(6 points) Given functions $g: \mathbb{R}^n \to \mathbb{R}^k$, $h: \mathbb{R}^k \to \mathbb{R}$, construct function f as following

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), ..., g_k(x)).$$

prove the following:

- 1. Assume g_i is a <u>convex</u> function for every $1 \le i \le k$, h is a convex function and h is monotonically non-decreasing for each component. Then f is a convex function.
- 2. Assume g_i is a <u>concave</u> function for every $1 \le i \le k$, h is a convex function and h is monotonically non-increasing for each component. Then f is a convex function.

Proof:

For 1:

Since $g_1, ..., g_k$ are all convex functions, $dom \ g_1, ..., dom \ g_k$ are all convex sets. Note that since $dom \ f = dom \ g = dom \ g_1 \cap ... \cap dom \ g_k$, where $dom \ g_1, ..., dom \ g_k$ are all convex sets, we know $dom \ f$ is also convex by Proposition 3.8.1.

Also, for any $x, y \in dom f$, $0 \le t \le 1$, $tx + (1 - t)y \in dom f$, since dom f is convex. Then, we have

$$f(tx + (1-t)y) = h(g(tx + (1-t)y)) = h(\begin{bmatrix} g_1(tx + (1-t)y) \\ \vdots \\ g_k(tx + (1-t)y) \end{bmatrix})$$

Since g_i are convex for any $1 \le i \le k$, we have that $g_i(tx + (1-t)y) \le tg_i(x) + (1-t)g_i(y)$, $\forall 1 \le i \le k$. Also, since h is monotonically non-decreasing for each component, we have

$$f(tx + (1 - t)y) = h \begin{pmatrix} g_1(tx + (1 - t)y) \\ \vdots \\ g_k(tx + (1 - t)y) \end{pmatrix} \le h \begin{pmatrix} tg_1(x) + (1 - t)g_1(y) \\ \vdots \\ tg_k(x) + (1 - t)g_k(y) \end{pmatrix}$$
$$= h \left(t \begin{bmatrix} g_1(x) \\ \vdots \\ g_k(x) \end{bmatrix} + (1 - t) \begin{bmatrix} g_1(y) \\ \vdots \\ g_k(y) \end{bmatrix} \right) = h \left(tg(x) + (1 - t)g(y) \right)$$

Since h is convex, we have

$$f(tx + (1 - t)y) = h(tg(x) + (1 - t)g(y)) \le th(g(x)) + (1 - t)h(g(y))$$
$$= tf(x) + (1 - t)f(y)$$

Therefore, f is a convex function.

For 2:

Let $p_i = -g_i$, $\forall 1 \le i \le k$. Then, we know any p_i is convex since any f_i is concave. Then, $dom\ p_1, \ldots, dom\ p_k$ are convex sets, so $dom\ g_1, \ldots, dom\ g_k$ are convex sets as well since $dom\ p_i = dom\ g_i, \forall 1 \le i \le k$.

Note that since $dom f = dom g = dom g_1 \cap ... \cap dom g_k$, where $dom g_1, ..., dom g_k$ are all convex sets, we know dom f is also convex by Proposition 3.8.1.

Also, for any $x, y \in dom f$, $0 \le t \le 1$, $tx + (1 - t)y \in dom f = dom g$, since

dom f is convex. Then, we have

$$tg_i(x) + (1-t)g_i(y) = tg_i(x) + g_i(y) - tg_i(y)$$

$$= -t[-g_i(x)] - [-g_i(y)] + t[-g_i(y)] = -tp_i(x) - p_i(y) + tp_i(y)$$

$$= -[tp_i(x) + (1-t)p_i(y)], \forall 1 \le i \le k$$

Note that since any p_i is convex,

$$tp_i(x) + (1-t)p_i(y) \ge p_i(tx + (1-t)y), \forall 1 \le i \le k$$

$$-[tp_i(x) + (1-t)p_i(y)] \le -p_i(tx + (1-t)y) = g_i(tx + (1-t)y), \forall 1 \le i \le k$$
 Therefore,

$$tg_i(x) + (1-t)g_i(y) = -[tp_i(x) + (1-t)p_i(y)] \le g_i(tx + (1-t)y), \forall 1 \le i$$
< k

