

CASIO Weltweite Schulungs-Website

http://edu.casio.com

CASIO SCHULUNGSFORUM

http://edu.casio.com/forum/

Inhalt

Wichtige Informationen	. 2
Bedienungsbeispiele	. 2
Initialisierung des Rechners	. 2
Sicherheitsmaßregeln	. 2
Vorsichtsmaßregeln für die Handhabung	. 2
Abnehmen des Schutzgehäuses	. 3
Ein- und Ausschalten der Stromversorgung	. 3
Einstellen des Anzeigekontrasts	
Tastenbeschriftungen	. 4
Über das Display	. 4
Benutzen der Menüs	. 5
Spezifizierung des Rechnungsmodus	. 6
Konfigurieren des Rechner-Setups	. 6
Eingabe von Ausdrücken und Werten	. 8
Berechnungen mit periodischen Dezimalzahlen	
Umschalten der Rechenergebnisse	
Elementare Berechnungen	16
Rest berechnen	20
Primfaktorzerlegung	20
Funktionsberechnungen	21
Statistische Berechnungen (STAT)	27
Generieren einer Zahlentabelle aus einer Funktion (TABLE)	
Berechnung von Wahrscheinlichkeitsverteilungen (DIST)	
(nur fx-991DE PLUS)	33
Berechnungen mit Gleichungen (EQN)	
(nur fx-991DE PLUS)	36
Matrix-Berechnungen (MATRIX) (nur fx-991DE PLUS)	38
Berechnungen mit Ungleichungen (INEQ)	
(nur fx-991DE PLUS)	41
Vektor-Berechnungen (VECTOR) (nur fx-991DE PLUS)	43
Verwenden von VERIFY (VERIF)	46
Berechnungen mit komplexen Zahlen (CMPLX)	
(nur fx-991DE PLUS)	
Verwenden von CALC (nur fx-991DE PLUS)	48
Verwenden von SOLVE (nur fx-991DE PLUS)	50
Base-n-Berechnungen (BASE-N)	52
Wissenschaftliche Konstanten	54
Metrische Umwandlung	56
Rechenbereiche, Anzahl der Stellen und Genauigkeit	58
Fehlermeldungen	
Bevor Sie auf Fehlbetrieb des Rechners schließen	
Austauschen der Batterie	62
Technische Daten	62
Häufig gestellte Fragen	63

Wichtige Informationen

- Die in dieser Bedienungsanleitung enthaltenen Anzeigen und Illustrationen (z. B. Tastenbeschriftungen) dienen nur der Veranschaulichung und können etwas vom tatsächlichen Aussehen abweichen.
- Änderungen des Inhalts dieser Anleitung ohne vorausgehende Ankündigung vorbehalten.
- CASIO Computer Co., Ltd. übernimmt keine Gewähr für etwaige spezielle, mittelbare oder beiläufige Schäden oder Folgeschäden, die aus dem Kauf oder der Verwendung dieses Produkts und der mitgelieferten Artikel resultieren. Weiterhin übernimmt CASIO Computer Co., Ltd. keine Gewähr für aus der Verwendung dieses Produkts und der mitgelieferten Artikel resultierende Ansprüche gleich welcher Art von dritten Personen.
- Bitte bewahren Sie die gesamte Benutzerdokumentation für späteres Nachschlagen auf.

Bedienungsbeispiele

Bedienungsbeispiele in dieser Anleitung sind mit dem Symbol gekennzeichnet. Wenn nicht gesondert angegeben, wird bei allen Bedienungsbeispielen davon ausgegangen, dass sich der Rechner in seiner ursprünglichen Vorgabe-Einstellung befindet. Zum Rückstellen des Rechners auf die ursprüngliche Vorgabe-Einstellung führen Sie bitte die unter "Initialisierung des Rechners" beschriebenen Schritte aus.

Informationen zu den Kennzeichen MATH, LINE, Deg, und Rad, die in den Bedienbeispielen dargestellt sind, finden Sie unter "Konfigurieren des Rechner-Setups".

Initialisierung des Rechners

Führen Sie den folgenden Bedienungsvorgang aus, wenn Sie den Rechner initialisieren sowie den Rechnungsmodus und das Setup auf ihre anfänglichen Vorgabeeinstellungen zurückstellen möchten. Achten Sie darauf, dass durch diesen Vorgang auch alle gegenwärtig im Rechnungsspeicher abgelegten Daten gelöscht werden.

Sicherheitsmaßregeln

Batterie

- Batterien außer Reichweite von Kindern aufbewahren!
- Verwenden Sie ausschließlich den in dieser Bedienungsanleitung für den Rechner genannten Batterietyp.

Vorsichtsmaßregeln für die Handhabung

 Auch wenn der Rechner normal funktioniert, sollte die Batterie mindestens alle drei Jahre ausgetauscht werden.

Eine leere Batterie kann auslaufen und den Rechner beschädigen oder zu Fehlfunktionen führen. Lassen Sie eine leere Batterie nie im Rechner. Verwenden Sie den Rechner nicht, wenn die Batterie vollständig leer ist.

- Die mit dem Gerät mitgelieferte Batterie ist durch Transport und Lagerung bereits etwas entladen. Dadurch kann das Auswechseln früher als bei der normalerweise zu erwartenden Batterielebensdauer erforderlich werden.
- Verwenden Sie mit diesem Produkt keine Oxyride-Batterie* oder andere Primärzelle auf Nickelbasis. Durch Inkompatibilität solcher Batterien mit den Produkteigenschaften können sich eine Verkürzung der Batterielebensdauer und Fehlbetrieb des Produkts ergeben.
- Vermeiden Sie die Benutzung und Lagerung des Gerätes an sehr feuchten oder staubigen Orten oder in Räumen mit extremen Temperaturen.
- Lassen Sie den Rechner niemals fallen und setzen Sie ihn niemals starken Stößen aus oder versuchen Sie niemals ihn zu verdrehen oder zu verbiegen.
- Versuchen Sie auf keinen Fall, den Rechner zu zerlegen.
- Verwenden Sie zum Säubern des Rechnergehäuses einen weichen, trockenen Lappen.
- Immer wenn Sie den Rechner oder die Batterien entsorgen möchten, stellen Sie sicher, dass dieses gemäß den örtlichen Gesetzen und Reglementierungen erfolgt.
- * In dieser Bedienungsanleitung verwendete Firmen- und Produktnamen sind möglicherweise eingetragene Marken oder Marken der jeweiligen Eigner.

Abnehmen des Schutzgehäuses

Bevor Sie den Rechner verwenden, schieben Sie sein Schutzgehäuse nach unten, um dieses abzunehmen, und bringen Sie danach das Schutzgehäuse an der Rückseite des Rechners an, wie es in der nachfolgenden Abbildung dargestellt ist.

Ein- und Ausschalten der Stromversorgung

Drücken Sie die ON-Taste, um den Rechner einzuschalten. Drücken Sie die Tasten [SHIFT] [AC] (OFF), um den Rechner auszuschalten.

Automatische Abschaltung

Wenn ca. 10 Minuten oder 60 Minuten lang keine Eingabe erfolgt, schaltet sich der Rechner automatisch ab. Weitere Hinweise hierzu finden Sie unter "Konfigurieren des Rechner-Setups". Drücken Sie in solchen Fällen die [ON]-Taste, um den Rechner wieder einzuschalten.

Einstellen des Anzeigekontrasts

Der Bildschirm CONTRAST wird mit den folgenden Tasten eingeblendet: fx-86DE PLUS: SHIFT MODE (SETUP) 6 (◀KNTR►), fx-991DE PLUS: SHIFT MODE (SETUP) 7 (◀KNTR►). Danach drücken Sie 4 und 9, um den Anzeigekontrast einzustellen. Drücken Sie nach erfolgter Anpassung AC.

Wichtig: Falls durch die Einstellung des Anzeigekontrasts das Display nicht besser abgelesen werden kann, dann liegt wahrscheinlich eine niedrige Batteriespannung vor. Tauschen Sie die Batterie aus.

Tastenbeschriftungen

Durch Drücken der Taste (HIFT) oder (APHA) gefolgt von der betreffenden Taste erfolgt der Zugriff auf die Zweit- bzw. Drittbelegungen. Die zusätzlichen Belegungen sind über der Tastenkappe angegeben.

Im Folgenden wird dargestellt, was die verschiedenen Farben der zusätzlichen Belegungen bedeuten.

Die Farbe der Tastenmarkierung:	Bedeutet:	
Gelb	Drücken Sie die Taste SHFT und danach die Taste der betreffenden Funktion.	
Rot	Drücken Sie die Taste APPA und danach die Taste, um die entsprechende Variable, Konstante oder das Symbol einzugeben.	
Violett (oder in violetten Klammern)	Wechseln Sie in den CMPLX-Modus, um auf die Funktion zuzugreifen. (nur fx-991DE PLUS)	
Grün (oder in grünen Klammern)	Wechseln Sie in den BASE-N-Modus, um auf die Funktion zuzugreifen.	

Über das Display

Das Display Ihres Rechners zeigt die von Ihnen eingegebenen Ausdrücke, Rechnungsergebnisse und verschiedene Indikatoren an.

Rechnungsergebnis

- Wenn ein ▶-Indikator rechts vom Rechnungsergebnis erscheint, bedeutet dieses, dass das Rechnungsergebnis weiter rechts fortgesetzt wird. Drücken Sie die Tasten ▶ und ♠, um die Anzeige des Rechnungsergebnisses entsprechend zu verschieben.
- Wenn ein ▷-Indikator rechts vom eingegebenen Ausdruck erscheint, bedeutet dieses, dass der eingegebene Ausdruck weiter rechts fortgesetzt wird. Drücken Sie die Tasten ⑤ und ⑥, um die Anzeige des eingegebenen Ausdrucks entsprechend zu verschieben. Bitte beachten Sie, dass wenn Sie den eingegebenen Ausdruck verschieben möchten und sowohl der ▷- als auch der ▷-Indikator angezeigt werden, Sie zuerst die Taste ⑥ und ⑥ zum Verschieben drücken müssen.

Anzeigeindikatoren

Dieser Indikator:	Bedeutet Folgendes:
S	Die Tastatur wurde durch das Drücken der SHFT-Taste umgeschaltet. Die Umschaltung wird wieder freigegeben und dieser Indikator verschwindet, sobald Sie eine Taste drücken.

A	Der alphabetische Eingabemodus wurde durch das Drücken der APM-Taste aufgerufen. Der alphabetische Eingabemodus wird wieder freigegeben und dieser Indikator verschwindet, sobald Sie eine Taste drücken.	
M	In dem unabhängigen Speicher ist ein Wert gespeichert.	
STO	Der Rechner ist auf Bereitschaft für die Eingabe eines Variablennamens geschaltet, um der Variablen einen Wert zuzuordnen. Dieser Indikator erscheint, wenn Sie die Tasten SHFT RCL (STO) drücken.	
RCL	Der Rechner ist auf Bereitschaft für die Eingabe eines Variablennamens geschaltet, um den Wert der Variablen aufzurufen. Dieser Indikator erscheint, nachdem Sie die Taste (RL) gedrückt haben.	
STAT	Der Rechner ist auf den STAT-Modus geschaltet.	
CMPLX	Der Rechner ist auf den MATRIX-Modus geschaltet. (nur fx-991DE PLUS) Der Rechner ist auf den VECTOR-Modus geschaltet.	
MAT		
VCT		
D	Die Standardwinkeleinheit ist Altgrad.	
R	Die Standardwinkeleinheit ist rad (Bogenmaß).	
G	Die Standardwinkeleinheit ist Neugrad.	
FIX	Eine feste Anzahl an Dezimalstellen ist wirksam.	
SCI	Eine feste Anzahl von signifikanten Stellen ist wirksam.	
Math	Die natürliche Anzeige ist als Darstellungsformat gewählt.	
▼ ▲	Die Rechnungsablauf-Speicherdaten stehen zur Verfügung und können wiedergegeben werden, oder es sind weitere Daten über/unter der aktuellen Anzeige vorhanden.	
Disp	Das Display zeigt gegenwärtig ein Zwischenergebnis einer Rechnung mit Mehrfachanweisung an.	

Wichtig: Bei bestimmten Berechnungen, für deren Ausführung viel Zeit benötigt wird, kann das Display vielleicht nur die obigen Indikatoren anzeigen (ohne einen Wert), während die Rechnung intern ausgeführt wird.

Benutzen der Menüs

Einige Berechnungen erfolgen unter Verwendung von Menüs. Drücken Sie zum Beispiel die Taste werden für die entsprechenden Funktionen Menüpunkte angezeigt.

Im Folgenden werden die Tasten beschrieben, die Ihnen das Umblättern zwischen den Menüs ermöglichen.

- Sie können eine Menüposition durch Drücken der Nummerntaste, welche der Nummer links von der Menüposition auf der Menüanzeige entspricht, auswählen.
- Der Indikator ▼ oben rechts in einem Menü zeigt an, dass sich unter dem aktuellen Menü ein weiteres Menü befindet. Der Indikator ▲ bedeutet, dass ein anderes Menü darüber vorhanden ist. Drücken Sie die Tasten ▼ und ▲ zum Umschalten zwischen den Menüs.
- Um ein Menü zu schließen, ohne etwas auszuwählen, drücken Sie die Taste
 AC.

G-5

Spezifizierung des Rechnungsmodus

Wenn Sie diese Art von	Drücken Sie diese Taste:	
Rechnung ausführen möchten:	fx-86DE PLUS	fx-991DE PLUS
Allgemeine Rechnungen	MODE 1 (COMP)	MODE 1 (COMP)
Statistische Berechnungen und Regressionsrechnungen	MODE 2 (STAT)	MODE 2 (STAT)
Generierung einer Zahlentabelle anhand eines Ausdrucks	MODE 3 (TABLE)	MODE 3 (TABLE)
Berechnung von Wahrschein- lichkeitsverteilungen	_	MODE 4 (DIST)
Lösung der Gleichung	_	MODE 5 (EQN)
Matrix-Berechnungen	_	MODE 6 (MATRIX)
Lösung von Ungleichungen	_	MODE 7 (INEQ)
Vektor-Berechnungen	_	MODE 8 (VECTOR)
Überprüfung einer Berechnung	MODE 5 (VERIF)	MODE (VERIF)
Berechnungen mit komplexen Zahlen	_	MODE © 2 (CMPLX)
Berechnungen in speziellen Zahlensystemen (binär, oktal, dezimal, hexadezimal)	MODE 4 (BASE-N)	MODE 3 (BASE-N)

Hinweis: Als Vorgabe ist der allgemeine Rechnungsmodus (COMP) eingestellt.

Konfigurieren des Rechner-Setups

Drücken Sie die Tasten ∏ (SETUP), um das Setup-Menü einzublenden. Danach drücken Sie die Tasten ▼ und ▲ und die Zifferntasten, um die Einstellungen, die Sie wünschen, zu konfigurieren.

Unterstrichene (____) Einstellungen sind die Vorgabewerte.

1 Mth2D 2 Linear Spezifizierung des Anzeigeformats.

Die natürliche Darstellung (Mth2D) zeigt Brüche, irrationale Zahlen und andere Ausdrücke so an, wie sie auf Papier geschrieben werden.

4+2	D	Math ▲
5 3		<u>22</u> 15

Mth2D: Auswahl von <u>2D</u> oder Linear. Bei Auswahl von 2D werden Eingabe und Rechenergebnisse so angezeigt, wie sie auf Papier geschrieben werden. Bei Auswahl von Linear wird die Eingabe wie bei 2D angezeigt, die Rechenergebnisse werden aber im linearen Format angezeigt.

Die lineare Darstellung (Linear) zeigt Brüche und andere Ausdrücke in einer einzigen Zeile an.

4_5+2_3	D	A
		22515

Hinweis: • Der Rechner schaltet automatisch in die lineare Darstellung um, wenn Sie in den STAT-, BASE-N-, MATRIX*- oder VECTOR*-Modus wechseln. • In dieser Anleitung bedeutet das Symbol MATH neben einer Beispielbedienung, dass die natürliche Darstellung (2D) verwendet wird, während das Symbol LINE auf die lineare Darstellung hinweist.

* Nur fx-991DE PLUS

3 Deg 4 Rad 5 Gra Spezifiziert Altgrad, rad oder Neugrad als Winkeleinheit für die Eingabe des Wertes und die Anzeige eines Rechnungsergebnisses.

Hinweis: In dieser Anleitung bedeutet das Symbol Deg neben einer Beispielbedienung, dass Grad verwendet wird, während das Symbol Rad auf das Bogenmaß hinweist.

6 Fix 7 Sci 8 Norm Spezifiziert die Anzahl der Ziffern für die Anzeige eines Rechnungsergebnisses.

Fix: Der von Ihnen spezifizierte Wert (von 0 bis 9) steuert die Anzahl der Dezimalstellen für die angezeigten Rechnungsergebnisse. Die Rechnungsergebnisse werden auf die spezifizierte Anzahl von Ziffern gerundet, bevor sie angezeigt werden.

Beispiel: LINE $100 \div 7 = 14,286$ (Fix 3) 14,29 (Fix 2)

Sci: Der von Ihnen spezifizierte Wert (von 1 bis 10) steuert die Anzahl der signifikanten Stellen für die Anzeige der Rechnungsergebnisse. Die Rechnungsergebnisse werden auf die spezifizierte Anzahl von Ziffern gerundet, bevor sie angezeigt werden.

Beispiel: LINE $1 \div 7 = 1,4286 \times 10^{-1}$ (Sci 5) $1,429 \times 10^{-1}$ (Sci 4)

Norm: Durch die Wahl einer der zwei verfügbaren Einstellungen (**Norm** 1, Norm 2) wird der Bereich bestimmt, in welchem die Ergebnisse nicht im Exponentialformat angezeigt werden. Außerhalb des spezifizierten Bereichs werden die Ergebnisse im Exponentialformat angezeigt.

