USTHB

Faculté de Mathématiques Séries chronologiques 1

Corrigé des exercices Série N°2

Exercice 1

 $\{X_t\}$ est un processus stationnaire tel que $E(X_t) = \mu, \forall t$. Le meilleur prédicteur au sens de l'erreur quadratique moyenne s'obtient en trouvant a et b qui minimisent $S(a,b) = E(X_{n+h} - aX_n - b)^2$.

$$\frac{\partial S(a,b)}{\partial a} = 0 \text{ et } \frac{\partial S(a,b)}{\partial b} = 0 \Leftrightarrow \begin{cases} \frac{\partial S(a,b)}{\partial b} = -2E(X_{n+h} - aX_n - b) = 0 \\ \frac{\partial S(a,b)}{\partial a} = -2E\left[(X_{n+h} - aX_n - b)X_n\right] = 0 \end{cases}$$
(1)

De (1) on tire : $b = \mu(1-a)$. On remplace, dans (2), b par cette valeur. On obtient :

$$E[(X_{n+h} - \mu - a(X_n - \mu)X_n] = 0 (3)$$

(3) équivaut à $E\left[(X_{n+h}-\mu-a(X_n-\mu)(X_n-\mu)\right]=0$ car $E\left[(X_{n+h}-\mu-a(X_n-\mu)(-\mu)\right]=0$, étant donné que $E(X_t)=\mu, \forall t$. On déduit que $\gamma_h-a\gamma_0=0$ d'où $a=\frac{\gamma_h}{\gamma_0}=\rho_h$. Et donc $b=\mu(1-\rho_h)$.

Exercice 2

A et B sont deux v.a. non corrélées, centrées-réduites. $X_t = A\cos(\omega t) + B\sin(\omega t)$. On doit vérifier que les caractéristiques sont invariantes dans le temps.

- Le processus $\{X_t\}$ est du second ordre car, $E(X_t^2) = E(A\cos(\omega t) + B\sin(\omega t))^2 = 1$ (à vérifier).
- $E(X_t) = \cos(\omega t)E(A) + \sin(\omega t)E(B) = 0, \forall t$. Ce processus est stationnaire en moyenne.
- $Cov(X_t, X_{t-h}) = Cov(A\cos(\omega t) + B\sin(\omega t), A\cos(\omega(t-h)) + B\sin(\omega(t-h))$

$$=E([A\cos(\omega t)+B\sin(\omega t)]\left[A\cos(\omega(t-h)+B\sin(\omega(t-h))\right])=\cos(\omega t)\cos(\omega(t-h)E(A^2)+\sin(\omega t)\sin(\omega(t-h)E(B^2))$$

 $=\cos((\omega t)-\omega(t-h))=\cos(\omega h)=\gamma_h, \forall t.$ Elle ne dépend que de l'écart entre les instants.

On conclut que le processus $\{X_t\}$ est stationnaire au second ordre.

Exercice 3

1) Le processus $X_t = \epsilon_t + 0.3\epsilon_{t-1} - 0.4\epsilon_{t-2}$, où $\{\epsilon_t\} \sim WN(0,1)$ est centré. Il est du second ordre car $E(X_t^2) = \sigma_\epsilon^2(1+0.09+0.16) = 1.25\sigma_\epsilon^2 < \infty$. $\sigma_\epsilon^2 = 1$. $\gamma_h^X = E(X_t X_{t-h}) = E(\epsilon_t + 0.3\epsilon_{t-1} - 0.4\epsilon_{t-2})(\epsilon_{t-h} + 0.3\epsilon_{t-h-1} - 0.4\epsilon_{t-h-2})$. Ainsi

$$\gamma_h^X = \begin{cases} 1.25 & \text{si } h = 0 \\ (0.3 - 0.12) & \text{si } h = \pm 1 \\ -0.4 & \text{si } h = \pm 2 \\ 0 & \text{sinon} \end{cases} \quad \text{(On d\'eduit } \rho_h^X = \begin{cases} 1 & \text{si } h = 0 \\ 0.18/1.25 & \text{si } h = \pm 1 \\ -0.4/1.25 & \text{si } h = \pm 2 \\ 0 & \text{sinon} \end{cases}$$

