$11a_{135} (K11a_{135})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1271u^{35} + 7400u^{34} + \dots + 559b + 6593, \ 1511u^{35} - 17846u^{34} + \dots + 2236a - 43197, \\ &u^{36} - 6u^{35} + \dots + u + 4 \rangle \\ I_2^u &= \langle -u^{26}a + 317u^{26} + \dots + a + 1171, \ 4u^{26}a - 3u^{26} + \dots - 6a + 9, \ u^{27} + 2u^{26} + \dots - 4u^2 - 1 \rangle \\ I_3^u &= \langle -2u^9 + u^8 - 3u^7 + u^6 - 6u^5 + 4u^4 - 8u^3 + 5u^2 + b - 4u + 1, \ u^8 + u^7 + u^4 + u^3 - u^2 + a - 3, \\ &u^{10} - u^9 + 2u^8 - u^7 + 4u^6 - 3u^5 + 6u^4 - 4u^3 + 5u^2 - u + 1 \rangle \\ I_4^u &= \langle b + 1, \ a^2 - 2au - a - u - 2, \ u^2 + u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 104 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1271u^{35} + 7400u^{34} + \dots + 559b + 6593, \ 1511u^{35} - 17846u^{34} + \dots + 2236a - 43197, \ u^{36} - 6u^{35} + \dots + u + 4 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.675760u^{35} + 7.98122u^{34} + \dots + 27.4079u + 19.3189 \\ 2.27370u^{35} - 13.2379u^{34} + \dots - 13.8336u - 11.7943 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -5.13551u^{35} + 22.9168u^{34} + \dots - 13.4794u + 0.555009 \\ 11.4633u^{35} - 59.1413u^{34} + \dots + 2.49732u - 22.1485 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2.05322u^{35} - 7.18515u^{34} + \dots + 17.4490u + 7.42889 \\ -0.159213u^{35} + 0.654741u^{34} + \dots + 7.64580u - 1.40072 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -4.34571u^{35} + 24.2531u^{34} + \dots + 1.93202u + 12.1552 \\ 1.29875u^{35} - 5.67800u^{34} + \dots + 5.43649u + 1.81932 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 5.53712u^{35} - 21.7594u^{34} + \dots + 26.2039u + 8.03444 \\ -7.89624u^{35} + 42.0340u^{34} + \dots + 5.69052u + 20.5420 \end{pmatrix}$$

$$\begin{pmatrix} 5.53712u^{35} - 21.7594u^{34} + \dots + 26.2039u + 8.03444 \\ -7.89624u^{35} + 42.0340u^{34} + \dots + 5.69052u + 20.5420 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{4133}{559}u^{35} \frac{18240}{559}u^{34} + \dots + \frac{10119}{559}u \frac{3554}{559}u^{35} + \dots$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{36} - 6u^{35} + \dots + u + 4$
c_2, c_6	$u^{36} + 10u^{35} + \dots + 31u + 16$
c_3, c_7	$u^{36} + 2u^{35} + \dots + 2u + 1$
c_4, c_8	$u^{36} + 6u^{34} + \dots - 5u + 2$
c_9, c_{11}	$u^{36} + 6u^{35} + \dots + 4u + 1$
c_{10}	$u^{36} + 19u^{35} + \dots + u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{36} + 10y^{35} + \dots + 31y + 16$
c_{2}, c_{6}	$y^{36} + 34y^{35} + \dots - 6849y + 256$
c_{3}, c_{7}	$y^{36} + 24y^{35} + \dots + 44y + 1$
c_4, c_8	$y^{36} + 12y^{35} + \dots + 27y + 4$
c_9, c_{11}	$y^{36} - 8y^{35} + \dots + 28y + 1$
c_{10}	$y^{36} - y^{35} + \dots + 67y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.276741 + 0.944175I		
