NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEEKEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n poging om die vraag te beantwoord, doodgetrek het en nie dit oorgedoen het nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienmemorandum toegepas.
- Aanvaarding van antwoorde/waardes om 'n probleem op te los, is ONaanvaarbaar.

QUESTION/VRAAG1

1.1	$\bar{x} = \frac{816}{12} = 68$	√ 816
İ	12	12
		✓ 68
		(2)
1.2	$\sigma = 18,42$	✓ answer/antw
1.2		\perp (1)
1.3	(68 - 18,42; 68 + 18,42) = (49,58; 86,42)	✓✓ interval
	6 candidates had a mark within one standard deviation of the	✓ answer/antw
	mean/6 kandidate het 'n punt binne een standaardafwyking vanaf	(3)
	die gemiddelde.	
1.4	a = 22,828 = 22,83	✓ value of a/
		waarde van a
	b = 0.66429 = 0.66	\checkmark value of $b/$
		waarde van b
	$\hat{y} = 0.66x + 22.83$ OR/OF $\hat{y} = 22.83 + 0.66x$	✓ equation/vgl
1.5	2 0 66 20 00	(3)
1.5	$\hat{y} = 0.66x + 22.83$	
	y = 0.66(60) + 22.83	✓ subs of 60 into
	62,43% ≈ 62%	equation
		✓ answer/antw
	OR/OF	(2)
	62,69% ≈ 63%	✓✓ answer/antw
1.6		(2)
1.6	(82; 62)	✓ answer/antw
		(1)
		[12]

2014 -11- 13

PRIVATE BAG X 110
PRETORIA 0001

Copy right recomposition of the composition of the compositio

SHA

2.1	$50 < x \le 60$ between 50 a	OR / OF $50 \le x < 6$ and 60 /tussen 50 en 6	60 OR/OF	✓ answer/antw
2.2.1	Class	Frequency	Cumulative frequency	(
	Klas	Frekwensie	Kumulatiewe frekwensie	
	$20 < x \le 3$		1	
	$30 < x \le 4$		8	√ 8
	$40 < x \le 5$		21	
	$50 < x \le 6$		38	
	$60 < x \le 7$		47	
	$70 < x \le 8$		52	
	$80 < x \le 90$		54	/ 55
	$90 < x \le 10$	00 1	55	√ 55
.2.2				(
	6			grounding at (20; 0)/ anker
	5			by (20; 0) ✓ plotting at upper limits/ plot by boonste
	40			limiete ✓ smooth shape of curve/gladde kurwe
	Cumulative Frequency/ Kumulatiewe frekwensie			
	Cumula Kumula			
	0			
		0 10 20 30 40	50 60 70 80 90 100	
			n km per hour/ in km per uur	
	55 44 7-			(3)
		ept/aanvaar 43 – 45)		√ 44
,	≈ 11 motorists/			✓ 11
	accepu <i>aanvaa</i>	r = 10 - 12 motorists/n	notoriste)	(2)
		The second secon		[8]

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

ZUIA TIT TO

PRETORIA 0001

PUBLIC EXAMINATIONS

A

3.1	r = MN = 5	✓ answer/antw
		(1)
3.2	$(x-5)^2 + (y-4)^2 = 25$	✓equation/vgl
		(1)
3.3	$A(x; 0)$ $(x-5)^{2} + (0-4)^{2} = 25$ $x^{2} - 10x + 25 + 16 = 25$ $x^{2} - 10x + 16 = 0$ $(x-5)^{2} + 16 = 25$ $(x-5)^{2} + 16 = 25$ $(x-5)^{2} + 16 = 25$ $(x-5)^{2} = 9$ $(x-8)(x-2) = 0$ $(x-5) = \pm 3$ $\therefore x = 8 \text{ or/of } x = 2$ $\therefore A(2; 0)$ $\therefore A(2; 0)$	✓ substitute into eq/ vervang in vgl y = 0 ✓ standard form/ standaardvorm or perfect square form/kwadr vorm ✓ answer/antw (3)
3.4.1	$m_{\rm MB} = \frac{4 - 0}{5 - 8} \\ = -\frac{4}{3}$	✓ subst M and B into form/vervang M and B in form ✓ $m_{MB} = -\frac{4}{3}$ (2)

Sylflet

3.4.2	$m_{\text{MB}} \times m_{\text{PB}} = -1$ (tangent \perp radius/ $rkd \perp radius$)	T7
	$m_{\rm PB} = \frac{3}{4}$	$m_{MB} \times m_{PB} = -1$
	4	11130-2 - 1223-1
	$y = \frac{3}{4}x + c$ OR/OF $y - y_1 = \frac{3}{4}(x - x_1)$	$\sqrt{m_{\rm PB}} = \frac{3}{4}$
	$0 = \frac{3}{4} (8) + c \qquad y - 0 = \frac{3}{4} (x - 8)$	
	2	
	$y = \frac{3}{4}x - 6$ $y = \frac{3}{4}x - 6$	
3.5		✓ equation/vgl
2.2	$y_R = y_M + r = 4 + 5$ $y = 9$	√ 9
		✓ equation/vg/
3.6	At/By L:	(2
	$\frac{3}{4}x - 6 = 9$	
	3x - 24 = 36	✓ equating simultaneously
	3x = 60	✓ simplification
	x = 20	
	∴ L(20; 9)	(2)
.7	L(20; 9)	
	ML = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ OR/OF ML = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	correct subst
	$=\sqrt{(20-5)^2+(9-4)^2} = \sqrt{(15)^2+(5)^2}$	formula/ korrekte subst
	$=\sqrt{225+25} \qquad \qquad =\sqrt{(5)^2(9+1)}$	in afstand-
	$=\sqrt{250}$ or/of $5\sqrt{10}$ $=\sqrt{250}$ or/of $5\sqrt{10}$	formule ✓ answer in surd
	•	form/antw in wortelvorm
8	$MK \perp KL OR/OF M\hat{K}L = 90^{\circ} (radius \perp tangent/radius / rkl)$	(2)
	MK ⊥ KL OR/OF MKL = 90° (radius ⊥ tangent/radius ⊥ rkl) ∴ ML is a diameter as it subtends a right angle/ML is middellyn	✓ S
	ML $\sqrt{250}$ /125	✓ value
	- 12	of/waarde
	Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML	van r
1/3	$x = \frac{5+20}{2} = \frac{25}{2} = 12,5 y = \frac{4+9}{2} = \frac{13}{2} = 6,5$	$\sqrt{x} = 12,5$
- W	Centre/midpt: (12,5; 6,5)	y = 6.5
1	Equation of the circle KLM /Vgl van sirkel KLM:	
- N		✓ answer in correct
	$\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$	form/ antw in
	OD /OZ	korrekte vorm
	OK/OF	
DE W	OR/OF	(5)

