Συναρτήσεις

Αντίστροφη

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

5 Ιουλίου 2025 — Έκδοση: 2.6

Αντίστροφη

Ορισμός

Εστω συνάρτηση $f: A \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: B \to A$ ορίζεται η συνάρτηση που για κάθε $x \in f(A)$ αντιστοιχεί ένα $y \in A$ ώστε:

$$f^{-1}(x) = y \iff f(y) = x$$

Συναρτήσεις 5 Ιουλίου 2025 2/20

Αντίστροφη

Ορισμός

Εστω συνάρτηση $f: \mathbf{A} \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: \mathbf{B} \to \mathbf{A}$ ορίζεται η συνάρτηση που για κάθε $x \in f(\mathbf{A})$ αντιστοιχεί ένα $y \in \mathbf{A}$ ώστε:

$$f^{-1}(x) = y \iff f(y) = x$$

Και επειδή συνήθως το x αφορά το D_f

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 2/20

Αντίστροφη

Ορισμός

Εστω συνάρτηση $f: \mathbf{A} \to B$ που είναι 1-1. Η αντίστροφή της $f^{-1}: \mathbf{B} \to \mathbf{A}$ ορίζεται η συνάρτηση που για κάθε $y \in f(\mathbf{A})$ αντιστοιχεί ένα $x \in \mathbf{A}$ ώστε:

$$f^{-1}(y) = x \iff f(x) = y$$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 3/20

•
$$f(x) = x + 3$$

- f(x) = 2x
- $f(x) = \sqrt{x}$
- $f(x) = e^x$
- $f(x) = x^2!!!!$
- Πιο σύνθετες?

•
$$f(x) = x + 3$$

$$f(x) = 2x$$

•
$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

•
$$f(x) = x^2!!!!$$

• Πιο σύνθετες?

•
$$f(x) = x + 3$$

$$\bullet$$
 $f(x) = 2x$

•
$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

•
$$f(x) = x^2!!$$

• Πιο σύνθετες!

•
$$f(x) = x + 3$$

$$\bullet$$
 $f(x) = 2x$

•
$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

•
$$f(x) = x^2!!$$

• Πιο σύνθετες?

•
$$f(x) = x + 3$$

- \bullet f(x) = 2x
- $f(x) = \sqrt{x}$
- \bullet $f(x) = e^x$
- $f(x) = x^2!!!$
- Πιο σύνθετες?

•
$$f(x) = x + 3$$

- f(x) = 2x
- $f(x) = \sqrt{x}$
- \bullet $f(x) = e^x$
- $f(x) = x^2!!!$
- Πιο σύνθετες?

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

Ικανότητες?

Τι προσπαθούμε να κάνουμε?

- Να βρίσκουμε από πού ήρθαμε, το x!
- Σύνολο τιμών

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $v = e^x$
- $y = x^2!!$
- Πιο σύνθετες!

- y = x + 3
- y = 2x
- $y = \sqrt{s}$
- $y = e^x$
- $y = x^2!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^a$
- $y = x^2!!!$
- Πιο σύνθετες!

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

- y = x + 3
- y = 2x
- $y = \sqrt{x}$
- $y = e^x$
- $y = x^2!!!$
- Πιο σύνθετες?

Σχεδιάστε γραφικά μια 1-1 συνάρτηση.

Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1}

Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Φ Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Συναρτήσεις 5 Ιουλίου 2025 7/20

Σχεδιάστε γραφικά μια 1-1 συνάρτηση. Ξέροντας ότι τα x γίνονται y σχηματίστε την f^{-1} Αρα:

- ullet Η f^{-1} είναι συμμετρική της f ως προς την ευθεία y=x
- Αν η f περνά από την ευθεία y=x τότε και η f^{-1} περνά, και αντίστροφα.

Προσοχή στα spam

Σχεδιάστε συνάρτηση που δεν έχει μόνο στην y=x κοινά σημεία με την αντίστροφή της.

Συναρτήσεις 5 Ιουλίου 2025 7/20

Βασική Ιδιότητα

Κρατηθείτε!

ο
$$f\left(f^{-1}(x)\right)=x$$
, για κάθε $x\in f(D_f)$

$$f^{-1}(f(x)) = x$$
, για κάθε $x \in D_f$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 8/20

Βασική Ιδιότητα

Κρατηθείτε!

$$f\left(f^{-1}(x)\right) = x$$
, για κάθε $x \in f(D_f)$

$$\circ \ f^{-1}\left(f(x)
ight) = x$$
, για κάθε $x \in D_f$

Λόλας $(10^o$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 8/20

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

8/20

Ασκήσεις

- **1.** Δίνεται η συνάρτηση $f(x) = e^x 1$
 - Να δείξετε ότι είναι 1-1.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 9/20

- **1.** Δίνεται η συνάρτηση $f(x) = e^x 1$
 - Να δείξετε ότι είναι 1-1.
 - Να δείξετε ότι αντιστρέφεται και να βρείτε την f^{-1}

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 9/20

2. Δίνεται η συνάρτηση $f(x) = \frac{x+4}{x+1}$.

- Να δείξετε ότι η f είναι συνάρτηση 1-1

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 10/20

- 2. Δίνεται η συνάρτηση $f(x) = \frac{x+4}{x+1}$.
 - Να δείξετε ότι η f είναι συνάρτηση 1-1
 - Nα βρείτε την f^{-1}
 - Να βρείτε τα κοινά σημεία των C_f και $C_{f^{-1}}$ με τον άξονα συμμετρίας τους.

