PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

WO97/23349 (51) 国際特許分類6 (11) 国際公開番号 A1 B32B 15/08 1997年7月3日(03.07.97) (43) 国際公開日 PCT/JP96/03741 (74) 代理人 (21) 国際出願番号 弁理士 太田明男(OHTA, Akio) 1996年12月20日(20.12.96) 〒100 東京都千代田区霞が関一丁目4番3号 (22) 国際出願日 東洋鋼鈑株式会社内 Tokyo, (JP) (30) 優先権データ AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, 1995年12月22日(22.12.95) (81) 指定国 特願平7/349446 CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, KE, KG, KR,

(71) 出願人(米国を除くすべての指定国について) 東洋鋼鈑株式会社(TOYO KOHAN CO, LTD)[JP/JP] 〒100 東京都千代田区霞が関一丁目4番3号 Tokyo, (JP) (72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

林 芳夫(HAYASHI, Yoshio)[JP/JP]

〒744 山口県下松市大字末武中53番地の5 Yamaguchi, (JP)

田熊幸治(TAKUMA, Koji)[JP/JP]

〒744 山口県下松市大字末武下1200番地 Yamaguchi, (JP)

杉本義之(SUGIMOTO, Yoshiyuki)[JP/JP]

〒744 山口県光市虹が丘3丁目31-14番地 Yamaguchi, (JP)

岡田秀俊(OKADA, Hidetoshi)[JP/JP] 〒744 山口県下松市大字西豊井1926番地の1 Yamaguchi, (JP)

小役丸泰宏(KOYAKUMARU, Yasuhiro)[JP/JP]

〒744 山口県下松市大字生野屋940番地の7 Yamaguchi, (JP)

国際調査報告書

NE, SN, TD, TG).

添付公開書類

KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA,

UG, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユー

(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,

ラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許

METHOD OF MANUFACTURING VINYL CHLORIDE STEEL PLATES HAVING FILM OF HIGH HARDNESS (54) Title:

高硬度な皮膜を有する塩ビ鋼板の製造方法 (54)発明の名称

(57) Abstract

A method of manufacturing by a plastisol method vinyl chloride steel plates having excellent properties, i.e. a high film hardness, a high impression resistance and a high bleed resistance. To obtain such a vinyl chloride steel plate, plastisol using a small amount of plasticizer and having a low viscosity which is produced by compounding a special plasticizer with a polyvinyl chloride resin having special particle diameter distribution is applied to the surface of a steel plate via a layer of a bonding agent.

(57) 要約

塗膜硬度、耐圧痕性、耐ブリード性などの特性に優れる塩ビ鋼板をプラスチゾル法で製造する方法を提供する。このため本発明では、鋼板上に接着剤層を介して、特定の粒子径分布を有するポリ塩化ビニル樹脂に対して特定な可塑剤を配合した低可塑剤量でかつ低粘度なプラスチゾルを塗装する。

- 1 -

明細書

高硬度な皮膜を有する塩ビ鋼板の製造方法

5 技術分野

本発明は、高硬度で耐圧痕性、耐ブリード性(可塑剤)にすぐれ、かつ、加工性、意匠性にすぐれた塩ビ鋼板の製造方法に関する。

背景技術

15

20

25

10 塩ビ鋼板は、加工性、耐食性、耐候性及び意匠性などの特性に優れており、建 材、電気機器、車両、家具などの広い分野に適用されている。

塩ビ鋼板の製造方法は、プラスチゾル法とフィルム積層法に大別される。プラスチゾル法では、ポリ塩化ビニル樹脂、可塑剤、安定剤、顔料などからなるプラスチゾルを接着剤層を介して鋼板上に所定の厚みに塗装した後、加熱によって塗膜をゲル化した後、皮膜にエンボス加工を行って製造される。

しかし、プラスチゾル法で製造された塩ビ鋼板は一般的に塗膜が軟質であり、フィルム積層法で製造された塩ビ鋼板に比べ、塗膜の硬度、耐圧痕性、耐ブリード性などの特性が劣る。プラスチゾル法においては、ポリ塩化ビニル樹脂、可塑剤、安定剤、顔料、希釈剤などからなるプラスチゾルを鋼板上にロールコーター等の方法で塗装されるのでプラスチゾル粘度を一定の範囲にする必要がある。そこで、通常はポリ塩化ビニル樹脂100重量部に対して可塑剤を40~60重量部配合したプラスチゾルが用いられており、フィルム積層法に比べて、塗膜中の可塑剤が多くなって塗膜が軟質になる。この結果、製品が積載されて塗膜表面に大きな圧力がかかった時、エンボス模様が押しつぶされ易くなって耐圧痕性に問題があり、また、塗膜中の可塑剤が表面に移行し易くなって耐ブリード性に問題がある。

これらのプラスチゾル法の欠点を改良する方法として、ポリ塩化ビニル樹脂あるいは可塑剤の選択ならびに希釈剤の使用などの面から低可塑剤で塗装可能な粘度を有するプラスチゾルの検討がなされてきたが、特性の改善には限界があった。

そこで、プラスチゾル中に液状の重合性可塑剤を配合し、ゲル化時の加熱によって硬化する方法、あるいは硬化後さらに紫外線を照射して塗膜を硬化する方法 (特公昭44-31818、特公昭50-22580、特公昭57-9593など)が提案されている。また、プラスチゾル中にアクリル系重合体粉末を配合する方法及びアクリル系重合体粉末と加熱硬化あるいは紫外線硬化可能なモノマー、オリゴマーを配合する方法(特公平5-31467、特公平4-76747など)が提案されている。しかし、これらの方法はいずれもポリ塩化ビニル樹脂に比べて数倍も高価な配合剤を用いており、経済的には大きな問題がある。

