Groups and Rings

Carter Aitken

2025-05-05

Abstract

Contents

1	Pro	position	3			
2	Log	ical Arguments	3			
3	Pro	positional Logic	4			
	3.1	Notations and Lp	4			
		Notation: Symbols	4			
		Definition: Well Formed Expressions (WFE)	4			
		Notation: Operator Priority	5			
4	Translating English into Prop Logic					
	4.1	Examples	6			
		Lemma: Balanced Paranthesis	6			
5	Sen	Semantics				
	5.1	Semantics of Lp formulas	8			
		Definition: Truth Evaluation	9			
		Notation: Eval Function	10			
		Definition: Satisfiable under t	11			
		Definition: Unsatisfiable	11			
		Definition: Tautology	12			
		Notation: Tautology	12			
		Definition: Satisfiable set of Formulas	12			
		Definition: Unsatisfiable set of Formulas	12			
		Example: Infinite Sigma	12			

	Definition: Arguement	13
	Definition: Maximally Satisfiable	13
	Example: The Infinite Atomic Set is Maximally Satisfiable	13
	Definition: Uniquely Satisfiable	13
	Theorem: Uniquely Satisfiable iff Maximally Satisfiable	13
	Definition: Models	14
	Definition: Logical Equivalence	14
	Example: Important Logical Equivalences	16
	Theorem: Replaceability	17
	Example: Pierce's Law	17
5.2	Normal Forms	17
	Definition: Literals	17
	Definition: Conjuctive Clause	17
	Definition: Disjunction Clause	17
	Definition: Conjunctive Normal Form (CNF)	17
	Definition: Disjunctive Normal Form (DNF)	17
	Example: into DNF	18
	Example: into DNF	18
5.3	Essential Laws of Propositional Calculus	18
	Definition: Boolean Algebra	19
5.4	Amount of Connectives per Formula	20
	Theorem: Formula to CNF	20
	Definition: Adequate Set of Connectives	21
	Theorem: Std Connectives are Adequate	21
	Theorem: And and Neg are Ade	21
	Theorem: NOR is adequate	22
	Theorem: NAND is ade	22
	Theorem: And isn't Ade	22

1 Proposition

An atomic prop cannot be brock down into smaller propositions.

A compound proposition is composed of atomics props.

Atomic

- I am graduating.
- I am applying for grad school.

Compound

- I am not graduating
- I am graduating implies im applying for grad school

2 Logical Arguments

An **argument** is a set of props, consiting of zero or more premises.

Premises: If I am applying for grad schools, then I must be graduating. I am graduating.

Conclusion: I am applying for grad school.

If the concl doesn't follow from prem then the argument is invalid.

3 Propositional Logic

3.1 Notations and Lp

Notation 3.1: Symbols.

- **Proposition Symbols.** Used for atomic formulas. We'll use lowercase letters, $\{a, b, c, \ldots\}$.
- Connections. $\neg, \land, \lor, \rightarrow, \leftrightarrow$.
- Parems. Denotes order.

Let Lp be the language of propositional logic.

$$\wedge \wedge \vee \leftarrow \text{(not legal)}$$

$$(p \leftarrow (\text{not legal}))$$

We defined a tokenizer. We'll now define the parser.

Definition 3.1: Well Formed Expressions (WFE).

1. a propositional symbol is a well formed expression.

$$p \leftarrow (WFE)$$

- 2. If $A \in \text{Form}(\text{Lp}) \implies (\neg A) \in \text{Form}(\text{Lp})$.
- 3. If $A, B \in \text{Form}(\mathcal{L}^p) \implies (A \wedge B) \in \text{Form}(\mathcal{L}^p)$.
- 4. If $A, B \in \text{Form}(\mathcal{L}^p) \implies (A \vee B) \in \text{Form}(\mathcal{L}^p)$.
- 5. If $A, B \in \text{Form}(\mathcal{L}^p) \implies (A \to B) \in \text{Form}(\mathcal{L}^p)$.
- 6. If $A, B \in \text{Form}(\mathcal{L}^p) \implies (A \leftrightarrow B) \in \text{Form}(\mathcal{L}^p)$.

To make inline Lp work, we need to establish operator prior and associativity.

