Testes de hipóteses

Prof. Wagner Hugo Bonat

Departamento de Estatística Universidade Federal do Paraná

Inferência estatística

Falar sobre a **população** a partir da observação da **amostra**.

Na **inferência estatística** os dois principais objetivos são:

- 1. Estimar um parâmetro populacional.
 - Estimativa pontual.
 - Estimativa intervalar.
- 2. **Testar** uma hipótese ou afirmativa sobre um parâmetro populacional.

Figura 1. Analogia ao processo de estimação. Extraído de bestbowreviews.com.

Testes de hipótese

Hipótese

▶ É uma afirmativa sobre uma **propriedade** da população.

▶ Teste de hipótese

- ▶ É um procedimento para se testar uma **afirmativa** sobre uma propriedade da população.
- Permite tomar decisões sobre a população com base em informações de dados amostrais.

Exemplo: proporção sexual em peixes

- ► Deseja-se estudar a proporção de peixes machos e fêmeas de uma mesma espécie em uma lagoa.
- Sem nenhuma informação prévia, supõe-se que a proporção sexual é de 50% (p = 0.5).
- ▶ Se, em uma amostra de 100 peixes:
 - ▶ 54 forem fêmeas.
 - ▶ 65 forem fêmeas.
 - ▶ 92 forem fêmeas.
- Qual a evidência necessária para concluir que a proporção de fêmeas é major que a de machos nessa população?

Figura 2. Proporções amostrais supondo p = 0.5 na população.

Exemplo: cardápio vegano

▶ **Questão:** Há interesse por opções veganas? ($\hat{p} = 0.12$ em uma amostra).

► Intervalo de confiança

- ► **Pergunta**: Qual a proporção que prefere pratos veganos?
- ightharpoonup 0.12 \pm 0.035 ou (0.085, 0.155)

Teste de hipótese

- Pergunta: A proporção de clientes que prefere pratos veganos supera 10%?
- $\hat{p} = 0.12$ é **significativamente maior** do que p = 0.10?
- ► Em outras palavras: é muito ou pouco provável que $\hat{p} = 0.12$ tenha sido gerado por uma população com p = 0.10?
- ► A questão é: $\hat{p} = 0.12$ é significativamente diferente de p = 0.10?

Exemplo: caracterização dos clientes

Questão: Qual será a *idade média* dos clientes? ($\overline{y} = 32$ em uma amostra)

- Intervalo de confiança
 - Pergunta: Qual a idade média dos clientes?
 - ightharpoonup 32 ± 2.5 ou (29.5, 34.5)

- Teste de hipótese
 - Pergunta: A idade média dos clientes é igual a 35 anos?
 - ▶ $\overline{y} = 32$ é significativamente diferente de $\mu = 35$?

Exemplo: caracterização dos clientes por sexo

Questão: Qual será a *idade média* dos clientes **por sexo**? $(\overline{y}_h = 34 \text{ para homens e } \overline{y}_m = 31 \text{ para mulheres em uma amostra})$

► Intervalo de confiança

- ► **Pergunta**: Qual a idade média dos clientes homens e mulheres?
- ightharpoonup 34 \pm 2.3 ou (31.7, 36.3) para homens
- ightharpoonup 31 \pm 2.8 ou (28.2, 33.8) para mulheres
- ou ainda a diferença de idade
- \rightarrow 3 ± 2.5 ou (0.5, 5.5)

Teste de hipótese

- Pergunta: Existe diferença (significativa) entre a idade média dos clientes homens e mulheres?
- ▶ $\overline{y}_h \overline{y}_m = 34 31 = 3$ é significativamente diferente de $\mu_h \mu_m = 0$?

Fundamento lógico do teste de hipótese

- ► Testamos uma afirmativa na tentativa de distinguir entre resultados que:
 - ▶ Podem **facilmente** ocorrer por *acaso* na amostra.
 - ► São **altamente improváveis** de ocorrer por *acaso* na amostra.
- ▶ A ocorrência de resultados altamente improváveis pode ser explicada de uma das duas formas:
 - Ou um evento raro realmente ocorreu.
 - Ou a suposição subjacente não é verdadeira.
- Regra do evento raro Se, sob uma dada suposição, a probabilidade de um evento observado particular é extremamente pequena, concluímos que a suposição provavelmente não é verdadeira.

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a).
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Concluir o teste.

1. Definição das hipóteses · tipos de hipóteses

▶ Hipótese nula H_0

- ▶ É uma afirmativa de que o valor de um parâmetro populacional é igual a algum valor especificado.
- ▶ O termo nula é usado para indicar nenhuma mudanca ou nenhum efeito.
- Exemplos:

$$\mu = 10$$

$$p = 0.5$$

$$\sigma^2 = 4$$

Hipótese alternativa

- ▶ É uma afirmativa de que o parâmetro tem um valor que, de alguma forma, difere da hipótese nula.
- Exemplos:

$$\mu \neq 10$$
 $p > 0.5$
 $\sigma^2 < 4$.

1. Definição de hipóteses · decisões sobre a hipótese

Quando fazemos um teste de hipótese, chegamos a um dos dois possíveis resultados:

- ▶ **Rejeitar** H_0 : em favor da hipótese alternativa H_a .
- ▶ **Não rejeitar** *H*₀: e conclui-se que não existem diferenças.

Atenção!

- ▶ O termo **aceitar** a hipótese nula é filosoficamente incorreto, pois não se pode aceitar uma hipótese baseada apenas em evidências amostrais.
- E ainda existe um **erro** associado a todo teste de hipótese.

Teoria do falsificacionismo de K. Popper

- Uma hipótese não pode ser provada, apenas desprovada.
- ▶ Se a hipótese permanece válida então ela **não é validada**, mas adquire um certo "grau de confiança".
- ▶ Se você está fazendo um estudo e deseja usar um teste de hipótese para apoiar sua afirmativa, esta deve ser escrita de modo a se tornar a hipótese alternativa.
- ▶ Você nunca pode apoiar uma afirmativa de que um parâmetro **seja igual** a algum valor específico.
- ▶ Nesse contexto de se tentar apoiar o resultado de pesquisa, a hipótese alternativa é, algumas vezes, chamada de hipótese de pesquisa.

1. Definição de hipóteses · exemplo

Em um estudo sobre a proporção sexual de peixes de uma mesma espécie em uma lagoa, deseja-se testar a hipótese de que a proporção de fêmeas é major do que a proporção de machos.

▶ Supondo inicialmente que a proporção de fêmeas é de 50% (p = 0.5), então

$$H_0: p = 0.5$$
 vs $H_a: p > 0.5$

- \blacktriangleright Com isso, deseja-se que a **hipótese nula** p=0.5 seja rejeitada, de modo que a **hipótese alternativa** p > 0.5 seja apoiada.
- \blacktriangleright Apoiar a hipótese alternativa de que p > 0.5 é o mesmo que apoiar a afirmativa de a proporção de fêmeas na população é maior do que a de machos.

