

}

I think using the recursive solution to understand stack approach is a bit easier.

int[] count = new int[26];
char[] arr = s.toCharArray();
for(char c : arr) {

Intuition: It searching a word is hard,
why not just think of "how to find
the first character 11?
Of course, we want it as "small" as possible (a <b<c<d)< td=""></b<c<d)<>
(a <b<c<d)< td=""></b<c<d)<>
5[0~1-1] S[i] S[i+1~n-1]
2 X 2 4 X N-1
no x here No x Assume the first character is here. No x Here
here
It must satisfy min(S[Ovi-1])>x,
Observe =
In the stack solution, it will ALWAYS find

the leftmost X correctly.

Because it will pop out character y > X

if y still has characters after the leftmost X.

After pushing X into the stack,
X will NEVER be popped out again. (: visited[x] is true)
(And: Assume there is a character Z, that can
force X be popped out (i.e. XZZ) while maintaining
E Contain all unique choracters. This will contradict our assumption that x is the first smallest character)
After the first character is sucessfully found,
it is easy to see
finding the second character of s
finding the first character
of $SEi+1 \sim n-1$. replace $(X, "")$
G because visit [X] is true,
x will be totally ignored
just as if it does not exix