

Problem R-87E . (C ₁₆ H ₁₆ O). The compound contains two phenyl groups (C ₆ H ₅)
(a) DBE
(b) Analyze the IR spectrum.
(c) Analyze each region of the proton NMR spectrum, draw part structures. Draw a possible structure for the compound and label protons with chemical shifts and coupling constants. Use the format: δ 1.23, dq, J = 9, 7 Hz.
1-2 δ
3 δ
4-5 δ
6-7 δ
7-8 δ
(d) Interpret key signals in the 13 C NMR spectra. The top spectrum is coupled, the bottom is noise proton decoupled. Do not attempt to make a detailed assignment to the signals between δ 125 and δ 135. The expansion provided is for your information only
(e) Draw the structure of the compound.

- 2 (a) DBE 9 2 phenyls (8 DBE), one double bond (1 DBE)
 - (b) Analyze the IR spectrum.

3400 cm⁻¹: OH H-bonded

3600 cm⁻¹: free OH

10

1600-1800 cm⁻¹ - no strong peaks, so no C=O

- (c) Analyze each region of the proton NMR spectrum, draw part structures. Draw a possible structure for the compound and label protons with chemical shifts and coupling constants. Use the format: δ 1.23, dq, J = 9, 7 Hz.
 - 1-2 δ δ 1.8, 1H, broad singlet, probably an OH

3
$$\delta$$
 AB of ABX(Y) pattern, 2H, $\delta_{\rm A}$ = 3.03, $\delta_{\rm B}$ = 2.94 \bullet H_A, H_B H_Y $J_{\rm AX}$ = 5.6 Hz $J_{\rm BX}$ = 8.5 HZ

4-5 δ X part of ABX, with additional coupling, sort of a ddd

- 7-8 δ 10H aromatic region probably two phenyl groups
- 5 (d) Interpret key signals in the 13 C NMR spectra. The top spectrum is coupled, the bottom is noise proton decoupled. Do not attempt to make a detailed assignment to the signals between δ 125 and δ 135. The expansion provided is for your information only

Since there are 12 carbon signals. and the molecule has 16C, there must be 4 doubled carbons. These are the ortho and meta carbons of the two phenyls, nicely seen in the expansion. The 10 sp² signals must be 8 aromatic C, and 2 double bond C.

8 (e) Draw the structure of the compound. Other structures proposed: