

Session Correspondence Analysis

Anàlisi de Dades i Explotació de la Informació

Grau d'Enginyeria Informatica.

Information System tracking

Prof. Mónica Bécue Bertaut & Lidia Montero

Monica.becue@upc.edu lidia.montero@upc.edu

Key names in CA

Ronald Aylmer **Fisher**, 1890 –1962

Brigitte Escofier (1941-1994)

- 1. Data and notation
- 2. Relationships between categorical variables
- 3. CA: description of the deviation to independence model
- 4. Gemetrical view point: row and column clouds
- 5. Helps to the interpretation
- 6. Transition relationships
- 7. Illustrative (supplementary) elements
- 8. Intensidad of the relationship

1. Data and notation

Example: Croatian survey

Edad en clase (7 categorías) and Estado de salud (5 categorías) > summary(base\$Edad_classe) 26-35 años 18-25 años 36-45 años 46-55 años 56-65 años 66-75 años 76 y más 833 639 766 794 798 818 389 > summary(base\$B1) health-excellent health-very good health-good health-fair health-poor 472 833 1367 1322 1043

2. Relationship between categorical variables

Contingency table

 x_{ij} : respondents who present category i of V_1 and category j of V_2

Crossed table/ Contingency table

	health-excellent	health-very	good	health-good	health-fair	health-poor
18-25 años	181		216	161	69	12
26-35 años	144		263	259	129	38
36-45 años	62		150	266	201	87
46-55 años	35		105	260	239	155
56-65 años	26		43	190	281	258
66-75 años	17		38	166	283	314
76 y más años	7		18	65	120	179

Margins?

Crossed table and margins

	health-excellent	health-very good	health-good	health-fair	health-poor	
18-25 años	181	216	161	69	12	639
26-35 años	144	263	259	129	38	833
36-45 años	62	150	266	201	87	766
46-55 años	35	105	260	239	155	794
56-65 años	26	43	190	281	258	798
66-75 años	17	38	166	283	314	818
76 y más año	os 7	18	65	120	179	389
	472	833	1367	1322	1043	5037

Proportion table and margins

Relationship between V_1 and V_2 : deviation from the independence model

Proportion table and margins

	health-excellent	health-very good	health-good	health-fair	health-poo	r
18-25 años	0.036	0.043	0.032	0.014	0.002	0.127
26-35 años	0.029	0.052	0.051	0.026	0.008	0.166
36-45 años	0.012	0.030	0.053	0.040	0.017	0.152
46-55 años	0.007	0.021	0.052	0.047	0.031	0.158
56-65 años	0.005	0.009	0.038	0.056	0.051	0.159
66-75 años	0.003	0.008	0.033	0.056	0.062	0.162
76 y más añ	os 0.001	0.004	0.013	0.024	0.036	0.078
	0.093	0.167	0.272	0.263	0.207	1,000

In the case of independence

$$f_{ij} = f_{i.} \cdot f_{.j}$$

$$\frac{f_{ij}}{f_{i.}} = f_{.j}$$

$$\frac{f_{ij}}{f_{.j}} = f_{i.}$$

Row-profile table $D_I^{-1}F$

Columns-profile table $\mathbf{FD}_{\mathbf{J}}^{-1}$

Observed data

Estimation of the independence model

$$\hat{f}_{ij} = f_{i.} \cdot f_{.j}$$

Expected counts, under the hypothesis of independence

$$\hat{x}_{ij} = n \cdot f_{i.} \cdot f_{.j}$$

Significance of the relationship between the variables

$$\chi^2 = \sum_{i,j} \frac{\left(x_{ij} - \hat{x}_{ij}\right)^2}{\hat{x}_{ij}}$$

Intensity of the relationship

$$\Phi^2 = \sum_{i,j} \frac{\left(f_{ij} - \hat{f}_{ij}\right)^2}{\hat{f}_{ii}} = \frac{\chi^2}{n}$$