a = -1.25934 + 0.87235I	-3.77194 - 4.33449I	-10.34773 + 8.70742I
b = -1.18704 - 0.84945I		
u = -0.276741 - 0.944175I		
a = -1.25934 - 0.87235I	-3.77194 + 4.33449I	-10.34773 - 8.70742I
b = -1.18704 + 0.84945I		
u = -0.304491 + 0.889790I		
a = -0.062800 + 1.255710I	-3.69796 - 0.78585I	-10.32257 + 1.08257I
b = -1.142480 + 0.222558I		
u = -0.304491 - 0.889790I		
a = -0.062800 - 1.255710I	-3.69796 + 0.78585I	-10.32257 - 1.08257I
b = -1.142480 - 0.222558I		
u = 0.700901 + 0.854931I		
a = 0.21075 - 1.52850I	0.84484 + 3.07899I	-2.36753 - 4.61435I
b = -0.322329 + 0.571982I		
u = 0.700901 - 0.854931I		
a = 0.21075 + 1.52850I	0.84484 - 3.07899I	-2.36753 + 4.61435I
b = -0.322329 - 0.571982I		
u = 0.670636 + 0.904481I		
a = 0.853772 + 0.895928I	0.69868 + 2.21160I	-2.61972 - 2.06632I
b = -0.023486 - 0.449791I		
u = 0.670636 - 0.904481I		
a = 0.853772 - 0.895928I	0.69868 - 2.21160I	-2.61972 + 2.06632I
b = -0.023486 + 0.449791I		
u = -0.848515 + 0.073137I		
a = -0.708084 + 0.620130I	1.04891 + 7.93873I	2.26099 - 7.53856I
b = 0.741423 - 0.831359I		
u = -0.848515 - 0.073137I		
a = -0.708084 - 0.620130I	1.04891 - 7.93873I	2.26099 + 7.53856I
b = 0.741423 + 0.831359I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.335316 + 1.103160I		
a = 0.986796 - 0.482008I	-2.43737 - 11.97940I	-3.58846 + 9.69532I
b = 1.076210 + 0.827984I		
u = -0.335316 - 1.103160I		
a = 0.986796 + 0.482008I	-2.43737 + 11.97940I	-3.58846 - 9.69532I
b = 1.076210 - 0.827984I		
u = -0.754047 + 0.880053I		
a = 0.256067 + 0.953865I	1.51994 - 2.85709I	-2.33106 + 2.86602I
b = -1.57066 + 0.07535I		
u = -0.754047 - 0.880053I		
a = 0.256067 - 0.953865I	1.51994 + 2.85709I	-2.33106 - 2.86602I
b = -1.57066 - 0.07535I		
u = 0.836947 + 0.813811I		
a = 1.45743 + 1.45510I	3.28088 - 2.39771I	-4.49853 + 2.73594I
b = -0.90494 - 1.42986I		
u = 0.836947 - 0.813811I		
a = 1.45743 - 1.45510I	3.28088 + 2.39771I	-4.49853 - 2.73594I
b = -0.90494 + 1.42986I		
u = -0.185132 + 1.158740I		
a = 0.116551 - 0.668626I	-3.33480 + 4.43993I	-6.66340 - 7.47745I
b = 0.655109 - 0.395481I		
u = -0.185132 - 1.158740I		
a = 0.116551 + 0.668626I	-3.33480 - 4.43993I	-6.66340 + 7.47745I
b = 0.655109 + 0.395481I		
u = 0.911501 + 0.758905I		
a = -1.10120 - 1.05489I	5.92417 - 11.34300I	2.20430 + 5.55458I
b = 1.12689 + 1.25578I		
u = 0.911501 - 0.758905I		
a = -1.10120 + 1.05489I	5.92417 + 11.34300I	2.20430 - 5.55458I
b = 1.12689 - 1.25578I		
·		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.824017 + 0.898169I		
a = -0.177149 - 0.497820I	6.48061 - 3.07379I	6.45709 + 2.41299I
b = 0.921405 - 0.086126I		
u = -0.824017 - 0.898169I		
a = -0.177149 + 0.497820I	6.48061 + 3.07379I	6.45709 - 2.41299I
b = 0.921405 + 0.086126I		
u = 0.021281 + 0.766965I		
a = -1.40357 + 1.58774I	-2.80406 + 0.04358I	-9.18489 + 0.34635I
