This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

F/G. 1 ATTACHMENTS OF LIGANDS THROUGH PRIMER REGION

ATTACHMENT OF LIGANDS BY INCORPORATION OF MODIFIED NUCLEOTIDE PRECURSORS

FIG. 3

Incorporation of Ligands through Modified Ribonucleotides

F/G. 4 Attachment of Ligands through a 3' tail

F/G. 5
Preparation of Gapped Circle

F/G. 6Attachment of Ligands through hybridization to a 3' tail

F/G. 7
RNA with Ligands on Primer

F/G. 8 RNA with Ligands on Primer (Continued)

F/G. 9 RNA with Ligands on Multiple Primers

FIG. 10

RNA with Ligands on Multiple Primers (Continued)

F/G. 11 Single-stranded DNA with attached Ligands

Presence of a single Presence of multiple tRNA primer site tRNA primer sites 5' x x A' B' C' D' E' F' 5' x x A'B' C'D' E'F' G'H' Binding of tRNA to Primer Binding site Binding of tRNA's to Primer Binding site tRNA Primer 3' 5' x x A' B' C' D' E' F' 5' x x A' B' C' D' Extension of DNA strand Extension of DNA strand from tRNA primer from tRNA primers 3' J K A B C D E F 3' J K A B C D ΕF x x A' B' C' D' 3' J K A B C D 3' J K A B C D Synthesis of second strand by binding of tRNA to Primer Binding site at 5' end 3' J K A B C D 5' x x A' B' C' D'

FIG. 12

Single-stranded DNA with attached Ligands (continued)

FIG. 13

Linear Double-stranded DNA with attached Moieties on each strand

Antibody to CD34 Antigen

F/G. 14
Enhanced Delivery of Retroviral Vector to Haematopoeitic Stem Cell

F/G. 15
Enhanced Delivery of Vector
DNA to Haematopoeitic Stem Cell

FIG. 16
Covalent Attachment of vector DNA to Dimeric Antibody

FIG. 17

Covalent attachment of Modified DNA to a Monovalent Antibody

FIG. 18

Modified DNA used as a Binder

$$\begin{array}{c} \text{NH}_2 \\ \text{NH}_2 \\ \text{NH}_2 \\ \end{array} \begin{array}{c} \text{OH} \quad \text{$$

FIG. 19

Synthetic Steps for Creation of Antibodies With Nucleic Acid Moieties Attached

F/G. 20Continuation of Synthetic Steps

FIG. 21

Enhanced Binding of Antibodies to Antigens by Multimerization

*F/G. 22*High Affinity Multi-Insulin Soluble Complex

F/G. 23
Multimerization of Insulin molecules by hybridization to discrete Sequences

Intron insertion site

---ACGAGAGATTCCCAGATGAG----T7 RNA Polymerase Sequence Splice Donor Site Splice Acceptor Site TGTATTTTAGATTCAA----CTCTAAGGTAAATAT ACATAAAATCTAAGTT-----GAGATTCCATTTATA SV40 Intron Sequence ----TGCTCTCTAAGGTAAATAT - - - - - TGTATTTTAGGGTCTACTC-----ACGAGAGATTCCATTTATA - - - - ACATAAAATCCCAGATGAG----Insertion of SV40 Intron into polymerase coding sequence Splice Donor Site 'Splice Acceptor Site - - - - UGUAUUUUAGGGUCUACUC---mRNA transcript containing intron ----UGCUCUCUAAGGGUCUACUC--mRNA transcript after splicing has normal T7 Sequence

FIG. 24Fusion of Intron into T7 RNA Polymerase Coding Sequence

(A)

Normal T7 RNA polymerase coding sequence

25/51

Synthesis of fragments by PCR Amplification of T7 or SV40 templates

(B)

Fusion of PCR fragments together in eucaryotic expression vector

Introduction of cassette with AS directed from T7 promoter

T7 terminator sequence

Active T7 RNA polymerase is only made in eucaryotic cells after splicing out of SV40 Intron

