Logistic Regression On Amazon Fine Food Reviews

This is my 5th assignment.

Objective:

- 1. Apply the Logistic Regression algorithm on BOW,TF-IDF,Word2Vec, TF-IDF Word2
- 2. Apply the both GridSearch and RandomSearch cross validation
- 3. Evaluate different metrics such as precision ,recall,f1-score and plot the c onfusion matrix
- 4. Show how sparsity increase as lambda increase or C decreases with L1 regular izer
- 5. Use Pertubation to check for the multicolinerity of features

In [1]:

```
#Loading important Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sqlite3 as sql
import seaborn as sns
from time import time
import random
import gensim
import warnings
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision_score
from sklearn.metrics import f1 score
from sklearn.metrics import recall score
warnings.filterwarnings("ignore")
%matplotlib inline
from sklearn.model_selection import GridSearchCV
from sklearn.model selection import RandomizedSearchCV
from sklearn.linear model import LogisticRegression
from sklearn.model_selection import TimeSeriesSplit
from sklearn.feature extraction.text import TfidfVectorizer
```

```
E:\PYTHON\lib\site-packages\gensim\utils.py:1209: UserWarning: detected Wi
ndows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize serial")
```

In [2]:

filtered_data=pd.read_csv('Reviews.csv')#displaying
filtered_data.head()

Out[2]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	Helpfu
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1
3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3
4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0

In [3]:

```
#For setting positive/negative
filtered_data=pd.read_csv('Reviews.csv')
def partition(x):
    if x < 3:
        return 'negative'
    return 'positive'
#changing reviews with score less than 3 to be positive and vice-versa
actualScore = filtered_data['Score']
#pdb.set_trace()
positiveNegative = actualScore.map(partition)
#pdb.set_trace()
filtered_data['Score'] = positiveNegative
#print(filtered_data.head())#print 5 row
print(filtered_data.shape) #looking at the number of attributes and size of the data
filtered_data.head()</pre>
```

(568454, 10)

Out[3]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	Helpfu
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1
3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3
4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0

In [4]:

#Sorting data according to ProductId in ascending order
sorted_data=filtered_data.sort_values('ProductId', axis=0, ascending=True,)

In [5]:

sorted_data=sorted_data[sorted_data.HelpfulnessNumerator<=sorted_data.HelpfulnessDenomi
nator]
print(sorted_data.shape)</pre>

(568452, 10)

In [6]:

```
#De-duplication of entries
final=sorted_data.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep=
'first', inplace=False)
print(final.shape)#shape
print((final['Id'].size*1.0)/(filtered_data['Id'].size*1.0)*100)#percentage
#get to know how much posive negative there in table
final['Score'].value_counts()
```

(393931, 10) 69.29865917031105

Out[6]:

positive 336824 negative 57107

Name: Score, dtype: int64

In [7]:

```
###Sorting as we want according to time series

n_samples = 150000
df_sample = final.sample(n_samples)

df_sample.sort_values('Time',inplace=True)
df_sample.head(5)
#print(df_sample.shape)
```

Out[7]:

	ld	ProductId	Userld	ProfileName	HelpfulnessNumerato
150500	150501	0006641040	AJ46FKXOVC7NR	Nicholas A Mesiano	2
451855	451856	B00004CXX9	AIUWLEQ1ADEG5	Elizabeth Medina	0
451902	451903	B00004CXX9	A2DEE7F9XKP3ZR	jerome	0
1244	1245	B00002Z754	A29Z5PI9BW2PU3	Robbie	7
1243	1244	B00002Z754	A3B8RCEI0FXFI6	B G Chase	10

file:///C:/Users/Ravi%20Krishna/Assignment5-Logistic_Regression.html

In [8]:

```
import nltk
from nltk.corpus import stopwords
#nltk.download('stopwords')
stopwords = stopwords.words('english')#choosen the english Language
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.stem import PorterStemmer,SnowballStemmer
stop = set(stopwords.words('english')) #set of stopwords
porter = PorterStemmer()
snowball = SnowballStemmer('english')
#Text Preprocessing: Stemming, stop-word removal and Lemmatization
# find sentences containing HTML tags
import re#regular expression
i=0:
for sent in final['Text'].values:
    if (len(re.findall('<.*?>', sent))):
        print(i)
        print(sent)
        break;
    i += 1;
```

0

In June

In June

In June

In June

June

In [9]:

```
%%time
#Code for implementing step-by-step the checks mentioned in the pre-processing phase
# this code takes a while to run as it needs to run on 500k sentences.
i=0
str1=' '
final string=[]
all_positive_words=[] # store words from +ve reviews here
all_negative_words=[] # store words from -ve reviews here.
s=''
final_150000 = df_sample.head(150000)#taking 150000 datapoints
def cleanhtml(sentence):
    cleanr = re.compile('<.*?>')
    cleantext = re.sub(cleanr, ' ', sentence)
    return cleantext
def cleanpunc(sentence):
    cleaned = re.sub(r'[?|!|\'|"|#]',r'',sentence)
    cleaned = re.sub(r'[.|,|)|(|\|/]',r' ',cleaned)
    return cleaned
    str1=[];
for sent in final_150000['Text'].values:
   filtered_sentence=[]
   #print(sent);
    sent=cleanhtml(sent) # remove HTMl tags
    sent=cleanpunc(sent)
   for w in sent.split():
       for cleaned_words in cleanpunc(w).split():
           if((cleaned_words.isalpha()) & (len(cleaned_words)>2)):
               if(cleaned_words.lower() not in stop):
                   s=(snowball.stem(cleaned words.lower())).encode('utf8')
                   filtered sentence.append(s)
                   if (final_150000['Score'].values)[i] == 'positive':
                       all positive words.append(s) #list of all words used to describ
e positive reviews
                   if(final_150000['Score'].values)[i] == 'negative':
                       all negative words.append(s) #list of all words used to describ
e negative reviews reviews
               else:
                   continue
           else:
               continue
   #print(filtered sentence)
    #str1 =b" ".join(filtered sentence) #final string of cleaned words
    str1 =b' '.join(filtered sentence).decode()
    final_string.append(str1)
    i+=1
```

