Models for count data

Bert van der Veen

Department of Mathematical Sciences, NTNU

Outline

- Models for count data
- Residual diagnostics in GLMs
- Other useful models

Questions about yesterday?

The binomial GLM

 ${\bf Data}:\ r$ the number of successes in N trials

Parameters: probability p (now: π_i) Goal: estimate π_i for each observation

Binomial GLM use

- When a linear regression is not appropriate :)
- For binary data or counts of successes/failures

In ecology

- Predicting species' distributions
- Number of germinated plant seeds
- Prevalence of disease in a population
- Probability of observing a behavior
- Proportion of orchids 60

Binomial link functions (2)

Outline

Log-linear regression

Log-linear regression is a class of models that uses the log-link function:

$$\log\{\mathbb{E}(y_i|x_i)\} = \eta_i = \alpha + x_i\beta$$

$$\mathbb{E}(y_i|x_i) = \lambda_i = \exp(\alpha + x_i\beta)$$
(1)

Log-linear regression is commonly used to analyse count data

Typical count cases

- Caught fish
- Plants at a site
- Pidgeons in a city
- Bigfoot reports
- Wrongful convictions
- Stars in the night sky

The Poisson GLM

Data: k_i the count **Parameters**: mean λ

Goal: estimate λ_i for each observation

The Poisson distribution

$$\mathcal{L}(y_i;\Theta) = \exp\{y_i \log(\lambda_i) - \lambda_i - \log(y_i!)\} \tag{2}$$

The Poisson paramater λ is the mean of the counting process

The Poisson distribution: rates

Alternatively we can write:

$$\mathcal{L}(y_i;\Theta) = \exp\{y_i \log(rt) - rt - \log(y_i!)\} \tag{3} \label{eq:3}$$

so, $\lambda = rt$

- \triangleright r is the rate at which counts occur, per time period t
- we could also record counts within a certain period, instead of the total

Catching fish

- We go fishing for an hour and catch $\lambda = 5$ fish
- ightharpoonup On average we caught $r=rac{5}{60}$ fish per t=1

Is Poisson regression really a GLM?

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \log(\lambda) + \log(\lambda)}{1} + \log(y_i!)\right\} \tag{4}$$

All GLMs can be formulated as:

$$\mathcal{L}(y_i; \Theta) = \exp\left\{\frac{y_i \eta_i - b(\eta_i)}{a(\phi)} + c(y_i, \phi)\right\} \tag{5}$$

So log is the canonical link. This looks like:

Counts: a multiplicative process

Say that we have the model:

$$\log(\lambda) = \alpha + x_i \beta \tag{6}$$

- ightharpoonup with $\alpha=1$ and $\beta=\log(2)\approx 0.693$
- $\triangleright x_i$ is either 0 or 1: either I was fishing or you were
- exp(1) = 2.71828 the average number of fish I caught
- $ightharpoonup \exp(1+2) = \exp(1)*2 = 5.437$ the average number of fish you caught

So, you caught twice as many fish!

Poisson assumptions

- \blacktriangleright An event can occur $0...\infty$ times
- Events are independent
- The rate of events is constant
- Events cannot occur simultaneously
- Variance equals the mean

Example: horseshoe crabs

Counts of male crabs ("satellites") near female crabs

Figure 1: nwf.org

Figure 2: uwm.edu

Horseshoe crabs: the data

Data originally from Brunswick (1996) via Agresti (2007) via Dunn and Smyth (2018)

- > 173 observations
- ▶ 4 traits: colour, spine condition, width (cm), weight (g)

Col	Spine	Width	Sat	Wt	
М	NoneOK	28.3	8	3050	
DM	NoneOK	22.5	0	1550	
LM	BothOK	26.0	9	2300	
DM	NoneOK	24.8	0	2100	
DM	NoneOK	26.0	4	2600	
М	NoneOK	23.8	0	2100	
LM	BothOK	26.5	0	2350	

Horseshoe crabs: the data

What can we tell about the number of satellites?

Horseshoe crabs: fit the model

Horseshoe crabs: interpreting parameters

```
##
                   Estimate Std. Error z value Pr(>|z|)
                                        -0.37
  (Intercept)
                    -0.3600
                               0.97000
                                                0.7100
                               0.21000 - 0.70
## SpineOneOK
                    -0.1500
                                                0.4800
                               0.12000 0.73
                                                0.4700
## SpineNoneOK
                     0.0870
## ColourMedium
                               0.17000 - 1.60
                                                0.1200
                   -0.2600
## ColourDark medium
                    -0.5100
                               0.20000 - 2.60
                                                0.0086
## ColourDark
                    -0.5300
                               0.23000 - 2.30
                                                0.0190
                                       0.34
                     0.0170
                               0.04900
                                                0.7300
## Width
                     0.0005
                               0.00017
                                         3.00
                                                0.0028
## Weight
```

(Intercept) = Light-medium coloured females with both spines in good condition, Width and Weight = 0

