

CHIPONTWERP

Faculteit Industriële Ingenieurswetenschappen Elektronica – ICT

Kris Myny (kris.myny@kuleuven.be)

Samenwerkingsverband tussen UHasselt en KU Leuven. De opleiding industrieel ingenieur is een gezamenlijk initiatief van UHasselt en KU Leuven.

Inhoud

- VLSI inleiding
- IC-ontwerp met standaardcellen
- Complexe cel lay-out met Euler-paden (zie oefenzitting/labo 1)
- Statische CMOS schakelingen
- Combinatorische logica
- Dynamische CMOS-schakelingen
- Verbindingen op IC
- BiCMOS-schakelingen
- Datapadoperatoren

Combinatorische logica

Combinatorische logica

Sequentiële logica

Uitgang = f(In)

Bevat enkel logische poorten

Uitgang = f(In, vorige In)

Heeft een geheugen voor de toestand

Statische complementaire CMOS logica

- PUN en PDN zorgen ervoor dat er nooit een pad is tussen GND en VDD!
- PUN en PDN zijn duale netwerken (EN wordt OF en 1 wordt 0)
- De poort is een inverterende poort!
- Het aantal transistoren om een N-input logische poort te maken is 2N

pMOS of nMOS in PUN/PDN?

Serie/parallel schakeling van nMOS

NAND

• Out = $\overline{A.B}$

Α	В	Out
0	0	1
0	1	1
1	0	1
1	1	0

- Sterkte van het PUN hangt af van data aan ingangen A en B
- PDN transistoren hebben een andere V_T door het bulk effect

Switch delay model

 Elke transistor vervangen we door een schakelaar in serie met de equivalente weerstand

NAND2 NAND2 - model

- Vertraging van de poort is afhankelijk van de ingang
- Laag-naar-hoog

$$- A = B = 0$$

•
$$t_p = 0.69 C_L R_p/2$$

$$- A = 0; B = 1$$

•
$$t_p = 0.69 C_L R_p$$

Hoog-naar-lag

$$- A = B = 1$$

•
$$t_p = 0.69 C_L 2R_p$$

Vertraging van een NAND-poort

nMOS: 0.5/0.25 [μm/μm]

pMOS: 0.75/0.25 [µm/µm]

 $C_L = 100 fF$

Ingangsdata	Vertraging [ps]
$A = B = 0 \rightarrow 1$	69
$A = 1, B = 0 \rightarrow 1$	62
A = 0→1, B = 1	50
A = B = 1→0	35
A = 1, B = 1→0	76
A = 1→0; B = 1	57

Transistor sizing

- nMOS is nu verdubbeld tov de invertor om
 - Dezelfde worst-case weerstand te hebben (Ron)
 - Dezelfde worst-case vertraging
- Vertraging is nog steeds afhankelijk van de data aan de ingang
 Sizing for "equal current drive" (C_{internal} en fan-in worden genegeerd)

Vertraging van 4-input NAND

Distributed RC model (Elmore delay)

$$t_{pHL} = 0.69 \begin{pmatrix} R_1 C_1 \\ + (R_1 + R_2) C_2 \\ + (R_1 + R_2 + R_3) C_3 \\ + (R_1 + R_2 + R_3 + R_4) C_L \end{pmatrix}$$

$$t_{pHL} = 0,69R_n(C_1 + 2C_2 + 3C_3 + 4C_L)$$

- Weerstand R1 van transistor M1 komt voor in elke term
- → Heel belangrijk voor delay minimalisatie
- Capaciteit kan bepaald worden door de layout
- Delay is afhankelijk van de fan-in !!!

Vertraging versus aantal ingangen NAND

Het aantal ingangen > 4 wordt meestal vermeden!

