

No Time to Paint Analysis by David Yang

Statement Summary

N<=1e5 paints

Q<=1e5 queries

Answer the query(L,R) such that you find prefix[L] + suffix[R]

Prefix[L] = minimum number of brush movements to paint up to L.

Suffix [R]= minimum number of brush movements to paint up to R from the back.

How to calculate a prefix[i]?

I would approach this with a greedy algorithm

We want to minimize the number of brush movements

And we also can only paint from AAAA-> ABBA, not BBBB -> ABBA

Prefix[i]

If we want to minimize the number of brush movements

Then we want to paint as little as possible

Same thing as "extend a segment as far as possible"

How to extend?

Extending a Segment

We only ever extend a segment if we can, but then how CAN we?

Explanation of the Sample

We Added 1 if it didn't exist

Or if there was a contradiction.

BAA-B was a contradiction, because you could not build BAAB in 2 moves, that is just impossible.

But also, how can you check for this in code?

Dealing with Contradictions

Segment Tree will be used, we need this to find the minimum element between a range.

In the case of BAAB, the minimum element between the Bs is an A.

A<B, so this is a contradiction. You must paint a new segment

Coding Stuff

To be able to query a range, you need to know your bounds. You know your Right Bound. This is the current index. The left bound must be stored.

last['c'] = most recent occurrence of 'c', or -1 if not existed.

Coding Nuances

You use the segment tree that can support update(index, value) min(left, right)

Store an array that takes a character as an index.

Then take a prefix sum. For the suffix, reverse the string.