Contents

1	Basic	•																			1
•																					
	1.1	.vimrc																			
	1.2	IncStack																			
	1.3	IncStack windo	ows																		 1
	1.4	random																	_		 1
	1.5																				
	1.0				•			•	•	 •		 •	•	•	 •	•		•	•	•	 •
2	Matl																				1
2		-																			_
	2.1	basic																			
	2.2	Simplex																			 2
	2.3	FFT																			
	2.4	FWT																			
	2.5	Lagrange Poly																			
	2.6	Lucas																			 3
	2.7	Miller Rabin w	ith Po	lla	rd	rho) .														 3
	2.8																				
	2.9	Mod Mul Grou																			
																					-
		MongeDP																			-
	2.11	Chinese Remai	inder '	The	eor	em															
	2.12	Discrete Log .																			 5
		Fast Linear Re																			
		Matrix																			
	2.15	Determinant .																			 6
	2.16	Number Theor	y Fun	ctio	ons	3.															 6
		Polynomail roo																			
		Subset Zeta Tr																			
	2.10	Juoset Zeta II	misiUl	111	٠			•	٠	 •		 ٠	•		 •	•		•	•	٠	 U
2	ъ .	C4 1																			_
3		Structure																			7
	3.1	Disjoint Set .																			
	3.2	Heavy Light D	ecom	nos	siti	on															 7
	3.3	KD Tree																			
	3.4	PST																			
	3.5	Rbst																			
	3.6	Link Cut Tree																			 9
	3.7	mos																			 10
	3.8	pbds																			
	5.0	pods			•				•			 •	•	•	 •	•		•		•	 10
4	T21																				10
4	Flow																				10
	4.1	CostFlow																			 10
	4.2	Dinic																			 11
	4.3	KM matching																			11
	4.4	Matching																			
	7.7	Matching			•				•	 •	•	 •	•	•	 •	•		•	•	•	 12
	~	4																			12
5	Geor																				
5	5.1	Convex Envelo	ope																		
5																					12
5	5.1 5.2	Convex Envelo	ll .																		 12 13
5	5.1 5.2 5.3	Convex Envelo 3D ConvexHul Half plane inte	ll . rsectio	on																	 12 13 13
5	5.1 5.2 5.3 5.4	Convex Enveloration 3D Convex Hulf Plane inter Lines	ll rsection	 on						 		 			 						 12 13 13 13
5	5.1 5.2 5.3 5.4 5.5	Convex Envelored 3D Convex Hull Half plane inter Lines Points	ll rsection	on						 		 			 						 12 13 13 13 14
5	5.1 5.2 5.3 5.4	Convex Enveloration 3D Convex Hulf Plane inter Lines	ll rsection	on						 		 			 						 12 13 13 13 14
5	5.1 5.2 5.3 5.4 5.5 5.6	Convex Envelored 3D Convex Hull Half plane inte Lines Points Polys	rsection	on 						 		 			 		 				 12 13 13 13 14 14
5	5.1 5.2 5.3 5.4 5.5	Convex Envelored 3D Convex Hull Half plane inter Lines Points	rsection	on 						 		 			 		 				 12 13 13 13 14 14
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Convex Envelorable Convex Envelorable All Plane inter Lines Points Polys Rotating Axis	rsection	on 						 		 			 		 				 12 13 13 13 14 14 14
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Gra	Convex Envelored 3D ConvexHull Half plane interplane Lines Points Polys Rotating Axis	II . rsection	on 						 		 			 		 		-		 12 13 13 13 14 14 14 15
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap	Convex Enveloration Convex Enveloration Convex Hull Half plane interpretation Control	II rsection	on 						 					 		 				 12 13 13 13 14 14 14 14 15
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Gra ₁ 6.1 6.2	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Polys	II rsection	on 						 					 		 				 12 13 13 13 14 14 14 15 15
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Polys Convex Rotating Axis Convex Half Polys Convex Half Polys Convex Enveloped Half Polys Conve	II rsection	on											 						12 13 13 13 14 14 14 15 15 15
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Gra ₁ 6.1 6.2	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Polys Convex Rotating Axis Convex Half Polys Convex Half Polys Convex Enveloped Half Polys Conve	II rsection	on											 						12 13 13 13 14 14 14 15 15 15
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4	Convex Envelor 3D ConvexHul Half plane inte Lines Points ConvexHul Half plane inte Lines Points Polys Rotating Axis Polys Potating Axis Polys Potating Axis Polys Potating Axis Polys Potating Polys P	II	on											 						12 13 13 13 14 14 14 15 15 16 16
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5	Convex Envelor 3D ConvexHul Half plane inte Lines Points Rotating Axis Ph 2-SAT ConvexHul BCC General Match Bridge CentroidDecor	II . rsection	on																	12 13 13 14 14 14 15 15 16 16 16
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Graj 6.1 6.2 6.3 6.4 6.5 6.6	Convex Enveloration Convex Enveloration Convex Enveloration Convex Enveloration Convex Enveloration Enveloration Convex Enveloration Converse Enveloration	ing mposit	cior																	12 13 13 14 14 14 15 15 16 16 16
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Broad Axis Control March Bridge Control Directed Graph General Weight	ing nposit MinC	on		ng															12 13 13 13 14 14 14 15 15 15 16 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Convex Envelor 3D ConvexHul Half plane in the Lines	ing nposit MinC	on		ng															12 13 13 13 14 14 14 15 15 15 16 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Polys Convex Rotating Axis Oh 2-SAT Convex Hull Half Polys Convex General Match Bridge Convex Controid Decorpolation Convex Hull Half Polys Convex Half Polys C	ing nposit MinC	on in in in in in in in in in		ng					- · · · · · · · · · · · · · · · · · · ·										12 13 13 13 14 14 14 15 15 15 16 16 16 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Convex Envelor 3D ConvexHul Half plane inte Lines Points Polys Rotating Axis Control Polys Rotating Rotatin	rsections in the section of the sect	on cior yel	on le	ng															12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Convex Envelor 3D ConvexHul Half plane inte Lines Points Polys Rotating Axis Polys Rotating Axis Polys CentroidDecor General Match Bridge CentroidDecor DirectedGraph General Weigh MinMeanCycle Prufer code Virtual Tree	rsections of the control of the cont	on		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 19 20
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Convex Enveloration Convex Enveloration Convex Hull Half plane interpression Convex Hull Half plane interpression Convex Hull Half plane interpression Convex Half plane interpression Converted Converted Graph General Weigh MinMean Coycle Prufer code Virtual Tree Graph Sequence Graph Sequence Converted Con	Il	on con con con con con con con		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Holder Conversed General Match Bridge Centroid Decord Directed Graph General Weigh MinMean Cycle Prufer code Virtual Tree Graph Sequence maximal clique maximal clique Convex Half Programma Conve	Illrsection	on in i		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Holder Conversed General Match Bridge Centroid Decord Directed Graph General Weigh MinMean Cycle Prufer code Virtual Tree Graph Sequence maximal clique maximal clique Convex Half Programma Conve	Illrsection	on in i		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Convex Enveloration Convex Enveloration Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Hull Half plane interpolation Convex Holder Conversed General Match Bridge Centroid Decord Directed Graph General Weigh MinMean Cycle Prufer code Virtual Tree Graph Sequence maximal clique maximal clique Convex Half Programma Conve	Illrsection	on in i		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 19 20 20 21 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	Convex Envelor 3D ConvexHul Half plane inte Lines Points Polys Rotating Axis ConvexHul Half plane inte Lines Points Polys Rotating Axis ConvexHul Half plane interest Polys Rotating Axis Convex Polys	Illrsection	on in i		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis ConvexHul Polys Rotating Ro	ill rsection ing mposit MinC ted M ee ce Tes es	on	o o o o o o o o o o o o o o o o o o o	ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21 21
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 Strin 7.1	Convex Enveloration Convex Enveloration Convex Enveloration Convex Enveloration Convex Environment Converse Enviro	Illrsection	on	o de	ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21 21 21
6	5.1 5.2 5.3 5.4 5.5 5.5 5.6 6.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 Strin 7.1	Convex Enveloration Convex Enveloration Convex Enveloration Convex Enveloration Convex Environment Convex En	ing ing mposit MinC ted M ee cee Tes	cior		ng															12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21 21 21 22 22 22
6	5.1 5.2 5.3 5.4 5.5 5.5 5.6 6.7 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 6.13 Strin 7.1 7.2 7.3	Convex Envelor 3D ConvexHul Half plane inte Lines Points Polys Rotating Axis ConvexHul Half plane inte Lines Points Polys Rotating Axis Control Polys Rotating Axis Control Polys Po	Ilrsection	on		ng															12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 19 20 20 21 21 22 22 22 22
6	5.1 5.2 5.3 5.4 5.5 5.5 5.6 6.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 Strin 7.1	Convex Enveloration Convex Enveloration Convex Enveloration Convex Enveloration Convex Environment Convex En	Ilrsection	on		ng															12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 19 20 20 21 21 22 22 22 22
6	5.1 5.2 5.3 5.4 5.5 5.5 5.6 6.7 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 6.13 Strin 7.1 7.2 7.3	Convex Envelor 3D ConvexHul Half plane inte Lines Points Polys Rotating Axis ConvexHul Half plane inte Lines Points Polys Rotating Axis Control Polys Rotating Axis Control Polys Po	Ill resection of the control of the	on																	12 13 13 13 14 14 14 15 15 16 16 16 16 17 17 19 20 20 21 21 22 22 22 22 22
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Gra ₁ 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.13 Strin 7.1 7.2 7.3 7.4	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis Polys Po	Ill resection of the control of the	on																	12 13 13 13 14 14 14 15 15 16 16 16 16 17 17 19 20 20 21 21 22 22 22 22 22
7	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Graq 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5	Convex Enveloration Convex Enveloration Convex Enveloration Convex Hull Half plane interesting the Lines Points Polys Rotating Axis Polys Rotating Axis Polys Centroid Decorporation Converted Graph General Meigh MinMean Cycle Prufer code Virtual Tree Graph Sequence maximal clique sec Pack Converted Convert	Ill resection of the control of the	on		ng															12 13 13 13 14 14 14 15 15 16 16 16 16 17 17 19 20 20 21 21 22 22 22 22 22 24
6	5.1 5.2 5.3 5.5 5.6 5.7 Graj 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 6.13 Strin 7.1 7.2 7.3 7.4 7.5 Fornal	Convex Envelor 3D ConvexHul Half plane inter Lines Points Points Polys Rotating Axis oh 2-SAT General Match Bridge CentroidDecor DirectedGraph General Weigh MinMeanCycl Prufer code Virtual Tree Graph Sequent maximal clique sec 18 AC automaton KMP AC automaton KMP Suffix Automanulas Suffix Automanulas	ing	on																	12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21 21 22 22 22 22 24
7	5.1 5.2 5.3 5.5 5.6 5.7 Gra I 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 Forn 8.1	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis Polys Rotating Polys Ro	Ill rrsection of the control of the	con																	12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 20 21 21 22 22 22 22 22 24 24
7	5.1 5.2 5.3 5.3 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7.1 7.2 7.3 7.4 7.5 For	Convex Enveloration Convex Hull Half plane into Lines	Ill resection in the control of the	con																	12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 19 19 20 21 21 22 22 22 22 22 22 24 24 24
7	5.1 5.2 5.3 5.5 5.6 5.7 Gra I 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 Forn 8.1	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis Polys Rotating Polys Ro	ing	con																	12 13 13 13 14 14 14 15 15 16 16 16 17 17 17 19 20 20 21 21 22 22 22 22 22 22 24 24
7	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Graj 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.1 6.1 6.1 7.1 7.2 7.3 7.4 7.5 Form 8.1 8.2 8.3	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis Polys Rotating Axis Polys Polys Rotating Axis Polys Po	Ill resection of the control of the	on																	12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 19 20 20 21 21 22 22 22 22 22 22 24 24 24 24 24
7	5.1 5.2 5.3 5.5 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.3 7.4 7.5 Forn 8.1 8.2 8.3 8.4	Convex Envelor 3D ConvexHul Half plane inter Lines Points Points Polys Rotating Axis oh 2-SAT General Match Bridge CentroidDecor DirectedGraph General Weigh MinMeanCycl Prufer code Virtual Tree Graph Sequent maximal clique scc 18 AC automaton KMP AC automaton KMP Suffix Automa	Il resection in the control of the c	on																	12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21 21 22 22 22 22 22 22 24 24 24 24 24 24 24
7	5.1 5.2 5.3 5.5 5.6 5.7 Gra I 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 Forn 8.1 8.2 8.3 8.4 8.5	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis Polys Ro	ing mposit MinC ted M e e	con																	12 13 13 13 14 14 14 15 15 16 16 16 17 17 19 20 20 21 21 22 22 22 22 22 24 24 24 24 24 24 25
7	5.1 5.2 5.3 5.3 5.4 5.5 5.6 5.7 Graj 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7.1 7.2 7.3 7.4 7.5 Form 8.2 8.3 8.4 8.5 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	Convex Envelor 3D Convex Hull Half plane inte Lines	ing	con																	12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 19 19 20 20 21 21 22 22 22 22 22 24 24 24 24 24 25 25 25 25 25 25 25 25 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28
7	5.1 5.2 5.3 5.5 5.6 5.7 Gra I 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.10 6.11 6.12 7.1 7.2 7.3 7.4 7.5 Forn 8.1 8.2 8.3 8.4 8.5	Convex Envelor 3D ConvexHul Half plane inter Lines Points Polys Rotating Axis Polys Ro	ing	con																	12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 19 19 20 20 21 21 22 22 22 22 22 24 24 24 24 24 25 25 25 25 25 25 25 25 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28
7	5.1 5.2 5.3 5.3 5.4 5.5 5.6 5.7 Graj 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7.1 7.2 7.3 7.4 7.5 Form 8.2 8.3 8.4 8.5 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	Convex Envelor 3D Convex Hull Half plane inte Lines	ing	con																	12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 19 19 20 20 21 21 22 22 22 22 22 24 24 24 24 24 25 25 25 25 25 25 25 25 26 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28

1 Basic

1.1 .vimre

```
1 syntax on
2 set nu ai bs=2 sw=2 ts=2 et ve=all cb=unnamed mouse=a
    ruler incsearch hlsearch
```

1.2 IncStack

```
1 //stack resize (linux)
2 #include <sys/resource.h>
3 void increase_stack_size() {
4    const rlim_t ks = 64*1024*1024;
5    struct rlimit rl;
6    int res=getrlimit(RLIMIT_STACK, &rl);
7    if(res==0){
8        if(rl.rlim_cur<ks){
9            rl.rlim_cur=ks;
10            res=setrlimit(RLIMIT_STACK, &rl);
11    }
12    }</pre>
```

1.3 IncStack windows

1.4 random

```
1 #include <random>
2 mt19937 rng(0x5EED);
3 int randint(int lb, int ub)
4 { return uniform_int_distribution<int>(lb, ub)(rng); }
```

1.5 time

```
1 #include <bits/stdc++.h>
2
3 using namespace std;
4
5 int main() {
6    clock_t t;
7    t = clock();
8    // code here
9    t = clock() - t;
10    cout << 1.0 * t / CLOCKS_PER_SEC << "\n";
11
12    // execute time for entire program
13    cout << 1.0 * clock() / CLOCKS_PER_SEC << "\n";
14 }</pre>
```

2 Math

2.1 basic

```
PLL exd_gcd(LL a, LL b) { // what about b.zero? = =
    if (a % b == 0) return {0, 1};
    PLL T = exd_gcd(b, a % b);
    return {T.second, T.first - a / b * T.second};
}
LL powmod(LL x, LL p, LL mod) {
    LL s = 1, m = x % mod;
    for (; p; m = m * m % mod, p >>= 1)
        if (p&1) s = s * m % mod; // or consider int128
    return s;
}
```

```
12 LL LLmul(LL x, LL y, LL mod) {
     LL m = x, s = 0;
13
     for (; y; y >>= 1, m <<= 1, m = m >= mod? m - mod: m
       if (y\&1) s += m, s = s >= mod? s - mod: s;
15
16
     return s;
17
18 LL dangerous_mul(LL a, LL b, LL mod){ // 10 times
       faster than the above in average, but could be
       prone to wrong answer (extreme low prob?)
     return (a * b - (LL)((long double)a * b / mod) * mod
19
         ) % mod;
20 | }
21
  vector<LL> linear_inv(LL p, int k) { // take k
     vector<LL> inv(min(p, 1ll + k));
23
     for (int i = 2; i < inv.size(); ++i)
inv[i] = (p - p / i) * inv[p % i] % p;</pre>
24
25
26
27 }
28
29 tuple<int, int, int> ext_gcd(int a, int b) {
     if (!b) return {1, 0, a};
30
     int x, y, g;
31
     tie(x, y, g) = ext_gcd(b, a \% b);
32
     return \{y, x - a / b * y, g\};
33
34 | }
```

2.2 Simplex

```
1|vector<ld> simplex(vector<vector<ld>> a) {
      int n = (int) a.size() - 1;
      int m = (int) a[0].size() - 1;
     vector<int> left(n + 1);
     vector<int> up(m + 1);
      iota(left.begin(), left.end(), m);
     iota(up.begin(), up.end(), 0);
auto pivot = [&](int x, int y) {
   swap(left[x], up[y]);
10
        ld k = a[x][y];
11
        a[x][y] = 1;
        vector<int> pos;
12
13
        for (int j = 0; j \le m; j++) {
          a[x][j]^{-}/= k
14
          if (fabs(a[x][j]) > eps) {
15
             pos.push_back(j);
17
18
        for (int i = 0; i <= n; i++) {
19
          if (fabs(a[i][y]) < eps || i == x) {
20
21
             continue;
          k = a[i][y];
23
          a[i][y] = 0;
for (int j : pos) {
24
25
            a[i][j] -= k * a[x][j];
26
27
28
       }
29
      while (1) {
30
        int x = -1;
31
        for (int i = 1; i <= n; i++) {
32
          if (a[i][0] < -eps && (x == -1 || a[i][0] < a[x])
33
               ][0])) {
34
             x = i;
          }
35
36
        if (x == -1) {
37
          break;
38
39
40
        for (int j = 1; j <= m; j++) {
  if (a[x][j] < -eps && (y == -1 || a[x][j] < a[x
41
42
               ][y])) {
43
          }
44
45
        if (y == -1) {
46
47
          return vector<ld>(); // infeasible
48
```

```
pivot(x, y);
50
     while (1) {
51
52
        int y = -1;
        for (int j = 1; j <= m; j++) {
53
          if (a[0][j] > eps && (y == -1 || a[0][j] > a[0][
              y])) {
55
            y = j;
56
57
        if (y == -1) {
58
59
          break;
60
61
        int x = -1;
       for (int i = 1; i <= n; i++) {
  if (a[i][y] > eps && (x == -1 || a[i][0] / a[i][
62
63
              y] < a[x][0] / a[x][y])) {
64
          }
65
66
       if (x == -1) {
67
68
          return vector<ld>(); // unbounded
69
       pivot(x, y);
70
71
     vector<ld> ans(m + 1);
72
73
     for (int i = 1; i <= n; i++) {
       if (left[i] <= m) {</pre>
74
75
          ans[left[i]] = a[i][0];
76
77
     ans[0] = -a[0][0];
78
79
     return ans:
80 3
```

