

Conexão Flangeada Classe 150, 300 e 600

1. INTRODUÇÃO

Tendo sua principal aplicação na área industrial, esta válvula possui construção em duas partes (corpo e tampa) caracterizando-se pela aparência robusta e pela confiabilidade em severas condições de uso.

2. TRANSPORTE E ARMAZENAGEM

O material deve ser mantido em local seco fora da ação do sol, chuva e maresia, sem que sejam retiradas suas proteções. Para transportar as válvulas acima de 2", faça-o sem levantar pela alavanca ou atuador.

3. PREPARAÇÃO PARA INSTALAÇÃO

Antes de instalar uma válvula na linha, certifique-se que o material das vedações e do corpo/tampa são indicados para o serviço pretendido.

Em caso de instalação em redes novas é necessário verificar se a mesma está isenta de resíduos decorrentes da montagem como: resíduos de solda, rebarbas de material provenientes da confecção de rosca, etc. Estas impurezas podem danificar a vedação e esfera da válvula.

Esta válvula de esfera está projetada para o fluxo bidirecional, a menos que a esfera seja perfurada com furo de alívio ou de contato.

Verificar o alinhamento da tubulação. Não utilize a válvula para corrigir eventuais

desalinhamentos da tubulação. Verifique se a válvula está adequada às condições de

pressão e temperatura do fluido.

4. INSTALAÇÃO

Coloque a válvula na posição "aberta" durante a instalação, para evitar danos à esfera.

O alinhamento do atuador nas válvulas automatizadas deve ser observado, pois o descuido neste item resulta em aumento de torque e funcionamento incorreto do atuador.

A válvula deve ser instalada com junta de vedação dos flanges apropriada para o uso que assegure a instalação correta.

A fixação da válvula na tubulação deve ser realizada apertando os parafusos em "X", conforme figura 3.

Figura 2 - Corte transversal da Válvula Esfera Bipartida Montada.

Figura 3 - Seqüência de aperto dos parafusos do flange.

5. ATENÇÃO!

Por razões de segurança, é importante fazer exame destes itens antes do funcionamento válvula:

A manutenção da válvula deve ocorrer em local limpo.

Em caso de manutenção de linhas utilizadas em fluidos inflamáveis ou tóxicos a linha deve ser despressurizada e a válvula deve ser aberta 450, para aliviar o fluido que pode estar sob pressão na cavidade da esfera.

Para fluidos abrasivos ou com sólidos em suspensão e/ou temperaturas elevadas deve-se utilizar vedações metálicas, com temperatura máxima de trabalho de 400oC.

Para válvulas com uso fire-safe a mesma deve ser substituída se houver um sinistro.

O instalador que faz a montagem das válvulas deve testar a instalação aplicando a válvula às condições de uso antes da liberação do equipamento.

6. CONDIÇÕES GERAIS DE MANUTENÇÃO

A manutenção normal consiste na troca das vedações e no re-aperto dos parafusos/prisioneiros (somente o necessário). Entretanto, não deve ser apertado excessivamente, pois resultará em um torque de acionamento elevado e no desgaste prematuro das vedações, podendo causar o comprometimento do funcionamento do equipamento.

6.1 Rotina Quinzenal (Quando a abertura ou fechamento for permitido):

Movimentar o acionador da válvula até completar dois ciclos completos de abertura ou fechamento (ou vice-versa) do obturador, é de extrema importância que mesmo que a válvula não estiver em funcionamento (estoque) executar este procedimento a fim de evitar possíveis travamentos.

6.2 Rotina Trimestral ou a cada 100 ciclos:

Reapertar a porca da gaxeta até o torque recomendado na tabela 2. Proceder cuidadosamente a inspeção visual com o objetivo de detectar possíveis vazamentos por poros ou trincas no corpo e tampa, possíveis vazamentos pela haste, pela união do corpo e tampa e pelas conexões com as linhas de processo. Caso isso ocorra, reapertar os parafusos conforme torque recomendado na tabela 2.

7. DESMONTAGEM E MONTAGEM

7.1 Desmontagem

NOTA: Se a desmontagem completa se tornar necessária, a substituição de todas as vedações é recomendada.

- 1. Siga as instruções na seção 5 (Atenção).
- 2. A válvula deve estar na posição aberta para ser desmontada.
- 3. Remova o acionador.
- 4. Remova a porca de aperto da preme-gaxeta. 5. Desparafuse e remova os parafusos e porcas do corpo. Separe a tampa do corpo.
- 6. Retire a esfera para fora do corpo.
- 7. Remova as vedações do corpo (anéis de vedação da tampa e sedes de vedação da esfera).
- 8. Remova a haste, a seguir remova as vedações do castelo.
- 9. Limpe e inspecione todas as peças, verifique danos e as substitua se necessário.

