Obs	ID	Split60	X1	X2	Х3	Х4	Х5	Х6	Х7	Х8	х9	X10	X11	X12	X13	X14
1	1	1	4.1	0.6	6.9	4.7	2.4	2.3	5.2	0	32	4.2	1	0	1	1
2	2	1	1.8	3.0	6.3	6.6	2.5	4.0	8.4	1	43	4.3	0	1	0	1
3	3	0	3.4	5.2	5.7	6.0	4.3	2.7	8.2	1	48	5.2	0	1	1	2
4	4	0	2.7	1.0	7.1	5.9	1.8	2.3	7.8	1	32	3.9	0	1	1	1
5	5	1	6.0	0.9	9.6	7.8	3.4	4.6	4.5	0	58	6.8	1	0	1	3
6	6	1	1.9	3.3	7.9	4.8	2.6	1.9	9.7	1	45	4.4	0	1	1	2
7	7	1	4.6	2.4	9.5	6.6	3.5	4.5	7.6	0	46	5.8	1	0	1	1
8	8	1	1.3	4.2	6.2	5.1	2.8	2.2	6.9	1	44	4.3	0	1	0	2
9	9	0	5.5	1.6	9.4	4.7	3.5	3.0	7.6	0	63	5.4	1	0	1	3
10	10	0	4.0	3.5	6.5	6.0	3.7	3.2	8.7	1	54	5.4	0	1	0	2
11	11	1	2.4	1.6	8.8	4.8	2.0	2.8	5.8	0	32	4.3	1	0	0	1
12	12	1	3.9	2.2	9.1	4.6	3.0	2.5	8.3	0	47	5.0	1	0	1	2
13	13	1	2.8	1.4	8.1	3.8	2.1	1.4	6.6	1	39	4.4	0	1	0	1
14	14	1	3.7	1.5	8.6	5.7	2.7	3.7	6.7	0	38	5.0	1	0	1	1
15	15	1	4.7	1.3	9.9	6.7	3.0	2.6	6.8	0	54	5.9	1	0	0	3
16	16	0	3.4	2.0	9.7	4.7	2.7	1.7	4.8	0	49	4.7	1	0	0	3
17	17	1	3.2	4.1	5.7	5.1	3.6	2.9	6.2	0	38	4.4	1	1	1	2
18	18	0	4.9	1.8	7.7	4.3	3.4	1.5	5.9	0	40	5.6	1	0	0	2
19	19	0	5.3	1.4	9.7	6.1	3.3	3.9	6.8	0	54	5.9	1	0	1	3
20	20	1	4.7	1.3	9.9	6.7	3.0	2.6	6.8	0	55	6.0	1	0	0	3
21	21	0	3.3	0.9	8.6	4.0	2.1	1.8	6.3	0	41	4.5	1	0	0	2
22	22	0	3.4	0.4	8.3	2.5	1.2	1.7	5.2	0	35	3.3	1	0	0	1
23	23	1	3.0	4.0	9.1	7.1	3.5	3.4	8.4	0	55	5.2	1	1	0	3
24	24	1	2.4	1.5	6.7	4.8	1.9	2.5	7.2	1	36	3.7	0	1	0	1
25	25	1	5.1	1.4	8.7	4.8	3.3	2.6	3.8	0	49	4.9	1	0	0	2
26	26	1	4.6	2.1	7.9	5.8	3.4	2.8	4.7	0	49	5.9	1	0	1	3
27	27	0	2.4	1.5	6.6	4.8	1.9	2.5	7.2	1	36	3.7	0	1	0	1
28	28	1	5.2	1.3	9.7	6.1	3.2	3.9	6.7	0	54	5.8	1	0	1	3
29	29	1	3.5	2.8	9.9	3.5	3.1	1.7	5.4	0	49	5.4	1	0	1	3
30	30	0	4.1	3.7	5.9	5.5	3.9	3.0	8.4	1	46	5.1	0	1	0	2
31	31	1	3.0	3.2	6.0	5.3	3.1	3.0	8.0	1	43	3.3	0	1	0	1
32	32	1	2.8	3.8	8.9	6.9	3.3	3.2	8.2	0	53	5.0	1	1	0	3
33	33	1	5.2	2.0	9.3	5.9	3.7	2.4	4.6	0	60	6.1	1	0	0	3
34	34	0	3.4	3.7	6.4	5.7	3.5	3.4	8.4	1	47	3.8	0	1	0	1
35	35	0	2.4	1.0	7.7	3.4	1.7	1.1	6.2	1	35	4.1	0	1	0	1
36	36	1	1.8	3.3	7.5	4.5	2.5	2.4	7.6	1	39	3.6	0	1	1	1
37	37	0	3.6	4.0	5.8	5.8	3.7	2.5	9.3	1	44	4.8	0	1	1	2
38	38	0	4.0	0.9	9.1	5.4	2.4	2.6	7.3	0	46	5.1	1	0	1	3

