Differential Equations Row Reduction

Г 1	Ο	No.			1	*	0	0	0	*	*	0	*
	1	*	*	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	1	0	0	*	*	0	*
	1	*	* 0	0	0	0	0	1	0	*	*	0	*
	0	0	0,	0	0	0	0	0	1	*	*	0	*
	O	O	0	0	0	0	0	0	0	0	0	1	*

Systems of Algebraic Equations

A system of m algebraic equations in n unknowns

$$v_1 a_{11} + v_2 a_{12} + \cdots + v_n a_{1n} = s_1$$
 $v_1 a_{21} + v_2 a_{22} + \cdots + v_n a_{2n} = s_2$
 \vdots
 $v_1 a_{m1} + v_2 a_{m2} + \cdots + v_n a_{mn} = s_m.$

can be written as the vector equation

$$A\vec{v} = \vec{s}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ & & \vdots & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \ \vec{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}, \ \vec{s} = \begin{bmatrix} s_1 \\ \vdots \\ s_m \end{bmatrix}.$$

Ex: The system

$$2u_{1} + u_{2} + 4u_{3} + 3u_{4} = 3$$

$$2u_{2} + 2u_{4} + 5u_{5} = 8$$

$$-u_{1} + 4u_{2} - 2u_{3} + 3u_{4} + 6u_{5} = 6$$

$$u_{1} + 2u_{3} + u_{4} - 2u_{5} = -2$$
(S)

can be written as

$$\begin{bmatrix} 2 & 1 & 4 & 3 & 0 \\ 0 & 2 & 0 & 2 & 5 \\ -1 & 4 & -2 & 3 & 6 \\ 1 & 0 & 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \begin{bmatrix} 3 \\ 8 \\ 6 \\ -2 \end{bmatrix}.$$

Def: The augmented matrix of $A\vec{v} = \vec{s}$ is

$$[A \mid \vec{s}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & s_1 \\ a_{21} & a_{22} & \dots & a_{2n} & s_2 \\ & \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & s_m \end{bmatrix} .$$

Operations on the equations that do not change the solutions:

· Adding a multiple of one equation to another equation.

$$(\alpha) \to (\alpha) + c(\beta)$$

· Multiplying an equation by a nonzero number.

$$(\alpha) \to c(\alpha)$$

· Swapping two equations.

$$(\alpha) \leftrightarrow (\beta)$$

Operations on the augmented matrix that do not change the solutions:

· Adding a multiple of one row to another row.

$$R_{\alpha} \to R_{\alpha} + cR_{\beta}$$

· Multiplying a row by a nonzero number.

$$R_{\alpha} \to cR_{\alpha}$$

· Swap two rows.

$$R_{\alpha} \leftrightarrow R_{\beta}$$

Def: The three matrix operations are called <u>row</u> operations. Two matrices are <u>row</u> equivalent if we can get from one to the other by a sequence of row operations.

Fact: If $[A \mid \vec{s}]$ and $[B \mid \vec{r}]$ are row equivalent, then $A\vec{v} = \vec{s}$ and $B\vec{v} = \vec{r}$ have the same solutions.

Def: A matrix is reduced if

- 1. Any rows of all zeros are at the bottom.
- 2. The first nonzero entry of each nonzero row (a pivot) is 1.
- 3. Each pivot is to the right of the pivots of the preceding rows.
- 4. Each pivot is the only nonzero entries in its column.

Fact: Every matrix is row equivalent to exactly one reduced matrix.

The process of finding the reduced matrix is called reduction.

Ex: Solve (S).

