Package 'ifs'

December 5, 2022

	License GPL (>= 2)		
NeedsCompilation yes Repository CRAN			
			Date/Pu
R top	ics documented:		
	ifs	1	
	ifs.FT	3	
	IFSM		
	ifsm.cf		
	ifsm.setQF	8	
	ifsm.w.maps		
	ifsp.cf		
	ifsp.setQF		
	ifsp.w.maps	1.	
Index		13	

Version 0.1.10

Author S. M. Iacus

Title Iterated Function Systems

Distribution function estimator based on sample quantiles.

2 ifs

Usage

Arguments

Χ	where to estimate the distribution function
p	the vector of coefficients p_i
S	the vector of coefficients s_i in: $w_i = s_i * x + a_i$
a	the vector of coefficients a_i in: $w_i = s_i * x + a_i$
k	number of iterations, default = 5
у	a vector of sample observations
q	the proportion of quantiles to use in the construction of the estimator, default = 0.5 . The number of quantiles is the q * length(y).
f	the starting point in the space of distribution functions
n	the number of points in which to calculate the IFS
maps	type of affine maps

Details

This estimator is intended to estimate the continuous distribution function of a random variable on [0,1]. The estimator is a continuous function not everywhere differentiable.

Value

The estimated value of the distribution function for ifs and ifs.flex or a list of 'x' and 'y' coordinates of the IFS(x) graph for IFS.

Note

It is asymptotically as good as the empirical distribution function (see Iacus and La Torre, 2001). This function is called by IFS. If you need to call the function several times, you should better use ifs providing the points and coefficients once instead of IFS. Empirical evidence shows that the IFS-estimator is better than the edf (even for very small samples) in the sup-norm metric. It is also better in the MSE sense outside of the distribution's tails if the sample quantiles are used as points.

Author(s)

S. M. Iacus

References

Iacus, S.M, La Torre, D. (2005) Approximating distribution functions by iterated function systems, *Journal of Applied Mathematics and Decision Sciences*, 1, 33-46.

ifs.FT 3

See Also

ecdf

Examples

```
require(ifs)
y<-rbeta(50,.5,.1)
# uncomment if you want to test the normal distribution
# y<-sort(rnorm(50,3,1))/6
IFS.est <- IFS(y)</pre>
xx <- IFS.est$x
tt <- IFS.est$y
ss <- pbeta(xx,.5,.1)</pre>
# uncomment if you want to test the normal distribution
# ss <- pnorm(6*xx-3)
par(mfrow=c(2,1))
plot(ecdf(y),xlim=c(0,1),main="IFS estimator versus EDF")
lines(xx,ss,col="blue")
lines(xx,tt,col="red")
# calculates MSE
ww \leftarrow ecdf(y)(xx)
mean((ww-ss)^2)
mean((tt-ss)^2)
plot(xx,(ww-ss)^2,main="MSE",type="1",xlab="x",ylab="MSE(x)")
lines(xx,(tt-ss)^2,col="red")
```

ifs.FT

IFS estimator

Description

Distribution function estimator based on inverse Fourier transform of ans IFSs.

4 ifs.FT

Usage

```
ifs.FT(x, p, s, a, k = 2)
ifs.setup.FT(m, p, s, a, k = 2, cutoff)
ifs.pf.FT(x,b,nterms)
ifs.df.FT(x,b,nterms)
IFS.pf.FT(y, k = 2, n = 512, maps=c("quantile", "wl1", "wl2"))
IFS.df.FT(y, k = 2, n = 512, maps=c("quantile", "wl1", "wl2"))
```

Arguments

X	where to estimate the function
p	the vector of coefficients p_i
S	the vector of coefficients s_i in: $w_i = s_i * x + a_i$
a	the vector of coefficients a_i in: $w_i = s_i * x + a_i$
m	the vector of sample moments
k	number of iterations, default = 2
у	a vector of sample observations
n	the number of points in which to calculate the estimator
maps	type of affine maps
b	the Fourier coefficients
nterms	the number of significant Fourier coefficients after the cutoff
cutoff	cutoff used to determine how many Fourier coefficients are needed

Details

This estimator is intended to estimate the continuous distribution function, the charateristic function (Fourier transform) and the density function of a random variable on [0,1].

Value

The estimated value of the Fourier transform for ifs.FT, the estimated value of the distribution function for ifs.pf.FT and the estimated value of the density function for ifs.df.FT. A list of 'x' and 'y' coordinates plus the Fourier coefficients and the number of significant coefficients of the distribution function estimator for IFS.pf.FT and the density function for IFS.df.FT. The function ifs.setup.FT return a list of Fourier coefficients and the number of significant coefficients.

Note

Details of this tecnique can be found in Iacus and La Torre, 2002.

