Java SE: Eccezioni, I/O ...

- Eccezioni
- Date e Time
 - Da java.util a java.time
- Input / Output
 - PrintWriter
 - Scanner
- Try with resources
- Progetto di riferimento
 - https://github.com/egalli64/jse (modulo 3)

Eccezioni

- Obbligano il chiamante a gestire gli errori
 - Unhandled exception → terminazione del programma
- Evidenziano il flusso normale di esecuzione
- Semplificano il debug esplicitando lo stack trace
- Possono chiarire il motivo scatenante dell'errore
 - NullPointerException, ArrayIndexOutOfBoundsException, ...
- Checked vs unchecked

try – catch – finally

- Un metodo che può tirare un'eccezione
 - Lo segnala indicando throws nella signature
 - · Obbligatorio solo per le eccezioni "checked"
 - Usa **throw** per tirarla
 - · Interrompe il flusso di esecuzione normale
 - Stack unwinding alla ricerca di un catch
- Il codice che invoca metodi "rischiosi"
 - Li mette in un blocco try
 - · Alternativa: indica l'eccezione nella sua signature
 - A cui possono seguire blocchi **catch**
 - · Ognuno gestisce una o più possibili eccezioni
 - E un blocco **finally** per la fase di cleanup
 - Esecuzione garantita, alla fine del try o dell'eventuale catch
 - Ad un blocco try deve seguire almeno un blocco catch o finally

```
public void g() throws Exception {
    if (somethingUnexpected()) {
        throw new Exception();
public void f() {
    } catch (Exception ex) {
    } finally {
        cleanup();
```

Gerarchia delle eccezioni

Test eccezioni in JUnit 3

Math.abs() di Integer.MIN_VALUE è Integer.MIN_VALUE!

```
public int negate(int value) {
    if(value == Integer.MIN_VALUE) {
        throw new IllegalArgumentException("Can't negate MIN_VALUE");
    }
    return -value;
}
```

```
@Test
void negateException() {
    Simple simple = new Simple();

    try {
        simple.negate(Integer.MIN_VALUE);
    } catch (IllegalArgumentException iae) {
        String message = iae.getMessage();
        assertThat(message, is("Can't negate MIN_VALUE"));
        return;
    }
    fail("An IllegalArgumentException was expected");
}
```

JUnit 4.7 ExpectedException

```
@Rule
public ExpectedException thrown = ExpectedException.none();

@Test
public void negateMinInt() {
    thrown.expect(IllegalArgumentException.class);
    thrown.expectMessage("Can't negate MIN_VALUE");

Simple simple = new Simple();
    sample.negate(Integer.MIN_VALUE);
}
Si definisce una
variabile di istanza
ExpectedException
taggata come @Rule
```

Nel @Test si dichiara quale eccezione e messaggio ci si aspetta

JUnit 5 assertThrows()

Il metodo fallisce se quanto testato non tira l'eccezione specificata

L'eccezione attesa viene tornata per permettere ulteriori test

L'assertion è eseguita su di un Executable, interfaccia funzionale definita in Jupiter

Date e Time

- java.util
 - Date
 - DateFormat
 - Calendar
 - GregorianCalendar
 - TimeZone
 - SimpleTimeZone

- java.time (JDK 8)
 - LocalDate
 - LocalTime
 - LocalDateTime
 - DateTimeFormatter, FormatStyle
 - Instant, Duration, Period
- java.sql.Date

implementazioni più chiare, immutabili e thread-safe

LocalDate e LocalTime

- Non hanno costruttori pubblici
- Static factory methods: now(), of()
- Formattazione via DateTimeFormatter con FormatStyle
- LocalDateTime aggrega LocalDate e LocalTime

```
LocalDate date = LocalDate.now();
System.out.println(date);
System.out.println(LocalDate.of(2019, Month.JUNE, 2));
System.out.println(LocalDate.of(2019, 6, 2));
System.out.println(date.format(DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)));
LocalTime time = LocalTime.now();
System.out.println(time);
LocalDateTime ldt = LocalDateTime.of(date, time);
System.out.println(ldt);
```

java.sql Date, Time, Timestamp

- Supporto JDBC a date/time SQL
 - Date, Time, Timestamp
- Conversioni
 - *.valueOf(Local*)
 - Date.toLocalDate()
 - Time.toLocalTime()
 - Timestamp.toLocalDateTime()
 - Timestamp.toInstant()

