

第01章 读取文件、 计算和绘图

顾立平

基本介绍

计算处理

对读取数据进行数学计算或逻辑处理,如 Python的NumPy库。

应用领域

科学实验用于数据展示和趋势分析,辅助解释实验结果。商业领域中,分析销售趋势、预测股票、评估网站流量,以支持决策。

编程三步曲

读取文件:从存储设备读取数据,如 Python的open()函数。

结果可视化

使用Matplotlib等库将计算结果绘制成图形,便于理解分析。

商业领域的应用介绍

CC 市场分析的统计摘要

快速评估市场趋势,识别机会与挑战,支持策略制定。

销售预测中的数据摘要

计算历史销售趋势,评估稳定性,构建准确预测模型。

客户分析的统计应用

解析客户特征,购买行为,制定个性化营销策略。

【【 商业决策的数据支持

概括数据关键信息,辅助科学决策,提升商业效能。

读取数据介绍

数据读取原理

从硬盘、数据库等导入数据到 内存,作为程序处理的第一步, 确保获取所需信息。

数据来源多样性

涵盖文件系统、数据库和网络 资源,涉及数据的序列化和反 序列化过程。

数据处理前提

读取数据是程序执行分析前的 必备步骤,对各种形式和来源 的数据进行处理。

科学领域的应用介绍

01

科学领域数据读取 关键性

涉及实验分析、大规模 数据处理、科学模拟与 建模,为科研活动提供 基础,确保数据准确性 和分析效率。 02

商业领域数据应用

包括市场分析、客户关系管理、金融风险管理与供应链管理,支持企业决策,提升运营效率和市场竞争力。

03

移除变量的重要性

科学领域运用特征选择 和降维技术提升模型性 能,商业领域通过数据 清洗和预测分析优化决 策,确保业务效果。

在科学领域的应用

物理学中的函数应用

牛顿第二定律、速度与加速度,通过函数揭示力、质量与加速度间的关系。

工程学中的函数应用

电路分析中的欧姆定律,电流、电压和电阻的关系以函数形式表达。

生物学中的函数应用

酶促反应速率与底物浓度的米氏方程, 非线性函数解析生物化学过程。

经济学中的函数应用

供给需求函数分析市场趋势,成本收益函数帮助企业决策和财务评估。

在商业领域的应用

数据分析中,利用线性回归、指数平滑函数揭示数据关系,预测销售趋势。

商业领域函数应用

通过成本函数、收益函数比较定价策略,构建满意度函数评估服务策略效果。

市场策略制定

预测模型构建

基于函数的ARIMA模型用于时间序列分析,预测未来市场走向,支持决策制定。

在商业领域的应用

计算矩形面积应用

在房地产中,计算矩形面积确定房产价值,为定价提供依据。

建筑与工程设计

计算矩形面积帮助工程师规划 结构,计算材料需求,确保项 目顺利进行。

制造业生产优化

通过计算原材料面积,优化生产流程,提高资源利用率,降低生产成本。

三角形面积计算基础

介绍几何学基本任务,理解二维空间中三角形所占区域,涵盖底乘高、海伦公式和三角函数计算方法。

计算三角形面积

在科学领域的应用

三角形面积 计算应用

涵盖物理学的流体 力学计算,工程学 结构设计,地理学 地图制作,体现其 科学价值。

商业领域中 的应用

在房地产评估地块, 建筑学材料计算, 制造业优化生产中, 计算三角形面积发 挥关键作用。

分段函数概 念解析

分段函数是根据x值 范围使用不同解析 式的函数,用于描 述和解决涉及多个 不同规则的数学或 实际问题。

001 绘制曲线图

分段函数在科学 领域的应用介绍

在科学领域,分段函数因其能够精确描述复杂、非线性关系的能力而被广泛应用。以下是一些具体的应用场景

物理学:

物理现象的数学描述

分段函数用于描述物理量的变化 范围,如弹簧振子振动时位移随 时间的关系,不同区间对应不同 函数关系,体现约束条件。

函数在物理研究中的应 用

在研究机械振动、电磁波传播等现象时,通过定义函数的定义域确定物理量的变化规律,分段函数能精确刻画其状态转变。

生物学与医学:

01

分段函数在生物学中的应用

描述生理状态变化,如药物浓度与药效的关系,当浓度超过阈值时,药效增长可能不再线性。

02

药物浓度与药效分析

利用分段函数,体现浓度不同区间内,药效的不同响应模式,可能在高浓度时出现饱和或峰值。

003 读取数据

```
>
> # 注意: 应该下载Arctic-Ice-Data-R.csv文件并将其放置在一个文件夹中。
> # 更改目录, 使其指向包含该文件的文件夹。
> # (注意: 此行为注释,实际代码中并未包含更改目录的操作,通常需要使用setwd()函数$
>
> # 读取名为"Arctic-Ice-Data-R.csv"的CSV文件,该文件包含表头,并且使用逗号作为分$
> # 读取的数据被存储在变量Ice中。
> Ice = read.table("Arctic-Ice-Data-R.csv", header=TRUE, sep=",")
>
> # 輸出变量Ice中的列名,以查看数据的各个字段。
> names(Ice)
                       "Years.after.1970"
                                           "March.Extent.in.MSK"
[1] "Year"
[4] "June.Extent.in.MSK"
                       "September.Extent.in.MSK"
```