Norm 1: $10^{-2} > |x|$; $|x| \ge 10^{10}$ Norm 2: $10^{-9} > |x|$; $|x| \ge 10^{10}$

Beispiel: LINE $1 \div 200 = 5 \times 10^{-3}$ (Norm 1) 0,005 (Norm 2)

▼ 1 ab/c ▼ 2 d/c Legt entweder einen gemischten Bruch (ab/c) oder einen unechten Bruch (d/c) für die Anzeige von Brüchen in Rechnungsergebnissen fest.

fx-991DE PLUS: \bigcirc 3 CMPLX 1 a+bi; 2 r $\angle \theta$

Legt rechtwinklige Koordinaten $\overline{(a+bi)}$ oder Polarkoordinaten $(r\angle\theta)$ für Lösungen im EQN-Modus fest.

fx-86DE PLUS: 3 STAT 1 EIN; 2 AUS

fx-991DE PLUS: • 4 STAT 1 EIN; 2 AUS

Legt fest, ob die Anzeige der Häufigkeitsspalte (FREQ) in der Stat-Editoranzeige des STAT-Modus ein- oder ausgeschaltet ist.

fx-86DE PLUS: **(*) (4) PerD (1) EIN ; (2) AUS**

fx-991DE PLUS: Term 1 EIN; 2 AUS

Legt fest, ob Rechenergebnisse mit unendlicher periodischer Dezimalform angezeigt werden.

fx-86DE PLUS: **⑤ 5 AbAut 110 Min.**; **260 Min.**

fx-991DE PLUS: • 6 AbAut 1 10 Min.; 2 60 Min.

Sie können die Zeit bis zur automatischen Abschaltung bei Inaktivität auf 10 oder auf 60 Minuten festlegen.

fx-86DE PLUS: **▼ 6 ◄**KNTR**▶**

fx-991DE PLUS: ▼ 7 ◀KNTR▶

Einstellen des Anzeigekontrasts. Näheres siehe "Einstellen des Anzeigekontrasts".

Initialisierung der Rechnereinstellungen

Führen Sie den folgenden Bedienungsvorgang aus, um den Rechner zu initialisieren. Dabei werden der Rechnungsmodus wieder auf COMP und alle anderen Einstellungen, einschließlich der Setupmenü-Einstellungen, auf ihre anfänglichen Vorgabeeinstellungen zurückgestellt.

SHFT 9 (CLR) 1 (Einst.) \blacksquare (Ja)

Eingabe von Ausdrücken und Werten

Allgemeine Eingaberegeln

Rechnungsausdrücke können auf die gleiche Weise eingegeben werden, wie sie geschrieben sind. Wenn Sie die = -Taste drücken, wird die Berechnung automatisch in der entsprechenden Reihenfolge ausgeführt und das Ergebnis wird im Display angezeigt.

- *1 Für die Funktionen sin, sinh und andere Funktionen, die Klammern beinhalten, muss die schließende Klammer eingegeben werden.
- *2 Dieses Multiplikationszeichen (x) kann weggelassen werden. Sie können in jedem der nachfolgenden Fälle das Multiplikationszeichen (x) weglassen: direkt vor einer öffnenden Klammer, vor sin oder einer Funktion mit Klammern, vor der Ran# (Zufallszahl)-Funktion oder vor einer Variablen (A, B, C, D, E, F, M, X, Y), vor den wissenschaftlichen Konstanten, π oder e.
- *³ Die schließende Klammer vor der Operation ≡ kann weggelassen werden.

Eingabebeispiel mit Weglassen von 🗶 *2 und 🔘 *3 im Beispiel oben.

4 sin 30) (30 + 10 × 3 = 4 sin(30)(30+10×3

Hinweis: • Wenn die Berechnung während der Eingabe länger als die Anzeige wird, verschiebt sich die Anzeige automatisch nach rechts und der Indikator ◀ erscheint auf der Anzeige. Wenn dieses geschieht, können Sie die Anzeige durch Drücken der Tasten ④ und ⑥ verschieben und den Cursor bewegen. • Wenn lineare Darstellung gewählt wurde, springt der Cursor

durch Drücken der Taste ▲ zum Anfang der Rechnung zurück, während er mit ▼ zum Ende der Rechnung springt. • Wenn natürliche Darstellung gewählt wurde, springt der Cursor durch Drücken der Taste ▶ zum Anfang der Rechnung zurück, wenn er sich am Ende befindet. Er springt durch Drücken von ◀ zum Ende der Rechnung, wenn er sich am Anfang befindet. • Für eine einzelne Berechnung können Sie bis zu 99 Byte an Daten eingeben. Jede Ziffer, jedes Symbol oder jede Funktion verwendet normalerweise ein Byte. Einige Funktionen erfordern 3 bis 13 Byte. • Wenn nur noch 10 Byte oder weniger für die Eingabe verbleiben, ändert der Cursor seine Form in ■. Wenn dieses eintritt, beenden Sie die Eingabe der Berechnung und drücken Sie die Taste ■.

Prioritäten für die Ausführung von Berechnungen

Die Reihenfolge der Ausführung der Berechnungen entspricht den unten aufgeführten Regeln. Wenn die Priorität von zwei Ausdrücken gleich ist, erfolgt die Berechnung von links nach rechts.

1	Klammerausdrücke		
2	Funktionen mit einem Argument rechts und einer schließenden Klammer ")" nach dem Argument		
3	Funktionen, die einem Eingabewert folgen (x^2 , x^3 , x^{-1} , $x!$, °' ", °, r, g, %, $\triangleright t^*$), Potenzen (x^{\blacksquare}), Wurzeln ($\sqrt[\bullet]{\Box}$)		
4	Brüche		
5	Negatives Vorzeichen (–), Base- n -Symbole (d, h, b, o) Hinweis: Beim Quadrieren eines negativen Wertes, wie –2, muss der zu quadrierende Wert von Klammern umgeben sein (\bigcirc 2 \bigcirc \bigcirc \bigcirc). Weil x^2 eine höhere Priorität als das negative Vorzeichen hat, würde bei Eingabe von \bigcirc 2 \bigcirc \bigcirc die Zahl 2 quadriert und das Ergebnis mit einem negativen Vorzeichen versehen. Beachten Sie deshalb immer die Prioritätenreihenfolge und schließen Sie negative Werte mit Klammern ein, wenn erforderlich.		
6	Metrische Umwandlungsbefehle (cm \blacktriangleright in usw.), STAT-Modus-Schätzwerte (\hat{x} , \hat{y} , \hat{x}_1 , \hat{x}_2)		
7	Multiplikationen mit weggelassenem Multiplikationszeichen		
8	Permutation (n P r), Kombination (n C r), Polarkoordinatensymbol für komplexe Zahl (\angle)		
9	Skalarprodukt (·)*		
10	Multiplikation, Division (×, ÷), Rest Berechnungen (÷R)		
11	Addition, Subtraktion (+, -)		
12	Logisches AND (and)		
13	Logisches OR, XOR, XNOR (or, xor, xnor)		

^{*} Nur fx-991DE PLUS

Eingabe mit natürlicher Anzeige

Die Auswahl der natürlichen Anzeige ermöglicht die Eingabe und Anzeige von Brüchen und bestimmten Funktionen (log, x^2 , x^3 , x^{\blacksquare} , $\sqrt{\blacksquare}$, $\sqrt[3]{\blacksquare}$, $\sqrt[8]{-}$, x^{-1} , 10^{\blacksquare} , e^{\blacksquare} , $\sqrt[5]{+}$, $\sqrt[4]{-}$, $\sqrt[8]{-}$,

^{*} Nur fx-991DE PLUS

Wichtig: • Bei bestimmten Ausdrücken kann die Höhe einer Berechnungsformel eine Displayzeile überschreiten. Die maximal zulässige Höhe einer Berechnungsformel beträgt zwei Display-Anzeigen (31 Punkte \times 2). Wenn die Höhe der eingegebenen Berechnung die zulässige Grenze überschreitet, sind weitere Eingaben nicht mehr möglich. • Verschachteln von Funktionen und runden Klammern ist zulässig. Bei Verschachteln von zu vielen Funktionen und/oder runden Klammern sind weitere Eingaben nicht mehr möglich. Teilen Sie die Berechnung in solchen Fällen in mehrere Abschnitte auf und berechnen Sie die Abschnitte separat.

Hinweis: Wenn Sie die Taste ≡ drücken und ein Rechnungsergebnis in der natürlichen Anzeige erhalten möchten, kann es sein, dass ein Teil Ihres Eingabeausdruckes abgeschnitten wird. Wenn Sie den vollständigen Eingabeausdruck wieder sehen möchten, drücken Sie die Taste ♠ und benutzen Sie danach die Tasten ♠ und ♠, um den Eingabeausdruck zu verschieben.

Benutzung von Werten und Ausdrücken als Argument (nur bei natürlicher Anzeige)

Ein Wert oder ein Ausdruck, den Sie bereits eingegeben haben, kann als Argument einer Funktion benutzt werden. Nach der Eingabe von zum Beispiel $\frac{7}{6}$ können Sie es zum Argument von $\sqrt{}$ machen, mit dem Ergebnis von $\sqrt{\frac{7}{6}}$.

Wie oben dargestellt, wird der Wert oder Ausdruck rechts vom Cursor nach dem Drücken der Tasten [SHF] [DEL] (INS) zum Argument der Funktion, die darauffolgend spezifiziert ist. Der als Argument umfasste Bereich erstreckt sich bis zur ersten offenen Klammer rechts (falls vorhanden) oder bis zur ersten Funktion rechts (sin(30), log2(4) usw.).

Diese Fähigkeit kann mit folgenden Funktionen verwendet werden: \blacksquare , $[@_{\square}]$, $[\mathbb{P}^*]$, [SHFT] $[\mathbb{Q}^*]$, [SHFT] $[\mathbb{Q}^*]$, $[\mathbb{Z}^*]$, $[\mathbb{Q}^*]$, $[\mathbb$

^{*} Nur fx-991DE PLUS

Modus "Eingabe überschreiben" (nur lineare Darstellung)

Sie können bei der Eingabe auswählen zwischen Einfügen oder Überschreiben, jedoch nur, wenn lineare Darstellung ausgewählt wurde. Im Modus Überschreiben ersetzt der Text, den Sie eingeben, den vorhandenen Text an der aktuellen Cursorposition. Sie können zwischen den Modi Einfügen und Überschreiben durch Ausführung von folgender Bedienungsfolge umschalten: [SHF] [EL] (INS). Im Modus Einfügen erscheint der Cursor als "II" und als "III" [INS] im Modus Überschreiben.

Hinweis: Die natürliche Darstellung verwendet immer den Modus Einfügen, so dass bei Änderungen des Anzeigeformates von linearer Darstellung in natürliche Darstellung immer automatisch in den Modus Einfügen umgeschaltet wird.

Ausdruck korrigieren und löschen

Um ein einzelnes Zeichen oder eine Funktion zu löschen: Bewegen Sie den Cursor direkt auf die rechte Seite des Zeichens oder der Funktion, das/die Sie löschen möchten, und drücken Sie dann die Taste EL. Im Modus Überschreiben müssen Sie den Cursor direkt unter das Zeichen oder die Funktion bewegen, das/die Sie löschen möchten. Drücken Sie danach die Taste EL.

Um ein einzelnes Zeichen oder eine Funktion in eine Rechnung einzufügen: Verschieben Sie den Cursor mit ● und ● an die Stelle, an der die Eingabe des Zeichens oder der Funktion erfolgen soll, und geben Sie diese(s) dann ein. Denken Sie daran, den Modus Einfügen zu verwenden, wenn die lineare Darstellung ausgewählt wurde.

Um die Rechnung, welche Sie eingegeben haben, zu löschen: Drücken Sie die Taste AC.

Berechnungen mit periodischen Dezimalzahlen

Ihr Rechner benutzt eine periodische Dezimalzahl, wenn Sie einen Wert eingeben. Rechnungsergebnisse können, falls zutreffend, mit periodischen Dezimalzahlen angezeigt werden.

Eingabe einer periodischen Dezimalzahl

Bei Eingabe einer periodischen Dezimalzahl drücken Sie vor der Eingabe der Periode (sich wiederholende Ziffern) die Tasten $\mathbb{H}^2(\blacksquare)$ (fx-86DE PLUS)/ $\mathbb{H}^2(\blacksquare)$ (fx-991DE PLUS) und geben danach die Periode bis zum Ende ein. Um die periodische Dezimalzahl 0,909090.... (0,90) einzugeben, drücken Sie die Tasten 0 $\mathbb{R}^2(\blacksquare)$ 90 (fx-86DE PLUS)/ 0 $\mathbb{R}^2(\blacksquare)$ 90 (fx-991DE PLUS).

Wichtig: • Wenn der Wert mit einem ganzzahligen Teil beginnt (z. B. 12,3123123...), schließen Sie diesen ganzzahligen Teil nicht in die Periode (12,312) ein. • Die Eingabe einer periodischen Dezimalzahl ist nur bei natürlicher Anzeige möglich.

Hinweis: • Sie können bis zu 14 Dezimalstellen für die Periode eingeben. Geben Sie mehr als 14 Dezimalstellen ein, wird der Wert als endliche und nicht als periodische Dezimalzahl behandelt. • Die Eingabe einer periodischen Dezimalzahl kann ohne Berücksichtigung der PerD-Einstellung im Setup-Menü erfolgen.

Anzeigen eines Rechnungsergebnisses als periodische Dezimalzahl

Rechnungsergebnisse, die als periodische Dezimalzahlen angezeigt werden können, werden als solche angezeigt, wenn EIN für die PerD-Einstellung im Setup-Menü gewählt wurde. Drücken der [5+10] - Taste schaltet zwischen den verfügbaren Rechnungsergebnisformaten, wie unten dargestellt, um.

 $\frac{1}{7}$ = 0, $\overline{142857}$ = 0,1428571429 (Norm 1) MATH Math ▲ 1 🖶 7 🖃 Math ▲ Anzeige als periodische Dezimalzahl: S+D $0,\overline{142857}$ O Math ▲ Dezimalwert entsprechend der Norm 1-Einstellung: S+D 0,1428571429 Math A Zurück zum ursprünglichen Anzeigeformat (Bruch): S+D $1 \div 7 = \frac{1}{7} = 0,\overline{142857} = 0,1428571429 \text{ (Norm 1)}$ Math ▲ 1 **÷** 7 SHIFT **≡** (**≈**) 0,1428571429 Math ▲ 1÷7 Anzeige als Bruch: Math ▲ $1 \div 7$ Anzeige als periodische Dezimalzahl: S+D $0,\overline{142857}$ Math ▲ Zurück zum ursprünglichen $1 \div 7$ Anzeigeformat (Norm 1): S+D 0,1428571429 $\frac{1}{7} = 0,\overline{142857} = 0,1428571429$ (Norm 1) LINE 1 🗐 7 🖃 1 $_{
m J}7$ $1 \, \text{J} 7$ Anzeige als periodische Dezimalzahl: S+D $0,\overline{142857}$ Dezimalwert entsprechend der $1 \, \text{J} 7$ Norm 1-Einstellung: S+D 0,1428571429

Zurück zum ursprünglichen Anzeigeformat (Bruch):

Bedingungen für die Anzeige eines Rechnungsergebnisses als periodische Dezimalzahl

Wenn ein Rechnungsergebnis die folgenden Bedingungen erfüllt, wird es durch Drücken der [940] - Taste als periodische Dezimalzahl angezeigt.

- Die Gesamtanzahl der verwendeten Stellen im gemischten Bruch (einschließlich ganzer Zahl, Zähler, Nenner und Trennungssymbol) darf nicht größer als 10 sein.
- Die Datengröße des als periodische Dezimalzahl anzuzeigenden Wertes darf 99 Byte nicht überschreiten. Jeder Wert und der Dezimalpunkt erfordern ein Byte, jede Stelle der Periode erfordert ein Byte. Das folgende Beispiel erfordert 8 Byte (4 Byte für die Werte, 1 Byte für den Dezimalpunkt, 3 Byte für die Periode): 0,123

Hinweis: Für weitere Informationen über das Umschalten des Anzeigeformats von Rechnungsergebnissen, wenn AUS für die PerD-Einstellung im Setup-Menü gewählt wurde, siehe "Umschalten der Rechnungsergebnisse".

Beispiele für periodische Dezimalzahlen

1,
$$\overline{6}$$
 + 2, $\overline{8}$ = 4, $\overline{5}$ MATH

fx-86DE PLUS: 1 • SHFT x^2 ($\overline{\blacksquare}$) 6 • $\overline{\blacksquare}$
2 • SHFT x^2 ($\overline{\blacksquare}$) 8 $\overline{\blacksquare}$ SHFD

Zeigen Sie:
$$0,\overline{123} = \frac{123}{999}; 0,\overline{1234} = \frac{1234}{9999}; 0,\overline{12345} = \frac{12345}{99999}$$

2 • ALPHA (■)8 = S+D

0

Math ▲

Math ▲

S+D 12345 99999 0, 12345

Umschalten der Rechenergebnisse

Wenn die natürliche Darstellung ausgewählt wurde, wird jedes Drücken von \mathfrak{B} das aktuelle Rechnungsergebnis zwischen Bruchdarstellung und Dezimaldarstellung, $\sqrt{}$ -Form und Dezimalform oder π -Form und Dezimalform umschalten.

$$\pi \div 6 = \frac{1}{6}\pi = 0,5235987756$$

MATH

SHIFT $\times 10^{3}$ (π) \div 6 \equiv

$$\frac{1}{6}\pi$$

0,5235987756

$$(\sqrt{2} + 2) \times \sqrt{3} = \sqrt{6} + 2\sqrt{3} = 5,913591358$$

$$(\sqrt{2} + 2) \times \sqrt{3} = \sqrt{6} + 2\sqrt{3}$$

$$5,913591358$$

Wenn lineare Darstellung gewählt wurde, wird jedes Drücken der Taste (s-m) das aktuelle angezeigte Rechenergebnis zwischen Dezimaldarstellung und Bruchdarstellung umschalten.

1 ÷ 5 = 0,2 =
$$\frac{1}{5}$$
 LINE
1 ÷ 5 ≡ 0,2 \rightleftharpoons 1 ...5
1 - $\frac{4}{5}$ = $\frac{1}{5}$ = 0,2 LINE
1 - 4 \rightleftharpoons 5 \equiv 1 ...5 \rightleftharpoons 0,2

Wichtig: • Je nach Art des beim Drücken der — Taste im Display angezeigten Rechenergebnisses kann die Umwandlung des Wertes einige Zeit in Anspruch nehmen. • Bei bestimmten Rechenergebnissen ist das Konvertieren des Wertes mit der — Taste nicht möglich. • Wenn EIN für PerD im Setup-Menü ausgewählt wird, wird durch Drücken der — Taste das Rechnungsergebnis in der Form einer periodischen Dezimalzahl angezeigt. Für weitere Details siehe "Berechnungen mit periodischen Dezimalzahlen". • Sie können von dem Dezimalformat nicht auf das Format für gemischte Brüche umschalten, wenn die Gesamtzahl der für den gemischten Bruch verwendeten Stellen (einschließlich Ganzzahl, Zähler, Nenner und Trennungssymbole) größer als 10 ist.

