MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ARKUSZ II

Numer zadania	Etapy rozwiązania zadania	Liczba punktów
11	Wyznaczenie wartości parametru m, wiedząc że liczba -1 jest pierwiastkiem równania (1 punkt przyznajemy za metodę, 1 punkt za obliczenia): m = -2	2
	Wykorzystanie twierdzenia Bezout'a i wykonanie dzielenia przez dwumian (x+1) (1 punkt przyznajemy za metodę, 1punkt za obliczenia). Wynik dzielenia: $2x^2 + 5x + 2$	2
	Obliczenie pozostałych pierwiastków równania: $x_1 = -\frac{1}{2}$, $x_2 = -2$	1
	Wyznaczenie sinusa kąta przy wierzchołku C: $\sin \gamma = \frac{4}{5}$	1
12	Wyznaczenie cosinusa kąta przy wierzchołku C: $\cos \gamma = -\frac{3}{5}$	1
12	Obliczenie długości boku AB: $ AB = \sqrt{241} cm$ (1 pkt. za zastosowanie twierdzenia cosinusów, odpowiedź punktujemy także gdy podana jest w formie $ AB = \sqrt{241} lub AB \approx 15,5$)	2
	Podanie zbioru rozwiązań nierówności $ x-5\pi \le 5\pi$: $x \in \langle 0,10\pi \rangle$ (zdający może rozwiązać nierówność lub wykorzystać interpretację geometryczną wartości bezwzględnej)	1
	Podanie wartości liczbowej wyrażenia $ctg \frac{25}{2}\pi$: $ctg \frac{25}{2}\pi = 0$	1
	Rozwiązanie równania $\sin 3x = 0$: $x = k \cdot \frac{\pi}{3} \land k \in C$ (punkt przyznajemy także, gdy zdający nie poda, że $k \in C$)	1
13	Zauważenie, że kolejne rozwiązania równania trygonometrycznego, są wyrazami ciągu arytmetycznego, w którym $a_1=0 \wedge r=\frac{\pi}{3}$	1
	Ustalenie liczby rozwiązań należących do zbioru $\langle 0;10\pi \rangle$: n = 31	1
	Obliczenie sumy rozwiązań równania należących do zbioru $\langle 0,10\pi\rangle$: $S_{31}=155\pi$ (lub sumy 30 początkowych wyrazów ciągu, gdy zdający przyjmie, że $a_1=\frac{\pi}{3}$).	1

