Student Number _____

GOSFORD HIGH SCHOOL

2020 YEAR 12

TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION TWO

Duration-3 hours plus 10 minutes reading time

START A NEW PAGE FOR EACH QUESTION WRITE ON ONLY ONE SIDE OF THE PAGE

Multiple choice	/10			
Question 11	/15			
Question 12	/15			
Question 13	/15			
Question 14	/15			
Question 15	/15			
Question 16	/15			
Total	/100			

Section I

10 marks

Attempt questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for questions 1-10

- 1 Let $m, n \in \mathbb{Z}$. Which of the following statements is false?
 - (A) n is even if and only if n + 1 is odd.
 - (B) m + n is odd if and only if m n is odd.
 - (C) m + n is even if and only if m and n are even.
 - (D) m and n are odd if and only if mn is odd.
- 2 The algebraic fraction $\frac{x}{3(x+c)^2}$, where c is a non-zero real number, can be written in partial fraction form, where A and B are real numbers, as

(A)
$$\frac{A}{x+c} + \frac{B}{x+c}$$

(B)
$$\frac{A}{3x+c} + \frac{B}{x+c}$$

(C)
$$\frac{A}{x+c} + \frac{B}{(x+c)^2}$$

(D)
$$\frac{A}{3x+c} + \frac{B}{(x+c)^2}$$

- 3 Let $u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $v = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$. The angle between the vectors v and v is
 - (A) 0°
 - (B) 45°
 - (C) 30°
 - (D) 22.5°

4 The complex number a + bi, where a and b are real constants, is represented in the following diagram.

The complex number -i(a + bi) could be represented by

(A)

(B)

(C)

(D)

5 The equation, in Cartesian form, of the locus of the point z if |z + 2i| = |z + 4| is:

- (A) x 2y + 3 = 0
- (B) 2x y + 3 = 0
- (C) x + 2y + 3 = 0
- (D) 2x + y + 3 = 0

- 6 Using a suitable substitution, $\int_a^b x(x^2+1)^5 dx$ is equal to
 - (A) $\frac{1}{2} \int_{a^2+1}^{b^2+1} u^5 du$
 - (B) $\frac{1}{2}\int_{a}^{b}u^{5} du$
 - (C) $2 \int_{a^2+1}^{b^2+1} u^5 du$
 - (D) $2\int_a^b u^5 du$

- 7 A unit vector perpendicular to $\begin{pmatrix} 5\\1\\-2 \end{pmatrix}$ is
 - (A) $\frac{1}{4} \begin{pmatrix} 5\\1\\-2 \end{pmatrix}$
 - (B) $\frac{1}{29} \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix}$
 - (C) $\frac{1}{\sqrt{30}} \begin{pmatrix} 5\\1\\-2 \end{pmatrix}$
 - (D) $\frac{1}{\sqrt{29}} \binom{2}{-4}$

- 8 Which of the following is the complex number $z = 5\sqrt{3} 5i$?
 - (A) $10e^{-\frac{i\pi}{6}}$
 - (B) $10e^{\frac{5\pi}{6}}$
 - (C) $5e^{-\frac{i\pi}{6}}$
 - (D) $5e^{\frac{5\pi}{6}}$

- 9 If a, b and c are any real numbers with a > b, which of the following statements must always be true?
 - (A) $\frac{1}{a} > \frac{1}{b}$
 - (B) $\frac{1}{a} < \frac{1}{b}$
 - (C) ac > bc
 - (D) a + c > b + c
- 10 A particle is describing SHM in a straight line with an amplitude of 3 metres. Its speed is $4 ms^{-1}$ when the particle is 1 metre from the centre of the motion.

What is the period of the motion?

- (A) $\sqrt{3}\pi$
- (B) $\sqrt{2}\pi$
- (C) $\frac{\sqrt{3}\pi}{3}$
- (D) $\frac{\sqrt{2}\pi}{2}$

END OF SECTION I

Section II

90 marks

Attempt questions 11 - 16

Allow about 2 hours and 45 minutes for this section

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

(a) If A = 6 - 4i and B = -8 + 6i, evaluate the following:

1

ii)
$$\frac{A}{B}$$

1

iii)
$$\sqrt{B}$$

2

(b) For a complex number z, |z-1|=2|z+1|.

3

ii) Describe the locus of Z.

