

1 билет 31

Определение

Для $n \in \mathbb{N}$ $\sigma(n)$ — сумма натуральных делителей n.

Теорема 24

Если
$$n=p_1^{k_1}\dots p_s^{k_s}$$
, то $\sigma(n)=rac{p_1^{k_1+1}-1}{p_1-1}\dots rac{p_s^{k_s+1}-1}{p_s-1}.$

Доказательство. ullet Пусть $n_r = p_1^{k_1} \dots p_r^{k_r}$.

ullet Докажем индукцией по r, что $\sigma(n_r) = rac{p_1^{k_1+1}-1}{p_1-1} \dots rac{p_r^{k_r+1}-1}{p_r-1}.$

База для r=1: делители $p_1^{k_1}$ — это $1,\ p_1,\ \dots,\ p_1^{k_1}$ и по формуле суммы геометрической прогрессии их сумма равна $\frac{p_1^{k_1+1}-1}{p_1-1}$.

Переход $r \to r+1$. Так как $(n_r, p_{r+1}^{k_{r+1}}) = 1$, а по Теореме 23 функция $\sigma(n) = \sum\limits_{d \mid n} d$ мультипликативна,

$$\sigma(n_{r+1}) = \sigma(n_r p_{r+1}^{k_{r+1}}) = \sigma(n_r) \sigma(p_{r+1}^{k_{r+1}}) = \left(\frac{p_1^{k_1+1} - 1}{p_1 - 1} \dots \frac{p_r^{k_r+1} - 1}{p_r - 1}\right) \frac{p_{r+1}^{k_{r+1}+1} - 1}{p_{r+1} - 1}.$$

2 билет 32

Первообразные корни из 1 в $\mathbb C$

Определение

Пусть $n \in \mathbb{N}$. Число $\varepsilon \in \mathbb{C}$ такое, что $\varepsilon^n = 1$, но $\varepsilon^k \neq 1$ при натуральных k < n называется первообразным корнем из 1 степени n.

• Пусть $\varepsilon_0, \dots, \varepsilon_{n-1}$ — все корни степени n из 1, $\varepsilon_k = (\cos(\frac{2\pi k}{n}), \sin(\frac{2\pi k}{n})).$

Теорема 25

- 1) Существует в точности $\varphi(n)$ первообразных корней степени n из 1, это в точности такие корни ε_i , что (j,n)=1.
- 2) Если ε_j первообразный корень степени n из 1, то ε_j , ε_j^2 , ..., ε_i^n все корни степени n из 1.

Доказательство. \bullet По формуле Муавра, $\arg(\varepsilon_j^k) = \frac{2\pi kj}{n}$. Разберем два случая.

Случай 1: (j, n) = d > 1.

- ullet Тогда $m=rac{n}{d}\in \mathbb{N}$, m< n и $y=rac{j}{d}\in \mathbb{Z}.$
- Следовательно, $\arg(\varepsilon_j^m)=\frac{2\pi m dy}{m d}=2\pi y$ и $\varepsilon_j^m=1$. Это означает, что ε_j не является первообразным корнем из 1 степени n.

Случай 2: (j, n) = 1.

- ullet Тогда аргументы $arepsilon_j, arepsilon_j^2, \dots, arepsilon_j^{n-1}, arepsilon_j^n$ это $rac{2\pi j}{n}$, \dots , $rac{2\pi nj}{n}$.
- По Теореме 13, числа j, 2j, ..., nj ПСВ (mod n). Значит, среди их остатков от деления на n каждый встречается ровно один раз.
- Тогда $\frac{2\pi \cdot j}{n}$, $\frac{2\pi \cdot 2j}{n}$, ..., $\frac{2\pi \cdot nj}{n}$ это в точности такие аргументы, как $\frac{2\pi}{n}$, $\frac{4\pi}{n}$, ..., $\frac{2n\pi}{n}$ (напомним, что аргумент не меняется при прибавлении 2π).
- Это означает, что $\varepsilon_j, \varepsilon_j^2, \dots, \varepsilon_j^{n-1}, \varepsilon_j^n$ это в точности $\varepsilon_0, \dots, \varepsilon_{n-1}$ все корни степени n из 1.
- Понятно, что $\varepsilon_j^n=1$, значит, в меньших степенях ε_j не равен 1, то есть, это первообразный корень степени n из 1.