2-channel driver for CD changers BA6780 / BA6780FP-Y

The BA6780 and BA6780FP-Y are 2-channel driver IC for CD changers that inculdes a reversible, variable speed electronic governor and a reversible driver. On sets that have dual-rail power supplies, the BA6780 and BA6780FP-Y can be operated from just the negative supply to reduce influence on the positive power supply.

The input uses PWM control, and it is possible to directly input from a microprocessor running off the positive power supply.

Applications

Changers for CD players and MD players.

Features

- 1) Output voltage can be freely set using the output voltage setting pin.
- 2) Internal mute function if the power supply voltage drops.
- 3) Thermal shutdown function. (Contains hysteresis)
- 4) PWM input.
- 5) Settable reference voltage output pin.
- 6) Wide operating supply voltage.

● Absolute maximum ratings (Ta = 25°C)

Paramet	er	Symbol	Limits	Unit
Power supply voltage	ge	Vcc	18	V
Logic input voltage		V _{FIN} , V _{RIN} 22		V
Dower discinction	BA6780	Pd	1.31 * ¹	14/
Power dissipation	BA6780FP-Y		1.45* ²	W
Maximum current consumption		Imax	1.4 * ³	Α
Operating temperat	ure	Topr	-25~+75	°C
Storage temperatur	е	Tstg	−55~+150	°C

^{*1} When a DIP18 package is used.Reduced by 10.48mW for each increase inTa of 1°C over 25°C.

● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vcc	7~16	V	
Input voltage for Vin	Vin	0~Vcc / 2-1.0	V	

^{*2} When mounted on a PCB board (70mm×70mm, t=1.6mm glass epoxy board). Reduced by 11.6mW for each increase in Ta of 1°C over 25°C.

^{*3} Should not exceed Pd or ASO values.

Block diagram and pin descriptions

BA6780

Pin No.	Pin name	I/O	Function
1	Vin1	ı	Input pin for setting high output voltage for the reversible driver
2	FIN1	I	Input pin for forward control signal for the reversible driver
3	RIN1	I	Input pin for reverse control signal for the reversible driver
4	lout	0	Governor load current detector output (open collector*1)
5	Vref	0	Internal reference voltage pin
6	Vreg	0	4.6V constant voltage output
7	Vcc	I	Power supply (+)
8	OUT1+	0	Reversible driver output (+)
9	OUT1-	0	Reversible driver output (–)
10	OUT2-	0	Governor output (–)
11	OUT2+	0	Governor output (+)
12	FBIN+	I	Governor load current detector amplifier input (+)
13	FBIN-	ı	Governor load current detector amplifier input (–)
14	VEE	I	Power supply (–) (connection within substrate)
15	Cτ 2	I	For connection of capacitor for the governor PWM filter
16	RIN2	ı	Governor reverse control signal input
17	FIN2	I	Governor forward control signal input
18	Vin2	I	Input pin for setting high output voltage for the governor

^{*1} Refer to operating notes.

Pin No.	Pin name	I/O	Function
1	N.C.	_	
2	Vin1	I	Input pin for setting high output voltage for the reversible driver
3	N.C	_	
4	FIN1	I	Input pin for forward control signal for the reversible driver
5	RIN1	I	Input pin for reverse control signal for the reversible driver
6	lout	0	Governor load current detector output (open collector*1)
7	Vref	0	Internal reference voltage pin
8	Vreg	0	4.6V constant voltage output
9	Vcc	I	Power supply (+)
10	N.C.	_	
11	OUT1+	0	Reversible driver output (+)
12	N.C.	-	
13	OUT1-	0	Reversible driver output (–)
14	OUT2-	0	Governor output (–)
15	N.C.	-	
16	OUT2+	0	Governor output (+)
17	FB IN +	I	Governor load current detector amplifier input (+)
18	FB IN –	I	Governor load current detector amplifier input (–)
19	VEE	I	Power supply (–) (connection within substrate)
20	Cτ 2	I	For connection of capacitor for the governor PWM filter
21	R IN 2	I	Governor reverse control signal input
22	F IN 2	I	Governor forward control signal input
23	N.C.	_	
24	Vin2	I	Input pin for setting high output voltage for the governor
25	N.C.	_	

^{*1} Refer to operating notes.

