Matemática Discreta I - MATA42 - Ila Unidade

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 25/04/2019

DEFINIÇÃO: (Grafo Orientado ou Dígrafo)

Um Grafo Orientado ou Dígrafo consiste em um conjunto $\mathcal V$ de vértices(nós) e um conjunto E de Arestas que são os Arcos Direcionados conectando os vértices.

Notação: G(V, E)

Exemplos:

Repressentação de uma Relação por Grafos

Uma Relação \mathcal{R} em um conjunto $A = \{x_1, x_2, \cdots, x_n\}$ pode ser representada por um GRAFO ORIENTADO: $G(\mathcal{V}, E)$.

Cada elemento do conjunto A é representado por um PONTO(nó), e cada par ordenado $\langle x_i, x_j \rangle \in \mathcal{R}$ é representado utilizando um ARCO com sua direção indicada por uma SETA de x_i para x_j ; onde x_i e x_j são denominados VÉRTICE INICIAL e VÉRTICE FINAL deste arco, respectivamente.

Observação: Um par ordenado $\langle x_i, x_i \rangle \in \mathcal{R}$ é representado por um ARCO DIRECIONADO que sai de x_i e retorna para x_i . Denominamos este arco de LOOP.

Exemplo.1:
$$A = \{1, 2, 3, 4\}$$
 e $\mathcal{R} = \{\langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle, \langle 4, 1 \rangle, \langle 4, 3 \rangle\}$

Exemplo.2:

$$A = \{a, b, c, d\} \in \mathcal{R} = \{\langle a, b \rangle, \langle a, d \rangle, \langle b, b \rangle, \langle b, d \rangle, \langle c, a \rangle, \langle c, b \rangle, \langle d, b \rangle\}$$

Exemplo.3:

$$A = \{a, b, c, d\} \text{ e } S = \{\langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle b, a \rangle, \langle b, b \rangle, \langle c, a \rangle, \langle d, a \rangle, \langle d, d \rangle\}$$

Observação: Verificando o Grafo da relação S; é fácil ver que ela não é reflexiva (porque não tem o loop nos nós a e c), é simétrica (porque sempre que um arco sai de um nó para um destino, existe outro que retorna ao nó saindo do mesmo destino), e não é transitiva (porque nem todos os arcos dos nós x_i para x_j e de x_j para x_k garantem a existência do arco de x_i para x_k).

Relação Reflexiva - Grafo

O Grafo de uma relação ${\cal R}$ reflexiva é identificado pela "existência do loop em todos os nós".

Relação Simétrica - Grafo

O Grafo de uma relação $\mathcal R$ simétrica é identificado quando "sempre que houver um arco saindo de um determinado nó para um destino, deve existir outro que retorna ao nó saindo do mesmo destino".

Relação Transitiva - Grafo

O Grafo de uma relação $\mathcal R$ transitiva é identificado quando "sempre que houver um arco direcionado do nó x_i para x_j e um arco de x_j para x_k deve existir um arco direcionado de x_i para x_k ".

Relação Equivalência - Grafo

O Grafo de uma relação $\mathcal R$ de equivalência é identificado quando "satisfaz às condições dos grafos da relação reflexiva, simétrica e transitiva, simultaneamente".

Relações - Exercícios

- (1) Seja uma relação $\mathcal R$ representada por $\mathcal M_{\mathcal R}=\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]$. Verifique se $\mathcal R$ é reflexiva, simétrica, anti-simétrica, transitiva, conectada.
- (2) Seja uma relação \mathcal{R} em $A=\{1,2,3,4\}$ representada pela matriz de adjacência $\mathcal{M}_{\mathcal{R}}$. Represente cada relação abaixo por DÍGRAFOS.

(a)
$$\mathcal{M}_{\mathcal{R}} = \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array} \right]$$
(b) $\mathcal{M}_{\mathcal{R}} = \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{array} \right]$
(c) $\mathcal{M}_{\mathcal{R}} = \left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array} \right]$

Relações - Exercícios

- (3) Seja $A = \{3, 4, 6, 7\}$ e seja uma relação \mathcal{R} em A definida em cada item abaixo.
 - (i) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x \leq y \}$
 - (ii) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x + y = 10 \}$
 - (iii) $\mathcal{R} = \{ \langle x, y \rangle \in A \times A \mid x + y \ge 10 \}$
 - (iv) $\mathcal{R} = \{\langle x, y \rangle \in A \times A \mid x = y + 1\}$
 - (a) Classifique cada relação em reflexiva, irreflexiva, assimétrica, simétrica, anti-simétrica, transitiva, conectada, equivalência. (JUSTIFIQUE AS SUAS RESPOSTAS)
 - (b) Determine para cada relação; os fechos $ref(\mathcal{R})$, $sim(\mathcal{R})$, e $tra(\mathcal{R})$.
 - (c) Determine para cada relação; as relações \mathcal{R}^{-1} , $\overline{\mathcal{R}}$, $\mathcal{R}o\mathcal{R}^{-1}$, e $\mathcal{R}o\overline{\mathcal{R}}$.
 - (d) Ache, se possível, uma partição de A determinada por cada relação.
 - (e) Represente cada relação dos itens (i),(ii),(iii),(iv),(b) e (c) por uma matriz de adjacência; e também por um dígrafo.