Pemrograman Python untuk Pengolahan Citra Digital

Diktat kuliah

Dr. Arya Adhyaksa Waskita

Daftar Isi

Da	aftar	Isi	i		
Da	aftar	Gambar	ii		
Da	Daftar Program				
K.	ATA PENGANTAR				
1	Inst	calasi Python	1		
	1.1	Sejarah singkat	1		
	1.2	Interpreter Python	1		
	1.3	Anaconda	7		
2	Das	ar Pemrograman Python	13		
	2.1	Pendahuluan	13		
3	Pus	taka Scikit-Image	16		
	3.1	Pendahuluan	16		
	3.2	Sub modul I/O	17		
4	His	togram dan statistik citra	20		
	4.1	Pendahuluan	20		
	4.2	Sub modul exposure	21		
		4.2.1 Penyamaan histogram	22		
Bi	blios	grafi	25		

Daftar Gambar

1.1	Guido van Rossum	1
1.2	Dialog instalasi interpreter Python	2
1.3	Pilihan paket pendukung sebelum instalasi dilakukan	2
1.4	Dialos selama proses instalasi berlangsung	3
1.5	Dialog tanda selesai instalasi	3
1.6	Lokasi instalasi $interpreter$ Python	4
1.7	$\label{thm:continuous} \textit{Interpreter} \ \text{Python siap digunakan} \ \dots $	4
1.9	Hasil upgrade pip	4
1.8	Daftar paket yang terpasang	5
1.10	Instalasi pustaka scikit-image menggunakan pip	5
1.11	Instalasi pustaka $dependent$	5
1.12	Daftar terakhir paket terpasang	6
1.13	Daftar menu aplikasi pendukung Python	6
1.14	Aplikasi IDLE	6
1.15	Pilihan platform instalasi Anaconda	7
1.16	Dialog pembuka instalasi	8
1.17	Menyetujui kesepakatan	8
1.18	Pilihan pengguna Anaconda	8
1.19	Target instalasi	9
1.20	Menjadikan Anaconda sebagai sistem utama Python	9
1.21	Proses instalasi	9
1.22	Instalasi selesai	10
1.23		10
1.24	Aplikasi Jupyter	11
1.25	Terminal pada aplikasi Jupyter	11
1.26	Python Shell pada aplikasi Jupyter	12
1.27	Aplikasi Spyder	12
2.1	Python shell sedang menerima perintah	14
2.2	Variabel a sebagai obyek	14
2.3	Menampilkan dokumentasi obyek integer a	15
2.4	Menampilkan dokumentasi obyek integer a menggunakan fungsi help	15

3.1	Pengeolahan citra untuk pengenalan obyek [Gonzalez and Woods, 2008]	17
3.2	Citra uji $baboon$	17
3.3	Berkas yang berada di dalam <i>directory</i> skimage	18
3.4	Citra skala keabuan	19
4.1	Histogram ekstraksi RGB citra baboon	21
4.2	Histogram ekstraksi RGB citra baboon dengan sub modul exposure	22
4.3	Citra (a). gelap, (b). terang, (c). kontras rendah, (d) kontras tinggi, masing-	
	masing dengan representasinya histogramnya [Gonzalez and Woods, 2008] $$	23
4.4	Perbandingan citra baboon dalam (a). skala keabuan dan (b). mengalami proses	
	histogram equalization	24
4.5	Perbandingan histogram citra baboon (a). sebelum dan (b). sesudah mengalami	
	proses histogram equalization	24

Daftar Program

3.1	Membaca/membuka citra	1'
4.1	Histogram ekstraksi RGB	20
4.2	Histogram ekstraksi RGB dengan sub modul exposure	2
4.3	Penyamaan histogram	2^{2}

Kata Pengantar

Diktat kuliah ini hanya merupakan pelengkap agar mahasiswa dapat lebih mudah memahami materi pengolahan citra digital. Penggunaan ilustrasi lain dari perangkat lunak berbayar dapat saja diberikan. Tetapi, karena pertimbangan kemandirian dan lisensi, maka saya memutuskan untuk menyusun diktat ini berbasis pada pustaka berlisensi publik dan berbasis bahasa pemrograman Python, scikit-image. Python dipertimbangkan karena banyak pustaka ilmiah yang sudah umum digunakan dan terus dikembangkan yang berbasis pada Python. Dalam pengolahan citra, selain scikit-image, ada juga OpenCV untuk Computer Vision. Dalam pembelajaran mesin, scikit-learn adalah pustaka yang juga banyak digunakan. Bahkan tensorflow, pustaka yang banyak digunakan dalam penelitian deep learning juga berbasis pada Python. Saya yakin, dengan mempelajari diktat ini, mahasiswa mampu mandiri dalam penguasaan bahasa pemrograman Python yang pada akhirnya mampu membuat mahasiwa lebih adaptif terhadap pustaka berbasis python, baik untuk tujuan ilmiah maupun bisnis. Mahasiswapun diharapkan menjadi lebih kreatif dalam melakukan penelitian hingga mengembangkan produk perangkat lunak, maupun prototipe perangkat keras cerdas berbasis Python tanpa harus terbebani masalah lisensi.

