Diseño y desarrollo de un agente negociador para la competición de Werewolf de la ANAC2019

Ramon Ruiz-Dolz, Javier Iranzo-Sanchez

Institut Valencià d'Investigació en Intel·ligència Artificial

April 25, 2019

- Introducción
 - Dominio
 - Objetivos
- Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- Resultados
- 6 Conclusiones

- Introducción
 - Dominio
 - Objetivos
- 2 Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- 6 Resultados
- 6 Conclusiones

Dominio del Problema

- Juego de roles ocultos
- Dos equipos: Mayoría desinformada (aldeanos) y minoría informada (hombres-lobos)
- Aldeanos: Cada día votan linchar a una personal del pueblo, en un intento desesperado de acabar con los lobos.
- Hombres-lobos: Cada noche, los lobos salen de caza y se ponen de acuerdo para matar a un aldeano.
- Carrera contrareloj para los aldeanos, no se revelan roles al morir.

Dominio: Reglas

Figure 1: Esquema del desarrollo de una partida de Werewolf

Objetivos

- Implementación de un agente negociador para la ANAC2019 (Werewolf)
- Inferir información oculta mediante el modelizado de oponentes
- Diseño de un marco argumentativo capaz de gestionar el flujo de mensajes de forma coherente (AlWolf)
- Implementación de heurísticas de negociación adecuadas para el dominio escogido

- Introducción
 - Dominio
 - Objetivos
- 2 Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- 6 Resultados
- 6 Conclusiones

Modelado de oponentes mediante aprendizaje automático

• A partir de los eventos de una partida, x_1^N , asignar un rol r a cada jugador j.

$$p(y_j = r_m | x_1^N) \ \forall j \in J \ \forall m \in R$$
 (1)

• Asumimos independencia entre los roles:

$$p(y_1^J|x_1^N) := \prod_{j=1}^J p(y_j|x_1^N)$$
 (2)

- Representación de una secuencia: Suma de representaciones de sus elementos [3]
- Evento: La acción/performativa ejecutada en cada momento.

Experimentos

1 modelo (regresión logística) por cada agente

Figure 2: Medida F1 (macro) en función del número de partidas observadas.

Experimentos

Figure 3: Rendimiento del modelo en función del tiempo transcurrido de partida

Experimentos

Figure 4: Rendimiento del modelo genérico en función del número de partidas

- Introducción
 - Dominio
 - Objetivos
- 2 Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- Resultados
- 6 Conclusiones

Formalización del marco argumentativo

Tomando el marco de argumentación abstracta basada en valores propuesto en [1, 2] como punto de partida se propone,

Definition (Trust-Based Argumentation Framework)

Nuestro marco argumentativo consiste en una tupla $<\!A,R,\delta,P\!>$ donde A consiste en el conjunto de argumentos, R consiste en el conjunto de relaciones sobre A, δ es un factor de puntuación basado en la confianza para cada argumento dado un agente determinado y P es el conjunto de agentes involucrados en la argumentación.

Instanciación del marco argumentativo

- Argumentos (A):
 - $\forall \alpha \in A, \ \alpha = (claim, support)$ donde *claim* es la conclusión del argumento y *support* es su soporte.
- Relaciones (R): $\exists r(\alpha_i, \alpha_j) \iff claim_i \neq claim_j$. En otras palabras, existirán relaciones de ataque entre todos los argumentos cuyo claim sea diferente.
- Puntuación basada en la confianza (δ):

$$\delta(\alpha, p) = \frac{1}{n_p + 1} \tag{3}$$

donde n_p es el número de mentiras realizadas por el agente $p \in P$.

• Agentes (P):

Finalmente el parámetro P del marco argumentativo consiste en una lista de todos los agentes que hayan participado en la conversación de un día determinado aportando como mínimo un argumento al diálogo.

