Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

 Suppose you are asked to write a software to control an automatic door as shown below:

- Assume we have the following methods:
 - getFrontPad(): returns true if there is a person standing on the front pad. Otherwise, it returns false.
 - getRearPad(): returns true if there is a person standing on the rear pad. Otherwise, it returns false.
 - openDoor(): when called it will open the door.
 - closeDoor(): when called it will close the door.
- How the write the program in Java?

Program to control the automatic door:

```
public class DoorController {
    public static void main(String[] args) {
        boolean isDoorOpen = false;
        while(true) {
            if(getFrontPad() && !getRearPad() && !isDoorOpen) {
                openDoor();
                isDoorOpen = true;
            if(!getFrontPad() && !getRearPad() && isDoorOpen) {
                closeDoor():
                isDoorOpen = false;
        }
}
```

• The variable isDoorOpen of type boolean is used to record the status of the door (1 bit of memory is required).

 getFrontPad() and getRearPad() together acts as external input to the program:

<pre>getFrontPad()</pre>	<pre>getRearPad()</pre>	Input
true	true	Both
true	false	Front
false	true	Rear
false	false	Neither

 We can define the behavior of our program based on its input as well as the status of the door whether it is current open or close

Representations

- The program can be represented in two standard ways
 - State Diagram:

State Transition Table:

	Neither	Front	Rear	Both
Closed	Closed	Open	Closed	Closed
Open	Closed	Open	Open	Open

• But how to represent these in a mathematical way?

Finite State Machine

• Consider the following finite state machine M_1 :

- Machine M_1 consists of:
 - Three **states**: q_0 , q_1 , and q_2
 - The **start state** q_0 (arrow pointing to it from nowhere)
 - An **accept state** q_1 (double circle)
 - All single circle states are called non-accept state
 - Arrows represent transition functions
 - The label 0,1 represents two transitions

Finite State Machine

• Consider the following finite state machine M_1 :

- When an input string is given to this machine, it returns either accept or reject.
 - 1101: accept

$$q_0 \stackrel{1}{\rightarrow} q_1 \stackrel{1}{\rightarrow} q_1 \stackrel{0}{\rightarrow} q_2 \stackrel{1}{\rightarrow} q_1 \quad \text{(an accept state)}$$

• 0010: reject

$$q_0 \stackrel{0}{\rightarrow} q_0 \stackrel{0}{\rightarrow} q_0 \stackrel{1}{\rightarrow} q_1 \stackrel{0}{\rightarrow} q_2 \quad \text{(a non-accept state)}$$

• 0100: accept

$$q_0 \stackrel{0}{\rightarrow} q_0 \stackrel{1}{\rightarrow} q_1 \stackrel{0}{\rightarrow} q_2 \stackrel{0}{\rightarrow} q_1$$
 (an accept state)

Finite State Machine

• Consider the following finite state machine M_1 :

- Can we define the set of inputs that is accepted by the above machine?
 - ullet M_1 accepts any strings that end with a 1
 - M_1 also accepts a string that ends with a 0 but it needs to have even number of 0s after the last 1
- The set of all strings accepted by this machine is
 - $\{x\mid x \text{ ends with a 1 and } x \text{ is a string}$ that ends with an even number of 0s following the last 1}
- ullet The above set is called the **language** of the machine M_1

Finite-State Automaton

A finite state machine M can be defined as five tuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

- ullet Q is a non-empty finite set of states
 - M must have at least one state
- Σ is an alphabet (a finite set of symbols)
- $\delta: Q \times \Sigma \to Q$ is the transition functions
 - ullet We generally use a table to represent δ
- $q_0 \in Q$ is the starting state
 - A finite automata can only have exactly one start state
- ullet $F\subseteq Q$ is the set of accept states
 - F can be $\emptyset \leadsto M$ can have no accept state (rejects all strings)
 - ullet |F| can be more than 1 \leadsto M has more than one accept states

Example: Machine M_1

- $M_1 = (Q, \Sigma, \delta, q_0, F)$
 - $Q = \{q_0, q_1, q_2\}$
 - $\bullet \ \Sigma = \{0,1\}$
 - \bullet δ can be defined using the table below:

δ	0	1
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_1	q_1

- \bullet q_0 is the start state
- $F = \{q_1\}$
- The state diagram and its formal definition are equivalent

Formal Definition of Machine M_1

• $M_1 = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$ where δ is as follows:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_2 & q_1 \\ q_2 & q_1 & q_1 \\ \end{array}$$

- The above formal definition allows use to precisely answer questions about M₁:
 - Is 0101 is a valid input for this machine?
 - Yes. $0 \in \{0, 1\}$ and $1 \in \{0, 1\}$.
 - Is 01a0 is a valid input for this machine?
 - No. $a \notin \{0,1\}$
 - Is input 010 accepted by this machine?
 - No. $q_0 \stackrel{0}{\to} q_0 \stackrel{1}{\to} q_1 \stackrel{0}{\to} q_2$ and $q_2 \not\in \{q_1\}$.
 - Is input 101 accepted by this machine?
 - Yes. $q_0 \xrightarrow{1} q_1 \xrightarrow{0} q_2 \xrightarrow{1} q_1$ and $q_1 \in \{q_1\}$.

