# Sprawozdanie z laboratorium Teorii Optymalizacji

| Imię i nazwisko                    | Jacek Golda          |
|------------------------------------|----------------------|
| Temat ćwiczenia                    | Druga metoda Powella |
| Data i godzina wykonania ćwiczenia | 16 marca 2016, 14:00 |

### 1 Wstęp

Celem laboratorium było zbadanie własności drugiej metody Powella.

### 2 Ćwiczenie 2

#### Treść zadania:

"Dolina bananowa" Rosenbrocka. Wyznaczyć minimum funkcji:

$$Q(x_1, x_2) = 100[(x_2 + 3n^2) - (x_1 + 3n^2)^2]^2 + [1 - (x_1 + 3n^2)]^2$$

Na mapę poziomie doliny nanieść punkty pośrednie poszczególnych kroków oraz położenie baz.

Za parametr n przyjęto wartość 4.

$$Q(x_1, x_2) = 100[(x_2 + 48) - (x_1 + 48)^2]^2 + [1 - (x_1 + 48)]^2$$

### Rozwiązanie:

#### 2.1 Rozwiązanie analityczne

Zauważam, że funkcja jest sumą dwóch wyrażeń, z których każde jest nieujemne, ponieważ jest kwadratem pewnej liczby. Oznacza to, że minimalną wartością funkcji jest wartość 0.

Wyznaczam wartości  $\boldsymbol{x}_1$ i  $\boldsymbol{x}_2$ dla których obydwa wyrażenia się zerują.

$$\begin{cases} (x_2 + 48) - (x_1 + 48)^2 = 0\\ 1 - (x_1 + 48) = 0 \end{cases}$$

$$\begin{cases} x_2 = -47 \\ x_1 = -47 \end{cases}$$

Minimum będzie osiągane dla punktu  $\hat{x} = \begin{bmatrix} -47 & -47 \end{bmatrix}^T$ 

### 2.2 Rozwiązanie numeryczne

Jako punkt początkowy przyjęto punkt  $x_0 = \begin{bmatrix} -49 & -49 \end{bmatrix}^T$ 

W rozwiązaniu wykorzystano m-pliki realizujące drugą metodę Powella. Zmodyfikowano funkcję definiującą funkcję celu:

```
function [q,x]=koszt(x,z,d)

if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end

n = 4;
x = x + 3 * n ^ 2;
x1 = x(1);
x2 = x(2);

q = 100 * (x2 - x1 .^ 2) .^ 2 + (1 - x1) .^ 2;
```

W pliku powe\_2 dodano zapis wartości obecnego rozwiązania i nowego kierunku poszukiwań za pomocą instrukcji:

```
x_rozw = [x_rozw, xn];
kier_baz=[kier_baz, dm];
```

Nie załączono pełnego listingu, gdyż nie wnosiłby on dużo do sprawozdania.

Napisano poniższy m-plik w celu przedstawienia przykładowych poziomic funkcji celu i wyników pracy algorytmu: kolejno znalezionych punktów wraz z wektorami baz w których prowadzone były poszukiwania.

```
clear all;
close all;
clc
% funkcja rysujaca pojedyncza strzalke:
drawArrow = @(p1, p2) quiver(p1(1), p1(2), p2(1) - p1(1), p2(2) - p1(2), 0);
% rysowanie poziomic
[x1, x2] = meshgrid(-49.2:0.001:-46.5, -49.2:0.001:-45.8);
n = 4;
q = 100 * ((x2 + 3 * n ^ 2) - (x1 + 3 * n ^ 2) .^ 2) .^ 2 + ...
    (1 - (x1 + 3 * n .^2)) .^2;
contour(x1, x2, q, [0.1, 2, 10, 40, 100, 200, 400], 'ShowText', 'on');
% druga metoda
x0 = [-49; -49];
metoda = 2;
pownad;
x_rozw
% rysuj punkty i linie
hold on;
plot(x_rozw(1, :), x_rozw(2, :), 'r');
plot(x_rozw(1, :), x_rozw(2, :), 'rd');
% rysuj pierwszy i ostatni punkt
plot(x_rozw(1, 1), x_rozw(2, 1), 'b*');
plot(x_rozw(1, size(x_rozw, 2)), x_rozw(2, size(x_rozw, 2)), 'bo');
% rysuj bazy w ktorych prowadzone bylo poszukiwanie
for i = 1:( size(x_rozw, 2) - 1 )
    drawArrow(x_rozw(:, i), x_rozw(:, i) + 0.25 * kier_baz(:, 2 * i - 1));
    drawArrow(x_rozw(:, i), x_rozw(:, i) + 0.25 * kier_baz(:, 2 * i));
end;
print -depsc2 'wykres.eps'
```

