EMBEDDABILITY OF ABSTRACT PSEUDO-EINSTEIN CAUCHY-RIEMANN MANIFOLDS

IBRAHIM HAJAR

ABSTRACT. Andrzej Trautman and Ivor Robinson's studies of solutions to Einstein's Equations on Lorentzian manifolds led Trautman to present the following conjecture. A 3-dimensional Cauchy Riemann manifold is locally embeddable if and only if it admits locally a closed, non-vanishing section of its canonical bundle. This writing sample will provide background to an ongoing thesis project on Trautman's conjecture. While many approaches to this conjecture use 4-dimensional Lorentzian Einstein manifolds, we will make use of 3-dimensional pseudo-Einstein structures, which are closely connected to Kähler-Einstein metrics in 4 real dimensions. The aim of the present piece is to articulate the link that the pseudo-Einstein condition has with closed sections of the canonical bundle and with local embeddability of Cauchy-Riemann manifolds.

1. Definitions

Cauchy-Riemann (CR) structures arise on real hypersurfaces in \mathbb{C}^{n+1} . The maximal complex subspace of \mathbb{C}^{n+1} is denoted by H, and J is the restriction of the complex structure of \mathbb{C}^{n+1} to H. A CR manifold M is given by the triple (M, H, J). H from before is a contact distribution, and the induced complex structure $J: H \to H$ is a bundle endomorphism such that $J \circ J = -\mathrm{Id}_H$. We denote the *i*-eigenspace of J by $T^{1,0}\subseteq\mathbb{C}\otimes H$, and we require $[T^{1,0},T^{1,0}]\subseteq T^{1,0}$, which by definition means that $T^{1,0}$ is formally integrable. More precisely, we are stipulating that if $X,Y \in \Gamma(T^{1,0})$, then $[X,Y] \in \Gamma(T^{1,0})$. We say a CR manifold M of dimension 2n+1 is embeddable if we can find n+1 functions, $z^1, ..., z^{n+1}$ on M that satisfy the tangential Cauchy-Riemann equations, and are functionally independent (meaning $dz^1 \wedge dz^2 \wedge ... \wedge dz^{n+1}$ is nowhere zero). If we seek a local embedding, then these conditions need only hold in a neighborhood of each point. A complex-valued q-form, ζ is of the type (q,0) if $\overline{T^{1,0}} \, \rfloor \, \zeta = 0$. The complex line bundle of (n+1,0) forms is the canonical bundle, denoted K_M . A contact form, denoted by θ , is any non-vanishing section of the annihilator of H. Fixing a contact form on M yields a pseudohermitian manifold, given by (M, H, J, θ) . Fixing a choice of contact form determines a unique vector field T (the Reeb vector field), satisfying $\theta(T) = 1$ and $T \perp d\theta = 0$. An admissible coframe is a set of (1,0)-forms $\{\theta^{\alpha}\}_{\alpha=1}^{\alpha=n}$ whose restrictions to the complexified tangent bundle form a basis for the complexified cotangent bundle and which satisfy $\theta^{\alpha}(T) = 0$ for all $\alpha = 1, ..., n$. The dual frame for the complexified tangent bundle is denoted $\{T, W_{\alpha}, W_{\bar{\alpha}}\}_{\alpha=1}^{\alpha=n}$. Given a fixed contact form, the *Levi form* is the hermitian bilinear form $L_{\theta}(U, \overline{V}) = -id\theta(U, \overline{V})$.

An expression for $d\theta$ is given in the structure equations for the Tanaka-Webster connection and torsion forms, respectively denoted by $\omega_{\alpha}{}^{\beta}$ and $\tau_{\beta} = A_{\beta\alpha}\theta^{\alpha}$ [5], [7]. The first equation is

$$(1) d\theta = ih_{\alpha\bar{\beta}}\theta^{\alpha} \wedge \theta^{\bar{\beta}}$$

where $h_{\alpha\bar{\beta}}$ is a hermitian matrix. The form of this expression comes from θ being forced to be real, as well as the formal integrability of $T^{1,0}$. The integrability condition is equivalent to the expressions for $d\theta$ and $d\theta^{\beta}$ being 0 modulo θ and θ^{σ} . We thus have the following expression for $d\theta^{\beta}$

$$d\theta^{\beta} = \theta^{\alpha} \wedge \omega_{\alpha}^{\beta} + \theta \wedge \tau^{\beta}$$

where we may additionally require

(3)
$$\omega_{\alpha\bar{\beta}} + \omega_{\bar{\beta}\alpha} = dh_{\alpha\bar{\beta}}.$$

