Time Series Analysis Workshop

Overview of some methods for detecting step changes

Cóilín Minto, Deirdre Brophy, Olga Lyashevska

September 4th 2017

Motivation

Test processing

Markov switching

Heavy-tailed state space models

Outline

Motivation

Test processing

Markov switching

Heavy-tailed state space models

A time series

A time series

What if we tried a non-zero mean first-order autoregressive model AR(1)?

$$y_t = \bar{y} + \phi(y_{t-1} - \bar{y}) + \eta_t, \ \eta_t \sim N(0, \sigma_\eta^2)$$

	Estimate	SE
\bar{y}	5.47	0.41
ϕ	0.73	0.086
σ_{η}^2	0.81	

AR(1) fit

Fit diagnostics

One-step ahead forecast errors

Fit diagnostics

One-step ahead forecast errors

Fit diagnostics

One-step ahead forecast errors

Fit diagnostics Outlier(s)

Fit diagnostics Outlier(s)

Motivation

- More happening than a non-zero mean AR(1) process can capture
- Need to account for the large changes in the dynamics
- Goals
 - Detect points of change in components of time series
 - Without a priori knowledge of the location of such points
 - · Focus on time series models

Outline

Motivation

Test processing

Markov switching

Heavy-tailed state space models

Tests

Batch processing

Tests hypotheses of a change at a given point k by comparing the two sets $\{y_{1...k-1}\}$, $\{y_{k...n}\}$. Note full sequence is of a fixed length n.

Tests can be

- Parameteric (e.g., Student's t-test)
- Non-parameteric (e.g., Mann-Whitney)

Say for k = 10, testing the hypothesis of no difference in the means

Test statistics and threshold (maintains $\alpha = 0.05$ for given n)

Maximum single changepoint significant difference at k = 22

Batch processing

Performs poorly in detecting shifts at the start and end points of the series

Sequential processing

Sequential processing

Tests hypotheses of a change at a given point k by comparing the two sets $\{y_{1...k-1}\}$, $\{y_{k...t}\}$. Note t changes.

- Shows estimated changepoint and time of detection
- Easily incorporates multiple changepoints

Sequential processing

Multiple changepoints

Sequential processing

Sequential processing

- Parameteric tests perform poorly in the presence of autocorrelation
- Can be sensitive to assumption on average run length

Test processing

- Can be implemented in R package cpm (install for tomorrow)
- Parametric tests don't work well with autocorrelation (ubiquitous) unless pre-whitened
- Leaves room for development in time series direction

Outline

Motivation

Test processing

Markov switching

Heavy-tailed state space models

Markov switching

System has states; transition between these states governed by a Markov switching process.

$$P(S_t = i | S_{t-1} = j, S_{t-2} = j, \dots S_{t-1} = i) = P(S_t = i | S_{t-1} = j)$$

State is unobserved and must therefore be estimated, e.g., via EM algorithm

- Expected probability of state membership for each observation using a given set of parameters (via Bayes theorem)
- Maximise parameters conditional on expected state membership
- Can be implemented in the R package: MSwM

Markov switching fit

Markov switching fit

Markov switching fit

- Can be generalised to many within-state models (e.g., ARMA class)
- Can incorporate different covariate effects in each state
- Could be extended to semi-Markov models with expected durations
- Have been extended to vector autoregressive processes

Markov switching

- Well developed theoretical foundation
- Good candidate method for further work
- Performance should be simulation tested (goes for all methods)

Outline

Motivation

Test processing

Markov switching

Heavy-tailed state space models

Heavy-tailed state space model

Exploring models such as

Process equation: $x_t = \phi x_{t-1} + \eta_t$

Measurement equation: $y_t = x_t + \varepsilon_t$

where (currently)

$$egin{aligned} \eta_t &\sim p N(0, \sigma_{eta}^2) + (1-p) N(0, (1+\delta) \sigma_{eta}^2) \ \epsilon_t &\sim N(0, \sigma_{eta}^2) \end{aligned}$$

Model developed and estimated in TMB

Heavy-tailed state space model

Heavy-tailed state space model

Heavy-tailed state space model

- Moderately well developed theoretical framework
- Estimation code is somewhat involved (C++)
- Good candidate method for further work and comparison
- Needs to be simulation tested against known dynamics
- Think about pt

Additional methods (not covered)

- Machine learning techniques
 - Significance of change a challenge?
- Additive models
 - Low-order penalties could allow for sudden jumps not overly smoothed as happens with higher order smoothers
- Vector autoregressive processes (multivariate setting)

Acknowledgements

- EPA Strive: Ecosystem tipping points project funders
- Project steering committee

References

Hamilton, J.D. (1989). A new Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 57:2,357384.

Kitagawa, G. (1987) Non-Gaussian State-Space Modeling of Nonstationary Time Series. Journal of the American Statistical Association, 82(400), pp. 1032–1041.

Ross, G.J. (2015). Parametric and Nonparametric Sequential Change Detection in R: The cpm Package. Journal of Statistical Software, 66(3), 1-20.

Sanchez-Espigares, J.A and Lopez-Moreno, A. (2014). MSwM: Fitting Markov Switching Models. R package version 1.2. https://CRAN.R-project.org/package=MSwM