осциллятора	m_1 , q_1 , k_1 , и m_2 , q_2 , k_2 . Здесь m -
масса, <i>q</i> -зар	яд, k - жесткость пружины. При этом
$q_2 = 1.5q_1$,	а $\mathit{k}_{2}=2\mathit{k}_{1}$. Во сколько раз отличается
интенсивнос	гь излучения второго осциллятора от
интенсивнос	ги первого? Введите число в качестве
ответа (если	гребуются нецелые числа, то вводите не
более двух д	есятичных знаков после запятой)
олее двух д	есятичных знаков после запятой)
Ответ:	9
Olbei.	

реобразования Лоренца являются следствием постоянства скорости распространения света(в вакууме)

Преобразования		являются	являются			распространения	
Герца	оренца п	римером	Галлилея	следствием	света	скорости	Ньютона

Преобразования Лоренца

Принцип постоянства скорости света противоречит принципу относительности Галилея, и преобразования

411

Глава 11. Специальная теория относительности. Лекции

Галилея не могут обеспечить его выполнение. В связи с этим возникает задача нахождения таких преобразований координат и времени двух инерциальных систем координат, движущихся с постоянной скоростью относительно друг друга, для которых выполняется второй постулат Эйнштейна.

Такие преобразования были найдены Лоренцем и для

Электрическое поле внутри проводника постоянно.

Электрическое поле внутри проводника постоянно.

Выберите один ответ:

- Верно
- Неверно

Какова размерность поверхностной плотности заряда?

Какова размерность поверхностной плотности заряда?

- [заряд]/[объем]
- [объем]/[заряд]
- [заряд]/[площадь]
- [плотность заряда]/[площадь]

Поверхностная плотность заряда

В ряде случаев можно говорить о распределении заряда по поверхности S. Так, если толщина заряженной пластины много меньше корня квадратного от величины поверхности пластины (рис. 2.1), в этом случае удобно ввести понятие, которое будет характеризовать заряд единицы поверхности, или поверхностиную плотность заряда σ :

$$\sigma \equiv \lim_{\Delta s \to 0} \frac{\Delta Q}{\Delta s} = \frac{dQ}{ds}; \quad dQ = \sigma ds;$$

$$Q = \int_{S} \sigma ds; \quad [\sigma] = \frac{[e]}{[S]}.$$
(2.6)

6. Заказ 3716 81

5. Заполните пропуски перетаскивая значения из списка.

Система уравнений Максвелла (записанная в интегральном виде) содержит 5 штук интегральных уравнений (с учетом закона сохранения заряда)

Система уравнений	импульса	(записанная в интеграль	ьном виде) содержит	5	штук интегральных
равнений (с учетом	закона	сохранения энер	гии)		
_					
		_			
дифференциальных	4		9	интегральных	Максвелла
дифференциальных	4		9	интегральных	Максвелла

6. Сколько всего скалярных уравнений в системе уравнений Максвелла в среде в ВЕНО форме (не считая закон сохранения заряда)?

Ско	лько всего скалярных уравнений в системе уравнений Максвелла в среде в $BEHD$ форме (не считая закон сохранения заряда)?
0	14
0	12
0	8
0	13
0	15
0	6
0	7

Отметьте уравнения отсутствующие в системе уравнений Максвелла в вакууме?

Отметьте уравнения отсутствующие в системе уравнений Максвелла в вакууме?
Выберите один или несколько ответов:
\square div $\mathbf{D} = 4\pi \rho$
\Box div $\mathbf{j} = -\frac{\partial \rho}{\partial t}$
\Box rot $\mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial \mathbf{E}}{\partial t}$
$ extbf{rot} \mathbf{E} = -rac{1}{c} rac{\partial \mathbf{H}}{\partial t}$

Система уравнений Максвелла в вакууме (в системе единиц Гаусса)

$$\begin{aligned} &\operatorname{div}\,\mathbf{E} = 4\pi\rho;\\ &\operatorname{div}\,\mathbf{B} = 0;\\ &\operatorname{rot}\,\mathbf{E} = -\frac{1}{c}\,\frac{\partial\mathbf{B}}{\partial\,t};\\ &\operatorname{rot}\,\mathbf{B} = \frac{4\pi}{c}\,\mathbf{j} + \frac{1}{c}\,\frac{\partial\mathbf{E}}{\partial\,t}.\\ &\operatorname{div}\,\mathbf{j} + \frac{\partial\rho}{\partial\,t} = 0. \end{aligned}$$

8. Сколько всего скалярных уравнений в системе уравнений Максвелла в среде в BEHD форме (не считая закон сохранения заряда)?

9. Данное уравнение записано не в квазистационарном приближении для системы проводников

Данное уравнение $I_k R_k + L \frac{dI}{dt} + \frac{Q_k}{C_k} = \varepsilon_k$ записано не в квазистационарном приближении для системы проводников Выберите один ответ:

Верно

Неверно