UNIVERSIDAD DE BUENOS AIRES. FACULTAD DE MEDICINA II CÁTEDRA DE MICROBIOLOGÍA, PARASITOLOGÍA E INMUNOLOGÍA

Profesor Titular: Dr. Norberto Sanjuan

CURSO DE VERANO DE MICROBIOLOGÍA Y PARASITOLOGÍA I SEMINARIO Nº 1:

INTRODUCCIÓN A LA MICROBIOLOGÍA GENERALIDADES DE BACTERIOLOGÍA

CUERPO DOCENTE:

DAMICO, Nicolás. MÉDICO.
HORMANSTORFER, Macarena. MÉDICA.
PETRIGLIERI, Carla. MÉDICA.
SANJUAN, Norberto. MÉDICO.
SEIJO, Mariana. MÈDICA.
TORRÁ, Florencia. BIOQUÍMICA.

MICROBIOLOGÍA:

CIENCIA QUE ESTUDIA LOS MICROORGANISMOS (BACTERIAS, HONGOS PATÓGENOS, VIRUS Y PARÁSITOS MICROSCÓPICOS).

MICROBIOLOGÍA HUMANA:

MICROBIOLOGÍA BÁSICA: ESTUDIA LOS ASPECTOS BIOLÓGICOS, ULTRAESTRUCTURALES, BIOQUÍMICOS Y GENÉTIICOS MICROBIANOS.

MICROBIOLOGÍA MÉDICA: ESTUDIA A NIVEL EXPERIMENTAL Y/O CLÍNICO LA PATOGENIA DE LOS MICROORGANISMOS.

MICROBIOLOGÍA CLÍNICA: DIAGNOSTICA Y CARACTERIZA LOS MICROORGANISMOS PATÓGENOS AISLADOS DE PACIENTES, CON FINES DIAGNÓSTICOS Y/O EPIDEMIOLÓGICOS.

MICROBIOLOGÍA MÉDICA: RAMA DE LA PATOLOGÍA HUMANA QUE ESTUDIA LOS MICROORGANISMOS PATÓGENOS.

PATOLOGÍA: CIENCIA QUE ESTUDIA LA S CAUSAS Y NATURALEZA DE LA ENFERMEDAD, JUNTAMENTE CON LAS ALTERACIONES ESTRUCTURALES Y FUNCIONALES QUE ELLA PROVOCA.

Etiología: Estudia la CAUSA de una enfermedad.

<u>Patogenia:</u> Estudia los MECANISMOS por los cuales se produce una enfermedad.

UN POCO DE HISTORIA

ANTON VAN LEEUWENHOEK (1632-1723)

RUDOLF VIRCHOW (1821-1902)

LOUIS PASTEUR (1822-1895)

ROBERT KOCH (1843-1910)

LOS MICROBIOS

BACTERIAS

HONGOS

VIRUS

PARÁSITOS

LAS BACTERIAS

- MICROORGANISMOS PROCARIÓTICOS.
- MIDEN DE 0,5 A 5 uM DE LONGITUD.
- TIENEN 3 FORMAS BÁSICAS: COCOS, BACILOS Y ESPIRILOS.
- SE AGRUPAN DE DIFERENTES MANERAS.
- SE LAS DENOMINA EN BASE AL Género y la especie (ej: Escherichia coli).
- SE LAS DIVIDE EN GRAM POSITIVAS Y GRAM NEGATIVAS EN BASE A LA COLORACIÓN DE GRAM.

COLORACIÓN DE GRAM

CHRISTIAN GRAM (1853-1938). INVENTÓ LA COLORACIÓN EN 1884

COLORACIÓN DE GRAM

ESTRUCTURA BACTERIANA

MORFOLOGÍA Y AGRUPACIONES: COCOS

DE A PARES. IZQ: DIPLOCOCOS GRAM NEGATIVOS; DER: DIPLOCOCOS GRAM POSITIVOS

MORFOLOGÍA Y AGRUPACIONES: COCOS

MORFOLOGÍA Y AGRUPACIONES: BACILOS

COCOBACILOS

BACILOS GRAM +

BACILOS EN CADENAS

MORFOLOGÍA Y AGRUPACIONES: ESPIRILOS

VIBRIOS

ESPIROQUETAS

LA CÉLULA BACTERIANA

HAY COMPONENTES COMUNES Y OTROS VARIABLES ENTRE LAS ESPECIES O CEPAS.

LA PARED CELULAR

LA PARED CELULAR: ULTRAESTRUCTURA

GRAM POSITIVA

GRAM NEGATIVA

PARED CELULAR DE Mycobacterium sp.

PARED CELULAR Mycobacterium

LA MEMBRANA PLASMÁTICA

LOS MESOSOMAS Y OTROS ORGANOIDES

EL NUCLEOIDE BACTERIANO

PILIS (FIMBRIAS) Y FLAGELOS

LA CÁPSULA

A B

LOS ESPOROS (sólo Clostridium sp y Bacillus sp)

EL CICLO DE ESPORULACIÓN

FISIOLOGÍA BACTERIANA

METABOLISMO

- AERÓBICO ESTRICTO: (ej. Mycobacterium tuberculosis y Pseudomonas aeruginosa)
- ANAEROBIO ESTRICTO: (ej. Clostridium tetani)
- ANAEROBIO FACULTATIVO: (la mayoría de las bacterias ej: Enterobacterias y *Staphylococcus sp*)
- MICROAERÓFILOS.
- Las bacterias aeróbicas obtienen energía por RESPIRACIÓN. Las anaeróbicas por FERMENTACIÓN. Fermentación: degradación de GLÚCIDOS en anaerobiosis. PUTREFACCIÓN: degradación de PROTEÍNAS en anaerobiosis. EFECTO PASTEUR: En presencia de oxígeno, las bacterias tienden a RESPIRAR.

RESPIRACIÓN: 1. Vía de Embden-Meyerhof (2 ATP)

RESPIRACIÓN: 2. CICLO DE KREBS (en el soma bacteriano) CADENA RESPIRATORIA Y FOSFORILACIÓN OXIDATIVA

(en la membrana interna). 36 ATP

FERMENTACIÓN LÁCTICA (2 ATP)

Fuente: Dan L. Longo, Anthony S. Fauci, Dennis L. Kasper, Stephen L. Hauser, J. Larry Jameson, Joseph Loscalzo: *Harrison. Principios de Medicina Interna*, 18e: www.accessmedicina.com

Derechos © McGraw-Hill Education. Derechos Reservados.

FERMENTACIÓN ALCOHÓLICA (2 ATP)

EXPRESIÓN GÉNICA

- UN SOLO CROMOSOMA.
- AUSENCIA DE INTRONES.
- GENES LINEALES, POLICISTRÓNICOS.
- ISLAS DE PATOGENICIDAD.
- PRESENCIA DE TOPOISOMERASAS Y GIRASAS.
- GENES CROMOSÓMICOS DE RESISTENCIA A ANTIBIÓTICOS.
- SITIOS DE INICIACIÓN DE LA TRANSCRIPCIÓN EN -10 Y -35.
- TRANSCRIPCIÓN Y TRADUCCIÓN SIMULTÁNEAS.
- PRESENCIA DE «FACTORES SIGMA» EN VEZ DE FACTORES DE TRANSCRIPCIÓN.
- AUSENCIA DE GLICOSILACIÓN DE LAS PROTEÍNAS.
- ELEMENTOS MÓVILES (PLÁSMIDOS; TRANSPOSONES).
- TRANSFERENCIA DE GENES ENTRE BACTERIAS.
- REGULACIÓN POR «QUORUM SENSING».
- DIVISIÓN CELULAR AMITÓTICA

DNA BACTERIANO (CROMOSOMA DE CÉLULA LISADA)

TRANSFERENCIA DE MATERIAL GENÉTICO ENTRE BACTERIAS

- TRANSFORMACIÓN.
- · CONJUGACIÓN.
- TRANSDUCCIÓN.

