Quiz 8 CHEM 3PA3; Fall 2018

This quiz has 10 problems worth 10 points each. The first four problems go together and the last three problems go together.

1-7. Evaluate the following commutators.

$$\left\lceil \hat{H},\hat{L}_{_{\!\scriptscriptstyle X}}
ight
ceil\!=$$

$$\left[\hat{S}_{y},\hat{S}_{z}\right] =$$

$$\left[\hat{S}^{2},\hat{S}_{y}\right] =$$

$$\left[\hat{J}^{2},\hat{L}^{2}
ight] =$$

$$\left[\hat{L}_{y},\hat{L}_{x}\right] =$$

$$\left[\hat{L}_{_{\!x}},\hat{S}_{_{\!y}}\right] =$$

$$\left[\hat{J}_{x},\hat{S}_{y}\right] =$$

8-9. The term symbols for the 1s²2s²2p¹3p¹ excited state of the Carbon atom are ¹D, ¹P, ¹S, ³P, ³P. ³S.

- 8. What is the predicted order of the states according to Hund's rules.
- 9. What is the predicted ground state according to the Kutzelnigg-Morgan and Russell-Meggers rules?

Name					Stu	dent #				
10.	What are the term symbols for the $[Ar]4s^23d^14p^1$ excited state (Titanium)?									
	s (10 points): dium)?	What	are th	e term	symbols	for the	$[Ar]4s^23d^3$	configuration		

Quiz 8 CHEM 3PA3; Fall 2018

This quiz has 10 problems worth 10 points each. The first four problems go together and the last three problems go together.

1-8. Evaluate the following commutators.

$$\left[\hat{H},\hat{L}_{x}\right]=0$$

$$\left[\hat{S}_{y},\hat{S}_{z}\right]=i\hbar\hat{S}_{x}$$

$$\left[\hat{S}^2, \hat{S}_y\right] = 0$$

$$\left[\hat{J}^2,\hat{L}^2\right]=0$$

$$\left[\hat{L}_{y},\hat{L}_{x}\right] = -\left[\hat{L}_{x},\hat{L}_{y}\right] = -i\hbar\hat{L}_{z}$$

$$\left[\hat{L}_x, \hat{S}_y\right] = 0$$

$$\left[\hat{J}_{x},\hat{S}_{y}\right] = \left[\hat{L}_{x} + \hat{S}_{x},\hat{S}_{y}\right] = \left[\hat{L}_{x},\hat{S}_{y}\right] + \left[\hat{S}_{x},\hat{S}_{y}\right] = 0 + i\hbar\hat{S}_{z} = i\hbar\hat{S}_{z}$$

Name	Student #
1 141110	

8-9. The term symbols for the 1s²2s²2p¹3p¹ excited state of the Carbon atom are ¹D, ¹P, ¹S, ³D, ³P, ³S.

8. What is the predicted order of the states according to Hund's rules.

³D,³P,³S, ¹D,¹P,¹S Really we should add J indices. Then ³D₁, ³D₂, ³D₃,³P₀, ³P₁,³P₂,³S₁, ¹D₂,¹P₁,¹S₀

9. What is the predicted ground state according to the Kutzelnigg-Morgan and Russell-Meggers rules?

The parity of the states is $\left(-1\right)^{L+l_1+l_2}$ so the P states (L=1) are odd-parity and the S and D states are even parity. The optimal angular momentum is $L_{opt} = \frac{1+1}{\sqrt{2}} = \sqrt{2} \approx 1.414$.

So with the odd-parity singlet states, then triplets, then even-parity singlet states, with the D states being closer to optimal angular momentum than the S states, we have ${}^{1}P, {}^{3}P, {}^{3}D, {}^{3}S, {}^{1}D, {}^{1}S$ in increasing order of energy.

10. What are the term symbols for the [Ar]4s²3d¹4p¹ excited state (Titanium)?

The 3d electron has L=2 and $S=\frac{1}{2}$ and the 4p electron has L=1 and $S=\frac{1}{2}$. The possible choices of orbital angular momentum then range from $L=\left|L_1-L_2\right|,\ldots,L_1+L_2=1,2,3$ and the choices of spin-angular momentum range from $S=\left|S_1-S_2\right|,\ldots,S_1+S_2=0,1$. So the states are ${}^3F, {}^3D, {}^3P, {}^1F, {}^1D, {}^1P$ in Hunds rule order. If we add on the J values, we have ${}^3F_2, {}^3F_3, {}^3F_4, {}^3D_1, {}^3D_2, {}^3D_3, {}^3P_0, {}^3P_1, {}^3P_2, {}^1F_3, {}^1D_2, {}^1P_1$.