- Introducción
 - Dominio
 - Objetivos
- 2 Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- 6 Resultados
- 6 Conclusiones

Heurística basada en la detección de mentiras: Aldeanos

- Si tiene rol único comprueba que nadie más revele ser ese rol
- Busca incongruencias entre los mensajes emitidos durante la conversación (e.g. dos revelaciones distintas por parte de un mismo agente)
- Si es acusado como miembro del equipo contrario
- Conan(SEER), Bob(POSSESSED):

Conan: DIVINED BOB POSSESSED

Bob: COMINGOUT BOB SEER

Conan: BECAUSE (AND (COMINGOUT BOB SEER) (DIVINED BOB

POSSESSED)) (REQUEST(VOTE BOB))

Heurística basada en la detección de mentiras: Werewolf

- Busca incongruencias entre los mensajes emitidos durante la conversación (e.g. dos revelaciones distintas por parte de un mismo agente) cuya fuente no sea compañero de equipo
- Si es acusado como miembro del equipo Werewolf
- Conan(POSSESSED), Bob(VILLAGER):

Bob: DIVINED CONAN POSSESSED

Conan: BECAUSE (DIVINED CONAN POSSESSED) (REQUEST(VOTE

BOB))

- Introducción
 - Dominio
 - Objetivos
- Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- 6 Resultados
- 6 Conclusiones

Resultados (I)

Primer experimento contra agentes de muestra (SampleAgent):

- Tercera posición
- 64% de partidas ganadas en el equipo WW (WW+PS)
- 36% de partidas ganadas en total

	BG	MD	PS	SE	VL	WW	TOTAL
Sample3	1/6	1/6	13/14	2/9	7/46	17/19	0.410
Sample7	2/4	4/12	8/9	0/8	5/47	18/20	0.370
DetectiveConan	0/7	0/5	9/13	0/4	8/50	19/21	0.360
Sample1	1/7	0/5	4/6	2/6	6/50	23/26	0.360
Sample14	1/7	1/9	5/5	0/2	11/58	18/19	0.360
Sample2	1/5	1/3	4/4	1/8	10/60	19/20	0.360
Sample8	0/9	1/7	6/6	2/6	6/47	20/25	0.350
Sample12	1/8	1/4	6/6	1/6	8/56	17/20	0.340
Sample11	3/7	1/5	8/8	1/11	6/52	14/17	0.330
Sample4	0/4	1/7	5/8	2/8	7/55	17/18	0.320
Sample13	1/3	2/8	6/6	0/5	8/62	13/16	0.300
Sample9	1/7	0/6	3/4	1/9	8/55	16/19	0.290
Sample5	0/9	0/8	1/1	0/8	10/53	17/21	0.280
Sample6	1/9	0/6	2/4	2/5	6/56	17/20	0.280
Sample10	1/8	1/9	6/6	0/5	6/53	13/19	0.270

Resultados (II)

Segundo experimento con todos los agentes iguales (DetectiveConan):

- 80% de partidas ganadas en el equipo WW (WW+PS)
- 33% de partidas ganadas en el equipo aldeano

	BG	MD	PS	SE	VL	WW
DetectiveConan	20/100	20/100	80/100	20/100	160/800	240/300

- Introducción
 - Dominio
 - Objetivos
- Modelado de oponentes
- Sistema argumentativo
 - Formalización del marco argumentativo
 - Instanciación del marco argumentativo
- 4 Heurística de negociación
 - Equipo Aldeanos
 - Equipo Werewolf
- 6 Resultados
- **6** Conclusiones

Conclusiones

- Evaluación compleja
- Buen comportamiento en el equipo de los hombres-lobo (mayor peso de la argumentación)
- Gran dependencia en el comportamiento de los demás agentes
- Decisiones aleatorias si no existe interacción por parte de los demás agentes

Trabajo futuro

- Integración del estimador de roles en el agente
- Minimizar la aleatoriedad en la toma de decisiones

Preguntas

Bibliografía

Trevor Bench-Capon.

Value based argumentation frameworks. *arXiv preprint cs/0207059*, 2002.

Trevor JM Bench-Capon.

Persuasion in practical argument using value-based argumentation frameworks.

Journal of Logic and Computation, 13(3):429–448, 2003.

Quoc V. Le and Tomas Mikolov.

Distributed representations of sentences and documents.

In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 1188–1196, 2014.