

Lecture 14
Applications of priority queues

EECS-214

Priority queues

- Like normal queues
 - Objects wait in line to be processed
- However, items have an associated numeric priority
 - Priority specified when added to queue
 - Objects removed from queue in order of priority
- Slightly different API
 - Insert(object, priority)
 - Adds object with specified priority
 - ExtractMax()
 - Returns highest priority object

Priority queues

- Like normal queues
 - Objects wait in line to be processed
- However, items have an associated numeric priority
 - Priority specified when added to queue
 - Objects removed from queue in order of priority
- Slightly different API
 - Insert(object, priority)
 - Adds object with specified priority
 - ExtractMin()
 - "Min priority queue"
 - Returns **lowest** priority object
 - Except that in most applications, we usually want the lower "priorities" first

Heaps

- Heaps are a simple tree structure for implementing priority queues
- Rather than requiring their inorder traveral to be sorted
 - We just require that parent nodes
 be larger than their child nodes
- There are lots of exotic types of heaps
 - We'll focus on binary heaps
 - Which are complete binary trees with the heap property
 - We'll get to the completeness thing in a minute...

Heaps

Proposition: the largest element of a heap is always its root

Proof:

- Suppose some other element is the largest element
- Since it isn't the root, it must have a parent
- Since it's the largest element, it must be larger than its parent
- But that contradicts the definition of a heap
- So the largest element must be the root

Binary heaps

- A binary heap is a
 - Complete binary tree
 - That satisfies the heap property
- Great!
- How do we ensure that the heap is a complete binary tree?

Embedding in an array

- It turns out that any complete binary tree can be embedded an array in a particularly cleaver way
- We can compute
 - The position of its parent in the array,
 - and the positions of its children,
 - directly from its own position

Embedding in an array

- Store the root in the first element (element 0)
- For any node
 - Let i be its position in the array (for the root, i = 0)
 - Store its **left child** at position 2i + 1
 - Store its **right child** at position 2i + 2
 - Its parent can be found at position |(i-1)/2|
- Trust me that this works :-)

Heap insertion using the array representation

```
HeapInsert(A, value)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] < key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```


Extracting an element

HeapExtractMax(A, value)

max = A[0]

A[0] = A[A.size]

A.size--

Heapify(A,0)

return max

Extracting an element

```
Heapify(A, i)
 I = Left(i)
 r = Right(i)
 if I≤A.size and A[I]>A[i]
   largest = I
 else
   largest = i
 if r≤A.size and A[r]>A[largest]
   largest = r
 if largest≠i
   swap A[i] and A[largest]
   Heapify(A, largest)
```


Sorting

[Pretend I had found some awesome clipart about sorting here]

- Priority queues can be used for sort algorithms
 - Add all items to the queue
 - Repeatedly extract max
 - Or min, if it's a min queue
 - Write them in order

Version 1

- Here's the straightforward way of sorting using a heap
 - We make the heap
 - Insert all the elements into it
 - Pull them out one at a time,
 and write them back into A
- However, we're copying all the data
 - From one array, A
 - To the heap, H, which is also an array
 - O(n) space

Heapsort(A)

```
H = new, empty heap
for each e in A
  Insert(H, e)
for i = A.Length-1 to 0
  A[i] = ExtractMax(H)
```

In-place heapsort

 It would be cooler if we could build the heap inside A itself

How do we do that?

```
HeapSort(A)

H = new, empty heap
for each e in A
   Insert(H, e)

for i = A.Length-1 to 0
   A[i] = ExtractMax(H)
```

Start with the array

- Start with the array
- Pretend that it's a binary tree
- It probably doesn't satisfy the heap property
 - i.e. there are probably nodes that are larger than their parents

- But we can think of each leaf as a little 1element heap
 - And they automatically satisfy the heap property
 - Because the only have one element

- Now run heapify on each of their parents
- Heapify
 - Checks if the parent is larger that both children

- Now run heapify on each of their parents
- Heapify
 - Checks if the parent is larger that both children
 - If not, it swaps it with the larger child

- Now we have
 - A bunch of 2-level
 subtrees that
 - Each satisfy the heap property

4 7 5 6 3 1 2

Repeat at the next level

4 7 5 6 3 1 2

- Repeat at the next level
- This may require
 Heapify to recurse

7 4 5 6 3 1 2

- Repeat at the next level
- This may require
 Heapify to recurse
- But when we've done every level

- Repeat at the next level
- This may require
 Heapify to recurse
- But when we've done every level
- We've transformed the data, in-place, into a binary heap

Algorithm for in-place heap construction

- The last half of the array is guaranteed to be leaves
 - So we don't have to do anything with it