2.3 FFT

```
/* p == (a << n) + 1
      g = pow(root, (p - 1) / n)
3
           1<<n
                                           root
                         97
            32
            64
                         193
            128
                         257
            256
                         257
                                           17
            512
                         7681
      10
            1024
                         12289
                                           11
10
            2048
                         12289
                                           11
      11
            4096
11
      12
                         12289
                                           11
      13
            8192
                         40961
                                           3
      14
            16384
                         65537
                                           3
13
14
      15
            32768
                         65537
            65536
                         65537
15
      16
                         786433
      17
            131072
                                           10
16
                                     6
17
            262144
                         786433
                                           10 (605028353,
           2308, 3)
      19
           524288
                         5767169
18
                                     11
19
      20
            1048576
                         7340033
            1048576
                         998244353
                                     952
20
      20
21
      21
            2097152
                         23068673
                                     11
      22
            4194304
22
                         104857601
      23
23
            8388608
                         167772161
                                     20
                                     10
      24
            16777216
                         167772161
24
25
      25
            33554432
                         167772161
                                     5
                                           3 (1107296257, 33,
            10)
26
      26
            67108864
                         469762049 7
                                           3
27
28
  // w = root^a mod p for NTT
  // w = exp(-complex<double>(0, 2) * PI / N) for FFT
30
  template<typename F = complex<double>>
32
   void FFT(vector<F> &P, F w, bool inv = 0) {
33
     int n = P.size();
34
     int lg = __builtin_ctz(n);
35
36
     assert(__builtin_popcount(n));
37
     for (int j = 1, i = 0; j < n - 1; ++j) {
38
       for (int k = n >> 1; k > (i ^= k); k >>= 1);
39
40
       if (j < i) swap(P[i], P[j]);</pre>
     } //bit reverse
```

20 | };

```
42
      vector<F> ws = {inv ? F{1} / w : w};
43
     for (int i = 1; i < lg; ++i) ws.push_back(ws[i - 1]
    * ws[i - 1]);</pre>
44
45
      reverse(ws.begin(), ws.end());
46
     for (int i = 0; i < lg; ++i) {
  for (int k = 0; k < n; k += 2<<i) {</pre>
47
48
          F base = F\{1\};
49
          for (int j = k; j < k + (1<<i); ++j, base = base
   * ws[i]) {</pre>
50
             auto t = base * P[j + (1 << i)];
51
52
             auto u = P[j];
53
             P[j] = u + t;
             P[j + (1 << i)] = u - t;
54
55
          }
56
        }
57
     if (inv) for_each(P.begin(), P.end(), [&](F& a) { a
           = a / F(n); });
60 } //faster performance with calling by reference
```

2.4 FWT

```
1 | vector<LL> fast_OR_transform(vector<LL> f, bool
        inverse) {
     for (int i = 0; (2 << i) <= f.size(); ++i)
        for (int j = 0; j < f.size(); j += 2 << i)
for (int k = 0; k < (1 << i); ++k)</pre>
            f[j + k + (1 << i)] += f[j + k] * (inverse? -1)
                   : 1);
     return f;
7 }
8
   vector<LL> rev(vector<LL> A) {
     for (int i = 0; i < A.size(); i += 2) swap(A[i], A[i
           ^ (A.size() - 1)]);
10
     return A;
11 }
12 vector<LL> fast_AND_transform(vector<LL> f, bool
        inverse) {
     return rev(fast_OR_transform(rev(f), inverse));
13
14|}
15
  vector<LL> fast_XOR_transform(vector<LL> f, bool
        inverse) {
     for (int i = 0; (2 << i) <= f.size(); ++i)
for (int j = 0; j < f.size(); j += 2 << i)
for (int k = 0; k < (1 << i); ++k) {
16
17
18
            int u = f[j + k], v = f[j + k + (1 << i)];
19
            f[j + k + (1 << i)] = u - v, f[j + k] = u + v;
20
21
     if (inverse) for (auto &a : f) a /= f.size();
     return f;
23
24 }
```

2.5 Lagrange Polynomial

```
1 template<typename F>
   struct Lagrange_poly {
     vector<F> fac, p;
      int n;
     Lagrange_poly(vector<F> p) : p(p) \{ // f(i) = p[i] \}
        n = p.size();
        fac.resize(n), fac[0] = 1;
        for (int i = 1; i < n; ++i) fac[i] = fac[i - 1] *
8
             F(i);
10
     F operator()(F x) const {
        F ans(0), to_mul(1);
11
        for (int j = 0; j < n; ++j) to_mul = to_mul * (F(j
12
             ) - x);
13
        assert(not(to_mul == F(0)));
        for (int j = 0; j < n; ++j) {
  ans = ans + p[j] * to_mul / (F(j) - x) /
      fac[n - 1 - j] / (j&1 ? -fac[j] : fac[j]);</pre>
14
15
16
17
18
        return ans;
19
```

2.6 Lucas

2.7 Miller Rabin with Pollard rho

```
1|bool miller_rabin(LL n, int s = 7) {
     const LL wits[7] = \{2, 325, 9375, 28178, 450775,
          9780504, 1795265022};
     auto witness = [=](LL a, LL n, LL u, int t) {
        LL x = powmod(a, u, n), nx; // use LLmul, remember
        for (int i = 0; i < t; ++i, x = nx){
          nx = LLmul(x, x, n);
          if (nx == 1 \text{ and } x != 1 \text{ and } x != n - 1) return
               true:
       return x != 1;
     };
if (n < 2) return 0;
return n</pre>
10
11
     if (n\&1^1) return n == 2;
12
     LL u = n - 1, t = 0, a; // n == (u << t) + 1
while (u&1^1) u >>= 1, ++t;
13
14
15
     while (s--)
16
        if ((a = wits[s] % n) and witness(a, n, u, t))
            return 0;
17
     return 1;
18 }
   // Pollard_rho
19
20 LL pollard_rho(LL n) {
     auto f = [=](LL x, LL n) \{ return LLmul(x, x, n) + \}
     if (n&1^1) return 2;
22
23
     while (true) {
       LL x = rand() \% (n - 1) + 1, y = 2, d = 1;
for (int sz = 2; d == 1; y = x, sz <<= 1)
24
25
          for (int i = 0; i < sz and d <= 1; ++i)
26
       x = f(x, n), d = \_gcd(abs(x - y), n);
if (d and n - d) return d;
2.7
28
29
     }
30 | }
   vector<pair<LL, int>> factor(LL m) {
31
     vector<pair<LL, int>> ans;
32
33
     while (m != 1) {
34
        LL cur = m;
       while (not miller_rabin(cur)) cur = pollard_rho(
35
            cur);
36
       ans.emplace_back(cur, 0);
       while (m % cur == 0) ++ans.back().second, m /= cur
37
38
39
     sort(ans.begin(), ans.end());
40
     return ans;
41 }
```

2.8 ModInt

```
1 template <int mod>
2 struct ModInt {
3    int val;
4    int trim(int x) const { return x >= mod ? x - mod :
        x < 0 ? x + mod : x; }
5    ModInt(int v = 0) : val(trim(v % mod)) {}</pre>
```

```
ModInt(long long v) : val(trim(v % mod)) {}
     ModInt &operator=(int v) { return val = trim(v % mod
         ), *this; }
     ModInt &operator=(const ModInt &oth) { return val =
         oth.val, *this; }
     ModInt operator+(const ModInt &oth) const { return
         trim(val + oth.val); }
10
     ModInt operator-(const ModInt &oth) const { return
         trim(val - oth.val); }
     ModInt operator*(const ModInt &oth) const { return 1
    LL * val * oth.val % mod; }
11
12
     ModInt operator/(const ModInt &oth) const {
       function<int(int, int, int, int)> modinv = [&](int
    a, int b, int x, int y) {
13
         if (b == 0) return trim(x);
14
         return modinv(b, a - a / b * b, y, x - a / b * y
15
16
       return *this * modinv(oth.val, mod, 1, 0);
17
18
19
     bool operator==(const ModInt &oth) const { return
         val == oth.val; }
20
     ModInt operator-() const { return trim(mod - val); }
     template<typename T> ModInt pow(T pw) {
21
22
       bool sqn = false;
       if (pw < 0) pw = -pw, sgn = true;
23
24
       ModInt ans = 1;
25
       for (ModInt cur = val; pw; pw >>= 1, cur = cur *
            cur) -
26
         if (pw&1) ans = ans * cur;
27
28
       return sgn ? ModInt{1} / ans : ans;
29
30 };
```

2.9 Mod Mul Group Order

```
1|#include "Miller_Rabin_with_Pollard_rho.cpp"
2 LL phi(LL m) {
      auto fac = factor(m);
      return accumulate(fac.begin(), fac.end(), m, [](LL a
        , pair<LL, int> p_r) {
return a / p_r.first * (p_r.first - 1);
6
     });
7
8 LL order(LL x, LL m) {
      // \operatorname{assert}(\underline{\hspace{0.1cm}} \operatorname{gcd}(x, m) == 1);
     LL ans = phi(m);
10
      for (auto P: factor(ans)) {
        LL p = P.first, t = P.second;
for (int i = 0; i < t; ++i) {
12
13
           if (powmod(x, ans / p, m) == 1) ans /= p;
           else break;
15
16
17
      return ans;
18
19
20 LL cycles(LL a, LL m) {
21
      if (m == 1) return 1;
      return phi(m) / order(a, m);
23 }
```

2.10 MongeDP

```
deque<tuple<int, int, int>> dcs; // decision
dcs.emplace_back(0, 1, n); // transition from dp
10
11
             [0] is effective for [1, N]
12
        for (int i = 1; i \le n; ++i) {
          while (get<2>(dcs.front()) < i) dcs.pop_front();</pre>
13
                // right bound is out-dated
          pre[i] = get<0>(dcs.front())
14
15
          dp[i] = dp[pre[i]] + w(pre[i], i); // best t is
               A[dcs.top(),
                              i)
          while (dcs.size()) {
16
            int x, lb, rb;
tie(x, lb, rb) = dcs.back();
17
18
19
            if (lb <= i) break; // will be pop_fronted</pre>
                 soon anyway
            if (!cmp(dp[x] + w(x, lb), dp[i] + w(i, lb)))
20
2.1
               dcs.pop_back();
              if (dcs.size()) get<2>(dcs.back()) = n;
22
23
            } else break;
24
25
          int best = -1;
26
          for (int lb = i + 1, rb = n, x = get<0>(dcs.back
               ()); lb <= rb; ) {
27
            int mb = lb + rb >> 1;
28
            if (cmp(dp[i] + w(i, mb), dp[x] + w(x, mb))) {
              best = mb;
29
30
               rb = mb - 1;
31
            } else lb = mb + 1;
32
          if (~best) {
33
34
            get<2>(dcs.back()) = best - 1;
35
            dcs.emplace_back(i, best, n);
36
37
       }
38
39
     void ensure_monge_condition() {
       // Monge Condition: i <= j <= k <= l then w(i, l) + w(j, k) > (<) = w(i, k) + w(j, l)
40
        for (int i = 0; i <= n; ++i)
for (int j = i; j <= n; ++j)
41
42
            for (int k = j; k \le n; ++k)
43
               for (int l = k; l <= n; ++l) {
44
                 R \ w0 = w(i, 1), \ w1 = w(j, k), \ w2 = w(i, k)
45
                      , w3 = w(j, 1);
                 assert(w0 + w1 >= w2 + w3); // if
46
                      maximization, revert the sign
47
48
49
     R operator \lceil (int x) \rceil  return dp[x]; 
50 };
51
52
    /* Example:
     MongeDP<int64_t> mdp(N, [](int64_t x, int64_t y) {
53
          return x < y; },
                              [&](int x, int rb) {
54
                                auto abscub = [](int64_t x) {
55
                                      return abs(x * x * x);
56
                                return abscub(A[rb - 1] - X[x
                                     ]) + abscub(Y[x]);
57
                              });
     // mdp.ensure_monge_condition();
58
59
   OR in case rolling dp, remember to remove dp[] in R.H.
60
        S. in lines 15, 20, 28 and do the following:
     vector<int64_t> dp(N + 1, 1LL \ll 60);
61
62
     dp[0] = 0;
     for (int i = 1; i < G + 1; ++i) {
   dp = MongeDP<int64_t>(N, [](int64_t x, int64_t y)
63
64
             \{ return x < y; \},
                                [&](int x, int rb) {
65
66
                                   return dp[x] + cost[x][rb];
67
                                }).dp;
68
69
70
```

2.11 Chinese Remainder Theorem

```
1|PLL CRT(PLL eq1, PLL eq2) {
```

```
LL m1, m2, x1, x2;
tie(x1, m1) = eq1, tie(x2, m2) = eq2;
                                                                           t[0] = t[1] = 1; // f[i] = f[i - 2000] + f[i - 1999]
                                                                     42
                                                                           auto m = fast_linear_recurrence<int>(t, (long long)
     LL g = __gcd(m1, m2);
if ((x1 - x2) % g) return {-1, 0}; // NO SOLUTION
                                                                               1e18);
                                                                     43
                                                                           vector < int > v(2000, 1); // f[i] = 1 for i < 2000
     m1 /= g, m2 /= g;
                                                                     44
     auto p = exd_gcd(m1, m2);
                                                                     45
                                                                           int res = 0;
     LL lcm = m1 * m2 * g, res = mul(mul(p.first, (x2 - x1), lcm), m1, lcm) + x1;
                                                                           for (int i = 0; i < m.size(); ++i) res += v[i] * m[i
                                                                     46
     return {(res % lcm + lcm) % lcm, lcm};
                                                                     47
                                                                           cout << res << endl:
10 }
                                                                     48
                                                                     49
                                                                          return 0;
                                                                     50 }
```

59

2.12 Discrete Log

```
1|int discrete_log(int a, int m, int p) { // a**x = m
     int magic = sqrt(p) + 2;
     map<int, int> mp;
     int x = 1;
     for (int i = 0; i < magic; ++i) {</pre>
      mp[x] = i;
      x = 1LL * x * a % p;
     for (int i = 0, y = 1; i < magic; ++i) {
       int inv = get<0>(ext_gcd(y, p));
10
11
       if (inv < 0) inv += p;
       int u = 1LL * m * inv % p;
12
       if (mp.count(u)) return i * magic + mp[u];
13
      y = 1LL * y * x % p;
14
15
     return -1;
16
17 }
```

2.13 Fast Linear Recurrence

```
1|#include <bits/stdc++.h>
         using namespace std;
  4
        template<typename T>
         vector<T> fast_linear_recurrence(const vector<T> &t,
                       long long p) { // O(lg(p) * t.size()**2)
                auto advance = [&](const vector<T> &u) {
                      vector<T> v(t.size())
                      v[0] = u.back() * t[0];
  Q
                      for (int i = 1; i < t.size(); ++i) v[i] = u[i - 1]</pre>
                                       + u.back() * t[i];
 10
                      return v;
               };
 12
               vector<vector<T>> kk(2 * t.size(), vector<T>(t.size
 13
                             ())); // kk[i] = lambda(t ** i)
                kk[0][0] = 1;
 14
                for (int i = 1; i < 2 * t.size(); ++i) kk[i] =</pre>
 15
                             advance(kk[i - 1]);
                if (p < kk.size()) return kk[p];</pre>
16
 17
              auto square = [&](const vector<T> &u) {
  vector<T> v(2 * t.size());
  for (int j = 0; j < u.size(); ++j)
    for (int k = 0; k < u.size(); ++k)
     v[j + k] = v[j + k] + u[j] * u[k];
     condition of the construction o
18
19
20
2.1
22
23
                      for (int j = u.size(); j < v.size();</pre>
                             for (int k = 0; k < u.size(); ++k)</pre>
24
                                   v[k] = v[k] + v[j] * kk[j][k];
25
                      v.resize(u.size());
26
27
                      return v;
28
               };
29
30
                vector<T> m(kk[1]);
               for (int i = 6\overline{2} - __builtin_clzll(p); \sim i; --i) {
31
                     m = square(m);
32
33
                      if (p \gg i \& 1) m = advance(m);
34
35
36
               return m;
37 }
39 signed main() { // 405 ms on CF
             vector<int> t(2000);
```

2.14 Matrix

```
1 template<typename F>
   struct Matrix {
2
      int rowNum, colNum;
     vector<vector<F>> cell;
5
     Matrix(int n) : rowNum(n), colNum(n) { // Identity
        cell = vector<vector<F>>(n, vector<F>(n, 0))
        for (int i = 0; i < n; i++) cell[i][i] = F(1);
9
10
     Matrix(int n, int m, int fill = 0) : rowNum(n),
     colNum(m) {
11
        cell.assign(n, vector<F>(m, fill));
12
13
14
     Matrix(const Matrix &mat) : rowNum(mat.rowNum),
15
           colNum(mat.colNum) {
16
        cell = mat.cell;
17
18
19
      vector<F>& operator[] (int i) { return cell[i]; }
20
21
      const vector<F>& operator[] (int i) const { return
           cell[i]; }
22
23
     Matrix& operator= (const Matrix &mat) {
24
        rowNum = mat.rowNum;
2.5
        colNum = mat.colNum:
        cell = mat.cell;
27
        return *this;
     }
28
29
30
     Matrix& operator*= (const Matrix &mat) {
31
        assert(colNum == mat.rowNum)
        Matrix res(rowNum, mat.colNum);
32
        for (int i = 0; i < rowNum; i++) {
  for (int j = 0; j < mat.colNum; j++) {
    for (int k = 0; k < colNum; k++) {
      res[i][j] += cell[i][k] * mat[k][j];
    }
}</pre>
33
34
35
36
37
38
          }
39
40
        return *this = res;
41
42
43
     Matrix& operator^= (long long p) {
        assert(rowNum == colNum && p >= 0);
44
45
        Matrix res(rowNum);
        for (; p; p >>= 1) {
  if (p&1) res *= *this;
  *this *= *this;
46
47
48
49
50
        return *this = res;
51
52
53
      friend istream& operator>> (istream &is, Matrix &mat
        for (int i = 0; i < mat.rowNum; i++)</pre>
54
          for (int j = 0; j < mat.colNum; j++)
55
             is >> mat[i][j];
56
57
        return is;
58
```

18

19

20

```
60
     friend ostream& operator<< (ostream &os, const
         Matrix &mat) {
       for (int i = 0; i < mat.rowNum; i++)</pre>
         for (int j = 0; j < mat.colNum; j++)</pre>
62
           os << mat[i][j] << " \n"[j == mat.colNum - 1];
63
64
       return os;
65
66
     Matrix operator* (const Matrix &b) {
67
       Matrix res(*this);
68
       return (res *= b);
69
70
71
72
     Matrix operator^ (const long long p) {
       Matrix res(*this);
73
74
       return (res ^= p);
75
76 };
```

2.15 Determinant

```
1 template<typename T>
   vector<T> operator-(vector<T> A, vector<T> B) {
     for (int i = 0; i < A.size(); ++i) A[i] = A[i] - B[i]
     return A:
5 }
7 template<typename T>
   vector<T> operator*(vector<T> A, T mul) {
     for (int i = 0; i < A.size(); ++i) A[i] = A[i] * mul</pre>
     return A;
11 }
12
13 template<typename T>
14 vector<T> operator/(vector<T> A, T mul) {
15
     for (int i = 0; i < A.size(); ++i) A[i] = A[i] / mul</pre>
16
     return A;
17
18
19
20
   template<typename T>
21 T det(Matrix<T> A) {
22
     int N = A.rowNum;
     T ans(1);
23
     for (int r = 0; r < N; ++r) {
24
       if (A[r][r] == T(0)) return T(0);
ans = ans * A[r][r];
25
26
        for (int pvt = r + 1;
          or (int pvt = r + 1; pvt < N; ++pvt) {
A[pvt] = A[pvt] - A[r] * A[pvt][r] / A[r][r];
27
29
30
31
     return ans;
32 | }
```

2.16 Number Theory Functions

```
1|vector<int> linear_sieve(const int UPBD) {
      vector<int> primes, last_prime(UPBD, 0);
for (int p = 2; p < UPBD; ++p) {</pre>
4
        if (not last_prime[p]) primes.push_back(p),
              last_prime[p] = p;
        for (int j = 0; primes[j] * p < UPBD; ++j) {
    last_prime[primes[j] * p] = primes[j];</pre>
           if (p % primes[j] == 0) break;
      return last_prime;
10
11
   template<typename T> vector<T> make_mobius(T limit) {
  auto last_prime = linear_sieve(limit);
12
13
      vector<T> mobius(limit, 1);
14
      mobius[0] = 0;
15
      for (T p = 2; p < limit; ++p) {
17
        if (last_prime[p] == last_prime[p / last_prime[p
              ]]) mobius[p] = 0;
```

2.17 Polynomail root

return mobius;

```
1 const double eps = 1e-12;
2 const double inf = 1e+12;
  double a[10], x[10];
  int n;
5
   int sign(double x) { return (x < -eps) ? (-1) : (x >
        eps): }
   double f(double a[], int n, double x) {
     double tmp = 1, sum = 0;
     for (int i = 0; i <= n; i++) {
       sum = sum + a[i] * tmp;
9
10
       tmp = tmp * x;
11
12
     return sum;
13
   double binary(double 1, double r, double a[], int n) {
14
     int sl = sign(f(a, n, l)), sr = sign(f(a, n, r));
     if (sl == 0) return 1;
if (sr == 0) return r;
16
17
     if (sl * sr > 0) return inf;
18
     while (r - l > eps) {
    double mid = (l + r) / 2;
19
20
       int ss = sign(f(a, n, mid));
21
       if (ss == 0) return mid;
if (ss * sl > 0)
22
23
24
          l = mid;
25
       else
26
          r = mid;
2.7
28
     return 1;
29
   void solve(int n, double a[], double x[], int &nx) {
30
     if (n == 1) {
32
       x[1] = -a[0] / a[1];
       n\bar{x} = 1;
33
34
       return;
35
36
     double da[10], dx[10];
37
38
     for (int i = n; i >= 1; i--) da[i - 1] = a[i] * i;
39
     solve(n - 1, da, dx, ndx);
     nx = 0;
40
     if (ndx == 0) {
41
        double tmp = binary(-inf, inf, a, n);
42
       if (tmp < inf) x[++nx] = tmp;
43
44
        return;
45
46
     double tmp;
     tmp = binary(-inf, dx[1], a, n);
47
     if (tmp < inf) x[++nx] = tmp;
for (int i = 1; i <= ndx - 1; i++) {</pre>
48
49
50
       tmp = binary(dx[i], dx[i + 1], a, n);
51
       if (tmp < inf) x[++nx] = tmp;
52
     tmp = binary(dx[ndx], inf, a, n);
53
     if (tmp < inf) x[++nx] = tmp;
54
55
56
   int main() {
     scanf("%d", &n);
57
     for (int i = n; i >= 0; i--) scanf("%lf", &a[i]);
58
59
     int nx:
60
     solve(n, a, x, nx);
     for (int i = 1; i \le nx; i++) printf("%.6f\n", x[i])
62 }
```

else mobius[p] = mobius[p / last_prime[p]] * -1;

2.18 Subset Zeta Transform

```
1 // if f is add function:
2 // low2high = true -> zeta(a)[s] = sum(a[t] for t in s
)
```

```
3 | // low2high = false -> zeta(a)[t] = sum(a[s] for t in
   // else if f is sub function, you get inverse zeta
        function
5 template<typename T>
   vector<T> subset_zeta_transform(int n, vector<T> a,
     function<T(T, T)> f, bool low2high = true) {
assert(a.size() == 1 << n);</pre>
     if (low2high) {
        for (int i = 0; i < n; ++i)
          for (int j = 0; j < 1 << n; ++j) if (j >> i & 1)
10
11
12
               a[j] = f(a[j], a[j ^ 1 << i]);
13
     } else {
       for (int i = 0; i < n; ++i)
for (int j = 0; j < 1 << n; ++j)
14
15
            if (~j >> i & 1)
16
               a[j] = f(a[j], a[j | 1 << i]);
17
18
19
     return a;
20 }
```

3 Data Structure

3.1 Disjoint Set

```
1 struct Dsu {
2
     struct node_struct {
       int par, size;
       node_struct(int p, int s) : par(p), size(s) {}
       void merge(node_struct &b) {
         b.par = par:
         size += b.size;
 8
     };
10
     vector<node_struct> nodes;
     stack<tuple<int, int, node_struct, node_struct>> stk
11
     Dsu(int n) {
12
       nodes.reserve(n);
13
14
       for (int i = 0; i < n; ++i) nodes.emplace_back(i,
           1);
15
16
     int anc(int x) {
       while (x != nodes[x].par) x = nodes[x].par;
17
18
       return x;
19
20
     bool unite(int x, int y) {
21
       int a = anc(x);
       int b = anc(y);
22
       stk.emplace(a, b, nodes[a], nodes[b]);
23
       if (a == b) return false;
       if (nodes[a].size < nodes[b].size) swap(a, b);</pre>
2.5
26
       nodes[a].merge(nodes[b]);
27
       return true;
28
     void revert(int version = -1) { // 0 index
29
       if (version == -1) version = stk.size() - 1;
30
       for (; stk.size() != version; stk.pop()) {
31
32
         nodes[get<0>(stk.top())] = get<2>(stk.top())
         nodes[get<1>(stk.top())] = get<3>(stk.top());
33
34
35
36 };
```

3.2 Heavy Light Decomposition

```
1 struct HLD {
2    using Tree = vector<vector<int>>;
3    vector<int>> par, head, vid, len, inv;
4
5    HLD(const Tree &g) : par(g.size()), head(g.size()), vid(g.size()), len(g.size()), inv(g.size()) {
6    int k = 0;
7    vector<int>> size(g.size(), 1);
8    function<void(int, int)> dfs_size = [&](int u, int p) {
```

```
if (v != p) {
10
11
               dfs_size(v, u);
12
               size[u] += size[v];
13
          }
14
15
        function<void(int, int, int)> dfs_dcmp = [&](int u
16
               int p, int h) {
          par[u] = p;
17
18
          head[u] = h;
          vid[\bar{u}] = k++;
19
          inv[vid[u]] = u;
20
          for (int v : g[u]) {
  if (v != p && size[u] < size[v] * 2) {</pre>
21
22
               dfs_dcmp(v, u, h);
23
24
25
26
          for (int v : g[u]) {
27
            if (v != p && size[u] >= size[v] * 2) {
28
               dfs_dcmp(v, u, v);
29
30
          }
31
       dfs_size(0, -1);
dfs_dcmp(0, -1, 0);
for (int i = 0; i < g.size(); ++i) {</pre>
32
33
34
          ++len[head[i]];
35
36
37
38
39
      template<typename T>
      void foreach(int u, int v, T f) {
40
       while (true) {
41
42
          if (vid[u] > vid[v]) {
43
             if (head[u] == head[v]) {
44
               f(vid[v] + 1, vid[u], 0);
45
               break;
46
             } else -
               f(vid[head[u]], vid[u], 1);
47
48
               u = par[head[u]];
49
50
          } else {
             if (head[u] == head[v]) {
51
               f(vid[u] + 1, vid[v], 0);
52
53
               break:
54
             } else
55
               f(vid[head[v]], vid[v], 0);
56
               v = par[head[v]];
57
58
          }
59
       }
60
     }
61 };
```

for (int v : g[u]) {

7

3.3 KD Tree

```
1|#include <bits/stdc++.h>
2 using namespace std;
   struct KDNode {
4
     vector<int> v;
6
     KDNode *lc, *rc;
     KDNode(const vector<int> &_v) : v(_v), lc(nullptr),
          rc(nullptr) {}
     static KDNode *buildKDTree(vector<vector<int>>> &pnts
    , int lb, int rb, int dpt) {
8
       if (rb - lb < 1) return nullptr;</pre>
       int axis = dpt % pnts[0].size();
10
11
       int mb = lb + rb \gg 1;
       nth_element(pnts.begin() + lb, pnts.begin() + mb,
12
            pnts.begin() + rb, [&](const vector<int> &a,
            const vector<int> &b) {
         return a[axis] < b[axis];</pre>
13
14
       KDNode *t = new KDNode(pnts[mb]);
15
       t->lc = buildKDTree(pnts, lb, mb, dpt + 1);
16
17
       t->rc = buildKDTree(pnts, mb + 1, rb, dpt + 1);
18
       return t;
19
```

```
20
     static void release(KDNode *t) {
                                                                     12
                                                                            return t:
21
        if (t->lc) release(t->lc);
                                                                     13
22
        if (t->rc) release(t->rc);
                                                                          static int query(Pst *t, int lb, int rb, int ql, int
                                                                     14
23
       delete t;
                                                                             if (qr <= lb || rb <= ql) return 0;
24
                                                                     15
                                                                             if (ql <= lb && rb <= qr) return t->maxv;
     static void searchNearestNode(KDNode *t, KDNode *q,
25
                                                                     16
          KDNode *&c, int dpt) {
                                                                             int mb = lb + rb \gg 1;
                                                                     17
26
        int axis = dpt % t->v.size();
                                                                     18
                                                                             return max(query(t->lc, lb, mb, ql, qr), query(t->
       if (t->v != q->v && (c == nullptr || dis(q, t) <
    dis(q, c))) c = t;</pre>
                                                                                 rc, mb, rb, ql, qr));
27
                                                                     19
28
        if (t->lc && (!t->rc || q->v[axis] < t->v[axis]))
                                                                          static Pst *modify(Pst *t, int lb, int rb, int k,
                                                                     20
                                                                               int v) {
          searchNearestNode(t->lc, q, c, dpt + 1);
if (t->rc && (c == nullptr || 1LL * (t->v[axis])
29
                                                                     21
                                                                             Pst *n = new(mem_ptr++) Pst(t);
30
                                                                     22
                                                                             if (rb - lb == 1) return n->maxv = v, n;
                                                                             int mb = lb + rb \gg 1;
               - q->v[axis]) * (t->v[axis] - q->v[axis]) <
                                                                     23
                                                                             if (k < mb) n \rightarrow lc = modify(t \rightarrow lc, lb, mb, k, v);
               dis(q, c))) {
                                                                     24
            searchNearestNode(t->rc, q, c, dpt + 1);
31
                                                                     2.5
                                                                             else n->rc = modify(t->rc, mb, rb, k, v);
32
                                                                     26
                                                                             n->maxv = max(n->lc->maxv, n->rc->maxv);
33
        } else if (t->rc) {
                                                                     27
          searchNearestNode(t->rc, q, c, dpt + 1);
if (t->lc && (c == nullptr || 1LL * (t->v[axis])
                                                                     28
34
                                                                          static Pst mem_pool[PST_MAX_NODES];
35
                                                                     29
                - q->v[axis]) * (t->v[axis] - q->v[axis]) <
                                                                     30
                                                                          static Pst *mem_ptr;
                                                                          static void clear() {
               dis(q, c))) {
                                                                     31
36
            searchNearestNode(t->lc, q, c, dpt + 1);
                                                                     32
                                                                             while (mem_ptr != mem_pool) (--mem_ptr)->~Pst();
37
                                                                     33
       }
                                                                        } Pst::mem_pool[PST_MAX_NODES], *Pst::mem_ptr = Pst::
38
                                                                     34
39
                                                                             mem_pool;
40
     static int64_t dis(KDNode *a, KDNode *b) {
                                                                     35
41
        int64_t r = 0;
                                                                     36 Usage:
        for (int i = 0; i < a->v.size(); ++i) {
42
          r += 1LL * (a->v[i] - b->v[i]) * (a->v[i] - b->v
                                                                        vector<Pst *> version(N + 1);
43
                                                                    38
                                                                        version[0] = Pst::build(0, C); // [0, C)
                                                                     39
                                                                        for (int i = 0; i < N; ++i) version[i + 1] = modify(
44
                                                                     40
        return r;
                                                                             version[i], ...);
45
                                                                        Pst::query(...);
46
47
                                                                     42 Pst::clear();
  };
48
                                                                     43
                                                                     44 */
   signed main() {
     ios::sync_with_stdio(false);
50
51
52
     cin >> T;
                                                                              Rbst
                                                                        3.5
     for (int ti = 0; ti < T; ++ti) {</pre>
53
54
55
        cin >> N;
                                                                      1| constexpr int RBST_MAX_NODES = 1 << 20;</pre>
        vector<vector<int>>> pnts(N, vector<int>(2));
56
                                                                        struct Rbst {
        for (int i = 0; i < N; ++i) {
  for (int j = 0; j < 2; ++j) {
57
                                                                          int size, val;
                                                                          // int minv;
58
59
            cin >> pnts[i][j];
                                                                          // int add_tag, rev_tag;
                                                                          Rbst *lc, *rc;
Rbst(int v = 0) : size(1), val(v), lc(nullptr), rc(
60
                                                                      6
61
        vector<vector<int>> _pnts = pnts;
62
                                                                               nullptr) {
63
        KDNode *root = KDNode::buildKDTree(_pnts, 0, pnts.
                                                                             // minv = v;
                                                                             // add_tag = 0;
             size(), 0);
        for (int i = 0; i < N; ++i) {
                                                                            // rev_tag = 0;
                                                                     10
          KDNode *q = new KDNode(pnts[i]);
65
                                                                     11
          KDNode *c = nullptr;
66
                                                                     12
                                                                          void push() {
          KDNode::searchNearestNode(root, q, c, 0);
67
                                                                     13
                                                                             if (add_tag) { // unprocessed subtree has tag on
          cout << KDNode::dis(c, q) << endl;</pre>
68
                                                                     14
69
          delete q;
                                                                                 root
70
                                                                     15
                                                                               val += add_tag;
        KDNode::release(root);
71
                                                                     16
                                                                               minv += add_tag;
                                                                               if (lc) lc->add_tag += add_tag;
if (rc) rc->add_tag += add_tag;
72
                                                                     17
73
     return 0;
                                                                     18
                                                                     19
                                                                               add_tag = 0;
                                                                     20
                                                                             if (rev_tag) {
                                                                     2.1
                                                                     22
                                                                               swap(lc, rc);
   3.4 PST
                                                                               if (lc) lc->rev_tag ^= 1;
if (rc) rc->rev_tag ^= 1;
                                                                     23
                                                                     24
 1| constexpr int PST_MAX_NODES = 1 << 22; // recommended:</pre>
                                                                               rev_tag = 0;
         prepare at least 4nlgn, n to power of 2
                                                                     26
   struct Pst {
                                                                     27
     int maxv;
Pst *lc, *rc;
                                                                     28
                                                                     29
                                                                          void pull() {
     Pst() : lc(nullptr), rc(nullptr), maxv(0) {}
Pst(const Pst *rhs) : lc(rhs->lc), rc(rhs->rc), maxv
                                                                     30
                                                                            size = 1;
                                                                             // minv = val;
                                                                     31
          (rhs->maxv) {}
                                                                     32
                                                                             if (lc) {
     static Pst *build(int lb, int rb) {
                                                                     33
                                                                               lc->push();
       Pst *t = new(mem_ptr++) Pst;
                                                                     34
                                                                               size += lc->size;
        if (rb - lb == 1) return t;
                                                                     35
                                                                               // minv = min(minv, lc->minv);
        t->lc = build(lb, lb + rb >> 1);
t->rc = build(lb + rb >> 1, rb);
10
                                                                     36
```

37

if (rc) {

11

```
38
          rc->push();
                                                                       void push() {
                                                                         if (revTag) {
          size += rc->size;
39
                                                                   8
40
          // minv = min(minv, rc->minv);
                                                                   9
                                                                            for (int i : {0, 1}) if (ch[i]) ch[i]->reverse()
41
42
                                                                  10
                                                                            revTag = 0;
     static int get_size(Rbst *t) { return t ? t->size :
43
                                                                  11
                                                                  12
44
     static void split(Rbst *t, int k, Rbst *&a, Rbst *&b
                                                                  13
                                                                       void pull() {
                                                                         size = (ch[0] ? ch[0] -> size : 0) + (ch[1] ? ch
                                                                  14
       if (!t) return void(a = b = nullptr);
                                                                              [1]->size : 0) + 1;
45
                                                                  15
46
       t->push();
                                                                          sum = val:
47
       if (get_size(t->lc) >= k) {
                                                                          for (int i : \{0, 1\}) if (ch[i]) ch[i]->f = this,
                                                                  16
48
         b = t;
                                                                              sum ^= ch[i]->sum;
49
          split(t->lc, k, a, b->lc);
                                                                  17
         b->pull();
50
                                                                  18
                                                                       int dir() { return f->ch[1] == this; }
51
       } else {
                                                                  19
                                                                       Node () : id(-1), size(0) { f = ch[0] = ch[1] =
                                                                       nullptr; }
Node (int id, int _val = 0) : id(id), size(1) {
52
         split(t->rc, k - get_size(t->lc) - 1, a->rc, b);
53
                                                                  20
54
         a->pull();
                                                                         val = sum = _val;
                                                                  21
                                                                         f = ch[0] = ch[1] = nullptr;
55
                                                                  22
     } // splits t, left k elements to a, others to b,
56
                                                                  23
                                                                       bool isRoot() {
          maintaining order
                                                                  24
     static Rbst *merge(Rbst *a, Rbst *b) {
  if (!a || !b) return a ? a : b;
57
                                                                         return f == nullptr or f->ch[dir()] != this;
                                                                  25
                                                                       } // is root of current splay
58
                                                                  26
                                                                       void rotate() {
59
       if (rand() % (a->size + b->size) < a->size) {
                                                                  27
                                                                  28
                                                                         Node* u = f;
         a->push();
60
61
          a \rightarrow rc = merge(a \rightarrow rc, b);
                                                                  29
                                                                          f = u -> f;
         a->pull();
                                                                  30
                                                                          if (not u->isRoot()) u->f->ch[u->dir()] = this;
62
63
          return a;
                                                                  31
                                                                          int d = this == u->ch[0];
                                                                         u \rightarrow ch[!d] = ch[d], ch[d] = u;
                                                                  32
64
       } else {
         b->push();
                                                                  33
                                                                         u->pull(), pull();
65
66
         b \rightarrow lc = merge(a, b \rightarrow lc);
                                                                  34
67
         b->pull();
                                                                  35
                                                                       void splay() {
                                                                  36
                                                                         auto v = this
68
         return b;
69
                                                                  37
                                                                          if (v == nullptr) return;
     } // merges a and b, maintaing order
70
                                                                  38
     static int lower_bound(Rbst *t, const int &key) {
71
                                                                  39
                                                                            vector<Node*> st;
                                                                            Node* u = v;
       if (!t) return 0;
                                                                  40
72
73
       if (t->val >= key) return lower_bound(t->lc, key);
                                                                  41
                                                                            st.push_back(u);
       return get_size(t->lc) + 1 + lower_bound(t->rc,
                                                                            while (not u->isRoot()) st.push_back(u = u->f);
74
                                                                  42
            key);
                                                                  43
                                                                            while (st.size()) st.back()->push(), st.pop_back
75
                                                                                ();
76
     static void insert(Rbst *&t, const int &key) {
                                                                  44
77
       int idx = lower_bound(t, key);
                                                                  45
                                                                         while (not v->isRoot()) {
       Rbst *tt;
                                                                            Node* u = v -> f;
78
                                                                  46
79
       split(t, idx, tt, t);
                                                                  47
                                                                            if (not u->isRoot()) {
                                                                              (((u->ch[0] == v) xor (u->f->ch[0] == u)) ? v
80
       t = merge(merge(tt, new(mem_ptr++) Rbst(key)), t);
                                                                  48
81
                                                                                   : u)->rotate();
82
     static Rbst mem_pool[RBST_MAX_NODES]; // CAUTION!!
                                                                  50
                                                                            v->rotate();
83
     static Rbst *mem_ptr;
84
                                                                  51
                                                                         } v->pull();
85
     static void clear() {
                                                                  52
                                                                       // Splay feature above
       while (mem_ptr != mem_pool) (--mem_ptr)->~Rbst();
86
                                                                  53
                                                                  54
                                                                       void access() {
87
88 } Rbst::mem_pool[RBST_MAX_NODES], *Rbst::mem_ptr =
                                                                  55
                                                                         for (Node *u = nullptr, *v = this; v != nullptr; u
                                                                               = v, v = v \rightarrow f
       Rbst::mem_pool;
89
                                                                  56
                                                                            v\rightarrow splay(), v\rightarrow ch[1] = u, v\rightarrow pull();
90
                                                                  57
91 Usage:
                                                                  58
                                                                       Node* findroot() -
                                                                         access(), splay();
                                                                  59
   Rbst *t = new(Rbst::mem_ptr++) Rbst(val);
93
                                                                  60
                                                                         while (v\rightarrow ch[0] != nullptr) v = v\rightarrow ch[0];
   t = Rbst::merge(t, new(Rbst::mem_ptr++) Rbst(
                                                                  61
                                                                         v->splay(); // for complexity assertion
       another_val));
                                                                  62
95 Rbst *a, *b;
                                                                  63
                                                                         return v;
   Rbst::split(t, 2, a, b); // a will have first 2
                                                                  64
       elements, b will have the rest, in order
                                                                       void makeroot() { access(), splay(), reverse(); }
                                                                  65
97 | Rbst::clear(); // wipes out all memory; if you know
                                                                  66
                                                                       static void split(Node* x, Node* y) { x->makeroot(),
                                                                       y->access(), y->splay(); }
static bool link(Node* x, Node* p) {
       the mechanism of clear() you can maintain many
       trees
                                                                  67
                                                                          x->makeroot();
98
99 */
                                                                  69
                                                                          if (p->findroot() != x) return x->f = p, true;
                                                                  70
                                                                         else return false;
                                                                  71
                                                                       static void cut(Node* x) {
                                                                  72
   3.6 Link Cut Tree
                                                                         x->access(), x->splay(), x->push(), x->ch[0] = x->
    ch[0]->f = nullptr;
                                                                  73
 1 \mid const int MEM = 1 << 18;
                                                                  74
   struct Node {
                                                                  75
                                                                       static bool cut(Node* x, Node* p) { // make sure
     static Node mem[MEM], *pmem;
                                                                            that p is above x
                                                                         auto rt = x->findroot();
     Node *ch[2], *f;
                                                                  76
                                                                  77
                                                                          x->makeroot();
     int id, size, revTag = 0, val = 0, sum = 0;
```

