Supplementary material I-S3

Contents

Figure	2	1
Fig.	2.A Decomposition C loss (%)	2
Fig.	2.B Decomposition N loss (%)	3
Fig.	2.C Microbial decomposition C loss (%)	4
Fig.	2.D Microbial decomposition N loss (%)	5
Fig.	2.E Decomposability C loss (%)	6
Fig.	2.F Decomposability N loss (%)	7
Figure	3	8
Fig.	3.A Tree diversity effect on the amount of litterfall and litter species richness $\dots \dots$	9
Fig.	3.B: Part of microbial decomposition in litter decomposition	11
Fig.	3.C: Structural equation model	12
Figure	4	16
Fig.	4.A: Decomposability drivers	16

Figure 2

Fig. 2.A Decomposition C loss (%)

Model output

```
##
## Call:
## lm(formula = "C.loss_Ma1 ~ log(neigh.sp.rich)", data = df)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                    -1.088
   -50.755 -10.573
                             10.112
                                     38.701
##
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         59.175
                                     2.236
                                            26.461
                                                      <2e-16 ***
  log(neigh.sp.rich)
                          1.532
                                     1.927
                                             0.795
                                                       0.428
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
## Residual standard error: 15.32 on 151 degrees of freedom
## Multiple R-squared: 0.00417,
                                     Adjusted R-squared:
## F-statistic: 0.6322 on 1 and 151 DF, p-value: 0.4278
```


Fig. 2.B Decomposition N loss (%)

Model output

```
##
## Call:
## lm(formula = "N.loss_Ma1 ~ log(neigh.sp.rich)", data = df)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -41.429 -12.969
                     1.371
                            11.548
                                     34.494
##
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         65.506
                                     2.418
                                            27.094
                                                      <2e-16 ***
  log(neigh.sp.rich)
                          4.989
                                     2.083
                                             2.395
                                                      0.0179 *
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
## Residual standard error: 16.56 on 151 degrees of freedom
## Multiple R-squared: 0.03659,
                                     Adjusted R-squared:
## F-statistic: 5.735 on 1 and 151 DF, p-value: 0.01785
```


Fig. 2.C Microbial decomposition C loss (%)

```
##
## Call:
## lm(formula = "C.loss_Mi1 ~ log(neigh.sp.rich)", data = df)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -25.889
            -7.769
                    -0.531
                              6.920
                                     36.553
##
##
## Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                         49.521
                                     1.720
                                            28.783
                                                      <2e-16 ***
  log(neigh.sp.rich)
                         -1.826
                                     1.482
                                            -1.231
                                                        0.22
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
## Residual standard error: 11.79 on 151 degrees of freedom
## Multiple R-squared: 0.009943,
                                     Adjusted R-squared:
## F-statistic: 1.516 on 1 and 151 DF, p-value: 0.2201
```


Fig. 2.D Microbial decomposition N loss (%)

```
##
## Call:
## lm(formula = "N.loss_Mi1 ~ log(neigh.sp.rich)", data = df)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -36.379 -10.818
                    -1.621
                             7.900
                                     43.181
##
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         56.819
                                     2.308
                                            24.616
                                                     <2e-16 ***
  log(neigh.sp.rich)
                         2.885
                                     1.989
                                             1.451
                                                      0.149
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
  Signif. codes:
##
## Residual standard error: 15.81 on 151 degrees of freedom
## Multiple R-squared: 0.01374,
                                     Adjusted R-squared:
## F-statistic: 2.104 on 1 and 151 DF, p-value: 0.149
```


Fig. 2.E Decomposability C loss (%)

```
##
## Call:
## lm(formula = "C.loss_CG ~ log(lit.rich)", data = df)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
                    -0.132
   -21.659
            -5.099
                              5.716
                                     20.047
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  43.7478
                               0.9935
                                       44.032
                                                 <2e-16 ***
                  -1.2590
                               0.8716
                                       -1.445
                                                  0.151
  log(lit.rich)
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
## Residual standard error: 8.124 on 151 degrees of freedom
## Multiple R-squared: 0.01363,
                                     Adjusted R-squared:
## F-statistic: 2.087 on 1 and 151 DF, p-value: 0.1507
```


Fig. 2.F Decomposability N loss (%)

```
##
## Call:
## lm(formula = "N.loss_CG ~ log(lit.rich)", data = df)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
                       0.0964
   -24.5090
             -4.9002
                                 4.6015
                                         24.6910
##
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                              0.9720
## (Intercept)
                  42.2580
                                       43.476 < 2e-16 ***
                   3.1526
                              0.8527
                                        3.697 0.000304 ***
  log(lit.rich)
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  Signif. codes:
##
## Residual standard error: 7.947 on 151 degrees of freedom
## Multiple R-squared: 0.08302,
                                     Adjusted R-squared:
## F-statistic: 13.67 on 1 and 151 DF, p-value: 0.0003043
```


