Math 395: Homework 4 Due: 10/08/2024

Avinash Iyer

Collaborators: Carly Venenciano, Gianluca Crescenzo, Noah Smith, Ben Langer Weida, Clarissa Ly

Problem 3

Problem: Let

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 2 & -1 & 0 \\ 12 & 0 & 1 \end{pmatrix}.$$

Calculate $m_T(x)$ and determine the eigenvalues of A.

Solution. We calculate A^2 and A^{31} to to find

$$A^{2} = \begin{pmatrix} -8 & 0 & -3 \\ 2 & 1 & -2 \\ 36 & 0 & 11 \end{pmatrix}$$
$$A^{3} = \begin{pmatrix} -52 & 0 & 5 \\ -18 & -1 & -4 \\ -60 & 0 & -47 \end{pmatrix}.$$

This yields a minimal polynomial^{II} of

$$m_T(x) = x^3 - 2x^2 + 11x + 14.$$

Factoring this polynoimal over R yields

$$m_T(x) = (x+1)(x^3 - 3x + 14),$$

which means we need to find the eigenvalues in C. Thus, we get

$$m_T(x) = (x+1)\left(x-\left(\frac{3}{2}+\mathrm{i}\,\frac{\sqrt{47}}{2}\right)\right)\left(x-\left(\frac{3}{2}-\mathrm{i}\,\frac{\sqrt{47}}{2}\right)\right).$$

The eigenvalues are -1, $\frac{3}{2} - i\frac{\sqrt{47}}{2}$, and $\frac{3}{2} + i\frac{\sqrt{47}}{2}$.

Problem 15

Problem: Let $A \in Mat_n(\mathbb{F})$.

- (a) Assume A has eigenvalues $\lambda_1, \ldots, \lambda_n$. Prove that $\det(A) = \lambda_1 \cdots \lambda_n$ and $\operatorname{tr}(A) = \lambda_1 + \cdots + \lambda_n$.
- (b) Suppose A does not have n distinct eigenvalues, but $c_A(x)$ splits into linear factors over F. Can you characterize the determinant and trace of A in terms of the eigenvalues?

Solution.

(a) If $A\in Mat_n\left(\mathbb{F}\right)$ has distinct eigenvalues $\lambda_1,\ldots,\lambda_n$, then there exists $P\in GL_n\left(\mathbb{F}\right)$ such that

$$A = P \left(\operatorname{diag} \left(\lambda_1, \dots, \lambda_n \right) \right) P^{-1},$$

where diag $(\lambda_1, \ldots, \lambda_n)$ denote the diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$ at entries $\alpha_{11}, \ldots, \alpha_{nn}$. In particular, this means

$$\begin{split} \det(A) &= \det\left(P\left(diag\left(\lambda_1,\ldots,\lambda_n\right)\right)P^{-1}\right) \\ &= \det\left(diag\left(\lambda_1,\ldots,\lambda_n\right)\right) \\ &= \prod_{i=1}^n \lambda_i, \end{split}$$

and

$$\begin{split} \operatorname{tr}\left(A\right) &= \operatorname{tr}\left(P\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right) P^{-1}\right) \\ &= \operatorname{tr}\left(\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right) \\ &= \sum_{i=1}^{n} \lambda_{j}. \end{split}$$

(b) If $c_A(x)$ splits into linear factors over F, then the Jordan canonical form for A exists, with each of its Jordan blocks consisting of the roots of $c_A(x)$ with multiplicity. Thus, we can characterize tr(A) to be the sum of the roots of $c_A(X)$ with multiplicity,

^Iwith help from Mathematica

II with help from Mathematica

[™]Assistance from Wikipedia

and det(A) to be the product of the roots with multiplicity.

Problem 17

Problem: Prove that if $\lambda_1, \dots, \lambda_n$ are the eigenvalues of a matrix $A \in Mat_n(\mathbb{F})$, the $\lambda_1^k, \dots, \lambda_n^k$ are the eigenvalues for A^k for any $k \ge 0$.

Solution. Since A has eigenvalues $\lambda_1, \ldots, \lambda_n$, it is the case that there exists some $P \in GL_n(\mathbb{F})$ such that

$$A = P(\operatorname{diag}(\lambda_1, \ldots, \lambda_k)) P^{-1}.$$

For k = 0, we have

$$\begin{split} \boldsymbol{A}^0 &= \left(\boldsymbol{P} \left(diag \left(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n \right) \right) \boldsymbol{P}^{-1} \right)^0 \\ &= \boldsymbol{I}_n \\ &= \boldsymbol{P} \left(diag \left(\boldsymbol{\lambda}_1^0, \dots, \boldsymbol{\lambda}_n^0 \right) \right) \boldsymbol{P}^{-1}, \end{split}$$

meaning $\lambda_1^k, \dots, \lambda_n^k$ are eigenvalues for A^k .

For k > 0, we have

$$\begin{split} A^k &= \underbrace{\left(P\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) P^{-1}\right) \left(P\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) P^{-1}\right) \cdots \left(P\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) P^{-1}\right)}_{k \text{ times}} \\ &= P\underbrace{\left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) \left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right) \cdots \left(diag\left(\lambda_1, \ldots, \lambda_n\right)\right)}_{k \text{ times}} P^{-1} \\ &= P\left(diag\left(\lambda_1^k, \ldots, \lambda_n^k\right)\right) P^{-1}, \end{split}$$

meaning $\lambda_1^k, \dots, \lambda_n^k$ are eigenvalues for A^k .

Problem 24

Problem: Prove that any matrix $A \in \operatorname{Mat}_n(\mathbb{C})$ satisfying $A^3 = A$ can be diagonalized. Is this true of any field \mathbb{F} ? If so, prove it. If not, provide a counterexample.

Solution. We have

$$m_A(x) = x^3 - x$$

= $x(x-1)(x+1)$,

meaning that it is diagonalizable, with eigenvalues of 0, 1, and -1.

However, it is not the case that this is true for every field. For instance, in \mathbb{F}_2 , we have x - 1 = x + 1, meaning

$$m_A(x) = x (x+1)^2$$

over \mathbb{F}_2 , which does not yield distinct linear factors.