Aguilar Cruz María del Rosario Solis Carrera Juan Antonio Instrumentación del laboratorio clínico. Uso del software NCSS

NCSS es un software estadístico que permite realizar gran variedad de procedimientos estadísticos. En este documento se tomarán en cuenta 6 procedimientos que son los más comunes para el uso de los datos obtenidos en el laboratorio clínico, se ejemplificara cada uno de ellos, así como los pasos a seguir para obtener los reportes.

Prueba t para una muestra.

La prueba t se utiliza para realizar inferencias sobre la población a partir de una muestra de esta.

Ejemplo.

Un investigador desea conocer si la media de una muestra es diferente de 130, de acuerdo con los datos obtenidos.

Fig. 1 Menús para cargar los datos del ejemplo

En la figura 1 se ilustra la localización de los menús para cargar los datos del ejemplo del peso para realizar la prueba t para una sola muestra.

		Analysis Graphics 1001	S VVI	muow r	reip							
	Weight C	ANOVA		e								
1	159	Appraisal Cluster Analysis		ed Rows								
2	155	Correlation Curve Fitting		5	6	7	8	9	10	11	12	13
3	157	1		C5	C6	C7	C8	C9	C10	C11	C12	C13
4	125	Design of Experiments Diagnostic Tests		General	General	General	General	General	General	General	General	General
5	103	Diagnostic rests Distribution Fitting										
6	122	Forecasting Group-Sequential										
7	101	Item Analysis										
8	82	Meta-Analysis	•									
9	228	Method Comparison Mixed Models		C5	C6	C7	C8	C9	C10	C11	C12	C13
10		Multivariate Analysis	•									
11		Nondetects Data Nonparametric										
12	110	8 Operations Research	•									
13	191	2 Quality Control										
14	151	Reference Intervals	•									
15		Regression Reliability		On	e Sample		•	One-	Sample T-Te	st		
16	119	1 ROC Curves			ired Sample	S	•	One-Sample T-Test for Non-Inferiority				
17	112	Survey Data Survival Analysis	,		o Samples ? Cross-Ove	r Designs	·	 One-Sample T-Test for Superiorit One-Sample T-Test for Equivaler 			rgin	
18	87	Time Series •	_	Mu	Itivariate Ana	alysis			- Indiana	- Lyano		
19	190	1 T-Tests 1 Two-Way Tables)	Me	thod Compa	arison	,					
20	0.7	Search by Keyword		⊭-× An	alysis of Two	-Level Des	gns					
21												

Fig. 2 Datos de la muestra de pesos y el menú en el que se selecciona la prueba t de una sola muestra.

Los datos cargados para realizar la muestra de la prueba t se muestran en la figura 2, así como la imagen del menú donde se encuentra la prueba t de una sola muestra.

Fig. 3 Muestra de los ajustes posibles para la prueba t de una sola muestra.

Una vez seleccionado el procedimiento de la prueba t para una sola muestra, se debe cargar los datos para los cuales se va a realizar la prueba, como se desea conocer si la media es diferente a 130 se pone como hipótesis nula que la media sea igual a 130, obteniendo así los siguientes resultados.

One-Sample T-Test Report

C:\...\NCSS\NCSS 2019\Example Data\Weight.NCSS Dataset Response Variable Weight **Descriptive Statistics** Standard Standard Variable Count Mean Deviation Error Median 139.6 43.1221 9.642395 123.5 Weight 20 Two-Sided Confidence Interval of μ with σ Unknown 95.0% C. I. of μ Standard Standard Lower Upper Variable DF Count Mean Deviation Error Limit Limit Weight 20 139.6 43.1221 9.642395 2.0930 19 119.4182 159.7818 Two-Sided Confidence Interval of μ with σ Known 95.0% C. I. of μ Standard Upper Lower Variable Count Mean Error Limit Limit 8.944272 1.9600 122.0695 157.1304 Weight 20 139.6 40 Two-Sided Confidence Interval of the Median 95.0% C. I. of the Median Lower Upper Variable Median Limit Count Limit Weight 20 123.5 110 159

Estimation Resu	lts	Bootstrap Confidence Limit	s
Parameter	Estimate Conf. Level	Lower	Upper
Mean			
Original Value	139.6000 90.00	124.1050	155.0475
Bootstrap Mean	139.6219 95.00	121.3000	157.6500
Bias (BM - OV)	0.0219 99.00	113.9508	163.8495
Bias Corrected	139.5781		
Standard Error	9.4109		

Confidence Limit Type = Reflection, Number of Samples = 3000.

Bootstrap Histograms Section -

Two-Sided Confidence Interval of σ –

			95.0% C. I.	of σ
		Standard	Lower	Upper
Variable	Count	Deviation	Limit	Limit
Weight	20	43.1221	32.79395	62.98292

One-Sample T-Test -

Alternative Hypothesis	Mean	Standard Error	T-Statistic	DF	Prob Level	Reject H0 at $\alpha = 0.050$?
μ ≠ 130	139.6	9.642395	0.9956	19	0.33195	No
μ < 130	139.6	9.642395	0.9956	19	0.83402	No
μ > 130	139.6	9.642395	0.9956	19	0.16598	No

Power for the One-Sample T-Test ---

This section assumes the population mean and standard deviation are equal to the sample values.

Alternative				Power	Power
Hypothesis	N	μ	σ	$(\alpha = 0.05)$	$(\alpha = 0.01)$
μ ≠ 130	20	139.6	43.1221	0.15711	0.04833
μ < 130	20	139.6	43.1221	0.00458	0.00057
μ > 130	20	139.6	43.1221	0.24681	0.08081

One-Sample Z-Test -----

Alternative Hypothesis	Mean	σ	Standard Error	Z-Statistic	Prob Level	Reject H0 at $\alpha = 0.050$?
μ≠ 130	139.6	40	8.944272	1.0733	0.28313	No
μ < 130	139.6	40	8.944272	1.0733	0.85844	No
μ > 130	139.6	40	8.944272	1.0733	0.14157	No

Randomization Test (Two-Sided) -

Alternative Hypothesis: The distribution center is not 130. Number of Monte Carlo samples: 10000

Reject H0 Test Level at $\alpha = 0.050$? Randomization Test 0.32530 Νo

H1: Q ≠ Q0 Quantile Number Number H1: Q < Q0 H1: Q > Q0 Quantile (Q0) Prob Level Proportion Lower Higher Prob Level **Prob Level** 130 0.01 11 9 0.000000 0.000000 1.000000

Wilcoxon Signed-Rank Test -

Sum of	Mean	Std Dev	Number	Number Sets	Multiplicity
Ranks (W)	of W	of W	of Zeros	of Ties	Factor
126	105	26.77686	0	4	24
Test Type Exact* Exact* Exact*		Alternative Hypothesis Median ≠ 130 Median < 130 Median > 130	Z-Value	Prob Level	Reject H0 at $\alpha = 0.050$?
Normal Approxi	mation	Median ≠ 130	0.7843	0.43289	No
Normal Approxi		Median < 130	0.7843	0.78356	No
Normal Approxi		Median > 130	0.7843	0.21644	No
Normal Approx.	with C.C.	Median ≠ 130	0.7656	0.44392	No
Normal Approx.		Median < 130	0.8029	0.78899	No
Normal Approx.		Median > 130	0.7656	0.22196	No

^{*} The Exact Test is provided only when there are no ties.

Tests of Assumptions -

Assumption	Value	Prob Level	Decision ($\alpha = 0.050$)
Shapiro-Wilk Normality	0.9298	0.153381	Cannot reject normality
Skewness Normality	1.0233	0.306143	Cannot reject normality
Kurtosis Normality	-0.9607	0.336698	Cannot reject normality
Omnibus Normality	1.9702	0.373401	Cannot reject normality

Probability Plot of Weight -----

Average vs Difference Plot of Weight -----

El reporte anterior se observa como se realizan todos estadísticos, se tiene la media, la desviación estándar, la mediana, intervalos de confianza con el 95% para desviación estándar desconocida y conocida, histograma, pruebas de normalidad y la prueba t para la hipótesis nula, en este caso como se seleccionaron las 3 hipótesis alternas se obtiene le valor de probabilidad para cada una de ellas y en ningún caso se puede rechazar la hipótesis nula, por lo tanto se concluye que la media de la muestra es igual a 130.

Prueba t para muestras pareadas.

Este procedimiento sirve para realizar inferencias de las diferencias entre las medias de dos grupos a partir de dos muestras pareadas.

Ejemplo.

Se desea conocer la diferencia entre la llanta izquierda y la derecha.

Fig. 4 Menús para cargar los datos del ejemplo para la prueba t para muestras pareadas.

Como se detalló anteriormente en el menú de file, se tiene la opción de abrir datos de ejemplos y a continuación se abre una ventana donde se encuentran todos los datos, para este procedimiento se utilizarán los datos de las llantas.

Fig. 5 Datos de las muestras de la llanta derecha e izquierda y el menú en el que se selecciona la prueba t de muestras pareadas.

Para este ejemplo se tienen dos muestras de 14 elementos como se observan en el episodio 5, así como se ilustra el menú de análisis en donde esta la prueba t para muestras pareadas.

Fig. 6 Selección de las variables pareadas y los ajustes para correr la prueba t de muestras pareadas.

