Decision Tree Regressor Report

In this exercise, I reported the results of my modifications to the decision tree regressor such as the the max depth and the max leaf nodes. To find the best parameters I used the knowledge from the previous exercise to deduce which parameters were the most important — max depth and max_leaf_nodes. My approach to testing was to find the best depth and then to find the best mse given the best depth.

OUTPUT WITHOUT MODIFICATIONS

Max Depth	Train Time	Time Testing	Train MSE	Time Testing Test	Test MSE
		Train Set		Set	
2	1.4613 secs	0.0410 secs	0.044722	0.0070 secs	0.045036
4	2.8217 secs	0.0610 secs	0.040759	0.0100 secs	0.040903
6	4.2410 secs	0.0830 secs	0.039447	0.0120 secs	0.039603
8	5.5181 secs	0.1140 secs	0.038627	0.0160 secs	0.038874
10	6.6390 secs	0.1441 secs	0.038008	0.0200 secs	0.038428
12	7.9051 secs	0.1790 secs	0.037436	0.0240 secs	0.038257
14	8.3700 secs	0.2209 secs	0.036764	0.0280 secs	0.038393
16	9.9319 secs	0.2799 secs	0.035746	0.0350 secs	0.039113
18	10.8428 secs	0.3528 secs	0.034202	0.0460 secs	0.040460

Depth by Training Time Plot

Accuracy by MSE Plot

Orange = Testing Test Set

Blue = Testing on Train Set

MODIFICATIONS TO MAX LEAF NODES

Max	Max Leaf	Train Time	Time Testing	Train MSE	Time Testing	Test MSE
Depth	Nodes		Train Set		Test Set	
12	100	6.2895 secs	0.1129 secs	0.038710	0.0180 secs	0.038894
12	600	7.7017 secs	0.1460 secs	0.037814	0.0190 secs	0.038230
12	1100	7.2210 secs	0.1590 secs	0.037598	0.0209 secs	0.038209
12	1600	7.8321 secs	0.1780 secs	0.037494	0.0210 secs	0.038242
12	2100	8.0291 secs	0.1791 secs	0.037447	0.0230 secs	0.038260
12	2600	7.8023 secs	0.1799 secs	0.037437	0.0220 secs	0.038275
12	3100	8.1350 secs	0.1799 secs	0.037436	0.0250 secs	0.038276
12	3600	7.8920 secs	0.1800 secs	0.037436	0.0250 secs	0.038242
12	4100	7.4270 secs	0.1807 secs	0.037436	0.0250 secs	0.038288
12	4600	7.9923 secs	0.1799 secs	0.037436	0.0240 secs	0.038262

Max Leaf Nodes by Training Time Plot

Max Leaf Nodes by MSE plot

Orange = Testing Test Set

Blue = Testing on Train Set

In conclusion, finding the optimal depth then using it with various max leaf nodes yielded a very small improvement in accuracy. To improve my findings, I don't know what parameters would have to be modified to increase accuracy, but I do know that modifying the max_features would increase the runtime. Although I made a slight improvement in accuracy, I lacked in the ability to find an optimal way to test parameter changes since there are many different modifications that can be made to the DecisionTreeRegressor invocation.

References

[1] "sklearn.tree.DecisionTreeClassifier¶." [Online]. Available: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html. [Accessed: 27-Oct-2020].