PUBLIC EXAMINATIONS

 $MK \perp KL \quad OR/OF \quad M\hat{K}L = 90^{\circ}$ (radius \perp tangent/radius $\perp rkl$)

... ML is a diameter as it subtends a right angle/ML is middellyn Centre of circle = midpoint of $ML/Midpt \ van \ sirkel = midpt \ v \ ML$

$$x = \frac{5+20}{2} = \frac{25}{2} = 12,5$$
 $y = \frac{4+9}{2} = \frac{13}{2} = 6,5$

$$y = \frac{4+9}{2} = \frac{13}{2} = 6.5$$

Centre/midpt: (12,5; 6,5)

Equation of the circle KLM /Vgl van sirkel KLM:

$$(x-12,5)^2 + (y-6,5)^2 = r^2$$

subst (5; 4):
$$(5-12,5)^2 + (4-6,5)^2 = r^2$$

$$62.5 = r^2$$

$$(x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$$

OR/OF

By symmetry about LM/deur simmetrie om LM:

 $MK \perp KL \quad OR/OF \quad M\hat{K}L = 90^{\circ}$ (radius \perp tangent/radius $\perp rkl$) ...ML is a diameter as it subtends a right angle/ML is middellyn ML is a diameter /ML is 'n middellyn

$$r = \frac{ML}{2} = \frac{\sqrt{250}}{2} = \sqrt{\frac{125}{2}}$$
 or/of 7,91

Centre of circle = midpoint of ML/Midpt van sirkel = midpt v ML

$$x = \frac{5+20}{2} = \frac{25}{2} = 12,5$$
 $y = \frac{4+9}{2} = \frac{13}{2} = 6.5$

$$y = \frac{4+9}{2} = \frac{13}{2} = 6.5$$

Centre/*midpt*: (12,5; 6,5)

Equation of the circle KLM /Vgl van sirkel KLM:

$$\therefore (x-12,5)^2 + (y-6,5)^2 = \frac{250}{4} = \frac{125}{2} = 62,5$$

VS

$$\sqrt{x} = 12,5$$

$$\checkmark y = 6.5$$

✓ value of/waarde $van r^2$

✓ answer in correct form/antw in

korrekte vorm (5)

 \sqrt{S}

√ value of/waarde van r

$$\sqrt{x} = 12.5$$

$$\sqrt{y} = 6.5$$

✓ answer in correct

> form/antw in korrekte vorm

> > (5)[21]

PUBLIC EXAMINATIONS

Copyright reserved/Kopiereg voorbehou

4.1	y = 0: $3x + 8 = 0$	✓ y-value/waarde
	$x = -\frac{8}{3}$	✓ x-value/waarde
1.2	$\therefore E\left(-2\frac{2}{3};0\right) \mathbf{OR}/\mathbf{OF} \ E\left(-\frac{8}{3};0\right)$	
4.2	$\tan D\hat{E}O = m_{DE} = 3$	✓ tan DÊO = 3
	\therefore DÊO = 71,565 = 71,57°	
	DÂE = 71,565° – 45°	√ 71,565°
	= 26,57°	✓ 26,57°
1.3	$m_{\rm AB} = \tan 26,57^{\circ}$	(3
	$=\frac{1}{2}$	$\sqrt{m_{AB}} = \tan 26,57^{\circ}$
	$=\frac{1}{2}$	$ \swarrow m_{AB} = \frac{1}{2} $
	$y = \frac{1}{2}x + c$ OR/OF $y - y_1 = \frac{1}{2}(x - x_1)$	
	1	✓ subst of m and (1;5)into formula/
	$5 = \frac{1}{2}(1) + c$ $y - 5 = \frac{1}{2}(x - 1)$	subst m en (1 ; 5) ir
	$y = \frac{1}{2}x + 4\frac{1}{2}$ $y = \frac{1}{2}x + \frac{9}{2}$	formule
	2 2	✓ equation/vgl

Copyright reserved/Kopiereg voorbehou
PRETORIA 0001

PUBLIC EXAMINATIONS

Solve x - 2y + 9 = 0 and y = 3x + 8 simultaneously: 4.4

x - 2(3x+8) + 9 = 0x - 6x - 16 + 9 = 0

 $\therefore y = 3(-1\frac{2}{5}) + 8 \quad \mathbf{OR}/\mathbf{OF} \quad -1\frac{2}{5} - 2y + 9 = 0$

 $y = 3\frac{4}{5}$ $y = 3\frac{4}{5}$ $\frac{1}{5}$ D(-1 $\frac{2}{5}$; 3 $\frac{4}{5}$)

✓ subst/vervang

√ x-value/waarde

√ subst/vervang

√ y-value/waarde

(4)

OR/OF

x = 2y - 9

y = 3(2y - 9) + 8

y = 6y - 27 + 8

 $\therefore y = 3\frac{4}{5}$

 $x = 2(3\frac{4}{5}) - 9$ **OR/OF** $3\frac{4}{5} = 3x + 8$

 $x = -1\frac{2}{5}$

 $x = -1\frac{2}{5}$

√ subst/vervang

√ y value/waarde

√ subst/vervang

√ x-value/waarde

✓ equating/gelyk stel

OR/OF

 $3x + 8 = \frac{1}{2}x + 4\frac{1}{2}$

 $D(-1\frac{2}{5}; 3\frac{4}{5})$

6x + 16 = x + 9

 $\therefore x = -1\frac{2}{5}$

 $\therefore y = 3(-1\frac{2}{5}) + 8 \quad \mathbf{OR/OF} \quad y = \frac{1}{2}(-1\frac{2}{5}) + 4\frac{1}{2}$

 $y = 3\frac{4}{5}$

 $y = 3\frac{4}{5}$

 $D(-1\frac{2}{5}; 3\frac{4}{5})$

√ x value/waarde

√ subst/vervang

✓ y-value/waarde

(4)