分段函数在商业领域的应用介绍

分段打折策略,购买数量不同阶段对应不同折扣,如100件内不打折,101-500件打8折,超过500件打6折。

销售策略制定

业绩奖金计算

销售团队根据业绩分段获取奖金,如销售额100万内5%奖金,100-200万8%,超过200万10%。

信用评级与贷款

银行利用分段函数评估客户信用,不同收入和还款记录等级对应不同贷款额度和利率。

阶梯函数在商业应用

阶梯函数用于计算销售提成、定价策略和市场分析, 如根据购买数量或客户类型设定不同奖励或价格水

平。

什么是极坐标

01

极坐标概念

由牛顿创立,定点O,射线Ox为极轴,ρ为极径,θ为极角,(ρ,θ)代表平面点的位置。

02

极坐标发展

经伯努利、皮科克等人推动完善, 定点、极轴、长度单位和角度方 向构成的坐标系统。 03

坐标表示方式

用极径和极角描述平面内点的位置,有序数对(ρ,θ)即为极坐标表示。

物理学:

01

极坐标在物理学中的应用

涵盖旋转对称性现象,如磁场中粒子轨迹、电磁波传播,直观表示, 便于计算。

02

量子力学中的极坐标

波函数常用极坐标描述,因动量、 角动量等物理量呈现极坐标特性。

工程学:

极坐标系统应用

涵盖工程学多个领域,如建筑设计、机械工程和航空航天,便于描述旋转对称结构。

信号处理中的极坐标

在音频信号处理中,极坐标用于 表示声音幅度和相位信息,简化 数据分析。

地理学中的极坐标应用

在地图制作和导航中发挥作用, 特别是在极地地区的特殊导航需求。

工程学:

数学中的极坐标工具

解析几何、复变函数等领域不可或缺, 简化圆锥曲线等复杂问题的求解。

市场分析中的极坐标应用

分析市场份额和消费者偏好,以极径 和极角展示市场结构和竞争态势。

金融分析中的极坐标

用于描绘资产价格波动,帮助分析市场趋势,优化投资组合选择。

002 显示统计摘要

商业绘图与设计:

01 极坐标系统应用

用于创建旋转对称图案,如螺旋线、花瓣, 常见于广告和包装设计,简化复杂图形描述。

02 商业设计创新

借助极坐标绘制独特视觉图形,增强美感和吸引力,有效应用于广告和产品包装, 提升设计效果。

什么是参数方程

数学概念,曲线上点的x,y由t函数 决定,x=f(t),y=g(t),t为参数, x,y为因变量。

"

与直接给出坐标关系的普通方程不同,参数方程用参数表示点,某些情况下更方便直观。

33

在处理复杂曲线和曲面时,参数方程能更直观地描述,提供了一种有效的表示方法。

"

参数方程定义

与普通方程对比

参数方程应用

004 移除变量

```
- - X
R Console
> #####
> # 移除名为Ice的变量(如果它之前存在的话),释放内存空间
> rm(Ice)
> # header=TRUE 表示该文件的第一行是列名(表头)
> # sep="," 表示数据中的字段是用逗号分隔的
> # 读取后的数据框 (data frame) 赋值给变量Ice
> Ice = read.table("Arctic-Ice-Data-R.csv", header=TRUE, sep=",")
> head(Ice)
 Year Years.after.1970 March.Extent.in.MSK June.Extent.in.MSK
1 1979
                                 16.34
                                                 12.53
                   9
2 1980
                  10
                                16.04
                                                 12.20
3 1981
                  11
                                 15.63
                                                12.43
4 1982
                  12
                                16.04
                                                 12.48
5 1983
                  13
                                16.09
                                                 12.30
6 1984
                  14
                                 15.58
                                                 12.15
  September.Extent.in.MSK
1
                  7.05
                  7.67
                  7.14
                  7.30
                  7.39
                  6.81
```


参数方程在 科学领域的 应用介绍

参数方程在科学 领域有着广泛的 应用,以下是几 个具体的应用场 景

物理学:

涵盖行星运动轨迹、摆线、电磁 波传播、机械设计、航空航天等 领域,描述物体动态和结构特性。

产品设计中调整参数生成不同模型,市场分析预测趋势,金融产品建模辅助决策,展现多行业价值。

数据处理定义动态流程,模拟仿 真构建灵活系统,算法设计实现 定制化策略,促进科学计算的灵 活性和效率。

商业领域的应用介绍

01 软件开发中的返回函数

常见于框架和库设计,如Web开发中的路由处理,返回响应处理函数,增强代码灵活性和可重用性。

102 业务逻辑处理与返回函数 用于封装复杂业务规则,返回的函数使得逻辑组合、重用和测试更为简便。

API返回函数设计 实现回调和中间件模式,通过函数作为参数或返回值, 创建更灵活、可扩展的API接口。

005 定义函数

006 计算矩形面积

```
R R Console
                                                 - - X
              7.39
              6.81
> ## 定义一个数学函数f(x), 计算了f(3)的值, 并使用curve函数绘制了这个函数在指定$
> # 定义一个函数f, 该函数接收一个参数x, 函数体是x的平方乘以sin(x)的结果。
> f=function(x) {x^2*sin(x)}
> # 调用函数f, 并传入参数3, 计算3的平方乘以sin(3)的结果, 并打印出来。
> f(3)
[1] 1.27008
> # 使用curve函数绘制函数f的图像, x轴的范围是从-5到5。
> # 这将生成一个图形,展示f(x)在[-5,5]区间内的曲线。
> curve(f,-5,5)
> ## 定义一个计算矩形面积的函数,并通过具体参数调用了这个函数,得到了一个4x6矩$
> # 定义一个名为rectangle.area的函数,该函数接收两个参数1(长度)和w(宽度)
> # 函数的功能是计算矩形的面积,通过将长度1与宽度w相乘得到结果
> rectangle.area=function(1,w){1*w}
> # 调用上面定义的rectangle.area函数,并传入长度4和宽度6作为参数
> # 函数将返回这两个参数的乘积,即矩形的面积,此处为4乘以6等于24
> # 该结果将被打印到控制台
> rectangle.area(4,6)
[1] 24
```


007 计算三角形面积

```
R Console
                                                   0 0
                                                        23
> # 函数的功能是计算矩形的面积,通过将长度1与宽度w相乘得到结果
> rectangle.area=function(1,w){1*w}
> # 调用上面定义的rectangle.area函数,并传入长度4和宽度6作为参数
> # 函数将返回这两个参数的乘积,即矩形的面积,此处为4乘以6等于24
> # 该结果将被打印到控制台
> rectangle.area(4,6)
[1] 24
> ## 定义一个根据三角形的三边长来计算其面积的函数,并通过具体参数(边长3,4,5$
> # 定义一个名为area.triangle.sides的函数,用于计算给定三边长的三角形的面积
  函数接收三个参数a, b, c, 分别代表三角形的三条边长
> # 函数内部使用海伦公式 (Heron's formula) 来计算三角形的面积
> area.triangle.sides=function(a,b,c){
    # 计算半周长p, 即三条边长之和的一半
   p = (a+b+c)/2
    # 使用海伦公式计算三角形的面积,并返回该值
    # 海伦公式为: 面积 = sqrt[p * (p - a) * (p - b) * (p - c)]
    sgrt((p)*(p-a)*(p-b)*(p-c))
> # 调用上面定义的area.triangle.sides函数,并传入边长3, 4, 5作为参数
> # 函数将返回这个三角形的面积,对于边长3,4,5的直角三角形,面积应为6
> area.triangle.sides(3,4,5)
[1] 6
>
4
```


