Artificial intelligence engineering

6팀 반려견 행동 분석 모델 학습

강영미 송주호 양유석 이유진 이한규 현기호

인공지능공학

기말 팀프로젝트

Dog Behavior Analysis Dataset

Contents 二大

EDA	데이터 전처리	인공지능 모델링	LSTM	결론
- 데이터 설명 - 자이로스코프센서 - 가속도계 - 행동 - 행동분류 - 예상 적합 모델	- 데이터 로드 - 정답 데이터 수치화	- SVM - RF - KNN	- 모델 선정이유 - 데이터 전처리 - LSTM 모델 학습 - LSTM 학습 결과 - LSTM 하이퍼 파리미터 - 튜닝	

Dog Behavior Analysis Dataset

EDA

Exploratory Data Analysis

① 同。 데이터 설명

0.01초마다 측정

Dog : <mark>3축 가속도계</mark> 및 <mark>3축 자이로스코프 센서</mark>를 포함하는

2개의 활동센서 착용 중

20개의 동적 동작

['<undefined>' 'Bowing' 'Carrying object' 'Drinking' 'Eating' 'Extra_Synchronization' 'Galloping' 'Jumping' 'Lying chest' 'Pacing' 'Panting' 'Playing' 'Shaking' 'Sitting' 'Sniffing' 'Standing' 'Synchronization' 'Trotting' 'Tugging' 'Walking']

②2。 자이로스코프센서

중력을 기준으로 얼마나 기울어져있는지의 값 측정

한쪽 방향으로 쏠렸을 때, 기울어지는 <mark>각도를 측정</mark>

가속도센서로 측정할 수 없는 방위각과 모든 축에 대한 회전각 측정

の多。フト会生月

움직이는 방향, 가속도 측정

Dog의 어떤부위가 어떤 방향으로 움직이는지 측정

x, y, z 좌표로 센서값을 받으므로 <mark>하나의 벡터값으로 계산</mark>

Exploratory Data Analysis

▲ Behavior_1	▲ Behavior_2		▲ Behavior_3		▲ PointEvent	
<undefined> 389</undefined>	<undefined></undefined>	72%	<undefined></undefined>	98%	<undefined></undefined>	100%
Lying chest 109	Panting	9%	Galloping	1%	Bark	0%
Other (5542568) 529	Other (2035805)	19%	Other (113099)	1%		
<undefined></undefined>	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization	<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	

Dog의 <mark>1초이상 실행한 행동</mark>을 비디오 녹화를 통해 발견함

(동시에 여러 동작 가능)

Dog의 행동은 최대 3가지까지 동시에 가능, <mark>짖는 행동 따로 표시</mark>

Exploratory Data Analysis

95。 행동 분류

		▲ Behavior_2	. <u> </u>	▲ Behavior_3		A PointEvent	
<undefined> Lying chest Other (5542568)</undefined>	38% 10% 52%	<undefined> Panting Other (2035805)</undefined>	72% 9% 19%	<undefined> Galloping Other (113099)</undefined>	98% 1% 1%	<undefined></undefined>	100% 0%
<undefined></undefined>		<pre></pre>		<undefined></undefined>		<undefined></undefined>	
Synchronization Synchronization		<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization		<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization Synchronization		<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	
Synchronization		<undefined></undefined>		<undefined></undefined>		<undefined></undefined>	