Notation 3.2: Operator Priority. Operator prior is as follows:

- 1. ¬
- 2. $\land \leftarrow (\text{left assoc})$
- 3. $\vee \leftarrow (\text{left assoc})$
- 4. $\Longrightarrow \leftarrow (\text{right assoc})$
- $5. \iff \leftarrow (\text{left assoc})$

$$((\neg p) \lor q) = \neg p \lor q$$
$$(p \land q) \lor (r \land p) = p \land q \lor r \land q$$
$$p \to q \to r = p \to (q \to r)$$
$$p \land q \land r = (p \land q) \land r$$

4 Translating English into Prop Logic

4.1 Examples

```
s := I am applying to grad schools
                                         j := I am applying to jobs
                                         g := I am graduating
                                    s or j = s \vee j
i am either S or J but not S and J = (s \lor j) \land \neg (s \land j)
                                            = s \iff \neg j
                                           =(s \implies \neg j) \land (\neg j \implies s)
                     (a \lor b) \land \neg (a \land b) := a \oplus b
                                     s if g = g \implies s
                              s only if g = s \implies g
                       storm \implies rain = rain if storm
                                            = it's raining if it's storming
                                            = storm only if rain
                                            = it's storming only if it's raining
                    g is sufficient for s = g \implies s
                   g is necessary for s = s \implies g
              Although g, i am not j = g \land \neg j
                             \oplus = \neg \circ \leftrightarrow
```

Lemma 4.1: Balanced Paranthesis. Every formula in $Form(\mathcal{L}^p)$ has balanced paranths.

Proof. Let A be an arbitrary formula in $Form(\mathcal{L}^p)$. The following proof is by **structural induction**. Let R(A) be the property that LP(A) = RP(A). Letting LP(A) be the number of Left paranthesis' in A. Let RP(A) be the number of Right paranthesis' in A.

Base Case: A is atomic, A = p for some prop p.

$$LP(A) = RP(A) = 0$$

Inductive Case 1: $A = \neg B$ for some $B \in \text{Form}(\mathcal{L}^p)$. Our IH says LP(B) = RP(B).

$$LP(A) = LP((\neg B)) = 1 + LP(B) = 1 + RP(B) = RP((\neg B)) = RP(A)$$

Inductive Case 2: Let (\diamond) be a generic binary operator $(\diamond): (\mathcal{L}^p) \times (\mathcal{L}^p) \to (\mathcal{L}^p)$. $A = (B \diamond C)$, for some $B, C \in \text{Form}(\mathcal{L}^p)$, with LP(B) = RP(B) and LP(C) = RP(C) by IH.

$$LP(A) = LP((B \diamond C)) = 1 + LP(B) + LP(C)$$

$$= 1 + RP(B) + RP(C) = RP((B \diamond C)) = RP(A)$$

So by the principal of structural induction, R(A) holds.

thm: for any $A \in \text{Form}(LP)$, LP(A) = RP(A), proven above

```
# Machine Proof of Above in Roc
Inductive formula : Type :=
  | Atom : string -> formula
  Not
         : formula -> formula
  And
         : formula -> formula -> formula
         : formula -> formula -> formula
  | Or
         : formula -> formula -> formula
  | Imp
         : formula -> formula -> formula
  | Iff
Fixpoint lparans (f : formula) : nat :=
  mathc f with
  | Atom _ => 0
  | Not f1 => lparans f1 + 1
  | And f1 f2 \Rightarrow lparans f1 + lparns f2 + 1
  | And f1 f2 \Rightarrow lparans f1 + lparns f2 + 1
  | And f1 f2 \Rightarrow lparans f1 + lparns f2 + 1
```

```
| And f1 f2 \Rightarrow lparans f1 + lparns f2 + 1
Fixpoint rparans (f : formula) : nat :=
  mathc f with
  | Atom _ => 0
  | Not f1 => rparans f1 + 1
  | And f1 f2 \Rightarrow rparans f1 + lparns f2 + 1
  | And f1 f2 \Rightarrow rparans f1 + lparns f2 + 1
  \mid And f1 f2 => rparans f1 + lparns f2 + 1
  | And f1 f2 \Rightarrow rparans f1 + lparns f2 + 1
Theorem lparans_eq_rparens : forall f : formula, lparens f = rparens.
Proof.
  induction f.
  - (* Atom *) simpl. reflexivity.
  - (* Not *) simpl. rewrite. IHf. reflexivity.
  - (* And *) simpl. rewrite. IHf1. IHf2. reflexivity.
  - (* And *) simpl. rewrite. IHf1. IHf2. reflexivity.
  - (* And *) simpl. rewrite. IHf1. IHf2. reflexivity.
  - (* And *) simpl. rewrite. IHf1. IHf2. reflexivity.
Qed.
Theorem lparens_eq_rparens' : forall f : formula, lparens f = rparens f.
  Induction f; reflexivity.
Qed.
```