2

(c) The polynomial $P(x) = x^3 - 5x^2 + ax + b$, where a and b are real, has one root at $x = 3 - 2\sqrt{2}i$. Find the values of a and b.

3

(d) For a complex number z, shade the region of the Argand Plane in which: $1 < |z| \le 3$ and $-\frac{\pi}{3} \le arg \ z \le \frac{\pi}{4}$.

3

- (a) The velocity $v ms^{-1}$ of a particle moving in simple harmonic motion along the x axis is given by $v^2 = 8 + 2x x^2$.
 - i) Between which two points is the particle oscillating?

2

ii) Find the acceleration of the particle in terms of x.

1

iii) Find the period and amplitude of the motion.

2

(b) i) Prove that $\frac{1}{10} - \frac{1}{11} < \frac{1}{100}$

2

ii) Let n > 0. Prove that $\frac{1}{n} - \frac{1}{n+1} < \frac{1}{n^2}$

2

- (c) Consider this statement: If mn and m + n are even, then m and n are even for $m, n \in \mathbb{Z}$.
 - i) Write down the contrapositive.

1

ii) Prove the contrapositive.

3

(d) Suppose that $c^2 - b^2 = 4$. Prove that b and c cannot both be positive integers.

2

(a) Find
$$\int \frac{dx}{2x\sqrt{\ln x}}$$

(b) Find
$$\int \frac{dx}{x\sqrt{x^2-1}}$$
 using the substitution $u = \sqrt{x^2-1}$

(c) Find
$$\int_0^{\frac{\pi}{4}} x^2 \cos x \ dx$$
 by using integration by parts.

(d) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{dx}{3+5\cos x}$$

$$\frac{3x^2 - x + 12}{(x - 2)(x^2 + 2x + 3)} \equiv \frac{A}{x - 2} + \frac{Bx - 3}{x^2 + 2x + 3}$$

(ii) Hence find
$$\int \frac{3x^2 - x + 12}{(x-2)(x^2 + 2x + 3)} dx$$

(a) Let $u = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ and $v = \begin{pmatrix} a \\ 2 \\ -1 \end{pmatrix}$. Given that the vector projection of v in the direction of v

is
$$\begin{pmatrix} \frac{4}{9} \\ -\frac{2}{9} \\ -\frac{4}{9} \end{pmatrix}$$
, find the value of a .

- (b) Using vectors, show that the lines connecting any point on the semicircle $y = \sqrt{1 x^2}$ to the points (1, 0) and (-1, 0) are perpendicular.
- (c) Three points P, Q and R have position vectors p, q and k(2p+q) respectively, relative to a fixed origin O. The points O, P and Q are not collinear. Find the value of k if \overrightarrow{QR} is parallel to p.
- (d) With respect to a fixed origin 0, the lines l_1 and l_2 are given by the equations: $l_1: \mathbf{r} = 9\mathbf{i} + 13\mathbf{j} 3\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} 2\mathbf{k})$ and $l_2: \mathbf{r} = 2\mathbf{i} \mathbf{j} + \mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} + \mathbf{k})$ where λ and μ are scalar parameters.
 - i) Given that l_1 and l_2 meet, find the position vector of their point of intersection.
 - ii) Find the acute angle between l_1 and l_2 , correct to the nearest tenth of a degree. 2
 - iii) Given that the point A has position vector $4\mathbf{i} + 16\mathbf{j} 3\mathbf{k}$ and that the point $P(x_1, y_1, z_1)$ lies on l_1 such that AP is perpendicular to l_1 , find the exact coordinates of P.

(a) i) Show that
$$(a^2 - b^2)(c^2 - d^2) \le (ac - bd)^2$$

ii) Deduce that
$$(a^2 - b^2)(a^4 - b^4) \le (a^3 - b^3)^2$$

(b) Find the point(s) of intersection of the line with parametric equation r = i + 3j - 4k + t(i + 2j + 2k)

and the sphere with equation

$$(x-1)^2 + (y-3)^2 + (z+4)^2 = 81.$$

(c) i) show that
$$k^2 + k$$
 is always even

ii) Using the result in part (i), prove, by mathematical induction, that for all positive integral values of n, $n^3 + 5n$ is divisible by 6.

