JADAVPUR UNIVERSITY

Faculty of Engineering & Technology
....Electronics... Engg. Laboratory

Name TATHAGATA SUR	
Class (SF-VG/Sec. Al Roll No. 00231050103	0

CO-WORKER

NAME

Name of Teacher concerned

ROLL

Shyam Sundar Karn	nakar	co 2310 5010 25
Samim Sekh		002310501026
Pratyay Kar		002310501027
Joyasmit Pal		002310501028
Abir Chakrabort	1 4	002310501029
Anipudh Modi		002310501031
Experiment No 04-8		
Commence at 11.00 A	M Comp	oleted at 2:00 PM

TITLE: Basic OP-AMP circuits

OBJECT: To study the function of OP-AMP as Inverting Amplifier, Non-Inverting Amplifier, Adder and Buffer Apparatus used:

- (a) DC voltage supply
- (b) M741 IC

- (c) Tump wires
- (d) Multi-meter as voltmeter
- (e) Sine generator (f) Bread board
- (g) Inverting amplifier circuit
- (h) Non-inverting amplifier circuit
- (i) Buffer circuit

An inventing amplifier using OP-AMP gives an output wavefront phase opposite to the input wavefront.

The gain for each circuits (Av), is $(Av = \frac{R1}{Ri})$

(where Rf = Feedback resistor, Ri=Input Resistance). A buffer circuit gives the output as sum of

several input.

For two input voltages V, and V2 and input resistance as R, and R2:

$$V_0 = -\left[\left(\frac{\rho_4}{\rho_1}\right)^{V_1} + \left(\frac{\rho_4}{\rho_2}\right)^{V_2}\right]$$

(No -) output Voltage) (Rf -> Feedback resistor)

Circuit Diagrams:

1) Functional diagram:

2) Inverting amplifier:

3) Non-inventing amplifier:

Observations:

- Input voltage = 2×1=2Y

 Output voltage = 3.6×5=18 Y

 Experimental Av= 18/2=9

 Calculated Av= Rt/Rin=100 kz/10 kz=10
- Non-inverting amplifier

 Input voltage = 0.2x1 = 0.2 V

 output voltage = 2.2 V

 Experimental Av = 2.2/0.2 = 11

 (alculated Av = 1+ Rf = 1+ (100 k/2) = 11

iii) Buffer

SI No.	(v)	Y ₂ (V)	V(practical) (in v)	V/ealculated) (in V)
1)	0.1	0.1	-3.04	-3.25
2)	0.1	0.2	- 4.70	-4.62
3>	0.2	0.3	-7.90	-7.82
4>	0.4	0.2	-9.90	- 9.96

Observed value of output voltage = 8.47 V

$$= -\left[(R_f / R_{in})^{V_1} + (R_f / R_{in})^{V_2} \right]$$

$$= -\left[(100 / 5.6) \times 0.22 + (100 / 8.8) \times 0.31 \right] \vee$$