Techniek 1 – transistoren groter maken

- Transistoren in serie groter maken (voor NAND)
- Serieweerstand wordt verlaagd → betere RC
- Let op:
 - Parasitaire cap vergroot → impact op RC,
 maar ook een grotere load aan de ingang voor de vorige trap
- Als de intrinsieke cap dominant is, "self-loading" en geen impact op vertraging

<u>Techniek 2 – transistoren progressief groter maken</u>

- Transistoren in serie groter maken (voor NAND)
- R1 < R2 < R3 < R4
 - → of transistor 1 > transistor 2 > ...
- Nuttig zolang de fan-out capaciteit domineert:
 - Als de intrinsieke cap dominant is, "self-loading" en geen impact op vertraging
- Moeilijk voor de layout

Techniek 3 – transistoren anders ordenen

 Het meest kritische ingangssignaal zo dicht mogelijk bij de uitgang plaatsen

<u>Techniek 4 – herstructureren van de logica</u>

- F = AND8 poort
- Kleinste oppervlakte voor de 8-input NAND en 2x4-input NAND
- Snelste poort is de combinatie van de 2-ingangspoorten

<u>Techniek 5 – Bij grote fan-out extra bufferen</u>

Focus op fan-in en minimaliseer fan-out

<u>Techniek 6 – layout is cruciaal!</u>

F = A(B+C+D)

Welke kiezen we als A de eerst veranderende ingang is?

universiteit hasselt

D

В

voor F

GND

Techniek 6 - layout is cruciaal!

• $F = \overline{A(B+C+D)}$

Enkel uitgangscap wordt opgeladen 3 drain caps

Interne en uitgangscap worden opgeladen 6 drain caps 3 source caps

Techniek 6 - layout is cruciaal!

• $F = \overline{A(B+C+D)}$

Interne cap wordt opgeladen 3 drain caps 1 source cap Interne cap wordt op voorhand ontladen 1 drain cap 3 source caps

Vertraging van complexe CMOS poorten

- Vertraging van de invertor
 - $-t_{p0} = instrinsic delay$

$$t_p = t_{p0} \left(1 + \frac{f}{\gamma} \right)$$

- $f = effectieve fanout, of well electrical effort (<math>f = C_{ext}/C_{ain}$)
- γ = technology factor (= C_{int}/C_{gin})
- Uitbreiding naar een complexe poort

$$t_p = t_{p0} \left(p + \frac{gf}{\gamma} \right) = t_{p0} d$$

- f = electrical effort
- -g = logical effort, ratio van de ingangscapaciteit vs de invertercapaciteit wanneer deze berekend zijn om dezelfde stroom te geven dan de invertor
- -p = parasitic delay ofwel de ratio tussen de intrinsieke delay van de complexe poort vs de invertor
- -d = relatieve poortvertraging tov de intrinsieke delay van dereferentie invertor

Parameters voor een 2-input NAND en NOR

g = ratio van de ingangscapaciteit vs de invertor *p* = ratio tussen de intrinsieke delay vs de invertor

$$t_p = t_{p0} \left(p + \frac{gf}{\gamma} \right) = t_{p0} d$$

•
$$p = 2$$

•
$$g = 5/3$$

•
$$p = 2$$

Complexere NAND/NOR

- Bereken dit nu eerst eens voor een 3-input NOR/NAND
- Daarna algemener voor een n-input NAND/NOR
- Vul de tabel verder in:
- We gaan er vanuit dat de ratio tussen PU en PD = 2

Poort	р	g
Invertor	1	1
NAND2	2	4/3
NAND3		
NAND-n		
NOR2	2	5/3
NOR3		
NOR-n		

Complexere NAND/NOR

Parasitic delay

- Onafhankelijk van de 'load'
- Onafhankelijk van 'W'
- Wordt groter bij grotere poort
- Logical effort
 - Ratio ingangscap vs invertor
 - Onafhankelijk van 'W'
 - Wordt groter bij stijgende complexiteit

Voor Wp/Wn = 2

Poort	р	g
Invertor	1	1
NAND2	2	4/3
NAND3	3	5/3
NAND-n	n	(n+2)/3
NOR2	2	5/3
NOR3	3	7/3
NOR-n	n	(2n+1)/3

Branching effort (vertakkingen)

