

* As the v_{BE} amplitude increases, the shape of $i_C(t)$ deviates from a sinusoid ightarrow distortion.

- * As the v_{BE} amplitude increases, the shape of $i_C(t)$ deviates from a sinusoid \rightarrow distortion.
- * If $v_{be}(t)$, i.e., the time-varying part of v_{BE} , is kept small, i_C varies linearly with v_{BE} . How small? Let us look at this in more detail.

Let $v_{BE}(t) = V_{BE} + v_{be}(t)$ (bias+signal), and $i_C(t) = I_C + i_c(t)$.

Let
$$v_{BE}(t) = V_{BE} + v_{be}(t)$$
 (bias+signal), and $i_C(t) = I_C + i_c(t)$.

Assuming active mode,
$$i_C(t) = \alpha i_E(t) = \alpha I_{ES} \left[\exp \left(\frac{v_{BE}(t)}{V_T} \right) - 1 \right].$$

Let
$$v_{BE}(t) = V_{BE} + v_{be}(t)$$
 (bias+signal), and $i_C(t) = I_C + i_c(t)$.

Assuming active mode,
$$i_C(t) = \alpha i_E(t) = \alpha I_{ES} \left[\exp \left(\frac{v_{BE}(t)}{V_T} \right) - 1 \right]$$
.

Since the B-E junction is forward-biased, $\exp\left(\frac{v_{BE}(t)}{V_T}\right)\gg 1$, and we get

$$i_{\mathcal{C}}(t) = \alpha \, \mathit{I}_{\mathit{ES}} \, \exp\left(\frac{\mathit{v}_{\mathit{BE}}(t)}{\mathit{V}_{\mathit{T}}}\right) = \alpha \, \mathit{I}_{\mathit{ES}} \, \exp\left(\frac{\mathit{V}_{\mathit{BE}} + \mathit{v}_{\mathit{be}}(t)}{\mathit{V}_{\mathit{T}}}\right) = \alpha \, \mathit{I}_{\mathit{ES}} \, \exp\left(\frac{\mathit{v}_{\mathit{BE}}}{\mathit{V}_{\mathit{T}}}\right) \times \exp\left(\frac{\mathit{v}_{\mathit{be}}(t)}{\mathit{V}_{\mathit{T}}}\right).$$

Let $v_{BE}(t) = V_{BE} + v_{be}(t)$ (bias+signal), and $i_C(t) = I_C + i_c(t)$.

Assuming active mode,
$$i_C(t) = \alpha i_E(t) = \alpha I_{ES} \left[\exp \left(\frac{v_{BE}(t)}{V_T} \right) - 1 \right]$$
.

Since the B-E junction is forward-biased, $\exp\left(\frac{v_{BE}(t)}{V_T}\right)\gg 1$, and we get

$$i_C(t) = \alpha \, I_{ES} \, \exp\left(\frac{v_{BE}(t)}{V_T}\right) = \alpha \, I_{ES} \, \exp\left(\frac{V_{BE} + v_{be}(t)}{V_T}\right) = \alpha \, I_{ES} \, \exp\left(\frac{v_{BE}}{V_T}\right) \times \exp\left(\frac{v_{be}(t)}{V_T}\right).$$

If
$$v_{be}(t) = 0$$
, $i_C(t) = I_C$ (the bias value of i_C), i.e., $I_C = \alpha I_{ES} \exp\left(\frac{V_{BE}}{V_T}\right)$
 $\Rightarrow i_C(t) = I_C \exp\left(\frac{v_{be}(t)}{V_C}\right)$.

If x is small, i.e., if the amplitude of
$$v_{be}(t)$$
 is small compared to the thermal voltage V_T , we get

$$i_C(t) = I_C \left[1 + rac{v_{be}(t)}{V_T}
ight].$$

$$i_C(t) = I_C \exp\left(\frac{v_{be}(t)}{V_T}\right) = I_C \left[1 + x + \frac{x^2}{2} + \cdots\right], \quad x = v_{be}(t)/V_T.$$

If x is small, i.e., if the amplitude of $v_{be}(t)$ is small compared to the thermal voltage V_T , we get

$$i_C(t) = I_C \left[1 + rac{v_{be}(t)}{V_T}
ight].$$

We can now see that, for $|v_{be}(t)| \ll V_T$, the relationship between $i_C(t)$ and $v_{be}(t)$ is linear, as we have observed previously.

$$i_C(t) = I_C \exp\left(\frac{v_{be}(t)}{V_T}\right) = I_C \left[1 + x + \frac{x^2}{2} + \cdots\right], \quad x = v_{be}(t)/V_T.$$

If x is small, i.e., if the amplitude of $v_{be}(t)$ is small compared to the thermal voltage V_T , we get

$$i_C(t) = I_C \left[1 + rac{v_{be}(t)}{V_T}
ight].$$

We can now see that, for $|v_{be}(t)| \ll V_T$, the relationship between $i_C(t)$ and $v_{be}(t)$ is linear, as we have observed previously.

$$i_C(t) = I_C + i_C(t) = I_C \left[1 + \frac{v_{be}(t)}{V_T} \right] \Rightarrow orall i_C(t) = \frac{I_C}{V_T} v_{be}(t)$$

The relationship, $i_c(t)=\frac{I_C}{V_T}v_{be}(t)$ can be represented by a VCCS, $i_c(t)=g_m\,v_{be}(t)$, where $g_m=I_C/V_T$ is the "transconductance."

