cos^{2} t)dt = 3\pi a^{2}.$$

Учитывая, что соответствующий статический момент уже посчитан, находим ординату центра тяжести $\eta = \frac{5\pi a^3}{2\cdot 3\pi a^2} = \frac{5}{6}a$. Итак, центр тяжести фигуры

расположен в точке $\left(\pi a, \frac{5}{6}a\right)$.

Теоремы Паппа-Гульдина

Впервые эти теоремы нашел александрийский математик Папп в 3 веке н.э. В эпоху средневековья многие достижения античной науки были в Европе утрачены. В 17-ом веке теоремы вновь открыл швейцарский математик Гульдин.

Первая теорема Паппа-Гульдина. Площадь поверхности, образованной вращением кривой вокруг не пересекающей её оси, равна произведению длины кривой на путь, проходимый центром тяжести этой кривой.

В случае вращения вокруг оси OX теорема записывается формулой $P = l \cdot 2\pi \eta$.

Доказательство. Рассмотрим случай плоской кривой, когда она задана явно уравнением y = y(x), $a \le x \le b$. Ордината центра тяжести кривой находится по

формуле $\eta = \frac{S_x}{l}$. Подставив сюда формулу для нахождения статического момента и умножив это равенство на длину кривой l , получаем

$$l \cdot \eta = \int_{a}^{b} y(x) \sqrt{1 + (y'(x))^2} dx$$
.

Затем домножим обе части этого равенства на 2π :

$$l \cdot 2\pi \eta = 2\pi \int_{a}^{b} y(x) \sqrt{1 + (y'(x))^2} dx$$
.

В правой части этого равенства стоит площадь поверхности тела, образованного вращением кривой вокруг оси OX.

В левой части равенства стоит произведение длины кривой l на длину окружности $2\pi\eta$, которую описывает центр тяжести. Теорема доказана.

Пример 1. Найти координаты центра тяжести полуокружности радиуса R с центром в начале координат, расположенной в верхней полуплоскости.

Решение. В силу симметрии абсцисса центра тяжести $\zeta = 0$. Найдем ординату

центра тяжести, используя первую теорему Паппа-Гульдина. Поверхность, образованная при вращении кривой вокруг оси OX, является сферой, ее площадь $P=4\pi R^2$. Длина кривой равна половине длины окружности $l=\pi R$. Подставив эти значения в формулу $l\cdot 2\pi\eta=P$, найдем ординату центра

тяжести
$$\eta = \frac{P}{2\pi l} = \frac{4\pi R^2}{2\pi^2 R} = \frac{2}{\pi} R \approx 0.637 R$$
.

Пример 2. Найти площадь поверхности вращения полуокружности вокруг касательной, параллельной её диаметру.

Решение. Используем результат, полученный в предыдущем примере. Ордината

центра тяжести полуокружности $\eta = \frac{2}{\pi}R$.

Тогда радиус окружности, описываемой центром тяжести при вращении полуокружности вокруг

касательной, равен
$$R_1 = R - \frac{2}{\pi} R$$
. Из первой

теоремы Паппа-Гульдина имеем формулу $P = l \cdot 2\pi R_1$. Отсюда искомая площадь поверхности

$$P = l \cdot 2\pi (R - \frac{2}{\pi}R) = \pi R \cdot 2(\pi R - 2R) = 2\pi (\pi - 2)R^{2}.$$

Вторая теорема Паппа-Гульдина. Объём тела, образованного вращением плоской фигуры вокруг не пересекающей её оси, равен произведению площади фигуры на путь, проходимый центром тяжести этой фигуры. В случае вращения вокруг оси OX теорема записывается формулой

$$V = S_{\phi} \cdot 2\pi\eta$$

Доказательство. Рассмотрим случай плоской кривой, когда она задана явно уравнением $y=y(x),\ a\leq x\leq b$. Фигура под графиком этой кривой является криволинейной трапецией. Ордината центра тяжести плоской фигуры находится по формуле $\eta=\frac{S_x}{S_{\phi}}$. Применяя формулу для вычисления статического момента S_x ,

получаем $\eta \cdot S_{\phi} = \frac{1}{2} \int_{a}^{b} (y(x))^2 dx$. Домножим на число 2π обе части этого равенства:

$$2\pi\eta \cdot S_{\Phi} = \pi \int_{a}^{b} (y(x))^{2} dx.$$

В правой части стоит объем тела, полученного вращением кривой вокруг оси OX. Левая часть является произведением площади фигуры на длину окружности, описываемой центром тяжести этой фигуры. Теорема доказана.

Пример 3. Найти координаты центра тяжести полукруга радиуса R с центром в начале координат, расположенного в верхней полуплоскости.

Решение. Воспользуемся второй теоремой Паппа-Гульдина. При вращении вокруг оси OX полукруг образует шар. Объем шара вычисляется по формуле $V_{\rm mapa}=\frac{4}{3}\pi\!R^3$,

площадь полукруга равна $S_{\phi} = \frac{\pi R^2}{2}$. Подставляя эти значения в формулу

$$V = S_{\phi} \cdot 2\pi\eta$$
 , находим $\eta = \frac{V_{\text{шара}}}{2\pi \cdot S_{\phi}} = \frac{\frac{4}{3}\pi R^3}{2\pi \cdot \frac{\pi R^2}{2}} = \frac{4}{3\pi}R$.

Список литературы

- 1. Кудрявцев Л.Д. Курс математического анализа, том 1. М.: Дрофа, 2006.
- 2. Ильин В.А., Позняк Э.Г. Основы математического анализа. М.: ФИЗМАТЛИТ, 2009.
- 3. Фихтенгольц Г.М. Основы математического анализа, том 1 u том 2. СПб.: Лань, 2008.
- 4. Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А. *Математический анализ в вопросах и задачах.* М.: ФИЗМАТЛИТ, 2002.
- 5. Берман Г.Н. *Сборник задач по курсу математического анализа.* СПб.: Лань, 2007.
- 6. Демидович Б.П. *Сборник задач и упражнений по математическому анализу.* М.: ООО Изд-во Астрель, 2009.