Hinweis: Wenn Sie bei natürlicher Anzeige (2D) nach der Eingabe einer Rechnung die Tasten (Ξ) anstelle von (Ξ) drücken, wird das Rechnungsergebnis in Dezimalform angezeigt. Wenn dann die (Ξ) -Taste gedrückt wird, wird das Rechnungsergebnis als periodische Dezimalzahl, Bruch oder in der π -Form dargestellt. Das $\sqrt{}$ -Format des Ergebnisses wird in diesem Fall nicht angezeigt.

Elementare Berechnungen

Bruchrechnung

Beachten Sie, dass die Eingabemethode für Brüche unterschiedlich ist und davon abhängig ist, ob Sie die natürliche Darstellung oder lineare Darstellung benutzen.

Hinweis: • Das Ergebnis einer Rechnung, in der sowohl Brüche als auch Dezimalwerte vorkommen, wird bei Auswahl der linearen Darstellung im Dezimalformat angezeigt. • Die Ergebnisse von Bruchrechnungen werden immer gekürzt, bevor sie angezeigt werden.

Umschalten zwischen dem Format für unechte Brüche und dem Format für gemischte Brüche: Drücken Sie die Tasten: \mathbb{SHF} \mathbb{SH} $(a\frac{b}{C} \leftrightarrow \frac{d}{C})$

Um bei einem Rechnungsergebnis zwischen Bruch und Dezimalformat umzuschalten: Drücken Sie die Taste [940].

Prozentrechnungen

Falls Sie einen Wert eingeben und die Tasten [SHIFT] ((%) drücken, wird der Eingabewert zu einem Prozentsatz.

30	150 X 20 SHFT ((%) =	150 × 20% = 30
	Prozent 660 von 880 ist. (75%)	Berechnen Sie, wieviel
75	660 ÷ 880 SHFT ((%) ≡	
	5%. (2875)	Erhöhen Sie 2500 um
2875	500 + 2500 X 15 SHFT ((%) =	2
	n 25%. (2625)	Verringern Sie 3500 ur
2625	500 3 500 2 5 SHFT ((%) =	3

Berechnungen in Grad, Minuten und Sekunden (Sexagesimal-Rechnung)

Sie können eine Addition oder Subtraktion mit Sexagesimalwerten ausführen, oder eine Multiplikation oder Division eines Sexagesimalwertes und eines Dezimalwertes ausführen, was dazu führt, dass das Ergebnis als Sexagesimalwert angezeigt wird. Sie können Werte zwischen dem Sexagesimalsystem und dem Dezimalsystem umwandeln. Für die Eingabe von Sexagesimalwerten gilt folgendes Format: {Grad} [] {Minuten} [] {Sekunden} []

Hinweis: Achten Sie darauf, dass Sie für Grad und Minuten immer eine Eingabe tätigen müssen, auch wenn diese Null ist.

Mehrfachanweisungen

Sie können den Doppelpunkt (:) verwenden, um zwei oder mehr Ausdrücke zu verbinden, und von links nach rechts berechnen, wenn Sie die ■-Taste drücken.

Verwendung der technischen Notation

Eine einfache Tastenbedienung zeigt einen Wert in der technischen Notation an.

Wandeln Sie den Wert 1234 in die technische Notation um, verschieben Sie den Dezimalpunkt nach rechts.

> 1234 1234

> > 1,234×10³ ENG

1234×10° **ENG**

Wandeln Sie den Wert 123 in die technische Notation um, verschieben Sie den Dezimalpunkt nach links.

> 123 (=) 123

 $0,123\times10^{3}$ SHIFT ENG (\leftarrow)

SHIFT ENG (\leftarrow) 0,000123×10⁶

Berechnungsverlauf

Im COMP-, CMPLX*- oder BASE-N-Modus speichert der Rechner ca. 200 Byte Daten der zuletzt ausgeführten Rechnungen. Sie können durch den

* Nur fx-991DE PLUS

2	1 🛨 1 🖃	1 + 1 = 2
4	2 🛨 2 🖃	2 + 2 = 4
6	3 ★ 3 🖃	3 + 3 = 6
4	(Rückwärts scrollen.)	
2	(Wieder rückwärts scrollen.)	

Der Inhalt des Rechnungsablaufspeichers wird gelöscht, wenn Sie die [0N]-Taste drücken, den Rechnungsmodus oder das Anzeigeformat umschalten bzw. einen Rückstellvorgang ausführen.

Wiederholungsfunktion

Während ein Rechnungsergebnis am Display angezeigt wird, können Sie die <a>- oder <a>- Taste drücken, um den für die vorhergehende Rechnung verwendeten Ausdruck zu bearbeiten.

 $4 \times 3 + 2,5 = 14,5$ LINE 14,5 4 **X** 3 **+** 2,5 **=** $4 \times 3 - 7,1 = 4,9$ (Fortsetzung) \bigcirc DEL DEL DEL DEL \bigcirc 7,1 \bigcirc 4.9

Hinweis: Falls Sie eine Rechnung bearbeiten möchten, während das Symbol ► rechts vom Rechnungsergebnis angezeigt wird (siehe "Über das Display"), drücken Sie die AC-Taste und benutzen Sie dann die ◆ und ▶-Tasten, um die Rechnung zu verschieben.

Antwortspeicher (Ans)

Das zuletzt erhaltene Rechnungsergebnis wird im Antwortspeicher (Ans) gespeichert. Der Inhalt des Antwortspeichers wird aktualisiert, wenn ein neues Rechnungsergebnis angezeigt wird.

Variablen (A, B, C, D, E, F, X, Y)

Ihr Rechner verfügt über 8 voreingestellte Variablen mit den Bezeichnungen A, B, C, D, E, F, X und Y. Sie können einer Variablen einen bestimmten Wert zuordnen und sie in den Rechnungen verwenden.

Das Ergebnis von 3 + 5 ist der Variablen A zuzuordnen 3 + 5 SHIFT RCL (STO) (-) (A)		
Der Inhalt der Variablen A ist mit 10 zu multiplizieren (Fortsetzung)	80	
Den Inhalt der Variablen A zurückrufen (Fortsetzung) RCL (-) (A)	8	
Den Inhalt der Variablen A löschen 0 SHIFT RCL (STO) (-) (A)	0	

Unabhängiger Speicher (M)

Sie können Rechnungsergebnisse zu dem Inhalt des unabhängigen Speichers addieren bzw. von diesem subtrahieren. Das "M" erscheint auf dem Display, wenn der unabhängige Speicher einen Wert ungleich 0 enthält.

0	(STO) M+ (M)	O SHIFT RCL (Löschen des Inhalts von M	
50	10 🕱 5 M+	zu M zu addieren (Fortsetzung)	Das Ergebnis von 10×5 ist	
15		von M zu subtrahiere ortsetzung) 10 ∰ 5 (Das Ergebnis von 10 + 5 ist (F	
35	RCL M+ (M)	(Fortsetzung)	Aufrufen des Inhalts von M	
		0 11 111111		

Hinweis: Für den unabhängigen Speicher wird die Variable M verwendet.

Löschung des Inhalts aller Speicher

Der Inhalt des Antwortspeichers, des unabhängigen Speichers und von Variablen bleibt erhalten, auch wenn Sie die 🚾 -Taste drücken, den Rechenmodus ändern oder den Rechner ausschalten. Verwenden Sie den nachfolgenden Vorgang, um den Inhalt aller Speicher zu löschen.

Rest berechnen

Sie können die ÷R-Funktion verwenden, um den Quotienten und Rest in einer Division zu erhalten.

Hinweis: • Im Antwortspeicher (Ans) wird von einer ÷R-Rechnung nur der Wert des Quotienten gespeichert. • Bei Zuweisung des Ergebnisses einer Restwertdivision zu einer Variablen wird nur der Wert des Quotienten zugewiesen. Bei Ausführung der Operation 5 ÷R*2 ⟨SHFT ⟨RCL (STO) ⟨Y) (Welche das Ergebnis von 5÷R2 der Variablen X zuweist) wird der Variablen X der Wert 2 zugewiesen. • Wenn eine ÷R-Rechnung Teil einer Mehrfachberechnung ist, wird nur der Quotient an die nächste Operation weitergegeben. (Beispiel: 10 + 17 ÷R*6 →10 + 2) • Bedienung der (SHD-, (ENG- und (SHD-)-Tasten ist deaktiviert, während das Ergebnis der Restwertdivision angezeigt wird.

* fx-86DE PLUS: SHIFT Abs $(\div R)$, fx-991DE PLUS: ALPHA $\blacksquare (\div R)$

Fälle, in denen Restwertdivisionen zu Nicht-Restwertdivisionen werden

Wenn eine der folgenden Bedingungen bei der Ausführung einer Restwertdivision auftritt, wird die Rechnung als normale Division ohne Rest behandelt.

- Wenn entweder der Dividend oder der Divisor ein sehr langer Wert ist. Beispiel: 20000000000 **÷R*** 17 (≡)
 - → Wird berechnet als 20000000000 ÷ 17
- Wenn der Quotient keine positive ganze Zahl ist oder der Rest keine positive ganze Zahl oder kein positiver Bruch ist.

Beispiel: \bigcirc 5 **÷R***2 \bigcirc \rightarrow Wird berechnet als $-5 \div 2$

* fx-86DE PLUS: SHIFT Abs (÷R), fx-991DE PLUS: ALPHA (=)(÷R)

Primfaktorzerlegung

Im COMP-Modus können Sie eine positive ganze Zahl mit maximal 10 Ziffern in Primfaktoren mit maximal 3 Ziffern zerlegen.

Primfaktorzerlegung von 1014		
	1014 🖃	1014
SHIFT	(FACT)	2×3×13 ²

Wenn eine Zahl bei einer Primfaktorzerlegung einen Primfaktor mit mehr als drei Stellen enthält, wird dieser nicht zerlegbare Teil auf dem Display in Klammern dargestellt.

Primfaktorzerlegung der Zahl 4104676 (= 2² × 1013²)

SHIFT (FACT)

2²×(1026169)

Bei jedem der nachstehenden Arbeitsschritte wird die Anzeige des Ergebnisses der Primfaktorzerlegung beendet.

- Drücken von [SHFT] [FACT] oder .
- Drücken einer der folgenden Tasten: [NG] oder [979].
- Ändern der Einstellung der Winkeleinheit (Deg, Rad, Gra) oder der Anzeigeeinstellung (Fix, Sci, Norm) mit dem Setup-Menü.

Hinweis: • Sie können keine Primfaktorzerlegung an Rechenergebnissen mit Dezimalwerten, Brüchen oder negativen Werten durchführen. Wenn Sie es trotzdem versuchen, wird ein mathematischer Fehler (Math.-Fehler) angezeigt. • Auch an einem Rechenergebnis, bei dem Pol, Rec und ÷R verwendet wird, können Sie keine Primfaktorzerlegung ausführen.

Funktionsberechnungen

Operationen unter Verwendung der einzelnen Funktionen werden im Abschnitt "Beispiele" nach der folgenden Übersicht beschrieben.

 π : π wird angezeigt als 3,141592654, in den internen Rechnungen wird jedoch π = 3,14159265358980 verwendet.

e: e wird angezeigt als 2,718281828, in den internen Rechnungen wird jedoch e = 2,71828182845904 verwendet.

sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹: Trigonometrische Funktionen. Spezifizieren Sie die Winkeleinheit, bevor Sie Rechnungen ausführen. Siehe <u>21</u>.

sinh, cosh, tanh, sinh⁻¹, cosh⁻¹, tanh⁻¹: Hyperbolische Funktionen. Geben Sie eine Funktion aus dem Menü ein, welches erscheint, wenn Sie die mp-Taste drücken. Die Einstellung der Winkeleinheit hat keine Auswirkungen auf Rechnungen. Siehe \mathcal{D}_2 .

- °, r, g: Diese Funktionen geben die Winkeleinheit vor. ° bestimmt Altgrad, r rad und g Neugrad. Geben Sie eine Funktion aus dem Menü ein, welches erscheint, wenn Sie die folgende Tastenbedienung ausführen: SHIFT (DRG ►). Siehe 3.
- 10 $^{\blacksquare}$, e^{\blacksquare} : Exponentialfunktionen. Beachten Sie, dass die Eingabemethode davon abhängig ist, ob Sie die natürliche Darstellung oder lineare Darstellung benutzen. Siehe 24.

log: Logarithmische Funktion. Verwenden Sie die Taste $\[\]$ zum Eingeben von $\[\]$ log $\[\]$ als $\[\]$ log $\[\]$ als $\[\]$ log $\[\]$ log $\[\]$ wird verwendet, wenn Sie keinen Wert für $\[\]$ eingeben. Die Taste $\[\]$ kann ebenfalls für die Eingabe verwendet werden, aber nur, wenn die natürliche Darstellung gewählt wurde. In diesem Fall müssen Sie einen Wert für die Basis eingeben. Siehe $\[\]$ 5.

In: Natürlicher Logarithmus mit der Basis e. Siehe \mathcal{D}_6 .

 x^2 , x^3 , x^{\blacksquare} , $\sqrt{\blacksquare}$, $\sqrt[3]{\blacksquare}$, $\sqrt{\blacksquare}$, x^{-1} : Potenzen, Wurzeln und Kehrwerte. Beachten Sie, dass die Eingabemethoden für x^{\blacksquare} , $\sqrt{\blacksquare}$, $\sqrt[3]{\blacksquare}$, und $\sqrt[8]{\blacksquare}$ unterschiedlich sind und davon abhängig sind, ob Sie die natürliche oder lineare Darstellung benutzen. Siehe $\sqrt[8]{7}$.

Hinweis: • Die folgenden Funktionen können nicht direkt hintereinander eingegeben werden: x^2 , x^3 , x^{\blacksquare} , x^{-1} . Wenn Sie zum Beispiel $2 x^2 x^2$ eingeben, wird das letzte x^2 ignoriert. Um 2^{2^2} einzugeben, geben Sie $2 x^2$ ein und drücken die Taste 1 und danach die Taste 1 (MATH). • 1 1 1 kann beim Rechnen mit komplexen Zahlen verwendet werden.

 \int_a^{\blacksquare} *: Funktion für die numerische Integration unter Verwendung der Gauß-Kronrod-Methode. Bei natürlicher Anzeige ist die Eingabesyntax $\int_a^b f(x)$, während bei linearer Anzeige die Eingabesyntax $\int (f(x); a; b; tol)$ verwendet wird. tol gibt die Toleranz an. Wenn für nichts eingegeben wird, wird der Wert 1 × 10⁻⁵ verwendet tol. Weitere Informationen dazu finden Sie unter "Was bei der Integral- und Differentialrechnung zu beachten ist" und "Tipps für Integralrechnungen". Siehe 28.

 $\frac{d}{dx}$ *: Funktion für die Approximation der Ableitung anhand der zentralen Differenz. Bei natürlicher Anzeige ist die Eingabesyntax $\frac{d}{dx}(f(x))|_{x=a}$, während bei linearer Anzeige die Eingabesyntax $\frac{d}{dx}(f(x); a; tol)$ verwendet wird. tol gibt die Toleranz an. Wenn für nichts eingegeben wird, wird der Wert 1×10^{-10} verwendet tol. Weitere Informationen dazu finden Sie unter "Was bei der Integral- und Differentialrechnung zu beachten ist". Siehe \mathcal{D}_9 .

Engabesyntax $\Sigma(f(x)) = f(a) + f(a+1) + f(a+2) + ... + f(b)$ bestimmt. Die Eingabesyntax bei natürlicher Anzeige ist $\Sigma(f(x))$, während bei linearer Anzeige die Eingabesyntax $\Sigma(f(x); a; b)$ verwendet wird. α und β sind Ganzzahlen, die im Bereich $-1 \times 10^{10} < \alpha \le b < 1 \times 10^{10}$ liegen können. Siehe n10.

Hinweis: Die folgenden Funktionen können in f(x), a oder b nicht verwendet werden: Pol, Rec, \div R, \int , d/dx, Σ , Π .

 $\overline{\mathbb{Z}}$ =*: Ermittlung des Produkts von f(x) über einen bestimmten Bereich. Die Berechnungsformel lautet: $\prod_{x=a}^b (f(x)) = f(a) \times f(a+1) \times f(a+2) \times ... \times f(b)$. Die Eingabesyntax für die natürliche Anzeige lautet $\prod_{x=a}^b (f(x))$ und die

Eingabesyntax für die lineare Anzeige lautet $\Pi(f(x); a; b)$. a und b sind Ganzzahlen im Bereich $a < 1 \times 10^{10}$; $b < 1 \times 10^{10}$; $a \le b$. Siehe $n \le 1$.

Hinweis: Folgende Funktionen können bei f(x) nicht verwendet werden: Pol, Rec, \div R. Folgende Funktionen können nicht bei f(x), a oder b verwendet werden: \int , d/dx, Σ , Π .

Pol, Rec: Pol wandelt rechtwinklige Koordinaten in Polarkoordinaten um, während Rec Polarkoordinaten in rechtwinklige Koordinaten umwandelt. Siehe \mathcal{O}_{12} .

(Pol)

Koordinaten (Rec)

Spezifizieren Sie die Winkeleinheit, bevor Sie Rechnungen ausführen. Die Rechnungsergebnisse für r und θ und für x und y werden den Variablen X bzw. Y zugewiesen. Das Rechnungsergebnis für θ wird im Bereich $-180^{\circ} < \theta \le 180^{\circ}$ angezeigt.

x!: Faktorielle Funktion. Siehe \mathcal{Q}_{13} .

Abs: Absolutwert. Beachten Sie, dass die Eingabemethode davon abhängig ist, ob Sie die natürliche Darstellung oder lineare Darstellung benutzen. Siehe //14.