El AC does not say anyting about the significance of the relationship between the variables, only about the intensity

and visualises the structure of the relationship

In the example

Pearson's Chi-squared test

data: tablo

X-squared = 1582.633, df = 24, p-value < 2.2e-16

3. CA: Description of the deviation to independence

	health-excellent	health-very good	health-good	health-fair	health-poor
18-25 años	0.283	0.338	0.252	0.108	0.019
26-35 años	0.173	0.316	0.311	0.155	0.046
36-45 años	0.081	0.196	0.347	0.262	0.114
46-55 años	0.044	0.132	0.327	0.301	0.195
56-65 años	0.033	0.054	0.238	0.352	0.323
66-75 años	0.021	0.046	0.203	0.346	0.384
76 y más años	0.018	0.046	0.167	0.308	0.460
Perfil-medio	0.093	0.167	0.272	0.263	0.207

Do the 36-45 have a profile close to the mean profile?

And the youngest class?

And the oldest class?

• • • •

In the case of independence

$$\frac{f_{ij}}{f_{.j}} = f_{i.}$$

Mean column-profile

To compare and describe the differences

> profil.col

		health-excell	health-very good	health-good	health-fair	health-poor	
18-25 a	años	0.383	0.259	0.118	0.052	0.012	0.127
26-35 a	años	0.305	0.316	0.189	0.098	0.036	0.166
36-45 a	años	0.131	0.180	0.195	0.152	0.083	0.152
46-55 a	años	0.074	0.126	0.190	0.181	0.149	0.158
56-65 a	años	0.055	0.052	0.139	0.213	0.247	0.159
66-75 a	años	0.036	0.046	0.121	0.214	0.301	0.162
76 y má	ás añ	íos 0.015	0.022	0.048	0.091	0.172	0.078

Has "health-poor" a profile which differs from the others? From the mean-profile?

Are the profiles of "very good health" y "excellent health" very different?

4. CA: Geometrical approach

CA= Analysis of the cloud of rows

Cloud of rows described by their profile
$$\frac{f_{ij}}{f_{i.}}$$
 Matrix $\mathbf{D}_{\mathbf{I}}^{-1}\mathbf{F}$

Weights of the rows

 f_i stored into the diagonal matrix $\mathbf{D_I}$

Metric

$$\mathbf{D}_{\mathbf{J}}^{-1} \text{ with generic term } \frac{1}{f_{.j}}$$

$$d^{2}(i, l) = \sum_{j=1}^{J} \frac{1}{f_{.j}} \left(\frac{f_{ij}}{f_{i.}} - \frac{f_{lj}}{f_{l.}} \right)^{2}$$

---- distributional equivalence

CA= Analysis of the cloud of columns

Cloud of rows described by their profile
$$\frac{f_{ij}}{f_{i}}$$
 Matrix $\mathbf{D}_{\mathbf{J}}^{-1}\mathbf{F}'$

Weighted of the columns

 $f_{.i}$ stored into diagonal matrix $\mathbf{D}_{\mathbf{J}}$

Métrica del chi.2 $\mathbf{D}_{\mathbf{I}}^{-1}$

 $\mathbf{D}_{\mathbf{I}}^{-1}$ with generic term $\frac{1}{f_{i}}$

$$d^{2}(j, h) = \sum_{i=1}^{l} \frac{1}{f_{i.}} \left(\frac{f_{ij}}{f_{.j}} - \frac{f_{ih}}{f_{.h}} \right)^{2}$$

----> distributional equivalence

Cloud of rowa

Cloud of columns

If independence exists?

$$\frac{f_{ij}}{f_{i.}} = f_{.j}$$

$$\frac{f_{ij}}{f_{i.}} = f_{.j}$$
Both clouds have a null inertia
$$Inercia(N_I|G_I) = Inercia(N_J|G_J) = 0$$

