

Beam wire scanner at CERN Simulation of behavior of carbon nanotube wires with protons at high energies

Abdelrahman Abouelenain

Supervisor: Jean-Emmanuel Groetz

The CERN accelerator complex Complexe des accélérateurs du CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear

Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive

EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator //

n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

Wire Scanner

- Wire Scanner (WS) is a device used to measure the transverse beam profile.

- Wire Scanner is of ones or tens of µm in diameter and tens of cm in length

- WS is getting heated up while scanning the beam and

undergoes cooling process.

- With certain parameters the current Carbon fiber WS

might sublimate and get damaged.

- Carbon nanotubes are considered to be

a replacement of the current WS

68a

p43

Scan speed	Momentum	Intensity	σ _{l/t}
[m.s ⁻¹]	[GeV.c ⁻¹]	[N _p]	[mm]
0.5	400	2.41 x 10 ¹³	0.57 / 0.73

Fig.1: Pristine 34 µm Carbon Fiber (CF) before irradiation

Fig.2: Aging Carbon Fiber (CF) after irradiation

Energy Deposition

WS is being heated by the energy deposited by the protons on the wire

The Energy deposited per proton is described by Bethe- Bloch formula

$$-\frac{1}{\rho} \left\langle \frac{dE}{dx} \right\rangle = \frac{KZ}{A} \frac{q_p^2}{\beta^2} \left(\frac{1}{2} \ln \left[\frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} \right] - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right)$$

	ho	d	< E _D >
	(g cm-3)	(μm)	(eV)
CNT	1.3	11.4	2063
	1.3	22.3	4151
Graphite	2	11.4	3154
		22.3	6365

Heating Model

Heating of the wire by hitting protons

Main Cooling processes:

- Conductive cooling
- Radiative cooling
- Thermionic emission

$$E_{\text{dep}} \frac{\Delta N_{\text{hits}}}{\Delta t} = \rho V c_p(T) \frac{\Delta T}{\Delta t}$$

$$- A_{rad} \epsilon \sigma (T^4 - T_{amb}^4) - k(T) A_d \frac{\Delta T}{\Delta y}$$

$$- A_{rad} (\phi + \frac{2k_B T}{q_e}) J_{th}(y) + C(y) \Delta R J_{th-tot}^2$$

$$- H_{sub} \frac{\Delta n}{\Delta t}$$

Brief about COMSOL

- Comsol is a software package solve physical problems using finite element method.
- FEM discrete the geometry into finite elements
- Each element has its own equations.
- All of the equations are assembled and being solved
- Advantages and disadvantages of FEM
- In this model, takes the reference frame of the wire

Comparisons between models

 Model implemented with COMSOL will be compared to results obtained by M. Sapinski in 2008.

Three scans will be performed with the shown parameters., but with 3 different

velocities.

 Mean goal of the comparison is to check the COMSOL model

Parameter	Value
Beam energy	450 GeV
Energy deposited by a proton E_{dep}	7640 eV
Wire's density ρ	$2~\mathrm{g~cm^{-3}}$
Wire diameter d	$30 \ \mu \mathrm{m}$
beam σ_x	$0.163~\mathrm{cm}$
beam σ_y	$0.065~\mathrm{cm}$
Wire velocity	$10 \mathrm{\ cm/s}$
Revolution time	$2.3 \times 10^{-5} \text{ s}$
No of protons in beam	2×10^{13}

Velocity 10 cm/s

- The duration of the scan is 0.1 sec with max temperature reached at 49ms at the beginning of the scan.
- The sublimation rate increases drastically above 3300 K.
- The differences between the two results.

0.1 t[s]

Result from M. Sapiniski

COMSOL model

Different velocities

- Figures show the influence of the wire velocity on the temperature
- Scan with velocity of 1 m/s shows different temperature behaviour from slower velocities.
- Difference in the behaviour with scan 1m/s between the two models.

CNT wires

- Assumption regarding the change some wire properties with changing the material of the wire CNT with iron impurities.
- Assumptions are made due to the lack of knowledge about the exact properties value.

$$c_p(T)_{CNT} = w_C \times c_p(T)_C + w_{Fe} \times c_p(T)_{Fe}$$

$$k(T)_{CNT} = w_C \times k(T)_C + w_{Fe} \times k(T)_{Fe}$$

$$\frac{1}{\rho_{CNT}} = \frac{w_C}{\rho_C} + \frac{w_{Fe}}{\rho_{Fe}}$$

 w_C and w_{Fe} are the weight fractions of carbon and iron

Behaviour of different CNT wires

- The change in the properties don't show much temperature difference
- Example of the effect of thermal conductivity's decreasing on temperature of portion near the wire center but not hit by the beam.
- Difference between maximum temperatures of wires with highest and lowest temperatures are about 100 K

Behaviour of different CNT wires

- The change in the properties don't show much temperature difference
- Example of the effect of thermal conductivity's decreasing on temperature of portion near the wire center but not hit by the beam.
- Difference between maximum temperatures of wires with highest and lowest temperatures are about 100 K

Conclusion

- WS are getting overheated during the scan and suffer from sublimation.
- Heating model is used to simulate the temperature evolution of WS taking into several cooling processes
- COMSOL model is compared with results obtained by M. Sapinski
- Three samples of CNT wires are investigated
- Model still needs improvements (E.g. 3D Model) and testings with various beam parameters
- There is interest in comparing the COMSOL model to PPYT code which is currently used (CERN & PSI beams)

Acknowledgements

- Jean-Emmanuel Groetz (Chrono-Environment)
- Alaa Nasser (FEMTO-ST)
- Alexandre Mariet (CERN)
- Mariusz Sapinski (PSI)
- Raymond Veness (CERN)

CNT wires

 With increase in iron percentage there is a decrease in the heat capacity and thermal conductivity and increase in the density.

Iron percentage	CNT density	\mathbf{E}_{dep}
1%	1.713 g.cm^{-3}	8466 eV
15%	1.927 g.cm^{-3}	9457 eV
30%	2.223 g.cm^{-3}	10812 eV

Moving beam

- The COMSOL model is taking the reference of the wire.
- In this case the beam appears to move

Nb of protons' surface density [Protons / m²]

