ALJABAR LINIER

Vector - Cross Product

Muhammad Afif Hendrawan, S.Kom., M.T.

Disclaimers

Materi yang digunakan dalam slides ini berasal dari
 https://www2.math.upenn.edu/~wziller/math114f13/ch12-4+5-1.pdf dan
 https://math.etsu.edu/multicalc/prealpha/Chap1/Chap1-3/printversion.pdf
 dengan sedikit modifikasi dan hanya untuk tujuan pembelajaran.

Cross Product

Deskripsi Geometri dari Cross Product

- $oldsymbol{u} imes oldsymbol{v}$ tegak lurus terhadap $oldsymbol{u}$ dan $oldsymbol{v}$
- Panjangya dari $u \times v$ adalah $|u \times v| = |u||v|\sin \theta$
- Arah ditunjukkan dengan aturan tangan kanan

Aturan Tangan Kanan

- Letakkan 4 jari pada arah vektor pertama.
- Tekuk jari tersebut pada arah vektor kedua.
- Ibu jari menjukkan arah dari cross product

Definisi Aljabar dari Cross Product

Cross product dari $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ dan $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ adalah

$$\mathbf{u} \times \mathbf{v} = \langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

Sehingga:

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = \langle u_2 v_3 - u_3 v_2, u_3, v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle \cdot \langle u_1, u_2, u_3 \rangle$$

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = u_2 v_3 u_1 - u_3 v_2 u_1 + u_3 v_1 u_2 - u_1 v_3 u_2 + u_1 v_2 u_3 - u_2 v_1 u_3$$

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = 0$$

Begitu juga:

$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$$

Nilai Cross Product Berdasarkan Determinan Vektor #1

Diberikan vektor $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ dan $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, nilai cross product di definisikan dengan determinan vektor,

$$\boldsymbol{u} \times \boldsymbol{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} & , & \begin{vmatrix} u_3 & u_1 \\ v_3 & v_1 \end{vmatrix} & , & \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

Contoh, hitung $\mathbf{u} \times \mathbf{v}$ dan $\mathbf{v} \times \mathbf{u}$ untuk $\mathbf{u} = \langle 2, 3, 5 \rangle$ dan $\mathbf{v} = \langle 6, 7, 9 \rangle$.

$$\boldsymbol{u} \times \boldsymbol{v} = \left\langle \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}, \begin{bmatrix} 5 & 2 \\ 9 & 6 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 6 & 7 \end{bmatrix} \right\rangle$$
$$\boldsymbol{u} \times \boldsymbol{v} = \left\langle 3 \cdot 9 - 7 \cdot 5, 5 \cdot 6 - 9 \cdot 2, 2 \cdot 7 - 6 \cdot 3 \right\rangle = \left\langle -8, 12, -4 \right\rangle$$

Nilai Cross Product Berdasarkan Determinan Vektor #2

Selanjutnya, jika, $v \times u$

$$\mathbf{v} \times \mathbf{u} = \begin{pmatrix} \begin{vmatrix} 7 & 9 \\ 3 & 5 \end{vmatrix} & , \begin{vmatrix} 9 & 6 \\ 5 & 2 \end{vmatrix} & , \begin{vmatrix} 6 & 7 \\ 2 & 3 \end{vmatrix} \rangle = \langle 8, -12, 4 \rangle$$

Maka,

$$u \times v = -(v \times u)$$

Sifat-sifat

Cross product di definisikan hanya dengan vektor 3 dimensi, vector u dan v. Sehingga berlaku,

•
$$v \times u = -(u \times v)$$

$$\bullet$$
 $u \times u = 0$

•
$$(k\mathbf{u}) \times \mathbf{v} = k(\mathbf{u} \times \mathbf{v}) = \mathbf{u} \times k\mathbf{v}$$

$$\bullet \quad a \times (u+v) = a \times u + a \times v$$

Bagaimana jika menggunakan nilai determinan 3 \times 3? #1

$$\left| egin{array}{ccc|c} r_1 & r_2 & r_3 \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{array}
ight| = r_1 \left| egin{array}{ccc|c} u_2 & u_3 \ v_2 & v_3 \ \end{array}
ight| + r_2 \left| egin{array}{ccc|c} u_3 & u_1 \ v_3 & v_1 \ \end{array}
ight| + r_3 \left| egin{array}{ccc|c} u_1 & u_2 \ v_1 & v_2 \ \end{array}
ight|$$