总结

返回函数功能

编程工具,用于代码抽象、模块化、延迟执行和组合,提升开发效率与软件质量。

应用领域

返回函数广泛应用于科学计算和商业逻辑,实现复杂任务的简化和高效处理。

计算毕达哥拉斯三元组的函数

01

编程实现

通过穷举法或数学公式法 生成满足a² + b² = c²的 正整数三元组,实现毕达 哥拉斯三元组计算。 02

几何与数论应用

在几何学中描述直角三角 形边长关系,数论中探究 生成规律和与其他定理的 联系。 03

软件与游戏开发

软件开发中用于特定算法, 如图形处理和数据分析; 游戏开发中构建直角相关 元素。 04

教育实践

教育工具中帮助学生理解 和验证毕达哥拉斯定理, 提升数学原理的掌握。

008 分段函数

```
R Console
> ## 绘制一个分段函数在[-3,3]区间的图像,并用点来表示函数值,并且清晰
> # 定义一个分段函数f.piecewise, 该函数根据x的值返回不同的结果
> # 如果x小于2,则返回sin(x);否则返回x的平方
> f.piecewise=function(x){ifelse(x<2,sin(x),x^2)}
> # 调用f.piecewise函数,并传入参数-n/4,计算并返回该点的函数值
> f.piecewise(-pi/4)
[11 -0.7071068
> # 使用curve函数绘制f.piecewise函数在[-3,3]区间的图像,使用点来表示图
> # 设置v轴标签为"A Piecewise Function"
> curve(f.piecewise,-3,3,type="p",ylab="A Piecewise Function")
> # 在当前图形上添加网格线, 网格线颜色为黑色
> grid (NULL, NULL, col="black")
> # 再次使用curve函数,但这次不绘制函数值(type="n"),仅为后续的绘图
> # 设置v轴标签为"A Piecewise Function"
> curve(f.piecewise, -3, 3, type="n", ylab="A Piecewise Function")
> # 在当前图形上添加网格线, 网格线颜色为黑色
> grid(NULL, NULL, col="black")
> # 在[-3,1.95]区间上绘制f.piecewise函数的图像,线条宽度为2,添加到当
> curve(f.piecewise, -3, 1.95, add=TRUE, 1wd=2)
```


009 阶梯函数

010 极坐标

011 参数方程

```
R Console
> ## 两个函数x和y都接受一个参数t,并根据给定的公式计算结果
> # 定义一个函数x, 其输入是t, 输出是根据给定公式计算的结果
> x=function(t) (sin(t)*(exp(cos(t))-2*cos(4*t)-(sin(t/12))
> # 定义一个函数y, 其输入是t, 输出是根据给定公式计算的结果
y=function(t)(cos(t)*(exp(cos(t))-2*cos(4*t)-(sin(t/12))
> # 定义一个函数Butterfly, 其输入是t
> # 该函数会返回一个由x(t)和y(t)组成的向量
> Butterfly=function(t) {return(c(x(t),y(t)))}
> # 调用Butterfly函数,并传入参数2*pi,但此处并未对返回的
> Butterfly(2*pi)
[1] -1.682687e-16 6.870318e-01
> # 设置图形参数, mar参数用于定义图形区域的边距, c(1,1,1,
> par (mar=c(1,1,1,1))
> # 生成一个从0到12*pi的序列,步长为0.001,并将这个序列赋
> t.values=seq(0,12*pi, 0.001)
> # 使用plot函数绘制图形
> # x轴使用x(t.values)的结果, y轴使用y(t.values)的结果
> # type="1"表示绘制线图
> # col="purple"表示线的颜色是紫色
```


012 抛物线的几何定义

```
R Console
                                                             R Graphics: Device 2 (ACTIVE)
                                                                                                  - - X
> y.max = 20
> # 定义一个函数g, 它接受一个参数x
   = function(x) {
   # 在函数g内部定义另一个函数f, 它接受一个参数y
                                                              7
   f = function(y) {
    # 函数f计算表达式sgrt(x^2 + (1-y)^2) - y的值
    sqrt(x^2 + (1 - y)^2) - y
                                                              9
   #使用uniroot.all函数从rootSolve包中寻找函数f在区间[0, y.max]内的所有根
                                                              \infty
   # 并返回这些根的信息
   return(uniroot.all(f, c(0, y.max)))
                                                              9
> # 调用函数g, 并传入参数0, 得到x=0时函数g的结果
> a(0)
                                                              4
[1] 0.5
                                                              N -
> # 使用Vectorize函数将g函数向量化,使其能够处理向量输入
> h = Vectorize(g)
                                                              0
> # 设置图形参数, mar设置图形四边的边距, c(5,3,3,2)分别代表图形下、左、上、
> par(mar = c(5, 3, 3, 2))
> # 使用curve函数绘制函数h的图像, x的范围是[-5,5], 线宽为4, y轴标签为空
```

013 返回函数的函数

014 计算毕达哥拉斯三元组的函数

```
R Console
                                                  - - X
> ## 计算毕达哥拉斯三元组的函数
> # 定义一个名为Euclid1的函数,它接受两个参数n和m
> Euclid1=function(n,m) {
    # 初始化一个长度为3的数值型向量triple
    triple=numeric(3)
    # 使用毕达哥拉斯三元组的公式来计算triple的三个元素
                           # triple的第一个元素是m的平方减去n的平方$
   triple[1]=m^2-n^2
                           # triple的第二个元素是2乘以m和n的乘积
   triple[2]=2*m*n
                           # triple的第三个元素是m的平方加上m的平方$
   triple[3]=m^2+n^2
    # 返回计算好的triple向量
   return (triple)
> # 调用Euclid1函数,并传入参数2和3,然后打印返回的结果
> Euclid1(2,3)
[1] 5 12 13
> # 定义一个名为Euclid2的函数,它也接受两个参数n和m
> Euclid2=function(n,m){
    # 检查m是否大于n
  if (m > n) {
      # 如果m大于n,则执行以下操作:
```


015 生成毕达哥拉斯三元组

016 -017绘图

018 绘图

数据科学R与Python实践

谢谢

gulp@mail.las.ac.cn