Ran#: Erzeugt eine dreiziffrige Pseudo-Zufallszahl kleiner als 1. Bei natürlicher Darstellung wird das Ergebnis als Bruch dargestellt. Siehe \$\mathbb{\mathscr{/}}15.

RanInt#: Zur Eingabe der Funktion der Form RanInt#(a; b), welche eine ganzzahlige Zufallszahl im Bereich von a bis b generiert. Siehe $\underline{\mathscr{D}_{16}}$.

nPr, nCr: Permutations- (nPr) und Kombinations- (nCr) Funktionen. Siehe *[*17 .

Rnd: Aus dem Argument dieser Funktion wird eine Dezimalzahl gemacht, die dann entsprechend der festgelegten Anzahl der Anzeigestellen (Norm, Fix oder Sci) gerundet wird. Mit Norm 1 oder Norm 2 wird das Argument auf 10 Stellen gerundet. Mit Fix oder Sci wird das Argument auf die spezifizierte Anzahl von Stellen gerundet. Wenn Fix 3 die Anzeigeeinstellung ist, wird beispielsweise das Ergebnis von 10 ÷ 3 als 3,333 angezeigt, während Berechnung verwendet. Im Fall von Rnd(10÷3) = 3,333 (mit Fix 3) wird 3,333 sowohl angezeigt als auch intern vom Rechner verwendet. Dadurch kann eine Reihe von Rechnungen unterschiedliche Ergebnisse haben, abhängig davon, ob Rnd verwendet (Rnd(10÷3) × 3 = 9,999) oder nicht verwendet wird (10 ÷ 3 × 3 = 10,000). Siehe $\sqrt[2]{18}$.

GCD, LCM: Mit GCD wird der größte gemeinsame Teiler zweier Werte ermittelt; mit LCM wird das kleinste gemeinsame Vielfache ermittelt. Siehe *Ø*19 .

Int: Errechnet den ganzzahligen Anteil eines Werts. Siehe 20.

Intg: Ermittelt die größte Ganzzahl, die nicht über einem festlegten Wert liegt. Siehe **21**.

* Nur fx-991DE PLUS

Hinweis: Die Verwendung von Funktionen kann die Rechnergeschwindigkeit verringern, wodurch es zu Verzögerungen bei der Anzeige von Ergebnissen kommen kann. Führen Sie bis zum Erscheinen des Rechenergebnisses keine nachfolgende Tastenbedienung am Rechner durch. Um eine laufende Rechnung abzubrechen, bevor das Ergebnis erscheint, drücken Sie die Taste AC.

Was bei der Integral- und Differentialrechnung zu beachten ist

- Integral- und Differentialrechnungen können nur im COMP-Modus (MODE 11) ausgeführt werden.
- Die folgenden Funktionen können in f(x), a, b oder tol nicht verwendet werden: Pol, Rec, \div R, J, d/dx, Σ , Π .
- Wenn Sie in f(x) eine trigonometrische Funktion verwenden, geben Sie Rad als Winkeleinheit an.
- Ein kleinerer Wert für tol erhöht zwar die Genauigkeit, die Berechnungszeit nimmt aber ebenfalls zu. Verwenden Sie für tol mindestens 1×10^{-14} .

Was bei der Integralrechnung zu beachten ist

- Die Integration nimmt normalerweise viel Zeit in Anspruch. Für f(x) < 0 und $a \le x \le b$ (wie bei $\int_0^1 3x^2 2 = -1$) ist das Ergebnis negativ.

• Je nach Art der Funktion f(x) und dem Integrationsbereich kann ein Rechenfehler erzeugt werden, der die Toleranz übersteigt, wodurch eine Fehlermeldung angezeigt wird.

Was bei der Differentialrechnung zu beachten ist

- Wenn für tol kein Wert eingegeben wird und keine konvergierende Lösung gefunden werden kann, wird der tol-Wert automatisch angepasst, um die Lösung zu bestimmen.
- Nicht aufeinanderfolgende Punkte, abrupte Schwankungen, Punkte mit äußerst hohen oder niedrigen Werten, Wendepunkte oder die Einbeziehung von Punkten, an denen eine Ableitung unmöglich ist, oder ein Punkt oder ein Differentialrechnungsergebnis in der Nähe von 0 können zu einer niedrigen Genauigkeit oder einem Fehler führen.

Tipps für Integralrechnungen

Wenn bei einer periodischen Funktion oder einem bestimmten Integrationsintervall positive und negative Funktionswerte von f(x) auftreten

Führen Sie für den positiven Teil und den negativen Teil eine separate Integration durch und fassen Sie die Ergebnisse dann zusammen.

Wenn Integrationswerte bei sehr kleinen Änderungen im Integrationsintervall stark schwanken

Teilen Sie das Integrationsintervall so in mehrere Abschnitte auf, dass Bereiche mit großen Schwankungen in kleine Abschnitte unterteilt sind. Führen Sie die Integration auf jedem Abschnitt aus und fassen Sie die Ergebnisse zusammen.

Beispiele

Um $e^5 \times 2$ mit drei signifikanten Stellen (Sci 3) zu berechnen SHIFT (MODE) (SETUP) 7 (Sci) 3 2,97×10² MATH SHIFT In (e^{\blacksquare}) 5 \blacktriangleright \bigstar 2 \blacksquare SHIFT In (e^{\blacksquare}) 5 \bigcirc \times 2 \blacksquare 2,97×10² LINE $\log_{10} 1000 = \log 1000 = 3$ 3 [log 1000 [] [=] $\log_{2} 16 = 4$ 4 log 2 SHFT (;) 16 () = MATH [log_∎] 2 **(►)** 16 **(=)** 4 Um In 90 (= loge90) mit drei signifikanten Stellen (Sci 3) zu berechnen 4,50×10° SHIFT MODE (SETUP) 7 (Sci) 3 In 90) = $1.2 \times 10^3 = 1200$ MATH 1200 $1,2 \times 10 \times 3 =$ $(1+1)^{2+2} = 16$ MATH (1 + 1) x 2 + 2 =16 fx-86DE PLUS: $(5 x^2) x^3 =$ $(5^2)^3 = 15625$ fx-991DE PLUS: (5 x^2) SHIFT $x^2(x^3)$ = 15625 SHIFT $x^{\bullet}(\sqrt[4]{-})$ 5 \bigcirc 32 \bigcirc 2 $\sqrt[5]{32} = 2$ MATH $5 \text{ SHFT } x^{\bullet}(\sqrt[4]{\Box}) 32) \equiv$ 2 LINE Berechnen Sie $\sqrt{2} \times 3 = 4.242640687...$) auf drei Dezimalen (Fix 3) SHIFT MODE (SETUP) 6 (Fix) 3 MATH **№** 2 **№ X** 3 **=** $3\sqrt{2}$ SHIFT $\equiv (\approx)$ 4,243 4.243 LINE **√a** 2 **) X** 3 **≡** $\int_{1}^{e} \ln(x) = 1$ 1 MATH \square In ALPHA \square (X) \square 1 \square ALPHA \square (e) \square LINE \square In ALPHA \square (X) \square SHIFT \square (;) 1 1 SHIFT \bigcirc (;) ALPHA $\times 10^x$ (e) \bigcirc \blacksquare Bestimmen Sie die Ableitung am Punkt $x = \pi/2$ für die Funktion Rad $y = \sin(x)$ MATH SHIFT $(\frac{d}{dx})$ sin (ALPHA) (X) \blacksquare SHIFT $\times 10^{x}$ (π) \blacksquare 2 \blacksquare 0 SHIFT $(\frac{d}{dx})$ sin ALPHA (X)LINE SHIFT) (;) SHIFT $\times 10^x$ (π) = 2) =0 $\sum_{i=1}^{\infty} (x+1) = 20$ MATH SHIFT [0] $(\Sigma -)$ ALPHA (X) (X20 SHIFT $\log_{\blacksquare}(\Sigma -)$ ALPHA $\supset (X) + 1$ SHIFT $\supset (;) 1$ LINE SHIFT → (;) 5 → = 20

10 SHIFT \div (nCr) 4

Kombinationen:

210

<u>/18</u>		Rechnungen, wenn Fix 3 für o alstellen gewählt wurde: 10 -	
SHIFT (M	ODE (SETUP) 6 (Fix) 3	10 🕂 3 🗶 3 🖃	10,000
	SHIFT 0 (Rnd) 10 🛨 3 🕥 🗶 3 🖃	9,999
<u>/19</u>		en gemeinsamen Teiler von	28 und 35
		:D) 28 ⊞∏ () (;) 35 () ≡ te gemeinsame Vielfache vo	on 9 und 15:
	ALPHA 🔃 (LC	CM) 9 SHIFT (;) 15 ()	45
<u> </u>	So ermitteln Sie den ganzz	zahligen Teil von –3,5: (APHA) (+) (Int) (-) 3,5 (-) (=)	-3
2 1	So ermitteln Sie die größte	e Ganzzahl, die –3,5 nicht üb	ersteigt:

Statistische Berechnungen (STAT)

Um eine statistische Berechnung zu beginnen, drücken Sie die Tasten [100] [2] (STAT), um in den STAT-Modus umzuschalten, und verwenden Sie den Bildschirm, der erscheint, um den statistischen Rechnungstyp, den Sie ausführen möchten, auszuwählen.

Zur Wahl dieses statistischen Rechnungstyps: (Regressionsformel in Klammern dargestellt)	Drücken Sie diese Taste:
Einzelne Variable (X)	1 (1-VAR)
Variablenpaar (X, Y), lineare Regression $(y = A + Bx)$	2 (A+BX)
Variablenpaar (X, Y), quadratische Regression $(y = A + Bx + Cx^2)$	3 (_+CX²)
Variablenpaar (X, Y), logarithmische Regression $(y = A + Blnx)$	4 (In X)
Variablenpaar (X, Y), exponentielle Regression mit e ($y = Ae^{B^X}$)	5 (<i>e</i> ^X)
Variablenpaar (X, Y), exponentielle Regression mit ab ($y = AB^x$)	6 (A•B^X)
Variablenpaar (X, Y), Potenzregression $(y = Ax^B)$	7 (A•X^B)
Variablenpaar (X, Y), inverse Regression $(y = A + B/x)$	8 (1/X)

Drücken Sie eine der Tasten oben (1 bis 8), um den Stat-Editor anzuzeigen.

Hinweis: Wenn Sie den Rechnungstyp ändern möchten, nachdem Sie den STAT-Modus aufgerufen haben, drücken Sie die Tasten [III] (STAT)* (Type), um den Auswahlbildschirm für den Rechnungstyp aufzurufen.

* Die Tastenkombination ist 1 (STAT) auf dem fx-86DE PLUS und 1 (STAT/DIST) auf dem fx-991DE PLUS. In dieser Anleitung wird diese Tastenkombination als 1 (STAT) angezeigt.

Eingabe der Daten

Verwenden Sie zur Eingabe der Daten den Stat-Editor. Drücken Sie die folgenden Tasten, um den Stat-Editor aufzurufen: [SHF] 1 (STAT) 2 (Data). Der STAT-Editor verfügt über 40 Zeilen für die Dateneingabe mit einer X-Spalte oder einer X- und Y-Spalte, 20 Zeilen mit einer X- und FREQ-Spalte oder 26 Zeilen mit einer X-, Y- und FREQ-Spalte.

Hinweis: Sie können die FREQ-Spalte (Häufigkeit) verwenden, um die Anzahl (Häufigkeit) von identischen Datenelementen einzugeben. Die Anzeige der FREQ-Spalte kann in der Stat-Formateinstellung im Setup-Menü ein-(angezeigt) oder ausgeschaltet (nicht angezeigt) werden.

Auswahl von linearer Regression und Eingabe der folgenden Daten: (170, 66), (173, 68), (179, 75)

Wichtig: • Alle aktuell in den Stat-Editor eingegebenen Daten werden gelöscht, wenn Sie den STAT-Modus verlassen, zwischen der statistischen Rechnungsart mit einer Variablen oder einem Variablenpaar umschalten oder die Stat-Formateinstellung im Setup-Menü ändern. • Folgende Operationen werden vom Stat-Editor nicht unterstützt: [M+], [SHFT] [M+] (M-), [SHFT] [RCL] (STO). Auch sind keine Eingaben von Pol, Rec, ÷R und Mehrfachanweisungen mit dem Stat-Editor möglich.

Daten in einer Zelle ändern: Bewegen Sie im Stat-Editor den Cursor zu der Zelle, welche die Daten enthält, die Sie ändern möchten. Geben Sie die neuen Daten ein und drücken Sie \blacksquare .

Eine Zeile löschen: Stellen Sie den Cursor im Stat-Editor auf die zu löschende Zeile und drücken Sie die Taste 🖭.

Eine Zeile einfügen: Stellen Sie den Cursor im Stat-Editor auf die Position, an der Sie eine Zeile einfügen möchten, und drücken Sie die folgenden Tasten: [SHFT] 1 (STAT) 3 (Edit) 1 (Ins).

Den kompletten Inhalt im Stat-Editor löschen: Verwenden Sie hierzu im Stat-Editor die folgenden Tasten: [SHIFT] 1 (STAT) 3 (Edit) 2 (Del-A).

Berechnen statistischer Werte aus den eingegebenen Daten

Um statistische Werte zu berechnen, drücken Sie im Stat-Editor die Taste \square und rufen Sie dann die gewünschte statistische Variable (σ_x , Σx^2 usw.) auf. Nachfolgend werden die unterstützten statistischen Variablen und die für ihren Aufruf zu drückenden Tasten dargestellt. Für statistische Rechnungen mit einer Variablen sind die mit einem Sternchen (*) gekennzeichneten Variablen verfügbar.

Sum: Σx^{2*} , Σx^{*} , Σy^{2} , Σy , Σxy , Σx^{3} , $\Sigma x^{2}y$, Σx^{4} SHIFT 1 (STAT) 3 (Sum) 1 bis 8 Anzahl der Stichproben: n^* , Mittelwert: \bar{x}^* , \bar{y} , Gesamtheits-Standardabweichung: σ_x^* , σ_y , Stichproben-Standardabweichung: s_x^* , Sν SHIFT 1 (STAT) 4 (Var) 1 bis 7 Regressionskoeffizienten: A, B, Korrelationskoeffizient: r, Schätzwerte: \hat{x}, \hat{y} SHIFT 1 (STAT) 5 (Reg) 1 bis 5 Regressionskoeffizienten für quadratische Regression: A, B, C, Schätzwerte: \hat{x}_1 , \hat{x}_2 , \hat{y} SHIFT 1 (STAT) 5 (Reg) 1 bis 6 • Beachten Sie die Tabelle für Regressionsformeln am Anfang dieses Abschnitts in dieser Bedienungsanleitung. • \hat{x} , \hat{x}_1 , \hat{x}_2 und \hat{y} sind keine Variablen. Es handelt sich um Befehle mit einem Argument unmittelbar davor. Siehe "Schätzwerte berechnen" für weitere Informationen. Minimalwert: minX*, minY, Maximalwert: maxX*, maxY fx-86DE PLUS: SHIFT 1 (STAT) 5 (MinMax) 1 bis 2 fx-991DE PLUS: [SHIFT] 1 (STAT) 6 (MinMax) 1 bis 2 (Wenn die statistische Rechenoperation mit einer Variablen gewählt wurde) SHIFT 1 (STAT) 6 (MinMax) 1 bis 4 (Wenn die statistische Rechenoperation mit einem Variablenpaar gewählt wurde) Erstes Quartil: Q1, Median: med, drittes Quartil: Q3 fx-86DE PLUS: SHIFT 1 (STAT) 5 (MinMax) 3 bis 5 fx-991DE PLUS: [SHIFT] 1 (STAT) 6 (MinMax) 3 bis 5 (Wenn die statistische Rechenoperation mit einer Variablen gewählt wurde) Hinweis: Bei Auswahl von statistischen Berechnungen mit einer einzelnen Variablen können Sie die Funktionen und Befehle zur Berechnung der Normalverteilung über das Menü eingeben, das bei Verwendung der folgenden Tasten eingeblendet wird: SHFT [1] (STAT/DIST) [5] (Distr) (nur fx-991DE PLUS). Ausführliche Informationen dazu finden Sie unter "Berechnungen von Normalverteilungen". Geben Sie die Daten $x = \{1, 2, 2, 3, 3, 3, 4, 4, 5\}$ für eine einzelne Variable ein, verwenden Sie dabei die FREQ-Spalte, um die Anzahl der Wiederholungen für jedes Element anzugeben ($\{x_n; freq_n\}$) = {1;1, 2;2, 3;3, 4;2, 5;1}), und berechnen Sie den Mittelwert und die Gesamtheits-Standardabweichung. fx-86DE PLUS: SHIFT MODE (SETUP) (STAT) (STAT) (EIN) fx-991DE PLUS: SHIFT MODE (SETUP) (STAT) (EIN) STAT X O MODE 2 (STAT) 1 (1-VAR) FREQ 3 4 5 1 = 2 = 3 = 4 = 5 = \bigcirc 1 = 2 = 3 = 2 = 1 AC SHIFT 1 (STAT) 4 (Var) 2 (\bar{x})

AC SHIFT 1 (STAT) 4 (Var) 3 (σ_x) 1,154700538

Ergebnisse: Mittelwert: 3

Gesamtheits-Standardabweichung: 1,154700538

Berechnen Sie die Korrelationskoeffizienten für die lineare und logarithmische Regression für folgende gepaarte Variablendaten und die Regressionsformel für die stärkste Korrelation: (x, y) =(20, 3150), (110, 7310), (200, 8800), (290, 9310). Spezifizieren Sie "Fix 3" (3 Dezimalstellen) für die Ergebnisse.

fx-86DE PLUS: SHIFT MODE (SETUP) (SETUP) (3 (STAT) (2 (AUS)) fx-991DE PLUS: SHIFT MODE (SETUP) (4 (STAT) (AUS)

SHIFT MODE (SETUP) 6 (Fix) 3

Ergebnisse: Korrelationskoeffizient für lineare Regression: 0,923

Korrelationskoeffizient für logarithmische Regression: 0,998

Logarithmische Regressionsformel:

 $y = -3857,984 + 2357,532 \ln x$

Schätzwerte berechnen

Anhand der mit einer statistischen Rechnung mit Variablenpaar erhaltenen Regressionsformel kann der Schätzwert von y für einen gegebenen x-Wert berechnet werden. Der entsprechende x-Wert (zwei Werte, x_1 und x_2 , im Fall einer quadratischen Regression) kann ebenfalls für einen Wert von y mit der Regressionsformel berechnet werden.