Horseshoe crabs: interpreting parameters, centered

```
##
                    Estimate Std. Error z value Pr(>|z|)
  (Intercept)
                     1.3000
                               0.15000
                                         8.70 4.4e-18
## SpineOneOK
                    -0.1500
                               0.21000
                                        -0.70 4.8e-01
## SpineNoneOK
                     0.0870
                               0.12000
                                         0.73 4.7e-01
## ColourMedium
                    -0.2600
                               0.17000 -1.60 1.2e-01
## ColourDark medium
                    -0.5100
                               0.20000 - 2.60 8.6e - 03
## ColourDark
                    -0.5300
                               0.23000 -2.30 1.9e-02
                                         0.34 7.3e-01
## Width
                     0.0170
                               0.04900
                     0.0005
                               0.00017
                                         3.00 2.8e-03
## Weight
```

- ▶ (Intercept) = Light-medium coloured females with both spines in good condition, Weight ≈ 2437 g, Width ≈ 26.3 cm
- Width: exp(0.0170) = 1.017, so double the number of satellites by log(2)/0.01709 = 40.56cm above average
- Weight: exp(0.0005) = 1.0005, so double the number of satellites by log(2)/0.0005 = 1386.3g above average

Some other options

- Negative binomial (two types, with dispersion)
- Conway-Maxwell Poisson (with dispersion)
- Generalized Poisson (with dispersion)
- Skellam distribution (difference of counts)
- Binomial distribution (counts with a maximum)
- Truncated distributions
- Quasi-likelihood models

Do we have a good model?

More on this after the break

- Overdispersion or underdispersion
- Zero-inflation

Overdispersion

Our assumption: $\lambda = \text{var}(\mathbf{y})$ Reality: $\lambda \ge \text{var}(\mathbf{y})$

- ▶ Mean = variance
- If there is more variation, this assumption fails
- Consequences: Cls underestimate, biased parameter estimates, inflation in model selection

For our example: many females have few satellites, but some females have very many.

Underdispersion

Our assumption: $\lambda = \text{var}(\mathbf{y})$

Reality: $\lambda \leq \text{var}(\mathbf{y})$

Considerably less common than overdispersion.

Detecting overdispersion

- Residual diagnostics
- $\triangleright D(\mathbf{y}; \hat{\boldsymbol{\mu}})/(n-k)$: should be close to 1
- performance::check_overdispersion (relies on asymptotics)
- Simulation (later today)

Dealing with dispersion: options

- Correct for it (calculate dispersion)
- Fit a different model
 - Negative binomial (overdispersion, MASS package)
 - Conway-Maxwell Poisson (over- and underdispersion.)
 - Generalized Poisson(over- and underdispersion)
 - Quasi-likelihood models
 - Mixed models (not covered here)

Quasi-likelihood models

Introduced by Wedderburn (1974)

- No "real" likelihood is specified for the data
- Means no AIC, but deviance exists
- Largely defined by its variance function

For Poisson responses: does not correct the parameter estimates

Negative-binomial

$$\mathcal{L}(y_i; \Theta) = \frac{\Gamma(y_i + \phi)}{\Gamma(\phi)y_i!} \left(\frac{\phi}{\mu_i + \phi}\right)^{\phi} \left(\frac{\mu_i}{\mu_i + \phi}\right)^{y_i} \tag{7}$$

- ightharpoonup var $(\mathbf{y}) = oldsymbol{\mu} + rac{oldsymbol{\mu}^2}{\phi}$
- \blacktriangleright For large ϕ Poisson!
- ▶ Requires more data/information due to extra parameter

```
modelnb <- MASS::glm.nb(Sat ~ Spine + Colour + Width + Weight,
                        data = hcrabs)
```

and compare the models:

```
AIC(model, modelnb)
```

```
df AIC
##
## model 8 920.8833
## modelnb 9 763.3204
```

Horseshoe crabs: comparing estimates

##		Poisson	estimate	NB	estimate	Poisson SE	NB SE
##	(Intercept)		1.3000		1.4000	0.15000	0.34000
##	SpineOneOK		-0.1500		-0.2400	0.21000	0.40000
##	SpineNoneOK		0.0870		0.0430	0.12000	0.25000
##	ColourMedium		-0.2600		-0.3200	0.17000	0.37000
##	${\tt ColourDark\ medium}$		-0.5100		-0.6000	0.20000	0.42000
##	ColourDark		-0.5300		-0.5800	0.23000	0.47000
##	Width		0.0170		-0.0024	0.04900	0.10000
##	Weight		0.0005		0.0007	0.00017	0.00036

- SEs have doubled
- Coefficients have changed, but largely the same conclusions
- Except perhaps for the effect of "Width"

Summary

- Counts are analysed with log-linear models
- Due to the Poisson assumption, dispersion issues can arise
- This biases parameter and uncertainty estimates
- Negative-binomial models are useful for overdispersion problems
- Conway-Maxwell & Generalized Poisson can be used as well, and for underdispersion
 - glmmTMB or VGAM packages
- Zero-inflation (later)