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha)$ % do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível. de significância $\alpha \rightarrow$ valor crítico.
- 6. Concluir o teste.

2. Nível de significância · erros de decisão

Para entendermos o que é o nível de significância (α), precisamos saber que, ao realizar um teste de hipótese, estamos sujeitos a dois tipos de erros.

- **Erro Tipo I**: rejeitar H_0 , quando H_0 é verdadeira (falso negativo).
- **Erro Tipo II**: não rejeitar H_0 , quando H_0 é falsa (falso positivo).

	H_o verdadeira	H_o falsa
Não rejeitar H_0	Decisão correta	Erro tipo II
Rejeitar H_0	Erro tipo I	Decisão correta

2. Nível de significância · ilustração dos erros

https://www.irishmirror.ie/news/weird-news/muffins-chihuahuas-bizarre-picture-quiz-7540069

Figura 3. Erros de decisão em testes de hipótese. Modificado de www.irishmirror.ie.

Prof. Wagner Hugo Bonat Testes de hipóteses

2. Nível de significância · definição dos erros

Definimos por α e β as probabilidades de cometer os erros do tipo I e II:

- $\alpha = P(\text{erro tipo I}) = P(\text{rejeitar } H_0 \mid H_0 \text{ verdadeira}).$
- $\beta = P(\text{erro tipo II}) = P(\text{não rejeitar } H_0 \mid H_0 \text{ falsa}).$
- $ightharpoonup \alpha$ é o **nível de significância** do teste.
- ▶ 1α é o **nível de confiança** do teste.

No exemplo anterior, se $H_0: p = 0.5$ e $H_a: p > 0.5$, então:

- $ightharpoonup \alpha = P(concluir que a proporção de fêmeas é maior quando na verdade não é).$
- $\triangleright \beta = P(\text{concluir que a proporção sexual \'e igual quando na verdade não \'e}).$

2. Nível de significância · balanço entre os erros

- ▶ A situação ideal é aquela em que ambas as probabilidades, α e β , são próximas de zero.
- No entanto, à medida que diminuimos α , a probabilidade β tende a aumentar.
- Levando isso em conta, ao formular as hipóteses, devemos cuidar para que o erro (usualmente) mais importante a ser evitado seja o erro do tipo I.
- Por isso, a probabilidade α recebe o nome de nível de significância do teste, e é esse erro que devemos controlar.

Figura 4. Probabilidade dos tipos de erros em testes de hipótese.

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Concluir o teste.

3. Tipos de testes

A hipótese alternativa determinará o **sentido** do teste de hipótese, que pode ser:

► Bilateral:

$$H_a: \theta \neq \theta_0.$$

► Unilateral à esquerda:

$$H_a: \theta < \theta_0.$$

► Unilateral à direita:

$$H_a: \theta > \theta_0.$$

Figura 5. A região de rejeição de H_0 conforme o tipos de hipótese alternativa.

3. Tipos de testes · bilateral

Uma hipótese do tipo

 $H_0: \theta = \theta_0$

 $H_a: \theta \neq \theta_0$

é bilateral.

Figura 6. A região de rejeição de H_0 para uma hipótese alternativa bilateral.

3. Tipos de testes · unilateral à esquerda

Uma hipótese do tipo

 $H_0: \theta = \theta_0$

 $H_a: \theta < \theta_0$

é unilateral à esquerda.

Figura 7. A região de rejeição de H_0 para uma hipótese alternativa unilateral à esquerda.

3. Tipos de testes · unilateral à direita

Uma hipótese do tipo

 $H_0: \theta = \theta_0$

 $H_a: \theta > \theta_0$

é unilateral à direita.

Figura 8. A região de rejeição de H_0 para uma hipótese alternativa unilateral à direita.

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Concluir o teste.

4. Estatística de teste

A **estatística de teste** é um valor usado para tomar a decisão sobre a hipótese nula, supondo que ela seja verdadeira.

Considera a distribuição amostral do estimador sob a hipótese nula.

Estatística de teste para a **média** (μ) Estatística de teste para a **proporção** (p)

$$z = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}$$
 ou $t = \frac{\overline{y} - \mu_0}{s / \sqrt{n}}$. $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$.

• Estatística de teste para a **variância** (σ^2)

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}.$$

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível de significância $\alpha \to \text{valor crítico}$.
- 6. Concluir o teste.

5. Região crítica · definição

- ► A estatística de teste **sozinha** não nos dá informação suficiente para a tomada de decisão sobre a afirmativa em um teste.
- ▶ É necessário comparar esta estatística com algum **valor de referência**, que nos informe o quão extrema é a estatística de teste para rejeição de *H*₀.
- ► Este valor de referência é chamado de **valor crítico**, que divide a região de rejeição da região de não rejeição da hipótese nula. Depende:
 - ightharpoonup Da distribuição amostral da estatística de teste sob H_0 .
 - ightharpoonup Do nível de significância α .
- A região crítica de um teste de hipótese é a região de rejeição da hipótese nula.

5. Região crítica · exemplos

Figura 9. A região de rejeição de H_0 conforme o tipos de hipótese alternativa.

Figura 10. Valores críticos para determinar a região crítica.

Procedimentos gerais para um teste de hipótese

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha\%)$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral do estimador do parâmetro sob teste → valor calculado.
- 5. Determinar a região crítica (região de rejeição), com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Concluir o teste.

6. Conclusão do teste · valor da estatística

Com base na estatística de teste e valor crítico

- Se a estatística de estiver dentro da região crítica → rejeita H₀.
- Se a estatística de teste estiver fora da região crítica → não rejeita H₀.

Figura 11. Decisões conforme o valor da estatística de teste.

6. Conclusão do teste · nível descritivo

Com base no nível descritivo ou p-valor

- ightharpoonup Em geral, lpha é pré-fixado para construir a regra de decisão.
- ightharpoonup Uma alternativa é deixar em aberto a escolha de lpha para quem for tomar a decisão.
- ➤ A ideia é calcular, supondo que a hipótese nula é verdadeira, a probabilidade de se obter estatísticas mais extremas do que aquela fornecida pela amostra.
- Essa probabilidade é chamada de **nível descritivo**, denotada por α^* (ou p-valor).
- ightharpoonup Valores pequenos de $lpha^*$ **evidenciam** que a hipótese nula é falsa.
- ightharpoonup O conceito de "pequeno" **fica para quem decide** qual α deve usar para comparar com α^* .