1 Bestimmen Sie den Schätzwert für *y*, wenn in der durch logarithmische Regression der Daten in \$\mathscr{/}{3}\$ generierten Regressionsformel x = 160 ist. Spezifizieren Sie Fix 3 für das Ergebnis. (Führen Sie folgende Schritte aus, nachdem Sie die Operation in \(\mathcal{D}_3 \) abgeschlossen haben.)

> 8106,898 AC 160 SHIFT 1 (STAT) 5 (Reg) 5 (\hat{y})

Ergebnis: 8106,898

Wichtig: Berechnungen von Regressionskoeffizient, Korrelationskoeffizient und Schätzwert können beträchtliche Zeit in Anspruch nehmen, wenn sie eine große Anzahl von Datenelementen enthalten.

Berechnungen von Normalverteilungen (nur fx-991DE PLUS)

Bei Auswahl von statistischen Berechnungen mit einer einzelnen Variablen können Sie die Normalverteilung mit den unten angezeigten Funktionen und dem Menü berechnen, das bei Verwendung der folgenden Tasten eingeblendet wird: [SHF] [1] (STAT/DIST) [5] (Distr).

P, Q, R: Bei diesen Funktionen wird die Wahrscheinlichkeit der Standardnormalverteilung mit dem Argument t bestimmt, wie in der folgenden Abbildung gezeigt.

▶ *t*: Diese Funktion, der das Argument X vorausgeht, bestimmt die normalisierte Zufallsvariable X ► $t = \frac{X - \bar{x}}{Gx}$.

Bestimmen Sie für die Einzelvariablendaten $\{xn ; \text{freq}n\} = \{0;1, 1;2, 2;1, 3;2, 4;2, 5;2, 6;3, 7;4, 9;2, 10;1\}$ die normalisierte Zufallsvariable ($\triangleright t$) für x = 3 und P(t) an diesem Punkt bis auf drei Dezimalstellen (Fix 3).

SHIFT MODE (SETUP)
4 (STAT) 1 (EIN)

SHIFT MODE (SETUP) 6 (Fix) 3 MODE 2 (STAT) 1 (1-VAR)

AC 3 SHIFT 1 (STAT/DIST) 5 (Distr) 4 ($\triangleright t$)

SHIFT 1 (STAT/DIST) 5 (Distr) 1 (P() (Ans.) (

Ergebnis: Normalisierte Zufallsvariable ($\triangleright t$): -0.762 P(t): 0,223

Generieren einer Zahlentabelle aus einer Funktion (TABLE)

TABLE generiert eine Zahlentabelle für x und f(x) unter Verwendung einer eingegebenen Funktion f(x). Der nachfolgende Vorgang generiert eine Zahlentabelle.

- 1. Drücken Sie [10] 3 (TABLE), um in den TABLE-Modus umzuschalten.
- 2. Geben Sie eine Funktion im Format f(x) ein und verwenden Sie dabei die X-Variable.

- Stellen Sie sicher, dass Sie die X-Variable (APPA) (X)) bei der Generierung der Zahlentabelle eingeben. Jede andere Variable wird als Konstante behandelt.
- Folgendes kann in der Funktion nicht verwendet werden: Pol, Rec, \int , d/dx, Σ , Π .
- 3. Geben Sie nach Anzeige der Eingabeaufforderungen die Werte, die Sie verwenden möchten, ein. Drücken Sie nach jedem Wert die Taste =.

Für diese Eingabeaufforderung:	Geben Sie dieses ein:
Startwert?	Eingabe der Untergrenze von X (Vorgabewert = 1).
Endwert?	Eingabe der Obergrenze von X (Vorgabewert = 5). Hinweis: Stellen Sie sicher, dass der Endwert immer größer als der Startwert ist.
Schrittweite?	Eingabe des Inkrements (Vorgabewert = 1). Hinweis: Das Inkrement gibt an, um wie viel der Startwert schrittweise erhöht werden soll, um die Zahlentabelle zu generieren. Wenn Sie Startwert = 1 und Inkrement = 1 festlegen, wird X nacheinander der Wert 1, 2, 3, 4 usw. zugeordnet, um die Zahlentabelle zu generieren, bis der Endwert erreicht wird.

- Geben Sie das Inkrement ein und drücken Sie die Taste , um die Zahlentabelle entsprechend der von Ihnen spezifizierten Parameter zu generieren und anzuzeigen.
- Drücken Sie während der Anzeige der Zahlentabelle die Ac-Taste, um zur Funktionseditoranzeige in Schritt 2 zurückzukehren.

Hinweis: • Sie können die Zahlentabellenanzeige nur zum Ansehen von Werten verwenden. Tabelleninhalte können nicht bearbeitet werden. • Die Generierung der Zahlentabelle bewirkt, dass der Inhalt der Variablen X geändert wird.

Wichtig: Die von Ihnen eingegebene Funktion für die Generierung der Zahlentabelle wird gelöscht, wenn Sie die Einstellung des Eingabe/Ausgabeformats (natürliche Darstellung oder lineare Darstellung) in der Setup-Menü im TABLE-Modus ändern.

Berechnung von Wahrscheinlichkeitsverteilungen (DIST) (nur fx-991DE PLUS)

Zur Berechnung der sieben verschiedenen Wahrscheinlichkeitsverteilungstypen stehen folgende, unten aufgeführte Verfahren zur Verfügung.

- 1. Drücken Sie MODE 4 (DIST), um den DIST-Modus aufzurufen.
- 2. Wählen Sie im angezeigten Menü den gewünschten Wahrscheinlichkeitsverteilungswert aus.

Zur Auswahl dieses Berechnungstyps:	Drücken Sie diese Taste:	
Normalverteilungsdichte	1 (Normal PD)	
Kumulative Normalverteilung	2 (Normal CD)	
Umkehrfunktion der kumulativen Normalverteilung	3 (Inverse Normal)	
Binomiale Wahrscheinlichkeit	4 (Binomial PD)	
Kumulative Binomialverteilung	(Binomial CD)	
Poisson-Wahrscheinlichkeit	② (Poisson PD)	
Kumulative Poisson-Verteilung	▼ 3 (Poisson CD)	

- 3. Geben Sie die Werte für die Variablen ein.
 - Mit Binomial PD, Binomial CD, Poisson PD und Poisson CD können Sie Probendaten eingeben und damit anschließend Berechnungen durchführen.
- 4. Nachdem Sie die Werte für alle Variablen eingegeben haben, drücken Sie auf =.
 - Jetzt werden die Rechenergebnisse angezeigt.
 - Wenn Sie w\u00e4hrend der Anzeige des Rechenergebnisses auf oder oder dr\u00fccken, kehren Sie automatisch zum Eingabefenster der ersten Variable zur\u00fcck.

Hinweis: • Zum Ändern des Wahrscheinlichkeitsverteilungstyps nach Aufrufen des Modus DIST drücken Sie auf [SHFT] [1] (STAT/DIST) [1] (Type) und wählen Sie danach den gewünschten Verteilungstyp aus. • Die Verteilungsberechnung erfolgt auf bis zu fünf signifikante Ziffern genau.

Variablen, die eine Eingabe erfordern

Zu den folgenden Variablen zur Verteilungsberechung sind Eingabewerte erforderlich.

Normal PD..... x, σ , μ

Normal CD...... Lower, Upper, σ , μ

links)

Binomial PD, Binomial CD... x (oder Liste), N, p

Poisson PD, Poisson CD..... x (oder Liste), μ

x: Daten, σ : Standardabweichung ($\sigma > 0$), μ : mean, Lower: untere Grenze, Upper: obere Grenze, Tail: Wahrscheinlichkeitswert für angegebenen kritischen Bereich, Area: Wahrscheinlichkeitswert ($0 \le \text{Area} \le 1$), Liste: Stichprobendatenliste, N: Anzahl der Versuche, p: Trefferwahrscheinlichkeit ($0 \le p \le 1$)

Listenanzeige (Binomial PD, Binomial CD, Poisson PD, Poisson CD)

Verwenden Sie bei Binomial PD, Binomial CD, Poisson PD und Poisson CD die Listenanzeige für die Eingabe von Probedaten. Es können bis zu 25 Datenproben für jede Variable eingegeben werden. Die Rechenergebnisse werden auch in der Listenansicht angezeigt.

X: Probedaten Ans: Rechenergebnisse

Bearbeiten von Probedaten: Bewegen Sie den Cursor zu der Zelle, in der sich die zu bearbeitenden Probedaten befinden, geben Sie die neuen Probedaten ein und drücken Sie anschließend auf

.

Löschen von Probedaten: Bewegen Sie den Cursor zu der Zelle, in der sich die zu löschenden Probedaten befinden, und drücken Sie anschließend auf **EL**].

Einfügen von Probedaten: Bewegen Sie den Cursor zu der Position, an der Sie die Probedaten einfügen möchten, drücken Sie auf

[SHFT 1] (STAT/DIST) 2 (Edit) 1 (Ins) und geben Sie anschließend die Probedaten ein.

Löschen sämtlicher Probedaten: Drücken Sie auf SHFT 1 (STAT/DIST) 2 (Edit) 2 (Del-A).

Berechnungsbeispiele für den DIST-Modus

Ergebnis: 0,1760326634

 Durch Drücken auf oder kehren Sie zum x-Eingabefenster zurück.

Zur Berechnung der binomialen Wahrscheinlichkeit für die Probedaten {10, 11, 12, 13, 14} wenn N=15 und p=0,6

Zum Festlegen von Daten mit dem Parameterformat drücken Sie auf
 (VAR).

Ergebnisse: x = binomiale Wahrscheinlichkeit von 10 = 0,18594

x = binomiale Wahrscheinlichkeit von 11 = 0,12678

x = binomiale Wahrscheinlichkeit von 12 = 0,063388

x = binomiale Wahrscheinlichkeit von 13 = 0,021942

 $x = \text{binomiale Wahrscheinlichkeit von } 14 = 4,7018 \times 10^{-3}$

Durch Drücken auf kehren Sie zum N-Eingabefenster zurück.
 Durch Drücken auf kehren Sie zur Liste zurück (die eingegebenen Datenproben werden gespeichert).

Hinweis: • Folgende Funktionen können Wahrscheinlichkeitsbei werden: verteilungen nicht verwendet Pol, ÷R. • Werden Daten mithilfe des Parameterformats definiert, so werden die Berechnungsergebnisse im Ans-Speicher gespeichert. Fehlermeldung wird angezeigt, wenn sich der Eingabewert außerhalb des zulässigen Bereichs befindet. In der Ans-Spalte der Liste wird "ERROR" angezeigt, wenn sich der Eingabewert für die zugehörigen Probedaten außerhalb des zulässigen Bereichs befindet.

Berechnungen mit Gleichungen (EQN) (nur fx-991DE PLUS)

Mit dem folgenden Verfahren im EQN-Modus können Sie lineare Gleichungssysteme mit zwei oder drei Unbekannten sowie quadratische und kubische Gleichungen lösen.

- 1. Drücken Sie [60] [5] (EQN), um in den EQN-Modus umzuschalten.
- 2. Wählen Sie im angezeigten Menü einen Gleichungstyp aus.

Zum Wählen dieses Rechnungstyps:	Drücken Sie diese Taste:
Lineares Gleichungssystem mit zwei Unbekannten	
Lineares Gleichungssystem mit drei Unbekannten	$2 (a_nX + b_nY + c_nZ = d_n)$
Quadratische Gleichung	$3(aX^2 + bX + c = 0)$
Kubische Gleichung	$4 (aX^3 + bX^2 + cX + d = 0)$

- 3. Benutzen Sie den Koeffizienten-Editor zur Eingabe der Werte der Koeffizienten.
 - Zum Lösen von $2x^2 + x 3 = 0$ drücken Sie 3 in Schritt 2 und geben Sie danach folgendes für die Koeffizienten ein (a = 2, b = 1, c = -3): 2 = 1 = -3.
 - Um bereits eingegebene Werte von Koeffizienten zu ändern, bewegen Sie den Cursor zur entsprechenden Zelle, geben Sie den neuen Wert ein und drücken Sie danach (=).
 - Durch Drücken von AC werden alle Koeffizienten auf Null zurückgesetzt.

Wichtig: Folgende Funktionen werden vom Koeffizienten-Editor nicht unterstützt: M+, SHIFI M+ (M-), SHIFI RCL (STO). Auch sind keine Eingaben von Pol, Rec, ÷R und Mehrfachanweisungen mit dem Koeffizienten-Editor möglich.

- 4. Drücken Sie nach erfolgter Eingabe der Werte

 .
 - Dadurch wird eine Lösung angezeigt. Wenn Sie erneut drücken, wird die nächste Lösung angezeigt. Wenn Sie bei Anzeige der letzten Lösung drücken, wird der Koeffizienten-Editor wieder aktiviert.

 - Zum Zurückschalten von der Anzeige der Lösung in die Koeffizienten-Editoranzeige drücken Sie AC.

Hinweis: • Auch wenn die natürliche Anzeige ausgewählt wurde, werden die Lösungen eines linearen Gleichungssystems nicht in einer Form angezeigt, die √ enthält. • Werte können auf dem Lösungsbildschirm nicht in die technische Notation umgewandelt werden. • Es wird eine Meldung angezeigt, wenn es keine Lösung oder eine unbegrenzte Anzahl an Lösungen gibt. Durch Drücken von ♠C oder ➡ wird der Koeffizienten-Editor angezeigt.

Ändern der Einstellung des aktuellen Gleichungstyps

Durch Drücken von [100] 5 (EQN) können Sie im angezeigten Menü einen Gleichungstyp auswählen. Beim Ändern des Gleichungstyps werden die Werte aller Koeffizienten im Koeffizienten-Editor auf Null zurückgesetzt.

Berechnungsbeispiele für den EQN-Modus

$$x + 2y = 3; 2x + 3y = 4$$

$$1 = 2 = 3 = 4 = 2$$

$$2 = 3 = 4 = (X=) -1$$

$$(Y=) 2$$

* Bei a > 0 wird der lokale Mindestwert angezeigt. Bei a < 0 wird der lokale Maximalwert angezeigt.

Matrix-Berechnungen (MATRIX) (nur fx-991DE PLUS)

Verwenden Sie den MATRIX-Modus für Berechnungen mit Matrizen mit bis zu 3 Zeilen und 3 Spalten. Bei einer Matrix-Berechnung weisen Sie zuerst speziellen Matrixvariablen (MatA, MatB, MatC) Daten zu und verwenden dann die Variablen in der Berechnung, wie im folgenden Beispiel gezeigt.

Weisen Sie
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 MatA und $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ MatB zu, und führen Sie dann die folgenden Berechnungen aus: $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ (MatA×MatB), $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ (MatA+MatB)

- 1. Drücken Sie MODE 6 (MATRIX), um in den MATRIX-Modus umzuschalten.
- 2. Drücken Sie 1 (MatA) 5 (2×2).
 - Damit wird der Matrix-Editor für die Eingabe der Elemente der 2 x 2-Matrix, die Sie für MatA festgelegt haben, angezeigt.

- 3. Geben Sie die Elemente von MatA ein: 2 = 1 = 1 = 1 = .
- 4. Drücken Sie die Tasten: (MATRIX) 2 (Data) 2 (MatB) 5 (2 × 2).
 - Damit wird der Matrix-Editor für die Eingabe der Elemente der 2 x 2-Matrix, die Sie für MatB festgelegt haben, angezeigt.
- 6. Drücken Sie AC, um zum Berechnungsbildschirm zu gehen, und führen Sie die erste Berechnung (MatA×MatB) aus: SHFT 4 (MATRIX) 3 (MatA) X SHFT 4 (MATRIX) 4 (MatB) .
 - Damit wird der MatAns-Bildschirm mit dem Rechenergebnis angezeigt.

Hinweis: "MatAns" steht für "Matrix-Antwortspeicher". Weitere Informationen dazu finden Sie unter "Matrix-Antwortspeicher".

7. Führen Sie die nächste Berechnung (MatA+MatB) durch: AC SHIFT 4 (MATRIX) 3 (MatA) + SHIFT 4 (MATRIX) 4 (MatB) =.

Matrix-Antwortspeicher

Wenn das Ergebnis einer im MATRIX-Modus ausgeführten Berechnung eine Matrix ist, wird der MatAns-Bildschirm mit dem Ergebnis angezeigt. Das Ergebnis wird der Variablen MatAns zugewiesen.

Die Variable MatAns kann wie folgt in Berechnungen verwendet werden:

- Um die Variable MatAns in eine Berechnung einzufügen, drücken Sie die folgenden Tasten: [4] (MATRIX) [6] (MatAns).

Zuweisen und Bearbeiten von Matrixvariablendaten

Wichtig: Folgende Funktionen werden vom Matrix-Editor nicht unterstützt: M+, SHFT M+ (M-), SHFT RCL (STO). Auch sind keine Eingaben von Pol, Rec, ÷R und Mehrfachanweisungen mit dem Matrix-Editor möglich.

Zuweisen von neuen Daten zu einer Matrixvariablen:

- 1. Drücken Sie [4] (MATRIX) [1] (Dim), und wählen Sie dann im eingeblendeten Menü die Matrixvariable aus, der Sie Daten zuweisen möchten.
- 2. Wählen Sie im nächsten angezeigten Menü die Dimensionen $(m \times n)$ aus.
- 3. Verwenden Sie den eingeblendeten Matrix-Editor zur Eingabe der Elemente der Matrix.

Bearbeiten der Elemente einer Matrixvariablen:

- 1. Drücken Sie [SHFT] 4 (MATRIX) 2 (Data), und wählen Sie im eingeblendeten Menü die Matrixvariable aus, die Sie bearbeiten möchten.
- 2. Verwenden Sie den eingeblendeten Matrix-Editor zum Bearbeiten der Elemente der Matrix.
 - Verschieben Sie den Cursor zu der Zelle mit dem Element, das Sie ändern möchten, geben Sie den neuen Wert ein und drücken Sie 🖃 .