Como se observa en la figura 6 se cargan los datos de cada una de las variables pareadas, sin importar el orden, como se desea comparar las medias se pone como hipótesis nula que la diferencia entre ellas sea cero, además se seleccionan todas las demás opciones para poder documentar a que se refiere cada una de ellas.

Paired T-Test Report

C:\Program Files (x86)\NCSS\NCSS 2019\Example Data\Tire.NCSS Dataset

Paired 1 Variable RtTire

Paired 2 Variable LtTire
Paired Difference (RtTire) - (LtTire)

Descriptive Statistics ---

Descriptive state			Standard Deviation	Standard Error		95.0% LCL of	95.0% UCL of
Variable	Count	Mean	of Data	of Mean	T*	Mean	Mean
RtTire	14	50.5	13.96011	3.730996	2.1604	42.43967	58.56033
LtTire	14	52.57143	13.7657	3.679038	2.1604	44.62335	60.51951

Two-Sided Confidence Interval of the Mean Difference -----

					95.0% C. I.	of Mean Diff.		
		Mean	Standard	Standard			Lower	Upper
Statistic	Count	Difference	Deviation	Error	T*	DF	Limit	Limit
Mean Difference	14	-2.071429	5.225151	1.39648	2.1604	13	-5.088341	0.9454835

Bootstrap Section --

Estimation Result	•	Bootstrap Confidence Limi	ts
Parameter	Estimate Conf.	Level Lower	Upper
Mean Difference			
Original Value	-2.0714 90.00	-4.3571	0.0714
Bootstrap Mean Difference	-2.0542 95.00	-4.7857	0.4286
Bias (BMD - OV)	0.0172 99.00	-5.7139	1.1425
Bias Corrected	-2.0887		
Standard Error	1.3287		

Confidence Limit Type = Reflection, Number of Samples = 3000.

Bootstrap Histograms Section -

Da	irod	- Can	anla		oet
	II e u	-San	IIDIE	_	I E S L

Alternative Hypothesis	Mean Difference	Standard Error	T-Statistic	DF	Prob Level	Reject H0 at $\alpha = 0.050$?
Mean Diff. ≠ 0	-2.071429	1.39648	-1.4833	13	0.16182	No
Mean Diff. < 0	-2.071429	1.39648	-1.4833	13	0.08091	No
Mean Diff. > 0	-2.071429	1.39648	-1.4833	13	0.91909	No

Power for the Paired-Sample T-Test -

This section assumes the population mean of paired differences and standard deviation of paired differences are equal to the sample values.

Alternative				Power	Power
Hypothesis	N	μ	σ	$(\alpha = 0.05)$	$(\alpha = 0.01)$
Mean Diff. ≠ 0	14	-2.071429	5.225151	0.27964	0.10154
Mean Diff. < 0	14	-2.071429	5.225151	0.40555	0.16041
Mean Diff. > 0	14	-2.071429	5.225151	0.00112	0.00012

Randomization Test (Two-Sided) -

Alternative Hypothesis: The distribution center of paired differences is not 0. Number of Monte Carlo samples: 10000

	Prob	Reject H0
Test	Level	at $\alpha = 0.050$?
Randomization Test	0.16030	No

Quantile (Sign) Test — This Quantile test is equivalent to the Sign test if the Quantile Proportion is 0.5.

Null	Quantile	Number	Number	H1: Q ≠ Q0	H1: Q < Q0	H1: Q > Q0
Quantile (Q0)	Proportion	Lower	Higher	Prob Level	Prob Level	Prob Level
0	0.5	10	4	0 179565	0.089783	0.971313

Wilcoxon Signed-Rank Test ------

Sum of	Mean	Std Dev	Number	Number Sets	Multiplicity
Ranks (W)	of W	of W	of Zeros	of Ties	Factor
21	52.5	15.84692	0	3	126
Test Type Exact* Exact* Exact*		Alternative Hypothesis Median Diff. ≠ 0 Median Diff. < 0 Median Diff. > 0	Z-Value	Prob Level	Reject H0 at $\alpha = 0.050$?
Normal Approxir	mation	Median Diff. ≠ 0	1.9878	0.04684	Yes
Normal Approxir		Median Diff. < 0	-1.9878	0.02342	Yes
Normal Approxir		Median Diff. > 0	-1.9878	0.97658	No
	with C.C.	Median Diff. ≠ 0 Median Diff. < 0 Median Diff. > 0	1.9562 -1.9562 -2.0193	0.05044 0.02522 0.97827	No Yes No

^{*} The Exact Test is provided only when there are no ties.

Tests of Assumptions ----

Assumption	Value	Prob Level	Decision ($\alpha = 0.050$)
Shapiro-Wilk Normality	0.9103	0.159217	Cannot reject normality
Skewness Normality	1.3651	0.172212	Cannot reject normality
	1.9065	0.056589	
Kurtosis Normality			Cannot reject normality
Omnibus Normality	5.4982	0.063985	Cannot reject normality
Correlation Coefficient	0.929062		

Histogram of Differences ----

Probability Plot of Differences -----

Scatter Plot of Pairs -----

Average vs Difference Plot -----

En el reporte anterior se observan todos los datos que este nos proporciona de la diferencia de las muestras como inferencia de las poblaciones, para empezar se muestran los datos como la media, desviación estándar, mediana y error estándar de cada una de las muestras.

Posteriormente de ve el intervalo de confianza del 95% para la diferencia de las medias, en este caso se puede ver que el intervalo incluye al cero, por lo que sabemos que la hipótesis nula será confirmada indicando que las medias son iguales, posteriormente se encuentran los resultados de la prueba t donde se confirma la hipótesis nula, posteriormente se encuentra la potencia para cada una de las hipótesis alterna, la cual nos da información del nivel de confianza de estos resultados.

Además se encuentran los histogramas y otras gráficas de estos datos.

Análisis de varianza unidireccional

Este análisis se realiza para comparar más de dos grupos de datos para determinar si al menos uno de ellos es diferente en su media a los demás.

Ejemplo.

Se desea conocer la comparación entre el rendimiento de 3 tipos de maíz.

Fig. 7 Menú y nombre de los datos del ejemplo del análisis de la varianza unidireccional.

Se debe comenzar con cargar los datos del ejemplo dentro del menú file, abrir datos de ejemplo y cargar el archivo llamado Corn Yield como se muestra en la figura 7.

Fig. 8 Datos de ejemplos cargados y muestra del menú donde se encuentra el análisis.

Los datos son 3 tipos de maíz como se observa en la figura 8, posteriormente se debe abrir el menú del análisis de varianza unidireccional.

Fig. 9 Muestra de la configuración para llevar a cabo el análisis de las varianzas.

La figura 9 ilustra las configuraciones que se harán en este ejemplo para obtener el resultado deseado, comenzamos con las pruebas para validar la normalidad de los datos, posteriormente las pruebas para validar la igualdad de los datos y posteriormente marcamos las demás pruebas para poder obtener un análisis mas completo.

One-Way Analysis of Variance Report

Dataset Response C:\...\NCSS\NCSS 2019\Example Data\Corn Yield.NCSS

YIdC, YIdB, YIdA

Tests of the Normality of Residuals Assumption ---

Normality Attributes	Test Value	Prob Level	Reject Normality? (α =0.20)
Skewness	-0.1787	0.85814	No
Kurtosis	0.4200	0.67447	No
Skewness and Kurtosis (Omnibus)	0.2084	0.90106	No

Tests of the Equality of Group Variances Assumption -----

	Test	Prob	Reject Equal Variances?
Test Name	Value	Level	$(\alpha = 0.20)$
Brown-Forsythe (Data - Medians)	1.0866	0.34711	No
Levene (Data - Means)	1.0789	0.34964	No
Conover (Ranks of Deviations)	3.0747	0.21495	No
Bartlett (Likelihood Ratio)	3.0198	0.22093	No

Box Plot Section -----

Expected Mean Squares Table -----

Model		Term	Denominator	Expected
Term	DF	Fixed?	Term	Mean Square
A ()	2	Yes	σ^2	$\sigma^2 + sA$
Error	40	No		σ^2

Note: Expected Mean Squares are for the balanced cell-frequency case.

Analysis of Variance Table and F-Test ------

Analysis of Varian	ce rubie un	11-1030				Reject Equal	
Model		Sum of	Mean		Prob	Means?	Power
Term	DF	Squares	Square	F-Ratio	Level	$(\alpha = 0.05)$	$(\alpha = 0.05)$
Between	2	268532.4	134266.2	7.4740	0.00175	Yes	0.92528
Within (Error)	40	718574.3	17964.36				
Adjusted Total	42	987106.6					
Total	13						

Welch's Test of Means Allowing for Unequal Variances ---

Model	Numerator	Denominator		Prob	Reject Equal Means?
Term	DF	DF	F-Ratio	Level	$(\alpha = 0.05)$
Between Groups	2	24.27	8.0236	0.00211	Yes

Krus kal-Wallis One-Way ANOVA on Ranks ---

Hypotheses H0: All medians are equal. H1: At least two medians are different.

