PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-254141

(43) Date of publication of application: 19.09.2000

(51)Int.CI.

A61B 18/12 A61B 18/00 // H02J 7/00

(21)Application number: 11-059271

(71)Applicant: OLYMPUS OPTICAL CO LTD

(22)Date of filing:

05.03.1999

(72)Inventor: SAKURAI TOMOHISA

HATTA SHINJI

SHIGA AKIRA TSUKAGOSHI TAKESHI

YASUNAGA KOJI KARASAWA MASARU YAMAMIYA HIROYUKI NAKAMURA TAKEAKI

(54) SURGICAL INSTRUMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a surgical instrument which allows charging the sterilized instrument without contamination and almost eliminates the need for battery exchange during surgery. SOLUTION: A power transmission circuit 16 for power transmitting oscillation signals generated in an output circuit 15 is provided in a charger 2. The oscillation signals are received by a power reception part 21 provided inside the disinfected clean operation tools 3A and 3B put inside a cup 17 mounted on the upper part of the charger 2, rectification or the like is performed in a rectification/control part 22 and a secondary battery 4 is charged. That is, the secondary battery 4 inside the operation tools 3A and 3B is charged free from contamination without contacting the charger 2, and the need of the battery exchange during surgery is almost eliminated.

LEGAL STATUS

[Date of request for examination]

26.03.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

手術装置

[0.007]

の語が好かは、 6 (01) (19)日本国格群庁

(N) West Language	平成12年9月19日(2000.9.19)	(##) - 1-Ca-4	310 40060	301D 5G003	330	
3	(43)公服日		3 17/39	00/2	17/36	
3. 黄 4 古 4 宝 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		PI	A 6 1 B	H02J	A 6 1 B	
R						
*					•	
	1	10000000			301	
		1		-		
2						
	•		18/12	18/00	7/8	

A 6 1 B

7 HO2J

(51) Int C.

	-	物问题决	物質を開送・米質・製造・製造・製造・ (全・10 円)
(21) 出版等等	五年11-58271	(7)出版人	(71) 出現人 000000378
			オリンパス光学工業株式会社
(22) 出館日	平成11年3月5日(1999.3.5)		東京都設谷区帽ヶ谷2丁目48番2号
		(72) 発明者	极井 女尚
			東京都設谷区權ケ谷2丁目43路2号 オリ
			ンパス光学工業株式会社内
		(72) 発明者	八田 億二
			東京都校谷区橋ヶ谷2丁目43番2号 オリ
			ンパス光学工業株式会社内
	-	(7.0 PUB)	100076233
			中国士 伊藤 遠
	•=		
			~ 日上 世 神中

(54) [発明の名称]

く充電することができ、手術中における電池交換を殆ど 【課題】 滅菌等の処理された手術具を汚染することな 不必要にできる手術装配を提供する。 (57) [要約]

充電器2には出力回路15で発生した発 して2次電池4を充電できる、つまり充電器2に非接触 で汚染しないで手術具3A及び3B内の2次電池4を充 抵信号を送電する送電回路16が設けてあり、この充電 路2の上部に戴固したコップ17内に入れた消費等がさ れた清浄な手術員3A及び3B内に設けた受電部21に より的記角抵信号を受けて、整流・航御部22で整流等 **電できる構成にして、手術中における電池交換を殆ど不** [解决手段]

(特許超次の範囲)

特開2000-254:14.1

り電気的に駆動される処団部とを有し、消毒或いは減菌 「翻水垣1】 充電可能な2次電池及び数2次電池によ 可能な手術具と、前記手術具の外部に配置され、前記2 欠電池を充電するためのエネルギ発生ユニットとを有す

前記エネルギ発生ユニットに設けたエネルギを放射する る手術装置において、

エネルギ放射手段と、

接触で前記エネルギを受けて、前記2次電池を充電する **前記手術具に散けられ、前記コネルギ発生ユニットと非** エネルギを生成する充電エネルギ生成手段と、 を設けたことを特徴とする手術装置。

[発明の詳細な説明]

0.001

(発明の属する技術分野): 本発明は充電器等のエネルギ 発生ユニットと非接触で手術具に内蔵した2次電池を充 **載する手術装置に関する。**

[00002]

