

First off, schedule for this week

- Mon, Mar 21 (today)
 - Equivalence & Minimization of Automata (Table Filling Algorithm)
- Wed, Mar 23
 - Finish off topics in context-free languages
 - Non-context free languages
 - Deterministic CFL
 - Review for Mid Term 2
- Fri, Mar 25
 - Mid Term 2

Applications of interest

- Comparing two DFAs:
 - L(DFA₁) == L(DFA₂)?

- How to minimize a DFA?
 - Remove unreachable states
 - Identify & condense equivalent states into one

When to call two states in a DFA "equivalent"?

Two states p and q are said to be equivalent iff:

i) Any string w accepted by starting at p is also accepted by

W

W

starting at q;

AND

ii) Any string w rejected by starting at p is also rejected by starting at q.

→ p≡q

Computing equivalent states in a DFA Table Filling Algorithm

Pass #0

1. Mark accepting states ≠ non-accepting states

Pass #1

- 1. Compare every pair of states
- 2. Distinguish by one symbol transition
- 3. Mark = or \neq or blank(tbd)

Pass #2

- 1. Compare every pair of states
- 2. Distinguish by up to two symbol transitions (until different or same or tbd)

...

Α	П							
В		Ш						
С			II					
D				Ш				
Е					Ш			
F						Ш		
G							II	
Н								Ш
	Α	В	C	D	Е	F	G	Η

1. Mark X between accepting vs. non-accepting state

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X		II					
D	X			II				
Е	X	X	X	X	II			
F					X	II		
G	X				X		II	
Н	X				X			II
	Α	В	С	D	E	F	G	Ι
	1							

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	Ш							
В		Ш						
С	X	X	II					
D	X	X		II				
Е	X	X	X	X	II			
F					X	Ш		
G	X	X			X		Ш	
Н	X	X			X			Ш
	Α	В	С	D	Е	F	G	Н
	•			'	'	'		

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X	X	Ш					
D	X	X	X	=				
Е	X	X	X	X	=			
F			X		X	II		
G	X	X	X		X		Ш	
Н	X	X	=		X			II
	Α	В	С	D	Е	F	G	Н
	-	- '		-	-	- '		

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	Ш							
В		=						
С	X	X	=					
D	X	X	X	=				
E	X	X	X	X	II			
F			X	X	X	Ш		
G	X	X	X	=	X		II	
Н	X	X	=	X	X			Ш
	Α	В	С	D	Е	F	G	Н
	•			1		'	'	

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

A	=							
В		=						
С	X	X	=					
D	X	X	X	=				
Ε	X	X	X	X	=			
F			X	Х	X	=		
G	X	X	X	=	X	X	=	
Н	X	X	=	X	X	X		=
	Α	В	С	D	E	F	G	Н
		•	•		•	1		

- 1. Mark X between accepting vs. non-accepting state
- 2. Look 1- hop away for distinguishing states or strings

Α	=							
В		=						
С	X	X	=					
D	X	X	X	=				
Е	X	X	X	X	=			
F			X	X	X	=		
G	X	X	X	=	X	X	Ш	
Н	X	X	=	X	X	X	X	Ш
	Α	В	С	D	E	F	G	Η
							↑ `	

Α	=							
В	=	=						
С	X	X	=					
D	X	X	X	=				
Е	X	X	X	X	=			
F	X	X	X	X	X	=		
G	X	X	X	=	X	X	=	
Н	X	X	=	X	X	X	X	1
	Α	В	С	D	Е	F	G	Н

- 1. Mark X between accepting vs. non-accepting state
- 2. Pass 1:
 Look 1- hop away for distinguishing states or strings | A | B | C | D | E | F | G | H |

3. Pass 2:

Look 1-hop away again for distinguishing states or strings continue....

Α	`) II							
В		=	=						
С		X	X	II					
D		X	X	X	II				
Ε		X	X	X	X	II			
F		X	X	X	\mathbf{x}	X	II		
G	;	X	X	\mathbf{x}	=	X	X	11	
Н		Χ	X(=	X	X	X	X	=
inaa		Α	В) ပ	D	Е	F	G	Н

- Mark X between accepting vs. non-accepting state
- Pass 1: Look 1- hop away for distinguishing states or strings
- 3. Pass 2:

Look 1-hop away again for distinguishing states or strings **Equivalences**: continue....

- A=B
- C=H
- D=G

Retrain only one copy for each equivalence set of states

Equivalences:

- A=B
- C=H
- D=G

Table Filling Algorithm – special case

Α	Ш							
В		II						
С			II					
D				II				
E				?	Ш			
F						Ш		
G							II	
Н								Ш
	Α	В	С	D	Е	F	G	Ι

Q) What happens if the input DFA has more than one final state?

Can all final states initially be treated as equivalent to one another?

Putting it all together ...

How to minimize a DFA?

Goal: Minimize the number of states in a DFA

Depth-first traversal from the start state

- Algorithm:
 - 1. Eliminate states unreachable from the start state

 Table filling algorithm
 - Identify and remove equivalent states
 - 3. Output the resultant DFA

Are Two DFAs Equivalent?

- 1. Make a new dummy DFA by just putting together both DFAs
- 2. Run table-filling algorithm on the unified DFA
- 3. IF the start states of both DFAs are found to be equivalent,

THEN: DFA₁≡ DFA₂

ELSE: different