以上記載したように、プラスチゾル法で製造された塩ビ鋼板の塗膜は一般に軟質であり種々な欠点を有している。また、これらの問題点を解決する方法として提案されている方法は、いずれの方法もポリ塩化ビニル樹脂に比べて高価な配合剤を用いる方法であり、経済的に問題がある。本発明は、プラスチゾル法で製造される塩ビ鋼板の上記の欠点を解決しようとするものであり、塗膜の硬度、耐圧痕性、耐ブリード性などの特性に優れ、かつ経済性にすぐれる塩ビ鋼板を製造する方法を提供する。また、本発明は、プラスチゾルの低可塑剤量での低粘度化をはかった。

発明の開示

10

15

25

このような課題に対し、本発明は鋼板表面に公知の接着剤を塗布し加熱により 20 焼き付けを行った後、特定の粒子径分布を有するポリ塩化ビニル樹脂粉末と特定 な可塑剤をポリ塩化ビニル樹脂粉末100重量部に対して20~40重量部配合 し、さらに公知の顔料、安定剤を配合した低可塑剤量で低粘度なプラスチゾルを 被覆することを特徴とする。

すなわち本発明の塩ビ鋼板の製造方法は、95重量%以上が粒子径 $0.5\sim40$ μ mであり、かつ $15\sim40$ 重量%が $0.5\sim3$ μ m未満で $1\sim3$ μ mにピークを有し、かつ $55\sim80$ 重量%が $3\sim40$ μ mで $8\sim15$ μ mにピークを有する 2 ピークタイプのポリ塩化ビニル樹脂粉末A100重量部に対して、可塑剤として炭素数 $7\sim9$ のアルコール成分から成るフタル酸エステル $5\sim25$ 重量部と炭素数 $8\sim10$ のアルコール成分から成るアジピン酸エステル $5\sim15$ 重量部でか

つ総量として20~40重量部配合し、さらに公知の顔料、安定剤を配合したプラスチゾルを被覆することを特徴とする。

また、95重量%以上が粒子径 $0.5\sim40\mu$ mであり、かつ $15\sim40$ 重量%が $0.5\sim3\mu$ m未満で $1\sim3\mu$ mにピークを有し、かつ $55\sim80$ 重量%が $3\sim40\mu$ mで $8\sim15\mu$ mにピークを有する2ピークタイプのポリ塩化ビニル樹脂粉末 $A60\sim95$ 重量部と90重量%以上が粒子径 $10\sim60\mu$ mであり、かつ $20\sim40\mu$ mにピークを有するポリ塩化ビニル樹脂粉末 $B5\sim40$ 重量部でかつAとBの合計100重量部に対して、可塑剤として炭素数 $7\sim9$ のアルコール成分から成るフタル酸エステル $5\sim25$ 重量部と炭素数 $8\sim10$ のアルコール成分から成るアジピン酸エステル $5\sim15$ 重量部でかつ総量として $20\sim40$ 重量部配合し、さらに公知の顔料、安定剤を配合したプラスチゾルを被覆することを特徴とする。

図面の簡単な説明

25

15 図1は、従来の1ピークタイプのポリ塩化ビニル樹脂粉末の粒子径分布図である。

図2は、本発明の方法による2ピークタイプのポリ塩化ビニル樹脂粉末Aの粒子径分布図の一例である。

図3は、本発明の方法による粗粒のポリ塩化ビニル樹脂粉末Bの粒子径分布図 20 の一例である。

発明を実施するための最良の形態

本発明の方法において、鋼板として、冷延鋼板及び冷延鋼板に亜鉛めっき、クロムめっき、すずめっき、ニッケルめっき、アルミニウムめっき、鉛めっきあるいはこれらの金属の合金めっきならびに複層めっきを行った鋼板あるいはさらにこれらのめっき鋼板の上層にクロメート処理、リン酸塩処理等の化成処理を施した鋼板を使用することが可能である。また、その目的に応じてステンレス鋼板、アルミニウム板を選択することもできる。

本発明の方法で、鋼板と塩ビ塗膜の接着のために、アクリル樹脂、ポリエステ

25

ル樹脂、ウレタン樹脂、エポキシ樹脂あるいはアクリルゴムなどを主成分とする公知の接着剤を用いることができる。鋼板表面に、皮膜厚 $3\sim10~\mu$ mになるように被覆した後、 $160\sim250$ で1分間加熱することによって焼き付けを行い、続いてプラスチゾルを塗布する。

5 本発明にあたり、塗布されるプラスチゾルの組成及び性状と得られた塩ビ鋼板の特性について詳細に試験を行った結果、通常のプラスチゾル法で製造された塩ビ鋼板の塗膜の硬度、耐圧痕性、耐ブリード性などの特性がフィルム積層法に比べて劣る最も大きな原因は、塗膜中の可塑剤量の差にあることがわかった。フィルム積層法で用いるフィルムは一般にカレンダー加工法で製造されており、フィルム中の可塑剤量をほぼ任意の割合にすることが可能であって、塩ビ鋼板用途ではポリ塩化ビニル樹脂100重量部に対して25~40重量部配合されている。これに対して、プラスチゾル法の場合、プラスチゾルを鋼板上にロールコーターなどで所定の厚みに塗装する必要があるため、プラスチゾルの粘度を一定以下にする必要があり、通常、ポリ塩化ビニル樹脂100重量部に対して可塑剤を40~60重量部配合されている。この可塑剤量の差が塗膜の特性に大きく影響している。

そこで、本発明は低可塑剤量で低粘度なプラスチゾルを確立するためにポリ塩 化ビニル樹脂粉末の粒子径分布及び可塑剤の選択に着目して検討を重ねてきた結果、塗膜の硬度、耐圧痕性、耐ブリード性などの特性に優れ、かつ経済性にすぐれるプラスチゾルを見い出した。

