EE6367: Topics in Data Storage and Communications

2023

Lecture 8: 21 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Vector Quantization Using Shared Randomness

Suppose that $\mathbf{X} \sim \operatorname{iid} (\mathcal{N}(\mathbf{0}, \beta^2))$. Then,

$$\mathbb{E}\left[\|\mathbf{X}\|^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{d} X_{i}^{2}\right]$$

$$= d\beta^{2}.$$
(8.1)

Further, we note that

$$\Pr\left(\|\mathbf{X}\|^2 \geqslant d\beta^2 \left(1 + \delta\right)\right) \leqslant e^{-\theta(d)} \tag{8.3}$$

Consider a class of algorithms where the input vector is rotated using a uniformly chosen rotation matrix $\mathbf{R} \in \mathbb{M}^{d \times d}$ before encoding and then rotated back after decoding by applying \mathbf{R}^{-1} . Clearly, $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$, and for an encoded vector \mathbf{x} , $\mathbf{y} \triangleq \mathbf{R}\mathbf{x}$ is also similarly distributed to \mathbf{x} . Since \mathbf{x} is isotropically distributed, that is, depends on its 2-norm, it follows that

$$\frac{\mathbf{X}}{\|\mathbf{X}\|} \sim \text{Unif}\left(\mathbb{S}\left(\mathbf{0},1\right)\right).$$
 (8.4)

For these schemes, a careful analysis shows

$$Cost \le \theta \left(\frac{\|\mathbf{x}\|^2 \log d}{2^{\alpha}} \right). \tag{8.5}$$

However, a small tweak to the above scheme can lead to better performance. Assume that $k = d(1 + \mathcal{O}1)$. The encoder takes a random rotation vector \mathbf{R} and computes $\mathbf{y} = \mathbf{R}\mathbf{x}$, and the vector \mathbf{c} is transmitted, where

$$c_i \triangleq \text{sign}(y_i) = \begin{cases} 1 & y_i \ge 0\\ -1 & \text{otherwise} \end{cases}$$
 (8.6)

Along with \mathbf{c} , a scale factor $s \in \mathbb{R}$ is also transmitted.

Given \mathbf{c} and s, the decoder computes

$$\hat{\mathbf{X}} \triangleq s\mathbf{R}^{\mathsf{T}}\mathbf{c}.\tag{8.7}$$

The most computationally intensive part is that of multiplication at the encoder, which gives an overall time compelxity of $\mathcal{O}(d^2)$.

The squared error of this scheme is given by

$$\left\|\mathbf{x} - \hat{\mathbf{X}}\right\|_{2}^{2} = \left\|\mathbf{R}\left(\mathbf{x} - \hat{\mathbf{X}}\right)\right\|_{2}^{2} \tag{8.8}$$

$$= \|\mathbf{R}\mathbf{x}\|_{2}^{2} + \|\mathbf{R}\hat{\mathbf{X}}\|_{2}^{2} - 2 < \mathbf{R}\mathbf{x}, \mathbf{R}\hat{\mathbf{X}} >$$

$$= \|\mathbf{x}\|_{2}^{2} + s^{2} \|\mathbf{c}\|_{2}^{2} - 2 < \mathbf{R}\mathbf{x}, s\mathbf{c} >$$
(8.9)

$$= \|\mathbf{x}\|_{2}^{2} + s^{2} \|\mathbf{c}\|_{2}^{2} - 2 < \mathbf{R}\mathbf{x}, s\mathbf{c} >$$
(8.10)

$$= \|\mathbf{x}\|_{2}^{2} + s^{2}d - 2s\sum_{i=1}^{d} |\mathbf{R}\mathbf{x}_{i}|$$
(8.11)

$$= \|\mathbf{x}\|_{2}^{2} + s^{2}d - 2s \|\mathbf{R}\mathbf{x}\|_{1}$$
(8.12)

$$\geq \|\mathbf{x}\|_{2}^{2} - \frac{\|\mathbf{R}\mathbf{x}\|_{1}^{2}}{d} = \theta \|\mathbf{x}\|_{2}^{2}$$
(8.13)

where the minimum is achieved at $s_{\min} = \frac{\|\mathbf{R}\mathbf{x}\|_1}{d}$.