5 Semantics

5.1 Semantics of Lp formulas

What does p mean?

$$\begin{bmatrix} p & q \\ 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} p & \neg p \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} p & q & p \wedge q \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} p & q & \neg p & \neg p \wedge q \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$(\neg): \{0,1\} \to \{0,1\}$$

$$(\diamond): \{0,1\} \times \{0,1\} \to \{0,1\}$$

Definition 5.1: Truth Evaluation. A truth evaluation is a mapping from proposition symbols to truth values.

$$t: \operatorname{Atom}(\mathcal{L}^{\mathbf{p}}) \to \{0, 1\}$$

Definition 5.2. Evaluation of formula $A \in \text{Form}(\mathcal{L}^p)$ under a truth evaluation t.

Notation 5.1: Eval Function. A^t

Case 1: $A = p, p \in Atom(\mathcal{L}^p)$. Then $A^t = p^t = t(p)$.

Case 2: $A = \neg B$. Then $A^t = (\neg B)^t$. Note that $\neg (B^t)$ is wrong, because \neg is from syntax, and 0 is from semantics. So

$$(\neg B)^t = \begin{cases} 0 & : B^t = 1\\ 1 & : B^t = 0 \end{cases}$$

Case 3: $A = B \wedge C$.

$$A^{t} = (B \wedge C)^{t} = \begin{cases} 1 & : B^{t} = 1 \text{ and } C^{t} = 1 \\ 0 & : \text{otherwise} \end{cases}$$

Case 4: $A = B \lor C$.

$$A^{t} = (B \lor C)^{t} = \begin{cases} 1 & : B^{t} = 1 \text{ or } C^{t} = 1 \\ 0 & : otherwise \end{cases}$$

Case 5: $A = B \rightarrow C$.

$$A^{t} = (B \to C)^{t} = \begin{cases} 1 & : B^{t} = 0 \text{ or } C^{t} = 1\\ 0 & : otherwise \end{cases}$$

$$\begin{bmatrix} p & q & p \to q \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Case 6: $A = B \leftrightarrow C$.

$$A^{t} = (B \leftrightarrow C)^{t} = \begin{cases} 1 & : B^{t} = C^{t} \\ 0 & : otherwise \end{cases}$$

Theorem 5.1. For all $A \in \text{Form}(\mathcal{L}^p_{\neg,\vee,\wedge})$ and $\forall t, \ \Delta(A)^t = (\neg A)^t$ where

$$\Delta(A) := \begin{cases} \neg p & : if \ A = p \ for \ some \ p \in \operatorname{Atom}(\mathcal{L}^{p}_{\neg \vee \wedge}) \\ \neg \Delta(B) & : A = \neg B, \ B \in \operatorname{Form}(\mathcal{L}^{p}_{\neg \vee \wedge}) \\ \Delta(B) \vee \Delta(C) & : A = B \wedge C \\ \Delta(B) \wedge \Delta(C) & : A = B \vee C \end{cases}$$

 $\Delta : \operatorname{Form}(\mathcal{L}^p_{\neg \lor \land}) \to \operatorname{Form}(\mathcal{L}^p_{\neg \lor \land})$

Example.

$$\Delta(\neg p \land q) = \neg \neg p \lor \neg q$$

Proof. Let R(A) be the property that $\Delta(A)^t = (\neg A)^t$.

Case 1: A = p.

$$\Delta(A)^t = \Delta(p)^t = (\neg p)^t$$

$$(\neg A)^t = (\neg p)^t \implies R(A) \text{ holds}$$

Case 2: $A = \neg B$.

$$\Delta(A)^{t} = \Delta(\neg B)^{t} = (\neg \Delta(B))^{t}$$
IH: $\Delta(B)^{t} = (\neg B)^{t}$

$$1 : \Delta(B)^{t} = 0$$

$$= \begin{cases} 1 & : \Delta(B)^t = 0 \\ 0 & : \Delta(B)^t = 1 \end{cases}$$

$$= \begin{cases} 1 & : (\neg B)^t = 0 \\ 0 & : (\neg B)^t = 1 \end{cases}$$

So by IH, case 2 holds.