Obs	ID	Split60	X1	X2	хз	X4	Х5	Х6	Х7	X8	Х9	X10	X11	X12	X13	X14
39	39	1	0.0	2.1	6.9	5.4	1.1	2.6	8.9	1	29	3.9	0	1	1	1
40	40	0	2.4	2.0	6.4	4.5	2.1	2.2	8.8	1	28	3.3	0	1	1	1
41	41	0	1.9	3.4	7.6	4.6	2.6	2.5	7.7	1	40	3.7	0	1	1	1
42	42	1	5.9	0.9	9.6	7.8	3.4	4.6	4.5	0	58	6.7	1	0	1	3
43	43	1	4.9	2.3	9.3	4.5	3.6	1.3	6.2	0	53	5.9	1	0	0	3
44	44	0	5.0	1.3	8.6	4.7	3.1	2.5	3.7	0	48	4.8	1	0	0	2
45	45	1	2.0	2.6	6.5	3.7	2.4	1.7	8.5	1	38	3.2	0	1	1	1
46	46	0	5.0	2.5	9.4	4.6	3.7	1.4	6.3	0	54	6.0	1	0	0	3
47	47	1	3.1	1.9	10.0	4.5	2.6	3.2	3.8	0	55	4.9	1	0	1	3
48	48	1	3.4	3.9	5.6	5.6	3.6	2.3	9.1	1	43	4.7	0	1	1	2
49	49	1	5.8	0.2	8.8	4.5	3.0	2.4	6.7	0	57	4.9	1	0	1	3
50	50	1	5.4	2.1	8.0	3.0	3.8	1.4	5.2	0	53	3.8	1	0	1	3
51	51	1	3.7	0.7	8.2	6.0	2.1	2.5	5.2	0	41	5.0	1	0	0	2
52	52	1	2.6	4.8	8.2	5.0	3.6	2.5	9.0	1	53	5.2	0	1	1	2
53	53	1	4.5	4.1	6.3	5.9	4.3	3.4	8.8	1	50	5.5	0	1	0	2
54	54	1	2.8	2.4	6.7	4.9	2.5	2.6	9.2	1	32	3.7	0	1	1	1
55	55	0	3.8	0.8	8.7	2.9	1.6	2.1	5.6	0	39	3.7	1	0	0	1
56	56	0	2.9	2.6	7.7	7.0	2.8	3.6	7.7	0	47	4.2	1	1	1	2
57	57	0	4.9	4.4	7.4	6.9	4.6	4.0	9.6	1	62	6.2	0	1	0	2
58	58	1	5.4	2.5	9.6	5.5	4.0	3.0	7.7	0	65	6.0	1	0	0	3
59	59	1	4.3	1.8	7.6	5.4	3.1	2.5	4.4	0	46	5.6	1	0	1	3
60	60	0	2.3	4.5	8.0	4.7	3.3	2.2	8.7	1	50	5.0	0	1	1	2
61	61	1	3.1	1.9	9.9	4.5	2.6	3.1	3.8	0	54	4.8	1	0	1	3
62	62	0	5.1	1.9	9.2	5.8	3.6	2.3	4.5	0	60	6.1	1	0	0	3
63	63	0	4.1	1.1	9.3	5.5	2.5	2.7	7.4	0	47	5.3	1	0	1	3
64	64	0	3.0	3.8	5.5	4.9	3.4	2.6	6.0	0	36	4.2	1	1	1	2
65	65	1	1.1	2.0	7.2	4.7	1.6	3.2	10.0	1	40	3.4	0	1	1	1
66	66	0	3.7	1.4	9.0	4.5	2.6	2.3	6.8	0	45	4.9	1	0	0	2
67	67	1	4.2	2.5	9.2	6.2	3.3	3.9	7.3	0	59	6.0	1	0	0	3
68	68	1	1.6	4.5	6.4	5.3	3.0	2.5	7.1	1	46	4.5	0	1	0	2
69	69	0	5.3	1.7	8.5	3.7	3.5	1.9	4.8	0	58	4.3	1	0	0	3
70	70	1	2.3	3.7	8.3	5.2	3.0	2.3	9.1	1	49	4.8	0	1	1	2
71	71	1	3.6	5.4	5.9	6.2	4.5	2.9	8.4	1	50	5.4	0	1	1	2
72	72	1	5.6	2.2	8.2	3.1	4.0	1.6	5.3	0	55	3.9	1	0	1	3
73	73	1	3.6	2.2	9.9	4.8	2.9	1.9	4.9	0	51	4.9	1	0	0	3
74	74	0	5.2	1.3	9.1	4.5	3.3	2.7	7.3	0	60	5.1	1	0	1	3
75	75	0	3.0	2.0	6.6	6.6	2.4	2.7	8.2	1	41	4.1	0	1	0	1
76	76	0	4.2	2.4	9.4	4.9	3.2	2.7	8.5	0	49	5.2	1	0	1	2

Obs	ID	Split60	X1	X2	хз	Х4	Х5	Х6	Х7	X8	х9	X10	X11	X12	X13	X14
77	77	0	3.8	0.8	8.3	6.1	2.2	2.6	5.3	0	42	5.1	1	0	0	2
78	78	0	3.3	2.6	9.7	3.3	2.9	1.5	5.2	0	47	5.1	1	0	1	3
79	79	1	1.0	1.9	7.1	4.5	1.5	3.1	9.9	1	39	3.3	0	1	1	1
80	80	1	4.5	1.6	8.7	4.6	3.1	2.1	6.8	0	56	5.1	1	0	0	3
81	81	1	5.5	1.8	8.7	3.8	3.6	2.1	4.9	0	59	4.5	1	0	0	3
82	82	1	3.4	4.6	5.5	8.2	4.0	4.4	6.3	0	47	5.6	1	1	1	2
83	83	0	1.6	2.8	6.1	6.4	2.3	3.8	8.2	1	41	4.1	0	1	0	1
84	84	1	2.3	3.7	7.6	5.0	3.0	2.5	7.4	0	37	4.4	1	1	0	1
85	85	0	2.6	3.0	8.5	6.0	2.8	2.8	6.8	1	53	5.6	0	1	0	2
86	86	1	2.5	3.1	7.0	4.2	2.8	2.2	9.0	1	43	3.7	0	1	1	1
87	87	0	2.4	2.9	8.4	5.9	2.7	2.7	6.7	1	51	5.5	0	1	0	2
88	88	1	2.1	3.5	7.4	4.8	2.8	2.3	7.2	0	36	4.3	1	1	0	1
89	89	1	2.9	1.2	7.3	6.1	2.0	2.5	8.0	1	34	4.0	0	1	1	1
90	90	1	4.3	2.5	9.3	6.3	3.4	4.0	7.4	0	60	6.1	1	0	0	3
91	91	0	3.0	2.8	7.8	7.1	3.0	3.8	7.9	0	49	4.4	1	1	1	2
92	92	1	4.8	1.7	7.6	4.2	3.3	1.4	5.8	0	39	5.5	1	0	0	2
93	93	1	3.1	4.2	5.1	7.8	3.6	4.0	5.9	0	43	5.2	1	1	1	2
94	94	0	1.9	2.7	5.0	4.9	2.2	2.5	8.2	1	36	3.6	0	1	0	1
95	95	1	4.0	0.5	6.7	4.5	2.2	2.1	5.0	0	31	4.0	1	0	1	1
96	96	1	0.6	1.6	6.4	5.0	0.7	2.1	8.4	1	25	3.4	0	1	1	1
97	97	1	6.1	0.5	9.2	4.8	3.3	2.8	7.1	0	60	5.2	1	0	1	3
98	98	0	2.0	2.8	5.2	5.0	2.4	2.7	8.4	1	38	3.7	0	1	0	1
99	99	1	3.1	2.2	6.7	6.8	2.6	2.9	8.4	1	42	4.3	0	1	0	1
100	100	0	2.5	1.8	9.0	5.0	2.2	3.0	6.0	0	33	4.4	1	0	0	1

