基于学习的基数估计方法的可用性分析

- 2021.10.08

目录

- 背景与研究进展
- 现有方法介绍
- 静态环境中学习方法的可用性分析
- 动态环境中学习方法的可用性分析
- 学习方法什么时候出错?
- 研究方向与机会

基数估计问题描述

- 什么是基数 (Cardinality) ?
 - 。 对关系/中间结果:关系的行 (tuples) 数 (可重复)

SELECT COUNT(*) FROM R WHERE $0 \le A_1 \le 20$ AND $20 \le A_2 \le 100$

- 基数估计 (Cardinality Estimation) 在查询优化中的位置?
 - 。 代价估计 = 基数估计 + 代价模型
 - 。 代价模型 总代价 = IO代价 + CPU代价 cost = P * a_page_cpu_time + T * W

预计访问页面数 每个页面读取时间 访问 权重因子 元组数

对物理执行计划或其子计划(中间结果)基数(行数)的估计。

基数估计方法总览

传统方法

- Histogram
- MHIST(multi-dimensional histogram)
- Sample
- KDE
- Sketch
- Bayes
- QuickSel
- ..

学习方法

• 查询语句驱动(Query-Driven)

MSCN

LW-XGB/NN

End-to-End

DQM-Q

•••

数据驱动(Data-Driven)

Naru

DeepDB

DQM-D

NeuroCard

•••

目录

- 背景与研究进展
- 现有方法介绍
- 静态环境中学习方法的可用性分析
- 动态环境中学习方法的可用性分析
- 学习方法什么时候出错?
- 研究方向与机会

传统方法

一维直方图

思想:对一个列的采样,将数据按等频率分为不同的Bucket,使用均匀分布来模拟同一个Bucket的值的分布

• 优点

- 。 离线统计,几乎不占用运行时开销
- 。 占用空间小,在只涉及单属性查询误差小
- 。被广泛应用于商业DBMSs

缺点

多属性查询依赖于独立性假设,不能抓取属性 之间关联性

Independence Assumption p(Age. Salary) p(Salary)

Value

传统方法

DSG Lab

多维直方图

• 思想:按一定的顺序依次对每一个属性 切分bucket

- 优点
 - 。 能够捕捉列于列之间的关联性
- 缺点
 - 。不同的列顺序的bucket的质量不同
 - 依靠均匀分布假设

一维核密度估计 kernal density estimation (KDE)

思想: 类似于直方图,对于一个列的采样,使用Kernal (如正太分布) 来模拟周边的值的分布

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K(rac{x-x_i}{h})$$

传统方法

多维核密度估计 (KDE)

• 思想:使用高维核来模拟分布

• 维度升级

使用多维度的核:如多变量正太分

布

(a) Points in database.

(d) Estimator.

$$\hat{f}_h(x) = rac{1}{n} \sum_{i=1}^n K_h(x-x_i) = rac{1}{nh} \sum_{i=1}^n K(rac{x-x_i}{h})$$

传统方法

DSG Lab

Sample 采样

• 思想:用部分数据预估整体数据

- 优点
 - □ 直观
 - 。 思想被许多其他方法广泛应用(构建 直方图、KDE)
- 缺点
 - 。 运行时开销大
 - 。 偶然性强
 - 。 0-tuple, 采样消失问题

MSCN (Query-Driven)

- 思想: 把查询语句的重要组成部分特征 编码,以真实基数作为label,训练模型。
 - 。 Tables (用于查询的表格)
 - Join (连接谓词)
 - Predicate (选择谓词)
 - 。 Bitmaps(采样信息)

损失函数: qerror =
$$\max(\frac{C}{\hat{C}}, \frac{\hat{C}}{C})$$

- 优点
 - 简单有效
 - 。 引导作用
- 缺点
 - 。 模型限制较大,准确率等方面有较大提升空间

Figure 2: Query featurization as sets of feature vectors.