Recap: $t : Atom(\mathcal{L}^p) \to \{0, 1\}.$

 $A^t := \text{truth value of } A \text{ under thrugh valuation } t$

Definition 5.3: Satisfiable under t. A formula A is **satisfiable** if there exists t such that $A^t = 1$.

Definition 5.4: Unsatisfiable. a formula A is unstatisfiable if for all t, $A^t = 0$.

Example 5.1.

$$p \leftarrow (\text{satis})$$

$$p \land \neg p \leftarrow \text{(unsatis)}$$

$$p \vee \neg p \leftarrow (\text{satis})$$

in some sense, $p \lor \neg p = 1$

Definition 5.5: Tautology. A formula is a **tautology** if $\forall t, A^t = 1$.

Example 5.2. $p \lor \neg p$

Notation 5.2. a unsatisfiable formula under t is called a contradiction.

Notation 5.3: Tautology. If A is a tautology, then $A \models \tau$.

Definition 5.6: Satisfiable set of Formulas. $a \ set \ \Sigma :\subseteq (\mathcal{L}^p)$ is called **satis**fiable if $\exists t \ s/t \ \forall A \in \Sigma, \ A^t = 1$.

A truth evaluation is basically defining the variable to true or false, then evaluating the formula.

Example 5.3. Let S be the satisfiable adjective.

$$\{p\} \leftarrow \mathbb{S}$$

$$\{p,\neg p\} \leftarrow \neg \mathbb{S}$$

Definition 5.7: Unsatisfiable set of Formulas. $A \ set \ \Sigma \leftarrow \neg \mathbb{S} \ when \ \forall t,$

$$\exists A \in \Sigma, A^t = 0$$

Example 5.4. Ø? It's satisfiable.

Example 5.5: Infinite Sigma. $\Sigma := \{p | p \in Atom(\mathcal{L}^p)\}$. Define $t : t(p_i) = 1$.

Definition 5.8: Arguement. Consists of a set of premises and a conclusion. The arguement is valid when the conclusion follows from the premises. A formula A is a tautological consequence of $\Sigma \subseteq \text{Form}(\mathcal{L}^p)$ if $\forall t, \ \Sigma^t = 1 \implies A^t = 1$.

$$\Sigma^{t} := \begin{cases} 1 & \forall A \in \Sigma, \ A^{t} = 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\Sigma^{t} = \bigwedge_{A \in \Sigma} A^{t}$$

This is saying $\Sigma \implies A$

Example 5.6. $\Sigma = \{p \to q, p\}$ A = q. So $\Sigma \implies A$. Hypothetical syllagism.

Notation 5.4. $\Sigma \models A$, means A is a logical consequence of Σ .

Example 5.7. $\{p\} \not\models \neg p$

Definition 5.9: Maximally Satisfiable. a set $\Sigma \subseteq \text{Form}(\mathcal{L}^p)$ is maximally satisfiable if $\forall A \in \text{Form}(\mathcal{L}^p)$, $\Sigma \models A$ sor $\Sigma \models \neg A$. Note that $\Sigma \models \neg A \not\equiv \Sigma \not\models A$.

Example 5.8: The Infinite Atomic Set is Maximally Satisfiable. $\{p\} \models p, \{p\} \not\models \neg p, \{p\} \not\models q, \{p\} \not\models \neg q. \text{ So } \{p\} \text{ isn't maximally satisfiable.}$

$$\{p_1, p_2, \dots\} := \Sigma$$

 $t(p_i) := 1 \implies \Sigma^t = 1$
 $\implies \Sigma \models A \ xor \ \Sigma \models \neg A$

Definition 5.10: Uniquely Satisfiable. Σ is uniquely satisfiable if

$$\exists! t \ s/t \ \Sigma^t = 1$$

Theorem 5.2: Uniquely Satisfiable iff Maximally Satisfiable. Suppose Σ is satisfiable. Then Σ is uniquely satisfiable iff Σ is maximally satisfiable.