We also require $A_{\beta\alpha}$ to be symmetric in that $A_{\beta\alpha} = A_{\alpha\beta}$. Since $dh_{\alpha\bar{\beta}}$, (3) tells us that $\omega_{\alpha\bar{\beta}}$ is purely imaginary. Computing the exterior derivative of (2) and combining with (1) gives the following expression for the exterior derivative of the connection form, which involves the Ricci tensor

(4)
$$d\omega_{\alpha}{}^{\alpha} = R_{\rho\bar{\sigma}}\theta^{\rho} \wedge \theta^{\bar{\sigma}} + W_{\alpha}{}^{\alpha}{}_{\gamma}\theta^{\gamma} \wedge \theta - W_{\bar{\alpha}}{}^{\bar{\alpha}}{}_{\bar{\gamma}}\theta^{\bar{\gamma}} \wedge \theta.$$

The pseudo-Einstein condition, which relates the Ricci tensor and the Levi form is as follows [1]

(5)
$$R_{\alpha\bar{\beta}} - \frac{1}{n} R h_{\alpha\bar{\beta}} = 0, \qquad n \ge 2$$

(6)
$$\nabla_{\alpha}R - i\nabla^{\beta}A_{\alpha\beta} = 0, \qquad n = 1.$$

We may note that (6) is a consequence of (5).

2. PSEUDO-EINSTEIN STRUCTURES AND CANONICAL BUNDLES

The first aim of this section will be to show that closed, non-zero sections of the canonical bundle are closely tied to pseudo-Einstein contact forms. Throughout this paper, M will be a 3-dimensional (CR) manifold. This means that M is (2n + 1)-dimensional with n = 1. Since we work in 3 dimensions, we will make use of the n = 1 pseudo-Einstein condition, (6).

We begin by recalling the volume normalization condition for sections of the canonical bundle. In 3 dimensions, we say that θ is *volume-normalized* with respect to a (2,0)-form ζ if

(7)
$$\theta \wedge d\theta = i\theta \wedge (T \, \lrcorner \, \zeta) \wedge (T \, \lrcorner \, \bar{\zeta}).$$

Lemma 2.1. [3] Given any smooth non-vanishing (2,0) form ζ on M, there exists a contact form θ that can be volume-normalized with respect to ζ .

Proof. In 3 dimensions, we write our admissible coframe as $\{\theta, \theta^1, \theta^{\bar{1}}\}$. We may write an arbitrary (2,0)-form as $\zeta = \theta \wedge \theta^1$. Then recalling the properties of θ on the Reeb vector field T, we can write

$$T \, \lrcorner \, \zeta = \theta^1.$$

We now recall structure equation (1) in 3 dimensions

$$d\theta = ih_{1\bar{1}}\theta^1 \wedge \theta^{\bar{1}}.$$

Substituting the expression for $T \, \lrcorner \, \zeta$ in the above gives

$$d\theta = ih_{1\bar{1}}(T \,\lrcorner\, \zeta) \wedge (T \,\lrcorner\, \bar{\zeta})$$

Now simply wedging both sides of this equation with θ (possibly scaled by a smooth positive function) gives

$$\theta \wedge d\theta = i\theta \wedge (T \,\lrcorner\, \zeta) \wedge (T \,\lrcorner\, \bar{\zeta}).$$

This is exactly the volume-normalization condition (1).

We now move to show that a pseudo-Einstein contact form is equivalent to a particular 1-form being closed.