b = -1.045680 - 0.299865I		
u = 0.021281 - 0.766965I		
a = -1.40357 - 1.58774I	-2.80406 - 0.04358I	-9.18489 - 0.34635I
b = -1.045680 + 0.299865I		
u = 0.789000 + 0.963507I		
a = -0.51131 - 2.47418I	2.81727 + 8.47181I	-5.83967 - 8.29612I
b = -1.06736 + 1.45192I		
u = 0.789000 - 0.963507I		
a = -0.51131 + 2.47418I	2.81727 - 8.47181I	-5.83967 + 8.29612I
b = -1.06736 - 1.45192I		
u = 0.374008 + 0.626804I		
a = 0.891587 - 0.075576I	0.10177 + 1.47413I	1.25501 - 4.83821I
b = 0.070132 + 0.290278I		
u = 0.374008 - 0.626804I		
a = 0.891587 + 0.075576I	0.10177 - 1.47413I	1.25501 + 4.83821I
b = 0.070132 - 0.290278I		
u = 1.028740 + 0.773325I		
a = 0.187909 + 0.308356I	4.99883 + 3.21347I	19.6525 + 3.8446I
b = -0.190982 - 0.521409I		
u = 1.028740 - 0.773325I		
a = 0.187909 - 0.308356I	4.99883 - 3.21347I	19.6525 - 3.8446I
b = -0.190982 + 0.521409I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.798120 + 1.025270I		
a = 0.57651 + 2.10645I	5.0855 + 17.6564I	0.86604 - 10.01914I
b = 1.23838 - 1.24673I		
u = 0.798120 - 1.025270I		
a = 0.57651 - 2.10645I	5.0855 - 17.6564I	0.86604 + 10.01914I
b = 1.23838 + 1.24673I		
u = 0.880565 + 1.020470I		
a = 0.032721 - 0.717303I	4.23977 + 3.68667I	0 11.71183I
b = -0.616024 + 0.418194I		
u = 0.880565 - 1.020470I		
a = 0.032721 + 0.717303I	4.23977 - 3.68667I	0. + 11.71183I
b = -0.616024 - 0.418194I		
u = -0.483436 + 0.080826I		
a = 1.52835 - 0.78222I	-1.25585 + 1.57291I	-2.37601 - 4.05394I
b = -0.758556 + 0.609588I		
u = -0.483436 - 0.080826I		
a = 1.52835 + 0.78222I	-1.25585 - 1.57291I	-2.37601 + 4.05394I
b = -0.758556 - 0.609588I		

II.
$$I_2^u = \langle -u^{26}a + 317u^{26} + \dots + a + 1171, \ 4u^{26}a - 3u^{26} + \dots - 6a + 9, \ u^{27} + 2u^{26} + \dots - 4u^2 - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.00201613au^{26} - 0.639113u^{26} + \cdots - 0.00201613a - 2.36089 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.00806452au^{26} - 1.55645u^{26} + \cdots + 0.991935a + 0.556452 \\ -0.00201613au^{26} - 0.360887u^{26} + \cdots + 0.00201613a - 3.63911 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.360887au^{26} + 2.59879u^{26} + \cdots + 0.639113a + 0.401210 \\ 0.917339au^{26} - 0.796371u^{26} + \cdots - 0.917339a + 3.79637 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.08266au^{26} - 3.20363u^{26} + \cdots + 0.0826613a + 2.20363 \\ -0.0524194au^{26} - 0.383065u^{26} + \cdots + 1.05242a + 1.38306 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.00201613au^{26} - 0.360887u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots - 0.00806452a - 3.44355 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00201613au^{26} - 0.360887u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 1.00202a + 0.360887 \\ 0.00806452au^{26} + 