Capítulo 4.1: EDOs Lineares de Ordem Superior

* Uma EDO Linear de ordem n tem a seguinte forma:

$$P_0(t)\frac{d^n y}{dt^n} + P_1(t)\frac{d^{n-1} y}{dt^{n-1}} + \dots + P_{n-1}(t)\frac{dy}{dt} + P_n(t)y = G(t)$$

- ** Vamos assumir que $P_0, ..., P_n$, e G são funções reais contínuas em algum intervalo $I = (\alpha, \beta)$, e que P_0 não se anule em I.
- * Dividindo por P_0 , a EDO fica

$$L[y] = \frac{d^n y}{dt^n} + p_1(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + p_{n-1}(t) \frac{dy}{dt} + p_n(t) y = g(t)$$

* Para uma EDO de Ordem n, temos n condições iniciais:

$$y(t_0) = y_0, y'(t_0) = y'_0, ..., y^{(n-1)}(t_0) = y_0^{(n-1)}$$

Teorema 4.1.1

* Considere o Problema de Valor Inicial (PVI) de ordem n

$$\frac{d^{n}y}{dt^{n}} + p_{1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{n-1}(t)\frac{dy}{dt} + p_{n}(t)y = g(t)$$
$$y(t_{0}) = y_{0}, \ y'(t_{0}) = y'_{0}, \dots, y^{(n-1)}(t_{0}) = y_{0}^{(n-1)}$$

- ** Se as funções $p_1, ..., p_n$, e g são continuas em um intervalo aberto I, então existe exatamente uma solução $y = \phi(t)$ que satisfaz o PVI. Esta solução existe em todo intervalo I.
- * Exemplo: Determine o intervalo onde a solução exista.

$$t^2 y^{(4)} + t y^{(3)} + 5 y = \sin t$$

Equações Homogênea

* Como no caso de 2ª ordem, iniciamos com a EDO homogênea:

$$L[y] = \frac{d^n y}{dt^n} + p_1(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + p_{n-1}(t) \frac{dy}{dt} + p_n(t) y = 0$$

* Se $y_1, ..., y_n$ são soluções da EDO, então a comb. linear delas th é

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t)$$

* Toda solução é desta forma, onde os coeficientes são determinados pelas condições iniciais, dada pelo sistema abaixo:

$$c_{1}y_{1}(t_{0}) + \dots + c_{n}y_{n}(t_{0}) = y_{0}$$

$$c_{1}y'_{1}(t_{0}) + \dots + c_{n}y'_{n}(t_{0}) = y'_{0}$$

$$\vdots$$

$$c_{1}y_{1}^{(n-1)}(t_{0}) + \dots + c_{n}y_{n}^{(n-1)}(t_{0}) = y_{0}^{(n-1)}$$

Equações Homogênea e Wronskiano

* O sistema de equações anterior tem solução única se e somente se o determinante, ou Wronskiano, é não nulo em t_0 :

$$W(y_1, y_2, ..., y_n)(t_0) = \begin{vmatrix} y_1(t_0) & y_2(t_0) & \cdots & y_n(t_0) \\ y'_1(t_0) & y'_2(t_0) & \cdots & y'_n(t_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(t_0) & y_2^{(n-1)}(t_0) & \cdots & y_n^{(n-1)}(t_0) \end{vmatrix}$$

- * Se t_0 é um ponto no intervalo I, o Wronskiano é necessariamente não nulo em todo intervalo I.
- * Portanto, se o Wronskiano é zero em algum ponto do intervalo *I*, então é identicamente nulo em todo *I*.

