

Discussion topics

Multi Criteria DecisionMaking (MCDM)

- Introduction
- Method
- Software

Analytic Hierarchy Process (AHP)

- AHP Concepts
- AHP Process
- AHP Software SuperDecision

Introduction

Decision making occur naturally in our daily life to figure our general problems.

- 1. Desire for immortality
- 2. Desire for pleasure

General decision problems usually involve with multiple criteria for decision process.

Decision problems

Category of Decision problem

Decision	Time Perspectiv e	Novelty	Degree of structure	Automation
Strategic	Long term	New	Low	Low
Tactical	Medium term	Adaptive	Semi-structured	Medium
Operational	Short term	Every day	Well defined	High

MCDA (MCDM) is multidiscipline applying mathematics, management informatics, psychology, social science and economic, developed to support decision maker in their unique and personal decision process.

MCDM Classification

Multi-Attribute Decision Making (MADM)

Genetic Algorithms (GA)

Goal Programming (GP)

Multi-Attribute Utility Theory (MAUT)

Analytic Hierarchy Process (AHP)

Elimination and Choice Translating Reality (ELECTRE)

Preference Ranking Organization Methods for Enrichment Evaluation (PROMETHEE)

Technique for Order of Preferenceby Similarity to Ideal Solution (TOPSIS)

Multi-Criteria
Decision Making (MCDM)

Multi-Objective Decision Making (MODM)

MCDM General Stage

MCDM Software

Problem:

- 1. Ranking
- 2. Choice

Methods:

- 1. PROMETHEE
- 2 UTA
- 3. AHP

Problem:

- 1. Ranking
- 2. Choice

Methods:

- 1. ANP
- 2. MACBETH
- 3. TOPSIS
- 4. DEA

Key Takeaway

MCDM Concept

- The decision making process with multiple criteria
- Define weight on particular criteria base on priority
- Select the highest score or high ranking score if multiple options

Evaluate the selected option

AHP-Introduction

The analytic hierarchy process (AHP), developed by Thomas Saaty (1995 - 1996), is an excellent modeling structure for representing multi-criteria (multiple goals, multiple objectives) problemswith sets of criteria and alternatives (choices)commonly found in business environments.

AHP will decompose a decision making problem

into relevant criteria and alternatives.

The AHP separates the analysis of the criteria from the alternatives, which helps the decision maker to focus on small, manageable portions of the problem.

AHP Process

Here is the step-by-step approach for Analytic Hierarchy Process.

Step 1: Define the problem and Criteria (also sub criteria if available)

Step 2: Define Alternatives

Step 3: Establish priority amongst criteria and alternatives using pairwise comparison.

Step 4: Check consistency amongst the pairwise comparison.

Step 5: Evaluate relative weights from the pairwise comparisons and get the calculated overall priorities for the alternatives.

Step 6: Perform Sensitivity Analysis

Decision Hierarchy

AHP Process (Example)

Page 18 – 44 are collected from the lecture of Dr. Rainer Haas and Dr. Oliver Meixner Institute of Marketing & Innovation University of Natural Resources and Applied Life Sciences, Vienna

AN IMPORTANT PART OF THE PROCESS IS TO ACCOMPLISH THESE THREE STEPS

- STATE THE OBJECTIVE:
 - SELECT A NEW CAR
- DEFINE THE CRITERIA:
 - STYLE, RELIABILITY, FUEL ECONOMY
- PICK THE ALTERNATIVES:
 - CIVIC COUPE, SATURN COUPE, FORD ESCORT, RENAULT CLIO

THE INFORMATION
IS THEN
SYNTHESIZED TO
DETERMINE
RELATIVE
RANKINGS OF
ALTERNATIVES

BOTH QUALITATIVE
AND QUANTITATIVE
CRITERIA CAN BE
COMPARED USING
INFORMED
JUDGMENTS TO
DERIVE WEIGHTS
AND PRIORITIES

HOW DO YOU DETERMINE THE RELATIVE IMPORTANCE OF THE CRITERIA?