3

Question 16 (15 marks)

(a) i) Show that for
$$I_n = \int x^n e^{-3x} dx$$
, $I_n = \frac{-x^n e^{-3x}}{3} + \frac{n}{3} I_{n-1}$

ii) Hence evaluate $\int x^3 e^{-3x} dx$.

3

3

(b) i) Use De Moivre's Theorem to express $\cos 5\theta$ and $\sin 5\theta$ in terms of powers of $\sin \theta$ and $\cos \theta$.

2

ii) Write an expression for tan 5θ in terms of t, where $t = \tan \theta$.

1

iii) By solving $\tan 5\theta = 0$, deduce that: $\tan \frac{\pi}{5} \tan \frac{2\pi}{5} \tan \frac{3\pi}{5} \tan \frac{4\pi}{5} = 5$.

3

(c) Prove that $33^n - 16^n - 28^n + 11^n$ is divisible by 85 for all positive integers $n \ge 2$.

3

End of paper

Year 12 Extension 2 Trial 2020 – Solutions

Section I

1	2	3	4	5	6	7	8	9	10
C	C	В	C	В	A	D	A	D	В

Question 1

m = 1, n = 3 is a counterexample as m and n are both odd but m + n = 1 + 3 = 4 which is even.

Question 2

It just is!

Question 3

$$\cos \theta = \frac{\underline{y} \cdot \underline{y}}{|u| \times |v|} = \frac{1 \times 1 + 1 \times 2 + 0 \times 2}{\sqrt{1^2 + 1^2 + 0^2} \times \sqrt{1^2 + 2^2 + 2^2}} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$$
. Hence $\theta = \cos^{-1} \frac{1}{\sqrt{2}} = 45^\circ$.

Question 4

Multiplication by -i is equivalent to a rotation through $-\frac{\pi}{2}$ which is C.

A – is a reflection in the real axis, B – is a rotation through $\frac{\pi}{2}$, D – is a reflection in the imaginary axis.

Question 5

Let
$$z = x + iy$$
, then $|z + 2i| = |z + 4| \Rightarrow x^2 + (y + 2)^2 = (x + 4)^2 + y^2$

$$\therefore x^2 + y^2 + 4y + 4 = x^2 + 8x + 16 + y^2 \Rightarrow 2x - y + 3 = 0$$

Question 6

Let
$$u = x^2 + 1$$
. Then $du = 2x dx \implies x dx = \frac{1}{2} du$. At $x = a, u = a^2 + 1$ and $x = b, u = b^2 + 1$

Question 7

Let
$$\begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix} = 0$$
, hence $\begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix} \perp \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix}$.

D is a unit vector
$$\left(\text{if } \underline{u} = \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix} \text{ then } \frac{1}{|\underline{u}|} = \frac{1}{\sqrt{2^2 + (-4)^2 + 3^2}} = \frac{1}{\sqrt{29}} \right)$$
, B is not.

Question 8

Now
$$|z| = \sqrt{(5\sqrt{3})^2 + (-5)^2} = 10$$

Also
$$\arg(z) = \tan^{-1}\left(-\frac{5}{5\sqrt{3}}\right) = -\frac{\pi}{6}$$

Question 9

Counterexamples – for A: if
$$a = 2$$
 and $b = 1$ then $2 > 1$ but $\frac{1}{2} < \frac{1}{1}$,

– for B: if $a = 2$ and $b = -1$ then $2 > -1$ but $\frac{1}{2} > -\frac{1}{1}$

– for C: if $a = 2$, $b = 1$ and $c = -1$ then $2 > 1$ but $2 \times -1 < 1 \times -1$

Question 10

If
$$v^2 = n^2(a^2 - x^2)$$
 then $16 = n^2(9 - 1) \Rightarrow n = \sqrt{2}$.

Hence the period is $\frac{2\pi}{\sqrt{2}} = \sqrt{2}\pi$

Section II

Question 11

(a) (i)
$$AB = (6-4i)(-8+6i) = -48+32i+36i-24i^2 = -24+68i$$

(a) (ii)
$$\frac{A}{B} = \frac{6-4i}{-8+6i} \times \frac{-8-6i}{-8-6i} = \frac{-48+32i-36i+24i^2}{64+36} = \frac{-72-4i}{100}$$

(a) (iii) Let
$$(x + iy)^2 = -8 + 6i$$
. Then $x^2 - y^2 + 2ixy = -8 + 6i$.