0.443548u^{26} + \cdots + 0.00806452a - 3.44355 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=3u^{26} + 5u^{24} - u^{23} + 18u^{22} - 8u^{21} + 17u^{20} - 8u^{19} + 27u^{18} - 30u^{17} + 9u^{16} + 2u^{15} - 8u^{14} - 4u^{13} - 14u^{12} + 64u^{11} - 52u^{10} + 70u^{9} - 24u^{8} + 71u^{7} - 52u^{6} + 46u^{5} - 25u^{4} + 2u^{3} - 11u^{2} + 2u + 3u^{14} - 4u^{14} - 4u^$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^{27} + 2u^{26} + \dots - 4u^2 - 1)^2$
c_2, c_6	$(u^{27} + 8u^{26} + \dots - 8u - 1)^2$
c_3, c_7	$u^{54} + 4u^{53} + \dots + 9u + 2$
c_4, c_8	$u^{54} + 2u^{53} + \dots - 1697u + 407$
c_9, c_{11}	$u^{54} - 5u^{53} + \dots - 529u + 44$
c_{10}	$(u^{27} - 13u^{26} + \dots - 10u + 4)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{27} + 8y^{26} + \dots - 8y - 1)^2$
c_2, c_6	$(y^{27} + 24y^{26} + \dots - 12y - 1)^2$
c_{3}, c_{7}	$y^{54} - 8y^{53} + \dots + 87y + 4$
c_4, c_8	$y^{54} + 12y^{53} + \dots + 4226411y + 165649$
c_9, c_{11}	$y^{54} + 23y^{53} + \dots + 25783y + 1936$
c_{10}	$(y^{27} - 5y^{26} + \dots + 236y - 16)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.144711 + 0.987236I		
a = -1.044320 + 0.252570I	-3.43692 + 4.10370I	-10.33067 - 7.76154I
b = -1.10548 + 0.93118I		
u = 0.144711 + 0.987236I		
a = 1.17591 + 1.35422I	-3.43692 + 4.10370I	-10.33067 - 7.76154I
b = 0.694713 - 0.161571I		
u = 0.144711 - 0.987236I		
a = -1.044320 - 0.252570I	-3.43692 - 4.10370I	-10.33067 + 7.76154I
b = -1.10548 - 0.93118I		
u = 0.144711 - 0.987236I		
a = 1.17591 - 1.35422I	-3.43692 - 4.10370I	-10.33067 + 7.76154I
b = 0.694713 + 0.161571I		
u = 0.504183 + 0.966350I		
a = 0.867903 + 0.476539I	-1.43447 + 1.57559I	-0.45968 + 6.99556I
b = 0.929423 + 0.017439I		
u = 0.504183 + 0.966350I		
a = 0.992670 - 0.899903I	-1.43447 + 1.57559I	-0.45968 + 6.99556I
b = -0.809221 - 0.348625I		
u = 0.504183 - 0.966350I		
a = 0.867903 - 0.476539I	-1.43447 - 1.57559I	-0.45968 - 6.99556I
b = 0.929423 - 0.017439I		
u = 0.504183 - 0.966350I		
a = 0.992670 + 0.899903I	-1.43447 - 1.57559I	-0.45968 - 6.99556I
b = -0.809221 + 0.348625I		
u = -0.770533 + 0.784290I		
a = -0.44956 + 1.58387I	2.45928 + 3.09185I	-2.04409 - 4.31047I
b = 0.151642 - 0.255883I		
u = -0.770533 + 0.784290I		
a = 1.53553 - 1.36774I	2.45928 + 3.09185I	-2.04409 - 4.31047I
b = -1.00807 + 1.68610I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.770533 - 0.784290I		
a = -0.44956 - 1.58387I	2.45928 - 3.09185I	-2.04409 + 4.31047I
b = 0.151642 + 0.255883I		
u = -0.770533 - 0.784290I		
a = 1.53553 + 1.36774I	2.45928 - 3.09185I	-2.04409 + 4.31047I
b = -1.00807 - 1.68610I		
u = 0.291946 + 1.107070I		
a = 0.931124 + 0.230119I	-0.60671 + 3.68820I	4.86231 - 6.92207I
b = 0.646966 - 0.516614I		
u = 0.291946 + 1.107070I		
a = -0.323787 + 0.014224I	-0.60671 + 3.68820I	4.86231 - 6.92207I
