

دانشكده مهندسي كامپيوتر

حل تمرین هفت

مهلت ارسال: ساعت ۲۳ روز یکشنبه ۱۵ خرداد ۱۴۰۱

به موارد زیر توجه کنید:

- ۱- حتما نام و شماره دانشجویی خود را روی پاسخنامه بنویسید.
- ۲- در حل سوالات به نوشتن جواب آخر اكتفا نكنيد. همه مراحل مياني را هم بنويسيد.
- ۳- کل پاسخ تمرینات را در قالب یک فایل pdf با شماره دانشجویی خود نام گذاری کرده در سامانه CW بار گذاری کنید.
 - ۴- در صورت مشاهده هر گونه مشابهت نامتعارف هر دو (یا چند) نفر کل نمره این تمرین را از دست خواهند داد.
 - Δ هر ساعت تاخیر در ارسال تمرین Δ درصد از نمره آن را کم خواهد کرد و حداکثر تاخیر مجاز Δ ساعت است.

سوالات:

۱- (۲ نمره) نمودار حالت مدار شکل زیر را رسم کنید. سپس با استفاده از SR-FF و حداقل گیتهای ممکن مداری بسازید که مثل همین مدار عمل کند.

پاسخ:

\mathbf{Q}_{t}	X	Y	Not(Q _t)	Q_{t+1}	R	S
0	0	0	1	0	X	0
0	0	1	1	1	0	1
0	1	0	1	0	X	0
0	1	1	1	0	X	0
1	0	0	0	0	1	0
1	0	1	0	1	0	X
1	1	0	0	0	1	0
1	1	1	0	1	0	X

$$Q^+ = D = \bar{Q}\bar{X}Y + Q\bar{X}Y + QXY = \bar{X}Y\bar{Q} + QY = \bar{X}Y + QY$$

 $R = \bar{Y}$
 $S = \bar{X}Y$

XOR است. در هر پالسِ ساعت خروجی گیت XOR است. در هر پالسِ ساعت خروجی گیت XOR است. در هر پالسِ ساعت خروجی گیت XOR به عنوان serial-in به عنوان serial-in به میشود. مقدار مشاهده شده در شیفترجیستر از یک الگوی تکراری پیروی می کند. الف- چنانچه مقدار اولیهٔ ثبات $A_3A_2A_1A_0$ باشد، دورهٔ تناوب اعداد مشاهده شده در آن را به دست آورید. ب- دورهٔ تناوب به ازای مقدار اولیهٔ OR باشد، کنید. آیا دو عدد به دست آمده یکسان هستند؟

حل: الف)

 $0101 \xrightarrow{in=1} 1010 \xrightarrow{in=0} 0101$

پس از ۲ کلاک به ۱۰۱۰ میرسیم بنابراین دوره تناوب دو است.

ب)

 $0001 \xrightarrow{in=1}^{in=1} 1000 \xrightarrow{in=1}^{in=1} 1100 \xrightarrow{in=1}^{in=1} 1110 \xrightarrow{in=0}^{in=0} 0111 \xrightarrow{in=0}^{in=0} 0001$ you can let ve for a point of the proof of the proof

 $^{\circ}$ "مره) با استفاده از سه فلیپفلاپ نوع $^{\circ}$ و حداقل گیتهای منطقی شمارنده ای بسازید که الگوی زیر را بشمارد: $^{\circ}$ $^{\circ}$

حل: می توانیم از یک شمارندهٔ بالاشمار سهبیتی استفاده کنیم و خروجیها را با یک مدار ترکیبی به خروجیهای موردنظر تبدیل کنیم. جدول درستی مدار ترکیبی موردنظر به شکل زیر است و بعد از ساده کردن خروجیهای w و x و y و z با جدول کارنو به روابط زیر می رسیم:

UpCounter Outputs	CombinationI Circuit Outputs
ABC	wxyz
000	0000
001	0001
010	0011
011	0110
100	1010
101	1111
110	0101
111	xxxx

w = AB' x = AB + AC + BC y = A'B + AB'z = B'C + BC' ۴- (۳ نمره) با استفاده از JK-FF شمارندهٔ سنکرونی بسازید که الگوی زیر را بشمارد. سپس مشخص کنید آیا شمارندهٔ شما خوداصلاحگر (self-correcting) هست یا خیر و اگر نیست، آن را طوری تغییر دهید که خوداصلاحگر شود.

 $1\rightarrow 3\rightarrow 2\rightarrow 6\rightarrow 7\rightarrow 5\rightarrow 1$

A	В	C	\mathbf{A}^{+}	\mathbf{B}^{+}	C +	J_2	\mathbf{K}_2	J_1	$\mathbf{K_1}$	J_0	\mathbf{K}_{0}
0	0	0	X	X	X	X	X	X	X	X	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	X	X	X	X	X	X	X	X	X
1	0	1	0	0	1	X	1	0	X	X	0
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	х	0	х	1	X	0

A١	BC			
	X	0	0	1
	X	X	X	X

$$J_2 = \bar{C}$$

$$J_1 = \bar{A}$$

Clk

$$J_0 = A$$

A١	BC			
	X	X	X	X
	X	1	0	0

$$K_2 = \bar{B}$$

$$K_1 = AC$$

$$K_0 = \bar{A}B$$

A	В	C	A+	B+	C+	J2	K2	J1	K1	J0	K0
0	0	0	1	1	0	1	1	1	0	0	0
1	0	0	0	0	1	1	1	0	0	1	0

با توجه به جدول بالا مشخص است که شمارنده خود اصلاح گر است. (وقتی در حالت ۲۰۰ قرار دارد حالت بعدی ۱۱۰ و زمانی که در حالت ۱۰۰ است حالت بعدی ۲۰۱ است.