AS sequence

PA signal

T7 Promoter

F/G. 25
Construction of T7 Expression Vector

AGC GAT GTT AAT TCA CCA CCA TGG ACA CGA TTA ACA TCG C TTT TGG AGG AGT GTC GTT CTT CTT TTG GTC TCG TCT CGT CTC GAG CTC Oligomers used for synthesis GAC TAG GGA ATT TSP-2

TCT CTG ACA TCG AAC TGG C TAA AAT GGA ATT CGT CTC GGA GAA AGG **TSP 3**

GTC AGC GAG CAT AGA TCT CCC CTT 16G GAC TAG TSP-4

TCG GTG GCG AGG TAC CGG TCT CGG GTC GGA ATT **ISP-5**

AAA GTC TTA CGC GAA CGC TAG GAC 1SP-6

AAA TAC ACA AAC AAT TAG A GAC TAG TCG TCT CTG ACC CTA

TAT AAA ATT TTT AAG

GGA ATT CGT CTC TAA GGT AAA

INI-1

INT-2

of Pieces for Construction of Synthesis of Pieces for Constructio T7 RNA Polymerase with Intron

3' C TAA TTG TAG CGA TTC TTG CTG TGA GGA GGT TTT TTC TCT GCT CTG GTT GAT CAG 5' ~ 5' GG AAT TCG TCT CGA GCT CTG ATC ACC ACC ATG GAC ACG ATT AAC ATC GC Annealing of TSP1 with TSP2 TSP1

by polymerase Extension of TSP1/TSP2

TGC TAA TTG TAG CGA TTC TTG CTG TGA GGA GGT TTT TTC TCT GCT CTG GTT GAT CAG 5' ACG ATT AAC ATC GCT AAG AAC GAC ACT CCT CCA AAA AAG AGA CGA GAC CAA CTA GTC 3' 5' GG AAT TCG TCT CGA GCT CTG ATC ACC ACC ATG GAC CC TTA AGC AGA GCT CGA GAC GTA TGG TGG TAC CTG

Bso I

Digestion of TSP1/TSP2 product with Bsa I

TTT TTC TCT GG AAT TCG TCT CGA GCT CTG ATC ACC ATG GAC ACG ATT AAC ATC GCT AAG AAC GAC ACT CCT CCA AAA AA IGC TAA TIG TAG CGA TIC TIG CTG TGA GGA GGT TTA AGC AGA GCT CGA GAC GTA TGG TGG TAC CTG ပ္ပ 5

Digestion of PCR #1 clone (pL-1) with BsmB I

5' GGA ATT CGT CTC G Bsm B1

GTA AAA TTC TCT GAC ATC GAA CTG GC-GAGA AAG

CCT TAA GCA GAG CCTCT

CAT TTT AAG AGA CTG TAG CTT GAC CG-TTC

Ligation of Bsa I digested TS1/TS2 product

TTC CAT TTT AAG to BsmB I digested PCR#1 clone ACG ATT AAC ATC GCT AAC ACT CCT CCA AAA AAG AGA AAG GTA AAA TTC TCT IGC TAA TTG TAG CGA TTC TTG CTG TGA GGA GGT 3' CC TTA AGC AGA GCT CGA GAC GTA TGG TGG TAC CTG 5' GG AAT TCG TCT CGA GCT CTG ATC ACC ACC ATG GAC

TCT GAC ATC GAA CTG GC-----

AGA CTG TAG CTT GAC CG-----

Formation of Nuclear Localisation Signal by Fusion of TSP1/TSP2 Product to Clone with PCR #1 product

16

15

Wild Type T7 nucleic and amino acid sequence

.90 ဥ GAA CTG CTT GAC ATC TAG 14 ATG GAC ACG ATT AAC ATC GCT AAG AAC GAC TTC TCT GAC TAC CTG TGC TAA TTG TAG CGA TTC TTG CTG AAG AGA CTG 1 2 3 4 5 6 7 8 9 10 11 12 13

with Nuclear Localisation Signal (NLS) insertion Modified T7 nucleic and amino acid sequence

GAA CTG GC--CTT GAC CG--CCT CCA AAA AAG AGA AAG GTA AAA TTC TCT GAC ATC
GGA GGT TTT TTC TTC CAT TTT AAG AGA CTG TAG
11 12 13 14 ATG GAC ACG ATT AAC ATC GCT AAG AAC GAC ACT
TAC CTG TGC TAA TTG TAG CGA TTC TTG CTG TGA

