7. Deep Generative Models

המודלים שהוצגו בפרקים הקודמים הינם מודלים דיסקרימנטיביים, קרי הם מוציאים פלט על בסיס מידע נתון, אך לא יכולים ליצור מידע חדש בעצמם. בניגוד אליהם ישנם מודלים גנרטיביים, שלא רק לומדים להכליל את הדאטה הנלמד גם עבור דוגמאות חדשות, אלא יכולים גם להבין את מה שהם ראו וליצור מידע חדש על בסיס הדוגמאות שנלמדו. ישנם שני סוגים עיקריים מודלים גנרטיביים – מודלים המוצאים באופן מפורש את פונקציית הפילוג של הדאטה הנתון ובעזרת הפילוג מייצרות דוגמאות חדשות, ומודלים שלא יודעים לחשב בפירוש את הפילוג אלא מייצרים דוגמאות חדשות בדרכים אחרות. בפרק זה נדון במודלים הפופולריים בתחום – GANs ,VAE ו-Gans it (PixelCNN and PixelRNN).

יתרונות של VAE: קל לאימון, בהינתן x קל למצוא את z, וההתפלגות של בצורה מפורשת.

יתרונות של GAN: התמונות יוצאות באיכות גבוהה, מתאים להרבה דומיינים.

7.1 Variational AutoEncoder (VAE)

המודל הראשון הינו VAE, וכדי להבין אותו היטב יש להסביר קודם מהם Autoencoders, כיצד הוא עובד ומה החסרונות שלו.

7.1.1 Dimensionality Reduction

במקרים רבים, הדאטה אותו רוצים לנתח הוא בעל מימד גבוה, כלומר, לכל דגימה יש מספר רב של פיצ'רים, כאשר בדרך כלל לא כל הפיצ'רים משמעותיים באותה מידה. לדוגמא – מחיר מניה של חברה מסוימת מושפע ממספר רב של גורמים, אך ככל הנראה גובה ההכנסות של החברה משפיע על מחיר המניה הרבה יותר מאשר הגיל הממוצע של העובדים. דוגמא נוספת – במשימת חיזוי גיל של אדם על פי הפנים שלו, לא כל הפיקסלים בתמונת הפנים יהיו בעלי אותה חשיבות לצורך החיזוי. כיוון שקשה לנתח דאטה ממימד גבוה ולבנות מודלים עבור דאטה כזה, הרבה פעמים מנסים להוריד את המימד של הדאטה תוך איבוד מינימלי של מידע. בתהליך הורדת המימד מנסים לקבל ייצוג חדש של הדאטה בעל מימד יותר נמוך, כאשר הייצוג הזה מורכב מהמאפיינים הכי משמעותיים של הדאטה. יש מגוון שיטות להורדת המימד כאשר הרעיון המשותף לכולן הוא לייצג את הדאטה במימד נמוך יותר, בו באים לידי ביטוי רק הפיצ'רים המשמעותיים יותר.

הייצוג החדש של הדאטה נקרא הייצוג הלטנטי או הקוד הלטנטי, כאשר יותר קל לעבוד איתו במשימות שונות על הדאטה מאשר עם הדאטה המקורי. בכדי לקבל ייצוג לטנטי איכותי, ניתן לאמן אותו באמצעות decoder הבוחן את יכולת השחזור של הדאטה. ככל שניתן לשחזר בצורה מדויקת יותר את הדאטה מהייצוג הלטנטי, כלומר אובדן המידע בתהליך הוא קטן יותר, כך הקוד הלטנטי אכן מייצג בצורה אמינה את הדאטה המקורי.

תהליך האימון הוא דו שלבי: דאטה $x\in\mathbb{R}^n$ עובר דרך encoder, ולאחריו מתקבל $e(x)\in\mathbb{R}^m$, כאשר $x\in\mathbb{R}^n$ אם לאחר מכן התוצאה מוכנסת ל-decoder בכדי להחזיר אותה למימד המקורי, ולבסוף מתקבל $d(e(x))\in\mathbb{R}^n$ אז מידע התהליך מתקיים $d(e(x))\in\mathbb{R}^n$ אז למעשה לא נאבד שום מידע בתהליך, אך אם לעומת זאת x=d(e(x)) אז מידע מסוים אבד עקב הורדת המימד ולא היה ניתן לשחזר אותו במלואו בפענוח. באופן אינטואיטיבי, אם אנו מצליחים לשחזר את הקלט המקורי מהייצוג של במימד נמוך בדיוק טוב מספיק, כנראה שהייצוג במימד נמוך הצליח להפיק את הפיצ'רים המשמעותיים של הדאטה המקורי.

.decoder איור 7.1 ארכיטקטורת 7.1 ארכיטקטורת

כאמור, המטרה העיקרית של השיטות להורדת מימד הינה לקבל ייצוג לטנטי איכותי עד כמה שניתן. הדרך לעשות זאת היא לאמן את זוג ה-encoder-decoder השומרים על מקסימום מידע בעת הקידוד, וממילא מביאים למינימום מאת היא לאמן את זוג ה-encoder-decoder השפשריים, ניתן בהתאמה D-I E את כל הזוגות של encoder-decoder האפשריים, ניתן לנסח את בעיית הורדת המימד באופן הבא:

$$(e^*, d^*) = \underset{(e,d) \in E \times D}{\operatorname{arg min}} \epsilon \left(x, d(e(x))\right)$$

. כאשר $\epsilon\left(x,dig(e(x)ig)
ight)$ הוא שגיאת השחזור שבין הדאטה המקורי לבין הדאטה המשוחזר.

