Structured Contexts 1: Basics

Julian J. Schlöder

Formal Pragmatics, Lecture 1, Jan 10th

Pragmatics

- The received view:
- (Classically conceived), semantics is:
 - \rightarrow The study of truth-conditions (of *sentences*).
 - \rightarrow The study of sentences 'in isolation' (modulo indices *etc*).
 - \rightarrow The study of the meaning a sentence *must* have.

Pragmatics

- The received view:
- (Classically conceived), semantics is:
 - \rightarrow The study of truth-conditions (of *sentences*).
 - \rightarrow The study of sentences 'in isolation' (modulo indices *etc*).
 - \rightarrow The study of the meaning a sentence *must* have.
- Pragmatics is non-semantic meaning:
 - \rightarrow The study of meaning in context (of *utterances*).
 - ightarrow The study of meaning in interaction (dialogue).
 - ightarrow The study of the cancellable parts of meaning.

- Proficient speakers of a language by and large agree on what sentences / utterances in that language mean.
 - → "intuitions"
 - \rightarrow (quite a few caveats to that claim)

- Proficient speakers of a language by and large agree on what sentences / utterances in that language mean.
 - → "intuitions"
 - → (quite a few caveats to that claim)
- Therefore, there must be a *general, systematic way* in which meanings are associated with sentences / utterances.
 - \rightarrow This would be part of what 'proficiency' means.

- Proficient speakers of a language by and large agree on what sentences / utterances in that language mean.
 - → "intuitions"
 - \rightarrow (quite a few caveats to that claim)
- Therefore, there must be a *general, systematic way* in which meanings are associated with sentences / utterances.
 - \rightarrow This would be part of what 'proficiency' means.
- Logic, broadly construed, is the topic-neutral study of general, systematic ways.

- Proficient speakers of a language by and large agree on what sentences / utterances in that language mean.
 - → "intuitions"
 - \rightarrow (quite a few caveats to that claim)
- Therefore, there must be a *general, systematic way* in which meanings are associated with sentences / utterances.
 - \rightarrow This would be part of what 'proficiency' means.
- Logic, broadly construed, is the topic-neutral study of general, systematic ways.
- Formal Semantics is the application of logico-formal methods to the study of meaning.

Implicatures

- (1) Julian's performance was satisfactory.
- How can it be that this sentence means something negative in one context, but something positive in another?

 - (3) a. A: Given the standards we usually apply, did Julian perform satisfactorily?
 - b. B: Julian's performance was satisfactiory. $\not \sim$ not great

Implicit Meanings

- (4) a. Mark: Karen and I are having a fight, after she went out with Keith and not me.
 - b. Karen: Well, Mark, you never asked me out.
- Mark implicates says that (i) *Karen went out with Keith* is the reason for (ii) *Karen and Mark are having a fight*.
- Karen implicates agreement with (i), (ii), and the implicature.
- Thus, implicatures can be agreed upon, and one can implicate agreement.

Implicit Meanings

- (4) a. Mark: Karen and I are having a fight, after she went out with Keith and not me.
 - b. Karen: Well, Mark, you never asked me out.
- Mark implicates says that (i) *Karen went out with Keith* is the reason for (ii) *Karen and Mark are having a fight*.
- Karen implicates agreement with (i), (ii), and the implicature.
- Thus, implicatures can be agreed upon, and one can implicate agreement.
- Implicatures can also be rejected.
 - (5) a. A: *The Matrix* is a decent movie.
 - b. B: Decent? It's brilliant!
 - b.' B: It's not decent, it's brilliant!

The static view on context

- This was the standard view for a long time, and it still is somewhat dominant.
 - → E.g. Chris Potts in "Formal Pragmatics", *Routledge Pragmatics Encyclopedia* (2009).
- In some shape or form, there is a context that fills in blanks, and enriches meaning.
- From syntax, find a logical form (possibly) containing indices.
 - ightarrow Possible indices: time, location, speaker, addressee, referents ...

The static view on context

- This was the standard view for a long time, and it still is somewhat dominant.
 - → E.g. Chris Potts in "Formal Pragmatics", *Routledge Pragmatics Encyclopedia* (2009).
- In some shape or form, there is a context that fills in blanks, and enriches meaning.
- From syntax, find a logical form (possibly) containing indices.
 - ightarrow Possible indices: time, location, speaker, addressee, referents ...

