Technology Arts Sciences

TH Köln

Entwicklungsprojekt interaktive Systeme

TH-Köln Sommersemester 2016

Konzept

von

Minh Duc Bui & Markus Ernst

Dozenten

Gerhard Hartmann Kristian Fischer

Betreuer

Franz-L Jaspers Daniela Reschke

Einleitung

Dieses Konzept stellt die Grundlage für die darauffolgenden Gestaltungphasen des Projekts dar, welche im Rahmen der Veranstaltung "Entwicklung interaktiver Systeme" entwickelt wird.

Es werden für das Nutzungsproblem relevante Recherchen über die Anwendungsdomäne getätigt und bereits auf dem Markt existierende Systeme analysiert, aus dessen Defiziten Alleinstellungsmerkmale für das zu entwickelnde System abgeleitet werden.

Außerdem sorgt eine gut durchstrukturierte Planungarbeit für effektive und effiziente Arbeitsvorgänge im späteren Entwicklungsprozess. Das bedeutet hier eine Spezifikation des methodischen Rahmens für das weitere Vorgehen und die Festlegung der Architektur bzw. der Plattform, auf der später das System arbeiten soll. Definierte Risiken geben Auskunft, welche zukünftige Probleme es zu adressieren und präventieren gilt.

Zielhierachie

Strategische Ziele

Die langfristige Optimierung der Nährstoffversorgung von gezüchteten Pflanzen stellt die primäre Intention des Systems dar, um effektive Wachstumsraten und hochwertige Qualität dieser zu erreichen.

Taktische Ziele

Für das Pflanzenwachstum essentielle Nährwerteparameter sollen mithilfe von technischen Mitteln überwacht werden, damit bei Schwankungen dieser Werte, die durch externe Faktoren verursacht werden, der Nutzer darauf adäquat mit den richtigen Maßnahmen reagieren kann.

Basierend auf Erfahrungswerte soll dann für die Zukunft der Nährwerteinput angepasst werden, um beispielsweise bei Überverwendung von Ressourcen zu vermeiden und in dem Bereich Ersparnisse zu erreichen.

Operative Ziele

Der Nutzer erhält konkrete Informationen über die Pflanzen bzw. deren Nährwerte und konkrete Anweisungen zur Maßnahmenergreifung, falls Probleme wie Nährwerteschwankungen auftreten.

Domänenrecherche

Mithilfe einer Untersuchung der Anwendungsdomäne sollen für die Gestaltung relevante Konzepte ermittelt werden. Dazu gehören Paradigmen, Metaphern und in der Domäne ablaufenden Vorgänge. Die Domänenrecherche stellt die Grundlage für die Entwicklung dar, da mit dieser Nutzungskontext und Anforderungen spezifiziert werden.

Stakeholder

Zu den wichtigsten Stakeholdern gehören natürlich die Gärtner, die die zukünftigen Nutzer repräsentieren. Diese arbeiten in Baumschulen oder in anderen ähnlichen landwirtschaftlichen Organisationen, in denen der Fokus auf die Pflanzenpflege gerichtet ist.

Die vom System ermittelten Daten können zudem auch für Forschungsinstitute im Bereich der Botanik von Nutzen sein.

Nährstoff- und weitere wichtige Parameter:

Für das optimale Pflanzenwachstum sind gezielte Nährstoffe notwendig.

Zu den wichtigsten gehören:

Stickstoff (mehr Triebe und Blätter)

Phosphor (Verbesserung der Wurzel- und Blätterbildung)

Kalium (Stärkung des Pflanzengewebes & erhöhte Krankheitenresistenz)

Magnesium (Förderung der Nährstoffaufnahme)

Je nach Pflanzenart weisen diese auch unterschiedliche Verhalten der Aufnahme auf.

Selbstverständlich spielt auch der Wasserbedarf eine essentielle Rolle.

Licht stellt zudem eine unverzichtbare Ressource dar und sind für Pflanzen lebensnotwendig.

