PATENT ABSTRACTS OF JAPAN

(11)Publication numb r:

07-203210

(43) Date of publication of application: 04.08.1995

(51)Int.CL

HO4N 1/409 GO6T 5/00

(21)Application number: 05-354403

(71)Applicant: RICOH GO LTD

(22)Date of filing:

27.12.1993

(72)Inventor: SHIMURA HIROSHI

(54) PICTURE PROCESSING UNIT

(57)Abstract:

PURPOSE: To obtain the picture processing unit eliminating moir or the like by exchanging signal levels of picture element signals in a received picture element signal string so as to weaken a specific frequency component in the input signal. CONSTITUTION: An input picture element signal S whose picture element consists of 8-picture elements has a value of 256 gradation. A selector 12 acts like selecting usually the signal S or selecting a picture element signal P preceding by B picture elements being a signal to be selected and transferred from a picture input section. A line buffer 11 has a data length of B picture elements in parallel 8-bits, shifts one picture element of the signal S for every input and the picture element signal app ars at the output by B-times of shift. On the other hand, an output of the picture element signal received by the line buffer 11 is s t to a latch W An output Q of the latch 18 and a signal T preceding by B-picture elements being and an output of the buffer 11 are objects of exchange. The signals T, Q are given to a subtractor 14, the difference of them is given to a comparator 15, where the difference is compared with a prescribed value A,

and the signals are exchanged only when the signal level difference is within the prescribed value A.

LEGAL STATUS

[Date of request for examination]

20.06.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Dat of final disposal for application]

[Patent number]

[Dat of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平7-203210

(43)公開日 平成7年(1995)8月4日

(51) Int.Cl.⁶

餓別配号 庁内整理番号

FΙ

技術表示簡所

H04N 1/409 G06T 5/00

H 0 4 N 1/40

101 C

G06F 15/68

320 A

審査請求 未請求 請求項の数12 FD (全 8 頁)

(21)出願番号

特額平5-354403

(71) 出顧人 000006747

株式会社リコー

(22)出顧日 平成5年(1993)12月27日

東京都大田区中馬込1丁目3番6号

(72)発明者 志村 浩

東京都大田区中馬込一丁目3番6号 株式

会社リコー内

(54) 【発明の名称】 画像処理装置

(57)【要約】

【目的】連続する信号系列上に一定周期で重量された雑音の周波数成分を除去して安価な手段でモアレなどを解消できる画像処理装置を提供する。

【成】入力された國素信号列の中から複数の国素信号をサンプリングし、上記サンプリングしたそれぞれの対象國素信号の信号レベルを所定の國素信号の信号レベルと比較したとき、その信号レベルの差が所定値A以内の場合、上記入力された國素信号列中の比較した國素信号間で信号レベルの交換を行う手段を備えた構成。また上記において、入力された國素信号列の全國素信号をサンプリングし、サンプリングされた対象回案信号と信号レベルを比較する所定の國案信号を、入力された國素信号 列中で対象 國案信号から一定間隔Bだけ離れた位置の信号とする構成にした。

【特許請求の範囲】

【請求項1】 連続する画素の画素信号列として入力す る画像信号を処理する画像処理装置において、入力した 画素信号列の中から複数の画素信号をサンプリングし、 該サンプリングした画素信号の信号レベルを所定の画素 信号の信号レベルと比較し、前記サンプリングした信号 レベルと前配所定の画素信号レベルとの差が所定値A以 内の場合、前記入力した画素信号列と、該画素信号列と 比較した画素信号との間で信号レベルの交換を行うこと を特徴とする画像処理装置。

【請求項2】 入力した國素信号列の全國素信号をサン プリングし、該サンプリングした画素信号の信号レベル を比較する所定の画素信号を、入力した画素信号列中で あって対象画素信号から一定間隔B離れた位置の信号と したことを特徴とする請求項1記載の画像処理装置。

'1' または '0' のいずれかをランダ 【蘭求項3】 ムに出力する交換決定手段を備え、信号レベルの比較条 件を満たし且つ前記交換決定手段出力値があらかじめ定 めた所定の値のときのみ信号レベルを交換したことを特 徴とする請求項2記載の画像処理装置。

