

# UNIVERSITI TUNKU ABDUL RAHMAN

# Assignment

Faculty : Faculty of Science

**Unit Code**: UDPS2013

**Unit Title**: Numerical Methods

**Lecturer**: Yeoh Hong Beng

**Semester** : 2020/01

| Student Name | Student ID | Course |
|--------------|------------|--------|
| NGU YI HUI   | 18ADB01438 | SC     |
| LIM CHIEN AI | 17ADB04072 | SC     |

| Q1. (a)  Method Condition |                                                                                                               |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
| Withou                    | 1. f(x) is continuous at [a,b].                                                                               |  |  |  |
|                           | 2. f(a) and f(b) have opposite sign.                                                                          |  |  |  |
|                           | 3. The rate of convergence is slow.                                                                           |  |  |  |
|                           | 4. Bisection Method is not efficient because it might take                                                    |  |  |  |
| (i) Bisection Method      | _                                                                                                             |  |  |  |
|                           | many iterations to obtain a more accurate solution to $f(x)$ .                                                |  |  |  |
|                           |                                                                                                               |  |  |  |
|                           |                                                                                                               |  |  |  |
|                           | unintentionally discarded or by-passed.                                                                       |  |  |  |
|                           | 1. f(x) is continuous at [a,b].                                                                               |  |  |  |
|                           | 2. Two initial estimations $p_0$ and $p_1$ are close to the root $p$ .                                        |  |  |  |
| (II) T. I. D. M.          | 3. $f(p_0)*f(p_1) < 0$ ,                                                                                      |  |  |  |
| (ii) False-Position       | $f(p_0) \neq f(p_1).$                                                                                         |  |  |  |
| Method                    | 4. The rate of convergence is usually faster than Bisection                                                   |  |  |  |
|                           | Method.                                                                                                       |  |  |  |
|                           | 5. False- Position Method will converge faster if $f(x)$ is                                                   |  |  |  |
|                           | close to a straight line.                                                                                     |  |  |  |
|                           | 1. $f \in C^2[a,b]$ ,                                                                                         |  |  |  |
|                           | both $f(x)$ and $f'(x)$ are continuous at $[a,b]$ .                                                           |  |  |  |
|                           | 2. The initial approximation, p0 is closed to the root p.                                                     |  |  |  |
|                           | 3. $f'(p_0) \neq 0$ ,                                                                                         |  |  |  |
|                           | $ p-p_0 $ is small.                                                                                           |  |  |  |
| (iii)Newton's Method      | 4. $f'(n) \neq 0, n=1,2,3,$                                                                                   |  |  |  |
|                           | 5. f(x) is differentiable.                                                                                    |  |  |  |
|                           | 6. $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$                                                           |  |  |  |
|                           | shows that when the magnitude of $f'(p_{n-1})$ is large, it will                                              |  |  |  |
|                           | converge faster.                                                                                              |  |  |  |
|                           | 1. For x=g(x), f(x) is continuous at [a,b].                                                                   |  |  |  |
|                           | <ol> <li>g(x) ∈ [a,b].</li> </ol>                                                                             |  |  |  |
|                           | 3. $ g'(x)  \le k < 1$ .                                                                                      |  |  |  |
|                           | 4. Three initial estimations p <sub>0</sub> , p <sub>1</sub> , p <sub>2</sub> are close to the root p.        |  |  |  |
|                           | 5. If the fixed point iteration converges linearly,                                                           |  |  |  |
| (iv)Steffensen's          | Steffensen's Method will help increase the rate of                                                            |  |  |  |
| Method with               | convergence.                                                                                                  |  |  |  |
| Fixed Point               | 6. If g(x) is obtained by Newton Method, Steffensen's                                                         |  |  |  |
| <b>Iteration method</b>   | • • • • • • • • • • • • • • • • • • • •                                                                       |  |  |  |
|                           | Method will not help much on increasing efficiency.  7. This method applies a modification of Aitken's Method |  |  |  |
|                           |                                                                                                               |  |  |  |
|                           | to a linearly convergent sequence obtained from a fixed-<br>point iteration.                                  |  |  |  |
|                           | •                                                                                                             |  |  |  |
| (v) Secant Method         | 1. f(x) is continuous at [a,b].                                                                               |  |  |  |
| (v) Secant Method         | 2. Two initial estimations $p_0$ and $p_1$ are close to the root $p$ .                                        |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. $f(p_0)$ and $f(p_1)$ cannot be too close to each other,                    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | because it makes the secant line become flat.                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. f(x) is well-fitted by the straight line.                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. f(x) is continuous at [a,b].                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Three initial estimations $p_0$ , $p_1$ , $p_2$ are close to the root $p$ . |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. $p_1-p_0 \neq 0$ .                                                          |  |  |  |  |
| (vi)Muller's Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4. $p_1-p_2 \neq 0$ .                                                          |  |  |  |  |
| (vi) with the same of the same | 5. $p_0-p_2 \neq 0$ .                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. f(x) is well-fitted by a parabola or curve.                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7. Muller's Method will reduce estimation error for its next                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iteration.                                                                     |  |  |  |  |