The dynamic view on context

 From syntax, obtain a context change potential (CCP), a relation between contexts.

Speech Acts

- That utterances should change contexts is nothing new.

Austin, J.L. (1962). How To Do Things With Words. Harvard UP.

- Let's say that all utterances do something to the context.

Structured Contexts

- Today will be about structured contexts.
- The idea is that we keep a kind of scoreboard of what happened in the conversation.
- We refer to the scoreboard both for interpretation, and update it.
- One popular approach has it that:
 - → Indicatives operate on a common ground.
 - ightarrow Interrogatives operate on questions under discussion (pprox topic)
 - → Imperatives operate on obligations ('to do list').

Speaker ASharedSpeaker Bprivate informationcgqudtdlprivate information

Non-Ideal Conditions

- The structure of context and the operations on it are still hot research topics.
- Two issues only recently came to attention:
 - \rightarrow The problem of rejection.
 - \rightarrow The problem of misunderstanding.
- Many models are models for 'ideal conditions', but recent research acknowledges that conditions are almost never ideal.
- A good model should also predict failures in non-ideal conditions.

Consequences

- One of my favorite examples (due to van Rooij)
 - (7) a. A: There's a dog outside. b. B: No, it's a cat.
- Rejections like this are unexpected / dispreferred / 'conversational crises'.
- But this example conclusively defeats any theory of anaphora that would plug in something like "the dog" or "that dog" for "it".

Consequences

- One of my favorite examples (due to van Rooij)
 - (7) a. A: There's a dog outside. b. B: No, it's a cat.
- Rejections like this are unexpected / dispreferred / 'conversational crises'.
- But this example conclusively defeats any theory of anaphora that would plug in something like "the dog" or "that dog" for "it".
- Moreover, if one takes rejection seriously, one cannot assume that speech acts update the context immediately.
 - \rightarrow They do so only in the absence of rejection.
 - $\,\,
 ightarrow\,$ So they are proposals to update the context.

Common Ground

Common Ground

- This is probably the only uncontroversial thing I'll say.
- Every context includes or makes reference to a broadly
 Stalnakerian common ground of mutually accepted facts.

Common Ground

- This is probably the only uncontroversial thing I'll say.
- Every context includes or makes reference to a broadly
 Stalnakerian common ground of mutually accepted facts.
- The common ground may contain, among others:
 - → Time / location / speaker indices,
 - \rightarrow salient referents,
 - \rightarrow record of prior conversation,
 - \rightarrow record of agreed upon facts,
 - ightarrow records of idioms or mutually known language conventions,
 - $\rightarrow\,$ goal / purpose /social conventions related to the present dialogue, ...

Linguistic Evidence

- There is very good evidence for mutual knowledge being relevant in dialogue.

- (8) A: John is coming. B: Who is John?
- (9) A: Are you joining us?
 B: For what? And who is us?
- (10) A: I warned you. B: No you didn't.
- (11) a. A: Wir gehen *doch* heute in's Konzert. *(German)* b. A: Wir gehen *ja* heute in's Konzert. *(German)*

Psycholinguistic Evidence

Referring Expressions

- 1. the next one looks like a person who's ice skating, except they're sticking two arms out in front.
- 2. the next one's the person ice skating that has two arms?
- 3. the fourth one is the person ice skating, with two arms
- 4. the next one's the ice skater.
- 5. the fourth one's the ice skater.
- 6. the ice skater.

Wilkes-Gibbs, D., & Clark, H. H. (1992). Coordinating beliefs in conversation. Journal of memory and language.

Zarrieß, S. et al. (2016). PentoRef: A corpus of spoken references in task-oriented dialogues. 10th Language Resources and Evaluation Conference.

