```
#Data Set 1: adult.data.csv
In [3]:
       import numpy as np
       import matplotlib.pyplot as plt
       import pandas as pd
       from sklearn.utils import shuffle
       from sklearn import preprocessing
       from sklearn.preprocessing import LabelEncoder
       %config InlineBackend.figure_format = 'retina'
       # 1) load file
       fp1 = 'adult.data.csv'
       df1 = pd.read_csv(fp1)
       # 2) preprocess data: one-hot encoding using sklearn package
       le = preprocessing.LabelEncoder()
       data1 = df1.apply(le.fit_transform)
       data1 = data1.values
       np.random.shuffle(data1)
       print(data1.shape)
       # label data and split them
       X data1 = data1[:, 0:14]
       Y data1 = data1[:, 14]
       #3) split data into three partitions
       #partition 1: 0.8 training, 0.2 testing
       partition1 = int(0.8*len(data1))
       train11 X = X data1[:partition1, :]
       train11_Y = Y_data1[:partition1]
       test11 X = X data1[partition1:, :]
       test11 Y = Y data1[partition1:]
       print("train1 X has shape", train11 X.shape, ", train1 Y has shape", train11 Y.shape)
       print("test1_X has shape", test11_X.shape, ", test1_Y has shape", test11_Y.shape)
       #partition 2: 0.5 training, 0.5 testing
       partition2 = int(0.5*len(data1))
       train12 X = X data1[:partition2, :]
       train12_Y = Y_data1[:partition2]
       test12 X = X data1[partition2:, :]
       test12 Y = Y data1[partition2:]
       print("train2_X has shape", train12_X.shape, ", train2_Y has shape", train12_Y.shape)
       print("test2_X has shape", test12_X.shape, ", test2_Y has shape", test12_Y.shape)
       #partition 3: 0.2 training, 0.8 testing
       partition3 = int(0.2*len(data1))
       train13_X = X_data1[:partition3, :]
       train13_Y = Y_data1[:partition3]
       test13_X = X_data1[partition3:, :]
       test13 Y = Y data1[partition3:]
       print("train3_X has shape", train13_X.shape, ", train3_Y has shape", train13_Y.shape)
       print("test3 X has shape", test13 X.shape, ", test3 Y has shape", test13 Y.shape)
```

(32561, 15)
train1_X has shape (26048, 14) , train1_Y has shape (26048,)
test1_X has shape (6513, 14) , test1_Y has shape (6513,)
train2_X has shape (16280, 14) , train2_Y has shape (16280,)
test2_X has shape (16281, 14) , test2_Y has shape (16281,)
train3_X has shape (6512, 14) , train3_Y has shape (6512,)
test3_X has shape (26049, 14) , test3_Y has shape (26049,)

```
In [4]:
       #Data Set 2: car.data.csv
       import numpy as np
       import matplotlib.pyplot as plt
       import pandas as pd
       from sklearn.utils import shuffle
       from sklearn import preprocessing
       from sklearn.preprocessing import LabelEncoder
       # 1) load file
       fp2 = 'car.data.csv'
       df2 = pd.read csv(fp2)
       # 2) preprocess data: one-hot encoding using sklearn package
       le = preprocessing.LabelEncoder()
       data2 = df2.apply(le.fit transform)
       data2 = data2.values
       np.random.shuffle(data2)
       print(data2.shape)
       # label data and split them
       X data = data2[:, 0:6]
       Y data = data2[:, 6]
       #3) split data into three partitions
       #partition 1: 0.8 training, 0.2 testing
       partition1 = int(0.8*len(data2))
       train21 X = X data[:partition1, :]
       train21 Y = Y data[:partition1]
       test21_X = X_data[partition1:, :]
       test21 Y = Y data[partition1:]
       print("train1_X has shape", train21_X.shape, ", train1_Y has shape", train21_Y.shape)
       print("test1_X has shape", test21_X.shape, ", test1_Y has shape", test21_Y.shape)
       #partition 2: 0.5 training, 0.5 testing
       partition2 = int(0.5*len(data2))
       train22 X = X data[:partition2, :]
       train22 Y = Y data[:partition2]
       test22 X = X data[partition2:, :]
       test22 Y = Y data[partition2:]
       print("train2_X has shape", train22_X.shape, ", train2_Y has shape", train22_Y.shape)
       print("test2_X has shape", test22_X.shape, ", test2_Y has shape", test22_Y.shape)
       #partition 3: 0.2 training, 0.8 testing
       partition3 = int(0.2*len(data2))
       train23 X = X data[:partition3, :]
       train23_Y = Y_data[:partition3]
       test23 X = X data[partition3:, :]
       test23_Y = Y_data[partition3:]
       print("train3_X has shape", train23_X.shape, ", train3_Y has shape", train23_Y.shape)
       print("test3_X has shape", test23_X.shape, ", test3_Y has shape", test23_Y.shape)
```

