(104031) אינפי 1מ' | תרגול 20 - יוליה

שם: איל שטיין

January 4, 2023

נושאי השיעור: רציפות במ"ש, הנגזרת

נושא ראשון - רציפות במ"ש:

תרגיל 1.

- $f\left(x
 ight) =\sqrt{x}$ תהי
- רציפה בקטע סגור ולכן היא רציפה בקיטע היינה: כי היא רציפה במ"ש ב-[0,1] (אבל אפשר להוכיח גם לפי קנטור היינה: כי היא רציפה במ"ש במ"ש)

 $[1,\infty)-$ צ"ל: נוכיח ש \sqrt{x} רציפה במ"ש ב

פתרון: נפתור לפי הגדרה.

- arepsilon > 0 יהי \cdot
- $\left|\sqrt{x}-\sqrt{y}
 ight|<arepsilon$ אז יתקיים א $|x-y|<\delta$ וגם $x,y\in[1,\infty)$ פר סד שאם $\delta>0$

 $\left| \cdot \left| \sqrt{x} - \sqrt{y} \right| \right|$ נבחן את הביטוי -

$$\left|\sqrt{x} - \sqrt{y}\right| \setminus \frac{\left|\sqrt{x} + \sqrt{y}\right|}{\left|\sqrt{x} + \sqrt{y}\right|}$$

$$= \frac{|x-y|}{\left|\sqrt{x} + \sqrt{y}\right|}$$

$$\sqrt{x}+\sqrt{y}\geq 2$$
 ע נקבל ש א וגם $\sqrt{x}\geq 1$ וגם \sqrt{x}

$$rac{1}{\sqrt{x}+\sqrt{y}} \leq rac{1}{2}$$
 ולכן \cdot

* נקבל ש

$$\frac{|x-y|}{\left|\sqrt{x}+\sqrt{y}\right|} \le \frac{1}{2}\left|x-y\right| < \frac{1}{2}\delta = \varepsilon$$

 $\delta=2arepsilon$ לכן מספיק לקחת *

תרגיל 2.

- $.[a,\infty)$ רציפה בקרן $f\left(x
 ight)$.
 - .b>a יהי •
- $[b,\infty)$ בקרן במ"ש בקרן [a,b] ורציפה במ"ש בקרן נתון כי f

 $[a,\infty)$ צ"ל: f רציפה במ"ש ב

פתרון:

- b < y וניקח a < x < b •
- $|f(x) f(y)| \le |f(x) f(b)| + |f(b) f(y)|$ ניקח ולפי אי שוויון המשולש יתקיים ולפי אי שוויון המשולש יתקיים -
- $|f\left(b
 ight)-f\left(y
 ight)|<rac{arepsilon}{2}$ אז $|b-y|<\delta_1$ כך שאם (b,∞) בקרן שקיים y בקרן מסוים ולקבל מסוים b אז *
 - $|f\left(x
 ight)-f\left(b
 ight)|<rac{arepsilon}{2}$ אז $|x-b|<\delta_2$ עבורו אם $x\in[a,b]$ שקיים שקיים +
 - ואז נקבל שלפי הגדרת במ"ש יתקיים שf רציפה במ"ש כי עבור שלפי הגדרת מסוימת היימת יתקיים שb

$$\delta = \delta_1 + \delta_2 > |x - b| + |y - b| \ge |x - y|$$

$$\delta > |x - y|$$

 $|f\left(x
ight)-f\left(y
ight)|<rac{arepsilon}{2}+rac{arepsilon}{2}$ אז יתקיים x,y כך שאם אם $|x-y|<\delta$

 $[a,\infty)$ רציפה $f\left(x
ight)$ תרגיל 3. תהי

 $\lim_{x\to\infty} f\left(x\right) = L$ נתון כי קיים

 $[a,\infty)$ ב"ל: הוכיחו כי f(x) רציפה במ"ש ב

:פתרון

- arepsilon>0 יהי
- $\,:$ נתון שהגבול באינסוף קיים ולכן לפי תנאי קושי קיים $\,a < x_0$ כך שלכל $\,x,y > x_0$ מתקיים $\,$

$$|f(x) - f(y)| < \varepsilon$$

- $[a, x_0 + 1]$ נתבונן בקטע –
- . בקטע. במ"ש במ"ש אז רציפה בו היינה, אם f רציפה במ"ש לפי לפי לפי לפי \star

