

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Радиотехнический» Кафедра ИУ5 «Системы обработки информации и управления»

Лабораторная работа №3 по дисциплине «Технологии машинного обучения»

Выполнил: студент группы РТ5-61Б М.А. Ходосов

Задание лабораторной работы:

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 3. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 4. Произведите подбор гиперпараметра K с использованием GridSearchCV и/или RandomizedSearchCV и кроссвалидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кроссвалидации.
- 5. Сравните метрики качества исходной и оптимальной моделей.

Лабораторная работа №3

Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей.

Цель рабораторной работы: изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

```
Подготовка датафреймов
```

Импорт библиотек

```
In [1]: import numpy as np import apandas as pd import seaborn as ns import matplotlib.pyplot as plt 'matplotlib inline sns.set(style="ticks")
```

Загрузим датасет, используется тот же самый, что и в первой ЛР.

```
In [2]: data = pd.read_table('https://ww4.stat.ncsu.edu/-boos/var.select/diabetes.tab.txt')

Out[2]: AGE SEX BMI BP SI S2 S3 S4 S5 S6 Y

0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151
```

```
0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151
1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75
2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141
3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206
4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135
```

Проверим наличие пропусков:

Выберем параметр 'Y' как целевой. Отберем доп параметры:

```
In [4]: nparr = data.to_numpy()
    data_regr = pd.DataFrame(nparr.take([0, 2, 3, 6, 7, 8, 9, 10], 1), columns=data.columns.take([0, 2, 3, 6, 7, 8, 9, 10]))
    data_regr.head()
```

```
        AGE
        BMI
        BP
        33
        84
        SS
        S6
        Y

        0
        59.0
        32.1
        101.0
        38.0
        4.0
        48598
        87.0
        151.0

        1
        48.0
        21.6
        87.0
        70.0
        3.0
        38916
        69.0
        75.0

        2
        72.0
        30.5
        93.0
        41.0
        4.0
        42728
        85.0
        141.0

        3
        24.0
        25.3
        84.0
        40.0
        5.0
        4.8003
        89.0
        206.0

        4
        50.0
        23.0
        101.0
        52.0
        4.0
        4.2095
        80.0
        135.0
```

Сделаем копии фреймов с масштабированием

```
In [5]: from sklearn.preprocessing import MinMaxScaler

sc = MinMaxScaler()

# данные для perpeccur

data_regr_scaled = data_regr.copy()

for col in data_regr_scaled[col]] = sc.fit_transform(data_regr[[col]])

data_regr_scaled.describe()
```

[5]:		AGE	BMI	BP	S3	S4	S5	S6	Y
	count	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000	442.000000
	mean	0.491968	0.346107	0.459817	0.360889	0.291996	0.485560	0.503942	0.396054
	std	0.218484	0.182567	0.194807	0.167977	0.182010	0.183366	0.174187	0.240165
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	0.320833	0.214876	0.309859	0.237013	0.141044	0.357542	0.382576	0.193146
	50%	0.516667	0.318182	0.436620	0.337662	0.282087	0.478062	0.500000	0.359813
	75%	0.666667	0.465909	0.605634	0.464286	0.423131	0.610446	0.606061	0.580997
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

Метод KNN

Будем решать задачу регрессии для параметра 'Y

```
In [6]: data_unscaled = data_regr
data_scaled = data_regr_scaled
          sns.kdeplot(data = data unscaled, legend = False)
Out[6]: <AxesSubplot:ylabel='Density'>
```


In [7]: sns.kdeplot(data = data_scaled)

Out[7]: <AxesSubplot:ylabel='Density'>

Разделим выборку на обучающую и тестовую

```
In [8]: from sklearn.model_selection import train_test_split
                y_col = 'Y'
x_cols = data_unscaled.columns.tolist()
x_cols.pop(x_cols.index(y_col))
               data_unscaled_x_train, data_unscaled_x_test, data_unscaled_y_train, data_unscaled_y_test = train_test_split(
    data_unscaled[x_cols],
    data_unscaled[y_col],
    test_size_test_size_global,
    random_state=random_state_global
              data_scaled_x_train, data_scaled_x_test, data_scaled_y_train, data_scaled_y_test = train_test_split(
    data_scaled[x_cols],
    data_scaled[y_col],
    test_size-test_size_global,
    random_state=random_state_global
```

Получим произвольную модель

```
In [9]: from sklearn.neighbors import KNeighborsRegressor
```

```
K = 20
      knn_unscaled = KNeighborsRegressor(n_neighbors=K) knn_scaled = KNeighborsRegressor(n_neighbors=K)
      \label{linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_linear_
      \label{localization} $$ knn\_unscaled\_predict(data\_unscaled\_x\_test) $$ knn\_scaled\_prediction = knn\_scaled\_predict(data\_scaled\_x\_test) $$ $$ knn\_scaled\_prediction = knn\_scaled\_predict(data\_scaled\_x\_test) $$ $$ knn\_scaled\_prediction = knn\_scaled\_prediction = knn\_unscaled\_prediction = knn\_unscaled\_predict
```