- Iterated belief?
- Let K_a and K_b be the modal operators "A knows" and "B knows."
- " φ is common ground between A and B."
- $K_a \varphi \wedge K_b \varphi$

- Iterated belief?
- Let K_a and K_b be the modal operators "A knows" and "B knows."
- " φ is common ground between A and B."
- $K_a\varphi \wedge K_b\varphi$
- $K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi)$

- Iterated belief?
- Let K_a and K_b be the modal operators "A knows" and "B knows."
- " φ is common ground between A and B."
- $K_a\varphi \wedge K_b\varphi$
- $K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi)$
- $K_a(K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi))$ $\wedge K_b(K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi))$

- Iterated belief?
- Let K_a and K_b be the modal operators "A knows" and "B knows."
- " φ is common ground between A and B."
- $K_a\varphi \wedge K_b\varphi$
- $K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi)$
- $K_a(K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi))$ $\wedge K_b(K_a(K_a\varphi \wedge K_b\varphi) \wedge K_b(K_a\varphi \wedge K_b\varphi))$

. . .

- You can do this with suitable induction schemes.

Shared Basis

The Shared Basis Model (Clark 1996)

A proposition *p* is common ground for members of community C iff there is a *shared basis b* for *p*, that is:

- 1. every member of C believes (individually) that b,
- 2. *b* indicates to every member of C that every member of C (individually) beliefs *b*,
- 3. *b* indicates to every member of C that *p*.

Shared Basis

The Shared Basis Model (Clark 1996)

A proposition *p* is common ground for members of community C iff there is a *shared basis b* for *p*, that is:

- 1. every member of C believes (individually) that b,
- 2. *b* indicates to every member of C that every member of C (individually) beliefs *b*,
- 3. *b* indicates to every member of C that *p*.
- The question really is: How is common ground updated?

```
(12) A: p.

B: accept(p).

Basis: p \land accept(p).

CG: p.
```

Shared Bases: Problems

 Technically, for B to know that A received the acceptance, A would need to accept the acceptance, etc.

Shared Bases: Problems

 Technically, for B to know that A received the acceptance, A would need to accept the acceptance, etc.

The Strength of Evidence Principle (Clark 1996)

If evidence e_1 is needed to establish basis b_1 , and basis b_2 is needed to establish e_1 , then the evidence e_2 for b_2 is strictly weaker than e_1 .

→ accept(p) only needs to be confirmed by acknowledge.

Shared Bases: Problems

 Technically, for B to know that A received the acceptance, A would need to accept the acceptance, etc.

The Strength of Evidence Principle (Clark 1996)

If evidence e_1 is needed to establish basis b_1 , and basis b_2 is needed to establish e_1 , then the evidence e_2 for b_2 is strictly weaker than e_1 .

- → accept(p) only needs to be confirmed by acknowledge.
 - This is not uncontroversial: Why should the chain be finite?
 - What does confirm acknowledge?

- Two armies are surrounding a castle.
- To capture the castle they need to coordinate their attack.
- If they fail to do so, the siege fails.

- Two armies are surrounding a castle.
- To capture the castle they need to coordinate their attack.
- If they fail to do so, the siege fails.
- So one general sends a message, 'we attack at dawn.'
- He can't be sure that the message has not been intercepted.
- So he needs an answer.
- He won't attack without confirmation from his ally.

- Two armies are surrounding a castle.
- To capture the castle they need to coordinate their attack.
- If they fail to do so, the siege fails.
- So one general sends a message, 'we attack at dawn.'
- He can't be sure that the message has not been intercepted.
- So he needs an answer.
- He won't attack without confirmation from his ally.
- The other general knows this. She sends a response.
- She can't be sure that the message has not been intercepted.
- So she needs an answer.
- She won't attack without confirmation from her ally.

- Two armies are surrounding a castle.
- To capture the castle they need to coordinate their attack.
- If they fail to do so, the siege fails.
- So one general sends a message, 'we attack at dawn.'
- He can't be sure that the message has not been intercepted.
- So he needs an answer.
- He won't attack without confirmation from his ally.
- The other general knows this. She sends a response.
- She can't be sure that the message has not been intercepted.
- So she needs an answer.
- She won't attack without confirmation from her ally.

- ...

Grounding Problem

- I want you to believe that p.
- So I tell you that *p*.
- I cannot know that you believe or even understand me.
- So I require confirmation.

Grounding Problem

- I want you to believe that p.
- So I tell you that *p*.
- I cannot know that you believe or even understand me.
- So I require confirmation.
- Say you believe me and send confirmation.
- You cannot be sure that I understand your confirmation.
- So you'd want confirmation that I received your confirmation

- ...