MSCN:multi-set convolutional network

LW-XGB/NN

• 思想: 递归地将表的概率分布用树的sum和product节点表示, product节点的子节点概率分布相互独立

• 节点类型

。 sum节点:将表格按行切分,概率相加

○ product节点:将表格按列切分,概率相乘(两个属性之间满足独立性假设)

Naru(Data-Driven)

思想:使用自回归模型(MADE)利用极大 似然估计的原则对数据的概率分布进行学 习

构建流程

- 。 指定一个表用于构建Naru estimator
- 。 将这个表的所有tuples按batch传入自回归模型 (MADE)
- 。 以极大似然估计原则进行一次参数更新
- 经过训练后模型能够对任意等值连接的联合概率分布进行估计

$$P(X_1 = x_1, \dots, X_n = x_n) = \widehat{P}(X_1 = x_1), \widehat{P}(X_2 = x_2 | X_1 = x_1), \dots, \widehat{P}(X_n = x_n | X_1 = x_1, \dots, X_{n-1} = x_{n-1})$$

Naru(Data-Driven)

- 等值查询
 - 。 等值查询时,每个属性的值已经被指定

$$P(X_1 = x_1, \dots, X_n = x_n)$$

。 根据链式法则

$$\widehat{P}(X_1 = x_1), \widehat{P}(X_2 = x_2 | X_1 = x_1), \dots, \widehat{P}(X_n = x_n | X_1 = x_1, \dots, X_{n-1} = x_{n-1})$$

- 范围查询
- 范围查询(小范围)
 - 枚举所有可能性

$$\operatorname{sel}(X_1 \in R_1, \dots, X_n \in R_n) \approx \sum_{x_1 \in R_1} \dots \sum_{x_n \in R_n} \widehat{P}(x_1, \dots, x_n)$$

- 范围查询(范围比较大时)
 - 采用采样(progressive sampling)的方式,需要依次进行多次采样,会带来也测时间开销

Naru(Data-Driven)

- 优点
 - 。 基于数据,准确率高
- 缺点
 - 。 模型较重,基于大数据集时模型训练时间长,更新时间长。

概率图模型-Sum-Product Networks (DeepDB, Data-Driven)

- 思想: 递归地将表的概率分布用树的sum和product节点表示, product节点的子节点概率分布相互独立
- 节点类型
 - 。 sum节点:将表格按行切分,概率相加
 - o product节点:将表格按列切分,概率相乘(两个属性之间满足独立性假设)
 - 。 最底层使用直方图
- 优点
 - 。 即使是数据驱动,因为底层使用的是直方图,训练开销不大
 - 。 基于数据准确率高
- 缺点

0

c_id	c_age	c_region
1 2 3 4	80 70 60 20	EU EU ASIA EU
 998 998 999 1000	20 25 30 70	ASIA EU ASIA ASIA

(a) Exampl	le Table
---	---	----------	----------

(c) Resulting SPN

c_age	c_region
80	EU
70	EU
60	ASIA
20	EU
20	ASIA
25	EU
30	ASIA
70	ASIA

(b) Learning with Row/Column Clustering

(d) Probability of European Customers younger than 30

Figure 2: Customer Table and corresponding SPN.

现有实验的局限

- 学习方法之间没有直接对比
 - 。 出现年份较为接近
- 没有统一的数据集(dataset)和工作负载(workload)
- 现有的工作大多集中在静态的环境
 - 没有数据更新
- 现有的工作缺少对模型个阶段时间开销的研究
 - 训练时间(training time)
 - 预测时间(inference time)
 - 更新时间(update time)
- 现有的工作缺少对影响模型准确率因素的研究

Figure 2: Comparison results available in existing studies.

综合研究 Are We Ready For Learned Cardinality Estimation? [Experiment, Analysis & Benchmark]

- 单表多属性
- 相同的数据集和工作负载
- 静态环境下的可用性
- 动态环境下的可用性
- 并分析了学习方法在什么情况下会出现较大的误差
- 下一步的研究方向与机会

目录

- 背景与研究进展
- 现有方法介绍
- 静态环境中学习方法的可用性分析
- 动态环境中学习方法的可用性分析
- 学习方法什么时候出错?
- 研究方向与机会

实验设置

- dataset
 - 。 真实世界数据集
 - 。 大小不同,列与数据分布不同
 - 。 每个数据集被用于评价至少一个学习方法

workload

- 。 同一个实验中使用相同的工作负载
- 。 支持1~|列数量|的谓词数量
- 。 同时支持等值和范围谓词
- 。 OOD -> 不同列之间的谓词生成支持独立性

Table 3: Dataset characteristics. "Cols/Cat" means the number of columns and categorical columns; "Domain" is the product of the number of distinct values for each column.