本発明のプラスチゾルに使用されるポリ塩化ビニル樹脂粉末Aは乳化重合法あるいはマイクロサスペンジョン法で製造された平均重合度500~2,500のものである。また、塩化ビニルモノマーとエチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、アルキルビニルエーテル、塩化ビニリデン、ジエチルフマレートあるいはメタアクリル酸エステルを共重合してからなるポリ塩化ビニル系樹脂粉末を用いることができる。

一般にプラスチゾル法で塩ビ鋼板を製造する場合、図1に示す平均粒子径1~2μmで1ピークの粒子径分布のものが使用されている。そこで、低可塑剤量で低粘度を達成するためポリ塩化ビニル樹脂粉末の粒子径について鋭意検討を行っ

20

25

た結果、低可塑剤量で低粘度なプラスチゾルを得るにはプラスチゾル中でのポリ 塩化ビニル樹脂の充てん密度を上げる必要があり、このためには図2に一例とし て示す2ピークタイプの粒子径分布が好ましいことが判明した。

本発明のポリ塩化ビニル樹脂粉末Aの粒子径は、 $95重量%以上が粒子径0.5 \sim 40 \mu m$ であり、かつ $15 \sim 40 \pm 2\%$ が $0.5 \sim 3 \mu m$ 未満で $1 \sim 3 \mu m$ にピークを有し、かつ $55 \sim 80 \pm 2\%$ が $3 \sim 40 \mu m$ で $8 \sim 15 \mu m$ にピークを有する 2 ピークタイプの粒子径を有することが好ましい。粒子径 $40 \mu m$ 以上の粉末が $5 \pm 2\%$ を越えるとプラスチゾル塗装表面の仕上がりが悪くなって好ましくない。粒子径 $0.5 \sim 3 \mu m$ の粉末が $15 \pm 2\%$ 未満で、粒子径 $3 \sim 40 \mu m$ の粉末が $80 \pm 2\%$ を越えるとプラスチゾルのゲル化性能が低下して塗膜の強度が低下するので好ましくない。また、粒子径 $0.5 \sim 3 \mu m$ の粉末が $40 \pm 2\%$ 以上で、粒子径 $3 \sim 40 \mu m$ の粉末が $55 \pm 2\%$ 未満になるとプラスチゾル粘

また、可塑剤量20~40重量部のプラスチゾルの低粘度化についてさらに検 討を行った結果、図3に一例として示すような粗粒なポリ塩化ビニル樹脂粉末B を配合するとさらに低粘度になり、塗装性が著しく向上することが判明した。

度が高くなり、塗装性が悪くなるので好ましくない。

本発明のプラスチゾルに使用されるポリ塩化ビニル樹脂粉末Bはサスペンジョン法で製造された平均重合度500~2,000のものである。また、塩化ビニルモノマーとエチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、アルキルビニルエーテル、塩化ビニリデン、ジエチルフマレートあるいはメタアクリル酸エステルを共重合してからなるポリ塩化ビニル系樹脂粉末を用いることができる。

ポリ塩化ビニル樹脂粉末Bの粒子径は $10\sim60\mu$ mであり、かつ $20\sim40\mu$ mにピークを有するものが好ましい。また、粒子径 $15\sim40\mu$ mのものが70重量%以上になるとさらに好ましい。粒子径 10μ m未満の粉末が10重量%を越えるとプラスチゾルの粘度を下げる効果が失われるので好ましくない。また、粒子径 60μ m以上のものが10重量%を越えるとプラスチゾル塗装表面の仕上がりが悪くなって好ましくない。

本発明のプラスチゾル中のポリ塩化ビニル樹脂AとBの割合は、ポリ塩化ビニ

10

ル樹脂AとBの合計量100重量部とした場合、ポリ塩化ビニル樹脂A60~95重量部でポリ塩化ビニル樹脂B5~40重量部が好ましい。ポリ塩化ビニル樹脂Aが60重量部未満でポリ塩化ビニル樹脂Bが40重量部を越えるとゲル化後の塗膜強度が低下するので好ましくない。また、ポリ塩化ビニル樹脂Aが95重量部以上でポリ塩化ビニル樹脂Bが5重量部未満になるとポリ塩化ビニル樹脂Bを配合する効果が見られないので好ましくない。

次に、本発明の方法においてプラスチゾルに配合する可塑剤について検討を行った結果、公知のフタル酸エステル、トリメリット酸エステル、アジピン酸エステルなどをはじめとして各種脂肪族エステル、各種フォスフェートなどの一次可塑剤あるいは二次可塑剤を用いることができるが、プラスチゾル粘度、粘度の経時安定性、ゲル化性能及び塗膜の硬度、耐圧痕性、加工性、耐ブリード性などの特性面より炭素数7~9のアルコール成分から成るフタル酸エステルと炭素数8~10のアルコール成分から成るアジピン酸エステルの組み合わせが好ましいことが分かった。

15 その配合比率については、ポリ塩化ビニル樹脂粉末100重量部に対して、可 塑剤として炭素数7~9のアルコール成分から成るフタル酸エステル5~25重 量部と炭素数8~10のアルコール成分から成るアジピン酸エステル5~15重 量部でかつ合計が20~40重量部になるように配合するのが好ましい。

炭素数 7~9のアルコール成分からなるフタル酸エステルが5重量部未満で炭素数8~10のアルコール成分から成るアジピン酸エステルが25重量部以上になると塗膜の耐ブリード性が低下するので好ましくない。また、炭素数7~9のフタル酸エステルが25重量部以上で炭素数8~10のアルコール成分から成るアジピン酸エステルが5重量部未満になると低温での衝撃加工性が低下するので好ましくない。さらに、可塑剤の合計量が20重量部未満になるとプラスチゾルの粘度が高くなって塗装性が低下するので好ましくない。また、可塑剤の合計量が40重量部以上になると塗膜の硬度が低下して耐圧痕性が低下するので好ましくない。