(1727, 7)
train1_X has shape (1381, 6) , train1_Y has shape (1381,)
test1_X has shape (346, 6) , test1_Y has shape (346,)
train2_X has shape (863, 6) , train2_Y has shape (863,)
test2_X has shape (864, 6) , test2_Y has shape (864,)
train3_X has shape (345, 6) , train3_Y has shape (345,)
test3_X has shape (1382, 6) , test3_Y has shape (1382,)

```
#Data Set 3: winequality-red.csv
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.utils import shuffle
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
# 1) load file
fp3 = 'winequality-red.csv'
df3 = pd.read csv(fp3, sep = ':')
# 2) preprocess data: one-hot encoding using sklearn package
le = preprocessing.LabelEncoder()
data3 = df3.apply(le.fit_transform)
data3 = data3.values
np.random.shuffle(data3)
print(data3.shape)
# label data and split them
X data = data3[:, 0:11]
Y data = data3[:, 11]
#3) split data into three partitions
#partition 1: 0.8 training, 0.2 testing
partition1 = int(0.8*len(data3))
train31 X = X data[:partition1, :]
train31 Y = Y data[:partition1]
test31_X = X_data[partition1:, :]
test31 Y = Y data[partition1:]
print("train1_X has shape", train31_X.shape, ", train1_Y has shape", train31_Y.shape)
print("test1_X has shape", test31_X.shape, ", test1_Y has shape", test31_Y.shape)
#partition 2: 0.5 training, 0.5 testing
partition2 = int(0.5*len(data3))
train32 X = X data[:partition2, :]
train32 Y = Y data[:partition2]
test32 X = X data[partition2:, :]
test32 Y = Y data[partition2:]
print("train2_X has shape", train32_X.shape, ", train2_Y has shape", train32_Y.shape)
print("test2_X has shape", test32_X.shape, ", test2_Y has shape", test32_Y.shape)
#partition 3: 0.2 training, 0.8 testing
partition3 = int(0.2*len(data3))
train33 X = X data[:partition3, :]
train33_Y = Y_data[:partition3]
test33 X = X data[partition3:, :]
test33_Y = Y_data[partition3:]
print("train3_X has shape", train33_X.shape, ", train3_Y has shape", train33_Y.shape)
print("test3_X has shape", test33_X.shape, ", test3_Y has shape", test33_Y.shape)
```

```
(1599, 12)
train1_X has shape (1279, 11) , train1_Y has shape (1279,)
test1_X has shape (320, 11) , test1_Y has shape (320,)
train2_X has shape (799, 11) , train2_Y has shape (799,)
test2_X has shape (800, 11) , test2_Y has shape (800,)
train3_X has shape (319, 11) , train3_Y has shape (319,)
test3_X has shape (1280, 11) , test3_Y has shape (1280,)
```

Start training classifiers for three data sets

```
In [10]: # import Classifier1_NNMLP
        # from Classifier1 NNMLP import NN MLP
        # from Classfier2_RF import random_forest_classifier
        # from Classfier3_GradientBoosting import gradient_boosting_classifier
        import multiprocessing
        from sklearn.neural_network import MLPClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import RandomizedSearchCV
        from sklearn.model_selection import GridSearchCV
        from sklearn.metrics import classification_report
        import warnings
        warnings.filterwarnings("ignore")
        def NN MLP(X train, Y train, X test, Y test):
        # preprocess data since MLP is sensitive to feature scaling
             scaler = StandardScaler()
             scaler.fit(X train)
             X train = scaler.transform(X train)
             X test = scaler.transform(X test)
             test accs = []
             for i in range(0, 3):
             #parameters
             # solver uses adam here since it works better on large data sets
             # activation use relu since the label are 0 and 1
             # hidden layer size : input size->3000->1000->100 ->1
             # use gridsearchcv to choose best alpha -> regularzation
                  mlp = MLPClassifier(max iter = 1000, hidden layer sizes = (100,100))
                  parameters = {'alpha':10.0 ** -np.arange(1,7), 'learning_rate': ["constant",
         "invscaling", "adaptive"], 'solver':['sgd', 'adam', 'lbfgs']}
                  clf = GridSearchCV(mlp, parameters, n_jobs = multiprocessing.cpu_count
        ()-1. cv = 3)
                  clf.fit(X_train, Y_train)
                  print("best estimator is: ", clf.best_estimator_)
                  optimal mlp = MLPClassifier(solver = clf.best params ['solver'], max iter =
         1000, learning_rate = clf.best_params_['learning_rate'], hidden_layer_sizes = (100,
         100), alpha =clf.best_params_['alpha'] )
                  optimal mlp.fit(X train, Y train)
                  predictions = optimal mlp.predict(X test)
                  test_acc = optimal_mlp.score(X_test, Y_test)
                  test accs.append(test acc)
                  print("test accuracy is:", test_acc)
                  print(classification_report(Y_test,predictions))
                  train_acc = clf.cv_results_['mean_train_score']
                  val acc = clf.cv results ['mean test score']
                  print("The accuarcy for cross_validation")
                  plt.plot(train acc, label = 'train acc')
                  plt.plot(val_acc, label = 'val_acc')
                  plt.legend(loc = 'upper left')
                  plt.show()
```

```
print("average of test_accuracy is:", np.mean(test_accs))
def random_forest_classifier(X_train, Y_train, X_test, Y_test):
           #preprocess data
          scaler = StandardScaler()
          scaler.fit(X_train)
          X_train = scaler.transform(X_train)
          X test = scaler.transform(X test)
           #train classifier
          n_{estimators} = [int(x) \text{ for } x \text{ in } np.linspace(start = 200, stop = 2000, num = 2000, stop = 2000, num = 2000, stop = 2000, num = 2000, stop = 2000, stop = 2000, num = 2000, stop = 2000, sto
= 10)
          max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
           max_depth.append(None)
          max_features = ['auto', 'sqrt']
           parameters = {'n_estimators': n_estimators, 'max_depth': max_depth, 'max_fea
tures': max_features}
          test accs = []
          for i in range(0, 3):
                     rfc = RandomForestClassifier()
                     rf = RandomizedSearchCV(rfc, parameters, n_jobs = multiprocessing.cpu_
count()-1, cv = 3)
                     rf.fit(X_train, Y_train)
                     print("best estimator is: ", rf.best_estimator_)
                     optimal rfc = RandomForestClassifier(n estimators = rf.best params ['n est
imators'], max depth = rf.best params ['max depth'], max features = rf.best para
ms ['max features'])
                     optimal_rfc.fit(X_train, Y_train)
                     predictions = optimal rfc.predict(X test)
                     test_acc = optimal_rfc.score(X_test, Y_test)
                     test accs.append(test acc)
                     print("test accuracy is:", test_acc)
                     print(classification_report(Y_test,predictions))
                     train acc = rf.cv results ['mean train score']
                     val_acc = rf.cv_results_['mean_test_score']
                     print("The accuarcy for cross_validation")
                     plt.plot(train acc, label = 'train acc')
                     plt.plot(val_acc, label = 'val_acc')
                     plt.legend(loc = 'upper left')
                     plt.show()
           print("average of test accuracy is:", np.mean(test accs))
def gb_classifier(X_train, Y_train, X_test, Y_test):
           #preprocess data
           scaler = StandardScaler()
          scaler.fit(X train)
          X_train = scaler.transform(X_train)
          X_test = scaler.transform(X_test)
          test accs = []
```

```
for i in range(0, 3):
         n_{estimators} = [int(x) \text{ for } x \text{ in } np.linspace(start = 200, stop = 2000, n]
um = 10)
         max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
         learning rate = [0.15, 0.1, 0.05, 0.01, 0.005, 0.001]
         parameters = {'n_estimators':n_estimators, 'max_depth':max_depth,'learnin
g_rate':learning_rate}
         gbc = GradientBoostingClassifier()
         gb = RandomizedSearchCV(gbc, parameters, n jobs = multiprocessing.cp
u_count()-1, cv = 3)
         gb.fit(X_train, Y_train)
         print("best estimator is: ", gb.best_estimator_)
         optimal_gbc = GradientBoostingClassifier(n_estimators = gb.best_params [
'n_estimators'], max_depth = gb.best_params_['max_depth'], learning_rate = gb.bes
t_params ['learning_rate'])
         optimal gbc.fit(X train, Y train)
         predictions = optimal_gbc.predict(X_test)
         test acc = optimal gbc.score(X test, Y test)
         test_accs.append(test_acc)
         print("test accuracy is:", test acc)
         print(classification report(Y test,predictions))
         train acc = gb.cv results ['mean train score']
         val acc = gb.cv results ['mean test score']
         print("The accuarcy for cross validation")
         plt.plot(train acc, label = 'train acc')
         plt.plot(val acc, label = 'val acc')
         plt.legend(loc = 'upper left')
         plt.show()
     print("average of test_accuracy is:", np.mean(test_accs))
```

