

Unstable Filter Update: Thermal Noise and Controllability

Joe Bentley

Philip Jones, Denis Martynov, Andreas Freise, and Haixing Miao

University of Birmingham

November 15, 2018

DCC: LIGO-G1801642-v5

Outline

- Motivation, unstable filter, new transmission readout design
- Analysis of thermal noise for transmission readout
- Solution to control of unstable filter

Motivation: Room for Improvement

B. P. Abbott et al. Exploring the Sensitivity of Next Generation Gravitational Wave Detectors. $2016\,$

At $> \sim 20$ Hz we are dominated by shot noise

Motivation: Positive dispersion, Mizuno's theorem

- Sensitivity decreases with frequency due to positive dispersion of arm cavities (phase $\propto \Omega$)
- Cavity enhances $\Omega \approx 0$ and suppresses $\Omega > \gamma$

- Clearly "just increase detector bandwidth γ !"
- But, Mizuno limit [2] tells us: peak sens. is *inverse* to γ
- Can directly improve peak sens.
 via squeezing
- Can we directly improve γ ? . . .

Solution: Negative Dispersion via Unstable Filter

- Use a negative dispersion medium (phase $\propto -\Omega$) to cancel phase gained in arm cavities
- One possible example: the unstable optomechanical filter

Optical cavity resonant at ω_0 w/ mechanically suspended mirror, pumped with an additional laser at $\omega_0+\omega_m$

H. Miao, Y. Ma, C. Zhao, and Y. Chen. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters. Physical Review Letters, 115(21):1–5, 2015

In resolved sideband regime ($\Omega \ll \gamma_f \ll \omega_m$), $a_{\rm out} \approx e^{-2i\Omega\tau} a_{\rm in}$

(for more details, see supp. slides or my talk in March: LIGO-G1801642)

Refresher: Transmission-readout design

Thermal noise of unstable filter

Mechanical mirror coupled to thermal heat bath at temp T Spectrum of thermal fluctuations flat (just like optical vacuum)

$$S_{a_{\mathrm{in}}a_{\mathrm{in}}} \xrightarrow{S_{b_{\mathrm{th}}b_{\mathrm{th}}}} S_{b_{\mathrm{th}}b_{\mathrm{th}}} \xrightarrow{S_{b_{\mathrm{th}}b_{\mathrm{th}}}} \frac{k_b T \gg \hbar \omega_m}{\sum_{\Omega} \frac{2k_b T}{\hbar \omega_m} + 1 \approx \frac{2k_b T}{\hbar \omega_m}}$$

Coupling of vacuum light to *cavity mode* formally equivalent to coupling of thermal noise to *mirror mode*:

$$\begin{array}{ccc}
a_{\rm in} & a \\
T & = 0
\end{array}$$

Can circumvent using an *all-optical* realization

See: [1] Yanbei Chen and Yiqiu Ma, in preparation; [2] Naoki Yamamoto et al.

in preparation

Transmission-readout thermal noise

Total quantum noise

- Thermal noise fluctuations fully shaped by interferometer
- Couples indirectly through mirror
 : extra filtering via mirror
 mechanics
- Amplifies (thermal)
 radiation-pressure noise
 Suppresses (thermal) shot noise

Controlling the setup via Local Sensing

- Recap: Haixing attempted to construct stabilizing controller for unstable filter [3] but neglected time delay of control signal which significantly reduces phase margin
- New idea (by Denis Martynov): use local sensing laser to stabilize unstable oscillator
- However, local sensing laser imparts additional noise
- But, can cancel this noise by combining readouts optimally

Recovering Bandwidth-Enhanced Sensitivity using Matched Filter

Take linear combination s of main readout signal s_1 and local sensor readout signal s_2

By combining w/ optimal k_1, k_2 , can recover enhanced sensitivity

Recovering Original Sensitivity: Results

Shot-noise-limited sensitivity (ignoring RP noise of main laser)

Figure: Courtesy of Denis Martynov

Next Steps

Some more stuff to be done:

- Optimization of parameters in detuned operation of SRC
- Design local sensing control scheme for transmission-readout setup
- Precise formulation involving all sidebands ("four-photon formalism")

Supplementary Slides. . .

