ZAPDC. Ćwiczenie 2. Interpolacja metodą dwuliniowa i metodą "najbliższego sąsiada"

Lev Sergeyev

1 Przebieg ćwiczenia

Za pomocą śródowiska Matlab zaprojektowałem 6 funkcji które pozwalają na zmianę rozmiarów obrazu cyfrowego za pomocą 3 algorytmów interpolacji:

- Funkcję zmiany rozmiaru i proporcji obrazu:
 - "nearest", interpolacja funkcją prostokątną
 - "bilinear", interpolacja funkcją trójkatną
 - "keys", interpolacja funkcją Keysa
- Odpowiedniki poprzednich 3 funkcji, dokonują zmiany obrazu za pomocą wektoru(pozwala na zmianę rozmiaru, proporcji, obrotu, odbicia lustrzanego):
 - "v_ nearest"
 - "v₋ bilinear"
 - "v_ kevs"

2 Czas działania

Dla jednego obrazu przeprowadzono 6 serii interpolacji dla każdej z 6 funkcji. Zmierzono czas działania funkcji. Następnie z otrzymanych wyników została wyliczona średnia. Czas podany w sekundach.

Funkcja	zmiana rozdzielczości	zmiana rozd. + obrót
nearest	0.5847	2.5189
bilinear	3.4955	9.1013
keys	11.6204	27.9314

3 Porównywanie otrzymanych obrazów

3.1 Piksele

Zmiana rozmiaru:

 $Lx = 32Lx_0$

 $Ly = 32Ly_0$

Jabłko 3.2

Wektorowe funkcje interpolujące:

 $Lx = 2.5Lx_0$ $Ly = 1.5Ly_0$ $\Phi_{rot} = -10^{\circ}$

3.3 Siatka

 $Lx = 0.8Lx_0$ $Ly = 0.8Ly_0$ $\Phi_{rot} = 3^{\circ}$

Funkcja	Obraz
oryginał	
nearest	
bilinear	
keys	

4 Wnioski