Constructive Control by Adding Candidates

Definition (Bartholdi, Tovey, and Trick (1992))

Let \mathcal{E} be some voting system.

Name: E-Constructive Control by Adding an Unlimited Number of Candidates (E-CCAUC).

Given: • Disjoint sets C and D of candidates,

• a list V of votes over $C \cup D$, and

• a distinguished candidate $p \in C$.

Question: Is there a subset D' of D such that p is the unique winner

of the \mathcal{E} election $(C \cup D', V)$?

Constructive Control by Adding Candidates

Definition (Hemaspaandra, Hemaspaandra, and Rothe (2007)) Let \mathcal{E} be some voting system.

Name: E-Constructive Control by Adding a Limited Number of Candidates (E-CCAC).

Given: • Disjoint sets C and D of candidates,

• a list V of votes over $C \cup D$,

• a distinguished candidate $p \in C$, and

a nonnegative integer k.

Question: Is there a subset D' of D such that $||D'|| \le k$ and p is the unique winner of the \mathcal{E} election $(C \cup D', V)$?

Constructive Control by Deleting Candidates

Definition (Bartholdi, Tovey, and Trick (1992)) Let \mathcal{E} be some voting system.

Name: \mathcal{E} -Constructive Control by Deleting Candidates (\mathcal{E} -CCDC).

Given: • A set C of candidates,

- a list V of votes over C,
- a distinguished candidate p ∈ C, and
- a nonnegative integer k.

Question: Is it possible to delete up to k candidates from C such that p is the unique winner of the resulting \mathcal{E} election?

Constructive Control by Partition of Candidates

Definition (Bartholdi, Tovey, and Trick (1992) & Hemaspaandra, Hemaspaandra, and Rothe (2007))

Name: \mathcal{E} -Constructive Control by Partition of Candidates (\mathcal{E} -CCPC).

Given: An election (C, V) and a distinguished candidate $p \in C$.

Question: Is it possible to partition C into C_1 and C_2 such that p is the unique winner (w.r.t. V) of the final stage of the two-stage election in which

- the winners of (C_1, V) surviving the tie-handling rule
- run against all candidates in C2?
- "Ties eliminate" (TE): Only unique winners proceed to final stage.
- "Ties promote" (TP): All winners proceed to final stage.

Constructive Control by Runoff Partition of Candidates

Definition (Bartholdi, Tovey, and Trick (1992) & Hemaspaandra, Hemaspaandra, and Rothe (2007))

Name: \mathcal{E} -Constructive Control by Runoff Partition of Candidates (\mathcal{E} -CCRPC).

Given: An election (C, V) and a distinguished candidate $p \in C$.

Question: Is it possible to partition C into C_1 and C_2 such that p is the unique winner (w.r.t. V) of the final stage of the two-stage election in which the runoff is between

- the winners of (C₁, V) surviving the tie-handling rule and
- the winners of (C₂, V) surviving the tie-handling rule?
- "Ties eliminate" (TE): Only unique winners proceed to final stage.
- "Ties promote" (TP): All winners proceed to final stage.

Constructive Control by Adding Voters

Definition (Bartholdi, Tovey, and Trick (1992))

Let \mathcal{E} be some voting system.

Name: \mathcal{E} -Constructive Control by Adding Voters (\mathcal{E} -CCAV).

Given: • A set C of candidates,

- a list V of registered votes over C and an additional list W of as yet unregistered votes over C,
- a distinguished candidate $p \in C$, and
- a nonnegative integer k.

Question: Is there a subset W' of W such that $||W'|| \le k$ and p is the unique winner of the \mathcal{E} election $(C, V \cup W')$?

Constructive Control by Deleting Voters

Definition (Bartholdi, Tovey, and Trick (1992)) Let \mathcal{E} be some voting system.

Name: \mathcal{E} -Constructive Control by Deleting Voters (\mathcal{E} -CCDV).

