CBCS SCHEME

USN					1	5	7
00.	1.02						

BCS405A

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Discrete Mathematical Structures

Time: 3 hrs. Max. Marks: 100

Note: I. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define tautology. Prove that for any propositions p, q, r the compound proposition. $[(p \land q) \to r] \to [p \to (q \lor r)] \text{ is a tautology}$		L2	CO1
	b.	[(p ∧ 1q) → r] → [p → (q ∨ r)] is a tautology Test whether the following is a valid argument: If Ram studies then he will pass 12 th . If Ram passes 12 th then his father gifts him a bike. If Ram doesn't play video game then he will pass 12 th . Ram did not get a bike. ∴ Ram played video game.			CO1
	c.	Give direct proofs of the statements: i) If k and l are odd then k + l is even. ii) If k and l are odd then k l is odd.	07	L2	CO1
		OR			
Q.2	a.	Define (i) Proposition (ii) Open statement (iii) Quantifiers	06	L2	CO1
	b.	Using the laws of logic, prove the following logical equivalence: $[(1p \lor 1q) \land (F_0 \lor p) \land p] \Leftrightarrow p \land 1q$.	07	L2	CO1
	c.	Write the following statement in symbolic form and find its negation: "If all triangles are right angled then no triangle is equilateral".	07	L2	CO1
		Module – 2			
Q.3	a.	Prove by using mathematical induction. $1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$	06	L2	CO1
	b.	How many words can be made with or without meaning from the letters of the word "STATISTICS"? In how many of these a and c are adjacent? In how many vowels are together?	07	L3	CO2
	c.	Find the coefficient of x^3y^8 in the expansion of $(2x - y)^{11}$.	0.7	L2	CO2
		OR			
Q.4	a.	Obtain the recursive definition for the sequence in each of the following cases: (i) $a_n = 5n$ (ii) $a_n = 3n + 7$ (iii) $a_n = n^2$ (iv) $a_n = 2 - (-1)^n$	06	L2	CO2
	b.	A woman has 11 close relations and wishes to invite 5 of them to dinner. In how many ways can she invite them if (i) there is no restriction on her choice. (ii) 2 persons will not attend separately (iii) 2 persons will not attend together.		L3	CO2
	c.	In how many ways can we distribute 7 apples and 5 oranges among 3 children such that each child gets atleast one apple and one orange?	07	L3	CO2

		Module – 3	-		405/1	
Q.5	a.	State pigeon hole principle. Using pigeon hole principle find the minimum	06	L3	CO3	
V. 5		number of persons chosen so that atleast 5 of them will have their birthday				
		in the same month.				
	b.	Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4, 5\}$. Find the number of 1-1	07	L2	CO3	
		functions and onto functions from (i) A to B (ii) B to A				
	c.	Let A = $\{1, 2, 3, 4, 5\}$. Define a relation R on A × A by (x_1, y_1) R (x_2, y_2)	07	L2	CO ₃	
		$\inf x_1 + y_1 = x_2 + y_2.$				
		(i) Verify that R is an equivalence relation				
		(ii) Determine the equivalence class of [(2, 4)]				
		OR	06	L2	CO3	
Q.6	a.	HE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOT				
		$g(x) = \frac{1}{2}(x-5)$. Prove that g is inverse of f.			000	
	b.	Let $A = \{1, 2, 3, 4\}$ and R be the relation on A defined by xRy if and only		L2	CO ₃	
		if x < y. Write down R as a set of ordered pairs. Write the relation matrix		V		
		and draw the digraph. List out the in degrees and out degrees of every		1	5	
	c.	vertex. Let $A = \{1, 2, 3, 6, 9, 12, 18\}$ and define R on A by xRy iff 'x divides y'.	07	L2	CO3	
	۲.	Prove that (A, R) is a POSET. Draw the Hasse diagram for (A, R) .	0,	LZ	COS	
		Module – 4				
Q.7	a.	How many integers between 1 and 300 (inclusive) are divisible by	06	L3	CO4	
~		(i) at least one of 5, 6 or 8. (ii) None of 5, 6 and 8.				
	b.	At a restaurant 10 men handover their umbrellas to the receptionist, In how	07	L3	CO4	
		many ways can their umbrellas be returned so that (i) no man receives his				
		own umbrella. (ii) atleast one gets his own umbrella. (iii) atleast two gets				
		their own umbrellas.				
	c.	The number of virus affected files in a system is 1000 (to start with) and	07	L3	CO4	
		this increases by 250% every 2 hours. Use a recurrence relation to				
		determine the number of virus affected files in the system after 12 hours.				
-		OR	0.4		004	
Q.8	a.	In how many ways one can arrange the letters of the word		L3	CO4	
	1 19/19	"CORRESPONDENTS" so that there are (i) no pair (ii) at least 2 pairs of				
	b.	consecutive identical letters. 4 persons P ₁ , P ₂ , P ₃ , P ₄ who arrive late for a dinner party find that only	07	L3	CO4	
	D.	one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not	07	L3	CO4	
		sit at T ₁ or T ₂ . P ₂ will not sit at T ₂ . P ₃ will not sit at T ₃ or T ₄ . P ₄ will not sit				
		at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.				
	c.	Solve the recurrence relation	07	L2	CO4	
		$a_n - 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$ with $a_0 = 5$, $a_1 = 12$.				
		Module – 5				
Q.9	a.	If * is an operation on Z defined by $xy = x + y + 1$, prove that $(Z, *)$ is an	06	L2	CO5	
		abelian group.				
	b.	Explain Klein-4 group with example.	07	L2	CO5	
	c.	State and prove Lagrange's theorem.	07	L2	CO5	
		OR				
Q.10	a.	Prove that intersection of two subgroups of a group G is also a subgroup of	06	L2	CO5	
		G.				
	b.	Prove that $(Z_4, +)$ is a cyclic group. Find all its generators.	07	L2	CO5	
		(1 2 3 4)	07	L3	CO5	
	c.	Let $G = S_4$ for $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$				
		Find the subgroup $H = \langle \alpha \rangle$ determine the left cosets of H in G.				