Assignment - 04

Jay Vikrant EE22BTECH11025

0,3)

a) To generate a 6 operand n-bit adder from 6- to -3 counters, we need to add make a circuit which can operform addition Like this.

an-1 . - - azaza, ao bn-1--- bz bz b1 b0 DCn-1 - - C3 C2 C1 C0 dn-1 - - dzdzd,do en-1. e3 e2 e1 e0 + fn-1 - f3f2 f1 fo

We can use a 6-to-3 counter to find sum of every column i.e a; +b; + c; + d; +e; +f; , fromi=0 to n-1 me get output of (Zo); (Zi); (Zi); for i= 0 to n-1

For i=0 i.e (20)0 will be 20 Non (Z1); (i= 1 to n-2) will be supplied to another 6-to-3 counter having (Z2):-1 (i=01 to n-2) and (20); (i=1 to n-2) as another inputs and in some cases z, output of previous 6- to -3 counter and in some cases 22 countput of proevious 6 - to -3 counter

The 70 of this second layer of 6 to 3 counter will be representing our sum

We know the touth table for a 6-to-3 counters we can implement 6-input LUT by using memory table with a 64:1 multiplener with six select lines as N_0, N_1, \dots, N_C

Y. 0000	X 00000	NJ 0000	X 3 0000	My 00-1	X50100	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 000-	700
1	1	1	1.	١	1		1	0

on touth table 7,

		N.S	
P.S	K=0.	-	X=1
A	B, 1		И,1
B	F, I		D, 1
C	D,0		E,1
D	C,0		F, 1
E	D,1	- 6	15 THE
F	C_1		(,)
S	$ c_1 $	91	D, I A, I
H	10,0		Et. MILL

a)
$$P_0 = A_1B_1(D_1E_1F_1, G_1)H$$

$$P_1 = (ABEFG)(CDH)$$

$$P_2 = (AB)(EFG)(CDH)$$

$$P_3 = (A)(B)(EFG)(CD)(H)$$

· Thère is no further distinguishable state

The equivalence pattern for the above machine is (A) (B) (EFG) (H) (A)

b) The standard form of the corresponding reduced machine is

2.11
=0 " N=1
(6,1)
(3,1)
$\begin{array}{c} (s, t) \\ (Y, t) \end{array}$
S(O)

		N.S	
P.S	K=0	K=1	
x⇒(A) β→(B) Y→(C) S→(D) €→(E)	(B, D) (D, I) (D, O) (D, O)	(D, 1) (D, 1) (C, 1) (A, 1)	
€ →(c)			

- c) As A&B distinguish in P3, so the length of sequence of is 3.
 - · Fox going from Po to P, let input be x=0 for A&B : Z=1 & N.S is B,F
 - · For going from P, to P2., let input be X=0 for ABBFF
 Z=1 & N.S is F1C
 - · For going from P2 to P3, let input be x=0 for F&C
 Now output z is different for both C&F
 - : Minimum length sequence to distinguish state A, from B is

1 1 2 - 22

A,, A2, A3, A41 ----, An, An

Making partition of M (such that each partition P;, state A; is distinguished from other states)

$$P_{0} = (A_{1}, A_{21} - \dots , A_{n-1}, A_{n})$$

$$P_{31} = (A_{1})(A_{2}, A_{31}, \dots , A_{n-1}, A_{n})$$

$$P_{2} = (A_{1})(A_{2})(A_{31}, A_{41}, \dots , A_{n-1}, A_{n})$$

$$P_{3} = (A_{1})(A_{21})(A_{31})(A_{41}, A_{51}, \dots , A_{n-1}, A_{n})$$

$$P_{n-2} = (A_{1})(A_{21}) - (A_{n-21})(A_{n-11}, A_{n})$$

$$P_{n-1} = (A_{1})(A_{21}) - (A_{n-11})(A_{n})$$

there are n states in Pn-1 which represents the equivalence pattern.

Now, the state An-1 & An are distinguishable by Sequence of length n-1 which are the last two states & to be distinguishable as all other states are distinguished much before

. De Two states Si & Sj of a n-state machine M are distinguishable by a sequence of length n-1 or less.

010001010000:(tugne)x (&D) x (

As the machine is one-input of how 3-states

As the machine is initially in state A

when A is given X=0 as input, then it must go to a

new state B es for same input, output is different

when B is given X=0 as input, then it must go to a

different state either back to A or to a new state c

let it good back to A

Again after 00 as two consecutive input to A; machine again comes back to A.

when X=10 is given as input at A, machine can either gosto C or Stay at A.

lets consider it stays at A for X=0 to A, N.S is B

when x=1 is given to B, it goes B to N.S. C. when x=0 is given to C, it stay at C. also, the next two input d'output are same B, N.S. C. when x=1 is given to C, it goes to A when x=0 is given to A, it goes to B

Thus, our state diagram look like

.. Reduced standard form,

0 - 1	N.S			
P.S	X=0	X = 1		
A	B, 1	ALO		
ß	A,0	C 0,1		
C	(,0	A ,0		