Kopieren des Inhalts der Matrixvariablen (oder von MatAns):

- 1. Verwenden Sie den Matrix-Editor zur Anzeige der Matrix, die Sie kopieren möchten.
 - Wenn Sie zum Beispiel MatA kopieren möchten, drücken Sie die folgenden Tasten: [SHIFT] 4 (MATRIX) 2 (Data) 1 (MatA).
 - Wenn Sie den Inhalt von MatAns kopieren möchten, drücken Sie die folgenden Tasten, um den Bildschirm MatAns einzublenden:

 AC SHIFT 4 (MATRIX) 6 (MatAns) = .
- 2. Drücken Sie SHFT RCL (STO), und führen Sie dann eine der folgenden Tastenoperationen aus, um das Kopierziel anzugeben: (MatA), (MatB) oder (Mp) (MatC).
 - Damit wird der Matrix-Editor mit dem Inhalt des Kopierziels angezeigt.

Rechenbeispiele mit Matrizen Die folgenden Beispiele verwenden MatA = $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ und MatB = $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ von $\underline{\mathcal{D}_1}$, und MatC = $\begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ von $\underline{\mathcal{D}_2}$. Sie können eine Matrixvariable in eine Tastenoperation eingeben, indem Sie SHFT 4 (MATRIX) und dann eine der folgenden Zahlentasten drücken: 3 (MatA), 4 (MatB), 5 (MatC). 3 × MatA (Skalarmultiplikation). 3] AC 3 X MatA = Bestimmen Sie die Determinante von MatA (det(MatA)). 1 AC SHIFT 4 (MATRIX) 7 (det) MatA) = Bestimmen Sie die Transponierte von MatC (Trn(MatC)). AC SHIFT 4 (MATRIX) 8 (Trn) MatC) = Bestimmen Sie die inverse Matrix von MatA (MatA⁻¹). **Hinweis:** Sie können nicht x^{-1} für diese Eingabe verwenden. Verwenden Sie die Taste x zur Eingabe von "-1". ACMatA[x] =-[] Bestimmen Sie den Absolutwert jedes Elements von MatB (Abs(MatB)). AC SHIFT (hyp) (Abs) MatB () (=) 긼 Bestimmen Sie das Quadrat und die dritte Potenz von MatA (MatA², MatA³). **Hinweis:** Sie können nicht **x** für diese Eingabe verwenden. Verwenden Sie x^2 für das Quadrat und x^2 x^3 für die dritte Potenz. 3] AC MatA x^2 =AC MatA SHIFT $x^2(x^3)$

AC MatA SHFT $x^2(x^3)$ \equiv Figure 1.1428 1.285]

AC SHFT 4 (MATRIX) \bigcirc 1 (Ref) MatA \bigcirc \equiv Figure 1.1428 1.285]

Property 1.1428 1.285]

Figure 1.1428 1.285]

AC SHIFT 4 (MATRIX) 2 (Rref) MatA)

Berechnungen mit Ungleichungen (INEQ) (nur fx-991DE PLUS)

Sie können den nachstehenden Vorgang zur Lösung einer quadratischen oder kubischen Ungleichung verwenden.

- 1. Drücken Sie MODE 7 (INEQ) zum Aufrufen des INEQ-Modus.
- 2. Wählen Sie im angezeigten Menü einen Ungleichungstyp aus.

Zum Wählen dieses Ungleichungstyps:	Drücken Sie diese Taste:
Quadratische Ungleichung	$1(aX^2 + bX + c)$
Kubische Ungleichung	$2(aX^3 + bX^2 + cX + d)$

- 3. Benutzen Sie im angezeigten Menü die Tasten 1 bis 4 zur Auswahl des Ungleichungssymboltyps und der Orientierung.
- 4. Benutzen Sie den Koeffizienten-Editor zur Eingabe der Werte der Koeffizienten.
 - Um beispielsweise $x^2 + 2x 3 < 0$ zu lösen, geben Sie die Koeffizienten a = 1, b = 2, c = -3 durch Drücken von 1 \blacksquare 2 \blacksquare 3 \blacksquare ein.
 - Um einen bereits eingegebenen Wert eines Koeffizienten zu ändern, bewegen Sie den Cursor zur entsprechenden Zelle, geben Sie den neuen Wert ein und drücken Sie danach =.
 - Durch Drücken von AC werden alle Koeffizienten auf Null zurückgesetzt.

Hinweis: Folgende Funktionen werden vom Koeffizienten-Editor nicht unterstützt: M+, SHFT M+ (M-), SHFT RCL (STO). Auch sind keine Eingaben von Pol, Rec, \div R und Mehrfachweisungen mit dem Koeffizienten-Editor möglich.

- 5. Drücken Sie nach erfolgter Eingabe der Werte 🖃 .
 - Dadurch werden die Lösungen angezeigt.
 - Drücken Sie AC zum Zurückschalten von der Anzeige der Lösungen in die Koeffizienten-Editoranzeige.

Hinweis: Werte können auf dem Lösungsbildschirm nicht in die technische Notation umgewandelt werden.

Ändern des Ungleichungstyps

Durch Drücken von [MDE] [7] (INEQ) können Sie im angezeigten Menü den Ungleichungstyp auswählen. Beim Ändern des Ungleichungstyps werden die Werte aller Koeffizienten im Koeffizienten-Editor auf Null zurückgesetzt.

Berechnungsbeispiele für den INEQ-Modus

MODE 7 (INEQ) 1 (
$$aX^2 + bX + c$$
)
3 ($aX^2 + bX + c \ge 0$)
1 = 2 = (-) 3 =

Hinweis: Lösungen werden wie hier dargestellt angezeigt, wenn die lineare Anzeige gewählt wurde.

$$2x^3 - 3x^2 \ge 0 \qquad \text{MATH}$$

MODE 7 (INEQ) 2 (
$$aX^3 + bX^2 + cX + d$$
)
3 ($aX^3 + bX^2 + cX + d \ge 0$)
2 \blacksquare \bigcirc 3 \blacksquare

 $= \begin{bmatrix} X=A; B \le X \\ X=0; \frac{3}{2} \le X \end{bmatrix}$

$$3x^3 + 3x^2 - x > 0$$
 MATH

MODE 7 (INEQ) 2
$$(aX^3 + bX^2 + cX + d)$$

1
$$(aX^3 + bX^2 + cX + d > 0)$$

3 = 3 = - 1 =

$$\begin{array}{c}
A < X < B; C < X \\
\underline{-3 - \sqrt{21}} < X < 0; \underline{-3 + 5} \\
6
\end{array}$$

Hinweis: Lösungen werden wie hier dargestellt angezeigt, wenn die lineare Anzeige gewählt wurde.

Math

Anzeige spezieller Lösungen

• Wenn die Lösung einer Ungleichung alle Zahlen umfasst, wird "Alle reellen W." auf dem Lösungsbildschirm angezeigt.

MODE 7 (INEQ) 1 (aX² + bX + c)
$$3 (aX^{2} + bX + c \ge 0)$$

$$1 = 0 = 0 = 0$$
Alle reellen W.

 Wenn keine Lösung für eine Ungleichung existiert (wie beispielsweise bei X² < 0), wird "Keine Lösung" auf dem Lösungsbildschirm angezeigt.

Vektor-Berechnungen (VECTOR) (nur fx-991DE PLUS)

Verwenden Sie den VECTOR-Modus für Berechnungen mit 2-dimensionalen und 3-dimensionalen Vektoren. Bei einer Vektor-Berechnung weisen Sie zuerst speziellen Vektorvariablen (VctA, VctB, VctC) Daten zu und verwenden dann die Variablen in der Berechnung, wie im folgenden Beispiel gezeigt.

- 1. Drücken Sie MODE 8 (VECTOR), um in den VECTOR-Modus umzuschalten.
- 2. Drücken Sie 1 (VctA) 2 (2).
 - Damit wird der Vektor-Editor zur Eingabe des 2-dimensionalen Vektors für VctA eingeblendet.

- 3. Geben Sie die Elemente von VctA ein: 1 = 2 = .
- 4. Drücken Sie die Tasten: SHFT [5] (VECTOR) [2] (Data) [2] (VctB) [2] (2).
 - Damit wird der Vektor-Editor zur Eingabe des 2-dimensionalen Vektors für VctB eingeblendet.
- 5. Geben Sie die Elemente von VctB ein: 3 = 4 = .
- 6. Drücken Sie AC, um zum Rechnungsbildschirm zu gehen, und berechnen Sie VctA + VctB: SHIFT 5 (VECTOR) 3 (VctA) + SHIFT 5 (VECTOR) 4 $(VctB) \equiv .$
 - Damit wird der VctAns-Bildschirm mit dem Rechenergebnis angezeigt.

Hinweis: "VctAns" steht für "Vektor-Antwortspeicher". Weitere Informationen dazu finden Sie unter "Vektor-Antwortspeicher".

Vektor-Antwortspeicher

Wenn das Ergebnis einer im VECTOR-Modus ausgeführten Berechnung ein Vektor ist, wird der VctAns-Bildschirm mit dem Ergebnis angezeigt. Das Ergebnis wird der Variablen VctAns zugewiesen.

Die Variable VctAns kann wie folgt in Berechnungen verwendet werden:

- Um die Variable VctAns in eine Berechnung einzufügen, drücken Sie die folgenden Tasten: [SHIFT] [5] (VECTOR) [6] (VctAns).
- Wenn Sie irgendeine der folgende Tasten drücken, während der VctAns-Bildschirm angezeigt wird, erfolgt ein automatischer Wechsel zum Rechnungsbildschirm: →, →, ★, →. Der Rechnungsbildschirm enthält die Variable VctAns gefolgt von dem Operator für die Taste, die Sie gedrückt haben.

Zuweisen und Bearbeiten von Vektorvariablendaten

Wichtig: Folgende Funktionen werden vom Vektor-Editor nicht unterstützt: [M+], [SHF] [M+] (M-), [SHF] [RL] (STO). Auch sind keine Eingaben von Pol, Rec, ÷R und Mehrfachanweisungen mit dem Vektor-Editor möglich.

Zuweisen von neuen Daten zu einer Vektorvariablen:

- 1. Drücken Sie SHFT 5 (VECTOR) 1 (Dim), und wählen Sie dann im eingeblendeten Menü die Vektorvariable aus, der Sie Daten zuweisen möchten.
- 2. Wählen Sie im nächsten angezeigten Menü die Dimension (m) aus.
- 3. Verwenden Sie den eingeblendeten Vektor-Editor zur Eingabe der Elemente des Vektors.

Weisen Sie (2, -1, 2) VctC zu

SHIFT 5 (VECTOR) 1 (Dim) 3 (VctC) 1 (3) 2 □ □ 1 □ 2 □

Bearbeiten der Elemente einer Vektorvariablen:

- 1. Drücken Sie SHFT 5 (VECTOR) 2 (Data), und wählen Sie im eingeblendeten Menü die Vektorvariable aus, die Sie bearbeiten möchten.
- Verwenden Sie den eingeblendeten Vektor-Editor zum Bearbeiten der Elemente des Vektors.
 - Verschieben Sie den Cursor zu der Zelle mit dem Element, das Sie ändern möchten, geben Sie den neuen Wert ein und drücken Sie 🖃.

Kopieren des Inhalts der Vektorvariablen (oder von VctAns):

- 1. Verwenden Sie den Vektor-Editor zur Anzeige des Vektors, den Sie kopieren möchten.
 - Wenn Sie zum Beispiel VctA kopieren möchten, drücken Sie die folgenden Tasten: SIFT 5 (VECTOR) 2 (Data) 1 (VctA).
 - Wenn Sie den Inhalt von VctAns kopieren möchten, drücken Sie die folgenden Tasten, um den Bildschirm VctAns einzublenden:

 AC SHFT 5 (VECTOR) 6 (VctAns) ≡.
- 2. Drücken Sie FIFT RCL (STO), und führen Sie dann eine der folgenden Tastenoperationen aus, um das Kopierziel anzugeben: (-)(VctA), (VctB) oder [yy] (VctC).
 - Damit wird der Vektor-Editor mit dem Inhalt des Kopierziels angezeigt.

Beispiele für Berechnungen mit Vektoren

Die folgenden Beispiele verwenden VctA = (1, 2) und VctB = (3, 4) von $\underline{\mathbb{Z}}_1$ und VctC = (2, -1, 2) von $\underline{\mathbb{Z}}_2$. Sie können eine Vektorvariable in eine Tastenoperation eingeben, indem Sie SHFT $\boxed{5}$ (VECTOR) und dann eine der folgenden Zahlentasten drücken: $\boxed{3}$ (VctA), $\boxed{4}$ (VctB), $\boxed{5}$ (VctC).

3 × VctA (Multiplikation eines Vektors mit einem Skalar),

3 × VctA – VctB (Rechenbeispiel unter Verwendung von VctAns)

VctA • VctB (Skalarprodukt)

ACVctA SHIFT 5 (VECTOR) 7 (Dot)VctB

VctA-VctB

VctA × VctB (Kreuzprodukt)

AC VctA X VctB =

Bestimmen Sie die Absolutwerte von VctC.

AC SHIFT hyp (Abs)VctC)

Bestimmen Sie den durch VctA und VctB gebildeten Winkel auf drei Dezimalstellen genau (Fix 3). Peg

$$(\cos \theta = \frac{(A \cdot B)}{|A||B|}; \text{ ergibt } \theta = \cos^{-1} \frac{(A \cdot B)}{|A||B|})$$

SHIFT MODE (SETUP) 6 (Fix) 3

AC (VctA SHIFT 5 (VECTOR) 7 (Dot)VctB)

(SHIFT hyp (Abs) VctA) SHIFT hyp (Abs) VctB) =

SHIFT COS (COS⁻¹) Ans)

соs-1(Ans) 10,305

Verwenden von VERIFY (VERIF)

Mit der Funktion VERIFY können Sie überprüfen, ob eine Gleichheit oder Ungleichheit wahr (angezeigt durch TRUE) oder falsch (angezeigt durch FALSE) ist. Die VERIFY-Funktion wird im Allgemeinen wie folgt verwendet:

So prüfen Sie, ob $4\sqrt{9} = 12$ wahr ist

MATH

- 1. Rufen Sie den VERIFY-Modus auf.
 - Beim fx-86DE PLUS drücken Sie auf MODE 5, beim fx-991DE PLUS auf MODE 1.

- 2. Geben Sie $4\sqrt{9}$ = 12 ein.
 - 4 **9 SHIFT 6** (VERIFY) **1** (=) 12
 - Wenn Sie SHFT 6 (VERIFY) drücken, können Sie im angezeigten Menü das Gleichheitssymbol oder das Ungleichheitssymbol auswählen.
- 1:= 2:≠ 3:> 4:< 5:≥ 6:≤
- 3. Zum Prüfen drücken Sie auf \blacksquare .

Im VERIFY-Modus können folgende Ausdrücke zur Prüfung eingegeben werden:

- Gleichheiten oder Ungleichheiten mit einem Relationszeichen $4 = \sqrt{16}$; $4 \neq 3$; $\pi > 3$; $1 + 2 \le 5$; $(3 \times 6) < (2 + 6) \times 2$ usw.
- Gleichheiten oder Ungleichheiten mit mehreren Relationszeichen $1 \le 1 < 1 + 1$; $3 < \pi < 4$; $2^2 = 2 + 2 = 4$; 2 + 2 = 4 < 6; $2 + 3 = 5 \ne 2 + 5 = 8$ usw.

Hinweis: • Je nach Prüfungsergebnis wird dem Ans-Speicher bei TRUE (wahr) der Wert 1 und bei FALSE (falsch) der Wert 0 zugewiesen. • Der eingegebene Ausdruck kann 99 Byte inklusive linker Seite, rechter Seite und Verhältnisoperatoren umfassen. • Sämtliche in einem Ausdruck verwendeten Variablen (A, B, C, D, E, F, X, Y, M) werden als Wert behandelt, wobei der aktuell der Variable zugewiesene Wert zugrunde gelegt wird. • Die Funktionen ÷R, Pol und Rec können in einem Ausdruck nicht verwendet werden.

Im VERIFY-Modus wird eine mathematische Operation mit dem eingegebenen Ausdruck durchgeführt und anschließend je nach Ergebnis TRUE oder FALSE angezeigt. Aus diesem Grund kann ein Berechnungsfehler auftreten ein mathematisch korrektes Ergebnis wird unter Umständen nicht angezeigt, wenn der eingegebene Term eine Berechnung enthält, die sich dem singulären Punkt oder Wendepunkt einer Funktion nähert oder der eingegebene Term mehrere Berechnungsoperationen enthält.

Hinweise zur Eingabe von Termini

Folgende Typen von Ausdrücken verursachen einen Syntaxfehler und könnten nicht geprüft werden.

- Ausdrücke mit Leerstellen auf der linken oder rechten Seite (Beispiel: $= 5\sqrt{7}$)
- Ausdrücke mit einem Relationszeichen innerhalb eines Bruches oder einer Funktion (Beispiel: $\frac{1=1}{2}$; cos (8 \leq 9))

- Ausdrücke mit einem in Klammern gesetzten Relationszeichen (Beispiel: 8 < (9 < 10))
- Ausdrücke mit mehreren, nicht in die gleiche Richtung weisenden Relationszeichen (Beispiel: $5 \le 6 \ge 4$)
- Ausdrücke mit einer beliebigen Kombination von zwei der folgenden Operatoren (Beispiel: 4 < 6 ≠ 8)
- Ausdrücke mit mehreren aufeinanderfolgenden Relationszeichen (Beispiel: $5 \ge 9$)

Berechnungsbeispiele für den VERIFY-Modus

Berechnungen mit komplexen Zahlen (CMPLX) (nur fx-991DE PLUS)

Um Berechnungen mit komplexen Zahlen durchzuführen, drücken Sie zuerst \bigcirc 2 (CMPLX), um in den CMPLX-Modus zu wechseln. Sie können kartesische Koordinaten (a+bi) oder Polarkoordinaten $(r\angle\theta)$ zur Eingabe komplexer Zahlen verwenden. Die Ergebnisse der Berechnungen mit komplexen Zahlen werden in Übereinstimmung mit dem im Setupmenü festgelegten Format für komplexe Zahlen angezeigt.