Grounding Problem

- I want you to believe that p.
- So I tell you that p.
- I cannot know that you believe or even understand me.
- So I require confirmation.
- Say you believe me and send confirmation.
- You cannot be sure that I understand your confirmation.
- So you'd want confirmation that I received your confirmation
- ...
- So how can I be sure that you believe p without reading your mind?

"This is a perplexing situation. It suggests that we face an interesting problem: how to catch the attention of a civilization, or some people in that civilization, still 8.2 light-years away. Also: how to confirm that you have caught that attention in something like the minimum exchange time if your interlocutor hears but for whatever reason does not respond."

Kim Stanley Robinson, *Aurora*.

- Two kinds of evidence:
 - ightarrow Positive: explicit or implicit acknowledgement
 - ightarrow Negative: clarification questions

- Two kinds of evidence:
 - → Positive: explicit or implicit acknowledgement
 - → Negative: clarification questions
- Take some positive evidence to be self-confirming (e.g. ack).

Poesio, M., & Traum, D. R. (1997). Conversational actions and discourse situations. Computational intelligence.

- Two kinds of evidence:
 - → Positive: explicit or implicit acknowledgement
 - → Negative: clarification questions
- Take some positive evidence to be self-confirming (e.g. ack).

Poesio, M., & Traum, D. R. (1997). Conversational actions and discourse situations. Computational intelligence.

- Take the absence of negative evidence as positive evidence.
- Speakers maintain individual copies of common ground they update optimistically, and repair when needed.

Ginzburg, I. (2013), The Interactive Stance, Oxford UP.

- Two kinds of evidence:
 - → Positive: explicit or implicit acknowledgement
 - → Negative: clarification questions
- Take some positive evidence to be self-confirming (e.g. ack).

Poesio, M., & Traum, D. R. (1997). Conversational actions and discourse situations. Computational intelligence.

- Take the absence of negative evidence as positive evidence.
- Speakers maintain individual copies of common ground they update optimistically, and repair when needed.

Ginzburg, J. (2013). The Interactive Stance. Oxford UP.

 Specify a regression of to-be-established bases and ground them in a primitive state of mutual attention (e.g. eye contact)

A Rough Proposal

- These are my own (unpublished) ideas, so they may not exactly pan out.
- Assume successful grounding in the presence of information that can be construed as positive evidence.
- Let the model record as common ground all information that can reasonably be construed as mutually believed.

A Rough Proposal

- These are my own (unpublished) ideas, so they may not exactly pan out.
- Assume successful grounding in the presence of information that can be construed as positive evidence.
- Let the model record as common ground all information that can reasonably be construed as mutually believed.
- − Grounding an utterance u (\approx Clark's regression) means:
 - \rightarrow It is CG that *u* happened (Attention).
 - \rightarrow It is CG what *u*'s form means (Understanding).
 - \rightarrow The meaning of *u* is CG (Uptake).

- Downward Evidence (Clark 1996)
 - $\,\rightarrow\,$ If a higher level is grounded, so are all lower levels.

- Downward Evidence (Clark 1996)
 - \rightarrow If a higher level is grounded, so are all lower levels.
- Basic Attention
 - ightarrow It is reasonable to assume that interlocutors recognise that a speech event has taken place.
 - \rightarrow Not true, e.g., for channels that are known to be bad.

- Downward Evidence (Clark 1996)
 - \rightarrow If a higher level is grounded, so are all lower levels.

- Basic Attention

- ightarrow It is reasonable to assume that interlocutors recognise that a speech event has taken place.
- \rightarrow Not true, e.g., for channels that are known to be bad.

- Expectation Fulfillment

→ If you connect an expectation with an utterance, and that expectation is fulfilled, you can assume grounding.

- Downward Evidence (Clark 1996)
 - \rightarrow If a higher level is grounded, so are all lower levels.

- Basic Attention

- ightarrow It is reasonable to assume that interlocutors recognise that a speech event has taken place.
- \rightarrow Not true, e.g., for channels that are known to be bad.

- Expectation Fulfillment

ightarrow If you connect an expectation with an utterance, and that expectation is fulfilled, you can assume grounding.

Cautious Update

ightarrow Update with the weakest expectation that is fulfilled.