bool test = false;

void reverse() { swap(ch[0], ch[1]), revTag ^= 1; }

```
79
        if (p\rightarrow findroot() == x and p\rightarrow f == x and not p\rightarrow ch
                                                                       6|typedef tree<int, null_type, less<int>, rb_tree_tag,
             [0]) {
                                                                               tree_order_statistics_node_update> rbtree;
80
           p->f = x->ch[1] = nullptr, x->pull();
                                                                            rbtree tree;
           test = true;
                                                                            tree.insert(5):
81
82
                                                                       9
                                                                            tree.insert(6)
                                                                            tree.insert(-100);
83
        rt->makeroot();
                                                                       10
        return test;
                                                                       11
                                                                            tree.insert(5);
84
                                                                            assert(*tree.find_by_order(0) == -100);
85
                                                                       12
                                                                            assert(tree.find_by_order(4) == tree.end());
      static int path(Node* x, Node* y) { // sum of value
86
                                                                       13
                                                                            assert(tree.order_of_key(4) == 1); // lower_bound
           on path x-y
                                                                       14
87
        auto tmp = x->findroot();
                                                                       15
                                                                            tree.erase(6):
        split(x, y);
                                                                       16
88
89
        int ret = y->sum;
                                                                       17
                                                                            rbtree x;
 90
        tmp->makeroot();
                                                                       18
                                                                            x.insert(9);
91
                                                                       19
                                                                            x.insert(10);
        return ret;
92
                                                                      20
                                                                            tree.join(x);
93
      static Node* lca(Node* x, Node* y) {
                                                                      21
                                                                            assert(x.size() == 0);
        x->access(), y->access();
                                                                            assert(tree.size() == 4);
                                                                       22
94
95
                                                                      23
        y->splay();
96
        if (x->f == nullptr) return x;
                                                                      24
                                                                            tree.split(9, x):
                                                                            assert(*x.begin() == 10);
assert(*tree.begin() == -100);
                                                                      25
97
        else return x->f;
98
                                                                      26
   } Node::mem[MEM], *Node::pmem = Node::mem;
99
                                                                      27
100
                                                                      28
                                                                          // Example 2:
101 Node* vt[MEM];
                                                                      29
                                                                          template <class Node_CItr, class Node_Itr, class</pre>
                                                                               Cmp_Fn, class _Alloc>
                                                                      30
                                                                          struct my_node_update {
                                                                      31
                                                                            typedef int metadata_type; // maintain size with int
    3.7
          mos
                                                                      32
                                                                       33
                                                                            int order_of_key(pair<int, int> x) {
 1 \mid \mathsf{template} \! < \! \mathsf{typename} \ \mathsf{D}, \ \mathsf{D} \ \mathsf{zero}, \ \mathsf{typename} \ \mathsf{Q}, \ \mathsf{typename} \ \mathsf{M} \! > \!
                                                                       34
                                                                               int ans = 0;
                                                                      35
   vector<D> mos(const vector<D> &dat, vector<Q> q, M sum
                                                                               auto it = node_begin();
      , function<void(M&, D, int)> fadd) {
int bs = sqrt(q.size()) + 1;
                                                                       36
                                                                              while (it != node_end())
                                                                      37
                                                                                 auto l = it.get_l_child();
      vector<D> ans(q.size(), zero);
                                                                       38
                                                                                 auto r = it.get_r_child();
                                                                                 if (Cmp_Fn()(x, **it)) {\frac{\tilde{x}}{x} < it->size}
      vector<int> qord(q.size())
                                                                      39
 6
      iota(qord.begin(), qord.end(), 0)
                                                                       40
                                                                                   it = 1;
      sort(qord.begin(), qord.end(), [&](int i, int j) {
  if (get<0>(q[i]) / bs != get<0>(q[j]) / bs) return
     get<0>(q[i]) < get<0>(q[j]);
                                                                       41
                                                                                 } else {
                                                                      42
                                                                                   if (x == **it) return ans; // x == it->size
 8
                                                                       43
        return get<1>(q[i]) < get<1>(q[j]);
                                                                       44
                                                                                   if (l != node_end()) ans += l.get_metadata();
 10
      });
                                                                       45
                                                                                   it = r;
      for (int qi = 0, lb = 0, rb = 0; qi < q.size(); ++qi
                                                                       46
                                                                                 }
 11
           ) { // [lb, rb)
                                                                       47
                                                                              }
 12
        int i = qord[qi];
                                                                       48
                                                                              return ans;
 13
        while (get<0>(q[i]) < lb) fadd(sum, dat[--lb], 1);
                                                                       49
        while (get<1>(q[i]) < rb) fadd(sum, dat[--rb], -1)
                                                                            // update policy
                                                                       50
14
                                                                            void operator()(Node_Itr it, Node_CItr end_it) {
                                                                       51
        while (lb < get<0>(q[i])) fadd(sum, dat[lb++], -1)
                                                                       52
                                                                              auto l = it.get_l_child();
 15
                                                                              auto r = it.get_r_child()
                                                                       53
         while (rb < get<1>(q[i])) fadd(sum, dat[rb++], 1);
                                                                       54
                                                                               int left = 0, right = 0;
        ans[i] = get<0>(sum);
                                                                       55
                                                                               if (l != end_it) left = l.get_metadata();
17
                                                                               if (r != end_it) right = r.get_metadata()
18
                                                                       56
```

3.8 pbds

return ans;

int w = 0;

17>());

get<0>(s) += sign * w;

get<1>(s)[d] += sign;

20 | } 21 |

24

25

26

27

28

31

32 */

29 };

```
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;

// Example 1:
// key type, mapped policy, key comparison functor, data structure, order functions
```

23 using maintain_type = tuple<int64_t, array<int, 1 <<

30 maintain_type mt_zero = make_tuple(0, array<int, 1 <<

vector<int> res = mos<int, 0, tuple<int, int>,
 maintain_type>(dat, query, mt_zero, mt_add);

auto mt_add = [&](maintain_type &s, int d, int sign) {

for (int i = 0; i < 17; ++i) w += get<1>(s)[d ^ 1 <<

4 Flow

rbtree g;

g.insert({3, 4});

57

58

60 61

63

65

62 \ \ \ ;

4.1 CostFlow

right + 1;

```
1 template <class TF, class TC>
2 struct CostFlow {
3    static const int MAXV = 205;
4    static const TC INF = 0x3f3f3f3f;
5    struct Edge {
6        int v, r;
7        TF f;
```

const_cast<int &>(it.get_metadata()) = left +

typedef tree<pair<int, int>, null_type, less<pair<int,

int>>, rb_tree_tag, my_node_update> rbtree;

virtual Node_CItr node_begin() const = 0;

virtual Node_CItr node_end() const = 0;

 $assert(g.order_of_key({3, 4}) == 0);$

```
void add_edge(int u, int v, T f, bool bidirectional
                                                                      15
        Edge(int _v, int _r, TF _f, TC _c) : v(_v), r(_r),
                                                                                 = false)
              f(_f), c(_c) \{
                                                                              E[u].emplace_back(v, f, E[v].size());
E[v].emplace_back(u, 0, E[u].size() - 1);
                                                                      16
                                                                      17
10
11
     int n, s, t, pre[MAXV], pre_E[MAXV], inq[MAXV];
                                                                      18
                                                                              if (bidirectional)
     TF fl;
                                                                                E[v].emplace_back(u, f, E[u].size() - 1);
12
                                                                      19
     TC dis[MAXV], cost;
                                                                      20
13
14
     vector<Edge> E[MAXV];
                                                                      21
     CostFlow(int _n, int _s, int _t) : n(_n), s(_s), t(
                                                                      22
                                                                            bool BFS() {
15
     _t), fl(0), cost(0) {}

void add_edge(int u, int v, TF f, TC c) {
    E[u].emplace_back(v, E[v].size(), f, c);
                                                                      23
                                                                              memset(level, -1, sizeof(level));
                                                                      24
                                                                              queue<int> que;
16
17
                                                                      25
                                                                              que.emplace(s):
        E[v].emplace_back(u, E[u].size() - 1, 0, -c);
18
                                                                      26
                                                                              level[s] = 0;
19
                                                                      27
                                                                              while (not que.empty()) {
                                                                                int u = que.front();
     pair<TF, TC> flow() {
20
                                                                      28
21
        while (true) {
                                                                      29
                                                                                que.pop();
          for (int i = 0; i < n; ++i) {
  dis[i] = INF;</pre>
                                                                                for (auto it : E[u]) {
  if (it.f > 0 and level[it.v] == -1) {
22
                                                                      30
23
                                                                      31
24
            inq[i] = 0;
                                                                      32
                                                                                     level[it.v] = level[u] + 1;
25
                                                                      33
                                                                                     que.emplace(it.v);
26
          dis[s] = 0;
                                                                      34
27
          queue<int> que;
                                                                      35
                                                                                }
          que.emplace(s);
                                                                      36
28
29
          while (not que.empty()) {
                                                                      37
                                                                              return level[t] != -1;
30
            int u = que.front();
                                                                      38
                                                                            T DFS(int u, T nf) {
                                                                      39
            que.pop();
31
                                                                              if (u == t) return nf;
32
             inq[u] = 0;
                                                                      40
            for (int i = 0; i < E[u].size(); ++i) {</pre>
                                                                              Tres = 0;
                                                                      41
33
               int v = E[u][i].v;
34
                                                                      42
                                                                              while (now[u] < E[u].size()) {</pre>
               TC w = E[u][i].c; 
if (E[u][i].f > 0 and dis[v] > dis[u] + w) {
                                                                                Edge &it = E[u][now[u]];
35
                                                                      43
                                                                                 if (it.f > 0 and level[it.v] == level[u] + 1) {
                                                                      44
36
                                                                                  T tf = DFS(it.v, min(nf, it.f));
37
                 pre[v] = u;
                                                                      45
38
                 pre_E[v] = i
                                                                      46
                                                                                   res += tf;
                                                                                   nf -= tf;
                 dis[v] = dis[u] + w;
                                                                      47
39
40
                 if (not inq[v]) {
                                                                      48
                                                                                   it.f -= tf;
41
                    inq[v] = 1;
                                                                      49
                                                                                   E[it.v][it.re].f += tf;
42
                    que.emplace(v);
                                                                      50
                                                                                   if (nf == 0) return res;
                                                                                } else
43
                                                                      51
           }
                                                                      52
44
                                                                                   ++now[u];
                                                                      53
45
                                                                              if (not res) level[u] = -1;
46
                                                                      54
          if (dis[t] == INF) break;
                                                                      55
                                                                              return res;
47
          TF tf = INF;
48
                                                                      56
          for (int v = t, u, l; v != s; v = u) {
49
                                                                      57
                                                                            T flow(T res = 0) {
                                                                      58
                                                                              while (BFS()) {
50
            u = pre[v];
51
             l = pre_E[v];
                                                                      59
                                                                                T temp;
                                                                                memset(now, 0, sizeof(now));
while (temp = DFS(s, INF)) {
            tf = min(tf, E[u][l].f);
                                                                      60
52
53
                                                                      61
54
          for (int v = t, u, l; v != s; v = u) {
                                                                      62
                                                                                   res += temp;
            u = pre[v]
                                                                      63
                                                                                   res = min(res, INF);
55
56
            l = pre_E[v];
                                                                      64
            E[u][l].f -= tf;
E[v][E[u][l].r].f += tf;
57
                                                                      65
58
                                                                      66
                                                                              return res;
59
                                                                      67
                                                                      68|};
          cost += tf * dis[t];
60
61
          fl += tf;
62
        return {fl, cost};
63
                                                                                KM matching
64
65 };
                                                                       1 template<typename T>
```

4.2 Dinic

```
1 template <class T>
   struct Dinic {
     static const int MAXV = 10000;
     static const T INF = 0x3f3f3f3f;
     struct Edge {
       int v;
       Tf;
       int re:
       Edge(int _v, T _f, int _re) : v(_v), f(_f), re(_re
10
     int n, s, t, level[MAXV];
vector<Edge> E[MAXV];
11
12
13
     int now[MAXV];
14
     Dinic(int _n, int _s, int _t) : n(_n), s(_s), t(_t)
```

```
struct Hungarian { // minimum weight matching
     public:
     int n, m;
     vector< vector<T> > a;
     vector<T> u, v;
     vector<int> pa, pb, way;
     vector<T> minv;
     vector<bool> used;
10
     T inf;
11
12
     Hungarian(int _n, int _m) : n(_n), m(_m) {
       assert(n <= m);</pre>
13
       a = vector< vector<T> >(n, vector<T>(m));
14
15
       v = u = vector < T > (n + 1);
       pb = pa = vector < int > (n + 1, -1);
16
17
       way = vector < int > (m, -1);
18
       minv = vector<T>(m);
       used = vector<bool>(m + 1):
19
20
       inf = numeric_limits<T>::max();
21
22
```

```
23
     inline void add_row(int i) {
       fill(minv.begin(), minv.end(), inf);
24
                                                                  32
                                                                       int solve() {
                                                                         while (true) {
2.5
       fill(used.begin(), used.end(), false);
                                                                  33
       pb[m] = i, pa[i] = m;
26
                                                                  34
                                                                           iter++:
       int j0 = m;
do {
27
                                                                  35
                                                                            int add = 0;
                                                                            for (int i = 0; i < n; i++)
28
                                                                  36
29
         used[j0] = true;
                                                                  37
                                                                              if (pa[i] == -1 \&\& dfs(i))
30
          int i0 = pb[j0], j1 = -1;
                                                                  38
                                                                                add++;
         T delta = inf;
                                                                            if (add == 0) break;
31
                                                                  39
         for (int j = 0; j < m; j++) {
   if (!used[i]) {</pre>
                                                                  40
32
                                                                           res += add;
33
            if (!used[j])
                                                                  41
34
              T cur = a[i0][j] - u[i0] - v[j];
                                                                  42
                                                                         return res;
              if (cur < minv[j]) {</pre>
                                                                  43
                                                                       }
35
36
                minv[j] = cur, way[j] = j0;
                                                                  44
37
                                                                  45
                                                                       int run_one(int v) {
              if (minv[j] < delta) {</pre>
38
                                                                  46
                                                                         if (pa[v] != -1) return 0;
                delta = minv[j], j1 = j;
39
                                                                  47
                                                                         iter++:
                                                                         return (int) dfs(v);
                                                                  48
40
           }
                                                                  49
41
42
                                                                  50
                                                                       pair<vector<bool>, vector<bool>> vertex_cover() {
          for (int j = 0; j \ll m; j++) {
43
                                                                  51
            if (used[j]) {
                                                                         vector<bool> a_cover(n, true), b_cover(m, false);
              u[pb[j]] += delta, v[j] -= delta;
                                                                  53
45
                                                                         function<void(int)> dfs_aug = [&](int v) {
46
            } else
                                                                  54
                                                                           a_cover[v] = false;
              minv[j] -= delta;
                                                                            for (int u: g[v])
47
                                                                  55
           }
48
                                                                  56
                                                                              if (not b_cover[u])
49
                                                                  57
                                                                                b_cover[u] = true, dfs_aug(pb[u]);
         j0 = j1;
50
                                                                  58
                                                                         for (int v = 0; v < n; ++v)
51
       } while (pb[j0] != -1);
                                                                  59
                                                                  60
                                                                            if (a\_cover[v] \text{ and } pa[v] == -1)
52
53
             j1 = way[j0];
                                                                             dfs_aug(v);
                                                                  61
          pb[j0] = pb[j1], pa[pb[j0]] = j0, j0 = j1;
54
                                                                  62
                                                                         return {a_cover, b_cover};
         while (j0 != m);
55
                                                                  63
56
                                                                  64 };
57
58
     inline T current_score() {
59
       return -v[m];
60
                                                                          Geometry
61
     inline T solve() {
62
63
       for (int i = 0; i < n; i++) {
                                                                           Convex Envelope
64
         add_row(i);
```

4.4 Matching

return current_score();

65

66 67

68|};

```
1|class matching {
     public:
     vector< vector<int> > g;
     vector<int> pa, pb, was;
int n, m, res, iter;
     matching(int _n, int _m) : n(_n), m(_m) {
       assert(0 <= n && 0 <= m);
       pa = vector<int>(n, -1);
10
       pb = vector<int>(m, -1);
11
       was = vector < int > (n, 0);
       g.resize(n);
12
       res = 0, iter = 0;
13
14
15
     void add_edge(int from, int to) {
       assert(0 \le from \&\& from < n \&\& 0 \le to \&\& to < m)
17
18
       g[from].push_back(to);
19
20
21
     bool dfs(int v) {
22
       was[v] = iter;
       for (int u : g[v])
23
          if (pb[u] == -1)
24
            return pa[v] = u, pb[u] = v, true;
2.5
       for (int u : g[v])
26
          if (was[pb[u]] != iter && dfs(pb[u]))
27
28
            return pa[v] = u, pb[u] = v, true;
29
       return false;
30
```

```
1|using F = long long;
  struct Line {
     static const F QUERY = numeric_limits<F>::max();
     F m, b;
     Line(F m, F b) : m(m), b(b) {}
6
     mutable function<const Line*()> succ;
     bool operator<(const Line& rhs) const {</pre>
       if (rhs.b != QUERY) return m == rhs.m ? b < rhs.b</pre>
           : m < rhs.m;
       const Line* s = succ();
       return s and b - s -> b < (s -> m - m) * rhs.m;
10
11
12
     F operator()(F x) const { return m * x + b; };
13 \ \ \ ;
14
15
   struct HullDynamic : public multiset<Line> {
     bool isOnHull(iterator y) { //Mathematically,
16
         Strictly
17
       auto z = next(y);
       if (y == begin()) return z == end() or y->m != z->
18
           m \text{ or } z -> b < y -> b;
19
       auto x = prev(y);
20
       if (z == end()) return x->m != y->m or x->b < y->b
       if (y->m == z->m) return y->b > z->b;
21
22
       if (x->m == y->m) return x->b < y->b;
23
       return (x->b-y->b) * (z->m-y->m) < (y->b-z->
           b) * (y->m - x->m);
24
       // Beware long long overflow
25
     void insertLine(F m, F b) {
26
27
       auto y = insert(Line(m, b));
       y->succ = [=] { return next(y) == end() ? nullptr
28
            : &*next(y); };
       if (not isOnHull(y)) { erase(y); return;
29
       while (next(y) != end() and not isOnHull(next(y)))
30
            erase(next(y));
       while (y != begin() and not isOnHull(prev(y)))
31
           erase(prev(y));
```

```
32  }
33  F operator()(F x) { return (*lower_bound(Line{x, Line::QUERY}))(x); }
34  };
```

