∠[∧] Expand

⊘ Correct

which will probably make your model classify the sentence as a "1".

Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

	uppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors could be 10000 dimensional, so as to capture the full range of triation and meaning in those words.				
	False				
	○ True				
	∠ [™] Expand				
	Correct The dimension of word vectors is usually smaller than the size of the vocabulary. Most common section of the vocabulary.	izes for word vectors range between 50 and 1000.			
2.		1/1 point			
	○ False				
	True				
	©				
	Correct t-SNE is a non-linear dimensionality reduction technique.				
_					
3.	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text language task of recognizing if someone is happy from a short snippet of text, using a small training set		1/1 point		
	x (input text)	y (happy?)			
	Having a great time!	1			
	I'm sad it's raining.	0			
	I'm feeling awesome!	1			
Even if the word "wonderful" does not appear in your small training set, what label might be reasonably expected for the input text "I feel wonderful!"?					
	○ y=0				

 $Yes, word \, vectors \, empower \, your \, model \, with \, an \, incredible \, ability \, to \, generalize. \, The \, vector \, for \, "wonderful" \, would \, contain \, a \, negative/unhappy \, connotation \, and \, contain \, a \, negative \, for \, an extension \, contain \, and \, contain \, an extension \, contain \, contain \, an extension \, contain \,$

4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)	1/1 point
	$\checkmark~e_{man}-e_{king}pprox e_{woman}-e_{queen}$	
	✓ Correct The order of words is correct in this analogy.	
	$igsqcup e_{man} - e_{king} pprox e_{queen} - e_{woman}$	
	$\checkmark \ e_{man} - e_{woman} pprox e_{king} - e_{queen}$	
	✓ Correct The order of words is correct in this analogy.	
	$igcap e_{man} - e_{woman} pprox e_{queen} - e_{king}$	
	_∠ ^{>} Expand	
5.	Let A be an embedding matrix, and let o_{4567} be a one-hot vector corresponding to word 4567. Then to get the embedding of word 4567, why don't we call $A*o_{4567}$ in Python?	1/1 point
	\bigcirc The correct formula is A^T*o_{4567}	
	None of the answers are correct: calling the Python snippet as described above is fine.	
	This doesn't handle unknown words (<unk>).</unk>	
	It is computationally wasteful.	
	∠ ^A Expand	
	 ✓ Correct Yes, the element-wise multiplication will be extremely inefficient. 	
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1/1 point
	False	
	True	
	∠ [™] Expand	
	○ Correct	
7.	True/False: In the word2vec algorithm, you estimate $P(t/c)$, where t is the target word and c is a context word. t and c are chosen from the training set to be nearby words.	1/1 point

O False

(0	9	T	rı	ue

7	
	Evnand

Yes, t and c are chosen from the training set to be nearby words.

8. Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function:

1/1 point

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

True/False: After training, we should expect θ_t to be very close to e_c when t and c are the same word.

- False
- True

✓ Correct

To review this concept watch the Word2Vec lecture.

9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

1/1 point

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

True/False: X_{ij} is the number of times word j appears in the context of word i.

- False
- True

✓ Correct

 $\$ is the number of times word j appears in the context of word i.

10. You have trained word embeddings using a text dataset of t_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of t_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?

1/1 point

- igcup When t_1 is smaller than t_2
- \bigcirc When t_1 is equal to t_2
- igotimes When t_1 is larger than t_2

✓ Correct

Transfer embeddings to new tasks with smaller training sets.