Hinweis: • Wenn die Eingabe der Zahlen und die Anzeige des Rechnungsergebnisses in Polarkoordinaten erfolgen sollen, geben Sie die Winkeleinheit ganz am Anfang an. • Der θ -Wert des Rechnungsergebnisses wird im Bereich $-180^{\circ} < \theta \le 180^{\circ}$ angezeigt. • Bei Auswahl der linearen

Anzeige werden im Rechnungsergebnis a und bi (oder r und θ) in verschiedenen Zeilen angezeigt.

Berechnungsbeispiele für den CMPLX-Modus

$$(1-i)^{-1} = \frac{1}{2} + \frac{1}{2}i$$
 MATH (Format für komplexe Zahlen: $a + bi$)
$$(1 - ENG(i)) x = \frac{1}{2} + \frac{1}{2}$$

$$(1+i)^{2} + (1-i)^{2} = 0 \quad \text{MATH}$$

Bestimmen Sie die konjugiert komplexe Zahl von 2 + 3
$$i$$
 (Format für komplexe Zahlen: $a + bi$)

SHIFT 2 (CMPLX) 2 (Conjg) 2
$$+$$
 3 $+$ 3 $+$ 2-3i

Bestimmen Sie den Absolutwert und das Argument von 1 + i

Verwenden eines Befehls zum Festlegen des Rechenergebnisformats

Einer der zwei speziellen Befehle ($ightharpoonup r \angle \theta$ oder ightharpoonup a+bi) kann am Ende einer Berechnung eingegeben werden, um das Anzeigeformat der Rechenergebnisse festzulegen. Der Befehl setzt die Taschenrechnereinstellung für das Format für komplexe Zahlen außer Kraft.

$$\sqrt{2} + \sqrt{2} i = 2 \angle 45; 2 \angle 45 = \sqrt{2} + \sqrt{2} i \quad \text{MATH Deg}$$

$$\sqrt{2} 2 \quad \text{ENG} (i) \quad \text{SHFT 2 (CMPLX) 3 (} r \angle \theta) \equiv \qquad 2 \angle 45$$

$$2 \quad \text{SHFT (} -)(\angle) 45 \quad \text{SHFT 2 (CMPLX) 4 (} r \triangle a + bi) \equiv \qquad \sqrt{2} + \sqrt{2} i$$

Verwenden von CALC (nur fx-991DE PLUS)

Mit CALC können Sie Variablen enthaltende Rechenausdrücke speichern, die Sie dann wieder aufrufen und im COMP-Modus (MODE 1) oder CMPLX-Modus (MODE 2) ausführen können. Die folgenden Arten von Ausdrücken können mit CALC gespeichert werden.

- Ausdrücke: 2X + 3Y; 2AX + 3BY + C; A + Bi
- Mehrfachanweisungen: X + Y : X (X + Y)
- Gleichungen mit einer einzelnen Variablen auf der linken Seite und einem Ausdruck mit Variablen auf der rechten Seite: A = B + C; Y = X² + X + 3 (Verwenden Sie (=) zur Eingabe des Gleichheitszeichens der Gleichung.)

Hinweis: Nach dem Drücken von (ALC) bis zum Beenden der CALC-Funktion durch Drücken von (AC) sollten Sie die lineare Anzeige für die Eingabe verwenden.

Verwenden von SOLVE (nur fx-991DE PLUS)

SOLVE verwendet das Newton'sche Näherungsverfahren zum Lösen von Gleichungen. Beachten Sie, dass SOLVE nur im COMP-Modus (MODE 1) verwendet werden kann.

Die folgenden Arten von Gleichungen können mit der Funktion SOLVE gelöst werden:

- Gleichungen mit der Variablen X: $X^2 + 2X 2$; Y = X + 5; X = sin(M); X + 3 = B + C
 - SOLVE löst die Gleichung in Bezug auf X. Ein Ausdruck wie $X^2 + 2X 2$ wird wie $X^2 + 2X 2 = 0$ behandelt.
- Gleichungen, die unter Verwendung der folgenden Syntax eingegeben werden: {Gleichung}; {Lösungsvariable}

SOLVE löst die Gleichung in Bezug auf Y, wenn eine Gleichung zum Beispiel wie folgt eingegeben wird: Y = X + 5; Y

Wichtig: • Wenn eine Gleichung Eingabefunktionen mit einer öffnenden Klammer (wie z. B. bei sin und log) enthält, dürfen Sie die schließende Klammer nicht weglassen. • Die folgenden Funktionen sind in einer Gleichung nicht zulässig: $\int_{\Gamma} dl dx$, Σ , Π , Pol, Rec, \div R.

Beenden von SOLVE: AC

Lösungsbildschirm

Hinweis: Nach dem Drücken von SHFT CALC (SOLVE) sollten Sie bis zum Beenden der SOLVE-Funktion durch Drücken von AC die lineare Anzeige für die Eingabe verwenden.

Wichtig: • Je nach der Eingabe für den Anfangswert für X (Lösungsvariable) können mit SOLVE möglicherweise keine Lösungen bestimmt werden. Wählen Sie in diesem Fall einen Anfangswert, der näher bei der Lösung liegt.
• Mit SOLVE kann nicht in jedem Fall die korrekte Lösung ermittelt werden, auch wenn eine existiert. • Da bei der Funktion SOLVE das Newton'sche

Verfahren verwendet wird, wird selbst dann, wenn mehrere Lösungen vorhanden sind, nur eine Lösung ermittelt. • Aufgrund von Beschränkungen

des Newton'schen Verfahrens sind Lösungen für Gleichungen wie die folgenden in der Regel schwer zu bestimmen: $y = \sin(x)$; $y = e^x$; $y = \sqrt{x}$.

Inhalt des Lösungsbildschirms

Lösungen werden immer im Dezimalformat angezeigt.

(Linke Seite) - (rechte Seite) Ergebnis

"(Linke Seite) – (rechte Seite) Ergebnis" zeigt das Ergebnis an, wenn die rechte Seite der Gleichung von der linken Seite subtrahiert wird, nachdem der erhaltene Wert der Lösungsvariablen zugewiesen wurde. Je näher dieses Ergebnis bei 0 liegt, desto genauer ist die Lösung.

Bildschirm "Continue"

Bei Verwendung der Funktion SOLVE wird versucht, mit einer bestimmten Anzahl von Schritten eine Lösung zu finden. Wenn keine Lösung bestimmt werden kann, wird der Bildschirm "Continue: = "eingeblendet. Sie müssen dann angeben, ob der Vorgang fortgesetzt werden soll.

Drücken Sie , um den Vorgang fortzusetzen, oder , um die SOLVE-Operation abzubrechen.

Base-n-Berechnungen (BASE-N)

Rufen Sie den BASE-N-Modus auf, wenn Sie Berechnungen mit dezimalen, hexadezimalen, binären und/oder oktalen Werten durchführen möchten. Wenn Sie in den BASE-N-Modus wechseln, werden die Zahlen zunächst im Dezimalformat eingegeben und die Rechenergebnisse in diesem Format angezeigt. Drücken Sie eine der folgenden Tasten, um den Zahlenmodus zu wechseln: x^2 (DEC) für dezimal, x^2 (HEX) für hexadezimal, x^3 (BIN) für binär oder x^3 (OCT) für oktal.

Wechseln Sie in den BASE-N-Modus und dann in den Binär-Modus, und berechnen Sie 112 + 12

fx-86DE PLUS: MODE 4 (BASE-N) [Jec fx-991DE PLUS: MODE ▼ 3 (BASE-N)

Wechseln Sie (als Fortsetzung von oben) in den Hexadezimal-Modus und berechnen Sie $1F_{16} + 1_{16}$

AC x^{*} (HEX) 1 tan (F) + 1 \equiv

Hex 00000020

Wechseln Sie (als Fortsetzung von oben) in den Oktal-Modus und berechnen Sie $7_8 + 1_8$

AC In (OCT) 7 + 1 =

0ct 00000000010

Zahlenmodus	Ein-/Ausgabebereiche		
Binär	Positiv: $000000000000000000000000000000000000$		
Oktal	Positiv: $000000000000000000000000000000000000$		
Dezimal	$-2147483648 \le x \le 2147483647$		
Hexadezimal	Positiv: $00000000 \le x \le 7$ FFFFFFF Negativ: $80000000 \le x \le 7$ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		

Angeben des Zahlenmodus eines bestimmten **Eingabewertes**

Durch Eingabe eines bestimmten Befehls unmittelbar nach dem Wert können Sie den Zahlenmodus dieses Wertes festlegen. Verwenden Sie dazu die folgenden Befehle: d (dezimal), h (hexadezimal), b (binär) und o (oktal).

Berechnen Sie 10₁₀ + 10₁₆ + 10₂ + 10₈ und zeigen Sie das Ergebnis als Dezimalwert an

AC (x^2) (DEC) (x^2) (x^2)

SHIFT 3 (BASE) ▼ 2 (h) 10 +

SHFT 3 (BASE) ▼ 3 (b) 10 +

SHIFT 3 (BASE) ▼ 4 (o) 10 ■

36

Umwandlung eines Rechnungsergebnisses in einen anderen Zahlentyp

Mit den folgenden Tasten können Sie das angezeigte Rechnungsergebnis in einen anderen Zahlentyp umwandeln: x^2 (DEC)(dezimal), x^2 (HEX) (hexadezimal), [log (BIN) (binär), [ln (OCT)(oktal).

Berechnen Sie $15_{10} \times 37_{10}$ im Dezimalmodus und wandeln Sie das Ergebnis in den Hexadezimal-, Binär- und Oktalmodus um

AC x^2 (DEC) 15 **X** 37 **=**

555

 x^{-} (HEX)

0000022B

[9] (BIN) 0000001000101011

In (OCT)

0000001053

Logische und Negations-Operationen

Der Taschenrechner enthält logische Operatoren (and, or, xor, xnor) und Funktionen (Not, Neg) für logische und Negations-Operationen bei Binärwerten. Verwenden Sie zur Eingabe dieser logischen Operatoren und Funktionen das Menü, das beim Drücken von SHFT 3 (BASE) eingeblendet wird.

Die folgenden Beispiele werden alle im Binärmodus ([69] (BIN)) ausgeführt.

Bestimmen Sie das logische AND von 10102 und 11002 (10102 and 11002)

AC 1010 SHFT 3 (BASE) 1 (and) 1100 = 000000000001000

Bestimmen Sie das logische OR von 10112 und 110102 (10112 or 110102)

AC 1011 SHIFT 3 (BASE) 2 (or) 11010 = 000000000011011

Bestimmen Sie das logische XOR von 10102 und 11002 (10102 xor 11002)

AC 1010 SHIFT 3 (BASE) 3 (xor) 1100 = 000000000000110

Bestimmen Sie das logische XNOR von 11112 und 1012 (11112 xnor 1012)

11111111111110101 AC 1111 SHIFT 3 (BASE) 4 (xnor) 101

Bestimmen Sie das bitweise Komplement von 1010₂ (Not(1010₂))

11111111111110101 AC SHIFT 3 (BASE) 5 (Not) 1010) =

Negieren Sie (Zweierkomplement) 1011012 (Neg(1011012))

AC SHIFT 3 (BASE) 6 (Neg) 101101) = 11111111111010011

Hinweis: Bei einem negativen Binär-, Oktal- oder Hexadezimalwert wandelt der Taschenrechner den Wert in einen Binärwert um, bestimmt das Zweierkomplement und wandelt das Ergebnis dann wieder in den ursprünglichen Zahlentyp um. Bei dezimalen Werten (Basis 10) fügt der Taschenrechner einfach ein Minuszeichen hinzu.

Wissenschaftliche Konstanten

Ihr Taschenrechner enthält 40 wissenschaftliche Konstanten, die in jedem beliebigen Modus (neben BASE-N) verwendet werden können. Jede wissenschaftliche Konstante wird als eindeutiges Symbol (wie beispielsweise π) angezeigt, das in Berechnungen verwendet werden kann.

Um eine wissenschaftliche Konstante in eine Berechnung einzugeben, drücken Sie SHFT 7 (CONST) und geben dann die zweistellige Zahl ein, die der gewünschten Konstante entspricht.

Geben Sie die wissenschaftliche Konstante Co (Lichtgeschwindigkeit im Vakuum) ein, und zeigen Sie ihren Wert an

AC SHIFT 7 (CONST)

KONSTANTE Nummer 01~40?

 $28(C_0) =$

O Math ▲ Co 299792458

Berechnen Sie $C_0 = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$ MATH

AC = 1 ▼ (CONST) 3 2 (ε0) SHIFT (7) (CONST) (3) (μ_0) (=)

Math A 299792458 Die folgende Tabelle enthält die zweistelligen Zahlen für die jeweiligen wissenschaftlichen Konstanten.

01: (mp) Protonenmasse	02: (mn) Neutronenmasse
03: (me) Elektronenmasse	04: (m μ) Masse eines M μ ons
05: (a ₀) Bohr-Radius	06: (h) Planck'sche Konstante
07: (μN) Kernmagneton	08: (μB) Bohr-Magneton
09: (指) reduziertes Planck'sches Wirkungsquantum	10: (α) Feinstrukturkonstante
11: (re) klassischer Elektronenradius	12: (λc) Compton-Wellenlänge
13: (γp) gyromagnetisches Verhältnis des Protons	14: (λcp) Compton-Wellenlänge des Protons
15: (λcn) Compton-Wellenlänge des Neutrons	16: (R∞) Rydberg-Konstante
17: (u) atomare Massenkonstante	18: (µp) magnetisches Moment des Protons
19: (μ e) magnetisches Moment des Elektrons	20: (µn) magnetisches Moment des Neutrons
21: (μμ) magnetisches Moment des Mμons	22: (F) Faraday-Konstante
23: (e) Elementarladung	24: (NA) Avogadro-Konstante
25: (k) Boltzmann-Konstante	26: (Vm) Molvolumen eines idealen Gases
27: (R) molare Gaskonstante	28: (C ₀) Lichtgeschwindigkeit im Vakuum
29: (C ₁) erste Strahlungskonstante	30: (C2) zweite Strahlungskonstante
31: (σ) Stefan-Boltzmann-Konstante	32: (ε₀) elektrische Feldkonstante
33: (μ ₀) magnetische Feldkonstante	34: (φ ₀) magnetisches Flussquantum
35: (g) Erdbeschleunigung	36: (G ₀) Leitfähigkeitsquantum
37: (Z₀) charakteristische Impedanz des Vakuums	38: (t) Temperatur in Grad Celsius
39: (G) Gravitationskonstante	40: (atm) Standardatmosphäre

Die angegebenen Werte beruhen auf CODATA-Empfehlungen (März 2007).

Metrische Umwandlung

Mit den im Taschenrechner verfügbaren metrischen Umwandlungsbefehlen können Werte leicht von einer Einheit in die andere umgewandelt werden. Sie können die metrischen Umwandlungsbefehle in allen Rechenmodi bis auf BASE-N und TABLE verwenden.

Zur Eingabe eines Befehls zur Umrechnung von Einheiten können folgende Operationen verwendet werden.

Operation 1: {Wert} (▶Conv) {dreistellige Zahl zwischen 001 und 164} (■

Operation 2: {Wert} (CONV) {zweistellige Zahl zwischen 01 und 40}

Die folgende Tabelle enthält die zweistelligen Zahlen für die jeweiligen Umwandlungsbefehle der entsprechenden Einheiten.

01: in ▶ cm	02: cm ► in	03: ft ► m	04: m ►ft
05: yd ► m	06: m ► yd	07: mile ► km	08: km ► mile
09: n mile ► m	10: m ►n mile	11: acre ► m²	12: m² ► acre
13: gal (US) ▶ ℓ	14: ℓ ► gal (US)	15: gal (UK) ▶ ℓ	16: ℓ ► gal (UK)
17: pc ► km	18: km ▶ pc	19: km/h ► m/s	20: m/s ► km/h
21: oz ▶ g	22: g ▶ oz	23: lb ► kg	24: kg ► lb
25: atm ▶ Pa	26: Pa ► atm	27: mmHg ► Pa	28: Pa ► mmHg
29: hp ► kW	30: kW ▶ hp	31: kgf/cm² ► Pa	32: Pa ► kgf/cm²
33: kgf • m ► J	34: J ▶ kgf • m	35: lbf/in² ▶ kPa	36: kPa ► lbf/in²
37: °F ▶ °C	38: °C ► °F	39: J ► cal	40: cal ► J
041: Å ► m	042: m▶Å	043: fm▶m	044: m▶fm
045: ch▶m	046: m▶ch	047: AU▶m	048: m▶AU
049: I.y. ► m	050: m▶l.y.	051: Mil▶m	052: m▶Mil

053: fath	054: m		
►m(US)	►fath(US)	055: b▶m²	056: m²▶b
057: a▶m²	058: m²▶a	059: ha▶m²	060: m²▶ha
061: ft²▶m²	062: m²▶ft²	063: in² ►cm²	064: cm² ► in²
065: mile ² ►km ²	066: km²►mile²	067: ℓ ►m³	068: m³ ▶ ℓ
069: bu ▶ ℓ (US)	070: ℓ ▶bu(US)	071: bbl► ℓ	072: ℓ ►bbl
073: ton►m³	074: m³►ton	075: fl_oz(US) ▶m ℓ	076: m ℓ ▶fl_oz(US)
077: fl_oz(UK) ▶m ℓ	078: m ℓ ▶fl_oz(UK)	079: ft³►m³	080: m³►ft³
081: in³►m³	082: m³►in³	083: mton▶kg	084: kg ►mton
085: ton(long) ▶kg	086: kg ►ton(long)	087: ton(short) ▶kg	088: kg ►ton(short)
089: mcarat ►g	090: g►mcarat	091: r ► rad	092: rad ⊳ r
093: t-yr▶s	094: s▶t-yr	095: min▶s	096: s ► min
097: h▶s	098: s ► h	099: day▶s	100: s▶day
101: mile/h▶m/s	102: m/s▶mile/h	103: knot▶m/s	104: m/s▶knot
105: Gal▶m/s²	106: m/s²▶Gal	107: N∙m ►dyn∙cm	108: dyn•cm ▶N•m
109: dyn►N	110: N►dyn	111: lbf▶N	112: N►lbf
113: kgf▶N	114: N▶kgf	115: bar▶Pa	116: Pa▶bar
117: dyn/cm² ▶Pa	118: Pa ▶dyn/cm²	119: lbf/in²▶Pa	120: Pa▶lbf/in²
121: mmH₂O ▶Pa	122: Pa ▶mmH₂O	123: inHg▶Pa	124: Pa▶inHg
125: erg▶J	126: J ▶ erg	127: eV▶J	128: J▶eV
129: Btu▶J	130: J▶Btu	131: cal _{IT} ▶J	132: J▶cal _{IT}
133: calth▶J	134: J▶calth	135: kW∙h ▶ J	136: J▶kW∙h
137: Btu/min►W	138: W▶Btu/min	139: calth/(g∙K) ►J/(kg∙K)	140: J/(kg•K)▶ calth/(g•K)
141: P▶Pa•s	142: Pa•s▶P	143: St▶m²/s	144: m²/s▶St
145: G▶T	146: T▶G	147: Oe▶A/m	148: A/m▶Oe
149: Mx►Wb	150: Wb►Mx	151: γ ▶ T	152: T ⊳ γ
153: sb▶cd/m²	154: cd/m²▶sb	155: ph▶lx	156: lx▶ph
157: Ci▶Bq	158: Bq▶Ci	159: rad▶Gy	160: Gy ▶ rad
161: rem▶Sv	162: Sv ▶ rem	163: R▶C/kg	164: C/kg▶R

Die in den Umwandlungsformeln verwendeten Daten beruhen auf der "NIST Special Publication 811 (1995)".