6. Conclusão do teste · ilustração do caso unilateral

Figura 12. Nível descritivo para um teste com hipótese unilateral à direita.

6. Conclusão do teste · ilustração do caso bilateral

Figura 13. Nível descritivo para um teste com hipótese bilateral.

6. Conclusão do teste · formalização do p-valor

Com base no nível descritivo ou p-valor

Para **testes unilaterais**, sendo $H_0: \theta = \theta_0$, a expressão de α^* depende da hipótese alternativa:

$$\alpha^* = P(U < u_{obs} | H_0 \text{ verdadeira}) \quad \text{para } H_a : \theta < \theta_0$$

 $\alpha^* = P(U > u_{obs} | H_0 \text{ verdadeira}) \quad \text{para } H_a : \theta > \theta_0$

em que U é a estatística de teste, u_{obs} o seu valor observado.

Para **testes bilaterais**, temos $H_0: \theta = \theta_0$ contra $H_0: \theta \neq \theta_0$, a definição do nível descritivo depende da relação entre u_{obs} e θ_0 :

$$\alpha^* = 2 \times P(U < u_{obs} | H_0 \text{ verdadeira})$$
 se $u_{obs} < \theta_0$
 $\alpha^* = 2 \times P(U > u_{obs} | H_0 \text{ verdadeira})$ se $u_{obs} > \theta_0$

Como estamos calculando a probabilidade para apenas uma das caudas, então esse valor é multiplicado por 2.

Relação de teste de hipótese com intervalo de confiança

Seja IC_{1- α}(θ) o **intervalo de confiança** de 100(1 - α)% para o parâmetro θ .

O **teste de hipótese** com nível de significância α para

$$H_0: \theta = \theta_0$$
 vs $H_a: \theta \neq \theta_0$

conduzirá a rejeição de H_0 , se e somente se, θ_0 **não** estiver contido no $IC_{1-\alpha}(\theta)$.

Figura 14. Relação entre teste de hipótese e intervalo de confiança.

Testes de hipótese para uma população

Quando queremos fazer inferência para um parâmetro de uma única população.

- ▶ Testar se a média de altura dos estudantes da UFPR é igual a 170 cm ($\mu = 170$ de uma distribuição normal).
 - ► Testes para a **média** de uma população.
 - $\triangleright \sigma^2$ conhecido.
 - $ightharpoonup \sigma^2$ desconhecido.
- ▶ Testar se a proporção de peixes fêmeas em uma lagoa é de 50% (p = 0.5 de uma distribuição Bernoulli).
 - ► Teste para a **proporção** de uma população.
- ▶ Testar se a variabilidade do diâmetro de um lote de parafusos se mantém em torno de 0.02 mm ($\sigma = 0.02$ de uma distribuição normal).
 - ► Teste para a **variância** de uma população.

Testes de hipótese para duas populações

Quando queremos comparar parâmetros de duas populações.

- ▶ Testar se IRA dos estudantes da UFPR difere entre alunos e alunas ($\mu_M = \mu_F$ de distribuições normais).
 - ► Testes para comparar **médias** de duas populações.
 - \triangleright σ^2 conhecidos.
 - $ightharpoonup \sigma^2$ desconhecido(s) (pareadas/independentes: iguais/diferentes).
- ▶ Testar se as proporções de pacientes recuperados são distintas entre dois tratamentos ($p_1 = p_2$ de distribuições Bernoulli).
 - ► Teste para comparar duas **proporções**.
- ► Testar se a variabilidade do diâmetro parafusos difere entre dois fornecedores $(\sigma_1^2 = \sigma_2^2$ de duas distribuições normais).
 - ► Teste para comparar variâncias de uma população.

Procedimentos gerais para um teste de hipótese

Em qualquer tipo de teste, os passos serão sempre os mesmos

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir um nível de significância α , que irá determinar o nível de confiança $100(1-\alpha)\%$ do teste.
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- Calcular a estatística de teste, com base na distribuição amostral da mesma sob a hipótese nula → valor calculado.
- 5. Determinar a região crítica (região de rejeição), sob hipótese nula, com base no nível de significância $\alpha \rightarrow$ valor crítico.
- 6. Conclusão.

Condições para o teste

Quando temos os seguintes requisitos:

- ▶ Temos uma AAS.
- $ightharpoonup \sigma^2$ é conhecido.
- ightharpoonup A população tem distribuição Normal ou n > 30.

Podemos usar o Teorema do Limite Central para afirmar que a média segue distribuição Normal, e a **estatística de teste** é dada por

$$z = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}$$

em que μ_0 é o valor de teste sob a hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a média μ com σ^2 conhecido:

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$z = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}}.$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusões.

Exercício: enchimento de embalagens

- ► Uma máquina de encher embalagens de café está funcionando adequadamente se colocar 700 g em cada embalagem.
- Para verificar a calibração da máquina. foi coletada uma amostra de 40 embalagens, que resultou em uma média de 698 g.
- ► Sabe-se que o desvio-padrão do enchimento da máquina é de 10 g.
- ► Teste a hipótese de o peso médio das embalagens na população ser 700 g, com um nível de significância de 5%.

Figura 15. Foto de cottonbro no Pexels.

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) : H_0 : $\mu = 700$ vs H_a : $\mu \neq 700$.
- 2. Definir o nível de significância: $\alpha = 0.05$.
- 3. Definir o tipo de teste, com base na hipótese alternativa: teste bilateral.
- 4. Calcular a estatística de teste

$$z = \frac{\overline{y} - \mu_0}{\sigma/\sqrt{n}} = \frac{698 - 700}{10/\sqrt{40}} = -1.265.$$

5. Determinar a região crítica (região de rejeição), com base no nível de significância α .

$$RC = \{z < -1.96 \text{ ou } z > 1.96\}.$$

6. Conclusão: $z \notin RC$, portanto **não rejeita** H_0 .

Nível descritivo do teste

p-valor do teste:

$$2 \times P(Z < -1.265) = 2 \times 0.103 = 0.206.$$

Figura 16. Região de rejeição da hipótese nula e nível descritivo.

Exercício: resistência das lajotas

- ▶ Um fabricante de lajotas introduz um novo material em sua fabricação e acredita que aumentará a resistência média, que é de 206 kg.
- ► A resistência das lajotas tem distribuição normal com desvio-padrão de 12 kg.
- ► Retirou-se uma amostra de 30 lajotas, e obteve-se uma média amostral de 210 kg.
- ► Ao nível de 10%, pode o fabricante afirmar que a resistência média de suas lajotas tenha aumentado?

Figura 17. Foto de Rodolfo Quirós no Pexels.