従来の技術】近年、内視鏡による観察下等により、切 関する部分を最小限に押さえて、短期間で完治ができる ような外科手術が広く行われるようになった。例えば特 公平2-43501号に開示された従来の手術具ではハ **個月が一体的に設けられており、そのモータは内蔵され** ンドピース内に電池が設けられており、更にモータと処 た電池で動作するようになっている。

発明が解決しようとする課題】上配従来例は操作する 場合、邪魔になり易い電源コードを不必要にして操作性 を向上できるが、その問題点として電池がなくなってし まうと処置が出来なくなる欠点がある。 [0003]

が必要でない可能性があるような場合にも、手術中での ければならなくなることを回避するには、手術前に電池 交換を行っておくことが必要になるが、このような作業 は煩わしいものとなるし、一部使用しただけで電池交換 【0004】この場合、特に手術中に電池交換を行わな **電池交換を回避するためには交換することが必要となっ** てしまう。

り、和觀姆等に非常に負担を強いる欠点がある。このた は充電器を接続することにより、減菌された手術具を汚 行う場合には、汚染しないように細心の注意が必要とな ることにより、対応することが考えられるが、従来例で 【0005】また、英国処理された手術具の電池交換を め、手術具に充電可能な電池を内蔵し、充電器で充電す 祭してしまう欠点があった。

[0006] (発明の目的) 本発明は、上述した点に低 みてなされたもので、減菌処理された手術具を汚染する ことなく充電することができ、手術中における電池交換 を殆ど不必要にできる手術装留を提供することを目的と

消毒或いは減盟可能な宇術具と、前配手術具の外部に配 ることなく充電ができるようにして、手術中における鬼 するエネルギを生成する充電エネルギ生成手段と、を設 [媒題を解決するための手段] 充電可能な2次電池及び 国され、前記2次配治を充電するためのエネルギ発生ユ ニットとを有する手術装置において、前記エネルギ発生 ユニットに設けたエネルギを放射するエネルギ放射手段 と、前紀手術具に設けられ、前記エネルギ発生ユニット と非接触で前記エネルギを受けて、前記2次電池を充電 けることにより、手術具の2次電池をエネルギ発生ユニ ットと非接触で、つまり減菌処理された手術具を汚染す 数2次電池により電気的に駆動される処置部とを有し、 治交換を殆ど不必要にしている。 8 2

[0.0.0.8]

[発明の奥筋の形物] 以下、図面を参照して本発明の実 施の形態を説明する。 22

術システムの構成を示し、:図2は充地している状態での (第1の実施の形態) 図1ないし図5は本発明の第1の 政施の形態に係り、図1は第1の実施の形態を備えた手 手術具及び充電器の電気系の構成を示し、図4は手術具 の構成例を示し、図らは変形例の手術具及び充電器の電 構成を示し、図3は非接触で充電する場合の動作原理。 気系の構成を示す。 8

らなり、手術具3A或いは3Bには前記充電器2からの [10000] 図1及び図2に示す手術システム 1は充電 を行うためのエネルギを発生すると共にそのエネルギを 放射する機能を備えたエネルギ発生ユニットとしての充 電器2と、手術を行うための手術具3A或いは3Bとか エネルギを前記充電器2と非接触で受け、充電可能な2 次電池4を充電する充電エネルギ生成手段をそれぞれ内 SS

把持される把持備5人、この把持御5から突出する軸部 [0010] また、手術員3A及び3Bは、循着により 6とを有し、この軸部6の先輩には生体組織に対して処 団を行う処凹部7A或いは7Bが設けてある。

り、このスイッチ8をON、OFFすることにより、処 配部7 A或いは7.Bを駆動或いは駆動停止させることが [0.0.1.1]また、把持部5にはスイッチ8が設けてあ できるようにしている。 [0012] 充電器2は商用電源に接続する電視コード 11を有し、この亀淑コード11の先端のブラグ12を から交流の電気エネルギが電源スイッチ 14を介して出 力回路1.5に供給される。この出力回路1.5はこの交流 の電気エネルギを例えばより高い周波数の配気エネルギ に変換しで出力増から、その出力増に接続された送亀回 商用亀쟁のコンセントに接続することにより、政用亀銭 路16 (を構成する送電コイル16.8) に出力する。 **Æ**

[0013] 上配出力回路1:5は例えば図3。(B) に示 すように電波回路15aと、この電波回路1.5aにより 生成された直流の電圧で発掘する発掘回路15 bと、電 (3)

