МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИЕТ ИМЕНИ П. О. СУХОГО

Кафедра «Электроснабжение»

ОТЧЁТ

по лабораторной работе №1 «измерительные трансформаторы напряжения и тока»

Выполнил: студент гр. ЭН-21

Лопухов И. Р. Принял: доцент Зализный Д. И. **Цель работы:** ознакомиться с назначением и конструкцией измерительных трансформаторов напряжения и тока, изучить схемы подключения, а также методы измерения амплитудной и фазовой погрешностей измерительных трансформаторов.

Исследование характеристик измерительного трансформатора напряжения в режиме холостого хода

1. Паспортные данные измерительного трансформатора напряжения приведены в таблице1.

Таблица 1

	КОЭФ. ТРАНСФОРМ.		$\frac{380}{100}$	$\frac{500}{100}$	$\frac{380 / \sqrt{3}}{100 / \sqrt{3}}$	$\frac{380}{100/\sqrt{3}}$	$\frac{500}{100 / \sqrt{3}}$	$\frac{380/\sqrt{3}}{100/3}$	$\frac{380}{100/3}$	$\frac{500}{100/3}$
$P_{\text{HOM}} VA$	КЛ.0,2	15	15	15	10	10	10	5	5	5
$cos \varphi$ $= 0.8$	КЛ.0,5	30	30	30	20	20	20	10	10	10

2. Сборка схемы в соответствии с рисунком 1.

Рисунок 1 - Схема исследование характеристик измерительного трансформатора напряжения в режиме холостого хода

3. Устанавливаем требуемые пределы измерения вольтметров. Регулятор ЛАТРа в положении минимум. Включение питания стенда и измерителя разности фаз. Устанавливаем с помощью ЛАТРа напряжение 220 В. Нажимаем кнопку «ф» на приборе Ф2-34, для самонастройки и ожидаем её окончания. Изменяем с помощью ЛАТРа напряжение от 0 до 220 В и записываем показания вольтметров

и измерителя разности фаз в таблицу 2. Установив регулятор ЛАТРа в минимум, отключаем питание стенда. Отключаем измеритель разности фаз.

Таблииа 2

	10000044 2												
	Измерения												
U_1, B	17	31	48	65	82	99	116	133	150	166	184	202	220
U_2, B	8	14	22	29	37,5	45	53	60,5	68	76	84	92	100
φ,°	1,6	0,75	0,4	0,27	0,17	0,13	0,1	0,09	0,08	0,08	0,07	-0,19	-0,16
	Расчёты												
$U_{2.p}$, B	7,7	14,1	21,8	29,5	37,3	45	52,7	60,5	68,2	75,5	83,6	91,8	100
f ,%	3,53	-0.65	0.83	-1.85	0.61	0	0.52	0.08	-0.27	0.72	0.43	0.2	0

4. Расчёт коэффициента трансформации испытуемого трансформатора напряжения.

$$K_{\rm T} = \frac{U_{\rm 1.H}}{U_{\rm 2.H}} = \frac{220}{100} = 2.2$$

5. Пример расчёта значения напряжения $U_{2,p}$ и амплитудную погрешность испытуемого трансформатора напряжения для каждого измерения.

$$U_{2.p} = \frac{U_1}{K_T} = \frac{17}{2.2} = 7.7 \text{ B}$$

$$f = \frac{U_2 - U_{2.p}}{U_{2.p}} = \frac{8 - 7.7}{7.7} \cdot 100\% = 3.53 \%$$

- 6. При изменении напряжения первичной обмотки в пределах (80%...120%) от $U_{1.H}=220~\mathrm{B}$, принимаем за амплитудную погрешность её максимальное значение в этом диапазоне f=0,43~%. Полученная амплитудная погрешность соответствует классу точности КЛ.0,5. Полученное значение класса точности превышает паспортное значения измерительного трансформатора при $P_{\text{ном}}=15~\mathrm{BA}$, равное КЛ.0,2.
- 7. При изменении напряжения первичной обмотки в пределах (0%...80%) от $U_{1.H}=220~\mathrm{B}$, принимаем за амплитудную погрешность её максимальное значение в этом диапазоне f=3,53~%. Полученная амплитудная погрешность превышает допустимую для класса точности КЛ.1.

Вывод по пунктам 6 и 7: при значениях напряжения (80%...120%) от $U_{1.H}$ точность трансформатора выше, чем при значениях (0%...80%) от $U_{1.H}$. При уменьшении напряжения от $U_{1.H}$, класс точности ухудшается.