Próbny egzamin maturalny z matematyki Arkusz II

15	Zapisanie wyrażenia: $a_{n+1} = 3(n+1)^2 - 3(n+1) + 2$	1
	Wykorzystanie definicji monotoniczności ciągu:	
	$a_{n+1} - a_n = 3(n+1)^2 - 3(n+1) + 2 - (3n^2 - 3n + 2)$	1
	Przekształcenie różnicy $a_{n+1} - a_n$ do najprostszej postaci; $a_{n+1} - a_n = 6n$	1
	Uzasadnienie, że ciąg (a_n) jest rosnący.	1
	Zapisanie granicy: $\lim_{n\to\infty} \frac{\sqrt[3]{8n^6 + n}}{1 - a_n}$ w postaci $\lim_{n\to\infty} \frac{\sqrt[3]{8n^6 + n}}{-3n^2 + 3n - 1}$	1
	Zastosowanie właściwego algorytmu obliczania granicy ciągu: np. zapisanie ułamka $\frac{\sqrt[3]{8n^6+n}}{1-a_n}$ w postaci $\frac{\sqrt[3]{8+\frac{1}{n^5}}}{-3+\frac{3}{n}-\frac{1}{n^2}}$	1
	Obliczenie granicy: $\lim_{n\to\infty} \frac{\sqrt[3]{8n^6 + n}}{1 - a_n} = -\frac{2}{3}$ Wyznaczenie wartości parametru c ; c = 8, zapisanie wzoru funkcji	1 1
	$f(x) = x^3 - 6x^2 + 8$ Wyzma szamia na ak adrai fyzkaii 6. $f(x) = 2x^2 - 12x$	1
	Wyznaczenie pochodnej funkcji f : $f'(x) = 3x^2 - 12x$	1
	Obliczenie miejsc zerowych pochodnej: $x_1 = 0, x_2 = 4$ i stwierdzenie, że argument $x_2 = 4 \notin <-1;3>$	1
	Obliczenie wartości $f(-1)=1$, $f(3)=-19$	1
	Podanie wartości największej: $f(0) = 8$ i najmniejszej: $f(3) = -19$	1
	Badanie znaku pochodnej: $f'(x) > 0 \Leftrightarrow x \in (-\infty,0) \cup (4,\infty)$ $f'(x) < 0 \Leftrightarrow x \in (0,4)$ (wystarczy gdy zdający poda zbiór, w którym pochodna jest dodatnia albo ujemna).	1
	Podanie przedziałów monotoniczności funkcji : funkcja rośnie w przedziale $(-\infty,0)$ oraz w przedziale $(4,\infty)$ i funkcja maleje w przedziale $(0,4)$. (nie przyznajemy punktu w przypadku stwierdzenia, że funkcja rośnie w sumie przedziałów).	1
16	Analiza treści zadania i stwierdzenie konieczności wyznaczenia wartości funkcji dla argumentu $x = 2,4$ (lub wyznaczenia argumentu, dla którego funkcja przyjmuje wartość 4).	1
	Obliczenie wartości $f(2,4) = 3,84$ (lub stwierdzenie, że $4 = f\left(\frac{4\sqrt{3}}{3}\right) = f\left(\frac{-4\sqrt{3}}{3}\right)$)	1
	Porównanie odpowiednich wartości liczbowych i podanie wniosku, że ciężarówka nie zmieści się w tunelu.	1

Próbny egzamin maturalny z matematyki Arkusz II

17	Wyznaczenie współrzędnych środka i długości promienia okręgu o_1 : $S = (2, -3), r = 2$.	1
	Obliczenie długości promienia okręgu o_2 (np. jako AS): R = 5	1
	Zapisanie równania okręgu o_2 : $(x-2)^2 + (y+3)^2 = 25$	1
	Obliczenie pola pierścienia (1 punkt przyznajemy za metodę, a jeden za obliczenia): $P = 21\pi$	2
18	Analiza zadania lub sporządzenie rysunku z oznaczeniami	1
	Uzasadnienie podobieństwa odpowiednich trójkątów	1
	Zastosowanie proporcji wynikającej z podobieństwa trójkątów: np. $\frac{13}{x+6} = \frac{7}{x}$	1
	Obliczenie długości wysokości odpowiedniego trójkąta: $x = 7$.	1
	Obliczenie objętości stożka ściętego: $V = 618\pi \text{ cm}^3$	2
	(1 punkt przyznajemy za metodę i 1 punkt za obliczenia)	2
	Podanie odpowiedzi z uwzględnieniem zadanej dokładności: $V \approx 1941 cm^3$	1
19	Określenie liczby k sukcesów w schemacie 20 prób Bernoulliego oraz podanie prawdopodobieństw sukcesu i porażki w jednej próbie : $k = 0$ lub $k = 1$, $p = 0$,1 $q = 0$,9	1
	Zastosowanie wzoru na prawdopodobieństwo uzyskania k sukcesów w schemacie n prób Bernoulliego i obliczenie właściwego prawdopodobieństwa (1 punkt przyznajemy za metodę i 1 punkt za obliczenia): $P(B) = (0.19)^{19} \cdot 2.9 \approx 0.406$	2
	Wyznaczenie liczby wszystkich zdarzeń elementarnych: $\frac{=}{\Omega} = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$	1
	Obliczenie liczby zdarzeń sprzyjających wyborowi dwóch łańcuchów	
	krótkich i dwóch łańcuchów długich: $A = {4 \choose 2} {6 \choose 2}$	1
	Obliczenie prawdopodobieństwa: $P(A) = \frac{3}{7}$	1