

STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

ETN3096 - DIGITAL SIGNAL PROCESSING

(CE, EE, LE, OPE, TE)

7 MARCH 2019 2:30 PM – 4:30 PM (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 12 pages (including this cover page) with 4 Questions only and an appendix.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Please print all your answers in the Answer Booklet provided.

Question 1

- (a) Consider a discrete-time system $y[n] = 5n^3x[n]$.
 - (i) Determine if the system is linear.

[5 marks]

(ii) Determine if the system is time-invariant.

[5 marks]

(b) In the system shown in Figure Q1, $h_1[n] = [\dots 0 \ \underline{1} \ 2 \ 1 \ 0 \dots]$.

Figure Q1

- (i) For input $x[n] = [\dots 0 \ \underline{4} \ 3 \ 2 \ 0 \ \dots]$, determine $y_1[n]$ and $y_0[n]$ for n = 0 to 5.
- (ii) Determine the impulse response of the overall system $h_0[n]$. State if it is causal and justify your answer. [5 marks]

Question 2

- (a) Given that $H(z) = \frac{1}{\left(1 \frac{1}{3}z^{-1}\right)\left(1 \frac{1}{2}z^{-1}\right)}$, $\frac{1}{3} < |z| < \frac{1}{2}$, do the following:
 - (i) Find the inverse z-transform of H(z). [6 marks]
 - (ii) If H(z) represents a transfer function, determine the corresponding linear constant coefficient difference equation. [4 marks]
- (b) (i) Given a sequence $x[n] = [1 \ 0 \ 0 \ 2]$, evaluate the 4-point Discrete Fourier Transform (DFT) of the sequence x[n]. Compute all four DFT samples.

[6 marks]

(ii) Let w[n] be the circularly shifted signal of x[n] where $w[n] = x[n-2]_4$. Sketch the signal w[n] and compute the 4-point DFT of w[n] by using the **properties** of **DFT**. All the 4 DFT samples must be computed. [9 marks]

Question 3

(a) Design a 3-tap Finite Impulse Response (FIR) lowpass filter with a cutoff frequency of 1500 Hz and a sampling rate of 8000 sample/s.

(i) Determine the filter coefficients of the filter using a rectangular window function. [9 marks]

(ii) Write down the transfer function and difference equation of the filter.

[3 marks]

(b) A lowpass FIR filter has the following specifications:

Passband: 0 – 800 Hz Stopband: 1200 – 4000 Hz Stopband attenuation: 40 dB Passband ripple: 0.1 dB Sampling rate: 8000 Hz

Determine the window method, the FIR filter length, and the cutoff frequency to be used in the design.

[6 marks]

- (c) Figure Q3 shows a simple noise canceller with the use of one-tap adaptive filter. The adaptive filter equation is given in (1) and weight update equation for the least mean square (LMS) algorithm is given in (2).
 - (i) Describe briefly the algorithm used in adaptive filtering. [7 marks]
 - (ii) Explain the difference between adaptive FIR filter and non-adaptive FIR filter.
 [3 marks]
 - (iii) Complete Table Q3 for n = 0 and 1. Calculation steps must be shown. [5 marks]

Figure Q3

$$y(n) = w(n)x(n)$$
 (1)
 $w(n+1) = w(n) + 0.02 e(n) x(n)$ (2)

Table Q3: Adaptive Filter Computation

Iteration n	Signal corrupted with noise $d(n)$	Noise signal $x(n)$	Filter output $y(n)$	Error signal e(n)	Filter weight w(n)
0	-1.310	-0.150	-		0.200
1	1.221	0.212	_		

Question 4

Sketch the structures of an Infinite Impulse Response (IIR) filter with the transfer function

$$H(z) = \frac{0.4(1-z^{-1})}{(1+0.4z^{-1})(1+0.8z^{-1})}$$

in the following forms:

(i) Direct Form I

[6 marks]