undefined 상태가 가장 적게 나타나는 Behavior_10 학습에 적합하다고 판단

Exploratory Data Analysis

0% 예상 적합모델

	DogID	TestNum	t_sec	ABack_x	ABack_y	ABack_z	ANeck_x	ANeck_y	ANeck_z	GBack_x	GBack_y	GBack_z	GNeck_x	GNeck_y	GNeck_z	Task	Behavior_1
0	16	1	0.00	0.041504	0.938965	-0.015137	-0.067871	-0.510254	-0.934570	-17.639161	-22.766115	7.446290	-7.934571	6.347657	13.427735	<undefined></undefined>	<undefined></undefined>
1	16	1	0.01	0.041992	0.941895	-0.020020	-0.128906	-0.494141	-0.913086	-15.075685	-11.413575	4.821778	-3.906250	4.394532	16.540528	<undefined></undefined>	Synchronization
2	16	1	0.02	0.040527	0.939453	-0.004395	-0.158691	-0.480469	-0.911133	-12.207032	-0.122070	2.807617	-0.488281	-1.953125	26.794435	<undefined></undefined>	Synchronization
3	16	1	0.03	0.021484	0.946289	0.007813	-0.122070	-0.486816	-0.880371	-9.460450	7.995606	1.586914	1.159668	-5.676270	38.085940	<undefined></undefined>	Synchronization
4	16	1	0.04	-0.000977	0.951172	0.033691	-0.053711	-0.500000	-0.807129	-8.361817	14.587403	-1.037598	4.577637	4.089356	41.503909	<undefined></undefined>	Synchronization
10611063	74	2	1928.19	0.018066	0.436523	0.808105	-0.620605	0.326172	-0.647949	23.620607	75.317387	77.148442	-124.511726	107.727057	-122.497566	Task treat- search	Sniffing
10611064	74	2	1928.20	-0.021973	0.515625	0.813965	-0.671875	0.241211	-0.660645	34.729006	63.293461	79.956060	-116.455085	97.534186	-123.229988	Task treat- search	Sniffing
10611065	74	2	1928.21	-0.041504	0.507324	0.782227	-0.674805	0.244629	-0.627930	39.978030	49.316409	84.655767	-104.858405	95.458990	-124.816902	Task treat- search	Sniffing
10611066	74	2	1928.22	-0.032715	0.484375	0.824219	-0.685059	0.211426	-0.578613	38.024905	32.775881	89.538580	-87.463384	101.257330	-128.601082	Task treat- search	Sniffing
10611067	74	2	1928.23	0.033691	0.432617	0.785645	-0.664063	0.254395	-0.527344	26.306154	19.897462	89.477545	-64.025883	93.688971	-128.906258	Task treat- search	Sniffing
10611068 rd	ws × 20	columns	Van market														

0.01초 단위로 측정된 시계열 데이터이기 때문에 순환신경망 기법의 하나인 LSTM 모델이 적합할 것이라고 판단함

Dog Behavior Analysis Dataset

데이터 전처리

Data Preprocessing

인공지능공학

Data Preprocessing

	DogID	TestNum	t_sec	ABack_x	ABack_y	ABack_z	ANeck_x	ANeck_y	ANeck_z	GBack_x	GBack_y	GBack_z	GNeck_x	GNeck_y	GNeck_z	Task	Behavior_1
0	16	1	0.00	0.041504	0.938965	-0.015137	-0.067871	-0.510254	-0.934570	-17.639161	-22.766115	7.446290	-7.934571	6.347657	13.427735	<undefined></undefined>	<undefined></undefined>
1	16	1															Synchronization
2	16	1	0.02	0.040527	0.939453	-0.004395	-0.158691	-0.480469	-0.911133	-12.207032	-0.122070	2.807617	-0.488281	-1.953125	26.794435	<undefined></undefined>	Synchronization
3	16	1	0.03	0.021484	0.946289	0.007813	-0.122070	-0.486816	-0.880371	-9.460450	7.995606	1.586914	1.159668	-5.676270	38.085940	<undefined></undefined>	Synchronization
4	16	1	0.04	-0.000977	0.951172	0.033691	-0.053711	-0.500000	-0.807129	-8.361817	14.587403	-1.037598	4.577637	4.089356	41.503909	<undefined></undefined>	Synchronization

 $\left(01\right)$

각 행의 센서 데이터를 x로 설정

02

각 행의 행동1을 y로 설정

Data Preprocessing

02. 정답데이터 수치화

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
encoder.fit(Y)
Y_encoder = encoder.transform(Y)
Y_encoder
```

sklearn에서 제공하는 LabelEncoder를 활용 하여 카테고리형 데이터를 수치형으로 변환

```
# 훈련 집합과 테스트 집합으로 분할
```

x_train, x_test, y_train, y_test = train_test_split(X, Y_encoder, train_size=0.6, random_state=34)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

02

sklearn에서 제공하는 train_test_split을 활용하여 학습셋과 테스트셋 분리 Dog Behavior Analysis Dataset

인공지능 모델링

AI Modeling

Data Preprocessing

Ramdom Forest

KNN 알고리즘

LSTM 알고리즘

Dog Behavior Analysis Dataset

SVM

Support Vector Machine

인공지능공학

Support Vector Machine

이 SVM모델 학습