Q1. (b)

$$f(x) = x^3 - 3x + 2$$



# I. Newton Method

$$f(x) = x^3 - 3x + 2$$

$$f'(x) = 3x^2 - 3$$

$$P_n = P_{n-1} - \frac{f(P_{n-1})}{f'(P_{n-1})}, n = 1, 2, 3...$$

$$g(P_n) = P_n - \frac{P_n^3 - 3P_n + 2}{3P_n^2 - 3}, n = 0,1,2....$$



For the simple root p = -2, we use point  $A = p_0 = -2.4$ ,

| n | p <sub>n</sub> | $p_{n+1}$    | Stop? 1 for 'Yes' and 0 for 'No' |
|---|----------------|--------------|----------------------------------|
| 0 | -2.400000000   | -2.076190476 | -                                |
| 1 | -2.076190476   | -2.003596011 | 0                                |
| 2 | -2.003596011   | -2.000008590 | 0                                |
| 3 | -2.000008590   | -2.000000000 | 0                                |
| 4 | -2.000000000   | -2.000000000 | 1                                |

 $p^* = -2.000000000$  (up to 8 decimal places)

number of iterations = 5

For the double root p = 1, we use point  $B = p_0 = 0.5$ ,

|    |             | -           | Stop? 1 for 'Yes' and 0 for |
|----|-------------|-------------|-----------------------------|
| n  | $p_{\rm n}$ | $p_{n+1}$   | 'No'                        |
| 0  | 0.500000000 | 0.77777778  | -                           |
| 1  | 0.77777778  | 0.893518519 | 0                           |
| 2  | 0.893518519 | 0.947757252 | 0                           |
| 3  | 0.947757252 | 0.974112168 | 0                           |
| 4  | 0.974112168 | 0.987112665 | 0                           |
| 5  | 0.987112665 | 0.993570263 | 0                           |
| 6  | 0.993570263 | 0.996788587 | 0                           |
| 7  | 0.996788587 | 0.998395155 | 0                           |
| 8  | 0.998395155 | 0.999197792 | 0                           |
| 9  | 0.999197792 | 0.999598950 | 0                           |
| 10 | 0.999598950 | 0.999799488 | 0                           |
| 11 | 0.999799488 | 0.999899747 | 0                           |
| 12 | 0.999899747 | 0.999949875 | 0                           |
| 13 | 0.999949875 | 0.999974937 | 0                           |
| 14 | 0.999974937 | 0.999987469 | 0                           |
| 15 | 0.999987469 | 0.999993734 | 0                           |
| 16 | 0.999993734 | 0.999996867 | 0                           |
| 17 | 0.999996867 | 0.999998434 | 0                           |
| 18 | 0.999998434 | 0.999999217 | 0                           |
| 19 | 0.999999217 | 0.999999608 | 0                           |
| 20 | 0.999999608 | 0.999999804 | 0                           |
| 21 | 0.999999804 | 0.999999902 | 0                           |
| 22 | 0.999999902 | 0.999999951 | 0                           |
| 23 | 0.999999951 | 0.999999976 | 0                           |
| 24 | 0.999999976 | 0.999999987 | 0                           |
| 25 | 0.999999987 | 0.99999998  | 0                           |
| 26 | 0.999999998 | 0.999999998 | 1                           |

p\* = 1.00000000 (up to 8 decimal places)

