Charotar University of Science and Technology, Gujarat (DRAFT)

Re-designed Course Structure of UG in Statistical and Numerical Techniques

Course Code: **MA144**Course Title: Engineering Mathematics - II

UG Engineering Programme	Semester
B. Tech. (All Branches)	Second

I RATIONALE

Mathematical concepts are imperative for engineering students to comprehend core technical subjects. This course enables students to solve basic ODEs and PDEs of the engineering systems, evaluate eigenvalues and eigenvectors of 2X2 and 3X3 matrices which is useful in engineering processing and understand statistical concepts like probabilities using binomial, Poisson, exponential and normal probability distributions.

II COMPETENCY

The basic purpose of this course is to help the student to acquire the following competency which is a *macro-level industry-oriented task* for this course:

 Apply techniques of differential equations (ODE/PDE), matrix algebra and statistics to engineering systems and processing utilized by industries.

III COURSE OUTCOMES (COs)

Each of the following course outcomes (COs) are the meso-level industry-oriented sub-tasks of the abutilized competency. Each CO is an integrated performance of the cognitive domain outcomes, practical outcomes and social skills. The industry expects the students to display them individually and collectively:

- 1) <u>Interpret</u> models of natural phenomena using differential equations and find its solution using standard methods.
- 2) <u>Interpret</u> physical problems analytically whose behavior can be described by linear and nonlinear differential equations.
- 3) <u>Evaluate</u> and explain significant of Eigenvalues and Eigenvectors of a square matrix, use Cayley-Hamilton's theorem to find inverse and power of a square matrix, construct LU decomposition of a square matrix.
- 4) <u>Use</u> advanced techniques to evaluate improper integrals, apply multiple integrals to find area and volume in engineering field.
- 5) <u>Interpret</u> and <u>evaluate</u> the problems using probability axioms, rules and Bayes theorem, use distributions such as Binomial, Poisson, Exponential and Normal to solve real world problems.

IV TEACHING AND EXAMINATION SCHEME

Page 1 of 10

Teaching Scheme Total Cred			Total Credits	Examination Scheme						
(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total Marks			
L	Т	Р	С	ESE	PA	ESE	PA			
4	1	0	4	70	30*	-	-	100		

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment

(*): Under the **Theory PA**, out of 30 marks, **10 marks** are for **micro-project assessment** to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessment of the cognitive domain UOs required for the attainment of the COs.

V AFFECTIVE DOMAIN OUTCOMES (ADOs)

The following Affective Domain Outcomes (ADOs) are not specific to any of the above listed PrOs, but they are embedded in many PrOs. Hence, the acquisition of the ADOs takes place gradually in the student when s/he performs the series of practical exercises and other T-L strategies throughout the semesters.

- 1) Function as a team member.
- 2) Function as a team leader.
- 3) Follow ethics.

The level of achievement of the ADOs according to *Krathwohl's 'Affective Domain Taxonomy'* should gradually increase as planned below:

- a) 'Responding Level' in 1st year
- b) 'Valuing Level' in 2nd year
- c) 'Organising Level' in 3rd year
- d) 'Characterising Level' in 4th year.

VI UNDERPINNING THEORY COMPONENTS

The following topics are to be learned by the students and assessed by the teachers in order to develop the 'Apply' and above level sample Cognitive Domain learning outcomes denoted by unit outcomes (UOs) related to Revised Bloom's Taxonomy (RBT) given below for achieving the related COs to be integrated to perform the identified competency. More UOs could be added.

Unit No. & Title	Unit Outcomes (UOs) in Cognitive Domain		Topics and Sub-topics
	(to develop COs required by industry)		
Unit – I	CO1. Interpret models of natural	1.1	Formation of Ordinary
First order and	phenomena using differential equations and		Differential Equation
First-degree	find its solution using standard methods.	1.2	Concept of general and
Ordinary	CO2. Interpret physical problems		particular solution
	analytically whose behavior can be	1.3	Initial value problems
Equations	described by linear and nonlinear differential equations.	1.4	Solutions of first order and first degree

