CACHE DESIGN (I) https://tutorcs.com

Lecturer: Hui Annie Guo We Chat: cstutorcs

h.guo@unsw.edu.au

K17-501F

Lecture overview

- Topics
 - Basic cache structures
 - Direct mappaignanent Project Exam Help
 - Fully associative cache
 - Set associative teachetutores.com

WeChat: cstutorcs

- Suggested reading
 - H&P Chapter 5.3

Recall: Overview of memory hierarchy

- memory ↔ disks
 - by hardware and operating system (virtual memory)
 - by the programmer

Cache

- A hardware component on the processor chip
 - a smaller, faster memory
- To achieve a high cache hit rate, data need to be dynamically transfeired between cache and main memory https://tutorcs.com
 Based on the principle of locality
- A data block Maylcontainomultiple bytes/words
 - Further discussion will follow

Cache (cont.)

- To control of the operation of cache, four issues should be addressed
 - Where to put a memory block in cache?
 - · Block placement steate Project Exam Help
 - How to find a memory block in cache?
 - Block identification://tutorcs.com
 - If there are no free spaces in cache, which block will be replaced by a new methory block?
 - Block replacement
 - When memory data is updated, how is cache involved in the write operation?
 - Write strategy

Cache (cont.)

- There are three typical cache structures
 - Directed mapped cache

 - Fully associative cache
 Set associative cache

https://tutorcs.com

WeChat: cstutorcs

Direct mapped cache

- A memory block can map to one and only one cache location
 - For a cache of 2^m blocks, a memory block with (block) address X maps to the cache location

 X mod 2^m https://tutorcs.com
- See an example in the next slide

Direct mapped cache - example

Cache basics fields

- A cache consists of multiple entries
- A cache entry has at least following fields
 - Valid
 - Assignment Project Exam Help
 Indicating whether the cache entry holds valid data
 - Data https://tutorcs.com
 - Storing memory data blocks
 - A data block (cathernal atthemulation about of memory data that can be transferred between cache and main memory
 - Tag
 - Identifying the memory data block cached

Index	V	Tag	Data
000			
001			
010			
011			
100			
101			
110			
111			

Example

- Assume the following memory locations are accessed in sequence. How is the cache updated?
 - · 10110, 11010; groot, Project Exam Help

	П	https://tu	itores.com
Index	V	Tag	Data
000	N	WeChat	: cstutorcs
001	N		
010	N		
011	N		
100	N		
101	N		
110	N		
111	N		

- Assume the following memory locations are accessed in sequence. How is the cache updated?
 - 10110, 11010; 910000, Project Exam Help
 - After handling a miss ρη reference to address 10110

Index	V .	Tag	Data
000	N	wecnat	cstutores
001	N		
010	N		
011	N		
100	N		
101	N		
110	Y	10	mem[10110]
111	N		

- Assume the following memory locations are accessed in sequence. How is the cache updated?
 - 10110, 11010; 910000, Project Exam Help
 - After handling a miss on reference to address 11010

Index	٧,	We Taghat	Data CStutores
000	N	VVCIIdt	. Obtatoros
001	N		
010	Υ	11	mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	mem[10110]
111	N		

- Assume the following memory locations are accessed in sequence. How is the cache updated?
 - 10110, 11010; 910000, Project Exam Help
 - After handling a miss on reference to address 10000

Index	V.	Tag	Data
000	Υ	WeChat	: Cstutores mem[10000]
001	N		
010	Υ	11	mem[11010]
011	N		
100	N		
101	N		
110	Υ	10	mem[10110]
111	N		

- Assume the following memory locations are accessed in sequence. How is the cache updated?
 - 10110, 11010; 910000, Project Exam Help
 - After handling a miss ρη reference to address 00010

Index	٧	We c hat	Data
000	Υ	10	mem[10000]
001	N		
010	Υ	00	mem[00010]
011	N		
100	N		
101	N		
110	Υ	10	mem[10110]
111	N		

Cache block

- A cache block, aka a cache line, is the smallest section of data that can be fetched from cache
 - · Represented by a single tag Exam Help
 - Often contains the bytes words to facilitate storing spatially related data
 - The size is often a power to two addressable units
- See an example in the next slide
 - 32-byte block

1 KB direct mapped cache with 32-byte blocks

- Give the 32-bit memory byte address
 - The uppermost (32 10) bits of the address are the cache tag
 - The lowest 5 bits are the byte select

Block size

- Larger block size takes advantage of spatial locality
- But larger block size means larger miss penalties
 - It takes longer time to copy a block
 - If the block size is too big there are too few blocks in cache and the miss rate will go up to ject Exam Help
 - One extreme case is discussed in the next slide
- Trade-off should be played based on the average access time
 WeChat: cstutores
 - Hit Time + Miss Penalty x Miss Rate

One extreme case: 1-block cache

Valid Bit	Cache Tag	Cache Data				
		byte 3	byte 2	byte 1	byte 0	

- Only one entry in the cache
 - cache sizesignment Broject Exam Help
- Potential problem/?tutorcs.com
- Ping Pong effect/thrashing
 WeChat: cstutorcs
 The locality says if a memory data item is accessed, it will likely be accessed again soon. But it is unlikely that it will be accessed again immediately!!!
 - Causes large conflict misses
 - Will be discussed later
 - An example is given in the next slide

Ping-Pong effect - example

1-block cache for instruction memory

Valid Bit	Cache Tag	Cache Data
		word 3 word 2 word 1 word 0

• Instruction execution flow

Assignment Project Exam Help

- instruction sibetps: workdres.com
- Cache data field contentsorcs

Class exercise

• If the cache shown in the previous slide is restructured into two blocks with the same cache size, how are the cache contents changed? Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Solution 1: making the cache size bigger

Example, double the cache size

Solution 2 – multiple entries for a memory block

- Fully associative cache
- Set associative George Exam Help

https://tutorcs.com

WeChat: cstutorcs

Fully associative cache

- A memory block can be mapped to any location in the cache.
- Full cache needs to be searched for a memory block
 - Assume cache size is Mblocks. We need Mcomparators for a fully associative cache -- costly

n-way set associative cache

- Cache is divided into sets
- Each set has n blocks
 - A memory block can be stored in any location in the set
- n comparators are required to search a block in a set

 WeChat: cstutorcs
- An example is given in the next slide

2-way set associative cache

In-class exercise 1

Give an 8-block cache, how is the memory block 12 (i.e. 12 is the block address) is placed in the cache? Assume the cache is

- Fully Assignative Project Exam Help
- 2) Direct mapped

 https://tutorcs.com

 3) 2-way set associative

WeChat: cstutorcs

In-class exercise 2

Given a 2-way set associative cache that has

Block size: 4 bytes

Cache size: 64 bytes

How to find whether Mem(0x001B) is cached?