Ein weiterer Faktor ist der *ph-Wert* des Bodens. Von diesem ist nämlich die Aufnahmefähigkeit der Nährstoffe durch die Pflanzen abhängig. Beispielsweise ist eine Verwertung von Stickstoff nur im Bereich von 6,5 bis 8,5 möglich, was ein Verzicht von Stickstoffdüngung auf saurem Boden bedeutet. Kalium hingegen wird nur in einem Bereich von 6,5 bis 7,5 aufgenommen, welches eine Düngung davon bei alkalischen Boden überflüssig macht.

Der *Humusgehalt* der Erde beeinflusst den Nährstoffgehalt, Struktur und die Aktivität der Bodenlebewesen.

Externe Einflüsse:

Das Pflanzenwachstum kann durch äußere Umwelteinflüsse beeinträchtigt werden. Die Belichtungszeiten und Niederschlagsmengen sind zum Einen von der *Jahreszeit* und zum Anderen vom *Wetter* abhängig. Die Niederschlagsmenge verändert zum Beispiel die notwendige Menge der Wasserzufuhr. Die meteorolgischen Verhältnisse sind immer dynamisch und in der heutigen Zeit mithilfe der Technik vorhersehbar.

Insekten- oder Krankheitsbefall stellen auch eine Bedrohung dar und sind bei Eintreten auch effektiv zu bekämpfen.

Düngemittel und Prozess:

Düngemittel sind Stoffgemische, welche das Nährstoffangebot der Pflanzen erhöhen, was meistens zur schnelleren Wachstumsraten und dadurch zu höheren

Erträgen führt. Um den Anforderungen der Pflanzen gerecht zu werden, existieren zum Einen die Einnährstoffdünger und zum Anderen die Mehrstoffdünger. Zudem wird zwischen mineralischen und organischen Düngern unterschieden.

Bei der Dosierung gilt es eine Überdüngung zu vermeiden. Überdüngung beeinträchtigen negativ die Pflanzen an sich und das Grundwasser, wenn es bei Nichtverwertung dahin ausgeschwemmt wird. Bei fruchtbaren, nährstoffreichen Böden kann beispielsweise die Zufuhr stark reduziert werden. Es ist also wichtig, bei der Zufuhr genau das Optimum zu finden, damit es zu keiner Überdüngung kommt und zudem Ressourcenverschwendung vermieden wird.

Der Düngeprozess sollte morgens oder bei bedecktem Wetter stattfinden, da sonst die Gefahr besteht, dass die Pflanzen bei Sonnenschein, vorallem auf trockenem Boden, verbrennen.

In Deutschland wurden vom Bundesministerium für Ernährung und Landwirtschaft konkrete Düngeverordnungen formuliert.

Marktrecherche

Es werden bereits existierende Systeme betrachtet und auf Stärken & Schwächen analysiert. Basierend auf den Schwächen der Konkurrenz werden Alleinstellungsmerkmale für das Projekt abgeleitet.

myPlants:

Link:

http://www.makeitapp.eu/apps/myplants-2/

Beschreibung: MyPlants ist eine Applikation zur Unterstützung der Bewässerung von Pflanzen in Form von eingegebenen Erinnerungszeiten. Dieses System legt großen Wert auf die Community dahinter. Es werden dafür Lesezeichen, Chats mit anderen Usern und Empfehlungen zu Verfügung gestellt.

Stärken:

• starke Auslegung auf die Kommunikationsmöglichkeiten der Nutzer

Schwächen:

• dürftige Informationen über genaue Pflege der Pflanzen

Dataflor CAD - Pflanzen - Manager:

Link:

https://wiki.dataflor.de/doku.php/produkte/cadxpert 2016/pflanzen-manager

Beschreibung: Der Pflanzen-Manager von Dataflor ist eine Desktop-Anwendung zum einfachen Erstellen eines Pflanzenplans. Eine visuelle und Kalendarische Darstellung der Pflanzen und Daten wirkt sich bei dieser Anwendung hilfreich auf die Organisation der Gartenarbeit aus.

Stärken:

- Planung und Managment der Pflanzen gut strukturierbar
- Visualisierung des eigenen Anbaufeldes

Schwächen:

- keine Möglichkeit die Pflanzen über den Wachstum und der Pflege direkt zu überwachen
- keine Hilfestellung in der direkten Pflege von Pflanzen

Garten Manager

Link:

https://play.google.com/store/apps/details?id=com.jee.green

Beschreibung: Garten Manager hilft dabei sich selbst zu organisieren und zu disziplinieren. Die Anwendung erinnert den Nutzer an das Gießen einer Pflanze und zeigt durch ein Fototagebuch den Prozess eines Anbaus durch den Nutzer.

