MATH 243 Statistical Inference

Midterm Examination - Fall 1999/2000

1. Let $X_1, \ldots X_n$ be a random sample from N(0,1). Define

$$\bar{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$$
 and $\bar{X}_{n-k} = \frac{1}{n-k} \sum_{i=k+1}^n X_i$

Answer the following:

- (a) What is the distribution of $\frac{1}{2}(\bar{X}_k + \bar{X}_{n-k})$?
- (b) What is the distribution of $k\bar{X}_k^2 + (n-k)\bar{X}_{n-k}^2$?
- (c) What is the distribution of X_1^2/X_2^2 ?
- 2. Let X_1 , X_2 , X_3 be a random sample from a distribution of the continuous type having p.d.f. f(x) = 2x, 0 < x < 1, zero elsewhere. Compute the probability that the smallest of these X_i exceeds the median of the distribution.
- 3. Let X be a single observation from the Bernoulli density $f(x;\theta) = \theta^x (1-\theta)^{1-x} I_{\{0,1\}}(x)$, where $0 < \theta < 1$. Let $t_1(X) = X$ and $t_2(X) = \frac{1}{2}$.
 - (a) Are both $t_1(X)$ and $t_2(X)$ unbiased for θ ? Is either?
 - (b) Compare the mean-squared error of $t_1(X)$ with that of $t_2(X)$.

4. Let X_1, \ldots, X_n be a random sample from the geometric density

$$f(x;\theta) = \theta(1-\theta)^x I_{\{0,1,\dots\}}(x)$$

where $0 < \theta < 1$.

- (a) Find a method of moments estimator of θ .
- (b) Find a maximum-likelihood estimator of θ .
- (c) Find a maximum-likelihood estimator of the mean.
- (d) Find the Cramer-Rao lower bound for 1θ .