## 调和四边形

定义 1. 对边长度的乘积相等的圆内接四边形, 称为调和四边形。

性质 1. 设四边形 ABCD 为调和四边形, M 为 AC 中点, N 为 BD 中点,则  $\triangle ANB \hookrightarrow \triangle ADC \hookrightarrow \triangle BNC$  ,  $\triangle AND \hookrightarrow \triangle ABC \hookrightarrow \triangle DNC$  ,  $\triangle AMB \hookrightarrow \triangle DCB \hookrightarrow \triangle DMA$  ,  $\triangle CMB \hookrightarrow \triangle DAB \hookrightarrow \triangle DMC$  。

例 1. (2011, 高联 A 卷) 四边形 ABCD 内接于  $\odot O$  , M , N 分别为 AC , BD 的中点。若  $\angle BMC = \angle DMC$  , 求证:  $\angle AND = \angle CND$  。

性质 2. 设 P 为圆  $\omega$  外一点,PA, PC 是  $\omega$  的两条切线,切点分别为 A, C ,过 P 的一条  $\omega$  的割线交  $\omega$  于 B, D 两点,则四边形 ABCD 为调和四边形。

性质 3. 设四边形 ABCD 为内接于圆 $\omega$  的调和四边形,过A,C 分别作 $\omega$  的切线交于点P,则P,B,D 三点共线。同理,过B,D 分别作 $\omega$  的切线交于点Q,则Q,A,C 三点共线。





性质 4. 设四边形 ABCD 为内接于圆  $\omega$  的调和四边形, P 为  $\omega$  上任意一点,则 PA,PB,PC,PD 为调和线束,即  $\frac{\sin \angle APB}{\sin \angle CPB} = \frac{\sin \angle APD}{\sin \angle CPD}$  。

定义 2. 三角形中线的等角线称为三角形的陪位中线。

性质 5. 设四边形 ABCD 为调和四边形,对角线 AC, BD 交于点 Q,则 DQ 为  $\triangle ACD$  的陪位中线,BQ 为  $\triangle ABC$  的陪位中线,CQ 为  $\triangle BCD$  的陪位中线,AQ 为  $\triangle ABD$  的陪位中线。

例 3.  $\triangle ABC$  的内切圆  $\bigcirc I$  分别与边 CA, AB 切于点 E, F, BE, CF 分别与  $\bigcirc I$  交于点 M, N 。 求证:  $MN \cdot EF = 3MF \cdot NE$  。



例 4. O 为锐角  $\triangle ABC$  的外心,AB < AC ,Q 为  $\angle BAC$  的外角平分线与 BC 的交点,点 P 在  $\triangle ABC$  的内部, $\triangle BPA$   $\hookrightarrow \triangle APC$  。求证:  $\angle QPA + \angle OQB = \frac{\pi}{2}$  。

例 5. (2013, 亚太数学奥林匹克) PB,PD 为  $\odot O$  的切线, PCA 为  $\odot O$  的割线, C 关于  $\odot O$  的切线分别与 PD,AD 交于点 Q,R 。 AQ 与  $\odot O$  的另一个交点为 E 。求证: B,E,R 三点共线。



例 6. 在  $\triangle ABC$  中, M 为 BC 的中点,以 AM 为直径的圆分别与 AC, AB 交于点 E, F ,过

点 E, F 作以 AM 为直径的圆的切线,交点为 P 。求证:  $PM \perp BC$  。

例 7. 在  $\triangle ABC$  中, AB < AC , A 关于点 B 的对称点为 D , CD 的中垂线与  $\triangle ABC$  的外接 圆  $\bigcirc O$  交于点 E,F , AE,AF 分别与 BC 交于点 U,V 。求证: B 为 UV 中点。



例 8. 已知 $\triangle ABC$ 内接于 $\bigcirc O$ ,三条高线 AD,BE,CF 交于H,过点 B,C 作 $\bigcirc O$  的切线交

于点P, PD与EF交于点K, M为BC的中点。求证: K,H,M三点共线。

例 9. (2012, 亚太数学奥林匹克) 已知锐角  $\triangle ABC$  内接于  $\bigcirc O$  , H 为垂心, AH 与 BC 交 于点 D , M 为边 BC 的中点,延长 MH ,与  $\bigcirc O$  交于点 E ,延长 ED ,与  $\bigcirc O$  交于点 F 。 求证;四边形 ABFC 为调和四边形。



例 10. (2011, 哈萨克斯坦) 已知钝角 $\triangle ABC$ 内接于 $\bigcirc O$ ,  $\angle C > \frac{\pi}{2}$ , C'为C关于AB 的对称点,AC'与 $\bigcirc O$  交于点E, BC'与 $\bigcirc O$  交于点F, M 为AB 的中点,MC'与 $\bigcirc O$  交于点N (点C'在M与N之间),K为EF 的中点。求证:AB,CN,KC'三线共点。

例 11. 已知凸四边形 ABCD 内接于圆,AD,BC 的延长线交于点 E ,对角线 AC 与 BD 交

于点F,M为CD的中点,N为 $\triangle ABM$  的外接圆上不同于M 的点,且满足 $\frac{AN}{BN} = \frac{AM}{BM}$ 。 求证: E,F,N 三点共线。



例 12. (2010, 伊朗) 已知锐角 $\triangle ABC$ 内接于 $\bigcirc O$ , $\angle C = \frac{\pi}{4}$ ,AD 为高线,点 X 在线段 AD 内部,且满足 $\angle XBC = \frac{\pi}{2} - \angle B$ ,AD, CX 分别与 $\bigcirc O$  交于点 M, N,过 M 关于 $\bigcirc O$  的切线与 AN 交于点 P 。求证:P, B, O 三点共线。

例 13. 已知锐角  $\triangle ABC$  内接于  $\bigcirc O$  , H 为垂心, M 为 BC 的中点,点U 在 BC 上,且满足  $\angle BAM = \angle CAU$  , K 为点 H 在过点 A 关于  $\bigcirc O$  的切线上的射影, L 为点 H 在 AU 上的射影。求证: K,L,M 三点共线。