Teorema 4.1.2

* Considere o PVI de ordem n

$$\frac{d^{n}y}{dt^{n}} + p_{1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{n-1}(t)\frac{dy}{dt} + p_{n}(t)y = 0$$

$$y(t_{0}) = y_{0}, \ y'(t_{0}) = y'_{0}, \dots, y^{(n-1)}(t_{0}) = y^{(n-1)}$$

** Se as funções $p_1, ..., p_n$ são contínuas em um intervalo aberto I, e se $y_1, ..., y_n$ são soluções com $W(y_1, ..., y_n)(t) \neq 0$ para algum t em I, então toda solução y da EDO pode ser dada pela combinação linear de $y_1, ..., y_n$:

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t)$$

* Verificar que as funções dadas são soluções da equação diferencial, e determinar seu Wronskiano.

$$-t^2y''' + ty'' = 0;$$
 1, t , t^3

Soluções Fundamental e Independencia Linear

* Considere a EDO de ordem n:

$$y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = 0$$

- * Um conjunto $\{y_1, ..., y_n\}$ de soluções com $W(y_1, ..., y_n) \neq 0$ em I é chamado de **Conjunto Fundamental de Soluções (CFS)**.
- * Uma vez que todas as soluções podem ser expressas como uma combinação linear do CFS, a solução é geral

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t)$$

** Se $y_1,..., y_n$ são Soluções Fundamental então $W(y_1,..., y_n) \neq 0$ em I. É equivalente a dizer que $y_1,..., y_n$ são Linearmente Independente (**LI**):

$$c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t) = 0$$
 iff $c_1 = c_2 = \dots = c_n = 0$

Equação não homogênea

* Considere a equação não homogênea:

$$L[y] = \frac{d^n y}{dt^n} + p_1(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + p_{n-1}(t) \frac{dy}{dt} + p_n(t) y = g(t)$$

* Se Y_1 , Y_2 são soluções da equação não homogênea, então Y_1 - Y_2 é uma solução para a equação homogênea:

$$L[Y_1 - Y_2] = L[Y_1] - L[Y_2] = g(t) - g(t) = 0$$

* Então existem coeficientes $c_1, ..., c_n$ tal que

$$Y_1(t) - Y_2(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t)$$

* Portanto a solução geral da EDO não homogênea é

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t) + Y(t)$$

onde Y é uma solução particular para EDO não homogênea.

Capítulo 4.2: Equações Homogêneas com Coeficientes Constantes

* Considere a equação diferencial linear de ordem n homogênea com coeficientes reais e constantes:

$$L[y] = a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

** Da mesma forma que foi feito para o caso de ordem 2, $y = e^{rt}$ é uma solução para valores de r que são raízes do polinômio característico Z(r):

$$L[e^{rt}] = e^{rt} \left[a_0 r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n \right] = 0$$
polinômio característico $Z(r)$

** Pelo teorema fundamental da álgebra, um polinômio de grau n tem n raízes $r_1, r_2, ..., r_n$, e portanto

$$Z(r) = a_0(r - r_1)(r - r_2) \cdots (r - r_n)$$

Raízes reais e distintas

* Se as raízes do polinômio característico Z(r) são reais e distintas, então existem n soluções distintas da equação diferencial:

$$e^{r_1t}, e^{r_2t}, ..., e^{r_nt}$$

* Se estas funções são linearmente independentes, então a solução geral da equação diferencial é

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + \dots + c_n e^{r_n t}$$

* O Wronskiano pode ser usado para determinar se as soluções são LI.

$$W(e^{r_1 t}, e^{r_2 t}, ..., e^{r_n t}) \neq 0$$

Exemplo 1: Raízes reais e distintas (1 de 3)

* Considere o PVI

$$y^{(4)} + 2y''' - 13y'' - 14y' + 24y = 0$$

$$y(0) = 1, y'(0) = -1, y''(0) = 0, y'''(0) = -1$$

* Assumindo a solução exponencial temos a equação característica:

$$y(t) = e^{rt} \implies r^4 + 2r^3 - 13r^2 - 14r + 24 = 0$$

$$\Leftrightarrow (r-1)(r+2)(r-3)(r+4) = 0$$

* Assim a solução geral é

$$y(t) = c_1 e^t + c_2 e^{-2t} + c_3 e^{3t} + c_3 e^{-4t}$$

$$y(t) = c_1 e^t + c_2 e^{-2t} + c_3 e^{3t} + c_3 e^{-4t}$$

Exemplo 1: Solução (2 de 3)

