EE 102 Probability and Statistics in Electrical Engineering MIDTERM 1 SPRING 2014

NAME: SOLUTION

Problem 1	35			
Problem 2	35	+5	(extra	credit)
Problem 3	30			
Total	100			

Notes:

- \bullet Show your work for full/partial credit
- In the exam, P[A] denotes the probability of event A happening.
- Show your work explicitly.

Problem 1. For a discrete random variable X, the cumulative distribution function (CDF) is given as in Fig. 1.

Figure 1: CDF for Random Variable X.

- (\bigcirc a) Write the sample space for X.
- 10° b) Find and sketch the probability mass function (PMF) for X.
- $_{5}$ c) What kind of random variable is X? Explain your reasoning.
- (0) d) Calculate the conditional probability P[X > 2|X < 6].

a)
$$5x = \{-5, -3, 1, 4\}$$

b) $P_X(x) = \{\frac{1}{3}, x = -5 \text{ or } x = -3\}$
 $\frac{1}{6}, x = 1 \text{ or } x = 4$
 0 ow
 $\frac{1}{6}, x = 1 \text{ or } x = 4$

d)
$$P[x>2|x < 6] = P[2 < x < 6] = \frac{1}{1}$$

Problem 2. A player has three decks of cards: RED, BLUE, and GREEN. The RED deck has the standard 52 cards, but the BLUE deck is missing all the spades, and the GREEN deck is missing Ace of Hearts.

Hint: Remember that a standard deck of playing cards is 52-cards. There are 4 suits in a deck: clubs, hearts, diamonds and spades. Each suit has 13 cards. Each deck contains 4 aces-one from each suit.

a) A FAIR die is thrown, and a deck is selected according to the number showing on the die: RED deck is selected if the die shows a number less than 3. BLUE deck is selected if the die shows a number greater than 3. GREEN deck is selected if the die shows exactly 3.

From the selected deck, we pick FOUR cards.

- a1) Find the probability of picking exactly two aces.
- a2) If two aces are picked, what is the probability that the BLUE deck was selected?
 - b) The player mixes all the decks and then picks FOURS cards (the player is not biased by the color of the cards).
- b1) Find the probability of picking exactly two aces.
- 5 b2) If two aces are picked, what is the probability that they are from BLUE deck?

(Extra) > 5 c) Discuss and compare your results in Part-a and Part-b.

P(RED) = P(Die 23) =
$$\frac{1}{3}$$

P(GREEN) = P(Die = 3) = $\frac{1}{6}$

P(BLUE) = P(Die > 3) = $\frac{1}{2}$

P(two aces | RED) = $\frac{\binom{4}{2}\binom{42}{2}}{\binom{52}{4}}$

P(two aces | GREEN) = $\frac{\binom{3}{2}\binom{42}{2}}{\binom{51}{4}}$

P(two aces | BLUE) = $\frac{\binom{3}{2}\binom{36}{2}}{\binom{36}{2}}$

Using total prob. law

P(two aces) = P(two aces | RED) P(RED) + P(two aces | BUIE) P(BUIE)

T P(two aces | GREEN) P(GREEN)

Using Bayes thm,
$$P(BLEE | two aces) = P(two aces | BLUE) P(BLUE)$$

$$= \frac{3}{2} \frac{36}{2} \cdot \frac{1}{2} \frac{139}{4} = 0.5199$$

$$= 0.0221$$

total =
$$142$$
 cods
 $\# \text{ of } Aces = 10$

$$P(two aces) = \frac{\binom{10}{2}\binom{132}{2}}{\binom{142}{4}} = 0.0240$$

$$P(BLBE | two aces) = \frac{\binom{3}{2}}{\binom{10}{2}} = 0.0667$$

Problem 3. Everyday, Mary asks her friend to pick a number (integer) between 0 and 4 uniformly and randomly, and then she buys that many number of chocolate bars and she eats them. She spends 4 dollars for each chocolate bar.

- a) Let N denote the number of chocolate bars she eats each day. What type of random variable is N? Specify its parameters clearly.
- b) Let P denote the money she spends on chocolate each day. Sketch the CDF for P.
- c) Each of the chocolate bars Mary buys has nuts in it with probability 0.4. Let M denote the number of chocolate bars with nuts in it. What is the probability that M is larger than 2?

c)
$$P[M>2] = \sum_{n=3}^{4} P[M>2|N=n] P[N=n]$$

= ${\binom{3}{3}} 0.4^{3} 0.6^{6} + {\binom{4}{3}} 0.4^{3} 0.6 + {\binom{4}{4}} 0.4^{4} 0.6^{6}$ = 0.0486

				•