Secara umum, diktat ini dibagi ke dalam bagian pendahuluan yang membahas tentang sejarah singkat Python yang dilanjutkan ke bagian instalasi. Instalasi ini, meskipun sangat sederhana, terutama pada sistem operasi Linux, dapat menjadi sangat merepotkan bagi beberapa mahasiswa, terutama ketika mereka menggunakan sistem operasi Windows. Karena itu, instalasi akan dilakukan di sistem operasi Windows. Bagian selanjutnya adalah dasar-dasar pemrograman Python, terutama struktur data (list, tuple dan dictionary), interaksi dengan file, hingga mempelajari penggunaan fungsi yang terdapat dalam pustaka tertentu. Sedangkan bagian terkahir dari diktat ini akan sepenuhnya diisi dengan fitur pustaka scikit-image, yang saat diktat ini disusun berada pada rilis 0.16.2.

Diktat ini tidak ditujukan untuk menjadi rujukan dalam teknik pengolahan citra. Sehingga penjelasan teoritis terkait pengolahan citra akan diberikan dalam porsi yang sangat minim dan hanya ditujukan sebegai pelengkap saja. Selain itu, dalam diktat ini banyak menggunakan sumber dari situs web dan akan disampaikan secara detil alamat sumber tersebut dalam diktat. Diharapkan, mahasiswa tidak takut mencoba karena ada begitu banyak sumber yang dapat digunakan untuk belajar. Hanya kesungguhan kitalah yang akan menjadi pembeda. Akhirnya, selamat mencoba pengalaman baru.

Serpong, 2 Mei 2020

Dr. Arya Adhyaksa Waskita

Bab 1

Instalasi Python

1.1 Sejarah singkat

Python dibangun oleh Guido van Rossum (Gambar 1.1¹) pada sekitar tahun 1980 di *Centrum Wiskunde & Informatica* (CWI) di Belanda [Hunt, 2019]. Nama Python diambil dari program TV favorit Guido yang berjudul "'Monty Pythons Flying Circus" yang tayang pada kisaran tahun 1969-1974.

Gambar 1.1: Guido van Rossum

1.2 Interpreter Python

Seperti telah dijelaskan di bagian Pengantar, instalasi *interpreter* Python dilakukan di sistem operasi Windows 7. Tahapan instalasi ini mengasumsikan bahwa tidak ada kendala apapun terkait sistem operasi. Selanjutnya mahasiwa diminta untuk mengunduh *interpreter* Python melalui laman https://www.python.org/downloads/ sesuai kebutuhannya.

Mengeksekusi unduhan tersebut akan memunculkan dialog seperti pada Gambar 1.2. Pastikan untuk memilih konfigurasi PATH secara otomatis agar ketika proses instalasi selesai, *interpreter* Python dapat dijalankan dari mana saja di sistem komputer masing-masing. Untuk kondisi di mana terjadi kesalahan, akan muncul dialog yang memberi kita kesempatan untuk melihat *log*. Buka log tersebut dan lihat sumber dari kesalahan instalasi yang sedang terjadi.

 $^{^{1} \}rm https://gvan rossum.github.io/images/guido-head shot-2019.jpg$

Gambar 1.2: Dialog instalasi interpreter Python

Pilihan opsi *Customize installation* akan menampilkan dialog seperti Gambar 1.3. Pastikan semua pilihan dipilih. Kemudian, selama proses instalasi berlangsung, pengguna akan disuguhkan dialog seperti Gambar 1.4. Tunggu sampai dialog tanda selesai dikeluarkan seperti pada Gambar 1.5.

Gambar 1.3: Pilihan paket pendukung sebelum instalasi dilakukan

Seperti telah ditunjukkan pada Gambar 1.2 tentang informasi lokasi interpreter Python diletakkan, dapat juga dibuktikan melalui aplikasi CMD seperti Gambar 1.6. Sedangkan interpreter Python dapat diujicobakan dengan menuliskan perintah python di aplikasi CMD. Akan muncul dialog seperti Gambar 1.7. Interpreter Python siap digunakan, ditandai dengan munculnya karakter >>>.

Tahapan selanjutnya adalah instalasi pustaka scikit-image. Proses instalasinya dilakukan dengan aplikasi pengelola paket Python yang bernama pip. Silakan lihat Gambar 1.3. pip ada di urutan kedua dari fitur tambahan. pip dapat digunakan untuk melihat paket apa saja yang telah terpasang di sistem kita. Caranya dengan menjalankan perintah python -m pip list seperti ditunjukkan Gambar 1.8.

Gambar 1.4: Dialos selama proses instalasi berlangsung

Gambar 1.5: Dialog tanda selesai instalasi

pip dapat juga digunakan untuk meng-upgrade paket yang telah terpasang, bahkan dirinya sendiri. Untuk meng-upgrade paket pip itu sendiri, dapat dilakukan dengan menjalankan perintah python -m pip install --upgrade pip seperti Gambar 1.9. Perhatikan versi pip yang ada di Gambar 1.8 dan Gambar 1.9.

```
C:\Users\arya-win7\cd AppBata\Local\Programs\Python\Python38

C:\Users\arya-win7\dpyBata\Local\Programs\Python\Python38\dir
Uolume in drive C has no label.

Uolume I
```

