

Machine Learning

Dr. Dinesh Kumar Vishwakarma
Associate Professor,
Department of Information Technology,
Delhi Technological University, Delhi-110042
dinesh@dtu.ac.in

http://www.dtu.ac.in/Web/Departments/InformationTechnology/faculty/dkvishwakarma.php

Course Detail

- Faculty: Dinesh K Vishwakarma, Ph.D. in Computer Vision
 - Email: dinesh@dtu.ac.in
 - Webpage:
 http://www.dtu.ac.in/Web/Departments/InformationTec
 hnology/faculty/dkvishwakarma.php
- Course Code: IT-323
 - ❖ Credit: LTP: 3 1 0
- Semester: 5TH B.Tech. (IT)

Evaluation Criteria

• CWS (25%)

- ❖ Assignments (10%)
- Tutorials (10%)
- Attendance (5%)

• MTE (25%)

❖ 1 Innovative Work in the form of Small Project, Startup Idea, Collaborative Projects, Automation, Simulation, Case study, Solutions to Real time social, economic and technical problems etc. (group of maximum 2 students)

• ETE (50%)

- ❖ (20x2=40%) 3 Class Tests after every 4 weeks, Best 2 will be considered for evaluation.
- ❖ (10x1=10%) Surprise Tests in the form of Quizzes, Short Answer Questions, MCQs, Open Ended/Essay, Questions, etc. Better of the two will be considered for evaluation.

Course Content

Unit No.	Contents			
1	Introduction to Machine Learning: Overview of different tasks: classification, regression, clustering, control, Concept learning, information theory and decision trees, data representation, diversity of data, data table, form of learning, Basic Linear Algebra in machine learning techniques.	8		
2	Supervised Learning: Decision trees, nearest neighbours, linear classifiers and kernels, neural networks, linear regression, logistic regression, Support Vector Machines.			
3	Unsupervised Learning: Clustering, Expectation Maximization, K-Mean clustering, Dimensionality Reduction, Feature Selection, PCA, factor analysis, manifold learning.			
4	Reinforcement Learning: Element of Reinforcement learning, Basic of Dynamic Programming; fining optimal policies, value iteration; policy iteration; TD learning; Q learning; actor-critic.	8		
5	Recent applications & Research Topics: Applications in the fields of web and data mining, text recognition, speech recognition, finance.	4		
Total Contact Hours				

Books

	Text Books			
1	Introduction to Machine Learning, Alpaydin, E., MIT Press, 2004			
2	Machine Learning, Tom Mitchell, McGraw Hill, 1997			
3	Elements of Machine Learning, Pat Langley Morgan Kaufmann Publishers			
4.	Applied Machine Learning, M. Gopal, McGraw Hill, 2018			
Reference				
1	The elements of statistical learning, Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. Vol. 1. Springer, Berlin: Springer series in statistics, 2001.			
2	Machine Learning: A probabilistic approach, by David Barber.			
3	Pattern recognition and machine learning by Christopher Bishop, Springer Verlag, 2006			
4	An Introduction to Statistical Learning: with Applications in R (Springer Texts in Statistics) 1st ed. 2013, Corr. 7th printing 2017 Edition			

Resources: Journals

1	IEEE Transactions on Pattern Analysis and Machine				
	<u>Intelligence</u>				
2	IEEE Transactions on Neural Networks and Learning				
	<u>Systems</u>				
3	Pattern Recognition				
4	International Journal of Computer Vision				
5	IEEE Transactions on Fuzzy Systems				
6	Journal of Machine Learning Research				
7	Expert Systems with Applications				
8	Fuzzy Sets and Systems				
9	Information Sciences				
10	Artificial Intelligence				
11	Machine Learning				
12	Pattern Recognition Letters				

