

Continuous-Time Consistency Models

Guande He

The Curse of Consistency

• From an optimization perspective, it's hard to deal with when $\Delta t \rightarrow 0$ due to error accumulation:

$$\|\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_T) - \mathbf{x}_0\| \leq \sum_{i=1}^{N-1} \|\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{i+1}}) - \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_i})\| \leq Ne_{\max}$$

This $\Delta t \to 0$ condition is **required** to guarantee the correctness of the "data score" used in consistency training, i.e., the marginal score is estimated with:

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = -\mathbb{E}\left[\frac{\mathbf{x}_t - \alpha_t \mathbf{x}_t}{\sigma_t^2} \mid \mathbf{x}_t\right] \approx \frac{\mathbf{x}_t - \alpha_t \mathbf{x}_t}{\sigma_t^2}$$

- An expedient treatment is to manually design a "time step schedule" to gradually "shrink" Δt .
 - > 🚱 🦈 But...

He, Guande, et al. "Consistency Diffusion Bridge Models." (NeurIPS 2024)

-Probability Flow ODE-

Data

>Noise

Continuous-Time Consistency Models

- What happens to the objective when $\Delta t \rightarrow 0$? (From finite-difference to differential)
 - Recall Consistency Distillation (in L2 distance, VE noise schedule):

$$\mathcal{L}_{\mathrm{CD}}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi}) := \mathbb{E}[\lambda(t_n) \| \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}) - \boldsymbol{f}_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n) \|_{2}^{2}]$$

 \blacktriangleright We have $\lim_{N\to\infty}(N-1)^2\mathcal{L}_{\mathrm{CD}}^N(\boldsymbol{\theta},\boldsymbol{\theta};\boldsymbol{\phi})=\mathcal{L}_{\mathrm{CD}}^\infty(\boldsymbol{\theta},\boldsymbol{\theta};\boldsymbol{\phi})$, where:

$$\mathcal{L}_{\mathrm{CD}}^{\infty}(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi}) := \mathbb{E}\left[\frac{\lambda(t)}{[(\tau^{-1})'(t)]^2} \left\| \frac{\partial \boldsymbol{f_{\theta}}(\mathbf{x}_t, t)}{\partial t} - t \frac{\partial \boldsymbol{f_{\theta}}(\mathbf{x}_t, t)}{\mathbf{x}_t} \boldsymbol{s_{\phi}}(\mathbf{x}_t, t) \right\|_2^2\right]$$

This is intuitive since

$$f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t) \equiv \mathbf{x}_{\epsilon} \qquad \text{consistency condition}$$

$$\iff \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial \mathbf{x}_{t}} \frac{\partial \mathbf{x}_{t}}{\partial t} + \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial t} \equiv 0$$

$$\iff \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial \mathbf{x}_{t}} [-ts_{\boldsymbol{\phi}}(\mathbf{x}_{t},t)] + \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial t} \equiv 0 \qquad \text{(VE noise schedule)}$$

$$\iff \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial t} - t \frac{\partial f_{\boldsymbol{\theta}}(\mathbf{x}_{t},t)}{\partial \mathbf{x}_{t}} s_{\boldsymbol{\phi}}(\mathbf{x}_{t},t) \equiv 0.$$
Song Yang et al. "Consistency Med

Continuous-Time Consistency Models

- The practice on discrete-time CMs suggests that using $\mathcal{L}_{CD}^{N}(\boldsymbol{\theta}, \operatorname{sg}[\boldsymbol{\theta}]; \boldsymbol{\phi})$ instead of $\mathcal{L}_{CD}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi})$ stabilizes training.
- For continuous-time CM (in L2 distance, VE noise schedule):

$$\mathcal{L}_{\mathrm{CD}}^{\infty}(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi}) := \mathbb{E}\left[\frac{\lambda(t)}{[(\tau^{-1})'(t)]^{2}} \left\| \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)}{\partial t} - t \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)}{\partial \mathbf{x}_{t}} s_{\boldsymbol{\phi}}(\mathbf{x}_{t}, t) \right\|_{2}^{2}\right]$$

