Cognitive Algorithms Lecture 3

Linear Regression

Klaus-Robert Müller, Johannes Niediek, Augustin Krause, Joanina Oltersdorff, Ken Schreiber

> Technische Universität Berlin Machine Learning Group

Recap

■ Correlations between features can affect classification accuracy

Recap

- Correlations between features can affect classification accuracy
- Linear Discriminant Analysis (LDA) maximizes between class variance while minimizing within class variance

Recap

- Correlations between features can affect classification accuracy
- Linear Discriminant Analysis (LDA) maximizes between class variance while minimizing within class variance
- If data has multivariate normal distribution with equal class covariances, then LDA is the optimal classifer

Recap

- Correlations between features can affect classification accuracy
- Linear Discriminant Analysis (LDA) maximizes between class variance while minimizing within class variance
- If data has multivariate normal distribution with equal class covariances, then LDA is the optimal classifer
- We want our model to **generalize** well. We need to test this on data that was not used during training.

Recap 0000000

> Given n data points $\mathbf{x}_i \in \mathbb{R}^d$ in a data matrix $X \in \mathbb{R}^{d \times n}$ the empirical estimate of the covariance matrix is defined as

$$\hat{\Sigma} = \frac{1}{n} (X - \bar{X})(X - \bar{X})^{\top},$$

where the estimate of the expected value is given by the mean

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i, \quad \bar{X} = (\bar{\mathbf{x}}, \bar{\mathbf{x}}, \dots, \bar{\mathbf{x}}) \in \mathbb{R}^{d \times n}$$

The diagonal entries of $\hat{\Sigma}$ are estimates of the variance.

Estimating covariance matrices

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$ in a data matrix $X \in \mathbb{R}^{d \times n}$ the empirical estimate of the covariance matrix is defined as

$$\hat{\Sigma} = \frac{1}{n} (X - \bar{X})(X - \bar{X})^{\top},$$

where the estimate of the expected value is given by the mean

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i, \quad \bar{X} = (\bar{\mathbf{x}}, \bar{\mathbf{x}}, \dots, \bar{\mathbf{x}}) \in \mathbb{R}^{d \times n}$$

The diagonal entries of $\hat{\Sigma}$ are estimates of the variance.

Correlated data and linear mappings

Uncorrelated

Recap

$$x \sim \mathcal{N}(0, 1)$$

$$XX^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Uncorrelated, scaled

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} X$$

$$XX^{\top} = \begin{bmatrix} 9 & 0 \\ 0 & 1 \end{bmatrix}$$

Scaled, rotated by 45°

$$\begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} X$$

$$XX^{\top} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

Linear Discriminant Analysis (LDA)

Recap

Goal: Find a (normal vector of a linear decision boundary) **w** that

- Maximizes mean class difference, and
- Minimizes variance in each class

Recap 00000000

Linear Discriminant Analysis (LDA)

Optimization problem:

$$\underset{\boldsymbol{w}}{\operatorname{argmax}} \frac{\boldsymbol{w}^{\top} S_{B} \boldsymbol{w}}{\boldsymbol{w}^{\top} S_{W} \boldsymbol{w}}$$

Setting the gradient to zero we obtained:

$$m{w} \propto S_W^{-1}(m{w}_o - m{w}_\Delta)$$

NCC vs. LDA

00000000

Whitening

Recap

Transforms data to data with covariance matrix that is the identity.

→ Data are decorrelated after whitening

Recap

Generalization and model evaluation

The goal of classification is **generalization**: Correct categorization/prediction of new data

How can we estimate generalization performance?

- \rightarrow Test set
- Train model on part of data (training set)
- Test model on other part of data (test set)

From classification to regression

What if our labels are not in $\{-1, +1\}$ but in \mathbb{R} ?

$$y \in \{-1, +1\}$$
 Classification

From classification to regression

What if our labels are not in $\{-1, +1\}$ but in \mathbb{R} ?

$$y \in \{-1, +1\}$$
 $y \in \mathbb{R}$ Classification Regression

From classification to regression

What if our labels are not in $\{-1, +1\}$ but in \mathbb{R} ?

$$y \in \{-1, +1\}$$
 $y \in \mathbb{R}$ Classification **Regression**

The most basic and best understood type of regression is **linear regression** (or ordinary least squares (OLS)) using a *least-squares cost function*.

