$\bf Exercício~1$ Nos itens a seguir, mostre que o grafo dado é planar redesenhando-o de forma que não haja cruzamento de arestas.

Exercício 2 Nos itens a seguir, mostre que cada grafo dado **não** é planar encontrando um subgrafo homeomorfo a K_5 ou a $K_{3,3}$.

(a)

(b)

Vones usos o teorema de Kuratowski.

a) cono terros operas

3 vérticos do gram 4,

vonos achar un subgrafo

homoproc fo a K3,3

Considere o seguin te

subapafo:

vous gre de é isomocfo a K3,3. Logo, o grafo não à planar (Vi={aic,e}, V2={b,d,f})

D) Peb resse organosto do item andesios, vaes anchar un subgrafo vone ones fa a K3,3 considere o sequindo subgrafo.

fazondo a eliminação en série en di achanos o seguinte subgrafo:

Exercício 3 Determine se o grafo a seguir é planar. Se o grafo for planar, redesenhe-o sem cruzar as arestas; caso contrário, encontre um subgrafo homeomorfo a K_5 ou a $K_{3,3}$.

Não é planor: Considère o suborsafor e sua diminação en série:

Pelo teoremo do Euler para grafes plonares:
plonares:
v + f = e + 2
·
Saberes ge & SCV) = 2e. Loge, e = 15
VeY
=) {= 15+2-9=17-9=8]
7 7= 1512-9=1+=91,

Exercício 4 Um grafo conexo planar tem nove vértices tendo graus 5,4,4,3,3,3,2,2,2.

Quantas arestas esse grafo tem? E quantas faces?

Exercício	5	Mostre	que	qualquer	grafo	tendo	5 ou	menos	vértices	e um	vértice	de	grau
2 é planar.													

soberes que pora u- acorto se planos.
sobernes que pora un grafo ser plance, renhum subgrafo de G deve ser noncomorfo
a K3,3 e K5 (teorema de Kuratouski).
como a grafo ter un réttice de grou 2
e no máximo 5 vértices não consequinos
madre un voussonage fisme com us in
que este é 4-regulos. Além disse no podonos montor un honeones fismo com K3,3 pais este possui h réttios.
Além disse no applanos montos un
hoveover fismo com Kziz pois este possui
6 vértius.
1000 Se G=(V,E) e IVIES = 3 VEV/8(V)=2,
então Conão é planos.

Cada face da represafação planar está
Cada face da representação planar está delimitada por un ciclo do comprimento
major ou joual a 3. Cada acesta pertence a
maior ou joual a 3. Cada acesta pertence a exatomente 2 ciclos delimitantes. Portanto
3f ±2e
Dafármula de Eulec: f=e-v+2
3(e-v+2) = 2
e 43 _V -6.
- '

Exercício 7 Use o Exercício 6 para mostrar que K_5 não é planar.
Tenes que ks é 4-regular, postante,
1 - 4
2 e = 5.4 e = 10
$\frac{1}{16 = 10} \frac{4}{1}$
cao vole e = 3v-6 para grates planares, substituíndo e = 10 e v = 5:
substituíndo e=10 e v=5:
10615-6=9, o are é un absusab.
10615-6=9, o gre é un absurdo. Postante, ks não é un grafo plonor.
, J. 1. 1.

Definição. Uma coloração de um grafo G com cores $C_1, C_2, ..., C_n$ associa para cada vértice uma cor C_i de forma tal que todo vértice tenha uma cor distinta a qualquer vértice adjacente. Por exemplo, o grafo a seguir está colorido com três cores. O restante dos exercícios lidam com colorações de grafos planares.

Definição. Um mapa planar é um grafo planar onde as faces são interpretadas como regiões, as arestas são interpretadas como fronteiras entre regiões, e os vértices representam as interseções das fronteiras. O problema de colorir um mapa planar G de forma que não haja regiões com uma fronteira em comum com a mesma cor pode ser reduzido para o problema de colorir um grafo. Primeiro construímos o grafo dual G' da seguinte forma: Os vértices do grafo dual G' consistem em um ponto de cada face de G, incluindo a face ilimitada; uma aresta de G' conecta dois vértices se as faces correspondentes em G são separadas por uma fronteira. Desse jeito, colorir o mapa G é equivalente a colorir os vértices do grafo dual G

Exercício 8 Encontre o dual do mapa a seguir.

Exercício 9 Mostre que o dual de um mapa planar é um grafo planar.

Sejom k.,..., hn as regiões de mapa planore vi,..., un es nértices de grafo dual (vi é a região Ri).

Agora, suponha que a dual não seja planor, eu seja, sen perdo de genera lichade, ocorre a seguinte estrutura não reversivos:

Postorto, sem perde de generalidade R, Rz, Rz e Ru tombém se cruzarion com algum grow de superposição:

todo dual de un napa planor. Logo, tombém é planor (pessui ao menos umo representação sem interseção do arestas).

Sabenes que ele é 3-colorival. contude, ele não é 2-colorival peis não é biportide joi que pessui ciclos de tomanho in per.

Exercício 11 Encontre o dual do seguinte mapa.

Exercício 12 Mostre que qualquer coloração do mapa do Exercício 11 excluindo a região ilimitada requer pelo menos quatro cores.

L'en grow 5. Observando as autros vértices higações, pederos colorir as autros vértices com 3 cores (no mínimo, ja que não é bipartido).

Portante, L deverá ter entra coloração.