PROCESSAMENTO DE LINGUAGEM NATURAL

EPISODE III: EMBEDINGS INTRODUÇÃO

Alex Marino

14 de novembro de 2024

Conteúdo

Introdução ao NLP

Word Embeddings

Modelos Clássicos

Comparação

Aplicações

Word Embeddings Contextuais

Exemplos Práticos

Desafios

Estado da Arte

Futuro

Conclusão

Introdução ao NLP

- ▶ Definição de NLP
- ► Aplicações de NLP
- ▶ Desafios no NLP

O que são Word Embeddings?

- ► Representação vetorial de palavras
- Capacidade de capturar o significado semântico
- Proximidade no espaço vetorial reflete similaridade semântica

Por que usar Word Embeddings?

- Superam as representações de sacos de palavras (Bag-of-Words)
- ► Redução da dimensionalidade
- Captura de contextos e relações entre palavras

Modelos Clássicos de Word Embeddings

- ➤ Word2Vec
- ► GloVe
- ▶ FastText

Word2Vec: CBOW e Skip-gram

- CBOW (Continuous Bag of Words): Prever a palavra-alvo a partir de palavras de contexto
- Skip-gram: Prever palavras de contexto a partir de uma palavra-alvo

This is a visual comparison

GloVe

- Baseado em matrizes de coocorrência
- Captura relações globais de palavras
- Produz embeddings mais consistentes para grandes corpora

FastText

- ► Modela subpalavras e morfologia
- Melhor para linguagens com palavras raras ou compostas
- ► Usa embeddings de n-grams

Comparação entre Modelos

- ▶ Word2Vec: Simplicidade e eficiência
- GloVe: Embeddings mais robustos para grandes dados
- FastText: Vantagem em linguagens morfologicamente ricas

Aplicações dos Word Embeddings

- Classificação de Sentimentos
- ▶ Tradução Automática
- Modelagem de Tópicos
- Busca Semântica

Word Embeddings Contextuais

- Capacidade de capturar o significado das palavras em contexto
- ► Exemplos: ELMo, BERT

ELMo

- Modelo baseado em redes neurais recorrentes
- Captura informações contextuais a partir de múltiplas camadas

BERT

- ► Baseado na arquitetura Transformer
- Embeddings bidirecionais: Captura o contexto anterior e posterior

Diferenças entre Embeddings Tradicionais e Contextuais

- Embeddings Tradicionais: Representações fixas para cada palavra
- Embeddings Contextuais: Representações que variam conforme o contexto

Exemplos Práticos

- ► Embeddings em sistemas de recomendação
- ► Embeddings em sistemas de busca
- ► Embeddings em tradutores automáticos

Desafios e Limitações

- ▶ Viés nos embeddings
- ► Necessidade de grandes quantidades de dados
- Problemas de eficiência e memória.

Estado da Arte em Word Embeddings

- Avanços com modelos pré-treinados (GPT, BERT, T5)
- Customização de embeddings para tarefas específicas

Futuro dos Word Embeddings

- Evolução para modelos cada vez mais contextuais
- Integração com outras tecnologias de IA

Conclusão

- Word Embeddings s\(\tilde{a}\) o fundamentais para a maioria das tarefas de NLP
- ► Modelos continuam evoluindo com novas arquiteturas
- Contextualização é o futuro das representações de palavras

MAY THE SOURCE **BE WITH**