Linear regression - application examples

- Estimate price of a house
- Describe processes in physics/engineering
- Control a hand prosthesis based on electric activity measured on the arm
- Predict sales as a function of advertisement budgets for TV, radio and newspaper.
- Predict stock prices
- ... many, many more...

Simple linear regression

Simple linear regression

How to find the regression line?

(data from kaggle, a great data science platform https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/)

Simple linear regression

Given data $x_1, \ldots, x_n \in \mathbb{R}$ and labels $y_1, \ldots, y_n \in \mathbb{R}$, the goal is to predict new y using an (affine) linear function

$$f(x) = w \cdot x + b$$

Linear Regression

Given data $x_1, \ldots, x_n \in \mathbb{R}$ and labels $y_1, \ldots, y_n \in \mathbb{R}$, the goal is to predict new y using an (affine) linear function

$$f(x) = w \cdot x + b$$

We will first focus on a simpler version without intercept $f(x) = w \cdot x$. Approach: Minimize the **squared error** to find the w

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

- differentiable
- analytically solvable
- (optimal under normality assumptions)

Least-squares error: general case

Linear Regression

Given data $(x_1, y_1), ..., (x_n, y_n)$ with $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$ the goal is to find a weight vector $\mathbf{w} \in \mathbb{R}^d$ to predict y for a new x via

$$y = \mathbf{w}^{\top} \mathbf{x}$$
.

Approach: find ${\it w}$ by minimizing the **least-squares error** [Gauß, 1809; Legendre, 1805], defined as

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$
 (1)

A.M. Legendre (1752–1833)

Supplementary: optimality of LSE when assuming Gaussian noise

$$y = w \cdot x + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^{2})$$

$$p(y|w) = \mathcal{N}(y|w \cdot x, \sigma_{\epsilon})$$

$$= \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \exp\left\{-\frac{1}{2} \left(\frac{y - w \cdot x}{\sigma_{\epsilon}}\right)^{2}\right\}$$

Maximizing p(y|w) as a function of w is equivalent to maximizing the logarithm of p(y|w) (because it is monotonically increasing).

Linear Regression

Supplementary: optimality of LSE when assuming Gaussian noise

$$egin{aligned} y &= w \cdot x + \epsilon & \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2) \ p(y|w) &= \mathcal{N}(y|w \cdot x, \sigma_{\epsilon}) \ &= rac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \exp \left\{ -rac{1}{2} \left(rac{y - w \cdot x}{\sigma_{\epsilon}}
ight)^2
ight\} \end{aligned}$$

Maximizing p(y|w) as a function of w is equivalent to maximizing the logarithm of p(y|w) (because it is monotonically increasing).

$$\operatorname*{argmax}_{w} p(y|w) = \operatorname*{argmax}_{w} \log p(y|w)$$

Supplementary: optimality of LSE when assuming Gaussian noise

Linear Regression

$$egin{aligned} y &= w \cdot x + \epsilon & \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2) \ p(y|w) &= \mathcal{N}(y|w \cdot x, \sigma_{\epsilon}) \ &= rac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \exp \left\{ -rac{1}{2} \left(rac{y - w \cdot x}{\sigma_{\epsilon}}
ight)^2
ight\} \end{aligned}$$

Maximizing p(y|w) as a function of w is equivalent to maximizing the logarithm of p(y|w)(because it is monotonically increasing).

$$\underset{w}{\operatorname{argmax}} p(y|w) = \underset{w}{\operatorname{argmax}} \log p(y|w)$$

$$= \underset{w}{\operatorname{argmax}} \left(-\underbrace{(y - w \cdot x)^2}_{\text{least source error}} \right)$$

For more details, see Chapter 1.2.5 in Bishop [2007].

