1 Lezione del 03-03-25

1.1 Riassunto sulla stima dell'errore

Riassumiamo quindi le regole viste per la stima dell'errore su funzioni razionali. Avevamo dato la definizione di errore **assoluto** σ_f e errore **relativo** ϵ_f , entrambi composti da due fattori denominati errore **algoritmico** e errore **inerente**, con pedici rispettivamente a e d.

• Riguardo all'errore inerente assoluto avevamo preso su un dominio D la stime:

$$|\sigma_d| \le \sum_{j=1}^m A_j \cdot |\sigma_j|$$

con $|\sigma^j|$ errore di arrotondamento e A_j coefficiente di amplificazione:

$$A_j = \max_{P \in D} \left(\frac{\partial f}{\partial x_j}(P) \right)$$

Per l'errore di arrotondamento avevamo visto potevamo prendere:

$$|\sigma_j| \leq U \cdot |x_j|$$

con U precisione macchina.

• Riguardo all'errore inerente relativo avevamo invece preso:

$$|\epsilon_d| \le \sum_{j=1}^m \overline{A}_j \cdot |\epsilon_j|$$

con $|\epsilon_j|$ errore di arrotondamento relativo e $\overline{\sigma_j}$ coefficiente di amplificazione relativo:

$$\overline{A_j} = \max_{P \in D} \left(\frac{x_j \cdot \frac{\partial f}{\partial x_j}(P)}{f(P)} \right)$$

Per l'errore di arrotondamento relativo potevamo quindi prendere:

$$|\epsilon_i| \leq U$$

esempio errore algortmico di $f(x_1, x_2) = (x_1 + 1)x_1 + x_2$

1.2 Errori di funzioni non razionali

Abbiamo finora trascurato il caso di funzioni non razionali. Prendiamo ad esempio di voler calcolare l'errore su funzioni come $e^{\cos(x+y)}$. In questo caso sara' necessario usare un approssimazione razionale di f che chiamiamo \overline{f} , che poi porteremo a \overline{f}_a che usa operazioni macchina detta **algoritmo**. In questo caso l'errore sara' dato dall'*errore inerente*, dall'*errore algoritmico* e dall'*errore analitico* σ_{an} della funzione, cioe' potremo dire:

$$\overline{f}_{a}(P_{1}) - f(P_{0}) = \overline{f}_{a}(P_{1}) - \overline{f}(P_{1}) = \overline{f}(P_{1}) - f(P_{1}) + f(P_{1}) - f(P_{0}) = \sigma_{a} + \sigma_{an} + \sigma_{d}$$

L'errore inerente sara' calcolato sulla f originale, mentre l'errore analitico sara' calcolato con la nuova \overline{f} , e in particolare dipendera' dall'approssimazione razionale che usiamo.

Vediamo per adesso approssimazioni polinomiali attraverso la **formula di Taylor**. Nel caso scalare si ha:

Teorema 1.1: Formula di Taylor

Data $f: \mathbb{R} \to \mathbb{R}$, $f \in C^1$, allora dato $x_0 \in \mathbb{R}$ si ha:

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + \frac{f^{(k+1)}(\eta)}{(k+1)!} (x - x_0)^{k+1}$$

Dove:

$$\epsilon_l = \frac{f^{(k+1)}(\eta)}{(k+1)!} (x - x_0)^{k+1}$$

rappresenta l'**errore di Lagrange** al k-esimo grado, con $\eta \in [x_0, x]$ il punto di massimo della k+1-esima derivata di f.

