## Reduced Basis methods: an introduction

Christophe Prud'homme prudhomme@unistra.fr

September 12, 2023

CeMosis - http://www.cemosis.fr IRMA Université de Strasbourg Notations, Definitions, Problem Statement, Example

1 Notations, Definitions, Problem Statement, Example

Notations, Definitions, Problem Statement, Example

# Linear Compliant Elliptic Problems

### \_\_\_\_

Statement, Example

Notations, Definitions, Problem

#### **Definitions**

#### **Definition (Linear Space)**

A space Z is a linear or vector space if, for any  $\alpha \in \mathbb{R}$  ,  $w,v \in Z$ ,  $\alpha w + v \in Z$ 

Note:  $\mathbb R$  denotes the real numbers, and  $\mathbb N$  and  $\mathbb C$  shall denote the natural and complex numbers, respectively.

#### **Definition (Inner Product Space)**

An inner product space (or Hilbert space) Z is a linear space equipped with

- an inner product  $(w, v)_Z, \forall w, v \in Z$ , and
- induced norm  $||w||_Z = (w, w)_Z, \forall w \in Z$ .

#### Inner Product

### **Definition (Inner Product)**

An inner product  $w, v \in Z \to (w, v)_Z \in \mathbb{R}$  has to satisfy

Bilinearity

$$(\alpha w + v, z)_Z = \alpha(w, z)_Z + (v, z)_Z \forall \alpha \in R, w, v, z \in Z$$
  
$$(z, \alpha w + v)_Z = \alpha(z, w)_Z + (z, v)_Z, \forall \alpha \in R, w, v, z \in Z$$

Symmetry

$$(w, v)_Z = (v, w)_Z, \forall w, v \in Z$$

Positivity

$$(w, w)_Z > 0, \forall w \in Z, w \neq 0$$
  
 $(w, w)_Z = 0$ , only if  $w = 0$ 

### Cauchy-Schwarz inequality:

$$(w, v)_Z \le ||w||_Z ||v||_Z, \forall w, v \in Z.$$

#### Norm

#### Definition (Norm)

A norm is a map  $\|\cdot\|:Z\to\mathbb{R}$  such that

- $||w||_Z > 0 \quad \forall w \in Z, w \neq 0,$
- $\|\alpha w\|_Z = |\alpha| \|w\|_Z \quad \forall \alpha \in \mathbb{R}, \ \forall w \in Z,$
- $||w + v||_Z \le ||w||_Z + ||v||_Z$   $\forall w \in Z, \ \forall v \in Z.$

Equivalence of norms  $\|\cdot\|_Z$  and  $\|\cdot\|_Y$ : there exist positive constants  $C_1$ ,  $C_2$  such that

$$C_1||v||_Z \leq ||v||_Y \leq C_2||v||_Z.$$

### Cartesian Product Space

Given two inner product spaces  $Z_1$  and  $Z_2$ , we define

$$Z = Z_1 \times Z_2 \equiv \{(w_1, w_2) \mid w_1 \in Z_1, w_2 \in Z_2\}$$

and given  $w = (w_1, w_2) \in Z, v = (v_1, v_2) \in Z$ , we define

$$w + v \equiv (w_1 + v_1, w_2 + v_2).$$

We also equip Z with the inner product

$$(w, v)_Z = (w_1, v_1)_{Z_1} + (w_2, v_2)_{Z_2}$$

and induced norm

$$||w||_Z = (w, w)_Z$$
.

#### Definition (Linear functional)

A functional  $g: Z \to \mathbb{R}$  is a linear functional if, for any  $\alpha \in \mathbb{R}$ ,  $w, v \in Z$ 

$$g(\alpha w + v) = \alpha g(w) + g(v)$$

A linear form is bounded, or continuous, over Z if

C. Prud'homme

$$|g(v)| \le C||v||_Z, \forall v \in Z,$$

for some finite real constant C.

