# Chen-Zhu Xie



Portfolio: 😯 🔼 in Scholar:  $\Gamma$ 

Preference: 6

Contact: **∠** X

Personality: aries INTP ab

### Education

| Nanjing University                                                                                                                                                   | College of Engineering and Applied Sciences Nanjing, J |                                                   |                                      |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| Doctor of Philosophy                                                                                                                                                 | Optical Engineering                                    | <i>Q.E.</i> − <i>Top 15%</i>                      | Nonlinear Fourier Optics 🕥 – 2025.06 |  |  |  |  |  |  |  |  |
| <b>Dissertation:</b> "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\varepsilon}}, \bar{\bar{\chi}}$ dielectrics" |                                                        |                                                   |                                      |  |  |  |  |  |  |  |  |
| Master 's Studies                                                                                                                                                    | Quantum Electronics                                    | Courses Score – 93.5 🕠                            | THz OAM Source – 2022.06             |  |  |  |  |  |  |  |  |
|                                                                                                                                                                      |                                                        |                                                   |                                      |  |  |  |  |  |  |  |  |
| Northeastern Unive                                                                                                                                                   | rsity Scho                                             | ool of Physics, College of Scie                   | nce Shenyang, Liaoning               |  |  |  |  |  |  |  |  |
| Northeastern University  Bachelor of Science                                                                                                                         | rsity Scho                                             | ool of Physics, College of Scie  GPA Rank – 1/400 | DDTank Aimbots – 2020.06             |  |  |  |  |  |  |  |  |
| Bachelor of Science                                                                                                                                                  | Applied Physics                                        | GPA Rank − 1/400 <b>(</b>                         | , 0,                                 |  |  |  |  |  |  |  |  |

### **Personal Projects**



### 3 primitive e-books on mathematics, physics, and programming -2017.08• Book 1: mainly on mathematics, some intriguing chapters are: lacktriangle Multinomial theorem: $(\Sigma_{i=1}^n a_i)^m = \Sigma_{\prod_{i=1}^n b_i!}^{m!} \prod_{i=1}^n a_i^{b_i}$ over $\{b_i \geq 0\}$ , where $\Sigma_{i=1}^n b_i = m$ → Strive to get the general formula for the n-th derivatives $f(g(x))^{(n)}$ of a composite function → Connection between the sums of certain series and the indefinite integrals of their terms ightharpoonup Explaining Euler's formula a+b-c=n through topology → Retracing the birth of the determinant calculation rules • Book 2: up to 12 programs designed to solve mathematical / physical problems → Multinomial theorem $\Longrightarrow$ Microstate count $\Omega_l = \frac{(g_l + a_l - 1)!}{(g_l - 1)! a_l!}$ of Bose-Einstein systems → All solutions $\{b_i\}$ that meet the prerequisite $\sum_{i=1}^m i \cdot b_i = m$ of the Faà di Bruno Formula $\rightarrow$ Deep recursion algorithms for partition number P(n) & all the aforementioned contexts $\longrightarrow$ General solution $\{x_i\}$ of multivariable linear Diophantine equation $\sum_{i=1}^n a_i \cdot x_i = b$ woheadrightarrow Minimum integer solution x,y of linear Diophantine equation $a\cdot x + b\cdot y = c$ • Book 3: geometry-related mathematics & physics ➤ Spherical trigonometry: from which I designed a non-Euler\_angle rotation operator for NLAST which converts direction $\theta$ , $\phi$ of a 3D real vector v between two coordinate systems

→ Special relativity: Had it been animated (by Manim?), it would have looked stunning



<sup>&</sup>lt;sup>1</sup> Non-linear Angular Spectrum Theory

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- The next generation of this project will come really close to the exact solution
- logging system
  - o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
  - o JOSA.A. | O.E. #tightly focus # $\bar{\epsilon}$  anisotropy | Light.Sci.App. | O.E.

PPT <u>1 2 3</u> ... •

PPT 1234 ... 😱

Three Books Closed-form  $E_3(\mathbf{r})$  in  $\left[ \nabla^2 + k_3^2 \right] E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r}) E_1(\mathbf{r}) E_2(\mathbf{r}) \right]$ 

2022.02 -

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Developed a log file system to record and output script runtime parameters\*\*kwargs,
  - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
  - L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
  - O.L. | P.R.A.

