Sz CASBA

TED (15) -2252

(REVISION — 2015)

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

BUSINESS MATHEMATICS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$, Find $(A + B)^T$.
 - 2. Define sample space.
 - 3. Find the derivative of $x^3 e^x$
 - 4. Evaluate $\int \csc(9x + 7) \cot(9x + 7) dx$.
 - 5. Evaluate $\int xe^x dx$.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Solve for 'x' if $\begin{vmatrix} 2 & 3 & 5 \\ 2 & x & 5 \\ 3 & -1 & 2 \end{vmatrix} = 0$.

2. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 0 & -1 \\ 3 & 0 & 9 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 1 & 9 \\ 6 & 8 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 6 & 1 & 5 \\ 1 & -1 & 3 \\ 2 & 6 & 8 \end{bmatrix}$

verify that A(B + C) = AB + AC

- 3. Two dice are thrown, find the probability of
 - (i) Sum of the face numbers is '5'
 - (ii) The number on one die is double the number on the other
 - (iii) Both dice show the same number.

4. Find
$$\frac{dy}{dx}$$
, (i) $y = x^2 \sec x$ (ii) $y = \log (\csc x - \cot x)$.

5. Find
$$\frac{dy}{dx}$$
, if $x^3 + y^3 = 3xy$

6. Evaluate
$$\int \frac{3\cos x + 4}{\sin^2 x} dx$$

7. Evaluate
$$\int x^2 \log x dx$$

$$(5 \times 6 = 30)$$

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

III (a) Evaluate
$$\begin{vmatrix} -2 & 4 & 1 \\ 2 & -6 & 1 \\ 5 & 4 & 1 \end{vmatrix}$$
 5

(b) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 show that $A^2 - 4A - 5I = 0$

(c) For the matrices A and B, given below, compute AB and BA and hence

show that
$$AB \neq BA$$
. $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 5 \\ 4 \end{bmatrix}$

Op

IV (a) If
$$\begin{vmatrix} 2 & 1 & x \\ 3 & -1 & 2 \\ 1 & 1 & 6 \end{vmatrix} = \begin{vmatrix} 4 & x \\ 3 & 2 \end{vmatrix}$$
 find x.

(b) If
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$ show that $(A + B)^T = A^T + B^T$

(c) Solve
$$2A-3\begin{bmatrix} 3 & 0 & 5 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -1 & 2 \end{bmatrix}$$

		Unit — II	/lark
V	(a)		5
	(b)	Find the probability of a number selected at random from the numbers 1 to 20. Which is an even number.	5
	(c)	If A and B are two independent events, $P(A) = \frac{2}{3}$ and $P(B) = \frac{3}{5}$ find $P(A \cap B)$.	5
		OR	
VI	(a)	Given $P(A) = \frac{3}{5}$, $P(B) = \frac{1}{5}$ find $P(A \cup B)$, if A and B are mutually exclusive.	5
	(b)	A letter is chosen at random from the word "ASSASSINATION". Find the probability that letter is a (i) Vowel (ii) Consonant.	5
	(c)	Find the probability that a leap year selected at random will contain 53 Sundays	. 5
		Unit — III	
VII	(a)	Differentiate the following with respect to x.	
		(i) $e^x \log x$ (ii) $\frac{\log x}{x}$	5
	(b)	If $x = a \sec \theta$, $y = b \tan \theta$, find $\frac{dy}{dx}$	5
	(c)	Find $\frac{dy}{dx}$, if $y = \frac{x \sec x}{3x + 2}$	5
VIII	(a)	Differentiate, $y = x^2 \sin(x^2)$	5
		Find $\frac{dy}{dx}$, if $x^2 + y^2 = 25$	5
	(c)	Differentiate the following with respect to x.	
		(i) $y = x^3 e^x$ (ii) $y = \frac{x}{x-1}$	5
		UNIT — IV	
IX	(a)	Evaluate $\int \frac{x^2 + 2x + 1}{x^2} dx$	5
	(b)	Find $\int \sqrt{1+\sin 2x} dx$	5
	(c)	Evaluate $\int x \cos x dx$	5
		OR	
X	(a)	Find $\int (\tan x + \cot x)^2 dx$	- 5
	(b)	Find $\int e^{\sin x} \cos x dx$	5
	(c)	Find ∫ log xdx	5