- Branching effort ofwel effort door vertakkingen tussen stages in het pad
 - Een deel van de uitgangsstroom wordt gebruikt om de volgende stage op te laden
 - Een deel van deze stroom wordt gebruikt om een vertakking (offpath) op te laden

 $C_{on\ path}$ = load cap van de poort op het pad $C_{off\ path}$ = load cap van de aansluitingen op de vertakkingen

Bereken de F04 van een invertor

F04 = fan-out of 4

Logical effort Electrical effort Parasitic delay Poortvertraging

F04 vertraging is ongeveer

Bereken de F04 van een invertor

F04 = fan-out of 4

Logical effort g = 1

Electrical effort f = 4

Parasitic delay p = 1

Poortvertraging d = 5

F04 vertraging is ongeveer

200 ps in 0.6µm tech

60 ps in 180 nm tech

Veel designers kennen de F04 vertraging van hun technologie en kunnen daarmee vergelijken.

Ring oscillator

Bereken de snelheid van een N-stage ring oscillator

Ring oscillator bestaat uit oneven aantal stages (31)

Logical effort
Electrical effort

Parasitic delay

Poortvertraging

Aantal stages

Frequentie

0.6µm tech

Ring oscillator

Bereken de snelheid van een N-stage ring oscillator

Ring oscillator bestaat uit oneven aantal stages (31)

Logical effort g = 1

Electrical effort f = 1

Parasitic delay p = 1

Poortvertraging d = 2

Aantal stages N

Frequentie $f_{osc} = \frac{1}{2Nd} = \frac{1}{4N}$

0.6µm tech

31 stages

Frequentie = $\frac{1}{2Nt_{po}d}$ =200MHz

Vertraging van een multi-stage netwerk

Algemene vertraging van een pad D

$$D = \sum_{i=1}^{N} (p_i + g_i f_i) = \sum_{i=1}^{N} p_i + \sum_{i=1}^{N} h_i = \sum_{i=1}^{N} d_i$$

- Stage effort: h_i = g_if_i
- Electrical effort van het pad: $\mathbf{F} = \mathbf{C}_{out}/\mathbf{C}_{in} = \prod_{i=1}^{N} f_i$
- Logical effort van het pad: $G = \prod_{i=1}^{N} g_i$
- Branching effort van het pad: $\mathbf{B} = \prod_{i=1}^{N} b_i$
- Pad effort in total: H = GFB

Optimale effort per stage

We veronderstellen opnieuw dat elke stage dezelfde effort doe

$$h^N = H \rightarrow h = \sqrt[N]{H}$$

- Stage efforts: $h = g_1f_1 = g_2f_2 = ...$
 - Dit betekent ook: $g_1C_{ext,1}/C_{g,1} = g_2C_{ext,2}/C_{g,2} = ...$
- Effective fanout van elke stage: f_i = h/g_i
- Minimum pad delay

$$\widehat{D} = \sum_{i=1}^{N} (p_i + g_i f_i) = N \sqrt[N]{H} + P$$

Electrical effort

- Electrical effort
- = ratio tussen external load en ingangscapaciteit van een poort
- We veronderstellen dat een poort met grootte '1' (a=1) dezelfde drive heeft als een minimale invertor met ingangscap C_{ref}

Optimalizatie van een pad

f = electrical effort → ratio tussen external load cap van een poort tov de ingangscap

- → Zoek f, rekening houdend dat de stage effort voor elke stage dezelfde moet zijn
- → Reken uit om a, b, c te vinden!

Optimalizatie van een pad

f = electrical effort → ratio tussen external load cap van een poort tov de ingangscap

- → Zoek f, rekening houdend dat de stage effort voor elke stage dezelfde moet zijn
- → Reken uit om a, b, c te vinden!