b = -0.311394 + 0.647844I		
u = 0.291946 - 1.107070I		
a = 0.931124 - 0.230119I	-0.60671 - 3.68820I	4.86231 + 6.92207I
b = 0.646966 + 0.516614I		
u = 0.291946 - 1.107070I		
a = -0.323787 - 0.014224I	-0.60671 - 3.68820I	4.86231 + 6.92207I
b = -0.311394 - 0.647844I		
u = -0.898179 + 0.746104I		
a = -0.594838 + 0.861512I	7.41344 + 3.23384I	5.98510 - 2.95350I
b = 0.874324 - 0.984284I		
u = -0.898179 + 0.746104I		
a = 0.595344 - 1.207400I	7.41344 + 3.23384I	5.98510 - 2.95350I
b = -0.349108 + 1.259600I		
u = -0.898179 - 0.746104I		
a = -0.594838 - 0.861512I	7.41344 - 3.23384I	5.98510 + 2.95350I
b = 0.874324 + 0.984284I		
u = -0.898179 - 0.746104I		
a = 0.595344 + 1.207400I	7.41344 - 3.23384I	5.98510 + 2.95350I
b = -0.349108 - 1.259600I		

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.799598 + 0.863452I		
a =	0.472052 + 1.331300I	5.90777 - 1.53174I	5.51904 + 2.02847I
b =	-0.753138 - 1.063980I		
u =	0.799598 + 0.863452I		
a =	0.53604 + 2.57871I	5.90777 - 1.53174I	5.51904 + 2.02847I
b =	1.21139 - 1.71770I		
u =	0.799598 - 0.863452I		
a =	0.472052 - 1.331300I	5.90777 + 1.53174I	5.51904 - 2.02847I
b =	-0.753138 + 1.063980I		
u =	0.799598 - 0.863452I		
a =	0.53604 - 2.57871I	5.90777 + 1.53174I	5.51904 - 2.02847I
b =	1.21139 + 1.71770I		
u =	0.802525		
a =	0.064178 + 0.713542I	3.09479	9.01780
b =	0.219481 - 0.777240I		
u =	0.802525		
a =	0.064178 - 0.713542I	3.09479	9.01780
b =			
u =	0.785462 + 0.911233I		
a =	-1.79873 - 1.10105I	5.75923 + 7.48234I	4.88411 - 7.87589I
b =	1.09759 + 1.87961I		
u =	0.785462 + 0.911233I		
a =	-1.04193 - 2.09558I	5.75923 + 7.48234I	4.88411 - 7.87589I
	-0.810627 + 0.965025I		
u =	0.785462 - 0.911233I		
a =	-1.79873 + 1.10105I	5.75923 - 7.48234I	4.88411 + 7.87589I
b =	1.09759 - 1.87961I		
u =	0.785462 - 0.911233I		
a =	-1.04193 + 2.09558I	5.75923 - 7.48234I	4.88411 + 7.87589I
b =	-0.810627 - 0.965025I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.740227 + 0.958313I		
a = 0.17325 - 1.77767I	1.92805 - 8.81809I	-3.51760 + 9.35403I
b = 0.279114 + 0.386141I		
u = -0.740227 + 0.958313I		
a = -0.83078 + 2.42491I	1.92805 - 8.81809I	-3.51760 + 9.35403I
b = -1.23050 - 1.60076I		
u = -0.740227 - 0.958313I		
a = 0.17325 + 1.77767I	1.92805 + 8.81809I	-3.51760 - 9.35403I
b = 0.279114 - 0.386141I		
u = -0.740227 - 0.958313I		
a = -0.83078 - 2.42491I	1.92805 + 8.81809I	-3.51760 - 9.35403I
b = -1.23050 + 1.60076I		
u = -0.818350 + 0.893459I		
a = 0.013291 - 1.076530I	6.46144 - 3.05379I	5.97423 + 2.71426I
b = 1.005790 + 0.379819I		
u = -0.818350 + 0.893459I		
a = -0.350459 + 0.093702I	6.46144 - 3.05379I	5.97423 + 2.71426I
b = 0.789809 - 0.525186I		
u = -0.818350 - 0.893459I		
a = 0.013291 + 1.076530I	6.46144 + 3.05379I	5.97423 - 2.71426I
b = 1.005790 - 0.379819I		
