universität freiburg

Stochastic processes

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ws_stochproc.html

https://www.stochastik.uni-freiburg.de/

Tutorial 8 - Martingale convergence results

Exercise 1 (4 Points).

Let $(S_t)_{t=0,1,2,...}$ be a simple, symmetrical random walk and let T_K be the hitting time of $(-\infty, -K] \cup [K,\infty)$. Show that for all $t \geq 0$ and K > 0

$$\mathbf{P}(T_K \le t) \le \frac{\sqrt{t}}{K}.$$

Exercise 2 (2+2 points).

Can you give an example (if it exists!) of a martingale $\mathcal{X} = (X_n)_{n=0,1,2,...}$

- (a) ...with $\lim_{n\to\infty} X_n = \infty$ almost surely?
- (b) ... that converges in \mathcal{L}^1 but not almost surely?

Exercise 3 (2+2=4 Points).

Let $p \in [0,1]$ and let $\mathcal{X} = (X_n)_{n \in \mathbb{N}_0}$ be a stochastic process with values in [0,1]. For each $n \in \mathbb{N}_0$ given X_0, \ldots, X_n , we have

$$X_{n+1} = \left\{ \begin{array}{cc} 1-p+pX_n & \text{ with probability } X_n, \\ pX_n & \text{ with probability } 1-X_n. \end{array} \right.$$

- (a) Show that \mathcal{X} is a martingale.
- (b) Show that \mathcal{X} converges almost surely in \mathcal{L}^1 .
- (c) Determine the distribution of the limit value $X := \lim_{n \to \infty} X_n$.

Hint: For (c), consider the process $(X_n(1-X_n))_n$

Exercise 4 (2+2=4 Points).

- (a) Give an example of a non-negative square integrable martingale that converges almost surely but not in \mathcal{L}^2 .
- (b) Show that for p=1, the statement in Theorem in 14.33 may fail. Give an example of a non-negative martingale $\mathcal{X}=(X_n)_{n\in\mathbb{N}}$ with $\mathbf{E}[X_n]=1$ for all $n\in\mathbb{N}$ but such that $X_n\xrightarrow{n\to\infty}0$ almost surely.