Hence
$$x^2 - y^2 = -8$$
 and $2xy = 6 \Rightarrow xy = 3 \Rightarrow y = \frac{3}{x}$

Hence
$$x^2 - \frac{9}{x^2} + 8 = 0 \implies x^4 + 8x^2 - 9 = 0 \implies x^2 = 1 \text{ or } -9.$$

Hence
$$x = 1, y = 3$$
 or $x = -1, y = -3$

Hence
$$\sqrt{B} = \pm (1 + 3i)$$

(b) (i) Let z = x + iy.

Then
$$|z-1|^2 = 4|z+1|^2 \Rightarrow (x-1)^2 + y^2 = 4((x+1)^2 + y^2)$$
.

$$\therefore x^2 - 2x + 1 + y^2 = 4x^2 + 8x + 4 + 4y^2$$

Hence the locus of z is $3x^2 + 10x + 3y^2 = -3$

(b) (ii)
$$3x^2 + 10x + 3y^2 = -3 \Rightarrow x^2 + \frac{10}{3}x + y^2 = -1 \Rightarrow \left(x + \frac{5}{3}\right)^2 + y^2 = \frac{16}{9}$$

Hence the locus is a circle with centre $\left(-\frac{5}{3},0\right)$ and radius $\frac{4}{3}$

(c) Another root of P(x) is $3 + 2\sqrt{2}i$

Now since the sum of the roots is 5, the third root must be -1.

Also, the product of the roots is
$$-b = (3 + 2\sqrt{2}i)(3 - 2\sqrt{2}i) \times -1 = -17$$

And the product of the roots taken two at a time is $a = -(3 + 2\sqrt{2}i) - (3 - 2\sqrt{2}i) + 17 = 11$

Hence a = 11, b = 17.

(d)

Question 12

(a) i) Since
$$v^2 \ge 0$$
, then $8 + 2x - x^2 = (4 - x)(x + 2) \ge 0$.
Hence $-2 \le x \le 4$.

The particle oscillates between x = -2 and x = 4.

(a) ii)
$$\ddot{x} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \frac{d}{dx} \left(4 + x - \frac{1}{2} x^2 \right) = 1 - x$$

(a) iii) The distance between the endpoints is 6, hence the amplitude is 3. $^{2\pi}$

$$\ddot{x} = -1(x-1)$$
, hence the period is $\frac{2\pi}{1} = 2\pi$.

(b) i)
$$\frac{1}{10} - \frac{1}{11} = \frac{110}{1100} - \frac{100}{1100} = \frac{10}{1100} < \frac{11}{1100} = \frac{1}{100}$$

Hence $\frac{1}{10} - \frac{1}{11} < \frac{1}{100}$

(b) ii)
$$\frac{1}{n} - \frac{1}{n+1} = \frac{n(n+1)}{n^2(n+1)} - \frac{n^2}{n^2(n+1)} = \frac{n}{n^2(n+1)} < \frac{n+1}{n^2(n+1)} = \frac{1}{n^2}$$
Hence $\frac{1}{n} - \frac{1}{n+1} < \frac{1}{n^2}$ for $n > 0$

(c) i) If m is odd or n is odd, then mn is odd or m + n is odd.

(c) ii) Let m be odd and n be even i.e. m = 2j + 1 and $n = 2k, j, k \in \mathbb{Z}$.

Then
$$m + n = 2j + 1 + 2k$$

$$= 2(j + k) + 1$$
 which is odd.

Clearly this is also true if m is even and n is odd.

Let m be odd and n be odd i.e. m = 2j + 1 and $n = 2k + 1, j, k \in \mathbb{Z}$.

Then
$$mn = (2j + 1)(2k + 1)$$

= $4jk + 2j + 2k + 1$
= $2(2jk + 2j + 2k) + 1$ which is odd.

Hence, if m is odd or n is odd, then mn is odd or m + n is odd.

(d) Suppose that $c^2 - b^2 = 4$ and that b and c are both positive integers.

If
$$c^2 - b^2 = 4$$
 then $(c-b)(c+b) = 4$

As b and c are both positive integers, then c-b and c+b are factor pairs of 4.

Since $b \neq 0$, then c-b = 1 and $c+b = 4 \Rightarrow c = \frac{5}{2}$ which is not an integer.