Test Results

		Chi-Squared	Prob	Reject H0?
Method	DF	· (H)	Level	$(\alpha = 0.05)$
Not Corrected for Ties	2	11.2674	0.00358	Yes
Corrected for Ties	2	11.2708	0.00357	Yes

Number Sets of Ties Multiplicity Factor

Group Detail

		Sum of	Mean		
Group	Count	Ranks	Rank	Z-Value	Median
YldC	14	437.50	31.25	3.3564	752
YldB	16	279.00	17.44	-1.8342	546
YldA	13	229.50	17.65	-1.4941	554

Normal Scores Tests ---

Hypotheses

H0: All group data distributions are the same.
H1: At least one group has observations that tend to be greater than those of the other groups.

Results

	(Chi-Squared	Prob	Reject H0?
Test	DF	(H)	Level	$(\alpha = 0.20)$
Terry-Hoeffding - Expected Normal Scores	2	10.9026	0.00429	Yes
Van der Waerden - Normal Quantiles	2	10.9819	0.00412	Yes

Descriptive Statistics -

Group	Count (ni)	Mean	Effect	Median	Standard Deviation	Standard Error √(MSE/ni)
All A:	43	608.7209	609.7473			
YIdC	14	722.3571	112.6099	752	127.8873	35.82134
YldB	16	557.5	-52.24725	546	104.6219	33.50779
YldA	13	549.3846	-60.36264	554	168.7629	37.17356

Plots of Means Section -

Duncan's Multiple-Comparison Test -

Response: YldC,YldB,YldA

Term A:

Alpha=0.050 Error Term=S(A) DF=40 MSE=17964.36

Group	Count	Mean	Different From Groups
YIdC	14	722.3571	YldB, YldA
YldB	16	557.5	YldC
YldA	13	549.3846	YldC

Notes:

This report provides multiple comparison tests for all pairwise differences between the means. According to Hsu(1996, page 130), the specified family-wise error rate (alpha) is overstated and the Tukey-Kramer method is recommended instead.

Planned Comparison: A: Custom Comparison 1

Response: YldC,YldB,YldA

Alpha=0.050 Error Term=S(A) DF=40 MSE=17964.36

Comparison Value=-565.6154 T-Value=7.3806 Prob>|T|=0.000000 Decision(0.05)=Reject Comparison Std Error = 76.63526 Comparison Confidence Interval = -720.501 to -410.7297

	Comparison								
Group	Coefficient	Count	Mean						
YldC	0	14	722.3571						
YldB	-2	16	557.5						
YldA	1	13	549.3846						

Notes

This section presents the results of the custom planned comparisons.

Krus kal-Wallis Multiple-Com	parison Z-Value Test (Dunn's	's Test)	

Variable	YldC	YldB	YldA					
YldC	0.0000	3.0063	2.8117					
YldB	3.0063	0.0000	0.0462					
YldA	2.8117	0.0462	0.0000					
Regular Test: Medians significantly different if z-value > 1.9600								
Bonferroni Test: Medians significantly different if z-value > 2.3940								

En el reporte del análisis que nos regresa el software primero podemos observar que se comprueba la normalidad de los datos y viendo los diagramas de cajas de los datos podemos esperar que el grupo A, la cual tiene una media mayor que los otros dos grupos, sea diferente en el análisis posterior de la diferencia entre grupos.

En las pruebas de igualdad de medias y varianzas se rechaza la hipótesis nula que indica que son iguales, por lo que se comprueba lo esperado a partir del análisis de las graficas de cajas. Más adelante del reporte tenemos diferentes resultados siendo los que nos interesan, el del test de Duncan el cual nos dice si los grupos son diferentes y con que otros grupos son diferentes, en este caso tenemos que el grupo A es diferente con el grupo B y C, para los grupo B y C nos reporta diferencia con el grupo A.

Control de calidad

Genera barras x y graficas de control R para las variables, las cuales sirven para monitorear la media y la variación de los datos en el transcurso del tiempo.

Ejemplo.

Se desea realizar el análisis de los limites del control de calidad, por lo que se cargan datos de 50 subgrupos de 5.

Fig. 10 Menú y nombre de los datos de ejemplo para control de calidad.

Para mostrar el resultado que nos regresa el software al realizar el procedimiento de control de calidad, se cargan los datos "QC" dentro del menú de abrir datos de ejemplo como se ve en la figura 10.

													Ana	lysis Graphics Tools	W	ndow	Help					
													1	ANOVA	+ [e						
													9	Appraisal	+	d Rows						
													9	Cluster Analysis Correlation	:							
	D1	D2	D3	D4	D5	C6	D1ext	D2ext	D3ext	D4ext	D5ext	C12	T	Curve Fitting	٠	5 C5	C6	C7	C8	9 C9	10 C10	C11
- 1		71	48	68	51	62	1					62	*	Descriptive Statistics	•	UD	Co	CI	Co	Ca	CIU	CII
2		59	73	70	71	63	1					63		Design of Experiments	٠.	Gener	al General	General	General	General	General	General
3		67	56	59	78	68	1				78	68		Diagnostic Tests	•		X-bar and R C		Contra	Contoral	Contorus	Contorui
4		67	71	77	67	73						73	T	Distribution Fitting	•							
5		62	70	67	62	59	1		70 (62	59		Forecasting			X-bar and s CI	nans				
6		72	81	53	65	58	2				65	58		Group-Sequential		9	X-bar Charts					
7		62	70	60	54	60	2					60	T.			-	R Charts					
8		67	56	68	69	69						69	1		-	Winds.	s Charts					
9		74	66	74	65	44	2				65	44			•							
10		73	59	63	71	68	2	73	59 (68		Method Comparison	•		CUSUM Chart	S				
11		52	73	64	82	74	3	52				74	4	Mixed Models	•	-	EWMA Charts					
12		69	68	63	69	77	3	69	58 6			77	3	Multivariate Analysis	•	455	Moving Averag	e Charts				
13		68	75	55	64	70	3			i5	64	70	7	Nondetects Data	+	Salaria.	Individuals an	d Moving Ra	nna Charte			
14		51	70	69	67	76	3	51	70 6	19	67	76	0	Nonparametric			Levey-Jenning	_	nge Onario			
15		79	77	66	61	61	3	79	77 6	56	61	61	2		.	4000	Levey-Jenning	is Charts				
16		75	63	73	64	75	4	75	53	13		75	8	Operations Research		Selgen	P Charts					
17		74	64	77	66	73	4	74	54	7		73	6	Тторогаоло	-	Sergera	NP Charts					
18		69	84	55	64	79	4	69	34 .	55	64	79	2	Quality Control	•	(Aligna	C Charts					
19		72	69	72	72	62	4	72	59	2	72	62	6	Reference Intervals	•	-	U Charts					
20		75	71	64	65	63	4	75	71 (63	3	Regression	+							
21		74	69	67	64	52	5	74	59 (57	64	52	6	Reliability	•		Analysis of Ru					
22		65	61	71	75	68	5	65	51	1	75	68	1	ROC Curves	•	1	Capability Ana	lysis				
23		64	70	74	65	70	5	64	70 7	4	65	70	5	Survey Data		0	Lag Plots					
24		68	79	55	63	65	5	68	79 5	i5	63	65	9	Survival Analysis			Pareto Charts					
25		67	63	61	67	53	5	67	53 (i1	67	53	9		-	9555	R & R Study					
26		69	59	77	89	57	6	69	59 7	7	89	57	8	Time Series	١.		Tolerance Inte	rvals				
27		60	74	83	75	53	6	60	74 8	13	75	53	1	T-Tests	•							
28		78	72	71	49	78	6	78	72 7	1	49	78		Two-Way Tables	٠	99	Acceptance Sa	ampling for A	ttributes			
29		77	75	70	74	69	6	77	75	0	74	69	ıs Q	Search by Keyword		~	Acceptance Sa	ampling for A	ttributes - Op	erating Cha	racteristic C	urves

Fig. 11 Muestra de los datos de ejemplo y menú en donde se encuentra la opción de "x-bar and R-charts".

Estos datos están cargados en la figura 11, como se observa son datos divididos en 5 grupos llamados D1, D2, D3, D4 y D5, así como la ilustración del menú a elegir para llevar a cabo este análisis el cual se encuentra dentro del menú "quality control".

Fig. 12 Muestra de las opciones marcadas para el procedimiento.

Para llevar a cabo este procedimiento solo es necesario seleccionar los datos como se ve en la imagen 12.

Center Line Section for Subgroups 1 to 50 ———————————————————————————————————												
Center Line Estimated Grand Average (X-bar-bar) R-bar	Estimate 67.12 18.14											
	Primary Control Limit Section for Subgroups 1 to 50 ———————————————————————————————————											
Primary Control Chart Type Lower X-bar 56.65682 Range 0	Limits Upper 77.58318 38.35448											
· · · · · · · ·												
Type Val Ranges (R-bar)* 18. Standard Deviations (s-bar) 7.3	14	Estimated Sigma 7.798796 7.835698 7.902911										
*1.00 0 0 0 0 0 0	•											

^{*} Indicates the estimation type used in this report.

70.4

31

En el reporte mostrado por el software tenemos los valores medios de las dos gráficas, la x-bar la cual es la media de las muestras y la r-chart la cual es el rango de las muestras. Además de calcular la desviación estándar de los datos lo que nos da los limites de control.