### Dual Spaces

### **Definition (Dual Space)**

Given Z, we define the dual space Z' as the space of all bounded linear functionals over Z. We associate to Z' the dual norm

$$\|g\|_{Z'} = \sup_{v \in Z} \frac{g(v)}{\|v\|_Z}, \forall g \in Z'.$$

#### Theorem (Riesz representation)

For any  $g \in Z'$ , there exists a unique  $w_g \in Z$  such that

$$(w_g, v)_Z = g(v), \forall v \in Z.$$

It directly follows that

$$||g||_{Z'} = ||w_{\sigma}||_{Z}.$$

#### Bilinear Forms

#### Definition (Bilinear Form)

A form  $b: Z_1 \times Z_2 \to \mathbb{R}$  is bilinear if, for any  $\alpha \in R$ ,

• 
$$b(\alpha w + v, z) = \alpha b(w, z) + b(v, z), \forall w, v \in Z_1, z \in Z_2$$

• 
$$b(z, \alpha w + v) = \alpha b(z, w) + b(z, v), \forall z \in Z_1, w, v \in Z_2$$

The bilinear form  $b: Z \times Z \to \mathbb{R}$  is

• symmetric, if

$$b(w,v)=b(v,w),$$

· skew-symmetric, if

$$b(w,v)=-b(v,w),$$

positive definite, if

$$b(v, v) > 0$$
, with equality only for  $v = 0$ .

#### **Bilinear Forms**

The bilinear form  $b: Z \times Z \to \mathbb{R}$  is positive semidefinite, if

$$b(v, v) \geq 0, \forall v \in Z.$$

We also define, for a general bilinear form  $b: Z \times Z \to \mathbb{R}$ , the

symmetric part as

$$b_S(w, v) = 1/2(b(w, v) + b(v, w)), \forall w, v \in Z;$$

• the skew-symmetric part as

$$b_{SS}(w, v) = 1/2(b(w, v) - b(v, w)), \forall w, v \in Z.$$

#### **Bilinear Forms**

The bilinear form  $b: Z \times Z \to \mathbb{R}$  is

• coercive over Z if

$$\alpha \equiv \inf_{w \in Z} \frac{b(w, w)}{\|w\|_Z^2}$$

is positive;

• continuous over Z if

$$\gamma \equiv \sup_{w \in Z} \sup_{v \in Z} \frac{b(w, v)}{\|w\|_Z \|v\|_Z}$$

is finite.

#### Parametric Linear and Bilinear Forms

#### We introduce

- $D \in \mathbb{R}^P$ : closed bounded parameter domain;
- $\mu = (\mu_1, \dots, \mu_P) \in D$ : parameter vector.

### We shall say that

- $g: Z \times D \to \mathbb{R}$  is a parametric linear form if, for all  $\mu \in D, g(\cdot; \mu): Z \to \mathbb{R}$  is a linear form;
- $b: Z \times Z \times D \to \mathbb{R}$  is a parametric bilinear form if, for all  $\mu \in D, b(\cdot, \cdot; \mu): Z \times Z \to \mathbb{R}$  is a bilinear form.

Concepts of symmetry,... directly extend to the parametric case.

### Parametric Linear and Bilinear Forms

The parametric bilinear form  $b: Z \times Z \times D \rightarrow \mathbb{R}$  is

• coercive over Z if

$$\alpha(\mu) \equiv \inf_{w \in Z} \frac{b(w, w; \mu)}{\|w\|_Z^2}$$

is positive for all  $\mu \in D$ ;

continuous over Z if

$$\gamma(\mu) \equiv \sup_{w \in Z} \sup_{v \in Z} \frac{b(w, v; \mu)}{\|w\|_Z \|v\|_Z}$$

is finite for all  $\mu \in D$ .

We also define

$$(0 <)\alpha_0 \equiv \min_{\mu \in D} \alpha(\mu)$$
$$\gamma_0 \equiv \max_{\mu \in D} \gamma(\mu)(< \infty).$$

### Coercivity EigenProblem

We have

$$\alpha(\mu) \equiv \inf_{w \in Z} \frac{b_S(w, w; \mu)}{\|w\|_Z^2}$$

Associated generalized eigenproblem:

Given  $\mu \in D$ , find  $(\chi^{co}, \nu^{co})_i(\mu) \in Z \times \mathbb{R}, 1 \leq i \leq \dim(Z)$ , such that

$$b_S(\chi_i^{co}(\mu), v; \mu) = \nu_i^{co}(\mu)(\chi_i^{co}(\mu), v)_Z$$

and

$$\|\chi_i^{co}(\mu)\|_Z = 1$$

Let  $\nu_1^{co}(\mu) \leq \nu_2^{co}(\mu) \leq \ldots \leq \nu_{\dim Z}^{co}(\mu)$  and b coercive, then

