Total No. of Questions—8]

[Total No. of Printed Pages-4

Cost	*		
Seat		And the second	C
No.		9 Y	90

[5352]-132

S.E. (E&TC/Electronics) (I Sem.) EXAMINATION, 2018 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (1) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of scientific calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) List the causes of instability in BJT and hence define any two stablity factors. [6]
 - (b) Determine d.c. operating point parameters for the circuit as shown in Fig. 1. Assume $V_{BE} = 0.3 \text{ V}$, $I_{CEO} = 0$, $\beta_{dc} = 55$. [6]

Fig. 1

- 2. (a) Compare various configurations of BJT amplifier on the basis of input impedance and their applications. [6]
 - (b) Determine Av, Ri, Ro for the circuit as shown in Fig. 2. Assume $h_{re}=h_{oe}=0$, $R_1=5$ k Ω , $R_2=500$ Ω , $R_C=1$ k Ω and $R_E=100$ Ω . $V_{CC}=10$ V, $h_{fe}=100$ and $h_{ie}=1.1$ k Ω .

Fig. 2

- 3. (a) State Barkhousen criterion for sustained oscillations. Draw ckt. diagram of Hartely oscillator and hence determine the oscillation freq. of the oscillator for L_1 = L_2 = 1 μ H and C = 100 nF.
 - (b) Draw frequency response curve of RC-coupled CE amplifier.

 Explain the effect of bypass and inter-electrode capacitance on cutoff frequencies.

 [6]

4.	(a)	Explain	any	three	advantages	of	feedback	amplifier	with
		suitable	justif	ication.	9				[6]

- (b) A step response of C.E. amplifier gives tilt (p) of 2% and rise time (tr) of 20 μs. Tilt of 2% is observed at 400 Hz. Therefore, determine lower cutoff frequency higher cutoff frequency and bandwidth.
- 5. (a) Compare Class A and Class B amplifier based on their collector efficiency, distortion and operating point. [6]
 - (b) Draw and explain series fed Class A amplifier with input and output waveforms. [7]

Or

- 6. (a) Draw and explain push-pull amplifier with neat waveforms. [7]
 - (b) For a Class B amplifier following parameters are observed : $I_{d.c.} = 1.75 \text{ A, } V_{o(p-p)} = 44 \text{ V}$ The amplifier has $R_L = 8 \Omega$ and $V_{CC} = 25 \text{ V.}$ Determine $P_{ind.c.}$, $P_{outa.c.}$ and efficiency. [6]
- 7. (a) List various non-ideal characteristics of E-MOSFET. Explain any *two* non-ideal characteristics. [8]
 - (b) Draw and explain E-MOSFET construction. [5]

 8. (a) Determine operating (2) point of the given ckt. as shown in Fig. 3. Give parameters are $V_T=1.5~V,~K=0.8~mA/V^2.~[6]$

Fig. 3

(b) Explain constant current source biasing in E-MOSFET based circuit using suitable diagram. [7]