Model Information								
Data Set	WORK.HATCO							
Response Variable	X11	X11 - Specification Buying						
Number of Response Levels	2							
Model	binary logit							
Optimization Technique	Fisher's scoring							

Number of Observations Read	100
Number of Observations Used	100

Response Profile							
Ordered Value	X11	Total Frequency					
1	0	40					
2	1	60					

Probability modeled is X11=0.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	136.602	40.824					
sc	139.208	61.665					
-2 Log L	134.602	24.824					

Testing Global Null Hypothesis: BETA=0								
Test	Chi-Square	DF	Pr > ChiSq					
Likelihood Ratio	109.7784	7	<.0001					
Score	67.2129	7	<.0001					
Wald	15.0421	7	0.0355					

	Analysis of Maximum Likelihood Estimates										
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq						
Intercept	1	1.6763	5.2882	0.1005	0.7513						
X1	1	1.1607	5.0568	0.0527	0.8185						
X2	1	1.5555	5.0042	0.0966	0.7559						
хз	1	-2.2473	0.8807	6.5113	0.0107						
X4	1	2.1189	1.7756	1.4240	0.2328						
X5	1	-5.1496	10.4269	0.2439	0.6214						
Х6	1	-5.1357	3.0119	2.9074	0.0882						
Х7	1	3.3662	1.0879	9.5750	0.0020						

	Odds Ratio Estimates										
Effect	Point Estimate	95% Wald Confidence Limits									
X1	3.192	<0.001	>999.999								
X2	4.738	<0.001	>999.999								
хз	0.106	0.019	0.594								
X4	8.322	0.256	270.178								
Х5	0.006	<0.001	>999.999								
Х6	0.006	<0.001	2.155								
Х7	28.968	3.435	244.285								

Association of Predicted Probabilities and Observed Responses									
Percent Concordant 98.9 Somers' D 0.979									
Percent Discordant	1.0	Gamma	0.979						
Percent Tied	0.0	Tau-a	0.475						
Pairs	2400	С	0.989						

Obs	ID	Split60	X1	X2	ХЗ	Х4	X5	Х6	Х7	X8	Х9	X10	X11	X12	X13	X14
1	1	1	4.1	0.6	6.9	4.7	2.4	2.3	5.2	0	32	4.2	1	0	1	1
2	2	1	1.8	3.0	6.3	6.6	2.5	4.0	8.4	1	43	4.3	0	1	0	1
3	5	1	6.0	0.9	9.6	7.8	3.4	4.6	4.5	0	58	6.8	1	0	1	3
4	6	1	1.9	3.3	7.9	4.8	2.6	1.9	9.7	1	45	4.4	0	1	1	2
5	7	1	4.6	2.4	9.5	6.6	3.5	4.5	7.6	0	46	5.8	1	0	1	1
6	8	1	1.3	4.2	6.2	5.1	2.8	2.2	6.9	1	44	4.3	0	1	0	2
7	11	1	2.4	1.6	8.8	4.8	2.0	2.8	5.8	0	32	4.3	1	0	0	1
8	12	1	3.9	2.2	9.1	4.6	3.0	2.5	8.3	0	47	5.0	1	0	1	2
9	13	1	2.8	1.4	8.1	3.8	2.1	1.4	6.6	1	39	4.4	0	1	0	1
10	14	1	3.7	1.5	8.6	5.7	2.7	3.7	6.7	0	38	5.0	1	0	1	1
11	15	1	4.7	1.3	9.9	6.7	3.0	2.6	6.8	0	54	5.9	1	0	0	3
12	17	1	3.2	4.1	5.7	5.1	3.6	2.9	6.2	0	38	4.4	1	1	1	2
13	20	1	4.7	1.3	9.9	6.7	3.0	2.6	6.8	0	55	6.0	1	0	0	3
14	23	1	3.0	4.0	9.1	7.1	3.5	3.4	8.4	0	55	5.2	1	1	0	3
15	24	1	2.4	1.5	6.7	4.8	1.9	2.5	7.2	1	36	3.7	0	1	0	1
16	25	1	5.1	1.4	8.7	4.8	3.3	2.6	3.8	0	49	4.9	1	0	0	2
17	26	1	4.6	2.1	7.9	5.8	3.4	2.8	4.7	0	49	5.9	1	0	1	3
18	28	1	5.2	1.3	9.7	6.1	3.2	3.9	6.7	0	54	5.8	1	0	1	3
19	29	1	3.5	2.8	9.9	3.5	3.1	1.7	5.4	0	49	5.4	1	0	1	3
20	31	1	3.0	3.2	6.0	5.3	3.1	3.0	8.0	1	43	3.3	0	1	0	1
21	32	1	2.8	3.8	8.9	6.9	3.3	3.2	8.2	0	53	5.0	1	1	0	3
22	33	1	5.2	2.0	9.3	5.9	3.7	2.4	4.6	0	60	6.1	1	0	0	3
23	36	1	1.8	3.3	7.5	4.5	2.5	2.4	7.6	1	39	3.6	0	1	1	1
24	39	1	0.0	2.1	6.9	5.4	1.1	2.6	8.9	1	29	3.9	0	1	1	1
25	42	1	5.9	0.9	9.6	7.8	3.4	4.6	4.5	0	58	6.7	1	0	1	3
26	43	1	4.9	2.3	9.3	4.5	3.6	1.3	6.2	0	53	5.9	1	0	0	3
27	45	1	2.0	2.6	6.5	3.7	2.4	1.7	8.5	1	38	3.2	0	1	1	1
28	47	1	3.1	1.9	10.0	4.5	2.6	3.2	3.8	0	55	4.9	1	0	1	3
29	48	1	3.4	3.9	5.6	5.6	3.6	2.3	9.1	1	43	4.7	0	1	1	2
30	49	1	5.8	0.2	8.8	4.5	3.0	2.4	6.7	0	57	4.9	1	0	1	3
31	50	1	5.4	2.1	8.0	3.0	3.8	1.4	5.2	0	53	3.8	1	0	1	3
32	51	1	3.7	0.7	8.2	6.0	2.1	2.5	5.2	0	41	5.0	1	0	0	2
33	52	1	2.6	4.8	8.2	5.0	3.6	2.5	9.0	1	53	5.2	0	1	1	2
34	53	1	4.5	4.1	6.3	5.9	4.3	3.4	8.8	1	50	5.5	0	1	0	2
35	54	1	2.8	2.4	6.7	4.9	2.5	2.6	9.2	1	32	3.7	0	1	1	1
36	58	1	5.4	2.5	9.6	5.5	4.0	3.0	7.7	0	65	6.0	1	0	0	3
37	59	1	4.3	1.8	7.6	5.4	3.1	2.5	4.4	0	46	5.6	1	0	1	3
38	61	1	3.1	1.9	9.9	4.5	2.6	3.1	3.8	0	54	4.8	1	0	1	3