```
BuildHeap(A)
for i = A.Length/2 to 1
Heapify(A, i, A.Length)
```

Algorithm for in-place heap construction

- We want to call Heapify
 - On every non-leaf node
 - Starting at the bottom of the tree
 - And moving upwards
- Since lower parts of the tree are at the end of the array,
 - All we have to do is start halfway through the array
 - and move back
 - Calling Heapify

BuildHeap(A)

for i = A.Length/2 to 0 Heapify(A, i, A.Length)

Version 2

Now this is really kind of cool

- We build the heap in place
- Then we loop
 - Each iteration removes the maximal element
 - That shrinks the heap
 - Making room at the end of the array
 - Which is where we would want to put the maximal element, anyway!

Heapsort(A) BuildHeap(A) for i = A.Length-1 to 1 A[i] = ExtractMax(H)

ExtractMax

Grabs the maximal element, 7

7 6 5 4 3 1 2

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2
- And calls Heapify

2 6 5 4 3 1 2

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2
- And calls Heapify

2	6	5	4	3	1	2
---	---	---	---	---	---	---

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2
- And calls Heapify

6	2	5	4	3	1	2

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2
- And calls Heapify

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2
- And calls Heapify
 - Thereby reestablishing the heap property

- Grabs the maximal element, 7
- Replaces it with the last leaf, 2
- And calls Heapify
 - Thereby reestablishing the heap property
- And now we store 7
 (the max) at the end of the array)

Repeat

• Grab the max, 6

- Grab the max, 6
- Replace it with the last leaf, 1

- Grab the max, 6
- Replace it with the last leaf, 1

- Grab the max, 6
- Replace it with the last leaf, 1
- Heapify

1	4	5	2	3	1	7

- Grab the max, 6
- Replace it with the last leaf, 1
- Heapify

- Grab the max, 6
- Replace it with the last leaf, 1
- Heapify

5 4 1 2 3 1 7

- Grab the max, 6
- Replace it with the last leaf, 1
- Heapify
- Store the max, 6, in the next-to-last slot

5	4	1	2	3	6	7
---	---	---	---	---	---	---

Repeat

5 4 1 2 3 6 7

• Grab the max, 5

5 4 1 2 3 6 7

- Grab the max, 5
- Replace with the last leaf, 3

5 4 1 2 3 6 7

- Grab the max, 5
- Replace with the last leaf, 3

- Grab the max, 5
- Replace with the last leaf, 3
- Heapify

- Grab the max, 5
- Replace with the last leaf, 3
- Heapify

- Grab the max, 5
- Replace with the last leaf, 3
- Heapify

- Grab the max, 5
- Replace with the last leaf, 3
- Heapify
- Store the max

Repeat

Grab the max, 4

4 3 1 2 5 6 7

- Grab the max, 4
- Replace with the last leaf, 2

- Grab the max, 4
- Replace with the last leaf, 2

- Grab the max, 4
- Replace with the last leaf, 2
- Heapify

- Grab the max, 4
- Replace with the last leaf, 2
- Heapify

- Grab the max, 4
- Replace with the last leaf, 2
- Heapify

- Grab the max, 4
- Replace with the last leaf, 2
- Heapify
- Store the max

Repeat

• Grab the max, 3

3 2 1 4 5 6 7

- Grab the max, 3
- Replace with the last leaf, 1

- Grab the max, 3
- Replace with the last leaf, 1

- Grab the max, 3
- Replace with the last leaf, 1
- Heapify

1	2	1	4	5	6	7

- Grab the max, 3
- Replace with the last leaf, 1
- Heapify

- Grab the max, 3
- Replace with the last leaf, 1
- Heapify
- Store the max

Repeat

2 1 3 4 5 6 7

• Grab the max, 2

2 1 3 4 5 6 7

- Grab the max, 2
- Replace with the last leaf, 1

- Grab the max, 2
- Replace with the last leaf, 1

 $\left(1\right)$

- Grab the max, 2
- Replace with the last leaf, 1
- Heapify

 $\left(1\right)$

Completing the sort

- Grab the max, 2
- Replace with the last leaf, 1
- Heapify

1

Completing the sort

- Grab the max, 2
- Replace with the last leaf, 1
- Heapify
- Store the max

1

Completing the sort

- Only one element left
- So it has to be the smallest element
- And it has to be in position 0

We're done!

Analysis

- Every heap operation is O(log n)
- We do n/2 calls to Heapify to build the heap
- We do n calls to ExtractMax to do the final sorting
- So execution time is $O(n \log n)$
- The nice thing about Heapsort is that it's $O(n \log n)$ worst-case, so it's never quadratic

Route planning revisited

 We used breadth-first search before to find a shortest path in a graph

 But BFS treats each edge as being equal

 In route planning, different edges take different amounts of time

Route planning revisited

We can represent this by Foster weighting edges with their "costs" — We'll assume costs > 0 20 Merchandise Mart Clark/Lake State/Lake Randolf Wabash Washington/Wells Madison/Wabash Costs can represent Quincy Time 1 Distance Adams/Wabash Or any other quantity you'd LaSalle Library like to minimize

Path finding with edge costs

- How do we make a version of BFS that searches nodes
 - In order of increasing total path cost
 - Rather than increasing number of edges

- Use a priority queue!
 - Priority of a node = cost of path from start to that node

Dijkstra's least-cost path algorithm

