Early detection of hippocampal sharp wave-ripples

Tomas Fiers, Jasper Wouters, Davide Ciliberti, Fabian Kloosterman, Alexander Bertrand

ESAT-STADIUS @ KU Leuven; Neuro-Electronics Research Flanders; VIB; Brain and Cognition, Imec -- Leuven, Belgium.

Introduction

Closed-loop brain-computer interfaces require fast signal detectors.

Case in point: online detection of hippocampal sharp wave-ripples (SWR's)

- A powerful method to study these phenomena is to apply feedback stimulation specifically during SWR's, requirig real-time SWR detection.
- The state-of-the-art algorithm recognises SWR's quite late (see results). This compromises experimental power, particularly in SWR disruption experiments. We present a new algorithm that detects SWR's significantly faster.

Proposed SWR detector

Recurrent neural network (RNN) with gated recurrent units (GRU). (K Cho et al, 2014). Single layer, 25 hidden units in \mathbf{h}_t

Output envelope \hat{y}_t

 $\mathbf{h}_t = \mathbf{u}_t \odot \mathbf{h}_{t-1} + (1 - \mathbf{u}_t) \odot \widetilde{\mathbf{h}}_t$

New state vector is weighted mean of previous state and candidate state (\odot = elementwise *)

$$\widetilde{\mathbf{h}}_t = \tanh(\mathbf{r}_t \odot \mathbf{W}_{hh} \mathbf{h}_{t-1} + \mathbf{w}_{zh}^T z_t + \mathbf{b}_h)$$

$$\mathbf{u}_t = \sigma(\mathbf{W}_{ha} \mathbf{h}_{t-1} + \mathbf{w}_{za}^T z_t + \mathbf{b}_a)$$

 $\mathbf{r}_t = \sigma(\mathbf{W}_{hr}\mathbf{h}_{t-1} + \mathbf{w}_{zr}^T z_t + \mathbf{b}_r)$

So called "update and reset gates" are classic perceptrons. Candidate state additionally uses "gating", or a tunable gain.

$$\mathbf{g}$$

$$\hat{y}_t = \sigma(\mathbf{w}_{hy}^T \mathbf{h}_t + b_y)$$

Output is again a classic perceptron: linear projection of the hidden state, shifting, and squashing to (0, 1)

Training the detector

- 1. Use a 27 minutes-long voltage recording as training data z_t N = 1 rat, 1 electrode, 1 session. Rat was resting. Data collected by F Michon et al, 2016
- 2. Label reference SWR segments, using conventional offline algorithm:

- Zero-lag (non-causal) band pass filter for ripple band, 100-250 Hz. Then:
- Envelope via Hilbert transform, smoothed with Gaussian kernel
- High threshold for SWR detection, <u>lower threshold</u> for SWR extent
- Discard segments shorter than 25 ms, Join segments closer than 10 ms
- 3. Convert these segments to a binary training signal y_t $y_t = 1$ within reference SWR segments, $y_t = 0$ outside them
- 4. Define a loss function ℓ_t which compares the RNN output \hat{y}_t to the training signal y_t – Cross entropy (rewards similarity): $\ell(y_t, \hat{y}_t) = y_t \log(\hat{y}_t) + (1 - y_t) \log(1 - \hat{y}_t)$
- 5. Minimize $\langle \ell_t \rangle$ by tuning the parameters of the RNN (the weightings **W**_, **w**_ and \mathbf{b} in f and g), via stochastic gradient descent (SGD)
 - Cut training data into 300 ms long chunks.
 - Per chunk: estimate partial derivatives of loss w.r.t. each RNN parameter via "backpropagation through time". (Using the *PyTorch* library).
 - Update weights via AdaMax SGD (D Kingma et al, 2015)
 - Repeat for all chunks, and for multiple passes over the training data

6. Prevent overfitting to the training data by early stopping on a held-out validation set

7' of training data were used for validation, the other 20' for training proper

Quantifying performance

- Detect SWR segments with conventional offline method..
- ..in 7 minutes of test data (held out from any training)
- Result: 163 reference SWR segments
- **Detections** are threshold crossings of output envelopes (with a minimum distance of 34 ms between detections):

Proposed detector is faster

- For a threshold where both methods detect 91% of events...
- .. compare detection times with corresponding SWR segments:

- Median improvement in relative latency: 23 percentage points
- Median improvement in absolute latency: 9 ms

.. and more sensitive & precise

- Define an SWR as `detected` if detection event intersects SWR segment.
- Each theshold yields a different precision-sensitivity tradeoff:

Conclusion

- We presented a new algorithm to detect sharp wave-ripples.
- The algorithm is significantly faster than the state-of-the-art method, while being at least equally sensitive and precise.
- We thus enable more powerful closed-loop experiments based on SWR-detection.