Stärken:

• Tagebuch mit Bildern erstellbar (Review-Möglichkeiten)

Schwächen:

- erinnert bei der Pflege nur an das Bewässern der Pflanze
- es müssen alle Daten von Anfang an selbst eingetragen werden

Flower Power

Link:

http://www.parrot.com/de/produkte/flower-power/

Beschreibung: Flower Power von Parrot ist eine mobile Anwendung, die über ein Messgerät direkt an der Pflanze die aktuellen Umstände ermittelt und diese über Bluetooth an den Nutzer weitergeben kann. Der Nutzer hat jederzeit den aktuellen Stand der Lichtverhältnisse, der Bodenfeuchtigkeit und des Düngeverhältnisses der Pflanze.

Stärken:

- immer die aktuellen und genauen Werte der Pflanze ersichtlich
- gibt alle wichtigen Informationen der Pflanzen und den Bedarf wieder

Schwächen:

• keine Möglichkeit im voraus zu planen

Alleinstellungsmerkmal

Die zuvor betrachteten Applikationen geben zu erkennen, dass die Stärke der Produkte meist auf einzelne privaten Nutzer abzielt. Die Systeme beschränken sich deshalb auf stark ausgebaute Kommunikationskomponenten und gehen lediglich Zustand der Pflanzen ein, um eine einfache Gartenpflege zu ermöglichen. Es ist nur in den wenigsten Fällen möglich Aussagen über den genauen Bedarf der Pflanzen zu treffen.

In diesem Projekt liegt der Fokus auf die agrikulturelle Anwendungsdomäne, in der im größeren Rahmen Pflanzenpflege betrieben wird. Es soll beim Nährstoffbedarf mehr in die Tiefe gegangen werden d.h. das Messgerät soll mehr Parameter (Nährstoffe) und Faktoren berücksichtigen, die die Grundlage zur

Berechnung von Inputmengen darstellen. Zudem sollen diese Mengen mithilfe der Wettervorhersage und des Nährstoffverbrauchs im vorraus schon kalkuliert werden.

Kommunikationsmodell

Mit dem Kommunikationsmodell sollen die Informationsflüsse zwischen den Aktueren in der Domäne deutlich werden. Dabei wird der bereits existierende Ist-Zustand beschrieben und basierend darauf den mithilfe des Systems verbesserten Soll-Zustand entwickelt.

Deskriptiv

Im derzeitigen Ist-Zustand findet Kommunikation zwischen den beiden Gärtnern statt. Es werden für die Aufgabenerledigung relevante Informationen

ausgetauscht. Die Pflanze stellt mit ihren sehr minimalistischen Kommunikationsmöglichkeiten einen passiven Akteur dar. Außer dem Erscheinungsbild vermittelt sie den menschlichen Akteuren keinerlei Informationen.

Der Mensch übt mit der Pflege konkrete Handlungen aus, welche den Zustand der Pflanze verändern.

Präskriptiv

Mithilfe des Systems als Vermittler wird der Großteil der zwischenhumanen Informationen auf das System verlagert, was eine Entlastung der Gärtner bedeutet. Zudem liefert das System mithilfe des Messgerätes den menschlichen Akteuren Messwerte, die im deskriptiven Modell nicht zugänglich waren. Darauf basierend erhalten die Gärtner Anweisungen bei der Zuführung, welche zuvor über andere Gärtner verlief. Zudem übermittelt der Mensch dem System Daten, welche als Basis zur Prozesssteuerung dienen.

Methodischer Rahmen

Bei der Entwicklung wird für den Usability-Engineering-Prozess die DIN EN ISO 9241-210 als Leitfaden verwendet. Da die Nutzerbasis mit den Gärtnern und ihren ähnelnden Kompetenzen sehr homogen ist, ist es sinnvoll das System auf ihre User-Needs zuzuschneiden d.h. nutzerzentriert zu gestalten. Iterationmöglichkeiten dienen der stetigen Verbesserung der Software, in der mithilfe von Evaluationen Erkenntnisse deutlich werden, die es dann zu berücksichtigen gilt. In den Phasen selbst ist gegenüber den anderen Vorgehensmodellen mehr Spielraum bei der Modellen und Methoden möglich, welche dann im Projektplan ersichtlich sind.