Das condições iniciais

$$y(0) = 1, y'(0) = -1, y''(0) = 0, y'''(0) = -1$$

Temos

$$c_1 + c_2 + c_3 + c_4 = 1$$

$$c_1 - 2c_2 + 3c_3 - 4c_4 = -1$$

$$c_1 + 4c_2 + 9c_3 + 16c_4 = 0$$

$$c_1 - 8c_2 + 27c_3 - 64c_4 = -1$$

- ** Resolvendo, $c_1 = \frac{1}{2}$, $c_2 = \frac{4}{5}$, $c_3 = -\frac{11}{70}$, $c_4 = -\frac{1}{7}$
- Short Se $y(t) = \frac{1}{2}e^{t} + \frac{4}{5}e^{-2t} \frac{11}{70}e^{3t} \frac{1}{7}e^{-4t}$

Exemplo 1: Gráfico da Solução (3 de 3)

* O gráfico da solução é dada abaixo. Note o efeito da maior raiz da equação característica.

$$y(t) = \frac{1}{2}e^{t} + \frac{4}{5}e^{-2t} - \frac{11}{70}e^{3t} - \frac{1}{7}e^{-4t}$$

Raízes Complexas

- ** Se o polinômio característico Z(r) possui raízes complexas, então elas ocorrem em pares conjugados, $\lambda \pm i\mu$.
- * Note que nem todas raízes serão complexas.
- * Soluções correspondentes as raízes complexas possui a forma

$$e^{(\lambda+i\mu)t} = e^{\lambda t} \cos \mu t + ie^{\lambda t} \sin \mu t$$
$$e^{(\lambda-i\mu)t} = e^{\lambda t} \cos \mu t - ie^{\lambda t} \sin \mu t$$

* Como antes, nos usaremos as soluções com valores reais.

$$e^{\lambda t}\cos\mu t$$
, $e^{\lambda t}\sin\mu t$

Exemplo 2: Raízes Complexas

* Considere a equação

$$y''' - y = 0$$

***** Então

$$y(t) = e^{rt} \implies r^3 - 1 = 0 \iff (r - 1)(r^2 + r + 1) = 0$$

* Agora

$$r^{2} + r + 1 = 0 \iff r = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{3} i}{2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$$

* Assim, a solução é geral

$$y(t) = c_1 e^t + c_2 e^{-t/2} \cos(\sqrt{3}t/2) + c_3 e^{-t/2} \sin(\sqrt{3}t/2)$$

Exemplo 3: Raízes Complexas(1 de 2)

* Considere o PVI

$$y^{(4)} - y = 0$$
, $y(0) = 7/2$, $y'(0) = -4$, $y''(0) = 5/2$, $y'''(0) = -2$

Então

$$y(t) = e^{rt} \implies r^4 - 1 = 0 \iff (r^2 - 1)(r^2 + 1) = 0$$

* As raízes são 1, -1, i, -i. Assim a solução geral é

$$y(t) = c_1 e^t + c_2 e^{-t} + c_3 \cos(t) + c_4 \sin(t)$$

* Usando as condições iniciais, nos obtemos

$$y(t) = 0e^{t} + 3e^{-t} + \frac{1}{2}\cos(t) - \sin(t)$$

* O gráfico da solução é dada ao lado

Exemplo 3:

$$y(t) = 0e^{t} + 3e^{-t} + \frac{1}{2}\cos(t) - \sin(t)$$

Uma pequena modificação na condição inicial (2 de 2)

* Note que se uma condição inicial é ligeiramente modificada, a solução pode mudar significativamente. Por exemplo:

substitua
$$y(0) = 7/2, y'(0) = -4, y''(0) = 5/2, y'''(0) = -2$$

por
$$y(0) = 7/2, y'(0) = -4, y''(0) = 5/2, y'''(0) = -15/8$$

$$y(t) = \frac{1}{32}e^{t} + \frac{95}{32}e^{-t} + \frac{1}{2}\cos(t) - \frac{17}{16}\sin(t)$$

* O gráfico desta solução e da solução original são dados abaixo.