Proof. (\Longrightarrow). Assume Σ maximimally satisfiable. Assume by contradiction that there is t_1, t_2 s/t $\Sigma^{t_1} = 1$ and $\Sigma^{t_2} = 1$, so Σ isn't uniquely satisfiable.

So $t_1 \neq t_2 \implies \exists p \text{ s/t } t_1(p) \neq t_2$.

$$t_1(p) = 1 \iff t_2(p) = 0$$
. Let $t_1(p) = 1$ and $t_2(p) = 0$.

We know $\Sigma \models p \operatorname{xor} \Sigma \models \neg p$.

Case 1: $\Sigma \models p$. $p^{t_1} = 1$ and $p^{t_2} = 1$ which is a contradiction.

Case 2: $\Sigma \models \neg p$. $(\neg p)^{t_1} = 1$ and $(\neg p)^{t_2} = 1$ which is a contradiction.

Example 5.9. If $\Sigma \leftarrow \neg \mathbb{S} \implies \Sigma \models A \text{ holds when? } \forall t, \ \Sigma^t = 0. \text{ So } \Sigma = 1 \text{ is always false. So that always implies } A^t = 1. \text{ So it always holds. } YAY.$

Definition 5.11: Models. $\Sigma \models A \text{ iff } \Sigma^1 = 1 \implies A^t = 1.$

Example 5.10. $A \leftarrow \neg \mathbb{S} \implies \Sigma \implies A \text{ only sometimes}$

Example 5.11. $A \leftarrow \tau \implies \Sigma \models A \text{ always.}$

Example 5.12. $\Sigma \models A \implies \Sigma \cup \{\neg A\}$ is never satis.

$$\Sigma^t = 1 \implies A^t = 1$$

$$(\Sigma \cup \{\neg A\})^t = 1?$$

$$\Sigma^t = 1 \implies \neg A = 0$$

 $\Sigma^t = 0 \implies already \ not \ satis$

Example 5.13. $\Sigma \leftarrow \mathbb{S}, \ \Sigma' \subseteq \Sigma \implies \Sigma' \leftarrow \mathbb{S} \ \textit{If that t satis sigma, then it also satis sigma'.}$

Example 5.14. $\Sigma \leftarrow \mathbb{S}, \ \Sigma' \supseteq \Sigma \implies \Sigma' \leftarrow sometimes \ \mathbb{S}$

Definition 5.12: Logical Equivalence. A is logically equivalent with B if

$$A \models B \text{ and } B \models A$$

 $A \models B$

Logical Equivalence is a	Equivalence Relation Prod	f. Lol nevermind.

Example 5.15: Important Logical Equivalences.

- Conj is Abelian: $A \wedge B \models B \wedge A$
- **Disj** is **Abelian:** $A \lor B \models B \lor A$
- Equi is Abelian: $A \leftrightarrow B \models B \leftrightarrow A$
- \diamond *is Assoc:* $A \diamond (B \diamond C) \models (A \diamond B) \diamond C$ for $(\diamond) \in \{\land, \lor, \leftrightarrow\}$
- **Dist of Disj:** $(A \land B) \lor C \models (A \lor C) \land (B \lor C)$
- **Dist of Conj:** $(A \wedge B) \wedge C \models (A \wedge C) \vee (B \wedge C)$
- **De Morgan's Disj:** $\neg (A \lor B) \models \neg A \land \neg B$
- **De Morgan's Conj:** $\neg(A \land B) \models \neg A \lor \neg B$
- $\Delta(A) \models \neg A$
- \bullet $A \models \neg \neg A$
- $A \vee \neg A \models \tau$
- $A \land \neg A \models \mathcal{C}$.
- Iden of Disj: $A \vee C \models A$
- Iden of Conj: $A \wedge \tau \models A$
- Domination of Conj. $A \wedge C \models C$
- Domination of Disj $A \lor \tau \models \tau$
- $\bullet \ A \to B \models \neg A \lor B$
- Contrapositive Equiv: $A \rightarrow B \models \neg B \rightarrow \neg A$
- $\bullet \ A \leftrightarrow B \models (A \to B) \land (B \to A)$
- Absorption of Disj: $(A \land B) \lor A \models A$
- Absorption of Conj. $(A \vee B) \wedge A \models A$
- $(A \land B) \lor (A \land \neg B) \models A$
- $(A \lor B) \land (A \lor \neg B) \models A$

Theorem 5.3: Replaceabiliy. If $B \models C$, then replacing some occurances of B inside A gives a logically equivalent formula. We can do beta reduction.

