

lambda

half of the .05 tail of $\chi^2_{df=1}$

3. (≈ 1.92)

Fitting & Evaluating Likelihood

Models

Probability Density lambda Profile Likelihood Cls Log-Likelihood

lambda

MLF of Lambda = 17

1. Log-Likelihood appxomiately

2. 95% CI holds all values within

half of the .05 tail of χ^2_{df-1}

 χ^2 distirbuted

3. (≈ 1.92)

We Have the Maximum Likelihood Estimate of Lambda

Profile Likelihood Cls

How do we Compare Alternate Hypotheses?

$$G=2ln(\frac{L_A}{L_0})$$

where L0 is from the more constrained hypothesis. G is χ^2 distributed with DF = Difference in Parameters

$$G = 2(LogL_A - LogL_0)$$

How do we Compare Alternate Hypotheses?

Exercise: Likelihood and Beesl

- ▶ Load the Bee Lifespan Data ▶ Model Bee Lifespans as a Gamma Distribution with shape = 1
- (1 bee per death)
- What is the ML estimate of a Bee's Lifespan?
- ▶ What is the 95% CI?
- Is the scale different from 10?

Exercise: Likelihood and Bees!

Exercise: Likelihood and Bees!

abline(h=x) for horizontal lines, use \boldsymbol{v} for vertical lines

Exercise: Likelihood and Bees!

```
#a function to get a CI given values and their log-likelihood
mlCI <- function(values, log1) {
    ci <- values[which(log1 > max(log1) - 1.92)]
    ci[c(1, length(ci))]
}
mlCI(scaleVals, ml1)
# [1] 20.2 39.8
```

Exercise: Likelihood and Bees!

```
G <- 2 * max(ml1 - beeD(10))
pchisq(G, df=1, lower.tail=F)
# [1] 1.386e-12
```

What if you have multiple parmeters?

What if we Estimated Shape and Scale?

New Issues with Multiple Parameters

- 1. What Log-Likelihood Values Are Used for 95% CI?
- 2. Brute-Force Becomes Slow
- 3. Algorithmic Solutions Necessary
- 4. Specification Unwieldy

We Get the Likelihood Profile of One Coefficient by Iterating Over the Other

Shapes

We Get the Likelihood Profile of One Coefficient by Iterating Over the Other

Shape, Scale

How do we Search Likelihood Space?

Optimizing to find a Minimum Value

- optim
- ▶ nlm
- ▶ nlminb
- ► mle2 (wrapper for all of the above)

We Get the Likelihood Profile of One Coefficient by Iterating Over the Other $\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tab$

Did You Say Minimum?

YES!

We optimize using -sum(LL Function)

Deviance = -2 * LL

How do we Search Likelihood Space?

There are many Algorithms

- Newtown-Raphson (algorithmicly implemented in nlm and BFGS method) uses derivatives
 - ▶ good for smooth surfaces & good start values
- ► Brent's Method for single parameter fits
- ► Nelder-Mead Simplex (optim's default)
- good for rougher surfaces, but slower
- ► Simulated Annealing (SANN) uses Metropolis Algorithm search
 - global solution, but slow

Warning: If your algorithm fails to converge, you cannot evaluate your model or coefficients

Fitting Multiple Parameters with MLE2 from bbmle

```
#first write a function that you want to minimize
beeLL <- function(shape, scale) -sum(dgamma(hours,
shape=shape, scale=scale,
log=TRUE))
#now feed the function to an optimizer</pre>
```

beeLL_Fit <- mle2(beeLL, data=bees, start=list(shape=1, scale=4))

Fitting Multiple Parameters with MLE2 from bbmle

Coefficient tests based on Wald Confidence Intervals

Easy Profiling

Confidence Intervals	OrMLE2 has Many Probability Functions Builtin
<pre>confint(beeLL_Fit) #</pre>	mleBees <- mle2(hours ~ dgamma(shape=shape, scale=scale), data=bees, start=list(shape=1,scale=4))
OrMLE2 has Many Probability Functions Builtin	OrMLE2 has Many Probability Functions Builtin
<pre>#You can represent many relationships with a function #for just using mle2 - so, poisson regression #you could write a function flowerLL <- function(b, int){ fittedflowers = b * nitrogen + int -sum(dpois(Flowers, lambda = fittedflowers, log=T)) } mleFlowers <- mle2(flowersLl, data=flowers, start=list(b=2, int = 4))</pre>	#Or mleFlowers <- mle2(Flowers ~ dpois(lambda = b * nitrogen + Int),

We Can Flexibly Compare Models using LRT

```
mleBeesOrig <- mle2(hours ~ dgamma(shape=1, scale=scale), data=bees, start=list(scale=4))

anova(mleBees, mleBeesOrig)

# Likelihood Ratio Tests
# Model 1: mleBeeso, hours dgamma(shape=shape, scale=scale)
# Model 2: mleBeesOrig, hours dgamma(shape=1, scale=scale)
# Tot Df Deviance Chisq Df Pr(>Chisq)
# 1 2 286 4 96 1 0 0 39
```

To fit Ho for a linear model fit, just drop the predictor variable alltogether.

Exercise: Wolf Inbreeding and Litter Size

- ► Load the wolf pup data
- Write a MLE regression for pups N(inbreeding)
- This model will have three parameters
- ► Evluate it's CIs and Wald Tests
- ▶ Compare it to your Ho
- ▶ Compare it to 1m results

Regression as Function

Regression with Distribution

```
wolf_mleNull<-mle2(pups ~ dnorm(intercept, wolves_sd),
                                                                                        data=wolves. start=list(intercept = 0, wolves sd=3))
confint(wolf mle2)
                                                                         anova(wolf mle2, wolf mleNull)
             2.5 % 97.5 %
                                                                         # Likelihood Ratio Tests
# intercept 5.022 8.112
                                                                         # Model 1: wolf_mle2, pups~dnorm(mean=intercept+
# inbreeding -17.679 -5.214
                                                                                    inbreeding*inbreeding.coefficient,sd=wolves_sd)
# wolves_sd 1.127 1.993
                                                                         # Model 2: wolf_mleNull, pups~dnorm(intercept,wolves_sd)
                                                                         # Tot Df Deviance Chisq Df Pr(>Chisq)
                                                                         # 1 3
                                                                                       86.2
                                                                            2 97 3 11 1 1 0 00088
```

Null Hypothesis Test

```
Comparison to LM
```

Confidence Intervals

```
Comparison to LM
```

```
wolf_lm <- lm(pups ~ inbreeding.coefficient, data=wolves)
                                                                               summary(wolf mle2)
summary(wolf_lm)
                                                                               # Maximum likelihood estimation
                                                                               # Call:
```

3.189 -3.59 0.0016

```
# mle2(minuslog1 = pups ~ dnorm(mean = intercept + inbreeding *
     inbreeding.coefficient, sd = wolves_sd), start = list(intercept =
# Coefficients:
```

-2 log L: 86.23

```
# lm(formula = pups ~ inbreeding.coefficient, data = wolves)
# Residuals:
    Min
```

inbreeding.coefficient -11.447

Residual standard error: 1.52 on 22 degrees of freedom

inbreeding = 0, wolves_sd = 3), data = wolves) 10 Median # -2.133 -0.820 -0.434 0.668 3.608 Estimate Std. Error z value Pr(z) # intercept 6.567 0.757 8.68 < 2e-16 # Coefficients:

inbreeding -11.447 3.053 -3.75 0.00018 Estimate Std. Error t value Pr(>|t|) # wolves sd 1.459 0.211 6.93 4.3e-12 # (Intercept) 6.567 0.791 8.31 3.1e-08