Given: • A set C of candidates,

a list V of votes over C,

• a distinguished candidate $p \in C$, and

a nonnegative integer k.

Question: Is it possible to delete up to k voters from V such that p is the unique winner of the resulting \mathcal{E} election?

Constructive Control by Partition of Voters

Definition (Bartholdi, Tovey, and Trick (1992) & Hemaspaandra, Hemaspaandra, and Rothe (2007))

Name: \mathcal{E} -Constructive Control by Partition of Voters (\mathcal{E} -CCPV).

Given: An election (C, V) and a distinguished candidate $p \in C$.

Question: Is it possible to partition V into V_1 and V_2 such that p is the unique winner (with respect to the votes in V) of the final stage of the two-stage election in which the runoff is between

- the winners of (C, V_1) surviving the tie-handling rule and
- the winners of (C, V_2) surviving the tie-handling rule?
- "Ties eliminate" (TE): Only unique winners proceed to final stage.
- "Ties promote" (TP): All winners proceed to final stage.

Destructive Control

Remark:

 For each constructive control scenario, there is a corresponding destructive control type where the chair seeks to block the distinguished candidate's victory:

```
\mathcal{E}-DCAUC, \mathcal{E}-DCAC, \mathcal{E}-DCDC, \mathcal{E}-DCPC-TE, \mathcal{E}-DCPC-TP, \mathcal{E}-DCRPC-TE, \mathcal{E}-DCPV-TE, and \mathcal{E}-DCPV-TP.
```

In $\mathcal{E}\text{-DCDC}$ it is not allowed to simply delete the distinguished candidate.

- \Rightarrow This sums up to a total of 22 control types (and the corresponding control problems).
- The study of destructive control was initiated by Hemaspaandra, Hemaspaandra, and Rothe (2007).

Immunity and Susceptibility

Definition (Bartholdi, Tovey, and Trick (1992)) Let \mathfrak{CT} be a control type.

- We say a voting system is immune to ♥♥ if it is impossible for the chair to make the given candidate
 - the unique winner in the constructive case and
 - not a unique winner in the destructive case,

respectively, via exerting control of type \mathfrak{CT} .

We say a voting system is susceptible to €∑ if it is not immune to €∑.

Resistance and Vulnerability

Definition (Bartholdi, Tovey, and Trick (1992) & Hemaspaandra, Hemaspaandra, and Rothe (2007)) Let &T be a control type.

A voting system that is susceptible to \mathfrak{CT} is said to be

- vulnerable to \mathfrak{CT} if the control problem corresponding to \mathfrak{CT} can be solved in polynomial time, and

Links Between Susceptibility Cases

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

- A voting system is susceptible to constructive control by adding candidates if and only if it is susceptible to destructive control by deleting candidates.
- A voting system is susceptible to constructive control by deleting candidates if and only if it is susceptible to destructive control by adding candidates.
- A voting system is susceptible to constructive control by adding voters if and only if it is susceptible to destructive control by deleting voters.
- A voting system is susceptible to constructive control by deleting voters if and only if it is susceptible to destructive control by adding voters.

Links Between Susceptibility Cases

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

- If a voting system is susceptible to constructive control by partition of voters (in model TE or TP), then it is susceptible to constructive control by deleting candidates.
- If a voting system is susceptible to constructive control by partition or run-off partition of candidates (in model TE or TP), then it is susceptible to constructive control by deleting candidates.
- If a voting system is susceptible to constructive control by partition of voters in model TE, then it is susceptible to constructive control by deleting voters.
- If a voting system is susceptible to destructive control by partition or run-off partition of candidates (in model TE or TP), then it is susceptible to destructive control by deleting candidates.

Links Between Susceptibility Cases

Definition

A voting system is *voiced* if in any election that has exactly one candidate, that candidate is always a (and thus, the unique) winner.