●Input / output circuits (() :pins for BA6780FP-Y)

Pin function	Equivalent circuit
Logic input	pin 2, 3, 16, 17 (pin4, 5, 21, 22)
Voltage setting input	pin1, 18 (pin2, 24)
For connection of capacitor for PWM filter	10k W pin15 (pin20)
Load current detector	pin13 (pin18) 10k pin12 (pin17)

Pin function	Equivalent circuit						
Output (reversible driver)	Vcc pin8, 9 (pin11, 13)						
Output (governor)	Vcc pin10, 11 (pin14, 16)						
Load current detector signal output (governor)	pin4 (pin6) 1k						

ullet Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 10V) (*1 BA6780FP-Y)

Parameter	Symbol	Min.	Тур.	Max.	Unit		Conditions		
Quiescent current	lα	_	8.0	16.0	mA	Open mode with no load			
Mute on voltage	Vcc1	_	_	3.5	V	Mute on voltage when Vcc falls		S	
Mute off voltage	Vcc2	5.5	_	-	V	Mute off voltage	when Vcc rise	es	
Vref input voltage range	Vin	0	_	4	V		-		
Vref pin current	lin	_	0.02	1.0	μΑ		-		
PWM input high level voltage	Vih	4.0	_	-	V	With Vcc as the	reference pote	ential	
PWM input low level voltage	VIL	-	_	1.0	V	With Vcc as the	reference pote	ential	
PWM input high level current	Іін	_	_	100	μΑ		_		
PWM input low level current	lı∟	-1.0	_	1.0	μΑ		-		
<electronic governor=""></electronic>		•		•	•				
Output offset voltage	Vof	-100	0	100	mV	R _L (load)=9Ω, Ro	(current detecto	or)=0.6Ω	
Max. pin-to-pin output voltage	Vом	6.0	6.5	_	V	R _L (load)=9Ω, Ro	(current detecto	r)=0.6Ω	
Pin-to-pin output voltage 1-1	Vout11	4.2	4.7	5.2	V	Forward mode 12, 13 oper			
Pin-to-pin output voltage 1-2	Vour12	-5.2	-4.7	-4.2	V	Reverse mode 17, 18pin open *1			
Pin-to-pin output voltage 1-3	Vоит13	-100	0	100	mV	R∟ (load)=9Ω Ro (current detector)=0			
Pin-to-pin output voltage 1-4	Vout14	-50	0	50	mV	Stop mode	Vin2=2.5V		
Voltage gain of positive feedback amplifier	GVNF	20.5	22.0	23.5	dB	Vref=0V, VIN=-20	dBV, f=1kHz		
<reversible driver=""></reversible>									
Output saturation voltage	VCESAT	_	1.0	2.1	V	Io=100mA, V _{IN} 2: and lower side in			
Pin-to-pin output voltage 2-1	Vout21	4.5	5.0	5.5	V	Forward mode	1 400 4		
Pin-to-pin output voltage 2-2	Vоит22	-5.5	-5.0	-4.5	V	Reverse mode	lo=100mA		
Pin-to-pin output voltage 2-3	Vоит23	-50	0	50	mV	Brake mode			
Pin-to-pin output voltage 2-4	Vоит24	-50	0	50	mV	Stop mode V _{IN} 1=2.		Vin1=2.5V	
Output load fluctuation	Vouт	_	200	400	mV	Difference in output voltage for lo=400mA and lo=100mA			
<4.6V constant-voltage output>	1		-	1	1			1	
Output voltage	Vreg	4.35	4.60	4.85	V		-		
Output load fluctuation (source)	Voso	-20	-5	-	mV	1mA source			
Output load fluctuation (sink)	Vosi	-	5	20	mV	1mA sink			

Not designed for radiation resistance.