Author(s)

S. M. Iacus

ifs.FT 5

References

Iacus, S.M, La Torre, D. (2005) Approximating distribution functions by iterated function systems, *Journal of Applied Mathematics and Decision Sciences*, 1, 33-46.

See Also

ecdf

Examples

```
require(ifs)
nobs <- 100
y<-rbeta(nobs,2,4)
# uncomment if you want to test the normal distribution
# y<-sort(rnorm(nobs,3,1))/6</pre>
IFS.est <- IFS(y)</pre>
xx <- IFS.est$x
tt <- IFS.est$y
ss \leftarrow pbeta(xx,2,4)
# uncomment if you want to test the normal distribution
\# ss <- pnorm(6*xx-3)
par(mfrow=c(3,1))
plot(ecdf(y),xlim=c(0,1),main="IFS estimator versus EDF")
lines(xx,ss,col="blue")
lines(IFS.est,col="red")
IFS.FT.est <- IFS.pf.FT(y)</pre>
xxx <- IFS.FT.est$x
uuu <- IFS.FT.est$y
sss <- pbeta(xxx,2,4)</pre>
# uncomment if you want to test the normal distribution
\# sss <- pnorm(6*xxx-3)
lines(IFS.FT.est,col="green")
# calculates MSE
ww \leftarrow ecdf(y)(xx)
mean((ww-ss)^2)
mean((tt-ss)^2)
mean((uuu-sss)^2)
```

6 IFSM

```
plot(xx,(ww-ss)^2,main="MSE",type="l",xlab="x",ylab="MSE(x)")
lines(xx,(tt-ss)^2,col="red")
lines(xxx,(uuu-sss)^2,col="green")

plot(IFS.df.FT(y),type="l",col="green",ylim=c(0,3),main="IFS vs Kernel")
lines(density(y),col="blue")
curve(dbeta(x,2,4),0,1,add=TRUE)
# uncomment if you want to test the normal distribution
# curve(6*dnorm(x*6-3,0,1),0,1,add=TRUE)
```

IFSM

IFSM operator

Description

IFSM operator

Usage

```
IFSM(x, cf, a, s, k = 2)
```

Arguments

Χ	where to approximate the function
cf	the vector of coefficients phi_i
s	the vector of coefficients s_i in: $w_i = s_i * x + a_i$
а	the vector of coefficients a_i in: $w_i = s_i * x + a_i$
k	number of iterations, default $= 2$

Details

This operator is intended to approximate a function on L2[0,1]. If 'u' is simulated, then the IFSM can be used to simulate a IFSM version of 'u'.

Value

The value of the approximate target function.

Author(s)

S. M. Iacus

References

Iacus, S.M, La Torre, D. (2005) IFSM representation of Brownian motion with applications to simulation, *forthcoming*.

ifsm.cf 7

Examples

```
require(ifs)
set.seed(123)
n <- 50
dt <- 1/n
t <- (1:n)*dt
Z \leftarrow rnorm(n)
B <- sqrt(dt)*cumsum(Z)</pre>
ifsm.w.maps() -> maps
a <- maps$a
s <- maps$s
ifsm.setQF(B, s, a) \rightarrow QF
ifsm.cf(QF$Q,QF$b,QF$L1,QF$L2,s)-> SOL
psi <- SOL$psi
t1 <- seq(0,1,length=250)</pre>
as.numeric(sapply(t1, function(x) IFSM(x,psi,a,s,k=5))) -> B.ifsm
old.mar <- par()$mar
old.mfrow <- par()$mfrow
par(mfrow=c(2,1))
par(mar=c(4,4,1,1))
plot(t1,B.ifsm,type="1",xlab="time",ylab="IFSM")
plot(t,B,col="red",type="l",xlab="time",ylab="Euler scheme")
par(mar=old.mar)
par(mfrow=old.mfrow)
```

ifsm.cf

Calculates the main parameters of the IFSM operator

Description

Tool function to construct and find the solution of the minimization problem involving the quadratic form x'Qx + b'x. Not an optimal one. You can provide one better then this.

Usage

```
ifsm.cf(Q, b, d, 12, s, mu=1e-4)
```

Arguments

```
Q the matrix Q of x'Qx + b'x
b the vector b of x'Qx + b'x
d the L1 norm of the target function
12 the L2 norm of the target function
s the vector s in: w_i = s_i * x + a_i
mu tolerance
```

8 ifsm.setQF

Value

A list

cf the vector of the coefficients to be plugged into the IFSM

delta the collage distance at the solution

References

Iacus, S.M, La Torre, D. (2005) IFSM representation of Brownian motion with applications to simulation, *forthcoming*.

See Also

IFSM

ifsm.setQF

Sets up the quadratic form for the IFSM

Description

Tool function to construct the quadratic form x'Qx+b'x+l2 to be minimized under some constraint depending on 11. This is used to construct the IFSM operator.