可塑剤として炭素数 7 未満のアルコール成分からなるフタル酸エステルを用いるとプラスチゾルの粘度の経時安定性が低下及び塗膜の硬度が軟質になるので好

15

20

25

ましくない。また、炭素数10以上のアルコール成分からなるフタル酸エステル を用いるとプラスチゾルの粘度が高くなり、塗装性が低下するので好ましくない。

また、可塑剤として炭素数 7 未満のアルコール成分からなるアジピン酸エステルを用いると塗膜の耐ブリート性が低下するので好ましくない。また、炭素数 1 0 以上のアルコール成分からなるフタル酸エステルを用いるとプラスチゾルの粘度が高くなり、塗装性が低下するので好ましくない。

また、本発明の方法において、プラスチゾル中に公知の顔料、安定剤、各種添加剤ならびに希釈剤を配合することができる。希釈剤についてはポリ塩化ビニル樹脂100重量部に対して、10重量部未満が望ましい。10重量部以上になると塗膜に膨れが発生するので望ましくない。

本発明では、前述した特徴を持つプラスチゾルを接着剤を介して鋼板表面に $30\sim500\,\mu\,\mathrm{m}$ の厚さに塗布した後、 $210\,\mathrm{C}$ で 1 分間の加熱を行うことによって該塗膜をゲル化した直後に所定のエンボス加工を施して塩ビ鋼板を製造する。

プラスチゾルの塗装はナイフコーター、ロールコーター、バーコーターいずれ の方法でも塗装可能である。

本発明のプラスチゾルの物性及び塩ビ鋼板の特性は、下記の方法で評価した。

(1) プラスチゾルの粘度

東京計器(株)製のBM型粘度計により、ローターNo.4、回転数6rpmの条件で 測定した。

(2) 塗装性及び塗膜外観の評価

プラスチゾルをナイフコーターで鋼板上に塗布した後、加熱によりゲル化した エンボス加工前の塗膜の表面を目視により評価した。

〔評価基準〕 ○:良好(表面平滑、すじ状あるいはぶつ等の欠陥なし)

△:やや良好(わずかにすじ状あるいはぶつ等の欠陥あり)

×:不良(全面にすじ状あるいはぶつ等の欠陥あり)

(3) 塗膜の硬度

(株)島津製作所製のデユロメーター(タイプA)を用いて温度25℃で測定した。

(4) 低温衝擊加工性

デユポン衝撃加工試験機(ポンチ径:1/2インチ 、荷重:1kg、落下高

さ: $50\,\mathrm{cm}$)を用い、温度 $0\,\mathrm{C}$ において試験した後、塗膜の割れの発生を評価した。

(5) 耐圧痕性

塩ビ鋼板を $1.5 \text{ cm} \times 1.5 \text{ cm}$ のサイズに切断した後、数枚を積み重ねて、その上から荷重を 3 kg/cm^2 加えた状態で4.0 C、1.0 日間経時した。その後試験板を取り出して塗膜表面のエンボス状態を目視により評価した。

〔評価基準〕 ○:良好(エンボスの異常なし)

△:やや良好(わずかにエンボスが押しつぶされている)

×:不良(全面にわたってエンボスが押しつぶされている)

10 (6) 耐ブリード性

塩ビ鋼板を $15\,\mathrm{cm} \times 15\,\mathrm{cm}$ のサイズに切断した後、塩ビ鋼板と塩ビ鋼板の間に2軸延伸ポリエステルフィルムをはさんで数枚を積み重ねて、その上から荷重を $10\,\mathrm{kg/cm^2}$ 加えた状態で $50\,\mathrm{C}$ 、 $10\,\mathrm{Hl}$ 間経時した。その後試験板を取り出して塗膜面と接しているポリエステルフィルム面を目視により観察した。

15 〔評価基準〕 〇:良好(ブリードが全く認められない)

△:やや良好(わずかに液状物質が認められる)

×:不良(全面にわたって液状物質が認められる)

実施例

25

20 以下、実施例により本発明を説明する。

してゲル化して塩ビ鋼板を作製した。

実施例1~8

めっき量20g/m²のクロメート処理を施された板厚0.5mmの電気亜鉛めっき鋼板の上に公知のアクリル/エポキシ樹脂系の接着剤を乾燥皮膜厚5μm 塗布した後、ガスオーブンにて230℃で焼き付けを行い冷却した表面に表1~ 2に示す配合のプラスチゾルを塗布し、続いてガスオーブンにて210℃に加熱

