Contrôle d'analyse I N°3

Durée: 1 heure 45 minutes Barème sur 20 points
--

NOM:	_	
	Groupe	
DDENOM.		

1. Soit f la fonction définie sur $]0, +\infty[$ par

$$f(x) = \begin{cases} \sqrt{\frac{1}{2}(x^n + x^{n-4})} & \text{si } 0 < x \le 1\\ \ln\left[\frac{1}{2}(x^{n+4} + x^n)\right] + 1 & \text{si } x > 1 \end{cases}$$

où n est un paramètre entier $(n \in \mathbb{Z})$.

- a) Pour quelles valeurs de n, le graphe de f admet-il en $x_0=1$ un point anguleux ? $n \in \mathbb{Z} \setminus \{-6\}$
- b) Pour quelles valeurs de n, ce point anguleux est-il aussi un extremum ? 5 pts $n \in \{-2, -1, 0, 1, 2\}$
- 2. Dans le plan Oxy, on considère l'arc paramétré Γ défini par

$$\Gamma: \left\{ \begin{array}{l} x(t) = \dfrac{\operatorname{Arctg}(t)}{t^2} \\ y(t) = \dfrac{\ln(1+t)}{t^2} \end{array} \right. \quad t \in D_{\operatorname{def}}.$$

Etudier les branches infinies de l'arc Γ .

4.5 pts

$$t \to -1^+, \ AV: \ x = -\frac{\pi}{4} \,, \quad t \to 0 \,, \ AO: \ y = x - \frac{1}{2} \,, \quad t \to +\infty \,, \ M(t) \to (0,0) \,.$$

3. Sachant que Sh'(x) = Ch(x), montrer que $Arsh'(x) = \frac{1}{\sqrt{x^2 + 1}}$, $(x \in \mathbb{R})$. 1,5 pts

$$y = \operatorname{Arsh}(x) \Leftrightarrow x = \operatorname{Sh}(y) \Rightarrow 1 = \operatorname{Ch}(y) \cdot y' \Rightarrow \cdots$$

$$\Gamma: \begin{cases} x(t) = \sqrt{t^2 + 1} + a \cdot \operatorname{Arsh}(t) \\ y(t) = \frac{t^2 - 2t + 5}{\sqrt{t^2 + 1}} \end{cases} \qquad t \in \mathbb{R}.$$

Déterminer le paramètre réel a de sorte que l'arc Γ admette un point stationnaire à tangente horizontale. a=1

Esquisser alors la courbe Γ au voisinage de ce point.

5 pts

Point de rebroussement à demi-tangente horizontale

5. Déterminer l'ensemble des primitives de la fonction f définie par

$$f(x) = \ln\left(1 + \sqrt{1 + x^2}\right), \qquad x \in \mathbb{R}.$$
 4 pts

Hors programme