Chapitre 5 : suites (1)

1 Généralité sur les suites

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=2n^2-1$.

- **1.** Calculer u_0, u_1 et u_{10} .
- **2.** Déterminer, en fonction de n, les termes u_{n+1} et u_{2n} .

Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{n+2}{n}$.

- 1. Calculer u_1 , u_2 et u_7 .
- **2.** Exprimer en fonction de n, u_{n+1} et u_{3n} .

Soit la suite (v_n) définie par $v_0 = 3$ et pour tout entier naturel $n, v_{n+1} = 2v_n - 1$.

Calculer v_1 , v_2 et v_3 .

Soit la suite (w_n) définie par $w_0 = \frac{3}{2}$ et pour tout entier naturel n, $w_{n+1} = 2w_n(1-w_n) + 2$. Calculer w_2 .

Soit (w_n) la suite définie par son premier terme $w_0 = 1$ et les autres termes sont obtenus en ajoutant 1 au double du carré du terme précédent.

- 1. Calculer w_1 , w_2 et w_3 .
- **2.** Donner la relation entre w_{n+1} et w_n .

Les deux algorithmes ci-dessous permettent de calculer le terme de rang n de deux suites :

$$\begin{array}{c} u \leftarrow -4 \\ \text{Pour } k \text{ variant de 1 à } n \\ u \leftarrow u + 5 \\ \text{Fin Pour} \\ \\ \\ v \leftarrow 300 \\ \text{Pour } k \text{ variant de 1 à } n \\ v \leftarrow k + 3v \\ \text{Fin Pour} \\ \end{array}$$

Indiquer le premier terme et la relation de récurrence définissant chacune de ces suites.

On considère la suite (u_n) définie par $u_0=2$ et, pour tout entier naturel $n, u_{n+1}=3u_n-4$.

- 1. Cette suite est-elle définie par une formule explicite ou par une relation de récurrence?
- **2.** Compléter l'algorithme ci-dessous de sorte qu'il affiche le terme de rang n de la suite (u_n) :

$$u \leftarrow \dots$$

Pour k variant de \dots à \dots
 $u \leftarrow \dots$
Fin Pour

CALCULATRICE

On considère la suite (a_n) définie par :

$$\begin{cases} a_0 = 1 \\ a_{n+1} = \frac{10a_n}{a_n + 3} \text{ pour } n \in \mathbb{N}. \end{cases}$$

À l'aide de la calculatrice, donner une valeur approchée de a_5 à 10^{-3} près.

TABLEUR

On considère les suites (u_n) et (v_n) définies pour tout entier naturel n par :

$$u_n = 3 - 7n$$
 et
$$\begin{cases} v_0 = 6 \\ v_{n+1} = -2v_n + 3 \text{ pour } n \in \mathbb{N}. \end{cases}$$

	A	В	С
1	n	u_n	v_n
2	0	3	6
3	1		

Indiquer les formules à saisir dans les cellules B3 et C3 afin de compléter les colonnes B et C par recopie vers le bas.

PYTHON

On considère les trois fonctions informatiques suivantes programmées en langage Python :

```
1 def terme_v(n):
2 return n**2-2*n+1/n
```

- 1. Qu'obtient-on lorsqu'on appelle terme_u(3), terme_v(5) et terme_u(4) dans la console?
- 2. Préciser les modes de génération des suites associées à chacune de ces trois fonctions.

Suites arithmétiques

Pour les suites arithmétiques suivantes dont on donne un terme et la raison, exprimer le terme général u_n en fonction de n puis calculer u_5 :

- 1. $u_0 = 5$ et r = 2
- **2.** $u_1 = 4$ et $r = \frac{1}{2}$
- 3. $u_5 = 6$ et r = -3

Soit (u_n) une suite arithmétique de raison r.

- 1. $u_0 = 1$ et $u_{10} = 31$. Calculer r puis u_{2021} .
- **2.** $u_0 = 5$ et $u_{100} = ?45$. Calculer r puis u_{20} .
- **3.** $u_{17} = 24$ et $u_{40} = 70$. Calculer r puis u_0 .