Optimalizatie van een pad

f = electrical effort → ratio tussen external load cap van een poort tov de ingangscap

→ Zoek f, rekening houdend dat de stage effort voor elke stage dezelfde moet zijn

Effective fanout
Pad logical effort
Vertakkingen (geen)
Pad effort
Optimale stage effort
(Parasitaire delay)
(Minimale delay)

F =
$$C_L/C_{g,1}$$
 = 5
G = 1 x 5/3 x 5/3 x 1 = 25/9
B = 1
H = GFB = 125/9 = 13.9
 $\hat{h} = \sqrt[4]{13.9} = 1.93$
P = 1+3+2+1 = 7
 \hat{D} = P+N \hat{h} = 7+4*1.93 = 14.72

Optimalizatie van een pad

f = electrical effort → ratio tussen external load cap van een poort tov de ingangscap

→ Zoek f, rekening houdend dat de stage effort voor elke stage dezelfde moet zijn

Optimale stage effort

$$\hat{h} = \sqrt[4]{13.9} = 1.93$$

Met de optimale stage effort kunnen we f bepalen:

Electrical effort

$$f = \frac{\hat{h}}{g_i}$$

$$f_1 = \frac{1.93}{1} \\ = 1.93$$

$$f_1 = \frac{1.93}{1}$$
 $= 1.93$
 $f_2 = \frac{1.93}{5/3}$
 $= 1.16$

$$f_3 = \frac{1.93}{5/3}$$
 $= 1.16$
 $f_4 = \frac{1.93}{1}$
 $= 1.93$

$$f_4 = \frac{1.93}{1} = 1.93$$

Invertoren krijgen een grotere elektrische effort omdat ze beter zijn om loads aan te sturen.

Optimalizatie van een pad

f = electrical effort → ratio tussen external load cap van een poort tov de ingangscap

- → Zoek f, rekening houdend dat de stage effort voor elke stage dezelfde moet zijn
- → Reken uit om a, b, c te vinden!

$$f_1 = \frac{1.93}{1} \\ = 1.93$$

$$f_1 = \frac{1.93}{1}$$
 $= 1.93$
 $f_2 = \frac{1.93}{5/3}$
 $= 1.16$

$$f_3 = \frac{1.93}{5/3}$$
= 1.16
 $f_4 = \frac{1.93}{1}$
= 1.93

$$f_4 = \frac{1.93}{1} \\ = 1.93$$

$$a = \frac{f_1 g_1}{g_2}$$
 $b = \frac{a f_2 g_2}{g_3}$ $c = \frac{f_3 b g_3}{g_4}$ $c = \frac{5}{f_4 g_4}$
= 1.158 = 2.59 = 2.59

$$b = \frac{a f_2 g}{g_3}$$

= 1.34

$$c = \frac{f_3 b g_3}{g_4}$$

= 2.50

$$c = \frac{5}{f_4 g_4} = 2.59$$

Optimalizatie van een pad – simpele methode

f = electrical effort → ratio tussen external load cap van een poort tov de ingangscap

→ Optie om verder te gaan zonder f te berekenen

$$f_{1} = \frac{ag_{2}}{1g_{1}} = \frac{\hat{h}}{g_{1}} \xrightarrow{\text{yields}} \boldsymbol{a} = \frac{\hat{h}}{g_{2}} = 1.158$$

$$f_{2} = \frac{bg_{3}}{ag_{2}} = \frac{\hat{h}}{g_{2}} \xrightarrow{\text{yields}} \boldsymbol{b} = \frac{a\hat{h}}{g_{3}} = 1.34$$

$$f_{3} = \frac{cg_{4}}{bg_{3}} = \frac{\hat{h}}{g_{3}} \xrightarrow{\text{yields}} \boldsymbol{c} = \frac{b\hat{h}}{g_{4}} = 2.59$$