Wall time: 7min 17s

In [10]:

```
#adding a column of CleanedText which displays the data after pre-processing of the rev
iew
final_150000['clean_text']=final_string

#final_50000=final_100000.head(150000)#taking 50k datapoints
print(final_150000.shape)

(150000, 11)

In [11]:

#Functions to save objects for later use and retireve it
import pickle
def SaveToFile(obj,filename):
    pickle.dump(obj,open(filename+".p","wb"))
def OpenFromFile(filename):
    temp = pickle.load(open(filename+".p","rb"))
```

Bag Of Words Using Logistic Regression

In [13]:

return temp

In [66]:

```
#Preprocessing data

#Preprocessing data

uni_gram = CountVectorizer()

uni_gram.fit(X_train)
X_train=uni_gram.transform(X_train)
X_test = uni_gram.transform(X_test)

X_train = preprocessing.normalize(X_train)
X_test = preprocessing.normalize(X_test)

print("Train Data Size: ",X_train.shape)
print("Test Data Size: ",X_test.shape)
```

Train Data Size: (105000, 38523) Test Data Size: (45000, 25611)

In [67]:

```
from sklearn.model_selection import TimeSeriesSplit

tscv = TimeSeriesSplit(n_splits=10)
for train, cv in tscv.split(X_train):

# print("%s %s" % (train, cv))
print(X_train[train].shape, X_train[cv].shape)
```

```
(9550, 38523) (9545, 38523) (19095, 38523) (9545, 38523) (28640, 38523) (9545, 38523) (38185, 38523) (9545, 38523) (47730, 38523) (9545, 38523) (57275, 38523) (9545, 38523) (66820, 38523) (9545, 38523) (76365, 38523) (9545, 38523) (85910, 38523) (9545, 38523) (95455, 38523) (95455, 38523)
```

Find the best C value

In [27]:

```
%%time
from sklearn.model selection import GridSearchCV # Finding the best "Alpha" using forwa
rd chaining cross validation
from sklearn.linear model import LogisticRegression
LR = LogisticRegression()
param_grid ={ 'C':[1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005
                  ,0.001,0.0005,0.0001],'penalty':['l1','l2']} #params we need to try o
n classifier
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
grid = GridSearchCV(LR, param grid, cv=tscv, verbose=1)# instantiate the grid
grid.fit(X train,y train)
SaveToFile(grid,"LR-Uni-Gram")
print("Best HyperParameter: ",grid.best_params_)
print("Best Accuracy: %.2f%%"%(grid.best_score_*100))
Fitting 10 folds for each of 30 candidates, totalling 300 fits
[Parallel(n_jobs=1)]: Done 300 out of 300 | elapsed: 25.9min finished
Best HyperParameter: {'C': 10, 'penalty': '12'}
Best Accuracy: 90.71%
Wall time: 26min 7s
```

In [18]:

```
# plotting of L1 and L2 error
def error_vs_c(gsv):
    x1=[]
    y1=[]
    x2=[]
    y2=[]
    for a in gsv.grid_scores_:
        if (a[0]['penalty']) == 'l1':
            y1.append(1-a[1])
            x1.append(a[0]['C'])
        else:
            y2.append(1-a[1])
            x2.append(a[0]['C'])
    plt.xlim(-10,1010)
    plt.ylim(0,0.2)
    plt.xlabel("C",fontsize=15)
    plt.ylabel("Misclassification Error")
    plt.title(' Error v/s C')
    plt.plot(x1,y1,'g',label="L1")
    plt.plot(x2,y2,'r',label="L2")
    plt.legend()
    plt.show()
gscv = OpenFromFile("LR-Uni-Gram")
error_vs_c(gscv)
```


In [29]:

```
print(gscv.best_estimator_)
```

In [32]:

```
# testing accuracy on the best_estimator

LR = LogisticRegression(C=10,penalty='12')
LR.fit(X_train,y_train)
y_pred = LR.predict(X_test)

print("Accuracy on test set: %0.2f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positive')*100))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred, pos_label='positive')*1
00))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*100
))
print("Non Zero weights:",np.count_nonzero(LR.coef_))

df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 90.31% Precision on test set: 92.183 Recall on test set: 96.671 F1-Score on test set: 94.374 Non Zero weights: 38523

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x19e25f5ce48>

Show how sparsity decrease as if we increase the value of C

In [31]:

```
C value = [1000,100,10,1,0.1,0.01,0.001,0.0001]
def sparsity_increase(i,j):
  LR = LogisticRegression(C=i,penalty=j)
  LR.fit(X_train,y_train)
  y_pred = LR.predict(X_test)
  print("C_value:",i)
  print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
  print("Non Zero weights:",np.count_nonzero(LR.coef_))
  print("-"*100)
for i,j in zip(C_value,l1_value):
  sparsity_increase(i,j)
C_value: 1000
Accuracy on test set: 86.416%
Non Zero weights: 20158
______
______
C value: 100
Accuracy on test set: 87.867%
Non Zero weights: 15267
______
-----
C value: 10
Accuracy on test set: 89.929%
Non Zero weights: 6986
______
-----
C_value: 1
Accuracy on test set: 90.227%
Non Zero weights: 1376
______
C value: 0.1
Accuracy on test set: 88.393%
Non Zero weights: 262
-----
                 -----
-----
C value: 0.01
Accuracy on test set: 84.144%
Non Zero weights: 20
______
                 -----
C value: 0.001
Accuracy on test set: 84.036%
Non Zero weights: 0
______
C value: 0.0001
Accuracy on test set: 84.036%
Non Zero weights: 0
______
```

Here we can see that with the increase of C values Non Zero Weight increases, At C_value = 0.001 and 0.0001 and l1 regularizer we get 0 non zero weights. That means sparsity is large and we dont have any non zero value.

Logistic Regression using RandomSearch cross validation for uni-gram

In [33]:

```
%%time
lr = LogisticRegression()

param_grid = {'C':[1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.000
1],'penalty':['l1','l2']}
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gscv = RandomizedSearchCV(lr,param_grid,cv=tscv,verbose=1)
gscv.fit(X_train,y_train)
SaveToFile(gscv,"LR_RandomSearch-Uni-Gram")
print("Best HyperParameter: ",gscv.best_params_)
print("Best Accuracy: %.2f%%"%(gscv.best_score_*100))
```

Fitting 10 folds for each of 10 candidates, totalling 100 fits

[Parallel(n_jobs=1)]: Done 100 out of 100 | elapsed: 8.7min finished

Best HyperParameter: {'penalty': '12', 'C': 10}

Best Accuracy: 90.71% Wall time: 8min 55s

In [36]:

#Function to plot Misclassification error against C
gscv = OpenFromFile("LR_RandomSearch-Uni-Gram")
error_vs_c(gscv)

e,

In [35]:

```
print(gscv.best_estimator_)

LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=Tru
```

intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm start=False)

In [48]:

```
%%time
# testing accuracy on the best_estimator
LR = LogisticRegression(C=10, penalty='12')
LR.fit(X_train,y_train)
y_pred = LR.predict(X_test)
print("Accuracy on test set: %0.2f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positi
ve')*100))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred, pos_label='positive')*1
00))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*10
0))
print("Non Zero weights:",np.count_nonzero(LR.coef_))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 90.30% Precision on test set: 92.173 Recall on test set: 96.663 F1-Score on test set: 94.365 Non Zero weights: 38523

Wall time: 9.96 s

Perturbation Test

In [38]:

```
lr = LogisticRegression(C= 10, penalty= '12')
lr.fit(X_train,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
#print(dir(np))
#print(Lr.coef_.size)
```

Accuracy on test set: 90.313% Non Zero weights: 38523

In [39]:

```
from scipy.sparse import find
#Weights before adding random noise
weights1 = find(lr.coef_[0])[2]
print(weights1[:50])
```

```
[ 0.22959955  0.02769383  0.00654113  0.01785463
                                               0.01785463 0.00654113
 0.00299281 0.0106362
                        0.00634867 0.00495284
                                               0.05463248 0.05619479
 0.00530917 -1.06749079
                        0.01462368 0.01292867
                                               0.10541176 -0.15542841
 0.11012422 0.19373848 0.00372414 0.00655134
                                               0.17295654 0.00191956
 0.273013
             0.12531101 -1.30802224 0.02479664
                                               0.1105268 -0.54594398
 0.07473946 -1.68978546 0.40068942 0.01883747
                                               0.13333569 0.15656358
 0.12240088 -0.54184479 1.07516448 -0.93276758 0.17495965 0.06166258
 0.02739986 -0.54089298 0.37617412 -0.26017884 0.09690935 0.21000545
 0.00319336 -0.73238522]
```

In [40]:

```
X_train_t = X_train
#Random noise
epsilon = np.random.uniform(low=-0.01, high=0.01, size=(find(X_train_t)[0].size,))
#Getting the postions(row and column) and value of non-zero datapoints
a,b,c = find(X_train_t)

#Introducing random noise to non-zero datapoints
X_train_t[a,b] = epsilon + X_train_t[a,b]
#print(X_train_t)
#print(epsilon)
```

In [41]:

```
lr = LogisticRegression(C= 10, penalty= 'l2')
lr.fit(X_train_t,y_train)#here is the change
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
```

Accuracy on test set: 90.298% Non Zero weights: 38523

In [42]:

```
from scipy.sparse import find
#Weights after adding random noise
weights2 = find(lr.coef_[0])[2]
print(weights2[:50])
```

```
[ 0.24192824  0.03056787
                      0.00625709 0.02239777 0.02156479 0.00698248
            0.01063307 0.00755919 0.00606763
 0.0031956
                                           0.04407813 0.05275686
 0.00651099 -1.09837568 0.01646571 0.0151125
                                           0.10120348 -0.18880752
 0.1153571
            0.19401155 0.00399589 0.00644823
                                           0.16108238 0.00185347
 0.11110793 -0.51293364
 0.06505957 -1.71860612 0.40496988 0.01836217
                                           0.13203888
                                                     0.16112345
 0.11684308 -0.55308113 1.02787996 -0.90887936
                                           0.18031506 0.06249739
 0.02555603 -0.54759394 0.31722894 -0.2656791
                                           0.09271546 0.22061393
 0.00298457 -0.73675312]
```

In [43]:

```
weights_diff = (abs(weights1 - weights2)/weights1) * 100
#print(weights_diff)
```

In [44]:

```
print(weights_diff[np.where(weights_diff > 30)].size)
```

911

weights_diff is 911, SoThere is multi collinearity in this data

In [45]:

```
def show_most_informative_features(vectorizer, clf, n=25):
    feature_names = vectorizer.get_feature_names()
    coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
    top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])
    print("\t\t\tPositive\t\t\t\t\t\tNegative")
    print("\_____")
    for (coef_1, fn_1), (coef_2, fn_2) in top:
        print("\t%.4f\t%-15s\t\t\t\t\t\.4f\t%-15s" % (coef_1, fn_1, coef_2, fn_2))

show_most_informative_features(uni_gram,lr)
#Code Reference:https://stackoverflow.com/questions/11116697/how-to-get-most-informative-features-for-scikit-learn-classifiers
```

