Rezolvarea numerică a ecuațiilor neliniare

Radu T. Trîmbiţaş

4 octombrie 2005

1 Ecuații neliniare în $\mathbb R$

Fie $f: \mathbb{R} \to \mathbb{R}$. Dorim să aproximăm o soluție sau toate soluțiile ecuației f(x) = 0. Vom prezenta câteva metode importante.

1.1 Metoda Newton-Raphson (a tangentei)

Determină o soluție a ecuației f(x) = 0, dându-se o aproximație inițială p_0 .

Intrare. Funcția f, derivata sa f', o aproximație inițială p_0 ; eroarea ε ; numărul maxim de iterații N_0 .

Ieșire. O soluție aproximativă p sau un mesaj de eroare.

P1. i := 1.

P2. While $i \leq N_0$ execută paşii P3-P6.

P3. $p := p_0 - f(p_0)/f'(p_0)$; {Calculează p}

P4. If $|p-p_0| < \varepsilon$ then

Returnează p; {Succes}

P5. i := i + 1;

P6. $p_0 := p$; {actualizează p}

P7. {eșec} eroare('precizia nu poate fi atinsă cu numărul dat de iterații'). Stop.

Observație. În plus față de

$$|p_n - p_{n-1}| < \varepsilon$$

putem utiliza drept criteriu de oprire

$$|p_n - p_{n-1}| < \varepsilon |p_n|, \quad p_n \neq 0,$$

sau

$$|f(p_n)| < \varepsilon.$$

Exemplu numeric. Fie ecuația $x = \cos x$. Punem $f(x) = \cos x - x$. Ecuația noastră are o soluție în $[0, \pi/2]$, care poate fi obținută ca punct fix al lui of $g(x) = \cos x$ (vezi figure 1). Deoarece $f'(x) = -\sin x - 1$, iterația Newton este

$$p_n = p_{n-1} - \frac{\cos p_{n-1} - p_{n-1}}{-\sin p_{n-1} - 1}, \qquad n \ge 1.$$

Ca valoare de pornire se poate alege $p_0=\pi/4$. Valorile calculate se dau în tabela următoare

n	p_n	n	p_n
0	0.7853981635	3	0.7390851332
1	0.7395361337	4	0.7390851332
2	0.7390851781	5	0.7390851332

Figura 1: Ecuația $\cos x = x$

1.2 Metoda secantei

Determină o soluție a ecuației f(x) = 0, dându-se aproximațiile inițiale p_0 și p_1 .

Intrare. Funcția f, aproximațiile inițiale p_0 și p_1 ; eroarea ε ; numărul maxim de iterații N_0 .

Ieșire. Soluția aproximativă p sau un mesaj de eroare.

P1.
$$i := 2$$
; $q_0 := f(p_0)$; $q_1 := f(p_1)$;

P2. while $i \leq N_0$ execută paşii P3-P6.

P3.
$$p := p_1 - \frac{q_1(p_1 - p_0)}{q_1 - q_0};$$

P4. if $|p - p_1| < \varepsilon$ then

P4. if
$$|p - p_1| < \varepsilon$$
 then returnează p; {succes}

P5.
$$i := i + 1$$
;

P6.
$$p_0 := p_1; q_0 := q_1; p_1 := p; q_1 := f(p);$$

P7. {eșec} eroare('precizia nu poate fi atinsă cu numărul dat de iterații'). Stop.

Examplu numeric. Considerăm din nou ecuația $\cos x - x = 0$. Ca valori de pornire alegem $p_0 = 0.5$ and $p_1 = \pi/4$. Calculele se dau în tabela de mai jos:

\overline{n}	p_n
0	0.5
1	0.7853981635
2	0.7363841390
3	0.7390581394
4	0.7390851492
5	0.7390851334

1.3 Metoda lui Steffensen

Determină o soluție a ecuației p = g(p), dându-se o aproximație inițială p_0 . Intrare. Funcția f, valoarea de pornire p_0 ; eroarea ε ; numărul maxim

Intrare. Funcția f, valoarea de pornire p_0 ; eroarea ε ; numarul i de iterații N_0 .

