

Machine Learning

Linear Regression with one variable

By:
Saja Malek Hassan
Maryam Mohamed Ragab
Shahd Ashraf Ramadan

Introduction

Types of Regression

Problem Statement

Hypothesis Function

Cost Function

Gradient Descent

Evalution

Applications

Code & Dataset

Conclusion

Introduction

What is regression?

- Supervised learning algorithm that works with labeled data .
- Simple model for predicting continuous values .
- It finds the relationship between input features and output.

Linear Regression is a fundamental statistical method used to define **linear relationship** between a dependent and one or more independent variables. It helps predict **outcomes** by fitting a **straight line** to observed data points, making it easy to interpret and apply.

Examples:

- House price from its size.
- salary from years of experience.
- Price of car from Car's attribute.

Types of Regression

Linear Regression

- **Simple Linear Regression** → One independent variable.
- **Multiple Linear Regression** → More than one independent variable.

Logistic Regression

Uses the independent variables to estimate the probability of an event occurring (either 0 or 1)

Polynomial Regression

The regression line is curved rather than straight.

Problem Statement

Scenario: Predicting house price based on its size.

Goal: Find a line that best represents the relationship between size and price, so we can predict:

"If a new house is 100 m², what would its estimated price be?"

House Size (m²)	Price (\$)
50	150,000
70	200,000
90	250,000
110	300,000

$h_{ heta}(x) = heta_0 + heta_1 x$

Where:

- $h_{\theta}(x)$: the predicted value (hypothesis)
- $heta_0$: intercept (the value of y when x=0)
- $heta_1$: slope (how much y changes for each unit change in x)
- x: input variable

Hypothesis Function

Cost Function

The Cost Function measures how well our hypothesis Function fits the data. It calculate the difference between the predicted value \hat{Y} and the true value Y, also called **Loss Function**.

In Linear Regression, the Mean Squared Error (MSE) cost function is employed, which calculates the average of the squared errors between the predicted values \hat{y}_i and the actual values y_i . The purpose is to determine the optimal values for the intercept θ_1 and the coefficient of the input feature θ_2 providing the best-fit line for the given data points. The linear equation expressing this relationship is $\hat{y}_i = \theta_1 + \theta_2 x_i$.

MSE function can be calculated as:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^i)^2$$

Where:

m: number of training examples

- $h_{\theta}(x^{(i)})$:predicted value for the i-th example
- $y^{(i)}$:actual value for the i-th example
- The goal is to **minimize** the cost function $J(\theta_0, \theta_1)$ to find the **best-fitting line**

Cost function visualization

Consider a simple case of hypothesis by setting θ_0 =0, then h becomes $h_{\theta}(x)=\theta_1x$

Each value of θ_1 corresponds to a different hypothesis as it is the **slope** of the line

which corresponds to different lines passing through the **origin** as shown in plots below as **y-intercept** i.e. θ_0 is nulled out.

$$J(\theta_1)=\frac{1}{2m}\sum_{i=1}^m\left(\theta_1\,x^{(i)}-y^{(i)}\right)^2$$
 At θ_1 =2, $J(2)=\frac{1}{2*3}(1^2+2^2+3^2)=\frac{14}{6}=2.33$ At θ_1 =1, $J(1)=\frac{1}{2*3}(0^2+0^2+0^2)=0$ At θ_1 =0.5, $J(\theta=\frac{1}{2*3}(0.5^2+1^2+1.5^2)=0.58$

Cost function visualization

What is the optimal value of θ_1 that minimizes $J(\theta_1)$?

t is clear that best value for $\theta_1 = 1$ as $J(\theta_1) = 0$, which is the minimum.

How to find the best value for θ_1 ?

Plotting ?? Not practical specially in high dimensions?

The solution:

- 1. Analytical solution: not applicable for large datasets
- 2. Numerical solution: ex: Gradient descent.

Cost Function

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:
$$\min_{\theta_0,\theta_1}$$
 minimize $J(\theta_0,\theta_1)$

Gradient Descent

Gradient Descent

- Is an Optimization algorithm used to minimize the cost function.
- It updates the parameters θ_0 , θ_1 step by step in the direction that reduce the errors.
- The process continues until the cost function reaches its minimum value.
- Iterative Solution not only in Linear Regression, it's actually used all over the place in machine learning.

Gradient Descent

Have some function $J(\theta_0\theta_1,)$

Want $\min J(\theta_0 \theta_1,)$

Outline:

- start with some θ_0 θ_1
- Keep changing θ_0 θ_1 to $reduceJ(\theta_0\theta_1,)$ until we hopefully end up at a minimum .

