(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 April 2002 (04.04.2002)

PCT

(10) International Publication Number WO 02/26768 A2

(51) International Patent Classification7:

C07K

- (21) International Application Number: PCT/US01/30877
- (22) International Filing Date: 1 October 2001 (01.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 60/236,449 29 September 2000 (29.09.2000) US
- (71) Applicant (for all designated States except US): GENAIS-SANCE PHARMACEUTICALS, INC. [US/US]; Five Science Park, New Haven, CT 06511 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KAZEMI, Amir [US/US]; 53 Southwind Drive, Wallingford, CT 06492 (US). KLIEM, Stefanie, E. [DE/US]; Kiefernweg 37, 61440 Oberusel (DE). LANZ, Elizabeth, M. [US/US]; 111 Park Street, No. 5U, New Haven, CT 06511 (US). MESSER, Chad [US/US]; 41 Manor Street, Hamden, CT 06517 (US). TANGUAY, Debra, A. [US/US]; 902 Aspen Glen Drive, Hamden, CT 06518 (US).
- (74) Agents: FIELD, Gisela, M. et al.; Genaissance Pharmaceuticals, Inc., Five Science Park, New Haven, CT 06511 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HAPLOTYPES OF THE POR GENE

(57) Abstract: Novel genetic variants of the P450 (Cytochrome) Oxidoreductase (POR) gene are described. Various genotypes, haplotypes, and haplotype pairs that exist in the general United States population are disclosed for the POR gene. Compositions and methods for haplotyping and/or genotyping the POR gene in an individual are also disclosed. Polynucleotides defined by the haplotypes disclosed herein are also described.

HAPLOTYPES OF THE POR GENE

RELATED APPLICATIONS

5

10

15

20

25

30

35

This application claims the benefit of U.S. Provisional Application Serial 60/236,449 filed September 29, 2000.

FIELD OF THE INVENTION

This invention relates to variation in genes that encode pharmaceutically-important proteins. In particular, this invention provides genetic variants of the human P450 (cytochrome) oxidoreductase (POR) gene and methods for identifying which variant(s) of this gene is/are possessed by an individual.

BACKGROUND OF THE INVENTION

Current methods for identifying pharmaceuticals to treat disease often start by identifying, cloning, and expressing an important target protein related to the disease. A determination of whether an agonist or antagonist is needed to produce an effect that may benefit a patient with the disease is then made. Then, vast numbers of compounds are screened against the target protein to find new potential drugs. The desired outcome of this process is a lead compound that is specific for the target, thereby reducing the incidence of the undesired side effects usually caused by activity at non-intended targets. The lead compound identified in this screening process then undergoes further *in vitro* and *in vivo* testing to determine its absorption, disposition, metabolism and toxicological profiles. Typically, this testing involves use of cell lines and animal models with limited, if any, genetic diversity.

What this approach fails to consider, however, is that natural genetic variability exists between individuals in any and every population with respect to pharmaceutically-important proteins, including the protein targets of candidate drugs, the enzymes that metabolize these drugs and the proteins whose activity is modulated by such drug targets. Subtle alteration(s) in the primary nucleotide sequence of a gene encoding a pharmaceutically-important protein may be manifested as significant variation in expression, structure and/or function of the protein. Such alterations may explain the relatively high degree of uncertainty inherent in the treatment of individuals with a drug whose design is based upon a single representative example of the target or enzyme(s) involved in metabolizing the drug. For example, it is well-established that some drugs frequently have lower efficacy in some individuals than others, which means such individuals and their physicians must weigh the possible benefit of a larger dosage against a greater risk of side effects. Also, there is significant variation in how well people metabolize drugs and other exogenous chemicals, resulting in substantial interindividual variation in the toxicity and/or efficacy of such exogenous substances (Evans et al., 1999, Science 286:487-491). This variability in efficacy or toxicity of a drug in genetically-diverse patients makes many drugs ineffective or even dangerous in certain groups of the population, leading to the failure of

such drugs in clinical trials or their early withdrawal from the market even though they could be highly beneficial for other groups in the population. This problem significantly increases the time and cost of drug discovery and development, which is a matter of great public concern.

5

10

15

20 .

25

30

35

It is well-recognized by pharmaceutical scientists that considering the impact of the genetic variability of pharmaceutically-important proteins in the early phases of drug discovery and development is likely to reduce the failure rate of candidate and approved drugs (Marshall A 1997 Nature Biotech 15:1249-52; Kleyn PW et al. 1998 Science 281: 1820-21; Kola I 1999 Curr Opin Biotech 10:589-92; Hill AVS et al. 1999 in Evolution in Health and Disease Stearns SS (Ed.) Oxford University Press, New York, pp 62-76; Meyer U.A. 1999 in Evolution in Health and Disease Stearns SS (Ed.) Oxford University Press, New York, pp 41-49; Kalow W et al. 1999 Clin. Pharm. Therap. 66:445-7; Marshall, E 1999 Science 284:406-7; Judson R et al. 2000 Pharmacogenomics 1:1-12; Roses AD 2000 Nature 405:857-65). However, in practice this has been difficult to do, in large part because of the time and cost required for discovering the amount of genetic variation that exists in the population (Chakravarti A 1998 Nature Genet 19:216-7; Wang DG et al 1998 Science 280:1077-82; Chakravarti A 1999 Nat Genet 21:56-60 (suppl); Stephens JC 1999 Mol. Diagnosis 4:309-317; Kwok PY and Gu S 1999 Mol. Med. Today 5:538-43; Davidson S 2000 Nature Biotech 18:1134-5).

The standard for measuring genetic variation among individuals is the haplotype, which is the ordered combination of polymorphisms in the sequence of each form of a gene that exists in the population. Because haplotypes represent the variation across each form of a gene, they provide a more accurate and reliable measurement of genetic variation than individual polymorphisms. For example, while specific variations in gene sequences have been associated with a particular phenotype such as disease susceptibility (Roses AD supra; Ulbrecht M et al. 2000 Am J Respir Crit Care Med 161: 469-74) and drug response (Wolfe CR et al. 2000 BMJ 320:987-90; Dahl BS 1997 Acta Psychiatr Scand 96 (Suppl 391); 14-21), in many other cases an individual polymorphism may be found in a variety of genomic backgrounds, i.e., different haplotypes, and therefore shows no definitive coupling between the polymorphism and the causative site for the phenotype (Clark AG et al. 1998 Am J Hum Genet 63:595-612; Ulbrecht M et al. 2000 supra; Drysdale et al. 2000 PNAS 97:10483-10488). Thus, there is an unmet need in the pharmaceutical industry for information on what haplotypes exist in the population for pharmaceutically-important genes. Such haplotype information would be useful in improving the efficiency and output of several steps in the drug discovery and development process, including target validation, identifying lead compounds, and early phase clinical trials (Marshall et al., supra).

One pharmaceutically-important gene for the treatment of cancers is the P450 (cytochrome) oxidoreductase (POR) gene or its encoded product. POR is a flavoprotein localized to the nuclear envelope and endoplasmic reticulum of most cell types. POR is responsible for the transfer of electrons from NADPH to cytochrome P450 as well as heme oxygenase, squalene epoxidase and cytochrome b(5) (O' Leary KA and Kasper CB. Arch Biochem Biophys 2000 379:97-108).

Cytochrome P450-based cancer gene therapy is a novel prodrug activation strategy for cancer treatment. The primary goal of this type of therapy is to selectively increase tumor cell exposure to cytotoxic drug metabolites generated locally by a prodrug-activating P450 enzyme. This leads to a more efficient killing of the transduced tumor cells without a significant increase in host cytotoxicity (Waxman et al., Drug. Metab. Rev. 1999 May:503-22). An example of this type of therapy is illustrated by the use of Tirapazamine (TPZ), an anticancer drug that is activated to a cytotoxic radical intermediate in low oxygen environments, as occur in cancer cells. Cancer cells have reduced activity of POR, and, consequently, these cells are more resistant to TPZ under both aerobic and hypoxic conditions when compared to normal cells. When transfected with POR, however, cancer cell sensitivity to TPZ increases under both aerobic and hypoxic conditions (Saunders et al., Br. J. Cancer 2000.82:651-6). It is well known that TPZ is particularly effective when combined with alkylating agents such as cyclophosphamide (CPA). In a study by Jounaidi Y. and Waxman DJ (Cancer Res. 2000 60:3761-9), the effects of TPZ with CPA in a cytochrome P450 based prodrug activation gene therapy were examined. Gliosarcoma cells were transduced with genes encoding cytochrome P450 2B6 and with POR. TPZ exhibited a striking growth-inhibitory effect on the CPA-treated cytochromeP450 2B6/POR tumor cells under both normoxic and hypoxic conditions compared to tumor cells treated with TPZ alone or in combination with CPA. These results clearly show the utility of the cytochrome P450 based prodrug activation strategy in the effective treatment of cancer.

The P450 (cytochrome) oxidoreductase gene is located on chromosome 7q11.2 and contains 16 exons that encode a 676 amino acid protein. A reference sequence for the POR gene is shown in the contiguous lines of Figure 1(Genaissance Reference No. 6118814; SEQ ID NO: 1). Reference sequences for the coding sequence (GenBank Accession No. S90469.1) and protein are shown in Figures 2 (SEQ ID NO: 2) and 3 (SEQ ID NO: 3), respectively.

Because of the potential for variation in the POR gene to affect the expression and function of the encoded protein, it would be useful to know whether polymorphisms exist in the POR gene, as well as how such polymorphisms are combined in different copies of the gene. Such information could be applied for studying the biological function of POR as well as in identifying drugs targeting this protein for the treatment of disorders related to its abnormal expression or function.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

Accordingly, the inventors herein have discovered 26 novel polymorphic sites in the POR gene. These polymorphic sites (PS) correspond to the following nucleotide positions in Figure 1: 22635 (PS1), 29577 (PS2), 29754 (PS3), 30427 (PS4), 31531 (PS5), 31644 (PS6), 31648 (PS7), 32446 (PS8), 32478 (PS9), 33538 (PS10), 33551 (PS11), 33571 (PS12), 34766 (PS13), 34796 (PS14), 34797 (PS15), 34850 (PS16), 35325 (PS17), 35631 (PS18), 35632 (PS19), 35721 (PS20), 35774 (PS21), 35992 (PS22), 36054 (PS23), 36207 (PS24), 36330 (PS25) and 36617 (PS26). The polymorphisms at these sites are guanine or adenine at PS1, cytosine or thymine at PS2, cytosine or

thymine at PS3, cytosine or thymine at PS4, guanine or adenine at PS5, cytosine or thymine at PS6, cytosine or thymine at PS7, adenine or guanine at PS8, cytosine or thymine at PS9, cytosine or guanine at PS10, guanine or adenine at PS11, cytosine or thymine at PS12, cytosine or thymine at PS13, cytosine or thymine at PS14, thymine or cytosine at PS15, cytosine or guanine at PS16, guanine or adenine at PS17, thymine or cytosine at PS18, guanine or thymine at PS19, cytosine or thymine at PS20, thymine or cytosine at PS21, cytosine or thymine at PS22, cytosine or guanine at PS23, cytosine or guanine at PS24, guanine or adenine at PS25 and thymine or cytosine at PS26. In addition, the inventors have determined the identity of the alleles at these sites in a human reference population of 79 unrelated individuals self-identified as belonging to one of four major population groups: African descent, Asian, Caucasian and Hispanic/Latino. From this information, the inventors deduced a set of haplotypes and haplotype pairs for PS1-PS26 in the POR gene, which are shown below in Tables 5 and 4, respectively. Each of these POR haplotypes constitutes a code that defines the variant nucleotides that exist in the human population at this set of polymorphic sites in the POR gene. Thus each POR haplotype also represents a naturally-occurring isoform (also referred to herein as an "isogene") of the POR gene. The frequency of each haplotype and haplotype pair within the total reference population and within each of the four major population groups included in the reference population was also determined.

5

10

15

20

25

30

35

Thus, in one embodiment, the invention provides a method, composition and kit for genotyping the POR gene in an individual. The genotyping method comprises identifying the nucleotide pair that is present at one or more polymorphic sites selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26 in both copies of the POR gene from the individual. A genotyping composition of the invention comprises an oligonucleotide probe or primer which is designed to specifically hybridize to a target region containing, or adjacent to, one of these novel POR polymorphic sites. A genotyping kit of the invention comprises a set of oligonucleotides designed to genotype each of these novel POR polymorphic sites. The genotyping method, composition, and kit are useful in determining whether an individual has one of the haplotypes in Table 5 below or has one of the haplotype pairs in Table 4 below.

The invention also provides a method for haplotyping the POR gene in an individual. In one embodiment, the haplotyping method comprises determining, for one copy of the POR gene, the identity of the nucleotide at one or more polymorphic sites selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26. In another embodiment, the haplotyping method comprises determining whether one copy of the individual's POR gene is defined by one of the POR haplotypes shown in Table 5, below, or a sub-haplotype thereof. In a preferred embodiment, the haplotyping method comprises determining whether both copies of the individual's POR gene are defined by one of the POR haplotype pairs shown in Table 4 below, or a sub-haplotype pair thereof.

Establishing the POR haplotype or haplotype pair of an individual is useful for improving the efficiency and reliability of several steps in the discovery and development of drugs for treating diseases associated with POR activity, e.g., cancers.

5

10

15

20

25

30

35

For example, the haplotyping method can be used by the pharmaceutical research scientist to validate POR as a candidate target for treating a specific condition or disease predicted to be associated with POR activity. Determining for a particular population the frequency of one or more of the individual POR haplotypes or haplotype pairs described herein will facilitate a decision on whether to pursue POR as a target for treating the specific disease of interest. In particular, if variable POR activity is associated with the disease, then one or more POR haplotypes or haplotype pairs will be found at a higher frequency in disease cohorts than in appropriately genetically matched controls. Conversely, if each of the observed POR haplotypes are of similar frequencies in the disease and control groups, then it may be inferred that variable POR activity has little, if any, involvement with that disease. In either case, the pharmaceutical research scientist can, without a priori knowledge as to the phenotypic effect of any POR haplotype or haplotype pair, apply the information derived from detecting POR haplotypes in an individual to decide whether modulating POR activity would be useful in treating the disease.

The claimed invention is also useful in screening for compounds targeting POR to treat a specific condition or disease predicted to be associated with POR activity. For example, detecting which of the POR haplotypes or haplotype pairs disclosed herein are present in individual members of a population with the specific disease of interest enables the pharmaceutical scientist to screen for a compound(s) that displays the highest desired agonist or antagonist activity for each of the POR isoforms present in the disease population, or for only the most frequent POR isoforms present in the disease population. Thus, without requiring any *a priori* knowledge of the phenotypic effect of any particular POR haplotype or haplotype pair, the claimed haplotyping method provides the scientist with a tool to identify lead compounds that are more likely to show efficacy in clinical trials.

Haplotyping the POR gene in an individual is also useful in the design of clinical trials of candidate drugs for treating a specific condition or disease predicted to be associated with POR activity. For example, instead of randomly assigning patients with the disease of interest to the treatment or control group as is typically done now, determining which of the POR haplotype(s) disclosed herein are present in individual patients enables the pharmaceutical scientist to distribute POR haplotypes and/or haplotype pairs evenly to treatment and control groups, thereby reducing the potential for bias in the results that could be introduced by a larger frequency of a POR haplotype or haplotype pair that is associated with response to the drug being studied in the trial, even if this association was previously unknown. Thus, by practicing the claimed invention, the scientist can more confidently rely on the information learned from the trial, without first determining the phenotypic effect of any POR haplotype or haplotype pair.

In another embodiment, the invention provides a method for identifying an association

between a trait and a POR genotype, haplotype, or haplotype pair for one or more of the novel polymorphic sites described herein. The method comprises comparing the frequency of the POR genotype, haplotype, or haplotype pair in a population exhibiting the trait with the frequency of the POR genotype or haplotype in a reference population. A higher frequency of the POR genotype, haplotype, or haplotype pair in the trait population than in the reference population indicates the trait is associated with the POR genotype, haplotype, or haplotype pair. In preferred embodiments, the trait is susceptibility to a disease, severity of a disease, the staging of a disease or response to a drug. In a particularly preferred embodiment, the POR haplotype is selected from the haplotypes shown in Table 5, or a sub-haplotype thereof. Such methods have applicability in developing diagnostic tests and therapeutic treatments for cancers.

In yet another embodiment, the invention provides an isolated polynucleotide comprising a nucleotide sequence which is a polymorphic variant of a reference sequence for the POR gene or a fragment thereof. The reference sequence comprises the contiguous sequences shown in Figure 1 and the polymorphic variant comprises at least one polymorphism selected from the group consisting of adenine at PS1, thymine at PS2, thymine at PS3, thymine at PS4, adenine at PS5, thymine at PS6, thymine at PS7, guanine at PS8, thymine at PS9, guanine at PS10, adenine at PS11, thymine at PS12, thymine at PS13, thymine at PS14, cytosine at PS15, guanine at PS16, adenine at PS17, cytosine at PS18, thymine at PS19, thymine at PS20, cytosine at PS21, thymine at PS22, guanine at PS23, guanine at PS24, adenine at PS25 and cytosine at PS26.

A particularly preferred polymorphic variant is an isogene of the POR gene. A POR isogene of the invention comprises guanine or adenine at PS1, cytosine or thymine at PS2, cytosine or thymine at PS3, cytosine or thymine at PS4, guanine or adenine at PS5, cytosine or thymine at PS6, cytosine or thymine at PS7, adenine or guanine at PS8, cytosine or thymine at PS9, cytosine or guanine at PS10, guanine or adenine at PS11, cytosine or thymine at PS12, cytosine or thymine at PS13, cytosine or thymine at PS14, thymine or cytosine at PS15, cytosine or guanine at PS16, guanine or adenine at PS17, thymine or cytosine at PS18, guanine or thymine at PS19, cytosine or thymine at PS20, thymine or cytosine at PS21, cytosine or thymine at PS22, cytosine or guanine at PS23, cytosine or guanine at PS24, guanine or adenine at PS25 and thymine or cytosine at PS26. The invention also provides a collection of POR isogenes, referred to herein as a POR genome anthology.

In another embodiment, the invention provides a polynucleotide comprising a polymorphic variant of a reference sequence for a POR cDNA or a fragment thereof. The reference sequence comprises SEQ ID NO:2 (Fig.2) and the polymorphic cDNA comprises at least one polymorphism selected from the group consisting of thymine at a position corresponding to nucleotide 266, thymine at a position corresponding to nucleotide 357, thymine at a position corresponding to nucleotide 671, thymine at a position corresponding to nucleotide 675, thymine at a position corresponding to nucleotide 1443, cytosine at a position corresponding to nucleotide 1496 and guanine at a position corresponding to nucleotide 1703. A particularly preferred polymorphic cDNA variant comprises the

coding sequence of a POR isogene defined by haplotypes 1-21.

5

10

15

20

25

30

35

Polynucleotides complementary to these POR genomic and cDNA variants are also provided by the invention. It is believed that polymorphic variants of the POR gene will be useful in studying the expression and function of POR, and in expressing POR protein for use in screening for candidate drugs to treat diseases related to POR activity.

In other embodiments, the invention provides a recombinant expression vector comprising one of the polymorphic genomic and cDNA variants operably linked to expression regulatory elements as well as a recombinant host cell transformed or transfected with the expression vector. The recombinant vector and host cell may be used to express POR for protein structure analysis and drug binding studies.

In yet another embodiment, the invention provides a polypeptide comprising a polymorphic variant of a reference amino acid sequence for the POR protein. The reference amino acid sequence comprises SEQ ID NO:3 (Fig.3) and the polymorphic variant comprises at least one variant amino acid selected from the group consisting of isoleucine at a position corresponding to amino acid position 89, leucine at a position corresponding to amino acid position 224, alanine at a position corresponding to amino acid position 568. A polymorphic variant of POR is useful in studying the effect of the variation on the biological activity of POR as well as on the binding affinity of candidate drugs targeting POR for the treatment of cancers.

The present invention also provides antibodies that recognize and bind to the above polymorphic POR protein variant. Such antibodies can be utilized in a variety of diagnostic and prognostic formats and therapeutic methods.

The present invention also provides nonhuman transgenic animals comprising one or more of the POR polymorphic genomic variants described herein and methods for producing such animals. The transgenic animals are useful for studying expression of the POR isogenes *in vivo*, for *in vivo* screening and testing of drugs targeted against POR protein, and for testing the efficacy of therapeutic agents and compounds for cancers in a biological system.

The present invention also provides a computer system for storing and displaying polymorphism data determined for the POR gene. The computer system comprises a computer processing unit; a display; and a database containing the polymorphism data. The polymorphism data includes one or more of the following: the polymorphisms, the genotypes, the haplotypes, and the haplotype pairs identified for the POR gene in a reference population. In a preferred embodiment, the computer system is capable of producing a display showing POR haplotypes organized according to their evolutionary relationships.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a reference sequence for the POR gene (Genaissance Reference No.

6118814; contiguous lines), with the start and stop positions of each region of coding sequence indicated with a bracket ([or]) and the numerical position below the sequence and the polymorphic site(s) and polymorphism(s) identified by Applicants in a reference population indicated by the variant nucleotide positioned below the polymorphic site in the sequence. SEQ ID NO:1 is equivalent to Figure 1, with the two alternative allelic variants of each polymorphic site indicated by the appropriate nucleotide symbol (R= G or A, Y= T or C, M= A or C, K= G or T, S= G or C, and W= A or T; WIPO standard ST.25). SEQ ID NO:134 is a modified version of SEQ ID NO:1 that shows the context sequence of each polymorphic site, PS1-PS26, in a uniform format to facilitate electronic searching. For each polymorphic site, SEQ ID NO:134 contains a block of 60 bases of the nucleotide sequence encompassing the centrally-located polymorphic site at the 30th position, followed by 60 bases of unspecified sequence to represent that each PS is separated by genomic sequence whose composition is defined elsewhere herein.

Figure 2 illustrates a reference sequence for the POR coding sequence (contiguous lines; SEQ ID NO:2), with the polymorphic site(s) and polymorphism(s) identified by Applicants in a reference population indicated by the variant nucleotide positioned below the polymorphic site in the sequence.

Figure 3 illustrates a reference sequence for the POR protein (contiguous lines; SEQ ID NO:3), with the variant amino acid(s) caused by the polymorphism(s) of Figure 2 positioned below the polymorphic site in the sequence.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is based on the discovery of novel variants of the POR gene. As described in more detail below, the inventors herein discovered 21 isogenes of the POR gene by characterizing the POR gene found in genomic DNAs isolated from an Index Repository that contains immortalized cell lines from one chimpanzee and 93 human individuals. The human individuals included a reference population of 79 unrelated individuals self-identified as belonging to one of four major population groups: Caucasian (21 individuals), African descent (20 individuals), Asian (20 individuals), or Hispanic/Latino (18 individuals). To the extent possible, the members of this reference population were organized into population subgroups by their self-identified ethnogeographic origin as shown in Table 1 below.

5

10

15

20

25

Table 1. Population Groups in the Index Repository

Population Group	Population Subgroup	No. of Individuals
African descent		20
	Sierra Leone	1
Asian		20
	Burma	1
	China	3
	Japan	6
	Korea	1
	Philippines	5
	Vietnam	4
Caucasian		21
	British Isles	3
·	British Isles/Central	4
	British Isles/Eastern	. 1
	Central/Eastern	·1
	Eastern	3
	Central/Mediterranean	1
	Mediterranean	2
	Scandinavian	2
Hispanic/Latino		18
	Caribbean	8
	Caribbean (Spanish Descent)	2
	Central American (Spanish Descent)	1 .
	Mexican American	4
	South American (Spanish Descent)	3

In addition, the Index Repository contains three unrelated indigenous American Indians (one from each of North, Central and South America), one three-generation Caucasian family (from the CEPH Utah cohort) and one two-generation African-American family.

The POR isogenes present in the human reference population are defined by haplotypes for 26 polymorphic sites in the POR gene, all of which are believed to be novel. The novel POR polymorphic sites identified by the inventors are referred to as PS1-PS26 to designate the order in which they are located in the gene (see Table 3 below). Using the genotypes identified in the Index Repository for PS1-PS26 and the methodology described in the Examples below, the inventors herein also determined the pair of haplotypes for the POR gene present in individual human members of this repository. The human genotypes and haplotypes found in the repository for the POR gene include those shown in Tables 4 and 5, respectively. The polymorphism and haplotype data disclosed herein are useful for validating whether POR is a suitable target for drugs to treat cancers, screening for such drugs and reducing bias in clinical trials of such drugs.

10

15

20

In the context of this disclosure, the following terms shall be defined as follows unless otherwise indicated:

Allele - A particular form of a genetic locus, distinguished from other forms by its particular nucleotide sequence.

Candidate Gene – A gene which is hypothesized to be responsible for a disease, condition, or

the response to a treatment, or to be correlated with one of these.

5

10

15

20

25

30

35

Gene - A segment of DNA that contains all the information for the regulated biosynthesis of an RNA product, including promoters, exons, introns, and other untranslated regions that control expression.

Genotype – An unphased 5' to 3' sequence of nucleotide pair(s) found at one or more polymorphic sites in a locus on a pair of homologous chromosomes in an individual. As used herein, genotype includes a full-genotype and/or a sub-genotype as described below.

Full-genotype – The unphased 5' to 3' sequence of nucleotide pairs found at all polymorphic sites examined herein in a locus on a pair of homologous chromosomes in a single individual.

Sub-genotype – The unphased 5' to 3' sequence of nucleotides seen at a subset of the polymorphic sites examined herein in a locus on a pair of homologous chromosomes in a single individual.

Genotyping - A process for determining a genotype of an individual.

Haplotype – A 5' to 3' sequence of nucleotides found at one or more polymorphic sites in a locus on a single chromosome from a single individual. As used herein, haplotype includes a full-haplotype and/or a sub-haplotype as described below.

Full-haplotype — The 5' to 3' sequence of nucleotides found at all polymorphic sites examined herein in a locus on a single chromosome from a single individual.

Sub-haplotype – The 5' to 3' sequence of nucleotides seen at a subset of the polymorphic sites examined herein in a locus on a single chromosome from a single individual.

Haplotype pair - The two haplotypes found for a locus in a single individual.

Haplotyping – A process for determining one or more haplotypes in an individual and includes use of family pedigrees, molecular techniques and/or statistical inference.

Haplotype data - Information concerning one or more of the following for a specific gene: a listing of the haplotype pairs in each individual in a population; a listing of the different haplotypes in a population; frequency of each haplotype in that or other populations, and any known associations between one or more haplotypes and a trait.

Isoform – A particular form of a gene, mRNA, cDNA or the protein encoded thereby, distinguished from other forms by its particular sequence and/or structure.

Isogene – One of the isoforms (e.g., alleles) of a gene found in a population. An isogene (or allele) contains all of the polymorphisms present in the particular isoform of the gene.

Isolated — As applied to a biological molecule such as RNA, DNA, oligonucleotide, or protein, isolated means the molecule is substantially free of other biological molecules such as nucleic acids, proteins, lipids, carbohydrates, or other material such as cellular debris and growth media. Generally, the term "isolated" is not intended to refer to a complete absence of such material or to absence of water, buffers, or salts, unless they are present in amounts that substantially interfere with the methods of the present invention.

Locus - A location on a chromosome or DNA molecule corresponding to a gene or a physical or phenotypic feature, where physical features include polymorphic sites.

Naturally-occurring - A term used to designate that the object it is applied to, e.g., naturally-occurring polynucleotide or polypeptide, can be isolated from a source in nature and which has not been intentionally modified by man.

Nucleotide pair – The nucleotides found at a polymorphic site on the two copies of a chromosome from an individual.

5

10

15

20

25

30

35

Phased – As applied to a sequence of nucleotide pairs for two or more polymorphic sites in a locus, phased means the combination of nucleotides present at those polymorphic sites on a single copy of the locus is known.

Polymorphic site (PS) – A position on a chromosome or DNA molecule at which at least two alternative sequences are found in a population.

Polymorphic variant — A gene, mRNA, cDNA, polypeptide or peptide whose nucleotide or amino acid sequence varies from a reference sequence due to the presence of a polymorphism in the gene.

Polymorphism – The sequence variation observed in an individual at a polymorphic site.

Polymorphisms include nucleotide substitutions, insertions, deletions and microsatellites and may, but need not, result in detectable differences in gene expression or protein function.

Polymorphism data – Information concerning one or more of the following for a specific gene: location of polymorphic sites; sequence variation at those sites; frequency of polymorphisms in one or more populations; the different genotypes and/or haplotypes determined for the gene; frequency of one or more of these genotypes and/or haplotypes in one or more populations; any known association(s) between a trait and a genotype or a haplotype for the gene.

Polymorphism Database – A collection of polymorphism data arranged in a systematic or methodical way and capable of being individually accessed by electronic or other means.

Polynucleotide - A nucleic acid molecule comprised of single-stranded RNA or DNA or comprised of complementary, double-stranded DNA.

Population Group - A group of individuals sharing a common ethnogeographic origin.

Reference Population — A group of subjects or individuals who are predicted to be representative of the genetic variation found in the general population. Typically, the reference population represents the genetic variation in the population at a certainty level of at least 85%, preferably at least 90%, more preferably at least 95% and even more preferably at least 99%.

Single Nucleotide Polymorphism (SNP) – Typically, the specific pair of nucleotides observed at a single polymorphic site. In rare cases, three or four nucleotides may be found.

Subject – A human individual whose genotypes or haplotypes or response to treatment or disease state are to be determined.

Treatment - A stimulus administered internally or externally to a subject.

Unphased – As applied to a sequence of nucleotide pairs for two or more polymorphic sites in a locus, unphased means the combination of nucleotides present at those polymorphic sites on a single copy of the locus is not known.

As discussed above, information on the identity of genotypes and haplotypes for the POR gene of any particular individual as well as the frequency of such genotypes and haplotypes in any particular population of individuals is useful for a variety of drug discovery and development applications. Thus, the invention also provides compositions and methods for detecting the novel POR polymorphisms, haplotypes and haplotype pairs identified herein.

5

10

15

20

25

30

35

The compositions comprise at least one oligonucleotide for detecting the variant nucleotide or nucleotide pair located at a novel POR polymorphic site in one copy or two copies of the POR gene. Such oligonucleotides are referred to herein as POR haplotyping oligonucleotides or genotyping oligonucleotides, respectively, and collectively as POR oligonucleotides. In one embodiment, a POR haplotyping or genotyping oligonucleotide is a probe or primer capable of hybridizing to a target region that contains, or that is located close to, one of the novel polymorphic sites described herein.

As used herein, the term "oligonucleotide" refers to a polynucleotide molecule having less than about 100 nucleotides. A preferred oligonucleotide of the invention is 10 to 35 nucleotides long. More preferably, the oligonucleotide is between 15 and 30, and most preferably, between 20 and 25 nucleotides in length. The exact length of the oligonucleotide will depend on many factors that are routinely considered and practiced by the skilled artisan. The oligonucleotide may be comprised of any phosphorylation state of ribonucleotides, deoxyribonucleotides, and acyclic nucleotide derivatives, and other functionally equivalent derivatives. Alternatively, oligonucleotides may have a phosphate-free backbone, which may be comprised of linkages such as carboxymethyl, acetamidate, carbamate, polyamide (peptide nucleic acid (PNA)) and the like (Varma, R. in Molecular Biology and Biotechnology, A Comprehensive Desk Reference, Ed. R. Meyers, VCH Publishers, Inc. (1995), pages 617-620). Oligonucleotides of the invention may be prepared by chemical synthesis using any suitable methodology known in the art, or may be derived from a biological sample, for example, by restriction digestion. The oligonucleotides may be labeled, according to any technique known in the art, including use of radiolabels, fluorescent labels, enzymatic labels, proteins, haptens, antibodies, sequence tags and the like.

Haplotyping or genotyping oligonucleotides of the invention must be capable of specifically hybridizing to a target region of a POR polynucleotide. Preferably, the target region is located in a POR isogene. As used herein, specific hybridization means the oligonucleotide forms an anti-parallel double-stranded structure with the target region under certain hybridizing conditions, while failing to form such a structure when incubated with another region in the POR polynucleotide or with a non-POR polynucleotide under the same hybridizing conditions. Preferably, the oligonucleotide specifically hybridizes to the target region under conventional high stringency conditions. The skilled artisan can readily design and test oligonucleotide probes and primers suitable for detecting

polymorphisms in the POR gene using the polymorphism information provided herein in conjunction with the known sequence information for the POR gene and routine techniques.

A nucleic acid molecule such as an oligonucleotide or polynucleotide is said to be a "perfect" or "complète" complement of another nucleic acid molecule if every nucleotide of one of the molecules is complementary to the nucleotide at the corresponding position of the other molecule. A nucleic acid molecule is "substantially complementary" to another molecule if it hybridizes to that molecule with sufficient stability to remain in a duplex form under conventional low-stringency conditions. Conventional hybridization conditions are described, for example, by Sambrook J. et al., in Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Press, Cold Spring Harbor, NY (1989) and by Haymes, B.D. et al. in Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985). While perfectly complementary oligonucleotides are preferred for detecting polymorphisms, departures from complete complementarity are contemplated where such departures do not prevent the molecule from specifically hybridizing to the target region. For example, an oligonucleotide primer may have a non-complementary fragment at its 5' end, with the remainder of the primer being complementary to the target region. Alternatively, non-complementary nucleotides may be interspersed into the probe or primer as long as the resulting probe or primer is still capable of specifically hybridizing to the target region.

Preferred haplotyping or genotyping oligonucleotides of the invention are allele-specific oligonucleotides. As used herein, the term allele-specific oligonucleotide (ASO) means an oligonucleotide that is able, under sufficiently stringent conditions, to hybridize specifically to one allele of a gene, or other locus, at a target region containing a polymorphic site while not hybridizing to the corresponding region in another allele(s). As understood by the skilled artisan, allele-specificity will depend upon a variety of readily optimized stringency conditions, including salt and formamide concentrations, as well as temperatures for both the hybridization and washing steps. Examples of hybridization and washing conditions typically used for ASO probes are found in Kogan et al., "Genetic Prediction of Hemophilia A" in PCR Protocols, A Guide to Methods and Applications, Academic Press, 1990 and Ruaño et al., 87 Proc. Natl. Acad. Sci. USA 6296-6300, 1990. Typically, an ASO will be perfectly complementary to one allele while containing a single mismatch for another allele.

Allele-specific oligonucleotides of the invention include ASO probes and ASO primers. ASO probes which usually provide good discrimination between different alleles are those in which a central position of the oligonucleotide probe aligns with the polymorphic site in the target region (e.g., approximately the 7th or 8th position in a 15mer, the 8th or 9th position in a 16mer, and the 10th or 11th position in a 20mer). An ASO primer of the invention has a 3' terminal nucleotide, or preferably a 3' penultimate nucleotide, that is complementary to only one nucleotide of a particular SNP, thereby acting as a primer for polymerase-mediated extension only if the allele containing that nucleotide is present. ASO probes and primers hybridizing to either the coding or noncoding strand are

contemplated by the invention. ASO probes and primers listed below use the appropriate nucleotide symbol (R= G or A, Y= T or C, M= A or C, K= G or T, S= G or C, and W= A or T; WIPO standard ST.25) at the position of the polymorphic site to represent that the ASO contains either of the two alternative allelic variants observed at that polymorphic site.

A preferred ASO probe for detecting POR gene polymorphisms comprises a nucleotide sequence, listed 5' to 3', selected from the group consisting of:

```
(SEO ID NO:4) and its complement,
    CGTCACCRCATAGAG
                     (SEQ ID NO:5) and its complement,
    ACGGGGAYTGCAGAG
                     (SEQ ID NO:6) and its complement,
    GGGAGGCYGGCAGGG
                     (SEQ ID NO:7) and its complement,
    TGCAGGCYGACCTGA
10
                     (SEQ ID NO:8) and its complement,
    TCGGGGCRTGCCTGG
                     (SEQ ID NO:9) and its complement,
    TTCTGGCYGGCCGTG
                     (SEQ ID NO:10) and its complement,
    GGCCGGCYGTGTGTG
                     (SEQ ID NO:11) and its complement,
    CGGCTCTRTGGCCAC
                     (SEQ ID NO:12) and its complement,
    AGTCTGCYGTGTATC
                     (SEQ ID NO:13) and its complement,
    CCAGAAGSGTCCTTG
                     (SEQ ID NO:14) and its complement,
    TGGAGACRGAGACTC
                     (SEQ ID NO:15) and its complement,
    AAAGCCCYGGCCGCT
                     (SEQ ID NO:16) and its complement,
    CTGTTGCYGCAGAGC
                     (SEQ ID NO:17) and its complement,
20 CCCCCTCYTGCCGCA
                      (SEQ ID NO:18) and its complement,
    CCCCTCCYGCCGCAG
                      (SEQ ID NO:19) and its complement,
    TGCCTGTSTCTTCCC
                      (SEQ ID NO:20) and its complement,
    GCCACACRCTGGAGG
                      (SEQ ID NO:21) and its complement,
    GCCTCGGYGTGGCGG
                     (SEQ ID NO:22) and its complement,
25
    CCTCGGTKTGGCGGT
                     (SEQ ID NO:23) and its complement,
    CCAAGGCYGGCCGCA
    GAGCCTGYCGGGGAG
                     (SEQ ID NO:24) and its complement,
    CTCACCCYGGCCCCT
                     (SEQ ID NO:25) and its complement,
                      (SEQ ID NO:26) and its complement,
    CGCCGCTSGGATGAG
                     (SEQ ID NO:27) and its complement,
30
    GCCACAGSCACAGTG
                      (SEQ ID NO:28) and its complement, and
    TGTGGGTRAGTGAGT
                      (SEQ ID NO:29) and its complement.
   - TCAGCTCYCCTGGCT
```

35

A preferred ASO primer for detecting POR gene polymorphisms comprises a nucleotide sequence, listed 5' to 3', selected from the group consisting of:

```
GGCTGGCGTCACCRC (SEQ ID NO:30); GACATCCTCTATGYG (SEQ ID NO:31);
    TCCCAGACGGGGAYT (SEQ ID NO:32); AAACTCCTCTGCART (SEQ ID NO:33);
    AGCAGGGGGAGGCYG (SEQ ID NO:34); CCCACTCCCTGCCRG (SEQ ID NO:35);
    TGTTTCTGCAGGCYG (SEQ ID NO:36); GGCTGCTCAGGTCRG (SEQ ID NO:37);
    GTGGGGTCGGGGCRT (SEQ ID NO:38); CTGGTGCCAGGCAYG (SEQ ID NO:39);
    GAGCAGTTCTGGCYG (SEQ ID NO:40); TTCACACACGGCCRG (SEQ ID NO:41);
    AGTTCTGGCCGGCYG (SEQ ID NO:42); AGTGTTCACACACRG (SEQ ID NO:43);
45
    GGCAGACGGCTCTRT (SEQ ID NO:44); GCACCAGTGGCCAYA (SEQ ID NO:45);
    AGGCTCAGTCTGCYG (SEQ ID NO:46); TATGGGGATACACRG (SEQ ID NO:47);
    GTGCAACCAGAAGSG (SEQ ID NO:48); CGTCTCCAAGGACSC (SEQ ID NO:49);
    CGTCCTTGGAGACRG (SEQ ID NO:50); TGATCTGAGTCTCYG (SEQ ID NO:51);
    CAGATCAAAGCCCYG (SEQ ID NO:52); ACAGTGAGCGGCCRG (SEQ ID NO:53);
50
    GGGCACCTGTTGCYG (SEQ ID NO:54); GGGCCAGCTCTGCRG (SEQ ID NO:55);
    GTGTCACCCCTCYT (SEQ ID NO:56); GGTGGCTGCGGCARG (SEQ ID NO:57);
```

```
TGTCACCCCCTCCYG (SEQ ID NO:58); GGGTGGCTGCGGCRG (SEQ ID NO:59);

AAGTCCTGCCTGTST (SEQ ID NO:60); TCTGCAGGGAAGASA (SEQ ID NO:61);

CTGCCAGCCACACRC (SEQ ID NO:62); GCTGGGCCTCCAGYG (SEQ ID NO:63);

GCAAGGGCCTCGGYG (SEQ ID NO:64); GCTCCACCGCCACRC (SEQ ID NO:65);

CAAGGGCCTCGGTKT (SEQ ID NO:66); AGCTCCACCGCCAMA (SEQ ID NO:67);

ACGAGACCAAGGCYG (SEQ ID NO:68); TGTTGATGCGGCCRG (SEQ ID NO:69);

GCCAAGGAGCCTGYC (SEQ ID NO:70); GCCGTTCTCCCCGRC (SEQ ID NO:71);

CCCGCGCTCACCCYG (SEQ ID NO:72); CGTGGCAGGGGCCRG (SEQ ID NO:73);

GGCTGCCGCCGCTSG (SEQ ID NO:74); GTAGTCCTCATCCSA (SEQ ID NO:75);

TACGTCTGTGGGTRA (SEQ ID NO:78); GACCCCACTCACTYA (SEQ ID NO:79);

CTGTAATCAGCTCYC (SEQ ID NO:80); and GGAGGGAGCCAGGRG (SEQ ID NO:81).
```

15

20

50

Other oligonucleotides of the invention hybridize to a target region located one to several nucleotides downstream of one of the novel polymorphic sites identified herein. Such oligonucleotides are useful in polymerase-mediated primer extension methods for detecting one of the novel polymorphisms described herein and therefore such oligonucleotides are referred to herein as "primer-extension oligonucleotides". In a preferred embodiment, the 3'-terminus of a primer-extension oligonucleotide is a deoxynucleotide complementary to the nucleotide located immediately adjacent to the polymorphic site.

A particularly preferred oligonucleotide primer for detecting POR gene polymorphisms by primer extension terminates in a nucleotide sequence, listed 5' to 3', selected from the group consisting of:

```
(SEQ ID NO:82);
                                    ATCCTCTATG
                                                  (SEQ ID NO:83);
    TGGCGTCACC
                                                  (SEQ ID NO:85);
                                    CTCCTCTGCA
                 (SEQ ID NO:84);
25
    CAGACGGGGA
                                                  (SEQ ID NO:87);
    AGGGGGAGGC
                 (SEQ ID NO:86);
                                    ACTCCCTGCC
                 (SEQ ID NO:88);
                                    TGCTCAGGTC
                                                  (SEQ ID NO:89);
    TTCTGCAGGC
                 (SEQ ID NO: 90); ...
                                    GTGCCAGGCA
                                                  (SEQ ID NO:91);
    GGGTCGGGGC
                                    ACACACGGCC
                                                  (SEQ ID NO:93);
                 (SEQ ID NO:92);
    CAGTTCTGGC
                                                  (SEQ ID NO:95);
                                    GTTCACACAC
30
    TCTGGCCGGC
                 (SEQ ID NO:94);
                                    CCAGTGGCCA
                                                  (SEQ ID NO:97);
    AGACGGCTCT
                 (SEQ ID NO:96);
                 (SEQ ID NO:98);
                                    GGGGATACAC
                                                  (SEQ ID NO:99);
    CTCAGTCTGC
                                    CTCCAAGGAC
                                                  (SEQ ID NO:101);
                 (SEQ ID NO:100);
    CAACCAGAAG
                                                  (SEQ ID NO:103);
                 (SEQ ID NO:102);
                                    TCTGAGTCTC
    CCTTGGAGAC
    ATCAAAGCCC
                                    GTGAGCGGCC
                                                  (SEQ ID NO:105);
35
                 (SEQ ID NO:104);
                                    CCAGCTCTGC
                                                  (SEQ ID NO:107);
                 (SEQ ID NO:106);
    CACCTGTTGC
                                                  (SEQ ID NO:109);
                                    GGCTGCGGCA
    TCACCCCTC
                 (SEQ ID NO:108);
                                                  (SEQ ID NO:111);
    CACCCCTCC
                                    TGGCTGCGGC
                 (SEQ ID NO:110);
                                                  (SEQ ID NO:113);
                 (SEQ ID NO:112);
                                    GCAGGGAAGA
    TCCTGCCTGT
                                                  (SEQ ID NO:115);
                                    GGGCCTCCAG
                 (SEQ ID NO:114);
40
    CCAGCCACAC
                                                  (SEQ ID NO:117);
                 (SEQ ID NO:116);
                                    CCACCGCCAC
    AGGGCCTCGG
                 (SEQ ID NO:118);
                                                  (SEQ ID NO:119);
    GGGCCTCGGT
                                    TCCACCGCCA
                 (SEQ ID NO:120);
                                                  (SEQ ID NO:121);
                                    TGATGCGGCC
    AGACCAAGGC
                                                   (SEQ ID NO:123);
    AAGGAGCCTG
                 (SEQ ID NO:122);
                                    GTTCTCCCCG
45
    GCGCTCACCC
                 (SEQ ID NO:124);
                                    GGCAGGGGCC
                                                   (SEQ ID NO:125);
                                                   (SEQ ID NO:127);
                 (SEQ ID NO: 126);
                                    GTCCTCATCC
     TGCCGCCGCT
                                                   (SEQ ID NO:129);
     AGGGCCACAG
                 (SEQ ID NO:128);
                                    GGGCACTGTG
                 (SEQ ID NO:130);
                                    CCCACTCACT
                                                   (SEQ ID NO:131);
     GTCTGTGGGT
                                                      (SEQ ID NO:133).
                 (SEQ ID NO:132); and GGGAGCCAGG
     TAATCAGCTC
```

In some embodiments, a composition contains two or more differently labeled POR

oligonucleotides for simultaneously probing the identity of nucleotides or nucleotide pairs at two or more polymorphic sites. It is also contemplated that primer compositions may contain two or more sets of allele-specific primer pairs to allow simultaneous targeting and amplification of two or more regions containing a polymorphic site.

5

10

15

20

25

30

35

POR oligonucleotides of the invention may also be immobilized on or synthesized on a solid surface such as a microchip, bead, or glass slide (see, e.g., WO 98/20020 and WO 98/20019). Such immobilized oligonucleotides may be used in a variety of polymorphism detection assays, including but not limited to probe hybridization and polymerase extension assays. Immobilized POR oligonucleotides of the invention may comprise an ordered array of oligonucleotides designed to rapidly screen a DNA sample for polymorphisms in multiple genes at the same time.

In another embodiment, the invention provides a kit comprising at least two POR oligonucleotides packaged in separate containers. The kit may also contain other components such as hybridization buffer (where the oligonucleotides are to be used as a probe) packaged in a separate container. Alternatively, where the oligonucleotides are to be used to amplify a target region, the kit may contain, packaged in separate containers, a polymerase and a reaction buffer optimized for primer extension mediated by the polymerase, such as PCR.

The above described oligonucleotide compositions and kits are useful in methods for genotyping and/or haplotyping the POR gene in an individual. As used herein, the terms "POR genotype" and "POR haplotype" mean the genotype or haplotype contains the nucleotide pair or nucleotide, respectively, that is present at one or more of the novel polymorphic sites described herein and may optionally also include the nucleotide pair or nucleotide present at one or more additional polymorphic sites in the POR gene. The additional polymorphic sites may be currently known polymorphic sites or sites that are subsequently discovered.

One embodiment of a genotyping method of the invention involves isolating from the individual a nucleic acid sample comprising the two copies of the POR gene, mRNA transcripts thereof or cDNA copies thereof, or a fragment of any of the foregoing, that are present in the individual, and determining the identity of the nucleotide pair at one or more polymorphic sites selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26 in the two copies to assign a POR genotype to the individual. As will be readily understood by the skilled artisan, the two "copies" of a gene, mRNA or cDNA (or fragment of such POR molecules) in an individual may be the same allele or may be different alleles. In another embodiment, a genotyping method of the invention comprises determining the identity of the nucleotide pair at each of PS1-PS26.

Typically, the nucleic acid sample is isolated from a biological sample taken from the individual, such as a blood sample or tissue sample. Suitable tissue samples include whole blood, semen, saliva, tears, urine, fecal material, sweat, buccal, skin and hair. The nucleic acid sample may

be comprised of genomic DNA, mRNA, or cDNA and, in the latter two cases, the biological sample must be obtained from a tissue in which the POR gene is expressed. Furthermore it will be understood by the skilled artisan that mRNA or cDNA preparations would not be used to detect polymorphisms located in introns or in 5' and 3' untranslated regions if not present in the mRNA or cDNA. If a POR gene fragment is isolated, it must contain the polymorphic site(s) to be genotyped.

One embodiment of a haplotyping method of the invention comprises isolating from the individual a nucleic acid sample containing only one of the two copies of the POR gene, mRNA or cDNA, or a fragment of such POR molecules, that is present in the individual and determining in that copy the identity of the nucleotide at one or more polymorphic sites selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26 in that copy to assign a POR haplotype to the individual.

The nucleic acid used in the above haplotyping methods of the invention may be isolated using any method capable of separating the two copies of the POR gene or fragment such as one of the methods described above for preparing POR isogenes, with targeted *in vivo* cloning being the preferred approach. As will be readily appreciated by those skilled in the art, any individual clone will typically only provide haplotype information on one of the two POR gene copies present in an individual. If haplotype information is desired for the individual's other copy, additional POR clones will usually need to be examined. Typically, at least five clones should be examined to have more than a 90% probability of haplotyping both copies of the POR gene in an individual. In some cases, however, once the haplotype for one POR allele is directly determined, the haplotype for the other allele may be inferred if the individual has a known genotype for the polymorphic sites of interest or if the haplotype frequency or haplotype pair frequency for the individual's population group is known. In a particularly preferred embodiment, the nucleotide at each of PS1-PS26 is identified.

In another embodiment, the haplotyping method comprises determining whether an individual has one or more of the POR haplotypes shown in Table 5. This can be accomplished by identifying, for one or both copies of the individual's POR gene, the phased sequence of nucleotides present at each of PS1-PS26. This identifying step does not necessarily require that each of PS1-PS26 be directly examined. Typically only a subset of PS1-PS26 will need to be directly examined to assign to an individual one or more of the haplotypes shown in Table 5. This is because at least one polymorphic site in a gene is frequently in strong linkage disequilibrium with one or more other polymorphic sites in that gene (Drysdale, CM et al. 2000 PNAS 97:10483-10488; Rieder MJ et al. 1999 Nature Genetics 22:59-62). Two sites are said to be in linkage disequilibrium if the presence of a particular variant at one site enhances the predictability of another variant at the second site (Stephens, JC 1999, Mol. Diag. 4:309-317). Techniques for determining whether any two polymorphic sites are in linkage disequilibrium are well-known in the art (Weir B.S. 1996 Genetic Data Analysis II, Sinauer Associates, Inc. Publishers, Sunderland, MA).

In another embodiment of a haplotyping method of the invention, a POR haplotype pair is determined for an individual by identifying the phased sequence of nucleotides at one or more polymorphic sites selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26 in each copy of the POR gene that is present in the individual. In a particularly preferred embodiment, the haplotyping method comprises identifying the phased sequence of nucleotides at each of PS1-PS26 in each copy of the POR gene.

