COMP2230

Algorithms

Lecture 9

Professor Ljiljana Brankovic

Lecture Overview

Dynamic Programming - Chapter 8, Text

Slides based on:

Levitin. The Design and Analysis of Algorithms

R. Johnsonbaugh & M. Schefer. Algorithms

G. Brassard & P. Bratley. Fundamentals of Algorithms

Slides by Y. Lin and P. Moscato

Dynamic Programming

- Use a "bottom-up" approach
 - answers to small instances build up to larger ones
- Create a table of (partial) answers.
 - The sub-answers are combined to form full answers.
 - Trade some space for either better time or reliability.
- There is an implicit assumption
 - What are we assuming about the sub-answers, to ensure the full answer is correct?

Principal of Optimality

If we have a set of optimal solutions to a group of sub-instances, and we have an optimal method of combining solutions, then we have an optimal solution to an instance made up from the sub-instances.

or

If S is an optimal solution to an instance, then components of S are optimal solutions to sub-instances.

Note that this principle does not always apply - for example, it does not apply to the longest path problem. We <u>need</u> this principle to apply for Dynamic Programming to work.

A Risky bet...

Fred is a notoriously good cards player. He makes you an interesting (though possibly expensive) proposition:

- You and Fred play 10 games per week.
- First to win 100 games is the winner.
 - If Fred wins, you pay Fred \$100
 - If you win, Fred pays you \$1000
- You estimate Fred has a 60% chance of winning each game, based on previous games.

Should you accept this bet?

Accept?

 If Fred and you are to play <u>a single game</u> then you could easily calculate the <u>expected gain</u>:

$$E(gain) = 0.4 \times 1000 + 0.6 \times (-100) = 340$$
 Accept!

- Let P(i,j) be the probability of you winning the bet, given that you need to win i more games, and Fred needs to win j more games.
- We need to calculate P(100,100)

$$E(gain) = P(100,100) \times 1000 + (1 - P(100,100)) \times (-100)$$

 This is similar to the calculations performed by casinos around the world, to work out how much to charge per bet.

$$0.4 \times 1000 + 0.6 \times (-x) < 0 \rightarrow x > 667$$

Setting up a recursion

- Let P(i,j) be the probability of you winning the bet, given that you need to win i more games, and Fred needs j more games.
- We need to calculate P(100,100)
- Probability that Fred wins a single game is p = 0.6
- Probability that Fred loses a single game is q = 1 p = 0.4

- Boundary conditions need to be specified...
- P(0,j) = 1 for all $0 < j \le 100$
 - You have already won!
- P(i,0) = 0 for all $0 < i \le 100$
 - Fred has already won!
- P(0,0) can't exist
 - We can't have both winning

Probability formula

- · How we relate what has happened with the future?
- We have the following formula:

```
P(i,j) = p P(i,j-1) + (1-p)P(i-1,j) i,j \ge 1
```

```
function P(i,j)

if i=0 then return 1

if j=0 then return 0

return pP(i,j-1) + (1-p)P(i-1,j)
```

How long will this take?

Barometer statement?

i = 0 in the first **if** statement

Let C(a,b) be the number of times the barometer statement is executed, given inputs a & b.

$$C(a,b) = \begin{cases} 1 & a = 0 \\ 1 & b = 0 \\ C(a-1,b) + C(a,b-1) + 1 & otherwise \end{cases}$$

How long (cont)

We can show by induction that

$$C(a,b) = \Omega \binom{2n}{n}$$

where $n = \min(a, b)$

- For n = 100, this is approximately 9×10^{58}
- If you execute 10^{10} instructions per second, that's about 2.8×10^{41} years (which is a really long time as 1.4×10^{10} years is the estimated age of the universe)
- Why is it so bad? What can be done?

Solution: Save the work we've done

- Recall that D&C gives a top-down approach.
- We should try to work from bottom up and re-use the work we've already done.
 - avoid calculating the same thing twice (or many times)

Dynamic Programming

- Bottom-up approach
 - combines solutions to smaller instances to make solutions to bigger ones
 - big improvements in performance are possible
 - "programming" refers to a matrix (array) storage
 - some storage issues
 - trades big improvement in time complexity against small loss in space
 - needs good book-keeping, keeps track of what is going on.

Calculating P(i,j) using array P

We need a way to fill in array, from (0,0) to (n,n)

Then we fill the array...

- We know all the boundary values: P(i,0) and P(0,j)
- ·So fill them in first.
- ·How do we get

P(1,1) ?

P(1,2) ?

P(1,3) ?

P(n,n)?

In our case: P(100,100)?