אחת השיטות השימושיות להורדת מימד שאפשר להסתכל עליה בצורה הזו היא Principal Components Analysis אחת השיטות השימושיות להורדת מימד שאפשר להסתכל עליה בצורה לינארית) דאטה ממימד n למימד d על ידי מציאת בסיס אורתוגונלי במרחב ה m מימדי בו המרחק האוקלידי בין הדאטה המקורי לדאטה המשוחזר מהייצוג החדש הוא מינימלי.

.PCA איור 7.2 דוגמא להורדת מימד בשיטת

במונחים של encoder-decoder, ניתן להראות כי אלגוריתם PCA מחפש את ה-encoder שמבצע טרנספורמציה לינארית על הדאטה לבסיס אורתוגונלי במימד נמוך יותר, שיחד עם decoder מתאים יביא לשגיאה מינימלית במונחים לינארית על הדאטה לבסיס אורתוגונלי במימד נמוך יותר, שיחד עם encoder האופטימלי מכיל של מרחק אוקלידי בין הייצוג המקורי לבין זה המשוחזר מהייצוג החדש. ניתן להוכיח שה-encoder הוא השחלוף של ה-decoder, וה-design, וה-decoder הוא השחלוף של ה-encoder.

7.1.2 Autoencoders (AE)

ניתן לקחת את המבנה של ה-encoder-decoder המתואר בפרק הקודם ולהשתמש ברשת נוירונים עבור בניית הייצוג החדש ועבור השחזור. מבנה זה נקרא Autoencoder:

. שימוש ברשתות נוירונים עבור הורדת המימד והשחזור. Autoencoder 7.3 איור

באופן הזה, הארכיטקטורה יוצרת צוואר בקבוק לדאטה, שמבטיח שרק המאפיינים החשובים של הדאטה, שבאמצעותם ניתן לשחזר אותה בדיוק טוב, ישמשו לייצוג במרחב הלטנטי. במקרה הפשוט בו בכל רשת יש רק שבאמצעותם ניתן לשחזר אותה בדיוק טוב, ישמשו לייצוג במרחב לינאריות, ניתן לראות כי ה-autoencoder יחפש שכבה חבויה אחת והיא לא משתמשת בפונקציות אקטיבציה לא לינאריות, ניתן לראות כי ה-PCA, גם רשת כזו תחפש טרנספורמציה לינארית של הדאטה באמצעותו ניתן לשחזרו באופן לינארי גם כן. בדומה ל-PCA, גם רשת כזו תחפש להוריד את המימד באמצעות טרנספורמציות לינאריות של הפיצ'רים המקוריים אך הייצוג במימד נמוך המופק על ידה

לא יהיה בהכרח זהה לזה של PCA, כיוון שלהבדיל מ-PCA הפיצ'רים החדשים (לאחר הורדת מימד) עשויים לצאת לא אורתוגונליים (-קורלציה שונה מ-0).

כעת נניח שהרשתות הן עמוקות ומשתמשות באקטיבציות לא לינאריות. במקרה כזה, ככל שהארכיטקטורה מורכבת encoder- יותר, כך הרשת יכולה להוריד יותר מימדים תוך יכולת לבצע שחזור ללא איבוד מידע. באופן תיאורטי, אם ל-encoder ולהשל מספיק דרגות חופש (למשל מספיק שכבות ברשת נוירונים), ניתן להפחית מימד של כל דאטה לחדמימד ללא איבוד מידע. עם זאת, הפחתת מימד דרסטית שכזו יכולה לגרום לדאטה המשוחזר לאבד את המבנה שלו. לכן יש חשיבות גדולה בבחירת מספר המימדים שבתהליך, כך שמצד אחד אכן יתבצע ניפוי של פרמטרים פחות משמעותיים ומצד שני המידע עדיין יהיה בעל משמעות למשימות downstream שונות. ניקח לדוגמא מערכת שמקבלת כלב, ציפור, מכונית ומטוס ומנסה למצוא את הפרמטרים העיקריים המבחינים ביניהם:

.Autoencoder-איור 7.4 דוגמא לשימוש

לפריטים אלו יש הרבה פיצ'רים, וקשה לבנות מודל שמבחין ביניהם על סמך כל הפיצ'רים. מעבר ברשת נוירונים יכול להביא לייצוג של כל הדוגמאות על קו ישר, כך שככל שפרט מסוים נמצא יותר ימינה, כך הוא יותר "חי". באופן הזה אמנם מתקבל ייצוג חד-מימדי, אבל הוא גורם לאיבוד המבנה של הדוגמאות ולא באמת ניתן להבין את ההפרדה ביניהן. לעומת זאת ניתן להוריד את המימד לדו-מימד ולהתייחס רק לפרמטרים "חי" ו"עף", וכך לקבל הבחנה יותר ברורה בין הדוגמאות, וכמובן שהפרדה זו היא הרבה יותר פשוטה מאשר הסתכלות על כל הפרמטרים של הדוגמאות. encoder.