Gambar 1.6: Lokasi instalasi interpreter Python

```
Microsoft Windows (Uersion 6.1.76811
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\arya-win7\python
1.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2028, 23:03:10) IMSC v.1916 64 bit (AM bit) on win32
1 Uppe "help", "copyright", "credits" or "license" for more information.
```

Gambar 1.7: Interpreter Python siap digunakan

Gambar 1.9: Hasil upgrade pip

```
C:\Users\arya-win?>_

C:\Users\arya-win?>_

C:\Users\arya-win?>_

C:\Users\arya-win?>_

C:\Users\arya-win?>_

C:\Users\arya-win?>_

C:\Users\arya-win?>_

C:\Users\arya-win?>

C:\Users\arya-win?>_

C:\Users\arya-win?>_
```

Gambar 1.8: Daftar paket yang terpasang

Sedangkan untuk memasang pustaka scikit-image, jalankan perintah python -m pip install scikit-image pada aplikasi CMD seperti Gambar 1.10.

```
C:\Windows\system32\cmd.exe-python -m pip install scikit-image
C:\Users\arya-win?\python -m pip install scikit-inage
Collecting scikit-inage
Down localing scikit_image-0.16.2-cp38-cp38-vin_and64.whl (25.8 MB)
i 3.4 MB 1.3 MB/s eta 0:00:18
```

Gambar 1.10: Instalasi pustaka scikit-image menggunakan pip

Jika ada pustaka lain yang menjadi ketergantungan dari pustaka yang akan diinstal, pip akan melakukan instalasi secara otomatis. Gambar 1.11 menunjukkan proses tersebut. Hal ini akan sangat memudahkan pengguna mengelola pustaka Python yang digunakan.

```
Callecting PyWavelets>=0.4.0
Downloading PyWavelets>=1.1.1-cp38-cp38-win_and64.whl (2.8 MB)

Collecting pyWavelets>=0.8

Downloading networkx>=2.4-py3-none-any.whl (1.6 MB)

Collecting PyWavelets>=0.4.0
Downloading P
```

Gambar 1.11: Instalasi pustaka dependent

Setelah selesai, kita dapat kembali melihat daftar paket yang terpasang melalui pengelolaan

pip yang ditunjukkan Gambar 1.12.

```
C:\Users\arganus\text{cmd.exe}

Successfully inetalled Pylawelets=1.1.1 cycler=8.18.8 decorator=4.4.2 inageio=2.

8.8 kivisolver=1.1.8 matplotlib=3.2.1 networkx=2.4 numpy=1.18.2 pillow=7.8.8 pyp
arsing=2.4.6 python-dateutil=2.8.1 scikit-inage=8.16.2 scipy=1.4.1 six=1.14.8

C:\Users\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arganus\arg
```

Gambar 1.12: Daftar terakhir paket terpasang

Menu aplikasi pendukung Python akan muncul seperti Gambar 1.13. Menu kedua pada Gambar 1.13 akan memunculkan aplikasi CMD yang sama dengan yang ditunjukkan Gambar 1.7, tetapi tanpa perlu memanggil perintah python terlebih dahulu. CMD secara otomatis akan memunculkan Python shell seperti Gambar 1.7.

Gambar 1.13: Daftar menu aplikasi pendukung Python

IDLE adalah antarmukan interpreter Python seperti ditunjukkan Gambar 1.14. Dalam Gambar 1.14 juga terlihat bahwa kita berhasil meng-import pustaka scikit-image, yang dalam IDLE di Windows 7 disebut sebagai skimage. Jika Anda sedang menggunakan Ubuntu, kemudian menggunakan pustaka scikit-image yang diperoleh dari repository Ubuntu (bukan dari pip), pustaka scikit-image juga di-import dengan nama skimage. Berhasilnya sebuah pustaka Python di-import adalah ketika tidak ada komentar yang muncul setelah perintah import tersebut.

```
File Edit Shell Debug Options Window Help

Python 3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 23:03:10) [MSC v.1916 64 bit (AM AD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>> import skimage
>>> |
```

Gambar 1.14: Aplikasi IDLE

Selanjutnya, jika ditemukan petunjuk untuk masuk ke Python Shell, Anda dapat menggu-

nakan aplikasi IDLE, atau menggunakan terminal (di Linux)/CMD (di Windows) dengan terlebih dahulu menjalankan perintah python.

1.3 Anaconda

Selain pilihan manual seperti yang telah dijelaskan di Sub bab 1.2, Anaconda bisa menjadi opsi lain yang lebih bersifat otomatis. Saya menyebutnya otomatis karena Anaconda sejumlah pustaka Python, terutama yang banyak digunakan di Data Mining, Machine Learning atau Data Science telah dikemas di dalam Anaconda. Bahkan beberapa editor yang populer untuk Python juga dikemasnya. Anaconda bahkan mengemasnya khusus untuk platform yang berbeda. Anda dapat menghubungi alamat https://www.anaconda.com/ untuk mengunduh aplikasinya. Sesuaikan kebutuhan Anda dengan pilihan yang ada seperti ditunjukkan Gambar 1.15.