【請求項4】 前配一定間隔Bをモアレ周期の2分の1 にしたことを特徴とする請求項2及び3記載の画像処理

【醋求項5】 サンプリングをランダムな間隔で行うよ うにしたことを特徴とする請求項1記載の画像処理装

【請求項6】 対象画素信号と信号レベルを比較する所 定の画案信号をサンプリングした隣接画案信号としたこ とを特徴とする簡求項5配載の関像処理装置。

【蘭求項7】 対象画素信号と信号レベルを比較する所 定の画素信号を、入力した画素信号列中で対象画素信号 から一定間隔Cだけ離れた位置の画素信号としたことを 特徴とする請求項5記載の画像処理装置。

【請求項8】 対象囲素信号と信号レベルを比較する所 定の画素信号を複数個とし、前記複数個の画素信号及び 対象画素信号のそれぞれの間における信号レベルの差が 所定値A以内の場合、前配入力した画素信号列中の信号 レベル比較を行なった3個以上の画素信号間で信号レベ ルをランダムに交換したことを特徴とする簡求項1記載 の画像処理装置。

【酵求項9】 サンプリングした信号レベルが所定値B より大きいことを信号レベル交換の条件にしたことを特 徴とする請求項1乃至8配載の画像処理装置。

【簡求項10】 ライン単位またはそれ以上の所定単位 で、信号レベルの交換を複数回行うようにしたこと特徴 とする請求項1乃至9記載の画像処理装置。

【鯖水項11】 モアレテストモード時、入力画素信号 列がモアレ除去回路をパスする手段と、ディザ化手段の 後段に設けられたモアレテストモード時のモアレ周期を

ないときラインパッファの入出力遅延をモアレ周期検出 手段から与えられたモアレ周期の2分の1の闽霧間隔に する手段を備えたことを特徴とする請求項4記載の画像 処理装置。

【請求項12】 モアレ周期検出手段を、画像信号のピ ークからピークまでの時間を計測する手段と、上記時間 に所定誤差範囲で一致するピークからピークまでの時間 を連続して所定回数検出したときその時間をモアレ周期 とする手段を備えたことを特徴とする請求項11記載の 画像処理装置。

10 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像信号や音声信号など 連続する信号系列中に一定周期で発生する雑音を除去す る処理装置に係り、特に連続する画素の画案信号列とし て入力される画像信号中に一定周期で発生する雑音によ るモアレの発生を防ぐことができる画像処理装置に関す వ్.

[0002]

20 【従来の技術】網点で構成されたカラー印刷物などの原 稿を読み取ったり、原稿を網点化(ディザ化)して画像 形成する場合、モアレが発生することが知られている。 これは、光電変換素子の配列などの周期性と網点原稿に よる入力光の周期性が干渉し、あるいは網点原稿による 入力画像情報の周期性と出力段における網点化(ディザ 化) によって生成される信号の周期性が干渉して発生す るものである。また、特公平3-32264号公報に配 載されているように、カラー画像信号において、色信号 間の規則性も干渉を引き起こし、モアレの原因になる。

【0003】このようなモアレ雑音を除去するために、 30 従来は光電変換素子受光部の形状を菱形にし、光電変換 素子の入力側で改善を図ったり、出力段のディザ化手段 の前にフィルタを散けることにより干渉の原因となる一 方の周波数成分を除去している。また、特公平3-32 264号公報に記載の技術では、特定色の画案信号は一 定周期の信号であるが、他の色の画素信号は特定色の画 素位置に対して間隔をランダムに変化させて色信号間の 規則性を解消している。しかしながら、上述したような 方法ではいずれの場合も装置が高価となるという問題点 があった。 40

[0004]

【発明の目的】したがって、本発明の課題は上述したよ うな従来技術の問題を解決し、連続する信号系列上に一 定周期で重畳された雑音の周波数成分を除去して安価な 手段でモアレなどを解消できる画像処理装置を提供する ことにある。

[0005]

【課題を解決するための手段】この目的を達成するため に本発明に係る画像処理装置は、第1の手段として、連 検出するモアレ周期検出手段と、モアレテストモードで 50 続する画案の画案信号列として入力される信号レベルの