Also, since h is monotonically non-increasing for each component,

$$h\Big(g(tx+(1-t)y)\Big)=h\left(\begin{bmatrix}g_1(tx+(1-t)y)\\ \vdots\\ g_k(tx+(1-t)y)\end{bmatrix}\right)\leq h\Big(tg(x)+(1-t)g(y)\Big)$$

Thus,

$$f(tx + (1-t)y) = h(g(tx + (1-t)y)) \le h(tg(x) + (1-t)g(y))$$

Since h is convex,

$$f(tx + (1-t)y) \le h(tg(x) + (1-t)g(y)) \le th(g(x)) + (1-t)h(g(y))$$

= $tf(x) + (1-t)f(y)$

Therefore, f is a convex function.

(4 points) Let $x \in \mathbb{R}^n$. Show

1.
$$f(x) = \ln(\sum_{i=1}^{n} exp(x_i))$$
 is a convex function

(Hint: show that $\nabla^2 f(x) = \operatorname{diag}(\nabla f(x)) - \nabla f(x)^T \nabla f(x)$ where diag is an operator that reformulate a vector as a diagonal matrix.)

Proof:

For f(x), we need $\sum_{i=1}^{n} e^{x_i} > 0$. Note that for any $x_i \in R$, $e^{x_i} > 0$, $\forall 1 \le i \le n$, we have $\sum_{i=1}^{n} e^{x_i} > 0$ for any $x_i \in R$. Therefore, $dom \ f = R^n$.

Let $u, v \in \mathbb{R}^n$, we know for any $0 \le t \le 1$, $tu + (1 - t)v \in \mathbb{R}^n$, so $dom f = \mathbb{R}^n$ is convex trivially.

Then, we have

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}} \\ \vdots \\ \frac{e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{bmatrix}$$

$$\nabla f(x) \nabla f(x)^T = \begin{bmatrix} \frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}} \\ \vdots \\ \frac{e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{bmatrix} \begin{bmatrix} \frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}} & \dots & \frac{e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{x_1} e^{x_1}}{\sum_{i=1}^n e^{x_i}} & \dots & \frac{e^{x_1} e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{x_1} e^{x_1}}{\sum_{i=1}^n e^{x_i}} & \dots & \frac{e^{x_n} e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{bmatrix}$$

$$diag(\nabla f(x)) = \begin{bmatrix} \frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}} & \dots & \frac{e^{x_n}}{\sum_{i=1}^n e^{x_i}} \end{bmatrix}$$

Then, the hessian matrix for any $x \in dom f$ satisfies:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \dots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{x_{1}} (\sum_{i=1}^{n} e^{x_{i}}) - e^{x_{1}} e^{x_{1}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} & \dots & -\frac{e^{x_{1}} e^{x_{n}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} \\ \vdots & \ddots & \vdots \\ -\frac{e^{x_{n}} e^{x_{1}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} & \dots & \frac{e^{x_{n}} (\sum_{i=1}^{n} e^{x_{i}}) - e^{x_{n}} e^{x_{n}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{x_{1}}}{\sum_{i=1}^{n} e^{x_{i}}} - \frac{e^{x_{1}} e^{x_{1}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} & \dots & -\frac{e^{x_{1}} e^{x_{n}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{x_{1}}}{\sum_{i=1}^{n} e^{x_{i}}} - \frac{e^{x_{1}} e^{x_{1}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} & \dots & \frac{e^{x_{n}} e^{x_{n}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{x_{1}}}{\sum_{i=1}^{n} e^{x_{i}}} \\ \vdots & \ddots & \vdots \\ \frac{e^{x_{n}}}{\sum_{i=1}^{n} e^{x_{i}}} \end{bmatrix} - \begin{bmatrix} \frac{e^{x_{1}} e^{x_{1}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} & \dots & \frac{e^{x_{n}} e^{x_{n}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} \\ \vdots & \ddots & \vdots \\ \frac{e^{x_{n}} e^{x_{1}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} & \dots & \frac{e^{x_{n}} e^{x_{n}}}{(\sum_{i=1}^{n} e^{x_{i}})^{2}} \end{bmatrix}$$