Gambar 1.15: Pilihan platform instalasi Anaconda

Instalasi Anaconda akan menghadirkan dialog seperti ditunjukkan Gambar 1.16 - Gambar 1.22. Anaconda akan meletakkan pustaka di lokasi C:\\ProgramData\\Anaconda3 yang berbeda dengan pip seperti terlihat di Gambar 1.19. Sedangkan di Gambar 1.21 terlihat sejumlah pustaka penting seperti scikit-image dan scikit-learn tengah diinstal.

Instalasi Anaconda akan membuat menu seperti pada Gambar 1.23. Di situ terlihat sejumlah aplikasi yang dapat digunakan untuk mengembangkan kode komputer berbasis Python seperti Jupyter dan Spyder. Untuk Jupyter, aplikasi ini akan menghadirkan antarmuka seperti tampak pada Gambar 1.24. Di sisi kanan atas terlihat beberapa opsi antarmuka untuk mengelola proyek Python dengan Jupyter, seperti Terminal Gambar 1.25 atau Python Shell di bawah Jupyter seperti Gambar 1.26 yang perannya seperti IDLE di Gambar 1.14. Sedangkan untuk Spyder, akan tampak antarmuka seperti Gambar 1.27.

Gambar 1.16: Dialog pembuka instalasi

Gambar 1.17: Menyetujui kesepakatan

Gambar 1.18: Pilihan pengguna Anaconda

Gambar 1.19: Target instalasi

Gambar 1.20: Menjadikan Anaconda sebagai sistem utama Python

Gambar 1.21: Proses instalasi

Gambar 1.22: Instalasi selesai

 ${\bf Gambar~1.23}$

Gambar 1.24: Aplikasi Jupyter

Gambar 1.25: Terminal pada aplikasi Jupyter

Gambar 1.26: Python Shell pada aplikasi Jupyter

Gambar 1.27: Aplikasi Spyder

Bab 2

Dasar Pemrograman Python

2.1 Pendahuluan

Bahasa pemrograman Python memiliki 4 sifat dasar berikut¹.

- 1. *Interpreter*. Python diproses oleh *interpreter*, sehingga tidak perlu dikompilasi untuk menjalankannya. Hal ini seperti dijumpai pada bahasa pemrograman PHP yang sangat populer itu.
- 2. Interaktif. Anda dapat berinteraksi denga Python dengan memberikannya perintah satu per satu melalui Python shell. Setiap perintah yang diberikan langsung akan direspon. Selain itu, Python bersifat self explained. Jika ada fungsi dari suatu obyek yang tidak kita ketahui, kita bisa mempelajarinya langsung dari dokumentasi di Python shell.
- 3. Berorientasi obyek. Ada semacam slogan bahwa "'Everything is object in Python"'. Seperti telah dipahami melalu kuliah Rekayasa Perangkat Lunak, orientasi obyek menyebabkan variabel dan fungsi (sering disebut sebagai state dan behavior) terkemas dalam sebuah obyek, sehingga memudahkan pengelolaan variabel. Fungsi yang melekat pada sebuah obyek juga dapat diturunkan dari satu obyek ke obyek lain sehingga tidak perlu dideklarasi ulang. Namun, fitur orientasi obyek ini pemberlakuannya bagi pemrogram tidak seketat seperti yang dilakukan di Java. Jika Java mengharuskan pemrogram mendeklarasikan kelas untuk membuat program yang bahkan sangat sederhana, makan Python tidak mengharuskannya.
- 4. Bahasa pemrograman untuk pemula. Hal ini disebabkan karena Python sangat sederhana, tidak memerlukan banyak deklarasi yang seringkali menyulitkan, bahkan menakutkan bagi pemula. Selain itu, Python juga mendukung pengembangan aplikasi untuk banyak platform, dari aplikasi embedded hingga web dan mobile.

Untuk sifat dasar pertama dan kedua, dapat dilihat ilustrasinya di Gambar 2.1. Dalam Gambar 2.1, Python shell dipanggil dengan perintah python3. Hal tersebut disebabkan karena

¹https://www.tutorialspoint.com/python/index.htm

Ubuntu (yang sedang digunakan adalah Ubuntu 18.04) secara default menyertakan Python versi 2.x. Sedangkan untuk Python versi 3.x harus dijalankan dengan perintah python3. Di Gambar 2.1 terlihat bahwa ada dua perintah yang diberikan secara berurutan. Tetapi, Python akan meresponnya satu per satu. Sedangkan untuk keluar dari Python shell, berikan perintah exit().

```
arya@arya-pc:~$ python3
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello world!')
Hello world!
>>> 3+7
10
>>> exit()
```