画像信号を処理する画像処理装置において、入力した画素信号列の中から複数の画素信号をサンプリングし、骸サンプリングした対象画素信号の信号レベルを所定の画素信号の信号レベルと比較し、その差が所定値A以内の場合、前記入力した画素信号列中の比較した画素信号と前記所定の画素信号との間で信号レベルの交換を行うように構成する。第2の手段として、前記第1の手段に加え、入力した画素信号列の全画素信号をサンプリングし、該サンプリングした対象画素信号と信号レベルとを比較する所定の画案信号を、入力した画素信号列中で対 10 象画素信号から一定間隔Bだけ離れた位置の信号とするように画像処理装置を構成する。

【0006】第3の手段として、前記第2の手段に加え、「1"または「0"のいずれかをランダムに出力する交換決定手段を備え、信号レベルの比較条件を満たし且つ交換決定手段の出力値が所定の値のときのみ信号レベルを交換するよう画像処理装置を構成する。第4の手段として、上記第2及び第3の手段において、一定間隔Bをモアレ周期の2分の1とする。第5の手段として、上記第1の手段において、サンプリングをランダムな間にで行うよう画像処理装置を構成する。第6の手段として、上記第5の手段において、対象画素信号と信号レベルを比較する所定の画素信号をサンプリングした隣接画素信号とする。第7の手段として、上記第5の手段において、対象画素信号と信号レベルを比較する所定の画素信号とで、大量に関係とでは離れた位置の画素信号とする構成にした。

【0007】第8の手段として、上記第1の手段におい て、対象画素信号の信号レベルを比較する画素信号を複 数個とし、上記複数個の画素信号及び対象画素信号のレ ベルの差が所定値A以内の場合、上記入力された画素信 号列中の信号レベル比較を行なった3個以上の画素信号 間で信号レベルをランダムに交換するよう画像処理装置 を構成する。第9の手段として、サンプリングした信号 レベルが所定値Bより大きいことを信号レベル交換の条 件にする。第10の手段として、ライン単位またはそれ 以上の所定単位で、上記信号レベルの交換を複数回行う ように画像処理装置を構成する。第11の手段として、 上配第4の手段において、モアレテストモード時、入力 画素信号列がモアレ除去回路をパスする手段と、ディザ 化手段の後段に設けられたモアレテストモード時のモア レ周期を検出するモアレ周期検出手段と、モアレテスト モードでないときラインパッファの入出力遅延をモアレ 周期検出手段から与えられたモアレ周期の2分の1の画 素間隔にする手段を備える。第12の手段として、上配 第11の手段において、モアレ周期検出手段を、画像信 号のピークからピークまでの時間を計測する手段と、上 配時間に所定誤差範囲で一致するピークからピークまで の時間を連続して所定回数検出したときその時間をモア レ周期とする手段を備える。

[0013]

【作用】本発明に係る画像装置は上述したような手段を備えたため、副作用的雑音を発生させることなく、入力された画案信号列上に重叠された特定周波数成分を弱め、また、サンプリングした信号レベルが所定値Aより大きいことを信号レベル交換の条件にする構成によって、地肌レベルの信号が地肌レベルでない信号と交換されることがなくなる。更にライン単位またはそれ以上の所定単位で、上記信号レベルの交換を複数回行う構成によって、入力された画案信号列上に重叠された特定周波数成分をより効果的に弱めることができる。

[0014]

【実施例】以下、図面に示した実施例に基づいて本発明 を詳細に説明する。図1は本発明に係る画像処理装置に おける画像出力部の一実施例を示すプロック図であり、 モアレ除去の場合の構成を示している。同図において、 1はモアレ除去回路、2はディザ化手段、3は記録制御 回路、4は画像形成手段である。モアレ除去回路1に入 力される画素信号列の各画素信号は複数ピットから成る 多値の階調信号であり、ディザ法等による階調信号では ない。この信号列には図示していない画像入力部などで 発生した周期性のある雑音つまりディザ化手段2で生成 される周波数に近い周波数成分を持った雑音を含んでい る。モアレ除去回路1は後述するようにモアレ発生の原 因である強いパワーを持った干渉し合う二つの周波数成 分の一方である人力画素信号列上に重優された雑音を完 全に除去するものではなく、その雑音中の干渉する上配 周波数成分を他の周波数成分並に弱める機能を有し、該 モアレ除去回路1から出力される画素信号列はディザ化 手段2でディザ信号に変換される。 *30*