# II. Steffensen's Method with Fixed Point Iteration Method

$$f(x) = x^3 - 3x + 2$$

$$\hat{p}_n = p - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n} , n = 0,1,2,...$$

$$g(p_n) = p_n - \frac{p_n^3 - 3p_n + 2}{3p_n^2 - 3} , n = 0,1,2,...$$



For the simple root p = -2, we use point  $A = p_0 = -2.4$ ,

| $p_n$        | $g(p_n)$     | p <sub>n</sub> (cap) - Aitken Method | Stop? 1 - 'Yes"; 0 - 'No' |
|--------------|--------------|--------------------------------------|---------------------------|
| -2.400000000 | -2.076190476 | 1                                    | 1                         |
| -2.076190476 | -2.003596011 | 1                                    | 0                         |
| -2.003596011 | -            | -1.982618142                         | 0                         |
| -1.982618142 | -2.000204982 | •                                    | 0                         |
| -2.000204982 | -2.000000028 | 1                                    | 0                         |
| -2.000000028 | -            | -2.000002389                         | 0                         |
| -2.000002389 | -2.000000000 | 1                                    | 0                         |
| -2.000000000 | -2.000000000 | -                                    | 0                         |
| -2.000000000 |              |                                      | 1                         |

 $p^* = -2.00000000$  (up to 8 decimal places)

For the double root p = 1, we use point  $B = p_0 = 0.5$ ,

| p <sub>n</sub> | g(p <sub>n</sub> ) | p <sub>n</sub> (cap) - Aitken Method | Stop? 1 - 'Yes"; 0 - 'No' |
|----------------|--------------------|--------------------------------------|---------------------------|
| 0.500000000    | 0.77777778         | -                                    | -                         |
| 0.77777778     | 0.893518519        | -                                    | 0                         |
| 0.893518519    | -                  | 0.976190476                          | 0                         |
| 0.976190476    | 0.988143048        | -                                    | 0                         |
| 0.988143048    | 0.994083310        | -                                    | 0                         |
| 0.994083310    | -                  | 0.999952385                          | 0                         |
| 0.999952385    | 0.999976193        | -                                    | 0                         |

| 0.999976193 | 0.999988096 | -           | 0 |
|-------------|-------------|-------------|---|
| 0.999988096 | -           | 1.000000000 | 0 |
| 1.000000000 | 1.000000000 | -           | 0 |
| 1.000000000 |             |             | 1 |

p\* = 1.00000000 (up to 8 decimal places)

# III. Secant Method

$$f(x) = x^3 - 3x + 2$$

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$
 ,  $n = 2,3,...$ 



For the simple root p = -2, we use  $p_0 = -2.4 \& p_1 = -1.5$ ,

| n | $p_{n-2}$    | $p_{n-1}$    | $p_{\rm n}$  | Stop? 1 for 'Yes' and 0 for 'No' |
|---|--------------|--------------|--------------|----------------------------------|
| 2 | -2.400000000 | -1.500000000 | -1.862950058 | 0                                |
| 3 | -1.500000000 | -1.862950058 | -2.066635623 | 0                                |
| 4 | -1.862950058 | -2.066635623 | -1.993697173 | 0                                |
| 5 | -2.066635623 | -1.993697173 | -1.999728243 | 0                                |
| 6 | -1.993697173 | -1.999728243 | -2.000001146 | 0                                |
| 7 | -1.999728243 | -2.000001146 | -2.000000000 | 0                                |
| 8 | -2.000001146 | -2.000000000 | -2.000000000 | 1                                |

 $p^* = -2.00000000$  (up to 8 decimal places)



