2/21/23, 12:11 AM Print Test

PRINTABLE VERSION

Quiz 6

You scored 100 out of 100

104 500104 100 041 01 100
Question 1
Your answer is CORRECT.
A manufacturer of matches randomly and independently puts 24 matches in each box of matches produced. The company knows that one-tenth of 5 percent of the matches are flawed. What is the probability that a matchbox will have one or fewer matches with a flaw?
a) $\bigcirc 0.004456$
b) 0.9950
c) 0.1069
d) © 0.9936
e) 0.8867
f) None of the above
Question 2
Your answer is CORRECT.
Let X be the number of flaws on the surface of a randomly selected boiler of a certain type and suppose X is a Poisson distributed random variable with parameter $\mu = 4$. Find $P(4 \le X \le 7)$
a) 0.4846
b) 0.7046
c) 0.0595
d) \bigcirc 0.5703
e) • 0.5153
f) None of the above
Question 3
Your answer is CORRECT.

Suppose you have a distribution, X, with mean = 18 and standard deviation = 6. Define a new random variable Y = 6X - 2. Find the mean and standard deviation of Y.

- **a)** \bigcirc E[Y] = 106; σ_{Y} = 216
- **b)** \bigcirc E[Y] = 106; σ_{Y} = 34
- **c)** \odot E[Y] = 108; σ_{Y} = 34
- **d)** \odot E[Y] = 106; $\sigma_{Y} = 36$
- **e)** \odot E[Y] = 108; σ_{Y} = 216
- f) None of the above

Question 4

Your answer is CORRECT.

Each year a company selects a number of employees for a management training program. On average, 30 percent of those sent complete the program. Out of the 11 people sent, what is the probability that exactly 6 complete the program?

- **a)** 0.9783
- **b)** 0 1.0783
- c) 0.2566
- **d)** © 0.0566
- e) 0.1006
- n None of the above

Question 5

Your answer is CORRECT.

Each year a company selects a number of employees for a management training program. On average, 50 percent of those sent complete the program. Out of the 17 people sent, what is the probability that 5 or more complete the program?

- a) 0.0717
- **b)** 0.1717
- **c)** 0.0245

2/21/23, 12:11 AM Print Test

d)	0.9754
e)	○ 0.9282
f)	None of the above

Question 6

Your answer is CORRECT.

A fish tank in a pet store has 24 fish in it. 5 are orange and 19 are white. Determine the probability that if we select 3 fish from the tank, at least 2 will be white.

- **a)** 0.7916
- **b)** 0.0988
- **c) 0**.9011
- **d)** 0.1208
- e) 01.1211
- f) None of the above

Question 7

Your answer is CORRECT.

The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a mean of 7 people per hour. How many people do you expect to arrive during a 40-minute period?

- **a)** 0.59
- **b)** 4.66
- **c)** 0 1.00
- **d)** 280.00
- e) 07.00
- f) None of the above

Question 8

Your answer is CORRECT.

Determine the type of distribution for the following situation:

Draw marbles from a bag which contains 5 red marbles, 6 blue marbles and 4 green marbles with replacement until you get a blue marble.

- a) OBinomial
- b) OPoisson
- c) O Hypergeometric
- d) None of these

Your answer is CORRECT.

Suppose two random variables, X and Y are independent, which statement is false?

Print Test

- $a) \cap P(X \mid Y) = P(X)$
- **b)** \bigcirc Cov(X, Y) = 0
- $e) P(X \cup Y) = P(X) + P(Y)$
- $\mathbf{d}) \odot P(X \cap Y) = P(X) \cdot P(Y)$
- e) One of the above are false.

Question 10

Your answer is CORRECT.

Using the joint probability table below, determine P(X = 1, Y = 7).

Y^X	-1	0	1
3	0.05	0.05	0.05
5	0.15	0.1	0.15
7	0	0.15	0.3

- a) 0.65
- **b)** 0.1
- **c)** 0.45
- **d)** © 0.3
- e) 0.95
- f) None of the above.

Your answer is CORRECT.

Using the joint probability table below, determine the marginal distribution of X.

Y^X	-1	0	1
3	0	0.05	0.15
5	0.05	0.05	0.1
7	0.3	0.15	0.15

a) 🔘

X	-1	0	1
P(X)	0.35	0.25	0.4

b) 🔘

X	-1	0	1
P(X)	0.2	0.2	0.6

c) 🔾

X	-1	0	1
P(X)	0.3	0.15	0.15

d) 0

X	-1	0	1
P(X)	0	0.05	0.15

e) None of the above.

Question 12

Your answer is CORRECT.

Using the joint probability table below, determine $P\left(X=0\mid Y=5\right)$.

Y^X	-1	0	1
3	0.15	0.15	0.05
5	0.05	0.15	0.3
7	0	0.05	0.1

- a) 0.429
- **b)** © 0.3
- c) 0.03
- **d)** 0.043
- e) 0.15
- None of the above.

Your answer is CORRECT.

Using the joint probability table below, determine E(XY).

Y^X	$\begin{bmatrix} -1 \end{bmatrix}$	0	1
3	0.05	0.05	0.15
5	0.15	0.3	0.1
7	0.15	0	0.05

- a) 04.85
- **b)** 04.90
- c) = -0.65
- **d)** 0.05
- e) 01.0
- f) None of the above.

Question 14

Your answer is CORRECT.

Suppose that a fair, 6 sided die is rolled. Let X indicate the event that an even number is rolled (in other words, X = 1 if an even number is rolled and X = 0 otherwise). Let Y indicate the event that 1, 2, or 3 is rolled (in other words, Y = 1 if 1, 2, or 3 is rolled and Y = 0 otherwise). Find P(X = 0, Y = 1).

a) $0^{1/3}$

- **b)** 0.5/6
- c) $0^{1/6}$
- **d)** $0^{1/2}$
- e) $0^{2}/_{3}$
- f) None of the above

Your answer is CORRECT.

Suppose $p(x, y) = \frac{x + y}{21}$, x = 1, 2, 3, y = 1, 2 is the joint pmf of X and Y. Determine P(Y = 2).

- a) $0^{4}/7$
- **b)** 0.1/3
- c) $0^{1/6}$
- d) 0.5/6
- e) $0^{1/2}$
- f) None of the above