Systemy AI 3 – (Python)

1. Dla poniższych:

$$\mathbf{A} = \begin{bmatrix} 2 & -3 & 1 \\ 4 & 5 & 0 \\ 2 & -1 & 3 \end{bmatrix} \quad \mathbf{B} = [3, -4, -2] \quad \mathbf{C} = \begin{bmatrix} 2 & 4 \\ -2 & 1 \\ 5 & 0 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} 3 \\ 6 \\ 8 \end{bmatrix}$$

wykonaj polecenia:

- Zdefiniuj **tensory** NumPy **A**, **B**, **C** i **D** odpowiadające powyższym macierzom.
- Zmień **shape** tensora **B** na (4,1) i zapisz (<u>jako kopie</u>) w tablicy **B1**.
- Wykonaj wszystkie możliwe działania * dla par tensorów A, B, B1, C i D. Czy operacja * jest mnożeniem macierzy?
- Wykonaj wszystkie możliwe działania **np.matmul** dla par tensorów **A**, **B**, **B1**, **C** i **D**. Czy operacja **np.matmul**(**x**,**y**) jest mnożeniem macierzy?
- Sprawdź czy operacja **np.dot(x,y)** jest tożsama z operacją **np.dot np.matmul**.
- W przypadku której macierzy możliwe jest znalezienie **macierzy odwrotnej**? Znajdź tę wartość wykorzystując odpowiednią operację z **numpy.linalg**.
- Zastosuj operację np.sum dla powyższych tablic, a także do ich osi. Jaka jest interpretacja tej operacji? Definicję operacji np.sum odszukaj w dokumentacji biblioteki NumPy.
- 2. Zdefiniuj kilka tensorów **rzędu 3** o różnym kształcie zawierających **12** liczb całkowitych. Przetestuj działanie operacji **np.matmul**. Wykorzystaj metodę **np.arange(n)** oraz **reshape**.
- 3. Za pomocą instrukcji:

Tablica S1:

Tablica S3:

wczytaj dane z pliku **simple_dataset.csv** i następnie zdefiniuj tablice (<u>nie będące widokami, ale kopiami</u>) zawierające zaznaczone fragmenty obiektu **DataFrame**.

	Х	В	C	D	E		X	В	C	D	
	1	12	6	5	-4	0	1	12	6	5	
	2	11	-4	7	-2	1	2	11	-4	7	
	3	21	8	-2	9	2	3	21	8	-2	
	4	4	12	1	10	3	4	4	12	1	ı
at	olica	S2 :				Ta	blica				
at	olica X	S2 :	С	D	E	Ta	ıblica X	S4 :	С	D	
			C 6	D 5	E -4	Та 0			C 6	D 5	
)	X	В	_	_	_		Х	В			
at	х 1	В 12	6	5	-4	0	х 1	B 12	6	5	

- 4. Dla danych z pliku **president heights.csv** znajdź:
 - wartość średnią .mean()
 - odchylenie standardowe .std()
 - minimum .min() i maximum .max()
 - mediane np.median()
 - narysuj histogram dla 10 przedziałów. Wykorzystaj:

```
import matplotlib.pyplot as plt
plt.hist(heights,10,color='red')
plt.title('opis wykresu')
plt.xlabel('opis osi X')
plt.ylabel('opis osi Y')
plt.show()
```

- 5. Wykonaj polecenia:
 - Wykorzystując np.random.normal wygeneruj dane testowe (1000 punktów na płaszczyźnie) do których będzie można zastosować metodę najmniejszych kwadratów. Przykład:

Wykorzystując: import matplotlib.pyplot as plt plt.scatter(x,y) plt.show()

przedstaw na wykresie wygenerowane punkty.

6. Do danych wygenerowanych w **Zadaniu 5** zastosuj <u>metodę najmniejszych kwadratów</u> (<u>omówioną na wykładzie</u>) i znajdź prostą aproksymującą.

Uzyskaną prostą dodaj do wykresu metodą plt.plot(x, y).

- 7. Wczytaj dane z pliku california cities.csv:
 - Znajdź współczynniki **korelacji Pearsona** dla atrybutów: *population_total, area_total_sq_mi, area_land_sq_mi.* Wykorzystaj: **np.corrcoef**.
 - Przedstaw miasta na wykresie rozrzutu: population_total area_total_sq_mi
 - Narysuj histogramy w oparciu o powyższe dwa atrybuty. Przetestuj różną liczbę przedziałów.