Qo2-Lecture 7

The Adiabatic Basis

So for, we have started in 192 or 1e2, applied a field, and sow time evolution (Rabi flopping). Clearly, these are not the energy eigenstates of the system.

Neglecting spontaneous emission, what are the eigenstates and what is their significance?

H= HA + HT 1 Linteraction

In the rotating frame, after the RWA,

 \hat{H} { $1e2,19^{23}$ $\frac{t_1}{2} \left(-5 \quad Q_R \right)$ where $S_R = -E_0 \langle e|q \tilde{\xi} \cdot r|g \rangle / t_1$ $S = W - W_0$

S= W- Wo I thwo is laser abonic splitting

Straightforward way to do this is to solve:

Another way is to remember our geometrical (Black) picture!

=
$$\Omega(\hat{S}, \hat{n})$$
, where $\hat{S} = (\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{2})$
 $\hat{n} = (\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{2})$

ie) the dynamics are a rotation about the n axis.

If you are familiar with Spin formalism, the rest is

standard...

The solution is, as we have seen, $|11\rangle = \cos\theta |e\rangle + \sin\theta |g\rangle$, where $\cos 2\theta = -\frac{\sigma}{2R}$ $E_{1,2} = \pm \frac{\hbar}{2} \Omega$ $= \pm \frac{\hbar}{2} \sqrt{5^2 + \Omega_R^2}$ $+ \frac{\hbar}{2} \sqrt{5^2 + \Omega_R^2}$ So let's draw this plot once more! Note 1 - At S=0, R= RR, so the splitting is there - Since energy of atomic excitation is wo and quantum of field is w, when S= w-w= 0 the exchange of energy is resonant. -for SR=0, there are two degenerate states: $\hat{H}=0$ - for SR>0, coupling SPLITS THE STATES. This is common in physics, sometimes called an "avoided crossing" - out this point (8=0, RR>0) 11>= 1/5 (10)+19>) 50/50 Superposition. 12) = (-le) +19>)

Note 2: Linits for from 5=0 840 181>>> Ser 181>>> SRR $20 \rightarrow 0$ $11 \rightarrow 10$ $12 \rightarrow 19$ $12 \rightarrow 19$

8>0

Note 3: Strong and weak-field seekers

Consider an atom passing through a laser beam & frequency w

because er II

Consider the eigenstates at every position: E1,2 = ± th S2 = ± th \(\int_{8}^2 + \right)_{8}(k) Assume the atom is moving slowly so the entire process is adiabatic and the atom stays in the same state. Atom in state 11> REPETTED from max intensity ... Atom in state 12> ATTRACTED to max intensity... Note 4: Ground State Atoms Imagine slowly ramping the field on:

- ground state & 11) - ground state is 12) - (1) is neak-field seeking" -12) is "strong-field seeking" RED DETUNED BEAMS
ATTRACT (ground-state) XX
ATTOMS BLUE DETUNED BEAMS REPEL (ground-state) Also, remember that, in equilibrium, Ng>Ne. This means that this rule should work for atoms in equilibrium as well. Note 5: Light Shift. What is the energy shift on the atom due to the applied field? Consider 5>0 As discussed, 19> => 11> E1 = 1/2 / 52+ DR So moving from size to six so gives: DE = 2t 182+22 - 2ts In the far-detuned limit, we can expand the first term? DE 2 2to (1+ 2 sx) - 2to = 1 522 thus: | DE = there B the light shift on ground-state atom. (also works for 5KD)

Graphically,

The Adiabatic Theorem

If A(t) changes adulabatically from t=0 to t=T, a system in an energy eigenstate with En(o) at t=0 evolves to an energy eigenstate with eigenvalue En(T).

But How SLOW 15 SLOW?

If it's too fast, thate may jump from one eigenstate to the next.

Example: Ramp down w for a SHO, If= 1 p2+ 2mw2x2 E=tw(n+1/2)

relox

From dimensional analysis, there is only one thing in the problem with units [cate] ² , so we could make a juess! Of w << w ² which twins out to be correct! Typically, the time derivative of a dimensionless parameter (eg in state space) must be less than the energy splitting between levels. Trick is to find the correct dimensionless parameter! (e) to << DE Wider spaced energy levels always helps. You will solve this problem for a two-level atom in an Em field in the homework! specifing the detuning. The resulting criterion: d S << De To called the	What is the "adiabatic criterion" for dw?
which twins out to be correct! Typically, the time derivative of a dimensionless parameter (eg in state space) must be less than the energy splitting between levels. Trick is to find the correct dimensionless parameter! (e) to 0 << DE Wider spaced energy levels always helps. You will solve this problem for a two-level atom in an Em field in the homework! Supreeping the detuning. The resulting criterion: d 5 << De 2 Trick twins out to be correct!	From dimensional analysis, there is only one thing in the
levels. Trick is to find the correct dimensionless parameter! Wider spaced energy levels always helps. You will solve this problem for a two-level atom in an EM field in the homework! Spreeping the detuning. The resulting criterion: d 5 < 22 It called the	which twins out to be correct!
Wider spaced energy levels always helps. You will solve this problem for a two-level atom in an Em field in the homework! Spreeping the detuning. The resulting criterion: d 5 < 22 The called the	(eg. in state space) must be less than the energy spring outrest levels. Trick is to find the correct dimensionless parameter!
You will solve this problem for a two-level atom in an EM field in the homework! Specifing the detuning. The resulting criterion: d & << In 2 dt & << In 2 The called the	Wider spaced energy levels always helps.
The resulting criterion: $\frac{d}{dt} \delta \ll \Omega R^2$ is called the	You will solve this problem for a two-level atom
	The resulting criterion: $\frac{d}{dt} \delta \ll \Omega_R^2$
	Is called the