Unit No. & Title	Unit Outcomes (UOs) in Cognitive Domain (to develop COs required by industry)	Topics and Sub-topics
	 1a. Interpret and evaluate order and degree of a differential equation. 1b. Apply an appropriate method to solve a first order first degree ordinary differential equation. 	differential equations: Linear, Bernoulli, Exact and non-exact differential equations
Unit-II Higher Order Ordinary Linear Differential Equations	CO2. Interpret physical problems analytically whose behavior can be described by linear and nonlinear differential equations. 2a. Interpret and evaluate higher order linear differential equation with constant coefficient using variation of parameters and undetermined coefficients.	 2.1 General Solution of Higher Order Ordinary Linear Differential Equations with Constant coefficients 2.2 Methods for finding particular integrals viz. variation of parameters and undetermined coefficients 2.3 Linear Differential Equation of higher order with variable coefficients: Legendre's Equations (Special case: Cauchy-Euler equation) 2.4 System of simultaneous first order linear differential equations
		2.1 Farmantian of Doutin
Partial Differential	phenomena using differential equations and find its solution using standard methods.	3.1 Formation of Partial Differential Equation
Equations		3.2 Lagrange's Linear Differential Equations
	3a. Create a partial differential equation from the family of surfaces.3b. Determine solution of Lagrange's linear partial differential equation and some special types of nonlinear partial differential equations.	
Unit-IV	CO3. <u>Evaluate</u> and explain significant of Eigenvalues and Eigenvectors of a square	4.1 Revision of matrices and determinant

Unit No. & Title (to develop COs required by industry) Matrix Algebra — matrix, use Cayley-Hamilton's theorem to find inverse and power of a square matrix, construct LU decomposition of a square matrix. Hamilton's Topics and Sub-topics 4.2 Eigenvalues and Eigenvectors of matric matrices 4.3 Eigenvalues and Eigenvectors of special matrices 4.4 Cayley-Hamilton's	
find inverse and power of a square matrix, construct LU decomposition of a square matrix. Eigenvectors of matric 4.3 Eigenvectors of special matrices	
construct LU decomposition of a square matrix. 4.3 Eigenvalues and Eigenvectors of specia	
matrix. Eigenvectors of special matrices	ces
matrices	
	϶l
4a. Evaluate eigenvalues and eigenvectors. 4.4 Cayley-Hamilton's	
Ab. A wally Coulet Henrilton/a the agency to find. The agency and its	
4b. Apply Caylet-Hamilton's theorem to find Theorem and its the inverse of a matrix.	
matrix as multiplication of lower and decomposition	
upper triangular matrices.	
Unit – V CO4. <u>Use</u> advanced techniques to evaluate 5.1 Introduction to	
Improper andimproper integrals, apply multiple integralsImproper integralsMultiple5.2Definitions and	
Multiple to find area and volume in the engineering 5.2 Definitions and Integrals field. properties of Gamma	2
Beta and Error function	
Beta and Error function	UIIS
5.3 Evaluation of double integrals	
5a. Analyze convergence of improper 5.4 Change of order of	
integral. double integration,	
5b. Evaluate improper integrals using beta Transformation to po	olar
and gamma function coordinates,	
5c. Evaluate double and triple integration Applications of double	le
5d. Evaluate area and volume using double integrals: Area	
and triple integrals respectively. 5.5 Evaluation of triple	
integrals,	
Transformation	
cylindrical coordinate	es,
Applications of triple	!
integrals: Volume	
Unit – VI CO5. <u>Interpret</u> and <u>evaluate</u> the problems 6.1 Elementary Probability	/ :
Probability and using probability axioms, rules and Bayes Joint and Conditional	
Statistics theorem, use distributions such as Binomial, probability and Bayes	
Poisson, Exponential and Normal to solve theorem	
real world problems. 6.2 Discrete Probability	
6a. Evaluate central tendency and Distributions: Binomial	1
dispersion. 6b. Evaluate the chance of occurrence of an 6.3 Continuous Probability	.,
	•
event using classical probability as well as Distributions: Exponen probability distributions namely binomial, and Normal	udl
Poisson, exponential and normal.	