Obs	ID	Split60	X1	X2	хз	X4	Х5	Х6	Х7	X8	Х9	X10	X11	X12	X13	X14
39	65	1	1.1	2.0	7.2	4.7	1.6	3.2	10.0	1	40	3.4	0	1	1	1
40	67	1	4.2	2.5	9.2	6.2	3.3	3.9	7.3	0	59	6.0	1	0	0	3
41	68	1	1.6	4.5	6.4	5.3	3.0	2.5	7.1	1	46	4.5	0	1	0	2
42	70	1	2.3	3.7	8.3	5.2	3.0	2.3	9.1	1	49	4.8	0	1	1	2
43	71	1	3.6	5.4	5.9	6.2	4.5	2.9	8.4	1	50	5.4	0	1	1	2
44	72	1	5.6	2.2	8.2	3.1	4.0	1.6	5.3	0	55	3.9	1	0	1	3
45	73	1	3.6	2.2	9.9	4.8	2.9	1.9	4.9	0	51	4.9	1	0	0	3
46	79	1	1.0	1.9	7.1	4.5	1.5	3.1	9.9	1	39	3.3	0	1	1	1
47	80	1	4.5	1.6	8.7	4.6	3.1	2.1	6.8	0	56	5.1	1	0	0	3
48	81	1	5.5	1.8	8.7	3.8	3.6	2.1	4.9	0	59	4.5	1	0	0	3
49	82	1	3.4	4.6	5.5	8.2	4.0	4.4	6.3	0	47	5.6	1	1	1	2
50	84	1	2.3	3.7	7.6	5.0	3.0	2.5	7.4	0	37	4.4	1	1	0	1
51	86	1	2.5	3.1	7.0	4.2	2.8	2.2	9.0	1	43	3.7	0	1	1	1
52	88	1	2.1	3.5	7.4	4.8	2.8	2.3	7.2	0	36	4.3	1	1	0	1
53	89	1	2.9	1.2	7.3	6.1	2.0	2.5	8.0	1	34	4.0	0	1	1	1
54	90	1	4.3	2.5	9.3	6.3	3.4	4.0	7.4	0	60	6.1	1	0	0	3
55	92	1	4.8	1.7	7.6	4.2	3.3	1.4	5.8	0	39	5.5	1	0	0	2
56	93	1	3.1	4.2	5.1	7.8	3.6	4.0	5.9	0	43	5.2	1	1	1	2
57	95	1	4.0	0.5	6.7	4.5	2.2	2.1	5.0	0	31	4.0	1	0	1	1
58	96	1	0.6	1.6	6.4	5.0	0.7	2.1	8.4	1	25	3.4	0	1	1	1
59	97	1	6.1	0.5	9.2	4.8	3.3	2.8	7.1	0	60	5.2	1	0	1	3
60	99	1	3.1	2.2	6.7	6.8	2.6	2.9	8.4	1	42	4.3	0	1	0	1

