

STATUS OF THE CLAIMS

1. (currently amended) A system for predicting ictal onset in a subject comprising:
 - a. a first data sensor configured to be positioned on the scalp of a subject near the focal point of ictal onset;
 - b. a second data sensor configured to be positioned on the scalp of said subject, wherein said second data sensor is remote from said first data sensor; and
 - c. a processor configured to analyze data collected at more than one time point, wherein said data for each time point is collected from said first and said second data sensors, wherein said processor performs a nonlinear mathematical manipulation of said data thereby producing ~~first-marginal predictability values and second marginal predictability values~~ for each time point, wherein said processor is configured to determine the difference between said ~~first-marginal predictability values~~ and ~~said second marginal predictability value~~ for each time point, wherein a decreasing difference between said ~~first-marginal predictability values~~ and ~~said second marginal predictability value~~ over time is predictive of ictal onset for said subject.
2. (original) The system of claim 1, wherein said first and said second data sensors comprise electrodes.
3. (original) The system of claim 2, wherein said electrodes record electroencephalogram data from said subject.
4. (currently amended) The system of claim 1, wherein said data is collected at more than one time point is separated by ten minute intervals.
5. (previously presented) The system of claim 1, wherein said more than one time point is three or more time points.

6. (original) The system of claim 1, further comprising a subject warning device configured to receive information from said processor.
7. (original) The system of claim 6, wherein said information comprises information predictive of an ictal onset.
8. (original) The system of claim 6, wherein said subject warning device comprises at least one alarm selected from the group consisting of audible, visual, and tactile alarms.
9. (original) The system of claim 1, wherein said processor further comprises a computer readable memory.
10. (previously presented) The system of claim 1, further comprising an anti-seizure agent administering device in communication with said processor, wherein said anti-seizure agent administering device is configured to administer an anti-seizure agent to the subject.
11. (previously presented) The system of claim 10, wherein said anti-seizure agent administering device is selected from the group consisting of micro pumps and electrical stimuli devices.
12. (currently amended) A method for predicting ictal onset in a subject comprising:
 - a. providing a system configured to predict ictal onset, wherein said system comprises:
 - i. a first data sensor positioned on the scalp of said subject near the focal point of ictal onset;
 - ii. a second data sensor positioned on the scalp of said subject, wherein said second data sensor is remote from said first data sensor; and

iii. a processor configured to analyze data collected at more than one time point, wherein said data for each time point is collected from said first and said second data sensors, wherein said processor performs a nonlinear mathematical manipulation of said data thereby producing ~~first-marginal predictability values and second marginal predictability values~~ for each time point, wherein said processor is configured to determine the difference between said ~~first-marginal predictability values~~ and ~~said second marginal predictability value~~ for each time point;

b. obtaining ~~first-marginal predictability values and said second marginal predictability values~~ for more than one time point from a subject with said system;

c. determining the difference between said ~~first-marginal predictability values~~ and ~~said second marginal predictability value~~ between said time points, wherein a decreasing difference between said ~~first-marginal predictability values~~ and ~~said second marginal predictability value~~ over time is predictive of ictal onset for said subject.

13. (original) The method of claim 12, wherein said first and said second data sensors comprise electrodes.

14. (previously presented) The method of claim 13, wherein said electrodes record electroencephalogram data from said subject.

15. (currently amended) The method of claim 12, wherein said data is collected at more than one time point is separated by ten minute intervals.

16. (previously presented) The method of claim 12, wherein said more than one time point is three or more time points.

17. (original) The method of claim 12, further comprising providing a subject warning device configured to receive information from said processor.
18. (original) The method of claim 17, wherein said information comprises information predictive of an ictal onset.
19. (original) The method of claim 17, wherein said subject warning device comprises at least one alarm selected from the group consisting of audible, visual, and tactile alarms.
20. (previously presented) The method of claim 12, further comprising an anti-seizure agent administering device in communication with said processor, wherein said anti-seizure agent administering device is configured to administer an anti-seizure agent to the subject.
21. (previously presented) The system of claim 20, wherein said anti-seizure agent administering device is selected from the group consisting of micro pumps and electrical stimuli devices.