

Previous work

RNNLogic

Experiment

Conclusion

Previous work

End-to-End differentiable model

이산적 공간의 structure와 연속적 공간의 score를 Gradient based optimization을 통해 학습시키자

NeuralLP, DRUM

End-to-End differentiable model한 RNN 기반 모델 large search space -> High-quality의 logic rule을 찾기 어려움

Rule Generator p_{θ}

다양한 rule body의 rule 생성

Reasoning Predictor p_w

생성된 rule에 대한 scoring

+ EM algorithm

Rule Generator, Reasoning Predictor의 parameter를 단계적으로 학습

Objective function

$$\max_{\theta, w} \mathcal{O}(\theta, w) = \mathbb{E}_{(\mathcal{G}, \boldsymbol{q}, \boldsymbol{a}) \sim p_{\text{data}}}[\log p_{w, \theta}(\boldsymbol{a}|\mathcal{G}, \boldsymbol{q})] = \mathbb{E}_{(\mathcal{G}, \boldsymbol{q}, \boldsymbol{a}) \sim p_{\text{data}}}[\log \mathbb{E}_{p_{\theta}(\boldsymbol{z}|\boldsymbol{q})}[p_{w}(\boldsymbol{a}|\mathcal{G}, \boldsymbol{q}, \boldsymbol{z})]].$$

G: background knowledge graph (triplets)

q: query (h, r, ?)

a: answer (a = t)

z: rule generator가 정의한 latent rules

주어진 G, q에 대하여 z로 얻은 answer가 실제 answer a를 예측할 확률을 최대화

Rule generator

$$p_{\theta}(\boldsymbol{z}|\boldsymbol{q}) = \operatorname{Mu}(\boldsymbol{z}|N, \operatorname{RNN}_{\theta}(\cdot|\mathtt{r}))$$

Rule Generator는 LSTM 기반 RNN 모델 사용
(Hyperparameter) N개의 rule에 대한 multinomial distribution 정의

=> 규칙들이 각기 다른 확률을 가지고 sampling 됨

$$oldsymbol{h}_0 = f(oldsymbol{v}_\mathtt{r})_{\mathtt{r}}$$

$$\operatorname{softmax}(o(\boldsymbol{h}_{t+1}))$$

$$\boldsymbol{h}_t = \text{LSTM}(\boldsymbol{h}_{t-1}, g([\boldsymbol{v}_{\text{r}}, \boldsymbol{v}_{\text{r}_t}]),$$

Reasoning Predictor

$$\mathtt{score}_w(e) = \sum_{\mathit{rule} \in \boldsymbol{z}} \mathtt{score}_w(e|\mathit{rule}) = \sum_{\mathit{rule} \in \boldsymbol{z}} \sum_{\mathit{path} \in \mathcal{P}(h,\mathit{rule},e)} \psi_w(\mathit{rule}) \cdot \phi_w(\mathit{path})$$

Rule에 대한 learnable parameter와 Path에 대한 score 존재

Path score

RotatE를 사용하여 h부터 rule body에 대한 embedding을 움직여

Candidate answer e의 embedding과 거리로 점수 계산

$$\phi_w(\textit{path}) = \sigma(\delta - d(m{x}_{e_0} \circ m{x}_{\mathtt{r}_1} \circ m{x}_{\mathtt{r}_2} \circ \cdots \circ m{x}_{\mathtt{r}_l}, m{x}_{e_l}))$$

Reasoning Predictor

$$p_w(oldsymbol{a} = e | \mathcal{G}, oldsymbol{q}, oldsymbol{z}) = rac{\exp(\mathtt{score}_w(e))}{\sum_{e' \in \mathcal{A}} \exp(\mathtt{score}_w(e'))}$$

Softmax function을 통해

다른 candidate answer들 간 score에 대한 확률 계산

EM algorithm

E-step: 주어진 **현재 parameter를 바탕**으로 latent 변수의 **기댓값** 계산

M-step: E-step에서 계산된 latent 변수의 기댓값을 이용해 parameter를 최대화

EM algorithm

E-step : 현재 step에서 rule generator가 생성한 z hat에서 high quality의 rule 식별

$$p_{\theta,w}(\boldsymbol{z}_I|\mathcal{G}, \boldsymbol{q}, \boldsymbol{a}) \propto p_w(\boldsymbol{a}|\mathcal{G}, \boldsymbol{q}, \boldsymbol{z}_I) p_{\theta}(\boldsymbol{z}_I|\boldsymbol{q})$$