Data1:

In [37]: #partition1 classifier1

NN_MLP(train11_X, train11_Y, test11_X, test11_Y)

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='invscaling', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.

1,

verbose=False, warm_start=False)

test accuracy is: 0.8472286196837095

support	f1-score	recall	precision	ŗ
4953 1560	0.90 0.64	0.93 0.57	0.87 0.73	0 1
6513	0.84	0.85	0.84	avg / total

The accuarcy for cross_validation

best estimator is: MLPClassifier(activation='relu', alpha=0.0001, batc h_size='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

test accuracy is: 0.8499923230462153

	precision	recall	f1-score	support
0	0.88	0.93	0.90	4953
1	0.73	0.60	0.66	1560
avg / total	0.84	0.85	0.84	6513

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.

	precision	recall	f1-score	support
0	0.88	0.93	0.90	4953
1	0.73	0.59	0.65	1560
avg / total	0.84	0.85	0.84	6513

average of test_accuracy is: 0.8492246276677414

In [36]: #partition1 classifier2 random_forest_classifier(train11_X, train11_Y, test11_X, test11_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=10, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8556732688469215

support	f1-score	recall	precision	р
4953 1560	0.91 0.64	0.96 0.54	0.87 0.79	0 1
6513	0.85	0.86	0.85	avg / total

The accuarcy for cross_validation

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=20, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1800, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8604329801934593

support	f1-score	recall	precision	
4953 1560	0.91 0.68	0.94 0.61	0.88 0.76	0 1
6513	0.85	0.86	0.85	avg / total

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=20, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1600, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8596652848149854

	precision	recall	f1-score	support
0	0.88	0.94	0.91	4953
1	0.76	0.61	0.67	1560
avg / total	0.85	0.86	0.85	6513

average of test_accuracy is: 0.8585905112851221

In [35]: #partition1 classifier3
gb_classifier(train11_X, train11_Y, test11_X, test11_Y)

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.15, loss='deviance', max_depth=110,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=2000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.8268079226163059

ccsc accaracy	13. 0.02000	JI JEE0103	055	
	precision	recall	f1-score	support
0	0.88	0.90	0.89	4953
1	0.65	0.60	0.62	1560
avg / total	0.82	0.83	0.82	6513

The accuarcy for cross_validation

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.15, loss='deviance', max_depth=20,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.8504529402732995

support	f1-score	recall	precision	1
4953 1560	0.90 0.66	0.93 0.61	0.88 0.72	0 1
6513	0.85	0.85	0.84	avg / total

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.01, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.8687240902809765

	precision	recall	f1-score	support
0 1	0.89 0.77	0.94 0.65	0.92 0.70	4953 1560
avg / total	0.86	0.87	0.86	6513

average of test_accuracy is: 0.8486616510568608

In [34]: #partition2 classifier1
NN_MLP(train12_X, train12_Y, test12_X, test12_Y)

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

test accuracy is: 0.845095510103802

support	f1-score	recall	precision	ŗ
12344 3937	0.90 0.64	0.93 0.58	0.87 0.73	0 1
16281	0.84	0.85	0.84	avg / total