- 1. Hipóteses: $H_0: \mu = 206$ vs $H_a: \mu > 206$ (teste unilateral à direita).
- 2. Estatística de teste

$$z = \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}} = \frac{210 - 206}{12 / \sqrt{30}} = 1.826.$$

- 3. Nível de significância $\alpha = 0.1 \rightarrow RC = \{z > 1.282\}$.
- 4. Conclusão do teste:
 - $ightharpoonup z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = P(Z > 1.826) = 0.034: probabilidade muita baixa de valor tão ou mais extremo que a média amostral ocorrer por acaso. Portanto, existem evidências de que a resistência média das lajotas tenha aumentado.

Figura 18. Região de rejeição da hipótese nula e nível descritivo.

Condições para o teste

Quando temos os seguintes requisitos:

- ► Temos uma AAS.
- σ^2 é desconhecido.
- A população tem distribuição Normal ou n > 30.

Podemos usar o Teorema do Limite Central para afirmar que a média segue uma distribuição Normal, e a **estatística de teste** é dada por

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}} \sim t_{v},$$

com v = n - 1 graus de liberdade, e onde μ_0 é o valor de teste na hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a média μ com σ desconhecido:

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$t = \frac{\overline{y} - \mu_0}{s/\sqrt{n}}.$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusões.

Exercício: uso do cartão de crédito

Um estudo foi idealizado para estimar a média anual dos débitos de cartão de crédito da população de famílias brasileiras. Uma amostra de n=15 famílias forneceu média de saldos de R\$ 5200.00 e o desvio padrão foi de R\$ 3058.00.

- 1. Obtenha um intervalo com 95% de confiança.
- Teste a hipótese de que a média anual de débitos é de R\$ 6000.00, com o mesmo nível de confiança.

Figura 19. Foto de Norma Mortenson no Pexels.

O intervalo de confiança é obtido por

$$IC_{1-0.95}(\mu) = \left(5200 \pm 2.145 \cdot \frac{3058}{\sqrt{15}}\right) \approx (3506.4, 6893.6).$$

Figura 20. Quantis da distribuição *t*-Student e intervalo de confiança para a média.

- 1. Hipóteses: H_0 : $\mu = 6000$ vs H_a : $\mu \neq 6000$ (teste bilateral).
- 2. Estatística de teste

$$t = \frac{5200 - 6000}{3058/\sqrt{15}} = 1.013.$$

3. Nível de significância $\alpha = 0.05$

$$RC = \{t < -2.145 \text{ ou } t > 2.145\}.$$

Figura 21. Resultado do teste de hipótese.

4. Conclusão do teste:

- ▶ $t \notin RC$, portanto **não rejeita** H_0 .
- ▶ p-valor = 2 × P(T > 1.013) = 2 × 0.164 = 0.328: probabilidade alta de ocorrência de um valor médio tão ou mais extremo do que o obtido nesta amostra (assumindo que o valor populacional é de R\$ 6000.00).

Portanto, não existe evidência de que a média de débitos seja diferente de R\$ 6000.00.

Note que o IC_{1- α}(μ) contém o valor sob hipótese nula, ou seja, $H_0: \mu=6000$.

Figura 22. Intervalo de confiança para a média.

A distribuição amostral

Se $Y \sim \text{Ber}(p)$, então a proporção amostral

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

é a **melhor estimativa** para a proporção populacional *p*.

Já vimos que, quando ambas condições são satisfeitas,

- ► np ≥ 5
- ▶ $n(1-p) \ge 5$,

a distribuição amostral de \hat{p} pode ser aproximada (pelo TLC) por

$$\hat{p} \stackrel{\mathsf{aprox}}{\sim} \mathsf{N}\left(p, \frac{p(1-p)}{n}\right).$$

Condições para o teste

Quando temos os seguintes requisitos:

- ► Temos uma AAS.
- ► As condições para a distribuição Binomial são satisfeitas:
 - As tentativas são independentes.
 - ► Há duas categorias de resultado ("sucesso", "fracasso").
 - ► A probabilidade de sucesso p permanece constante.
- ▶ $np_0 \ge 5$ e $n(1-p_0) \ge 5$.

Podemos usar a distribuição Normal como aproximação da Binomial e, portanto, usamos a estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

em que p_0 é o valor de proporção de teste na hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a proporção p

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão.

Exemplo

- Uma empresa desenvolveu uma nova vacina para uma doença, e afirma que a proporção de imunizados é maior do que 50%.
- ► Em uma amostra de 726 pessoas que tomaram a vacina, 668 estavam imunizadas.
- Use este resultado, com um nível de significância de 5%, para testar a afirmativa de que a proporção de imunizados é maior do que 50%.

Figura 23. Foto de cottonbro no Pexels.

- 1. Hipóteses: $H_0: p = 0.5$ vs $H_a: p > 0.5$ (teste unilateral à direita).
- 2. Estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.92 - 0.5}{\sqrt{\frac{0.5(1 - 0.5)}{726}}} = 22.633.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{z > 1.645\}$.
- 4. Conclusão do teste:
 - $ightharpoonup z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = $P(Z > 22.633) \approx 0$: a probabilidade de ocorrência **ao acaso** de uma proporção tão ou mais extrema do que essa é praticamente nula. Portanto, existem fortes evidências de que a vacina imuniza mais que 50%.

Figura 24. Região de rejeição da hipótese nula e nível descritivo.

Exemplo (cont.)

- ▶ Ainda no contexto da vacina, acredita-se que, devido ao seu alto custo, seu uso só seria viável se pelo menos 90% das pessoas forem imunizadas.
- Neste caso, qual seria a decisão sobre a adoção da vacina, com um nível de significância de 5%.

Figura 25. Foto de cottonbro no Pexels.

- 1. Hipóteses: $H_0: p = 0.9$ vs $H_a: p > 0.9$ (teste unilateral à direita).
- 2. Estatística de teste

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.92 - 0.9}{\sqrt{\frac{0.9(1 - 0.9)}{726}}} = 1.986.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{z > 1.645\}$.
- 4. Conclusão do teste:
 - $ightharpoonup z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = P(Z > 1.986) = 0.024: portanto, existe evidência, a este nível de significância, de que a adoção da vacina seria viável.

OBS: E se fosse adotado $\alpha = 0.01$ (RC = {z > 2.326})?

Figura 26. Região de rejeição da hipótese nula e nível descritivo.

Condições para o teste

Quando temos os seguintes requisitos:

- ► Temos uma AAS.
- ▶ A população tem distribuição Normal (essa é uma exigência mais estrita).

Então, usamos a estatística de teste

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

em que σ_0^2 é o valor de variância na hipótese nula.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a variância σ^2

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}.$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão.

Exemplo: concentração de princípio ativo

Na indústria, baixa variabilidade é sinônimo de qualidade. Para isso, constantemente monitora-se e corrige-se a produção para manter níveis aceitáveis de qualidade.