Resources: Conferences

H5-index	: Publisher	Conference Details	
240	♦IEEE	CVPR : IEEE/CVF Conference on Computer Vision and Pattern Recognition Jun 16, 2020 - Jun 18, 2020 - Seattle , United States http://cvpr/2020.thecvf.com/	
169	Neural Information Proceeding Systems Foundation	NeurIPS : Neural Information Processing Systems (NIPS) Dec 6, 2020 - Dec 12, 2020 - Vancouver , Canada https://nips.cc/Conferences/2020/CallForPapers	
137		ECCV : European Conference on Computer Vision Aug 23, 2020 - Aug 28, 2020 - Glasgow , United Kingdom https://eccv2020.eu/	
135	PIVILR	ICML: International Conference on Machine Learning (ICML) Jul 12, 2020 - Jul 18, 2020 - Vienna , Austria https://icml.cc/Conferences/2020	
129	◆IEEE	ICCV : IEEE/CVF International Conference on Computer Vision Oct 11, 2021 - Oct 17, 2021 - Montreal , Canada Deadline : to be confir http://iccv/2021.theovt.com/home	med
106		ACL: Meeting of the Association for Computational Linguistics (ACL) Aug 1, 2021 - Aug 6, 2021 - Bangkok , Thailand Deadline: to be confirmed to be confirmed by the confirmation of the Association for Computational Linguistics (ACL) Deadline: to be confirmation of the Association for Computational Linguistics (ACL)	med
95	/ anai	AAAI : AAAI Conference on Artificial Intelligence Feb 2, 2021 - Feb 9, 2021 - Vancouver , Canada https://aaai.org/Conterences/AAAI-21r	2020
88		EMNLP : Conference on Empirical Methods in Natural Language Processing (EMNLP) Nov 16, 2020 - Nov 20, 2020 - Online , Online https://2020.emnlp.org/	
87	Association for Computing Machinery	CHI : Computer Human Interaction (CHI) May 8, 2021 - May 13, 2021 - Yokohama , Japan https://chi2021.acm.org/	2020
26	Association for	SIGKDD : ACM SIGKDD International Conference on Knowledge discovery and data mining	

Dinesh KV, Ph.D. http://www.guide2research.com/topconf/machine-learning

A Few Quotes

- "A breakthrough in machine learning would be worth ten Microsofts" (Bill Gates, Chairman, Microsoft)
- Machine learning is the hot new thing" (John Hennessy, President, Stanford)
- "Web rankings today are mostly a matter of machine learning" (Prabhakar Raghavan, Dir. Research, Yahoo)
- "Machine learning is going to result in a real revolution" (Greg Papadopoulos, CTO, Sun)
- Machine learning (ML) is the study of computer algorithms that improve automatically through experience.

- A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data.
- As intelligence requires knowledge, it is necessary for the computers to acquire knowledge.
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E. Tom Mitchell, "Machine Learning"

Ε	T	P		
Experience	Task	Performance		
Having Labelled Data: No. of students (male, female), etc.	Processing	Measuring Performance		
Supervised Learning	Classification, Regression	Accuracy, Precession, Recall		

T: Playing checkers

P: Percentage of games won against an arbitrary opponent

E: Playing practice games against itself

T: Recognizing hand-written words

P: Percentage of words correctly classified

E: Database of human-labeled images of handwritten words

T: Driving on four-lane highways using vision sensors

P: Average distance traveled before a human-judged error

E: A sequence of images and steering commands recorded while observing a human driver.

T: Categorize email messages as spam or legitimate.

P: Percentage of email messages correctly classified.

E: Database of emails, some with human-given labels

Traditional Programming

Machine Learning

Resources: Datasets

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- UCI KDD Archive:
 http://kdd.ics.uci.edu/summary.data.application.html
- Statlib: http://lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/
- Kaggle: https://www.kaggle.com/notebook

Why Machine Learning?

- No human experts
 - industrial/manufacturing control
 - * mass spectrometer analysis, drug design, astronomic discovery
- Black-box human expertise
 - face/handwriting/speech recognition
 - driving a car, flying a plane
- Rapidly changing phenomena
 - credit scoring, financial modeling
 - diagnosis, fraud detection
- Need for customization/personalization
 - personalized news reader
 - movie/book recommendation

Related Field

Machine learning is primarily concerned with the accuracy and effectiveness of the computer system.

Machine Learning in a Nutshell

- Tens of thousands of machine learning algorithms.
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Machine Learning System

Machine Learning System

Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

		Prediction		Total
		$c^{\scriptscriptstyle op}$	C	Total
ctual	C ⁺	10	2	12
Aci	C ⁻	2	8	10
	Total	12	10	22

- Accuracy
- Error Rate
- ROC
- Precision and recall
- Squared error
- Likelihood
- Posterior probability

- Cost / Utility
- Margin
- Specificity
- F-Score
- etc.