Raízes Repetidas

* Suponha uma raiz r_k do polinómio característico Z(r) é uma raiz repetida com multiplicidade s. Então as soluções LI correspondentes a esta raiz tem a seguinte forma repetida

$$e^{r_k t}$$
, $te^{r_k t}$, $t^2 e^{r_k t}$, ..., $t^{s-1} e^{r_k t}$

* Se uma raiz complexa $\lambda + i\mu$ é repetida s vezes, então sua conjugada th é λ - $i\mu$. Então as soluções LI correspondentes a esta raiz tem a seguinte forma repetida

$$e^{(\lambda+iu)t}$$
, $te^{(\lambda+iu)t}$, $t^2e^{(\lambda+iu)t}$, ..., $t^{s-1}e^{(\lambda+iu)t}$

ou

$$e^{\lambda t}\cos\mu t$$
, $e^{\lambda t}\sin\mu t$, $te^{\lambda t}\cos\mu t$, $te^{\lambda t}\sin\mu t$,...,
 $t^{s-1}e^{r_k t}\cos\mu t$, $t^{s-1}e^{r_k t}e^{\lambda t}\sin\mu t$,

Exemplo 4: Raízes Repetidas

* Considere a equação

$$y^{(4)} + 8y'' + 16y = 0$$

Então

$$y(t) = e^{rt} \implies r^4 + 8r + 16 = 0 \Leftrightarrow (r^2 + 4)(r^2 + 4) = 0$$

*As raízes são 2i, 2i, -2i. Assim a solução geral é $y(t) = c_1 \cos 2t + c_2 \sin 2t + c_3 t \cos(2t) + c_4 t \sin(2t)$

** PVI:
$$y(0) = 1;$$
 $y'(0) = -1;$ $y''(0) = -4.$

★ Solução do PVI:

$$y(t) = \cos 2t - \sin 2t + t \cos(2t) - t\sin(2t)$$

Capítulo 4.3: Equações não Homogêneas: Método dos coeficientes Indeterminados

* O método de coeficientes indeterminado pode ser usado para encontrar uma solução particular *Y* de uma EDO linear não homogênea de ordem n e coeficiente constante

$$L[y] = a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = g(t),$$

g é fornecida de uma forma adequada.

- * Como no caso de 2ª ordem, o método dos coeficientes indeterminados é usado quando g é uma soma ou produto de funções polinomiais, exponenciais, senos e/ou co-senos.
- * Secção 4,4 discutiremos o método de variação de parâmetros, que é um método mais geral.

* Considere a equação diferencial

$$y''' - 3y'' + 3y' - y = 4e^t$$

* Para o caso homogêneo,

$$y(t) = e^{rt} \implies r^3 - 3r^2 + 3r - 1 = 0 \iff (r - 1)^3 = 0$$

* Assim, a solução geral da equação é homogênea

$$y_C(t) = c_1 e^t + c_2 t e^t + c_3 t^2 e^t$$

* Para o caso não homogêneo, tenha em mente a forma de solução homogênea. Assim começará

$$Y(t) = At^3 e^{2t}$$

* Como no capítulo anterior, podemos verificar que

$$Y(t) = \frac{2}{3}t^3e^{2t} \implies y(t) = c_1e^t + c_2te^t + c_3t^2e^t + \frac{2}{3}t^3e^{2t}$$

Considere a equação

$$y^{(4)} + 8y'' + 16y = 2\sin t - 3\cos t$$

* Para o caso homogêneo,

$$y(t) = e^{rt} \implies r^4 + 8r + 16 = 0 \iff (r^2 + 4)(r^2 + 4) = 0$$

- * Assim, a solução geral da equação homogênea é $y(t) = c_1 \cos 2t + c_2 \sin 2t + c_3 t \cos(2t) + c_4 t \sin(2t)$
- * Para o caso não homogêneo, comece com

