

GPU Acceleration

Delft University of Technology - Centrum Wiskunde & Informatica

Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lisbon - July 27, 2015

Outline

- 1 Introduction
- 2 Basket Bermudan Options
- 3 Stochastic Grid Bundling Method
- 4 Continuation value computation: new approach
- 5 Parallel GPU Implementation
- 6 Results
- 7 Conclusions

Introduction and Motivation

- Multi-dimensional early-exercise option contracts.
- Increase the dimensionality.
 - Counterparty Valuation Adjustment (CVA).
- SGBM becomes expensive.
- Solution: parallelization of the method.
- General-Purpose computing on Graphics Processing Units (GPGPU).

Basket Bermudan Options

- Right to exercise at a set number of times:
- $t\in [t_0=0,\ldots,t_m,\ldots,t_M=T].$
- *d*-dimensional underlying process: $\mathbf{S}_t = (S_t^1, \dots, S_t^d) \in \mathbb{R}^d$.
- Intrinsic value of the option: $h_t := h(\mathbf{S}_t)$.
- The value of the option at the terminal time T:

$$V_T(\mathbf{S}_T) = \max(h(\mathbf{S}_T), 0).$$

• The conditional continuation value Q_{t_m} , i.e. the discounted expected payoff at time t_m :

$$Q_{t_m}(\mathbf{S}_{t_m}) = D_{t_m} \mathbb{E}\left[V_{t_{m+1}}(\mathbf{S}_{t_{m+1}})|\mathbf{S}_{t_m}\right].$$

• The Bermudan option value at time t_m and state \mathbf{S}_{t_m} :

$$V_{t_m}(\mathbf{S}_{t_m}) = \max(h(\mathbf{S}_{t_m}), Q_{t_m}(\mathbf{S}_{t_m})).$$

• Value of the option at the initial state \mathbf{S}_{t_0} , i.e. $V_{t_0}(\mathbf{S}_{t_0})$.

Basket Bermudan options scheme

Figure: d-dimensional Bermudan option

Stochastic Grid Bundling Method

- Simulation and regression-based method.
- Forward in time: Monte Carlo simulation.
- Backward in time: Early-exercise policy by using dynamic programming.
- Step I: Generation of stochastic grid points

$$\{S_{t_0}(n), \ldots, S_{t_M}(n)\}, \ n = 1, \ldots, N.$$

• Step II: Option value at terminal time $t_M = T$

$$V_{t_M}(\mathbf{S}_{t_M}) = \max(h(\mathbf{S}_{t_M}), 0).$$

Stochastic Grid Bundling Method (II)

- Backward in time, t_m , $m \leq M$,:
- ullet Step III: Bundling into u non-overlapping sets or partitions

$$\mathcal{B}_{t_{m-1}}(1),\ldots,\mathcal{B}_{t_{m-1}}(\nu)$$

Step IV: Parameterizing the option values

$$Z(\mathbf{S}_{t_m}, \alpha_{t_m}^{\beta}) \approx V_{t_m}(\mathbf{S}_{t_m}).$$

• Step V: Computing the continuation and option values at t_{m-1}

$$\widehat{Q}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) = \mathbb{E}[Z(\mathbf{S}_{t_m}, \alpha_{t_m}^{\beta}) | \mathbf{S}_{t_{m-1}}(n)].$$

The option value is then given by:

$$\widehat{V}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) = \max(h(\mathbf{S}_{t_{m-1}}(n)), \widehat{Q}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n))).$$

Bundling

- Original: Iterative process (K-means clustering).
- Problems: Too expensive (time and memory) and distribution.
- New technique: Equal-partitioning. Efficient for parallelization.
- Two stages: sorting and splitting.