Positive

			•		
NΘ	ga	1	7	v	ρ
"	50		_		_

	<u> </u>		
			8.5708 aw
-10.4328	3 tasteless		8.2752 ho
-9.8789	threw	8.2401	delici
-9.8413	undrink	8.1334	beat
-9.7391	disgust	7.5954	perfect
-9.7223	aw	7.5620	addict
-9.2114	horribl	7.4625	yum
-8.7687	yuck	7.3716	worri
-8.7128	terribl	7.3462	amaz
-8.2059	gross	7.1507	best
-7.7484	unapp	7.0583	heaven
-7.6744	unaccept	6.9828	uniqu
-7.6144	disappoint	6.9683	complaint
-7.5041	refund	6.9484	fantast
-7.2512	vomit	6.8881	yummi
-7.2348	rancid	6.8358	solv
-7.1865	skip	6.7729	excel
-7.1184	june	6.7256	skeptic
-7.0372	redeem	6.6689	downsid
-7.0332	where	6.2354	terrif
-6.9935	diarrhea	6.1844	finest
-6.9192	ined	6.1561	glad
-6.9150	nasti	6.0937	great
-6.9092	unpleas	6.0817	smooth
-6.8995	flavorless	5.9240	beauti
	-10.4328 -9.8789 -9.8413 -9.7391 -9.7223 -9.2114 -8.7687 -8.7128 -8.2059 -7.7484 -7.6744 -7.6144 -7.5041 -7.2512 -7.2348 -7.1865 -7.1184 -7.0372 -7.0332 -6.9935 -6.9192 -6.9150 -6.9092	-11.9491 worst -10.4328 tasteless -9.8789 threw -9.8413 undrink -9.7391 disgust -9.7223 aw -9.2114 horribl -8.7687 yuck -8.7128 terribl -8.2059 gross -7.7484 unapp -7.6744 unaccept -7.6144 disappoint -7.5041 refund -7.2512 vomit -7.2348 rancid -7.1865 skip -7.1184 june -7.0372 redeem -7.0332 where -6.9935 diarrhea -6.9192 ined -6.9150 nasti -6.9092 unpleas -6.8995 flavorless	-10.4328 tasteless -9.8789 threw 8.2401 -9.8413 undrink 8.1334 -9.7391 disgust 7.5954 -9.7223 aw 7.5620 -9.2114 horribl 7.4625 -8.7687 yuck 7.3716 -8.7128 terribl 7.3462 -8.2059 gross 7.1507 -7.7484 unapp 7.0583 -7.6744 unaccept 6.9828 -7.6144 disappoint 6.9683 -7.5041 refund 6.9484 -7.2512 vomit 6.8881 -7.2348 rancid 6.8358 -7.1865 skip 6.7729 -7.1184 june 6.7256 -7.0372 redeem 6.6689 -7.0332 where 6.2354 -6.9935 diarrhea 6.1561 -6.9192 ined 6.1561 -6.9150 nasti 6.0937 -6.9092 unpleas 6.0817

Logistic Regression TF-IDF

GridSearch

In [42]:

Train Data Size: (105000, 1308616)

Test Data Size: (45000, 1308616)

Wall time: 39.1 s

In [76]:

```
%%time
lr = LogisticRegression()
#params we need to try on classifier
param_grid = {'C':[1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.000
1],'penalty':['l1','l2']}
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gscv = GridSearchCV(lr,param_grid,cv=tscv,verbose=1)
gscv.fit(X_train,y_train)
SaveToFile(gscv,"LR-GridSearch-TF-IDF")
print("Best HyperParameter: ",gscv.best_params_)
print("Best Accuracy: %.2f%%"%(gscv.best_score_*100))
```

```
Fitting 10 folds for each of 30 candidates, totalling 300 fits
```

```
[Parallel(n_jobs=1)]: Done 300 out of 300 | elapsed: 35.3min finished
Best HyperParameter: {'C': 5, 'penalty': 'l1'}
```

Best Accuracy: 91.03% Wall time: 35min 32s

In [77]:

```
gscv = OpenFromFile("LR-GridSearch-TF-IDF")
error_vs_c(gscv)
```


In [78]:

```
print(gscv.best_estimator_)
```

In [86]:

```
LR = LogisticRegression(C= 5, penalty= 'l1')
LR.fit(X_train,y_train)
y_pred = LR.predict(X_test)

print("Accuracy on test set: %0.2f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positive')*100))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred, pos_label='positive')*100))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*100))
print("Non Zero weights:",np.count_nonzero(LR.coef_))

df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 91.02% Precision on test set: 93.320 Recall on test set: 96.197 F1-Score on test set: 94.737 Non Zero weights: 10553

Out[86]:

<matplotlib.axes. subplots.AxesSubplot at 0x19e3bde1c50>

Show how sparsity increases as we increase lambda (C=i/lamda) when L1 Regularizer is used

In [15]:

```
### Show how sparsity increase as if we increase the value of lamba
C_value = [1000,100,10,1,0.1,0.01,0.001,0.0001]
def sparsity increase(i,j):
  lr = LogisticRegression(C=i,penalty=j)
  lr.fit(X_train,y_train)
  y_pred = lr.predict(X_test)
  print("C_value:",i)
  #print("C_value is: {} and l1_value is: {}".format(i,j))
  print("Accuracy on test set: %0.3f%"%(accuracy score(y test, y pred)*100))
  print("Non Zero weights:",np.count_nonzero(lr.coef_))
  print("-"*100)
for i,j in zip(C_value,l1_value):
  sparsity_increase(i,j)
C_value: 1000
Accuracy on test set: 90.209%
Non Zero weights: 31327
-----
-----
C value: 100
Accuracy on test set: 90.124%
Non Zero weights: 23828
______
C_value: 10
Accuracy on test set: 90.540%
Non Zero weights: 16784
______
______
C_value: 1
Accuracy on test set: 90.442%
Non Zero weights: 1239
______
-----
C_value: 0.1
Accuracy on test set: 87.358%
Non Zero weights: 131
______
-----
C value: 0.01
Accuracy on test set: 83.976%
Non Zero weights: 2
______
C value: 0.001
Accuracy on test set: 83.976%
Non Zero weights: 0
______
______
C value: 0.0001
Accuracy on test set: 83.976%
Non Zero weights: 0
```

Random Search

In [16]:

Fitting 10 folds for each of 10 candidates, totalling 100 fits

[Parallel(n_jobs=1)]: Done 100 out of 100 | elapsed: 7.3min finished

Best HyperParameter: {'penalty': '11', 'C': 5}

Best Accuracy: 90.87% Wall time: 7min 30s

In [19]:

```
gscv = OpenFromFile("LR-RandomSearch-TF_IDF")
error_vs_c(gscv)
```


In [20]:

```
#Testing Accuracy on Test data

LR = LogisticRegression(C= 5, penalty= 'l1')
LR.fit(X_train,y_train)
y_pred = LR.predict(X_test)
print("Accuracy on test set: %0.2f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positive')*100))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred, pos_label='positive')*1
00))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*100
))
print("Non Zero weights:",np.count_nonzero(LR.coef_))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 90.84% Precision on test set: 93.138 Recall on test set: 96.181 F1-Score on test set: 94.635 Non Zero weights: 10680

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e167d1668>

Perturbation Test

In [57]:

```
lr = LogisticRegression(C= 10, penalty= 'l1')
lr.fit(X_train,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
```

Accuracy on test set: 90.600%

Non Zero weights: 15468

In [61]:

```
from scipy.sparse import find
#Weights before adding random noise
weights1 = find(lr.coef_[0])[2]
#print(weights1[:50])
weightBefore=weights1[:15000]
#print(len(weightBefore))
```