主格例		プラスチブルの配合組成		
1	ポリ植化ドニル樹脂	可塑剤	安定剂	鄭料
-	ポリ塩化ビニル樹脂 A 100重量部 粒子徭分布; 0.5~3μm:15重量% 3~40μm :85重量% ピーク位置; 1.0μm,15μm 平均重合度; 1,600	 ジ2.チルヘキシルフタレート 5重量部(DDP: アルコール成分の炭素数8) ゾ2.チルヘキシルアジペート 15重量部(DOA: アルコール成分の炭素数8) 	有機すず系 3 重量部	カネンプラック 1.5 重量部
8	ポリ塩化ビニル樹脂 A 100重量部 粒子径分布; 0.5~3 μm; 20重量% 3~40 μm; 80重量% ピーク位置; 1.8 μm, 12 μm 平均重合度; 1,600	ジヘプ・ fn79レート 5重量部 (DHP: 7ルコール広分の炭素数7) ジ 2 t fnペキッルフルート 1 0 重量部 (DOP: 7ルコール広分の炭素数8) デイソ/ニルフタルート 5 重量部 (DI NP: 7ルコール広分の炭素数9) デイソ/ニルブッペート 5 重量部 (DI NA: 7ルコール広分の炭素数9) デイソノニルブッペート 5 重量部 (DI NA: 7ルコール広分の炭素数9)	Ba-2n系 2 重量部	カーボ ソブ・ラック 1.5 重量部
က	ポリ塩化ビニル樹脂 A 100重畳部 粒子径分布;0.5~3μm:40重畳% 3~40μm:60重畳% ピーク位置;2.5μm,8μm 平均重合度;1,600	100重量部 ジ2エチルヘキシルフタレート 10重量部 40重量% (DOP:7ルコール成分の炭素数8) 60重量% ジイソニルフタレート 10重量部 (DINP:7ルコール成分の炭素数9) ジ2エチルヘキシルアシペート 15重量部 (DOA:7ルコール成分の炭素数8)	Ba-2n系 2 <u>重量</u> 部	酸化チタン 1 4 <u>重量</u> 部 酸化鉄 0.3 重量部

[表2]

		プラスチゾルの配合組成		
实施例	ポリ塩化ビニル樹脂	可塑剂	安定剂	柳
4	ポリ塩化ビニル樹脂 A 100重量部 粒子径分布; 0.5~3μm:20重量% 3~40μm:80重量% ピーク位置; 1.8μm, 12μm 平均重合度; 1,600	 ジ214/ヘイシルフタレート 5重量部(DDP: アルコール成分の炭素数8) ジイソニルフタレート 2 0重量部(DINP: アルコール成分の炭素数9) ジイソデッルアジペート 1 5重量部(DIDA: アルュール成分の炭素数10) 	P b 系 3 重量部	酸化チタン 22重駐部 ベンガラ 0.1重量部 カーギンブラウ 0.01重量部
ည	ポリ塩化ビニル樹脂 A 100重量部 粒子径分布; 0.5~3 μm:20重量% 3~40 μm :80重量% ピーク位置; 1.8 μm, 12 μm 平均重合度; 1,600	 ジ214ヘイシルフタレート 20重量部(DDP:7ルコール成分の炭素数8) ゾインデルイアジペート 10重量部(DIDA:7ルュール成分の炭素数10) 	Ba-2n系 2重量部	カーボンブラック 1.5重量部
Q	ポリ塩化ビニル樹脂 A 60重量部 粒子径分布; 0.5~3 μm:20重量% 3~40μm:80重量% マク位置; 1.8μm, 12μm 平均重合度; 1,600 ポリ塩化ビニル樹脂B 40重量部 粒子径分布; 10~50μm:95重量% ピーク位置; 20μm	が21チルヘキシルフタレート 5 <u>重量</u> 部 (DOP:アルコール成分の炭素数8) ジイソ/ニルフタレート 2 0 <u>重</u> 量部 (DINP:アルコール成分の炭素数9) ジイソデシルアジペート 1 5重量部 (DIDA:アルコール成分の炭素数10)	P b 系 3 重量部	酸化チタン 2 2 重量部 ベンガラ 0. 1 重量部 ルギップラック 0. 0 1 重量部

- 10 -

[表3]

		プラスチブルの配合組成		
実施劉	ポリ塩化ビニル樹脂	可塑剤	安定剂	颠科
7	ポリ塩化ビニル樹脂A 80重量部 粒子径分布; 0.5~3 μm: 20重量% 3~40 μm : 80重量% ピーク位置; 1.8 μm, 12 μm 平均重合度; 1,600 20重量部 粒子径分布; 15~50 μm: 95重量% ピーク位置; 36 μm 平均重合度; 1,000	8 0 重量部	Ba-Zn系 2重量部	カーボ ソブ デッカ 1.5 重量部
∞	ポリ塩化ビニル樹脂A 95重量部 粒子径分布; 0.5~3 μm: 40重量% 3~40μm: 60重量% ピーク位置; 2.5μm,8μm 平均重合度; 1,600 ポリ塩化ビニル樹脂B 5重量部 粒子径分布; 15~50μm: 95重量% ピーク位置; 36μm	9 5 重量部	Ba-2n系 2重量部	酸化チタン 14重量部 酸化鉄 0.3重量部

- 11 -

本発明の実施例 $1\sim8$ の方法により作製された塩ビ鋼板は、表4に示すようにプラスチゾルの粘度が低く塗装性が良好であり、得られた塗膜は高硬度でかつ低温衝撃加工性、耐圧痕性ならびに耐ブリード性に優れていた。

	耐ブリード性	0	0	0	0	0	0	0	0
塗膜の特性	耐圧痕性	0	0	0	0	0	0	0	0
	低溫衝擊加工性	0	0	0	0	0	0	0	0
	塗膜の硬度	9 6	9 5	6 3	9.3	9 5	93	9 5	93
塗装性及び	変限の外観	0	0	0	0	0	0	0	0
塗膜厚 塗	(m m)	8 0	100	150	200	150	200	150	150
プラスチゾル	の指度 (cps)	8, 500	7,000	6, 500	6,500	6,000	4,300	4,000	5,800
	光龍剣		2	က	4	2	9	2	∞

表 4

比較例1~11

10

20

めっき量20g/m²のクロメート処理を施された板厚0.5mmの電気亜鉛めっき鋼板の上に公知のアクリル/エポキシ樹脂系の接着剤を乾燥皮膜厚 5μ m 塗布した後、ガスオーブンにて230℃で焼き付けを行い冷却した表面に表 $5\sim7$ に示す配合のプラスチゾルを塗布し、続いてガスオーブンにて210℃に加熱してゲル化して塩ビ鋼板を作製した。