Minimal Structured Context

 Let both speakers keep track of a common ground and, individually, of a set of potential future common grounds (expectations).

e r A Shared Speak cg fut	er B
-------------------------------------	------

'Optimistic' Grounding

- A makes utterance *u* with intent to ground *p*.
- Put *u* in cg. (Basic Attention)
- A updates her expectations:
 - \rightarrow A expects to be understood or to be understood and believed.

$$\rightarrow \operatorname{\mathsf{cg-fut}}_{A} = \left\{ \operatorname{\mathsf{cg}}, \operatorname{\mathsf{cg}} \cup \{ \llbracket u \rrbracket = p \}, \operatorname{\mathsf{cg}} \cup \{ \llbracket u \rrbracket = p, p \} \right\}$$

- \rightarrow cg \cup {p} is not in the cg-fut because of Downward Evidence.
- B makes a response u'. Put u' in CG and update cg-fut_B.
- A parses u' to $\llbracket u' \rrbracket$ in the best context: $\max_{\subseteq} \operatorname{cg-fut}_A$.
- CG is updated as follows (Cautious Expectation Fulfillment):

$$\operatorname{cg}^{new} = \min_{\subseteq} (\{c \in \operatorname{cg-fut}_A \mid c \models \operatorname{cg} \cup \{\llbracket u' \rrbracket\}\}).$$

Prediction of Failures

- Here is a nice thing about this idea.
 - ightarrow Actually, I say, a requirement for any good theory of common ground.
- Absent-minded confirmations induce the belief in the addressee that common ground has been established.
 - \rightarrow Even though it has not.
- This model predicts that misunderstandings of this kind arise (but it is not alone there).

Expectation Fulfillment (Example)

(13) a. Melvin: What happened to my shirt I was supposed to be getting

b. Lisa: You said you didn't want it

c. Melvin: yeah

d. Lisa: I'm not paying twenty quid for a shirt so you

can wear to work

- Melvin talks about a shirt.
- Lisa indicates a property of the shirt she thinks he means.
- Melvin confirms that the shirt has the property.
- Lisa reasonably assumes they understand each other.

Expectation Fulfillment (Example)

(13) a. Melvin: What happened to my shirt I was supposed to be getting

b. Lisa: You said you didn't want it

c. Melvin: yeah

d. Lisa: I'm not paying twenty quid for a shirt so you

can wear to work

- Melvin talks about a shirt.
- Lisa indicates a property of the shirt she thinks he means.
- Melvin confirms that the shirt has the property.
- Lisa reasonably assumes they understand each other.
- (14) e. Melvin: what shirt, like this, warm f. Lisa: I thought you meant the, the mustard shirt (BNC file KD3, sentences 3166–3174)

The Disagreement Problem

- Under the 'ideal circumstances' presumption, many have modelled an assertion as immediately expanding the common ground.
- This misses the fact that an assertion only becomes common ground if it is undisputed.
- Thus, it is more appropriate to say that an assertion proposes to update common ground. And this proposal itself is up for discussion.

The Disagreement Problem

- Under the 'ideal circumstances' presumption, many have modelled an assertion as immediately expanding the common ground.
- This misses the fact that an assertion only becomes common ground if it is undisputed.
- Thus, it is more appropriate to say that an assertion proposes to update common ground. And this proposal itself is up for discussion.
- The following has become (rightfully, I say) popular:
- To make an assertion is to undertake a commitment.
- Common ground is derivative of shared commitment.
 - \rightarrow Same problems occur here, of course.

Moore Paradoxes

- (15) #a. It's raining and I don't believe that.b. It's raining and you don't believe that.
- You can't say the first, but you can say the second.
- Note that both propositions cannot be common ground.
- A straightforward explanation: you cannot commit to (15a), but you can commit to (15b).
- But (15b) only proposes to make it's raining common ground.

some paper of Philippe Schlenker, I think

Common Ground

Commitment / Projection / Proposals

Common Ground

Commitment / Projection / Proposals

Yes, No, Okay

- I'll now develop a semantics (a pragmatics?) for the particles *yes, no* and *okay*.
- Yes and No can respond to both assertions and polar questions.
- Okay can only respond to assertions.
- (16) a. A: Sue passed the exam.b. B: Yes (she did) / No (she didn't) / Okay
- (17) a. A: Did Sue pass the exam?b. B: Yes (she did) / No (she didn't) / #Okay

Yes and No are a bit odd

- (18) A: But it's uh yeah it's uh original idea.B: Yes it is. → acceptance.
- (19) A: a banana is not it's not really handy .B: Yes it is. → rejection.
- (20) A: It's not very well advertised. B: No, it's not. → acceptance.
- (21) a. A: Sue failed the exam.B: Yes she did. / No she didn't.b. A: Sue did not pass the exam.B: No she didn't. / Yes she did.

