Sejam $V=\mathbb{R}^2,\,W$ e U sub-espaços de $V,\,\{(1,2)\}$ uma base de W e $\{(1,0)\}$ uma base de $U,\,$ mostre que $V=W\oplus U.$

Resolução:

Seja $v \in V$, basta mostrar que existem únicos $w \in W$ e $u \in U$ tais que v = w + u.

Seja v=(a,b), teremos que $\begin{cases} \alpha+\beta=a\\ 2\alpha=b \end{cases}$, que admite solução única para $\alpha,\beta\in\mathbb{R},$ pois $\begin{vmatrix} 1 & 1\\ 2 & 0 \end{vmatrix} \neq 0.$

Quod Erat Demonstrandum.

Documento compilado em Thursday 13th March, 2025, 20:21, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

 ${\bf Atribuição-Não Comercial-Compartilha Igual\ (CC\ BY-NC-SA)}.$