Reconnaître parmi les suites définies sur N ci-dessous celles qui sont arithmétiques et préciser alors leur premier terme et leur raison:

- 1. $u_n = -2 + 3n$ 2. $\begin{cases} u_0 = 4 \\ u_{n+1} = 1, 5 + u_n \end{cases}$ 3. $u_n = u_{V, 2}$ 4. $u_n = 3 \frac{1}{n}$

Reconnaître parmi les suites définies sur N ci-dessous celles qui sont arithmétiques et préciser alors leur premier terme, leur raison et leur formule explicite:

- 1. $\begin{cases} u_0 &= -1 \\ u_{n+1} &= u_n + 2n \end{cases}$ 2. $\begin{cases} u_1 &= 0 \\ u_{n+1} &= 2u_n + 1 \end{cases}$ 3. $\begin{cases} u_0 &= 4 \\ u_{n+1} &= 1, 5 + u_n \end{cases}$ 4. $\begin{cases} u_1 &= -6 \\ u_{n+1} &= u_n 2 \end{cases}$

 (u_n) est une suite arithmétique telle que $u_0 = 2500$ et

- 1. Déterminer la relation de récurrence puis la formule explicite de u_n .
- 2. Utiliser la calculatrice pour déterminer le plus petit entier naturel n tel que u_n est négatif.

PYTHON

On considère la suite arithmétique (u_n) dont chaque terme s'obtient grâce au programme suivant :

- 1. Préciser le premier terme u_0 et la raison r de la suite
- **2.** En déduire l'expression explicite de u_n .
- 3. En résolvant une inéquation, déterminer le plus petit entier naturel n tel que $u_n \ge 1000$.
- 4. Modifier la fonction Python précédente pour qu'elle réponde) la question 3.a.

 (u_n) est la suite définie par $u_0 = 1$ et pour tout entier naturel

$$u_{n+1} = \frac{u_n}{1 + u_n}.$$

- 1. Calculer les quatre premiers termes de la suite (u_n) .
- **2.** Pour tout entier naturel n, on pose $v_n = \frac{1}{u_n}$.
 - a. Calculer les quatre premiers termes de la suite (v_n) .
 - **b.** Démontrer que la suite (v_n) est arithmétique. Exprimer alors v_n puis u_n en fonction de n.

La figure ci-dessous, indique le début de la construction de zones colorées que l'on peut prolonger indéfiniment. Tous les tri- angles de la figure sont équilatéraux. On rappelle que la

hauteur d'un triangle équilatéral de côté a vaut : $h = \frac{\sqrt{3}}{2}a$.

- 1. Prouver que la suite (u_n) des aires définies par la figure est arithmétique. Quelle est sa raison?
- **2.** La suite (v_n) des périmètres est-elle arithmétique?

- 1. Démontrer que la somme $1+3+5+\ldots+99$ est le carré d'un entier naturel.
- **2.** Exprimer, en fonction de n, la somme des n premiers naturels impairs S = 1 + 3 + 5 + ... + (2n - 1).

- 1. Calculer la somme de tous les entiers naturels multiples de 3 inférieurs à 1000.
- 2. Calculer la somme de tous les entiers naturels multiples de 5 inférieurs à 9 999.
- 3. Calculer la somme de tous les nombres entiers naturels inférieurs à 2154 ayant 3 comme chiffre des unités.

Voici les quatre premiers nombres triangulaires :

- 1. Représenter et donner les valeurs de T_5 et T_6 .
- 2. Écrire une fonction, notée triangle, en Python, en mode itératif et en mode récursif, permettant de calculer un nombre triangulaire quelconque T_n . Donner les valeurs de T_{12} et T_{60} .
- 3. Retrouver ces résultats par le calcul.
- 4. Écrire un algorithme sur la calculatrice permettant de trouver les valeurs de n telles que $T_n > 100$ puis $T_n > 1000.$
- 5. Retrouver ces résultats par le calcul.

Des tuyaux sont rangés comme indiqué ci-dessous : :

- 1. Quel est le nombre total de tuyaux dans un empilage de 5 couches? 12 couches?
- 2. On a stocké 153 tuyaux, combien y a-t-il de couches?
- **3.** Pour ranger 200 tuyaux, combien faut- il de couches? Combien reste t-il de tuyaux?

Une entreprise estime le coût d'un forage ainsi :

- le premier mètre coûte 1 000 euros;
- Le second mètre coûte 1 050 euros et chaque mètre supplémentaire coûte 50 euros de plus que le précédent.
- On dispose d'un crédit de 519 750 euros.

On appelle (u_n) la suite telle que $u_1 = 1000$ et u_n représente le coût du $n^{\rm e}$ mètre.