5

15

20

25

30

35

When haplotyping both copies of the gene, the identifying step is preferably performed with each copy of the gene being placed in separate containers. However, it is also envisioned that if the two copies are labeled with different tags, or are otherwise separately distinguishable or identifiable, it could be possible in some cases to perform the method in the same container. For example, if first and second copies of the gene are labeled with different first and second fluorescent dyes, respectively, and an allele-specific oligonucleotide labeled with yet a third different fluorescent dye is used to assay the polymorphic site(s), then detecting a combination of the first and third dyes would identify the polymorphism in the first gene copy while detecting a combination of the second and third dyes would identify the polymorphism in the second gene copy.

In both the genotyping and haplotyping methods, the identity of a nucleotide (or nucleotide pair) at a polymorphic site(s) may be determined by amplifying a target region(s) containing the polymorphic site(s) directly from one or both copies of the POR gene, or a fragment thereof, and the sequence of the amplified region(s) determined by conventional methods. It will be readily appreciated by the skilled artisan that only one nucleotide will be detected at a polymorphic site in individuals who are homozygous at that site, while two different nucleotides will be detected if the individual is heterozygous for that site. The polymorphism may be identified directly, known as positive-type identification, or by inference, referred to as negative-type identification. For example, where a SNP is known to be guanine and cytosine in a reference population, a site may be positively determined to be either guanine or cytosine for an individual homozygous at that site, or both guanine and cytosine, if the individual is heterozygous at that site. Alternatively, the site may be negatively determined to be not guanine (and thus cytosine/cytosine) or not cytosine (and thus guanine/guanine).

The target region(s) may be amplified using any oligonucleotide-directed amplification method, including but not limited to polymerase chain reaction (PCR) (U.S. Patent No. 4,965,188), ligase chain reaction (LCR) (Barany et al., *Proc. Natl. Acad. Sci. USA* 88:189-193, 1991; WO90/01069), and oligonucleotide ligation assay (OLA) (Landegren et al., *Science* 241:1077-1080, 1988). Other known nucleic acid amplification procedures may be used to amplify the target region including transcription-based amplification systems (U.S. Patent No. 5,130,238; EP 329,822; U.S. Patent No. 5,169,766, WO89/06700) and isothermal methods (Walker et al., *Proc. Natl. Acad. Sci. USA* 89:392-396, 1992).

A polymorphism in the target region may also be assayed before or after amplification using

one of several hybridization-based methods known in the art. Typically, allele-specific oligonucleotides are utilized in performing such methods. The allele-specific oligonucleotides may be used as differently labeled probe pairs, with one member of the pair showing a perfect match to one variant of a target sequence and the other member showing a perfect match to a different variant. In some embodiments, more than one polymorphic site may be detected at once using a set of allele-specific oligonucleotides or oligonucleotide pairs. Preferably, the members of the set have melting temperatures within 5°C, and more preferably within 2°C, of each other when hybridizing to each of the polymorphic sites being detected.

5

10

20

25

30

35

Hybridization of an allele-specific oligonucleotide to a target polynucleotide may be performed with both entities in solution, or such hybridization may be performed when either the oligonucleotide or the target polynucleotide is covalently or noncovalently affixed to a solid support. Attachment may be mediated, for example, by antibody-antigen interactions, poly-L-Lys, streptavidin or avidin-biotin, salt bridges, hydrophobic interactions, chemical linkages, UV cross-linking baking, etc. Allele-specific oligonucleotides may be synthesized directly on the solid support or attached to the solid support subsequent to synthesis. Solid-supports suitable for use in detection methods of the invention include substrates made of silicon, glass, plastic, paper and the like, which may be formed, for example, into wells (as in 96-well plates), slides, sheets, membranes, fibers, chips, dishes, and beads. The solid support may be treated, coated or derivatized to facilitate the immobilization of the allele-specific oligonucleotide or target nucleic acid.

The genotype or haplotype for the POR gene of an individual may also be determined by hybridization of a nucleic acid sample containing one or both copies of the gene, mRNA, cDNA or fragment(s) thereof, to nucleic acid arrays and subarrays such as described in WO 95/11995. The arrays would contain a battery of allele-specific oligonucleotides representing each of the polymorphic sites to be included in the genotype or haplotype.

The identity of polymorphisms may also be determined using a mismatch detection technique, including but not limited to the RNase protection method using riboprobes (Winter et al., *Proc. Natl. Acad. Sci. USA* 82:7575, 1985; Meyers et al., *Science* 230:1242, 1985) and proteins which recognize nucleotide mismatches, such as the E. coli mutS protein (Modrich, P. *Ann. Rev. Genet.* 25:229-253, 1991). Alternatively, variant alleles can be identified by single strand conformation polymorphism (SSCP) analysis (Orita et al., *Genomics* 5:874-879, 1989; Humphries et al., in Molecular Diagnosis of Genetic Diseases, R. Elles, ed., pp. 321-340, 1996) or denaturing gradient gel electrophoresis (DGGE) (Wartell et al., *Nucl. Acids Res.* 18:2699-2706, 1990; Sheffield et al., *Proc. Natl. Acad. Sci. USA* 86:232-236, 1989).

A polymerase-mediated primer extension method may also be used to identify the polymorphism(s). Several such methods have been described in the patent and scientific literature and include the "Genetic Bit Analysis" method (WO92/15712) and the ligase/polymerase mediated genetic bit analysis (U.S. Patent 5,679,524. Related methods are disclosed in WO91/02087, WO90/09455,

WO95/17676, U.S. Patent Nos. 5,302,509, and 5,945,283. Extended primers containing a polymorphism may be detected by mass spectrometry as described in U.S. Patent No. 5,605,798. Another primer extension method is allele-specific PCR (Ruaño et al., *Nucl. Acids Res.* 17:8392, 1989; Ruaño et al., *Nucl. Acids Res.* 19, 6877-6882, 1991; WO 93/22456; Turki et al., *J. Clin. Invest.* 95:1635-1641, 1995). In addition, multiple polymorphic sites may be investigated by simultaneously amplifying multiple regions of the nucleic acid using sets of allele-specific primers as described in Wallace et al. (WO89/10414).

5

10

15

· 20

25

35

In addition, the identity of the allele(s) present at any of the novel polymorphic sites described herein may be indirectly determined by haplotyping or genotyping another polymorphic site that is in linkage disequilibrium with the polymorphic site that is of interest. Polymorphic sites in linkage disequilibrium with the presently disclosed polymorphic sites may be located in regions of the gene or in other genomic regions not examined herein. Detection of the allele(s) present at a polymorphic site in linkage disequilibrium with the novel polymorphic sites described herein may be performed by, but is not limited to, any of the above-mentioned methods for detecting the identity of the allele at a polymorphic site.

In another aspect of the invention, an individual's POR haplotype pair is predicted from its POR genotype using information on haplotype pairs known to exist in a reference population. In its broadest embodiment, the haplotyping prediction method comprises identifying a POR genotype for the individual at two or more POR polymorphic sites described herein, accessing data containing POR haplotype pairs identified in a reference population, and assigning a haplotype pair to the individual that is consistent with the genotype data. In one embodiment, the reference haplotype pairs include the POR haplotype pairs shown in Table 4. The POR haplotype pair can be assigned by comparing the individual's genotype with the genotypes corresponding to the haplotype pairs known to exist in the general population or in a specific population group, and determining which haplotype pair is consistent with the genotype of the individual. In some embodiments, comparison of the genotype of the individual to the haplotype pairs identified in a reference population and determination of which haplotype pair is consistent with the genotype of the individual may be performed by visual inspection (for example, by consulting Table 4). When the genotype of the individual is consistent with more than one haplotype pair, haplotype pair frequency data (such as that presented in Table 7) may be used to determine which of these haplotype pairs is most likely to be present in the individual. This determination may also be performed in some embodiments by visual inspection upon consulting Table 7. If a particular POR haplotype pair consistent with the genotype of the individual is more frequent in the reference population than others consistent with the genotype, then that haplotype pair with the highest frequency is the most likely to be present in the individual. In other embodiments, the comparison may be made by a computer-implemented algorithm with the genotype of the individual and the reference haplotype data stored in computer-readable formats. For example, as described in PCT/US01/12831, filed April 18, 2001, one computer-implemented algorithm to perform this

comparison entails enumerating all possible haplotype pairs which are consistent with the genotype, accessing data containing POR haplotype pairs frequency data determined in a reference population to determine a probability that the individual has a possible haplotype pair, and analyzing the determined probabilities to assign a haplotype pair to the individual.

5

10

15

20

25

30

Generally, the reference population should be composed of randomly-selected individuals representing the major ethnogeographic groups of the world. A preferred reference population for use in the methods of the present invention comprises an approximately equal number of individuals from Caucasian, African-descent, Asian and Hispanic-Latino population groups with the minimum number of each group being chosen based on how rare a haplotype one wants to be guaranteed to see. For example, if one wants to have a q% chance of not missing a haplotype that exists in the population at a p% frequency of occurring in the reference population, the number of individuals (n) who must be sampled is given by $2n=\log(1-q)/\log(1-p)$ where p and q are expressed as fractions. A preferred reference population allows the detection of any haplotype whose frequency is at least 10% with about 99% certainty and comprises about 20 unrelated individuals from each of the four population groups named above. A particularly preferred reference population includes a 3-generation family representing one or more of the four population groups to serve as controls for checking quality of haplotyping procedures.

In a preferred embodiment, the haplotype frequency data for each ethnogeographic group is examined to determine whether it is consistent with Hardy-Weinberg equilibrium. Hardy-Weinberg equilibrium (D.L. Hartl et al., Principles of Population Genomics, Sinauer Associates (Sunderland, MA), 3^{rd} Ed., 1997) postulates that the frequency of finding the haplotype pair H_1/H_2 is equal to $p_{H-W}(H_1/H_2) = 2p(H_1)p(H_2)$ if $H_1 \neq H_2$ and $p_{H-W}(H_1/H_2) = p(H_1)p(H_2)$ if $H_1 = H_2$. A statistically significant difference between the observed and expected haplotype frequencies could be due to one or more factors including significant inbreeding in the population group, strong selective pressure on the gene, sampling bias, and/or errors in the genotyping process. If large deviations from Hardy-Weinberg equilibrium are observed in an ethnogeographic group, the number of individuals in that group can be increased to see if the deviation is due to a sampling bias. If a larger sample size does not reduce the difference between observed and expected haplotype pair frequencies, then one may wish to consider haplotyping the individual using a direct haplotyping method such as, for example, CLASPER System technology (U.S. Patent No. 5,866,404), single molecule dilution, or allele-specific long-range PCR (Michalotos-Beloin et al., Nucleic Acids Res. 24:4841-4843, 1996).

In one embodiment of this method for predicting a POR haplotype pair for an individual, the assigning step involves performing the following analysis. First, each of the possible haplotype pairs is compared to the haplotype pairs in the reference population. Generally, only one of the haplotype pairs in the reference population matches a possible haplotype pair and that pair is assigned to the individual. Occasionally, only one haplotype represented in the reference haplotype pairs is consistent with a possible haplotype pair for an individual, and in such cases the individual is assigned a

haplotype pair containing this known haplotype and a new haplotype derived by subtracting the known haplotype from the possible haplotype pair. Alternatively, the haplotype pair in an individual may be predicted from the individual's genotype for that gene using reported methods (e.g., Clark et al. 1990 *Mol Bio Evol* 7:111-22; copending PCT/US01/12831 filed April 18, 2001) or through a commercial haplotyping service such as offered by Genaissance Pharmaceuticals, Inc. (New Haven, CT). In rare cases, either no haplotypes in the reference population are consistent with the possible haplotype pairs, or alternatively, multiple reference haplotype pairs are consistent with the possible haplotype pairs. In such cases, the individual is preferably haplotyped using a direct molecular haplotyping method such as, for example, CLASPER System[™] technology (U.S. Patent No. 5,866,404), SMD, or allele-specific long-range PCR (Michalotos-Beloin et al., *supra*).

5

10

15

20

25

30

35

The invention also provides a method for determining the frequency of a POR genotype, haplotype, or haplotype pair in a population. The method comprises, for each member of the population, determining the genotype or the haplotype pair for the novel POR polymorphic sites described herein, and calculating the frequency any particular genotype, haplotype, or haplotype pair is found in the population. The population may be e.g., a reference population, a family population, a same gender population, a population group, or a trait population (e.g., a group of individuals exhibiting a trait of interest such as a medical condition or response to a therapeutic treatment).

In another aspect of the invention, frequency data for POR genotypes, haplotypes, and/or haplotype pairs are determined in a reference population and used in a method for identifying an association between a trait and a POR genotype, haplotype, or haplotype pair. The trait may be any detectable phenotype, including but not limited to susceptibility to a disease or response to a treatment. In one embodiment, the method involves obtaining data on the frequency of the genotype(s), haplotype(s), or haplotype pair(s) of interest in a reference population as well as in a population exhibiting the trait. Frequency data for one or both of the reference and trait populations may be obtained by genotyping or haplotyping each individual in the populations using one or more of the methods described above. The haplotypes for the trait population may be determined directly or, alternatively, by a predictive genotype to haplotype approach as described above. In another embodiment, the frequency data for the reference and/or trait populations is obtained by accessing previously determined frequency data, which may be in written or electronic form. For example, the frequency data may be present in a database that is accessible by a computer. Once the frequency data is obtained, the frequencies of the genotype(s), haplotype(s), or haplotype pair(s) of interest in the reference and trait populations are compared. In a preferred embodiment, the frequencies of all genotypes, haplotypes, and/or haplotype pairs observed in the populations are compared. If a particular POR genotype, haplotype, or haplotype pair is more frequent in the trait population than in the reference population at a statistically significant amount, then the trait is predicted to be associated with that POR genotype, haplotype or haplotype pair. Preferably, the POR genotype, haplotype, or haplotype pair being compared in the trait and reference populations is selected from the full-

genotypes and full-haplotypes shown in Tables 4 and 5, or from sub-genotypes and sub-haplotypes derived from these genotypes and haplotypes.

In a preferred embodiment of the method, the trait of interest is a clinical response exhibited by a patient to some therapeutic treatment, for example, response to a drug targeting POR or response to a therapeutic treatment for a medical condition. As used herein, "medical condition" includes but is not limited to any condition or disease manifested as one or more physical and/or psychological symptoms for which treatment is desirable, and includes previously and newly identified diseases and other disorders. As used herein the term "clinical response" means any or all of the following: a quantitative measure of the response, no response, and/or adverse response (i.e., side effects).

5

10

15

20

35

In order to deduce a correlation between clinical response to a treatment and a POR genotype, haplotype, or haplotype pair, it is necessary to obtain data on the clinical responses exhibited by a population of individuals who received the treatment, hereinafter the "clinical population". This clinical data may be obtained by analyzing the results of a clinical trial that has already been run and/or the clinical data may be obtained by designing and carrying out one or more new clinical trials. As used herein, the term "clinical trial" means any research study designed to collect clinical data on responses to a particular treatment, and includes but is not limited to phase I, phase II and phase III clinical trials. Standard methods are used to define the patient population and to enroll subjects.

It is preferred that the individuals included in the clinical population have been graded for the existence of the medical condition of interest. This is important in cases where the symptom(s) being presented by the patients can be caused by more than one underlying condition, and where treatment of the underlying conditions are not the same. An example of this would be where patients experience breathing difficulties that are due to either asthma or respiratory infections. If both sets were treated with an asthma medication, there would be a spurious group of apparent non-responders that did not actually have asthma. These people would affect the ability to detect any correlation between haplotype and treatment outcome. This grading of potential patients could employ a standard physical exam or one or more lab tests. Alternatively, grading of patients could use haplotyping for situations where there is a strong correlation between haplotype pair and disease susceptibility or severity.

The therapeutic treatment of interest is administered to each individual in the trial population and each individual's response to the treatment is measured using one or more predetermined criteria.

It is contemplated that in many cases, the trial population will exhibit a range of responses and that the investigator will choose the number of responder groups (e.g., low, medium, high) made up by the various responses. In addition, the POR gene for each individual in the trial population is genotyped and/or haplotyped, which may be done before or after administering the treatment.

After both the clinical and polymorphism data have been obtained, correlations between individual response and POR genotype or haplotype content are created. Correlations may be produced in several ways. In one method, individuals are grouped by their POR genotype or haplotype (or haplotype pair) (also referred to as a polymorphism group), and then the averages and

standard deviations of clinical responses exhibited by the members of each polymorphism group are calculated.

These results are then analyzed to determine if any observed variation in clinical response between polymorphism groups is statistically significant. Statistical analysis methods which may be used are described in L.D. Fisher and G. van Belle, "Biostatistics: A Methodology for the Health Sciences", Wiley-Interscience (New York) 1993. This analysis may also include a regression calculation of which polymorphic sites in the POR gene give the most significant contribution to the differences in phenotype. One regression model useful in the invention is described in WO 01/01218, entitled "Methods for Obtaining and Using Haplotype Data".

10

15

5

A second method for finding correlations between POR haplotype content and clinical responses uses predictive models based on error-minimizing optimization algorithms. One of many possible optimization algorithms is a genetic algorithm (R. Judson, "Genetic Algorithms and Their Uses in Chemistry" in Reviews in Computational Chemistry, Vol. 10, pp. 1-73, K. B. Lipkowitz and D. B. Boyd, eds. (VCH Publishers, New York, 1997). Simulated annealing (Press et al., "Numerical Recipes in C: The Art of Scientific Computing", Cambridge University Press (Cambridge) 1992, Ch. 10), neural networks (E. Rich and K. Knight, "Artificial Intelligence", 2nd Edition (McGraw-Hill, New York, 1991, Ch. 18), standard gradient descent methods (Press et al., supra, Ch. 10), or other global or local optimization approaches (see discussion in Judson, supra) could also be used. Preferably, the correlation is found using a genetic algorithm approach as described in WO 01/01218.

20

Correlations may also be analyzed using analysis of variation (ANOVA) techniques to determine how much of the variation in the clinical data is explained by different subsets of the polymorphic sites in the POR gene. As described in WO 01/01218, ANOVA is used to test hypotheses about whether a response variable is caused by or correlated with one or more traits or variables that can be measured (Fisher and vanBelle, supra, Ch. 10).

25

From the analyses described above, a mathematical model may be readily constructed by the skilled artisan that predicts clinical response as a function of POR genotype or haplotype content. Preferably, the model is validated in one or more follow-up clinical trials designed to test the model.

35

The identification of an association between a clinical response and a genotype or haplotype (or haplotype pair) for the POR gene may be the basis for designing a diagnostic method to determine 30 those individuals who will or will not respond to the treatment, or alternatively, will respond at a lower level and thus may require more treatment, i.e., a greater dose of a drug. The diagnostic method may take one of several forms: for example, a direct DNA test (i.e., genotyping or haplotyping one or more of the polymorphic sites in the POR gene), a serological test, or a physical exam measurement. The only requirement is that there be a good correlation between the diagnostic test results and the underlying POR genotype or haplotype that is in turn correlated with the clinical response. In a preferred embodiment, this diagnostic method uses the predictive haplotyping method described

above.

In another embodiment, the invention provides an isolated polynucleotide comprising a polymorphic variant of the POR gene or a fragment of the gene which contains at least one of the novel polymorphic sites described herein. The nucleotide sequence of a variant POR gene is identical to the reference genomic sequence for those portions of the gene examined, as described in the Examples below, except that it comprises a different nucleotide at one or more of the novel polymorphic sites PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26. Similarly, the nucleotide sequence of a variant fragment of the POR gene is identical to the corresponding portion of the reference sequence except for having a different nucleotide at one or more of the novel polymorphic sites described herein. Thus, the invention specifically does not include polynucleotides comprising a nucleotide sequence identical to the reference sequence of the POR gene (or other reported POR sequences) or to portions of the reference sequence (or other reported POR sequences), except for the haplotyping and genotyping oligonucleotides described above.

10

15

20

25

35

The location of a polymorphism in a variant POR gene or fragment is preferably identified by aligning its sequence against SEQ ID NO:1. The polymorphism is selected from the group consisting of adenine at PS1, thymine at PS2, thymine at PS3, thymine at PS4, adenine at PS5, thymine at PS6, thymine at PS7, guanine at PS8, thymine at PS9, guanine at PS10, adenine at PS11, thymine at PS12, thymine at PS13, thymine at PS14, cytosine at PS15, guanine at PS16, adenine at PS17, cytosine at PS18, thymine at PS19, thymine at PS20, cytosine at PS21, thymine at PS22, guanine at PS23, guanine at PS24, adenine at PS25 and cytosine at PS26. In a preferred embodiment, the polymorphic variant comprises a naturally-occurring isogene of the POR gene which is defined by any one of haplotypes 1-21 shown in Table 5 below.

Polymorphic variants of the invention may be prepared by isolating a clone containing the POR gene from a human genomic library. The clone may be sequenced to determine the identity of the nucleotides at the novel polymorphic sites described herein. Any particular variant or fragment thereof, that is claimed herein could be prepared from this clone by performing *in vitro* mutagenesis using procedures well-known in the art. Any particular POR variant or fragment thereof may also be prepared using synthetic or semi-synthetic methods known in the art.

POR isogenes, or fragments thereof, may be isolated using any method that allows separation of the two "copies" of the POR gene present in an individual, which, as readily understood by the skilled artisan, may be the same allele or different alleles. Separation methods include targeted *in vivo* cloning (TIVC) in yeast as described in WO 98/01573, U.S. Patent No. 5,866,404, and U.S. Patent No. 5,972,614. Another method, which is described in U.S. Patent No. 5,972,614, uses an allele specific oligonucleotide in combination with primer extension and exonuclease degradation to generate hemizygous DNA targets. Yet other methods are single molecule dilution (SMD) as described in Ruaño et al., *Proc. Natl. Acad. Sci.* 87:6296-6300, 1990; and allele specific PCR (Ruaño et al., 1989, supra; Ruaño et al., 1991, supra; Michalatos-Beloin et al., supra).

The invention also provides POR genome anthologies, which are collections of at least two POR isogenes found in a given population. The population may be any group of at least two individuals, including but not limited to a reference population, a population group, a family population, a clinical population, and a same gender population. A POR genome anthology may comprise individual POR isogenes stored in separate containers such as microtest tubes, separate wells of a microtitre plate and the like. Alternatively, two or more groups of the POR isogenes in the anthology may be stored in separate containers. Individual isogenes or groups of such isogenes in a genome anthology may be stored in any convenient and stable form, including but not limited to in buffered solutions, as DNA precipitates, freeze-dried preparations and the like. A preferred POR genome anthology of the invention comprises a set of isogenes defined by the haplotypes shown in Table 5 below. A POR genome anthology is useful in providing control nucleic acids for kits of the invention.

5

10

15

20

25

30

35

An isolated polynucleotide containing a polymorphic variant nucleotide sequence of the invention may be operably linked to one or more expression regulatory elements in a recombinant expression vector capable of being propagated and expressing the encoded POR protein in a prokaryotic or a eukaryotic host cell. Examples of expression regulatory elements which may be used include, but are not limited to, the lac system, operator and promoter regions of phage lambda, yeast promoters, and promoters derived from vaccinia virus, adenovirus, retroviruses, or SV40. Other regulatory elements include, but are not limited to, appropriate leader sequences, termination codons, polyadenylation signals, and other sequences required for the appropriate transcription and subsequent translation of the nucleic acid sequence in a given host cell. Of course, the correct combinations of expression regulatory elements will depend on the host system used. In addition, it is understood that the expression vector contains any additional elements necessary for its transfer to and subsequent replication in the host cell. Examples of such elements include, but are not limited to, origins of replication and selectable markers. Such expression vectors are commercially available or are readily constructed using methods known to those in the art (e.g., F. Ausubel et al., 1987, in "Current Protocols in Molecular Biology", John Wiley and Sons, New York, New York). Host cells which may be used to express the variant POR sequences of the invention include, but are not limited to, eukaryotic and mammalian cells, such as animal, plant, insect and yeast cells, and prokaryotic cells, such as E. coli, or algal cells as known in the art. The recombinant expression vector may be introduced into the host cell using any method known to those in the art including, but not limited to, microinjection, electroporation, particle bombardment, transduction, and transfection using DEAEdextran, lipofection, or calcium phosphate (see e.g., Sambrook et al. (1989) in "Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Press, Plainview, New York). In a preferred aspect, eukaryotic expression vectors that function in eukaryotic cells, and preferably mammalian cells, are used. Non-limiting examples of such vectors include vaccinia virus vectors, adenovirus vectors, herpes virus vectors, and baculovirus transfer vectors. Preferred eukaryotic cell lines include COS

cells, CHO cells, HeLa cells, NIH/3T3 cells, and embryonic stem cells (Thomson, J. A. et al., 1998 *Science* 282:1145-1147). Particularly preferred host cells are mammalian cells.

5

10

15

20

25

30

35

As will be readily recognized by the skilled artisan, expression of polymorphic variants of the POR gene will produce POR mRNAs varying from each other at any polymorphic site retained in the spliced and processed mRNA molecules. These mRNAs can be used for the preparation of a POR cDNA comprising a nucleotide sequence which is a polymorphic variant of the POR reference coding sequence shown in Figure 2. Thus, the invention also provides POR mRNAs and corresponding cDNAs which comprise a nucleotide sequence that is identical to SEQ ID NO:2 (Fig. 2), or its corresponding RNA sequence, for those regions of SEQ ID NO:2 that correspond to the examined portions of the POR gene (as described in the Examples below), except for having one or more polymorphisms selected from the group consisting of thymine at a position corresponding to nucleotide 266, thymine at a position corresponding to nucleotide 357, thymine at a position corresponding to nucleotide 671, thymine at a position corresponding to nucleotide 675, thymine at a position corresponding to nucleotide 1443, cytosine at a position corresponding to nucleotide 1496 and guanine at a position corresponding to nucleotide 1703. A particularly preferred polymorphic cDNA variant comprises the coding sequence of a POR isogene defined by any one of haplotypes 1-21. Fragments of these variant mRNAs and cDNAs are included in the scope of the invention, provided they contain one or more of the novel polymorphisms described herein. The invention specifically excludes polynucleotides identical to previously identified and characterized POR mRNAs, cDNAs or fragments thereof. Polynucleotides comprising a variant POR RNA or DNA sequence may be isolated from a biological sample using well-known molecular biological procedures or may be chemically synthesized.

As used herein, a polymorphic variant of a POR gene, mRNA or cDNA fragment comprises at least one novel polymorphism identified herein and has a length of at least 10 nucleotides and may range up to the full length of the gene. Preferably, such fragments are between 100 and 3000 nucleotides in length, and more preferably between 200 and 2000 nucleotides in length, and most preferably between 500 and 1000 nucleotides in length.

In describing the POR polymorphic sites identified herein, reference is made to the sense strand of the gene for convenience. However, as recognized by the skilled artisan, nucleic acid molecules containing the POR gene or cDNA may be complementary double stranded molecules and thus reference to a particular site on the sense strand refers as well to the corresponding site on the complementary antisense strand. Thus, reference may be made to the same polymorphic site on either strand and an oligonucleotide may be designed to hybridize specifically to either strand at a target region containing the polymorphic site. Thus, the invention also includes single-stranded polynucleotides which are complementary to the sense strand of the POR genomic, mRNA and cDNA variants described herein.

Polynucleotides comprising a polymorphic gene variant or fragment of the invention may be

useful for therapeutic purposes. For example, where a patient could benefit from expression, or increased expression, of a particular POR protein isoform, an expression vector encoding the isoform may be administered to the patient. The patient may be one who lacks the POR isogene encoding that isoform or may already have at least one copy of that isogene.

5

10

25

30

35

In other situations, it may be desirable to decrease or block expression of a particular POR isogene. Expression of a POR isogene may be turned off by transforming a targeted organ, tissue or cell population with an expression vector that expresses high levels of untranslatable mRNA or antisense RNA for the isogene or fragment thereof. Alternatively, oligonucleotides directed against the regulatory regions (e.g., promoter, introns, enhancers, 3' untranslated region) of the isogene may block transcription. Oligonucleotides targeting the transcription initiation site, e.g., between positions –10 and +10 from the start site are preferred. Similarly, inhibition of transcription can be achieved using oligonucleotides that base-pair with region(s) of the isogene DNA to form triplex DNA (see e.g., Gee et al. in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, N.Y., 1994). Antisense oligonucleotides may also be designed to block translation of POR mRNA transcribed from a particular isogene. It is also contemplated that ribozymes may be designed that can catalyze the specific cleavage of POR mRNA transcribed from a particular isogene.

The untranslated mRNA, antisense RNA or antisense oligonucleotides may be delivered to a target cell or tissue by expression from a vector introduced into the cell or tissue *in vivo* or *ex vivo*. Alternatively, such molecules may be formulated as a pharmaceutical composition for administration to the patient. Oligoribonucleotides and/or oligodeoxynucleotides intended for use as antisense oligonucleotides may be modified to increase stability and half-life. Possible modifications include, but are not limited to phosphorothioate or 2' O-methyl linkages, and the inclusion of nontraditional bases such as inosine and queosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytosine, guanine, thymine, and uracil which are not as easily recognized by endogenous nucleases.

The invention also provides an isolated polypeptide comprising a polymorphic variant of (a) the reference POR amino acid sequence shown in Figure 3 or (b) a fragment of this reference sequence. The location of a variant amino acid in a POR polypeptide or fragment of the invention is identified by aligning its sequence against SEQ ID NO:3 (Fig. 3). A POR protein variant of the invention comprises an amino acid sequence identical to SEQ ID NO:3 for those regions of SEQ ID NO:3 that are encoded by examined portions of the POR gene (as described in the Examples below), except for having one or more variant amino acids selected from the group consisting of isoleucine at a position corresponding to amino acid position 89, leucine at a position corresponding to amino acid position 499 and tryptophan at a position corresponding to amino acid position 568. Thus, a POR fragment of the invention, also referred to herein as a POR peptide variant, is any fragment of a POR protein variant that contains one or more of the amino acid variations shown in Table 2. The invention specifically excludes amino

acid sequences identical to those previously identified for POR, including SEQ ID NO:3, and previously described fragments thereof. POR protein variants included within the invention comprise all amino acid sequences based on SEQ ID NO:3 and having the combination of amino acid variations described in Table 2 below. In preferred embodiments, a POR protein variant of the invention is encoded by an isogene defined by one of the observed haplotypes, 1-21, shown in Table 5.

Table 2. Novel Polymorphic Variants of POR

5

30

35

40

	Polymorphic	Amino Acid Position and Identities				
10	Variant	•				
	Number	89	224	499	568	-
	1	T	P	V	W	
	2	T	P	Α	S	
	3	Т	. Ь	Α	W	•
15	4	Т	L	V	S	
	5	T	L	V	\mathbf{W}_{\cdot}	
	6	Т	L	Α	S	•
	7	T	L	Α	W	
	8	I	P	V	S	
20	. 9	· I	Ρ.	V	W	·.:
	10	I	P	Α	S	
	11	I	P	Α	W	
	12	Ī.	L	V	S	
	13	· I	L	V	W	
25	14 ·	Ī	L	A	S	
	15	. Ī	Ĺ	, A	W	

A POR peptide variant of the invention is at least 6 amino acids in length and is preferably any number between 6 and 30 amino acids long, more preferably between 10 and 25, and most preferably between 15 and 20 amino acids long. Such POR peptide variants may be useful as antigens to generate antibodies specific for one of the above POR isoforms. In addition, the POR peptide variants may be useful in drug screening assays.

A POR variant protein or peptide of the invention may be prepared by chemical synthesis or by expressing an appropriate variant POR genomic or cDNA sequence described above. Alternatively, the POR protein variant may be isolated from a biological sample of an individual

having a POR isogene which encodes the variant protein. Where the sample contains two different POR isoforms (i.e., the individual has different POR isogenes), a particular POR isoform of the invention can be isolated by immunoaffinity chromatography using an antibody which specifically binds to that particular POR isoform but does not bind to the other POR isoform.

The expressed or isolated POR protein or peptide may be detected by methods known in the art, including Coomassie blue staining, silver staining, and Western blot analysis using antibodies specific for the isoform of the POR protein or peptide as discussed further below. POR variant proteins and peptides can be purified by standard protein purification procedures known in the art, including differential precipitation, molecular sieve chromatography, ion-exchange chromatography,

isoelectric focusing, gel electrophoresis, affinity and immunoaffinity chromatography and the like. (Ausubel et. al., 1987, In Current Protocols in Molecular Biology John Wiley and Sons, New York, New York). In the case of immunoaffinity chromatography, antibodies specific for a particular polymorphic variant may be used.

5

10

15

20

25

30

35

A polymorphic variant POR gene of the invention may also be fused in frame with a heterologous sequence to encode a chimeric POR protein. The non-POR portion of the chimeric protein may be recognized by a commercially available antibody. In addition, the chimeric protein may also be engineered to contain a cleavage site located between the POR and non-POR portions so that the POR protein may be cleaved and purified away from the non-POR portion.

An additional embodiment of the invention relates to using a novel POR protein isoform, or a fragment thereof, in any of a variety of drug screening assays. Such screening assays may be performed to identify agents that bind specifically to all known POR protein isoforms or to only a subset of one or more of these isoforms. The agents may be from chemical compound libraries, peptide libraries and the like. The POR protein or peptide variant may be free in solution or affixed to a solid support. In one embodiment, high throughput screening of compounds for binding to a POR variant may be accomplished using the method described in PCT application WO84/03565, in which large numbers of test compounds are synthesized on a solid substrate, such as plastic pins or some other surface, contacted with the POR protein(s) of interest and then washed. Bound POR protein(s) are then detected using methods well-known in the art.

In another embodiment, a novel POR protein isoform may be used in assays to measure the binding affinities of one or more candidate drugs targeting the POR protein.

In yet another embodiment, when a particular POR haplotype or group of POR haplotypes encodes a POR protein variant with an amino acid sequence distinct from that of POR protein isoforms encoded by other POR haplotypes, then detection of that particular POR haplotype or group of POR haplotypes may be accomplished by detecting expression of the encoded POR protein variant using any of the methods described herein or otherwise commonly known to the skilled artisan.

In another embodiment, the invention provides antibodies specific for and immunoreactive with one or more of the novel POR variant proteins described herein. The antibodies may be either monoclonal or polyclonal in origin. The POR protein or peptide variant used to generate the antibodies may be from natural or recombinant sources or produced by chemical synthesis using synthesis techniques known in the art. If the POR protein variant is of insufficient size to be antigenic, it may be conjugated, complexed, or otherwise covalently linked to a carrier molecule to enhance the antigenicity of the peptide. Examples of carrier molecules, include, but are not limited to, albumins (e.g., human, bovine, fish, ovine), and keyhole limpet hemocyanin (Basic and Clinical Immunology, 1991, Eds. D.P. Stites, and A.I. Terr, Appleton and Lange, Norwalk Connecticut, San Mateo, California).

In one embodiment, an antibody specifically immunoreactive with one of the novel protein

isoforms described herein is administered to an individual to neutralize activity of the POR isoform expressed by that individual. The antibody may be formulated as a pharmaceutical composition which includes a pharmaceutically acceptable carrier.

Antibodies specific for and immunoreactive with one of the novel protein isoforms described herein may be used to immunoprecipitate the POR protein variant from solution as well as react with POR protein isoforms on Western or immunoblots of polyacrylamide gels on membrane supports or substrates. In another preferred embodiment, the antibodies will detect POR protein isoforms in paraffin or frozen tissue sections, or in cells which have been fixed or unfixed and prepared on slides, coverslips, or the like, for use in immunocytochemical, immunohistochemical, and immunofluorescence techniques.

5

10

15

20

25

30

35

In another embodiment, an antibody specifically immunoreactive with one of the novel POR protein variants described herein is used in immunoassays to detect this variant in biological samples. In this method, an antibody of the present invention is contacted with a biological sample and the formation of a complex between the POR protein variant and the antibody is detected. As described, suitable immunoassays include radioimmunoassay, Western blot assay, immunofluorescent assay, enzyme linked immunoassay (ELISA), chemiluminescent assay, immunohistochemical assay, immunocytochemical assay, and the like (see, e.g., Principles and Practice of Immunoassay, 1991, Eds. Christopher P. Price and David J. Neoman, Stockton Press, New York, New York; Current Protocols in Molecular Biology, 1987, Eds. Ausubel et al., John Wiley and Sons, New York, New York). Standard techniques known in the art for ELISA are described in Methods in Immunodiagnosis, 2nd Ed., Eds. Rose and Bigazzi, John Wiley and Sons, New York 1980; and Campbell et al., 1984, Methods in Immunology, W.A. Benjamin, Inc.). Such assays may be direct, indirect, competitive, or noncompetitive as described in the art (see, e.g., Principles and Practice of Immunoassay, 1991, Eds. Christopher P. Price and David J. Neoman, Stockton Pres, NY, NY; and Oellirich, M., 1984, J. Clin. Chem. Clin. Biochem., 22:895-904). Proteins may be isolated from test specimens and biological samples by conventional methods, as described in Current Protocols in Molecular Biology, supra.

Exemplary antibody molecules for use in the detection and therapy methods of the present invention are intact immunoglobulin molecules, substantially intact immunoglobulin molecules, or those portions of immunoglobulin molecules that contain the antigen binding site. Polyclonal or monoclonal antibodies may be produced by methods conventionally known in the art (e.g., Kohler and Milstein, 1975, Nature, 256:495-497; Campbell Monoclonal Antibody Technology, the Production and Characterization of Rodent and Human Hybridomas, 1985, In: Laboratory Techniques in Biochemistry and Molecular Biology, Eds. Burdon et al., Volume 13, Elsevier Science Publishers, Amsterdam). The antibodies or antigen binding fragments thereof may also be produced by genetic engineering. The technology for expression of both heavy and light chain genes in E. coli is the subject of PCT patent applications, publication number WO 901443, WO 901443 and WO 9014424

and in Huse et al., 1989, Science, 246:1275-1281. The antibodies may also be humanized (e.g., Queen, C. et al. 1989 Proc. Natl. Acad. Sci.USA 86;10029).

Effect(s) of the polymorphisms identified herein on expression of POR may be investigated by preparing recombinant cells and/or nonhuman recombinant organisms, preferably recombinant animals, containing a polymorphic variant of the POR gene. As used herein, "expression" includes but is not limited to one or more of the following: transcription of the gene into precursor mRNA; splicing and other processing of the precursor mRNA to produce mature mRNA; mRNA stability; translation of the mature mRNA into POR protein (including codon usage and tRNA availability); and glycosylation and/or other modifications of the translation product, if required for proper expression and function.

To prepare a recombinant cell of the invention, the desired POR isogene may be introduced into the cell in a vector such that the isogene remains extrachromosomal. In such a situation, the gene will be expressed by the cell from the extrachromosomal location. In a preferred embodiment, the POR isogene is introduced into a cell in such a way that it recombines with the endogenous POR gene present in the cell. Such recombination requires the occurrence of a double recombination event, thereby resulting in the desired POR gene polymorphism. Vectors for the introduction of genes both for recombination and for extrachromosomal maintenance are known in the art, and any suitable vector or vector construct may be used in the invention. Methods such as electroporation, particle bombardment, calcium phosphate co-precipitation and viral transduction for introducing DNA into cells are known in the art; therefore, the choice of method may lie with the competence and preference of the skilled practitioner. Examples of cells into which the POR isogene may be introduced include, but are not limited to, continuous culture cells, such as COS, NIH/3T3, and primary or culture cells of the relevant tissue type, i.e., they express the POR isogene. Such recombinant cells can be used to compare the biological activities of the different protein variants.

Recombinant nonhuman organisms, i.e., transgenic animals, expressing a variant POR gene are prepared using standard procedures known in the art. Preferably, a construct comprising the variant gene is introduced into a nonhuman animal or an ancestor of the animal at an embryonic stage, i.e., the one-cell stage, or generally not later than about the eight-cell stage. Transgenic animals carrying the constructs of the invention can be made by several methods known to those having skill in the art. One method involves transfecting into the embryo a retrovirus constructed to contain one or more insulator elements, a gene or genes of interest, and other components known to those skilled in the art to provide a complete shuttle vector harboring the insulated gene(s) as a transgene, see e.g., U.S. Patent No. 5,610,053. Another method involves directly injecting a transgene into the embryo. A third method involves the use of embryonic stem cells. Examples of animals into which the POR isogenes may be introduced include, but are not limited to, mice, rats, other rodents, and nonhuman primates (see "The Introduction of Foreign Genes into Mice" and the cited references therein, In: Recombinant DNA, Eds. J.D. Watson, M. Gilman, J. Witkowski, and M. Zoller, W.H. Freeman and

Company, New York, pages 254-272). Transgenic animals stably expressing a human POR isogene and producing the encoded human POR protein can be used as biological models for studying diseases related to abnormal POR expression and/or activity, and for screening and assaying various candidate drugs, compounds, and treatment regimens to reduce the symptoms or effects of these diseases.

5

10

15

20

25

30

35

An additional embodiment of the invention relates to pharmaceutical compositions for treating disorders affected by expression or function of a novel POR isogene described herein. The pharmaceutical composition may comprise any of the following active ingredients: a polynucleotide comprising one of these novel POR isogenes; an antisense oligonucleotide directed against one of the novel POR isogenes, a polynucleotide encoding such an antisense oligonucleotide, or another compound which inhibits expression of a novel POR isogene described herein. Preferably, the composition contains the active ingredient in a therapeutically effective amount. By therapeutically effective amount is meant that one or more of the symptoms relating to disorders affected by expression or function of a novel POR isogene is reduced and/or eliminated. The composition also comprises a pharmaceutically acceptable carrier, examples of which include, but are not limited to, saline, buffered saline, dextrose, and water. Those skilled in the art may employ a formulation most suitable for the active ingredient, whether it is a polynucleotide, oligonucleotide, protein, peptide or small molecule antagonist. The pharmaceutical composition may be administered alone or in combination with at least one other agent, such as a stabilizing compound. Administration of the pharmaceutical composition may be by any number of routes including, but not limited to oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, intradermal, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA).

For any composition, determination of the therapeutically effective dose of active ingredient and/or the appropriate route of administration is well within the capability of those skilled in the art. For example, the dose can be estimated initially either in cell culture assays or in animal models. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. The exact dosage will be determined by the practitioner, in light of factors relating to the patient requiring treatment, including but not limited to severity of the disease state, general health, age, weight and gender of the patient, diet, time and frequency of administration, other drugs being taken by the patient, and tolerance/response to the treatment.

Any or all analytical and mathematical operations involved in practicing the methods of the present invention may be implemented by a computer. In addition, the computer may execute a program that generates views (or screens) displayed on a display device and with which the user can interact to view and analyze large amounts of information relating to the POR gene and its genomic variation, including chromosome location, gene structure, and gene family, gene expression data,

polymorphism data, genetic sequence data, and clinical data population data (e.g., data on ethnogeographic origin, clinical responses, genotypes, and haplotypes for one or more populations). The POR polymorphism data described herein may be stored as part of a relational database (e.g., an instance of an Oracle database or a set of ASCII flat files). These polymorphism data may be stored on the computer's hard drive or may, for example, be stored on a CD-ROM or on one or more other storage devices accessible by the computer. For example, the data may be stored on one or more databases in communication with the computer via a network.

Preferred embodiments of the invention are described in the following examples. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims which follow the examples.

EXAMPLES

The Examples herein are meant to exemplify the various aspects of carrying out the invention and are not intended to limit the scope of the invention in any way. The Examples do not include detailed descriptions for conventional methods employed, such as in the performance of genomic DNA isolation, PCR and sequencing procedures. Such methods are well-known to those skilled in the art and are described in numerous publications, for example, Sambrook, Fritsch, and Maniatis, "Molecular Cloning: A Laboratory Manual", 2nd Edition, Cold Spring Harbor Laboratory Press, USA, (1989).

EXAMPLE 1

This example illustrates examination of various regions of the POR gene for polymorphic sites.

Amplification of Target Regions

5

10

15

20

25

30

The following target regions of the POR gene were amplified using PCR primer pairs. The primers used for each region are represented below by providing the nucleotide positions of their initial and final nucleotides, which correspond to positions in SEQ ID NO:1 (Figure 1).

PCR Primer Pairs

	Fragment No.	Forward Primer	Reverse Primer	PCR Product
	Fragment 1	3878-3899	complement of 4429-4406	552 nt
5 .	Fragment 2	22306-22328	complement of 22748-22726	443 nt
	Fragment 3	29363-29385	complement of 29820-29801	458 nt
•	Fragment 4.	30215-30236	complement of 30747-30725	533 nt
	Fragment 5	30942-30962	complement of 31433-31413	492 nt
	Fragment 6	31414-31434	complement of 31856-31836	443 nt
10	Fragment 7	32039-32059	complement of 32600-32579	562 nt
	Fragment 8	33448-33468	complement of 33880-33859	433 nt
. •	Fragment 9	33639-33658	complement of 34167-34145	529 nt
:	Fragment 10	34661-34683	complement of 35288-35265	628 nt
	Fragment 11	34915-34939	complement of 35578-35559	664 nt
15	Fragment 12	35497-35516	complement of 36043-36022	547 nt
	Fragment 13	35664-35683	complement of 36162-36142	499 nt
	Fragment 14	35847-35866 ⁻	complement of 36348-36327	502 nt
	Fragment 15	36051-36074	complement of 36479-36458	429 nt
	Fragment 16	36117-36136	complement of 36857-36835	741 nt

20

35

40

These primer pairs were used in PCR reactions containing genomic DNA isolated from immortalized cell lines for each member of the Index Repository. The PCR reactions were carried out under the following conditions:

```
= 10 µl
      Reaction volume
      10 x Advantage 2 Polymerase reaction buffer (Clontech)
                                                                           = 1 \mu l
25
                                                                           = 1 \mu l
      100 ng of human genomic DNA
                                                                           = 0.4 \mu l
      10 mM dNTP
                                                                           = 0.2 µl
      Advantage 2 Polymerase enzyme mix (Clontech)
      Forward Primer (10 µM)
                                                                           = 0.4 µl
                                                                           = 0.4 <sub>川</sub>
      Reverse Primer (10 µM)
30
                                                                           = 6.6 \mul
      Water .
```

Amplification profile:

97°C - 2 min.

```
97°C - 15 sec.

70°C - 45 sec.

10 cycles

97°C - 45 sec.

97°C - 15 sec.

64°C - 45 sec.
```

1 cycle

45 Sequencing of PCR Products

72°C - 45 sec.

The PCR products were purified using a Whatman/Polyfiltronics 100 µl 384 well unifilter plate essentially according to the manufacturers protocol. The purified DNA was eluted in 50 µl of distilled water. Sequencing reactions were set up using Applied Biosystems Big Dye Terminator chemistry essentially according to the manufacturers protocol. The purified PCR products were

sequenced in both directions using the primer sets represented below by the nucleotide positions of their initial and final nucleotides, which correspond to positions in SEQ ID NO:1 (Figure 1). Reaction products were purified by isopropanol precipitation, and run on an Applied Biosystems 3700 DNA Analyzer.

Sequencing Primer Pairs									
Fragment No.	Forward Primer	Reverse Primer							
Fragment 1	3944-3963	complement of 4392-4372							
Fragment 2	22375-22394	complement of 22722-22703							
Fragment 3	29406-29426	complement of 29787-29768							
Fragment 4 .	30292-30312	complement of 30725-30706							
Fragment 5	30968-30987	complement of 31389-31370							
Fragment 6	31442-31461	complement of 31822-31803							
Fragment 7	32174-32193	complement of 32547-32527							
Fragment 8	33480-33499	complement of 33845-33826							
Fragment 9	33681-33700	complement of 34099-34080							
Fragment 10	34730-34749	complement of 35169-35150							
Fragment 11	35004-35021	complement of 35443-35425							
Fragment 12	35534-35553 ·	complement of 35915-35895							
Fragment 13	35692-35711	complement of 36081-36060							
Fragment 14	35885-35904	complement of 36290-36271							
Fragment 15	36117-36136	complement of 36449-36431							
Fragment 16	36300-36318	complement of 36804-36790							
	Fragment No. Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5 Fragment 6 Fragment 7 Fragment 8 Fragment 9 Fragment 10 Fragment 11 Fragment 12 Fragment 12 Fragment 13 Fragment 14 Fragment 15	Fragment No. Forward Primer Fragment 1 3944-3963 Fragment 2 22375-22394 Fragment 3 29406-29426 Fragment 4 30292-30312 Fragment 5 30968-30987 Fragment 6 31442-31461 Fragment 7 32174-32193 Fragment 8 33480-33499 Fragment 9 33681-33700 Fragment 10 34730-34749 Fragment 11 35004-35021 Fragment 12 35534-35553 Fragment 13 35692-35711 Fragment 14 35885-35904 Fragment 15 36117-36136							

25 Analysis of Sequences for Polymorphic Sites

Sequence information for a minimum of 80 humans was analyzed for the presence of polymorphisms using the Polyphred program (Nickerson et al., *Nucleic Acids Res.* 14:2745-2751, 1997). The presence of a polymorphism was confirmed on both strands. The polymorphisms and their locations in the POR reference genomic sequence (SEQ ID NO:1) are listed in Table 3 below.

Table 3. Polymorphic Sites Identified in the POR Gene

5							
	Polymorphic '		Nucleotide	Reference	Variant	CDS Variant	· AA
	Site Number	PolyId(a)	Position	Allele	Allele .	Position	Variant
	PS1	6664331	22635	G	Α	•	•
	PS2	6664339	29577	С	· T.	266	T891
10	PS3	6664341	29754	C	T		
	. PS4	6664343	30427	C	T	357	A119A
	PS5	6664355	31531 .	G	Α	·	•
	PS6 '	6664359 ·	31644	C	T	. 671	P224L
	PS7	6664361	31648	С	T	675	A225A
15	PS8	6664371	32446	. A	. G	•	
	PS9	6664373	.32478	С	T		
	PS10	6664377	33538	C	G		
	PS11	6664379	33551	Ģ	Α		
	PS12	6664381 -	33571	С	T	:	
20	PS13 ·	6664393	34766	C	T	•	
	PS14	6664395	34796	С	T	•	
	PS15	6664397	34797	T	C		
	PS16	6664399	34850	C	G	,	
	PS17	6664409	35325	G	Α		
25	PS18	6664413	35631	T	C		
	PS19	6664415	35632 .	. G	T		
	PS20	6664417	35721	С	T ·	1443	· A481A
	PS21	6664419	35774	T	C	1496	V499A
	PS22	6664425	35992	C	T		
30	- PS23	6664429	36054	С	G	1703	S568W
	PS24	6664433	36207	. C	G		
	PS25	6664441	36330	G .	A		
	PS26	6664443	36617	T	С		

35 (a) PolyId is a unique identifier assigned to each PS by Genaissance Pharmaceuticals, Inc.

EXAMPLE 2

This example illustrates analysis of the POR polymorphisms identified in the Index Repository for human genotypes and haplotypes.

The different genotypes containing these polymorphisms that were observed in unrelated members of the reference population are shown in Table 4 below, with the haplotype pair indicating the combination of haplotypes determined for the individual using the haplotype derivation protocol described below. In Table 4, homozygous positions are indicated by one nucleotide and heterozygous positions are indicated by two nucleotides. Missing nucleotides in any given genotype in Table 4 were inferred based on linkage disequilibrium and/or Mendelian inheritance.

45

Table 4 (Part 1). Genotypes and Haplotype Pairs Observed for POR Gene

•	Genotype	ı		Polymorphic Sites							•		
	Number	i HA	P Pair	PS1	PS2	PS3	PS4	PS5	PS6	PS7	PS8	PS9	PS10
5	1	8	8	G	С	С	С	Α	С	С	A	С	G
	2	10	10	G	C	С	C	Α	C	С	Α	C	G
	3	19	19	G	C	T	C	Α	C	С	Α	С	G
	4	15	15	G	C	, C	С	Ġ	C	С	Α	С	C
	5	8	11 .	. G	C	C	С	Α	С	C	Α	С	G
10	6	8	3	G/A	С	C ·	C	Α	C	C	Α	·C	G
	7	19.	21	G	C/T	T/C	\mathbf{C} .	Α	С	С	Α	С	G
	8	10	17	G	С	C	C	A/G	C	C	Α	C	G/C
	9	15	2	G/A	C	С	С	G/A	C	C	Α	C	C/G
	10	19	14	G	C.	T/C	C	A/G	C	C	Α	C	G/C
15	11	8	16	G	С	С	C	A/G	C	С	Α	Ċ	G/C
	12	8	20 .	· G .	C	C/T	C	Α	C	С	Α	C/T	G
	13	19	2	G/A	C	T/C	C	A	C	C	Α	C	G
	14	19	.4	G/A	C	T	С	A	C	C	Α	C	G
	15	14	9	G	С	C	C	G/A	C	C	Α	C	C/G
20	16 .	8	13	G	Ć	C	C	A	C	C/T	A	C	G
,	17	8	12	G		C	C	A	C	C	A/G	C	G
	18	8	1	G/A	C	C	. C	A	C	C	A	C	G
	19	8	6 .	G	C	C	C	A	C	C	A	C	G
	20	8.	15	G	C	C	C	A/G	C	C	A	C .	G/C
25	21	8	17	G	C	C	C	A/G	C	C	A	C	G/C
	22	8	7	G	C	C	C	A	C	C	A	C	G
	23	10	5	G	C	C	C	A	C	C	A	C	G
	24	8	2	G/A	C	C	C.	Ά	C	C	A	C	G
20	25	8	19	·G	C	C/T	C	A	C	C	A	C	G
30	26	10	15	G	C	C	C	A/G	C	C	A	C	G/C
	27	8	10	G	·C	С	C	A	C	C	A	C	G
	28	10	19	G	C	C/T	· C	A	C	C	A	C	G
	29	19	17	G	C	T/C	C	A/G	C C	C	A	C	· G/C
25	30 .	15	18	G	C	C	C/T	G	_	C	. A	C	C
35	31	19	15	G	С	T/C	C	A/G	C	С	· A	C	G/C

Table 4 (Part 2). Genotypes and Haplotype Pairs Observed for POR Gene

	Genotype	ļ		Pol	lymorp	hic Si	tes						
	Number	HA	P Pair	PS11	PS12	PS13	PS14	PS15	PS16	PS17		PS19	PS20
5	1	8	8	Α	C	T	C	С	G	G	С	T	С
	2	10	10	Α	T	C	С	C	G·	G	С	T	С
	3	19	19	Α	C .	T	С	C	G	G	С	T	С
	4	15	15	G	C	С	C	T	С	G	T	G	T
•	5	8	11	Α	C/T	T	·C	С	·G	G	С	T	С
10	6	8	3	Α	· C/T	T/C	С	С	G.	G/A	C/T	T	С
	7	19	21	Α	C	T	С	С	G	.G	C	T	С
	8	10	17	A/G	T/C	С	C/T	C/T	G/C	G	C/T	T/G	C/T
	9	15	2	G/A	C/T	C	С	T/C	C/G	G/A	T/C	G/T	T/C
	10	19	14	A/G	C	T/C	· C	C/T	G/C	G	C/T	·T/G	С
15	11	8	16	A/G	C	T/C	С	C/T	G	G	C/T	T/G	C/T
	12	8	20	A	C	T	C.	C	G	G	С	T	C
	13	19	2	Α	C/T	T/C	С	· Ċ	G	G/A	С	T	C
	14	19	4	j A	C	T	С	С	G	G	С	T	C
	15	14	9	G/A	C/T	С	Ċ	T/C	C/G	G	T/C	G/T	C
20	16	8	13 .	 ` A	C/T	T/C	C	Ċ	G	G	С	. T	C
	17	8	12	A	C/T	T/C	С	C	G	G	С	T	C
	18	8	1	A	C	T	C	C	G	G	С	T .	С
	19	8	6	A	С	T/C	С	С	G·	G	C	T	C
•	20	8	15	A/G	C	T/C	C	C/T	G/C	G	C/T	T/G	C/T
25	21	8	17	j A/G	,C	T/C	C/T	C/T	G/C	G	C/T	T/G	C/T
	22	8	.7	A	C	T ·	C	С	G	G	·C	T	C
•	23	10	5	A	T/C	С	С	C.	G	G	C	T	C
	24	8	2 .	A	C/T	T/C	С	C	G	G/A	C	T	C
	25	8	19	j A	C	T	C.	C	G	G	С	Τ.	С
30	26	10	15	A/G	T/C	С	C	C/T	G/C	G	C/T	T/G	C/T
	27	8	10	A	C/T	T/C	C	C	G	G	C	T	C
	28	10	19	A	· T/C	C/T	C	С	G	G	C	T	C
	29	19	17	A/G	С	T/C	C/T	C/T	G/C	G	C/T	T/G	C/T
	30	15	18	G	C	C	С	T	С	G	T	G	T/C
·35	31	19	15	A/G	C	.T/C	С	C/T	G/C	G	C/T	T/G	C/T

Table 4 (Part 3). Genotypes and Haplotype Pairs Observed for POR Gene

	Genotype	l		Po	lymorphic Sites					
	Number	HA	P Pair	PS21	PS22	PS23	PS24	PS25	PS26	
5	1	8	8	C	С	G	С	G	C	
	2	10	10	T	C	G	C	G	C	
	3	19	19	C	C	Α	С	G	C	
	4	15	15	C	C	G	С	G	C	
	5	8	11	C/T	C·	G	C	G	C	
10	6	8	3	C/T	C	G	C	G	C/T	
	7	19	21	C	C	Α	C	G	C	
•	8	10	17	T/C	C	G	C.	G	C	
	9	15	2	C/T	С	G	C	G	C	
	10	19	14	Ċ	С	A/G	C	G	C	
15	11	8	16	C	C	G	C	G	C	
	12	8	20	C	C	G/A	C	. G	C	
	13	19	2	C/T	C	A/G	C	G	C	
	14	19	4	C	C	Α	С	G	C	
	15	14	9	C/T	C	G/A	C	G	C .	
20	16	8	13	C/T	C	G	C	, G	C	
	17	8	12	C/T	С	G	C ·	G	С	
٠	18	8	1	C.	· C	G	C	G	С	
	19	8	6	C/T	C/T	G	C	G	С	
	20	8	15 .	C	C	G	C	G	C	
25	21	8	17	C	С	G	C	G	С	
	22	8.	7	C	C	G	C	G/A.	C	
	23	10	5 ·	T/C	C	G/A	C	G	C	
	24	8	2	C/T	C	G	С	G	С	
	25	8	19	C	С	G/A	C	G	·C	
30	26	10	15	T/C	С	G	C	G	С	
	27	8	10	C/T	С	G	C	G	С	
	28	10	19	T/C	C	G/A	C	G	C	
	29	19	17	l C⋅	C	A/G	C	G	C	
	30	15	18	C	C	G	C	G	C	
35	31	19	15	С	C	A/G	C	G	С	

The haplotype pairs shown in Table 4 were estimated from the unphased genotypes using a computer-implemented extension of Clark's algorithm (Clark, A.G. 1990 *Mol Bio Evol* 7, 111-122) for assigning haplotypes to unrelated individuals in a population sample, as described in PCT/US01/12831, filed April 18, 2001. In this method, haplotypes are assigned directly from individuals who are homozygous at all sites or heterozygous at no more than one of the variable sites. This list of haplotypes is then used to deconvolute the unphased genotypes in the remaining (multiply heterozygous) individuals. In the present analysis, the list of haplotypes was augmented with haplotypes obtained from two families (one three-generation Caucasian family and one two-generation African-American family).

By following this protocol, it was determined that the Index Repository examined herein and, by extension, the general population contains the 21 human POR haplotypes shown in Table 5 below.

A POR isogene defined by a full-haplotype shown in Table 5 below comprises the regions of the SEQ ID NOS indicated in Table 5, with their corresponding set of polymorphic locations and

identities, which are also set forth in Table 5.

Table 5 (Part 1). Haplotypes of the POR gene.

5	Regions	PS	· PS	Ha	plotyp	e Num	ber(d)			•			
	Examined(a)	No.(b)	Position(c)	1	2	3	4	5	6	7	8	9	10
	3878-4429	-	-	- .	-	-	- .	-	-	-	· -	-	-
	22306-22748	1	22635/30	Α	Α	Α	Α	G	G	G	G	G	G
	29363-29820	2	29577/150	С	C	. C	С	C	C	С	·C	C	С
10 ·	29363-29820	3	29754/270	С	С	С	T	C	C	C	С	С	С
	30215-30747	4	30427/390	С	C	С	С	·C	C	С	С	C	С
•	30942-31856	5	31531/510	Α	Α	Α	Α	Α	Α	Α	· A	Α	Α
	30942-31856	. 6	·31644/630	C .	С	C	C	С	С	С	С	C.	C
	30942-31856	7	31648/750	C.	С	C	С	С	C	С	С	C	C
15	32039-32600	8	32446/870	A .	Α	Α	Α	Α	Α	Α	Α	·A	Α
	32039-32600	9	32478/990	C	C	C	C	С	C	C	C	C	C
	33448-34167	10	33538/1110	G	G	G	G	G	· G	G	G	G	G
	33448-34167	11	33551/1230	Α	Α	Α	Α	Α	. A	Α	A	A	Α
•	33448-34167	· 12	33571/1350	C	T	T	C	C	C	С	Ċ	T	T
20	34661-36857	13	34766/1470	T	C	C	T	С	·C	T	T	C	C
	34661-36857	14	34796/1590	C	С	C	C	Ċ	C	С	С	C	C
	34661-36857	15	34797/1710	C	C	C·	С	С	Ċ	С	С	C	C
	34661-36857	16	34850/1830	, G	G	G	G.	G	G	G.	G	\cdot . G \cdot	G
	34661-36857	17	35325/1950	G	Α	Α	G	G	G	G	G	G	G
25	34661-36857	18	35631/2070	С	C	T.	С	С	С	С	C	C	C
	34661-36857	19	35632/2190	T	T	T	T	T	T	T	T	T	T
	34661-36857	20	35721/2310	С	С	C	С	E	С	C	С	С	C
	34661-36857	21	35774/2430	С	T	T	С	С	T ·	C	С	T	T
	34661-36857	22	35992/2550	C	C	C.	C	C	T	C	С	С	C
30	34661-36857	23	36054/2670	G	G	G	Α	Α	G	G	\mathbf{G} .	Α	G
	34661-36857	24	36207/2790	C	C	С	C	C	C	С	С	C	С
	34661-36857	25	36330/2910	G	G	G	G	G	G	A	G	G	· G
	34661-36857	26	36617/3030	С	С	T	C	C	C	C	C	C	С

^{35 (}a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;

⁽b) PS = polymorphic site;

⁽c) Position of PS within the indicated SEQ ID NO, with the 1st position number referring to SEQ ID NO:1 and the 2nd position number referring to SEQ ID NO:134, a modified version of SEQ ID NO:1 that comprises the context sequence of each polymorphic site, PS1-PS26, to facilitate electronic searching of the haplotypes;

⁽d) Alleles for POR haplotypes are presented 5' to 3' in each column.

Table 5 (Part 2). Haplotypes of the POR gene.

	Regions	PS	PS	Ha	plotype	e Num	ber(d)						
	Examined(a)	No.(b)	Position(c)	11	12	13	14	15	16	17	18	19	20
5	3878-4429		•	-	-	-	-	-	-	-	-	-	-
	22306-22748	1	22635/30	G	G	G.	G	G	G	G	G	G	G
•	29363-29820	2	29577/150	С	С	С	С	С	С	C	C	С	Ċ
	29363-29820	3	29754/270	C	С	С	С	C	C	C	С	T	T
	30215-30747	4	30427/390	. C	С	С	C	С	C	С	T	C	\mathbf{C} .
10	30942-31856	5	31531/510	Α	Α	A	G	G	G	G	G ·	Α	Α
	30942-31856	6	31644/630	С	C	С	C	C	C	C	. C	C	C
	30942-31856	· 7	31648/750	С	С	T	C	C	C	С	С	C	C ·
	32039-32600	8	32446/870	Α	G	Α	Α	A	Α	Α	Α	Α	Α
	32039-32600	9	32478/990	C	С	C	С	Ċ	C	C	C	C	T
15	33448-34167	10	33538/1110	G	G	G	C	C	C	С	С	G	G
	33448-34167	11	33551/1230	Α	A	A	G	G	G	G	G	Α	A
	33448-34167	12.	33571/1350	T	T	T	C	C	C	С	C	C	C
	34661-36857	13	34766/1470	T	С	C	C	. C	С	С	С	T	T
	34661-36857	14	34796/1590	C	C	С	C	·C	C	T	C	С	C
20	34661-36857	15	34797/1710	C	С	C	T	T	T	T	T	С	C
	34661-36857	16	34850/1830	·G	G	G	С	С	G	С	C	G	G
	34661-36857	17	35325/1950	G	G	Ģ	G	G	G	. G	G	G	G
	34661-36857	·18	35631/2070	C	С	·Č	T	T	T	T	T	C	C
	34661-36857	19	35632/2190	T	T	Ť	· G	G	G	G	G	T	T
25	34661-36857	20	35721/2310	. C	C	С	С	T	T	T	C	C	C .
	34661-36857	21	35774/2430	T	T	T	C	С	C	C	C	С	С
	34661-36857	22	35992/2550	С	С	C	С	C	С	C	С	C	С
	34661-36857	23	36054/2670	G	G	G	G	G	G	G	G	Α	Α
	34661-36857	24	36207 <i>/</i> 2790	C·	C	С	С	C	C	C	С	C	C
30	34661-36857	25	36330/2910	G۷	G	G	G	∙G	G	G	G	G	G
	34661-36857	26	36617/3030	С	C	С	C	С	С	C	С	C	C

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;

35

⁽b) PS = polymorphic site;

⁽c) Position of PS within the indicated SEQ ID NO, with the 1st position number referring to SEQ ID NO:1 and the 2st position number referring to SEQ ID NO:134, a modified version of SEQ ID NO:1 that comprises the context sequence of each polymorphic site, PS1-PS26, to facilitate electronic searching of the haplotypes;

⁽d) Alleles for POR haplotypes are presented 5' to 3' in each column.

Table 5 (Part 3). Haplotypes of the POR gene.

Regions	PS	PS	Haplotype Number(d)
Examined(a)	No.(b)	Position(c)	21
3878-4429	-	-	-
22306-22748	1	22635/30	G
29363-29820	2	29577/150	T ·
29363-29820	. 3	29754/270	C
30215-30747	4	30427/390	. C .
30942-31856	5	31531/510	A
30942-31856	6	31644/630	С
30942-31856	7	31648/750	С
32039-32600	8	32446/870	A
32039-32600	9	32478/990	Ċ
33448-34167	10	33538/1110	G `
33448-34167	11	33551/1230	A
33448-34167	12	33571/1350	С
34661-36857	13	34766/1470	T
34661-36857	14	34796/1590	C
34661-36857	15	34797/1710	· C
34661-36857	16	34850/1830	· G
34661-36857	.17	35325/1950	G
34661-36857	18	35631/2070	С
34661-36857	19	35632/2190	T .
34661-36857	20	35721/2310	С
34661-36857	21	35774 <i>/</i> 2430	C
34661-36857	22	. 35992 /2 550	C
34661-36857	23	36054/2670	A
34661-36857	24	36207/2790	С
34661-36857	25	36330/2910	. G
34661-36857	26	36617/3030	C
	3878-4429 22306-22748 29363-29820 30215-30747 30942-31856 30942-31856 30942-31856 30942-31856 32039-32600 32039-32600 33448-34167 33448-34167 34461-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857 34661-36857	Examined(a) No.(b) 3878-4429 - 22306-22748	Examined(a) No.(b) Position(c) 3878-4429 22306-22748 1 22635/30 29363-29820 2 29577/150 29363-29820 3 29754/270 30215-30747 4 30427/390 30942-31856 5 31531/510 30942-31856 6 31644/630 30942-31856 7 31648/750 32039-32600 8 32446/870 32039-32600 9 32478/990 33448-34167 10 33538/1110 33448-34167 11 33551/1230 33448-34167 12 33571/1350 34661-36857 13 34766/1470 34661-36857 14 34796/1590 34661-36857 15 34797/1710 34661-36857 16 34850/1830 34661-36857 17 35325/1950 34661-36857 18 35631/2070 34661-36857 20 35721/2310 34661-36857 21 35774/2430 34661-36857 22 35992/2550 34661-36857 23 36054/2670 34661-36857 24 36207/2790 34661-36857 25 36330/2910

(a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;

(b) PS = polymorphic site;

35

40

50

(c) Position of PS within the indicated SEQ ID NO, with the 1st position number referring to SEQ ID NO:1 and the 2nd position number referring to SEQ ID NO:134, a modified version of SEQ ID NO:1 that comprises the context sequence of each polymorphic site, PS1-PS26, to facilitate electronic searching of the haplotypes;

(d) Alleles for POR haplotypes are presented 5' to 3' in each column.

SEQ ID NO:1 refers to Figure 1, with the two alternative allelic variants of each polymorphic site indicated by the appropriate nucleotide symbol. SEQ ID NO:134 is a modified version of SEQ ID NO:1 that shows the context sequence of each of PS1-PS26 in a uniform format to facilitate electronic searching of the POR haplotypes. For each polymorphic site, SEQ ID NO:134 contains a block of 60 bases of the nucleotide sequence encompassing the centrally-located polymorphic site at the 30th position, followed by 60 bases of unspecified sequence to represent that each polymorphic site is separated by genomic sequence whose composition is defined elsewhere herein.

Table 6 below shows the percent of chromosomes characterized by a given POR haplotype for all unrelated individuals in the Index Repository for which haplotype data was obtained. The percent

of these unrelated individuals who have a given POR haplotype pair is shown in Table 7. In Tables 6 and 7, the "Total" column shows this frequency data for all of these unrelated individuals, while the other columns show the frequency data for these unrelated individuals categorized according to their self-identified ethnogeographic origin. Abbreviations used in Tables 6 and 7 are AF = African Descent, AS = Asian, CA = Caucasian, HL = Hispanic-Latino, and AM = Native American.

Table 6. Frequency of Observed POR Haplotypes In Unrelated Individuals

	HAP No.	HAP ID	Total	CA	AF	AS	HL	AM
10	1.	6670644	0.62	2.5	0.0	0.0	0.0	0.0
	2	6670633	4.94	2.5	5.0	0.0	11.11	16.67
	3	6670639	0.62	0.0	0.0	0.0	2.78	0.0
	4	6670642	0.62	0.0	0.0	0.0	2.78	0.0
	5	6670643	0.62	0.0	2.5	0.0	0.0	0.0
15	6	6670640	0:62	0.0	2.5	0.0	0.0	0.0
	7	6670673	0.62	0.0	2.5	0.0	0.0	. 0.0
	8	6670629	32.72	37.5	27.5	32.5	38.89	0.0
	9	6670636	0.62	2.5	0.0	0.0	0.0	0.0
	10	6670630	17.9	7.5	7.5	42.5	16.67	0.0
20	11	6670637	0.62	0.0	0.0	0.0	2.78	0.0
	12	6670653	0.62	2.5	0.0	0.0	0.0	0.0
	13	6670646	0.62	2.5	0.0	0.0	0.0	0.0
	14	6670635	1.85	2.5	2.5	0.0	2.78	0.0
	15	6670632	12.35	7.5	17.5	17.5	5.56	16.67
25	16	6670684	0.62	0.0	0.0	2.5	0.0	0.0
	17	6670634	3.7	0.0	12.5	0.0	2.78	0.0
	18	6670638	0.62	0.0	2.5	0.0	0.0	0.0
	19	6670631	17.9	30.0	17.5	5.0	13.89	50.0
	20	6670645	0.62	2.5	0.0	0.0	0.0	0.0
30	21	6670641	0.62	0.0	0.0	0.0	0.0	16.67

Table 7. Frequency of Observed POR Haplotype Pairs In Unrelated Individuals

	HAPI	HAP2	Total	.CA	AF	AS	HL	AM
	8	8	11.11	10.0	10.0	15.0	11.11	0.0
5	10	10	4.94	0.0	0.0	15.0	5.56	0.0
	19	19	2.47	10.0	0.0	0.0	0.0	0.0
	15	15	2.47	0.0	5.0	5.0	0.0	0.0
	8	11	1.23	0.0	0.0	0.0	5.56	0.0
	8	3	1.23	0.0	0.0	0.0	5.56	0.0
10	19	21	1.23	0.0	0.0	0.0	0.0	33.33
	10	17	1.23	0.0	5.0	0.0	0.0	0.0
	15	2 ·	1.23	0.0	5.0	0.0	0.0	0.0
	19	14	2.47	0.0	5.0	0.0	5.56	0.0
	8 .	16	1.23	0.0	0.0	5.0	0.0	0.0
15	8	20 ·	1.23	5.0	0.0	0.0	0.0	0.0
	19	2.	3.7 .	5.0	0.0	0.0	5.56	33.33
	19	4	1.23	0.0	0.0	0.0	5.56	0.0
	14	9	1.23	5.0	0.0	0.0	0.0	0.0
	8	13	1.23	5.0	0.0	0.0	0.0	0.0
20	8	12	1.23	5.0	0.0	0.0	0.0	0.0
	8	1	1.23	5.0	0.0	0.0	0.0	0.0
	8	6	1.23	0.0	5.0	0.0	-0.0	0.0
	8 .	15	4.94	5.0	5.0	5.0	5.56 ·	
	8	17	3.7	0.0	10.0	0.0	5.56	0.0
25	8	7	1.23	0.0	5.0	0.0	0.0	0.0
	10	5	1.23	0.0	5.0	0.0	0.0	0.0
	8	2	4.94	0.0	5.0	0.0	16.67	· 0.0
	8	19	7.41	20.0	5.0	0.0	5.56	0.0
	10	15	6.17	0.0	0.0	20.0	5.56	0.0
30	.8	10	11.11	10.0	0.0	25.0	11.11	0.0
	10	19	6.17	5.0	5.0	10.0	5.56	0.0
	19	17	2.47	0.0	10.0	0.0	0.0	0.0
	15	18	1.23	0.0	5.0	0.0	0.0	0.0
	19	15	6.17	10.0	10.0	0.0	0.0	33.33
35			_		 -		•.	

40

45

The size and composition of the Index Repository were chosen to represent the genetic diversity across and within four major population groups comprising the general United States population. For example, as described in Table 1 above, this repository contains approximately equal sample sizes of African-descent, Asian-American, European-American, and Hispanic-Latino population groups. Almost all individuals representing each group had all four grandparents with the same ethnogeographic background. The number of unrelated individuals in the Index Repository provides a sample size that is sufficient to detect SNPs and haplotypes that occur in the general population with high statistical certainty. For instance, a haplotype that occurs with a frequency of 5% in the general population has a probability higher than 99.9% of being observed in a sample of 80 individuals from the general population. Similarly, a haplotype that occurs with a frequency of 10% in a specific population group has a 99% probability of being observed in a sample of 20 individuals from that population group. In addition, the size and composition of the Index Repository means that the relative frequencies determined therein for the haplotypes and haplotype pairs of the POR gene are likely to be similar to the relative frequencies of these POR haplotypes and haplotype pairs in the

general U.S. population and in the four population groups represented in the Index Repository. The genetic diversity observed for the three Native Americans is presented because it is of scientific interest, but due to the small sample size it lacks statistical significance.

In view of the above, it will be seen that the several advantages of the invention are achieved and other advantageous results attained.

5

10

As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

All references cited in this specification, including patents and patent applications, are hereby incorporated in their entirety by reference. The discussion of references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinency of the cited references.

What is Claimed is:

1. A method for haplotyping the P450 (cytochrome) oxidoreductase (POR) gene of an individual, which comprises determining which of the POR haplotypes shown in the table immediately below defines one copy of the individual's POR gene, wherein the determining step comprises identifying the phased sequence of nucleotides present at each of PS1-PS26 on at least one copy of the individual's POR gene, and wherein each of the POR haplotypes comprises a sequence of polymorphisms whose positions and identities are set forth in the table immediately below:

10	PS	PS	Ha	plotyp	e Nüm	ber(c)	(Part 1)				
	No.(a)	Position(b)	1	2	3	4	5	6	7	8	9	10
	1	22635	Α	Α	Α	Α	G	G	G	G	G	G
	2	29577	C	C	C	С	·C	C	С	C	C	C
	3	29754	C	C ·	C	T.	C	C	C	C	C	С
15	4	30427	С	С	C	C	Ċ.	C	C	C	·C	С
_	5	·31531	Α	Α	Α	A	Α	Α	A	Α	A	Α
	. 6	31644	С	С	C	С	C.	C	C	C	С	С
	7	31648	C	C	C	. C	C	C	C	C	C	. C
	8 .	32446	Α	Α	Α	Α	Α	A	Α	Α	Α	A .
20	9	32478	C	С	C	С	C	С	C	C	C	C
	10	33538	G	G	G	G	· G	G	G	G	G	G
	11 ·	33551	Α	Α	Α	Α	\mathbf{A}^{\cdot}	Α	Α	Α	A	A
	12 .	33571	C	T	T	С	C	С	C.	С	T	T.
	13	34766	T	С	С	T	C	C	T	T	C .	C
25	14	34796	С	С	С	C	С	С	С	С	C	C
	15	34797	С	С	C	C	С	C	C	С	C	C
	16 .	34850	G	G	G	G	G	G	G	G	·G	G
	17	35325	G	Α	A	G	G	G	. G	G	G	G
	18	35631	C	С	T	С	C	C	C	\mathbf{C}	C	С
30	19	35632	T	T	T	T	T	T	T	T	T	T
	20	35721	С	C	С	С	С	С	C	C	С	C
	21	35774	C	T	T	C	С	T	С	C	T	T
	22	35992	С	С	C	С	C .	T	С	С	С	C
	23	36054	G	G	G	Α	Α.	G	G	G	A	G
35	24	36207	С	C	С	С	С	C	C	C	С	C
	`25	36330	G	G.	G	G	G	G	A	G	G	G
	26	36617	C .	C	T	С	, C	С	C	C	C	С

⁽a) PS = polymorphic site;

⁽b) Position of PS within SEQ ID NO:1;

⁽c) Alleles for haplotypes are presented 5' to 3' in each column;

	wo (02/26768										PCT/	US01/30877
	PS	PS	Ha	plotype	e Num	ber(c)	(Part 2	2)					
	No.(a)	Position(b)	11	12	13	14	15	16	17	18	19	20	
	1	22635	G	G	G	G	G	Ġ	G	G	G	G	
	2	29577	C	C·	С	C	С	С	C .	C	С	C	
5	3	29754	C	С	C	C	С	С	С	С	Τ.	T	
	4	30427	С	С	С	C	С	С	C·	T	C	C	
•	5	31531	Α	Α.	Α	G	G	G	G	G	Α	Α	•
	6 .	31644	C	C	С	С	C	С	С	С	C	С	
	7	31648	C	C	T	C	C	С	С	С	, C	С.	
10	8	32446	Α	G	Α	Α	Α	Α	Α	Α	A	Α	
	9	32478	С	С	C	С	С	С	С	C.	С	T	
	10	33538	G	G	G	С	С	С	С	С	G	G	•
	11	33551	Α	Α	Α	G	G	G·	·G	Ģ	Α	Α	
	12	33571	T	T	T	С	С	C	C	C	C	С	•
15	13	34766	T	С	C	С	C	С	C	С	T	.T	
	14	34796	С	C	C	C.	C	С	T	· C	C	C	
	15	34797	С	C·	C	T	Ţ	T	T	T	C	C	
	16	34850	G	G	G	C	Ċ	G	С	С	G	G	•
	17	35325	G	G	G	G	G	G	G	\mathbf{G} .	\mathbf{G}_{\cdot}	. G	•
20	18	35631	C	C	. C	T	T	T	Τ.	T	С	С	
	19	35632	Ţ	T	T	G	G	G	G.	G	T .	T	
	20	35721	С	C	С	C	T	T	T	C·	C	С	
	21	35774 ⁻	T.	T	T	C	C	С	C	C	C	C	
•	22	35992	C	С	С	C	C	C	С	C	C	C.	
25	23	36054	G	G	G	G	G·	G	G	G	Α	A	
	24	36207	С	С	С	C	C	С	C	C	С	C	•
	25	36330	G	G	G	G	G	. G .	G	Ģ	G	G	
	26	36617	С	С	С	С	C	C	C	Ċ	C	С	

⁽a) PS = polymorphic site;
(b) Position of PS within SEQ ID NO:1;
(c) Alleles for haplotypes are presented 5' to 3' in each column;

	PS	PS	Haplotype Number(c) (Part 3)
	No.(a)	Position(b)	21
	1	22635	G
	2	29577	T
5	3	29754	C
	4	30427	С
	5	31531	A
	6.	31644	С
	7	31648	c ·
10	8	32446	A •
	9	32478	С
	10	33538	G
	11	33551	A .
	12	33571	·C
15	13	34766	T
	. 14	· 34796	С
	15	34797	C .
	16	34850	G ·
	17	. 35325	G
20	18	35631	С
	19	35632	T
	20	35721	C
	21	35774	C .
	22	35992	С
25	23 .	36054	A
	. 24	36207	C .
	25	36330	G .
	26 .	36617	С
			•

30, (a) PS = polymorphic site;

WO 02/26768

- (b) Position of PS within SEQ ID NO:1;
- (c) Alleles for haplotypes are presented 5' to 3' in each column.
- A method for haplotyping the P450 (cytochrome) oxidoreductase (POR) gene of an individual, which comprises determining which of the POR haplotype pairs shown in the table immediately below defines both copies of the individual's POR gene, wherein the determining step comprises identifying the phased sequence of nucleotides present at each of PS1-PS26 on both copies of the individual's POR gene, and wherein each of the POR haplotype pairs consists of first and second haplotypes which comprise first and second sequences of polymorphisms whose positions and identities are set forth in the table immediately below:

PCT/US01/30877

PCT/US01/30877 WO 02/26768

	PS	PS	Haplotype Pair(c) (Part 1)							
5 -	No.(a)	Position(b)	.8/8	10/10	19/19	15/15	8/11	8/3	19/21	10/17
	1	22635	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G
	2	29577	C/C	· C/C	C/C	C/C	C/C	C/C	C/T	C/C
	3	29754	C/C	C/C	T/T	C/C	C/C	C/C	T/C	C/C
	4	. 30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
10	5	31531	A/A	A/A	A/A	G/G	A/A	A/A	A/A	A/G
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	8	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
15	10	33538	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C
	11	33551	A/A	A/A	A/A	G/G	A/A	A/A	A/A	A/G
	12	33571	C/C	T/T	C/C	C/C	C/T	C/T	C/C	T/C
	13	34766	T/T	C/C	T/T	C/C	T/T	T/C	T/T	C/C
	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T
20	15	34797	C/C	C/C	C/C	T/T	C/C	C/C	C/C	C/T
	16	34850	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C
	17	35325	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G
•	18	35631	C/C	C/C	C/C	T/T	C/C	C/T	C/C	C/T
	19	35632	T/T	T/T	· T/T	G/G	T/T	T/T	T/T	T/G
25	20	35721	C/C	C/C	C/C	T/T	C/C	C/C	C/Ċ	C/T
	21	35774	C/C	T/T	C/C	C/C	C/T	C/T	C/C	T/C
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	23	36054	G/G	G/G	A/A	G/G	G/G	G/G	A/A	G/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
30	25 .	· 36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
	26	36617	C/C	C/C	C/C	C/C	C/C	C/T	C/C	C/C

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column; **35** .

WO 02/26768	PCT/US01/30877
WU U2/20/08	PC1/USU1/308//

	PS	PS	Haplotype Pair(c) (Part 2)							
	No.(a)	Position(b)	15/2	19/14	8/16	8/20	19/2	19/4	14/9	8/13
	1	22635	G/A	G/G	G/G	G/G	G/A	G/A	G/G	G/G
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
5	3	29754	C/C	T/C	C/C	C/T	T/C	T/T	C/C	C/C
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	5	31531	G/A	A/G	A/G	A/A	Α/A	A/A	G/A	A/A
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T
10	8	32446 ·	` A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/T	C/C	C/C	C/C	C/C
	10 .	33538	C/G	G/C	G/C	G/G	G/G	G/G	C/G	G/G
	11	33551	G/A	A/G	A/G	A/A	A/A	A/A	G/A	A/A
	12	33571	C/T	C/C	C/C	C/C	C/T	C/C	C/T	C/T
15	13	34766	C/C	T/C	T/C	T/T	T/C	T/T	C/C	T/C
	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	15	34797	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C
	16 .	34850	C/G	G/C	G/G	G/G	G/G	G/G	C/G	G/G
	17	35325	G/A	G/G	G/G	G/G	G/A	G/G	G/G	G/G
20	18	. 35631	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C
	19	35632	G/T	T/G	T/G	T/T	T/T	T/T	G/T	T/T
	20	· 35721	T/C	C/C	C/T	C/C	C/C	C/C	C/C	C/C
	21	35774	C/T	C/C	C/C	C/C	·C/T	C/C	C/T	C/T
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
25	23	36054	G/G	A/G	G/G	G/A	A/G	A/A	G/A	G/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C

^{. 30}

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

WO 02/26768	PCT/US01/30877
WU 02/20/08	PC1/US01/308//

	PS	PS	Haplotype Pair(c) (Part 3)							
	No.(a)	Position(b)	8/12	8/1	8/6	8/15	8/17	8/7	10/5	8/2
	1	22635	G/G	G/A	G/G	G/G	G/G	G/G	G/G	G/A
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
5	·3	29754	C/C	C/C	C/C	C/C	C/C.	C/C	Ç/C	C/C
	4	30427	C/C	C/C	·C/C	C/C	C/C	C/C	C/C	C/C
	5	31531	A/A	A/A	A/A	A/G	A/G	A/A	A/A	A/A
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7 ·	31648	C/C	C/C	C/C	·C/C	C/C	C/C	C/C	C/C
10	8 .	32446	A/G	A/A	A/A	A/A	A/A	A/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C	· C/C
	10	33538	G/G	G/G	G/G.	G/C	G/C	G/G	G/G	G/G
	11	33551	A/A	A/A	A/A	A/G	A/G	A/A	A/A	A/A
	12	33571	C/T	C/C	C/C	C/C	C/C	C/C	T/C	C/T
15	13	34766	T/C	T/T	T/C	T/C	T/C	T/T	C/C	T/C
	14	34796	C/C	C/C	C/C	C/C	C/T	C/C	C/C	C/C
	15	34797 .	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C
	16	34850	G/G	G/G	G/G	G/C	G/C	G/G	G/G	G/G
	17	35325	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/A
20	18	35631	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C
	19	35632	T/T	T/T	T/T	T/G	T/G	T/T	T/T	T/T
	20	35721	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C
	21	35774	C/T	C/C	C/T	C/C	C/C	C/C	T/C	C/T
	22	35992	C/C	C/C	C/T.	C/C	C/C	C/C	C/C	C/C
25	23	36054	G/G	G/G	G/G	G/G	G/G	G/G	G/A	G/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	25	36330	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

	PS	PS	Ha	plotype	Pair(c) (Par	t 4)		
	No.(a)	Position(b)	8/19	10/15	8/10	10/19	19/17	15/18	19/15
	1	22635	G/G	G/G	G/G	G/G	G/G	G/G	G/G
•	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C
5	3	29754	C/T	C/C	C/C	C/T	T/C	C/C	T/C
	4	30427	C/C	C/C	C/C	C/C	C/C	C/T	C/C
	5	31531	A/A	'A/G	A/A	A/A	A/G	G/G	A/G
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7	31648	C/C	C/C ·	C/C	C/C	C/C	C/C	C/C
10	8	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	10	33538	G/G	G/C	G/G	G/G	G/C	C/C	G/C
	11	33551	A/A·	A/G	A/A	A/A	A/G	G/G	A/G
	12	33571	C/C	T/C	C/T	T/C	C/C	C/C	C/C
15	13	34766	T/T	C/C	T/C	C/T	T/C	C/C	T/C
	14	34796	C/C	C/C	C/C	C/C	C/T	C/C	C/C
	15 .	34797	C/C	C/T	C/C	C/C	C/T	T/T	C/T
	16	34850	G/G	G/C	G/G	G/G	G/C	C/C	G/C
	17	35325	G/G	G/G	G/G	G/G	G/G	G/G	G/G
20	18	35631	C/C	C/T	C/C	C/C	C/T	T/T	C/T
	19	35632	T/T	T/G	T/T	T/T	T/G	G/G	T/G
	20	35721	C/C	C/T	C/C	C/C	C/T	T/C	C/T
	21	35774	C/C	T/C	C/T	T/C	C/C	C/C	C/C
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C
25	23	36054	G/A	G/G	G/G	G/A	A/G	G/G	A/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G
•	26	36617	C/C	.C/C	C/C	C/C	C/C	C/C	C/C

30 (a) PS = polymorphic site;

5

- (b) Position of PS in SEQ ID NO:1;
- (c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column.
- A method for genotyping the P450 (cytochrome) oxidoreductase (POR) gene of an individual, comprising determining for the two copies of the POR gene present in the individual the identity of the nucleotide pair at one or more polymorphic sites (PS) selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26, wherein the one or more polymorphic sites (PS) have the position and alternative alleles shown in SEQ ID NO:1.
- 4. The method of claim 3, wherein the determining step comprises:
 - (a) isolating from the individual a nucleic acid mixture comprising both copies of the POR gene, or a fragment thereof, that are present in the individual;
 - (b) amplifying from the nucleic acid mixture a target region containing one of the selected polymorphic sites;
 - (c) hybridizing a primer extension oligonucleotide to one allele of the amplified target region, wherein the oligonucleotide is designed for genotyping the selected polymorphic

site in the target region;

10

5

10

5

(d) performing a nucleic acid template-dependent, primer extension reaction on the hybridized oligonucleotide in the presence of at least one terminator of the reaction, wherein the terminator is complementary to one of the alternative nucleotides present at the selected polymorphic site; and

- (e) detecting the presence and identity of the terminator in the extended oligonucleotide.
- 5. The method of claim 3, which comprises determining for the two copies of the POR gene present in the individual the identity of the nucleotide pair at each of PS1-PS26.
- 6. A method for haplotyping the P450 (cytochrome) oxidoreductase (POR) gene of an individual which comprises determining, for one copy of the POR gene present in the individual, the identity of the nucleotide at two or more polymorphic sites (PS) selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26, wherein the selected PS have the position and alternative alleles shown in SEQ ID NO:1.
- 7. The method of claim 6, wherein the determining step comprises:
 - (a) isolating from the individual a nucleic acid sample containing only one of the two copies of the POR gene, or a fragment thereof, that is present in the individual;
 - (b) amplifying from the nucleic acid sample a target region contining one of the selected polymorphic sites;
 - (c) hybridizing a primer extension oligonucleotide to one allele cf the amplified target region, wherein the oligonucleotide is designed for haplotyping the selected polymorphic site in the target region;
 - (d) performing a nucleic acid template-dependent, primer extention reaction on the hybridized oligonucleotide in the presence of at least one terminator of the reaction, wherein the terminator is complementary to one of the alternative nucleotides present at the selected polymorphic site; and
 - (e) detecting the presence and identity of the terminator in the extended oligonucleotide.
- 8. A method for predicting a haplotype pair for the P450 (cytochrome) oxidoreductase (POR) gene of an individual comprising:
 - (a) identifying a POR genotype for the individual, wherein the genotype comprises the nucleotide pair at two or more polymorphic sites (PS) selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26, wherein the selected PS have the position and alternative alleles shown in SEQ ID NO:1;
 - (b) comparing the genotype to the haplotype pair data set forth in the table immediately below; and
- 10 (c) determining which haplotype pair is consistent with the genotype of the individual and

with the haplotype pair data

	PS	PS	Нар	lotype P	air(c) (I	Part 1)				
	No.(a)	Position(b)	8/8	10/10	19/19	15/15	8/11	8/3	19/21	10/17
[.] 15	1	22635	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	·C/T	C/C
	3	29754	C/C	C/C	T/T	C/C	C/C	C/C	T/C	C/C
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	5	31531	A/A	A/A	A/A	G/G	A/A	A/A	A/A	A/G
20	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/Ç	C/C
	8	32446	· A/A	A/A	-A/A	A/A	A/A	Α/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	10	33538	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C
25	11	33551	A/A	A/A	A/A	G/G	A/A	A/A	A/A	A/G
	12	33571	C/C	· T/T	C/C	C/C	C/T	C/Ţ	C/C	T/C
	13	34766	T/T	C/C	T/T	C/C	T/T	T/C	T/T	C/C
	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T
,	15	34797	C/C	C/C	C/C	T/T	C/C	C/C	C/C	C/T
30	16	34850	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C
	17	35325	G/G	G/G	G/G	G/G	Ġ/G	G/A	G/G	G/G
	18	35631	C/C	C/C	C/C	T/T	C/C	C/T	C/C	C/T
	19	35632	T/T	T/T	T/Ţ	G/G	T/T	T/T	T/T	T/G·
	20	35721	C/C	C/C	C/C	T/T	C/C	C/C	C/C	C/T
35	21	35774	C/C	T/T	C/C	C/C	C/T	C/T	C/C	T/C
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	23	36054	G/G	G/G	A/A	G/G	G/G	G/G	A/A	G/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
40	26	36617	C/C	C/C	C/C	C/C ·	C/C	C/T	C/C	C/C

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

WO 02/26768	PCT/US01/30877

	PS	PS	Haplotype Pair(c) (Part 2)							
	No.(a)	Position(b)	15/2	19/14	8/16	8/20	19/2	19/4	14/9	8/13
	1	22635	G/A	G/G	G/G	G/G	· G/A	G/A	G/G	G/G
	2	. 29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
50	3	29754	C/C	T/C	C/C	C/T	T/C	T/T	C/C	C/C
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	· 5	31531	G/A	A/G	A/G	A/A	A/A	A/A	G/A	A/A
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T
55	8	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A
•	9	32478	C/C	C/C	C/C	C/T	C/C	C/C	C/C	C/C
	10	33538	C/G	G/C	G/C	G/G	G/G	G/G	C/G	G/G
	11 .	33551	G/A	A/G	A/G	A/A	A/A	A/A	G/A	A/A
•	12	33571	C/T	C/C	C/C	C/C	C/T	C/C	C/T	C/T
60	13	34766	C/C	T/C	T/C	T/T	T/C	T/T	C/C	T/C
	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	15	34797	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C
	16	34850	C/G	G/C	G/G	G/G	G/G	G/G	C/G	G/G
•	17	35325	G/A	G/G	G/G	G/G	G/A	G/G	'G/G	G/G
65	18	35631	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C
	19.	35632	G/T	T/G	T/G	T/T	T/T	T/T	G/T	T/T
	20	35721	T/C	C/C	C/T	C/C	C/C	C/C	C/C	· C/C
•	21	35774	C/T	C/C	C/C	C/C	C/T	C/C	C/T	C/T
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	·C/C	. C/C
70	23	36054	G/G	A/G	G/G	G/A	A/G	A/A	G/A	G/G
	24	. 36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	25	. 36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
	26	36617	C/C	C/C	C/C	C/C	C/C	.C/C	C/C	C/C

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

	wo	02/26768								PCT/U	S01/3087
	PS	PS	Hap	lotype F	Pair(c) (I	Part 3)			•		•
80 ·	No.(a)	Position(b)	8/12	8/1	8/6	8/15	8/17	8/7	10/5	8/2	
	1	22635	G/G	G/A	G/G	G/G	G/G	G/G	G/G	G/A	•
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	3	29754	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
85	5	31531	A/A	A/A	· A/A	A/G	A/G	A/A	A/A	A/A	
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	· C/C	· C/C	
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	8	32446	A/G	A/A	A/A	A/A	A/A	A/A	A/A	A/A	•
	9 ,	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
90	10	33538	G/G	G/G	Ģ/G	G/C	G/C	G/G	G/G	G/G	
	11	33551	A/A	A/A	A/A	A/G	A/G	A/A	A/A	A/A	
	12	33571 ·	C/T	C/C	C/C	C/C	C/C	C/C	T/C	C/T	
•	13	34766	T/C	T/T	T/C	T/C	T/C	T/T	C/C	T/C	
	14	34796	C/C	C/C	C/C.	C/C	C/T	C/C	C/C	C/C	
95	15	34797	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C	
	16	34850	G/G	G/G	G/G	G/C	G/C	G/G	G/G	G/G	
	17	35325	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/A	
	18	35631	C/C	C/C	C/C	C/T	· C/T	C/C	C/C	C/C	
	19	35632	T/T	T/T	T/T	T/G	Ţ/G	T/T	T/T	T/T	
100	20	35721	C/C	C/C	C/C	.C/T	C/T	C/C	C/C	C/C	
	21	35774	. C/T	C/C	C/T	C/C	C/C	. C/C	T/C	C/T .	
-	22	35992	C/C	C/C	C/T	C/C	C/C	C/C	C/C	C/C	-
	23	36054	G/G	G/G	G/G	G/G	G/G	G/G	G/A	G/G	
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	. C/C	C/C	•
105	25	36330	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G	
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

WO 02/26768	PCT/US01/30877

	PS	PS	Haplotype Pair(c) (Part 4)									
	No.(a)	Position(b)	8/19	10/15	8/10	10/19	19/17	15/18	19/15			
	1	22635	G/G	G/G	G/G	G/G	G/G	G/G	G/G			
115	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	3	29754	C/T	C/C	C/C	C/T	T/C	C/C	T/C			
	4	30427	C/C	C/C	C/C	C/C	C/C	C/T	C/C			
	5	31531 ·	A/A	A/G	A/A	A/A	A/G	G/G	A/G			
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
120	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	8	32446	A/A	A/A	A/A	A/A	, A/A	A/A	A/A			
	9	32478	C/C	C/C	C/C	·C/C	C/C	C/C	C/C			
	10	33538	G/G	G/C	G/G	G/G	G/C	C/C	G/C			
	11	33551	A/A	A/G	` A/A	A/A	A/G	G/G	A/G			
125	12	33571	C/C	T/C	C/T	T/C	C/C	C/C	C/C			
	13	34766	T/T	C/C	T/C	C/T	T/C	C/C	T/C			
	14	34796	C/C	C/C	C/C	C/C	C/T	C/C	C/C			
	15	34797	C/C	C/T	C/C,	C/C	C/T	T/T	C/T			
	16	34850	G/G	G/C	G/G	G/G	G/C	C/C	G/C			
130	17	35325	G/G	G/G	G/G	G/G	G/G	G/G	G/G			
	18	35631	C/C	C/T	C/C	C/C	C/T	T/T	C/T			
	19	35632	T/T	T/G	T/T	T/T	T/G	G/G	T/G			
	20	35721	C/C	C/T	C/C	C/C	C/T	T/C	C/T			
	21	35774	C/C	T/C	C/T	T/C	C/C	C/C	C/C			
135	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	23 ·	36054	G/A	G/G	G/G	G/A	A/G	G/G	A/G			
	24 -	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
-	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G			
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
140				•					•			

(a) PS = polymorphic site;

145

5

10

(b) Position of PS in SEQ ID NO:1;

(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column.

9. The method of claim 8, wherein the identified genotype of the individual comprises the nucleotide pair at each of PS1-PS26, which have the position and alternative alleles shown in SEQ ID NO:1.

10. A method for identifying an association between a trait and at least one haplotype or haplotype pair of the P450 (cytochrome) oxidoreductase (POR) gene which comprises comparing the frequency of the haplotype or haplotype pair in a population exhibiting the trait with the frequency of the haplotype or haplotype pair in a reference population, wherein the haplotype is selected from haplotypes 1-21 shown in the table presented immediately below, wherein each of the haplotypes comprises a sequence of polymorphisms whose positions and identities are set forth in the table immediately below:

PCT/US01/30877 WO 02/26768

	PS	PS	Haplotype Number(c) (Part 1)									
15	No.(a)	Position(b)	1	2	3	4	5	6	7	8	9	10
	1	22635	Α	· A	Α	Α	G	G	G	G	G	G
	2	29577 ·	С	C	C.	C	С	С	C	C	C	C
	3	29754	С	C	C	T	C	С	C	C	C	C
	4	30427	C	C	С	С	С	C	C	C	C	C
20	5	31531	Α	A	Α	. A	A	Α	Α.	Α	, A	Α
	6	31644	С	C	C	С	С	С	С	C	C	C
	7	31648	. С	· C	C	С	C	C	С	C	· C	C
	8	32446	Α	Α	A	Α	A	A	A	Α	Α	Α
	9	32478	C	C	C.	С	C	C	C	C	C	C
25	10	33538	G	G	G	G	G	G	G	٠G	G	G
	11	33551	A	Α	Α	Α	· A	Α	Α.	Α	Α	Α
	12	33571	C	T	T	С	С	C	C	С	T	T
	13	34766	T	C	C	T	С	C	T	T	C	C
	14	34796	С	C	C	С	C	С	С	С	С	C
30	15	34797	С	C	\mathbf{C} .	С	С	C	C	С	C	C.
•	16	34850	G	G	G	G	G	G	G	G	G	G
	17	35325	G	A	Α	G	G	G	G	G	G	G
•	18	35631	C	C	T	C	С	C	C	C	C	C
	19	35632	T	T	T	T	T	T	T	T	T	T
35	20	35721	C	С	C	С	С	С	C	С	С	C
	21	35774	C	T	T	C٠	С	T	C	C	T	T
	22	35992	C	·C	C	С	С	T	С	С	C	C
	23	36054	G	G	G	Α	Α	G	G·	G	Α	G
	24	36207	C	С	С	С	С	С	C.	C	C	C
40	25	36330	. G	G	G	G	G	G	Α	G	G	G
•	26	36617	C	C	T	С	C	С	C	C	C	· C

⁽a) PS = polymorphic site;
(b) Position of PS within SEQ ID NO:1;
(c) Alleles for haplotypes are presented 5' to 3' in each column; 45

	WO 02/26768											PCT/US01/30877
	PS	PS	Ha	plotypi	e Num	ber(c)	(Part 2	2)	•			•
	No.(a)	Position(b)	11	12	13	14	15	16	17	18	19	20
	1	22635	G	G	G	G	G	G.	G	G	G	G
	2	29577	С	С	С	C	C	C	С	С	С	С
50	3	29754	C	С	C	C	C	C	С	С	T	T
	4	30427	C	C	C	-C	C	C	С	T	C	С
	5	31531	Α	Α	Α	G	G	. G	G	G	Α	A
	6	31644	С	С	С	С	С	C	C	С	С	C .
	7	31648	C	· C	T	С	C	C	C	С	С	C
55	8	32446	Α	G	Α	Α	Α	Α	Α	Α	Α	A
	9	32478	C	··C	С	С	C	C	C	С	С	T
	10	33538	G	G	G	C.	C	C	С	С	G	G
	11	3355 i	Α	Α	A	G	G	G	G	G	·A	A
	12	33571	T	T	T	С	С	C	C	C	C.	С
60	13	34766	T	· C	C	C	С	C	C	C	T	T
	14	34796	C.	С	C	·C	C	C	T	C	С	С
	15	34797	· C	C	C	T	T	T	Ŧ	T	С	C
	16	34850	G	G	G	C	C.	G	С	С	G	G
	17	35325	G	G	G	G	G	G	G	G	G	G
65	18	35631	C	C	. C	T	. T	T	T	T	С	С
	19	35632	T	T	T	G	G	G	G	G	T	T .
	20	35721	C	С	C	С	T	T	T	С	C	C
	21	35774	T	· T	Τ.	C	C	C	C	С	С	C
•	22	35992	C	С	C	C	C	C	C	С	С	С
70	23	36054	G	G	G	G	G	G	G	G	Α	A
	24	36207	C	С	C ·	C	С	C	С	C	C	С
	25	36330 ·	G	G	G	G	G	G	G	G	G	G
	26	36617	C	C	C	C ·	C	С	C	C	C.	C

⁽a) PS = polymorphic site;
(b) Position of PS within SEQ ID NO:1;
(c) Alleles for haplotypes are presented 5' to 3' in each column;

wo	02/26768	
PS	PS	Haplotype Number(c) (Part 3)
No.(a)	Position(b)	21
	22635	G
	29577	T .
	29754	c
4	30427	С
5	31531	A
6	31644	c
7	31648	C .
8	32446	A
9	32478	C .
10	33538	G
11	33551	A '
12	33571	C
13	34766	Τ .
14	34796	C
15	34797	С
16	34850	G ·
17	35325	G
18		С
19 ·		T
20		С
21		C .
		C
		A
		C
		G
26	36617	С
	PS No.(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	No.(a) Position(b) 1 22635 2 29577 3 29754 4 30427 5 31531 6 31644 7 31648 8 32446 9 32478 10 33538 11 33551 12 33571 13 34766 14 34796 15 34797 16 34850 17 35325 18 35631 19 35632 20 35721 21 35774 22 35992 23 36054 24 36207 25 36330

(a) PS = polymorphic site;

110

- (b) Position of PS within SEQ ID NO:1;
- (c) Alleles for haplotypes are presented 5' to 3' in each column;

and wherein the haplotype pair is selected from the haplotype pairs shown in the table immediately below, wherein each of the POR haplotype pairs consists of first and second haplotypes which comprise first and second sequences of polymorphisms whose positions in SEQ ID NO:1 and identities are set forth in the table immediately below:

PCT/US01/30877

115

	PS	PS Haplotype Pair(c) (Part 1)									
	No.(a)	Position(b)	8/8	10/10	19/19	15/15	8/11	8/3	19/21	10/17	
	1	22635	.G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G	
120	2	29577	C/C	· C/C	C/C	C/C	C/C	C/C	C/T	C/C	
	3	29754	C/C	C/C-	T/T	C/C	C/C	C/C	T/C	C/C	
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	5	31531	A/A	A/A	A/A	G/G	A/A	A/A	A/A	A/G	
	6	31644	C/C	C/C	C/C·	C/C	C/C	C/C	C/C	C/C	
125	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	8.	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A	
	9.	32478	C/C	C/C	C/C	C/C	· C/C	C/C	C/C	C/C	
	10 ·	33538	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C	
	11	33551	A/A	A/A	A/A	G/G	A/A	A/A	· A/A	A/G	
130	12	33571	C/C	T/T .	C/C	C/C	C/T	C/T	C/C	T/C	
	13	34766	T/T	C/C	T/T	C/C	T/T	T/C	T/T	C/C	
	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T	
	15	34797	· C/C	C/C	C/C	T/T	C/C	C/C	C/C	C/T	
	16	34850	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C	
135	17	35325	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G	
	18	35631	C/C	C/C	C/C	T/T	C/C	C/T	C/C	C/T	
	19 ·	35632	T/T	· T/T	T/T	G/G	T/T	T/T	T/T	T/G	
	20	35721	C/C	C/C	C/C	T/T	C/C	C/C	C/C	C/T	
	21	35774	C/C	T/T	C/C	C/C	C/T	C/T	C/C	T/C	
140	22	35 99 2	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	23	36054	G/G	G/G	A/A	G/G	G/G	G/G	A/A	G/G	
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C	
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G	
	26	36617	C/C	C/C:	G/C	C/C	, C/C	. C/T	C/C	C/C	
145				•							

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

WO 02/26768										PCT/US01/30877
150	PS	PS	Har	oloty pe P	air(c) (I	Part 2)				
	No.(a)	Position(b)	15/2	19/14	8/16	8/2 0	19/2	19/4	14/9	8/13
	1	22635	G/A	G/G	G/G	G/G	G/A	G/A	G/G	G/G
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
•	3	29754 ·	C/C	T/C	C/C	C/T	T/C	T/T	C/C	C/C
155	4	30427	C/C	C/C	C/C	C/C	C/C	·C/C	C/C	C/C
	5	31531	G/A	A/G	A/G	A/A	A/A	A/A	G/A	A/A
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	· 7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T
	8	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A
160	9	32478	C/C	C/C	C/C	C/T	C/C	C/C	C/C	C/C
	10	33538	C/G	G/C	G/C	G/G	G/G	G/G	C/Ġ	G/G
•	11	33551	G/A	· A/G	A/G	A/A	A/A	A/A	G/A	A/A
	12	33571	C/T	C/C	C/C	C/C	C/T	C/C	C/T-	·C/T
	13	34766	C/C	. T/C	T/C	T/T	T/C	T/T	C/C	T/C
165	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C ·
	15	34797	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C
	16	34850	C/G	G/C	G/G	· G/G	G/G	G/G	. C/G	G/G
	17	35325	G/A	G/G	G/G	G/G	G/A	G/G	G/G	G/G
	18	35631	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C
170	19	35632	G/T	T/G	T/G	T/T	T/T	T/T	G/T	T/T
	20	35721	T/C	C/C	C/T	C/C	C/C	C/C	C/C	C/C
	21	35774	C/T	C/C	C/C	C/C	C/T	C/C	C/T	C/T
	22	35992 .	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	23	36054	G/G	A/G	G/G	G/A	A/G	A/A	G/A	G/G
175	24	36207	C/C	C/C	C/C	· C/C	C/C	C/C	C/C	C/C
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

""	0 A) 20 / 00								
PS	· PS	Hap	lotype F	air(c) (I	Part 3)				
No.(a)	Position(b)	8/12	8/1	8/6	8/15	8/17	8/7	10/5	8/2
1	22635	G/G	G/A	G/G	G/G	G/G			G/A
2	29577	C/C	C/C	C/C	C/C	C/Ċ			C/C
3	29754	C/C	C/C						C/C
4	30427	C/C							C/C
5	31531 ·	· A/A	A/A						A/A
6	31644	C/C							C/C
7	31648	C/C	C/C	•					C/C
8	32446	A/G	A/A	A/A				-	A/A
9	32478	C/C ·							C/C
10	33538	G/G						_	G/G
11	33551	A/A							A/A
12	33571								C/T
13	34766								T/C
14	34796								C/C
	34797								C/C
	34850								G/G
	35325								G/A
									C/C
									T/T
									C/C
									C/T
									C/C
									G/G
									C/C
									G/G
26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	PS No.(a) 1 2 3 4 5 6 7 8 9 10 11 12 13	PS PS No.(a) Position(b) 1 22635 2 29577 3 29754 4 30427 5 31531 6 31644 7 31648 8 32446 9 32478 10 33538 11 33551 12 33571 13 34766 14 34796 15 34797 16 34850 17 35325 18 35631 19 35632 20 35721 21 35774 22 35992 23 36054 24 36207 25 36330	PS PS Hap No.(a) Position(b) 8/12 1 22635 G/G 2 29577 C/C 3 29754 C/C 4 30427 C/C 5 31531 A/A 6 31644 C/C 7 31648 C/C 8 32446 A/G 9 32478 C/C 10 33538 G/G 11 33551 A/A 12 33571 C/T 13 34766 T/C 14 34796 C/C 15 34797 C/C 16 34850 G/G 17 35325 G/G 17 35325 G/G 18 35631 C/C 19 35632 T/T 20 35721 C/C 21 35774 C/T 22 35992 C/C 23 36054 G/G 24 36207 C/C 25 36330 G/G	PS PS Haplotype F No.(a) Position(b) 8/12 8/1 1 22635 G/G G/A 2 29577 C/C C/C 3 29754 C/C C/C 4 30427 C/C C/C 5 31531 A/A A/A 6 31644 C/C C/C 7 31648 C/C C/C 8 32446 A/G A/A 9 32478 C/C C/C 10 33538 G/G G/G 11 33551 A/A A/A 12 33571 C/T C/C 13 34766 T/C T/T 14 34796 C/C C/C 15 34797 C/C C/C 16 34850 G/G G/G 17 35325 G/G G/G 17 35325 G/G G/G 18 35631 C/C C/C 19 35632 T/T T/T 20 35721 C/C C/C 21 35774 C/T C/C 22 35992 C/C C/C 23 36054 G/G G/G 24 36207 C/C C/C 25 36330 G/G G/G	PS PS Haplotype Pair(c) (INo.(a) Position(b) 8/12 8/1 8/6 1 22635 G/G G/A G/G 2 29577 C/C C/C C/C C/C 3 29754 C/C C/C C/C C/C 4 30427 C/C C/C C/C 5 31531 A/A A/A A/A 6 31644 C/C C/C C/C 7 31648 C/C C/C C/C 8 32446 A/G A/A A/A 9 32478 C/C C/C C/C 10 33538 G/G G/G G/G 11 33551 A/A A/A A/A 12 33571 C/T C/C C/C 13 34766 T/C T/T T/C 14 34796 C/C C/C C/C 15 34797 C/C C/C C/C 16 34850 G/G G/G G/G 17 35325 G/G G/G G/G 18 35631 C/C C/C C/C 19 35632 T/T T/T T/T 20 35721 C/C C/C C/C 21 35774 C/T C/C C/C 22 35992 C/C C/C C/T 23 36054 G/G G/G G/G 24 36207 C/C C/C C/C 25 36330 G/G G/G G/G	PS PS Haplotype Pair(c) (Part 3) No.(a) Position(b) 8/12 8/1 8/6 8/15 1 22635 G/G G/A G/G G/G 2 29577 C/C C/C C/C C/C C/C 3 29754 C/C C/C C/C C/C C/C 4 30427 C/C C/C C/C C/C C/C 5 31531 A/A A/A A/A A/A A/G 6 31644 C/C C/C C/C C/C C/C 7 31648 C/C C/C C/C C/C 8 32446 A/G A/A A/A A/A 9 32478 C/C C/C C/C C/C 10 33538 G/G G/G G/G G/C 11 33551 A/A A/A A/A A/A 12 33571 C/T C/C C/C C/C 13 34766 T/C T/T T/C T/C 14 34796 C/C C/C C/C C/C 15 34797 C/C C/C C/C C/C 16 34850 G/G G/G G/G G/G 17 35325 G/G G/G G/G G/G 18 35631 C/C C/C C/C C/C 20 35721 C/C C/C C/C C/C 21 35992 C/C C/C C/C C/T 22 35992 C/C C/C C/C C/C 23 36054 G/G G/G G/G G/G G/G 24 36207 C/C C/C C/C C/C 25 36330 G/G G/G G/G G/G	PS PS Haplotype Pair(c) (Part 3) No.(a) Position(b) 8/12 8/1 8/6 8/15 8/17 1 22635 G/G G/A G/G G/G G/G 2 29577 C/C C/C C/C C/C C/C C/C 3 29754 C/C C/C C/C C/C C/C C/C 4 30427 C/C C/C C/C C/C C/C C/C 5 31531 A/A A/A A/A A/A A/G A/G 6 31644 C/C C/C C/C C/C C/C C/C 7 31648 C/C C/C C/C C/C C/C C/C 8 32446 A/G A/A A/A A/A A/A A/A 9 32478 C/C C/C C/C C/C C/C C/C 10 33538 G/G G/G G/G G/C G/C 11 33551 A/A A/A A/A A/A A/G A/G 12 33571 C/T C/C C/C C/C C/C C/C 13 34796 C/C C/C C/C C/C C/C C/C 14 34796 C/C C/C C/C C/C C/C 15 34797 C/C C/C C/C C/C C/T 16 34850 G/G G/G G/G G/G G/C 17 35325 G/G G/G G/G G/G G/C 18 35631 C/C C/C C/C C/C C/T 19 35632 T/T T/T T/T T/T T/G T/G 20 35721 C/C C/C C/C C/C C/T 21 35774 C/T C/C C/C C/C C/C 22 35992 C/C C/C C/C C/C C/C 23 36054 G/G G/G G/G G/G G/G 24 36207 C/C C/C C/C C/C C/C 25 36330 G/G G/G G/G G/G G/G	PS PS Haplotype Pair(c) (Part 3) No.(a) Position(b) 8/12 8/1 8/6 8/15 8/17 8/7 1 22635 G/G G/A G/G G/G G/G G/G 2 29577 C/C C/C C/C C/C C/C C/C C/C 3 29754 C/C C/C C/C C/C C/C C/C C/C 4 30427 C/C C/C C/C C/C C/C C/C C/C 5 31531 A/A A/A A/A A/A A/G A/G A/A 6 31644 C/C C/C C/C C/C C/C C/C C/C 7 31648 C/C C/C C/C C/C C/C C/C C/C 8 32446 A/G A/A A/A A/A A/A A/A A/A A/A 9 32478 C/C C/C C/C C/C C/C C/C C/C 10 33538 G/G G/G G/G G/C G/C G/C 11 33551 A/A A/A A/A A/A A/G A/G A/A 12 33571 C/T C/C C/C C/C C/C C/C C/C 13 34766 T/C T/T T/C T/C T/C T/C 14 34796 C/C C/C C/C C/C C/C C/C C/C 15 34797 C/C C/C C/C C/C C/C C/C C/C 16 34850 G/G G/G G/G G/G G/C G/C 17 35325 G/G G/G G/G G/G G/G G/G 18 35631 C/C C/C C/C C/C C/C C/C C/C 21 35774 C/T T/T T/T T/T T/G T/G T/T 20 35721 C/C C/C C/C C/C C/C C/C C/C 22 35992 C/C C/C C/C C/C C/C C/C C/C 23 36054 G/G G/G G/G G/G G/G G/G G/G 24 36207 C/C C/C C/C C/C C/C C/C C/C 25 36330 G/G G/G G/G G/G G/G G/G G/G	PS Haplotype Pair(c) (Part 3) No.(a) Position(b) 8/12 8/1 8/6 8/15 8/17 8/7 10/5 1 22635 G/G G/A G/G G/G

215

WO 02/26768

PCT/US01/30877

⁽a) PS = polymorphic site; (b) Position of PS in SEQ ID NO:1;

⁽c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

	PS	, PS	Haplotype Pair(c) (Part 4)									
	No.(a)	Position(b)	8/19	10/15	8/10	10/19	19/17	15/18	19/15			
	1	22635	G/G	G/G	G/G	· G/G	G/G	G/G	G/G			
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
220	3	29754	C/T	.C/C	C/C	C/T	T/C	C/C	T/C			
	4	30427	C/C	C/C	C/C	C/C	C/C	C/T	C/C			
	5	31531	A/A	A/G	A/A	A/A	A/G	G/G	A/G			
	6	31644	C/C	C/C	C/C	C/Ç	C/C	C/C	C/Ć.			
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
225	8	32446	A/A·	A/A	A/A	A/A	A/A	A/A	A/A			
	9	32478	C/C	C/C	C/C	C/Ċ	C/C	C/C	C/C			
	10	33538	G/G	G/C	G/G	G/G	G/C	C/C	G/C			
	11	33551	A/A	A/G	A/A	A/A	A/G	G/G	A/G			
	12	33571	C/C	T/C	C/T	T/C	C/C	C/C	C/C			
230 `	13	34766	T/T	C/C	T/C	C/T	T/C	C/C	T/C			
	14	34796	C/C	C/C	C/C	C/C	C/T	C/C	C/C			
	15	34797	C/C	C/T	C/C	C/C	C/T	T/T	C/T			
	16	34850	G/G	G/C	G/G	G/G	G/C	. C/C	G/C			
	17	· 35325	G/G	G/G	G/G	G/G	G/G	G/G	G/G			
235	18	35631	C/C	··C/T	C/C	C/C	C/T	T/T	C/T			
	19	35632	T/T	T/G	T/T	T/T	T/G	G/G	·T/G			
	20	35721	C/C	C/T	C/C	C/C	C/T	T/C	C/T			
	21	35774	C/C	T/C	C/T	T/C	C/C	C/C	C/C			
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
240	23	36054	G/A	G/G	G/G	G/A	A/G	G/G	A/G			
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G			
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C			

- 245 (a) PS = polymorphic site;
 - (b) Position of PS in SEQ ID NO:1;
 - (c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;
- wherein a higher frequency of the haplotype or haplotype pair in the trait population than in the reference population indicates the trait is associated with the haplotype or haplotype pair.
 - 11. The method of claim 10, wherein the trait is a clinical response to a drug targeting POR or to a drug for treating a condition or disease associated with POR activity.
 - 12. An isolated oligonucleotide designed for detecting a polymorphism in the P450 (cytochrome) oxidoreductase (POR) gene at a polymorphic site (PS) selected from the group consisting of PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26, wherein the selected PS have the position and alternative alleles shown in SEQ ID NO:1.
 - 13. The isolated oligonucleotide of claim 12, which is an allele-specific oligonucleotide that specifically hybridizes to an allele of the POR gene at a region containing the polymorphic site.
 - 14. The allele-specific oligonucleotide of claim 13, which comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS:4-29, the complements of SEQ ID NOS:4-29, and SEQ ID NOS:30-81.

15. The isolated oligonucleotide of claim 12, which is a primer-extension oligonucleotide.

- The primer-extension oligonucleotide of claim 15, which comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS:82-133.
- 17. A kit for haplotyping or genotyping the P450 (cytochrome) oxidoreductase (POR) gene of an individual, which comprises a set of oligonucleotides designed to haplotype or genotype each of polymorphic sites (PS) PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8, PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16, PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24, PS25 and PS26, wherein the selected PS have the position and alternative alleles shown in SEQ ID NO:1.
- 18. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) a first nucleotide sequence which comprises a P450 (cytochrome) oxidoreductase (POR) isogene, wherein the POR isogene is selected from the group consisting of isogenes 1-21 shown in the table immediately below and wherein each of the isogenes comprises the regions of SEQ ID NO:1 shown in the table immediately below and wherein each of the isogenes 1-21 is further defined by the corresponding sequence of polymorphisms whose positions and identities are set forth in the table immediately below; and

		• .											
Region	PS	PS	Iso	gene N	lumbe	r(d) (P	art 1)						
Examined(a)	No.(b)	Position(c)	1	2	3	4	5	6	7	8	9	10	
3878-4429	-	.	-	-	-	-	-	-	-	-	-	-	
22306-22748	1	22635	A	Α	Α	Α	G	G	G	G	G	G	
29363-29820	2	29577	С	С	С	С	С	C	Ċ	C	C	C	
29363-29820	3	29754	С	C	С	T.	C	С	С	C	С	С	
30215-30747	4	30427	С	С	С	С	C	С	C	C	C	C	
30942-31856	5	31531	Α	Α	A	Α	Α	A	A	Α	Α	Α	
30942-31856	6	31644	С	C	C	С	С	С	C	C	C	С	
30942-31856	7	31648	С	C	C	C	C	C .	C	С	C	С	
32039-32600	8	32446	Α	Α	Α	· A	Α	Α	Α	Α	Α	Α	
32039-32600	9	32478	C	. C	C	C	С	С	C	C	С	C	
33448-34167	10	33538	G	G	G	G	G	G	G	G	G	G	
33448-34167	11	33551	A	Α	'A	A	Α.	Α	Α	Α	Α	Α	
33448-34167	12	33571	C	T	T	Ç	С	C	C	С	T	T	
34661-36857	13	34766	T	C	·C	Ť	С	C	T	T	С	С	
34661-36857	14	34796	C	C	C	C	С	С	C	C	C	C	
34661-36857	15	34797	C	С	С	C	C	C	C	С	Ċ	С	
34661-36857	16	34850	G	G	G	G	G	G	G	G	٠G	G	
34661-36857	17	35325	, G	Α	Α	G	G	G	G	G	G	G	
34661-36857	18	35 6 31	С	С	T	·C	С	С	C	. C	C.	С	
34661-36857	19	35632	T	T	T	T	T	T	T	T	T	T	
34661-36857	20	35721	С	С	C	C	. C	С	С	С	С	С	
34661-36857	21	35774	C	T	T	C	С	T	C	С	T	T	
34661-36857	22	35992	С	C	C	С	С	T	· C	C	С	С	
34661-36857	23	36054	G	G	G	Α	Α	G	G	G	A	G	
34661-36857	24	36207	C	С	С	С	С	С	C	С	C	С	
34661-36857	25	36330	G	G	G	G	G	G	A	G	G	G	•
34661-36857	26	36617	C	С	T.	С	C	С	С	С	С	С	

WO 02/267	68									PCT/	US01/3	30877
Region	PS	PS	Iso	gene N	Tumbe:	r(d) (P	art 2)					
	No.(b)	Position(c)	11	12	13	14	15	16	17	. 18	19	20
3878-4429	-	-	-	-	-	-	-	-	-	-	-	-
22306-22748	1	22635	G	G	G	G ·	G	G	G	G	G	G
29363-29820	2	29577	С	С	С	C	C	С	С	С	C	C
29363-29820	3	29754	C	С	С	C	C	С	С	С	T	T
30215-30747	4	30427	С	С	С	С	C	C	С	T	C	C
30942-31856	5	31531	Α	Α	Α	G	G	G	G	G	Α	Α
30942-31856	6	31644	С	С	C	C	\mathbf{C}	C.	С	C	C	C
30942-31856	7	31648	C	С	T	C	C	С	C	C	C	C
32039-32600	. 8	32446	Α	G	Α	Α	Α	A	A	Α	Α	Α
32039-32600	9	32478	C	C	C	C	C	C	C	C	C	T
33448-34167	10	33538	G	G	G	C	С	C .	C	C	G	G
33448-34167	11	33551	Α	Α	Α	G	G	G	Ġ	G	Α	Α
33448-34167	12	33571	T	T	T	C	C	С	С	C	С	C
34661-36857	13	34766	T ·	C	С	C	C	C	С	C	T	T
34661-36857	14	34796	C	C	C	C	C	С	T	C	C	С
34661-36857	15	34797	Ċ	·C	С	T	T	· T	T	T	C	C
34661-36857	16	34850	G	G	G	C	C	G	С	C	G	G
34661-36857	17	35325	G	G .	G	G	G	G	G	G	G.	G
34661-36857	18	35631	С	C	C	T	T	T	·T	T	C	C
34661-36857	19	35632	T	T	T	G	G	G	G	G	T	T
34661-36857	20	35721	С	C	С	C.	T	T	T	С	С	C
34661-36857	21	35774	T	T	T	C	C	С	C	C	С	C
34661-36857	22	35992	C	С	С	C	C	C	С	C	C	C
34661-36857	23	36054	G	G	G.	G	G	G	G	G	Α	A
34661-36857	24	36207	С	С	C	C	C	С	С	C	С	С
34661-36857	25	36330	G	G	G	G	G	G	G	G	G	G
34661-36857	26	36617	С	С	С	С	С	С	C .	. С	С	С

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within the 1st SEQ ID NO of the sequenced region.
(b) PS = polymorphic site;
(c) Position of PS in SEQ ID NO:1;

⁽d) Alleles for isogenes are presented 5' to 3' in each column;

PS	PS	Isogene Number(d) (Part 3)
No.(b)	Position(c)	21
-	-	-
1	22635	G
2 -	29577	T
3	29754	С
4	30427	C .
5	31531	Α .
6	31644	C
7	31648	С
8	32446	A
9	32478	С
10	33538	G
.11	33551	A
.12	33571	C
13	34766	T
14.	34796	C .
15	34797	·C
16.	34850	G
17	35325	G
18	35631	C .
19	35632	T .
20	35721	. C
21	35774 ·	Ç
22	35992	Č ·
23	36054	Α .
24	36207 ,	C
25	36330	G
26	36617	С
	No.(b) - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	No.(b) Position(c) 1 22635 2 29577 3 29754 4 30427 5 31531 6 31644 7 31648 8 32446 9 32478 10 33538 11 33551 12 33571 13 34766 14 34796 15 34797 16 34850 17 35325 18 35631 19 35632 20 35721 21 35774 22 35992 23 36054 24 36207 25 36330

- (a) Region examined represents the nucleotide positions defining the start and stop positions within the 1st SEQ ID NO of the sequenced region.
- (b) PS = polymorphic site;

- (c) Position of PS in SEQ ID NO:1;
- (d) Alleles for isogenes are presented 5' to 3' in each column;
- (b) a second nucleotide sequence which is complementary to the first nucleotide sequence.
- 19. The isolated polynucleotide of claim 18, which is a DNA molecule and comprises both the first and second nucleotide sequences and further comprises expression regulatory elements operably linked to the first nucleotide sequence.
- 20. A recombinant nonhuman organism transformed or transfected with the isolated polynucleotide of claim 19, wherein the organism expresses a POR protein that is encoded by the first nucleotide sequence.
- 21. The recombinant nonhuman organism of claim 20, which is a transgenic animal.
- 22. An isolated fragment of a P450 (cytochrome) oxidoreductase (POR) isogene, wherein the fragment comprises at least 10 nucleotides in one of the regions of SEQ ID NO:1 shown in the table immediately below and wherein the fragment comprises one or more polymorphisms selected from the group consisting of adenine at PS1, thymine at PS2, thymine at PS3, thymine at PS4, adenine at PS5, thymine at PS6, thymine at PS7, guanine at PS8, thymine at PS9,

guanine at PS10, adenine at PS11, thymine at PS12, thymine at PS13, thymine at PS14, cytosine at PS15, guanine at PS16, adenine at PS17, cytosine at PS18, thymine at PS19, thymine at PS20, cytosine at PS21, thymine at PS22, guanine at PS23, guanine at PS24, adenine at PS25 and cytosine at PS26, wherein the selected polymorphism has the position set forth in the table immediately below:

	Region	PS	e:Number(d) (Part 1)										
	Examined(a)	No.(b)	Position(c)	1	2	3	4	5.	6	7	8	9	10
	3878-4429	•	-	-	-	-	-	-	-	-	-	-	-
	22306-22748	1	22635	Α	A	Α	Α.	G	G	G	G	G	G
15	29363-29820	2	29577	С	С	С	C	С	С	С	·C	C	C
	29363-29820	3	29754	С	C	C	T	С	С	С	С	· C	С
-	30215-30747	4	30427 .	C	С	C	C	C.	С	С	C	С	С
	30942-31856	5	31531	Α	A	Α	Α	A	A`	Α	Α	Α	Α
	30942-31856	.6.	31644	C	C	С	. C	С	С	С	C	С	C
20	30942-31856	7	31648	С	С	C	C	C	C	C	С	С	С
	32039-32600	. 8	32446	Α	A	· A	. A	Α	. A	A	Α	Α	Α
	32039-32600	9	32478	С	С	C	C	С	C	C	C	C	С
	33448-34167	10	33538	G	G	G	G	G	G	G	G	G	G
	33448-34167	11	33551	Α	A	Α	Α	Α	A	Α	A	Α	Α
25	33448-34167	12	33571	C	T	T	C	C	С	C	С	T	T
	34661-36857	13	34766	T	·C	С	T	C	С	T	T	C	С
	34661-36857	14	34796	Ç	С	С	С	C	С	С	С	С	С
	34661-36857	15	34797	C	С	Ċ	C	C	C	C	С	С	C
	34661-36857	16	34850	G	G	G	G	G	G	, G	G	G	G
30	34661-36857	17	35325	G	A	Α	G	G	G	G	G	G	· G
	34661-36857	18	35631	C	C	T	С	С	С	С	С	C	C ·
	34661-36857	19	35632	T	T	T	T	T	T	T	T	T	T
	34661-36857	20	35721	С	C	$^{\prime}$ C	C	С	C	С	C	С	C
	34661-36857	21	35774	С	T	T	C	С	T	С	С	T	T
35	34661-36857	22	35992	С	C	C	C	C	T	C	C	C	C
	34661-36857	23	36054	G	G	G	Α	Α	G	G	G	Α	G
	34661-36857		36207	C	C	C	C	С	С	C	C	C	. C
	34661-36857	25	36330	G	G	G	G	G	G	A	G	G	. G
	34661-36857	26	36617	C.	C	T	C	C	С	С	С	C	С
40												•	

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;

10

⁽b) PS = polymorphic site;

⁽c) Position of PS within SEQ ID NO:1;

⁽d) Alleles for POR isogenes are presented 5' to 3' in each column;

	WO 02/26768										PCT	/US01/	30877
	Region	PS	PS	Isogene Number(d) (Part 2)						-			
	Examined(a)	No.(b)	Position(c)	11	12	13	ì 14	15	16	17	18	19	20
	3878-4429	_`´	- ` `	-	-	_	-	-	-	-	-	•	-
	22306-22748	1	22635	G	G	G	G	G·	G	G	G	G	G
50	29363-29820		29577	С	С	С	С	C	С	С	C	C.	С
	29363-29820	3 ·	29754	С	С	С	С	С	C	С	С	T	T
	30215-30747	4	30427	C	С	. С	С	С	. C	С	T	С	С
	30942-31856	5	31531	Α	Α	Α	G	G	G	G	G	Α	Α
	30942-31856	6	31644	С	C	С	С	С	Ċ	C	С	С	С
55	30942-31856	7	31648	С	C	T	C	С	C	C	С	С	С
	32039-32600	8	32446	Α	G	Α	Α	Α	Α	Α	Α	Α	Α
	32039-32600	9	32478	С	С	C	C	С	C	С	С	С	T
	33448-34167	10	33538	G	G	G	С	C	С	C	C	G	G
	33448-34167	11	33551	Α	Α	Α	G	G	G	G	G	Α	Α
60	33448-34167	12	33571	T	T	T	C	С	C	C	C .	C	C
	34661-36857	13	34766	T	C	С	C	С	С	C	Ç	T	T
	34661-36857	· 14	34796	С	C	C	С	C	С	T	C	С	C
•	34661-36857	15	34797	C.	C	·C	T	· T	T	T	T	С	C
	34661-36857	16	34850	G	G	G	С	C	G	С	С	G	G
65	34661-36857	17	35325	G	,G	G	G	G	G	G	G.	G	G
	34661-36857	18	35631	С	C	С	T	T	T	T	T	C	C
	34661-36857	19	35632	T	T	T	G	G	G	G	G	T	T ·
	34661-36857	20	35721	С	C	С	C .	T	T	T	С	С	C
	34661-36857	21	35774	T	T	T	С	C	C	C	C	С	C
70	34661-36857	22	35 9 92	C	C ·	C	С	C	C	C	С	С	C
	34661-36857	23 . ·	36054	G	G	G	G	G	· G	G	G	Α.	A
	34661-36857	24	36207 ·	C	С	C	С	С	C	С	C	C	C
	34661-36857	25	36330	G.	· G	G	G	G	G	G	G	G	G.
	34661-36857	26	36617	C	C	С	С	С	C	С	С	С	С
75							• •						•.•

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;

⁽b) PS = polymorphic site;(c) Position of PS within SEQ ID NO:1;

⁽d) Alleles for POR isogenes are presented 5' to 3' in each column;

	Region	PS	PS	Isogene Number(d) (Part 3)
	Examined(a)	No.(b)	Position(c)	21
	3878-4429	-	-	-
	22306-22748	1	22635	G
85	29363-29820	2	29577	Τ .
	29363-29820	3	29754	C
	30215-30747	4	30427	С
	30942-31856	5	31531	A .
	30942-31856	6	31644	С
90	30942-31856	7 .	31648	С
	32039-32600	8	32446 ·	A
	32039-32600	9	32478	С
	33448-34167	10 ·	33538	G
	33448-34167	11	33551	A
95	33448-34167	12	33571	C
	34661-36857	13	34766	T
	34661-36857	14	34796	С
	34661-36857	15	34797	C .
	34661-36857	16	34850	G
100	34661-36857	17	35325	G
	34661-36857	18	35631	C ·
	34661-36857		35632	T .
	34661-36857	20	35721	C
	34661-36857		35774	C
105	34661-36857		35992	C
	34661-36857		36054	A
	34661-36857		36207	C
	34661-36857		36330	G
	34661-36857	26	36617	C .
110				

(a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;

(b) PS = polymorphic site;

115

(c) Position of PS within SEQ ID NO:1;

(d) Alleles for POR isogenes are presented 5' to 3' in each column.

23. An isolated polynucleotide comprising a POR coding sequence, wherein the coding sequence is selected from the group consisting of 1-21 shown in the table immediately below, and wherein each of the coding sequences comprises the regions of SEQ ID NO:2 that are defined by exons 2-16, except at each of the polymorphic sites which have the positions in SEQ ID NO:2 and polymorphisms set forth in the table immediately below:

PS	PS .	Isogene Coding Sequence Number(c) (Part 1)													
No.(a)	Position(b)	lc	2c	3c	4c	5c	6с	7c	8c	9с	10c				
2	266	C	C	C	C	C	С	C	C	·C	С				
4	357	С	C	С	C	C	С	C	С	C	, C				
6	671	С	С	C	С	С	С	C	С	C	С				
7 ·	675	C.	С	C	С	C	С	C	С	С	С				
20	1443	C	С	C	С	С	С	C	С	С	С				
21	1496	Ċ	T	. T	С	С	T	C	С	T	T				
23	1703	G	G	G	A	A	G	G	G	Α	G				
PS	PS	Iso	Isogene Coding Sequence Number(c) (Part 2)												
No.(a)	Position(b)	llc	12c	13c	14c	15c	16c	17c	18c	19c	20c				
2.	266	С	С	\mathbf{C} .	C	С	С	C	С	С	С				
4	357	С	С	С	С	С	С	C	T	С	С				
6	671	С	С	C	C	С	С	C	С	С	С				
7	675	С	C	T	С	С	C	C	C	C	С				
20	1443	С	С	C	С	T	T	T	С	C	С				
21	1496	T	T	T	C	C	С	C	C	С	С				
23	1703	G	G	G	G	· G	G	G	G	A	Α				
PS	PS	Iso	gene C	Coding	Seque	nce Ni	ımber(c) (Pa	rt 3)	•					
No.(a)	Position(b)	21c				•									
2	266	T													
4	357	С													
6	671	С						•							
7	675	С													
20	1443	С													
21	1496	С													
23	1703	Α													

- (a) PS = polymorphic site;
- (b) Position of PS in SEQ ID NO:2;
- (c) Alleles for the isogene coding sequence are presented 5' to 3' in each column; the numerical portion of the isogene coding sequence number represents the number of the parent full POR isogene.
- 24. A recombinant nonhuman organism transformed or transfected with the isolated polynucleotide of claim 23, wherein the organism expresses a P450 (cytochrome) oxidoreductase (POR) protein that is encoded by the polymorphic variant sequence.
- 25. The recombinant nonhuman organism of claim 24, which is a transgenic animal.
- 26. An isolated fragment of a POR cDNA, wherein the fragment comprises one or more polymorphisms selected from the group consisting of thymine at a position corresponding to nucleotide 266, thymine at a position corresponding to nucleotide 357, thymine at a position corresponding to nucleotide 671, thymine at a position corresponding to nucleotide 675, thymine at a position corresponding to nucleotide 1443, cytosine at a position corresponding to nucleotide 1703 in SEQ ID NO:2.
- An isolated polypeptide comprising an amino acid sequence which is a polymorphic variant of a reference sequence for the P450 (cytochrome) oxidoreductase (POR) protein, wherein the

reference sequence comprises SEQ ID NO:3 for the regions encoded by exons 2-16, except the polymorphic variant comprises one or more variant amino acids selected from the group consisting of isoleucine at a position corresponding to amino acid position 89, leucine at a position corresponding to amino acid position 224, alanine at a position corresponding to amino acid position 499 and tryptophan at a position corresponding to amino acid position 568.

- 28. An isolated monoclonal antibody specific for and immunoreactive with the isolated polypeptide of claim 27.
- 29. A method for screening for drugs targeting the isolated polypeptide of claim 27 which comprises contacting the POR polymorphic variant with a candidate agent and assaying for binding activity.
- 30. An isolated fragment of the POR polypeptide, wherein the fragment comprises one or more variant amino acids selected from the group consisting of isoleucine at a position corresponding to amino acid position 89, leucine at a position corresponding to amino acid position 224, alanine at a position corresponding to amino acid position 499 and tryptophan at a position corresponding to amino acid position 568 in SEQ ID NO:3.
- 31 A computer system for storing and analyzing polymorphism data for the P450 (cytochrome) oxidoreductase gene, comprising:
 - (a) a central processing unit (CPU);
 - (b) a communication interface;
 - (c) a display device;
 - (d) an input device; and

5

(e) a database containing the polymorphism data; wherein the polymorphism data comprises any one or more of the haplotypes set forth in the table immediately below: 10

	ΡS	. PS	Haplotype Number(c) (Part 1)									
	No.(a)	Position(b)	1	2	· 3.	4	. 5	6	7	8	9	10
	1	22635	Α	Α	Α	A	G	.G	G	G	G	G
15	2	29577	С	C	C	С	C	C	С	C	С	. C
	3	29754	Ċ	C	C	T	С	C .	C	C	С	С
	4	30427	C	C	C	C	C	C	C	С	С	С
	5	31531	Α.	Α	Α	Α	Α	Α	Α	Α	Α	Α
	6	31644	C	C	C	С	C	C	C	С	С	C
20	7	31648	C.	С	C	C	C	С	С	С	C	C
	8	. 32446	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
	9	32478	C	·C	C	. C ·	С	C ·	C	С	С	Ą Ċ
	10	33538	G	G	G	G	G	G	G	G	G	G
	11 .	33551	` A	Α	Α	Α	Α	Α	Α	Α	Α	Α
25	12	33571	C	T	T	С	С	C	C ·	C	T	T
	13	34766	T	C	C	T	С	C	T	· T	С	С
	14	34796	C	C	C	С	C	С	. C	C	C	C
	15	34797	С	C	С	С	С	C	C	C	C	C
	16	34850	G	G	G	G	G	·G	G	G	G	G
30	17	35325	. G	Α	A	. G	G	G	G	G	G	G
	18	35631	С	Ċ	T	C	C	C	С	C	С	С
•	19	35632	T	T	T.	T	· T	T	T	T	· T	T
• •	20	35721	С	C	C	C	. C	С	Ç.	C	С	С
	21	35774	С	T	T	C	C	- T	С	С	T	T
35	22	35992	С	С	C	C	C	T	С	С	С	C
	23	36054	G	G	G	Α	Α.	G	G	G	Α	G
	24	36207	C	\mathbf{C}	С	С	С	C	С	C	С	С
	25	36330	G	G	G	G	G	G	Α	\mathbf{G} .	G	G
	26	. 36617	C	C	T	С	С	C	C	С	С	С
40												

⁽a) PS = polymorphic site;
(b) Position of PS within SEQ ID NO:1;
(c) Alleles for haplotypes are presented 5' to 3' in each column;

WO 02/26768												PCT/US01/30877
	PS	PS	Ha	plotype	e Num	ber(c)	(Part 2	· 2)				
45	No.(a)	Position(b)	11	12	13	14	15	16	17	18	19	20
	1	22635	G	G	G	G	G	G	G	G	G	G
	2	29577	. С	C	С	С	C	C	C	С	С	С
	3	29754	С	C	С	C	C	C	С	C	T	T
	4	30427	С	C	С	C	С	C	С	T	С	С
50	5 .	31531	Α	A	Α	G	G	G	G	G,	Α	A .
	6	31644	С	С	С	С	C	С	Ċ	С	С	C .
	7	31648	C	С	T	С	C ·	С	С	С	C	С
	8	32446	Α	G	` A	Α	A	Α	À	Α	Α	A
	9.	32478	С	C	. C	С	С	С	C	С	С	T
55	10	33538	G	G	G	С	C	С	C.	C	G	G
	11	33551	Α	Α	Α	G	Ġ	G·	G	G	Α	A
	12	33571	T	. T	T	· C	С	C	C	С	C	С
	13	34766	T	С	C	C	С	C	C	С	. T	T
	14	34796	С	С	C	C	C ·	C	T	C	С	С
60	15	34797	С	C	· C	T	T	T	T.	T	С	C .
	16	34850	G	G	G	С	C	G	C	C	G	G
	17	35325	. G	G	·G	G	G	G	G·	G	G	G .
	18	35631	C	С	С	T.	T	T	T	T	C	С
	19	35632	· T	T	T	G	G	G	G	G	T	T
65	20	35721	С	С	С	С	·T	T	T	C	С	С
	21 ·	35774	T.	T .	T	C	C	C	C	C	С	C
	22	35992	C	С	C	C .	C	C	С	C	С	C .
	23	36054	G	G	G	G	G	G	G	G	Α	A
	24 ·	36207	C	С	С	C.	С	C	C	C	C	С
.70	25	36330	G	G	G _.	G	G	G _.	G	G	G	G
•	26	36617	С	, C	C	C	C	C.	C	C	С	С

5

⁽a) PS = polymorphic site;
(b) Position of PS within SEQ ID NO:1;
(c) Alleles for haplotypes are presented 5' to 3' in each column;

	PS	PS	Haplotype Number(c) (Part 3)
	No.(a)	Position(b)	21
	1	22635	G
_	2	29577	T
80	3	29754	C
•	4.	30427	C
	5	31531	A
	6	31644	C
	7	31648	C .
85	8	32446	A
	9	32478	C
	10	33538	G
	11	33551	A
	12	33571	C
90	13	34766	T
	14	34796	C
	15	34797	C
	16	34850	G
	17	35325	G
. 95	18	35631	C
	19	35632 .	T
-	20	35721	C
	21	35774	C
	22	35992	С
100	23	36054	A
	24	36207	C .
			_

PCT/US01/30877

·105

25

26

36330

36617

WO 02/26768

(a) PS = polymorphic site;(b) Position of PS within SEQ ID NO:1;

G

C

(c) Alleles for haplotypes are presented 5' to 3' in each column;

the haplotype pairs set forth in the table immediately below:

145 -

	PS	PS	Hap	lotype F	air(c) (I			•		
	No.(a)	Position(b)	8/8	10/10	19/19	15/15	8/ 11	8/3	19/21	10/17
115	1	22635	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/T	C/C
	3	29754	C/C	· C/C	T/T	C/C	C/C	C/C	T/C	C/C
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	5	31531	A/A	A/A	A/A	G/G -	A/A	A/A	A/A	A/G
120	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	7	31648	C/C	C/C	C/C	C/C	` C/C	.C/C	C/C	C/C
	8	32446	A/A	A/A	A/A	· A/A	A/A	A/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	10	33538	G/G	G/G	G/G	·C/C	G/G	· G/G	G/G	G/Ç
125	11	33551	A/A	` A/A	A/A	G/G	A/A	A/A	A/A	A/G
	12	33571	C/C	T/T	C/C	C/C	C/T	C/T	C/C	T/C
	13	34766	T/T	C/C	T/T	C/C	T/T	T/C	T/T	C/C
	14	34796	C/C	C/C	C/C	C/C ·	C/C	C/C	C/C	C/T
	15	34797·	C/C	C/C	C/C	T/T	C/C	C/C	C/C	C/T
130	16	34850	G/G	G/G	G/G	C/C	G/G	G/G	G/G	G/C
	17	35325	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G
	18	35631	C/C	C/C	C/C	T/T	C/C	C/T	C/C	C/T
	19	35632	T/T	T/T	T/T	G/G	T/T	T/T	T/T	T/G
_	20	35721	C/C	C/C	C/C	T/T	C/C	· C/C	C/C	C/T
135	21	35774	C/C	T/T	C/C	C/C	C/T	C/T	C/C	T/C
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	23	36054	G/G	G/G	A/A	G/G	G/G	G/G	A/A	G/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C .
	25	36330	G/G	G/G·	G/G	G/G .	G/G	G/G	G/G	. G/G
140	26	36617	C/C	C/C	C/C	C/C	C/C	C/T	C/C	C/C

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

WO 02/26768	PCT/US01/30877
-------------	----------------

	PS	PS	Haplotype Pair(c) (Part 2)										
	No.(a)	Position(b)	15/2	19/14	.8/16	8/20	19/2	19/4	14/9	8/13			
	1	22635	G/A	G/G	G/G	G/G	G/A	G/A	G/G	G/G			
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
150	3	29754	C/C	T/C	C/C	C/T	T/C	T/T	C/C -	C/C			
	4	.30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	5	31531	G/A	A/G	A/G	A/A	A/Ą	A/A	G/A	A/A			
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/T			
155	8	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A	A/A			
	9	32478	C/C	C/C	C/C	C/T	C/C	C/C	C/C	C/C			
	10	33538	C/G	G/C	G/C	G/G	G/G	·G/G	C/G	G/G			
•	11	33551	G/A	A/G	A/G	A/A	A/A	A/A	G/A	A/A			
	12	33571	C/T	C/C	C/C	C/C	C/T	C/C	C/T	C/T			
160	13	34766	C/C	T/C	T/C	T/T	T/C	T/T	C/C	T/C			
	14	34796	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	15	34797	T/C	C/T	C/T	C/C	C/C	C/C	T/C	C/C			
	16	34850	C/G	G/C	G/G	G/G	G/G	G/G	C/G	G/G			
	17	35325	G/A	G/G	G/G	G/G	G/A	G/G	G/G	G/G			
165	18	35631	T/C	C/T	C/T	C/C	Ç/C	C/C	T/C	C/C			
	19	35632	G/T	T/G	T/G	T/T	T/T	T/T	G/T	T/T			
	20	35721	T/C	C/C	C/T	C/C	C/C	C/C	C/C	C/C			
	21	35774	C/T	C/C	C/C	C/C	C/T	C/C	C/T	C/T			
	22	35992	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
170	23 .	36054	G/G	A/G	G/G	G/A	A/G	A/A	G/A	G/G			
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G	G/G			
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

wo	02/26768								PCT/US01/30877	
PS	PS	Hap	lotype F	Pair(c) (Part 3)					
(a).ol	Position(b)	8/12	8/1	8/6	8/15	8/17	8/7	10/5	8/2	

•	PS	PS	Haplotype Pair(c) (Part 3)										
180	No.(a)	Position(b)	8/12	8/1	8/6	8/15	8/17	8/7	10/5	8/2			
	1	22635	. G/G	G/A	G/G	G/G	G/G	G/G	G/G	G/A			
	2	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	3	29754	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	4	30427	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
185	- 5	31531	A/A	A/A	A/A	A/G	A/G	A/A	A/A	A/A			
	6	31644	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	7	31648	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
	8	32446	A/G	A/A	A/A	A/A	A/A	A/A	A/A	A/A			
	9	32478	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
190	10	33538	G/G	G/G	G/G	G/C	G/C	G/G	G/G	G/G			
	11	33551	A/A	A/A	A/A	A/G	A/G	A/A	ΑļΑ	A/A			
	12	33571	C/T	C/C	C/C	C/C	C/C	C/C	T/C	C/T			
	13	34766	T/C	T/T	T/C	T/C	T/C	T/T	C/C	T/C			
	14	34796	C/C	. C/C	C/C	C/C	C/T	C/C	C/C	C/C			
195	15	34797	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C			
	16	34850	G/G	G/G	G/G	G/C ·	G/C	G/G	G/G	G/G			
	17 .	35325	G/G	G/G	G/G	G/G	G/G	G/G	G/G .	G/A			
	18	35631	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C			
	19	35632	T/T	T/T	T/T	T/G	T/G	T/T	T/T	T/T			
200	20	35721	C/C	C/C	C/C	C/T	C/T	C/C	C/C	C/C			
	21	35774	C/T	C/C	C/T	C/C	C/C	C/C	T/C	C/T			
	22	35992	C/C	C/C·	C/T	C/C	C/C	C/C	C/C	C/C			
•	23	36054	G/G	G/G	G/G	G/G	G/G	G/G	G/A	G/G			
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			
205	25	36330	G/G	G/G	G/G	G/G	G/G	G/A	G/G	G/G			
	· 26	36617	C/C	C/C	C/C	C/C	C/C	C/C	C/C	C/C			

⁽a) PS = polymorphic site;
(b) Position of PS in SEQ ID NO:1;
(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

WO 02/26768	PCT/US01/30877

	PS	PS	Hap	olotype P	air(c) (I				
	No.(a)	Position(b)	8/19	10/15	8/10	10/19	19/17	15/18	19/15
	1	22635	G/G	G/G	G/G	G/G	G/G	G/G	G/G
215	2 ·	29577	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	3	29754	C/T	C/C	C/C	C/T	` T/C	C/C	T/C
	4	30427	C/C	C/C	C/C	C/C	, C/C	C/T	C/C
	5 .	31531	A/A	A/G	Α/A	A/A	A/G	G/G	A/G
	6	31644	C/C	. C/C	C/C	C/C	C/C	C/C	C/C
220	7	31648	C/C	C/C .	C/C	C/C	C/C	C/C	C/C
	8	32446	A/A	A/A	A/A	A/A	A/A	A/A	A/A
	9	32478	C/C	C/C	C/C	C/C	C/C .	C/C	C/C
	10 -	33538	G/G	G/C	`G/G	G/G	G/C	C/C	G/C
	11	33551	A/A	A/G	A/A	A/A	A/G	G/G	A/G
225	12.	33571	C/C	T/C	C/T	T/C	C/C	C/C	C/C
	13	34766	T/T	C/C	T/C	C/T	T/C	C/C	T/C
	14	34796	C/C	C/C	C/C	C/C	C/T	C/C	C/C
	15	34797	C/C	C/T	C/C	C/C	C/T	T/T	C/T
	16	34850	G/G	G/C	G/G	G/G	G/C	C/C	G/C
230	17	35325 ·	G/G	G/G	G/G.	G/G	G/G	G/G	G/G
	18	35631	C/C	C/T	C/C	C/C	C/T	T/T	C/T
	19	35632 ·	T/T	T/G	T/T	T/T	T/G	G/G	T/G
•	20	35 72 1	C/C	C/T	C/C	C/C	C/T	T/C	C/T
	21	35774	C/C	T/C	C/T	T/C	C/C	C/C	C/C
235	22	35992	C/C	C/C	C/C .	C/C	C/C	C/C	C/C
	23	36054	G/A	G/G	G/G	G/A	A/G	G/G	A/G
	24	36207	C/C	C/C	C/C	C/C	C/C	C/C	C/C
	25	36330	G/G	G/G	G/G	G/G	G/G	G/G	G/G
	26	36617	C/C	C/C	C/C	C/C	C/C	C/C ·	C/C
240	•								

(a) PS = polymorphic site;

(b) Position of PS in SEQ ID NO:1;

(c) Haplotype pairs are represented as 1st haplotype/2nd haplotype; with alleles of each haplotype shown 5' to 3' as 1st polymorphism/2nd polymorphism in each column;

245

5

and the frequency data in Tables 6 and 7.