La libreria java.io

- Supporto a operazioni di input e output
- In un programma solitamente i dati sono
 - Letti da sorgenti di input
 - Scritti su destinazioni di output
- Basata sul concetto di stream
 - Flusso sequenziale di dati
 - binari (byte)
 - testuali (char)
 - Aperto in lettura o scrittura prima dell'uso, va esplicitamente chiuso al termine
 - Astrazione di sorgenti/destinazioni (connessioni di rete, buffer in memoria, file su disco ...)

File

- Accesso a file e directory
- I suoi quattro costruttori
 - File dir = new File("/tmp");
 - File f1 = new File("/tmp/hello.txt");
 - File f2 = new File("/tmp", "hello.txt");
 - File f3 = new File(dir, "hello.txt");
 - File f4 = new File(new URI("file:///C://tmp/hello.txt"));
- Creazione di una directory e di un file su memoria di massa
 - dir.mkdir()
 - f1.createNewFile()

Forward slash anche per Windows

Check File

- exists()
- isFile()
- isDirectory()
- isHidden()

- canRead()
- canWrite()
- canExecute()
- isAbsolute()

Alcuni altri metodi di File

- getName() // "hello.txt"
- getPath() // "\\tmp\\hello.txt"

usa separatore (File.separator) e formato del SO corrente

- getAbsolutePath() // "D:\\tmp\\hello.txt"
- getParent() // "\\tmp"
- lastModified() // 1559331488083L
- length() // 4L
- list() // ["hello.txt"]

UNIX time in millisecondi

se invocato su una directory: array dei nomi dei file contenuti

Scrittura in un file di testo

- Gerarchia basata sulla classe astratta Writer
- OutputStreamWriter fa da bridge tra stream su caratteri e byte Ridefinisce i metodi write(), flush(), close()
- FileWriter costruisce un FileOutputStream da un File (o dal suo nome)
- PrintWriter gestisce efficacemente l'OutputStream passato con i metodi print(), println(), printf(), append()

```
File f = new File("/tmp/hello.txt");
PrintWriter pw = new PrintWriter(new FileWriter(f));
pw.println("hello");
pw.flush();
pw.close();
```

Lettura da un file di testo

- Gerarchia basata sulla classe astratta Reader
- InputStreamReader fa da bridge tra stream su caratteri e byte Ridefinisce i metodi read() e close()
- FileReader costruisce un FileInputStream da un File (o dal suo nome)
- BufferedReader gestisce efficacemente l'InputStream passato con un buffer e fornendo metodi come readLine()

```
File f = new File("/tmp/hello.txt");
BufferedReader br = new BufferedReader(new FileReader(f));
String line = br.readLine();
br.close();
```

Input con Scanner

- Legge input formattato con funzionalità per convertirlo anche in formato binario
- Può leggere da input Stream, File, String, o altre classi che implementano Readable o ReadableByteChannel
- Uso generale di Scanner:
 - Il ctor associa l'oggetto scanner allo stream in lettura
 - Loop su hasNext...() per determinare se c'è un token in lettura del tipo atteso
 - Con next...() si legge il token
 - Terminato l'uso, ricordarsi di invocare close() sullo scanner

Un esempio per Scanner

```
import java.util.Scanner;
public class Adder {
    public static void main(String[] args) {
        System.out.println("Please, enter a few numbers");
        double result = 0;
        Scanner scanner = new Scanner(System.in);
        while (scanner.hasNext()) {
            if (scanner.hasNextDouble()) {
                result += scanner.nextDouble();
            } else {
                System.out.println("Bad input, discarded: " + scanner.next());
        scanner.close(); // see try-with-resources
        System.out.println("Total is " + result);
```

try-with-resources

Per classi che implementano AutoCloseable

```
double result = 0;
// try-with-resources
try(Scanner scanner = new Scanner(System.in)) {
    while (scanner.hasNext()) {
        if (scanner.hasNextDouble()) {
            result += scanner.nextDouble();
        } else {
            System.out.println("Bad input, discarded: " + scanner.next());
System.out.println("Total is " + result);
```