Problem 1 Check, if the signals

a)
$$x(t) = e^{-2t} \cdot u(t)$$
; b) $x(t) = e^{j(2t + \pi/4)}$; c) $x(t) = \cos(t)$

are energy or power signals. u(t) is the unit step function. If possible, determine the energy E_{∞} and the average power P_{∞} .

Problem 2 Which of the following signals is periodic? u(t) is the unit step function.

a)
$$x(t) = 2 \cdot e^{j(t+\pi/4)} \cdot u(t)$$
; b) $x(t) = j \cdot e^{j10t}$; c) $x(t) = e^{(-1+j)t}$

If a signal is periodic, specify the period T.

Problem 3 Express the real part of each of the following signals in the form

$$A \cdot e^{-at} \cdot \cos(\omega t + \phi),$$

where A, a, ω , and ϕ are real numbers with A > 0 and $-\pi < \varphi \le \pi$:

a)
$$x(t) = -2$$

b)
$$x(t) = \sqrt{2} \cdot e^{j\pi/4} \cos(3t + 2\pi)$$

c)
$$x(t) = e^{-t} \cdot \sin(3t + \pi)$$
 d) $x(t) = j \cdot e^{(-2 + j100)t}$

d)
$$x(t) = i e^{(-2+j100)t}$$

Problem 4 Compute the convolution of the signals:

a)
$$x_1(t) = e^{2t} \cdot u(-t)$$
; $x_2(t) = u(t-3)$

b)
$$x_1(t) = \begin{cases} 1+t \; ; & 0 \le t \le 1 \\ 2-t \; ; & 1 < t \le 2 \quad ; \quad x_2(t) = \delta(t+2) + 2 \cdot \delta(t+1) \\ 0 \quad ; \text{ elsewhere} \end{cases}$$

c)
$$x_1(t) = u(t-3) - u(t-5)$$
; $x_2(t) = e^{-3t} \cdot u(t)$

d)
$$x(t) * u(t)$$

Problem 5 Derive the following FOURIER transform properties:

- a) Time and frequency shifting
- b) Scaling
- c) Differentiation and integration
- d) Convolution and product

Problem 6 Compute the FOURIER transforms of the signals:

a)
$$x(t) = \begin{cases} \cos(\omega_0 t); & t > 0 \\ 0; & t < 0 \end{cases}$$
 b) $x(t) = \begin{cases} \sin(\omega_0 t); & t > 0 \\ 0; & t < 0 \end{cases}$ c) $x(t) = \begin{cases} 1 - t; & 0 < t < 1 \\ 1 + t; & -1 < t < 0 \\ 0; & \text{elsewhere} \end{cases}$

c)
$$x(t) = \begin{cases} 1-t ; & 0 < t < 1 \\ 1+t ; & -1 < t < 0 \\ 0 ; & \text{elsewhere} \end{cases}$$

d)
$$x(t) = 1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$$
 e) $x(t) = t \cdot \left(\frac{\sin t}{\pi t}\right)^2$

Problem 7 The medium duration D and the medium bandwidth B of a signal are given by

$$D = \frac{1}{x_{\text{max}}} \int_{-\infty}^{\infty} x(t) dt , \quad B_{\omega} = \frac{1}{X_{\text{max}}} \int_{-\infty}^{\infty} X(\omega) d\omega , \quad B_{\omega} = 2\pi \cdot B$$

Calculate the product $D \cdot B_{\omega}$ for a rectangular impulse of width T. Aid: $\int_{0}^{\infty} \sin(ax) \cdot dx = \frac{\pi}{2\pi}$

Continuous-Time Signals

DSS-ex2-1 3.11.2020 Page 2

Answers

Problem 1 a) $P_{\infty} = 0$; $E_{\infty} = \frac{1}{4}$; b) $P_{\infty} = 1$; $E_{\infty} = \infty$; c) $P_{\infty} = \frac{1}{2}$; $E_{\infty} = \infty$

Problem 2 a) No; b) $T = \frac{\pi}{5}$; c) No

Problem 3

a)
$$A = 2$$
; $a = 0$; $\omega = 0$; $\varphi = \pi$

b)
$$A = 1$$
; $a = 0$; $\omega = 3$; $\phi = 0$

c)
$$A=1$$
; $a=1$; $\omega=3$; $\varphi=\frac{\pi}{2}$

c)
$$A = 1$$
; $a = 1$; $\omega = 3$; $\varphi = \frac{\pi}{2}$ d) $A = 1$; $a = 2$; $\omega = 100$; $\varphi = \frac{\pi}{2}$

Problem 4

a)
$$y(t) = \begin{cases} \frac{1}{2} \cdot e^{2(t-3)} & t \le 3 \\ \frac{1}{2} & t \ge 3 \end{cases}$$
...

a)
$$y(t) = \begin{cases} \frac{1}{2} \cdot e^{2(t-3)} & \text{for } t \le 3 \\ \frac{1}{2} & \text{for } t \ge 3 \end{cases}$$
 b) $y(t) = \begin{cases} 3+t & -2 < t \le -1 \\ 4+t & -1 < t \le 0 \\ 2-2t & 0 < t \le 1 \\ 0 & \text{elsewhere} \end{cases}$

c)
$$y(t) = \begin{cases} 0 & -\infty < t \le 3\\ \frac{1}{3} \left[1 - e^{-3(t-3)} \right] & \text{for } 3 < t \le 5\\ \frac{1}{3} \left(1 - e^{-6} \right) \cdot e^{-3(t-5)} & 5 < t < \infty \end{cases}$$
 d) $\int_{-\infty}^{t} x(\tau) d\tau$

$$\mathrm{d}) \int_{-\infty}^t x(\tau) \,\mathrm{d}\,\tau$$

Problem 5 See lecture

Problem 6

$$\mathbf{a})\,X(\mathbf{j}\,\omega) = \frac{\pi}{2} \Big(\delta(\omega + \omega_0) + \delta(\omega - \omega_0) \Big) - \frac{\mathbf{j}\,\omega}{\omega^2 - \omega_0^2} \,, \\ X(f) = \frac{1}{4} \Big(\delta(f + f_0) + \delta(f - f_0) \Big) - \frac{\mathbf{j}\,f}{2\pi \cdot \Big(f^2 - f_0^2\Big)} \Big) + \frac{1}{2\pi \cdot \Big(f^2 -$$

$$b) X(j\omega) = \frac{j\pi}{2} \left(\delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right) - \frac{\omega_0}{\omega^2 - \omega_0^2}, X(f) = \frac{j}{4} \left(\delta(f + f_0) - \delta(f - f_0) \right) - \frac{f_0}{2\pi \cdot \left(f^2 - f_0^2 \right)}$$

c)
$$X(j\omega) = \sin^2\left(\frac{\omega}{2}\right) = \operatorname{sinc}^2\left(\frac{\omega}{2\pi}\right)$$
 e) $X(j\omega) = \begin{cases} j/2\pi ; -2 \le \omega < 0 \\ -j/2\pi ; 0 \le \omega < 2 \\ 0 ; \text{elsewhere} \end{cases}$

d)
$$X(j\omega) = 2\pi\delta(\omega) + \pi \left[e^{j\pi/8} \cdot \delta(\omega - 6\pi) + e^{-j\pi/8} \cdot \delta(\omega + 6\pi) \right]$$

Problem 7 $D \cdot B_{\omega} = 2\pi$, $D \cdot B = 1$