比較例1~7の方法の試験結果を表8に示す。

比較例1は、従来の1ピークタイプのポリ塩化ビニル樹脂粉末100重量部に 対してを用いて可塑剤量30重量部配合した場合であり、得られたプラスチゾル の粘度が著しく高く、塗装が出来なかった。

比較例2は、従来の1ピークタイプのポリ塩化ビニル樹脂粉末100重量部に対してを用いて可塑剤量50重量部配合した場合であり、得られたプラスチゾルの粘度は低く塗装性は良好であったが、塗膜硬度が低く耐圧痕性、耐ブリード性に劣った。

15 比較例 3 は、粒子径 0. $5\sim3~\mu$ mの比率が高すぎる 2 ピークタイプのポリ塩化ビニル樹脂粉末を用いた場合であり、可塑剤量 3 0 重量部の配合ではプラスチゾルの粘度が高く、塗装性、耐圧痕性が劣った。

比較例 4 は、粒子径 $3\sim40~\mu$ mの比率が 90% の 2 ピークタイプのポリ塩化ビニル樹脂粉末を用いた場合であり、プラスチゾルの粘度は低いが、低温衝撃加工性、耐圧痕性が劣った。

比較例 5 は、粒子径 0. $5\sim3~\mu$ mの比率が 2~0 重量% でピーク位置が 0. $8~\mu$ mの 2 ピークタイプのポリ塩化ビニル樹脂粉末を用いた場合であり、プラスチゾルの粘度が高く、塗装性、耐圧痕性が劣った。

比較例 6 は、粒子径 3 ~ 4 0 μmの比率が 8 0 重量%でピーク位置が 1 8 μm 25 の 2 ピークタイプのポリ塩化ビニル樹脂粉末を用いた場合であり、プラスチゾル の粘度は低く塗装性は良好であるが、低温衝撃加工性が劣った。

比較例 7 は、粒子径 3 \sim 4 0 μ mの比率が 8 0 重量%でピーク位置が 5 μ m と 小さい 2 ピークタイプのポリ塩化ビニル樹脂粉末を用いた場合であり、プラスチ ゾルの粘度が高く、塗装性、耐圧痕性が劣った。

比較例8は、本発明の2ピークタイプのポリ塩化ビニル樹脂粉末Aに対してアルコール成分の炭素数がそれぞれ4の可塑剤であるDBP(ジイソブチルフタレート)及びDIBA(ジイソブチルアジペート)の合計量が30重量部になるように配合した場合であり、プラスチゾルの粘度は低く塗装性には優れているが、塗膜硬度が低く、耐圧痕性、耐ブリード性が劣った。

比較例9は、本発明の2ピークタイプのポリ塩化ビニル樹脂粉末Aに対してアルコール成分の炭素数が10の可塑剤であるDIDP(ジイソデシルフタレート)及びDIDA(ジイソブチルアジペート)の合計量が30重量部になるように配合した場合であり、プラスチゾルの粘度が高く塗装性が不良であり、耐圧痕性が劣った。

比較例10は、本発明の2ピークタイプのポリ塩化ビニル樹脂粉末A50重量部と本発明のポリ塩化ビニル樹脂粉末B50重量部配合した場合であり、得られたプラスチゾルの粘度は低かったが塗装性が不良であり、低温衝撃加工性、耐圧痕性が劣った。

15 比較例11は、本発明の2ピークタイプのポリ塩化ビニル樹脂粉末Aに対して 粒子径80~120 μ mが90重量%でピーク位置が100 μ mの粗粒ポリ塩化 ビニル樹脂粉末を配合した場合であり、得られたプラスチゾルの粘度は低かった が塗装性が不良であり、低温衝撃加工性、耐圧痕性が劣った。

[表5]

		プラスチゾルの配合組成		
上本が例	よう植んアーンを脂	可塑剂	安定剤	颜料
1		100重量部 ジ21和ペキルパリート 20重量部 95重量% (DOP:7nコール成分の炭素数8) ジイソデルアゾペート 10重量部 (DIDA:7nコール成分の炭素数10)	Ba-Zn系 2重量部	カーボンブラック 1.5重量部
2	35	ジ21f/ヘキンルフチレート 4 0 重量部 (DOP:7ルンユール成分の炭素数8)ジイソデンルアジペート 1 0 重量部 (DIDA:7ルンユール成分の炭素数10)	Ba-2n系 2重量部	カーポンプラック 1.5重量部
က	ポリ塩化ビニル樹脂 100重量部 粒子径分布:0.5~3μm:70重量% 3~40μm :30重晶% ピーク位置:1.5μm,13μm 平均重合度:1.600	ジ2エチルヘキシルアチレート 2 0 重量部 (DOP:アルコール成分の炭素数8) ジイソデンルアジペート 1 0 重量部 (DIDA:アルコール成分の炭素数10)	Ba-Zn系 2 <u>重</u> 品部	カーボンブラック 1.5重最格
4	ポリ塩化ビニル樹脂 100重量部 粒子径分布; 0.5~3 μm: 10重量% 3~4 0 μm : 90重量% ピーク位置; 1.5 μm, 13 μm 平均重合度; 1,600	ジ254wキシルフタレート 20重畳部 (DOP:7ルコール成分の炭素数8)ゾインデシルアジペート 10重量部 (DIDA:7ルコール成分の炭素数10)	Ba-2n系 2重量部	カーボンブラック 1.5重畳部