$$= diag(\nabla f(x)) - \nabla f(x) \nabla f(x)^{T}$$

Then, for any $y \neq 0 \in \mathbb{R}^n$, we all have

$$y^{T}\nabla^{2}f(x)y = y^{T} \Big[diag \Big(\nabla f(x) \Big) - \nabla f(x) \nabla f(x)^{T} \Big] y$$
$$= y^{T} diag \Big(\nabla f(x) \Big) y - y^{T} \nabla f(x) \nabla f(x)^{T} y$$

For convenience, we let

$$\nabla f(x) = \begin{bmatrix} \frac{e^{x_1}}{\sum_{i=1}^n e^{x_i}} \\ \vdots \\ e^{x_n} \\ \frac{\sum_{i=1}^n e^{x_i}} \end{bmatrix} = \begin{bmatrix} d_1 \\ \vdots \\ d_n \end{bmatrix} = d$$

So

$$diag(\nabla f(x)) = \begin{bmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{bmatrix} = D$$

Since $0 < e^{x_j} < \sum_{i=1}^n e^{x_i}$, $\forall 1 \le j \le n$, we know $0 < d_j = \frac{e^{x_j}}{\sum_{i=1}^n e^{x_i}} < 1$. Then,

$$\begin{split} y^{T}\nabla^{2}f(x)y &= y^{T}diag(\nabla f(x))y - y^{T}\nabla f(x)\nabla f(x)^{T}y = y^{T}Dy - y^{T}dd^{T}y \\ &= [y_{1} \ ... \ y_{n}]\begin{bmatrix} d_{1} \\ \vdots \\ d_{n} \end{bmatrix}\begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} - (y^{T}d)^{2} \\ &= [y_{1}d_{1} \ ... \ y_{n}d_{n}]\begin{bmatrix} y_{1} \\ \vdots \\ y_{n} \end{bmatrix} - \left([y_{1} \ ... \ y_{n}] \begin{bmatrix} d_{1} \\ \vdots \\ d_{n} \end{bmatrix} \right)^{2} \\ &= \left(\sum_{i=1}^{n} y_{i}^{2} d_{i} \right) - \left(\sum_{i=1}^{n} y_{i} d_{i} \right)^{2} \\ &= \left(\sum_{i=1}^{n} y_{i}^{2} \sum_{m=1}^{n} e^{x_{m}} \right) - \left(\sum_{i=1}^{n} y_{i} \frac{e^{x_{i}}}{\sum_{m=1}^{n} e^{x_{m}}} \right)^{2} \\ &= \frac{1}{\sum_{m=1}^{n} e^{x_{m}}} \left(\sum_{i=1}^{n} y_{i}^{2} e^{x_{i}} \right) - \left(\sum_{i=1}^{n} y_{i} e^{x_{i}} \right)^{2} \\ &= \frac{\left(\sum_{m=1}^{n} e^{x_{m}} \right) \left(\sum_{i=1}^{n} y_{i}^{2} e^{x_{i}} \right) - \left(\sum_{i=1}^{n} y_{i} e^{x_{i}} \right)^{2}}{\left(\sum_{m=1}^{n} e^{x_{m}} \right)^{2}} \\ &= \frac{\left\| \left[\sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} - \left(\left[y_{1} \sqrt{e^{x_{1}}} \ ... \ y_{n} \sqrt{e^{x_{n}}} \right] \left[\sqrt{e^{x_{1}}} \right] \right|_{2}^{2}}{\left(\sum_{m=1}^{n} e^{x_{m}} \right)^{2}} \\ &= \frac{\left\| \left[\sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} - \left\| \left[\sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \cos^{2}(\theta)}{\left(\sum_{m=1}^{n} e^{x_{m}} \right)^{2}} \\ &= \frac{\left\| \left[\sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} - \left\| \left[\sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \cos^{2}(\theta)}{\left(\sum_{m=1}^{n} e^{x_{m}} \right)^{2}} \\ &= \frac{\left\| \left[\sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} - \left[\sqrt{e^{x_{1}}} \right] \left\| \left[y_{1} \sqrt{e^{x_{1}}} \right] \right\|_{2}^{2} \cos^{2}(\theta)}{\left(\sum_{m=1}^{n} e^{x_{m}} \right)^{2}} \end{aligned}$$