Question 13

(a) Let $u = \ln x$. Then $du = \frac{1}{x} dx$

$$\int \frac{dx}{2x\sqrt{\ln x}} = \int \frac{u^{-\frac{1}{2}}}{2} du = u^{\frac{1}{2}} + c = \sqrt{\ln x} + c$$

(b) Let $u = \sqrt{x^2 - 1}$. Then $x = \sqrt{u^2 + 1}$ and $dx = \frac{u}{\sqrt{u^2 + 1}} du$

$$\int \frac{dx}{x\sqrt{x^2 - 1}} = \int \frac{1}{u\sqrt{u^2 + 1}} \times \frac{u}{\sqrt{u^2 + 1}} du = \int \frac{du}{u^2 + 1}$$
$$= \tan^{-1} u + c = \tan^{-1} \sqrt{x^2 - 1} + c$$

(c) Let $u = x^2$, $v' = \cos x$. Then u' = 2x, $v = \sin x$.

$$\int_0^{\frac{\pi}{4}} x^2 \cos x \, dx = \begin{bmatrix} x^2 \sin x \end{bmatrix}_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} 2x \sin x \, dx$$

$$= \frac{\pi^2}{16\sqrt{2}} - \left\{ \begin{bmatrix} -2x \cos x \end{bmatrix}_0^{\frac{\pi}{4}} + \int_0^{\frac{\pi}{4}} 2\cos x \, dx \right\}$$

$$= \frac{\pi^2}{16\sqrt{2}} + \frac{\pi}{2\sqrt{2}} - \begin{bmatrix} 2\sin x \end{bmatrix}_0^{\frac{\pi}{4}}$$

$$= \frac{\pi^2}{16\sqrt{2}} + \frac{\pi}{2\sqrt{2}} - \frac{2}{\sqrt{2}}$$

(d) Let $t = \tan\left(\frac{x}{2}\right)$. Then $\cos x = \frac{1-t^2}{1+t^2}$ and $dt = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx = \frac{1}{2}\left(\tan^2\left(\frac{x}{2}\right) + 1\right) dx \Rightarrow dx = \frac{2dt}{1+t^2} dt$ Also at x = 0, t = 0 and $x = \frac{\pi}{2}, t = 1$

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{3+5\cos x} = \int_{0}^{1} \frac{\frac{2dt}{1+t^{2}}}{3+5\left(\frac{1-t^{2}}{1+t^{2}}\right)} = \int_{0}^{1} \frac{\frac{2dt}{1+t^{2}}}{\frac{3+3t^{2}+5-5t^{2}}{1+t^{2}}} = \int_{0}^{1} \frac{2dt}{8-2t^{2}}$$

$$= \int_{0}^{1} \frac{dt}{4-t^{2}} = \int_{0}^{1} \left(\frac{1}{4(2-t)} + \frac{1}{4(2+t)}\right) dt$$

$$= \frac{1}{4} \left[-\ln|2-t| + \ln|2+t| \right]_{0}^{1} = \frac{\ln 3}{4}$$

(e) (i) $\frac{3x^2 - x + 12}{(x - 2)(x^2 + 2x + 3)} \equiv \frac{A}{x - 2} + \frac{Bx - 3}{x^2 + 2x + 3} \Rightarrow 3x^2 - x + 12 \equiv A(x^2 + 2x + 3) + (Bx - 3)(x - 2)$ Let x = 2. Then $22 = 11A \Rightarrow A = 2$ Let x = 1. Then $14 = 2 \times 6 - (B - 3) \Rightarrow B = 1$

(e) (ii)
$$\int \frac{3x^2 - x + 12}{(x - 2)(x^2 + 2x + 3)} dx = \int \frac{2}{x - 2} dx + \int \frac{x - 3}{x^2 + 2x + 3} dx$$
$$= 2 \ln|x - 2| + \int \frac{x + 1 - 4}{x^2 + 2x + 3} dx$$
$$= 2 \ln|x - 2| + \frac{1}{2} \ln|x^2 + 2x + 3| - \int \frac{4}{(x + 1)^2 + 2} dx$$
$$= 2 \ln|x - 2| + \frac{1}{2} \ln|x^2 + 2x + 3| - 2\sqrt{2} \tan^{-1} \left(\frac{x + 1}{\sqrt{2}}\right) + c$$