(4)

OR/OF

Copyright reserved/Kopiereg voorbehou

PRETORIA 0001

PUBLIC EXAMINATIONS

$x - 2y = -9 \dots$ $-6x + 2y = 16 \dots$		
(1) + (2): -5 $x = 7$	(-)	
$\therefore x = -1\frac{2}{5}$		
$\therefore -1\frac{2}{5} - 2y = -9$	OR/OF	$y = 3(-1\frac{2}{5}) + 8$
$y = 3\frac{4}{5}$		$y = 3\frac{4}{5}$
$\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$		

√ adding/optelling

✓ *x*-value/*waarde*

✓ subst/vervang

√ y-value/waarde

OR/OF

$$y = 3x + 8 \dots (1)$$

$$6y = 3x + 27 \dots (2)$$

$$(1) - (2):$$

$$-5y = -19$$

$$\therefore y = 3\frac{4}{5}$$

$$3\frac{4}{5} = 3x + 8$$

$$x = -1\frac{2}{5}$$

$$OR/OF$$

$$x = -1\frac{2}{5}$$

$$x = -1\frac{2}{5}$$

 $\therefore D(-1\frac{2}{5}; 3\frac{4}{5})$

√

subtracting/*aftrekking*✓ *y*-value/*waarde*

✓ subst/vervang

✓ x-value/waarde

de (4)

(4)

PRETORIA 0001

PUBLIC EXAMINATIONS

Copyright reserved/Kopiereg voorbehou

/\/////////
Please turn oyev/Blaai om asseblief

OR/OF

✓ answer/antw

(6)

DEPARTMENT OF BASIC **EDUCATION**

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

area DMOE = area rectangle DCOG + area Δ DMG + area Δ DEC

$$= (1\frac{2}{5} \times 3\frac{4}{5}) + \frac{1}{2} \left(1\frac{2}{5}\right) \left(\frac{7}{10}\right) + \frac{1}{2} \left(3\frac{4}{5}\right) \left(\frac{19}{15}\right)$$

= 8,22 square units/vk eenh

✓ correct method/ korrekte metode

$$\sqrt{3} \frac{4}{5}$$

$$\sqrt{12} \sqrt{0.7}$$

$$\frac{5}{19}$$

(6)

OR/OF

area DMOE = area ΔEDO + area ΔODM

$$= \frac{1}{2} (EO \times y_D) + \frac{1}{2} (OM \times -x_D)$$

$$= \frac{1}{2} \left[\left(\frac{8}{3} \times \frac{19}{5} \right) + \left(\frac{9}{2} \times \frac{7}{5} \right) \right]$$

$$= \frac{1}{2} \left(\frac{304 + 189}{30} \right)$$

$$= \frac{493}{60} \text{ or/of } 8\frac{13}{60} \text{ or/of } 8,22 \text{ square units/vk eenh}$$

✓ correct method/ korrekte metode

$$\sqrt{y_{\rm D}} = \frac{19}{5} \text{ or } 3\frac{4}{5}$$

$$\checkmark EO = \frac{8}{3}$$

$$\checkmark -x_{\rm D} = \frac{7}{5}$$

$$\checkmark$$
 OM = $\frac{9}{2}$ or $4\frac{1}{2}$

✓ answer/antw

(6)

OR/OF

area DMOE = area \triangle EOF - area \triangle DMF

$$= \frac{1}{2} (EO \times OF) - \frac{1}{2} (OF - OM)(-x_D)$$

$$= \frac{1}{2} \left[\left(\frac{8}{3} \times 8 \right) + \left(\frac{7}{2} \times \frac{7}{5} \right) \right]$$

$$= \frac{1}{2} \left(\frac{640 - 147}{30} \right)$$

$$= \frac{493}{60} \text{ or } 8\frac{13}{60} \text{ or } 8,22 \text{ square units/} \text{vk eenh}$$

✓ correct method/ korrekte metode $\checkmark v_F = 8$

$$\checkmark y_{\rm F} = 8$$

$$\checkmark EO = \frac{8}{3}$$

$$\checkmark -x_D = \frac{7}{5}$$

$$\checkmark$$
 FM = $3\frac{1}{2}$

✓ answer/antw

(6)

OR/OF

DEPARTMENT OF BASIC **EDUCATION**

2014 -11- 13

Copyright PERCATE LEAST 100rbehou PRETORIA 0001

PUBLIC EXAMINATIONS

area
$$\triangle EOM = \frac{1}{2}(EO \times OM)$$

 $= \frac{1}{2}(\frac{8}{3} \times \frac{9}{2})$
 $= 6 \text{ sq units/} vk \text{ eenh}$
 $ED = \sqrt{\left(-\frac{7}{5} + \frac{8}{3}\right)^2 + \left(\frac{19}{5}\right)^2} \text{ and } DM = \sqrt{\left(\frac{7}{5}\right)^2 + \left(\frac{9}{2} - \frac{19}{5}\right)^2}$
 $= \frac{19\sqrt{10}}{15} \text{ or } 4,005...$ $= \frac{7\sqrt{5}}{10} \text{ or } 1,565...$
 $= \frac{1}{2}(ED \times DM \times \sin EDM)$
 $= \frac{1}{2}(\frac{19\sqrt{10}}{15})(\frac{7\sqrt{5}}{10}) \sin 135^\circ$

 $\therefore \text{ area DMOE} = \text{area } \Delta \text{EOM} + \text{area } \Delta \text{EDM}$ = 6 + 2,216... $= \frac{493}{60} \quad \text{or/of} \quad 8\frac{13}{60} \quad \text{or/of} \quad 8,22 \text{ square units/eenh}^2$

 $=\frac{133}{60}$ or 2,216...