- $\left|f\left(x
 ight)-f\left(y
 ight)
 ight|<arepsilon$ אז $\left|x-y
 ight|<\delta_{1}$ וגם $x,y\in\left[a,x_{0}+1
 ight]$ כך שאם $\delta_{1}>0$ אז $\delta_{1}>0$
 - $\left(|x-y|<\delta \right.$ אם $\left[a,x_0+1
 ight]$ אם יהיו $\left.\delta=min\left\{\delta_1,1
 ight\}$ הטמן -
 - |x< y| בה"כ (בה"כ $|x-y|<\delta$ פר כך א $x,y\in [a,\infty)$ יהיו *
 - · נחלק לשני מקרים:
 - $x > x_0$ אם .1

$$y>x>x_0$$
 אז גם (א)

$$\left|f\left(x
ight)-f\left(y
ight)
ight| נב) ואז$$

 $x \leq x_0$ אם .2

$$\delta \leq 1$$
 (כי $y < x_0 + 1$ (א)

$$x,y \in [a,x_0+1]$$
 (ב)

$$\left|f\left(x\right)-f\left(y\right)\right|<\varepsilon$$
 ושייכים לקטע ושייכים ו
 $\left|x-y\right|<\delta_{1}$ הם מקיימים i.

- הוכחנו שהפונקציה רציפה במ"ש בקרן.
- $f\left(x
 ight) =rac{1}{x}$ כי במ"ש בקטע לא רציפה לא הראו כי $f\left(x
 ight) =rac{1}{x}$ פתרוו:
- $\left|rac{1}{x}-rac{1}{y}
 ight|\geq arepsilon_0$ כך שמתקיים כך $|x-y|<\delta$ אם אם $x,y\in (0,1)$ קיימים $\delta>0$ כך שלכל $arepsilon_0>0$
 - $.\delta > 0$ יהי -
 - $\frac{1}{n}, \frac{1}{2n}$: ניקח שתי נקודות *
 - $(n>rac{1}{2\delta}$ (וונקבל וונקבל) וונקבל $\left|rac{1}{n}-rac{1}{2n}
 ight|=rac{1}{2n}<\delta$ כלומר נמצא $n\in\mathbb{N}$
 - : יתקיים $x_n=rac{1}{n}$, $y_n=rac{1}{2n}$ יתקיים

$$|x_n - y_n| = \frac{1}{2n} < \delta$$

: וגם

$$\left| \frac{1}{x_n} - \frac{1}{y_n} \right| = |n - 2n|$$
$$= n \ge 1 = \varepsilon_0$$

 $\left|rac{1}{x_n}-rac{1}{y_n}
ight|\geq arepsilon_0$ כך שמתקיים $|x_n-y_n|<\delta$, $x,y\in 0,1$ קיימים $\delta>0$ כך שלכל $arepsilon_0=1$

נושא שני - הנגזרת:

הגדרה 5. נגזרת:

- x_0 מוגדרת בקטע פתוח המכיל $f\left(x
 ight)$ מוגדרת פחיי
- $\lim_{x o x_0} rac{f(x) f(x_0)}{x x_0} = L$ אם $f'\left(x_0
 ight) = L$ נאמר כי
- $h=x-x_0$ כאשר גם לכתוב כך: אם $\lim_{h o o} \frac{f(x_0+h)-f(x_0)}{h}$ אפשר גם לכתוב כך: אם

 x_0 -ב ב-משפט 6. אם f גזירה ב- x_0 אז f רציפה ב-

תרגיל 7.

 $x_0 = 0$ בדקו רציפות וגזירות ב- $x_0 = 0$

$$f_0(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases} .1$$

$$f_{1}(x) = \begin{cases} x \cdot \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} .2$$

$$f_{2}\left(x\right)=\begin{cases}x^{2}\cdot\sin\left(\frac{1}{x}\right) & x\neq0\\0 & x=0\end{cases}.$$
3

