2.13 IDEMPOTENT MATRICES

A square matrix \mathbf{A} is said to be *idempotent* if $\mathbf{A}^2 = \mathbf{A}$. Most idempotent matrices in this book are symmetric. Many of the sums of squares in regression (Chapters 6–11) and analysis of variance (Chapters 12–15) can be expressed as quadratic forms $\mathbf{y}'\mathbf{A}\mathbf{y}$. The idempotence of \mathbf{A} or of a product involving \mathbf{A} will be used to establish that $\mathbf{y}'\mathbf{A}\mathbf{y}$ (or a multiple of $\mathbf{y}'\mathbf{A}\mathbf{y}$) has a chi-square distribution

An example of an idempotent matrix is the identity matrix I. ($I^2=I$)

Theorem 2.13a. The only nonsingular idempotent matrix is the identity matrix **I**.

PROOF. If **A** is idempotent and <u>nonsingular</u>/then $A^2 = A$ and the inverse A^{-1} exists. If we multiply $A^2 = A$ by A^{-1} , we obtain

$$\mathbf{A}^{-1}\mathbf{A}^2 = \mathbf{A}^{-1}\mathbf{A},$$
$$\mathbf{A} = \mathbf{I}.$$

Many of the matrices of quadratic forms we will encounter in later chapters are singular idempotent matrices. We now give some properties of such matrices.

Theorem 2.13b. If **A** is singular, symmetric, and idempotent, then **A** is positive semidefinite. $\int_{A'=A}^{L} \int_{A=A}^{L} \int_{A=A}^{L} \int_{A}^{L} \int_{A}^{L$

PROOF. Since A = A' and $A = A^2$, we have

$$\mathbf{A} = \mathbf{A}^2 = \mathbf{A}\mathbf{A} = \mathbf{A}'\mathbf{A},$$

which is positive semidefinite by Theorem 2.6d(ii).

11 rank(n) < p. then AA is positive semidefinite

If a is a <u>real number</u> such that $a^2 = a$, then a is either 0 or 1. The analogous property for matrices is that if $A^2 = A$, then the eigenvalues of A are 0s and 1s

Theorem 2.13c. If A is an $n \times n$ symmetric idempotent matrix of rank r, then A has r eigenvalues equal to 1 and n-r eigenvalues equal to 0.

PROOF. By (2.99), if $Ax = \lambda x$, then $A^2x = \lambda^2 x$. Since $A^2 = A$, we have $A^2x = Ax = \lambda x$. Equating the right sides of $A^2x = \lambda^2 x$ and $A^2x = \lambda x$, we have

$$\lambda \mathbf{x} = \lambda^2 \mathbf{x}$$
 or $(\lambda - \lambda^2) \mathbf{x} = \mathbf{0}$.

But $\mathbf{x} \neq \mathbf{0}$, and therefore $\lambda - \lambda^2 = 0$, from which, λ is either 0 or 1.

By Theorem 2.13b, (A) is positive semidefinite, and therefore by Theorem 2.12f(ii), the number of nonzero eigenvalues is equal to rank((A)). Thus (A) regenvalues of (A) are equal to 1 and the remaining (A) regenvalues are equal to 0.

M

N/h

We can use Theorems 2.12e and 2.13c to find the rank of a symmetric idempotent A小中的時報如 rank(A)=r out, matrix. A의 研试者 V개生 1·12, 40位 0

Theorem 2.13d. If A is symmetric and idempotent of rank r, then rank(A) = $tr(\mathbf{A}) = r$.

PROOF. By Theorem 2.12e(ii),
$$tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$
, and by Theorem 2.13c, $\sum_{i=1}^{n} \lambda_i = r$.

Some additional properties of idempotent matrices are given in the following four theorems.

Theorem 2.13e. If **A** is an $n \times n$ idempotent matrix, **P** is an $n \times n$ nonsingular matrix, and \mathbb{C} is an $n \times n$ orthogonal matrix, then

(i)
$$\mathbf{I} - \mathbf{A}$$
 is idempotent. $(I-A)^2 = I-2A + A^2 = I-A$

- (ii) $\mathbf{A}(\mathbf{I} \mathbf{A}) = \mathbf{O}$ and $(\mathbf{I} \mathbf{A})\mathbf{A} = \mathbf{O}$. A(I-A)=A-A²=A-A = 0. (I-A)A5 of $(\mathbf{I} \mathbf{A})\mathbf{A}$
- (iii) $\mathbf{P}^{-1}\mathbf{A}\mathbf{P}$ is idempotent. $(P^{-1}AP)^2 = P^{-1}AP = P^{-1}AP$
- (iv) C'AC is idempotent. (If A is symmetric, C'AC is a symmetric idempotent matrix.) $(('AC)^2 = ('ACC'AC = C'AC$

Theorem 2.13f. Let A be $n \times p$ of rank r, let A^- be any generalized inverse of A, and let $(A'A)^-$ be any generalized inverse of A'A. Then A^-A , AA^- , and $\mathbf{A}(\mathbf{A}'\mathbf{A})^{-}\mathbf{A}'$ are all idempotent.

Theorem 2.13g. Suppose that the $n \times n$ symmetric matrix **A** can be written as $\mathbf{A} = \sum_{i=1}^{k} \mathbf{A}_i$ for some k, where each \mathbf{A}_i is an $n \times n$ symmetric matrix. Then any two of the following conditions implies the third condition. () 3 27471 54415.

- (i) **A** is idempotent. $AA = \left(\sum_{k=1}^{k} A_k\right)^2 = \sum_{k=1}^{k} A_k^{*} + \sum_{k=1}^{k} A_k A_j$ (ii) Each of A_1, A_2, \dots, A_k is idempotent. $A_1 + A_2 + A_3 + A_4 + A_5 + A_4 + A_5 + A_$
- (iii) $\mathbf{A}_i \mathbf{A}_j = \mathbf{O}$ for $i \neq j$.

Theorem 2.13h. If $I = \sum_{i=1}^{k} A_i$, where each $n \times n$ matrix A_i is symmetric of rank r_i , and if $n = \sum_{i=1}^{k} r_i$, then both of the following are true:

- (i) Each of A_1, A_2, \dots, A_k is idempotent. $A_1 = A_2$
- (ii) $\mathbf{A}_i \mathbf{A}_i = \mathbf{O}$ for $i \neq j$.