Performance Analysis of a Large-Scale Cosmology Application on Three Cluster Systems

Zhiling Lan and Prathibha Deshikachar

Department of Computer Science
Illinois Inst. of Tech.
Chicago, IL 60616
lan@iit.edu

Outline

- Introduction
- Overview of cosmology application
- Description of the cluster systems
- Performance results
- Summary and future work

Motivation

- Cosmology simulations require a large amount of computer power
- Emerged platform: Cluster systems
- Two objectives:
 - Demonstrate the great potential of using clusters
 - Identify the performance issues associated with different clusters

Structured Adaptive Mesh Refinement

- Developed by M. Berger et al.
- Spatially- and temporally- adaptive algorithm
 - Provide fine granularity in local regions requiring high resolution dynamically
- Widely used in many applications
 - cosmology
 - structured analysis
 - fluid dynamics

SAMR Grid Hierarchy

A nested hierarchy of overlapping grids of increasingly fine resolution in both space and time (refinement factor = 2)

ENZO Code

- Provided by G.Bryan and M.Norman
- A parallel implementation of SAMR
- Primarily intended for use in astrophysics and cosmology
 - Solves coupled equations of gas dynamics, dark matter dynamics ...
- C++ and Fortran77 with MPI calls

IBM SP2

- Peak performance: 1.7 teraflops
- 62nd on the current TOP
 500 list
- Contains 1,152 Power3
 CPU (375MHz) organized as 144 SMP nodes
- Interconnect: the Colony switch, a proprietary IBM interconnect

IA-64 Linux Cluster

- Peak performance: 1.024 teraflops
- 111st on the current TOP 500 list
- Contains 160 IBM
 IntelliStation Z Pro 6894
 servers (Intel 800MHz
 Itanium 1, dual-processor)
- Interconnect: Myrinet2000 & Gigabit Ethernet

SUN Cluster

- Peak performance: ?
- not on the current TOP 500 list
- Contains one four-processor E450 server (UltraSPARC II 480 MHz) and 63 SUN Blade workstation 100 (UltraSPARC IIe 500 MHz)
- Interconnect: Fast Ethernet

NPB Comparison

Bluehorizon (1.0); Sunwulf(0.52); Titan(0.37)

NetPIPE Comparison (1/2)

NetPIPE Comparison (2/2)

Maximum throughput:

Bluehorizon (87Mbps);Titan(1681Mbps);Sunwulf(84Mbps)

Experiments

- Three systems are used:
 - IBM SP2 bluehorizon at SDSC;
 - IA-64 Linux cluster titan at NCSA;
 - SUN cluster sunwulf at IIT
- Two real datasets:
 - AMR64 & ShockPool3D

Dataset	Initial Size	Final Size	# of Adaptions
AMR64	32*32*32	4096*4096*4096	2500
ShockPool3D	50*50*50	6000*6000*6000	600

Overall Performance(1/2)

Overall Performance of ShockPool3D on

Overall Performance of ShockPool3D

Bluehorizon (1.0);

Sunwulf(0.127);

Titan(0.486)

■ Comp. Time

□ Comm. Time

Overall Performance(2/2)

Overall Performance of AMR64 on BlueHorizon

Bluehorizon (1.0);
Sunwulf(?);
Titan(1.153)

Communication Performance (1/2)

Communication Time of ShockPool3D

Communication Time of ShockPool3D

Communication Time of ShockPool3D

■ Point2Point
□ Collective

Cluster 2003

Communication Performance(2/2)

Communication Time of AMR64

Cluster 2003 17

Load-Balance Performance (1/2)

Time for RebuildHierarchy on BlueHorizon

Time for RebuildHierarchy

Time for RebuildHierarchy on Sunwulf

Cluster 2003 18

Load-Balance Performance(2/2)

Load Balancing Ratio

Analysis Results

- Execution performance depends on both system performance and application characteristics
- The relative performance obtained from NPB does not exactly match the relative performance of the cosmology application
- Cosmology performance on *Titan* is not satisfactory when number of processors is more than 32
- The proposed DLB can achieve the same quality of load balancing on different clusters

Summary & Future Work

- Performance evaluation of a large-scale cosmology application on three different clusters
 - Overall performance; communication characteristics; and load balancing characteristics
- Future work:
 - Exploring large-scale applications on DTF
 - Developing a dynamic load balancing tool for distributed applications

Question?