Simple linear regression: analytical solution

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

Compute the derivative w.r.t. w

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i).$$

Simple linear regression: analytical solution

Linear Regression 000000000000000000

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

Compute the derivative w.r.t. w

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i).$$

Set to zero and solve for w:

$$\sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i) = 0 \implies -\sum_{i=1}^{n} y_i x_i + w \sum_{i=1}^{n} x_i^2 = 0$$

Linear Regression 000000000000000000

$$\mathcal{E}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i)^2$$

Compute the derivative w.r.t. w

$$\frac{\partial \mathcal{E}(w)}{\partial w} = \sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i).$$

Set to zero and solve for w:

$$\sum_{i=1}^{n} 2(y_i - w \cdot x_i) \cdot (-x_i) = 0 \implies -\sum_{i=1}^{n} y_i x_i + w \sum_{i=1}^{n} x_i^2 = 0$$

$$\implies w = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i x_i}$$

How does OLS behave?

Linear Regression

How does the predicted label behave for different samples (marked as \times)?

OLS is sensitive to outliers. because we minimize the squared distance between y and $w \cdot x$. Therefore, large deviations have a large effect.

Linear regression

Let's look at samples with more than one feature and write everything in matrix notation:

Let *n* be the number of samples, so $\mathbf{y} \in \mathbb{R}^{1 \times n}$ and $X \in \mathbb{R}^{d \times n}$. The prediction \hat{y} of our Linear Regression model then becomes

$$\mathbf{y} \approx \hat{\mathbf{y}} = \mathbf{w}^{\top} X.$$

Linear regression

Linear Regression 000000000000000000

Let's look at samples with more than one feature and write everything in matrix notation:

> Let *n* be the number of samples, so $\mathbf{y} \in \mathbb{R}^{1 \times n}$ and $X \in \mathbb{R}^{d \times n}$. The prediction \hat{y} of our Linear Regression model then becomes

> > $\mathbf{v} \approx \hat{\mathbf{v}} = \mathbf{w}^{\top} X$.

The goal is still to find **w** that minimizes the least-squares error.

Linear regression

Linear Regression

The target variable $\hat{y} \in \mathbb{R}$ is modeled as a **linear combination** $\mathbf{w} \in \mathbb{R}^d$ of d features $\pmb{x} \in \mathbb{R}^d$

$$\hat{y} = \mathbf{w}^{\top} \mathbf{x}$$

Linear regression with basis functions

$$\hat{y} = w_1 \cdot x_1 + w_2 \cdot x_2$$

Target variable $\hat{y} \in \mathbb{R}$ can be modeled as a **linear combination** $w \in \mathbb{R}^{\tilde{d}}$ of \tilde{d} features $\phi(x) \in \mathbb{R}^{\tilde{d}}$

$$\hat{\mathbf{y}} = \mathbf{w}^{\top} \phi(\mathbf{x})$$

where $\phi(\mathbf{x}) = (\phi_1(\mathbf{x}), ... \phi_{\tilde{d}}(\mathbf{x}))$ denotes a vector of (possibly non-linear) basis functions.

The basis function can also be $\phi(\mathbf{x}) = \mathbf{x}$. Generally $\phi(\mathbf{x})$ allows us to model more complex functions.

Intercept term

For non-centered data: use *intercept* (often called *bias*) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Intercept term

For non-centered data: use *intercept* (often called *bias*) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} + w_0$$

Intercept term

Linear Regression 000000000000000000

For non-centered data: use intercept (often called bias) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} + w_0$$

$$= \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Intercept term

Linear Regression 000000000000000000

For non-centered data: use intercept (often called bias) term

$$\hat{y} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} + w_0$$

$$= \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}^T \cdot \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

This unifies the notation. Basis function: $\phi([x_1, x_2, \dots, x_d]^T) = [1, x_1, x_2, \dots, x_d]^T$

500 1000 1500 2000 2500 3000

Linear Regression

Above-ground area [square feet]

Now you know how to calculate the regression line.