Dataset	Size(MB)	Rows	Cols/Cat	Domain
Census [15]	4.8	49K	13/8	10^{16}
Forest [15]	44.3	581K	10/0	10^{27}
Power [15]	110.8	2.1M	7/0	10^{17}
DMV [59]	972.8	11.6M	11/10	10^{15}

Table 2: Workload used in existing experimental studies.

	Predicate Number	Operator Equal Range		Consider OOD
MSCN	0 ~ D	<u> </u>	√	×
LW-XGB/NN	$2 \sim D $	×	close range	✓
Naru	5 ~ 11	✓	open range	✓
DeepDB	1 ~ 5	✓	√	×
DQM-D/Q	$1 \sim D $	✓	×	✓
Our Workload	1 ~ D	✓	✓	│ ✓

学习方法的准确率提升

- 传统方法
 - 。 加粗表示能达到的最低值
- 学习方法
 - 。 加粗表示比传统方法更高的 准确率
- L v.s. T
 - 学习方法的准确率都优于传统方法
 - 。 学习方法lose的数据也与传统方法较为接近
 - 与真实数据库系统相比,提升巨大

Table 4: Estimation errors on four real-world datasets.

Estimator		Cer	ısus			Fo	orest			I	Power			Γ	MV	
	50th	95th	99th	Max	50th	95th	99th	Max	50th	95th	99th	Max	50th	95th	99th	Max
Traditional Methods																
Postgres	1.40	18.6	58.0	1635	1.21	17.0	71.0	9374	1.06	15.0	235	$2 \cdot 10^5$	1.19	78.0	3255	$1 \cdot 10^5$
MySQL	1.40	19.2	63.0	1617	1.20	48.0	262	7786	1.09	26.0	2481	$2 \cdot 10^5$	1.40	1494	$3 \cdot 10^4$	$4 \cdot 10^5$
DBMS-A	4.16	122	307	2246	3.44	363	1179	$4 \cdot 10^4$	1.06	8.08	69.2	$2 \cdot 10^{5}$	1.46	23.0	185	$3 \cdot 10^4$
Sample-A	1.16	31.0	90.0	389	1.04	17.0	67.0	416	1.01	1.22	8.00	280	1.01	1.42	19.0	231
Sample-B	1.16	11.0	34.0	1889	1.04	9.83	38.0	9136	1.01	1.25	8.00	$2 \cdot 10^5$	1.01	1.43	10.0	$3 \cdot 10^4$
MHIST	4.25	138	384	1673	3.83	66.5	288	$2 \cdot 10^4$	4.46	184	771	$1 \cdot 10^5$	1.58	13.8	90.8	$3 \cdot 10^{4}$
QuickSel	3.02	209	955	6523	1.38	15.0	142	7814	3.13	248	$1 \cdot 10^4$	$4 \cdot 10^5$	126	$1 \cdot 10^5$	$4 \cdot 10^5$	$4 \cdot 10^6$
Bayes	1.12	3.50	8.00	303	1.13	7.00	29.0	1218	1.03	2.40	15.0	$3 \cdot 10^4$	1.03	1.85	12.9	$1 \cdot 10^{5}$
KDE-FB	1.18	23.0	75.0	293	1.04	5.00	17.0	165	1.01	1.25	9.00	254	1.01	1.50	36.0	283
							I	Learned N	lethods							
MSCN	1.38	7.22	15.5	88.0	1.14	7.62	20.6	377	1.01	2.00	9.91	199	1.02	5.30	25.0	351
LW-XGB	1.16	3.00	6.00	594	1.10	3.00	7.00	220	1.02	1.72	5.04	5850	1.00	1.68	6.22	$3 \cdot 10^4$
LW-NN	1.17	3.00	6.00	829	1.13	3.10	7.00	1370	1.06	1.88	4.89	$4 \cdot 10^4$	1.16	3.29	22.1	$3 \cdot 10^4$
Naru	1.09	2.50	4.00	57.0	1.06	3.30	9.00	153	1.01	1.14	1.96	161	1.01	1.09	1.35	16.0
DeepDB	1.11	4.00	8.50	59.0	1.06	5.00	14.0	1293	1.00	1.30	2.40	1568	1.02	1.86	5.88	5086
L v.s. T	win	win	win	win	lose	win	win	win	win	win	win	win	win	win	win	win

