Luiz Guilherme Morais da Costa Faria

APRENDIZADO DE MÁQUINA

Brasília, DF 20 de setembro de 2025

Luiz Guilherme Morais da Costa Faria

APRENDIZADO DE MÁQUINA

Universidade de Brasília

Orientador: Nome do Orientador/Revisor (se aplicável)

Brasília, DF 20 de setembro de 2025

Sumário

Sumário		3
ı	HISTÓRIA DA IA E DO COMPUTADOR	9
1	UMA BREVE HISTÓRIA DO COMPUTADOR	11
2	UMA BREVE HISTÓRIA DA INTELIGÊNCIA ARTIFICIAL	13
П	CONCEITOS MATEMÁTICOS	15
3	CÁLCULO PARA APRENDIZADO DE MÁQUINA	17
3.1	Funções: A Base do Cálculo	17
3.2	Derivadas Ordinárias	17
3.3	Integrais Simples	17
3.4	Derivadas Parciais	17
4	ÁLGEBRA LINEAR PARA APRENDIZADO DE MÁQUINA	19
4.1	A Unidade Fundamental: Vetores e Espaços Vetoriais	19
4.2	Organizando Dados: Matrizes e Suas Operações	19
4.3	Tensores: A Estrutura de Dados do Deep Learning	19
4.4	Resolvendo Sistemas e Encontrando Propriedades: Autovalores e	
	Autovetores	19
4.5	Decomposição de Matrizes (SVD e PCA)	19
5	PROBABILIDADE E ESTATÍSTICA PARA APRENDIZADO DE	
	MÁQUINA	21
5.1	Medindo a Incerteza: Probabilidade Básica e Condicional	21
5.2	O Teorema de Bayes: Aprendendo com Evidências	21
5.3	Descrevendo os Dados: Estatística Descritiva: Média, mediana,	
	variância, desvio padrão	21
5.4	Variáveis Aleatórias e Distribuições de Probabilidade	21
5.5	A Função de Máxima Verossimilhança (Maximum Likelihood Es-	
	timation - MLE)	21

Ш	PILARES DAS REDES NEURAIS	23
6	O ALGORITMO DA REPROPROPAGAÇÃO E OS OTIMIZADO-	
	RES BASEADOS EM GRADIENTE	25
6.1	O Método do Gradiente Descendente	25
6.1.1	Exemplo Ilustrativo	25
6.1.2	O Método em Si	25
6.1.3	Implentação em Python	25
6.2	A Retropropagação: Aprendendo com os Erros	25
6.3	Otimizadores Baseados em Gradiente	25
6.3.1	Método do Gradiente Estocástico	25
6.3.2	Método do Gradiente com Momentum	25
6.3.3	Nesterov	25
6.3.4	AdaGrad	25
6.3.5	RMSProp	25
6.3.6	Adam	25
6.3.7	Nadam	25
6.4	O Método de Newton: Indo Além do Gradiente	25
7	FUNÇÕES DE ATIVAÇÃO SIGMOIDAIS	27
7.1	Teoremas da Aproximação Universal	27
7.2	Exemplos Ilustrativo	27
7.3	A Sigmoide Logística	27
7.4	Tangente Hiperbólica	27
7.5	Softsign: Uma Sigmoidal Mais Barata	27
7.6	Hard Sigmoid e Hard Tanh: O Sacrifício da Suavidade em Prol	
	do Desempenho	27
7.7	O Desaparecimento de Gradientes	27
7.8	Comparativo de Desempenho das Sigmoidais	27
8	FUNÇÕES DE ATIVAÇÃO RETIFICADORAS	29
8.1	Exemplo Ilustrativo	29
8.2	Rectified Linear Unit e Revolução Retificadora	29
8.3	Dying ReLUs Problem	29
8.4	Corrigindo o Dying ReLUs Problem: As Variantes com Vazamento	29
8.4.1	Leaky ReLU	29
8.4.2	Parametric ReLU	29
8.4.3	Randomized Leaky ReLU	29
8.5	Em Busca da Suavidade	29
8.5.1	Exponential Linear Unit	

