WYKŁAD METODY AB-INTIO (DFT)

Spis treści

1. Wielociałowa funkcja falowa	
1.1. Wielociałowa funkcja falowa	2
1.2. Katastrofa van Vlecka	2
1.3. Gęstość elektronowa	2
1.4. Hamiltonian pelny	2
2. Przybliżenia	q
2.1. Przybliżenie adiabatyczne	3
2.2. Przybliżenie Borna-Oppenheimera	5
3. Przybliżenie pola średniego i metoda Hartree-Focka	4
3.1. Przybliżenie pola średniego	4
3.2. Równania Hartree-Focka	4
4. Twierdzenia Hohenberga-Kohna	5
5. Metoda Kohna-Shama	7
5.1. Założenia	7
5.2. Funkcjonał gęstości energii Kohna-Shama	7
5.3. Równanie Kohna-Shama	7
5.4. Hartree-Fock vs Kohn-Sham	7
6. Funkcjonały gęstości elektronowej	8
6.1. Energia wymienna i koreelacyjna	8
6.2. LDA	8
6.3. GGA	8
6.4. GW	8
6.5. $LDA+U/GW+U$	8
7. Metoda pseudopotencjałów	É
8. Metody obliczania struktury pasmowej / Rozwiązywania równań Kohna-Shama	10
8.1. PW	10
8.2. OPW	10
8.3. APW	10
8.4. LCAO	10
8.5. Porównanie metod	11
9. Dynamika molekularna w ujęciu Ab-Initio	12
9.1. Twierdzenie Hellmana-Feynmanna	12
9.2. Obliczanie sił działających na molekuły i relaksacja kryształu	12
9.3. Dynamika ab-initio vs klasyczna	12
9.4. Dynamika ab-initio Car-Parinello	12
9.5. Dynamika ab-initio BO	12
9.6. Obliczanie relacji dyspersyjnych dla fononów	12
10 Informacie praktyczne	19

1. Wielociałowa funkcja falowa

1.1. Wielociałowa funkcja falowa.

Zakładamy, że jeżeli zamienimy i-tą cząstkę z j-tą cząstką to możemy jedynie zmienić fazę funkcji falowej układu (wartości oczekiwane się nie zmienią):

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_i, \dots, \boldsymbol{r}_i, \dots, \boldsymbol{r}_N) = e^{i\theta} \Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_i, \dots, \boldsymbol{r}_i, \dots, \boldsymbol{r}_N)$$

Dodatkowo permutacja cząstek w funkcji falowej nie powinna wpływać na wartości oczekiwane (w końcu cząstki są nierozróżnialne!)

$$\langle \Psi | \hat{O} | \Psi \rangle = \text{const} \implies e^{2i\theta} = 1 \implies e^{i\theta} = \pm 1$$

Rozróżniamy cząstki, ktore mają "+" (bozony) i "-" (fermiony). Funkcja falowa zatem musi spełniać warunki symetryczności/antysymetryczności -> permanent/wyznacznik Slatera.

Dla fermionów wyznacznik Slatera:

$$\psi_{i_{1},i_{2},...,i_{N}} = \begin{vmatrix} \phi_{i_{1}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{1}}\left(\boldsymbol{r}_{2}\right) & \cdots & \phi_{i_{1}}\left(\boldsymbol{r}_{N-1}\right) & \phi_{i_{1}}\left(\boldsymbol{r}_{N}\right) \\ \phi_{i_{2}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{2}}\left(\boldsymbol{r}_{2}\right) & \cdots & \phi_{i_{2}}\left(\boldsymbol{r}_{N-1}\right) & \phi_{i_{2}}\left(\boldsymbol{r}_{N}\right) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \phi_{i_{N-1}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{N-1}}\left(\boldsymbol{r}_{2}\right) & \cdots & \phi_{i_{N-1}}\left(\boldsymbol{r}_{N-1}\right) & \phi_{i_{N-1}}\left(\boldsymbol{r}_{N}\right) \\ \phi_{i_{N}}\left(\boldsymbol{r}_{1}\right) & \phi_{i_{N}}\left(\boldsymbol{r}_{2}\right) & \cdots & \phi_{i_{N}}\left(\boldsymbol{r}_{N-1}\right) & \phi_{i_{N}}\left(\boldsymbol{r}_{N}\right) \end{vmatrix}$$

