Math Binder - AMC/AIME

Hansel Grimes

December 6, 2020

Contents

1	Polynomials		2
	1.1	Definition and Basics	2
	1.2	Synthetic Division	3
	13	Rational Root Theorem	3

1 Polynomials

1.1 Definition and Basics

A polynomial is defined as $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ with names corresponding to their degree (constant, linear, quadratic, cubic, quartic).

The factored form is written as $P(x) = a(x-r)(x-p)\cdots(x-q)$. The simplest and most useful polynomial is the quadratic. It can be written as $ax^2 + bx + c$ and factored respectively. The formula to solve for x is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. The most important formula for polynomials is the Vieta Formulas.

Formula 1.1 (Vieta Formulas) Sum of roots $(r_1 + r_2 + r_3 + \cdots + r_n)$: $-\frac{a_{n-1}}{2}$

Product of roots $(r_1r_2r_3\cdots r_n)$: $(-1)^n\cdot \frac{a_0}{a_n}$

Pairwise sums of p $(p = 2: r_1r_2 + r_1r_3 + r_1r_4 + \cdots + r_{n-1}r_n): (-1)^p \cdot \frac{a_{n-p}}{a_n}$

Theorem 1.1 (Fundamental theorem of algebra) It states that a single variable polynomial with degree n has exactly n complex roots.

Problem 1.1 Let r, s, and t be the roots of $3x^3 - 4x^2 + 5x + 7 = 0$. (IA 8.20 p.249)

1. Find $r + s + t \left(\frac{4}{3}\right)$.

2. Find
$$r^2 + s^2 + t^2 \left(\frac{-14}{9} \right)$$
.

3. Find
$$\frac{1}{r} + \frac{1}{s} + \frac{1}{t} \left(\frac{-5}{7} \right)$$
.

1.2 Synthetic Division

A simplification of traditional polynomial division. Note this only works when the coefficients of the linear term in the divisor is 1. It is also know as the **Ruffini's Rule**.

Example:
$$\begin{vmatrix} 3 & 1 & -3 & 7 & -1 & 5 \\ & 3 & 0 & 21 & 60 \\ \hline & 1 & 0 & 7 & 20 & 65 \\ \end{vmatrix}$$

Which is the same as $(x^4 - 3x^3 + 7x^2 - x + 5) \div (x - 3) =$. Notice you work from left to right, and multiply to get the next number in the second row. If your divisor doesn't have 1 as its coefficient in the linear term, you can divide it by 1/n and in the end also multiply the quotient and remainder by 1/n.

Usually, you write the result of polynomial division as $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$.

1.3 Rational Root Theorem

A rational root of a polynomial in the form $\pm \frac{p}{q}$ where p and q are relatively prime must follow the condition $p|a_0$ and $q|a_n$.