Diskrete Mathematik

Patrick Bucher & Lukas Arnold

8. Mai 2017

Inhaltsverzeichnis

1	Diskrete Wahrscheinlichkeitsrechnung	
	1.1	Wahrscheindlichkeit nach Laplace
	1.2	Komplement der Wahrscheindlichkeit
	1.3	Additionsregel
	1.4	Bedingte Wahrscheinlichkeit
	1.5	Unabhängige Ereignisse
	1.6	Satz der totalen Wahrscheindlichkeit
	1.7	Satz von Bayes
	1.8	Binomialverteilung
	1.9	Hypergeometrische Verteilung
	1.10	Poissonverteilung
	1.11	W'keitsverteilung einer Zufallsvariablen .
	1.12	Erwartungswert einer Zufallsvariable
	1.13	Varianz einer Zufallsvariable
	1.14	Standardabweichung einer Zufallsvariable

1 Diskrete Wahrscheinlichkeitsrechnung

1.1 Wahrscheindlichkeit nach Laplace

$$p(A) = \frac{|A|}{|S|} = \frac{Anzahl\ guenstige}{Anzahl\ moegliche}$$

1.2 Komplement der Wahrscheindlichkeit

$$p(\overline{A}) = 1 - p(A)$$

1.3 Additionsregel

$$p(A_1 \cup A_2) = p(A_1) + p(A_2) - p(A_1 \cap A_2)$$

1.4 Bedingte Wahrscheinlichkeit

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

1.5 Unabhängige Ereignisse

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A)$$

1.6 Satz der totalen Wahrscheindlichkeit

$$p(A) = \sum_{i=1}^{k} p(A \cap B_i) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i)$$

$$p(A|C) = \frac{1}{p(C)} \sum_{i=1}^{k} p(A \cap (B_i \cap C))$$

$$p(A|C) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i|C)$$

Spezialfall für 2 Mengen:

$$p(A) = p(A|B) \cdot p(B) + p(A|\overline{B}) \cdot p(\overline{B})$$

1.7 Satz von Bayes

$$p(B_j|A) = \frac{P(A|B_j) \ p(B_j)}{p(A)} = \frac{p(A|B_j) \ p(B_j)}{\sum_{i=1}^k p(A|B_i) \cdot p(B_i)}$$

$$\begin{split} \textit{Spezialfall für 2 Mengen:} \\ p(B|A) &= \frac{P(A|B) \; p(B)}{p(A|B) \cdot p(B) + p(A|\neg B) \cdot p(\overline{B})} \end{split}$$

1.8 Binomialverteilung

$$B(k|n,p) = B_{n,p}(k) = C(k)p^{k}(1-p)^{n-k}$$

$$B(k|n,p) = {n \choose k}p^{k}(1-p)^{n-k}$$

Bedingung:

$$p = M/N \text{ und } n \le M/10 \le (N-M)/10$$

1.9 Hypergeometrische Verteilung

$$p(k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

1.10 Poissonverteilung

$$f(k) = \frac{u^k}{k!}e^{-u}$$

Bedingung:

$$u=np \ \mathrm{und} \ p <=0.1, n>=100$$

1.11 W'keitsverteilung einer Zufallsvariablen

$$\{(r, p(X=r)) | \forall r \in X(S)\}$$

1.12 Erwartungswert einer Zufallsvariable

$$E(C) = \sum_{s \in S} X(s) \cdot p(s) = \sum_{r \in X(S)} r \cdot p(X = r)$$

1.13 Varianz einer Zufallsvariable

$$\begin{array}{l} V(X) = \sum_{s \in S} (X(s) - E(X))^2 \cdot p(s) \\ V(X) = \sum_{r \in X(S)} (r - E(X))^2 \cdot p(X = r) \end{array}$$

1.14 Standardabweichung einer Zufallsvariable

$$o(X) = \sqrt{V(X)}$$