1.2. Katastrofa van Vlecka.

Ilość możliwych kombinacji orbitali w orbitalach Slatera rośnie wykładniczo z liczbą cząstek, a by uzyskać sensowne rozkłady funkcji falowej w bazie wyznaczników Slatera potrzebujemy ich b. dużo -> pamięć potrzebna na zmagazynowanie tego jest większa niż ilość at. we Wszechświecie...

Sensowniej jest posługiwać się gęstością elektronową, dwucząstkowymi macierzami gęstości, funkcjami koralecji, a więc tworami, które łatwiej użyć do obliczania fizycznych wartości makroskopowych.

Potrzebne są metody do efektywnego obliczania tych wielkości bez rozpatrywania całej funkcji falowej.

1.3. Gęstość elektronowa.

Gestość elektronowa niesie tyle samo informacji o energii stanu co funkcja falowa

(1.1)
$$n(\mathbf{r}) = \sum_{\sigma} n_{\sigma}(\mathbf{r}) = \sum_{\sigma_{2},\dots,\sigma_{3}} \int_{\mathbb{R}^{3(N-1)}} |\Psi(\mathbf{r}\sigma,\mathbf{r}_{2}\sigma_{2},\dots,\mathbf{r}_{N}\sigma_{N})|^{2} d^{3}r_{2}\cdot\dots\cdot d^{3}r_{N}$$

1.4. Hamiltonian pełny.

Hamiltonian układu w problemach ciała stałego:

$$\hat{H} = \hat{T}_{e}\left(\nabla_{\boldsymbol{r}_{i}}\right) + \hat{T}_{jon}\left(\nabla_{\boldsymbol{R}_{i}}\right) + \hat{V}_{ext}\left(\boldsymbol{r}_{i}, \boldsymbol{R}_{j}\right) + \hat{V}_{jon-jon}\left(\boldsymbol{R}_{i} - \boldsymbol{R}_{j}\right) + \hat{V}_{e-jon}\left(\boldsymbol{r}_{i} - \boldsymbol{R}_{j}\right) + \hat{V}_{e-jon}\left(\boldsymbol{r}_{i} - \boldsymbol{r}_{j}\right)$$

Rozkłada się na energię kinetyczną elektronów, jonów (najczęściej jąder/rdzeni atomowych), jednocząstkową energię potencjalną działającą na cząstki (np. grawitacja) oraz operatory dwucząstkowe przedstawiające wzajenmne oddziaływania cząstek na siebie.

W bazie położeń hamiltonian ciała stałego można rozpisać:

$$(1.2) \qquad \langle \boldsymbol{r} | \hat{H} | \boldsymbol{r} \rangle = -\frac{\hbar^2}{2m_e} \sum_{i=1}^{N_e} \nabla_{\boldsymbol{r}_i} - \sum_{I=1}^{N_{jon}} \frac{\hbar^2}{2M_I} \nabla_{\boldsymbol{R}_I} + \frac{1}{2} \sum_{I \neq J}^{N_{jon}} \frac{Z_I Z_J e^2}{|\boldsymbol{R}_i - \boldsymbol{R}_j|} + \frac{1}{2} \sum_{i \neq j}^{N_e} \frac{e^2}{|\boldsymbol{R}_i - \boldsymbol{R}_j|} - \sum_{i}^{N_e} \sum_{I}^{N_{jon}} \frac{Z_I e^2}{|\boldsymbol{r}_i - \boldsymbol{R}_I|}$$

Nie ma zewnętrznego potencjału, układ jest samozwiązany.

