Math 512 Problem Set 3 First Last

Exercise 1. Let R be a ring, and M an abelian group. Define

 $\operatorname{Hom}_{\mathbb{Z}}(R, M) = \{ f : R \to M \mid f \text{ is a } \mathbb{Z}\text{-module homomorphism} \}.$

Show that $\operatorname{Hom}_{\mathbb{Z}}(R, M)$ is an R-module with multiplication (rf)(x) = rf(x) for any $r \in R$, $f \in \operatorname{Hom}_{\mathbb{Z}}(R, M)$, and $x \in R$.

Exercise 2. Show that \mathbb{Q} is not a projective \mathbb{Z} -module.

Exercise 3. Show that every projective abelian group is free.

Exercise 4. Show that a direct product of R-modules $\prod_{i \in I} J_i$ is injective if and only if each J_i is injective.

Exercise 5. Let R be a commutative, unital ring. Show that the following are equivalent.

- (i) Every R-module is projective.
- (ii) Every R-module is injective.
- (iii) Every short exact sequence of R-modules is split exact.