For the double root p = 1, we use  $p_0 = 0.5 \& p_1 = 0.95$ ,

|    |             |             |             | Stop? 1 for 'Yes' and 0 for |
|----|-------------|-------------|-------------|-----------------------------|
| n  | $p_{n-2}$   | $p_{n-1}$   | $p_n$       | 'No'                        |
| 2  | 0.500000000 | 0.950000000 | 0.955373406 | 0                           |
| 3  | 0.950000000 | 0.955373406 | 0.976609475 | 0                           |
| 4  | 0.955373406 | 0.976609475 | 0.984733193 | 0                           |
| 5  | 0.976609475 | 0.984733193 | 0.990791186 | 0                           |
| 6  | 0.984733193 | 0.990791186 | 0.994267017 | 0                           |
| 7  | 0.990791186 | 0.994267017 | 0.996470869 | 0                           |
| 8  | 0.994267017 | 0.996470869 | 0.997817164 | 0                           |
| 9  | 0.996470869 | 0.997817164 | 0.998651945 | 0                           |
| 10 | 0.997817164 | 0.998651945 | 0.999166849 | 0                           |
| 11 | 0.998651945 | 0.999166849 | 0.999485174 | 0                           |
| 12 | 0.999166849 | 0.999485174 | 0.999681833 | 0                           |
| 13 | 0.999485174 | 0.999681833 | 0.999803372 | 0                           |
| 14 | 0.999681833 | 0.999803372 | 0.999878480 | 0                           |
| 15 | 0.999803372 | 0.999878480 | 0.999924898 | 0                           |
| 16 | 0.999878480 | 0.999924898 | 0.999953585 | 0                           |
| 17 | 0.999924898 | 0.999953585 | 0.999971314 | 0                           |
| 18 | 0.999953585 | 0.999971314 | 0.999982271 | 0                           |
| 19 | 0.999971314 | 0.999982271 | 0.999989043 | 0                           |
| 20 | 0.999982271 | 0.999989043 | 0.999993228 | 0                           |
| 21 | 0.999989043 | 0.999993228 | 0.999995815 | 0                           |
| 22 | 0.999993228 | 0.999995815 | 0.999997413 | 0                           |
| 23 | 0.999995815 | 0.999997413 | 0.999998401 | 0                           |
| 24 | 0.999997413 | 0.999998401 | 0.999999012 | 0                           |
| 25 | 0.999998401 | 0.999999012 | 0.999999389 | 0                           |
| 26 | 0.999999012 | 0.999999389 | 0.999999623 | 0                           |
| 27 | 0.999999389 | 0.999999623 | 0.999999767 | 0                           |
| 28 | 0.999999623 | 0.999999767 | 0.999999856 | 0                           |
| 29 | 0.999999767 | 0.999999856 | 0.99999911  | 0                           |
| 30 | 0.999999856 | 0.999999911 | 0.99999945  | 0                           |
| 31 | 0.999999911 | 0.999999945 | 0.99999966  | 0                           |
| 32 | 0.999999945 | 0.999999966 | 0.999999979 | 0                           |

| 33 | 0.999999966 | 0.999999979 | 0.999999987 | 0 |
|----|-------------|-------------|-------------|---|
| 34 | 0.999999979 | 0.999999987 | 0.999999995 | 0 |
| 35 | 0.999999987 | 0.999999995 | 0.999999995 | 1 |

p\* = 1.00000000 (up to 8 decimal places)

#### IV. Muller Methods

$$f(x) = x^3 - 3x + 2$$

$$c = f(P_n), n = 2,3,4,...$$

$$b = \frac{(P_{n-2} - P_n)^2 [f(P_{n-1}) - f(P_n)] - (P_{n-1} - P_n)^2 [f(P_{n-2}) - f(P_n)]}{(P_{n-2} - P_n)(P_{n-1} - P_n)(P_{n-2} - P_{n-1})}, n = 2,3,4,...$$

$$a = \frac{(P_{n-1} - P_n) [f(P_{n-2}) - f(P_n)] - (P_{n-2} - P_n) [f(P_{n-1}) - f(P_n)]}{(P_{n-2} - P_n)(P_{n-1} - P_n)(P_{n-2} - P_{n-1})}, n = 2,3,4,...$$

$$P_{n+1} = P_n - \frac{2c}{b + (sign(b))\sqrt{b^2 - 4ac}}, n = 2,3,4,...$$



For double root p = -2, we use  $P_0 = -2.4$ ,  $P_1 = -1.5$ ,  $P_2 = -2.5$ ,

| n | $p_{n-2}$    | $p_{n-1}$    | $p_{\rm n}$  | a            | b            |
|---|--------------|--------------|--------------|--------------|--------------|
| 2 | -2.400000000 | -1.500000000 | -2.500000000 | -6.400000000 | 15.650000000 |
| 3 | -1.500000000 | -2.500000000 | -2.010731134 | -6.010731134 | 9.379003928  |
| 4 | -2.500000000 | -2.010731134 | -2.000289976 | -6.511021110 | 8.998262413  |
| 5 | -2.010731134 | -2.000289976 | -1.999999827 | -6.011020937 | 8.999994811  |
| 6 | -2.000289976 | -1.999999827 | -2.000000000 | -6.000278459 | 9.000000003  |

| n | С            | $p_{n+1}$    | Stop the iteration? |
|---|--------------|--------------|---------------------|
| 2 | -6.125000000 | -2.010731134 | -                   |
| 3 | -0.097272389 | -2.000289976 | 0                   |
| 4 | -0.002610289 | -1.999999827 | 0                   |
| 5 | 0.000001557  | -2.000000000 | 0                   |
| 6 | 0.000000000  | -2.000000000 | 1                   |

 $p^* = -2.000000000$  (up to 8 decimal places)



For double root p = 1, we use  $P_0 = 0.5$ ,  $P_1 = 0.95$ ,  $P_2 = 0.4$ ,

| n  | p <sub>n-2</sub> | $p_{n-1}$   | p <sub>n</sub> | a           | b            |
|----|------------------|-------------|----------------|-------------|--------------|
| 2  | 0.500000000      | 0.950000000 | 0.400000000    | 1.850000000 | -2.575000000 |
| 3  | 0.950000000      | 0.400000000 | 0.964364288    | 2.314364288 | -0.218111250 |
| 4  | 0.400000000      | 0.964364288 | 0.987116550    | 2.351480838 | -0.090160978 |
| 5  | 0.964364288      | 0.987116550 | 0.993770444    | 2.945251282 | -0.037456580 |
| 6  | 0.987116550      | 0.993770444 | 0.999135381    | 2.980022376 | -0.005249949 |
| 7  | 0.993770444      | 0.999135381 | 0.999862780    | 2.992768605 | -0.000827697 |
| 8  | 0.999135381      | 0.999862780 | 0.999985312    | 2.998983475 | -0.000088234 |
| 9  | 0.999862780      | 0.999985312 | 0.999999260    | 2.999847219 | -0.000004444 |
| 10 | 0.999985312      | 0.999999260 | 0.999999977    | 2.999973783 | -0.00000136  |

| n  | С           | $p_{n+1}$   | Stop the iteration? |
|----|-------------|-------------|---------------------|
| 2  | 0.864000000 | 0.964364288 | -                   |
| 3  | 0.003764458 | 0.987116550 | 0                   |
| 4  | 0.000495811 | 0.993770444 | 0                   |
| 5  | 0.000116180 | 0.999135381 | 0                   |
| 6  | 0.000002242 | 0.999862780 | 0                   |
| 7  | 0.000000056 | 0.999985312 | 0                   |
| 8  | 0.000000001 | 0.999999260 | 0                   |
| 9  | 0.000000000 | 0.999999977 | 0                   |
| 10 | 0.000000000 | 0.999999977 | 1                   |

 $p^* = 0.99999998$  (up to 8 decimal places)

Q1. (c)
Comment on efficiency:

| Dog                 | ot Finding Mothod | Number of iteration          | Number of iteration       |  |
|---------------------|-------------------|------------------------------|---------------------------|--|
| Root Finding Method |                   | to find simple root $p = -2$ | to find double root p = 1 |  |
| I.                  | Newton Method     | 5                            | 27                        |  |
| III.                | Secant Method     | 7                            | 34                        |  |
| IV.                 | Muller Methods    | 5                            | 9                         |  |

For finding the simple root p = -2, Muller Methods and Newton Method are both having the least number of iteration to obtain the approximate solution. Secant Method has gone through 7 iterations which is slightly more than Newton Method.

For finding the double root p = 1, Muller Methods is the most efficient method which only uses 9 iterations to obtain the solution. It is followed by Newton Method and Secant Method the last.

For the overall performance, Muller Method is considered as the most efficient method in this example because it is suitable to determine the approximated solution for a parabola or a curve.

| <b>Root Finding Method</b> | Number of iteration          | Number of iteration       |  |
|----------------------------|------------------------------|---------------------------|--|
| Root Finding Method        | to find simple root $p = -2$ | to find double root p = 1 |  |
| I. Newton Method           | 5                            | 27                        |  |
| II. Steffensen's           |                              |                           |  |
| Method (Newton             | 6                            | 7                         |  |
| Method)                    |                              |                           |  |

For finding the simple root p = -2, Steffensen's Method does not help to increase the rate of convergence as it uses 6 iterations compared with Newton Method which only uses 5 iterations.

For finding the double root p = 1, Steffensen's Method successfully increases the rate of convergence by using 7 iterations to obtain the solution rather than using 27 iterations.

| Lagrange<br>Polynomial                                                              | Newton Divided-<br>Difference<br>Polynomial | Hermite Polynomial                                                                                           | Cubic Spline<br>Polynomial                                                                                               |
|-------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| It passes through<br>all the data points<br>available over an<br>interval.          | all the data points                         | It passes through all<br>the data points<br>available over an<br>interval.                                   | It passes through all the data points available over an interval.                                                        |
| All the data points are not required to be sorted out with respect to coordinate x. |                                             | All the data points are not required to be sorted out with respect to coordinate x.                          | All the data points are required to be sorted out with respect to coordinate x.                                          |
| -                                                                                   | -                                           | First derivative of Hermite polynomial is the same as the first derivative of f(x) at all data points given. | It involves the piecewise-polynomial approximation where the cubic polynomial is used for each successive pair of nodes. |

#### (i) Divded Difference Table:

|         |         | First       | Second      | Third       | Forth       | Fifth       |
|---------|---------|-------------|-------------|-------------|-------------|-------------|
| X       | f(x)    | Divided     | Divided     | Divided     | Divided     | Divided     |
|         |         | Differences | Differences | Differences | Differences | Differences |
| 0.00000 | 1.00000 |             |             |             |             |             |
|         |         | 1.10700     |             |             |             |             |
| 0.20000 | 1.22140 |             | 0.61275     |             |             |             |
|         |         | 1.35210     |             | 0.22625     |             |             |
| 0.40000 | 1.49182 |             | 0.74850     |             | 0.06198     |             |
|         |         | 1.65150     |             | 0.27583     |             | 2.46927     |
| 0.60000 | 1.82212 |             | 0.91400     |             | 2.53125     |             |
|         |         | 2.01710     |             | 2.30083     |             |             |
| 0.80000 | 2.22554 |             | 2.29450     |             |             |             |
|         |         | 2.93490     |             |             |             |             |
| 1.00000 | 2.81252 |             |             |             |             |             |

(ii)

#### 1. Newton's Forward-Difference

$$f(0.1) = P_5(0 + 0.1)$$
  
 $h = 0.2, sh = s(0.2) = 0.1$   $\Rightarrow s = 0.5$ 

$$P_5(0+0.1) = 1.00000 + 0.1(1.10700) + 0.2^2(0.5)(-0.5)(0.61275)$$

$$+0.2^3(0.5)(-0.5)(-1.5)(0.22625)$$

$$+0.2^4(0.5)(-0.5)(-1.5)(-2.5)(0.06198)$$

$$+0.2^5(0.5)(-0.5)(-1.5)(-2.5)(-3.5)(2.46927)$$

$$= 1.10775$$

### 2. Newton's Centrered-Difference

$$f(0.45) = P_5(0.4 + 0.05)$$
  
 $h = 0.2, sh = s(0.2) = 0.05 \implies s = 0.25$ 

$$P_n(0.4 + 0.05) = 1.49182 + 0.05 \left(\frac{1.35210 + 1.65150}{2}\right) + 0.25^2(0.2^2)(0.74850)$$
$$+0.25(0.25^2 - 1)(0.2^3) \left(\frac{0.22625 + 0.27583}{2}\right)$$
$$+0.25^2(0.2^4)(0.25^2 - 1)(0.06198)$$

# 3. Newton's Backward-Difference

$$f(0.9) = P_5(1 - 0.1)$$
  
 $h = 0.2, sh = s(0.2) = -0.1$   $\Rightarrow s = -0.5$ 

$$P_5(1-0.1) = 2.81252 - 0.1(2.93490) + 0.2^2(-0.5)(0.5)(2.29450)$$

$$+0.2^3(-0.5)(0.5)(1.5)(2.30083)$$

$$+0.2^4(-0.5)(0.5)(1.5)(2.5)(2.53125)$$

$$+0.2^5(-0.5)(0.5)(1.5)(2.5)(3.5)(2.46927)$$

$$= 2.48279$$

Q3.

$$7x_1 - 2x_2 + x_3 + 2x_4 = 3$$

$$2x_1 + 8x_2 + 3x_3 + x_4 = -2$$

$$-x_1 + 5x_3 + 2x_4 = 5$$

$$2x_2 - x_3 + 4x_4 = 4$$

# (a) Jacobi Method

$$\begin{split} X_1^{(k)} &= \frac{1}{7} \left[ 2X_2^{(k-1)} - X_3^{(k-1)} - 2X_4^{(k-1)} + 3 \right] \\ X_2^{(k)} &= \frac{1}{8} \left[ -2X_1^{(k-1)} - 3X_3^{(k-1)} - X_4^{(k-1)} - 2 \right] \\ X_3^{(k)} &= \frac{1}{5} \left[ X_1^{(k-1)} - 2X_4^{(k-1)} + 5 \right] \\ X_4^{(k)} &= \frac{1}{4} \left[ -2X_2^{(k-1)} + X_3^{(k-1)} + 4 \right] \end{split}$$

where k = 1, 2, 3, ...

| n  | $X_1^{(k)}$ | $X_2^{(k)}$ | $X_3^{(k)}$ | $X_4^{(k)}$ | Stop iteration? '1' for Yes, '0' for No. |
|----|-------------|-------------|-------------|-------------|------------------------------------------|
| 0  | 0.00000     | 0.00000     | 0.00000     | 0.00000     | -                                        |
| 1  | 0.42857     | -0.25000    | 1.00000     | 1.00000     | 0                                        |
| 2  | -0.07143    | -0.85714    | 0.68571     | 1.37500     | 0                                        |
| 3  | -0.30714    | -0.66116    | 0.43571     | 1.60000     | 0                                        |
| 4  | -0.27972    | -0.53661    | 0.29857     | 1.43951     | 0                                        |
| 5  | -0.17869    | -0.47197    | 0.36825     | 1.34295     | 0                                        |
| 6  | -0.14258    | -0.51129    | 0.42708     | 1.32805     | 0                                        |
| 7  | -0.15797    | -0.54052    | 0.44026     | 1.36242     | 0                                        |
| 8  | -0.17802    | -0.54591    | 0.42344     | 1.38032     | 0                                        |
| 9  | -0.18227    | -0.53683    | 0.41227     | 1.37881     | 0                                        |
| 10 | -0.17765    | -0.53138    | 0.41202     | 1.37148     | 0                                        |
| 11 | -0.17396    | -0.53153    | 0.41588     | 1.36870     | 0                                        |
| 12 | -0.17376    | -0.53355    | 0.41773     | 1.36973     | 0                                        |
| 13 | -0.17490    | -0.53442    | 0.41735     | 1.37121     | 0                                        |
| 14 | -0.17552    | -0.53418    | 0.41654     | 1.37155     | 0                                        |
| 15 | -0.17543    | -0.53377    | 0.41628     | 1.37123     | 0                                        |
| 16 | -0.17518    | -0.53365    | 0.41642     | 1.37095     | 0                                        |
| 17 | -0.17509    | -0.53373    | 0.41658     | 1.37093     | 0                                        |
| 18 | -0.17513    | -0.53381    | 0.41661     | 1.37101     | 0                                        |
| 19 | -0.17518    | -0.53382    | 0.41657     | 1.37106     | 1                                        |
| 20 | -0.17519    | -0.53380    | 0.41654     | 1.37105     | 1                                        |
| 21 | -0.17518    | -0.53379    | 0.41654     | 1.37104     | 1                                        |
| 22 | -0.17517    | -0.53379    | 0.41655     | 1.37103     | 1                                        |
| 23 | -0.17517    | -0.53379    | 0.41655     | 1.37103     | 1                                        |

$$X_1 = -0.1752, X_2 = -0.5338, X_3 = 0.4166, X_4 = 1.3710$$

# (b) Gauss Seidel Method

$$\begin{split} X_1^{(k)} &= \frac{1}{7} \left[ 2X_2^{(k-1)} - X_3^{(k-1)} - 2X_4^{(k-1)} + 3 \right] \\ X_2^{(k)} &= \frac{1}{8} \left[ -2X_1^{(k)} - 3X_3^{(k-1)} - X_4^{(k-1)} - 2 \right] \\ X_3^{(k)} &= \frac{1}{5} \left[ X_1^{(k)} - 2X_4^{(k-1)} + 5 \right] \\ X_4^{(k)} &= \frac{1}{4} \left[ -2X_2^{(k)} + X_3^{(k)} + 4 \right] & \text{where } k = 1, 2, 3, \dots. \end{split}$$

| n  | $X_1^{(k)}$ | $X_2^{(k)}$ | $X_3^{(k)}$ | $X_4^{(k)}$ | Stop iteration? '1' for Yes, '0' for No. |
|----|-------------|-------------|-------------|-------------|------------------------------------------|
| 0  | 0.00000     | 0.00000     | 0.00000     | 0.00000     | -                                        |
| 1  | 0.42857     | -0.35714    | 1.08571     | 1.45000     | 0                                        |
| 2  | -0.24286    | -0.77768    | 0.37143     | 1.48170     | 0                                        |
| 3  | -0.27003    | -0.50699    | 0.35332     | 1.34182     | 0                                        |
| 4  | -0.15014    | -0.51269    | 0.43324     | 1.36465     | 0                                        |
| 5  | -0.16970    | -0.54062    | 0.42020     | 1.37536     | 0                                        |
| 6  | -0.17888    | -0.53477    | 0.41408     | 1.37091     | 0                                        |
| 7  | -0.17506    | -0.53288    | 0.41662     | 1.37059     | 0                                        |
| 8  | -0.17480    | -0.53386    | 0.41680     | 1.37113     | 0                                        |
| 9  | -0.17525    | -0.53388    | 0.41650     | 1.37106     | 0                                        |
| 10 | -0.17520    | -0.53377    | 0.41654     | 1.37102     | 0                                        |
| 11 | -0.17516    | -0.53379    | 0.41656     | 1.37103     | 1                                        |
| 12 | -0.17517    | -0.53380    | 0.41655     | 1.37104     | 1                                        |
| 13 | -0.17517    | -0.53379    | 0.41655     | 1.37103     | 1                                        |
| 14 | -0.17517    | -0.53379    | 0.41655     | 1.37103     | 1                                        |