训练时间

- 学习方法
 - 。 训练模型的时间
- 数据库系统
 - 。 运行统计信息收集命令的时间
- 观察
 - 数据库系统因为通过采样的方式收集统计信息,能在几秒内完成训练
 - 。 学习方法中最快的是使用gradient boosted tree的LW-XGB
 - 使用了神经网络的模型(MSCN, LW-NN)训练时间与数据集大小无关,与训练数据量有关,30-100minute
 - 。 其中MSCN因为使用了if-else语句导致GPU和CPU耗时差不多
 - Data-Driven的DeepDB和Naru训练时间与数据集大小有关,小数据集上几分钟,大数据集上甚至需要几个小时
 - 。 DeepDB因为使用的是SPN网络,其综合速度居学习方法第二

Figure 6: Training and inference time comparison between learned methods and real database system (MSCN's CPU and GPU results on DMV are overlapped).

方法	数据集	预测时间量 级
数据库系统 (采样)	无关	10s内
LW-XGB	小数据集 (Census)	10s内
LW-NN(GPU)	无关	30minute
MSCN(GPU,CPU)	无关	100minute
DeepDB	小数据集 (Census)	10minute
DeepDB	大数据集 (DMV)	20minute
Naru(GPU)	小数据集 (Census)	1minute
Naru(GPU)	大数据集 (DMV)	4hour

预测时间

- 学习方法
 - 。 模型调用时间
- 数据库系统
 - 。 EXPLAIN获取执行计划的时间
- 观察
 - 数据库系统能够在1-2ms内完成基数估计(此时间还包含解析等其他操作)
 - 。 Query-Driven (MSCN,LW_XGB/NN) 预测时间与DMBS接 近
 - 。 Data-Driven (DeepDB) 因为其SPN模型导致预测时间较大
 - Data-Driven (Naru) 因为采样需要依次进行,导致预测时间 较大

Figure 6: Training and inference time comparison between learned methods and real database system (MSCN's CPU and GPU results on DMV are overlapped).

方法	数据集	预测时间量级
数据库系统	无关	1-2 ms
MSCN,LW- XGB/NN	无关	1-2ms
DeepDB	小数据集 (Census)	5ms
DeepDB	大数据集	25ms
Naru	无关	5ms-15ms

Hyper-parameter Tuning

- 超参数优化是学习方法的另一个代价
 - 。 上述对比中,都是已经经过超参数优化的模型
 - 。 如果没有超参数优化,同一个模型在准确率上的表现会相差较多
 - 。 如果没有超参数优化,同一个模型在训练时间上的表现会相差较多。
 - 。 超参数优化的时间开销在生产应用者也需要被考虑到

主要结论

- 学习方法总体上比传统方法估计准确率高,其中Naru表现最为Robust。
- 在训练时间方面,学习方法比DBMS要久许多,LW-XGB除外。
- Query-Driven方法 (MSCN和LW-XGB/NN) 在预测时间上可以与现有数据库系统竞争,
 然而Data-Driven的方法,直接根据数据对联合分布的方法(Naru和DeepDB)需要更长的时间。
- 超参数优化是采用神经网络估计器时不可忽视的额外代价。

目录

- 背景与研究进展
- 现有方法介绍
- 静态环境中学习方法的可用性分析
- 动态环境中学习方法的可用性分析
- 学习方法什么时候出错?
- 研究方向与机会

实验设置

- dataset
 - 。 使用与静态环境相同的4个数据集
 - 。添加20%的新数据,新增数据的关联关系与原数据不同
- workload
 - 根据新的数据集生成新的测试负载(谓词取值范围与数据集有关)
- 测试方法
 - 。 测试负载会在[0,T]的时间内均匀执行(T为数据更新频率)
 - 旧模型+新数据: n*(1-t_m/T)
 - 新模型+新数据: n*[1-(1-t_m/T)]
 - 模型更新的越慢,越多的测试负载会在旧模型新数据的情况下执行,导 致误差增大

Figure 7: An illustration of a dynamic environment.

