Digital System Design ELEC373/473

Assignment Project Exam UNIVERSITY OF PLIVERPOOL

https://tutorcs.com

WeChat: cstutorcs

Quartus DE2 Tips

Expected design style for assignments

- Design from the top down
 - I know that many of you are keen to start coding in the HDL as quickly as possible but that the France France good designs.
- Start with a block plagramthat shows inputs and outputs, then add some functional blocks to the architecture, i.e. does the design need counters? What controllers are you going to implement?
 - You should end up with a block diagram showing inputs and outputs between the architectures and the controllers.

ASM design

- For each block, whether it be a controller or architecture you should draw an ASM chart to show the algorithm of the block.
 - Note that even combination and be described by a single state ASM chart https://tutorcs.com
 - You should then use the ASM chart to write your Verilog code.
 - You should then simulate your Verilog code using the ASM chart to check that you simulate every pathway in your ASM chart.

Design stages

- 1. Block Diagram showing inputs/outputs for all modules in the design.
- 2. ASM charts for all modules if the design.
- 3. Verilog code for altradduless.com
- 4. Simulation showing that every path in each ASM works correctly.
- Note that the design is undertaken during steps 1 & 2, that is where the intellectual property is added. Moving from stages 2 to 3 and 3 to 4 is mechanistic.

Early coding.

- You can start coding the Verilog for a module as soon as its ASM is complete.
 - You don't need to have all the ASMS complete before you start coding.

 https://tutorcs.com
 - Some people start by coding and testing blocks they are 100% sure they need. For example in assignment 1 you will need a 4 to 7 segment decoder.

Simple Verilog program for the DE2 Board

- Simple combinational logic design
 - LEDG0 = KEY0 AND KEY1
 - LEDG1 = KEXOSÓGRIKOENI Project Exam Help
- Pin assignments on the DE2 Board https://tutorcs.com
 - KEY[0] = PIN_G26
 - KEY[1] = PIN_N23VeChat: cstutorcs
 - LEDG[0] = PIN_AE22
 - LEDG[1] = PIN_AF22
- Note that this is a combinational design so no clock is needed
 - CLOCK_50 = PIN_N2 is a 50MHz clock

Quartus - Creating a new project

Use the new project Wizard

Module and_or

Using a top level bdf to connect modules

Some people prefer to connect their modules using a top lexel period Project Examinately

The top level name should be the same t

How to create a symbol file for a module?

Assigning pins

Easiest to use the same names as defined in the Altera supplied CSV file

Processing -> Start -> Start Analysis and Elaboration

Assigning pins...

Assignments -> import assignments

Using the pre-defined names can save lots of typing later on

Checking pin assignments - Pin Planner

Pin assignments- shown on bdf

RTL Viewer

What to do with un-used pins?

From Assignments - Device

Programmer Hardware setup

If no hardware is found check the hardware settings of the programmer.

Altera USB-Blaster Device Driver

Programming

Does it work as expected?

LEDs

There are 27 user-controllable LEDs on the DE2 board. Eighteen red LEDs are situated above the 18 toggle switches, and eight gentled by Front Boy Erechtsh but of switches (the 9th green LED is in the middle of the 7-segment displays). Each LED is driven directly by a pin on the Cyclone II FPGA; driving its as a setting of the pin low turns it off. A schematic diagram that shows the pushbutton and toggle switches is given in Figure 4.4. A schematic diagram that shows the pushbutton and toggle switches is given in

Does it work as expected?

Switches

Schmitt Trigger circles Schmitt Trigger device are connected directly to the Cyclone II FPGA. Each switch provides a high logic level (3.3 volts) what the substitute of the pushbutton switches are debounced, they are appropriate for use as clock or reset inputs in a circuit. We Chat: CStutorcs

Figure 4.3. Switch debouncing.

Port Inversion

