In [1]:

```
import pandas as pd
import numpy as np

import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor

from sklearn import metrics
from sklearn.metrics import mean_squared_error, r2_score

from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split

from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

from IPython.display import Image
```

In [2]:

```
# Suppress scientific notation in Pandas
pd.set_option('display.float_format', lambda x: '%.5f' % x)
```

In [3]:

```
# Importing the data

dfOriginal = pd.read_csv('Datasets/rvnS2F.csv')

df = dfOriginal.copy()

df
```

Out[3]:

	Unnamed: 0	date	height_RVN	flow_RVN	stock_RVN	open_RVN	high_RVN	low_RVN	c
0	0	2018- 01-03	5945000	5945000	5945000	nan	nan	nan	
1	1	2018- 01-04	10945000	10945000	16890000	nan	nan	nan	
2	2	2018- 01-05	11500000	11500000	28390000	nan	nan	nan	
3	3	2018- 01-06	9265000	9265000	37655000	nan	nan	nan	
4	4	2018- 01-07	13170000	13170000	50825000	nan	nan	nan	
1240	1240	2021- 05-27	7330000	7330000	8845340000	0.10150	0.10380	0.09166	
1241	1241	2021- 05-28	7020000	7020000	8852360000	0.09447	0.09601	0.07769	
1242	1242	2021- 05-29	7130000	7130000	8859490000	0.08117	0.08446	0.07040	
1243	1243	2021- 05-30	7250000	7250000	8866740000	0.07621	0.08379	0.07091	
1244	1244	2021- 05-31	7060000	7060000	8873800000	0.07867	0.08431	0.07449	
1245	rows × 17 co	olumns							
4								l	•

Data Transformation

In [4]:

```
# Missing values by columns/variables
df.isna().sum()
```

Out[4]:

Unnamed: 0	0
date	0
height_RVN	0
flow_RVN	0
stock_RVN	0
open_RVN	73
high_RVN	73
low_RVN	73
close_RVN	73
adj_close_RVN	73
volume_RVN	73
open_BTC	70
high_BTC	70
low_BTC	70
close_BTC	70
adj_close_BTC	70
volume_BTC	70
d+v.no. in+C1	

In [5]:

We collect data since the creation of the RVN blockchain, before the sale of tokens.
These data will be excluded so as not to bias the model.

df = df.dropna()

Out[5]:

df

	Unnamed: 0	date	height_RVN	flow_RVN	stock_RVN	open_RVN	high_RVN	low_RVN	c
66	66	2018- 03-10	7145000	7145000	568000000	0.02650	0.02877	0.02606	
67	67	2018- 03-11	7380000	7380000	575380000	0.02852	0.03350	0.02624	
68	68	2018- 03-12	7345000	7345000	582725000	0.03150	0.03431	0.02859	
69	69	2018- 03-13	7675000	7675000	590400000	0.02990	0.03091	0.02571	
70	70	2018- 03-14	7455000	7455000	597855000	0.02772	0.02868	0.02375	
1240	1240	2021- 05-27	7330000	7330000	8845340000	0.10150	0.10380	0.09166	
1241	1241	2021- 05-28	7020000	7020000	8852360000	0.09447	0.09601	0.07769	
1242	1242	2021- 05-29	7130000	7130000	8859490000	0.08117	0.08446	0.07040	
1243	1243	2021- 05-30	7250000	7250000	8866740000	0.07621	0.08379	0.07091	
1244	1244	2021- 05-31	7060000	7060000	8873800000	0.07867	0.08431	0.07449	

1172 rows × 17 columns

localhost:8888/notebooks/4 - Analysis%2C Exploration and Model - RVN Blocks.ipynb

In [6]:

```
# The hypothesis in this study is that scarcity, as measured by SF, directly drives value. df['SF_RVN'] = df['stock_RVN'] \ / \ df['flow_RVN'] \ df
```

<ipython-input-6-fe60758a675e>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['SF_RVN'] = df['stock_RVN'] / df['flow_RVN']

Out[6]:

	Unnamed: 0	date	height_RVN	flow_RVN	stock_RVN	open_RVN	high_RVN	low_RVN	c
66	66	2018- 03-10	7145000	7145000	568000000	0.02650	0.02877	0.02606	_
67	67	2018- 03-11	7380000	7380000	575380000	0.02852	0.03350	0.02624	
68	68	2018- 03-12	7345000	7345000	582725000	0.03150	0.03431	0.02859	
69	69	2018- 03-13	7675000	7675000	590400000	0.02990	0.03091	0.02571	
70	70	2018- 03-14	7455000	7455000	597855000	0.02772	0.02868	0.02375	
1240	1240	2021- 05-27	7330000	7330000	8845340000	0.10150	0.10380	0.09166	
1241	1241	2021- 05-28	7020000	7020000	8852360000	0.09447	0.09601	0.07769	
1242	1242	2021- 05-29	7130000	7130000	8859490000	0.08117	0.08446	0.07040	
1243	1243	2021- 05-30	7250000	7250000	8866740000	0.07621	0.08379	0.07091	
1244	1244	2021- 05-31	7060000	7060000	8873800000	0.07867	0.08431	0.07449	
1172 r	rows × 18 co	olumns							

1172 rows × 18 columns

In [7]:

```
# Set index
df.set_index('height_RVN',inplace=True)

# Removing garbage
df = df.drop('Unnamed: 0', 1)
df = df.drop('flow_RVN', 1)
df = df.drop('stock_RVN', 1)
df = df.drop('open_RVN', 1)
df = df.drop('high_RVN', 1)
df = df.drop('low_RVN', 1)
df = df.drop('close_RVN', 1)
df = df.drop('close_RVN', 1)
df = df.drop('high_BTC', 1)
df = df.drop('low_BTC', 1)
df = df.drop('close_BTC', 1)
df = df.drop('close_BTC', 1)
```

Out[7]:

	date	adj_close_RVN	volume_RVN	adj_close_BTC	volume_BTC	SF_RVN
height_RVN						
7145000	2018- 03-10	0.02862	171820.00000	8866.00000	5386319872.00000	79.49615
7380000	2018- 03-11	0.03188	279104.00000	9578.62988	6296370176.00000	77.96477
7345000	2018- 03-12	0.03026	218114.00000	9205.12012	6457399808.00000	79.33628
7675000	2018- 03-13	0.02790	167669.00000	9194.84961	5991139840.00000	76.92508
7455000	2018- 03-14	0.02439	131838.00000	8269.80957	6438230016.00000	80.19517
7170000	2018- 03-15	0.02447	114232.00000	8300.86035	6834429952.00000	84.38285
7595000	2018- 03-16	0.02453	121884.00000	8338.34961	5289379840.00000	80.66096
7325000	2018- 03-17	0.02277	108011.00000	7916.87988	4426149888.00000	84.63413
7260000	2018- 03-18	0.02262	141594.00000	8223.67969	6639190016.00000	86.39187
7055000	2018- 03-19	0.02158	91701.00000	8630.65039	6729110016.00000	89.90220

In [8]:

```
df.dtypes
```

Out[8]:

date object
adj_close_RVN float64
volume_RVN float64
adj_close_BTC float64
volume_BTC float64
SF_RVN float64

dtype: object

In [9]:

```
# Adjusting the dataset
df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%d')
df.head(10)
```

Out[9]:

	date	adj_close_RVN	volume_RVN	adj_close_BTC	volume_BTC	SF_RVN
height_RVN						
7145000	2018- 03-10	0.02862	171820.00000	8866.00000	5386319872.00000	79.49615
7380000	2018- 03-11	0.03188	279104.00000	9578.62988	6296370176.00000	77.96477
7345000	2018- 03-12	0.03026	218114.00000	9205.12012	6457399808.00000	79.33628
7675000	2018- 03-13	0.02790	167669.00000	9194.84961	5991139840.00000	76.92508
7455000	2018- 03-14	0.02439	131838.00000	8269.80957	6438230016.00000	80.19517
7170000	2018- 03-15	0.02447	114232.00000	8300.86035	6834429952.00000	84.38285
7595000	2018- 03-16	0.02453	121884.00000	8338.34961	5289379840.00000	80.66096
7325000	2018- 03-17	0.02277	108011.00000	7916.87988	4426149888.00000	84.63413
7260000	2018- 03-18	0.02262	141594.00000	8223.67969	6639190016.00000	86.39187
7055000	2018- 03-19	0.02158	91701.00000	8630.65039	6729110016.00000	89.90220

Correlation Analysis

In [10]:

correlations = df.corr()
correlations

Out[10]:

	adj_close_RVN	volume_RVN	adj_close_BTC	volume_BTC	SF_RVN
adj_close_RVN	1.00000	0.62490	0.81534	0.45750	0.34789
volume_RVN	0.62490	1.00000	0.54773	0.36155	0.28849
adj_close_BTC	0.81534	0.54773	1.00000	0.71660	0.64772
volume_BTC	0.45750	0.36155	0.71660	1.00000	0.70432
SF_RVN	0.34789	0.28849	0.64772	0.70432	1.00000