u = -0.818350 - 0.893459I		
a = -0.350459 - 0.093702I	6.46144 + 3.05379I	5.97423 - 2.71426I
b = 0.789809 + 0.525186I		
u = -0.194164 + 0.737666I		
a = -0.1051250 - 0.0794208I	0.15408 - 4.76928I	-1.41513 + 11.31767I
b = 0.24714 - 1.64517I		
u = -0.194164 + 0.737666I		
a = -3.27600 - 0.27489I	0.15408 - 4.76928I	-1.41513 + 11.31767I
b = -0.393595 - 0.629207I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.194164 - 0.737666I		
a = -0.1051250 + 0.0794208I	0.15408 + 4.76928I	-1.41513 - 11.31767I
b = 0.24714 + 1.64517I		
u = -0.194164 - 0.737666I		
a = -3.27600 + 0.27489I	0.15408 + 4.76928I	-1.41513 - 11.31767I
b = -0.393595 + 0.629207I		
u = -0.786810 + 1.024740I		
a = -0.87495 + 1.40397I	6.54280 - 9.46925I	4.33045 + 8.20563I
b = -0.499560 - 1.264320I		
u = -0.786810 + 1.024740I		
a = 0.67436 - 1.65262I	6.54280 - 9.46925I	4.33045 + 8.20563I
b = 0.990241 + 0.929170I		
u = -0.786810 - 1.024740I		
a = -0.87495 - 1.40397I	6.54280 + 9.46925I	4.33045 - 8.20563I
b = -0.499560 + 1.264320I		
u = -0.786810 - 1.024740I		
a = 0.67436 + 1.65262I	6.54280 + 9.46925I	4.33045 - 8.20563I
b = 0.990241 - 0.929170I		
u = 0.522984 + 0.315101I		
a = 0.220722 + 1.030080I	0.23096 + 2.37565I	1.69627 - 5.05605I
b = 0.852048 + 0.137605I		
u = 0.522984 + 0.315101I		
a = 1.14627 - 0.90462I	0.23096 + 2.37565I	1.69627 - 5.05605I
b = -0.541670 + 0.765569I		
u = 0.522984 - 0.315101I		
a = 0.220722 - 1.030080I	0.23096 - 2.37565I	1.69627 + 5.05605I
b = 0.852048 - 0.137605I		
u = 0.522984 - 0.315101I		
a = 1.14627 + 0.90462I	0.23096 - 2.37565I	1.69627 + 5.05605I
b = -0.541670 - 0.765569I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.241884 + 0.503654I		
a = 0.93986 - 1.89203I	0.79481 + 2.83207I	2.50674 + 1.28047I
b = -0.363999 + 1.059620I		
u = -0.241884 + 0.503654I		
a = 2.35199 + 0.56436I	0.79481 + 2.83207I	2.50674 + 1.28047I
b = 0.686698 + 0.816102I		
u = -0.241884 - 0.503654I		
a = 0.93986 + 1.89203I	0.79481 - 2.83207I	2.50674 - 1.28047I
b = -0.363999 - 1.059620I		
u = -0.241884 - 0.503654I		
a = 2.35199 - 0.56436I	0.79481 - 2.83207I	2.50674 - 1.28047I
b = 0.686698 - 0.816102I		

$$III. \\ I_3^u = \langle -2u^9 + u^8 + \dots + b + 1, \ u^8 + u^7 + u^4 + u^3 - u^2 + a - 3, \ u^{10} - u^9 + \dots - u + 1 \rangle$$

Are consings
$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{9} - u^{8} + 3u^{7} - u^{6} + 6u^{5} - 4u^{4} + 8u^{3} - 5u^{2} + 4u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{9} - u^{8} + u^{7} + 3u^{5} - 2u^{4} + 3u^{3} - u^{2} + 2u + 2 \\ u^{9} - u^{8} + 2u^{7} - u^{6} + 4u^{5} - 3u^{4} + 6u^{3} - 4u^{2} + 4u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{9} + 2u^{8} - 4u^{7} + 2u^{6} - 7u^{5} + 7u^{4} - 10u^{3} + 9u^{2} - 8u + 3 \\ u^{9} + u^{7} + 2u^{5} - u^{4} + 2u^{3} - u^{2} + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{9} - 