Iris Flower Classifier App

The app allows garden owner examine Iris flower classes

@ Jason Zhang

- Dataset
- Methodology
- Results
- Next Steps

Input Iris Measurements Sepal Length 4.80 9.00 Sepal Width 4.00 9.00 Petal Length 4.00 Petal Width 2.00 9.00 8.00

Top N most similar

Iris Flower Classifier

The tool is designed for garden owner who'd like to examine the Iris flower classes.

The flower class: Iris Setosa , Iris Versicolour , Iris Virginica

The flower measurements:

- · Sepal Length , Sepal Width
- · Petal length , Petal width

Based on inputted measurements, it returns Top 10 similar data points for reference.

Top 10 similar records:

DATASET

Iris Dataset Assessment: good quality dataset with well-balanced labels

```
from urllib.request import urlretrieve
import pandas as pd
import numpy as np

iris = 'http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
urlretrieve(iris)

df = pd.read_csv(iris, sep=',', header = None, names=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Class'])
```

Data	columns (total	l 5 columns):		Sepal Length	Sepal Width	Petal Length	Petal Width	
#	Column	Non-Null Count	Dtype	count	150.000000	150.000000	150.000000	150.000000
				mean	5.843333	3.054000	3.758667	1.198667
0	Sepal Length	150 non-null	float64	std	0.828066	0.433594	1.764420	0.763161
1	Sepal Width	150 non-null	float64	min	4.300000	2.000000	1.000000	0.100000
2	Petal Length	150 non-null	float64	25%	5.100000	2.800000	1.600000	0.300000
3	Petal Width	150 non-null	float64	50%	5.800000	3.000000	4.350000	1.300000
4	Class	150 non-null	object	75%	6.400000	3.300000	5.100000	1.800000
dtypes: float64(4), object(1) max					7.900000	4.400000	6.900000	2.500000

- 1. The dataset shape is 150(rows) *5(columns). No null values in the dataset.
- 2. Class Type is well balanced. Each has 50 samples.
- 3. Different Measurement has different scales. Sepal length ranges from 4.3 to 7.9, while Petal Width ranges from 0.1 to 2.5.

DATASET

EDA: Relationship Between Sepal and Petal Measurements

- 1. Sepal width has negative correlation with petal length and width, while sepal length shows positive relationship with petal measures.
- 2. Iris-Setosa has much smaller petal length/width, which means petal length/width can be a good indicator of Iris-Setosa.
- 3. Iris-Versicolor tends to have smaller septal length/width and petal length/width compared to Iris-virginica.

METHODOLOGY

KNN with Normalized Euclidean Distance to classify the Iris flower class

RESULTS

Overall Accuracy: 97.8% Accuracy (70% Train / 30% Test, KNN n_neighors = 10)

Based on inputted measurements, it returns Top 10 similar data points for reference.

Top 10 similar records:

	Sepal Length	Sepal Width	Petal Length	Petal Width	Class
56	6.3000	3.3000	4.7000	1.6000	Iris-versicolor
91	6.1000	3	4.6000	1.4000	Iris-versicolor
51	6.4000	3.2000	4.5000	1.5000	Iris-versicolor
85	6	3.4000	4.5000	1.6000	Iris-versicolor
70	5.9000	3.2000	4.8000	1.8000	Iris-versicolor
63	6.1000	2.9000	4.7000	1.4000	Iris-versicolor
127	6.1000	3	4.9000	1.8000	Iris-virginica
78	6	2.9000	4.5000	1.5000	Iris-versicolor
138	6	3	4.8000	1.8000	Iris-virginica
149	5.9000	3	5.1000	1.8000	Iris-virginica

- 1. 1/150 incorrect prediction (versicolor being predicted as virginica).
- 2. User can input the iris measurements by sliding the bar. It returns top 10 most similar records based on normalized Euclidean distance.

NEXT STEPS

Suggestions to improve the classification accuracy

- 1. Normalize the dataset based on StandardScaler, instead of MinMaxScaler.
- Standard scaler removes the mean and scaling to unit variance.
- Min/Max scaler scales each feature to range (0,1)
- 2. Classify classes based on other values, such as 5 or 7, instead of using 10 nearest neighbors.
- 3. Collect more data samples to increase accuracy. Current dataset contains only 150 samples.
- 4. Explore other models, such as decision tree classifier / random forest / support vector classifier etc.