In [62]:

```
X_train_t = X_train
#Random noise
epsilon = np.random.uniform(low=-0.01, high=0.01, size=(find(X_train_t)[0].size,))
#Getting the postions(row and column) and value of non-zero datapoints
a,b,c = find(X_train_t)

#Introducing random noise to non-zero datapoints
X_train_t[a,b] = epsilon + X_train_t[a,b]
```

In [63]:

```
lr = LogisticRegression(C=10, penalty= 'l1')
lr.fit(X_train_t,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
```

Accuracy on test set: 90.631% Non Zero weights: 15589

In [64]:

```
from scipy.sparse import find
#Weights after adding random noise
weights2 = find(lr.coef_[0])[2]
#print(weights2[:50])
weightAfter=weights2[:15000]
```

In [65]:

```
weights_diff = (abs(weightAfter - weightBefore)/weightBefore) * 100
print(weights_diff[np.where(weights_diff > 30)].size)
```

5413

hence, weight diff is 5413 So There is multi collinear!!!!

In [66]:

```
def show_most_informative_features(vectorizer, clf, n=25):
    feature_names = vectorizer.get_feature_names()
    coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
    top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])
    print("\t\t\tPositive\t\t\t\t\t\t\tNegative")
    print("______")
    for (coef_1, fn_1), (coef_2, fn_2) in top:
        print("\t%.4f\t%-15s\t\t\t\t\t%.4f\t%-15s" % (coef_1, fn_1, coef_2, fn_2))

show_most_informative_features(tfidf,lr)
#Code Reference:https://stackoverflow.com/questions/11116697/how-to-get-most-informative_features-for-scikit-learn-classifiers
```

Positive

	Positive	
Negative		
-45.4411	 two star	41.2952 hi
gh recommend	cwo scar	41.2332 111
-39.6636	great strength	36.7070 fo
ur star	8. 3 3 5	
-34.5574	diabet diabet	32.0839 de
lici		
-34.3799	restaur know	31.1237 go
od place		
-34.1253	oat roll	30.2059 gr
eat		
-33.5921	get came	29.8564 pl
easant surpris	#.a.f	27 8280 :-
-33.0516	tri vacuum	27.8280 in
iti unpleas -32.9782	sweet adult	26.5075 wo
nt sorri	Sweet adult	20.3073 WO
-31.9411	limb perfect	25.4264 am
az	Timo per rece	23.4204 uiii
-31.6336	still energi	25.2745 pe
rfect	3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
-31.4493	cool perfect	24.9249 be
st	·	
-30.8957	want perfect	24.2849 ol
d jordan		
-30.4316	violet flavour	23.9483 co
rrect mistak		
-30.1363	worst	23.8293 co
uld wors	atill wat	22 2752
-29.9191	still yet	23.3753 ya
y -29.5042	fig arriv	23.3627 wo
nt disappoint	ing ailiv	23.3027 WO
-29.3385	crunchi littl	23.0562 ex
cel	Clanent field	23.0302 CX
-29.1822	planter trail	22.5292 lo
ve	F = 5	
-28.5682	slight help	22.5103 to
mato product		
-28.5352	less also	22.3136 st
eal		
-28.2530	like chlorin	21.6674 be
war dont		
-27.9570	cant someth	21.4400 sa
lt jalapeno		
-27.6181	benefit dog	20.7727 di

Logistic Regression Word2Vec(Avg)

-27.5637 chewer year

-27.2743 deliveri superb

sappoint seem

ft aftertast

ceiv star

20.7269 le

20.4773 re

In [67]:

```
# Train your own Word2Vec model using your own text corpus
import gensim
i=0
list_of_sent=[]
for sent in final_150000['clean_text'].values:
    filtered_sentence=[]
    sent=cleanhtml(sent)
    for w in sent.split():
        for cleaned_words in cleanpunc(w).split():
            if(cleaned_words.isalpha()):
                filtered_sentence.append(cleaned_words.lower())
            else:
                 continue
    list_of_sent.append(filtered_sentence)
```

In [68]:

```
len(list_of_sent)
```

Out[68]:

150000

In [69]:

```
#defining a word2vec model
w2v_model=gensim.models.Word2Vec(list_of_sent,min_count=5,size=50, workers=4)
words=list(w2v_model.wv.vocab)
print(len(words))
```

15073

In [70]:

```
# average Word2Vec
# compute average word2vec for each review.
sent_vectors = []; # the avg-w2v for each sentence/review is stored in this list
for sent in list_of_sent: # for each review/sentence
    sent_vec = np.zeros(50) # as word vectors are of zero length
    cnt_words =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
        try:
            vec = w2v model.wv[word]
            sent_vec += vec
            cnt words += 1
        except:
            pass
    sent vec /= cnt words
    sent vectors.append(sent vec)
print(len(sent_vectors))
print(len(sent_vectors[0]))
```

150000

50

```
In [71]:
```

```
np.argwhere(np.isnan(sent vectors))#checking for Nan fields
Out[71]:
array([], shape=(0, 2), dtype=int64)
In [73]:
%%time
#from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
X_train_AvgWord2Vec, X_test, y_train, y_test = train_test_split(sent_vectors,final_1500
00['Score'].values,
                                                             test size=0.30, shuffle=Fals
e)
X_train_AvgWord2Vec_final = preprocessing.normalize(X_train_AvgWord2Vec)
print("Train Data Size: ",X_train_AvgWord2Vec_final.shape)
X test = preprocessing.normalize(X test)
print("Test Data Size: ",X_test.shape)
Train Data Size: (105000, 50)
Test Data Size:
                (45000, 50)
Wall time: 406 ms
In [74]:
%%time
lr = LogisticRegression()
#params we need to try on classifier
param_grid = {'C':[1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.000
1], 'penalty':['l1','l2']}
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gscv = GridSearchCV(lr,param_grid,cv=tscv,verbose=1)
gscv.fit(X_train_AvgWord2Vec_final,y_train)
SaveToFile(gscv, "LR-AvgWord2Vec")
print("Best HyperParameter: ",gscv.best params )
print("Best Accuracy: %.2f%%"%(gscv.best_score_*100))
Fitting 10 folds for each of 30 candidates, totalling 300 fits
[Parallel(n jobs=1)]: Done 300 out of 300 | elapsed: 10.9min finished
Best HyperParameter: {'C': 1, 'penalty': 'l1'}
Best Accuracy: 89.06%
Wall time: 11min 3s
```