Note that since $0 \le \cos^2(\theta) \le \cos(\theta) \le 1$, $1 - \cos^2(\theta) \ge 0$, we have

$$y^{T} \nabla^{2} f(x) y = \frac{\left\| \begin{bmatrix} \sqrt{e^{x_{1}}} \\ \vdots \\ \sqrt{e^{x_{n}}} \end{bmatrix} \right\|_{2}^{2} \left\| \begin{bmatrix} y_{1} \sqrt{e^{x_{1}}} \\ \vdots \\ y_{n} \sqrt{e^{x_{n}}} \end{bmatrix} \right\|_{2}^{2} (1 - \cos^{2}(\theta))}{(\sum_{m=1}^{n} e^{x_{m}})^{2}} \ge 0$$

Therefore, $\nabla^2 f(x)$ is PSD and dom f is a convex set, which means f is a convex function.

(6 points) We say \bar{x} is a saddle point if $\nabla^2 f(\bar{x})$ has both negative and positive eigenvalues. Now given function

$$f(x) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

Compute all its stationary point and justify if they are local optimum (minimizer or maximizer), saddle points, or global optimum (minimizer or maximizer)?

Solution:

First, we check the convexity of f(x):

For
$$z = \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix} \in R^2 = dom f$$
, $\nabla^2 f(z) = \begin{bmatrix} 4 + 12 * \left(-\frac{1}{2} \right) + 12 \left(-\frac{1}{2} \right)^2 & -2 \\ -2 & 2 \end{bmatrix} = \frac{1}{2} \left[-\frac{1}{2} \right] \left[-\frac{1}{2}$

$$\begin{bmatrix} 4-6+3 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$$

Consider
$$l = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \in \mathbb{R}^2$$
, then $l^T \nabla^2 f(z) l = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} =$

 $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -1 < 0$, which means $\nabla^2 f(z)$ is not PSD by definition, so f is not a convex function by Proposition 4.9.1.

Then,

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 \\ 2x_2 - 2x_1 \end{bmatrix}$$

Solve

$$\nabla f(x) = \begin{bmatrix} 4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 \\ 2x_2 - 2x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} 4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 = 0 \ (1) \\ 2x_2 - 2x_1 = 0 \ (2) \end{cases}$$

From (2),

$$2x_2 - 2x_1 = 0$$
$$x_1 = x_2$$

Let $x_1 = x_2 = t$, and substitute it into (1):

$$4x_1 - 2x_2 + 6x_1^2 + 4x_1^3 = 4t - 2t + 6t^2 + 4t^3 = 4t^3 + 6t^2 + 2t = 0$$

When t = 0, t satisfies the equation, so $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a solution.

When $t \neq 0$,

$$4t^{3} + 6t^{2} + 2t = 0$$

$$2t^{2} + 3t + 1 = 0$$

$$t = \frac{-3 \pm \sqrt{3^{2} - 4 * 2 * 1}}{2 * 2} = \frac{-3 \pm \sqrt{9 - 8}}{4} = \frac{-3 \pm 1}{4}$$

$$t = -1 \text{ or } t = -\frac{1}{2}$$

Therefore, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$, and $\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$ are all stationary points of f(x).