(ii) Direct Form II

[5 marks]

(iii) Cascade Form

[6 marks]

APPENDIX

Discrete-time Fourier transform

Properties

Property	x[n],y[n]	$X(e^{jw}), Y(e^{jw})$
Linearity	ax[n] + by[n]	$aX(e^{jw}) + bY(e^{jw})$
Time shifting	$x[n-n_0]$	$e^{-jwn_0}X(e^{jw})$
Frequency shifting	$e^{jw_0n}x[n]$	$X(e^{j(w-w_0)})$
Time reversal	x[-n]	$X(e^{-jw})$
Differentiation	$n^kx[n]$	$(j)^k \frac{d^k}{dw^k} X(e^{jw})$
Convolution	x[n]*y[n]	$X(e^{jw})Y(e^{jw})$
Multiplication	x[n]y[n]	$\frac{1}{2\pi}(X(e^{j\theta})*Y(e^{jw}))$

Common pairs

x[n]	$X(e^{jw})$
$\delta[n]$	1
$\delta[n-n_0]$	e^{-jwn_0}
1	$\sum_{k=-\infty}^{\infty} 2\pi \delta(w+2\pi k)$
$e^{oldsymbol{jw_0}oldsymbol{n}}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(w-w_0+2\pi k)$
u[n]	$\frac{\sum\limits_{k=-\infty}^{\infty} 2\pi\delta(w-w_0+2\pi k)}{\frac{1}{1-e^{-jw}} + \sum\limits_{k=-\infty}^{\infty} \pi\delta(w+2\pi k)}$
$a^nu[n], a < 1$	$\frac{1}{1-ae^{-jw}}$
$(n+1)a^nu[n],\ a <1$	$\frac{1}{(1-ae^{-jw})^2}$
$\frac{\sin w_c n}{\pi n}$	$X(e^{jw}) = egin{cases} 1, & w < w_c \ 0, & w_c < w \leq \pi \end{cases}$
$x[n] = egin{cases} 1, & 0 \leq n \leq M \ 0, & ext{otherwise} \end{cases}$	$\frac{\sin w(M+1)/2}{\sin w/2} e^{-jwM/2}$

z-transform

Properties

Properties	Sequence	z-transform	ROC
	x[n]	<i>X</i> (z)	R _x
	$x_1[n]$	$X_1(z)$	R_{x1}
	$x_2[n]$	$X_2(z)$	R _{x2}
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z)+bX_2(z)$	Contains $R_{x1} \cap R_{x2}$
Time shifting	x[n-m]	$z^{-m}X(z)$	R_x except for the possible addition or deletion of the origin or infinity.
Multiplication by an exponential sequence	$a^nx[n]$	X(z/a)	$ a R_x$
Differentiation	nx[n]	$-z\frac{dX(z)}{dz}$	R_x except for the possible addition or deletion of the origin or infinity.
Conjugate	x*[n]	X*(z*)	$R_{\mathbf{x}}$
Time reversal	x[-n]	$X(z^{-1})$	1/R _x
Convolution	$x_1[n]^* x_2[n]$	$X_1(z) X_2(z)$	Contains $R_{x1} \cap R_{x2}$

Common pairs

Sequence	Transform	ROC
δ[n]	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a

Finite Impulse Response (FIR) Filters

Ideal impulse responses for standard FIR filters

Filter Type

Ideal Impulse Response h(n)

$$h(n) = \begin{cases} \frac{\Omega_c}{\pi}, & n = 0\\ \frac{\sin(\Omega_c n)}{n\pi}, & n \neq 0 \end{cases}$$

$$h(n) = \begin{cases} \frac{\pi - \Omega_c}{\pi}, & n = 0\\ \frac{-\sin(\Omega_c n)}{n\pi}, & n \neq 0 \end{cases}$$

$$h(n) = \begin{cases} \frac{\pi - \Omega_c}{\pi}, & n = 0\\ \frac{-\sin(\Omega_c n)}{n\pi}, & n \neq 0 \end{cases}$$

