随机事件与随机变量 51.2

随机试验和随机事件

随机试验是对随机现象所进行的观察和实

验, 具有如下特征:

- (1) 可在相同条件下重复进行;
- (2) 事前可明确试验的全部可能结果;
- (3) 试验前不能预言将出现哪一个结果.

摸球试验

抛硬币

其它试验

随机试验中会出现不同的可能结果.

在一定条件下基于一定的试验目的进行试验, 称试验的每一个可能发生也可能不发生的事情 为随机事件, 简称事件.

通常中用大写字母A, B, C 以及 $A_1, A_2, ...$ $A_n, ...$ 等表示事件.

必然事件 随机试验中肯定发生的事件,记为

 Ω .

不可能事件 随机试验中肯定不发生的事件,记为 \emptyset .

例如:

摸球试验

抛硬币

其它试验

基本事件 在一次试验中必发生一个且仅发生

一个的最简单事件.

复合事件 由若干基本事件组合而成的事件.

基本事件可理解为"不能再分解"的事件.

例如:

摸球试验

抛硬币

注意:试验目的不同,则试验的基本事件有可能不相同.

例如: "----

测量身高

二、样本空间和随机变量

将联系于试验的每一个基本事件,用包含一个元素 ω 的单点集来表示.

基本事件的对应元素全体所组成的集合

$$\Omega = \{\omega_1, \omega_2, \ldots\}$$

称为试验的样本空间,样本空间的元素称为 样本点.

若一个基本事件对应的样本点是ω.对任意事 $(HA, HB) \in A$, 称事 $(HA, HB) \in A$ 发生.

复合事件:由若干基本事件组成的随机事件.

复合事件是样本空间的子集.

样本空间 众对应的事件是必然事件,

空集 Ø 对应的事件是不可能事件.

例如: 漠球试验

三、随机事件的关系及运算

随机事件的关系及运算实质上对应集合的关系及运算.

(1) 包含关系

从集合的角度: 若 $\omega \in A$

对任意事件A, 有 $\emptyset \subset A \subset \Omega$.

例子

如果两个事件互相包含,称为两事件相等.

(2) 和事件

事件A = B的和事件记为 $A \cup B$.

从集合角度: $A \cup B = \{\omega \mid \omega \in A \ \mathbf{d}\omega \in B \}$ 从事件角度: $A \cup B$ 是事件 $\{A \in B\}$ 至少有一 个发生}.

$$A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$$
表示事件

"事件组 A_1 , A_2 ,…, A_n 中至少有一个发生"

 $\bigcup A_i$ 表示事件"事件列 A_1 , A_2 ,…中至少

有一个发生"

参见实例

(3) 积事件

事件A = B 的积事件记为 $A \cap B$ 或 AB.

从集合角度: $A \cap B = \{ \omega \mid \omega \in A \ \mathbf{L}\omega \in B \}.$

从事件角度: $A \cap B$ 是事件{ $A \in B$ 同时发生}.

$$A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^n A_i$$
表示事件"事件组

 A_1 , A_2 ,…, A_n 同时发生".

 $\bigcap_{i=1}^{\infty} A_i$ 表示"事件列 A_1 , A_2 ,…同时发生"

参见实例

(4) 互不相容事件

若 $AB = \emptyset$, 称 $A \setminus B$ 为 <u>互不相容或互斥事件</u>, 即 $A \setminus B$ 不可能同时发生.

显然, Ø与任何事件互不相容.

 A_1, A_2, \cdots, A_n 中任意两个互不相容, 称 A_1 A_2, \cdots, A_n 互不相容(两两互斥).

事件列 A1, A2, … 互不相容是指其中任意有限 个事件互不相容.

性质: 同一试验的基本事件互不相容.

参见实例

(5) 对立事件(逆事件)

事件(逆事件),记为 $B = \overline{A}$

从集合角度: $\overline{A} = \{ \omega \mid \omega \notin A \}$

从事件角度: A 是事件 $\{A$ 不发生 $\}$.

显然, 在一次试验中 \overline{A} 与A 必发生且仅发生一个, 非此即彼.

TIPS

摸球试验

请思考: $\overline{A} = ?$

(6) 差事件

事件A = B 之差 记为A - B

从集合角度: $A-B=\{\omega \mid \omega \in A, \mathbb{Z} \cup B\}$.

从事件角度: A - B是事件 $\{A$ 发生并且B不发生 $\}$

有

$$A - B = A\overline{B}, \quad \overline{A} = \Omega - A$$

TIPS

参见例子

(7). 完备事件组

若 A_1, A_2, \cdots, A_n 两两互斥,且 $\Omega = \bigcup_{i=1}^n A_i$ 则称 A_1, A_2, \cdots, A_n 为完备事件组 或称 A_1, A_2, \cdots, A_n 为 Ω 的一个有限划分

(8) 随机事件(集合)运算律

交换律: $A \cup B = B \cup A$, $A \cap B = B \cap A$;

结合律: $(A \cup B) \cup C = A \cup (B \cup C)$;

 $(A \cap B) \cap C = A \cap (B \cap C)$.

