Node-based and flow-based formulations for the Generalized Vehicle Routing Problem

Jay Shah

Carnegie Mellon University 06-815 Project

December 4, 2017

Problem definition

Solving the GVRP

General formulation Node-based MILP formulation Flow-based MILP formulation

Test examples

New test examples

Computational study

Root node relaxation Model comparision Outcomes

Problem definition

General formulation

General formulation

Variables

$$x_{ij} = \begin{cases} 1 & \text{if arc } (i,j) \text{ is included in the tour of a vehicle,} \\ 0, & \text{otherwise} \end{cases}$$

$$w_{pr} = \begin{cases} 1 & \text{if there is a path from cluster } V_p \text{ to cluster } V_r, \\ 0, & \text{otherwise} \end{cases}$$

Node-based

 u_p : load of a vehicle just after leaving the cluster V_p , $p \neq 0$, $p \in K$ **Flow-based**

 y_{pr} : amount of goods delivered by vehicle just after leaving the cluster V_p if the vehicle goes from the cluster V_p to the cluster V_r

General formulation

MILP formulation ¹

$$\min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

s.t. Cluster degree constraints Cluster connectivity constraints Capacity bounding constraints Subtour elimination constraints $x_{i,j} \in \{0,1\}, \forall (i,j) \in A$

¹Pop, P. C., Kara, I., and Marc, A. H. New mathematical models of the generalized vehicle routing problem and extensions.

```
Solving the GVRP
```

General formulation

General constraints

Constraints that are common between the two formulations:

- Cluster degree constraints:
 - exactly ONE outgoing arc to any other node belonging to other clusters
 - exactly ONE incoming arc to a cluster from any other node belonging to other clusters
 - ▶ m leaving arcs from and at most m entering arcs to the depot $(= m \text{ or } \le m)$
- Cluster connectivity constraints:
 - entering and leaving nodes should be the same for each cluster
 - relation between w_{pr} and x_{ij}

Node-based MILP formulation

Node-based formulation

 u_p : load of a vehicle just after leaving the cluster V_p , $p \neq 0$, $p \in K$

Capacity bounding constraints

$$u_{p} - \sum_{r \in K, r \neq p} q_{r} w_{rp} \ge q_{p}, \ p \ne 0, p \in K$$
 $u_{p} + (Q - q_{p}) w_{0p} \le Q, \ p \ne 0, p \in K$
 $u_{p} + \sum_{r \in K, r \ne p} q_{r} w_{pr} \le Q, \ p \ne 0, p \in K$

Subtour elimination constraints

$$u_p - u_r + Qw_{pr} + (Q - q_p - q_r)w_{rp} \le Q - q_r, \ p \ne r \ne 0; p, r \in K$$

Flow-based MILP formulation

Flow-based formulation

 y_{pr} : amount of goods delivered by vehicle just after leaving the cluster V_p if the vehicle goes from the cluster V_p to the cluster V_r

Capacity bounding constraints

$$y_{rp} \le (Q - q_p)w_{rp}, r \ne p; r, p \in K$$
 $y_{rp} \ge q_r w_{rp}, r \ne p; r, p \in K$
 $\sum_{p=1}^k y_{p0} = \sum_{p=1}^k q_p$

Subtour elimination constraints

$$\sum_{p=0}^{k} y_{rp} - \sum_{p=0}^{k} y_{pr} = q_r, \ r \neq 0; r, p \in K$$

Test examples

²Ghiani, G. and Improta, G. An effcient transformation of the generalized vehicle routing problem. European Journal of Operational Research, 122(1):11 – 17 (2000)

³Kara, I. and Bektas, T. New mathematical models of the generalized vehicle routing problem and extensions.

Proc. of the 5th EURO/INFORMS Joint International Meeting (2003).

└ New test examples

New test examples

- New test examples generated by clustering CVRP datasets from CVRPLIB ⁴
- ► Simple clustering algo: K-means
- Number of clusters such that max 4 customers in a cluster
- Number of vehicles and capacities not maintained

4http://vrp.atd-lab.inf.puc-rio.br/

Implementation

- Node-based and flow-based formulations implemented using CPLEX/C++ API
- ▶ Windows PC with an Intel i7 processor (2.90 GHz)
- Optimal solutions found for GVRP1, GVRP2, P-n50-k10, A-n69-k9 using flow-based formulation
- ▶ P-n76-k5 solved to 2.55% relative gap

Root node relaxation

Table: Deviation between root node relaxation and optimal values

Instance	Best known objective	Formulation	Root node relaxation	% Deviation	
GVRP1	527.813	flow	498.594	5.54	
		node	449.358	14.86	
GVRP2	557.564	flow	533.9	4.24	
		node	545.365	2.19	
P-n50-k10	417.742	flow	384.597	7.93	
		node	338.098	19.07	
A-n69-k9	756.131	flow	692.212	8.45	
		node	560.44	25.88	
P-n76-k5	500.955	flow	450.746	11.27	
		node	399.788	21.30	

Computational study

Root node relaxation

Model comparision

Table: Model comparision for GVRP instances (time limit = 1 hour)

Instance	Formulation	Status	Objective value	Relative gap (%)	Number of constraints
GVRP1	flow	Optimal	527.813	0.01	2108
	node	Feasible	527.813	5.42	1482
GVRP2	flow	Optimal	557.564	0.00	1242
	node	Optimal	557.564	0.00	952
P-n50-k10	flow	Feasible	417.742	0.75	3094
	node	Feasible	417.742	14.69	2132
A-n69-k9	flow	Feasible	756.131	1.25	3385
	node	Feasible	763.045	18.59	2360
P-n76-k5	flow	Feasible	508.194	6.04	4896
	node	Feasible	595.149	31.20	3374

Computational study

[└] Model comparision

- Computational study

└ Outcomes

Outcomes

- New test cases represent more realistic benchmark instances for GVRP because of non-unit customer demands
- Zero-gap solutions found for two out of three new test cases
- Flow-based formulation outperforms node-based
- ► Formulations scale with number of customers rather than number of clusters

Outcomes

Thank you

Outcomes

Key features & assumptions

- ► The total demand of each cluster can be satisfied via any of its nodes
- ▶ The demand of each cluster q_k is the sum of demands of each customer in cluster k
- ► All vehicles are identical i.e. each vehicle has the same capacity *Q*
- ▶ NP-hard because it includes the generalized traveling salesman problem as a special case when m=1 and $Q=\infty$

└Outcomes

Table: Details of GVRPs

Instance	Customers	Clusters	Vehicles	Capacity	Total demand
GVRP1	50	24	4	15	50
GVRP2	60	16	6	15	60
P-n50-k10	49	30	5	200	951
A-n69-k9	68	31	6	150	845
P-n76-k5	75	38	5	280	1364

Computational study

└─ Outcomes

General formulation

Sets

- $V = \{0, 1, 2, ..., n\}$ set of customers
- $K = \{0, 1, 2, ..., k\}$ set of clusters
- ▶ $A = \{(i,j) | i,j \in V, i \neq j\}$ set of arcs (routes).

Parameters

- $ightharpoonup c_{ij}$ is the cost of traveling from node i to node j
- d_i is the demand of customer i
- $ightharpoonup q_r = \sum_{i \in V_r} d_i, \ r \in K$ is the demand of the cluster V_r
- ▶ $M = \{1, ..., m\}$ set of identical vehicles
- Q is the capacity of each vehicle