MA329 Statistical linear models 22-23

Assignment 3 (Due date: Nov 2, 11pm. For late submission, each day costs 10 percent. The solution will be released at 6pm Nov 4 since midterm test is on Nov 7. This assignment will not be accepted once the solution is released.)

1. (10 marks) Consider a nonsingular $n \times n$ matrix \mathbf{A} whose elements are functions of the scalar x. Also consider the full-rank $p \times n$ matrix \mathbf{B} . Let $\mathbf{H} = \mathbf{B'}(\mathbf{B}\mathbf{A}\mathbf{B'})^{-1}\mathbf{B}$. Show that

$$\frac{\partial \boldsymbol{H}}{\partial x} = -\boldsymbol{H} \frac{\partial \boldsymbol{A}}{\partial x} \boldsymbol{H}$$

2. (20 marks) Let $\mathbf{y} = (y_1, y_2, y_3)'$ be distributed as $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$\mu = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}.$$

- (a) Find the distribution of $\begin{pmatrix} y_1 y_2 + y_3 \\ 2y_1 + y_2 y_3 \end{pmatrix}$;
- (b) The conditional distribution of (y_1, y_2) given y_3 ;
- (c) The partial correlation between y_1 and y_2 given y_3 .
- 3. (10 marks) Let $\mathbf{Y} = (Y_1, Y_2, Y_3)'$. $E(\mathbf{Y}) = (2, 3, 4)'$ and the covariance matrix of \mathbf{Y} is

$$\Sigma = \left(\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 3 \end{array} \right).$$

Let $U = \sum_{i=1}^{3} (Y_i - \overline{Y})^2$. Find the expected value of U.

4. (10 marks) Let $\mathbf{Y} = (Y_1, ..., Y_n)'$. $E(\mathbf{Y}) = \mu \mathbf{1}$ and the covariance matrix of \mathbf{Y} is $\sigma^2 \mathbf{I}$. Let

$$U = \sum_{i < j} (Y_i - Y_j)^2.$$

Find the expected value of U, and find a constant k such that kU is an unbiased estimator of σ^2 .