- 8. При напряжении (80%...120%) от $U_{1.H}$ максимальная разность фаз составила -0,19 градусов или 11.4 минут, что соответствует классу точности КЛ.0,5. При напряжении (0%...80%) от $U_{1.H}$ максимальная разность фаз составила 1,6 градусов или 96 минут, что превышает допустимое значение для класса точности КЛ.1.
- 9. Передаточная характеристика измерительного трансформатора и определение погрешности нелинейности.

Передаточные характеристики проходят достаточно близко друг к другу поэтому графически определить максимальную разность вторичных напряжений не представляется возможным.

Определим максимальную разность аналитически. Определим модули разностей вторичных напряжений из таблицы 2 по формуле $\Delta U_2 = \left| U_{2,p} - U_2 \right|$ и занесём в таблицу 3.

Талица 3 U_1, B 17 31 99 133 150 166 184 202 220 82 116 ΔU_2 , B 0,27 0,09 0,18 0,55 0,23 0,27 0,05 0,18 0,55 0,36

Максимальная ΔU_2 составила 0,55 B, следовательно $\Delta U_{2.\text{нл}}=0$,55 B. Погрешность нелинейности равна:

$$f_{\text{hл.th}} = \frac{\Delta U_{2.\text{hл}}}{\Delta U_{2.\text{H}}} = \frac{0.55}{100} = 0.00545$$

Вывод о точности испытуемого трансформатора: основываясь на пунктах 6, 7, 8, делаем заключение что, при значениях напряжения U_1 равных (80%...120%) от $U_{1.H}$ в режиме холостого хода, измерительный трансформатор соответствует классу точности КЛ.0,5. При меньших значениях напряжения U_1 погрешность выходит за рамки класса точности КЛ.1.

10. Графики зависимостей амплитудной и разности фаз от напряжения первичной обмотки U_1 .

Полученные зависимости показывают, что чем ближе напряжение первичной обмотки измерительного трансформатора к номинальному значение, тем меньше амплитудная погрешность вторичного напряжения и разность фаз первичного и вторичного напряжения.

Исследование характеристик измерительного трансформатора напряжения под нагрузкой

1. Сборка схемы в соответствии с рисунком 1.

Рисунок 2 - Схема исследование характеристик измерительного трансформатора напряжения под нагрузкой ($R_{\rm H,TH}=100~{\rm OM}$)

2. Устанавливаем требуемые пределы измерения вольтметров. Регулятор ЛАТРа в положении минимум. Включение питания стенда и измерителя разности фаз. Устанавливаем с помощью ЛАТРа напряжение 220 В. Нажимаем кнопку «ф» на приборе Ф2-34, для самонастройки и ожидаем её окончания. Изменяем с помощью ЛАТРа напряжение от 0 до 220 В и записываем показания вольтметров

и измерителя разности фаз в таблицу 4. Установив регулятор ЛАТРа в минимум, отключаем питание стенда. Отключаем измеритель разности фаз.

Таблииа 4

	T et ostettiqu												
	Измерения												
U_1, B	17	31	48	65	82	99	116	133	150	166	184	202	220
U_2, B	8	14	22	29,5	37	45	52,5	60	67	74,5	82,5	91	99
φ,°	-1.14	-0.39	-0.27	-0.64	-0.43	-0.24	-0.18	-0.17	-0.13	-0.13	-0.08	-0.04	-0.06
	Расчёты												
$U_{2.p}$, B	7,7	14,1	21,8	29,5	37,3	45	52,7	60,5	68,2	75,5	83,6	91,8	100
f ,%	3.53	-0.65	0.83	-0.15	-0.73	0	-0.43	-0.75	-1,73	-1,27	-1,36	-0,89	-1

4. Расчёт коэффициента трансформации испытуемого трансформатора напряжения.

$$K_{\rm T} = \frac{U_{\rm 1.H}}{U_{\rm 2.H}} = \frac{220}{100} = 2.2$$

5. Пример расчёта значения напряжения $U_{2,p}$ и амплитудную погрешность испытуемого трансформатора напряжения для каждого измерения.

$$U_{2.p} = \frac{U_1}{K_T} = \frac{17}{2.2} = 7.7 \text{ B}$$

$$f = \frac{U_2 - U_{2.p}}{U_{2.p}} = \frac{8 - 7.7}{7.73} \cdot 100\% = 3.53 \%$$

