The effect of a Formula One driver's age on their performance

A Bayesian analysis

Miro Kaarela, Roope Kausiala, Tatu Timonen January 25, 2022

INTRODUCTION

- Formula One (F1) is the most prestigious and popular auto racing league in the world
- It is a well-known fact that motor skills and reflexes of adults deteriorate with age
- In our analysis we explore the effect of F1 drivers' age on their performance

DATA AND ON QUANTIFYING PERFORMANCE

- We utilize the Ergast F1 dataset [1]
- In F1, there is a qualifying event before every race
 - We consider the time difference between a driver and his teammate on their respective best qualifying rounds as a performance measure
- We further pool the obtained time difference data according to drivers' age

TIME DIFFERENCE TO TEAMMATE IN QUALIFYING

SEPARATE

 The distributions for the parameters of the model are different for each age:

$$\begin{split} t_i &\sim \mathrm{N}(\mu_{\mathrm{age}(i)}, \sigma_{\mathrm{age}(i)}), \\ \mu_{\mathrm{age}(i)} &\sim \mathrm{N}(0, 1), \\ \sigma_{\mathrm{age}(i)} &\sim \mathrm{N}(0, 1). \end{split}$$

HIERARCHICAL

 As with separate, but the parameters of the distributions yielding the model parameters come from hyperpriors:

$$t_i \sim \mathrm{N}(\mu_{\mathrm{age}(i)}, \sigma_{\mathrm{age}(i)}),$$
 $\mu_{\mathrm{age}(i)} \sim \mathrm{N}(\mu_{\mathrm{unknown}_{\mu}}, \tau_{\mu}),$ $\mu_{\mathrm{unknown}_{\mu}} \sim \mathrm{N}(0, 1),$ $\tau_{\mu} \sim \mathrm{N}(0, 1),$ $\sigma_{\mathrm{age}(i)} \sim \mathrm{N}(\mu_{\mathrm{unknown}_{\sigma}}, \tau_{\sigma}),$ $\mu_{\mathrm{unknown}_{\sigma}} \sim \mathrm{N}(0, 1),$ $\tau_{\sigma} \sim \mathrm{N}(0, 1).$

SEPARATE WITH ADDITIONAL TEAMMATE PARAMETERS

· Consider a parameter shifting the model mean:

$$t_i \sim \mathrm{N}(\mu_{\mathrm{age}(i)} + \alpha_{\mathrm{teammate}(i)}, \sigma_{\mathrm{age}(i)}),$$
 $\mu_{\mathrm{age}(i)} \sim \mathrm{N}(0, 1),$ $\sigma_{\mathrm{age}(i)} \sim \mathrm{N}(0, 1),$ $\alpha_{\mathrm{teammate}(i)} \sim \mathrm{N}(0, 0.5).$

RESULTS WITH THE SEPARATE MODEL

RESULTS WITH THE HIERARCHICAL MODEL

RESULTS WITH THE SEPARATE MODEL WITH lpha

SUMMARY ON THE MODEL DIAGNOSTICS

- The convergence diagnostics were good for all models
- The separate model with α had the best cross-validation score (performed with loo)
 - · This is expected since it has additional information

$\mu_{\mathsf{AGE}(i)}$ DISTRIBUTIONS FOR THE HIERARCHICAL MODEL

$\mu_{ extsf{AGE}(i)}$ DISTRIBUTIONS FOR THE SEPARATE MODEL WITH lpha

lpha parameters for an arbitrary set of drivers

CONCLUSION

- It appears there is a degree of dependence between a driver's age and their performance
- The separate model with α , and the hierarchical model provide the best fit
- The models indicate that the age of 27 is where a driver reaches their zenith
 - This agrees to a decent extent with previous studies (e.g., [2]) on the effect of age to performance in other competitive regimes
 - $\cdot >$ 90% probability that μ of age 27 is the smallest (best)

REFERENCES I

T. Brieuc.
Ergast developer api.
http://ergast.com/mrd/.

J. J. Thompson, M. R. Blair, and A. J. Henrey.

Over the hill at 24: persistent age-related cognitive-motor decline in reaction times in an ecologically valid video game task begins in early adulthood.

PloS one, 9(4):e94215, 2014.