Lista 1

Kamil Matuszewski

13 marca 2016

1	2	3	4	5	6	7	8	9
$\overline{}$	~	~	~	/	~	~	~	

Zadanie 1

Dla każdego z podanych poniżej adresów IP w notacji CIDR określ, czy jest to adres sieci, adres rozgłoszeniowy czy też adres komputera. W każdym przypadku wyznacz odpowiadający mu adres sieci, rozgłoszeniowy i jakiś adres IP innego komputera w tej samej sieci.

- 10.1.2.3/8 Adres sieci: 10.0.0.0, adres rozgłoszeniowy: 10.255.255.255, jakiś adres:10.1.2.4
- 156.17.0.0/16 **Adres sieci**: 156.17.0.0 adres rozgłoszeniowy: 156.17.255.255, jakiś adres: 156.17.69.0
- \bullet 99.99.99/27 Adres sieci:99.99.99.96, adres rozgłoszeniowy: 99.99.99.127, **jakiś adres** 99.99.99.111
- \bullet 156.17.64.4/30 **Adres sieci**: 156.17.64.4, adres rozgłoszeniowy 156.17.64.7, jakiś adres: 156.17.64.6
- 123.123.123.123 Sieć z jednym ip, to jedno jest wszystkim

Zadanie 2

Podziel sieć 10.10.0.0/16 na 5 rozłącznych podsieci, tak żeby każdy z adresów IP z sieci 10.10.0.0/16 był w jednej z tych 5 podsieci. Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów? Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób?

Adres sieci: 00001010.00001010.00000000.000000000, maska: 11111111.11111111.00000000.00000000. Dzielimy sieć na podsieci:

Czyli podzieliliśmy sieć na pół, z jednej połowy zrobiliśmy pierwszą podsieć, drugą podzieliliśmy na pół, i z pierwszej połowy zrobiliśmy drugą podsieć, drugą podzieliliśmy na pół itd.

Każdy adres potrzebuje adresu podsieci i adresu rozgłoszeniowego. Mamy 5 podsieci, stąd 10 adresów nam "przepada" i nie możemy ich użyć do adresowania komputerów. Ale nasza oryginalna sieć miała już jakiś adres rozgłoszeniowy i adres sieci które możemy wykorzystać na nasze podsieci, stad w rzeczywistości straciliśmy 8 adresów ip.

Minimalny adres podsieci na jaką mogę podzielić sieć to 1: przydzieliłbym dokładnie jeden adres ip dla tej podsieci.

Zadanie 3

Tablica routingu zawiera następujące wpisy (podsieć \rightarrow dokąd wysłać):

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/23 \rightarrow do routera B$
- 10.0.2.0/24 \rightarrow do routera B
- $10.0.3.0/24 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.0.128/25 \rightarrow do routera B$
- $10.0.1.8/29 \rightarrow do routera B$
- $10.0.1.16/29 \rightarrow do routera B$
- $10.0.1.24/29 \rightarrow do routera B$

Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów

Wiemy, że w tablicy routingu jeśli pasuje więcej niż jedna reguła, wybierana jest ta najkonkretniejsza. Wykorzystajmy to.

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/22 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.1.0/27 \rightarrow do routera B$
- $10.0.1.0/29 \rightarrow do routera C$

Wykonać powyższe zadanie dla tablicy

- $\bullet~0.0.0.0/0 \rightarrow do$ routera A
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/24 \rightarrow do routera C$
- $10.3.0.32/27 \rightarrow do routera B$
- $10.3.0.64/27 \rightarrow do routera B$
- $10.3.0.96/27 \rightarrow do routera B$

To samo co wyżej

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/24 \rightarrow do routera C$
- $10.3.0.0/25 \rightarrow do routera B$
- $10.3.0.0/27 \rightarrow do routera C$

IXIOK U	Krok	0
---------	------	---

	A	В	С	D	Е	F
do A	-	1				
do B	1	-	1			
do C		1	-		1	1
do D				-	1	
do E			1	1	-	1
do F			1		1	-