The accuarcy for cross_validation

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.

support	f1-score	recall	precision	•
12344 3937	0.90 0.64	0.93 0.58	0.87 0.72	0 1
16281	0.84	0.84	0.84	avg / total

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.

	precision	recall	f1-score	support
0	0.88	0.93	0.90	12344
1	0.72	0.59	0.65	3937
avg / total	0.84	0.85	0.84	16281

average of test_accuracy is: 0.8453411952582766

In [33]: #partition2 classifier2 random_forest_classifier(train12_X, train12_Y, test12_X, test12_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=20, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8579939807137154

support	f1-score	recall	precision	
12344 3937	0.91 0.67	0.94 0.60	0.88 0.76	0 1
16281	0.85	0.86	0.85	avg / total

The accuarcy for cross_validation

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=10, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1800, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8583010871568085

support	f1-score	recall	precision	
12344 3937	0.91 0.66	0.95 0.56	0.87 0.80	0 1
16281	0.85	0.86	0.85	avg / total

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=20, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8581782445795713

	precision	recall	f1-score	support
0 1	0.88 0.76	0.94 0.60	0.91 0.67	12344 3937
avg / total	0.85	0.86	0.85	16281

average of test_accuracy is: 0.8581577708166984

In [32]: #partition2 classifier3
gb_classifier(train12_X, train12_Y, test12_X, test12_Y)

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.01, loss='deviance', max_depth=20,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False) test accuracy is: 0 8356366316565321

	321		y 15. 0.0550	test accuracy
support	f1-score	recall	precision	
12344 3937	0.89 0.64	0.91 0.62	0.88 0.68	0 1
16281	0.83	0.84	0.83	avg / total

The accuarcy for cross_validation

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.01, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=800,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.8618635218966894

support			precision	ا
12344 3937	0.91 0.69	0.94 0.63	0.89 0.76	0 1
16281	0.86	0.86	0.86	avg / total

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.01, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.8635833179780111

	precision	recall	f1-score	support
0 1	0.89 0.76	0.94 0.63	0.91 0.69	12344 3937
avg / total	0.86	0.86	0.86	16281

average of test_accuracy is: 0.8536944905104109

In [31]: #partition3 classifier1

NN_MLP(train13_X, train13_Y, test13_X, test13_Y)

best estimator is: MLPClassifier(activation='relu', alpha=0.01, batch_ size='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

test accuracy is: 0.8466351875311913

support	f1-score	recall	precision	p
19802 6247	0.90 0.65	0.93 0.59	0.88 0.72	0 1
26049	0.84	0.85	0.84	avg / total

The accuarcy for cross_validation

best estimator is: MLPClassifier(activation='relu', alpha=0.01, batch_ size='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

test accuracy is: 0.8455219010326692

support	f1-score	recall	precision	
19802 6247	0.90 0.64	0.93 0.58	0.87 0.72	0 1
26049	0.84	0.85	0.84	avg / total

best estimator is: MLPClassifier(activation='relu', alpha=1e-05, batch _size='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

test accuracy is: 0.8434872739836462

	precision	recall	t1-score	support
0 1	0.87 0.72	0.93 0.58	0.90 0.64	19802 6247
avg / total	0.84	0.84	0.84	26049

average of test_accuracy is: 0.8452147875158356

In [30]: #partition3 classifier2 random_forest_classifier(train13_X, train13_Y, test13_X, test13_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=10, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=2000, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8579983876540366

support	f1-score	recall	precision	ļ
19802 6247	0.91 0.65	0.95 0.56	0.87 0.79	0 1
26049	0.85	0.86	0.85	avg / total

The accuarcy for cross_validation

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=10, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8580751660332451

support	f1-score	recall	precision	
19802 6247	0.91 0.65	0.95 0.56	0.87 0.79	0 1
26049	0.85	0.86	0.85	avg / total

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=10, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=600, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8576528849475987

	precision	recall	fl-score	support
0 1	0.87 0.79	0.95 0.56	0.91 0.65	19802 6247
avg / total	0.85	0.86	0.85	26049

average of test_accuracy is: 0.8579088128782933

In [29]: #partition2 classifier3

gb_classifier(train13_X, train13_Y, test13_X, test13_Y)

best estimator is: GradientBoostingClassifier(criterion='friedman_ms e', init=None,

> learning_rate=0.01, loss='deviance', max_depth=10, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=600, presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.8584974471188913

	precision	recall	f1-score	support
0	0.88 0.75	0.94 0.61	0.91 0.67	19802 6247
avg / total	0.85	0.86	0.85	26049
avg / cocal	0.03	0.00	0.05	20013

The accuarcy for cross_validation

best estimator is: GradientBoostingClassifier(criterion='friedman_ms e', init=None,

learning_rate=0.15, loss='deviance', max_depth=10, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=1600, presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.8544665822104496

support	f1-score	recall	precision	
19802 6247	0.91 0.67	0.93 0.62	0.89 0.73	0 1
26049	0.85	0.85	0.85	avg / total

best estimator is: GradientBoostingClassifier(criterion='friedman_ms
e', init=None,

learning_rate=0.15, loss='deviance', max_depth=110,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1800,
presort='auto', random_state=None, subsample=1.0, verbose

=0, warm_start=False)

test accuracy is: 0.8328150792736765

	precision	recall	f1-score	support
0 1	0.88 0.67	0.90 0.60	0.89 0.63	19802 6247
avg / total	0.83	0.83	0.83	26049

The accuarcy for cross_validation

average of test_accuracy is: 0.8485930362010058

Data2:

In [28]: #partition1 classifier1

NN_MLP(train21_X, train21_Y, test21_X, test21_Y)

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0. 1, verbose=False, warm_start=False) test accuracy is: 1.0 precision recall f1-score support 0 1.00 1.00 1.00 78 1 12 1.00 1.00 1.00 2 1.00 1.00 1.00 242 1.00 1.00 1.00 14

1.00

346

1.00

The accuarcy for cross_validation

1.00

avg / total

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s
ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.

support	f1-score	recall	precision	р
78	1.00	1.00	1.00	0
12	1.00	1.00	1.00	1
242	1.00	1.00	1.00	2
14	1.00	1.00	1.00	3
346	1.00	1.00	1.00	avg / total

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.

