

Electrónica Analógica II

Producto Integrador de Aprendizaje: Bocina Estereofónica con Amplificador DIP LM386N-1

PROFESOR: M.A. Alejandro Pérez González

SEMESTRE: enero – junio 2023

OP.	MATRICULA	NOMBRE	HORA	GRUPO	CARRERA
3	2077415	Andrés San Martin Morín	V1-3	002	IEA

Fecha: 10/03/2023

Contenido

С	ontenido	2
Re	eporte	3
	Diagrama esquemático fuente de poder 12v de base	4
	Diagrama esquemático amplificador LM386 de base	4
	Diagrama esquemático fuente de poder 8.5vdc	5
	Diagrama esquemático amplificador TDA7297	6
	Lista de Materiales	7
	Datasheet	8
	LM386	8
	KBU1010	12
	Pieza completa	13
	PCB	14
	Disipador	15
С	onclusión	16
Bi	bliografía	17

Reporte

En este proyecto se asignó hacer un amplificador de sonido estereofónico con amplificadores tipo dip. Para mi proyecto en particular seleccioné los amplificadores LM386N-1 ya que estos son muy baratos a comparación con otros, son accesibles de conseguir y además es muy fácil hacerlos funcionar. Con solo unos pocos componentes electrónicos este amplificador es capaz de reproducir audio con una calidad decente.

En la hoja de datos del LM386 proponen varios circuitos sencillos que se pueden implementar con este amplificador, sin embargo, el desempeño no es tan bueno. Por eso se propuso un circuito sacado de un canal de YouTube donde con algunos componentes extras se logra un mejor

rendimiento de audio. (JohnAudioTech, 2019).

A pesar de que este amplificador está diseñado para trabajar con bocinas de 4 a 16Ω , se eligieron bocinas de 8Ω ya que, si observamos la gráfica de voltaje de alimentación vs voltaje de salida, veremos que la bocina con 4Ω no presenta una buena relación de linealidad, mientras que el desempeño con bocinas de 8Ω tiene una buena linealidad hasta los 9 volts por lo que también se eligió un voltaje de alimentación alrededor de 9 volts RMS

Como se puede observar en el diagrama esquemático del LM386, se tienen dos bocinas por canal de audio (4 bocinas en total). El canal de audio se dividió en 2 secciones:

- Bajos y medios (Mid Range).
- Altos(Tweeter).

Esto es debido a que con un tweeter se aprecian mejor los sonidos agudos lo que produce una mejor calidad de sonido. Para el filtro del tweeter se puso un capacitor electrolítico de 3.3uF como filtro pasa altas para solo reproducir ondas a partir de los 6KHz.

Se eligió una bocina Mid Range en vez de un Woofer o Subwoofer ya que este amplificador no presenta un gran desempeño en el rango de los bajos, además si se le coloca 3 bocinas por OpAmp este se empieza a calentar. Una solución sería hacer un circuito con 4 amplificadores: 1 para cada Woofer y 1 para los mid range y tweeters. Sin embargo, esta idea no fue ejecutada debido a la misma razón dicha anteriormente, que no se aprecian los bajos.

Se colocó un potenciómetro para controlar la señal de entrada de audio con un divisor de voltaje. En serie con el potenciómetro se observan resistencias de $10k\Omega$ (el mismo valor del potenciómetro doble) Esto es una medida de seguridad para que el amplificador no se sobre caliente si se le llega aplicar un voltaje excesivo. Pero que conste que aun en su voltaje máximo no pierde su calidad de audio.

