

grade 100%

	record the assignment in 711.	7111
Jatural Language Processing & V TEST SUBMISSION GRADE 00%	Vord Embeddin	gs
Suppose you learn a word embedding for a vocabulary of 10000 words. Then the dimensional, so as to capture the full range of variation and meaning in those wo True False		1/1 point
✓ Correct The dimension of word vectors is usually smaller than the size of the vocuectors ranges between 50 and 400.	abulary. Most common sizes for word	
What is t-SNE? A linear transformation that allows us to solve analogies on word vectors A non-linear dimensionality reduction technique A supervised learning algorithm for learning word embeddings An open-source sequence modeling library		1/1 point
✓ Correct Yes Suppose you download a pre-trained word embedding which has been trained or	n a huse cornus of text. You then use th	1/1 mint
supplies you downward a pie-trained who elineauting which has been a miled up word embedding to train an RNN for a language task of recognizing if someone is using a small training set.		171 point
x (input text)	y (happy?)	7
I'm feeling wonderful today!	1	_
I'm bummed my cat is ill.	0	
Really enjoying this!	1	
Then even if the word "ecstatic" does not appear in your small training set, your R recognize "Tm ecstatic" as deserving a label $y=1$. $ \blacksquare $	INN might reasonably be expected to	
Correct Yes, word vectors empower your model with an incredible ability to gene contain a positive/happy connotation which will probably make your model.		
Which of these equations do you think should hold for a good word embedding?	(Check all that apply)	1/1 point
$igspace{igspace}{igspace{igspace}{igspace}} \epsilon_{boy} - e_{girl} pprox \epsilon_{brother} - \epsilon_{sister}$		

 $ightharpoonup e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$

✓ Correct Yes!

5. Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding full point of word 1234, why don't we call $E*o_{1234}$ in Python?

It is computationally wasteful.

 $\bigcirc \ \ \, \text{ The correct formula is } E^T*o_{1234}.$

This doesn't handle unknown words (<UNK>).

None of the above: calling the Python snippet as described above is fine.

✓ Correct

Yes, the element-wise multiplication will be extremely inefficient.

6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

	- False	
	✓ Correct	
7.	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer. $ c \text{ is a sequence of several words immediately before } t. $	1/1 point
	 c is the one word that comes immediately before t. c is the sequence of all the words in the sentence before t. ✓ Correct 	
8.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function: $P(t\mid c) = \frac{e^{2\int_{t}^{c}c}}{\sum_{j=0}^{2\log c}e^{2j-c}}$ Which of these statements are correct? Check all that apply.	1/1 point
	\checkmark Correct θ_t and e_c are both 10000 dimensional vectors. θ_t and e_c are both trained with an optimization algorithm such as Adam or gradient descent. \checkmark Correct	
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij})(\theta_i^T e_j + b_i + b_j^* - log X_{ij})^2$ Which of these statements are correct? Check all that apply.	1/1 point
	\checkmark Correct $ Z_{ij} ext{ is the number of times word j appears in the context of word i.} $	
10.	The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful? $m_1 >> m_2$	1/1 point
	\bigcirc $m_1 \ll m_2$	

✓ Correct