Then, to decide if they are local optimum, saddle points, or global minimizer, we compute the Hessian matrix of f(x):

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 4 + 12x_1 + 12x_1^2 & -2 \\ -2 & 2 \end{bmatrix}$$

For $x = [0, 0]^T$,

$$\nabla^2 f\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix}$$

$$\nabla^2 f\begin{pmatrix} 0 \\ 0 \end{pmatrix} v = \lambda v$$

$$\begin{pmatrix} \nabla^2 f\begin{pmatrix} 0 \\ 0 \end{pmatrix} - \lambda I \end{pmatrix} v = 0$$

$$\begin{bmatrix} 4 - \lambda & -2 \\ -2 & 2 - \lambda \end{bmatrix} v = 0$$

$$\det \begin{pmatrix} 4 - \lambda & -2 \\ -2 & 2 - \lambda \end{pmatrix} = (4 - \lambda)(2 - \lambda) - 4 = 0$$

$$8 - 6\lambda + \lambda^2 - 4 = 0$$

$$\lambda^2 - 6\lambda + 4 = 0$$

$$\lambda = \frac{6 \pm \sqrt{36 - 16}}{2} = \frac{6 \pm 2\sqrt{5}}{2} = 3 \pm \sqrt{5} > 0$$

Since all eigenvalues of $\nabla^2 f \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ are positive, $\nabla^2 f \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is positive definite by

Proposition 2.19, which means $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a strict local minimizer by Theorem 5.4. For $\mathbf{x} = [-1, -1]^T$,

$$\nabla^2 f\left(\begin{bmatrix}-1\\-1\end{bmatrix}\right) = \begin{bmatrix}4 & -2\\-2 & 2\end{bmatrix}$$

Thus, by the calculation above, $\nabla^2 f \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ also has $\lambda = 3 \pm \sqrt{5} > 0$. Hence,

 $\nabla^2 f \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ is positive definite by Proposition 2.19, which means $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a strict local minimizer by Theorem 5.4.

For $x = \left[-\frac{1}{2}, -\frac{1}{2} \right]^T$,

$$\nabla^2 f \left(\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \right) = \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$$

Then, we calculate the eigenvalues of it:

$$\nabla^2 f \left(\begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \right) v = \lambda v$$

$$\left(\nabla^2 f \left(\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \right) - \lambda I \right) v = 0$$

$$\begin{bmatrix} 1 - \lambda & -2 \\ -2 & 2 - \lambda \end{bmatrix} v = 0$$

$$(1 - \lambda)(2 - \lambda) - 4 = 0$$

$$\lambda^2 - 3\lambda - 2 = 0$$

$$\lambda = \frac{3 \pm \sqrt{9 + 8}}{2} = \frac{3 \pm \sqrt{17}}{2} = \frac{\sqrt{9} \pm \sqrt{17}}{2}$$

$$\lambda_1 = \frac{\sqrt{9} - \sqrt{17}}{2} < 0, \lambda_2 = \frac{\sqrt{9} + \sqrt{17}}{2} > 0$$

Since $\nabla^2 f\left(\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}\right)$ has both positive and negative eigenvalues, $\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$ is a saddle

point.

Then, we compare 2 local minimizers to decide global minimizers:

$$f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = 0 = f\left(\begin{bmatrix}-1\\-1\end{bmatrix}\right) = 2 + 1 - 2 - 2 + 1 = 0$$

Then, we note that

$$2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4 = (x_1 - x_2)^2 + x_1^2(x_1 + 1)^2 \ge 0$$

Therefore, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ are global minimizers (and also local minimizers trivially),

and
$$\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$
 is not global or local minimizer, since $f\left(\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}\right) = 2 * \frac{1}{4} + \frac{1}{4} - 2 * \frac{1}{4} - 2 * \frac{1}{4} + \frac{1}{4} = 2 * \frac$

Finally, since for $x = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$,

$$\lim_{x_1 \to \infty} f(x) = \lim_{x_1 \to \infty} 2x_1^2 + 2x_1^3 + x_1^4 = +\infty$$

The function has no global maximizer

Therefore, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ are global minimizers (and also local minimizers trivially),

and
$$\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$
 is a saddle point.

(4 points) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Consider the following optimization problem

$$p_{\min} = \min y^T A y$$

s. t. $||y||_2 = 1$

and

$$p_{\text{max}} = \max y^T A y$$

s. t. $||y||_2 = 1$

Prove: $p_{\min} = \lambda_{\min}$ and $p_{\max} = \lambda_{\max}$ where λ_{\min} is the minimum eigenvalue of A and λ_{\max} is the maximum eigenvalue of A.

