Optimisation par colonies de fourmis dans ProB

Aurélien Pepin

Ensimag — LIG

27/04/2018

Présentation

Description du sujet

Contexte du travail
Cadre du sujet
Outils et environnement
Colonies de fourmis

Réalisations

Exploration de l'espace d'états Fonction d'évaluation Condition d'arrêt

Contexte du travail

Recherche de scénarios malicieux

- ► Thème général : sécurité des systèmes (d'information).
 - Contrer les attaques d'initié ;
 - Identifier les scénarios d'utilisation malicieux.
- Outil 1 : modélisation d'un système d'information.
- Outil 2 : techniques de model checking.
 - Système ≡ ensemble d'états d'exécution ;
 - Un état est caractérisé par des variables et des relations.
 - ▶ Identifier les états qui sont le résultat d'un scénario malicieux.

Contexte du travail

Recherche de scénarios malicieux

- Thème général : sécurité des systèmes (d'information).
 - Contrer les attaques d'initié ;
 - Identifier les scénarios d'utilisation malicieux.
- Outil 1 : modélisation d'un système d'information.
- Outil 2 : techniques de model checking.
 - Système ≡ ensemble d'états d'exécution ;
 - Un état est caractérisé par des variables et des relations.
 - ▶ Identifier les états qui sont le résultat d'un scénario malicieux.
- ▶ Problème : explosion combinatoire de l'espace d'états

Cadre du sujet Outils et environnement

- Modélisation du système : méthode B.
- Model checker : ProB (via l'API en Java).
- Exemple de système étudié : SI d'une banque.
 - Politique RBAC (Role-based access control);
 - Scénario : usurpation de compte par le banquier.

- ► Ensemble d'algorithmes heuristiques inspirés des fourmis.
- ▶ Idée : reproduire le comportement collectif des fourmis.
 - ▶ Par exemple, la stigmergie pour la recherche de nourriture.

- ► Ensemble d'algorithmes heuristiques inspirés des fourmis.
- ▶ Idée : reproduire le comportement collectif des fourmis.
 - ▶ Par exemple, la stigmergie pour la recherche de nourriture.
- ► Algorithme proposé : API (Pachycondyla Apicalis).

Colonies de fourmis

► Algorithme proposé : API (*Pachycondyla Apicalis*).

Colonies de fourmis

- ► Algorithme proposé : API (*Pachycondyla Apicalis*).
 - Au niveau global (colonie, nid) :
 - ► Envoyer des fourmis en exploration
 - Déplacer régulièrement le nid sur les sites intéressants

Colonies de fourmis

- ► Algorithme proposé : API (*Pachycondyla Apicalis*).
 - Au niveau global (colonie, nid) :
 - Envoyer des fourmis en exploration
 - Déplacer régulièrement le nid sur les sites intéressants
 - Au niveau local (fourmi) :
 - ► Chasser de proche en proche, garder les *bons* sites

Réalisations

Paramètres de l'algorithme

- Algorithme générique : paramètres à adapter
 - ▶ Relatifs à l'algorithme :
 - Nombre de fourmis qui chassent ;
 - ▶ Patience d'une fourmi avant d'abandonner un site ;
 - Condition de déplacement du nid ;
 - etc.
 - Relatifs au domaine d'application (sécurité des SI) :
 - Heuristique d'exploration de l'espace de recherche ;
 - ► Fonction d'évaluation de ce qu'est un *bon* site ;
 - Condition d'arrêt de l'algorithme ;
 - etc.

Relatifs au domaine d'application

Exploration de l'espace d'états

- Installation du nid à la racine de l'espace d'états
- Exploration aléatoire des transitions
- Ajout du retour en arrière pour la fourmi
 - Non prévu par ProB
 - ► Transformer l'espace d'états en arbre pour éviter les boucles

Relatifs au domaine d'application

Fonction d'évaluation

- Est-ce qu'on se rapproche de l'état dangereux ?
- ▶ Prédicat (réponse ∈ {V, F}) trop « strict »

Relatifs au domaine d'application

Fonction d'évaluation

- Est-ce qu'on se rapproche de l'état dangereux ?
- ▶ Prédicat (réponse ∈ {V, F}) trop « strict »
- ▶ Idée : indice de similarité, réponse $\in [0,1]$
 - ▶ 0 : l'état possède toutes les variables recherchées
 - ▶ 1 : l'état n'a rien à voir
- Exemple pour une variable de classe :

$$J_{\delta}(C^*,C)=1-rac{|C^*\cap C|}{|C^*\cup C|}$$

Moyenne (pondérée) de la similarité de chaque variable

Relatifs au domaine d'application

Condition d'arrêt

- Choix 1 : nombre d'itérations de l'algorithme
- ► Choix 2 : la meilleure solution n'évolue plus
- Choix 3 : nombre d'appels à la fonction d'évaluation
 - Appel à ProB coûteux (mémoïsation)
 - Comparer des exécutions avec différents paramètres

Bibliographie I

Nicolas Monmarché.

Algorithmes de fourmis artificielles : applications à la classification et à l'optimisation.

Université François Rabelais - Tours, 2000.

Maxime Dadoua.

Recherche d'attaques d'initié en systèmes d'information. Rapport d'IRL - Ensimag et LIG, 2016.