TABLE OF SPECIFICATIONS (TOS) FOR QUESTION PAPER DESIGN

•

Unit	Unit Title	Teaching		Dis	stributio	n of Th	eory Ma	arks	
No.		Hours	R	U	Α	An	E	С	Total
			Level	Level	Level	Level	Level	Level	Marks
	First order and								
	First degree								
ı	Ordinary	10	1	0	1	2	8	0	12
	Differential								
	Equations								
	Higher Order								
l II	Ordinary Linear	12	1	0	4	1	8	0	14
· · ·	Differential	12		U	4		8		14
	Equations								
	Partial								
III	Differential	08	1	0	2	0	6	0	09
	Equations								
IV	Matrix Algebra –II	10	1	0	1	2	8	0	12
v	Improper and	12	1	0	4	1	8	0	14
V	Multiple Integrals	12	1	U	4	1	8	U	14
VI	Probability and	08	1	0	2	0	6	0	09
VI	Statistics	00	1	U		U	U	U	UB
	Total	60	6	0	14	6	44	0	70

Legends: R= Remember; U= Understand; A= Apply; An= Analyse; E= Evaluate; C= Create; (Revised Bloom's taxonomy).

Note: This TOS shall be treated as a general guideline for students and teachers for distribution of marks. The actual distribution of marks in the question paper may vary slightly to fulfil the MiLOs.

VII SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various types of learning outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) 'L' in item No. 4 does not mean only the traditional lecture method, but different types of teaching methods and media that are to be employed to develop the outcomes.
- c) About 15-20% of the topics/sub-topics which are relatively simpler or descriptive in nature that can be understood without the teacher assistance are to be given to the students for self-directed learning, but to be progressively assessed for their integration into the COs.
- d) Teachers need to ensure by creating opportunities and provisions for *co-curricular activities.*

VIII SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and

prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare 15 min. power point presentation on how to choose relay for the particular application.
- b) Watch online videos on the different topics and related to applications topics to learn in depth.

IX COURSE PLAN

Unit No. & Title	Week No.	Learning Outcomes	Teaching method	Teaching media
Unit-I	1	1a. Formation of Ordinary Differential	Lecture with	Black
First order and		Equation	media	board
First degree		1b. Concept of general and particular	Incaia	boara
Ordinary		solution		
, Differential		1c. Initial value problems	Lecture	Black
Equations		1d. Solutions of first order and first degree differential equations: Linear	With media	board
	2	1e. Solutions of first order and first degree differential equations: Bernoulli	Lecture with media	Black board
		1f. Solutions of first order and first degree differential equations: Exact and non-exact differential equations	Lecture with media	Black board
		1g. Solutions of first order and first degree differential equations: Exact and non-exact differential equations	Lecture with media	Black board
Unit– II		2a. General Solution of Higher Order	Lecture with	Black
Higher Order		Ordinary Linear Differential Equations with	media	board
Ordinary Linear		Constant coefficients		
Differential				
Equations				
	4	2b. Methods for finding particular integrals	Lecture with	Black
		viz. variation of parameters	media	board
		2c. Methods for finding particular integrals	Lecture with	Black
		viz. variation of parameters and	media	board
		undetermined coefficients		
	5	2d. Linear Differential Equation of higher	Lecture with	Black
		order with variable coefficients: Legendre's Equations (Special case: Cauchy-Euler	media	board
		equation)		

Page 6 of 10

Unit No. & Title	Week No.	Learning Outcomes	Teaching method	Teaching media
		2e. Linear Differential Equation of higher order with variable coefficients: Legendre's Equations (Special case: Cauchy-Euler equation)	Lecture with media	Black board
	6	2f. System of simultaneous first order linear differential equations	Lecture with media	Black board
Unit– III Partial Differential Equations		3a. Formation of Partial Differential Equation	Lecture with media	Black board
	7	3b. Lagrange's Linear Differential Equations	Lecture with media	Black board
		3c. Special types of Nonlinear First Order Partial Differential Equation	Lecture with media	Black board
	8	3d. Special types of Nonlinear First Order Partial Differential Equation	Lecture with media	Black board
Unit– IV Matrix Algebra –II		4a. Revision of matrices and determinant 4b. Eigenvalues and Eigenvectors of matrices	Lecture with media	Black board
	9	4c. Eigenvalues and Eigenvectors of special matrices	Lecture with media	Black board
		4d. Cayley-Hamilton's Theorem and its applications	Lecture with media	Black board
	10	4d. Cayley-Hamilton's Theorem and its applications 4e. Crout's method of LU decomposition	Lecture with media	Black board
Unit– V Improper and Multiple Integrals	11	5a. Introduction to Improper integrals. 5b. Definitions and properties of Gamma, Beta and Error functions	Lecture with media	Black board
		5c. Evaluation of double integrals	Lecture with media	Black board
	12	5c. Evaluation of double integrals	Lecture with media	Black board

