Lecture 4 Recursion

EECS 281: Data Structures & Algorithms

What Counts as One Step in a Program?

Primitive operations

- a) Variable assignment
- b) Arithmetic operation
- c) Comparison
- d) Array indexing or pointer reference In reality: a[i] is the same as *(a + i)
- e) Function call (not counting the data)
- f) Function return (not counting the data)

Runtime of 1 step is independent of input

Counting Steps

(myFunc as a callee)

Passing every datum to/from a function takes time. Passing larger objects and containers by value takes longer

When passing objects, count copy-constructors

The Program Stack (1)

- When a function call is made
 - **1a.** All local variables are saved in a special storage called *the program stack*
 - **2a**. Then argument values are pushed onto *the program stack*
- When a function call is received
 - **2b**. Function arguments are popped off the stack
- When return is issued within a function
 - **3a.** The return value is pushed onto *the program stack*
- When return is received at the call site
 - **3b.** The return value is popped off the *the program stack*
 - 1b. Saved local variables are restored

The Program Stack (2)

- Program stack supports nested function calls
 - Five nested calls would save five sets of local variables and five sets of arguments on the P.S.
- There is only one program stack (per thread)
 - Different from the program heap,
 where dynamic memory is allocated
- Program stack size is limited in practice
- The number of nested function calls is limited
- <u>Example</u>: a bottomless (buggy) recursion function will exhaust program stack very quickly

Important Practical Considerations

- Program stack is very limited in size
- For a large data set
 - "Plain" recursion over every element is a bad idea
 - Use tail recursion or iterative algorithms instead
- Problems solvable with O(1) additional memory do not favor "plain" recursive algorithms

Step-Counting For Recursion

```
1 int factorial(int n) {
2  return (n ? n * factorial(n- 1) : 1);
3 }
```

Total steps: #calls * steps in 1 function call

Challenge: what if the number of steps per call depends on the argument values?

Recurrence Equations

 A recurrence equation describes the overall running time on a problem of size n in terms of the running time on smaller inputs. [CLRS]

Recurrence Equation Example

```
int factorial (int n) {
   if (n == 0)
    return 1;
   return n * factorial(n - 1);
   }
   T(n) = \begin{cases} c_0 & n == 0 \\ T(n-1) + c_1 & n > 0 \end{cases}
```

- T(n) is the running time of factorial() with input size n
- T(n) is expressed in terms of the running time of factorial() with input size n - 1
- c_0 and c_1 are constants

Solving Recurrences

- Recursion tree method [CLRS]
- AKA Telescoping method
- 1. Write out T(n), T(n-1), T(n-2)
- 2. Substitute T(n-1) and T(n-2) into T(n)
- 3. Look for a pattern
- 4. Use a summation formula

Exercise

```
int power(int x, unsigned y);
// returns x^y
```

Write two versions:

- 1. With recursion (or tail recursion) and O(n) complexity
 - Write the recurrence equation
- 2. With a loop and O(log *n*) complexity
 - Hint: $2^8 = ((2^2)^2)^2$

Does it work for 20? 02? 00?

Another solution

Write the recurrence equation:

```
1 int power(int x, unsigned y, int result = 1) {
2    if (y == 0)
3       return result;
4    else if (y % 2)
5       return power(x * x, y / 2, result * x);
6    else
7       return power(x * x, y / 2, result);
8 }
```

Common Recurrence Equations

Recurrence	Example	Big-O Solution
T(n) = T(n/2) + c	Binary Search	O(log <i>n</i>)
T(n) = T(n-1) + c	Sequential Search	O(n)
T(n) = 2T(n/2) + c	Tree Traversal	O(n)
$T(n) = T(n-1) + c_1 * n + c_2$	Selection/etc. Sorts	$O(n^2)$
$T(n) = 2T(n/2) + c_1 * n + c_2$	Merge/Quick Sorts	O(n log n)

Solving Recurrences

- We have used the recursion tree (AKA telescoping) method to solve recurrence equations
- Another way to solve recurrence equations is the Master Method (AKA Master Theorem)

Master Theorem Basis

Let T(n) be a monotonically increasing function that satisfies:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
$$T(1) = 1$$

Where $a \ge 1$, $b \ge 2$. If $f(n) \in \Theta(n^c)$, then:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^c \\ \Theta(n^c \log_2 n) & \text{if } a = b^c \\ \Theta(n^c) & \text{if } a < b^c \end{cases}$$

When Not to Use

- You cannot use the Master Theorem if:
 - -T(n) is not monotonic, such as $T(n) = \sin(n)$
 - -f(n) is not a polynomial, i.e. $f(n)=2^n$
 - b cannot be expressed as a constant, i.e.

$$T(n) = \sqrt{n}$$

 There is also a special fourth condition if f(n) is not a polynomial; see later in slides

When Not to Use

Example:

$$T(n) = T(n-1) + n$$

Master Theorem not applicable

$$T(n)$$
 $aT(n/b) + f(n)$

$$T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$$
 What are the parameters?
 $a = b = 0$

$$T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$$
 What are the parameters?
 $a = 3$
 $b = c = 3$

$$T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$$
 What are the parameters?
 $a = 3$
 $b = 2$
 $c = 3$

$$T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$$
 What are the parameters?
 $a = 3$
 $b = 2$
 $c = 1$

Therefore which condition?

$$T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$$
 What are the parameters?
 $a = 3$
 $b = 2$
 $c = 1$

Therefore which condition? Since $3 > 2^1$, case 1

$$T(n) = 3T\left(\frac{n}{2}\right) + \frac{3}{4}n + 1$$
 What are the parameters?
 $a = 3$
 $b = 2$
 $c = 1$

Therefore which condition? Since $3 > 2^1$, case 1 Thus we conclude that:

$$T(n) \in \Theta(n^{\log_b a}) = \Theta(n^{\log_2 3})$$

Exercise

$$T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n} + 7$$
 What are the parameters?
 $a = b = 1$

c =

Solve the recurrence equation

Exercise

$$T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$$
 What are the parameters?
 $a = b = c = c = c$

Solve the recurrence equation

Fourth Condition

 There is a 4th condition that allows polylogarithmic functions

If
$$f(n)$$
 Î $Q(n^{\log_b a} \log^k n)$ for some k 3 0,
Then $T(n)$ Î $Q(n^{\log_b a} \log^{k+1} n)$

 This condition is fairly limited, and not one you need to memorize/write down

Fourth Condition Example

Say that we have the following recurrence:

$$T(n) = 2T \mathop{\rm ext}_{\dot{e}}^{2n} \frac{\ddot{o}}{\dot{p}} + n \log$$

- Clearly a=2, b=2, but f(n) is not polynomial
- However: $f(n) \hat{I} Q(n \log n)$ and k = 1

$$T(n) = Q(n \log^2 n)$$

Job Interview Question

Write an efficient algorithm that searches for a value in an *n* x *m* table (two-dim array). This table is sorted along the rows and columns — that is,

```
table[i][j] table[i][j] + 1], table[i][j] table[i] + 1][j]
```

- Obvious ideas: linear or binary search in every row
 - nm or $n \log m$... too slow

3	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

Solution #1: Quad Partition

Split the region into four quadrants – one can be eliminated.

Then recurse

$$T(n) = 3T(n/2) + c$$

By the Master Theorem (or telescoping),

$$T(n) = \Theta(n^{\log_2(3)}) \Theta(n^{1.58})$$

Not competitive enough!

*	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

Solution #2: Binary Partition

Split the region into four quadrants:

- scan a middle row/column/diagonal for the target element
- if not found, split where it would have been
- eliminate 2 of 4 sub-regions

Then recurse:

$$T(n) = 2T(n/2) + cn \quad \underline{or} \quad T(n) = 2T(n/2) + log \ n$$

By the Master Theorem (or by telescoping), $T(n)=\Theta(n \log n)$ or $T(n)=\Theta(n)$

Not entirely rigorous because sub-arrays may differ in size. What happens to complexity then?

1	4	7	11	16
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

1	4	7	11	15
2	5	8	12	19
3	6	9	16	22
10	13	14	17	24
18	21	23	26	30

Solution #3: Stepwise Linear Search

```
bool stepWise(int mat[][N_MAX], int N, int target, int &row, int &col) {
     if (target < mat[0][0] \parallel target > mat[N - 1][N - 1])
2
3
        return false;
     row = 0; col = N - 1;
5
      while (row \leq N - 1 \&\& col >= 0)
6
        if (mat[row][col] < target)
          row++;
8
        else if (mat[row][col] > target)
9
                                                                    5
                                                                          8
                                                                               12
                                                                                     19
          col--;
10
        else
11
                                                             3
                                                                    6
                                                                                     22
          return true;
12
13
                                                             10
                                                                               17
                                                                                     24
      return false;
                                                                         23
                                                             18
                                                                   21
                                                                               26
                                                                                     30
```

Runtime Comparisons

- Source code and data (M = N = 100) available at http://www.leetcode.com/2010/10/searching-2d-sorted-matrix-part-ii.html
 http://www.leetcode.com/2010/10/searching-2d-sorted-matrix-part-iii.html
- Runtime for 1,000,000 searches

Algorithm	Runtime
Binary search	31.62s
Diagonal Binary Search	32.46s
Step-wise Linear Search	10.71s
Quad Partition	17.33s
Binary Partition	10.93s
Improved Binary Partition	6.56s

Linear Recurrences

• Fibonacci sequence: 0 1 1 2 3 5 8 13 ...

$$-F_0 = 0, F_1 = 1$$

 $-F = F_{n-1} + F_{n-2}$, where 2

- Appears frequently in many contexts
 - Illustrates several types of algorithms
 - Stock-trading strategies
 - Nice-looking architectural proportions
- Often used in interview questions

Linear Recurrences

• Fibonacci sequence: 0 1 1 2 3 5 8 13 ...

$$-F_0 = 0, F_1 = 1$$

 $-F = F_{n-1} + F_{n-2}, \text{ where } 2$

Closed-form solution:

$$\frac{F_{n+1}}{F_n} \stackrel{\cdot}{:=} \frac{1}{1} \frac{1}{0} \frac{F_n}{\dot{F}_{n-1}} \stackrel{\cdot}{:=} \frac{1}{1} \frac{1}{0} \frac{1}{\dot{F}_0} \stackrel{\cdot}{:=} \frac{F_1}{1} \stackrel{\cdot}{:=} \frac{1}{1} \frac{1}{0} \stackrel{\cdot}{:=} \frac{F_1}{F_0} \stackrel{\cdot}$$

Can be computed in O(log n) time

Questions for Self-Study

- Consider a recursive function that only calls itself.
 Explain how one can replace recursion
 by a loop and an additional stack.
- Go over the Master Theorem in the CLRS textbook
- Which cases of the Master Theorem were exercised for different solutions in the 2D-sorted-matrix problem?
- Solve the same recurrences by telescoping w/o the Master Theorem
- Write (and test) programs for each solution idea, time them on your data