Proyecto Beetles

Mariona Pajares y Estefanía Tobajas

2022-09-21

We used the metadata collected in the Bavarian Forest National Park in southeastern Germany, dominated by sub alpine forests of Picea abies. In a dead wood zone caused by the 2011 super German storm, 150 different species were monitored. Sampling season was conducted between May and September over four years (2008-2011).

BioTIME

About Our team Download data Contribute Publications News Donate StoryTIME

Download study 458

Beetles from the Bavarian Forest logged

Realm: Terrestrial
Climate: Temperate
Biome: Temperate broadleaf and mixed forests
Central latitude: 49.079630
Central longitude: 13.312450
Duration: 4 years, from 2008 to 2011

1933 records
150 distinct species

The years passed but, did the forest restoration methods improved beetles richness?

First, let's calculate species richness by sampling site and year

```
rawdata <- read.csv("datos/rawdata_bet.csv")
rawdata$YEAR<-as.factor(rawdata$YEAR)

bet_sum<-rawdata %>%
   group_by(PLOT, YEAR) %>%
   summarise(n_species = n(),ABUNDANCE = sum(ABUNDANCE))%>%
   rename(plot=PLOT, year=YEAR, abundance= ABUNDANCE)
```

plot	year	n_species	abundance
FAE_1	2008	12	52
FAE_11	2008	28	94
FAE 16	2008	27	125

FAE_18	2008	27	123
FAE_2	2008	28	115
FAE_21	2008	33	214
FAE_24	2008	21	104
FAE_3	2008	26	50
FAE_4	2008	19	51
FAE_7	2008	28	116
FAE_9	2008	35	119
FKN_1	2008	31	86
FKN_12	2008	19	41
FKN_14	2008	33	94
FKN_15	2008	35	136
FKN_4	2008	24	53
FKN_5	2008	27	103
FKO_4	2008	33	86
FKO_6	2008	25	65
LAO_3	2008	13	20
LAW_18	2008	21	89
_LAW_5	2008	22	50

Second, plot that nice data

Is there any differences in species richness by year?

```
##
## Call:
## lm(formula = n_species ~ year, data = bet_sum)
## Residuals:
##
       Min
                 1Q
                      Median
                                   ЗQ
  -21.0909 -4.5000 -0.6818
                               4.0341
                                       22.4091
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                25.773
                            1.689
                                   15.261 < 2e-16 ***
## year2009
                -1.682
                            2.388
                                   -0.704 0.48326
## year2010
                -7.364
                            2.388
                                   -3.083 0.00277 **
                -6.182
                            2.388 -2.588 0.01136 *
## year2011
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 7.921 on 84 degrees of freedom
## Multiple R-squared: 0.1347, Adjusted R-squared: 0.1038
## F-statistic: 4.36 on 3 and 84 DF, p-value: 0.006647
```

year effect plot

Posterior Predictive Check Linearity Model-predicted lines should resemble observed de Reference line should be flat and horizontal Density Residual 20 40 20 22 24 0 26 Fitted values n_species - Model-predicted data - Observed da Homogeneity of Variance Influential Observations Reference line should be flat and horizontal Roints should be inside the contour lines Residu 15 -5 Std. 26 0.00 0.01 0.02 0.03 0.04 Leverage (hii) Fitted values

Mixed model with random = plot

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: n_species ~ year + (1 | plot)
##
     Data: bet_sum
##
## REML criterion at convergence: 593.1
## Scaled residuals:
       Min
           1Q
                    Median
                                 3Q
## -2.32520 -0.53554 -0.05196 0.40806 2.73103
##
## Random effects:
## Groups Name
                      Variance Std.Dev.
## plot (Intercept) 14.33
                             3.785
## Residual
                      48.42
                               6.958
## Number of obs: 88, groups: plot, 22
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 25.773
                       1.689 15.261
## year2009
               -1.682
                           2.098 -0.802
## year2010
               -7.364
                           2.098 -3.510
## year2011
               -6.182
                           2.098 -2.947
## Correlation of Fixed Effects:
       (Intr) yr2009 yr2010
## year2009 -0.621
## year2010 -0.621 0.500
## year2011 -0.621 0.500 0.500
```

year effect plot

Posterior Predictive Check

Model-predicted lines should resemble observed de Reference line should be flat and horizontal

Linearity

- Model-predicted data - Observed da

Homogeneity of Variance

Mormality of Residuals

Normality of Random Effects (plot)

Roints should be inside the contour lines

Influential Observations

Is there any differences in species abundance by year?


```
##
## Call:
## lm(formula = abundance ~ year, data = bet_sum)
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -128.00 -71.34 -37.77
                              3.59 1651.00
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 90.273
                            42.355
                                     2.131
                                              0.036 *
## year2009
                 30.091
                            59.899
                                     0.502
                                              0.617
## year2010
                 -2.818
                            59.899
                                    -0.047
                                              0.963
## year2011
                 44.727
                            59.899
                                     0.747
                                              0.457
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 198.7 on 84 degrees of freedom
## Multiple R-squared: 0.01062, Adjusted R-squared: -0.02471
## F-statistic: 0.3006 on 3 and 84 DF, p-value: 0.8249
```


binomial negativa

```
##
## Call:
## glm.nb(formula = abundance ~ year, data = bet_sum, init.theta = 1.202915647,
      link = log)
##
## Deviance Residuals:
     Min 1Q Median
                                 3Q
                                         Max
## -2.1595 -1.0180 -0.4189 0.0438
                                      4.8051
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
                         0.19568 23.011 <2e-16 ***
## (Intercept) 4.50284
## year2009
              0.28768
                          0.27651
                                  1.040
                                            0.298
## year2010
              -0.03172
                          0.27676 -0.115
                                            0.909
## year2011
               0.40244
                          0.27643
                                            0.145
                                  1.456
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for Negative Binomial(1.2029) family taken to be 1)
##
##
      Null deviance: 102.425 on 87 degrees of freedom
## Residual deviance: 98.821 on 84 degrees of freedom
## AIC: 1006.6
##
## Number of Fisher Scoring iterations: 1
##
##
##
                Theta: 1.203
##
            Std. Err.: 0.165
##
## 2 x log-likelihood: -996.569
```

Posterior Predictive Check Overdispersion and zero-inflation Model-predicted lines should resemble observed (bserved residual variance (green) should follow pre Density Residual var 0 500 1000 1500 90 110 100 120 130 abundance Predicted mean - Model-predicted data - Observed d Hemogeneity of Variance Influential Observations Reference line should be flat and horizontal Roints should be inside the contour lines Residu

Std.

