

प्रकाश का अपवर्तन

REFRACTION OF LIGHT

प्रश्न । प्रकाश के अपवर्तन से आप क्या समझते हैं ?

उत्तर – किसी माध्यम से संचारित होनेवाला प्रकाश जब एक माध्यम से दूसरे माध्यम में प्रवेश करता है तो प्रकाश की दिशा में परिवर्तन हो जाता है। प्रकाश की दिशा में परिवर्तन की यह घटना प्रकाश का अपवर्तन कहलाती है।

Rarer to Denser —लम्ब की ओर झुक जाती है।

Denser to rarer &लम्ब से दूर हट जाती है।

अर्थात् विरल से सघन में जाने पर लम्ब की ओर झुक जाती है। सघन से विरल में जाने पर लम्ब से दूर हट जाती हैं।

Q. No.-1

CHITCHING A	N हवा
STUTE A	,
	ত্র জুল
N¹	Ba

(विरल से संघन की ओर प्रकाश का वेग अधाकतम)

चित्र-1

प्रश्न 2.अपवर्तन के नियमों को लिखें।

अथवा,

स्नेल के नियम को लिखें।

उत्तर - अपवर्तन के दो नियम हैं:-

- (i) आपतित किरण, अपवर्तित किरण एवं आपतन बिंदु पर डाला गया लम्ब तीनों एक ही तल में होते हैं।
- (ii) किसी खास रंग के प्रकाश एवं खास दो माध्यमों के लिए आपतन कोण की ज्या एवं अपवर्तन कोण की ज्या में एक निश्चित अनुपात होता है।

$$\frac{\sin i}{\sin r} = 1$$
 नियतांक $\frac{\sin i}{\sin r} = n_{21}$ by $R.B.$ $\frac{\sin i}{\sin r} = \frac{n_2}{n_1}$ $\frac{\sin i}{\sin r} = \frac{n_2}{n_1}$

इसे स्नेल का नियम का सममित रूप कहा जाता है। इस नियम की खोज 1621 ई. में स्नेल ने की।

प्रश्न 3.अपवर्तनांक (Refractive Index) से आप क्या समझते हैं ?

उत्तर – किसी माध्यम में प्रकाश की किरण को दिशा बदलने की क्षमता को उसका अपवर्तनांक कहते हैं।

अथवा

किसी माध्यम का अपवर्तनांक शून्य में प्रकाश की चाल (a) तथा उस माध्यम में प्रकाश की चाल (v) के अनुपात को अपवर्तनांक कहते हैं। इसे a या उ द्धम्यूऋ से सूचित किया जाता है।

किसी माध्यम का अपवर्तनांक =
$$\frac{}{}$$
 शून्य में प्रकाश की चाल किसी माध्यम में प्रकाश की चाल किसी माध्यम में प्रकाश की चाल

प्रश्न 4.आपेक्षिक अपवर्तनांक (Relative Refractive Index) किसे कहते हैं ?

उत्तर – दो माध्यमों के निरपेक्ष अपर्वतनांकों के अनुपात को आपेक्षित अपर्वतनांक कहते हैं। n_1 माध्यम – n_2 को निरपेक्ष अपर्वतनांक n_1 एवं n_2 हो तो माध्यम – n_2 का माध्यम – n_2 के सापेक्ष अपर्वतनांक को प्रायः n_2 से निरूपित किया जाता है। $n_2 = \frac{n_2}{n_1}$

क्राउन काँच - 1.52, क्लिंट काँच - 1.65, पानी - 1.33, हीरा - 2.42 नोट :- हवा का अपवर्तनांक सबसे कम तथा हीरा का सबसे अधिक होता है।

प्रश्न 5.पानी में रखा हुआ सिक्का ऊपर उठा हुआ क्यों प्रतीत होता है ?