【0015】餃ディザ化手段2は画像形成手段4が多階 調数による階調表現能力は低いが、解像(単位長当たり の画素数)能力が高い場合などに、入力されたそれぞれ の画素をマトリックス化された複数の網点で表現して、 1個の網点の階調数が低くてもよいようにする。その結 果、上記マトリックスがn×nのマトリックスであるな らば、ディザ化手段2から出力される網点信号列はモア レ除去回路1の出力信号列のn倍の周波数成分を含む。 もし前記モアレ除去回路1がない場合には、入力囲業信 号列上に重量された雑音の周波数成分である網点信号列 の上配周波数成分に近い周波数成分が網点信号列の新た な周波数成分(入力される信号列のn倍の周波数成分) と干渉するが、モアレ除去回路1の挿入により、本発明 に係る画像処理装置ではそのような干渉が発生しない。 【0016】画像形成手段4は例えば電子写真方式によ っており、記録制御回路3はレーザ光の発光時間を制御 する回路を含む構成となっている。レーザ光発光時間は ディザ化手段2から与えられる各網点信号の値に応じた パルス巾の信号に比例した時間であり、画像形成手段4 に含まれる感光体ドラム上に発光時間に比例した大きさ

50

40

のドット(僧像)を形成し、骸ドットの大きさに対応し てトナーが付着するので多階瞬の濃度が実現される。

【0017】図2は図1に示したモアレ除去回路1の群 猫を示すプロック図である。同図において、11は入力 画素信号列の連続するB画素分の画素信号を一時的に著 えるラインパッファ、12はラインパッファ11に入力 する画素信号を、画像入力部側から転送されてきた入力 画素信号列Sにするか或は交換されたB画素分先行する **画素信号Pにするか選択するためのセレクタ、13はデ** ィザ化手段2へ出力するデータ(画案信号)をラインパ ッファ11から出力されたデータ (画素信号) Tにする か交換されたB画素分後行するデータ(画素信号)Qに するか選択するためのセレクタ、14は画素信号列中で B画素分離れた二つの画案信号の信号レベルの差を算出 する減算器、15は減算器14によって算出された信号 レベルの差が所定値A以内かどうか比較するコンパレー 夕であり、所定値A以内の時には'1' (ハイレベル) を出力する。16は減算器14で信号レベルの差を求め る対象となった二つの画素信号の信号レベルを交換する か否かを決定する一つの条件となる交換決定手段であ り、'1'または'0'をランダムに出力する。17は ANDゲートで、コンパレータ15の出力が'1'であ り、且つ交換決定手段16の出力が「1」のとき、その 出力が'1'となり、そのときセレクタ12、13がP 及びQを選択するようにセレクタ12、13を制御す る。

【0018】以下、図2に示す実施例の動作を順を迫っ て説明する。入力画素信号列Sは1画素が例えば8ピッ トで構成され256階調の値を持ち、セレクタ12は通 常Sを選択し、8ピットパラレルの画素信号がラインパ ッファ11に入力される。 該ラインパッファ11は8ビ ットパラレルでB画素分の長さを有し、ラインパッファ 11は入力画素信号列Sの1画素がラインパッファ11 に入力される毎に図の左から右へシフトし、B回のシフ トで出力に國素信号が現われる。一方、ラインパッファ 11に入力する画案信号はラッチ18にもセットされ る。 該ラッチ18よりの出力信号Qとラインパッファ1 1から出力されたB画素分先行した画素信号Tが、ある 条件の下で交換の対象となる画素信号であり、これらの 画像信号T及びQは減算器14に与えられ、その差の出 40 カ信号がコンパレータ15に供給され、コンパレータ1 5 は前配差の出力信号と所定値Aとを比較する。