分配律: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$;

 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

德·摩根律:

 $A \cup B = A \cap B$, $A \cap B = A \cup B$.

吸收律:

如果 $A \subset B$,则 $A \cup B = B$,AB = A.

$$A \cap \Omega = A$$
, $A \cup \Omega = \Omega$.

$$A \cap (A \cup B) = A, A \cup (AB) = A$$

见 P8例1.1.8

$$A - B = A \overline{B} = A - AB$$

$$A - B = (A \cup B) - B$$

参见例子

END

E1 从10个标有号码 1, 2,..., 10 的小球中任取一个, 记录所得小球的号码, 这就是一个随机试验。

E2 抛一枚硬币,将会出现正面还是反面?

- E3 仪器上某种型号的电子元件使用时间已达 300小时,检测该元件还能使用多少小时?
- E4 掷两粒均匀骰子的试验.
- E5 检验出N件产品中的次品.
- E6 测量某团体人员的身高.

E₁ 从 10个标有号码 1, 2,..., 10的小球中 任取一个, 记录所得小球的号码.

 $A = {$ 取得的小球号码为偶数 $};$

 $B = \{$ 号码为奇数 $\};$

 $C = \{$ 号码大于 $3 \};$

 $A_i = \{$ 号码为 $i \}, i = 1,2,\dots,10.$

等等; 都是随机事件.

 $W = {$ 号码不超过 $10 } 是必然事件,$

 $F = \{ \mathbf{G} \in \mathcal{F} \in \mathcal{F} \}$

#

E2 抛一枚硬币,观察其出现正面H和反面T的情况。

在试验中,若根据硬币出现正面或反面来决定球赛的首发权,把硬币"出现正面H"和"出现反面T"这两个可能结果看成随机事件. $A = \{ \text{出现正面} \}$,

 $B = \{ 出现反面 \}.$

由于试验的目的,硬币沿什么方向滚动等结果将不被看成随机试验.

E3 检验N件产品中的次品

随机事件有: $A = \{ 检验到正品 \};$

 $B=\{检验到次品\},$ 等等.

E4 测量某团体人员的身高.

用X表示人的身高, $\{X = x\}$ 表示"人的身高为x",有:

$$\{X = x \}, \{X > 0 \}, \{X < 1.5 \}, \{X > 1.70 \}, \dots$$

都是随机事件.

E1 从10个标有号码 1,2,...,10 的小球中任 取一个, 记录所得小球的号码, 下述试验结果:

 $A = {$ 取得的小球号码为偶数 $}$

 $B = \{$ 号码为奇数 $\};$

 $C = \{$ 号码大于 $3 \};$

 $A_i = \{$ 号码为 $i \}$, $i = 1,2, \cdots, 10$

 Ω ={号码不超过10}是必然事件,

ϕ={号码等于0}是不可能事件.

例2 抛一枚硬币,观察其出现正面H和反面T的情况.

在试验中,若根据硬币出现正面或反面来决定球赛的首发权,把硬币"出现正面H"和"出现反面T"这两个可能结果看成随机事件。

故有: A={出现正面},

基本事件

 $B=\{$ 出现反面 $\}$ 。

例4 测量某团体人员的身高.

用X表示人的身高, $\{X = x\}$ 表示"人的

身高为x",有: ſ

$${X = X}, {X > 0},$$
 复合事件

$$\{X < 1.5\}, \{X > 1.70\}$$

若测量人的身高是为了判断乘车购票与否, 则仅有三个基本事件:

A={**购全**票}, B={**购半**票}, C={**免**票}.

E1 从10个标有号码 1, 2,..., 10 的小球中 任取一个, 记录所得小球的号码, 考虑随机试 验中的事件:

 $A = \{$ 取得的小球号码为偶数 $\}$,

B = {号码为奇数},

 $C = \{$ 号码大于 $3 \};$

 $A_i = \{$ 号码为 $i \}, i = 1, 2, \dots, 10$

基本事件: $A_i = \{ \Theta_i \} = \{ \omega_i \} = \{ i \}, \}$

 $i = 1, 2, \dots, 10.$

复合事件:

$$B = \{$$
号码为奇数 $\} = \{1,3,5,7,9\};$

$$C = \{$$
号码大于 $3 \} = \{4,5,6,7,8,9,10 \}.$

 Ω ={号码不超过10}={1,2,3,4,5,6,7,8,9,10} 为样本空间,也是一个必然事件.

Ø ={号码等于0 },不包含任何基本事件,从而 不包含任何样本点,是不可能事件.

$$A = \{$$
号码为偶数 $\} = \{2,4,6,8,10\} \subset \Omega,$

$$B = \{$$
号码为奇数 $\} = \{1,3,5,7,9\} \subset \Omega$.

