

Math Reference Sheet

v42.org

Version: Sunday 11th October, 2015

FileID: 20140228-150825-rs2.2R-MathReferenceSheet

Number Systems

\mathbb{N}	Natural	numbers	$\mathbb{N} = \{1, 2, 3, \dots\}$	ł
--------------	---------	---------	-----------------------------------	---

$$\mathbb{Z}$$
 Integers $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$

$$\mathbb{Q}$$
 Rational $\mathbb{Q}=\left\{rac{m}{n}\;ig|\; m\in\mathbb{Z}, n\in\mathbb{Z}, n
eq 0
ight\}$

- Real numbers
- \mathbb{C} Complex numbers $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$

Prime Numbers 2-997

2	3	5	7	11	13	17	19	23	29	31	37
41	43	47	53	59	61	67	71	73	79	83	89
97	101	103	107	109	113	127	131	137	139	149	151
157	163	167	173	179	181	191	193	197	199	211	223
227	229	233	239	241	251	257	263	269	271	277	281
283	293	307	311	313	317	331	337	347	349	353	359
367	373	379	383	389	397	401	409	419	421	431	433
439	443	449	457	461	463	467	479	487	491	499	503
509	521	523	541	547	557	563	569	571	577	587	593
599	601	607	613	617	619	631	641	643	647	653	659
661	673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823	827
829	839	853	857	859	863	877	881	883	887	907	911
919	929	937	941	947	953	967	971	977	983	991	997

Prime Divisor rules

- 2 the 1's digit is even
- 3 sum of digits is divisible by 3
- 5 the 1's digit is 0 or 5

Reducing Fractions Process - RF

Reduce the fraction $\frac{m}{n}$

- 1. Simplify by factoring m
- 2. Simplify by factoring n
- 3. Find the gcd(m, n)
- 4. If the gcd(m, n) = 1 the fraction is reduced.
- 5. gcd(m, n) is the MId

Operations

T	T	ZΤ	I.	1/1	Delimiters

DO	Dvadic	Operations

Order Operations

- 1. DELIM
- 2. DO (OOE, OOM, OOD, OOA, OOS)
- 3. UO (OON)

Operation of Negation

ONeg Operation of Negation Notation $-a = \neg a$

Operation of Subtraction

 ${
m DOS}$ Definition of Subtraction $a+\neg b=a-b$

Operation of Addition

- APA Associative Property of Addition (a+b)+c=a+(b+c)
- ${f CPA}$ Commutative Property of Addition a+b=b+a
- DPF Distributive Property Factoring $a \cdot b + a \cdot c = a(b+c)$ $b \cdot a + c \cdot a = (b+c)a$
- CD Common Denominator $\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$

Operation of Multiplicaiton

- APM Associative Property of Multiplication $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- CPM Commutative Property of Multiplication $a \cdot b = b \cdot a$
- CTJ Center-Dot to Juxtaposition $a \cdot b = ab$
- DPE Distributive Property Expanding $a(b+c) = a \cdot b + a \cdot c$ $(b+c)a = b \cdot a + c \cdot a$
- JTC Juxtaposition to Center-Dot $ab = a \cdot b$
- $egin{array}{ll} {
 m MC} & {
 m Center-Dot\ Notation} \\ a\cdot b & \end{array}$
- $\begin{array}{cc} \mathbf{MT} & \mathbf{Times\ Notation} \\ & a \times b \end{array}$

Operation of Division

- DOD Definition of Division $a \div b = \frac{a}{b} = a \cdot b^{-1}, b \neq 0$
- FN Fraction Numerator (upstaris)
- FD Fraction Denominator (downstairs)
- RF Reduce Fraction

Powers

FTPo	Factor to Power
	$a_n \cdot a_{n-1} \cdot \ldots \cdot a_2 \cdot a_1 = a^n$

$$egin{aligned} ext{PoNegE} & ext{Power Negative Exponent} \ b^{-k} = rac{1}{1 \cdot k} \end{aligned}$$

$$\begin{array}{ll} \text{PoPo} & \text{Power of a Power} \\ (b^m)^k = b^{m \cdot k} \end{array}$$

PoQ Power of a Quotient
$$\left(\frac{a}{b}\right)^k = \frac{a^k}{b^k}, b \neq 0$$

PoPr Power of a Product
$$(a \cdot b)^k = a^k \cdot b^k$$

PoQPo Power of a Quotient of Powers
$$\left(\frac{a^m}{b^n}\right)^k = \frac{a^{m \cdot k}}{b^{n \cdot k}}, b \neq 0$$