Controlling the Unstable Filter using Matched Filter

• Write main readout signal (s_1) and local sensor readout signal (s_2) as:

$$s_1 = \xi_0 x_0 + \Sigma_i \xi_i n_i, \quad s_2 = \eta_0 x_0 + \Sigma_i \eta_i n_i, \quad i = 1 \dots 3,$$

- x_0 is GW signal, n_1, n_2, n_3 are the noises due to vacuum, back-action, local sensing laser
- Let us combine our readouts via some linear combination $s=k_1s_1+k_2s_2$
- First, assume k_i normalized w.r.t GW signal coefficients: $k_1\xi_0 + k_2\eta_0 = 1$
- Then, minimize inverse SNR w.r.t k_2 , giving

$$k_2^* = -\frac{\sum_i (\xi_i^* / \xi_0^*) (\eta_i - \eta_0 \xi_i / \xi_0) S_{ii}}{\sum_i (\eta_i - \eta_0 \xi_i / \xi_0) (\eta_i^* - \eta_0^* \xi_i^* / \xi_0^*) S_{ii}}, \quad i = 1 \dots 3,$$

• where S_{ii} , $i = 1 \dots 3$ is the PSD of each noise term

Network Synthesis of Arbitrary Quantum Systems

- New theoretical synthesis framework by Hendra Nurdin (Uni. of New South Wales) et. al. from Quantum control community [4]
- ullet For classical n-dof systems can easily synthesize equivalent circuit if described as n coupled ODEs, using integrators along with feedback
- Can we do same thing for n-dof dynamical quantum systems?
- Many reasons why this is much harder:
 - \bullet Have to preserve $[q(t),p(t)]=i\hbar,\,\forall t$ for each dof
 - Variables are quantum & stochastic rather than classical & deterministic
 - Finally, the resulting realizations are complicated to implement
- Main theorem: can split n-dof system into 1-dof "open oscillators" and a direct interaction Hamiltonian (supp. slides)

Network Synthesis: Motivation

Say we want system with desired TFs...

Old way: guess various possibilities

New way: systematic synthesis approach

... could build a general interferometer toolkit:

Describe the behaviour you want, and can systematically construct interferometer with that behaviour

Network Synthesis: Brief summary

- Consider desired n degree of freedom system with, state $x = [q_1, p_1; \ldots; q_n, p_n]^T$, m input noise fields $A = [A_1, \ldots, A_m]^T$, m output fields $Y = [Y_1, \ldots, Y_m]^T$,
- Write out system in state-space formalism,

$$dx(t) = Ax(t)dt + B [dA(t), dA(t)^*]^T$$

$$dY(t) = Cx(t)dt + DdA(t)$$

• Describe system as a "n degree of freedom generalized open oscillator" G=(S,L,H), S scattering matrix, L=Kx coupling of system to the noise fields A(t), $H=\frac{1}{2}x^TRx$ is system Hamiltonian

Network Synthesis: Brief summary part 2

- Can infer (S, L, H) from (A, B, C, D)
- Main theorem: can split n-dof gen. open oscillator G into n 1-dof open oscillators G_j and a direct interaction Hamiltonian H^d
- Problem becomes one of
 - ullet Implementing each 1-dof generalized open oscillator G_j
 - \bullet Implementing the direct interaction Hamiltonian ${\cal H}^d$
- (More) trivial after we've decomposed the system in this way

Supp. slides from Sonoma...

Negative Dispersion using Unstable Optomechanical Filter

Mirror resonance at ω_m Pump at $\omega_0 + \omega_m$

Cavity resonance at ω_0 Probe at $\omega_0 \pm \Omega$

H. Miao, Y. Ma, C. Zhao, and Y. Chen. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters.

Physical Review Letters. 115(21):1–5, 2015

Single-mode and rotating-wave approx, and $\gamma_{\rm filter}\gg\Omega$ $\Omega\ll\sim{\rm FSR}$ $\qquad \qquad \Omega\ll\sim\omega_m$

Negative damping rate $\gamma_{
m opt} \propto P_{
m pump}$

Negative dispersion

Ignoring heat bath coupling

$$\hat{a}_{\mathsf{out}} pprox rac{\Omega + i \gamma_{\mathsf{opt}}}{\Omega - i \gamma_{\mathsf{opt}}} \hat{a}_{\mathsf{in}} pprox - \exp\left(-rac{2i\Omega}{\gamma_{\mathsf{opt}}}\right) \hat{a}_{\mathsf{in}}
ightarrow - \exp\left(-rac{2i\Omega L_{\mathsf{arm}}}{c}\right) \hat{a}_{\mathsf{in}}$$

Transmission readout setup

- Pros: More realistic
- ullet Cons: New effective bandwidth only $\gamma_{
 m eff} \sim \sqrt{\gamma_f \omega_s}$

Alternative setup: Reflection Readout

- ullet Pro: Effective bandwidth $\gamma_{
 m eff}\sim\omega_s$
- Cons: Another noise injection port (?) X
- Cons: Unclear how to inject squeezing X