Uma amostra de frascos de medicamento foi inspecionada em relação a concentração (m/m) de princípio ativo na solução. O lote é rejeitado se claramente ultrapassar o limite de $\sigma^2 = 0.0009$. Os dados estão abaixo.

0.15 0.18 0.18 0.20 0.21 0.22 0.25 0.18 0.19 0.20 0.21 0.22 0.26

Faça um teste para verificar se a variância é maior do que 0.0009. com $\alpha = 5\%$.

Figura 27. Foto de Karolina Grabowska no Pexels

- 1. Hipóteses: $H_0: \sigma^2 = 0.0009$ vs $H_a: \sigma^2 > 0.0009$ (teste unilateral à direita).
- 2. Estatística de teste

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{(16-1)0.0013}{0.0009} = 21.667.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{\chi^2 > 24.996\}.$
- 4. Conclusão do teste:
 - $\rightarrow \chi^2 \notin RC$, portanto **não rejeita** H_0 .
 - **p-valor** = $P(x^2 > 21.667) = 0.117$: portanto, ao nível de 5% de significância. **não rejeita-se** a hipótese de que a variância seja igual a 0.0009.

Figura 28. Região de rejeição da hipótese nula.

Testes para comparar duas médias

Exemplo: comparação de IRA entre alunos e alunas de uma universidade Diferentes possibilidades de testes:

- ► Testes de hipótese para a diferença de médias de duas populações: σ^2 's conhecidos.
- ► Testes de hipótese para a diferença de médias de duas populações: σ^2 's desconhecidos.
 - Testes de hipótese para amostras emparelhadas.
 - Testes de hipótese para amostras independentes.
 - **Variâncias iguais** $\sigma_1^2 = \sigma_2^2$.
 - ▶ Variâncias diferentes $\sigma_1^2 \neq \sigma_2^2$.

Testes de hipótese para duas populações

Ao testar uma hipótese para duas populações, devem ser consideradas

- ► Amostras independentes: quando os valores amostrados de uma população não estão relacionados ou emparelhados com os da outra população.
 - ► Exemplo: teste para pressão sanguínea do grupo controle vs grupo medicado.
- ► Amostras dependentes ou emparelhadas: quando cada elemento de uma amostra corresponde ao mesmo elemento da outra amostra (geralmente o mesmo indivíduo analisado antes e depois de um experimento).
 - Exemplo: teste para a diferença de peso de uma mesma pessoa antes e depois de uma dieta.

Testes de hipótese para médias de duas populações

Até agora testamos hipóteses para uma único parâmetro populacional

$$H_0: \mu = \mu_0$$

 $H_a: \mu \neq \mu_0$ ou $H_a: \mu < \mu_0$ ou $H_a: \mu > \mu_0$.

Podemos estender o teste de hipótese quando queremos comparar o mesmo parâmetro para duas populações diferentes.

Em geral, faremos testes para verificar se a diferença entre estes dois parâmetros é igual a zero

$$H_{0}: \mu_{1} - \mu_{2} = 0 \Rightarrow H_{0}: \mu_{1} = \mu_{2}$$
 vs $H_{a}: \mu_{1} - \mu_{2} \neq 0 \Rightarrow H_{a}: \mu_{1} \neq \mu_{2}$ ou $H_{a}: \mu_{1} - \mu_{2} < 0 \Rightarrow H_{a}: \mu_{1} < \mu_{2}$ ou $H_{a}: \mu_{1} - \mu_{2} > 0 \Rightarrow H_{a}: \mu_{1} > \mu_{2}$.

Testes de hipótese para a diferença de médias de duas populações: σ^2 conhecido

Distribuição amostral da diferença

Considere duas populações Y_1 e Y_2 com médias μ_1 e μ_2 , e desvios-padrão σ_1 e σ_2 , ou seja

$$Y_1 \sim N(\mu_1, \sigma_1^2)$$
 e $Y_2 \sim N(\mu_2, \sigma_2^2)$.

A "**nova**" variável $\overline{Y}_d = (\overline{Y}_1 - \overline{Y}_2)$ também possui distribuição normal com

$$E(\overline{Y}_1 - \overline{Y}_2) = \mu_1 - \mu_2$$

$$V(\overline{Y}_1 - \overline{Y}_2) = V(\overline{Y}_1) + V(\overline{Y}_2)$$

$$= \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2},$$

ou seja, a distribuição amostral da diferença de médias é

$$\overline{Y}_d = (\overline{Y}_1 - \overline{Y}_2) \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right).$$

Condições para o teste

Quando temos os seguintes requisitos:

- Ambas amostras são AAS.
- Ambas amostras são independentes.
- ▶ Ambas populações tem distribuição normal ou $n_1 > 30$ e $n_2 > 30$.

Podemos usar o Teorema do Limite Central para afirmar que a diferença entre as duas médias segue uma distribuição normal, e a **estatística de teste** é dada por

$$z = \frac{(\overline{y}_1 - \overline{y}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Etapas do teste

Procedimentos gerais

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$z = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão do teste.

Exercício: tempos de entrega

Uma transportadora de mercadorias tem duas possibilidades de trajeto para realizar entregas. O gerente de logística desconfia não haver diferença significativa entre o tempo de cada trajeto.

Foram selecionadas aleatoriamente 45 entregas realizadas no primeiro trajeto, resultando em uma média amostral de 57 minutos. No **segundo** trajeto, foram selecionadas aleatoriamente 30 entregas, e o tempo médio foi de 54 minutos

O desvio-padrão populacional do primeiro trajeto é de $\sigma_1 = 8$ minutos, e o do segundo trajeto é de $\sigma_2 = 6$ minutos. Teste a hipótese de que não existe diferença significativa entre o tempo médio dos dois trajetos, ao nível de 1% de significância.

Figura 29. Foto de Norma Mortenson no Pexels.

- 1. Hipóteses: $H_0: \mu_1 = \mu_2$ vs $H_a: \mu_1 \neq \mu_2$ (teste bilateral).
- 2. Estatística de teste

$$z = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{57 - 54}{\sqrt{\frac{8^2}{45} + \frac{6^2}{30}}} = 1.311.$$

- 3. Nível de significância $\alpha = 0.01 \rightarrow RC = \{z < -2.576 \text{ ou } z > 2.576\}.$
- 4. Conclusão do teste:
 - $ightharpoonup z \notin RC$, portanto **não rejeita** H_0 .
 - **p-valor** = $2 \times P(Z > 1.311) = 0.19$: não existem evidências para rejeitar a hipótese de que os tempos dos trajetos sejam iguais.

Figura 30. Distribuição amostral das médias e região de rejeição da hipótese nula.

