Chapter 4: Probability Distribution Functions

In-Class Activity #6

Wednesday 9.26.2018

Dr. Basilio

* * *

Chapter 4: Probability Distribution Functions

Poisson Distribution

Activity 1: Poisson-Distribution

ACME Realty reports it sells 75 homes in 25 days. What is the probability that exactly 2 homes will be sold tomorrow? (Note: this is problem 8 from our Midterm review)

Activity 2: Poisson-Distribution

A Life Insurance (LI) salesman sells on average 3 LI policies per week. Assuming a Poisson Distribution, calculate the probability that in a given week she will sell:

- (a) some policies
- (b) 2 or more but less than 5 policies
- (c) Assuming a five day workweek, what is the probability that in a given day, she will sell a policy?

Activity 3: Poisson-Distribution

A company makes electrical motors. The probability an electrical motor is defective is 0.01. What is the probability that a sample of 415 electrical motors will contain exactly five defective motors?

Activity 4: Visualizing-Poisson-Distribution

A 911 operator receives about six telephone calls between 8 a.m. and 10 a.m.

- (a) What is the probability that she receives more than one call in the next 15 minutes?
- (b) Plot the histogram for the probability P(x) = P(X = x) for $x = 0, 1, 2, 3, \dots$

X	P(x)
:	:

Activity 5: Poisson-Distribution-Skewness

Look back at your histogram from Activity 4 part (b). Is the Poisson Distribution positively or negatively skewed?

Activity 6: Frequency-Skewness

The following is a list of prices (in dollars) of birthday cards found in various drug stores:

1.45 2.20 0.75 1.23 1.25 1.25 3.09 1.99 2.00 0.78 1.32 2.25 3.15 3.85 0.52 0.99 1.38 1.75 1.22 1.75

- (a) Organize this data with intervals of 50 cents (i.e. .50-0.99, 1.00-0.49, and so on) using create a frequency distribution table.
- (b) Draw a Histogram of the data. State the skewness of the data.

Chapter 3: Expectation

Activity 7: Expectation

Suppose that a game is to be played with a single die assumed fair. In this game a player wins \$20 if a 2 turns up, \$40 if a 4 turns up; loses \$30 if a 6 turns up; while the player neither wins nor loses if any other face turns up.

- (a) State what the random variable X is
- (b) Find all the outcomes x_1, \ldots, x_6
- (c) Find all the probabilities for each respective outcome
- (d) Find the expected sum of money to be won (or lost).
- (e) In a fair game, what do you think is a reasonable buy-in is in order to play the game?

Activity 8: Expectation

A game is played where a player rolls a six sided die and if the result is an even number, they win 4 times the number in dollars, but if the result is odd, they lose 6 times the number in dollars. Find the expected winnings (or losings).

- (a) Find the expected winnings (or losings).
- (b) Even if the game is free, should you play?

Chapter 6: Estimation Theory

Confidence Intervals

Activity 9: Confidence-Interval

Find a $C \cdot 100\%$ confidence interval for μ for the given values:

- (a) $\bar{x} = 75$, s = 13.2, and n = 57
- (b) $\bar{x} = 315$, s = 63, and n = 100

Activity 10: Confidence-Interval

Below are the number of times per year 38 randomly selected employees for a large company feel overworked.

$$15, 23, 50, 31, 5, 27, 47, 43, 135, 164, 80, 123, 20, 34, 45, 56, 7, 12, 15, 16, 18, 64, 79, 84, 19, 32, 34, 56, 200, 0, 16, 61, 31, 52, 61, 70, 365, 105$$

- (a) Find a 85% confidence interval for μ for the population mean of this data.
- (b) Find a 90% confidence interval for the population mean of this data.