7.2 Montagem

- 1. Se possível, use um lubrificante que seja compatível com o processo.
- Instale o anel anti-estático na haste e insira a haste no corpo.
- 3. Instale o anel de vedação superior da haste, o preme gaxeta, as molas prato e aperte a

porca de aperto da preme-gaxeta com o torque requerido. Veja a T abela 2.

- 4. Reinstale a alavanca.
- 5. Insira a sede de vedação da esfera no corpo.
- 6. Com a alavanca na posição fechada deslize com cuidado a esfera na cavidade do corpo encaixando-a na chaveta da haste.
- 7. Insira a sede de vedação da esfera e o anel de vedação na tampa.
- 8. Instale a tampa no corpo, coloque os parafusos/prisioneiros e porcas sem apertá-los.
- 9. Verifique se o corpo, as vedações, as tampas e a esfera estão corretamente alinhados.
- 10. Aperte os parafusos em "X" com os torques indicados na tabela 4.

8. OPERAÇÃO

A abertura e fechamento das válvulas operadas manualmente são feitas mediante giro de 1/4 de volta (90o), no sentido horário para o fechamento e anti-horário para abertura.

As válvulas MGA são equipamentos de bloqueio on/off, isto é, trabalham somente em duas posições: totalmente abertas ou totalmente, portanto não podem ser utilizadas para regular a vazão do fluido.

O modo correto de operação das válvulas de esfera MGA está demonstrado na figura 4.

Figura 4 - Modo de operação

Tabela 1 - Pressão Máxima de trabalho*

Classe	sse Material			
150	ASTM A 216 GR. WCB / A-105	19,6		
	ASTM A 351 GR. (CF8, CF8M, CF3, CF3M)			
	ASTM A 995 Gr 1B	20		
300	ASTM A 216 GR. WCB / A-105	51,1		
	ASTM A 351 GR. (CF8, CF8M, CF3, CF3M)			
	ASTM A 995 Gr 1B	51,7		
600	ASTM A 216 GR. WCB / A-105			
	ASTM A 351 GR. (CF8, CF8M, CF3, CF3M)			
	ASTM A 995 Gr 1B	103,4		

^{*} Conforme ASME B 16.34 (Temp. ambiente)

Tabela 2 - Faixa de Torque para aperto das gaxetas (N.m)

Válvulas	Torque Graf. Fios de Inc.	PTFE	
1/2" PP	10	4 - 6,5	
3/4" PP	12-14	6,5 - 10,5	
1"PP	12-14	6,5 - 10,5	
11/4"PP	15-17	10 - 15	
1½"PP	15-17	10 - 15	
2" PP	22-32	22 - 32	
2.1/2" PP	22-32	22 - 32	
3" PP	36 - 40	28 - 32	
4" PP	40-50	35 - 45	
6"PP CL 150	-	70	
6"PP CL 300	•	76	

Tabela 3- Torques de acionamento a PMT* (N.m)

Válvulas	Uso Geral	NBR 15827 Anexo C / Fire Safe	Sedes Metálicas	
1/2"PP CL 150	6	-		
1/2"PP CL 300	6	-	-	
3/4"PP CL 150	10			
3/4"PP CL 300	10	25		
1"PP CL 150	12			
1"PP CL 300	12	2	•	
1.1/2"PP CL 150	30	*		
1.1/2"PP CL 300	30		•	
2"PP CL 150	48	65	60	
2"PP CL 300	48	65	140	
2.1/2"PP CL 150	68	68	85	
2.1/2"PP CL 300	68	68	160	
3"PP CL 150	75	100	180	
3"PP CL 300	75	100	270	
4"PP CL 150	120	174	240	
4"PP CL 300	120	174	560	
6"PP CL 150	180	198	(40)	
6"PP CL 300	750			
1/2"PP CL 600	-	10	•	
3/4"PP CL 600	-	18	-	
1"PP CL 600	-	23	•	
1.1/2"PP CL 600	-	48		

PMT= Pressão Máxima de Trabalho

Tabela 4 - Torque recomendado para aperto dos estojos corpo/tampa (N.m).

Válvulas B	CL150			CL 300			CL 600			
	B7/B16	B8/B8M	5.8	INOX 304	B7/B16	B8/B8M	5.8	INOX 304	B7/B16	B8/B8M
1/2" PP	7,5	6	5,5	8,5	7,5	6	5,5	-	16	12
3/4" PP	16	14	11	11	16	14	11		16	12
1" PP	16	14	11	11	16	14	11	*	27	21
1¼" PP	28	26	18	20	28	26	18		38	32
1½"PP	28	26	18	20	28	26	18		38	32
2" PP	42,5	32	27	27	42,5	32	27	27	-	
2.1/2" PP	42,5	32	27	27	42,5	32	27	27		-
3" PP	42,5	32	32	32	67	51	40	40		1340
4"PP	98	74	63	63	240	140	80	80		:#?
6" PP	98	74	63	63	240	140	-	-		-

^{*} Conforme ASME B 16.34 (Temp. ambiente)