ಜ

手術裝置

湖回路からの直流の電波が供給され、発振回路150の 免版信号を増属するアンブ15cとから構成され、この アンブ15cの出力増に送電回路16(を構成する送電 コイル16a)が被抗されている。

る。そして、この送電コイル168から、その周囲に転 【0014】発版回路15bは例えば数10kHzから 数MHzの周波数で発振し、この高周波信号をアンブ1 5 cで増備し、送電手段である送電コイル16 aに送 苗エネルギを放射するようにしている。

9 と、カップ17は電磁エネルギを迅過する素材、例えば 及び3 Bに非接触で手術具3 A及び3 Bの2次電池4を [0015] なお、図2に示すように充電器2の上部に は洗塔及び消費(取いは筬菌)等かされた清浄な手術具 3A及び3B等を入れるカップ17を範圍できるように 凹部形状のカップ戯暦部18が設けてある。このカップ 17は洗涤及び消費(或いは減菌)等が可能である。ま [0016] そして、滑浄にしたこのカップ17に手術 **具3A及び3B等を入れ、充電器2により、手術具3A** た、充電器2の送電コイル16aが埋め込まれた部材 ガラス或いはテフロン(登録商標)等の樹脂である。 充電することができるようにしている。

に送電回路16から放射されて電磁エネルギを受ける受 直流の電気エネルギに変換すると共に、充電するのに適 材としての軸部6を介して駆動される例えばメス型の処 昭部21と、この受電部21で受電した電磁エネルギを と、この2次電池4により駆動されるエネルギ変換部2 3と、このエネルギ変換部23により直接或いは伝達部 [0017] 一方、例えば手術具3Aは図2に示すよう した電圧に設定する額御とを行う整流・制御部22と、 この整流・超御部22の出力で充電される2次電池4

【0018】この手術具3人が例えば超音波メスの場合 うに超音波発振回路23a及び超音波振動子 (図3では には、エネルギ変換部23の構成は図4 (A) に示すよ [0019] 図1ではこの手術具3Aが例えば超音波メ 単に挺動子と略記)236となる。

股けた蚕32と螺合する雄ネジが股けてある。また、蚕 スの場合でのより具体的な構成を示している。この手術 月3Aはその把持部5の後端付近に電池収納室31が股 けられ、この電池収納室3/1の後端は開口し、雌ネジを - ル部材33が散けてあり、蓋32を取り付けた状態で 32と嵌合する嵌合部の途中に水筬用の0リング海のツ は内部を水南に保持できるようにしている。

1を形成する受電コイル218が配置され、この受電コ 【0020】また、電池収納室31の周囲には受電部2 **監流・制御部22に入力され、この整流・制御部22で** 2 次電池4を充電するのに適した電圧に設定されて2次 イル2 1 aで邸起した電気エネルギはリード線を介して 電池 4 に供給される。

aの出力増に超音波振動子23bが接続されており、超 被発掘回路238と接続され、この超音波発掘回路23 音波発振回路23mの出力信号が印加されることによ

1では受電コイル218、整流・相御部22、超音波発 り、超音波振動子23bは超音波で振動する。なお、図 版回路23 aは絶縁部材内部に埋め込まれている。 ន

[0022] この超音波振動子235の前端はホーン3 4を介して把持部5から突出する軸部6と接続されてお り、超音波振動子23bによる超音波振動をホーン34 で増幅し、さらに軸部6を介してその先端の処置部7A に超音波振動を伝達する。なお、ホーン34の前端と軸 部6との複複部はゴム部材等のシール部材35を介して 把持部5のカバー部材(外数部材)で使われるようにし 消母後(成いは英国液)での消毒(成いは英国)かでき るように水密構造になっている。また、城窟ガスでの城 ており、把持部5の内部は洗禕液での洗剤はもとより、 **函に対する耐性も有するようにしている。**

[0023] つまり、本英施の形態における手術具3A は洗剤はもとより、消毒或いは減菌が可能である。な

お、把持師5から突出する軸部6をシールする場合、図、 3-(A) に示すようにホーン34の基端倒でシールする ようにしても良い。

[0024] 図3 (C) は手術具3Aの電気系のより具 体的な構成例を示している。つまり、受電コイル218 の両端は整流・倒御部22を構成する整流回路228の 入力増に接続され、整流及び平滑化された後、定電圧ダ イオード22bによる定電圧化された後、逆流防止用グ **イオード22cを介して2次電池4に接続されている。** 【0025】また、この2次電池4はその一端が直接、

