42-1

42.**IIoT**

本章節說明如何使用 IIoT 的各種通訊協定。

42.1.	MQTT	. 42-2
42.2.	OPC UA 伺服器	42-26

42.1. MQTT

42.1.1.概要

[MQTT] 物件可將訊息發送給 MQTT 伺服器,亦可從 MQTT 伺服器訂閱主題。HMI 也可做為 MQTT 伺服器,當 HMI 做為 MQTT 伺服器時,不會發送訊息至其他伺服器。

42.1.2.設定

點選功能表列 [物件],並點選 [lloT]»[MQTT] 新增此物件。點選 [啟用] 後會跳出設定視窗。

MQTT	×
□ □	
* 請使用 OS 20150923 或更新版本的 OS.	關閉

IIoT **42-3**

42.1.2.1. 伺服器設定

一般屬性設定

設定 描述

雲端服務

通用

通用的 MQTT 發佈-訂閱主題模式。

AWS IoT

以 AWS IoT 為 Broker,使用 Thing 傳遞資料並支援 Shadow 功能。詳細介紹請參考文件 "AWS IoT 使用者手冊"。

Sparkblug B

Sparkplug B 是依據 IIoT 領域應用的使用特性,發展出標準 MQTT 未規範到的訊息主題和訊息內容,並能讓未支援 MQTT 的終端裝置也能夠透過 Edge of Network (HMI) 間接進行 MQTT 資料傳遞。詳細介紹請參考文件 "Sparkplug B 快速入門手冊"。

Azure IoT Hub

以 Microsoft Azure IoT Hub 為 Broker,簡化設定步驟,填入正確的連接字串即可通訊。連接字串可以在 Microsoft Azure IoT Hub 的裝置

細節內找到資訊。

	ALIX 1 T.
通訊協議	支援 MQTT v3.1、v3.1.1、v5 (v5 僅支援 cMT/cMT X 系列)。
自訂 Client ID/使用	Client ID:上限 128 字組。
者名稱/密碼之長度	使用者名稱/密碼:上限 256 字組。
IP	設定接收訊息的 MQTT 伺服器 IP。若輸入 IP 位址 127.0.0.1,將會
	啟動在人機上的 MQTT 伺服器。
使用網域名稱	支援使用網域名稱指定伺服器。
連接埠號	設定接收訊息的 MQTT 伺服器連接埠。
Client ID	登錄名稱。可使用變數做為登錄名稱。例如:輸入%0,則 Client ID
	即為HMI的名稱。
驗證	選擇是否使用 [使用者名稱] 及 [密碼] 連接 MQTT 伺服器。
使用者名稱	連接 MQTT 伺服器使用的 [使用者名稱]。
密碼	連接 MQTT 伺服器使用的 [密碼]。
測試連線時間	當 MQTT 伺服器超過 [測試連線時間] 仍未收到 HMI 的測試訊息,
	會視為 HMI 已斷線。
	備註:當使用模擬時,訊息傳遞可能會延遲,但延遲時間最長不會
	超過 [測試連線時間]。HMI 上的訊息則是會即時發送。
時間戳記	本地時間
	使用 HMI 時間做為時間戳記。
	UTC 時間
	使用 UTC+0 時間。若時間戳記不正確,請檢查 [系統參數設定] »
	[時間同步/夏令時間] 頁籤的時區設定。
正常斷線時清除訊息	選項啟用時,自行中斷連線時 (方式:設定 MQTT 伺服器的命令控
緩衝區	制位址為 2) 會清除緩衝區內的訊息。反之緩衝區內訊息會保留。
	預設為啟用。
自動關閉非活動中的	當閒置時間超過 [最大閒置時間] 時會自動斷線,直到下一次資料
MQTT 連線	需要更新時才會再連線。
	可選擇是否只有在第一次連線時才會更新初始數值以及主題列表。
	使用此項設定時,控制位址的開始/停止命令將無效。

1IoT **42-5**

位址設定

設定

狀態位址

描述

LW-n: 顯示 [MQTT] 連線狀態

數值	描述
0	不啟用連線 MQTT 伺服器
1	已斷線或連線中
2	成功連線 MQTT 伺服器

LW-n+1: 錯誤提示

數值	描述
0	無錯誤
1	未知錯誤
2	連線失敗
3	伺服器拒絕存取
4	內建 MQTT 伺服器連接埠
	號不在允許範圍內
5	無法解析的伺服器名稱
6	緩衝區已滿

32	不正確的 Client ID
48	加密憑證驗證失敗
256	已在連線中

緩衝區使用量地址

發佈未成功的訊息會先儲存在記憶體內當作緩衝,最 多為 10000 筆,地址數值顯示單位為%,無條件進

LW-n: 顯示緩衝區使用量

位。

控制位址

LW-n: 控制 [MQTT 伺服器] 執行或停止

數值	描述
0	就緒
1	開始
2	停止
3	更新

LW-n+1: 設定 MQTT 伺服器的 IP 位址 LW-n+5: 設定 MQTT 伺服器的連接埠號

LW-n+6: 設定連線至 MQTT 伺服器的 Client ID

LW-n+26: 是否啟用驗證

數值	描述
0	停用
1	啟用

LW-n+27: 設定連線至 MQTT 伺服器的使用者名稱

LW-n+43: 設定連線至 MQTT 伺服器的密碼

LW-n+59: 設定連線至 MQTT 伺服器的網域名稱 當雲端服務選擇 Azure IoT Hub 時,控制地址如下

LW-n: 控制 [MQTT 伺服器] 執行或停止

數值	描述
0	就緒
1	開始
2	停止
3	更新

LW-n+1: 設定連接字串(128 words)

TLS/SSL 設定

設定	描述
啟用	啟用 TLS/SSL 加密。可手動選擇加密版本 TLS 1.0, TLS
	1.1 或 TLS 1.2。
	使用 TLS 1.1 及 TLS 1.2 時,HMI 的 OS 必須使用
	20180323 或更新的版本。
伺服器認證	啟用
	驗證該伺服器憑證是否曾經經過憑證授權單位 (CA)
	認證。伺服器憑證是在建立連線時由伺服器送出。
	伺服器名稱需與憑證資訊相符
	驗證該伺服器名稱或 IP 是否與憑證內的紀錄符合。
	Domain name 與 IP 紀錄是記載於憑證內的 Subject
	Alternative Name Ψ \circ
客戶端驗證	私鑰與客戶端憑證為讓伺服器驗證客戶端所需的資
	料。

系統主題

目前有四種系統主題 HMI 可選擇是否發佈。若 HMI 有啟用系統主題,則訂閱者可透過訂閱該主題,得知該 HMI 的主題清單或連線狀態。

設定	描述
Topic List	HMI 內的主題清單。訊息在 HMI 與伺服器連線後發
	送至伺服器。
Birth Topic	HMI 與伺服器連線後,會發出的訊息。
Close Topic	HMI 主動與伺服器斷線前,最後發出的訊息。
Last Will	當 HMI 與伺服器之間發生異常斷線時,Last Will 的訂
	閱端會收到此訊息。HMI 在一開始建立連線時,就會
	將 Last Will 訊息同步設定至伺服器端。
主題	該系統主題的實際主題名稱。
保留訊息	MQTT 伺服器會保留最新的一筆資料。
QoS	MQTT 提供三個級別的可靠性,稱為服務質量。訊息
	傳送的服務質量決定了訊息是否保證送達。
	QoS 0: 訊息只發送一次,不保證送達
	QoS 1: 訊息送達至少要一次
	QoS 2: 訊息送達剛好一次
内容格式	JSON (Default):使用預設值

各系統主題的預設值:

紅字表示為當下實際值

```
Topic list: {
    "d" : {
        "topics" : [
```


42-9

```
{
           "compression":"壓縮類型",
           "nickname": "主題名稱",
           "topic":"主題"
        },
        {
           "compression":"壓縮類型",
           "nickname":"主題名稱",
           "topic": "主題"
        }
     ]
  },
  "ts":"當前時間"
}
topics 内的消息依據實際主題設定有所不同。上為兩
個主題的例子。
Birth Topic:
{
  "d":{
     "connected":true
  },
  "ts":"當前時間"
}
Close Topic:
  "d":{
     "connected":false
  "ts":"當前時間"
}
Last Will:
  "d":{
     "connected":false
  }
```


}

JSON (Customized):使用自訂內容。

- 雲端服務選擇 Sparkplug B,Azure IoT Hub 時不支援 [系統主題] 分頁功能。
- ▶ 請點選此圖示觀看教學影片,請先確定已連上網路線。

42.1.2.2. MQTT 主題發佈

選擇[新增]可進入一般屬性設定與位址設定,或是可直接使用[匯出]/[匯入] CSV 檔案功能來建立 MQTT 發佈主題。MQTT 發佈主題的數量上限為 255 件。

IIoT **42-11**

一般屬性設定

設定	描述
別名	設定 MQTT 主題的項目名稱。
主題	發送訊息時,MQTT 伺服器收到的主題。可使用變數做為主題內容。
	%(DYNAMIC) 用法:在主題欄位輸入 %(DYNAMIC),則下方會產生一
	個可設定動態地址的選項。%(DYNAMIC) 的字串內容亦可包含多個
	topic level。例如:myhome/groundfloor。

IIoT **42-12**

當雲端服務選擇 Azure IoT Hub 時,主題發佈有固定格式,使用者只能 自訂最後一個 level。

發送模式 位址(自動)

數值變化模式:

當任一數值有變化時,即發佈 MQTT 訊息。

週期式:

定時發佈 MQTT 訊息。

訊息間最小時間間隔:

可以設定訊息間最小時間間隔避免過度發布 MQTT 訊息。也就是當數值變化的間隔小於訊息間最小時間間隔時,則會將訊息放在緩存,待滿足訊息間最小時間間隔時才會再發布 MQTT 訊息。

位址(位元觸發)

指定位元被觸發時,即發佈 MQTT 訊息。

事件登錄

發佈來源可使用事件登錄的資料。可選擇當單一的事件登錄項目或當類別下的任一項目觸發時發佈 MQTT 訊息。

壓縮類型

傳輸訊息前,會先將訊息壓縮。被壓縮的訊息,在 MQTT 客戶端要讀 取前,需先解壓縮。可選擇使用 zlib, gzip 或是 DEFLATE 演算法來壓縮 或解壓縮訊息。

42-13

保留訊息	勾選後,MQTT 伺服器會保留最新的一筆資料。
包含時間戳記	當內容格式使用 [JSON (一般)] 時才支援此功能,可手動決定是否要包含時間戳記。
使用最上層"d"符 號於訊息格式	當內容格式使用 [JSON (一般)] 時才支援此功能。 勾選後,訊息格式如下:
	<pre>"d": { "addressName1":, "addressName2": }, "ts": }</pre>
	未勾選,訊息格式如下:
	<pre>{ "addressName1":, "addressName2":, "ts": }</pre>
	如圖所示,未勾選的情況下,ts 和地址名稱都是同層級的鍵值(key)。
	因此,應避免將地址名稱取為 ts。
QoS	MQTT 提供三個級別的可靠性,稱為服務質量。訊息傳送的服務質量
	決定了訊息是否保證送達。
	0: 訊息只發送一次,不保證送達
	1: 訊息送達至少要一次
	2: 訊息送達剛好一次
内容格式	Raw data:以 BYTE 數據組成的資料。
	JSON (一般):將所有資料放在成員 "d" 的 JSON 格式。

位址設定

此章節說明當內容格式使用 [Raw Data] 與 [JSON (一般)] 時位址的設定。

設定	描述
包括在發送的所有訊	當該發送的其他位址數值有變化時,可以選擇此資料
息中	是否要包含在發送的訊息中。此功能僅支援 [JSON
	(一般)] 與 [JSON (進階)] 內容格式。
移除 JSON 陣列括	在使用非陣列位元或字元時可手動移除陣列符號。此

號 '[' 和 ']'	功能僅支援 [JSON (一般)] 內容格式。
啟用小數點後位數之	當位址格式使用 Float 浮點數時,可以選擇小數點後
個數	的位數。此功能僅支援 [JSON (一般)] 與 [JSON (進
	階)] 內容格式。
自動跳脫特殊字元	cMT/cMT X 系列支援當位址格式為字串時,可以選擇
	自動跳脫特殊字元。
	MQTT 字串可能含有 JSON 的關鍵字(像是 " 和 \)
	導致 JSON 解析(JSON parsing)時失敗。啟用此功能
	後,發送的字串內容如有關鍵字,將會自動跳脫,也
	就是當有 " 符號時則發送 \",當有 \ 符號時則發
	送 \\,讓 MQTT 字串可以被正常解析。此功能僅支
	援 [JSON (一般)] 內容格式。

■ 一個 tag 長度最多可使用 255 個 word。

安全設定

當暫存器狀態符合設定時,才會發佈該主題。如上圖,當 LB-0 為 ON 時,此主題才會發布。

42-16

位址設定 [JSON (進階)]

此章節說明當內容格式使用 [JSON (進階)] 時位址的設定。[JSON (進階)] 支援巢狀結構,可使用物件、陣列等形式,時間戳記及資料名稱亦可自訂,具有較彈性的設計方式。

以上圖為例,若使用上圖的設定,在訂閱端將會收到以下形式的 MQTT 訊息。

```
{
    "Topic Name" : "JSON Enhanced",
    "Object" : {
        "LW-0" : [ 1 ],
        "LW-1" : [ 2 ],
        "LW-2" : [ 3 ]
    },
    "Array" : [ [ 4 ], [ 5 ], [ 6 ], [ "AABBCCDD" ] ],
    "timestamp" : "2019-02-19T06:52:13.846038"
}
```

設定	描述
新增物件	新增一個資料物件。物件中可有多個資料格式,每個
	資料格式各自有名稱及數值。物件的資料使用大括號
	{} 包括。
新增陣列	新增一個資料陣列。陣列中可有多個資料格式,但只
	會有一個名稱。物件的資料使用中括號 [] 包括。
新增數值	新增一個數值、字串或時間戳記。當為數值或字串
	會有一個名稱。物件的資料使用中括號[]包括。

	時,可為固定數值或從指定位址讀取數據。
刪除	刪除選定的欄位。
設定	修改選定的欄位。若選擇的欄位為物件及陣列時,僅
	可修改名稱。但物件及陣列包括的數值可修改參數。
複製	複製選定的欄位。
貼上	在選擇的欄位貼上之前複製的部分。
範本	在此貼上 JSON 文字,系統會自動編排成符合此 JSON 格式的架構,省去自行定義的時間。 從 JSON 模板創建 在此處貼上 JSON 文字。
預覽	用容易閱讀的格式預覽 JSON 資料。

■ 一個 Topic 最多可使用 512 個節點 (包含 payload),一個 tag 長度最多可使用 255 個 word。

42.1.2.3. MQTT 主題訂閱

選擇[新增]可進入一般屬性設定與位址設定,或是可直接使用[匯出]/[/匯入] CSV 檔案功能來建立 MQTT 訂閱主題。MQTT 訂閱主題的數量上限為 255 件。

一般屬性設定

此章節說明當內容格式使用 [Raw Data] 與 [JSON (一般)] 時位址的設定。

設定 描述
別名 設定 MQTT 主題的項目名稱。
主題 從 MQTT 伺服器訂閱的主題。可使用動態字串訂閱。
%(DYNAMIC) 用法:在主題欄位輸入 %(DYNAMIC),
則下方會產生一個可設定動態地址的選項。
%(DYNAMIC) 的字串內容亦可包含多個 topic level。例
如:myhome/groundfloor。

主題: %(DYNAMIC)

%(DYNAMIC) : 動態字串 %% : 字元 %

使用預設

當雲端服務選擇 Azure IoT Hub 時,主題訂閱有固定格式,使用者只能自訂最後一個 level,必須與主題發佈對應。

壓縮類型

訂閱主題的傳輸壓縮必須與發佈主題相同。

驗證時間戳記

使用者可自行決定是否要驗證時間戳記。勾選表示收 到的資料時間戳記必須嚴格遞增才會更新,否則會被 判斷成為過時的資料而不更新。

使用最上層"d"符號於 訊息格式

勾選後,訊息格式如下:

```
{
    "d": {
        "addressName1": ...,
        "addressName2": ...
},
    "ts": ...
}
```

未勾選,訊息格式如下:

```
{
    "addressName1": ...,
    "addressName2": ...,
    "ts": ...
}
```

請依照資料來源選擇適當的設定。

QoS

MQTT 提供三個級別的可靠性,稱為服務質量。訊息傳送的服務質量決定了訊息是否保證送達。

0: 訊息只發送一次,不保證送達

1: 訊息送達至少要一次

2: 訊息送達剛好一次

内容格式

Raw data:未有特定格式的原始數據。

JSON (一般):單層結構的 JSON 格式。

JSON (進階):可彈性自訂巢狀結構的 JSON 格式。

操作模式

主題訂閱可以設定模式

自動:收到資料立即將數值寫至地址。

手動:收到訊息後,先將數值暫存至緩衝區,等到控制地址收到執行指令,才將數值寫至地址。緩衝區儲

存上限為一百筆。

控制地址 (手動模式)

LW-n: 命令

數值	描述
1	將緩衝區裡最舊一筆的資
	料寫入地址。緩衝區裡若
	有十筆資料,可下十次命
	令 1 依序寫入地址。
2	將緩衝區裡最新的一筆資
	料寫入地址,並清空緩衝
	區裡所有資料。

LW-n+1: 執行結果

數值	描述
0	目前暫存器中沒有資料
1	執行結果成功
2	此主題訂閱目前處於關閉
	狀態,執行失敗(見 MQTT
	主題訂閱 安全設定)

LW- n+2: 未處理的訊息 緩衝區中的資料數量。

位址設定

設定	描述
新增	建立訂閱主題後資料放置的位址。每一個位址可分別
	設定長度。
刪除	刪除位址。

設定	描述
必須包括在接收的所	當該訂閱的其他位址數值有變化時,可以選擇此資料
有訊息中	是否要包含在接收的訊息中。此功能僅支援 [JSON
	(一般)] 與 [JSON (進階)] 內容格式。
移除 JSON 陣列括	在使用非陣列位元或字元的時候可手動移除陣列符
號 '[' 和 ']'	號。此功能僅支援 [JSON (一般)] 內容格式。
接受空值	可以接收空值(NULL)。此功能僅支援 [JSON (一般)]
	與 [JSON (進階)] 內容格式。
(結束字串)允許小於預	當接收的字串長度少於此資料的字串設定長度時,仍
設大小的資料	可接收。目前限定只有該訂閱物件的最後一個字串資
	料可進行此設定,若字串資料後面還有使用其他數值
	或位元資料,則無法使用此功能。此功能僅支援
	[Raw data] 内容格式。

IIoT **42-22**

安全設定

當暫存器狀態符合設定時,才會訂閱該主題。如上圖,當LB-0為 ON時,才會訂閱該主題。

位址設定 [JSON (進階)]

此章節說明當內容格式使用 [JSON (進階)] 時位址的設定。[JSON (進階)] 支援巢狀結構,可使用物件、陣列等形式,時間戳記及資料名稱亦可自訂,具有較彈性的設計方式。

設定	描述
新增物件	新增一個資料物件。物件中可有多個資料格式,每個
	資料格式各自有名稱及數值。物件的資料使用大括號
	{} 包括。
新增陣列	新增一個資料陣列。陣列中可有多個資料格式,但只
	會有一個名稱。物件的資料使用中括號 [] 包括。
新增數值	新增一個數值、字串或時間戳記。當為數值或字串
	時,可為固定數值或從指定位址讀取數據。
刪除	刪除選定的欄位。
設定	修改選定的欄位。若選擇的欄位為物件及陣列時,僅
	可修改名稱。但物件及陣列包括的數值可修改參數。
複製	複製選定的欄位。
貼上	在選擇的欄位貼上之前複製的部分。
範本	在此貼上 JSON 文字,系統會自動編排成符合此 JSON
	格式的架構,省去自行定義的時間成本。

- Amazon Web Service(AWS) IoT Core 的可支援標準 MQTT 協議。使用上請注意:
 - 1. 主題最多僅能使用八層,例如 iot-2/type 為兩層。
 - 2. 不支援 [一般屬性] 的驗證功能,需使用 [TLS/SSL] 的憑證方式驗證。
 - 3. 僅支援 QoS 0 與 QoS 1。
 - 4. 不支援主題發佈的 [保留訊息] 功能。

42.1.2.4. Sparkplug B

當雲端服務設定為 Sparkplug B 時,一般屬性及設備設定介紹如下。

一般屬性設定

設定	描述
群組 ID	識別此 Edge Of Network Nodes 所屬的群組 ID。
Edge node ID	識別此 Edge Of Network Node 的 ID。
DDATA 最小時間	若偵測到資料變化,發送新的 DDATA (Device DATA)
	訊息前的最少等待時間。
QoS	MQTT 提供三個級別的可靠性,稱為服務質量。訊息

傳送的服務質量決定了訊息是否保證送達。

0: 訊息只發送一次,不保證送達

1: 訊息送達至少要一次

2: 訊息送達剛好一次

設備設定

設定	描述
新增群組	新增群組來管理標籤。
新增標籤	新增此 EoN Node 在 MQTT Engine 監控的標籤。名稱
	不可為空白。
刪除	刪除已存在的群組或標籤。
設定	設定已存在的群組或標籤

➡ 請點選此圖示下載範例程式。下載範例程式前,請先確定已連上網路線。

42.2. OPC UA 伺服器

42.2.1. 概要

OPC UA(Unified Architecture)是在工業自動化產業的通訊標準。具有資料通訊不受限於平台、統一存取機制、通訊的標準化以及安全憑證機制的特性。cMT / cMT X 系列人機支援 OPC UA 伺服器的角色,可以利用 OPC UA 客戶端 (Client) 軟體存取人機或 PLC 上的地址標籤資訊,進一步達到垂直整合的成果。

軟硬體需求:

- 支援機型:cMT/cMTX系列。*cMT-SVR/cMT-SVR-200和cMT-HDM/cMT-FHD/cMT-FHDX 需額外載入授權。
- 支援軟體:Easy Builder Pro v5.06.01 or later version
- 建議 OPC UA 客戶端程式:Unified Automation UaExpert

42.2.2. 設定

點選功能表列 [物件],並點擊 [IIoT]» [OPC UA 伺服器]新增此物件。點選啟用後會跳出設定視窗。

42.2.2.1. 一般屬性設定

設定	描述
描述	對於此物件的描述。
OPC TCP	伺服器的 URL 地址。
連接埠號	設定客戶端連進來需要的連接埠號,預設為 4840。
伺服器名稱	填寫伺服器的名稱,可空白。
	自動信任所有客戶端憑證
	此選項預設為啟用,僅 cMT Gateway 系列可選擇不啟
	用。未啟用此選項時,所有 OPC UA 客戶端皆會被拒絕
	連線,除非該客戶端的憑證已於 OPC UA 網頁介面中被
	設定為信任,如下所示:

請注意,根據 OPC UA 規範,除非安全策略允許 [無] 的選項,OPC UA 客戶端必須使用客戶端憑證進行連 線,且 OPC UA 伺服器會檢查憑證的正當性。

安全策略

此為 OPC UA 提供的安全策略,和客戶端可選用的加密 演算方式。

42.2.2. 使用者驗證設定

 設定
 描述

 方式
 匿名

 當客戶端軟體使用匿名登入時,資料存取的權限以瀏

覽/讀取/寫入設定。

使用者名稱&密碼

與人機的使用者名稱&密碼共用。在客戶端軟體登入 後,資料存取的權限則是以級別區分。

憑證

此選項僅支援於 cMT Gateway 系列。OPC UA 客戶端可使用憑證作為驗證方式,而不用使用者名稱與密碼登入。使用網路介面設定受信任/不受信任的使用者憑證,如下所示:

- OPC UA 的安全層級可分為:
 - (1) Communication Layer (通訊層級,例如:安全策略)
 - (2) Application Layer (應用層級),如下所示:

安全層級 (請見連結說明: http://wiki.opcfoundation.org/index.php/File:SecurityLayers.jpg)

- 客戶端憑證位於通訊層級,使用 [無] 以外的安全策略時,憑證是必須的。
- 使用者憑證位於應用層級。使用使用者憑證是一種登入的方式。

42.2.2.3. Discovery 設定

開啟後,OPC UA 伺服器將連接並註冊至指定的 OPC UA Local Discovery Server (LDS)。
OPC UA Discovery 服務用於簡化大量 OPC UA 伺服器網路位置的維護工作;OPC UA 客戶端連接至
OPC UA Discovery 伺服器後,一次查詢區域網路中所有的 OPC UA 伺服器。

設定	描述
IP	OPC UA Local Discovery Server (LDS) 的 IP 地址。
連接埠號	OPC UA LDS 的連接埠號。
伺服器名稱	OPC UA LDS 的伺服器名稱。
描述	做為備註使用,不影響通訊。

範例

以下步驟說明如何設置 Discovery 功能:

- 1. 先安裝 OPC UA Local Discovery Sever (LDS) (例如安裝至名稱為 DESKTOP-abcd 的電腦)。 OPC UA LDS 可至 OPC UA 基金會下載:
 - https://opcfoundation.org/developer-tools/developer-kits-unified-architecture/local-discovery-server-lds/
- 2. 若 HMI 設定為自動取得 IP,則所處的 DHCP 伺服器與 DNS 伺服器需支援對應的功能,才能將

HMI 名稱解析至 IP 地址。若 HMI 為固定 IP,可將 HMI 的名稱改為 HMI 的 IP 位址。例如: HMI 的 IP 為 192.168.1.100,則 HMI 使用的名稱須使用 192.168.1.100 或可使用 0.0.0.0。

- 3. 安裝 LDS 的電腦中,將 OPC UA 伺服器的憑證由目錄 C:\ProgramData\OPC Foundation\UA\pki\rejected\certs (存放不信任的憑證) 複製到目錄 C:\ProgramData\OPC Foundation\UA\pki\trusted\certs (存放信任的憑證)。
- 4. 啟動 OPC UA 客戶端軟體,輸入第一步的電腦名稱 (例如 DESKTOP-abcd) 或 IP 位置,便可快速查閱已註冊的 OPC UA 伺服器。

如 Discovery 功能無法正常使用,請檢查以下項目:

1. 啟動 Windows 工作管理員 » [效能] » [資源監視器] » [網路] »[接聽連接埠] 查看 opcualds.exe 使用的連接埠號。由下圖中可看到,目前這台電腦的 opcualds.exe 使用的連接埠為 4840。

2. 在網頁瀏覽器輸入 HMI 的 IP,並輸入密碼進行登入。至 [OPCUA] 設定頁重新啟動 OPC UA 伺服器。註: 此 OPC UA 頁籤只支援於 cMT Gateway 系列。

42.2.2.4. 標籤設定

設定 描述新增群組

新增群組來管理標籤。

新增標籤

新增在客戶端監控的標籤。在此可選擇該地址是否可 寫入且名稱不可空白。

歷史(HDA)

啟用 OPC UA HDA 功能。

應用結構

使用者可以在設備下添加結構化節點集,前提是設備 為標籤型 PLC 且已有事先定義的結構化資料類型。 當按下 OK 後需選擇若 OPC UA 節點樹中不存在節 點,是否要自行建立。

設定	設定已存在的群組或標籤。
刪除	刪除已存在的群組或標籤。
匯入	匯入先前設定的標籤。可匯入*.xlsx, *. xls, *.csv, *.
	xml 檔案。
匯出	將目前設定的標籤匯出。可匯出為 Excel 格式或是
	XML 格式。

42-34

42.2.2.5. 標籤設定 - 資訊模型模式

設定 新增群組 新增群組 名稱: group 1 節點 ID: ◎ 字串 ⑥ 數值 OK Cancel

新增群組來管理標籤,可自行定義節點 ID。

新增標籤

新增在客戶端監控的標籤,標籤分為資料變數與屬性。資料變數代表設備採集到的資料,其下可以再添加子資料變數與屬性;屬性代表設備的設定參數,其下不能再添加子節點。

標籤設定時可選擇該地址是否可寫入且名稱不可空 白,可自行定義節點 ID。

歷史(HDA)

啟用 OPC UA HDA 功能。

新增物件

新增一個物件型態中的物件且名稱不可空白。

應用結構

使用者可以在設備下添加結構化節點集,前提是設備 為標籤型 PLC 且已有事先定義的結構化資料類型。 當按下 OK 後需選擇若 OPC UA 節點樹中不存在節 點,是否要自行建立。

命名空間

在此可新增或刪除設備提供的物件型態。

滙 入	匯入先前設定的標籤。可匯入*.xlsx, *. xls, *.csv, *.
	xml 檔案。
匯出	將目前設定的標籤匯出。可匯出為 Excel 格式或是
	XML 格式。

- 將工程檔案下載至人機之前,請先確定人機時間及時區設定皆設定正確,避免 OPC UA 客戶 端程式在連線時,因為產生的憑證時間錯誤,造成驗證憑證失敗,導致無法連到 OPC UA 伺 服器。
- 可取消資訊模型模式回復為一般模式,但會喪失所有節點的定義。
- ▶ 請點選此圖示觀看教學影片,請先確定已連上網路線。

裝置統計資料 42.2.3.

裝置的通訊統計資料可以在各別裝置 Statistics 節點下取得,如下圖:

- FailedReads
- FailedWrites
- MaxPendingReads
- MaxPendingWrites
- PendingReads
- PendingWrites
- > Reset
 - SuccessfulReads
 - SuccessfulWrites

各節點意義如下:

節點名稱	意義
FailedReads	失敗的讀取命令個數。當為非零時可能有通訊失敗的問
	題。
FailedWrites	失敗的寫入命令個數。當為非零時可能有通訊失敗的問
	題。
MaxPendingReads	發生過最大的待讀取命令個數。
MaxPendingWrties	發生過最大的待寫入命令個數。
PendingReads	待讀取的命令個數。當數值長間持續在一定數量以上,代
	表通訊模組無法立即消化所有的命令。可能造成 OPC UA
	節點更新變慢。在極端條件下,例如長時間在30以上,
	有可能 OPC UA 節點會一段時間不更新。
PendingWrites	待寫入的命令個數。寫入命令較讀取有較高優先權,若此
	數值長時間過高,將會影響讀取命令。
Reset	重置統計資料。
SuccsessfulReads	成功讀取的命令個數。
SuccsessfulWrites	成功寫入的命令個數。

42.2.4. 支援及限制

以下簡列 OPC UA 伺服器支援的功能及限制。

項目	描述
OPC UA Profile	Standard UA Server Profile 包含但不僅限於
	* Core Server Facet
	* UA-TCP UA-SC UA-Binary
	* SecurityPolicy – None
	* Enhanced DataChange Subscription Server Facet
	* Standard DataChange Subscription Server Facet
	* Embedded DataChange Subscription Server Facet
	* User Token – X509 Certificate Server Facet
	* User Token – User Name Password Server Facet
	* Standard DataChange Subscription Server Facet
	* Embedded DataChange Subscription Server Facet
	相關資訊可參考 Profile Reporting Visualization Tool by OPC
	Foundation
Security policies	None
	Basic128Rsa15
	Basic256
	Basic256Sha256
最大 OPC UA 節點數	15 000
單一節點最大陣列長度	255
讀取快取時間	100ms
	(快取將維持 100ms,之後將重新讀取)
Client Session 數量	100
單一 Client Session 可用的	64
Subscription 個數	
Publishing Interval 最小值	100ms
OPC UA HDA	*最多支援 50 個節點地址。
	*每個節點地址可儲存 10000 筆 HDA 資料。
	節點地址定義?
	每一個開啟 HDA 的節點,視為使用等同其長度的節點地
	址。資料類型如為字串,則為對應的字組數量。
	*當 HMI 記憶體剩餘空間少於 10%時,系統會開始刪除最
	早的 HDA 資料,以儲存新的資料。直到記憶體剩餘空間

	多於 10%時,系統才會停止刪除舊的資料。
效能	
最大讀取吞吐量	內建暫存器 (例如 LW): 27000 words/second (WPS)
(Security: None)	MODBUS RTU@9600bps: 500 WPS
	MODBUS RTU@115200bps: 4000 WPS
	MODBUS TCP/IP: 10000 WPS
	測試環境
	EBPro version: V6.02.02.242
	cMT-G02 OS version: 20180917
	測試時使用陣列節點以優化讀取效率。

■ OPC UA HDA 節點地址範例:

若有 50 個節點 (node1、node2、...、node 50),每個節點皆映射到長度為 1 的 bit 地址,共使用 50 個節點地址。

若是一個節點對應到一個長度為 50 的 16-bit Unsigned 整數陣列(長度設定為 50),則該陣列的元素個別皆為一個節點地址,所以該節點計為使用 50 個節點地址。

若是一個節點為對應到字組數量為50的字串,該節點共使用50個節點地址。