Gambar 2.1: Python shell sedang menerima perintah

Untuk sifat dasar ketiga dapat diilustrasikan melalui Gambar 2.2. Kita dapat mengetahui jenis obyek dari variabel a dengan fungsi type(a). Sedangkan untuk melihat fungsi dan variabel apa saja yang terkandung pada variabel a, kita dapat menggunakan fungsi dir(a). Tetapi, meskipun semuanya di dalam Python adalah obyek, penggunaan Python tidak mengharuskan kita mendeklarasi kelas secara eksplisit. Dengan menuliskan perintah a=3, Python tahu bahwa obyek a adalah obyek dari kelas integer. Bahkan, di Gambar 2.1, operasi aritmatika dapat dilakukan tanpa mendeklrasi variabel.

```
arya@arya-pc:~$ python3
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a=3
                                                                __cell__', '_class__', '_
ge___', _eq__', '_float__', '_floor
ge__', _getattribute__', '_getnewargs__'
'_init__', '_init_subclass__', '_int__',
'_lt__', '_mod__', '_mul__', '_ne
s__', '_pow__', '_radd '
ex__', '_repr__'
>>> dir(a)
       abs_','_add_','_a
','_dir_','_divmod
oordiv_','_format_'
','_hash_','_index
t_','_le_','_lshi
','_new_','_or_',
                                                    and ', '_bool ',
i', '_doc_', __
                                                                                                                                        floor__
                                      __divmod__',
 floordiv_
                                                             ge
                                            lshift_
             __new_
                   __te__, ____, '__pos__', 
_reduce__', '__reduce_ex__', 
d__', '__rmul__', '__ror__', 
rtruediv__'
                                                                                                       __radd__', '__rand__', '
'__rfloordiv__', '__rls
'__rpow__', '__rrshift_
, '__setattr__', '__size
            rmod__', '
                                                                                  _round__',
                             _rsub__', '__rtrueu.v__
sub ', '__subclasshook
  rshift__', '__
                                sub_', '_rtruediv_', '_rxor_', '_setattr_',
ub_', '_subclasshook_', '_truediv_', '_trunc
'conjugate', 'denominator', 'from_bytes', 'imag',
                                                                                 __rxor_
                                                                                                                         _trunc__', ___
_mad', 'numerator'
   '__str__', '__sub_
'bit_length', 'cor
real', 'to_bytes']
>>> tvpe(a)
<class
              'int'>
```

Gambar 2.2: Variabel a sebagai obyek

Di Gambar 2.2 terlihat ada entitas yang diawali dan/atau diakhir dengan karakter dua underscore ('_-') atau sering disebut sebagi dunder² (double undescore) oleh komunitas pemrogram Python. Hal tersebut merupakan bagian dari PEP (Python Enhancement Proposals) ke-8 tentang Style Guide for Python Code³.

Di Gambar 2.2 juga terlihat bahwa obyek a memiliki fungsi __doc__. Fungsi inilah yang akan memberikan penjelasan singkat kepada kita tentang obyek yang sedang menjadi perhatian.

²https://dbader.org/blog/meaning-of-underscores-in-python

³https://www.python.org/dev/peps/pep-0008/

Untuk menggunakannya, jalankan perintah a.__doc__ seperti ditunjukkan Gambar 2.3. Dengan a adalah nama variabel untuk obyek yang sedang menjadi perhatian.

```
arya@arya-pc:~$ python3
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a=3
>>> a.__doc__
"int(x=0) -> integer\nint(x, base=10) -> integer\n\nConvert a number or string t o an integer, or return 0 if no arguments\nare given. If x is a number, return x.__int__(). For floating point\nnumbers, this truncates towards zero.\n\nIf x is not a number or if base is given, then x must be a string,\nbytes, or bytearr ay instance representing an integer literal in the\ngiven base. The literal can be preceded by '+' or '-' and be surrounded\nby whitespace. The base defaults to 10. Valid bases are 0 and 2-36.\nBase 0 means to interpret the base from the string as an integer literal.\n>>> ■
```

Gambar 2.3: Menampilkan dokumentasi obyek integer a

Format dokumentasi seperti yang ditunjukkan pada Gambar 2.3 sulit untuk dipahami. Pendekatan lain untuk mempelajari dokumentasi sebuah pustaka adalah dengan menggunakan fungsi help. Untuk kasus seperti Gambar 2.3, perintah yang dijalankan adalah help(a) (BUKAN a.__doc__). Hasilnya ditunjukkan pada Gambar 2.4. Untuk keluar dari modus dokumentasi tersebut, pengguna tinggal memberi perintah q setelah tanda titik dua (Gambar 2.4). Sedangkan untuk melihat isi dokumentasi selanjutnya pengguna dapat menggunkana tombol spasi di papan ketik.

```
Help on int object:
 class int(object)
      int(x=0) -> integer
       int(x, base=10) -> integer
       Convert a number or string to an integer, or return 0 if no arguments
      are given. If x is a number, return x._int_(). For floating point numbers, this truncates towards zero.
       If x is not a number or if base is given, then x must be a string,
      If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing an integer literal in the given base. The literal can be preceded by '+' or '-' and be surrounded by whitespace. The base defaults to 10. Valid bases are 0 and 2-36. Base 0 means to interpret the base from the string as an integer literal. >>> int('0bl00', base=0)
       Methods defined here:
       __abs__(self, /)
              abs(self)
       __add__(self, value, /)
              Return self+value.
          _and__(self, value, /)
              Return self&value.
         _bool__(self, /)
self != 0
```

Gambar 2.4: Menampilkan dokumentasi obyek integer a menggunakan fungsi help

Bab 3

Pustaka Scikit-Image

3.1 Pendahuluan

Saat diktat ini disusun, versi stabil terbaru dari pustaka scikit-image adalah 0.16.2. Diktat ini disusunan berdasarkan penjelasan yang disajikan di https://scikit-image.org/. Sedangkan alur penyajiannya didasarkan pada kebutuhan untuk mendapatkan fitur citra.