Example 5.16: Pierce's Law. $((A \rightarrow B) \rightarrow A) \rightarrow A$

$$\models ((\neg A \lor B) \to A) \to A$$

$$\models (\neg(\neg A \lor B) \lor A) \to A$$

$$\models \mid ((A \land \neg B) \lor A) \to A$$

$$\models A \rightarrow A$$

$$\models \neg A \lor A$$

$$\models A \lor \neg A$$

 $\models 1_{\tau}$

5.2 Normal Forms

Definition 5.13: Literals. a formula is a **literal** if it is a either p or $\neg p$ for some $p \in \text{Form}(\mathcal{L}^p)$.

Definition 5.14: Conjuctive Clause. a formula is a **conjuctive clause** is a conjunction of literals.

Definition 5.15: Disjunction Clause. a formula is a **disjunction clause** is a disjunction of literals.

Example 5.17. p is a disjunctive clause with 1 disjoint.

Definition 5.16: Conjunctive Normal Form (CNF). A formula is a (CNF) if it is a conjunction of disj clauses.

Definition 5.17: Disjunctive Normal Form (DNF). A formula is a (DNF) if it is a disjunction of conj clauses.

Example 5.18.
$$(p \land \neg q) \lor \neg p, \neg p \lor p \lor q$$

 $\neg p$ is a literal, a disj clause, a conj clause, in CNF, in DNF.

Example 5.19: into DNF. Transform $p \leftrightarrow \neg q$ into (DNF).

1. Use a truth table.
$$(p \land \neg q) \lor (\neg p \land q)$$
.
$$\begin{bmatrix} p & q & p \leftrightarrow \neg q \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Transform $p \leftrightarrow \neg q$ into (CNF).

1. Use a truth table of $\neg (p \leftrightarrow \neg p)$. $\models (p \land q) \lor (\neg p \land \neg q)$. $\xrightarrow{\neg} (\neg p \lor \neg q) \land (p \lor q)$.

Example 5.20: into DNF. *Transform* $p \leftrightarrow \neg q$ *into (DNF).*

1. Use a truth table.
$$(p \land \neg q) \lor (\neg p \land q)$$
.
$$\begin{bmatrix} p & q & p \leftrightarrow \neg q \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
.

2.
$$p \iff \neg q \models (p \implies \neg q) \land (\neg q \implies p) \models (\neg p \lor q) \land (q \lor p) \text{ is } CNF \models q$$

5.3 Essential Laws of Propositional Calculus

We can do algebriac simplification over these formulas. I.e. boolean algebra.

Definition 5.18: Boolean Algebra.

- 1. underlying set B
- 2. binary operations $\{(+), (\cdot)\}$
- 3. unary operator $\{\overline{\cdot}\}$ "complement"
- 4. nullary operator 1: B 0: B. The functions that take no input and give 1
- 5. Laws:
 - (a) x + 0 = x
 - (b) $x \cdot 1 = x$
 - (c) $x + \overline{x} = 1$
 - (d) $x \cdot \overline{x} = 0$
 - (e) (x + y) + z = x + (y + z)
 - (f) (x * y) * z = x * (y * z)
 - (g) x + y = y + x
 - (h) x * y = y * x

Example 5.21. Any set S generates a boolean algebra.

- 1. $B = \mathcal{P}(S)$
- $2. + = \cup$
- β . $\cdot = \cap$
- $4. \ \overline{A} = S \backslash A$
- 5. $0 = \emptyset$
- 6. 1 = S
- 7. Laws:
 - (a) $A \cup \emptyset = A$
 - (b) $A \cap S = A$
 - (c) $A \cup (S \backslash A) = S$
 - (d) $A \cap (S \backslash A) = \emptyset$

Example 5.22. Form(\mathcal{L}^p) generate a boolean algebra. $B := \text{Form}(\mathcal{L}^p)$

1.
$$+ = \vee$$

$$2. \cdot = \vee$$

3.
$$\overline{A} = \neg A$$

4. $0 = any \ contradiction$

5. $1 = any \ tautology$

6. Laws:

- (a) $A \lor 0 \models A$
- (b) $A \wedge 1 \models A$
- (c) $A \vee \neg A \models 1$
- (d) $A \wedge \neg A \models 0$
- (e) ...