8.5.2 8.5.3 8.6 8.7	Scaled Exponential Linear Unit	29 29 29 29
9	FUNÇÕES DE ATIVAÇÃO MODERNAS E OUTRAS FUNÇÕES DE ATIVAÇÃO	31
10 10.1 10.2	FUNÇÕES DE PERDA PARA CLASSIFICAÇÃO BINÁRIA A Intuição da Perda: Medindo o Erro do Modelo Entropia Cruzada Binária (Binary Cross-Entropy): A função de	33 33
10.3 10.4	perda padrão	33 33 33
11 11.1 11.2 11.3	FUNÇÕES DE PERDA PARA CLASSIFICAÇÃO MULTILABEL . Softmax e a Distribuição de Probabilidades	35 35 35
12 12.1	METAHEURÍSTICAS: OTIMIZANDO REDES NEURAIS SEM O GRADIENTE	35 37
12.1 12.2	Algoritmos Evolutivos	37 37
IV	APRENDIZADO DE MÁQUINA CLÁSSICO	39
13 13.1	REGRESSÃO LINEAR E LOGÍSTICA	41 41
14 14.1	ÁRVORES DE DECISÃO E FLORESTAS ALEATÓRIAS Exemplo Ilustrativo	43 43
15 15.1	MÁQUINAS DE VETORES DE SUPORTE	45 45
16 16.1	ENSAMBLE	47 47
17 17.1	DIMENSIONALIDADE	49 49

17.2	A Maldição da Dimensionalidade	49
17.3	Seleção de Características (Feature Selection)	49
17.4	Extração de Características (Feature Extraction)	49
17.4.1	Análise de Componentes Principais (PCA)	49
17.4.2	t-SNE (t-Distributed Stochastic Neighbor Embedding) e UMAP	49
18	CLUSTERIZAÇÃO	51
18.1	Exemplo Ilustrativo	51
18.2	Aprendizado Não Supervisionado: Encontrando Grupos nos Dados	51
18.3	Clusterização Particional: K-Means	51
18.4	Clusterização Hierárquica	51
18.5	Clusterização Baseada em Densidade: DBSCAN	51
V	REDES NEURAIS PROFUNDAS (DNNS)	53
19	PERCEPTRONS MLP - REDES NEURAIS ARTIFICIAIS	55
20	REDES FEEDFORWARD (FFNS)	57
21	REDES DE CRENÇA PROFUNDA (DBNS) E MÁQUINAS DE BOLTZMANN RESTRITAS	59
22	REDES NEURAIS CONVOLUCIONAIS (CNN)	62
22.1	Exemplo Ilustrativo	62
22.2	Camadas Convolucionais: O Bloco Fundamental para as CNNs	62
22.2.1	Implementação em Python	62
22.3	Camadas de Poooling: Reduzindo a Dimensionalidade	62
22.3.1	Max Pooling	62
22.3.2	Avg Pooling	62
22.3.3	Global Abg Pooling	62
22.3.4	Implementação em Python	62
22.4	Camada Flatten: Achatando os Dados	62
22.4.1	Implementação em Python	62
22.5	Criando uma CNN	62
22.6	Detecção de Objetos	62
22.7	Redes Totalmente Convolucionais (FCNs)	62
22.8	You Only Look Once (YOLO)	62
22.9	Algumas Arquiteturas de CNNs	62
22.9.1	LeNet-5	62
22 9 2	AlexNet	62

22.9.3	GoogLeNet	62
22.9.4	VGGNet	62
22.9.5	ResNet	62
22.9.6	Xception	62
22.9.7	SENet	62
23	REDES RESIDUAIS (RESNETS)	63
24	REDES NEURAIS RECORRENTES (RNN)	65
24.1	Exemplo Ilustrativo	65
24.2	Neurônios e Células Recorrentes	65
24.2.1	Implementação em Python	65
24.3	Células de Memória	65
24.3.1	Implementação em Python	65
24.4	Criando uma RNN	65
24.5	O Problema da Memória de Curto Prazo	65
24.5.1	Células LSTM	65
24.5.2	Conexões Peephole	65
24.5.3	Células GRU	65
25	TÉCNICAS PARA MELHORAR O DESEMPENHO DE REDES	
	NEURAIS	67
25.1	Técnicas de Inicialização	67
25.2	Reguralização L1 e L2	67
25.3	Normalização	67
25.3.1	Normalização de Camadas	67
25.3.2	Normalização de Batch	67
25.4	Cliping do Gradiente	67
25.5	Dropout: Menos Neurônios Mais Aprendizado	67
25.6	Data Augmentation	67
26	TRANSFORMERS	69
26.1	As Limitações das RNNs: O Gargalo Sequencial	69
26.2	A Ideia Central: Self-Attention (Query, Key, Value)	69
26.3	Escalando a Atenção: Multi-Head Attention	69
26.4	A Arquitetura Completa: O Bloco Transformer	69
26.5	Entendendo a Posição: Codificação Posicional	69
26.6	As Três Grandes Arquiteturas	69
26.6.1	Encoder-Only (Ex: BERT): Para tarefas de entendimento	69
26.6.2	Decoder-Only (Ex: GPT): Para tarefas de geração	69

8 SUMÁRIO

26.6.3 26.7	Encoder-Decoder (Ex: T5): Para tarefas de tradução/sumarização Além do Texto: Vision Transformers (ViT)	
27	REDES ADVERSÁRIAS GENERATIVAS (GANS)	71
28	MIXTURE OF EXPERTS (MOE)	73
29	MODELOS DE DIFUSÃO	75
30	REDES NEURAIS DE GRAFOS (GNNS)	77
VI	APÊNDICES	79

Parte I História da IA e do Computador

1 Uma Breve História do Computador

O texto do seu capítulo começa aqui...