HERE'S ANOTHER WAY

Hmm, I think reliability is the most important followed by style and fuel economy is least importeant so I will make the following judgements

USING JUDGMENTS TO DETERMINE THE RANKING OF THE CRITERIA

- 1. RELIABILITY IS 2 TIMES AS IMPORTANT AS STYLE
 - 2. STYLE IS 3 TIMES AS IMPORTANT AS FUEL ECONOMY
 - 3. RELIABILITY IS 4 TIMES AS IMPORTANT AS FUEL ECONOMY

he's not very consistent here ... that's o.k.

Pairwise Comparisons

USING PAIRWISE COMPARISONS, THE RELATIVE IMPORTANCE OF ONE CRITERION OVER ANOTHER CAN BE EXPRESSED

Pairwise Comparisons

USING PAIRWISE COMPARISONS, THE RELATIVE IMPORTANCE OF ONE CRITERION OVER ANOTHER CAN BE EXPRESSED

1 equal 3 moderate 5 strong 7 very strong 9 extreme

	STYLE	RELIABILITY	FUEL ECONOMY
STYLE	1/1	1/2	3/1
RELIABILITY		1/1	4/1
FUEL ECONOMY			1/1

Pairwise Comparisons

USING PAIRWISE COMPARISONS, THE RELATIVE IMPORTANCE OF ONE CRITERION OVER ANOTHER CAN BE EXPRESSED

1 equal 3 moderate 5 strong 7 very strong 9 extreme

	STYLE	RELIABILITY	FUEL ECONOMY
STYLE	1/1	1/2	3/1
RELIABILITY	2/1	1/1	4/1
FUEL ECONOMY	1/3	1/4	1/1

How do you turn this MATRIX into ranking of criteria?

STYLE	RELIABILITY	FUEL ECONOMY
-------	-------------	--------------

STYLE	1/1	1/2	3/1]
RELIABILITY	2/1	1/1	4/1	
FUEL ECONOMY	1/3	1/4	1/1	

HOW DO YOU GET A RANKING OF PRIORITIES FROM A PAIRWISE MATRIX?

DR THOMAS L. SAATY, CURRENTLY WITH THE UNIVERSITY OF PITTSBURGH, DEMONSTRATED MATHEMATICALLY THAT THE EIGENVECTOR SOLUTION WAS THE BEST APPROACH.

REFERENCE: THE ANALYTIC HIERARCHY PROCESS, 1990, THOMAS L. SAATY

HERE'S HOW TO SOLVE FOR THE EIGENVECTOR:

- 1. A SHORT COMPUTATIONAL WAY TO OBTAIN THIS RANKING IS TO RAISE THE PAIRWISE MATRIX TO POWERS THAT ARE SUCCESSIVELY SQUARED EACH TIME.
- 2. THE ROW SUMS ARE THEN CALCULATED AND NORMALIZED.
- 3. THE COMPUTER IS INSTRUCTED TO STOP WHEN THE DIFFERENCE BETWEEN THESE SUMS IN TWO CONSECUTIVE CALCULATIONS IS SMALLER THAN A PRESCRIBED VALUE.

IT'S MATRIX ALGEBRA TIME !!!

STYLE RELIABILITY FUEL ECONOMY

STYLE

RELIABILITY

FUEL ECONOMY

1/1	1/2	3/1
2/1	1/1	4/1
1/3	1/4	1/1

FOR NOW, LET'S REMOVE THE NAMES AND CONVERT THE FRACTIONS TO DECIMALS:

1.0000	0.5000	3.0000
2.0000	1.0000	4.0000
0.3333	0.2500	1.0000

STEP 1: SQUARING THE MATRIX

STEP 2 : NOW, LET'S COMPUTE OUR FIRST EIGENVECTOR (TO FOUR DECIMAL PLACES)

FIRST, WE SUM THE ROWS

FINALLY, WE NORMALIZE BY DIVIDING
THE ROW SUM BY THE ROW TOTALS
(I.E. 12.7500 DIVIDED BY 39.9165 EQUALS 0.3194)

THE RESULT IS OUR EIGENVECTOR
(A LATER SLIDE WILL EXPLAIN THE
MEANING IN TERMS OF OUR EXAMPLE)