Prediction						
		<i>C</i> ₁	<i>c</i> ₂	<i>c</i> ₃	 Cn	Total
	<i>C</i> ₁	TP ₁	FN ₁₂	FN ₁₃	 FN _{1n}	N ₁
_	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃	 FN_{2n}	N_2
Actual	<i>c</i> ₃	<i>FN</i> ₃₁	<i>FN</i> ₃₂	TP ₃	 FN _{3n}	<i>N</i> ₃
⋖					 	
	Cn	FN _{n1}	FN _{n2}	FN _{n3}	 TPn	N _n
	Total	Ñ ₁	\hat{N}_2	\hat{N}_3	 Ν̈́n	N ₂

Optimization

- Combinatorial optimization
 - E.g.: Greedy search,
 - finding an optimal object from a <u>finite set</u> of objects
- Convex optimization
 - E.g.: Gradient descent
 - Finding the minimum of a function.
- Constrained optimization
 - E.g.: Linear programming
 - Optimizing an objective function with respect to some variables in the presence of constraints on those variables

Example 1: Class of ML Analysis

- Typical customer: Admin/ Instructor.
- Database:
 - Current students registered
 - basic parameters (Height, weight)
 - ❖ Basic classification.
- Goal: predict/decide whether student is FIT?

Example 2: Credit Risk Analysis

- Typical customer: bank.
- Database:
 - Current clients data, including:
 - basic profile (income, house ownership, delinquent account, etc.)
 - ❖ Basic classification.
- Goal: predict/decide whether to grant credit.

Example 2: Credit Risk Analysis

Rules learned from data:

IF Other-Delinquent-Accounts > 2 and

Number-Delinquent-Billing-Cycles >1

THEN DENY CREDIT

IF Other-Delinquent-Accounts = 0 and

Income > \$30k

THEN GRANT CREDIT

Example 3: Clustering news

- Data: Reuters news / Web data
- Goal: Basic category classification:
 - ❖ Business, sports, politics, etc.
 - classify to subcategories (unspecified)
- Methodology:
 - consider "typical words" for each category.
 - Classify using a "distance " measure.

Examples of Machine Learning Problems

Pattern Recognition

- Facial identities or facial expressions
- Handwritten or spoken words (e.g., Siri)
- Medical images
- Sensor Data/IoT

Optimization

Many parameters have "hidden" relationships that can be the basis of optimization

Pattern Generation

Generating images or motion sequences

Anomaly Detection

- Unusual patterns in the telemetry from physical and/or virtual plants (e.g., data centers)
- Unusual sequences of credit card transactions
- Unusual patterns of sensor data from a nuclear power plant
 - · or unusual sound in your car engine or ...

Prediction

Future stock prices or currency exchange rates

Web-based E.g. of ML

- Web data is huge and tasks have to performed with very big datasets often use ML.
 - especially if the data is noisy or non-stationary.
- Spam filtering, fraud detection:
 - The enemy adapts so we must adapt too.
- Recommendation systems:
 - Lots of noisy data. Million dollar prize!
- Information retrieval:
 - Find documents or images with similar content.
- Data Visualization:
 - Display a huge database in a revealing way

Types of Learning

- Supervised (inductive) learning
 - Training data includes desired outputs
- Unsupervised learning
 - Training data does not include desired outputs
- Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Inductive Learning

- Learner discovers rules by observing examples
- Given examples of a function (X, F(X))
- Predict function F(X) for new examples X
 - ❖ Discrete *F(X)*: Classification
 - \Leftrightarrow Continuous F(X): Regression
 - +F(X) = Probability(X): Probability estimation

Learning Algorithms

Supervised learning

Unsupervised learning

Semi-supervised learning

Machine learning structure

Supervised learning

Supervised Learning

E.g. Supervised Learning

E.g. Supervised Learning

Spectrum of supervision

Definition depends on task

Machine learning structure

Unsupervised learning

Unsupervised Learning

E.g. Unsupervised Learning

2 Select Action Using Policy

E.g. Reinforcement Learning

Why Machine Learning Is Hard, Redux What is a "2"?

Dinesh KV, Ph.D

46

Fundamental: Training and testing

 Training is the process of making the system able to learn.