Il est du second ordre car $E(Y_t^2) = 0.25(1 + 1.44 + 2.56) = 1.25 < \infty$.

$$\gamma_h^Y = E(Y_t Y_{t-h}) = E(\widetilde{\epsilon}_t - 1.2\widetilde{\epsilon}_{t-1} - 1.6\widetilde{\epsilon}_{t-2})(\widetilde{\epsilon}_{t-h} - 1.2\widetilde{\epsilon}_{t-h-1} - 1.6\widetilde{\epsilon}_{t-h-2}).$$
Ainsi

$$\gamma_h^Y = \begin{cases} 1.25 & \text{si } h = 0\\ (-1.2 + 1.2 \times 1.6) \times 0.25 & \text{si } h = \pm 1\\ -1.6 \times 0.25 & \text{si } h = \pm 2\\ 0 & \text{sinon} \end{cases} = \begin{cases} 1.25 & \text{si } h = 0\\ 0.18 & \text{si } h = \pm 1\\ -0.4 & \text{si } h = \pm 2\\ 0 & \text{sinon} \end{cases}$$

On remarque qu'il s'agit de deux processus différents qui ont même fonction d'autocovariance (et d'autocorrélation). L'application n'est pas injective. Donc à partir d'une fonction d'autocorrélation on ne peut pas nécessairement reconnaître le processus d'origine. Ce problème est résolu en imposant au processus d'être inversible. Ce concept sera repris au chapitre 3.

Exercice 4

- 1) question aisée.
- 2) a) Monter que le processus $X_t = (-1)^t A$, où A est une v.a. centréeréduite, répond à la question.
- b) On s'inspire de l'exercice 2 pour proposer le processus $X_t = C +$ $A_1\cos(\frac{\pi}{2}t) + B_1\sin(\frac{\pi}{2}t) + A_2\cos(\frac{\pi}{4}t) + B_2\sin(\frac{\pi}{4}t), A_1, A_2, B_1, B_2 \text{ et } C \text{ étant des}$ v.a. indépendantes centrées-réduites.
 - c) Le processus MA(1) : $X_t = \epsilon_t + 0.4\epsilon_{t-1}$ répond à la question.

Exercise 5
Ecrire
$$\frac{1}{1-\phi z} = -\frac{1}{\phi z} \frac{1}{1-\phi^{-1}z^{-1}} = -\frac{1}{\phi z} \sum_{i=0}^{\infty} \phi^{-i} z^{-i} = -\sum_{i=1}^{\infty} \phi^{-i} z^{-i} \text{ avec } |\phi| > 1$$
et $|z| \ge 1$.

Exercice 6

Exercise 6
Pour
$$\phi = 1$$
, $X_t = \phi X_{t-1} + \epsilon_t \Leftrightarrow X_t = X_{t-1} + \epsilon_t$

$$= X_{t-2} + \epsilon_t + \epsilon_{t-1}$$

$$= \cdots$$

$$= X_0 + \epsilon_t + \epsilon_{t-1} + \cdots + \epsilon_1.$$
 $E(X_t) = E(X_0) = X_0$ si X_0 est constante et ce, $\forall t$.
$$Cov(X_t, X_s) = Cov(X_0 + \epsilon_t + \epsilon_{t+1} + \cdots + \epsilon_1, X_0 + \epsilon_s + \epsilon_{s-1} + \cdots)$$

 $Cov(X_t, X_s) = Cov(X_0 + \epsilon_t + \epsilon_{t+1} + \dots + \epsilon_1, X_0 + \epsilon_s + \epsilon_{s-1} + \dots + \epsilon_1) = \min(t, s)\sigma_{\epsilon}^2$ qui dépend de t. En particulier, $Var(X_t) = t\sigma_{\epsilon}^2$. Ce processus n'est pas stationnaire.

Refaire l'exercice pour $\phi = -1$.

Exercice 7

1) Le processus $X_t = \phi X_{t-1} + \epsilon_t$ est stationnaire au second ordre et causal puisque $|\phi| < 1$. Donc $E(X_t) = 0, \forall t$ (à montrer).