7.1.3 Variational AutoEncoders (VAE)

ניתן לקחת את ה-AE ולהפוך אותו למודל גנרטיבי, כלומר מודל שמסוגל לייצר בעצמו דוגמאות חדשות שאכן מתפלגות כמו הפילוג של הדאטה המקורי. אם מדובר בדומיין של תמונות למשל, אז נרצה שהמודל יהיה מסוגל לייצר תמונות של ה-AE מאומנות לייצג את הדאטה במימד נמוך, שלוקח שנראות אותנטיות ביחס לדאטה סט עליו אומן. הרשתות של ה-AE מאומנות לייצג את הדאטה במימד נמוך, שלוקח בחשבון את הפיצ'רים העיקריים, ולאחר מכן לשחזר את התוצאה למימד המקורי, אך הן אינן מתייחסות לאופן בו הדאטה מיוצג במרחב הלטנטי. אם יוגרל וקטור כלשהו מהמרחב הלטנטי – קרוב לוודאי שהוא לא יהווה ייצוג שקשור לדאטה המקורי, כך שאם היינו מכניסים אותו ל-decoder, סביר שהתוצאה לא תהיה דומה בכלל לדאטה המקורי. למשל אם AE אומן על סט של תמונות של כלבים ודוגמים וקטור מהמרחב הלטנטי שלו, הסיכוי לקבל תמונת כלב לשהו לאחר השחזור של ה-decoder הינו אפסי.

כדי להתמודד עם בעיה זו, ניתן להשתמש ב-Variational AutoEncoders (VAE). בשונה מ-AE שלוקח דאטה ובונה Z לו ייצוג ממימד נמוך, VAE קובע התפלגות פריורית למרחב הלטנטי Z – למשל התפלגות נורמלית עם תוחלת 0 Z ומטריצת I covariance. בהינתן התפלגות זו, ה-encoder מאמן רשת המקבלת דאטה Z ומוציאה פרמטרים של התפלגות פוסטריורית Z מתוך מטרה למזער כמה שניתן את ההפרש בין ההתפלגויות Z ו-Z לאחר מכן דוגמים וקטורים מההתפלגות הפוסטריורית Z (הנתונה על ידי הפרמטרים המחושבים ב-encoder), ומעבירים אותם דרך ה-מוככבת של ההתפלגות של ההתפלגות Z מיער פרמטרים של ההתפלגות Z חשוב להבהיר שאם הדאטה המקורי הוא תמונה המורכבת מאוסף של פיקסלים, אזי במוצא יתקבל Z לכל פיקסל בנפרד ומההתפלגות הזו דוגמים נקודה והיא תהיה ערך הפיקסל בתמונה המשוחזרת.

באופן הזה, הלמידה דואגת לא רק להורדת המימד, אלא גם להתפלגות המושרית על המרחב הלטנטי. כאשר ההתפלגות המותנית במוצא $x \mid z$ טובה, קרי קרובה להתפלגות המקורית של x, ניתן בעזרתה גם ליצור דוגמאות חדשות, ובעצם מתקבל מודל גנרטיבי.

כאמור, ה-encoder מנסה לייצג את הדאטה המקורי באמצעות התפלגות במימד נמוך יותר, למשל התפלגות נורמלית – decoder עם תוחלת ומטריצת $z\sim p(z|x)=N(\mu_x,\sigma_x)$:covariance עם תוחלת ומטריצת

בעוד שב-AE הוא נועד לתהליך האימון בלבד ובפועל מה שחשוב זה הייצוג הלטנטי, ב-VAE ה-decoder חשוב לא פחות מאשר הייצוג הלטנטי, כיוון שהוא זה שהופך את המערכת למודל גנרטיבי.

.VAE איור 7.5 ארכיטקטורה של

לאחר שהוצג המבנה הכללי של VAE, ניתן לתאר את תהליך הלמידה, ולשם כך נפריד בשלב זה בין שני החלקים של ה-VAE. ה-encoder מאמן רשת שמקבלת דוגמאות מסט האימון, ומנסה להפיק מהן פרמטרים של התפלגות של ה-VAE של ה-VAE מהחלגות הנלמדת הזו דוגמים וקטורים z|x הקרובים כמה שניתן להתפלגות פריורית z, שכאמור נקבעה מראש. מההתפלגות הנלמדת הזו דוגמים וקטורים חדשים ומעבירים ל-decoder. ה-decoder מבצע את הפעולה ההפוכה – לוקח וקטור שנדגם מהמרחב הלטנטי z שני חלקי ומייצר באמצעותו דוגמא חדשה הדומה לדאטה המקורי. תהליך האימון יהיה כזה שימזער את השגיאה של שני חלקי היותר קרובה z שבמוצא יהיה כמה שיותר קרוב ל-z המקורי, וגם ההתפלגות z תהיה כמה שיותר קרוב להתפלגות הפריורית z.

$$L(\theta) = \log p(x; \theta)$$

אם נביא למקסימום את הביטוי הזה, נקבל את ה- θ האופטימלי. כיוון שלא ניתן לחשב במפורש את $p(x;\theta)$, יש מונביא למקסימום את הביטוי הזה, נקבל את ה- θ האופטימלי. כיוון שלא ניתן לחשב במפורש את encoder הוא בעל התפלגות מסוימת $q(z|x;\lambda)$ (מה ההסתברות לקבל את $q(z|x;\lambda)$ ב-נניסה). כעת ניתן לחלק ולהכפיל את $q(z|x;\lambda)$ ב-ניסה).

