Name: Gurjit Singh

Sid: N01634963 Assignment4 Machine Learning

Importing Libraries and Dependencies

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
```

Step 1: Load dataset

```
df = pd.read_csv('loan_data.csv')
```

Step 2: Explore dataset

```
df.info()
print(df.head())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9578 entries, 0 to 9577
Data columns (total 14 columns):
#
     Column
                        Non-Null Count
                                         Dtype
 0
     credit.policy
                        9578 non-null
                                         int64
 1
                        9578 non-null
                                         object
     purpose
 2
                                         float64
     int.rate
                        9578 non-null
 3
     installment
                        9578 non-null
                                         float64
    log.annual.inc
                        9578 non-null
                                         float64
 5
     dti
                        9578 non-null
                                         float64
 6
     fico
                        9578 non-null
                                         int64
 7
     days.with.cr.line 9578 non-null
                                         float64
 8
                        9578 non-null
                                         int64
     revol.bal
 9
     revol.util
                        9578 non-null
                                         float64
 10
    ing.last.6mths
                        9578 non-null
                                         int64
 11
     deling.2yrs
                        9578 non-null
                                         int64
12
     pub.rec
                        9578 non-null
                                         int64
     not.fully.paid
                        9578 non-null
                                         int64
dtypes: float64(6), int64(7), object(1)
memory usage: 1.0+ MB
```

1.0	<pre>credit.polic g.annual.inc</pre>			purpo	se int.ra	te installme	ent
0 11 1			1 debt_	_consolidati	on 0.11	.89 829.	10
	.350407		1	credit_ca	rd 0.10	71 228.	22
2	.082143		1 debt	_consolidati	on 0.13	366.	86
3	.373491		1 debt	_consolidati	on 0.10	08 162.	34
4	.350407		1	credit_ca	rd 0.14	-26 102.	92
11	.299732						
in	dti q.last.	fico 6mths	days.w:	ith.cr.line	revol.bal	revol.util	
0	19.48	737	-	5639.958333	28854	52.1	
1	14.29	707	2	2760.000000	33623	76.7	
2	11.63	682	4	4710.000000	3511	. 25.6	
3	8.10	712	Ź	2699.958333	33667	73.2	
4	14.97	667	4	4066.000000	4740	39.5	
J		2					
0 1 2	delinq	0		9	. 0		
		0 0		9 9	0 0		
3 4		0 1	(9	0 0		

Step 3 Data Visualization and Preprocessing

```
import seaborn as sns
import matplotlib.pyplot as plt

# Convert 'not.fully.paid' to categorical and ensure no numerical
issues

df['not.fully.paid'] = df['not.fully.paid'].astype(str) # Convert to
string (categorical)

df['purpose'] = df['purpose'].astype(str) # Ensure 'purpose' is also
string

# Step 3: Data Visualization
sns.countplot(data=df, x='purpose', hue='not.fully.paid')
```

```
plt.xticks(rotation=45, ha='right')
plt.show()
```


Step 4: Data Preprocessing

```
# Convert categorical target variable to string for encoding
df['not.fully.paid'] = df['not.fully.paid'].astype(str)
# One-hot encoding for categorical features
pre_df = pd.get_dummies(df, columns=['purpose'], drop_first=True)
```

Step 5: Split dataset into training and testing sets

```
X = pre_df.drop('not.fully.paid', axis=1)
y = pre_df['not.fully.paid'].astype(int) # Convert target to
numerical

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.33, random_state=125
)
```

Step 6: Train Naïve Bayes model with Laplacian correction

```
laplace_model = GaussianNB(var_smoothing=le-9) # Laplacian correction
laplace_model.fit(X_train, y_train)
GaussianNB()
```

Step 7: Make Predictions

```
y_pred = laplace_model.predict(X_test)
```

Step 8: Evaluate the model

```
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy after Laplacian correction: {accuracy:.2%}')
Accuracy after Laplacian correction: 82.06%
```

Step 9: Compute and Visualize the Confusion Matrix

```
conf_matrix = confusion_matrix(y_test, y_pred)
```

```
plt.figure(figsize=(6,4))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=["Not Paid", "Paid"], yticklabels=["Not Paid", "Paid"])
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
```