Range: 4 of 5 in zone B or beyond

Por último nos muestran las graficas de la media y del rango de los 50 subgrupos de 5 datos cada uno, así como están marcados la línea media y los limites de control tanto superior como inferior, dándonos además información de los subgrupos que no pasen el control, como en este caso el subgrupo 30 por tener 4 de 5 datos en la zona b o más abajo.

Bland-Altman

Este procedimiento es usado para comparar dos mediciones de la misma variable, es una técnica de comparación muy usada.

Ejemplo.

Se tienen dos grupos de mediciones de dos métodos que se llevaron a cabo en 100 personas, el primer método es muy invasivo y el segundo es un método mucho menos invasivo. Los ingenieros desean analizar si dos métodos concuerdan.

Fig. 13 Menú y nombre de los datos de ejemplo para el procedimiento de Bland-Altman.

Para este procedimiento se usaran los datos de ejemplo de nombre "Bland-Altman" que se cargaran desde el menú de abrir datos de ejemplos como se ilustra en la figura 13.

Fig. 14 Muestra de los datos de ejemplo y del menú al que hay que acceder para realizar el procedimiento Bland-Altman.

En este ejemplo se cargan lo datos de ejemplo de los 100 sujetos de estudio para cada uno de los métodos y posteriormente se selecciona el procedimiento de Bland-Altman como se ve en la figura 14.

Fig. 15 Opciones marcadas para llevar a cabo este procedimiento.

Para este procedimiento solo es necesario cargar los datos de los dos métodos a comparar como se muestran en la figura 15, sin realizar cambios adicionales en las opciones de cálculo.

Descriptive Statistics Standard 95.0% LCL 95.0% UCL Variable Count Mean Deviation of Mean of Mean Method1 100 50.72 28.30893 45.10289 56.3371 Method2 100 50.62 28.07701 45.04891 56.19109 Difference 2.787055 -0.4530122 0.6530122

Correlation Coefficient = 0.995147

NCSS 2019, v19.0.1

27/10/2019 10:12:47 p. m. 2

Bland-Altman Analysis Report

Dataset

C:\...\NCSS\NCSS 2019\Example Data\Bland-Altman.NCSS

			Standard	95.0% LCL	95.0% UCL
Parameter	Count	Value	Deviation	of Value	of Value
Bias (Difference)	100	0.1	2.787055	-0.4530122	0.6530122
Lower Limit of Agreement	100	-5.362628	0.4778968	-6.310879	-4.414377
Upper Limit of Agreement	100	5.562628	0.4778968	4.614377	6.510879

Assumption	Value	Prob Level	Decision ($\alpha = 0.050$)
Shapiro-Wilk	0.893	0.0000	Reject normality

Evaluation of Assumptions Plots -----

El reporte de este procedimiento nos regresa una grafica en donde en el eje horizontal esta la media de la diferencia de los datos y en el eje vertical esta la diferencia punto a punto de los datos, teniendo también limites tanto superior como inferior marcados con un 95% en el intervalo.

Nos regresa también los estadísticos de los dos métodos, como la media, la desviación estándar y los intervalos de confianza, así como el de la diferencia. Además del coeficiente de correlación.

Por último tenemos la prueba de normalidad de la diferencia, el histograma de esta y la gráfica de normalidad.

En este caso para el ejemplo podemos concluir que no existe diferencia significativa entre los dos métodos comparados.

Correlación y regresión lineal

La regresión lineal es una técnica que nos permite ajustar una recta a la relación que existe entre dos variables, la regresión lineal estima los valores de la pendiente y de la ordenada al origen de esta recta.

Una vez obtenidos la pendiente y la ordenada al origen se utiliza el coeficiente de correlación, el cual es un factor entre - 1 y 1, donde el 0 se interpreta como independencia lineal y 1 es una correlación lineal perfecta entre dos variables.

Ejemplo.

Se realizará una regresión lineal para conocer la relación entre peso y altura, usando estos datos se desea predecir la altura para valores de peso de 90, 100, 150, 200 y 250.

Fig. 16 Menú para cargar los datos del ejemplo para la regresión lineal.

Para obtener los datos de este ejemplo es necesario abrir el archivo de datos llamado "LinReg1" en el menú de abrir datos de ejemplos.

Fig. 17 Datos de altura y peso a los cuales se les hará la regresión lineal mediante el menú mostrado.

Los datos cargados son datos de peso y altura, mediante los cuales se obtendrá la regresión lineal y así poder predecir cuales son los valores de la altura para los datos de peso dados.

Fig. 18 Opciones marcadas para llevar a cabo la regresión lineal.

Fig. 19 Opciones marcadas que se desean obtener en el reporte.

Se cargan los datos tanto de la variable dependiente como la independiente, en este caso la independiente es el peso y la altura dependiente, además de marcar la interpolación mediante el remuestreo agregamos a las opciones los datos para los que queremos estimar el valor de la altura según el peso, como se observa en las imágenes 18 y 19.

Run Summary Section -

Parameter	Value	Parameter	Value
Dependent Variable	Height	Rows Processed	26
Independent Variable	Weight	Rows Used in Estimation	20
Frequency Variable	None	Rows with X Missing	3
Weight Variable	None	Rows with Freq Missing	0
Intercept	35.1337	Rows Prediction Only	3
Slope	0.1932	Sum of Frequencies	20
R-Squared	0.9738	Sum of Weights	20.0000
Correlation	0.9868	Coefficient of Variation	0.0226
Mean Square Error	1.970176	Square Root of MSE	1.40363

Summary Statement -

The equation of the straight line relating Height and Weight is estimated as: Height = (35.1337) + (0.1932) Weight using the 20 observations in this dataset. The y-intercept, the estimated value of Height when Weight is zero, is 35.1337 with a standard error of 1.0887. The slope, the estimated change in Height per unit change in Weight, is 0.1932 with a standard error of 0.0075. The value of R-Squared, the proportion of the variation in Height that can be accounted for by variation in Weight, is 0.9738. The correlation between Height and Weight is 0.9868.

A significance test that the slope is zero resulted in a t-value of 25.8679. The significance level of this t-test is 0.0000. Since 0.0000 < 0.0500, the hypothesis that the slope is zero is rejected

The estimated slope is 0.1932. The lower limit of the 95% confidence interval for the slope is 0.1775 and the upper limit is 0.2089. The estimated intercept is 35.1337. The lower limit of the 95% confidence interval for the intercept is 32.8464 and the upper limit is 37.4209.

Descriptive Statistics Section ---

Parameter	Dependent	Independent
Variable	Height	Weight
Count	20	20
Mean	62.1000	139.6000
Standard Deviation	8.4411	43.1221
Minimum	51.0000	82.0000
Maximum	79.0000	228.0000

Regression Estimation Section ---

Parameter	Intercept B(0)	Slope B(1)
Regression Coefficients	35.1337	0.1932
Lower 95% Confidence Limit	32.8464	0.1775
Upper 95% Confidence Limit	37.4209	0.2089
Standard Error	1.0887	0.0075
Standardized Coefficient	0.0000	0.9868
T Value	32.2716	25.8679
Prob Level (T Test)	0.0000	0.0000
Prob Level (Randomization Test N =1000)		0.0010
Reject H0 (Alpha = 0.0500)	Yes	Yes
Power (Alpha = 0.0500)	1.0000	1.0000
Regression of Y on X	35.1337	0.1932
Inverse Regression from X on Y	34.4083	0.1984
Orthogonal Regression of Y and X	35.1076	0.1934

Notes:

The above report shows the least-squares estimates of the intercept and slope followed by the corresponding standard errors, confidence intervals, and hypothesis tests. Note that these results are based on several assumptions that should be validated before they are used.

Estimated Model

(35.1336680743148) + (0.193168566802902) * (Weight)

