```
In [ ]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [188]: a=pd.read_csv(r"C:\Users\user\Downloads\4_drug200 - 4_drug200.csv")
a

Out[188]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	H I GH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [189]: a=a.head(10)
```

Out[189]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	H I GH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	М	LOW	HIGH	11.037	drugC
8	60	М	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY

In [190]: a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Age	10 non-null	int64
1	Sex	10 non-null	object
2	BP	10 non-null	object
3	Cholesterol	10 non-null	object
4	Na_to_K	10 non-null	float64
5	Drug	10 non-null	object
dtvn	es: float64(1) int64(1) obi	ect(4)

memory usage: 608.0+ bytes

In [191]: a.columns

Out[191]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

In [192]: a.describe()

Out[192]:

	Age	Na_to_K
count	10.000000	10.000000
mean	42.100000	14.486100
std	13.916018	5.482634
min	22.000000	7.798000
25%	31.250000	10.344750
50%	45.000000	14.132000
75%	48.500000	17.601000
max	61.000000	25.355000


```
In [194]: sns.distplot(a['Na_to_K'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[194]: <AxesSubplot:xlabel='Na_to_K', ylabel='Density'>


```
In [202]: x1=a[['Age']]
```

In [203]: sns.heatmap(x1.corr())

Out[203]: <AxesSubplot:>


```
In [205]: x=a[['Age']]
y=a['Na_to_K']
```

```
from sklearn.linear_model import LinearRegression
In [207]:
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[207]: LinearRegression()
In [208]: |print(lr.intercept_)
           12.73248780487805
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [209]:
Out[209]:
                Co-efficient
                  0.031436
           Age
In [210]:
          prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[210]: <matplotlib.collections.PathCollection at 0x190b82d3280>
           14.25
           14.20
           14.15
           14.10
           14.05
                                          16
                      12
                                14
                                                    18
In [211]: |print(lr.score(x_test,y_test))
           -0.15121522622507233
In [212]:
         from sklearn.linear_model import Ridge,Lasso
In [213]: | rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[213]: Ridge(alpha=10)
In [214]: |rr.score(x_test,y_test)
Out[214]: -0.15148657774410612
In [215]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[215]: Lasso(alpha=10)
```

```
In [216]: la.score(x_test,y_test)
Out[216]: -0.1990656600352263
In [217]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x train,y train)
Out[217]: ElasticNet()
In [218]: print(en.coef_)
          [0.0293004]
In [219]: print(en.intercept_)
          12.82035491231777
In [220]: print(en.predict(x test))
          [14.02167137 14.25607458 14.08027217]
In [221]: |en.score(x_test,y_test)
Out[221]: -0.15435098837496364
In [222]: from sklearn import metrics
In [223]: print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
          Mean Absolute Error 3.4234243733062315
In [224]: print("Mean Squared Error",metrics.mean_squared_error(y_test,prediction))
          Mean Squared Error 13.611054769995626
In [225]: |print(" Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction))
           Root Mean Squared Error 3.6893163011587427
```