Bild 1 aus DIN EN ISO 9241-210: Wechselseitige Abhängigkeit menschzentrierter Gestaltungsaktivitäten

Architekturmodell

Das System soll in einer Client-Server Architektur umgesetzt werden. Die Datenbank kommuniziert direkt mit dem Service und soll mittels Redis realisiert werden. Redis ist eine Datenbank, welches über einfache Datenstrukturen verfügt,

Auf der Serverseite werden Daten der Pflanzen gehalten und periodische externe Einflusswerte zusammengeführt und für Vorhersagen einzelner Pflanzen eingerechnet. Der Client kann somit über asynchrone Mittelungen über mögliches Eintreffen von Umständen benachrichtigt werden.

Die Client-Komponente stellt das direkte Interface mit dem Gärtner dar und hält die Präsentationslogik. Der Client bekommt direkte Informationen über den Ist-Zustand der Pflanze mithilfe von Messgeräten. Diese werden dann mithilfe der Informationen über Bedarf und Grenzwerte der Pflanze vom Service ausgehend abgeglichen und ausgewertet.

Die Architektur und Datenstruktur wird in Form des RESTful-Webservice (Representational State Transfer) umgesetzt werden. Dieser Architekturstil hat den Vorteil die Daten als eindeutige Ressourcen zu Identifizieren. Um die einfache Darstellung des Systems zu unterstützen, werden die Daten zwischen Client und Service mit dem Format Json verschickt, da dieses Format ebenfalls eine schlichte Datenstruktur und Handhabung aufweist. Außerdem kann Json direkt in Javaskript-Objekte umgewandelt werden, da es selbst gültiges Javaskript darstellt.

Risiken

Die Berücksichtigung der Risikofaktoren ist in einem Projekt unumgänglich und Ziel ist es diese zu minimieren.

Im Folgenden werden Risiken aufgelistet, welche die Entwicklungphase und zudem auch die Qualität des Projektes negativ beeinträchtigen.

Funktional:

- Der Nutzer erhält durch das System fehlerhafte bzw. keine Anweisungen.
- Bei Ausfall eines Mitarbeiters erhalten zugewiesene Pflanzen keine Pflege.
- Eintreten von durch das System nicht antizipierbaren Umweltereignissen

Technisch:

 Das Messgerät kann Ungenauigkeiten aufweisen, welche zu Fehlmeldungen durch das System führt.

- Eingebunde Dienste/APIs funktionieren nicht
- Ausfälle des Wetterservers

Projektbezogen:

- Ressourcenknappheit (Zeit) im Entwicklungsprozess
- krankheitsbedingte Ausfälle der Entwickler

Proof of Concepts

Bedingung	Exit-Kriterium	Fail-Kriterium	Fallback
Pushover MSG - Pushdienst auf Android	Es wurde eine Push-Nachricht an den Client gesendet.	Es wurde keine Nachricht gesendet.	Alternative: GCM
Verbindung des Androidclients mit einem Node JS Server	Es konnte mit der GET-Methode Pflanzen geholt werden.	Es ist ein beim Holvorgang ein Fehler auf getreten.	Alternative:
Einbinden der Wetter API (openweather.org)	Wetterdaten konnten abgerufen und angezeigt werden.	Fehlerhafte oder keine Anzeige.	Alternative: weathersource API

Rapid Prototyping

Quellverweise

http://www.chemie.de/lexikon/D%C3%BCnger.html#D.C3.BCngerarten

http://www.openweathermap.org/

http://www.zuhause.de/pflanzen-richtig-duengen-fehler-vermeiden/id 4650017 0/index

http://docplayer.org/docs-images/24/2484563/images/17-0.png

http://www.estrategy-magazin.de/fileadmin/user_upload/low_budget_Usability_ba4607bd1e.jpg

https://www.mein-schoener-garten.de/gartenpraxis/nutzgaerten/duenger-fuer-den-garten-5651

https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/ Texte/Duengung.html