Seperti dijelaskan [Gonzalez and Woods, 2008] pada Gambar 3.1, pengolahan citra mentargetkan kemampuan pengenalan obyek. *Image enhancement* dan *Image restoration* digunakan untuk mendapatkan fitur citra yang optimal. Hal ini disebabkan karena pada kondisi tertentu, citra mengandung banyak sekali *noise* yang menyebabkan fiturnya sulit diekstraksi. Hal ini dapat membuat pengenalan obyek di dalam citra tidak maksimal.

Enhancement dan Restoration pada citra dapat dilakukan pada domain spasial maupun frekuensi. Pada domain spasial, citra diperlakukan seperti apa adanya, yaitu matriks dengan ukuran sebanyak piksel penyusun, yang berisi intensitas warna pada setiap element matriks. Sedangkan untuk domain frekuensi, citra dianggap sebagai representasi sejumlah gelombang elektromagnetik dengan beragam frekuensi yang menjadi satu. Komponen berfrekuensi tinggi direpresentasi oleh gradasi intensitas warna yang cepat pada domain spasial. Sebaliknya, komponen berfrekuensi rendah direpresentasikan oleh gradisi intensitas warna yang lambat pada domain spasial. Enhancement dan Restoration citra dapat dilakukan menggunakan transformasi Fourier maupun wavelet (Gambar 3.1).

Tahapan ekstraksi fitur yang tidak menjadi fokus pada diktat ini berdasarkan Gambar 3.1 adalah kompresi. Yang mungkin masih dapat dikategorikan sebagai kompresi feature selection yang merupakan pemilihan fitur hasil ekstraksi yang paling dominan dalam mencirikan suatu obyek di dalam citra. Tetapi, jika yang dimaksud adalah kompresi citra dari sudut pandang ukuran, maka hal tersebut tidak dibahas dalam diktat ini. Kompresi citra untuk mengurangi ukuran, baik untuk mengefisienkan media penyimpanan maupun jalur komunikasi sudah tidak menjadi fokus para peneliti saat ini. Selain karena kapasitas media penyimpanan dan bandwidth komunikasi yang semakin besar dan semakin murah, kompresi ukuran citra yang tidak tepat dapat mengurangi informasi penting yang dapat menjadi fitur citra tersebut. Akibatnya, kemampuan pengenalan obyek dalam citra menurun.

Terakhir, fitur yang berhasil diekstraksi dari berbagai metode pengolahan citra akan menjadi masukan bagi pustaka Python lain seperti scikit-learn dan tensorflow.

Gambar 3.1: Pengeolahan citra untuk pengenalan obyek [Gonzalez and Woods, 2008]

3.2 Sub modul I/O

Penjelasan tentang pengolahan citra berbasis scikit-image akan dimulai dengan sub module I/O (Input/Output). Pengguna harus memahami cara scikit-image membaca sebuah citra dan representasi dari pembacaan tersebut dalam komputer. Sebagai ilustrasi, citra uji berupa hewan baboon ¹ ditunjukkan pada Gambar 3.2.

Gambar 3.2: Citra uji baboon

Gambar 3.2 berukuran 512x512 piksel yang berarti akan ada 3 matriks berukuran 512x512, masing-masing untuk warna merah, hijau dan biru. Setiap elemen matriks akan bernilai integer di antara 0 dan 255. Untuk membaca citra digital, digunakan fungsi imread, sebuah fungsi yang terdefinisi di bawah sub modul scikit-image/io. Masukkan perintah Program 3.1 berikut di Python shell seperti Gambar 1.7.

Program 3.1: Membaca/membuka citra

¹https://homepages.cae.wisc.edu/~ece533/images/baboon.png

```
1 >>> from skimage import io
2 >>> img=io.imread('baboon.png')
3 >>> type(img)
4 <class 'numpy.ndarray'>
5 >>> img.shape
6 (512, 512, 3)
7 >>> img2=io.imread('baboon.png', True)
8 >>> img2.shape
9 (512, 512)
10 >>> io.imsave('baboonGS.png', img2)
```

Perintah di baris ke-1 menunjukkan cara untuk meng-import pustaka io. Di operasi Windows(R), lokasi pustakanya ditunjukkan diGam-1.2. Sedangkan di sistem operasi GNU-Linux, lokasi pustakanya berada di bar /home/arya/.local/lib/python3.6/site-packages/skimage. Di bawahnya, terdapat struktur directory seperti ditunjukkan Gambar 3.3. Terlihat bahwa io adalah sub directory yang membuat cara pemanggilan pustaka adalah seperti baris ke-1 pada Program 3.1. Cara lainnya adalah dengan mengganti perintah di baris ke-1 dengan import skimage.io. Directory seperti yang ditunjukkan Gambar 3.3 sama dengan daftar sub modul dari pustaka scikit-image². Karenanya, pola pemanggilan pustaka juga memiliki pola yang sama dengan io.

```
arya@arya-pc:~/.local/lib/python3.6/site-packages/skimage$ ls
build.py
             exposure
                        graph
                                     morphology
                                                    segmentation
                                                                   viewer
color
             external
                          init
                                       _pycache
                                                    setup.py
                        io
conftest.py
             feature
                                      registration
                                                     shared
data
             filters
                        measure
                                      restoration
                                                     transform
draw
             future
                        metrics
                                      scripts
                                                    util
arya@arya-pc:~/.local/lib/python3.6/site-packages/skimage$
```