### Scientific Activities

- [0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum

  "Analytic vector linear & nonlinear Fourier crystal optics in arbitrary  $\bar{\epsilon}$ ,  $\bar{\bar{\chi}}$  dielectrics" | Oral [PPT] 2024.05.29
- [-1] 2023 CSOE-NJU<sup>2</sup> Book Club Meeting & Sharing Session

  "A guided tour to Ray & Wave Optics Simulation" | Oral [PPT]

  2023.12.09
- [-2] Academic Café Salon of the Research Group

  Nanjing, Jiangsu
  - "Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" | Oral [PDF]

2021.05.21

### **Publications**

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, **C. Xie**, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications **14**, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

### **Academic Focus**

Next generation high N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics  $\square$  2024.06 – !Paraxial  $k_0^\omega$  High N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics  $\square$  2024.03 – Emphasizing  $G_{\text{xyz}}^\omega$  3D vector non-uniform analytic linear & nonlinear Fourier crystal optics  $\square$  2023.12 – Involving  $\bar{\chi}_{\omega}^{(2)}$  anisotropy Vector non-uniform analytic linear & nonlinear Fourier crystal optics  $\square$  2023.06 – !Unitary  $G_{\omega}^{\pm} \Leftarrow$  !Hermitian  $\bar{\varepsilon}_{r}^\omega \Rightarrow$  Non-uniform analytic linear & nonlinear Fourier crystal optics  $\square$  2023.03 –

<sup>&</sup>lt;sup>2</sup> The Nanjing University student branch of the Chinese Society for Optical Engineering

| Solution $m{E}_{\omega}^{\pm}$ to $\left(m{\nabla}^2+k_{\omega\pm}^2\right)m{E}_{\omega}^{\pm}\!\propto\!m{P}_{\omega\pm}^{(2)}$ | Analytic linear & nonlinear Fourier crystal optics 😱 | 2022.09 - |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below                                           | <b>Nonlinear</b> angular spectrum theory for SFG 🕠   | 2022.06 - |
| Solution $\mathcal{F}[E_3] = \iiint \cdot \text{to} \left( \nabla^2 + k_3^2 \right) E_3(r) \propto P_3^{(2)}(r)$                 | Nonlinear convolution solution to SFG 🕠              | 2022.03 - |
| Nonlinear THz LiNbO <sub>3</sub> -based metasurface                                                                              | Quit THz project formally   COMSOL                   | - 2022.01 |
| BWOPO + THz optical parametric amplification                                                                                     | Mathematica   BookxNote Pro                          | - 2021.12 |
| THz backward optical parametric oscillator (BWOPC)                                                                               | Mathematica   VBA Excel                              | - 2021.11 |
| Multi-cycle THz orbital angular momentum (OAM)                                                                                   | source RoamEdit   Blender                            | - 2021.11 |
| Narrow-band THz OAM source via Optical Rectifica                                                                                 | tion (OR) Python   Blender                           | - 2021.10 |
| $\bigcirc$ Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics                           | RoamEdit   VBA Excel                                 | - 2021.07 |
| $\bigcirc$ Visible Photons $\xrightarrow{\text{SPDC}}$ THz Spectroscopy                                                          | BookxNote Pro   GeoGebra   VBA Excel                 | - 2021.06 |
| Cavity Phase Matching = Sheet OPO                                                                                                | Paint 3D   RoamEdit   GeoGebra   VBA Excel           | - 2021.05 |
| 🕥 THz Holography via Optical Rectification                                                                                       | Matlab   GeoGebra   VBA Excel                        | - 2021.01 |
| $\square$ Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)                                         | GeoGebra   VBA Excel                                 | - 2020.12 |
| Multicycle THz pulse generation by OR in LiNbO <sub>3</sub>                                                                      | . crystals VBA PowerPoinT                            | - 2020.10 |