PoPrPo Power of a Product of Powers
$$(a^mb^n)^k = a^{m\cdot k}b^{n\cdot k}$$

PoTR Power to Radical
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

PoTL Power to Logarithm
$$y = b^x \Rightarrow x = \log_b y$$

PoTF Power to Factor
$$(a)^n = a_1 \cdot a_2 \cdot \ldots \cdot a_n$$

$$\begin{array}{ccc} \mathbf{PrCBPo} & \mathbf{Product} \ \ \mathbf{of} \ \ \mathbf{Common} \ \ \mathbf{Base} \ \ \mathbf{Powers} \\ b^m \cdot b^n = b^{m+n} \end{array}$$

QCBPo Quotient of Common Base Powers
$$\frac{b^m}{4n} = b^{m-n}$$

RTPo Radical to Power
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Identities

AId Additive Identity
$$a + 0 = a$$

$$egin{array}{ll} {
m MId} & {
m Multiplicative\ Identity} \\ & a \cdot 1 = a \end{array}$$

PoId Power Identity
$$b^0 = 1$$
, given $b > 0$

Inverses

ArcTan Tangent Inverse
$$\tan^{-1}(\tan \theta) = \theta$$

AI Additive Inverse
$$a + (-a) = 0$$

EI Exponential Inverse
$$\log_a(a^x) = x$$

LI Logarithmic Inverse
$$a^{\log_a x} = x$$

MI Multiplicative Inverse
$$a \cdot \frac{1}{a} = 1 = a \cdot a^{-1}, a \neq 0$$

PoI Power Inverse
$$\left(x^{\frac{m}{n}}\right)^{\frac{n}{m}} = x$$

Equality & Inequality

RPE	Reflexive	Property	of	Equality	
	a = a				

SPE Substitution Property of Equality
$$a=b \; {\rm then} \; F(a)=F(b)$$

SPIn Substitution Property of Inequality
$$a < b$$
, then $a + c < b + c$ $a < b$ and $c > 0$, then $ca < cb$ $a < b$ and $c < 0$, then $ca > cb$

TPE Transitive Property of Equality if
$$a = b$$
 and $b = c$, then $a = c$

TPIn Transitive Property of Inequality if
$$a < b$$
 and $b < c$, then $a < c$

ZFP Zero Factor Property if
$$a \cdot b = 0$$
, then $a = 0$ or $b = 0$

Simplify Expressions Workflow

1.	MId	21.	PoId
2.	ONeg	22.	PoTF
3.	DOS	23.	RTPo
4.	DELIM Goto 36, 21	24.	PoNegE Goto 4
	DPE		PoPr
6.	JTC	26.	PoQ
7.	CPM Goto 25	27.	PoPrPo
8.	APM	28.	PoQPo
9.	OOM	29.	PrCBPo
10.	RF	30.	QCBPo
11.	CTJ		PoPo
12.	CPA	32.	PoNegE
13.	DPF		OOE
14.	APA		PoTR
15.	RF	35.	Pold Goto 8
16.	OOA		LPoPo
17.	AId Goto 4		LPrCBPo
18.	DOS		LQCBPo
19.	ONeg		LEF Goto 4
20.	MId DONE!	55.	EEI 3000 4

Logarithms

LEV	$\label{eq:logarithm} \operatorname{Logarithm} \ \operatorname{Exponent} \ \operatorname{Visible} \\ \log_b y \Rightarrow \log_b y = x$
LPoPo	$\label{eq:logarithm} \begin{array}{l} \operatorname{Logarithm} \ \operatorname{Power} \ \text{ of a Power} \\ \log_b x^n = n \log_b x \end{array}$
LPrCBPo	Logarithm Product of Common Base Powers $\log_b(mn) = \log_b m + \log_b n$

LQCBPo Logarithm Quotient of Common Base Powers
$$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n$$

LTPo Logarithm to Power
$$x = \log_b y \Rightarrow y = b^x$$

Horizontal Line Test

Function Horizontal Line Test y = f(x)y = f(x)f is not one-to-one f is one-to-one

Quadratic Functions

If $ax^2 + bx + c = 0$, where $a \neq 0$, then

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1. $b^2 4ac > 0$ Two distinct real solutions
- 2. $b^2 4ac = 0$ Two repeated real solutions
- 3. $b^2 4ac < 0$ Two distinct complex solutions

Pythagorean Theorem

 $\begin{array}{ll} {\rm PyThm} & {\rm Pythagorean} \ {\rm Theorem} \\ & a^2+b^2=c^2 \end{array}$

Linear Functions

DBP Distance betweent $P_1 = (x_1, y_1)$

> & $P_2 = (x_2, y_2)$ $d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

MBP Midpoint between $P_1 = (x_1, y_1)$

& $P_2 = (x_2, y_2)$

Midpoint of $P_1P_2 = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{3}\right)$