- 6. При изменении напряжения первичной обмотки в пределах (80%...120%) от $U_{1.H}=220~\mathrm{B}$, принимаем за амплитудную погрешность её максимальное значение в этом диапазоне f=-1,36~%. Полученная амплитудная погрешность превышает допустимую для класса точности КЛ.1. Полученное значение класса точности превышает паспортное значения измерительного трансформатора при $P_{\text{ном}}=15~\mathrm{BA}$, равное КЛ.0,2.
- 7. При изменении напряжения первичной обмотки в пределах (0%...80%) от $U_{1.\rm H}=220~{\rm B}$, принимаем за амплитудную погрешность её максимальное значение в этом диапазоне f=3,53~%. Полученная амплитудная погрешность превышает допустимую для класса точности КЛ.1.

Вывод по пунктам 6 и 7: при значениях напряжения (80%...120%) от $U_{1.H}$ амплитудная погрешность меньше, чем при значениях (0%...80%) от $U_{1.H}$. При уменьшении напряжения от $U_{1.H}$, амплитудная погрешность увеличивается.

- 8. При напряжении (80%...120%) от $U_{1.H}$ максимальная разность фаз составила -0,08 градусов или 4,8 минуты, что соответствует классу точности КЛ.0,2. При напряжении (0%...80%) от $U_{1.H}$ максимальная разность фаз составила -1,14 градусов или 68,4 минут, что превышает допустимое значение для класса точности КЛ.1.
- 9. Передаточная характеристика измерительного трансформатора и определение погрешности нелинейности.

Передаточная характеристика

Передаточные характеристики проходят достаточно близко друг к другу поэтому графически определить максимальную разность вторичных напряжений не представляется возможным.

Определим максимальную разность аналитически. Определим модули разностей вторичных напряжений из таблицы 2 по формуле $\Delta U_2 = \left| U_{2,p} - U_2 \right|$ и занесём в таблицу 3.

Талица 5

							1						
U_1, B	17	31	48	65	82	99	116	133	150	166	184	202	220
ΔU_2 , B	0,27	0,09	0,18	0,5	0,27	0	0,23	0,45	1,18	0,95	1,14	0,82	1

Максимальная ΔU_2 составила 0,55 B, следовательно $\Delta U_{2.\text{нл}} = 1,18$ B. Погрешность нелинейности равна:

$$f_{\text{HЛ.TH}} = \frac{\Delta U_{2.\text{HЛ}}}{U_{2.\text{H}}} = \frac{1,18}{100} = 0.01182$$

Вывод о точности испытуемого трансформатора: основываясь на пунктах 6, 7, 8, делаем заключение что, при значениях напряжения U_1 равных (80%...120%) от $U_{1,H}$ в режиме работы под нагрузкой, измерительный трансформатор выходит за пределы класса точности KЛ.1. При меньших значениях напряжения U_1 погрешность также находится за пределами класса точности KЛ.1.

10. Графики зависимостей амплитудной и разности фаз от напряжения первичной обмотки U_1 .

Разность фаз ф от U1

Полученные зависимости показывают, что в режиме работы измерительного трансформатора напряжения под нагрузкой, амплитудная погрешность хоть и падает всё же остаётся достаточно большой для точных измерений. Разность фаз первичного и вторичного напряжения уменьшается с ростом первичного напряжения и при приближении его к $U_{1.\mathrm{H}}$ значение разности фаз приходит в допустимый диапазон.

Исследование характеристик измерительного трансформатора тока

1. Паспортные данные образцового и испытуемого измерительных трансформаторов тока.

Образцовый:

- первичные токи: 0.5; 1; 2,5; 5; 10; 25; 50 A
- вторичный ток: 5 А
- класс точности 0,1

Исследуемый:

- первичные токи: 3; 10; 30; 100; 150; 200; 300; 600
- вторичный ток: 5 А
- класс точности 0,2

2. Сборка схемы в соответствии с рисунком 1.

Рисунок 3 - Схема исследование характеристик измерительного трансформатора тока

3. Установка пределов измерения амперметров равными 5 А. ЛАТР в положение «Мин». Включение питания стенда. Изменяем напряжение с помощью ЛАТРа, записываем в таблицу 6 показания обоих амперметров. I_{PA1} — ток вторичной обмотки образцового трансформатора тока; I_{PA2} — ток вторичной обмотки испытуемого трансформатора тока.