Lemma 2.2. [1] On M, θ is pseudo-Einstein if and only if the 1-form $\omega_1^{-1} + iR\theta$ is closed

Proof. The two sided implication can be shown directly by computing $d(\omega_1^1 + iR\theta)$. From structure equation (4) with n = 1 we have

$$d\omega_1^{\ 1} = Rh_{1\bar{1}}\theta^1 \wedge \theta^{\bar{1}} + \nabla^1 A_{11}\theta^1 \wedge \theta - \nabla^{\bar{1}} A_{\bar{1}\bar{1}}\theta^{\bar{1}} \wedge \theta.$$

It follows that

$$d(\omega_{1}^{1} + iR\theta) = Rh_{1\bar{1}}\theta^{1} \wedge \theta^{\bar{1}} + \nabla^{1}A_{11}\theta^{1} \wedge \theta - \nabla^{\bar{1}}A_{\bar{1}\bar{1}}\theta^{\bar{1}} \wedge \theta$$
$$- Rh_{1\bar{1}}\theta^{1} \wedge \theta^{\bar{1}} + i\nabla_{1}R\theta^{1} \wedge \theta + i\nabla_{\bar{1}}R\theta^{\bar{1}} \wedge \theta$$
$$= i\nabla_{1}R\theta^{1} \wedge \theta + i\nabla_{\bar{1}}R\theta^{\bar{1}} \wedge \theta + \nabla^{1}A_{11}\theta^{1} \wedge \theta - \nabla^{\bar{1}}A_{\bar{1}\bar{1}}\theta^{\bar{1}} \wedge \theta$$
$$= 2i\operatorname{Re}(\nabla_{1}R\theta^{1} \wedge \theta) - 2i\operatorname{Re}(i\nabla^{1}A_{11}\theta^{1} \wedge \theta)$$
$$= 2i(\operatorname{Re}(\nabla_{1}R - i\nabla^{1}A_{11})\theta^{1} \wedge \theta).$$

The last expression contains the pseudo-Einstein condition (6), and hence is equal to zero. Thus $d(\omega_1^{\ 1} + iR\theta) = 0$, giving our result.

We can use this lemma to show that a pseudo-Einstein contact form is locally volume normalized with respect to a closed section of the canonical bundle.

Theorem 2.3. [1] θ is pseudo-Einstein if and only if, for every point $p \in M$, there exists a neighborhood $U \subseteq M$ containing p, where θ is volume-normalized with respect to a closed section of the canonical bundle.

Proof. We begin by choosing a coframe where $h_{1\bar{1}} = \delta_{1\bar{1}}$. We can write the structure equation (1) as

(8)
$$d\theta = i\theta^1 \wedge \theta^{\bar{1}}.$$

Now, for $p \in U \subseteq M$, let θ be volume-normalized with respect to $\zeta \in K_M$. Since $\{\theta, \theta^1\}$ is a frame for (1,0)-forms and ζ is a (2,0)-form, we may write $\zeta = \lambda \theta \wedge \theta^1$ for some $\lambda \in C^{\infty}(M,\mathbb{C})$. Plugging ζ into the volume normalization condition (7) tells us that $|\lambda| = 1$, which importantly tells us that λ is not 0. This means that we can write $\zeta = \theta \wedge \theta^1$ by redefining θ^1 as $\lambda \theta^1$.

Computing the exterior derivative of ζ gives

$$d\zeta = d\theta \wedge \theta^1 - \theta \wedge d\theta^1.$$

Using structure equations (1) and (2), we have

$$\begin{split} d\zeta &= (i\theta^1 \wedge \theta^{\bar{1}}) \wedge \theta^1 - \theta \wedge (\theta^1 \wedge \omega_1^{\ 1} + \theta \wedge \tau^\beta) \\ &= -\theta \wedge \theta^1 \wedge \omega_1^{\ 1} \\ &= -\omega_1^{\ 1} \wedge \zeta. \end{split}$$

Since ζ was closed we have that ω_1^{-1} is a (1, 0)-form. Recall from (3) that ω_1^{-1} is purely imaginary. This allows us to write $\omega_1^{-1} = iu\theta$ for some $u \in C^{\infty}(M, \mathbb{C})$.

Taking the exterior derivative of ω_1^{-1} gives

$$d\omega_1^{\ 1} = -u\theta^1 \wedge \theta^{\bar{1}} + i((\nabla_1 u)\theta^1 + (\nabla_{\bar{1}} u)\theta^{\bar{1}}) \wedge \theta.$$

Comparing this equation with structure equation (4) tells us that -u = R and $i\nabla_1 u = \nabla^1 A_{11}$ which in turn means that $\nabla_1 R - i\nabla^1 A_{11} = 0$, making θ pseudo-Einstein.