$$\mathcal{L}_{\mathrm{CD}}^{\infty}(\boldsymbol{\theta}, \mathrm{sg}[\boldsymbol{\theta}]; \boldsymbol{\phi}) := 2\mathbb{E}\left[\frac{\lambda(t)}{[(\tau^{-1})'(t)]^{2}} \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)^{\top} \left(\frac{\partial \boldsymbol{f}_{\mathrm{sg}[\boldsymbol{\theta}]}(\mathbf{x}_{t}, t)}{\partial t} - t \frac{\partial \boldsymbol{f}_{\mathrm{sg}[\boldsymbol{\theta}]}(\mathbf{x}_{t}, t)}{\partial \mathbf{x}_{t}} s_{\boldsymbol{\phi}}(\mathbf{x}_{t}, t)\right)\right]$$

$$\mathcal{L}_{\mathrm{CT}}^{\infty}(\boldsymbol{\theta}, \mathrm{sg}[\boldsymbol{\theta}]) := 2\mathbb{E}\left[\frac{\lambda(t)}{[(\tau^{-1})'(t)]^{2}} \boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t}, t)^{\top} \left(\frac{\partial \boldsymbol{f}_{\mathrm{sg}[\boldsymbol{\theta}]}(\mathbf{x}_{t}, t)}{\partial t} - t \frac{\partial \boldsymbol{f}_{\mathrm{sg}[\boldsymbol{\theta}]}(\mathbf{x}_{t}, t)}{\partial \mathbf{x}_{t}} \cdot \frac{\mathbf{x}_{t} - \mathbf{x}}{t}\right)\right]$$

Asymptotic behavior:

No stop gradient version:

$$\lim_{N\to\infty} (N-1)^2 \mathcal{L}_{\mathrm{CD}}^N(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi}) = \mathcal{L}_{\mathrm{CD}}^\infty(\boldsymbol{\theta}, \boldsymbol{\theta}; \boldsymbol{\phi})$$

Stop gradient version:

$$\lim_{N \to \infty} (N-1)^2 \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{CD}}^N(\boldsymbol{\theta}, \mathrm{sg}[\boldsymbol{\theta}]; \boldsymbol{\phi}) = \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{CD}}^\infty(\boldsymbol{\theta}, \mathrm{sg}[\boldsymbol{\theta}]; \boldsymbol{\phi})$$

$$= \lim_{N \to \infty} (N-1)^2 \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{CT}}^N(\boldsymbol{\theta}, \mathrm{sg}[\boldsymbol{\theta}]) = \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{CT}}^\infty(\boldsymbol{\theta}, \mathrm{sg}[\boldsymbol{\theta}])$$
Song, Yang, et al. "Consistency Models." (ICML 2023)

Continuous-Time CMs can work!

- Although the continuous-time CM formulation is proposed on early 2023, there is no empirical practice successfully showing its effectiveness until Oct. 2024.
 - Developing empirical & engineering techniques tailored for the continuous-time CM objective!

Noise Schedule, Model Parameterization & Network Preconditioning (Empirical Design Space)

Forward process / interpolation:

$$\boldsymbol{x}_t = \cos(t)\boldsymbol{x}_0 + \sin(t)\boldsymbol{z}, \quad \boldsymbol{x}_0 \sim p_d(\boldsymbol{x}_0), \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, \sigma_d^2 \boldsymbol{I}), t \in [0, \frac{\pi}{2}]$$

The diffusion model (i.e., the velocity field in Rectified Flow) is parameterized as:

$$m{v_{m{ heta}}(m{x}_t,t) = \sigma_d m{F_{m{ heta}}(m{x}_t/\sigma_d,c_{ ext{noise}}(t))}}$$
 where $m{F_{m{ heta}}}$ is a neural network. The PF-ODE is given by: $\dfrac{\mathrm{d}m{x}_t}{\mathrm{d}t} = \sigma_d m{F_{m{ heta}}\left(\dfrac{m{x}_t}{\sigma_d},c_{ ext{noise}}(t)
ight)}$

Parameterization of consistency function:

$$f_{\theta}(x_t, t) = \cos(t)x_t - \sin(t)\sigma_d F_{\theta}\left(\frac{x_t}{\sigma_d}, c_{\text{noise}}(t)\right)$$

- Insight here: using the DDIM-style first-order ODE discretization will automatically enforce the boundary condition $f_{m{ heta}}(m{x}_0,0)\equiv 0$.
- ightharpoonup Note: $f_{m{ heta}}$ is proportional to $\sin(t) m{F}_{m{ heta}}$.

