高三化学试题

- 1. 答题前,考生先将自己的姓名、考生号、座号填写在相应位置,认真核对条形码上的姓名、考生号和座号,并将条形码粘贴在指定位置上。
- 2. 选择题答案必须使用2B铅笔(按填涂样例)正确填涂;非选择题答案必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清晰。
- 3. 请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。保持卡面清洁,不折叠、不破损。

可能用到的相对原子质量: H1 N14 Cl35.5 Fe 56 Co 59

- 一、选择题: 本题共 10 小题, 每小题 2 分, 共 20 分。每小题只有一个选项符合题意。
- 1. 非物质文化遗产体现了古代劳动人民的智慧。下列说法错误的是
 - A. "烟台绒绣"用羊毛绒线绣制,不可用加酶洗涤剂清洗
 - B. "即墨老酒"由黍米酿制,其原理是淀粉水解可得乙醇
 - C. "硫熏"使"莱州草辫"色泽白净,兼有驱虫、防腐的功能
 - D. "胶东花饽饽"用酵母作膨松剂,使用过程中发生了化学变化
- 2. 下列说法中不正确的是
 - A. NO_x和碳氢化合物是造成光化学烟雾污染的主要原因
 - B. H₂SO₄和CuCl₂均可通过化合反应得到
 - C. 侯氏制碱法的原理是将NH3通入含有CO2的饱和食盐水中制得NaHCO3
 - D. 工业接触法制备硫酸涉及到的转化为 $FeS_2 \rightarrow SO_2 \rightarrow SO_3 \rightarrow H_2SO_4$
- 3. 南海是一个巨大的资源宝库,海水开发利用的部分过程如图所示,下列说法错误的是

- A. 物质X可以选用CaO
- B. 操作1中玻璃棒的作用是引流
- C. 第①步中, 蒸发结晶、高温烘干可以得到干燥的MgCl₂·6H₂O固体
- D. 第②步反应的离子方程式为: Br₂ + SO₂ + 2H₂O==SO₄ + 2Br + 4H+
- 4. N₄为阿伏加德罗常数的值。下列说法正确的是
 - A. 标准状况下, 22.4 L CHCl₃所含的分子数为 N_A
 - B. 1 mol 碘蒸气和 1 mol 氢气在密闭容器中充分反应, 生成的碘化氢分子数小于 $2N_A$
 - C. 0.1 mol·L⁻¹FeCl₃溶液中含有的 Fe³⁺数目一定小于 0.1 N_A
 - D. 5.6 g 铁完全发生吸氧腐蚀生成铁锈 $Fe_2O_3 \cdot xH_2O$,在电化学过程中转移的电子数为 $0.3 \, N_A$
- 5. 用下列实验装置能达到相关实验目的的是

	A	В	С	D
实验		NaCl(s)	Cl ₂ Fe ₂ (SO ₄) ₃ (FeSO ₄) 溶液	石墨 Na ₂ SO ₄ 溶液
实验 目的	除去Fe(OH)₃胶体 中的NaCl溶液	配制0.1 mol·L ⁻¹ NaCl溶液	除去Fe ₂ (SO ₄) ₃ 溶 液中的FeSO ₄	制作简单的燃料电池