G, q, a가 주어졌을 때, 좋은 rule z를 찾는 과정

by posterior probability

EM algorithm

but, Rule에 대한 multinomial distribution 형식으로 나타내기 어려움

$$\begin{split} H(\textit{rule}) &= \left\{ \texttt{score}_w(t|\textit{rule}) - \frac{1}{|\mathcal{A}|} \sum_{e \in \mathcal{A}} \texttt{score}_w(e|\textit{rule}) \right\} + \log \texttt{RNN}_\theta(\textit{rule}|r), \\ \left| \log p_{\theta,w}(\pmb{z}_I|\mathcal{G}, \pmb{q}, \pmb{a}) - \left(\sum_{\textit{rule} \in \pmb{z}_I} H(\textit{rule}) + \gamma(\pmb{z}_I) + \texttt{const} \right) \right| \leq s^2 + O(s^4) \end{split}$$

$$q(oldsymbol{z}_I) \propto \exp(\sum_{rule \in oldsymbol{z}_I} H(rule) + \gamma(oldsymbol{z}_I))$$

EM algorithm

$$\exp(H(\mathit{rule}))/(\sum_{\mathit{rule}' \in \hat{z}} \exp(H(\mathit{rule}')))$$

Top – K 개의 rule이 sampling되어 $\hat{m{z}}_I$ 구성

EM algorithm

M-step: high quality의 rule을 통해 Rule Generator를 update

$$\mathcal{O}_{(\mathcal{G}, \boldsymbol{q}, \boldsymbol{a})}(\theta) = \log p_{\theta}(\hat{\boldsymbol{z}}_I | \boldsymbol{q}) = \sum_{\textit{rule} \in \hat{\boldsymbol{z}}_I} \log \text{RNN}_{\theta}(\textit{rule} | r) + \text{const.}$$

Objective function: Rule generator가 high quality rule을 생성할 확률을 최대화

Evaluation Metrics: (h, r, ?), (t, r^-1, ?)

RNNLogic+ : Aggregator + MLP + KGE 활용한 scoring 선택 $score_w(e) = MLP(AGG(\{\mathbf{v}_{rule}, | \mathcal{P}(h, rule, e)|\}_{rule \in \mathfrak{T}_I}) + \eta \ KGE(h, r, e).$

Inverse relation 제거된 datset

Category Algorithm MR FB15k-237 WN18RR TransE* 357 0.294 - - 46.5 3384 0.226 - - DistMult* 254 0.241 15.5 26.3 41.9 5110 0.43 39 44	50.1 49
TransE* 357 0.294 46.5 3384 0.226	50.1 49
	49
DistMult* 254 0.241 15.5 26.3 41.9 5110 0.43 39 44	
No Rule ComplEx* 339 0.247 15.8 27.5 42.8 5261 0.44 41 46	51
Learning ComplEx-N3* - 0.37 56 - 0.48	57
ConvE* 244 0.325 23.7 35.6 50.1 4187 0.43 40 44	52
TuckER* - 0.358 26.6 39.4 54.4 - 0.470 44.3 48.	2 52.6
RotatE* 177 0.338 24.1 37.5 53.3 3340 0.476 42.8 49.	2 57.1
PathRank - 0.087 7.4 9.2 11.2 - 0.189 17.1 20.	0 22.5
Rule NeuralLP [†] - 0.237 17.3 25.9 36.1 - 0.381 36.8 38.	6 40.8
Learning DRUM [†] - 0.238 17.4 26.1 36.4 - 0.382 36.9 38.	8 41.0
NLIL* - 0.25 32.4	-
M-Walk* - 0.232 16.5 24.3 0.437 41.4 44.	5 -
PNNII orio W/0 emb. 538 0.288 20.8 31.5 44.5 7527 0.455 41.4 47.	5 53.1
RNNLogic with emb. 232 0.344 25.2 38.0 53.0 4615 0.483 44.6 49.	7 55.8
RNNLogic+ W/o emb. 480 0.299 21.5 32.8 46.4 7204 0.489 45.3 50.	6 56.3
RININLOGIC+ with emb. 178 0.349 25.8 38.5 53.3 4624 0.513 47.1 53 .	2 59.7