Obs	ID	Split60	X1	Х2	хз	Х4	X5	Х6	Х7	X8	Х9	X10	X11	X12	X13	X14
1	3	0	3.4	5.2	5.7	6.0	4.3	2.7	8.2	1	48	5.2	0	1	1	2
2	4	0	2.7	1.0	7.1	5.9	1.8	2.3	7.8	1	32	3.9	0	1	1	1
3	9	0	5.5	1.6	9.4	4.7	3.5	3.0	7.6	0	63	5.4	1	0	1	3
4	10	0	4.0	3.5	6.5	6.0	3.7	3.2	8.7	1	54	5.4	0	1	0	2
5	16	0	3.4	2.0	9.7	4.7	2.7	1.7	4.8	0	49	4.7	1	0	0	3
6	18	0	4.9	1.8	7.7	4.3	3.4	1.5	5.9	0	40	5.6	1	0	0	2
7	19	0	5.3	1.4	9.7	6.1	3.3	3.9	6.8	0	54	5.9	1	0	1	3
8	21	0	3.3	0.9	8.6	4.0	2.1	1.8	6.3	0	41	4.5	1	0	0	2
9	22	0	3.4	0.4	8.3	2.5	1.2	1.7	5.2	0	35	3.3	1	0	0	1
10	27	0	2.4	1.5	6.6	4.8	1.9	2.5	7.2	1	36	3.7	0	1	0	1
11	30	0	4.1	3.7	5.9	5.5	3.9	3.0	8.4	1	46	5.1	0	1	0	2
12	34	0	3.4	3.7	6.4	5.7	3.5	3.4	8.4	1	47	3.8	0	1	0	1
13	35	0	2.4	1.0	7.7	3.4	1.7	1.1	6.2	1	35	4.1	0	1	0	1
14	37	0	3.6	4.0	5.8	5.8	3.7	2.5	9.3	1	44	4.8	0	1	1	2
15	38	0	4.0	0.9	9.1	5.4	2.4	2.6	7.3	0	46	5.1	1	0	1	3
16	40	0	2.4	2.0	6.4	4.5	2.1	2.2	8.8	1	28	3.3	0	1	1	1
17	41	0	1.9	3.4	7.6	4.6	2.6	2.5	7.7	1	40	3.7	0	1	1	1
18	44	0	5.0	1.3	8.6	4.7	3.1	2.5	3.7	0	48	4.8	1	0	0	2
19	46	0	5.0	2.5	9.4	4.6	3.7	1.4	6.3	0	54	6.0	1	0	0	3
20	55	0	3.8	0.8	8.7	2.9	1.6	2.1	5.6	0	39	3.7	1	0	0	1
21	56	0	2.9	2.6	7.7	7.0	2.8	3.6	7.7	0	47	4.2	1	1	1	2
22	57	0	4.9	4.4	7.4	6.9	4.6	4.0	9.6	1	62	6.2	0	1	0	2
23	60	0	2.3	4.5	8.0	4.7	3.3	2.2	8.7	1	50	5.0	0	1	1	2
24	62	0	5.1	1.9	9.2	5.8	3.6	2.3	4.5	0	60	6.1	1	0	0	3
25	63	0	4.1	1.1	9.3	5.5	2.5	2.7	7.4	0	47	5.3	1	0	1	3
26	64	0	3.0	3.8	5.5	4.9	3.4	2.6	6.0	0	36	4.2	1	1	1	2
27	66	0	3.7	1.4	9.0	4.5	2.6	2.3	6.8	0	45	4.9	1	0	0	2
28	69	0	5.3	1.7	8.5	3.7	3.5	1.9	4.8	0	58	4.3	1	0	0	3
29	74	0	5.2	1.3	9.1	4.5	3.3	2.7	7.3	0	60	5.1	1	0	1	3
30	75	0	3.0	2.0	6.6	6.6	2.4	2.7	8.2	1	41	4.1	0	1	0	1
31	76	0	4.2	2.4	9.4	4.9	3.2	2.7	8.5	0	49	5.2	1	0	1	2
32	77	0	3.8	0.8	8.3	6.1	2.2	2.6	5.3	0	42	5.1	1	0	0	2
33	78	0	3.3	2.6	9.7	3.3	2.9	1.5	5.2	0	47	5.1	1	0	1	3
34	83	0	1.6	2.8	6.1	6.4	2.3	3.8	8.2	1	41	4.1	0	1	0	1
35	85	0	2.6	3.0	8.5	6.0	2.8	2.8	6.8	1	53	5.6	0	1	0	2
36	87	0	2.4	2.9	8.4	5.9	2.7	2.7	6.7	1	51	5.5	0	1	0	2
37	91	0	3.0	2.8	7.8	7.1	3.0	3.8	7.9	0	49	4.4	1	1	1	2
38	94	0	1.9	2.7	5.0	4.9	2.2	2.5	8.2	1	36	3.6	0	1	0	1

Obs	ID	Split60	X1	X2	хз	Х4	Х5	X6	Х7	X8	Х9	X10	X11	X12	X13	X14
39	98	0	2.0	2.8	5.2	5.0	2.4	2.7	8.4	1	38	3.7	0	1	0	1
40	100	0	2.5	1.8	9.0	5.0	2.2	3.0	6.0	0	33	4.4	1	0	0	1

Model Information									
Data Set	WORK.HATCO60								
Response Variable	X11	X11 - Specification Buying							
Number of Response Levels	2								
Model	binary logit								
Optimization Technique	Fisher's scoring								

Number of Observations Read	60
Number of Observations Used	60

Response Profile								
Ordered Value	X11	Total Frequency						
1	0	22						
2	1	38						

Probability modeled is X11=0.

Stepwise Selection Procedure

Step 0. Intercept entered:

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

-2 Log L	=	78.859
----------	---	--------

Analysis of Maximum Likelihood Estimates											
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq						
Intercept	1	-0.5465	0.2679	4.1620	0.0413						

Residual Chi-Square Test										
Chi-Square	DF	Pr > ChiSq								
41.4133	7	<.0001								

Analy	sis of	Effects Eligibl	e for Entry
Effect	DF	Score Chi-Square	Pr > ChiSq
X1	1	27.4743	<.0001
X2	1	7.6323	0.0057
хз	1	21.2822	<.0001
X4	1	0.8389	0.3597
Х5	1	9.2535	0.0024
Х6	1	1.6299	0.2017
Х7	1	30.0455	<.0001

Step 1. Effect X7 entered:

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	80.859	41.524	
sc	82.953	45.713	
-2 Log L	78.859	37.524	

R-Square 0.4	4979 Max-rescaled	R-Square 0.6808	
--------------	-------------------	------------------------	--

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	41.3346	1	<.0001	
Score	30.0455	1	<.0001	
Wald	14.6788	1	0.0001	

Analysis of Maximum Likelihood Estimates					
Parameter	Parameter DF Estimate Standard Wald Chi-Square Pr > ChiSc				Pr > ChiSq
Intercept	1	-14.5818	3.7937	14.7738	0.0001
X7	1	1.8958	0.4948	14.6788	0.0001

Odds Ratio Estimates			
Effect	Point 95% Wald Confidence Limits		
Х7	6.658	2.524	17.561

Association of Predicted Probabilities and Observed Responses				
Percent Concordant 92.8 Somers' D 0.865				
Percent Discordant	6.3	Gamma	0.872	
Percent Tied	0.8	Tau-a	0.408	
Pairs	836	С	0.932	

Residual Chi-Square Test			
Chi-Square DF Pr > ChiSq			
19.5275	6	0.0034	

Analysis of Effects Eligible for Removal				
Effect	DF	Wald Chi-Square	Pr > ChiSq	
Х7	1	14.6788	0.0001	

Note: No effects for the model in Step 1 are removed.

