Lecture 7 Low Rank Approximation and Pseudo inverse

Note by Samion Suwito on 2/11/25

Last Time

A (Symmetric) = $A=U\Lambda U^\intercal=\sum \lambda_i u_i u_i^\intercal$ (weighted sum of projection on U where the weights are eigenvalues and since they're orthogonal it's an orthogonal basis)

$$A \in \mathbb{R}^{m imes n}: A = U \Sigma V^ op = \sum \sigma_i u_i v_i^ op$$

Spectral Decomposition

Solve: $u_1 = rg \max_{u:\|u\|_2=1} u^ op Au$ $\lambda_1 = u_1^ op Au_1$ $A' = A - \lambda_1 u_1 u_1^ op$

Then repeat to get the next eigenvector value pair.

SVD

Solve: $v_1 = rg \max_{v:\|v\|_2=1} \|Av\|_2$ $u_1 = rac{Av_1}{\|Av_1\|_2}$ $\sigma_1 = \|Av_1\|_2$ $A' = A - \sigma_1 u_1 v_1^ op$

Then repeat to get the next values.

Low Rank Approximation

Given matrix $A \in \mathbb{R}^{m \times n}$, find a "low rank" "approximation" to A.

"Low" is subjective

"Approximation" definition used to determine how close things are to each other.

$$X = egin{bmatrix} 5 & 4 & \cdots \ 1 & 5 & \cdots \ 2 & 3 & \cdots \ dots & dots & dots \ 5 & 1 & \cdots \ \end{bmatrix}$$

Each column is a user profile of a Netflix. Each row corresponds to a movie in Netflix's database. For each movie, there's a number (secret sauce but let's say star) to how much you like a movie.

This matrix has a bunch of empty values for the movies not watched. There a typically patterns to what certain users like to watch e.g. sci-fi movie wathcers might like action. Then a lot of the columns may look similar to each other. This means there will be a *low rank*.

Netflix Challenge

Find a way to fill the blanks in a way that can beat the predictions of Netflix's algorithm. The winners used Low Rank approximation essentially.

$$\min_{A_k \in \mathbb{R}^{m imes n}} \|A - A_k\|_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

S.t. $rank(A_k) = k$, increasing k will therefore decrease error

We use frobinias norm since we can relate it to SVD.

Lecture 4 Orthogonality and QR Decomp > Matrix Norms
Optimal solution is:

$$A_k^* = \sum_{i=1}^k \sigma_i u_i v_i^ op$$

from the SVD of A. Experiment to find k. As k increases the approximation gets better and better

Example: Distance to rank deficiency

Take a rank 0 matrix and add random noise to each entry, now the matrix is rank n despite still looking like rank 0.

How far away is it from a matrix of lower rank. Suppose $A \in \mathbb{R}^{m \times n}$ has full column rank (if it has full row then transpose it).

Question: How big is the smallest petarbation $\delta A\in\mathbb{R}^{m\times n}$ s.t. $A+\delta A$ is rank deficient? $\min\|\delta A\|_F$ such that rank $A+\delta A=n-1$ Which is σ_n

Can be written as

 $\min \|\delta A + A - A\|$ s.t. rank $\delta A + a$ is n-1 We can think of $\delta A + A$ as a rank n-1 approximation Which is the same as

$$\min_{B: \operatorname{rank}(B) = n-1} \|B - A\|_F$$
 $\Longrightarrow B^* = \sum \sigma_i u_i v_i^{\top}$

Therefore $\delta A^* = B^* - A = -\sigma_n u_n v_n^{ op}$

PCA, (Image) Compression, Denoising are low rank approximation problems.

Matrix Pseudo inverse:

For $A \in \mathbb{R}^{m \times n}$, the Moore-Penrose Pseudo inverse $A^+ \in \mathbb{R}^{n \times m}$ is unique matrix satisfying:

1.
$$AA^+A=A$$

2.
$$A^+AA^+ = A^+$$

3.
$$(AA^+)^ op = AA^+$$

4.
$$(A^+A)^ op = A^+A$$

Suitable proxy for an inverse.

Claim: $A^+=V_r\Sigma_r^{-1}U_r^{\top}$ where $A=U_r\Sigma_rV_r^{\top}$ = compact SVD $A^+=V\Sigma^+U^{\top}$ where

$$\Sigma^+ = egin{bmatrix} \Sigma_r^{-1} & 0 \ 0 & 0 \end{bmatrix}$$

Intuition: Change of basis picture

What happens if I multiply
$$A^+\sigma_iu_i=\sigma_iV_r\Sigma_r^{-1}U_r^ op u_i=v_i$$
 $R(A)^\perp=N(A^+)$ And $R(A^+)=N(A)^\perp$

Examples

- 1. If A square, invertible: $A^+=A^{-1}$.
- 2. If A has full column rank then $A^+ = (A^{ op}A)^{-1}A^{ op} =$ left inverse of A
- 3. If A has full row rank then $A^+ = A^\top (AA^\top)^{-1} = \text{right inverse}$. Remark: More information can be gained from SVD:

$$A = \begin{bmatrix} U_r & U_\perp \end{bmatrix} egin{bmatrix} \Sigma_r & 0 \ 0 & 0 \end{bmatrix} \begin{bmatrix} V_r & V_\perp \end{bmatrix}^ op$$

4. $U_rU_r^ op$ is projection onto R(A) (sum of dyads)

5. $V_r V_r^ op$ is projection onto $N(A)^\perp$

6. $U_\perp U_\perp^ op = I - U_r U_r^ op$ is projection onto $R(A)^\perp$

7. $V_{\perp}V_{\perp}^{ op}=I-V_rV_r^{ op}$ is projection onto N(A)

 $x=\pi_{N(A)^\perp}(x)+\pi_{N(A)}(x)$ (Applies for any subspace)

We know $V_r V_r^{ op} = \pi_{N(A)^{\perp}}$

 $I = \pi_{N(A)^\perp} + \pi_{N(A)} = V_r V_r^ op + \pi_{N(A)}$ Therefore

 $I - V_r V_r^ op = \pi_{N(A)}$

 $I=VV^{'\top}=V_rV_r^{'\top}+{
m cross\ terms}+V_\perp V_\perp^{\top}$ but since V is orthogonal the cross terms are 0. Therefore

$$V_\perp V_\perp^ op = \pi_{N(A)}$$

Least Squares

Ex. For $A \in \mathbb{R}^{m imes n}$ and $b \in \mathbb{R}^m$

Find x of smallest l_2 norm that minimises

$$\min_{x} \|Ax - b\|_2^2$$

Important A^{\top} sends R(A) to $N(A)^{\perp}$ but not to the exact same point. Whereas A^+ does send it to the exact same point.