Historia y Enfoques de la Inteligencia Artificial

Facultad de Ciencias Físico Matemáticas

Luis A. Gutiérrez-Rodríguez

28 de agosto de 2025

Contenido general

- Objetivos
- 2 Línea del tiempo de la IA
 - Tabla comparativa
- Hitos y personalidades
 - Tabla comparativa
- Evolución de paradigmas
 - Tabla comparativa
- 5 Era moderna: IA híbrida y grandes modelos
 - Tabla comparativa
- 6 Actividades

Objetivos de la clase

Obietivos

- Reconocer la evolución histórica de la inteligencia artificial.
- Identificar los principales hitos, personalidades y paradigmas de la IA.
- Comprender la transición hacia la era moderna de IA híbrida y grandes modelos.

Línea del tiempo de la IA

- 1950: Alan Turing publica Computing Machinery and Intelligence.
- 1956: Conferencia de Dartmouth nacimiento formal de la IA.
- 1960s–70s: Sistemas expertos y auge inicial.
- 1980s: Retropropagación y redes neuronales.
- 1997: Deep Blue derrota a Kasparov.
- 2010+: Aprendizaje profundo, Big Data y LLMs.

Imagen: Línea del tiempo

A.I. TIMELINE

WINTER

Etapas históricas de la IA

Periodo	Características	Limitaciones
1950s-70s	Lógica simbólica	Escalabilidad
1980s	Redes neuronales	Capacidad computacional
1990s	Sistemas expertos y juegos	Dominio restringido
2010s+	Deep Learning y LLMs	Alto costo energético

Principales hitos y personalidades

- Alan Turing bases teóricas.
- John McCarthy acuñó el término "IA".
- Marvin Minsky pionero de agentes y robótica.
- Geoffrey Hinton redes neuronales profundas.
- Yoshua Bengio y Yann LeCun aprendizaje profundo moderno.

bjetivos Línea del tiempo de la IA Hitos y personalidades o ooooooo Evolución de paradigmas Era moderna: IA híbrida y grandes modelos Actividades ooooooo ooo

Imágenes de pioneros

Alan Turing

John McCarthy

Imágenes de pioneros

Marvin Minsky

Geoffrey Hinton

bjetivos Línea del tiempo de la IA Hitos y personalidades ooooooo Evolución de paradigmas Era moderna: IA híbrida y grandes modelos Actividades ooooooo ooo

Imágenes de pioneros

Yoshua Bengio

Yann LeCun

Personalidades y contribuciones

Investigador	Contribución clave
Turing	Test de Turing, teoría computacional
McCarthy	LISP, Dartmouth Conference
Minsky	IA simbólica y cognitiva
Hinton	Backpropagation, Deep Learning
LeCun	CNNs para visión por computadora

Evolución de paradigmas

- Simbólico: reglas lógicas, sistemas expertos.
- Estadístico: probabilidades, inferencia bayesiana.
- Conexionista: redes neuronales inspiradas en el cerebro.

Paradigmas de la IA

Estadístico

Conexionista

Evolución de paradigmas - Detalle

Simbólico

- Representación mediante reglas lógicas y conocimiento explícito.
- Usado en sistemas expertos en medicina (ej. MYCIN).
- Ventaja: interpretabilidad y trazabilidad.

Estadístico

- Basado en probabilidad e inferencia estadística.
- Ejemplo: filtros bayesianos para clasificación de spam.
- Ventaja: manejo de incertidumbre y datos incompletos.

Evolución de paradigmas - Detalle

Conexionista

- Inspirado en el cerebro: nodos y conexiones.
- Ejemplo: perceptrón (Rosenblatt, 1958).
- Uso actual: reconocimiento de voz, visión por computadora.

Reflexión

Hoy en día muchos sistemas combinan características de los tres paradigmas.

Ejemplo práctico: Paradigmas

Ejemplo

Un sistema de diagnóstico médico puede:

- Usar **simbólico**: reglas de "si... entonces".
- Usar estadístico: probabilidad de enfermedad según síntomas.
- Usar conexionista: red neuronal entrenada con historiales médicos.

Paradigmas de la IA

Paradigma	Ventajas	Desventajas	Ejemplo
Simbólico	Explicable	Poco flexible	Prolog
Estadístico	Basado en datos	Requiere dataset	Naive Bayes
Conexionista	Aprendizaje automático	Caja negra	Redes neuronales

IA híbrida y grandes modelos

- Combinación de enfoques simbólicos, estadísticos y conexionistas.
- Modelos fundacionales (LLMs) como GPT, BERT, LLaMA.
- Aplicaciones: NLP, visión, agentes autónomos.
- Retos: energía, sesgos, ética y regulación.

Imágenes: IA moderna

IA híbrida: el nuevo enfoque

- Busca aprovechar lo mejor de cada paradigma.
- Ejemplo: sistemas de razonamiento simbólico + deep learning.
- Aplicaciones: asistentes virtuales, robótica, análisis multimodal.

Grandes modelos de lenguaje (LLMs)

- Modelos entrenados con billones de parámetros.
- Ejemplos: GPT, BERT, LLaMA.
- Capacidades: generación de texto, traducción, razonamiento básico.
- Retos: sesgos, falta de explicabilidad, consumo energético.

Ejemplo práctico: LLMs

Chatbots inteligentes

- Usan deep learning para entender el lenguaje natural.
- Incorporan razonamiento simbólico para consultas complejas.
- Se apoyan en **métodos estadísticos** para análisis de datos.

Ejercicio de reflexión

Actividad

Compara un modelo clásico simbólico (ej. Prolog) con un modelo moderno (ej. GPT).

- ¿Qué ventajas ofrece cada uno?
- ¿Qué limitaciones presentan en aplicaciones reales?

IA moderna

Modelo	Ventajas	Limitaciones	Ejemplo
IA simbólica	Explicabilidad	Escasa flexibilidad	Ontologías
IA conexionista	Aprendizaje masivo	Caja negra	CNNs, RNNs
IA híbrida	Sinergia enfoques	Complejidad	LLMs

Actividades por subtema

- Línea del tiempo: Elabora tu propia línea del tiempo con 5 hitos adicionales.
- Hitos y personalidades: Investiga un pionero poco conocido y expón su contribución.
- Paradigmas: Analiza un caso práctico y determina a qué paradigma pertenece.
- Era moderna: Reflexiona sobre los riesgos y beneficios de los grandes modelos actuales.

Actividades

