Table 3.3: Summary of Properties of Z-Transform

Note:	$X(z) = \mathbb{Z}\{x(n)\} ;$	$X_1(z) = \mathbb{Z}\{x_1(n)\}\ ;\ X_2(z) = \mathbb{Z}\{x_2(n)\}\ ;\ Y$	$\tilde{f}(z) = \mathcal{F}\{y(n)\}$
Property		Discrete time signal	Z-transform
Linearity		$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$
	$x(n)$; for $n \ge 0$	x(n-m)	$z^{-m} X(z) + \sum_{i=1}^{m} X(-i) z^{-(m-i)}$
Shifting (m≥0)		x(n+m)	$z^{m} X(z) - \sum_{i=0}^{m-1} X(i) z^{m-i}$
	x(n); for all n	x(n-m) x(n+m)	$z^{-m}X(z)$ $z^{m}X(z)$
Multiplication by n ^m (or differentiation in z-domain)		n ^m x(n)	$\left(-z\frac{\mathrm{d}}{\mathrm{d}z}\right)^{\mathrm{m}}\mathrm{X}(z)$
Scaling in z-domain (or multiplication by a ⁿ)		a ⁿ x(n)	X(a ⁻¹ z)
Time reversal		x(-n)	X(z ⁻¹)
Conjugation		x*(n)	X*(z*)
Convolution		$x_1(n) * x_2(n) = \sum_{m = -\infty}^{+\infty} x_1(m) x_2(n-m)$	$X_1(z)X_2(z)$
Corrrelation		$r_{xy}(m) = \sum_{m=-\infty}^{+\infty} x(n) y(n-m)$	$X(z)Y(z^{-1})$
Initial value		$x(0) = \underset{z \to \infty}{Lt} X(z)$	Total Sale of Contract Contract
		$x(\infty) = \underset{z \to 1}{\text{Lt}} (1 - z^{-1}) X(z)$	
Final value		$= \underset{z \to 1}{\text{Lt}} \frac{(z-1)}{z} X(z)$ if X(z) is analytic for z > 1	
Complex convolution theorem		$x_1(n) x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2(\frac{z}{v}) v^{-1} dv$
Parseval's relation		$\sum_{n=-\infty}^{+\infty} x_1(n) \ x_2^{\bullet}(n) = \frac{1}{2\pi j} \oint_C X_1(z) \ X_2^{\bullet} \left(\frac{1}{z^{\bullet}}\right) z^{-1} dz$	