$$\alpha(\mu) = \nu_1^{co}(\mu) > 0.$$

### Parameter affine Dependence

We assume

$$g(v; \mu) = \sum_{q=1}^{Q_g} \theta_g^q(\mu) g^q(v), \forall v \in Z,$$

where, for  $1 \leq q \leq Q_{g}$  (finite),

- parameter-dependent functions  $\theta^q_\sigma:D\to\mathbb{R}$ ,
- parameter-independent forms  $g^q: Z \to \mathbb{R}$ ;

and

$$b(w, v; \mu) = \sum_{q=1}^{Q_b} \theta_b^q(\mu) b^q(w, v), \quad \forall w, v \in Z,$$

where, for  $1 \leq q \leq Q_b$  (finite),

- parameter-dependent functions  $\theta_b^q:D\to\mathbb{R}$ ,
- parameter-independent forms  $b^q: Z \times Z \to \mathbb{R}$ .

### Parametric Coercivity

#### Definition (Parametric coercivity)

The coercive bilinear form  $b: Z \times Z \times D \rightarrow \mathbb{R}$ 

$$b(w, v; \mu) = \sum_{q=1}^{Q_b} \theta_b^q(\mu) b^q(w, v), \quad \forall w, v \in Z,$$

is parametrically coercive if  $c \equiv b_S$  is affine

$$c(w, v; \mu) = \sum_{q=1}^{Q_c} \theta_c^q(\mu) c^q(w, v), \quad \forall w, v \in Z,$$

and satisfies and

- $\theta_c^q(\mu) > 0, \forall \mu \in D, 1 \leq q \leq Q_c$
- $c^q(v,v) \geq 0, \forall v \in Z, 1 \leq q \leq Q_c$ .

### Scalar and Vector Fields

### We consider (real)

- scalar-valued field variables (e.g., temperature, pressure)  $w:\Omega \to \mathbb{R}^{d=1}$
- vector-valued field variables (e.g., displacement, velocity)  $w: \Omega \to \mathbb{R}^d$ , where  $w(x) = (w_1(x), \dots, w_d(x))$ ;

#### and

- $\Omega \in \mathbb{R}^d, d=1,2, \text{or3}$  is an open bounded domain
- $x = (x_1, ..., x_d) \in \Omega;$
- $\Omega$  has Lipschitz continuous boundary  $\partial\Omega$  ; and
- we define the canonical basis vectors as  $e_i$ ,  $1 \le i \le d$ .

#### Multi-Index Derivative

Given a scalar (or one component of a vector)

• field  $w: \Omega \to \mathbb{R}$ 

SPATIAL DERIVATIVE

$$(D^{\sigma}w)(x) = \frac{\partial^{\sigma}w}{\partial x_1^{\sigma_1}...\partial x_d^{\sigma_d}}$$

• parametric field  $w: \Omega \times D \to \mathbb{R}$ 

SENSITIVITY DERIVATIVE

$$(D_{\sigma}w)(x) = \frac{\partial^{\sigma}w}{\partial \mu_1^{\sigma_1}...\partial \mu_d^{\sigma_d}}$$

where

- $\sigma = (\sigma_1, \dots, \sigma_d)$ ,  $\sigma_i, 1 \le i \le d$ , non-negative integers;
- $|\sigma| = \sum_{i=1}^{d} \sigma_i$  is the order of the derivative; and
- $I^{d,n}$  is set of all index vectors  $\sigma \in N_0^d$  such that  $|\sigma| \leq n$ .

### **Function Spaces**

### **Definition (Spaces of Continuous Functions)**

Let  $m \in N_0$ , the space  $C^m(\Omega)$  is defined as

$$C^{m}(\Omega) \equiv \{ w | D^{\sigma} w \in C^{0}(\Omega), \forall \sigma \in I^{d,m} \},$$

and  $C^0(\Omega)$  is the space of continuous functions over  $\Omega \in \mathbb{R}^d$ .

We denote by  $C^{\infty}(\Omega)$  the space of functions w for which  $D^{\sigma}$  exists and is continuous for any order  $|\sigma|$ .

