

Teoria das Filas - Lista de Exercícios: 02

Segunda Feira, 11 de maio de 2015

rupo:	ee
dis a b	lm lava rápido Automático funciona com somente uma baia. Os carros chegam, conforme uma stribuição de Poisson, em média a cada 12 minutos e podem esperar no estacionamento oferecido se paia estiver ocupada. O tempo para lavar um carro segue uma distribuição exponencial, com média de
	ninutos. Carros que não conseguem vaga no estacionamento podem esperar na rua onde está situado
	ava rápido. Isso significa que, de fato, na prática, não há limite para o tamanho do sistema. Determine o percentual de ociosidade da baia de lavagem.
(ii)	Determine a probabilidade de um carro que chega não ter que esperar no estacionamento antes de entrar na baia de lavagem.
(iii) Se houver seis vagas no estacionamento, determine a probabilidade de que um carro que chega achar uma vaga.
(iv)	Quantas vagas devem ser oferecidas, no estacionamento, para que um carro que chega tenha menos de 1% de probabilidade de não encontrar uma vaga.
(v)	Quantos minutos, em média, podem ser gastos para lavar um carro se o tempo de espera na fila for fixado em no máximo 15 minutos, em média se a taxa de chegadas não se alterar. (Resolva numérica e analiticamente).

Teoria das Filas - Lista de Exercícios: 02

Segunda Feira, 11 de maio de 2015

02.	Suponhamos que as pessoas chegam a uma cabine telefônica a um ritmo médio de 3 minutos e 48 segundos, tentando utilizar o telefone. A duração média de um telefonema é de 3 minutos 12 segundos
	e segue uma distribuição exponencial. Determine:
	(i) Qual a probabilidade de uma pessoa chegar à cabine e ter que esperar?
	(ii) Qual o número médio de pessoas na fila?
	(iii) Qual o número médio de pessoas no sistema?
	(iv) Qual o número médio de clientes usando o telefone?
	(v) Qual o tempo médio de fila?
	(vi) Para que taxa de chegadas o tempo médio de espera será de aproximadamente 3 minutos?
	(vii) Qual a probabilidade de que existam mais de 5 pessoas na fila?

O3. Carros chegam a um posto de troca de óleo em média a cada 0,25 horas segundo uma distribuição de Poisson. O tempo para executar a troca de óleo é exponencial com média de 0,20 horas.

Teoria das Filas - Lista de Exercícios: 02

Segunda Feira, 11 de maio de 2015

(i)	Determine a probabilidade de que existam mais de três carros esperando pelo único mecânico disponível para executar o serviço.
(ii)	Qual a probabilidade de que um cliente tenha que esperar mais de 10 minutos pelo serviço?
(iii)	Qual é o a média e o desvio padrão do número de clientes no sistema?
(iv)	Qual a probabilidade de que um cliente tenha que esperar mais de 10 minutos pelo serviço?
res min	saída do estacionamento de um Shopping Center é controlada por um único operador que é o ponsável pela cobrança do estacionamento. Os carros chegam ao guichê a uma média de 3 por uto segundo uma distribuição de Poisson. O operador gasta, em média, 15 segundos por cliente para cessar o pagamento segundo uma distribuição exponencial. Determine:
(i)	Qual a probabilidade de existam mais do que 4 carros na fila?
(ii)	Qual o desvio padrão do número de carros na fila?
(iii) Qual o tempo médio gasto para sair do Shopping?

Teoria das Filas - Lista de Exercícios: 02

Segunda Feira, 11 de maio de 2015

(iv) Qual a probabilidade de um cliente chegar e encontrar o operador desocupado?

(v) Qual a probabilidade de gastar mais do que 5 minutos na fila?

05. Queremos determinar a taxa máxima de chamadas por minuto que pode ser suportado por uma pequena central telefônica. Assume-se que o tempo médio de uma conversa telefônica é de 3 minutos e que um tempo de espera (em média) não maior do que 3 minutos será tolerado. Qual á a maior taxa de (em clientes e em minutos) chamadas que será suportada pela central?

Formulário para o sistema M/M/1/GD/∞/∞

$$\rho = \frac{\lambda}{u}$$

$$p_0 = 1 - \frac{\lambda}{\mu}$$

$$P_{k} = \rho^{k}(1-\rho)$$

$$E(N) = L = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu - \lambda}$$

$$E(N) = L = \frac{\rho}{1 - \rho} = \frac{\lambda}{\mu - \lambda} \qquad V(N) = \frac{\rho}{(1 - \rho)^2} \qquad \sigma_N = \frac{\sqrt{\rho}}{1 - \rho}$$

$$L_s = \rho$$

$$L_q = \frac{\rho^2}{1 - \rho} = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

$$W = \frac{1}{u - \lambda}$$

$$W_q = \frac{L_q}{\lambda} = \frac{\lambda}{\mu(\mu - \lambda)}$$

$$W_s = \frac{1}{u}$$

$$P(N \ge k) = \rho^k$$

$$P(T > t) = e^{-\mu(1 - \rho)t}$$

$$P(T_q > t) = \rho e^{-(\mu - \lambda)t} =$$
$$= \rho e^{-\mu (1 - \rho)t}$$