उत्तर - प्रकाश के अपवर्तन के कारण पानी में रखा हुआ सिक्का ऊपर उठा हुआ प्रतीत होता है। पानी के अंदर बर्तन में सिक्का कि स्थिति P है। PA तथा PB दो आपतित किरणें निकलती हैं। A तथा B से ये किरणें वायु में अपवर्तित होती हैं। अभिलम्ब से दूर हट जाती हैं। क्योंकि पानी, वायु की अपेक्षा

सघन माध्यम है। ये दोनों झुकी किरणें आँख पर P बिंदु पर आभासी प्रतिबिम्ब P' पर देखी

जाती है। ऐसा प्रतीत होता है कि पानी में सिक्का की वास्तविक स्थिति P' पर है लेकिन P' पर सिक्का का आभासी स्थिति है जो P से ऊपर है। अत: पानी में रखा गया सिक्का देखने पर कुछ उठा हुआ मालूम पड़ता है।

प्रश्न 6.पानी के अंदर आधी डूबी हुई पेंसिल या काँच की छड़ टेढ़ी मालूम पड़ती है। स्वच्छ चित्र द्वारा समझावें।

उत्तर - पानी में अंशतः डूबी हुई पेंसिल अथवा काँच की छड टेढी प्रतीत होती है। यह घटना प्रकाश के अपवर्तन पर आधारित है। प्रकाश की किरणें सघन माध्यम से विरल माध्यम की ओर चलती है तो यह अभिलम्ब से दूर हट

जाती है। दर्शक P बिंदु की स्थिति P' पर देखता है। अतः पेंसिल के नीचे का छोर थोड़ा ऊपर उठा हुआ तथा पेंसिल अपवर्तक सतह पर थोड़ा टेढ़ा दिखता है।

प्रश्न 7.पानी से भरी बाल्टी की गहराई कम क्यों मालूम पड़ती है ?

पानी से भरी बाल्टी की गहराई प्रकाश के अपवर्तन के कारण कम प्रतीत होती है। पानी से भरी बाल्टी के पेंदी पर की एक सिरा () से आती किरणें पानी की सतह पर हवा में आती है तो अभिलम्ब से दूर हटकर आंख पर पहुँचती है। ये किरणें । से आती हुई प्रतीत होती है। बाल्टी उथली प्रतीत होती है। अर्थात् बाल्टी की गहराई कम प्रतीत होती है।

चित्र 2.10 पानी से भरी बाल्टी की गहराई का कम प्रतीत होना

उत्तर -तीन फलकों से घिरे हुए पारदर्शक माध्यम को प्रिज्म कहते हैं। इसमें कोई भी

फलक एक – दूसरे के समानान्तर नहीं होता। इसमें पाँच सतहें होती हैं जिसमें दो त्रिभुजाकार एवं तीन सतहें आयताकार होती हैं।

प्रश्न १.प्रिज्म से होकर प्रकाश के अपवर्तन को दिखावें तथा संक्षिप्त वर्णन करें।

उत्तर – चित्र मेश ABC एक प्रिज्म है।

< A को प्रिज्म का कोण कहते

हैं। इसमें MN आपतित किरण,

NP अप र्तित किरण तथा PQ

निर्गत किरण है। I_1 अपवर्तन

कोण तथा I_2 निर्गत कोण है। I_1 का संगत अपवर्तन कोण I_1 तथा क्राप्टिंग को संगत के प्रवर्तन कोण I_2 है।

 $|<|_1+<|_2-\cdots<A+<\delta|$

प्रश्न 10. विचलन कोण (Angle of Deviation) से आप क्या समझते हैं

उत्तर - प्रकाश की किरण जब प्रिज्म से होकर गुजरती है तो आपतित किरण एवं निर्गत किरण के नीचे बने कोण को विचलन कोण कहते हैं। इसे δ (डेल्टा) से सूचित किया जाता है।

प्रश्न ।।. लेंस किसे कहते हैं ? ये कितने प्रकार के होते हैं ? परिभाषित करें।

उत्तर - दो फलकों से घिरे हुए पारदर्शक माध्यम को लेंस कहते हैं। जिसमें कम - से - कम एक सतह गोलीय होता है।