Theorem

- If a voiced voting system is susceptible to destructive control by partition of voters (in model TE or TP), then it is susceptible to destructive control by deleting voters.
- Each voiced voting system is susceptible to constructive control by deleting candidates.
- Each voiced voting system is susceptible to destructive control by adding candidates.

Control Complexity of Plurality and Condorcet Voting

	Plurality		Condorcet	
Control by	Constructive	Destructive	Constructive	Destructive
Adding Candidates	R(esistant)	R	I(mmune)	V(ulnerable)
Deleting Candidates	R	R	V	I
Partition of Candidates	TE: R TP: R	TE: R TP: R	V	I
Run-off Partition of Candidates	TE: R TP: R	TE: R TP: R	V	I
Adding Voters	V	V	R	٧
Deleting Voters	V	٧	R	V
Partition of Voters	TE: V TP: R	TE: V TP: R	R	V

Boldface results are due to Hemaspaandra, Hemaspaandra, and Rothe (2007).

Hitting Set

Definition

Name: HITTING SET.

Given: • A set $B = \{b_1, b_2, ..., b_m\}$,

• a family $S = \{S_1, S_2, \dots, S_n\}$ of subsets S_i of B, and

a positive integer k.

Question: Does S have a hitting set of size at most k?

That is, is there a set $B' \subseteq B$ with $||B'|| \le k$ such that for

each i, $S_i \cap B' \neq \emptyset$?

Construction: Given a HITTING SET instance (B, S, k), where $B = \{b_1, b_2, \dots, b_m\}$, $S = \{S_1, S_2, \dots, S_n\}$, and $k \le m$, construct the following election:

- The candidate set is $C = B \cup \{c, w\}$.
- The voter set V is defined as follows:
 - ① 2(m-k)+2n(k+1)+4 voters of the form $c w \cdots$, where " \cdots " means that the remaining candidates follow in an arbitrary order.
 - 2 2n(k+1) + 5 voters of the form $w c \cdots$.
 - **③** For each i, $1 \le i \le n$, there are 2(k+1) voters of the form S_i c ···, where " S_i " denotes the elements of S_i in some arbitrary order.
 - **4** For each j, $1 \le j \le m$, two voters of the form b_i $w \cdots$.

Lemma (Hemaspaandra, Hemaspaandra, and Rothe (2007))

If B' is a hitting set of S of size k, then w is the unique plurality winner of the election $(B' \cup \{c, w\}, V)$.

Proof: See blackboard.

Lemma (Hemaspaandra, Hemaspaandra, and Rothe (2007))

Let $D \subseteq B \cup \{w\}$. If c is not a unique plurality winner of election $(D \cup \{c\}, V)$, then there exists a set $B' \subseteq B$ such that

- ② w is the unique plurality winner of the election $(B' \cup \{c, w\}, V)$, and
- **3** B' is a hitting set of S of size less than or equal to k.

Proof: See blackboard.

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

S has a hitting set of size less than or equal to k if and only if destructive control by adding candidates can be executed for the election with qualified candidates $\{c, w\}$, spoiler candidates B, distinguished candidate c, and voter set V.

Proof: See blackboard.

Corollary: Plurality voting is resistant to destructive control by adding candidates.

That is, Plurality-DCAUC (and also Plurality-DCAC) is NP-hard.

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

S has a hitting set of size at most k if and only if the election with candidate set C, distinguished candidate c, and voter set V can be destructively controlled by deleting at most m-k candidates.

Proof: See blackboard.

Corollary: Plurality voting is resistant to destructive control by deleting candidates. That is, Plurality-DCDC is NP-hard.

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

S has a hitting set of size at most k if and only if the election with candidate set C, distinguished candidate c, and voter set V can be destructively controlled by partition of candidates (both in model TE and TP).

Proof: See blackboard.

Corollary: Plurality voting is resistant to destructive control by partition of candidates (both in model TE and TP).

That is, Plurality-DCPC-TE and Plurality-DCPC-TP are NP-hard.