32. A genome anthology for the P450 (cytochrome) oxidoreductase (POR) gene which comprises two or more POR isogenes selected from the group consisting of isogenes 1-21 shown in the table immediately below, and wherein each of the isogenes comprises the regions of SEQ ID NO:1 shown in the table immediately below and wherein each of the isogenes 1-21 is further defined by the corresponding sequence of polymorphisms whose positions and identities are set forth in the table immediately below:

10	Region ·	PS	PS	Isogene Number(d) (Part 1)									
	Examined(a)	No.(b)	Position(c)	1	2	3	`4`	5	6	7	8	9	10
	3878-4429	-	-	- .	-	-	-	-	-	-	_	-	_
	22306-22748	1	22635	Α	Α	Α	Α	G	G	G	G	G	G
	29363-29820	2	29577.	С	C	С	С	C	С	C	С	С	С
15	29363-29820	3	29754	. C	C	C .	T	C	С	С	C	С	С
	30215-30747	4	30427	С	С	С	C	Ċ	C	C	C	C	Ċ
	30942-31856	5	31531	Α	Α	A	Ā	A	Α	Α	A	A	A
	30942-31856	6	31644	C	С	С	C	C	С	C	С	С	С
	30942-31856	7	31648	С	С	С	C	C	C	C	C	C	C
20	32039-32600	8	32446	Α	Α	A	A	Ā	Α	Α	A	Α	Α
	32039-32600	9	32478	C	С	С	С	C	С	С	С	C	С
•	33448-34167	10	33538	G	G	G	G	G	G	G	G	G	G
	33448-34167	11	33551	Α	Α	Α	A	A	A	A	A	A	A
	33448-34167	12	33571	С	T	T	С	\mathbf{C}	C	C	С	T	T
25	34661-36857	13	34766	T	С	.C	T	С	С	T	- T	С	С
	34661-36857	14	34796	·C	С	С	С	·C	С	· C	С	С	C
	34661-36857	15	34797	С	С	С	С	С	С	C .	С	C	C
	34661-36857	16.	34850	G	G	G	G	G	G	G	G	G	G
	· 34661-36857	17	35325	G	Α	Α	G	G	G	G	G	G	G
30	34661-36857	18	35631	С	C	T	С	C·	C	С	С	C	С
	34661-36857	19	35632	T	T	T	T	T	T	T	T	T	T
	34661-36857	20	35721	С	С	C	C	С	С	C	C	C	C
	34661-36857	21	35774	С	T	T	C	С	T	C	C	T	T
	34661-36857	22	35992	C	C	C	C	C	T	C	C	C	C
35	34661-36857	23	36054	G	G	G	Α	Α	G	· G	G	Α	G
	34661-36857	24	36207	C	C	С	С	· C	C	C	C	C	C
	34661-36857	25	36330	G	G	G	G	G	G	Α	G	G	G
	34661-36857	26	36617	C	С	T	. C	C	С	С	С	C	C

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;
(b) PS = polymorphic site;
(c) Position of PS within SEQ ID NO:1;
(d) Alleles for POR isogenes are presented 5' to 3' in each column; 40

45 -

	WO 02/267	68									PCT	/US01/:	30877
45	Region	PS	PS	Iso	gene N	lumbe	r(d) (P	art 2)					
		No.(b)	Position(c)	11	12	13	14	15	16	17	18	19	20
	3878-4429	-	-	-	-	-	-	-	-	-	-	-	-
	22306-22748	1	22635	G	G	G	G	G	G	G	G	G	G
	29363-29820	2	29577	С	C	С	C·	С	С	C	C	C	С
50	29363-29820	3	29754	C	С	С	C	С	С	С	С	T	T
	30215-30747	4	30427	С	C	С	C	С	С	C	T·	C .	С
	30942-31856	5	31531	Α	Α	Α	.G	G	G	G	G	Α	Α
	30942-31856	6	31644	С	С	C	C	C	С	C	С	С	С
	30942-31856	7	31648	C	C	T	C	С	C	C	C	С	C
55	32039-32600	8	32446	Α	G	Α	Α	Α	Α	Α	Α	Α	Α
	32039-32600	9	32478	C	C	C	C	С	C	С	. C	С	T
•	33448-34167	10	33538	G	G.	G	С	. C	С	С	C	G	G
	33448-34167	11	33551	Α	Α	Α	G	G	G	G	G	Α	Α
	33448-34167	12	33571	T	T	T	C	C	C	C	С	С	С
60	34661-36857	13	34766	T .	C	C	C	C	C	C	C	T	T
	34661-36857	14	34796	C	·C	С	C	C	C	T	\mathbf{C} .	С	С
	34661-36857	15	34797	С	C	С	T	T.	T	T	T	С	С
	34661-36857	16	34850	G	G	G	C	С	G	C	С	G	G
	34661-36857	17	35325	G	G	G	G	G	G	G	\mathbf{G}	G	G
65	34661-36857	18	35631	С	C	C	T	T	T	T	T	С	С
	34661-36857	19	35632	T	T	T	G	G	G	G	G	T	T
	34661-36857	20	35 721 ·	C	C	C	C	. T	T	T	C	С	С
	34661-36857	21	35774 ·	T	T	T	С	· C	C	С	С	Ċ	С
	34661-36857	22	35992	С	C	С	C	C	C	С	С		C
70	34661-36857	23	36054	G	G	G	G	G	G	G	G	Α	Α
	34661-36857	24	36207	C	C	С	С	С	C	С	C	С	С
•	34661-36857	25	36330	G	G	G	G ·	G	G	G	Ġ	G	G
	34661-36857	26	36617	C	С	С	С	С	С	С	С	С	С

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;
(b) PS = polymorphic site;
(c) Position of PS within SEQ ID NO:1;
(d) Alleles for POR isogenes are presented 5' to 3' in each column; .

80	Region	PS ·	PS	Isogene Number(d) (Part 3)
	Examined(a)	No.(b)	Position(c)	21
•	3878-4429	~	-	-
	22306-22748	1	22635	G .
	29363-29820	2	29577	Τ .
85	29363-29820	3	29754	C
	30215-30747	4	30427	С
	30942-31856	5	31531	A
	30942-31856	6	31644	C .
	30942-31856	7	31648	С
90	32039-32600	8	32446	A • • • •
	32039-32600	9	32478	С
	33448-34167	10	33538	G .
	33448-34167	11	33551	A .
•	33448-34167	12	·33571	C .
95	34661-36857	13	34766	T
	34661-36857	14	34796	С
	34661-36857	15 ·	34797	С
	34661-36857	16	34850	G
	34661-36857	17	35325	G
100	34661-36857	18	35631	C
	34661-36857	. 19	35632	T
	34661-36857	20	35721	C .
	34661-36857	21	35774	С
	34661-36857	22	35992	C
105	34661-36857	23	36054	A
•	34661-36857	24	36207	C
	34661-36857	25	36330	G
	34661-36857	26	36617	C

⁽a) Region examined represents the nucleotide positions defining the start and stop positions within SEQ ID NO:1 of the regions sequenced;
(b) PS = polymorphic site;
(c) Position of PS within SEQ ID NO:1; 110

115

⁽d) Alleles for POR isogenes are presented 5' to 3' in each column.

1/19

POLYMORPHISMS IN THE POR GENE

CAGTGGCACA	ATGTCAGCTC	ACTGCAAGCT	CTGCCTTCCG	GGTTCACACC	•
ATTCTCCCAC	CTCACCTCCC	TCCTCCTGTT	TCTGGGACTA	CAGGTGCCTG	100
CCACCACGCC	TGGCTAATTT	CTTGTATTTT	TTTTTTTAA	GTAGAGACGG	
GGTTTCACTG	TGTTAGCCAG	GATGGTCTCG	ATCTCCTGAC	CTCGTGATCC	200
ACCCGCCTTG	GCCTCCCAAA	GTGCTGGGAT	TACAGGCATG	GGCCACCGTG	
CCCGGACGAC	CTGACTTACT	TTTTAAAGCA	TCCCCCTGTC	TGCTGTGTGG	300
GGAATGGCCC	GTCCATCAGA	ATTCTCTTGC	GGTGATTACG	TAGGTGCAGA	
TGTACCGCTA	ACCTCACTCC	CAGCGTCGTC	GATTTATTAA	TAGAAACTGC	400
CATGAGTTAT	GCAATCAGCT	TGAGTCTGCG	TTGAGAAGGA	CTTCACATCA	•
TGGGCATTAG	ATCTCTTCTG	GAAAATGAGG	GGACCGGTCA	CTTGGGGAGT	500
TAGAAGGGAG	GAGGGTGAGG	GACAGGGAGC	GCGAGTTTCT	TGGCTGCTGC	
CTTGTGATGG	ATAACAGÇTA	GACAGCTAGG	GGAGCTCCTG	TGTCACCATG	600
GCACTCCTGA	CTGGTTCCAG	TGGGGCCCTG	ACTGTCTGCT	GCCTCATGAC	
TCTGTGGGAC	AAGTCCTTCC	AGAATCTGTC	AGAGCAGATC	CTAAATGCCT	7.70
CTCTGTCTGG	TTCTATGAAA	ATGTGACAGG	TGGCTCATAA	GCTTGACAGA	•
GATCCTGATA	TGACTAGCAT	TAAGTAAATA	TTAAATGTGT	TTATAAGATT	800
AAATATAAAT	AGTTTTCTCT	GGGGACAACA	GAATTCACTT	TGTCCTTTAA	
TGTCATATCA	AAAAAGCTGG	CCAGGTGCAG	TGGCTCACGC	CTGTCATCCC	900
AGCACTTTGG	GAGGCCGAGG	CAGGATCACG	AGGTCAGGAG	TTTGAGACCA	
GCCTGACCAA	CATGGTGAAA	CTCCATCTCT	ACTAAAAATA	CAGAAAATTA	1000
GCCGGGTGTG	GTGGCACATG	CCTGTAATCC	CAGCTGCTCA	GGAGACTGAG	
GCAGGAGAAT	TGCTTGAATC	CGGGAGGCAG	AGGTTGCAGT	GAGCCGAGAT	1100
CGCACCACTG	CACTCCAGCC	TGGGTGACAG	AGCGAGGCTC	TGTCCCCCGG	
CCCCCCCC	CCCCGAAAAA	AAAAAAGTCA	TATCAAAAAA	GCCAAGTTGA	1200
GGCCAGGCAC	AGTGGCTCAC	GCCTGTAATC	CCAGCACTTT	GGGAAGCCGA	
AGCAGGCAGA	TCACCTGAGG	TCAGGAGTTC	GAGACCAGCC	TGGCTGACAT	1300
GGTGAAACCC	CGTCTCTACT	AAAAATACAA	AATTAGCCAG	GTGTCGTGGC	
GGGCACCCGT	AGTCCCAGGT	ACCCTGGAGG	CTGAGGCAAG	AGAATCGCTT	1400
GAACCCAGGA	GGCGGAGGTT	GCAGTGAGTC	GAGATGGTGC	CATTGCACTC	
TAGCCAGGGT	GACAGAGAGA	GACTCTATCT	CAAAAAAATA	AAATAAAAA	1500
GAAAGAAAAA	AGCTAAATTG	AGATGAACTC	AAGCCATTGG	AAAAGCAGCT	
			TGCGGGCCTG		1600
			CCGATGCCCA		
ATGCCCTGGC	TTCCCAGACC	AGCCCCATGG	TTTCCTGGTG	ACAGTGACAG	1700
CCATCAGCAG	TCAGCTAGAA	CATAGTCTCT	CATTGCCTAA	TTGCTGACAC	•
ATGACTAAGG	CTTTCCTGAT	TGAGTCTGGG	TGCTCTGGTT	GTGGTGAAAA	1800
ACCCAGTCGG	TCATATCCAT	GATTGCAAAA	TGGAATAGTG	TGAATTTCAG	
GGCTGAGCCC	AGCETCCTTG	GTAAGCAGCA	GAAGCTGCTG.	TTTCAGGGAC	1900
TCTCACTTGG	ACCTTTGTTG	ACTCATGTCA	CGTCTGCCTA	CCAGGTGTCG	
TTGGTGGAAG	GACCAGTTGA	GCATCTTATG	AGGGAACTAG	GCTGGTGACA	2000
TGGGGGTTCC	CCCACCTCCC	TCCTGGACGG	GGCGGCTGGC	CGGGCGGGG	
				GGGCAGAGGG `	2100
GCTCCTCACT	TČCCAGTAGG	GGCGGCCGGG	CAGAGGTGCC	CCTCACCTCC	
			GACCCCCCA		2200
			ACCCCCCAC		
			CCCCCCACC		2300
ACGGGGCGGC	TGGCCGGGCG	GGGGGCTGAC	CCCCCACCT	CCCTCCCGGA	
			CCCCCACCTC		2400
GGGGCGGCTG	GCCGGGCAAA	GGGGCTCCTC	ACTTCCCAGT	AGGGGCGGCT	•

	•				
GGGCAGAGGC	GCCCCTCACC	TCCCGGACGG	GGCGGCTGGC	CGGGCGGGG	2500
		CCCGGACGGA			
TGACCCCCAC	CTCCCTCCCG	GACGGGGTGG	CTGCTGGGCG	GAGACGCTCC	2600
TCACTTCCCA	GATGGGGTGĢ	CTGCTGGACG	GAGGGGCTCC	TCACTTCTCA	
GACGGGGCGG	TTGCCAGGCA	GAGGGTCTCC	TCACTTCTCA	GACGGGGCGG	2700
CCGGGCAGAG	ACGCTCCTCA	CCTCCCAGAT	GGGGTCGCGG.	CCGGGCAGAG	
GCGCTCCTCA	CATCCCAGAC	GGGGCGGCGG	GGCAGAGGCG	CTCCCCACAT	2800
CTCAGACGAT	GGGCGGCCAG	GCAGAGACGC	TCCTCACTTC	CTAGATGGGA	
TGGCGGTGGA	GAAGAGGCGC	TCCTCACTTC	CTAGATGGGA	TGGCGGCCGG	2900
GCAGAGACGC	TCCTCACTTT	CCAGACTGGG	CAGCCAGGCA	GAGGGGCTCC	
TAACATCCCA	GACGATGGGC	AGCCAGGCAG	AGACGCTCCT	CACTTCCCAG	3000
ACGGGGTGGC	GGCCGGGCAG	AGGCTGCAAT	CTCGGCTCTT	TGGGAGGCCA	÷
AGGCAGGCGG	CTGGGAGGTG	GTTGTAGCGA	GCCGAGATCA	AGCCACTGCA	3100
CTCCAGCCTG	GGCACCATTG	AGCACTGAGG	GAACGAGACT	CCGTCTGCAA	
TCCCGGCACC	TCGGGAGGCC	GAGGCTGGAG	GATCACTCGC	GGTTAGGAGC	3200
TGGAGACCAG	CCCGGCCAAC	ACAGCGAAAC	CCCGTTTCCA	CCAAAAAAAT	
ACGAGAACCA	GTCAGGCGTG	GCGGCGCGCG	CCTGCAATCG	CAGGCACTCG	. 3300
GCAGGCTGAG	GCAGGAGAAT	CAGGCAGGGA	GGTTGCAGTG	AGCCGAGATG	
GCAGCAGTAC	AGTCCAGCTT	CGGCTGGGCA	TCAGAGGGAG	ACCGTGGAAA	3400
GAGGGAGGG	GAGGGGGAGG	GGGAGGGACC	AGACTTTGTC	TCTTAAAAAA	
		ATAGGAAAGC			3500
ATTGTTAACA	GGAACTACCT	TCATAGCCCA	AGGTTTTAGG	AATACAGAGA	
CACTCTTGCC	AGTCAGGATA	GTCCAAGGCT	CGTGAATATC	AGGAGCCACT	3600
CAAGGGCCAG	GCCTGGAGAC	TTGGAACATG	CAGGGTTTAG	GGCAACCCCC	
GCCAGCCACA	CAGCTGGGGA	AAGGGTTTGC	TGCGAAATGG	TCCACTCTTG	3700
CGTGCACTTC	CTCCCGCCTG	CCCCCGTGC	GGTGTCCTTG	TGGGATTAGA	
GGATGTTCCA	GCACACTGAG	AGTCAGTGGC	TGTCATTTTC	TCTGTCTTCC	3800
AGGGACCCAG	TCCCAGCTGC	TGCCTTAGCT	TGCACCCCAG	GACCACCCTG	
GGCTGGTGCT	GACACCACTG	GGGGCTGTCT	GTTATGTCAG	CCCCAGTCCA	3900
AGACTGTGGC	TGTCTTGGCA	GGAACCTGGC	TGAGTGAGCC	CCTTCTCCTA	
CCCCGTGCAG	TGACCATTTC	CTGCAGCCCC	AGGGGCAAGG	CCCAGCATTT	4000
		CTCAGGGGCA			
		AACAGTTTCA			4100
[exon	2: 4092		•		
CACGTGGACA	CCAGCTCCAC	CGTGTCCGAG	GCGGTGGCCG	AAGAAGTATC	
TCTTTTCAGC	ATGACGGACA	TGATTCTGTT	TTCGCTCATC	GTGGGTCTCC	4200
TAACCTACTG	GTTCCTCTTC	AGAAAGAAAA	AAGAAGAAGT	CCCCGAGTTC	
		AGTGCCGCCT			4300 -
	426	71			
CCTCTTCTGT	CACCACTCCA	AGCAGTGTCC	TGCATGCGGG	CCTCAGGCTG	
		AGCATTTTGG			4400
		AGCTCTCCCT			
		CTGCTGTTTA			4500
CTGCGAAAAT	GACACCAGTT	TACAGATTAA	GAACCGGGGG	CTCAAGAATG	
		ATTAGCCAGC			4600
		TATTTATTTA			
		AGTGCAATGG			4700
		GGCTCAGGCA			
		TGTGCACCAC			4800
		ATCTTGTTCT			4000
		TGCAACCTCT			4900
		AGTAGCTTGG			4200
			Inchedig	CCCCCACCA	

	TTTTTTGTAT				5000
	TCTCAAACTC				
TCCCAAAGTG	CTGGGATTAC	AGGTGTGAGC	CGTTGCGCCC	AGTCAATTTT	5100
TGTATTTTT	TATAGAGACA	GGGATTTGCC	ATGTCCCGGG	CTGGTCTCGA	•
ACACCTGGAC	TCAAGCAATC	CGCACACCTT	GGTCTCCCAG	AGTGTCGGGA	5200
TTACAGGCGT	GAGCCACTGT	ACCCAGCCTA	GAATTGGCAT	TTTAAAGTCT	
TTTTAAGGCT	GTAGCCACCT	GGAAGGCTAT	GTGCTAATGA	GCACAAAATC	5300
TTTGGACAGG	CCTTATTTTG	TTGCTCTTTT	AAACTTTŢCA	TGAAGCTTCC	
TTTTAAGAAT	AAGTGAAAAA	GATGGATTAG	TTAAAAGAAA	AACGTTAAGG	5400
AAATAATAGT	ATAGATGGTA	TGTAGACAGA	AAAAAATGAT	ACCGAAGGTC	
TGCCTAAGTG	ACTGCATCCC	TGTCTCTCCA	AGATTGATTT	CCATAAGCCA	5500 ⁻
CACGGAAAAG	TCATTCTCCA	GATTTTAGGG	TCCTGCGGCC	AGAATTACTT	
CCTGCGGTTA	CGCTTGGCTG	TGTTTAACAC	CAGTCTCAGA	CTCCAGGGGC	5600
CCGCAGCCAG	GTTTGAGTGG	GGACCTGCCA	GGTCAGGTCT	GAGCCGAGGG	
AACTCCAGGG	GCACGGGCCT	GCTGCCTTCA	GGGACTCCCT	GGATTTGGCA	5700
AGGGGCAGGT	CTCAGGGGCA	GGATTGGGAĠ	CCATTCTCAG	ACCAGAACCC	
CTTTCATTCT	GTCTGTCTTC	AGGGGACCCA	GTCCCAGCTG	CAGCCTTAGC	5800
TTGCACCCCA	GGGCCACCCT	GGGCTGGTGC	TGACACCAGT	GGGGGCCATC	
TGTCATGTCA	GTTCCAGTCC	AAGGCTGTGG	CTGTCTTGGC	AGGAACAAGC	5900
CACACAGAAA	AGTCATTCTC	CAAGGCTGGG	CATGGTGAAG	CATGCCGCTC	•
ACATCAAATC	CCGATTCCCT	ATTCCAATCT	GGGTATCAGC	CTTCCCCGCC	6000
AGAACACTTA	CAGCCTTCAC	ACCGTAAAGC	AGATATTCAC	ACAACACAGT	
	TGGACAGGGA				6100
AGGCCAGGC	ACAGCGGCTC	ACGTCTGTAA	TTCCACCACT	TTGGGAGGCC	
GAGGCGGGAG	AAATCACTTG	AGGTCAGGAG	TTCGAGACCA	GCCTGGCCAA	6200
CATGGCGAAA	CCCCGTCTCT	ACCGAAAATA	CAAAAACTAG	CTGGGCGTGG	
TGGTGCATGC	CTGTAATTTC	AGCTACTAGG	GAAGCTGAGG	CAGAAGAATC	6300
GCTTGAACCC	AGGAGGCAGA	GGTTGCAGTG	AGCCAAGAAT	GCGCCACTGC	
ATTCCAGCCT	GGGAGACAGA	GTCCGTCTCA	AAAACAAAAC	AAAACAAAAC	6100
AAAACTGGGT	TCAATCTTAT	CTCCATCATT	GACTCACTGA	GCAAACATTT	
CCTGAGGCCC	TACCTACAGT	GTCCCAGACA	CTATGCTAAG	GTGTGTGGCT	6500
GCAGCAGTGA	AGAAAATAGA	TGAATGCTGT	CTTCATCAAG	CTTACGCTCT	
AGTGGTGAGT	GAACCCTGGG	CGAGACCTTA	ACCTCATTCT	GCCTCAGTTT	6600
CCTCACCTGC	TAAATGGAGG	CAGTATTCCC	AATCTTGTGG	GGCTTTTGTC	
TTAAATGAGG	AAGAGTCTAT	AAACTCACCT	AGCACTGCCC	CTGAGGGATA	6700
GGAGCTGTGT	AGTGTTTGCG	TTGATCGTAT	TTCGTGCCAG	GCACTATGAC	
GGGCACGATC	AGGACCACAG	AGCCAGCATT	TATGTTAAGC	TGGAAAATGA	6800
GGGTGTTGCA	ACATAGTTTT	TTTTTTTTT	AGACAGACTT	TTGCTCTTGT	
CACTCAGGCT	GGAGTGCAGT	GGTGCAATCT	CGGCTCACTG	CAACCTCCGC	6900
CTCCCGGGTT	CAGGCGATTC	TCGTGCCTCA	GTCTCCCGAG	TGCCTGGGAC	
	TGCTACCACG				7000
CGGGGTTTCA	CCATGTTGGC	CAGGCTGGTC	TCAAACTCCC	GACCTCAGGT	
GAGCTGCCTG	CCTCTGCCTC	CCATAGTGCT	GGGATTATAG	GCGTGAGCCA	7100
CCACACCCGG	CCACAGCGTA	CTTTTTAGAA	ATGCTTTGTG	AACTGCTTTA	
ACCTACATTG	TCTAATCAGG	GCCTCCTTGC	AACAGCGCCG	TGCGTTAGGT	7200
	GCCTCATTTC				
GGGCACAGGC	TGGAGAGACA	GGCTCCGCCA	GCTCTAAGAG	AGAAGGAATT	7300
GGTGTGGGGA	TCAGACCAAG	TCCTGCAGGA	GGGGTGTTGG	GCAGGTTCTT	
	CCACACCCTG				7400
	GGGCAGATCA				
	GCATTGCTGG				7500
-	AAGATAAAGA				-
	,	 			

	GGCCCTTGTT	CCCTCATCTG	TAAAATGGAA	GTTCCGCCCC	ACCGCCGTGA	7600
	GTGAGGACGT	GGGTTGGCCC.	TGGGAGCCTG	CGGAGCTTGC	CACCAAGGGA	•
	GGCAGCATTC	CTCTCATAGC	TCATCTGTTC	TCGCTGTCAC	CTCCCTGGCC	7700
	TTACAAGAGG	AAGTTGACAT	AAAACCTGTA	GACTGTGGGA	GCTGTAGGGT	
	CCCAAAGCAC	TTGTATTTTT	TTGTTGATTC	TCACTGTTCC	TCTTTGCCAG	7800
	GATGCTGAAA	TTCTGTTCCC	TCCACCTAAT	CATGATCTTC	TAACCTTATG	
	TGTGTGGAGA	TATGCAGTTT	CCAGAGTCTT	GTCTCTTCCC	TCATTAAATC	7900
	ACACTGGATG	CCTGCTGCAG	CCAGGGCTTT	TACCTGTACG	CTGTACAAGA	
	CAAATATTTC	TAGTACCATG	GCTACATTCT	GGACCCTGAA	GTTGGGTGCT	8000
	CAAGGTTGAG	TACTGACTCT	CCCACATTAG	CCATCTGACA	TCAGCCAGGT	
	GACTTGATCT	TTCCAAGTCT	GTGTCCCCAA	CTGTAAGCTG	GAGGTAGTAG	8100
	TAGTACTTAC	CTCATAAGGC	TGTGAAAACT	GAGTTAATCC	ATCATAGAGC	
	TCTTTGCTCA	GTTCCTGGTG	CATAGTAGGC	TCTCAGGTGT	TATGGATTGT	8200
	TACTATTTAT	TTATTTATTT	TGAGGCAGGG	TCTCACTCTG	ŢCGTTCAGGC	•
	TGGAATACGC	TGGCACGATC	TCGGCTCACT	GCAACCTCCG	CCTCCCAGGC	8300
	TCAAGAGATC	CTCCCACTTT	GGCCTCCCAA	GTAGCTGGGA	CTACAGGCGT	
•	GCACCACCAC	CCTTGGCTAA	TTTTTATATT	TTTTGTACAA	ATGGACATCT	8400
	AACAATGTTG	CCCAGGCTGG	TCTGAAACTC	CTGGGCTCAA	GCAGTCTGCC	
	TGCCTCGGCC	TCCCAAAGTG	CTGGGATTAC	AGGCGTGAGC	CACCATGCCT	8500
	GGAGTGTGTT	ATTATTTTTA	TCCTTTTTAT	TAATACCATC	TCCAGTCTTA	
	CAAGAGCCCT	TCCACGAAGA	CATGAGCAGC	CCATTTTGCG	GATGAAGAAA	8600
	CCGAGGTGCC	AGGGATTGCA	GAGTTTGCCC	AAGGCCACCT	AACTTCTAAA	
	TAGCAGCAGA	GTTGGCTTTT	GAATGAAGTC	TGCAAGCTCC	ACAAGCCATG	· 8700
	TTTTCTCTAC	TTTGCCATGC	TGCTCCTAAT	TTAGTGTTAA	TAGGCCTCCT	
	ACGATAGTGT	TAGTCTCCTA	AGATAGTGTT	AATAGGCCTG	GCATGGTGGC	8800
	TCACGCCTGT	AATCCCAGTG	CTTAGGGAGG	CTGAGGCACA	AAGATTGCTT	
	GAGCCAGGAG	TTCAAGACCA	GCCTGAGCAA	CATAGGGAGA	CCCCCACCCC	8900
•	CCCGCCATCT	CTACAATAAA	CAAAAAAGAG	TGGTGTTAAT	TTGTTAATTT	
	ACCGACAAGG	AGAGTATTCC	TTATCTGAAG	TGCTTGCCAG	AAGTGTTTCA	9000
	GATCTTGGAC	TTTGGAATGT	TTGCATTATA	CTCACCAGAT	GAGCATTTCT	
	TATCTGAAAA	TCTGAAATGC	TCCAATGATT	CTTCCCTTTG	AGGATCATGT	9100
	TGACGCTCAA	AAAGTTTCAG	ATTTCAGATT	TTAGATTAGG	GACATTCAGC	
	CTGTAGATGT	TATTTTACAG	AGCAGGAAGT	TGGGTGTAGT	GGTTCACACT	9200
	TGTGATCCCA	GCTCTTTGGG	AGGCCAAGGC	AGGAGGATTG	CTTAAGCCCA	
	GGAGTTGGAG	ACCAGCCTGG	GCAACGTAGC	AAGGCCCTGT	CTCTATAAAA	9300
	AATAGGAGAA	AACTGAGGCT	CAGAAAGGTC	ACCTAGCTGA	TACAACCAGG	
	CCTCAAGCCT	AGATCTCCTA	TTCTAAATCC	CACATCAGTG	TCCCTGGCTA	9400
	CCGGTATTTC	AGTGAGCACA	GGTGATTTCT	GTTATAGCCA	CAGAGCAGTA	
	GGGAGTAATA	GGGCTTAGTG	TGAGGAAGGT	ATGTGGCCCA	GGGCTATATC	9500
	AGGAACTCTC	ACCATGATTT	CTGGTGGCTT	CTAGAATTGG	CATTTATTTA	4
	TTTTGTTTTA	GAGACACGGT	CTCGCCCTGT	CACCCAGGCT	GGAGTGCTAT	9600
	GGCGCGATAT	CAGTTCACTG	CAACCTCTGC	CTCTGGGGCT	CAAGCGATTC	•
	. TCTTGCTTCA	GCCTCCCAAG	TTGCTGGGAT	TACAGGCACC	CACCATGATG	9700
	CCCGGCTAAT	TTTTGTATTT	TTAGTAGAGA	TGGAGTTTCA	CCACGTTGGC	
	CAGGCTGGTC	TTAAACTCCT	GACCCCAAGT	GATCCATCCG	CCTGGGCGTC	9800
	CCAAAATACT	GGGATTACAG	GTGTGAGCCA	CTGTACGGGG	CCAAACACAT	
	TTTTAAAACA	AAAAACCCAG	TGGGATTTTT	GTTGGAATTG	GATTGAATCT	9900
	GTATATTAAT	ATGGGAAGAG	TTGACATCCT	ACAATATTGA	GCTTTCTATT	
	CCATGAACAT	TGTTTTATCC	CTCCCGGGGA	GGTCTTTTGG	ACTGTTTGTA	10000
	ATAGCAATTA	ATGACTTGTT	AGAGAGGAGT	GGTAATGAGC	AACAAGTTCT	
,	TTTTCATAAT	AATAGTAGCA	GTAATGATAA	TAAATGGCTC	TTCCTGCCAG	10100
	GTGTGGTGGC	TCACGCCTGG	AATCCCACAC	TTCAGGAGGC	CGAGGCAGGT	

	•				
GGATTGCTTT	GAGCCCAGGA	GTTCAAGATC	AGCCTGGCAA	CATGACGAAA	10200
		TACAAAAATT		-	
GCTTGTAGTC	CCAGCTACTC	AGGAGGCTGA	GGTGAGAGGA	TCACCTGAGC	. 10300
CTGGGATGCC	AAGGCTGCCG	AGCGCCGAGC	TCACACCGCT	GCACTCCAGC	
CTGGGCGACA	GAGCAAGACC	CCCTCTCAAA	ATAATAATAA	TAATAATAAT	10400
AATAATATAT	AATAATGACT	CTTTCACGTC	CACTCCCACT	CACTCAGGTT	
GCACCTCTGA	ACAGAGCATT	TCGCACTGGG	GCAGCTCATG	CCCTAAGGGA	. 10500
GCCCCAGGGA	ATGCTCAGCC	TCTTGAGTAG	CTGGGGTGAC	GGGCACATGC	
CACCATGCCT	GGCTTATTTA	TTTTTTTTTA	AAGACATGGT	CTCGCTCTGT	10600
TGCCCAGGCT	GGGTCTTAAC	CTCCTGGCCT	CAAGCAGTCT	CCCTGCCTCA	
GCCTTGCAAA	GTTCTGAGAT	CACTCACTGT	GTAGGATCCA	AAGTCCCACA	· 10700
GGATCCAGGG	CTCCTGTGGG	CTCTCTCTCC	TGTGGGCCTG	GCAGCTTTGC	
TCACCCTTAT	GGAACAACAC	CGCATGGCGT	GCCCTCTTGG	TGATGGAATT	10800
TGTATTTTTG	CCTCCCATGG	TGCAGAGAGC	GTCCCATTTC	CATCTGGGTC	
CCTACCTTAG	TGCGGGGCCG	CCTGTCGGAG	GGAAGCTTCT	CAGAGAATGG	10900
CCGTTGAATT	AACCAAGGCT	AAATCTGTAT	GTGTGGCTGC	CTCTAGGGAA	
ACCTGTGGCC	TCCAGGCTGG	GTTTGGCTTA	CACAGTATTT	TTTTAAAAAA	11000
TATTTTAATT	AGAACATTAA	AAAGTGTGGC	AGTATCAGGC	CCAGCGTGGT	•
GGCTGACACC	TGTAATCCCA	GCACTCTGGG	AGGCCAAAGC	AGGTGGATCA	11100
CATGAGGCCA	GGAGTTCAAG	ACCAGCCTGG	CCAACATGGC	AAAACCCTGT	
CTCTACAAAA	AGTACAAAAA	TTAGCTGGGC	ATGGTGGTGC	GTGCCTGTAA	11200
TCCCAGCTAC	TCGGGAGGCT	GAGGCAGGAG	AATTGCTTGA	ATCCAGGAGG	
TGGAAGTTGC	AGTGAGCTGA	GATCACGCTA	CTGCATTCCA	GCCTGGGCGA	11300
TGAAGTGAGA	ССААААААА	AAAGGCAGTA	TCAAATAAAA	ACTTAGACTT	
ACAGCTTCTT	TAAAAAAAAA	AAAAAAAATA	GAGGATCTGG	TCATACTGGA	11400
CCCACAGTGA	TGCCCACCAG	CTGTGGAGCA	GCTGAGCAGC	GGCCCCATTC	
TGCACGAGGC	CTGTGCGCTG	CATTCACTCT	GACCCTCCAG	CCCGCTCAGG	11500
CTGCTGTGCT	CATGTTGCCT	CTACTGGCCC	TGAGAAGCTC	TGCAGTGCCC	
CCTGCACCTG	TGCTTTGCTC	CTGGAATGCT	AGAGTGCTTT	AAAGAAAAAT	11600
AAAGCTTCTT	ATGGAACATT	TCAAACACCA	GAGTGTAGGG	CACAGGAGAG	•
TGGACCCCAT	ACGCCTCCAG	CCCCCAGTTT	TCATAACTAC	TCACTCCTCG	11700
CCGGTCTTAT	TTCTTTCCGC	TGCCCCCCAC	CGCCGCACCA	GTCCTGGATT	
ATTTTAATGC	AATCCCCAGA	TGTCATATTT	.CATCAGGAAA	TGTTTCAGTC	11800
CTCTAAAATT	CAAGGACTCG	CCAGGCATGG	CGGCTCATGC	CTGTAATCCC	
AGCACTTCGG	GAGGCTGAGG	CAGGAGAATC	ACTTGAAGCC	AAGTGTTCGA	11900
GATCAGCCTG	GGTAGCATAG	CAAGACCCCG	TCTCTACAAA	AAACACAAAC	
ATTAGTCAAG	TGTGGTGGCA	CATGCCTGTG	GTCCCAGTTA	CTCAGAAGGC	12000
TGAGGTGGGA	GGATCACTTG	AGCCCAGGAG	GTTGAGGCTG	CAGTGAGCCA	
TGGTTGTGCC	ACTGCACTCC	AACCTGGGTG	ACAGAACGAG	ACCCTGTCTC	12100
		TTCAAGTATT			
		GAAGTCAAÇA			12200
		TCATAGTTCC			
		TGTTTAATTC			12300
ACACTGCAGT	TGATTAATAA	ATCTTTCGTT	TGGGAGAGGT	CAGGTATATT	
		TAAAATGCCC			12400
		CCCAGGCTGG			
GCTCACTACA	GCCTCTACCT	CCCAGGCTTA	AGGGGATCGT	CCCATCTCAG	12500
		ACGGGCATGT			
TTTATTTTTA	ATTTTAGTAG	AGACAAAGTC	TCACTATGTT	GCCCAGGCTG	12600
GTCTTGTTCG	AACGTCTGAG	TTCAAGTGAT	CCTCTTGCCT	CAGCCTCCCA	
AAGTGCTAGG	ATTAGGATTA	CAGGCATGAG	CCACTGCACT	GGGCCAACAT	12700
TTTCCTCTTT	AAGTGCACCA	GTTCATGAGT	CTTGACAGAT	GTATGTGATT	

CTGTAATCAG	TATCATAATC	GAAATCTAGA	ACATTTCATC	ACTCCGAAAC	12800
AGTCCTGTCC	TACCTCTTTG	CAATCATCCT	CCTCCATCGG	GTAATCAGCC	
TCTGGCAACT	GCCAATCTTA	TTTCTGTCCC	TGTAGTTTAA	CATTTTCCAA	12900
	AAATGGAATG			GCCAGCGGTT	
TTTCCTTAGC	GACACGTCAG	CTCCCTTTCC	ATTCCTAAGC	TTCCCTTCCA	13000
TCCCGTTTCT	TCCTTGAAAC	ATCATTTGTA	TCACAGTTTC	CCACAGTCTG	
GATTTTCCTG	ATTACGTCCC	CCTGGAGATT	GCTTTTGAAA	AGCCACAAAA	13100
GATCTCATTT	TCCTGAGTGA	CCTTCCTTTT	GGGGCCTGTT	CTTGACAGAA	
AGCCCGGGAG	GCCAGGGGTC	AGGGCTGCCA	GCATCACGTG	TCTGTTTTTT	13200
ATCTCCTGAG	TGCCAACAGA	TGGGAAGTGG	ATCTGGGGGT	CTTGCCACAT	•
CCAGTTCAGG	GTCACTTTCT	CTGTAGTGAG	GTCCTTGGCT	CCATCGAGCA	13300
TGAAAAGAGA	AATACAAATG	AGACTGACAA	AGAGGAAAGC	ATTAGGGGAA	•
GCCTGTGGCC	ACGAGAGTAG	ACGGTGCAGG	GGGCCCACTG	CCTCCCGCTG	13400
CTGTGGGAAC	GGCGAGGACA	TGGGCCAGGG	TGTTTCTGCC	ACTTCTGCAA	
GCACAGCTCT	GGGTTTTCTG	CTGCCATCTG	ACCTCCAAAG	GGACCTCGCC	13500
TCCTCTCCTT	CCTTTCCTGG	TCCCTGATGA	GATGGGGGAG	GTTTCTGTCA	
CTCTGACAAG	TGCTTGAAAC	TCCAGACATG	GGCTGTCGGG	AACTGTCGGG	13600
TACTGCCGTG	CAGAGCGCAT	GTTGTCTGAC	CTCCTGACTT	CACTGGGCCC	
TGTCGGGTGC	AGGAGAGGA	GCTGTGGATG	GCACAGTGGG	ACATGTGCTC	13700
TACTGGCCTG	GGGGTGGTGG	GAATGCAGAG	GAGGGGTATC	CCCATTGGGG	
			GCCTAGGAGG		13800
			TCCAAGGGAG		
GTAGAGCCCA	GGCACAGGTC	ACCAAGGGAG	TCAGGGGTCG	TGGGGGGTCA	13900
	AAGGAGTTGG			CATGGAGGGA	
GCTGACACAG	GAGAGCATCT	TAGAGGGCCT	TGGGACCTTC	CAAGGGGTAT	14000
GGATTTTTT	CCCCAGCTTT	ATTGAGGTAT	AAATGACAAA	AATTATATAT	
ATTTATCAGA	GCATCTAAGT	TTTTTTCTTT	TTCTTTCTTT	CTTTTTTTTT	14100
TTTGAGATGG	AGTCTTACTC	TGTGGCCCAG	GCTGGAGTTC	AGTGGCACAA	-
TCTTGGCTCA	CTGCAACCTC	TGCCTCCTGG	GTCCAAGTGA	TTCTCCTGCC	14200
			GCCTGCCACC		
	TTTTGAGTAG			GACCGGGCTG	14300
		•	CCACCTCAGC	CTCCCAAAGT	
GTTGGGATTA	CAGGCGTGAG	CCACCATGCC	CAGCCTAAGC	ATTTTTCTTT	14400
TTTTCTTTTT	GAGACTAAGT	CTCGCTCCTG	TCCCCCAGGC	TGAAGTGCAA	•
TGGCGCAATC	TCGGCTCACT	GCCACCTCCG	CCTCCCGGCT	TCAGGCGATT	14500
			TTACAGGCGC	CTGCCACCAC	
			ACGGGGTTTC		14600
	CTCGAACTGC	_		GCCTCAGCCT	
			ACCGCACCAG		14700
			CTTTAAAATG		
				TCAAAGTATA	14800
		•	CTGAGCATGG		
			CGAGAGGATC		. 14900
			CAAGACATCG		
			GCATGGTGGT		15000
			AGTTGGAGGC		2000
			CAACGGAGCG		15100
			ATGACATATG		10100
			TGGCGGTGTC		15200
			GTGGAGGGAG		13200
				CAGAAATTGA	15300
			AGTGCAAATG		13300
	- OUGONONGA		"OLOCOMIC	CHOOLGICHG	

TGGATCAGAG	AAAGGGCTCC	AAGCCAGTGC	TTTTGAAAAC	ATAATTCTGG	15400
GACCCTCATC	ÀCCCACCAGA	·GGTGATGTTC	TTATCTCCAT	TTTACAAATG	
GCAGTGCTGA	TCCCAGGAGA	GGGTGAGTGA	CCTGGTCAAG	GCTGACGTTA	15500
GCACATGAGA	GCTGGGATTC	CAGCCTGGGG	CTTCCTGCAC	CACGCTTTTG	
CTCCCTCGGA	CCCCTAGCTC	TTGTCATGGC	CACCCCAGCC	CACCCCTCCT	15600
TTCCATCCCC	TTTGATTGCA	CACAATAGCA	GAGCCACTTT	GTGCCAGATC	•
AGATGATCTT	ACTGTCTGAG	GGTATGGCCT	TTTCTTTCTG	TCACCGATGG	15700
- GCTGAATAAC	CCTGAGTTTC	TCTTCTCTGT	CTCCGGAAAA	TTAGCCCTAG	
TCCTGGCCAC	CCCCTGGCTC	AGGGTCACTG	CTGAGGTCGT	CAGAAGAGCA	15800
TCAAGGCTTT	TGCGTGTGTG	GAACAGCACA	GCAGGCTTTC	TGAGCTTCAC	
AGACTTGCTC	ACGGAGTCCT	ĠATGTGAACA	CGTGCTGGAG	GACATGGTCG	15900
GGGGGAATGA	GGGAGCGGCA	GCCCACCAGA	GCCTTAGAGC	ATCCTGAGGA	
CACGGCCCCA	GGATCCTTGG	GAAGGGCTGT	GAGATGTGCT	GCCTGAACGT	16000
GCCCGGGGCG	CACTGCAGAC	AGGGTAAAGC	CGGGGGAGGT	GCACCTTGCT	
TGGGGAGCAG	ACAGGAACCC	CGGGTGCTGG	GCCACTGGGC	CCTGGAGCTT	16100
TCACAGGCCT	GGAGTTGAAT	TACCGCTTCA	CCCACCCTGA	GCCTCACTGC	
CTTGTCAAGG	TGGATAGAAA	CCCTTGCGCA	CTGCACAGGG	TGGTGAGGAT	16200
TAAACAAAAT	AAAATAGAAA	GCTTCTTGAA	TGCTAGCCAG	CATGCAGTAG	
GCACTCAGTA	AGAAGTCATT	CCCTTCGCCT	GTTTTGTCTC	TGACCTGTGG	16300
CCACTCACAC	CTGCTTTCAC	CTCCCCTGC	CTGTAGCCAG	CTGTCTCCAG	•
CAGCTGCCCT	CCCCACGTGT	TCATCAGAGT	CCCTGTCCGC	AGAGACAGCT	16400
GCTGGCTTCT	GTCTGAGCTC	CAGCAAACCA	CTTTCTGTTT	TCACCAAAGA	•
CTGGCGTTTC	CAACCATTAG	CCCCATGCCA	CAAGGCTCTG	AAGGTCAAGA	16500
AATCTGGGTC	CGCCTAGCAG	AGCCCACTCT	CCGTCCTGCC	AGAGCAGGCT	
GCCCCCAGCT	CTGCTGCCAT	CGTGCCTCTG	TGCCTCAGCC	GCCACCCCTT	16600
CTCTCGCCGT	GGGCACCCAT	GACCCTGGAG	CCTGGAGAAC	TTGGCAGTAG	
ACGCTAGGTT	CTGAAAGGGA	GCTGGTCCAA	AGCAGCTTCC	CCATGTGTTG	16700
CTAAGGGCAG	GGGACAGTCT	CAGGAGAAAT	CGAGTCCGCT	GCAGAAAATC	
CAACCGGATT	TGCAGTTTCC	AGAAATGTTC	CTCAGCGTCG	CCTGTGACGG	16800
GAACAAAATG	AACCGCACAT	CTCGGTTCAT	CTCGGTCCAA	GTGACTCAGT	
GCTTTTCCCG	CCCTCCTCA	TCTTCCCCAC	GCAGTGGACT	ACAGCTGACT	16900
TCTGATCCTG	AACCCAGAAA	GACTCCTGCT	CCCAATTTAG	GCGTGGAGAG	
CCTTAATTGG	AACCTTTCAT	GCTCCGTTCT	GGAGCCACGT	GGTCTGTGTG	17000
CTCCAGGCCT	GGGACAGCTG	CCACCTCTGT	ACGGCTGGAG	CCTTGGGCTT	
TCTGGTTTTG	TTTGTTTTTT	CTTGAGACAG	GGTCTCACTC	TGTCAACCAG	17100
GTTGGAGTGC	AGTGGCACAA	TCTTGGCTCA	CTGCAACCTT	CACCTCAGCC	
· · · · · · · · · · · · · · · · · · ·	AGTGATCCTC	-	CTCCCAAGTA	GCTGGGATCA	17200
CAGACGCACA	CCTCTACACC	CGGCTAATTT	TTGTATTTT	GGTAGAGACA	
GGCTGTTTCG	CCATGTTGCC	CAGGCTGGCC	TCAAACTCCT	GAGCTATGGC	17300
GTCCACCCAC	CTCGGCCTCC	CAAAGTGCTG			
		TCGGATGGGC			17400
		AGAACATCAC			
		TGCCCTGATG			17500
		CCGCTGACAT			. 2.555
		GTGTGGGGGA			17600
		CCTGGCAGTG			2.550
				CTAGAGCCTA	17700
				TAATGGGAAA	
		GGGCTCTGAT	•		17800
		GTTTTCTCCT			2.000
		TGCAGGGACT			17900
		GGGGCTCCAG			2.500
		5555555610			

•					
				AGAGGACTTT	18000
GGGGTGTCCA	GGAGCACTTT	GAGGCCACGG	GCCCAGGCAA	CTTCCTCACC	
AGTACGGAAC	AGGGGATGCA	CAGGGCCGAA	CTTTCCATCT	GCTGGCCCCT	18100
GCTGGTGTCC	AGGAGAGAGC	TGTGACCCTC	CTTTTTCCTT	AAGTCCTGGA	•
GCTGAGAGTG	AGAAGCCATG	GGGTGCACGT	ACTCGTCTCC	ACCTGAGGAG	18200
CCCGCTCTGA	GAAGGTCAGT	TCCTGACACT	GTCCCTGGCG	GCAGACTGCC	
CTCATGCCCC	TTGGCCAGGG	GACGCCTGCA	CCCTCACTCG	AGTGTGGGAG	18300
ACTTCCTCCT	GGCGGGGACC	TGCTGGAGGC	CTGAAGATGC	GGCTGCCTGG	
AGTTAACAGC	AAGGTCAGCC	ATTCCCAGGG	TTGCTGCCCC	TGTCTCTGGC	18400
GAGGGACTCA	GCCAGGCCTA	GGCACTGGTG	GCCCCTCTGG	TCCAGGACTT	
GCACGCTGCA	TTTCCCTGCT	TCCAAAGGAA	GGAATTTGGA	CTGGAGACCA	18500
GGAAGGCCTC	ATGCACCCTC	TTCTCTGCCT	ATAAATAATC	AGGTCCCCCA	
TGCAAATCCA	GGTCTGAGGT	CCTCCGATGG	AATGGAGCCC	ATTCAGAGCA	18600
GTCCAGTGTG	GGCCCTCTCG	GGCTAAGCCC	GTGAACTTTG	CTTCTTGGAG	
CCCCCAGCAG	GGCCTTGGGT	TGGGAAGGGA	GTTTCCTGGC	ACCCTCCCCG	18700
GCAGGATGGG	TTTAACCAGC	AGGAACTTGA	AGGAATTGTT	CTGTGTTGCG	
CCGGTGACCT	AGAGGCACAG	GTCCGCCTCC	AGCTCCTTGG	GTTCCCTTTT	18800
CCCCCTGGA	CCACTCACAC	TTCCTGGGTG	AACCCTAGCC	TTGGGGCAGA	
GCAGGCTGGC	ACACCTTGTC	CACTCTGACG	TTCCAGCCCA	GAGGCTCCCC	18900
TGTCCACTCC	CAGGGCCAGC	CAGCCTGGCA	TTCTGCTTTG	TCCAACTGCG	
TCAGGAGGTC	ACATGGAAGC	CCTCCTCCCC	CGCCACTTGC	CGGGCTTCTG	19000
GGATGGGAGC	CGAGCTTGGA	AGTTGCCATC	CCTTGGCACC	CCGCTTCCCG	
			ATTCCTGAGA		19100
GCTCGTCCAA	GAGGCCTTTC	CCGGTTTCTT	CAGCCATAAG	CGTCTGCTCC	
CTTTGAAGCC	CTGTGGCGTG	AACCTGTCCT	GTCCCATCCG	TCCCTGTGGC	19200
GTGAACTGTG	CCATCCATCT	ATGTGGTCTT	AGCACATGCC	ACCTTGTGCC	
			CCTTCCAGGG		19300
			TCAGGCACTG		
AATAACCAGA	TGCAGCTCTT	TAATAATAGT	GTGGGCACGA	GAGGGGCGGG	19400
GCCTGTGCAG	TCCCGTGCCT	GTCTAGTGTC	AGAGCCAGGA	TTTAAAGCCA	
GGTCCGCCCT	GCCACGTGGC	TCTTCCCATC	TTGCTGGGAT	CCTCCTCGGA	19500
			CTGTGAAGTC		
TCGTTCTAGT	CTCATGCCCT	CGGTGCCTGG	CGCAGTGCCT	CCCGTGCCCC	19600
CACCTGGCTG	GCCTGTGTTA	CCCGCCAGGC	ACTCACGGGG	CACTGGAGTT	
TGCTCTTGTC	CTTTTCTTCA	GCAAATCTTC	AGATCCACTT	TGTTGGAGAT	19700
GGAACTTCCC	TGGAAGCATC	TGTCCTTTGA	GTAGAGATAG	GGGTTGGCTT	•
				GTGAGAAGTG	
				TGGACAGAGA	
			CGGCGTCCTG		19900
TAGGCGTCGC	GCTCATGGCA	GGGATACACA	GACAGCCCCC	AAGGTTATTC	
			GTGCAGAGTA		20000
			GGCGACAGTA		
		•	AAAGTTAAGT		20100
			GGAAGGGCCT		
			CGTACGCCAG		20200
			TCAGAATCGG		
			CCCTTACTCA		20300
			AAAATCAATC		
			GTTGGTTGGT		20400
				AGCTGCAGTG	. 20100
			CGCACAGTGG		20500
			AGGGATCCTC		

