Math 222 Lec 3

Asa Royal (ajr74)

January 19, 2024

epsilon-delta proofs of limits

Steps for $\varepsilon - \delta$ proof:

- 1. Begin "given $\varepsilon > 0$, choose $\delta = \dots$ "
- 2. Suppose $\|\mathbf{x} \mathbf{a}\| < \delta$
- 3. Check that $\|\mathbf{f}(\mathbf{x}) L\| < \varepsilon^{**}$
 - (a) In doing so, try to change the LHS to be some multiple of δ . Then conculde $c\delta = \varepsilon$ satisfies our requirements for δ
 - (b) if in evaluating $\|\mathbf{f}(\mathbf{x}) \mathbf{L}\|$, we end up with some multiple of our δ bound times a factor involving x (call it β), we need to take an add'l step
 - (c) Note that $\delta = min(1, ValueWeSolveFor)$. Then $\|\mathbf{x} \mathbf{a}\| < 1$ and $-1 < \|\mathbf{x} \mathbf{a}\| < 1$. Manipulate this inequality so that the x a term resembles β . Then note that $\beta < 1$... Plug that back into **, thus concluding that $\delta = min(1, d\varepsilon)$ for some d, which means $\delta \leq d\varepsilon$.

Tips for $\varepsilon - \delta$ proof: Remember:

- 1. Triangle inequality: $\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$
- 2. Any term under a radical will always be positive. Applyign this will often let us simplify inequalities by striking out radical terms.

Computing limits

Tips:

- 1. l'hospital's.
 - (a) $\lim_{x\to 0} = \frac{\sin x}{x} = 1$
- 2. Can replace complicated terms like xy in $\lim_{x\to 0} \frac{\cos xy}{xy}$, yielding $\lim_{x\to 0} \frac{\cos t}{t}$
- 3. If don't see a way to simplify the limit, try checking whether it doesn't exist. Plug in approaches from various paths.

Definition 1 (Differentiable). $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $\vec{x_0}$ if

- 1. All partials of f exist at $\vec{x_0}$
- 2. The tangent plane at x_0 provides a linear approximation of $f(\vec{x_0})$

$$\lim_{x \to x0} \frac{\|f(\vec{x} - (f(\vec{x_0}) + Df(x_0)(x - x_0))\|}{x - x_0 = 0}$$

Definition 2 (C^1). Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$. $f \in C^1$ iff the partials of f exist and are **continuous** in a neighbordhoos of $\vec{x_0}$.

Remark. $f \in C^1$ (is continuous and has continuous partials) $\implies f$ is differentiable $\implies f \in C^0$ (is continuous)