

EINFÜHRUNG IN PROGRAMMIERUNG UND DATENBANKEN

JOERN PLOENNIGS

GRUNDLAGEN

Motivation Computer und Programmierung Verzweigungen und Schleifen Architekturen und Datentypen MODELLIERUNG Fehler und Objektorientierung u. Funktionen und Debugging Softwareentwurf Rekursion

COMPUTER GRUNDLAGEN

COMPUTER

Definition

Ein Computer ist ein Gerät, das mittels programmierbarer Rechenvorschriften Daten verarbeitet

Midjourney: Computer is a device that processes data by means of programmable calculation rules

WELCHE COMPUTER-ARTEN GIBT ES?

DALL·E 2: A Mona Lisa-style painting with a goat taking a photo with an iPad

Welche Computer-Arten gibt es?

- Supercomputer Spezielle Computer mit sehr vielen CPUs und GPUs zur hochparallelen Verarbeitung komplexer Probleme (z. B. Wettersimulation)
- Mainframe Spezielle Großrechner mit sehr hoher Zuverlässigkeit z. B. in Banken
- Server Computer in Rechenzentren ohne Bildschirm für das Internet oder Cloud-Computing
- Personal Computer (PC) Desktop Computer in Büros oder daheim für Arbeit, Spielen, etc.
- Laptops Mobile Computer unterwegs fürs arbeiten, spielen, studieren
- Smartphones Mobiler Rechner mit Touchscreen und wenig Telefonfunktion
- Tablets Mobiler Computer mit viel Touchscreen und ohne Telefonfunktion
- Eingebettete Computer kleine Rechner in Autos, Robotern und Smart-Homes

Aus welcher Hardware Besteht ein Computer?

- Der Computer hat die gleichen Gedächtnisarten wie der Mensch
- CPU und GPU haben kleine Register und Cache Speicher (Ultra-Kurzzeitgedächtnis)
- Der RAM ist ein volatiler Speicher, d. h. der Inhalt geht beim Ausschalten verloren (Kurzzeitgedächtnis)
- Die HDD/SSD ist ein permanenter Speicher, d. h. der Inhalt bleibt erhalten (Langzeitgedächtnis)

CPU - CENTRAL PROCESSING UNIT

- Die **CPU** ist die Recheneinheit des Computers um Daten zu verarbeiten
- Sie bearbeitet eine Sequenz an Befehlen (Ein Programm)
- Eine CPU besteht aus Millionen an Transistoren die nur wenige Nanometer (100000nm=1cm) groß sind
- Wenige Transistoren können nur eine einzelne logische Operation berechnen

11

BINÄREN ZAHLEN

Computer speichern, verarbeiten & kommunizieren Daten als **binären Zahlen**, weil Transistoren in einem Gatter nur logische Operationen ausführen können.

binarius – Zweifach, doppelt

Das kleinste mögliche (nützliche) System von Zeichen

Mögliche Repräsentationen von Binärcode:

0/1

Falsch / Wahr

Aus / An

Binären Zahlen — Mathematik

Unsere dezimalen Zahlen	Dezimal (Basis 10)	Binär (Basis 2)	Hexagonal (Basis 16)	
lassen sich als Binärzahlen	0	00 00	0	
codieren	1	00 01	1	
 Binärzahlen erlauben 	2	00 10	2	
dieselben bekannten Grundrechenarten wie	3	00 11	3	
Dezimalzahlen also Addition,	4	01 00	4	
Subtraktion, Multiplikation	5	01 01	5	
und Division	6	01 10	6	
So kann der Computer mit dezimalen Zahlen rechnen	7	01 11	7	
dezimalen Zahlen rechnen	8	10 00	8	
	9	10 01	9	
	10	10 10	А	
• Im Computer werden Zahlen	11	10 11	В	
auch oft hexagonal (Basis 16) codiert, da sich somit ein	12	11 00	С	
Byte (8 Bits) in 2 Zeichen	13	11 01	D	
beschreiben lassen	14	11 10	E	
	15	11 11	F	

WIE WEIT KANN MAN MIT 10 FINGERN ZÄHLEN?