表 6】

		プラスチゾルの配合組成		
比較例	ポリ塩化ビニル樹脂	可塑剤	安定剂	城
5	ポリ塩化ビニル樹脂 100重量部 粒子径分布;0.5~3μm:20重量% 3~40μm :80重量% ピーク位置;0.8μm,13μm 平均重合度;1,600	100重量部 ジ254v4キシハフタレート 20重距部20重量% (DOP:7vコーw広分の炭素数8) 80重量% ジイゲデッアンペート 10重量部μm (DIDA:7vコーw広分の炭素数10)	Ba-2n系 2重量部	カーボンブ・ラック 1.5 近最部
9	ポリ塩化ビニル樹脂 100重量部 粒子径分布; 0.5~3μm:20重量% 3~40μm :80重量% ピーク位置; 1.5μm,18μm 平均重合度; 1,600	ジ2エチルヘキンルアタレート 2 0 重量部 (DOP:アルコール成分の炭素数8) ジイソデンルアジペート 1 0 重量部 (DIDA:アルコール成分の炭素数10)	Ba-Zn系 2重量部	カーボンブラック 1.5重量部
7	ポリ塩化ビニル樹脂 100重量部 粒子径分布; 0.5~3μm:20重量% 3~40μm :80重量% ピーク位置; 1.5μm,5μm 平均重合度; 1,600	** 2 x f h v t y n y p v - h	Ba-Zn系 2重量部	カーボ・ソブ・ラック 1.5 重量部
œ	ポリ塩化ビニル樹脂 A 100重量部 粒子径分布; 0.5~3 μm:20重量% 3~40μm:80重量% ピーク位置; 1.5μm,13μm 平均重合度; 1,600	ジイソブチルフタレート 2 0 重量部 (DBP:アルコール成分の炭素数4) ジイッブチルアジペート 1 0 重量部 (DIBA:アルコール成分の炭素数4)	Ba-2n系 2重量部	カーボ ンブ テック 1.5 重量部

- 16 -

		プラスチブルの配合組成		
上校图	より植化ガーラ数脳	可塑剂	安定剤	頭料
6	100重显部 20重型% 80重量% 3μm	*/イアデシルフタレート 2 0 <u>面</u> 昆部 (DIDP:アルコール成分の炭素数10) ジ2イソデシルアジペート 1 0 重量部 (DIDA:アルコール成分の炭素数10)	Ba-Zn系 2 <u>u</u> 最部	カーギンブ・テック 1.5 <u>近</u> 駐部
10	ポリ塩化ビニル樹脂A 50重量部 粒子径分布; 0.5~3 μm: 40重量% 3~40 μm: 60重量% ピーク位置; 1.5 μm, 13 μm 平均重合度; 1,600 ポリ塩化ビニル樹脂B 50重量部 粒子径分布: 15~50 μm: 95重量% ピーク位置; 36 μm 平均重合度; 1,000	ジ 21f/ヘイトルフクレート 2 0 重量部 (DOP: アルフール成分の炭素数8) ジ イソデ ルルアジペート 1 0 重量部 (DIDA: アルフール成分の炭素数10)	Ba-2n系 2重量部	カーボ <i>ンブラック</i> 1.5重量部
	ポリ塩化ビニル樹脂A 80重量部 が子径分布;0.5~3μm:20重量% 3~40μm:80重量% がピーク位置;1.5μm,13μm 平均重合度;1,600 20重量部 粒子径分布;80~120μm:90重量% ドウ位置;100μm	 ジヘプ・キルプケート 5重量部(DIIP:7ルコール広分の炭素数1) ジ2.1キルキジルプケート 5重量部(DOP:7ルコール広分の炭素数8) ジイソ/ニルブケート 5重量部(DINP:7ルコール広分の炭素数9) ジイソ/ニルアジペート 5重量部(DINP:7ルコール広分の炭素数9) ジイソ/ニルアジペート 5重量部(DINA:7ルコール広分の炭素数9) 	有機 寸 系 2 重量部	酸化チタン 10重量部 酸化鉄 0.8重量部

- 17 -

(表象)

	耐ブリード性	I	×	0	0	0	0	0
塗膜の特性	耐圧痕性	l	×	◁	⊲	×	0	◁
	低溫衝擊加工性	l	0	0	×	0	×	0
	塗膜の硬度	l	8 0	9 4	9 4	9 4	94	9 4
塗装性及び	<u> </u>	× 塗装できず	0	⊲	0	×	0	abla
塗膜厚	(m m)	I	200	150	150	150	150	150
プラスチゾル	の粘度 (cps)	10万以上	8,000	37,000	5, 200	48,000	4,600	43,000
	比較例	-	2	က	4	2	9	2

[表9]

	耐ブリード性	×	0	0	0
金膜の特性	耐圧痕性	◁	◁	◁	×
2-1	塗膜の硬度 低温衝撃加工性	0	0	×	×
	塗膜の硬度	8 8	9 4	9.4	9.4
验装性及び	塗膜の外観	0	⊲	×	×
徐顺原	(mπ)	150	200	150	200
プラスチゾル 塗販厚	の粘度 (cps)	4,600 150	20,000 200	3,600 150	3,000 200
	比較例	∞	6	10	1 1