2. Przybliżenia

2.1. **Przybliżenie adiabatyczne.** Time-dependent adiabatic couplings Dlaczego oraz kiedy można odseparować skałdniki wolno i szykbo zmienne?

2.2. **Przybliżenie Borna-Oppenheimera.** Polega na zaniedbaniu Time-dependent adiabatic couplings, czyli w uproszczeniu na zaniedbaniu wolnozmiennych składników przy rozwiązywaniu r. Schroedingera. Jeżeli rozseparujemy funkcję falową układu jąder i elektronów w postaci iloczynu:

$$\Psi\left(\boldsymbol{r}_{i},\boldsymbol{R}_{i}\right)=\Phi\left(\boldsymbol{r}_{i};\boldsymbol{R}_{i}\right)\chi\left(\boldsymbol{R}_{i}\right)$$

To położenia jąder/jonów w przybliżeniu BO mogą być potraktowane jako parametry układu.

Możemy wtedy rozwiązać równanie na funkcje elektronowe Φ traktując położenia ciężkich jąder/rzdzeni atomowych jako parametry. Jest to tzw. elektronowe równanie Schroedingera:

$$\begin{split} \hat{H}_{e}^{BO}\Phi\left(\boldsymbol{r}_{i};\boldsymbol{R}_{j}\right) &= E_{e}\Phi\left(\boldsymbol{r}_{i};\boldsymbol{R}_{j}\right) \\ \hat{H}_{el}^{BO} &= \hat{T}_{e} + \hat{V}_{e-jon} + \hat{V}_{e-e} \end{split}$$

Czyli przybliżamy, że $\langle T_{\rm jon} \rangle$, $\langle V_{\rm jon\text{-}jon} \rangle \approx {\rm const}$, więc można w ogóle przenieść poziom energii stanu podstawowego tak by była to najniższa wartość własna hamiltonianu elektronowego.

Wyprowadzenie: https://en.wikipedia.org/wiki/Born-Oppenheimer approximation.

3. Przybliżenie pola średniego i metoda Hartree-Focka

3.1. Przybliżenie pola średniego.

Energię potencjalną oddziaływania elektronów między sobą zastępujemy samouzgodnionym polem średnim

$$V_{e-e}\left(\boldsymbol{r}_{i},\boldsymbol{r}_{i}\right) = \frac{1}{2} \sum_{i \neq j}^{N_{e}} \frac{e^{2}}{\left|\boldsymbol{r}_{i} - \boldsymbol{r}_{j}\right|} \mapsto U_{scf}\left(\boldsymbol{r}_{i}\right) = \sum_{j}^{N_{e}} e^{2} \int_{\mathbb{R}^{3}} \frac{\left|\psi_{j}\right|^{2}\left(\boldsymbol{r}'\right)}{\left|\boldsymbol{r}_{i} - \boldsymbol{r}'\right|} d^{3}r'$$

W efekcie otrzymujemy tylko operatory jednocząstkowe i równania stają się rozwiązywalne numerycznie.

3.2. Równania Hartree-Focka.

Przybliżenie średniego pola dla funkcji falowej w postaci wyznacznika Slatera oraz z uwzględnieniem korelacji elektronowych (człon wymienny).

Na orbitale jednoelektronowe otrzymujemy równania:

$$(3.1) \qquad \left[-\frac{\hbar^{2}}{2m_{e}} \nabla + V_{ext}\left(\boldsymbol{r}\right) + \underbrace{\sum_{j=1}^{N_{e}} e^{2} \int_{\mathbb{R}^{3}} \frac{\psi_{j}^{*}\left(\boldsymbol{r}'\right) \psi_{j}\left(\boldsymbol{r}'\right)}{|\boldsymbol{r} - \boldsymbol{r}'|} d^{3}\boldsymbol{r}'}_{E_{\text{Hartree}}} - \underbrace{\sum_{j=1}^{N_{e}} e^{2} \int_{\mathbb{R}^{3}} \frac{\psi_{j}\left(\boldsymbol{r}\right) \psi_{j}\left(\boldsymbol{r}\right) \psi_{j}\left(\boldsymbol{r}'\right) \psi_{i}\left(\boldsymbol{r}'\right)}{|\boldsymbol{r} - \boldsymbol{r}'|} d^{3}\boldsymbol{r}'}_{E_{\text{Exchange}}} \right] \psi_{i}\left(\boldsymbol{r}\right) = \varepsilon_{i}\psi_{i}\left(\boldsymbol{r}\right)$$

Obliczanie metoda self-consistent field SCF.