The table

	j = 0	1	2	3	4	5	6	7	8	9	10
i = 0		1	1	1	1	1	1	1	1	1	1
1	0	0.4	0.64	0.784	0.87	0.922	0.953	0.972	0.983	0.99	0.994
2	0	0.16	0.352	0.525	0.663	0.767	0.841	0.894	0.929	0.954	0.97
3	0	0.064	0.179	0.317	0.456	0.58	0.685	0.768	0.833	0.881	0.917
4	0	0.026	0.087	0.179	0.29	0.406	0.517	0.618	0.704	0.775	0.831
5	0	0.01	0.041	0.096	0.174	0.267	0.367	0.467	0.562	0.647	0.721
6	0	0.004	0.019	0.05	0.099	0.166	0.247	0.335	0.426	0.514	0.597
7	0	0.002	0.009	0.025	0.055	0.099	0.158	0.229	0.308	0.39	0.473
8	0	7E-04	0.004	0.012	0.029	0.057	0.098	0.15	0.213	0.284	0.359
9	0	3E-04	0.002	0.006	0.015	0.032	0.058	0.095	0.142	0.199	0.263
10	0	1E-04	7E-04	0.003	0.008	0.018	0.034	0.058	0.092	0.135	0.186

The dynamic programming approach

```
function(a,b,p)
//Calculate P[a,b] with prob. p
                                             Set up array with the
n \leftarrow \max(a,b); array P[0...n,0...n]
                                              boundary conditions
for i = 1 to n
    P[i,0] \leftarrow 0
for j = 1 to n
    P[0,j] \leftarrow 1
                                        Work to complete the array
for i = 1 to n
    for j = 1 to n
            P[i,j] \leftarrow p P[i,j-1] + (1-p) P[i-1,j]
return P[a,b]
```

So, how long now?

- Analysis is straight forward:
 - filling the array takes $\Theta(n^2)$
 - array takes space $\Theta(n^2)$
 - assumes addition is $\Theta(1)$
- Could we make it take less space? $\Theta(n)$?

Benefits

- Improved efficiency
 - as shown, we avoid calculating things more than once
- Improved reliability
 - some problems we have seen can be better solved with dynamic programming
 - consider some of the greedy problems
 - sometimes dynamic programming gives a solution where greedy wouldn't

Making change revisited

Making change problem: For a given amount A and given denominations, make amount A using smallest total number of coins

Example 1:

- denominations: 1, 4, 6
- find change for 8
- · greedy: 6, 1, 1
- · optimal: 4, 4

Example 2:

- denominations: $1, 1\frac{3}{4}, 4$
- find change for 3
- greedy: $(1\frac{3}{4}) + 1....$ fail
- optimal: 1, 1, 1

Sometimes greedy gives non-optimal solution, and sometimes it completely fails.

Dynamic Programming for change...

What would a bottom-up approach to making change look like?

- Some sort of table of sub-solutions
- Problem reduced by considering reduced sets of denominations;
 in Example 1:
 - only coins of value 1
 - · then coins of value 1 and 4
 - then coins of value 1, 4 and 6

Dynamic making change

• Imagine we have found an "optimal" solution using only the first k-1 denominations (don't care how yet):

- Coins: d_1 d_2 d_3 ... d_{k-1}
 - we know how many, and what types of coins are needed to give optimal results for all change amounts

all old denominations
+ the next one

- Say we now consider the case d_1 d_2 ... d_{k-1} d_k
 - what choices do we have to update the old solution?

Dynamic Programming for Change - The array

Create a table of answers C[k, v] such that:

- k = number of denominations considered so far
- v = amount of change to make
- C[k, v] = total number of coins required to make change value v, if only the first k denominations are used.

We will assume we have a list of all coin denominations, stored as a vector, d[k] or d_k for clarity

To use, or not to use

- We want v change.
- Let old solution be C[k-1, v]
- The table is full to this point
- The optimal solution does not use coin d_k

$$C[k,v] = C[k-1,v]$$

- · solution is the same
- if it were optimal before, and we don't need to use the coin d_k , it's optimal now

which option do we choose?

-
$$C[k, v] = 1 + C[k, v - d_k]$$

- we need to solve problem of making $(v d_k)$ given the same set of coins
- If that solution were optimal, we get the optimal solution

$$C[k, v] = min\{C[k-1, v], 1 + C[k, v - d_k]\}$$

What about the boundary conditions?

- How many coins do we need to make \$0 in change?
 - note the pattern for C[k, 0]
- What if we can't make a certain amount using (as many as possible) coins given?
 - e.g., make \$1 using only \$2 coins.
 - e.g., make negative amounts
- Use a special symbol, e.g., +∞

A back-of-envelope test

Try out the ideas before we write the pseudo-code.

Amount:	0	1	2	3	4
$\mathbf{d_1} = 1$	0	1	2	3	4
$\mathbf{d}_2 = 4$	0	†			
$\mathbf{d}_3 = 6$	0				

compare C[k-1,v] and 1+C[k,v-d[k]]

Dynamic Change

```
function Coins(A, d[1...n])
//Finds minimum # coins to make $A change
//Array d gives coin denominations
//Assume infinite amount of coins in each denomination
array C[1...n, 0...n]
for i \leftarrow 1 to n
   C[i,0] = 0
for i \leftarrow 1 to n
   for j \leftarrow 1 to A
      C[i,j] \leftarrow if i = 1 \& j < d[i] then +\infty
                  elseif i = 1 then 1 + C[1, j-d[1]]
                  elseif j < d[i] then C[i-1, j]
                  else min\{C[i-1,j], 1 + C[i,j-d[i]]\}
```

Which coins?