Analysis of Effects Eligible for Entry			
Effect	DF	Score Chi-Square	Pr > ChiSq
X1	1	10.5073	0.0012
X2	1	0.2143	0.6434
хз	1	15.6104	<.0001
X4	1	4.9837	0.0256
Х5	1	6.6675	0.0098
Х6	1	6.4395	0.0112

Step 2. Effect X3 entered:

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	80.859	26.258	
sc	82.953	32.541	
-2 Log L	78.859	20.258	

R-Square	0.6234	Max-rescaled R-Square	0.8525
----------	--------	-----------------------	--------

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	58.6006	2	<.0001	
Score	37.2940	2	<.0001	
Wald	7.2119	2	0.0272	

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-8.3295	5.1098	2.6572	0.1031
хз	1	-1.8306	0.7171	6.5168	0.0107
X7	1	2.9126	1.1354	6.5809	0.0103

	Odds Ratio Estimates				
Effect	Point 95% Wald Estimate Confidence Limits				
хз	0.160	0.039	0.654		
X7	18.404	1.988	170.347		

Association of Predicted Probabilities and Observed Responses			
Percent Concordant	98.6	Somers' D	0.972
Percent Discordant	1.3	Gamma	0.974
Percent Tied	0.1	Tau-a	0.459
Pairs	836	с	0.986

Residual Chi-Square Test			
Chi-Square	DF	Pr > ChiSq	
11.4094	5	0.0438	

Analysis of Effects Eligible for Removal				
Effect	DF	Wald Chi-Square	Pr > ChiSq	
хз	1	6.5168	0.0107	
Х7	1	6.5809	0.0103	

Note: No effects for the model in Step 2 are removed.

Analysis of Effects Eligible for Entry				
Effect	DF	Score Chi-Square	Pr > ChiSq	
X1	1	3.7460	0.0529	
X2	1	3.6412	0.0564	
X4	1	5.5574	0.0184	
Х5	1	8.8247	0.0030	
Х6	1	8.7708	0.0031	

Step 3. Effect X5 entered:

Model Convergence Status		
Convergence criterion (GCONV=1E-8) satisfied.		

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	80.859	14.254		
sc	82.953	22.631		
-2 Log L	78.859	6.254		

R-Square	0.7018	Max-rescaled R-Square	0.9596	
•		•		Ĺ

Testing Global Null Hypothesis: BETA=0			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	72.6053	3	<.0001
Score	40.0604	3	<.0001
Wald	2.4552	3	0.4834

Analysis of Maximum Likelihood Estimates						
Parameter	neter DF Estimate Standard Wald Chi-Square Pr > ChiSo					
Intercept	1	19.1378	21.1881	0.8158	0.3664	
хз	1	-6.7209	4.8016	1.9592	0.1616	
Х5	1	-12.3108	9.3519	1.7329	0.1880	
Х7	1	9.1659	6.5921	1.9333	0.1644	

Odds Ratio Estimates					
Effect	Point 95% Wald Confidence Limits				
хз	0.001	<0.001	14.732		
Х5	<0.001	<0.001	411.021		
Х7	>999.999	0.023	>999.999		

Association of Predicted Probabilities and Observed Responses						
Percent Concordant 99.9 Somers' D 0.998						
Percent Discordant	0.1	Gamma	0.998			
Percent Tied	0.0	Tau-a	0.471			
Pairs 836 c 0.999						

Residual Chi-Square Test					
Chi-Square DF Pr > ChiSq					
4.3184	4	0.3646			

Analysis of Effects Eligible for Removal					
Effect DF Chi-Square Pr > ChiSc					
хз	1	1.9592	0.1616		
Х5	1	1.7329	0.1880		
Х7	1	1.9333	0.1644		

Step 4. Effect X5 is removed:

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	80.859	26.258		
sc	82.953	32.541		
-2 Log L	78.859	20.258		

R-Square	0.6234	Max-rescaled R-Square	0.8525
----------	--------	-----------------------	--------

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiSq						
Likelihood Ratio	58.6006	2	<.0001			
Score	37.2940	2	<.0001			
Wald	7.2119	2	0.0272			

Analysis of Maximum Likelihood Estimates						
Parameter DF Estimate Standard Chi-Square Pr > ChiSquare Pr > ChiS						
Intercept	1	-8.3295	5.1098	2.6572	0.1031	
хз	1	-1.8306	0.7171	6.5168	0.0107	
Х7	1	2.9126	1.1354	6.5809	0.0103	

Odds Ratio Estimates				
Point 95% Wald Confidence Limits				
хз	0.160	0.039	0.654	
X7	18.404	1.988	170.347	

Association of Predicted Probabilities and Observed Responses						
Percent Concordant 98.6 Somers' D 0.972						
Percent Discordant	1.3	Gamma	0.974			
Percent Tied	0.1	Tau-a	0.459			
Pairs	836	С	0.986			

Residual Chi-Square Test				
Chi-Square	DF	Pr > ChiSq		
11.4094	5	0.0438		

Analysis of Effects Eligible for Removal						
Effect	DF	Wald Chi-Square	Pr > ChiSq			
хз	1	6.5168	0.0107			
X7	1	6.5809	0.0103			

Note: No effects for the model in Step 4 are removed.

Note: Model building terminates because the last effect entered is removed by the Wald statistic criterion.

	Summary of Stepwise Selection								
	Effect								
Step	Entered	Removed	DF	Number In	Score Chi-Square	Wald Chi-Square	Pr > ChiSq	Variable Label	
1	Х7		1	1	30.0455		<.0001	X7 - Product Quality	
2	хз		1	2	15.6104		<.0001	X3 - Price Flexibility	
3	Х5		1	3	8.8247		0.0030	X5 - Service	
4		X5	1	2		1.7329	0.1880	X5 - Service	

Partition for the Hosmer and Lemeshow Test							
		X11	= 0	X11	= 1		
Group	Total	Observed	Expected	Observed	Expected		
1	6	0	0.00	6	6.00		
2	6	0	0.00	6	6.00		
3	6	0	0.00	6	6.00		
4	6	0	0.03	6	5.97		
5	6	1	0.11	5	5.89		
6	6	0	1.61	6	4.39		
7	6	3	2.96	3	3.04		
8	6	6	5.35	0	0.65		
9	6	6	5.95	0	0.05		
10	6	6	5.99	0	0.01		

Hosmer and Lemeshow Goodness-of-Fit Test					
Chi-Square	DF	Pr > ChiSq			
10.3450	8	0.2416			