Gambar 3.3: Berkas yang berada di dalam directory skimage

Untuk baris ke-2 Program 3.1, ditunjukkan cara untuk menggunakan fungsi imread. Karena pustaka io di-import menggunakan perintah from skimage import io, maka fungsi imread digunakan seperti pada baris ke-2. Jika pustaka io di-import dengan perintah import skimage.io, maka fungsi imread digunakan dengan perintah img=skimage.io.imread('baboon.png'). Perlu diperhatikan, cara pembacaan citra seperti baris ke-2 hanya untuk kondisi di mana citra baboon.png berada pada directory yang sama dengan lokasi Python shell dipanggil. Variabel img pada baris ke-2 menunjukkan pointer ke citra yang dibaca.

Jenis data dari variabel img diketahui dengan cara seperti ditunjukkan pada baris ke-3. Terlihat bahwa img merupakan variabel numpy array. Sedangkan untuk mengetahui ukuran dari numpy array digunakan perintah pada baris ke-5. Terlihat bahwa variabel img adalah 3 buah matriks berdimensi dua berukuran 512x512. Hal ini menunjukkan bahwa citra yang sedang dibaca terdiri dari 3 komponen warna, masing-masing adalah R (Red), G (Green), dan B (Blue).

Untuk mengakses komponen warna tertentu (merah, hijau atau biru), gunakan perintah img[:,:,0] untuk komponen warna merah serta img[:,:,1] dan img[:,:,2] masing untuk

 $^{^2 \}rm https://scikit-image.org/docs/stable/api/api.html$

komponen warna hijau dan biru. Pola akses matriksnya sama dengan apa yang dilakukan pada Matlab®.

Untuk membaca citra dalam bentuk skala keabuan, berikan perintah seperti baris ke-7. Baris ke-9 menunjukkan bahwa citra yang dibaca telah dikonversi ke dalam skala keabuan sehingga hanya terdiri dari 1 matriks berukuran 512x512.

Untuk menyimpan citra yang tadi dibaca dalam bentuk skala keabuan, dapat digunakan perintah di baris ke-10. Argumen pertama ('baboonGS.png') adalah nama berkas citra yang akan disimpan, sedangkan argumen kedua (img2) adalah matriks citra dalam skala keabuan. Hasilnya ditunjukkan pada Gambar 3.4.

Gambar 3.4: Citra skala keabuan

Sampai di sini, pustaka numpy tidak dibahas secara detil. Bagi yang tertarik dapat mempelajarinya secara daring di alamat https://numpy.org/. Untuk melihat fungsi apa saja yang dapat dilakukan oleh obyek numpy dapat diketahui dengan memberikan perintah dir(img) di Python shell, dengan img adalah obyek dari kelas numpy.

Bab 4

Histogram dan statistik citra

4.1 Pendahuluan

Histogram digunakan untuk menggambarkan statistik citra dalam format visual yang mudah diinterpretasi [Burger and Burge, 2016]. Histogram menunjukkan distribusi frekuensi piksel dengan intensitas tertentu, dari 0 sampai 255. Sebagai ilustrasi, citra yang ditunjukkan pada Gambar 3.2 akan dibaca komponen warnanya kemudian diplot grafik histogramnya. Programnya dapat dilihat di Program 4.1. Hasilnya ditunjukkan pada Gambar 4.1 setelah menjalan perintah python3 nama_file.py di terminal.

Program 4.1: Histogram ekstraksi RGB

```
1 from matplotlib import pyplot as plt
2 from skimage import io
{\tt 4-img=io.imread('../pics/baboon.png')}\\
5 red=img[:,:,0]
  row, column=red.shape
   r=red.reshape(row*column)
   green=img[:,:,1]
9 row, column=green.shape
10 g=green.reshape(row*column)
11 blue=img[:,:,2]
12 row, column=blue.shape
13 b=blue.reshape(row*column)
14 f, (ax1, ax2, ax3)=plt.subplots(1,3)
   n1, bins1, patches1 = ax1.hist(r, 256, facecolor='red')
   ax1.set_title('Red component histogram')
n2, bins2, patches2 = ax2.hist(g, 256, facecolor='green')
18 ax2.set_title('Green component histogram')
n3, bins3, patches3 = ax3.hist(b, 256, facecolor='blue')
20 ax3.set_title('Blue component histogram')
```

Baris ke-1 dari Program 4.1 adalah perintah meng-import pustaka matplotlib yang bertugas membuat plot histogram seperti Gambar 4.1. Kata kunci as di baris ke-1 tersebut digunakan untuk membuat alias dari nama pustaka yang di-import, dalam hal ini adalah pyplot. Kemudian, di baris ke-3, mahasiswa harus berhati-hati dalam meletakkan citra baboon tersebut. Dalam Program 4.1.

Gambar 4.1: Histogram ekstraksi RGB citra baboon

4.2 Sub modul exposure

Pustaka scikit-image memiliki sub modul khusus yang diberi nama exposure. Program 4.2 mengilustrasikan fungsi yang sama dengan Program 4.1. Sedangkan histogram komponen warna merah, hijau dan biru ditunjukkan oleh Gambar 4.2.

