

COMUNIDAD ARDUINO OPEN SOURCE

ARDUINO III

CLASE 3

Thingspeak

THINGSPEAK

Es una API de loT que permite enviar datos, visualizarlos, graficarlos y devolverlos para su análisis, creado el año 2010 como una interfaz de apoyo para Matlab.

Para el envió de información trabaja con 2 tipos de protocolos:

API REST

MQTT

API - API REST

Una API (application programming interface) interfaz de programación de aplicaciones, es una interfaz que nos permite enviar/recibir información de un servicio en línea.

REST es un tipo de API, pero no todas las API son REST.

Se entiende por REST al conjunto de reglas, estándares o directrices para crear una api web.

¿MQTT o API REST?

Thingspeak trabaja con canales de información por lo cual API REST permite usar funciones como GET, POST, PUT, DELETE (recibir, enviar, borrar información, eliminar), por otro lado, MQTT permite enviar datos y para visualizarlos debemos suscribirnos a MQTT.

En ese entendido es mejor usar el protocolo API REST.

SHIELD ETHERNET

SHIELD ETHERNET

Es una tarjeta expansora para arduino que nos permite conectarnos a internet a través de un cable RJ45

Características

- Integrado por el controlador ethernet W5100 con una memoria de 16k
- Soporta conexión TCP/UDP.
- Puede realizar 4 conexión de sockets simultáneamente.

Maneja el protocolo SPI

EJERCICIO 1 - CIRCUITO

Generar un contador automático y enviar los datos a Thingspeak, utilizando una IP estática.

Los datos se actualizan cada 15 segundos.

EJERCICIO 1 - CANAL EN THINGSPEAK

EJERCICIO I - CANAL EN THINGSPEAK

Parámetros del canal a ser creado

☐ ThingSpeak™	Canales +	Aplicaciones +	Apoyo→		
Nuevo cana	al				
Nombre	Contador de datos				
Descripción	Contador automático a través de Shield Ethernet				
Campo 1	Contador	✓			
Campo 2			Clic en		
Campa 3			Chan		

Enlace a GitHub	https://github.com/
Elevación	
Mostrar ubicación del canal	
Latitud	0.0
Longitud	0.0
Mostrar vídeo	□ Youtube○ Vimeo
Ve ado	http://
	Guardar canal

EJERCICIO I - CANAL EN THINGSPEAK

ID y API Keys

EJERCICIO 1 - CANAL EN THINGSPEAK

ID y API Keys

Copiamos ID del canal y el Write API Key, en mi

caso:

ID - **1046367**

Key -

8ZOMNGOB7FYR79V7

EJERCICIO 1 - SOLUCIÓN

S3-E1

```
1 #include "ThingSpeak.h"
 2 #include <Ethernet.h>
 4 IPAddress ip(192,168,1,200); //IP asignada
 5 IPAddress Dns(192,168,1,1);
 6 EthernetClient cliente:
 7 byte mac[] = \{0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED\};
 8 long ID = 1046367; //# de canal
 9 char* Key = "8Z0MNGOB7FYR79V7"; //Key del canal
10 int contador = 0:
11
12 void setup() {
13
    Ethernet.init(); // Inicializamos la shield
     Serial.begin(115200); //Inicializar serial
    Ethernet.begin (mac, ip, Dns); // Inicia la conexión Ethernet
     delay(1000);
```


EJERCICIO 1 - SOLUCIÓN

```
17
    ThingSpeak.begin(cliente); //Inicializa ThingSpeak
18 }
19
20 void loop(){
21
    int x = ThingSpeak.writeField(ID,1,contador, Key);
22
    if(x == 200){
23
      Serial.print("Entrada: ");
      Serial.println(contador);
24
25
      Serial.println("Escritura exitosa!");
26
      contador++;
27
28
    else{
      Serial.println("Problema al actualizar el canal. Código de error HTTP " + String(x));
    delay(15000); // Espera 15s y actualiza el canal nuevamente
```


EJERCICIO I - PRUEBAS DE FUNCIONAMIENTO

Entrada: 0 Escritura exitosa! Entrada: 1 Escritura exitosa! Entrada: 2 Escritura exitosa! Entrada: 3 Escritura exitosa! Entrada: 4 Escritura exitosa! Entrada: 5 Escritura exitosa! Entrada: 6 Escritura exitosa! Entrada: 7 Escritura exitosa! Entrada: 8 Escritura exitosa! Entrada: 9 Escritura exitosa! Entrada: 10 Escritura exitosa!

ERROR HTTP 301

Este error nos indica que el host ha sido capaz de comunicarse con el servidor pero que hubo una falla en el envió de información.

PROTOCOLO DHCP

El Protocolo de Configuración Dinámica de Host (Dinamic Host Configuration Protocol) es un protocolo de red de tipo cliente/servidor mediante el cual un servidor DHCP asigna dinámicamente una dirección IP a cada dispositivo en una red.