## Honors & Awards

| Academia     | Doctor's Qualification Exam (Oral)   |                        | Excellent   | <b>(</b>   | <i>Top 15%</i> | Nanjing     | U.          | 2024.01 |         |
|--------------|--------------------------------------|------------------------|-------------|------------|----------------|-------------|-------------|---------|---------|
|              | Bachelar Thesis 😱 & Defense          |                        | Excellent   | (7)        | 1/90           | Northeaster | n U.        | 2020.06 |         |
| Competition  | Three Provinces Achievement Expo     | <b>(</b>               | Exhibition  |            | Leader         | Three       | Prov.       | 2019.10 |         |
|              | "Challenge Cup" Tech Competition     | <b>(</b>               | Grand prize | e 😱        | Leader         | Liaoning    | Prov.       | 2019.06 |         |
| Sahalanahina | Academic Fellowship                  |                        | 1st class   |            | ¥40,000        | Nanjing     | U.          | 2020-24 |         |
|              | Scholarships<br>&                    | "Jinchuan" Scholarship |             | 1st place  |                | ¥5,000      | Northeaster | n U.    | 2019.04 |
| Fellowships  | Academic Scholarship                 |                        | 1st place   |            | ¥2,000         | Northeaster | n U.        | 2018.06 |         |
|              | Entrance Scholarship                 |                        | 3rd place   |            | ¥5,000         | Leshan No.1 | H.S.        | 2013.09 |         |
| Hor          | iors                                 | Graduation with Honor  |             | Outstandin | ıg             |             | Northeaster | n U.    | 2020.07 |
| 8            | ķ                                    | League Member          |             | Excellent  |                |             | Northeaster | n U.    | 2019.11 |
| Tit          | les                                  | Undergraduate Student  |             | Excellent  | (7)            |             | Northeaster | n U.    | 2018.12 |
| Memberships  | Chinese Society for Optical Engineer | ing                    | Member      |            |                | Nanjing     | U.          | 2021-25 |         |
|              | "Qian Sanqiang" Talent Class         |                        | Head        |            |                | I.H.E.P.    |             | 2017-20 |         |

# Research Projects

#### 3D Vector Nonlinear Fourier Crystal Optics

Solving 
$$\left[ (\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot ] \underline{\boldsymbol{E}}(\boldsymbol{r}) = k_0^2 \bar{\bar{\chi}} : \mathcal{F}_{\omega}^{-1} \left[ \widetilde{\boldsymbol{E}}_{\mathrm{p}} \widetilde{\boldsymbol{E}}_{\mathrm{p}} \right] (\boldsymbol{r}) \right] \text{ analytically}$$
 2023.05 –

- First & fastest white box solver ever for this inhomogeneous wave equation o or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including o k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- Reproduced well-known papers, all of which provide either zero or wrong theory:
  - Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
  - O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component
  - $\circ$  O.E. | Q.E. #high N.A. # $\bar{\chi}$  anisotropy

### **Complex Vector Linear**

Fourier Crystal Optics

Analytic solution 
$$E(r)$$
 to  $\left[ (\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] E(r) = 0$  where  $\varepsilon_{ij} \in \mathbb{C}$  2023.02

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- Next generation of this project will come really close to the exact solution
- Reproduced well-known papers, some are purely experimental (too hard to model):
  - o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
  - o JOSA.A. | O.E. #tightly focus # $\bar{\epsilon}$  anisotropy | Light.Sci.App. | O.E.

PPT <u>123</u> ... 😱

PPT 123 ... 😱

# Real Scalar Nonlinear

Fourier Crystal Optics

Closed-form 
$$E_3(r)$$
 in  $\left[\nabla^2 + k_3^2\right] E_3(r) = -k_{03}^2 \chi(r) E_1(r) E_2(r)$  2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency:
  - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
  - L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
  - O.L. | P.R.A.

PPT 1234 ... 😱

### Extracurricular Activities

Detailed explanation of what you do at this club

Detailed explanation of what you do at this club

- Member at Some Club 2017-Current
- Member at Some Club 2016-2017
- · Volunteer at Some Event Fall 2019 Detailed explanation of what you do in this event
- Winter 2015 Volunteer at Some Event Detailed explanation of what you do in this event

### Skills

## Languages

- Skill Group: List of technologies
- Skill Group: List of technologies
- · Skill Group: List of technologies
- Skill Group: List of technologies

- Language: language proficiency level
- EXAM: details
- Language: language proficiency level
- Language: language proficiency level