$$\log p(x;\theta) = \log \sum_{z} p(x,z;\theta) = \log \sum_{z} q(z|x;\lambda) \frac{p(x,z;\theta)}{q(z|x;\lambda)} \ge \sum_{z} q(z|x;\lambda) \log \frac{p(x,z_i;\theta)}{q(z|x;\lambda)}$$

Evidence Lower BOund כאשר אי השוויון האחרון נובע <u>מאי-שוויון ינסן,</u> והביטוי שמימין לאי השיוויון נקרא בין שתי ההתפלגויות ($ELBO(\theta,\lambda)$). ניתן להוכיח שההפרש בין ה-ELBO לבין הערך שלפני הקירוב הוא המרחק בין שתי ההתפלגויות (\mathcal{D}_{KL}): \mathcal{D}_{KL} ניתן להוכיח שהוא נקרא Kullback–Leibler divergence ומסומן ב- \mathcal{D}_{KL}

$$\log p(x;\theta) = ELBO(\theta,\lambda) + \mathcal{D}_{KL}(q(z|x;\lambda)||p(z|x;\theta))$$

אם שתי ההתפלגויות זהות, אזי מרחק \mathcal{D}_{KL} ביניהן הוא 0 ומתקבל שוויון: $\log p(x;\theta) = ELBO(\theta,\lambda)$. כזכור, אנחנו פשרים למקסם את פונקציית המחיר $\log p(x;\theta)$, וכעת בעזרת הקירוב ניתן לרשום:

$$L(\theta) = \log p(x; \theta) \ge ELBO(\theta, \lambda)$$

$$\to \theta_{ML} = \arg \max_{\theta} L(\theta) = \arg \max_{\theta} \max_{\lambda} ELBO(\theta, \lambda)$$

-כעת ניתן בעזרת שיטת GD למצוא את האופטימום של הביטוי, וממנו להפיק את הפרמטרים האופטימליים של ה-decoder. נפתח יותר את ה- $ELBO(heta,\lambda)$ עבור VAE עבור encoder

z עם סט פרמטרים θ יוציא ע decoder עם ההסתברות ש-- $p(x|z;\theta)$

עם סט פרמטרים z_i יוציא את פרמטרים עם encoder עם בכניסה encoder ההסתברות ש-

לפי הגדרה:

$$ELBO(\theta, \lambda) = \sum_{z} q(z|x; \lambda) \log p(x, z; \theta) - \sum_{z} q(z|x; \lambda) \log q(z|x; \lambda)$$

 $p(x,z) = p(x|z) \cdot p(z)$ ניתן לפתוח לפי בייס $\log p(x,z;\theta)$ את הביטוי

$$= \sum_{z} q(z|x;\lambda)(\log p(x|z;\theta) + \log p(z;\theta)) - \sum_{z} q(z|x;\lambda)\log q(z|x;\lambda)$$

$$= \sum_{z} q(z|x;\lambda) \log p(x|z;\theta) - \sum_{z} q(z|x;\lambda) (\log q(z|x;\lambda) - \log p(z;\theta))$$

$$= \sum_{z} q(z|x;\lambda) \log p(x|z;\theta) - \sum_{z} q(z|x;\lambda) \frac{\log q(z|x;\lambda)}{\log p(z;\theta)}$$

. לכן מתקבל: לפי הגדרה שווה ל- $\mathcal{D}_{KL}(q(z|x;\lambda)\|p(z; heta))$, לכן מתקבל:

$$= \sum_{z} q(z|x;\lambda) \log p(x|z;\theta) - \mathcal{D}_{KL}(q(z|x;\lambda)||p(z))$$

הביטוי הראשון הוא בדיוק התוחלת של $\log p(x|z; heta)$. תחת ההנחה ש-z מתפלג נורמלית, ניתן לרשום:

$$= \mathbb{E}_{q(Z|X;\lambda)} \log N(x; \mu_{\theta}(z), \sigma_{\theta}(z)) - \mathcal{D}_{KL}(N(\mu_{\lambda}(x), \sigma_{\lambda}(x)) || N(0, I))$$

:כדי לחשב את התוחלת ניתן פשוט לדגום דוגמאות מההתפלגות $z|x\sim Nig(\mu_{ heta}(x),\sigma_{ heta}(x)ig)$ ולקבל

$$\mathbb{E}_{a(z|x:\lambda)} \log N(x; \mu_{\theta}(z), \sigma_{\theta}(z)) \approx \log N(x; \mu_{\theta}(z), \sigma_{\theta}(z))$$

ועבור הביטוי השני יש נוסחה סגורה:

$$\mathcal{D}_{KL}(N(\mu, \sigma^2) || N(0, I)) = \frac{1}{2} (\mu^2 + \sigma^2 - \log \sigma^2)$$

כעת משיש בידינו נוסחה לחישוב פונקציית המחיר, נוכל לבצע את תהליך הלמידה. יש לשים לב שפונקציית המחיר המקורית הייתה תלויה רק ב-heta, אך באופן שפיתחנו אותה היא למעשה דואגת גם למזעור ההפרש בין הכניסה למוצא, וגם למזעור ההפרש בין ההתפלגות בריורית z לבין ההתפלגות z שבמוצא ה-encoder.