अथवा

दो पारदर्शक गोलों के उभयनिष्ठ भाग को लेंस कहते हैं। लेंस दो प्रकार के होते हैं:-

(i) उत्तल लेंस (Convex Lens) - जिस लेंस की सतहें बीच में बाहर की ओर उभरी हुई रहती है या जिस लेंस की मोटाई बीच में अधिक रहती है, उसे उत्तल लेंस

कहते हैं।

(ii) अवतल लेंस (Concave Lens)&जिस लेंस की सतहें बीच में अंदर की ओर झुकी हुई रहती है अथवा जिस लेंस की मोटाई बीच में कम तथा किनारों पर अधिक रहती है, उसे अवतल लेंस कहते हैं।

प्रश्न 12. लेंस के द्वारक से आप क्या समझते हैं ?

उत्तर - लेंस के घेरे के व्यास को लेंस का द्वारक कहते हैं। चित्र में MON द्वारक है।

प्रश्न 13. लेंस के बक्रता केन्द्र (Centre of Curvature) एवं वक्रता ऋिया (Radious of Curvature) की परिभाषा दें।

उत्तर - जिन दो पारदर्शक गोलों का उभयनिष्ठ भाग एक लेंस होता है। उन गोलों के केन्द्रों को वक्रता का केन्द्र तथा उनकी त्रिज्याओं को वक्रता की ऋिया कहते हैं।

चित्र में C_1 तथा C_2 वक्रता का केन्द्र तथा r_1 एवं r_2 वक्रता की त्रिज्या है।

0

fp = &15

प्रश्न १४. प्रधान अक्ष (Principle axis) fdl ऽ कहते हैं ?

उत्तर — लेंस के वक्रता के केन्द्रों से गुजरने वाली काल्पनिक रेखा प्रधान अक्ष कहलाती है। चित्र में C_1OC_2 प्रधान अक्ष है। P

प्रश्न 15. प्रकाशीय केन्द्र (Optical Centre) से आप क्या समझते हैं ?

उत्तर - लेंस का वह बिंदु जिससे गुजरने वाली किरण के लिए आपतित किरण एंव

निर्गत किरण समानान्तर हो जाते हैं, उसे प्रकाशीय केन्द्र कहते हैं। चित्र में इसे **O** से दिखाया गया है।

लेंस की सभी दूरियाँ प्रकाशीय केन्द्र से मापी जाती है।

प्रश्न 16. लेंस के फोकस तथा फोकसान्तर से आप क्या समझते हैं ?

उत्तर - लेंस के प्रधान अक्ष के समानान्तर आती हुई किरणें जिस बिंदु पर संसृत होती है या जिस बिंदु पर अपसृत होती हुई प्रतीत होती है, उस बिंदु को लेंस का फोकस कहते हैं।

लेंस के प्रकाशीय केन्द्र O तथा फोकस (६) के बीच की दूरी को फोकस दूरी कहते हैं।

इसे चित्र में f से दिखाया गया है।

प्रश्न 17. उत्तल लेंस तथा अवतल लेंस में अंतर स्पष्ट करें। उत्तर -उत्तल लेंस तथा अवतल लेंस में निम्नलिखित अंतर है: -

Ø0	उत्तल लेंस	अवत्तल लेंस
(i)	किनारे पर पतला लेकिन बीच में	किनारे पर मोटा एवं बीच में पतला
1	मोटा होता है।	होता है।
(ii)	उत्तल लेंस द्वारा वास्तविक एवं	अवतल लेंस द्वारा केवल काल्पनिक
	काल्पनिक दोनों प्रकार के प्रतिबिंब	प्रतिबिम्ब ही बनता है।
	बनते हैं।	
(iii)	उत्तल लेंस का फोकस वास्तविक	अवतल लेंस का फोकस काल्पनिक
	होता है।	होता है।
(iv)	उत्तल लेंस की फोकस दूरी ध	अवतल लेंस की फोकस दूरी ;णात्मक
	ानात्मक होती है इसलिए इसकी	होती है इसलिए इसकी क्षमता ;णात्मक
	क्षमता धानात्मक होती है।	होती है।
(v)	उत्तल लेंस को अभिसारी लेंस कहते	अवतल लेंस को अपसारी लेंस कहते
	हैं।	हैं।

प्रश्न 18. उत्तल लेंस को अभिसारी तथा अवतल लेंस को अपसारी लेंस क्यों कहते हैं ?

