Zadanie 1

Dowód wskazówki

Dowód. Oznaczmy $\mathfrak{X} = \{\{x\} \mid x \in X\}$. Wtedy

$$\bigcup \mathcal{X} = \{x \mid \exists_X (X \in \mathcal{X} \land x \in X)\}$$

$$= \{x \mid \exists_y (\{y\} \in \mathcal{X} \land x \in \{y\})\}$$

$$= \{x \mid \exists_y (y \in X \land x = y)\}$$

$$= \{x \mid x \in X\} = X$$

1.1 Istnienie funkcji f

Zdefiniujmy $f = \lambda(u : \mathbb{N}) \cdot \iota(y : \mathbb{N}) \cdot (u \in F(\{y\}))$ (którą to równość oznaczmy przez †). Zauważmy, że jest to dobrze zdefiniowana wielkość. Ustalmy bowiem jakieś $u \in \mathbb{N}$.

1.1.1 Istnienie takiego y

Dowód. Oznaczmy $\mathcal{X} = \{\{x\} \mid x \in \mathbb{N}\}$. Wtedy mamy, że $\bigcup \mathcal{X} = \mathbb{N}$, jednakże stąd $\mathbb{N} \stackrel{1}{=} F(\mathbb{N}) = F(\mathbb{N}) = \mathbb{N}$ $\bigcup \{F(X) \mid X \in \mathcal{X}\} = \bigcup \{F(\{x\}) \mid x \in \mathbb{N}\}.$

Ponieważ $u \in \mathbb{N}$, to $u \in \mathbb{I}$ $\{F(\{x\}) \mid x \in \mathbb{N}\}$, a więc w szczególności istnieje $y \in \mathbb{N}$, że $u \in F(\{y\})$.

1.1.2 Jedyność takiego y

Dowód. Załóżmy jednak, że istnieją takie różne $y_1, y_2 \in \mathbb{N}$, że $\mathfrak{u} \in F(\{y_1\})$ oraz $\mathfrak{u} \in F(\{y_2\})$. Wtedy mamy $\text{jednak, } \text{że } \mathfrak{u} \in \left(F\left(\{y_1\}\right) \cap F\left(\{y_2\}\right)\right) \stackrel{4}{=} F\left(\{y_1\} \cap \{y_2\}\right) = F(\varnothing) \stackrel{2}{=} \varnothing, \text{ quod est absurdum.}$

1.1.3 Podsumowanie

Dowód. Stąd więc podana definicja funkcji f jest poprawna logicznie. Weźmy teraz dowolne $X \subseteq \mathbb{N}$, zdefiniujmy $\mathfrak{X} = \{\{x\} \mid x \in X\} \text{ i zauważmy, że}$

$$f^{-1}(X) = \{y \mid f(y) \in X\}$$

$$= \{y \mid \exists_{x \in X} f(y) = x\}$$

$$\stackrel{\dagger}{=} \{y \mid \exists_{x \in X} y \in F(\{x\})\}$$

$$= \bigcup \{F(\{x\}) \mid x \in X\}$$

$$= \bigcup \{F(\mathfrak{X}) \mid \mathfrak{X} \in \mathcal{X}\}$$

$$\stackrel{3}{=} F\left(\bigcup \mathfrak{X}\right)$$

$$= F(X)$$

1.2 Jedyność funkcji f

Dowód. Załóżmy nie wprost, że istnieją dwie różne funkcje: $f_1, f_2 : \mathbb{N} \to \mathbb{N}$, takie, że dla dowolnego zbioru $X\subseteq \mathbb{N}$, zachodzi $F(X)=f_1^{-1}(X)=f_2^{-1}(X)$. Ponieważ funkcje te są różne, to istnieje takie $x\in \mathbb{N}$, że $f_1(x)\neq f_2(x)$. Oznaczmy $t=f_1(x)$. Wtedy $x\in f_1^{-1}(\{t\})$, ale $x\not\in f_2^{-1}(\{t\})$, ale jednak obie te wielkości są równe $F(\{t\})$, quod est absurdum.

Termin: 2013-11-18 Podstawy matematyki

str. 2/2Seria: 4

$\mathbf{2}$ Zadanie

Odpowiedź jest przecząca.

Dowód. Ustalmy bowiem $f: \mathbb{N} \to \mathbb{N}$ takie, że f(0) = 1, f(1) = 0, zaś dla $n \notin \{0, 1\}$ zachodzi f(n) = n. Załóżmy, że istnieje $g: \mathbb{N} \to \mathbb{N}$, że $f = g \circ g$. Oznaczmy wtedy a = g(0), b = g(1).

2.1Przypadek a = 0

Wtedy
$$1 = f(0) = g(g(0)) = g(0) = 0$$
, quod est absurdum

2.2 Przypadek a = 1

Wtedy
$$1 = f(0) = g(g(0)) = g(1) = b$$
, ale to daje, $\dot{z}e\ 0 = f(1) = g(g(1)) = g(1) = 1$, quod est absurdum.

2.3Przypadek a > 1

Mamy wtedy
$$1 = f(0) = g(g(0)) = g(\alpha)$$
, $0 = f(1) = g(g(1)) = g(b)$. Jednakże $\alpha = f(\alpha) = g(g(\alpha)) = g(1) = b$, ale przecież to daje $1 = g(\alpha) = g(b) = 0$, quod est absurdum.

Podstawy matematyki

Termin: 2013-11-18