Parametrizing the option value

- Basis functions $\phi_1, \phi_2, \dots, \phi_K$.
- In our case, $Z\left(\mathbf{S}_{t_m}, \alpha_{t_m}^{\beta}\right)$ depends on \mathbf{S}_{t_m} only through $\phi_k(\mathbf{S}_{t_m})$:

$$Z\left(\mathbf{S}_{t_m}, \alpha_{t_m}^{\beta}\right) = \sum_{k=1}^{K} \alpha_{t_m}^{\beta}(k) \phi_k(\mathbf{S}_{t_m}).$$

- Computation of $\alpha^{\beta}_{t_m}$ (or $\widehat{\alpha}^{\beta}_{t_m}$) by least squares regression.
- The $\alpha_{t_m}^{\beta}$ determines the early-exercise policy.
- The continuation value:

$$\widehat{Q}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) = D_{t_{m-1}} \mathbb{E} \left[\left(\sum_{k=1}^{K} \widehat{\alpha}_{t_m}^{\beta}(k) \phi_k(\mathbf{S}_{t_m}) \right) | \mathbf{S}_{t_{m-1}} \right] \\
= D_{t_{m-1}} \sum_{k=1}^{K} \widehat{\alpha}_{t_m}^{\beta}(k) \mathbb{E} \left[\phi_k(\mathbf{S}_{t_m}) | \mathbf{S}_{t_{m-1}} \right].$$

Basis functions

- Choose ϕ_k : the expectations $\mathbb{E}\left[\phi_k(\mathbf{S}_{t_m})|\mathbf{S}_{t_{m-1}}\right]$ should be easy to calculate.
- The intrinsic value of the option (payoff), $h(\cdot)$, is usually an important and useful basis function.
- For \mathbf{S}_t following a GBM: expectations available analytically for geometric and arithmetic basket Bermudan options.
- Other underlying models: new proposed approach based on the discrete characteristic function.

Estimating the option value

- SGBM has been developed as duality-based method.
- Provide two estimators (confidence interval).
- Direct estimator (high-biased estimation):

$$egin{aligned} \widehat{V}_{t_{m-1}}(\mathbf{S}_{t_{m-1}}(n)) &= \max\left(h\left(\mathbf{S}_{t_{m-1}}(n)\right), \widehat{Q}_{t_{m-1}}\left(\mathbf{S}_{t_{m-1}}(n)\right)
ight), \ &\mathbb{E}[\widehat{V}_{t_0}(\mathbf{S}_{t_0})] &= rac{1}{N}\sum_{n=1}^N \widehat{V}_{t_0}(\mathbf{S}_{t_0}(n)). \end{aligned}$$

Path estimator (low-biased estimation):

$$\widehat{\tau}^*(\mathbf{S}(n)) = \min\{t_m : h(\mathbf{S}_{t_m}(n)) \ge \widehat{Q}_{t_m}(\mathbf{S}_{t_m}(n)), m = 1, \dots, M\},$$

$$v(n) = h(\mathbf{S}_{\widehat{\tau}^*(\mathbf{S}(n))}),$$

$$\underline{V}_{t_0}(\mathbf{S}_{t_0}) = \lim_{N_L} \frac{1}{N_L} \sum_{n=1}^{N_L} v(n).$$

SGBM - schematic algorithm

```
Data: S_{t_0}, X, \mu_{\delta}, \sigma_{\delta}, \rho_{i,i}, T, N, M
Pre-Bundling (only in k-means case).
Generation of the grid points (Monte Carlo). Step I.
Option value at terminal time t = M . Step II.
for Time t = (M - 1) ... 1 do
     Bundling. Step III.
     for Bundle \beta = 1 \dots \nu do
          Exercise policy (Regression). Step IV.
          Continuation value. Step V.
          Direct estimator. Step V.
Generation of the grid points (Monte Carlo). Step I.
Option value at terminal time t = M . Step II.
for Time t = (M - 1) ... 1 do
     Bundling. Step III.
     for Bundle \beta = 1 \dots \nu do
          Continuation value. Step V.
          Path estimator. Step V.
```


Cont. value computation: new approach

- More generally applicable. More involved models or options.
- First discretize, then derive the *discrete* characteristic function.

