CARS AND THEIR SPECS DATASET

Group Members:

- Tushar (19/19064)
- Ashish Bachkheti (19/19066)

Description of dataset:

Cars: Various types of cars

MPG: Miles per gallon

Cylinders: Number of Cylinders

Displacement: Measure of the cylinder volume swept by all

of the pistons

Horsepower: The power an engine produces

Weight: weight of car in pounds

Acceleration: Time taken from 0mph to 60mph

Model : Model of car **Origin :** Origin of car

Information extracted:

- MPG greater than 15
- Percentage of Numbers of cylinders used in cars
- Cars with HP greater than 175 and maximum HP
- Top 5 cars with on basis of HP
- Percentage of cars produced in different origins.
- List of cars produced in different Regions
- Different weights of car
- Weight Comparison by Region of Origin
- Each Region of Origin's Product Mix Over Time

1. Frequency Histogram of Miles per Gallon greater than 15

mpg_15=cars\$MPG[cars\$MPG>15] print(qplot(mpg_15, xlab = 'Miles Per Gallon greater than 15', ylab = 'Count', binwidth = 2,

main='Frequency Histogram: Miles per Gallon>15'))

Frequency Histogram: Miles per Gallon>15

CONCLUSION

This Helps us to maintain the count of cars having MPG greater than 15

2. Percentage of numbers of cylinders used in different Cars

a=table(cars\$Cylinders) list1<-unname(a) labels<-dimnames(a) labels<-unlist(labels)

```
I<-c("4 Cylinders","6 Cylinders","8 Cylinders")
piepercent<-round(100*list1/sum(list1),2)
pie(list1,main = "% of Cylinders in Cars ",labels = piepercent,
    col = brewer.pal(length(list1),"YlGnBu"))
legend("topleft",l,cex = 0.8,fill = brewer.pal(length(list1),"YlGnBu"))</pre>
```

% of Cylinders in Cars

CONCLUSION

This shows that most cars use 8 cylinders followed by 4 and then 6.

3. Cars With HorsePower greater than 175.

```
a=cars$Car[cars$Horsepower>175]
print("Cars with Horsepower Greater than 175 are :")
print(a)
print(paste("Car with max HorsePower is :",max(cars$Horsepower)))
```

We see that there are 11 cars having HP greater than 175 and max HP is 225 in Dodge Monaco.

4. Selecting Top 5 Cars on the basis of HorsePower.

```
cars<-read.csv('cars.csv',header=TRUE,sep=';')
asc=cars$Car[order(cars$Horsepower)]
asc
x <- table(cars$Horsepower)
top5 <- tail(x, 5)
top5 <- as.integer(unlist(dimnames(top5)))
top5
labels<-c("Plymouth Fury iii",
      "Ford F250",
      "Chevrolet Impala",
      "Pontiac Catalina",
      "Buick Estate Wagon (sw)")
barplot(top5,names.arg=labels,las = 2,ylim=c(150,250),
     col = c(2:6),
     ylab = "Horse Power",
     main = "Top 5 cars on the basis of HP",
     cex.axis = 0.90, cex.names = 0.65
```


This shows us the top 5 cars with highest horsepower among them.

5. Percentage of cars produced in different origins.

Percentage of Origins of cars

CONCLUSION

This data shows that most of the cars are made in the USA and least in Japan.

6.List of all Cars Made in Europe and Japan.

```
cars<-read.csv('cars.csv',header=TRUE,sep=';')
y=cars$Car[cars$Origin=="Japan"]
print(paste("The cars with origin Japan ",y))
x=cars$Car[cars$Origin=="Europe"]
print(paste("The cars with origin Europe ",x))</pre>
```

```
> source('C:/Users/Tushar/OneDrive/Desktop/R Project/R project.R')
[1] "The cars with origin Japan Toyota Corolla Mark ii"
[2] "The cars with origin Japan Datsun PL510"
[3] "The cars with origin Japan Datsun PL510"
[4] "The cars with origin Japan Toyota Corolla"
[1] "The cars with origin Europe Citroen DS-21 Pallas"
[2] "The cars with origin Europe Volkswagen 1131 Deluxe Sedan"
[3] "The cars with origin Europe Peugeot 504"
[4] "The cars with origin Europe Audi 100 LS"
[5] "The cars with origin Europe Saab 99e"
[6] "The cars with origin Europe BMW 2002"
[7] "The cars with origin Europe Volkswagen Super Beetle 117"
```

7. Different weights of car.

This graph shows weights of different cars which might help us to know which car we should buy.

8. Weight Comparison by region of Origin.

It shows that the US produces the most number of cars and also heavy cars.

9.Each Region of Origin's Product Mix Over Time.

```
cars<-read.csv('cars.csv',header=TRUE,sep=';')
print(ggplot(data = cars, aes(x = Model, fill = Cylinders)) +
    geom_bar() +
    facet_wrap(~ Origin, ncol = 1) +
    xlab('Model Year') +
    ylab('Count') +
    ggtitle('Each Region of Origin\'s Product Mix Over Time'))</pre>
```


This data shows us numbers of cars produced according to their model year in different origins.