Now the scalar projection of \underline{v} in the direction of \underline{u} is $\underline{v} \cdot \hat{\underline{u}} = \frac{2a - 2 + 2}{\sqrt{2^2 + (-1)^2 + (-2)^2}} = \frac{2a}{\sqrt{9}} = \frac{2a}{3}$ (a)

Hence the vector projection of \underline{v} in the direction of \underline{u} is $\frac{2a}{3}\begin{pmatrix} \frac{z}{3} \\ -\frac{1}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{z}{9} \\ -\frac{2}{9} \\ -\frac{4}{3} \end{pmatrix} \Rightarrow a = 1$

Let P(x, y) be a point on the semicircle $y = \sqrt{1 - x^2}$ (b)

Then the line segments are given by the vectors $\begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \end{pmatrix} = \begin{pmatrix} x+1 \\ y \end{pmatrix}$

and
$$\binom{x}{y} - \binom{1}{0} = \binom{x-1}{y}$$
.

Now
$$\binom{x+1}{y} \cdot \binom{x-1}{y} = (x+1)(x-1) + y^2$$

= $x^2 + y^2 - 1 = x^2 + 1 - x^2 - 1 = 0$

Hence the line segments are perpendicular.

- (c) $\overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR} = -q + k(2p + q) = 2kp + (k-1)q$ If \overrightarrow{QR} is parallel to p, then there is some $\lambda \in \mathbb{R} \setminus \{0\}$ such that $2kp + (k-1)q = \lambda p$ $\Rightarrow 2k = \lambda$ and k - 1 = 0. Hence k = 1

(d) i) At the point of intersection
$$\begin{pmatrix} 9 \\ 13 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\therefore 9 + \lambda = 2 + 2\mu \implies \lambda = 2\mu - 7 \quad (\dagger)$$

and
$$13 + 4\lambda = -1 + \mu \Rightarrow \mu = 4\lambda + 14$$
 (‡)
 l_2 Sub (†) into (‡): $\mu = 4(2\mu - 7) + 14 = 8\mu - 14$

and
$$13 + 4\lambda = -1 + \mu \rightarrow \mu = 4\lambda + 14$$
 (+)

Sub (†) into (‡):
$$\mu = 4(2\mu - 7) + 14 = 8\mu - 14$$

$$\therefore 7\mu = 14 \implies \mu = 2 \implies \lambda = 2 \times 2 - 7 = -3$$

$$\mathbf{r} = 9\mathbf{i} + 13\mathbf{j} - 3\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) = 6\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

(d) ii) Let
$$a = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$$
 and $b = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

$$\cos\theta = \frac{\underline{a} \cdot \underline{b}}{|\underline{a}| \times |\underline{b}|} = \frac{1 \times 2 + 4 \times 1 + (-2) \times 1}{\sqrt{1^2 + 4^2 + (-2)^2} \times \sqrt{2^2 + 1^2 + 1^2}} = \frac{4}{\sqrt{21} \times \sqrt{6}}$$

$$\therefore \theta = \cos^{-1}\left(\frac{4}{\sqrt{126}}\right) = 69.1^{\circ}$$

(d) iii) Let
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 9 \\ 13 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \Rightarrow x_1 = 9 + \lambda, y_1 = 13 + 4\lambda \text{ and } z_1 = -3 - 2\lambda,$$

Now $\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} x_1 - 4 \\ y_1 - 16 \\ z_1 + 3 \end{pmatrix} = \begin{pmatrix} 5 + \lambda \\ 4\lambda - 3 \\ -2\lambda \end{pmatrix}$

But $(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}) \cdot \overrightarrow{AP} = 0 \Rightarrow 1(5 + \lambda) + 4(4\lambda - 3) - 2 \times -2\lambda = 0 \Rightarrow \lambda = \frac{1}{3}$

Hence P is $\left(\frac{28}{3}, \frac{43}{3}, -\frac{11}{3}\right)$.