### Lebesgue Spaces

### **Definition (Lebesgue Spaces)**

We define, for  $1 \leq p < \infty$  , the Lebesgue space  $L^p(\Omega)$  as

$$L^p(\Omega) \equiv \{ w \text{ measurable } | \quad ||w||_{L^p(\Omega)} < \infty \}$$

where

- $||w||_{L^{p}(\Omega)} \equiv \left(\int_{\Omega} |w|^{p} dx\right)^{1/p}, 1 \leq p < \infty,$
- $||w||_{L^{\infty}(\Omega)} \equiv \operatorname{ess sup}_{x \in \Omega} |w(x)|, p = \infty.$

### Hilbert Space

### **Definition (Hilbert Spaces)**

Let  $m \in \mathbb{N}_0$ , the space  $H^m(\Omega)$  is then defined as

$$H^m(\Omega) \equiv \{w | D^{\sigma}w \in L^2(\Omega), \forall \sigma \in I^{d,m}\},\$$

with associated inner product

$$(w,v)_{H^m(\Omega)} \equiv \sum_{\sigma \in I^{d,m}} \int_{\Omega} D^{\sigma} w D^{\sigma} v dx,$$

and induced norm

$$||w||_{H^m(\Omega)} \equiv \sqrt{(w,w)_{H^m(\Omega)}}.$$

### Special (most important) cases

Since we only consider second-order PDEs, we require mostly

•  $L^2(\Omega) = H^0(\Omega)$ : Lebesgue Space p = 2

$$(w,v)_{L^2(\Omega)} = \int_{\Omega} wv \quad \forall w,v \in L^2(\Omega)$$

$$\|w\|_{L^2(\Omega)} = \sqrt{(w,w)_{L^2(\Omega)}} \forall w \in L^2(\Omega),$$

 $\Rightarrow$  Space of all functions  $w:\Omega \to \mathbb{R}$  square-integrable over  $\Omega$  .

### Special (most important) cases

Since we only consider second-order PDEs, we require mostly

H<sup>1</sup>(Ω)

$$H^1(\Omega) \equiv \{ w \in L^2(\Omega) | \frac{\partial w}{\partial x_i} \in L^2(\Omega), 1 \le i \le d \}$$

with inner product and induced norm

$$(w,v)_{H^{1}(\Omega)} \equiv \int_{\Omega} \nabla w \cdot \nabla v + wv \quad \forall w,v \in H^{1}(\Omega),$$

,

$$\|w\|_{H^{1}(\Omega)} \equiv \sqrt{(w,w)_{H^{1}(\Omega)}} \quad \forall w \in H^{1}(\Omega),$$

and seminorm

$$|w|_{H^1(\Omega)} \equiv \int_{\Omega} \nabla w \cdot \nabla w, \quad \forall w \in H^1(\Omega).$$

### Special (most important) cases

Since we only consider second-order PDEs, we require mostly

• the space  $H_0^1(\Omega)$ 

$$H_0^1(\Omega) \equiv \{ v \in H^1(\Omega) | v_{|\partial\Omega} = 0 \}$$

where v = 0 on the boundary  $\partial \Omega$ .

Note that, for any  $v \in H_0^1(\Omega)$ , we have

$$C_{PF} \|v\|_{H^{1}(\Omega)} \le |v|_{H^{1}(\Omega)} \le \|v\|_{H^{1}(\Omega)},$$

and thus

$$||v||_{H^1(\Omega)} = 0 \Rightarrow v = 0$$

 $\Rightarrow |v|_{H^1(\Omega)}$  constitutes a norm for  $v \in H^1_0(\Omega)$ .

### **Projection**

#### **Definition (Projection)**

Given Hilbert Spaces Y and  $Z\subset Y$  , the projection,  $\Pi:Y\to Z$ , of  $y\in Y$  onto Z is defined as

$$(\Pi y, v)_Y = (y, v)_Y, \forall v \in Z$$

### Properties:

- Orthogonality:  $(y \Pi y, v)_Y = 0$
- Idempotence:  $\Pi(\Pi y) = \Pi y$
- Best Approximation  $||y \Pi y||_Y^2 = \inf_{v \in Z} ||y v||_Y^2$ ,

Given an orthonormal basis  $\{\varphi i\}_{i=1,N=\dim(Z)}$ , then

$$\Pi y = \sum_{i=1}^{\dim(Z)} (\varphi i, y)_{Y} \varphi_{i}, \forall y \in Y$$

### **Notations and Definitions**

#### **Notations**

- $(\cdot)^{\mathcal{N}}$  finite element approximation
- $(\cdot)_N$  reduced basis approximation
- μ input parameter (physical, geometrical,...)
- $s(t; \mu) \approx s^{\mathcal{N}}(t; \mu) \approx s_{\mathcal{N}}(t; \mu)$ output approximations
- $\mu \rightarrow s(t; \mu)$  input-output relationship