 $\begin{array}{c} \phi_w(\textit{path}) = 1 \\ \phi_w(\textit{path}) = \sigma(\delta - d(\pmb{x}_{e_0} \circ \pmb{x}_{r_1} \circ \pmb{x}_{r_2} \circ \cdots \circ \pmb{x}_{r_t}, \pmb{x}_{e_t})) \end{array}$

relation / inverse relation 에 대한 평가

Evaluation Metrics

Category	Algorithm	FB15k-237					WN18RR				
		MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10
Rule	MINERVA*	-	0.293	21.7	32.9	45.6	-	0.448	41.3	45.6	51.3
Learning	MultiHopKG*	-	0.407	32.7	-	56.4	-	0.472	43.7	-	54.2
RNNLogic	w/o emb.	459.0	0.377	28.9	41.2	54.9	7662.8	0.478	43.8	50.3	55.3
	with emb.	146.1	0.443	34.4	48.9	64.0	3767.0	0.506	46.3	52.3	59.2

(h, r, ?)만 사용하는 모델들과도 비교

Evaluation Metrics

Category	Algorithm	Kinship					UMLS					
		MR	MRR	H@1	H@3	H@10	MR	MRR	H@1	H@3	H@10	
No Rule Learning	DistMult	8.5	0.354	18.9	40.0	75.5	14.6	0.391	25.6	44.5	66.9	
	ComplEx	7.8	0.418	24.2	49.9	81.2	13.6	0.411	27.3	46.8	70.0	
	ComplEx-N3	-	0.605	43.7	71.0	92.1	-	0.791	68.9	87.3	95.7	
	TuckER	6.2	0.603	46.2	69.8	86.3	5.7	0.732	62.5	81.2	90.9	
	RotatE	3.7	0.651	50.4	75.5	93.2	4.0	0.744	63.6	82.2	93.9	
Rule Learning	MLN	10.0	0.351	18.9	40.8	70.7	7.6	0.688	58.7	75.5	86.9	
	Boosted RDN	25.2	0.469	39.5	52.0	56.7	54.8	0.227	14.7	25.6	37.6	
	PathRank	-	0.369	27.2	41.6	67.3	-	0.197	14.8	21.4	25.2	
	NeuralLP	16.9	0.302	16.7	33.9	59.6	10.3	0.483	33.2	56.3	77.5	
	DRUM	11.6	0.334	18.3	37.8	67.5	8.4	0.548	35.8	69.9	85.4	
	MINERVA	-	0.401	23.5	46.7	76.6	-	0.564	42.6	65.8	81.4	
	CTP	-	0.335	17.7	37.6	70.3	-	0.404	28.8	43.0	67.4	
RNNLogic	w/o emb.	3.9	0.639	49.5	73.1	92.4	5.3	0.745	63.0	83.3	92.4	
	with emb.	3.1	0.722	59.8	81.4	94.9	3.1	0.842	77.2	89.1	96.5	

Figure 2: Performance w.r.t. # logic rules. RNNLogic achieves competitive results even with 10 rules per query relation.

주어진 query relation r에 대해 10 개의 rule 생성하여 추론한 결과

Figure 3: Performance w.r.t. embedding dimension.

모든 embedding 차원에서 RotatE 능가

Figure 4: Performance w.r.t. # training triplets. RNNLogic is more robust to data sparsity even without using embeddings.

훈련시킨 triplet 개수에 대한 효율성

NeuralLP, DRUM에서 채택한 end-to-end differentiable은 search space가 커지는 문제 발생

RNNLogic은 Rule Generator, Reasoning Predictor를 통해 rule 생성과 scoring을 분리

EM algorithm을 활용하여 parameter 최적화

Experiment를 통해 high-quality의 rule을 통한 answer 추론이 효과적임