Oefening met vertakking

Bereken x en y zodat je de minste vertraging bekomt van A naar B

Oefening met vertakking

Bereken x en y zodat je de minste vertraging bekomt van A naar B

$$g_1 = 4/3$$
 $g_2 = 5/3$ $g_3 = 5/3$
 $f_1 = \frac{b_1 x g_2}{6g_1}$ $f_2 = \frac{b_2 y g_3}{x g_2}$ $f_3 = \frac{45}{y g_3}$
 $g_3 = 5/3$
 $g_4 = 5/3$
 $g_5 = 5/3$
 $g_7 = 5/3$
 $g_8 = 5/3$
 $g_9 = 5/3$

$$b_1 = \frac{x+2x}{x} = 3$$
 $b_2 = \frac{y+y}{y} = 2$

Effective fanout Pad logical effort Vertakkingen (geen) Pad effort Optimale stage effort (Parasitaire delay) Minimale delay

$$f_1 = \frac{b_1 x g_2}{6g_1} = \frac{\hat{h}}{g_1} \xrightarrow{\text{yields}} x = \frac{6\hat{h}}{b_1 g_2} = 6$$

F =
$$C_L/C_{g,1} = 45/8$$

G = $100/27$
B = $3 * 2 = 6$
H = GFB = 125
 $\hat{h} = \sqrt[3]{125} = 5$
P = $2+3+2=7$
 $\hat{D} = P+N \hat{h} = 7+3*5 = 22 = 4.4 FO4$

$$f_3 = \frac{45}{yg_3} = \frac{\hat{h}}{g_3} \xrightarrow{\text{yields}} y = \frac{45}{\hat{h}} = 9$$

Oefening met vertakking

Nu zetten we deze nog om naar transistorgroottes voor dezelfde stroom

$$g_1 = 4/3$$
 $g_2 = 5/3$

$$g_3 = 5/3$$

$$C_{q,2} = 5/3 * 6 = 10$$

Extra oefening

Welke optie is de snelste?

Extra oefening

Effective fanout
Pad logical effort
Vertakkingen (geen)
Pad effort
Optimale stage effort
(Parasitaire delay)
Minimale delay

F =
$$C_L/C_{g,1}$$
 = 8
G = $6/3$ = 2
B = 1
H = GFB = 16
 \hat{h} = $\sqrt[3]{16}$ = 2.5
P = 1+4+1 = 6
 \hat{D} = P+N \hat{h} = 6+3*2.5 = 13.5

Extra oefening

Welke optie is de snelste?

Effective fanout
Pad logical effort
Vertakkingen (geen)
Pad effort
Optimale stage effort
(Parasitaire delay)
Minimale delay

F =
$$C_L/C_{g,1} = 8$$

G = 20/9
B = 1
H = GFB = 160/9
 $\hat{h} = \sqrt[3]{H} = 2.60$
P = 1+2+2 = 5
 \hat{D} = P+N \hat{h} = 5+3*2.6 = 12.8

Optie 2 is de snelste

Welke optie is de snelste als Cin = C en Cout = 8C?

Welke optie is de snelste als Cin = C en Cout = 8C?

$$F = C_L/C_{g,1} = 8$$

 $G = 10/3$

$$B = 1$$

$$H = GFB = 80/3$$

$$\widehat{h} = \sqrt[2]{H} = 5.16$$

$$P = 8 + 1 = 9$$

$$\hat{D} = P + N \hat{h} = 19.32$$

$$F = C_L/C_{g,1} = 8$$

$$G = 6/3*5/3$$

$$B = 1$$

$$H = GFB = 240/9$$

$$\hat{h} = \sqrt[2]{H} = 5.16$$

$$P = 4+2 = 6$$

$$\hat{D} = P + N \hat{h} = 16.32$$

$$F = C_L/C_{g,1} = 8$$

$$G = 4/3*5/3*4/3$$

$$B = 1$$

$$H = GFB = 640/27$$

$$\hat{h} = \sqrt[4]{H} = 2.21$$

$$P = 2+2+2+1 = 7$$

$$\hat{D} = P + N \hat{h} = 15.82$$

Welke optie is de snelste als Cin = C en Cout = 25C?