$$Y(t) = A \sin t + B \cos t$$

* Assim temos

$$Y(t) = \frac{2}{9}\sin t - \frac{1}{3}\cos t$$

* Considere a equação

$$y^{(4)} + 8y'' + 16y = 2\sin 2t - 3\cos 2t$$

* Como no exemplo 2, assim a solução geral da equação homogênea é

$$y(t) = c_1 \cos 2t + c_2 \sin 2t + c_3 t \cos(2t) + c_4 t \sin(2t)$$

* Para o caso não homogêneo, tome

$$Y(t) = At^2 \sin 2t + Bt^2 \cos 2t$$

* Assim temos

$$Y(t) = -\frac{1}{16}t^2 \sin 2t + \frac{3}{32}t^2 \cos 2t$$

* Considere a equação

$$y''' - 9y' = t + e^{3t}$$

* Para o caso homogêneo,

$$y(t) = e^{rt} \implies r^3 - 9r = 0 \iff r(r^2 - 9) \iff r(r - 3)(r + 3) = 0$$

* Assim, a solução geral da equação homogênea é

$$y_C(t) = c_1 + c_2 e^{3t} + c_3 e^{-3t}$$

* Para o caso não homogêneo, lembre-se de forma da solução homogênea. Assim, temos dois sub-casos:

$$Y_1(t) = (A + Bt)t, Y_2(t) = Cte^{3t},$$

* Portanto

$$Y_1(t) = -\frac{1}{18}t^2$$
, $Y_2(t) = \frac{1}{18}te^{3t}$

Capítulo 4.4: Variação de Parâmetros (1 de 5)

* O Método de variação de parâmetros pode ser usado para encontrar uma solução particular de uma EDO linear não homogênea de ordem n.

$$L[y] = y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = g(t),$$

desde que g seja contínua.

- ** Como no caso de segunda ordem, assumimos que $y_1, y_2 ..., y_n$ são soluções fundamentais da equação homogênea.
- * Em seguida, assuma que a solução particular tem a forma Y

$$Y(t) = u_1(t)y_1(t) + u_2(t)y_2(t) + \dots + u_n(t)y_n(t)$$

onde $u_1, u_2, \dots u_n$ são funções a serem determinadas.

* Para encontrar estas n funções, precisamos de n equações.

Derivando a Variação de Parâmetros (2 de 5)

* Primeiro, considere a derivadas de Y:

$$Y' = (u_1'y_1 + u_2'y_2 + \dots + u_n'y_n) + (u_1y_1' + u_2y_2' + \dots + u_ny_n')$$

* Se pedirmos que

$$u_1'y_1 + u_2'y_2 + \dots + u_n'y_n = 0$$

então

$$Y'' = (u_1'y_1' + u_2'y_2' + \dots + u_n'y_n') + (u_1y_1'' + u_2y_2'' + \dots + u_ny_n'')$$

* Assim pediremos que

$$u_1'y_1' + u_2'y_2' + \dots + u_n'y_n' = 0$$

* Continuando este processo, teremos k-1 equações

$$u_1'y_1^{(k-1)} + u_2'y_2^{(k-1)} + \dots + u_n'y_n^{(k-1)} = 0, \quad k = 1,\dots, n-1$$

e onde

$$Y^{(k)} = u_1 y_1^{(k)} + \dots + u_n y_n^{(k)}, \quad k = 0, 1, \dots, n-1$$

Derivando a Variação de Parâmetros (3 de 5)

Assim,

$$Y^{(k)} = u_1 y_1^{(k)} + \dots + u_n y_n^{(k)}, \quad k = 0, 1, \dots, n-1$$

* Finalmente,

$$Y^{(n)} = \left(u_1' y_1^{(n-1)} + \dots + u_n' y_n^{(n-1)}\right) + \left(u_1 y_1^{(n)} + \dots + u_n y_n^{(n)}\right)$$

** Agora, substituindo esta derivada na nossa equação $y^{(n)} + p_1(t)y^{(n-1)} + \cdots + p_{n-1}(t)y' + p_n(t)y = g(t)$

* Observando que $y_1, y_2 ..., y_n$ são soluções da equação homogênea, e após a reorganização dos termos, obtemos

$$u'_1 y_1^{(n-1)} + \dots + u'_n y_n^{(n-1)} = g$$

Derivando a Variação de Parâmetros (4 de 5)

