ECON471

Fall 2020

Problem Set 6

Due Wednesday December 9, by Midnight CST

Name:

Section:

- 1. Consider the model $y_i = \beta x_i + u_i$ with $E(u_i|x_i) = 0$ and $Var(u_i|x_i) = \sigma^2 x_i^2$. An estimator of β is obtained as follows: $\widetilde{\beta} = \frac{1}{n} \sum_{i=1}^n \frac{y_i}{x_i}$.
- (i) Derive the expected value of $\tilde{\beta}$ and show that it is unbiased.

$$E(\hat{\beta}) = \frac{1}{n} \sum_{i=1}^{n} E(\frac{\beta x_i + u_i}{x_i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} E(\beta + \frac{u_i}{x_i}) = \frac{1}{n} \sum_{i=1}^{n} (\beta + 0)$$

$$= \beta.$$

(ii) Derive the weighted least squares estimator of β and show that it is identical to $\tilde{\beta}$. Is $\tilde{\beta}$ BLUE? Without any explicit derivations, compare the efficiency of $\tilde{\beta}$ to the OLS estimator of β .

$$Var(ui|Xi) = 6^{2}Xi^{2} = \lambda \sqrt{h}(x) = Xi$$

$$\frac{\sqrt{i}}{Xi} = \beta \frac{Xi}{Xi} + \frac{Ui}{Xi} = \lambda \text{ homos cedescicity.}$$

$$min_{i=1}^{\infty}(\frac{\sqrt{i}}{Xi} - \beta)^{2} = \lambda \sqrt{\frac{1}{Xi}} - \beta^{2} \sqrt{\frac{1}{Xi}} - \beta^{2} = 0$$

$$\beta \text{ is } \beta \text{LUE} = \beta \text{ has a lower variance} \text{ than any other}$$

linear unbiased estimator of B, including DLS Estimator of B.

2. There are different ways to combine features of the Breusch-Pagan and White tests for heteroskedasticity. One possibility not covered in the lectures is to run the regression

$$\hat{u}_{i}^{2} \text{ ov} x_{i1}, x_{i2}, \dots, x_{ik} \hat{y}_{i}^{2}, \quad i = 1, \dots, n,$$

where the \hat{u}_i are the OLS residuals and the \hat{y}_i are the OLS fitted values. Then, we would test joint significance of $x_{i1}, x_{i2}, \dots, x_{ik}$ and \hat{y}_i^2 . (Of course, we always include an intercept in this regression.)

What are the degrees of freedom associated with the proposed F test for (i) heteroskedasticity?

the number of explanatory veriables in this methodis

The number of explanatory veriables in this method is not a supplication of the number of explanatory

Ant a restriction on how orginal Does part (ii) imply that the new test always delivers a smaller p-value than either then regressive Breusch-Pagan or special case of the White statistic? Explain. $\frac{Rv(k+1)}{(k-1)} = \frac{(k+1)^{-1}}{(k+1)^{-1}}$ (iii)

$$F = \frac{R \hat{\alpha}^{2} / (k+1)}{(1-R \hat{\alpha}^{2}) / (n-k-2)}$$

$$\frac{N-(k+1)^{-1}}{k+1}$$

$$F_{BP} = \frac{R_{\Omega_{BP}^2}^2/k}{(/-R_{\Omega_{BP}^2}^2)/(n-k-1)}$$

$$F_{w} = \frac{R_{aut}^{2}/2}{(-R_{aut}^{2})/n-3}$$

 $\overline{}) N_0$

2

(iv) Suppose someone suggests also adding \hat{y}_i to the newly proposed test. What do you think of this idea?

No need Ti is linear combiner of the original regressions => perfect collinearity.

3.

(i) Use the data in HPRICE1.TXT to obtain the heteroskedasticity-robust standard errors for the following model

price =
$$\beta_0 + \beta_1 lot size + \beta_2 sqr ft + \beta_3 bdrms + u$$
.

Discuss any important differences with the usual standard errors.

(ii) Repeat part (i) for the following model

 $\log (\text{price}) = \beta_0 + \beta_1 \log (lot size) + \beta_2 \log (sqrft) + \beta_3 bdrms + u.$

(iii) What does this example suggest about heteroskedasticity and the transformation used for the dependent variable?

- 4. Use VOTE1.TXT for this exercise.
 - Estimate a model with voteA as the dependent variable and prtystrA, democA, $\log(expendA)$, and $\log(expendB)$ as independent variables. Obtain the OLS residuals, \hat{u}_i ,

Wi is uncorrelated with all independen vers.

(ii) Now, compute the Breusch-Pagan test for heteroskedasticity. Use the F-statistic version and report the p-value.

(iii) Compute the special case of the White test for heteroskedasticity, again using the *F* statistic form. How strong is the evidence against heteroskedasticity now?

- 5. Use the data in MEAP00_01.TXT to answer this question.
 - (i) Estimate the model $math4 = \beta_0 + \beta_1 lunch + \beta_2 log \ (enroll) + \beta_3 log \ (exppp) + u$ by OLS and obtain the usual standard errors and the fully robust standard errors. How do they generally compare?

(ii)	Apply the special case of the White test for heteroskedasticity. What is the value of the <i>F</i> test. What do you conclude?