2u^{8} + 2u^{7} - 3u^{6} + 3u^{5} - 7u^{4} + 6u^{3} - 9u^{2} + 4u - 4 \\ -u^{9} + u^{8} - u^{7} + u^{6} - 3u^{5} + 3u^{4} - 3u^{3} + 3u^{2} - 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} + u^{7} + u^{6} + 3u^{5} + u^{4} + 3u^{3} + 2u^{2} + u + 3 \\ -u^{8} + u^{7} - u^{6} + u^{5} - 3u^{4} + 3u^{3} - 3u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} + u^{7} + u^{6} + 3u^{5} + u^{4} + 3u^{3} + 2u^{2} + u + 3 \\ -u^{8} + u^{7} - u^{6} + u^{5} - 3u^{4} + 3u^{3} - 3u^{2} + 3u - 1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = $-10u^9 + 6u^8 - 18u^7 + 6u^6 - 31u^5 + 20u^4 - 46u^3 + 26u^2 - 23u + 4u^3 + 26u^2 + 26u^2$

Crossings	u-Polynomials at each crossing
c_1	$u^{10} - u^9 + 2u^8 - u^7 + 4u^6 - 3u^5 + 6u^4 - 4u^3 + 5u^2 - u + 1$
c_2, c_6	$u^{10} + 3u^9 + \dots + 9u + 1$
c_3, c_7	$u^{10} + u^8 + 2u^7 - u^5 + 3u^4 + u^3 - u^2 + 1$
c_4, c_8	$u^{10} - u^8 + u^7 + 3u^6 - u^5 + 2u^3 + u^2 + 1$
c_5	$u^{10} + u^9 + 2u^8 + u^7 + 4u^6 + 3u^5 + 6u^4 + 4u^3 + 5u^2 + u + 1$
c_{9}, c_{11}	$u^{10} + 2u^9 + 7u^8 + 7u^7 + 13u^6 + 5u^5 + 8u^4 - 2u^3 + u^2 - 2u + 1$
c_{10}	$u^{10} - 8u^9 + \dots - 94u + 21$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{10} + 3y^9 + \dots + 9y + 1$
c_2, c_6	$y^{10} + 11y^9 + \dots - 23y + 1$
c_{3}, c_{7}	$y^{10} + 2y^9 + y^8 + 2y^7 + 8y^6 - 5y^5 + 13y^4 - 7y^3 + 7y^2 - 2y + 1$
c_4, c_8	$y^{10} - 2y^9 + 7y^8 - 7y^7 + 13y^6 - 5y^5 + 8y^4 + 2y^3 + y^2 + 2y + 1$
c_9,c_{11}	$y^{10} + 10y^9 + \dots - 2y + 1$
c_{10}	$y^{10} + 4y^9 + \dots + 488y + 441$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.127642 + 1.018330I		
a = -0.976414 - 0.047787I	-1.78029 - 4.07054I	-3.97032 + 7.89370I
b = -0.463656 - 0.708869I		
u = -0.127642 - 1.018330I		
a = -0.976414 + 0.047787I	-1.78029 + 4.07054I	-3.97032 - 7.89370I
b = -0.463656 + 0.708869I		
u = 0.802978 + 0.812239I		
a = 1.00162 + 1.89487I	4.26091 - 2.70997I	3.89717 + 4.51185I
b = -0.43569 - 1.47399I		
u = 0.802978 - 0.812239I		
a = 1.00162 - 1.89487I	4.26091 + 2.70997I	3.89717 - 4.51185I
b = -0.43569 + 1.47399I		
u = 0.766035 + 0.955271I		
a = -1.00445 - 2.19705I	3.81810 + 8.61429I	2.88207 - 9.27981I
b = -0.61139 + 1.42806I		
u = 0.766035 - 0.955271I		
a = -1.00445 + 2.19705I	3.81810 - 8.61429I	2.88207 + 9.27981I
b = -0.61139 - 1.42806I		
u = -0.959043 + 0.878682I		
a = -0.164415 - 0.151502I	4.80462 - 3.47437I	3.99287 + 12.44497I
b = 0.403043 - 0.198949I		
u = -0.959043 - 0.878682I		
a = -0.164415 + 0.151502I	4.80462 + 3.47437I	3.99287 - 12.44497I
b = 0.403043 + 0.198949I		
u = 0.017671 + 0.535344I		
a = 2.64366 + 0.19676I	0.41119 + 3.68242I	-1.80179 - 6.14716I
b = 0.107691 + 1.094780I		
u = 0.017671 - 0.535344I		
a = 2.64366 - 0.19676I	0.41119 - 3.68242I	-1.80179 + 6.14716I
b = 0.107691 - 1.094780I		

IV.