Bootstrap Section -----

Bootstrap Section				
Estimation F Parameter	Results	 Conf. Leve		Upper
Intercept	Estimate	Coni. Leve	ei Lowei	upper
Original Value	35.1337	0.9000	33.5115	36.8293
Bootstrap Mean	35.1669		33.2267	37.2536
Bias (BM - OV) Bias Corrected	0.0333 35.1004	0.9900	32.6224	38.0422
Standard Error	1.0170			
Slope				
Original Value Bootstrap Mean	0.1932 0.1929		0.1813 0.1790	0.2048 0.2069
Bias (BM - OV)	-0.0003		0.1730	0.2121
Bias Corrected	0.1935			
Standard Error Correlation	0.0071			
Original Value	0.9868	0.9000	0.9798	0.9968
Bootstrap Mean	0.9866	0.9500	0.9788	1.0000
Bias (BM - OV) Bias Corrected	-0.0002	0.9900	0.9771	1.0000
Standard Error	0.9870 0.0056			
R-Squared				
Original Value	0.9738		0.9599	0.9935
Bootstrap Mean Bias (BM - OV)	0.9735 -0.0003		0.9580 0.9546	0.9999 1.0000
Bias Corrected	0.9741	0.0000	0.0010	1.000
Standard Error	0.0111			
Standard Error of Estim Original Value	1.4036	1.0.9000	1.1674	1.8489
Bootstrap Mean	1.3206		1.1220	1.9142
Bias (BM - OV)	-0.0831	0.9900	1.0277	2.0774
Bias Corrected Standard Error	1.4867 0.2066			
Ottalidad Ellor	0.2000			
Orthogonal Intercept		0 10000	AA 1776	
Original Value Bootstrap Mean		6 0.9000 4 0.9500		36.8147 37.2441
Bias (BM - OV)		9 0.9900		37.2441
Bias Corrected	35.074		32.3332	30.0330
Standard Error	1.022	2		
Orthogonal Slope	0.403	4 10 0000	0.4044	0.0050
Original Value Bootstrap Mean		4 0.9000 1 0.9500		0.2050 0.2071
Bias (BM - OV)		3 0.9900		0.2123
Bias Corrected	0.193			
Standard Error	0.007			
Original Value		8 0.9000	when Weight = 90.0000 51.8230	53.2869
Bootstrap Mean		3 0.9500		53.4824
Bias (BM - OV)	0.007	5 0.9900	51.4481	53.7944
Bias Corrected	52.511			
Standard Error	0.451	ь		
Fetimation	Results	1	Bootstrap Confidence L	imite
Parameter	Estimat	e Conf. I	Level Lower	Upper
			when Weight = 100.0000	
Original Value		5 0.9000		55.1363
Bootstrap Mean Bias (BM - OV)		1 0.9500 6 0.9900		55.3088 55.6201
Bias Corrected	54.445	-	33.3003	33.0201
Standard Error	0.402	3		
			when Weight = 150.0000	04.0500
Original Value Bootstrap Mean		0 0.9000 2 0.9500		64.6500 64.7567
Bias (BM - OV)		7 0.9900		64.9508
Bias Corrected	64.118			
Standard Error	0.319			
			when Weight = 200.0000	74.0454
Original Value Bootstrap Mean		4 0.9000 3 0.9500		74.6451 74.8443
Bias (BM - OV)		0 0.9900		75.2493
Bias Corrected	73.791	4		
Standard Error	0.541		when Weight - 250 0000	
Predicted Mean and Co Original Value		of Height 8 0.9000	when Weight = 250.0000 82.0218	84.8206
Bootstrap Mean		4 0.9500		85.1182
Bias (BM - OV)		4 0.9900		85.9647
Bias Corrected	83.464			
Standard Error	0.857			
Predicted Value and Programmed Value		of Heightv 8 0.9000		55.4926
Original Value Bootstrap Mean		0 0.9000 9 0.9500		56.0941
Bias (BM - OV)		1 0.9900		57.1348
Bias Corrected	52 460	8		
Standard Error	1.719	6		

Predicted Value and Pre	diction Limits of Height when V	Weight = 150.0000	
Original Value	64.1090 0.9000	61.4314	67.1047
Bootstrap Mean	64.1260 0.9500	60.9273	67.6675
Bias (BM - OV)	0.0171 0.9900	60.2085	68.6550
Bias Corrected	64.0919		
Standard Error	1.7294		
Predicted Value and Pre	diction Limits of Height when V	Weight = 200.0000	
Original Value	73.7674 0.9000	71.0545	76.7834
Bootstrap Mean	73.7814 0.9500	70.6354	77.4653
Bias (BM - OV)	0.0140 0.9900	69.8229	78.5260
Bias Corrected	73.7534		
Standard Error	1.7446		

NCSS 2019, v19.0.1 27/10/2019 10:22:46 p.

Linear Regression Report

Dataset C:\...\NCSS\NCSS 2019\Example Data\LinReg1.NCSS

Y = Height X = Weight

Bootstrap Section (Continued)

Estimation Res	ults Boots	trap Confidence Limit	ts		
Parameter	Estimate Conf. Level	Lower	Upper		
Predicted Value and Prediction Limits of Height when Weight = 250.0000					
Original Value	83.4258 0.9000	80.7299	86.3714		
Bootstrap Mean	83.4500 0.9500	80.2993	86.8669		
Bias (BM - OV)	0.0242 0.9900	79.5613	87.9526		
Bias Corrected	83.4016				
Standard Error	1.7238				

Estimation Result	s	Bootstrap Confidence Limits	
Parameter	Estimate Conf. Leve	el Lower	Upper
Predicted Value and Prediction	on Limits of Height whe	n Weight = 250.0000	
Original Value	83.4258 0.9000	80.7299	86.3714
Bootstrap Mean	83.4500 0.9500	80.2993	86.8669
Bias (BM - OV)	0.0242 0.9900	79.5613	87.9526
Bias Corrected	83.4016		
Standard Error	1.7238		

Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000.

Notes

The main purpose of this report is to present the bootstrap confidence intervals of various parameters. All gross outliers should have been removed. The sample size should be at least 50 and the sample should be 'representative' of the population it was drawn from.

	Pearson Correlation		Spearman Rank Correlation
Parameter	Coefficient	R-Squared	Coefficient
Estimated Value	0.9868	0.9738	0.9759
Lower 95% Conf. Limit (r dist'n)	0.9646		
Upper 95% Conf. Limit (r dist'n)	0.9945		
Lower 95% Conf. Limit (Fisher's z)	0.9662		0.9387
Upper 95% Conf. Limit (Fisher's z)	0.9949		0.9906
Adjusted (Rbar)		0.9723	
T-Value for H0: Rho = 0	25.8679	25.8679	18.9539
Prob Level for H0: Rho = 0	0.0000	0.0000	0.0000
Prob Level (Randomization Test N =1000)	0.0010		

Notes

The confidence interval for the Pearson correlation assumes that X and Y follow the bivariate normal distribution. This is a different assumption from linear regression which assumes that X is fixed and Y is normally distributed.

Two confidence intervals are given. The first is based on the exact distribution of Pearson's correlation. The second is based on Fisher's z transformation which approximates the exact distribution using the normal distribution. Why are both provided? Because most books only mention Fisher's approximate method, it will often be needed to do homework. However, the exact methods should be used whenever possible.

The confidence limits can be used to test hypotheses about the correlation. To test the hypothesis that rho is a specific value, say r0, check to see if r0 is between the confidence limits. If it is, the null hypothesis that rho = r0 is not rejected. If r0 is outside the limits, the null hypothesis is rejected.

Spearman's Rank correlation is calculated by replacing the orginal data with their ranks. This correlation is used when some of the assumptions may be invalid.

Analysis of Variance Section --

Source Intercept	DF 1	Sum of Squares 77128.2	Mean Square 77128.2	F-Ratio	Prob Level	Power (5%)
Slope	1	1318.337	1318.337	669.1468	0.0000	1.0000
Error	18	35.46317	1.970176			
Lack of Fit	16	34.96317	2.185198	8.7408	0.1074	
Pure Error	2	0.5	0.25			
Adj. Total	19	1353.8	71.25263			
Total	20	78482				

s = Square Root(1.970176) = 1.40363

Summary Matrices -

	X.X	X'X	XΥ	X'X Inverse	X'X Inverse
Index	0	1	2	0	1
0	20	2792	1242	0.6015912	-0.003951227
1	2792	425094	180208	-0.003951227	2.830392E-05
2 (Y'Y)			78482		
Determinant		706616			1.415196E-06

Variance - Covariance Matrix of Regression Coefficients ---

	VC(b)	VC(b)
Inde	x 0	1
0	1.185241	-0.007784612
1	-0.007784612	5.576369E-05

Tests of Assumptions Section

Assumption/Test	Test Value	Prob Level	Is the Assumption Reasonable at the 0.2000 Level of Significance?
Residuals follow Normal Distribu		20101	Level of digitalism.
Shapiro Wilk	0.9728	0.812919	Yes
Anderson Darling	0.2751	0.660885	Yes
D'Agostino Skewness	-0.9590	0.337543	Yes
D'Agostino Kurtosis	0.1205	0.904066	Yes
D'Agostino Omnibus	0.9343	0.626796	Yes
Constant Residual Variance? Modified Levene Test	0.0946	0.761964	Yes
Relationship is a Straight Line? Lack of Linear Fit F(16, 2) Test	8.7408	0.107381	No

No Serial Correlation?

Evaluate the Serial-Correlation report and the Durbin-Watson test if you have equal-spaced, time series data.

Notes:

A 'Yes' means there is not enough evidence to make this assumption seem unreasonable. This lack of evidence may be because the sample size is too small, the assumptions of the test itself are not met, or the assumption is valid.

A 'No' means the that the assumption is not reasonable. However, since these tests are related to sample size, you should assess the role of sample size in the tests by also evaluating the appropriate plots and graphs. A large dataset (say N > 500) will often fail at least one of the normality tests because it is hard to find a large dataset that is perfectly normal.

Normality and Constant Residual Variance:

Possible remedies for the failure of these assumptions include using a transformation of Y such as the log or square root, correcting data-recording errors found by looking into outliers, adding additional independent variables, using robust regression, or using bootstrap methods.

Serial Correlation of Residuals Section -

	Serial		Serial		Serial
Lag	Correlation	Lag	Correlation	Lag	Correlation
1	0.1029	9	-0.2353	17	
2	-0.4127*	10	-0.0827	18	
3	0.0340	11	-0.0316	19	
4	0.2171	12	-0.0481	20	
5	-0.1968	13	0.0744	21	
6	-0.0194	14	0.0073	22	
7	0.2531	15		23	
8	-0.0744	16		24	

Notes:

Each serial correlation is the Pearson correlation calculated between the original series of residuals and the residuals lagged the specified number of periods. This feature of residuals is only meaningfull for data obtained sorted in time order. One of the assumptions is that none of these serial correlations is significant. Starred correlations are those for which |Fisher's Z| > 1.645 which indicates whether the serial correlation is 'large.'