Unit No.	Week	Learning Outcomes	Teaching	Teaching
& Title	No.		method	media
		5d. Change of order of double integration,		
		Transformation to polar coordinates		
	13	5e. Applications of double integrals: Area	Lecture with	Black
		5f. Evaluation of triple integrals,	media	board
		Transformation cylindrical coordinates,		
		Applications of triple integrals: Volume		
Unit– VI	14	6a. Elementary Probability: Joint and	Lecture with	Black board
Probability and		Conditional probability and Bayes theorem	media	
Statistics		6b Discrete Probability Distributions:		
		Binomial		
	15	6c. Discrete Probability Distributions:	Lecture with	Black
		Binomial and Poisson	media	board
		6d. Continuous Probability Distributions:		
		Exponential and Normal		

XIV SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication including ISBN
1	Advanced Engineering Mathematics (10 th Edition).	Kreyszig, Erwin	Jhon Wiley & Sons, India, 2010. ISBN: 978-0470458365
2	Higher Engineering Mathematics.	Dass, H. K. and Verma, Rajnish	S Chand & Co Pvt. Ltd., India, 2014. ISBN: 978-8121938907
3	A first course in probability	Ross, Sheldon	Pearson Education, Inc, 2014. ISBN: 978-0-13-603313-4
4	Higher Engineering Mathematics	Grewal, B. S.	KHANNA PUBLISHERS, Delhi, 2012. ISBN: 978-8193328491
5	Thomas' Calculus	Weir, Maurice D., Hass, Joel, Thomas, George B. and Finney, Ross L.	Pearson Addison Wesley, Boston, 2008 ISBN: 9780321489876
6	Calculus Early Transcendental	James Stewart	Brooks/Cole Pub Co, 2007 ISBN: 978-0495553809
7	Advanced Engineering Mathematics	C. R. Wylie and L. C. Barrett	McGraw-Hill Education, 1995. ISBN: 978-0070722064
8	Advanced Engineering Mathematics	Michael D. Greenberg	Pearson, 1988 ISBN: 978-0130105059
9	Probability and Statistical Inference	R. V. Hogg, E. A. Tanis and D. L. Zimmerman	Pearson Education, 2015 ISBN: 978-0-321-92327-1
10	Differential Equations and Their Applications	Zafar Ahsan	PHI Learning, 2017. ISBN: 978-81-203-5269-8

XV SOFTWARE/LEARNING WEBSITES

- 1. http://nptel.ac.in/courses/122107037/
- 2. http://nptel.ac.in/courses/111107108/
- 3. http://nptel.ac.in/courses/122103012/
- 4. http://nptel.ac.in/courses/122104018/
- 5. http://nptel.ac.in/courses/111106100/
- 6. http://nptel.ac.in/courses/122101003/
- 7. https://ocw.mit.edu/courses/mathematics/18-02-multivariable-calculus-fall-2007/lecture-notes/
- 8. https://nptel.ac.in/courses/111105041/

XVI PO-COMPETENCY-CO MAPPING

	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO0 1	PSO0 2
CO1	3	2	1	-	1	1	-	-	-	-	-	-	-	-
CO2	3	2	1	-	-	1	-	-	-	-	-	-	ı	-
соз	3	1	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	1	-	-	-	-	-	-	-	-	-	-	-	-
CO5	2	2	1	2	1	1	1	-	-	-	-	-	-	-

XVII NAMES OF RESOURCE PERSONS

Jimitkumar R. Patel Purvak K. Patel