In questo caso:

$$\overline{f}(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$

cioe' la serie di Taylor troncata al k-esimo grado sara' una buona approssimazione per f, e l'errore analitico sara' dato da:

$$\sigma_{an} = R(x) = f(x) - T(x, k)$$

con R(x) il resto fra lo sviluppo di Taylor troncato T(x,k) e la funzione stessa f(x). In questo caso fissato k si potra' dare una stima di errore direttamente dall'errore di Lagrange, cioe':

$$R(x) = f(x) - T(x,k) \le \epsilon_l = \frac{f^{(k+1)}(\eta)}{(k+1)!} (x - x_0)^{k+1}$$

penso si faccia cosi' pero' riguarda

esempio errore di e^x al variare di k con Taylor esempi di dettagli d'implementazione (vedi lab)

1.3 Richiami di algebra lineare

Nella maggior parte dei casi che ci interessano vorremo trattare non di scalari, ma di quantita' vettoriali, ad esempio $x \in \mathbb{C}^n$, con n > 1.

1.3.1 Matrici complesse

Ci saranno utili le matrici perche' rappresentano direttamente tutte le **funzioni lineari**. Ad esempio, posta $f: \mathbb{C}^n \to \mathbb{C}^m$ tale che:

- f(x+y) = f(x) + f(y) (addittivita');
- $f(\lambda x) = \lambda f(x)$ (omogeneita')

detta funzione lineare allora $\exists ! A \in \mathbb{C}^{m \times n}$ tale che $f(x) = Ax, \forall \in \mathbb{C}^n$.

Nel corso useremo sia matrici in \mathbb{R} che matrici in \mathbb{C} , dove l'appartenenza a ciascuno di questi campi dipende dalla appartenenza di essi delle **entrate** A_{ij} della matrice. In ogni caso, una matrice reale non sara' che un caso particolare delle matrici complesse.

Si danno poi per scontate le definizioni di matrici:

- Quadrate (n = m):
- Rettangolari $(n \neq m)$;
- Diagonali (elementi nulli fuori dalla diagonale);
- Triangolari superiori/inferiori (elementi nulli sotto/sopra la diagonale)

1.3.2 Indipendenza lineare

Diamo la definizione di indipendenza linare:

Definizione 1.1:

Un insieme di vettori $\{x_1,...,x_s\}$ si dice linearemente indipendente se:

$$x_1 + ... + x_s = 0 \leftrightarrow x_1, ..., x_s = 0$$

Inoltre, se s=n l'insieme $\{x_1,...,x_s\}$ si dice **base** di \mathbb{C}^n , e cioe' $\forall y \in \mathbb{C}^m \exists !\{c_1,...,c_s\}$ tali che $y=\sum_{j=1}^n c_j x_j$.

1.3.3 Prodotto scalare

Diamo la definizione di prodotto scalare, generalizzato al campo complesso dal **prodotto hermitiano** (entrambi *prodotti interni*):

Definizione 1.2: Prodotto interno

Definiamo il prodotto interno fra due vettori $x,y\in\mathbb{C}^n$ come:

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}$$

dove $\overline{y_j}$ rappresenta il **coniugato** di y_j , che chiaramente in $\mathbb R$ si riduce a y_j stesso e quindi:

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j y_j$$

1.4 Trasposta coniugata

Definiamo infine la **trasposta coniugata** di una certa matrice, generalizzata al campo complesso dalla **matrice hermitiana**:

Definizione 1.3: Trasposta coniugata

Data una matrice $A \in \mathbb{C}^{n \times m}$, la trasposta coniugata A^T sara':

$$(A^T)_{ij} = A_{ji}$$

e la matrice hermitiana A^H sara':

$$(A^H)_{ij} = \overline{A_{ji}}$$

1.4.1 Operazioni matriciali

Date due matrici A e B con lo stesso numero di righe e colonne si possono definire le operazioni:

- Somma $(A, B, C \in \mathbb{C}^{m \times n}, A + B = C, c_{ij} = a_{ij} + b_{ij});$
- Prodotto ($A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times p}$, $C \in \mathbb{C}^{m \times n}$, $A \cdot B = C$, $c_{ij} = \sum_{h=1}^{n} a_{ih} b_{hj}$ sia in reali che in complessi).

Dal punto di vista computazionale, si ha che il prodotto scalare ha complessita' O(n), e la moltiplicazione matriciale ha complessita' O(m,n).