### Métricas ponto a ponto (continuação)

### Dados do tipo monóide

Considere-se o espaço de atributos  $\mathcal{A} = A \times A \times A \times ... \times A = A'$ . onde  $A = \{\epsilon, a, b, c, ..., z\}$ .

Para trabalhar este tipo de dados, vamos considerar o caso em que I=5. Ou seja consideramos palavras até 5 letras.

Uma função dissemelhaça poderá ser, d(x, y) = número de letras de x que são diferentes de x'.

**Exemplo 16:** Mostrar que é uma dissemelhança não simétrica, não está normalizada, e não verifica difinitness.

Usar definição de função de dissemelhança e arranjar contra exemplo que mostre que  $d(x,y) \neq d(y,x)$ . Mostrar que pode ter valores fora de [0,1] e que existem casos que d(x,y)=0 e  $x\neq y$ .

Uma outra função de semelhança poderá ser,

$$s(x,y) = \frac{1}{5}(s1(x,y) + s2(x,y) + s3(x,y) + s4(x,y) + s5(x,y))$$
 onde,

$$s_i(x,y) = \begin{cases} 1 & \text{se } x_i = y_i \\ 0 & \text{se } x_i \neq y_i \end{cases}$$

**Exemplo 17:** Verificar se é uma semelhança simétrica, se está normalizada, e se verifica difinitness.

**Exemplo 18:** Calcule s('aula', 'aulas'), s('aulas', 'aula').

### Métricas com dados Reais

 $\mathcal{A} = \mathbb{R}^I$ ,  $x = (x_1, x_2, ..., x_I) \in \mathcal{A}$ , é elemento genérico que pode ser evento  $e^n$  duma base de dados D.

### Métrica de Minkowski :

Seja r > 0. A Métrica de Minkowski é:

$$d_r(x,y) = (\sum_{i=1}^{l} |x_i - y_i|^r)^{1/r}.$$

De acordo com os valores de r obtêm-se diferentes métricas. Se  $r \in ]0,1[$  não se verifica a desigualdade triangular.

**Exemplo 19:** Considere r = 1/4; x = (0,0), y = (0,1) e z = (1,1). Verifique se a métrica em causa verifica a desigualdade triangular.

$$d_{\frac{1}{4}}(x,y) = 1; d_{\frac{1}{4}}(y,z) = 1; d_{\frac{1}{4}}(x,z) = 16;$$

Logo,  $d_{\frac{1}{4}}(x,z) \leq d_{\frac{1}{4}}(x,y) + d_{\frac{1}{4}}(y,z)$  é falso.

### Métricas com dados Reais

**Distância de Manhattan:** Fazer r = 1. Obtém-se,

$$d_1(x,y) = \sum_{i=1}^{I} |x_i - y_i|$$

**Exemplo 20:**  $x, y \in \mathbb{R}^2$ . Seja x = (1, 1) e y = (2, 2). Calcule a distância de Manhattan entre x e y.

$$d_1(x, y) = |1 - 2| + |1 - 2| = 2.$$

#### Distância de Euclidiana:

Fazer r = 2. Obtém—se,

$$d_2(x,y) = \sqrt{\sum_{i=1}^{l} |x_i - y_i|^2}.$$

Exemplo 21: Mostrar que a métrica Euclidiana é uma distância.

É necessário mostrar que,

- a)  $d_2(x, y) \ge 0$ . (positividade)
- b)  $d_2(x, y) = d_2(y, x)$ . (simetria)
- c)  $d_2(x, y) = 0 \equiv x = y$ . (definitness)
- d)  $d_2(x,z) \le d_2(x,y) + d_2(y,z)$  (designaldade triangular).

Também se consegue provar que,

- a) Compatibilidade com a adição  $d_2(0,x) = \sqrt{x_1^2 + x_2^2}$  e  $d_2(y,x+y) = \sqrt{x_1^2 + x_2^2}$ .
- b) Compatibilidade com a multiplicação por cosntante  $\lambda$ ,

$$d_2(\lambda x, \lambda y) = |\lambda| d_2(x, y).$$

**Distância de Chebyshev:** Fazer  $r \to \infty$ . Obtém-se,

$$d_{\infty}(x,y) = \max |x_i - y_i| \text{ com } i = 1,...I.$$

### Exemplo 22:

Sejam  $x, y \in \mathbb{R}^2$ , onde x = (1,1) e y = (2,3). Calcule  $d_{\infty}(x,y)$ .

Solução: 2.