If not, the relationship is greater as so far the inertia is greater

$$\begin{split} Inercia\left(N_{I}\middle|G_{I}\right) &= \sum_{i}Inercia\left(i\middle|G_{I}\right) = \sum_{i}f_{i.}d^{2}\left(i,G_{I}\right) = \sum_{j}f_{.j}d^{2}\left(j,G_{J}\right) = \\ &= \sum_{i}\sum_{j}\frac{1}{f_{i.}f_{.j}}\left(f_{ij} - f_{i.}\cdot f_{.j}\right)^{2} = \\ &= \Phi^{2} = \frac{\chi^{2}}{n} = Inercia\left(N_{J}\middle|G_{J}\right) \end{split}$$

Representation in a low-dimension space

Find the subspace which better sums up the data

Figure: Camel vs dromedary?

Same rationale as in PCA

$$Max \sum_{i} f_{i}OH_{i}^{2}$$

$$u_1$$
 λ_1 u_2 λ_2 u_3 λ_3

• • • • • •

$$u_{\min(I-1,J-1)} \lambda_{\min(I-1,J-1)}$$

-

De forma simétrica en el otro espacio.....

$$\begin{array}{ccc}
v_1 & \lambda_1 \\
v_2 & \lambda_2 \\
v_3 & \lambda_3
\end{array}$$

$$v_{\min(I-1,J-1)} \lambda_{\min(I-1,J-1)}$$

 $\Phi^{2} = \sum_{i} \lambda_{i} = \sum_{i} f_{i} d^{2}(i, G_{I}) = \sum_{j} f_{.j} d^{2}(j, G_{J})$

Graphical results: in this case, it is legitimous to superpose the row and column graphics

CA factor map

5. Helps to interpretation

In the example, we are interested by the first two axes

$$\frac{\lambda_1 + \lambda_2}{\sum_{s=1}^{S} \lambda_s}$$

```
> round(res.ca$eig,2)
```

```
eigenvalue percentage of variance cumulative percentage of variance
dim 1
           0.29
                                 90.81
                                                                   90.81
dim 2
           0.03
                                  8.30
                                                                   99.11
dim 3
                                                                   99.94
       0.00
                                  0.83
dim 4
      0.00
                                  0.06
                                                                  100.00
dim 5
           0.00
                                  0.00
                                                                  100.00
```

```
> FI2
[1] 0.3142015=chi2/n
```

V de Cramer

```
> sqrt(sum(res.ca$eig[,1])/4)
[1] 0.2802684
```

In CA
$$0 \le \lambda_s \le 1$$

What doest it mean to have an eigenvalue equal to 1?

Maximum number of axes

How many axes we have to keep and interpret?

Contribution y calidad de representación de los elementos filas o columnas

= Same rules as in PCA BUT, taking into account the weights are non-uniform

6. Transition relationships also called baricentric relationships

$$F_s(i) = \frac{1}{\sqrt{\lambda_s}} \sum_j \frac{f_{ij}}{f_{i.}} G_s(j)$$

$$G_s(j) = \frac{1}{\sqrt{\lambda_s}} \sum_{i} \frac{f_{ij}}{f_{.j}} \cdot F_s(i)$$

7. Illustrative elements

$$F_s(i^+) = \frac{1}{\sqrt{\lambda_s}} \sum_j \frac{f_{i^+j}}{f_{i^+}} G_s(j)$$

$$G_s(j^+) = \frac{1}{\sqrt{\lambda_s}} \sum_{i} \frac{f_{ij^+}}{f_{\cdot j^+}} \cdot F_s(i)$$

Categories of Age \times Educ as supplementary rows

8. Intensity of the relationship- Cramer V

El gráfico nos informa de la naturaleza de la relación entre las variables, mediante la visualización de las asociaciones entre las categorías de una variables y la categorías de la otra variable

Los valores propios – y su suma- nos informan de la intensidad de la relación

El V de Cramer permite comparar la intensidad de la relación con la intensidad máxima posible

$$V = \sqrt{\frac{\phi^2}{Max(\phi^2)}} = \sqrt{\frac{\phi^2}{Min(I-1, J-1)}}$$