In [75]:

```
gscv = OpenFromFile("LR-AvgWord2Vec")
error_vs_c(gscv)
```


In [76]:

print(gscv.best_estimator_)

In [80]:

```
#Testing Accuracy on Test data with best hyper parametrs
from sklearn.linear model import LogisticRegression
lr = LogisticRegression(C= 1, penalty= 'l1')
lr.fit(X_train_AvgWord2Vec_final,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.2f%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positi
ve')*100))
print("Recall on test set: %0.3f"%(recall score(y test, y pred, pos label='positive')*1
00))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*100
))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g', linewidths=.5)
```

Accuracy on test set: 87.80% Precision on test set: 89.735 Recall on test set: 96.515 F1-Score on test set: 93.002

Non Zero weights: 50

Out[80]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e1a9bcdd8>

Random Search AvgWord2Vec

In [77]:

```
%*time
lr = LogisticRegression()

param_grid = {'C':[1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.000
1], 'penalty':['l1','l2']}

tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gscv = RandomizedSearchCV(lr,param_grid,cv=tscv,verbose=1)
gscv.fit(X_train_AvgWord2Vec_final,y_train)

SaveToFile(gscv,"LR-RandomSearch-AvgWord2Vec")

print("Best HyperParameter: ",gscv.best_params_)
print("Best Accuracy: %.2f%%"%(gscv.best_score_*100))
```

Fitting 10 folds for each of 10 candidates, totalling 100 fits

[Parallel(n_jobs=1)]: Done 100 out of 100 | elapsed: 4.7min finished

Best HyperParameter: {'penalty': 'l1', 'C': 1}

Best Accuracy: 89.06% Wall time: 4min 55s

In [78]:

```
print(gscv.best_estimator_)
```

In [81]:

```
gscv = OpenFromFile("LR-RandomSearch-AvgWord2Vec")
error_vs_c(gscv)
```


In [82]:

```
#Testing Accuracy on Test data with best hyper parametrs
from sklearn.linear model import LogisticRegression
lr = LogisticRegression(C= 1, penalty= 'l1')
lr.fit(X train AvgWord2Vec final, y train)
y_pred = lr.predict(X test)
print("Accuracy on test set: %0.2f%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positi
ve')*100))
print("Recall on test set: %0.3f"%(recall score(y test, y pred, pos label='positive')*1
00))
print("F1-Score on test set: %0.3f"%(f1 score(y test, y pred, pos label='positive')*100
))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 87.80% Precision on test set: 89.735 Recall on test set: 96.515 F1-Score on test set: 93.002

Non Zero weights: 50

Out[82]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e1aaa4208>

Perturbation Test

In [84]:

```
lr = LogisticRegression(C= 5, penalty= 'l1')
lr.fit(X_train_AvgWord2Vec_final,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
```

Accuracy on test set: 87.807%

Non Zero weights: 50

```
In [85]:
```

```
from scipy.sparse import find
#Weights before adding random noise
weights1 = find(lr.coef_[0])[2]
#print(weights1[:50])
print(len(weights2))
```

15589

In [87]:

```
X_train_t = X_train_AvgWord2Vec_final
#Random noise
epsilon = np.random.uniform(low=-0.01, high=0.01, size=(find(X_train_t)[0].size,))
#Getting the postions(row and column) and value of non-zero datapoints
a,b,c = find(X_train_t)

#Introducing random noise to non-zero datapoints
X_train_t[a,b] = epsilon + X_train_t[a,b]
```

In [88]:

```
lr = LogisticRegression(C= 5, penalty= 'l1')
lr.fit(X_train_t,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
```

Accuracy on test set: 87.793% Non Zero weights: 50

In [89]:

```
weights2 = find(lr.coef_[0])[2]
print(weights2)
```

```
[-4.34900241 1.76867767 0.33333246 3.56636108 0.98012128 0.16709607 -4.04869947 3.97330242 -4.61906939 0.40257605 -1.04850858 -0.90816507 0.38303954 0.5806754 1.38053741 -2.80995933 0.3570581 1.75204251 1.92276095 2.03041835 2.11604545 -0.68989182 -1.9768246 -0.15844519 -0.64091827 -0.93381869 -1.40893477 -2.99523926 -4.38236244 -1.88402074 1.81451336 -3.87562687 2.22155458 1.22219157 0.58076664 0.35743328 -0.54735218 -0.34273084 -1.86643012 1.26418634 0.67847357 -2.07620699 4.64500318 -0.39806912 -0.46781577 -0.11230673 4.39662317 0.11197016 0.88200796 -2.39472743]
```

In [90]:

```
weights_diff = (abs(weights2 - weights1)/weights1) * 100
print(weights_diff[np.where(weights_diff > 30)].size)
```

1

We can see weightdiff is 1, So its means theres is no multi Collinearity

In [91]:

```
def show_most_informative_features(vectorizer, clf, n=25):
    feature_names = vectorizer.get_feature_names()
    coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
    top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])
    print("\t\t\Positive\t\t\t\t\t\t\t\t\end{array}
    print("\_____")
    for (coef_1, fn_1), (coef_2, fn_2) in top:
        print("\t%.4f\t%-15s\t\t\t\t\t\.4f\t%-15s" % (coef_1, fn_1, coef_2, fn_2))