Potem można wstawić do w. Slatera i stąd policzyć gęstość elektronową.

Przybliżenie Hartree -> bez członu wymiennego.

Hartree-Focka-Bogoliubowa

4. Twierdzenia Hohenberga-Kohna

Twierdzenie 1. Hohenberga-Kohna

Istnieje jednoznaczne odworowanie pomiędzy potencjał zewnętrznym $\hat{V}_{ext} = \sum_{i=1}^{N} v_{ext}(\mathbf{r})$ a gęstością cząstek $n_0(\mathbf{r})$ w niezdegenerowanym stanie podstawowym i tym samym całkowita energia układu jest wtedy jednoznacznym funkcjonalem gęstości $n_0(\mathbf{r})$.

Dowód. (1. twierdzenia H-K)

Załóżmy, że istnieją dwa potencjały $\hat{V}_{ext}^{(1)}$ i $\hat{V}_{ext}^{(2)}$, którym odpowiada pojedyncza gęstość cząstek w stanie podstawowym $n_0(\mathbf{r})$.

Stan $|\Psi^{(1)}\rangle$ odpowiadający $n_0(\mathbf{r})$ jest stanem podstawowym z $\hat{V}_{ext}^{(1)}$, toteż z zasady wariacyjnej wynika:

$$\left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle < \left\langle \Psi^{(1)} \middle| \hat{H}^{(2)} \middle| \Psi^{(1)} \right\rangle = \left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \left\langle \Psi^{(1)} \middle| \hat{H}^{(2)} - \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle$$

I analogicznie stan $|\Psi^{(2)}\rangle$ odpowiadający $n_0(r)$ jest stanem podstawowym z $\hat{V}_{ext}^{(2)}$, toteż z zasady wariacyjnej wynika:

$$\left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle < \left\langle \Psi^{(2)} \middle| \hat{H}^{(1)} \middle| \Psi^{(2)} \right\rangle = \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle + \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} - \hat{H}^{(1)} \middle| \Psi^{(2)} \right\rangle$$

Hamiltoniany $\hat{H}^{(1)}$ i $\hat{H}^{(2)}$ różnią się tylko zewnętrznym potencjałem:

$$\left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle < \left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \int_{\mathbb{R}^{3}} \left(V_{ext}^{(2)} \left(\boldsymbol{r} \right) - V_{ext}^{(1)} \left(\boldsymbol{r} \right) \right) n_{0} \left(\boldsymbol{r} \right) d^{3}r$$

$$\left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle < \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle + \int_{\mathbb{R}^{3}} \left(V_{ext}^{(1)} \left(\boldsymbol{r} \right) - V_{ext}^{(2)} \left(\boldsymbol{r} \right) \right) n_{0} \left(\boldsymbol{r} \right) d^{3}r$$

Dodając stronami:

$$\left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle < \left\langle \Psi^{(1)} \middle| \hat{H}^{(1)} \middle| \Psi^{(1)} \right\rangle + \left\langle \Psi^{(2)} \middle| \hat{H}^{(2)} \middle| \Psi^{(2)} \right\rangle$$

lub

$$0 < \int_{\mathbb{R}^3} \left(V_{ext}^{(2)} \left(\boldsymbol{r} \right) - V_{ext}^{(1)} \left(\boldsymbol{r} \right) + V_{ext}^{(1)} \left(\boldsymbol{r} \right) - V_{ext}^{(2)} \left(\boldsymbol{r} \right) \right) n_0 \left(\boldsymbol{r} \right) d^3 r = 0$$

Co jest wewnętrznie sprzeczne!

