0.1 Approximation av signaler

Låt f vara en signal och x vara en modellsignal som vi förstår. Vi vill modellera f m.h.a. x, så ungefär $f \approx cx \implies$ Ett fel e = f - cx.

Kom ihåg linalgens "inre produktrum":

V är ett vektorrum över \mathbb{R} eller \mathbb{C} , $\langle \cdot, \cdot \rangle$, en inre/skalär produkt på V. Den uppfyller $\langle x, y \rangle = \langle y, x \rangle$, $\langle x, x \rangle \geq 0 (=0 \iff x=0)$ och $\langle x, \lambda y_1 + y_2 \rangle = \langle x, y_1 \rangle \lambda + \langle x, y_2 \rangle$.

$$f_1,f_2$$
 är signaler, då är här $\langle f_1,f_2\rangle=\int\limits_{-\infty}^{\infty}\bar{f_1(t)}f_2(t)\mathrm{d}t.$

I det periodiska fallet är
$$\langle f_1, f_2 \rangle = \int\limits_0^T f_1(t) f_2(t) \mathrm{d}t.$$

Mellan två signaler f_1, f_2 har vi en vinkel θ som definieras genom $\cos(\theta) = \frac{\langle f_1, f_2 \rangle}{|f_1| \cdot |f_2|} \, \text{där } |f| = \sqrt{\langle f, f \rangle}.$

Felet e är litet om |e| är litet. När är då |e| som minst? D.v.s. vad är min |f - cx| över \mathbb{C} ? Går att härleda att det uppnås för $c = \frac{\langle x, f \rangle}{|x|^2}$. Det betyder att $f \approx \frac{\langle x, f \rangle}{|x|^2} x$.

- Mattesnubben

Om f är en signal definierad för $-\infty < t < \infty$ är dess energi $E_f = \int\limits_{-\infty}^{\infty} |f(t)|^2 \mathrm{d}t = |f|^2$.

 $\int\limits_{-\infty}^{} \infty f_1(t) f_2(t) \mathrm{d}t$ Om f_1, f_2 är signaler definierade för $-\infty < t < \infty$ är $\frac{\int\limits_{-\infty}^{} \infty f_1(t) f_2(t) \mathrm{d}t}{\sqrt{E_{f_1} E_{f_2}}} = \frac{\langle f_1, f_2 \rangle}{|f_2||f_2|}$ korrelationen mellan signalerna. Den är $1 \iff f_1 = f_2$ och $-1 \iff f_1 = -f_2$.

Anta att vi har flera modellsignaler x_1, x_2, \ldots, x_N så att $f \approx c_1 x_1 + c_2 x_2 + \cdots + c_N x_N$. Vi vill då minimera $e = f - \sum_{n=1}^N c_k e_k$. Det uppnås för $c_k = \frac{\langle x_n, f \rangle}{|x_n|^2}$ **OM** x_1, x_2, \ldots, x_n inte är korrelerade, d.v.s. de är ortogonala eller den inre/skalärprodukten är 0.

[&]quot;Jag växte också upp på Lindholmen."

0.2 Fourierserier

Fourierserier appliceras på periodiska signaler. Låt f vara en signal med period T.

Vi tittar på följande modellsignaler: $\{1, \cos(\omega_0 t), \dots, \cos(N\omega_0 t), \sin(\omega_0 t), \dots, \sin(N\omega_0 t)\}$.

$$\langle \cos(k\omega_0 t), \cos(l\omega_0 t) \rangle = \int\limits_0^T \cos(k\omega_0 t) \cos(l\omega_0 t) \mathrm{d}t = \int\limits_0^T \frac{e^{jk\omega_0 t} + e^{-jk\omega_0 t}}{2} \frac{e^{jl\omega_0 t} + e^{-jl\omega_0 t}}{2} \mathrm{d}t = \frac{1}{4} \int\limits_0^T e^{j(k+l)\omega_0 t} + e^{j(k-l)\omega_0 t} + e^{j(-k+l)\omega_0 t} + e^{-j(k+l)\omega_0 t} \mathrm{d}t = T \text{ om } k = l = 0, \frac{T}{2} \text{ om } k = l = 0, \frac{T$$

 $\frac{T}{2}$ om k = l och 0 annars.

Alltså är den bästa approximationen

 $\operatorname{där} a_{k} = \frac{2}{T} \int_{0}^{T} f(t) \cos(k\omega_{0}t) dt = \frac{\langle \cos(k\omega_{0}t), f \rangle}{\left| \cos(k\omega_{0}t) \right|^{2}} \operatorname{och} b_{k} = \frac{2}{T} \int_{0}^{T} f(t) \sin(k\omega_{0}t) dt = \frac{\langle \sin(k\omega_{0}t), f \rangle}{\left| \sin(k\omega_{0}t) \right|^{2}}.$

Sats 1. Om
$$f$$
 är T -periodisk och $\int_{0}^{T} |f(t)| dt < \infty$ existerar a_k och b_k .