Question 15

(a) i)
$$(a^2 - b^2)(c^2 - d^2) - (ac - bd)^2 = a^2c^2 - b^2c^2 - a^2d^2 + b^2d^2 - a^2c^2 + 2abcd - b^2d^2$$

 $= -b^2c^2 - a^2d^2 + 2abcd = -(ad - bc)^2 \le 0$
Hence $(a^2 - b^2)(c^2 - d^2) \le (ac - bd)^2$

(a) ii)
$$(a^2 - b^2)(a^4 - b^4) - (a^3 - b^3)^2 = a^6 - b^2 a^4 - a^2 b^4 + b^6 - a^6 + 2a^3 b^3 - b^6$$

 $= -b^2 a^4 - a^2 b^4 + 2a^3 b^3 = -(ab^2 - a^2 b)^2 \le 0$
Hence $(a^2 - b^2)(a^4 - b^4) \le (a^3 - b^3)^2$

(b)
$$r = i + 3j - 4k + t(i + 2j + 2k)$$

 $x = 1 + t$
 $y = 3 + 2t$
 $z = -4 + 2t$
Now $(x - 1)^2 + (y - 3)^2 + (z + 4)^2 = 81$
 $(1 + t - 1)^2 + (3 + 2t - 3)^2 + (-4 + 2t + 4)^2 = 81$
 $(t)^2 + (2t)^2 + (2t)^2 = 81$
 $9t^2 = 81$
 $t^2 = 9 \Rightarrow t = \pm 3$
 \therefore Points are: $[1 + 3, 3 + 2(3), -4 + 2(3)] = (4, 9, 2)$
 $[1 - 3, 3 + 2(-3), -4 + 2(-3)] = (-2, -3, -10)$

(c) i) If k is even, i.e k = 2x for some $x \in \mathbb{Z}$, then

$$k^{2} + k = (2x)^{2} + 2x = 4x^{2} + 2x$$

= $2(2x^{2} + x) = 2y$ for some $y \in \mathbb{Z}$

If k is odd, i.e k = 2x + 1 for some $x \in \mathbb{Z}$, then

$$k^{2} + k = (2x + 1)^{2} + 2x + 1 = 4x^{2} + 4x + 1 + 2x$$

= $4x^{2} + 6x + 2 = 2(2x^{2} + 3x + 1) = 2y$ for some $y \in \mathbb{Z}$

Hence $k^2 + k$ is even.

(c) ii) n = 1: $1^3 + 5 \times 1 = 6$ which is divisible by 6.

Assume that $n^3 + 5n$ is divisible by 6 for n = k

i.e. $k^3 + 5k = 6p$ where p is an integer.

$$n = k + 1: (k + 1)^3 + 5(k + 1) = k^3 + 3k^2 + 3k + 1 + 5k + 5 = k^3 + 5k + 3k^2 + 3k + 6$$
$$= 6p + 3k^2 + 3k + 6 = 6p + 6 + 3(k^2 + k)$$
$$= 6p + 6 + 3(2y) = 6(p + y + 1)$$
 [from part (i)]

Hence $(k+1)^3 + 5(k+1)$ is divisible by 6

 \therefore if true for n = k, then also true for n = k + 1, but since true for n = 1, by induction is true for all integral values, $n \ge 1$.

Question 16

(a) i)
$$I_n = \int x^n e^{-3x} dx$$

 $u = x^n$ $v' = e^{-3x}$
 $u' = nx^{n-1}$ $v = -\frac{1}{3}e^{-3x}$
 $I_n = uv - \int vu'$
 $I_n = (x^n) \left(-\frac{1}{3}e^{-3x} \right) - \int \left(-\frac{1}{3}e^{-3x} \right) (nx^{n-1}) dx$
 $I_n = \frac{-x^n e^{-3x}}{3} + \int \frac{nx^{n-1}}{3}e^{-3x} dx$
 $I_n = \frac{-x^n e^{-3x}}{3} + \frac{n}{3} \int x^{n-1} e^{-3x} dx$
 $\therefore I_n = \frac{-x^n e^{-3x}}{3} + \frac{n}{3} I_{n-1}$