Yes and No are a bit odd

- (18) A: But it's uh yeah it's uh original idea.B: Yes it is. → acceptance.
- (19) A: a banana is not it's not really handy . B: Yes it is. \rightsquigarrow rejection.
- (20) A: It's not very well advertised. B: No, it's not. → acceptance.
- (21) a. A: Sue failed the exam.B: Yes she did. / No she didn't.b. A: Sue did not pass the exam.B: No she didn't. / Yes she did.
- Say that a proposition has negative polarity if it starts with a
 ¬ and positive polarity otherwise.
 - \rightarrow Yes targets positive propositions, No negative ones.

A Context Structure

- This context structure is adapted from Farkas & Bruce (2010)

Farkas, D & Bruce, K (2010). On reacting to assertions and polar questions.

Speaker ASharedSpeaker BCommitments_AProposalsProjectionsCommitments_B
$$= C_A$$
 $cg = C_A \cap C_B$ $= C_B$

- Proposals is a stack containing tuples $\langle T, P \rangle$ where T is a speech act type and P is a content.
- Projections record the different ways in which the current proposal can update the common ground.

Update Rules

- We can now specify certain update rules.
 - → (different from Farkas & Bruce)

Polar Question

If speaker *A* makes a polar question with content *p*, update the context (let *Q* be the type *question*):

- $-C_A^{new}=C_A^{old}$
- $proposals^{new} = proposals^{old} \oplus \{\langle Q, p \rangle\}$
- projections^{new} = $\{\{p\}, \{\neg p\}\}$

Update Rules

Assertion

If speaker *A* makes an assertion with content *p*, update the context (let *D* be the type *declarative*):

- $C_A^{new} = C_A^{old} \cup \{p\}$
- If $\{p\}$ ∈ projections^{old} and $p \in C_B$:
 - \rightarrow proposals^{new} is proposals^{old} minus its top element.
 - \rightarrow projections^{new} is the projection of the top element of proposals^{new}.
- Else:
 - $ightarrow proposals^{new} = proposals^{old} \oplus \{\langle D, p \rangle\}$
 - \rightarrow projections^{new} = {{p}}

Yes and No

- For a proposition φ :
 - \rightarrow let $+\varphi$ be like φ except that any initial \neg has been removed.
 - \rightarrow let $-\varphi$ be $\neg \varphi$ if φ has no initial \neg and φ otherwise.

Yes

- Let $\Gamma = \{+\varphi \mid \{\varphi\} \in projection\}$
- If there is a unique $\varphi \in \Gamma$, update with the assertion of φ .
- Else, break.

No

- Let $\Gamma = \{-\varphi \mid \{\varphi\} \in projection\}$
- If there is a unique $\varphi \in \Gamma$, update with the assertion of φ .
- Else, break.

Okay

Okay

- If there is a unique φ such that $\{\varphi\} \in \textit{projection}$, update with the assertion of φ .
- Else, break.

General Rejection

- Anything can be rejected.

- (22) a. That's not true! [assertion]
 - b. I won't answer that! [question]
 - c. I won't do that! [command]
 - d. You don't have the authority! [declarative]
- Rejections are themselves proposals that can be discussed and rejected!
- (23) a. Anon 2: Just take it into school.
 - b. Richard: No. No way!
 - c. Anon 2: Why not?

(BNC, KSV, 3786-3789)

- This model does not keep enough records to express this.

Friday

- Friday, we'll delve deeper into the role of the "proposal" field in the context structure.
- Please take a look at Craige Roberts's "Information structure in discourse: Towards an integrated formal theory of pragmatics" (2012) in *Semantics & Pragmatics* (not the 1996 version).