$: f_0$ פתרון עבור .1

- . לא קיים lim $_{x o 0} \sin\left(\frac{1}{x}\right)$ לא קיים
- אפשר להוכיח לפי משפט היינה:
- $x_n = rac{1}{\pi \cdot n + rac{\pi}{2}}$ אם ניקח סדרה *
- $\lim_{n \to \infty} \sin \frac{1}{x_n} = \lim_{n \to \infty} \sin \left(\pi \cdot n + \frac{\pi}{2}\right) = \left(-1\right)^n$ אז יתקיים ·
 - . אל $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$ לא קיים ולכן לפי משפט היינה, גם
- . ומכיוון שהגבול בנקודה אז קיים אז f_0 לא רציפה ב $x_0=0$ כי הגדרת רציפות היא שהגבול בנקודה שווה לערך הפונקציה בנקודה.
 - $x_0=0$ ב אז היא או היא ב-0 ב-6 לא רציפה לא לא גזירה ב-6 ב-6 רולפי משפט, אם לא רציפה ב-6 ב-6 לא רציפה ב-6 ב-6 היא לא גזירה ב

$:f_1$ פתרון עבור .2

- $\lim_{x\to 0} f_1 = \lim_{x\to 0} x \cdot \sin\left(\frac{1}{x}\right) \bullet$
- $x_0 = 0$ יהיה מפול שואפת לאפס" והגבול בנקודה יתקיים "חסומה כפול שואפת האפס"
 - $f_{1}\left(0\right)=0$ לפי הגדרת הפונקציה, •

- ולכן הנגזרת תהיה:

$$\lim_{x \to 0} \frac{f_1(x) - f_1(0)}{x - 0} = \lim_{x \to 0} \frac{x \sin\left(\frac{1}{x}\right) - 0}{x}$$

$$= \lim_{x \to 0} \frac{\cancel{x} \sin\left(\frac{1}{x}\right) - 0}{\cancel{x}}$$

$$= \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$

 $x_0=0$ ב הנגזרת לא קיים, הנגזרת של $\sin\left(rac{1}{x}
ight)$ שהגבול של -

$: f_2$ פתרון עבור .3

: נבדוק גזירות

$$\lim_{x\to 0}\frac{f_{2}\left(x\right)-f_{2}\left(0\right)}{x-0}$$

$$= \lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right) - 0}{x - 0}$$
$$= \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$

. ראינו שהגבול הוא 0 בגלל "חסומה כפול שואפת לאפס".

$$f_{2}^{\prime}\left(0
ight)=0$$
 גזירה ב $x_{0}=0$, גזירה ב $x_{0}=0$ גזירה $x_{0}=0$

 $x_0=0$ ב איז היא רציפה ב t_2 גזירה ב או היא גוערה ב t_2 או יולפי משפט אם יולפי

- (x=0 בנקודה בנקודה f_2^\prime רציפה האם הפונקציה ב-0؛ (כלומר ברציפות ב-10) גזירה ברציפות
 - x=0 ב רציפה אם האם וגם וגם $f_2^{\prime}\left(x\right)$ בה ב ב ת של האם איימת ביבה של כלומר ב
 - $x \neq 0$ נקבל: *

$$f_2'(x) = \left(x^2 \cdot \sin\left(\frac{1}{x}\right)\right)'$$

$$= 2x \sin\left(\frac{1}{x}\right) + x^2 \left(-\frac{1}{x^2}\right) \cdot \cos\left(\frac{1}{x}\right)$$

$$f_2'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

$$f_{2}'\left(x
ight)=egin{cases} 2x\sin\left(rac{1}{x}
ight)-\cos\left(rac{1}{x}
ight) & x
eq 0 \\ 0 & x=0 \end{cases}$$
 א ולכן *

- \mathbb{R} גזירה בכל f_2
- אין גבול. וכן הגבול נוכן הגבול להיות שווה לערך $\cos\left(\frac{1}{x}\right) \to 2x \sin\left(\frac{1}{x}\right) \to 0$ אין כי להיות לא יכול להיות שווה לערך בנקודה (כי הוא ל לא קיים).
 - x=0ב "ברציפות" בל f_2 לכן לא

$$\lim_{x \to 0} f_2'(x)$$
 זה לא אותו דבר כמו לומר $f_2'(0) = \lim_{x \to 0} rac{f_2(x) - f(0)}{x - 0}$.8 הערה

f(x) = |x|הערה 9. נתבונן

- : מזה: $\lim_{x \to 0} \frac{|x|-|0|}{x-0} = \lim_{x \to 0} \frac{|x|}{x}$ כי בדיים שונים אם מזה: והגבול הזה לא אירה בx=0 כי כי הגבולות בחד בדיים שונים אם מזה:
 - $\lim_{x o 0^-} f' = -1$ אבל $\lim_{x o 0^+} f' = 1$ כלומר –

$$x<0$$
 כאשר $f'\left(x
ight)=-1$ ר- גאשר $f'\left(x
ight)=1$ כאשר $\left(x
ight)=1$ כי *

