Introduction to Data Science

Data Science Essentials

Mary van Valkenburg
Data Science Program Manager/Instructor
Nashville Software School

Goals for today

- Review last session coding tasks
- Review for-loops and list comprehensions
- Introduce the iterrows() method
- Tiptoe into next weeks session
 - variable types and missingness
 - Intro to matplotlib

Review last session coding tasks

week2_review notebook

List comprehensions

Task: you have a list of animals called *my_animals* and you want to get a list of the just the animals that start with the letter *t* from it

```
Creating the list with a for-loop:
# for loop to find animals in my_animals that start with the letter t
t_animals = []
for animal in my_animals:
    if animal.startswith('t'):
        t_animals.append(animal)
print(t_animals)
# list comprehension to find animals in my_animals that start with the letter t
t_animals2 = [animal for animal in my_animals if animal.startswith('t')]
print(t_animals2)
```

[what to return for iterator in original list if conditional]

^{*}The iterator can be any word or letter

Get Data → Process + Clean Data → Exploratory Data Analysis

Statistics and other info

df.describe() - to get summary statistics about quantitative data

df.isnull().sum() - to get counts of missing values

import matplotlib.pyplot as plt import seaborn as sns

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#examples-using-matplotlib-pyplot-plot https://seaborn.pydata.org/examples/index.html

matplotlib.pyplot and seaborn barplots, for-loops, list comprehensions, iterrows()

public_art3 notebook

Variable types

What kind of data is each variable?

Descriptive (Qualitative)

- categorical
 - nominal
 - ordinal

Numerical (Quantitative)

- discrete
- continuous

Categorical data - value_counts() joint joint individual individual 4000 4000 -Frequency 3000 - barplots Frequency 2000 1000 1000 mortgage rent mortgage own rent own (a) (b) 0.8 Proportion joint 0.2 individual 0.0 mortgage rent (c)

Figure 2.23: (a) Stacked bar plot for homeownership, where the counts have been further broken down by app_type. (b) Side-by-side bar plot for homeownership and app_type. (c) Standardized version of the stacked bar plot.

Numerical data

- describe()
- histograms
- boxplots
- swarmplots
- stripplots
- violin plots

Relationships

scatterplots pairplot

Variable types and missingness

eda_workflow notebook

Reminders

- Build upon your work in the same notebook each week (Github keeps a history)
- If the code in a cell did not run as expected, modify the code in that cell (not a new one)
- Remove any unused/un-useful cells
- Beware of the changing state of objects in your notebook
 - Example if you create a df and drop 3 columns and then go back to add code to look at the head() in the same cell you are re-running the command to drop the 3 columns which are no longer there!

Questions?