$$\begin{split} S^1_{t_{m+1}} &= S^1_{t_m} + \mu_1(\mathbf{S}_{t_m}) \Delta t + \sigma_1(\mathbf{S}_{t_m}) \Delta \tilde{W}^1_{t_{m+1}}, \\ S^2_{t_{m+1}} &= S^2_{t_m} + \mu_2(\mathbf{S}_{t_m}) \Delta t + \rho_{1,2} \sigma_2(\mathbf{S}_{t_m}) \Delta \tilde{W}^1_{t_{m+1}} + L_{2,2} \sigma_2(\mathbf{S}_{t_m}) \Delta \tilde{W}^2_{t_{m+1}}, \\ & \cdots \\ S^d_{t_{m+1}} &= S^d_{t_m} + \mu_d(\mathbf{S}_{t_m}) \Delta t + \rho_{1,d} \sigma_d(\mathbf{S}_{t_m}) \Delta \tilde{W}^1_{t_{m+1}} + L_{2,d} \sigma_d(\mathbf{S}_{t_m}) \Delta \tilde{W}^2_{t_{m+1}} + \cdots + L_{d,d} \sigma_d(\mathbf{S}_{t_m}) \Delta \tilde{W}^d_{t_{m+1}}, \end{split}$$

By definition, the d-variate discrete characteristic function:

$$\begin{split} &\psi_{\mathbf{S}_{t_{m+1}}}\left(u_{1},u_{2},\ldots,u_{d}|\mathbf{S}_{t_{m}}\right) = \mathbb{E}\left[\exp\left(\sum_{j=1}^{d}iu_{j}S_{t_{m+1}}^{j}\right)|\mathbf{S}_{t_{m}}\right] \\ &= \mathbb{E}\left[\exp\left(\sum_{j=1}^{d}iu_{j}\left(S_{t_{m}}^{j} + \mu_{j}(\mathbf{S}_{t_{m}})\Delta t + \sigma_{j}(\mathbf{S}_{t_{m}})\sum_{k=1}^{j}L_{k,j}\Delta\tilde{W}_{t_{m+1}}^{k}\right)\right)|\mathbf{S}_{t_{m}}\right] \\ &= \exp\left(\sum_{j=1}^{d}iu_{j}\left(S_{t_{m}}^{j} + \mu_{j}(\mathbf{S}_{t_{m}})\Delta t\right)\right) \cdot \prod_{k=1}^{d}\left(\mathbb{E}\left[\exp\left(\sum_{j=k}^{d}iu_{j}L_{k,j}\sigma_{j}(\mathbf{S}_{t_{m}})\Delta\tilde{W}_{t_{m+1}}^{k}\right)\right]\right) \\ &= \exp\left(\sum_{j=1}^{d}iu_{j}\left(S_{t_{m}}^{j} + \mu_{j}(\mathbf{S}_{t_{m}})\Delta t\right)\right) \cdot \prod_{k=1}^{d}\left(\psi_{\mathcal{N}(0,\Delta t)}\left(\sum_{j=k}^{d}u_{j}L_{k,j}\sigma_{j}(\mathbf{S}_{t_{m}})\right)\right), \end{split}$$

Cont. value computation: new approach

Joint moments of the product:

$$\begin{split} M_{\mathbf{S}_{t_{m+1}}} &= \mathbb{E}\left[\left(S_{t_{m+1}}^{1}\right)^{c_{1}}\left(S_{t_{m+1}}^{2}\right)^{c_{2}} \cdots \left(S_{t_{m+1}}^{d}\right)^{c_{d}} | \mathbf{S}_{t_{m}} \right] \\ &= (-i)^{c_{1}+c_{2}+\cdots+c_{d}} \left[\frac{\partial^{c_{1}+c_{2}+\cdots+c_{d}} \psi_{\mathbf{S}_{t_{m+1}}}(\mathbf{u} | \mathbf{S}_{t_{m}})}{\partial u_{1}^{c_{1}} \partial u_{2}^{c_{2}} \cdots \partial u_{d}^{c_{d}}} \right]_{\mathbf{u}=0}, \end{split}$$

So, if the basis functions are the product of asset processes:

$$\phi_k(\mathbf{S}_{t_m}) = \left(\prod_{\delta=1}^d S_{t_m}^{\delta}\right)^{k-1}, \ k=1,\ldots,K,$$

- However, this approx. is, in general, worse than analytic.
- Feasible thank to the GPU implementation: time steps ↑↑.

