FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E06

EXERCICE N°1 Deux nouvelles identités remarquables

Le but:

Soit x et a deux nombres réels, $a \ne 0$ et n un entier naturel, $n \ge 2$ On veut factoriser $x^n - a^n$

Pour n = 2, on sait faire: $x^2 - a^2 = (x - a)(x + a)$

Pour n = 3, on connaît la méthode de Horner :

1) En remarquant que a est une racine évidente de $x^3 - a^3$, factoriser $x^3 - a^3$.

Comme a est une racine évidente de x^3-a^3 , la méthode Horner nous donne :

$$x^3 - a^3 = (x - a)(x^2 + ax + a^2)$$

Pour n = 4, on peut ... encore appliquer la méthode de Horner :

2) En remarquant que a est une racine évidente de $x^4 - a^4$, factoriser $x^4 - a^4$.

Comme a est une racine évidente de x^4-a^4 , la méthode Horner nous donne :

$$x^{4}-a^{4} = (x-a)(x^{3}+ax^{2}+a^{2}x+a^{3})$$

Remarque n°1.

On pourrait factoriser $x^5 - a^5$, mais on a compris que la méthode de Horner va fonctionner quelque soit la valeur de n ...

Faisons plutôt fonctionner la méthode sur un exemple :

3) Factoriser $x^7 - 5^7$

	1	0	0	0	0	0	0	5 ⁷	
5		5×1=5	5×5=25	$5 \times 5^2 = 5^3$	54	555	56	57	
	1	0+5=5	$0+5^2=5^2$	$0+5^3=5^3$	5 ⁴	5 ⁵	5 ⁶	0	

Comme 5 est une racine évidente de x^7-5^7 , la méthode Horner nous donne :

$$x^7 - 5^7 = (x - 5)(x^6 + 5x^5 + 25x^4 + 125x^3 + 625x^2 + 3125x + 15625)$$

Passons à la justification de la formule générale : (pour que les notations suivantes soient correctes, on suppose n>2):

4) Développer et réduire l'expression suivante :

$$(x-a)(x^{n-1} + ax^{n-2} + a^2 x^{n-3} + \dots + a^{n-3} x^2 + a^{n-2} x + a^{n-1})$$

$$(x-a)(x^{n-1} + ax^{n-2} + a^2 x^{n-3} + \dots + a^{n-3} x^2 + a^{n-2} x + a^{n-1})$$

$$= x^n + ax^{n-1} + a^2 x^{n-2} + \dots + a^{n-3} x^3 + a^{n-2} x^2 + a^{n-1} x$$

$$-ax^{n-1} - a^2 x^{n-2} - \dots - a^{n-3} x^3 - a^{n-2} x^2 - a^{n-1} x - a^n$$

$$= x^n + (a-a)x^{n-1} + (a^2 - a^2)x^{n-2} + \dots + (a^{n-3} - a^{n-3})x^3 + (a^{n-2} - a^{n-2})x^2 + (a^{n-1} - a^{n-1})x - a^n$$

$$= x^n - a^n$$

Remarque n°2.

On dit que les termes se télescopent (retenez cela pour la suite de vos études...)

On retient donc notre première nouvelle identité remarquable :

Afin de pouvoir tenir compte du cas n=2, on préfère simplifier un peu la formule :

$$x^{n}-a^{n} = (x-a)(x^{n-1}+ax^{n-2}+...+a^{n-2}x+a^{n-1})$$

Le cas particulier où a = 1

5) Réécrire la formule précédente pour a = 1 (que l'on retiendra également)

Pour
$$a = 1$$
,

$$x^{n}-1 = (x-1)(x^{n-1}+x^{n-2}+...+x+1)$$

On applique:

6) Factoriser $x^{11}-1$

$$x^{11} - 1 = (x - 11)(x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$$

Jouer avec les méthodes

7) En remarquant $x^6 - a^6 = (x^3)^2 - (a^3)^2$ proposer une factorisation $x^6 - a^6$

$$x^{6}-a^{6} = (x^{3})^{2}-(a^{3})^{2}$$

$$= (x^{3}-a^{3})(x^{3}+a^{3})$$

$$= (x-a)(x^{2}+ax+a^{2})(x^{3}+a^{3})$$

$$= \underbrace{(x-a)(x^{2}+ax+a^{2})}_{ok \ facile}\underbrace{(x+a)(x^{2}-ax+a^{2})}_{mais \ pourquoi?}$$

$$x^{3}+a^{3} = x^{3}-(-a)^{3}$$

-a est une racine évidente (oui je sais, il est énervant ce mot « évidente ») et la méthode de Horner donne... à vous !