Міністерство освіти і науки України LII Всеукраїнська олімпіада юних фізиків, м. Запоріжжя, 2015 Експериментальний тур, 9-й клас

Задача №1

Обладнання

- Прозорий матовий папір (калька)
- Затемнена плівка
- Порожня сірникова коробка
- Міліметровий папір

Групове обладнання

- Ножиці
- Пластилін

Завдання

Визначте коефіцієнт пропускання затемненої плівки.

Примітка

Учасникам дозволено підходити до вікна (журі гарантує сонячну погоду).

Плівку, папір і сірникову коробку дозволено розрізати.

Теоретична довідка

Коефіцієнтом пропускання плівки називають відношення світлового потоку Φ , що пройшов через плівку, до світлового потоку Φ_0 , що падає на неї:

$$K = \frac{\Phi}{\Phi_0}.$$

Якщо кут падіння світла на поверхню дорівнює lpha , освітленість $E=E_0\coslpha$, де E_0

- освітленість при нормальному падінні.

Залача №2

Обладнання

Групове:

- Паперові серветки (1 рулон туалетного паперу на клас)

Індивідуальне:

- відрізок пластикової прозорої трубки довжиною близько 25 см;
- лінійка;
- ділянка парти, вкрита полієтиленовою плівкою (ширина плівки 25 см);
- пластиковий стаканчик з мильнім розчином (близько 20 мл);
- міліметровий папір.

Завлання

Отримати на покритій плівкою поверхні парти мильну бульбашку та визначите середню товщину її стінки.

Додаткова інформація: площа поверхні сфери $S = 4\pi R^2$

Министерство образования и науки Украины LII Всеукраинская олимпиада юных физиков, г. Запорожье, 2015 Экспериментальный тур, 9-й класс

Задача №1

Оборудование

- Прозрачная матовая бумага (калька)
- Затемнённая пленка
- Пустой спичечный коробок
- Миллиметровая бумага

Групповое оборудование

- Ножницы
- Пластилин

Задание

Определить коэффициент пропускания затемнённой пленки.

Примечание

Участникам разрешено подходить к окну (жюри гарантирует солнечную погоду).

Плёнку, бумагу и спичечный коробок разрешается разрезать.

Теоретическая справка

Коэффициентом пропускания пленки называют отношение прошедшего сквозь пленку светового потока Φ к световому потоку Φ_0 , падающему на нее:

$$K = \frac{\Phi}{\Phi_0}.$$

Если угол падения света на поверхность равен α , то освещенность $E=E_0\cos\alpha$, где

 E_0 - освещенность при нормальном падении.

Задача №2

Оборудование

Групповое:

- Бумажные салфетки (1 рулон туалетной бумаги на класс)

Индивидуальное:

- Отрезок пластиковой прозрачной трубки длиной около 25 см;
- линейка;
- поверхность партии, покрытая полиэтиленовой пленкой (ширина пленки 25 см);
- пластиковый стаканчик с мыльным раствором (около 20 мл);
- миллиметровая бумага.

Задание

Получить на покрытой пленкой поверхности парты мыльный пузырь и определить среднюю толщину его стенок.

Дополнительная информация: площадь поверхности сферы $S = 4\pi R^2$