1, verbose=False, warm_start=False)

test accuracy is: 1.0

support	f1-score	recall	precision	р
78	1.00	1.00	1.00	0
12	1.00	1.00	1.00	1
242	1.00	1.00	1.00	2
14	1.00	1.00	1.00	3
346	1.00	1.00	1.00	avg / total

average of test_accuracy is: 1.0

In [27]: #partition1 classifier2 random_forest_classifier(train21_X, train21_Y, test21_X, test21_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1600, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.976878612716763

support	f1-score	recall	precision	р	
78	0.95	0.95	0.95	0	
12	0.92	0.92	0.92	1	
242	0.99	0.99	0.99	2	
14	0.96	0.93	1.00	3	
346	0.98	0.98	0.98	avg / total	

The accuarcy for cross_validation

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.9797687861271677

support	f1-score	recall	precision	
78	0.96	0.96	0.95	0
12	0.96	0.92	1.00	1
242	0.99	0.99	0.99	2
14	0.96	0.93	1.00	3
346	0.98	0.98	0.98	avg / total

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=100, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.9739884393063584

	precision	recall	f1-score	support
0	0.94	0.95	0.94	78
1	0.91	0.83	0.87	12
2	0.99	0.99	0.99	242
3	1.00	0.93	0.96	14
avg / total	0.97	0.97	0.97	346

average of test_accuracy is: 0.9768786127167629

In [26]: #partition1 classifier3
gb_classifier(train21_X, train21_Y, test21_X, test21_Y)

learning_rate=0.1, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.9884393063583815

support	f1-score	recall	precision	
78	0.97	0.96	0.99	0
12	0.96	1.00	0.92	1
242	0.99	1.00	0.99	2
14	1.00	1.00	1.00	3
346	0.99	0.99	0.99	avg / total

learning_rate=0.005, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.9826589595375722

	precision	recall	f1-score	support
0	0.99	0.94	0.96	78
1	0.92	1.00	0.96	12
2	0.98	1.00	0.99	242
3	1.00	1.00	1.00	14
avg / total	0.98	0.98	0.98	346

learning_rate=0.05, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=800,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.9884393063583815

	precision	recall	f1-score	support
0	0.99	0.96	0.97	78
1	0.92	1.00	0.96	12
2	0.99	1.00	0.99	242
3	1.00	1.00	1.00	14
avg / total	0.99	0.99	0.99	346

average of test_accuracy is: 0.9865125240847784

In [25]: #partition2 classifier1
NN_MLP(train22_X, train22_Y, test22_X, test22_Y)

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='invscaling', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0. 1, verbose=False, warm_start=False) test accuracy is: 0.9895833333333334 precision recall f1-score support 0 0.97 0.98 0.98 183 0.97 1 0.92 0.94 36 2 1.00 1.00 1.00 608

0.96

0.99

37

864

0.92

0.99

The accuarcy for cross_validation

avg / total

1.00

0.99

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='invscaling', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.

	precision	recall	f1-score	support
0	0.98	1.00	0.99	183
1	1.00	0.92	0.96	36
2	1.00	1.00	1.00	608
3	1.00	0.97	0.99	37
avg / total	1.00	1.00	1.00	864

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

recall f1-score

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.

support

precision

	p. 001010		000. 0	оз.рро. с
0	0.97	0.98	0.98	183
1	1.00	0.89	0.94	36
2	1.00	1.00	1.00	608
3	1.00	0.95	0.97	37
avg / total	0.99	0.99	0.99	864

average of test_accuracy is: 0.9915123456790124

In [24]: #partition2 classifier2 random_forest_classifier(train22_X, train22_Y, test22_X, test22_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=10, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1200, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.9375

test accur	uc	precision	recall	f1-score	support
	0	0.81	0.93	0.86	183
	1	0.83	0.53	0.64	36
	2	0.98	0.97	0.98	608
	3	1.00	0.81	0.90	37
avg / tota	ıl	0.94	0.94	0.94	864

The accuarcy for cross_validation

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=100, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1200, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.9490740740740741

	precision	recall	f1-score	support
0	0.84	0.93	0.89	183
1	0.86	0.67	0.75	36
2	0.99	0.97	0.98	608
3	1.00	0.89	0.94	37
avg / total	0.95	0.95	0.95	864