show_most_informative_features(tfidf,lr)
#Code Reference:https://stackoverflow.com/questions/11116697/how-to-get-most-informative-features-for-scikit-learn-classifiers
```

Positive

Negative

nnaahhh		aaaaaahhhhhyaaaaaa		4.6450 aa
rrgghhh	-4.3824	aaf	4.3966	ab
	-4.3490	aaa	3.9733	aaaaaaarrr
rrggghh		aaaaaaarrrrggghhh		3.5664 aa
a job	-3.8756	aafco approv	2.2216	aafco dog
	-2.9952	aadp	2.1160	aaahhh sal
e	-2.8100	aaaah favorit	2.0304	aaahhh
	-2.3947	ab one	1.9228	aaah tast
	-2.0762	aah rest	1.8145	aafco
	-1.9768	aaahhhhhh drink	1.7687	aaa aaa
	-1.8840	aaf hair	1.7520	aaah miss
	-1.8664	aah coffe	1.3805	aaaah
	-1.4089	aachen munich	1.2642	aah handso
m	-1.0485	aaaaah	1.2222	aafco larg
	-0.9338	aachen	0.9801	aaa spelt
	-0.9082	aaaaah satisfi	0.8820	ab fine
	-0.6899	aaahhhhhh	0.6785	aah order
	-0.6409	aabsolut love	0.5808	aafco requ
ir 		aafter luck	0.5807	aaaaahhhhh
		el aarthur	0.4026	aaaaaahhhh
hyaaaaa	-0.3981	aarrgghhhh yorkiex		0.3830 aa
aaahhhh	hhhhhhhhl -0.3427		0.3574	aafter
	-0.1584	aabsolut	0.3571	aaah
	-0.1123	aarthur whole	0.3333	aaa hockey
ghh	0.1120	ab diet	0.1671	aaaaaaaaag

Logistic Regression TF-IDF Word2Vec

GridSearch

In [92]:

In [93]:

```
%%time
# TF-IDF weighted Word2Vec
tfidf_feat = tfidf.get_feature_names() # tfidf words/col-names
# final tf idf is the sparse matrix with row= sentence, col=word and cell val = tfidf
tfidf_sent_vectors = []; # the tfidf-w2v for each sentence/review is stored in this lis
row=0;
for sent in list_of_sent: # for each review/sentence
    sent vec = np.zeros(50) # as word vectors are of zero length
    weight sum =0; # num of words with a valid vector in the sentence/review
    for word in sent: # for each word in a review/sentence
        try:
            vec = w2v_model.wv[word]
            # obtain the tf_idfidf of a word in a sentence/review
            tf idf = X train tfidf[row, tfidf feat.index(word)]
            sent_vec += (vec * tf_idf)
            weight sum += tf idf
        except:
            pass
    sent_vec /= weight_sum
    tfidf_sent_vectors.append(sent_vec)
    row += 1
print(len(tfidf_sent_vectors))
print(len(tfidf sent vectors[0]))
```

150000

50

Wall time: 34.9 s

```
In [94]:
```

```
np.argwhere(np.isnan(tfidf sent vectors))#checking for NaN values
Out[94]:
array([[
                     0],
             0,
             0,
                     1],
       0,
                     2],
       [149999,
                    47],
       [149999,
                    48],
       [149999,
                    49]], dtype=int64)
In [95]:
#Not shuffling the data as we want it on time basis
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(tfidf_sent_vectors,final_150000['Sc
ore'].values,
                                                      test size=0.3, shuffle=False)
In [96]:
#resolving NaN issue
X_train=np.isnan(X_train)#for solving NaN issue
np.where(np.isnan(X_train))
np.nan_to_num(X_train)
X_test=np.isnan(X_test)
np.where(np.isnan(X_test))
np.nan_to_num(X_test)
Out[96]:
                       True, ...,
array([[ True,
                True,
                                    True,
                                           True,
                                                  True],
       [ True,
                True,
                       True, ...,
                                    True,
                                           True,
                                                   True],
       [ True,
                True,
                                           True.
                                                   True],
                       True, ...,
                                    True,
       [ True,
                True,
                       True, ...,
                                    True,
                                           True,
                                                   True],
       [ True,
                True,
                       True, ...,
                                    True,
                                           True,
                                                   True],
       [ True,
                True,
                       True, ...,
                                    True,
                                           True,
                                                  True]])
In [97]:
print(np.argwhere(np.isnan(X_train)))#checking for NaN values
print(np.argwhere(np.isnan(X_test)))#checking for NaN values
print("We have Resolved the Nan Issue")
[]
[]
We have Resolved the Nan Issue
```

In [98]:

```
%*time
lr = LogisticRegression()
#params we need to try on classifier
param_grid = {'C':[1000,500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.000
1],'penalty':['11','12']}
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gscv = GridSearchCV(lr,param_grid,cv=tscv,verbose=1)
gscv.fit(X_train,y_train)
SaveToFile(gscv,"LR GridSearch TF_IDF-WORD2VEC")
print("Best HyperParameter: ",gscv.best_params_)
print("Best Accuracy: %.2f%%"%(gscv.best_score_*100))
```

Fitting 10 folds for each of 30 candidates, totalling 300 fits

[Parallel(n_jobs=1)]: Done 300 out of 300 | elapsed: 3.6min finished

Best HyperParameter: {'C': 1000, 'penalty': 'l1'}

Best Accuracy: 85.92% Wall time: 3min 39s

In [99]:

```
print(gscv.best_estimator_)
```

LogisticRegression(C=1000, class_weight=None, dual=False, fit_intercept=True,

intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
penalty='l1', random_state=None, solver='liblinear', tol=0.0001,
verbose=0, warm_start=False)

In [100]:

```
gscv = OpenFromFile("LR GridSearch TF_IDF-WORD2VEC")
error_vs_c(gscv)
```


In [104]:

```
lr = LogisticRegression(C= 1000, penalty= 'l1')
lr.fit(X_train,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.2f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positive')*100))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred, pos_label='positive')*100))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 83.98% Precision on test set: 83.976 Recall on test set: 100.000 F1-Score on test set: 91.290

Non Zero weights: 4

Out[104]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e8ee88198>

RandomizedSearchCV

In [101]:

```
%%time
lr = LogisticRegression()
#params we need to try on classifier
param_grid = {'C':[1000,500,100,50,10.5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.000
1],'penalty':['l1','l2']}
tscv = TimeSeriesSplit(n_splits=10) #For time based splitting
gscv = RandomizedSearchCV(lr,param_grid,cv=tscv,verbose=1)
gscv.fit(X_train,y_train)
SaveToFile(gscv,"LR RandomSearch TF_IDF-WORD2VEC")
print("Best HyperParameter: ",gscv.best_params_)
print("Best Accuracy: %.2f%%"%(gscv.best_score_*100))
```

```
Fitting 10 folds for each of 10 candidates, totalling 100 fits

[Parallel(n_jobs=1)]: Done 100 out of 100 | elapsed: 1.3min finished

Best HyperParameter: {'penalty': '12', 'C': 10}
```