Diagrama esquemático fuente de poder 12v de base

Diagrama esquemático amplificador LM386 de base

Diagrama esquemático fuente de poder 8.5vdc

Diagrama esquemático amplificador TDA7297

Lista de Materiales

ITEM	Matrícula/Valor
BR1	KBU1010, 10A
C1	3300uF, 25V, Electrolítico
<i>C2</i>	3300uF, 25V, Electrolítico
С3	470uF, 25v, Electrolítico
C4	470uF, 25v, Electrolítico
C5	470uF, 25v, Electrolítico
<i>C6</i>	470uF, 25v, Electrolítico
<i>C</i> 7	10uF, 63v, Electrolítico
<i>C8</i>	10uF, 63v, Electrolítico
<i>C9</i>	3.3uF, 50v, Electrolítico
C10	3.3uF, 50v, Electrolítico
C11	100nF, 50v, Cerámico
C12	100nF, 50v, Cerámico
C13	100nF, 50v, Cerámico
C14	100nF, 50v, Cerámico
C15	270nF, 250v, Poliéster
C16	270nF, 250v, Poliéster
C17	270nF, 250v, Poliéster
C18	270nF, 250v, Poliéster
C19	47pF, 50v, Cerámico
C20	47pF, 50v, Cerámico
FU1	100mA, 250v
FU2	250mA, 250v
J1	Terminal de Block 9 pines
LS1	8ohms, Tweeter
LS2	8ohms, Mid Range
LS3	8ohms, Tweeter
LS4	8ohms, Mid Range
PJACK1	2.5A, DC POWER JACK
PJACK2	2.5A, DC POWER JACK
R1	10Ω, 1/4w
R2	10Ω, 1/4w
R3	10kΩ, 1/4w
R4	10kΩ, 1/4w
RV1	10kΩ, 1/4w, Doble Potenciómetro
SW1	10A, 250V
TR1	1.2A, 120V:12V, Con derivación central
U1	LM386N-1
U2	LM386N-1

LM386 Low Voltage Audio Power Amplifier

1 Features

- Battery Operation
- Minimum External Parts
- Wide Supply Voltage Range: 4 V–12 V or 5 V–18 V
- Low Quiescent Current Drain: 4 mA
- Voltage Gains from 20 to 200
- Ground-Referenced Input
- Self-Centering Output Quiescent Voltage
- Low Distortion: 0.2% (A_V = 20, V_S = 6 V, R_L = 8 Ω, P_O = 125 mW, f = 1 kHz)
- · Available in 8-Pin MSOP Package

2 Applications

- AM-FM Radio Amplifiers
- Portable Tape Player Amplifiers
- Intercoms
- TV Sound Systems
- Line Drivers
- Ultrasonic Drivers
- Small Servo Drivers
- Power Converters

3 Description

The LM386M-1 and LM386MX-1 are power amplifiers designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value from 20 to 200.

The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 mW when operating from a 6-V supply, making the LM386M-1 and LM386MX-1 ideal for battery operation.

Device Information(1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)						
LM386N-1	PDIP (8)	9.60 mm × 6.35 mm						
LM386N-3	PDIP (8)	9.60 mm × 6.35 mm						
LM386N-4	PDIP (8)	9.60 mm × 6.35 mm						
LM386M-1	SOIC (8)	4.90 mm × 3.90 mm						
LM386MX-1	SOIC (8)	4.90 mm × 3.90 mm						
LM386MMX-1	VSSOP (8)	3.00 mm × 3.00 mm						

 For all available packages, see the orderable addendum at the end of the data sheet.

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION					
NAME	NO.	ITPE	DESCRIPTION					
GAIN	1	_	Gain setting pin					
-INPUT	2	1	Inverting input					
+INPUT	3	T I	Noninverting input					
GND	4	Р	Ground reference					
V _{OUT}	5	0	Output					
Vs	6	Р	Power supply voltage					
BYPASS	7	0	Bypass decoupling path					
GAIN	8	-	Gain setting pin					

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Supply Voltage V	LM386N-1/-3, LM386M-1		15	V
Supply Voltage, V _{CC}	LM386N-4		22	٧
	LM386N		1.25	
Package Dissipation	LM386M		0.73	W
	LM386MM-1		0.595	
Input Voltage, V _I			0.4	>
Storage temperature, T _{stg}		-65	150	ပိ

AN Observation of the Board and a Abelian Market Market and Control of the Architecture of the Architectur

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
V	Supply Voltage	4	12	V
V _{CC}	LM386N-4	5	18	V
	Speaker Impedance	4		Ω
VI	Analog input voltage	-0.4	0.4	V
TA	Operating free-air temperature	0	70	°C