If serial correlation is detected in time series data, the remedy is to account for it either by replacing Y with first differences or by fitting the serial pattern using a method such as that proposed by Cochrane and Orcutt.

Durbin-Watson Test For Serial Correlation -

	D	id the Test Reject
Parameter	Value	H0: Rho(1) = 0?
Durbin-Watson Value	1.6978	
Prob. Level: Positive Serial Correlation	0.2366	No
Prob. Level: Negative Serial Correlation	0.7460	No

Notes:

The Durbin-Watson test was created to test for first-order serial correlation in regression data taken over time. If the rows of your dataset do not represent successive time periods, you should ignore this test.

This report gives the probability of rejecting the null hypothesis of no first-order serial correlation. Possible remedies for serial correlation were given in the Notes to the Serial Correlation report, above.

RESS Section	
RE 55 Section ————————————————————————————————————	

	From	From
	PRESS	Regular
Parameter	Residuals	Residuals
Sum of Squared Residuals	43.15799	35.46317
Sum of [Residuals]	24.27421	22.02947
R-Squared	0.9681	0.9738

Notes

A PRESS residual is found by estimating the regression equation without the observation, predicting the dependent variable, and subtracting the predicted value from the actual value. The PRESS values are calculated from these PRESS residuals. The Regular values are the corresponding calculations based on the regular residuals.

The PRESS values are often used to compare models in a multiple-regression variable selection. They show how well the model predicts observations that were not used in the estimation.

Predicted Values and Confidence Limits Section -----

Predicted	Standard	Lower 95%	Upper 95%
Height	Error	Confidence	Confidence
(Yhat X)	of Yhat	Limit of Y X	Limit of Y X
52.5188	0.4855	51.4989	53.5388
54.4505	0.4312	53.5446	55.3565
64.1090	0.3233	63.4297	64.7882
73.7674	0.5495	72.6129	74.9218
83.4258	0.8821	81.5725	85.2791
	Height (Yhat X) 52.5188 54.4505 64.1090 73.7674	Height (Yhat X) Error of Yhat 52.5188 0.4855 54.4505 0.4312 64.1090 0.3233 73.7674 0.5495	Height (Yhat X) Error of Yhat Confidence Limit of Y X 52.5188 0.4855 51.4989 54.4505 0.4312 53.5446 64.1090 0.3233 63.4297 73.7674 0.5495 72.6129

The confidence interval estimates the mean of the Y values in a large sample of individuals with this value of X. The interval is only accurate if all of the linear regression assumptions are valid.

Residual vs X Plots -----

Original Data Section

			Predicted	
	Weight	Height	Height	
Row	(X)	(Y)	(Yhat X)	Residual
1	159.0000	64.0000	65.8475	-1.8475
2	155.0000	63.0000	65.0748	-2.0748
3	157.0000	67.0000	65.4611	1.5389
4	125.0000	60.0000	59.2797	0.7203
5	103.0000	52.0000	55.0300	-3.0300
6	122.0000	58.0000	58.7002	-0.7002
7	101.0000	56.0000	54.6437	1.3563
8	82.0000	52.0000	50.9735	1.0265
9	228.0000	79.0000	79.1761	-0.1761
10	199.0000	76.0000	73.5742	2.4258
11	195.0000	73.0000	72.8015	0.1985
12	110.0000	56.0000	56.3822	-0.3822
13	191.0000	71.0000	72.0289	-1.0289
14	151.0000	65.0000	64.3021	0.6979
15	119.0000	59.0000	58.1207	0.8793
16	119.0000	59.0000	58.1207	0.8793
17	112.0000	58.0000	56.7685	1.2315
18	87.0000	51.0000	51.9393	-0.9393
19	190.0000	71.0000	71.8357	-0.8357
20	87.0000	52.0000	51.9393	0.0607
21	100.0000		54.4505	
22	150.0000		64.1090	
23	200.0000		73.7674	
24		50.0000		
25		60.0000		
26		70.0000		

This report provides a data list that may be used to verify whether the correct variables were selected.

Predicted Values and Confidence Limits of Means

			Predicted	Standard	Lower 95%	Upper 95%
	Weight	Height	Height	Error	Conf. Limit	Conf. Limit
Row	(X)	(Y)	(Yhat X)	of Yhat	of Y Mean X	of Y Mean X
1	159.0000	64.0000	65.8475	0.3457	65.1212	66.5737
2	155.0000	63.0000	65.0748	0.3343	64.3725	65.7771
3	157.0000	67.0000	65.4611	0.3397	64.7475	66.1748
4	125.0000	60.0000	59.2797	0.3323	58.5817	59.9778
5	103.0000	52.0000	55.0300	0.4162	54.1557	55.9044
6	122.0000	58.0000	58.7002	0.3403	57.9854	59.4151
7	101.0000	56.0000	54.6437	0.4261	53.7484	55.5390
8	82.0000	52.0000	50.9735	0.5325	49.8548	52.0922
9	228.0000	79.0000	79.1761	0.7309	77.6404	80.7118
10	199.0000	76.0000	73.5742	0.5434	72.4326	74.7158
11	195.0000	73.0000	72.8015	0.5193	71.7106	73.8925
12	110.0000	56.0000	56.3822	0.3839	55.5757	57.1887
13	191.0000	71.0000	72.0289	0.4958	70.9872	73.0705
14	151.0000	65.0000	64.3021	0.3252	63.6189	64.9853
15	119.0000	59.0000	58.1207	0.3495	57.3864	58.8551
16	119.0000	59.0000	58.1207	0.3495	57.3864	58.8551
17	112.0000	58.0000	56.7685	0.3755	55.9797	57.5574
18	87.0000	51.0000	51.9393	0.5028	50.8830	52.9956
19	190.0000	71.0000	71.8357	0.4901	70.8061	72.8653
20	87.0000	52.0000	51.9393	0.5028	50.8830	52.9956
21	100.0000		54.4505	0.4312	53.5446	55.3565
22	150.0000		64.1090	0.3233	63.4297	64.7882
23	200.0000		73.7674	0.5495	72.6129	74.9218
24		50.0000				
25		60.0000				
26		70.0000				

The confidence interval estimates the mean of the Y values in a large sample of individuals with this value of X. The interval is only accurate if all of the linear regression assumptions are valid.

Predicted Values and Prediction Limits -

	Weight	Height	Predicted Height	Standard Error	Lower 95% Prediction	Upper 95% Prediction
Row	(X)	(Y)	(Yhat X)	of Yhat	Limit of Y X	Limit of Y X
1	159.0000	64.0000	65.8475	1.4456	62.8104	68.8845
2	155.0000	63.0000	65.0748	1.4429	62.0434	68.1062
3	157.0000	67.0000	65.4611	1.4441	62.4271	68.4952
4	125.0000	60.0000	59.2797	1.4424	56.2493	62.3101
5	103.0000	52.0000	55.0300	1.4640	51.9542	58.1058
6	122.0000	58.0000	58.7002	1.4443	55.6659	61.7346
7	101.0000	56.0000	54.6437	1.4669	51.5619	57.7255
8	82.0000	52.0000	50.9735	1.5012	47.8195	54.1275
9	228.0000	79.0000	79.1761	1.5825	75.8513	82.5009
10	199.0000	76.0000	73.5742	1.5051	70.4120	76.7364
11	195.0000	73.0000	72.8015	1.4966	69.6573	75.9458
12	110.0000	56.0000	56.3822	1.4552	53.3250	59.4394
13	191.0000	71.0000	72.0289	1.4886	68.9014	75.1564
14	151.0000	65.0000	64.3021	1.4408	61.2751	67.3291
15	119.0000	59.0000	58.1207	1.4465	55.0818	61.1597
16	119.0000	59.0000	58.1207	1.4465	55.0818	61.1597
17	112.0000	58.0000	56.7685	1.4530	53.7159	59.8212
18	87.0000	51.0000	51.9393	1.4910	48.8069	55.0717
19	190.0000	71.0000	71.8357	1.4867	68.7122	74.9592
20	87.0000	52.0000	51.9393	1.4910	48.8069	55.0717
21	100.0000		54.4505	1.4684	51.3656	57.5355
22	150.0000		64.1090	1.4404	61.0828	67.1351
23	200.0000		73.7674	1.5074	70.6005	76.9342
24		50.0000				
25		60.0000				
26		70.0000				

The prediction interval estimates the predicted value of Y for a single individual with this value of X. The interval is only accurate if all of the linear regression assumptions are valid.