Line Slope Line Slope through $P_1 = (x_1, y_1)$

& $P_2 = (x_2, y_2)$

PSEPoint slope equation though $P(x_1, y_2)$

 $y - y_1 = m(x - x_1)$

SIESlope-intercept equation

y = mx + b

PrSPLProduct of slopes - Perpendicual Lines $m_1 m_2 = -1$

Function

Function Vertical Line Test

FVLT Function Vertical Line Test

Greek Alphabet

Lett	ers	Name	Let	ters	Name
A	α	alpha	N	ν	nu
В	β	beta	Ξ	ξ	хi
Γ	γ	gamma	O	0	omicron
Δ	δ	delta	Π	π	рi
\mathbf{E}	ϵ	epsilon	Ρ	ρ	rho
\mathbf{Z}	ζ	zeta	Σ	σ	sigma
Η	η	eta	\mathbf{T}	au	tau
Θ	θ	theta	Υ	v	upsilon
I	ι	iota	Φ	ϕ	phi
K	κ	kappa	X	χ	chi
Λ	λ	lambda	Ψ	ψ	psi
M	μ	mu	Ω	ω	omega

Angles: Components

Angle Direction & Magnitude

Classification of Angles

RA Right Angle

OA Obtuse Angle

SA Straight Angle

Radians

Angle Pairings

SA Supplementary Angles

ConA Conjugate Angles

Arc Length and Sector Area

AL

sec -

cot +

*	
QII	QI
$\sin +$	$\sin +$
cos –	$\cos +$
tan –	$\tan +$
csc +	$\csc +$
sec -	sec +
cot -	$\cot +$
QIII	QIV
sin –	\sin –
cos –	$\cos +$
tan +	\tan $-$
csc -	csc -

sec +

cot -

Trigonometric Identities

EOId Trigonometric Even/Odd Identities
$$\sin -\theta = -\sin \theta \qquad \cos -\theta = \cos \theta$$

$$\csc -\theta = -\csc \theta \qquad \sec -\theta = \sec \theta$$

$$\tan -\theta = -\tan \theta$$
 $\cot -\theta = -\tan \theta$

 $\sec^2 \theta = \tan^2 \theta + 1$ $\csc^2 \theta = 1 + \cot^2 \theta$

RId Trigonometric Reciprocal Identities
$$\sin\theta = \frac{1}{\csc\theta} \quad \cos\theta = \frac{1}{\sec\theta} \quad \cot\theta = \frac{1}{\tan\theta}$$

$$\csc\theta = \frac{1}{\sin\theta} \quad \sec\theta = \frac{1}{\cos\theta} \quad \tan\theta = \frac{1}{\cot\theta}$$

PyId Trigonometric Pythagorean Identities
$$\sin^2\theta + \cos^2\theta = 1$$

TanId Tangent Identity
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\begin{array}{cc} \text{CotId} & \text{Cotangent Identity} \\ \cot \theta = \frac{\cos \theta}{\sin \theta} \end{array}$$

SDAId Sine Double Angle Identity
$$\sin 2\theta = 2 \sin \theta \cos \theta$$

CDAId Cosine Double Angle Identity
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$= 1 - 2\sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

TDAId Tangent Double Angle Identity
$$\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$$

$$\begin{array}{ll} {\rm SDAId} & {\rm Sine~Difference~of~Angles~Identity} \\ & \sin(\theta-\phi) = \sin\theta\cos\phi - \cos\theta\sin\phi \end{array}$$

CSAId Cosine Sum of Angles Identity
$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

CDAId Cosine Difference of Angles Identity
$$\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$$

TSAId Tangent Difference of Angles Identity
$$\tan(\theta+\phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta\tan\phi}$$

TDAId Tangent Difference of Angles Identity
$$\tan(\theta-\phi)=\frac{\tan\theta-\tan\phi}{1+\tan\theta\tan\phi}$$

Cosine Law

CL Cosine Law

Cosine Law
$$a^2 = b^2 + c^2 - 2bc\cos A \qquad \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$b^2 = a^2 + c^2 - 2ac\cos B \qquad \cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$
 $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$

