A1 - Séries Temporais

Eduardo Fonseca Mendes (September 19, 2020)

Questão 1: Estacionariedade da série - 5 pontos

Considere $\{a_t : t \in \mathbb{N}\}$ uma sequência construída a partir de uma coleção de variáveis i.i.d. $u_t \sim N(0,1)$, da seguinte forma

$$a_t = \begin{cases} u_t & , t = 2n \\ 2^{-1/2}(u_{t-1}^2 - 1) & , t = 2n + 1 \end{cases}$$

 $n = 1, 0, \dots$ O processo $\{a_t\}$ é estacionário de segunda ordem?

Questão 2: Modelos ARMA - 20 pontos

Seja $\{a_t : t \in \mathbb{N}\}$ um ruído branco com variância σ^2 . De forma geral, usaremos ϕ_1, ϕ_2, \dots para parâmetros autoregressivos e $\theta_1, \theta_2, \dots$ para parâmetros de médias móveis.

- 1. (5 pontos) Suponha que Y_t possui uma especificação ARMA(2,1). Escreva Y_t usando o operador B e encontre restrições em $(\theta_1, \phi_1, \phi_2)$ para que o processo seja inversível e estacionario.
- 2. (5 pontos) Escreva $Y_t = \theta_0 + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + U_t$ onde $U_t = a_t \theta_1 a_{t-1}$. Encontre uma especificação ARMA para $\{Y_t\}$ usando o operador B e calcule sua função de autocovariância.
- 3. (5 pontos) Suponha que $Y_t = f_t + \phi_1 Y_{t-1} + a_t$, $|\phi_1| < 1$. Este processo é estacionário? Mostre que este processo consegue capturar sazonalidade e explique uma forma de estimar todos os parâmetros do modelo.
- 4. (5 pontos) Escreva $Y_t = H_t a_t$, onde $H_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2$, $\sigma^2 = 1$. Calcule a média e a função de autocovariância do processo $\{Y_t\}$ e indique se ele é estacionário.

Questão 3: Médias móveis e lowess - 5 pontos

Explique a diferença entre os métodos de médias móveis e lowess, identificando as caracteristias individuais, como os parametros devem ser identificados e como podemos lidar como valores extremos.