```
1 from sklearn.svm import SVC
2
3 s = SVC(gamma=0.1,C=10)
4 s.fit(train_x,train_y)
```


SVM 모델 임포트

SVM 모델 학습 gamma = 0.1 C=10

BUT!

실행 중(8시간 27분 22초) Cell > fit() > _dense_fit()

입력 데이터셋이 너무 많은 관계로 러닝 타임이 너무 길어졌고 12시간 돌아간후 구글 코렙의 런타임이 중지되어 제대로 학습을 하지 못하였음. Dog Behavior Analysis Dataset

랜덤 포레스트

RandomForestClassifier

인공지능곻학

RandomForestClassifier

① . 랜덤 포레스트 모델 선정 이유

랜덤 포레스트란?

RandomForest는 앙상블 학습 방법 일종으로, 훈련 과정에서 구성한 다수의 결정 트리로부터 분류 또는 평균 예측치 (회귀분석)를 출력하여 동작합니다.

	DogID	TestNum	t_sec	ABack_x	ABack_y	ABack_z	ANeck_x	ANeck_y	ANeck_z	GBack_x	GBack_y	GBack_z	GNeck_x	GNeck_y	GNeck_z	Task	Behavior_1
0	16	1	0.00	0.041504	0.938965	-0.015137	-0.067871	-0.510254	-0.934570	-17.639161	-22.766115	7.446290	-7.934571	6.347657	13.427735	<undefined></undefined>	<undefined></undefined>
1	16	1	0.01	0.041992	0.941895	-0.020020	-0.128906	-0.494141	-0.913086	-15.075685	-11.413575	4.821778	-3.906250	4.394532	16.540528	<undefined></undefined>	Synchronization
2	16	1	0.02	0.040527	0.939453	-0.004395	-0.158691	-0.480469	-0.911133	-12.207032	-0.122070	2.807617	-0.488281	-1.953125	26.794435	<undefined></undefined>	Synchronization
3	16	1	0.03	0.021484	0.946289	0.007813	-0.122070	-0.486816	-0.880371	-9.460450	7.995606	1.586914	1.159668	-5.676270	38.085940	<undefined></undefined>	Synchronization
4	16	1	0.04	-0.000977	0.951172	0.033691	-0.053711	-0.500000	-0.807129	-8.361817	14.587403	-1.037598	4.577637	4.089356	41.503909	<undefined></undefined>	Synchronization
10611063	74	2	1928.19	0.018066	0.436523	0.808105	-0.620605	0.326172	-0.647949	23.620607	75.317387	77.148442	-124.511726	107.727057	-122.497566	Task treat- search	Sniffing
10611064	74	2	1928.20	-0.021973	0.515625	0.813965	-0.671875	0.241211	-0.660645	34.729006	63.293461	79.956060	-116.455085	97.534186	-123.229988	Task treat- search	Sniffing
10611065	74	2	1928.21	-0.041504	0.507324	0.782227	-0.674805	0.244629	-0.627930	39.978030	49.316409	84.655767	-104.858405	95.458990	-124.816902	Task treat- search	Sniffing
10611066	74	2	1928.22	-0.032715	0.484375	0.824219	-0.685059	0.211426	-0.578613	38.024905	32.775881	89.538580	-87.463384	101.257330	-128.601082	Task treat- search	Sniffing
10611067	74	2	1928.23	0.033691	0.432617	0.785645	-0.664063	0.254395	-0.527344	26.306154	19.897462	89.477545	-64.025883	93.688971	-128.906258	Task treat- search	Sniffing

02。랜덤 포레스트 모델 학습

sklearn에서 제공하는 RandomForestClassifier를 트리 수를 10개씩 늘려 설정하고 모델 생성

RandomForestClassifier

①3. 랜덤 포레스트 학습 결과

	precision	recall	f1-score	support
<undefined></undefined>	0.69	0.84	0.76	1211693
Bowing	0.94	0.22	0.35	153
Carrying object	0.87	0.05	0.09	5318
Drinking	0.88	0.68	0.77	19510
Eating	0.78	0.29	0.42	50226
Extra_Synchronization	0.90	0.23	0.37	78
Galloping	0.74	0.04	0.08	3179
Jumping	0.91	0.03	0.05	1176
Lying chest	0.95	0.91	0.93	309890
Pacing	0.68	0.14	0.23	23046
Panting	0.91	0.83	0.87	250855
Playing	0.68	0.55	0.61	258716
Shaking	0.84	0.72	0.77	12246
Sitting	0.94	0.88	0.91	152750