Parallel SGBM on GPU

- First implementation: efficient C-version.
- NVIDIA CUDA platform.
- Two parallelization stages:
 - Forward: Monte Carlo simulation.
 - Backward: Bundles at each time step.
- Bundling: K-means vs. Equal-partitioning:
 - K-means: sequential parts.
 - K-means: transfers between CPU and GPU cannot be avoided.
 - K-means: all data need to be stored.
 - Equal-partitioning: fully parallelizable.
 - Equal-partitioning: No transfers.
 - Equal-partitioning: efficient memory use.

Parallel SGBM on GPU - Forward in time

- One GPU thread per Monte Carlo simulation.
- Random numbers "on the fly": cuRAND library.
- Compute intermediate results:
 - Expectations.
 - Intrinsic value of the option.
 - Equal-partitioning: sorting criterion calculations.
- Intermediate results in the registers: fast memory access.

Monte Carlo implementation scheme

Parallel SGBM on GPU - Backward in time

- One parallelization stage per time step.
- One GPU thread per bundle.
- Sort w.r.t bundles: efficient memory access.
- Each bundle calculations (option value and early-exercise policy) in parallel.
- All threads collaborate in order to compute the continuation value.
- Path estimator: One GPU thread per path (the early-exercise policy is already computed).
- Final reduction: Thrust library.

Backward implementation scheme

Backward implementation scheme

Results

- Accelerator Island system of Cartesius Supercomputer.
 - Intel Xeon E5-2450 v2.
 - NVIDIA Tesla K40m.
 - C-compiler: GCC 4.4.7.
 - CUDA version: 5.5.
- Geometric and arithmetic basket Bermudan put options:

$$\mathbf{S}_{t_0} = (40, \dots, 40) \in \mathbb{R}^d$$
, $X = 40$, $r_t = 0.06$, $\sigma = (0.2, \dots, 0.2) \in \mathbb{R}^d$, $\rho_{ij} = 0.25$, $T = 1$ and $M = 10$.

- Basis functions: K = 3.
- Multi-dimensional Geometric Brownian Motion.
- Euler discretization, $\delta t = T/M$.

Equal-partitioning: convergence test

(a) Geometric basket put option

(b) Arithmetic basket put option

Figure: Convergence with equal-partitioning bundling technique. Test configuration: $N = 2^{18}$ and $\Delta t = T/M$.

16

Speedup

Geometric basket Bermudan option								
	k-means			equ	equal-partitioning			
	<i>d</i> = 5	d = 10	d = 15	d = 5	d = 10	d = 15		
С	604.13	1155.63	1718.36	303.26	501.99	716.57		
CUDA	35.26	112.70	259.03	8.29	9.28	10.14		
Speedup	17.13	10.25	6.63	36.58	54.09	70.67		
Arithmetic basket Bermudan option								
	k-means			equ	equal-partitioning			
	d = 5	d = 10	d = 15	d = 5	d = 10	d = 15		
С	591.91	1332.68	2236.93	256.05	600.09	1143.06		
CUDA	34.62	126.69	263.62	8.02	11.23	15.73		
Speedup	17.10	10.52	8.48	31.93	53.44	72.67		

Table: SGBM total time (s) for the C and CUDA versions. Test configuration: $N=2^{22}$, $\Delta t=T/M$ and $\nu=2^{10}$.

Speedup - High dimensions

Geometric basket Bermudan option						
		$\nu = 2^{10}$			$\nu = 2^{14}$	
	d = 30	d = 40	d = 50	d = 30	d = 40	d = 50
С	337.61	476.16	620.11	337.06	475.12	618.98
CUDA	4.65	6.18	8.08	4.71	6.26	8.16
Speedup	72.60	77.05	76.75	71.56	75.90	75.85
Arithmetic basket Bermudan option						
		$\nu = 2^{10}$			$\nu = 2^{14}$	
	d = 30	d = 40	d = 50	d = 30	d = 40	d = 50
С	993.96	1723.79	2631.95	992.29	1724.60	2631.43
CUDA	11.14	17.88	26.99	11.20	17.94	27.07
Speedup	89.22	96.41	97.51	88.60	96.13	97.21

Table: SGBM total time (s) for a high-dimensional problem with equal-partitioning. Test configuration: $N = 2^{20}$ and $\Delta t = T/M$.

