1 Training MLP

1.1 Network Topology

Figure 1 contains a network topology consisting of 2 inputs x_1 and x_2 with a weight vector $\{w_1...w_2\}$:

1	w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
	-0.1	-0.3	-0.2	0.3	0.1	-0.1	0.2	-0.1	0.2

Table 1: Training Weights

The Incremental Backpropagation Algorithm is to be performed with $\eta = 0.2$

	x_1	x_2	y_{out}		
	0.0	1.0	1.0		
ĺ	1.0	0.0	1.0		

Table 2: Training Vectors

Figure 1: Multilayer Perceptron Topology Example

1.2 Incremental Backpropagation Sigmoid

Since the algorithm is incremental the training vector is not processed as a batch each example contains a forward pass, backward pass to compute errors and compute weight updates.

1.3 First Training Example

1.3.1 Forward Pass

$$y_{1} = \sigma(w_{1} \cdot x_{1})$$

$$= \sigma(-0.1 \cdot 0.0)$$

$$= \sigma(0.0)$$

$$= 0.5$$

$$y_{2} = \sigma(w_{3} \cdot x_{1} + w_{4} \cdot x_{2})$$

$$= \sigma(-0.2 \cdot 0.0 + 0.3 \cdot 1.0)$$

$$= \sigma(0.3)$$

$$\approx 0.5744$$

$$y_{3} = \sigma(w_{6} \cdot x_{2})$$

$$= \sigma(-0.1 \cdot 1.0)$$

$$= \sigma(-0.1)$$

$$\approx 0.4750$$

$$\hat{y}_{out} = w_9 \cdot y_1 + w_2 \cdot x_1 + w_8 \cdot y_2 + w_5 \cdot x_2 + w_7 \cdot y_3$$

$$= 0.2 \cdot 0.5 - 0.3 \cdot 0.0 - 0.1 \cdot 0.5744 + 0.1 \cdot 1.0 + 0.2 \cdot 0.4750$$

$$\approx 0.2376$$

1.3.2 Backwards Pass

$$\beta_{out} = y_{out} - \hat{y}_{out}$$

$$= 1 - 0.2376$$

$$= 0.7624$$

$$\beta_1 = y_1 \cdot (1 - y_1) \cdot \beta_{out} \cdot w_9$$

$$= 0.5 \cdot (1 - 0.5) \cdot 0.7624 \cdot 0.2$$

$$\approx 0.0381$$

$$\beta_2 = y_2 \cdot (1 - y_2) \cdot \beta_{out} \cdot w_8$$

$$= 0.5744 \cdot (1 - 0.5744) \cdot 0.7624 \cdot (-0.1)$$

$$\approx -0.0186$$

$$\beta_3 = y_3 \cdot (1 - y_3) \cdot \beta_{out} \cdot w_7$$

$$= 0.4750 \cdot (1 - 0.4750) \cdot 0.7624 \cdot 0.2$$

$$\approx 0.0380$$

1.3.3 Weight Changes

1. Calculating δ_n :

$$\delta_9 = \eta \cdot \beta_{out} \cdot y_1$$
$$= 0.2 \cdot 0.7624 \cdot 0.5$$
$$\approx 0.0762$$

$$\delta_2 = \eta \cdot \beta_{out} \cdot x_1$$
$$= 0.2 \cdot 0.7624 \cdot 0$$
$$= 0$$

$$\delta_8 = \eta \cdot \beta_{out} \cdot y_2$$

$$= 0.2 \cdot 0.7624 \cdot 0.5744$$

$$\approx 0.0876$$

$$\delta_5 = \eta \cdot \beta_{out} \cdot x_2$$
$$= 0.2 \cdot 0.7624 \cdot 1$$
$$\approx 0.1525$$

$$\delta_7 = \eta \cdot \beta_{out} \cdot y_3$$

$$= 0.2 \cdot 0.7624 \cdot 0.4750$$

$$\approx 0.0724$$

$$\delta_1 = \eta \cdot \beta_1 \cdot x_1$$
$$= 0.2 \cdot 0.0381 \cdot 0$$
$$= 0$$

$$\delta_3 = \eta \cdot \beta_2 \cdot x_1$$
$$= 0.2 \cdot -0.0186 \cdot 0$$
$$= 0$$

$$\delta_4 = \eta \cdot \beta_2 \cdot x_2$$
$$= 0.2 \cdot -0.0186 \cdot 1$$
$$\approx -0.0037$$

$$\delta_6 = \eta \cdot \beta_3 \cdot x_2$$
$$= 0.2 \cdot 0.0380 \cdot 1$$
$$\approx 0.0076$$

2. Updating Weights:

$$w_9 = w_9 + \delta_9$$

= 0.2 + 0.0762
= 0.2762

$$w_2 = w_2 + \delta_2$$

= -0.3 + 0
= -0.3

$$w_8 = w_8 + \delta_8$$

= -0.1 + 0.0876
= -0.0124

$$w_5 = w_5 + \delta_5$$

= 0.1 + 0.1525
= 0.2525

$$w_7 = w_7 + \delta_7$$

= 0.2 + 0.0724
= 0.2724

$$w_1 = w_1 + \delta_1$$
$$= -0.1 + 0$$
$$= -0.1$$

$$w_3 = w_3 + \delta_3$$
$$= -0.2 + 0$$
$$= -0.2$$

$$w_4 = w_4 + \delta_4$$

= 0.3 - 0.0037
= 0.2963

$$w_6 = w_6 + \delta_6$$

= -0.1 + 0.0076
= -0.0924

3. Computed Weights:

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
-0.1	-0.3	-0.2	0.2963	0.2525	-0.0924	0.2724	-0.0124	0.2762

Table 3: Updated Weights after First Training Example

1.4 Second Training Example

Using the updated weights the second training example is processed.

