Page 1 of 6 BATTERY ELECTRODE AND METHOD OF MAKING THE SAME George Cintra et al. 10/034,901 08935-249001

1/6

Page 2 of 6
BATTERY ELECTRODE AND METHOD OF MAKING THE SAME
George Cintra et al.
10/034,901
08935-249001

PDA Performance Intermittent Drain @ 62 mA LiCoO₂ system

all the true and the true that the true and the court and the court are then the true that the true

FIG. 5

the state and the state of the

		·				
Discharge	Energy Density to 1.8V Cutoff (mAh/g) [efficiency]	116 [93%]	113 [86%]	120 [99%]	114 [93%]	106 [96%]
	Service Hours to 1.8V @250 mW PDA	203	203	206	190	182
Charge	Charge Capacity (mAh/g)	125	132	121	123	110
	Current Density (mA/cm ²)	0.40	0.38	0.38	0.39	0.38
	Bulk Porosity (%)	27.4	25.8	25.9	25.0	24.9
	Cathode Thickness (mm)	0.810	0.806	0.812	0.796	0.789
	Binder Wt%	4.0	4.9	4.9	5.8	5.8
	Cell	A1	<u>8</u>	B2	ರ	23

FIG. 6

	,					
Cell	Electrode Thickness (mm)	Current Density (mA/cm ²)	Charge Capacity (mAh/g)	Bulk Porosity (%)	Service Hours @250 mW PDA	mAh/r to Cutoff
-	0.173	0.37	135	21.1	42	108
2	0.181	0.37	134	24.3	40	101
က	0.483	0.41	130	21.0	100	94
4	0.599	0.37	132	21.6	177	120
5	0.734	0.39	122	23.1	175	112

FIG. 7

Cell	Cathode Thickness (mm)	Current (mA)	Power (mW)
Α	.102	240	912
В	0.267	160	608
С	0.558	40	152
D	0.667	35	133
Е	0.700	25	95
F	1.08	21	80