उत्तर - उत्तल लेंस से आपितत समानान्तर किरण पुंज लेंस से निर्गत होने के बाद संसृत होती है अर्थात् एक बिंदु पर एक इहो जाती है। इसी कारण उत्तल लेंस को अभिसारी लेंस कहते हैं। इसे संसृतकारी लेंस भी कहा जाता है।

अवतल लेंस से आपतित समानान्तर किरण पुंज लेंस से निर्गत होने पर अपसृत होती है अर्थात् फैल जाती है। इसी कारण अवतल लेंस को अपसारी लेंस कहते हैं। इसे अपसृतकारी लेंस भी कहा जाता है।

प्रश्न 19. उत्तल लेंस में विभिन्न दूरियों पर रखे वस्तु का प्रतिबिम्ब बनावें।

उत्तर 🗕 🛭

 (1) जब वस्तु अनन्त पर स्थित हो।

 A

 B

- (a) वस्तु का प्रतिबिम्ब ॰ पर बनता है।
- (b) यह प्रतिबिम्ब वास्तविक, उल्टा तथा वस्तु से बहुत ही छोटा होता है।

(2) जब वस्तु अनन्त तथा 2F' के बीच स्थित हो।

- (a) वस्तु का प्रतिबिम्ब F तथा 2F के बीच बनता है।
- (b) यह प्रतिबिम्ब वास्तविक, उल्टा तथा वस्तु से छोटा होता है।
- (3) जब वस्तु लेंस की दूनी फोकस दूरी (2F') पर स्थित हो।

- (a) वस्तु का प्रतिबिम्ब 2F पर बनता है।
- (b) यह प्रतिबिम्ब वास्तविक, उल्टा तथा वस्तु के बराबर होता है।
- (4) जब वस्तु F' तथा 2F' के बीच स्थित हो।

- (a) वस्तु का प्रतिबिम्ब 2F से दूर बनता है।
- (b) यह प्रतिबिम्ब वास्तविक, उल्टा तथा वस्तु से बड़ा होता है।

(5) जब वस्तु लेंस के फोकस (F') पर स्थित हो।

- (a) वस्तु का प्रतिबिम्ब अनन्त पर बनता है।
- (b) यह प्रतिबम्ब वास्तविक, उल्टा तथा वस्तु से बड़ा होता है।
- (6) जब वस्तु लेंस के मुख्य फोकस तथा लेंस के बीच स्थित हो।

- (a) वस्तु का प्रतिबम्ब लेंस के पीछे बनता है।
- (b) यह प्रतिबिम्ब काल्पनिक, सीधा तथा वस्तु से बड़ा होता है।

प्रश्न 20. लेंस की क्षमता (Power of Lens) क्या है ? इसका माऋ लिखें।

उत्तर – किसी लेंस की क्षमता उस लेंस के फोकसान्तर का व्युत्क्रम होता है। यदि लेंस की क्षमता (P) तथा फोकसान्तर (f) हो तो $P = \frac{1}{f}$

SI प)ति में लेंस की क्षमता का मात्रक डाइऑप्टर (Diopter) होता है। इसे D से सूचित करते हैं। इसे मीटर में मापा जाता है। उत्तल लेंस की क्षमता धनात्मक तथा अवतल लेंस की क्षमता ;णात्मक होती है।