Συναρτήσεις 5 Ιουλίου 2025 10/20

- 3. Δίνεται η συνάρτηση $f(x) = \frac{e^x 1}{e^x + 1}$.
 - Να δείξετε ότι η f αντιστρέφεται

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/20

- 3. Δίνεται η συνάρτηση $f(x) = \frac{e^x 1}{e^x + 1}$.
 - Να δείξετε ότι η f αντιστρέφεται
 - Να βρείτε την f^{-1}

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 11/20

- **4.** Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2$.
 - Να δείξετε ότι η f αντιστρέφεται

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 12/20

- **4.** Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2$.
 - Να δείξετε ότι η f αντιστρέφεται
 - Na β peite thy avtiotpoon the f
 - Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων

- **4.** Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2$.
 - Να δείξετε ότι η f αντιστρέφεται
 - Na β peite thy avtiotpoon the f
 - Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων
 - Για κάθε $x \geq 1$ θεωρούμε τα σημεία $\mathrm{A}(x,f(x))$ και $\mathrm{B}(f(x),x)$ των C_f

- **4.** Εστω $f:[1,+\infty)\to\mathbb{R}$ μία συνάρτηση με $f(x)=(x-1)^2+2$.
 - Να δείξετε ότι η f αντιστρέφεται
 - Na β peite thy avtiotpoon the f
 - Να σχεδιάσετε τις C_f και $C_{f^{-1}}$ στο ίδιο σύστημα αξόνων
 - Για κάθε $x \geq 1$ θεωρούμε τα σημεία $\mathrm{A}(x,f(x))$ και $\mathrm{B}(f(x),x)$ των C_f και $C_{f^{-1}}$ αντίστοιχα. Να βρείτε την ελάχιστη απόσταση d των σημείων Α και Β.

Συναρτήσεις 5 Ιουλίου 2025 12/20 **5.** Δίνεται η συνάρτηση $f(x) = x^3$. Να δείξετε ότι η f αντιστρέφεται και να βρείτε την αντίστροφή της.

6. Δίνεται η συνάρτηση $f(x) = \begin{cases} \dfrac{1}{x}, & x < 0 \\ x^2, & x > 0 \end{cases}$

Να δείξετε ότι η f αντιστρέφεται και να βρείτε την f^{-1}

Λόλας (10^o ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025

14/20

7. Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία ικανοποιεί την σχέση

$$f^3(x)+f(x)-x-1=0$$
, για κάθε $x\in\mathbb{R}$

- $oldsymbol{\Phi}$ Να δείξετε ότι η f αντιστρέφεται και να βρείτε τη συνάρτηση f^{-1}
- 2 Να βρείτε τα κοινά σημεία της C_f και της ευθείας y=x

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 15/20

7. Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R})=\mathbb{R}$, η οποία ικανοποιεί την σχέση

$$f^3(x)+f(x)-x-1=0$$
, για κάθε $x\in\mathbb{R}$

- lacktriangle Να δείξετε ότι η f αντιστρέφεται και να βρείτε τη συνάρτηση f^{-1}
- ② Να βρείτε τα κοινά σημεία της C_f και της ευθείας y=x

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 5 Ιουλίου 2025 15/20

- **8.** Δίνεται η συνάρτηση $f(x) = x^5 + x$, με $f(\mathbb{R}) = \mathbb{R}$
 - Να δείξετε ότι η f αντιστρέφεται

- **8.** Δίνεται η συνάρτηση $f(x) = x^5 + x$, με $f(\mathbb{R}) = \mathbb{R}$
 - Να δείξετε ότι η f αντιστρέφεται
 - Να βρείτε τα κοινά σημεία των C_f και $C_{f^{-1}}$

- **9.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως Φθίνουσα και f(0) = 1, f(1) = -2.
 - Να δείξετε ότι η f αντιστρέφεται

- **9.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως Φθίνουσα και f(0) = 1, f(1) = -2.
 - Να δείξετε ότι η f αντιστρέφεται
 - Να βρείτε τις ρίζες και το πρόσημο της f^{-1}

- **9.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως Φθίνουσα και f(0) = 1, f(1) = -2.
 - Να δείξετε ότι η f αντιστρέφεται
 - Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
 - Να λύσετε την εξίσωση $f(f^{-1}(3x+4)-f^{-1}(-2))=1$

- **9.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως Φθίνουσα και f(0) = 1, f(1) = -2.
 - Να δείξετε ότι η f αντιστρέφεται
 - Να βρείτε τις ρίζες και το πρόσημο της f^{-1}
 - Να λύσετε την εξίσωση $f(f^{-1}(3x+4)-f^{-1}(-2))=1$
 - Nα λύσετε την ανίσωση $f^{-1}(3 + f(\ln x)) > 0$

- **10.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως αύξουσα.
 - Nα δείξετε ότι η f αντιστρέφεται και $f^{-1} \uparrow$

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

- **10.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως αύξουσα.
 - Nα δείξετε ότι η f αντιστρέφεται και $f^{-1} \uparrow$
 - Aν η f είναι περιττή, να αποδείξετε ότι και η f^{-1} είναι περιττή

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

- **10.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως αύξουσα.
 - Nα δείξετε ότι η f αντιστρέφεται και $f^{-1} \uparrow$
 - Aν η f είναι περιττή, να αποδείξετε ότι και η f^{-1} είναι περιττή
 - Αν ισχύει f(x) > x για κάθε $x \in \mathbb{R}$, να δείξετε ότι

$$f^{-1}(x) < x$$
, για κάθε $x \in \mathbb{R}$

- **11.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0) = 1.
 - Να δείξετε ότι η f αντιστρέφεται

- **11.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση, με $f(\mathbb{R}) = \mathbb{R}$, η οποία είναι γνησίως φθίνουσα και f(0) = 1.
 - Να δείξετε ότι η f αντιστρέφεται
 - Να λύσετε την ανίσωση $f(x) f^{-1}(1-x) < x+1$

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

20/20