The relationship, $i_c(t) = \frac{I_C}{V_T} v_{be}(t)$ can be represented by a VCCS, $i_c(t) = g_m v_{be}(t)$, where $g_m = I_C/V_T$ is the "transconductance."

For the base current, we have,

$$i_B(t) = I_B + i_b(t) = \frac{1}{\beta} [I_C + i_c(t)]$$

 $\rightarrow i_b(t) = \frac{1}{\beta} i_c(t) = \frac{1}{\beta} g_m v_{be}(t) \rightarrow v_{be}(t) = (\beta/g_m) i_b(t).$

The relationship, $i_c(t) = \frac{I_C}{V_T} v_{be}(t)$ can be represented by a VCCS, $i_c(t) = g_m v_{be}(t)$, where $g_m = I_C/V_T$ is the "transconductance."

For the base current, we have,

$$i_B(t) = I_B + i_b(t) = \frac{1}{\beta} [I_C + i_c(t)]$$

 $\rightarrow i_b(t) = \frac{1}{\beta} i_c(t) = \frac{1}{\beta} g_m v_{be}(t) \rightarrow v_{be}(t) = (\beta/g_m) i_b(t).$

The above relationship is represented by a resistance, $r_{\pi} = \beta/g_m$, connected between B and E.

The relationship, $i_c(t) = \frac{I_C}{V_T} v_{be}(t)$ can be represented by a VCCS, $i_c(t) = g_m v_{be}(t)$,

where $g_m = I_C/V_T$ is the "transconductance."

For the base current, we have,

$$i_B(t) = I_B + i_b(t) = \frac{1}{\beta} [I_C + i_c(t)]$$

 $\rightarrow i_b(t) = \frac{1}{\beta} i_c(t) = \frac{1}{\beta} g_m v_{be}(t) \rightarrow v_{be}(t) = (\beta/g_m) i_b(t).$

The above relationship is represented by a resistance, $r_{\pi} = \beta/g_m$, connected between B and E.

The resulting model is called the π -model for small-signal description of a BJT.

* The transconductance g_m depends on the biasing of the BJT, since $g_m=I_C/V_T$. For $I_C=1\,\mathrm{m}A$, $V_T\approx 25\,\mathrm{m}V$ (room temperature), $g_m=1\,\mathrm{m}A/25\,\mathrm{m}V=40\,\mathrm{m}\delta$ (milli-mho or milli-siemens).

- * The transconductance g_m depends on the biasing of the BJT, since $g_m = I_C/V_T$. For $I_C = 1 \,\text{mA}$, $V_T \approx 25 \,\text{mV}$ (room temperature), $g_m = 1 \,\text{mA}/25 \,\text{mV} = 40 \,\text{m}$ (milli-mho or milli-siemens).
- * r_{π} also depends on I_C , since $r_{\pi}=\beta/g_m=\beta\,V_T/I_C$. For $I_C=1\,\text{mA},\ V_T\approx 25\,\text{mV},\ \beta=100,\ r_{\pi}=2.5\,\text{k}\Omega$.

- * The transconductance g_m depends on the biasing of the BJT, since $g_m = I_C/V_T$. For $I_C = 1 \,\text{mA}$, $V_T \approx 25 \,\text{mV}$ (room temperature), $g_m = 1 \,\text{mA}/25 \,\text{mV} = 40 \,\text{m} \odot$ (milli-mho or milli-siemens).
- * r_{π} also depends on I_C , since $r_{\pi}=\beta/g_m=\beta~V_T/I_C$. For $I_C=1\,\mathrm{mA},~V_T\approx25\,\mathrm{mV},~\beta=100,~r_{\pi}=2.5\,\mathrm{k}\Omega$.
- * Note that the small-signal model is valid only for small v_{be} (small compared to V_T).

* In the above model, note that i_c is independent of v_{ce} .

- * In the above model, note that i_c is independent of v_{ce} .
- * In practice, i_c does depend on v_{ce} because of the Early effect, and $\frac{dI_C}{dV_{CE}} \approx \text{constant} = 1/r_o$, where r_o is called the output resistance.

- * In the above model, note that i_c is independent of v_{ce} .
- * In practice, i_c does depend on v_{ce} because of the Early effect, and $\frac{dI_C}{dV_{CE}} \approx \text{constant} = 1/r_o$, where r_o is called the output resistance.
- * A more accurate model includes r_o as well.

- * In the above model, note that i_c is independent of v_{ce} .
- * In practice, i_c does depend on v_{ce} because of the Early effect, and $\frac{dI_C}{dV_{CE}} \approx \text{constant} = 1/r_o$, where r_o is called the output resistance.
- * A more accurate model includes r_o as well.

* A few other components are required to make the small-signal model complete:

 r_b : base spreading resistance

 C_{π} : base charging capacitance + B-E junction capacitance

 C_{μ} : B-C junction capacitance

* A few other components are required to make the small-signal model complete:

 r_b : base spreading resistance

 C_{π} : base charging capacitance + B-E junction capacitance

 C_{μ} : B-C junction capacitance

* The capacitances are typically in the pF range. At low frequencies, $1/\omega C$ is large, and the capacitances can be replaced by open circuits.

* A few other components are required to make the small-signal model complete:

 r_b : base spreading resistance

 C_{π} : base charging capacitance + B-E junction capacitance

 C_{μ} : B-C junction capacitance

* The capacitances are typically in the pF range. At low frequencies, $1/\omega C$ is large, and the capacitances can be replaced by open circuits.

* Note that the small-signal models we have described are valid in the active region only.