Imagine that this is a landscape of grassy park, and you want to go to the lowest point in the park as rapidly as possible

With different starting point

$$ext{repeat until convergence}\{ heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1) \, orall j \in \{0, 1\}\}$$

- Where
 - := is the assignment operator
 - \circ α is the **learning rate** which basically defines how big the steps are during the descent
 - $\circ \; rac{\partial}{\partial heta_j} J(heta_0, heta_1)$ is the **partial derivative** term
 - j = 0, 1 represents the feature index number

Also the parameters should be updated simulatenously, i.e.,

$$temp_0 := heta_0 - lpha rac{\partial}{\partial heta_0} J(heta_0, heta_1)$$
 $temp_1 := heta_1 - lpha rac{\partial}{\partial heta_1} J(heta_0, heta_1)$ $heta_0 := temp_0$ $heta_1 := temp_1$

Example

$$\theta_1 = \theta_1 - \alpha \frac{d}{d\theta_1} j(\theta_1)$$

$$\theta_1 = \theta_1 - \alpha(+ve)$$

$$\theta_1 = \theta_1 - \alpha(-\text{ve})$$

Gradient Descent For a linear Regression

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 1 \text{ and } j = 0)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\left| \frac{d}{d\theta_j} j(\theta_0, \theta_1) = \frac{d}{d\theta_j} \frac{1}{2m} \sum_{i=1}^m (h\theta(x_i) - Y_i)^2 \right|$$

$$\frac{d}{d\theta_j} j(\theta_0, \theta_1) = \frac{d}{d\theta_j} \frac{1}{2m} \sum_{i=1}^m (\theta_0 + \theta_1(x_i) - Y_i)^2$$

$$j = 0: \frac{d}{d\theta_0} j(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x_i) - Y_i)$$

$$j=1:\frac{d}{d\theta_1}j(\theta_0,\theta_1)=\frac{1}{m}\sum_{i=1}^m(h_{\theta}(x_i)-Y_i)\bullet x_i$$

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

 $\begin{array}{c} \text{update} \\ \theta_0 \, \text{and} \, \theta_1 \\ \text{simultaneously} \end{array}$

"Batch" Gradient descent

Batch: Each step of gradient descent uses all the training examples.

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
 update
$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
 simultaneously

update θ_0 and θ_1

Batch Learning:

Use all training examples to update the parameters in each gradient descent algorithm.

Online Learning:

Use each individual training example to update the parameters in each gradient descent algorithm.

Evaluation

Evaluation

Model Evaluation Metrics

1. Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (\widehat{y^{(i)}} - y^{(i)})^2$$

- Used to measure the average squared difference between predicted and actual values. Best when you want to penalize larger errors more heavily.
- A smaller MSE value means better model performance.
- 2. Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(\widehat{y^{(i)}} - y^{(i)}\right)^2}$$

- Provides the error in the same unit as the target variable (Y).
- Easier to interpret compared to MSE.
- Commonly used when the scale of the prediction error is important.

Evaluation

Model Evaluation Metrics

3. R² Score (Coefficient of Determination)

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} \left(y^{(i)} - \widehat{y^{(i)}} \right)^{2}}{\sum_{i=1}^{m} (y^{(i)} - \overline{y})^{2}}$$

Measures how much of the variance in the target variable is explained by the model.

Perfect fit $\rightarrow R^2 = 1$

Model explains none of the variance
$$\rightarrow R^2 = 0$$

Higher R^2 indicates better model performance.

Applications

1. Business & Economics

Predicting sales, profits, or market tends based on advertising spend, pricing, demand.

2. Helthcare

Predicting disease progression or patient recovery time from medical.

3. Education

Predicting student performance based on study hours, attendance, and previous scores.

Applications

4. Engineering

Modeling relationships between Variables, such as temperature vs.pressure, or stress vs. strain.

5. Real Estate

Estimating house prices from features such as , size , number of room , and location .

6. Finance

Forecasting stock prices, interest rates or credit risk using historical data.

Code & Dataset

Access the implementation and data here:

https://drive.google.com/drive/folders/1b1BaCqWzDtV
xlc-iBU0BoP3nZBIS NJQ?usp=sharing

Conclusion

- Linear Regression is one of the simplest and most important algorithm in machine learning.
- It helps to find the relationship between input and output variables and predict continuous values.
- The model works by fitting a straight line that minimizes the cost function (error) using Gradient descent.

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Thank You