【0019】すなわち、交換しようとしている二つの画案信号の信号レベル差が所定値A以内の場合にのみ信号交換が実行される。該信号交換は入力画素信号列上に重置された雑音の特定周波数成分を弱めるために行うものであって、雑音低減という観点からいえば、むしろ交換される二つの画素信号の信号レベル差は大きい方が元の信号波形をより大きく崩すことになり特定周波数成分を記める効果が大きいが、何に信息レベル差が大きいかの

であっても信号交換を行うように構成し、且つ二つの信 号が共に有効個号である場合には、交換後の信号レベル が交換前と大きく異なり、交換した画素に隣接する画案 の信号と整合しなくなるという新たな問題点が発生して しまう。例えば、交換前の信号レベルが5で、その直前 が7、直後が3で、7,5,3と推移していたのが、5 を20に交換したりすると、7,20,3という推移にな り、交換された信号20は信号波形を乱すことになる。 【0020】したがって、前述したように、比較した二 信号の差が所定値A以内のときのみ交換を許可するとい う条件が必要になる。なお、上配所定値Aは実験的に求 められる。交換の条件としては、前述したように信号レ ベルの差が所定値以内であること及び交換決定手段16 の出力が'1'という条件が付加される。較交換決定手 段16はランダマイザを備えており、'1' または 0'をランダムに発生するので、このような条件を付 加することにより、交換はランダムな頻度で行われるこ とになる。このような交換決定手段を付加する理由は、 交換決定手段を付加せずに信号レベル差のみを用いて信 号交換を行うと、周期的に交換が行なわれることにな

り、その周期に対応した周波数成分の雑音が発生し、これがあらたな干渉の一方の周波数成分になるためである。したがって、交換決定手段が '1' と'0' を交互にくり返すように設定すると周期的交換の周期が2倍になるだけで周期的交換に他ならず、問題は解決しないことが分かる。すなわち、'1''0'の出現はランダムでなくてはならない。これら二つの条件がANDゲート17に与えられ、このAND条件が成立した場合にセレクタ12及び13は交換された信号を選択し、國案信号列中に組み込まれる。以下、このような処理が1面素入力毎に行われる。

【0021】図3は上記交換を説明する図である。同図 (a) の入力画素信号列の信号レベルは交換処理前の信 骨レベル、(b) は現対象囲素まで交換処理が済んだ信 号レベルである。この例では対象画素信号の交換相手は 8 画素先行する画素信号である。つまり画素間隔Bは8 **画素分であり、この場合、図2に示したラインパッファ** 11は8画素分でよい。図から明らかなように対象画素 の交換相手が既に交換を行なっていて、交換後16週素分 (2×B) 先行する画案信号のレベルになる画案信号も 出現している。今後更に交換処理が進行していくと24画 素分(3×B)あるいは32画素分(4×B)先行する画 素信号のレベルになる画素信号も出現するはずである。 図では雑音によって信号レベルが正規の信号レベルから 変動している様子は表現されていないが、重畳された雑 音レベルも一緒になって交換されており、(b)の様子 から雑音の周期性つまり特定周波数成分が崩されている ことは容易に類推できる。

信号波形をより大きく崩すことになり特定周波数成分を 【0022】また、交換する画素間の間隔Bをモアレ周 弱める効果が大きいが、仮に信号レベル差が大きいもの 50 期の2分の1にするとモアレを抑える効果がより大きい

ことが実験的に確認されている。モアレ周期は装置の構成要素によって決まるため設計時にモアレ周期を確認すると共に、上記画素間隔Bの値を検出したモアレ周期の2分の1に設定することが可能である。またモアレ周期を自動的に検出して、画素間隔Bの検出されたモアレ周期の2分の1に設定することも可能である。この場合、図4に示したように、画像処理装置にモアレ周期テストモードを設けると共に、セレクタ13aによってモアレ除去回路1をパスさせ、ディザ化手段2の出力部に積極的にモアレを発生させ、モアレ周期検出手段22によりまりにモアレ周期を検出し、ラインパッファ11aを一定間隔Bの可変範囲の最大値以上の画素分の容量を備えたFIFOで構成することにより実現することができる。