6. 物质的类别和核心元素的化合价是研究物质性质的两个重要维度。如图为硫及其部分化合物的价态-类别图。下列说法不正确的是

- A. a和c可以反应生成b
- B. c具有氧化性, 可漂白纸浆
- C. 附着有b的试管,可以用CS2清洗
- D. f的浓溶液和Cu在加热条件下反应时体现了其氧化性和酸性
- 7. 下列实验操作正确的是
 - A. 酸式滴定管的查漏方法:将旋塞关闭,滴定管注入一定量的蒸馏水,把它固定滴定管夹上,放置两分钟,观察滴定管口及旋塞两端是否有水渗出,若均不漏水才可使用
 - B. 配制 FeSO₄ 溶液,应加入铁粉防止 Fe²⁺氧化,并加入盐酸抑制 Fe²⁺的水解
 - C. 重结晶法提纯苯甲酸,将 1.0 g 粗苯甲酸放入 100 mL 的烧杯,加入 50 mL 蒸馏水。加热、搅拌,使苯甲酸充分溶解;冷却后过滤得到晶体,蒸馏水洗涤后晾干,得到高纯度苯甲酸晶体
 - D. 在接近滴定终点时,使用"半滴操作"的正确方法是:将旋塞稍稍转动,使半滴溶液悬于管口,用锥形瓶内壁将半滴溶液粘落,再用洗瓶以少量蒸馏水吹洗锥形瓶内壁,继续摇动锥形瓶,观察颜色变化
- 8. 周期表中VIA 族元素及其化合物应用广泛。 H_2S 是一种易燃的有毒气体(摩尔燃烧焓为562.2 kJ·mol·l),可制取各种硫化物。硫酰氯(SO_2Cl_2)是重要的化工试剂,常作氯化剂 或氯磺化剂。工业上以精炼铜的阳极泥(含CuSe)为原料回收Se,以电解强碱性Na₂TeO₃溶液制备Te。下列化学反应表示正确的是
 - A. H_2 S燃烧的热化学方程式: $2H_2$ S(g) + $3O_2$ (g) == 2S O_2 (g) + $2H_2$ O(l) $\Delta H = -1124.4 \text{ kJ·mol}^{-1}$

- B. CuSe和浓硫酸反应: CuSe + H₂SO₄ ===CuSO₄ + H₂Se↑
- C. 电解强碱性 Na_2TeO_3 溶液的阴极反应: $TeO_3^{2-} + 4e^- + 6H^+ == Te + 3H_2O_3$
- D. SO₂Cl₂遇水强烈水解生成两种酸: SO₂Cl₂ + 2H₂O ===4H⁺+ SO₃²⁻ + 2Cl⁻
- 9. 用电解法对酸性含氯氨氮废水进行无害化处理的过程如图所示。下列说法正确的是

- A. DSA电极与外接电源的负极连接
- B. Cl⁻发生的电极反应式为: Cl⁻+ H₂O-2e⁻==ClO⁻+ 2H⁺
- C. 降解过程中应该控制条件避免发生反应②
- D. 1 mol HO* 和足量 NH₃反应,转移的电子数为 2×6.02×10²³
- 10. 在恒温恒容的密闭容器中发生: $2NH_3(g) + CO_2(g)$ ——CO(NH_2)₂(s) + $H_2O(g)$ ΔH <0,T^CC时,平衡常数为K,下列说法正确的是
 - A. 该反应在任何温度下都可自发进行

B.
$$T$$
C时,若 $\frac{c(\mathrm{H_2O})}{c(\mathrm{CO_2}) \cdot c^2(\mathrm{NH_3})} < K$ 时,则 $v_{\scriptscriptstyle \mathbb{H}} < v_{\scriptscriptstyle ilde{\boxplus}}$

- C. 选择高效催化剂可以提高活化分子百分数,提高CO(NH₂)₂的平衡产率
- D. 若容器内气体压强保持不变,该可逆反应达到化学平衡状态
- 二、选择题: 本题共 5 小题,每小题 4 分,共 20 分。每小题有一个或两个选项符合题意,全部选对 得 4 分,选对但不全的得 2 分,有选错的得 0 分。
- 11. 氧化还原电对的标准电极电势(φ^{θ})可用来比较相应氧化剂的氧化性强弱,相关数据(酸性条件)如下。

氧化还原电对(氧化剂/还原剂)	电极反应式	$arphi^{ heta}\!/\!\mathrm{V}$
Fe ³⁺ / Fe ²⁺	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	0.77
I ₂ / I ⁻	$I_2 + 2e^- \longrightarrow 2I^-$	0.54
$Cr_2 O_7^{2-} / Cr^{3+}$	$Cr_2 O_7^{2-} + 6e^- + 14H^+ \Longrightarrow 2Cr^{3+} + 7H_2O$	1.36
Br ₂ / Br ⁻	$Br_2(l) + 2e^- \longrightarrow 2Br^-$	1.07
Co ³⁺ / Co ²⁺	$Co^{3+} + e^- \longrightarrow Co^{2+}$	1.84

下列分析错误的是

A. 氧化性: $Cr_2O_7^{2-} > Br_2 > Fe^{3+}$

B. 向 $Cr_2O_7^{2-}$ 溶液滴加 $CoCl_2$ 溶液,反应的离子方程式为

$$Cr_2 O_7^{2-} + 6Co^{2+} + 14H^+ = 2 Cr^{3+} + 6Co^{3+} + 7H_2O$$

- C. 向淀粉KI溶液中滴加CoCl3溶液,溶液变蓝色
- D. 向含有KSCN的FeBr>溶液中滴加少量氯水,溶液变红色
- 12. 炼油、石化等工业会产生含硫(-2价)废水,可通过催化氧化法进行处理。碱性条件下, 催化氧化废水的机理如图所示。其中 MnO_2 为催化剂,附着在催化剂载体聚苯胺的表面。下列说法错误的是