Suposições sobre as variâncias

- Quando não conhecemos σ^2 , usamos a **estimativa** amostral s^2 .
- Nesse caso, já vimos que usamos a distribuição t no lugar da distribuição z.
- No entanto, quando temos duas amostras, devem ser considerados dois casos distintos:
 - **Variâncias iguais:** quando é razoável supor que as variâncias populacionais são iguais, ou seja $\sigma_1^2 = \sigma_2^2$.
 - **Variâncias diferentes:** quando não se pode fazer nenhuma suposição sobre a igualdade das variâncias populacionais, ou seja $\sigma_1^2 \neq \sigma_2^2$.

Estatística do teste para o caso de variâncias iguais $\sigma_1^2 = \sigma_2^2$

Neste caso, calculamos a **média ponderada das variâncias amostrais** s_1^2 e s_2^2 para obter uma estimativa da variância populacional comum

$$\hat{s}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2}.$$

A estatística de teste fica

$$t = \frac{(\overline{y}_1 - \overline{y}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\hat{s}^2}{n_1} + \frac{\hat{s}^2}{n_2}}} = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{\hat{s}^2}{n_1} + \frac{\hat{s}^2}{n_2}}} \sim t_{\nu},$$

em que

$$v = n_1 + n_2 - 2$$

são os graus de liberdade.

Etapas do teste

Procedimentos gerais

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$t = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{\hat{s}^2}{n_1} + \frac{\hat{s}^2}{n_2}}} = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\hat{s}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

em que \hat{s}^2 é a variância combinada das amostras.

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α **(Obs:** use $v = n_1 + n_2 - 2$).
- 6. Conclusão do teste.

Exercício: rendimento das turmas

- ► Em uma avaliação de estatística, foi selecionada uma amostra de 12 alunos da turma A, resultando em uma média de 7.9 com desvio-padrão 0.6.
- ▶ Na turma B, foram selecionados 15 alunos, os quais tiraram nota média 6.7 com desvio-padrão 0.8.
- As notas possuem distribuição normal e assume-se que $\sigma_1^2 = \sigma_2^2$.
- ► Teste a hipótese de que a turma A tem média maior do que a turma B, com um nível de significância de 1%.

Figura 31. Foto de Kaboompics.com do Pexels.

- 1. Hipóteses: $H_0: \mu_1 = \mu_2$ vs $H_a: \mu_1 > \mu_2 = \mu_1 \mu_2 > 0$ (unilateral à direita).
- 2. Variância combinada

$$\hat{s}^2 = \frac{(n_1 - 1) \cdot s_1^2 + (n_2 - 1) \cdot s_2^2}{n_1 + n_2 - 2} = \frac{(12 - 1) \cdot 0.6^2 + (15 - 1) \cdot 0.8^2}{12 + 15 - 2} = 0.517.$$

3. Estatística de teste

$$t = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\hat{s}^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{7.9 - 6.7}{\sqrt{0.517 \left(\frac{1}{12} + \frac{1}{15}\right)}} = 4.309.$$

4. Nível de significância $\alpha = 0.01 \rightarrow RC = \{t > 2.485\}$.

4. Conclusão do teste:

- ▶ $t \in RC$, portanto **rejeita** H_0 .
- **p-valor** = P(T > 4.309) = 0.0001.

Figura 32. Distribuição amostral das médias e região de rejeição da hipótese nula.

Estatística do teste para o caso de variâncias diferentes $\sigma_1^2 \neq \sigma_2^2$

Neste caso, ainda usamos as variâncias amostrais s_1^2 e s_2^2 para determinar o **erro-padrão da diferença** entre as duas médias.

A estatística de teste fica

$$t = \frac{(\overline{y}_1 - \overline{y}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_{\nu}.$$

Porém, como as variâncias são diferentes, os graus de liberdade devem ser ajustados

$$v = \frac{(w_1 + w_2)^2}{\frac{w_1^2}{n_1 - 1} + \frac{w_2^2}{n_2 - 1}},$$

em que

$$w_1 = \frac{s_1^2}{n_1}$$
 e $w_2 = \frac{s_2^2}{n_2}$.

Etapas para o teste

Procedimentos gerais

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$t = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t_{\nu}.$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α (**Obs**: o valor de graus de liberdade ν deve ser calculado conforme equação anterior).
- 6. Conclusão do teste.

Exemplo: tempo de uma tarefa doméstica

- Uma pesquisa avaliou a eficácia de dois tipos de treinamento, com a finalidade de reduzir o tempo médio de determinada tarefa doméstica.
- Foram selecionadas duas amostras aleatórias de populações com distribuição Normal, onde assume-se que $\sigma_1^2 \neq \sigma_2^2$.
- ▶ Os dados da pesquisa estão no quadro abaixo. Teste a hipótese de que o tempo médio para a realização da tarefa é igual para os dois treinamentos, ao nível de 5% de significância.

Treinamento 1 $n_1 = 15$ $\overline{y}_1 = 24.2 \text{ min } s_1 = 3.16 \text{ min}$ **Treinamento 2** $n_2 = 10$ $\overline{q}_2 = 23.9 \text{ min } s_2 = 4.47 \text{ min}$

Figura 33. Foto de cottonbro no Pexels.

- 1. Hipóteses: $H_0: \mu_1 = \mu_2$ vs $H_a: \mu_1 \neq \mu_2$ (teste bilateral).
- 2. Estatística de teste

$$t = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{24.2 - 23.9}{\sqrt{\frac{3.16^2}{15} + \frac{4.47^2}{10}}} = 0.184.$$

- 3. Nível de significância $\alpha = 0.05$.
- 4. Graus de liberdade:

$$w_1 = \frac{s_1^2}{n_1} = \frac{3.16^2}{15} = 0.666$$
 e $w_2 = \frac{s_2^2}{n_2} = \frac{4.47^2}{10} = 1.998$.

$$v = \frac{(w_1 + w_2)^2}{\frac{w_1^2}{n_1 - 1} + \frac{w_2^2}{n_2 - 1}} = \frac{(0.666 + 1.998)^2}{\frac{0.666^2}{15 - 1} + \frac{1.998^2}{10 - 1}} = 14.933.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{t < -2.132 \text{ ou } t > 2.132\}.$
- 4. Conclusão do teste:
 - ▶ $t \notin RC$, portanto **não rejeita** H_0 .
 - **p-valor** = $2 \times P(T > 0.184) = 0.856$.

Figura 34. Distribuição amostral das médias e região de rejeição da hipótese nula.

Testes de hipótese para a diferença de médias de duas populações: σ desconhecido e amostras emparelhadas

Amostras emparelhadas

Fazemos testes de comparação de médias para dados emparelhados quando os resultados das duas amostras são **relacionados** de acordo com algum critério.