5.2 3D ConvexHull

```
1|#define SIZE(X) (int(X.size()))
   #define PI 3.14159265358979323846264338327950288
   struct Pt{
     Pt cross(const Pt &p) const
     { return Pt(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x); }
   } info[N];
   int mark[N][N],n, cnt;;
double mix(const Pt &a, const Pt &b, const Pt &c)
{ return a * (b ^ c); }
10 double area(int a, int b, int c)
11
   { return norm((info[b] - info[a]) ^ (info[c] - info[a
        ])); }
   double volume(int a, int b, int c, int d)
{ return mix(info[b] - info[a], info[c] - info[a],
121
13
        info[d] - info[a]); }
14
   struct Face{
     int a, b, c; Face(){}
Face(int a, int b, int c): a(a), b(b), c(c) {}
15
16
17
     int &operator [](int k)
18
     { if (k == 0) return a; if (k == 1) return b; return
           c; }
19 };
20 vector<Face> face;
21 void insert(int a, int b, int c)
   { face.push_back(Face(a, b, c)); }
   void add(int v) {
  vector <Face> tmp; int a, b, c; cnt++;
23
24
     for (int i = 0; i < SIZE(face); i++) {</pre>
25
        a = face[i][0]; b = face[i][1]; c = face[i][2];
26
       if(Sign(volume(v, a, b, c)) < 0)
mark[a][b] = mark[b][a] = mark[b][c] = mark[c][b]</pre>
27
28
             = mark[c][a] = mark[a][c] = cnt;
29
        else tmp.push_back(face[i]);
30
     } face = tmp;
     for (int i = 0; i < SIZE(tmp); i++) {
    a = face[i][0]; b = face[i][1]; c = face[i][2];
31
32
        if (mark[a][b] == cnt) insert(b, a, v);
33
        if (mark[b][c] == cnt) insert(c, b, v);
35
        if (mark[c][a] == cnt) insert(a, c, v);
   }}
36
   int Find(){
37
     for (int i = 2; i < n; i++) {
  Pt ndir = (info[0] - info[i]) ^ (info[1] - info[i])</pre>
38
39
        if (ndir == Pt()) continue; swap(info[i], info[2])
40
        41
          swap(info[j], info[3]); insert(0, 1, 2); insert
    (0, 2, 1); return 1;
42
43|} } return 0; }
44
   int main() {
     for (; scanf("%d", &n) == 1; ) {
45
        for (int i = 0; i < n; i++) info[i].Input();</pre>
46
47
        sort(info, info + n); n = unique(info, info + n) -
48
        face.clear(); random_shuffle(info, info + n);
        if (Find()) { memset(mark, 0, sizeof(mark)); cnt =
49
          for (int i = 3; i < n; i++) add(i); vector<Pt>
50
               Ndir;
          for (int i = 0; i < SIZE(face); ++i) {</pre>
51
            52
53
          p = p / norm( p ); Ndir.push_back(p);
} sort(Ndir.begin(), Ndir.end());
54
55
56
          int ans = unique(Ndir.begin(), Ndir.end()) -
               Ndir.begin();
          printf("%d\n", ans);
57
       } else printf("1\n");
58
59
  } }
60 double calcDist(const Pt &p, int a, int b, int c)
```

```
61 | { return fabs(mix(info[a] - p, info[b] - p, info[c] -
        p) / area(a, b, c)); }
   //compute the minimal distance of center of any faces
   double findDist() { //compute center of mass
  double totalWeight = 0; Pt center(.0, .0, .0);
63
64
     Pt first = info[face[0][0]];
65
     for (int i = 0; i < SIZE(face); ++i) {
  Pt p = (info[face[i][0]]+info[face[i][1]]+info[</pre>
66
67
             face[i][2]]+first)*.25;
        double weight = mix(info[face[i][0]] - first, info
68
             [face[i][1]]
             first, info[face[i][2]] - first);
69
        totalWeight += weight; center = center + p *
70
            weight;
     } center = center / totalWeight;
71
     double res = 1e100; //compute distance
72
     for (int i = 0; i < SIZE(face); ++i)</pre>
73
        res = min(res, calcDist(center, face[i][0], face[i
74
            ][1], face[i][2]));
75
        return res; }
```

5.3 Half plane intersection

```
1|template<typename T, typename Real = double>
   Poly<Real> halfplane_intersection(vector<Line<T, Real
        >> s) {
     sort(s.begin(), s.end());
     const Real eps = 1e-10;
     int n = 1;
     for (int i = 1; i < s.size(); ++i) {
        if ((s[i].vec()\&s[n - 1].vec()) < eps or abs(s[i].
            vec()^s[n - 1].vec()) > eps)
          s[n++] = s[i];
10
     s.resize(n);
     assert(n >= 3);
11
     deque<Line<T, Real>> q;
12
13
     deque<Pt<Real>> p;
     q.push_back(s[0]);
14
15
     q.push_back(s[1]);
     p.push_back(s[0].get_intersection(s[1]));
for (int i = 2; i < n; ++i) {</pre>
16
17
       while (q.size() > 1 and s[i].ori(p.back()) < -eps)</pre>
18
       p.pop_back(), q.pop_back();
while (q.size() > 1 and s[i].ori(p.front()) < -eps</pre>
19
20
          p.pop_front(), q.pop_front();
22
       p.push_back(q.back().get_intersection(s[i]));
23
       q.push_back(s[i]);
24
     while (q.size() > 1 and q.front().ori(p.back()) < -</pre>
25
          eps)
     q.pop_back(), p.pop_back();
while (q.size() > 1 and q.back().ori(p.front()) < -</pre>
26
27
28
        q.pop_front(), p.pop_front();
29
     p.push_back(q.front().get_intersection(q.back()));
     return Poly<Real>(vector<Pt<Real>>(p.begin(), p.end
30
          ()));
31 }
```

5.4 Lines

```
1|template <typename T, typename Real = double>
  struct Line {
    Pt<T> st, ed;
4
    Pt<T> vec() const { return ed - st; }
    T ori(const Pt<T> p) const { return (ed - st)^(p -
5
         st); }
    Line(const Pt<T> x, const Pt<T> y) : st(x), ed(y) {}
    template<class F> operator Line<F> () const {
      return Line<F>((Pt<F>)st, (Pt<F>)ed);
8
Q
10
    // sort by arg, the left is smaller for parallel
11
12
    bool operator<(Line B) const {</pre>
13
      Pt < T > a = vec(), b = B.vec();
```

```
14
       auto sgn = [](const Pt<T>t) { return (t.y == 0? t
            .x: t.y) < 0; }
          (sgn(a) != sgn(b)) return sgn(a) < sgn(b);
       if (abs(a^b) == 0) return B.ori(st) > 0;
16
17
       return (a^b) > 0;
18
19
20
     // Regard a line as a function
     template<typename F> Pt<F> operator()(const F x)
21
                                                                10 }
         const {
22
       return Pt<F>(st) + vec() * x;
                                                                11
23
                                                                12
24
25
     bool isSegProperIntersection(const Line 1) const {
                                                                14
       return l.ori(st) * l.ori(ed) < 0 and ori(l.st) *
26
                                                                15
           ori(l.ed) < 0;
                                                                16
27
                                                                17
28
                                                                18
29
     bool isPtOnSegProperly(const Pt<T> p) const {
                                                                19
30
       return ori(p) == 0 and ((st - p)&(ed - p)) < 0;
                                                                20
31
                                                                21
32
33
     Pt<Real> getIntersection(const Line<Real> 1) {
                                                                22
       Line<Real> h = *this;
34
                                                                23
       return l(((1.st - h.st)^h.vec()) / (h.vec()^l.vec
35
                                                                24
                                                                25
            ()));
36
                                                                26
                                                                27
37
38
     Pt<Real> projection(const Pt<T> p) const {
                                                                28
39
       return operator()(((p - st)&vec()) / (Real)(vec().
                                                                29
           norm()));
40
                                                                30 | }
41 \ \ \ ;
```

5.5 Points

```
1 template <typename T>
  struct Pt {
2
    T x, y;
Pt(): x(0), y(0) {}
    Pt(const T x, const T y) : x(x), y(y) {}
     template <class F> explicit operator Pt<F> () const
       return Pt<F>((F)x, (F)y); }
    Pt operator+(const Pt b) const { return Pt(x + b.x,
         y + b.y; }
     Pt operator-(const Pt b) const { return Pt(x - b.x,
10
         y - b.y); }
     template <class F> Pt<F> operator* (const F fac) {
     return Pt<F>(x * fac, y * fac); }
template <class F> Pt<F> operator/ (const F fac) {
12
13
       return Pt<F>(x / fac, y / fac); }
14
15
    T operator&(const Pt b) const { return x * b.x + y *
16
          b.y; }
     T operator^(const Pt b) const { return x * b.y - y *
17
          b.x; }
18
19
     bool operator==(const Pt b) const {
      return x == b.x and y == b.y; }
20
     bool operator<(const Pt b) const {
21
22
       return x == b.x? y < b.y: x < b.x; }
23
    Pt operator-() const { return Pt(-x, -y); }
24
     T norm() const { return *this & *this; }
2.5
26
    Pt prep() const { return Pt(-y, x); }
27 \ \ \ :
28 template<class F> istream& operator>>(istream& is, Pt<
       F> &pt) {
29
     return is >> pt.x >> pt.y;
30 }
31 template<class F> ostream& operator<<(ostream& os, Pt<
       F> &pt) {
32
     return os << pt.x << ' ' << pt.y;</pre>
33 }
```

5.6 Polys

```
1 template <class F> using Polygon = vector<Pt<F>>;
  template<typename T>
  T twiceArea(Polygon<T> Ps) {
     int n = Ps.size();
    T ans = 0;
     for (int i = 0; i < n; ++i)
      ans += Ps[i] ^ Ps[i + 1 == n ? 0 : i + 1];
     return ans:
  template <class F>
13 Polygon<F> getConvexHull(Polygon<F> points) {
     sort(begin(points), end(points));
     Polygon<F> hull;
     hull.reserve(points.size() + 1);
     for (int phase = 0; phase < 2; ++phase) {
  auto start = hull.size();</pre>
       for (auto& point : points) {
         while (hull.size() >= start + 2 and
                Line<F>(hull.back(), hull[hull.size() -
                     2]).ori(point) <= 0)
           hull.pop_back();
         hull.push_back(point);
      hull.pop_back();
       reverse(begin(points), end(points));
     if (hull.size() == 2 and hull[0] == hull[1]) hull.
         pop_back();
     return hull;
```

5.7 Rotating Axis

```
1|class Rotating_axis{
      struct POINT{
        Pt<LL> p;
        int i;
     };
      struct LINE{
        Line<LL> L;
8
9
        bool operator<(const LINE B) const { return (L.vec</pre>
             ()^B.L.vec()) > 0; }
10
      vector<POINT> Ps;
11
12
     vector<LINE> Ls;
      vector<int> idx_at;
13
14
      int n, lid = 0;
15
   public:
16
      Rotating_axis(vector<Pt<LL>> V) {
        n = V.size();
17
        Ps.resize(n), idx_at.resize(n);
18
        for (int i = 0; i < n; ++i) Ps[i] = {V[i], i};
for (int i = 0; i < n; ++i) for (int j = 0; j < i;
19
20
              ++j) {
          auto a = V[i], b = V[j], v = b - a;
21
22
           int ii = i, jj = j;
          if (v.y > 0 or (v.y == 0 and v.x > 0)) swap(a, b
     ), swap(ii, jj);
23
24
          Ls.push_back({Line<LL>(a, b), ii, jj});
25
        sort(Ls.begin(), Ls.end());
26
        sort(Ps.begin(), Ps.end(), [&](POINT A, POINT B) {
  auto a = A.p, b = B.p;
  LL det1 = Ls[0].L.ori(a), det2 = Ls[0].L.ori(b);
27
28
29
          return det1 == det2? ((a - b) & Ls[0].L.vec()) >
                 0 : det1 > det2:
31
32
        for (int i = 0; i < n; ++i) idx_at[Ps[i].i] = i;</pre>
33
      bool next_axis() {
34
35
        if (lid == Ls.size()) return false;
36
        int i = Ls[lid].i, j = Ls[lid].j, wi = idx_at[i],
        wj = idx_at[j];
swap(Ps[wi], Ps[wj]);
37
38
        swap(idx_at[i], idx_at[j]);
39
        assert(idx_at[i] == idx_at[j] - 1);
40
        return ++lid, true;
```

6 Graph

6.1 2-SAT

```
1|#include <bits/stdc++.h>
  using namespace std;
   class two_SAT {
     public:
     vector< vector<int> > g, rg;
     vector<int> visit, was;
     vector<int> id;
     vector<int> res;
10
     int n, iter;
11
12
     two_SAT(int _n) : n(_n) {
13
14
       g.resize(n * 2);
       rg.resize(n * 2);
15
       was = vector<int>(n * 2, 0);
16
       id = vector < int > (n * 2, -1);
17
18
       res.resize(n);
       iter = 0;
19
20
2.1
     void add_edge(int from, int to) { // add (a -> b)
       assert(from >= 0 \&\& from < 2 * n \&\& to >= 0 \&\& to
23
            < 2 * n);
       g[from].emplace_back(to);
       rg[to].emplace_back(from);
2.5
26
27
     void add_or(int a, int b) { // add (a V b)
28
29
       int nota = (a < n) ? a + n : a - n;
       int notb = (b < n) ? b + n : b - n;
30
31
       add_edge(nota, b);
32
       add_edge(notb, a);
33
34
     void dfs(int v) {
35
36
       was[v] = true;
37
       for (int u : g[v]) {
38
         if (!was[u]) dfs(u);
39
40
       visit.emplace_back(v);
41
42
     void rdfs(int v) {
43
44
       id[v] = iter;
45
       for (int u : rg[v]) {
         if (id[u] == -1) rdfs(u);
46
47
48
49
50
     int scc() {
       for (int i = 0; i < 2 * n; i++) {
51
         if (!was[i]) dfs(i);
52
53
       for (int i = 2 * n - 1; i >= 0; i--) {
  if (id[ visit[i] ] == -1) {
54
55
            rdfs(visit[i]);
56
57
            iter++:
58
         }
59
60
       return iter;
61
62
63
     bool solve() {
64
       scc();
       for (int i = 0; i < n; i++) {
65
66
         if (id[i] == id[i + n]) return false;
67
         res[i] = (id[i] < id[i + n]);
68
```

```
return true:
70
71
72
  };
73
74
75
     usage:
76
       index 0 \sim n - 1 : True
       index n \sim 2n - 1: False
77
78
       add_or(a, b) : add SAT (a or b)
79
       add_edge(a, b) : add SAT (a -> b)
       if you want to set x = True, you can add (not X \rightarrow
80
81
       solve() return True if it exist at least one
           solution
82
       res[i] store one solution
83
         false -> choose a
         true -> choose a + n
84
85 */
```

6.2 BCC

```
1 | #include <bits/stdc++.h>
3
   using namespace std;
4
5
   class biconnected_component {
6
     public:
     vector< vector<int> > g;
     vector< vector<int> > comp;
     vector<int> pre, depth;
10
     int n;
11
     biconnected_component(int _n) : n(_n) {
12
13
       depth = vector<int>(n, -1);
       g.resize(n);
14
15
16
     void add(int u, int v) {
17
       assert(0 \le u \&\& u < n \&\& 0 \le v \&\& v < n);
18
19
       g[u].push_back(v);
20
       g[v].push_back(u);
21
22
     int dfs(int v, int pa, int d) {
23
24
       depth[v] = d;
       pre.push_back(v)
25
26
       for (int u : g[v]) {
27
         if (u == pa) continue;
28
         if (depth[u] == -1) {
29
            int child = dfs(u,
                                v, depth[v] + 1);
           if (child >= depth[v]) {
30
31
              comp.push_back(vector<int>(1, v));
32
              while (pre.back() != v) {
                comp.back().push_back(pre.back());
33
34
                pre.pop_back();
35
36
37
           d = min(d, child);
38
39
         else {
40
           d = min(d, depth[u]);
41
         }
42
43
       return d;
44
45
     vector< vector<int> > solve() {
46
       for (int i = 0; i < n; i++) {
47
48
         if (depth[i] == -1) {
49
           dfs(i, -1, 0);
50
51
52
       return comp;
     }
53
55
     vector<int> get_ap() {
56
       vector<int> res, count(n, 0);
       for (auto c : comp) {
57
         for (int v : c ) {
58
```

```
59
                                                                       1 struct Bridge
            count[v]++;
60
          }
                                                                            vector<int> imo;
                                                                            set<pair<int, int>> bridges; // all bridges (u, v),
61
        for (int i = 0; i < n; i++) {</pre>
62
                                                                            vector<set<int>>> bcc; // bcc[i] has all vertices
          if (count[i] > 1) {
63
                                                                                that belong to the i'th bcc
64
            res.push_back(i);
                                                                            vector<int> at_bcc; // node i belongs to at_bcc[i]
65
66
        }
                                                                       6
                                                                            int bcc_ctr;
67
        return res;
                                                                       8
                                                                            Bridge(const vector<vector<int>> &g) : bcc_ctr(0) {
68
69|};
                                                                              imo.resize(g.size());
                                                                      10
                                                                              bcc.resize(g.size())
                                                                      11
                                                                              at_bcc.resize(g.size());
                                                                      12
                                                                              vector<int> vis(g.size());
          General Matching
                                                                              vector<int> dpt(g.size());
                                                                      13
                                                                      14
                                                                              function<void(int, int, int)> mark = [&](int u,
                                                                                int fa, int d) {
vis[u] = 1;
 1 | #define MAXN 505
   struct Blossom {
                                                                      15
                                                                                dpt[u] = d;
                                                                      16
     vector<int> g[MAXN];
                                                                                for (int v : G[u]) {
  if (v == fa) continue;
     int pa[MAXN] = {0}, match[MAXN] = {0}, st[MAXN] = {0}, S[MAXN] = {0}, v[MAXN] = {0};
                                                                      17
                                                                      18
                                                                      19
                                                                                   if (vis[v]) {
     int t, n;
                                                                      20
                                                                                     if (dpt[v] > dpt[u]) {
     Blossom(int _n) : n(_n) {}
                                                                      21
                                                                                       ++imo[v];
     void add_edge(int v, int u) { // 1-index
                                                                                       --imo[u];
        g[u].push_back(v), g[v].push_back(u);
                                                                      23
                                                                      24
                                                                                  } else mark(v, u, d + 1);
     inline int lca(int x, int y) {
10
                                                                      25
                                                                                }
11
        ++t;
                                                                      26
                                                                              };
        while (v[x] != t) {
12
                                                                      27
                                                                              mark(0, -1, 0);
13
          v[x] = t;
                                                                              vis.assign(g.size(), 0);
                                                                      28
14
          x = st[pa[match[x]]];
                                                                      29
                                                                              function<int(int)> expand = [&](int u) {
15
          swap(x, y)
                                                                      30
                                                                                vis[u] = 1;
          if (x == 0) swap(x, y);
16
                                                                      31
                                                                                int s = imo[u]
17
                                                                      32
                                                                                for (int v : G[u]) {
18
        return x;
                                                                      33
                                                                                   if (vis[v]) continue;
19
                                                                      34
                                                                                   int e = expand(v);
     inline void flower(int x, int y, int l, queue<int> &
20
                                                                                   if (e == 0) bridges.emplace(make_pair(min(u, v
                                                                      35
                                                                                        ), max(u, v)));
21
        while (st[x] != 1) {
                                                                      36
                                                                                   s += e;
22
          pa[x] = y;
                                                                      37
                                                                                }
23
          if (S[y = match[x]] == 1) q.push(y), S[y] = 0;
                                                                      38
                                                                                return s;
24
          st[x] = st[y] = 1, x = pa[y];
                                                                      39
2.5
                                                                      40
                                                                              expand(0);
26
                                                                              fill(at_bcc.begin(), at_bcc.end(), -1);
                                                                      41
27
     inline bool bfs(int x) {
                                                                              for (int u = 0; u < N; ++u) {
   if (~at_bcc[u]) continue;</pre>
                                                                      42
28
        for (int i = 1; i <= n; ++i) st[i] = i;
                                                                      43
29
        memset(S + 1, -1, sizeof(int) * n);
                                                                      44
                                                                                queue<int> que;
30
        queue<int> q
                                                                      45
                                                                                que.emplace(u);
        q.push(x), S[x] = 0;
31
                                                                      46
                                                                                at_bcc[u] = bcc_ctr;
        while (q.size()) {
32
                                                                      47
                                                                                bcc[bcc_ctr].emplace(u);
          x = q.front(), q.pop();
33
                                                                      48
                                                                                while (que.size()) {
          for (size_t i = 0; i < g[x].size(); ++i) {</pre>
34
                                                                                  int v = que.front();
                                                                      49
            int y = g[x][i];
if (S[y] == -1)
35
                                                                      50
                                                                                   que.pop();
36
                                                                                   for (int w : G[v]) {
  if (~at_bcc[w] || bridges.count(make_pair())
                                                                      51
               pa[y] = x, S[y] = 1;
37
               if (not match[y]) {
  for (int lst; x; y = lst, x = pa[y])
    lst = match[x], match[x] = y, match[y] =
                                                                      52
38
                                                                                          min(v, w), max(v, w)))) continue;
39
                                                                      53
                                                                                     que.emplace(w);
40
                                                                      54
                                                                                     at_bcc[w] = bcc_ctr;
                                                                                     bcc[bcc_ctr].emplace(w);
                                                                      55
41
                 return 1;
                                                                      56
42
            q.push(match[y]), S[match[y]] = 0;
} else if (not S[y] and st[y] != st[x]) {
  int l = lca(y, x);
  flower(y, x, l, q), flower(x, y, l, q);
                                                                      57
43
                                                                      58
                                                                                ++bcc_ctr;
44
                                                                      59
45
                                                                      60
46
                                                                      61 };
47
            }
          }
48
49
        return 0;
50
                                                                                CentroidDecomposition
51
     inline int blossom() {
52
                                                                       1|struct CentroidDecomp {
        int ans = 0;
53
                                                                           vector<vector<int>> g;
54
        for (int i = 1; i <= n; ++i)
                                                                            vector<int> p, M, sz;
55
          if (not match[i] and bfs(i)) ++ans;
                                                                       4
                                                                            vector<bool> vis;
56
        return ans;
                                                                       5
                                                                            int n;
57
58|};
                                                                            CentroidDecomp(vector<vector<int>> g) : g(g), n(g.
                                                                                size()) {
                                                                       8
                                                                              p.resize(n);
```

