Joint Generative-Discriminative Aggregation Model for Multi-Option Crowd Labels

Kamran Ghasedi Dizaji[†], Yanhua Yang[‡], Heng Huang[†]

kag221@pitt.edu, yanhyang@xidian.edu.cn, heng.huang@pitt.edu

†Electrical and Computer Engineering Department, University of Pittsburgh, USA

[‡]School of Electronic Engineering, Xidian University, China

Motivations

- Crowd labels are often *noisy* and unreliable, since crowd workers are usually *inexpert* in the assigned tasks.
- A crowdsourcing aggregation model is required to estimate the true labels by aggregating the redundant crowd labels.
- Recent studies have shown that crowd workers cannot completely convey their *non-deterministic* beliefs with the *single-option* crowd labels.
- The standard aggregation models are often incompatible with the *multi-option* crowd labels, and they are only able to handle single-option crowd data.

Contributions

- Proposing a new *discriminative* aggregation model with *convex* problem, and deriving an efficient *optimization* algorithm to solve the corresponding problem.
- Introducing a novel *joint generative-discriminative* aggregation model, coupled via a probabilistic framework.
- Achieving superior or competitive results on *single-option* and *multi-option* crowdsourcing datasets with much *faster running* speed compared to alternative models.

Discriminative Aggregation Model

Objective function:

$$\min_{\mathbf{w}, \mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1} \quad \sum_{i=1}^N \|\mathbf{X}_i \mathbf{w} - \mathbf{y}_i\|_1 + \lambda_w \|\mathbf{w}\|_2^2$$

Approximation:

$$\min_{\mathbf{w},\mathbf{y}_i \geq 0,\mathbf{1}^T\mathbf{y}_i = 1} \quad \sum_{i=1}^N \mathbf{w}^T (\mathbf{X}_i^T \mathbf{U}_i \mathbf{X}_i + \lambda_w \mathbf{I}) \mathbf{w} - 2\mathbf{y}_i^T \mathbf{U}_i \mathbf{X}_i \mathbf{w} + \mathbf{y}_i^T \mathbf{U}_i \mathbf{y}_i$$

Update w:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \mathbf{w}^{T} (\mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} + \lambda_{w} \mathbf{I}) \mathbf{w} - 2 \mathbf{y}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} \mathbf{w}$$

Update Y:

$$\min_{\mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1} \quad \sum_{i=1}^N \mathbf{y}_i^T \mathbf{U}_i \mathbf{y}_i - 2 \mathbf{y}_i^T \mathbf{U}_i \mathbf{X}_i \mathbf{w}$$

Algorithm 1: CWMV ℓ_1 aggregation model

- 1 Initialize Y by majority voting
- 2 while not converged do

$$\mathbf{3} \begin{vmatrix} \mathbf{w} = \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} + \lambda_{w} \mathbf{I}\right)^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{y}_{i}\right) \\ 4 \begin{vmatrix} \min_{\mathbf{y}_{i} \geq 0, \mathbf{1}^{T} \mathbf{y}_{i} = 1} \mathbf{y}_{i}^{T} \mathbf{U}_{i} \mathbf{y}_{i} - 2 \mathbf{y}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} \mathbf{w} & \forall i \in \{1, ..., N\} \\ \mathbf{5} \mathbf{end} \end{vmatrix}$$

Figure 1: Three crowd workers are asked to classify a figure as tangor (T), mandarin (M) or orange (O). Their single-option and multi-option crowd labels are shown with checked boxes and confidence bars respectively. The average score of multi-option labels correctly shows higher chance for mandarin, while the majority of single-option labels incorrectly suggests tangor as the truth.

Joint Generative-Discriminative Aggregation Model

Objective function:

$$\min_{\mathbf{w}, \mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1, \boldsymbol{\nu}_j} \mathbf{K} \mathbf{L}(p^{\boldsymbol{\nu}} || p_0^{\boldsymbol{\nu}}) - \sum_{ijck} x_{ijk} y_{ic} \log(\nu_{jck}) \\ + \gamma \sum_i || \mathbf{X}_i \mathbf{w} - \mathbf{y}_i ||_1 + \lambda_w || \mathbf{w} ||_2^2$$

Approximation:

$$\min_{\mathbf{w}, \mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1, \boldsymbol{\nu}_j} \mathbf{K} \mathbf{L}(p^{\boldsymbol{\nu}} || p_0^{\boldsymbol{\nu}}) - \sum_{ijck} x_{ijk} y_{ic} \log(\nu_{jck})$$

$$+ \sum_i \mathbf{w}^T (\gamma \mathbf{X}_i^T \mathbf{U}_i \mathbf{X}_i + \lambda_w \mathbf{I}) \mathbf{w} - 2\gamma \mathbf{y}_i^T \mathbf{U}_i \mathbf{X}_i \mathbf{w} + \gamma \mathbf{y}_i^T \mathbf{U}_i \mathbf{y}_i$$