Midjourney: Counting with two hands

ABBILDUNG VON ZEICHEN IM COMPUTER

- Buchstaben in Texten werden im Computer binär codiert
- ASCII: Textzeichen gespeichert in 8 Binärwerten (8 Bit = 1 Byte)
- Binäre Codierung zieht sich vom niedrigsten Hardwarelevel bis hoch zur alltäglichen Anwendung

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i .
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Χ	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
Wikipedia	1F	[UNIT SEPARATOR]	63		?	95	5F		127	7F	

ABBILDUNG VON BILDERN IM COMPUTER

- Bilder werden im Computer auch binär codiert
- Hierbei wird ein Bild in Pixel eingeteilt (Auflösung)
- Die Farbe in jedem Pixel wird dann als Zahl gespeichert, z. B. True Color RGB (16,777,216 colour variations):
 - Blau − 0 ... 256 (= 1 Byte)
 - Grün 0 ... 256 (= 1 Byte)
 - Rot −0 ... 256 (= 1 Byte)
- Die Zahlen werden dann binär codiert, z. B. als 24 Bit (1 Byte = 8 Bit;3 * 8 Bit = 24 Bit)

Mahmut Sinecen: Digital Image Processing with MATLAB, 2015

ACHTUNG DER UNTERSCHIED IM COMPUTER

Aufgrund der binären
Darstellung werden übliche
Einheitenvorsätze wie Kilo-,
Mega-, etc. auf Basis von
1024 und nicht auf Basis von
1000 definiert

Dezimalpräfixe					
Name	Symbol	Anzahl Bytes ^[G 1]			
Kilobyte	kB ^[G 2]	1 000 = 10 ³			
Megabyte	МВ	1 000 000 = 10 ⁶			
Gigabyte	GB	1 000 000 000 = 10 ⁹			
Terabyte	ТВ	1 000 000 000 000 = 10 ¹²			
Petabyte	РВ	1 000 000 000 000 000 = 10 ¹⁵			
Exabyte	EB	1 000 000 000 000 000 000 = 10 ¹⁸			
Zettabyte	ZB	1 000 000 000 000 000 000 000 = 10 ²¹			
Yottabyte	YB	1 000 000 000 000 000 000 000 000 = 10 ²⁴			

erschied erundet		Binärpräfixe gemäß IEC						
	Name	Symbol	Anzahl Bytes					
2,4 %	Kibibyte	KiB ^[G 3]	1 024 = 2 ¹⁰					
4,9 %	Mebibyte	MiB	1 048 576 = 2 ²⁰					
7,4 %	Gibibyte	GiB	1 073 741 824 = 2 ³⁰					
10,0 %	Tebibyte	TiB	1 099 511 627 776 = 2 ⁴⁰					
12,6 %	Pebibyte	PiB	1 125 899 906 842 624 = 2 ⁵⁰					
15,3 %	Exbibyte	EiB	1 152 921 504 606 846 976 = 2 ⁶⁰					
18,1 %	Zebibyte	ZiB	1 180 591 620 717 411 303 424 = 2 ⁷⁰					
20,9 %	Yobibyte	YiB	1 208 925 819 614 629 174 706 176 = 2 ⁸⁰					

Wikipedia

DATEN WACHSTUM

Die Größe der erzeugten Daten wächst zunehmend.

Sie werden in Zukunft vor sehr vielen Daten konfrontiert werden.

Der Computer muss Ihnen helfen diese Daten zu analysieren durch Informatik.

Worldwide IDC Global DataSphere Forecast, 2022–2026

WIE VIELE SENSOREN HAT EIN SUPERMARKT?

- Die Supermarktkette Tesco hat sehr früh in Sensoren und Monitoringsysteme der Supermärkte mit dem Ziel Energie einzusparen investiert
- Die gesammelten Daten wurden so schnell so groß, dass niemand sie analysieren konnte
- Durch maschinelle Lernmodelle konnte IBM Research die Daten analysieren und half Ihnen 20% des Kühlbedarfs einzusparen

FRAGEN?

