Lecture 7

1 Common Distributions

1.1 Uniform Distribution – U(S)

The Uniform distribution, parametrized with a *finite* set S, is a distribution μ over S, which is defined as $\mu(s) = \frac{1}{|S|}$ for every $s \in S$. Clearly this is a distribution as the support of μ is the finite set S, for every $s \in S$ we have $\mu(s) = \frac{1}{|S|} \in [0,1]$ and $\sum_{s \in S} \mu(s) = \sum_{s \in S} \frac{1}{|S|} = \frac{|S|}{|S|} = 1$. When $S = \{a, \ldots, b\}$ is a set of consecutive integers, we will sometimes write $X \sim U(a, b)$ instead of $X \sim U(a, a + 1, \ldots, b)$.

Example 1: Let X be the outcome of one roll of a fair die. As we previously saw $X \sim U(1,6)$.

1.2 Bernoulli Distribution – Ber (p)

The Bernoulli distribution, parametrized with a real number $0 \le p \le 1$, is a distribution μ over $\{0,1\}$, which is defined as $\mu(1) = p$ and $\mu(0) = 1 - p$. Clearly this is a distribution as the support of μ is the finite set $\{0,1\}$, for every $s \in \{0,1\}$ we have $0 \le \mu(s) \le 1$ and p + (1-p) = 1.

Example 2: Let A be an event with probability p. Then, as we previously saw, 1_A is random variable which satisfies $1_A \sim \text{Ber}(p)$. For example, toss a coin with probability p for heads. Let A be the event "the outcome of the coin toss is heads". Then $1_A \sim \text{Ber}(p)$.

1.3 Binomial Distribution – Bin (n, p)

The Binomial distribution, parametrized with a natural number n and a real number $0 \le p \le 1$, is a distribution μ over $\{0, 1, \dots, n\}$, which is defined as

$$\mu(k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

for every $k \in \{0, 1, ..., n\}$. This is a distribution as the support of μ is the finite set $\{0, 1, ..., n\}$, and since, moreover, $\mu(k) \geq 0$ for every k, it suffices to show that $\sum_k \mu(k) = 1$. Indeed

$$\sum_{k} \mu(k) = \sum_{k=0}^{n} {n \choose k} \cdot p^{k} \cdot (1-p)^{n-k} = (p+(1-p))^{n} = 1,$$

where the second equality holds by the binomial formula.

Example 3: Toss a coin with probability p for heads n times, all coin tosses being mutually independent. Let X be the total number of tosses whose outcome was heads. Then $X \sim \text{Bin}(n, p)$.

The following theorem relates the Binomial and Bernoulli distributions (and also justifies the example above). Before stating it, we need the following definition.

Definition 1.1 (Independence of Random Variables). For every $1 \le i \le n$, let $X_i : \Omega \to S_i$ be a random variable. X_1, \ldots, X_n are said to be independent (or mutually independent) if

$$\mathbb{P}\left(X_{1}=x_{1},\ldots,X_{n}=x_{n}\right)=\mathbb{P}\left(X_{1}=x_{1}\right)\cdot\ldots\cdot\mathbb{P}\left(X_{n}=x_{n}\right)$$

holds for every $(x_1, \ldots, x_n) \in S_1 \times \ldots \times S_n$.

Theorem 1.2. Let $n \in \mathbb{N}$ and let $0 \le p \le 1$ be a real number. Let $X_1, X_2, \dots, X_n \sim \text{Ber}(p)$ be independent random variables, and let $S_n = X_1 + X_2 + \dots + X_n$. Then $S_n \sim \text{Bin}(n, p)$.