假设T= 100分钟,Naru花t_m= 75分钟更新模

型。然后, Naru

75%的测试负载: 旧模型 + 新数据 25%的测试负载: 新模型 + 新数据

更新时间

- 学习方法
 - 。 训练模型的时间
- 数据库系统
 - 。 运行统计信息收集命令的时间
- 观察
 - 数据库系统因为模型更新时间极短,几乎所有的负载都是在新模型中被预测,即使这样,因为它们基数估计本身的准确率不高,表现整体上不如学习方法,尤其是在大数据集中。

方法	更新时间量级
数据库系统 (采样)	10s内
LW-XGB	10s内
DeepDB	10minutes内
LW-NN(GPU)	30minutes内
MSCN(GPU,CPU)	100minutes 内
Naru(GPU)	hours

x代表该模型不能在T 时间内完成模型更新

Figure 8: DBMSs vs learned methods under different dynamic environments on four datasets.

,

动态环境中学习方法的可用性分析

更新时间

- 观察
 - MSCN和LW-NN表现不佳,因为它们需要更长的更新时间(重新执行查询语句获取真实基数作为标签),陈旧的模型处理太多的查询。
 - DeepDB的更新时间通常很短。但是,其更新后的模型不能很好 地捕捉相关变化,因此在大多数情况下不能优于LW-XGB/NN。
 - Naru在静态环境中有很好的准确性。然而,在动态环境中,当 更新频率较高或中等时,Naru因更新速度慢导致性能并不优于 LW-XGB。

方法	更新时间量级
数据库系统 (采样)	10s内
LW-XGB	10s内
DeepDB	10minutes内
LW-NN(GPU)	30minutes内
MSCN(GPU,CPU)	100minutes 内
Naru(GPU)	hours

x代表该模型不能在T 时间内完成模型更新

Figure 8: DBMSs vs learned methods under different dynamic environments on four datasets.

更新时间与准确率之间的关系

- 对照组
 - Stale 旧模型
 - 。 Updated 新模型
 - Dynamic 旧模型+新模型
- 观察
 - Updated的准确率最好, Stale的效果最差
 - Dynamic的准确率先提升后减小,原因是,随着更新时间的增加,导致了旧模型处理的查询变多,误差变大。

Figure 9: Trade-off (Naru): epochs vs accuracy.

主要结论

- 学习的方法不能跟上快速的日期更新。MSCN、LW-NN、Naru和DeepDB在动态环境中由于不同的原因返回较大的错误。
- 在更新时间方面,DeepDB是最快的数据驱动方法,LW-XGB是最快的查询驱动方法。
- 在学习的方法中,没有明确的赢家。Naru在数据更新间隔大时性能最好,而LW-XGB 在数据频繁更新的环境中性能最好。
- 学习方法的更新时间和准确性之间存在权衡。要在实践中权衡利弊并不容易,需要在 这方面进行更多的研究。

目录

- 背景与研究进展
- 现有方法介绍
- 静态环境中学习方法的可用性分析
- 动态环境中学习方法的可用性分析
- 学习方法什么时候出错?
- 研究方向与机会

实验设置

- dataset (只有两列数据)
 - 。 第一列 数据分布 (Distribution) s∈[0,2] 0代表均匀分布,随着s增大,数据分布越倾斜
 - 。 第二列 关联关系 (Correlation) c∈[0,1] 0代表第二列数据与第二列数据相互独立,1代表第二列数据与第一列数据函数依赖
- workload
 - 。 与之前相同
- metric
 - 。 top 1%的q-error分布 (更能体现变化)

关联关系 (Correlation)

• 关联关系增大, 所有学习方法的误差增大

数据分布 (Distribution)

- 每种学习方法对数据分布变化的反应是不同的。
 - 需要进一步的研究,让其效果更具有解释性。

列取值范围 (Domain Size)

- 除了LW-NN外,所有方法在更大的域上输出的误差都更大
 - 随着取值范围的增大,需要被学习的特征量也会增大,模型在有限的开销和训练内学习的不够充分,导致在误差增大

Figure 12: Top 1% error distribution under different domain size (s = 1.0, c = 1.0).