Bandpass:
$$h(n) = \begin{cases} \frac{\Omega_H - \Omega_L}{\pi}, & n = 0\\ \frac{\sin(\Omega_H n) - \sin(\Omega_L n)}{n\pi}, & n \neq 0 \end{cases}$$
Bandstop:
$$h(n) = \begin{cases} \frac{\pi - (\Omega_H - \Omega_L)}{\pi}, & n = 0\\ \frac{-\sin(\Omega_H n) + \sin(\Omega_L n)}{n\pi}, & n \neq 0 \end{cases}$$

$$h(n) = \begin{cases} \frac{\pi - (\Omega_H - \Omega_L)}{\pi}, & n = 0\\ \frac{-\sin(\Omega_H n) + \sin(\Omega_L n)}{n\pi}, & n \neq 0 \end{cases}$$

FIR filter length estimation using window functions

Window Type Window Function $w(n), -M \le n \le M$

Rectangular

$$0.5 + 0.5 \cos\left(\frac{n\pi}{M}\right)$$

$$0.54 + 0.46\cos\left(\frac{n\pi}{M}\right)$$

$$0.54 + 0.46\cos\left(\frac{n\pi}{M}\right)$$
$$0.42 + 0.5\cos\left(\frac{n\pi}{M}\right) + 0.08\cos\left(\frac{2n\pi}{M}\right)$$

Normalized Transition Width $\Delta f = \frac{ f_{stop} - f_{pass} }{f_{sampling}}$				
Type of Window	Window Length N	Stopband Attenuation (dB)	Passband Ripple (dB)	
Rectangular	$N = 0.9/\Delta f$	21	0.7416	
Hanning	$N=3.1/\Delta f$	44	0.0546	
Hamming	$N = 3.3/\Delta f$	53	0.0194	
Blackman	$N = 5.5/\Delta f$	74	0.0017	

Bilinear Transformation (BLT)

1. Frequency prewarping

Let ω_a denote the analog frequency marked on the $j\omega$ -axis on the s-plane, and ω_d denote the digital frequency marked on the unit circle in the z-plane.

For the lowpass filter and highpass filter:

$$\omega_a = \frac{2}{T} \tan \left(\frac{\omega_d T}{2} \right)$$

For the bandpass filter and bandstop filter:

$$\omega_{al} = \frac{2}{T} \tan\left(\frac{\omega_l T}{2}\right), \ \omega_{ah} = \frac{2}{T} \tan\left(\frac{\omega_h T}{2}\right)$$

and
$$\omega_0 = \sqrt{\omega_{al}\omega_{ah}}$$
, $W = \omega_{ah} - \omega_{al}$.

2. Prototype transformation using the lowpass prototype $H_P(s)$

From lowpass to lowpass: $H(s) = H_p(s)|_{s=\frac{s}{\omega}}$

From lowpass to highpass: $H(s) = H_p(s)|_{s = \frac{\omega_p}{s}}$

From lowpass to bandpass: $H(s) = H_P(s)|_{s = \frac{s^2 + \omega_0^2}{sW}}$

From lowpass to bandstop: $H(s) = H_P(s)|_{s = \frac{sW}{s^2 + \omega_0^2}}$

where ω_a denotes the analog frequency, $\omega_0 = \sqrt{\omega_{al}\omega_{oh}}$, $W = \omega_{oh} - \omega_{ol}$.