Program 4.2: Histogram ekstraksi RGB dengan sub modul exposure

```
from matplotlib import pyplot as plt
   from skimage import io
   from skimage import exposure as ex
   img=io.imread('../pics/baboon.png')
   red=img[:,:,0]
   green=img[:,:,1]
   blue=img[:,:,2]
   f,(ax1, ax2, ax3) = plt.subplots(1,3)
   hist1, bin_centers1=ex.histogram(red)
10
   ax1.plot(bin_centers1, hist1, color='red')
11
   ax1.set_title('Red component histogram')
   hist2, bin_centers2=ex.histogram(green)
   ax2.plot(bin_centers2, hist2, color='green')
   ax2.set_title('Green component histogram')
15
   hist3, bin_centers3=ex.histogram(blue)
   ax3.plot(bin_centers3, hist3, color='blue')
   ax3.set_title('Blue component histogram')
18
   plt.show()
```

Perbedaan antara Program 4.1 dan Program 4.2 adalah bahwa Program 4.1 mengolah frekuensi intensitas komponen warna menggunakan pustaka pyplot yang merupakan sub modul dari matplotlib. Sedangkan Program 4.2 mengolah frekuensi intensitas komponen warna menggunakan pustaka exposure yang merupakan sub modul dari scikit-image. Hasilnya merupakan

jumlah piksel yang memiliki intensitas warna pada setiap kanal di antara 0 sampai 255. Jumlah piksel pada setiap kanal intensitas warna tersebut yang selanjutnya diplot oleh pustaka pyplot.

Gambar 4.2: Histogram ekstraksi RGB citra baboon dengan sub modul exposure

Selanjutnya, setiap fungsi dalam sub modul exposure akan dicontohkan satu per satu terhadap citra uji baboon (Gambar 3.2).

4.2.1 Penyamaan histogram

Citra dengan intensitas warna yang tidak merata menyebabkan kualitas citra menurun. Sebagai contoh, Gambar 4.3(a) menunjukkan citra dengan mayoritas semua pikselnya memiliki intensitas rendah. Secara visual citra sulit diintepretasi. Kemudian, Gambar 4.3(b) menunjukkan citra yang meyoritas pikselnya memiliki intensitas tinggi. Citra seperti itupun juga memiliki intepretasi visual yang rendah. Sebaliknya, Gambar 4.3(c) menunjukkan citra yang intensitas piksel-pikselnya yang tidak sama dengan 0 berkumpul pada daerah tertentu. Sama dengan kedua citra sebelumnya, citra dengan kontras rendah tersebut sulit diinterpretasi secara visual. Terakhir, Gambar 4.3(d) merupakan citra yang piksel-pikselnya memiliki intensitas merata, tidak hanya berkumpul di rentang nilai intensitas tertentu saja. Ternyata citra seperti inilah yang lebih mudah diinterpretasi secara visual. Dalam hal ini, batas antar obyek jelas. Kondisi ini memudahkan citra disegmentasi untuk memilih obyek tertentu untuk selanjutnya dikenali.

Gambar 4.3: Citra (a). gelap, (b). terang, (c). kontras rendah, (d) kontras tinggi, masing-masing dengan representasinya histogramnya [Gonzalez and Woods, 2008]

Selanjutnya, akan ditunjukkan proses penyamaan histogram pada citra baboon (Gambar 3.4). Perhatikan Program 4.3. Hasilnya dapat dilihat di Gambar 4.4(a) dan Gambar 4.4(b). Terlihat bahwa Gambar 4.4(b) yang telah mengalami proses histogram *equalization* memiliki

kontras yang lebih baik. Hal ini didukung dengan perbandingan histogram antara sebelum (Gambar 4.5(a)) dan sesudah (Gambar 4.5(b)) proses equalization dilakukan.

Program 4.3: Penyamaan histogram

```
from matplotlib import pyplot as plt
from skimage import io, exposure as ex

img=io.imread('../pics/baboonGS.png')
imgEq=ex.equalize_hist(img,nbins=256)
hist,bins=ex.histogram(imgEq)
c=plt.plot(bins,hist,color='gray')
io.imsave('../pics/baboonGSEq.png',imgEq)
plt.show()
```


 ${\bf Gambar \ 4.4:} \ {\bf Perbandingan \ citra \ baboon \ dalam \ (a).} \ \ {\bf skala \ keabuan \ dan \ (b)}. \ \ {\bf mengalami \ proses \ histogram \ } equalization$

 $\textbf{Gambar 4.5:} \ \ Perbandingan \ histogram \ citra \ baboon \ (a). \ sebelum \ dan \ (b). \ sesudah \ mengalami \ proses \ histogram \ equalization$

Bibliografi

[Burger and Burge, 2016] Burger, W. and Burge, M. J. (2016). Digital Image Processing: An Algorithmic Introduction Using Java. Springer Publishing Company, Incorporated, 2nd edition.

[Gonzalez and Woods, 2008] Gonzalez, R. C. and Woods, R. E. (2008). *Digital Image Processing*. Prentice Hall.

[Hunt, 2019] Hunt, J. (2019). A Beginners Guide to Python 3 Programming. Springer Publishing Company, Incorporated, 1st edition.