و در نهایت گیت های V(C=Q0) و B=Q1 و A=Q2 و A=Q2 و در نهایت گیت های V(C=Q0) و V(C=Q0) و V(C=Q0)

۵- (۳ نمره) با استفاده از T-FF یک شمارندهٔ سنکرون مبنای ۵ بسازید که جهت شمارش آن توسط یک ورودی به نام up کنترل شود. حل:

up	Q^n	Q^{n+1}	T2	T1	T1
0	000	100	1	0	0
0	001	000	0	0	1
0	010	001	0	1	1
0	011	010	0	0	1
0	100	011	1	1	1
0	101	XXX	Х	Х	Х
0	110	XXX	Х	Х	Х
0	111	XXX	Х	Х	Х
1	000	001	0	0	1
1	001	010	0	1	1
1	010	011	0	0	1
1	011	100	1	1	1
1	100	000	1	0	0
1	101	XXX	Х	Х	Х
1	110	XXX	Х	Х	Х
1	111	XXX	Х	Х	Х

ورودی T-FF را با جدول کارنو ساده می کنیم و به پاسخهای زیر میرسیم:

$$T_{2} = Q_{2} + up'Q'_{1}Q'_{0} + upQ_{1}Q'_{0} \qquad T_{1} = upQ_{0} + up'Q_{1}Q'_{0} + upQ_{2} \qquad T_{0} = upQ'_{2} + Q_{0} + Q_{1} + up'Q_{2}$$

۶- (۳ نمره) با استفاده از سه T-FF شمارنده آسنکرونی بسازید که به شکل زیر بشمارد و سپس مشخص کنید اگر به هر علتی شمارنده به یکی از حالتهای استفاده نشده برود، چه دنبالهای از اعداد را خواهد شمرد.

$$1\rightarrow6\rightarrow7\rightarrow0\rightarrow1$$

حل:

State	Next State
001	110
110	111
111	000
000	001

میبینیم که بیت کمارزش در هر پالس تغییر وضعیت میدهد و بیتهای بعدی هر دو با لبهٔ پایینروندهٔ بیت کمارزش تغییر وضعیت میدهند. بنابراین برای ساخت این شمارنده میتوانیم ورودی clock بیت کمارزش را به clock مدار و ورودیهای clock دو بیت دیگر را به 'Q بیت کمارزش وصل کنیم.

دنبالههای شمارش برای حالاتی به جز این چهار حالت را به طریق مشابه بررسی می کنیم:

$$010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 010$$
$$(2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 2)$$

بنابراین اگر شمارنده به یکی از چهار حالت استفاده نشده برود، شمارش از یک الگوی دیگر پیروی می کند.

۷- (۱ نمره) شکل زیر را در نظر بگیرید که در آن خروجی هر فلیپفلاپ به ورودی ساعت فلیپفلاپ بعدی متصل است. چنانچه در مجموع n فلیپفلاپ داشته باشیم و ورودی In دارای بسامد f هرتز باشد، خروجی آخرین فلیپفلاپ چه بسامدی خواهد داشت؟

حل:

ابتدا یکی از TFF های این شکل را در نظر می گیریم. اگر خروجی آن به ازای یک ورودی متناوب را بررسی کنیم داريم:

از آنجایی که خروجی ما فقط در لبهٔ بالاروندهٔ ورودی تغییر میکند، شکل موج بالا پدید میآید. مشاهده میشود که بسامد نصف شده است. به ازای هر TFF همین اتفاق میافتد و بسامد نصف می شود. بنابراین n فلیپ فلاپ پشت هم بسامد را تقسیم بر 2ⁿ می کنند و بسامد خروجي آخرين فليپفلاپ برابر است با: ۸- (۳ نمره) با استفاده از فلیپفلاپهای نوع D یک مدار تشخیص توالی برای رشتهٔ ۱۰۱۰ (صفر-یک-صفر-یک) بسازید. این مدار باید رشته این مدار تشخیص دهد. برای مثال در صورت ورود رشتهٔ ۱۰۱۰۱ باید خروجی ۲۰۰۱۰۱ تولید شود.
 تولید شود.

پاسخ: اگر از ماشین مور برای حل سوال استفاده کنیم، نمودار حالت به این شکل خواهد بود:

جدول حالت از روی نمودار حالت به دست می آید:

State	Next State (x=0)	Next State (x=1)
000	001	000
001	001	010
010	011	000
011	001	100
100	011	000
101	XXX	XXX
110	XXX	XXX
111	XXX	XXX

با استفاده از جدول کارنو می توانیم روابط زیر را برای ورودی فلیپفلاپها به دست آوریم:

$$\begin{array}{l} D_2 = Q_1 Q_0 x \\ D_1 = Q_2 x' + Q_1 {Q'}_0 x' \\ D_3 = x' \end{array}$$

خروجی فقط در حالت S4 یک است. بنابراین خروجی مدار از رابطه زیر به دست میآید:

 $out = Q_2$