3. Substitute the BLT to obtain the digital filter

$$H(z) = H(s) \Big|_{s=\frac{2}{T}\frac{z-1}{z+1}}$$

Conversion from Analog Filter Specifications to Lowpass Prototype Specifications

Analog Filter Specifications Lowpass Prototype Specifications

Lowpass:
$$\omega_{ap}$$
, ω_{as}
$$v_s = \frac{\omega_{as}}{\omega_{ap}}$$
Highpass: ω_{ap} , ω_{as}
$$v_s = \frac{\omega_{ap}}{\omega_{as}}$$
Bandpass: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}
$$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}$$
, $\omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$
$$v_s = \frac{\omega_{ash} - \omega_{asl}}{\omega_{aph} - \omega_{apl}}$$
Bandstop: ω_{apl} , ω_{aph} , ω_{ash} , ω_{ash}
$$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}$$
, $\omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$
$$v_s = \frac{\omega_{aph} - \omega_{apl}}{\omega_{ash} - \omega_{asl}}$$

 ω_{ap} , passband frequency edge; ω_{as} , stopband frequency edge

 $\omega_{\it aph}$, lower cutoff frequency in passband; $\omega_{\it aph}$, upper cutoff frequency in passband ω_{ast} , lower cutoff frequency in stopband; ω_{ash} , upper cutoff frequency in stopband ω_0 , geometric center frequency

Closed-Form Expression for Some Useful Series

 $\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}$, $\omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$

$$\sum_{n=0}^{N-1} a^n = \frac{1-a^N}{1-a}$$

$$\sum_{n=0}^{N-1} na^n = \frac{(N-1)a^{N+1} - Na^N + a}{(1-a)^2}$$

$$\sum_{n=0}^{N-1} n = \frac{1}{2}N(N-1)$$

$$\sum_{n=0}^{N-1} a^n = \frac{1}{2}n = \frac{1}{2}N(N-1)$$

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$$

$$|a| < 1$$

Digital Butterworth and Chebyshev Filter Designs

With the given passband ripple A_p dB at the normalized passband frequency edge $v_p = 1$, and the stopband attenuation A_s dB at the normalized stopband frequency edge v_s , ε is the absolute ripple specification

$$\varepsilon^2 = 10^{0.1A_p} - 1$$

Butterworth lowpass prototype order

$$n \ge \frac{\log_{10}\left(\frac{10^{0.1A_s} - 1}{\varepsilon^2}\right)}{|2\log_{10}(v_s)|}$$

Chebyshev lowpass prototype order

$$n \ge \frac{\cosh^{-1}\left(\sqrt{\frac{10^{0.1A_{\varepsilon}}-1}{\varepsilon^2}}\right)}{\cosh^{-1}(v_{\varepsilon})}$$

where $\cosh^{-1}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$

3-dB Butterworth Lowpass Prototype Transfer Functions ($\varepsilon = 1$)

n
$$H_{P}(s)$$

1 $\frac{1}{s+1}$
2 $\frac{1}{s^{2}+1.4142s+1}$
3 $\frac{1}{s^{3}+2s^{2}+2s+1}$

Chebyshev Lowpass Prototype Transfer Functions with 1dB Ripple (ε = 0.5088)

n
$$H_P(s)$$

1 $\frac{1.9652}{s+1.9652}$
2 $\frac{0.9826}{s^2+1.0977s+1.1025}$
3 $\frac{0.4913}{s^3+0.9883s^2+1.2384s+0.4913}$

Discrete Fourier Transform

Properties

Property	x[n]	X[k]
Linearity	$A_1x_1[n] + A_2x_2[n]$	$A_1X_1[k] + A_2X_2[k]$
Time shifting	$x[\langle n-n_0\rangle_N]$	$X[k]W_N^{kn_0}$
Frequency shifting	$x[n]W_N^{-k_0n}$	$X[\langle k-k_0 angle_N]$
Time reversal	$x[\langle -n \rangle_N]$	$X[\langle -k \rangle_N]$
Conjugation	$x^*[n]$	$X^*[\langle -k angle_N]$
Convolution	$x[n]\circledast y[n]$	X[k]Y[k]
Modulation	Nx[n]y[n]	$X[k] \circledast Y[k]$

The decimation-in-time fast Fourier transform

End of Paper