0.5595 0.1211

0.3194

THIS PROCESS MUST BE ITERATED UNTIL THE EIGENVECTOR SOLUTION DOES NOT CHANGE FROM THE PREVIOUS ITERATION (REMEMBER TO FOUR DECIMAL PLACES IN OUR EXAMPLE)

CONTINUING OUR EXAMPLE, AGAIN, STEP 1: WE SQUARE THIS MATRIX

3.0000	1.7500	8.0000
5.3332	3.0000	14.0000
1.1666	0.6667	3.0000

AGAIN STEP 2 : COMPUTE THE EIGENVECTOR (TO FOUR DECIMAL PLACES)

TOTALS 362.9196 1.0000

PREVIOUS COMPUTED EIGENVECTOR

TO THIS ONE:

TO FOUR DECIMAL PLACES THERE'S NOT MUCH DIFFERENCE HOW ABOUT ONE MORE ITERATION?

	STYLE	RELIABILITY	FUEL ECONOMY
STYLE	1/1	1/2	3/1
RELIABILITY	2/1	1/1	4/1
FUEL ECONOMY	1/3	1/4	1/1

AND THE COMPUTED EIGENVECTOR GIVES US THE RELATIVE RANKING OF OUR CRITERIA

NOW BACK TO THE HIEARCHICAL TREE...

IN TERMS OF STYLE, PAIRWISE COMPARISONS DETERMINES THE PREFERENCE OF EACH ALTERNATIVE OVER ANOTHER

STYLE

	CIVIC	SATURN	ESCORT	CLIO
CIVIC	1/1	1/4	4/1	1/6
SATURN	4/1	1/1	4/1	1/4
ESCORT	1/4	1/4	1/1	1/5
CLIO	6/1	4/1	5/1	1/1

AND...

IN TERMS OF RELIABILITY, PAIRWISE COMPARISONS DETERMINES THE PREFERENCE OF EACH ALTERNATIVE OVER ANOTHER

RELIABILITY

CATUDA ECCODE CUO

	CIVIC	SATURN	ESCORT	CLIO
CIVIC	1/1	2/1	5/1	1/1
SATURN	1/2	1/1	3/1	2/1
ESCORT	1/5	1/3	1/1	1/4
CLIO	1/1	1/2	4/1	1/1

ITS MATRIX ALGEBRA TIME!!!

COMPUTING THE EIGENVECTOR DETERMINES THE RELATIVE RANKING OF ATERNATIVES UNDER EACH CRITERION

RANKING	STYLE	RANKING	RELIABILITY
3 CIVIC	.1160	1 CIVIO	.3790
2 SATURN	.2470	2 SATU	JRN .2900
4 ESCORT	.0600	4 ESCO	ORT .0740
1 CLIO	.5770	3 CLIO	.2570

WHAT ABOUT FUEL ECONOMY?

AS STATED EARLIER, AHP CAN COMBINE BOTH QUALITATIVE AND QUANITATIVE INFORMATION

FUEL ECONOMY INFORMATION IS OBTAINED FOR EACH ALTERNATIVE:

FUEL ECONOMY (MILES/GALLON)

	113	_	1.0000
CLIO	28	28 / 113 =	.2480
ESCORT	24	24 / 113 =	.2120
SATURN	27	27 / 113 =	.2390
CIVIC	34	34 / 113 =	.3010

NORMALIZING THE FUEL ECONOMY INFO ALLOWS US TO USE IT WITH OTHER RANKINGS

OKAY, NOW WHAT ? I THINK WE'RE READY FOR THE ANSWER...

A LITTLE MORE MATRIX ALGEBRA GIVES US THE SOLUTION:

IN SUMMARY, THE ANALYTIC HIERARCHY PROCESS PROVIDES A LOGICAL FRAMEWORK TO DETERMINE THE BENEFITS OF EACH ALTERNATIVE

1. Clio .3280

2. Civic .3060

3. Saturn .2720

4. Escort .0940

AHP-Based Software

Building an AHP model in SuperDecisions

Case study: Choose the best car

Reference: https://superdecisions.com/

Building an AHP model in SuperDecisions

Case study: Choose the best car.

We will follow official tutorial for this part. The links are given below.
-Building AHP Model

- I will also show Sensitivity Analysis in the class.

