平成31年度 大阪大学基礎工学部編入学試験 注意事項(各コースにおける物理及び化学の解答方法について)

学科	コース	内容						
電子物理科学科	エレクトロニクスコース	物理: 3問すべて解答してください。						
		物理: 3問すべて解答してください。						
	物性物理科学コース	化学:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。						
化学応用科学科	合成化学コース	物理:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。						
		化学: 3問すべて解答してください。						
	化学工学コース	物理及び化学: 2科目あわせて6問中5問を 解答してください。 また、解答しない解答用紙に 大きく×印をしてください。						
> > = / 되쁜되	知能システム学コース	物理:3問中2問を解答してください。 また、解答しない解答用紙に						
システム科学科	生物工学コース	大きく×印をしてください。						
情報科学科	計算機科学コース							
	ソフトウェア科学コース	物理:3問中2問を解答してください。 また、解答しない解答用紙に 大きく×印をしてください。						
	数理科学コース							

平成31年度 大阪大学基礎工学部編入学試験

E 特勿

理]試験問題

受	験	番	号	志	望	学	科	•	コ	-	ス
										学	科
										- =	-ス

[物理-1]

問題 1

図に示すように、半径 r_1 、質量 M_1 の動滑車と、半径 r_2 、質量 M_2 の定滑車に、質量と伸縮を無視できる糸をかけてその一端を天井へ固定した。この糸の他端に、動滑車と重心位置が等しくなるように質量 M_3 のおもりを吊り下げて静かに手を離すと、おもりは鉛直下向きの等加速度運動を行った。この運動について以下の間に答えよ。ただし、この運動による動滑車とおもりの重心位置の変化(鉛直下向きを正)をそれぞれ r_1 、 r_3 とし、動滑車と定滑車の回転角(反時計回りを正としたラジアン単位)をそれぞれ r_1 、 r_2 とする。また、天井と動滑車の間の糸の張力を r_1 とし、動滑車と定滑車の間の糸の張力を r_2 とし、定滑車とおもりの間の糸の張力を r_3 とする。なお、重力加速度の大きさは r_3 とし、動滑車と定滑車はそれぞれ一様な密度を持つ円盤とし、滑車と糸の間ですべりは生じず、滑車はなめらかに回転するものとする。

- (1) 動滑車と定滑車の回転軸まわりの慣性モーメントを答えよ.
- (2) 動滑車, 定滑車, およびおもりの運動を表す微分方程式を示せ.
- (3) おもりの重心位置の変化 x_3 を用いて、動滑車の重心位置の変化 x_1 、動滑車の回転角 θ_1 、および定滑車の回転角 θ_2 を表せ、
- (4) $M_2 = 2M_1$, $M_3 = 3M_1$ のとき, 糸の張力 T_1 , T_2 , T_3 を求めよ.
- (5) (4)の設定において、手を離してから時間t経過後のおもりの重心位置の変化 x_3 を求めよ.

平成31年度 大阪大学基礎工学部編入学試験

[物

理]試験問題

受	験	1	番 号	号 志	望	学	科	コ	_	ス
							31	ě	学	科
					1					
				13 1					- -	-ス

[物理-2]

問題2

図に示すように、中心を共有する半径a、b (a < b) の2つの球殻導体が真空中に固定されている.内側と外側の球殻には正負の電荷が一様に分布しており、その面密度はそれぞれ $Q/(4\pi a^2)$ 、および $-Q/(4\pi b^2)$ である(ここでQ > 0である).球殻の厚みは無視できるものとして、以下の間に答えよ.ただし、中心からの距離をrとし、真空の誘電率を ϵ_0 とする.

- (1) 電場の大きさを距離rの関数として求めよ.
- (2) 電場のエネルギー密度を距離rの関数として求めよ.
- (3) 2つの球殻間の電位差を求めよ.
- (4) 2つの球殻はコンデンサーと見なせる. このコンデンサーの電気容量を求めよ.
- (5) このコンデンサーに蓄えられている静電エネルギーを求めよ.
- (6) 内側の球殻の電荷には、球殻の外向き法線方向に力が働いている. この力の単位面積あたりの大きさを求めよ.

平成31年度 大阪大学基礎工学部編入学試験

E 特勿

理]試験問題

受	験	番	号	志	望	学	科	= -	ス
								学	科
						٦.	ース		

[物理一3]

問題3

- (1) 棒を用いてピストンを $l = l_0$ の位置に固定した。このとき、分子iがピストン壁面に与える単位時間あたりの力積を求めよ。ただし、ここでは気体分子どうしの衝突は考慮しなくてよい。
- (2) ピストンの位置を $l=l_0$ に保ち、容器内の気体を熱平衡状態とした。このときの分子速度の 2 乗平均を $\langle v^2 \rangle_0$ とする。 $\langle v^2 \rangle_0$ を用いて気体の圧力 P_0 を表せ.
- (3) $(v^2)_0$ を用いて(2)の状態における気体の温度 T_0 を表せ.
- (4) (2)の状態から $l=2l_0$ となるまでピストンをゆっくり動かし、容器内の気体を断熱膨張させた、このとき、 P_0 と l_0 を用いて気体の内部エネルギーの変化 ΔU を表せ、なお、この断熱過程では気体の圧力Pと体積Vについて $PV^{5/3}=$ 一定 という関係が成り立つものとする.
- (5) $(v^2)_0$ を用いて(4)の状態における分子速度の 2 乗平均 (v^2) を表せ.