2 Uma Breve História da Inteligência Artificial

O texto do seu capítulo começa aqui...

Parte II Conceitos Matemáticos

3 Cálculo para Aprendizado de Máquina

- 3.1 Funções: A Base do Cálculo
- 3.2 Derivadas Ordinárias
- 3.3 Integrais Simples
- 3.4 Derivadas Parciais

- 4 Álgebra Linear para Aprendizado de Máquina
- 4.1 A Unidade Fundamental: Vetores e Espaços Vetoriais
- 4.2 Organizando Dados: Matrizes e Suas Operações
- 4.3 Tensores: A Estrutura de Dados do Deep Learning
- 4.4 Resolvendo Sistemas e Encontrando Propriedades: Autovalores e Autovetores
- 4.5 Decomposição de Matrizes (SVD e PCA)

- 5 Probabilidade e Estatística para Aprendizado de Máquina
- 5.1 Medindo a Incerteza: Probabilidade Básica e Condicional
- 5.2 O Teorema de Bayes: Aprendendo com Evidências
- 5.3 Descrevendo os Dados: Estatística Descritiva: Média, mediana, variância, desvio padrão
- 5.4 Variáveis Aleatórias e Distribuições de Probabilidade
- 5.5 A Função de Máxima Verossimilhança (Maximum Likelihood Estimation MLE)

Parte III

Pilares das Redes Neurais

6 O Algoritmo da Repropropagação e Os Otimizadores Baseados em Gradiente

- 6.1 O Método do Gradiente Descendente
- 6.1.1 Exemplo Ilustrativo
- 6.1.2 O Método em Si
- 6.1.3 Implentação em Python
- 6.2 A Retropropagação: Aprendendo com os Erros
- 6.3 Otimizadores Baseados em Gradiente
- 6.3.1 Método do Gradiente Estocástico
- 6.3.2 Método do Gradiente com Momentum
- 6.3.3 Nesterov
- 6.3.4 AdaGrad
- 6.3.5 RMSProp
- 6.3.6 Adam
- 6.3.7 Nadam
- 6.4 O Método de Newton: Indo Além do Gradiente

7 Funções de Ativação Sigmoidais

- 7.1 Teoremas da Aproximação Universal
- 7.2 Exemplos Ilustrativo
- 7.3 A Sigmoide Logística
- 7.4 Tangente Hiperbólica
- 7.5 Softsign: Uma Sigmoidal Mais Barata
- 7.6 Hard Sigmoid e Hard Tanh: O Sacrifício da Suavidade em Prol do Desempenho
- 7.7 O Desaparecimento de Gradientes
- 7.8 Comparativo de Desempenho das Sigmoidais

8 Funções de Ativação Retificadoras

- 8.1 Exemplo Ilustrativo
- 8.2 Rectified Linear Unit e Revolução Retificadora
- 8.3 Dying ReLUs Problem
- 8.4 Corrigindo o Dying ReLUs Problem: As Variantes com Vazamento
- 8.4.1 Leaky ReLU
- 8.4.2 Parametric ReLU
- 8.4.3 Randomized Leaky ReLU
- 8.5 Em Busca da Suavidade
- 8.5.1 Exponential Linear Unit
- 8.5.2 Scaled Exponential Linear Unit
- 8.5.3 Noisy ReLU
- 8.6 O Problema dos Gradientes Explosivos
- 8.7 Comparativo de Desempenho das Funções Retificadoras

9 Funções de Ativação Modernas e Outras Funções de Ativação

O texto do seu capítulo começa aqui...

