1. In fdisk, when using the p (print) command, there is a column labeled "sectors." What does "sector" refer to in this context?

In fdisk, the "sectors" column refers to the number of 512-byte disk sectors allocated to a partition, indicating its size and position on the disk.

2. There are three types of servers mentioned. Please summarize your partitioning recommendations for each:

- Linux desktop systems
- Linux servers used for databases or web services with extensive logging
- Linux servers used in university labs or staging environments where
- Linux Desktop Systems: On a desktop computer, it is good to have one swap, one /boot, and allocate all other space to / (root).
- Linux Database/Web Servers with Extensive Logging: Allocate a small / (20-30 GB), a large /var (100-500 GB) for logs and databases, a /home (50-100 GB) for user files, and swap (1-2x RAM). Use LVM for flexibility.
- Linux University Lab/Staging Servers: Create a / (20-30 GB), a large /home (200-500 GB) for individual user directories, a /var (50-100 GB) for shared data, and swap (1-2x RAM). Use quotas to manage user storage.

3. How does an operating system run multiple applications when the total available RAM is less than the combined memory requirements? Please summarize:

- How processes are scheduled to run on the CPU
- How process data is loaded into RAM
- What happens when RAM is insufficient for a new process
- How and when the operating system uses disk space (paging and swapping)
- The memory management strategies involved (e.g., demand paging)
- Whether all pages of a process must be loaded into RAM for execution

- CPU Scheduling

The OS uses a scheduler to alternate CPU time between processes (round-robin, priority-based, etc.).

- Loading into RAM

Only needed parts of a program are loaded into RAM using demand paging.

- When RAM Is Insufficient

- The system uses paging or swapping:
- Moves inactive memory pages to disk (swap space).
- This frees up RAM for active processes.

Disk Usage (Paging vs. Swapping)

- Paging: Moves individual memory pages (4KB typically).
- Swapping: May move the entire process out of RAM.
- Stored in a special swap partition or file.

- Memory Management Strategies

- Demand Paging: Only load pages as they are accessed.
- Copy-on-Write (COW): Share memory between processes until modification.
- Page Replacement Algorithms: Like LRU (Least Recently Used).

- Must All Pages Be in RAM?

- No only active pages are needed.
- Inactive pages remain on disk until required (lazy loading).

4. What is the Translation Lookaside Buffer (TLB), and what role does it play in memory management?

The **Translation Lookaside Buffer (TLB)** is a **CPU cache** used to speed up **virtual-to-physical address translations**.

- Every memory access by a program uses virtual addresses.
- The MMU (Memory Management Unit) consults the page table, which is slow.
- The TLB caches recent translations:
- Hit: Fast access
- Miss: Consult full page table (slower)

5. What are a page, a virtual page, and a context switch? Additionally, how does increasing swap space affect context-switching performance? How does page size influence these effects?

- Page: Fixed-length block of memory (commonly 4KB).
- Virtual Page: A page in the virtual address space.
- Context Switch: When the CPU switches between processes:
 - Saves current state, loads the next
 - Requires memory context change, possibly TLB flush

6. What is a huge page? Please explain its purpose and when it is used.

A **huge page** is a large memory page (e.g., 2 MB or 1 GB) used to reduce TLB overhead and improve performance for memory-intensive applications like databases or virtual machines, enabled via hugetlbfs in Linux.

7. What is memory fragmentation in RAM, and what problems can it cause?

Memory fragmentation occurs when free RAM is split into small, non-contiguous chunks, preventing allocation of large blocks. It causes allocation failures, inefficient memory use, and performance degradation.