✓ area ∆EDM
✓ correct method/
korrekte metode

✓ answer/antw

(6)

Copyright reserved/Kopiereg voorbehou

5.1	$\sin C\widehat{A}P = \frac{CP}{AP}$ $\sin x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ $x = 60^{\circ}$	✓ correct sine ratio/ korrekte sin-verh ✓ $\frac{\sqrt{3}}{2}$
	OR/OF $\frac{\sin 90^{\circ}}{8} = \frac{\sin x}{4\sqrt{3}}$ $\sin x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ $x = 60^{\circ}$	
5.2	$C\hat{P}A = D\hat{P}A = 30^{\circ} \qquad (AP \text{ bisects } D\hat{P}C)$ $AD^{2} = AP^{2} + DP^{2} - 2.AP.DP.\cos A\hat{P}D$ $= 8^{2} + 4^{2} - 2(8)(4)\cos 30^{\circ}$ $= 8^{2} + 4^{2} - 2(8)(4)(\frac{\sqrt{3}}{2})$ $= 24,57$ $AD = 4,96$	DPA = 30° ✓ correct subst into cosine rule/ korrekte subst in cos-reël ✓ 24,57 ✓ 4,96 (4)

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

.3 sin DÂP _ sin APD	
DP AD	
sin y sin 30°	✓ correct subst into
4 = 4,96	sine rule/
Asin 200	korrekte subst in
$\sin y = \frac{4 \sin 30^{\circ}}{4.96}$	sin-reël
= 0,403	\checkmark sin y subject
	(22.700
y = 23,78°	✓ 23,78°
Am	(3
OR/OF	
$AD^2 = AP^2 + DP^2 - 2.AP.DP.\cos D\hat{A}P$	
$4^2 = 8^2 + (4,96)^2 - 2(8)(4,96) \cdot \cos y$	1
(4,50) = 2(8)(4,50).cos y	correct subst into
	cosine rule/
	korrekte subst in
$8^2 + (4.96)^2 - 4^2$	cos-reël
$\cos y = \frac{8^2 + (4,96)^2 - 4^2}{2(8)(4,96)}$	✓ cos y subject
$\cos y = 0.9148$	Josy subject
1	
y = 23,82°	✓ 23,82°
	(3)
	[9]

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Copyright reserved/Kopiereg voorbehou

6.1	$\cos^2(180^\circ + r) + \tan(r + 180^\circ) = -(700^\circ)$	
-	$\cos^2(180^\circ + x) + \tan(x - 180^\circ)\sin(720^\circ - x)\cos x$	/(0000)2 2
	$= (-\cos x)^2 + [-(-\tan x)](-\sin x)(\cos x)$	$\sqrt{(-\cos x)^2}$ or $\cos^2 x$ $\sqrt{\tan x}$ or $-(-\tan x)$
	$=\cos^2 x + \left(\frac{\sin x}{\cos x}\right)(-\sin x)(\cos x)$	$\sqrt{-\sin x}$
	$\cos x$ $\cos x$	
	$=\cos^2 x - \sin^2 x$	$\checkmark \tan x = \frac{\sin x}{}$
	$=\cos 2x$	$\cos x$
		$\sqrt{\cos^2 x - \sin^2 x}$
5.2	$\sin(\alpha - \beta)$	$\sqrt{roverite} = \frac{(5)}{\sqrt{roverite}}$
	$=\cos[90^{\circ}-(\alpha-\beta)]$	✓ rewrite as/herskryf $cos[(90^{\circ} - \alpha) + \beta]$
	$=\cos[(90^{\circ} - \alpha) + \beta]$	
į	$= \cos[(90^\circ - \alpha) + \beta]$ $= \cos((90^\circ - \alpha))\cos(\beta) - \sin((90^\circ - \alpha))\sin(\beta)$	✓ expansion/ uitbreiding
		✓ simpl/vereenv
	$= \sin \alpha \cos \beta - \cos \alpha \sin \beta$	
	OR/OF	(3)
	$\sin(\alpha - \beta)$	
į	$=\cos[90^{\circ}-(\alpha-\beta)]$	✓ rewrite as/herskryf
1	$=\cos[(90^{\circ} + \beta) + (-\alpha)]$	$\cos[(90^{\circ} + \beta) + (-\alpha)]$
	-	✓ expansion/
	$= \cos(90^{\circ} + \beta)\cos(-\alpha) - \sin(90^{\circ} + \beta)\sin(-\alpha)$	uitbreiding
	$= (-\sin\beta)\cos\alpha - \cos\beta(-\sin\alpha)$	✓simpl/vereenv
	$= \sin \alpha \cos \beta - \cos \alpha \sin \beta$	(3)
	$x^2 - y^2$	
	$=\sin^2 76^\circ - \cos^2 76^\circ$	
	$= -(\cos^2 76^\circ - \sin^2 76^\circ)$	$\sqrt{-(\cos^2 76^\circ - \sin^2 76^\circ)}$
	$= -\cos 2(76^{\circ})$	✓ recognition of cos
	= - cos 152°	double angle
	$= -(-\cos 28^{\circ}) \qquad OR/OF = -\cos (90^{\circ} + 62^{\circ})$	√ - cos 152°
	$= \cos 28^{\circ}$ $= -(-\sin 62^{\circ})$ = $\cos (90^{\circ} - 62^{\circ})$ $= \sin 62^{\circ}$	
	$= \cos (90^{\circ} - 62^{\circ})$ $= \sin 62^{\circ}$	✓ cos 28°
	- SIII UZ	
ľ	OR/OF	(4)
	$x^2 - y^2$	
	$=\sin^2 76^\circ - \cos^2 76^\circ$	✓ cos 14°
	$= \sin 76^{\circ} \sin 76^{\circ} - \cos 76^{\circ} \cos 76^{\circ}$	✓ sin 14°
	= sin 76° cos 14° – cos 76° sin 14°	✓ recognition of sine
	$=\sin(76^{\circ}-14^{\circ})$	compound angle
=	= sin 62°	✓ sin(76° – 14°)
	OD/OF	
3	\mathbf{OR}/\mathbf{OF}	(4)
	$= \sin^2 76^\circ - \cos^2 76^\circ$	√ cos² 14°
	$=\cos^2 14^\circ - \sin^2 14^\circ$	$\sqrt{\sin^2 14^\circ}$
1	= cos 2(14°)	✓ sin 14° ✓ recognition of cos
	= cos 28°	double angle
	sin 62°	✓ cos 28°
RASMIT	OF BASIC	
DUCA		(4) [12]
	served/Kopiereg vo rbehou	1.2