Welke optie is de snelste als Cin = C en Cout = 25C?

$$F = C_L/C_{g,1} = 25$$

 $G = 10/3$

$$B = 1$$

$$H = GFB = 250/3$$

$$\widehat{h} = \sqrt[2]{H} = 9.12$$

$$P = 8 + 1 = 9$$

$$\widehat{D} = P + N \ \widehat{h} = 27.25$$

$$F = C_L/C_{g,1} = 25$$

$$G = 6/3*5/3$$

$$B = 1$$

$$H = GFB = 83.33$$

$$\hat{h} = \sqrt[2]{H} = 9.12$$

$$P = 4 + 2 = 6$$

$$\hat{D} = P + N \hat{h} = 24.25$$

$$F = C_L/C_{g,1} = 25$$

$$G = 4/3*5/3*4/3$$

$$B = 1$$

$$H = GFB = 74$$

$$\hat{h} = \sqrt[4]{H} = 2.93$$

$$P = 2+2+2+1 = 7$$

$$\hat{D} = P + N \hat{h} = 18.73$$

Is dit nu het ideale aantal stages?

Gevoeligheid van de delay

- Vertraging is binnen 15% als stage effort tussen 6 en 2.4 ligt.
- Wij kiezen opnieuw voor stage effort 4, delays zijn 2% tov min

Bereken de snelste optie voor de drie gevallen:

$$F = C_L/C_{g,1} = 25$$

$$G = 10/3$$

B = 1

$$H = GFB = 250/3$$

$$\widehat{N} =$$

$$\hat{h} =$$

$$P = 8+1 = 9$$

$$\widehat{D} = P + N \widehat{h} =$$

$$F = C_{\text{L}}/C_{\text{g},1} = 25$$

$$G = 6/3*5/3$$

$$B = 1$$

$$H = GFB = 83.33$$

$$\hat{N} =$$

$$\hat{h} =$$

$$P = 4+2 = 6$$

$$\widehat{D} = P+N \widehat{h} =$$

$$F = C_L/C_{g,1} = 25$$

$$G = 4/3*5/3*4/3$$

$$B = 1$$

$$H = GFB = 74$$

$$\hat{N} =$$

$$\hat{h} =$$

$$P = 2+2+2+1 = 7$$

$$\widehat{D} = P + N \widehat{h} =$$

Bereken de snelste optie voor de drie gevallen:

$$F = C_L/C_{g,1} = 25$$

$$G = 10/3$$

$$B = 1$$

$$H = GFB = 250/3$$

$$\widehat{N} = log_4 H = 3.2$$

$$\hat{h} = \sqrt[3]{H} = 4.37$$

$$P = 8 + 1 = 9$$

$$\hat{D} = P + N \hat{h} = 22.10$$

$$F = C_L/C_{g,1} = 25$$

$$G = 6/3*5/3$$

$$B = 1$$

$$H = GFB = 83.33$$

$$\widehat{N} = log_4 H = 3.2$$

$$\hat{h} = \sqrt[3]{H} = 4.37$$

$$P = 4+2 = 6$$

$$\hat{D} = P + N \hat{h} = 19.10$$

$$F = C_L/C_{q,1} = 25$$

$$G = 4/3*5/3*4/3$$

$$B = 1$$

$$H = GFB = 74$$

$$\widehat{N} = log_4 H = 3.1$$

$$\hat{h} = \sqrt[4]{H} = 2.93$$

$$P = 2+2+2+1 = 7$$

$$\hat{D} = P + N \hat{h} = 18.73$$

Invertoren voegen niets toe aan H

Limieten van logical effort

- Kip of het ei probleem
 - Je moet eerst G berekenen
 - Maar je kent het aantal stages niet zonder G
- Eenvoudig model
 - Houdt bv geen rekening met rise time effecten
- Extra iteratie nodig als er interconnects zijn
- Focust op max snelheid
 - Niet echt op min area/power voor een gegeven delay

Conclusie – logical effort

- Logical effort is zinvol om over vertragingen te denken
 - Numerische logical effort karakteriseert poorten
 - NANDs zijn sneller dan NORs in CMOS
 - Het snelste pad bekom je bij een stage effort van 4
 - Maar is niet zo gevoelig voor aantal stages of groottes
 - Minder stages is niet onmiddellijk snellere paden
 - Invertoren en NAND2 zijn het beste om grote caps aan te sturen