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

	precision	recall	f1-score	support
0	0.83	0.93	0.88	183
1	0.86	0.69	0.77	36
2	0.98	0.97	0.98	608
3	1.00	0.81	0.90	37
avg / total	0.95	0.94	0.94	864

average of test_accuracy is: 0.9436728395061728

In [23]: #partition2 classifier3
gb_classifier(train22_X, train22_Y, test22_X, test22_Y)

learning_rate=0.1, loss='deviance', max_depth=70,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.9386574074074

	precision	recall	f1-score	support
0	0.85	0.90	0.88	183
1	0.96	0.72	0.83	36
2	0.96	0.98	0.97	608
3	1.00	0.73	0.84	37
avg / total	0.94	0.94	0.94	864

learning_rate=0.15, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=2000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.9502314814814815

support	f1-score	recall	precision	
183	0.90	0.93	0.86	0
36	0.80	0.72	0.90	1
608	0.98	0.98	0.98	2
37	0.83	0.70	1.00	3
864	0.95	0.95	0.95	avg / total

learning_rate=0.1, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=800,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.9502314814814815

support	f1-score	recall	precision	ا
183	0.90	0.93	0.86	0
36	0.79	0.72	0.87	1
608	0.98	0.98	0.98	2
37	0.83	0.70	1.00	3
864	0.95	0.95	0.95	avg / total

average of test_accuracy is: 0.9463734567901234

In [22]: #partition3 classifier1

NN_MLP(train23_X, train23_Y, test23_X, test23_Y)

	precision	recall	f1-score	support
0	0.85	0.88	0.86	300
1	0.71	0.62	0.66	60
2	0.98	0.97	0.98	970
3	0.84	0.90	0.87	52
avg / total	0.93	0.93	0.93	1382

The accuarcy for cross_validation

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.

verbose=False, warm_start=False)
test accuracy is: 0.9435600578871202

1,

	precision	recall	f1-score	support
0	0.86	0.89	0.88	300
1	0.85	0.57	0.68	60
2	0.98	0.98	0.98	970
3	0.92	0.90	0.91	52
avg / total	0.94	0.94	0.94	1382

best estimator is: MLPClassifier(activation='relu', alpha=0.1, batch_s ize='auto', beta_1=0.9,

recall f1-score

beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.

support

precision

•				• • •
0	0.86	0.90	0.88	300
1	0.89	0.53	0.67	60
2	0.98	0.99	0.98	970
3	0.92	0.90	0.91	52
avg / total	0.95	0.95	0.94	1382

average of test_accuracy is: 0.9411480945489629

In [21]: #partition3 classifier2 random_forest_classifier(train23_X, train23_Y, test23_X, test23_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=110, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=600, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8900144717800289

	precision		f1-score	support	
0	0.70	0.88	0.78	300	
1	0.54	0.12	0.19	60	
2	0.97	0.95	0.96	970	
3	0.90	0.69	0.78	52	
avg / total	0.89	0.89	0.88	1382	

The accuarcy for cross_validation

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=40, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8900144717800289

	precision	recall	f1-score	support
0	0.70	0.88	0.78	300
1	0.54	0.12	0.19	60
2	0.97	0.95	0.96	970
3	0.92	0.67	0.78	52
avg / total	0.89	0.89	0.88	1382

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='gini',

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=800, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.8878437047756874

support	fl-score	recall	precision	
300	0.77	0.87	0.69	0
60	0.19	0.12	0.58	1
970	0.96	0.95	0.97	2
52	0.77	0.67	0.90	3
1382	0.88	0.89	0.89	avg / total

average of test_accuracy is: 0.8892908827785817

In [20]: #partition3 classifier3

gb_classifier(train23_X, train23_Y, test23_X, test23_Y)

learning_rate=0.1, loss='deviance', max_depth=30,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.8668596237337193

support	f1-score	recall	precision	
300	0.75	0.80	0.71	0
60	0.21	0.13	0.50	1
970	0.95	0.95	0.94	2
52	0.54	0.50	0.58	3
1382	0.86	0.87	0.86	avg / total

learning_rate=0.005, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.8675832127351665

support	f1-score	recall	precision	
300	0.75	0.80	0.71	0
60	0.23	0.15	0.45	1
970	0.95	0.95	0.95	2
52	0.58	0.58	0.59	3
1382	0.86	0.87	0.86	avg / total

learning_rate=0.01, loss='deviance', max_depth=100,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.8784370477568741

	precision	recall	f1-score	support
0	0.72	0.86	0.78	300
1	0.46	0.10	0.16	60
2	0.95	0.95	0.95	970
3	0.59	0.50	0.54	52
avg / total	0.87	0.88	0.87	1382

The accuarcy for cross_validation

average of test_accuracy is: 0.8709599614085866

Data3

In [19]: #partition1 classifier1

NN_MLP(train31_X, train31_Y, test31_X, test31_Y)

best estimator is: MLPClassifier(activation='relu', alpha=0.01, batch_ size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0. 1, verbose=False, warm_start=False)

test accuracy is: 0.665625

support	f1-score	recall	precision	
1	0.00	0.00	0.00	0
12	0.17	0.17	0.17	1
138	0.72	0.69	0.75	2
125	0.70	0.74	0.67	3
40	0.59	0.60	0.59	4
4	0.00	0.00	0.00	5
320	0.66	0.67	0.66	avg / total

best estimator is: MLPClassifier(activation='relu', alpha=0.01, batch_ size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='invscaling', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0. 1,

verbose=False, warm_start=False)

test accuracy is: 0.66875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.20	0.17	0.18	12
2	0.72	0.79	0.75	138
3	0.70	0.66	0.68	125
4	0.57	0.53	0.55	40
5	0.00	0.00	0.00	4
avg / total	0.66	0.67	0.67	320

best estimator is: MLPClassifier(activation='relu', alpha=1e-05, batch _size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='invscaling', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0. 1,

verbose=False, warm_start=False)

test accuracy is: 0.675

cese acearae	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.20	0.17	0.18	12
2	0.75	0.74	0.74	138
3	0.67	0.73	0.70	125
4	0.60	0.53	0.56	40
5	0.00	0.00	0.00	4
avg / total	0.67	0.68	0.67	320

