

LABORATORIO 6. Control de la posición de una masa usando compensadores

	Identificación: GL-AA-F-1			
Guías de Prácticas de Laboratorio	Número de Páginas: 7	Revisión No.: 2		
		Emisión: 8/01/31		
Laboratorio de:				
Control Lineal				
Titulo de la Práctica de Laboratorio:				
LABORATORIO 6. Control de la posición de una masa usando compensadores				

Elaborado por:	Revisado por:	Aprobado por:
Ing. Leonardo Solaque, Ph.D. Docente		
IM. Adriana Riveros, MSc. Docente	Ing. Olga Ramos	Ing. William Gomez. Ph.D
Ing. Andrés Castro, MSc. Docente	Jefe área Automatización y Control	Director de Programa
Ing. Vladimir Prada, Ph.D. Docente	Programa de Ingeniería en Mecatrónica	Ingeniería en Mecatrónica
Programa de Ingeniería en Mecatrónica		

LABORATORIO 6. Control de la posición de una masa usando compensadores

Control de Cambios

Descripción del Cambio	Justificación del Cambio	Fecha de Elaboración / Actualización
Se cambian las guías al nuevo formato	Nuevo formato para implementar	07/08/2018
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	21/01/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	29/07/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	20/01/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	28/9/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	23/01/2021

LABORATORIO 6. Control de la posición de una masa usando compensadores

1. FACULTAD O UNIDAD ACADÉMICA: INGENIERÍA

2. PROGRAMA: INGENIERÍA EN MECATRÓNICA

3. ASIGNATURA: CONTROL LINEAL Y LABORATORIO

4. SEMESTRE: SÉPTIMO

5. OBJETIVOS:

General: Implementar controles basado en técnicas de compensadores tal que controle la posición de la masa, ante entradas escalón y rampa.

Específicos:

- Realizar el diagrama de Bode del sistema.
- Realizar el diagrama del lugar geométrico del sistema.
- Identificar las ganancias y fases que debe tener un sistema para cumplir el diseño deseado del control.
- Diseñar reguladores desde el dominio de la frecuencia Compensadores.

6. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL ESTUDIANTE: *No aplica al contexto actual de la clase

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Motor en DC + masa	1	Equipo por grupo de trabajo
Conjunto de amplificadores operacionales	1	Equipo por grupo de trabajo
Conjunto de resistores y capacitores	1	Equipo por grupo de trabajo

LABORATORIO 6. Control de la posición de una masa usando compensadores

7. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS A UTILIZAR: *No aplica al contexto actual de la clase

- Para el ingreso al laboratorio será necesaria la bata blanca.
- Se recomienda hacer un uso adecuado de los computadores.
- Es recomendable apagar los elementos si se va a realizar cualquier cambio en el circuito electrónico o en la parte mecánica del sistema.
- No exceder los valores máximos permitidos de voltajes y corrientes indicados para los dispositivos utilizados.
- Consultar en los manuales y datasheet correspondientes.
- No sobrepasar el máximo de potencia disipada por las resistencias.

8. PROCEDIMIENTO, MÉTODO O ACTIVIDADES:

- Para la realización de la práctica, se deben revisar los temas que asocian las siguientes preguntas:
 - ¿Cómo es el diseño de compensadores mediante BODE (redes de atraso, adelanto y combinación de ellas)? Ilustrar con ejemplos.
 - ¿Cómo es el diseño de compensadores mediante Lugar geométrico de las raíces (redes de atraso, adelanto y combinación de ellas)? Ilustrar con ejemplos.
 - ¿Cómo se puede relacionar el margen de ganancia $M_{\mathcal{G}}$ y de fase M_{ϕ} con los coeficientes temporales (t_s y ξ) propios de una respuesta de un sistema de segundo orden?
- Partiendo del concepto del sistema de la Figura 1, realizar el montaje pertinente, de manera que se tenga como entrada del sistema el voltaje que controla el motor DC y como salida la posición de la masa.
- Adquirir las señales correspondientes a la salida entrada del sistema, y aproximar a un sistema de primer orden/segundo orden, considerando métodos gráficos o mediante respuesta frecuencial.
- Para las funciones de transferencia encontradas, diseñar dos controles, uno por BODE y otro por lugar geométrico de las raíces, para la posición de la masa, tal que cumpla: e_{ss} = 0, ξ = 0.8 , y t_s = 90% del tiempo en lazo abierto, para seguir escalon y rampa.

LABORATORIO 6. Control de la posición de una masa usando compensadores

Figura 1. Masa + Motor DC

Recuerde tener como soporte el sistema trabajado en la práctica 4 y la simulación mediante Simscape-Multibody [2], para mostrar los diseños y su respectivo funcionamiento. No olvide comentar los resultados y adjuntarlos en el informe.

- Verificar el funcionamiento de por lo menos uno de los controles diseñados con un software de electrónica como Porteus.
- > El informe debe reflejar la profundización en los temas aquí tratados, las respuestas a las preguntas de inicio de sección, los desarrollos de los controles diseñados, su validación en simulación (simulink-proteus) y el respectivo análisis.

9. RESULTADOS ESPERADOS:

- Modelado y representaciones en función de transferencia y espacio de estados del sistema.
- Simulación de un sistema Masa+Motor DC controlado por compensadores, que garantice un error en estado estable igual a cero para entrada escalón y ante entrada rampa.
- > Informe en formato IEEE

10. CRITERIO DE EVALUACIÓN A LA PRESENTE PRÁCTICA:

Por medio de esta práctica se desarrollarán las siguientes competencias:

> Habilidad para identificar, formular y resolver problemas complejos de Ingeniería aplicando principios de Ingeniería, ciencias y matemáticas.

LABORATORIO 6. Control de la posición de una masa usando compensadores

- > Habilidad para comunicarse efectivamente ante un rango de audiencias.
- Capacidad de funcionar de manera efectiva en un equipo cuyos miembros juntos proporcionan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.
- Capacidad de desarrollar y llevar a cabo la experimentación adecuada, analizar e interpretar datos, y usar el juicio de Ingeniería para sacar conclusiones.

Las competencias descritas anteriormente se evaluarán mediante los siguientes indicadores:

- ldentifica las variables que intervienen en un problema de ingeniería.
- Propone y/o formula modelos que representan las relaciones de las variables de un problema.
- Identifica y aplica leyes, teoremas, principios para la solución de problemas de ingeniería.
- Establece los requerimientos de ingeniería que permiten la adecuada operación de un sistema, a fin de cumplir normativas y necesidades del usuario final.
- Maneja las herramientas tecnológicas y computacionales para la solución de problemas complejos de ingeniería.
- Presenta sus ideas en forma clara y concisa, utilizando un lenguaje apropiado al contexto.
- Utiliza diferentes formas de comunicación con el fin de transmitir sus ideas, dependiendo del tipo de audiencia.
- Redacta apropiadamente informes utilizando formatos estandarizados, referenciando, y utilizando reglas gramaticales y ortográficas.
- Se comunica adecuadamente con los integrantes del equipo, con el fin de desarrollar las tareas dentro de un entorno colaborativo, para cumplir los objetivos del proyecto.
- Identifica los parámetros asociados a la problemática, sus variables de entrada y los resultados esperados.
- Formula y ejecuta el protocolo experimental.
- Analiza e interpreta los resultados obtenidos tras la experimentación (en laboratorios y/o mediante el uso de herramientas computacionales).
- Concluye sobre resultados obtenidos, aplicando juicios de ingeniería.

LABORATORIO 6. Control de la posición de una masa usando compensadores