- A. 催化氧化过程中既有共价键的断裂又有离子键的断裂
- B. 转化I中化合价发生变化的元素仅有S和O
- C. 催化氧化过程的总反应为: O₂+2H₂O+2S²· ==4OH⁻+2S ↓
- D. 催化剂使用一段时间后催化效率会下降,原因是生成的S覆盖在催化剂表面或进入催化剂内 空位处
- 13. 一种由湿法炼铜的低铜萃取余液(含 Co^{2+} 、 Cu^{2+} 、 Fe^{2+} 、 Fe^{3+} 、 Mn^{2+} 、 H^+ 、 SO_4^{2-})回收金属的工艺流程如下:

室温下,溶液中金属离子开始沉淀和完全沉淀的pH如表所示:

金属离子	Co ²⁺	Cu ²⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺
开始沉淀时的pH	7.8	5.5	5.8	1.8	8.3
完全沉淀时的pH	9.4	6.7	8.8	2.9	10.9

下列说法正确的是

- A. "滤渣I"为Fe(OH)₃
- B. "调pH"时,选用CaO浆液代替CaO固体可加快反应速率
- C. 生成MnO₂的离子方程式为2 Mn²⁺ + O₂ + 2H₂O==2MnO₂ ↓ + 4H⁺
- D. "沉钴"时,用Na₂CO₃代替NaHCO₃可以提高CoCO₃的纯度
- 14. 为探究 $FeCl_3$ 的性质,进行了如下实验($FeCl_3$ 和 Na_2SO_3 溶液浓度均为 $0.1 \text{ mol} \cdot L^{-1}$)。

实验操作与现象

分析上述实验现象, 所得结论不合理的是

- A. 实验①说明加热促进 Fe³⁺水解反应
- B. 实验②说明 Fe3+ 既发生了水解反应,又发生了还原反应
- C. 实验③说明 Fe3+发生了水解反应,但没有发生还原反应
- D. 实验①②③说明 SO_3^{2-} 对 Fe^{3+} 水解反应无影响,但对还原反应有影响
- 15. 利用平衡移动原理,分析一定温度下 Mg^{2+} 在不同pH的 Na_2CO_3 体系中的可能产物。
 - 已知: i.图1中曲线表示Na₂CO₃体系中各含碳粒子的物质的量分数与pH的关系。
 - ii. 图2中曲线I的离子浓度关系符合 $c(Mg^{2+})\cdot c^2(OH^-)=K_{sp}[Mg(OH)_2]$; 曲线II的离子浓度关系符合 $c(Mg^{2+})\cdot c(CO_3^{2-})=K_{sp}(MgCO_3)$;

[注:起始 $c(Na_2CO_3)=0.1 \text{ mol}\cdot L^{-1}$,不同pH下 $c(CO_3^{2-})$ 由图1得到]。

下列说法正确的是

- A. 由图1, pH = 10.25, $c(HCO_3^-) = c(CO_3^{2-})$
- B. 由图2, 初始状态pH = 11、 $\lg[c(Mg^{2+})]=-6$, 有沉淀生成
- C. 由图2,初始状态pH = 9、 $\lg[c(Mg^{2+})]=-2$,平衡后溶液中存在: $c(H_2CO_3) + c(HCO_3^-) + c(CO_3^{2-}) = 0.1 \text{ mol·L}^{-1}$
- D. 由图1和图2,初始状态pH = 8、 $\lg[c(Mg^{2+})]=-1$,发生反应:

$$Mg^{2+} + 2HCO_3 = MgCO_3 \downarrow + CO_2 \uparrow + H_2O$$

- 三、非选择题: 本题共 5 小题, 共 60 分。
- 16. (13分) 根据所学知识,回答下列问题:

- (1) K₂FeO₄是常见的水处理剂,净水原理如图1所示。请回答下列问题:
 - ①高铁酸钾(K₂FeO₄)中铁元素的化合价为 ;
- ②过程 a 中 K₂FeO₄体现_____(填"氧化"或"还原")性,反应过程中转移 5.418×10²²个电子,需要 mol K₂FeO₄。
- (2) 碱性条件下用 $Fe(OH)_3$ 和 KClO 反应制备 K_2FeO_4 。配平其反应的化学方程式:

Fe(OH)₃+KOH+KClO——K₂FeO₄+KCl+H₂O

- (3) 干法制备高铁酸钠的主要反应为: $2FeSO_4+6Na_2O_2$ — $2Na_2FeO_4+2Na_2O+2Na_2SO_4+O_2\uparrow$,该反应中的还原剂是_____,生产 1mol 的高铁酸钠,需要消耗氧化剂的物质的量是_____。
 - (4) 高铁酸钾(K₂FeO₄)是新型多功能水处理剂, 其生产工艺如图2所示:

己知:

- i. Cl₂与NaOH溶液反应的产物与反应温度有关,温度较低时产物为NaCl、NaClO和H₂O;温度较高时产物为NaCl、NaClO₃和H₂O。
 - ii. 同一条件下,溶液的碱性越强,高铁酸盐的稳定性越高。回答下列问题:

步骤③发生的反应中氧化剂与还原剂的物质的量之比*n*(氧化剂):*n*(还原剂)=____。对"湿产品"进行"洗涤、干燥"时,洗涤剂最好选用_____(填序号)溶液和异丙醇。

- A. Fe(NO₃)₃ 溶液 B. NH₄Cl 溶液 C. CH₃COOK溶液 D. 蒸馏水
- (5) 从环境保护的角度看,制备KoFeO4较好的方法为电解法。维持一定的电流强度和 电解温度,KOH起始浓度对KoFeOa浓度的影响如图3(电解液体积相同的情况下进行的实验)。

适宜的电解时间应选用_____h; 当KOH起始浓度为 $14 \text{ mol·} L^{-1}$ 时, $1.0 \sim 1.5 \text{ h内}$ 生成K₂FeO₄的速率是 mol·L⁻¹·h⁻¹。

- 17. (10分) Co₃O₄在磁性材料、电化学领域应用广泛。以钴矿[主要成分是 CoO、Co₂O₃、 Co(OH)₃, 还含 SiO₂ 及少量 Al₂O₃、Fe₂O₃、CuO 及 MnO₂等]为原料可制取 Co₃O₄。步 骤如下:
- (1) 浸取: 用盐酸和 Na₂SO₃溶液浸取钴矿,浸取液中含有 Al³⁺、Fe²⁺、Co²⁺、Cu²⁺、Mn²⁺、 $Cl. SO_4^{2-}$ 等离子。写出 Co_2O_3 发生反应的离子方程式: _____。
- (2) 除杂: 向浸取液中先加入足量 NaClO₃ 氧化 Fe²⁺,再加入 NaOH 调节 pH 除去 Al³⁺、Fe³⁺、 Cu^{2+} 。有关沉淀数据如表("完全沉淀"时金属离子浓度 $\leq 1 \times 10^{-5}$ mol·L⁻¹):

沉淀	Al(OH) ₃	Fe(OH) ₃	Co(OH) ₂	Cu(OH) ₂	Mn(OH) ₂
恰好完全沉淀时的pH	5.2	2.8	9.4	6.7	10.1

若浸取液中 $c(\mathbf{Co^{2+}})=0.1$ mol·L⁻¹,则须调节溶液 pH 的范围是 (加入 NaClO3和 NaOH 时,溶液的体积变化忽略)。

(3) 萃取、反萃取: 向除杂后的溶液中,加入某有机酸萃取剂(HA),发生反应:

 $Co^{2+} + n(HA)_2$ \Longrightarrow $CoA_2 \cdot (n-1)(HA)_2 + 2H^+$ 。实验测得: 当溶液 pH 处于 4.5~6.5 范围内, Co^{2+} 萃取 率随溶液pH 的增大而增大(如图 1 所示),其原因是______。 向萃取所得有机相中加入 H_2SO_4 ,反萃取得到水相。该工艺中设计萃取、反萃取的目的是_____。