Таблица 6

	Измерения												
I_{PA1} , A	0,5	0,52	0,75	1,3	1,67	2,05	2,45	2,85	3,34	3,7	3,93	4,6	4,97
I_{PA2} , A	0,5	0,5	0,75	1,3	1,67	2,05	2,45	2,85	3,32	3,7	3,93	4,6	4.97
	Расчёты												
I_1 , A	1	1.04	1.5	2.6	3.34	4.1	4.9	5.7	6.68	7.4	7.86	9.2	9.94
$I_{2,p}$, A	0,5	0,52	0,75	1,3	1,67	2,05	2,45	2,85	3,34	3,7	3,93	4,6	4,97
f ,%	0	-3,8	0	0	0	0	0	0	-0,6	0	0	0	0

4. Расчёт коэффициента трансформации образцового трансформатора тока.

$$K_{\text{T.ofp}} = \frac{I_{1.\text{H}}}{I_{2.\text{H}}} = \frac{10}{5} = 2$$

5. Пример расчёта значения тока, протекающего по первичным обмоткам трансформаторов тока.

$$I_1 = I_{PA1} \cdot K_{\text{T.ofp}} = 0.5 \cdot 2 = 1 \text{ A}$$

6. Рассчитайте коэффициент трансформации испытуемого трансформатора тока:

$$K_{\text{т.исп}} = \frac{I_{1.\text{H}}}{I_{2.\text{H}}} = \frac{10}{5} = 2$$

7. Пример определения расчётных значений тока вторичной обмотки испытуемого трансформатора тока.

$$I_{2.p} = \frac{I_1}{K_{\text{TMCII}}} = \frac{1}{2} = 0.5 \text{ A}$$

8. Пример расчёта амплитудной погрешности испытуемого трансформатора тока:

$$f = \frac{I_{2.\text{H}} - I_{2.\text{p}}}{I_{2.\text{p}}} \cdot 100 \% = \frac{0.5 - 0.5}{0.5} \cdot 100 \% = 0 \%$$

- 9. При изменении тока первичной обмотки испытуемого трансформатора тока в пределах от 80 % до 120 % от номинального значения, максимальная амплитудная погрешность составила 0 %, что говорит о соответствии заявленному классу точности 0,2 испытуемого трансформатора.
- 10. При изменении тока первичной обмотки испытуемого трансформатора тока в пределах от 0 % до 80 % от номинального значения, максимальная амплитудная погрешность составила 3,8 %. Значение амплитудной погрешности значительно выросло и трансформатор тока перестал соответствовать классу точности 0,2.
- 11. Передаточная характеристика измерительного трансформатора и определение погрешности нелинейности.

Передаточная характеристика

Передаточные характеристики проходят достаточно близко друг к другу поэтому графически определить максимальную разность вторичных токов не представляется возможным.

Определим максимальную разность аналитически. Определим модули разностей вторичных токов из таблицы 6 по формуле $\Delta I_2 = \left|I_{2,p} - I_{PA2}\right|$ и занесём в таблицу 7.

Талииа 7

													,
I_1 , A	1	1.04	1.5	2.6	3.34	4.1	4.9	5.7	6.68	7.4	7.86	9.2	9.94
ΔI_2 , A	0	0,02	0	0	0	0	0	0	0,02	0	0	0	0

Максимальная ΔI_2 составила 0,2 A, следовательно $\Delta I_{2.\text{нл}} = 0,02$ A. Погрешность нелинейности равна:

$$f_{\text{HJ.TT}} = \frac{\Delta I_{2.\text{HJ}}}{I_{2.\text{H}}} = \frac{0.02}{5} = 0.004$$

Вывод о точности испытуемого трансформатора: основываясь на пунктах 8, 9, 10, делаем заключение что, при значениях тока I_1 равных (80%...120%) от $I_{1.H}$, измерительный трансформатор соответствует заявленному классу точности KЛ.0,2. При меньших значениях напряжения I_1 трансформатор перестаёт соответствовать заявленному классу точности.

12. Графики зависимостей амплитудной погрешности от тока первичной обмотки I_1 .

Полученная зависимость показывает, что с уменьшением тока первичной обмотки трансформатора, амплитудная погрешность растёт.

Вывод: ознакомились с назначением и конструкцией измерительных трансформаторов напряжения и тока, изучили схемы подключения, а также методы измерения амплитудной и фазовой погрешностей измерительных трансформаторов.