Bagaimana jika menggunakan nilai determinan 3 \times 3? #2

Jika kita letakkan, i, j, dan k pada baris pertama,

$$\left| egin{array}{ccc|c} {f i} & {f j} & {f k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \end{array}
ight| = {f i} \left| egin{array}{ccc|c} u_2 & u_3 \ v_2 & v_3 \end{array}
ight| + {f j} \left| egin{array}{ccc|c} u_3 & u_1 \ v_3 & v_1 \end{array}
ight| + {f k} \left| egin{array}{ccc|c} u_1 & u_2 \ v_1 & v_2 \end{array}
ight|$$

Bagaimana jika menggunakan nilai determinan 3 × 3? Contoh

Dengan determinan 3 dimensi, hitung $u \times v$ dan $v \times u$ untuk $u = \langle 2, 1, 2 \rangle$ and $v = \langle 3, 4, 5 \rangle$

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 2 \\ 3 & 4 & 5 \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 2 \\ 3 & 4 & 5 \end{vmatrix} = 5\mathbf{i} + 6\mathbf{j} + 8\mathbf{k} - 3\mathbf{k} - 8\mathbf{i} - 10\mathbf{j}$$

$$\boldsymbol{u} \times \boldsymbol{v} = -3\boldsymbol{i}, -4\boldsymbol{j} + 5\boldsymbol{k}$$

The Triple Scalar Product

If
$$\mathbf{r} = \langle r_1, r_2, r_3 \rangle$$
, $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$

$$\mathbf{r}\cdot(\mathbf{u} imes\mathbf{v})=\left|egin{array}{ccc} r_1 & r_2 & r_3\ u_1 & u_2 & u_3\ v_1 & v_2 & v_3 \end{array}
ight|$$

$$\mathbf{r} \cdot (\mathbf{u} \times \mathbf{v}) = \begin{vmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_1 & \mathbf{v}_2 \\ u_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_1 & \mathbf{v}_2 \\ v_1 & v_2 & \mathbf{v}_3 & \mathbf{v}_1 & \mathbf{v}_2 \end{vmatrix} = \begin{vmatrix} \mathbf{v}_1 & \mathbf{v}_3 & \mathbf{v}_3 & \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_1 & \mathbf{v}_2 \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_1 & \mathbf{v}_2 \end{vmatrix} = (\mathbf{r} \times \mathbf{u}) \cdot \mathbf{v}$$

We call this identity the *triple scalar product:*

$$\mathbf{r} \cdot (\mathbf{u} \times \mathbf{v}) = (\mathbf{r} \times \mathbf{u}) \cdot \mathbf{v}$$

Latihan

Compute the cross product of $\mathbf{u} \times \mathbf{v}$ and then compute the cross product of $\mathbf{v} \times \mathbf{u}$. Also, show that \mathbf{u} and \mathbf{v} are orthogonal to $\mathbf{u} \times \mathbf{v}$.

1.
$$\mathbf{u} = \langle 2, 1, 0 \rangle, \mathbf{v} = \langle 3, 1, 0 \rangle$$

3.
$$\mathbf{u} = \langle 3, 3, 0 \rangle, \mathbf{v} = \langle 2, 0, 0 \rangle$$

5.
$$\mathbf{u} = \langle 1, 0, 0 \rangle, \mathbf{v} = \langle 0, 1, 0 \rangle$$

7.
$$\mathbf{u} = \langle 2, 3, 7 \rangle, \mathbf{v} = \langle 7, 3, 5 \rangle$$

9.
$$\mathbf{u} = \langle 3, 4, 2 \rangle, \mathbf{v} = \langle 9, 12, 6 \rangle$$

2.
$$\mathbf{u} = \langle 2, 1, 0 \rangle, \mathbf{v} = \langle -1, 3, 0 \rangle$$

4.
$$\mathbf{u} = \langle 0, 1, 0 \rangle, \mathbf{v} = \langle 0, 0, 1 \rangle$$

6.
$$\mathbf{u} = \langle 1, 0, 0 \rangle, \mathbf{v} = \langle 1, 0, 0 \rangle$$

8.
$$\mathbf{u} = \langle 6, 2, 9 \rangle, \mathbf{v} = \langle 1, 0, 3 \rangle$$

10.
$$\mathbf{u} = \langle 1, 1, 1 \rangle, \ \mathbf{v} = \langle -1, -1, -1 \rangle$$

Referensi

- https://www2.math.upenn.edu/~wziller/math114f13/ch12-4+5-1.pdf
- https://math.etsu.edu/multicalc/prealpha/Chap1/Chap1-3/printversion.pdf