Colored noise, folding rates and departure from Kramer's behavior

Bidhan Chandra Bag^a, Chin-Kun Hu^{b,c} and Mai Suan Li^d

^aDepartment of Chemistry, Visva-Bharati, Santiniketan, India

^bInstitute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

^cCenter for Nonlinear and Complex Systems and Department of Physics,

Chung-Yuan Christian University, Chungli 32023, Taiwan

^dInstitute of Physics, Polish Academy of Sciences,

Aleja Lotnikow 32/46, 02-668 Warsaw, Poland

Abstract

Recent experiments have shown that, for many proteins, the dependence of folding and unfolding rates on solvent viscosity does not obey the Kramer's theory. Such a departure from the standard Kramer's behavior is often attributed to existence of an internal friction related to the structure of a polypeptide chain. In this paper, we propose an entirely different mechanism leading to violation of the Kramer's theory. Using the generalized Langevin equation with the time-dependent friction and a C_{α} -Go model, we demonstrate that this effect is caused by the colored Gaussian noise which is characterized by correlation time τ . Surprisingly, the dependence of folding time t_f on τ is non-trivial: the plot t_f vs τ exhibits two minima at low and intermediate values of τ . The appearance of additional one more minimum is a sharp contrast to one dimensional barrier crossing dynamics. We argue that it a generic signature of entropy of activation in a multidimensional problem.