

Projeto Tabela Periódica

Estruturas de Informação

O presente projeto envolve a criação de uma biblioteca de classes, respetivos métodos e testes que permitam gerir a informação relativa à tabela periódica.

Fonte: https://en.wikipedia.org/wiki/Periodic table

A informação encontra-se no ficheiro Periodic Table of Elements.csv¹.

Usando apenas a estrutura árvore binária de pesquisa (BST) apresentada nas aulas, desenvolva da forma mais eficiente possível as seguintes funcionalidades:

- 1. Desenvolver a/(s) classe/(s) que permita obter toda a informação relativa a cada um dos elementos da tabela periódica:
 - **a.** Pesquisa de elementos por qualquer um dos seguintes campos: Atomic Number, Element, Symbol ou Atomic Mass.
 - **b.** Pesquisa por intervalo de valores de Atomic Mass Através de dois valores (mínimo e máximo) passados por parâmetro, devolver o conjunto de elementos com Atomic Mass nesse intervalo

¹ Fonte: https://www.data-explorer.com/content/data/periodic-table-of-elements-csv.zip

Projeto Tabela Periódica

Estruturas de Informação

ordenado por Discoverer e Year of Discovery (cresc./decres.) juntamente com um sumário do número de elementos devolvidos agrupados por Type e Phase. Por exemplo, Atomic Mass [20, 65] resulta:

Atomic Number	Element	Symbol	Atomic Mass	Phase	Туре	Discoverer	Year of Discovery
23	Vanadium	V	50.941	solid	Transition Metal	del Rio	1801
14	Silicon	Si	28.085	solid	Metalloid	Berzelius	1824
12	Magnesium	Mg	24.305	solid	Alkaline Earth Metal	Black	1755
15	Phosphorus	Р	30.973762	solid	Nonmetal	BranBrand	1669
27	Cobalt	Со	58.93319	solid	Transition Metal	Brandt	1735
28	Nickel	Ni	58.693	solid	Transition Metal	Cronstedt	1751
20	Calcium	Ca	40.08	solid	Alkaline Earth Metal	Davy	1808
11	Sodium	Na	22.9897693	solid	Alkali Metal	Davy	1807
19	Potassium	K	39.098	solid	Alkali Metal	Davy	1807
25	Manganese	Mn	54.93804	solid	Transition Metal	Gahn, Scheele	1774
22	Titanium	Ti	47.87	solid	Transition Metal	Gregor	1791
21	Scandium	Sc	44.95591	solid	Transition Metal	Nilson	1878
16	Sulfur	S	32.07	solid	Nonmetal	Prehistoric	
26	Iron	Fe	55.84	solid	Transition Metal	Prehistoric	
29	Copper	Cu	63.55	solid	Transition Metal	Prehistoric	
10	Neon	Ne	20.18	gas	Noble Gas	Ramsay and Travers	1898
18	Argon	Ar	39.9	gas	Noble Gas	Rayleigh and Ramsay	1894
17	Chlorine	Cl	35.45	gas	Halogen	Scheele	1774
24	Chromium	Cr	51.996	solid	Transition Metal	Vauquelin	1797
13	Aluminum	Al	26.981538	solid	Metal	Wšhler	1827

	artificial	gas	liq	solid	TOTAL
Alkali Metal	0	0	0	2	2
Alkaline Earth Metal	0	0	0	2	2
Halogen	0	1	0	0	1
Metal	0	0	0	1	1
Metalloid	0	0	0	1	1
Noble Gas	0	2	0	0	2
Nonmetal	0	0	0	2	2
Transition Metal	0	0	0	9	9

Projeto Tabela Periódica

Estruturas de Informação

- 2. Observando a configuração electrónica dos elementos (coluna Electron Configuration), verifica-se a existência de repetição de padrões. Por exemplo, a sequência "[Ar] 3d10" é aplicada na configuração electrónica de 8 elementos.
 - a. Recorrendo apenas à estrutura árvore binária de pesquisa (BST), devolva por ordem decrescente as configurações electrónicas com mais do que uma repetição, agrupadas por número de repetições:
 - 32 [[Xe]]
 - 18 [[Ar], [Kr]]
 - 17 [[Xe] 4f14]
 - 9 [[Kr] 4d10, [Rn]]
 - 8 [[Ar] 3d10, [He], [Ne], [Xe] 4f14 5d10]
 - 7 [[Ar] 3d10 4s2, [He] 2s2, [Kr] 4d10 5s2, [Ne] 3s2, [Xe] 4f14 5d10 6s2]
 - 2 [[Ar] 3d5, [Kr] 4d5, [Xe] 4f7]
 - **b.** Construa uma nova BST inserindo por ordem decrescente as **configurações electrónicas** com repetição acima de 2 obtidas na alínea anterior.
 - c. Desenvolva um método que devolva os valores das duas configurações electrónicas mais distantes na árvore e a respectiva distância.

Considere como medida de distância entre as configurações electrónicas, o número de ramos que distam uma da outra.

d. Desenvolva um método que transforme a árvore obtida alínea anterior numa árvore binária completa, inserindo nesta possíveis configurações electrónicas únicas.

Projeto Tabela Periódica

Estruturas de Informação

Normas

- A avaliação do trabalho será feita principalmente em função das classes propostas, nomeadamente em termos da sua conformidade com o Paradigma da Programação por Objetos e eficiência das estruturas de dados usadas nas funcionalidades solicitadas.
- O projeto tem de ser desenvolvido em Java e todas as funcionalidades testadas através de testes unitários usando os ficheiros de teste disponibilizados, usando o fx fornecido.
- O trabalho deverá ser realizado em grupos de dois alunos. É obrigatório o uso de uma ferramenta de controle de versões.
- Trabalhos realizados individualmente não fazem a questão 2d.
- O relatório deverá servir de ferramenta de avaliação posterior à apresentação. Nele devem apresentar
 as classes definidas, análise de complexidade de todas as funcionalidades implementadas e
 melhoramentos possíveis.
- O trabalho deve ser submetido no Moodle até às 24 horas do dia 23 de Dezembro. A partir desta data a nota do trabalho será penalizada 10% por cada dia de atraso e não se aceitam trabalhos após dois dias da data indicada.
- A apresentação/defesa deverá ser agendada com o professor das aulas PL na 1ª semana de janeiro, em horário compatível com o horário LAPR3.