Prairie View A&M University

ELEG 6163 Statistical Learning for Big Data

Fall 2019 – Project

Choosing one project and complete the requirements.

Project 1: Building a binary classifier with logistic regression to judge if the patient has diabetes.

- Download the data (Pima Indians Diabetes)
 (https://gist.github.com/ktisha/c21e73a1bd1700294ef790c56c8aec1f)
- Splitting the data into training and testing sets with splitting rate 0.8
- Processing missing value on the training and testing sets to generate the preprocessed training set D1 and the preprocessed testing set D2
- Selecting 5 features on D₁ with chi2 to conduct D₃
- Building a classifier on D₃
- Testing the classifier on D_2 with the 5 selected features and evaluating the testing results with evaluation metrics, namely, precision, recall, and F-score, where the testing means to perform prediction on D_2
- Comparing the performance between the model built on the raw data and that built on the preprocessed data and providing some reasons to explain the performance differences

Project 2: Performance comparison on three classifiers built on the same dataset

- Download the data (Pima Indians Diabetes)
 (https://gist.github.com/ktisha/c21e73a1bd1700294ef790c56c8aec1f)
- Splitting the data into training and testing sets with splitting rate 0.6
- Building 3 classifiers with logistic regression, decision tree, and neural network on the training set
- Testing these 3 classifiers on the testing set and evaluating the testing results with evaluation metrics, namely, precision, recall, and F-score
- Comparing the performance of these 3 classifiers and providing some reasons to explain the performance differences

Project 3: Performance comparison on the same classifier (neural network) built on three datasets

- Download 3 data sets
 - The Cleveland Heart Disease Dataset
 - ✓ Data Description: https://archive.ics.uci.edu/ml/datasets/Heart+Disease

Prairie View A&M University

✓ Link:

 $https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/processed. \\ clevel and. data$

- Haberman's Survival Data Set
 - ✓ Data Description:
 - https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival
 - ✓ Link

https://archive.ics.uci.edu/ml/machine-learning-databases/haberman/haberman.da

- Banknote Authentication Data Set
 - ✓ Data Description: https://archive.ics.uci.edu/ml/datasets/banknote+authentication
 - ✓ Link:
 https://archive.ics.uci.edu/ml/machine-learning-databases/00267/data_banknote_a
 uthentication.txt
- Splitting the data into training and testing sets with splitting rate 0.6 on these 3 data sets
- Building 3 classifiers with neural network model on these 3 data sets with the same machine learning model
- Testing these 3 classifiers on the testing sets and evaluating the testing results with evaluation metrics, namely, precision, recall, and F-score
- Comparing the performance of different classifiers

Requirements:

- Submitting the source code (.py files) and the data you use for the project, where the codes have no bugs
- Write the summary of the project with the following parts
 - Subtask description
 - Model description
 - Evaluation methods
 - Result analysis
- Presentation with Slides
 - More than 20 slides
 - 10 ~ 15 minutes
 - Subtask description
 - Model description
 - Evaluation methods
 - Result analysis
 - Submit the slides
- Please submit all required materials (source codes, data, summary, and slides) within one package before the due.

Due: 12/02/2019

Prairie View A&M University