•					
CTCCTGAGTA	GCTGGGACCA	CAGGCACAGA	CCACCACACC	GGGCTAATTA	20600
AAAAAAATTT	TTTTTTTTAG	AGGTAGAGTA	TTGCTGTTTT	ACCCAGGCTG	
GTCTCAAACŤ	GGCCTCAAGT	GATCCTCCCA	CCTTGGTTTC	CCAAAGTGCT	20700
	GTGTCGGCCA	-			•
GAAAATGCCT	CTTCTTGGAA	GTTGCAGTGA	GCCAAGATCG	TGCCACTGCA	20800
CTCCAGCCTG	GGCGACAAAG	CGAGACTCCA	TCTCAAAAAA	AAAAAAGAAA	
AAGAAAATGC	CTCTTCAAGT	CTTTTGATAG	TTTTTCTGAT	GGAGGATTTG	20900
TCTTTTTCCT	GTTGATTTGT	AGGGCTTTCT	TACATTCTCG	ATCAAAGTCT	
TTTGCCCACA	TATAAGTACA	TTACAAATAT	CCTCTCCCAC	ACTGCAGCTT	21000
GCCTTTCCTT	CCTTTAATGG	CGTTTTTTAT	TTTATTTTAT	TTTATTTTAT	
TTTATTTTAT	TTTTTGAGAC	AGATTCTCAC	TCTGTTGCCC	AGGCTGGAGT	21100
ACAGTGGCGT	GATCTCGGCT	CACTGCAACC	TCCGCCTCCC	TAGTTCAAGT	
GATTCTCCTG	CCTCAGCCTC	CCGAGTAGGT	GAGATTACAG	GTGCGCGTCA	21200
CCAGGCCCGG	CTAATTTTTG	TATTTTTAGT	AGAGACGGGG	TTTTGCCATG	
TTGGTCAGGC	TGGGCTCAAA	CTCCTGACTC	AAGTGATCCT	CCCGCCTCAA	21300
CCTCCCAAAG	TGCTGGAATT	ACGTGCATGA	GCCACTATGC	CCGACCAAAA	
ATGTCATTTT	AAATACAAAA	ATGTATTTTC	ATCTTCAGGT	TTGTCACTTG	21400
ATTCAGAATG	GCCATATTTC	AAATCTCCAC	CACCCAGAGG	AAGGTGTTTC	•
CCACCTTGCT	GTATTCAGCC	AGCGTTTTTC	ACCTCCTTCA	GCTTGAAAGT	21500
CCTGGGCAAG	GGGCACTGGG	CTTGTTCCTC	TGGCCCTGCA	GGCTTGGGGC	
AAGGGTCAGA	AGGAAACAGA	AGAACGGAAA	ATGGGGCGGG	GTGAGGGGTG	21600
GTGCGGGGGT	AGAAGGCCAG	AAGTGGACAG	TGGACAGAAG	ATTGTGTCAC	
CCCAGCCTGA	TCCTGAGGCT	GGCGGGCACC	AGGCTGCCCT	CTGGAGGGGA	21700
TGGACCAAGG	TGAGGGCTGT	AGTCCCAGGA	ACGCAGAGAA	GGGAAAAATG	
AAATGTGGCC	CAGTGCAGGG	GAAGCAGAGG	GGGTCTTTGA	ATCCCAGGGG	21800
AGCTGACCCT	TGCGCAGGAC	CTTGAGGGCA	GAGCGGGGGT	CAGCCAGGTG	
AGGGGACTGT	GGCAGGAAGG	CTCTGGGTGG	AAGCGATGGC	GTGCACAGGA	21900
TTCTGAGGCC	ACCATGCAGG	GAGGGGGTGT	GAATTAGGCA	TCAAGCTTGG	
TTTGTGGAGG	GGAGTGGCAG	GTGACGCTGG	AGACAGACTC	TGAGGGGACT	22000
CATGTGCCCG	GATCCCATGG	GTCGTGGGAG	CTGTTGAAGA	GCGGAGCAGG	
GAAGTGGCAG	ATGTGAGAGG	CAGGGGCTGG	AGAAGGAAGA	GGTGAAGAGG	22100
TGGAAGGTCA	GGCTGAGGTC	AGGCCGTGGG	GACCTGGGCT	GTGGGTGGGG	
AGGAAGAGGG	AAGTGGAAAC	CTTGGCTCTT	CCTTGAGGGA	AACAAGCCCA	22200
TATCTATCTG	GGTGCAGGAG	AGGTCTTGGC	TTTGCAAAGC	ACTGGTGTCG	
CAAGAGGCTT	TACTGTAGGG	GAAATGGGAA	GGGTGAGCTG	GTGCGGGAGG	22300
CCTGGGAGCC	CTGGTGTTGG	ATTAGAGGCC	AGCTGCTGGC	TTAGCCCCTG	•
GGGAGTGGCA	CGGGACAAAG	CTGGAATGTC	CCCTCCCTGT	GCTGCCACAG	22400
CATCCCATGA	AACCTGCATC	TAAGGACACC	CACGTCCCGT	GACACCTGTG	
TCCCATGACA	CCTGCCTCCC	ACGCTCATTG	CACACTTTTG	TCTTGCAGGA	22500
	3: 22499		•		
-	CAGAGAGAGC	AGCTTTGTGG	AAAAGATGAA	GAAAACGGTG	
	225	47]			
AGTTTCCTGC		•	AAGCCTCGGC	CCCGATGGGC	22600
	GTCTAGCAGA				
	· - -		A		_
GGTGGCCAGG	AGAGGGAACG	CAGCCCGGCT		TCATTCTTGC	22700
	CCCTGAAGCA				_
	ACTTTTTGAA				22800
	AAGCTTCTCC				-
	CAGAGCTGCG				22900
	TTACTTTTTT				3
	·		· -	- · · -	

CAGGCTGGAG	TGCAGTGGCG	CAATCTCGGT	TCACTGCAAG	CTCCACCTCC	23000
CGGGTTCAAG	CCATTCTCGT	GCCTCAGCCT	CCCGAGTAGC	TGGGATTACA	
GGTGCGTGCC	ACCACGCCCA	GCTAATTTTT	GTATTTTTAA	TAGAGATGGG	23100
ATTTCACCAT	GTTGGCCAGA	CTGGTCTTGA	ACTCCTGACC	TCAGGTGATC	
CGCCCGCCTC	AGCCTCCCAA	AGTGCTGGGA	TTACAGGCGT	GAACCACCGC	23200
ACCCAGCCAA	TTTAACTATT	TAATTGTAGG	CATCAGTACT	ACATTTACAT	
AGTTAAAATA	AAAACATCCA	CTATTCAGTG	GAAAGCTCCC	CTCTGCCACC	23300
			GATCCTTCTA		
ATGAACATAC	AAGTAAAACA	AACAGAGACT	CTTATTTTTA	ATTTAAAAAA	23400
			ACTGTGTTGC		•
			CCTCAAACTC		23500
GCCATCCTCC	TACCACAGCC	TCCCAAGTAG	CTGGGACTAC	AGGTGCACAC	
CACCACGCCT	GGCTAATTTT	TTAATTTATT	CTTCATAGGA	ACAGGTTCTC	23600
GCTATGTTGC	CCAGGCTGGT	CTTGAACTCC	TGGCCTCAAG	CAATCCTTCT	
GCCTCCGCCT	CCCAAAGTGC	TGGGACTGTA	GGTGCGAGCC	ATTGCATCCA	23700
GCCTACACTT	TTCTTAAAAC	ACAAAACGTG	GCATACTATG	TGCACTGTTC	
CAGACCTTGC	TTTTTTTTT	TTTTTTTTT	TTTTTGAGAC	AGAGTCTCGC	23800
			GGTCTTGGCT		
			CATCAGCCTC		23900
			AATTTTTGTA		
			GTCTCAAACT		24000
			TGGGATTACA		2.000
			AAAAGAACAC		24100
			ACAAAGATAC		
			ATCTGGATTC		24200
	_		TGGGGCTGTT		. 21200
			GTAGCTCGGT		24300
			GCTGGATTGG		21300
			GTCCCCGTAG		24400
		GCGACGTGTG		TCCCCACAGC	24100
		AAAGTTTAGA			24500
	• •	AGTTGTAATT			,24500
		TAGGTCTAGA			24600
	TTTTTTTTT		GAGACAGGGT		2.000
		GGTGTGATCT	•		24700
		TCATGCCTCA			21700
	TGCTACCATG		TTTTGTATTT	TCAGTAGAGA	24800
			TCGAACTCCT	_	21000
			GGAATTACAG		24900
			TAGATTCTCT		24300
			TCTCCTTGAA		25000
			AAAATATCTT		25000
		•	TAAAAAAAAG		25100
			GCTGTGTAAA		23100
			TCTGGTCTTA		25200
			AGATATTCCT		23200
			TATTCAAAAT		25300
			GTGAGGTATG		23300
			TATTAGAGTC		25400
			TACTTAATTC		23400
			TTTGGGAGGC		25500
			GCCTGGGCAA		25500
MOGICUCTIO	NGCCCAGGAG	TITGAGACCA	GUUTGGGCAA	CATGGCGAAA	

ÀCAAAAAATA	GAAAAATTAG	TGGGACACAG	TGGTGCGCAC	25600
CGCTACCTGA	GAGGCTGAAG	TGGGAGGATA	GCTTGAGCTT	
GATTGCAGTG	ACCACTGGAC	TCAAACCTGG	GCAACAGCTA	25700
CAAATAATAA	TAATAATAGC	TGGGTCTCTG	GGTTCTTTTC	٠.
ACGTGTTCAA	GGTTCACCCA	CACTGTAGCA	TATGTTAGTA	25800
ATTGCCAAAT	AATGTTTTAA	TATATGGATT	CTTACTTATT	
TTTTAGGATC	AATTTGTTGA	GGAAAAAAA	GCTGTTCAGA	25900
TTTTTTTGGT	AGAGACTGGG	TCTCACTCTG	TTGCCCAGGC	•
CTCCTGGGCT	TAAGCAGTCC	TCCTGGTGTG	GCCTCCCAGG	26000
TACAGGTGTG	AGCCACTGCA	CCCAGCTGGT	TCAGATTTCT	
GCCACATTTC	TCTAGTGACA	TAAATAGAGC	TGCCATTTTT	26100
ACTCCCTGTC	CATAATCGGG	GTGCTTTTCC	ATTGGCGTGA	
TGTAGTTCAG	TAGCTTCTGA	CACATCTCTT	ACAAAGTTTA	26200
TTTTATATAT	TTTGATGCTC	CTGTAAATAT	TTAGCTGCTA	
TCTTTTGTTC	TCTTAACCTG	ATAATCATGA	GCACTTTCTC	26300
TATTTTTACG	GTGATTATTT	TAAAATATCC	TTTTGGGCGA	
TCTACTAAAA	ATACAAAAAT	TAGCCGGGCG	TGGTGGCATG	26400
CCCAGGTACT	CGGGAGGCTG	ATGCAGGAGA	ATCACTTGAA	
GGAGGTTGCA	TTGAGCCAAG	ATCGCACCAC	TGCACTCCAG	26300
AGAGCAAGAT	TCCATCTAAA	AAAAAAAAA	ATCCTTTTGG	
TGGCTCATGT	CTGTAATCCC	AGCACTTTGG	GAGGCTGAGA	26600
			•	
				26700
TAATCCCAGC	TATTCAGGAG	GCTGAGGCAG	GAAAATCGCT	
				26800
				20000
				26900
				27000
	= :			27100
				27200
				27300
•		•		27400
				•
GTAGCTGTGA	TCCAGGATAA	GAAGCTACTT	CTACAGCTGC	27500
	- +	GAAGCTACTT ACTAGGAACT		27500
CACATAAGCC	AGTAGCCAGG	ACTAGGAACT	TGCAGTCTGG	
CACATAAGCC TATTAGAAAT	AGTAGCCAGG ACCTCAGGTG	ACTAGGAACT GCTGGGTGCG	TGCAGTCTGG GTGGCTCACG	27500 27600
CACATAAGCC TATTAGAAAT CAGCACTTTG	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT	TGCAGTCTGG GTGGCTCACG CACCTGAGGT	27600
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG GGCCAACGTG	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA	
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG GGCCAACGTG TAGCATAGTG	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG	27600 27700
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG GGCCAACGTG TAGCATAGTG CGAGAATTGC	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG	27600
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA CTGAGATCGT	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG GGCCAACGTG TAGCATAGTG CGAGAATTGC GCCATTACAC	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG TCCAATCTGG	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG GCGTCAGAGC	27600 27700 27800
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA CTGAGATCGT CTCACACACA	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG GGCCAACGTG TAGCATAGTG CGAGAATTGC GCCATTACAC AAAATAAAA	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG TCCAATCTGG AAAGAAAAGA	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG GCGTCAGAGC AAAAAAGAAA	27600 27700
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA CTGAGATCGT CTCACACACA GCACTGAAGA	AGTAGCCAGG ACCTCAGGTG GGAGGCCAAG GGCCAACGTG TAGCATAGTG CGAGAATTGC GCCATTACAC AAAATAAAAA CCAGGCACTG	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG TCCAATCTGG AAAGAAAAGA	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG GCGTCAGAGC AAAAAAGAAA CACATGTGCA	27600 27700 27800 27900
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA CTGAGATCGT CTCACACACA GCACTGAAGA GGAAGCCTTG	AGTAGCCAGG ACCTCAGGTG GGAGGCCAACGTG TAGCATAGTG CGAGAATTGC GCCATTACAC AAAATAAAAA CCAGGCACTG GCCTCCCTTC	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG TCCAATCTGG AAAGAAAAGA	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG GCGTCAGAGC AAAAAAGAAA CACATGTGCA ATCTTGCAAA	27600 27700 27800
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA CTGAGATCGT CTCACACACA GCACTGAAGA GGAAGCCTTG TTGGCTGAAC	AGTAGCCAGG ACCTCAGGTG GGAGGCCAACGTG TAGCATAGTG CGAGAATTGC GCCATTACAC AAAATAAAAA CCAGGCACTG GCCTCCCTTC CGAATTGGCT	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG TCCAATCTGG AAAGAAAAGA	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG GCGTCAGAGC AAAAAAGAAA CACATGTGCA ATCTTGCAAA CCCCAACGGG	27600 27700 27800 27900 28000
CACATAAGCC TATTAGAAAT CAGCACTTTG AGACCAGCCT AAAATTAGCC GGCTGAGGCA CTGAGATCGT CTCACACACA GCACTGAAGA GGAAGCCTTG TTGGCTGAAC TAGGATTTCA	AGTAGCCAGG ACCTCAGGTG GGAGGCCAACGTG TAGCATAGTG CGAGAATTGC GCCATTACAC AAAATAAAAA CCAGGCACTG GCCTCCCTTC	ACTAGGAACT GCTGGGTGCG GTGGGCAGAT TTGAAACCCA GTGGGTGCCT TTGAACCCAG TCCAATCTGG AAAGAAAAGA	TGCAGTCTGG GTGGCTCACG CACCTGAGGT GTCTCTACTA GTAATCCCAG GAGGCAGAGG GCGTCAGAGC AAAAAAGAAA CACATGTGCA ATCTTGCAAA CCCCAACGGG AGGAGGGGG	27600 27700 27800 27900
	GCTACCTGA GATTGCAGTG CAAATATAA ACGTGTTCAA ATTGCCAAAT TTTTAGGATC TTTTTTTTGGT CTCCTGGGCT TACAGGTGTG GCCACATTTC ACTCCCTGTC TGTAGTTCAG TTTTTTATAT TCTTTTTTTTC TATTTTTACG TCTACTAAAA CCCAGGTACT GGAGGTTGCA AGAGCAAGAT TGGCTCATGT ACCTGAGGT GTCTCTACTA TAATCCCAGC AGCAGAGGT CGACAAGAGC TTTAACAATG TTTATTGTAA AGTCTCACTC ACTCAGCCT CAAGTAGCT CAAGTAGCTA GTATTTTTAG ACTCCTGGGC TTACAGAAGT GGTGGGATTC AAGGGATTC AAGGGATTC AAGGGATTC AAGGGATTC AAGGGATTC AAGGGATTC AAGGACAGG TGCTCTGTTC	CGCTACCTGA GAGGCTGAAG GATTGCAGTG ACCACTGGAC CAAATAATAA TAATAATAGC ACGTGTTCAA GGTTCACCCA ATTGCCAAAT AATGTTTTAA TTTTAGGATC AATTTGTTGA TTTTTTTGGT AGAGACTGGG CTCCTGGGCT TAAGCAGTCC TACAGGTGTG AGCCACTGCA ACTCCCTGTC CATAATCGGG TGTAGTTCAG TAGCTTCTGA TTTTATATAT TTTGATGCTC TCTTTTGTTC TCTTAACCTG TATTTTTACG GTGATTATTT TCTACTAAAA ATACAAAAAT CCCAGGTACT CGGGAGGCTG GGAGGTTGCA TTGAGCCAAG AGAGCAAGAT TCCATCTAAA TGGCTCATGT CTGTAATCCC ACCTGAGGTC AGGAGCTTTG GTCTCTACTA AAAACACAAA TAATCCCAGC TATTCAGGAG AGGCAGAGGT TTCAGTGAGC CGACAAGAGC AAAACTCTGT TTTAACAATG ATTTGTGGAA TTTATTGTAA TCCCTAAGTT AGTCTCACTC CAACCTCCCA ACTTCAGCCT CAACCTCCCA CCAAGTAGCTA GAACCATAGG GTATTTTTAG TAGAGACAGG ACTCCTGGGC TCAAGTCATC TTACAGAAGT GAGCCACGGC GGTGGGATTC ACCACAGGGAA AAGGGATTC ACACAGGGAA AAGGGATTTC TTGGTCTCTA	GCTACCTGA GAGGCTGAAG TGGGAGGATA GATTGCAGTG ACCACTGGAC TCAAACCTGG CAAATAATAA TAATAATAGC TGGGTCTCTG ACGTGTTCAA GGTTCACCCA CACTGTAGCA ATTGCCAAAT AATGTTTTAA TATATGGATT TTTTAGGATC AATTTGTTGA GGAAAAAAA TTTTTTTGGT AGAGACTGGG TCTCACTCTG CTCCTGGGCT TAAGCAGTCC TCCTGGTGTG GCCACATTTC TCTAGTGACA TAAATAGAGC ACTCCCTGTC CATAATCGGG GTGCTTTTCC TGTAGTTCAG TAGCTTCTGA CACATCTCTT TTTTATATAT TTTGATGCTC CTGTAAATAT TCTTTTGTTC TCTTAACCTG ATAATCATGA TATTTTACG GTGATTATT TAAAATATCC TCTACTAAAA ATACAAAAAT TAGCCGGGCG GCAGAGAT TCCATCTAAA AAAAAAAAAA TGGCTCATGT CTGTAATCCC ACCACCAC AGAGCAAGAT TCCATCTAAA AAAAAAAAAA TGGCTCATGT CTGTAATCCC AGCACTTTGG ACCTGAGGTC AGGAGCTTG AGACCACCTG GTCTCTACTA AAAACACAAA AAATTAGCCA TAATCCCAGC TATTCAGGAG GCTGAGGCAG AGGCAGAGGT TTCAGTGAGC CGAGATCGCA CGACAAGAGC AAAACCAAA AAATTAGCCA TATTTTGTAA TCCCTAAGGAG GCTGAGGCAG TTTAACAATG ATTTTTGGAG CCTCAAGAAAA TTTAACAATG ATTTTTGGAG CCTCAAGAAAA TTTAATCTAACCAA AAATTAGCCA CGACAAGAGC AAAACCCAC GGCTGAGGCAG AGTCTCACTC CACCTCCCA GGCTGGAGTG ACTCCACCC CAACCTCCCA GGCTGAGTG ACTTCAGCCT CAACCTCCCA GGCTGAGTG ACTTCAGCCT CAACCTCCCA GGCTCAAGTG CAAGTAGCTA GAACCATAGG CATGCGCCAC GTATTTTAG TAGAGACAGG GTTTTTGCCAT ACTCCTGGGC TCAAGTCATC CTCTTACCTC TTACAGAAGT GAGCCACGC ACCCGGCCGC GTGTGGATTC AGGACCACGC ACCCGGCCGC GGTGGGATTC AGGGCAAGG GTTTTGCCTT AAGGGACTTC ACCACAGGGAA GGGGGTACTT AAGGGACAGG TTGGTCTCTA AGGATACCACA	TTTTAGGATC AATTTGTTGA GGAAAAAAAA GCTGTTCAGA TTTTTTTGT AGAGACTGGG TCTCACTCTG TTGCCCAGGC CTCCTGGGCT TAAGCAGTCC TCCTGGTGTG GCCTCCCAGG TACAGGTGTG AGCCACTGCA CCCAGCTGGT TCAGATTTCT GCCACATTTC TCTAGTGACA TAAATAGAGC TGCCATTTTT ACTCCCTGTC CATAATCGGG GTGCTTTTCC ATTGGCGTGA TGTAGTTCAG TAGCTTCTGA CACATCTCTT ACAAAGTTTA TTTTATATAT TTTGATGCTC CTGTAAATAT TTAGCTGCTA TCTTTTTTCTC TCTTAACCTG ATAATCATGA GCACTTTCTC TATTTTTACG GTGATTATTT TAAAATATCC TTTTGGGCGA TCTACTAAAAA ATACAAAAAAT TAGCCGGCG TGGTGGCATG CCCAGGTACT CGGGAGGCTG ATGCACCAC TGCACTCCAG AGAGCAAGAT TCCATCTAAA AAAAAAAAAA ATCCTTTTGG GGCTCATGT CTGTAATCCC AGCACTTTGG GAGGCTGAGA ACCTGAGGTC AGGAGCTTTG AGACCACC GACCACACATG GTCTCTACTA AAAACACAAA AAAATAAAAA ATCCTTTTGG GTCTCTACTA AAAACACAAA AAAATAGCCA GGCATGGTGA TAATCCCAGC TATTCAGGAG GCTGAGGCAG GAAAATCGCT CGACAAGAGC TATCAGGAG GCTGAGGCAG GAAAATCGCT CGACAAGAGC AAAACTCTGT CTCAAGAAAA AAAAAAACAA TTTAACAATG ATTTGTGGAA AATTCAGGAA CTTTAAAAAG TTTAACAATG ATTTGTGGAA AATTCAGGAA CTTTAAAAAG TTTATTGTAA TCCCTAAGTT TTTTTTTGGTG GTGGTTTTGT AGTCTCACTC CAACCTCCCA GCCTGGAGTG CACTGCACC CAAGTAGCT CAACCTCCCA GCCTGGAGTG CACTGCCCAC CAAGTAGCT CAACCTCCCA GCCTGAGTG CACTCCCAC CAAGTAGCTA GAACCATAGG CATGCGCAC CACACCCAGA ACTCCCAGC TCAACCTCCCA GCCTCCAAGTG ATCCTCCCAC CAAGTAGCTA GAACCATAGG CATGCGCAC CACACCCAGA ACTCCCTGGGC TCAAGTCATC CTCTTACCTC GGCCTCCCAA TTACAGAAGT GAACCATAGG CATGCGCAC CACACCCAGA ACTCCTGGGC TCAAGTCATC CTCTTACCTC GGCCTCCCAA TTACAGAAGT GAACCATAGG CATGCGCAC CACACCCAGA ACTCCTGGGC TCAAGTCATC CTCTTACCTC CGCCTCCCAA TTACAGAAGT GAACCATAGG CATGCGCAC CACACCCAGA ACTCCTGGGC TCAAGTCATC CTCTTACCTC CGCCTCCCAA TTACAGAAGT GAGCCACGC TCAAGTCT CTCTTACCTC CACCCCAGA TTACAGAAGT GAGCCACGC TCAAGTCTTTA AGGGGATTC AGGGCAGC TCTCTAAGTTTTA AGGGGATTC AGGGCAACCT GCCCGCCGC GTAAGTTTTA AGGGGATTC AGACCAGGC ACCCGGCCGC GTAAGTTTTA AGGGGATTC ACACAGGGAA GGGGGTACTT CCAGGCTACT AAGGGACTTC ACACAGGGAA GGGGGTACTT CCAGGTTACT AAGGAGCAAGC TTGGTCTCTA AGAACTGTT GAGGCAACCT TGCCTCTGTTC GAATGCACC TGAAACTGTT GAGGCAACCT

12/19

	GAATATGTAT				28200
ATTTAGGGAC	CCTCGGTATA	TTTCTTGCCA	GTCTGTTTTC	TTTGTGCCTG	
TGGGTATAGA	AAGAAAATAC	ATATGTATGT	TTTGATATAC	ATATCTATTA	28300
TTTATATAAC	ACAATTGGAT	TGTATAGCCA	GCCCTGCATA	TCCGTGAGTT	
CGGAGTTCAA	GAATTCAACT	GCAGACTGAA	AATATTTGGA	GAAAAAATGG	28400
	CTGTCCTGAA				
-	AGCAACTATT				28500
•	TAATCTAGAG				•
-	CAAATACCAC				28600
	TTTTTTGGGT				
	GTGCAATGGC				28700
	GCGATTCTCC		•		
	CACCATGCCC			TAGAGACAGG	28800
	TATTGGTCAG			CTCAAGTCAT	
	TGGCCTCCCA			TGAGCCACTG	28900
	CTTGCTCTGT			GGCGTGTTCT	
	CAACCTCCAC			TCCTGCCTCA	29000
	TAACTGGGAT			CCCGGCTAAT	
	TTAGTAGAGA	-		CAGGCTGGTC	29100
	GACCTCAGGT				23100
	GTGTGAGCCA			•	29200
	GGTCCTGGAA				23200
••••	TTTTAACTTT				29300
	TGAGCAGCCG		•		29300
	CACAGTGGCT				29400
					29400
•	CTCAAAGCCA				20500
	GCCTGCCCAG				. 29500
•	ACCAACCCTG		CCTTAGGGGA	GGAACATCAT	
	4: 29537		3 C 3 C C 3 C C C C C C C C C C C C C C	000220000	00600
CGTGTTCTAC	GGCTCCCAGA		AGAGGAGTTT	GCCAACCGCC	29600
mamaan naca	000003.0000	T	CACCCAMCTIC	ACCCCA CCCM	
	·CGCCCACCGC				20700
GAGGAGTATG	ACCTGGTAAG		GTGCTGGCCC	CAGATGGAGG	29700
	296	-	0000000000		
	GACAGGGAGC				24222
	GAGTGGGGTC	CTGGGAAGAC	GTCCTCGGAA	GTTGCCTTCC	29800
T					
	ATTGCCATCC				00000
CCTGCAGTTG	CAGCCACGTG	CCAGGCATCG	TTTCCCCAGG	ACTGGCCCTC	29900
	CGGCTGCCCT				
	CCAGCTGCTC				· 30000
	CCACAGCCCT				
	TATCAGTGTG				30100
	TCCCAGGGTG				
	GCTCTTTTGT				30200
	CCAGCCTAAC	_			
	GCCCCAGCCC				30300
	CATCCCTGGC				
	TGCGGGTTGA				30400
GCGGTCCTGT	CCCTGTTTCT	GCAGGCCGAC	CTGAGCAGCC	TGCCAGAGAT	

T

13/19

	•
[exon 5: 30425	
CGACAACGCC CTGGTGGTTT TCTGC	•
CCACCGACAA TGCCCAGGAC TTCTA	CGACT GGCTGCAGGA GACAGACGTG
GATCTCTCTG GGGTCAAGTT CGCGG	TGAGT CACCCAGAGA CTGCTATGGG 30600
30574]	
CTCCCGGTGG CCTGCGGTGC CTCCC	
AAAGGCAGCC CTCCAGACCC CCACC	
ACTTGTGAGA CCCTCTCCTC TGCCC	CAGAC CCCAGCACTA CGAGAATGTC
CCCTCCCTGT CCCCAGCCCC AGTCG	GCTCC AGGGGGCATT GGGTGCTGGA 30800
GACTAAAGGC AAGAAAGGTC TGGCT	GGACG ACTGAGACCT GCCTGGCCTC
GGAGAGCTGG AGCCCCAGCC CGGTG	GGGAG GGTGGGCTGG CCCCGCTTCC 30900
CTGTGGGTTG AGGCTGGCAG TGGAC	GGGGC AGGCTGTGGG CTGCAGGTCA
ACCAGATGAA GCCTCTTCAG TGGCC	CAGTG TTCCTTGCAG TGCGAGGCGC 31000
CTGGTGGAAC GGAGGCCTGC AGGTG	
GGGGCCTCCC GCCCTGCCCC CATGG	CCCCT CCCACTGGTC AGGTCGAGGG . 31100
CCAGGCCTCA GAGCGGCCCC TGTGT	CCACG CAGGTGTTTG GTCTTGGGAA
[exon 6: 31134	•
CAAGACCTAC GAGCACTTCA ATGCC	ATGGG CAAGTACGTG GACAAGCGGC 31200
TGGAGCAGCT CGGCGCCCAG CGCAT	CTTTG AGCTGGGGTT GGGCGACGAC
GATGGGAAGT GAGTGCCCAC CCTGC	CACCA TGATCAGCGC GGCGGGCTTA 31300
31258]	
GGCAGGGGCC GTGGAACGTG AGGGG	CGCGC ACACCATTGT GTCAGCTGAG
ACTCAGCGAC ACGCACCTCC AACAC	AGAGG GAAGGGGCTC TCCTGCCTCT 31400
GCCCTGCCCC TGCCAGTTTT GCTTT	TCGGC TTGCCCAACT CCCTGGAGCC
TTCCTGATGC TCTGGGTTTA TGTCG	CTGGG TGCCCCAGGG TGCACAGTCC 31500
TGAGCTTTGG GGATGGGGTG GGGTC	GGGGC GTGCCTGGCA CCAGGTACCG
	Α .
TTGCCACATG GGCCTCCCCT GAGCC	GCTCC CCCTCTCCTC TCCTCGGCCC 31600
AGCTTGGAGG AGGACTTCAT CACCT	GGCGA GAGCAGTTCT GGCCGGCCGT
	T T
[exon 7: 31603	
GTGTGAACAC TTTGGGGTGG AAGCC	ACTGG CGAGGAGTCC AGGTGAGCAA 31700
31692]	· · ·
GTGCCCGCAG GTGCGGTGGG TGGCC	
CCACCCTGGA ACAAGGGCTG GCAGT	GGGTC GCAGCAAGGT TAGAAGACAC 31800
TCCGTCATAG GGTCGAGGAG GGACC	
GCCACGTTGC TCTGCACTGC CCTGG	GGCAG CGGGGTGCAT CCCACCTCTC 31900
GACAAGGACA CATCGCGTCG GGCTC	TGTGG CTAGGTTCAA CTTTGGCAAA
AGGGCTCATT TCCTTAAAAT CTGCC	
CGTTCCTCTC TGTGCCCTTG ATGGC	CCCTG GGTGCTGCCC GGGCTTCCTT
	CAGCC CTGCCCCGGC TTCTGGGCGT 32100
	CTCCC TCCTTGCTCC CTCGCCTGCC
CTCCTTGTGC ATCTGCAGCA GGGGC	TCCCC TGCTTCTTGT CGTATGTACC 32200
	ACGGT CTCCCCTGTA GTCCAACCCC
•	CTTCC CGGCCTCACC CTTGGTCTCC 32300
CCTTTCCAGC ATTCGCCAGT ACGAG	CTTGT GGTCCACACC GACATAGATG
[exon 8: 32310	
CGGCCAAGGT GTACATGGGG GAGAT	GGGCC GGCTGAAGAG CTACGAGAAC 32400
CAGAAGCCGT GAGTGGAGGG AGCGT	GGCTT GGGGCAGACG GCTCTATGGC
·	G
204001	

..32408]

CACTGGTGCA	CCCCAGGCTC		GTATCCCCAT	ATCCCCACAG	32500
CCCCCTTCTC	A CCA CA CCCC	T	TGGGTGTGAG	中で中ででみででみ ぐ	
			ACTCGCCCAG		22600
					32600
			CAGGGCAGCG		20700
			CTGTGGCTAG		32700
			CTCCATAGAT	•	
			GATGGCCCCT		32800
			CCTCGTGCCA		
			CCCAGCCTGG		32900
			GCAAGTTTCT		•
			GAGCTGTGCT		33000
			TCAGCTTGGG		•
			TGTAAACAGA		33100
			GAGAACTGCA		
GCGAGGTGGC	TCACAGCTCT	AATCCCAGCA	CTCTGGGAGG	CCGAGGTGGG	33200
TGAATCACCT	GAGGTCAGGA	GTTCAAGACC	AGCCTGGCCA	ACATGGTGAA	
			ACCAGGCATG		33300
CCTGTAATTC	CAGCTGCTCA	GGAGGCTGAG	GCAGGAGAAT	TGCTTGAACC	
TGGGAGGCAG	AGGTTGCAGT	GAGCCGAGAT	CGCGCCGCTG	CACTCCAGCC ·	33400
TGGGTGGCAG	AGCGAAACTC	TGTCTCAAAA	AAAAAAAAGA	GAACTGCATT	•
GGACCAGGCT	GGGAGAGCCC	TTGATGTAAC	CGGTGAGATT	TCCTCATGGA	33500
GATCTCTGAG	ATTCCCTGTG	CTTTGTGCAA	CCAGAAGCGT	CCTTGGAGAC	
			G		•
GGAGACTCAG	ATCAAAGCCC	CGGCCGCTCA	CTGTGCTTCT	CTCCTCCCCA	33600
A		T			•
CCCAGCCCCT	TTGATGCCAA	GAATCCGTTC	CTGGCTGCAG	TCACCACCAA	
[exon	9: 33606				
CCGGAAGCTG	AACCAGGGAA	CCGAGCGCCA	CCTCATGCAC	CTGGAATTGG	33700
ACATCTCGGA	CTCCAAAATC	AGGTACCAGC	TGCCACTGTC	ACCCCTGAA	
	337	22]			
CCCTCACTCT	GGGCCTCCTG	ACCTGGGGĊA	GGGCCAGCCT	TCCGCCCCTC	33800
CCGAGCCTCA	CATCTCCCTC	CAGGTATGAA	TCTGGGGACC	ACGTGGCTGT	
[exon	10: 33824.		•		
GTACCCAGCC	AACGACTCTG	CTCTCGTCAA	CCAGCTGGGC	AAAATCCTGG	33900
GTGCCGACCT	GGACGTCGTC	ATGTCCCTGA	ACAACCTGGA	TGGTGAGTGC	
	339				
CACAGTCAGG	•	=	AGCCGCGGGA	TTGGGCCTGT	34000
			GCCTGAAGCC		
			CAGGATCCCA		34100
			TCTGTCGGGG		
				GGCCTGGTGG	34200
			TGTGTCCTGC		0.200
			CTGGGGCTGC		34300
			AGGCCCCCAA.		0.000
			GGCTGCCTGG		34400
			CCCTCGGACC		34400
			CCCTGCTTGC		34500
			CTTCCACAGC		34300
			GTAGTGTGCG		34600
			CGCACCTCCC		24000
AGCGGGTGCG	TIMOTOTOCA	GGGGCTCCCC	CGCACCTCCC	CIAGCAGGGT	

	•	•		•	
CCTGCCTCTG	ATGAGGACTT	CCTGTCTGGT	TGGAGGCCCC	AGACTTGGCC	34700
CCAGGGCCAG	GGAGGCATCA	GAGAGCATAG	GCCTTGTTTC	CAGCACCAGC	·
TGGGGCACCT	GTTGCCGCAG	AGCTGGCCCA	AGGTGTCACC	CCCTCCTGCC	34800
	${f T}$		•	TC	
GCAGCCACCC	ATCCCCAGGA	GGCGGCCGCC	TACCCCAAGT	CCTGCCTGTC	
				G.	
TCTTCCCTGC	AGAGGAGTCC	AACAAGAAGC	ACCCATTCCC	GTGCCCTACG	34900
	11: 34863.				
-		CTACTACCTG	GACATCACCA	ACCCGCCGCG	•
		TGGCGCAGTA			35000
		GCCTCCTCCT			
	350		•		•
CCCCTCAGCC		CCGCCCGTC	ACCCCGCCGT	TTTCCGAGCT	35100
		CATCTCACCC			• ,
-	12: 35144.				
•		GCCCGGAGGC	ACATCCTGGC	CATCCTGCAG	35200
		CCCCATCGAC			
		ACTCCATCGC			35300
00000104.0	352				•
CCGGCACTGC		ACACGCTGGA	GGCCCAGCCC	TGCTCACAGC	
ccccaicicc	0010001000	A		100101100	
ACCCACACTC	CAAGGCGGCA	CAGGAGCTCC	GAGATCTGAG	CCCTGAGCTC	35400
		CTCCAAATGC			
		TCTCAGCATC			35500
		GGGGAGGGG			. 33300
		GGGTGAGTGG			35600
		AGGGCCTCGG			33000
CIIGGGGCCG	GGGCTGGGCA	Adddccrcdd	CT	Under Crionic	
CCCCTCCC	ACACCTCCAC	CCCAACTCTG		ТССССТССТТ	35700
	13: 35665.		IGCACAICIG	1000010011	33700
_		CGGCCGCATC	AACAACGCCC	ጥርርርር አርር እ	
GIGGAGIACG	AGACCAAGGC	T	MACAMOGGGG	IGGCCACCAA	
СФСССФСССС	CCCNACCACC	CTGTCGGGGA	CAACCCCCCC	ССТСССТСС	35800
CIGGCIGCGG	GCCAAGGAGC	C	GAACGGCGGC	CGIGCGCIGG	33000
中ででできる中で中 中	CCTCCCCAAC	TCCCAGTTAC	ここででこことでです	CARCCCACC	
		CCCCGGCACC			35900
		GGCTGCGACA			339,00
CITCATCCAG	359		GCAGGGI GAG	·	
TGGGGGAGAG	GGGGTGACGA	CTGGGAGCCC	CGCGCTCACC	CCGGCCCCTG	36000
				T	
		GGGAGACGCT	GCTGTACTAC	GGCTGCCGCC	
	14: 36009.				
GCTCGGATGA	GGACTACCTG	TACCGGGAGG	AGCTGGCGCA	GTTCCACAGG	36100
G					
				AGCAGTCCCA	
CAAGGTGAGA	CGGGCGGGCA	CCCACGAAGG	TGGGCATGAG	GCTGGCAGGG	36200
٠	361	54]	•		
CCACAGCCAC	AGTGCCCCC	TCACAGCACC	ACCCTTGGCC	CCAGGTCTAC	
G	•				

[exon 15: 362	45		•	
GTCCAGCACC TGCTAAA		CACCTGTGGA	AGTTGATCGA	36300
AGGCGGTGCC CACATCT				. 30300.
AGGCGG1GCC CACATCI	· A		GIGHGIGGHI	
	36327]			
TAGGGGGCAG GGAGGAC		ССАСАСТТСС	CCCAGCCCCC	36400
AGCACCCCCT CTTCCTG				30400
[exon 16: 364		COLLICITION	CAGGGAIGIG	·
CAGAACACCT TCTACGA		·CTCCCCCCCX	TECACCACEC	36500
GCAGGCGGTG GACTACA				. 30300
TGGACGTGTG GACTACA				36600
	36567]	CCACCCACCC	CACAGACICC	30000
GGCCTGTAAT CAGCTCT	•	ではずるででででで	中ででで中で中で中 中	•
	cci GGCicccicc	CGIAGICICC	1000101011	
C TGGCTTGGCC TTGGCAT		CTC3C333C3	CMCCMCMCCC	36700
CCTGGGGTGC ATCCTCC				30700
CTGGCAGCAC AGCCCAG		•		36800
				30000
GGAGCCTCTG GCCCTCG				26000
AGCTGGCCCA GCCCCTC				36900
ATAACCTCTG GCCCTTG				27000
TTGTGTGAGT AGATCTG				370 <u>.</u> 00
ACCCCAGGAA CCCATGT				27100
GAACACACAC GCTCAGG				37100
GGCCCAGGTC TTCCTTC				
ATAGAAGAGA CCCCCTG				37200
CTCCCACAAC ACACAGG	•			
CAGCCTCAAT CCTTCTT				37300
CACAACCCTC AGGGTGG				
GAAAGCCGCA CATAAGC				37400
GGGCCTGGCC CCCCATC				
TCCTTGCACT GAGGGTC				37500
AAGCTGCCAG AACTAAG				
CCCTGCTGGA GCCCGAA				37600
GGACACAGAG GCACGAC				
AGGTGAGGCC CCGCCAC				37700
GTCAGGGCAC AGGACGG				
GGGATGGGAG GAAAGGG				37800
CCCACAGTGA GGTCCAT				
GAGGCAGCCG CTCTGGT				37900
CGGGCGGAGG ACAGAGG				•
CCTGCCCCC ACCACGG				38000
ACTCACTCTG GTACATG				
TACATGAGAC CGTCGGG				38100
CCTTGGGGAT GCCGTGT	ATC CCCTCCTTGT	CCCAGCTCCT	GCCCCTGCCG	
GGGCCCAGCC ACTCACC				38200
CGTAGTGATG GAACACC				
ATCACCCCA GCGCCTG	TTC CTGCTTCCCG	GAGGGTCCTG	GCACCCCATT	38300
CCATGCTCCC CTCCCTC	AGG GCCCGCCCTG	CCCACCGGGA	GCCGTTGTTG	
ATGAGGATGC TCTCCCG	GAT GGTCAGGGTG	CAGTAGTACC	AGACCAGCAG	38400
GAAGTTGAAG GCAGCAT	CTG TCACCCTGCG	GAGGGAGGG	ACCGAGGGTT	
GGTACTGCAG CGACTGG	GGA TGGGGTGGGT	CCTCGGCCGG	GGTGGGACGC	38500
CCACCTGGAG TTGAGCA	GGA AGCGGCAAGT	GAAGGAGATG	AGGATGAGGA	

TGATGGTGAG	GTAGAGCTTG	AACTTCTCAT	ACTCGTCCTT	GTAGGCAAAC	38600
CTGGGGGGGG	CAGGCCGGTG	AGACGGGTGG	GGTGCTGGTG	GGGCCCATGT	
GTGCCCCCAC	CCCGGGAGGG	CAGCTGAGCC	AAGGGTAGTC	GGATGGAGGA	38700
GAAGGCCGGG	TTGGGGGGTG	GAGGGGAAGG	CCAGGTGGGG	TGGGGGGTGG	
AGGGGAAAAC	CAGGTTGGGG	GGAAAGCCGG	GTGGAGGGGT	GGAGGGGAAG	38800
GCCGGGTGGG	GGGCTGGAGG	GGAAGGCCAG	GTGGGGGGCT	GGAGGGGAAG	
AAGGCCGGGT	GGGGGGCTGG	AGGGGAAGGC	CGGGTGGGG	GGTGGAGGGG	38900
AAGGCGGGGA	GGGGGTGTGG	AGGGGAAGGC	GGGGAGGGG	TGTGGAGGGG	•
AAGGCCGGGT	GGGTGTGTGG	AGGGGAAGGC	CGGGTGGGTG	TGTGGAGGGG	39000
AAGGCCGGGT	GGGTGTGTGG	AGGGGAAGGC	CGGGTGGGGG	GGTGGAGGGG	
AAGGCĆGGGT	GGGGTGGGG	GTGGAGGGGA	AGGCCGGGTG	GGGTGGGGG	. 39100
TGGAGGGGAA	GGCCGGGTTG	GGGGGTGGAG	GGGAAGGCCG	GGTTCCGGGG	
GAAGGCTGGG	TGGAGGGGTG	GAGGTTGAGG	GGGGGAGGGG	GGTATGGGGG	39200
TAGGGGTGGA	GGGTGGAGGT	TGGGGGGTTC	AGGCTCGGCT	GAGTTACTTA	
GCCTGCTTGC	TCAGGAGCGT	GACGTTTACG	TTCCCCA		39287
	CTGGGGGGCG GTGCCCCAC GAAGGCCGGG AGGGGAAAAC GCCGGGTGGG AAGGCCGGGT AAGGCCGGGT AAGGCCGGGT AAGGCCGGGT AAGGCCGGGT AAGGCCGGGT AAGGCCGGGT TGGAGGGGAA GAAGGCTGGG TAGGGGTGGA	CTGGGGGGCG CAGGCCGGTG GTGCCCCCAC CCCGGGAGGG GAAGGCCGGG TTGGGGGGTG AGGGGAAAAC CAGGTTGGGG GCCGGGTGGG GGGCTGGAGG AAGGCCGGGT GGGGGGTGTGG AAGGCCGGGT GGGTGTGTGG AAGGCCGGGT GGGTGTGTGG AAGGCCGGGT GGGTGTGTGG AAGGCCGGGT GGGTGTGTGG TGGAGGGGAA GGCCGGGTTG GAAGGCTGGG TGGAGGGGTG TAGGGGTGGA	CTGGGGGGCG CAGGCCGGTG AGACGGGTGG GTGCCCCAC CCCGGGAGGG CAGCTGAGCC GAAGGCCGGG TTGGGGGGTG GAGGGAAAGC AGGGGAAAAC CAGGTTGGGG GGAAAGCCGG GCCGGGTGGG GGGCTGGAGG GGAAGGCCAG AAGGCCGGGT GGGGGGTGTGG AGGGGAAGGC AAGGCCGGGT GGGTGTTGG AGGGGAAGGC AAGGCCGGGT GGGTGTGTG AGGGGAAGGC AAGGCCGGGT GGGTGTGTG AGGGGAAGGC AAGGCCGGGT GGGTGTGTG GTGGAGGGAAGGC TGGAGGGAA GGCCGGGTTG GGGGGTGGAG GAAGGCTGGG TGGAGGGGT GAGGTTGAGG TAGGGGTGGA GGGTGGAGGT TGGAGGGTTC	CTGGGGGGCG CAGGCCGGTG AGACGGGTGG GGTGCTGGTG GTGCCCCCAC CCCGGGAGGG CAGCTGAGCC AAGGGTAGTC GAAGGCCGGG TTGGGGGGTG GAGGGGAAGG CCAGGTGGGG AGGGGAAAAC CAGGTTGGGG GGAAAGCCGG GTGGAGGGGT GCCGGGTGGG GGGCTGGAGG GGAAGGCCAG GTGGAGGGGT AAGGCCGGGT GGGGGGCTGG AGGGGAAGGC CGGGTGGGGG AAGGCCGGGT GGGGGTGTGG AGGGGAAGGC CGGGTGGGGG AAGGCCGGGT GGGTGTGTGG AGGGGAAGGC CGGGTGGGTG AAGGCCGGGT GGGTGTGTGG AGGGGAAGGC CGGGTGGGTG AAGGCCGGGT GGGTGTGTGG AGGGGAAGGC CGGGTGGGTG AAGGCCGGGT GGGTGTGTGG GGGGAAGGC CGGGTGGGGG AAGGCCGGGT GGGGTGGGGG GTGGAGGGGA AGGCCGGGTG TGGAGGGGAA GGCCGGGTTG GGGGGTGGAG GGGAAGGCCG GAAGGCTGGG TGGAGGGGGG GGGGAAGGCCG GAAGGCTGGG TGGAGGGGGG GGGGAAGGCCG GAAGGCTGGG TGGAGGGGGG GGGGAAGGCCG GAAGGCTGGG TGGAGGGGGGGGGGGGGGGGGGGGGGGGG	TGATGGTGAG GTAGAGCTTG AACTTCTCAT ACTCGTCCTT GTAGGCAAAC CTGGGGGGCG CAGGCCGGTG AGACGGGTGG GGTGCTGGTG GGGCCCATGT GTGCCCCCAC CCCGGGAGGG CAGCTGAGCC AAGGGTAGTC GGATGGAGGA GAAGGCCGGG TTGGGGGGTG GAGGGGAAGG CCAGGTGGGG TGGGGGGTAG AGGGGAAAAC CAGGTTGGGG GGAAAGCCGG GTGGAGGGGT GGAGGGGAAG GCCGGGTGGG GGGCGTGG AGGGGAAGGC CGGGTGGGG GGTGGAGGG AAGGCCGGGT GGGGGCTTGG AGGGGAAGGC CGGGTGGGG TGTGGAGGGG AAGGCCGGGT GGGTGTGG AGGGGAAGGC CGGGTGGGGG TGTGGAGGGG AAGGCCGGGT GGGTGTGG AGGGGAAGGC CGGGTGGGGG GGTGGAGGGG AAGGCCGGGT GGGTGTGG AGGGGAAGGC CGGGTGGGGG GGTGGAGGGG AAGGCCGGGT GGGTGTGG AGGGGAAGGC CGGGTGGGGG GGTGGAGGGG AAGGCCGGGT GGGGTGGGG GTGGAGGGG GGTGGAGGGG AAGGCCGGGT GGGGTGGGG GGGGGGGGG GGTGGAGGGG TGGAGGGGAA GGCCGGGTTG GGGGGGGGGGGGGGGGGG

