AI無線通訊實驗 Reinforcement Learning, RL for Network Resource Allocation

方凱田 教授

TA: 蕭安紘

教材編寫: 蕭安紘、沈立翔 博士

Reinforcement Learning, RL

AlphaGo

AlphaGo

Find an actor maximizing expected total reward.

AlphaGo

Resource Allocation

- In a real mobile communication, the system always simultaneously performs several tasks under different demanding services from devices
 - However, each device has different channel conditions that we have to take into account for providing optimum resource allocation
- There exist a great number of resources provided from the central system
 - Spatial resources
 - Temporal resource
 - Frequency bandwidth
 - Transmit power

Resource Allocation

• Channel Gain as the channel gain set from *N* APs to *K* UEs

$$\boldsymbol{H} = \left\{ h_{n,k} | \forall 1 \le n \le N, 1 \le k \le K \right\}$$

- $h_{n,k}$: the channel gain from the *n*-th AP to the *k*-th UE
- The downlink transmit power of AP is denoted as

$$\mathbf{P} = \{P_n | \forall n\}$$

The association indicator set for AP-UE connection

$$\boldsymbol{\rho} = \{ \rho_{n,k} \in \{0,1\} | \forall n, k \}$$

• we can obtain the SINR for the *n*-th AP to the *k*-th UE as

$$\gamma_{n,k} = \frac{P_n G_{n,k} h_{n,k}}{\sum_{j \neq n}^N P_j G_{j,k} h_{j,k} + \sigma^2}$$

- $G_{n,k}$: the beamforming gain obtained in the beam training process
- σ^2 : background noise

Resource Allocation

• We can then formulate the problem that determines the allocation of power and user association, which is given by

$$\max_{P,\rho} R$$
s.t. $0 < P_n \le P_{max}$, $\forall n$

$$\rho_{n,k} \in \{0,1\}, \forall n,k,$$

$$\sum_{n=1}^{N} \rho_{n,k} \le 1, \forall k.$$

Q-learning based Resource Allocation

Q-learning based Resource Allocation

• The action is referred as power allocation and association assignment, which is expressed as selection of the maximum value in the Q-table as

$$a_t = \operatorname*{argmax}_{a'_t} Q(s_t, a'_t)$$

- t: the current training or testing time step
- Since the state is a discrete variable, we quantize the sum rate objective as discrete states as

$$s_t = \left[\frac{R \cdot s_n}{R_{max}} \right]$$

- R_{max} : the maximum throughput among off-line collected training dataset
- s_n : pre-defined constant indicating the total number of given states
- Rewards

$$r_t = R = \sum_{n=1}^{N} \sum_{k=1}^{K} \rho_{n,k} \log(1 + \gamma_{n,k})$$

According to the Bellman equation, the Q-table is updated by

$$Q_t(s_t, a_t) \leftarrow Q_t(s_t, a_t) + \eta \cdot \left[r_t + \delta \cdot \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t) \right]$$

Q-learning based Resource Allocation

Algorithm 8: Q-Learning for Resource Allocation

- 1: **Initialization:** Time step t=0, learning rate η , discount factor δ , exploitation probability ϵ
- 2: **Offline**: Collect training dataset of power and association, find R_{max} , and update the Q-table based on **Q-learning**
- 3: Online: Based on trained Q-table, perform online testing based on Q-learning
- 4: **Q-learning**:
- 5: while Not converged as t < T do
- 6: t = t + 1
- 7: Randomly generate a number $\kappa \in [0, 1]$
- 8: **if** t = 1 or $\kappa > \epsilon$ **then**
- 9: Select random action a_t
- 10: **else**
- 11: Select optimal action based on $a_t = \operatorname*{argmax}_{a_t'} Q(s_t, a_t')$
- 12: **end if**
- 13: Obtain power P and association ρ decision based on a_t
- 14: Obtain reward: $r_t = R$
- 15: Update Q-table: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \cdot [r_t + \delta \cdot \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) Q(s_t, a_t)]$
- 16: Update next state: $s_{t+1} = \lceil \frac{r_t \cdot s_n}{R_{max}} \rceil$
- 17: end while

Deep Q-learning

Deep Q-learning

