CME 2003 Digital Logic

SYNCHRONOUS COUNTER DESIGN

Şerife YILMAZ

2-Bit Asynchronous Binary Counter

2-Bit Synchronous Binary Counter

3-Bit Synchronous Binary Counter

Design of Synchronous Counters

Step 1: State Diagram

- A state diagram shows the progression of states through which the counter advances when it is clocked.
- Example: State diagram for a 3-bit Gray code counter.

Step 2: Next-State Table

- a next-state table lists each state of the counter (present state) along with the corresponding next state.
- the next state is the state that the counter goes to from its present State upon application of a clock pulse

Next State Table for 3-bit Gray Code

PRESENT STATE			NEXT STATE		
Q_2	Q_1	Q_0	Q_{Z}	Q_1	Q_0
0	0	0	0	0	i
0	0	1	0	1	1
0	1	1	0	1	O
0	1	O	1	1	0
1	1	0	1	1	- 1
I	1	1	1	0	. 1
1	0	1	1	0	0
1	0	0	0	0	0

м

Step 3: Flip-Flop Transition Table

- All possible output transitions are listed by showing the Q output of the flip-flop going from present states to next states.
- Q_N is the present state of the flip-flop (before d clock pulse) and Q_{N+1} is the next state (after a clock pulse).
- For each output transition. the J and K inputs that will cause the transition to occur are listed.
- An X indicates a "don't care" (the input can be either a 1 or a 0).

Transition table for a J-K flip-flop

OUTPUT TRANSITIONS $Q_{N} = Q_{N+1}$		FLIP-FLOP INPUTS J K		
0		0	0	X
0	>	1	1	Х
1		0	X	1
1	 →	1	X	0
Q_N : present state				
Q_{N+1} : next state				
X: "don't care"				

M

Step 4: Karnaugh Maps

- Karnaugh maps can be used to determine the logic required for the J and K inputs of each flipflop in the counter.
- There is a Karnaugh map for the J input and a Kamaugh map for the K input of each flip-flop.
- each cell in a Kamaugh map represents one of the present states in the counter sequence.

Karnaugh maps for present-state J input

Karnaugh maps for present-state K input

Step 5: Logic Expressions for Flip-Flop Inputs

the following expressions for the J and K inputs of each flip-flop obtained from the Karnaugh maps

$$J_0 = Q_2Q_1 + \overline{Q}_2\overline{Q}_1 = \overline{Q}_2 \oplus \overline{Q}_1$$
 $K_0 = Q_2\overline{Q}_1 + \overline{Q}_2Q_1 = Q_2 \oplus Q_1$
 $J_1 = \overline{Q}_2Q_0$
 $J_2 = Q_1\overline{Q}_0$
 $K_1 = Q_2Q_0$
 $K_2 = \overline{Q}_1\overline{Q}_0$

Step 6: Counter Implementation

A summary of steps used in the design of a synchronous counter.

- 1. Specify the counter sequence and draw a state diagram.
- 2. Derive a next-state table from the state diagram.
- Develop a transition table showing the flip-flop inputs required for each transition. The transition table is always the same for a given type of flipflop.
- 4. Transfer the J and K states from the transition table to Karnaugh maps. There is a Karnaugh map for each input of each flip-flop.
- 5. Group the Karnaugh map cells to generate and derive the logic expression for each flip-flop input.
- 6. implement the expressions with combinational logic. and combine with the flip- flops to create the counter.

M

EXAMPLE

Synchronous Counter Implementation Using J-K FFs

State Transition

State Transition Table

Present State			Next State		
C	В	A	C^+	B^+	A^+
0	0	0	0	1	0
0	0	1	X	X	X
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	X	X	X
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	X	X	x

State Transition Table and Remapped Next-State Functions

Present	Next	Remapped Next
State	State	State
<u>C B A</u>	C^+ B^+ A^+	JC KC JB KB JA KA
0 0 0	0 1 0	$\begin{vmatrix} 0 & x & 1 & x & 0 & x \end{vmatrix}$
0 0 1	x x x	x x x x x x
0 1 0	0 1 1	$\begin{bmatrix} 0 & x & x & 0 & 1 & x \end{bmatrix}$
0 1 1	1 0 1	1 x x 1 x 0
1 0 0	X X X	x x x x x x
1 0 1	1 1 0	x 0 1 x x 1
1 1 0	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	x 1 x 1 0 x
1 1 1	$\begin{vmatrix} x & x & x \end{vmatrix}$	

J-K Flip-Flop Excitation Table

$Q Q^+$	J K		
0 0	0 x		
0 1	1 x		
1 0	x 1		
1 1	x 0		
$Q^+ = J\overline{Q} + \overline{K}Q$			

$$J_C = A$$

$$K_C = \overline{A}$$

$$J_{\scriptscriptstyle R}=1$$

$$K_R = A + C$$

Next State Functions $J_C=A$ $K_C=\overline{A}$ $J_B=1$ $K_B=A+C$ Remapped K-Maps for J-K Implementation. $J_A=B\overline{C}$ $K_A=C$

$$J_A = B\overline{C}$$

$$K_A = C$$

ACI	B ₀₀	01	11	10	
0	X	X	1	X	V
1	X	X	X	0	$\mathbf{K}_{\mathbf{C}}$

J-K Flip-Flop Implementation of 3 Bit Counter