**Dissemelhaça de Rook :** Considerando  $\mathcal{A}=\mathbb{R}^2$ , define-se como:

$$d_{Rook}\left(x,y\right) = \left\{ \begin{array}{ll} \left|x_2 - y_2\right| & \textit{se } x_1 = y_1 \\ \left|x_1 - y_1\right| & \textit{se } x_2 = y_2 \\ +\infty & \textit{se noutros casos} \end{array} \right.$$

**Exemplo 23:** Mostre que  $d_{Rook}$  não verifica a desigualdade triangular.

## 3. Métricas para sub conjuntos (subset metrics)

- A idéia é usar métricas ponto a ponto, para definir métricas para sub conjuntos.
- O cálculo do representante dum conjunto C pode ser importante. Este vai depender da métrica usada + operações algébricas possíveis no espaço dos atributos.

### Dados reais - representante dum conjunto

- $A = \mathbb{R}$ ,  $D = \{x^n : n = 1, ...N\}$  onde  $x^n \in \mathbb{R}$ .
- Vamos assumir que os dados são ordenados.
- Para determinar o representante  $m \in \mathcal{A}$  dum conjunto C vamos definir a funcional,

$$E(m;C) = \sum_{n=1}^{N} (d_2(m,x^n))^2 = \sum_{n=1}^{N} (x^n - m)^2.$$

se usarmos a métrica Euclidiana.

ou seja,

$$E(m; C) = (d_2(m, x^1))^2 + (d_2(m, x^2))^2 + ... + (d_2(m, x^N))^2$$

O objetivo é determinar m que minimiza E,

$$\overline{m} = \arg\min_{m} E(m; C).$$

Usando uma métrica Euclidiana vem,

$$E(m; C) = (x^1 - m)^2 + (x^2 - m)^2 + ... + (x^N - m)^2$$

Derivando e igualando a 0 vem,

$$-2(x^{1}-m)-2(x^{2}-m)-...-2(x^{N}-m)=0.$$

Resolvendo em ordem a m,

$$m = \frac{1}{N} \sum_{i=1}^{N} x^{i},$$

ou seja, o representante de C é o valor médio dos valores de C.

Se a métrica usada fôr a de Manhattan, temos,

$$E(m, C) = \sum_{n=1}^{N} |m - x^n|.$$

Notar que a funcional não é derivável.



Notar que à esquerda de  $x^n$  é estritamente decrescente com declive -1, e à direita de  $x^n$  é estritamente decrescente com declive 1. Podemos definir,

$$E'(m; C) = \sum_{n=1}^{N} sign(m - x^n)$$
, com  $m \neq x^1, x^2, ...x^N$ , onde  $sign \in -1$  ou 1.

**Exemplo 24:** Seja  $C = \{x^1, x^2, x^3, x^4\}$  onde  $x^n \in \mathbb{R}$ . Calcule representante de C usando a métrica de Manhattan.

Pretende-se então ver qual o valor de m para o qual a funcional é mínima.



$$E'(m1; C) = -4$$
,  $E'(m2; C) = -2$ ,  $E'(m3; C) = 0$ ,  $E'(m4; C) = 2$ ,  $E'(m5; C) = 4$ .

Assim, se temos  $C=\{x^1,x^2,...,x^N\}$ , com  $x^n\in\mathbb{R}$  podemos definir como **representantes** de C, o valor médio com métrica Euclidana. Poderá ser interpretado como mediana se usamos a métrica de Manhattan. (média mto. diferente de mediana  $\rightarrow$  outlyers)

## Métricas entre subconjuntos (Inter cluster metrics)

Existem na literatura várias métricas entre dois sub conjuntos (clusters). Apresentamos algumas, e denominamos de dd.

- 1) Sejam m e m' os representantes de C e C', então dd(C,C')=d(m,m'). Neste caso estamos a usar uma métrica ponto a ponto entre os representantes dos clusters.
- 2)  $dd(C, C') = min \ d(x, x'), \ x \in C, \ x' \in C'$ . Chamada de **Single Linkage**, calcula a menor distância entre pontos de C e pontos de C'.
- 3)  $dd(C, C') = max \ d(x, x'), \ x \in C, \ x' \in C'$ . Chamada de **Complete Linkage**, calcula a maior distância entre pontos de C e pontos de C'.

4) 
$$dd(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x, x'), \ x \in C, \ x' \in C'.$$
 Chamada de

**Average**, calcula a média das distâncias entre pontos de C e pontos de C'.

#### Contróide versus Medóide



Centróide é o 'centro de massa'; Medóide pertence ao conjunto.

**Definição :**  $\overline{m} \in \mathcal{A}$  é um **centróide** de C se  $\forall x \in \mathcal{A} \ E(x; C) \geq E(\overline{m}; C)$ , escreve-se,

$$\overline{m} = \arg\min_{x \in \mathcal{A}} E(x; C)$$

**Definição** :  $\overline{m} \in C$  é um **medóide** de C se  $\forall x \in C$   $E(x; C) \geq E(\overline{m}; C)$ , escreve-se,

$$\overline{m} = \arg\min_{x \in C} E(x; C)$$

Notar que no segundo caso  $x \in C$ .