Sats 2. Om
$$f$$
 dessutom är kontinuerlig på intervallet på $0 \le t \le T$ utom i ändligt många punkter och $f(t+) = \lim_{h \to 0} f(t+h)$ och $f(t-) = \lim_{h \to 0} f(t-h)$ existerar för alla t så är $\frac{f(t+) + f(t-)}{2} = \lim_{N \to \infty} \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(k\omega_0 t) + b_n \sin(k\omega_0 t)$.

"Det här är högst icke-trivialt."

- Mattesnubben

"Om man stoppar in något i datorn som inte konvergerar kommer det gå åt röven."

Exempel 1.

Vi har ju
$$f = \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(k\omega_0 t) + b_n \sin(k\omega_0 t)$$
, för $k \ge 0$ har vi $a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega_0 t) dt = \frac{2}{T} \int_0^{\frac{T}{2}} \cos(k\omega_0 t) dt = 1$ för $k = 0, \frac{2}{Tk\omega_0} [\sin(k\omega_0 t)]_0^{\frac{T}{2}} = 1$ för $k = 0, 0$ annars. och för $k > 0$ har vi $b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_0 t) dt = \frac{2}{T} \int_0^{\frac{T}{2}} \sin(k\omega_0 t) dt = \frac{2}{Tk\omega_0} [-\cos(k\omega_0 t)]_0^{\frac{T}{2}} = \frac{1}{\pi k} (-\cos(k\pi) + 1) = \frac{1}{\pi k} (-(-1)^k + 1) = 0$ för $k = 2m$ och $\frac{2}{\pi (2m+1)}$ annars.
$$f = \frac{1}{2} + \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{\sin((2m+1)\omega_0 t)}{\pi (2m+1)}$$

0.2.1 Kompakt form

$$f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t)$$
$$= \sum_{n=0}^{\infty} c_n \cos(k\omega_0 t + \theta_n)$$

$$c_n \cos(k\omega_0 t + \theta_n) = c_n \cos(\theta_n) \cos(k\omega_0 t) - c_n \sin(\theta_n) \sin(k\omega_0 t)$$
$$\tan(\theta_n) = \frac{-b_n}{a_n} \text{ och } c_n^2 = a_n^2 + b_n^2$$

0.3 Frekvensspektrum

Används för att visualisera fourierserier.

Exempel 2.

$$f = \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(k\omega_0 t) + b_n \sin(k\omega_0 t)$$
, och vi börjar med fallet där

$$k>0$$
. Då är $a_n=\frac{2}{T}\int\limits_0^{\frac{T}{2}}t\cos(k\omega_0t)\mathrm{d}t$ och med partiell integrering får

vi
$$a_n = \frac{2}{T} \left[t \frac{\sin(k\omega_0 t)}{k\omega_0} \right]_0^{\frac{T}{2}} - \frac{2}{T} \int_0^{\frac{T}{2}} \frac{\sin(k\omega_0 t)}{k\omega_0} dt = 0 + \frac{2}{T\omega_0^2 k^2} \left[\cos(k\omega_0 t) \right]_0^{\frac{T}{2}} = 0$$

0 när
$$k=2m, \frac{-2}{\pi\omega_0(2m+1)^2}$$
 annars. Vi har också $a_0=\frac{2}{T}\int\limits_0^T f(t)\mathrm{d}t=$

$$\frac{2}{T} \int_{0}^{\frac{T}{2}} t \mathrm{d}t = \frac{T}{2}.$$

Om man räknar på b_n blir det likt, men till slut får vi $f = \frac{T}{4} + \frac{2}{\pi} \sum_{m=0}^{\infty} \frac{-\cos((2m+1)\omega_0 t)}{\omega_0 (2m+1)^2} + \frac{1}{\pi} \sum_{m=0}^{\infty} \frac{-\cos((2m+1)\omega_0 t)}{\omega_0 (2m$

$$\frac{\sin((2m+1)\omega_0 t)}{2m+1} \text{ eller i kompakt form } \sum_{n=0}^{\infty} c_n \cos((2n+1)\omega_0 t + \theta_n) \text{ där } \theta_n =$$

$$\arctan\left(\frac{-b_{2n+1}}{a_{2n+1}}\right) = \arctan(\omega_0(2n+1)).$$