TRANSFORMACIÓN: DNA CROMOSÓMICO BACTERIANO

CONJUGACIÓN: PLÁSMIDOS

TRANSDUCCIÓN: BACTERIÓFAGOS

REPRODUCCIÓN

A 37° CADA 20 MINUTOS. Mycobacterium CADA 12 HS.

CURVA DE CRECIMIENTO BACTERIANO

ESTERILIZACIÓN Y ANTISEPSIA

AUTOCLAVE

ESTUFA DE CALOR SECO

ASEPSIA Y ANTISEPSIA

- ASEPSIA: CARENCIA DE GÉRMENES.
- ANTISEPSIA: ELIMINACIÓN DE GÉRMENES.
- <u>ESTERILIZACIÓN:</u> AUTOCLAVE: 121° C, 20 MINUTOS. ESTUFA DE CALOR SECO: 170°C, 1-2 HS.
- ANTISÉPTICOS:
- agua oxigenada de 10 volúmenes
- compuestos iodados

MÉTODOS DE ESTUDIO DE LAS BACTERIAS

- COLORACIONES Y OBSERVACIÓN MICROSCÓPICA (BACTERIOSCOPÍA).
- CULTIVOS Y OBSRVACIÓN DE «COLONIAS»
- CARACTERIZACIÓN POR PRUEBAS BIOQUÍMICAS
- TIPIFICACIÓN MOLECULAR

COLORACIONES

Gram-negati∨o

Gram-positi∨o

GRAM

ZIEHL-NEELSEN

SCHAEFFER-FULTON

KINYOUN

CULTIVOS

- MEDIOS LÍQUIDOS (CALDOS) Ó SÓLIDOS (CON AGAR-AGAR)
- SIMPLES
- ENRIQUECIDOS
- DIFERENCIALES
- SELECTIVOS
- AEROBIOS O ANAEROBIOS

MEDIOS DE CULTIVO

CALDOS (NO HAY COLONIAS) PLACAS CON MEDIO SÓLIDO (HAY COLONIAS)

MEDIOS ENRIQUECIDOS

AGAR-SANGRE

AGAR-CHOCOLATE

MEDIOS DIFERENCIALES

Simmons

TSI

MEDIOS ANAEROBIOS

JARRA DE ANAEROBIOSIS

CARACTERIZACIÓN BIOQUÍMICA

INDOL

UREASA

AGAR CROMOGÉNICO

SISTEMA API

TIPIFICACIÓN POR SECUANCIACIÓN DEL GEN CODIFICANTE DEL RNA RIBOSÓMICO 16S

PATOGENIA BACTERIANA

TIPOS DE BACTERIAS EN BASE A SU PATOGENIA

- <u>SAPRÓFITAS:</u> HABITANTES NORMALES DEL ORGANISMO (MICROBIOTA NORMAL). PUEDEN PRODUCIR SÓLO INFECCIONES OPORTUNISTAS.
- <u>PATÓGENAS PRIMARIAS: NO</u> SON PARTE INTEGRANTE DE LA MICROBIOTA NORMAL. INFECTAN DESDE EL EXTERIOR. MAYORITARIAMENTE PRODUCIRÁN ENFERMEDADES.

MICROBIOTA NORMAL

Localizaciones de la Microbiota

comensal

- Piel
- Tracto respiratorio
 - Nariz y Orofaringe
- Tracto digestivo
 - Cavidad oral e intestino
- Tracto urogenital
 - Uretra
 - Vagina

PATÓGENOS PRIMARIOS: POSTULADOS DE KOCH

- 1°: LA BACTERIA DEBE ENCONTRARSE EN LAS LESIONES
- 2°: DEBE CULTIVÁRSELA PURA.
- 3°: CUANDO SE LA INOCULA EN ANIMALES, DEBE REPRODUCIR LA ENFERMEDAD HUMANA.
- 4°: A SU VEZ, DEBE AISLÁRSELA DE LOS ANIMALES ENFERMOS.