average of test_accuracy is: 0.6697916666666668

In [18]: #partition1 classifier2 random_forest_classifier(train31_X, train31_Y, test31_X, test31_Y)

best estimator is: RandomForestClassifier(bootstrap=True, class_weight
=None, criterion='qini',

max_depth=60, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.728125

support	f1-score	recall	precision	
1	0.00	0.00	0.00	0
12	0.00	0.00	0.00	1
138	0.80	0.86	0.74	2
125	0.72	0.74	0.70	3
40	0.62	0.50	0.80	4
4	0.33	0.25	0.50	5
320	0.71	0.73	0.70	avg / total

max_depth=40, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=600, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.721875

support	f1-score	recall	precision	,
1	0.00	0.00	0.00	0
12	0.00	0.00	0.00	1
138	0.80	0.85	0.75	2
125	0.71	0.74	0.69	3
40	0.63	0.53	0.78	4
4	0.40	0.25	1.00	5
320	0.70	0.72	0.70	avg / total

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=800, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.73125

cooc accar ac	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.00	0.00	0.00	12
2	0.76	0.86	0.81	138
3	0.69	0.75	0.72	125
4	0.80	0.50	0.62	40
5	0.50	0.25	0.33	4
avg / total	0.70	0.73	0.71	320

The accuarcy for cross_validation

average of test_accuracy is: 0.7270833333333334

In [17]: #partition1 classifier3
gb_classifier(train31_X, train31_Y, test31_X, test31_Y)

learning_rate=0.05, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.715625

	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.17	0.08	0.11	12
2	0.76	0.87	0.81	138
3	0.70	0.70	0.70	125
4	0.68	0.47	0.56	40
5	0.25	0.25	0.25	4
avg / total	0.70	0.72	0.70	320

learning_rate=0.15, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1200,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.721875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.00	0.00	0.00	12
2	0.76	0.84	0.80	138
3	0.69	0.74	0.72	125
4	0.75	0.53	0.62	40
5	0.50	0.25	0.33	4
avg / total	0.70	0.72	0.71	320

learning_rate=0.01, loss='deviance', max_depth=50,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=2000,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.653125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	1
1	0.50	0.08	0.14	12
2	0.69	0.78	0.73	138
3	0.64	0.62	0.63	125
4	0.56	0.55	0.56	40
5	0.33	0.25	0.29	4
avg / total	0.64	0.65	0.64	320

The accuarcy for cross_validation

average of test_accuracy is: 0.696875

In [16]: #partition2 classifier1
NN_MLP(train32_X, train32_Y, test32_X, test32_Y)

best estimator is: MLPClassifier(activation='relu', alpha=1e-06, batch
_size='auto', beta_1=0.9,
 beta_2=0.999, early_stopping=False, epsilon=1e-08,
 hidden_layer_sizes=(100, 100), learning_rate='constant',
 learning_rate_init=0.001, max_iter=1000, momentum=0.9,
 nesterovs_momentum=True, power_t=0.5, random_state=None,
 shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1,
 verbose=False, warm_start=False)

test accuracy is: 0.5875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.33	0.03	0.06	29
2	0.64	0.74	0.69	334
3	0.56	0.56	0.56	327
4	0.45	0.40	0.42	94
5	0.00	0.00	0.00	11
avg / total	0.56	0.59	0.57	800

best estimator is: MLPClassifier(activation='relu', alpha=1e-05, batch
_size='auto', beta_1=0.9,
 beta_2=0.999, early_stopping=False, epsilon=1e-08,
 hidden_layer_sizes=(100, 100), learning_rate='adaptive',
 learning_rate_init=0.001, max_iter=1000, momentum=0.9,
 nesterovs_momentum=True, power_t=0.5, random_state=None,
 shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1,
 verbose=False, warm_start=False)

test accuracy is: 0.585

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.00	0.00	0.00	29
2	0.64	0.74	0.69	334
3	0.57	0.55	0.56	327
4	0.43	0.43	0.43	94
5	0.00	0.00	0.00	11
avg / total	0.55	0.58	0.57	800

test accuracy is: 0.57875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.00	0.00	0.00	29
2	0.64	0.78	0.70	334
3	0.57	0.52	0.54	327
4	0.37	0.35	0.36	94
5	0.00	0.00	0.00	11
avg / total	0.54	0.58	0.56	800

average of test_accuracy is: 0.5837499999999999

In [15]: #partition2 classifier2 random_forest_classifier(train32_X, train32_Y, test32_X, test32_Y)

 $http://localhost: 8888/nbconvert/html/Documents/Github/118AFinal-Project/Cogs_118A_Final_Project.ipynb? download=falser. A project in the project of the p$

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.665

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.00	0.00	0.00	29
2	0.71	0.81	0.75	334
3	0.66	0.64	0.65	327
4	0.54	0.56	0.55	94
5	0.00	0.00	0.00	11
avg / total	0.63	0.67	0.65	800

max_depth=80, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1800, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.6575

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.00	0.00	0.00	29
2	0.70	0.80	0.75	334
3	0.66	0.64	0.65	327
4	0.52	0.53	0.52	94
5	0.00	0.00	0.00	11
avg / total	0.62	0.66	0.64	800

max_depth=90, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.66875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.00	0.00	0.00	29
2	0.71	0.81	0.76	334
3	0.67	0.65	0.66	327
4	0.54	0.54	0.54	94
5	0.00	0.00	0.00	11
avg / total	0.63	0.67	0.65	800

average of test_accuracy is: 0.66375

In [14]: #partition2 classifier3
gb_classifier(train32_X, train32_Y, test32_X, test32_Y)

learning_rate=0.15, loss='deviance', max_depth=30,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.60625