(a) ii)
$$\int x^3 e^{-3x} dx = \frac{-x^3 e^{-3x}}{3} + \frac{3}{3} \int x^2 e^{-3x} dx$$
$$\int x^2 e^{-3x} dx = \frac{-x^2 e^{-3x}}{3} + \frac{2}{3} \int x^1 e^{-3x} dx$$
$$\frac{2}{3} \int x^1 e^{-3x} dx = \frac{2}{3} \left[\frac{-x^1 e^{-3x}}{3} \right] + \frac{2}{3} \times \frac{1}{3} \int x^0 e^{-3x} dx$$
$$= \frac{-2x e^{-3x}}{9} + \frac{2}{9} \times -\frac{1}{3} e^{-3x}$$
$$= \frac{-2x e^{-3x}}{9} - \frac{2}{27} e^{-3x}$$
$$\therefore \int x^3 e^{-3x} dx$$
$$= \frac{-x^3 e^{-3x}}{3} - \frac{x^2 e^{-3x}}{3} - \frac{2x e^{-3x}}{9} - \frac{2}{27} e^{-3x} + C$$

(b) i)
$$(\cos \theta + i \sin \theta)^5 = \cos 5\theta + i \sin 5\theta$$

LHS = $\cos^5 \theta + 5i \cos^4 \theta \sin \theta - 10 \cos^3 \theta \sin^2 \theta - 10i \cos^2 \theta \sin^3 \theta + 5 \cos \theta \sin^4 \theta + i \sin^5 \theta$
Equating Real and Imaginary Parts: $\cos 5\theta = \cos^5 \theta - 10 \cos^3 \theta \sin^2 \theta + 5 \cos \theta \sin^4 \theta$
 $\sin 5\theta = 5 \cos^4 \theta \sin \theta - 10 \cos^2 \theta \sin^3 \theta + \sin^5 \theta$

(b) ii)
$$\tan 5\theta = \frac{5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta}{\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta} = \frac{5\tan\theta - 10\tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + 5\tan^4\theta} = \frac{5t - 10t^3 + t^5}{1 - 10t^2 + 5t^4}$$

(b) iii) If
$$\tan 5\theta = 0$$
, then $5\theta = 0$, π , 2π , 3π , $4\pi \Rightarrow \theta = 0$, $\frac{\pi}{5}$, $\frac{2\pi}{5}$, $\frac{3\pi}{5}$, $\frac{4\pi}{5}$

Also if $\tan 5\theta = 0$, then $\frac{5t - 10t^3 + t^5}{1 - 10t^2 + 5t^4} \Rightarrow 5t - 10t^3 + t^5 = t(t^4 - 10t^2 + 5) = 0$

Hence the roots of $t^4 - 10t^2 + 5$ are $t = \tan\frac{\pi}{5}$, $\tan\frac{2\pi}{5}$, $\tan\frac{3\pi}{5}$, $\tan\frac{4\pi}{5}$

Product of Roots of $t^4 - 10t^2 + 5$ are $\tan\frac{\pi}{5} \times \tan\frac{2\pi}{5} \times \tan\frac{3\pi}{5} \times \tan\frac{4\pi}{5} = 5$

(c)
$$33^{n} - 16^{n} - 28^{n} + 11^{n} = (33^{n} - 16^{n}) - (28^{n} - 11^{n})$$

 $= (33 - 16)(33^{n-1} + 33^{n-2} \times 16 + \dots + 16^{n-1}) - (28 - 11)(28^{n-1} + 28^{n-2} \times 11 + \dots + 11^{n-1})$
 $= 17(33^{n-1} + 33^{n-2} \times 16 + \dots + 16^{n-1}) - 17(28^{n-1} + 28^{n-2} \times 11 + \dots + 11^{n-1})$
Hence $33^{n} - 16^{n} - 28^{n} + 11^{n}$ is divisible by 17.
Also, $33^{n} - 16^{n} - 28^{n} + 11^{n} = (33^{n} - 28^{n}) - (16^{n} - 11^{n})$
 $= (33 - 28)(33^{n-1} + 33^{n-2} \times 28 + \dots + 28^{n-1}) - (16 - 11)(16^{n-1} + 16^{n-2} \times 11 + \dots + 11^{n-1})$
 $= 5(33^{n-1} + 33^{n-2} \times 28 + \dots + 28^{n-1}) - 5(16^{n-1} + 16^{n-2} \times 11 + \dots + 11^{n-1})$
Hence $33^{n} - 16^{n} - 28^{n} + 11^{n}$ is divisible by 5.
Thus $33^{n} - 16^{n} - 28^{n} + 11^{n}$ is divisible by 17 and by 5.

Therefore $33^n - 16^n - 28^n + 11^n$ is divisible by $17 \times 5 = 85$ as 17 and 5 are prime numbers.