Name: <u>Caleb McWhorter — Solutions</u>

MATH 101 Fall 2021

HW 6: Due 10/08

"I'm fine. It's just that life is pointless and nothing matters and I'm always tired."

-Andy Dwyer, Parks and Recreation

Problem 1. (10pt) Plot the function f(x) := 4 - 3x, being as accurate as possible.

Solution. To sketch the line, we should find around 8–12 equally spaces points on the curve and connect them "smoothly."

Problem 2. (10pt) Plot the function $f(x) := x^2 + 4x - 1$, being as accurate as possible.

Solution. To sketch the line, we should find around 8–12 equally spaces points on the curve and connect them "smoothly."

Problem 3. (10pt) Plot the function $f(x) := \frac{x+1}{x^2+1}$, being as accurate as possible.

Solution. To sketch the line, we should find around 8–12 equally spaces points on the curve and connect them "smoothly."

Problem 4. (10pt) Let f(x) := 5x - 3.

(a) Find f(1).

$$f(1) = 5(1) - 3 = 5 - 3 = 2$$

(b) What value(s) for x make the output of f(x) twice the output from (a)?

The output from (a) was 2. So twice this would be 4. We want x so that f(x) = 4. But then

$$5x - 3 = 4$$
$$5x = 7$$
$$x = \frac{7}{3}$$

(c) Is (1,2) on the graph of f(x)? Explain.

We have f(1) = 5(1) - 3 = 5 - 3 = 2 so that (1,2) is a point on the graph. But this is exactly the given point. Alternatively, because y = 5x - 3, we check $2 \stackrel{?}{=} 5(1) - 3 = 2$ so that (1,2) is on the graph of f(x).

(d) Is (3,5) on the graph of f(x)? Explain.

We have f(3) = 5(3) - 3 = 15 - 3 = 12 so that (3,12) is a point on the graph. But this is not the point (3,5). Therefore, (3,5) is not a point on the graph of f(x). Alternatively, because y = 5x - 3, we check $5 \stackrel{?}{=} 5(3) - 3 = 12$, which is false so that (3,5) is not on the graph of f(x).

Problem 5. (10pt) Define the following functions:

$$f(x) := x^{3} - x$$
$$g(x) := x^{2} - 2x + 3$$
$$h(x) := x^{4} + x^{2}$$

Determine if the functions f(x), g(x) and h(x) are even functions, odd functions, or neither. Be sure to justify your answer.

Solution. *First*, *observe that...*

$$f(-x) = (-x)^3 - (-x) = -x^3 + x = -(x^3 - x) = -f(x)$$

Therefore, f(x) is odd because f(-x) = -f(x). [Hence, f(x) will be symmetric about the origin.] Next, observe that...

$$g(-x) = (-x)^2 - 2(-x) + 3 = x^2 + 2x + 3$$

But then $g(-x) \neq -g(x)$ and $g(-x) \neq g(x)$; therefore, g(x) is neither odd nor even. Finally, observe that...

$$h(-x) = (-x)^4 + (-x)^2 = x^4 + x^2 = h(x)$$

Therefore, h(x) is even because h(-x) = h(x). [Hence, h(x) will be symmetric about the y-axis.]

Problem 6. (10pt) Consider the function f(x) plotted below.

(a) What is f(1)?

From the graph, we see that f(1) = -4.

(b) Is the point (2,1) on the graph of f(x)? Explain.

Because f(x) passes through the point (2,1), the point (2,1) is on the graph of f(x).

(c) Is the point (-2, -2) on the graph of f(x)? Explain.

We can see that f(x) does not pass through the point (-2, -2). Therefore, (-2, -2) is not on the graph of f(x).

(d) Is the function f(x) even, odd, or neither. Explain.

Because f(x) is not symmetric across the y-axis and also not symmetric through the origin, f(x) can be neither even nor odd.