Krok 1

IXIOK I						
	A	В	С	D	${ m E}$	F
do A	-	1	2 (Via B)			
do B	1	-	1		2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D			2 (Via E)	-	1	2 (Via E)
do E		2 (Via C)	1	1	-	1
do F		2 (Via C)	1	2 (Via E)	1	-

Krok 2

MIOK Z						
	A	В	С	D	${ m E}$	F
do A	-	1	2 (Via B)		3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D		3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-

Krok 3

111011 0						
	A	В	С	D	${ m E}$	F
do A	-	1	2 (Via B)	4 (Via E)	3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	4 (Via B)	3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-

Załóżmy, że dodamy połączenie między A i D. Jak zmieni się sytuacja?

Krok 0						
	A	В	С	D	${ m E}$	F
do A	-	1	2 (Via B)	1	3 (Via C)	3 (Via C)
do B	1	-	1	3 (Via E)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	1	3 (Via C)	2 (Via E)	-	1	2 (Via E)
do E	3 (Via B)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-

Krok 1						
	A	В	С	D	${ m E}$	F
do A	-	1	2 (Via B)	1	2 (Via D)	3 (Via C)
do B	1	-	1	2 (Via A)	2 (Via C)	2 (Via C)
do C	2 (Via B)	1	-	2 (Via E)	1	1
do D	1	2 (Via A)	2 (Via E)	-	1	2 (Via E)
do E	2 (Via D)	2 (Via C)	1	1	-	1
do F	3 (Via B)	2 (Via C)	1	2 (Via E)	1	-

Zadanie 7

Troszku opisowo:

Wszystko działa spoko, ale nagle psuje się łącze między C i E. W takim razie C wysyła komunikat do B i D: mam do E ścieżkę nieskończoną.

B i D reagują na to zmianą ścieżki do E. Wysyłają do A wiadomość: **mam do E ścieżkę nieskończoną + 1**. A aktualizuje swoje informacje. Wszystko działa.

Jednak, co jeśli to A wyśle pierwsze komunikat do B i D? Powie im: mam do E ścieżkę długości 3. Wtedy B i D pomyślą: tak jest szybciej, więc idziemy tamtędy. Aktualizują swoją informację i rozsyłają dookoła: mam do E ścieżkę długości 4. W kolejnym kroku zauważa to C. Pojawiła się krótsza ścieżka do E. Mówi więc: mam do E ścieżkę długości 5. Jednak w tym samym kroku A zauważa, że coś się popsuło: wcześniejsze połączenie przez B/D zwiększyło się o 1. Wysyła więc informacje: mam do E ścieżkę długości 4. W kolejnym kroku B i D dowiadują się, że ścieżka do E zwiększyła się o 1. Zwiększają więc swoją ścieżkę o 1 i rozsyłają informację dookoła... W kolejnym kroku ścieżkę zwiększą A i C, w kolejnym B i D... I tak w kółko. Mamy cykl.

Pokaż, że przy wykorzystaniu algorytmu stanu łączy też może powstać cykl w routingu. Spójrzmy na rysunek:

Ok. Więc C wie, że najszybsza droga pakietów do A może przekazywać przez B. Nagle łącze A-B się psuje. B chce wysłać pakiet do A - musi to zrobić przez C. Wysyła więc pakiet do A przez C, aktualizując u siebie informację, że nie ma już sąsiada A. Informacja ta się rozchodzi jednak może się rozchodzić wolniej, niż idzie pakiet (sporo trzeba zaktualizować w każdym ruterze, obliczyć jeszcze raz najkrótsze ścieżki itd). Może się zdarzyć, że C otrzyma pakiet, i zauważa, że najszybciej dostarczy go przez B - więc wysyła go do B. B jednak musi go przesłać przez C, bo to jedyna droga. Mamy cykl. Nie wiem czy o to chodziło bo to w końcu nie jest cykl nieskończony... Ale nim informacja o braku połączenia między A i B dotrze do C pakiet będzie biegać w tą i z powrotem, a z treści wynika, że o to chodziło (Pokaż, że w okresie propagowania tej aktualizacji (kiedy dotarła ona już do części routerów a do części nie) może powstać cykl w routingu).