- (4) 沉钴、热分解:向反萃取后得到的水相中加入 NH4HCO3溶液,过滤、洗涤、干燥,得到 CoCO3 固体,加热 CoCO3制备 Co3O4。1mol CoCO3在空气中加热,反应温度对反应产物的影响如图 2 所示,请写出 500~1000 ℃时,发生主要反应的化学方程式____。
- 18. (13分) 实验室以活性炭为催化剂,由 $CoCl_2$ 制备三氯化六氨合钴(III){ $[Co(NH_3)_6]Cl_3$ } 的装置如图所示:

已知: $K_{sp}[Co(OH)_2] = 6 \times 10^{-15}$; $[Co(NH_3)_6]^{2+}$ 具有较强还原性, Co^{2+} 不易被氧化。 回答下列问题:

- (2) 向混合液中先加入浓氨水,目的是______,混合液中NH4Cl的作用是_____;充分反应后再加入双氧水,水浴加热,控制温度为55℃的原因是。

- A. 先关闭水龙头,后拔掉橡胶管 B. 先拔掉橡胶管,后关闭水龙头
- (4) 为测定产品中钴的含量,进行下列实验:
- I. 称取3.5400 g产品,加入足量NaOH溶液蒸出NH₃,再加入稀硫酸,使[Co(NH₃)₆]Cl₃全部转化为Co³⁺,然后将溶液配制成250 mL,取25.00 mL于锥形瓶中,加入过量的KI溶液,用0.1000 mol·L⁻¹Na₂S₂O₃标准溶液滴定至终点,消耗标准溶液13.30 mL。(已知反应 2Na₂S₂O₃+I₂==Na₂S₄O₆+2NaI)
- II. 另取与步骤I中等量的KI溶液于锥形瓶中,用上述标准溶液进行滴定,消耗 $Na_2S_2O_3$ 标准溶液 $1.30\ mL$ 。
 - ①样品中钴元素的质量分数为_____;
- ②若步骤II滴定前滴定管内无气泡,滴定后有气泡,会使测定结果_____(填"偏大""偏小"或"不变")。
- 19. (12分) CO和NO都是有毒气体,但新的研究表明,它们都是生命体系气体信号分子,在人体内具有重要的生理作用,H₂是高中阶段常见的气体。 回答下列问题:
 - (1) 反应2NO(g) + 2H₂(g) \Longrightarrow N₂(g) + 2H₂O(g) $\Delta H = -664 \text{ kJ·mol}^{-1}$ 是联合硝酸工业减少污染物排放的重要反应。该反应分为三步完成(都是双分子反应,即反应物都只有两种分子),前

两步反应如下:

第1步: $2NO(g) \Longrightarrow N_2O_2(g)$ $\Delta H = -103 \text{ kJ} \cdot \text{mol}^{-1}$

第2步: $N_2O_2(g) + H_2(g) \Longrightarrow N_2O(g) + H_2O(g) \Delta H = -17 \text{ kJ} \cdot \text{mol}^{-1}$

- ①写出第3步反应的热化学方程式: ______
- ②基元反应 $mA(g) + nB(g) \Longrightarrow pC(g) + qD(g)$,正反应速率 $v_{\mathbb{H}} = kc^m(A) \cdot c^n(B)$ 。
- $2NO(g) + 2H_2(g)$ \Longrightarrow $N_2(g) + 2H_2O(g)$ 的正反应速率 $v_{\mathbb{H}} = k_1 \cdot c^2(NO)$,总反应速率 $v = k_2 \cdot (\frac{\alpha}{\alpha'} 1)^{1.2} \cdot (1 n\alpha')$, α 是平衡转化率, α' 是瞬时转化率, $k \cdot k_1 \cdot k_2$ 均为速率常数,受温度影响,温度升高,速率常数增大。
- I. 复杂反应分为多步进行时,决定反应速率的是最_____(填"快"或"慢")的一步,3 步基元反应中,活化能最高的一步是第_____步。
- II. 温度升高, $\alpha_{\underline{}}$ (填"变大"、"变小"或"不变"),在 $\alpha' = 0.90$ 时,一系列温度下的总反应速率—时间(v-t)曲线如图所示,分析图中曲线先升后降的原因: ____。

(2)用FeO治炼Fe的过程涉及如下反应:

反应I: $FeO(s) + CO(g) \Longrightarrow Fe(s) + CO_2(g)$ 反应II: $FeO(s) + C(s) \Longrightarrow Fe(s) + CO(g)$

①将FeO和CO放入恒容密闭容器中,下列事实能说明反应I和II均已达到平衡状态的是 (填序号):