```
Dijkstra(G, s, e)
 PQ = new priority queue
 Set all node costs to infinity
 s.cost = 0
 for each node n in G
   PQ.Insert(n, n.cost)
 while PQ not empty
   u = PQ.ExtractMin()
   if u == end then done!
   for each neighbor v of u
      w = weight of edge from u to v
      newCost = u.cost+w
      if newCost<v.cost
        PQ.DecreaseKey(v, newCost)
        v.cost = newCost
        v.predecessor = u
```

Wait a minute... decrease key?

- We have to add a new operation to our priority queue: decreasing the priority of an item already in the queue
 - Note that since we're using extract min, rather than extract max, decreasing the "priority" actually moves it ahead in the queue

How could we implement decrease key?

Implementing DecreaseKey

- One way we could do it would be to:
 - Remove it (somehow)
 - Reinsert it
- But the insert algorithm
 - Adds it at the bottom of the heap
 - Swaps it upward until its priority is lower than its parent
 - At least for a min heap

```
HeapInsert(A, key)
  A.size = A.size + 1
  i = A.size
  while i>0 and
        A[Parent(i)] > key
    A[i] = A[Parent(i)]
    i = Parent(i)
  A[i] = key
```

Implementing DecreaseKey

So DecreaseKey is actually easy:

- Just move the node up
- Until its in the right place
- Just copy the code for insert
 - And remove the part that starts by inserting it at the end

```
DecreaseKey(A, i, key)
  while i>0 and
          A[Parent(i)] > key
          A[i] = A[Parent(i)]
          i = Parent(i)
          A[i] = key
```

Implementing DecreaseKey

- Unfortunately, you need to know where the node is stored in the heap
 - i.e. its index in the stupid heap array
- Best done by storing the index in the graph node itself
- Have to remember to update it any time the node moves in the heap