According to the Kutzelnigg-Morgan and Russell-Meggers rules, the L=2 states have odd parity and the L=1 and L=3 states have even parity. Moreover, $L_{\rm opt}=\frac{2+1}{\sqrt{2}}=2.12$. So the predicted order of states is ${}^{1}D, {}^{3}D, {}^{3}F, {}^{3}P, {}^{1}F, {}^{1}P$.

Name	Student #

Bonus (10 points): What are the term symbols for the $[Ar]4s^23d^3$ configuration (Scandium)?

	$M_L=5$	$M_L=4$	$M_L=3$	$M_L=2$	$M_L=1$	$M_L=0$
$M_S = \frac{3}{2}$			$\left 3d_{\scriptscriptstyle +2}^{\uparrow}3d_{\scriptscriptstyle +1}^{\uparrow}3d_{\scriptscriptstyle 0}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+1}^{\uparrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+1}^{\uparrow}3d_{-2}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{0}^{\uparrow}3d_{-2}^{\uparrow}\right\rangle$
					$\left 3d_{+2}^{\uparrow}3d_{0}^{\uparrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+1}^{\uparrow}3d_{0}^{\uparrow}3d_{-1}^{\uparrow}\right\rangle$
$M_S = \frac{1}{2}$	$\left 3d_{+2}^{\uparrow}3d_{+2}^{\downarrow}3d_{+1}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+2}^{\downarrow}3d_{0}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\downarrow}3d_{+1}^{\uparrow}3d_{0}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\downarrow}3d_{+1}^{\uparrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\downarrow}3d_{+1}^{\uparrow}3d_{-2}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\downarrow}3d_{0}^{\uparrow}3d_{-2}^{\uparrow}\right\rangle$
		$\left 3d_{+2}^{\uparrow}3d_{+1}^{\uparrow}3d_{+1}^{\downarrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+1}^{\downarrow}3d_{0}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+1}^{\downarrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+1}^{\downarrow}3d_{-2}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{0}^{\downarrow}3d_{-2}^{\uparrow}\right\rangle$
			$\left 3d_{+2}^{\uparrow}3d_{+1}^{\uparrow}3d_{0}^{\downarrow}\right\rangle$	$\left 3d_{\scriptscriptstyle +2}^{\uparrow}3d_{\scriptscriptstyle +1}^{\uparrow}3d_{\scriptscriptstyle -1}^{\downarrow}\right\rangle$	$\left 3d_{\scriptscriptstyle +2}^{\uparrow}3d_{\scriptscriptstyle +1}^{\uparrow}3d_{\scriptscriptstyle -2}^{\downarrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{0}^{\uparrow}3d_{-2}^{\downarrow}\right\rangle$
			$\left 3d_{+2}^{\uparrow}3d_{+2}^{\downarrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{+2}^{\downarrow}3d_{-2}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\downarrow}3d_{0}^{\uparrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{\scriptscriptstyle +1}^{\downarrow}3d_{\scriptscriptstyle 0}^{\uparrow}3d_{\scriptscriptstyle -1}^{\uparrow}\right\rangle$
				$\left 3d_{+1}^{\uparrow}3d_{+1}^{\downarrow}3d_{0}^{\uparrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{0}^{\downarrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+1}^{\uparrow}3d_{0}^{\downarrow}3d_{-1}^{\uparrow}\right\rangle$
				$\left 3d_{+2}^{\uparrow}3d_{0}^{\uparrow}3d_{0}^{\downarrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{0}^{\uparrow}3d_{-1}^{\downarrow}\right\rangle$	$\left 3d_{+1}^{\uparrow}3d_{0}^{\uparrow}3d_{-1}^{\downarrow}\right\rangle$
					$\left 3d_{+1}^{\uparrow}3d_{+1}^{\downarrow}3d_{-1}^{\uparrow}\right\rangle$	$\left 3d_{+1}^{\uparrow}3d_{+1}^{\downarrow}3d_{-2}^{\uparrow}\right\rangle$
					$\left 3d_{\scriptscriptstyle +1}^{\uparrow}3d_{\scriptscriptstyle 0}^{\uparrow}3d_{\scriptscriptstyle 0}^{\downarrow}\right\rangle$	$\left 3d_{+2}^{\uparrow}3d_{-1}^{\uparrow}3d_{-1}^{\downarrow}\right\rangle$