· כלומר:

$$\lim_{x \to 0^+} f'(x) = 1$$

$$\lim_{x \to 0^{-}} \left(\lim_{t \to x} \frac{f\left(t\right) - f\left(x\right)}{x - t} \right) = \lim_{x \to 0^{-}} f'\left(x\right) = -1$$

. כלומר הנגזרת של הנגזרת לא קיימת אבל הגבולות החד אדדיים של הנגזרת קיימים. $f'\left(0\right)$

תרגיל 10.

$$f\left(x
ight)=egin{cases} x^{2} & x\in\mathbb{Q} \\ -x^{2} & x
otin \mathbb{Q} \end{cases}$$
תהי פונקציה

. צ"ל: הראו כי $f\left(x\right)$ גזירה בנקודה אחת בדיוק

פתרון:

- $x \neq 0$ גוירה לכל x = 0 גוירה לכל f(x) נוכיח ש
 - $x \neq 0$ נתחיל מלהראות שהיא לא רציפה כאשר
 - $.x_0 \neq 0$ יהי -
- - : מתקיים גם

$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} x_n^2 = x_0^2 .$$

$$\lim_{n \to \infty} f\left(y_n\right) = \lim_{n \to \infty} y_n^2 = -x_0^2$$
 יגם י

 $\lim_{x o x_0} f\left(x
ight)$ אז $x_0^2
eq -x_0^2$ ולכן לפי משפט היינה לא קיים הגבול אז $x_0
eq 0$ אז $x_0
eq 0$

- x_0 -ם מכיוון שהגבול לא קיים אז f לא רציפה
 - x_0 -ב לכן לפי משפט, f לא גזירה
 - x=0-ב גזירה ב- $f\left(x
 ight)$ נוכיח ש

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x}$$

:בונן ב –

$$0 \le \left| \frac{f(x)}{x} \right| = \frac{|f(x)|}{|x|} = \frac{x^2}{|x|}$$
$$= \frac{|x^2|}{|x|} = |x| \xrightarrow[x \to 0]{} 0$$

- $\left| \frac{f(x)}{x} \right| = |x| \xrightarrow[x \to x_0]{} 0$ מכיוון שמתקיים *
- $g\left(x
 ight) \xrightarrow[x o x_{0}]{} 0$ אם ורק אם $\left|g\left(x
 ight)
 ight| \xrightarrow[x o 0]{} \star$ לפי המשפט, \star
- $rac{f(x)}{x} \xrightarrow[x o x]{} 0$ כלומר מכיוון ש $0 \xrightarrow[x o x]{} \left| rac{f(x)}{x}
 ight| \xrightarrow[x o x]{} 0$ כלומר מכיוון ש

$$f'\left(0
ight)=\lim_{x
ightarrow0}rac{f\left(x
ight)}{x}=0$$
 ולכן –

 $f(x) = \frac{x+1}{x-1}$ תרגיל 11. תהי

.fשל ההגדרה בתחום בתחום a כל עבור $f'\left(a\right)$ לפי ההגדרה מצאו צ"ל: מצאו לפי ההגדרה ל

פתרוו:

- $\mathbb{R}\setminus\{1\}$ מוגדרת בתחום f
 - $a \neq 1$ יהי •
- $\lim_{x \to a} rac{f(x) f(a)}{x a}$ נמצא גבול •

$$\lim_{x \to a} \frac{f\left(x\right) - f\left(a\right)}{x - a} = \lim_{x \to a} \frac{\frac{x+1}{x-1} - \frac{a+1}{a-1}}{x - a}$$

- נעשה מכנה משותף ונקבל:

$$=\lim_{x\to a}\frac{\left(x+1\right)\left(a-1\right)-\left(a+1\right)\left(x-1\right)}{\left(x-a\right)\left(a-1\right)\left(x-1\right)}$$

- נפתח סוגריים במונה ונקבל:

$$\begin{split} &= \lim_{x \to a} \frac{ax - x + a - 1 - ax + a - x + 1}{(x - a)(a - 1)(x - 1)} \\ &= \lim_{x \to a} \frac{2a - 2x}{(x - a)(a - 1)(x - 1)} \\ &= \lim_{x \to a} \frac{2(a - x)}{(x - a)(a - 1)(x - 1)} \\ &= \lim_{x \to a} \frac{-2}{(a - 1)(x - 1)} \end{split}$$