DEPA

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

7.1	0 < 11 < 2 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	
	$0 \le y \le 2$ or $y \in [0; 2]$	✓ critical values/ kritieke waardes ✓ notation/notasie
7.2	$\sin x + 1 = \cos 2x$	(2)
	$ \sin x + 1 = 1 - 2\sin^2 x $ $ 2\sin^2 x + \sin x = 0 $	$\sqrt{1-2\sin^2x}$
	$\sin x(2\sin x + 1) = 0$	✓ st form/st vorm
7.3	$\sin x(2\sin x + 1) = 0$	(2)
	$\sin x = 0 \qquad or \qquad \sin x = -\frac{1}{2}$	$\sqrt{\sin x} = 0$ or $\sin x = 1$
	$x = 0^{\circ} + k.360^{\circ}$ or $x = 210^{\circ} + k.360^{\circ}$ or	$\sin x = -\frac{1}{2}$ $\checkmark 0^{\circ}; 180^{\circ} \mathbf{OR}/\mathbf{OF}$
	$x = 180^{\circ} + k.360^{\circ}$ $x = 330^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	$x = k.180^{\circ}$ $\checkmark 210^{\circ}; 330^{\circ}$
7.4	$x = k.180^{\circ}, k \in \mathbb{Z}$	$\checkmark k.360^{\circ}, \ k \in \mathbb{Z} $ (4)
	-90 45 45 90 135 180 225 270	✓ y-intercept/afsnit ✓ x-intercepts/afsnitte ✓ min/max points/ min/maks punte
7.5 <i>f</i>	$f(x) = g(x) \operatorname{at/by}$:	(3)
	c = -30°; 0°; 180°; 210°	
	$f(x + 30^\circ) = g(x + 30^\circ)$ at/by:	√-30°; 0°; 180°; 210°
x	$s = -60^{\circ}$; -30° ; 150° ; 180°	√√ -60°; -30°; 150°; 180°
7.6 S	eries will converse : E/D / /	(3)
	eries will converge if/Reeks sal konvergeer as: $-1 < r < 1$ $1 < 2\cos 2x < 1$	$\sqrt{-1} < r < 1$
1		$\sqrt{r} = 2\cos 2x$
	$\frac{1}{2} < \cos 2x < \frac{1}{2}$	$\sqrt{-\frac{1}{2}} < \cos 2x < \frac{1}{2}$
	$30^{\circ} < x < 60^{\circ}$ or $x \in (30^{\circ}; 60^{\circ})$	✓✓ 30° < x < 60°
		(5) [19]

DEPARTMENT OF BASIC **EDUCATION**

Copyright reserved/Kopiereg voorbehou
2014 -11- 1 3

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

8.1

8.1.1	x = 96°	$(\angle$ at centre = $2\angle$ at circumference/ \angle by midpt = $2\angle$ by omtrek)	✓ S ✓ R	(2)
8.1.2	$\hat{C}_2 + \hat{B}_2 = 180^\circ - 96^\circ = 84^\circ$ $y = \hat{B}_2 = 42^\circ$	(sum of \angle s in Δ / som $v\angle$ e in Δ) (\angle s opp = sides/ \angle e teenoor = sye)	✓ S ✓ S	
				(2)

8.2

8.2.1	$\hat{F}_1 = 90^{\circ}$	(line from centre to midpt chord/	✓ S ✓ R	
		lyn vanaf midpt na midpt kd)		(2)
8.2.2	$ABC = 150^{\circ}$	(opposite ∠s of cyclic quad/	✓ S ✓ R	
		tos ∠e v koordevh)		(2)

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

MHH PP Pa Ba

	tangent \(\preceq \text{ radius/diameter } / \text{ raaklyn } \(\preceq \text{ radius/middellyn} \)	√ R
8.3.1 (b)	tangents from common pt OR tangents from same pt / raaklyne v gemeensk pt OF raaklyne vanaf dies pt	(1) × R
8.3.2	$AB^{2} + BC^{2} = AC^{2}$ $x^{2} + (x+7)^{2} = 13^{2}$ (Theorem of/Stelling vanPythagoras) $x^{2} + x^{2} + 14x + 49 = 169$ $2x^{2} + 14x - 120 = 0$ $x^{2} + 7x - 60 = 0$ $(x-5)(x+12) = 0$ $x = 5$ $(x \neq -12)$	(1) $AB^{2} + BC^{2} = AC^{2}$ $x^{2} + (x+7)^{2} = 13^{2}$ standard form
		✓ answer (4) [14]

DEPARTMENT OF BASIC EDUCATION 2014 -11- 13

> PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

MHH PP

9.1

9.1.1	Same base (DE) and same height (between parallel lines) Dieselfde basis (DE) en dieselfde hoogte (tussen ewewydige lyne)	✓ same base/dies basis between lines/ tussen lyne
9.1.2	$\frac{AD}{DB}$ $\frac{1}{2}AE \times k$ $\frac{1}{2}EC \times k$ But/Maar area $\Delta DEB = \text{area } \Delta DEC$ (Same base and same height/dieselfde basis en dieselfde hoogte) $\therefore \frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$ $\therefore \frac{AD}{DB} = \frac{AE}{EC}$	(1) ✓ S ✓ S ✓ R ✓ S (5)

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

A De S

9.2.1	EM FD		
	$\overline{AM} = \overline{AD}$	(Line parallel one side of Δ	✓ S ✓ R
1		OR	, S, K
		prop th; EF BD)	1
	$\frac{EM}{}$ = $\frac{3}{}$	(Lyn ewewydig aan sy v ∆	
	AM 7	OF eweredigst; EF BD)	✓ answer/antw
9.2.2	CM = AM	(diags of parm bisect/hoekl parm halv)	(3)
	$\frac{CM}{MR} = \frac{AM}{R} = \frac{7}{R}$		✓ S ✓ R
	ME ME 3	(from 9.2.1/vanaf 9.2.1)	✓ answer/antw
9.2.3	$h \text{ of } \Delta FDC = h \text{ or } AFDC = h \text$		(3)
	area $\triangle FDC = \frac{1}{2}$	FD.h	✓ AD BC
	area ARDC 1		✓ subst into area
	$\frac{1}{2}$	BC.h	form/ subst in
	_	1	opp formule
	$=\frac{FD}{AD}$	(opp sides of parm =)	✓ S
	$=\frac{3}{7}$	(tos sye v parm =)	
	7		✓ answer/antw
	OR/OF		(4)
	area $\triangle FDC = FD$	$= \frac{3}{7}$ (same heights) (dieselfde hoogtes)	
	area ∆ADC AD	= 7 (same heights) (dieselfde hoogtes)	✓ S ✓ R
	Rut Area AADC-		
1	Dut Mea MADC =	Area ΔBDC (diags of parm bisect area)	S
	area ΔFDC 3	(hoekl v parm halv opp)	3
	area ΔBDC 7	V	answer/antw
	T OF BASIC		(4)
EDUC/	ATION		[16]
2046 4	4. 12		MITH SI
2014 -1			A
PRIVATE E	BAG X 110 RIA 0001	(A)	
LIC EXA	MINATIONS		(D) () A
			1

