$$t = \frac{\hat{\beta}^{2-1}}{\text{Se}(\hat{\beta}_{2})} \stackrel{\text{Ho}}{\sim} t_{n-3}$$

C)
$$10: \beta_2 = \beta_3 = 0$$
 $10: \beta_2 = \beta_3 = 0$
 $10: \beta_2 = \beta_3 = 0$
 $10: \beta_2 = \beta_3 + \beta_2 \times \epsilon_i$
 $10: \beta_3 = \beta_3 + \beta_3 \times \epsilon_i$
 $10: \beta_$

$$F = \frac{ESS/K-1}{PSS/h-k} \sim F(k-1, h-k)$$

$$= \frac{\ell^2/2}{(1-\ell)^2/N-3}$$

$$F = \frac{(RSS_{12} - RSS_{14}R)/q}{RSS_{14}R} \sim F(q, n-k)$$

$$F = \frac{(1 - k^{2} - 1 + k^{2} i r) / 9}{(1 - k^{2} i r) / n - h}$$

$$= \frac{(R^{2}uR - R^{2})/q}{(1-k^{2}uR)/n-k} \sim F(q, n-k)$$

Ho:
$$\beta_2 + \beta_3 = 1$$

UP: $y_i = \beta_1 + \beta_2 X_{1i} + \beta_3 X_{2i} + \beta_4$

P: $y_i = \beta_1 + \beta_2 X_{1i} + (1 - \beta_2) X_{2i} + \beta_4$

Y: $X_{2i} = \beta_1 + \beta_2 (X_{2i} - X_{2i}) + \beta_4$

Z: Hi

TSS $\chi \neq TSS ug = \chi + \beta_4 x_4 + \beta_5 x_4 + \beta_4 x_4 + \beta_5 x_5 + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Y: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Y: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Y: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 X_{2i} + \beta_4 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_5 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_4 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_3 x_5 + \beta_6$

Ho: $\chi_i = \beta_1 + \beta_2 x_5 + \beta_1 x_5 + \beta_2 x_5 + \beta_1 x_5 +$

Prediction error:

$$y_{n+1} = \beta_1 + \beta_2 x_{n+1}$$

$$y_{n+1} = \beta_1 + \beta_2 x_{n+1}$$

$$E(\hat{y}_{n+1}) = E(\hat{\beta}_1 + \hat{\beta}_2 x_{n+1}) = E(\hat{\beta}_1) + E(\hat{\beta}_1) \cdot x_{n+1}$$

$$= \beta_1 + \beta_2 \cdot x_{n+1}$$

$$E(y_{n+1}) = E(y_{n+1} + y_{n+1}) = y_{n+1} \cdot y_{n+$$

$$\frac{\delta^{2} \sum_{i} \chi_{i}^{2}}{\sum_{i} (\chi_{i} - \overline{\chi})^{2}} + \chi^{2}_{n+1} \frac{\delta^{2}}{\sum_{i} (\chi_{i} - \overline{\chi})^{2}} + \delta^{2} + \delta^{2}$$

$$\beta = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix} X = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix}$$

$$\chi' X = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix}$$

$$\chi' X = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix}$$

$$\chi' X = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix}$$

$$\chi' X = \begin{bmatrix} \lambda \\ \lambda \\ \lambda \end{bmatrix}$$

Muticollinearity

Perdect multicollinearil	h :
Perfect multicollinearity:	
one of jejusson	is a lih. conb
	-
from other	242 essors
) _^
rank(X) < k	β = (X'X) - X'y
$(X'X)^{-1}$ - is not	invertible
-> can't obtain	A C
Pendert MC example:	d 1100 2 10 10 10 10
	Julianiz Vanianiz
/1 1 0 x, \	dummy-variable trap
1 1 0 X, 1 1 0 X, 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 0	B + B 1 1
	B. + B J J;
\ 1 0 1 X _h	•
	Bm. M; + Bddi
$I = m_i + d_i$	
•	

Mutti collinearity - \(\beta\) - unstaged, not effective - se(s) are installed t-stadistics are smaller instudility of estimates i.e. switching sign (add new vaniable/ add ner regresson) Testing for multicollinearity 4; = Bo + B, - Xii + ... + Bukhi + &i VIF (variance inflation dayor) X; | X; | X; | X; , Xi-1, Xi+1, ..., Xh) VIF(χ_i)= $\frac{1}{1-R^2}$ >10 => multicollinearity