प्रश्न 21. 1 Diopter की परिभाषा दें।

उत्तर – Diopter – 1 Diopter उस लेंस की क्षमता है जिसकी फोकस दूरी 1 m होती है। $1\, \text{Diopter} = 1\, D = 1\, \text{m}^{-1}$

प्रश्न 22. लेंस के संयोजन की क्षमता से आप क्या समझते हैं ? इसका सूत्र लिखें।

उत्तर – जब अनेक पतले लेंसों को एक – दूसरे के सम्पर्क में रखा जाता है तो संयोजन की क्षमता उन लेंसों के अलग – अलग क्षमताओं के बीजीय योग के बराबर होता है।

यदि अनेक लेंस जिनकी क्षमतायें क्रमशः P_1 , P_2 , P_3 हो और उन्हें परस्पर सम्पर्क में रखा जाए तो संयोजन की क्षमता

$$P = P_1 + P_2 + P_3 + \dots$$

लेंसों के ऐसे संयोजन का उपयोग, कैमरा, सूक्ष्मदर्शी तथा दूरबीन में किया जाता है।

प्रश्न 23.उत्तल लेंस तथा अवतल लेंस के दो-दो उपयोग बतावें।

- उत्तर उत्तल लेंस के उपयोग:-
 - (i) इसका उपयोग सूक्ष्मदर्शी, दूरबीन तथा फोटो कैमरा में किया जाता है।
 - (ii) दीर्घ दृष्टि दोष को दूर करने में इसका उपयोग होता है। अवतल लेंस के उपयोग-
 - (i) इसका उपयोग गैलेलियो के दूरबीन में नेत्र्का के रूप में होता है।
 - (ii) इसका उपयोग निकट दृष्टिदोष दूर करने में किया जाता है।
- प्रश्न 24.आपको एक उत्तल, अवतल तथा काँच की प्लेट दी गयी है। उनकी सतहों को बिना छुए कैसे पहचानेंगे ?
- उत्तर बिना स्पर्श किये उत्तल, अवतल तथा काँच की प्लेट को पहचानने के लिए बारी-बारी से किसी पुस्तक के एक पृष्ठ के निकट लाते हैं। छपे अक्षरों का निरीक्षण करते हैं।
 - (i) यदि छपे अक्षर अपने वास्तविक आकार से बड़े दिखाई पड़ते हैं तो यह उत्तल लेंस होता है।
 - (ii) यदि छपे अक्षर अपने वास्तविक आकार से छोटे दिखाई पड़ते हैं तो यह अवतल लेंस होता है।
 - (iii) यदि छपे अक्षर अपने वास्तविक आकार के बराबर दिखाई पड़ता है तो यह काँच की प्लेट होता है।

प्रश्न 25. पानी का अपवर्तनांक 1033 है। इस कथन का क्या तात्पर्य है ?

$$n_W = \frac{300000 \text{ Km/s}}{225000 \text{ Km/s}} = \frac{\overset{4}{300}}{\overset{2}{225}} = \frac{\overset{4}{3}}{3} = 1.33$$

हवा में प्रकाश की चाल पानी में प्रकाश की चाल के 1033 अर्थात् $\frac{4}{3}$ गुनी होती है।

प्रश्न 26. पार्श्विक विस्थापन (Lateral Displacement) से आप क्या समझते हैं ?

उत्तर - काँच स्लैब से निकलने वाली निर्गत किरण तथा आपतित किरण के मूल पथ के बीच लाम्बिक दूरी को पार्श्विक विस्थापन कहते हैं।

चित्र में DR = x पाईविक विस्थापन है।

ापतित μ_a μ_a μ_a μ_a μ_a μ_a μ_b μ_b

Ni

प्रश्न 27.किन - किन कारकों पर पार्श्विक विस्थापन निर्भर करते हैं ?

