DBMS Report

User Guide

The program starts asking the user to login either as an administrator or a customer in the Retail Store System. If the user is an Admin, they are authenticated using a username and password. Both the customer and the admin will be able to access the records of the branch they are registered in.

Admin can perform the following functions:

- 1) View the available products at their branch.
- 2)Add a product to their branch. It may or may not be available at other branches.
- 3)Alter the quantity of a product available at the branch warehouse. This may be used when a new stock is brought in or the products are sold from some other outlet as well.
- 4) Change the password they have to use for authentication.
- 5)Reward coupons to the customers either randomly or on the basis of the maximum number of orders.
- 6)Add a new customer to the branch.
- 7) View the sales performance and statistics of the branch.

Customer can perform the following functions:

- 1)View the available products at their branch.
- 2) View the contents of their current cart.
- 3)Add a product to their cart with the quantity they want to specify.
- 4) Alter the quantity of or remove the products present in their cart currently.
- 5)Place their final order. The contents of the entire cart will be ordered on the behalf of the user, but they have been given multiple opportunities to change the contents before that. A warning is displayed before the order is placed as well. The coupon available to them which offers the maximum discount will automatically be applied on the order and a receipt will be generated.
- 6) View all the coupons available to them.

The tables that have been used in the database are as follows:

Admin: Details of admins of various branches (Branch and Admin have a one-one relationship)

User id Username Pass word Pincode

Available: Available products at a particular branch

Pincode Product id Quantity

Branch: Names of branches of a pincode which will be used as a foreign key in other tables

Area Pincode

Cart: Contents of carts of all the customers

User_ID Product_ID

Quantity

Coupon: (Order_id and order_date are set to null until the coupon is availed)

Coupon_ID

Min_Order_Amt

Valid_Until_Date

Discount_Offered

Date_Of_Issue

Order_id

Order_date

user_id

Customer: Customers' details

User_ID

Name

Contact_no

Total_no_of_orders

pincode

Orders: Description of the orders placed

Order_id

Order_date

Total_price

Delivery_date

Pincode

user_id

Product : Description of the products available at all the branches

Product_id

Product name

Price

Products_In_Order: Description of the products in the orders in queue

Order_id

User_id

Product_id

quantity

Transactions

T1: Admin A changes quantity of available products at a branch

T2: Customer C checks whether products in cart of C are available at the nearest branch and then proceed with the order by making an entry in the order table, emptying cart and deleting items from the available list.

T1

Read(Available): Read quantity from available

Input: Take input from user

Write(Available): Write new quantity into available

<u>T2</u>

Read(Cart): Read quantity from cart

Read(Available): Reads quantity in available

Check: Compare quantity in both tables

Write(Orders): Create new order entry in orders

Available := Available - Cart

Write(Available): Updates available table

Write(Cart): Empties cart

Conflict Serializable Schedule

Since in the precedence graph, no cycle is formed. Hence, we can say that this schedule is confict serializable.

Non-Conflict Serializable Transaction

In the precedence graph, cycle is formed. Hence, we can say that this schedule is not-confict serializable.

We can reduce the non-conflicting schedule