#### Matrix Multiplication

- Matrix Multiplication
  - $-\mathbf{A}: n * l \text{ matrix}, \mathbf{B}: l * m \rightarrow \mathbf{C}: n * m \text{ matrix}$

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \left[c_{ij}\right]$$

$$c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj}$$

example

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}$$

### Matrix Multiplication: $A \times B = C$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$C = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \end{bmatrix}$$

Matrix multiplication is **not commutative!** 

$$AB \neq BA$$

## MATRIX-MULTIPLY(A, B)

$$\label{eq:theorem} \begin{split} &\textbf{if} \ columns[A] \neq rows[B] \\ &\textbf{then error "incompatible dimensions"} \\ &\textbf{else for } i \leftarrow 1 \ to \ rows[A] \\ &\textbf{do for } j \leftarrow 1 \ to \ columns[B] \\ &\textbf{do } C[i,j] = 0 \\ &\textbf{for } k \leftarrow 1 \ to \ columns[A] \\ &\textbf{do } C[i,j] \leftarrow C[i,j] + A[i,k] \ B[k,j] \end{split}$$



#### Matrix-Chain Multiplication

• In what order should we multiply the matrices?

$$A_1 \cdot A_2 \cdots A_n$$

• Parenthesize the product to get the order in which matrices are multiplied

Ex) 
$$A_1 \cdot A_2 \cdot A_3 = ((A_1 \cdot A_2) \cdot A_3)$$
  
=  $(A_1 \cdot (A_2 \cdot A_3))$ 

- Which one of these orderings should we choose?
  - The order in which we multiply the matrices has a significant impact on the cost of evaluating the product

#### Example

$$A_1 \cdot A_2 \cdot A_3$$

•  $A_1$ : 10 x 100  $A_2$ : 100 x 5  $A_3$ : 5 x 50

1. 
$$((A_1 \cdot A_2) \cdot A_3)$$
:  $A_1 \cdot A_2 = 10 \times 100 \times 5 = 5,000 (10 \times 5)$   
 $((A_1 \cdot A_2) \cdot A_3) = 10 \times 5 \times 50 = 2,500$ 

Total: 7,500 scalar multiplications

2. 
$$(A_1 \cdot (A_2 \cdot A_3))$$
:  $A_2 \cdot A_3 = 100 \text{ x } 5 \text{ x } 50 = 25,000 (100 \text{ x } 50)$   
 $(A_1 \cdot (A_2 \cdot A_3)) = 10 \text{ x } 100 \text{ x } 50 = 50,000$ 

Total: 75,000 scalar multiplications

→ significant impact on the cost of evaluating the product

# Matrix-Chain Multiplication: Problem Statement

• Given a chain of matrices  $\langle A_1, A_2, ..., A_n \rangle$ , where  $A_i$  has dimensions  $p_{i-1}x$   $p_i$ , fully parenthesize the product  $A_1 \cdot A_2 \cdots A_n$  in a way that minimizes the number of scalar multiplications.

$$A_1 \cdot A_2 \cdots A_i \cdot A_{i+1} \cdots A_n$$
  
 $p_0 \times p_1 \quad p_1 \times p_2 \quad p_{i-1} \times p_i \quad p_i \times p_{i+1} \quad p_{n-1} \times p_n$ 

# What is the number of possible parenthesizations?

- Brute force approach
  - Exhaustively checking all possible parenthesizations is not efficient!
- •It can be shown that the number of parenthesizations grows as  $\Omega(4^n/n^{3/2})$

# 1. The Structure of an Optimal Parenthesization

• Notation:

$$A_{i...j} = A_i A_{i+1} \cdots A_j, \quad i \leq j$$

• Suppose that an optimal parenthesization of  $A_{i...j}$  splits the product between  $A_k$  and  $A_{k+1}$ , where  $i \le k < j$ 

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$

$$= A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j$$

$$= A_{i...k} A_{k+1...j}$$

#### Optimal Substructure

$$\mathbf{A}_{\mathbf{i}...\mathbf{j}} = \mathbf{A}_{\mathbf{i}...\mathbf{k}} \, \mathbf{A}_{\mathbf{k}+1...\mathbf{j}}$$

- The parenthesization of the "prefix"  $A_{i...k}$  must be an optimal parentesization
- If there were a less costly way to parenthesize  $A_{i...k}$ , we could substitute that one in the parenthesization of  $A_{i...j}$  and produce a parenthesization with a lower cost than the optimum  $\Rightarrow$  contradiction!
- An optimal solution to an instance of the matrix-chain multiplication contains within it optimal solutions to subproblems

#### 2. A Recursive Solution

• Subproblem:

determine the minimum cost of parenthesizing

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$
 for  $1 \le i \le j \le n$ 

- Let m[i, j] = the minimum number of multiplications needed to compute  $A_{i...i}$ 
  - full problem  $(A_{1..n})$ : m[1, n]
  - i = j:  $A_{i}$   $j = A_{i} \implies m[i, i] = 0$ , for i = 1, 2, ..., n

#### 2. A Recursive Solution

Consider the subproblem of parenthesizing

$$\begin{aligned} A_{i...j} &= A_i \, A_{i+1} \, \cdots \, A_j \quad \text{for } 1 \leq i \leq j \leq n \\ &= A_{i...k} \, A_{k+1...j} \qquad \qquad \text{for } i \leq k < j \end{aligned}$$

• Assume that the optimal parenthesization splits the product

$$A_i A_{i+1} \cdots A_j$$
 at  $k (i \le k < j)$ 

to compute  $A_{i,k}$ 

min # of multiplications to compute  $A_{k+1...j}$ 

# of multiplications to compute  $A_{i...k}A_{k...j}$ 

#### 2. A Recursive Solution (cont.)

$$m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$$

- We do not know the value of k
  - There are j-i possible values for k: k = i, i+1, ..., j-1
- Minimizing the cost of parenthesizing the product  $A_i A_{i+1} \cdots A_j$  becomes:

#### 3. Computing the Optimal Costs

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \left\{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \right\} & \text{if } i < j \end{cases}$$

Computing the optimal solution recursively takes exponential time!

• How many subproblems?

$$\Rightarrow \Theta(n^2)$$

- Parenthesize  $A_{i...j}$ for  $1 \le i \le j \le n$
- One problem for each choice of i and j



#### 3. Computing the Optimal Costs

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \ \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{cases}$$

- How do we fill in the tables m[1..n, 1..n]?
  - Determine which entries of the table are used in computing m[i, j]

$$A_{i...j} = A_{i...k} A_{k+1...j}$$

- Subproblems' size is one less than the original size
- <u>Idea:</u> fill in m such that it corresponds to solving problems of increasing length

#### 3. Computing the Optimal Costs (cont.)

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \ \{m[i,k] + m[k+1,j] + p_{i\text{-}1}p_kp_j\} & \text{if } i < j \end{cases}$$

- Length = 1: i = j, i = 1, 2, ..., n
- Length = 2: j = i + 1, i = 1, 2, ..., n-1

m[1, n] gives the optimal solution to the problem

Compute rows from bottom to top and from left to right



# Example: min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

$$m[2, 2] + m[3, 5] + p_1p_2p_5$$

$$m[2, 3] + m[4, 5] + p_1p_3p_5$$

$$m[2, 4] + m[5, 5] + p_1p_4p_5$$

$$k = 2$$

$$k = 3$$

$$k = 4$$



• Values m[i, j] depend only on values that have been previously computed

# Example min $\{m[i, k] + m[k+1, j] + p_{i-1}p_kp_j\}$

Compute 
$$A_1 \cdot A_2 \cdot A_3$$

• 
$$A_1$$
: 10 x 100 ( $p_0$  x  $p_1$ )

• 
$$A_2$$
: 100 x 5  $(p_1 x p_2)$ 

• 
$$A_3$$
: 5 x 50  $(p_2 x p_3)$ 

$$m[i, i] = 0$$
 for  $i = 1, 2, 3$ 

$$m[1, 2] = m[1, 1] + m[2, 2] + p_0p_1p_2$$
  
= 0 + 0 + 10 \*100\* 5 = 5,000

$$m[2, 3] = m[2, 2] + m[3, 3] + p_1p_2p_3$$
  
= 0 + 0 + 100 \* 5 \* 50 = 25,000

$$m[1, 3] = \min \begin{cases} m[1, 1] + m[2, 3] + p_0 p_1 p_3 = 75,000 & (A_1(A_2A_3)) \\ m[1, 2] + m[3, 3] + p_0 p_2 p_3 = \underline{7,500} & ((A_1A_2)A_3) \end{cases}$$

|   | 1                 | 2          | 3 |
|---|-------------------|------------|---|
| 3 | <sup>2</sup> 7500 | 2<br>25000 | 0 |
| 2 | 15000             | 0          |   |
| 1 | 0                 |            |   |

$$(A_1A_2)$$

$$(A_2A_3)$$

#### Matrix-Chain-Order

```
MATRIX-CHAIN-ORDER (p)
      n \leftarrow length[p] - 1
      for i \leftarrow 1 to n
            do m[i, i] \leftarrow 0
      for l \leftarrow 2 to n
                          \triangleright I is the chain length.
            do for i \leftarrow 1 to n - l + 1
                     do j \leftarrow i + l - 1
                         m[i, j] \leftarrow \infty
                         for k \leftarrow i to i-1
                              do q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_j
10
                                  if q < m[i, j]
11
                                     then m[i, j] \leftarrow q
12
                                           s[i, j] \leftarrow k
     return m and s
```

 $O(N^3)$ 

- In a similar matrix s we keep the optimal values of k
- s[i, j] = a value of k such that an optimal parenthesization of  $A_{i..j}$ splits the product between  $A_k$  and  $A_{k+1}$



- s[1, n] is associated with the entire product  $A_{1..n}$ 
  - The final matrix multiplication will be split at k = s[1, n]

$$A_{1..n} = A_{1..s[1, n]} \cdot A_{s[1, n]+1..n}$$

• For each subproduct recursively find the corresponding value of k that results in an optimal parenthesization



•  $s[i, j] = value of k such that the optimal parenthesization of <math>A_i A_{i+1} \cdots A_j$  splits the product between  $A_k$  and  $A_{k+1}$ 

|     | 1   | 2 | 3 | 4 | 5 | _6_ |
|-----|-----|---|---|---|---|-----|
| 6   | (M) | 3 | 3 | 5 | 5 | _   |
| 6 5 | 3   | 3 | 3 | 4 | ı |     |
| 4   | 3   | 3 | 3 | _ |   |     |
| 3   | ()  | 2 | 1 |   |   |     |
| 2   | 1   | ı |   |   |   |     |
| 1   | _   |   |   |   |   |     |

• 
$$s[1, n] = 3 \Rightarrow A_{1..6} = A_{1..3} A_{4..6}$$

• 
$$s[1, 3] = 1 \Rightarrow A_{1..3} = A_{1..1} A_{2..3}$$

• 
$$s[4, 6] = 5 \Rightarrow A_{4..6} = A_{4..5} A_{6..6}$$

i

```
3
PRINT-OPT-PARENS(s, i, j)
if i = j
                                            3
  then print "A"<sub>i</sub>
  else print "("
       PRINT-OPT-PARENS(s, i, s[i, j])
       PRINT-OPT-PARENS(s, s[i, j] + 1, j)
       print ")"
```

### Example: $A_1 \cdot \cdot \cdot A_6$

```
PRINT-OPT-PARENS(s, i, j)
                                        s[1..6, 1..6]
                                                                  3
                                                                              5
if i = j
  then print "A";
                                                       5
  else print "("
                                                                  3
       PRINT-OPT-PARENS(s, i, s[i, j])
                                                       3
       PRINT-OPT-PARENS(s, s[i, j] + 1, j)
       print ")"
                                                       2
P-O-P(s, 1, 6) s[1, 6] = 3
i = 1, j = 6 "(" P-O-P (s, 1, 3) s[1, 3] = 1
                   i = 1, j = 3 "(" P-O-P(s, 1, 1) \Rightarrow "A<sub>1</sub>"
                                       P-O-P(s, 2, 3) s[2, 3] = 2
                                       i = 2, j = 3 "(" P-O-P (s, 2, 2) \Rightarrow "A<sub>2</sub>"
                                                                 P-O-P(s, 3, 3) \Rightarrow "A<sub>3</sub>"
                                                            ")"
```

#### Memoization

- Top-down approach with the efficiency of typical dynamic programming approach
- Maintaining an entry in a table for the solution to each subproblem
  - memoize the inefficient recursive algorithm
- When a subproblem is first encountered its solution is computed and stored in that table
- Subsequent "calls" to the subproblem simply look up that value

#### Memoized Matrix-Chain

#### Alg.: MEMOIZED-MATRIX-CHAIN(p)

- 1.  $n \leftarrow length[p] 1$
- 2. for  $i \leftarrow 1$  to n
- 3. **do for**  $j \leftarrow i$  **to** n
- 4. **do** m[i, j]  $\leftarrow \infty$
- 5. return LOOKUP-CHAIN(p, 1, n)

Initialize the **m** table with large values that indicate whether the values of **m**[i, j] have been computed

← Top-down approach

#### Memoized Matrix-Chain

```
Alg.: LOOKUP-CHAIN(p, i, j)
     if m[i, j] < \infty
             then return m[i, j]
     if i = j
3.
       then m[i, j] \leftarrow 0
5.
       else for k \leftarrow i to i-1
               do q \leftarrow LOOKUP-CHAIN(p, i, k) +
6.
                    LOOKUP-CHAIN(p, k+1, j) + p_{i-1}p_kp_i
                   if q < m[i, j]
7.
8.
                          then m[i, j] \leftarrow q
                                                     Running time is O(n^3)
     return m[i, j]
```

## Dynamic Progamming vs. Memoization

- Advantages of dynamic programming vs. memoized algorithms
  - No overhead for recursion, less overhead for maintaining the table
  - The regular pattern of table accesses may be used to reduce time or space requirements
- Advantages of memoized algorithms vs. dynamic programming
  - Some subproblems do not need to be solved

#### Matrix-Chain Multiplication (Summary)

- Both the dynamic programming approach and the memoized algorithm can solve the matrix-chain multiplication problem in  $O(n^3)$
- Both methods take advantage of the overlapping subproblems property
- There are only  $\Theta(n^2)$  different subproblems
  - Solutions to these problems are computed only once
- Without memoization the natural recursive algorithm runs in exponential time

#### Elements of Dynamic Programming

- Optimal Substructure
  - An optimal solution to a problem contains within it an optimal solution to subproblems
  - Optimal solution to the entire problem is build in a bottom-up manner from optimal solutions to subproblems
- Overlapping Subproblems
  - If a recursive algorithm revisits the same subproblems over and over ⇒ the problem has overlapping subproblems

# Parameters of Optimal Substructure

- How many subproblems are used in an optimal solution for the original problem
  - Assembly line: One subproblem (the line that gives best time)
  - Matrix multiplication: Two subproblems (subproducts  $A_{i..k}$ ,  $A_{k+1..j}$ )
- How many choices we have in determining which subproblems to use in an optimal solution
  - Assembly line: Two choices (line 1 or line 2)
  - Matrix multiplication: j i choices for k (splitting the product)

# Parameters of Optimal Substructure

- Intuitively, the running time of a dynamic programming algorithm depends on two factors:
  - Number of subproblems overall
  - How many choices we look at for each subproblem
- Assembly line
  - $\Theta(n)$  subproblems (n stations)
  - 2 choices for each subproblem

 $\Theta(n)$  overall

- Matrix multiplication:
  - $\Theta(n^2)$  subproblems  $(1 \le i \le j \le n)$
  - At most n-1 choices

 $\Theta(n^3)$  overall

#### Longest Common Subsequence

• Given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

find a maximum length common subsequence (LCS) of X and Y

• E.g.:

$$X = \langle A, B, C, B, D, A, B \rangle$$

- Subsequences of X:
  - A subset of elements in the sequence taken in order  $\langle A, B, D \rangle$ ,  $\langle B, C, D, B \rangle$ , etc.

#### Subsequences

- A *subsequence* of a character string  $x_0x_1x_2...x_{n-1}$  is a string of the form  $x_{i1}x_{i2}...x_{ik}$ , where  $i_j < i_{j+1}$ .
- Not the same as substring!
- Example String: ABCDEFGHIJK
  - Subsequence: ACEGJIK
  - Subsequence: DFGHK
  - Not subsequence: DAGH

# The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet in DNA is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

#### Example

$$X = \langle A, B, C, B, D, A, B \rangle$$
  $X = \langle A, B, C, B, D, A, B \rangle$   $Y = \langle B, D, C, A, B, A \rangle$   $Y = \langle B, D, C, A, B, A \rangle$ 

- $\langle B, C, B, A \rangle$  and  $\langle B, D, A, B \rangle$  are longest common subsequences of X and Y (length = 4)
- $\langle B, C, A \rangle$ , however is not a LCS of X and Y

#### **Brute-Force Solution**

- For every subsequence of X, check whether it's a subsequence of Y
- There are 2<sup>m</sup> subsequences of X to check
- Each subsequence takes  $\Theta(n)$  time to check
  - scan Y for first letter, from there scan for second, and so on
- Running time:  $\Theta(n2^m)$

## Making the choice

$$X = \langle A, B, D, E \rangle$$
  
 $Y = \langle Z, B, E \rangle$ 

• Choice: include one element into the common sequence (E) and solve the resulting subproblem

$$X = \langle A, B, D, G \rangle$$
  
 $Y = \langle Z, B, D \rangle$ 

• Choice: exclude an element from a string and solve the resulting subproblem

#### **Notations**

• Given a sequence  $X=\langle x_1,x_2,...,x_m\rangle$  ,we define the i-th prefix of X, for i=0,1,2,...,m

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

• c[i, j] = the length of a LCS of the sequences

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$
 and  $Y_j = \langle y_1, y_2, ..., y_j \rangle$ 

#### A Recursive Solution

Case 1: 
$$x_i = y_j$$
  
e.g.:  $X_i = \langle A, B, D, E \rangle$   
 $Y_j = \langle Z, B, E \rangle$ 

$$c[i, j] = c[i - 1, j - 1] + 1$$

- Append  $x_i = y_j$  to the LCS of  $X_{i-1}$  and  $Y_{j-1}$
- Must find a LCS of  $X_{i-1}$  and  $Y_{j-1} \Rightarrow$  optimal solution to a problem includes optimal solutions to subproblems

#### A Recursive Solution

Case 2: 
$$x_i \neq y_j$$
  
e.g.:  $X_i = \langle A, B, D, G \rangle$   
 $Y_j = \langle Z, B, D \rangle$   
 $\mathbf{c[i, j]} = \mathbf{max} \{ \mathbf{c[i-1, j], c[i, j-1]} \}$ 

- Must solve two problems
  - find a LCS of  $X_{i-1}$  and  $Y_j$ :  $X_{i-1} = \langle A, B, D \rangle$  and  $Y_j = \langle Z, B, D \rangle$
  - find a LCS of  $X_i$  and  $Y_{j-1}$ :  $X_i = \langle A, B, D, G \rangle$  and  $Y_j = \langle Z, B \rangle$
- Optimal solution to a problem includes optimal solutions to subproblems

## Overlapping Subproblems

- To find a LCS of X and Y
  - we may need to find the LCS between X and  $Y_{n-1}$  and that of  $X_{m-1}$  and Y
  - Both the above subproblems has the subproblem of finding the LCS of  $X_{m-1}$  and  $Y_{n-1}$
- Subproblems share subsubproblems

## 3. Computing the Length of the LCS

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ max(c[i, j-1], c[i-1, j]) \text{ if } x_i \neq y_j \end{cases}$$



#### Additional Information

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x_i = y_j \\ max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j \end{cases}$$

| b & c:                  | 0<br><b>y</b> i.        | 1<br><i>A</i> | 2<br><i>C</i>        | 3<br>D   |   | n<br>F |
|-------------------------|-------------------------|---------------|----------------------|----------|---|--------|
| 0 x <sub>i</sub>        | <b>y</b> <sub>j</sub> . | 0             | 0                    | 0        | 0 | 0      |
| 0 x <sub>i</sub><br>1 A | 0                       |               |                      |          |   |        |
| 2 B                     | 0                       |               |                      | c[i-1,j] |   |        |
| 3 <i>C</i>              | 0                       |               | <b>▼</b><br>c[i,j-1] | <b>†</b> |   |        |
|                         | 0                       |               |                      |          |   |        |
| m D                     | 0                       |               |                      |          |   |        |

matrix b[i, j]:

- For a subproblem [i, j],
   it tells us what choice was
   made to obtain the optimal
   value
- If  $x_i = y_j$ b[i, j] = "``
- Else, if  $c[i-1,j] \ge c[i,j-1]$  $b[i,j] = "\uparrow"$

else

$$b[i, i] = " \leftarrow "$$

#### LCS-LENGTH(X, Y, m, n)

```
for i \leftarrow 1 to m
        do c[i, 0] \leftarrow 0
                                       The length of the LCS if one of
     for j \leftarrow 0 to n
                                       the sequences is empty is zero
        do c[0, j] \leftarrow 0
4.
     for i \leftarrow 1 to m
6.
         do for j \leftarrow 1 to n
7.
               do if x_i = y_i
                     then c[i, j] \leftarrow c[i-1, j-1] + 1
8.
                                                                                 Case 1: x_i = y_j
                            b[i, j] ← " "
9.
                     else if c[i-1, j] \ge c[i, j-1]
10.
                             then c[i, j] \leftarrow c[i - 1, j]
11.
                                   b[i, j] ← "↑"
12.
13.
                             else c[i, j] \leftarrow c[i, j - 1]
                                                                                 Case 2: x_i \neq y_j
                                  b[i, j] ← "←"
14.
15. return c and b
```

Running time:  $\Theta(mn)$ 

#### Example

$$\begin{array}{c} X = \langle A,B,C,B,D,A,B \rangle \\ Y = \langle B,D,C,A,B,A \rangle \end{array} \stackrel{\text{c}}{=} \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } x_i = y_j \\ max(c[i,j-1],c[i-1,j]) & \text{if } x_i \neq y_j \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ y_j & B & D & C & A & B & A \\ \hline b[i,j] = \text{``} \text{``} & 0 & x_i \\ b[i,j] = \text{``} \text{``} & 2 & B \\ else \\ b[i,j] = \text{``} \leftarrow \text{``} & 3 & C \\ b[i,j] = \text{``} \leftarrow \text{``} & 4 & B \\ \hline \end{array}$$

#### 4. Constructing a LCS

- Start at b[m, n] and follow the arrows
- When we encounter a "  $\text{ in b[i, j]} \Rightarrow x_i = y_j$  is an element of the LCS

|   |    | 0<br>V: | 1<br>B     | 2<br>D          | 3<br><i>C</i> | 4<br><i>A</i>  | 5<br>B             | 6<br><i>A</i>  |
|---|----|---------|------------|-----------------|---------------|----------------|--------------------|----------------|
| 0 | Xi | 70      | 0          | 0               | 0             | 0              | 0                  | 0              |
| 1 | A  | 0       | <b>↑</b> 0 | <b>←</b> 0      | <b>←</b> 0    | 1              | ←1                 | 1              |
| 2 | В  | 0       | 1          | <del>(1</del> ) | ←1            | <b>1</b>       | ~ 2                | ←2             |
| 3 | C  | 0       | <b>1</b>   | )<br>1          | 2             | €(2)           | <b>←</b> 2         | <b>↑</b> 2     |
| 4 | В  | O       | × 1        | <b>↑</b> 1      | ^~            | )<br>←2        | $\mathbf{k}^{(m)}$ | <b>←</b> 3     |
| 5 | D  | ) C     | <b>↑</b> 1 | × 2             | ^2            | <b>←</b> 2     | <del>&lt;(</del> m | <del>-</del> 3 |
| 6 | A  | 0       | 1<br>1     | <b>←</b> 2      | <b>←2</b>     | ×π             | )←ო                | 4              |
| 7 | В  |         | 1          | <b>†</b> 2      | <b>↑</b> 2    | <del>-</del> 3 | 4                  | 4              |

#### PRINT-LCS(b, X, i, j)

```
    if i = 0 or j = 0
    then return
    if b[i, j] = ", " Running time: Θ(m + n)
    then PRINT-LCS(b, X, i - 1, j - 1)
    print x<sub>i</sub>
    elseif b[i, j] = "↑"
    then PRINT-LCS(b, X, i - 1, j)
    else PRINT-LCS(b, X, i, j - 1)
```

Initial call: PRINT-LCS(b, X, length[X], length[Y])

## Improving the Code

- What can we say about how each entry c[i, j] is computed?
  - It depends only on c[i-1, j-1], c[i-1, j], and c[i, j-1]
  - Eliminate table b and compute in O(1) which of the three values was used to compute c[i, j]
  - We save  $\Theta(mn)$  space from table b
  - However, we do not asymptotically decrease the auxiliary space requirements: still need table c

## Improving the Code

- If we only need the length of the LCS
  - LCS-LENGTH works only on two rows of c at a time
    - The row being computed and the previous row
  - We can reduce the asymptotic space requirements by storing only these two rows

# Applications of Dynamic Programming

- Areas.
  - Bioinformatics.
  - Control theory.
  - Information theory.
  - Operations Research(OR).
  - Computer science: theory, graphics, AI, systems,

. . . .