【0023】同図において、セレクタ13aは3方向か らの信号(各8ピット)のいずれか一つを選択して次段 のディザ化手段2へ出力する。上記3方向からの信号中 の二つは前配図2に示した信号T及びQであり、新たに モアレ除去回路1に入力される入力画業信号列を直接入 力している。この入力画素信号列は図示していない操作 部等からの信号であるモアレテストモードCによって選 択される。ラインパッファ (FIFO) 11 a は書き込 みクロックαによってセレクタ12から入力した入力画 素信号が書き込まれ、B画素分入力した際に遅延回路1 9によって書き込みクロックaよりもB 画素分遅れて出 力される読み出しクロックbによって読み出される。前 配運延回路19はカウンタを備え、そのカウンタがBレ ジスタ23によって与えられた値に達したときカウント をやめ書き込みクロックaを通過させ、読み出しクロッ クbとする。 該Bレジスタ23にはモアレ網期検出手段 22が検出した周期の2分の1の値が供給されている。 モアレ周期検出手段22は例えばカウンタやピーク検出 手段などを備え、ピークからピークまでの時間を計瀕 し、計測した値に所定誤差範囲で一致する時間を連続し て所定回数以上検出したとき、その時間に対応した画素 数をモアル周期とする。なお、図4に示すモアレ除去回 路1aでは図2に示すモアレ除去回路と共通する部分を 省略して示している。

【0024】図5にモアレ除去回路の他の実施例を示す。この実施例では入力圏素信号毎にサンプリングせず、ランダムな圏素間隔でサンプリングし、比較を行な 40っており、この構成は前述したような一定周期でサンプリングを行い、交換決定手段に従って交換するかしないか決定する場合と同等の効果をもたらす。この実施例ではランダムな圏素間隔を決定するのは乱散発生器24であり、乱数発生器20は所定数以内の数をランダムに発生する。ラインパッファ11bは例えばRAMで構成し、所定領域にサイクリックに書き込み、M圏素分番き込むと、書き込んだ順に1圏素読み出しては、そのアドレスにセレクタ12の出力圏素を書き込む動作をくり返す。このようなアクセス制御はアクセス制御回路25に 50

よって行われ、該アクセス制御回路25はカウンタを含み、乱数発生器24から得た数値をセットした後、ラインパッファ11bに1画素書き込む毎にカウンタを1づつカウントダウンさせ、カウンタが0になった際に、アクセス制御回路25が保持する現書き込みアドレスから乱数発生数値分手前のアドレスの画素信号レベルを読み出し、減算器14に与える。またその直後にアクセス制御回路25は入力画素信号列Sの現画素信号レベルをラッチ18にラッチし、それを減算器14に与え、二つの信号レベルの差が所定値A以内ならANDゲート17aの出力が'1'になる。ラインパッファから読み出した信号レベルの交換は、一方はアクセス制御回路25の制御の基づきいてゲート26を介して行われ、他方はセレクタ12を介して行なわれる。

【0025】図6も本発明に係る画像処理装置に用いる モアレ除去回路の他の実施例である。この実施例では交 換のサンプリング間隔はランダムであり、乱数発生器2 4が発生する数値をカウンタ27にセットし、このカウ ンタを入力画素信号をラインパッファに入力する毎にカ ウントダウンし、0になった際にサンプリング対象函案 信号をラッチ18にラッチし、ANDゲート17を崩く ことによって交換が行なわれる。サンプリング対象画素 信号と比較、交換される画素信号は対象画案信号から一 定画素間隔Cだけ先行する画素信号であり、それはライ ンパッファ11dの画素長をCにすることによりライン パッファ11dの出力信号Tとなる。また、交換条件の 中に、サンプリングした信号レベルが所定値Bより大き いことという条件を付加することにより記録紙の地肌が 雑音でよごれるのを防ぐことができる。図7は本発明に **30 係る画像処理装置のモアレ除去回路の要部を示すプロッ** ク図である。

