

BBM406: Fundamentals of Machine Learning

Logistic Regression

Types of Discriminative Methods

Class prediction

Probability prediction

Classification Based on Probability

Class prediction

- Effective and useful
- Borderline cases are problematic

Key Idea: Instead of predicting only the class label, output the probability of the instance being within that class o i.e., learn p(y |x)

Classification via Linear Regression?

- Can we use linear regression for classification?
- Hypothesis function for linear regression is :

$$y = h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d = \theta^T x$$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \dots \\ \theta_d \end{bmatrix} \qquad x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{bmatrix} \qquad h_{\theta}(x) = \theta^T x$$

• $h_{\theta}(x)$ can take real values, so we can not use it for classification directly.

Linear Regression For Classification

- For this data, y=0.5 threshold looks good.
- However, if the new data arrives and $h_{\theta}(x)$ changes, is it still good?

Linear Regression For Classification

- With the new data, $h_{\theta}(x)$ changed.
- And two positive instances are classified as negative

Classification via Linear Regression?

- We can apply thresholding but it is very dependent to data and sensitive to noise.
- Therefore, we need another approach for applying this for classification.

Logistic Regression

- Takes a probabilistic approach to learn discriminative functions
 - $h_{\theta}(x)$ should give us $p(y = 1|x; \theta)$
 - We want $0 \le h_{\theta}(x) \le 1$

Can't just use linear regression with a threshold

• For this purpose we can use sigmoid (logistic) function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression

• By replacing our hypothesis in linear regression $h_{\theta}(x) = \theta^T x$ with logistic function, we obtain Logistic regression model :

$$h_{\theta}(x) = \sigma(\theta^T x)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$h_{oldsymbol{ heta}}(oldsymbol{x}) = rac{1}{1 + e^{-oldsymbol{ heta}^{ extsf{T}}oldsymbol{x}}}$$

Interpretation of Hypothesis Output

 $h_{\theta}(x) = \text{estimated } p(y = 1|x; \theta)$

Example: Ocular tumor diagnosis from size

$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$$

$$h_{\theta}(x) = 0.75$$

Tumor has a 75% chance of being malignant

Note that: $p(y = 0|x; \theta) + p(y = 1|x; \theta) = 1$

Therefore, $p(y = 0|x; \theta) = 1 - p(y = 1|x; \theta)$

Non-Linear Decision Boundary

Can apply basis expansion to features, same as with linear regression

an apply basis expansion to reacures, same
$$x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1 x_2 \\ x_1 x_2 \\ x_1^2 \\ x_2^2 \\ x_1^2 x_2 \\ x_2^2 \\ x_2 x_2^2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_2^2 \\ x_2 x_2^2 \end{bmatrix}$$

Logistic Regression

• Given $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})\}$ Where $x^{(1)} \in R^d, y^{(i)} \in \{0,1\}$

• Model: $h_{\theta}(x) = \sigma(\theta^T x)$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \dots \\ \theta_d \end{bmatrix} \qquad x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{bmatrix}$$

Logistic Regression Objective Function

Can't just use squared loss as in linear regression:

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Using the logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

results in a non-convex optimization

Deriving the Cost Function via Maximum Likelihood Estimation

Likelihood of data is given by:

$$l(\theta) = \prod_{i=1}^{n} P(y^{(i)}|x^{(i)};\theta)$$

• So, looking for the heta that maximizes the likelihood

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} l(\theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} P(y^{(i)}|x^{(i)};\theta)$$

Can take the log without changing the solution:

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \log \prod_{i=1}^{n} P(y^{(i)}|x^{(i)};\theta) = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log P(y^{(i)}|x^{(i)};\theta)$$

Deriving the Cost Function via Maximum Likelihood Estimation

Expand as follows:

$$\theta_{MLE} = \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} \log P(y^{(i)}|x^{(i)};\theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \sum_{i=1}^{n} y^{(i)} \log P(y^{(i)} = 1|x^{(i)};\theta) + (1 - y^{(i)}) \log(1 - P(y^{(i)} = 1|x^{(i)};\theta))$$

Substitute in model, and take negative to yield

Logistic regression objective: $\min_{\theta} J(\theta)$

$$J(\theta) = -\sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})))$$

$$J(\theta) = -\sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})))$$

Cost of a single instance:

$$cost(h_{\theta}(x), y)) = \begin{cases} -\log(h_{\theta}(x)), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

$$J(\theta) = -\sum_{i=1}^{n} cost(h_{\theta}(x^{(i)}), y^{(i)})$$

Compare to linear regression: $J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

$$cost(h_{\theta}(x), y)) = f(x) = \begin{cases} -\log(h_{\theta}(x)), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

$$cost(h_{\theta}(x), y)) = f(x) = \begin{cases} -\log(h_{\theta}(x)), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

If y = 1

- Cost = 0 if prediction is correct
- As $h_{\Theta}(x) \to 0$, $cost \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{\theta}(x) \rightarrow 0$, but y = 1

$$cost(h_{\theta}(x), y)) = f(x) = \begin{cases} -\log(h_{\theta}(x)), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(x)) \rightarrow 0$, $cost \rightarrow \infty$
- Captures intuition that larger mistakes should get larger penalties

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})))$$

Objective: $\min_{\theta} J(\theta)$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

simultaneous update for $j = 0 \dots d$

Use the natural logarithm ($ln = log_e$) to cancel with the exp() in $h_{\theta}(x)$

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})))$$

Objective: $\min_{\theta} J(\theta)$

• Initialize θ

simultaneous update for

Repeat until convergence

$$j = 0 ... d$$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^n (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

This looks almost identical to linear regression, except 1/n term!

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Gradient Descent for Logistic Regression

$$J(\theta) = -\sum_{i=1}^{n} (y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})))$$

Objective: $\min_{\theta} J(\theta)$

• Initialize θ

simultaneous update for

Repeat until convergence

$$j = 0 ... d$$

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^n (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

However, the form of the model is very different!

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Multi-Class Classification

Binary classification:

Multi-class classification:

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

Multi-Class Logistic Regression

Split into One vs Rest:

• Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y = i

Implementing Multi-Class Logistic Regression

- Use $h_{ heta}^{(c)}(x)$ as the model for class c
- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before
- On a new input x, predict class label by picking the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$