他蟷がスイッチ8を介して超音波発ី国路23gの入力 端に接続され、この組音波発振回路23aの出力端には 超音波振動子23bが接続されている。 ន

【0026】なお、手術具3Bは例えば手術具3Aより 長い軸部6でその先端の処置部7Bか例えば鍵型である 他は手術具3Aと同様の構成であり、手術具3Aと同様 に消毒等が可能である。 【0027】また、上述の説明では手術員3A或いは3 Bが超音波メスの場合で説明したが、図4(B)に示す ように粗気メス3Cでも良いし、図4(C)に示すモー 夕式処图具3Dでも良い。 [0028] 図4 (B) に示すように電気メス3 Cは図 4 (A) に示す組音波メス3Aにおける超音波発振回路 の代わりに商周波出力回路23cが設けられ、商周波で 発版し、かつその発版出力を増幅して出力する。この高 **周波出力回路23cの出力協は出力トランス23dの1** 欠倒が接続され、その2次倒に1次個と絶縁された高周 **数出力信号を出力する。**

[0029] この出力トランス23dの2次側の端子に は1対の高周波電極降36a,36bが接続され、その 先始側の処凹部7 Cに高周波出力信号を伝達する。そし [0021]この2次電池4はスイッチ8を介して超音 50

て、処団部7 Cを処国したい生体組織に接触させること により、切除とか焼灼することができるようにしてい

36 bが突出する部分には絶縁部材37で水密及び気密 [0030]なお、把持部5から西周波電極降36a,

Dは図4(A)に示す超音波メス3Aにおける超音波発 り、このモータ相御部238の出力間号でモータ23g [0031]また、図4 (C)に示すモータ式処置具3 版回路238の代わりにモータ制御部238が設けてあ を回転駆動するようにしている。

[0032] このモータ231の回転軸には把持部5か ら突出する軸部38が接続され、この軸部38の先端に 処置部としての回転プラシ39が設けてあり、生体組織 を跗離する等の処置を行えるようにしている。

[0033]なお、把持部5から軌部38が突出する時 分には0リング等のシール部材40か介荷され、水密を 保持している。このような構成の第1の実施の形態によ [0034] 図1に示す処置員3A及び3Bを使用して 2次電池4を収納し、醤32を閉める。この状態では処 国具3A及び3Bは水密構造及び気密構造であり、洗剤 手術を行う場合には、蓋32を開けて電池収納室31に 及び消費(成いは減菌)が可能である。

[0035]そして、手術具3A及び3Bを洗滌及び消 毒(或いは滅菌)して、図2に示すように充電器2の上 部のカップ戦団部18に戦闘された洗滌及び消費(成い は诋菌) されたカップ17に入れる。

電コイル16 aに印加され、この送電コイル16 aの周 り、受電コイル218に時間的に変化する起電力が発生 【0036】そして、充電器2のブラグ12を商用コン 図3 (B) に示す充電器2の出力回路15を構成する発 板回路156の発振信号がアンブ15cで増幅されて送 **囲に時間的に変化する電磁界を生成し、その電磁界によ** セントに接続してスイッチ14を0Nすることにより、

[0037] つまり、図3 (A) に示すように高周波信 (電磁路導方式)。このようにして、電気的に非接触な 号を送電コイル16aに印加することにより、その周囲 [0038] 図3 (C) に示すように受電コイル21a に配置した受電コイル21aに高周波信号が発生する 伏ಣで、受電コイル218にエネルギを伝達する。

の高周波信号は整流・制御部22に供給され、整流回路 22aで整流され、さらに充電に適した低圧にされて2 は、2次電池4により手術を行うことができる状態にな 【0039】従って、光輝に必要とされる時間の後に 次電池4に供給され、この2次電池4を充電する。

[0040]また、使用後は、処图具3Aを洗掛及び消 その紹音波兜 **昭音波振動子は超音波振動し、軸部6によりその先端の** 処政部7 Aに伝達され、処政部7 Aを生体組織に接触さ 版出力が超音波振動子236に印加されることにより、 せることにより、切除等の処理を行うことができる。 Bに駆動電源が供給されて超音波発描し、 9

専(政いは漢菌)して、再びカップ17内にいれて同様 【0041】上記の構成で手術員3A等の内部に設けら こ充電することができる。

れた2次電池4を充電する事によって手術具3A等を機 り返して使用する事が出来る。 手術員3 A等は使用する 毎に洗浄・減菌する必要があり、充電器 2 は不暇状態な ので、充電器2に予め洗浄・減留したカップ17をセッ トレて、カップ17の中に手術具3A母を入れるように する 車で手術 具3 A 等の 域菌状態を保持した状態で非接 勉で充電することができる。

させて、このLED16 bの光を太陽電池21 bなどの **電力を制御部を構成する定電圧ダイオード22b及び逆** 【0042】尚、他のエネルギ伝送の手段として、図5 (A)、(B) に示す変形例のようなものでも良い。図 5 (A)では、電源回路15aの直流電波で倒えば発光 ダイオード (LEDと略記) 16b等の発光手段を発光 光電変換案子で受けて直流の起電力を発生させ、その起 筑防止ダイオード22cを経て2次電池4を充電するよ うにしても良い。 8 52

[0043]なお、この場合には、図3(B)に示す充 **覧器2の電気系の構成は出力回路15か電源回路15**a で構成され、送亀回路16がLED16bで構成される ことになる。また、手術具間は受電部21が太陽電池2 1 bで構成され、軽流・超御部22が整流を必要としな い知御部で構成される。 2

[0044]また、この場合には、充筑器2におけるし ED16bを配置した部分の上部側の光出射部分と、カ 材を用いると良い。また、太陽電池216は手術具の後 ップ17とはLED16bの光を透過するガラス等の菜 うに設ける。この場合にも、充電器2と非接触で2次億 始の例えば蓋32に設けられ、受光部が外表面に竄むよ 治4を充電することができる。 33

版出力で超音波スピーカ16 0等の送音器から超音波エ ネルギ等の音響エネルギを送出させ、その音響エネルギ [0045]また、図5 (B) に示すように、**4**数回路 15 8の直流電波で発振回路15 bを発振させ、この発 を超音波マイク21c等の受音器で受けて電気エネルギ に変換し、それを整流・制御邸22を介して2次電池4 を充電する手段でも良い。 6

の突筋の形態によれば、知治盟助式の手術員3 A等に内 蔵された2次電池4を繰り返し充電する事によって、手 に電気的に接続する接点等が不要で非接触で充電できる 術員3A 毎を繰り返し使用可値であり、且つ、充配の際 【0046】本実施の形型は以下の効果を有する。 第1 ಜ

Nスイッチを押すと2次電池4から超音波発振回路23

る。従って、このカップ17から例えば手術員3Aを取 り出して術者はその把格部5を把持してスイッチ8の0

東施の形態を図6及び図7を参照して説明する。図6は 第2の実施の形態における処置具3mの構成を示し、図 [0047] (第2の実施の形態)次に本発明の第2の 6は処団具3mの電気系の構成を示す。本実施の形態は 例えば第1の実施の形態の処置具3Aにおいて、充電動 作が完了したことを示す手段を設けたものである。

匈部22に充電状臨判別部41を設けた整流・制御・判 [0048] 本奥施の形御における処団具3 Eを図6に 示す。この処置具3 Eは図1の処置具3 Aにおいて、把 時間5内の整流・間御部22の代わりに、この整流・観 **別邸42とし、把持邸5の外妻面にこの整流・制御・判** 別部42に接続された充電完了表示用LED43が設け

弱増に接続されると共に、電流制限用抵抗R1を介して [0049]この処置月3mの電気系の構成を図7に示 す。図7に示すように整流回路228の出力増は充電状 **砂料別部41を構成するコンパレータ41aの正負の電** 定電圧ダイオード22bが接続されている。

【0050】また、定電圧ダイオード22bのカソード コンパレータ 4 1 aの非反転入力増には2次電池4のア は切換スイッチSW及び逆流的止用ダイオード22cを ノードの電圧が印加され、コンパレータ41aの反転入 力端には定気圧ダイオード22bで安定化された電圧を 【0051】このコンパレータ418の出力増には抵抗 介して2次電池4のアノードと接続されている。また、 **压抗R2, R3で分割した基準電圧が印加される。**

R4及びコンデンサCが接続され、2次電池4の電圧が 基準電圧を越えた場合にこのコンデンサCを充電した電 圧で切換スイッチSWを接点aから接点bに切換え、接 点もに接続されたLED43を発光させるようにしてい 【0052】なお、この基準電圧は2次電池4の充電動 作が完了した場合の電圧となるように抵抗R2, R3の 簡単化のため、省略)。その他は第1の実施の形態と両 値が設定されている。また、切換スイッチSWは例えば アナログスイッチで構成され、その亀渕はコンパレータ 41と同様に整流回路22aから供給される(図7では 疑の様成である。