Stabilizing Continuous-time CMs

$$\frac{\mathrm{d}\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t)}{\mathrm{d}t} = \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t)}{\partial \boldsymbol{x}_{t}} \frac{\mathrm{d}\boldsymbol{x}_{t}}{\mathrm{d}t} + \frac{\partial \boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t},t)}{\partial t} \equiv 0$$

• Consider the "consistency condition" (tangent) term under the proposed design:

$$\frac{\mathrm{d}\boldsymbol{f}_{\boldsymbol{\theta}^{-}}}{\mathrm{d}t} = -\cos(t)\left(\sigma_{d}\boldsymbol{F}_{\boldsymbol{\theta}^{-}}\left(\frac{\boldsymbol{x}_{t}}{\sigma_{d}}\right) - \frac{\mathrm{d}\boldsymbol{x}_{t}}{\mathrm{d}t}\right) - \sin(t)\left(\boldsymbol{x}_{t} + \sigma_{d}\frac{\mathrm{d}\boldsymbol{F}_{\boldsymbol{\theta}^{-}}(\frac{\boldsymbol{x}_{t}}{\sigma_{d}}, t)}{\mathrm{d}t}\right), \quad \boldsymbol{\theta}^{-} := \mathrm{sg}[\boldsymbol{\theta}]$$

 \blacktriangleright The instability mainly comes from the scaled time derivative of the neural network $\sin(t)\partial_t F_{\theta^-}$:

$$\sin(t)\partial_t \mathbf{F}_{\theta^-} = \sin(t)\frac{\partial c_{\text{noise}}(t)}{\partial t} \cdot \frac{\partial \text{emb}(c_{\text{noise}})}{\partial c_{\text{noise}}} \cdot \frac{\partial \mathbf{F}_{\theta^-}}{\partial \text{emb}(c_{\text{noise}})}$$

- Proposed treatment:
 - ightharpoonup Identity Time Transformation: $c_{
 m noise}(t)=t$
 - Re-design time embeddings $\mathrm{emb}(c)$ with smaller gradient magnitudes.
 - > Adaptative Double Normalization Layer:

$$y = \text{norm}(x) \odot \text{pnorm}(s(t)) + \text{pnorm}(b(t))$$

Figure 4: Stability of different formulations. We show the norms of both terms in $\frac{\mathrm{d} f_{\theta^-}}{\mathrm{d} t} = \nabla_{\boldsymbol{x}} f_{\theta^-} \cdot \frac{\mathrm{d} x_t}{\mathrm{d} t} + \partial_t f_{\theta^-}$ for diffusion models trained with the EDM $(c_{\mathrm{noise}}(t) = \log(\sigma_d \tan(t)))$ and TrigFlow $(c_{\mathrm{noise}}(t) = t)$ formulations using different time embeddings. We observe that large Fourier scales in Fourier embeddings cause instabilities. In addition, the EDM formulation suffers from numerical issues when $t \to \frac{\pi}{2}$, while TrigFlow (using positional embeddings) has stable partial derivatives for both x_t and t.

Stabilizing Continuous-time CMs

Tangent Normalization

- ightharpoonup Explicitly normalizing $\frac{\mathrm{d} f_{\theta^-}}{\mathrm{d} t}$ with $\frac{\mathrm{d} f_{\theta^-}}{\mathrm{d} t} / \left(\| \frac{\mathrm{d} f_{\theta^-}}{\mathrm{d} t} \| + c \right)$
- ightharpoonup Clipping $\frac{\mathrm{d} f_{\theta^-}}{\mathrm{d} t}$ within [-1,1].