【0026】以上の説明では2個の画案信号の間で交換を行なったが、図8に示すように、3個以上(図8は3個の画案信号間で信号の交換を行う一例であるが、4個以上の画案信号間で信号の交換を行う場合には類似の回路を付加することにより容易に可能である)の画案信号間の交換を行うモアレ除去回路は、上述した実施例と比較してより効果がある。図示した例では対象画案信号 a を n 画案先行する画案信号 b 及び 2 n 画案先行する画案信号 c との間でランダムに交換しようというものであり、ラインパッファ11 e 及び11 f は共に n 画素分の容量を持つ。サンプリングされた 3 信号間の信号レベルの差は減算器 1 4 a、14 b、14 c でそれぞれ求められ、その差は共に所定値 A 以内であることがコンパレータ15 a、15 b、15 c によってチェックされる。

【0027】交換回路31は次のいずれかの接続を行う。すなわち、第1にaとf、bとe、cとdの接続、第2にaとf、bとd、cとe、第3にaとe、bとf、cとd…というようにa、b、cのグループとd、e、fのグループ間の全ての組合せの接続を行い、どの

組合せの接続を選択するかは交換回路31に内蔵されるランダマイザによりランダムに信号レベルの交換の都度快定される。信号レベルの交換が3者間で行われるのは前記のようにANDゲート17dが'1'のときセレクタ30a、30b、30cを制御して行われる。

【0028】また、図9に示すような実施例によって、 1ライン単位またはそれ以上の単位でモアレ除去回路を 何回でも通してモアレ除去効果を上げることも可能であ る。この例ではモアレ除去を1ライン単位で行なってお り、1ラインパッファ33はそのために用いられてい る。複数種類(上配に説明したような様々の実施例によ ったもの)のモアレ除去回路を備えて(図では1c及び 1 dの2種類)、くりかえしの際、前回と同じ除去方法 を選択もできるし、異なる除去方法も選択できる。この 選択は制御部32がセレクタ34を制御して行う。モア レ除去回路1cまたは1dから出力された画素信号列は OR回路36を介してセレクタ35に入力し、制御部3 2によってセレクタ35が制御され、ディザ化手段2ま たは1ラインパッファ33に出力される。つまり、1ラ イン単位でセレクタ35の出力先を選択することによ り、モアレ除去回路を1回だけ通すこともできるし、任 意の複数回通すことも可能である。

[0029]

【発明の効果】以上説明したように、本発明によれば、 入力された画案信号列中の画案信号間で信号レベルの交換を行うことにより、人力された画案信号列上に重量された特定周波数成分を弱めることができるので、安価な手段でモアレなどを解消できる画像処理装置を提供できる。 また、信号レベル交換の条件を与えることにより、信号レベル交換の副作用を除去できる。更に、ライン単位またはそれ以上の所定単位で、上配信号レベルの交換を複数回行う構成では、入力された画案信号列上に 10 重畳された特定周波数成分をより効果的に弱めることが できるので、モアレなどもより効果的に解消できる。

[0030]

【図面の簡単な説明】

【図1】本技術による画像処理システムの画像出力部の 一実施例を示すプロック図。

【図2】図1に示すモア本除去回路の一実施例を示すプロック図。

【図3】(a) 及び(b) は本発明に係る画像処理システム を説明するための図。

【図4】図1に示すモアレ除去回路の他の実施例を示す プロック図。

【図 5】図1に示すモアレ除去回路の他の実施例を示す プロック図。

【図6】図1に示すモアレ除去回路の他の実施例を示す プロック図。

【図7】図1に示すモアレ除去回路の他の実施例を示す プロック図。

【図8】図1に示すモアレ除去回路の他の実施例を示す プロック図。

【図9】図1に示すモアレ除去回路の他の実施例を示す プロック図。

【符号の説明】

1・・・モアレ除去回路、2・・・ディザ化手段、3・・・記録制御回路、4・・・画像形成手段、11・・・ラインパッファ、12、13・・・セレクタ、14・・・・ 被算器、15・・・コンパレータ、16・・・交換決定手段、19・・・遅延回路、22・・・モアレ周期検出手段、23・・・Bレジスタ、24・・・乱数発生が器、28、29・・・コンパレータ、31・・・交換回路、32・・・制御部、33・・・1ラインパッファ。

(図1)

[図2]

