Data Analysis Nanodegree Program - Project 1 (Exploring Weather Trends)

Import all our dependencies

```
In [62]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
```

Load the CSV's

In [63]:

```
global_data_frame = pd.read_csv("global_data.csv").sort_values("year")
global_data_frame.head()
```

Out[63]:

	year	avg_temp
0	1750	8.72
1	1751	7.98
2	1752	5.78
3	1753	8.39
4	1754	8.47

In [64]:

```
cities_data_frame = pd.read_csv("cities.csv", usecols=["city", "country", "year"
, "avg_temp"])
cities_data_frame.head()
```

Out[64]:

	city	country	year	avg_temp
0	Abidjan	Côte D'Ivoire	1849	25.58
1	Abidjan	Côte D'Ivoire	1850	25.52
2	Abidjan	Côte D'Ivoire	1851	25.67
3	Abidjan	Côte D'Ivoire	1852	NaN
4	Abidjan	Côte D'Ivoire	1853	NaN

Discover the cities from my country

In this case it's the Curitiba city.

In [65]:

```
print(cities_data_frame[cities_data_frame["country"].str.contains("Brazil")].cit
y.unique())

curitiba_data_frame = cities_data_frame[cities_data_frame["city"].str.contains(
"Curitiba")].sort_values("year")
curitiba_data_frame.head()
```

```
['Belo Horizonte' 'Campinas' 'Colombo' 'Curitiba' 'Fortaleza' 'Guaru
lhos'
   'Manaus' 'Porto Alegre' 'Recife' 'Rio De Janeiro' 'Salvador']
Out[65]:
```

	city	country	year	avg_temp
19051	Curitiba	Brazil	1832	16.60
19052	Curitiba	Brazil	1833	17.48
19053	Curitiba	Brazil	1834	16.95
19054	Curitiba	Brazil	1835	16.28
19055	Curitiba	Brazil	1836	16.56

Clean city data

Here we have 7 records with null data, we could drop them, or just fill them with the median of the city historic temperatures

```
In [66]:
```

```
curitiba_data_frame["avg_temp"].isnull().sum()

Out[66]:
7

In [67]:

median = curitiba_data_frame["avg_temp"].median()
curitiba_data_frame["avg_temp"].fillna(median, inplace=True)
```

```
In [68]:
```

```
curitiba_data_frame["avg_temp"].isnull().sum()
Out[68]:
```

0

"Moving Average" for the global data and local data

I'm using a 7 day mobing average from the recommendation.

In [69]:

```
global_moving_average = global_data_frame["avg_temp"].rolling(7).mean()
print(global moving average.head(7))
print("\njust checking\n")
print(global data frame["avg temp"].head(7))
print(global data frame["avg temp"].head(7).sum() / 7)
0
          NaN
          NaN
1
2
          NaN
3
          NaN
4
          NaN
5
          NaN
6
     8.078571
Name: avg temp, dtype: float64
just checking
0
     8.72
1
     7.98
2
     5.78
3
     8.39
4
     8.47
5
     8.36
6
     8.85
Name: avg temp, dtype: float64
8.07857142857143
In [70]:
curitiba moving average = curitiba data frame["avg temp"].rolling(7).mean()
print(curitiba moving average.head(7))
print("\njust checking\n")
print(curitiba data frame["avg temp"].head(7))
print(curitiba data frame["avg temp"].head(7).sum() / 7)
19051
                NaN
19052
                NaN
19053
                NaN
19054
                NaN
19055
                NaN
19056
                NaN
19057
         16.624286
Name: avg_temp, dtype: float64
just checking
19051
         16.60
         17.48
19052
19053
         16.95
         16.28
19054
19055
         16.56
         16.08
19056
19057
         16.42
Name: avg_temp, dtype: float64
16.624285714285715
```

Comparing my city temperature

min and max averages

```
In [71]:
```

```
print(curitiba_moving_average.min())
print(curitiba_moving_average.max())
```

16.44142857142857

18.508571428571425

In [72]:

```
print(global_moving_average.min())
print(global_moving_average.max())
```

7.191428571428574

9.607142857142852

how does temperature change from the beggining til now

In [73]:

```
print("In %s we have %s average temperature" % (curitiba_data_frame.iloc[-1].yea
r, curitiba_data_frame.iloc[-1].avg_temp))
print("In %s we have %s average temperature" % (curitiba_data_frame.iloc[0].year
, curitiba_data_frame.iloc[0].avg_temp))
curitiba_data_frame.iloc[-1].avg_temp - curitiba_data_frame.iloc[0].avg_temp
```

In 2013 we have 17.57 average temperature In 1832 we have 16.6 average temperature

Out[73]:

0.969999999999989

In [74]:

```
print("In %s we have %s average temperature" % (global_data_frame.iloc[-1].year,
   global_data_frame.iloc[-1].avg_temp))
print("In %s we have %s average temperature" % (global_data_frame.iloc[0].year,
   global_data_frame.iloc[0].avg_temp))
global_data_frame.iloc[-1].avg_temp - global_data_frame.iloc[0].avg_temp
```

In 2015.0 we have 9.83 average temperature In 1750.0 we have 8.72 average temperature

Out[74]:

1.109999999999994

plots

In [75]:

```
plt.plot(global_data_frame["year"], global_moving_average, label="global")
plt.plot(curitiba_data_frame["year"], curitiba_moving_average, label="curitiba")
plt.xlabel("years")
plt.ylabel("temperature (°C)")
plt.title("curitiba's x global trend temperatures")
plt.legend()
plt.show()
```


Curitiba doesn't have sufficient historic data

In [76]:

```
first_curitiba_year = curitiba_data_frame.iloc[0].year
short_global_data_frame = global_data_frame[global_data_frame.year >= first_curi
tiba_year]
short_global_moving_average = short_global_data_frame["avg_temp"].rolling(7).mea
n()
```

In [77]:

```
plt.plot(short_global_data_frame["year"], short_global_moving_average, label="global", color="#2E4F74", antialiased=True)
plt.plot(curitiba_data_frame["year"], curitiba_moving_average, label="curitiba", color="#3FAEAC", antialiased=True)

plt.xlabel("years")
plt.ylabel("temperature (°C)")

plt.title("curitiba's x global trend temperatures")

plt.legend()
plt.grid(linestyle='-.', antialiased=True, alpha=0.5)

plt.figure(figsize=(18, 16), dpi= 80, facecolor='w', edgecolor='k')

plt.show()
```


<Figure size 1440x1280 with 0 Axes>

In [78]:

```
plt.plot(curitiba_data_frame["year"], curitiba_moving_average, label="curitiba",
    color="#3FAEAC", antialiased=True)

plt.xlabel("years")
    plt.ylabel("temperature (°C)")

plt.title("curitiba trend temperatures")

plt.legend()
    plt.grid(linestyle='-.', antialiased=True, alpha=0.5)

plt.figure(figsize=(18, 16), dpi= 80, facecolor='w', edgecolor='k')

plt.show()
```


<Figure size 1440x1280 with 0 Axes>

In [79]:

```
plt.plot(global_data_frame["year"], global_moving_average, label="global", color
="#2E4F74", antialiased=True)

plt.xlabel("years")
plt.ylabel("temperature (°C)")

plt.title("global trend temperatures")

plt.legend()
plt.grid(linestyle='-.', antialiased=True, alpha=0.5)

plt.figure(figsize=(18, 16), dpi= 80, facecolor='w', edgecolor='k')

plt.show()
```


<Figure size 1440x1280 with 0 Axes>

In []: