Applied Dynamics Research Corporation Final Report

Investigation of Empirical Damping Laws for the Space Shuttle

Contract NAS8-28513

14 March 1973

Prepared by

Edward L. Bernstein Research Specialist in Structural Dynamics

Approved by

C. S. Chang President

ADRC

FOREWORD

This report presents the work performed by Applied Dynamics
Research Corporation under Contract NAS8-28513 for the Marshall Space
Flight Center of NASA. Mr. Larry Kiefling, S&E-AERO-DDS is the technical monitor.

SUMMARY

An analysis of dynamic test data from vibration testing of a number of aerospace vehicles is made to develop an empirical structural damping law. A systematic attempt is made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficient and finding the response of nonlinearly damped structures.

CONTENTS

		Page
FOREWOR	D	i
SUMMARY		ii
Section 1	INTRODUCTION	1
Section 2	SCOPE AND METHOD OF THE INVESTIGATION	7
Section 3	RESULTS	13
Section 4	ERROR ANALYSIS	16
Section 5	CALCULATION OF EQUIVALENT LINEAR DAMPING COEFFICIENT	25
Section 6	RESPONSE OF NONLINEARLY DAMPED STRUCTURES	27
Section 7	CONCLUSIONS	30
REFERENC	CES	33
TABLES		35
FIGURES	t in the second	41
APPENDIX	A - DYNAMIC TEST DATA USED FOR DETERMINATION OF EMPIRICAL DAMPING LAW	45
APPENDIX	B - DIGITAL COMPUTER PROGRAMS	69
·	1 - Program to Find Best-Fit Empirical Damping Law Through Least-Squares Method	72
	2 - Program to Find Response of Nonlinearly Damped Structures	8 4
,	3 - Program to Calculate Equivalent Linear Damping Coefficient	87

LIST OF TABLES

Table		Page
1	Dynamic Tests for Damping	35
2	Damping Laws for Bending	36
3	Damping Laws for Bending (without Saturn I data)	37
4	Damping Laws for Torsion	38
5	Damping Laws for Longitudinal Motion	39
6	Comparison of Dissipated Energy Values	40

LIST OF FIGURES

Figure	· •	Page
1	Dissipated Energy/Cycle vs. Maximum Kinetic Energy for Bending Tests	41
2	Dissipated Energy/Cycle vs. Maximum Kinetic Energy for Bending Tests (Excluding Saturn I Data)	42
3	Dissipated Energy/Cycle vs. Maximum Kinetic Energy for Torsional Tests	43
4	Dissipated Energy/Cycle vs. Maximum Kinetic Energy for Longitudinal Tests	44

Section 1

INTRODUCTION

A number of full scale dynamic tests on aerospace vehicles have been made which produced enough data for the calculation of damping properties. Some preliminary analyses of the data (Ref. 1 and 2) indicated a correlation between dissipated energy per cycle and the total vibratory energy of the vehicle. Based on the success of these analyses, and a number of suggestions proposed (e.g., Ref. 3) on other parameters which might influence damping, a comprehensive study was made to determine an empirical damping law.

Dissipated energy/cycle was selected as the physical quantity which provides the best measure of damping. Damping in a complicated structure is a combination of a number of types of phenomena, and is often nonlinear. When an elastic structure is excited periodically, a steady-state situation is reached when the rate of energy dissipation through the damping mechanisms becomes equal to the rate of work put into the system by the excitation force. The rate of work can be calculated independently of the type of damping, and is therefore chosen as the logical dependent variable for an investigation of structural damping.

The work done, per cycle of vibration, can be calculated as follows: Let

$$f(t) = F \sin \omega t$$

denote the exciting force, and

$$x_E = X_E \sin(\omega t + \theta)$$

be the displacement at the point of application of the force. Here, ω is the frequency of the excitation force, and θ is the phase angle of the response, relative to the phase of the excitation.

The work per cycle, W, is then by definition

$$W = \int_0^{2\pi} f(t) \dot{x}_E dt$$

= $\pi F X_E \sin \theta$

At resonance, $\theta = \pi/2$. Thus,

$$W = \pi F X_{E}$$
 (1)

which, from the previous discussion may be set equal to the energy dissipated per cycle, D:

$$D = \pi F X_{E}$$
 (2)

An alternate method of calculating D can also be used, based on the value of the equivalent linear damping coefficient ζ . The damping at a particular modal amplitude is described by this quantity, although it will not be valid at other amplitudes if the structure is nonlinear. The dissipated energy is then given by

$$D = 4 \pi \zeta T \tag{3}$$

where T is the maximum kinetic energy.

Dissipated energy was calculated from both formulas when sufficient information was available. A comparison of the two values provided a measure of the accuracy of some of the basic data used.

The data available for this study included the results of a number of full scale dynamic tests on space vehicles, as well as the results of tests on a Boeing 747 prototype. These tests were performed to determine natural modes and frequencies of these vehicles. Most tests of this sort were not run with the intent of obtaining nonlinear damping data. Therefore, as far as this program is concerned, useable damping data were relatively limited. In addition, the accuracy of some of the damping data produced is poorer than the accuracy of the frequency determination alone, which generally was the main purpose of the experimentation. Most of the tests were run on Saturn vehicles, and an evolution through the years of increased accuracy of methods for determining the dynamic parameters is seen.

A considerable attempt was made to locate data on dynamic analyses of solid-fueled rockets which might be most applicable to the space shuttle. This attempt, however, was unsuccessful. As far as could be determined, the data were unavailable.

The data available for this study comprise the results of the tests given in Table 1. Altogether, there are 15 tests representing seven structures. Five of the structures are configurations or stages of the

Saturn V. The Saturn I tests were run in 1964. Damping constants were available for some of the modes from ringout decay tests. This data was not considered too reliable due to the beating phenomenon which frequently occurred. Generalized mass was obtained by measuring the bandwidth of the half-power point on resonance peaks of the amplitude/frequency curves.

The S-IVB tests were run in 1965-66. Generalized mass was found from the mode shape and mass distribution and also from a complex curve—fit for the amplitude of the response curve. Damping values were obtained from bandwidth and phase angle methods, and, for some tests, from a complex curve-fit technique.

The Saturn V tests were performed in 1966-67, and represent a well-documented and more accurate effort. Generalized masses and damping constants were found from complex curve-fit techniques.

The Boeing 747 tests were performed in 1969. Dynamic properties were determined from complex admittance (acceleration divided by force) plots in polar coordinates, following the method of Kennedy and Pancu (Ref. 4).

The first indication of the existence of an empirical damping law arose from analysis of the Saturn I data (Ref. 1). In this analysis, 118 data points were used. The reason for elimination of the remaining data is not known. The missing data mostly consist of entire tests in the series. Very likely, at the time of the analysis, facts were available

indicating the unreliability of these particular tests. The conclusion reported in Ref. 1 was that a law of the form

$$D = 0.313 T^{0.8}$$
 (4)

[dimensions in SI(International System) units] predicted structural damping. It was reported that 83% of the data lay within a + 2 db band of this law. The data used was reexamined, using the methods of the present study. It was found that the law was not quite so good as reported. The best law for the S-I data was found to be

$$D = 0.350 T^{0.72}$$

with 75% of the data within a \pm 2 db band. This result still is encouraging for the existence of a structural damping law.

Based on the S-I analysis, Kiefling and Pack (Ref. 2) analyzed samples of data points from the Saturn V and the S-IVB tests. From these tests, data on torsional and longitudinal vibrations were also available. The results reported in Ref. 2 indicated that the law (4) predicted damping in bending quite well for these structures. As a matter of fact, the plotted results in Ref. 2 indicate that 89% of the data fall within a + 2 db band.

For torsional vibrations a law of the form

$$D = 0.34 T^{0.80}$$

is reported in Ref. 2, with 67% of the data within a ± 2 db band. The results for longitudinal vibrations are reported as inconclusive.

In Ref. 5, Riley took vibration data from a Boeing 747 airplane and applied the Chang law (Eq. 4). He found that this law correctly predicted damping to within + 2 db for 75% of the data.

While the accuracy of the law, based on these preliminary studies, is not all that might be hoped for (± 2 db represents a + 50% and - 37% error in D), yet it represents a remarkable correlation. A wide variety of vehicles are included (single tank, multi-tank and winged) and a five-decade range of energy levels. Taking into consideration the fact that dissipated energy is an overall quantity, depending on an unknown variety and number of damping mechanisms acting within each structure, it therefore appears that an investigation to uncover a damping law is worthwhile.

The studies reported above indicate a dependence of dissipated energy on total vibration energy. Other suggestions have been made that frequency ω may have some influence. In Ref. 3, it is reported that the ratio of amplitude x to some characteristic vehicle length L gives good correlation for certain cases.

Section 2

SCOPE AND METHOD OF THE INVESTIGATION

In order not to exclude any possible empirical laws, dependency on almost all variables available from dynamic testing was investigated. In addition, all possible combinations of these variables were tried. The variables used, together with their units in the SI system, are

T -- kinetic energy (Newton-meters)

X -- mode shape amplitude (meters)

 ω -- frequency (rad/sec)

m -- generalized mass (kilograms)

X/L -- amplitude/length

These quantities are not all independent, since the kinetic energy is given by

$$T = (1/2)m\omega^2 X^2 \tag{5}$$

Correlations were sought for three cases: transverse bending, torsion, and longitudinal motion. The length L, in the last of the independent variables, was chosen to be the length of the structure in the case of bending and longitudinal motion, and maximum radius for the case of torsion.

Equation (4) for the empirical damping law is not independent of the dimensional units of the variables. Some effort was made to find a satisfactory nondimensional formulation. The effort, however, was

ģ

unsuccessful. Therefore, for the sake of uniformity, and to conform with current standards, all units were converted to the SI system.

The energy levels in these tests covered a five-decade range.

Based on the preliminary analyses, a law was sought of the form

$$D = C P_1^{a_1} P_2^{a_2} P_3^{a_3}$$
 (6)

where C, a₁, a₂, a₃ are constants to be determined, and P₁, P₂, P₃ are independent parameters.

Taking the natural logarithm of both sides, we have

$$d = \ln D = c + a_1 p_1 + a_2 p_2 + a_3 p_3 \tag{7}$$

where

$$c = ln C$$

$$p_1, p_2, p_3 = ln (P_1, P_2, P_3)$$

The least-squares criterion was used to find the constants. Let the data points determined from the tests be denoted by a superscripted bar. Then the error, E, is given by the expression

$$E = \sum_{i=1}^{n} (c + a_1 \overline{p}_{1i} + a_2 \overline{p}_{2i} + a_3 \overline{p}_{3i} - \overline{d}_i)^2$$
 (8)

where

$$\overline{d_i} = \ln \overline{D_i}$$

$$\overline{p}_{1i}$$
, \overline{p}_{2i} , $\overline{p}_{3i} = \ln (\overline{P}_{1i}, \overline{P}_{2i}, \overline{P}_{3i})$

and the summation is over N data points.

We note that on a log-log scale the sought-after empirical law is a straight line. The optimal values of C, a₁, a₂, a₃ are found from the equations for minimizing E:

$$\frac{\partial \mathbf{E}}{\partial \mathbf{c}} = \frac{\partial \mathbf{E}}{\partial \mathbf{a}_1} = \frac{\partial \mathbf{E}}{\partial \mathbf{a}_2} = \frac{\partial \mathbf{E}}{\partial \mathbf{a}_3} = 0 \tag{9}$$

Upon substitution of (8) into (9), we have

$$\sum (c + a_{1}\overline{p}_{1i} + a_{2}\overline{p}_{2i} + a_{3}\overline{p}_{3i} - \overline{d}_{i}) = 0$$

$$\sum \overline{p}_{1i} (c + a_{1}\overline{p}_{1i} + a_{2}\overline{p}_{2i} + a_{3}\overline{p}_{3i} - \overline{d}_{i}) = 0$$

$$\sum \overline{p}_{2i} (c + a_{1}\overline{p}_{1i} + a_{2}\overline{p}_{2i} + a_{3}\overline{p}_{3i} - \overline{d}_{i}) = 0$$

$$\sum \overline{p}_{3i} (c + a_{1}\overline{p}_{1i} + a_{2}\overline{p}_{2i} + a_{3}\overline{p}_{3i} - \overline{d}_{i}) = 0$$

$$\sum \overline{p}_{3i} (c + a_{1}\overline{p}_{1i} + a_{2}\overline{p}_{2i} + a_{3}\overline{p}_{3i} - \overline{d}_{i}) = 0$$

The simultaneous solution of these equations yields the best-fit values of C, a_1 , a_2 , a_3 .

The following formulas were used in searching for a best fit:

$$D = C T^{a_1}$$

$$D = C X_n^{a_1}$$

$$D = C \omega^{a_1}$$

$$D = C m^{a_1}$$

$$D = C m^{a_1} X^{a_2}$$

$$D = C m^{a_1} \omega^{a_2}$$
(11)

9

$$D = C x^{a_1} \omega^{a_2}$$

$$D = C T^{a_1} (X/L)^{a_2}$$

$$D = Cm^{a}1\omega^{a}2X^{a}3$$

$$D = Cm^{a_1}\omega^{a_2}(X/L)^{a_3}$$

$$D = C_1 + C_2T + C_3T^2$$

A program was written for the digital computer (an XDS 930) which performed the least-squares analysis and calculated the error of the final result. The program performed several functions. Data in a number of dimensional units were read into the program and converted into SI units. Dissipation energy and maximum kinetic energy were calculated. Each of the formulas (11) was used with the least-squares criteria (10), and best-fit values for the unknown constants found. Finally, the error was calculated by finding the percentage of data points which fell within ± 1 db, ± 2 db, ± 3 db, and ± 4 db bands of the empirical law. A listing of the program is given in Appendix B.

As mentioned previously, there are two ways to calculate D. Equation (2) is the preferred way, since it is a direct calculation involving measured dynamic parameters. However, measurements of the amplitude at the location of the excitation force may be inaccurate due to the small magnitude there. For those tests where the damping constant was available, the dissipated energy was calculated according to both equations (2) and (3). For each test, the computer program was used to find

the best-fit law of the form

 $D = CT^n$

and the scatter calculated (percentage of data points varying by ± 1 db, ± 2 db, ± 3 db, ± 4 db). In this way, an empirical measure of the accuracy of both formulations could be gauged. This subject will be more fully discussed in a subsequent section on error analysis. The conclusion reached was that the calculation of D from equation (3) was generally more accurate. This was markedly noticeable for the S-IVB tests, and to a much lesser extent the case for the S-V tests.

In the Saturn V series of tests, dynamic parameters were measured in two types of tests. The primary test, conducted to find the dynamic parameters, was a frequency sweep test. An additional test run was a force level test, mostly for the purpose of checking linearity of response over a range of excitation forces. The results of this test, however, did supply sufficient information to calculate the dynamic parameters. In the force level tests, responses were found at a large number of vehicle locations for three force levels. The maximum level was approximately the same as in the frequency sweep test. For this magnitude of force, the results of the two types of test were compared for consistency.

The results of the force level test were potentially quite valuable, since it presented an opportunity to determine damping in a situation where all but one parameter remained constant. However, for the

11

torsional and longitudinal tests, there was poor correlation between the force level tests and the frequency sweep tests for the same excitation force. In addition, the scatter was quite large. Therefore, the force level tests for torsion and longitudinal motion were not used in this analysis.

Section 3

RESULTS

The results are given in Tables 2-5, which cover bending, torsion and longitudinal motion. Each table gives the damping laws which fit the data best, for each of the formulations tried from equations (11). The scatter is given by the percentage of data points falling within ± 1 db, ± 2 db, ± 3 db, and ± 4 db bands around the basic law. Figures 1-4 show the data as a function of kinetic energy, with the line representing the damping law.

The laws for bending represent an analysis of 330 data points, much more than the results for torsion or longitudinal motion. For this reason, it is felt the results are more accurate and likely to be of general application. The conclusion derived from Table 2 is that a law of the form

$$D = 0.286 \text{ T}^{0.746} \tag{12}$$

describes the damping energy of a large class of aerospace structures. Figure 1 illustrates the fit of this law to the data.

Of the 330 bending data points, 196 or 60% are associated with Test No. 1. Therefore, the damping law (12) may be biased by the inclusion of this data. For this reason, an alternate damping law for

bending was derived, based on tests 2, 5, 8, 11, 13 and 15. The law derived was

$$D = 0.153 \text{ T}^{0.893} \tag{13}$$

with 71% of the data falling within a ± 2 db band. The results of the investigation are given in Table 3. Figure 2 illustrates this law.

It is interesting to note that when a damping law was sought of the form

$$D = Cm^{a}1\omega^{a}2X^{a}3$$

the law which fits the data best produced the approximate relationship

$$a_3 \approx 2a_1$$

That is, the quantity mX² influences the damping. A glance at Tables 2, 3, 4 and 5 reveals this is true for bending, torsion and longitudinal motion.

Although a law of this form gave the best fit to the data, it was not significantly better than the simpler law (12)--not enough to recommend its use.

For torsional vibration, the best law was found to be

$$D = 0.095 \text{m}^{1.01} \omega^{2.69} \text{X}^{2.33}$$

with 81% of the data falling within a ± 2 db band. The law

$$D = 0.101T^{1.279} \tag{14}$$

had a 63% accuracy for ± 2 db. While the former law shows a better fit, it should be borne in mind that the total number of data points is only 26,

2

so that a small uncertainty in the five points which lie just outside the ± 2 db band (see Fig. 3) would change 63% accuracy to 81% accuracy.

The law for torsion is less reliable than the bending law, since it represents an analysis of only 26 points, all relating to configurations of the Saturn V. It is noteworthy that the law (14) for torsion has an exponent greater than unity, implying damping ratio increasing with amplitude. This is the reverse of the situation for bending.

For longitudinal vibration, the best law was found to be

$$D = 0.0002 \text{m}^{1.259} \omega^{3.315} X^{2.405}$$
 (15)

with 77% of the data falling within a + 2 db band. The law

$$D = 0.057T^{1.104} \tag{16}$$

had a 67% accuracy for ± 2 db. Here, the number of data points is 39, all representing the Saturn V with and without the SI-C stage. Figure 4 reveals that a small uncertainty in the data could give as much as 77% accuracy for the law (16)

Again, the law for longitudinal motion has an exponent greater than one.

Section 4

ERROR ANALYSIS

One cannot help noticing that the empirical laws shown in Figures 2-5 are subject to a considerable degree of scatter. The natural question to ask is how much accuracy can be inherently expected from the data generated. The tests were not primarily designed for the purpose of measuring dissipated energy, and a careful look at the origins and accuracy of the dynamic parameters is therefore in order.

The quantities plotted in Figures 2-5 are derived from the formulas

$$T = (1/2)m\omega^2 X^2 \tag{5}$$

and

$$D = 4\pi \zeta T \tag{3}$$

or

$$D = \pi F X_{E}$$
 (2)

First, it is necessary to derive expressions for the error in the derived quantities T and D propagated from the independently determined quantities m, ω , X, X_E , ζ , F. Of course, some of these quantities themselves are derived from other independently determined variables.

In general, if there is a continuously differentiable function

$$U = U(x, y, z)$$

and x, y, z are replaced by their approximate values

$$x = x + \epsilon_x$$

 $y = y + \epsilon_y$
 $z = z + \epsilon_z$

where ϵ_x , ϵ_y , ϵ_z are the errors in x, y, z, then the error in U is ϵ_u given by (Ref. 17)

$$\epsilon_{\mathbf{u}} = \frac{\partial \mathbf{U}}{\partial \mathbf{x}} \epsilon_{\mathbf{x}} + \frac{\partial \mathbf{U}}{\partial \mathbf{y}} \epsilon_{\mathbf{y}} + \frac{\partial \mathbf{U}}{\partial \mathbf{z}} \epsilon_{\mathbf{z}} \tag{17}$$

Applying equation (17) to formulas (2), (3) and (5), we have the following expressions for relative error:

$$\frac{\epsilon_{\mathrm{T}}}{\mathrm{T}} = \frac{\epsilon_{\mathrm{m}}}{\mathrm{m}} + 2\frac{\epsilon_{\omega}}{\omega} + 2\frac{\epsilon_{\mathrm{x}}}{\mathrm{x}} \tag{18}$$

and .

$$\frac{\epsilon_{\mathrm{D}}}{\mathrm{D}} = \frac{\epsilon_{\mathrm{c}}}{\epsilon} + \frac{\epsilon_{\mathrm{T}}}{\mathrm{T}} \tag{19}$$

or

$$\frac{\epsilon_{\rm D}}{\rm D} = \frac{\epsilon_{\rm F}}{\rm F} + \frac{\epsilon_{\rm X_E}}{\rm X_E} \tag{20}$$

Thus, if some measure can be assigned to the errors of the independent variables (independent with respect to T and D), then the errors in T and D are known.