Example 5.23. Disjunctive Normal Form.

$$xyz + x\overline{y}z + xy\overline{z}$$

2 OR GATES, 2 NOT GATES, 6 AND GATES

$$\models x(yz + \overline{y}z + y\overline{z})$$

$$\models |x(yz + yz + \overline{y}z + y\overline{z}) \text{ since } b + b = b$$

$$\models x((y+\overline{y})z+y(z+\overline{z}))$$

$$\models x(y+z)$$

5.4 Amount of Connectives per Formula

Theorem 5.4: Formula to CNF. Any Formula in (\mathcal{L}^p) is logically eq to atleast one forumla in CNF (also DNF).

Note 5.1. We remove \implies and \iff using laws. Push \neg inside \land / \lor using de Morgan's laws So we only need $\{\neg, \land, \lor\}$

How many connectives are there? A connective is a n-ary boolean function.

1. n = 1:4 connectives

2. n=2:16 connectives

We have 2^n possible inputs, considering a binary string as input. For each input, there are 2 choices. So we have 2^{2^n} choices.

Definition 5.19. A set of logical connectives S is adequate if the connectives in S are capable of expressing any set of n-ary connectives.

Definition 5.20: Adequate Set of Connectives. S connectives is adequate if for any n-ary boolean function $f: \{0,1\}^n \to \{0,1\}$ and for any set of prop symbols p_1, p_2, \ldots, p_n there is a $A \in \text{From}(\mathcal{L}^p)$ using only connectives in S and prop symbols of p_1, \ldots, p_n , s/t

$$f(p_1,\ldots,p_n) \models A$$

Theorem 5.5: Std Connectives are Adequate. $\{\neg, \lor, \land\}$ is ade.

Theorem 5.6: And and Neg are Ade. $\{\neg, \land\}$ is ade.

Proof. We already know that

$$\{\neg, \lor, \land\} \leftarrow (ade)$$

Show $\forall c \in \{\neg, \land, \lor\}$ can be expressed in $\{\neg, \land\}$

$$\neg p \models \neg p$$

$$p \wedge q \models p \wedge q$$

$$p \lor q \models \neg(\neg p \land \neg q)$$

$$\{\neg, \lor\}$$
$$\{\neg, \Longrightarrow\}$$

Theorem 5.8: NOR is adequate. The non-disjunction, NOR is adequate alone.

$$\begin{bmatrix} p & q & NOR(p,q) \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Proof. We know $\{\neg, \lor\}$ is ade.

$$\neg p \models NOR(p, p)$$

$$p \vee q \models \mid \neg \neg (p \vee q) \models \mid \neg \mathsf{NOR}(p,q) \models \mid \mathsf{NOR}(\mathsf{NOR}(p,q), \mathsf{NOR}(p,q))$$

Theorem 5.9: NAND is ade. $\{NAND\}$ is ade.

Proof. EX.

Theorem 5.10: And isn't Ade. $\{\wedge\}$ isn't ade.

Proof. Assume $\{\wedge\}$ is ade, for the sake of contradiction. So that means every formula can be written in terms of only \wedge . So $\neg p \models p_1 \wedge p_2 \wedge p_3 \wedge \cdots \models A$, where $p_i = f_i(p)$ for some f_i . Build out of p.

Let t be a truth evaluation s/t $(\neg p)^t = 1$.

$$\implies p^t = 0$$

We know
$$\neg p \models A$$

$$\implies A^t \models 1$$

claim
$$A^t = 0$$

This is a contradiction.

Claim: For any $A \in \text{Form}(\mathcal{L}^{\text{p}}_{\wedge})$, if $p^t = 0$ then $A^t = 0$.

Proof. Induction on A. Base Case: A = p.

$$A^t = p^t = 0$$

Inductive Case: $A = B \wedge C$, for some $B, C \in \text{Form}(\mathcal{L}^{p}_{\wedge})$

IH:
$$B^t = C^t = 0$$

$$A^t = (B \wedge C)^t = 0$$

So by induction, $A^t = 0$. So the claim holds, so the proof follows.