Occupancy Mapping:

1	2	3	4	5	6
7	&	9	10	11	12.
13	14	14//	16		18/
	14/II	1///		23	24.
19 25 /		22	28	29	30
31	32	33	34	35	36,
TES					

Compute the occupancy probability of all cells within the corner. Let each cell be denoted.

July 1

 $P(\overline{C_i}/\gamma) \longrightarrow (2)$

The probability that the cell (i is

unoccupied jour the measurement?

		1			
l	2	3	4	5	6
7	8	9	10	7"	12.
13	4	15	16	14	18
19	20	21	22	23	24.
					

From the sensor model $f(r, \alpha)$ which gives high occupancy values to cells 4,5, 10, 11, 16 and 17 and high. non-occupancy values to cells 9, 14,15, 19, 20,21. we compute the probability values for the cells.

P(C4/r,) = 0.8 P(C4/r,) = 0.4.

[These probabilitie come from a sensor model de measurement model].

Normalize the probabilities so that

$$P((4/r_1) = 0.8 = 2 - 3(2)$$

$$0.8 + 0.4 = 3$$

$$P(\zeta_4/\tau_1) = \frac{0.4}{0.4 + 0.8} = \frac{1}{3} - 3032$$

In the same vein compute

P(C5181), P(C5/4,)... P(C17/81),

P(C12/81).

$$P(C_{15}/\gamma_{1}) = \frac{0.3}{0.3+0.9} = 0.25 \longrightarrow (4)$$

$$P(\bar{c}_{15}/\gamma_1) = \frac{0.9}{0.940.3} = 0.75 - 36)$$

In the same vein compute for all Hose cells where the unocupied probability is high i.e. P(C14/17,), P(T14/17,),

How to fuse the probabilities of the cells that have more than one measurement lauching them. $P(C_i|r_2,r_i) = P(r_2|C_i,r_i).P(C_i|r_i)p(r_2|r_i)$ = P(A/B,c) = P(B/A,c).P(A/c)/P(B/c) $= P(r_2/c_i).P(C_i|r_i)./P(r_2/r_i).-n(7).$

(Markov Assumptions)

$$= P(Ci/r_2).P(Ci/r_1).P(r_2) - 787.$$

$$P(r_2/r_1).P(Ci)$$

$$= |k|P(Ci/r_2).P(Ci/r_1)| - 7(9)$$
In the same vein
$$P(\overline{Ci/r_2}, r_1) = |k|P(\overline{Ci/r_2})P(\overline{Ci/r_1})| - 7(10).$$
The constants get taken care of in the final normalization.

[Note that $k = \overline{E}$].

Hence $P(Ci/r_2, r_1) = (9) - 7(1)$.
$$P(\overline{Ci/r_2}, r_1) = (10) - 7(12).$$

$$(9) + (10)$$