DEP/

PUBLIC EXAMINATIONS

10.1.1	T . 1 1 1 1 .			
10.1.1	Tangent chord theorem/I	Raaklyn-koordstelling	✓ R	
10.1.2	Tangent chord theorem/A	Raaklyn-koordstelling	✓ R	(1)
10.1.3	C 11 1			(1)
10.1.3	Corresponding angles equ	ıal/Ooreenkomstige ∠e gelyk	√ R	
10.1.4	∠s subtended by chord Po	OR /s in same comment	√ R	(1)
	∠e onderspan deur diese	∠s subtended by chord PQ OR ∠s in same segment ∠e onderspan deur dieselfde koord OF ∠e in dieselfde segment		(1)
10.1.5	alternate ∠s/verwisselena	le ∠e ; WT SP	√ R	(1)
10.0				(1)
10.2	$\frac{RW}{RS} = \frac{RT}{RP}$	(Line parallel one side of \(\Delta \) OR	✓ S ✓ R	
		prop th; WT SP)		
	$\therefore RT = \frac{WR.RP}{RS}$	(Lyn ewewydig aan sy v \triangle OF eweredighst: $WT \mid SP $		(2)
	OR/OF			
	ΔRTW ΔRPS	$(\angle; \angle; \angle)$	✓ S	
	$\therefore \frac{RW}{RS} = \frac{RT}{RP}$	$(\Delta RTW \Delta RPS)$	✓ S	
	$\therefore RT = \frac{RW.RP}{RS}$			(2)
10.3	$y = \hat{T}_2 = \hat{R}_3$	(tan chord theorem/Rkl-koordst)	√S√R	
	$y = \hat{R}_3 = \hat{Q}_1$	(∠s in same segment/∠e in dieselfde	✓ S ✓ R	
I		seoment\	ļ	(4)

DEPARTMEN OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

BURLIC EXAMINATIONS

10.4	$\hat{Q}_3 = P\hat{S}R$	(ext \angle of cyc quad/buite \angle v kdvh)	✓S ✓R	
	$P\hat{S}R = \hat{W}_2$ $\therefore \hat{Q}_3 = \hat{W}_3$	(corresp∠s/ooreenk ∠e; WT SP)	✓ S	
	OR/OF			(3)
	$\hat{Q}_2 = x$	(∠s in same segment/∠e in dies segment)	√ R	
	$Q_3 = 180^{\circ} - (x + y)$	(∠s on straight line/∠e op reguitlyn)	√ S	
	$W_2 = 180^\circ - (x + y)$	$(\angle s \text{ of } \Delta WRT/\angle e v \Delta WRT)$	✓ S	
	$\therefore \hat{\mathbf{Q}}_3 = \hat{\mathbf{W}}_2$			(3)
10.5	In $\triangle RTS$ and $\triangle RQP$:			
	$\hat{R}_3 = \hat{R}_2 = y$	(proven above/hierbo bewys)	✓ S	
	$\mathbf{\hat{S}}_2 = \mathbf{\hat{P}}_2$	(∠s in same segment/∠e in dies segment)	✓ S/R	
	RTS = RQP	$(3^{\rm rd} \text{ angle of } \Delta)$		
	∴ ∆RTS ∆RQP	$(\angle; \angle; \angle)$	\checkmark S OR/OF $(\angle; \angle; \angle)$	2000
				(3)

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

AHH PP

10.2		
$\frac{10.6}{RQ} = \frac{RS}{RP}$	(ΔRTS ΔRQP)	√ S
$\frac{RS}{RP} \times \frac{RS}{RP} = \frac{RT}{RQ} \times \frac{RS}{RP}$		$\checkmark \times \frac{RS}{RP}$ on both
$\left(\frac{RS}{RP}\right)^2 = \left(\frac{RT}{RP}\right)\left(\frac{RS}{RQ}\right)$		sides
$= \left(\frac{RW}{RS}\right) \left(\frac{RS}{RC}\right)$		$\checkmark \left(\frac{RT}{RP}\right)\left(\frac{RS}{RQ}\right)$
$=\frac{RW}{RQ}$		(3)
$\frac{\mathbf{OR}/\mathbf{OF}}{\frac{RT}{RQ}} = \frac{RS}{RP}$	$(\Delta RTS \Delta RQP)$	✓ S
But RT = $\frac{WR.RP}{RS}$ $\frac{RT}{RQ} = \frac{WR.RP}{RQ.RS} = \frac{RS}{RP}$	(proven in 10.2/bewys in 10.2)	$\checkmark RT = \frac{WR.RP}{RS}$
$WR.RP^{2} = RQ.RS^{2}$ $\therefore \frac{WR}{RQ} = \frac{RS^{2}}{RP^{2}}$		✓multiplication/ vermenigvuldig
		(3)
OR/OF RT RO		
$\frac{RT}{RS} = \frac{RQ}{RP}$ $RQ = \frac{RT.RP}{RS}$	(ΔRTS ΔRQP)	✓ S
and WR = $\frac{RT.RS}{RP}$ RT.RS	(proven in 10.2/bewys in 10.2)	\checkmark WR = $\frac{RT.RS}{RP}$
$\frac{WR}{RQ} = \frac{RP}{RT.RP}$ RS		
$= \frac{RT.RS}{RP} \times \frac{RS}{RT.RP}$ $= \frac{RS^2}{RP^2}$		✓ simplification/ vereenvoudiging
RP ²		(3)
	TOTAL/TO	[20]

DEPARTMENT OF BASIC EDUCATION

Copyright reserved/Kopiereg voorbehou

FRETORIA 6001

PUBLIC EXAMINATIONS

TOTAL/TOTAAL:

NSC/NSS - Memorandum

ANNEXURE A: MATHEMATICS PAPER 2 NOVEMBER 2014 MEMORANDUM NOTES TO MARKERS

- Consistant Accuracy when the second mistake is made: stop marking.