Update Y:

$$\min_{\mathbf{y}_{i} \geq 0, \mathbf{1}^{T} \mathbf{y}_{i} = 1} - \sum_{ijck} x_{ijk} y_{ic} \log(\nu_{jck})
+ \sum_{i} \mathbf{w}^{T} (\gamma \mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} + \lambda_{w} \mathbf{I}) \mathbf{w} - 2\gamma \mathbf{y}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} \mathbf{w} + \gamma \mathbf{y}_{i}^{T} \mathbf{U}_{i} \mathbf{y}_{i}$$

Update ν :

$$\min_{\boldsymbol{\nu}_j} \ \mathbf{KL}(p^{\boldsymbol{\nu}} || p_0^{\boldsymbol{\nu}}) - \sum_{ijck} x_{ijk} y_{ic} \log(\nu_{jck})$$

Update w:

$$\min_{\mathbf{w}} \sum_{i=1}^{N} \mathbf{w}^{T} (\gamma \mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} + \lambda_{w} \mathbf{I}) \mathbf{w} - 2\gamma \mathbf{y}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} \mathbf{w}$$

Algorithm 2: DS-CWMV ℓ_1 aggregation model

1 Initialize Y by majority voting

2 while not converged do

$$\mathbf{3} \left[\mathbf{w} = \left(\sum\limits_{i=1}^{N} \mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{X}_{i} + rac{\lambda_{w}}{\gamma} \mathbf{I}
ight)^{-1} \left(\sum\limits_{i=1}^{N} \mathbf{X}_{i}^{T} \mathbf{U}_{i} \mathbf{y}_{i}
ight)$$

$$4 p^{\nu_{jck}} = Dir(\mu + \sum_{i} x_{ijk} y_{ic}) \quad \forall j \in \{1, ..., M\}, \forall \{c, k\} \in \{1, ..., B\}$$

$$\begin{array}{ll}
\mathbf{5} & \min_{\mathbf{y}_i \geq 0, \mathbf{1}^T \mathbf{y}_i = 1} \mathbf{y}_i^T \mathbf{U}_i \mathbf{y}_i - 2 \mathbf{y}_i^T (\mathbf{U}_i \mathbf{X}_i \mathbf{w} + \frac{1}{\gamma} \sum_{jk} x_{ijk} \log(\boldsymbol{\nu}_{jk})) & \forall i \in \{1, ..., N\} \\
\mathbf{6} & \mathbf{end}
\end{array}$$

Model		Web Search	Age	RTE	Temp	Flowers	Average		
baselines	MV	26.90	34.88	10.31	6.39	22.00	28.83		
	<i>IWMV</i>	15.04	34.53	8.12	5.84	19.00	17.09		
	M^3V	12.74	33.33	7.88	6.06	13.50	15.43		
	DS	16.92	39.62	7.25	5.84	13.00	18.69		
	DS+Prior	13.26	34.53	[7.13]	5.84	13.50	15.80		
	GLAD	19.30	35.73	7.00	[5.63]	13.50	16.20		
	Entropy (M)	11.10	31.14	7.50	[5.63]	13.00	14.03		
	Entropy (O)	10.40	37.32	-	_	_	17.76		
	CrowdSVM	9.42	33.33	7.75	[5.63]	13.50	13.65		
	<i>G-CrowdSVM</i>	7.99 ± 0.26	32.98 ± 0.36	7.67 ± 0.19	5.71 ± 0.33	$[12.10\pm1.07]$	$ 12.78\pm0.3 $		
ours	$ extit{CWMV}_{\ell2}$	10.89	34.43	7.25	[5.63]	16.00	14.65		
	$ extit{CWMV}_{\ell 1}$	10.70	34.23	7.50	[5.63]	13.00	14.43		
	$\textit{DS-CWMV}_{\ell2}$	[7.58]	32.04	[7.13]	[5.63]	13.00	[12.32]		
	$\textit{DS-CWMV}_{\ell 1}$	6.78	[31.54]	7.00	5.41	10.00	11.65		
Table 1. Frror rates (%) of aggregation models on single-option crowdsourcing datasets									

Table 1: Error rates (%) of aggregation models on single-option crowdsourcing datasets.

	Model	A-Flag	C-Flag	A-Dog	C-Dog	Average
S	(soft) MV	21.67	20.83	8.98	8.98	12.90
ine	(soft) DS	22.50	20.83	10.16	9.76	13.70
baselines	(soft) $DS+Prior$	20.00	19.17	8.98	8.59	12.23
q	(soft) Entropy (M)	17.50	16.67	12.89	12.89	14.23
	$ ag{CWMV}_{\ell2}$	16.67	16.67	8.98	8.59	11.30
<u>rs</u>	$ extit{CWMV}_{\ell 1}$	[11.67]	[10.83]	[8.59]	[8.20]	[9.31]
ours	$ extit{DS-CWMV}_{\ell2}$	14.17	14.17^{-}	9.38	8.59	10.64
	$ extit{DS-CWMV}_{\ell 1}$	13.33	10.00	8.20	7.81	9.17

Table 2: Error rates (%) of aggregation models applied on multi-option crowd datasets.

Figure 2: Convergence comparison of aggregation models on Web Search dataset.

Figure 3: Histogram of the truths for mispredicted items. The results belongs to DS-