学习方法的可预测性

- 单调性 (Monotonicity)
 - 对于更严格(或更松散)的谓词,估计结果不应该增加(或减少)。
- 一致性 (consistency)
 - 查询的预测应该等于从查询中分离出来的查询的预测之和, 如查询谓词(100、500)可以分成两个查询(100,200)和(200、500)
- 稳定性 (Stability)
 - 对于任何查询,来自同一模型的预测结果应该总是相同的。
- 原则A (Fidelity-A)
 - 。 选择性率估计之和应该等于1
- 原则B (Fidelity-B)
 - 对于带有无效谓词的查询,估计应该为0,如 SELECT * FROM R WHERE 100≤ A ≤ 10

Table 5: Satisfaction and violation of rules by learned estimators. (\checkmark : satisfied, \times : violated)

Rule	Naru	MSCN	LW-XGB	LW-NN	DeepDB
Monotonicity	×	×	×	×	✓
Consistency	×	×	×	×	✓
Stability	×	✓	\checkmark	\checkmark	✓
Fidelity-A	✓	×	×	×	✓
Fidelity-B	✓	×	×	×	\checkmark

Figure 13: Prediction result of running Naru on the same query 2000 times (s = 0.0, c = 1.0, d = 1000).

学习方法的可预测性

- 所有学习方法中只有DeepDB能满足
 - 其底层用到的histogram,上部分的SPN是简单的加法和乘法
- MSCN,LW-XGB/NN因为是基于深度学习模型的只能满足稳定性

• Naru因为其采样方法导致其不满足连稳定性

Table 5: Satisfaction and violation of rules by learned estimators. (\checkmark : satisfied, \times : violated)

Rule	Naru	MSCN	LW-XGB	LW-NN	DeepDB
Monotonicity	×	×	×	×	✓
Consistency	×	×	×	×	✓
Stability	×	✓	✓	✓	✓
Fidelity-A	✓	×	×	×	✓
Fidelity-B	✓	×	×	×	✓

Figure 13: Prediction result of running Naru on the same query 2000 times (s = 0.0, c = 1.0, d = 1000).

可能对生产部署产生影响的地方

- 可调试性 (Debuggability)
 - 。 黑盒模型难以调试,难以判定误差来源于模型还是bug。
- 可解释性 (Explainability)
 - 。 黑盒模型缺乏可解释性。
- 可预测性 (Predicability)
 - 由于学习的方法不遵循一些基本的逻辑规则,数据库系统可能会表现出不合逻辑的行为,从而混淆数据库用户。
- 可再现性 (Reproducibility)
 - 数据库开发人员经常希望重现客户问题。但是,如果系统采用违 反稳定性规则的Naru,由于随机推理过程,很难再现结果。

主要结论

- 所有的学习方法在相关性更高的数据上误差更大, 当两列是函数依赖时, 误差最大。
- 对于更倾斜的数据或更大的域大小的数据,不同的方法会有不同的反应。这可能是由于在模型、输入特性和损失函数的选择上的差异。
- 所有学习方法(DeepDB除外)都违反了5条直观规则。
- 在生产中部署时,学习方法的不透明性可能会在可调试性、可解释性、可预测性和可再 现性方面造成麻烦。

目录

- 背景与研究进展
- 现有方法介绍
- 静态环境中学习方法的可用性分析
- 动态环境中学习方法的可用性分析
- 学习方法什么时候出错?
- 研究方向与机会

研究方向与机会

- 控制学习方法的训练和预测开销
 - 平衡效率-准确性的权衡(训练时间、预测时间、更新时间、准确率)
 - 学习估计器的超参数调优(寻求指导超参的规律)

- 提高学习方法可信度
 - 。 研究学习方法的可解释性
 - 。 使学习方法更符合经验规则
- 多表
 - 可行性分析
 - 。 优化方向研究

谢谢