## Dados em $\mathbb{R}^{I}$ - representante do tipo centróide

 $\mathcal{A}=\mathbb{R}^I$ ,  $C=\{x^n:\ n=1,...N\}$  onde  $x_i^n\in\mathbb{R}$  representa o atributo i=1,...I do evento n = 1, ..., N.

Neste caso, definimos a função custo,

$$f(m)=\sum_{n=1}^N d(m,x^n)$$
 , onde , 
$$d(m,x^n)=\sum_{i=1}^I (m_i-x_i^n)^2 \ (\text{se }d\ \text{for distancia Euclidiana})\ .$$

Assim f representa a soma para todos os eventos de C da distância do representante de C que é m ao elemento de  $x_i^n \in C$ .

Como os elementos de C têm I componentes, usando a distância Euclidiana, fazemos a soma para todas as componentes de  $(m_i - x_i^n)^2$ .

Assim, podemos escrever a função custo,

$$f(m) = \sum_{n=1}^{N} \sum_{i=1}^{I} (m_i - x_i^n)^2 = \sum_{i=1}^{I} \sum_{n=1}^{N} (m_i - x_i^n)^2.$$

Se definirmos,  $f_i(m_i) = \sum_{n=1}^{N} (m_i - x_i^n)^2$ , para encontrar o representante de C, temos que encontrar  $m \in \mathbb{R}^I$  que minimiza f, que é o mesmo que **encontrar os**  $m_i \in \mathbb{R}$  **que minimizam**  $f_i$ .

Assim, para cada componente temos o problema de otimização semelhante ao caso 1D, que vimos ter como solução, o valor médio. Podemos então escrever,

$$\overline{m} = \frac{1}{N} \begin{bmatrix} \sum_{n=1}^{N} x_1^N \\ \sum_{n=1}^{N} x_2^N \\ \dots \\ \sum_{n=1}^{N} x_l^N \end{bmatrix}$$

m que é o representante de C é um centróide(normalmente não vai dar um elemento de C) .

Se optarmos por usar a **Métrica de Manhattan**, temos que a função custo é agora,

$$f(m) = \sum_{n=1}^{N} \sum_{i=1}^{I} |m_i - x_i^n| = \sum_{i=1}^{I} \sum_{n=1}^{N} |m_i - x_i^n|.$$

Se definirmos,  $f_i(m_i) = \sum_{n=1}^N |m_i - x_i^n|$ , para encontrar o representante de C, temos que encontrar  $m \in \mathbb{R}^I$  que minimiza f, que é o mesmo que **encontrar os**  $m_i \in \mathbb{R}$  **que minimizam**  $f_i$ . Vimos para o caso 1D que o representante é a mediana. Assim, neste caso, escrevemos,

$$\overline{m} = \begin{bmatrix} \overline{m}_1 \\ \overline{m}_2 \\ \dots \\ \overline{m}_N \end{bmatrix}$$

onde  $\overline{m}_i$  é a mediana dos  $x_i^n$ .

**Exemplo 24 :** Considere 
$$C = \{x^1, x^2, x^3, x^4, x^5\}$$
 onde  $x^1 = (0, 0)^T$ ,  $x^2 = (2, 1)^T$  e  $x^3 = (2, 4)^T$ ,  $x^4 = (1, -2)^T$  e  $x^5 = (-2, 4)^T$ .

- a) Calcule o representante de C usando a métrica Euclidiana.
- b) Calcule o representante de C usando a métrica de Manhattan.

## Dados em $\mathbb{R}^{I}$ - representante do tipo medóide

O raciocínio é o mesmo. temos que minimizar uma função custo f(m), mas acrescentamos a restrição de que esse representante tem que ser membro do conjunto C. É computacionalmente mais pesado.

Assim, pretende-se minimizar a função custo,

$$f(m) = \sum_{n=1}^{N} d(m, x^n)$$
 com a restrição de que  $m \in C$ . Ou seja,

$$\overline{m} = \arg\min_{x \in C} f(m)$$

**Exemplo 25 :** Considere  $C = \{x^1, x^2, x^3, x^4, x^5\}$  onde  $x^1 = (0,0)^T$ ,  $x^2 = (2,1)^T$  e  $x^3 = (2,4)^T$ ,  $x^4 = (1,-2)^T$  e  $x^5 = (-3,1)^T$ . Calcule o representante de C do tipo medóide, usando a métrica de Manhattan.