Föreläsning 2 i ADK

Repetition av sortering

Stefan Nilsson

KTH

Insättningssortering

Algoritm:

- Placera in första elementet på första platsen
- För varje nytt element x som ska sorteras in
 - Leta reda på var x ska in
 - Förskjut alla element till höger om den platsen ett steg
 - sätt in x

Exempel, sortera in talen 17 5 20 3:

17	→			5	5	-		3
		17		17	17		5	5
			-		20		17	17
							20	20

Antal operationer: $\mathcal{O}(n^2)$		Medeltal	Värsta fallet
Minnesåtgång: 0 extra element	Jämförelser	$\frac{n^2}{4}$	$\frac{n^2}{2}$
	Flyttar	$\frac{n^2}{4}$	$\frac{n^2}{2}$

Urvalssortering

Algoritm:

- Välj ut det minsta elementet
- Byt plats på minsta och första elementet
- Fortsätt på samma sätt med resten av elementen

Exempel:

4	3	3	3	3
7	7	4	4	4
4	4	7	4	4
19	19	19	19	7
3	4	4	7	19

Antal operationer:

- $\frac{n(n-1)}{2}$ dvs $\mathcal{O}(n^2)$ jämförelser
- n − 1 platsbyten
- Detta gäller oberoende av hur indata är ordnat

Minnesåtgång: 1 extra element

ADK - F2

3

Mergesort

Algoritm:

Mergesort

Analys:

• Låt T(n) = Tiden att sortera n tal med mergesort

•
$$T(n) = \begin{cases} \Theta(1) & \text{om } n = 1 \\ T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + \Theta(n) & \text{om } n > 1 \end{cases}$$

- Om $n=2^m$ får vi $T(n)= egin{cases} \Theta(1) & \text{om } n=1 \\ 2T(\frac{n}{2})+\Theta(n) & \text{om } n>1 \end{cases}$
- "Master theorem": Eftersom $n^{\log_2 2} = n^1 \in \Theta(n)$ så är $T(n) = \Theta(n \log n)$

Minnesåtgång: n extra element (för merge)

Quicksort - $\mathcal{O}(n \log n)$ i genomsnitt

Algoritm som sorterar arrayen A[I...r]:

- 1 Partitionera A efter ett godtyckligt element x, dvs ordna om A så att:
 - Alla element som är < x kommer till vänster
 - Alla element som $\ddot{a}r > x$ kommer till höger

Låt i vara indexet för platsen i A där x hamnar

- 2 Anropa Quicksort rekursivt på den vänstra delen av A (från index I till i-1)
- 3 Anropa Quicksort rekursivt på den högra delen av A (från index i+1 till r)

Quicksort - $\mathcal{O}(n \log n)$ i genomsnitt

När ska rekursionen avbrytas?

- Alternativ 1: Då $l \ge r$, d.v.s. då höst ett element finns i arrayen.
- Alternativ 2: Då r-l < 10 d.v.s. då högst tio element finns i arrayen. Sortera de återstående elementen med insättningssortering.