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	On anting Supply Vallage	LM386N-1, -3, LM386M-1, LM386MM-1	4		12	v
Vs	Operating Supply Voltage	ating Supply Voltage LM386N-4	5		18	V
l _Q	Quiescent Current	V _S = 6 V, V _{IN} = 0		4	8	mA
		V _S = 6 V, R _L = 8 Ω, THD = 10% (LM386N-1, LM386M-1, LM386MM-1)	250	325		
Pout	Output Power	$V_S = 9 \text{ V}, R_L = 8 \Omega, THD = 10\%$ (LM386N-3)	500	700		mW
		V _S = 16 V, R _L = 32 Ω, THD = 10% (LM386N-4)	700	100		
		V _S = 6 V, f = 1 kHz		26		-10
A _V	Voltage Gain	10 µF from Pin 1 to 8		46		dB
BW	Bandwidth	V _S = 6 V, Pins 1 and 8 Open		300		kHz
THD	Total Harmonic Distortion	V _S = 6 V, R _L = 8 Ω, POUT = 125 mW f = 1 kHz, Pins 1 and 8 Open		0.2%		
PSRR	Power Supply Rejection Ratio	V _S = 6 V, f = 1 kHz, CBYPASS = 10 μF Pins 1 and 8 Open, Referred to Output		50		dB
R _{IN}	Input Resistance			50		kΩ
I _{BIAS}	Input Bias Current	V _S = 6 V, Pins 2 and 3 Open		250		nA

Figure 6. Total Harmonic Distortion vs Power Out

Figure 5. Total Harmonic Distortion vs Frequency

KBU1010

Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	KBU 1000	KBU 1001	KBU 1002	KBU 1004	KBU 1006	KBU 1008	KBU 1010	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	V
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current @Tc = 100°C (Note 1)	lo				10				Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	IFSM	220					Α		
Forward Voltage per leg @I _F = 5.0A	VFM	1.0				V			
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 125^{\circ}C$	IRM	10 1.0						μA mA	
I ² t Rating for Fusing (t < 8.3ms)	l²t	200						A ² s	
Typical Junction Capacitance (Note 2)	C1	211 94					pF		
Thermal Resistance Junction to Ambient (Note 3) Thermal Resistance Junction to Case (Note 1)	RθJA RθJC	16 2.8						°C/W	
RMS Isolation Voltage Terminals to Case, t = 1min	Viso	1500						V	
Operating and Storage Temperature Range	TJ, TSTG	-55 to +150					°C		

Pieza completa

PCB

Disipador Disipador para el puente de Diodos

Conclusión

Para lo sencillo y económico que es este amplificador me sorprendió la calidad que se puede conseguir con unos cuantos capacitores extras. No presentaba distorsión al momento de subir el volumen al máximo ni el típico susurro que suelen hacer los amplificadores de audio cuando no están reproduciendo música.

La desventaja es que tuve que atenuar su volumen máximo hasta la mitad de su capacidad esto debido a que si se le aumenta todo el volumen este se calienta así que decidí tomar esta medida para evitar un posible daño.

Otra gran desventaja es que en la salida de un amplificador se escucha un pop periódico, intenté cambiando de bocinas e incluso de amplificadores, pero se sigue escuchando por la misma línea. Asumo que debe ser algún capacitor que lo esté causando.

También tuve que modificar el potenciómetro doble ya que, al tocar la parte metálica, como esta es una carcasa atrae a corrientes parásitas lo cual se traduce en ruido para la señal de entrada de audio del OpAmp así que soldé un cable de la carcasa a tierra para desviar el ruido.

En el semestre pasado no pude entregar el proyecto de medio curso ya que, al soldarlo, como no poseo buena técnica quemaba los OpAmps. Así que en esta ocasión en vez de soldarlos directo a la placa les puse un soporte para ensamblarlos y quitarlos a voluntad.

Bibliografía

JohnAudioTech. (2019, noviembre 8). *Make the PERFECT LM386 audio amplifier?* Retrieved from JohnAudioTech: https://www.youtube.com/watch?v=P4GsoMTv-SY&list=PLr_dtQDJup9Ofh9xIXP0C1_vWI0oQeICh&index=4&t=679s

Texas Instruments. (2004, mayo). *LM386 Low Voltage Audio Power Amplifier*. Retrieved from Texas Instruments: https://www.ti.com/lit/ds/symlink/lm386.pdf

WON-TOP ELECTRONICS. (2012, septiembre).

https://www.arduiplanet.ma/downloads/kbu1010.pdf. Retrieved from WON-TOP ELECTRONICS: https://www.arduiplanet.ma/downloads/kbu1010.pdf