			Predicted	Standard	Lower 95%	Upper 95%
	Weight	Height	Height	Error	Conf. Band	Conf. Band
Row	(X)	(Y)	(Yhat X)	of Yhat	of Y Mean X	of Y Mean X
1	159.0000	64.0000	65.8475	0.3457	64.8036	66.8914
2	155.0000	63.0000	65.0748	0.3343	64.0654	66.0842
3	157.0000	67.0000	65.4611	0.3397	64.4353	66.4869
4	125.0000	60.0000	59.2797	0.3323	58.2764	60.2831
5	103.0000	52.0000	55.0300	0.4162	53.7732	56.2868
6	122.0000	58.0000	58.7002	0.3403	57.6727	59.7278
7	101.0000	56.0000	54.6437	0.4261	53.3568	55.9306
8	82.0000	52.0000	50.9735	0.5325	49.3655	52.5814
9	228.0000	79.0000	79.1761	0.7309	76.9688	81.3834
10	199.0000	76.0000	73.5742	0.5434	71.9333	75.2151
11	195.0000	73.0000	72.8015	0.5193	71.2334	74.3697
12	110.0000	56.0000	56.3822	0.3839	55.2229	57.5415
13	191.0000	71.0000	72.0289	0.4958	70.5316	73.5261
14	151.0000	65.0000	64.3021	0.3252	63.3201	65.2842
15	119.0000	59.0000	58.1207	0.3495	57.0652	59.1763
16	119.0000	59.0000	58.1207	0.3495	57.0652	59.1763
17	112.0000	58.0000	56.7685	0.3755	55.6347	57.9024
18	87.0000	51.0000	51.9393	0.5028	50.4210	53.4577
19	190.0000	71.0000	71.8357	0.4901	70.3558	73.3156
20	87.0000	52.0000	51.9393	0.5028	50.4210	53.4577
21	100.0000		54.4505	0.4312	53.1483	55.7527
22	150.0000		64.1090	0.3233	63.1326	65.0853
23	200.0000		73.7674	0.5495	72.1080	75.4268
24		50.0000				
25		60.0000				
26		70.0000				

Residual Section ----

	Weight	Height	Predicted Height		Standardized	Percent Absolute
Row	(X)	(Y)	(Yhat X)	Residual	Residual	Error
1	159.0000	64.0000	65.8475	-1.8475	-1.3580	2.8867
2	155.0000	63.0000	65.0748	-2.0748	-1.5220	3.2933
3	157.0000	67.0000	65.4611	1.5389	1.1299	2.2968
4	125.0000	60.0000	59.2797	0.7203	0.5282	1.2004
5	103.0000	52.0000	55.0300	-3.0300	-2.2604	5.8270
6	122.0000	58.0000	58.7002	-0.7002	-0.5142	1.2073
7	101.0000	56.0000	54.6437	1.3563	1.0142	2.4220
8	82.0000	52.0000	50.9735	1.0265	0.7904	1.9741
9	228.0000	79.0000	79.1761	-0.1761	-0.1470	0.2229
10	199.0000	76.0000	73.5742	2.4258	1.8744	3.1918
11	195.0000	73.0000	72.8015	0.1985	0.1522	0.2719
12	110.0000	56.0000	56.3822	-0.3822	-0.2831	0.6825
13	191.0000	71.0000	72.0289	-1.0289	-0.7835	1.4491
14	151.0000	65.0000	64.3021	0.6979	0.5111	1.0737
15	119.0000	59.0000	58.1207	0.8793	0.6468	1.4903
16	119.0000	59.0000	58.1207	0.8793	0.6468	1.4903
17	112.0000	58.0000	56.7685	1.2315	0.9105	2.1232
18	87.0000	51.0000	51.9393	-0.9393	-0.7168	1.8418
19	190.0000	71.0000	71.8357	-0.8357	-0.6354	1.1770
20	87.0000	52.0000	51.9393	0.0607	0.0463	0.1167
21	100.0000		54.4505			
22	150.0000		64.1090			
23	200.0000		73.7674			
24		50.0000				
25		60.0000				
26		70.0000				
25		60.0000				

The residual is the difference between the actual and the predicted Y values. The formula is Residual = Y - Yhat. The Percent Absolute Error is the 100 |Residual| / Y.

	Weight			Hat		
Row	(X)	Residual	RStudent	Diagonal	Cook's D	MSEi
1	159.0000	-1.8475	-1.3931	0.0607	0.0595	1.8723
2	155.0000	-2.0748	-1.5845	0.0567	0.0696	1.8176
3	157.0000	1.5389	1.1392	0.0586	0.0397	1.9381
4	125.0000	0.7203	0.5173	0.0560	0.0083	2.0537
5	103.0000	-3.0300	*-2.5957	0.0879	0.2462	1.4939
6	122.0000	-0.7002	-0.5034	0.0588	0.0083	2.0554
7	101.0000	1.3563	1.0150	0.0922	0.0522	1.9669
8	82.0000	1.0265	0.7818	0.1439	0.0525	2.0137
9	228.0000	-0.1761	*-0.1429	0.2712	0.0040	2.0836
10	199.0000	2.4258	*2.0305	0.1499	0.3097	1.6789
11	195.0000	0.1985	0.1480	0.1369	0.0018	2.0834
12	110.0000	-0.3822	-0.2757	0.0748	0.0032	2.0768
13	191.0000	-1.0289	-0.7748	0.1248	0.0438	2.0149
14	151.0000	0.6979	0.5003	0.0537	0.0074	2.0558
15	119.0000	0.8793	0.6360	0.0620	0.0138	2.0376
16	119.0000	0.8793	0.6360	0.0620	0.0138	2.0376
17	112.0000	1.2315	0.9060	0.0716	0.0319	1.9900
18	87.0000	-0.9393	-0.7067	0.1283	0.0378	2.0265
19	190.0000	-0.8357	-0.6245	0.1219	0.0280	2.0393
20	87.0000	0.0607	0.0450	0.1283	0.0002	2.0858
21	100.0000			0.0944		
22	150.0000			0.0531		
23	200.0000			0.1533		
24						
25						
26						

Outliers are rows that are separated from the rest of the data. Influential rows are those whose omission results in a relatively large change in the results. This report lets you see both.

An outlier may be defined as a row in which |RStudent| > 2. A moderately influential row is one with a CooksD > 0.5. A heavily influential row is one with a CooksD > 1.

eav	e One Row Ou	t Section				
Row	RStudent	DFFITS	Cook's D	CovRatio	DFBETAS(0)	DFBETAS(1)
1	-1.3931	-0.3540	0.0595	0.9615	0.0494	-0.1483
2	-1.5845	-0.3885	0.0696	0.9023	0.0228	-0.1337
2	1.1392	0.2842	0.0397	1.0279	-0.0284	0.1087
1 5 6 7	0.5173	0.1260	0.0083	1.1511	0.0739	-0.0414
5	* -2.5957	-0.8059	0.2462	0.6304	-0.6820	0.5292
6	-0.5034	-0.1258	0.0083	1.1564	-0.0800	0.0486
7	1.0150	0.3234	0.0522	1.0978	0.2781	-0.2188
3	0.7818	0.3205	0.0525	1.2202	0.3024	-0.2589
	-0.1429	-0.0872	0.0040	* 1.5346	0.0646	-0.0787
10	* 2.0305	0.8525	0.3097	0.8542	-0.5244	0.6959
11	0.1480	0.0589	0.0018	1.2955	-0.0347	0.0470
12	-0.2757	-0.0784	0.0032	1.2010	-0.0617	0.0451
13	-0.7748	-0.2925	0.0438	1.1951	0.1635	-0.2265
14	0.5003	0.1192	0.0074	1.1506	0.0033	0.0312
15	0.6360	0.1635	0.0138	1.1403	0.1112	-0.0720
16	0.6360	0.1635	0.0138	1.1403	0.1112	-0.0720
17	0.9060	0.2515	0.0319	1.0988	0.1928	-0.1381
18	-0.7067	-0.2712	0.0378	1.2138	-0.2516	0.2118
19	-0.6245	-0.2327	0.0280	1.2201	0.1281	-0.1787
20	0.0450	0.0173	0.0002	1.2858	0.0160	-0.0135
21						
22						
23						
24						
25						
26						

Each column gives the impact on some aspect of the linear regression of omitting that row.

RStudent represents the size of the residual. DFFITS represents the change in the fitted value of a row. Cook's D summarizes the change in the fitted values of all rows. CovRatio represents the amount of change in the determinant of the covariance matrix. DFBETAS(0) and DFBETAS(1) give the amount of change in the intercept and slope.

	Weight			Standardized			
Row	(X)	Residual		Residual		RStudent	
1	159.0000	-1.8475		-1.3580		-1.3931	
2	155.0000	-2.0748		-1.5220		-1.5845	
3	157.0000	1.5389		1.1299		1.1392	
4	125.0000	0.7203		0.5282		0.5173	
5	103.0000	-3.0300		-2.2604		* -2.5957	
6	122.0000	-0.7002		-0.5142		-0.5034	
7	101.0000	1.3563		1.0142		1.0150	
8	82.0000	1.0265		0.7904		0.7818	
9	228.0000	-0.1761	ļ	-0.1470		-0.1429	
10	199.0000	2.4258		1.8744		* 2.0305	
11	195.0000	0.1985	ļ	0.1522		0.1480	
12	110.0000	-0.3822		-0.2831		-0.2757	
13	191.0000	-1.0289		-0.7835		-0.7748	
14	151.0000	0.6979		0.5111		0.5003	
15	119.0000	0.8793		0.6468		0.6360	
16	119.0000	0.8793		0.6468		0.6360	
17	112.0000	1.2315		0.9105		0.9060	
18	87.0000	-0.9393		-0.7168		-0.7067	
19	190.0000	-0.8357		-0.6354		-0.6245	
20	87.0000	0.0607		0.0463		0.0450	
21	100.0000						
22	150.0000						
23	200.0000						
24							
25			ļ				
26							

Outliers are rows that are separated from the rest of the data. Since outliers can have dramatic effects on the results, corrective action, such as elimination, must be carefully considered. Outlying rows should not be automatically be removed unless a good reason for their removal can be given.