●Measurement circuit

BA6780

Fig.1

Fig.2

Measurement circuit switch table

BA6780 / BA6780FP-Y

Parameter		SW					Input						Conditions	Measure	
	SW1	SW2	SW3	SW4	SW5	Vr1	Vr2	F1	R1	F2	R2	Vin	IL1		ment
Quiescent current	1	1	3	1	1	0	0	0	0	0	0	-	_	_	IQ
Mute on voltage	1	1	3	1	1	2	0	0	5	0	0	_	-	Vcc swept down from 10V	Vo1
Mute off voltage	1	1	3	1	1	2	0	0	5	0	0	-	-	Vcc swept up from 0V	Vo1
Vref input voltage range	1	1	3	1	2	*1	*1	0	5	0	5	_	_	*1 Check for abnormality in output in Vr1 and Vr2 input range	Vo1 Vo2
Vref pin current	2	2	3	1	1	0	0	0	0	0	0	-	-	-	II1 II2
PWM input high level voltage	1	1	3	1	2	2	2	*2	*2	*2	*2	-	-	*2 Sweep the F/R input, and check that the mode	Vo1
PWM input low level voltage	1	1	3	1	2	2	2	*2	*2	*2	*2	-	_	switching is occurring in a range that satisfies the rated values	Vo2
PWM input high level current	1	1	3	1	1	0	0	5	5	5	5	-	-	-	IF1
PWM input low level current	1	1	3	1	1	0	0	5	5	5	5	-	-	-	IR1
<electronic governor=""></electronic>															
Output offset voltage	1	1	1	1	2	0	0	0	0	5	5	_	_	_	Vo2
Max. pin-to-pin output voltage	1	1	3	1	2	0	4	0	0	0 5	5	_	-	-	Vo2
Pin-to-pin output voltage 1-1	1	1	1	1	2	0	2.5	0	0	0	5	_	_	_	Vo2
Pin-to-pin output voltage 1-2	1	1	1	1	2	0	2.5	0	0	5	0	_	_	_	Vo2
Pin-to-pin output voltage 1-3	1	1	1	1	2	0	2.5	0	0	5	5	_	_	_	Vo2
Pin-to-pin output voltage 1-4	1	1	1	1	2	0	2.5	0	0	0	0	-	_	_	Vo2
Voltage gain of positive feedback amplifier	1	1	2	1	1	0	0	0	0	5	5	*3	-	*3 –20dBV, 1kHz	Vo2
<reversible driver=""></reversible>			ı										-	1	-
Output saturation	1	1	1	2	1	5	0	0	5	0	0	_	*4	*4 100mA (take care	Vcc
voltage	· ·	·	ļ .	_	•			5	0	Ů	Ŭ			with polarity)	-Vo
Pin-to-pin output voltage 2-1	1	1	3	2	1	2.5	0	0	5	0	0	-		*	
Pin-to-pin output voltage 2-2	1	1	3	2	1	2.5	0	5	0	0	0	-		*5 100mA (take care	Vo1
Pin-to-pin output voltage 2-3	1	1	3	1	1	2.5	0	5	5	0	0	-	*5	with polarity)	
Pin-to-pin output voltage 2-4	1	1	3	1	1	2.5	0	0	0	0	0	-			
Output load								0	5					*6 Difference in output voltage	
fluctuation	1	1	3	2	1	2.5	0	5	0	0	0	_	*6		Vo1
<4.6V constant-voltage of	utput>	•	•		•						•				•
Output voltage	1	1	3	1	1	0	0	0	0	0	0	-	-	_	Vre
Output load fluctuation (source)	1	1	3	1	1	0	0	0	0	0	0	-	-	Source Ireg=1mA	Vre
Output load fluctuation (sink)	1	1	3	1	1	0	0	0	0	0	0	_	_	Sink Ireg=1mA	Vre

● Application example BA6780

Fig.3

BA6780FP-Y RF-500TB $\mathbb{C}(\mathsf{M})$ Rdet=0.6Ω 25 20 24 23 22 21 19 18 17 15 DRIVE BUFFER GOVERNOR DRIVER FWD/REV CONTROLLER THERMAL SHUT DOWN Vcc 0-40k 40k VEE DRIVE BUFFER REVERSIBLE DRIVER FWD/REV CONTROLLER 10 12 13 $\mathbb{C}(\mathsf{M})$ FWD REV FWD RESET REV GND μ-СОМ

Fig.4

●Input / output truth table

<Reversible drive>

FIN	RIN	OUT (+)	OUT (-)	Mode
L	Н	Н	L	Forward mode
Н	L	L	Н	Reverse mode
Н	Н	L	L	Brake mode
L	L	OPEN	OPEN	Open mode

<Governor drive>

FIN	RIN	OUT (+)	OUT (-)	Mode
L	Н	Н	L	Forward mode
Н	L	L	Н	Reverse mode
Н	Н	Vcc / 2	Vcc / 2	Brake mode
L	L	OPEN	OPEN	Open mode

●Using the load current detector output pin (pin 4)

Refer to the example circuit on the right for the connection method. The VRESET value is determined as follows:

$$\label{eq:definition} I_{\text{DET}} \!\!=\! \frac{I_{\text{O}} \! \times \! R_{\text{DET}}}{3.2 k \Omega} \hspace{1cm} \text{Vreset} \!\!=\!\! V_{\text{DD}} \!\!-\! I_{\text{DET}} \! \times \! R_{\text{RESET}}$$

$$\therefore \ \, \text{Vreset=Vdd-} \ \, \frac{\text{Io} \times \text{Rdet} \times \text{Rreset}}{3.2 k \Omega}$$

(RDET is the load current detector resistance, refer to the application circuit)

Operation notes

- (1) The BA6780 and BA6780FP-Y have built in shutdown circuit that mute the output current when the chip temperature reaches 175°C (Typ.). The hysteresis is set to 25°C (Typ.), so the mute will be released when the chip temperature falls to 150°C (Typ.).
- (2) The output current is muted when the supply (Vcc) falls to 3V or less. When the mute is applied, the reverse driver is set to to the VEE level, and governor driver is set to the VEE / 2 level.
- (3) The Vcc voltage level is the reference for the logic input pin input voltage, so when it is converted from the VEE potential, the high level becomes (Vcc+5) V, and the low level becomes (Vcc) V. The voltage potential levels for the pins are shown in the diagram below.
- (4) Connect a bypass capacitor at the base of this IC for the power supply.

Electrical characteristic curves

Fig.5 Thermal dissipation curve

Fig.6 I/O characteristics with governor connected

Fig.7 Reversible driver I / O characteristics

Fig.8 Load current detector output

Fig.9 Internal Vref output characteristics

Fig.10 4.6V constant-voltage source output voltage characteristics

●External dimensions (Units : mm)