Data from kaggle, a great data science platform https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/

$$\hat{y} = 0.5x^3 - 3x$$

$$\hat{y} = 0.5x^3 - 3x$$

Here
$$\phi(x) = \begin{bmatrix} x^3 \\ x \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 0.5 \\ -3 \end{bmatrix}$

$$\hat{y} = 0.5x^3 - 3x$$

Here
$$\phi(x) = \begin{bmatrix} x^3 \\ x \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 0.5 \\ -3 \end{bmatrix}$

 \hat{y} as a function of x and x^3

$$\hat{y} = 0.5x^3 - 3x$$

Here
$$\phi(x) = \begin{bmatrix} x^3 \\ x \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 0.5 \\ -3 \end{bmatrix}$

 \hat{y} lies on a plane in x, x^3 space

Polynomials as an example for $\phi(\mathbf{x})$:

$$\hat{y} = 0.5x^3 - 3x$$

Here
$$\phi(x) = \begin{bmatrix} x^3 \\ x \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 0.5 \\ -3 \end{bmatrix}$

We can use non-linear basis functions to apply linear regression in higher-dimensional space and predict a non-linear function!

 \hat{y} lies on a plane in x, x^3 space

Example with non-linear basis functions

House sale prices

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2\mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

We compute derivative w.r.t. \boldsymbol{w}

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

We compute derivative w.r.t. w

$$\frac{\partial \mathcal{E}_{LSQ}(\boldsymbol{w})}{\partial \boldsymbol{w}} = -2X\boldsymbol{y}^{\top} + 2XX^{\top}\boldsymbol{w}$$

set it to zero and solve for w

To minimize the least-squares loss function in eq. 1

$$\mathcal{E}_{LSQ}(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \|\mathbf{y} - \mathbf{w}^{\top} X\|^2$$

$$= \mathbf{y} \mathbf{y}^{\top} - 2 \mathbf{w}^{\top} X \mathbf{y}^{\top} + \mathbf{w}^{\top} X X^{\top} \mathbf{w}$$

We compute derivative w.r.t. w

$$\frac{\partial \mathcal{E}_{LSQ}(\boldsymbol{w})}{\partial \boldsymbol{w}} = -2X\boldsymbol{y}^{\top} + 2XX^{\top}\boldsymbol{w}$$

set it to zero and solve for w

$$-2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} = 0$$

$$XX^{\top}\mathbf{w} = X\mathbf{y}^{\top}$$

$$\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y}^{\top}$$

(2)

Does correlation influence the performance of linear regression?

For a new data point $\mathbf{z} \in \mathbb{R}^d$ and centered data, we have

$$\mathbf{z} \mapsto \mathbf{w}^T \cdot \mathbf{z}$$

 $\mathbf{w} = (XX^T)^{-1}Xy^T$

Linear Regression

Does correlation influence the performance of linear regression?

For a new data point $\mathbf{z} \in \mathbb{R}^d$ and centered data, we have

$$\mathbf{z} \mapsto \mathbf{w}^T \cdot \mathbf{z}$$
 $\mathbf{w} = (XX^T)^{-1}Xy^T$

We can decompose:

$$\mathbf{w}^T \mathbf{z} = y X^\top (X X^\top)^{-1} \mathbf{z} = y \underbrace{X^\top U \Lambda^{-1/2}}_{\text{whitened } X^\top} \cdot \underbrace{\Lambda^{-1/2} U^T \mathbf{z}}_{\text{whitened } \mathbf{z}}$$

where $XX^{\top} = U\Lambda U^{T}$ is the eigenvalue decomposition of XX^{\top}

Linear Regression

Does correlation influence the performance of linear regression?

For a new data point $\mathbf{z} \in \mathbb{R}^d$ and centered data, we have

$$\mathbf{z} \mapsto \mathbf{w}^T \cdot \mathbf{z}$$
 $\mathbf{w} = (XX^T)^{-1}Xy^T$

We can decompose:

$$\mathbf{w}^T \mathbf{z} = y X^\top (X X^\top)^{-1} \mathbf{z} = y \underbrace{X^\top U \Lambda^{-1/2}}_{\text{whitened } X^\top} \cdot \underbrace{\Lambda^{-1/2} U^T \mathbf{z}}_{\text{whitened } \mathbf{z}}$$

where $XX^{\top} = U\Lambda U^{T}$ is the eigenvalue decomposition of XX^{\top}

 \Rightarrow LR is not susceptible to correlation in the features (different from NCC!)

