2389.ST25 SEQUENCE LISTING

<110> Waldman, Scott A. Park, Jason Schulz, Stephanie

<120> Compositions And Methods For Identifying And Targeting Cancer Cells Of Alimentary Canal Origin

<130> TJU2389

<150> 60/192,229

<151> 2000-03-27

<160> 2

<170> PatentIn version 3.0

<210> 1

<211> 1745

<212> DNA

<213> Homo sapiens

<400>

\400> 1						
gegeeeetge	, cagccttcaa	cgtcggtccc	caggcagcat	ggtgaggtct	gctcccggac	60
cctcgccacc	atgtacgtga	gctacctcct	ggacaaggac	gtgagcatgt	accctagctc	120
cgtgcgccac	tetggeggee	tcaacctggc	gccgcagaac	ttcgtcagcc	ccccgcagta	180
cccggactac	ggcggttacc	acgtggcggc	cgcagctgca	gcgcagaact	tggacagcgc	240
gcagtccccg	gggccatcct	ggccggcagc	gtatggcgcc	ccactccggg	aggactggaa	300
tggctacgcg	cccggaggcg	cggccgccgc	caacgccgtg	gctcacgcgc	tcaacggtgg	360
ctccccggcc	gcagccatgg	gctacagcag	ccccgcagac	taccatccgc	accaccaccc	420
gcatcaccac	ccgcaccacc	cggccgccgc	gccttcctgc	gcttctgggc	tgctgcaaac	480
gctcaacccc	ggccctcctg	ggcccgccgc	caccgctgcc	gccgagcagc	tgtctcccgg	540
cggccagcgg	cggaacctgt	gcgagtggat	gcggaagccg	gcgcagcagt	ccctcggcag	600
ccaagtgaaa	accaggacga	aagacaaata	tcgagtggtg	tacacggacc	accagcggct	660
ggagctggag	aaggagtttc	actacagtcg	ctacatcacc	atccggagga	aagccgagct	720
agccgccacg	ctggggctct	ctgagaggca	ggttaaaatc	tggtttcaga	accgcagagc	780
aaaggagagg	aaaatcaaca	agaagaagtt	gcagcagcaa	cagcagcagc	agccaccaca	840
gccgcctccg	ccgccaccac	agcctcccca	gcctcagcca	ggtcctctga	gaagtgtccc	900
agagcccttg	agtccggtgt	cttccctgca	agcctcagtg	tctggctctg	tccctggggt	960
tctggggcca	actggggggg	tgctaaaccc	caccgtcacc	cagtgaccca	ccggggtctg	1020
cagcggcaga	gcaattccag	gctgagccat	gaggagcgtg	gactctgcta	gactcctcag	1080
gagagacccc	tcccctccca	cccacagcca	tagacctaca	gacctggctc	tcagaggaaa	1140
aatgggagcc	aggagtaaga	caagtgggat	ttggggcctc	aagaaatata	ctctcccaga	1200
tttttacttt	ttccatctgg	ctttttctgc	cactgaggag	acagaaagcc	tccgctgggc	1260

Page 1

2389.ST25

ttcattccgg	actggcagaa	gcattgcctg	gactgaccac	accaaccagc	ttcatctatc	1320
cgactcttct	cttcctagat	ctgcaggctg	cacctctggc	tagagccgag	gggagagagg	1380
gactcaaggg	aaaggcaagc	ttgaggccaa	gatggctgct	gcctgctcat	ggccctcgga	1440
ggtccagctg	ggcctcctgc	ctccgggcag	caaggtttac	actgcggaac	gcaaaggcag	1500
ctaagataga	aagctggact	gaccaaagac	tgcagaaccc	ccaggtggcc	ctgcgtcttt	1560
tttctcttcc	ctttcccaga	ccaggaaagg	cttggctggt	gtatgcacag	ggtgtggtat	1620
gagggggtgg	ttattggact	ccaggcctga	ccagggggcc	cgaacaggac	ttgttagaga	1680
gcctgtcacc	agagettete	tgggctgaat	gtatgtcagt	gctataaatg	ccagagccaa	17,40
cctgg						1745

<210> 2 <211> 311 <212> PRT

<213> Homo sapiens

<400> 2

Met Tyr Val Ser Tyr Leu Leu Asp. Lys Asp Val Ser Met Tyr Pro Ser 1 5 10 15

Ser Val Arg His Ser Gly Gly Leu Asn Leu Ala Pro Gln Asn Phe Val 20 25 30

Ser Pro Pro Gln Tyr Pro Asp Tyr Gly Gly Tyr His Val Ala Ala Ala 35 40 45

Ala Ala Ala Gln Asn Leu Asp Ser Ala Gln Ser Pro Gly Pro Ser Trp 50 55 60

Pro Ala Ala Tyr Gly Ala Pro Leu Arg Glu Asp Trp Asn Gly Tyr Ala 65 70 75 80

Pro Gly Gly Ala Ala Ala Ala Asn Ala Val Ala His Ala Leu Asn Gly 85 90 95

Gly Ser Pro Ala Ala Ala Met Gly Tyr Ser Ser Pro Ala Asp Tyr His $100 \hspace{1cm} 105 \hspace{1cm} 110$

Pro His His Pro His His Pro His His Pro Ala Ala Pro 115 120 125

Ser Cys Ala Ser Gly Leu Leu Gln Thr Leu Asn Pro Gly Pro Pro Gly 130 135 140

Pro Ala Ala Thr Ala Ala Ala Glu Gln Leu Ser Pro Gly Gly Gln Arg 145 150 155 160

Arg Asn Leu Cys Glu Trp Met Arg Lys Pro Ala Gln Gln Ser Leu Gly 165 170 175

Ser Gln Val Lys Thr Arg Thr Lys Asp Lys Tyr Arg Val Val Tyr Thr 180 185

Asp His Gln Arg Leu Glu Leu Glu Lys Glu Phe His Tyr Ser Arg Tyr 195 200 205

Page 2

HOCLOSS. Casyla

2389.ST25

Ile Thr Ile Arg Arg Lys Ala Glu Leu Ala Ala Thr Leu Gly Leu Ser 210 215 220

Glu Arg Gln Val Lys Ile Trp Phe Gln Asn Arg Arg Ala Lys Glu Arg 225 230 235 240

Lys Ile Asn Lys Lys Lys Leu Gln Gln Gln Gln Gln Gln Gln Pro Pro 245 250

Gln Pro Pro Pro Pro Pro Pro Gln Pro Gln Pro Gln Pro Gln Pro Gly Pro 260 265 270

Leu Arg Ser Val Pro Glu Pro Leu Ser Pro Val Ser Ser Leu Gln Ala 275 280 280

Ser Val Ser Gly Ser Val Pro Gly Val Leu Gly Pro Thr Gly Gly Val 290 295 300

Leu Asn Pro Thr Val Thr Gln 305 310