Vertex of the Quadratic

Given a quadratic n(u)=au² + bu + c compute its value at $u_1 = -\frac{b}{2a}$ namely $n(u_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{u}_{1^+}\mathsf{h}$, namely $n(u_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = n(u_1 + h) - n(u_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

Example 1. n (u) =4 u² – 24 u – 52

However if a < 0 then riangle < 0 or vertex is the global maximum!