Stąd wniosek, że początkowe założenie jest nieprawdziwe, więc musi istnieć tylko jeden \hat{V}_{ext} odpowiadający dokładnie jednej $n_0(r)$.

${\bf Twierdzenie~2.~} {\it Hohenberga-Kohna}$

The functional that delivers the ground state energy of the system, gives the lowest energy if and only if the input density is the true ground state density.

Uwaqa

Gęstość ρ 0 minimalizująca całkowitą energię jest dokładną gęstością stanu podstawowego. A więc, dla próbnej gęstości (nieujemnej i całkującej się do N) zachodzi $E\left[\tilde{\rho}\right] \leq E\left[\rho_{0}\right] = E_{0}$.

Dowód. 2. twd. Hohenberga-Kohna

W niezdegenerowanym stanie podstawowym wartość oczekiwana dowolnego operatora jest funkcjonałem gęstości cząstek minimalizującej energię stanu podstawowego. $n(\mathbf{r})$ determines $v_{\text{ext}}(\mathbf{r})$, N and $v_{\text{ext}}(\mathbf{r})$ determine \hat{H} and therefore Ψ . This ultimately means Ψ is a functional of $n(\mathbf{r})$, and so the expectation value of \hat{F} is also a functional of $n(\mathbf{r})$, i.e. $F[n(\mathbf{r})] = \langle \psi | \hat{F} | \psi \rangle$.

A density that is the ground-state of some external potential is known as v-representable. Following from this, a v-representable energy functional $E_v[n(\mathbf{r})]$ can be defined in which the external potential $v(\mathbf{r})$ is unrelated to another density $n'(\mathbf{r})$,

$$E_v[n(\mathbf{r})] = \int n'(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F[n'(\mathbf{r})]$$

and the variational principle asserts,

$$\langle \psi' | \hat{F} | \psi' \rangle + \langle \psi' | \psi \rangle + \langle \psi | \hat{V}_{\text{ext}} | \psi \rangle$$
,

where ψ is the wavefunction associated with the correct groundstate $n(\mathbf{r})$. This leads to,

$$\int n'(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F[n'(\dots, f_n(\mathbf{r}) v_{\text{ext}}(\mathbf{r}) d\mathbf{r} + F[n(\mathbf{r})],$$

and so the variational principle of the second Hohenberg-Kohn theorem is obtained,

$$E_v[n'(\mathbf{r})] > E_v[n(\mathbf{r})].$$

Although the Hohenberg-Kohn theorems are extremely powerful, they do not offer a way of computing the ground-state density of a system in practice. About one year after the seminal DFT paper by Hohenberg and Kohn, Kohn and Sham [9] devised a simple method for carrying-out DFT calculations, that retains the exact nature of DFT. This method is described next.

5. Metoda Kohna-Shama

5.1. **Założenia.** Założenia w metodzie Kohna-Shama:

- (1) Zastępujemy układ oddziałujących cząstek w zewnętrznym potencjale v_{ext} (\mathbf{r}) układem pomocniczym składającym się z quasicząstek nieoddziałujących w pewnym efektywnym potencjale $v_{eff}(\mathbf{r})$.
- (2) Zakładamy, że istnieje takie $v_{eff}(\mathbf{r})$, które dokładnie odwzorowuje energię stanu podstawowego układu oddziału-
- (3) Układ nieoddziałujących cząstek jest opisany za pomocą orbitali Kohna-Shama (pseudofunkcji falowych) $\phi_i(\mathbf{r})$ (są to rozw. równania Kohna-Shama).