Uzyskano następujący wykres:



Czerwonymi rombami są zaznaczone kolejne wyznaczone punkty, są one połączone czerwonymi liniami. Na czarno zaznaczone są wektory bazy, dla której było poszukiwane minimum.

Tabela prezentuje kolejne przybliżenia rozwiązania optymalnego uzyskane w kolejnych iteracjach algorytmu.

| Numer iteracji | Współrzęc         | Wartość funkcji   |                       |
|----------------|-------------------|-------------------|-----------------------|
| 1              | -49               | -49               | 404                   |
| 2              | -48,9916507183194 | -47,0166288528566 | 3,96667258378229      |
| 3              | -48,6815371740332 | -47,5611673764769 | 2,89341234707553      |
| 4              | -48,6060003111421 | -47,6526211995466 | 2,61866933443331      |
| 5              | -48,5416492850593 | -47,7224995299857 | 2,40191100543253      |
| 6              | -47,4752205331572 | -47,7246330329337 | $0,\!225834625474513$ |
| 7              | -47,4752205331572 | -47,7246330329337 | $0,\!225834625474513$ |
| 8              | -47,4594426746882 | -47,6912358220117 | $0,\!238517410111691$ |
| 9              | -47,4539388926621 | -47,7021974334374 | 0,206074970919278     |
| 10             | -47,4539388926621 | -47,7021974334374 | $0,\!206074970919278$ |
| 11             | -47,3197862763061 | -47,5467384539587 | $0,\!111154175624051$ |
| 12             | -47,1547876588750 | -47,2908963154774 | 0,0267472885678670    |
| 13             | -47,0017328356156 | -47,0027897339176 | 4,82868161012769e-05  |
| 14             | -46,8278053320731 | -46,6189616066034 | 0,0345482794738033    |
| 15             | -46,8266369215112 | -46,6212886723383 | 0,0304274066887947    |
| 16             | -46,8266369215112 | -46,6212886723383 | 0,0304274066887947    |

Rozwiązania nie zbiegają do wartości wyznaczonej analitycznie. Sprawdzono, czy metoda działa poprawnie i czy zapobiega

degeneracji bazy. Obliczono wyznaczniki macierzy stanowiących kierunki poszukiwań dla kolejnych punktów:

| Numer iteracji | Wartość wyznacznika macierzy |
|----------------|------------------------------|
| 1              | 1                            |
| 2              | 1                            |
| 3              | -0,893676651811354           |
| 4              | -0,893676651811354           |
| 5              | -0,893676651811354           |
| 6              | -0,893676651811354           |
| 7              | 0,892777170529466            |
| 8              | 0,892777170529466            |
| 9              | 0,892777170529466            |
| 10             | -0,892777170529489           |
| 11             | 0,940579002676816            |
| 12             | 0,873657649841699            |
| 13             | 0,815534464993371            |
| 14             | 0,815534464993371            |
| 15             | 0,815534464993371            |
| 16             | -0,815534464992863           |

Widać, że zgodnie z założeniem zaszytym w algorytmie wyznacznik macierzy kierunków bazowych jest co do modułu większy od wartości 0.8. Algorytm pracuje więc poprawnie, jednak nadal uzyskuje się niedokładne rozwiązanie.