Hinweis: Bei der Umwandlung mit dem Befehl J▶cal wird von einer Temperatur von 15 °C ausgegangen.

Rechenbereiche, Anzahl der Stellen und Genauigkeit

Der Rechenbereich, die für die internen Berechnungen verwendete Anzahl der Stellen und die Rechnungsgenauigkeit hängen von dem Rechnungstyp ab, den Sie ausführen.

Rechnungsbereich und Genauigkeit

Rechnungsbereich	$\pm 1 \times 10^{-99}$ bis $\pm 9,999999999 \times 10^{99}$ oder 0
Anzahl der Stellen für interne Berechnungen	15 Stellen
Genauigkeit	Normalerweise beträgt die Genauigkeit ±1 an der 10. Stelle für eine einzelne Rechnung. Die Genauigkeit für die Exponentialanzeige beträgt ±1 an der am wenigsten signifikanten Stelle. Die Fehler summieren sich im Falle von fortlaufenden Rechnungen.

Eingabebereiche und Genauigkeit von Funktionsrechnungen

Funktion		Eingabebereich
	DEG	$0 \le x < 9 \times 10^9$
sinx	RAD	$0 \le x < 157079632,7$
	GRA	$0 \le x < 1 \times 10^{10}$
	DEG	$0 \le x < 9 \times 10^9$
cosx	RAD	$0 \le x < 157079632,7$
	GRA	$0 \le x < 1 \times 10^{10}$
	DEG	Gleich wie sin x , ausgenommen wenn $ x = (2n-1) \times 90$.
tanx	RAD	Gleich wie sin x , ausgenommen wenn $ x = (2n-1) \times \pi/2$.
	GRA	Gleich wie sin x , ausgenommen wenn $ x = (2n-1) \times 100$.
sin ⁻¹ x	0 - 121 - 1	
cos ⁻¹ x	$0 \le x \le 1$	
tan-1x	$0 \le x \le 9,999999999 \times 10^{99}$	
sinhx	0 < r < 230 2585002	
coshx	$0 \le x \le 230,2585092$	
sinh ⁻¹ x	$0 \le x \le 4,999999999 \times 10^{99}$	
cosh ⁻¹ x	$1 \le x \le 4,999999999 \times 10^{99}$	
tanhx	$0 \le x \le 9,999999999 \times 10^{99}$	
tanh-1x	$0 \le x \le 9,999999999 \times 10^{-1}$	
logx/lnx	$0 < x \le 9,999999999 \times 10^{99}$	
10 ^x	$-9,999999999 \times 10^{99} \le x \le 99,99999999$	
		G 59

e^{x}	$-9,999999999 \times 10^{99} \le x \le 230,2585092$
\sqrt{x}	$0 \le x < 1 \times 10^{100}$
χ^2	$ x < 1 \times 10^{50}$
X ⁻¹	$ x < 1 \times 10^{100}$; $x \neq 0$
3√χ	$ x < 1 \times 10^{100}$
<i>x</i> !	$0 \le x \le 69$ (x ist eine Ganzzahl)
nPr	$0 \le n < 1 \times 10^{10}; 0 \le r \le n \ (n, r \text{ sind Ganzzahlen})$ $1 \le \{n!/(n-r)!\} < 1 \times 10^{100}$
nCr	$0 \le n < 1 \times 10^{10}$; $0 \le r \le n$ (n, r sind Ganzzahlen) $1 \le n!/r! < 1 \times 10^{100}$ oder $1 \le n!/(n-r)! < 1 \times 10^{100}$
Pol(x; y)	$ x , y \le 9,9999999999 \times 10^{99}$ $\sqrt{x^2 + y^2} \le 9,9999999999999999999999999999999999$
Rec(r; heta)	$0 \le r \le 9,999999999 \times 10^{99}$ θ : Wie sin x
01 11	$ a ,b,c<1\times10^{100};0\leq b,c$ Der angezeigte Sekundenwert unterliegt einem Fehler von ±1 an der zweiten Dezimalstelle.
← 01 11	$ x < 1 \times 10^{100}$ Dezimal \leftrightarrow Sexagesimal-Umwandlung $0^{\circ}0'0'' \le x \le 9999999^{\circ}59'59''$
x^{y}	$x > 0$: $-1 \times 10^{100} < y \log x < 100$ x = 0: $y > 0x < 0: y = n, \frac{m}{2n+1} (m, n sind Ganzzahlen)Jedoch: -1 \times 10^{100} < y \log x < 100$
$\sqrt[x]{y}$	$y > 0$: $x \neq 0$; $-1 \times 10^{100} < 1/x \log y < 100$ y = 0: $x > 0y < 0: x = 2n+1, \frac{2n+1}{m} (m \neq 0; m, n sind Ganzzahlen)Jedoch: -1 \times 10^{100} < 1/x \log y < 100$
$a^b l_c$	Ganzzahl, Zähler und Nenner dürfen insgesamt maximal 10 Stellen haben (einschließlich Trennungsmarkierungen).
RanInt# $(a; b)$	$a < b; a , b < 1 \times 10^{10}; b - a < 1 \times 10^{10}$

- Die Genauigkeit ist grundsätzlich gleich wie unter "Rechnungsbereich und Genauigkeit" weiter oben beschrieben.
- Funktionen des Typs x^y , x^y ,
- Die Fehler summieren sich und sind in der Nähe des singulären Punktes und des Wendepunktes einer Funktion besonders groß.
- Der Bereich der Rechenergebnisse, die bei Verwendung der natürlichen Anzeige in der π -Form angezeigt werden können, ist $|x| < 10^6$. Beachten Sie allerdings, dass durch interne Rechenfehler manche Rechenergebnisse möglicherweise nicht in der π -Form angezeigt werden können. Möglicherweise werden auch Rechenergebnisse, die in Dezimalform angezeigt werden sollten, in der π -Form angezeigt.

Fehlermeldungen

Der Rechner zeigt eine Fehlermeldung an, wenn während der Rechnung ein Fehler, aus welchem Grund auch immer, auftritt. Es gibt zwei Möglichkeiten, um eine Fehleranzeige zu verlassen: Drücken Sie die ◀- oder ▶-Taste, um die Fehlerposition anzuzeigen, oder drücken Sie die ♠C-Taste, um die Fehlermeldung und die Rechnung zu löschen.

Anzeige der Position eines Fehlers

Falls eine Fehlermeldung erscheint, drücken Sie die **④**- oder **▶**-Taste, um zum Rechnungsbildschirm zurückzukehren. Der Cursor befindet sich an der fehlerhaften Stelle. Sie können dann die erforderlichen Berichtigungen vornehmen.

Löschen der Fehlermeldung

Sie können die Fehleranzeige auch durch das Drücken der AC-Taste verlassen, um zum Rechnungsbildschirm zurückzukehren. Beachten Sie, dass damit auch die Berechnung, die den Fehler enthält, gelöscht wird.

Fehlermeldungen

Math.-Fehler

Ursache: • Das Zwischen- oder Endergebnis der Berechnung geht über den zulässigen Rechenbereich hinaus. • Ihre Eingabe geht über den zulässigen Eingabebereich hinaus (besonders bei der Verwendung von Funktionen).

• Ihre Berechnung enthält eine unzulässige mathematische Operation (zum Beispiel eine Division durch 0).

Fehlerbehebung: • Prüfen Sie die Eingabewerte, reduzieren Sie die Anzahl der Ziffern, und versuchen Sie es erneut. • Wenn Sie den unabhängigen Speicher oder eine Variable als Argument einer Funktion verwenden, achten Sie darauf, dass sich der Speicher- oder Variablenwert innerhalb des zulässigen Bereichs für die Funktion befindet.

Pufferfehler

Ursache: • Bei der Berechnung wurde die Kapazität des numerischen Stapels oder des Befehlsstapels überschritten. • Bei der Berechnung wurde die Kapazität des Matrix- oder Vektorstapels überschritten.

Fehlerbehebung: • Vereinfachen Sie den Rechenausdruck, so dass die Kapazität des Stapels nicht mehr überschritten wird. • Versuchen Sie, die Berechnung in zwei oder mehr Teile aufzuteilen.

Syntaxfehler

Ursache: Das Format der Berechnung ist nicht korrekt.

Fehlerbehebung: Nehmen Sie die notwendigen Korrekturen vor.

Argumentfehler

Ursache: Das Argument der Berechnung ist nicht korrekt.

Fehlerbehebung: Nehmen Sie die notwendigen Korrekturen vor.

Dimensionsfehler (nur im MATRIX- oder VECTOR-Modus)*

Ursache: • Die Matrix oder der Vektor, die/den Sie in einer Berechnung verwenden, wurde ohne Angabe der Dimension eingegeben. • Sie führen eine Berechnung mit Matrizen oder Vektoren aus, für deren Dimensionen eine solche Art von Berechnung nicht zulässig ist.

Fehlerbehebung: • Geben Sie die Dimension der Matrix bzw. des Vektors an und führen Sie dann die Berechnung erneut aus. • Stellen Sie sicher, dass die für die Matrizen oder Vektoren angegebenen Dimensionen für die Berechnung zulässig sind.

Variablenfehler (nur bei SOLVE-Funktion)*

Ursache: • Sie haben keine Lösungsvariable angegeben und die eingegebene Gleichung enthält keine X-Variable. • Die angegebene Lösungsvariable ist in der eingegebenen Gleichung nicht enthalten.

Fehlerbehebung: • Die eingegebene Gleichung muss eine X-Variable enthalten, wenn Sie die Lösungsvariable nicht angeben. • Geben Sie eine Variable, die in der von Ihnen eingegebenen Gleichung enthalten ist, als Lösungsvariable an.

Fehler "Nicht berech." (nur bei SOLVE-Funktion)*

Ursache: Der Taschenrechner konnte keine Lösung bestimmen.

Fehlerbehebung: • Prüfen Sie, ob die Gleichung, die Sie eingeben, Fehler enthält. • Geben Sie für die Lösungsvariable einen Wert ein, der nahe bei der erwarteten Lösung liegt, und versuchen Sie es erneut.

Fehler "Unzur. Speich."

Ursache: Aufgrund der Konfiguration von TABLE-Modusparametern wurden mehr als 30 X-Werte für eine Tabelle erstellt.

Fehlerbehebung: Verkleinern Sie den Tabellenrechnungsbereich durch Ändern der Werte für "Startwert", "Endwert" und "Schrittweite", und versuchen Sie es erneut.

Fehler "Zeit abgelaufen"

Ursache: Die aktuelle Differential- oder Integralrechnung endet, ohne dass die Endbedingung erfüllt ist. Die aktuelle Verteilungsberechnung endet, ohne dass die Endbedingung erfüllt ist.

Fehlerbehebung: Differential- oder Integralrechnung: Erhöhen Sie den *tol*-Wert. Beachten Sie, dass damit auch die Lösungsgenauigkeit abnimmt.

Bevor Sie auf Fehlbetrieb des Rechners schließen...

Führen Sie die folgenden Schritte aus, wenn ein Fehler bei einer Berechnung auftritt oder wenn Rechenergebnisse nicht den Erwartungen entsprechen. Wenn das Problem mit einem Schritt nicht behoben wird, führen Sie den nächsten Schritt aus.

Kopieren Sie wichtige Daten, bevor Sie diese Schritte ausführen.

^{*} Nur fx-991DE PLUS

- 1. Stellen Sie sicher, dass der Rechenausdruck keine Fehler enthält.
- 2. Achten Sie darauf, dass Sie den richtigen Modus für die Art der Berechnung, die Sie ausführen möchten, verwenden.
- 3. Wenn das Problem mit den obigen Schritten nicht behoben wird, drücken Sie die Taste (in). Dies bewirkt, dass der Taschenrechner prüft, ob die Rechenfunktionen ordnungsgemäß funktionieren. Wenn ein fehlerhaftes Verhalten erkannt wird, wird der Rechenmodus automatisch initialisiert und der Speicherinhalt gelöscht. Ausführliche Informationen zu initialisierten Einstellungen finden Sie unter "Konfigurieren des Rechner-Setups".
- 4. Initialisieren Sie alle Modi und Einstellungen mit folgenden Tasten: SHFT 9 (CLR) 1 (Einst.) ≡ (Ja).

Austauschen der Batterie

Eine blasse Anzeige selbst bei angepasstem Kontrast oder eine zeitlich verzögerte Anzeige am Display unmittelbar nach dem Einschalten des Rechners weist darauf hin, dass die Spannung der Batterie sehr niedrig ist. Falls eines dieser Symptome auftritt, tauschen Sie die Batterie aus.

Wichtig: Wenn Sie die Batterie aus dem Rechner entfernen, wird der gesamte Inhalt des Rechnerspeichers gelöscht.

- 1. Drücken Sie die Tasten [SHIFT AC] (OFF), um den Rechner auszuschalten.
 - Um sicherzustellen, dass Sie nicht versehentlich die Stromversorgung einschalten, während Sie die Batterie austauschen, schieben Sie das Schutzgehäuse über die Vorderseite des Rechners.
- 2. Entfernen Sie die Schraube und den Batteriefachdeckel, wie in der Abbildung dargestellt. Tauschen Sie die Batterie aus und achten Sie dabei darauf, dass der (+)-Pol und der (-)-Pol in die korrekte Richtung zeigen.
- 3. Bringen Sie den Batteriefachdeckel wieder an.
- 4. Initialisieren Sie den Rechner:

 ON SHIFT 9 (CLR) 3 (Alles) = (Ja)
 - Überspringen Sie den obigen Schritt nicht!

Technische Daten

Spannungsversorgung: Eingebaute Solarzelle; Knopfbatterie-Typ:

LR44 (GPA76) × 1

Batterielebensdauer: 3 Jahre (bei einer Stunde Betrieb pro Tag)

Zulässige Betriebstemperatur: 0° C bis 40° C **Abmessungen:** 11,1 (H) \times 80 (B) \times 162 (T) mm

Gewicht: Ca. 95 g einschließlich Batterie

Häufig gestellte Fragen

■ Wie kann ich in der gleichen Weise wie an einem Modell ohne natürliche Darstellung Eingaben vornehmen und Ergebnisse anzeigen?

Drücken Sie die folgenden Tasten: [SHFT] [MODE] (SETUP) 2 (Linear). Näheres siehe "Konfigurieren des Rechner-Setups" auf Seite G-6.

■ Wie kann ich ein Ergebnis im Bruchformat in Dezimalformat ändern?

Wie kann ich ein Ergebnis im Bruchformat, erzeugt durch eine Division, in Dezimalformat ändern?

Näheres siehe "Umschalten der Rechenergebnisse" auf Seite G-15.

■ Was ist der Unterschied zwischen Antwortspeicher, unabhängiger Speicher und Variablenspeicher?

Jeder dieser Speichertypen ist ein temporärer Speicher für einen einzigen Wert.

Antwortspeicher: Speichert das Ergebnis der zuletzt ausgeführten Rechnung. Verwenden Sie diesen Speicher, um das Ergebnis einer Rechnung zur Nächsten zu übertragen.

Unabhängiger Speicher: Verwenden Sie diesen Speicher, um die Ergebnisse von mehreren Rechnungen zusammenzufassen.

Variablen: Dieser Speicher ist hilfreich, wenn Sie den gleichen Wert mehrmals in einer oder mehreren Rechnungen verwenden müssen.

■ Welche Tasten muss ich drücken, um vom STAT-Modus oder TABLE-Modus in einen Modus zu wechseln, in dem ich arithmetische Rechnungen ausführen kann?

Drücken Sie MODE 11 (COMP).

■ Wie kann ich den Rechner auf seine anfänglichen Vorgabeeinstellungen zurückstellen?

Drücken Sie die folgenden Tasten: SHFT 9 (CLR) 1 (Einst.) (Ja)

■ Wenn ich eine Rechnung mit Funktionen ausführe, warum erhalte ich ein ganz anderes Ergebnis als auf älteren CASIO-Rechnermodellen?

Bei einem Modell mit natürlicher Darstellung muss dem Argument einer Funktion mit Klammern immer eine schließende Klammer folgen. Nicht die Taste nach dem Argument zu drücken, um die Klammern zu schließen, führt zu unerwünschten Werten oder Ausdrücken, welche als Teil in das Argument eingeschlossen werden.

Beispiel: (sin 30) + 15 Peg	
Altes (S-VPAM) Modell:	sin 30 ± 15 ≡ 15,5
Modell mit natürlicher Darstellung:	NE sin 30) + 15 = 15,5
Nicht die Taste 🕥 zu drücken, wie unten darges	tellt, führt zur Berechnung von sin 45.
sin 3	30 ± 15 = 0,7071067812

Manufacturer:

CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome

Shibuya-ku, Tokyo 151-8543, Japan

Responsible within the European Union: CASIO EUROPE GmbH Casio-Platz 1

22848 Norderstedt, Germany

Diese Markierung trifft nur auf EU-Länder zu.

CASIO COMPUTER CO., LTD.

6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan