Relatório de Análise de Algoritmos

Daniel Marques, Miguel Brito, Jefferson Oliveira, Vinicius Gonzaga June 29, 2017

1 Introdução

1.1 Counting Sort

Analise

O heapsort é um algoritmo de ordenação que se utilizada da estrutura de dados heap. Seu funcionamento consiste em criar um heap de máximo a partir do vetor original, em seguida trocar o primeiro elemento com o último e decrementar o tamanho do heap. Em seguida novamente cria-se um heap de máximo com a nova raiz. Dessa forma segue-se ordenando o vetor, do último para o primeiro elemento.

- Tempo no melhor caso: $\theta(nlgn)$
- Tempo no pior caso: $\theta(nlgn)$
- Tempo no caso médio: $\theta(nlgn)$

2 Tempos

Figure 1: Heapsort vetor aleatório

Método HeapSort com vetor aleatorio T(n) = n*39.3Log(n) + 2.294e+04

Figure 2: Heapsort vetor crescente

Método HeapSort com vetor crescente T(n) = n*35.05Log(n) + 0.46

Figure 3: Heapsort vetor decrescente

Método HeapSort com vetor decrescente T(n) = n*35.24Log(n) + -9700

Figure 4: Heapsort vetor parcialmente crescente 60 %

Método HeapSort com vetor parcialmente crescente(60) T(n) = n*36.76Log(n) + 6325

Figure 5: Heapsort vetor parcialmente crescente 70 %

Método HeapSort com vetor parcialmente crescente(70) T(n) = n*37.58Log(n) + 8084

Figure 6: Heapsort vetor parcialmente crescente 80 %

Método HeapSort com vetor parcialmente crescente(80) T(n) = n*34.43Log(n) + -2923

Figure 7: Heapsort vetor parcialmente crescente 90 %

Método HeapSort com vetor parcialmente crescente(90) T(n) = n*35.17Log(n) + 6857

Figure 8: Heapsort vetor parcialmente decrescente 60 %

Método HeapSort com vetor parcialmente decrescente(60) T(n) = n*36.76Log(n) + 1.553

Figure 9: Heapsort vetor parcialmente decrescente 70 %

Método HeapSort com vetor parcialmente decrescente(70) T(n) = n*35.75Log(n) + 2.151

Figure 10: Heapsort vetor parcialmente decrescente 80 %

Método HeapSort com vetor parcialmente decrescente(80) T(n) = n*34.76Log(n) + -4287

Figure 11: Heapsort vetor parcialmente decrescente 90 %

Método HeapSort com vetor parcialmente decrescente(90) T(n) = n*33.38Log(n) + 1.441e+04