- उत्तर निम्न कारकों पर पार्श्विक विस्थापन निर्भर करते हैं।
 - (i) पार्श्विक विस्थापन काँच स्लैब के मुटाई का सीधा समानुपाती होता है।
 - (ii) पार्श्विक विस्थापन आपतन कोण का सीधा समानुपाती होता है।
 - (iii) पार्श्विक विस्थापन काँच के अपवर्तनांक का सीधा समानुपाती होता है।
 - (iv) पार्श्विक विस्थापन आपतित किरण के तरंगदैर्घ्य का व्युत्क्रमानुपाती होता है।

प्रश्न 28. उत्तल लेंस में सिद्ध करें कि $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

अथवा, किसी उत्तल लेंस में वस्तु की दूरी (u), प्रतिबिम्ब की दूरी (v) तथा फोकस दूरी (f) में संबंध स्थापित करें।

उत्तर – माना कि चित्र में MN एक उत्तल लेंस है। 2F' से अनन्त दूरी पर वस्तु PQ स्थित है। जिसका प्रतिबिम्ब IB पर बनता है।

 Δ POQ तथा Δ IOB समरूप हैं।

$$\frac{\mathsf{IB}}{\mathsf{PQ}} = \frac{\mathsf{OI}}{\mathsf{OP}} \; \dots \; (i)$$

 \triangle AOF तथा \triangle BIF समरूप हैं।

$$\frac{\mathsf{IB}}{\mathsf{OA}} = \frac{\mathsf{IF}}{\mathsf{OF}} \quad \dots \quad (ii)$$

$$(PQ = OA)$$

समी. (i) तथा समी. (ii) से, SHA

$$\frac{\text{OI}}{\text{OP}} = \frac{\text{JF}}{\text{OF}}$$

$$\frac{OI}{OP} = \frac{OI - OF}{OF}$$

$$\frac{v}{-u} = \frac{v - f}{f}$$

$$vf = -u (v - f)$$

$$vf = -uv + uf$$

दोनों तरफ *u, v, f* से भाग देने पर,

$$\frac{\text{vf}}{\text{uvf}} = \frac{-\text{uv}}{\text{uvf}} + \frac{\text{uf}}{\text{uvf}}$$

$$\frac{1}{u} = -\frac{1}{f} + \frac{1}{v}$$

$$\frac{1}{u} = \frac{1}{f} + \frac{1}{v}$$

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

प्रश्न 30. अवतल लेंस में सि) करें कि $\frac{1}{V} - \frac{1}{U} = \frac{1}{f}$

अथवा, किसी अवतल लेंस में वस्तु की दूरी (u), प्रतिबिम्ब की दूरी (v) तथा फोकस दूरी (f) में संबंध स्थापित करें।

माना कि PQ एक अवतल लेंस है। इसका प्रकाशीय केन्द्र (O) तथा F एवं उत्तर -F' प्रथम एवं द्वितीय फोकस है। F से कुछ दूरी पर वस्तु AB रखी गयी है जिसका

चिन्ह परिपाटी से,

$$OI = + \nu$$

$$\mathbf{OP} = -u$$

$$\mathbf{OF} = +f$$

प्रतिबिम्ब A'B' पर बनता है। समकोण \triangle OAB तथा \triangle OA'B' समरूप हैं। (A-A-A) (समरूपता प्रमेय से)

$$\frac{AB}{A'B'} = \frac{OB}{OB'} \qquad \qquad \dots (i)$$

इसी प्रकार, समकोण △ FOM तथा △ A'B'F समरूप हैं।

समी. (i) तथा समी. (ii) से,

$$\frac{-u}{-v} = \frac{-f}{-f+v}$$

$$\frac{\mathbf{u}}{\mathbf{v}} = \frac{-\mathbf{f}}{-\mathbf{f} + \mathbf{v}}$$

$$u\left(v-f\right) =-vf$$

$$uv - uf = -vf$$

दोनों तरफ u, v, f से भाग देने पर,

$$\frac{\mathbf{u}\mathbf{v}}{\mathbf{u}\mathbf{v}\mathbf{f}} - \frac{\mathbf{u}\mathbf{f}}{\mathbf{u}\mathbf{v}\mathbf{f}} = \frac{-\mathbf{v}\mathbf{f}}{\mathbf{u}\mathbf{v}\mathbf{f}}$$