Figure 3

Fig. 3.A Tree diversity effect on the amount of litterfall and litter species richness

Amount of litterfall

Model

```
##
## Call:
  lm(formula = "fall ~ log(neigh.sp.rich)", data = df)
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -117.50
            -46.43
                    -12.57
                              36.28
                                     212.99
##
##
  Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                        52.061
                                     9.570
                                             5.440 2.10e-07 ***
  log(neigh.sp.rich)
                        52.387
                                     8.246
                                             6.353 2.36e-09 ***
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 65.56 on 151 degrees of freedom
## Multiple R-squared: 0.2109, Adjusted R-squared: 0.2057
## F-statistic: 40.36 on 1 and 151 DF, p-value: 2.359e-09
```


Litter species richness

Model

```
##
## Call:
## lm(formula = "lit.rich ~ log(neigh.sp.rich)", data = df)
##
##
  Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
   -3.4450 -1.2606 -0.2954
                            0.6351
                                     4.6699
##
##
##
  Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                        0.3649
                                    0.1996
                                             1.828
                                                     0.0695 .
##
                        2.8353
                                            16.488
  log(neigh.sp.rich)
                                    0.1720
                                                     <2e-16 ***
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.367 on 151 degrees of freedom
## Multiple R-squared: 0.6429, Adjusted R-squared: 0.6405
## F-statistic: 271.9 on 1 and 151 DF, p-value: < 2.2e-16
```

Model quality .

0.00

0.25

0.50

Cook's Distance

0.75

1.00

Fig. 3.B: Part of microbial decomposition in litter decomposition

Part of microbial decomposition in total C loss

microbial contribution to
$$C_{loss} = \frac{C.loss_{microbial}}{C.loss_{total}}$$

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 30.32 64.30 80.55 84.42 97.41 476.48

Part of microbial decomposition in total N loss

microbial contribution to
$$N_{loss} = \frac{N.loss_{microbial}}{N.loss_{total}}$$

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 27.31 74.62 86.59 87.16 100.62 190.34

Fig. 3.C: Structural equation model

SEM structure

Labels: "Ma" = total decomposition, "Mi" = microbial decomposition, "CG" = Common Garden (i.e., decomposability), "fall" = amount of litterfall, "lit.rich" = litter species richness, "neigh.sp.rch" = neighborhood tree species richness

Hypotheses .

Causal relations

Response variable	Explanatory variable	Hypothesis
C.loss_Ma1	C.loss_Mi1	We expect total litter decomposition to be carried out by the microbial community
C.loss_Ma1	fall	We expect litter decomposition rate to increase with the amount of litterfall due to the addatation of the decomposer community to the higher amount of nutrients
C.loss_Ma1	log.lit.rich	We expect litter decomposition rate to increase with litter species richness due to the increase of litter complementarity
N.loss_Ma1	N.loss_Mi1	We expect total litter decomposition to be carried out by the microbial community
N.loss_Ma1	fall	We expect litter decomposition rate to increase with the amount of litterfall due to the addatation of the decomposer community to the higher amount of nutrients
N.loss_Ma1	log.lit.rich	We expect litter decomposition rate to increase with litter species richness due to the increase of litter complementarity
C.loss_Mi1	C.loss_CG	We expect microbial decomposition to increase with litter decomposability
C.loss_Mi1	fall	We expect litter decomposition rate to increase with the amount of litterfall due to the addatation of the decomposer community to the higher amount of nutrients

(continued)

Response variable	Explanatory variable	Hypothesis
C.loss_Mi1	log.lit.rich	We expect litter decomposition rate to increase with litter species richness due to the increase of litter complementarity
N.loss_Mi1	N.loss_CG	We expect microbial decomposition to increase with litter decomposability
N.loss_Mi1	fall	We expect litter decomposition rate to increase with the amount of litterfall due to the addatation of the decomposer community to the higher amount of nutrients
N.loss_Mi1	log.lit.rich	We expect litter decomposition rate to increase with litter species richness due to the increase of litter complementarity
C.loss_CG	log.lit.rich	We expect litter decomposition rate to increase with litter species richness due to the increase of litter complementarity
$N.loss_CG$	log.lit.rich	We expect litter decomposition rate to increase with litter species richness due to the increase of litter complementarity
fall	log.neigh.sp.1	We expect tree litterfall to increase with tree species richness
log.lit.rich	log.neigh.sp.r	ridWe expect litter species richness to increase with tree species richness

Correlations

Covariate 1	Covariate 2	Hypothesis
C.loss_Ma1	N.loss_Ma1	We expect carbon and nitrogen decomposition to be positively correlated
C.loss_Mi1	N.loss_Mi1	We expect carbon and nitrogen decomposition to be positively correlated
C.loss_CG	N.loss_CG	We expect carbon and nitrogen decomposition to be positively correlated
fall	log.lit.rich	We expect the amount of litterfall and litter species richness to be positively correlated as both positively affected by tree species richness

Summary .