Przy powyższych założeniach gestość stanu podstawowego ukł. oddziałującego jest zadana przez

$$n\left(\mathbf{r}\right) = \sum_{i=1}^{N} \phi_i\left(\mathbf{r}\right)$$

5.2. Funkcjonał gęstości energii Kohna-Shama. Dla hamiltonianu układu wielu ciał:

Na mocy twierdzeń Hohenberga-Kohna można utworzyć funkcjonał gęstości:

$$E_{HK}\left[n\right] = T\left[n\right] + \int_{\mathbb{R}^{3}} v_{ext}\left(\mathbf{r}\right) d^{3}r + \int_{\mathbb{R}^{3}} v_{int}\left(\mathbf{r}\right) n\left(\mathbf{r}\right) d^{3}r$$

Przy założeniach metody Kohna-Shama można ten potencjał przedstawić w postaci:

$$E_{KS}\left[n\right] = T_{S}\left[n\right] + \int_{\mathbb{R}^{3}} v_{ext}\left(\mathbf{r}\right) n\left(\mathbf{r}\right) d^{3}r + E_{H}\left[n\right] + E_{Ion-Ion}\left[n\right] + E_{XC}\left[n\right]$$

 $T_S\left[n\right]=\int_{\mathbb{R}^3}\sum_{i=1}^N\frac{\hbar^2}{2m}|\nabla\phi_i|d^3r$ - funkcjonał energii kinetycznej $E_H\left[n\right]=\int_{\mathbb{R}^3}\cdot d^3r$ - funkcjonał energii Hartree [UZUPELNIĆ]

 $E_{II}[n] = const$ - funkcjonał energii oddziaływania jon-jon

 $E_{XC}[n] = T[n] + \langle \hat{V}_{int} \rangle - T_S[n] - E_H[n]$ - funkcjonał energii korelacyjno-wymiennej, w ogolności analityczna postać nie jest znana (gdyby była, to metoda KS byłaby metodą dokładną).

5.3. Równanie Kohna-Shama.

5.4. Hartree-Fock vs Kohn-Sham.

- 6. Funkcjonały gęstości elektronowej
- 6.1. Energia wymienna i koreelacyjna.
- 6.2. **LDA**.
- 6.3. **GGA**.

6.4. **GW**.

Uwzględnienie ekranowania – metoda GW • Ciało stałe – układ wieloelektronowy Człon wymienno-korelacyjny Oddziaływanie kulombowskie Funkcja Greena/propagator:

G() =

6.5. **LDA+U/GW+U**.

7. METODA PSEUDOPOTENCJAŁÓW

- 8. Metody obliczania struktury pasmowej / Rozwiązywania równań Kohna-Shama
- 8.1. **PW**.
- 8.2. **OPW.**
- 8.3. **APW**.

8.4. LCAO.

Szukamy rozwiązania w kostaci funkcji Blocha.

$$\Psi_{n\boldsymbol{k}}\left(\boldsymbol{r}\right) = \frac{1}{\sqrt{N}} \sum_{\mu} c_{n\mu}\left(\boldsymbol{k}\right) \Phi_{\boldsymbol{k}\mu}\left(\boldsymbol{r}\right)$$

Funkcja LCAO:

$$\Phi_{\boldsymbol{k}\mu}\left(\boldsymbol{r}\right) = \frac{1}{\sqrt{N}} \sum_{j} e^{i\boldsymbol{k}\cdot\boldsymbol{R}_{j}} R_{\mu l}(|\boldsymbol{r}-\boldsymbol{R}_{j}|) Y_{lm}\left(\theta,\phi\right)$$

Razem funkcję falową rozwijamy w bazie:

$$\Psi_{n\boldsymbol{k}}\left(\boldsymbol{r}\right) = \frac{1}{N} \sum_{\mu} \sum_{j} c_{n\mu}\left(\boldsymbol{k}\right) e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \underbrace{R_{\mu l}(|\boldsymbol{r}-\boldsymbol{R}_{j}|) Y_{lm}\left(\boldsymbol{\theta},\boldsymbol{\phi}\right)}_{\text{orbitale atomowe}}$$