Loss Trick & Adaptive Weighting

- ightharpoonup Convert $\mathcal{L}_{\mathrm{CM}}^{\infty}$ into a MSE loss using the trick $abla_{m{ heta}}\mathbb{E}[m{F}_{m{ heta}}^{ op}m{y}] = rac{1}{2}
 abla_{m{ heta}}\mathbb{E}[\|m{F}_{m{ heta}} m{F}_{\mathrm{sg}[m{ heta}]} + m{y}\|_2^2].$
- ➤ Learn adaptive loss weighting during training:

$$\mathcal{L}_{\text{sCM}}(\boldsymbol{\theta}, \phi) := \mathbb{E}_{\boldsymbol{x}_t, t} \left[\frac{e^{\omega_{\phi}(t)}}{D_{\boldsymbol{x}_0}} \left\| \boldsymbol{F}_{\boldsymbol{\theta}} \left(\frac{\boldsymbol{x}_t}{\sigma_d}, t \right) - \boldsymbol{F}_{\boldsymbol{\theta}^-} \left(\frac{\boldsymbol{x}_t}{\sigma_d}, t \right) - \cos(t) \frac{\mathrm{d} \boldsymbol{f}_{\boldsymbol{\theta}^-}(\boldsymbol{x}_t, t)}{\mathrm{d} t} \right\|_2^2 - \omega_{\phi}(t) \right]$$

Diffusion Fine-tuning & Tangent Warmup

- Fine-tuning from pre-trained diffusion models instead of training of scratch.
- Warm up the instable term $\sin(t)(x_t + \sigma_d \frac{dF_{\theta^-}}{dt})$ by using $r \cdot \sin(t)$, r increases linearly from 0 to 1 over the first 100k training iterations.

Efficient Jacobian-Vector Product (JVP) Computation

JVP Rearrangement

- Vanilla calculation of $\frac{\mathrm{d} F_{\theta^-}}{\mathrm{d} t} = \nabla_{\boldsymbol{x}_t} F_{\boldsymbol{\theta}^-} \cdot \frac{\mathrm{d} \boldsymbol{x}_t}{\mathrm{d} t} + \partial_t F_{\boldsymbol{\theta}^-}$ using JVP of $F_{\boldsymbol{\theta}^-}(\frac{\cdot}{\sigma_d},\cdot)$ with input (\boldsymbol{x}_t,t) and tangent vector $(\frac{\mathrm{d} \boldsymbol{x}_t}{\mathrm{d} t},1)$ is prone to overflow.
- ightharpoonup Using the fact that f_{θ} is proportional to $\sin(t)F_{\theta}$ and the sCM loss calculates $\cos(t)\frac{\mathrm{d}f_{\theta-}(x_t,t)}{\mathrm{d}t}$, the JVP can be implemented as:

$$\cos(t)\sin(t)\frac{\mathrm{d}\boldsymbol{F}_{\boldsymbol{\theta}^{-}}}{\mathrm{d}t} = \left(\nabla_{\frac{\boldsymbol{x}_{t}}{\sigma_{d}}}\boldsymbol{F}_{\boldsymbol{\theta}^{-}}\right)\cdot\left(\cos(t)\sin(t)\frac{\mathrm{d}\boldsymbol{x}_{t}}{\mathrm{d}t}\right) + \partial_{t}\boldsymbol{F}_{\boldsymbol{\theta}^{-}}\cdot\left(\cos(t)\sin(t)\sigma_{d}\right)$$

which is the JVP of $F_{\theta^-}(\cdot,\cdot)$ with input $(\frac{x_t}{\sigma_d},t)$ with tangent vector $(\cos(t)\sin(t)\frac{\mathrm{d}x_t}{\mathrm{d}t},\cos(t)\sin(t)\sigma_d)$

• The authors also modifies the Flash Attention to simultaneously compute softmax self-attention and its JVP in a single forward pass.

Benchmark Results

Table 1: Sample quality on unconditional CIFAR-10 and class-conditional ImageNet 64× 64.