Classification Table									
	Cor	rect	Inco	Incorrect		Percentages			
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	False POS	False NEG
0.000	22	0	38	0	36.7	100.0	0.0	63.3	
0.100	21	30	8	1	85.0	95.5	78.9	27.6	3.2
0.200	21	30	8	1	85.0	95.5	78.9	27.6	3.2
0.300	21	30	8	1	85.0	95.5	78.9	27.6	3.2
0.400	21	34	4	1	91.7	95.5	89.5	16.0	2.9
0.500	20	36	2	2	93.3	90.9	94.7	9.1	5.3
0.600	18	37	1	4	91.7	81.8	97.4	5.3	9.8
0.700	17	38	0	5	91.7	77.3	100.0	0.0	11.6
0.800	17	38	0	5	91.7	77.3	100.0	0.0	11.6
0.900	16	38	0	6	90.0	72.7	100.0	0.0	13.6
1.000	0	38	0	22	63.3	0.0	100.0		36.7

19

The SAS System

The LOGISTIC Procedure

Model Information					
Data Set					
Response Variable	X11	X11 - Specification Buying			
Number of Response Levels	2				
Model	binary logit				
Optimization Technique	Fisher's scoring				

Number of Observations Read	60
Number of Observations Used	60

Response Profile			
Ordered Value	X11	Total Frequency	
1	0	22	
2	1	38	

Probability modeled is X11=0.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	80.859	26.258		
sc	82.953	32.541		
-2 Log L	78.859	20.258		

R-Square 0.6234	Max-rescaled R-Square	0.8525	
------------------------	-----------------------	--------	--

Testing Global Null Hypothesis: BETA=0									
Test Chi-Square DF Pr > ChiS									
Likelihood Ratio	58.6006	2	<.0001						
Score	37.2940	2	<.0001						
Wald	7.2119	2	0.0272						

	Analysis of Maximum Likelihood Estimates											
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq							
Intercept	1	-8.3295	5.1098	2.6572	0.1031							
хз	1	-1.8306	0.7171	6.5168	0.0107							
X7	1	2.9126	1.1354	6.5809	0.0103							

	Odds Ratio Estimates								
Point 95% Wald Confidence Limits									
хз	0.160	0.039	0.654						
Х7	18.404	1.988	170.347						

Association of Predicted Probabilities and Observed Responses									
Percent Concordant 98.6 Somers' D 0.972									
Percent Discordant	1.3	Gamma	0.974						
Percent Tied	0.1	Tau-a	0.459						
Pairs	836	С	0.986						

	Partition for the Hosmer and Lemeshow Test												
		X11	= 0	X11	= 1								
Group	Total	Observed	Expected	Observed	Expected								
1	6	0	0.00	6	6.00								
2	6	0	0.00	6	6.00								
3	6	0	0.00	6	6.00								
4	6	0	0.03	6	5.97								
5	6	1	0.11	5	5.89								
6	6	0	1.61	6	4.39								
7	6	3	2.96	3	3.04								
8	6	6	5.35	0	0.65								
9	6	6	5.95	0	0.05								
10	6	6	5.99	0	0.01								

Hosmer and Lemeshow Goodness-of-Fit Test									
Chi-Square DF Pr > ChiSq									
10.3450 8 0.2416									

21

The SAS System

	Classification Table												
	Correct Incorrect			Correct Incorrect Percentages									
Prob Level	Event	Non- Event	Event	Non- Event	Correct	Sensi- tivity	Speci- ficity	False POS	False NEG				
0.400	21	34	4	1	91.7	95.5	89.5	16.0	2.9				
0.410	21	34	4	1	91.7	95.5	89.5	16.0	2.9				
0.420	21	35	3	1	93.3	95.5	92.1	12.5	2.8				
0.430	21	35	3	1	93.3	95.5	92.1	12.5	2.8				
0.440	21	35	3	1	93.3	95.5	92.1	12.5	2.8				
0.450	21	35	3	1	93.3	95.5	92.1	12.5	2.8				
0.460	21	35	3	1	93.3	95.5	92.1	12.5	2.8				
0.470	21	35	3	1	93.3	95.5	92.1	12.5	2.8				
0.480	20	35	3	2	91.7	90.9	92.1	13.0	5.4				
0.490	20	36	2	2	93.3	90.9	94.7	9.1	5.3				
0.500	20	36	2	2	93.3	90.9	94.7	9.1	5.3				
0.510	20	36	2	2	93.3	90.9	94.7	9.1	5.3				
0.520	20	36	2	2	93.3	90.9	94.7	9.1	5.3				
0.530	20	36	2	2	93.3	90.9	94.7	9.1	5.3				
0.540	20	36	2	2	93.3	90.9	94.7	9.1	5.3				
0.550	19	37	1	3	93.3	86.4	97.4	5.0	7.5				
0.560	18	37	1	4	91.7	81.8	97.4	5.3	9.8				
0.570	18	37	1	4	91.7	81.8	97.4	5.3	9.8				
0.580	18	37	1	4	91.7	81.8	97.4	5.3	9.8				
0.590	18	37	1	4	91.7	81.8	97.4	5.3	9.8				
0.600	18	37	1	4	91.7	81.8	97.4	5.3	9.8				

Obs	Х3	Х7	X11	F_X11	I_X11	P_0	P_1
1	6.9	5.2	1	1	1	0.00297	0.99703
2	6.3	8.4	0	0	0	0.99008	0.00992
3	9.6	4.5	1	1	1	0.00000	1.00000
4	7.9	9.7	0	0	0	0.99577	0.00423
5	9.5	7.6	1	1	1	0.02700	0.97300
6	6.2	6.9	0	0	0	0.60293	0.39707
7	8.8	5.8	1	1	1	0.00053	0.99947
8	9.1	8.3	1	1	1	0.30717	0.69283
9	8.1	6.6	0	0	1	0.01919	0.98081
10	8.6	6.7	1	1	1	0.01037	0.98963
11	9.9	6.8	1	1	1	0.00130	0.99870
12	5.7	6.2	1	1	1	0.33052	0.66948
13	9.9	6.8	1	1	1	0.00130	0.99870
14	9.1	8.4	1	1	1	0.37236	0.62764
15	6.7	7.2	0	0	0	0.59295	0.40705
16	8.7	3.8	1	1	1	0.00000	1.00000
17	7.9	4.7	1	1	1	0.00011	0.99989
18	9.7	6.7	1	1	1	0.00140	0.99860
19	9.9	5.4	1	1	1	0.00002	0.99998
20	6.0	8.0	0	0	0	0.98179	0.01821
21	8.9	8.2	1	1	1	0.32333	0.67667
22	9.3	4.6	1	1	1	0.00001	0.99999
23	7.5	7.6	0	0	0	0.51918	0.48082
24	6.9	8.9	0	0	0	0.99305	0.00695
25	9.6	4.5	1	1	1	0.00000	1.00000
26	9.3	6.2	1	1	1	0.00068	0.99932
27	6.5	8.5	0	0	0	0.98932	0.01068
28	10.0	3.8	1	1	1	0.00000	1.00000
29	5.6	9.1	0	0	0	0.99964	0.00036
30	8.8	6.7	1	1	1	0.00722	0.99278
31	8.0	5.2	1	1	1	0.00040	0.99960
32	8.2	5.2	1	1	1	0.00028	0.99972
33	8.2	9.0	0	0	0	0.94649	0.05351
34	6.3	8.8	0	0	0	0.99689	0.00311
35	6.7	9.2	0	0	0	0.99798	0.00202
36	9.6	7.7	1	1	1	0.03000	0.97000
37	7.6	4.4	1	1	1	0.00008	0.99992
38	9.9	3.8	1	1	1	0.00000	1.00000