Linear Regression for vector labels

We now want to predict vector-valued labels $y \in \mathbb{R}^m$

For a measurement $X \in \mathbb{R}^{d \times n}, \ Y \in \mathbb{R}^{m \times n}$ the model is

$$Y = W^{\top}X$$

where $W^{\top} \in \mathbb{R}^{m \times d}$ is a **linear mapping** from data to labels.

Linear Regression for Vector Labels

Given Data $X \in \mathbb{R}^{d \times n}$ and labels $Y \in \mathbb{R}^{m \times n}$, the error function for multiple linear regression is

$$\mathcal{E}_{MLR}(W) = ||Y - W^{\top}X||_F^2 \tag{3}$$

where $||A||_F = \sqrt{\sum_i^n \sum_j^d A_{ij}^2}$ denotes the Frobenius norm and $W^{ op} \in \mathbb{R}^{m imes d}$

Eq. 3 is minimized by (see also eq. 2)

$$W = (XX^{\top})^{-1}XY^{\top}$$

Linear Regression for Vector Labels

Linear Regression

Given Data $X \in \mathbb{R}^{d \times n}$ and labels $Y \in \mathbb{R}^{m \times n}$, the error function for multiple linear regression is

$$\mathcal{E}_{MLR}(W) = ||Y - W^{\top}X||_F^2 \tag{3}$$

where $||A||_F = \sqrt{\sum_i^n \sum_j^d A_{ij}^2}$ denotes the Frobenius norm and $W^{ op} \in \mathbb{R}^{m imes d}$

Eq. 3 is minimized by (see also eq. 2)

$$W = (XX^{\top})^{-1}XY^{\top}$$

Application example: myoelectric control of prostheses

wrist rotation

hand prosthesis
Only 2 degrees of freedom are controlled
(open/close, rotate)
Controlled by muscle activity

Application example: myoelectric control of prostheses

Cimolato et al. [2022]
Neurons activate muscles via electric discharges
Electric activity can be measured non-invasively

hand prosthesis
Only 2 degrees of freedom are controlled
(open/close, rotate)
Controlled by muscle activity

Acquisition of training data

Experimental Paradigm

Motion Capture System

Visual Feedback

Results from linear regression

Linear regression

Hand position is a *non-linear* function of muscle activation

Linear regression

Hand position is a *non-linear* function of muscle activation

Weak muscle activation

→ True hand position (gray) underestimated (dashed)

Strong muscle activation

→ True hand position overestimated

Linear(ized) Regression

Hand position is *almost linearly* related to log of muscle activation

Linear(ized) Regression

Hand position is almost linearly related to log of muscle activation

Strong muscle activation \rightarrow hand position *less* **over**estimated

The statistical model of linear regression

Linear Model:

$$y = \mathbf{w}^{\top} \cdot \mathbf{x} + \epsilon$$

Linear Regression: estimates

$$\hat{\boldsymbol{w}} = (XX^{\top})^{-1}Xy$$

from given data X, y.

Random variable (recap)

A mapping $X : \Omega \to \mathbb{R}$ which assigns a real value to every elementary event, is called a real-valued random variable.

 Ω is the sample space, the set of all possible outcomes.

Example: tossing a coin

$$X(\omega) = egin{cases} 0, ext{if} & \omega = ext{tail} \ 1, ext{if} & \omega = ext{head} \end{cases}$$
 for $\omega \in \Omega$

The sampling distribution of an estimator

Example: Mean of a random variable

The sampling distribution of an estimator

Example: Mean of a random variable

Consider random variables $x_i \sim \mathcal{N}(\mu, \sigma^2)$ independent, identically distributed (i.i.d.).