Control Theory Primer

- Fact: can write any set of ODEs as set of first-order differential equations
- Dynamics: $\dot{\vec{x}} = A\vec{x} + B\vec{u}$
- \vec{x} describes set of n system states, \vec{u} describes system inputs, A describes internal system dynamics, B describes input coupling to internal dynamics
- Output coupling: $\dot{\vec{y}} = C\vec{x} + D\vec{u}$
- \vec{y} describes set of outputs, C describes coupling of internal states to outputs, D describes direct feed of inputs into the outputs (often zero)
- System observable if all states are in some way connected to an output, so somehow you can infer the internal state of the system. True if $\operatorname{rank}([B,AB,AB^2,\dots])=n$.
- System controllable if any set of internal states can be achieved by giving the correct input for a finite amount of time

Feedback Control and Stability

- $\bullet \ r(s)$ is control signal, y(s) is output signal
- ullet Open-loop transfer: K(s)G(s)
- Closed-loop transfer: K(s)G(s)/(1+K(s)G(s))
- Closed-loop transfer instability if K(s)G(s)=-1, so |K(s)G(s)|=1 (gain of 0 dB), and K(s)G(s) has phase lag of -180°
- \bullet Phase margin: difference between closed-loop transfer phase lag and -180° at unity gain frequency
- Gain margin: difference between closed-loop gain and 0 dB at frequency where phase lag is -180°

Solution: Unstable Optomechanical Filter

Mirror resonance at ω_m Pump at $\omega_0 + \omega_m$ Cavity resonance at ω_0 Probe at $\omega_0 \pm \Omega$

(a)
$$\hat{a}_{\text{in}} \qquad \omega_0 + \omega_m \qquad (b)$$

$$\hat{a}_{\text{out}} \qquad \omega_m - \Omega$$

$$\omega_0 \qquad \omega_0 + \omega_m$$

$$\gamma_{
m opt} = rac{g^2}{\gamma_f}$$

$$\phi_{
m arm} = 2i\Omega\,L_{
m arm}/c$$

 $\phi_f = -2i\Omega L_{\rm arm}/c$

H. Miao, Y. Ma, C. Zhao, and Y. Chen. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters. Physical Review Letters, 115(21):1-5, 2015

Single-mode and rotating-wave approx, and $\gamma_{\rm filter}\gg\Omega$

$$\Omega \ll \sim \mathsf{FSR}$$

$$\Omega \ll \sim \omega_m$$

Negative dispersion

Ignoring heat bath coupling

$$\hat{a}_{\mathsf{out}} pprox rac{\Omega + i \gamma_{\mathsf{opt}}}{\Omega - i \gamma_{\mathsf{opt}}} \hat{a}_{\mathsf{in}} pprox - \exp\left(-\frac{2i\Omega}{\gamma_{\mathsf{opt}}}\right) \hat{a}_{\mathsf{in}} \xrightarrow{\mathsf{Set}} \mathsf{to}$$

Transmission Readout Hamiltonian Analysis

Interaction Hamiltonian has form of squeezing process

$$H_{\mathrm{int}}^{\mathrm{RWA}} pprox -\hbar g(\hat{\mathbf{a}}\hat{b} + \hat{\mathbf{a}}^{\dagger}\hat{b}^{\dagger})$$

Sloshing between SRC and arms $-i\hbar\omega_{c}(\hat{d}\hat{a}^{\dagger}-\hat{d}^{\dagger}\hat{a})$

Solve RP for ETM

$$rac{\hat{m p}^2}{2M} + M L_{
m arm} \ddot{h}_{
m GW} \hat{m X} - \hbar G_0 (\hat{d} + \hat{d}^\dagger) \hat{m X}$$

Write input-output relation relating \hat{a}_{out} , \hat{a}_{in} , and h. (Single mode approx...)

Find that effective bandwidth of setup $\sim \frac{c}{2\sqrt{2}} \left(\frac{T_{\rm ITM} T_{\rm SRM}^2}{L_{\rm arm} L_{\rm SRC}^3} \right)^{\frac{1}{4}}$.

Improving Peak Sensitivity Process

- 1: tuned Michelson sensitivity
- ullet 1 o 2: include unstable filter: improve high frequency sensitivity
- ullet 2 o 3: harness bandwidth-sensitivity tradeoff: by reducing overall bandwidth we improve peak sensitivity
- Tradeoff: low frequency sensitivity gets worse
- Pro: We have not lost much high-frequency sensitivity because of our high frequency bandwidth improvement

System analysed

Full Transmission readout setup

Exploring the Sensitivity of Next Generation Gravitational Wave Detectors.

2016.

Jun Mizuno.

Comparison of optical configurations for laser-interferometric gravitational-wave detectors.

PhD thesis.

H. Miao, Y. Ma, C. Zhao, and Y. Chen. Enhancing the Bandwidth of Gravitational-Wave Detectors with Unstable Optomechanical Filters.

Physical Review Letters, 115(21):1-5, 2015.

H. I. Nurdin, M. R. James, and A. C. Doherty. Network Synthesis of Linear Dynamical Quantum Stochastic Systems.

SIAM Journal on Control and Optimization, 48(4):2686–2718, 2009.