On the sign recovery by LASSO, thresholded LASSO and thresholded Basis Pursuit Denoising

Patrick Tardivel and Małgorzata Bogdan

Instytut Mathematyczny Wrocław

July 3rd 2020

Introduction

Let us consider the high-dimensional linear regression model

$$Y = X\beta + \varepsilon$$
,

where $X \in \mathbb{R}^{n \times p}$ with p > n, rank(X) = n.

We aim at recovering $sign(\beta) := (sign(\beta_i))_{1 \le i \le p}$, where $\beta \in \mathbb{R}^p$ is an unknown sparse parameter.

LASSO and BP estimators

The LASSO estimator $\hat{\beta}(\lambda)$ is defined by

$$\hat{\beta}(\lambda) := \mathop{\mathsf{argmin}}_{b \in \mathbb{R}^p} \ \frac{1}{2} \| Y - Xb \|_2^2 + \lambda \| b \|_1, \lambda > 0$$

The Basis Pursuit (BP) estimator $\hat{\beta}^{bp}$ is defined by

$$\hat{eta}^{bp} := \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \ \|b\|_1 \ \text{subject to} \ Y = Xb.$$

The noiseless case $(Y = X\beta)$

The BP (estimator) $\hat{\beta}^{bp} := \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \|b\|_1$ subject to Y = Xb recovers $\operatorname{sign}(\beta)$ iff β is identifiable (with respect to X and the L_1 norm)

$$X\gamma = X\beta$$
 and $\gamma \neq \beta \Rightarrow ||\gamma||_1 > ||\beta||_1$.

Note that β is identifiable iff $sign(\beta)$ is identifiable.

The LASSO (estimator) $\hat{\beta}(\lambda) := \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{2} \|Y - Xb\|_2^2 + \lambda \|b\|_1$ recovers $\operatorname{sign}(\beta)$ iff the irrepresentability condition

$$\|X_{\overline{I}}'X_I(X_I'X_I)^{-1}sign(\beta_I)\|_{\infty} < 1, \text{ where } \begin{cases} I := \{i : \beta_i \neq 0\}, \\ \overline{I} := \{i : \beta_i = 0\} \end{cases}$$

and non-null components of β are sufficiently large (Buhlmann and van de Geer(2011)).

Irrepresentability condition

Theorem (Wainwright, 2009)

Let $Y = X\beta + \varepsilon$ where ε has a symmetric distribution. If the following inequality holds

$$\|X_{\bar{I}}'X_I(X_I'X_I)^{-1}\mathrm{sign}(\beta_I)\|_{\infty}>1$$

then whatever $\lambda > 0$, we have $\mathbb{P}(\operatorname{sign}(\hat{\beta}(\lambda)) = \operatorname{sign}(\beta)) \leq 1/2$.

Proposition (Tardivel and Bogdan)

If the following inequality holds

$$\|X_{\overline{I}}'X_I(X_I'X_I)^{-1}sign(\beta_I)\|_{\infty} < 1,$$

then the parameter β is identifiable with respect to X and the L_1 norm.

Standard Gaussian design

$X \in \mathbb{R}^{100 \times 300}$ standard Gaussian matrix

- black line $k = \rho(100/300) \times 100 = 31$
- red line $k = 100/(2\log(300)) = 9$

 $X \in \mathbb{R}^{100 imes 300}$ where columns are extremely correlated (columns of X are almost all equal)

Identifiability and irrepresentability curves

Sign recovery by thresholded LASSO and thresholded BP

Theorem (Tardivel and Bogdan)

 $Y = X\beta + \varepsilon$, $X \in \mathbb{R}^{n \times p}$ and $\beta \in \mathbb{R}^p$ an unknown parameter.

$$\hat{\beta} \text{ represents } \begin{cases} \hat{\beta}(\lambda) := \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \ \frac{1}{2} \|Y - Xb\|_2^2 + \lambda \|b\|_1, \text{ or } \\ \hat{\beta}^{bp} := \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \ \|b\|_1 \text{ subject to } Y = Xb. \end{cases}$$

If β is not identifiable then: $\exists i \text{ such that } \beta_i \neq 0 \text{ and } \hat{\beta}_i \beta_i \leq 0$. Thus, thresholded LASSO/BP cannot recover $\operatorname{sign}(\beta)$.

If β is identifiable and non-null components of β are large then

$$\max_{i:\beta_i<0}\left\{\hat{\beta}_i\right\}<\min_{i:\beta_i=0}\left\{\hat{\beta}_i\right\}\leq\max_{i:\beta_i=0}\left\{\hat{\beta}_i\right\}<\min_{i:\beta_i>0}\left\{\hat{\beta}_i\right\}.$$

Thus, thresholded LASSO/BP can recover $sign(\beta)$.

To summarize

To recover $sign(\beta)$ one needs the following conditions

• With the LASSO one needs the irrepresentability condition

$$\|X_{\overline{I}}'X_I(X_I'X_I)^{-1}\mathrm{sign}(\beta_I)\|_\infty<1$$

 With the thresholded LASSO/BP one needs the identifiability condition

$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

We remind that

Irrepresentability condition ⇒ Identifiability condition

Numerical experiments

Method to compute the threshold when the design is standard Gaussian:

Input: design matrix X, response Y and $\lambda > 0$ (for LASSO)

• Generate Z_1, \ldots, Z_l be i.i.d random vectors having $\mathcal{N}(0, I_n)$ distribution and solve the following optimization problems:

$$\begin{split} & (\hat{b}^{(i)}, \hat{c}^{(i)}) &= & \underset{b \in \mathbb{R}^p, c \in \mathbb{R}}{\operatorname{argmin}} \, \frac{1}{2} \| Y - Xb - Z_i c \|_2^2 + \lambda (\| b \|_1 + |c|), \\ & (\hat{b}^{(i)}, \hat{c}^{(i)}) &= & \underset{b \in \mathbb{R}^p, c \in \mathbb{R}}{\operatorname{argmin}} \, \| b \|_1 + |c| \text{ subject to } Xb + Z_i c = Y. \end{split}$$

② Compute the threshold as the empirical $(1-\alpha)^{1/p}$ quantile of $\hat{c}^{(1)}, \ldots, \hat{c}^{(l)}$.

Let $Y = X\beta + \varepsilon$ where $X \in \mathbb{R}^{100 \times 300}$ is a standard Gaussian matrix, $\varepsilon \sim \mathcal{N}(0, I_n)$, $\|\beta\|_0 = 20$, non null components of β are all equal to t > 0.

FWER of thresholded LASSO and BP sign estimators

Thresholded LASSO and BP sign estimators

Thank you!

 Tardivel and Bogdan. On the sign recovery by LASSO, thresholded LASSO and thresholded Basis Pursuit Denoising

Related article

 U. Schneider, PJC. Tardivel. The Geometry of Uniqueness and Model Selection of Penalized Estimators including SLOPE, LASSO and Basis Pursuit.