Draw n data points and estimate mean on n data points:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 $\hat{\mu}$ is a function of the data and thus itself a random variable.

The sampling distribution is the distribution of values that $\hat{\mu}$ takes.

Desirable properties of estimators

Unbiased The estimator's expected value is the true value of the parameter being estimated (*A* in the Fig.)

Desirable properties of estimators

Unbiased The estimator's expected value is the true value of the parameter being estimated (*A* in the Fig.)

Small estimator variance (B has a smaller variance than A)

Desirable properties of estimators

Unbiased The estimator's expected value is the true value of the parameter being estimated (*A* in the Fig.)

Small estimator variance (B has a smaller variance than A)

Robust not unduly affected by outliers or other small deviations from the model assumptions

Bias and variance

Source: Ikompass [2019]

Gauss-Markov Theorem

Under the model assumption $y = \mathbf{w}^{\top} \cdot \mathbf{x} + \epsilon$ with uncorrelated noise ϵ , our ordinary least squares estimator $\hat{\mathbf{w}} = (XX^{\top})^{-1}Xy$ is the Best Linear Unbiased Estimator (BLUE), i.e. the minimum variance unbiased estimator that is linear in y.

Gauss-Markov Theorem

Under the model assumption $y = \mathbf{w}^{\top} \cdot \mathbf{x} + \epsilon$ with uncorrelated noise ϵ , our ordinary least squares estimator $\hat{\mathbf{w}} = (XX^{\top})^{-1}Xy$ is the Best Linear Unbiased Estimator (BLUE), i.e. the minimum variance unbiased estimator that is linear in y.

But: in some cases biased estimators with lower variance might be more suitable.

Example: polynomial regression

$$\phi_M(x) = [x^0, x^1, ..., x^M]^T$$
$$\hat{y} = \mathbf{w}^T \phi_M(x)$$

Example: polynomial regression

$$\phi_M(x) = [x^0, x^1, ..., x^M]^T$$
$$\hat{y} = \mathbf{w}^T \phi_M(x)$$

Weights:

	M = 0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

[Bishop, 2007]

The bias-variance trade-off

Careful...

Bias and variance are terms with multiple (related) usages

- $\mathbf{w}^{\top}\mathbf{x} + b$. $\mathbf{w} \cdot \mathbf{x} + \mathbf{b}$
- Bias/variance of an estimator
- Bias/variance of a general ML model

Often it is important to **control the complexity** of the solution \boldsymbol{w} .

This is done by constraining the norm of \boldsymbol{w} (regularization)

$$\mathcal{E}_{RR}(\mathbf{w}) = ||\mathbf{y} - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Often it is important to **control the complexity** of the solution w.

This is done by constraining the norm of \boldsymbol{w} (regularization)

$$\mathcal{E}_{RR}(\mathbf{w}) = ||\mathbf{y} - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Often it is important to **control the complexity** of the solution \boldsymbol{w} .

This is done by constraining the norm of \mathbf{w} (regularization)

$$\mathcal{E}_{RR}(\mathbf{w}) = ||\mathbf{y} - \mathbf{w}^{\top} X||^2 + \lambda ||\mathbf{w}||^2$$

Computing the derivative with respect to \boldsymbol{w} yields

$$\frac{\partial \mathcal{E}_{RR}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} + 2\lambda\mathbf{w}.$$

Computing the derivative with respect to \boldsymbol{w} yields

$$\frac{\partial \mathcal{E}_{RR}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} + 2\lambda\mathbf{w}.$$

Setting the gradient to zero and rearranging terms, the optimal ${\it w}$ is

$$2XX^{\top} \boldsymbol{w} + 2\lambda \boldsymbol{w} = 2X\boldsymbol{y}^{\top}$$
$$(XX^{\top} + \lambda I)\boldsymbol{w} = X\boldsymbol{y}^{\top}$$
$$\boldsymbol{w} = (XX^{\top} + \lambda I)^{-1}X\boldsymbol{y}^{\top}$$