* As n equações necessária, a fim de encontrar as n funções $u_1, u_2, \ldots u_n$ são

$$u'_{1}y_{1} + \cdots + u'_{n}y_{1} = 0$$

$$u'_{1}y'_{1} + \cdots + u'_{n}y'_{n} = 0$$

$$\vdots$$

$$u'_{1}y_{1}^{(n-1)} + \cdots + u'_{n}y_{n}^{(n-1)} = g$$

Usando a Regra de Cramer, para cada k = 1, ..., n,

$$u'_k(t) = \frac{g(t)W_k(t)}{W(t)}$$
, onde $W(t) = W(y_1, ..., y_n)(t)$

e W_k é o determinante obtido através da substituição da késima coluna de W por (0, 0, ..., 1).

Derivando a Variação de Parâmetros (5 de 5)

* Assim,

$$u'_{k}(t) = \frac{g(t)W_{k}(t)}{W(t)}, k = 1,...,n$$

***** Integrando obtemos $u_1, u_2, \ldots u_n$:

$$u_k(t) = \int_{t_0}^t \frac{g(s)W_k(s)}{W(s)} ds, \ k = 1,...,n$$

* Assim, uma solução particular *Y* é dada por

$$Y(t) = \sum_{k=1}^{n} \left[\int_{t_0}^{t} \frac{g(s)W_k(s)}{W(s)} ds \right] y_k(t)$$

onde t_0 é arbitrario.

Exemplo (1 de 3)

* Considere a equação a seguir, junto com as dadas soluções correspondentes às soluções homogêneas y_1 , y_2 , y_3 :

$$y''' - y'' - y' + y = e^{2t}, y_1(t) = e^t, y_2(t) = te^t, y_3(t) = e^{-t}$$

* Então uma solução particular da EDO é dado por

$$Y(t) = \sum_{k=1}^{3} \left[\int_{t_0}^{t} \frac{e^{2s} W_k(s)}{W(s)} ds \right] y_k(t)$$

* É facil ver que

$$W(t) = \begin{vmatrix} e^{t} & te^{t} & e^{-t} \\ e^{t} & (t+1)e^{t} & -e^{-t} \\ e^{t} & (t+2)e^{t} & e^{-t} \end{vmatrix} = 4e^{t}$$

Exemplo (2 de 3)

🗯 Também que,

$$W_{1}(t) = \begin{vmatrix} 0 & te^{t} & e^{-t} \\ 0 & (t+1)e^{t} & -e^{-t} \\ 1 & (t+2)e^{t} & e^{-t} \end{vmatrix} = -2t - 1$$

$$W_{2}(t) = \begin{vmatrix} e^{t} & 0 & e^{-t} \\ e^{t} & 0 & -e^{-t} \\ e^{t} & 1 & e^{-t} \end{vmatrix} = 2$$

$$W_{3}(t) = \begin{vmatrix} e^{t} & te^{t} & 0 \\ e^{t} & (t+1)e^{t} & 0 \\ e^{t} & (t+2)e^{t} & 1 \end{vmatrix} = e^{t}$$

Exemplo (3 de 3)

* Assim a solução particular é

$$Y(t) = \sum_{k=1}^{3} \left[\int_{t_0}^{t} \frac{e^{2s} W_k(s)}{W(s)} ds \right] y_k(t)$$

$$= e^t \int_{t_0}^{t} \frac{e^{2s} (-2s-1)}{4e^s} ds + te^t \int_{t_0}^{t} \frac{2e^{2s}}{4e^s} ds + e^{-t} \int_{t_0}^{t} \frac{e^{2s} e^{2s}}{4e^s} ds$$

$$= -\frac{e^t}{4} \int_{t_0}^{t} e^s (2s+1) ds + \frac{te^t}{2} \int_{t_0}^{t} e^s ds + \frac{e^{-t}}{4} \int_{t_0}^{t} e^{4s} ds$$

* Fazendo $t_0 = 0$, nos obtemos

$$Y(t) = -\frac{1}{4}e^{t} - \frac{1}{2}te^{t} - \frac{1}{12}e^{-t} + \frac{1}{3}e^{2t}$$

* Ou simplesmente,

$$Y(t) = \frac{1}{3}e^{2t}$$