産業上の利用可能性

本発明の方法により、塗膜が高硬度でかつ低温衝撃加工性、耐圧痕性及び耐ブ リード性などの特性に優れる塩ビ鋼板を効率よく安価に製造することができる。

請求の範囲

- 1. 95重量%以上が粒子径 $0.5\sim40\mu$ mであり、かつ $15\sim40$ 重量%が $0.5\sim3\mu$ m未満で $1\sim3\mu$ mにピークを有し、かつ $55\sim80$ 重量%が $3\sim40\mu$ mで $8\sim15\mu$ mにピークを有する2ピークタイプのポリ塩化ビニル樹脂粉末A100重量部に対して、可塑剤として炭素数 $7\sim9$ のアルコール成分から成るフタル酸エステル $5\sim25$ 重量部と炭素数 $8\sim10$ のアルコール成分から成るアジピン酸エステル $5\sim15$ 重量部でかつ総量として $20\sim40$ 重量部配合し、さらに公知の顔料、安定剤を配合したプラスチゾルを被覆することを特徴とする高硬度な皮膜を有する塩ビ鋼板の製造方法。
- 2. 95重量%以上が粒子径0. $5\sim40\,\mu$ mであり、かつ $15\sim40$ 重量%が0. $5\sim3\,\mu$ m未満で $1\sim3\,\mu$ mにピークを有し、かつ $55\sim80$ 重量%が3 $\sim40\,\mu$ mで $8\sim15\,\mu$ mにピークを有する2ピークタイプのポリ塩化ビニル樹脂粉末 $A60\sim95$ 重量部と90重量%以上が粒子径 $10\sim60\,\mu$ mであり、かつ $20\sim40\,\mu$ mにピークを有するポリ塩化ビニル樹脂粉末 $B5\sim40$ 重量部でかつAとBの合計 100重量部に対して、可塑剤として炭素数 $7\sim9$ のアルコール成分から成るアジピン酸エステル $5\sim25$ 重量部でかつ総量として $20\sim40$ 重量部合し、さらに公知の顔料、安定剤を配合したプラスチゾルを被覆することを特徴とする高硬度な皮膜を有する塩ビ鋼板の製造方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03741

		101/0	150,05741				
	SSIFICATION OF SUBJECT MATTER						
Int	. Cl ⁶ B32B15/08						
According	to International Patent Classification (IPC) or to both	national classification and IPC					
B. FIEI	LDS SEARCHED						
	ocumentation searched (classification system followed by	y classification symbols)					
Int	. C1 ⁶ B32B15/08						
	tion searched other than minimum documentation to the c suyo Shinan Koho	extent that such documents are included in th 1926 - 1996	e fields searched				
	ai Jitsuyo Shinan Koho	1971 - 1996					
Electronic d	ata base consulted during the international search (name	of data base and, where practicable, search t	erms used)				
			· · · · · · · · · · · · · · · · · · ·				
0 000			***************************************				
	JMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
A	JP, 5-50029, A (Aisin Chem:		1 - 2				
	March 2, 1993 (02. 03. 93)	(Family: none)					
A	JP, 5-65450, A (Honda Motor	Co., Ltd., Cemedine	1 - 2				
	Co., Ltd.),						
	March 19, 1993 (19. 03. 93) (Family: none)						
A	JP, 7-304923, A (Sekisui Ch	nemical Co., Ltd.),	1 - 2				
	November 21, 1995 (21. 11.	95) (Family: none)	_ _				
•							
L Furthe	er documents are listed in the continuation of Box C.	See patent family annex.					
•	categories of cited documents: int defining the general state of the art which is not considered	"T" later document published after the inter date and not in conflict with the applic	ation but cited to understand				
to be of	particular relevance	the principle of theory underlying the					
"L" docume	locument but published on or after the international filing date int which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered when the document is taken along	ered to involve an inventive				
	establish the publication date of another citation or other reason (as specified)	"Y" document of particular relevance; the					
"O" docume means	ent referring to an oral disclosure, use, exhibition or other	combined with one or more other such	documents, such combination				
	ent published prior to the international filing date but later than rity date claimed	being obvious to a person skilled in the "&" document member of the same patent					
	•						
	actual completion of the international search ch 19, 1997 (19. 03. 97)	Date of mailing of the international sear	_				
har	15, 155/ (15. U3. 5/)	April 1, 1997 (01	. 04. 9/)				
Name and m	nailing address of the ISA/	Authorized officer					
Japa	anese Patent Office						
Facsimile N	о.	Telephone No.					

	国際調査報告	国際出願番号 PCT/JP9	6/03741
A. 発明の	翼する分野の分類(国際特許分類(IPC))		
Int.	C 1 6 B 3 2 B 1 5 / 0 8		
	ラった分野		
	最小限資料(国際特許分類(IPC))		
Int.	C1 B 3 2 B 1 5 / 0 8		
最小限資料以外	朴の資料で調査を行った分野に含まれるもの		
	支用新案公報 1926-1996年 公開実用新案公報 1971-1996年		
国際調査で使用	用した電子データベース (データベースの名称、	調査に使用した用語)	
C. 関連する	ると認められる文献		
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連すると		請求の範囲の番号
A	JP, 5-50029, A (アイシン化工株 03.93)、 (ファミリーなし)	式会社)2.3月.1993(02.	1-2
A	JP, 5-65450, A (本田技研工業株 3月, 1993 (19, 03, 93)、(ファ		1 – 2
A	JP, 7-304923, A (積水化学工業 21.11.95)、(ファミリーなし)	株式会社)21.11月.1995(1 – 2
			•
□ C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	川紙を参照。
* 引用文献の	Dカテゴリー 車のある文献ではなく、一般的技術水準を示す	の日の後に公表された文献 「T」国際出願日又は優先日後に公表	された立動がなって
もの	至りのる人間(ではなく、)のは3次4075年をパーク	て出願と矛盾するものではなく	
1	状ではあるが、国際出願日以後に公表されたも	論の理解のために引用するもの	standard of the or or or or or
」 の 「tileを失機≫	主張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、 の新規性又は進歩性がないと考	
	こ故に疑惑を促起する文献又は他の文献の光行くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	
	理由を付す)	上の文献との、当業者にとって	自明である組合せに
	よる開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	よって進歩性がないと考えられ 「&」同一パテントファミリー文献	るもの
国際調査を完		国際調査報告の発送日	
		ACCORDANCE TO SHE IN SHEET IN	

01.04.97

印し

電話番号 03-3581-1101 内線 3431

特許庁審査官(権限のある職員)

鴨野 研一

4F 7148

日本国特許庁(ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号

国際調査機関の名称及びあて先

19.03.97