: כלומר קיבלנו פונקציה אלמנטרית אלמנטרית $\frac{-2}{(a-1)(x-1)}$

$$\lim_{x \to a} \frac{-2}{(a-1)(x-1)} = -\frac{2}{(a-1)^2}$$
$$= -\frac{2}{(a-1)^2} = f'(a)$$

 $.x_{0}$ -ם אירות בינקציות הזירות פונקציות $g\left(x
ight) ,f\left(x
ight)$ יהיו

$$k\left(x
ight) = egin{cases} f\left(x
ight) & x \leq x_0 \\ g\left(x
ight) & x > x_0 \end{cases}$$
 נגדיר פונקציה חדשה

 $k\left(x
ight)$ ב"ל: מצאו תנאים הכרחיים ומספיקים כדי ש $k\left(x
ight)$ תהיה גזירה ב-20

פתרון:

. לפי הגדרה, $k\left(x\right)$ גזירה ב- x_{0} אם ורק אם קיים הגבול

$$\lim_{x \to x_0} \frac{k(x) - k(x_0)}{x - x_0}$$

- לפי משפט, זה יקרה אם ורק אם:

$$\lim_{x \to x_{0}^{+}} \frac{k(x) - k(x_{0})}{x - x_{0}} = \lim_{x \to x_{0}^{-}} \frac{k(x) - k(x_{0})}{x - x_{0}}$$

1. נתחיל מהגבול משמאל:

k נקבל: – לפי הגדרת k

$$\lim_{x \to x_{0}^{-}} \frac{k(x) - k(x_{0})}{x - x_{0}} = \lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}}$$

- . מכיוון ש $f'(x_0)$ קיים לפי הנתון, יוצא שהגבול $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ קיים לפי הנתון, יוצא שהגבול $\lim_{x\to x_0} \frac{f'(x_0)-f(x_0)}{x-x_0}$ קיים ושווה ל- $\lim_{x\to x_0} \frac{k(x)-k(x_0)}{x-x_0}$ + ולכן גם הגבול החד צדדי
 - - 2. נעבור לגבול הימני:
 - : לפי הגדרת k מתקיים -

$$\lim_{x \to x_0^+} \frac{k(x) - k(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{g(x) - f(x_0)}{x - x_0}$$

:נוסיף ונחסיר את $g\left(x_{0}\right)$ במונה ונקבל –

$$=\lim_{x\to x_{0}^{+}}\left(\underbrace{\frac{g\left(x\right)-g\left(x_{0}\right)}{x-x_{0}}}_{+}+\underbrace{\frac{g\left(x_{0}\right)-f\left(x_{0}\right)}{\underbrace{x-x_{0}}_{\to 0}}}_{-}\right)$$

- * מכיוון שבשבר הימני המכנה שואף ל-0 אז כל השבר ישאף לאינסוף.
- * כלומר, בשביל שהגבול יהיה קיים, נצטרך שהשבר הימני יהיה שווה אפס.
 - $g\left(x_{0}\right)=f\left(x_{0}\right)$ אם ורק אם $g\left(x_{0}\right)=f\left(x_{0}\right)$ לכן נקבל:

$$=\lim_{x\rightarrow x_{0}^{+}}\left(\overbrace{\frac{g\left(x\right)-g\left(x_{0}\right)}{x-x_{0}}}^{\frac{-0}{2}\left(x_{0}\right)}+\overbrace{\frac{g\left(x_{0}\right)-f\left(x_{0}\right)}{x-x_{0}}}^{\frac{-0}{2}\left(x_{0}\right)}\right)$$

- $g\left(x_{0}
 ight)-f\left(x_{0}
 ight)$ אם ורק אם $g'\left(x_{0}
 ight)$ קיים ושווה קיים לוו $\lim_{x \to x_{0}} rac{k(x)-k(x_{0})}{x-x_{0}}$ אם הגבול
 - לפי משפט, גבול קיים בנקודה אם ורק אם הגבולות החד צדדיים קיימים ושווים.
 - $.g'\left(x_{0}
 ight)=f'\left(x_{0}
 ight)$ ולכן הגבול $k'\left(x_{0}
 ight)$ קיים אם ורק $k'\left(x_{0}
 ight)$
 - \cdot נאירה ב- x_0 אם ורק אם: לסיכום
 - $f(x_0) = q(x_0)$.1
 - $f'(x_0) = g'(x_0)$.2