

نظم التشغيل 12:2 الخميس 24/6/2021 أ.د. خالد فتحي

Faculty of Computers & Information, Assiut University 3rd Level Final Exam Duration: 2 hours

* Required	
* This form will record your name, please fill your name.	
1	
* الإسم الرباعي (بالعربي فقط)	
2	
* رقم الجلوس	

لمستوي	1	*

- الاول 🔾
- الثاني 🔾
- الثالث 🔾
- رابعة 2013
- رابعة 2014 🔾
- رابعة 2015
- رابعة 2016
- رابعة 2017

4

* البرنامج

- عام 🔾
- بايو 🔾
- هندسة

* رقم المعمل

- ٠ج 🔾
- **\)**
- اب 🔾
- اد 🔾
- اه (
- $\bigcirc \ \text{ir}$
- 7ب 🔾
- ٦ج 🔾
- ٦٢ 🔘
- اه 🔾
- ٣ب 🔾
- ۳ج 🔾
- ۳د 🔾
- ٣هـ 🔾
- **)** İ٤
- ٤ب 🔾

* رقم الكمبيوتر
7
* الكود (قد تمت مراجعة بيانات الطالب ورقم الجلوس)
8 In Operating Systems, which of the following is/are CPU scheduling algorithms?
(2 Points)
Round Robin
Shortest Job First
Priority
All of the mentioned

In operating system, each process has its own
(2 Points)
address space and global variables
open files
pending alarms, signals, and signal handlers
all of the mentioned
10
What is interprocess communication?
(2 Points)
communication within the process
communication between two processes
communication between two threads of same process
none of the mentioned
Tione of the mentioned
11
A set of processes is deadlock if
(2 Points)
and process is blocked and will remain as former
each process is blocked and will remain so forever
each process is terminated
each process is terminated
all processes are trying to kill each other
an processes are dying to kill each other
none of the mentioned

The number of processes completed per unit time is known as
(2 Points)
Capacity
Throughput
Output
Efficiency
13
What is the degree of multiprogramming? (2 Points)
(2 i oiiits)
the number of processes in the ready queue
the number of processes in the I/O queue
the number of processes executed per unit time
the number of processes in memory
14
14
When the process issues an I/O request (2 Points)
(2 i oiiits)
It is placed in an I/O queue
It is placed in a waiting queue
O It is placed in the Job queue
It is placed in the ready queue

What is a long-term scheduler? (2 Points)
It selects processes which must be brought into the ready queue
It selects processes which must be executed next and allocates CPU
It selects processes which must be removed from memory by swapping
None of the mentioned
16
What is a short-term scheduler? (2 Points)
It selects which process must be brought into the ready queue
It selects which process must be executed next and allocates CPU
It selects which process must be removed from memory by swapping
O None of the mentioned
17
Suppose that a process is in "Blocked" state waiting for some I/O service. When the service is completed, it goes to the (2 Points)
Suspended state
○ Terminated state
Running state

Ready state

When several processes access the same data concurrently and the outcome of the execution depends on the order in which the access takes place is called (2 Points)
essential condition
O dynamic condition
race condition
critical condition
19
If a process is executing in its critical section, then no other processes can be executing in their critical section. What is this condition called? (2 Points)
mutual exclusion
asynchronous exclusion
synchronous exclusion
critical exclusion

Which one of the following is a synchronization tool?
(2 Points)
semaphore
○ thread
○ pipe
socket
21
DMA is used for (2 Points)
(2 i oiiits)
High speed devices
Low speed devices
Utilizing CPU cycles
All of the mentioned
22
The interval from the time of submission of a process to the time of completion is termed as
(2 Points)
waiting time
turnaround time
response time
() throughput

Which algorithm	is defined	in Time	quantum?
(2 Points)			

	round robin scheduling algorithm		
O pr	priority scheduling algorithm		
O mi	multilevel queue scheduling algorithm		
) sh	shortest job scheduling algorithm		
24	24		
	A process is selected from the queue by the (2 Points)	e scheduler, t	o be executed
O rea	ready, long term		
O rea	ready, short term		
	blocked, short term		
O wa	wait, long term		
25	25		
	What is Response time? (2 Points)		
O the	the total time taken from the submission time till the comp	letion time	
() the	the total time taken from the submission time till the first r	esponse is produced	
O the	the total time taken from submission time till the response	is output	
O no	none of the mentioned		

Round robin scheduling falls under the category of(2 Points)
Non-preemptive scheduling
Preemptive scheduling
All of the mentioned
O None of the mentioned
27
The real difficulty with SJF in short term scheduling is(2 Points)
it is too good an algorithm
knowing the length of the next CPU request
it is too complex to understand
onone of the mentioned
28
What is 'Aging'? (2 Points)
keeping track of what pages are currently residing in memory
increasing the priority of jobs to ensure termination in a finite time
keeping track of cache contents
keeping track of how many times a given page is referenced

Which of the following scheduling algorithms gives minimum average waiting time? (2 Points)
SJF
○ FCFS
O Round – robin
Priority
30
Which of the following conditions must be satisfied to solve the critical section problem? (2 Points)
Mutual Exclusion
Progress
O Bounded Waiting
All of the mentioned
31
A binary semaphore is a semaphore with integer values(2 Points)
O 2
O -1
1