vis.assign(n, false);

sz.resize(n);

10

Bridge

```
}
11
        M.resize(n);
12
                                                                      40
                                                                      41
                                                                              mu=INF; LL bunbo=1;
13
                                                                              for(int i=1; i<=n; i++) if(dp[n][i] < INF){
  LL a=-INF, b=1;</pre>
14
      int divideAndConquer(int x) {
                                                                      42
15
                                                                      43
                                                                                 for(int j=0; j<=n-1; j++) if(dp[j][i] < INF){
  if(a*(n-j) < b*(dp[n][i]-dp[j][i])){</pre>
16
        vector < int > q = \{x\};
                                                                      44
                                                                      45
17
        p[x] = x;
18
                                                                      46
                                                                                     a = dp[n][i]-dp[j][i];
19
        for (int i = 0; i < q.size(); ++i) {</pre>
                                                                      47
                                                                                     b = n-j;
                                                                      48
                                                                                   }
20
          int u = q[i];
21
          sz[u] = 1;
                                                                      49
          M[u] = 0;
                                                                                 if(mu*b > bunbo*a)
22
                                                                      50
23
          for (auto v : g[u]) if (not vis[v] and v != p[u]
                                                                      51
                                                                                   mu = a, bunbo = b;
               } ([
                                                                      52
24
            q.push_back(v), p[v] = u;
                                                                      53
                                                                              if(mu < 0) return -1; // negative cycle</pre>
                                                                              if(mu == INF) return INF; // no cycle
2.5
          }
                                                                      54
26
                                                                      55
                                                                               if(mu == 0) return 0;
                                                                               for(int i=1; i<=n; i++)</pre>
27
                                                                      56
        reverse(begin(q), end(q));
for (int u : q) if (p[u] != u) {
                                                                                 for(int j=0; j<(int)g[i].size(); j++)</pre>
28
                                                                      57
                                                                                 g[i][j].w *= bunbo;
29
                                                                      58
          sz[p[u]] += sz[u]
30
                                                                      59
                                                                              memset(p, 0, sizeof(p));
                                                                              queue<int> q;
31
          M[p[u]] = max(sz[u], M[p[u]]);
                                                                      60
32
                                                                      61
                                                                              for(int i=1; i<=n; i++){</pre>
33
                                                                      62
                                                                                 q.push(i);
34
        for (int u : q) M[u] = max(M[u], int(q.size()) -
                                                                      63
                                                                                 inq[i] = true;
             sz[u]);
                                                                      64
35
                                                                      65
                                                                              while(!q.empty()){
        int cent = *min_element(begin(q), end(q),
                                                                                 int i=q.front(); q.pop(); inq[i]=false;
36
                                                                      66
                                                                                 37
                                     [&](int x, int y) { return
                                                                      67
                                           M[x] < M[y]; \});
                                                                      68
                                                                                     p[g[i][j].to] = p[i]+g[i][j].w-mu;
if(!inq[g[i][j].to]){
38
                                                                      69
39
        vis[cent] = true;
                                                                      70
            (int u : g[cent]) if (not vis[u])
40
                                                                      71
                                                                                        q.push(g[i][j].to);
             divideAndConquer(u);
                                                                      72
                                                                                        inq[g[i][j].to] = true;
41
        return cent;
                                                                      73
                                                                                     }
42
                                                                      74
                                                                                   }
43 | };
                                                                      75
                                                                                }
                                                                      76
                                                                      77
                                                                              for(int i=1; i<=n; i++) grev[i].clear();
for(int i=1; i<=n; i++)</pre>
                                                                      78
          DirectedGraphMinCycle
                                                                                 for(int j=0; j<(int)g[i].size(); j++){</pre>
                                                                      79
                                                                      80
                                                                                   g[i][j].w += p[i]-p[g[i][j].to]
 1|// works in O(N M)
                                                                      81
                                                                                   grev[g[i][j].to].push_back(edge(i, g[i][j].w))
2 #define INF 1000000000000000LL
   #define N 5010
                                                                      82
   #define M 200010
                                                                      83
                                                                              LL mldc = n*mu;
   struct edge{
                                                                              for(int i=1; i<=n; i++){</pre>
                                                                      84
      int to; LL w;
                                                                      85
                                                                                bn=mldc/mu, bsz=0;
                                                                                memset(hd, 0, sizeof(hd));
fill(d+i+1, d+n+1, INF);
     edge(int a=0, LL b=0): to(a), w(b){}
                                                                      86
8 };
                                                                      87
                                                                                b_insert(d[i]=0, i);
9 struct node{
                                                                      88
     LL d; int u, next; node(LL a=0, int b=0, int c=0): d(a), u(b), next(c)
                                                                      89
                                                                                 for(int j=0; j<=bn-1; j++) for(int k=hd[j]; k; k</pre>
10
                                                                                      =b[k].next){
11
                                                                      90
                                                                                   int u = b[k].u;
          {}
                                                                                   LL du = b[k].d;
                                                                      91
12 }b[M];
                                                                                   if(du > d[u]) continue;
   struct DirectedGraphMinCycle{
                                                                      92
13
     vector<edge> g[N], grev[N];
                                                                                   for(int l=0; l<(int)g[u].size(); l++) if(g[u][</pre>
                                                                      93
14
                                                                                      l].to > i){
if(d[g[u][l].to] > du + g[u][l].w){
     LL dp[N][N], p[N], d[N], mu;
15
                                                                      94
16
      bool inq[N];
                                                                                        d[g[u][l].to] = du + g[u][l].w;
                                                                      95
17
      int n, bn, bsz, hd[N];
                                                                      96
                                                                                        b_insert(d[g[u][1].to], g[u][1].to);
18
      void b_insert(LL d, int u){
                                                                      97
19
        int i = d/mu;
                                                                                     }
        if(i >= bn) return;
                                                                      98
                                                                                   }
2.0
                                                                      99
21
        b[++bsz] = node(d, u, hd[i]);
                                                                      100
                                                                                 for(int j=0; j<(int)grev[i].size(); j++) if(grev</pre>
22
        hd[i] = bsz;
                                                                                      [i][j].to > i)
23
24
      void init( int _n ){
                                                                     101
                                                                                   mldc=min(mldc,d[grev[i][j].to] + grev[i][j].w)
25
       n = _n;
for( int i = 1 ; i <= n ; i ++ )</pre>
                                                                     102
26
          g[ i ].clear();
                                                                              return mldc / bunbo;
27
                                                                     103
28
                                                                     104
                                                                     105 | graph;
29
      void addEdge( int ai , int bi , LL ci )
30
      { g[ai].push_back(edge(bi,ci)); }
31
     LL solve(){
        fill(dp[0], dp[0]+n+1, 0);
for(int i=1; i<=n; i++){
32
                                                                                General Weighted Matching
33
          fill(dp[i]+1, dp[i]+n+1, INF);
for(int j=1; j<=n; j++) if(dp[i-1][j] < INF){
  for(int k=0; k<(int)g[j].size(); k++)</pre>
34
35
                                                                       1| struct WeightGraph -
```

2

dp[i][g[j][k].to] =min(dp[i][g[j][k].to];

dp[i-1][j]+g[j][k].w

36

37

38

static const int INF = INT MAX:

static const int N = 514;

struct edge { int u, v, w;

```
edge() {}
                                                                                 lab[b] = 0, S[b] = 0;
                                                                         78
                                                                                match[b] = match[lca];
        edge(int ui, int vi, int wi) : u(ui), v(vi), w(wi)
                                                                        79
                                                                        80
                                                                                 flo[b].clear();
 8
                                                                        81
                                                                                 flo[b].push_back(lca);
     int n, n_x;
edge g[N * 2][N * 2];
                                                                                 for (int x = u, y; x != lca; x = st[pa[y]])
                                                                        82
                                                                                   flo[b].push_back(x), flo[b].push_back(y = st[
10
                                                                        83
     int lab[N * 2];
int match[N * 2], slack[N * 2], st[N * 2], pa[N *
                                                                                        match[x]]), q_push(y);
11
                                                                                 reverse(flo[b].begin() + 1, flo[b].end())
12
                                                                        84
                                                                                 for (int x = v, y; x != lca; x = st[pa[y]])
  flo[b].push_back(x), flo[b].push_back(y = st[
                                                                        85
     int flo_from[N * 2][N + 1], S[N * 2], vis[N * 2];
vector<int> flo[N * 2];
13
                                                                        86
                                                                                        match[x]]), q_push(y);
14
      queue<int> q;
15
                                                                                 set_st(b, b);
                                                                                 for (int x = 1; x \le n_x; ++x) g[b][x].w = g[x][b]
      int e_delta(const edge& e) { return lab[e.u] + lab[e
16
                                                                        88
           [e.v] - g[e.u][e.v].w * 2; }
                                                                                      ].w = 0;
                                                                                 for (int x = 1; x <= n; ++x) flo_from[b][x] = 0;
for (size_t i = 0; i < flo[b].size(); ++i) {</pre>
      void update_slack(int u, int x) {
17
                                                                        89
        if (not slack[x] or e_delta(g[u][x]) < e_delta(g[</pre>
18
                                                                        90
             slack[x]][x]))
                                                                        91
                                                                                   int xs = flo[b][i];
                                                                                   for (int x = 1; x <= n_x; ++x)
19
                                                                        92
           slack[x] = u;
20
                                                                        93
                                                                                     if (g[b][x].w == 0 \text{ or } e_delta(g[xs][x]) <
21
      void set_slack(int x) {
                                                                                           e_{delta(g[b][x])}
                                                                                   g[b][x] = g[xs][x], g[x][b] = g[x][xs];
for (int x = 1; x <= n; ++x)
22
        slack[x] = 0;
                                                                        94
        for (int u = 1; u <= n; ++u)
                                                                        95
          if (g[u][x].w > 0 and st[u] != x and S[st[u]] ==
                                                                                     if (flo_from[xs][x]) flo_from[b][x] = xs;
24
                                                                        96
                 0) update_slack(u, x);
                                                                        97
2.5
                                                                        98
                                                                                set_slack(b);
     void q_push(int x) {
  if (x <= n)</pre>
                                                                        99
26
27
                                                                        100
                                                                              void expand_blossom(int b) {
                                                                                 for (size_t i = 0; i < flo[b].size(); ++i) set_st(</pre>
28
          q.push(x);
                                                                       101
                                                                                      flo[b][i], flo[b][i]);
29
        else
          for (size_t i = 0; i < flo[x].size(); i++)</pre>
                                                                                 int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b
30
                                                                       102
                                                                                       xr);
                q_push(flo[x][i]);
                                                                                 for (int i = 0; i < pr; i += 2) {
31
                                                                       103
                                                                                   int xs = flo[b][i], xns = flo[b][i + 1];
32
      void set_st(int x, int b) {
                                                                       104
33
        st[x] = b;
                                                                       105
                                                                                   pa[xs] = g[xns][xs].u;
                                                                                   S[xs] = 1, S[xns] = 0;
        if(x > n)
                                                                       106
34
                                                                                   s\bar{a}c\bar{k}[xs] = 0, set_slack(xns);
35
           for (size_t i = 0; i < flo[x].size(); ++i)</pre>
                                                                       107
                set_st(flo[x][i], b);
                                                                       108
                                                                                   q_push(xns);
36
                                                                       109
      int get_pr(int b, int xr) {
  int pr = find(flo[b].begin(), flo[b].end(), xr) -
                                                                                S[xr] = 1, pa[xr] = pa[b];
for (size_t i = pr + 1; i < flo[b].size(); ++i) {
37
                                                                       110
38
                                                                       111
             flo[b].begin();
                                                                                   int xs = flo[b][i];
                                                                       112
        if (pr % 2 == 1) {
  reverse(flo[b].begin() + 1, flo[b].end());
                                                                                   S[xs] = -1, set_slack(xs);
39
                                                                       113
40
                                                                       114
41
           return (int)flo[b].size() - pr;
                                                                                st[b] = 0;
                                                                        115
42
        } else
                                                                       116
          return pr;
43
                                                                        117
                                                                              bool on_found_edge(const edge& e) {
                                                                                 int u = st[e.u], v = st[e.v];
44
                                                                       118
      void set_match(int u, int v) {
                                                                                 if (S[v] == -1) {
45
                                                                       119
                                                                                   pa[v] = e.u, S[v] = 1;
int nu = st[match[v]];
slack[v] = slack[nu] = 0;
S[nu] = 0, q_push(nu);
46
        match[u] = g[u][v].v;
                                                                       120
        if (u <= n) return;</pre>
47
                                                                       121
48
        edge e = g[u][v];
                                                                       122
        int xr = flo_from[u][e.u], pr = get_pr(u, xr)
49
                                                                       123
                                                                                } else if (\hat{S}[v] = 0) {
        for (int i = 0; i < pr; ++i) set_match(flo[u][i],</pre>
50
                                                                       124
             flo[u][i ^ 1]);
                                                                       125
                                                                                   int lca = get_lca(u, v);
        set_match(xr, v); '
rotate(flo[u].begin(), flo[u].begin() + pr, flo[u]
51
                                                                                   if (not lca)
                                                                        126
52
                                                                       127
                                                                                     return augment(u, v), augment(v, u), true;
             1.end());
                                                                       128
                                                                       129
                                                                                     add_blossom(u, lca, v);
53
54
      void augment(int u, int v) {
                                                                       130
        for (;;) {
55
                                                                       131
                                                                                return false;
56
          int xnv = st[match[u]];
                                                                       132
          set_match(u, v);
if (not xnv) return;
                                                                              bool matching() {
57
                                                                       133
                                                                                memset(S + 1, -1, sizeof(int) * n_x);
memset(slack + 1, 0, sizeof(int) * n_x);
58
                                                                       134
59
          set_match(xnv, st[pa[xnv]]);
                                                                       135
          u = st[pa[xnv]], v = xnv;
                                                                                 q = queue<int>();
60
                                                                       136
                                                                       137
                                                                                 for (int x = 1; x <= n_x; ++x)
61
        }
                                                                                   if (st[x] == x \text{ and not match}[x]) pa[x] = 0, S[x]
62
                                                                       138
                                                                                 = 0, q_push(x);
if (q.empty()) return false;
63
      int get_lca(int u, int v) {
        static int t = 0;
                                                                       139
64
        for (++t; u or v; swap(u, v)) {
                                                                       140
                                                                                 for (;;) {
65
          if (u == 0) continue;
if (vis[u] == t) return u;
                                                                                   while (q.size()) {
66
                                                                       141
67
                                                                       142
                                                                                     int u = q.front();
68
          vis[u] = t;
                                                                       143
                                                                                     q.pop();
                                                                                     if (S[st[u]] == 1) continue;
for (int v = 1; v <= n; ++v)</pre>
          u = st[match[u]];
                                                                       144
69
70
          if (u) u = st[pa[u]];
                                                                       145
                                                                                        if (g[u][v].w > 0 and st[u] != st[v]) {
71
                                                                       146
        return 0;
                                                                                          if (e_delta(g[u][v]) == 0) {
72
                                                                       147
73
                                                                       148
                                                                                             if (on_found_edge(g[u][v])) return true;
74
      void add_blossom(int u, int lca, int v) {
                                                                       149
                                                                       150
                                                                                             update_slack(u, st[v]);
75
        int b = n + 1;
76
        while (b \le n_x \text{ and } st[b]) ++b;
                                                                       151
        if (b > n_x) ++n_x;
                                                                       152
                                                                                   }
```

```
vector<int> edgeID, cycle, rho;
double d[V][V];
153
           int d = INF;
           for (int b = n + 1; b \le n_x; ++b)
154
                                                                      11
             if (st[b] == b \text{ and } S[b] == 1) d = min(d, lab[b])
155
                                                                            void init( int _n ) {
                                                                              n = _n;
                                                                      13
           for (int x = 1; x <= n_x; ++x)
156
                                                                       14
                                                                              m = 0;
                                                                              memset(prv, 0, sizeof(prv));
             if (st[x] == x \text{ and } slack[x]) {
157
                                                                      15
               if (S[x] == -1)
    d = min(d, e_delta(g[slack[x]][x]));
                                                                              memset(prve, 0, sizeof(prve));
158
                                                                      16
                                                                              memset(vst, 0, sizeof(vst));
159
                                                                      17
                else if (S[x] == 0)
160
                                                                      18
                                                                            // WARNING: TYPE matters
                  d = min(d, e_delta(g[slack[x]][x]) / 2);
                                                                      19
161
                                                                            void addEdge( int vi , int ui , double ci )
{ e[ m ++ ] = { vi , ui , ci }; }
                                                                      20
162
163
           for (int u = 1; u <= n; ++u) {
                                                                      21
                                                                      22
                                                                            void bellman_ford() {
164
             if (S[st[u]] == 0) {
                                                                              for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
165
                if (lab[u] <= d) return 0;
                                                                      23
                lab[u] -= d;
                                                                      24
166
             } else if (S[st[u]] == 1)
                                                                      25
167
                                                                                 fill(d[i+1], d[i+1]+n, inf);
                                                                                for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;
  if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
                lab[u] += d;
                                                                      26
168
                                                                      27
169
           for (int b = n + 1; b \le n_x; ++b)
                                                                      28
170
171
             if (st[b] == b) {
                                                                      29
                                                                                     d[i+1][u] = d[i][v]+e[j].c;
               if (S[st[b]] == 0)
                                                                                     prv[i+1][u] = v;
172
                                                                      30
                  lab[b] += d * 2;
173
                                                                      31
                                                                                     prve[i+1][u] = j;
               else if (S[st[b]] == 1)
lab[b] -= d * 2;
174
                                                                      32
                                                                                }
175
                                                                      33
176
                                                                      34
                                                                              }
                                                                      35
177
           q = queue<int>();
178
           for (int x = 1; x <= n_x; ++x)
                                                                      36
                                                                            double solve(){
             if (st[x] == x \text{ and } slack[x] \text{ and } st[slack[x]]
                                                                              // returns inf if no cycle, mmc otherwise
179
                                                                      37
                  != x and
                                                                      38
                                                                              double mmc=inf;
                  e_delta(g[slack[x]][x]) == 0)
                                                                      39
                                                                               int st = -1;
180
                if (on_found_edge(g[slack[x]][x])) return
                                                                      40
                                                                              bellman_ford();
181
                     true;
                                                                      41
                                                                               for(int i=0; i<n; i++) {
           for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b and S[b] == 1 and lab[b] == 0)
                                                                      42
                                                                                 double avg=-inf;
182
                                                                                 for(int k=0; k<n; k++) {</pre>
                                                                      43
183
                  expand_blossom(b);
                                                                      44
                                                                                   if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][</pre>
184
                                                                                        i])/(n-k));
185
         return false;
                                                                      45
                                                                                   else avg=max(avg,inf);
186
                                                                      46
                                                                      47
                                                                                 if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
187
      pair<long long, int> solve() {
        memset(match + 1, 0, sizeof(int) * n);
188
                                                                      48
189
         n_x = n;
                                                                      49
                                                                              FZ(vst); edgeID.clear(); cycle.clear(); rho.clear
190
         int n_matches = 0;
191
         long long tot_weight = 0;
                                                                      50
                                                                               for (int i=n; !vst[st]; st=prv[i--][st]) {
         for (int u = 0; u \le n; ++u) st[u] = u, flo[u].
                                                                      51
                                                                                 vst[st]++
192
                                                                                 edgeID.PB(prve[i][st]);
              clear();
                                                                      52
193
         int w_max = 0;
                                                                      53
                                                                                rho.PB(st);
         for (int u = 1; u \le n; ++u)
                                                                      54
194
           for (int v = 1; v \le n; ++v) {
                                                                      55
195
                                                                              while (vst[st] != 2) {
             flo_from[u][v] = (u == v ? u : 0);
196
                                                                      56
                                                                                 int v = rho.back(); rho.pop_back();
                                                                                 cycle.PB(v);
197
             w_max = max(w_max, g[u][v].w);
                                                                      57
198
                                                                      58
                                                                                vst[v]++;
199
         for (int u = 1; u \le n; ++u) lab[u] = w_max;
                                                                      59
         while (matching()) ++n_matches;
                                                                              reverse(ALL(edgeID));
200
                                                                      60
         for (int u = 1; u <= n; ++u)
                                                                              edgeID.resize(SZ(cycle));
201
                                                                      61
           if (match[u] and match[u] < u) tot_weight += g[u</pre>
                                                                              return mmc;
202
                                                                      62
                ][match[u]].w;
                                                                      63
203
         return {tot_weight, n_matches};
                                                                      64 } mmc;
204
205
      void add_edge(int ui, int vi, int wi) { g[ui][vi].w
      = g[vi][ui].w = wi; }
void init(int _n) { // 1-index, zero indicates
                                                                          6.9
                                                                                Prufer code
206
           unsaturated
207
         for (int u = 1; u <= n; ++u)
                                                                            int n = T.size();
208
           for (int v = 1; v \le n; ++v) g[u][v] = edge(u, v)
209
                                                                            assert(n > 1);
                , 0);
                                                                            vector<int> deg(n), code;
210
211 | 3 graph;
```