A. 容器内气体的密度不再发生变化 B. CO的生成速率等于消耗速率

C. 容器内气体总压强不再发生变化 D. 容器内CO和CO2的物质的量相等

②在一个体积可变的容器中,维持温度1200 K不变(此时反应I的分压平衡常数 $K_{Pl}=1.00$)。

压缩容器体积,达到新平衡时,CO的分压____(填"变大"、"变小"或"不变");

③用压力传感器测得平衡时容器内压强为1200 KPa, 计算反应II的分压平衡常数Kp:

(写出计算过程)。

20. (12分)科学探究要实事求是、严谨细致。为检验溶液中是否含有Cl, 某同学向溶液中先加 HNO₃,再加AgNO₃,若有白色沉淀生成,则证明有Cl·。对此结论,有人提出了质疑:溶液中 可能有SO₄²⁻,并设计了如下探究性实验。

实验一: 向Na₂SO₄溶液中滴加AgNO₃溶液

编	Na ₂	SO ₄ 溶液		AgNO	3溶液	现象
号	体积 /mL	浓度 /(mol·L ⁻¹)	体积 /滴	浓度 /mol·L ⁻¹	混合后 Ag ⁺ 浓 度/(mol·L ⁻¹)	
1	1	1	3	2	0.2	出现大量白色沉淀
2	1	1	3	0.5	0.05	出现少量白色沉淀
3	1	1	3	0.1	0.01	有些许浑浊
4	1	1	3	0.01	0.001	无明显变化

- (1) 实验一中产生沉淀的离子方程式为
- (2) 已知: 25℃时, *K*_{sp}(Ag₂SO₄)=1.2×10⁻⁵, *K*_{sp}(AgCI)=1.8×10⁻¹⁰。实验一中编号④无明显变化 ,若要产生浑浊,溶液中 $c(SO_4^{2-})$ 理论上至少需达到_____mol·L⁻¹。若向 1 mL某浓度的NaCl与 Na_2SO_4 的混合溶液中加入 3 滴 0.1 $mol\cdot L^{-1}AgNO_3$ 溶液,分析上面数据,下列说法正确的是_____(填序号)。
 - A. 混合液中 $c((SO_4^{2-})=1 \text{ mol·L}^{-1}$ 时不会产生 Ag_2SO_4 沉淀
 - B. 混合液中 $c(SO_4^{2-}) = 0.1 \text{ mol·L}^{-1}$ 时不会产生Ag₂SO₄沉淀
 - C. 无论 SO_4^{2-} 浓度大小,都会产生 Ag_2SO_4 沉淀

D. 若使用 0.01 mol·L^{-1} AgNO₃溶液,可基本排除 SO_4^{2-} 对CI-检验构成的干扰

将实验一编号③中的理论计算结果与现象对照,发现理论上大部分Ag+应该形成沉淀,这与"有些许浑浊"的现象相矛盾。为探究真相,在实验一的基础上继续设计了以下实验。

实验二:

编号	AgNO ₃ 浓度 /mol·L ⁻¹	现象	滴加硝酸后的现象
(1)	2	出现大量白色沉淀	滴加稀硝酸,沉淀大量溶解;改加浓硝酸,沉淀较快消失
2	0.5	出现少量白色沉淀	滴加稀硝酸, 沉淀基本消失

(3) 对于Ag ₂ SO ₄ 溶于硝酸的原因提出了如下假设,	请完成假设二。
---	---------

假设一:	NO_3 对 Ag_2SO_4 溶解起作用。	
假设一:		0

(4)选择合适的试剂并设计实验方案,分别验证假设一和假设二是否成立。请补充完整实验操作和现象。

步骤	操作	现象	结论
步骤①	取少量 Ag ₂ SO ₄ 于试管中,加入 2mL 水,振荡	固体不溶解	\
步骤②	将①的浊液分成两等份	\	\
步骤③	向其中一份加入 1mL0.1 mol·L ⁻¹ 的 NaNO ₃ ,振荡	1)	假设一不成立
步骤④	向另一份加入②	3	假设二成立

	(5) 通过	过(4)的实验,	请用平衡理论解释Ag2SO4溶解的原因	日:	。(已知	
H_2S	O ₄ === H	+ + HSO ₄ 、 HS	$SO_4^- \Longrightarrow H^+ + SO_4^{2-}$			