Permite configurar dinámicamente los parámetros esenciales TCP/IP de los host de una red.

DHCP envía los datos a través de TCP/IP

EJERCICIO 2 - CIRCUITO

Graficar los datos de un sensor analógico en **Thingspeak** cada 15 seg. Empleando DHCP.

EJERCICIO 2 - CANAL EN THINGSPEAK

Creamos un nuevo canal, para ello clic en Channels/My Channels

EJERCICIO 2 - CANAL EN THINGSPEAK

Parámetros del canal a ser creado

☐ ThingSpeak™	Canales →	Aplicaciones 🕶	Apoyo÷	
Nuevo cana	al			
Nombre	Control de luminosidad			
Descripción	Permite graficar la luminosidad del ambiente usando un Shield Ethernet			
Campo 1	Luminosidad	✓		
Campo 2			Clic en	
Campo 3			Chan	

https://github.com/
0.0
0.0
□ ③ Youtube ○ Vimeo
http://
□ Guardar canal

EJERCICIO 2 - CANAL EN THINGSPEAK

ID y API Keys

EJERCICIO 2 - CANAL EN THINGSPEAK

ID y API Keys

¬ ThingSpeak™

Canales -

Aplicaciones -

Apoyo -

Control de luminosidad

ID de canal: 1046415

Autor: nagibvallejos

Acceso: Privado

Permite graficar la luminosidad usando un Shield Ethernet Copiamos **ID del canal** y el **Write API Key**, en mi

caso: ID - **1046415**

Key -

FWWBMZ568XGDZSFD

Vista privada

Vista pública

Configuración del canal

Compartir

Claves

Escribir clave de API

Clave

FWWBMZ568XGDZSFD

Ayu

Las clav privado

Conf

EJERCICIO 2 - SOLUCIÓN

S3-E2

```
1 #include "ThingSpeak.h"
 2 #include <Ethernet.h>
 4 IPAddress ip(192,168,1,200); //IP asignada
 5 IPAddress Dns(192,168,1,1);
 6 EthernetClient cliente;
 7 byte mac[] = \{0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED\};
 8 long ID = 1046415; //# de canal
 9 char* Key = "FWWBMZ568XGDZSFD"; //Key del canal
10 int ldr = A0, lectura, luminosidad;
11
12 void setup() {
13
     Ethernet.init(); // Inicializamos la shield
14
     Serial.begin(115200); //Inicializar serial
15
     Serial.println("Inicializar Ethernet con DHCP:");
16
     if (Ethernet.begin(mac) == 0) {
17
       Serial.println("Error configurando por DHCP");
18
       if (Ethernet.hardwareStatus() == EthernetNoHardware) {
19
         Serial.println("No se encontró la Shield Ethernet");
20
         while (true) {
21
           delay(1); // Salir del programa
22
23
```


EJERCICIO 2 - SOLUCIÓN

```
24
       if (Ethernet.linkStatus() == LinkOFF) {
25
         Serial.println("El cable de red no está conectado");
26
27
       Ethernet.begin (mac, ip, Dns); // Inicia la conexión Ethernet
28
     } else {
29
       Serial.print("IP asignada por DHCP ");
30
       Serial.println(Ethernet.localIP());
31
32
     delay(1000);
33
     ThingSpeak.begin(cliente); //Inicializa ThingSpeak
34 1
35 void loop() {
36
     lectura = analogRead(ldr);
37
     luminosidad = map(lectura, 0, 1023, 0, 100);
     int x = ThingSpeak.writeField(ID, 1, lectura, Key);
38
39
     if(x == 200) {
40
       Serial.println("Entrada: "+ String(lectura) + "%");
41
       Serial.println("Escritura exitosa!");
42
43
     else{
       Serial.println("Problemas al actualizar el canal. Código de error HTTP " + String(x));
     delay(15000); // Espera 15s y actualiza el canal nuevamente
```


EJERCICIO 2 - PRUEBAS DE FUNCIONAMIENTO

EJERCICIO 3 - CIRCUITO

Enviar múltiples valores a **Thingspeak** cada 15 seg. Empleando DHCP.