An outlier may be defined as a row in which |RStudent| > 2. Rows with this characteristic have been starred.

Influence Detection Chart -----

	Weight			
Row	(X)	DFFITS	Cook's D	DFBETAS(1)
1	159.0000	-0.3540	0.0595	-0.1483
2	155.0000	-0.3885	0.0696	-0.1337
3	157.0000	0.2842	0.0397	0.1087
4	125.0000	0.1260	0.0083	-0.0414
5	103.0000	-0.8059 .	0.2462	0.5292
6	122.0000	-0.1258	0.0083	0.0486
7	101.0000	0.3234	0.0522	-0.2188
8	82.0000	0.3205	0.0525	-0.2589
9	228.0000	-0.0872	0.0040	-0.0787
10	199.0000	0.8525	0.3097	0.6959
11	195.0000	0.0589	0.0018	0.0470
12	110.0000	-0.0784	0.0032	. 0.0451
13	191.0000	-0.2925	0.0438	-0.2265
14	151.0000	0.1192	0.0074	0.0312
15	119.0000	0.1635	0.0138	0.0720
16	119.0000	0.1635	0.0138	0.0720
17	112.0000	0.2515	0.0319	0.1381
18	87.0000	-0.2712	0.0378	0.2118
19	190.0000	-0.2327	0.0280	0.1787
20	87.0000	0.0173	0.0002	0.0135
21	100.0000			.
22	150.0000			.
23	200.0000			.
24				.
25				.
26				

Influential rows are those whose omission results in a relatively large change in the results. They are not necessarily harmful. However, they will distort the results if they are also outliers. The impact of influential rows should be studied very carefully. Their accuracy should be double-checked. DFFITS is the standardized change in Yhat when the row is omitted. A row is influential when DFFITS > 1 for small datasets (N < 30) or when DFFITS > 2*SQR(1/N) for medium to large datasets.

Row 1 2	Weight (X) 159.0000 155.0000	R Student (Outlier) -1.3931 -1.5845		Cooks D (Influence) 0.0595 0.0696		Hat Diagonal (Leverage) 0.0607 0.0567	ļ
3	157.0000	1.1392		0.0397		0.0586	
4	125.0000	0.5173	IIIII 1	0.0083		0.0560	
5	103.0000	* -2.5957		0.2462	11111111111	0.0879	
6	122.0000	-0.5034	II	0.0083	I	0.0588	
7	101.0000	1.0150	iiIII	0.0522	İ	0.0922	İ
8	82.0000	0.7818		0.0525	ij	0.1439	<u> </u>
9	228.0000	-0.1429		0.0040		0.2712	
10	199.0000	* 2.0305		0.3097		0.1499	
11	195.0000	0.1480		0.0018		0.1369	
12	110.0000	-0.2757		0.0032		0.0748	
13	191.0000	-0.7748		0.0438		0.1248	
14	151.0000	0.5003		0.0074		0.0537	
15	119.0000	0.6360		0.0138		0.0620	
16	119.0000	0.6360		0.0138		0.0620	
17	112.0000	0.9060		0.0319		0.0716	
18	87.0000	-0.7067		0.0378		0.1283	
19	190.0000	-0.6245	ļII	0.0280		0.1219	<u> </u>
20	87.0000	0.0450		0.0002		0.1283	
21	100.0000					0.0944	
22	150.0000					0.0531	
23	200.0000					0.1533	<u> </u>
24							
25					ļ		
26							ļ

Outliers are rows that are separated from the rest of the data. Influential rows are those whose omission results in a relatively large change in the results. This report lets you see both.

Inverse Prediction of X Means -

	Height	Weight	Predicted Weight		Lower 95% Conf. Limit	Upper 95% Conf. Limit
Row	(Y)	(X)	(Xhat Y)	X-Xhat Y	of X Mean Y	of X Mean Y
1	64.0000	159.0000	149.4360	9.5640	145.9832	153.0193
2	63.0000	155.0000	144.2591	10.7409	140.8441	147.7361
3	67.0000	157.0000	164.9664	-7.9664	161.1310	169.1387
4	60.0000	125.0000	128.7287	-3.7287	125.1181	132.1948
5	52.0000	103.0000	87.3141	15.6859	81.4894	92.4444
6	58.0000	122.0000	118.3750	3.6250	114.3947	122.0735
7	56.0000	101.0000	108.0214	-7.0214	103.5227	112.1007
8	52.0000	82.0000	87.3141	-5.3141	81.4894	92.4444
9	79.0000	228.0000	227.0884	0.9116	219.7388	235.5997
10	76.0000	199.0000	211.5579	-12.5579	205.2283	218.8430
11	73.0000	195.0000	196.0274	-1.0274	190.6564	202.1477
12	56.0000	110.0000	108.0214	1.9786	103.5227	112.1007
13	71.0000	191.0000	185.6737	5.3263	180.8886	191.0708
14	65.0000	151.0000	154.6128	-3.6128	151.0743	158.3507
15	59.0000	119.0000	123.5518	-4.5518	119.7777	127.1129
16	59.0000	119.0000	123.5518	-4.5518	119.7777	127.1129
17	58.0000	112.0000	118.3750	-6.3750	114.3947	122.0735
18	51.0000	87.0000	82.1372	4.8628	75.9418	87.5695
19	71.0000	190.0000	185.6737	4.3263	180.8886	191.0708
20	52.0000	87.0000	87.3141	-0.3141	81.4894	92.4444
21		100.0000				
22		150.0000				
23		200.0000				
24	50.0000		76.9604		70.3836	82.7054
25	60.0000		128.7287		125.1181	132.1948
26	70.0000		180.4969		175.9821	185.5549

This confidence interval estimates the mean of X in a large sample of individuals with this value of Y. This method of inverse prediction is also called 'calibration.'

	Height	Weight	Predicted Weight		Lower 95% Prediction	Upper 95% Prediction
Row	(Y)	(X)	(Xhat Y)	X-XhatlY	Limit of XIY	Limit of X Y
1	64.0000	159.0000	149.4360	9.5640	133.7858	165.2167
2	63.0000	155.0000	144.2591	10.7409	128.5906	159.9896
3	67.0000	157.0000	164.9664	-7.9664	149.3036	180.9662
4	60.0000	125.0000	128.7287	-3.7287	112.9365	144.3765
5	52.0000	103.0000	87.3141	15.6859	70.7003	103.2335
6	58.0000	122.0000	118.3750	3.6250	102.4436	134.0246
7	56.0000	101.0000	108.0214	-7.0214	91.9059	123.7175
8	52.0000	82.0000	87.3141	-5.3141	70.7003	103.2335
9	79.0000	228.0000	227.0884	0.9116	210.4214	244.9172
10	76.0000	199.0000	211.5579	-12.5579	195.2744	228.7969
11	73.0000	195.0000	196.0274	-1.0274	180.0432	212.7609
12	56.0000	110.0000	108.0214	1.9786	91.9059	123.7175
13	71.0000	191.0000	185.6737	5.3263	169.8391	202.1203
14	65.0000	151.0000	154.6128	-3.6128	138.9697	170.4553
15	59.0000	119.0000	123.5518	-4.5518	107.6957	139.1949
16	59.0000	119.0000	123.5518	-4.5518	107.6957	139.1949
17	58.0000	112.0000	118.3750	-6.3750	102.4436	134.0246
18	51.0000	87.0000	82.1372	4.8628	65.3728	98.1386
19	71.0000	190.0000	185.6737	4.3263	169.8391	202.1203
20	52.0000	87.0000	87.3141	-0.3141	70.7003	103.2335
21		100.0000				
22		150.0000				
23		200.0000				
24	50.0000		76.9604		60.0352	93.0537
25	60.0000		128.7287		112.9365	144.3765
26	70.0000		180.4969		164.7214	196.8156

This prediction interval estimates the predicted value of X for a single individual with this value of Y. This method of inverse prediction is also called 'calibration.'

Este reporte tal vez sea el que más información nos regresa a partir de todo el análisis realizado, para comenzar nos da la grafica de los datos y de la recta ajustada a estos datos, lo que nos permite observar valores que estén muy alejados de esta línea y que tan bien se ajusta esta línea recta a los datos.

Después nos da la información de la regresión lineal realizada, de donde lo que nos importa es la pendiente y la ordenada al origen que en el caso de los datos del ejemplo obtuvimos:

Pendiente: 0.1932 Ordena al origen: 35.1337

Tenemos la estadística de cada una de las variables utilizadas para la regresión lineal, como la media, desviación estándar, máximo y mínimo.

El reporte además incluye datos como coeficiente de correlación, el error cuadrático medio, los intervalos de confianza de los datos obtenidos, para este ejemplo nos interesa conocer cuales son los valores altura que esta regresión lineal nos da para los siguientes pesos:

PESO	ALTURA
90	52.5188
100	54.4505
150	64.1090
200	73.7674
250	83.4258