- 1 import pandas as pd
- 2 import numpy as np
- 3 import matplotlib.pyplot as plt
- 4 %matplotlib inline
- 5 import seaborn as sns
- 6 from google.colab import files
- 7 uploaded=files.upload()

Choose Files Iris.csv

• Iris.csv(text/csv) - 5107 bytes, last modified: 3/30/2022 - 100% done Saving Iris.csv to Iris (1).csv

1 df=pd.read_csv('Iris.csv')

2 df

bigcharpoons		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

1 print(df.shape)

(150, 6)

- 1 print('The DataFrame contains %d rows and %d columns' %(df.shape))
- 2 print (df.info())
- 3 print(df.dtypes)
- 4 print (df.head(7))

The DataFrame contains 150 rows and 6 columns

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 6 columns):

Column Non-Null Count Dtype

```
-----
   --- -----
                     150 non-null
    0
       Ιd
                                    int64
      SepalLengthCm 150 non-null float64
    1
      SepalWidthCm 150 non-null
                                    float64
    3 PetalLengthCm 150 non-null float64
    4 PetalWidthCm 150 non-null float64
                     150 non-null object
    5
       Species
   dtypes: float64(4), int64(1), object(1)
   memory usage: 7.2+ KB
   None
   Ιd
                     int64
   SepalLengthCm
                   float64
   SepalWidthCm
                   float64
   PetalLengthCm
                   float64
   PetalWidthCm
                  float64
   Species
                   object
   dtype: object
      Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
                                                           0.2 Iris-setosa
   0
      1
                   5.1
                                3.5
                                            1.4
       2
                   4.9
                                3.0
                                              1.4
                                                           0.2 Iris-setosa
   1
   2
      3
                   4.7
                               3.2
                                             1.3
                                                          0.2 Iris-setosa
   3
      4
                   4.6
                               3.1
                                             1.5
                                                          0.2 Iris-setosa
   4
                                                           0.2 Iris-setosa
      5
                   5.0
                                3.6
                                             1.4
   5
                   5.4
                                3.9
                                                          0.4 Iris-setosa
      6
                                             1.7
      7
                                3.4
                                             1.4
                                                           0.3 Iris-setosa
                   4.6
1 features=df.iloc[:,0:4]
2 print(features.head())
      Id SepalLengthCm SepalWidthCm PetalLengthCm
      1
                   5.1
                                3.5
   1
      2
                                3.0
                   4.9
                                              1.4
   2 3
                   4.7
                               3.2
                                             1.3
   3
                                3.1
      4
                   4.6
                                              1.5
   4
      5
                                3.6
                   5.0
                                              1.4
1 target=df.iloc[:,5]
2 print(target.head())
       Iris-setosa
   1
       Iris-setosa
   2
       Iris-setosa
       Iris-setosa
       Iris-setosa
   Name: Species, dtype: object
1 print('The initial dataframe contained %d rows and %d columns '%(df.shape))
2 print('The features matrix contains %d rows and %d columns '%(features.shape))
3 print("The target vector contains %d rows and %d columns "%(np. array(target).reshape(-
   The initial dataframe contained 150 rows and 6 columns
   The features matrix contains 150 rows and 4 columns
```

The target vector contains 150 rows and 1 columns

```
1 from sklearn.naive bayes import GaussianNB
2 algorithm=GaussianNB(priors=None, var smoothing=1e-9)
3 algorithm.fit(features, target)
   GaussianNB()
1 print(algorithm.classes_)
    ['Iris-setosa' 'Iris-versicolor' 'Iris-virginica']
1 print("The Gaussain model has acheieved %.2f percent accuracy"%(algorithm.score(feature
   The Gaussain model has acheieved 0.99 percent accuracy
1 observation=[[5.0,3.7,1.6,0.1]]
2 predictions=algorithm.predict(observation)
3 print(predictions)
    ['Iris-setosa']
   /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h
      "X does not have valid feature names, but"
1 print(algorithm.predict proba(observation).round())
   [[1. 0. 0.]]
   /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h
      "X does not have valid feature names, but"
1 x= df.iloc[:,1:5]
2 y = df.iloc[:,5:]
1
2 from sklearn.model_selection import train_test_split
3 x_train,x_test,y_train,y_test=train_test_split(x,y, test_size = 0.3,random_state=0)
4 from sklearn.metrics import confusion_matrix, classification_report
5 naive_bayes = GaussianNB()
6 naive bayes.fit(x train,y train)
   /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversic
     y = column_or_1d(y, warn=True)
   GaussianNB()
1 pred=naive_bayes.predict(x_test)
1 from sklearn.preprocessing import LabelEncoder
2 cm = confusion_matrix(y_test, pred, labels = naive_bayes.classes_)
3 print(cm)
```

```
[[16 0 0]
[ 0 18 0]
[ 0 0 11]]
```

1 print(classification_report(y_test, pred))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	16
Iris-versicolor	1.00	1.00	1.00	18
Iris-virginica	1.00	1.00	1.00	11
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45

¹ from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_re

Accuracy: 1.00 Error Rate: 0.0

1

✓ 0s completed at 12:51

² print("\nAccuracy: {:.2f}".format(accuracy_score(y_test, pred)))

³ err_rate=1-accuracy_score(y_test, pred)

⁴ print('Error Rate: ',err_rate)