Sln: We reduce the augmented matrix:

$$\begin{bmatrix} 2 & 1 & 4 & 3 & 0 & 3 \\ 0 & 2 & 0 & 2 & 5 & 8 \\ -1 & 4 & -2 & 3 & 6 & 6 \\ 1 & 0 & 2 & 1 & -2 & -2 \end{bmatrix} \xrightarrow{R_4 \leftrightarrow R_1}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & -2 & -2 \\ 0 & 2 & 0 & 2 & 5 & 8 \\ -1 & 4 & -2 & 3 & 6 & 6 \\ 2 & 1 & 4 & 3 & 0 & 3 \end{bmatrix} \xrightarrow{R_3 \to R_3 + R_1}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & -2 & -2 \\ 0 & 2 & 0 & 2 & 5 & 8 \\ 0 & 4 & 0 & 4 & 4 & 4 \\ 0 & 1 & 0 & 1 & 4 & 7 \end{bmatrix} \xrightarrow{R_4 \leftrightarrow R_2}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & -2 & -2 \\ 0 & 2 & 0 & 2 & 5 & 8 \\ 0 & 4 & 0 & 4 & 4 & 4 \\ 0 & 1 & 0 & 1 & 4 & 7 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 4R_2}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & -2 & -2 \\ 0 & 1 & 0 & 1 & 4 & 7 \\ 0 & 4 & 0 & 4 & 4 & 4 \\ 0 & 2 & 0 & 2 & 5 & 8 \end{bmatrix} \xrightarrow{R_3 \to R_3 - 4R_2}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 & -2 & | & -$$

We get an equivalent system

$$u_1 + 2u_3 + u_4 = 2$$
 $u_2 + u_4 = -1$
 $u_5 = 2$
 $0 = 0$

We solve for the pivot variables $u_1, u_2,$ and u_5 in terms of the nonpivot (free) variables:

$$u_1 = 2 - 2u_3 - u_4$$
, $u_2 = -1 - u_4$, $u_5 = 2$.

Any choice of the free variables u_3 and u_4 , say $u_3 = a$ and $u_4 = b$, leads to a solution of (S)

$$u_1 = 2 - 2a - b$$
, $u_2 = -1 - b$, $u_3 = a$, $u_4 = b$, $u_5 = 2$,

or in vector form

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \begin{bmatrix} 2 - 2a - b \\ -1 - b \\ a \\ b \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + a \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

Ex: The eigenvalues of

$$A = \begin{bmatrix} -1 & -1 & 0 \\ 1 & -3/2 & 3/2 \\ 0 & 1 & -1 \end{bmatrix}$$

are $\lambda = -1, -2, 1/2$ (from Section 3.5). Find the eigenvectors of A corresponding to each eigenvalue.

Sln: To find eigenvectors of A corresponding to $\lambda = -1$, we solve $[A - (-1)I]\vec{v} = \vec{0}$, or reduce $[A + I \mid \vec{0}]$:

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & -1/2 & 3/2 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & -1/2 & 3/2 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \to -R_2} \begin{bmatrix} 1 & -1/2 & 3/2 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{R_2 \to -R_2} \begin{bmatrix} 1 & 0 & 3/2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

The equivalent system

$$v_1 + (3/2)v_3 = 0$$
 $v_2 = 0$
 $0 = 0$.

can be solved for the pivot variables v_1 and v_2 in terms of the free variable v_3 :

$$v_1 = -(3/2)v_3, \quad v_2 = 0.$$

Any choice of v_3 , say $v_3 = 2a$, leads to a solution. In vector form, the solutions are

$$\vec{v} = \begin{bmatrix} -3a \\ 0 \\ 2a \end{bmatrix} = a \begin{bmatrix} -3 \\ 0 \\ 2 \end{bmatrix}.$$

The nonzero vectors of this form are the eigenvectors for $\lambda = -1$.

To find the eigenvectors for $\lambda = -2$, we solve $(A+2I)\vec{w} = \vec{0}$, or reduce $[A+2I \mid \vec{0} \mid :$

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1/2 & 3/2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 3/2 & 3/2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 \to 2R_2/3} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 + R_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The system corresponding to the last matrix is

$$w_1 + w_3 = 0$$

 $w_2 + w_3 = 0$
 $0 = 0$.

Any choice of the free variable w_3 , say $w_3 = a$, leads to a solution

$$\vec{w} = \begin{bmatrix} -a \\ -a \\ a \end{bmatrix} = a \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}.$$

The eigenvectors for $\lambda = -2$ are the nonzero vectors of this form.

