New Product

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistor (PNP)

Features

- PNP Silicon Epitaxial Planar Transistor for switching and amplifier applications.
- As complementary type, the NPN transistor 2N4401 is recommended.
- On special request, this transistor is also manufactured in the pin configuration TO-18.
- This transistor is also available in the SOT-23 case with the type designation MMBT4403.

Mechanical Data

Case: TO-92 Plastic Package

Weight: approx. 0.18g

Packaging Codes/Options:

E6/Bulk – 5K per container, 20K/box E7/4K per Ammo mag., 20K/box

Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter		Symbol	Value	Unit	
Collector-Emitter Voltage		-Vceo	40	V	
Collector-Base Voltage		-V _{CBO}	40	V	
Emitter-Base Voltage		-VЕВО	5.0	V	
Collector Current		-Ic	600	mA	
Power Dissipation	T _A = 25°C Derate above 25°C	P _{tot}	625 5.0	mW mW/°C	
Power Dissipation	T _C = 25°C Derate above 25°C	P _{tot}	1.5 12	W mW/°C	
Thermal Resistance Junction to Ambient Air		R⊖JA	200	°C/W	
Thermal Resistance Junction to Case		Rejc	83.3	°C/W	
Junction Temperature		Tj	150	°C	
Storage Temperature Range		Ts	-55 to +150	°C	

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DC Current Gain	hFE	-VCE = 1 V, -IC = 0.1 mA -VCE = 1 V, -IC = 1 mA -VCE = 1 V, -IC = 10 mA -VCE = 2 V, -IC = 150 mA -VCE = 2 V, -IC = 500 mA	30 60 100 100 20	_ _ _ _	 300 	_
Collector Cutoff Current	-lcev	-V _{EB} = 0.4 V, -V _{CE} = 35 V	_	_	100	nA
Base Cutoff Current	-lbev	-VEB = 0.4 V, -VCE = 35 V	_	_	100	nA
Collector-Emitter Saturation Voltage ⁽¹⁾	-VCEsat	-lc = 150 mA, -l _B = 15 mA -lc = 500 mA, -l _B = 50 mA	_	_	0.40 0.75	V
Base-Emitter Saturation Voltage ⁽¹⁾	-VBEsat	-lc = 150 mA, -l _B = 15 mA -lc = 500 mA, -l _B = 50 mA	0.75 —	_	0.95 1.30	V
Collector-Emitter Breakdown Voltage	-V(BR)CEO	-lc = 1 mA, l _B = 0	40	_	_	V
Collector-Base Breakdown Voltage	-V(BR)CBO	-I _C = 0.1 mA, I _E = 0	40	_	_	V
Emitter-Base Breakdown Voltage	-V(BR)EBO	-le = 0.1 mA, lc = 0	5.0		_	V
Input Impedance	hie	-VCE = 10 V, -IC = 1 mA, f = 1 kHz	1.5		15	kΩ
Voltage Feedback Ratio	h _{re}	-VCE = 10 V, -IC = 1 mA, f = 1 kHz	0.1 • 10-4	_	8 • 10 ⁻⁴	_
Current Gain-Bandwidth Product	fτ	-VcE = 10 V, -Ic = 20 mA f = 100 MHz	200	_	_	MHz
Collector-Base Capacitance	Ссв	-VcB = 10 V, IE = 0, f = 1.0 MHz	_	_	8.5	pF
Emitter-Base Capacitance	Сев	-VEB = 0.5 V, IC = 0 f = 1.0 MHz	_	_	30	pF
Small Signal Current Gain	hfe	-VcE = 10 V, -Ic = 1 mA f = 1 kHz	60	_	500	_
Output Admittance	hoe	-VcE = 10 V, -Ic = 1 mA f = 1 kHz	1.0	_	100	μS

Notes: (1) Pulse test: Pulse width $\leq 300 \mu s$ - Duty cycle $\leq 2\%$

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics (TJ = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Delay Time (see fig. 1)	t _d	-I _{B1} = 15 mA, -I _C = 150 mA, -V _{CC} = 30 V, -V _{EB} = 2 V	_	_	15	ns
Rise Time (see fig. 1)	t _r	-I _{B1} = 15 mA, -I _C = 150 mA, -V _{CC} = 30 V, -V _{EB} = 2 V	_	_	20	ns
Storage Time (see fig. 2)	ts	-I _{B1} = -I _{B2} = 15 mA, -I _C = 150 mA, -V _{CC} = 30 V	_	_	225	ns
Fall Time (see fig. 2)	tf	$-I_{B1} = -I_{B2} = 15 \text{ mA},$ $-I_{C} = 150 \text{ mA}, -V_{CC} = 30 \text{ V}$	_	_	30	ns

Switching Time Equivalent Test Circuit

Figure 1 - Turn-On Time

Figure 2 - Turn-Off Time

+14 V

0

-16 V

-1.0 to 100 μ s Duty Cycle - 2%

Figure 2 - Turn-Off Time

-30V

200 Ω Cs* < 10 pF