Computational Fluid Dynamics: Lecture 1 (ME EN 6720)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2014

CFD Motivation

Computational Fluid Dynamics (CFD)

Motivations:

There are 3 basic approaches to study fluid dynamics

- 1. Theoretical (analytical approaches)
- 2. Experimental approaches
- 3. Numerical approaches

Examples:

We can solve the following problems analytically

Couette flow

• For incompressible viscous flow between 2 infinite || plates (small separation distance) the velocity distribution can be found analytically.

THE UNIVERSITY OF UTAH

CFD Motivation

Motivations (cont.):

• It can be shown analytically that fully-developed laminar flow in a section of straight pipe is given by:

$$u = -\frac{R^2}{4\mu} \left(\frac{\partial P}{\partial x}\right) \left[1 - \left(\frac{r}{R}\right)^2\right]$$

[More examples including engineering problems that use CFD can be found in Anderson chapter 1]

What about complex geometry or more complex physics (e.g., <u>turbulence</u>)?

Turbulence has the following problematic properties:

- highly unsteady
- unpredictable
- chaotic behavior

CFD Pros/Cons

Pros and Cons of using different methods to study Fluid Mechanics

<u>Method</u>	<u>Advantages</u>	<u>Disadvantages</u>
Theoretical	clean and exactsolution in formula form	Restricted to simple geometries and physicsusually only linear problems
Experimental	• very realistic!!!	 can be costly quantities of interest can be hard to measure measurement errors scaling problems
Numerical	 can solve complex nonlinear problems complex physics Time evolution and spatial distributions 	truncation errorsboundary conditionscomputational costsubgrid-scale models

CFD goals

Goal of CFD: (or any exploration of a physical process)

Create useful descriptions of physical processes for engineering, scientific and environmental applications

• How is this accomplished?

Identify physical process or system of interest

Develop a mathematical model (typ. P.D.E.s, e.g. Navier-Stokes eqns.)

Solve model to gain insight into process

Many P.D.E.s can't be solved analytically > Numerical approximations (CFD)!

Verification and Validation

- Note that our numerical solution can't be isolated from theory and experiments.
- We can think of the link between theoretical, experimental and numerical approaches as a cycle:

Verification: The process of determining that a model implementation accurately represents the conceptual model and the solution to the model

Validation: The process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model

Developmental cycle

- When we develop a numerical code, we can view these components as part of a development cycle
- When we use **validation and verification** we need to balance two competing issues:
 - go to fast: trying to gain physical insight from numerical noise
 - go to slow: spend time and resources on misguided ideas