如果在一次试验中,取到编号为3的小球, 称基本事件 $A_3 = \{ \Theta \} \} = \{ \omega_3 \} = \{ 3 \}$ 发生.

因 $3 \in B$,称事件B 在这次试验中发生。

E1 从10个标有号码1, 2,..., 10的小球中任取一个, 记录所得小球的号码, 考虑随机试验中的事件:

$$A = {$$
球的号码为 4 的倍数 $} = {4,8},$

$$B = {$$
球号码为偶数 $} = {2, 4, 6, 8, 10}.$

 $A \subset B$

和事件

从集合的角度 示图

E1 从10个标有号码 1, 2,..., 10的小球中 任取一个, 记录得小球的号码,设

 $A = { 球的号码是不大于3的奇数 } = {1,3},$

 $B = {$ 球的号码是不大于4的偶数 $} = {2, 4}$

 $A \cup B = ?$

 $A \cup B = {$ 球的号码不超过4} = $\{1, 2, 3, 4\}$.

例 对某一目标进行射击,

$$A = \{$$
击中目标 $\};$

$$B_k = \{ \hat{n} k \text{ 次击中目标} \}, k=1,2,...$$

则

$$A = \bigcup_{i=1}^{\infty} A_i, \qquad B_k = \bigcup_{i=1}^{k} A_i,$$

E1 从10个标有号码 1,2,..., 10的小球中任取一个, 记录所得小球的号码。

记

 $A = { 球的号码是奇数 } = {1, 3, 5, 7, 9 },$

B={球的号码大于5}={6, 7, 8, 9, 10}

$$A \cap B = C = ?$$

 $C = {$ 球的号码是7或9 $} = {$ 7, 9 $}.$

例 对某一目标进行射击,直至命中为止.

设: $D_k = \{$ 进行了k次射击 $\};$

 $B_i = {\{\hat{\mathbf{x}}\} i \in \mathcal{N}\} \}$

$$D_k = B_1 B_2 ... B_{k-1} A_k$$

E1 从 10个标有号码 1, 2,...,10的小球中任取一个, 记录小球的号码,考虑

 $A = { 球的号码是奇数 } = {1, 3, 5, 7, 9 },$

 $B = { 球的号码是不大于4的偶数 } = { 2, 4 }.$

则 A与B是互不相容的事件.

从集合的角度 参见 示图

E1 从 10个标有号码 1, 2,..., 10的小球中任取一个, 记录小球的号码, 以下两个

事件:

 $A = { 球的号码是奇数 } = {1, 3, 5, 7, 9 },$

B={球的号码是偶数}={2, 4, 6, 8, 10}.

是对立事件.

甲乙两人向同一目标射击,设A={甲命中目标, 乙未命中目标}则其对立事件

```
\Lambda = ()
```

- (a): { 甲未命中且乙命中}
- (b): { 甲乙均命中}
- (c): { 甲未命中}
- (d): { 甲未命中或乙命中}

E1 从 10个标有号码 1, 2,...,10的小球中任取一个, 记录小球的号码.

 $A = { 球的号码是奇数 } = {1, 3, 5, 7, 9 },$

B={球的号码不大于4}={1, 2, 3, 4}.

则: $A-B=\{5, 7, 9\}$.

续例4 测量某团体人员的身高.

用X表示人的身高, $\{X=x\}$ 表示"人的身高为x" 随机事件与 $\{X \le 1.70\}$ 与 $\{X \le 1.5\}$ 的差事件为

 ${X \le 1.7} - {X \le 1.5} = {1.5 < X \le 1.7}$

表示事件"人的身高介于1.5米与1.7米之间".

 $(A - AB) \cup B = A(\overline{AB}) \cup B$ $= A(\overline{A} \cup \overline{B}) \cup B$

吸收律

 $= A\overline{A} \cup A\overline{B} \cup B$

 $r = A\overline{B} \cup B$

 $=AB \cup AB \cup B$

 $=A(B\cup B)\cup B'$

 $=A\Omega\cup B=A\cup B$

差事件性质

对偶律

分配律

设ABC为三个随机事件,试用A,B,C的运算关系表示下列事件.

- 1) A发生,B,C都不发生.
- 2) A,B,C中恰有两个发生.
- 3) A,B,C中不多于一个发生.
- 4) A,B,C中至少有一个发生.
- 解: 1) $A\overline{B}\overline{C}$ $A\overline{B}\cup C$
 - 2) $AB\overline{C} \cup AC\overline{B} \cup BC\overline{A}$ $(AB \cup AC \cup BC) - ABC$
 - 3) $A\overline{B}\overline{C} \cup \overline{A}C\overline{B} \cup \overline{A}B\overline{C} \cup \overline{A}\overline{B}\overline{C}$ $AB \cup BC \cup AC$
 - $A \cup C \cup B$