1 2 3 4 5 6 7 8 9 10

the 5' ends of the Nucleotide Sequences of Wild Type and Modified T7 RNA Polymerase Comparison of the 5'

Fusion of PCR Pieces to Construct T7 RNA Polymerase with an Intron

(A) Oligomers

HTA-1 GAT CAT TAG ACC AGA TCT GAG CCT GGG AGC TCT CTG GCT AAC TAG GGA ACC CAC TGC TTA AGC CTC AAG HTA-2 GAT CCT TGA GGC TTA AGC AGT GGG TTC CCT AGT TAG CCA GAG AGC TCC CAG GCT CAG ATC TGG TCT AAT

HTB-1 GAT CAC CTT AGG CTC TCC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA AGA CCT CCT CAA G

HTB-2 GAT CCT TGA GGA GGT CTT CGT CGC TGT CTC CGC TTC TTC CTG CCA TAG GAG AGC CTA AGG T

HTC-1 GAT CAT AGT GAA TAG AGT TAG GCA GGG ATA CTC ACC ATT ATC GGT TCA GAC CCA CCT CCC AG

HTC-2 GAT CCT GGG AGG TGG GTC TGA AAC GAT AAT GGT GAG TAT CCC TGC CTA ACT CTA TTC ACT AT

TER-1 AAT CTA GAG CTA ACA AAG CCC GAA AGG AAG

TER-2 TTC TGC AGA TAT AGT TCC TCC TTT CAG C

(B) Cloning of AS and Terminator sequences into vector with T7 Promoter

FIG. 30

Insertion of Anti-Sense Sequences into T7 Directed Transcription Units

FIG. 31

Construct with t7 RNA polymerase and Anti-Sense directed from a T7 Promoter

NOV 2 1 2003 CE.

A) Oligomers for introduction of T7 signals and polylinker

TCG AGC CAT GGC TTA AGG ATC CGT ACG TCC GGA GCT AGC GGG CCC ATC GAT ACT PL-1

AGT TAA ATG CAG ATC T

CTA GAG ATC TGC ATT TAA CTA GTA TCG ATG GGC CCG CTA GCT CCG GAC GTA CGG
PL-2
ATC CTT AAG CCA TGG C

FIG. 32

Introduction of Poly-Linker for Creation of Protein Expression Vector

Nco + TPR-1 Nco end Bam CATG AAA TTA ATT CGA CTC ACT ATA CGG A TTT AAT TAA GCT GAG TGA TAT GCC TCTAG Bgl end TPR-2 Spe + Pst pEXP-4 pEXP-3 Xma Xba Xma pTER-1 Xba Xba + Pst **17** T7 < Promoter Terminator Promoter Xba + Xma Spe χ_{ba} pINT-3 Xba + Xma T7 Promoter pA Signal T7 RNA Polym RSV Promoter pINT-4 17 Terminator

Final steps for construction of Expression Vector

FIG. 34

Construct that produces single-straned Anti-Sense DNA

Extension by RT and digestion by RNase H

F/G. 35
Continuation of Process from Figure 34

FIG. 36

Construct that produces RNA that is Reverse Transcribed to create Secondary DNA Constructs capable of directing transcription

FIG. 37

Construct which Propagates a Double Hairpin Production Center

3' Z Y X K J H G D'E'F' F E D G' H' J' K' X' Y' Z' A' B' C'
5' Z' Y' X' K' J' H' G' D E F F' E' D' G H J K X Y Z A B C

(Structure 38d)

In this Example, the sequence F' E' D' is a promoter, the sequence GHJK is an Anti-Sense sequence and X Y Z is a poly A signal

FIG. 38

Continuation of process from Figure 37

FIG. 39

Construct which propagates a Production Center capable of Inducible Suicide

FIG. 40

Use of tRNA primers to create a DNA construct for secondary production of transcripts

FIG. 41

Excision of sequences from U1 Transcript Region and Replacement with Novel Sequences