Ieșire. Soluția aproximativă p sau un mesaj de eroare.

P1. i := 1.

P2. While $i \leq N_0$ execută paşii P3-P6.

P3.

$$\begin{split} p_1 &:= g(p_0); \quad \{ \text{calculează } p_1^{(i-1)} \} \\ p_2 &:= g(p_1); \\ p &:= p_0 - \frac{(p_1 - p_0)^2}{p_2 - 2p_1 + p_0}; \ \{ \text{calculează } p_0^{(i)} \} \end{split}$$

P4. if $|p - p_0| < \varepsilon$ then returnează p; {success}

P5. i := i + 1;

P6. $p_0 := p$; {actualizează p}

P7. {eșec} eroare('precizia nu poate fi atinsă cu numărul dat de iterații'). Stop.

Exemplu numeric. Pentru a rezolva ecuația $x^3 + 4x^2 - 10 = 0$, o rescriem sub forma $x^3 + 4x^2 = 10$ și obținem

$$x = g(x),$$
 $g(x) = \sqrt{\frac{10}{x+4}}.$

Luând $p_0 = 1.5$ avem succesiv

k	p_0	p_1	p_2
0	1.5	1.348399725	1.367376372
1	1.365265224	1.365225534	
2	1.365230013	1.365230583	

1.4 Probleme

1) Implementați metodele Newton, secantă, Steffensen.

2 Sisteme de ecuații neliniare

Fie

$$f: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$$

$$f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}.$$

$$(1)$$

Dorim să rezolvăm ecuația (sistemul neliniar) f(x) = 0.

2.1 Metoda lui Newton

Formula iterativă este

$$x^{(n+1)} = x^{(n)} - \left[f'(x^{(n)}) \right]^{-1} f(x^{(n)}), \tag{2}$$

unde $f'(x^{(n)})$ este jacobianul lui f în punctul $x^{(n)}$.

Algoritmul.

Intrare. f, f', ε (toleranța), valoarea de pornire $x^{(0)}$ și numărul maxim de iterații N.

Ieșire. O aproximare a rădăcinii sau un mesaj de eroare.

n := 0;

repeat

$$x^{(n+1)} = x^{(n)} - [f'(x^{(n)})]^{-1} f(x^{(n)}); \qquad n := n+1;$$

until

$$||x^{(n)} - x^{(n-1)}|| < \varepsilon$$

or "s-a depășit numărul maxim de iterații".

2.2 Metoda aproximațiilor succesive

Transformăm ecuația noastră într-una de forma $x=\varphi(x)$. Căutăm φ de forma $\varphi(x)=x-\Lambda f(x)$. Avem

$$\varphi'(x^{(0)}) = 0 \Longrightarrow \Lambda = -\left[f'\left(x^{(0)}\right)\right]^{-1}.$$

Algoritmul.

Intrare: f, ε (toleranța), valoarea de pornire x_0 și numărul maxim de iterații N.

Ieășire: O aproximare a rădăcinii sau un mesaj de eroare: "precizia dorită nu poate fi atinsă în N iterații".

Repeat

$$x^{(n+1)} = \varphi\left(x^{(n)}\right)$$

until $\left\|x^{(n+1)}-x^{(n)}\right\|<\varepsilon$ or "s-a depășit numărul maxim de iterații".

2.3 Probleme

1. Implementați metoda lui Newton și metoda aproximațiilor succesive.

2.4 Probleme practice

1. Rezolvaţi sistemul

$$\begin{cases} x^2 + y^2 = 1. \\ x^3 - y = 0. \end{cases}$$

2. Rezolvaţi numeric sistemul

$$\begin{cases} 9x^2 + 36y^2 + 4z^2 - 36 = 0, \\ x^2 - 2y^2 - 20z = 0, \\ x^2 - y^2 + z^2 = 0 \end{cases}$$

utilizând metoda lui Newton și metoda aproximațiilor succesive. *Indicație*. Sunt 4 soluții. Valori bune de pornire $[\pm 1, \pm 1, 0]^T$.