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.11	0.03	0.05	29
2	0.67	0.74	0.70	334
3	0.60	0.58	0.59	327
4	0.45	0.51	0.48	94
5	0.00	0.00	0.00	11
avg / total	0.58	0.61	0.59	800

learning_rate=0.15, loss='deviance', max_depth=80,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1200,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.61125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.20	0.07	0.10	29
2	0.68	0.74	0.71	334
3	0.60	0.58	0.59	327
4	0.45	0.51	0.48	94
5	0.00	0.00	0.00	11
avg / total	0.59	0.61	0.60	800

learning_rate=0.15, loss='deviance', max_depth=90,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.61

	precision	recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.10	0.03	0.05	29
2	0.67	0.74	0.71	334
3	0.61	0.58	0.59	327
4	0.46	0.53	0.49	94
5	0.00	0.00	0.00	11
avg / total	0.59	0.61	0.60	800

average of test_accuracy is: 0.6091666666666665

In [13]: #partition3 classifier1
NN_MLP(train33_X, train33_Y, test33_X)

best estimator is: MLPClassifier(activation='relu', alpha=1e-06, batch _size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100, 100), learning_rate='constant', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0. 1, verbose=False, warm_start=False)

test accuracy is: 0.538281	125
----------------------------	-----

	precision	recall	†1-score	support
0	0.00	0.00	0.00	8
1	0.12	0.07	0.09	44
2	0.61	0.69	0.65	547
3	0.52	0.44	0.47	514
4	0.42	0.55	0.47	153
5	0.00	0.00	0.00	14
avg / total	0.52	0.54	0.53	1280

best estimator is: MLPClassifier(activation='relu', alpha=1e-05, batch
_size='auto', beta_1=0.9,
 beta_2=0.999, early_stopping=False, epsilon=1e-08,
 hidden_layer_sizes=(100, 100), learning_rate='constant',
 learning_rate_init=0.001, max_iter=1000, momentum=0.9,
 nesterovs_momentum=True, power_t=0.5, random_state=None,
 shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1,
 verbose=False, warm_start=False)

test accuracy is: 0.58203125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.29	0.05	0.08	44
2	0.64	0.72	0.68	547
3	0.55	0.53	0.54	514
4	0.47	0.50	0.48	153
5	0.00	0.00	0.00	14
avg / total	0.56	0.58	0.57	1280

best estimator is: MLPClassifier(activation='relu', alpha=0.001, batch
_size='auto', beta_1=0.9,
 beta_2=0.999, early_stopping=False, epsilon=1e-08,
 hidden_layer_sizes=(100, 100), learning_rate='constant',
 learning_rate_init=0.001, max_iter=1000, momentum=0.9,
 nesterovs_momentum=True, power_t=0.5, random_state=None,
 shuffle=True, solver='sgd', tol=0.0001, validation_fraction=0.1,
 verbose=False, warm_start=False)

test accuracy is: 0.578125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.30	0.07	0.11	44
2	0.65	0.71	0.68	547
3	0.54	0.52	0.53	514
4	0.47	0.53	0.50	153
5	0.00	0.00	0.00	14
avg / total	0.56	0.58	0.57	1280

average of test_accuracy is: 0.5661458333333333

In [11]: #partition3 classifier2 random_forest_classifier(train33_X, train33_Y, test33_X, test33_Y)

max_depth=100, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1400, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.5953125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.00	0.00	0.00	44
2	0.66	0.73	0.70	547
3	0.56	0.56	0.56	514
4	0.46	0.47	0.46	153
5	0.00	0.00	0.00	14
avg / total	0.56	0.60	0.58	1280

max_depth=50, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.5984375

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.00	0.00	0.00	44
2	0.66	0.72	0.69	547
3	0.57	0.57	0.57	514
4	0.47	0.49	0.48	153
5	0.00	0.00	0.00	14
avg / total	0.57	0.60	0.58	1280

max_depth=10, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1000, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

test accuracy is: 0.6078125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.00	0.00	0.00	44
2	0.67	0.73	0.70	547
3	0.58	0.59	0.58	514
4	0.48	0.48	0.48	153
5	0.00	0.00	0.00	14
avg / total	0.58	0.61	0.59	1280

average of test_accuracy is: 0.6005208333333334

In [12]: #partition3 classifier3
gb_classifier(train33_X, train33_Y, test33_X)

learning_rate=0.05, loss='deviance', max_depth=60,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.54296875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.10	0.07	0.08	44
2	0.63	0.64	0.64	547
3	0.51	0.54	0.52	514
4	0.42	0.44	0.43	153
5	0.00	0.00	0.00	14
avg / total	0.53	0.54	0.54	1280

learning_rate=0.005, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1600,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)
test accuracy is: 0.54453125

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.08	0.05	0.06	44
2	0.62	0.67	0.65	547
3	0.52	0.51	0.52	514
4	0.40	0.42	0.41	153
5	0.00	0.00	0.00	14
avg / total	0.53	0.54	0.54	1280

learning_rate=0.005, loss='deviance', max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=1200,
presort='auto', random_state=None, subsample=1.0, verbose

=0,

warm_start=False)

test accuracy is: 0.5421875

	precision	recall	f1-score	support
0	0.00	0.00	0.00	8
1	0.08	0.05	0.06	44
2	0.62	0.67	0.64	547
3	0.52	0.51	0.52	514
4	0.40	0.42	0.41	153
5	0.00	0.00	0.00	14
avg / total	0.53	0.54	0.53	1280

average of test_accuracy is: 0.5432291666666667