[0053] 本英趙の形物によれば、第1の英趙の形物 電池の電圧が基準電圧を超えたことにより後出し、切換 スイッチSWを切り換えて2次電池4に充電電流が流れ ないようにすると共に、LED43を発光(点灯)させ と同様の作用を有する他に、充電した場合に、2次電池 4の充電動作が完了した状態になると、その状態を2次

こより、その手術具3日が充電動作が完了した状態であ [0054] このため、術者等はこのLED43の点灯

ることを確認することができる。従って、祈者はLED 43か点灯した手術具を使用すれば良く、この場合には 手術中に電池切れが発生することをより確実に防止でき 【0055】また、過度に2次電池4を充電してしまう ようなことを防止できる (過度の充電で2次電池4を選 く劣化させてしまうことを防止できる) し、充電器2の 母淑を入れた伏物にしたままでも過度に 2 次電池 4 を充 **電してしまうようなことを防止でき、使い勝手が向上す**

ができる。また、過充電を防止して、2次電池4の寿命 [0056]従って、本実施の形態によれば、第1の実 施の形態の効果の他に、2次電池4の充電完了状態か否 かをLED43の点灯 (非点灯) により容易に知ること の低下を防止できるし、充電器2の電源を入れっぱなし にしても2次配池4の寿命の低下を防止できる等、取り 扱いも容易となる等の効果がある。

にはLED43を点灯させてユーザに充電完了状態を告 【0057】なお、本実筋の形態では、充電完了状態を 検出する検出手段を設け、充電完了状態を検出した場合 知するようにしているが、充電中にLED43を点灯さ せ、充電完了状態にLED43を消灯させて充電中及び 充電完了状態を告知するようにしても良い。

ន

[0058] この場合には、図7において、LED43 のアノードをダイオード22cのアノードと共に、切換 スイッチSWの接点&に接続すれば良い。また、充電中 に充電中を示すLEDを点灯させ、充電完了状態に前記 LEDとは発光する波長が異なるLED43を点灯させ て充電中及び充電完了状態を告知するようにしても良 [0058] この場合には、図7だおいて、LED43 を緑色で発光するLEDとし、この他に赤で発光するL EDのカソード及びアノードを図1のLED43のカソ ードと切換スイッチSWの複点Bに接続すれば良い。

5.5や通常の手術具5.6が設置出来る。充電器5.2から 【0060】 (第3の実施の形態) 次に本発明の第3の は、トレー型の手術システム51であって、充電器52 とその充電器52を設置するためのカート53と充電器 52の上に設置する減極トレー54と、この減極トレー 【0061】英國トレー54の中には電油駆動式手術具 コード 1 1が延出され、その先端にはプラグ 1 2 が設け 54上に戦闘される電池駆動式手術具55とからなる。 英施の形態を図8及び図9を参開して説明する。図8 엃 \$

[0062]また、この充電器52は、第1の実施の形 **態と同様の構成であり、図9に示すように送電回路16** が設けてあり、その上部側に配置される電池駆動式手術 **貝550内部に設けられている受配部21に非接触でエ** ネルギを供給する。この受電部21で受けたエネルギは 整流・制御部22を介して2次電池4に供給し、この2 5 ន

手術裝置

[0063] 尚、このようにトレー式の場合、宇術具5 5の向きの自由度が大きいので、電池駆動式手術具55 の内部に、おもり57が散けられており、送電回路16 と受電部21との向きがエネルギの伝送を効率良く行う る。例えば、送塩回路16と受電部21とがコイルで構 にして、送亀回路16のコイルで発生したエネルギを受 略部21のコイルで効率良く受けることができるように の形態によれば、大きな減盟トレー54の中に自由な向 成された場合には、両コイルの軸方向が平行となるよう している。本実施の形態は以下の効果を有する。本実施 ことができるように適切な向きとなるようになってい きの処置具55を配置しても確実に充電が行われる。

[0064] なお、第2の実施の形態のように2次電池 4の充電動作が完了した状態になると、2次電池4に充 **電電流が流れないようにすると共に、LED43等でユ** ーザに分かるように告知する手段を設けるようにしても