Sniffing	0.79	0.87	0.83	307204
Standing	0.95	0.77	0.85	134384
Synchronization	0.95	0.56	0.71	4949
Trotting	0.75	0.72	0.73	215595
Tugging	0.90	0.01	0.01	4150
Walking	0.67	0.40	0.50	218203
0001110011			0.77	0100001
accuracy	0.84	0.40	0.77	3183321
macro avg	0.84	0.49	0.54	3183321
weighted avg	0.77	0.77	0.76	3183321

(n_estimators=10, n_jobs=-1)

	precision	recall	f1-score	support
<undefined></undefined>	0.71	0.85	0.77	1211693
Bowing	1.00	0.17	0.29	153
Carrying object	0.97	0.04	0.08	5318
Drinking	0.91	0.70	0.79	19510
Eating	0.86	0.29	0.44	50226
Extra_Synchronization	0.94	0.21	0.34	78
Galloping	0.93	0.03	0.06	3179
Jumping	0.97	0.03	0.05	1176
Lying chest	0.96	0.92	0.94	309890
Pacing	0.81	0.13	0.23	23046
Panting	0.92	0.85	0.89	250855
Playing	0.71	0.57	0.63	258716
Shaking	0.84	0.74	0.79	12246
Sitting	0.95	0.90	0.93	152750
Sniffing	0.79	0.91	0.84	307204
Standing	0.97	0.79	0.87	134384
Synchronization	0.97	0.59	0.73	4949
Trotting	0.76	0.75	0.75	215595
Tugging	1.00	0.01	0.01	4150
Walking	0.73	0.42	0.53	218203
				0.400000
accuracy			0.78	3183321
macro avg	0.88	0.50	0.55	3183321
weighted avg	0.79	0.78	0.78	3183321

(n_estimators=20, n_jobs=-1)

	precision	recall	f1-score	support
<undefined></undefined>	0.72	0.85	0.78	1211693
Bowing	0.97	0.19	0.32	153
Carrying object	0.99	0.04	0.08	5318
Drinking	0.91	0.70	0.79	19510
Eating	0.87	0.29	0.44	50226
Extra_Synchronization	1.00	0.26	0.41	78
Galloping	0.91	0.03	0.07	3179
Jumping	0.96	0.02	0.04	1176
Lying chest	0.96	0.92	0.94	309890
Pacing	0.86	0.13	0.22	23046
Panting	0.93	0.86	0.89	250855
Playing	0.72	0.58	0.64	258716
Shaking	0.84	0.76	0.80	12246
Sitting	0.96	0.91	0.93	152750
Sniffing	0.79	0.91	0.85	307204
Standing	0.97	0.79	0.87	134384
Synchronization	0.97	0.60	0.74	4949
Trotting	0.76	0.76	0.76	215595
Tugging	1.00	0.01	0.01	4150
Walking	0.75	0.43	0.54	218203
300Ur 30V			0.79	3183321
accuracy macro avg	0.89	0.50	0.79	3183321
weighted avg	0.80	0.30	0.30	3183321
weighted avg	0.00	0.79	0.70	0 10002 1

(n_estimators=30, n_jobs=-1)

RandomForest

03。랜덤 포레스트 학습 결과

	precision	recall	f1-score	support
<undefined></undefined>	0.72	0.86	0.78	1211693
Bowing	0.97	0.19	0.32	153
Carrying object	0.98	0.04	0.08	5318
Drinking	0.92	0.70	0.80	19510
Eating	0.88	0.29	0.44	50226
Extra_Synchronization	1.00	0.29	0.46	78
Galloping	0.93	0.03	0.06	3179
Jumping	1.00	0.01	0.03	1176
Lying chest	0.96	0.92	0.94	309890
Pacing	0.87	0.13	0.23	23046
Panting	0.93	0.86	0.90	250855
Playing	0.72	0.59	0.65	258716
Shaking	0.84	0.76	0.80	12246
Sitting	0.96	0.91	0.93	152750
Sniffing	0.79	0.92	0.85	307204
Standing	0.97	0.79	0.87	134384
Synchronization	0.98	0.61	0.75	4949
Trotting	0.76	0.77	0.77	215595
Tugging	1.00	0.01	0.01	4150
Walking	0.77	0.43	0.55	218203
accuracy			0.79	3183321
macro avg	0.90	0.51	0.56	3183321
weighted avg	0.80	0.79	0.78	3183321

	precision	recall	f1-score	support
<undefined></undefined>	0.72 1.00	0.86 0.20	0.78 0.34	1211693 153
•				5318
