UNIP – Universidade Paulista

Ciência da Computação e Sistemas de Informação

Disciplina: Pesquisa Operacional

Exemplo 02: O Problema de Designação

Fonte:

Pesquisa Operacional – Curso Introdutório – 2ª edição - Daniel Augusto Moreira – Página 122

Enunciado

Existem 3 trabalhos: T1, T2 e T3 em uma fábrica. Para que sejam executados há a necessidade de que sejam processados por 3 máquinas: M1, M2 e M3.

O tempo de processamento de cada máquina, em horas, é:

	T1	T2	Т3
M1	10	5	8
M2	12	9	15
М3	9	12	10

Solução

Cada máquina deverá ser designada a um só trabalho. Se o problema fosse idêntico ao Problema de Transporte (Exemplo1), ou seja, se cada trabalho pudesse ser feito um pouco em cada máquina, a matriz de variáveis de decisão seria a sequinte:

	T1	T2	Т3
M1	X ₁₁	X ₁₂	X ₁₃
M2	X ₂₁	X ₂₂	X ₂₃
М3	X ₃₁	X ₃₂	X ₃₃

As variáveis x_{ii} que aparecem na matriz só podem assumir dois valores diferentes:

- $x_{ij} = 1$ (se a máquina i for atribuída ao trabalho j)
- x_{ij} = 0 (se a máguina i não for atribuída ao trabalho j)

Há restrições referentes às linhas (máquinas) a às colunas (trabalhos). Repare que, dada uma linha qualquer, o número 1 aparecerá apenas uma vez, enquanto o número 0 (zero) aparecerá duas vezes. Isolando a 1ª linha temos:

• $X_{11} + X_{12} + X_{13} = 1$

Seria possível escrever:

• $X_{11} + X_{12} + X_{13} \le 1$

caso não fosse obrigatório que a máquina M1 fosse atribuída a um trabalho.

Da mesma forma, temos:

- x₂₁ + x₂₂ + x₂₃ = 1 (atribuição de M2 a um trabalho)
- x₃₁ + x₃₂ + x₃₃ = 1 (atribuição de M3 a um trabalho)

As três restrições relativas às máquinas estão equacionadas. Pensando, agora, nos trabalhos, cada um deles será forçosamente atribuído a uma máquina, o que nos permite escrever:

- $x_{11} + x_{21} + x_{31} = 1$ (atribuição do trabalho T1)
- $x_{12} + x_{22} + x_{32} = 1$ (atribuição do trabalho T2)
- $x_{13} + x_{23} + x_{33} = 1$ (atribuição do trabalho T3)

Estas são as restrições relativas aos trabalhos.

Podemos supor que a função objetivo seja a expressão do tempo total de processamento acumulado (a soma dos tempos de processamento nas 3 máquinas) e que o problema seja de minimização.

A formulação será:

- Minimizar $Z = 10x_{11} + 5x_{12} + 8x_{13} + 12x_{21} + 9x_{22} + 15x_{23} + 9x_{31} + 12x_{32} + 10x_{33}$
- \bullet $X_{11} + X_{12} + X_{13} = 1$
- $\bullet \quad X_{21} + X_{22} + X_{23} = 1$
- $X_{31} + X_{32} + X_{33} = 1$
- $X_{11} + X_{21} + X_{31} = 1$
- $\bullet \quad X_{12} + X_{22} + X_{32} = 1$
- \bullet X₁₃ + X₂₃ + X₃₃ = 1
- x_{ij} ≥ 0

A solução desse problema, ou seja, o valor das variáveis de decisão, serão todos do tipo 1 ou 0 (zero), e estão indicados na tabela:

	T1	T2	T3
M1	x ₁₁ = 0	$x_{12} = 0$	x ₁₃ = 1
M2	x ₂₁ = 0	x ₂₂ = 1	x ₂₃ = 0
M3	x ₃₁ = 1	$x_{32} = 0$	x ₃₃ = 0

O tempo total de processamento acumulado será, portanto, Z = 8 + 9 + 9 = 26 horas, ou seja:

- O T1 será executado na M3.
- O T2 será executado na M2.
- O T3 será executado na M1.