Language Recognized

- A string $w = w_1 w_2 \dots w_n$ is **accepted** by M if and only if after processing each symbol w_i of w, where $1 \le i \le n$, M finds itself in an accept state (a state belonging to F). Otherwise, we say w is rejected by M.
- If A is the set of all strings accepted by M, we say A is the language of finite-state machine M, denoted by

$$L(M) = A$$

We say that M recognizes A

 A machine may accept several strings but it always recognizes only one language.

$$M_2 = (Q, \Sigma, \delta, \mathsf{start} \; \mathsf{state}, F)$$

What is the formal definition of the above machine and the language that it recognises?

•
$$Q = \{q_1, q_2\}$$

$$\bullet \ \Sigma = \{0,1\}$$

- The start state is q_1
- $F = \{q_2\}$
- $L(M_2) = \{ w \mid w \text{ ends in a } 1 \}$

$$M_3 = (Q, \Sigma, \delta, \mathsf{start} \; \mathsf{state}, F)$$

What is the formal definition of the above machine and the language that it recognises?

•
$$Q = \{q_1, q_2\}$$

$$\bullet \ \Sigma = \{0,1\}$$

- Start state is q_1
- $F = \{q_1\}$
- $L(M_2) = \{w \mid w \text{ is the empty string } \varepsilon \text{ or ends in a 0} \}$

What is the formal definition of the above machine and the language that it recognises?

•
$$Q = \{s, q_1, q_2, r_1, r_2\}$$

$$\bullet \ \Sigma = \{a,b\}$$

Transition Functions:

δ	а	b
s	q_1	r_1
q_1	q_1	q_2
q_2	q_1	q_2
r_1	r_2	r_1
r_2	$\mid r_2 \mid$	r_1

- ullet Start state is s
- $F = \{q_1, r_1\}$
- $L(M_2) =$

 $\{ w \mid w \text{ starts and ends}$ with the same symbol \}

What is the formal definition of the above machine and the language that it recognises?

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0, 1, 2, \langle \text{RESET} \rangle \}$$

Transition Functions:

δ	0	1		<reset></reset>
q_0	q_0	$egin{array}{c} q_1 \ q_2 \ q_0 \end{array}$	q_2	q_0
q_0 q_1	q_1	q_2	q_0	q_0
q_2	q_2	q_0	q_1	q_0

- Start state is q_0
- $F = \{q_0\}$
- $L(M_2) =$

 $\{w \mid w \text{ is the empty string } \varepsilon \text{ or} \\ \text{ends with <RESET> or} \\ \text{sum of input is multiple} \\ \text{of 3 after the last} \\ \text{<RESET>} \}$

Designing a Finite-State Machine

- A computation model simulates a set of algorithms
- Designing a finite-state machine is the same as writing a program
 - Use states to capture state-of-minds
 - I just see a 1
 - I just see two consecutive 0s
 - I already saw 00 or 11
- Do not force yourself to use the least number of states
 - Nobody asks you to write a shortest possible program
 - Unless you are asked to do so

Designing Finite Automata

Suppose the alphabet Σ is $\{0,1\}.$ Create a machine such that its language is the set of all strings that contain either 11 or 00 as a substring.

- Common mistakes:
 - $\delta(q_1,0) = q_0$
 - $\delta(q_2, 1) = q_0$

Designing Finite Automata

Suppose the alphabet Σ is $\{0,1\}$. Create a machine such that its language is the set of all strings that contain 011 as a substring.

- Common mistakes:
 - $\delta(q_0, 0) = q_s$
 - $\delta(q_{01},0) = q_s$
- Hint: Name of a state can be used to indicate a state-of-mind
 - ullet q_{01} means "I just see a 0 immediately followed by a 1"

Designing Finite Automata

Suppose the alphabet Σ is $\{0,1\}$. Create a machine such that its language is the set of all strings that ends with 0110.

- Common mistakes:
 - $\delta(q_2,0) = q_0$
 - $\delta(q_4,0) = q_0$
 - $\delta(q_4, 1) = q_0$