

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6 ПО ДИСЦИПЛИНЕ:

ОСНОВЫ ЭЛЕКТРОНИКИ

"ИССЛЕДОВАНИЕ КЛЮЧЕВОЙ СХЕМЫ НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ"

Студент: Зернов Георгий Павлович		
Группа: ИУ7-34Б		
Вариант: 86		
Название предприятия: НУК ИУ МГТУ	им. Н. Э. Баумана	
Студент		_ Зернов Г.П.
Преподаватель		Оглоблин Д.И.

Оглавление

ЦЕЛЬ ПРАКТИКУМА	
ХОД РАБОТЫ	
Исследуемый транзистор	
Эксперимент 4	
Эксперимент 5	
Эксперимент 6	10
Ответы на контрольные вопросы	
ЗАКЛЮЧЕНИЕ	

ЦЕЛЬ ПРАКТИКУМА

Получить навыки в использовании базовых возможностей программы Місгосар и знания при исследовании и настройке усилительных, ключевых и логических устройств на биполярных и полевых транзисторах.

ХОД РАБОТЫ

Исследуемый транзистор

В работе проводится исследование транзистора KT503v. Характеристики транзистора из библиотеки:

```
Вариант 86
.model KT503v NPN(Is=10.07f Xti=3 Eg=1.11 Vaf=60 Bf=250 Ise=100.2f
+ Ne=1.452 Ikf=.6117 Nk=.4667 Xtb=1.5 Br=1.7 Isc=47.49f Nc=1.715
+ Ikr=.7018 Rb=6 Rc=1.208 Сјс=23.66р Мјс=.33 Vјс=.75 Fc=.5
+ Сје=30.84р Мје=.33 Vје=.75 Tr=390.4n Tf=10.09n Itf=1 Xtf=2 Vtf=40)
```

Эксперимент 4

Рассчитаем схему электронного ключа для степени насыщения s=1.

$$B := 200$$

$$Uk := 0.5$$

$$Rk := 300$$

$$Ek := 5$$

$$S_{*} := 1$$

$$Ub_{*}s := 0.6$$

$$Ik_{*}s := \frac{(Ek - Uk)}{Rk} \quad Ik_{*}s = 0.015$$

$$Ib_{*}s := \frac{Ik_{*}s}{B} \quad Ib_{*}s = 7.5 \times 10^{-5}$$

$$Rb := \frac{(Ek - Ub_{*}s)}{S \cdot Ib \cdot s} \quad Rb = 5.867 \times 10^{4}$$

Соберём рассчитанную схему:

С помощью режима Transient Analyses получим графики входного и выходного импульса:

Аналогично с помощью режима stepping получим графики для степеней насыщения 1, 2, 5, 20:

Длительности переднего и заднего фронтов:

Передний фронт: 3290 (нс)

Задний фронт: 3850 (нс)

Добавим в схему для s=20 диод Шоттки:

Заметим, что время рассасывания уменьшилось.

Эксперимент 5

Построим схему из эксперимента 4 и дополним ее конденсатором. При помощи слайдера подберем такие величины для C2 и R1, чтобы фронты оказались максимально короткими:

Подобранные значения: R1 = 29335Oм, C2 = 80п Φ .

Уберем из схемы конденсатор и заменим транзистор на 2N915:

Получим графики импульсов для разных s:

Найдём длительность фронтов

Передний фронт: 250 (нс)

Задний фронт: 360 (нс)

Заметим, что характеристики инвертирования значительно варьируются от транзистора к транзистору

Эксперимент 6

Построим типовую схему мультивибратора с транзистором KT503v:

Время в открытом состоянии: 544 (мкс)

Время в закрытом состоянии: 538 (мкс)

Напряжение в закрытом состоянии: 120 (мВ)

Напряжение в открытом состоянии: 12 (В)

Чтобы уменьшить длительности импульсов, уменьшим R3, в 3 раза:

Длительность уменьшилась.

Чтобы увеличить длительности импульсов, увеличим R3, в 3 раза:

Длительность увеличилась.

533.305u 🙌

Докажем, что транзистор оказывает влияние на период колебаний. Заменим транзисторы на 2N915:

1.619m

Заметим, что период колебаний изменился из чего следует, что транзистор оказывает влияние на период колебаний.

Ответы на контрольные вопросы.

1. Какие элементы имеют основное влияние на частоту мультивибратора?

Элементы, влияющие на частоту мультивибратора, — это конденсаторы C1 и C2, а также резисторы R3 и R4. Увеличение их значений снижает частоту колебаний, так как увеличиваются временные постоянные зарядки и разрядки.

2. Как влияет замена транзистора на параметры колебания?

Замена транзистора влияет на параметры колебаний через его коэффициент усиления, напряжение насыщения и скорости переключения. Это может изменить форму сигнала, уровни напряжений и частоту, особенно на высоких частотах.

3. Чем отличается работа математической модели мультивибратора от реального устройства?

В математической модели мультивибратора баланс в плечах часто нужно нарушать искусственно, например, задавая начальные условия, чтобы инициировать колебания. Реальные устройства начинают колебаться сами из-за

несовершенств компонентов, паразитных эффектов, температурных изменений и других нелинейностей.

ЗАКЛЮЧЕНИЕ

Были выполнены все задачи, описанные выше, таким образом были получены и проанализированы характеристики транзистора.