Carrying object	1.00	0.04	0.08	
Drinking	0.92	0.70	0.80	19510
Eating	0.89	0.29	0.44	50226
Extra_Synchronization	1.00	0.32	0.49	78
Galloping	0.94	0.03	0.06	3179
Jumping	1.00	0.01	0.03	1176
Lying_chest	0.96	0.92	0.94	309890
Pacing	0.88	0.13	0.22	23046
Panting	0.93	0.87	0.90	250855
Playing	0.73	0.59	0.65	258716
Shaking	0.83	0.77	0.80	12246
Sitting	0.96	0.91	0.94	152750
Sniffing	0.79	0.92	0.85	307204
Standing	0.97	0.80	0.88	134384
Synchronization	0.98	0.61	0.75	4949
Trotting	0.76	0.78	0.77	215595
Tugging	1.00	0.01	0.01	4150
₩alking	0.77	0.43	0.55	218203
accuracy			0.79	3183321
macro avg	0.90	0.51	0.56	3183321
weighted avg	0.80	0.79	0.79	3183321

n_estimators=40부터는 정확도 0.79에서 변화 없음

n_estimators=50 초과는 하드웨어 성능부족으 로 학습할수 없음

(n_estimators=40, n_jobs=-1)

Dog Behavior Analysis Dataset

KNN

K-Nearest Neighbor

인공지능공학

① RNN 모델 선정 이유

KNN이란?

KNN(K-Nearest Neighbor)이란 지도학습 알고리즘으로, 주변 데이터를 보고 더 많은 데이터가 포함되어있는 범주로 분류하는 알고리즘.

	DogID	TestNum	t_sec	ABack_x	ABack_y	ABack_z	ANeck_x	ANeck_y	ANeck_z	GBack_x	GBack_y	GBack_z	GNeck_x	GNeck_y	GNeck_z	Task	Behavior_1
0	16	1	0.00	0.041504	0.938965	-0.015137	-0.067871	-0.510254	-0.934570	-17.639161	-22.766115	7.446290	-7.934571	6.347657	13.427735	<undefined></undefined>	<undefined></undefined>
1	16	1	0.01	0.041992	0.941895	-0.020020	-0.128906	-0.494141	-0.913086	-15.075685	-11.413575	4.821778	-3.906250	4.394532	16.540528	<undefined></undefined>	Synchronization
2	16	1	0.02	0.040527	0.939453	-0.004395	-0.158691	-0.480469	-0.911133	-12.207032	-0.122070	2.807617	-0.488281	-1.953125	26.794435	<undefined></undefined>	Synchronization
3	16	1	0.03	0.021484	0.946289	0.007813	-0.122070	-0.486816	-0.880371	-9.460450	7.995606	1.586914	1.159668	-5.676270	38.085940	<undefined></undefined>	Synchronization
4	16	1	0.04	-0.000977	0.951172	0.033691	-0.053711	-0.500000	-0.807129	-8.361817	14.587403	-1.037598	4.577637	4.089356	41.503909	<undefined></undefined>	Synchronization
10611063	74	2	1928.19	0.018066	0.436523	0.808105	-0.620605	0.326172	-0.647949	23.620607	75.317387	77.148442	-124.511726	107.727057	-122.497566	Task treat- search	Sniffing
10611064	74	2	1928.20	-0.021973	0.515625	0.813965	-0.671875	0.241211	-0.660645	34.729006	63.293461	79.956060	-116.455085	97.534186	-123.229988	Task treat- search	Sniffing
10611065	74	2	1928.21	-0.041504	0.507324	0.782227	-0.674805	0.244629	-0.627930	39.978030	49.316409	84.655767	-104.858405	95.458990	-124.816902	Task treat- search	Sniffing
10611066	74	2	1928.22	-0.032715	0.484375	0.824219	-0.685059	0.211426	-0.578613	38.024905	32.775881	89.538580	-87.463384	101.257330	-128.601082	Task treat- search	Sniffing
10611067	74	2	1928.23	0.033691	0.432617	0.785645	-0.664063	0.254395	-0.527344	26.306154	19.897462	89.477545	-64.025883	93.688971	-128.906258	Task treat- search	Sniffing

K-Nearest Neighbor

GOIE 전치리 (Data preprocessing)

Dog Behavior Analysis Dataset

해당 데이터셋은 반려견의 등과 목에 부착한 두개의 센서를 통해 0.01초마다 반려견의 행동을 감지하여 움직임을 측정하여 기록되었다.