18/19 POLYMORPHISMS IN THE CODING SEQUENCE OF POR

			•		
GGAGACTCCC	ACGTGGACAC	CAGCTCCACC	GTGTCCGAGG	CGGTGGCCGA	
			GATTCTGTTT		100
TGGGTCTCCT	AACCTACTGG	TTCCTCTTCA	GAAAGAAAAA	AGAAGAAGTC	
CCCGAGTTCA	CCAAAATTCA	GACATTGACC	TCCTCTGTCA	GAGAGAGCAG ·	200
CTTTGTGGAA	AAGATGAAGA	AAACGGGGAG	GAACATÇATC	GTGTTCTACG	
GCTCCCAGAC	GGGGACTGCA	GAGGAGTTTG	CCAACCGCCT	GTCCAAGGAC	300
•	T			•	
GCCCACCGCT	ACGGGATGCG	AGGCATGTCA	GCGGACCCTG	AGGAGTATGA	•
CCTGGCCGAC	CTGAGCAGCC	TGCCAGAGAT	CGACAACGCC	CTGGTGGTTT	· 400
T					
TCTGCATGGC	CACCTACGGT	GAGGGAGACC	CCACCGACAA	TGCCCAGGAC	•
TTCTACGACT	GGCTGCAGGA	GACAGACGTG	GATCTCTCTG	GGGTCAAGTT	500
CGCGGTGTTT	GGTCTTGGGA	ACAAGACCTA	CGAGCACTTC	AATGCCATGG	
GCAAGTACGT	GGACAAGCGG	CTGGAGCAGC	TCGGCGCCCA	GCGCATCTTT	600
GAGCTGGGGT	TGGGCGACGA	CGATGGGAAC	TTGGAGGAGG	ACTTCATCAC	
CTGGCGAGAG	CAGTTCTGGC	CGGCCGTGTG	TGAACACTTT	GGGGTGGAAG	700
		T T		•	
CCACTGGCGA	GGAGTCCAGC	ATTCGCCAGT	ACGAGCTTGT	GGTCCACACC	•
GACATAGATG	CGGCCAAGGT	GTACATGGGG	GAGATGGGCC	GGCTGAAGAG	800
CTACGAGAAC	CAGAAGCCCC	CCTTTGATGC	CAAGAATCCG	TTCCTGGCTG	
CAGTCACCAC	CAACCGGAAG	CTGAACCAGG	GAACCGAGCG	CCACCTCATG	900
CACCTGGAAT	TGGACATCTC	GGACTCCAAA	ATCAGGTATG	AATCTGGGGA	
CCACGTGGCT	GTGTACCCAG	CCAACGACTC	TGCTCTCGTC	AACCAGCTGG	1000
GCAAAATCCT	GGGTGCCGAC	CTGGACGTCG	TCATGTCCCT	GAACAACCTG	
GATGAGGAGT	CCAACAAGAA	GCACCCATTC	CCGTGCCCTA	CGTCCTACCG	1100
CACGGCCCTC	ACCTACTACC	TGGACATCAC	CAACCCGCCG	CGTACCAACG	
TGCTGTACGA	GCTGGCGCAG	TACGCCTCGG	AGCCCTCGGA	GCAGGAGCTG	1200
CTGCGCAAGA	TGGCCTCCTC	CTCCGGCGAG	GGCAAGGAGC	TGTACCTGAG	
CTGGGTGGTG	GAGGCCCGGA	GGCACATCCT	GGCCATCCTG	CAGGACTGCC	1300
CGTCCCTGCG	GCCCCCATC	GACCACCTGT	GTGAGCTGCT	GCCGCGCCTG	
CAGGCCCGCT	ACTACTCCAT	CGCCTCATCC	TCCAAGGTCC	ACCCCAACTC	1400
TGTGCACATC	TGTGCGGTGG	TTGTGGAGTA	CGAGACCAAG	GCCGGCCGCA	
				. T	
TCAACAAGGG	CGTGGCCACC	AACTGGCTGC	GGGCCAAGGA	GCCTGTCGGG	1500
	•	•		C	
GAGAACGGCG	GCCGTGCGCT	GGTGCCCATG	TTCGTGCGCA	AGTCCCAGTT	
ACGCCTGCCC	TTCAAGGCCA	CCACGCCTGT	CATCATGGTG	GGCCCCGGCA	1600
CCGGGTGGCA	CCCTTTCATA	GGCTTCATCC	AGGAGCGGGC	CTGGCTGCGA	
CAGCAGGGCA	AGGAGGTGGG	GGAGACGCTG	CTGTACTACG	GCTGCCGCCG	1700
CTCGGATGAG	GACTACCTGT	ACCGGGAGGA	GCTGGCGCAG	TTCCACAGGG	
G			_		-
ACGGTGCGCT	CACCCAGCTC	AACGTGGCCT	TCTCCCGGGA	GCAGTCCCAC	1800
AAGGTCTACG	TCCAGCACCT	GCTAAAGCAA	GACCGAGAGC	ACCTGTGGAA	
GTTGATCGAA	GGCGGTGCCC	ACATCTACGT	CTGTGGGGAT	GCACGGAACA	1900
			ACATCGTGGC		
				TGATGACCAA	2000
		TGTGGAGCTA			2031

19/19

ISOFORMS OF THE POR PROTEIN

GDSHVDTSST	VSEAVAEEVS	LFSMTDMILF	SLIVGLLTYW	FLFRKKKEEV	
PEFTKIQTLT	SSVRESSFVE	KMKKTGRNII	VFYGSQTGTA	EEFANRLSKD	100
•			I		
AHRYGMRGMS	ADPEEYDLAD	LSSLPEIDNA	LVVFCMATYG	EGDPTDNAQD	
FYDWLQETDV	DLSGVKFAVF	GLGNKTYEHF	NAMGKYVDKR	LEQLGAQRIF	200
ELGLGDDDGN	LEEDFITWRE	QFWPAVCEHF	GVEATGEESS	IRQYELVVHT	
		L			
DIDAAKVYMG	EMGRLKSYEN	QKPPFDAKNP	FLAAVTTNRK	LNQGTERHLM	300
HLELDISDSK	IRYESGDHVA	VYPANDSALV	NQLGKILGAD	LDVVMSLNNL	
DEESNKKHPF	PCPTSYRTAL	TYYLDITNPP	RTNVLYELAQ	YASEPSEQEL	400
LRKMASSSGE	GKELYLSWVV	EARRHILAIL	QDCPSLRPPI	DHLCELLPRL	
QARYYSIASS	SKVHPNSVHI	CAVVVEYETK	AGRINKGVAT	NWLRAKEPVG	500
•				A	
ENGGRALVPM	FVRKSQLRLP	FKATTPVIMV	GPGTGWHPFI	GFIQERAWLR	
QQGKEVGETL	LYYGCRRSDE	DYLYREELAQ	FHRDGALTQL	NVAFSREQSH	. 600
	W		•		•
			ARNMARDVQN	TFYDIVAELG	
AMEHAQAVDY	IKKLMTKGRY	SLDVWS			676

POR.ST25.txt • SEQUENCE LISTING

```
<110> Genaissance Pharmaceuticals, Inc.
       Kazemi, Amir
Kliem, Stefanie E
Lanz, Elizabeth M
       Messer, Chad
Tanguay, Debra A
 <120> HAPLOTYPES OF THE POR GENE
 <130> POR_MWH-0969PCT
 <140> TBA
· <141> 2001-10-01
 <150> 60/236,449
 <151>
       2000-09-29
 <160> 134
 <170> PatentIn version 3.1
 <210>
 <2115
        39287
 <212>
         DNA
 <213>
        Homo sapiens
 <220>
 <221> allele <222> (22635)
        (22635)..(22635)
<223>
       PS1: polymorphic base G or A
 <220>
 <221> allele <222> (29577)
         (29577)..(29577)
 <223> PS2: polymorphic base C or T
 <220>
 <221> allele <222> (29754)
         (29754)..(29754)
 <223> PS3: polymorphic base C or T
 <220>
 <221>
        allele
 <222> (30427)..(30427)
<223> PS4: polymorphic base C or T
 <220>
<221> allele ·
<222> (31531)...
        (31531)..(31531)
 <223> PS5: polymorphic base G or A
 <220>
 <221> allele
 <222> (31644)..(31644)
       PS6: polymorphic base C or T
 <220>
        allele
 <221>
 <222> (31648)..(31648)
 <223>
       PS7: polymorphic base C or T
                                        Page 1
```

POR.ST25.txt

```
<220>
<221> allele
<222> (32446)..(32446)
<223> PS8: polymorphic base A or G
<220>
<221> allele
<222> (32478)..(32478)
<223> PS9: polymorphic base C or T
<220>
<221>
<222>
         allele
<222> (33538)..(33538)
<223> PS10: polymorphic base C or G
<220>
<220>
<221> allele
<222> (33551)..(33551)
<223> PS11: polymorphic base G or A
<220>
<221>
         allele
<222> (33571)..(33571)
<223> PS12: polymorphic base C or T
<220>
<221> allele
<222> (34766)..(34766)
<223> PS13: polymorphic base C or T
<220> · 
<221> allele
<222> (34796)..(34796)
<223> PS14: polymorphic base C or T
<220>
<221>
         allele
<222> (34797)..(34797)
<223> PS15: polymorphic base T or C
<220>
<221>
         allele
<222> (34850)..(34850)
<223> PS16: polymorphic base C or G
<220>
         allele
<221>
         (35325)..(35325)
PS17: polymorphic base G or A
<222>
<220>
<221>
<222>
         allele
<222> (35631)..(35631)
<223> PS18: polymorphic base T or C
```

POR.ST25.txt <220> · <221> allele <222> (35632)..(35632) PS19: polymorphic base G or T <223> <220> <221> allele <222> (35721)..(35721) PS20: polymorphic base C or T <223> <220> <221> allele (35774)..(35774) <222> PS21: polymorphic base T or C <223> <220> <221> <222> allele (35992)..(35992) PS22: polymorphic base C or T <220> <221> <222> allele (36054)..(36054) PS23: polymorphic base C or G <223> <220> <221> allele (36207)..(36207) PS24: polymorphic base C or G <222> <220> allele <221> <222> (36330)..(36330) PS25: polymorphic base G or A <223> <220> <221> allele (36617)..(36617) PS26: polymorphic base T or C <222> <400> 1 cagtggcaca atgtcagctc actgcaagct ctgccttccg ggttcacacc attctcccac 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 catggtgaaa ctccatctct actaaaaata cagaaaatta gccgggtgtg gtggcacatg cctgtaatcc cagctgctca ggagactgag gcaggagaat tgcttgaatc cgggaggcag aggttgcagt gagccgagat cgcaccactg cactccagcc tgggtgacag agcgaggctc 1020 1080 1140

Page 3

POR.ST25.txt

			OR.ST25.TXt			
tatccccaa	cccccccc	ccccgaaaaa	aaaaaagtca	tatcaaaaaa	gccaagttga	1200
aaccaaacac	agtggctcac	occtotaatc	ccagcacttt	gggaagccga	agcaggcaga	1260
tracctnann	trannanttr	dadaccadcc	tooctoacat	ggtgaaaccc	cotctctact	1320
2222222	2244206620	atateataae	anneaccat	anteceannt	accetonann	1380
aaaaatataa	aartayctay	gracege	gggcacccgc	agtcccaggt	accetygagg	1440
ctgaggcaag	agaatcgctt	gaacccagga	ggcggaggtt	gcagtgagtc	gagatggtgc	
cattgcactc	tagccagggt	gacagagaga	gactctatct	caaaaaaata	aaataaaaaa	1500
qaaaqaaaaa	agctaaattg	agatgaactc	aagccattgg	aaaagcagct	cagattagtg	1560
agaaagcaaa	gacccaagct	tacaaaccta	ttctgaatgg	cctgttccca	ocagottoto	1620
tancantana	ccoatoccca	raaccetcoo	atorcrtoor	ttcccagacc	anceceatur	1680
tagcagtaga	ccyatyccca	caacccccgg	teractions	cataget	cattacctaa	1740
				catagtctct		
				tgctctggtt		1800
acccagtcgg	tcatatccat	gattgcaaaa	tggaatagtg	tgaatttcag	ggctgagccc	1860
agcctccttg	gtaagcagca	gaagetgetg	tttcagggac	tctcacttgg	acctttgttg	1920
actcatotca	cotctoccta	.ccaggtatca	ttaataaaaa	gaccagttga	ocatcttato	1980
annnaactan	actantasca	topopottce	cccacctccc	tcctggacgg	oncoactone	2040
conscans	actascece	ccacctccct	CCCGGGGGGGG	acaactaaca	335335535	2100
cgggcggggg	getgaetete	ccacciccc	cccygacygg	gcggctggcg	gygcagaggg	2160
gctcctcact	tcccagtagg	ggcggccggg	cagaggtgcc	cctcacctcc	cggarggggr	
ggctggccgg	gcggggggct	gaccccccca	CCTCCCTCCC	ggacggggcg	gctggccggg	2220
cagagagacta	accccccac	ctccctcccg	gacggggcgg	ctggccgggc	ggggggctga	2280
				gggggctgac		2340
				cccccacctc		2400
				aggggcggct		2460
						2520
				gctgaccccc		
				ctccctcccg		2580
ctgctgggcg	gagacgctcc	tcacttccca	gatggggtgg	ctgctggacg	gaggggctcc	2640
tcacttctca	gacggggcgg	ttgccaggca	gagggtctcc	tcacttctca	gacggggcgg	2700
				ccgggcagag		2760
cateceagae	aaaacaacaa	oocagaggg	ctcccacat	ctcagacgat	agacaaccaa	2820
acadadacac	+cc+c2c++c	ctanatonna	taacaataaa	gaagaggcgc	tecteactte	2880
stagagacgc	taacaaccaa	acagacygu	+cc+cac+++	ccanacton	COCCOCCCC	. 2940
CLayatyyya	rggcggccgg	gcayayacyc	ccccaccc	ccagactggg	cayccayyca	
gaggggctcc	taacatccca	gacgatgggc	agccaggcag	agacgctcct	cacttcccag	3000
				tgggaggcca		3060
ctgggaggtg	gttgtagcga	gccgagatca	agccactgca	ctccagcctg	ggcaccattg	3120
				tcgggāggcč		3180
				acagcgaaac		3240
				cctgcaatcg		3300
						3360
				agccgagatg		
				gagggagggg		3420
				actcccaggc		3480
aggcattcac	cataaatctc	attgttaaca	ggaactacct	tcatagccca	aggttttagg	3540
aatacaqaqa	cactcttqcc	agtcaggata	gtccaaggct	cgtgaatatc	aggagccact	3600
				ggcaaccccc		3660
				cgtgcacttc		3720
				gcacactgag		3780
						3840
				tgccttagct		= = = =
				gttatgtcag		3900
agactgtggc	tgtcttggca	ggaacctggc	tgagtgagcc	ccttctccta	ccccgtgcag	3960
tgaccatttc	ctgcagcccc	aggggcaagg	cccagcattt	aggtgggcac	cccagccagc	4020
ctcaggggca	ccctqctacc	ctctqctqac	atctgctgtt	tctgtctcct	aacagtttca	4080
				cgtgtccgag		4140
				ttcgctcatc		4200
				ccccgagttc		4260
						4320
				cctcttctgt		
				ggctccttgt		4380
ggtgactctt	gggttttgcc	ttcttgctag	attgtgcttg	agctctccct	taatcatctc	4440
ttatqtgggg	tttataaggc	ccttttctat	ctgctgttta	tatgaccttc	acaggaagca	4500
				ctcaagaatg		4560
taccaggate	attanceane	aatagcagcg	Ctagageton	aacccttttt	tccatttatt	4620
tatttattta	tttatttage	dacatootet	cactotatto	cccaggctgg	antocaatoo	4680
						4740
				ggctcaggca		4800
				tatgcccagc		
				ctggagtaca		4860
ctcggctcac	tgcaacctct	gcctcccagq	ctcaagcaat	tcttctgcct	cagcctcctg	4920
				ttttttgtat		4980
				ctgacctcaa		5040
				cgttgcgccc		5100
****	tatagagag	aggattat	atotococc	ctactctcc	acacctonac	5160
				ctggtctcga		
tcaagcaatc	cgcacacctt	ggtctcccag		ttacaggcgt	gagccactgt	5220
			Page 4			

POR.ST25.txt

acccagccta		•	UK.312J. LKL		•	
	gaattggcat	tttaaaatct	ttttaaggct	gtagccacct	ggaaggetat .	5280
	ncacaaaatc	tttnnacann	ccttattttg	ttoctcttt	aaacttttca	5340
gractaarga	gcacaaacc	cctggacagg	cettatteg	ttgcccccc	adacttttta	= - : =
			gatggattag			5400
aaataatagt	atagatggta	tgtagacaga	aaaaaatgat	accgaaggtc	tgcctaagtg	5460
			ccataagcca			5520
antittaaaa	tectacaace	2022442644	cctacaatta	cacttaacta	+a+++>>c>c	5580
			cctgcggtta			
cagtctcaga	ctccaggggc	ccgcagccag	gtttgagtgg	ggacctgcca	ggtcaggtct	5640
gagccgaggg	aactccaggg	acacogacct	gctgccttca	aggactccct	ggatttggca	5700
3434434333	ctcaggg	gcattagaaa	ccattetean	3552222666	c+++c>++c+	5760
ayyyycayyr	cccayyyyca	gyarrygyay	ccattctcag	accayaaccc	CLLLCalle	
gtctgtcttc	aggggaccca	gtcccagctg	cagccttagc	ttgcacccca	gggccaccct	5820
agactagtac	tgacaccagt	aggaccatc	tgtcatgtca	attccaatcc	aaooctotoo	5880
ctatcttaac	2002263206	222222222	agtcattctc	caannetnan	catnotosso	5940
ctyttttggt	ayyaacaayc	Cacacayada	agicaticic	caaggerggg	catggtgaag	
catgccgctc	acatcaaatc	ccgattccct	attccaatct	gggtatcagc	cttccccgcc	6000
agaacactta	cagccttcac	accotaaagc	agatattcac	acaacacaqt	tcttatacca	6060
taggeadaga	attantttta	catttttaaa	aactgggttc	annaccanac	acanconete	6120
rggacaggga	accugacaca	*********	ancegggeee	22255555	acageggeee	
acgtctgtaa	ttccaccact	ccgggaggcc	gaggcgggag	aaatcactty	aggtcaggag	6180
ttcqaqacca	qcctqqccaa	catggcgaaa	ccccgtctct	accgaaaata	caaaaactag	6240
ctagacataa	taatacatac	ctotaatttc	agctactagg	gaagetgagg	cagaagaatc	6300
	2992900290	anttaciata	2000222	2442412435	1++ <i>cc</i> 3 <i>acc</i> +	6360
gcccyaaccc	ayyayycaya	gyrtycagty	agccaagaat	gegetactge	acccagece	
gggagacaga	gtccgtctca	aaaacaaaac	aaaacaaaac	aaaactgggt	tcaatcttat	6420
ctccatcatt	gactcactga	ocaaacattt	cctgaggccc	tacctacagt	gtcccagaca	6480
			agaaaataga			6540
cttacgctct	agtggtgagt	gaaccctggg	cgagacctta	acctcattct	gcctcagttt	6600
cctcacctgc	taaatqqaqq	cagtattccc	aatcttgtgg	aacttttatc	ttaaatqaqq	6660
			ctgagggata			6720
ttgatcgtat	ttcgtgccag	gcactatgac	gggcacgatc	aggaccacag	agccagcait	6780
tatgttaagc	tggaaaatga	gggtgttgca	acatagtttt	tttttttttg	agacagactt	6840
ttactcttat	cactcagget	ggagtgcagt	aatacaatct	caactcacta	caacctccgc.	6900
ctcccocctt	cannenatte	tratacetes	gtctcccgag	tacctanasc	tacanneaca	6960
ccccgggcc	cayycyactc	tegegeetea	geeeeegag	tgcctgggac	tacayycaca	
tgctaccacg	cctggctaat	ttttgtattt	ttagtagaga	cggggtttca	ccatgttggc	7020
caggctggtc	tcaaactccc	gacctcaggt	gagctgcctg	cctctqcctc	ccatagtgct	7080
oggattatag	ocotoaocca	ccacacccaa	ccacagcgta	ctttttagaa	atoctitoto	7140
333455454	acctacatta	tetaateag	acctacttac	220200000	tocottocot	7200
aactyctta	acciacacty	cctaattayy	gcctccttgc	aacagcgccg	Lycyclayge	
agcgtgggtt	gcctcatttc	tgctctcaga	gaggttatgg	gatgtgccca	gggcacaggc	7260
tqqaqaqaca	ggctccgcca	gctctaagag	agaaggaatt	ggtgtgggga	tcagaccaag	7320
			aaaggtagag			7380
						7440
			gggcagatca			
gtccagggct	ggtacacggg	gcattgctgg	tgtggaatag	tacttttgat	aaaaaagcgt	7500
agtagtactc	aagataaaga	gaccagggtc	caggacccag	ctcctgaact	aacccttatt	7560
			accgccgtga			7620
			ggcagcattc			7680
tcgctgtcac	ctccctaacc	ttacaagagg	aagttgacat	aaaacctuta	asetataaas	
				addact ty tu	yactytyyya	7740
ullulauuul						
getgtagggt	cccaaagcac	ttgtattttt	ttgttgattc	tcactgttcc	tctttgccag	7800
gatgctgaaa	cccaaagcac	ttgtattttt tccacctaat	ttgttgattc catgatcttc	tcactgttcc taaccttatg	tctttgccag tgtgtggaga	7800 7860
gatgctgaaa tatgcagttt	cccaaagcac ttctgttccc ccagagtctt	ttgtatttt tccacctaat gtctcttccc	ttgttgattc catgatcttc tcattaaatc	tcactgttcc taaccttatg acactggatg	tctttgccag tgtgtggaga cctgctgcag	7800 7860 7920
gatgctgaaa tatgcagttt ccagggcttt	cccaaagcac ttctgttccc ccagagtctt tacctgtacg	ttgtatttt tccacctaat gtctcttccc ctgtacaaga	ttgttgattc catgatcttc tcattaaatc caaatatttc	tcactgttcc taaccttatg acactggatg tagtaccatg	tctttgccag tgtgtggaga cctgctgcag gctacattct	7800 7860
gatgctgaaa tatgcagttt ccagggcttt	cccaaagcac ttctgttccc ccagagtctt tacctgtacg	ttgtatttt tccacctaat gtctcttccc ctgtacaaga	ttgttgattc catgatcttc tcattaaatc caaatatttc	tcactgttcc taaccttatg acactggatg tagtaccatg	tctttgccag tgtgtggaga cctgctgcag gctacattct	7800 7860 7920 7980
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca	7800 7860 7920 7980 8040
gatgetgaaa tatgeagttt ccagggettt ggaccetgaa tcagccaggt	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtcccaa	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag	7800 7860 7920 7980 8040 8100
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca	7800 7860 7920 7980 8040 8100 8160
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca	7800 7860 7920 7980 8040 8100
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttggtgct gacttgatct ctcataaggc catagtaggc	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgatccccaa gagttaatcc tatggattgt	tcactgttcc taaccttatg acactggatg tagtaccatg ccccacatag ctgtaagctg atcatagagc tactatttat	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt	7800 7860 7920 7980 8040 8100 8160 8220
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatacgc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact	7800 7860 7920 7980 8040 8100 8160 8220 8280
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatc ctcataaggc catagtaggc tctcactctg cctcccaggc	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgacccta gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga	7800 7860 7920 7980 8040 8100 8160 8220 8280 8340
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatc ctcataaggc catagtaggc tctcactctg cctcccaggc	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatacgc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga	7800 7860 7920 7980 8040 8100 8160 8220 8280 8340 8400
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctccaggc gcaccaccac	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgaccca gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagagc tactatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct	7800 7860 7920 7980 8040 8100 8160 8220 8280 8340
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctccaggc gcaccaccac cccaggctgg	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtg tcgtcaggc tcaagagatc ccttggctaa tctgaaact	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattcg ttggaatacgc ctcccacttt tttttatatt ctgggctcaa	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tacatagatt tggcactgat tggcactgat tggcactgac ggcctcccaa ttttgtacaa gcagtctgcc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc	7800 7860 7920 7980 8040 8100 8220 8280 8340 8400 8460
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtg tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattacc ttggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tacatagatt tggcatcatat tggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttat	7800 7860 7920 7980 8040 8100 8220 8280 8340 8460 8520
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg tcctttttat	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatagc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tagtactattat tggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta tgcctcggcc atgagcagc	7800 7860 7920 7980 8040 8100 8220 8280 8340 8460 8520 8580
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg tccttttat ccatttgcg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccagggattac taataccatc gatgaagaaa	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgcc	ttgttgattc catgatcttc tcattaaatc caaatattc tactgatcccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccagcct caagagccct agggattgca	tcactgttcc taaccttatg acactggatg tagtaccatag cccacatag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgt tccacgaaga gagtttgcc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attattta tagcttggca atggacatct	7800 7860 7920 7980 8040 8100 8220 8280 8340 8460 8520 8580 8640
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg tccttttat ccatttgcg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccagggattac taataccatc gatgaagaaa	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgcc	ttgttgattc catgatcttc tcattaaatc caaatattc tactgatcccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccagcct caagagccct agggattgca	tcactgttcc taaccttatg acactggatg tagtaccatag cccacatag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgt tccacgaaga gagtttgcc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attattta tagcttggca atggacatct	7800 7860 7920 7980 8040 8100 8220 8280 8340 8460 8520 8580
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcctttttat ccattttgcg aacttctaaa	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa tagcagcaga	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaact aggcgtgagc tccagtctta ccgaggtgcc gttggctttt	ttgttgattc catgatcttc tcattaaatc caaatatttc tactggtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgca gaatgaagtc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacatag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgt tccacgaaga gagtttgccc tgcaagctcc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagc acaggccact	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8580 8640 8700
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tccttattat ccattttgcg aacttctaaa ttttctctac	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa tagcagcaga tttgccatgc	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaact aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat	ttgttgattc catgatcttc tcattaaatc caaatatttc tactggtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgca gaatgaagtc ttagtgttaa	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgt tccacgaaga gagtttgccc tgcaagctcc taggcctcct	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attattttat catgagcagc atgacagcagc aaggccact acaagccatg acgatagtg	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8520 8580 8640 8700 8760
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg tccttttat ccattttgcg aacttctaaa ttttcttac tagtctccta	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa ttgccatgc agatagtgt	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta cgtgggtgc gttggctgtt tgctcctaat aataggcctg	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgca gaattgca gtagtgtaa gcatggtggc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc taggcctcct taggcctcct tcacgcctgt	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagca acaggccacct acaagccact acaagccatg acgatagtgt acgatagtgt aatcccagtg	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8580 8640 8760 8820
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg tccttttat ccattttgcg aacttctaaa ttttcttac tagtctccta	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctccaggc gcaccaccac cccaggctgg ctgggattac taataccac gatgaagaaa ttgccatgc agatagtgt	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta cgtgggtgc gttggctgtt tgctcctaat aataggcctg	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgca gaattgca gtagtgtaa gcatggtggc	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc taggcctcct taggcctcct tcacgcctgt	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagca acaggccacct acaagccact acaagccatg acgatagtgt acgatagtgt aatcccagtg	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8520 8580 8640 8700 8760
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcccaaagtg tccttttat ccattttgcg aacttctaaa ttttctctac tagtctccta ctagggagg	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatc ctcataaggc catagtaggc tctcactctg cctccaggc gcaccaccac cccaggctgg ctgggattac taataccac gatgaagaaa ttgccatgc agatagtgt ctgaggcaca	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaact aggcgtgagc tccagtctta ccgaggtgcc gttggctctt tgctcctaat aataggcctg aagattgctt	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgaagtc ttagtgttaa gcatggtgag gagccaggag	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag cctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc ttgcagcccc taggcctcct tcacgcctgt ttcaagacca	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagc actatttta catgagcagc aaggccacct acaagccact acaagccact acaagccact acaagccact gcctgagcaa	7800 7860 7920 7980 8040 8100 8160 8220 8280 8340 8460 8520 8580 8640 8760 8820 8880
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tccttttat ccattttgcg aacttctaaa tttctctaa tttgtctac ttagtggagg catagggagg catagggagg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa tagcagcagc agatagtgt ctgaggcacaccac	ttgtatttt tccacctaat gtctcttcc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgc gttggctttt tgctcctaat aataggcctg aagattgctt cccgccatct	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgagcc tagtgttaa gaattggagcc ttagtgttaa gcatggtgag ctacaataaa	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagttgccc taggcctcct tcacgcctgt ttcaagacca caaaaaagag	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagc aaggccact acaagccact acaagccatg acgatagtgt aatcccagtg gcctgagcaa tggtgttaat	7800 7860 7920 7980 8040 8100 8160 8220 8340 8460 8520 8580 8640 8760 8760 8880 8940
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tccttttat ccattttgcg aacttctaaa tttctctac tagtctccta ctagggagg catagggagg tagtcattttat	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc tctcactctg cctccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa tagcagcaga tttgccatgc agatagtgt cctcacccc accacccc	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aatagactc aagactcta cagagttgcc ttgctctaat cagagttgcct tcccgccatct agagtattcc	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgactct gtgtcccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgatga gaatgaagtc ttagtgttaa gcatggtgg ctacaataaa ttatctgaag	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagag tactatagagc tactatattat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc taggcctcct tcacgcctgt ttcaagacca ctaaaaaagag tgcttgccag	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagc aaggccacct acaagccatg acaagccatg acgatagtgt aatcccagtg gcctgagcaa tggtgttaat aagtgtttca	7800 7860 7920 7980 8040 8100 8160 8220 8280 8340 8460 8520 8580 8640 8700 8760 8880 8940 9000
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tccttttat ccattttgcg aacttctaaa ttttctcac tagtctccta cttagggagg tagtaagg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa ttgccatgc agatagtgt ctgaggacaa ccccacccc accgacaagg tttggaatgt	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgagacac aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aataggcctg aagattgctt agagtattc tcgccatt tgcattata	ttgttgattc catgatcttc tcattaaatc caatattc tgtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgaa gcatggggg gatcaagaag ttagtgttaa gcatggtggc gagccaggag ctccaagaaa ttatctgaag ctcaccagat	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc ttcacgcctgt tcaagaccac tcaagaccac tcaagacca gagtttgccc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagc aaggccacct acaagccatg acgatagtgt aatcccagtg gcctgagcaa tggtgttaat aagtgttca tagtgttca tatctgaaaa	7800 7860 7920 7980 8040 8100 8220 8280 8340 8460 8520 8580 8640 8700 8760 8820 8880 8940 9000 9060
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tccttttat ccattttgcg aacttctaaa ttttctcac tagtctccta cttagggagg tagtaagg	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa ttgccatgc agatagtgt ctgaggacaa ccccacccc accgacaagg tttggaatgt	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgagacac aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aataggcctg aagattgctt agagtattc tcgccatt tgcattata	ttgttgattc catgatcttc tcattaaatc caatattc tgtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct caagagccct agggattgaa gcatggggg gatcaagaag ttagtgttaa gcatggtggc gagccaggag ctccaagaaa ttatctgaag ctcaccagat	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc ttcacgcctgt tcaagaccac tcaagaccac tcaagacca gagtttgccc	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagc aaggccacct acaagccatg acgatagtgt aatcccagtg gcctgagcaa tggtgttaat aagtgttca tagtgttca tatctgaaaa	7800 7860 7920 7980 8040 8100 8160 8220 8280 8340 8460 8520 8580 8640 8700 8760 8880 8940 9000
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tccttttat ccattttgcg aacttctaaa ttttctcac tagtctccat cttagggagg catagggagg ttgttaattt gatcttggac tctgaaatgc	cccaaagcac ttctgttccc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa tagcagcaga tttgccatgc agatagtgt ctgaggcaca ccccaccc acccacacc accgacaagg tttggaatgt tctggaatgt tctgaatgt	ttgtatttt tccacctaat gtctctccc ctgtacaaga caaggttgag ttccaagtt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggactaa tctgaactc aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aataggcctg aagattgctt cccgccatct agagtattc ttgcattata cttccctttg	ttgttgattc catgatcttc tcattaaatc caaatattc tactgatcccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggattgca caccatgcct caagagccct agggattgca gaatgaagtc ttagtgttaa gcatggtggc gagccaggag ctacaataaa ttatctgaag ctcaccagat aggatcatgt	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtttgcc tgcaagctcc tacacgcctgt tccacgacaga gagtttgccc tgcaagctcct tcacgcctgt tcaagacca ctaaaaaagag tgcttgccag gagcatttct tgacgctcaa	tctttgccag tgtgtggaga cctgctgcag gctacattct ccatctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc aatgacact acatgagcagc acgatagtgt aatcccagtg gcctgagcaa tggtgttaat tagtgttca tagtgttca tagtgttca tagtgttca aaggtgttca aaggtgttca aaggtgttca aaggtgttca aagtgtttca aagtgtttca	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8580 8760 8760 8820 8880 9000 9060 9120
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgtg tccttttat ccattttgcg aacttctaaa tttctctac tagtctccta cttagggagg catagggaga ttgttaattt gatcttggac tcttggac tcttggaattg atttcagatt	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa ttgccatgc agatagtgt ctgaggcaca ccccacccc accgacaagg tttggaatgt tccaatgatt tcaatgatt	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagttt tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aataggcctg aagattgctt cccgccatct agagtattcc ttgcattata cttccctttg gacattcagc	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgatcctct gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct cagggattgca gaatgaagtc ttagtgttaa gcatggtggc gagccaggag ctacaataaa ttatctgaag ctcaccagat aggatcatgt ctgtagatgt	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgt tccacgaaga gagtttgccc ttcacgcctgt ttcaagacca caaaaaagag tgcttgcctct ttgacgctccaa tatttatagacca caaaaaagag tagcttgccc ttgacgctccaa tatttacag	tctttgccag tgtgtggaga cctgctgcag gctacattct catctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc actatttta catgagcagc acgatagttta acatgagcact acaagccatg acgatagtgt aatcccagtg gcctgagcaa tggtgttaat aagtgtttca tatctgaaaa aaagtgtttca gagaggaagt	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8580 8640 8760 8760 8820 9000 9000 9060 9120 9180
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcctttttat ccattttgcg aacttctaaa ttttctctac tagtctccta cttagggagg catagggaga ttgttaattt gatcttggac tcttggac tcttggac tctggaattg tcttagattt	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa ttgccatgc agatagtgt ctgaggcaca ccccacccc accgacaagg tttggaatgt ttcaaatgat ttagattagg ggttcacact	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aataggcctg aagattgctt cccgccatct agagtattc ttgcattata cttccctttg gacattcagc tgtgatcca	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgatcccta gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct cagggattgca gaatgaagtc ttagtgttaa gcatggtggc gagccaggag ctacaataaa ttatctgaag ctcaccagat aggatcatga ctgtagatgt ctgtagatgt gctctttggg	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc ttcacgcctgt ttcaagacca caaaaaagag tgcttgccag gagcatttct ttgaccag aggcctccaa tatttacag aggccaaggc	tctttgccag tgtgtggaga cctgctgcag gctacattct catctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagca acgatagtgt aacccagtg gcctgagcaa tggtgttaat aagtgttcaa taatctgaaaa taggtgttaat aagtgttcaa taagtgttcag gaggaggattg agcaggaagt	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8580 8640 8700 8760 8940 9000 9060 9120 9180
gatgctgaaa tatgcagttt ccagggcttt ggaccctgaa tcagccaggt tagtacttac gttcctggtg tgaggcaggg gcaacctccg ctacaggcgt aacaatgttg tcctttttat ccattttgcg aacttctaaa ttttctctac tagtctccta cttagggagg catagggaga ttgttaattt gatcttggac tcttggac tcttggac tctggaattg tcttagattt	cccaaagcac ttctgttcc ccagagtctt tacctgtacg gttgggtgct gacttgatct ctcataaggc catagtaggc tctcactctg cctcccaggc gcaccaccac cccaggctgg ctgggattac taataccatc gatgaagaaa ttgccatgc agatagtgt ctgaggcaca ccccacccc accgacaagg tttggaatgt ttcaaatgat ttagattagg ggttcacact	ttgtatttt tccacctaat gtctcttccc ctgtacaaga caaggttgag ttccaagtct tgtgaaaact tctcaggtgt tcgttcaggc tcaagagatc ccttggctaa tctgaaactc aggcgtgagc tccagtctta ccgaggtgcc gttggctttt tgctcctaat aataggcctg aagattgctt cccgccatct agagtattc ttgcattata cttccctttg gacattcagc tgtgatcca	ttgttgattc catgatcttc tcattaaatc caaatatttc tactgatcctct gtgtccccaa gagttaatcc tatggattgt tggaatacgc ctcccacttt tttttatatt ctgggctcaa caccatgcct cagggattgca gaatgaagtc ttagtgttaa gcatggtggc gagccaggag ctacaataaa ttatctgaag ctcaccagat aggatcatgt ctgtagatgt	tcactgttcc taaccttatg acactggatg tagtaccatg cccacattag ctgtaagctg atcatagagc tactatttat tggcacgatc ggcctcccaa ttttgtacaa gcagtctgcc ggagtgtgtt tccacgaaga gagtttgccc ttcacgcctgt ttcaagacca caaaaaagag tgcttgccag gagcatttct ttgaccag aggcctccaa tatttacag aggccaaggc	tctttgccag tgtgtggaga cctgctgcag gctacattct catctgaca gaggtagtag tctttgctca ttatttattt tcggctcact gtagctggga atggacatct tgcctcggcc attatttta catgagcagca acgatagtgt aacccagtg gcctgagcaa tggtgttaat aagtgttcaa taatctgaaaa taggtgttaat aagtgttcaa taagtgttcag gaggaggattg agcaggaagt	7800 7860 7920 7980 8040 8160 8220 8280 8340 8460 8520 8580 8640 8760 8760 8820 9000 9000 9060 9120 9180

Page 5

PCT/US01/30877 WO 02/26768

POR.ST25.txt aataggagaa aactgaggct cagaaaggtc acctagctga tacaaccagg cctcaagcct agatétecta tictăaătec cacateagtg tecetggeta ceggtatite agigageaca ggtgatttct gttatagcca cagagcagta gggagtaata gggcttagtg tgaggaaggt atgtggccca gggctatatc aggaactctc accatgattt ctggtggctt ctagaattgg cattatta ttttgttta gagacacggt ctcgccctgt cacccaggct ggagtgctat gtaggatcca aagtcccaca ggatccaggg ctcctgtggg ctctctctcc tgtgggcctg gcagctttgc tcacccttat ggaacaacac cgcatggcgt gccctcttgg tgatggaatt tgtattttg cctccatgg tgcagagagc gtcccattc catctgggtc cctaccttag tgcggggccg cctgtcggag ggaagcttct cagagaatgg ccgttgaatt aaccaaggct aaatctgtat gtgtggctgc ctctagggaa acctgtggcc tccaggctgg gtttggctta cacagtattt ttttaaaaaa tatttaatt agaacattaa aaagtgtggc agtatcaggc ccaggctggg ggctgacaca tgtaatccca gcactctggg aggccaaagc aggtggatca catgaggcca ggagttcaag accagcctgg ccaacatggc aaaaccctgt ctctacaaaa 12300 cccaggctgg agtgcagggg tgtgatcagg gctcactaca gcctctacct cccaggctta aggggatcgt cccatctcag cccctgagt agctggggct acgggcatgt gccaccatac tcggctaatt tttatttta attttagtag agacaaagtc tcactatgtt gcccaggctg gtcttgttcg aacgtctgag tccaagtgat cctcttgcct cagcctccca aagtgctagg attaggatta caggcatgag ccactgcact gggccaacat tttcctctt aagtgcacca gtcatgagt cttgacagat gtatgtgatt ctgtaatcag tatcataatc gaaatctaga acatttcatc actcggaaca agtcctgtcc tacctctttg caatcatcct cctccatcg 12720 acattcatc actccgaaac agtcctgtcc tacctctttg caatcatcct cctccatcgg gtaatcagcc tctggcaact gccaatctta tttctgtccc tgtagtttaa cattttccaa agcgtcacat aaatggaatg atagcaccgt gggctgctgt gccagcggtt tttccttagc gacacgtcag ctccctttcc attcctaagc ttcccttcca tcccgtttct tccttgaaac atcatttgta tcacagtttc ccacagtctg gattttcctg attacgtcc cctggagatt gcttttgaaa agccacaaa gatctcattt tcctgagtga ccttcctttt ggggcctgtt cttgacagaa agcccgggag gccaggggtc agggctgcca gcatcacgtg tctgttttt atctcctgag tgccaacaga tgggaagtgg atctgggggt cttgccacat ccagttcagg gtcactttct ctgtagtgag gtccttggct ccatcgagca tgaaaagaga aatacaaatg agactgacaa agaggaaagc attaggggaa gcctggcc acgagagtag acggtgcagg

POR.ST25.txt gggcccactg cctcccgctg ctgtgggaac ggcgaggaca tgggccaggg tgtttctgcc acttctgcaa gcacagctct gggttttctg ctgccatctg acctccaaag ggacctcgcc tcctctctt cctttcctgg tccctgatga gatgggggag gtttctgtca ctctgacaag tgcttgaaac tccagacatg ggctgtcggg aactgtcggg tactgccgtg cagagcgcat gttgtctgac ctcctgactt cactgggccc tgtcgggtgc aggagaggga gctgtggatg gcacagtggg acatgtgctc tactggcctg ggggtggtgg gaatgcagag gagggggtatc cccattgggg gtgtgtcagg gatgagatgc ccccacagga gcctaggagg ccaagtgtgg aggctgggag gtgaggacac gcggggctgt tccaagggag ccacatgctg gtagagccca ggcacaggtc accaagggag tcaggggtcg tggggggtca gaggtcataa aaggagttgg ggcacaggtc accaagggag tcaggggtcg tggggggtca gaggtcataa aaggagttgg ggtcaccaag gaagtcaggt catggaggga gctgacacag gagagcatct tagagggcct tgggaccttc caaggggtat ggatttttt ccccagctt attgaggtat aaatgacaaa aattatatat atttatcaga gcatctaagt ttttttcttt ttctttcttt ctttttttt tttgagatgg agtcttactc tgtggcccag gctggagttc agtggcacaa tcttggctca ctgcaacctc tgcctcctgg gtccaagtga ttctcctgcc tcagcttcct gagtagctgg gactacaggt gcctgccac acgcccagct aattttgta ttttgagtag agatggggtt tcaccatgtt gccgggctg gcctgaact cctgacctca agtgaccac ccacctagc ctcccaaagt gttgggatta caggcgtaga ccaccatgcc cagcctaagc atttttcttt ttttcttttt gagactaagt ctcgctcctg tcccccaggc tgaagtgcaa tggcgcaatc tcggctcact gccacctccg cctcccggct tcaggcgatt ctcctgcttc agcctcccga gtagctggga ttacaggcgc ctgccaccac acccggctaa tttttgtatt tttagtagag acggggtttc accatattgg ccaggctgat ctcgaactgc tgacctcagg tgatccgcct gcctcagcct tccaaagtgt tgggattaca ggtgtgagcc accgcaccag gccagcattt ttctttcttt gtaaattta tttttcccag ctttaaaatg acataattga caaataaaaa ttttatacat atatttaaaa ttatgtaagt tcaaagtata cagtgtgatg ttctgatata cgtatcttag ctgagcatgg tggcttacac ctgtaatacc agctacttgg gaggctgagg cgagaggatc acttgaagcc aggaggtcaa ggccagcttg ggcaacatag caagacatcg actctacaaa aacttaaaaa taaattcaaa aattagctgg gcatggtggt gtggacctgt catcgcagca ctttgggagg ctgaggcagg agttggaggc tgcagtgagc tgtgggtcacg cactgcact ccagcctggg caacggagcg aaccccgtct ctagaaaaaa taaaatca attaaaaaaa atgacatatg tggatgacgc taacaggaggc ctgggggaagc ctgtgtgagga tggcggtgtc tggagagcgg tggccccatg aagcgccatt tggagctgga gtggagggag ctgacttgga agcaggaaga tgggccagga ggctgctggc ctcagcctag cagaaaattga ccagggccgc tcggcacaga tggagagccg agtgcaaatg caggtgtcag tggatcagag aaagggctcc aagccagtgc ttttgaaaac ataattctgg gaccctcatc acccacaga ggtgatgttc ttatctccat tttacaaatg gcagtgctga tcccaggaga gggtgagtga cctggtcaag gctgacgtta gcacatgaga gctgggattc cagcctgggg cttcctgcac cacgcttttg ctcctcgga cccctagctc ttgtcatggc caccccagcc cacccctct ttccatccc tttgattgca cacaatagca gagccacttt ggccagatc agatgatctt 15300. 16200 tcaccaaaga ctggcgtttc caaccattag ccccatgcca caaggctctg aaggtcaaga aatctgggtc cgcctagcag agcccactct ccgtcctgcc agagcaggct gccccagct ctgctgccat cgtgcctctg tgcctcagcc gccacccctt ctctcgccgt gggcacccat gaccctggag cctggagaac ttggcagtag acgctaggtt ctgaaggga gctggtcaa agcagcttcc ccatgtgttg ctaagggcag gggacagtct caggagaaat cgagtccgct gcagaaaatc caaccggatt tgcagttcc agaaaatgtc ctcagcgtcg cctgtgacgg gaacaaaaatg aaccgcacat ctcggttcat ctcggtccaa gtgactcagt gcttttcccg ccctccctca tcttccccac gcagtggact acagctgact tctgatcctg aacccagaaa gactcctgct cccaatttag gcgtggagag ccttaattgg aacctttcat gctccgttct ggagccacgt ggtctgtgtg ctccaggcct gggacagctg ccacctctgt acggctggag ccttgggct tctggttttg tttgttttt cttgagacag ggtctcactc tgtcaaccag gttggagtgc agtggcacaa tcttggctca ctgcaacctt cacctcagcc ttcaggctca agtgatcctc ctacctcagc ctcccaagta gctgggatca cagacgcaca cctctacacc cggctaattt ttgtattttt ggtagagaca ggctgtttcg ccatgttgcc caggctggcc tčaaactcct gagctatggc gtccacccac čtcggcctcc caaagtgctg tačtggtgtg agccactgca ctccgccgag ccttgggctt tcggatgggc tgtttgcact cgggaacctc agaagggtgc tccccaagac agaacatcac cactgcaaac ggagcccacc ttgccaggca

PCT/US01/30877

WO 02/26768 POR.ST25.txt tttccccaac tgccctgatg ggaggggaag gtgtgtcttt catggcacac aggatgcttc ccgctgacat ggacccagtg tcttaagctc tgttgcccg caatctttt gtgtggggga agacagggac cagacttaat ttaatgtgat tgtgtggcgc cctggcagtg ggatcagtgt ggcttccttt atggagtgca gccctgccat agcaacctgc aggctgtctt ctagagccta gaagagcttt gttccgcaga catgacttcc ttttttttt taatgggaaa cggggagggc gtggggagaa gggctctgat ataaacagtt accaaggaga cccgagtcgg ggttggaaag gtttctcct tccctcggtc catacagagg gaggaggggt gtgtgcccgg tgcaggggact catgggaggc ttcactctgg aatcctgagt cctgcctgct ggggctccag atgttgcaga gttcttgggc tcatgggggc agacgcaggc aggagctcag ggaaattccg agaggacttt ggggtgtcca ggagcacttt gaggccacgg gcccaggcaa cttcctcacc agtacggaac aggggatgca cagggccgaa ctttccatct gctggcccct gctggtgtcc aggagagag tgtgacctc cttttcctt aagtcctgga gctgagagtg agaagccatg gggtgcacgt actcgtctc acctgaggag cccgctctga gaaggtcagt tcctgacact gtccctggcg gcagactgcc ctcatgccc ttggccaggg gacgcctgca ccctcactcg agtgtggag acttcctct ggcggggacc tgctggaggc ctgaagatgc ggctgcctgg agttaacagc aaggtcagcc attcccaggg ttgctgccc tgtctctggc gagggactca gccaggccta aaggtcagcc attcccaggg ttgctgccc tgtcttggc gagggactca gccaggccta ggcactggtg gcccctctgg tccaggactt gcacgctgca tttccctgct tccaaaggaa ggaatttgga ctggagacca ggcaggctc atgcacccc ttctctgcct ataaataatc aggtcccca tgcaaatcca ggtctgaggt cctccgatgg aatggagccc attcagagca gtccagtggt ggccctctgg ggctaagccc gtgaactttg ctcttggag ccccagcag ggccttgggt tgggaaggga gttcctggc accctccccg gcaggatggg tttaaccagc aggaacttga aggaattgt ctgttgtgcg ccggtgacct agaggcacag gtccgcctc agctccttgg gttccctttt ccccctgga ccactcacac ttcctgggg aaccctagcc ttggggcaga gcaggctggc acaccttgc cactctacac ttcctgggt aaccctagcc tgggggaag gcaggccagc cagcctggca ttctgcttt tccagccca gaggctcccc tgtccactcc cagggccagc cagcctggca ttctgcttt tccaactgc tcaggaggtc acatggaagc cctcctccc cgccacttgc cgggcttctg ggatgggagc cgagcttgga agttgccatc ccttggaac ccgctccca gaggcttcca tcccagggg gccgtttct atcctggaa agacagccca gctcgtccaa gaggcttct cccggttctt cagccataag cgtctgctc ctttgaagcc ctgtggggtg aacctgtcc gtcaactgc atggatgtct tccagcac atggatgtct ttgaaacca aggctgacc ccttccaggg aatgccctt tttctactgg gtgtaacca ttgaaatcac aggctgaccg ccttccaggg aatgcccttt tttctactgg gtgttaacca agttccccag tcaggcactg gggaggctgc aataaccaga tgcagctctt taataatagt gtgggcacga gaggggcggg gcctgtgcag tcccgtgcct gtctagtgtc agagccagga tttaaagcca ggtccgccct gccacgtggc tcttcccatc ttgctgggat cctcctcgga ggctgtcttc ccctggctgg aggattgggc ctgtgaagtc acaggttgtc tcgttctagt ctcatgcct cggtgcctgc cccgtgccc ccctggctg ccctgtgtct tcgttctagt cccgccaggc actcacgggg cactggagtt tgctcttgtc cttttctca gcaaatcttc cccgccaggc actcacgggg cactggagtt tgctcttgtc cttttcttca gcaaatcttc agatccactt tgttggagat ggaacttccc tggaagcatc tgtcctttga gtagagatag gggttggctt ttcagctgat gccaggtcag acctcagagg tggctaggga gtgagaagtg ccctcaacag cctcttagtc cgcccctgcc agcctcgtgc tggacagaga actcagggct ggccacccta ggaggagaca cggcgtcctg tgccgtggc taggcgtcgc gctcatggca gggatacaca gacagcccc aaggttattc aacccaggct tccagttaag ccacaggaat gtgcagagta aaggtccca gggagggcc ctgggagagg caacgtaagt gtgtggcca gggagggccc ctgggagagg aaaggtagata gaaggtggga aggggtcaca ggaagggcct tgtaggccca gggagccgcg tgagaatagta gaaggtggga aggggtcaca ggaagggcct tgtaggccca gggagccgcg tgagaatagta aggagttaga aggggtcaca ggaagggcct tgtaggccca gggagccgcg tgagaatagta aggagtggga aggagtggga aggagggcct aggagacgcca ggcaataga

tggaaatgtg agtagcttag cgtacgccag agaggtggga aatggggccg ggccactgcg ggaggggtgt tcagaatcgg ccactttct cttgtttaaa atatctgctc tgctggggtcccttactca gggtgtagct attctaatta tccttattgt tggaggcttc aaaatcaatc agtegggccc cacatgtacc acttetgtt atttatateg gttggttggt tgatttacag ggtctccctc tgtctccgg gctggaaccc gggtgtttga agctgcagtg agctatgate gcaccgcacg gtcatgtgat cgcacagtgg tgagatcate gcccactgca gcttcaaaca cccaggttca agggatcctc ccacctcage ctcctgagta gctgggacca caggcacaga ccaccacacc gggctaatta aaaaaaattt tttttttag aggtaggata ttgctgttt acccaggctg gtctcaaact ggcctcaagt gatcctccca ccttggttc ccaaagtgct ggcattacaa gtgcggcca ctgagctagg ttcttggata ctctctttag gaaaaatgcct ctcttggaa gttgcagtga gccaagatcg tctctggata ctctcttaga gggcgacaaag cgagactcca tctcaaaaaa aaaaaagaaa aagaaaatgc ctcttcaagt cttttgatag tttttctgat ggaggatttg tctttttcct gttgattga agggcttct tacattctcg

atcaaagtct tttgcccaca tataagtaca ttacaaatat cctctcccac actgcagctt 21360. aaatacaaaa atgtattttc atcttcaggt ttgtcacttg attcagaatg gccatatttc aaatctccac cacccagagg aaggtgtttc ccaccttgct gtattcagcc agcgtttttc acctccttca gcttgaaagt cctgggcaag gggcactggg cttgttcctc tggccctgca

tttttctgat ggaggatttg tcttttcct gttgatttgt agggctttct tacattctcg

POR.ST25.txt ggcttggggc aagggtcaga aggaaacaga agaacggaaa atggggcggg gtgaggggtg gtgcgggggt agaaggccag aagtggacag tggacagaag attgtgtcac cccagcctga tcctgaggct ggcgggcacc aggctgccct ctggagggga tggaccaagg tgagggctgt agtcccagga acgcagagaa gggaaaaatg aaatgtggcc cagtgcaggg gaagcagagg gggtctttga atcccagggg agctgacct tgcgcaggtgac cttgagggca gagcgggggt cagccaggtg aggggactgt ggcaggaagg ctctgaggtg aagcgatggc gtgcacagga ttctgaggcc accatgcagg gagggggtgt gaattaggca tcaagcttgg tttgtggagg ggagtggcag gtgacgctgg agacagactc tgaggggact catgtgccg gatccatgg gtcgtgggag ctgttgaaga gcggagcagg gaagtggcag atgtgagagg caggggctgg agaaggaaga ggtgaagag tggaaggtca ggctgaggtc aggccgtgg gacctgggct gtgggtgggg aggaagagg tggaaggtca ggctgaggtc aggccgtggg gacctgggct gtgggtgggg aggaagaggg aagtggaaac cttggctctt ccttgaggga aacaagccca tatctatctg ggtgcaggag aggtcttggc tttgcaaagc actggtgtcg caagaggctt tactgtaggg gaaatgggaa gggtgagctg gtgcgggagg cctgggagcc ctggtgttgg attagaggcc agctgctggc ttagcccctg gggagtggca cgggacaaag ctggaatgtc ccctccctgt gctgccacaag catcccatga aacctgcatc taaggacaac cacgccccgt gacacctgtg tcccatgaca cctgcctcc acgctcattg caaaacagtg agtttcctg 22500 cctcctctgt cagagagagc agctttgtgg aaaagatgaa gaaaacggtg agtttcctgc atgtctttac tcttctcagg aagcctcggc cccgatgggc atgtaatcaa gtctagcaga cggctggcgt caccrcatag aggatgtccc ggtggccagg agaggggaacg cagcccggct cgcttgggag tcatcttgc ctaaccaaag ccctgaagca gctctgctgt tgctgggaca gttgtttcc ttgaatcttt actttttgaa caaaccaaag tctaagaaca gaccctccct ctaactcacg aagcttctcc cgtctggccc tggcctgtcc aggagcagag gtaaatctca cagagctgcg gtcgtggcac ctttgtttttt 22740 22920 ttttttgaga tggaatctcg ctctgtcacc caggctggag tgcagtggcg caatctcggt tcactgcaag ctccacctc cgggttcaag ccattctcgt gcctcagcct cccgagtagc tgggattaca ggtgcgtgcc accacgcca gctaatttt gtattttaa tagagatggg atttcaccat gttggccaga ctggtcttga actcctgacc tcagggtatc cgccgcctc agctcccaa agtgctggga ttacaggcgt gaaccaccgc accaggcca tttaattgtagg catcagtact acattacat agttaaaata aaaacatcca ctattcagtg gaaagctccc ctctgccacc cactcatccc cactgttctt attattatg gatccttcta gagticctgt atgaacatac aagtaaaaca aacagagact cttatttttä atttaaaaaa acctttattt tattttagag acagggtctc actgtgttgc ccaggctgga gtgcagcggc gccatcatag ctcactgcag cctcaaactc ctagactcaa gccatcctcc taccacagcc tcccaagtag ctgggactac aggtgcacac caccacgcct ggctaatttt ttaatttatt cttcatagga acaggttctc gctatgttgc ccaggctggt cttgaactcc tggcctcaag caatccttct gcctccgcct cccaaagtgc tgggactgta ggtgcgagcc attgcatca gcctacactt ttcttaaaca acaaaacgtg gcatactatg tgcactgttc cagaccttgc ttttttttt ttttttgagac agagtctcgc tctgtcgccc aggctggagt gcaatggcac ggtcttggct cactgcaacc ttcacctcct cggttcaagt gattctcccg catcagcctc cggagtagtt ggggttagac gcctgccacc gtgcctggct aatttttgta tttttagtag agacggggtt tcaccatgtt gaccaggctg gtctcaaact gctgacctcg tgatccatct gcctcggtct cccaaagtgc tgggattaca ggcgtgagcc actgcgcccg gctgaccttg ctttaaaaaa aaaagaaaca aaaacaacta gatagtctc aaagatcctt ccatatcaat acaaagatac tgccatcatc ttagctgtac catgattcca ttatatggccattggattaaacat actgatcac acttaacct gtccatataa agatagacac tggggtgt atctggattc actgtaacgc acttaaccct gtcctattaa agatgggcac tggggctgtt gctactcttt ggctcttacc aacaatgtca ctgtgaatat gtagctcggt ttgcacattt caaatacaaa gcagtcccag aagtggaatt gctggattgg aaggtagatg tgtttgcaat cgtgatagaa gctacaaatc gtccccgtag gagtcacacc gtggcacgcg ctcaagaata gcgacgtgtg agaaaactgt tccccacagc cttgccaaca gtttgttatt aaagtttaga tttttgtcag ttttctaggc ttaaaaaaaaa aactcagtat agttgtaatt tacatttta ttictgttgg gattgatctt tctccttgaa attattaggg agatgaatct cttgtctgtg atataagttg aaaatatctt gcccgttaaa gagtttgtct tttagtgaga ttccatctct taaaaaaaag tttgtctttc aacctagctg atcgcatttt tatttgttt gctgtgtaaa agttacagag tcacctatat gattctttct tttcgtgact tctggtctta gagtcataat tigaaggtct tccccatgct aaagagataa agatattcct gtatttttt tttctagtac ttttagggtt ttgttttca tattcaaaat ttaaaatctg atctattggg aatttatcct gatgtaagat gtgaggtatg aatccaactc tacatttac atagctgtct aaacaccatg tattagagtc catctttcc ccactggttt gaaatgccac ctttatcata tacttaattc 25380 ctgggctggg cgcagtggct catgcctgta atcccaacac tttgggaggc cgagatgggc aggtcgcttg agcccaggag tttgagacca gcctgggcaa catggcgaaa ccccatctcc acaaaaaata gaaaaattag tgggacacag tggtgcgcac ctatagtccc cgctacctga Page 9

