12 Freies Elektronengas

Ausgabe: Di, 23.1.2018 Abgabe: Mo, 29.1.2018 Besprechung: Mo, 29.1.2018

Aufgabe 23: Fermi-Energie und Radius

- a) Berechnen Sie für Aluminium die Elektronenkonzentration $n_e[cm^{-3}]$ in der Näherung freier Elektronen sowie die Fermi-Energie $E_F[eV]$ und den Radius $k_F[\mathring{A}^{-1}]$ der Fermi-Kugel aus folgenden Angaben: Das metallische Aluminium kristallisiert in der kubisch flächenzentrierten Struktur. Die Gitterkonstante der kubischen Elementarzelle beträgt $a=4.05\mathring{A}$. Jedes Al-Atom im Metall soll 3 freie Elektronen an das Elektronengas abgeben.
- b) Vergleichen Sie die Zahlenwerte mit denen für K und Ca (Kalium bcc mit $a=5.225 \mathring{A}$, Abgabe von 1 Elektron, Calcium fcc mit $a=5.58 \mathring{A}$, Abgabe von 2 Elektronen).

Hinweis: Die Elektronenkonzentration ergibt sich aus $\frac{Z_A \cdot Z_E}{V_{EZ}}$ (Z_A =Anzahl der Atome pro Elementarzelle und Z_E =Anzahl der abgegebenen Elektronen pro Atom).

Aufgabe 24: Spezifische Wärme von Metallen

Bei Metallen gibt es einen Gitterbeitrag und einen elektronischen Beitrag zur spezifischen Wärme. Berechnen Sie beide Beiträge für Kupfer für die Temperaturbereiche $T<<\Theta$ und $T>>\Theta$

 $(\Theta$ Debye-Temperatur). Nehmen Sie hierzu an, dass die in der Vorlesung abgeleiteten Formeln für die Debye-Näherung den Gitteranteil beschreiben und die im Modell freier Elektronen abgeleiteten Formeln den elektronischen Anteil richtig beschreiben. Die atomare Konzentration von Kupfer ist $n=8.45\cdot 10^{22}\frac{1}{cm^3}$. Ein Elektron pro Atom trägt zum Elektronengas bei. $\Theta_{Cu}=343K,\,T_{F,Cu}=8.16\cdot 10^4K$. Für welche Temperaturen sind der Gitteranteil und der elektronische Anteil von C_V gleich gross? Ist dieser Wert für $T>>\Theta$ sinnvoll?