[0065] (第4の実施の形態) 次に図10ないし図 図10に示す第4の実施の形態の手術装置としての充電 式の超音波凝固・切開手術装置61は、充電装置62と 2次電池4 (図11参照)を内蔵した超音波凝固・切開 12を参開して本発明の第4の実施の形態を説明する。

[0066] 充電装置62には、洗浄・減菌可能な充電 用ソケット 6 4 が組み付けられるようにソケット潜脱用 凹部62a (図12参照)が設けてある。図12に示す ように、充電用ソケット64は充電装配62に対して着 脱可能になっている。 【0067】手術の前に超音波切開・凝固具63と充電 用ソケット64を減菌しておき、使用する際に充電用ソ ケット64を充電装置62にセットした上で超音波凝固 ・切開具63を組み込んでおく。

ス69内に設けた(受電部21としての)2次側コイル 22で充電に適した電圧に変換されて2次電池4に供給 【0068】図11に示すように充電装置62には送電 回路16として例えば2次側コイル67が組み込まれて おり、超音波切開・凝固具63には把持部5の外数ケー 68が組み込まれており、電路誘導によってエネルギが 伝送され、2次倒コイル68に接続された竪流・周御部 され、この2次配池4を充電するようになっている。

音波発振回路23aの発振出力を超音波振動子23bに [0068]なお、充電用ソケット64は消費、減菌な とに耐性を有するテフロン等の樹脂或いはセラミックス **改発版回路23aに接続され、スイッチをONすると超** た、この2次電池4は図示しないスイッチを介して超音 1次コイル67と2次コイル68との間に充電用ソケッ ト64を介在させても、1次コイル67による電磁エネ ルギを2次コイル68に伝送できるようにしている。ま 等で構成され、また電気的に絶縁性を有する。そして、

ホーン34及び朝邸6を経て先端の処四部7Bを超音波 中加する。この超音波振動子23bによる超音波振動は

特闘2000-254141

は内視鏡手術に用いる電池駆動式処置具7 1を示してお り、操作邸72と挿入邸73からなっており、2次電池 7.4が操作部7.2と挿入部7.3にわたって配置されてい 【0070】本史筋の形閊は以下の効果を有する。本英 箱の形態は 1次回コイル67と2次回コイル68との回 に受電用ソケット 6 4 が配置されているので超音波楽団 [0071] (第5の実施の形態) 次に本発明の第5の ・切明具の域菌状態を維持したまま充電が可能である。 **史施の形態を図13を参照して説明する。図13(A)**

る。なお、操作節72内には、例えば第1の実施の形態 [0072] 図13 (B) は内視鏡手術に用いる別の電 池駅助式処置具71′を示しており、異形の2次電池7 5が操作師72か5挿入邸73にわたって配置されてい の受電部21等が配置されている(図示略)。

[0073] 本実施の形態の効果としては、田量の大き き、操作し弱い。なお、上述した各実施の形態等を部分 い2次電池74,75を挿入部73から操作部72にわ 的等で組み合わせる等して構成される実施の形態等も本 たって配配したので、処田具のパランスを適切に設定で

[0074] [付記] 23

駆動される処暦部とを有し、消毒或いは減菌可能な手術 **昇と、前配手術具の外部に配置され、前記2次電池を充 配するためのエネルギ発生ユニットとを有する手術装置** において、前記エネルギ発生ユニットに設けたエネルギ 充電エネルギ生成手段と、を設けたことを特徴とする手 1. 充電可能な2次電池及び数2次電池により電気的に れ、前記エネルギ発生ユニットと非接触で前記エネルギ を受けて、前記2次亀池を充電するエネルギを生成する を放射するエネルギ放射手段と、前配手術具に設けら ĸ ខ្ល

【0075】2.付記1において、前記エネルギ発生ユ **製は送電用コイルから送電される電磁エネルギを受ける** ニットは送電用コイルを有し、前記充電エネルギ生成手 **受電コイルを有する電磁館等方式のエネルギ伝送形態で** 3. 付記1において、前記エネルギ発生ユニットは発光 **甼段を有し、前記充電エネルギ生成甼段は発光手段によ** る光を受けて光電変換する光電変換手段を有する。

4

[0076] 4. 付記1において、前記字街具には2次 電池の充電完了状態か否かを検出する検出手段と、拡換 出手段の出力に基づいて充電完了状態を告知する手段と Æ