Proof. Since every X_i takes values in $\{0, 1\}$, it follows that S_n takes values in $\{0, 1, \ldots, n\}$. For any $\mathcal{I} \subseteq \{1, \ldots, n\}$ define the event

$$A_{\mathcal{I}} = \left(\bigcap_{i \in \mathcal{I}} \{X_i = 1\}\right) \cap \left(\bigcap_{i \notin \mathcal{I}} \{X_i = 0\}\right).$$

Then for every $k \in \{0, 1, ..., n\}$ it holds that

$${S_n = k} = \bigcup_{\mathcal{I}: |\mathcal{I}| = k} A_{\mathcal{I}}.$$

Since these events are pairwise disjoint we get that

$$\mathbb{P}(S_n = k) = \mathbb{P}\left(\bigcup_{\mathcal{I}: |\mathcal{I}| = k} A_{\mathcal{I}}\right)$$

$$= \sum_{\mathcal{I}: |\mathcal{I}| = k} \mathbb{P}(A_{\mathcal{I}})$$

$$= \sum_{\mathcal{I}: |\mathcal{I}| = k} \prod_{i \in \mathcal{I}} \mathbb{P}(X_i = 1) \cdot \prod_{i \notin \mathcal{I}} \mathbb{P}(X_i = 0)$$

$$= \sum_{\mathcal{I}: |\mathcal{I}| = k} p^k \cdot (1 - p)^{n - k}$$

$$= \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k},$$

where the third equality holds since X_1, X_2, \ldots, X_n are independent and the fourth equality holds by the definition of the Bernoulli distribution.

1.4 Geometric Distribution – Geom (p)

The Geometric distribution, parametrized with a real number $0 , is a distribution <math>\mu$ over \mathbb{N} (without 0), which is defined as

$$\mu\left(k\right) = (1-p)^{k-1} \cdot p,$$

for every $k \in \mathbb{N}$. This is a distribution as the support of μ is the countably infinite set \mathbb{N} , and since, moreover, $\mu(k) \geq 0$ for every k, it suffices to show that $\sum_k \mu(k) = 1$. Indeed, by the formula for the sum of an infinite geometric series, we have

$$\sum_{k} \mu(k) = \sum_{k=1}^{\infty} (1-p)^{k-1} \cdot p = p \cdot \frac{1}{1 - (1-p)} = 1.$$

Example 4: Toss a coin with probability p for heads until the first time the outcome is heads, all coin tosses being mutually independent. Let X be the total number of tosses. Then $X \sim \text{Geom}(p)$. Indeed, if X = k, then in each of the first k - 1 tosses the outcome was tails and in the kth toss it was heads. Since all coin tosses are mutually independent, this happens with probability $(1-p)^{k-1} \cdot p$.

1.5 Hypergeometric Distribution – Hyp (N, D, n)

The Hypergeometric distribution, parametrized with 3 natural numbers N, D, and n, is a distribution μ over $\{\max\{0, n+D-N\}, \ldots, \min\{n, D\}\}$, which is defined as

$$\mu\left(k\right) = \frac{\binom{D}{k} \cdot \binom{N-D}{n-k}}{\binom{N}{n}}$$

for every $k \in \{0, 1, ..., n\}$. The proof that μ is a distribution is left as an exercise.

Example 5: Consider an urn that contains N balls of which D are red and N-D are blue. We draw n balls uniformly at random from the urn without replacement. Let X be the number of red balls that were drawn from the urn. Then $X \sim \text{Hyp}(N, D, n)$. Indeed, since the balls are drawn uniformly without replacement, it follows that

$$\mathbb{P}(X = k) = \frac{|\{X = k\}|}{\binom{N}{n}}$$

for every $0 \le k \le n$. Moreover, every choice of k red balls and n-k blue balls is counted exactly once in $\{X=k\}$. Hence $|\{X=k\}| = \binom{D}{k} \cdot \binom{N-D}{n-k}$. We conclude that

$$\mathbb{P}(X = k) = \frac{\binom{D}{k} \cdot \binom{N-D}{n-k}}{\binom{N}{n}}$$

as claimed

Remark 1.3. If the balls are drawn with replacement (and still independently and uniformly at random), then $X \sim \text{Bin}(n, D/N)$. Whenever n is "much smaller" than N and D, the binomial distribution Bin(n, D/N) is a good approximation of the hypergeometric distribution Hyp(N, D, n).