MISMI Semestre 2, Année 2013-2014

UE M1MI2011 : ANALYSE 1 - Devoir surveillé 2

Date : 28 Avril 2014 Durée : 1h30

Exercice 1.

1. Énoncer le théorème des valeurs intermédiaires.

- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$. Peut-on déterminer x_0 de manière approchée par une méthode algorithmique et laquelle?
- 3. Soit P un polynôme à coefficients réels de degré impair. Montrer que P admet au moins une racine réelle.

Exercice 2.

- 1. Énoncer la règle de l'Hôpital.
- 2. Calculer les limites suivantes :

$$\lim_{x \to 0} \left(\frac{\ln(1+x^2)}{\sin x} \right) \qquad \lim_{x \to 0} \left(\frac{x - \sin x}{1 - \cos x} \right).$$

Exercice 3. Soient h un nombre réel strictement positif et f une fonction de classe C^2 sur [0, 2h], prenant ses valeurs dans \mathbb{R} . On définit la fonction ϕ sur [0, h] par

$$\forall x \in [0, h], \ \phi(x) := f(x+h) - f(x).$$

1. Montrer que ϕ est de classe C^2 sur [0,h]. Énoncer la formule des accroissements finis pour une fonction à valeurs réelles continue sur un segment [a,b] et dérivable sur]a,b[. Déduire de cette formule qu'il existe $c \in [0,h]$ tel que

$$(f(2h) - f(h)) - (f(h) - f(0)) =$$

= $f(2h) - 2f(h) + f(0) = h \phi'(c)$.

- 2. Exprimer la fonction ϕ' en fonction de h et de la dérivée de la fonction f sur [0, 2h].
- 3. Déduire des deux questions précédentes qu'il existe $\alpha \in]0,1[$ tel que

$$f(2h) - 2f(h) + f(0) = h^2 f''(2\alpha h).$$

Exercice 4.

- 1. Énoncer l'inégalité des accroissements finis pour une fonction à valeurs réelles continue sur un segment [a,b] de \mathbb{R} et dérivable en tout point de [a,b].
- 2. Vérifier que si x et y sont deux éléments de $[-\pi/4, \pi/4]$, on a

$$|x - y| \le |\tan x - \tan y| \le 2|x - y|.$$

- 3. Énoncer l'inégalité de Taylor-Lagrange pour une fonction à valeurs réelles de classe C^p $(p \in \mathbb{N})$ sur un segment [a,b] de \mathbb{R} et dérivable à l'ordre p+1 en tout point de]a,b[. À quelle valeur de p correspond l'inégalité des accroissements finis énoncée à la question $\mathbf{1}$?
- 4. Montrer que pour tout x > 1

$$\left| \log(x) - \frac{(x-1)(x-3)}{2} \right| \le \frac{(x-1)^3}{6}.$$