Usage

```
ifsm.setQF(u, s, a)
```

Arguments

u	the vector of values of the target function u
S	the vector of coefficients s_i in: $w_i = s_i * x + a_i$
а	the vector of coefficients a_i in: $w_i = s_i * x + a_i$

Details

This operator is intended to approximate a function on L2[0,1]. If 'u' is simulated, then the IFSM can be used to simulate a IFSM version of 'u'.

Value

List of elements

Q	the matrix of the quadratic form
b	the matrix of the quadratic form
L1	the L1 norm of the target function
L2	the L2 norm of the target function
M1	the integral of the target function

ifsm.w.maps 9

Author(s)

S. M. Iacus

References

Iacus, S.M, La Torre, D. (2005) IFSM representation of Brownian motion with applications to simulation, *forthcoming*.

See Also

IFSM

ifsm.w.maps

Set up the parameters for the maps of the IFSM operator

Description

This is called before calling ifsm.setQF to prepare the parameters to be passed in ifsm.setQF.

Usage

```
ifsm.w.maps(M=8)
```

Arguments

M is such that sum(2^(1:M)) maps are created

Value

A list of

a the vector of the coefficents 'a' in the maps
s the vector of the coefficents 's' in the maps

Author(s)

S. M. Iacus

See Also

IFSM

ifsp.setQF

ifsp.cf

Calculates the main parameters of the IFS estimators

Description

Tool function to construct and find the solution of the minimization problem involving the quadratic form x'Qx + b'x. Not an optimal one. You can provide one better then this.

Usage

```
ifsp.cf(Q,b)
```

Arguments

Q the matrix Q of x'Qx + b'xb the vector b of x'Qx + b'x

Value

p the vector of the coefficients to be plugged into the IFS

References

Iacus, S.M, La Torre, D. (2005) Approximating distribution functions by iterated function systems, *Journal of Applied Mathematics and Decision Sciences*, 1, 33-46.

See Also

ifs

ifsp.setQF

Sets up the quadratic form for the IFSP

Description

Tool function to construct the quadratic form x'Qx + b'x to be minimized to construct the IFSP operator.

Usage

```
ifsp.setQF(m, s, a, n = 10)
```

ifsp.w.maps 11

Arguments

m	the vector of the sample or true moments of the target function
S	the vector of coefficients s_i in: $w_i = s_i * x + a_i$
а	the vector of coefficients a_i in: $w_i = s_i * x + a_i$
n	number of parameter to use in the IFSP operator, default = 10

Details

This operator is intended to approximate a continuous distribution function of a random variable on [0,1]. If moments are estimated on a random sample, then the IFSP operator is an estimator of the distribution function of the data.

Value

Q	the matrix of the quadratic form
b	the matrix of the quadratic form

Author(s)

S. M. Iacus

References

Iacus, S.M, La Torre, D. (2005) Approximating distribution functions by iterated function systems, *Journal of Applied Mathematics and Decision Sciences*, 1, 33-46.

See Also

ifs

ifsp.w.maps	Set up the parameters for the maps of the IFSP operator	

Description

This is called before calling ifsp.setQF to prepare the parameters to be passed in ifsp.setQF.

Usage

```
ifsp.w.maps(y, maps = c("quantile","wl1","wl2"), qtl)
```

Arguments

У	the vector of the sample observations
maps	type of maps: quantile, wl1 or wl2
qtl	instead of passing the data y you can pass a vector of quantiles

ifsp.w.maps

Value

m the vector of the empirical moments
a the vector of the coefficents 'a' in the maps
s the vector of the coefficents 's' in the maps
n the number of maps

Author(s)

S. M. Iacus

See Also

ifs

Index

```
*\ distribution
     ifs.FT, 3
* misc
     IFSM, 6
     ifsm.cf, 7
     ifsm.setQF, 8
     ifsm.w.maps, 9
     \texttt{ifsp.cf}, \textcolor{red}{10}
     ifsp.setQF, 10
     ifsp.w.maps, 11
* nonparametric
     ifs, 1
ecdf, 3, 5
IFS, 2
IFS (ifs), 1
ifs, 1, 10–12
IFS.df.FT (ifs.FT), 3
ifs.df.FT (ifs.FT), 3
ifs.FT, 3
IFS.pf.FT (ifs.FT), 3
ifs.pf.FT(ifs.FT), 3
ifs.setup.FT(ifs.FT), 3
IFSM, 6, 8, 9
ifsm.cf, 7
ifsm.setQF, 8
ifsm.w.maps, 9
ifsp.cf, 10
ifsp.\,setQF,\, {\color{red}10}
ifsp.w.maps, 11
```