1 March 2019

Name:

1

7-17 Exam: Applying Algebra to Geometric Situations

1. Write down the slope perpendicular to the given slope.

(a)
$$m = -\frac{4}{3}$$
 $m_{\perp} =$

(c)
$$m = 0.5$$
 $m_{\perp} =$

(b)
$$m = 3$$
 $m_{\perp} =$

(d)
$$m = -\frac{2}{3}$$
 $m_{\perp} =$

2. The line l has the equation $y = \frac{2}{3}x + 1$. To each line below, circle whether l is parallel, perpendicular, or neither.

(a) parallel perpendicular neither
$$y = -\frac{2}{3}x - 1$$

(b) parallel perpendicular neither
$$y = \frac{3}{2}x + 4$$

(c) parallel perpendicular neither
$$2x - 3y = -7$$

(d) parallel perpendicular neither
$$3x + 2y = 5$$

In the following problems, use the point-slope formula: $y - y_A = m(x - x_A)$

- 3. What is the equation of a line through the point A(3,-2) and parallel to the line y=3x-1?
- 4. What is an equation of the perpendicular bisector of \overline{QR} with Q(2,0) and R(6,2)?

1 March 2019

- 5. Simplify each expression. (Leave it in radical form if necessary, not a decimal.)
 - (a) $\sqrt{121}$

(c) $\sqrt{50}$

(b) $\sqrt{27}$

- (d) $\sqrt{\frac{1}{4}}$
- 6. Write down the center and radius of each circle.
 - (a) $(x+1)^2 + y^2 = 64$

(c) $(x-3)^2 + (y-9)^2 = 6^2$

- (b) $(x-4)^2 + (y+6)^2 = 8$
- (d) $(x+1)^2 + (y+7)^2 = 16$
- 7. In the quadratic function below, a constant value, p, "completes the square".

$$f(x) = x^2 + 10x + p - p$$

- (a) What value of p would complete the square?
- (b) Rewrite the function f in vertex form.

(c) Write down the value of the vertex of the graph of f as a coordinate pair.

8. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = \frac{3}{4}x + 2$$

$$3x + 3y = -15$$

Are the lines parallel, perpendicular, or neither? Justify your answer, stating the values of the lines' slopes.

9. Given J(-2,7) and K(1,4), find the length of \overline{JK} . Leave the result in simplified radical form (not a decimal).

10. On the graph below, draw \overline{AB} , with A(-2,1) and B(4,4), labeling the end points.

- (a) Determine and state the coordinates of the midpoint M of \overline{AB} . Mark M and label it on the graph.
- (b) Find the slope of \overline{AB} .
- (c) Find the length of \overline{AB} . Leave the result as a simplified radical.

Unit 7 Exam: Analytic Geometry

 $1~{\rm March}~2019$

Name:

11. In the diagram below, \overline{AC} has endpoints with coordinates A(-3, -3) and C(7, 2).

If B is a point on \overline{AC} and AB:BC=2:3, what are the coordinates of B?

12. A(2,4) is one endpoint of \overline{AB} . The segment's midpoint is M(7,3). Find the other endpoint, B.

13. A translation maps $A(-1,12) \to A'(5,6)$. What is the image of B(10,-1) under the same translation?

rounded to the nearest hundredth.

14. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JL = 9.8, $m \angle J = 28^{\circ}$. Find the length KL,

In the following two problems, solve for the value of x.

15.
$$\frac{1}{3}(2x+11)=7$$

1 March 2019

16.
$$\frac{1}{4}(28 - 4x) = -9$$

17. Given $f(x) = \frac{3}{4}x + 5$. Solve for x such that for f(x) = 11.

- 18. Given $g(x) = -2x^2 9x + 4$. Simplify g(0).
- 19. Given $h(x) = x^2 + 8x + 7$. Solve h(x) = 0.

20. Given triangle ABC with D the midpoint of \overline{AB} and E the midpoint of \overline{AC} , as shown. Given AD = 9, BD = 2x - 5, DE = y + 7, and BC = 3y + 3.

Find x and y.

21. Given $\triangle ABP$ and $\triangle JKP$ as shown below. $\overline{AB} \parallel \overline{JK}$. AP = 4.8, JP = 9.6, and AB = 7.1. Find JK.

- 22. Given the circle C with circumference 10π .
 - (a) Write down the formula for the circumference of a circle and solve for the radius yielding a circumference of 10π .
 - (b) Find the area of the circle. Give an exact result in terms of π .

- 23. Given a circle O with radius 7.3.
 - (a) Find the circumference of O, rounded to the nearest hundredth.
 - (b) Find the area of O, rounded to the nearest hundredth.