Obs	хз	Х7	X11	F_X11	I_X11	P_0	P_1
39	7.2	10.0	0	0	0	0.99951	0.00049
40	9.2	7.3	1	1	1	0.01967	0.98033
41	6.4	7.1	0	0	0	0.65342	0.34658
42	8.3	9.1	0	0	0	0.95171	0.04829
43	5.9	8.4	0	0	0	0.99521	0.00479
44	8.2	5.3	1	1	1	0.00037	0.99963
45	9.9	4.9	1	1	1	0.00001	0.99999
46	7.1	9.9	0	0	0	0.99945	0.00055
47	8.7	6.8	1	1	1	0.01154	0.98846
48	8.7	4.9	1	1	1	0.00005	0.99995
49	5.5	6.3	1	1	1	0.48789	0.51211
50	7.6	7.4	1	1	1	0.33429	0.66571
51	7.0	9.0	0	0	0	0.99375	0.00625
52	7.4	7.2	1	1	1	0.28798	0.71202
53	7.3	8.0	0	0	0	0.83312	0.16688
54	9.3	7.4	1	1	1	0.02186	0.97814
55	7.6	5.8	1	1	1	0.00473	0.99527
56	5.1	5.9	1	1	1	0.38196	0.61804
57	6.7	5.0	1	1	1	0.00240	0.99760
58	6.4	8.4	0	0	0	0.98811	0.01189
59	9.2	7.1	1	1	1	0.01108	0.98892
60	6.7	8.4	0	0	0	0.97959	0.02041

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of F_X11 by I_X11								
F V11/Frame	I_X	11(Into: X	(11)					
F_X11(From: X11)	0	1	Total					
0	21 35.00 95.45 100.00	1 1.67 4.55 2.56	22 36.67					
1	0 0.00 0.00 0.00	38 63.33 100.00 97.44	38 63.33					
Total	21 35.00	39 65.00	60 100.00					

Obs	Х3	Х7	X11	F_X11	I_X11	P_0	P_1
1	5.7	8.2	0	0	0	0.99406	0.00594
2	7.1	7.8	0	0	0	0.80083	0.19917
3	9.4	7.6	1	1	1	0.03225	0.96775
4	6.5	8.7	0	0	0	0.99401	0.00599
5	9.7	4.8	1	1	1	0.00001	0.99999
6	7.7	5.9	1	1	1	0.00527	0.99473
7	9.7	6.8	1	1	1	0.00187	0.99813
8	8.6	6.3	1	1	1	0.00326	0.99674
9	8.3	5.2	1	1	1	0.00023	0.99977
10	6.6	7.2	0	0	0	0.63628	0.36372
11	5.9	8.4	0	0	0	0.99521	0.00479
12	6.4	8.4	0	0	0	0.98811	0.01189
13	7.7	6.2	0	0	1	0.01253	0.98747
14	5.8	9.3	0	0	0	0.99971	0.00029
15	9.1	7.3	1	1	1	0.02352	0.97648
16	6.4	8.8	0	0	0	0.99626	0.00374
17	7.6	7.7	0	0	0	0.54611	0.45389
18	8.6	3.7	1	1	1	0.00000	1.00000
19	9.4	6.3	1	1	1	0.00076	0.99924
20	8.7	5.6	1	1	1	0.00035	0.99965
21	7.7	7.7	1	1	0	0.50047	0.49953
22	7.4	9.6	0	0	0	0.99773	0.00227
23	8.0	8.7	0	0	0	0.91414	0.08586
24	9.2	4.5	1	1	1	0.00001	0.99999
25	9.3	7.4	1	1	1	0.02186	0.97814
26	5.5	6.0	1	1	1	0.28451	0.71549
27	9.0	6.8	1	1	1	0.00670	0.99330
28	8.5	4.8	1	1	1	0.00005	0.99995
29	9.1	7.3	1	1	1	0.02352	0.97648
30	6.6	8.2	0	0	0	0.96987	0.03013
31	9.4	8.5	1	1	1	0.31431	0.68569
32	8.3	5.3	1	1	1	0.00031	0.99969
33	9.7	5.2	1	1	1	0.00002	0.99998
34	6.1	8.2	0	0	0	0.98772	0.01228
35	8.5	6.8	0	0	1	0.01656	0.98344
36	8.4	6.7	0	0	1	0.01489	0.98511
37	7.8	7.9	1	1	0	0.59901	0.40099
38	5.0	8.2	0	0	0	0.99834	0.00166

Obs	хз	Х7	X11	F_X11	I_X11	P_0	P_1
39	5.2	8.4	0	0	0	0.99866	0.00134
40	9.0	6.0	1	1	1	0.00066	0.99934

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of F_X11 by I_X11				
F V11/Frame	I_X	I_X11(Into:		
F_X11(From: X11)	0	1	Total	
0	15 37.50 83.33 88.24	3 7.50 16.67 13.04	18 45.00	
1	2 5.00 9.09 11.76	20 50.00 90.91 86.96	22 55.00	
Total	17 42.50	23 57.50	40 100.00	