```
DecreaseKey(A, i, key)
  while i>0 and
        A[Parent(i)] > key
        A[i] = A[Parent(i)]
        i = Parent(i)
        A[i] = key
```

Running Dijkstra's algorithm

Initialize node costs

Initialize priority queue

Extract min (Foster)

Update neighbors

Queue: Foster **State (20)** Adams (∞) 20 Clark (∞) Merchandise Mart Clark/Lake State/Lake LaSalle (∞) ∞ Randolf Wabash Library (∞) Washington/Wells ∞ 20 ∞ Madison (∞) ∞ Madison/Wabash Mmart (∞) Quincy ∞ Quincy (∞) 1 ∞ Adams/Wabash Randolf (∞) LaSalle Library 2 ∞ Washington (∞) 3

 ∞

 ∞

Extract min (State)

Update neighbors

Extract min (Clark)

Update neighbors

Quincy (∞)

Foster Queue: 0 • Randolf (21) 20 Mmart (22) Wash (22) Merchandise Mart Clark/Lake State/Lake 22 Adams (∞) Randolf Wabash Washington/Wells 21 20 21 LaSalle (∞) 22 Madison/Wabash Library (∞) Quincy ∞ 1 Madison (∞) ∞ Adams/Wabash

2

LaSalle

 ∞

Library

 ∞

 ∞

3

Extract min (Randolf)

Update neighbors

Extract min (MMart)

Foster Queue: 0 • Wash (22) 20 Madison (22) Adams (∞) Merchandise Mart Clark/Lake State/Lake 22 • LaSalle (∞) Randolf Wabash Washington/Wells 21 20 21 • Library (∞) 22 Madison/Wabash Quincy (∞) Quincy 22 1 ∞ Adams/Wabash LaSalle Library 2 ∞ 3

 ∞

 ∞

Update neighbors (but no distances changed)

Extract min (Washington)

Update neighbors

Foster Queue: 0 Madison (22) 20 Quincy (23) Adams (∞) Merchandise Mart Clark/Lake State/Lake 22 LaSalle (∞) Randolf Wabash Washington/Wells 21 20 21 • Library (∞) 22 Madison/Wabash Quincy 22 1 23 Adams/Wabash LaSalle Library 2 ∞ 3

 ∞

 ∞

Extract min (Madison)

Update neighbors

Foster Queue: 0 Quincy (23) 20 Adams (23) LaSalle (∞) Merchandise Mart Clark/Lake State/Lake 22 • Library (∞) Randolf Wabash Washington/Wells 21 20 21 22 Madison/Wabash Quincy 22 23 Adams/Wabash LaSalle Library 23 2 3

 ∞

 ∞

Extract min (Quincy)

Foster Queue: 0 Adams (23) 20 • LaSalle (∞) Library (∞) Merchandise Mart Clark/Lake State/Lake 22 Randolf Wabash Washington/Wells 21 20 21 22 Madison/Wabash Quincy 22 1 23 Adams/Wabash LaSalle Library 23 2 3

 ∞

 ∞

Done!

Queue:

- Adams (23)
- LaSalle (∞)
- Library (∞)

Foster

0

And we have our minimum cost path


```
Dijkstra(G, s, e)
                                                   Runs
                                                 Once
 PQ = new priority queue
                                                 Once
 Set all node costs to infinity
                                                 Once
 s.cost = 0
 for each node n in G
                                                 I O(V) times
   PQ.Insert(n, n.cost)
 while PQ not empty
                                                   O(V) times
   u = PQ.ExtractMin()
   if u == end then done!
   for each neighbor v of u
                                                   O(E) times
      w = weight of edge from u to v
      newCost = u.cost+v
      if newCost<v.cost
        PQ.DecreaseKey(v, newCost)
        v.cost = newCost
        v.predecessor = u
```

```
Dijkstra(G, s, e)
                                                     Time per execution
                                                   I_{0}(1)
 PQ = new priority queue
                                                   IO(V)
 Set all node costs to infinity
                                                   I 0(1)
 s.cost = 0
 for each node n in G
                                                   IO(\log V)
   PQ.Insert(n, n.cost)
 while PQ not empty
                                                   I O(\log V)
   u = PQ.ExtractMin()
                                                   I O(1)
   if u == end then done!
   for each neighbor v of u
      w = weight of edge from u to v
      newCost = u.cost+v
      if newCost<v.cost
                                                   I O(\log V)
        PQ.DecreaseKey(v, newCost)
        v.cost = newCost
        v.predecessor = u
```

Dijkstra(G, s, e)	Runs		Time		Total
PQ = new priority queue	Once		O(1)		O(1)
Set all node costs to infinity	Once		O(V)		O(V)
s.cost = 0	Once		O(1)		O(1)
for each node n in G PQ.Insert(n, n.cost) while PQ not empty	I $O(V)$ times	I	$O(\log V)$	I	$O(\operatorname{Vlog} V)$
u = PQ.ExtractMin()	O(V) times	I	$O(\log V)$		$O(V \log V)$
if u == end then done!			O(1)		O(V)
for each neighbor v of u w = weight of edge from u to newCost = u.cost+v	$_{\lor}O(E)$ times		0(1)		O(E)
<pre>if newCost<v.cost newco="" pq.decreasekey(v,="" v.cost="newCost" v.predecessor="u</pre"></v.cost></pre>	ost)	 	$O(\log V)$ $O(1)$		$O(\operatorname{Elog} V)$ $O(E)$

$$O(1) + O(V) + O(E) + O(V \log V) + O(E \log V) = O(1) + O(V + E) + O((V + E) \log V) = O(V + E) + O((V + E) \log V) = O((V + E)(1 + \log V)) = O((V + E) \log V)$$