Cont. value computation: New approach

- (a) Geometric basket put option
- (b) Arithmetic basket put option

1000

 $MC\ Steps = T/\Delta t$

Figure: CEV model convergence, $\gamma=1.0$. Test configuration: $N=2^{16}$, $\nu=2^{10}$ and d=5.

2000

4000

Reference price

Direct estimator

Path estimator

Cont. value computation: New approach

Geometric basket Bermudan option						
	$\gamma = 0.25$	$\gamma = 0.5$	$\gamma = 0.75$	$\gamma = 1.0$		
SGBM DE	0.000291	0.029395	0.276030	1.342147		
SGBM PE	0.000274	0.029322	0.275131	1.342118		
Arithmetic basket Bermudan option						
	$\gamma = 0.25$	$\gamma = 0.5$	$\gamma = 0.75$	$\gamma = 1.0$		
SGBM DE	0.000289	0.029089	0.267943	1.241304		
SGBM PE	0.000288	0.028944	0.267214	1.225359		

Table: CEV option pricing. Test configuration: $N=2^{16}$, $\Delta t=T/4000$, $\nu=2^{10}$ and d=5.

Conclusions

- Efficient parallel GPU implementation.
- Extend the SGBM's applicability: Increasing dimensionality and amount of bundles.
- New bundling technique.
- More general approach to compute the continuation value.
- Future work:
 - American options.
 - CVA calculations.

References

Shashi Jain and Cornelis W. Oosterlee.

The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks, 2013.

Alvaro Leitao and Cornelis W. Oosterlee.

GPU Acceleration of the Stochastic Grid Bundling Method for Early-Exercise options.

International Journal of Computer Mathematics, 2015.

Nicholas Wilt

The CUDA Handbook: A Comprehensive Guide to GPU Programming.

Addison-Wesley, 2013.

Acknowledgements

Thanks

Appendix

• Geo. basket Bermudan option - Basis functions:

$$\phi_k(\mathbf{S}_{t_m}) = \left(\left(\prod_{\delta=1}^d S_{t_m}^{\delta} \right)^{\frac{1}{d}} \right)^{k-1}, \ k = 1, \dots, K,$$

The expectation can directly be computed as:

$$\mathbb{E}\left[\phi_k(\mathbf{S}_{t_m})|\mathbf{S}_{t_{m-1}}(n)\right] = \left(P_{t_{m-1}}(n)e^{\left(\bar{\mu} + \frac{(k-1)\bar{\sigma}^2}{2}\right)\Delta t}\right)^{k-1},$$

where,

$$P_{t_{m-1}}(n) = \left(\prod_{\delta=1}^d S_{t_{m-1}}^{\delta}(n)\right)^{\frac{1}{d}}, \ \bar{\mu} = \frac{1}{d}\sum_{\delta=1}^d \left(r - q_{\delta} - \frac{\sigma_{\delta}^2}{2}\right), \ \bar{\sigma}^2 = \frac{1}{d^2}\sum_{p=1}^d \left(\sum_{q=1}^d C_{pq}^2\right)^2$$

Appendix

Arith. basket Bermudan option - Basis functions:

$$\phi_k(\mathbf{S}_{t_m}) = \left(\frac{1}{d}\sum_{\delta=1}^d S_{t_m}^{\delta}\right)^{k-1}, k=1,\ldots,K.,$$

 The summation can be expressed as a linear combination of the products:

$$\left(\sum_{\delta=1}^d S_{t_m}^{\delta}\right)^k = \sum_{k_1+k_2+\cdots+k_d=k} \binom{k}{k_1, k_2, \ldots, k_d} \prod_{1 \leq \delta \leq d} \left(S_{t_m}^{\delta}\right)^{k_\delta},$$

And the expression for Geometric basket option can be applied.