Ridge regression

Computing the derivative with respect to **w** yields

$$\frac{\partial \mathcal{E}_{RR}(\mathbf{w})}{\partial \mathbf{w}} = -2X\mathbf{y}^{\top} + 2XX^{\top}\mathbf{w} + 2\lambda\mathbf{w}.$$

Setting the gradient to zero and rearranging terms, the optimal \mathbf{w} is

$$2XX^{\top} \boldsymbol{w} + 2\lambda \boldsymbol{w} = 2X\boldsymbol{y}^{\top}$$
$$(XX^{\top} + \lambda I)\boldsymbol{w} = X\boldsymbol{y}^{\top}$$
$$\boldsymbol{w} = (XX^{\top} + \lambda I)^{-1}X\boldsymbol{y}^{\top}$$

One can show (calculate) that for $\lambda \neq 0$, this estimator is biased and has a smaller variance than the OLS estimator

[Hoerl and Kennar, 1970; Tychonoff, 1943]

(Multi-)linear (ridge) regression algorithm

Computes: Weight matrix W for linear mapping of $\mathbb{R}^{d+1} \to \mathbb{R}^m$ Input: Data $\{(x_1,y_1),\dots,(x_n,y_n)\}, x_i \in \mathbb{R}^d, \ y_i \in \mathbb{R}^m, \ \text{ridge } \lambda$ Include offset parameters (row vector of n ones) $X = \begin{bmatrix} \mathbb{1} \\ X \end{bmatrix}$ $W = (XX^\top + \lambda I)^{-1}XY^\top$ Output: W

How do bias and variance of predicted labels behave

 $\to \, \mathsf{Let's} \, \, \mathsf{simulate} \,$

How do bias and variance of predicted labels behave

→ Let's simulate
For LR it looks unbiased (on average correct), but high variance

How do bias and variance of predicted labels behave → Let's simulate
For LR it looks unbiased (on average correct), but high variance Let's look at the effect of regularization

Effect of λ on bias and variance

- For RR we see that estimates are biased, but less variance
- How can we choose optimal λ ?

Effect of λ on bias and variance

- For RR we see that estimates are biased, but less variance
- How can we choose optimal λ ?

Effect of λ on bias and variance

- For RR we see that estimates are biased, but less variance
- How can we choose optimal λ?

Model selection

How can we find the best λ ?

Model selection

How can we find the best λ ? One option: grid search

 \rightarrow try out e.g. $\lambda \in \{0,0.1,...,0.9,1.0\}$ and choose the one with the lowest error on test set

Model selection

How can we find the best λ ? One option: grid search

 \rightarrow try out e.g. $\lambda \in \{0,0.1,...,0.9,1.0\}$ and choose the one with the lowest error on test set

What if we have a small data-set?

Standard approach

Split the data into train and test

$$\underbrace{\left[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{\text{train}}, \underbrace{x_{i_5}, x_{i_6}}_{\text{test}}\right]}_{\text{test}}$$

Then

Train your model on the training data

Test your model on the test data

We are not using the full data-set

Test set could be sampled badly

What if we have a small data-set?

Standard approach

Split the data into train and test

$$\underbrace{\left[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{\text{train}}, \underbrace{x_{i_5}, x_{i_6}}_{\text{test}}\right]}_{\text{test}}$$

Then

Train your model on the training data

Test your model on the test data

We are not using the full data-set

Test set could be sampled badly

Solution

k-fold Cross-Validation:

$$\text{fold 1} \ \underbrace{[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{\mathcal{F}_1^{\text{train}}}, \underbrace{x_{i_5}, x_{i_6}}_{\mathcal{F}_1^{\text{test}}}]}_{\mathcal{F}_1^{\text{test}}}$$

fold 2
$$\underbrace{[x_{i_1}, x_{i_2}, \underbrace{x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}}_{\mathcal{F}_2^{\text{train}}}]$$

fold 3 . . .

