H6.3 Landau-Notation für Komplexitätsklassen:

a) Sei f eine beliebige Funktion von $\mathbb N$ nach $\mathbb R^+$. Die folgenden Landau-Klassen sind paarweise disjunkt:

$$O(f) \cap \omega(f) = \emptyset$$

$$\Omega(f) \cap o(f) = \emptyset$$

$$\Theta(f) \cap o(f) = \emptyset$$

$$\Theta(f) \cap \omega(f) = \emptyset$$

$$o(f) \cap \omega(f) = \emptyset$$

- b) Die Funktion $g(n) = (2n 1) \cdot (4n + 1)$ liegt in den folgenden Laufzeitklassen: $g(n) = 8n^2 2n 1$.
 - $g(n) \in \omega(1)$ [g(n) wächst echt langsamer als f(n) = 1]
 - $g(n) \in \Omega(n)$ [g(n) wächst schneller als f(n) = n oder genauso schnell]
 - $g(n) \in O(n^2)$ [g(n) wächst langsamer als $f(n) = n^2$ oder genauso schnell]
 - $g(n) \in \Theta(n^2)$ [g(n) wächst genauso schnell wie $f(n) = n^2$]
 - $g(n) \in \Omega(n^2)$ [g(n) wächst schneller als $f(n) = n^2$ oder genauso schnell]
 - $g(n) \in o(n^3)$ [g(n) wächst echt langsamer als $f(n) = n^3$]
 - $g(n) \notin O(n), g(n) \notin \Theta(n), g(n) \notin o(n^2), g(n) \notin \omega(n^2), g(n) \notin \omega(n^3)$
 - c) Beziehung zwischen den Klassen o(f), O(f), $\Theta(f)$ mit Hilfe von Mengenoperationen:
 - $o(f) \subset O(f)$ [o(f) ist eine echte Teilmenge von O(f)]
 - $\Theta(f) \subset O(f) [\Theta(f) \text{ ist eine echte Teilmenge von } O(f)]$
 - $o(f) \cup \Theta(f) = O(f)$
 - d) Menge aller Funktionen an, die mindestens logarithmische, aber höchstens lineare Laufzeit haben in Landau-Notation und mit Hilfe von Mengenoperationen angegeben.

Sei M eine Menge.

$$M = \Omega(\log n) \cap O(n)$$

e) Gebt mit Begründung an, welche Funktionen in o(1) liegen.

Definition o(f):

$$o(f) = \{g: \mathbb{N} \rightarrow \mathbb{R}^+ \,|\, \forall C \geq 0: \exists n_0 \in N: \forall n \geq n_0: g(n) \leq C \,\cdot\, f(n)\}.$$

Da $\forall n \ge n_0 \text{ dem } \lim_n \to \infty$ entspricht (Skript S. 46) und eine Funktion g(n) in der

Laufzeitklasse o(f) liegt, sofern der $\lim_{n} \to \infty = 0$ ist, gilt für o(1):

Der $\lim_{n} \to \infty \frac{g(n)}{f(n)}$ ist nur dann 0, wenn g(n) = 0. Also gibt es keine Funktion in der Laufzeitklasse o(1).