(Hint: show that $\lambda_{\min}||y||_2^2 \le y^T Ay \le \lambda_{\max}||y||_2^2$)

Proof:

Let (λ_i, v_i) , $\forall 1 \le i \le n$ be mutually orthogonal and linearly independent normalized eigenpairs. Such eigenpairs exist because A is symmetric according to Proposition 2.15.

Then, for any $y \in \mathbb{R}^n$ such that $||y||_2 = 1$, y can be represented as the linear combination of eigenvectors of A:

$$y = \sum_{i=1}^{n} \alpha_i v_i$$
, $\alpha_i \in R$, $\forall 1 \le i \le n$

Then, we have

$$y^{T}Ay = y^{T}A\sum_{i=1}^{n} \alpha_{i}v_{i} = y^{T}\sum_{i=1}^{n} \alpha_{i}Av_{i} = y^{T}\sum_{i=1}^{n} \alpha_{i}\lambda_{i}v_{i} \leq y^{T}\sum_{i=1}^{n} \alpha_{i}\lambda_{max}v_{i}$$

$$= y^{T}\lambda_{max}\sum_{i=1}^{n} \alpha_{i}v_{i} = y^{T}\lambda_{max}y = \lambda_{max}||y||_{2}^{2} = \lambda_{max}$$

Similarly,

$$y^{T}Ay = y^{T} \sum_{i=1}^{n} \alpha_{i} \lambda_{i} v_{i} \ge y^{T} \sum_{i=1}^{n} \alpha_{i} \lambda_{min} v_{i} = y^{T} \lambda_{min} \sum_{i=1}^{n} \alpha_{i} v_{i} = y^{T} \lambda_{min} y$$
$$= \lambda_{min} ||y||_{2}^{2} = \lambda_{min}$$

That said,

$$\lambda_{min} \le y^T A y \le \lambda_{max}$$

Then, let (λ_{min}, v_{min}) be the eigenpair with the smallest eigenvalue λ_{min} and $||v_{min}||_2 = 1$, and we have

$$v_{min}^T A v_{min} = v_{min}^T \lambda_{min} v_{min} = \lambda_{min} ||v_{min}||_2^2 = \lambda_{min}$$

Similarly, let (λ_{max}, v_{max}) be the eigenpair with the largest eigenvalue λ_{max} and $||v_{max}||_2 = 1$, and we have

$$v_{max}^T A v_{max} = v_{max}^T \lambda_{max} v_{max} = \lambda_{max} ||v_{max}||_2^2 = \lambda_{max}$$

Therefore, $p_{min} = \lambda_{min}$ and $p_{max} = \lambda_{max}$.

(4 points) Let function $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 -class function, which also has a Lipschitz gradient, that is,

$$||\nabla f(x) - \nabla f(y)||_2 \le L||x - y||_2$$

where L is a positive number.

Prove $||\nabla^2 f(x)||_2 \le L$.

(Hint: use Taylor theorem, and show the maximum absolute value of the eigenvalues of $\nabla^2 f(x)$ is bounded.)

Proof:

Method 1: If we can use Taylor Theorem for the second derivative:

Let $x \in \mathbb{R}^n$, v_{max} be the normalized eigenvector of $\nabla^2 f(x)$ with the corresponding

eigenvalue λ_{max} , where $|\lambda_{max}| = \rho(\nabla^2 f(x))$ is the largest among all eigenvalues.

Then, let $y = x - cv_{max} \in R^n$, $c \in R$.

