

planetmath.org

Math for the people, by the people.

nested ideals in von Neumann regular ring

 ${\bf Canonical\ name} \quad {\bf Nested Ideals In Von Neumann Regular Ring}$

Date of creation 2013-03-22 14:48:24 Last modified on 2013-03-22 14:48:24

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 12

Author CWoo (3771) Entry type Theorem Classification msc 16E50 **Theorem.** Let \mathfrak{a} be an ideal of the von Neumann regular ring R. Then \mathfrak{a} itself is a von Neumann regular ring and any ideal \mathfrak{b} of \mathfrak{a} is likewise an ideal of R.

Proof. If $a \in \mathfrak{a}$, then asa = a for some $s \in R$. Setting t = sas we see that t belongs to the ideal \mathfrak{a} and

$$ata = a(sas)a = (asa)sa = asa = a.$$

Secondly, we have to show that whenever $b \in \mathfrak{b} \subseteq \mathfrak{a}$ and $r \in R$, then both br and rb lie in \mathfrak{b} . Now, $br \in \mathfrak{a}$ because \mathfrak{a} is an ideal of R. Thus there is an element x in \mathfrak{a} satisfying brxbr = br. Since rxbr belongs to \mathfrak{a} and \mathfrak{b} is assumed to be an ideal of \mathfrak{a} , we conclude that the product $b \cdot rxbr$ must lie in \mathfrak{b} , i.e. $br \in \mathfrak{b}$. Similarly it can be shown that $rb \in \mathfrak{b}$.

References

[1] David M. Burton: A first course in rings and ideals. Addison-Wesley. Reading, Massachusetts (1970).