

Brief Overview

- Problem Breakdown
- CNF Generation Algorithms
- Hypothesis
- Clause Comparisons
- Testing Results
- Adding Preprocessing Domain Awareness
- Testing Results
- Conclusion

Problem Breakdown

• Goal: Create CNF formulas based on the constraints of Sudoku of puzzle size n and feed them into an SAT solver which would then use all the boolean statements to compute a result.

• Reminders:

- \circ CNF stands for Conjunctive Normal Form. This is logical propositions in the form $(X_1 V X_2 V) & (\sim X_4 V \sim X_5)$.
- SAT is a boolean satisfiable algorithm that computes all true variables to make the given boolean expression entirely true.
- How efficient our algorithm was depended on our total clause count and the structure of the clauses we added. Increasing the puzzle size can <u>dramatically</u> increase complexity.

Encoding and Identifying Constraints

- Our SAT solvers need to know two things:
 - What are the values we already know? We will consider these as *clues*.
 - What are the rules of Sudoku?
- Constraints for Sudoku:
 - C1: Each cell on the Sudoku board must have a value from 1 N
 - C2: Each cell must have only one value
 - C3: Each row has all numbers from 1 N
 - C4: Each column has all numbers from 1 N
 - C5: Each Subgrid or block must have all numbers from 1 N
- SATs our team has chosen consider a variable like X_1 to be a unique integer
 - Positive numbers represent True variables
 - Negative numbers represent False variables

Pairwise CNF Algorithm

- The most straightforward algorithm, but also the most naive...
 - Creates unique variables to represent different possibilities. Variables are created using a unique formula that takes into account the row, column, and value.
 - We create clauses and slowly append them to a CNF structure (List of lists).

```
# Iterate over all possibel values
for v in range(1, n + 1):
   # This represents clauses for C3
    # Each row must have one of each value
    for r in range(1, n + 1):
        cnf.append([var(r, c, v, n) for c in range(1, n + 1)]) # We use c here to iterate through a row
    # This represents clauses for C4
    # Each column must have one of each value
    for c in range(1, n + 1):
        cnf.append([var(r, c, v, n) for r in range(1, n + 1)])
    # This represents clauses for C5
    # Each n x n block must have one of each value
    for br in range(0, N):
        for bc in range(0, N):
            cnf.append([var(br * N + rd, bc * N + cd, v, n) for rd in range(1, N + 1) for cd in range(1, N + 1)])
```

Sequential Counters CNF Algorithm

Summary:

- Local propagation
- Almost like running memory
- Uses auxiliary variables to help deal scaling as we get into larger puzzles.
 - No longer just X variables, but now we have R, C, and B variables.
- o Instead of comparing every pair of variables for a given row, column, or block, we just track when values appear and propagate information to necessary cells?
- Example:
 - A cell is checking for what values it can claim for a row. It will look directly to the cell left of it to ask if the variable has appeared yet.
 - If it does we make sure we can alert cells to the right this value is claimed.
 - If it doesn't, we check other cells next to us to make sure we can claim a value.

Three Rules of Sequential Counters

- Focuses on three rules for a row constraint:
 - Rule 1: If our number is true for a given cell, then all of the sequential counters involved with this cell need to know.
 - \sim X(r, c, v) V R(r, v, c)
 - Rule 2: Once we realize a sequential counter is true, it must stay true to tell the others.
 - \sim R(r, v, c-1) V R(r, v, c)
 - Rule 3: We must prevent other cells within this row, column, or block from claiming the same value v.
- The R variables with c-1 is how we propagate information.
- Other constraints are encoding identically with unique variable forms.

PairWise vs Sequential Counters

P	ai	r	W	is	e

- Naive solution
- Logically sound
- Minimum space complexity
- Scales poorly with large puzzles
- Clause generation:
 - o C1 = N^2
 - \circ C2 = N³(N-1)/2
 - \circ C3 C5 = N²
 - Total: 4(N)^2 + (N^3(N-1)/2

Sequential Counters

- Local Propagation
- Auxiliary variables
- High space complexity
- Scales well against larger puzzles
- Solver friendly clauses
- Clause generation:
 - C1 = N^2
 - \circ C2 C5 = N²(3N-2)
 - Total: 12(N)^3 7(N)^2

Clause Count Comparison Poor Scaling! PairWise and Sequential Counters PairWise and Sequential Counters PairWise Sequential Counters PairWise Sequential Counters 200000 50000000 40000000 150000 30000000 100000 20000000 50000 10000000 10 Size of Sub grid n Size of Sub grid n

SQ overtakes PW at $n \ge 5$

Experiment and Hypothesis

Experiment

- Generate 10 unique puzzles for each size n (2, 3, 4, 5, 6)
- Push the boundary to see how big of a puzzle we can solve
- Run both pairwise and sequential counters to compare accuracy and runtime

Hypothesis

- Sequential counters will be able to handle larger puzzles more efficiently
- Pairwise will be more constrained and lead to less mistakes (better accuracy)

Testing Results: Comparison of Invalid Results

Testing Results: Comparison of Accuracy

Result Analysis

- Both algorithms hit a complete wall at some point to which the SAT couldn't solve in a reasonable amount of time.
 - \circ Pairwise max puzzle size was n = 4, 16 x 16
 - Sequential counters max puzzle size was $n = 5, 25 \times 25$
- Sequential Counters out performed pairwise in both puzzle solving size, valid puzzles for n, and overall accuracy.
 - Although we assumed sequential counters would be able to solve larger puzzles, we did not expect it to out perform pairwise in accuracy.
 - Things that could explain this:
 - Pairwise might being over constraining variables with its redundancy
 - Coincidence that it over performed for these puzzles

What if we added Preprocessing?

- Despite our advantages with our sequential counters, we still hit a wall with at where our algorithms can no longer reach a bigger puzzle size.
- What if we add a preprocessing step that takes into account the given clues of a puzzle and make only necessary clauses?
 - o Advantages:
 - Lower clause count
 - Becoming "domain aware"
 - Shrinking the problem before CNF generation even starts

Preprocessing Testing Results

Conclusive Statements

- Overall accuracy plummeted and was worse than algorithms without preprocessing.
 - Explanations:
 - Coding is imperfect
 - Sequential Counters must have all the variables to propagate information, else information cannot travel.
 - Should've done preprocessing for pairwise instead of sequential counters
 - Overall problem was underconstrained
- Larger puzzles were able to run
 - Much fewer clauses were generated
 - No longer overwhelming the SAT solver

Thank You for Listening Any Questions?