- No free lunch rule:
 - Training set and testing set come from the same distribution
 - Need to make some assumptions or bias

Training and Testing

Why Machine Learning is Hard

You See

Your ML Algorithm Sees

What We'll Cover

Supervised learning

- Linear Regression
- Logistic Regression
- Decision tree induction
- Rule induction
- Instance-based learning
- Bayesian learning
- Neural networks
- Support vector machines
- Model ensembles
- Learning theory

Unsupervised learning

- Clustering
- Dimensionality reduction

Data Representation

Information systems:

It represents knowledge from RAW data, which is used for decision making.

Data warehousing

It provide integrated, consistent and cleaned data to machine learning algorithms.

Data Table:

❖It is used to represent information.

DATA TABLE

- Each row represents a measurements/ observations and each column gives the value of an attribute of the information system for all measurements/ observations.
- Different terms are used to call 'Rows' information such as "Instances, examples, samples, measurements, observations, records, patterns, objects, cases, events"
- Similarly, the 'Column' information is used to call "attributes and features".

- Consider a patient information in the data table.
- Features and attributes: Headache, Muscle-Pain, Temperature. These attributes represented in linguistic form.

Patient	Headache	Muscle Pain	Temperature	Flu
1	NO	YES	HIGH	YES
2	YES	YES	HIGH	YES
3	YES	YES	VERY HIGH	YES
4	NO	YES	NORMAL	NO
5	YES	NO	HIGH	NO
6	NO	YES	VERY HIGH	YES

- An outcome for each observation is known as "a priori" for directed/supervised learning.
- Decision Attribute: one distinguished attributes that represent knowledge and information system of this kind called decision system.
- E.g. 'FLU' is decision attribute
- {Flu: Yes}, {Flu; No}.
- Flu is a decision attribute with respect to condition attributes: headache, muscle-pain, temperature.

- A data file represents inputs as N instances: $S^{(1)}, S^{(2)}, S^{(3)}, \dots S^{(N)}$.
- Each individual instances $S^{(i)}$; i = 1, 2, N that provides the input to the machine learning tools is characterized by its predefined values for a set of features/attributes x_1, x_2, x_3, x_n or $x_j; j = 1, 2, 3, n$

$\frac{S^{(i)}}{S^{(1)}}$	x_1	x_2	<i>x</i> ₃	<i>x</i> ₃	 x_n	Decision y
$\mathcal{S}^{(1)}$						
$\mathcal{S}^{(2)}$						
$\mathcal{S}^{(3)}$						
$S^{(4)}$						
•						
$S^{(N)}$						

Training experience is available in the form of N examples: $S^{(i)} \in S$; $i = 1, 2, 3 \dots N$. Where S is a set of possible instances, which come from real world.

DATA REPRESENTATION

- An instance can be represented for n attribute/features: x_j ; $j=1,2,3,\ldots n$.
- These features can be visualize as n numerical features as a point in n -dimensional state space \Re^n .
- $x = [x_1 \ x_2 \ x_3 \ x_4 x_n]^T \in \Re^n$. The set X is a finite set of feature vector $x^{(i)}$ for all possible instance.
- Also visualized as X region in the state space \Re^n to which instance belongs, i.e. $X \subset \Re^n$

DATA REPRESENTATION

- Here, $x^{(i)}$ is a representation of $s^{(i)}$, X is the *representation* space.
- The pair of (S, X) constitutes the information system. Where
 S is non-empty set of instances and X is non-empty
 features.
- Here, index i represents instances and j represents features.

$$\{s^{(i)}; i = 1, 2, 3, N\} \in S$$

$$\{x^{(i)}; i = 1, 2, 3, N\} \in X \text{ (set of features)}$$

$$*\{x_j^{(i)}; j=1,2,3,....N\} = x^{(i)}$$

❖ Features x_j ; j = 1, 2, ..., n, may be viewed as state variables and feature vector x as a state vector in n-dimensional space.

DATA REPRESENTATION

- For every feature x_j a set of values can be written as $V_{x_j} \in R$ and called as domain of x_j ; j = 1, 2, ..., n.
- $V_{x_i}^{(i)} \in V_{x_i}$; i = 1, 2, ... N.
- The tuple (S,X,Y) may be constituted and this is called decision system.