(A) Anti-sense oligomers

HVA-1 GAT CCG GAT TGA GGC TTA AGC AGT GGG TTC CCT AGT TAG CCA GAG AGC TCC CAG GCT CAG ATC TGG TCT AAT HVA-2 CCG GAT TAG ACC AGA TCT GAG CCT GGG AGC TCT CTG GCT AAC TAG GGA ACC CAC TGC TTA AGC CTC AAT CCG HVB-1 GAT CCG GAC CTT AGG GAG GTC TTC GTC GCT GTC TCC GCT TCT TCC TGC CAT AGG AGA GCC TAA GGT HVB-2 CCG GAC CTT AGG CTC TCC TAT GGC AGG AAG AAG CGG AGA CAG CGA CGA AGA CCT CCT CAA GGT CCG HVC-1 GAT CCG GAT AGT GGG AGG TGG GTC TGA AAC GAT AAT GGT GAG TAT CCC TGC CTA ACT CTA TTC ACT AT HVC-2 CCG GAT AGT GAA TAG AGT TAG GCA GGG ATA CTC ACC ATT ATC GTT TCA GAC CCA CCT CCC ATC CG HVD-1 GAT CAG CAT GCC TGC AGG TCG ACT CTA GAC CCG GGT ACC GAG CTC GCC CTA TAG TGA GTC GTA TTA T HVD-2 CCG GAT AAT ACG ACT CAC TAT AGG GCG AGC TCG GTA CCC GGG TCT AGA GTC GAC CTG CAG GCA TGC T

(B)Replacment of U1 sequences with HIV Anti-sense sequences

F/G. 42
Insertion of Anti-Sense Sequences into U1 Operons

FIG. 43

Predicted secondary structures for U1 Transcripts with Anti-sense Substitutions

FIG. 44

Construction of U1 Multiple Operon Clone

F/G. 45
Construction of T7 Triple Operon

pNDU1(A,B,C)

Triple U1 Operon Construct with HIV Anti-Sense

TRI 101

Triple T7 Operon Construct with HIV Anti-Sense

FIG. 46

Structures of Triple Operon Constructs from Figures 44 and 45

FIG. 47

Construction of Multiple T7 Operons in Vector coding for T7 RNA Polymerse

G	reen FI 3 JL	_0CT05.023		T	Total = 7509	თ	
2. G	~	JL_0CT05.02	74	Ľ	Total = 7509	6	
Hist	Region	Bounds	Counts	*	Mean X Mean Y	an Y Made	×
-		1 78	5714	76.1	63.65	78	14
	LIN POS	85 1002	.1129	15.0	97.34	85	17
	OVERALL	1 1024	7509	100.0	70.28	70	23
2	LOG NEG	2 .2	4211	56.1	2.34	2	21
ı	LOG POS	2 1001	3407	45.4	4.76	3	69
	OVERALL	2 1001	7509	100.0	3.43	2	88

F/G. 48Flow cytometry data measuring binding of anti -CD4+ antibody to HIV resistant U037 cells

49/51

FIG. 49

PCR amplification of gag region indicating absence of HIV in viral resistant cell line (2.10.16) after challenge

FIG. 50

Clone with target-lacZ fusion will have reduced expression of lacZ after transfection by HIV Anti-sense construct

51/51

(A)

Enzyme activity as expressed by A₄₂₀ readings in extracts prepared from

	2.5×10^4 cells	5 x 10 ⁴ cells	1.0 x 10 ⁵ cells
U 937 (untransfected)	0.018	0.023	0.034
U 937 (HIV A clone)	0.154	0.277	0.566
U937 (HIV A/Anti-A)	0.010	0.017	0.027
U 937 (HIV A/Anti-ABC)	0.013	0.021	0.035
U 937 (HIV A/Null DNA)	0.120	0.212	0.337

(B)

Expression of Beta-galactosidase activity by In situ assay:

U 937 (untransfected)	no blue spots in cells
U 937 (HIV A clone)	blue spots in cells
U 937 (HIV A/Anti A)	no blue spots in cells
U 937 (HIV A/Anti ABC)	no blue spots in cells
U 937 (HIV A/Null DNA)	blue spots in cells

FIG. 51

Expression of Beta-galactosidase activity in extracts