To find the eigenvectors for $\lambda = -1/2$, we solve $[A - (-1/2)I]\vec{u} = \vec{0}$ by reducing $[A + (1/2)I \mid \vec{0}]$:

$$\begin{bmatrix} -1/2 & -1 & 0 \\ 1 & -1 & 3/2 \\ 0 & 1 & -1/2 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 1 & -1 & 3/2 \\ -1/2 & -1 & 0 \\ 0 & 1 & -1/2 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 + R_1/2} \begin{bmatrix} 1 & -1 & 3/2 \\ 0 & -3/2 & 3/4 \\ 0 & 1 & -1/2 \end{bmatrix}$$

Thus, we have

$$u_1 = -u_3, \quad u_2 = \frac{1}{2}u_3.$$

The eigenvectors of A with eigenvalues $\lambda = -1/2$ are the nonzero vectors of the form

$$\vec{u} = \begin{bmatrix} -2a \\ a \\ 2a \end{bmatrix} = a \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}.$$

Ex: The eigenvalues of

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

are $\lambda = 3, -1$ (from Section 3.5). Find the eigenvectors of A corresponding to each eigenvalue.

Sln: To find eigenvectors of A corresponding to $\lambda = 3$, we solve $(A - 3I)\vec{w} = \vec{0}$, by reducing $[A - 3I \mid \vec{0}]$:

$$\begin{bmatrix} -2 & 0 & 4 \\ 0 & 0 & 0 \\ 1 & 0 & -2 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 + 2R_1} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, w_2 and w_3 are free, and we can solve for the pivot variable w_1 in terms of w_2 and w_3 :

$$w_1 = 2w_3$$
.

Any choice of w_2 and w_3 , say $w_2 = a$ and $w_3 = b$, gives a solution of $(A - 3I)\vec{w} = \vec{0}$ in the form

$$\vec{w} = \begin{bmatrix} 2b \\ a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ a \\ 0 \end{bmatrix} + \begin{bmatrix} 2b \\ 0 \\ b \end{bmatrix} = a \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

Any nonzero vector of this form is an eigenvector. In particular, the vectors

$$\vec{w_1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 (take $a = 1$ and $b = 0$)

and

$$\vec{w_2} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$
 (take $a = 0$ and $b = 1$)

are eigenvectors for $\lambda = 3$. Note that the two eigenvectors are linearly independent.

To find eigenvectors of A corresponding to $\lambda = -1$, we solve $[A - (-1)I]\vec{v} = \vec{0}$, or reduce $[A + I \mid \vec{0}]$:

$$\begin{bmatrix} 2 & 0 & 4 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} \xrightarrow{} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 4 \end{bmatrix} \xrightarrow{}_{R_2 \to R_2/4} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

The equivalent system

$$v_1 + 2v_3 = 0$$

$$v_2 = 0$$

$$0 = 0.$$

can be solved for the pivot variables v_1 and v_2 in terms of the free variable v_3 :

$$v_1 = -2v_3, \quad v_2 = 0.$$

Any choice of v_3 , say $v_3 = a$, leads to a solution in vector form

$$\vec{v} = \begin{bmatrix} -2a \\ 0 \\ a \end{bmatrix} = a \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}.$$

The nonzero vectors of this form are the eigenvectors of A corresponding to the eigenvalue $\lambda = -1$.

Fact: The solutions of a system $A\vec{v} = \vec{0}$ are described by an arbitrary linear combination

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$$

of k solutions $\vec{v}_1, \ldots, \vec{v}_k$, where k is the number of free variables in the reduced augmented matrix of the system. The k vectors are linearly independent.

Fact: If all eigenvectors \vec{v} of A corresponding to the same eigenvalue λ are described by

$$\vec{v} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k,$$

where each c_i stands for an arbitrary choice of a free variable in the reduced augmented matrix of the system $(A - \lambda I)\vec{v} = \vec{0}$, then $\vec{v}_1, \ldots, \vec{v}_k$ are linearly indepedent eigenvectors of A corresponding to λ .