$$I_4^u = \langle b+1, \ a^2 - 2au - a - u - 2, \ u^2 + u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u+1 \\ -au-2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2au+a+u+2 \\ -au-a+u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a+1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 9u 3

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$(u^2+u+1)^2$
c_3, c_4, c_7 c_8	$u^4 + u^3 + 3u^2 + u + 1$
<i>C</i> ₅	$(u^2 - u + 1)^2$
c_9,c_{11}	$(u+1)^4$
c_{10}	u^4

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$(y^2 + y + 1)^2$
c_3, c_4, c_7 c_8	$y^4 + 5y^3 + 9y^2 + 5y + 1$
c_9,c_{11}	$(y-1)^4$
c_{10}	y^4

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.973561 + 0.421254I	-1.64493 - 2.02988I	-7.50000 + 7.79423I
b = -1.00000		
u = -0.500000 + 0.866025I		
a = 0.97356 + 1.31080I	-1.64493 - 2.02988I	-7.50000 + 7.79423I
b = -1.00000		
u = -0.500000 - 0.866025I		
a = -0.973561 - 0.421254I	-1.64493 + 2.02988I	-7.50000 - 7.79423I
b = -1.00000		
u = -0.500000 - 0.866025I		
a = 0.97356 - 1.31080I	-1.64493 + 2.02988I	-7.50000 - 7.79423I
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} + u + 1)^{2})(u^{10} - u^{9} + \dots - u + 1)$ $\cdot ((u^{27} + 2u^{26} + \dots - 4u^{2} - 1)^{2})(u^{36} - 6u^{35} + \dots + u + 4)$
c_2, c_6	$((u^{2} + u + 1)^{2})(u^{10} + 3u^{9} + \dots + 9u + 1)(u^{27} + 8u^{26} + \dots - 8u - 1)^{2}$ $\cdot (u^{36} + 10u^{35} + \dots + 31u + 16)$
c_3, c_7	$(u^{4} + u^{3} + 3u^{2} + u + 1)(u^{10} + u^{8} + 2u^{7} - u^{5} + 3u^{4} + u^{3} - u^{2} + 1)$ $\cdot (u^{36} + 2u^{35} + \dots + 2u + 1)(u^{54} + 4u^{53} + \dots + 9u + 2)$
c_4, c_8	$(u^{4} + u^{3} + 3u^{2} + u + 1)(u^{10} - u^{8} + u^{7} + 3u^{6} - u^{5} + 2u^{3} + u^{2} + 1)$ $\cdot (u^{36} + 6u^{34} + \dots - 5u + 2)(u^{54} + 2u^{53} + \dots - 1697u + 407)$
c_5	$((u^{2} - u + 1)^{2})(u^{10} + u^{9} + \dots + u + 1)$ $\cdot ((u^{27} + 2u^{26} + \dots - 4u^{2} - 1)^{2})(u^{36} - 6u^{35} + \dots + u + 4)$
c_9, c_{11}	$((u+1)^4)(u^{10} + 2u^9 + \dots - 2u + 1)$ $\cdot (u^{36} + 6u^{35} + \dots + 4u + 1)(u^{54} - 5u^{53} + \dots - 529u + 44)$
c_{10}	$u^{4}(u^{10} - 8u^{9} + \dots - 94u + 21)(u^{27} - 13u^{26} + \dots - 10u + 4)^{2}$ $\cdot (u^{36} + 19u^{35} + \dots + u + 2)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y^{2} + y + 1)^{2})(y^{10} + 3y^{9} + \dots + 9y + 1)(y^{27} + 8y^{26} + \dots - 8y - 1)^{2}$ $\cdot (y^{36} + 10y^{35} + \dots + 31y + 16)$
c_2, c_6	$((y^{2} + y + 1)^{2})(y^{10} + 11y^{9} + \dots - 23y + 1)$ $\cdot ((y^{27} + 24y^{26} + \dots - 12y - 1)^{2})(y^{36} + 34y^{35} + \dots - 6849y + 256)$
c_3, c_7	$(y^{4} + 5y^{3} + 9y^{2} + 5y + 1)$ $\cdot (y^{10} + 2y^{9} + y^{8} + 2y^{7} + 8y^{6} - 5y^{5} + 13y^{4} - 7y^{3} + 7y^{2} - 2y + 1)$ $\cdot (y^{36} + 24y^{35} + \dots + 44y + 1)(y^{54} - 8y^{53} + \dots + 87y + 4)$
c_4, c_8	$(y^{4} + 5y^{3} + 9y^{2} + 5y + 1)$ $\cdot (y^{10} - 2y^{9} + 7y^{8} - 7y^{7} + 13y^{6} - 5y^{5} + 8y^{4} + 2y^{3} + y^{2} + 2y + 1)$ $\cdot (y^{36} + 12y^{35} + \dots + 27y + 4)$ $\cdot (y^{54} + 12y^{53} + \dots + 4226411y + 165649)$
c_9, c_{11}	$((y-1)^4)(y^{10} + 10y^9 + \dots - 2y + 1)(y^{36} - 8y^{35} + \dots + 28y + 1)$ $\cdot (y^{54} + 23y^{53} + \dots + 25783y + 1936)$
c_{10}	$y^{4}(y^{10} + 4y^{9} + \dots + 488y + 441)(y^{27} - 5y^{26} + \dots + 236y - 16)^{2}$ $\cdot (y^{36} - y^{35} + \dots + 67y + 4)$