Sine Law

SL Sine Law
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$C$$

$$A$$

$$A$$

$$C$$

$$B$$

$$A$$

$$C$$

$$B$$

Summary of the Ambiguous Case

 $90^{\circ} \leq A < 180^{\circ}, \, a > b$: One solution

 $90^{\circ} \le A < 180^{\circ}, \ a \le b$: No solution

 $0^{\circ} < A < 90^{\circ}, \ a < b \ {\rm sin} \ A$: No solution

 $0^{\circ} < A < 90^{\circ}, a = b \sin A$: One solution

 $0^{\circ} < A < 90^{\circ}, \ a \ge b$: One solution

 $0^{\circ} < A < 90^{\circ}$, $b \sin A < a < b$: Two solutions

Sine Function

Tangent Function

Cosecant Function

Cosine Function

Cotangent Function

Differentiation by First Principles

DFP Differentiation by first principles
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Notations

Leibniz's first derivative
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{d\left[f(x)\right]}{\mathrm{d}x} = \frac{d}{\mathrm{d}x}\left[f(x)\right]$$

Leibniz's second derivative
$$\frac{\mathrm{d}^2 y}{}$$

Leibniz's nth derivative
$$\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$$

Leibniz's evaluate derivative at
$$x=a$$

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigm|_{x=a}=\frac{\mathrm{d}y}{\mathrm{d}x}(a)$$

LaGrange's first derivative
$$f'(x)$$

LaGrange's second derivative
$$f''(x)$$

LaGrange's nth derivative
$$f^{(n)}(x)$$

LaGrange's evaluate derivative at
$$x=a$$
 $f^{\prime}(a)$

Euler's first derivative
$$Df = D_x f$$

Euler's second derivative
$$D^2 f = D_\pi^2 f$$

Euler's nth derivative
$$D^n f = D^n_\pi$$

Differentiation Structural Rules

DS Derivative of a sum
$$[f(x)+g(x)]'=f'(x)+g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[f(x)+g(x)]=\frac{\mathrm{d}}{\mathrm{d}x}[f(x)]+\frac{\mathrm{d}}{\mathrm{d}x}[g(x)]$$

DD Derivative of a difference
$$[f(x) - g(x)]' = f'(x) - g'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) - g(x) \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right] - \frac{\mathrm{d}}{\mathrm{d}x} \left[g(x) \right]$$

DPr Derivative of a product "Product Rule"
$$[f(x)q(x)]' = f'(x)q(x) + f(x)q'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[f(x)g(x) \right] = \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right] g(x) + f(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[g(x) \right]$$

DQ Derivative of a quotient "Quotient Rule"
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right] g(x) - f(x) \frac{\mathrm{d}}{\mathrm{d}x} \left[g(x) \right]}{\left[g(x) \right]^2}$$

$$\begin{array}{ll} \text{DCF} & \text{Derivative of a composite function} \\ & \left[f\left(g(x) \right) \right]' = \left[g(x) \right]' \left[f\left(g(x) \right) \right]' \\ \end{array}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[f\left(g(x)\right)\right] = \frac{\mathrm{d}}{\mathrm{d}x}\left[g(x)\right] \frac{\mathrm{d}}{\mathrm{d}x}\left[f\left(g(x)\right)\right]$$

Differentiation Monomial Rules

DC Derivative of a constant
$$[c]' = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[c\right] = 0$$

DCM Derivative of a constant multiple [cf(x)]' = c[f(x)]'

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[cf(x) \right] = c \frac{\mathrm{d}}{\mathrm{d}x} \left[f(x) \right]$$

 ${
m DPo}$ Derivative of a power "Power Rule" $[x^n]'=nx^{n-1}$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^n\right] = nx^{n-1}$$

Differentiation Exponential and Logarithmic Function Rules

$${
m DExp}$$
 Derivative of an exponential function ${
m d}\over{
m d}_x \left[a^x
ight] = a^x \ln a$

$$\begin{array}{ll} \text{DNExp} & \text{Derivative of a natural} \\ & \text{exponential function} \\ & \frac{\mathrm{d}}{\mathrm{d}x} \left[e^x \right] = e^x \end{array}$$

DL Derivative of a logarithmic function
$$\frac{\mathrm{d}}{\mathrm{d}x}[\log_a x] = \frac{1}{x\ln a}$$

DNL Derivative of a natural logarithmic function
$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\ln x\right] = \frac{1}{x}$$

Differentiation Trigonometric Function Rules

DSin Derivative of a sine function
$$\frac{d}{dx}(\sin x) = \cos x$$

DCos Derivative of a cosine function
$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

DTan Derivative of a tangent function
$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x$$

DCsc Derivative of a cosecant function
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

DSec Derivative of a secant function
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

DCot Derivative of a cotangent function
$$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\csc^2 x$$

v42.org https://plus.google.com/+MarkHendryOlsonV42 Trig images: http://bit.ly/mecmath-trigbook Pascal's triangle: http://bit.ly/1kIYJ9H