 Volgehoue akkuraatheid wanneer die tweede fout gemaak word: geen punte verder.
- Incorrect formula/Verkeerde formule: 0 marks
- If the learner indicates their understanding of a theorem that we are asking them to apply, we need to award the learner marks./Indien die leerder begrip toon van'n stelling wat toegepas moet word, moet die leerder punte verdien.

QUESTION 1

Question 1.1

- Answer only: 2 / 2 marks
- CA applies if the candidate totals incorrectly.
- CA can only be awarded if the candidate divides by 12.
- The mean must be reasonable i.e. between 42 and 95.

Question 1.3

- Answer only on condition that 1.1 and 1.2 are correct: 3/3 marks
- CA will apply from 1.1 and 1.2 provided the candidate shows working to get to their answer in Question 1.3.

Question 1.4

- If the candidate swaps a and b and gets $\hat{y} = 0.66 + 22.83x$ 1/3 marks
- If the candidate does not include the outlier: 3/3 marks

$$a = 20,1776... = 20,18$$
 ✓ value of a
 $b = 0,72485... = 0,72$ ✓ value of b
 $\hat{y} = 20,18 + 0,72x$ ✓ equation

Question 1.5

- If the candidate has excluded the outlier: $x = 63,38\% \approx 63\%$
- If the candidate has excluded the outlier and they have used the calculator:

$$x = 63,66\% \approx 64\%$$

- Penalty 1 for incorrect rounding off in this question.
- Substitution must be linked with 60% (eg. 0,6)

Question 1.6

- Accept: 82% for Mathematics 1/1 mark
- Accept: 82% for Maths and 62% for Accounting 1/1 mark
- Accept: candidate 2 1/1 mark
- Accept: any unique identification of the correct outlier 1/1 mark

PP

NSC/NSS - Memorandum

QUESTION 2

Question 2.2.2

- If the candidate plots with the midpoints or the lower limit: max 2 / 3 marks
- If the candidate plots with the midpoints or the lower limits of the class and DOES not ground at (20; 0): 1/3 marks
- If the curve is drawn with a ruler: max 2 / 3 marks
- Only CA if the graph is a cumulative frequency graph.

Question 2.3

- If the candidate just writes down 44 motorists: 1/2 marks
- Only CA if the graph is a cumulative frequency graph (using midpoints: 55 47 = 8 (accept 7 9)). (using lower bounds: no CA marks)
- Answer only: 2 / 2 marks

QUESTION 3

Question 3.3

- If the candidate does NOT write the answer in coordinate form: 3/3 marks
- Answer only: 0/3 marks
- Alternative response:

 $\boxed{\mathsf{MT} \perp x\text{-axis}/as}$

MT = 4 units/eenh, AM = 5 and/en T(5; 0) $AT^2 = 25 - 16$ (using/gebruik Pythagoras)

= 9

 \checkmark AT = 3

✓ T(5;0)

AT = 3 units/eenhOA = OT - AT = 5 - 3 = 2

 $\therefore A(2;0)$

✓ answer

Question 3.5

- Answer only y = 9:
- 2 / 2 marks
- If the candidate just writes the answer as 9:

1/2 marks

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Question 3.6

• Accept the answer:
$$y = \frac{3}{4}(20) - 6$$
 \checkmark substitution of $x = 20$

$$y = 15 - 6$$

$$y = 9$$
 \checkmark simplification

• Consider the solution:
$$y = \frac{3}{4}(20) - 6 = 9$$
 2 / 2 marks

• If the candidate starts with
$$\frac{3}{4}x - 6 = 9$$
 and gives a solution of $9 = 9$: $1/2$ marks

Consider the solution:
$$\frac{3}{4}(20) - 6 = 9$$

$$9 = 9$$
1/2 marks

Question 3.7

- No penalty if the candidate does not simplify the surd.
- If the candidate only gives a decimal answer: max 1/2 marks

Question 3.8

- Alternative:
- Subs M(5; 4) K(5; 9) and L(20; 9)

M(5; 4):
$$(5-p)^2 + (4-q)^2 = c^2$$
 ...i
K(5; 9): $(5-p)^2 + (9-q)^2 = c^2$...ii
L(20; 9): $(20-p)^2 + (9-q)^2 = c^2$...iii \checkmark all 3 equations
ii - i: $(4-q)^2 = (9-q)^2$
 $16-8q+q^2 = 81-18q+q^2$
 $10q = 65$ $\checkmark q = 6,5$
iii - ii: $(20-p)^2 = (5-p)^2$
 $400-40p+p^2 = 25-10p+p^2$
 $375 = 30p$ $\checkmark p = 12,5$
 $c^2 = (20-12,5)^2 + (9-6,5)^2$
 $c^2 = 62,5$

 $(x-12,5)^2 + (y-6,5)^2 = 62,5$

DEPARTMENT OF BASIC EDUCATION

Circle equation:

2014 -11- 1 3

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

J

√ answer

Question 4.3

- If the candidate takes tan 45° to be the gradient of AB: 0 / 4 marks
- If the answer in Question 4.2 is NOT 26,57° but has $m = \frac{1}{2}$: 0 / 4 marks

Question 4.4

The solution for D MUST be in the second quadrant for the CA marks to be awarded for D.

Ouestion 4.5

- Be alert to ALL the alternatives.
- This can only be CA'd if the coordinates of D are valid.
- If no answer in 4.4, no CA in 4.5
- If D is not on the second quadrant: 0/6 marks

QUESTION 5

Question 5.3

- CA with AD from Question 5.2
- Accept: 23,79°

QUESTION 6

Question 6.1

- If the candidate does not conclude: no penalty
- If the candidate reduces $\cos^2(180^\circ + x) = -\cos^2 x$: max 3/5 marks

Question 6.2

- If the candidate uses $\cos(\alpha \beta)$ expansion: max 1/3 marks
- If the candidate makes any mistakes: stop marking at the point of breakdown.