In [11]:

```
#heatmap

plt.figure(figsize = (12,12))
sns.heatmap(df.corr(),annot=True, cmap='Reds')
```

Out[11]:

<AxesSubplot:>

Correlation Results:

- 1. Ravencoin price has a strong correlation with Bitcoin price.
- 2. The second biggest correlation is with the volume of RVN operations followed by the volume of BTC.
- 3. It presents a weak correlation with the SF variable (stock/flow), which invalidates the application of the S2F model to Ravencoin.

Analyze:

1. It should be noted that the period object of this study (10/03/2018 to 31/05/2021) precedes the first halving, scheduled to run in January 2022. Source: https://ravencoin.org/halving/)

Since the phenomenon called halving is not present in the data, it is important to repeat this analysis in future works.

 We observe that the Bitcoin price has a strong correlation with the Ravencoin price, this phenomenon is repeated in several altcoins. Source: https://www.analyticsvidhya.com/blog/2021-python-for-finance-basics/
 (https://www.analyticsvidhya.com/blog/2021/05/analyzing-the-cryptocurrency-of-may-2021-python-for-finance-basics/)

Due to this high correlation with the BTC, it is possible that, even after the first Ravencoin halving, the S2F model does not obtain good results.

3. An important correlation between the price of the RVN and its volume indicates that the price is determined by supply and demand. That is, the price rises as demand increases.

It is worth remembering that there are a limited number of Ravencoins in circulation and new RVNs are created at a predictable and decreasing rate, denoting a long-term deflationary trend.

However, in the short term and based on the data available at the time of this analysis, we observe that the BTC price is more relevant in determining the RVN price than the RVN volume itself.

4. The RVN price has a stronger correlation with the BTC volume than with the S2F (stock/flow) variable, indicating that the Stock-to-Flow model is not efficient to forecast RVN prices in the short term.

Type *Markdown* and LaTeX: α^2

RVN price forecast

Although it is not possible to predict the RVN price from SF, we can create a model with the BTC price and RVN volume variables.

```
In [12]:
```

```
df = df.drop('volume_BTC', 1)
df = df.drop('SF_RVN', 1)
df = df.drop('date', 1)

df.head(10)
```

Out[12]:

adj_close_RVN	volume RVN	adi close	BTC

height_RVN			
7145000	0.02862	171820.00000	8866.00000
7380000	0.03188	279104.00000	9578.62988
7345000	0.03026	218114.00000	9205.12012
7675000	0.02790	167669.00000	9194.84961
7455000	0.02439	131838.00000	8269.80957
7170000	0.02447	114232.00000	8300.86035
7595000	0.02453	121884.00000	8338.34961
7325000	0.02277	108011.00000	7916.87988
7260000	0.02262	141594.00000	8223.67969
7055000	0.02158	91701.00000	8630.65039

Plotting the data

Seaborn's jointplot displays a relationship between 2 variables (bivariate) as well as 1D profiles (univariate) in the margins.

"reg" plots a linear regression line.

```
In [13]:
```

```
sns.set_theme(color_codes=True)
```

In [14]:

sns.jointplot(x='adj_close_BTC', y='adj_close_RVN', data=df, kind="reg")

Out[14]:

<seaborn.axisgrid.JointGrid at 0x1b380b22b50>

In [15]:

sns.jointplot(x='volume_RVN', y='adj_close_RVN', data=df, kind="reg")

Out[15]:

<seaborn.axisgrid.JointGrid at 0x1b380b3c4c0>

Checking for possible multicollinearity

Variable Inflation Factors

VIF starts at 1 and has no upper limit

VIF = 1, no correlation between the independent variable and the other variables

VIF exceeding 5 or 10 indicates high multicollinearity between this independent variable and the others

```
In [16]:
```

```
# The function used to check the multicollinearity hypothesis is an adaptation of the code
# Source: https://www.analyticsvidhya.com/blog/2020/03/what-is-multicollinearity/

def calc_vif(X):

    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = X.columns
    vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    return(vif)
```

In [17]:

```
myVif = df.iloc[:,1:]
calc_vif(myVif)
```

Out[17]:

	variables	VIF
0	volume_RVN	1.46578
1	adj_close_BTC	1.46578

VIF = 1.46578

No correlation between independent variables

Defining training and testing dataframes

In [18]:

Training dataframe: 937 lines Test dataframe...: 235 lines

In [19]:

```
X_training2 = np.asarray(X_training)
X_test2 = np.asarray(X_test)
y_training2 = np.asarray(y_training)
y_test2 = np.asarray(y_test)
```

Building the models:

1. Multiple Linear Regression With scikit-learn

Useful for getting the advanced statistical parameters of a model

```
In [20]:
```

```
X_training = sm.add_constant(X_training)
X_testOriginal = X_test
X_test = sm.add_constant(X_test)
```

In [21]:

```
# Create a model and fit it
model_SM = sm.OLS(y_training, X_training).fit()
type(model_SM)
# SM = statsmodels
```

Out[21]:

statsmodels.regression.linear_model.RegressionResultsWrapper

Get results

R Square measures how much of variability in dependent variable can be explained by the model.

```
In [22]:
```

```
print('Coefficient of Determination (R^2):', model_SM.rsquared)
```

Coefficient of Determination (R^2) : 0.7098860817223511

Adjusted R Square prevent overfitting issue

```
In [23]:
```

```
print('Adjusted Coefficient of Determination (adjusted R^2):', model_SM.rsquared_adj)
```

Adjusted Coefficient of Determination (adjusted R2): 0.7092648527752898

```
In [24]:
```

```
print('Regression Coefficients(intercept, b_0, b_1):\n', model_SM.params)
```

```
Regression Coefficients(intercept, b_0, b_1):
const 0.00842
adj_close_BTC 0.00000
volume_RVN 0.00000
dtype: float64
```

In [25]:

```
print('P-values:\n', model_SM.pvalues)
```

P-values:

dtype: float64

In [26]:

```
model_SM.summary()
```

Out[26]:

OLS Regression Results

Dep. Variable: adj_close_RVN R-squared: 0.710 Model: OLS Adj. R-squared: 0.709 Method: F-statistic: 1143. Least Squares Date: Mon, 26 Jul 2021 Prob (F-statistic): 1.05e-251 Time: 14:56:39 Log-Likelihood: 2184.2 No. Observations: 937 AIC: -4362. **Df Residuals:** 934 BIC: -4348. **Df Model:** 2

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.0084	0.001	7.701	0.000	0.006	0.011
adj_close_BTC	2.094e-06	6.5e-08	32.223	0.000	1.97e-06	2.22e-06
volume_RVN	7.044e-11	5.74e-12	12.268	0.000	5.92e-11	8.17e-11

 Omnibus:
 105.535
 Durbin-Watson:
 2.070

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 268.541

 Skew:
 -0.609
 Prob(JB):
 4.87e-59

 Kurtosis:
 5.323
 Cond. No.
 2.34e+08

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.34e+08. This might indicate that there are strong multicollinearity or other numerical problems.

In [27]:

```
# The code used to generate the 3d graph is an adaptation of the code provided in Pythonic
# Source: https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
# Data preparation
email = 'ariel@usp.br'
X_FIG = X_testOriginal.values.reshape(-1,2)
Y_FIG = y_test
model = model SM
r2 = model_SM.rsquared
# Prepare model data point for visualization
x_{COORD} = X_{FIG}[:, 0]
y_{COORD} = X_{FIG}[:, 1]
z_COORD = Y_FIG
x_RANGE = np.linspace(x_COORD.min(), x_COORD.max(), 30) # range of x values
y_RANGE = np.linspace(y_COORD.min(), y_COORD.max(), 30) # range of y values
xx_RANGE, yy_RANGE = np.meshgrid(x_RANGE, y_RANGE)
model_viz = np.array([xx_RANGE.flatten(), yy_RANGE.flatten()]).T
#Predict
model_viz = sm.add_constant(model_viz)
predicted = model.predict(model_viz)
# PLot
plt.style.use('default')
fig = plt.figure(figsize=(12, 4))
ax1 = fig.add_subplot(131, projection='3d')
ax2 = fig.add_subplot(132, projection='3d')
ax3 = fig.add_subplot(133, projection='3d')
axes = [ax1, ax2, ax3]
for ax in axes:
    ax.plot(x_COORD, y_COORD, z_COORD, color='k', zorder=15, linestyle='none', marker='o',
    ax.scatter(xx_RANGE.flatten(), yy_RANGE.flatten(), predicted, facecolor=(0,0,0,0), s=20
    ax.set_xlabel('BTC Price', fontsize=12)
    ax.set_ylabel('RVN Price', fontsize=12)
    ax.set_zlabel('RVN Volume', fontsize=12)
    ax.locator params(nbins=4, axis='x')
    ax.locator_params(nbins=5, axis='x')
ax1.text2D(0.2, 0.32, email, fontsize=13, ha='center', va='center',
           transform=ax1.transAxes, color='grey', alpha=0.5)
ax2.text2D(0.3, 0.42, email, fontsize=13, ha='center', va='center',
           transform=ax2.transAxes, color='grey', alpha=0.5)
ax3.text2D(0.85, 0.85, email, fontsize=13, ha='center', va='center',
           transform=ax3.transAxes, color='grey', alpha=0.5)
ax1.view_init(elev=27, azim=112)
ax2.view init(elev=16, azim=-51)
ax3.view init(elev=60, azim=165)
```

```
fig.suptitle('$R^2 = %.2f$' % r2, fontsize=20)
fig.tight_layout()
```


Exporting PNG to generate GIF manually using the website https://ezgif.com/maker (https://ezgif.com/maker)

In [28]:

```
for ii in np.arange(0, 360, 1):
    ax.view_init(elev=32, azim=ii)
    fig.savefig('PNG/linear%d.png' % ii)
```

In [29]:

```
Image(url='GIF/linear.gif')
```

Out[29]:

Evaluate

In [30]:

```
y_pred_SM = model_SM.predict(X_test)
print('predicted response:', y_pred_SM, sep='\n')
predicted response:
height_RVN
7070000
          0.02768
          0.08659
7065000
7180000
          0.02139
7180000
          0.02226
7165000
          0.03163
7115000
          0.03340
7185000
          0.03317
7170000
          0.03199
7060000
          0.03075
7200000
          0.02235
Length: 235, dtype: float64
```

In [31]:

```
## The line / model
plt.scatter(y_test, y_pred_SM)
plt.xlabel("True Values")
plt.ylabel("Predictions")
```

Out[31]:

Text(0, 0.5, 'Predictions')

Mean Square Error is an absolute measure of the goodness for the fit.

```
In [32]:
```

```
print('Mean Absolute Error(MAE): ', metrics.mean_absolute_error(y_test, y_pred_SM))
```

Mean Absolute Error(MAE): 0.01488225771514125

MSE gives an absolute number on how much your predicted results deviate from the actual number.

```
In [33]:
```

```
print('Mean Square Error(MSE): ', metrics.mean_squared_error(y_test, y_pred_SM))
```

Mean Square Error(MSE): 0.0004892179886644842

In [34]:

```
print('Root Mean Square Error(RMSE): ', np.sqrt(metrics.mean_squared_error(y_test, y_pred_S
```

Root Mean Square Error(RMSE): 0.022118272732392197

2. Polynomial Regression With scikit-learn

```
In [35]:
```

```
# Data Preparation
# Include x²
poly = PolynomialFeatures(degree=2, include_bias=False)
X_training2_ = poly.fit_transform(X_training2)
X_test2_ = poly.fit_transform(X_test2)
```

```
In [36]:
```

```
# Define and train a model
model_POLY = LinearRegression().fit(X_training2_, y_training2)
type(model_POLY)
```

Out[36]:

sklearn.linear_model._base.LinearRegression

Get results

```
In [37]:
```

```
print('Coefficient of Determination (R^2):', model_POLY.score(X_training2_, y_training2))
```

Coefficient of Determination (R^2): 0.8538252108360737

```
In [38]:
```

```
# Calculate bias and variance
y_pred_POLY = model_POLY.predict(X_training2_)
```

```
In [39]:
```

```
# Another way to get R2
r2_POLY = r2_score(y_training2, y_pred_POLY)
print('Coefficient of Determination (R2):', r2_POLY)
```

Coefficient of Determination (R^2) : 0.8538252108360737

In [40]:

```
adj_r2_POLY = 1-(1-r2\_POLY) * (len(y\_training2) - 1) / (len(y\_training2) - X_training2_.sha print('Adjusted Coefficient of Determination (adjusted <math>R^2):', adj_r2_POLY)
```

Adjusted Coefficient of Determination (adjusted R^2): 0.8530401690038292

In [41]:

```
print('Regression Intercept:\n', model_POLY.intercept_)
```

Regression Intercept: 0.04340521870129358

In [42]:

```
print('Regression Coefficients(b_0, b_1):\n', model_POLY.coef_)
```

```
Regression Coefficients(b_0, b_1): [-3.33708577e-06 3.63532449e-10 9.34454615e-11 -4.97977385e-15 -1.95521927e-20]
```

In [43]:

```
X_training2_
```

Out[43]:

```
array([[7.88925000e+03, 3.31989000e+05, 6.22402656e+07, 2.61914422e+09, 1.10216696e+11], [8.59574023e+03, 2.23910950e+07, 7.38867502e+07, 1.92468036e+11, 5.01361135e+14], [9.91184180e+03, 1.70214930e+07, 9.82446078e+07, 1.68714346e+11, 2.89731224e+14], ..., [4.51377695e+04, 3.20505097e+08, 2.03741824e+09, 1.44668852e+13, 1.02723517e+17], [1.30162314e+04, 5.57152890e+07, 1.69422281e+08, 7.25203097e+11, 3.10419343e+15], [8.16655420e+03, 6.14181200e+06, 6.66926075e+07, 5.01574406e+10, 3.77218546e+13]])
```

In [44]:

```
# The code used to generate the 3d graph is an adaptation of the code provided in Pythonic
# Source: https://aegis4048.github.io/mutiple_linear_regression_and_visualization_in_python
# Data preparation
email = 'ariel@usp.br'
X_FIG = X_testOriginal.values.reshape(-1,2)
Y_FIG = y_test
model = model POLY
r2 = r2_POLY
# Prepare model data point for visualization
x_{COORD} = X_{FIG}[:, 0]
y_{COORD} = X_{FIG}[:, 1]
z_{COORD} = Y_{FIG}
x_RANGE = np.linspace(x_COORD.min(), x_COORD.max(), 30) # range of x values
y_RANGE = np.linspace(y_COORD.min(), y_COORD.max(), 30) # range of y values
xx_RANGE, yy_RANGE = np.meshgrid(x_RANGE, y_RANGE)
model_viz = np.array([xx_RANGE.flatten(), yy_RANGE.flatten()]).T
#Predict
model_viz = poly.fit_transform(model_viz)
predicted = model.predict(model_viz)
# PLot
plt.style.use('default')
fig = plt.figure(figsize=(12, 4))
ax1 = fig.add_subplot(131, projection='3d')
ax2 = fig.add_subplot(132, projection='3d')
ax3 = fig.add_subplot(133, projection='3d')
axes = [ax1, ax2, ax3]
for ax in axes:
    ax.plot(x_COORD, y_COORD, z_COORD, color='k', zorder=15, linestyle='none', marker='o',
    ax.scatter(xx_RANGE.flatten(), yy_RANGE.flatten(), predicted, facecolor=(0,0,0,0), s=20
    ax.set_xlabel('BTC Price', fontsize=12)
    ax.set_ylabel('RVN Price', fontsize=12)
    ax.set_zlabel('RVN Volume', fontsize=12)
    ax.locator params(nbins=4, axis='x')
    ax.locator_params(nbins=5, axis='x')
ax1.text2D(0.2, 0.32, email, fontsize=13, ha='center', va='center',
           transform=ax1.transAxes, color='grey', alpha=0.5)
ax2.text2D(0.3, 0.42, email, fontsize=13, ha='center', va='center',
           transform=ax2.transAxes, color='grey', alpha=0.5)
ax3.text2D(0.85, 0.85, email, fontsize=13, ha='center', va='center',
           transform=ax3.transAxes, color='grey', alpha=0.5)
ax1.view_init(elev=27, azim=112)
ax2.view init(elev=16, azim=-51)
ax3.view init(elev=60, azim=165)
```

```
fig.suptitle('$R^2 = %.2f$' % r2, fontsize=20)
fig.tight_layout()
```


Exporting PNG to generate GIF manually using the website https://ezgif.com/maker (https://ezgif.com/maker)

In [45]:

```
for ii in np.arange(0, 360, 1):
    ax.view_init(elev=32, azim=ii)
    fig.savefig('PNG/poly%d.png' % ii)
```

In [46]:

```
Image(url='GIF/poly.gif')
```

Out[46]:

Evaluate

```
In [47]:
```

```
y_pred_POLY = model_POLY.predict(X_test2_)
print('predicted response:', y_pred_POLY, sep='\n')
```

```
predicted response:
[0.02593219 0.04989682 0.03072549 0.02566433 0.02061702 0.02859036
0.02820605 0.02569454 0.12606258 0.01596896 0.02468973 0.02385567
0.02381541 0.0247157 0.02577003 0.02519552 0.02470226 0.16052244
0.18228374 0.0266356 0.03297307 0.02583483 0.02242317 0.03441254
0.02612963 0.03156033 0.05261504 0.02395338 0.02613168 0.02229392
0.02609761 0.0279123 0.01837953 0.03607831 0.03224137 0.03365607
0.03240492 0.02103964 0.02675562 0.02644225 0.03402844 0.022944
0.02916831 0.03020356 0.04768952 0.02068638 0.02483165 0.02332719
0.05557363 0.02505205 0.02309836 0.0261766 0.02876328 0.03272287
0.02013516 0.02881199 0.07506079 0.02430705 0.03694287 0.01525676
0.13768454 0.03353884 0.04309475 0.02377019 0.121027
0.02412752 0.12007265 0.03047279 0.02005948 0.18361903 0.02697017
0.02139918 0.02214614 0.01503443 0.02060607 0.02160654 0.02278471
0.02847116 0.0277912 0.02220452 0.13403495 0.03303253 0.03377948
0.02283978 0.03607494 0.02544314 0.02361687 0.01953681 0.02596385
0.03709482 0.02457555 0.02979259 0.03412957 0.08146193 0.02517458
0.02657398 0.02568299 0.02067486 0.02534135 0.02444788 0.12912345
0.02443346 0.0256931 0.02324901 0.02551802 0.0278188 0.02511954
0.02552629 0.04605991 0.03112279 0.0250186 0.02341481 0.02751697
0.02289014 0.02477165 0.10280508 0.02564199 0.03486439 0.0326996
0.11350686 0.18613778 0.03007879 0.02644174 0.02280834 0.02533654
0.02543204 0.03461992 0.03316321 0.02554241 0.02067427 0.05553736
0.02174172 0.20411325 0.02554669 0.02456756 0.02617493 0.18111279
0.02707027 0.01668038 0.03244872 0.03134992 0.15994713 0.02666963
0.03346202 0.03003043 0.02877488 0.02868347 0.02382345 0.0328526
0.02210498 0.02185258 0.0203001 0.11813726 0.02598322 0.03366436
0.01493996 0.02479614 0.02629521 0.01616026 0.02589482 0.18839212
0.02634366 0.02552578 0.1826076 0.06571828 0.02409518 0.03225575
0.02817896 0.03417584 0.02522854 0.02666432 0.02223027 0.03691928
0.02238704 0.02536644 0.02448797 0.02368706 0.03378784 0.02532101
0.04277063 0.05233174 0.02488826 0.02519189 0.03335117 0.02349834
0.01505159 0.0253987 0.03586346 0.05885414 0.05044575 0.03376265
0.02476625 0.02040419 0.02207256 0.02084394 0.0385512 0.03307813
0.03342429 0.02428286 0.026111
                                 0.03259739 0.17445745 0.03127511
0.04313103 0.03064181 0.03449638 0.0261361 0.01587153 0.02653831
0.03026745 0.0274224 0.03912005 0.02618402 0.020839
                                                      0.0295644
0.01856868 0.01751293 0.02740408 0.1447234 0.06492811 0.0366384
0.03401324 0.02817024 0.01875746 0.0217096 0.02473844 0.02180861
0.025449771
```

In [48]:

```
## The line / model
plt.scatter(y_test2, y_pred_POLY)
plt.xlabel("True Values")
plt.ylabel("Predictions")
```

Out[48]:

Text(0, 0.5, 'Predictions')

In [49]:

```
print('Mean Absolute Error(MAE): ', metrics.mean_absolute_error(y_test2, y_pred_POLY))
```

Mean Absolute Error(MAE): 0.01264981664892703

In [50]:

```
print('MSE: ', metrics.mean_squared_error(y_test2, y_pred_POLY))
```

MSE: 0.0002821002166365771

In [51]:

```
print('RMSE: ', np.sqrt(metrics.mean_squared_error(y_test2, y_pred_POLY)))
```

RMSE: 0.01679583926562103

About the results

In [52]:

```
dfResults = pd.DataFrame()
dfResults['adj_close_RVN'] = y_test
dfResults['prediction'] = y_pred_POLY
dfResults['error'] = dfResults['adj_close_RVN'] - dfResults['prediction']
dfResults.sort_index(inplace=True)
dfResults.reset_index(inplace=True)
dfResults
```

Out[52]:

	height_RVN	adj_close_RVN	prediction	error
0	1125000	0.01832	0.02537	-0.00705
1	1265000	0.01734	0.02610	-0.00875
2	1330000	0.01761	0.02519	-0.00759
3	1380000	0.02041	0.02614	-0.00572
4	1395000	0.02066	0.02611	-0.00545
230	7715000	0.02376	0.02564	-0.00188
231	8470000	0.05112	0.02014	0.03098
232	9500000	0.02191	0.03135	-0.00944
233	10740000	0.01696	0.02289	-0.00593
234	11265000	0.02133	0.02569	-0.00436

235 rows × 4 columns

In [53]:

```
dfResults['adj_close_RVN'].plot(label='RVN Price', figsize=(15,10), title='Adjusted Closing
dfResults['prediction'].plot(label='Forecast')
plt.legend()
```

Out[53]:

<matplotlib.legend.Legend at 0x1b382b92cd0>

In [54]:

```
dfError = pd.DataFrame()

dfError['error'] = dfResults['error']

dfError.sort_index(inplace=True)

dfError
```

Out[54]:

error

- **0** -0.00705
- 1 -0.00875
- **2** -0.00759
- **3** -0.00572
- 4 -0.00545
- ...
- **230** -0.00188
- **231** 0.03098
- **232** -0.00944
- **233** -0.00593
- **234** -0.00436

235 rows × 1 columns

In [55]:

```
plt.plot(dfError)
plt.xlabel("Observation")
plt.ylabel("Forecast error")
plt.show()
```



```
In [56]:

dfError['error_module'] = dfError['error'].abs()
dfError

Out[56]:
```

	error	error_module
0	-0.00705	0.00705
1	-0.00875	0.00875
2	-0.00759	0.00759
3	-0.00572	0.00572
4	-0.00545	0.00545
230	-0.00188	0.00188
231	0.03098	0.03098
232	-0.00944	0.00944
233	-0.00593	0.00593
234	-0.00436	0.00436

235 rows × 2 columns

In [57]:

```
print('Highest error value: ', dfError['error'].max())

Highest error value: 0.048508072671860414

In [58]:

print('Lowest error value: ', dfError['error'].min())

Lowest error value: -0.08687013119396347

In [59]:

print('Average error: ', dfError['error_module'].mean())
```

```
Average error: 0.012649816648927033
```

In [60]:

```
print('RVNs latest closing quote price available in the dataset: ', df['adj_close_RVN'].ilo
```

RVNs latest closing quote price available in the dataset: 0.084311

Understanding the error

In [61]:

```
dfErrorAnalysis = dfError['error'].value_counts(bins = 7, sort=False)

dfErrorAnalysis = dfErrorAnalysis.reset_index()
dfErrorAnalysis.rename(columns={'index':'Class_Interval'}, inplace=True)

dfErrorAnalysis.rename(columns={'error':'Frequency'}, inplace=True)

dfErrorAnalysis['Relative_Frequency'] = dfErrorAnalysis['Frequency']/dfErrorAnalysis['Frequency']
dfErrorAnalysis
```

Out[61]:

	Class_Interval	Frequency	Relative_Frequency
0	(-0.088, -0.0675]	1	0.00426
1	(-0.0675, -0.0482]	2	0.00851
2	(-0.0482, -0.0289]	5	0.02128
3	(-0.0289, -0.00951]	51	0.21702
4	(-0.00951, 0.00983]	118	0.50213
5	(0.00983, 0.0292]	49	0.20851
6	(0.0292, 0.0485]	9	0.03830

In [62]:

```
fig = plt.figure(figsize=(10, 4))
ax = fig.add_axes([0,0,1,1])
ax.bar(dfErrorAnalysis['Class_Interval'].astype(str), dfErrorAnalysis['Frequency'])
plt.xticks(size = 9.5)
plt.grid(True)
plt.title('Understanding the error')
plt.xlabel('Class Interval')
plt.ylabel('Frequency')
plt.show()
```


Conclusion on the evaluation of results

The use of polynomial regression to predict Ravencoin price from Bitcoin Price and Ravencoin Volume fulfills the didactic objective of demonstrating the correct application of the techniques learned during the course.

However, it does not seem appropriate to use a model with an average forecast error of around 1 cent, considering that the last available quotation for this asset in the dataset corresponds to 8.4311 cents. It is recommended for future work to study the inclusion of new variables in order to increase the predictive capacity of the model and/or test other predictive algorithms.

of the model and/or test other predictive algorithms.	
Type Markdown and LaTeX: α^2	

In []:		