Laboratório 3

3.1. Primos num intervalo

Faça um programa para imprimir todos os números primos num intervalo entre A e B, sendo A e B números inteiros positivos e menores que 10000. A e B devem ser fornecidos pelo usuário do seu programa.

A entrada consiste em dois números inteiros que representam o intervalo A e B.

Entrada	Saída
50 150	53 59
	 149

3.2. Série e arrays

A sequência de Fibonacci pode ser definida como:

$$fib(0) = 1$$

 $fib(1) = 1$
 $fib(n) = fib(n-1) + fib(n-2)$, para n>2

Implemente um programa que calcule a série de Fibonacci para um determinado n fornecido pelo usuário. Você deve armazenar em um vetor cada elemento da série, de forma que a posição 0 armazene o termo 0, a posição 1 o termo 1, e assim por diante. Seu programa deve receber do usuário um número entre 0 e 1000 e imprimir o termo correspondente ao número recebido. O usuário deve ser capaz de entrar com vários números interativamente em uma mesma execução. O programa termina quando o usuário entrar com um número negativo ou maior que 1000.

Entrada	Saída
5 -1 // valor negativo para finalizar	5
0 2 6	0 1 8
-1 // valor negativo para finalizar	

3.3. Ordem inversa

Faça um programa para ler um vetor X de 10 elementos e gerar um outro vetor com esses 10 elementos em ordem inversa. Exemplo: Se $X=\{3, 5, 2, 8, 4\}$, deverá ser gerado um vetor $Y=\{4, 8, 2, 5, 3\}$. O valor de n é lido pelo teclado.

Cada posição do vetor deve ser impressa em uma linha através do "\n".

Entrada	Saída
1	10
2	9
3	8
4	7
5	6
6	5
7	4
8	3
9	2
10	1

3.4. Matrícula em comum

Faça um programa que leia dois vetores de inteiros representando o número de matrícula de alunos matriculados respectivamente em AEDS 1 e Cálculo 1. Em seguida, o programa deverá imprimir o número de matrícula dos alunos que estão matriculados simultaneamente nestas duas disciplinas (ou seja, calcular a interseção dos dois vetores).

O primeiro valor se refere à quantidade de alunos na disciplina de AEDS 1. Em seguida, são informadas as matrículas de cada aluno na disciplina. A mesma sequência é fornecida para a disciplina de Cálculo 1. Por fim, deve-se imprimir a matrícula dos alunos que estão matriculados em ambas disciplinas.

Entrada	Saída
5 //número de alunos em AEDS 1 123 321 456 654 888 2 //número de alunos em Cálculo 1 123 321	123 321

3.5. Maior da Matriz

Faça um programa que encontre o maior elemento de uma matriz. Inicialmente é fornecido o número de linhas e colunas da matriz. Em seguida, os valores de cada posição da matriz são informados em uma linha separada por espaços simples.

Dica: Para ler a primeira linha desse exemplo, basta executar o comando de leitura com seguinte formato: "scanf("%d %d %d %d, a,b,c,d);", onde os valores de cada posição serão armazenados nas variáveis: a,b,c e d.

Entrada	Saída
3 //qtd linhas 4 //qtd colunas 1 1 8 7 0 8 6 4 5 5 2 4	8

3.6. Matriz Oposta

Chama-se matriz oposta de A a matriz –A cuja soma com A resulta na matriz nula. Exemplo: Dada a matriz:

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$

A oposta de A será

$$-A = \begin{bmatrix} -2 & 3 \\ 1 & -4 \end{bmatrix}$$

pois:

$$\begin{bmatrix} -2 & 3 \\ 1 & -4 \end{bmatrix} + \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Faça um programa que receba como entrada os valores de uma matriz n x m e imprima sua matriz oposta. O formato de entrada é similar ao exercício anterior. **Obs**: Para a saída, deve se imprimir os valores separados por um espaço simples.

Entrada	Saída
2 //qtd linhas 2 //qtd colunas	-1 -1 -1 -1
11	
11	