 $\label{lem:composition} Labels: "Ma" = total decomposition, "Mi" = microbial decomposition, "CG" = Common Garden (i.e., decomposability), "fall" = amount of litterfall, "lit.rich" = litter species richness, "ngh.sp.rch" = neighborhood tree species richness$

## ##	lavaan 0.6-7 ended normally after 42 iterations							
##	Estimator				ML			
##	Optimization meth	ıod			NLMINB			
##	Number of free pa				32			
##	•							
##	Number of observa	tions			153			
##								
##	Model Test User Mod	lel:						
##								
##	Test statistic				10.994			
##	Degrees of freedo	om			12			
##	P-value (Chi-squa	re)			0.529			
##								
##	Parameter Estimates	: :						
##								
##	Standard errors				Standard			
##	Information				Expected			
##	Information satur	rated (h1)	model	St	ructured			
##								
	Regressions:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	C.loss_Ma1 ~							
##	C.loss_Mi1	0.264		5.069		0.264		
##	fall	0.319		3.468				
##	log.lit.rich	0.185		1.168				
##	log.ngh.sp.rch	-0.214	0.144	-1.486	0.137	-0.214	-0.210	
##	N.loss_Ma1 ~	0 507	0 040	40 544	0.000	0 507	0 400	
##	N.loss_Mi1	0.507		10.511		0.507		
##	fall	0.235	0.081	2.904	0.004	0.235	0.232	
##	log.lit.rich	0.090		0.649		0.090		
##	log.ngh.sp.rch	-0.053	0.126	-0.423	0.672	-0.053	-0.053	
##	C.loss_Mi1 ~	0 422	0 055	7 001	0 000	0 422	0.430	
## ##	C.loss_CG fall	0.433		7.881		0.433 0.046		
##	log.lit.rich	0.046 0.196		0.502 1.255		0.046	0.045 0.195	
##	log.ngh.sp.rch	-0.217	0.142	-1.532	0.125	-0.217	-0.216	
	N.loss_Mi1 ~	0.217	0.142	1.002	0.125	0.211	0.210	
##	N.loss_CG	0.350	0.056	6.271	0.000	0.350	0.356	
##	fall	0.110	0.089	1.229	0.219	0.110	0.111	
##	log.lit.rich	0.235	0.154	1.530	0.126	0.235	0.239	
##	log.ngh.sp.rch	-0.198	0.139	-1.429	0.153	-0.198	-0.202	
##	C.loss_CG ~	0.100	0.100	1.120	0.100	0.100	0.202	
##	log.lit.rich	-0.117	0.080	-1.454	0.146	-0.117	-0.117	
##	N.loss_CG ~				=			
##	log.lit.rich	0.288	0.077	3.722	0.000	0.288	0.288	

##	fall ~						
##	log.ngh.sp.rch	0.459	0.072	6.395	0.000	0.459	0.459
##	<pre>log.lit.rich ~</pre>						
##	log.ngh.sp.rch	0.856	0.042	20.445	0.000	0.856	0.856
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.C.loss_Ma1 ~~						
##	.N.loss_Ma1	0.579	0.075	7.716	0.000	0.579	0.798
##	.C.loss_Mi1 ~~						
##	$.{\tt N.loss_Mi1}$	0.550	0.078	7.062	0.000	0.550	0.695
##	.C.loss_CG ~~						
##	$.{\tt N.loss_CG}$	0.379	0.082	4.604	0.000	0.379	0.401
##	.fall ~~						
##	$.\log.lit.rich$	0.197	0.040	4.901	0.000	0.197	0.432
##							
##	Variances:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.C.loss_Ma1	0.827	0.095	8.746	0.000	0.827	0.803
##	.N.loss_Ma1	0.636	0.073	8.746	0.000	0.636	0.624
##	.C.loss_Mi1	0.807	0.092	8.746	0.000	0.807	0.803
##	.N.loss_Mi1	0.776	0.089	8.746	0.000	0.776	0.807
##	.C.loss_CG	0.980	0.112	8.746	0.000	0.980	0.986
##	$.{\tt N.loss_CG}$	0.911	0.104	8.746	0.000	0.911	0.917
##	.fall	0.784	0.090	8.746	0.000	0.784	0.789
##	$.\log.lit.rich$	0.266	0.030	8.746	0.000	0.266	0.268

R squared

##	C.loss_Ma1	N.loss_Ma1	C.loss_Mi1	N.loss_Mi1	C.loss_CG	N.loss_CG
##	0.197	0.376	0.197	0.193	0.014	0.083
##	fall	log.lit.rich				
##	0.211	0.732				

Model quality

DF CFI RMSEA SRMR ## 12.000 1.000 0.000 0.031

Figure 4

Fig. 4.A: Decomposability drivers

Correlation between explanatory variables

Decomposability C loss

```
##
## Call:
##
  lm(formula = C.loss ~ compo.pca.1, data = df)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -16.0580 -5.0609
                      -0.6945
                                3.9496
                                        26.8027
##
  Coefficients:
##
##
               Estimate Std. Error t value Pr(>|t|)
                69.2268
                            0.3891 177.915
                                            < 2e-16 ***
##
  (Intercept)
                                            0.00915 **
  compo.pca.1
                            0.3897
                                      2.621
##
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.164 on 337 degrees of freedom
## Multiple R-squared: 0.01998,
                                    Adjusted R-squared:
## F-statistic: 6.872 on 1 and 337 DF, p-value: 0.009155
```


Decomposability N loss

```
##
## Call:
##
   lm(formula = N.loss ~ div.pca.1 + compo.pca.1 + log(lit.rich),
       data = df
##
##
## Residuals:
##
        Min
                         Median
                                        ЗQ
                                                 Max
                    1Q
##
   -25.5671
             -4.8384
                        -0.5727
                                   5.3752
                                            29.4864
##
##
   Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
   (Intercept)
                    69.7242
                                 0.7842
                                         88.909 < 2e-16 ***
## div.pca.1
                     0.4594
                                           2.406 0.016667 *
                                 0.1909
## compo.pca.1
                     2.0861
                                 0.5152
                                           4.049 6.38e-05 ***
## log(lit.rich)
                     2.5523
                                 0.7333
                                           3.481 0.000566 ***
                     0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 8.67 on 335 degrees of freedom
## Multiple R-squared: 0.1249, Adjusted R-squared: 0.1171
## F-statistic: 15.94 on 3 and 335 DF, p-value: 1.041e-09
      Check for Multicollinearity
                                                         Non-normality of Residuals
                                                  Sample Quantiles
                                                         Dots should be plotted along the line
 10.0
                                  Correlation
  7.5
                                                       2
                                      low
                                                      0
  5.0
                                      moderate
                                                      -2
  2.5
                                      high
                                                                -2
                                                                                          2
  0.0
    compo.pcadilv.pca.lbg(lit.rich)
                                                                   Theoretical Quantiles
         Non-Normality of Residuals
                                                          Homoscedasticity (Linear Relationsh
         Distribution should look like a normal curve
                                                          Dots should spread equally around horizont
                                                  Residuals
Density
    0.04
    0.02
    0.00
             -20
                   -10
                                 10
                                       20
                                              30
                                                               65
                                                                            70
                                                                                        75
                       Residuals
                                                                        Fitted values
        Homogeneity of Variance (Scale-Loc
                                                          Check for Influential Observations
Residuals (sqrt)
        Dots should spread equally around horizonta
                                                      150
                                                  Count
    1.5
1.0
0.5
                                                      100
                                                       50
                                                        0
    0.0
                                                                   0.25
             65
                                                           0.00
                                                                            0.50
                                                                                     0.75
                                                                                              1.00
Std.
```

Cook's Distance

Fitted values

Fig. 4.B: Litterfall drivers

Correlation between explanatory variables


```
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: log.litter.biomass.area ~ log.biomass + dist + tot.other + (1 |
##
      species)
##
     Data: df.stat
##
## REML criterion at convergence: 767.2
##
## Scaled residuals:
##
          1Q Median
      Min
                            3Q
                                   Max
## -3.0497 -0.5819 0.0695 0.6145 3.5516
##
## Random effects:
## Groups Name
                      Variance Std.Dev.
## species (Intercept) 0.1785 0.4225
## Residual
                      0.4107
                              0.6408
## Number of obs: 372, groups: species, 12
##
## Fixed effects:
             Estimate Std. Error df t value Pr(>|t|)
##
## (Intercept) -0.10092 0.12795 10.89923 -0.789 0.44707
## log.biomass 0.43985 0.04755 354.96121 9.251 < 2e-16 ***
              ## dist
## tot.other -0.10310 0.04953 363.68207 -2.082 0.03809 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
            (Intr) lg.bms dist
## log.biomass 0.066
## dist
            -0.014 -0.390
## tot.other 0.050 0.047 0.542
```