```
1 from sklearn.preprocessing import StandardScaler, MinMaxScaler
2 sc = StandardScaler()
3 train_x = sc.fit_transform(train_x)
4 test_x = sc.transform(test_x)
```

표준 스케일러를 이용해 데이터를 데이터를 표준화해줌

```
[[ 4.39318455e+00, -2.09267968e+00, 1.99371905e+00, ..., 1.06126164e+00, 9.78473210e-01, 9.22351486e-02], [ 2.22785761e-01, 2.85225352e-02, 3.15477191e-01, ..., 2.01285146e-01, 2.65664513e-01, 2.01925999e-01], [ 3.91562664e-01, -2.66474035e-01, 2.08978064e-01, ..., -2.64253315e-01, -1.51232713e-02, -6.62909348e-01], ..., [ 5.88469326e-01, 5.50062879e-01, 1.11354168e-01, ..., 8.70166089e-02, -3.16401988e-02, 6.75000311e-04], [ 7.50013804e-01, -8.76838123e-01, -1.01841919e+00, ..., 9.83389762e-01, -6.67541946e-01, -2.85763299e+00], [ 2.04301432e-01, 1.54848610e-02, 1.92116399e-01, ..., -1.44906190e-01, 6.95259853e-02, 1.06468999e-02]])
```

K-Nearest Neighbor

①3。 KNN 모델 학습

from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier(n_neighbors=15)
clf.fit(train_x, train_y)
y_pred = clf.predict(test_x)

 01
 KNN 모델 임포트

KNN 모델 학습 n_neighbors = 15 p=default(Euclidean)

wandb.sklearn.plot_confusion_matrix(test_y, y_pred, labels=clf.classes_)

03

혼동행렬 생성 (confusion_matr<u>ix</u>)

K-Nearest Neighbor

①3。 KNN 모델 학습

1 from sklearn.metrics import classification_report, confusion_matrix 2 print(classification_report(test_y, y_pred))

04

정확도 확인 classification_report

		11	C1	
	precision	recall	f1-score	support
0	0.50	0.75	0.60	1614578
1	0.00	0.00	0.00	206
2	0.35	0.00	0.00	7205
3	0.37	0.11	0.17	25702
4	0.21	0.02	0.03	66709
5	0.40	0.02	0.03	125
6	0.30	0.00	0.01	4423
7	0.36	0.00	0.01	1531
8	0.53	0.59	0.56	412533
9	0.35	0.03	0.05	30850
10	0.48	0.38	0.43	334762
11	0.64	0.45	0.53	344383
12	0.77	0.71	0.74	16506
13	0.59	0.40	0.47	204098
14	0.50	0.33	0.40	410492
15	0.56	0.29	0.38	179596
16	0.59	0.21	0.31	6784
17	0.49	0.34	0.40	286878
18	0.15	0.00	0.00	5489
19	0.41	0.19	0.26	291568
			_	
accuracy			0.51	4244428
macro avg	0.43	0.24	0.27	4244428
weighted avg	0.51	0.51	0.49	4244428

)5)

51%정도의 정확도가 나옴

Dog Behavior Analysis Dataset

LSTM

Long Short-Term Memory

① LSTM 모델 선정 이유

LSTM이란?

LSTM(Long Short-Term Memory)은 **순환 신경망(RNN) 기법의 하나**로 셀, 입력 게이트, 출력 게이트, 망각 게이트를 이용해 기존 순환 신경망의 문제인 **기울기 소멸(vanishing gradient) 문제를 방지**하도록 개발되었다.

	DogID	TestNum	t_sec	ABack_x	ABack_y	ABack_z	ANeck_x	ANeck_y	ANeck_z	GBack_x	GBack_y	GBack_z	GNeck_x	GNeck_y	GNeck_z	Task	Behavior_1
0	16	1	0.00	0.041504	0.938965	-0.015137	-0.067871	-0.510254	-0.934570	-17.639161	-22.766115	7.446290	-7.934571	6.347657	13.427735	<undefined></undefined>	<undefined></undefined>
