Discretizing continuous-time controllers

Kjartan Halvorsen

2021-07-08

Context

- ▶ Controller F(s) obtained from a design in continuous time.
- Need discrete approxmation in order to implement on a computer

Figure 8.1 Approximating a continuous-time transfer function, G(s), using a computer.

Source: Åström & Wittenmark

Warm-up exercise

Draw the Bode diagram for the transfer function

Discrete-time differentiation

Discretization methods

1. Forward difference. Substitute

$$s = \frac{z - 1}{h}$$

in F(s) to get

$$F_d(z) = F(s')|_{s'=\frac{z-1}{h}}.$$

2. Backward difference. Substitute

$$s=\frac{z-1}{zh}$$

in F(s) to get

$$F_d(z) = F(s')|_{s'=\frac{z-1}{zh}}.$$

Discretization methods, contd.

3. Tustin's method (also known as the bilinear transform). Substitute

$$s = \frac{2}{h} \frac{z - 1}{z + 1}$$

in F(s) to get

$$F_d(z) = F(s')|_{s'=\frac{2}{h}\cdot \frac{z-1}{z+1}}.$$

4. Ramp invariance. This is similar to ZoH, which is step-invariant approximation. Since a unit ramp has z-transform $\frac{zh}{(z-1)^2}$ and Laplace-transform $1/s^2$, the discretization becomes

$$F_d(z) = \frac{(z-1)^2}{zh} \mathcal{Z} \left\{ \mathcal{L}^{-1} \left\{ \frac{F(s)}{s^2} \right\} \right\}.$$

Frequency warping using Tustin's

Figure 8.3 Frequency distortion (warping) obtained with approximation.

The infinite positive imaginary axis in the s-plane is mapped to the finite-length upper half of the unit circle in the z-plane.

Exercise

Find the discrete approximation of the lead-compensator $F(s) = \frac{s+b}{s+a}$, and determine the pole for

1. Forward difference. Substitute

$$F_d(z) = F(s')|_{s'=\frac{z-1}{h}}.$$

2. Backward difference. Substitute

$$F_d(z) = F(s')|_{s'=\frac{z-1}{zh}}.$$

3. Tustin's approximation

$$F_d(z) = F(s')|_{s'=\frac{2}{h} \cdot \frac{z-1}{z+1}}$$
.

Forward difference exercise

Which of the below figures shows the correct mapping of the continuous-time poles using the **forward difference** z = 1 + sh with h = 1?

Backward difference exercise

Which of the below figures shows the correct mapping of the continuous-time poles using the backward difference $z = \frac{1}{1-sh}$ with h = 1?