$$X_1 = -0.1752, X_2 = -0.5338, X_3 = 0.4166, X_4 = 1.3710$$

### (c) Successive Over-Relaxation Method (SOR)

$$\begin{split} X_1^{(k)} &= 0.8 [ \ \frac{1}{7} \ (2X_2^{(k-1)} - X_3^{(k-1)} - 2X_4^{(k-1)} + 3)] + 0.2 \ x_1^{(k-1)} \\ X_2^{(k)} &= 0.8 [ \ \frac{1}{8} \ (-2X_1^{(k)} - 3X_3^{(k-1)} - X_4^{(k-1)} - 2)] + 0.2 \ x_2^{(k-1)} \\ X_3^{(k)} &= 0.8 [ \ \frac{1}{5} \ (X_1^{(k)} - 2X_4^{(k-1)} + 5)] + 0.2 \ x_3^{(k-1)} \\ X_4^{(k)} &= 0.8 [ \ \frac{1}{4} \ (-2X_2^{(k)} + X_3^{(k)} + 4)] + 0.2 \ x_4^{(k-1)} \end{split} \qquad \text{where } k = 1, 2, 3, \dots$$

| n  | $X_1^{(k)}$ | $X_2^{(k)}$ | $X_3^{(k)}$ | $X_4^{(k)}$ | Stop iteration? '1' for Yes, '0' for No. |
|----|-------------|-------------|-------------|-------------|------------------------------------------|
| 0  | 0.00000     | 0.00000     | 0.00000     | 0.00000     | -                                        |
| 1  | 0.34286     | -0.26857    | 0.85486     | 1.07840     | 0                                        |
| 2  | 0.00585     | -0.61918    | 0.62682     | 1.38872     | 0                                        |
| 3  | -0.18656    | -0.61344    | 0.45113     | 1.41335     | 0                                        |
| 4  | -0.20928    | -0.55751    | 0.40447     | 1.38657     | 0                                        |
| 5  | -0.18958    | -0.53358    | 0.40686     | 1.37212     | 0                                        |
| 6  | -0.17715    | -0.53056    | 0.41395     | 1.36944     | 0                                        |
| 7  | -0.17417    | -0.53241    | 0.41670     | 1.37019     | 0                                        |
| 8  | -0.17448    | -0.53362    | 0.41696     | 1.37088     | 0                                        |
| 9  | -0.17500    | -0.53390    | 0.41671     | 1.37108     | 0                                        |
| 10 | -0.17519    | -0.53386    | 0.41657     | 1.37107     | 0                                        |
| 11 | -0.17520    | -0.53381    | 0.41654     | 1.37105     | 0                                        |
| 12 | -0.17518    | -0.53379    | 0.41654     | 1.37103     | 1                                        |
| 13 | -0.17517    | -0.53379    | 0.41655     | 1.37103     | 1                                        |
| 14 | -0.17517    | -0.53379    | 0.41655     | 1.37103     | 1                                        |

$$X_1 = -0.1752, X_2 = -0.5338, X_3 = 0.4165, X_4 = 1.3710$$

Number of Iterations = 12

| Method                            | No. of iteration required |
|-----------------------------------|---------------------------|
| Jacobi method                     | 19                        |
| Gauss-Seidel method               | 11                        |
| Successive Over-Relaxation method | 12                        |

From the table above, we conclude that the Gauss-Seidel method is the most efficient method among the three methods. This is because the number of iteration required for Gauss-Seidel method is the least compare with others. In another word, Gauss-Seidel method converges faster compared with Jacobi method and the Successive Over-Relaxation method. Furthermore, the Successive Over-Relaxation method is more efficient than the Jacobi method as it requires lesser iteration to obtain the solution.

Moreover, we also conclude that the efficiency for Gauss-Seidel method and Successive Over-Relaxation method is almost the same. It is because the  $\omega$  that used to calculate the SOR method is close to 1.