6.8 MinMeanCycle

```
1 /* minimum mean cycle O(VE) */
2 struct MMC{
3  #define E 101010
4  #define V 1021
5  #define inf 1e9
6  #define eps 1e-6
7   struct Edge { int v,u; double c; };
8   int n, m, prv[V][V], prve[V][V], vst[V];
9  Edge e[E];
```

```
1|vector<int> Prufer_encode(vector<vector<int>> T) {
     priority_queue<int, vector<int>, greater<int>> pq;
     for (int i = 0; i < n; ++i) {
  deg[i] = T[i].size();</pre>
6
        if(deg[i] == 1) pq.push(i);
10
     while (code.size() < n - 2) {</pre>
       int v = pq.top(); pq.pop();
11
12
        --deg[v];
13
        for (int u: T[v]) {
          if (deg[u]) {
14
15
             --deg[u];
16
            code.push_back(u);
            if (deg[u] == 1) pq.push(u);
17
18
19
       }
20
     }
```

20

```
Eeveelution
21
                                                                       vector<int> nodes; // i'th node in g has index nodes
     return code:
                                                                 47
22 }
                                                                           [i] in original graph
23 vector<vector<int>> Prufer_decode(vector<int> C) {
                                                                 48
                                                                       map<int, int> mp; // inverse of nodes
     int n = C.size() + 2;
24
                                                                 49
     vector<vector<int>>> T(n, vector<int>(0));
25
                                                                 50
                                                                       VirtualTree(const vector<int> &_cp, const Oracle &
     vector<int> deg(n, 1); // outdeg
26
                                                                           oracle) : cp(_cp) {
     for (int c: C) ++deg[c];
                                                                         sort(cp.begin(), cp.end(), [&](int u, int v) {
27
                                                                 51
28
     priority_queue<int, vector<int>, greater<int>> q;
                                                                              return oracle.dfn[u] < oracle.dfn[v]; });</pre>
     for (int i = 0; i < n; ++i) if (deg[i] == 1) q.push(
29
                                                                 52
                                                                         nodes = cp;
                                                                         for (int i = 0; i < nodes.size(); ++i) mp[nodes[i</pre>
                                                                 53
          i);
30
     for (int c: C) {
                                                                              ]] = i;
       int v = q.top(); q.pop();
31
                                                                 54
                                                                         q.resize(nodes.size());
                                                                 55
32
       T[v].push_back(c), T[c].push_back(v);
33
        --deg[c];
                                                                 56
                                                                         if (!mp.count(0)) {
        --deg[v]
34
                                                                 57
                                                                           mp[0] = nodes.size()
       if (deg[c] == 1) q.push(c);
35
                                                                 58
                                                                           nodes.emplace_back(0);
                                                                           g.emplace_back(vector<int>());
                                                                 59
36
     int u = find(deg.begin(), deg.end(), 1) - deg.begin
37
                                                                 60
     ();
int v = find(deg.begin() + u + 1, deg.end(), 1) -
                                                                 61
38
                                                                 62
                                                                         vector<int> stk;
          deg.begin();
                                                                 63
                                                                         stk.emplace_back(0);
39
     T[u].push_back(v), T[v].push_back(u);
                                                                 64
40
     return T;
                                                                 65
                                                                         for (int u : cp) {
                                                                           if (u == stk.back()) continue;
41 | }
                                                                 66
                                                                 67
                                                                           int p = oracle.lca(u, stk.back());
                                                                 68
                                                                           if (p == stk.back()) {
                                                                 69
                                                                             stk.emplace_back(u);
                                                                 70
                                                                           } else {
   6.10 Virtual Tree
                                                                 71
                                                                             while (stk.size() > 1 && oracle.dep[stk.end()
                                                                                  [-2]] >= oracle.dep[p]) {
                                                                                g[mp[stk.back()]].emplace_back(mp[stk.end()
1|struct Oracle {
                                                                 72
     int lgn;
                                                                                    [-2]]);
     vector<vector<int>> g;
                                                                 73
                                                                                a[mp[stk.end()[-2]]].emplace_back(mp[stk.
     vector<int> dep;
                                                                                    back()])
     vector<vector<int>> par;
                                                                                stk.pop_back();
                                                                 74
                                                                 75
     vector<int> dfn;
6
                                                                             if (stk.back() != p)
                                                                 76
                                                                                if (!mp.count(p)) {
8
     Oracle(const vector<vector<int>> &_g) : g(_g), lgn(
                                                                 77
                                                                 78
                                                                                  mp[p] = nodes.size()
          ceil(log2(_g.size()))) {
       dep.resize(g.size());
par.assign(g.size(), vector<int>(lgn + 1, -1));
                                                                 79
                                                                                  nodes.emplace_back(p);
                                                                                  g.emplace_back(vector<int>());
10
                                                                 80
11
       dfn.resize(g.size());
                                                                 81
                                                                 82
                                                                                g[mp[p]].emplace_back(mp[stk.back()]);
12
                                                                                g[mp[stk.back()]].emplace_back(mp[p]);
                                                                 83
       int t = 0:
13
       function<void(int, int)> dfs = [&](int u, int fa)
14
                                                                 84
                                                                                stk.pop_back();
                                                                 85
                                                                                stk.emplace_back(p);
          // static int t = 0;
                                                                 86
15
         dfn[u] = t++;
                                                                 87
                                                                             stk.emplace_back(u);
16
17
         if (\sim fa) dep[u] = dep[fa] + 1;
                                                                 88
         par[u][0] = fa;
                                                                 89
18
         for (int v : g[u]) if (v != fa) dfs(v, u);
                                                                 90
                                                                         for (int i = 0; i + 1 < stk.size(); ++i) {</pre>
19
                                                                           g[mp[stk[i]]].emplace_back(mp[stk[i + 1]]);
                                                                 91
20
                                                                 92
21
       dfs(0, -1);
                                                                           g[mp[stk[i + 1]]].emplace_back(mp[stk[i]]);
                                                                 93
22
                                                                 94
       for (int i = 0; i < lgn; ++i)</pre>
                                                                      }
23
         for (int u = 0; u < g.size(); ++u)
  par[u][i + 1] = ~par[u][i] ? par[par[u][i]][i]</pre>
                                                                 95 };
24
25
                  : -1:
26
     }
27
                                                                    6.11
                                                                            Graph Sequence Test
28
     int lca(int u, int v) const {
       if (dep[u] < dep[v]) swap(u, v);
for (int i = lgn; dep[u] != dep[v]; --i) {</pre>
29
30
                                                                  1|bool Erdos_Gallai(vector<LL> d) {
         if (dep[u] - dep[v] < 1 << i) continue;</pre>
31
                                                                       if (accumulate(d.begin(), d.end(), 0ll)&1) return
32
         u = par[u][i];
                                                                           false;
33
                                                                       sort(d.rbegin(), d.rend());
const int n = d.size();
34
       if (u == v) return u;
       for (int i = lgn; par[u][0] != par[v][0]; --i) {
35
         if (par[u][i] == par[v][i]) continue;
                                                                  5
                                                                       vector<LL> pre(n + 1, 0);
36
                                                                  6
         u = par[u][i];
37
                                                                            [i];
         v = par[v][i];
38
                                                                  7
                                                                       for (int k = 1, j = n; k \le n; ++k) {
39
40
       return par[u][0];
```

41 42

43

44

45

46

struct VirtualTree { // O(|C|lg|G|), C is the set of

critical points, G is nodes in original graph
vector<int> cp; // index of critical points in

vector<vector<int>>> g; // simplified tree, i.e.

original graph

virtual tree

```
for (int i = 0; i < n; ++i) pre[i + 1] += pre[i] + d
8
         while (k < j \text{ and } (d[j - 1] <= k)) --j; // [0, k),
         > : [k, j), <= : [j, n)

j = max(k, j);

if (pre[k] > (LL)k * (k - 1) + pre[n] - pre[j] + (

LL)k * (j - k))
10
            return false;
11
12
13
      return true;
14 | }
```

6.12 maximal cliques

```
1|#include <bits/stdc++.h>
   using namespace std;
   class MaxClique {
    public:
     static const int MV = 100;
     int el[MV][MV / 30 + 1];
10
     int dp[MV];
11
     int ans
     int s[MV][MV / 30 + 1];
12
     vector<int> sol;
13
14
15
     void init(int v) {
16
        V = V;
       ans = 0:
17
18
       memset(el, 0, sizeof(el));
19
       memset(dp, 0, sizeof(dp));
2.0
21
22
     /* Zero Base */
     void addEdge(int u, int v) {
23
24
        if (u > v) swap(u, v);
        if (u == v) return;
25
26
        el[u][v / 32] |= (1 << (v % 32));
27
2.8
29
     bool dfs(int v, int k) {
        int c = 0, d = 0;
for (int i = 0; i < (V + 31) / 32; i++) {
30
31
          s[k][i] = el[v][i];
32
33
          if (k != 1) s[k][i] &= s[k - 1][i];
34
          c += __builtin_popcount(s[k][i]);
35
        if (c == 0) {
36
37
          if (k > ans) {
            ans = k;
38
39
            sol.clear();
40
            sol.push_back(v);
41
            return 1;
42
43
          return 0;
44
        for (int i = 0; i < (V + 31) / 32; i++) {
45
          for (int a = s[k][i]; a; d++) {
  if (k + (c - d) <= ans) return 0;</pre>
46
47
            int lb = a \& (-a), lg = 0;
48
49
            a \sim 1b:
            while (lb != 1) {
50
               lb = (unsigned int)(lb) >> 1;
51
52
               lg++;
53
            int u = i * 32 + lg;
54
            if (k + dp[u] \ll ans) return 0;
55
            if (dfs(u, k + 1)) {
    sol.push_back(v);
56
57
58
               return 1;
59
            }
          }
60
61
62
        return 0;
63
64
65
     int solve() {
        for (int i = V - 1; i >= 0; i--) {
66
          dfs(i, 1);
67
68
          dp[i] = ans;
69
70
        return ans;
71
72
73
74
   signed main() {
75
     int N;
     cin >> N:
76
77
     MaxClique mc;
78
     mc.init(N);
79
     mc.addEdge(i, j);
```

```
80 cout << mc.solve() << endl; 81 }
```

6.13 scc

```
1 class Kosaraju {
     vector<vector<int>> g, rg, compo;
     vector<int> order, DAGID;
     vector<bool> vis;
6
     int n, iter;
8
    void make_rg() {
9
       for (int u = 0; u < n; ++u) for (int v : g[u]) rg[
           v].push_back(u);
10
11
12
     void dfs_all() {
       function<void(int)> dfs = [&](int u) {
13
14
         vis[u] = true;
         for (int v : g[u]) if (not vis[v]) dfs(v);
15
16
        order.emplace_back(u);
17
       for (int i = 0; i < n; ++i) if (not vis[i]) dfs(i)</pre>
18
19
    }
20
21
     void rdfs_all() {
22
       function<void(int)> rdfs = [&](int u) {
23
        DAGID[u] = iter
24
         for (int v : rg[u]) if (DAGID[v] == -1) rdfs(v);
25
         compo.back().push_back(u);
26
       for (int u : order) if (DAGID[u] == -1) {
27
28
         compo.push_back(vector<int>(0));
29
         rdfs(u), ++iter;
30
31
    }
32
  public:
33
34
     // remember that the graph is directed
35
     Kosaraju(vector<vector<int>>> &_g) : n(_g.size()), g(
36
         _g) {
37
       rg.resize(n)
38
       compo.clear();
39
       make_rg();
       vis.assign(n, false);
40
41
      DAGID.assign(n, -1);
42
       iter = 0;
43
44
       dfs_all();
       reverse(order.begin(), order.end());
45
46
       rdfs_all();
47
48
49
     const vector<vector<int>>& get_components() { return
          compo; }
50
51
     const vector<vector<int>> get_condensed_DAG(bool
         simple = true) {
52
       vector<vector<int>> ret(iter);
       53
54
           ret[i].push_back(DAGID[v]);
56
         if (simple) {
57
           sort(ret[i].begin(), ret[i].end());
58
           ret[i].resize(unique(ret[i].begin(), ret[i].
59
               end()) - ret[i].begin());
60
        }
61
62
       return ret;
63
64|};
```

22

```
Eeveelution
                                                                                    for (int j = 0; j < q->ac.size(); ++j) ++res[q->
         String
                                                                                         ac[j]];
                                                                         71
                                                                         72
        AC automaton
                                                                         73
                                                                              return res;
                                                                         74 }
 1 // SIGMA[0] will not be considered
                                                                         75
   const string SIGMA = "
                                                                         76
                                                                            signed main() {
         _0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmno���
                                                                              INV_SIGMA.assign(256, -1);
                                                                               for (int i = 0; i < SIGMA.size(); ++i) {</pre>
   vector<int> INV_SIGMA;
                                                                         79
                                                                                 INV_SIGMA[SIGMA[i]] = i;
   const int SGSZ = 63;
                                                                         80
                                                                         81
   struct PMA -
                                                                         82 }
     PMA *next[SGSZ]; // next[0] is for fail
      vector<int> ac;
     PMA *last; // state of longest accepted string that is pre of this
                                                                            7.2 KMP
      PMA(): last(nullptr) { fill(next, next + SGSZ,
                                                                          1 template<typename T>
           nullptr); }
                                                                            vector<int> build_kmp(const T &s) {
11 };
                                                                              vector<int> f(s.size());
12
                                                                               int fp = f[0] = -1;
   template<typename T>
13
                                                                              for (int i = 1; i < s.size(); ++i) {
  while (~fp && s[fp + 1] != s[i]) fp = f[fp];
   PMA *buildPMA(const vector<T> &p) {
     PMA *root = new PMA;
15
                                                                                 if (s[fp + 1] == s[i]) ++fp;
      for (int i = 0; i < p.size(); ++i) { // make trie
16
        PMA *t = root;
17
                                                                                 f[i] = fp;
        for (int j = 0; j < p[i].size(); ++j) {
                                                                              }
18
19
           int c = INV_SIGMA[p[i][j]];
                                                                         10
                                                                              return f;
           if (t->next[c] == nullptr) t->next[c] = new PMA;
20
                                                                         11
                                                                            template<typename S>
          t = t->next[c];
2.1
                                                                         12
                                                                            vector<int> kmp_match(vector<int> fail, const S &P,
23
                                                                                 const S &T) {
        t->ac.push_back(i);
                                                                               vector<int> res; // start from these points
24
                                                                         14
25
      queue<PMA *> que; // make failure link using bfs
                                                                         15
                                                                               const int n = P.size();
                                                                               for (int j = 0, i = -1; j < T.size(); ++j) {
  while (~i and T[j] != P[i + 1]) i = fail[i];</pre>
      for (int c = 1; c < SGSZ; ++c) {</pre>
                                                                         16
26
27
        if (root->next[c]) {
                                                                         17
           root->next[c]->next[0] = root;
                                                                                 if (P[i + 1] == T[j]) ++i;
28
                                                                                 if (i == n - 1) res.push_back(j - n + 1), i = fail
                                                                         19
29
           que.push(root->next[c]);
30
        } else root->next[c] = root;
31
     while (!que.empty()) {
   PMA *t = que.front();
                                                                               return res;
32
                                                                         21
33
        que.pop();
34
35
        for (int c = 1; c < SGSZ; ++c) {
36
          if (t->next[c]) {
                                                                                   Manacher
             que.push(t->next[c]);
37
             PMA *r = t->next[0];
             while (!r->next[c]) r = r->next[0];
t->next[c]->next[0] = r->next[c];
                                                                          1|template<typename T, int INF>
39
                                                                            vector<int> manacher(const T &s) { // p = "INF" + s.
40
                                                                               join("INF") + "INF", returns radius on p
vector<int> p(s.size() * 2 + 1, INF);
             t\rightarrow next[c]\rightarrow last = r\rightarrow next[c]\rightarrow ac.size() ? r\rightarrow
                  next[c] : r->next[c]->last;
                                                                               for (int i = 0; i < s.size(); ++i) {</pre>
42
                                                                                 p[i << 1 | 1] = s[i];
43
        }
                                                                          6
44
45
      return root;
                                                                               vector<int> w(p.size());
                                                                              for (int i = 1, j = 0, r = 0; i < p.size(); ++i) {
  int t = min(r >= i ? w[2 * j - i] : 0, r - i + 1);
46 }
47
   void destructPMA(PMA *root) {
                                                                         10
                                                                                 for (; i - t \ge 0 \& i + t < p.size(); ++t) {
     queue<PMA *> que;
                                                                                   if (p[i - t] != p[i + t]) break;
49
                                                                         11
      que.emplace(root);
50
                                                                         12
     while (!que.empty()) {
   PMA *t = que.front();
                                                                                 w[i] = --t;
if (i + t > r) r = i + t, j = i;
51
                                                                         13
52
                                                                         14
53
        que.pop();
                                                                         15
        for (int c = 1; c < SGSZ; ++c) {
  if (t->next[c] && t->next[c] != root) que.
54
                                                                         16
                                                                               return w;
                                                                         17 }
55
                emplace(t->next[c]);
56
57
        delete t;
                                                                                   Suffix Array
59 }
                                                                          1 | // ------O(NlgNlgN)------
60
61 template<typename T>
                                                                            vector<int> sa_db(const string &s) {
62 map<int, int> match(const T &t, PMA *v) {
                                                                               int n = s.size();
     map<int, int> res;
for (int i = 0; i < t.size(); ++i) {
  int c = INV_SIGMA[t[i]];
</pre>
                                                                              vector<int> sa(n), r(n), t(n);
for (int i = 0; i < n; ++i) r[sa[i] = i] = s[i];
for (int h = 1; t[n - 1] != n - 1; h *= 2) {</pre>
63
64
65
                                                                                 auto cmp = [&](int i, int j) {
  if (r[i] != r[j]) return r[i] < r[j];</pre>
        while (!v->next[c]) v = v->next[0];
```

return i + h < n & j + h < n ? r[i + h] < r[j + h]

h] : i > j;

10

66

67 68

69

 $v = v - \operatorname{next}[c]$

[j]];

for (int j = 0; j < v -> ac.size(); ++j) ++res[v -> ac.size()]

for $(PMA)*q = v->last; q; q = q->last) {$

```
sort(sa.begin(), sa.end(), cmp);
for (int i = 0; i + 1 < n; ++i) t[i + 1] = t[i] +</pre>
                                                                        int lmp_ctr = 0;
11
                                                                        vector<int> lmp(s.size(), -1);
12
                                                                  90
            cmp(sa[i], sa[i + 1]);
                                                                  91
                                                                        lmp[sa_lms[0]] = lmp_ctr;
       for (int i = 0; i < n; ++i) r[sa[i]] = t[i];</pre>
                                                                   92
                                                                        for (int i = 0; i + 1 < sa_lms.size(); ++i) {</pre>
13
                                                                          int diff = 0;
14
                                                                  93
                                                                           for (int d = 0; d < sa.size(); ++d) {
15
     return sa;
                                                                   94
                                                                  95
                                                                            if (s[sa_lms[i] + d] != s[sa_lms[i + 1] + d] ||
16|}
17
                                                                  96
                                                                                 is_lms(t, sa_lms[i] + d) != is_lms(t, sa_lms
                                                                                     [i + 1] + d)) {
   // O(N) -- CF: 1e6->31ms,18MB;1e7->296ms;158MB;3e7
18
        ->856ms,471MB
                                                                  97
                                                                               diff = 1; // something different in range of
19
   bool is_lms(const string &t, int i) {
    return i > 0 && t[i - 1] == 'L' && t[i] == 'S';
20
                                                                   98
                                                                               break:
                                                                            } else if (d > 0 && is_lms(t, sa_lms[i] + d) &&
21 | }
                                                                  99
22
                                                                                 is_{ms}(t, sa_{ms}[i + 1] + d)) {
                                                                               break; // exactly the same
23 template<typename T>
                                                                  100
24
   vector<int> induced_sort(const T &s, const string &t,
                                                                  101
        const vector<int> &lmss, int sigma = 256) {
                                                                  102
                                                                          if (diff) ++lmp_ctr;
25
     vector<int> sa(s.size(), -1);
                                                                  103
26
                                                                  104
                                                                          lmp[sa_lms[i + 1]] = lmp_ctr;
27
     vector<int> bin(sigma + 1);
                                                                  105
28
     for (auto it = s.begin(); it != s.end(); ++it) {
                                                                  106
       ++bin[*it + 1];
29
                                                                  107
                                                                        vector<int> lmp_compact;
                                                                        for (int i = 0; i < lmp.size(); ++i) {
  if (~lmp[i]) {</pre>
30
                                                                  108
31
                                                                  109
                                                                            lmp_compact.emplace_back(lmp[i]);
32
     int sum = 0:
                                                                  110
     for (int i = 0; i < bin.size(); ++i) {</pre>
33
                                                                  111
34
       sum += bin[i];
                                                                  112
       bin[i] = sum;
35
                                                                  113
36
                                                                  114
                                                                        if (lmp_ctr + 1 < lmp_compact.size()) {</pre>
37
                                                                  115
                                                                          sa_lms = sa_is(lmp_compact, lmp_ctr + 1);
     vector<int> cnt(sigma);
                                                                        } else {
38
                                                                  116
39
     for (auto it = lmss.rbegin(); it != lmss.rend(); ++
                                                                  117
                                                                          for (int i = 0; i < lmp_compact.size(); ++i) {</pre>
          it) {
                                                                  118
                                                                            sa_lms[lmp_compact[i]] = i;
       int ch = s[*it];
40
                                                                  119
       sa[bin[ch + 1] - 1 - cnt[ch]] = *it;
                                                                  120
41
42
                                                                  121
       ++cnt[ch];
43
                                                                  122
                                                                        vector<int> seed;
                                                                  123
                                                                        for (int i = 0; i < sa_lms.size(); ++i) {</pre>
     cnt = vector<int>(sigma);
45
                                                                  124
                                                                          seed.emplace_back(lmss[sa_lms[i]]);
     for (auto it = sa.begin(); it != sa.end(); ++it) {
46
                                                                  125
       if (*it <= 0 || t[*it - 1] == 'S') continue;
47
                                                                  126
       int ch = s[*it - \bar{1}]
48
                                                                  127
                                                                        return induced_sort(s, t, seed, sigma);
       sa[bin[ch] + cnt[ch]] = *it - 1;
49
                                                                  128
                                                                     } // s must end in char(0)
50
                                                                  129
       ++cnt[ch];
                                                                      // O(N) lcp, note that s must end in '\0'
51
                                                                  130
                                                                      vector<int> build_lcp(const string &s, const vector<</pre>
52
53
                                                                           int> &sa, const vector<int> &rank) {
     cnt = vector<int>(sigma);
54
     for (auto it = sa.rbegin(); it != sa.rend(); ++it) {
                                                                 132
                                                                        int n = s.size();
       if (*it <= 0 || t[*it - 1] == 'L') continue;</pre>
55
                                                                  133
                                                                        vector<int> lcp(n);
       int ch = s[*it - 1];
                                                                        for (int i = 0, h = 0; i < n; ++i) {
56
                                                                  134
       sa[bin[ch + 1] - 1 - cnt[ch]] = *it - 1;
57
                                                                  135
                                                                          if (rank[i] == 0) continue;
58
       ++cnt[ch];
                                                                  136
                                                                          int j = sa[rank[i] - 1];
                                                                          if (h > 0) --h;
59
                                                                  137
                                                                           for (; j + h < n && i + h < n; ++h) {
60
                                                                  138
                                                                  139
                                                                            if (s[j + h] != s[i + h]) break;
61
     return sa;
62 }
                                                                  140
                                                                  141
                                                                          lcp[rank[i] - 1] = h;
63
64 template<typename T>
                                                                  142
   vector<int> sa_is(const T &s, int sigma = 256) {
65
                                                                  143
                                                                        return lcp; // lcp[i] := lcp(s[sa[i]..-1], s[sa[i +
     string t(s.size(), 0);
t[s.size() - 1] = 'S';
66
                                                                             1]..-1])
                                                                  144 }
67
     for (int i = int(s.size()) - 2; i >= 0; --i) {
  if (s[i] < s[i + 1]) t[i] = 'S';</pre>
                                                                  145
68
                                                                      // O(N) build segment tree for lcp
69
                                                                  146
       else if (s[i] > s[i + 1]) t[i] = 'L';
70
                                                                  147 | vector<int> build_lcp_rmq(const vector<int> &lcp) {
71
       else t[i] = t[i + 1];
                                                                  148
                                                                        vector<int> sgt(lcp.size() << 2);
                                                                        function<void(int, int, int)> build = [&](int t, int
72
                                                                  149
73
                                                                              lb, int rb) {
     vector<int> lmss;
74
                                                                  150
                                                                          if (rb - lb == 1) return sgt[t] = lcp[lb], void();
                                                                          int mb = lb + rb >> 1;
75
     for (int i = 0; i < s.size(); ++i) {
                                                                  151
                                                                          build(t << 1, lb, mb);
build(t << 1 | 1, mb, rb);
sgt[t] = min(sgt[t << 1], sgt[t << 1 | 1]);</pre>
       if (is_lms(t, i)) {
76
                                                                  152
77
         lmss.emplace_back(i);
                                                                  153
78
                                                                  154
79
                                                                  155
                                                                  156
                                                                        build(1, 0, lcp.size());
80
                                                                        return sgt;
81
     vector<int> sa = induced_sort(s, t, lmss, sigma);
                                                                  157
     vector<int> sa_lms;
                                                                  158 }
82
     for (int i = 0; i < sa.size(); ++i) {
  if (is_lms(t, sa[i])) {</pre>
                                                                  159
83
84
                                                                      // O(IPI + lg ITI) pattern searching, returns last
                                                                  160
85
         sa_lms.emplace_back(sa[i]);
                                                                           index in sa
                                                                     int match(const string &p, const string &s, const
86
87
                                                                           vector<int> &sa, const vector<int> &rmq) { // rmq
88
                                                                           is segtree on lcp
```

```
int t = 1, lb = 0, rb = s.size(); // answer in [lb,
162
                                                                   42
           rb)
      int lcplp = 0; // lcp(char(0), p) = 0
163
                                                                   43
      while (rb - lb > 1) {
164
        int mb = lb + rb \gg 1;
165
                                                                   44
        int lcplm = rmq[t << 1];</pre>
166
        if (lcplp < lcplm) t = t << 1 | 1, lb = mb;</pre>
                                                                   45
167
168
        else if (lcplp > lcplm) t = t << 1, rb = mb;</pre>
169
        else {
                                                                   46
          int lcpmp = lcplp;
170
          while (lcpmp < p.size() && p[lcpmp] == s[sa[mb]]
                                                                   47
171
               + lcpmp]) ++lcpmp;
           if (lcpmp == p.size() || p[lcpmp] > s[sa[mb] +
172
               lcpmp]) t = t << 1 | 1, lb = mb, lcplp =
                                                                   48
                                                                   49 };
               lcpmp;
173
          else t = t \ll 1, rb = mb;
174
175
      if (lcplp < p.size()) return -1;</pre>
176
177
      return sa[lb];
178 }
```

Suffix Automaton

```
1 template<typename T>
   struct SuffixAutomaton {
2
3
     vector<map<int, int>> edges;// edges[i] : the
     labeled edges from node i
vector<int> link;
                                      // link[i]
4
                                                     : the
          parent of i
     vector<int> length;
                                      // length[i] : the
5
          length of the longest string in the ith class
                                      // the index of the
          equivalence class of the whole string
     vector<bool> is_terminal;
                                    // is_terminal[i] : some
           suffix ends in node i (unnecessary)
     vector<int> occ;
                                      // occ[i] : number of
8
          matches of maximum string of node i (unnecessary
     SuffixAutomaton(const T &s) : edges({map<int, int>()
     }), link({-1}), length({0}), last(0), occ({0}) {
    for (int i = 0; i < s.size(); ++i) {</pre>
9
10
          edges.push_back(map<int, int>());
11
12
          length.push_back(i + 1);
          link.push_back(0);
13
          occ.push_back(1);
14
          int r = edges.size() - 1;
15
          int p = last; // add edges to r and find p with
16
               link to q
          while (p \ge 0 \& edges[p].find(s[i]) == edges[p]
17
            ].end()) {
edges[p][s[i]] = r;
18
            p = link[p];
19
20
          if (~p) {
21
            int q = edges[p][s[i]];
22
23
            if (length[p] + 1 == length[q]) { // no need
                 to split q
            link[r] = q;
} else { // split q, add qq
24
              edges.push_back(edges[q]); // copy edges of
26
              length.push_back(length[p] + 1);
link.push_back(link[q]); // copy parent of
27
28
              occ.push_back(0);
29
               int qq = edges.size() - 1; // qq is new
30
                   parent of q and r
              link[q] = qq;
31
              link[r] = qq;
32
              while (p \ge 0 \& edges[p][s[i]] == q) { //
33
                   what points to a points to aq
                 edges[p][s[i]] = qq;
34
                 p = link[p];
35
36
            }
37
38
39
          last = r;
40
       } // below unnecessary
        is_terminal = vector<bool>(edges.size());
41
```

```
for (int p = last; p > 0; p = link[p]) is_terminal
    [p] = 1; // is_terminal calculated
vector<int> cnt(link.size()), states(link.size());
      // sorted states by length
for (int i = 0; i < link.size(); ++i) ++cnt[length</pre>
     [i]];
for (int i = 0; i < s.size(); ++i) cnt[i + 1] +=</pre>
    cnt[i];
for (int i = link.size() - 1; i >= 0; --i) states
[--cnt[length[i]]] = i;
for (int i = link.size() - 1; i >= 1; --i) occ[
    link[states[i]]] += occ[states[i]]; // occ
```

Formulas

Pick's theorem

For a polygon:

A: The area of the polygon

B: Boundary Point: a lattice point on the polygon (including vertices) I: Interior Point: a lattice point in the polygon's interior region

$$A = I + \frac{B}{2} - 1$$

8.2 **Graph Properties**

- 1. Euler's Formula V-E+F=2 2. For a planar graph, F=E-V+n+1, n is the numbers of components 3. For a planar graph, $E\leq 3V-6$

For a connected graph G: I(G): the size of maximum independent set M(G): the size of maximum matching Cv(G): be the size of minimum vertex cover Ce(G): be

the size of minimum edge cover 4. For any connected graph:

(a)
$$I(G) + Cv(G) = |V|$$

(b) $M(G) + Ce(G) = |V|$

5. For any bipartite:

 $\begin{array}{ll} \text{(a)} & I(G) = Cv(G) \\ \text{(b)} & M(G) = Ce(G) \end{array}$

Number Theory 8.3

- 1. $g(m) = \sum_{d|m} f(d) \Leftrightarrow f(m) = \sum_{d|m} \mu(d) \times g(m/d)$
- 2. $\phi(x), \mu(x)$ are Möbius inverse
 3. $\sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j)=1] = \sum \mu(d) \left\lfloor \frac{n}{d} \right\rfloor \left\lfloor \frac{m}{d} \right\rfloor$ 4. $\sum_{i=1}^n \sum_{j=1}^n lcm(i,j) = n \sum_{d\mid n} d \times \phi(d)$

Combinatorics 8.4

- 1. Gray Code: $= n \oplus (n >> 1)$
- 2. Catalan Number:

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{n!(n+1)!} = \prod_{k=2}^n \frac{n+k!}{k}$$

- 3. $\Gamma(n+1) = n!$
- 4. $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
- 5. Stirling number of second kind: the number of ways to partition a set of n elements into
 - $\begin{array}{ll} \text{(a)} & \left\{ \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right\} = \left\{ \begin{smallmatrix} n \\ n \end{smallmatrix} \right\} = 1 \\ \text{(b)} & \left\{ \begin{smallmatrix} n \\ 0 \end{smallmatrix} \right\} = 0 \\ \text{(c)} & \left\{ \begin{smallmatrix} n \\ k \end{smallmatrix} \right\} = k \left\{ \begin{smallmatrix} n-1 \\ k \end{smallmatrix} \right\} + \left\{ \begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right\}$
- 6. Bell numbers count the possible partitions of a set:
 - (a) $B_0 = 1$ (a) $B_0 = 1$ (b) $B_n = \sum_{k=0}^n {n \brace k}$ (c) $B_{n+1} = \sum_{k=0}^n C_k^n B_k$ (d) $B_{p+n} \equiv B_n + B_{n+1} \mod p$, p prime (e) $B_p m_{+n} \equiv m B_n + B_{n+1} \mod p$, p prime (f) From $B_0 : 1, 1, 2, 5, 15, 52$,

 - 203,877,4140,21147,115975
- - (a) $D_n=n!(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}\ldots+(-1)^n\frac{1}{n!})$ (b) $D_n=(n-1)(D_{n-1}+D_{n-2})$

- (c) From $D_0: 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496$
- 8. Binomial Equality

 - (a) $\sum_{k} \binom{r}{m+k} \binom{s}{n-k} = \binom{r+s}{m+n}$ (b) $\sum_{k} \binom{l}{m+k} \binom{s}{n-k} = \binom{l+s}{l-m+n}$ (c) $\sum_{k} \binom{l}{m+k} \binom{s+k}{n} (-1)^k = (-1)^{l+m} \binom{s-m}{n-l}$ (d) $\sum_{k \leq l} \binom{l-k}{m} \binom{s}{k-n} (-1)^k = (-1)^{l+m} \binom{s-m-1}{n-l}$ (e) $\sum_{0 \leq k \leq l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1}$ (f) $\binom{r}{k} = (-1)^k \binom{k-r-1}{k}$ (g) $\binom{r}{m} \binom{m}{k} = \binom{r}{k} \binom{r-k}{m-k}$ (h) $\sum_{k \leq n} \binom{r+k}{m} = \binom{r+n+1}{m+1}$ (i) $\sum_{0 \leq k \leq n} \binom{k}{m} = \binom{m+1}{m+1}$ (j) $\sum_{k \leq m} \binom{m+r}{k} x^k y^k = \sum_{k \leq m} \binom{-r}{k} (-x)^k (x+y)^{m-k}$

8.5 Sum of Powers

- 1. $a^b\%P = a^{b\%\varphi(p) + \varphi(p)}, b \ge \varphi(p)$

- $\sum_{k=0}^{n} C_j^{m+1} B_j = 0, B_0 = 1$ 8. 除了 $B_1 = -1/2$,剩下的奇數項都是 0
- $\begin{array}{lll} 9. & B_2 = 1/6, B_4 = -1/30, B_6 = 1/42, B_8 = -1/30, B_{10} = 5/66, B_{12} = \\ & -691/2730, B_{14} = 7/6, B_{16} = -3617/510, B_{18} = 43867/798, B_{20} = \end{array}$

8.6 Burnside's lemma

- 1. $|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$
- 2. $X^g = t^{c(g)}$

8.7 Count on a tree

- 1. Rooted tree: $s_{n+1}=\frac{1}{n}\sum_{i=1}^n(i\times a_i\times\sum_{j=1}^{\lfloor n/i\rfloor}a_{n+1-i\times j})$
- 2. Unrooted tree:
 - (a) $\mathrm{Odd}: a_n \sum_{i=1}^{n/2} a_i a_{n-i}$ (b) $\mathrm{Even}: Odd + \frac{1}{2} a_{n/2} (a_{n/2} + 1)$
- 3. Spanning Tree
 - (a) 完全圖 nⁿ − 2
 - (b) 一般圖 (Kirchhoff's theorem) $M[i][i] = \deg(V_i), M[i][j] = -1$, if have E(i,j),0 if no edge. delete any one row and col in A, ans = det(A)
- 4. Ordered Binary Tree with N nodes and Y leaves: $\frac{N-1^CY-1\times N-2^CY-1}{V}$