Consider a dataset $D=\left(oldsymbol{x}_{i},y_{i}
ight)^{N}$ of N data points, where $oldsymbol{x}_{i}=\left(x_{i1},x_{i2},\cdots,x_{iM}
ight)$ is a feature vector with M features, and y_{i} is the target, i.e., the response, variable. Let $oldsymbol{x}_{j}$ denote the jth variable in feature space. A **typical linear regression** model can then be expressed mathematically as:

feature slope vector
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_M x_M$$

target This model assumes that the relationships between the target variable y_i and features x_j are linear and can be captured in slope terms $\beta_1, \beta_2, \ldots, \beta_M$.