Qubit on a Unit Circle

QBronze Summary

n-qubit Quantum State
$$|\psi\rangle = \sum_{i=0}^{2^{n-1}} x_i |i\rangle$$
, $\sum_{i=0}^{2^{n-1}} x_i^2 = 1$, $x_i \in \mathbb{R}$

Unitary Evolution
$$U|\psi\rangle = |\varphi\rangle = \sum_{i=0}^{2^{n}-1} \beta_{i}|i\rangle$$
, $\sum_{i=0}^{2^{n}-1} \beta_{i}^{2} = 1$, $\beta_{i} \in \mathbb{R}$ $u^{T}U = 1$

Measurement Probability to observe particular outcome i on measuring $|\psi\rangle$ is given by $\vec{x_i}$

Qubit on a Unit Circle

Preparing a Bell State

Entanglement vs Perfect Correlation

$$\hat{V} = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{array}{c} \text{perfect} \\ \text{classical} \\ \text{correlation} \end{array}$$

$$|\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
Correlation
Entanglement

.

Toffoli Gate

Circuit Evaluation

$$\begin{aligned} & | o > (\times 10) + | S | 1 >) \left(| \delta | | o > + | \delta | 1 > \right) \\ & | H \otimes 1 \otimes 1 \\ & | + > (\times 10) + | S | 1 >) \left(| \delta | | o > + | \delta | 1 > \right) \\ & = \frac{1}{\sqrt{2}} \left(| \times 100 \rangle + | S | 10 \rangle + | \times 100 \rangle \left(| \delta | | o > + | \delta | 1 > \right) \\ & + \frac{15}{\sqrt{2}} \left(| \times 100 \rangle + | \delta | 1 > \right) \\ & + \frac{15}{\sqrt{2}} \left(| \times 100 \rangle + | \delta | 1 > \right) \\ & + \frac{15}{\sqrt{2}} \left(| \times 100 \rangle + | \delta | 1 > \right) \\ & + \frac{15}{\sqrt{2}} \left(| \times 100 \rangle + | \delta | 1 > \right) \\ & + \frac{15}{\sqrt{2}} \left(| \times 100 \rangle + | \delta | 1 > \right) \\ & + \frac{1}{\sqrt{2}} \left(| S | | o | > - | \delta | | 1 > \right) \left(| \delta | | + | \delta | | > \right) \\ & + \frac{1}{2} \left(| S | | o | > - | \delta | | | > \right) \left(| \delta | | + | \delta | | > \right) \\ & + \frac{1}{2} \left(| S | | o | > - | \delta | | | > \right) \left(| \delta | | + | \delta | | > \right) \\ & = \frac{1}{2} \left[2 \times | \delta | | | | | + | \delta | + | \delta$$

Circuit Evaluation

What is probability for first qubit to be in state 11>?

$$\frac{1}{2}\left(b^{2}\left(\delta-\gamma^{2}\right)^{2}\right)$$

Given that first qubit is measured $\gamma|0\rangle + \delta|1\rangle$ in state 11>, what is the probability distribution for second qubit?

with prob. 1, 2rd qubit is in state 11>.

Does there exist a choice for x, B, X & 8 for which first qubit is measured in state 11> with probability 1?

$$\chi = 0, \beta = 1, \delta = \frac{1}{\sqrt{2}}, \beta = -\frac{1}{\sqrt{2}}$$

$$\frac{1}{2} \left[2 \times \sqrt{1000} + 2 \times 81001 \right) + B(\sqrt{1+8}) |010\rangle + B(\sqrt{1+8}) |010\rangle + B(\sqrt{1-8}) |110\rangle + B(\sqrt{1-8}) |110\rangle + B(\sqrt{1+8}) |110\rangle + B(\sqrt{1+$$