$$\begin{split} x_t &\to \mu_\lambda(x_t), \Sigma_\lambda(x_t) \to z_t \sim N\big(\mu_\lambda(x_t), \Sigma_\lambda(x_t)\big) \to \mu_\theta(z_t), \Sigma_\theta(z_t) \\ ELBO &= \sum_t \log N\big(x_t; \mu_\theta(z_t), \Sigma_\theta(z_t)\big) - \mathcal{D}_{KL}(N\big(\mu_\lambda(x_t), \Sigma_\lambda(x_t)\big) ||N(0, I) \end{split}$$

.VAE איור 7.6 תהליך הלמידה של

כאשר נתון סט דוגמאות x, ניתן להעביר כל דוגמא x ב-encoder ולקבל עבורה את $\mu_{\lambda}, \sigma_{\lambda}$. לאחר מכן דוגמים וקטור מההתפלגות עם פרמטרים, מעבירים אותו ב-decoder ומקבלים את $\mu_{\theta}, \sigma_{\theta}$. לאחר התהליך ניתן להציב את לטנטי z מההתפלגות עם פרמטרים לחשב את ה-ELBO. ניתן לשים לב שה-ELBO מורכב משני איברים — האיבר הראשון מחשב את היחס בין הדוגמא שבכניסה לבין ההתפלגות שמתקבלת במוצא, והאיבר השני מבצע רגולריזציה הראשון מחשב את היחס בין הדוגמא שבכניסה לבין ההתפלגות שמתקבלת במוצא, והאיבר השני z תהיה קרובה עד להתפלגות הפריורית במרחב הלטנטי. הרגולריזציה גורמת לכך שההתפלגות במרחב הלטנטי z עת הפריורית, אז ניתן בעזרת כמה שניתן להתפלגות הפריורית, ובמובן הזה ה-VAE הוא מודל גנרטיבי.

הדגימה של z מההתפלגות במרחב הלטנטי יוצרת קושי בחישוב הגרדיאנט של ה-ELBO, לכן בדרך כלל מבצעים הדגימה של z מהתפלגות במרחב דוגמים בועמים z_0 מהתפלגות נורמלית סטנדרטית, ואז כדי לקבל את z_0 משתמשים – תבריטים של ה-Eeparameterization trick בפרמטרים של ה-בגישה באופן סכמתי את ה- z_0 בגישה הזו כל התהליך נהיה דטרמיניסטי – מגרילים z_0 מראש הזו כל התהליך נשאר לחשב באופן סכמתי את ה-forward-backward.

7.2 Generative Adversarial Networks (GANs)

גישה אחרת של מודל גנרטיבי נקראת Generative Adversarial Networks או בקיצור GANs, ובשונה מ-GANs בגישה זו לא מנסים לשערך התפלגות של דאטה בצורה מפורשת, אלא יוצרים דאטה באופן אחר. הרעיון הוא לאמן בעישה זו לא מנסים לשערך התפלגות של דאטה בצורה מפורשת, ורשת שניה שלומדת להבחין בין דוגמא אמיתית מסט שתי רשתות במקביל – רשת אחת שלומדת לייצר דוגמאות שיגרמו האימון לבין תמונה סינטטית שנוצרה על ידי הרשת הראשונה. הרשת השנייה מאומנת לא לתת לרשת הראשונה לבלבל לרשת השנייה לחשוב שהן אמיתיות, בזמן שההמטרה של הרשת השנייה מאומנת לא לתת לרשת הראשונה מהווה למעשה מודל גנרטיבי, שלאחר שלב האימון היא מסוגלת לייצר דאטה סינטטי שלא ניתן להבין בינו לבין דאטה אמיתי.

7.2.1 Generator and Discriminator

בפרק זה נסביר את המבנה של ה-GAN הקלאסי שהומצא בשנת 2014 על ידי Ian Goodfellow ושותפיו. נציין שקיימות מאות רבות של וריאנטים שונים של GAN שהוצעו מאז, ועדיין תחום זה הוא פעיל מאוד מבחינה מחקרית.

כאמור, GAN מבוסס על שני אלמנטים מרכזיים – רשת שיוצרת דאטה (generator) ורשת שמכריעה האם הדאטה הזה סינטטי או אמיתי (discriminator), כאשר האימון נעשה על שתי הרשתות יחד. ה-discriminator), כאשר האימון נעשה על שתי הרשתות יחד. ה-generator מייצר דוגמאות ומקבל אימון על דאטה אמיתי כדי לדעת להבחין בין דאטה אמיתי לבין דאטה סינטטי, וה-generator ב-generator ב-G ואת מידבק מה-discriminator וכך לומד לייצר דוגמאות שנראות אמיתיות. נסמן את ה-discriminator ב-D, ונקבל את הסכמה הבאה:

.GAN איור 7.7 ארכיטקטורת

ה-הפלט חוא למעשה מסווג בינארי y=1 עבור דוגמא אמיתית, ו-D discriminator ה-D הא למעשה מסווג בינארי בינארי עבור דוגמא אמיתית, הזו. כדי לאמן את ה-D שלו הוא ההסתברות שהקלט הינו דוגמא אמיתית, כאשר נסמן ב-D(x) את ההסתברות הזו. כדי לאמן את ה-discriminator נרצה למקסם את D(x) (=למצוא את ה-cross entropy עבור y=1 עבור לעשות זו ננסה להביא למינימום את ה-cross entropy

$$\min_{D} \left\{ -y \log D(x) - (1-y) \log \left(1 - D(x)\right) \right\} = \min_{D} \left\{ -y \log D(x) \right\}$$

באופן דומה נרצה לאמן את ה-generator כך שהדאטה שהוא מייצר יהיה כמה שיותר דומה לאמיתי, ולכן נרצה generator באופן דומה נרצה למקסימום את ה-cross entropy שהכי פחות מזייף, כלומר מייצר דאטה כמה שיותר אמיתי):

$$\max_{G} \left\{ -(1-y)\log\left(1-D(G(z))\right) \right\} = \max_{G} \left\{ -\log\left(1-D(G(z))\right) \right\}$$

ניתן לשים לב כי הקלט של ה-GAN הינו וקטור של רעש אקראי, כאשר המטרה של ה-GAN הינה ללמוד ליצור ניתן לשים לב כי הקלט של ה-GAN הינו וקטור של רעש הינו גאוסי בעל תוחלת אפס ומטריצת I covariance אך דוגמאות אותנטיות מהרעש שבכניסה. בדרך כלל הרעש הינו גאוסי בעל תוחלת אפס ומטריצת קיימים גם GAN ים עם קלט המפולג אחר.

אם מחברים את שני האילוצים האלה מקבלים את פונקציית המחיר של ה-GAN

$$V(D,G) = \min_{D} \max_{G} -\mathbb{E}_{x \sim Data} \log D(x) - \mathbb{E}_{z \sim Noise} \log \left(1 - D(G(z))\right)$$

באופן שקול ניתן להפוך את האילוצים וביטול סימן המינוס:

$$V(D,G) = \min_{G} \max_{D} \mathbb{E}_{x \sim Data} \log D(x) + \mathbb{E}_{z \sim Noise} \log \left(1 - D(G(z))\right)$$

ה-discriminator מעוניין למקסם את פונקציית המחיר, כך ש-D(x) יהיה כמה שיותר קרוב ל-1 ו-D(G(z)) יהיה משותר קרוב ל-2. ה-generator לעומת זאת רוצה להביא למינימום את פונקציית המחיר, כך ש-D(G(z)) יהיה generator מהה שיותר קרוב ל-1, כלומר ה-discriminator חושב ש-G(z) הוא דאטה אמיתי. בטרמינולוגיה של תורת המשחקים ניתן להסתכל על תהליך של GAN בתור משחק סכום אפס של שני שחקנים שלא משתפים פעולה, כלומר כאשר אחד מנצח, השני בהכרח מפסיד. כמובן שהשחקן הראשון כאן הוא G והשני הוא D.

D ופעם אחת מקבעים את G ומאמנים את קבעים את מקבעים את מקבעים את , ופעם אחת מקבעים את G ופעם אחת מקבעים את G, אז למעשה מאמנים מסווג בינארי, כאשר מחפשים את האופטימום התלוי בוקטור G, אז למעשה מאמנים מסווג בינארי, כאשר מחפשים את האופטימום התלוי בוקטור הפרמטרים Φ_d :

$$\max_{\phi_d} \mathbb{E}_{x \sim Data} \log D_{\phi_d}(x) + \mathbb{E}_{z \sim Noise} \log \left(1 - D_{\phi_d} \left(G_{\theta_g}(z) \right) \right)$$

 $heta_g$ -אם לעומת זאת מקבעים את D, אז ניתן להתעלם מהאיבר הראשון כיוון שהוא פונקציה של D, אז ניתן להתעלם מהאיבר הראשון כיוון שהוא מונקעים את ה-D, אם לעומת זאת מקבעים את ה-generator שמייצר הכי טוב דאטה שנראה אמיתי:

$$\min_{\theta_g} \mathbb{E}_{z \sim Noise} \log \left(1 - D_{\phi_d} \left(G_{\theta_g}(z) \right) \right)$$

כאמור, המטרה היא לאמן את G בעזרת G (במצבו הנוכחי), כדי שיהיה מסוגל ליצור דוגמאות המסווגות. מציאת mini- במשר מספר מסוים של Gradient Descent/Gradient Ascent. דוגמים האופטימום נעשית בעזרת (z_1,\ldots,z_m) , ומכניסים את הקלט (z_1,\ldots,z_m) , ומכניסים את הקלט batch בגודל (z_1,\ldots,z_m) , ומכניסים את המחיר לפי ה-generator במהלך האימון היא:

$$\nabla_{\theta} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} \log \left(1 - D_{\phi} (G_{\theta}(z_i)) \right)$$