Of the several series of dynamic tests, the Boeing tests on the Saturn V (tests nos. 2-10) are the best documented and, at least on the basis of currently available information, the most accurate. The accuracy of these tests is discussed below.

For many of the tests, the energy dissipated/cycle could be calculated from either formula (2) or (3) independently. A comparison of the values calculated is shown in Table 6, as a measure of accuracy. It is seen that agreement is poor for many cases. In the bending tests, however, cases 2, 5 and 8 (the Boeing tests) show relatively good accuracy. The discussion of probable error in the recorded values of dissipated energy and kinetic energy will begin with the Saturn V tests in bending.

For the Saturn V bending tests, References (18) and (19) provide a source for estimation of errors. Errors accumulate from sensor calibration, instrument resolution, hysteretic effects in vehicle response, noise and scalar errors in the data acquisition system, and round-off and approximation errors in the data reduction methods.

The Boeing tests incorporated a number of accuracy-correction techniques. Calibration curves for the amplitude and phase of each sensor were determined and used in the data reduction system to modify the final output. In addition, on-site calibration was periodically performed to check drift and malfunction. A Fourier analysis was performed on the response to remove noise and harmonic content. The output data (in the form of transfer functions for each sensor) is curve-fitted to yield the dynamic parameters.

The measurement of force was subject to two sources of error.

It is not possible to assign a value to the error, which could have been important in the evaluation of dissipated energy for those cases where formula (2) was used.

Misalignment of the load cell can cause significant error in the force reading. Misalignment will occur to some extent because of the bending curvature of the structure as it undergoes deformation. A second cause of misalignment is due to the out-of-plane motion of the structure. Since the excitation was not applied in a principal plane, the vehicle response was at an angle with respect to the force. Therefore, the axis of the load cell may suffer misorientation and show only a component of the applied force. This component will generally be quite small. However, the out-of-plane component can cause a moment acting on the load cell, depending on its displacement from the shaker, which is a potentially more serious cause of error.

Another source of error is due to the mass of the shaker armature causing an effective inertial force showing up in the load cell readings.

The total test system should properly be considered to be the test vehicle plus the shaker armature. A mass compensation procedure should be performed to eliminate the effect of the additional mass. No indication was found in the documentation that this procedure was used. An example of the possible error from this cause is as follows.

For the Boeing tests, a 20,000 lb. (88,965 N) thruster system was used. A system of this magnitude uses about a 350 lb. (159 kg.) armature. For a frequency of 8.69 Hz, and a thruster travel of 5.35x10⁻⁴ m., the corresponding inertial force is 253 N. This compares to a measured force of 5791 N, or a 4.4% error. It is therefore possible, especially at the higher frequencies, that lack of mass compensation could be a significant source of error in the force measurements.

One of the principal objects of the dynamic tests was to determine modal natural frequencies. It is to be expected, therefore, that the accuracy associated with this quantity is relatively good. There are several sources of error: 1. Numerical error associated with the curve-fit procedure. In Reference (18) an error analysis of the curve-fit technique is performed. For the one example given, the error in amplitude varies from 0.1-0.7% over the frequency range. 2. The possibility of a double peak in the vicinity of the resonant frequency. This effect is due to the fact that the excitation is not applied in a principal plane, and therefore the response is a summation of motion in two planes, each of which may have a slightly different peak due to asymmetry of the vehicle. In this case, as pointed out in Reference (19), the curve-fit method will not separate modes closer than 1% in frequency.

From the above discussion, a value of 1.5% is assigned, in a purely estimatory manner, as a typical error to associate with

experimental frequency values. Sensor inaccuracy may have little effect on frequency, since only the location of an amplitude peak is sought, and not its value.

Errors associated with X (response amplitude) are influenced by sensor error and data acquisition and reduction error. The sensor error depends on the response magnitude. According to Reference (19), sensor error averaged 5% for measurements at 1% of full scale, while for full scale measurements, they averaged 1%.

A check of the accuracy for determination of response amplitude X comes from comparison of the results of the frequency sweep tests with the force level tests. The force level tests were conducted as a check on the linearity of response as a function of force. The force levels of the frequency sweep tests were approximately reproduced, as well as two lower levels, and responses at these values recorded. Obviously, we expect agreement between the two tests at the same level. Comparison of the results of the two tests reveals that the average agreement for X is within 5%.

The determination of generalized mass is subject to the greatest inaccuracy of all the quantities making up the kinetic energy. This quantity is derived from the curve-fit technique. According to Reference (19), comparison of generalized mass values gave agreement to within 10%.

The modal damping values, likewise determined from curve fitting, were found in Reference (19) to give agreement within 5%.

The above error figures may be used to give an order-of-magnitude estimate of the error involved in the dynamic parameters of the Boeing tests. From equations (18) and (19) it follows that the error in determination of kinetic energy is

$$\frac{\epsilon_{\tau}}{T}$$
 = 0.1 + 2(0.015) + 2(0.05) = 0.23 = 23%

and

$$\frac{\epsilon_{\rm D}}{\rm D}$$
 = 0.05 + 0.23 = 0.28 = 28%

This may be compared with the variation due to the \pm 2db bands in Figures 1 and 2. Since the definition of a 2 db difference between two quantities T_1 and T_2 is

$$2 db \Rightarrow \log \frac{T_1}{T_2} = 0.2$$

then it follows that 2 db corresponds to an error of +59%, -37% in T.

It is interesting to note that if we assume a Gaussian distribution of error, and that the nominal errors estimated represent a variation from the mean error of one standard deviation, then 68% of the data would lie within these error bounds. This figure correlates well with the 71%

22

of data falling within the ± 2 db bands of Figure 1 and 60% of data in Figure 2.

The Boeing tests include 38% of the data points for all the dynamic bending tests, or 71% of all data points excluding the Saturn I data.

The other data available on the remaining dynamic tests is generally lacking in enough information to estimate the accuracy. This data falls into three categories. Test No. 15 was a ground vibration test of a Boeing 747 airplane. A frequency sweep was made, and frequency determined from polar plots of complex admittance (Ref. 5). From this plot, generalized mass and damping coefficients are also determined. From the rather sketchy details available concerning the conduct of the tests, no separate determination of accuracy can be made.

Tests 11 and 13 were dynamic tests of the Saturn upper stages, performed by the Chrysler Corporation. The resonant frequencies were determined from inspection of the response and phase angle plots. Damping coefficients were found from an average of frequency bandwidth and phase angle methods. Generalized mass was found from integration of mass and mode shapes, using 70 equally spaced points along the vehicle.

Not enough information was available to accurately assess the error bounds. Inspection of the response and phase angle plots indicates an up to 2% possible uncertainty in determining the resonance point. The generalized mass was found from the integration method mentioned and

compared with values found from a complex curve-fit for the amplitude of the response curve at the nose of the vehicle. Agreement between the two values was very poor. The integration method seemed to produce more consistent values and was the basis for the values used in this report. An estimated 15% error is associated with these values. The Chrysler tests account for 11% of all data points when the Saturn I is included, and 21% without the Saturn I data.

Finally, the Saturn I tests, which formed the original basis for the Chang law, consist of 196 data points, or 59% of all data points considered. Apparently, frequencies were found from inspection of response and phase angle plots. Generalized mass was found by integration of the mode shapes with a lumped-mass model. Damping constants were not used for determining dissipated energy, but rather equation (3), using force and excitation point response measurements. Insufficient information is available for error estimation.

Section 5

CALCULATION OF EQUIVALENT LINEAR DAMPING COEFFICIENT

The results of the preceding section indicate that structural damping in bending can be predicted by equation (12) or (13). With less certainty, equations (14) and (16) may also be useful for predicting damping for torsion and longitudinal motion. Damping, at a particular amplitude, may be described by an equivalent linear damping coefficient ζ , given by

$$\xi = \frac{D}{4\pi T} \tag{21}$$

From equation (17), the coefficient for bending is

$$\xi = 0.0228 \text{ T}^{-0.254}$$

For the range of T covered in the tests (see Fig. 1), this equation gives the variation of \(\zeta \) to be

$$0.07 > \zeta > 0.004$$
, for 0.01 N-m < T < 1000 N-m

For torsion, from equation (14), the coefficient is

$$\zeta = 0.00804 \text{ T}^{0.279}$$

and gives a variation over the range of T (Fig. 2) of

$$0.004 < \zeta < 0.029$$
, for $0.1 \text{ N-m} < T < 100 \text{ N-m}$

Finally, for longitudinal motion, equation (16) gives

$$\zeta = 0.00454 \text{ T}^{0.104}$$

with ζ varying (Fig. 3) as

0.006 < ζ < 0.009, for 10 N-m < T < 1000 N-m

A small digital computer program was written to calculate for a range of amplitudes of kinetic energy. Therefore, the results of modal analyses of the space shuttle, or other large aerospace vehicles, can be used to produce predicted values of ζ for further application in response studies. A listing of the program is given in Appendix B.

Section 6

RESPONSE OF NONLINEARLY DAMPED STRUCTURES

The results for the equivalent linear damping coefficient, found in the preceding section, can be used to find the complete dynamic characteristics of a complex structure. We let the response at a point x of the structure by U(x,t). Then U may be expanded into a series of modal functions of the form

$$U(x, t) = \sum q_n(t) \Phi_n(x)$$
 (22)

where

 $\Phi_n(x)$ is a mode shape function, and

 \textbf{q}_{n} is the generalized coordinate corresponding to $\boldsymbol{\Phi}.$

The modal equation of motion for the n-th mode is

$$\ddot{q}_n + \omega_n^2 q_n + F_n/m_n = Q_n(x)$$
 (23)

where

 ω_n is the natural frequency,

 m_n is the generalized mass,

 $\mathbf{F}_{\mathbf{n}}$ is a nonlinear function including damping, and

Q_n(t) is the generalized force, written, for periodic excitation, as

$$Q_n = \overline{Q}_n \cos \omega t$$

The fundamental response is

$$q_n(t) = \overline{q}_n(\omega) \cos(\omega_n t - \theta_n)$$

where θ_n is the phase angle.

 F_n is expanded into the first terms of a Fourier Series as

$$F_{n} = I_{1} \cos (\omega_{n}t - \theta_{n}) + I_{2} \sin (\omega_{n}t - \theta_{n})$$

$$= I_{1} \cos (\omega_{n}t - \theta_{n}) - \frac{D_{n}}{n\overline{q}_{n}} \sin (\omega_{n}t - \theta_{n})$$

$$= I_{1} \cos (\omega_{n}t - \theta_{n}) - \frac{D_{n}}{n\overline{q}_{n}} \sin (\omega_{n}t - \theta_{n})$$
where $I_{n} = \frac{1}{\pi} \int_{0}^{2\pi} F_{n} \sin (\omega_{n}t - \theta_{n}) \omega_{n} dt$

$$(24)$$

and D_n is the energy dissipated/cycle. Substitution of equation (24) into equation (23) gives the two equations

$$\overline{q}_{n}(\omega_{n}^{2} - \omega^{2}) + \frac{I_{1}}{\overline{m}_{n}} = \overline{Q}_{n} \cos \theta_{n}$$

$$\frac{D_{n}}{\pi \overline{q}_{n} \overline{m}_{n}} = \overline{Q}_{n} \sin \theta_{n}$$
(25)

The peak kinetic energy/cycle, T_n , may be written in terms of q_n as

$$T_{n} = \frac{1}{2} \omega^{2} \overline{q}_{n}^{2} m_{n}$$

Substitution of this equation into equations (25) and recombining gives

$$\bar{q}_{n} = \bar{Q}_{n} \left[(\omega_{n}^{2} - \omega^{2} + I_{1}/m_{n}\bar{q}_{n})^{2} + (D_{n}\omega^{2}/2 \pi T_{n})^{2} \right]$$

$$\tan \theta_{n} = \omega^{2}D_{n}/2\pi T_{n} (\omega_{n}^{2} - \omega^{2} + I_{1}/m_{n}\bar{q}_{n})$$

If the natural frequency ω_n does not vary significantly with response amplitude, $I_1 = 0$. Then \overline{q}_n and θ_n can be found by the simultaneous solution of the nonlinear equations (25).

A digital computer program was written to accomplish this. The program requires as input the dynamic modal parameters ω_n , m_n and the amplitude and frequency of the applied force. It then solves equations (25) iteratively through the use of Newton's method. The resulting solutions are then used in equation (22) to find responses for arbitrary forcing functions. A listing of the program is given in Appendix B.

Section 7

CONCLUSIONS

This study represents a comprehensive analysis of all available dynamic test data in an attempt to verify the existence of an empirical law to predict structural damping in large aerospace structures. Based on a number of previous studies, it was determined that the quantity D, energy dissipated/cycle, was the most appropriate measure of damping. A number of different hypotheses were checked. It was found that for bending vibrations, the formula

$$D = 0.286 T^{0.746}$$

where T is the peak kinetic energy and units are in Newton-meters predicted damping to within ± 2 db levels for 60% of the data examined. Since more than half of the data pertained to one vehicle, another formula

$$D = 0.153 T^{0.893}$$

was developed to fit the rest of the data within a \pm 2 db range for 71% of the data points.

Formulas for torsional and longitudinal vibrations were also found. It was found for these cases too that the best law, in the sense of a least-squares fit, related dissipated energy to kinetic energy as an independent parameter. The formulas found, however, differ from the formula for dissipated energy in bending in that the exponents are greater

than unity. Therefore, at higher energy levels, damping will increase, in contrast with bending. A relatively small number of data points were available for torsional and longitudinal tests, so that the validity of conclusions established for these cases is indeterminate.

There is a considerable amount of scatter in the D vs. T data.

The error associated with the various dynamic parameters was estimated and an analysis made to determine the probable error in D and T. It was found that a good part of the scatter, but still not all, could be due to measurement, data acquisition, and numerical error.

Because of the enormity of the testing program required to come up with just one data point, it is an unfortunate fact that not nearly enough data are available for a reliable statistical analysis to determine a trust-worthy damping law. This situation is complicated by the use of different test procedures, equipment, and numerical methods, all of different degrees of accuracy, in different systems of units, and with different degrees of care in documenting. The present study, then, cannot do more than establish a quantitative relationship of encouraging, but not definitive, reliability.

It is recommended that the data from the recently performed Skylab modal survey be analyzed in the manner of this study to add to the statistical base for determination of an empirical damping law.

As an aid to future researchers of structural damping in large structures, all the raw data used for the analyses in this report are given in Appendix A, all converted to the Standard International system of units.

REFERENCES

- 1. Chang, C. S., Damping in Multi-Beam Vibration Analyses, Part II-Damping Properties of Saturn I Dynamic Test Vehicle SAD-6,
 LMSC/HREC A710166, Lockheed Missiles & Space Co., Huntsville,
 Ala., November 1964.
- 2. Kiefling, L., and Pack, H., Structural Damping in Saturn Vehicles and Scale Models, NASA TM X-64604, NASA Marshall Space Flight Center, Huntsville, Ala., 8 July 1971.
- 3. Kana, D. D., and Hugar, S., Synthesis of Shuttle Vehicle Damping
 Using Substructure Test Methods, Southwest Research Institute,
 June 1972.
- 4. Kennedy and Pancu, "Use of Vectors in Vibration Measurement and Analysis," Journal of the Aerospace Sciences, Vol. 14, No. 11, pp. 603-625, November 1947.
- 5. Riley, G., Structural Damping of Winged Structures, Boeing Report 5-9430-H698, The Boeing Co., Huntsville, Ala., 12 August 1971.
- 6. Jacobs, D. B., Saturn V Dynamic Test Vehicle Configuration I Test
 Report, Pitch and Yaw Results, Document No. T5-6630-2, The
 Boeing Co., Huntsville, Ala., 17 May 1967.
- 7. Jacobs, D. B., Saturn V Dynamic Test Vehicle Configuration I Test
 Report, Torsional Test Results, Document No. T5-6630-3, The
 Boeing Co., Huntsville, Ala., 17 May 1967.
- 8. Jacobs, D. B., Saturn V Dynamic Test Vehicle Configuration I Test
 Report, Longitudinal Test Results, Document No. T5-6630-4, The
 Boeing Co., Huntsville, Ala., 17 May 1967.
- 9. Winch, J. B., Saturn V Dynamic Test Vehicle Configuration II Test Report, Pitch and Yaw Test Results, Document No. T5-6633-1, The Boeing Co., Huntsville, Ala., 15 September 1967.
- 10. Winch, J. B., Saturn V Dynamic Test Vehicle Configuration II Test
 Report, Torsional Test Results, Document No. T5-6633-2, The
 Boeing Co., Huntsville, Ala., 31 August 1967.

- 11. Winch, J. B., Saturn V Dynamic Test Vehicle Configuration II Test Report, Longitudinal Test Results, Document No. T5-6633-3, The Boeing Co., Huntsville, Ala., 12 September 1967.
- 12. Winch, J. B., Saturn V Dynamic Test Vehicle Configuration II C. O.

 MSFC 201 Test Report, Pitch and Yaw Test Results, Document No.

 T5-6633-4, The Boeing Co., Huntsville, Ala., 26 September 1967.
- 13. Winch, J. B., Saturn V Dynamic Test Vehicle Configuration II C. O.

 MSFC 201 Test Report, Torsional Test Results, Document No.

 T5-6633-5, The Boeing Co., Huntsville, Ala., 28 September 1967.
- 14. Winch, J. B., Saturn V Dynamic Test Vehicle Configuration II C. O.

 MSFC 201 Test Report, Longitudinal Test Results, Document No.

 T5-6633-6, The Boeing Co., Huntsville, Ala., September 1967.
- 15. Dynamic Test Results of S-IVB-D, LEM and Apollo, Technical Report HSM-R154, Chrysler Corporation, Huntsville, Ala., 28 January 1966.
- 16. Dynamic Test Results of SAD-202 Upper Stages, Technical Report HSM-R162, Chrysler Corporation, Huntsville, Ala., 31 March 1966.
- 17. Shchigoley, B. M., Mathematical Analysis of Observations, Iliffe Books, Ltd., London, 1968.
- 18. Winch, J. B., Saturn V Dynamic Test Vehicle Data Reduction Techniques, Document D5-15210, Rev. C., The Boeing Co., Huntsville, Ala., 26 October 1967.
- 19. Grimes, P. J., et al., Advancements in Structural Dynamic Technology Resulting from Saturn V Programs, Vol. II, NASA CR-1540, NASA, Washington, D. C., June 1970.

Table 1

Dynamic Tests for Damping

Test No.	Vehicle Description	Type of Test	No. Data Points	Ref.
1	Saturn I	Bending	196	1
2	Saturn V, Configuration I*	Bending	19	6
3	11 11	Torsion	10	7
4		Longitudinal	11	. 8
5	Saturn V, Configuration II**	Bending	15	9
6		Torsion	6	10
7	11 11 .	Longitudinal	21	11
	Saturn V, Configuration II,			
8	(MSFC C. O. 201)***	Bending	14	12
9	11 .11	Torsion	3	13
10	11 11	Longitudinal	7	14
	s-IVB [‡]	Bending	26	15
12	11 11	Torsion	6	15
13	S-IVB, SAD-202	Bending	20	16
14	11	Torsion	9	16
15	Boeing 747	Bending	16	5

- * Configuration I consists of the entire Apollo Saturn V vehicle
- ** Configuration II consists of the S-II stage, S-IVB Stage, instrument unit, and the Apollo spacecraft
- *** A modified configuration II for a stronger torsional support at the command module/service module interface.
 - These configurations consist of the S-IVB Stage, instrument unit, and Apollo spacecraft

Damping Laws for Bending
The results given include the data
from test nos. 1, 2, 5, 8, 11, 13
and 15 (330 data points)

Table 2 .

	Percentage of data points within ± 1 , ± 2 , ± 3 , ± 4 db band							
Damping Law	<u>+</u> 1 db	± 2 db	<u>+</u> 3 db	<u>+</u> 4 db				
D = .286 T° /46	32%	60%	80%	88%				
$*D = 261 \text{ X}^{\bullet 371}$	21	39	50	63				
$D = 694 \omega^{-1.04}$	18	31	41	51				
D = 2.82 m ⁰⁹¹	11	18	24	31				
$*D = 4.31 \text{ m}^{.593} \text{ X}^{1.020}$.33	55	73	82				
$D = 1485 \text{ m}^{\bullet 020} \omega^{-2.15}$	17	30	41	51				
$*D = 270 \text{ X}^{\bullet 685} \omega^{\bullet . 202}$	21	37	51	63				
$*D = .785 \text{ T}^{.678} (X/L)^{.0828}$	33	60	79	87				
$*D = .671 \text{ m} \cdot 675 \omega^{1.04} \text{ X}^{1.369}$	35	62	79	87				
$*D = 261 \text{ m}^{.620} \omega^{.646} (X/L)^{1.244}$	32	56	73	84				
$D = .596 + .095 T000015 T^2$	11	. 28	60	66				

^{*} Does not include test 15 (X is not available from this test)

Dimensions are in SI units as follows:

D, T (Newton-meters), X (meters), ω (radians/second), m (kilograms)

Table 3

Damping Laws for Bending
(without Saturn I data)

The results given include the data from tests 2, 5, 8, 11, 13, 15 (174 points)

Damping Law	Percentage of data points within + 1-4 db band						
	<u>+</u> 1 db	<u>+</u> 2 db	+ 3 db	<u>+</u> 4 db			
D = .153 T.893	45%	71%	89%	95%			
*D = 63.4 X· ¹⁹⁰	22	38	53	66			
D = 225647	16	32	50	60			
D = 16.2 m ¹¹⁰	15	25	39	52			
*D = 3.41 m. 626 X1.015	37	63	79	88			
D = 460 m ^{.012} -1.42	15	30	49	64			
*D = 294 X ^{. 082} -1.103	15	35	51	63			
$*D = .132 \text{ T}^{.882} (X/L)^{014}$	47	75	92	96			
*D = .080 m.881 1.731 _X 1.741	47	75	92	96			
$*D = 300 \text{ m} \cdot 835 \cdot .807(\text{X/L})^{1.529}$	34	58	82	90			

^{*}Does not include test 15 (X is unavailable from this test).

Dimensions are in SI units as follows: D,T (Newton-meters), X (meters), (radians/second), m (kilograms).

Table 4

Damping Laws for Torsion

The results given include the data from test nos. 3, 6, 9, 12 and 14 (26 data points)

Percen	tage of Data Po	oints with basic law		2, <u>+</u> 3, <u>+</u> 4 db
Damping Law	<u>+</u> 1 db	<u>+</u> 2 db	<u>+</u> 3 db	<u>+</u> 4 db
D = .101 T ^{1.279}	33%	66%	85%	96%
$D = 870 \text{ X}^{\bullet} 378$: 4	22	48	67
$D = 13.4 \omega^{415}$	4	15	30	33
D = 95.7 m ⁴⁰⁵	19	26	33	.52
$D = 245 \text{ m}^{\bullet 946} \text{ X}^{1.977}$	22	37	59	81
$D = 4.94 \text{ m}^{476} \omega^{1.094}$	22	33	37	56
$D = .587 \text{ X}^{.998} \omega^{2.431}$	22	52	56	67
$D = .934 \text{ T}^{1.11} (X/L)^{.150}$	29	74	93	100
$D = .095 \text{ m}^{1.01} \omega^{2.69} \text{ X}^{2.33}$	37	81	93	100
$D = 4.77 \text{ m}^{.588} \omega^{2.573} (X/L)^{1.456}$	41	78	96	100
D =524 + .333 T0013 T ²	37	59	63	70

Dimensions are in SI units as follows: D, T (Newton-meters), X (radians), ω (radians/second), m(kilogram-meters²)

Table 5

Damping Laws for Longitudinal Motion

e results given include the data from test nos

The results given include the data from test nos. 4, 7 and 10 (39 data points)

	Percentage of Data Points within ± 1, ± 2, ± 3, ± 4 db band of basic law									
Damping Law		<u>+</u> 1 db	+ 2 db	<u>+</u> 3 db	<u>+</u> 4 db					
D = .057 T ^{1.104}		41%	67%	90%	100%					
$D = 269 \text{ x}^{\circ} ^{192}$		13	23	44	51					
$D = 235,930 \omega^{-1.380}$		15	38	49	56					
D = .993 m ¹⁹¹		13	26	38	49					
$D = 25.1 \text{ m}^{.847} \text{ X}^{1.537}$		38	59	72	77					
$D = 42,108 \text{ m}^{.159} \omega^{262}$		18	31	49	54					
$D = 590,740 \text{ x}^{-158} \omega^{-2.433}$		18	36	51	56					
$D = .0084 \text{ T}^{1.158} (X/L)^{133}$		49	74	82	100					
$D = .0002 \text{ m}^{1.259} \omega^{3.315} \text{ X}^{2.4}$	05	54	77	92	100					
D = 58.37 m ^{1.164} $\omega^{2.379}$ (X/L)	2.145	26	59	79	82					

Dimensions are: D, T (Newton-meters), X (meters), ω (radians/second), m (kilograms)

Table 6

Comparison of Dissipated Energy Values

Test No.	No. Data Pts.	Average percent difference for D calculated two ways*						
Bending .								
3 4 5 6 19	16 18 19 14 15	73.6 91.1 13.1 1.0 12.0						
Torsion								
9 10 12 13 17	3 6 5 3 10	65.1 37.3 50.3 24.8 42.8						
Longitudinal								
15 18 21	21 11 7	315.6 9.0 247.8						

^{*}The average percent difference was calculated for each test by taking the average value of the quantity $100 \times ID_1 - D_2I/D_2$ where $D = \pi FX_E$ and $D = 4\pi \zeta T$. For each case, a few data points showing untypically large error were excluded from the average.

Figure 1. Dissipated Energy/Cycle vs. Maximum Kinetic Energy for Bending Tests

Figure 2. Dissipated Energy/Cycle vs. Maximum Kinetic Thergy for Bending Tests (Excluding Saturn I Data)

A Figure 3. Dissipated Energy/Cyc vs. Maximum Kinetic Energy for Torsional Tes

Figure 4. Dissipated Energy/Cycle vs. Maximum Kinetic Energy for Longitudinal Tests

APPENDIX A

DYNAMIC TEST DATA USED FOR DETERMINATION OF EMPIRICAL DAMPING LAW

			125.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T I STANFALLE T	TENTEL OF	10.0 1110.1	. , , , , , ,		
	FREGULY (HZ)	FORCE [N]	XN [M]	XE [M]	GENL MASS [KG-SEC2/M]	ZETA *		D[=PI*XE*F] [N=M]	T ([N=M]	D[=4*P[*Zt_A*T]
. 1	3.570	2284.949	1+6800E+02	1,7741E-03	8 • 1984E 02	•0000E 00	•	1.2735E 01	5.8212E 0	1 •0000E.00
` <u>\$</u>	8 • 860	2088 • 816	6.3000E-04	1.8648E-04	2.6478E 03	•0000E 00		1.2237E 00	1.6284E 00	
3	14.440	1117 • 958	1.7100E-04	4 • 8598E = 05	9.1202E 02	•0000E 00		1.7068E-01	1.0976E-0	1 *0000E 00
4	1.600	2098 • 623	3.4650E=03	5.5301E-04	3.2470E 04	•0000E 00		3.6460E 00	1.9700E 0	
5	2 • 450	2088 • 816	6.5500E=04	1.9034E-04	7.3795E 04	•0000E 00		1.2491E 00	3.7512E 00	
6	3.220	2128 • 043	5.7180E-03	2.8018E-04	1.8927E 03	•0000E 00		1.8731E 00	1.2665E 01	
7	3-800	2235.916	1.1090E-03	2.7614E-05	6.2076E 03	•0000E 00		1.9397E-01	2.1761E 00	
8	4.290	2235.916	5.9300E-04	2.0126E-04	1.5063E 04	•0000E 00		1.4137E 00	1.9243E 00	
9	5.020	2118 • 236	3.5280E-03	1.9369E-04	2.3928E 03	.0000E 00		1.2889E 00	1.4515E 01	
10	5.800	2118 • 236	3.9200E-05	1.2948E-05	1.8839E 04	•0000E 00		8.6163E-02	1 . 9222E - 08	•0000E 00
11	7.210	2118 • 236	·2 • 0100E • 05	6.6792E-06	2.5890E 04	.0000E 00		4.4448E-02	1 . 0733E - 02	
12	7.400	2265 • 336	1 • 9600E = 04	7 • 1266E - 05	2.2820E 04	•0000E 00		5 • 0718E - 01	9.4759E-01	
13	10.490	2177.076	3.9000E-05	1.1376E-05	2.8204E 04	•0000E 00		7,7808E-02	9.3179E-02	
1 4	13.870	2128.043	7.0000E-05	2.5263E-05	3.4608E 04	.0000E 00		1.6889E-01	6 • 4395E = 01	• 0000E 00
15	1.720	2059 • 396	1.9072E-02	1.2683E-03	3.2950E 03	.0000E 00		8+2055E 00	6.9990E 01	1 •0000E 00
16	1.600	2137.850.	3.3060E-03	5.4318E-04	3.2382E 04	•0000E 00		3.6481E 00	1.7884E 01	
17	1.730	2128.043	1.8142E-02	1.2845E-03	3.3048E 03	.0000E 00		8.5871E 00	6.4260E 01	1 •0010E 00
18	2 • 450	2118.236	6.2500E-04	1.9562F-04	6.8088E 04	.0000E 00		1.3018E 00	3+1513E 00	
19	3.230	2128.043	5.7170E-03	2.8128E-04	1.9515E 03	.0000E 00		1,8805E 00	1.3135E 01	1 •0000E 00
20	3.810	2157.463	8.9400E-04	3.0575E-05	9.2084E 03	•0000E 00		2.0723E-01	2.1088E 00	
21	4.370	2157.463	3.3900E-04	1.3723E-04	1 . 8642E 04	•0000E 00		9.3011E-01	8 • 0760E = 01	
22	5.050	2137.850	3.5210E-03	2.0492F-04	2.4811E 03	•0000E 00		1.3763E 00	1.5484E 01	
23	5.810	2128 • 043	4.6300E-04	1.4955E-04	1.6103E 04	•0000E 00		9.9980E-01	2.3000E 00	• conoE 00
24	7.210	2157.463	2.8700E-04	8•5ე95E - 05	2.2624E 04	•0000E 00		5.7577E-01	1.9122E 00	00 30n00• C
25	7.510	2157.463	1.9100E-04	8 • 1481E • 05	2.0751E 04	.0000E 00		5.5226E-01	8.4278E-0	1 *0000F 00
26	9.480	2186.883	9.6000E-05	9.5040E-06	3.5824E 04	•0000E 00		6•5295E - 02	5.8568E-0:	1 .0000E 00
27	10.540	2177.076	3.5000E-05	1.3853E-05	3.4931E 04	•0000E 00		9+4747E-02	9.3834E-02	º 00a0E 00
28	13.950	2079 • 010	6.3000E-05	3.0391E-05	4 • 4797E 04	0000E 00		1.9850E-01	6.82986-01	1 *0000E 00
29	1.500	2098.623	3.4700E-03	5.5520E-04	3.2470E 04	•0000E 00		3.6604E 00	1.9756E 0:	1 •0000E 00 .
30	1.720	2059.396	1.9070E-02	1.2682E-03	3.2950E 03	+0000E 00		8+2047E 00	6.9976E 0:	
31	2 • 450	2088.816	6.5500E-04	1.9060E-04	7.3795E 04	.0000E 00		1.2508E 00	3.7512E 00	0 •0000E 00
35	3.550	2128.043	5•7200E - 03	2 • 8028E • 04	1•8927E 03	•0000E 00		1.8738E 00	1.2674E 0:	1 , •0000E 00
33	3.800	2235.916	1.1090E-03	2.7614E-05	6.5016E 03	•0000E 00		1+9397E-01	2.1761E 00	
34	4.290	2235.916	5.9300E-04	2.0103E-04	1.5063E 04	•0000E 00		1.4121E 00	1.9243E 00	
35	5•020	2118.236	3.5300E-03	1.9380E-04	5.3958E 03	•0000E 00		1.2896E 00	1.4832E 0	- 0.05 05
36	5 • 800	2118.236		.1.2936E-04	1.8839E 04	•0000E 00		8+6084E+01	1.9222E 00	
37	7 • 400	2265.336	1.9600E-04	7.1344E-05	2.5850E 04	•0000E 00		5+0774E-01	9 4759E-0	
38	9•490	2177.076	9 • 4000E = 05	4.8316E-06	4 • 0855E 04	•0000E 00		3.3046E-02	6.4174E-0	
39	10.490	2177.076	3•9000E-05	1 • 1388E = 05	2.8204E 04	•0000E 00			9.3179E-02	
40	13.870	2128 • 043	7.0000E-05	2.5270E-05	3.4608E 04	•0000E 00		1.6894E-01	6.4395E-0	
41	1.590	1647.517	3.0100E-03	5,1772E-04	4.0727E 04	•0000E 00		2,6796E 00	1.8414E 0:	
42	1.740	2177.076	2.5070E-02	1.9254E-03	3.6088E 03	.0000E 00		1.3169E 01	1.3555E 0	
43	2.390	2206 • 496	7.2800E-04	2.7300E-04	1.4939E 05	•0000E 00		1.8924E 00	8.9273E 00	
44	3.310	2284.949	8 • 9700E • 03	4 • 8348E = 04	1.9613E 03	•0000 <u>E</u> 00		3.4706E 00	3.4129E 0	
45	3.830	2373.209	6.4600E-04	2.9910E-05	6+3841E 03	•0000E 00			7.7142E-0	
46	4.310	2088 • 816	4 • 4600E = 04	1.9802E-04	2.4978E 04	•0000E 00		1.2995E 00	1.8218E 00	
47	5 • 1 4 0	2079 • 010	3.3000E-03	2.1615E-04	2.638DE 03	•0000E 00		1.4118E 00	1.4982E 0	
48	5 • 810	2186.583	5.6100E-04	1.5371E-04	1.1003E 04	•0000E 00		1.0561E 00	2.3074E 0	0 00.70 00
49	7 • 410	2147.656	1 • 9400E = 04	6.9646E-05	1.6044E 04	•0000E 00		4•6991E-01	6.5444E-0	1 •0000E 00

941.438

9.540

51	10.4	1971 • 137	2.8000E-05	1.0892E-06	5.4299E 04	0000E 00
52	13.8	745.305	6.5000E-05	5.0115E-06	8.9829E 03	300E 00
53	1.600	1049.312	1.6040E-03	2.2039E-04	2.4468E 04	•0000E 00
54	1.750	2235.916	2.3148E-02	1.6759E-03	3.7354E 03	.0000E 00
55	1.750	1216.025	1-2274E-02	9.0337E-04	3.6481E 03	•0000E 00
56	2.400	2177.076	7.9000E-04	1.7886E-04	4.5699E 04	.0000E 00
57	3.250	2118 • 236	2.2950E-03	8 • 6522E = 05	3.7069E 03	•0000E 00
58	3.330	2069.203	6.6440E-03	3.4283E-04	1.9221E 03	•0000E 00
59	3.820	2000.557	8.38COE-04	3.8967E-05	5 • 1387E 03	.0000E 00
60	4.310	669.794	1.3500E-04	4,7075E-05	1.2651E 04	.0000E 00
61	5.160	1990.750	3.0010E-03	1.8576E-04	2.4124E 03	•0000E 00
62	5.810	1686.744	7.0300E-04	1.6450E-04	1.0052E 04	.0000E 00
63	7.260	1833+544	1.3600E-04	3.6842E-05	3.8148E 04	.0000E 00
64	9.530	1814 230	2.7000E-05	5.4270E-06	8 · 8554E 04	•0000E 00
65	10.986	1902 • 490	-1.6000E-05	1.7008E-06	1.9045E 05	•0000E 00
66	13.840	1176.798	3.9000E-05	6.5130E-06	1.4220E 04	.0000E 00
67	1.750	2034 • 880	2.0815E-02	1.5507E-03	3.9325E 03	.0000E 00
68	1.750	931 • 632	9.3170E-03	7.0064E-04	4.0109E 03	•0000E 00
69	2.400	2079.010	7 - 8500E -04	2 • 1 4 7 0 E - 0 4	5.1583E 04	.0000E 00
70	3.240	1328 • 801	1.3690E-03	5.2433E-05	2.5595E 03	.0000E 00
71	3.330	1898.567	5.5070E-03	2.8361E-04	2.0104E 03	•0000E 00
72	3.820	2000+557	7.6400E-04	2.05526-05	6.3841E 03	•0000E 00
73	4 • 36 C	2275 • 143	4 • 0 7 0 0 E = 0 4	1.6813E-04	1.6436E 04	+0000E 00
73 74	5.150	1941.717	2.8390E-03	1.7517E-04	2.4615E 03	•0000E 00
75 75	5.810	1745.584	7 • 1 4 0 0 E = 0 4	1.6429E-04	9.6301E 03	•0000E 00
76	7+390	1500.417	1.2800E-04	4.6298E-05	1.6966E 04	•0000E 00
77	9.520	1814.230	3.2000E-05	8.6272E-06	7.8159E 04	•0000E 00
78	10.990	1448 • 442	1.6000E-05	1.1798E-05	1.7015E 05	•0000E 00
73 79	13.850	1667 • 130	7.3000E-05	1.2403E-05	1.4465E 04	•0000E 00
80	1.730	2147.656	1.7940E-02	1.3240E-03	3.5500E 03	+0000E 00
81	2.520	2196.69C	8.3200E-04	1.7805E-04	8.4190E 04	•0000E 00
82	3.270	2235.916	6.2000E-03	3.8316E-04	5.0695E 03	0000E 00
83	3.820 3.820	2186:683	8 • 7500E • 04	3.2988E-05	4.7170E 03	•0000E 00
84	4.660	2245.723	2.4400E-03	3.7356E-04	3.9815E 03	10000E 00
_	5•3?j	2128.043	5.5500E-04	4.3068E-05	2.6576E 03	•0000E 00
85 86	7.69 ₀	2128.043	1.8000E-05	1 • 1 4 0 8 E • 0 5	4.1168E 04	•0000E 00
86 87		2059.396	4.9000E-05	9.8637£-06	5.5633E 04	•0000E 00
88	9.600	2118.236	1 • 0 5 0 0 E = 0 4	7.1715E-06	2.7164E 03	•0000E 00
89	11•110 12•920	2029.977	2.1000E-05	2.5013E-05	1.0859E 05	•0000E 00
90	1.730	2294.756	1.9390E-02	1.4465E-03	3.5696E 03	•0000E 00
-	2.520	2304.563	1.0810E-03	2.2723E-04	6.4410E 04	•0000E 00
91 92	3.570	2353.596	6.1500E-03	3.8253E-04	2.1182E 03	•0000E 00
93	3.830	2383.016	7.3600E-04	3.2310E-05	6.6587E 03	•0000E 00
94		2343.789	2.5400E-04	3.7414E-05	3.8540E 03	•0000E 00
	4 • 680		8 • 4000E = 04	5.2332E-05	2.7066E 03	•0000E 00
95 96	5•340 7•700	2373•209 2383•016	2.7400E-04	1.6626E-04	4.3846E 04	•0000E 00
97		2363.403	3.200E-05	1.6400E-05	1.1945E 05	•0000E 00
98	9+500 11+120	2363.403	1.2400E-04	8 • 8660E • 06	2.8341E 03	•0000E 00
99	13.290	2294.756	2.1000E-05	2.1021F-05	8.5367E 04	•0000E 00
100	1.810	2118.236	1.6840E-02	1.0508E-03	2.5399£ 03	•0000E 00
101	2 • 380	4334.539	1.4580E-03	1.1533E-04	1.5259E 04	•0000E 00
102	3.470	2020 • 5 70	5.5980E=03	4 • 8255E = 04	2.0300E 03	•0000E 00
102	4.010	2039 • 783	1.1760E=03	5,3273E-05	4.2267E 03	•0000E 00
103	47010	2032 • 703	111/000200	- ; 32, 32 00		30002 00

3.1000E-05 2.6040E-06 4.3296E 04

.0000E 00

7.7016E-03 7.4748E-02 •0000E 00 6.7449E-03 9.1589E-02 *00m 00 1.1734E-02 1.4288E-01 •000 00 7.2652E-01 3.1810E 00 •0000E 00 1.1772E 01 1.2261E 02 *0000E 00 3.4511E 00 3.3223E 01 •0000E 00 *0000E 00 1.2233E 00 3.2427E 00 5.7577E-01 4.0707E 00 •0000E 00 2.2286E 00 1.8572E 01 .0000E 00 2.4490E-01 1.0394E 00 .0000E 00 9.9055E-02 8.4540E-02 •0000E 00 1.1618E 00 1.1419E 01 •0000E 00 8.7171E-01 3.3101E 00 .0000E 00 2.1226E-01 7.3009E-01 •0000E 00 3+0932E-02 1-1573E-01 *ooooE od 1.0165E-02 1.1602E-01 *0000E 00 2.4079E-02 8.1775E-02 *0000E 00 9.9134E 00 1 • 0300E 02 •0000E 00 2.0506E 00 2 • 1048E 01 *0010E 00 *0000E 00 1.4023E 00 3.6141E 00 2.1888E-01 9.9400E-01 *0000E 00 1.6916E 00 1.3345E 01 *0000E 00 1.2917E-01 1.0734E 00 *0000E 00 1.2017E 00 1.0216E 00 *0000E 00 1.0685E 00 1.0386E 01 .0010E 00 9.0096E-01 3.2712E 00 *0000E 00 2.1823E-01 2.9964E-01 *0000E 00 4.9171E-02 1.4318E-01 *0000E 00 5.3588E-02 1.0384E-01 *0000E 00 6.4958E-02 2.9187E-01 •0000E 00 8.9329E 00 6.7499E 01 •0000E 00 1.2287E 00 7.3053E 00 *0000E 00 2.6914E 00 1.6788E 01 •0000E 00 2,2663E-01 1.0402E 00 •0000E 00 2,6355E 00 1.0161E 01 •0000E 00 2.8793E-01 4.5905E-01 •0000E 00 7.6270E-02 1.5570E-02 *0000E.00 6.3816E-02 2.4299E-01 *00.00E 00 4.7724E-02 7.2969E-02 *0000E 00 .0000E 00 1.5952E-01 1.5779E-01 1.0428E 01 7.9286E 01 *0000E 00 1.6451E 00 9.4349E 00 •0000E 00 2.8284E 00 1.6910E 01 •0000E 00 2.4189E-01 1.0444E 00 •0020E 00 2.7549E-01 1.0750E-01 *0000E 00 3.9017E-01 1.0750E 00 •0000F 00 1.2447E 00 3.8524E 00 *0000E 00 1.2177E-01 2.2252E-01 *0000E 00 6.5829E-02 1.0637E-01 .0000E 00 1.5154E-01 1.3125E-01 •0000E 00 6.9928E 00 4.6579E 01 .0000E 00 1.5705E 00 5.3108E 00 .0000E 00 *0000E 00 3.0625E 00 1.5120E 01 3.4138E-01 1.8554E 00 .0000E 00

9.2673F 03

•0000E 00

196

13.120

1990.750

1 • 1200E = 04

1.4202E-05

00

00

*0000E 00

8,8819E-02 3,9499E-01

TEST NO. 2 SATURN V DTV CONFIG. I PITCH + YAW (1967)

	FREQUE Y	FORCE [N]	XN [M]	XE (M)	GENL MASS [KG-SEC2/M]	ZETA *		D[=PI+XE+F] [N=M]	T [N-M]	D[=4*PI*7. A*T] [N=M]
. 1	1 • 106	5800+479	6.5937E-02	5+6139E=03	1.0185E 04	7.5000E-03	•	1.0077E 02	1 • 0692E	03 1.0077E 02
. 5	2.547	6347 • 610	9 • 1799E • 03	2.7867E-04	3.5000E 03	1.0000E-02		4.7461E 00	3.7768E	01 4*7461E 00
3	3 4 4 3	21155.734	4.36525-03	3.9865E-04	4.2875E 04	1.0000E-02		2.4023E 01	1.9117E	02 2.4023E 01
4	1.216	4635.045	6.1968E+02	4.6213E-03	8.2775E 03	6.0000E-03		6.9950E 01	9.2774E	02 6.9950E 01
5	2.000	3958 • 916	2.5037E-02	1.2436E=03	3.5000E 03	7.0000E-03		1.5239E 01	1.7324E	02 1.5239E 01
6	2.706	7633 • 146	1 • 6533E = 02	1+0187E-03	5 • 6875E 03	7 • 4000E - 03		2.0894E 01	2.2469E	02 2°0894E 01
7	3.531	23348.707	5.0616E-03	9.4121E-04	6 • 1250E 04	1-1000E-02		5.3384E 01	3.8620E	
8	1 • 257	3407 • 337	5.2385E-02	4 • 3594E - 03	6.9650E 03	6.0000E-03		4.4947E 01	5.9613E	
9	2.124	3336 • 165	1.5734E-02	6.4010E-04	2.9925E 03	9.0000E-03		7.4611E 00	6.55/1E	
10	2.976	16000 • 247	9•4430E-03	6.0532E-04	9 • 1000E 03	1.2000E-02		2 • 1392E 01	1 • 4186E	02 2·1392E 01
11	1•5€u	5386 • 794	-3.9926E-02	2.0643E-03	4 • 4 4 50E 03	7+0000E-03		2.9942E 01	3.4038E	02 2.9942E 01
12	4.460	21605 • 005	5•1981E-03	8 • 1883E = 04	1-1900E 04	9.0000E-03		1•4278E 01	1 • 2625E	02 1 4278E 01
13	1.112	4359.256	5.7880E-02	4.7642E-03	1.1357E 04	6.0000E-03		7.0022E 01	9•2869E	02 סייסס 7• 01
14	1.810	3340 • 513	2.0443E-02	8.3138E-04	3.7800E 03	7.5000E-03		9.6278E 00	1 • 0215E	02 9 6278E 00
15	1 • 821	4159.086	2.4444E-02	1.0296E-03	3.6400E 03	8.5000E-03		1.5207E 01	1 • 4237E	02 1.52c7E 01
16	2.578	6690 • 123	9•8936E-03	3.0918E-04	3.5350E 03	9.0000E-03		5•1339E 00	4.5394E	
17	3 450	21702.865	4.3377E-03	3.7675E-04	4 . 1475E 04.	1.20005-05		2.7649E 01	1 • 8335E	
18	1 • 258	3385 • 095	5.2200E-02	4.3360E-03	6.7200E 03	6.0000E-03		4.3127E 01	5.7200E	
19	2 • 138	4350 • 359	1 • 8867E - 02	7.7596E-04	2.8875E 03	8 • 0000E = 03		9.3238E 00	9.2746E	

TEST NO. 3 SATURN V DTV CONFIG. I TORSIONAL (1967)

	FREQUE Y	TORQUE [N+M]	XN [RAD]	XE [RAD]	GENL MASS [KG-M2]	ZETA .		D[=PI*XE*F] [N-M]	T [N-M]	D[=4*P[*7 A*T]
1	5•660	24756 • 178	6+0920E+05	5.4780E+06	1.0620E 06	1.0000E-02	•	3+1320E-01	2.4924E 0	0 3•1320E - 01
, <u>5</u>	6.162	25650.979	8.4690E-05		3+3894E 05	8 • 0000E = 03		1.8317E-01	1.8220E 0	
3	8 • 117	23115.708	3.1920E-05	4.9104E-06	2.8245E 05	1.6000E-02		7.5252E-01	3.7427E 0	0 7.5252E-01
4	8 • 839	20580 • 437	1 • 4860E-04	8 • 1972E = 06	4.3836E 05	1 • 0000E • 02		1•8759E 00	1 • 4928E 0	1 1.8759E 00
5	11.326	27142.315	6.7030E-05	1.9219E-05	3.0505E 05	5.0000E-05		8.7222E-01	3.4705E 0	0 8 • 7222E = 01
6	5.691	22708 • 980	6.2710E-05	6.0300E-06	1.0281E 05	9.0000E-03		2.9233E-01	2.5848E 0	0 2.9233E-01
7	6.194	22708 • 980	6 • 4320E - 05	6.0300E+06	7.6826E 05	9.0000E-03		2.7222E-01	2.4070E 0	0 2.7222E-01
8	8 • 113	21918 • 120	3.2980E-05	7.7600E-06	3.5024E 06	1 • 4000E - 02		8.7075E-01	4 . 9494E 0	0 8 • 7075E = 01
9	8 • 8 9 5	23160.500	1.4430E-04	2.8700E-05	4.5192E 05	1 • 1000E = 02		2.0315E 00	1.4697E 0	1 2.0315E 00
10	11.428	26889.240	6.6400E+05	1.1900F-05	3.8413F 05	1.8000E-02		9.8930E-01	4.3737E 0	0 9.8930E-01

TEST NO. 4 SATURN V DTV CONFIG. I LONGITUDINAL (1967)

	FREGUL Y	FORCE [N]	XN [M]	XE [M]	GENL MASS [KG-SEC2/M]	ZETA		D[=PI*XE*F] [N=M]	T [N-M]	D[=4*P[*ZETA*T]
1	3.752	76509.384	1 • 8547E = 03	9.2751E-04	2.2400E 05	8 • 0000E = 03	•	2.1526E 02	2 • 1412E	03 2•1526E 02
2	4.463	78955.905	4 • 2303E • 03		3.9200E 05	9.0000E-03		3.1193E 02	2.7581E	
3	6.506	84516 • 180	4 • 1736E = 04	8.7641E-05		1 • 3000E = 02		2.2676E 01	1.3881E	02 2.2676E 01
4	7•568	77843•850	6.8362E-06	1.0937E-04	2.9750E 09	1 • 4000E - 02		2.7654E 01	1.5719E	02 2.7654E 01
5	5 • 114	78066.261	3.0855E-03	9.8732E-04	2.6250E 05	1.7000E-02		2.7560E 02	1.2901E	03 2.7560E 02
6	6.492	69837•054	1.8720E-03	2.2467E-04	2.9750E 05	6.0000E~03		6.5393E 01	8 • 6731E	02 6.5393E 01
7	8 • 276	68280 • 177	8.9686E-05	3.6771E-04	4.3750E 07	1.3000E-02		7.7723E 01	4.7577E	02 7.77238 01
8	9•376	69837 • 054	9-1699E-05	7.0627E-05	7.0000E 05	1 • 0000E = 02		1.2835E 01	1.0214E	02 1.2835E 01
9	6 • 176	56714 • 805	3.0540E-03	5 - 4969E-04	1 • 1637E 05	9.0000E-03		9.2426E 01	8 • 1 7 2 2 E	
10	7.976	53378 • 640	3.9589E-04	2.4544E-03	1.0675E 07	1.4000E-02		3.6962E 02	2.1010E	
11	9.456	64054.368	1.6241E-03	3.2482E-04	6.8250E 04	1.0000E-02		3.9508E 01	3.1439E	

TEST NO. 5 SATURN V DTV CONFIGURITY PITCH + YAW FREQ. SWEEP (1967)

	FREQUE Y	FORCE [N]	XN [M]	XE [M]	GENL MASS [KG+SEC2/M]	ZETA .		D[=PI*XE*F] [N-M]	T [M-M]	D[=4*P[*ZE+A*T]
1	1 • 667	6325 • 369	4.9193E-02	1.4745E-03	3.3425E 03	5.2000E-03	·	2.8993E 01	4•4368E	02 2•8993E 01
2	2.701	6707.916	9.6019E-03	1.9204E-04	3.7450E 03	7.4000E-03		4.6236E 00	4.9721E	01 4.6236E 00
3	5.979	9194 • 471	7 • 0235E = 04	1.2639E-04	1.4385E 05	6.3000E-03		3.9642E 00	5.0073E	
4	2.224	3927.778	6.2084E-03	8 • 1153E = 04	3.5875E 04	6.3000E-03		1 • 0688E 01	1.3501E	
5	5.953	9425.778	4 • 0995E = 04	1 - 1066E-04	4.2350E 05	6.3000E-03		3.9415E 00	4•9787E	01 3.9415E 00
6	8 • 555	8660 • 684	2 • 1146E - 05	8+8551E-04	2.8000E 08	1.0300E-02		2.3413E 01	1.8088E	
7	2 229	4870 • 801	7 • 6645E = 03	9.1974E-04	3.9025E 04	6.3000E-03		1 • 7800E 01	2.2483E	
8	5 • 897	17321 • 369	7 • 1487E • 04	7 • 1487E - 05	3.2900E 05	7+3000E-03		1.0587E 01	1 • 1541E	02 1.0587E 01
9	8 • 690	5791.582	1 • 0536E = 05	5.3536E-04	4.7775E 08	9.5000E-03		9.4371E 00	7.9051E	01 9+4371E 00
10	2.264	2993 • 652	8 • 6757E - 03	2 • 1686E • 03	3.5175E 04	5-8000E-03		1.9524E 01	2.6787E	02 1.95248 01
11	5.916	14950 • 467	4 • 2223E - 04	1.0558E-04	5.7400E 05	9+0000E-03		7.9955E 00	7.0695E	01 7.9955E 00
12	1.651	5489 • 103	3.4210E-02	6.8430E-04	3.8150E 03	6.0000E-03		1.8332E 01	2.4314E	02 1 · 8332E 01
13	2.701	12704 • 116	1.4509E-02		4.3575E 03	9.3000E-03		1.5438E 01	1.3210E	
14	5.732	7241.702	2.3669E-04	1 . 0175E - 04	5.5125E 05	9.6000E-03		2.4162E 00	3.0053E	
15	6.303	8416.032	2.2004E-04	1.2895E-04	7.7875E 05	9.0000E-03		3.3441E 00	2.9568E	01 3+3441E 00

TEST NO. 5 SATURN V DTV CENFIG. II PITCH + YAW FORCE LEVEL (1967)

			1201				•		
	FREGU	FORCE	XN	ΧE	GENL MASS	ETA .	D[=PI*XE*F]	T	D[=4*P]+Z A+T]
	[HZ]	[N]	[M]	[M]	[KG-SEC2/M]		[N-M]	[N-M]	[N=M]
. 1	1 • 665	7210.565	5.5195E+02	1.5978E-03	3.3425E 03	•0000E 00	3.6193E 01	5.5722E	02 •0000E 00
. 5	1,671	5689.273	4.7334E-02	1.3995E-03	3.3425E 03	•0000E 00	2.5014E 01	4 • 1276E	
3	1 • 676	3829 • 917	3.7385F-02	1.1193F-03	3.3425E 03	•0000E 00	1+3467E 01	2.5903E	02 *0000E 00
4	2.710	6965.913	9.8521E-03	2.5743E-04	3.7450F 03	•0000E 00	5.6335E 00	5 • 2696E	01 *0000E 00
5	2.720	5564.723	7.9806E-03	2 - 1002F - 04	3.7450E 03	•0000E 00	3.6715E 00	3.4833E	
6	2.722	3696.471	5.9621E-03	1.6159F-04	3.7450E 03	•0000E 00	1+8765E 00	1.9470E	01 *0000E 00
7	2,224	3491.853	5.2434E-03	7.0963F-04	3.5875E 04	•0000E 00	7.7847E 00	9.6298E	01 •0000E 00
8	2.223	2388.694	3.6171E-03	4,9668E-04	3.5875E 04	•0000E 00	3.7272E 00	4.5785E	
9	2.225	1797.081	2.7366E-03	3.7097E-04	3.5875E 04	.0000E 00	2.0944E 00	2.6735E	01 .0000E 00
10	5 • 955	5395.691	2.5661E-04	7.0439E-05	4.2350E 05	•0000E 00	1.1940E 00	1.9520E	
11	5 • 95 c	3647.540	6.9479E-05	4.9611E-05	4.2350E 05	*0000E 00	5.6850E-01	1.4315E	00 •0000E 00
iż	5 - 954	2771 • 241	4 • 7 1 4 7 E = 05	3.5753E-05	4+2350E 05	•0000E 00	3+1127E-01	6.5874E-	
13	8.765	9999 • 599	1 • 4247E - 05	4 • 4848E = 04	2.8000E 08	•0000E 00	1.4089E 01	8+6181E	01 •0COOE 00
14	8.766	7139.393	1.5306E-05	4.1248E-04	-2 · 8000E 08	.0000E 00	9.2515E 00	9.9495E	
15	8.764	5422 • 380	9 • 1 4 6 4 E = 06	3.5994E-04	2.8000E 08	*0000E 00	6.1316E 00	3.5513E	01 *0000E 00
16	5.555	5449.069	8.6902E-03	1.3128E-03	3.9025E 04	.0000E 00	2.2473E 01	2.8722E	02 •0000E 00
17	5.223	3629.748	5.6194E-03	8.4087E-04	3.9025E 04	•0000E 00	9.5885E 00	1.2021E	
18	2.224	2620.002	4.2596E-03	6.3598E-04	3.9025E 04	•0000E 00	5.2348E 00	6.9132E	
19	5.876	17023.338	7.2412E-04	1.5143E+04	3.2900E 05	.0000E 00	8.0987E 00	1 • 1757E	
50	5 • 883	12566.221	5.7989E-04	1-1578E-04	3.2900E 05	•0000E 00	4.5706E 00	7.5582E	
21	5.898	8656.236	4 • 1 4 1 1 E - 0 4	8.6573E-05	3.2900E 05	•0000E 00	2.3543E 00	3.8740E	01 *0000E 00
55	8+62n	10408 • 835	1 • 8227E = 05	1.2829E-03	4.7775E 08	*0000E 00	4+1953E 01	2.3580E	02 •0000E 00
23	8.621	7170.531	1.3954E-05	7.7584E-04	4.7775E 08	.0000E 00	1.7477E 01	1.3648E	02 •0000E 00
24	2.268	3629.748	9.4575E-03	2.3526E-03	3.5175E 04	.0000E 00	2.6827E 01	3.1945E	00 30000° SO
25	2.270	1712.565	4.4172E-03	1 • 0783E = 03	3.5175E 04	.0000E 00	5.8015E 00	6.9809E	
26	5.945	14790.331	4.7674E-04	8.9038E-05	5.7400E 03	•0000E 00	4+1372E 00	9.1013E	01 *0000E 00
27	5,946	11285 • 134	3.4224E-04	6,1675E-05	5.7400E 05	•0000E 00	2.1866E 00	4 . 6920E	
28	5.943	7788 • 833	2.5369E-04	3.2019E-05	5.7400E 05	*0000E 00	7.8349E-01	2.5755E	
59	1 • 658	5217.762	3.93256-02	1.1660E-03	3.8150E 03	.0000E 00	1.9112E 01	3.2013E	02 •00n0E 00
30	1 • 658	4328 • 118	3.5609E-02	1 • 0375E • 03	3.8150E 03	.0000E 00	1.4107E 01	2.6249E	
31	1 • 65 8	3487.404	2.9046E-02	8 . 1472F - 04	3.8150E 03	*0000E 00	8.9260E 00	1.7465E	02 •0000E 00
35	2.701	12761.943	1 • 4946E = 02	4.2983E-04	4.3575E 03	•0000E 00	1.7233E 01	1 • 4018E	02 *0000E 00
33	2.701	9305.676	1.2181E-02	3.4832E-04	4.3575E 03	.0000E 00	1.0183E 01	9.3101E	01 • CCCOE 00
34	2.701	6338.713	6.9870E-03	1 . 9214E - 04	4.3575E 03	•0000E 00	3,8262E 00	3.0633E	
35	5.750	6752.398	2.4065E-04	8.8047E-05	5.5125E 05	•0000E 00	1.8678E 00	2.0834E	01 •0000E 00
36	5.750	5137.694	1.32776-04	7.0550E-05	5.5125E 05	.0000E 00	1+1387E 00	6.3418E	00 *0000E 00
37	5.750	2219.662	1 • 1735E = 04	2.9543E-05	5.5125E 05	•0000E 00	2+0601E-01	4.9540E	00 •0000E 00
38	6.290	7993.451	2.4370E-04	1 • 1734E = 04	7.7875E 05	*0000E 00	2.9466E 00	3.6120E	01 *0000E 00
39	6.290	6467.712	1 • 8 0 7 5 E • 0 4	9.6768E-05	7.7875E 05	•0000E 00	1.9662E 00	1.9870E	
40	6.290	4412.634	3.9924E=04	6.6643F-05	7.7875E 05	•0000E 00	9.2385E-01	9.6937E	0.000
70	0-2-0	, , , , , , , , , , , , , , , , , , , ,				30002 00			00,0-00

TEST NO. 6 SATURN V DTV CONFIG. II TORSIONAL FREG. SWEEP (1967)

	FREQUEY (HZ)	TORQUE [N-M]	XN [RAD]	XE (RAD)	GENL MASS [KG-M2]	ZETA .		D[=PI*XE*F] [N=M]	T [M=M3	D[=4*P[*] [N-M]
1 2	5•605 6•290	17715•264 6134•814	5 • 1 4 0 0 E = 0 5 3 • 3 2 0 0 E = 0 5		1.5252E 06 1.1637E 06		•	3.6652E-01 7.0117E-02	2•4989E 0 1•0017E 0	• • • • • • • •
3	9.736 5.530	9885.750 17398.920	1.1400E-04 3.4600E-05		2.2596E 05 1.6269E 06			3.9947E-01 4.3856E-01	5,4945E 0 1.1757E 0	
5 6	6 • 255 9 • 644	6281 • 688 9648 • 492		3.5584E-06 1.1017E-05	7.9085E 05 2.1353E 05			7.0223E-02 3.3393E-01	6.8136E-0 3.4125E 0	- 4 5.

TEST NO. 6 SATURN V DIV CONFIG. II TORSIONAL FORCE LEVEL (1967)

	FREQUEY (HZ)	TORQUE [N=M]	XN [RAD]	XE [RAD]	GENL MASS [KG-M2]	ZETA *	D[=P]*XE*F] [N-M]	T (D[=4*P]*/_A*T] [N-M]
. 1	5 • 605	17686 • 703	1.0200E-04	7.2276E-06	1.5252E 06	•0000E 00	4.0159E-01	9 • 8 4 0 7 E 00	• 0000E 00
2	5.611	13649.521	8 • 5837E • 05	5.3921E-06	1.5252E 06	•0000E 00	2.3122E-01	6.9838E 00	
3	5.620	8362.734	6.5058E-05	3.2544E-06	1.5252E 06	•0000E 00	8,5500E-02	4.0248E 00	•0000E 00
4	6.268	5983.681	1 • 1181E - 04	4.0727E-06	1.1637E 06	•0000E 00	7.6560E-02	1.1282E 0	
5	6 • 275	4854.231	9.5650E-05	3.4714E-06	1.1637E 06	•0000E 00	5+2939E - 02	8.2750E 00	
6	6 • 28 4	3532.534	7•4656E-05	2.6367E-06	1.1637E 05	•0000E 00	2.9261E-02	5 • 0556E 00	
7	9•735	10573.572	2.5003E-05	1.0147E-05	2.2596E 05	•0000E 00	3.3708E-01	2.6424E-0	
8	9•745	7665.840	1.5619E-05	7.5641E-06	2.2596E 05	•0000E 00	1.8217E-01	1 • 0334E = 01	
9	9•775	5118•570	7•6360E - 06	5.2124E-06	2•2596E 05	•0000E 00	8•3818E-02	2 + 4850E - 02	*0000E 00
10	5.510	17566.548 .	3.8043E-05	1.5353E-05	1.6269E 06	•0000E 00	8+4730E-01	1.4110E 00	•oonoE oo
11	5+51/	13048•749	·2•6646E-05	1.0072E-05	1.6269E 06	*0000E 00	4.1288E-01	6.9403E-0	1 *0000E 00
12	5.540	8482 • 889	2.1883E-05	7 • 2488E • 06	1.6269E 06	•0000E 00	1.9318E-01	4 • 7198E • 01	
13	6 • 239	10044.894	2.0509E-04	9.2344E-06	7.9086E 05	•0000E 00	2.9141E-01	2.5808E 01	
14	6 • 237	7689.871	1.7417E-04	6.3954E-06	7.9086E 05	•0000E 00	1.5450E-01	1.8421E 01	
15	6 • 2 4 1	5334.848	1.2104E-04	3.2487E-06	7.9086E 05	•0000E 00	5+4448E+02	8.9079E 00	
16	9,635	11919.300	1.7264E-04	2.6250E-05	2.1353E 05	•0000E 00	9,8295E-01	1.1662E 01	•0000E 00
17	9 • 636	9780•554	1.5048E-04	2.2343E-05	2 • 1353£ 05	•0000E 00	6.8652E-01	8.8625E 00	
18	9 • 6 4 1	6079.804	9•4275E-05	1.3485E-05	2.1353E 05	•0000E 00	2.5756E-01	3.4820E 00	00 30c00•

TEST NO. 7 SATURN V DIV CONFIG. II LONGITUDINAL FREQ. SWEEP (1967)

	FREQUEY (HZ)	FORCE (N)	XN [M]	XE [M]	GENL MASS [KG-SEC2/M]	ZETA		D[=P]+XE+F] [N+M]	T [N-M]	D [=4*PI*A*T]
1	6.213	5529 • 137	5.8560E-04	5.2705E-05	7.6825E 04	3.8000E-03	•	9.5858E-01	2.0074E	01 9.58585-01
2	9+205	21769•589	8•4435E-04	1.3510E-04	9.5900E 04	6.5000E-03		9+3404E 00	1 • 1 4 3 5 E	
3	9 • 8 4 6	17299 • 128	5.3811E-05	1+6143E-04	1 • 1847E 07	1 • 2000E • 02		9.8995E 00	6.5648E	01 9+8995E 00
4	11.217	16867.650	3.2970E-04	6.5941E-05	1.3177E 05	7.6000E-03		3.3977E 00	3.5576E	01 3.3977E 00
5	6 • 3 4 6	5511•345	6•8469E - 04	8•2156E - 05	1 • 1900E 05	2.8000E-03		1.5604E 00	4 • 4347E	
6	9•435	21231 • 354	3.0420E-04	1.3692E-04	6.2300E 04	7.2000E-03		9 • 1659E • 01	1.0131E	
7	10.100	8344•861	7•5514E-05	1 • 1329E • 04	2.5375E 06	8.0000E-03		2,9290E 00	2.9136E	01 2.9290E 00
8	11 • 410	20773•187	2•4807E-04	7 • 4 4 2 1 E = g5	3.8500E 03	7.6000E-03		5.8148E 00	6.0886E	01 5.8148E 00
9	6 • 425	11632•095	1•2576E-03	2.2644E-04	1•3405E 05	3•4000E-03		7.3810E 00	1.7075E	02 7 • 3810E 00
10	9 • 9 6 5	5564•723 .	1•1757E-04	2.3514E-04	3.5000E 06	4 • 0000E - 03		4.7669E 00	9.4834E	01 4.7669E 00
11	11 • 40 =	21929.725	· 2 • 4296E-04	9•7147E - 05	4.4625E 05	9.0000E-03		7.6950E 00	6.8039E	
12	6+693	6218•612	8•3724E-04	2.0094E-04	1.3142E 05	3.7000E-03		3.7876E 00	8 . 146 1E	01 3*7876F 00
13	10.227	5675.929	1.2113E-04	1.9380E-04	1.0920E 06	5.4000E-03		2.2447E 00	3.3079E	
14	11.535	5920.581	1 • 34 4 1 E - 0 4	4 • 0330E • 05	2.1000E 05	6.2000E-03		7.7630E-01	9.9638E	00 7.7630E-01
15	7•265	12406•086	1.7458E-03	7.3323E-04	1 • 4385E 05	4.7000E-03		2+6977E 01	4.5676E	02 2 6977E 01
16	10.793	8371.550	1.8124E-04	1.8124E-04	5•4075E 05	1.0000E-02		5+1324E 00	4.0842E	
17	11•776	5164.383	1.7734E-04	1.7734E-04	5.8975E 05	4.9000E-03		3.1260E 00	5.0767E	
18	4 • 858	3251.649	4.1564E-05	2 • 1051E = 03	3.8150E 08	5.7000E-03		2.1992E 01	3.0703E	
19	8 • 628	5440•173	1.0843E-03	7.2642E-04	1.0675E 05	6.2000E-03		1.4369E 01	1.8443E	
50	9.502	17583.814	6.2731E-04	1 - 8815E-04	1.7675E 05	6.7000E-03		1.0437E 01	1 · 2396E	02 1 • 0437E 01
21	11.576	16987.752	3.3924E-04	2.2052E-04	2.3800E 05	1.5000E-02		1.3657E 01	7.2451E	01 1.3657E 01

TEST NO. 7 SATURN V DTV CONFIG. II LONGITUDINAL FORCE LEVEL (1967)

	FREQUELY (HZ)	FORCE [N]	XN (M)	XE [M]	GENL MASS [KG-SEC2/M]	ZETA	•	D[=P[*XE*F] [N=M]	T [N-M]	D [=4+P]+ A+T]
. 1	6.220	5675.929	6 • 1290E = 04	6.3240E-05	7.6825E 04	+0000E 00		1.1277E 00	2.2039E 0	1 •0000E 00
· 2	6.225	4150 • 189	4.6884E-04	4.7058E-05	7.6825E 04	.0000E 0		6 • 1354E = 01	1.2917E C	1 *0000E 00
3	6+230	2802 • 379	3.1793E-04	3.1756E-05	7 - 6825E 04	.0000E 0	0	2.7958E-01	5.9493E C	0 *0000E 00
4	9.180	21636.142	7.1529E-04	1.5542E-04	9.5900E 04	.0000E 0	Ö	1.0564E 01	8.1621E C	1
5	9.182	16026.937	5.0149E-04	1.1072E-04	9.5900E 04	•0000E 0	0	5.5749E 00	4.0137E C	1
6	9 • 184	10617.901	3.7230E-04	7.3955E-05	9.5900E 04	•0000E 0	0	2.4669E 00	2.2131E C	1 •0000E 00
7	11•200	21934.173	3.6969E-04	9.8917E-05	1.3177E 05	•0000E 0		6.816ZE 00	4.4594E C	
8	11.190	16089.212	3.0202E-04	7.2544E-05	1.3177E 05	•0000E 0	0	3.6668E 00	2.9708E C	
9	11.195	10795+330	2•1632E-04	4 • 5786E + 04	1.3177E 05	•0000E 00	-	1.5529E 01	1.5055E 0	2 2 3 3 4 4 4 4
10	6+343	5876 • 099	7.2588E-04	9.6403E-05	1.1900E 05	•0000E 0		1.7796E 00	4.9796E C	
11	6.31.5	4052 • 328	·5 • 0061E = 04	6.5598E-05	1.1900E 05	+0000E 00		8+3511E-01	2.3699E C	- 0000
12	6.346	2771 • 241	3.4824E-04	4 • 5422E • 05	1.1900E 05	•0000E 0	*	3.9545E-01	1.1472E C	4 07.00 00
13	9.410	21177.975	2.7714E-04	1 • 4077E - 04	6.2300E 04	+0000E 0	-	9.3660E 00	8.3636E C	
14	9.411	15920 • 179	1.2979E-04	9.4298E-05	6.2300E 04	•0000E 00		4.7163E 00	1.8348E C	0 <u>•0000</u> E 00
15	9+412	11076 • 068	7.0591E-05	6.1563E-05	6.2300E 04	•0000E 00		2.1422E 00	5.4285E+0	
16	10.067	8456 • 066	7.3528E-05	1.31265-04	2.5375E 06 2.5375E 06	•0000E 00	_	3.4870E 00 2.0679E 00	2.17443E C	- 00,00
17	10.068	6276 • 438	6.5457E-05	1.0488E-04	•	•0000E 00			2.1753E 0	
18	10.080	4225 • 8 ₀ 9 21435 • 972	4 • 5 6 8 4 E = 05	6 • 1733E = 05 7 • 5914E = 05	2.5375E 06	•0000E 00		8 • 1956E • 01	1.0682E 0	
19 20	11•535 11•437	15720 • 009	2.4795E-04 1.4805E-04	5:6173E=05	3.8500E 05 3.8500E 05	•0000E 00		5+1123E 00 2+7742E 00	6.2166E C	
21	6.419	10809 • 175	1.1904E-03	1.9484E-04	1.3405E 05	•0000E 00		6.6165E 00	1.5451E C	
55	6.420	8042.382	9 • 1 4 4 4 E = 0 4	1.5059E-04	1.3405E 05	•0000E 00		3.8048E 00	9.1196E C	
53	6.421	5333.416	6.2328E-04	1.0258E-04	1.3405E 05	+0000E 00		1.7188E 00	4.2381E 0	
24	9.955	6094.061	1.2826E-04	2.8379E-04	3.5000E 05	•0000E 0	-	5.4331E 00	1.1263E C	
25	9.960	4377 • 048	9.79688-05	2.0126E-04	3.5000E 05	•0000E 00	_	2.7675E 00	6.5779E	
26	9.961	2966.963	6.2253E-05	1.2759E-04	3.5000E 05	*0000E 00	·	1.1893E 00	2.6565E C	
27	11.530	15728.906	1.3677E-04	6.5437F-05	4.4625E 05	•0000E 0		3.2335E 00	2.1905E C	
28	11.525	10684.624	1.3467E-04	4.3753E-05	4.4625E 05	0000E 0	-	1.4687E 00	2.1271E C	
29	6.705	6458.815	8.6407E-04	2.0089E-04	1.3142E 05	•0000E 00	0	4.0763E 00	8.7076E C	
30	6.707	4910.835	6.5780E-04	1.5314E-04	1.3142E 05	+0000E 00	0	2.3626E 00	5.0496E C	1 .0000E 00
31	6.709	3180.477	4.4984E-04	1.0571g-04	1.3142E 05	*0000E 00	0	1.0562E 00	2.3629E C	
35	10•299	5925•029	2 · 1334E - 04	2.8961E-04	1.0920E 06	•0000E 00	0	5•3908E 00	1.0406E C	
33	10.310	2851•3ე9	9•8926 _E - ₀ 5	1.3125E-04	1.0920E 05	•0000E 0	0	1.1757E 00	2.2423E C	1 *0000E 00
34	10.320	2139.594	8.0809E-05	1 • 0485E = 04	1.0920E 05	•0000E 00	0	7+0478E-01	1.4991E C	
35	7.269	12205.916	1.7531E-03	7.3557E-04	1.4385E 05	•0000E 00	0	2.8206E 01	4.6113E C	
36	7.272	10297.629	1.5213E-03	.6.3996E-04	1.4385E 05	•0000E 0		2.0703E 01	3.4753E C	
37	7.275	6360.955	9 • 9 4 6 7 E = 0 4	4 • 1190E = 04	1.4385E 05	•0000 <u>E</u> 00		8.2311E 00	1 • 4868E C	
38	10.793	9012-094	2.0643E-04	1 • 8945E - 04	5.4075E 05	•0000E 00		5+3637E 00	5.2983E 0	
39	10.795	6734 • 605	1 • 2580E = 04	1.3632E-04	5.4075E 05	•0000E 0		2.8842E 00	1.9685E C	
40	10.798	4621.701	6.2223E-05	8.5687E-05	5.4075E 05	•0000E 00		1.2441E 00	4.8185E C	00 3000° 00
41	11.782	6196 • 370	1 • 8302E - 04	1.9675E-04	5.8975E 05	•0000E 0	_	3.8300E 00	5.4127E C	11 •0000 00
42	11·7 ⁹ 0	4746 • 251	1 • 4892E = 04	1.5468E-04	5.8975E 05	•0000E 00	*	2+3064E 00	3.5886E 0	
43 44	11.793	3180 • 477 55 • 6 • 896	1 • 0 4 4 1 E = 0 4	1.0505E-04	5.8975E 05	•0000E 00		1.0497E 00	1.76515	
45	8•613 8•611	55 ₀ 6•896 47 ₀₁ •769	1•1102E-03 9•5891E-04	7.3415E-04 6.3668E-04	1•0675E 05 1•0675E 05	•0000E 0	•	1+2701E 01	1.9265E 0	0000 00
46	8•6 ₀ 9	3874 • 400	7.7594E-04	5 • 1467E=04	1.0675E 05	•0000E 00	-	9.4044E 00	1.4367E C	
47	9.577	17730 • 605	3.8594E-04	2.6740E-04	1.7675E 05	•0000E 0	**	1.4895E 01	9.4029E 0	
48	9.575	13157 • 235	2.7202E-04	1.9940E-04	1.7675E 05	*0000E 0	•	8+2426E 00	2.3668E 0	- 0000 017
49	9.573	8451 • 618	2•1167E-04	1.2855E-04		•0000E 0		3.4131E 00	1.4325E	
7.0	J - G / G	5.01.010	r-1f-,r-0,	TATOMOT OF	1.,0,00	- 00000 01	U	0.41016 00	******	40000F 00

50 11.630 21569.419 3.3093E-04 2.7277E-04 2.3800E 05 0000E 00 51 11.636 16240.451 2.7186E-04 1.9475E-04 2.3800E 05 0000E 00 52 11.64 10933.725 2.3326E-04 1.2788E-04 2.3800E 05 0000E 00

5

1.8484E 01 6.9587E 01 .0000E 00 9.9365E 00 4.6924E 01 .00 00 4.3927E 00 3.4525E 01 .00

TEST NO. 8 SATURN V DIV CONFIG. II CO MSFC 201 PITCH + YAW FREQ. SWEEP (1967)

	FREGUEY (HZ)	FORCE [N]	XN [M]	XE [M]	GENL MASS [KG-SEC2/M]	ZETA •		D[=PI*XE*F] (N=M]	T [M-M]	D[=4*P[*(A*T]
. 1	1 • 660	4830•767	2.8126E-02	9.0948E-04	5.4950E 03	4.5000E+03	•	1 • 3371E 01	2+3645E	02 1 • 3371E n1
2	2.706	8491.652	7.6353E-03	2.4285E-04	4.4100E 03	1 • 4000E = 02		6.5375E 00	3.7160E	01 6.5375E 00
3	5.988	10742 • 451	9.2839E-04	1.5225E-04	1 • 1375E 05	5.8000E-03		5.0576E 00	6.9391E	
4	8 • 490	7268 • 391	2.7593E-05	4.5500E-04	5.8275E 07	1.3000E-02		1.0313E 01	6.3127E	
5	2.215	4554.977	6.5326E-03	9.8507E-04	3.9375E 04	6.8000E-03		1.3905E 01	1 • 6273E	02 1.3955E 01
6	5.900	16876.547	8 • 3497E = 04	1 +6515E+04	2.3625E 05	6.1000E-03		8.6753E 00	1 • 1317E	02 8 • 6753E 00
7	8.515	5702 • 618	6 • 8518E = 06	3 • 6648E = 04	3.9900E 08	1 • 3000E = 02		4.3796E 00	2.6809E	
8	2 • 255	2909 • 136	9.2810E=03	2.3546E-03	3.9550E 04	5.0000E-03		2.1485E 01	3.4194E	02 2 1485E 01
9	5 • 903	136 17 • 139	6.2726E-04	4 • 1555E - 05	8.4000E 04	6.3000E-03		1.7997E 00	2.2733E	01 1.7997E 00
10	1 • 625	5293.382	2.7471E-02	8 • 2167E = 04	6.1950E 03	4.5000E-03		1.3780E 01	2•4369E	02 1 • 3780E 01
11	2.61.2	12512.843	1.0211E-02	3.3536E-04	5.2150E 03	1 + 4000E - 02		1.3180E 01	7.4917E	
12	5.922	6934.775	6.9414E-04	9.6402E-05	1.2250E 05	4 • 1000E = 03		2.1052E 00	4 • 0859E	01 2 1052E 00
13	2.255	1565.773	5.6659E-03	1.4169E-03	3.7800E 04	4.6000E-03		7.0407E 00	1.2180E	
1 4	5.800	14670.230	4.9486F + 04	4.94375-05	1.19875 05	8.0000F-03		1.9596F 00	1.94935	01 1.95965 00

TEST NO. 8 SATURN V DTV CONFIG. II CO MSFC 201 PITCH + YAW FORCE LEVEL (1967)

	FREGUELY (HZ)	FØRCE [N]	XN EMJ	XE (M)	GENL MASS [KG-SEC2/M]	ZETA *		D[=PI*XE*F] [N-M]	T [M-N]	D[=4*P[*]A*T]
. 1	1.656	4995.351	2.8442E=02	9+6668E-04	5.4950E 03	*0000E 00	-	1.5170E 01	2.4062E (00 0000E 00
2	1.660	3144 - 892	1.9980E-02	6.8003E-04	5.4950E 03	•0000E 00		6,7187E 00	1.1932E C	00 ² 0000 ° 20
3	1.661	2402.039	1.5524E-02	5.3190E-04	5 4950E 03	•0000E 00		4.0139E 00	7.2122E 0	1 *0000E 00
4	2.686	8776 • 338	6.2545E-03	2.0638E-04	4.4100E 03	•0000E 00		5.6902E 00	2.4568E 0	1 *0000E 00
5	2 • 687	6636•744	4 • 6564E = 03	1.5657E-04	4.4100E 03	•0000E 00		3.2644E 00	1.3627E 0	01 •0000E 00
6	2•688	4292.532	3.3342E-03	1 • 1001E = 04	4.4100E 03	•0000E 00		1,4836E 00	6.9923E C	
7	5 • 986	10600 • 108	8.5128E-04	1.5008E-04	1.1375E 05	•0000E 00		4.9980E 00	5.8304E 0)1 •0000 [€] 00
8	5•995	7779•937	6.1869E-04	1 • 1028E • 04	1 • 1375E 05	•0000E 00		2.6955E 00	3.0889E C	1 *0000E 00
9	6.007	5266.692	4 • 0306E = 04	7 • 8337E = 05	1.1375E 05	•0000E 00		1.2961E 00	1•3162E 0)1
10	2.219	4652 • 838	6.5697E-03	9.9944E-04	3.9375E 04	•0000E 00		1.4609E 01	1.6518E C	
11	5.550	3447 • 370	4+8789E-03	7 • 3867E = 04	3.9375E 04	40000 <u>E</u> 00		7.9999E 00	9 • 1179E C	
12	5.555	2250 • 799	3.4750E-03	5.2851E-04	3.9375E 04	•0000E 00		3+7371E 00	4+6339E 0	- 20,50 20
13	5.911	16062.522	8 • 4103E = 04	1.5262E-04	5.3652E 02	•0000 <u>E</u> 00		7.7016E 00	1.1525E C	
14	5.908	12005.746	6.9514E-04	1+2143E-04	2.3625E 03	•0000 <u>E</u> 00		4.5801E 00	7.8655E	
15	5 • 920	7882 • 246	4 • 8996E • 04	8 • 0182E • 05	2.3625E 05	•0000E 00		1.9855E 00	3.9234E C	01 *0000 <u>E</u> 00
16	2 • 255	2975 • 859	9.4579E-03	2 • 4001E - 03	3.9550E 04	•0000 <u>E</u> 00		2.2438E 01	3.5510E 0	
17	2 • 256	2224 • 110	7.2967E-03	1.8544E-03	3.9550E 04	•0000 <u>E</u> 00		1.2957E 01	2 • 1155E C	
18	2 • 257	1485.705	5.0530E-03	1.2631E-03	3.9550E 04	•0000 <u>E</u> 00		5.8953E 00	1.0034E 0	
19	5.916	12864.252	6.5580E-04	4 • 4233E-05	8 . 4000E 04	•0000E 00		1.7877E 00	2.4958E C	
20	5.917	9639.293	4.9831E-04	3,2441E-05	8.4000E 04	•0000E 00		9.8241E-01	1.4415E C	
21	5.935	6481 • 057	3.3486E-04	2.3006E-05	8 - 4000E 04	•0000E 00		4.6841E-01	6.5490E C	
55	1 • 626	6378 • 747	3.0975E-02	8 • 8990E - 04	6.1950E 03	•0000E 00		1.7833E 01	3.1019E 0	
23	1.622	4621.701	2.7596E-02	7.4175E-04	6.1950E 03	•0000 <u>E</u> 00		1.0770E 01	2.4500E C	
24	1.624	3233.856	2.0467E-02	5.6491E-04	6.1950E 03	•0000E 00		5.7392E 00	1.3510E C	
25	2 * 688	12570 • 670	1.0056E-02	2.9924E-04	5.2150E 03	.0000E 00		1.1818E 01	7.5210E 0	
26	2 • 695	8843.061	9.2538E-03	2.8006E-04	5.2150E 03	•0000E 00		7.7804E 00	6.4023E 0	
27	2.700	6494 • 401	7 • 1539E - 03	2.2278E-04	5.2150E 03	•0000E 00		4.5453E 00	3.8406E (
28	5.922	6779 • 087	6.6128E-04	9.3428E+05	1.2250E 05	.0000E 00		1.9897E 00	3.7083E 0	
29	5.930	5546.930	5-4395E-04	7.7033E-05	1.2250E 05	•0000E 00		1.3424E 00	2.5159E (
30	5.945	4301 • 429	3.9522E-04	6.0455E-05	1.2250E 05	•0000E 00		8 • 1694E = 01	1.3349E (
31	2*253	1957 • 217	6 • 8 4 5 2 E • 0 3	1 • 7107E = 03	3.7800E 04	•0000E 00		1.0519E 01	1.7841E (
32	2•261 5•795	1570 • 222 14710 • 264	5•3688E=03 5•3033E=04	1.3486E-03 4.3738E-05	3.7800E 04 1.1987E 05	*0000E 00 *0000E 00		6.6524E 00 2.0213E 00	1.0995E (2.2349E (
	5.813	11280 • 686	4 • 4 2 0 2 E = 0 4	3.5496E+05	1•1987E 05			1.2579E 00	1.5622E (
34 35	5.817	10044.081	3.9916E-04	3.2307E-05	1.1987E 05	•0000E 00		1+0194E 00	1.5023E (

TEST NO. 9 SATURN V DTV CONFIG. 11 CO MSFC 201 TORSIONAL FREQ. SWEEP (1967)

	FREGUEY (HZ)	TORQUE [N-M]	XN [RAD]	XE [RAD]	GENL MASS [KG-M2]	ZETA *		D[=PI*XE*F] [N+M]	T [N-M]	D[=4*P[* A*T]
. 1	7.893	18099•396	4.8000E-05			2.1000E-02	•	1.6810E-01		0 0-
3	8•626 11•539	16483•782 14156•394	1.0000E-04 3.8000E-06	9.0458E-06 4.5108E-06	1.4122E 05 7.0951E 07	1 • 6000E = 02 6 • 9000E = 03			2.0742E 0 2.6927E 0	

TEST NO. 9 SATURN V DIV CONFIG. II CO MSFC 201 TORSIONAL FORCE LEVEL (1967)

	FREQUELY (HZ)	TORQUE [N-M]	XN [RAD]	XE [RAD]	GENL MASS [KG-M2]	ZETA •	D[=PI*XE*F] [N-M]	T [N-M]	D[=4*P[* A*T]
1 2 3 4 5 6	8.605 8.630 8.675 11.625 11.632 11.655	17446.394 12784.410 8122.426 14034.014 9323.968 4661.984	1.0550E-04 9.1097E-05 6.1514E-05 2.6400E-06 2.1187E-06 1.4441E-06	7.9960E-06 5.4040E-06 4.4502E-06 3.1852E-06	1.4122E 05	.0000E 00 .0000E 00 .0000E 00 .0000E 00	5.2163E-01 3.2114E-01 1.3790E-01 1.9620E-01 9.3301E-02 2.4478E-02	2.2974E 0 1.7229E 0 8.0158E-0 1.3192E 0 8.5058E-0 3.9675E-0	• 0000E 00 • 0000E 00 • 0000E 00 • 0000E 00

TEST NO. 10 SATURN V DTV CONFIG. II CO MSFC 201 LONGITUDINAL FREQ. SWEEP (1967)

	FREQUEY [HZ]	FORCE [N]	XN [M]	XE (M)	GENL MASS [KG-SEC2/M]	ZETA •		D(=PI*XE*F) [N=M]	T [N-M]	D[=4*P[*ET[A*T]
1 2 3 4 5	6.211 9.195 9.758 11.212 8.628	5667.032 19803.475 17183.474 17232.404 4790.733		2.0055E-04	1.2197E 05 4.6200E 07	1 • 1000E • 02 6 • 8000E • 03	·	1.1101E 00 7.3199E 00 9.8879E 00 3.2580E 00 1.0673E 01	2.5982E (6.5450E (7.1532E (3.8128E (1.2677E (7.3199E 00 01 9.8879E 00 01 3.2590E 00
6 7	9.513 11.587	17232 • 404 17499 • 297	6.0113E-04	1.5632E-04 2.4311E-04	2.2575E 05	6.3000E-03		1.1536E 01 1.3195E 01	1.4572E (2 1 • 1536E 01

	FREGUEY [HZ]	FORCE [N]	EM]	XE (M)	GENL MASS [KG-SEC2/M]	ZETA		D[=P]*XE*F] [N=M]	T [N-M]	DC=4*PI+A*T] CN=M]
. 1	6.212	5168 • 832	5.6482E=04	6.2279E-05	9-1175E 04	*0000E 00	_	1.0113E 00	2.2156E	01 •0000E 00
2	6.211	3932 • 226	4.9296E-04	5.2523E-05	9 • 1175E 04	*0000E 00		6+4884E-01	1 • 6871E	
3	9 • 170	17445 • 919	4 • 1118E = 04	1 • 1549F = 04	1.2197F 05	•0000E 00		6.3297E 00	3.4230E	
4	9 • 169	12837 • 563	2.8788F-04	8 • 1257F = 05	1.2197F 05	.0000E 00		3+2771E 00	1.6776E	01 *0000E 00
5	9.168	8718.511	1.8693E-04	5.4421E-05	1.2197E 05	.0000E 00		1.4906E 00	7.0711E	00 •0000E 00
6	11.200	17343.610	3.1718E-04	6.9899E-05	1.4455F 05	•0000E 00		3.8086F 00	3,6008F	
7	11.199	12579.566	2.4897E-04	5.2315E-05	1.4455E 05	.0000E 00		2.0675E 00	2.2183E	
8	11.190	8340.412	1.6448E-04	3.5509E-05	1.4455E 05	.0000E 00		9.3038E-01	9+6561E	
9	8 • 628	4670 • 631	9.3970E-04	6 • 1070E = 04	1.0097E 05	.0000E 00		8.9609E 00	1.31025	00 3000 SO
10	8.626	4261 • 395	8.5584E=04	5 • 5777E • 04	1.0097E 05	.0000E 00		7.4672E 00	1.0863E	
11	8 • 6 5 4	2579 • 968	4 • 8468E = 04	3 • 1731E = 04	1.0097E 05	.0000E 00		2,5719E 00	3.4824E	
12	9.553	17116.751	5.0726E-04	2.6793E-04	2.2575E 05	•0000E 00		1.4407E 01	1.0464E	
13	9.549	13015.492	3.9792E-04	2 • 1793E • 04	2.2575E 05	•0000E 00		8.9110E 00	6.4337E	
14	9.544	8553 • 927	2 • 6777E = 04	1 • 4511E - 04	2 • 2575E 05	•0000E 00		3.8995E 00	2+9103E	
15	11.634	17281 • 335	3.0873E-04	1.9843E-04	2.5200E 05	•0000E 00		1,0773E 01	6.4173E	
16	11.645	13300 • 178	2 · 8 4 8 7 E - 0 4	1-5539E-04	2.5200E 05	•0000E 00		6.4926E 00	5.4738E	01 •0000E 00
17	11.635	8727 • 408	1 . 8844E - 04	9.7314E-05	2.5200E 05	•0000E 00		2.6681E 00	2.3910E	01 •0000E 00

TEST NO. 11 S-IV-B-D, LEM, AND APOLLO PITCH + YAW (1966)

	FREQUETY [HZ]	FORCE [N]	XN [M]	(M) XE	GENL MASS [KG-SEC2/M]	ZETA *		D[=PI*XE*F] [N=M]	T [M-M]	D[=4*P[* A*T]
1	4.980	3229.000	1.3010E=03	2.2546E=04	1 . 0555E 04	8.9000E-03	•	9.7814E-01	8 • 7458E	00 9•78:4E-01
. š	9.660	3481.000	3.8500E-04	9.0128E-05	1.6048E 04	1 • 1800E ~ 02		6.4971E-01	4 • 3815E	00 6 • 4971E = 01
3	10.000	3346.000	2.9000E-04	9.0973E-05	1.9421E 04	1.2300E-02		4.9832E-01	3.2240E	00 4•9832F-01
4	10.580	3449.000	2.2800E-04	9 • 1314E • 05	3.7114E 04	1 • 1 4 0 0 E - 0 2		6+1069E+01	4.2629E	
5	14.800	3305.000	1.9000E-04	1.2969E-04	5.6828E 04	1.3000E-02		1.4490E 00	8 • 8700E	00 1 4490E 00
6	5.200	3705.000	2.2820E-03	1.5561E-03	1.1824E 04	1 • 3700E - 02		5.6580E 00	3•2865E	
7	9•680	3774 • 000	3.9300E-04	8.6578E-05	1.3646E 04	9.4000E-03		4•6048E - 01	3+8983E	00 4.6048E-01
8	10.910	3736 • 000	1.6300E-04	7 • 2568E = 05	2.2986E 04	1.1500E-02		2•0736E - 01	1 • 4349E	00 2 0 736 E - 01
9	15.000	3373.000	2.0000E-04	1.1468E-04	2.2630E 04	1.0800E-02		5.4562E-01	4•02J3E	00 5 • 45 42E = 01
10	4.900	3371 • 000	1.9850E-03	3.5015E-04	1.0284E 04	1.9400E-02		4 • 6818E 00	1 • 9205E	
11	9•350	3609.000	· 3 • 6100E • 04	9.9347E-05	2.3731E 04	1.0900E-02		7.3727E-01	5.3826E	00 7•3727E-01
12	10.900	3395.000	2.3100E-04	6.2693E-05	3.0539E 04	7.6000E-03		3.6499E-01	3.8217E	00 3.6499E-01
13	14.420	3502.000	1.5900E-04	1 • 1644E = 04	1.8682E 05	9.5000E-03		2.3142E 00	1•9385E	01 2.31 ZE 00
14	5.090	3346.000	8.3100E-04	7.5604E-04	1.2523E 04	1:4400E-02		8.0029E-01	4.4226E	
15	9 • 4 4 0	3415.000	5.4600E=04	1.3426E-04	1.0630E 04	9.0000E-03		6.3044E-01	5,5743E	
16	10+950	3546.000	3.5700E-04	9.2570E-05	1.4796E 04	1 • 1 4 0 0 E - 0 2		6•393 ⁷ E - 01	4•4631E	
17	13.490	3732.000	1.5100E-04	6.9098E+05	5.5456E 05	1 • 0000E - 02		5.7078E 00	4.5421E	
18	15.200	3907.000	1.5800E-04	4.7447E-05	2.1740E 04	1.0900E-02		3•3902E - 01	2.4751E	00 3·39c2E-01

TEST NO. 12 S-IV-B-D, LEM, AND APOLLO TORSIONAL (1966)

	FREQUEY (HZ)	TORQUE [N=M]	XN [RAD]	XE [RAD]	GENL MASS [KG-M2]	ZETA		D[=PI+XE+F] [N+M]	T [N-M]	D[=4*PI*2_A*T] [N-M]
1	4.900	16341 • 000	8-6926E-04	3,2250E-05	2.9000E 04	1+3600E-02	•	1.6556E 00	1.0385E	01 1.7749E 00
2	5.610	16330.000	1.6401E-03	1 • 6237E - 05	1.5340E 04	3.0600E+02		8.3297E-01		
3	9.330	15750.000	9.3619E-05	5.1743E-05	3.0861E 06	1.4600E-02		2.5603E 00		
4	5 • 160	17027.000	9.0398E-04	1.5625E-04	1.0704E 05	2.5900E-02		8.3583E 00	4.6481E	01 1.5128E 01
5	5•700	16999 • 000	1.6313E-03	9.8532E-05	9.9050E 03	1.7900E-02		5.2620E 00	1.6905E	01 3.8026E 00
6	9 • 430	16279.000	7 • 4 4 0 3 E = 05	3.8348E-05	3.8921E 06	•0000E 00		1.9612E 00	3.7820E	

						2				•
	FREQUENCY [HZ]	FORCE [N]	XN [M]	XE (M)	GENL MASS [KG-SEC2/"]	ZETA		D[=PI+XE ₇ F] . [N-M]	T [N-M]	D [= 4 + PI + ZETA + T] [N]
12345678901123115	2.090 7.810 10.090 10.820 14.310 8.160 14.070 8.490 14.270 2.080 7.690 10.380 11.010 8.060 13.580	3022.000 5199.000 5466.000 5482.000 4478.000 2327.000 2380.000 2388.000 2277.000 3345.000 3536.000 3533.000 2303.000 2463.000	1.087CE-03 2.0590E-03 4.5000E-06 1.4100E-04 1.4000E-04 1.5200E-03 1.5200E-04 1.593CE-04 1.593CE-04 2.0340E-03 2.4000E-05 1.2600E-04 1.8490E-03 4.4000E-03	4.4784E-04 7.3280E-05 6.7116E-05 8.67116E-05 8.6712E-05 4.5912E-05 4.5912E-05 3.8456E-05 3.8456E-04 3.8456E-04 4.6697E-04 4.6697E-04 3.3546E-05	9.7334E 05 5.0200E 04 7.5717E 05 1.5866E 04 2.11634E 04 1.9634E 04 1.95436E 04 1.935176E 04 1.1934E 05 4.7160E 07 4.5705E 04 1.1360E	3.1000E-02 1.0400E-03 8.6000E-03 1.6800E-02 1.4000E-03 8.5000E-02 1.4000E-02 1.8000E-03 7.2000E-03 1.0800E-02 1.0800E-02		3.8629E 01 3.3488E 02 1.5389E 02 1.5389E 02 1.5389E 01 9.2699E 01 1.8934E 01 1.8934E 01 1.2497E 01 1.7209E 01 2.4041E 01 2.4367E 02 1.2914E 01 1.0120F 01	9.9162E 0 2.5621E-0 3.0813E-0 7.2893E 0 7.2893E 0 7.5273E 0 4.8804E 0 7.1036E 0 7.1036E 0 2.2775E 0 2.6936E 0 1.77364E 0 9.5155E 0 8.1346F 0	3 • 34 8 8 6 01 1 3 • 32 9 9 5 6 00 1 • 5 3 8 9 5 6 00 1 • 5 3 8 9 5 6 00 1 • 5 3 8 9 5 6 00 1 • 8 9 3 4 5 6 00 1 • 8 9 3 4 5 6 00 1 • 8 9 1 6 • 31 6 9 7 5 00 1 • 24 9 7 5 00 2 • 4 3 6 7 5 00 1 • 29 1 4 5 00
16	8.310	2014 • 000	2.1660E-03	8.2005E-04	1.2720E 04	9.9000E-03	•	1.0120E 01	8.1346E 0	

TEST NO. 14 SAD-202 UPPER STAGES TORSIONAL (1966)

	FREGUCY [HZ]	TORQUE [N-M]	XN [RAD]	XE (RAD)	GENL MASS [KG-M2]	ZETA	•	D[=PI*XE*F] [N-M]	[N-W]	D (=4*PI*/ETA*T)
123456789	7.850 4.990 10.800 5.110 8.190 10.800 5.160 8.490 11.200	10564.000 10636.000 10864.000 11430.000 11268.000 10963.000 12980.000 12042.000 12149.000		1.2237E-04 1.9757E-05 2.4773E-05 7.6270E-05	1.6815E 06 5.4600E 03 2.6596E 05	•0000E 00 •0000E 00		4.6893E-01 3.4958E 00 9.1283E-01 4.3943E 00 6.9939E-01 8.5322E-01 3.1101E 00 1.3684E 00 1.7230E 00	5.1701E 1.5008E 3.8582E 1.5430E 7.592E 7.5845E 9.5083E 1.9996E 1.5201E	01 4.3566E 00 00 0000E 00 01 6.6701E 00 00 0000E 00 00 0000E 00 00 3.5009E 00 00 0000E 00

	FRE NCY	FORCE [N]	XN [M]	XE (M)	GENL MASS (KG-SEC2/M)	ZETA	D[=P]*XE*F] [N+M]	T [N-M]	D [=4*PI*ZETA*T]
1	1.015	2499.000	7.0500E-05	2.4964E-05	4.5587E 05	•0000E 00	5+7000E 01	2.4430E	02 •0000E 00
2	1 • 685	2499•000	7.0500E-05	2.49642-05	4.5587E 05	•0000E 00	3.9400E 01	4 - 0800E	
3	2.100	2499.000	7.0500E-05	2.4964E-05	4.5587E 05	.0000E 00	6.8800E 01	4.0400E	
4	2 • 425	2499.000	7.0500E-05	2.4964E-05	4.5587E 05	.0000E 00	4.1100E 01	4 . 6700E	
5	2.500	2499.000	7.0500E-05	2.4964E-05	4.5587E 05	*0000E 00	6+3400E 01	4.3600E	02 *congE 00
6	3 • 1 6 0	2499,000	7.0500E-05	2,4964E-05	4 • 5587E 05	•0000E 00	4.5500E 00	3.7200E	
7	3.460	2499.000	7.0500E-05	2.4964E-05	4.5587E 05	•0000E 00	5.4800E 01	4.3700E	
8	•948	2499.000	7 • 0500E - 05	2 - 4964E - 05	4.5587E 05	*0000E 00	4.2500E 01	2.1300E	
9	1.775	2499.000	7.0500E-05	2,4964E-05	4.5587E 05	•0000E 00	1.7700E 01	2.3550E	
10	1 - 900	2499.000	7.0500E-05	2 - 4964E-05	4 • 5587F 05	•0000E 00	1 • 1 0 0 0 E 0 1	6.4600E	
11	2 • 290	2499 • 000	7.0500E-05	2 · 4964E - 05	4 - 5587E 05	•0000E 00	1.0000E 01	6.9730E	
12	3.090	2499 • 000	7 • 0500E - 05	2 . 4964E-05	4.5587E 05	•0000E 00	1 • 1 2 0 0 E 0 1	1.0900E	
13	3.620	2499 • 000	7 • 0500E • 05	2 . 4964E - 05	4.5587E 05	•0000E 00	1.0200E 01	6.6700E	
14	4.820	2499.000	7.0500E-05	2.4964E-05	4 • 5587E 05	•0000E 00	1.3600E 01	9.8400E	01 •0000E 00
15	5.060	2499.000	7.0500E-05	2 . 4964E-05	4 • 5587E 05	•0000E 00	2.4600E 01	7.8500E	01 •0000E 00
16	5.460	2499.000	7.0500E-05	2.4964E-05	4 • 5587E 05	•0000E 00	7.0000E 00	5 • 8700E	01 *0000E 00

APPENDIX B

DIGITAL COMPUTER PROGRAMS

11

```
COMMON D.T.W.X
        DIMENSIEN D(340), T(340), W(340), X(340)
        DIMENSION Z(4), ARRAY(14)
        NMAX = 340
         READ 5, INDEX, 12, 18
   C INDEX = 1 - D=C*X1**A1
   C INDEX = 2 - D = C * (X1 * * A1) * (X2 * * A2)
   C INDEX = 4 - D = A1 + A2 * X1 + A3 * X1 * X1
   C INDEX = 5 - D=C*(M**A1) * (W**A2) * (X**A3) (UNLESS 12=7)
   C 12=1 - D = C*X**A1
   C 12=2 - D = E*W**A1
   C 12=3 - D = C*M**A1
   C 12=4 + D = C*(M**A1)*(X**A2)
   C T2=8 = D = C*(M**A1)*(W**A2)
   C = 12 = 6 + D = C*(X**A1)*(W**A2)
   C 12=7 - D = C*(T**A1)*(X/L)**A2 9R C*(M**A1) * (W**A2) * (X/L)**A3
      1 READ 15, (APRAY(I), I = 1,14), ISTOP
     15 FORMAT: (13A6, A1, 11)
         IF(IST0P-9)25,101,25
      25 PRINT 110, (ARRAY(I), I = 1,14), INDEX, I2
    110 FORMAT (1H1, 35x, 13A6,A2/ 55x, 7HINDEX =, I2, 5H I2 =, I2/
                   55x,10HINPUT DATA// 6x,9HFREQUENCY, 5x,5HF8RCE, 9x,
       * 2HXN,10X,24XE, 6X,9HGENL MASS, 7X,2HXO,8X,4HZETA,12X,1HD,11X,
       * 1HT, 10x, 2HD2)
        I = 0
      4 READ 5, 11, 10UM, 13
      5 FORMAT (1015)
  C I1=1 - INPUT UNITS - CPS, KGF, M, XE/XO, KG-S2/M
  C 11=2 - CPS, LB, G/LB, G/LB, LB-S2/IN
                         CPS, N, M, XE/XO,
  C 11=3 -
                         CPS, D.T IN N-M
  C 11=4 -
  C [1=5 -
                         CPS, N-M, DEG, XE/XO,
                         CPS, IN-KIP, RAD, RAD/IN-LB, LB-S2-IN
  C 11=6 -
                         CPS, LB, G/LB, G/LB, LB-S2-IN, R(IN), RE(IN)
    11=7 -
  C
₽C 13=1 - D=PI *XE*F
  C 13=2 - D=4*P1*ZETA*T
C 13=4 -. GM = 1, D=PI*XE*F
    126 IF (I1-1) 132,112,112
    112 READ 10 CLGTH
        IF (18) 102,102,106
    102 IF (I1-2) 103,148,104
    103 PRINT 115
    115 FERMAT ( 8x, 5H(CPS), 7x, 5H(KGF), 9x, 3H(M), 6x, 7H(XE/XO), 3x,
        * 11H(V3-SEC2/M),30X,5H(N=M), 7X, 5H(N=M),8X,5H(N=M)/)
 P
        G0T0 105
    104 IF (I1-4) 109:109:146
```

DAMPING

PROGRAM TO

THROUGH

```
AREMIND MT1.
AFERTRAN BEJLE.
             COMMON D.T.W.X
     1
             DIMENSION B13401, T(3401, W13401, X1340)
             DIMENSION Z[4], ARRAY[14]
             NMAX = 340
             READ 2,190EX,12,CGIVN,EGIVN,10
           2 FSRMAT (215,F10.4,F10.4,I5)
     7
      C INDEX = 1 - D = C * X1 * * A1
       C INDEX = 2 + D=C*[X1**A1] * [X2**A2]
       C INDEX = 3 - D=C+T****A1
    11 C 100EX = 4 + 5 *A1+A2*X1 + A3*Y1*X1
       C INDEX = 5 - D=C*[M**A1] * [w**A2] * [X**A3] [UNLESS [2=7]
    14
       C IP=1 - D = C*X+*A1
    17
       C 12=3 - 0 = C*M**A1
       [CA**k]*[IA**M]*0 = C = C*[N]**A1]*C
       IZ=7 - D = C*[T++A1]*[X/L]**A2 BR C*[M**A1] * [W**A2] * [X/L]**A3
             CGTVN=ALEGECGIVNI
          1 HE'D 15, [ARRAY[I], I = 1,14], ISTEP
    25
          10 FERMAT (13A6) A1, [11
          IFTIST@P-0125,101,25
          25 FRINT 110, EARMAYCIJ, [ = 1,14], INDEX, IR
         110 FBOWAT (1H1, 30%, 13A6,A2/ 55%, 7HINDEX =, 12, 5H 12 =, 12/
          * 55%,10HINPUT DATAZZ 6%,9HFREQUENCY, 5%,5HF0RCE, 9%,
            * 20xN,1GN,2HXE, 6x,9HGENL MASS, 7x,2HXO,8X,4HZETA,12X,1HD,11X,
    30
            * 1-7, 10%, 2HDR1
    321
            C = I
           4 READ 5, 11, IDUM, 13
    34
           5 FERMAT [10]5]
    35 C
       C II=1 - IMPUT UNITS - CPS, KGF, M, XE/XO, KG-S2/M
    37
      C I1=2 -
                            CPS, L8, G/L8, G/L8, L8-S2/IN
    38 C I1=3 - ·
                            CPS, N. M. XE/XO, KG
    39
       C I15=4 -
                            CPS, D,T IN N-M
    40
       C 11=5 -
                            CPS, N=M, DEG, XF/XO, KG=M2
                           CPS, IN-KIP, RAD, RAD/IN-LB, LB-S2-IN
    42 C I1=7 -
                      CPS, LB, G/LB, G/LB, LB-S2-IN, R(IN), RE[15]
    43 C
       C IB=1 - D=PI*XE*F
    45 C [3=2 - D=4*P]*ZETA*T
    46 C 13=4 - SY = 1. D=P1*XF*F
    47 C
           IF FIOUN-91126, 101, 126
    48
       126 IF [II-1] 132,112,112
```

```
109 PRINT 145
    145 F0RMAT ( 8X,5H(CPS), 8X, 3H(N), 10X, 3H(M), 6X, 7H(XE/X0), 7X,
   * 4H(KG),33X,5H(N+M),7X,5H(N+M),8X,5H(N+M)/)
        G9T9 106
    146 IF(I1-6)144,149,148
    144 PRINT 147
    147 FORMAT ( 8X,5H(CPS), 7X, 5H(N-M), 8X, 5H(DEG), 5X, 7H(XE/XO), 6X,
       * 7H(KG-M2),31X, 5H(N-M), 7X, 5H(N-M), 8X,5H(N-M)/)
        G0T0 106
    149 PRINT 151
    151 FORMAT ( 8x, 5H(CPS), 6x, 8H(IN-KIP) 6x,19H(RAD) (RAD/IN-LB), 2X
       * 12H(LB-SECZ-IN),28X, 5H(N-M), 7X, 5H(N-M), 8X, 5H(N-M)/)
        G010 106
    148 PRINT 125
    125 FORMAT ( 8X,5H(CPS), 7X,4H(LB),8X,6H(G/LB),6X,6H(G/LB),3X,
       * 12H(LB-SEC2/IN), 29X,5H(N-M), 7X,5H(N-M),8X, 5H(N-M)/)
    106 JMASS = IMASS
    106 READ 10, FREQ, XN, GM, F, XE, XO, ZETA
     10 FORMAT (7E10+3)
        IF (ABS(FREQ) - 1.E-10) 4,4,128
    128 I = I + 1
         IF (I-NMAX) 129,129,130
    129 W(I) = 6.28318*FREQ
        W2 = W(I)*W(I)
        TS = 9.80665/W2
         IF (11-2) 107,57,54
   107 GM1 = 9.80665*GM
        F1 = 9.80665 * F
XN1 = XN
        XE1 = XN1*XE
        G8T9 43+
     54 IF(I1-%)58,59,55
     55 IF(I1-6) 52,51,48
     52 XN1 = XN* • 017453293
        G818 53-
     58 \times N1 = \times N
     53 GM1 = GM
        F1 = F
        XE1 = XN1*XE
        G0T0 43
     51 \text{ GM1} = *11298*GM
        F1 = 112.98*F
        XN1 = XN
        XE1 = XE*F*1000.
        G818 43
     48 GM1 = •11299*GM
        F1 = 24 \cdot 030846 * F
        R = XC * \cdot C254
        R1=ZETA* • 0254
        ZETA=0.
        XN1 = TS*F*XN/R
        XE1 = Y5*F*XE/R1
        G0T0 43
     57 GM1 = 175 ** GM
```

```
F1 = 4.44822*F
   XN1 = TS*F*XN
   XE1 = TS*F*XE
 43 D(I) = 3.14159*F1*XE1
    TBAR= • 5 * W2 * GM1 * XN1 * XN1
    IF(12-1)46,44,70
 44 W2=1.
    FRFC=1.
    GM1=1.
    GM =1.
    GB TB 46
 70 IF(12-3)71,72,73
 71 XN1=1 -
    XN = 1 :
    GM1=1.
    GM = 1 •
    G0 T0 46
 72 W2 =1 •
    FREG =1.
    XN1 = 1
    XN = 1 \cdot
    G8 T9 46
 73 IF(12-5)74,75,76
 74 \times (1) = XN1
    XN1=1 •
    FREG =1+
    GB TB 45
 75 XN1=1.
    XN = 1 .
    GB TB 46
 76 IF (12-7)77,46,46
 77 GM1=1.
    GM = 1 -
    XN1=SQRT(XN1)
 46 XM = GM1*XN1*XN1
    T(I) = .5*w2*XM
    G8T8 56
 59 T(1) = GM
    D(1) = F
    XM = 2.+GM/W2
        = 0.
    F = 0.
 56 D2 = 12.56636*ZETA*TBAR
    DIFF=(D(I)=D2)/D2*100.
    IF (13-2) 117,118,117
118 D(1) = D2
    IF (ABS(D(I)) - 1,E-10) 119,119,117
119 I = I - 1
    G8T8 106
117 IF (Ie) 116,116,1,4
116 PRINT 120, I, FRED, F, XN, XE, GM, XO, ZETA, D(I), T(I), D2
120 FORMAT (14,F9.3,F13.3,1PE14.4,4E12.4,E14.4,E12.4,1X,E12.4)
114 IF (INDEX-4) 121,106, 121
121 D(I) = AL\theta G(D(I))
```

```
T(I) = ALGG(T(I))
   W(I) = ALGG (W(I))
   X(I)=ALfiG(XN1)
    IF (INDEX - 2) 106,60,122
122 IF(INDEX-4)106,106,170
 60 IF (12-7)61,65,65
 61 T(1)=AL8G(XM)
    G8 T8 106
170 T(I)=AL9G(GM1)
    IF(12-7)106,137,137
137 X(I)=AL8G(XN1/CLGTH) -
    G0 T8 106
 65 W(I)=4L3G(XN1/CLGTH) .
    G8T8 103
132 NPTS = i
135 CALL LESTSQ(Z, NPTS, INDEX)
    G0T0 1
130 PRINT 165, I
165 FORMAT (//55X, 21HT00 MANY DATA POINTS., 14)
101 ST8F
    END
```

```
SUBROUTINE LESTSQ (Z, N, IND)
c.
      LINEAR LEAST SQUARES FIT OVER TWO INDEPENDENT VARIABLES
      COMMON D.X1.X2.X3
      DIMENSION D(200), X1(200), X2(200), X3(200),A(4,4), B(4,4), C(4,4)
      DIMENSION Z(4), S(4), Y(4), XT(4), TOL(4), AKT(4)
C
     CALCULATE COEFFICIENTS OF EQUATIONS
      D8 5 1=1,4
      Y(1) ~ J.
      Z(1) = 0
      S(I) = 0
      D8 5 J=1,4
      C(I_{i}J) = 0.
    5 A(I_JJ) = 0.
      A(1:1) = N
      D8 10 I = 1.N
      X1SG = X1(I)*X1(I)
      A(1,2) = A(1,2) + X1(1)
      A(2,2) = A(2,2) + X1SQ
      Y(1) = Y(1) + D(1)
      Y(2) = Y(2) + D(1) * X1(1)
      IF (IND-3) 7,7,8
    7 A(1.3) = A(1.3) + X2(I)
      A(2,3) = A(2,3) + X1(1)*X2(1)
      A(3,3) = A(3,3) + X2(1) * X2(1)
      Y(3) = Y(3) + D(1)*X2(1)
      IF(IND-5)10,40,40
   40 A(1,4) A(1,4)+X3(I)
      A(2,4)=A(2,4)+X1(1)*X3(1)
      A(3,4) = A(3,4) + X2(1) * X3(1)
      A(4>4)=A(4>4)+X3(1)+X3(1)
      Y(4) = Y(4) + D(1) * X3(1)
      G0T0 10
    8 IF(IND-5)9,7,7
    9 X2(I)=X1S0
      A(2,3) = A(2,3) + X1SQ*X1(I)
      A(3,3) = A(3,3) + X1SQ*X1SQ
      Y(3) = Y(3) + D(1)*X1SQ
   10 CONTINUE
      A(2.1) = A(1.2)
      A(3,2) = A(2,3)
      A(4,1) = A(1,4)
      A(4,2) = A(2,4)
```

A(4,3)=A(3,4) LIM = IND + 1 IF (IND+3) 13,11,12

12 IF(IND-5)14,16,16 14 A(1,3)=5(2,2)

11 LIM = 2 G0T0 13

```
LIM = 3
       G0 T0 13
  . 16 LIM=4
    13 A(3,1) = A(1,3)
        PRINT 100, ((A(I_{JJ}), J=1,I), Y(I), I=1,LIM)
   100 FORMAT (///46X,38HCOEFFICIENTS OF LEAST SQUARES EQUATION//
       *1PE36.4, E74.4/E36.4,E16.4,E58.4/E36.4,2E16.4,E42.4/
       * E36.4,3E16.4,E26.4)
 C
 С
       INVERT EQUATIONS
 С
       D8 140 1 = 1,4
       DB 1/0 J = 1.4
       DB 140 J = 1.3
   140 B(I,J) = A(I,J)
        IF (IND-2) 160,170,165
   165 IF(IND - 4 )160,170,191
   170 CALL MATINV(A,3,8,0,DET,3)
        G8T8 18C
   160 CALL MATINV(A,2,B,0,DET,2)
        G0 T0 180
    191 CALL MATINV(A, 4, B, 0, DET, 4)
   180 CENTINUE
        D8 20 I = 1,LIM
        D8 20 K = 1,LIM
   20 Z(I) = Z(I) + A(I,K)*Y(K)
       E = EXP(Z(1))
        PRINT 120, Z(1), E, (Z(1), 1 = 2,LIM)
    120 FORMAT (///47X,36HSOLUTION FOR LEAST SQUARES CONSTANTS//
       * 55X,3HC =, 1PE16.4, 10X, 8HEXP(C) =, E16.4/
      * . . .54X,4HA1 =,E16.4/54X,4HA2 =,E16.4/54X,4HA3 =,E16.4)
        PRINT 130
    130 FORMAT (///50X,30HERROR OF LEAST SQUARES APPROX.)
  C 130 FORMAT (///50X, 30HERROR OF LEAST SQUARES APPROX.//53X, 8HTERM NO.,
       * 8X, SHERRAR, 5X, 16HL0G DBAR/DAPPROX, 5X, 15HL0G DBAR/DCHANG/)
       D8 190 I=1.4
       HI = I
       KT(I)=0
   190 T9L(I)=HI*.23026
       D8 25 I = 1.N
       DEL = D(I) - Z(1) - Z(2)*X1(I) - Z(3)*X2(I) - Z(4)*X3(I)
       ERR = EXP(-DEL) - 1.
       D8 260 L=1,4
       J=-L+5
       IF (ABS(DEL) -TOL(J))210,210,260
   210 KT(J) = KT(J)+1
   260 CONTINUE
    25 CENTINUE
. C 25 PRINT 131, I.ERR, DEL, DEL2
   131 FORMAT (158,2F16., F21.4)
       D0 280 I=1,4
       AKT(I) = < T(I)
       PC=100**AKT(I)/B(1,1)
   280 PRINT 230,PC,I
```

```
SUBROUTINE MATINY (A, N, B, M, DETERM, NMAX)
   DIMENSION A(4,4),B(4,4),PIVOT(4),INDEX(4)
   DFTFRM=1.0
   08 20 I=1,N
   PIV0T(I)=0.0
 20 INDEX(I)=0.0
   D8 550 I=1,N
    O.C=XAMA
   D8 105 J=1,N
    IF (PIVS1(J)) 105,21,105
 21 D8 100 K=1.N
    IF (FIV0T(K)) 100,22,100
 22 TEMP= ASS(A(J,K))
    IF (TEMP-AMAX) 100,23,23
23 IR8W=J
    TCBL UM=K
    AMAX=TEMP
100 CONTINUE
105 CONTINUE
    INDEX(I)=4096*IR8W+IC8LUM
    J=IR0W
    AMAX=A(J,ICALUM)
    DETERM=AMAX*DETERM
    IF (DETERM) 24,600,24
24 PIVST(ICOLUM) = AMAX
    IF (IR6W-ICALUM) 26,260,26
26 DETERM=-DETERM
    D8 200 K=1.N
    SWAP=A(J,K)
    A(J,K) A(ICALUM,K)
    A(ICSLUM,K)=SWAP
200 CONTINUE
    IF (M) 260,260,27
 27 DO 250 K=1,M
    SWAP=B(J,K)
    B(J,K)=B(ICALUM,K)
    B(ICOLUM,K)=SWAP
250 CONTINUE
260 K=TC0LUM
    A(ICCLUM,K)=1.0
    DB 350 K=1,N
    A(ICCLUM, K) = A(ICCLUM, K)/AMAX
350 CONTINUE
    IF (M) 380,380,28
28 D8 370 K=1,4
   B(ICSLUM,K)=B(ICSLUM,K)/AMAX
370 CENTINUE
380 D8 550 J=1,N
    IF (U-ICOLUM) 29,550,29
29 T=A( J;ICOLUM)
    O.O=(MUJEDIet )A
```

D8 450 (=1,N

C.

A(J,K)=A(J,K)-A(ICBLUM,K)*T 450 CONTINUE IF (M) 550,550,31 31 D0 500 K=1,M B(J,K)=B(J,K)-B(ICOLUM,K)*T 500 CONTINUE 550 CONTINUE 600 DB 710 I=1,N I1=N+1-I K=INDEX(11)/4096 ICOLUM=INDEX(I1)=4096*K IF (K-ICOLUM) 32,710,32 32 D0 705 J=1,N SWAP-A(JJK) A(J,K)=A(J,TCCLUM) A(J, ICOLUM) = SWAP 705 CONTINUE 710 CONTINUE RETURN END

USERS MANUAL

```
PROGRAM TO FIND BEST-FIT EMPIRICAL DAMPING LAW THROUGH LEAST SQUARES METHOD
 READ (315) INDEX, 12, 10
       INDEX = 1 + FIND DAMPING LAW OF FORM D = C*X1**A1
                                            D = C*X1**A1*X2**A2
                                            D = A1 + A2 + X1 + A3 + X1 + *2
             = 5 (12 =7)
                                            D = C*M**A1* **A2*X**A3
             = 5 (12 =7)
                                            D = C + M + A1 + A2 + (X/L) + A3
       I2 = 0 = X1 = T
                                 USED WITH INDEX = 1
          = 1 - X1 = X
          = 2 - x1 =
          = 3 - x1 = M
          = 4 - X1 = M, X2 = X
                                 USED WITH INDEX # 2
          = 5 - x1 = M, x2 =
          = 6 - x1 = x \cdot x2 =
          = 7 - x1 = T, x2 = x/L (USED WITH INDEX = 2) \theta R x3 = x/L (INDEX = 5)
       IB = 0 - PRINT FACH DATA PBINT
          = 1 - MINIMAL PRINT
1 READ (13A6, A1, I1) (ARRAY(I), I=1,14), ISTOP
       ARRAY = TITLE OF DATA DECK
       ISTOP = 9 - STOP
             = 0 - CHNTINUE
2 READ (15,110) 11,13
       I1 = 0 - 69 T8 1
                                                             ΧE
                                                                     ΧO
                              FREQ 'XN GEN+ MASS FORCE
          = 1 - INPUT UNITS - HZ M KG-S**2/M
                                                    KGF
                                                            XE/XN
                               HZ G/LB LB-S**2/IN LB
                                                             G/LB
                                                            XE/XN
                               ΗZ
                                          KG
                                                      N
                               H7
                                          N-M
                                                     N-M
                               ΗZ
                                    DEG KG-M**2
                                                     N-M
                                                            XE/XN
                                   RAD LB-S**2/IN IN-KIP RAD/IN-LB
                               ΗZ
                                                             G/LB
                               HZ G/LB LB-S**2/IN LB
          I3 = 1 - D CALCULATED FROM D = PI*XE*F
          13 = 2 -
                                     D = 4*PI*ZETA*T
  READ (E10+3) CLGTH
       CLOTH = CHARACTERISTIC LENGTH OF VEHICLE IN METERS
3 READ (7E10.3) FREQ, XN, GM, F, XE, XO, ZETA
       FREQ # FREQUENCY
       XN = DFFLECTION AT STATION USED FOR NORMALIZATION OF GEN. MASS
```

```
GM = GENERALIZED MASS (OR KINETIC ENERGY FOR I1 = 4)

F = EXCITATION FORCE (OR DISSIPATED ENERGY FOR I1 = 4)

XE = DEFLECTION AT EXCITATION STATION

XO = RADIUS AT NORMALIZATION STATION FOR I1 = 7

ZETA = MODAL DAMPING COEFFICIENT (OR RADIUS (INCHES) AT EXCITATION STATION

FOR I1 = 7)

/FREQ/•LE•1•=10) GO TO 2
```

IF (/FREQ/*LE*1*E*10) G0 T0 2
G0 T0 3

SAMPLE DATA DECK

```
•313
                         • 75
         0
TESTS NO. 11 + 13, SATURN UPPER STAGES BENDING TESTS
    3
              2
    33 • 858
   4.38
            ·1301 -2
                         10555. 3229.
                                             •1733
                                                                   •0089
   9.66
            .0385 -2
                         16048. 3481.
                                             .2341
                                                                   .0118
            .0290 -2
                         19421.
                                 3346.
                                             .3137
  10.00
                                                                   .0123
  10.58
            .0228 -2
                         37114. 3449.
                                             .4005
                                                                   .0114
                         56828. 3305.
                                             .6826
 14.80
            +0190 -2
                                                                   .0130
            .0151 -3 1053120. 3412.
 19.01
                                            5.159
                                                                                 6
            ·0158 -3 17980500· 2763·
  23.12
                                           16.138
                         10284 • 3371 •
   4.90
            ·1985 -2
                                             .1764
                                                                   +0194
   9.39
            ·361 -3
                         23731. 3609.
                                             .2752
                                                                   •0109
                                                                            4 - 16
                         30539. 3395.
             231
  10.90
                  +3
                                             -2714
                                                                   ·0076
                                                                            4 - 17
  13.38
            •99
                  - 4
                       2284183 • 3325 •
                                             +6584
                                                                            4 - 18
            ·159 -3
                       186818 3502
                                             •7323
                                                                   •0095
  14.42
                                                                            4 - 19
                       701443 - 3574 -
                                            1.6274
  16.40
            •38
                                                                            4 - 20
                  - 4
                      8261987 4558
  22.97
            .19
                  -4
                                           29 + 323
                                                                            4 - 21
  5.20
                         11824 • 3705 •
                                             •6819
            ·2282 -2
                                                                   •0137
                                                                            4 - 8
   9.68
            •393 -3
                         13646. 3774.
                                             .2203
                                                                   •0094
                                                                                 9
  10.59
            .218
                  -3
                         21531.
                                 3438.
                                             •3998
                                                                            4 - 10
  10.91
            • 163
                 -3
                         22986 • 3736 •
                                             • 4452
                                                                   •0115
                                                                            4 - 11
  15.00
            •500
                  -3
                         22630 • 3373 •
                                             •5734
                                                                   •0108
                                                                            4 - 12
  24.26
            •570
                  -5 82876450.
                                 4111 •
                                           44.2231
                                                                            4 - 13
  26.82
            •104
                  -4 28463950 - 5444 -
                                           71 + 8714
                                                                            4 - 14
   5.09
            .831
                  -3
                         12523 • 3346 •
                                             .9098
                                                                            4 - 22
                                                                   .0144
   9.44
            •546
                  -3
                         10630•
                                 3415.
                                             ·2459
                                                                   •009
                                                                            4 - 23
  10.95
            • 357
                  -3
                         14796.
                                 3546 •
                                             •2593
                                                                   •0114
                                                                            4 - 24
  13.49
            •151
                  -3
                        554562.
                                 3732•
                                             .4576
                                                                   •0100
                                                                            4 - 25
                         21740 • 3907 •
  15.20
            •158 -3
                                             .3003
                                                                   .0109
                                                                            4 - 26
    3
   33.858
            •1087 -2 973344 •
  2.09
                                 3022.
                                             .4120
                                                                   •0510
                                                                            3 - 1
  7 • 81
            ·2059 -2
                     50200•
                                 5199 •
                                             •3559
                                                                   .0104
                                                                            3 -
                                                                                 2
                                            4.0316
  10.09
            •÷5 -5 7571678•
                                 5466.
                                                                    ·0086
```

```
.0168
                                                                               3 - 4
    10.82
                     -3 158658 •
                                    5482.
                                                •4760
               141
                          28820•
                                                •6195
    14.31
               • 140
                    -3
                                    4478 •
                                                                       •0140
                                                                               3 - 5
   17.02
                     -4 1591757 •
                                               5-3168
                                                                               3 - 6
               • 14
                                    4369 •
     2.08
               .864
                     -3 1193429. 3345.
                                                •3601
                                                                       .0180
                                                                               3 - 11
     7.69
               ·2034 -2
                            47160. 3536.
                                                •2568
                                                                       •0084
                                                                               3 - 12
    10.38
               . 24
                     -4 21984770.
                                    3782.
                                               5.0237
                                                                       •0072
                                                                               3 - 13
    11.01
               •126
                    -3
                         457090 • 3533 •
                                                •3706
                                                                       •0102
                                                                               3 - 14
    14.60
               • 37
                           859699 3476
                                               1.2591
                                                                               3 - 15
                                               2 • 1896
    17.22
               •26
                     - 4
                           776740 • 3452 •
                                                                               3 - 16
                           21164 •
     8 • 16
               ·1645 -2
                                    2327 •
                                                •2791
                                                                      ..0098
                                                                               3 - 7
                           19634 •
                                                .3545
    14.07
               ·152 -3
                                    2380 •
                                                                      • 0085
                                                                               3 - 8
               ·1849 -2
                            21705. 2303.
                                                .2260
                                                                       •0108
     8.06
                                                                               3 - 17
                                                .7624
    13.58
               544 -4
                          •0108
                                                                               3 - 18
               ·1593 -2
                                                •4762
     8.49
                          13517•
                                    1988 •
                                                                       •0103
                                                                               3 - 9
               ·107 -3
                                                .3594
    14.27
                           15436.
                                    5577•
                                                                       •0140
                                                                               3 - 10
    3.31
               ·2166 -2
                           12720 - 2014 -
                                                •3786
                                                                       •0099
                                                                               3 - 19
    13.60
               .705 -4
                           455873. 2499.
                                                .3541
                                                                               3 - 20
               SATURM V DTV CONFIG. I TORSIONAL (1967)
  TEST NO. 3
      6 0
                                                                            17-B
                                                                               17-0°
      5.029
      5.660
               6.092 -5
                          9 • 40
                                     219.12
                                               2.5
                                                                     • 01
                                                                                  17- 1
                               +6
                                                   -11
00
     6.162
               8 • 469 - 5
                          3,0
                                +6
                                     227.04
                                               2 • 6
                                                    -11
                                                                     •008
                                                                                  17- 2
               3.192 -5
     8-117
                          2.5
                                +7
                                     204 • 60
                                               2.4
                                                    -11
                                                                     •016
                                                                                  17- 3
S
      8.839
               1 • 486 = 4 3 • 88
                                     182 • 16
                                               4.5
                                                   -11
                                                                                  17- 4
                                +6
                                                                     • 01
               6.703 -5
                          2 . 7
                                                                                  17- 5
     11.326
                                +6
                                     240.24
                                               8 • 0
                                                   -11
                                                                     • 02
     5.691
               6-271 -5
                                               30. -12
                                                                                  17- 6
                          9 • 1
                                     201·
                                                                     • 009
    6 . 194
               6.432 -5
                          6 . 8
                                +6
                                     201 •
                                               30. -12
                                                                     • 009
                                                                                  17- 7
               3.298 -5
     8 • 113
                          3 • 1
                                +7
                                     194 •
                                               40.
                                                    -12
                                                                     9014
                                                                                  17- 8
     8 - 895
                                                                                  17- 9
               1 • 443 -4
                          4 . 0 .
                                +6
                                     205.
                                              140 =
                                                   -12
                                                                     • 011
    11.438
               4.640 -5
                          3.4
                                     238.
                                               50. -12
                                                                     +018
                                                                                  17-10
```

```
PROG
     RAM
     TO
DAMPED
    FIND
     RE
STRUCTURES
```

```
4ENDJoB. -
AASSIGN S=HTC, SI=CR, BD=MT1, L9=LP.
AFFWIRD MT1.
AFORTHAN BOILS.
               DIMENSION WN(25), CM(25), TABLEQ(25), TABLEW(25)
      Ż
               READ 25, NMODES, ITMAX, NG, NW, TOL
            25 FGPMAT [ 415,F10.3]
               De 27-1 = 1,8MeDES
            27 READ 35, WHILL GMILL
            30 FBRYAT [10F8+3]
            35 FORMAT [8F10:3]
               READ 30, CLEN.
      9
               READ 30, [TABLEQ[]], [ = 1,NQ]
     10
               READ BO, [TABLEW[]], I = 1,NK]
     11
               PRINT 40
     12
            40 FORMAT [1H1,28X,4HFREQ,10X,9HGENL MASS, 7X,9HF8RC AMPL, 7X
     13
               * 99FORC FREG.7X,9HPESP AMPL,7X,10HRESP PHASE//1
     14
               00 75 I = 1, NMADES
     15
               Da 75 d = 1,NW
     16
               [L]WBIGAT = N
     17
               99 75 K = 1,N9
     3 !
               ON = TABLED[K]
     19
               0 = 1.
     20
               N = 0
     £15
               IND = 0
     55
           100 \text{ K} = 0
     53
               M = N+1
                                                                               Reproduced from
                                                                               best available copy
     214
               PRINT 501, N
            第17 作900 针 打翻
               CALL FUNCIS, W. GMIIS, X. EN. C. GN. T. PHIS
     26
     27
               9 = x - T
     28
               ERP = [0.4X]/X
     29
               IF [ABS[ERR] - TOL] 150,150,120
     30
           110 JF [N -ITMAX] 100,200,200
     31
           150 PRINT 160, WNIJJ, SMIIJ, GN, W. G. PHI
     35
           160 FRPMAT [1PE36.4,5E16.4]
     33
               GBT0 75
     34
           200 PRINT 210, ITMAX, TALLOUX
           RIS FORMAT [//16X, 26HS@LUTION DIDNT CONVERGE IN, 13, 26H STEPS WITHIN TO
     36
              *LEPANCE 8F, F9.6, 7H X[N] =, 1PE10.3, 9H X[N-1] =, E10.3]
     37
               STAP
           75 Cantinue
     38
     39
               END
PREGRAM ALLSCATION
  00003 NA
                  00054 GM
                                   00146 TABLED
                                                    00230 TARLEW
  00312 1.18DES
                  CC313 ITMAX
                                   00314 NQ
                                                    00315 NW
  00316 1
                  00317 J
                                   00320 K
                                                    00321 N
```

00325 C

00335 Q

00345 ERR

00327 EN

00337 X

0035S I/D

60331 W

C0341 T

00323 TOL

00333 RM

C0343 PHI

```
SURROUTINE F [MN, W, SM, Q, EN, C, SN, T, PHI]
          48 = 2+h
          SW + MAKKIN + M2
+4
          T1 = TA+TA
          TB = 3"*2*0
          TC = #8*T8/2*
          TE = C/T3/3.14159
          TF = TE*TE
          TG = TC**EN
          TD = T3.TG
          Ta = ID*TF
          DE' BY = SGRT [T1+T2]
          F = 3 - GN/DEN9M
          ARS = TEXTS/TA,
          PHI = ATANEARG)
          T3 = 2.*[E:-1.]*T2/3
          T4 = DENBM*CENAM*DEN6M
          FP = 1. + QN*T3/T4
          T = F/FP
2C
          RETURN
          FIND -
```

PARGRAM ALLECATION

	00026	F	ODOBO	MS	DUMMY	W	00032	TA
	DUMPY	1005	00034	T1	00036	TB	DUMMY	GM
	DUMMY	Ç	00040	TC	00042	TE	DUMMY	C
•	00044	IF	00046	TG	DUMMY	EN	00050	CT
	00052	Tá	00054	DENOM	DUMMY	QN	00056	ARC
	5521 Y	r. I	00060	T 3	00065	T 4	00064	FP
	PURKY	T	,	-				

SUBPREGRAMS REQUIRED

SCRT THE END

```
USERS MANUAL
PROGRAM TO FIND RESPONSE OF A NONLINEARLY DAMPED SYSTEM TO A PERIODIC EXCITATION
  READ (415,F10.3) NMODES, ITMAX, NG, NW, TOL
      NMADES = NA. OF MADAL EQUATIONS TO SALVE
       ITMAX = MAXIMUM NUMBER OF ITERATIONS FOR NEWTONS METHOD
      NO = NO. OF VALUES OF O (AMPL. OF FORCING FN.) FOR EACH FORCING FREQ.
      NW = NO. OF VALUES OF W (FREQ. OF FORCING FN.)
      TOL = ERROR TOLERANCE REQUIRING ANOTHER NEWTON ITERATION
  D0 1 I = 1, :M9DES
1 READ (2F8+3) (WN(I), GM(I), I = 1, NMODES)
       WN(I) = MODAL FREQUENCY OF THE I-TH MODE
       GM(I) = GEN. MASS OF I-TH MODE
  READ (258.3) C.FN
      C = CHEFFICIENT OF EMPIRICAL DAMPING LAW
      EN = EXPONENT OF EMPIRICAL DAMPING LAW
  READ (8F10.3) (TABLEQ(I), I = 1.NQ)
  READ (8F10.3) (TABLEW(I), I = 1,NW)
      TABLEQ(I) = VALUES OF Q(I)
      TABLEW(I) = VALUES OF W(I) (RAD/SEC)
                        SAMPLE DATA DECK
    4 10
             5 5
                          .001
   6,6266
              8598 • 9
   11.0207
              3121.6
   16.6826
           4791+6
   23.2190
            10493•6
```

ALL SATURN, 747 DATA

24.

100.

30.

1

•313 •8

6 •

1.-6 1.-4 1.-2

18•

12.

```
0
a
ALCULA
```

```
ROGRAM
 LINEAR
 Ω
ATE EQUIVALI
COEFFICIENT
```

```
AFNOJES.
AASSIGN S=MTO,S:=CR,88=MT1,L8=LP.
ARENIAD MT1.
AFBRICAN ESILE.
     .1 CALCULATION OF EQUIVALENT LINEAR DAMPING COEFFICIENT
               DIMENSION TABLE[20], TITLE[14]
               READ 10,0,E
              PRINT 2,C,E
             2 FORMAT [1H1,43X,25HDAMPING LAW CONSTANTS C =F7.3, 4H E =,F7.3]
               READ 5, NAME
             5 F6RMAT [1015]
              READ 10, ETABLETTI, I = 1, NAMPI
     10
            10 FARMAT (1058.3) ·
            12 READ 5, NYBOES
     11
     12
            IF [NMSDES] 15,900,15
     13
            18 PEAD 20, [TITLE[1], I = 1,14]
            20 FERMAT (1346, A21
     14
             PRINT 30, [TITLE[]], I = 1,14]
     15
            BO FERMAT (1HC, 29X, 1BA6, A2//20X, 4HMODE, 5X, 4HFREG, 8X, 9HGENL MASS
     16
     17
            * 7X,9MAMPELITUDE, 11X, 1HT, 15X, 1HD, 14X,4HZETA/ 26X, 9HTRAD/SEC1
     13
              * 8X, 4H[K3], 13X, 3H[M], 12X, 5H[M-M], 11X,5H[N-M]/]
     19
             D8 75 I = 1/NYODES
     20
               READ 50, WAGM
           '50 FORMAT [8E10:3]
     21
              T = *5*GM*X*W
                                                        Reproduced from
               D9 75 U = 1, NAMP '
     23
                                                        best available copy.
              T1 = T+TASLE[J] *TABLE[J]
     24
               D = C*[1**E
               Z = 0/12.56636/T1
     25
     27
               IF [U-1] 70,60,70
            60 PRINT 65, I, W, 3M, TABLE [J], T1, D, Z
     29
               GeT5 75
            65 F5-MAT [123, F12.3, 1P5E16.4]
     -30
            70 PRINT 72, TABLE (J], T1, D, Z
            78 FORMAT [1PE67.4,3E16.4]
            75 CONTINUE
     33
               0019 12
     34
     35
           900 STAP
               END
PROGRAM ALLOCATION
  00000 TABLE
                  00050 TITLE
                                  00104 NAMP
                                                   00105 I
```

00110 C

00120 T

00112 E

00122 T1

' 00106 NYODES

00114 W

00124 0 THE END

00107 J

00116 GM

00126 Z

```
PROGRAM TO CALCULATE EQUIVALENT LINEAR DAMPING COEFFICIENT FROM EMPIRICAL DAMPING LAW D = C*T**E
```

READ (2E8+3) C.E.

C = COEFFICIENT OF EMPIRICAL DAMPING LAW
E = EXPONENT OF EMPIRICAL DAMPING LAW

READ (15) NAMP

NAME = NO. OF MODAL AMPLITUDES PER MODE FOR WHICH DAMPING COEFF. FOUND

READ (10E8+3) (TABLE(I), I = 1, NAMP)

TABLE(I) = VALUES OF MODAL AMPLITUDES

1 READ (15) NMUDES

NMBDES = NB . OF MBDES FOR WHICH DAMPING COEFF . TO BE FOUND

READ (13A6, A2) (TITLE(I), I = 1,14)

TITLE(I) = IDENTIFICATION OF STRUCTURE EXAMINED

D0 2 I = 1,NM0DES

00 2 READ (2E10.3) W.GM

00

W = FPLQUENCY (RAD/SEC) OF I-TH MODE GM = GEN+ MASS (KG) OF I-TH MODE

SAMPLE DATA DECK

•313 •8

1.-6 5.-6 1.-5 5.-5 1.-4

SA 500D TIME POINT 2 (DTV)

6.6266 8598.9

11.0207 3121.6

16.6826 4791.6

23.2190 10493.6