5. 付記1において、前記手術具には2次電池の充電完 了状態か否かを検出する検出手段と、放検出手段により 充電完了状態を検出すると、2次電池の充電動作を停止 ន

平衡裝置

特開2000-2541

[図10] 本発明の第4の実施の形態の手術装置の外観 【図8】本発明の第3の実施の形態を備えた手術システ 【図12】充電装置に着脱自在の充電用ソケットを示す 【図13】本発明の第5の実施の形態における手術具の 【図11】手術具及び充電装置の内部構成を示す図。 【図7】手術具の電気系の構成を示す回路図。 【図9】一部の構成を示す図。 常成を示す図。 ムの外観図 所函図。 ន 2 略システムのエネルギ伝送を阻害しないようになってい 【0077】6. 充電可能な2次電池を手術具内に備え た外科用の手術シズテムであって、2次電池とエネルギ 充電ユニットと、前記手術具及び充電ユニットとの関に 昭置され、手術具が充電ユニットに接触させないための 先浄滅菌可能な分離手段とを含み、前記エネルギ送出手 段及びエネルギ受け手段からなる充電システムは電気的 受け手段を備えた手術具と、エネルギ送出手段を備えた に非接触な手段からなっており、前記分離手段は前記充 5 事を特徴とする手術シスデム。

[角明の幼果] 以上説明したように本発明によれば、充 電可能な2次電池及び該2次電池により電気的に駆動さ 前記手術具の外部に配置され、前記2次電池を充電する ためのエネルギ発生ユニットとを有する手術装置におい C、前記エネルギ発生ユニットに設けたエネルギを放射 するエネルギ放射手段と、前配手術具に設けられ、前配 て、前記2次電池を充電するエネルギを生成する充電エ ネルギ生成手段と、を設けておるので、手術具の2次鑑 治をエネルギ発生ユニットと非接触で、つまり減菌処理 された手術具を汚染することなく充電ができ、また手術 れる処置部とを有し、消毒或いは滅菌可能な手術具と、 エネルギ発生ユニットと非接触で前記エネルギを受け

7 A、7 B…処隘部

| 4…電源スイッチ

15…出力回路 16…法理回路

イーに脱続…!!

8…スイッチ

12...751

3A、3B…手術具

22

2…充電器

4…2次電池

5…尤指四

1…手術システム

[符号の説明]

(0078)

【図1】本発明の第1の実施の形態を備えた手術システ 中における電池交換を殆ど不必要にできる。 【図画の簡単な観明】

18…カップ戦闘部

2 1 … 受電部

17…カップ

ន

2 2…軽流・相御部

8

【図3】非接触で充電する場合の動作原理、手術具及び [図2] 充電している状態での手術システムの構成図。 **名電器の電気系の構成を示すプロック図。** いの構成図。

23 a…相音波発描回路 23…エネルギ疫類部

2 3 b…超音波振動子

3 1…電池収納室

33…シーラ部社

[図5] 変形例の手術具及び充電器の電気系の構成を示 【図4】手術具の構成例を示すプロック図。

33 【図6】本発明の第2の実施の形態における手術具の構 成を示す断面図。

[图2]

(E)

(図図)

(88)

特開2000-254141

手術裝置

[104]

3-

2次 美國省

€

છ્

な地本地

[図11]

ンロントムーツの税率

43番2号 オリ	43数2号 才り	43番2号 才リ	KK15 BA01 CA14
店庫 勝 東京都改谷区輪ヶ谷2丁目43巻2号 オリ ンパス光学工築株式会社内	山宮 広之 東京都改谷区橋ヶ谷2丁目43巻2号 オリ ンパス光学工築株式会社内	中村 阿明 東京都茨谷区橋ヶ谷2丁目43名2号 オリンパス光学工學技式会社内	ドターム(谷均) 4C060 JJ11 KK03 KI10 KI15 5G03 AAD1 AAD6 AAO8 BAO1 CA14 CYAY2 PAAG ERROR
(72)免明者	30 (72)発明者	(72)免明者	Fターム(台)
.		ن چ	
志資 明 東京都渋谷区橋ヶ谷2丁目43番2号 オリ ンパス光学工學株式会社内	塚越 肚 東京都渋谷区橋ヶ谷2丁目43番2号 オリンパス光学工學株式会社内	安永 浩二 東京都渋谷区橋ヶ谷2丁目43番2号 オリンパス光学工業株式会社内	
志東ン		(72)発明者	