Funkcje radialne spełniają równanie:

$$\left[-\frac{1}{2} \frac{1}{r} \frac{d^2}{d^2 r} r + \frac{1}{2} \frac{\ell(\ell-1)}{r^2} + V_{\mu\ell}(r) \right] R_{\mu\ell}(r) = (\varepsilon_{\ell} + \delta \varepsilon_{\ell}) R_{\mu\ell}(r)$$

Dla każdego orbitalu musimy określić zasięg bazy, co można zrobić wprowadzając przesunięcie energii $\delta \varepsilon_{\ell}$. Otrzymana baza nie jest ortonormalna, nie mniej jednak możemy rozwiązać metodą Ritza:

(8.1)
$$\sum_{\nu} H_{\mu\nu} c_{n\mu} (\mathbf{k}) = E_n (\mathbf{k}) \sum_{\mu} S_{\mu\nu} c_{n\mu} (\mathbf{k})$$

 ν indeksuje składowe wektorów własnych.

Konstrukcja bazy LCAO:

- Minimalny rozmiar bazy "single- ζ " (SZ) jedna funkcja radialna na jedną zapełnioną powłokę ze względu na moment pędu
- Możliwości zwiększenia rozmiaru bazy zwiększenie ilości funkcji radialnych "multiple-ζ" (DZ,DZP) lub dodanie orbitali o różnym ℓ ("polarization")

8.5. Porównanie metod.

PW:

APW:

- połączenie metod PW i LCAO
- ...

OPW: LCAO:

- Używają pseudopotencjałów
- Bazą funkcji falowej jest zbiór orbitali atomowych

- Opis "zlokalizowany" w duchu chemii kwantowej
- Wysoka wydajność
- Problemy ze zbieżnością
- Główne cechy bazy: wielkość, zakres orbitali, kształt
- Numeryczne orbitale atomowe (NAO) to rozwiązania numeryczne zagadnienia K-S dla izolowanego (pseudo-) atomu

9. Dynamika molekularna w ujęciu Ab-Initio

9.1. Twierdzenie Hellmana-Feynmanna.

Twierdzenie 3. Twierdzenie Feynmana-Hellmanna: pochodna energii całkowitej po pewnym parametrze jest równa wartości średniej pochodnej hamiltonianu po tym samym parametrze:

$$\frac{\partial E}{\partial \lambda} = \left\langle \Psi \right| \frac{\partial}{\partial \lambda} \hat{H} \left| \Psi \right\rangle$$

Dowód. ???

9.2. Obliczanie sił działających na molekuły i relaksacja kryształu.

Na mocy twd. 3 możemy napisać, że i-ta składowa siły jest równa:

(9.1a)
$$F_i = -\frac{\partial E}{\partial X_i} = -\left\langle \Psi \right| \frac{\partial}{\partial X_i} \hat{H} \left| \Psi \right\rangle$$

(9.1b)
$$\mathbf{F} = -\nabla E = \int_{\mathbb{D}^3} \Psi^*(\mathbf{r}) \, \nabla H(\mathbf{r}) \, \Psi(\mathbf{r}) \, d^3 r$$

Relaksacja kryształu polega na znalezieniu minimum sił. Jest potrzebna do wyznaczenia struktury pasmowej.

9.3. Dynamika ab-initio vs klasyczna.

Klasyczna

- Stały potencjał
- Brak elektronowych stopni swobody
- Brak opisu reakcji chemicznych
- Zakres do ok. 100 \mathring{A}
- Skala czasowa do ok. 10 ns
- 9.4. Dynamika ab-initio Car-Parinello.
- 9.5. Dynamika ab-initio BO.
- 9.6. Obliczanie relacji dyspersyjnych dla fononów.

Teoria odpowiedzi liniowej – fonony

Ab-initio

- Potencjał samozgodny
- Elektronowe stopnie swobody
- Opis powstawania i zrywania wiązań chemicznych (reakcji chemicznych)
- Zakres do ok. 20 \mathring{A}
- Skala czasowa do ok. 100 ps

10. Informacje praktyczne

Mamy przejebane...