Para cada **par** (Y_{1i}, Y_{2i}) , o valor da primeira amostra deve estar claramente associado ao valor da segunda amostra (estudos do tipo "antes" e "depois").

Este teste verifica se o processo ao qual os indivíduos em estudo foram submetidos produziu alguma alteração.

Exemplos:

- ► Influência de uma nova dieta sobre os mesmos indivíduos.
- Influência de uma campanha publicitária sobre a intenção de compra do consumidor
- ▶ Influência de hábitos de saúde acompanhando pares de gêmeos.

Distribuição amostral da diferença

Ao invés de analisarmos cada grupo separadamente, observamos somente a diferença D_i entre as duas amostras Y_{1i} e Y_{2i} ,

$$D_i = Y_{1i} - Y_{2i},$$

e calculamos a média destas diferenças

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i,$$

que terá distribuição

$$\overline{D} \sim N\left(\mu_D, \frac{\sigma_D^2}{n}\right)$$
.

O parâmetro μ_D é estimado pela média amostral \overline{D} , e como usualmente não temos informações sobre σ_D^2 , estimamos seu valor por s_D^2 .

Média e variância

Além da média das diferenças,

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i,$$

precisamos calcular também a variância das diferenças entre os pares, dado por

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \overline{d})^2$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^n d_i^2 - n \overline{d}^2 \right].$$

i	<i>y</i> ₁	<i>y</i> ₂	d
1	<i>y</i> ₁₁	<i>y</i> ₂₁	$d_1 = y_{11} - y_{21}$
2	<i>y</i> ₁₂	<i>y</i> ₂₂	$d_2 = y_{12} - y_{22}$
3	<i>y</i> ₁₃	<i>y</i> ₂₃	$d_3 = y_{13} - y_{23}$
4	<i>Y</i> 14	<i>y</i> 24	$d_4 = y_{14} - y_{24}$
5	<i>y</i> ₁₅	<i>y</i> 25	$d_5 = y_{15} - y_{25}$
6	<i>y</i> ₁₆	<i>y</i> 26	$d_6 = y_{16} - y_{26}$
7	<i>y</i> ₁₇	<i>y</i> 27	$d_7 = y_{17} - y_{27}$
8	<i>y</i> ₁₈	<i>y</i> 28	$d_8 = y_{18} - y_{28}$
9	<i>y</i> 19	<i>y</i> 29	$d_9 = y_{19} - y_{29}$
:	1	:	711111
n	<i>y</i> _{1n}	y_{2n}	$d_n = y_{1n} - y_{2n}$

Estatística do teste

Uma vez que a diferença média é calculada com base nas diferenças entre amostras **emparelhadas** (isto é, σ^2 é **desconhecido**), e que os valores de D_i geralmente tem distribuição normal, usamos a distribuição t, com estatística de teste dada por

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}} = \frac{\overline{d}}{s_d / \sqrt{n}} \sim t_v,$$

em que

- \triangleright v = n 1, com *n* sendo o **número de pares** observados.
- μ_d é a média das diferenças na população (normalmente $\mu_d = 0$).

Observação para H_a

Normalmente $H_0: \mu_d = 0$ e

- \blacktriangleright $\mu_d < 0$ significa que houve **aumento** "depois".
- \blacktriangleright $\mu_d > 0$ significa que houve **diminuição** "depois".

Etapas do teste

Procedimentos gerais

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}}$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α (**Obs:** v = n 1, sendo n o **número de pares** observados).
- 6. Conclusão do teste.

Exemplo: manutenção preventiva

- ► Em uma fábrica, sete máquinas foram selecionadas aleatoriamente a fim de determinar o efeito da manutenção preventiva na produção.
- ► Inicialmente, as máquinas trabalharam por um período na forma habitual, e depois trabalham o mesmo período recebendo manutenções preventivas.
- O total de trabalho produzido, antes e depois da adoção das manutenções, está na tabela ao lado.
- ▶ Ao nível de 5%, podemos concluir que o trabalho médio produzido é maior depois da adoção das manutenções preventivas?

i	Antes	Depois	Diferença
1	12.10	12.50	-0.40
2	12.30	16.00	-3.70
3	11.10	12.90	-1.80
4	12.80	14.00	-1.20
5	14.10	12.90	1.20
6	8.40	12.50	-4.10
7	13.30	13.50	-0.20

- 1. Hipóteses: $H_0: \mu_d = 0$ vs $H_a: \mu_d < 0$ (unilateral à esquerda).
- 2. Estatística de teste

$$t = \frac{\overline{d} - \mu_d}{s_d / \sqrt{n}} = \frac{-1.457 - 0}{1.913 / \sqrt{7}} = -2.015.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{t < -1.943\}.$
- 4. Conclusão do teste:
 - $t \in RC$, portanto rejeita H_0 .
 - **p-valor** = P(T < -2.015) = 0.045: existem evidências de que o tempo médio de funcionamento das máquinas é maior quando recebem manutenções preventivas.

Figura 35. Resultado do teste de hipótese.

Hipóteses

Se a amostra for suficientemente grande, sabemos, pelo Teorema do Limite Central, que a distribuição de probabilidade da proporção amostral tem um comportamento aproximadamente Normal.

Na comparação de duas proporções populacionais p_1 e p_2 , usaremos como estimador a diferença entre as respectivas proporções amostrais, \hat{p}_1 e \hat{p}_2 .

Supondo que duas amostras foram retiradas de duas populações independentes, teremos duas proporções amostrais independentes, e a diferenca entre elas também terá distribuição aproximadamente Normal.

Assim, o interesse será em testar

$$H_0: p_1 - p_2 = 0 \Rightarrow H_0: p_1 = p_2$$

VS

 $H_a: p_1 - p_2 \neq 0 \Rightarrow H_a: p_1 \neq p_2 \text{ ou}$
 $H_a: p_1 - p_2 < 0 \Rightarrow H_a: p_1 < p_2 \text{ ou}$
 $H_a: p_1 - p_2 > 0 \Rightarrow H_a: p_1 > p_2.$

Distribuição amostral

Desse modo, o estimador a ser utilizado será $\hat{p}_1 - \hat{p}_2$, cuja distribuição será aproximada pela **Normal**, com parâmetros

$$E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$$

$$V(\hat{p}_1 - \hat{p}_2) = V(\hat{p}_1) + V(\hat{p}_1)$$

$$= \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2},$$

ou seja,

$$(\hat{p}_1 - \hat{p}_2) \stackrel{\text{aprox}}{\sim} N\left(p_1 - p_2, \frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}\right).$$

Teste de hipótese para a proporção de duas populações

Se a hipótese nula for verdadeira, as proporções populacionais são iguais. Denotando seu **valor comum** por \overline{p} , temos

$$p_1 = p_2 = \overline{p}$$
.