- 1. Montrer que (u_n) est une suite arithmétique dont on précisera la raison et le premier terme.
- **2.** Exprimer alors (u_n) en fonction de n.
- **3.** Montrer que le nombre de mètres n que l'on peut forer avec le crédit alloué vérifie :

$$n^2 + 39n - 20790 = 0.$$

4. En déduire la profondeur du forage avec un tel crédit.

3 Suites géométriques

Pour les suites géométriques suivantes dont on donne le premier terme et la raison, exprimer le terme général u_n en fonction de n puis calculer u_4 :

- 1. $u_0 = 3$ et q = 2
- **2.** $u_1 = 2$ et q = 5
- **3.** $u_0 = 10$ et $q = \frac{1}{2}$ **4.** $u_1 = 2$ et q = 3

Reconnaître parmi les suites définies sur $\mathbb N$ ci-dessous celles qui sont géométriques et préciser alors leur premier terme et leur raison:

1. $u_n = 4 + 4n$

3. $u_n = 2n^3$

2. $u_n = 5^{2n+4}$

4. $u_n = \frac{2^n}{3}$

Démontrer que les suites définies sur N ci-dessous sont géométriques et préciser alors leur premier terme, leur raison et leur formule explicite :

Une solution contient cinq bactéries à l'instant

t=0. Après l'ajout d'un élément nutritif, le nombre de bactéries augmente de 25% chaque seconde. Soit C_n le nombre de bactéries au bout de n secondes.

1. Démontrer que pour tout entier naturel n on a :

$$C_{n+1} = 1,25C_n.$$

- **2.** Quelle est la nature de la suite (C_n) ? Préciser sa raison et son premier terme.
- 3. Exprimer C_n en fonction de n et déterminer au bout de combien de temps la population de bactéries aura dépassé les 10000.

 (u_n) est une suite définie par $u_0 = 2$ et, pour tout naturel n, $u_{n+1} = 2u_n + 5.$

- 1. Calculer les trois premiers termes de la suite (u_n) .
- **2.** Pour tout naturel n, on pose $v_n = u_n + 5$.
 - **a.** Calculer v_0 , v_1 , v_2 et v_3 .
 - **b.** Démontrer que la suite (v_n) est géométrique.
 - **c.** En déduire l'expression de v_n puis de u_n en fonction de n.

- 1. Calculer $S_1 = 4 + 4^2 + 4^3 + \ldots + 4^7$.
- **2.** Calculer $S_2 = \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots + \frac{1}{1048576}$
- 3. Calculer $S_3 = \frac{1}{3} \frac{1}{9} + \frac{1}{27} \dots \frac{1}{6561}$.

 (u_n) est une suite géométrique de raison q telle que $u_{10}=25$ et $u_{13}=200$.

- 1. Déterminer la valeur de la raison q puis calculer u_0 .
- **2.** En déduire la somme $S = u_{10} + u_{12} + u_{14} + \ldots + u_{20}$.

Une maison est louée depuis exactement 10 ans. La première année, le loyer mensuel s'élevait à 900 \in . Puis, chaque année suivante, ce montant a augmenté de 1 %.

Calculer la somme totale (au centime d'euro près) représentant l'ensemble des loyers au cours de ces 10 ans.

 (u_n) est la suite définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{2}u_n + \frac{1}{4}$.

1. Placer sur l'axe des abscisses les termes u_0, u_1, u_2, u_3 sur la représentation ci-dessous.

- **2.** On pose $v_n = u_n \frac{1}{2}$.
 - a. Prouver que la suite (v_n) est géométrique.
 - **b.** Exprimer v_n , puis u_n en fonction de n.

n carrés sont disposés comme l'indique la figure ci-dessous (réalisé avec 5 carrés). Le côté d'un carré vaut la moitié du précédent. Le premier carré a pour côté $c_0=5$ cm et pour aire a_0 .

On pose $l_n = c_0 + c_1 + \ldots + c_n$ et $s_n = a_0 + a_1 + \ldots + a_n$.

- 1. Calculer les cinq premiers termes des suites (l_n) et (s_n) .
- **2.** Exprimer l_n et s_n en fonction de n.
- **3.** Existe-t-il un entier p tel que $l_p \ge 10$?

Une disposition en quinconce (du latin quincunx, par 5) est un arrangement de cinq unités, comme celui que l'on voit sur un dé : quatre arrangés en carré, un au centre. Par reproduction du motif, une disposition en quinconce est une disposition répétitive d'éléments, ligne à ligne, où une ligne sur deux est en décalage de la moitié d'un élément par rapport à la ligne qui la précède ou qui la suit. On donne la construction des points en quinconce à l'intérieur de carrés :

On appelle p_n le nombre de points à l'étape n.

- 1. a. Représenter la structure à l'étape 4. Donner les valeurs de p_1, p_2, p_3 et p_4 .
 - **b.** Établir une relation de récurrence entre les termes p_{n+1} et p_n .
- 2. a. En remarquant que $p_n=1+1\times 4+\ldots+(n-1)\times 4,$ montrer que $p_n=2n^2-2n+1.$
 - **b.** Déterminer le plus grand nombre p_n que l'on peut construire avec 2 000 points.