By Taylor Theorem for the second derivative,

$$\nabla f(x) = \nabla f(y) + (x - y)^T \nabla^2 f(y + \theta(x - y)), \exists 0 < \theta < 1$$

$$\nabla f(x) - \nabla f(y) = (x - y)^T \nabla^2 f(y + \theta(x - y))$$

$$\|(x-y)^T \nabla^2 f(y + \theta(x-y))\|_2 = \|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$

When $c \to 0$, we get $x \to y$, which gives

$$\|(x-y)^T \nabla^2 f(x)\|_2 = \|\nabla^2 f(x)^T (x-y)\|_2 = \|\nabla^2 f(x) (x-y)\|_2 \le L \|x-y\|_2$$

$$\left\| \nabla^2 f(x) \frac{(x-y)}{\|x-y\|_2} \right\|_2 = \left\| \nabla^2 f(x) \frac{c v_{max}}{\|c v_{max}\|_2} \right\|_2 = \left\| \frac{\lambda_{max}^{c v_{max}}}{\|c v_{max}\|_2} \right\|_2$$

$$= \frac{\left|\lambda_{max}\right|}{\|cv_{max}\|_{2}} \|cv_{max}\|_{2} = \left|\lambda_{max}\right| = \rho(\nabla^{2}f(x)) = \|\nabla^{2}f(x)\|_{2} \le L$$

Method 2: Just use Taylor Theorem in the lecture note:

Let $x \in \mathbb{R}^n$, v_{max} be the normalized eigenvector of $\nabla^2 f(x)$ with the corresponding eigenvalue λ_{max} , where $|\lambda_{max}| = \rho(\nabla^2 f(x))$ is the largest among all eigenvalues.

Then, let $y = x - cv_{max} \in R^n$, $c \in R$.

By Taylor Theorem, there exists some $0 < \theta$, $\alpha < 1$, such that

$$f(x) = f(y) + (x - y)^{T} \nabla f(y) + \frac{1}{2} (x - y)^{T} \nabla^{2} f(y + \theta(x - y))(x - y) (*)$$

$$f(y) = f(x) + (y - x)^{T} \nabla f(x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x + \alpha(y - x))(y - x) (**)$$

Let (*) + (**):

$$(x-y)^{T}\nabla f(x) - (x-y)^{T}\nabla f(y)$$

$$= \frac{1}{2}(x-y)^{T}\nabla^{2}f(y+\theta(x-y))(x-y)$$

$$+ \frac{1}{2}(y-x)^{T}\nabla^{2}f(x+\alpha(y-x))(y-x)$$

$$|(x-y)^{T}(\nabla f(x) - \nabla f(y))|$$

$$= \left| \frac{1}{2} (x - y)^T \nabla^2 f \left(y + \theta (x - y) \right) (x - y) \right.$$

$$\left. + \frac{1}{2} (x - y)^T \nabla^2 f \left(x + \alpha (y - x) \right) (x - y) \right|$$

When $c \to 0$, we get $x \to y$, which gives

$$\begin{aligned} \left| (x - y)^{T} \left(\nabla f(x) - \nabla f(y) \right) \right| \\ &= \left| \frac{1}{2} (x - y)^{T} \nabla^{2} f(x) (x - y) + \frac{1}{2} (x - y)^{T} \nabla^{2} f(x) (x - y) \right| \\ &= \left| (x - y)^{T} \nabla^{2} f(x) (x - y) \right| \\ \left| (x - y)^{T} \nabla^{2} f(x) (x - y) \right| &= \left| c v_{max}^{T} \nabla^{2} f(x) c v_{max} \right| = \left| c v_{max}^{T} \lambda_{max}^{T} c v_{max} \right| \\ &= \lambda_{max} \| c v_{max} \|_{2}^{2} = \left| (x - y)^{T} \left(\nabla f(x) - \nabla f(y) \right) \right| \end{aligned}$$

By Schwartz Inequality,

$$\lambda_{\max} \|cv_{max}\|_{2}^{2} = \left| (x - y)^{T} (\nabla f(x) - \nabla f(y)) \right| \leq \|x - y\|_{2} \|\nabla f(x) - \nabla f(y)\|_{2}$$

$$\leq \|x - y\|_{2} L \|x - y\|_{2} = L \|x - y\|_{2}^{2} = L \|cv_{max}\|_{2}^{2}$$
herefore since $\|cy - y\|_{2}^{2} > 0$

Therefore, since $||cv_{max}||_2^2 \ge 0$,

$$\|\nabla^2 f(x)\|_2 = \rho \big(\nabla^2 f(x)\big) = \lambda_{\max} \le L$$