On conclut que $E(Y_t) = E(X_t) + E(W_t) = 0, \forall t$. D'autre part, $\gamma_h^X = \frac{\phi^{|h|}}{1 - \phi^2} \sigma_{\epsilon}^2$, (voir exercice traité en cours). Donc

$$Cov(Y_t, Y_{t-h}) = Cov(X_t + W_t, X_{t-h} + W_{t-h}) = Cov(X_t, X_{t-h}) + Cov(W_t, X_{t-h}) + Cov(X_t, W_{t-h}) + Cov(W_t, W_{t-h})$$

 $= \gamma_h^X + \gamma_h^W$ car $Cov(W_s, \epsilon_t) = 0, \forall s, t$. Par conséquent $Cov(Y_t, Y_{t-h})$ ne dépend que de h. Le processus $\{Y_t\}$ est donc stationnaire au second ordre et sa fonction d'autocovariance est :

$$\gamma_h^Y = \gamma_h^X + \gamma_h^W = \begin{cases} \frac{\sigma_\epsilon^2}{1 - \phi^2} + \sigma_W^2 & \text{si } h = 0\\ \frac{\phi^{|h|}}{1 - \phi^2} \sigma_\epsilon^2 & \text{sinon} \end{cases}$$

2) Le processus $\{U_t\}$ défini par $U_t = Y_t - \phi Y_{t-1}$ est un processus MA(1) si sa fonction d'autocovariance (et donc d'autocorrélation s'annule pour $|h| \geq 2$.

$$\gamma_h^U = Cov(U_t, U_{t-h}) = Cov(Y_t - \phi Y_{t-1}, Y_{t-h} - \phi Y_{t-h-1}) = Cov(Y_t, Y_{t-h}) - \phi Cov(Y_t, Y_{t-h-1}) - \phi Cov(Y_{t-1}, Y_{t-h}) + \phi^2 Cov(Y_{t-1}, Y_{t-h-1})$$

$$= \left\{ \begin{array}{l} \frac{\sigma_{\epsilon}^{2}}{1-\phi^{2}} + \sigma_{W}^{2} - \phi \frac{\phi}{1-\phi^{2}} \sigma_{\epsilon}^{2} - \phi \frac{\phi}{1-\phi^{2}} \sigma_{\epsilon}^{2} + \frac{\phi^{2}}{1-\phi^{2}} \sigma_{\epsilon}^{2} + \phi^{2} \sigma_{W}^{2} \text{ si } h = 0 \\ \frac{\phi}{1-\phi^{2}} \sigma_{\epsilon}^{2} - \phi \frac{\phi^{2}}{1-\phi^{2}} \sigma_{\epsilon}^{2} - \phi (\frac{\sigma_{\epsilon}^{2}}{1-\phi^{2}} + \sigma_{W}^{2}) + \phi^{2} \frac{\phi}{1-\phi^{2}} \sigma_{\epsilon}^{2} \text{ si } h = \pm 1 \\ 0 & \text{si } |h| \geq 2 \end{array} \right. \\ = \left\{ \begin{array}{l} \sigma_{\epsilon}^{2} + \phi^{2} \sigma_{W}^{2} \text{ si } h = 0 \\ -\phi \sigma_{W}^{2} \text{ si } h = \pm 1 \\ 0 & \text{si } |h| \geq 2 \end{array} \right.$$

Ainsi, le processus $\{U_t\}$ défini par $U_t = Y_t - \phi Y_{t-1}$ est bien un processus MA(1). Il existe donc un processus bruit blanc que l'on peut noter $\{Z_t\}$ tel que $U_t = Z_t + \theta Z_{t-1}$, i.e., $Y_t - \phi Y_{t-1} = Z_t + \theta Z_{t-1} \Leftrightarrow Y_t = \phi Y_{t-1} + Z_t + \theta Z_{t-1}$. Le processus $\{Y_t\}$ est donc un processus ARMA(1,1). Il reste à déterminer θ et $\sigma_Z^2 = Var(Z_t)$.

Il suffit de résoudre le système :

$$\left\{ \begin{array}{c} \gamma_0^U = (1+\theta^2)\sigma_Z^2 \\ \gamma_1^U = \theta\sigma_Z^2 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \sigma_\epsilon^2 + \phi^2\sigma_W^2 = (1+\theta^2)\sigma_Z^2 \\ -\phi\sigma_W^2 = \theta\sigma_Z^2 \end{array} \right. \text{ Résoudre le système.}$$