DEPARTMENT OF BASIC EDUCATION

2014 -11- 1 3

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Question 6.3

Alternative response:

$$x^{2} - y^{2}$$

$$= \sin^{2} 76^{\circ} - \cos^{2} 76^{\circ}$$

$$= [\sin(45^{\circ} + 31^{\circ})]^{2} - [\cos(45^{\circ} + 31^{\circ})]^{2}$$

$$= [\sin 45^{\circ} \cos 31^{\circ} + \cos 45^{\circ} \sin 31^{\circ}]^{2} - [\cos 45^{\circ} \cos 31^{\circ} - \sin 45^{\circ} \sin 31^{\circ}]^{2}$$

$$= [\frac{1}{\sqrt{2}} \times \cos 31^{\circ} + \frac{1}{\sqrt{2}} \times \sin 31^{\circ}]^{2} - [\frac{1}{\sqrt{2}} \times \cos 31^{\circ} - \frac{1}{\sqrt{2}} \times \sin 31^{\circ}]^{2} \qquad \checkmark \checkmark$$

$$= \frac{1}{2} \cos^{2} 31^{\circ} + \cos 31^{\circ} \cdot \sin 31^{\circ} + \frac{1}{2} \sin^{2} 31^{\circ} - \frac{1}{2} \cos^{2} 31^{\circ} + \cos 31^{\circ} \sin 31^{\circ} - \frac{1}{2} \sin^{2} 31^{\circ}$$

$$= 2 \cos 31^{\circ} \sin 31^{\circ} \qquad \checkmark$$

$$= \sin(2(31^{\circ})) \qquad \checkmark$$

$$= \sin 62^{\circ}$$

If the candidate uses a calculator: $x^{2} - y^{2}$ $= \sin^{2} 76 - \cos^{2} 76$ $= 0,882947... \qquad \checkmark\checkmark$ $\sin 62 = 0,882947... \qquad \checkmark\checkmark$ $x^{2} - y^{2} = \sin 62^{\circ} \qquad 4/4 \text{ marks}$

• If the candidate uses the calculator and gets the solution:

$$x^{2} - y^{2} = \sin 62^{\circ}$$

 $\sin^{2} 76 - \cos^{2} 76 = \sin 62^{\circ}$
 $0,882947... = 0,882947...$ 3 / 4 marks

QUESTION 7

Question 7.1

If the answer is $y \in [2; 0]$: 1 / 2 marks Both critical values needed for 1 mark.

Question 7.3

- If the candidate leaves out $k \in \mathbb{Z}$: max 3/4 mark
- If the candidate divides through by $\sin x$: $\max 2/4$ marks
- Award mark for $360^{\circ}k$, $k \in \mathbb{Z}$ only if in context with correct answer.

Question 7.4

Ignore if the candidate continues beyond the given domain.

Question 7.5

- If only two points of intersection from the graph: 1/3 marks
- If the candidate writes down answer only and has two correct: 1/3 marks

PP

Ouestion 8.1.1

If the statement is incorrect i.e. $x = 24^{\circ}$ and the reason is correct: 0/2 marks

Question 8.1.2

Answer only: 2 / 2 marks

Question 8.2.1

- The reason CANNOT be OF \perp CD.
- CF = FD as a reason only is not acceptable as a reason. The candidate must indicate the centre as part of the reason.
- Midpoint chord theorem: accepted as a reason
- accept: converse line from centre ⊥ to chord

Question 8.2.2

- $\hat{B} = 30^{\circ}$ (opp \angle s cyclic quad): 0/2 marks
- $\hat{B} = 150^{\circ}$ (cyclic quad): 2/2 marks

Question 8.3.1 (a)

 \perp can be left out in the reason.

Question 8.3.1 (b)

- (AB = AE) as a reason only is NOT accepted.
- (= tangents) as a reason only is accepted.

Question 8.3.2

- The answer the candidate choses must be positive.
- If they use Pythagoras' theorem incorrectly: Constitutes breakdown 0 / 4 marks
- If the candidate has the answer: x = 5 (Pythagoras): 4 / 4 marks
- If the candidate has the answer: $x = 5 (\hat{B} = 90^{\circ})$: 4/4 marks
- If the candidate has the answer x = 5 with no reason: 3 / 4 marks
- If the candidate gives both answers as x = 5 or x = -12 with no choice: 3/4 marks
- If the candidate gives $\hat{B} = 90^{\circ}$ as a reason it is the same as accepting Pythagoras.

DEPARTMENT OF BASIC **EDUCATION** PRIVATE BAG X 110 PRETORIA 0001 DUDLIC EXAMINATIONS

Question 9.1.2

• If the word area is left out: no penalty

• If the reason is: from 9.1.1 / proved above accepted only if correct

• If the candidate uses h instead of k: max 4/5 marks

Question 9.2.1

 $\frac{EM}{AM} = \frac{3}{7}$ (EF || BD; Prop Th): 3 / 3 marks

• Accept the reason: EF || BD

• Accept the reason: Prop Th

• Answer only (no reason): 2/3 marks

Question 9.2.2

• Accept the reason: parallelogram

• Answer only (no reason): 2 / 3 marks

Question 9.2.3

Accept the reason: parallelogram

• Answer only (no reason): 1 / 4 marks

Alternative: $\frac{\text{area }\Delta FDC}{\text{area }\Delta BDC} = \frac{\frac{1}{2}.\text{FD.DC.}\sin FDC}{\frac{1}{2}.\text{BC.DC.}\sin BCD}$ $= \frac{FD}{BC} \qquad (\sin FDC = \sin(180^{\circ} - BCD) = \sin BCD) \checkmark (\text{reduct form})$ $= \frac{FD}{AD} \qquad \checkmark$ $= \frac{3}{2} \qquad \checkmark$

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS

Question 10.1.3

If the reason given is just: corres \angle s: 0/1 mark

• If the candidate just states as the reason $\hat{P}_1 = \hat{T}_3$: 1/1 mark

Question 10.1.4

Accept:

"omtrekshoeke"

Angles on circumference

Question 10.1.5

• Alt ∠s only:

0/1 mark

● WT || SP only:

0/1 mark

Question 10.2

Accept the reason: WT | SP

Accept the reason: Prop Th

Question 10.3

 \hat{S}_1 is not an acceptable option.

Question 10.5

- The candidate need only write down TWO sets of angles equal and then conclude with the reason $(\angle\angle\angle)$
- Accept reason:

equiangular /gelykhoekig

• Accept:

 $R\hat{T}S = R\hat{Q}P \quad (3^{rd} \angle in \ a \ \Delta)$

DEPARTMENT OF BASIC EDUCATION

2014 -11- 13

PRIVATE BAG X 110 PRETORIA 0001

PUBLIC EXAMINATIONS