$$\frac{1}{f} - \frac{1}{v} = \frac{1}{u}$$

$$\frac{1}{f} = \frac{-1}{u} + \frac{1}{v}$$

$$\frac{1}{v} = \frac{R}{v}$$

$$\frac{1}{v} = \frac{R}{v}$$

$$\frac{1}{f} = \frac{-1}{u} + \frac{1}{v}$$

$$\boxed{\frac{1}{u} - \frac{1}{v} = \frac{1}{f}}$$

प्रश्न 29. आवर्धन किसे कहते हैं ? गोलीय लेंस के सूत्र पर आधारित आवर्धन का सूत्र स्थापत करें।

लेंस के द्वारा बने प्रतिबिम्ब की ऊँचाई (h_2) एंव वस्तु की ऊँचाइ $l(h_1)$ के अनुपात को आवर्धन कहा जाता है। $m = \frac{h_2}{h_1}$

चित्र में उत्तल लेंस द्वारा वस्तु AB का प्रतिबिम्ब A'B' पर बनता है। ΔAOB तथा Δ A'OB' समरूप है।

$$\frac{h_1}{-h_2} = \frac{-u}{v}$$

$$\frac{h_1}{h_2} = \frac{u}{y}$$

$$\frac{h_2}{h_1} = \frac{v_1}{u}$$

$$m = \frac{v}{u}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

 $\frac{1}{1}$ दोनों तरफ v से गुणा करने पर,

$$\frac{x}{x} - \frac{v}{u} = \frac{v}{f}$$

$$1 - \frac{v}{u} = \frac{v}{f}$$

$$-\frac{\mathbf{v}}{\mathbf{u}} = \frac{\mathbf{v}}{\mathbf{f}} - 1$$

$$\frac{v}{u} = \frac{v}{f} - 1$$

$$\frac{v}{u} = \sqrt{1 - \frac{v}{f}}$$

$$\frac{v}{u} = \sqrt{1 - \frac{v}{f}}$$

$$\frac{v}{u} = \sqrt{1 - \frac{v}{f}}$$

$$\frac{v}{u} = 1 - \frac{v}{f}$$

$$m=1-\frac{v}{f}$$

चिन्ह परिपाटी से,

$$\mathbf{A'B'} = -h_2$$

$$AB = h_1$$

$$OB = -u$$

$$OB' \neq v$$

 $\left(\mathbf{m} = \frac{\mathbf{v}}{\mathbf{u}}\right)$

प्रश्न 30. क्रांतिक कोण से आप क्या समझते हैं ?

उत्तर – जब प्रकाश की किरण सघन माध्यम से विरल माध्यम से प्रवेश करती है तो तिरछी हो जाती है। इस अवस्था में अपवर्तन कोण आपतन कोण से बड़ा हो जाता है। जब आपतन कोण को बढ़ाया जाता है तो अपवर्तन कोण भी बढ़ जाता है। एक समय यह कोण 90° का हो जाता है। इस अपवर्तन कोण के लिए आपतन कोण का मान 90° का हो जाता है जो क्रांतिक कोण कहलाता है। इसे C से सूचित किया जाता है।

प्रश्न 3 । पूर्ण आंतरिक परावर्तन से आप क्या समझते हैं ?

उत्तर -यिंद संघन माध्यम से विरल माध्यम की ओर आपतित किरण के लिए परावर्तन कोण का मान क्रांतिक कोण से थोड़ा भी अधिक हो जाता है तो प्रकाश की किरण पुनः संघन माध्यम में लौट जाती है। इस घटना को पूर्ण आंतरिक परावर्तन कहते हैं।

हीरा का चमकना, तारों का टिमटिमाना, तथा मृगमरीचिका की घटना प्रकाश के पूर्ण आंतरिक परावर्तन के कारण घटित होती है।