POR.ST25.txt gaggctgaag tgggaggata gcttgagctt gggaggcaca gattgcagtg accactggac tcaaacctgg gcaacagcta caccctgtgt caaataataa taataatagc tgggtctctg ggttcttttc actgggcgca acgtgttcaa ggttcaccca cactgtagca tatgttagta cttccttttt attgccaaat aatgtttaa tatatggatt cttacttatt tttccgtgac ttttaggatc aatttgttga ggaaaaaaaa gctgttcaga ttttttttt tttttttggt agcactttgg gaggctgaga cgggcggatc acctgaggtc aggagctttg agaccagctg gaccaacatg gtgaaacct gtctctacta aaaacacaaa aaattagcca ggcatggtga cggacacctg taatcccagc tattcaggag gctgaggcag gaaaatcgct tgaacccagg aggcagaggt ttcagtgagc cgagatcgca ccactgcact ccagcctagg cgacaagagc aggcagaggt ttcagtgagc cgagatcgca ccactgcact ccagcctagg cgacaagagc aaaactctgt ctcaagaaaa aaaaaaacaa tttttaatga tttaacaatg atttgtggaa aattcaggaa ctttaaaaag tataagaaca tttattgtaa tccctaagtt ttttttggtg gtggttttgt tttgagactc agtctcactc ctgtcaccca ggctggagtg cagtggctca atcacagctc acttcagcct caacctccca ggctcaagtg atcctccac ctcagcctcc caagtagcta gaaccatagg catgggcac cacacccaga taaattttt gtattttag tagagaacagg gtttgccat gttgcccagg ctggtctcaa actcctgggc tcaagtcatc ctcttacctc ggcctcccaa agtactagga ttacagaga gagcaggc tcaagtcatc ctttaactc ggcctcccaa agtactagga ttacaggaaa ctagagacta ctttaggcat tttaatctgg aagggattc acacagggaa gggggtactt ccaggttact ggaggggctg aaggagacagg ttggtctcta agaatacaca gaagcaacct gcaaggtagc tgctctgttc gaatgcagcc tgaaactgtt gagttcagga cacaccacgt gtagctgtaa tccaggataa 27540 27600 cattaataag taatctagag atgatttaaa gtatgttgga ggatgtgtgt aggctacaca caaataccac atcatttat agcagggact tgagcatcct tggatttttg ttttttgggt ttttttgtga tggagttttg ctcttgtagc ccaggctgga gtgcaatggc gcgatctcgg ctcaccacaa cctctgcctc ccaggtccaa gcgattctcc tgcctcagcc tcccaagtag ctgggattac aggcatgtgc caccatgccc ggctaatttt gtatttttag tagagacagg gtttctcca tattggtcag gctggtcttg aactctcgac ctcaagtcat ccaccgcct tggcctcca aagtgctggg attataggcg tgagccactg gaggtggagt cttgctctgt caccaggct ggagtgcagt ggcgtgttct cagttcactg caacctccac ctcctgggtt cagctgttt tcctgcctca gcctccctag taactgggat tacaggtgca cgccaccatg cccggctaat tttgtagtt ttagtagaga tggagttca ccatgttggt caggctggtc ttgaactcct gacctcaggt aattgccag cctcagcct ccaaagtgct gggatcacag gtgtgagcca ccacgcccgg ctgcatcctt ggatgtaagt atctatggga ggtcctggaa ccattcccc acggataggg gctatacatt tggttacttt ttttaacttt gttttttcc cgtgtcatga aaatgtcaga agtgtgatct tgagcagccg cgtgtgtgag attgccttgg tgacctttgc cctctttgc cacagtggct gtgaccagt gaagcaagtc ccagaggaac ttagaaggga ctcaaagcca ggaaggaaag ggggcggcct ggagggcccc cgcctgccag gcctgcccag tgggtgttca ccggagccgt ggctgaggtc tgtggccctc accaaccctg tgtctgcctt ccttagggga ggaacatcat cgtgttctac ggctcccaga cggggaytgc agaggagttt gccaaccgc tgtccaagga cgcccaccgc tacgggatgc gaggcatgtc agcggaccct gaggagtatg acctggtaag ctgccaccgc gtgctggccc cagatggagg

POR.ST25.txt

cagtgggtag gacagggagc aggtctgtag ggcgcccctc agcaggggga ggcyggcagg gağtögögtő étggőaagac gtőctcőgaa gttőcettec cgtgağógte áttgccatéc gggcactacc ccacagccct ctccaggctg catttgcagt tgatgaacag tttagttaga taccagtgtg caccaggct gtgcggtgcc tgggagcttt ggaatgaggt tcccagggtg gccccagacc tgcatcagct caggaggctg cattctgatg gctctttgt gccaagcttc actttcctct agaaacacat cctctccgct ccaccatata acgggtggatactt cacctggcac aaatgcccat gccccagccc ctccgtgttg ttacttctct ctgatccac gacactcaga catcctggc ctggtgccac cctgggcagg acctggcctt ccccatctgg tgcgggttga accttgaaca ggctcagtca tggccggggc gcggtcctgt ccctgttct gcaggcygac ctgagcagcc tgccagagat cgacaacgcc ctggtggttt tctgcatggc cacctacggt gagggagacc ccaccgacaa tgcccaggac ttctacgact ggctgcagga gacagacgtg gatctctctg gggtcaagtt cgcggtgagt cacccagaga ctgctatggg ctcccggtgg cctgcggtgc ctccctgggg actccagatc catgtatctg aaaggcagcc ctccagaccc ccaccctgtc ctcagcagcc agggcaggcc acttgtgaga ccctctcctc ccctggagcc ttcctgatgc tctgggttta tgtcgctggg tgccccaggg tgcacagtcc tgagctttgg ggatggggt gggtcggggc rtgcctggca ccaggtaccg ttgccacatg ggcctccct gagccgctc ccctctctc tcctcggcc agcttggagg aggacttcat cacctggcga gagcagttct ggcyggcygt gtgtgaacac tttggggtgg aagccactgg cgaggagtcc aggtgagcaa gtgcccgcag gtgcggtggg tggcctgggc gggtcctgtg ccgagggcag ccaccctgga acaagggctg gcagtgggt gcagcaaggt tagaagacac tccgtcatag ggtcgaggag ggaccttggt cccagccag gactcactct gccacgttgc tctgcactgc cctggggcag cggggtgcat cccacctct gacaaggaca catcgctcg ggctctgtgg ctaggttcaa ctttggcaaa agggctcatt tccttaaaat ctgccccag ggcttcgg caaaacataa cgttcctct tgtgcccttg atggcccctg ggtgctcctt accttctcc agaatggaagc ctgcccagc ctgccccgg ttctgggcgt ctggcccc ggctcccc gacagctccc ggcctcccc gccccccc gccccccc ctccttgtgc ctggcccccg gcagctccac gccgcctccc tccttgctcc ctcgcctgcc ctccttgtgc atctgcagca ggggctcccc tgcttcttgt cgtatgtacc tgggacctca ccccaaaggc catgcacggt ctcccctgta gtccaacccc tccttctgg gactgacccc tgccgcttcc cggcctcacc cttggtctcc cctttccagc attcgccagt acgagcttgt ggtccacacc cagactecace cttggtetec cetttecage attegecagt acgagettgt ggtecacace 3240 gacatagatg cggecaaggt gtacatgggg gagatggge ggetgaagag ctacgagaac 32400 cagaaggeet gagtggaggg agegtggett ggggcagaeg getetrtgge cactggtgea 32460 ceecaggeet agetegeget ggtecaceat atcecacag ggeeettete accagaceee 32520 gtgeeeggg ttggaggag tgtecactag etgeeeggeet etgeeeggeetegggeetegggeetegggeetegggeetegggeetegggeetegggeetegggeeteggeet 33240. cccagccct ttgatgccaa gaatccgttc ctggctgcag tcaccaccaa ccggaagctg aaccagggaa ccgagcgcca cctcatgcac ctggaattgg acatctcgga ctccaaaaatc aggtaccagc tgccactgtc accccctgaa ccctcactct gggcctcctg acctggggca

POR.ST25.txt

gggccagcct tccgcccctc ccgagcctca catctccctc caggtatgaa tctggggacc acotogotot otačecaoce aacoacteto eteteoteaa ecaoetogoe aaaateetoo gtgccgacct ggacgtcgtc atgtccctga acaacctgga tggtgagtgc cacagtcagg 34320 cacgacccac ctctgccggc ctggggctgc ccccacctcc tcactgagt caggagtcag cagccctccc aggccccaa gggtgcacag tggtgccgag tggcagtagc cattacgcgg ggctgcctgg gcctggtggg gctgcccagc ctgagcctcc cgctgtgaag ccctcggacc ccactggtca ccaacctggg ccgagcccac ctcgcccac ccctggtca cggggctgcc ttactgtcgg cttcacaggc cgggggctgt gtcagaccgt gtagtgtgg gtgaaagcac agggggtcgc ctagtgtgg gtgaaagcac agggggtcgc ctagtgtgg gtgaaagcac agggggtcgc ttactgtgg gtgaaagcac agggggtcgc ctagtgtgg gtgagggccc agacttcc ctagcaggg cctgcctctg atgaggactt cctgtctggt tggaggcccc agacttggcc ccaggggcag ggaggcatca gagaggcatag gccttgttc cagcaccagc tggggcacct gttgcygcag agctggccca aggtgtcacc ccctcyygcc gcagccaccc atccccagga ggcggccgc tacccaagt cctgcctgts tcttccctgc agagggagtcc aacaagaagc acccattccc gtgccctacg tcctaccgac cggccctcac ctactacctg gacatcacca acccgccgcg taccaacgtg ctgtacgagc tggcgcaggag caaggtgcgc cccctcagcc cccccaacct ccgccccgtc ttcccacgc ttcctaccccc ccggggccagta gccccccgcg tttccgaggc cccggaggg caaggtgcgc caatcaccc catctcaccc ccgtgtctct taggagctgt acctgagct gggtgggggg gtggtggag gcccggaggc acatctcaccc ccgtgtctct taggagctgt acctgagctg
ggtggtggag gcccggaggc acatcctggc catcctgcag gactgcccgt ccctgcggcc
ccccatcgac cacctgtgtg agctgctgc gcgcctgcag gcccgctact actccatcgc
ctcatcctcc aaggtgaggg ccggcactgc cctgccagcc acacrctgga ggcccagccc
tgctcacagc aggcagagtg caaggcggca caggagctcc gagatctgag ccctgagctc
cagttccagc cccagcgcag ctccaaatgc ctcccaggc tgtggactca gtcgggctgg
cttgtgagat tctcagcac tgtccagcc cggtccccag aaccagtccg ggaagccgct
ggggagggggg cctctgaggt ttgggtgcca ggtggctgg aagaggccct gggtgagtgg 35760 ctcccacaac acacaggaca gaagcccctc tgggccggca ggggaaggcc cagcctcaat ccttcttgct cccgtgccgc tgactgtgaa acttgtggtg cacaaccctc agggtggtga agcetetge ggggaggaag gteagggeac aggaeggea gggaeagagg ggaegetace acteagaece gggatgggag gaaaggggaa tgteeagatg ceagggeeac tecegaetea eccaeagtga ggteeatggt gtgeegeteg eccaegegeec geaggeggta gaggeageeg

POR.ST25.txt ctctggtagt agtactggag aaactgcacg aagcctgggc cgggcggagg acagaggagc agggctgagc cccgggaggg gttccctgcc cctgccccc accacgggtg cctccagggc tcagcacaga catctgggac actcactctg gtacatggaa aaggagagga attggttccg gaatttctgg tacatgagac cgtcgggcct aaggtaaaaa gtggagggca gtgtggggac ccttggggat gccgtgtatc ccctccttgt cccagctcct gcccctgccg gggcccagcc <210> <211> <212> DNA <213> Homo sapiens <400> ggagactccc acgtggacac cagctccacc gtgtccgagg cggtggccga agaagtatct ctttcagca tgacggacat gattctgttt tcgctcatcg tgggtctcct aacctactgg ttcctcttca gaaagaaaaa agaagaagtc cccgagttca ccaaaattca gacattgacc tcctctgtca gagagagcag ctttgtggaa aagatgaaga aaacggggag gaacatcatc gtgttctacg gctcccagac ggggactgca gaggagtttg ccaaccgcct gtccaaggac gtgttctacg gctccagac ggggactgca gaggagtttg ccaaccgct gtccaaggac gcccaccgct acgggatgcg aggcatgtca gcggaccctg aggagtatga cctggccgac ctgagcagcc tgccagagat cgacaacgcc ctggtggtt tctgcatggc cacctacggt gagggagacc ccaccgacaa tgcccaggac ttctacgact ggctgcagga gacagacgtg gatctctctg gggtcaagtt cgccaggat tggccaaggac tctacgact ggctgcagga gacagacgtg gatctctctg gggtcaagtt cggggacactc gggccaaggac ttgagcagc tcggcgccca gcgcacttc gagctggggt tgggcgacaa cgatgggaac ttggaggagg acttcatcac ctggcgagag cagttctggc cggccgtgtg tgaacacttt ggggtggaag ccactggcga ggagtccagc attcgccagt acgagcttgt ggtccacacc gacatagatg cggccaaggt gtacatgggg gagtcgagac cagtaggag ctacgagaac cagaagccc cctttgatgc caagaatccg ttcctggcat tggacatcca caaccggaag ctgaaccagg gaaccgagg ccacctatg cactggaat tggacatctc ggactccaaa atcaggtag gaaccgagg ccacctcatg gtgacccaa cctggacgtc tcatgtcct gaacaacctg gatgaggagt ccaacaagaa gcacccattc ccgtgcccta cgtctaccg cacggccctc acctactacc tggacatcac caacccgccg cgtaccaacg tgctgtacga gctggccgaa tacgccctcga agcccctcga gcagaactcg gcagaactcg caaccaacgcg caaccaacag tgctgtaccaa gctggcccta acctactacc tggacatcac caacccgccg cgtaccaacg tgctgtacga gctggccgaa tacgccctcga agccctcgaa gcaggagctg ctytyccta tytctacty cattyctic activation tygacattac caaccegecy cytaccaacy tyctytacya getgycgcay tacgectegy agecetegya geaggagety ctycycaaga tygactect etecgycgay gycaaggage tytacetyay etygytygy gaggecegya gycacatect gycatecty caggactyce etycetycy geeceetate gycacacety gygytyty caggeceget actaetecat egyeteate tecaaggic acceptacty tytygyayta egyetyctygy gycycacacy teaacaaggy cytygecacat tytygyayta egyetycgy gygycaagga geetytegy gyagaacygcy geetytegy gytycecaty tecatogea gycygecagt acceptacyc gyfyeld 1560 ttcaaggcca ccacgcctgt catcatggtg ggccccggca ccgggtggca ccctttcata ggcttcatcc aggagcgggc ctggctgcga cagcagggca aggaggtggg ggagacgctg ctgtactacg gctgccgccg ctcggatgag gactacctgt accgggagga gctggcgcag ttcacagggg aggtgcgct cacccagctc aacggggcct tctcccggga gcagtcccac

aaggtctacg tccagcact gctaaagcaa gaccgagagc acctgtggaa gttgatcgaa ggcggtgccc acatctacgt ctgtggggat gcacggaaca tggccaggga tgtgatcgaa accttctacg acatcgtggc tgagctcggg gccatggagc acgcgcaggc ggtggactac atcaagaaac tgatgaccaa gggccgctac tccctggacg tgtggagcta g

<210> 3 <211> 676 <212> PRT <213> Homo sapiens

<400> 3

Gly Asp Ser His Val Asp Thr Ser Ser Thr Val Ser Glu Ala Val Ala 1 10 15 Glu Glu Val Ser Leu Phe Ser Met Thr Asp Met Ile Leu Phe Ser Leu 20 25 30 Ile Val Gly Leu Leu Thr Tyr Trp Phe Leu Phe Arg Lys Lys Glu 35 40 45 Glu Val Pro Glu Phe Thr Lys Ile Gln Thr Leu Thr Ser Ser Val Arg
50 60 Glu Ser Ser Phe Val Glu Lys Met Lys Lys Thr Gly Arg Asn Ile Ile 65 75 80 Val Phe Tyr Gly Ser Gln Thr Gly Thr Ala Glu Glu Phe Ala Asn Arg 85 90 95 Leu Ser Lys Asp Ala His Arg Tyr Gly Met Arg Gly Met Ser Ala Asp 100 105 110 Pro Glu Glu Tyr Asp Leu Ala Asp Leu Ser Ser Leu Pro Glu Ile Asp 115 120 125 Asn Ala Leu Val Val Phe Cys Met Ala Thr Tyr Gly Glu Gly Asp Pro 130 140 Thr Asp Asn Ala Gln Asp Phe Tyr Asp Trp Leu Gln Glu Thr Asp Val 145 150 155 Asp Leu Ser Gly Val Lys Phe Ala Val Phe Gly Leu Gly Asn Lys Thr 165 170 175 Tyr Glu His Phe Asn Ala Met Gly Lys Tyr Val Asp Lys Arg Leu Glu 180 185 190 Gln Leu Gly Ala Gln Arg Ile Phe Glu Leu Gly Leu Gly Asp Asp Asp 200 205 Gly Asn Leu Glu Glu Asp Phe Ile Thr Trp Arg Glu Gln Phe Trp Pro 210 220 Ala Val Cys Glu His Phe Gly Val Glu Ala Thr Gly Glu Glu Ser Ser 225 230 235 240 Ile Arg Gln Tyr Glu Leu Val Val His Thr Asp Ile Asp Ala Ala Lys 245 250 255 Val Tyr Met Gly Glu Met Gly Arg Leu Lys Ser Tyr Glu Asn Gln Lys 260 270 Pro Pro Phe Asp Ala Lys Asn Pro Phe Leu Ala Ala Val Thr Thr Asn 275 280 285 Arg Lys Leu Asn Gln Gly Thr Glu Arg His Leu Met His Leu Glu Leu 290 295 300 Asp Ile Ser Asp Ser Lys Ile Arg Tyr Glu Ser Gly Asp His Val Ala 305 310 315 Val Tyr Pro Ala Asn Asp Ser Ala Leu Val Asn Gln Leu Gly Lys Ile

POR.ST25.txt 325 330

335

Leu Gly Ala Asp Leu Asp Val Val Met Ser Leu Asn Asn Leu Asp Glu 340 345 350 Glu Ser Asn Lys Lys His Pro Phe Pro Cys Pro Thr Ser Tyr Arg Thr 355 360 365 Ala Leu Thr Tyr Tyr Leu Asp Ile Thr Asn Pro Pro Arg Thr Asn Val 370 380 Leu Tyr Glu Leu Ala Gln Tyr Ala Ser Glu Pro Ser Glu Gln Glu Leu 385 390 395 Leu Arg Lys Met Ala Ser Ser Ser Gly Glu Gly Lys Glu Leu Tyr Leu 405 410 415 Ser Trp Val Val Glu Ala Arg Arg His Ile Leu Ala Ile Leu Gln Asp 420 425 430 Cys Pro Ser Leu Arg Pro Pro Ile Asp His Leu Cys Glu Leu Leu Pro 435 440 445 Arg Leu Gln Ala Arg Tyr Tyr Ser Ile Ala Ser Ser Ser Lys Val His 450 460 Pro Asn Ser Val His Ile Cys Ala Val Val Glu Tyr Glu Thr Lys 465 470 475 480 Ala Gly Arg Ile Asn Lys Gly Val Ala Thr Asn Trp Leu Arg Ala Lys 485 490 495 Glu Pro Val Gly Glu Asn Gly Gly Arg Ala Leu Val Pro Met Phe Val 500 505 510 Arg Lys Ser Gln Leu Arg Leu Pro Phe Lys Ala Thr Thr Pro Val Ile 515 520 525 Met Val Gly Pro Gly Thr Gly Trp His Pro Phe Ile Gly Phe Ile Gln 530 540 Glu Arg Ala Trp Leu Arg Gln Gln Gly Lys Glu Val Gly Glu Thr Leu 545 555 560 Leu Tyr Tyr Gly Cys Arg Arg Ser Asp Glu Asp Tyr Leu Tyr Arg Glu 565 570 575 Glu Leu Ala Gln Phe His Arg Asp Gly Ala Leu Thr Gln Leu Asn Val 580 585 590 Ala Phe Ser Arg Glu Gln Ser His Lys Val Tyr Val Gln His Leu Leu 595 600 605 Lys Gln Asp Arg Glu His Leu Trp Lys Leu Ile Glu Gly Gly Ala His 610 620 Ile Tyr Val Cys Gly Asp Ala Arg Asn Met Ala Arg Asp Val Gln Asn 625 630 635 Thr Phe Tyr Asp Ile Val Ala Glu Leu Gly Ala Met Glu His Ala Gln 645 650 655 Ala Val Asp Tyr Ile Lys Lys Leu Met Thr Lys Gly Arg Tyr Ser Leu 660 665 670 Asp Val Trp Ser 675

15

		•		POR.ST25.txt
<210> <211>				
<212>	DNA			

<213> Homo sapiens

<400> 4

cgtcaccrca tagag

<210> 5 <211> 15 <212> DNA <213> Homo sapiens

<400> 5 acggggaytg cagag 15

<210> 6 <210> 6 <211> 15 <212> DNA <213> Homo sapiens

<400> 6 15 gggaggcygg caggg

<210> 7 <211> 15 <212> DNA <213> Homo sapiens

<400> 7 tgcaggcyga cctga 15

<210> 8 <211> 15 <212> DNA <213> Homo sapiens

<400> 8 tcggggcrtg cctgg 15

<210> 9 <211> 15 <212> DNA <213> Homo sapiens

<400> 9 ttctggcygg ccgtg **15** .

<210> 10 <211> 15 <212> DNA <213> Homo sapiens <400> 10

15 ggccggcygt gtgtg

<210> 11 <211> 15 <212> DNA <213> Homo sapiens

wo	02/26768		PCT/US01/30877
		POR.ST25.txt	. • .
<400> cggctc	11 trtg gccac	•	15
<210> <211> <212> <213>	12 15 DNA Homo sapiens		
<400> agtctg	12 cygt gtatc		. 15
<210> <211> <212> <213>	13 15 DNA Homo sapiens		
<400> ccagaa	13 gsgt ccttg		15
<210> <211> <212> <213>	14 15 DNA Homo sapiens		
<400> tggaga	14 crga gactc		15
<210> <211> <212> <213>	15 15 DNA Homo sapiens	·	
<400> aaagcc	15 cygg ccgct		15
<210> <211> <212> <213>	16 15 DNA Homo sapiens		
<400> ctgttg	16 cygc agagc		15
<210> <211> <212> <213>	17 15 DNA Homo sapiens		
<400> cccct	17 cytg ccgca		15
<210> <211> <212> <213>	18 15 DNA Homo sapiens		i.
<400> cccctc	18 cygc cgcag		15

wo	02/26768		PCT/US01/30877
	•	POR.ST25.txt	
<210> <211> <212> <213>	19 15 DNA Homo sapiens		
<400> tgcctg	19 tstc_ttccc		15
<210> <211> <212> <213>	20 15 DNA Homo sapiens		
<400> gccaca	20 crct ggagg		15
<210> <211> <212> <213>	21 15 DNA Homo sapiens		
<400> gcctcg	21 · gygt ggcgg		. 15
<210> <211> <212> <213>	22 15 DNA Homo sapiens		
<400> cctcgg	22 tktg gcggt		15
<210> <211> <212> <213>			
<400> ccaagg	23 cygg ccgca		15
<210> <211> <212> <213>	15		
	24 gycg gggag		15
<210> <211> <212> <213>	15		
<400> ctcacc	25 cygg cccct		15
<210> <211> <212> <213>	26 15 DNA Homo sapiens		÷

wo	02/26768		PCT/US01/30877
	•	POR.ST25.txt	
<400> cgccgc	26 tsgg atgag		15
<210> <211> <212> <213>	1 5 ·		
<400>	•		15
<210> <211> <212> <213>			•
<400> tgtggg	.28 trag tgagt		. 15
<210> <211> <212> <213>	15		
	29 cycc tggct		15
<210><211><211><212><213>	30 15 DNA Homo Sapiens		
<400> ggctgg	30 cgtc accrc		15
<210> <211> <212> <213>	31 15 DNA Homo sapiens		
<400> gacato	31 ctct atgyg		15
<210> <211> <212> <213>	15		
<400> tcccag	32 acgg ggayt	•	15
<210> <211> <212> <213>	15		
<400> aaacto	33 ctct gcart		15
<210>	34	Page 19	

wo	02/26768		PCT/US01/3087
<211> <212>	DNA	POR.ST25.txt	
<213> <400>	Homo Sapiens	•	15
agcagg	ggga ggcyg		13
<210> <211> <212> <213>	15 DNA		
<400> cccact	35 ccct gccrg		15
<210> <211> <212> <213>	DNA		
<400> tgttto	36 ctgca ggċyg		15
<210> <211> <212> <213>	15 DNA		
<400> ggctgo	37 ctcag gtcrg		15
<210> <211> <212> <213>	15		
<400> gtgggg	38 gtcgg ggcrt		15
<210> <211> <212> <213>	39 15 DNA Homo sapiens		
<400> ctggtg	39 gccag gcayg	·	15
<210> <211> <212> <213>	40 15 DNA Homo Sapiens		
<400> gagcag	40 gttct ggcyg	· · · · · · · · · · · · · · · · · · ·	. 15
<210> <211> <212> <213>	41 15 DNA Homo sapiens	·	
<400>	41		

WO 02	2/26768		PCT/US01/30877
ttcacaca	acg gccrg	POR.ST25.txt	15
<212> [42 L5 DNA Homo Sapiens		·
<400> 4 agttctgg	12 gcc ggcyg		15
<211> 1 <212> 1	13 L5 DNA Homo sapiens		
<400> 4 agtgttca	43 aca cacrg	•	15
<211> 1 <212> 0	14 L5 DNA Homo Sapiens		
	14 ggc tctrt		15
<211> 1 <212> 1	15 LS DNA Homo sapiens		•
<400> 4 gcaccag	45 tgg ccaya		15
<211> C	46 L5 DNA Homo Sapiens		
<400> 4 aggctcag	46 gtc tgcyg ·		15
<212> [47 15 DNA Homo sapiens		· .
	47 ata cacrg		15
<210> 4 <211> 3 <212> 4 <213> 1			
	48 cag aagsg		15
	49 15	Page 21	• .

wo	02/26768	PCT/US01	1/30877
		POR.ST25.txt	
<212> <213>	DNA Homo sapiens		
	49 caag gacsc		15
<210> <211> <212> <213>	50 15 DNA Homo Sapiens		
<400> cgtcct	50 tgga gacrg		15
<210> <211> <212> <213>	51 15 DNA Homo sapiens		
<400> tgatct	51 gagt ctcyg		15
<210> <211> <212> <213>	52 15 DNA Homo Sapiens		
	52 aaag cccyg		15
<210> <211> <212> <213>	53 15 DNA Homo sapiens 53		
	agcg gccrg		15
<210> <211> <212> <213>	54 15 DNA Homo Sapiens		
<400> gggcac	54 ctgt tgcyg		15
<210> <211> <212> <213>	55 15 DNA Homo sapiens		
<400> gggcca	55 gctc tgcrg	•	15
<210> <211> <212> <213>	56 15 DNA Homo Sapiens		
<400> gtgtca	56 cccc ctcyt	Page 22	15

WO 02/26768	PCT/US01/3087
-------------	---------------

<210> <211> <212> <213>	57 15 DNA Homo sapiens				
<400> ggtggct	57 tgcg gcarg				15
<210> <211> <212> <213>	58 15 DNA Homo Sapiens		.:		
<400> tgtcace	58 cccc tccyg				15
<210> <211> <212> <213>	59 15 DNA Homo sapiens				
<400> gggtgg	59 ctgc ggcrg		·		15
<210> <211> <212> <213>	60 15 DNA Homo Sapiens				
<400> aagtcc	60 tgcc tgtst				15
<210> <211> <212> <213>	61 15 DNA Homo sapiens	. •			
<400> tctgca	61 ggga agasa		•		15
<210> <211> <212> <213>	62 15 DNA Homo Sapiens				
<400> ctgcca	62 gcca cacrc				15
<210><211><211><212><213>	63 15 DNA Homo sapiens		•	· .	
<400> gctggg	63 cctc cagyg				15
<210> <211>	64 15				

wo	02/26768		PCT/US01/30877
		POR.ST25.txt	
<213>	Homo Sapiens	•	
<400> gcaagg	64 gcct cggyg		15
<210> <211> <212> <213>	65 15 DNA Homo sapiens		
<400> gctcca	65 ccgc cacrc		15
<210> <211> <212> <213>			
<400> caaggg	66 cctc ggtkt		15
<210> <211> <212> <213>	15		٠
<400> agctcc	67 accg ccama		15
<210> <211> <212> <213>	68 15 DNA Homo Sapiens		
<400> acgaga	68 ccaa ggcyg		15
<210> <211> <212> <213>	69 15 DNA Homo sapiens		,
<400> tgttga	69 tgcg gccrg		15
<210> <211> <212> <213>	70 15 DNA Homo Sapiens		
<400> gccaag	70 gagc ctgyc		15
<210> <211> <212> <213>	71 15 DNA Homo sapiens		
<400> gccgtt	71 ctcc ccgrc		15

wo	02/26768	PCT	r/US01/3087
	•	POR.ST25.txt	
<210> <211> <212>	72 15 DNA	••	
<213> .	Homo Sapiens	·	
<400> cccgcg	72 ctca cccyg		15
<210> <211>	73 15	·	-
<212> <213>	DNA Homo sapiens		
<400> cgtggc	73 aggg gccrg		15
<210>	74		•
<211>	15	•	
<212> <213>	DNA Homo Sapiens		٠.
<400>	74	•	
ggctgc	cgcc gctsg		15
<210> <211>			
<212>	DNA		
<213>	Homo sapiens		
<400> gtagto	75 ctca tccsa		15
<210>	76	·	•
<211> <212>	15 DNA		•
<213>	Homo Sapiens		
<400>	76	•	•
ggcagg	gcca cagsc		_. 15
<210>	77	·	
<211>	15 .		
<212> <213>	DNA Homo sapiens		
<400>	77		•
999999	cact gtgsc		15
<210>	78 15		
<211> <212>	15 DNA		
<213>	Homo Sapiens		

Page 25

15

<400> 78 tacgtctgtg ggtra

<210> 79 <211> 15 <212> DNA <213> Homo sapiens

WO 02/26768		PCT/US01/30877			
	POR.ST25.txt				
<400> 79 . gaccccactc actya	·	15			
<210> 80 <211> 15 <212> DNA <213> Homo Sapiens					
<400> 80 ctgtaatcag ctcyc		15			
<210> 81 <211> 15 <212> DNA <213> Homo sapiens					
<400> 81 ggagggagcc aggrg		15			
<210> 82 <211> 10 <212> DNA <213> Homo sapiens		· ·			
<400> 82 tggcgtcacc		10			
<210> 83 <211> 10 <212> DNA <213> Homo sapiens					
<400> 83 atcctctatg)	10			
<210> 84 <211> 10 <212> DNA <213> Homo sapiens					
<400> 84 cagacgggga		. 10			
<210> 85 <211> 10 <212> DNA <213> Homo sapiens		-			
<400> 85 ctcctctgca		10			
<210> 86 <211> 10 <212> DNA <213> Homo sapiens		·			
<400> 86 agggggaggc	•	10			

wo	02/26768								PCT/US	01/30877
				PO	R. ST25	txt				
<210> <211> <212> <213>	87 10 DNA Homo s	sapiens								
<400> actccc	87 tgcc									10
<210> <211> <212> <213>	88 10 DNA Homo s	sapiens	·		٠					
<400> ttctgc	88 aggc		·			•		٠.		10
<210> <211> <212> <213>	10 DNA	sapiens	-							
<400> tgctca										10 .
<210> <211> <212> <213>	90 10 DNA Homo	sapiens						-		
<400> gggtcg	90 gggc					•				10
<210> <211> <212> <213>	10 DNA	sapiens		-						
<400> gtgcca	91 ggca						٠			.10
<210> <211> <212> <213>	92 10 DNA Homo :	sapiens					•			٠
<400> cagttc	92 tggc									10
<210> <211> <212> <213>	93 10 DNA Homo	sapiens								. •
<400> acacac	93 ggcc									10
<210> <211> <212> <213>	94 10 DNA Homo	sapiens			,					

wo	02/26768	PCT/US01/3	30877
<400>	. ,	POR.ST25.txt	
tctggc			10
<210> <211>	95 10		
<212> <213>	DNA Homo sapiens		
<400> gttcac	95 acac		10
<210> <211>	96 10		
<212> <213>	DNA Homo sapiens		
<400> agacgg	96 ctct		10
<210> <211>	97 10		
<212> <213>	DNA Homo sapiens	· ,	
<400> ccagtg	97 gcca		10
<210> <211> <212>	98 10 DNA		
<213>	Homo sapiens		
<400> ctcagt	98 ctgc		10
<210> <211>	99 10		
<212> <213>	DNA Homo sapiens		•
<400> ggggat	·99 acac		10
<210> <211>	100 10		
<212> <213>	DNA Homo sapiens		
<400> caacca	100 gaag		10
<210> <211>	101 10	•	•
<212> <213>	DNA Homo sapiens	•	
<400> ctccaa		-	10
<210>	102		

wo	02/26768		PCT/US01/30877
		POR.ST25.txt	
<211> <212> <213>	10 DNA Homo sapiens		·
<400> ccttgg	102 agac		10
<210> <211> <212> <213>	103 10 DNA Homo sapiens		
<400> tctgag	103 tctc	•	. 10
<210> <211> <212> <213>	104 10 DNA Homo sapiens	•	
<400> atcaaa	104 gccc		10
<210> <211> <212> <213>	105 10 DNA Homo sapiens		
<400> gtgagc	105 ggcc		10
<210> <211> <212> <213>	106 10 DNA Homo sapiens		
<400> cacctg	106 ttgc	· :	10
<210> <211> <212> <213>	107 10 DNA Homo sapiens		
<400> ccagct	107 ctgc	•	. 10
<210> <211> <212> <213>	108 10 DNA Homo sapiens		
<400> tcaccc	108 cctc	•	10
<210> <211> <212> <213>	109 10 DNA Homo sapiens		
<400>	109	•	

wo	2/26768		PCT/US01/30877
ggctgc	gca .	POR.ST25.txt	10
<210> <211> <212> <213>	110 10 DNA Homo sapiens		
<400> cacccc	110 ctcc		10
<210> <211> <212> - <213>	111 10 DNA Homo sapiens		
<400> tggctgo	111 :ggc		10
<210> <211> <212> <213>	112 10 DNA Homo sapiens		
<400> tcctgco	112 :tgt		10
<210> <211> <212> <213>	113 10 DNA Homo sapiens		
<400> gcaggga	113 laga		10
<210> <211> <212> <213>	114 10 DNA Homo sapiens		
<400> ccagcca	114 acac		10
<210> <211> <212> <213>	115 10 DNA Homo sapiens		
<400> gggccte	115 ccág	·	10
<210> <211> <212> <213>	116 10 DNA Homo sapiens		<u>:</u>
<400> agggcct	116 tcgg	·	10
<210> <211>	117 10		

wo	02/26768				PCT/US01/30877
		POI	R.ST25.txt	-	
<212> <213>	DNA . Homo sapiens				
<400> ccaccg	117 ccac		•		10
<210> < <211> < <212> < <213>	10				
<400> gggcct	118 cggt				10
<210> <211> <212> <213>	119 10 DNA Homo sapiens	.·			
<400> tccacc				•	10
<210> <211> <212> <213>	120 10 DNA Homo sapiens		•		
<400> agacca	120 aggc		·		10
<210> <211> <212> <213>	121 10 DNA Homo sapiens		•		
<400> tgatgc	121 ggcc				10
<210> <211> <212> <213>	122 10 DNA Homo sapiens				
<400> aaggag	122 cctg				·. 10
<210> <211> <212> <213>	123 10 DNA Homo sapiens	٠.			
<400> gttctc				•	10
<210> <211> <212> <213>	124 10 DNA Homo sapiens				
<400> gcgctc	124 accc		Page 31		10

<210> <211> <212> <213> <400> ggcaggg	125	sapiens		· .			10
<210> <211> <212> <213> <400>	126	sapiens			t.	÷	10
<210><211><212><212><213>	127 10 DNA	sapiens				,	
<400> gtcctc					·		10
<210> <211> <212> <213> <400>		sapiens					
agggcc <210> <211>							10
<212> <213> <400> gggcac	DNA Homo 129	sapiens	·			,	10
<210> <211> <212> <213>	130 10 DNA Homo	sapiens					
gtctgt	. •					٠.	10
<210> <211> <212> <213>	131 10 DNA Homo	sapiens		٠	• .		
<400> cccact							10
<210> <211> <212>	132 10 DNA			Page 3	32		

```
POR.ST25.txt
<213> Homo sapiens
<400> 132
taatcagctc
                                                                                                10
<210> 133
<211>
         10
<212>
         DNA
<213>
         Homo sapiens
<400> 133
                                                                                                10
gggagccagg
<210> 134
<211>
         3120
<212> DNA
<213> Homo sapiens
<220>
<220>
<221> allele
<222> (30)..(30)
<223> PS1: polymorphic base G or A
<220>
<221> misc_feature
<222> (61)..(120)
<223> n's represent sequence between PS1 and PS2
<220>
<221> allele
<222> (150)..(150)
<223> PS2: polymorphic base C or T
<220>
<221> misc_feature
<222> (181)..(240)
<223> n's represent sequence between PS2 and PS3
<220>
<221>
<220>
<221> allele
<222> (270)..(270)
<223> PS3: polymorphic base C or T
<220>
        misc_feature
<221>
<222> (301)..(360)
<223> n's represent sequence between PS3 and PS4
<220>
<221>
         allele
<222>
         (390)..(390)
        PS4: polymorphic base C or T
<220>
<221> misc_feature
<222> (421)..(480)
<223> n's represent sequence between PS4 and PS5
```

PCT/US01/30877

WO 02/26768

WO 02/26768 POR.ST25.txt <220> <221> allele <222> (510)..(510) PS5: polymorphic base G or A <220> <221> misc_feature <222> (541)..(600) <223> n's represent sequence between PS5 and PS6

<220> <221> allele
<222> (630)..(630)
<223> PS6: polymorphic base C or T

<220>

<221> misc_feature
<222> (661)..(720)
<223> n's represent sequence between PS6 and PS7

<220> <221> allele
<222> (750)..(750)
<223> PS7: polymorphic base C or T

<220> <221> misc_feature
<222> (781)..(840)
<223> n's represent sequence between PS7 and PS8

<220> allele <221> <222> (870)..(870) <223> PS8: polymorphic base A or G

<220>
<221> misc_feature
<222> (901)..(960)

<223> n's represent sequence between PS8 and PS9

<220> <22U>
<221> allele
<222> (990)..(990)
<223> PS9: polymorphic base C or T

<220> <221> misc_feature <222> (1021)..(1080) <223> n's represent sequence between PS9 and PS10

<220> allele <221> <222> (1110)..(1110) <223> PS10: polymorphic base C or G

<220> <221> misc_feature

```
POR.ST25.txt
<222> (1141)..(1200)
<223> n's represent sequence between PS10 and PS11
<220>
<220>
<221> allele
<222> (1230)..(1230)
<223> PS11: polymorphic base G or A
<220>
<221> misc_feature
<222> (1261)..(1320)
<223> n's represent sequence between PS11 and PS12
<220>
<221> allele
<222> (1350)..(1350)
<223> PS12: polymorphic base C or T
<220>
<221> misc_feature
<222> (1381)..(1440)
<223> n's represent sequence between PS12 and PS13
<220>
<221> allele
<222> (1470)..(1470)
<223> PS13: polymorphic base C or T
<220>
<221> misc_feature
<222> (1501)..(1560)
<223> n's represent sequence between PS13 and PS14
<220>
<221> allele
<222> (1590):.(1590)
<223> PS14: polymorphic base C or T
<220>
<221> misc_feature 
<222> (1621)..(1680)
<223> n's represent sequence between PS14 and PS15
<220>
<221> allele
<222> (1710)..(1710)
<223> PS15: polymorphic base T or C
<220>
<221> misc_feature
<222> (1741)..(1800)
<223> n's represent sequence between PS15 and PS16
<220>
<221>
       allele
<222> (1830)..(1830)
<223> PS16: polymorphic base C or G
                                         Page 35
```

```
<220>
<221> misc_feature
<222> (1861)..(1920)
<223> n's représent sequence between PS16 and PS17
<220>
<220>
<221> allele
<222> (1950)..(1950)
<223> PS17: polymorphic base G or A
<220>
<221> misc_feature <222> (1981)..(2040)
<223> n's represent sequence between PS17 and PS18
<220>
<221> allele
<222> (2070)..(2070)
<223> PS18: polymorphic base T or C
<220> ·
<220>
<221> misc_feature
<222> (2101)..(2160)
<223> n's represent sequence between PS18 and PS19
<220>
<221> allele
<222> (2190)..(2190)
<223> PS19: polymorphic base G or T
<220>
<221> misc_feature
<222> (2221)..(2280)
<223> n's represent sequence between PS19 and PS20
<220>
<221> allele
<222> (2310)..(2310)
<223> PS20: polymorphic base C or T
<220>
<221> misc_feature
<222> (2341)..(2400)
<223> n's represent sequence between PS20 and PS21
<220>
<220>
<221> allele
<222> (2430)..(2430)
<223> PS21: polymorphic base T or C
<220>
<221> misc_feature
<222> (2461)..(2520)
 <223> n's represent sequence between PS21 and PS22
```

POR.ST25.txt <220> <221> allele (2550)..(2550) <222> <223> PS22: polymorphic base C or T <220> <221> misc_feature <222> (2581)..(2640) <223> n's represent sequence between PS22 and PS23 <220> <221> allele (2670)..(2670) <222> <223> PS23: polymorphic base C or G <220> misc_feature (2701)..(2760) <221> <222> <223> n's represent sequence between PS23 and PS24 <220> <221> <222> allele (2790)..(2790) PS24: polymorphic base C or G <220> misc_feature (2821)..(2880) n's represent sequence between PS24 and PS25 <221> <222> <220> <221> <222> allele (2910)..(2910) PS25: polymorphic base G or A <220> <221> <222> misc_feature (2941)..(3000) n's represent sequence between PS25 and PS26 <220> <221> <222> <223> allele (3030)..(3030) PS26: polymorphic base T or C <220> <221> misc_feature <222> (3061)..(3120)
<223> n's represent sequence 3' to PS26 atcaagtcta gcagacggct ggcgtcaccr catagaggat gtcccggtgg ccaggagagg 60 120 ทกทุกที่ที่กากกา ที่ทุกที่ที่ที่กา ที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที่ทุกที catcgtgttc tacggctccc agacggggay tgcagaggag tttgccaacc gcctgtccaa 180 240 300 360

ggcgcggtcc tgtccctgtt tctgcaggcy gacctgagca gcctgccaga gatcgacaac

POR.ST25.txt gagetttggg gatggggtgg ggtegggger tgeetggeac eaggtacegt tgeeacatgg ที่กับทุกทุกกับ ก็การกับทุกกับ กับทุกกับทุกกา กับทุกกับทุกก กุกกับทุกกุกกุกกุกกุกกุกกุ cttcatcacc tggcgagagc agttctggcy ggccgtgtgt gaacactttg gggtggaagc atcacctggc gagagcagtt ctggccggcy gtgtgtgaac actttggggt ggaagccact agggagcgtg gcttggggca gacggctctr tggccactgg tgcaccccag gctcagtctg gccactggtg caccccaggc tcagtctgcy gtgtatcccc atatccccac agggcccttc agattccctg tgctttgtgc aaccagaags gtccttggag acggagactc agatcaaagc tttccagcac cagctggggc acctgttgcy gcagagctgg cccaaggtgt cacccctcc gcagagctgg cccaaggtgt cacccctty tgccgcagcc acccatccc aggaggcggc cagagetgge ccaaggtgte acceetcey geegeageea eccateeea ggaggeggee qqcqqccqcc taccccaagt cctqcctqts tcttccctqc agaggagtcc aacaagaagc gagggccggc actgcctgc cagccacacr ctggaggccc agccctgctc acagcaggca gcggtggttg tggagtacga gaccaaggcy ggccgcatca acaagggcgt ggccaccaac caccaactgg ctgcgggcca aggagcctgy cggggagaac ggcggccgtg cgctggtgcc ggtgacgact gggagccccg cgctcacccy ggcccctgcc acgcaggcaa ggaggtgggg aggcggtgcc cacatctacg tctgtgggtr agtgagtggg gtcactggaa tagggggcag ccccacagac tccggcctgt aatcagctcy cctggctccc tcccgtagtc tcctgggtgt