1.4.1 Forward Pass

$$y_{1} = \sigma(w_{1} \cdot x_{1})$$

$$= \sigma(-0.1 \cdot 1.0)$$

$$= \sigma(-0.1)$$

$$\approx 0.4750$$

$$y_{2} = \sigma(w_{3} \cdot x_{1} + w_{4} \cdot x_{2})$$

$$= \sigma(-0.2 \cdot 1.0 + 0.2963 \cdot 0.0)$$

$$= \sigma(-0.2)$$

$$\approx 0.4502$$

$$y_{3} = \sigma(w_{6} \cdot x_{2})$$

$$= \sigma(-0.0924 \cdot 0.0)$$

$$= \sigma(0)$$

$$= 0.5$$

$$v_{2} = w_{9} \cdot y_{1} + w_{2} \cdot x_{1} + w_{8} \cdot y_{2} + w_{5} \cdot x_{2} + w_{7}$$

$$\begin{split} \hat{y}_{out} &= w_9 \cdot y_1 + w_2 \cdot x_1 + w_8 \cdot y_2 + w_5 \cdot x_2 + w_7 \cdot y_3 \\ &= 0.2762 \cdot 0.4750 - 0.3 \cdot 1 - 0.0124 \cdot 0.4502 \\ &+ 0.2525 \cdot 0.0 + 0.2724 \cdot 0.5 \\ &\approx -0.0382 \end{split}$$

1.4.2 Backwards Pass

$$\begin{split} \beta_{out} &= y_{out} - \hat{y}_{out} \\ &= 1 - (-0.0382) \\ &= 1.0382 \\ \\ \beta_1 &= y_1 \cdot (1 - y_1) \cdot \beta_{out} \cdot w_9 \\ &= 0.4750 \cdot (1 - 0.4750) \cdot 1.0382 \cdot 0.2762 \\ &\approx 0.0715 \\ \\ \beta_2 &= y_2 \cdot (1 - y_2) \cdot \beta_{out} \cdot w_8 \\ &= 0.4502 \cdot (1 - 0.4502) \cdot 1.0382 \cdot (-0.0124) \\ &\approx -0.0032 \\ \\ \beta_3 &= y_3 \cdot (1 - y_3) \cdot \beta_{out} \cdot w_7 \\ &= 0.5 \cdot (1 - 0.5) \cdot 1.0382 \cdot 0.2724 \\ &\approx 0.0707 \end{split}$$

1.4.3 Weight Changes

1. Calculating δ_n :

$$\delta_9 = \eta \cdot \beta_{out} \cdot y_1$$

= 0.2 \cdot 1.0382 \cdot 0.4750
\approx 0.0986

$$\delta_2 = \eta \cdot \beta_{out} \cdot x_1$$
$$= 0.2 \cdot 1.0382 \cdot 1$$
$$\approx 0.2076$$

$$\begin{split} \delta_8 &= \eta \cdot \beta_{out} \cdot y_2 \\ &= 0.2 \cdot 1.0382 \cdot 0.4502 \\ &\approx 0.0935 \end{split}$$

$$\delta_5 = \eta \cdot \beta_{out} \cdot x_2$$
$$= 0.2 \cdot 1.0382 \cdot 0$$
$$= 0$$

$$\delta_7 = \eta \cdot \beta_{out} \cdot y_3$$
$$= 0.2 \cdot 1.0382 \cdot 0.5$$
$$\approx 0.1038$$

$$\delta_1 = \eta \cdot \beta_1 \cdot x_1$$
$$= 0.2 \cdot 0.0715 \cdot 1$$
$$\approx 0.0143$$

$$\delta_3 = \eta \cdot \beta_2 \cdot x_1$$
$$= 0.2 \cdot -0.0032 \cdot 1$$
$$\approx -0.0006$$

$$\delta_4 = \eta \cdot \beta_2 \cdot x_2$$
$$= 0.2 \cdot -0.0032 \cdot 0$$
$$= 0$$

$$\delta_6 = \eta \cdot \beta_3 \cdot x_2$$
$$= 0.2 \cdot 0.0380 \cdot 0$$
$$= 0$$

2. Updating Weights:

$$w_9 = w_9 + \delta_9$$

= 0.2762 + 0.0986
= 0.3748

$$w_2 = w_2 + \delta_2$$

= -0.3 + 0.2076
= -0.0924

$$w_8 = w_8 + \delta_8$$

= -0.0124 + 0.0935
= 0.0811

$$w_5 = w_5 + \delta_5$$

= 0.2525 + 0
= 0.2525

$$w_7 = w_7 + \delta_7$$

= 0.2724 + 0.1038
= 0.3762

$$w_1 = w_1 + \delta_1$$

= -0.1 + 0.0143
= -0.0857

$$w_3 = w_3 + \delta_3$$

= -0.2 + (-0.0006)
= -0.2006

$$w_4 = w_4 + \delta_4$$

= 0.2963 + 0
= 0.2963

$$w_6 = w_6 + \delta_6$$

= -0.0924 + 0
= -0.0924

3. Computed Weights:

w_1	w_2	w_3	w_4	w_5	w_6	w_7	w_8	w_9
-0.0857	-0.0924	-0.2006	0.2963	0.2525	-0.0924	0.3762	0.0811	0.3748

Table 4: Updated Weights after Second Training Example