- 10 Funções de Perda para Classificação Binária
- 10.1 A Intuição da Perda: Medindo o Erro do Modelo
- 10.2 Entropia Cruzada Binária (Binary Cross-Entropy): A função de perda padrão
- 10.3 Perda Hinge (Hinge Loss)
- 10.4 Comparativo Visual e Prático

- 11 Funções de Perda para Classificação Multilabel
- 11.1 Softmax e a Distribuição de Probabilidades
- 11.2 Entropia Cruzada Categórica (Categorical Cross-Entropy)
- 11.3 Entropia Cruzada Categórica Esparsa (Sparse Categorical Cross-Entropy)

12 Metaheurísticas: Otimizando Redes Neurais Sem o Gradiente

- 12.1 Algoritmos Evolutivos
- 12.2 Inteligência de Enxame

Parte IV

Aprendizado de Máquina Clássico

- 13 Regressão Linear e Logística
- 13.1 Exemplo Ilustrativo

- 14 Árvores de Decisão e Florestas Aleatórias
- 14.1 Exemplo Ilustrativo

15 Máquinas de Vetores de Suporte

15.1 Exemplo Ilustrativo

16 Ensamble

16.1 Exemplo Ilustrativo

17 Dimensionalidade

- 17.1 Exemplo Ilustrativo
- 17.2 A Maldição da Dimensionalidade
- 17.3 Seleção de Características (Feature Selection)
- 17.4 Extração de Características (Feature Extraction)
- 17.4.1 Análise de Componentes Principais (PCA)
- 17.4.2 t-SNE (t-Distributed Stochastic Neighbor Embedding) e UMAP

18 Clusterização

- 18.1 Exemplo Ilustrativo
- 18.2 Aprendizado Não Supervisionado: Encontrando Grupos nos Dados
- 18.3 Clusterização Particional: K-Means
- 18.4 Clusterização Hierárquica
- 18.5 Clusterização Baseada em Densidade: DBSCAN

Parte V

Redes Neurais Profundas (DNNs)

19 Perceptrons MLP - Redes Neurais Artificiais

20 Redes FeedForward (FFNs)

21 Redes de Crença Profunda (DBNs) e Máquinas de Boltzmann Restritas

22 Redes Neurais Convolucionais (CNN)

- 22.1 Exemplo Ilustrativo
- 22.2 Camadas Convolucionais: O Bloco Fundamental para as CNNs
- 22.2.1 Implementação em Python
- 22.3 Camadas de Poooling: Reduzindo a Dimensionalidade
- 22.3.1 Max Pooling
- 22.3.2 Avg Pooling
- 22.3.3 Global Abg Pooling
- 22.3.4 Implementação em Python
- 22.4 Camada Flatten: Achatando os Dados
- 22.4.1 Implementação em Python
- 22.5 Criando uma CNN
- 22.6 Detecção de Objetos
- 22.7 Redes Totalmente Convolucionais (FCNs)
- 22.8 You Only Look Once (YOLO)
- 22.9 Algumas Arquiteturas de CNNs
- 22.9.1 LeNet-5
- 22.9.2 AlexNet
- 22.9.3 GoogLeNet
- 22.9.4 VGGNet
- 22.9.5 ResNet
- 22.0.6 Vasation

23 Redes Residuais (ResNets)

24 Redes Neurais Recorrentes (RNN)

- 24.1 Exemplo Ilustrativo
- 24.2 Neurônios e Células Recorrentes
- 24.2.1 Implementação em Python
- 24.3 Células de Memória
- 24.3.1 Implementação em Python
- 24.4 Criando uma RNN
- 24.5 O Problema da Memória de Curto Prazo
- 24.5.1 Células LSTM
- 24.5.2 Conexões Peephole
- 24.5.3 Células GRU

25 Técnicas para Melhorar o Desempenho de Redes Neurais

- 25.1 Técnicas de Inicialização
- 25.2 Reguralização L1 e L2
- 25.3 Normalização
- 25.3.1 Normalização de Camadas
- 25.3.2 Normalização de Batch
- 25.4 Cliping do Gradiente
- 25.5 Dropout: Menos Neurônios Mais Aprendizado
- 25.6 Data Augmentation

26 Transformers

26.1

26.2 A Ideia Central: Self-Attention (Query, Key, Value)
26.3 Escalando a Atenção: Multi-Head Attention
26.4 A Arquitetura Completa: O Bloco Transformer
26.5 Entendendo a Posição: Codificação Posicional

As Limitações das RNNs: O Gargalo Sequencial

- 26.6 As Três Grandes Arquiteturas
- 26.6.1 Encoder-Only (Ex: BERT): Para tarefas de entendimento
- 26.6.2 Decoder-Only (Ex: GPT): Para tarefas de geração
- 26.6.3 Encoder-Decoder (Ex: T5): Para tarefas de tradução/sumarização
- 26.7 Além do Texto: Vision Transformers (ViT)

27 Redes Adversárias Generativas (GANs)

28 Mixture of Experts (MoE)

29 Modelos de Difusão

30 Redes Neurais de Grafos (GNNs)

Parte VI

Apêndices