Financial Services Challenge Provider

JPMorganChase

Inho Choi, Quantum World Congress 2025 · Sep 16-18

the challenge

Develop solutions (scaling strategies, initial states, mixers, etc.) to improve performance of Portfolio Optimization (PO) capabilities.

Global Industry Challenge

Improve QOKit performance on portfolio optimization
Constraint

Hamming-weight-K, choosing exactly K assets

Conventional path

• all-to-all XY mixer ightarrow Trotter steps ightarrow grows with depth, p

Observed pain point

mixer is the performance-critical step

Goal

exact one-shot mixer update, no Trotter error

From bottleneck to spectral mixer

qBraid accelerated exploration, identification of bottle neck and verification on CPUs/GPUs

- Before locking the idea: Used qBraid Lab CPU/GPU instances to profile QOKit, stress the XY mixer, and probe GPU parallelism for spectral transforms.
- **Breadth over depth**: On qBraid, ran benchmark variants (penalty vs. constrained mixers), quick ML-assisted circuit-design experiments

XY on weight-K ≡ Johnson graph adjacency

Transform
$$c = U^\dagger \psi_K$$
 Phase $c_j \leftarrow e^{-i\beta\lambda_j} c_j$ Invert $\psi_K' = Uc$
$$\psi_K' = Ue^{-i\beta\Lambda}U^\dagger \psi_K$$

No trotter error

- Weight-K subspace forms vertices of Johnson graph J(n, K)
- XY mixer \propto adjacency of J(n, K)
- Eigenvalues known in closed form: $\lambda_j = (K j)(n K j) j$
- Align initial state with mixer can improve performance

Complete Spectral Mixer in QOKit: speed without accuracy loss

(~27×) speed up for every circuit depths

- One-shot $Ue^{-i\beta\Lambda}U^{\dagger} \rightarrow \text{no Trotter error}$
- slowly and linearly increase vs p on CPU, deeper sweeps now feasible
- Matches best-available accuracy and preserve ideal dynamics
- Risk & limits:
 - speedups are classical; hardware-routing non-trivial

Impact for PO today & What's next

Business Impact

- Faster classical simulation → more scenarios within the same CI window
- With deeper schedules & wider sweeps you surface lower-energy portfolios with lower compute budget
- No trotter error mixing helps separate hardware noise from algorithm effects when moving tuned schedules to QPUs

Technical Impact

- QOKit reduces QAOA cost by precomputing problem-diagonal structure and spanning CPU
 ↔ GPU↔ cluster backends
 - Add spectral precomputation for the mixer in weight-K sectors
- Enable clean gap-dependent studies and initialmixer alignment experiments in PO.

Future Works

- Collaboration and Productization:
 - Propose "mixer backends" interface and hybrid workflows for tuning QPUs.
 - Explore more for validations and use cases including finance and other more optimization problem with polished algorithm for paper and product.
 - KEEP BE INNOVATIVE & CREATIVE!