For each fold:

Train your model on the training data **Test** your model on the test data

Cross-validation

Split data set in k different random training and test data

$$\begin{array}{c} \text{fold 1} \ \underbrace{[\underbrace{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}}_{\mathcal{F}_1^{\text{train}}}, \underbrace{x_{i_5}, x_{i_6}}_{\mathcal{F}_1^{\text{test}}}]}_{\mathcal{F}_2^{\text{test}}} \\ \text{fold 2} \ \underbrace{[\underbrace{x_{i_1}, x_{i_2}, \underbrace{x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}}_{\mathcal{F}_2^{\text{train}}}]}_{\mathcal{F}_2^{\text{train}}} \end{array}$$

fold 3 ...

For each fold:

Train your model on the training data **Test** your model on the test data

Cross-validation

Algorithm 1: Cross-Validation

Require: Data $(x_1, y_1) \dots, (x_N, y_N)$, Number of CV folds F

- 1: # Split data in F disjunct folds
- 2: for folds $f = 1, \ldots, F$ do
- 3: # Train model on folds $\{1, \ldots, F\} \setminus f$
- 4: # Compute prediction error on fold f
- 5: end for
- 6: # Average prediction error

Model Evaluation

"How well does my model perform?"
Report mean evaluation score

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?"
Do grid search on every fold.
Take parameter with the highest mean test score across folds

Model Evaluation

"How well does my model perform?"
Report mean evaluation score

- e.g. accuracy - across folds

Model Selection

"What hyperparameter should I use?" Do grid search on every fold. Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation!

Model Evaluation

"How well does my model perform?"
Report mean evaluation score

- e.g. accuracy - across folds

Model Selection

"What hyperparameter should I use?" Do grid search on every fold. Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation!

If we did both on the same test fold:

Model Evaluation

"How well does my model perform?"
Report mean evaluation score

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?" Do grid search on every fold. Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation! If we did both on the same test fold:

We would be too optimistic because we use same test set for optimizing and evaluating

Model Evaluation

"How well does my model perform?" Report **mean evaluation score**

– e.g. accuracy – across folds

Model Selection

"What hyperparameter should I use?"
Do grid search on every fold.
Take parameter with the highest mean test score across folds

You can't do both at the same time with simple cross-validation! If we did both on the same test fold:

We would be too optimistic because we use same test set for optimizing and evaluating

After CV you still need to train your model on the whole data-set

Comparison of Supervised Algorithms

Algorithm	Solution	Assumption	
NCC LDA	$w = Xy^{T}$ $w = S^{-1}Xy^{T}$	$y_t \in \left\{ rac{1}{n_{+1}}, -rac{1}{n_{-1}} ight\}$ NCC: Isotropic Normal distribution LDA: Equal within-class covariances, Multivariate Normal distribution	
Linear Regression	$w = (XX^{\top})^{-1}Xy^{\top}$	$y_i \in \mathbb{R}$ Gaussian Noise	

Summary

Linear Regression

is a generic framework for prediction straightforwardly extends to vector labels can model nonlinear dependencies between data and labels can be made more robust (Ridge Regression)

Cross-Validation

Data-efficient method for model selection & model evaluation Only use if your bottleneck is data

References

- C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). 2007.
- A. Cimolato, J. J. M. Driessen, L. S. Mattos, E. De Momi, M. Laffranchi, and L. De Michieli. EMG-driven control in lower limb prostheses: a topic-based systematic review. Journal of NeuroEngineering and Rehabilitation, 19 (1), 2022. ISSN 1743-0003. doi: 10.1186/s12984-022-01019-1. URL https://doi.org/10.1186/s12984-022-01019-1.
- C. F. Gauß. Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Göttingen, 1809.
- A. E. Hoerl and R. W. Kennar. Ridge regression: Applications to nonorthogonal problems. Technometrics, 12(1):69-82, 1970.

Ikompass. Bias variance tradeoff, 2019. URL http://www.ikompass.edu.sg/trainings/data_science_ccc-big-data-foundation-2/darts/.

- A.-M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes, chapter Sur la methode des moindres quarres. Firmin Didot, http://imgbase-scd-ulp.u-strasbg.fr/displayimage.php?pos=-141297, 1805.
- A. N. Tychonoff. On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39(5):195–198, 1943.