Best Accuracy: 85.92% Wall time: 1min 19s

In [102]:

```
print(gscv.best_estimator_)
```

LogisticRegression(C=10, class_weight=None, dual=False, fit_intercept=Tru
e,
 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
 penalty='12', random_state=None, solver='liblinear', tol=0.0001,
 verbose=0, warm_start=False)

In [103]:

```
gscv = OpenFromFile("LR RandomSearch TF_IDF-WORD2VEC")
error_vs_c(gscv)
```


In [105]:

```
lr = LogisticRegression(C= 10, penalty= '12')
lr.fit(X_train,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.2f%%"%(accuracy_score(y_test, y_pred)*100))
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred, pos_label='positive')*100))
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred, pos_label='positive')*100))
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred, pos_label='positive')*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g',linewidths=.5)
```

Accuracy on test set: 83.98% Precision on test set: 83.976 Recall on test set: 100.000 F1-Score on test set: 91.290

Non Zero weights: 50

Out[105]:

<matplotlib.axes._subplots.AxesSubplot at 0x24e8d53e748>

Perturbation Test

In [119]:

```
lr = LogisticRegression(C= 100, penalty= 'l1')
lr.fit(X_train,y_train)
y_pred = lr.predict(X_test)
print("Accuracy on test set: %0.3f%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
```

Accuracy on test set: 83.976%

Non Zero weights: 5

```
In [120]:
```

```
weights1 = find(lr.coef [0])[2]
print(weights1[:50])
[3.41568429e-01 4.44866533e-02 7.25809153e-04 1.16931923e-12
 1.45051390e+00]
In [121]:
X_train_t = X_train
#Random noise
epsilon = np.random.uniform(low=-0.01, high=0.01, size=(find(X_train_t)[0].size,))
#Getting the postions(row and column) and value of non-zero datapoints
a,b,c = find(X_train_t)
#Introducing random noise to non-zero datapoints
X_train_t[a,b] = epsilon + X_train_t[a,b]
In [122]:
lr = LogisticRegression(C= 100, penalty= 'l1')
lr.fit(X_train_t,y_train)
y pred = lr.predict(X test)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*100))
print("Non Zero weights:",np.count_nonzero(lr.coef_))
Accuracy on test set: 83.976%
Non Zero weights: 5
In [123]:
weights2 = find(lr.coef_[0])[2]
print(weights2[:50])
[3.41568429e-01 1.45051390e+00 7.25809153e-04 1.16931923e-12
4.44866533e-021
In [124]:
weights_diff = (abs(weights2 - weights1)/weights1) * 100
In [125]:
```

```
print(weights_diff[np.where(weights_diff > 30)].size)
```

2

We can see weightdiff is 2, So its means theres is no multi Collinearity

In [126]:

```
def show_most_informative_features(vectorizer, clf, n=25):
    feature_names = vectorizer.get_feature_names()
    coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
    top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])
    print("\t\tPositive\t\t\t\t\t\tNegative")
    print("______")
    for (coef_1, fn_1), (coef_2, fn_2) in top:
        print("\t%.4f\t%-15s\t\t\t\t\t%.4f\t%-15s" % (coef_1, fn_1, coef_2, fn_2))

show_most_informative_features(tfidf,lr)
#Code Reference:https://stackoverflow.com/questions/11116697/how-to-get-most-informative-features-for-scikit-learn-classifiers
```

Positive

Negative

	0.0000	aaa	1.4505	aaahhh sal
е	0.0000	aaa aaa	0.3416	aaaaaahhhh
hyaaaaa			0 0445	
ole	0.0000	aaa hockey	0.0445	aarthur wh
	0.0000	aaa job	0.0007	aafco
	0.0000	aaa spelt	0.0000	aah
	0.0000	aaaaaaaagghh	0.0000	ab one
· ·	0.0000	aaaaaaarrrrrggghhh		0.0000 ab
fine	0.0000	aaaaaaarrrrrggghhh back		0.0000 ab
diet	0.0000	aaaaaahhhhhyaaaaaa		0.0000 ab
	0.0000	aaaaah	0.0000	aarthur
	0.0000	aaaaah satisfi	0.0000	aarrgghhhh
yorkiex	0.0000	aaaaahhhhhhhhhhhhhhh		0.0000 aa
rrgghhh	0.0000	aaaaahhhhhhhhhhhhhhhhh angel		0.
9000	aah res 0.0000	t aaaah	0.0000	aah order
	0.0000	aaaah favorit	0.0000	aah handso
n	0.0000	aaah	0.0000	aah coffe
	0.0000	aaah miss	0.0000	aafter luc
k	0.0000	aaah tast	0.0000	aafter
	0.0000	aaahhh	0.0000	aafco requ
ir	0.0000	aaahhhhhh	0.0000	aafco larg
	0.0000	aaahhhhhh drink	0.0000	aafco dog
	0.0000	aabsolut	0.0000	aafco appr
ov	0.0000	aabsolut love	0.0000	aaf hair
	0.0000	aachen	0.0000	aaf
	0.0000	aachen munich	0.0000	aadp

Analysis of Logistic Regression Model on 150k data points

Feature	Algoritms	Accuracy	Precision	Recall	F1- Scores	Best Value for C	Penalty
BOW	GridSearchCV	90.31	92.183	96.671	94.376	C=10	penalty='l2'
BOW	RandomSearchCV	90.30	92.173	96.663	94.365	C=10	penalty='l2'
TF-IDF	GridSearchCV	91.02	93.320	96.197	94.737	C=5	penalty='l1'
TF-IDF	RandomSearchCV	90.84	93.138	96.181	94.635	C=5	penalty='l1'
Word2Vec	GridSearchCV	87.80	89.735	96.515	93.002	C=1	penalty='l1'
Word2Vec	RandomSearchCV	87.80	89.735	96.515	93.002	C=1	penalty='I1'
TFIDF W2V	GridSearchCV	83.98	83.976	100	91.290	C=1000	penalty='l1'
TFIDF W2V	RandomSearchCV	83.98	83.976	100	91.290	C=10	penalty='l2'

Observation

- We did Bow,tf-idf,AvgWord2vec,and tfidf-word2vec on data points.
- TF-IDF using GridSearch has highest accuracy among all of them.
- We see that when C decreases (or lambda increases) the sparsity increases drastically, $\ensuremath{\mathsf{L}}$

that mean L1 regularizer increase the sparsity in Logistic Regression.

- Multicolinearity is exits in this model.