Ex.No-10

K Nearest Neighbours

Aim:

To implement K-Nearest Neighbors machine learning algorithm.

Description:

- 1. Import KNeighbors Classifier through sklearn
- 2. Provide the necessary dataset through DataFrames
- 3. Finally we can obtain the KNN output through matplotlib as graph

Program:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import
KNeighborsClassifierfile_path = "Book 8.csv"
df = pd.read_csv(file_path)
print("Original
DataFrame:\n",df)x =
df['x'].tolist()
y = df['y'].tolist()
classes =
df['classes'].tolist()data =
list(zip(x, y))
knn =
KNeighborsClassifier(n_neighbors=1)knn.
fit(data, classes)
new_x = 8
new_y = 21
new_point = [(new_x, new_y)]
prediction =
knn.predict(new_point)
plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]])
```

plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class:

{prediction[0]}")plt.show()

Output:

OriginalDataFram

	ex y classes	
0	4 21	0
1	5 19	0
2	10 17	0
3	3 21	1
4	11 25	0
5	4 16	1
6	14 22	1
7	10 21	0
8	12 21	1
9	8 24	1

Result:

The programs were run successfully