

Forecasting the Impact of New Mobility in the Context of Long-Range Transportation Plans

Metro Vancouver Case Study

Xu Han, P.Eng Senior Modeller, Forecasting TransLink Ali Darwiche, P.Eng. Planner McElhanney

Project Team

TransLink

- Xu Han (presenter)
- Ilan Elgar

McElhanney

- Ali Darwiche (presenter)
- Siyu Lin

INRO

- o Peter Vovsha
- Gaurav Vyas

WSP

Surabhi Gupta

Uber

Mohamed Mahmoud

TransLink 101

FREQUENT TRANSIT NETWORK

Source: https://www.translink.ca/-/media/translink/documents/plans-and-projects/frequent-transit-network/frequent transit network map.pdf

MAJOR ROAD NETWORK

Source: https://www.translink.ca/plans-and-projects/projects/major-road-network

TRANSPORT 2050

Automated

Advances in computing and sensors could put robots in the driver's seat.

Connected

Vehicles of all types will soon be able to communicate with each other.

Electrified

Powered by renewable energy, electric vehicles are taking off.

Shared

From scooters to bikes to cars. people are moving from

Trend Forward

Current economic, growth and

development trends continue

Automation-Driven Decline

Automation-driven job losses and outmigration result in a regional economy in decline

Self-Sufficiency

Barriers to global trade spur a more self-sufficient regional economy

Automation-Driven Boom

Automation drives a new economic boom led by new creative and knowledge sectors

The Regional Transportation Model (RTM)

- Travel Demand Model
- Used to Evaluate Scenarios
 - Land Use
 - Infrastructure
 - Demand Management
- Upgraded to Incorporate New Mobility

New Mobility

New Mobility – Behavioral Upgrades

- Connected-Autonomous Vehicle (CAV) owners can send vehicle back home to avoid parking
- CAV travel less sensitive to travel time
- TNC availability correlated with density
- CAV %
 - Speed and Capacity
- Modeller controls 'knobs'
 - CAV Penetration
 - Speed/Capacity improvement factors
 - Travel time sensitivity

Summary of Upgrades

Connected and Autonomous Vehicles (CAV) ownership ✓

Accessibility-sensitive trip generation ✓

Transportation Network Company (TNC) modes ✓

Network speed/capacity adjustments ✓

Intra-household travel *

TNC dispatch model *

TNC ridesharing *

Parking demand model *

Transport 2050 modelling

- Used the RTM to model the proposed:
 - Policy levers (Road User Charging(RUC) etc.)
 - New mobilities (TNC etc.)
 - Transit services (Higher-order transit etc.)
 - New Infrastructures (Bus Lane etc.)

BAU Assumptions

- Horizon year 2050
- 100% Electric Vehicle penetration (non-truck)
- Landuse aligns with MetroVan Regional Growth Strategy Plan
- No CAVs
- No Road User Charging (RUC)
- Transit Network Companies (TNCs)
- New SkyTrain Extensions
 - Surrey Langley SkyTrain
 - Broadway Subway
- etc...

Scenarios

Scenario	Policy Lever	New Mobility	Transit Service	New Infrastructure
Transit Investment			 - 36 new rapid transit services, increase rapid service by approx 450%. - Increase regular bus service by approx 300% 	
Road User Charging (RUC)	 Apply additional price by trip distance. The range is 0.2-0.8 \$/km in peak hour, depending on the region. 			
Bus Lane				- Convert general traffic lane to bus-only lane under a certain criterion
CAV private		- All private owned vehicles are CAVs		
CAV shared		- No private vehicles, and all shared vehicles are CAVs		
All levers	٧	CAV shared	٧	٧

VKT and Congestion

Mode Share

Findings

- Private-owned CAVs contribute to higher congestion and VKT
 - Lower travel time sensitivity
 - Sending car back home to avoid parking
- Road User Charging reduces auto usage and road congestion efficiently
 - Fewer long trips
 - Shift to other modes
- Significant investment in transit required to reduce congestion
 - Very expensive
- Shared CAVs is a hypothetical scenario however
 - Almost eliminates congestion
- CAVs could be a game changer in transportation system

Concluding Remarks

- The future is uncertain
 - Models are 'best guesses' based on:
 - What we know today
 - What we think is the impact of what has not been observed yet
- Long term plans need to be 'nimble'
 - As more information becomes available, planners can readily decide to refine some plans and discard others
- One type of policy is not enough