Voter Control in Plurality Voting

Theorem (Hemaspaandra, Hemaspaandra, and Rothe (2007))

 Plurality voting is vulnerable/certifiably-vulnerable to destructive control both by adding voters and by deleting voters.

"Certifiably-vulnerable" means the chair cannot only decide the problems Plurality-DCAV and Plurality-DCDV in polynomial time, but can even produce in polynomial time a "best possible" control action. Certifiable vulnerability implies vulnerability. (In particular, the "k" may be dropped from the problem instance.)

In model TE, plurality voting is vulnerable/certifiably-vulnerable to constructive and destructive control by partition of voters.

That is, Plurality-CCPV-TE and Plurality-DCPV-TE is in P.

Destructive Control by Adding Voters in Plurality

Proof:

(a) Plurality voting is certifiably-vulnerable to destructive control by adding voters: "Smart Greedy"

Given (C, c, V, W) as in DCAV (without k):

- If c already is not a unique plurality winner in (C, V), adding no voters accomplishes our goal, and we are done.
- Otherwise, sort all d_i ∈ C − {c} by decreasing deficit, i.e., letting diff(d_i) denote d_i's deficit of first-place votes needed to tie c, we have

$$diff(d_1) \leq diff(d_2) \leq \cdots \leq diff(d_{||C||-1}).$$

• For i = 1, 2, ..., ||C|| - 1, if

$$\|\{w \in W \mid w$$
's first choice is $d_i\}\| \ge diff(d_i)$,

then add $diff(d_i)$ of these unregistered voters to ensure that d_i ties c (and c thus is not a unique winner) and halt.

If no iteration was successful, output "control impossible" and halt.

Destructive Control by Deleting Voters in Plurality Voting

(b) Plurality voting is certifiably-vulnerable to destructive control by deleting voters: "Dumb Greedy"

Given (C, c, V) as in DCDV (without k):

- If $C = \{c\}$, then output "control impossible" and halt;
- else if c already is not a unique plurality winner in (C, V), deleting no voters accomplishes our goal, and we are done.
- If every candidate other than *c* gets zero first-place votes, then output "control impossible" and halt.
- Otherwise, let d be the candidate closest to c in first-place votes, and let diff(d) denote d's deficit of first-place votes needed to tie c.
 Deleting diff(d) voters whose first choice is c assures that c is not a
 - Deleting *diff*(*d*) voters whose first choice is *c* assures that *c* is not a unique winner, and this is the fewest deletions that can achieve that.

Constructive Control by Partition of Voters (TE) in Plurality Voting

- Plurality voting is certifiably-vulnerable to constructive control by partition of voters:
 - Let (C, c, V) be given as in CCPV.
 - For any partition (V_1, V_2) of V, let $Nominees(C, V_i)$, $i \in \{1, 2\}$, denote the set of candidates who are nominated by the subcommittee V_i (with candidates C) for the run-off in model TE.

Constructive Control by Partition of Voters (TE) in Plurality Voting

Consider the following cases (Cases 3 and 5 need not be disjoint):

- Case 1: $Nominees(C, V_1) = \{c\}$ and $Nominees(C, V_2) = \emptyset$ due to $V_2 = \emptyset$.
- Case 2: Nominees(C, V_1) = {c} and Nominees(C, V_2) = {c}.
- Case 3: $Nominees(C, V_1) = \{c\}$ and $Nominees(C, V_2) = \emptyset$ due to c and d (and possibly additional other candidates) tying, where $c \neq d$.
- Case 4: $Nominees(C, V_1) = \{c\}$ and $Nominees(C, V_2) = \{d\}$, $c \neq d$.
- Case 5: $Nominees(C, V_1) = \{c\}$ and $Nominees(C, V_2) = \emptyset$ due to d and e (and possibly additional other candidates) tying, where $c \neq d \neq e \neq c$.