A system is in a safe state only if there exists a (2 Points)
safe allocation
○ safe resource
safe sequence
all of the mentioned
33
If no cycle exists in the resource allocation graph(2 Points)
then the system will not be in a safe state
then the system will be in a safe state
all of the mentioned
one of the mentioned
34
The wait-for graph is a deadlock detection algorithm that is applicable when
(2 Points)
all resources have a single instance
all resources have multiple instances
all resources have a single 7 multiple instances
all of the mentioned

The address generated by the CPU is referred to as (2 Points)
O Physical address
Cogical address
Neither physical nor logical
None of the mentioned
36
The run time mapping from virtual to physical addresses is done by a hardware device called the(2 Points)
○ Virtual to physical mapper
Memory management unit
Memory mapping unit
O None of the mentioned
37
Program always deals with (2 Points)
absolute address
O physical address
O logical address
relative address

What is compaction? (2 Points)
a paging technique
a technique for overcoming fatal error
a technique for overcoming internal fragmentation
a technique for overcoming external fragmentation
39
In contiguous memory allocation (2 Points)
each process is contained in a single contiguous section of memory
all processes are contained in a single contiguous section of memory
the memory space is contiguous
onone of the mentioned
40
The first fit, best fit and worst fit are strategies to select a(2 Points)
oprocess from a queue to put in memory
oprocessor to run the next process
free hole from a set of available holes
all of the mentioned

In internal fragmentation, memory is internal to a partition and (2 Points)
is being used
is not being used
is always used
one of the mentioned
42
is generally faster than and (2 Points)
first fit, best fit, worst fit
best fit, first fit, worst fit
worst fit, best fit, first fit
one of the mentioned
43
Every address generated by the CPU is divided into two parts. They are(2 Points)
frame bit & page number
page number & page offset
page offset & frame bit
frame offset & page offset

The offset 'd' of the logical address must be (2 Points)
between 0 and segment limit
greater than the segment number
greater than segment limit
between 0 and the segment number
45
When high priority task is indirectly preempted by medium priority task effectively inverting the relative priority of the two tasks, the scenario is called
(2 Points)
priority exchange
priority inversion
opriority removal
priority modification

Which of the following scheduling policy is well suite	d for a time-shared operating
system?	
(2 Points)	
Round robin	
Flevator	

O Shortest job first

Assuming the above process being scheduled with the SJF scheduling algorithm (non-preemptive). The waiting time for process C is: (2 Points)

Process	Arrival Time	Processing Time
A	0	4
В	1	5
С	2	4
D	3	2

()	2
	ノ	_

)	1	00	rro	ot.
ノ	4	CO	rre	CI

O 6

^{0 8}

O None of the mentioned

Assume Quantum value two, given a RR scheduler, what is the response time of job B?
(2 Points)

Process	Arrival Time	Processing Time
A	0	4
В	1	5
С	2	4
D	3	2

()	Λ
	/	U

_	_					
		4			_	- 4
()	- 1	CO	rr	Д	CT
\	/		\circ		v	\mathbf{c}

- O 2
- 3
- O None of the mentioned

Given a FIFO scheduler, what is the average response time of the four jobs? (2 Points)

Process	Arrival Time	Processing Time
A	0	4
В	1	5
С	2	4
D	3	2

(- 1	1	Г
1	- /	4.	. つ

	_	
\cup	5	correct

O 6.5

⁸

O None of the mentioned

Virtual memory is (2 Points)
a type of memory used in super computers
an extremely large main memory
an illusion of an extremely large memory
an extremely large secondary memory
51
Necessary conditions for deadlock are
(2 Points)
onon-preemption and circular wait
Mutual exclusion
both (a) and (b)
onone of the above

The following system of four processes with two resources: If the availability vector is [2 3], is the system above deadlocked? (2 Points)

Current allocation matrix:	Current request matrix:
P ₁ 1 3	P ₁ 1 2
P ₂ 4 1	P ₂ 4 3
P ₃ 1 2	P ₃ 1 7
P4 2 0	P4 5 1

/	١.	\/ ~ ~
()	YES
\		

O No

53

The following system of four processes with two resources: If the availability vector is [2 5], is the system above deadlocked? (2 Points)

Current allocation matrix:	Current request matrix:
P ₁ 1 3	P ₁ 1 2
P ₂ 4 1	P ₂ 4 3
P ₃ 1 2	P ₃ 1 7
P4 2 0	P4 5 1

(Yes
(-)	162

O No

(2 Points)
○ 8
O 10
O 12
<u> </u>
O None of the mentioned
55
A small computer has 3 page frames. A process makes the following list of page references: 1,2,3,4,2,1,5,6,7,6,3,2,1,2,3,6. How many page faults using least-recently-used (LRU) algorithm? (2 Points)
○ 8
O 10

A small computer has 3 page frames. A process makes the following list of page

references: 1,2,3,4,2,1,5,6,7,6,3,2,1,2,3,6. How many page faults using FIFO algorithm?

) 12

14

O None of the mentioned

replacement algorithm?

(2 Points)
8
O 10
O 12
O 14
O None of the mentioned
57
If a physical address is 32 bits and each page is 32KB, the top bits exactly designate the physical page number (2 Points)
O 10
O 17
O 19

A small computer has 3 page frames. A process makes the following list of page references: 1,2,3,4,2,1,5,6,7,6,3,2,1,2,3,6. How many page faults using optimal page