FASES DE UNA INFECCIÓN BACTERIANA

- 1° ADHERENCIA (ADHESINAS)
- 2º COLONIZACIÓN (BIOPELÍCULAS; QUORUM SENSING)
- 3º INVASIÓN (DISEMINACIÓN O PROPAGACIÓN LOCAL).
- 4º ACCIÓN PATÓGENA Y PRODUCCIÓN DE PATOLOGÍA (FACTORES DE VIRULENCIA)
- 5° MUERTE DEL HUESPED O ELIMINACIÓN DE LAS BACTERIAS POR LA RESPUESTA INMUNE.

ADHESINAS

Fimbrias

- Es un tipo de Pili
- Utiliza adhesinas

BIOPELÍCULAS

BIOPELÍCULAS

INVASIÓN

ACCIÓN PATÓGENA

ABSCESO

NEUMONÍA LOBAR

MECANISMOS DE ACCIÓN PATÓGENA BACTERIANA

- POR TOXINAS
- POR INVASIÓN INTRACELULAR
- POR RESPUESTA INMUNE

TOXINAS

- **EXOTOXINAS:** peptídicas; se producen por secreción; pueden servir para preparar toxoides; a veces son codificadas por plásmidos. Pueden ser:
- A. Toxinas A-B.
- B. Toxinas citolíticas.
- C. Superantígenos.
- ENDOTOXINAS: lipopolisacáridas (ej. Lípido A de las Gram negativas); forman parte estructural de la membrana externa de las Gram negativas; se liberan por lisis; no sirven para preparar toxoides

INVASIÓN INTRACELULAR

- Micobacterias, Brucella sp. Se sospecha que muchas más bacterias pueden hacerlo.
- En células parenquimatosas o en macrófagos y otras células del sistema inmune.
- Evaden la respuesta inmune.
- Se adaptan para escapar de los lisosomas y para buscar nutrientes (Hierro) intracelulares.
- Producen infecciones crónicas.

POR LA RESPUESTA INMUNE

- <u>SUPERANTÍGENOS:</u> Pueden provocar la liberación masiva de citoquinas proinflamatorias.
- <u>HIPERSENTIBILIDAD RETARDADA</u>: Inducción de necrosis por la respuesta inmune Th-1 exacerbada.
- <u>ENFERMEDADES POST-INFECCIOSAS</u>: Glomerulonefritis por depósitos de inmunocomplejos; fiebre reumática.

INMUNIDAD ANTIBACTERIANA

- INMUNIDAD INNATA: Compuesta por las barreras biológicas, las células presentadoras de antígenos profesionales, y los fagocitos. Regula a la respuesta inmune adaptativa. Culmina con la INFLAMACIÓN.
- INMUNIDAD ADAPTATIVA: compuesta por numerosas células, sobre todo linfocitos T y B. Culmina con la producción de anticuerpos neutralizantes, fijadores del complemento y opsonizantes. Tiene MEMORIA inmunológica.

CURSO EVOLUTIVO DE UNA ENFERMEDAD INFECCIOSA BACTERIANA

- ENFERMEDAD:
- Estado de base del paciente.
- Virulencia bacteriana
- · Inóculo.
- Vía de infección.
- Rapidez de multiplicación
- RECUPERACIÓN:
- Paciente inmunocompetente (pruebas de nitroblue tetrazolium, serología contra cualquier agente etiológico contra el cual el paciente recibió vacunación; intradermo-reacción con Candidina).
- Buen título de anticuerpos (seroconversión)
- Adecuada capacidad fagocítica.

BALANCE FINAL

BACTERIAS

INMUNIDAD

FACULTAD DE MEDICINA. UNIVERSIDAD DE BUENOS AIRES