BRAGG GRATING

Moisés de Araújo Oliveira

L = 1.5 mm $rmax_1 = 0.85$ $rmax_2 = 0.95$

Bandedge

$$\lambda_{\text{band edge}} = \lambda_{\text{max}} \pm \frac{v\overline{\delta n}_{\text{eff}}}{2n_{\text{eff}}} \lambda_D.$$

$$\frac{\Delta \lambda_{\rm band\,edge}}{\lambda} = \frac{v \overline{\delta n}_{\rm eff}}{n_{\rm eff}}$$

Band between the first zeros

FWHM

Interconnect

L = 1.5 mm

Effective index AC change = 0.000526898

Impulse response = True digital filter = False

Impulse response = True

Digital Filter = True

Increasing the bandwidth of the Impulse response to 60nm

Increasing the filter order

Device

mode #	effective index	wavelength (µm)	loss (dB/cm)	group index	TE polarization fraction (Ey)	waveguide TE/TM fraction (%)	effective area (µm^2)
1	2.257533+1.600058e-16i	1.56	5.5976e-11	4.606854-2.747917e-17i	97	68.02 / 81.9	0.197562

EME SIMULATION

Otimização

Period = 348.8 nm ΔW = 44.3 nm

FDTD SIMULATION

PERIOD = 348.8 nm

LITHOGRAPHY

Period = 348.8 nm

Period = 348.8 nm FDTD SIMULATION