 This gives (as greedy did) a solution which only tells us how many coins are needed, but not which ones.

Questions for you to answer:

- How do we interpret the table to find the coins to use?
- What is O() of making change?
- What is O() of finding coins?

Dynamic Progamming Summary

- Build up solutions from little ones
 - may have to fill up array and waste space/time
 - results may be faster than straight divide & conquer
 - results may be more reliable than straight greedy
- Based on the Principle of Optimality: In an optimal sequence of decisions, each subsequence must also be optimal.

Warshall's Algorithm

- Warshall's algorithm is a dynamic programming algorithm for computing the transitive closure of a directed graph.
- The transitive closure of a directed graph G is an $n \times n$ matrix T of zeros and ones, where $t_{ij} = 1$ if and only if there is a directed nontrivial path from vertex i to vertex j.

Example 3 - Warshall's algorithm

A - adjacency matrix

T - transitive closure

$$A = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 0 \\ b & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

Warshall's Algorithm

- One way to solve this problem would be to run a depth-first search (or breath-first search) from each vertex in digraph G.
- Another way to solve this problem is Warshall's algorithm which starts from adjacency matrix M_0 of the digraph G and then through a series of matrices M_1, M_2, \ldots, M_n constructs the transitive closure of G.
- In the matrix M_k , $m_{ij}=1$ if and only if there is a directed path from i to j such that no vertex on the path has label greater than k.

Warshall's Algorithm

The matrix M_k can be obtained directly from M_{k-1} as follows. The element m_{ij} in M_k is equal to one if and only if there is a path from i to j which does not contain any vertices with label greater than k.

This will be the case if one of the following is true:

- 1. There is a path from i to j which does not contain any vertex with label greater than k-1; in this case $m_{ij}=1$ in M_{k-1}
- 2. There is a path from i to j that contains vertex k but does not contain any vertex with a label greater than k; then there is a path from i to k and from k to j and thus in M_{k-1} we have $m_{ik} = 1$ and $m_{kj} = 1$.

Example 3 - Warshall's algorithm

	_a	<u>b</u>	С	<u>d</u>
α	0	1	0	0
$M_1 = b$	0	0	0	1
С	0	0	0	0
d	1	1	1	0

$$M_2 = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ b & 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{3} = \begin{bmatrix} a & b & c & a \\ 0 & 1 & 0 & 1 \\ b & 0 & 0 & 0 \\ c & 0 & 0 & 0 \\ d & 1 & 1 & 1 \end{bmatrix}$$

$$M_{2} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ c & 0 & 0 & 0 \\ d & 1 & 1 & 1 \end{bmatrix}$$

$$M_{3} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ d & 1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Algorithm 8.5.12 Warshall's Algorithm

This algorithm computes the transitive closure of a diagraph G onvertices $\{1, ..., n\}$. The input is the adjacency matrix A of G. The output is the transitive closure of G.

Floyd's Algorithm

Given a graph G, either directed or undirected, we want to find the shortest path from each node to every other node.

- · Brute force: run Dijkstra from every node.
- What is the complexity of this?
- Dynamic programming may be helpful.
 - Does optimality apply?
 - what do we need for optimality to apply?

Shortest paths (cont)

- Consider a single shortest path through three nodes i k j (plus other intermediates)
 - Say k is on the shortest path from i to j
 - What can we say about the paths from i to k, and k to j?

i to j via k

We can ask:

- for a given pair of nodes (i, j), is it shorter to go via the current path, or is it better to go via some node k?
- Assume we have a matrix of lengths $D_{k-1}[1..n, 1..n]$
 - D_{k-1} holds the best path lengths for intermediate nodes $\{1, 2, ..., k-1\}$
 - If we now consider node k, how do we update D_{k-1} ?
- We can do this using similar approach as Warshall's algorithm.

via k, or not via k

• If we go via node k, the path will be from $i \to k$, and then from $k \to j$, using the previous best paths.

$$D_k[i,j] = D_{k-1}[i,k] + D_{k-1}[k,j]$$

If we don't go via k, then the path length is unchanged

$$D_k[i,j] = D_{k-1}[i,j]$$

- What would we do if we wanted to know the actual path from i to j?
- What is D_0 ?

Working up to the pseudo-code

• We need to check all pairs (i, j) and ask is the node k on a shorter path.

So we'll have a nested for loop.

```
for i \leftarrow 1 to n
for j \leftarrow 1 to n
D[i,j] \leftarrow \min \{ D[i,j], D[i,k] + D[k,j] \}
```

• Note: we can just overwrite D as we go, so we do not need to store all the matrices.

Example 4 - Floyd's algorithm

	_a	<u>b</u>	С	<u>d</u>
a	0	00	3	∞
b	2	0	5	00
С	∞	7	0	1
d	6	∞	9	0

Algorithm 8.5.3 Floyd's Algorithm, Version 1

This algorithm computes the length of a shortest path between each pair of vertices in a simple, directed or undirected, weighted graph G, which does not contain a negative cycle. The input is the adjacency matrix A of G. The output is the matrix A whose ij-th entry is the length of a shortest path from vertex i to vertex j.