Unconditional CIFAR-10			Class-Conditional ImageNet 64×64		
METHOD	NFE (\dagger)	FID (↓)	METHOD	NFE (\lambda)	FID (↓)
Diffusion models & Fast Samplers			Diffusion models & Fast Samplers		
Score SDE (deep) (Song et al., 2021b)	2000	2.20	ADM (Dhariwal & Nichol, 2021)	250	2.07
EDM (Karras et al., 2022)	35	2.01	RIN (Jabri et al., 2022)	1000	1.23
Flow Matching (Lipman et al., 2022)	142	6.35	DPM-Solver (Lu et al., 2022a)	20	3.42
DPM-Solver (Lu et al., 2022a)	10	4.70	EDM (Heun) (Karras et al., 2022)	79	2.44
DPM-Solver++ (Lu et al., 2022b)	10	2.91	EDM2 (Heun) (Karras et al., 2024)	63	1.33
DPM-Solver-v3 (Zheng et al., 2023c)	10	2.51	Joint Training		
Joint Training			StyleGAN-XL (Sauer et al., 2022)	1	1.52
Diffusion GAN (Xiao et al., 2022)	4	3.75	Diff-Instruct (Luo et al., 2024)	1	5.57
Diffusion StyleGAN (Wang et al., 2022)	1	3.19	EMD (Xie et al., 2024b)	1	2.20
StyleGAN-XL (Sauer et al., 2022)	1	1.52	DMD (Yin et al., 2024b)	1	2.62
CTM (Kim et al., 2023)	1	1.87	DMD2 (Yin et al., 2024a)	1	1.28
Diff-Instruct (Luo et al., 2024)	1	4.53	SiD (Zhou et al., 2024)	1	1.52
DMD (Yin et al., 2024b)	1	3.77	CTM (Kim et al., 2023)	1	1.92
SiD (Zhou et al., 2024)	1	1.92		2	1.73
			Moment Matching (Salimans et al., 2024)	1	3.00
Diffusion Distillation				2	3.86
DFNO (LPIPS) (Zheng et al., 2023b)	1	3.78	Diffusion Distillation		
2-Rectified Flow (Liu et al., 2022)	1	4.85	DFNO (LPIPS) (Zheng et al., 2023b)	1	7.83
PID (LPIPS) (Tee et al., 2024)	1	3.92	PID (LPIPS) (Tee et al., 2024)	1	9.49
BOOT (LPIPS) (Gu et al., 2023)	1	4.38	TRACT (Berthelot et al., 2023)	1	7.43
Consistency-FM (Yang et al., 2024)	2	5.34	Trace (Bertalelot et al., 2023)	2	4.97
PD (Salimans & Ho, 2022)	1	8.34	PD (Salimans & Ho, 2022)	1	10.70
	2	5.58	(reimpl. from Heek et al. (2024))	2	4.70
TRACT (Berthelot et al., 2023)	1	3.78	CD (LPIPS) (Song et al., 2023)	1	6.20
	2	3.32	CD (Di ii b) (bong et al., 2025)	2	4.70
CD (LPIPS) (Song et al., 2023)	1	3.55	MultiStep-CD (Heek et al., 2024)	1	3.20
	2	2.93	Manuscop CD (1200H of this, 2021)	2	1.90
sCD (ours)	1	3.66	sCD (ours)	1	2.44
	2	2.52	332 (3213)	2	1.66
Consistency Training			Consistency Training		
iCT (Song & Dhariwal, 2023)	1	2.83	iCT (Song & Dhariwal, 2023)	1	4.02
	2	2.46		2	3.20
iCT-deep (Song & Dhariwal, 2023)	1	2.51	iCT-deep (Song & Dhariwal, 2023)	1	3.25
	2	2.24	-	2	2.77
ECT (Geng et al., 2024)	1	3.60	ECT (Geng et al., 2024)	1	2.49
	2	2.11		2	1.67
sCT (ours)	1	2.97	sCT (ours)	1	2.04
	2	2.06		2	1.48

Table 2: Sample quality on class-conditional ImageNet 512×512. †Our reimplemented teacher diffusion model based on EDM2 (Karras et al., 2024) but with modifications in Sec. 4.1.