Now assume that θ is pseudo-Einstein, and take our old coframe $\{\theta, \theta^1, \theta^{\bar{1}}\}$. Using (2), we can define a section of the canonical bundle,

$$\zeta_0 = \theta \wedge \theta^1$$
.

Using our previous computation of $d\zeta$, we know that

$$d\zeta_0 = -\omega_1^{-1} \wedge \zeta_0.$$

By Lemma 2.2, the 1-form $\omega_1^{-1} + iR\theta$ is closed and, so for some function ϕ we may write

$$\omega_1^{1} + iR\theta = id\phi.$$

We can take ϕ to be real since ω_1^{-1} is purely imaginary. This allows us to write

$$d(e^{i\phi}\zeta_0) = e^{i\phi}(\omega_1^{1} + iR\theta) \wedge \zeta_0 - e^{i\phi}(\omega_1^{1}) \wedge \zeta_0 = 0.$$

Since θ is volume-normalized with respect to $e^{i\phi}\zeta_0$, we have our closed section of the canonical bundle.

Now, by considering Lemma 2.1 together with Theorem 2.3, we arrive at the following.

Theorem 2.4. [4] If M admits a closed, non-vanishing (2, 0)-form, then M admits a pseudo-Einstein structure. Conversely, if M admits a pseudo-Einstein structure, then in a neighborhood of every point, M admits a closed non-vanishing (2, 0)-form.

Now note two important facts. First, the canonical bundle K_M of a CR manifold M embedded in \mathbb{C}^2 is equal to the canonical bundle of \mathbb{C}^2 restricted to M, and $dz_1 \wedge dz_2$ is a closed section of the canonical bundle of \mathbb{C}^2 .

Second, we recall that the exterior derivative is a natural operator. Thus if we pull back the section $dz_1 \wedge dz_2$ via the inclusion mapping to M, then the section $\iota^*(dz_1 \wedge dz_2) = \zeta \in K_M$ is still closed.

This tells us that any CR manifold embedded in \mathbb{C}^2 admits a closed section of its canonical bundle. We are led to the following corollary.

Corollary 2.5. [4] If M is CR embeddable, then M admits a pseudo-Einstein structure.

This reasoning allows us to conclude that locally, closed sections of the canonical bundle are equivalent to the admittance of a pseudo-Einstein structure. We also see that CR embeddability implies the admittance of a pseudo-Einstein structure. These facts provide the basis to posit that the pseudo-Einstein condition will be key to proving Trautman's conjecture. The next phase of this project will be to connect the pseudo-Einstein condition with the boundary condition for a Kähler-Einstein extension problem on the pseudoconvex side of CR 3-dimensional manifolds.

References

- [1] Jeffrey S. Case and Paul Yang. A Paneitz-type operator for CR pluriharmonic functions. *Bull. Inst. Math. Acad. Sin. (N.S.)*, 8(3):285–322, 2013.
- [2] Kengo Hirachi. Q-prime curvature on CR manifolds. Differential Geom. Appl., 33(suppl.):213–245, 2014.
- [3] John M. Lee. The Fefferman Metric and Pseudohermitian Invariants. *Trans. Amer. Math. Soc.*, 296(1):411–429, 1986.
- [4] John M. Lee. Pseudo-Einstein structures on CR manifolds. Amer. J. Math., 110(1):157–178, 1988.
- [5] Noboru Tanaka. A differential geometric study on strongly pseudo-convex manifolds. Kinokuniya Book-Store Co., Ltd., Tokyo, 1975. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 9.
- [6] Andrzej Trautman. On complex structures in physics. In On Einstein's path (New York, 1996), pages 487–501. Springer, New York, 1999.
- [7] S. M. Webster. On the transformation group of a real hypersurface. *Trans. Amer. Math. Soc.*, 231(1):179–190, 1977.
- [8] S. M. Webster. Pseudo-Hermitian structures on a real hypersurface. *J. Differential Geometry*, 13(1):25–41, 1978.

Department of Mathematics, University of California, San Diego $\it Email~address:$ ihajar@ucsd.edu