EJERCICIO 3 - CANAL EN THINGSPEAK

Creamos un nuevo canal, para ello clic en Channels/My Channels

EJERCICIO 3 - CANAL EN THINGSPEAK

Parámetros del canal a ser creado

				Lillace a Oltriub	
☐ ThingSpeak™	Canales - Aplic	caciones +	Apoyo •	Elevación	
Nuevo cana	al			Mostrar ubicación del canal	
Nombre	Monitoreo de datos			Latitud	0.0
Descripción	Grafica de 2 sensores: Uno analógico, otro digital y el envió de un número aleatorio		Longitud	0.0	
Campo 1	Aleatorio			Mostrar vídeo	Youtube Vimeo
Campo 2	Luminosidad			URL de vídeo	http://
Campo 3	Humedad		Clic en So Channe	Jado	
Campo 4	Temperatura				Guardar canal

EJERCICIO 3 - CANAL EN THINGSPEAK

ID y API Keys

EJERCICIO 3 - CANAL EN THINGSPEAK

ID y API Keys

□ ThingSpeak™

Channels -

Apps ▼

Support -

Monitoreo de datos

Chanr el ID: 1046432

Author: nagibvallejos

Access: Private

Private View

Public View

Channel Settings

Sharing

API Keys

Grafica de 2 sensores: Uno analógico,

el envió de un número aleatorio

Data Import / Export

Write API Key

Key

MV25T07CLLMC5N19

Help

API keys enable you keys are auto-genera

TUTOR! NAGIB LUIS VALLEJOS M.

el Write API Key, en mi caso:

ID - 1046432

Copiamos ID del canal y

Key -

MV25TO7CLLMC5N19

EJERCICIO 3 - SOLUCIÓN

S3-E3

```
1 #include "ThingSpeak.h"
 2 #include <Ethernet.h>
 3 #include <DHT.h>
 5 | IPAddress ip (192, 168, 1, 200); //IP asignada
 6 IPAddress Dns(192,168,1,1);
 7 EthernetClient cliente:
 8 DHT dht(2,DHT22);
 9
10 byte mac[] = \{0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED\};
11 long ID = 1046432; //# de canal
12 char* Key = "MV25T07CLLMC5N19"; //Key del canal
13 int ldr = A0, lectura, luminosidad;
14
15 void setup() {
    Ethernet.init(); // Inicializamos la shield
16
17
    dht.begin();
    Serial.begin(115200); //Inicializar serial
18
    Serial.println("Inicializar FUFORENAGIBIUMS:WALLEJOS M.
```


EJERCICIO 3 - SOLUCIÓN

```
20
    if (Ethernet.begin(mac) == 0) {
21
      Serial.println("Error configurando por DHCP");
22
       if (Ethernet.hardwareStatus() == EthernetNoHardware) {
23
         Serial.println("No se encontró la Shield Ethernet");
24
        while (true) {
25
           delay(1); // Salir del programa
26
27
28
      if (Ethernet.linkStatus() == LinkOFF) {
29
        Serial.println("El cable de red no está conectado");
30
      Ethernet.begin (mac, ip, Dns); // Inicia la conexión Ethernet
31
32
    } else {
33
      Serial.print("IP asignada por DHCP ");
34
      Serial.println(Ethernet.localIP());
35
    delay(1000);
    ThingSpeak.begin(cliente); //Inicializa ThingSpeak
```


EJERCICIO 3 - SOLUCIÓN

```
39 void loop() {
40
     int aleatorio = random(0,100);
41
     lectura = analogRead(ldr);
42
     luminosidad = map(lectura, 0, 1023, 0, 100);
43
    float h = dht.readHumidity();
44
    float t = dht.readTemperature();
45
    ThingSpeak.setField(1, aleatorio);
    ThingSpeak.setField(2, luminosidad);
46
47
    ThingSpeak.setField(3,h);
48
    ThingSpeak.setField(4,t);
49
     int x = ThingSpeak.writeFields(ID, Key);
50
    if(x == 200) {
51
       Serial.println("Aleatorio: "+ String(aleatorio));
52
       Serial.println("Luminosidad: "+ String(luminosidad) + "%");
53
       Serial.println("Humedad: "+ String(h) + "HR");
54
       Serial.println("Temperatura: "+ String(t) + "°C");
55
       Serial.println("Datos enviados!");
56
57
     else{
58
       Serial.println("Problemas al actualizar el canal. Código de error HTTP " + String(x));
59
    delay(15000); // Espera 15s y actualiza el canal nuevamente
```


EJERCICIO 3 - PRUEBAS DE FUNCIONAMIENTO

IP asignada por DHCP 192.168.1.7

Aleatorio: 49

Luminosidad: 73%

Humedad: 58.00HR

Temperatura: 30.00°C

Datos enviados!

Aleatorio: 72

Luminosidad: 44%

Humedad: 78.00HR

Temperatura: 23.00°C

Datos enviados!

Aleatorio: 9

Luminosidad: 40%

Humedad: 65.00HR

Temperatura: 92.00°C

Datos enviados!

EJERCICIO 3 - WIDGETS

CONTACTOS

(+591) 63096640

robotics.space.nv@gmail.com

fb.me/RoboticsSpaceNV

@NagibVallejos

Robotics Space NV

https://github.com/nagibvalejos/Robotics-Space-NV