1	16	1	0.01	0.041992	0.941895	-0.020020	-0.128906	-0.494141	-0.913086	-15.075685	-11.413575	4.821778	-3.906250	4.394532	16.540528	<undefined></undefined>	Synchronization
2	16	1	0.02	0.040527	0.939453	-0.004395	-0.158691	-0.480469	-0.911133	-12.207032	-0.122070	2.807617	-0.488281	-1.953125	26.794435	<undefined></undefined>	Synchronization
3	16	1	0.03	0.021484	0.946289	0.007813	-0.122070	-0.486816	-0.880371	-9.460450	7.995606	1.586914	1.159668	-5.676270	38.085940	<undefined></undefined>	Synchronization
4	16	1	0.04	-0.000977	0.951172	0.033691	-0.053711	-0.500000	-0.807129	-8.361817	14.587403	-1.037598	4.577637	4.089356	41.503909	<undefined></undefined>	Synchronization
10611063	74	2	1928.19	0.018066	0.436523	0.808105	-0.620605	0.326172	-0.647949	23.620607	75.317387	77.148442	-124.511726	107.727057	-122.497566	Task treat- search	Sniffing
10611064	74	2	1928.20	-0.021973	0.515625	0.813965	-0.671875	0.241211	-0.660645	34.729006	63.293461	79.956060	-116.455085	97.534186	-123.229988	Task treat- search	Sniffing
10611065	74	2	1928.21	-0.041504	0.507324	0.782227	-0.674805	0.244629	-0.627930	39.978030	49.316409	84.655767	-104.858405	95.458990	-124.816902	Task treat- search	Sniffing
10611066	74	2	1928.22	-0.032715	0.484375	0.824219	-0.685059	0.211426	-0.578613	38.024905	32.775881	89.538580	-87.463384	101.257330	-128.601082	Task treat- search	Sniffing
10611067	74	2	1928.23	0.033691	0.432617	0.785645	-0.664063	0.254395	-0.527344	26.306154	19.897462	89.477545	-64.025883	93.688971	-128.906258	Task treat- search	Sniffing
10611068 rd	ows × 20	columns	V annual and a second														

0.01초 단위로 측정된 시계열 데이터이기 때문에 순환신경망 기법의 하나인 LSTM 모델이 적합할 것이라고 판단함

020

대이터전처리 (Data preprocessing)

Dog Behavior Analysis Dataset

해당 데이터셋은 반려견의 등과 목에 부착한 두개의 센서 를 통해 0.01초마다 반려견의 행동을 감지하여 움직임을 측정하여 기록되었다.

Dog I D	TestNum	t_sec	ABack_x	ABack_y	ABack_z		Behavior_
16	1	0.00	0.041504	0.938965	-0.015137		<undefined></undefined>
16	1	0.01	0.041992	0.941895	-0.020020		Synchronization
16	1	0.02	0.040527	0.939453	-0.004395		Synchronization
16	1	0.03	0.021484	0.946289	0.007813		Synchronization
16	1	0.04	-0.000977	0.951172	0.033691		Synchronization

16	1	0.96	-0.425781	-1.404297	-0.863770		Synchronization
16	1	0.97	-0.605469	-1.412598	-1.012695		Synchronization
16	1	0.98	-0.576172	-1.491211	-0.982910		Synchronization
16	1	0.99	-0.481934	-1.519531	-1.020508		Synchronization
16	1	1.00	-0.407715	-1.541992	-1.055176		Synchronization

01

1초 단위로 시퀀스 데이터를 구성

1초 단위로 데이터를 나누었을 때, 마지막 행동을 y로 설정

GOIE 전치리 (Data preprocessing)

Dog Behavior Analysis Dataset

해당 데이터셋은 반려견의 등과 목에 부착한 두개의 센서를 통해 0.01초마다 반려견의 행동을 감지하여 움직임을 측정하여 기록되었다.