Jest to dodatkowo dziwne, że algorytm w 13 iteracji trafił bardzo dokładnie w rozwiązanie. Położenie minimum zgadza się z tym wyznaczonym analitycznie co do trzeciego miejsca po przecinku, a wartość funkcji osiąga wartość rzędu  $10^{-5}$ , czyli znacznie bliższą wartości wyznaczonej analitycznie.

Może być to efektem konstrukcji pliku pownad — badana metoda optymalizacji może zostać wywołana w nim ponownie, dla punktu początkowego przesuniętego o wektor jedynek w stosunku do ostatniego uzyskanego rozwiązania. Niewykluczone, że to "idealne trafienie" jest efektem normalnej pracy algorytmu, tylko następnie zostało sperturbowane przez wektor jedynek i w efekcie uzyskano gorsze rozwiązanie.

## 3 Ćwiczenie 3

### Treść zadania:

Zbadać działanie metod Powella dla funkcji:

$$Q(x) = 100 [(x_1 + 3n^2)^2 - (x_2 + 3n^2)]^2 + [1 - (x_1 + 3n^2)]^2 + 90 [(x_3 + 3n^2)^3 - x_4] + [1 - (x_3 + 3n^2)]^3 + 10.1 [[(x_2 + 3n^2) - 1]^2 + [(x_4 + 3n^2) - 1]^2] + 19.8 [(x_2 + 3n^2) - 1] [(x_4 + 3n^2) - 1]$$

### Rozwiązanie:

### 3.1 Oszacowanie analityczne

Funkcja ta posiada przesunięty argument w stosunku do funkcji badanej na poprzednim laboratorium. Wtedy oszacowano najmniejszą wartość funkcji jako 0. Wartość ta osiągana była dla punktu  $x = \begin{bmatrix} 13 & 13 & 13 \end{bmatrix}^T$ . Po przesunięciu argumentu tak, aby uzyskać funkcję badaną obecnie, uzyskano, że powyższe oszacowanie będzie odnosiło się do punktu  $x = \begin{bmatrix} -47 & -47 & -47 & -47 \end{bmatrix}^T$ .

Ta wartość będzie oszacowaniem minimum funkcji dla rozwiązania numerycznego.

### 3.2 Rozwiązanie numeryczne

W celu znalezienia rozwiązania numerycznego ponownie zmodyfikowano funkcję obliczającą wartość funkcji celu.

Wyznaczano minimum funkcji dla punktu startowego  $x_0 = \begin{bmatrix} -50 & -50 & -50 \end{bmatrix}^T$ 

Napisano następujący m-plik służący do uruchamiania metody.

```
clear all;
close all;
clc

% druga metoda
x0 = -50 * ones(4, 1);
metoda = 2;
pownad;
```

Uzyskano następujące wyniki (ze względu na dość dużą ilość iteracji, zamieszczono dane o co siódmej iteracji):