METHOD	NFE (\downarrow)	$\mathbf{FID}\left(\downarrow\right)$	#Params	METHOD ()	NFE (\downarrow)	$\mathbf{FID}\ (\downarrow)$	#Params
Diffusion models				[†] Teacher Diffusion Model			
ADM-G (Dhariwal & Nichol, 2021)	250×2	7.72	559M	EDM2-S (Karras et al., 2024)	63×2	2.29	280M
RIN (Jabri et al., 2022)	1000	3.95	320M	EDM2-M (Karras et al., 2024)	63×2	2.00	498M
U-ViT-H/4 (Bao et al., 2023)	250×2	4.05	501M	EDM2-L (Karras et al., 2024)	63×2	1.87	778M
DiT-XL/2 (Peebles & Xie, 2023)	250×2	3.04	675M	EDM2-XL (Karras et al., 2024)	63×2	1.80	1.1B
SimDiff (Hoogeboom et al., 2023)	512×2	3.02	2B	EDM2-XXL (Karras et al., 2024)	63×2	1.73	1.5B
VDM++ (Kingma & Gao, 2024)	512×2	2.65	2B				
DiffiT (Hatamizadeh et al., 2023)	250×2	2.67	561M	Consistency Training (sCT, ours))		
DiMR-XL/3R (Liu et al., 2024)	250×2	2.89	525M	sCT-S (ours)	1	10.13	280M
DiffuSSM-XL (Yan et al., 2024)	250×2	3.41	673M	, ,	2	9.86	280M
DiM-H_(Teng et al., 2024)	250×2	3.78	860M	sCT-M (ours)	1	5.84	498M
U-DiT_(Tian et al., 2024b)	250	15.39	204M	,	2	5.53	498M
SiT-XL (Ma et al., 2024)	250×2	2.62	675M	sCT-L (ours)	1	5.15	778M
Large-DiT (Alpha-VLLM, 2024)	250×2	2.52	3B		2	4.65	778M
MaskDiT (Zheng et al., 2023a)	79×2	2.50	736M	sCT-XL (ours)	1	4.33	1.1B
DiS-H/2 (Fei et al., 2024a)	250×2	2.88	900M	Sel HE (suis)	2	3.73	1.1B
DRWKV-H/2 (Fei et al., 2024b)	250×2	2.95	779M	sCT-XXL (ours)	1	4.29	1.5B
EDM2-S (Karras et al., 2024)	63×2	2.23	280M	SCI-AAL (ours)	2	3.76	1.5B
EDM2-M (Karras et al., 2024)	63×2	2.01	498M			3.70	1.5В
EDM2-L (Karras et al., 2024)	63×2	1.88	778 M	Consistency Distillation (sCD, ou	ırs)		
EDM2-XL (Karras et al., 2024)	63×2	1.85	1.1B	sCD-S	1	3.07	280M
EDM2-XXL (Karras et al., 2024)	63×2	1.81	1.5B		2	2.50	280M
GANs & Masked Models				sCD-M	1	2.75	498M
BigGAN (Brock, 2018)	1	8.43	160M		2	2.26	498M
StyleGAN-XL (Sauer et al., 2022)	1×2	2.41	168M	sCD-L	1	2.55	778M
VQGAN (Esser et al., 2021)	1024	26.52	227M		2	2.04	778M
MaskGIT (Chang et al., 2022)	12	7.32	227M	sCD-XL	1	2.40	1.1B
MAGVIT-v2 (Yu et al., 2023)	64×2	1.91	307M		2	1.93	1.1B
MAR (Li et al., 2024)	64×2	1.73	481M	sCD-XXL	1	2.28	1.5B
VAR-d36-s (<u>Tian et al., 2024a</u>)	10×2	2.63	2.3B		2	1.88	1.5B

Scalability & Sample Diversity

Figure 6: sCD scales commensurately with teacher diffusion models. We plot the (a) FID and (b) FID ratio against the teacher diffusion model (at the same model size) on ImageNet 64×64 and 512×512. sCD scales better than sCT, and has a *constant offset* in the FID ratio across all model sizes, implying that sCD has the same scaling property of the teacher diffusion model. Furthermore, the offset diminishes with more sampling steps.

Figure 7: sCD has higher diversity compared to VSD: Sample quality comparison of the EDM2 (Karras et al., 2024) diffusion model, VSD (Wang et al., 2024; Yin et al., 2024b), sCD, and the combination of VSD and sCD, across varying guidance scales. All models are of EDM2-M size and trained on ImageNet 512×512.

Thanks!