Co

## Major exam



Course: MTL 105

**Duration: 2 hours** 

M. Marks: 50

Note: All questions are compulsory.

- Let R be a commutative ring with unity. Show that a polynomial  $f \in R[x]$  is a unit if and only if the constant term of f is a unit and all other coefficients of f are nilpotent. [7 marks]
- II. Show that the additive group of  $\mathbb{Z}[x]$  is isomorphic to the group of positive rational numbers under multiplication. [6 marks]
- Show that 3 is an irreducible element of  $\mathbb{Z}[\sqrt{-5}]$ , but 3 is not prime in  $\mathbb{Z}[\sqrt{-5}]$ . Is  $\mathbb{Z}[\sqrt{-5}]$  a unique factorization domain? [3+2+2=7 marks]
- If p is a prime number, then show that the polynomial  $x^{p(p-1)} + x^{p(p-2)} + \cdots + x^p + 1$  is irreducible over  $\mathbb{Q}$ . [5 marks]
  - Let F be a finite field. Show that  $F^* = F \setminus \{0\}$  is a cyclic group under multiplication. [6 marks]
  - VI. Show that the ring  $\mathbb{Z}$  of integers is isomorphic to the ring of endomorphisms of the additive Abelian group of  $\mathbb{Z}$ . [7 marks]
- VII Let R be a ring. Show that every nilpotent ideal of R is nil, but the converse is not true. [7 marks]
- Let  $B \subseteq A$  be two ideals of a ring R. Show that  $R/A \simeq \frac{R/B}{A/B}$ . [5 marks]