| Numer iteracji | Współrzędne $x_1, x_2, x_3, x_4$ Wartość funkcji |                   |                   |                   |                     |  |
|----------------|--------------------------------------------------|-------------------|-------------------|-------------------|---------------------|--|
| 1              | -50                                              | -50               | -50               | -50               | 7218                |  |
| 7              | -46,3538386062960                                | -45,0090227719492 | -49,5667705425153 | -51,5540078353008 | 92,5607453061778    |  |
| 14             | -46,0496422217512                                | -44,1347828188393 | -49,3612278632486 | -50,4502540354841 | 14,7326470130358    |  |
| 21             | -46,5227539818545                                | -45,8271132926138 | -48,4037283507357 | -48,0495282591478 | 2,87692876158391    |  |
| 28             | -46,7331483858073                                | -46,3929396528482 | -47,2644324877221 | -47,6161730648562 | 0,310098551980737   |  |
| 35             | -46,7437254874160                                | -46,4287030266371 | -47,2240077565601 | -47,5401427266651 | 0,258843907356583   |  |
| 42             | -46,6097517485153                                | -46,0678887556174 | -48,0025638202846 | -47,9639175112724 | 1,64425814887170    |  |
| 49             | -46,7912923715343                                | -46,5371612354930 | -47,1841230751918 | -47,4643993576421 | 0,168861034033394   |  |
| 56             | -46,8425455907201                                | -46,6487067869517 | -47,1195504099170 | -47,3208861094141 | 0,107993545830060   |  |
| 63             | -46,6753627563172                                | -47,4359508804805 | -47,9061311397970 | -47,8656247725561 | 161,247413912414    |  |
| 70             | -46,6018218539203                                | -46,0483746495023 | -47,6987798128799 | -47,9856539411664 | 1,04997164262935    |  |
| 77             | -46,9831170714585                                | -46,9657406933900 | -47,0146025487196 | -47,0431717580900 | 0,00189648637478373 |  |
| 84             | -46,5208010358510                                | -45,8001407861780 | -47,5593587077647 | -47,9818234036051 | 1,91648865471456    |  |
| 91             | -46,7407971191840                                | -46,4264086004280 | -47,2887564783831 | -47,6516711594910 | 0,387891241254151   |  |
| 98             | -46,8350620310581                                | -46,6448993092275 | -47,1336533790372 | -47,3410331775054 | 0,102749831935425   |  |
| 105            | -46,9747788373675                                | -46,9503509909614 | -47,0127265776586 | -47,0358354950875 | 0,00395278817794351 |  |
| 112            | -46,9817085443403                                | -46,9636485840259 | -47,0093188134108 | -47,0256180097826 | 0,00237843900524028 |  |
| 119            | -46,9828688753212                                | -46,9658714869185 | -47,0087490334415 | -47,0239096899728 | 0,00216945674274844 |  |
| 126            | -46,9830748632629                                | -46,9662659750984 | -47,0086479234429 | -47,0236065289620 | 0,00213395012262919 |  |
| 133            | -46,9831117899997                                | -46,9663366892733 | -47,0086297991681 | -47,0235521859747 | 0,00212763554122124 |  |
| 140            | -46,9831184212009                                | -46,9663493877890 | -47,0086265445052 | -47,0235424273290 | 0,00212650321326697 |  |
| 147            | -46,9831196123834                                | -46,9663516688567 | -47,0086259598618 | -47,0235406743581 | 0,00212629986230105 |  |

Widać, że algorytm zbiega do oczekiwanego minimum. Uzyskiwana jest wartość funkcji celu rzędu  $10^{-3}$ . Chwilowe zakłócenie w 63 iteracji (nagły wzrost wartości funkcji celu do wartości  $\approx 161$  wynika z konstrukcji pliku pownad — algorytm startuje drugi raz z punktu przesuniętego o wektor jedynej w stosunku do ostatnio znalezionego. Z tego wynika to zaburzenie w pracy.

Co ważne, nie zaobserwowano efektu degeneracji bazy, który objawił się w tym przykładzie w trakcie ostatnich laboratoriów.

### 4 Podsumowanie

W trakcie laboratorium zbadano działanie drugiej metody Powella dla dwóch funkcji.

Dla doliny bananowej ponownie dała ona dość zadowalający efekt — wyznaczono minimum z nieco gorszą dokładnością niż za pomocą pierwszej metody Powella, niemniej jednak było to relatywnie dobre przybliżenie. Obliczenia trwały nieco dłużej niż w przypadku pierwszej metody Powella.

Dla drugiej funkcji uzyskano znacznie lepsze przybliżenie minimum niż w przypadku pierwszej metody Powella. Uzyskana obecnie wartość funkcji celu jest o trzy rzędy wielkości mniejsza (oczekiwana wartość to 0). Jest to wynikiem wyeliminowania efektu degeneracji bazy kierunków.