#### Definitions

- $\Omega \subset \mathbb{R}^d$  spatial domain
- *μ P*-uplet
- $\mathcal{D}^{\mu} \subset \mathbb{R}^{P}$  parameter space
- s output,  $\ell, f$  functionals
- u field variable
- X function space  $H^1_0(\Omega)^{
  u}\subset X\subset H^1(\Omega)^{
  u}$  (u=1 for simplicity)
  - $(\cdot,\cdot)_X$  scalar product and  $\|\cdot\|_X$  norm associated to X

#### Problem Statement

The formal problem statement reads: Given  $\mu \in \mathcal{D}^{\mu}$ , evaluate

$$s(\mu) = \ell(u(\mu); \mu)$$

where  $u(x; \mu) \in X$  satisfies

$$a(u(\mu), v; \mu) = f(v; \mu), \quad \forall v \in X$$

#### Remark

We consider first the case of linear affine compliant elliptic problem and then complexify

### Hypothesis: Reference Geometry

Note  $\Omega$  is parameter-independent: the reduced basis requires a common spatial configuration, i.e., a reference domain  $\Omega_{\text{ref}}$ 

Introduce a piecewise affine mapping  $\mathcal{T}(\cdot; \mu) : \Omega \to \Omega_o(\mu)$ 

where

$$a(w, v; \mu) = a_o(w_o \circ \mathcal{T}_{\mu}, v_o \circ \mathcal{T}_{\mu}; \mu)$$

We will discuss this issue in detail later on.

### Hypothesis: Continuity, stability, compliance

We consider the following  $\mu-PDE$ 

$$\mathbf{a}(\cdot,\cdot;\mu)$$
 bilinear symmetric continuous coercive  $(\forall \mu \in \mathcal{D}^{\mu})$ 

$$f(\cdot; \mu), \ell(\cdot; \mu)$$
 linear bounded  $(\forall \mu \in \mathcal{D}^{\mu})$ 

and in particular, to start, the compliant case

- a symmetric
- $f(\cdot; \mu) = \ell(\cdot; \mu) \quad \forall \mu \in \mathcal{D}^{\mu}$

### Hypothesis: Affine dependence in the parameter

We require for the RB methodology

$$a(u,v;\mu) = \sum_{q=1}^{Q_a} \Theta_a^q(\mu) \ a^q(u,v),$$

where for  $q = 1, ..., Q_a$ 

 $\Theta^q_{a}: \mathcal{D}^{\mu} o \mathbb{R} \qquad \mu- ext{dependent functions}$ 

 $a^q: X \times X \to \mathbb{R}$   $\mu$  - independent bilinear forms

#### Remark

- similar decomposition is required for  $\ell(v; \mu)$  and  $f(v; \mu)$ , and denote  $Q_{\ell}$  and  $Q_f$  the corresponding number of terms
- applicable to a large class of problems including geometric variations
- can be relaxed (see non affine/non linear problems)

#### Inner Products and Norms

energy inner product and associated norm (parameter dependent)

$$(((w,v)))_{\mu} = a(w,v;\mu) \qquad \forall u,v \in X$$
$$|||v|||_{\mu} = \sqrt{a(v,v;\mu)} \qquad \forall v \in X$$

• X-inner product and associated norm (parameter independent)

$$(w,v)_X = (((w,v)))_{\bar{\mu}} \ (\equiv a(w,v;\bar{\mu})) \qquad \forall u,v \in X$$
$$||v||_X = |||v|||_{\bar{\mu}} \ (\equiv \sqrt{a(v,v;\bar{\mu})}) \qquad \forall v \in X$$

### Coercivity and Continuity Constants

We assume a coercive and continuous

#### Recall that

coercivity constant

$$(0 <) \alpha(\mu) \equiv \inf_{v \in X} \frac{a(v, v; \mu)}{||v||_X^2}$$

Continuity constant

$$\gamma(\mu) \equiv \sup_{w \in X} \sup_{v \in X} \frac{a(w, v; \mu)}{\|w\|_X \|v\|_X} (< \infty)$$

### Example Thermal Block: Heat Transfer



### **Example Thermal Block: Problem statement**

Given  $\mu \in (\mu_1, ... \mu_P) \in \mathcal{D}^{\mu} \equiv [\mu^{\min}, \mu^{\max}]^P$ , evaluate (recall that  $\ell = f$ )

$$s(\mu) = f(u(\mu))$$

where  $u(\mu) \in X \equiv \{v \in H^1(\Omega), v|_{\Gamma_{\text{top}}} = 0\}$  satisfies

$$a(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in X$$

we have P=8 and given  $1<\mu_r<\infty$  we set

$$\mu^{\min} = 1/\sqrt{\mu_r}, \quad \mu^{\max} = \sqrt{\mu_r}$$

such that  $\mu^{\max}/\mu^{\min} = \mu_r$ .

