

Samostatná práce

KIV/VSS

Patrik Harag

harag@students.zcu.cz A18N0084P

Zadání

Simulace šíření vody v krajině na bázi celulárního automatu.

Analýza

Zadání bylo úmyslně zvoleno velmi volné, protože bylo nejprve potřeba promyslet podobu simulace. Zvažováno bylo několik možností:

- 2D simulace "ze strany", typu "falling sand" (např. jako ¹), případně i včetně simulace tlaku vody,
- pseudo 3D simulace simulovat "sloupce" vody na výškové mapě,
- 3D simulace simulovat "kostičky" vody v "kostičkovém" terénu.

Nakonec byla zvolena druhá možnost, tedy simulovat šíření vody na výškové mapě. Simulace je oproti třetí možnosti zjednodušena v tom smyslu, že v terénu nemohou vznikat převisy, tunely apod. Voda bude reprezentována jako množství na dané pozici a nemůže tak být simulováno její padání nebo déšt.

Návrh simulace Simulace bude mít jednoduchá pravidla. V jednom kroku budou navštíveny všechny pozice. Pro každou pozici bude nalezena sousední pozice s největším rozdílem výška + úroveň vody a dojde k přesunutí až poloviny vody. Jako okolí může být použito například Moorovo okolí.

Způsob procházení Přepočítávání množství vody na jednotlivých pozicích nemůže být prováděno v systematickém pořadí, protože jinak by docházelo k ubýhání vody k určitému směru. Z tohoto důvodu musí být pozice procházeny náhodně.

Implementace

Pro implementaci byl zvolen programovací jazyk Java a framework JavaFX. Program má následující strukturu:

- cz.harag.vss.sp Obecné doménové třídy, hlavní logika.
- cz.harag.vss.sp.render Třídy týkající se renderování výškové mapy, gradienty.
- cz.harag.vss.sp.ui Uživatelské rozhraní a 3D vizualizace.

Obsluha

Kompilace a spuštění Program se zkompiluje spuštěním build.bat (je nutné mít nainstalovaný gradle) a spustí spuštěním run.bat (vyžaduje Javu 8). Program lze také spustit s cestou k souboru s terénem jako parametrem.

¹https://github.com/Hartrik/Sand-Game-2

Obrázek 1: Hlavní okno aplikace

Terén Terén je definován jako obrázek ve formátu PNG. Výšku udává první bajt (červená složka obrázku). Několik ukázkových terénů je přiloženo.

Ovládání Při nezadání parametru program začne volbou terénu. Poté je zobrazeno hlavní okno aplikace, viz Obrázek 1. Zde je možné přidat vodu a provést n kroků simulace z vybraných možností. Držením levého tlačítka myši je možné terén otáčet a pravým tlačítkem přibližovat nebo oddalovat. Je možné vypnout a zapnout viditelnost částí modelu – vody, terénu a podstavce. Dále lze upravit poměr v jakém se odvádí voda z jedné pozice do druhé (výchozí je 0.5 – zprůměrování).

Závěr

Byla vytvořena simulace, která na základě velmi jednoduchých pravidel simuluje šíření vody v terénu. Součástí je i 3D vizualizace. Pro simulaci může být jednoduše použit vlastní terén.

Výsledky vypadají s přihlédnutím na úroveň detailů simulace poměrně realisticky. Od animace bylo upuštěno, protože vykreslování scény trvalo příliš dlouho. Sestavení 3D scény by mohlo být efektivnější – pro každé políčko je použit jeden kvádr, což má za následek horší výkon u větších terénů. Na druhou stranu efektivnější řešení založené na vlastní síti polygonů by bylo mnohonásobně náročnější na vytvoření. Program by mohl být dále vylepšen například umožněním přímým zásahům do terénu – modifikace terénu, přidání vody na určité místo apod.