Podemos obter um **estimador** para \bar{p} , através da ponderação dos estimadores \hat{p}_1 e \hat{p}_2 , obtendo a proporção combinada

$$\overline{p} = \frac{y_1 + y_2}{n_1 + n_2},$$

em que y_1 e y_2 são os números de sucessos em cada amostra.

Substituindo os valores de p_1 e p_2 na expressão da $V(\hat{p}_1 - \hat{p}_2)$, temos que a **estatística de** teste para a diferença de duas proporções é

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\overline{p}(1-\overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \stackrel{\text{aprox}}{\sim} N(0,1).$$

Etapas do teste

Procedimentos gerais

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\overline{p}(1-\overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

onde \overline{p} é calculado pela equação apresentada anteriormente.

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão do teste.

Exercício: celular no trânsito

- ► Em um estudo com 2870 motoristas, 1210 afirmaram ter o hábito de **mexer no celular com o carro em movimento**. Depois de sancionada uma multa, foi realizado outro estudo com 2200 motoristas, dos quais 725 afirmaram ter ainda o hábito.
- Usando um nível de significância de 10%, é possível verificar a alegação de que a proporção de motoristas com hábito de mexer no celular no trânsito diminuiu significativamente após a criação da multa?

Figura 36. Foto de Roman Pohorecki no Pexels.

- 1. Hipóteses: $H_0: p_1 = p_2$ vs $H_a: p_1 > p_2$ (unilateral à direita).
- 2. Proporções

$$\hat{p}_1 = \frac{y_1}{n_1} = \frac{1210}{2870} = 0.422$$
 e $\hat{p}_2 = \frac{y_2}{n_2} = \frac{725}{2200} = 0.33$

$$\overline{p} = \frac{y_1 + y_2}{n_1 + n_2} = \frac{1210 + 725}{2870 + 2200} = 0.382.$$

Estatística de teste

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{0.422 - 0.33}{\sqrt{0.382(1 - 0.382)\left(\frac{1}{2870} + \frac{1}{2200}\right)}} = 6.682.$$

- 3. Nível de significância $\alpha = 0.1 \rightarrow RC = \{z > 1.282\}.$
- 4. Conclusão do teste:
 - ▶ $z \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = P(Z > 6.682) ≈ 0 : existem evidências de que a criação da multa teve efeito.

Figura 37. Resultado do teste de hipótese.

Ideia geral

Considerando duas populações Y_1 e Y_2 com médias μ_1 e μ_2 , e variâncias σ_1^2 e σ_2^2 , ou seja

$$Y_1 \sim N(\mu_1, \sigma_1^2)$$
 e $Y_2 \sim N(\mu_2, \sigma_2^2)$.

Já vimos que a **distribuição amostral** da razão de duas variâncias amostrais (s_1^2 e s_2^2) possui distribuição F com $n_1 - 1$ graus de liberdade no numerador e $n_2 - 1$ graus de liberdade no denominador.

Intuitivamente:

- Se a razão das duas variâncias for próxima de 1, então elas são aproximadamente iguais.
- ▶ Em um teste de hipótese para a **igualdade de variâncias** entre duas populações, verifica-se então se a razão das variâncias está ou não próxima de 1.

Condições para o teste

Quando temos os seguintes requisitos:

- Temos uma AAS.
- As duas populações são independentes.
- ▶ As duas populações tem, **cada uma**, distribuição Normal (essa é uma exigência estrita).

Sendo assim, usamos a estatística de teste

$$F = \frac{s_1^2}{s_2^2} \sim F_{\nu_1, \nu_2},$$

em que $v_1 = n_1 - 1$ graus de liberdade no numerador e $v_2 = n_2 - 1$ graus de liberdade no denominador.

Importante: s_1^2 deve ser sempre a **maior** das duas variâncias amostrais.

Etapas do teste

Procedimentos gerais para um teste de hipótese para a diferença de duas variâncias

- 1. Definir a hipótese nula (H_0) e a alternativa (H_a) .
- 2. Definir o nível de significância α .
- 3. Definir o tipo de teste, com base na hipótese alternativa.
- 4. Calcular a estatística de teste

$$F = \frac{s_1^2}{s_2^2}$$

- 5. Determinar a região crítica (região de rejeição), com base no nível de significância α .
- 6. Conclusão do teste.

Exemplo: variação em moedas de quarto de dólar

- ▶ Nos EUA, as moedas de guarto de dólar sofreram alterações no peso depois de 1964.
- ▶ Uma amostra de 40 moedas fabricadas antes de 1964 resultou em um desvio-padrão de 0.087 g.
- ▶ Uma amostra de 40 moedas fabricadas depois de 1964 resultou em um desvio-padrão de 0.06194 g.
- ▶ Ao se projetar uma máquina de vendas com moedas, deve-se considerar os desvios-padrão antes e depois de 1964.
- ▶ Use o nível de significância de 5% para testar a afirmativa de que os pesos de quarto de dólar antes e depois de 1964 são provenientes de populações com o mesmo desvio-padrão.

- 1. Hipóteses: $H_0: \sigma_1^2 = \sigma_2^2$ vs $H_a: \sigma_1^2 \neq \sigma_2^2$ (bilateral).
- 2. Estatística de teste

$$F = \frac{s_1^2}{s_2^2} = \frac{0.087^2}{0.06194^2} = \frac{0.0076}{0.0038} = 1.973.$$

- 3. Nível de significância $\alpha = 0.05 \rightarrow RC = \{F < 0.529 \text{ ou } F > 1.891\}.$
- 4. Conclusão do teste:
 - $ightharpoonup F \in RC$, portanto **rejeita** H_0 .
 - **p-valor** = $2 \times P(F > 1.973) = 2 \times 0.018 = 0.036$: existem evidências de que a variação dos pesos de quarto de dólar feitos depois de 1964 é significativamente diferente da variação entre os quartos de dólar feitos antes de 1964.

Figura 38. Resultado do teste de hipótese.

Resumo

- ► Fundamentos de testes de hipóteses.
- ► Testes para uma população.
- Testes para duas populações.
 - ightharpoonup Testes de hipótese para a diferença de média de duas populações: σ^2 conhecido.
 - ightharpoonup Testes de hipótese para a diferença de média de duas populações: σ^2 desconhecido.
 - ▶ Variâncias iguais $\sigma_1^2 = \sigma_2^2$.
 - ▶ Variâncias diferentes $\sigma_1^2 \neq \sigma_2^2$.
 - ▶ Testes de hipótese para a diferença de média de duas populações: σ^2 desconhecido e amostras emparelhadas.
 - ► Teste de hipótese para a diferença de proporção de duas populações.
 - Teste de hipótese para a razão de variâncias de duas populações.