### **Example Thermal Block**

Recall we are in the compliant case  $\ell = f$ , we have

$$f(v) = \int_{\Gamma_0} v \quad \forall v \in X$$

and

$$a(u, v; \mu) = \sum_{i=1}^{P} \mu_i \int_{\Omega_i} \nabla u \cdot \nabla v + 1 \int_{\Omega_{P+1}} \nabla u \cdot \nabla v \quad \forall u, \ v \in X$$

where 
$$\Omega = \bigcup_{i=1}^{P+1} \Omega_i$$
.

### **Example Thermal Block**

The inner product is defined as follows

$$(u,v)_X = \sum_{i=1}^P \bar{\mu}_i \int_{\Omega_i} \nabla u \cdot \nabla v + 1 \int_{\Omega_{P+1}} \nabla u \cdot \nabla v$$

where  $\bar{\mu}_i$  is a reference parameter. We have readily that a is

- symmetric
- parametrically coercive

$$0 < \frac{1}{\sqrt{\mu_r}} \le \min(\mu_1/\bar{\mu}_1, \dots, \mu_P/\bar{\mu}_P, 1) \le \alpha(\mu)$$

and continuous

$$\gamma(\mu) \leq \max(\mu_1/\bar{\mu}_1,\ldots,\mu_P/\bar{\mu}_P,1) \leq \sqrt{\mu_r} < \infty$$

and the linear form f is bounded.

### **Example Thermal Block: Affine decomposition**

We obtain the affine decomposition

$$a(u, v; \mu) = \sum_{q=1}^{P+1} \Theta^{q}(\mu) a^{q}(u, v)$$

with

$$\Theta^{1}(\mu) = \mu_{1} \qquad \qquad a^{1}(u, v) = \int_{\Omega_{1}} \nabla u \cdot \nabla v$$

$$\vdots$$

$$\Theta^{P}(\mu) = \mu_{P} \qquad \qquad a^{P}(u, v) = \int_{\Omega_{P}} \nabla u \cdot \nabla v$$

$$\Theta^{P+1}(\mu) = 1 \qquad \qquad a^{P+1}(u, v) = \int_{\Omega_{R}} \nabla u \cdot \nabla v$$

### **Example Thermal Block**

- Homogeneous parameters
- Maximum parameters values.



• Heterogeneous parameters





### "Truth" FEM Approximation

Let  $\mu \in \mathcal{D}^{\mu}$ , evaluate

$$s^{\mathcal{N}}(\mu) = \ell(u^{\mathcal{N}}(\mu))$$
,

where  $u^{\mathcal{N}}(\mu) \in X^{\mathcal{N}}$  satisfies

$$a(u^{\mathcal{N}}(\mu), v; \mu) = f(v), \quad \forall \ v \in X^{\mathcal{N}}.$$

Here  $X^{\mathcal{N}} \subset X$  is a Truth finite element approximation of dimension  $\boxed{\mathcal{N} \gg 1}$  equiped with an inner product  $(\cdot, \cdot)_X$  and induced norm  $||\cdot||_X$ . Denote also X' and associated norm

$$\ell \in X', \qquad ||\ell||_{X'} \equiv \sup_{v \in X} \frac{\ell(v)}{||v||_X}$$

### Purpose

• Equate  $u(\mu)$  and  $u_{\mathcal{N}}(\mu)$  in the sense that

$$||u(\mu) - u_{\mathcal{N}}(\mu)||_X \le \text{tol} \quad \forall \mu \in \mathcal{D}^{\mu}$$

- Build the reduced basis approximation using the FEM approximation
- Measure the error associated with the reduced basis approximation relative to the FEM approximation

 $\Rightarrow u^{\mathcal{N}}(\mu)$  is a calculable surrogate for  $u(\mu)$ .

$$\|u(\mu) - u^{\mathcal{N}}(\mu)\|_{X} \leq \underbrace{\|u(\mu) - u^{\mathcal{N}}(\mu)\|_{X}}_{\leq \varepsilon^{\mathcal{N}}} + \underbrace{\|u^{\mathcal{N}}(\mu) - u^{\mathcal{N}}(\mu)\|_{X}}_{\varepsilon_{\text{tol,min}}}$$

with  $\varepsilon^{\mathcal{N}} << \varepsilon_{\mathrm{tol,min}}$