Выведем метрики

```
In [10]: from sklearn.metrics import mean absolute_error, mean_squared_error, median_absolute_error, r2_score from sklearn.model_selection import ShuffleSplit, cross_val_score, cross_validate
                      def print_regression_metrics(type_of_data, y_test, y_predict):
    mean_abs_error = mean_absolute_error(y_test, y_predict)
    median_abs_error = median_absolute_error(y_test, y_predict)
    mean_sqr_error = mean_squared_error(y_test, y_predict)
    r2_sc = r2_score(y_test, y_predict)
                                print(type_of_data + f"1) Средняя абсолютная ошибка = {mean_abs_error}\n2) Медианная абсолютная ошибка = {mean_abs_error}\n2) Медианная абсолютная ошибка = {mean_abs_error}\n4) Коэффициент детерминации = {r2_sc}\n"
                      print_regression_metrics("Для немасштабированных данных\n", data_unscaled_y_test, knn unscaled_prediction)
print_regression_metrics("Для масштабированных данных\n", data_scaled_y_test, knn_scaled_prediction)
                      Для немасштабированных данных

1) Средняя абсолютная ошибка = 50.394723618090445

2) Медианная абсолютная ошибка = 44.349999999999993

3) Среднекваратичная ошибка = 3834.372449748744

4) Коэффициент детерминации = 0.26977708377111287
                      Для масштабированных данных

1) Средняя абсолютная ошибка = 0.1432880915480031

2) Медианная абсолютная ошибка = 0.12647975977881624

3) Среднежаратичная ошибка = 0.03264693908675928

4) Коэфмициент детерминации = 0.36721073190677426
```

```
In [11]: # Кросс-валидация по стратегии ShuffleSplit
                sc_strategies = ['neg_root_mean_squared_error', 'r2']
                data_unscaled_cv_scores = cross_validate(KNeighborsRegressor(
    n_neighbors = K),
    data_unscaled(x_cols),
    data_unscaled(y_col),
    scoring = sc_strategies,
    cv = ShuffleSplit(n_splits = 8,
    test_size = test_size_global,
    random_state = random_state_global
))
                data_scaled_cv_scores = cross_validate(KNeighborsRegressor(
    n_neighbors = K),
    data_scaled(x_cols),
    data_scaled(y_col),
                       data_scated[y_cot],
scoring = sc_strategies,
cv = ShuffleSplit(n_splits = 8,
test_size = test_size_global,
random_state = random_state_global
                print('\nKpocc-валидация для масштабированных данных')
for k, v in data_scaled_cv_scores.items():
    print(f'{k}: {v}')
                Кросс-валидация для немасштабированных данных fit_time: [0.00245357 0.00227809 0.00144815 0.00150037 0.00165081 0.00128722 0.00117074 0.00116101 0.00117074 0.00117074 0.00117074 0.00117074 0.00117074 0.0017074 0.0017074
                ს.სს.19083 0.00216556]
test_neg_root_mean_squared_error: [-61.92230979 -60.34481676 -62.84547912 -64.68622973 -61.37512857 -68.08585374 -59.42607571 -65.23437365]
test_rc: [0.62697708 0.3162452 0.344499719 0.32255879 0.31763546 0.24678482 0.31517729 0.2988317 ]
                Кросс-валидация для масштабированных данных
fit time: [0.00134516 0.00120449 0.00118076 0.00115013 0.00124431 0.00134873
0.00136518 0.00133276]
score_time: [0.0024476 0.00220477 0.00220692 0.00226736 0.00247625 0.002455
0.0024474 0.00250363]
                U.002444/4 U.00250303] test neg root mean squared_error: [-0.1795742 -0.17748036 -0.17241495 -0.17878493 -0.17348793 -0.18723816 -0.16125306 -0.18153811] test r2: [0.36721073 0.39055981 0.49201019 0.46676358 0.43820197 0.41304598 0.4803603 0.44948801]
                Получение оптимальной модели
                Найдем оптимальное значение К, используя решетчатый поиск
 In [12]: from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, KFold
                tested_parameters = {"n_neighbors" : np.array(range(1, 100, 6))}
                randomized\_grid\_search.fit(data\_unscaled[x\_cols],\ data\_unscaled[y\_col])
                randomized_best_param = randomized_grid_search.best_params_.get("n_neighbors")
print(randomized_best_param, randomized_grid_search.best_score_)
                13 -62.01787504257286
                Попробуем улучшить результат обычным решетчатым поиском
grid_search.fit(data_unscaled[x_cols], data_unscaled[y_col])
                non_randomized_best_param = grid_search.best_params_.get("n_neighbors")
print(non_randomized_best_param, grid_search.best_score_)
                13 -62.01787504257286
```

Обучим оптимальную модель

```
cv_found_knn_unscaled = KNeighborsRegressor(n_neighbors=non_randomized_best_param)
cv_found_knn_unscaled_fit(data_unscaled_x_train, data_unscaled_y_train)
cv_found_knn_unscaled_prediction = cv_found_knn_unscaled_predict(data_unscaled_x_test)
 print_regression_metrics("Немасштабированные данные, случайная модель\n", data_unscaled_y_test, knn_unscaled_prediction)
print_regression_metrics("Немасштабированные данные, оптимальная модель\n", data_unscaled_y_test, cv_found_knn_unscaled_prediction)
 р. III. гед езьзып_шестьсэ голосы подрожание данные, случайная модель

1) Средняя абсолютная ошибка = 50.394723618090445

2) Медианная абсолютная ошибка = 44.3499999999999

3) Среднежаратичная ошибка = 383.372449748744

4) Коэффициент детерминации = 0.26977708377111287
```

- Немасштабированные данные, оптимальная модель 1) Средняя абсолютная ошибка = 48.89331271743332 2) Медманная абсолютная ошибка = 39.46153846153834 3) Среднежаратичная ошибка = 3776.82884838334 4) Козффициент детерминации = 0.281925252141366

Теперь аналогично для масштабированных данных

Как мы видим, для масштабированных данных подбор гиперпараметра К не сильно изменил качество модели, а для немасштабированных улучшил.