וכאשר מאמנים את ה-discriminator, הגרדיאנט נראה כך:

$$\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} \log D_{\phi}(x_i) + \log \left(1 - D_{\phi}(G_{\theta}(z_i))\right)$$

generator- נהוג לבצע מודיפיקציה קטנה על הביטוי של ה-generator. כיוון שבהתחלה הדגימות שמיוצרות על ידי ה-generator לא דומות לחלוטין לאלו מסט האימון, ה-discriminator מזהה אותן בקלות כמזויפות. הביטוי D(G(z)) מקבל ערכים לא דומות לחלוטין לאלו מסט האימון, ה- $\mathbb{E}_{z\sim Noise}\log\left(1-D(G(z))\right)$ שואף ל-0. עניין זה גורם לכך שהגרדיאנט של הביטוי $\mathbb{E}_{z\sim Noise}\log\left(1-D(G(z))\right)$ מחפשים מינימום לביטוי $\mathbb{E}_{z\sim Noise}\log\left(1-D(G(z))\right)$ מחפשים מינימום לביטוי $\mathbb{E}_{z\sim Noise}\log\left(1-D(G(z))\right)$ יותר טוב. $\mathbb{E}_{z\sim Noise}\log\left(1-D(G(z))\right)$

לאחר שהוסבר המבנה הכללי של GAN, נעבור לסקור מספר ארכיטקטורות של מודלי

7.2.2 Deep Convolutional GAN (DCGAN)

כפי שהוסבר בפרק של רשתות קונבולוציה, עבור דאטה של תמונות יש יתרון גדול לרשתות קונבולוציה על פני רשתות FC. לכן היה טבעי לקחת רשתות קונבולוציה ולהשתמש בהן בתור generator ו-discriminator עבור דומיין של המונות. ה-generator מקבל וקטור אקראי ומעביר אותו דרך רשת קונבולוציה על מנת ליצור תמונה, וה-discriminator מקבל תמונה ומעביר אותו דרך רשת קונבולוציה שעושה סיווג בינארי אם התמונה אמיתית או סינטטית.

.DCGAN איור 7.8 ארכיטקטורת

7.2.4 Pix2Pix

במקרה הפשוט z מוגרל מהתפלגות נורמלית, אך זה לא דבר מוכרח. שיטת Pix2Pix משתמשת בארכיטקטורה של GAN אך במקום לדגום את z, יוצרים סקיצה של תמונה בתור הקלט, וה-generator לומד להפוך את הסקיצה לתמונה שמיתית. ה-generator עצמו נשאר ללא שינוי ביחס למה שתואר קודם לכן, אך ה-discriminator כן משתנה – אמיתית. ועליו במקום לקבל תמונה ולבצע עליה סיווג בינארי, הוא מקבל זוג תמונות – את הסקיצה ואת התמונה הסינטטית, ועליו לקבוע האם התמונה הסינטטית היא אכן תמונה אמיתית של הסקיצה או לא. הווריאציה של ה-GAN משנה גם את פונקציית המחיר – כעת ה-generator צריך ללמוד שני דברים – גם ליצור תמונות טובות כך שה-discriminator יסווג אותן כאמיתיות, וגם למזער את ההפרש בין התמונה שנוצרת לבין תמונה אמיתית השייכת לסקיצה. אם נסמן תמונה אמיתית השייכת לסקיצה ב-y, נוכל לרשום את פונקציית המחיר כך:

$$\begin{split} V(D,G) &= \min_{G} \max_{D} \mathbb{E}_{x,y} \left(\log D(x,y) + \log \left(1 - D \left(x,G(x) \right) \right) \right) \\ &= \min_{\theta_{B}} \mathbb{E}_{x,y} \left(\log \left(1 - D \left(x,G(x) \right) \right) + \lambda \left\| G(x) - y \right\| \right) \end{split}$$

generator-ביחס לתמונות שה-discriminator מתייחס לתשובה של ה-discriminator ביחס לתמונות שה-G מהיבר הראשון בפונקציית המחיר של G מתייחס להפרש בין התמונה הסינטטית לבין תמונה אמיתית השייכת לסקיצה של הקלט.

.Image-to-Image Translation - Pix2Pix איור 7.9 ארכיטקטורת

7.2.5 CycleGAN

ב-Pix2Pix הדאטה המקורי הגיע בזוגות – סקיצה ואיתה תמונה אמיתית. זוגות של תמונות זה לא דבר כל כך זמין, ולכן שיפרו את האלגוריתם כך שיוכל לקבל שתי תמונות x,y שאינן תואמות ולבצע השלכה מאחת לשנייה. ולכן שיפרו את האלגוריתם כך שיוכל לקבל שתי תמונות x,y שאינן תואמות ולבצע השלכה להפוך אותו הארכיטקטורה עבור המשימה הזו מורכבת משני generators – בהתחלה מכניסים את x ל-y שמנסה לשחזר את המקור x. המוצא של ה-y נכנס לא רק ל-y אלא גם ל-y שמנסים לשמסווג האם התמונה שהתקבלה אמיתית או לא. ניתן לבצע את התהליך הזה באופן דואלי עבור y על מנת ע y שמסווג האם התמונה שהתקבלה אמיתית או לא. ניתן לבצע את התהליך הזה באופן דואלי עבור y על מנת ע y על מנת לקבל את y ואת המוצא מכניסים ל-y שמטר מניסים ל-y על מנת לשחזר את המקור. ה-y ואת המוצי בתהליך נועד לשפר את תהליך הלמידה – לאחר ש-y הופך ל-y מתוך ציפייה לקבל y התהליך של השוואת הכניסה למוצא נקרא y אם נעביר את y דרך y מתוך ציפייה לקבל y המחיר, שמטרתו למזער עד כמה שניתן את למוצא נקרא y התמונה המקורית לתמונה המשוחזרת:

$$V(D_x, D_y, G, F) = \mathcal{L}_{GAN}(G, D_y, x, y) + \mathcal{L}_{GAN}(F, D_x, x, y)$$
$$+\lambda \left(\mathbb{E}_x \left\| F(G(x)) - x \right\|_1 + \mathbb{E}_y \left\| G(F(y)) - y \right\|_1 \right)$$

.CycleGAN איור 7.10 ארכיטקטורת

7.3 Auto-Regressive Generative Models

משפחה נוספת של מודלים גנרטיביים נקראת Auto-Regressive Generative Models, ובדומה ל-VAE גם מודלים VAE אלו מוצאים התפלגות מפורשת של מרחב מסוים ובעזרת התפלגות זו מייצרים דאטה חדש. עם זאת, בעוד AB אלו מוצאים התפלגות מסוימת, וממנה לדגום מוצא קירוב להתפלגות של המרחב הלטנטי, שיטות AR מנסות לחשב במדויק התפלגות מסוימת, וממנה לדגום ולייצר דאטה חדש.

תמונה x בגודל $n \times n$ היא למעשה רצף של n^2 פיקסלים. כאשר רוצים ליצור תמונה, ניתן ליצור כל פעם כל פיקסל באופן כזה שהוא יהיה תלוי בכל הפיקסלים שלפניו.

איור 7.11 תמונה כרצף של פיקסלים.

כל פיקסל הוא בעל התפלגות מותנית:

$$p(x_i|x_1...x_{i-1})$$

כאשר כל פיקסל מורכב משלושה צבעים (RGB), לכן ההסתברות המדויקת היא:

$$p(x_{i,R}|\mathbf{x}_{< i})p(x_{i,G}|\mathbf{x}_{< i},x_{i,R})p(x_{i,B}|\mathbf{x}_{< i},x_{i,R},x_{i,G})$$

כל התמונה השלמה היא מכפלת ההסתברויות המותנות:

$$p(x) = \prod_{i=1}^{n^2} p(x_i) = \prod_{i=1}^{n^2} p(x_i|x_1 \dots x_{i-1})$$

הביטוי p(x) הוא ההסתברות של דאטה מסוים לייצג תמונה אמיתית, לכן נרצה למקסם את הביטוי הזה כדי לקבל מודל שמייצג תמונות שנראות אותנטיות עד כמה שניתן.

7.3.1 PixelRNN

אפשרות אחת לחשב את p(x) היא להשתמש ברכיבי זיכרון כמו LSTM עבור כל פיקסל. באופן טבעי היינו רוצים לקשר כל פיקסל לשכנים שלו:

Hidden State
$$(i, j) = f(\text{Hidden State } (i - 1, j), \text{Hidden State } (i, j - 1))$$

הבעיה בחישוב זה היא הזמן שלוקח לבצע אותו. כיוון שכל פיקסל דורש לדעת את הפיקסל שלפניו – לא ניתן לבצע אימון מקבילי לרכיבי ה-LSTM. כדי להתגבר על בעיה זו הוצעו כמה שיטות שנועדו לאפשר חישוב מקבילי.

Row LSTM

במקום להשתמש במצב החבוי של הפיקסל הקודם, ניתן להשתמש רק בשורה שמעל הפיקסל אותו רוצים לחשב. שורה זו בעצמה מחושבת לפני כן על ידי השורה שמעליה, ובכך למעשה לכל פיקסל יש receptive field של משולש. בשיטה זו ניתן לחשב באופן מקבילי כל שורה בנפרד, אך יש לכך מחיר של איבוד הקשר בין פיקסלים באותה שורה (loss context).

. איור Row LSTM 7.12 כל פיקסל מחושב על ידי $k \geq 3$ פיקסלים בשורה שמעליו.

Diagonal BiLSTM

כדי לאפשר גם חישוב מקבילי וגם שמירה על קשר עם כל הפיקסלים, ניתן להשתמש ברכיבי זיכרון דו כיווניים. בכל שלב מחשבים את רכיבי הזיכרון משני הצדדים של כל שורה, וכך כל פיקסל מחושב גם בעזרת הפיקסל שלידו וגם שלב מחשבים את רכיבי הזיכרון משני הצדדים של כל שורה, וכך כל פיקסל מחושב יותר איטי מהשיטה receptive field. אך החישוב יותר איטי מהשיטה הקודמת, כיוון שהשורות לא מחושבות בפעם אחת אלא כל פעם שני פיקסלים.

. בשורה שמעליו בשורה בשורה בשורה – Diagonal BLSTM 7.13 איור 7.13 איור

כדי לשפר את השיטות שמשתמשות ברכיבי זיכרון ניתן להוסיף עוד שכבות, כמו למשל Residual blocks שעוזרים כדי לשפר את השיטות שמשתמשות ברכיבי זיכרון ניתן להוסיף עוד שכבות, כמו למשל Sasked convolutions- להאיץ את ההתכנסות ו-Masked convolutions

7.3.2 PixelCNN

החיסרון העיקרי של PixelRNN נובע מהאימון האיטי שלו. במקום רכיבי זיכרון ניתן להשתמש ברשת קונבולוציה, ובכך להאיץ את תהליך הלמידה ולהגדיל את ה-receptive field.