```
def seq2dataset(seq,window,horizon):

| X=[]; Y=[]
| for i in range(len(seq)-(window+horizon)+1):
| x=seq[i:(i+window)]
| y=dogmove_data['Behavior_1'][i+window-1] #윈도우 크기의 데이터. 마지막 행동을 y로 설정
| X.append(x); Y.append(y)
| return np.array(X), np.array(Y)

w=100 # 윈도우 크기 # (0.01 * 100) = 1초동안의 데이터를 하나의 윈도우로 묶음
h=1 # 수평선 계수

X,Y = seq2dataset(seq,w,h)
```

시계열 데이터를 윈도우 단위로 자르는 함수를 생성하고 윈도우의 크기를 100으로 설정하여 1초동안의 데이터를 하나의 윈도우로 묶음

윈도우에서 마지막 행동 데이터('Behavior_1 Column')를 y로 설정

데이터 셋을 불러오고, 모든 센서 측정값 column을 데이터로 사용하도록 설정

Google Colabold M서이로 부모다 부경 발생

=dog|||ove_uatal_benav_{joi_T}.][++****IdoW=17 #<u>요</u>도부 크기의 네이터, 마시막 행동을 Y도 설정

X.append(x); Y.append(y)

return nn arrav(X) nn arrav(V)

Dog Behavior Analysi

해당 데이터셋은 반려견의 등과 목에는 를 통해 0.01초마다 반려견의 행동을 금까하다 표 등을 측정하여 기록되었다.

사용 가능한 RAM을 모두 사용한 후 세션이 다운되었습니다.

런타임 로그 보기 X

우로 묶음

X,Y = seq2dataset(seq,w,h)

시계열 데이터를 윈도우 단위로 자르는 함수를 생성하고 윈도우의 크기를 100으로 설정하여 1초동안의 데이터를 하나의 윈도우로 묶음

윈도우에서 마지막 행동 데이터('Behavior_1 Column')를 y로 설정

GOIE 전치리 (Data preprocessing)

Dog Behavior Analysis Dataset

해당 데이터셋은 반려견의 등과 목에 부착한 두개의 센서를 통해 0.01초마다 반려견의 행동을 감지하여 움직임을 측정하여 기록되었다.

사용 가능한 RAM을 모두 사용한 후 세션이 다운되었습니다. <u>런타임 로그 보기</u> X

①3° LSTM 모델 학습

```
hidden_units = 30
num_classes = len(set(Y)) # seq2dataset 메소드를 통해 나눈 class의 종류를 의미
model = Sequential()
model.add(LSTM(hidden_units))
model.add(Dense(num_classes, activation='softmax'))
```

hidden layer를 30개로 설정하고 데이터 전처리를 통해 나누어진 class 개수를 이용해 모델 생성

①3。LSTM 모델 학습

```
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
```

```
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=4)
```

mc = ModelCheckpoint('hidden30_best_model.h5', monitor='val_acc', mode='max', verbose=1, save_best_only=True)

Early Stopping

02

validation set의 loss가 최소화되도록 모니터링하고 4번의 epoch 동안 성능이 증가하지 않으면 학습을 멈추도록 설정

Model Checkpoint

03

validation accuracy를 모니터링하면서 이전 epoch에 비해 validation performance가 좋은 경우 해당 모델을 저장하도록 설정

```
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
history = model.fit(x_train, y_train, batch_size=128, epochs=100, callbacks=[es, mc], validation_data=(x_test, y_test))
```


LSTM 학습 결과

- Training Parameter
- hidden Layer : 30
- batch size: 128
- Loss Function
- : Categorical Crossentropy

•

•

•

53 epoch에서 Early Stopping진행

LSTM 학습 결과

Training Parameter

- Hidden Layer: 30
- Batch Size: 128
- Loss Function
- : Categorical Crossentropy

•

•

•

Epoch 53: early stopping

LSTM केशियामा मिरिशिव

- Hidden Layer 30개 → 128개
 - Hidden Layer : 128
 - Batch Size: 128
 - Loss Function
 - : Categorical Crossentropy

Epoch 21/100 ≔=] - ETA: Os - loss: 0.0362 - acc: 0.9882 769/769 [============ Epoch 21: val_acc did not improve from 0.98949

======] - 252s 327ms/step - loss: 0.0362 - acc: 0.9882 - val_loss: 0.0483 - val_acc: 0.9834

Epoch 21: early stopping

21 epoch에서

0.11

Early Stopping진행

Accuracy 상승

Loss 감소

0.0362

LSTM 하이때 파라미터

- Batch Size 128 → 64
 - Hidden Layer : 128
 - Batch Size: 64
 - Loss Function
 - : Categorical Crossentropy

Epoch 13: val_acc did not improve from 0.97579

Epoch 13: early stopping

Epoch 13/100

13 epoch에서 Early Stopping진행

Accuracy 감소

Loss 증가

LSTM 하이때 파라미터

- Loss Function을 MSE로 변경
 - Hidden Layer : 128
 - Batch Size: 128
 - Loss Function
 - : Mean Squared Error

Epoch 20/100 - loss: 0.0028 - acc: 0.9773 ===] - ETA: Os Epoch 20: val_acc did not improve from 0.97880

Epoch 20: early stopping

20 epoch에서 Early Stopping진행

Accuracy 감소

Loss 감소

Dog Behavior Analysis Dataset

conclusion

SVM - N/A KNN - 0.51 RF - 0.79 LSTM - 0.988

2 1000만개가 넘는 데이터를 돌리기에 하드웨어 리소스 부족으로 데이터를 축소해 학습

DogID = 16, TestNum = 1

데이터 손실 없이 데이터를 축소시키는 방법을 연구 or 더 괜찮은 성능을 가진 하드웨어를 이용해 학습

2022-2 인공지능공학

6팀 기말 팀프로젝트

Dog Behavior Analysis Dataset