Abel-konkurransen 1993

Fasit til første runde

Oppgave 1: Vi løser for $\frac{1}{1-x}$ og finner at $\frac{1}{1-x} = \frac{1}{2}$. Da må x = -1.

Oppgave 2: Sidelengdene økes med en faktor $1 + \frac{p}{100}$ og minkes med en faktor $1 - \frac{p}{100}$. Arealet endres da med en faktor $(1 + \frac{p}{100})(1 - \frac{p}{100}) = 1 - (\frac{p}{100})^2 = 1 - \frac{1}{100}$. Altså må p = 10.

Oppgave 3: Trekanten ADE er likebent og $\angle DAE = 90^{\circ} + 60^{\circ} = 150^{\circ}$. Da må $\angle AED = \angle ADE = 15^{\circ}$.

Oppgave 4: Siden $(\sqrt{2})^6=8$ og $(\sqrt[3]{3})^6=9$, må $\sqrt{2}<\sqrt[3]{3}$. Fordi $3-\sqrt{6}<3-\sqrt{4}=1$, kan det alternativet utelukkes. Til sist har vi $1+\frac{1}{\pi}<1+\frac{1}{3}$ og $(1+\frac{1}{\pi})^2<\frac{16}{9}<2$. Følgelig er $1+\frac{1}{\pi}<\sqrt{2}$. Det største tallet er altså $\sqrt[3]{3}$.

Oppgave 5: Ligningen y=2xy gir at y=0 eller 2x=1. Hvis $x=\frac{1}{2}$, gir $x=x^2+y^2$ at $y^2=\frac{1}{4}$. Dette gir $y=\frac{1}{2}$ eller $y=-\frac{1}{2}$. Dersom y=0, får vi at $x=x^2$. Da må x=0 eller x=1. Vi har altså fire løsninger: $(\frac{1}{2},\frac{1}{2}), (\frac{1}{2},-\frac{1}{2}), (0,0)$ og (1,0).

Oppgave 6: Ved å summere de tre ligningene får vi at (2x-y)+(2y-z)+(2z-x)=x+y+z=6.

Oppgave 7: For å finne $a_7 + \cdots + a_0$ setter vi inn x = 1 i uttrykket for $(3x - 1)^7$. Vi får da at summen blir $2^7 = 128$.

Oppgave 8: Ved å opphøye i annen potens får vi $\frac{4(2+6+4\sqrt{3})}{9(2+\sqrt{3})} = \frac{16(2+\sqrt{3})}{9(2+\sqrt{3})} = (\frac{4}{3})^2$.

Oppgave 9: Ved å sette $x = \frac{\sqrt{2}}{2}$ blir $g(x) = \frac{1}{2}$. Det gir $f(\frac{1}{2}) = f\left(g\left(\frac{\sqrt{2}}{2}\right)\right) = 1$.

Oppgave 10: La $y=x^2+x$. Ved å gange begge sider av ligningen med y får vi $y^2+y-156=(y+\frac{1}{2})^2-\frac{625}{4}=0$. Denne ligningen gir $x^2+x=y=\frac{-1\pm25}{2}$. Den eneste av disse to som har reelle løsninger, er $x^2+x=12$. Denne har løsningene $\frac{-1\pm7}{2}$, altså 3 og -4. Summen av disse blir -1.

Oppgave 11: Vi har at $x(k-x)-4=-(x-\frac{k}{2})^2+\frac{k^2}{4}-4$. Denne har nullpunkter når $\frac{1}{4}k^2 \geq 4$. Vi søker altså den minste hele k slik at $k^2 < 4^2$. Altså måc-4 < k < 4, hvilket gir k=-3 som minste verdi.

Oppgave 12: Trekanten APS er en $30^{\circ}-60^{\circ}-90^{\circ}$ trekant der SP=3. Vi får derfor at AS=6 og $AP=3\sqrt{3}$. Siden PM=SQ=3, blir da $AM=AP+PM=3+3\sqrt{3}$. AM utgjør en sjettedel av omkretsen, altså er omkretsen lik $18+18\sqrt{3}$.

D

Oppgave 13: A sier at B er en hund, altså må A og B være like: enten er begge hunder eller så er begge ulver. C sier at D er en ulv, altså er C og D forskjellige. E sier at A er en hund, altså må A og E være like. B sier at C er en ulv, så B og C må være forskjellige. Vi vet nå at $A=B=E, C\neq D$ og $B\neq C$. Siden B og D begge er forskjellige fra C, må B=D: $A=B=D=E\neq C$. Ifølge D er B og E forskjellige. Det er galt, altså må D være en ulv. Siden D er en ulv og A=B=D=E, må alle disse fire være ulver, mens $C\neq D$ gir at C er en hund. Det er altså fire ulver blant de fem.

Oppgave 14: La a være det totale volumet og x være volumet med syre i den opprinnelige blandingen. Når man tilsetter 1 liter vann, får man en 20% blanding: $\frac{x}{a+1} = \frac{1}{5}$. Ved å tilsette 1 liter syre blir blandingen $33\frac{1}{3}\%$ syre: $\frac{x+1}{a+2} = \frac{1}{3}$. Dette gir to ligninger: a+1=5x og a+2=3(x+1). Disse gir løsningen x=1, a=4 som gir konsentrasjonen $\frac{x}{a} = \frac{1}{4} = 25\%$.

Oppgave 15: Grunnflaten er en likesidet trekant med sidelengde 6. Denne har høyde $CM = 3\sqrt{3}$ og areal $G = 9\sqrt{3}$. Siden ASM er en $30^{\circ}-60^{\circ}-90^{\circ}$ trekant, er AS = CS = 2SM. Fra CM = CS + SM følger da $AS = CS = 2\sqrt{3}$.

Nå vet vi at $AS=2\sqrt{3}$ og at $AT=\sqrt{15}$. Siden trekanten AST er rettvinklet, kan vi bruke Pythagoras setning for å finne høyden $h=ST=\sqrt{AT^2-AS^2}=\sqrt{3}$. Volumet av en slik pyramide er $V=\frac{1}{3}hG=9$.

Oppgave 16:
$$72 \otimes 8 = 72 \cdot 64 \cdots 8$$
 og $18 \otimes 2 = 18 \cdot 16 \cdots 2$. Vi ser at $\frac{72}{18} = \frac{64}{16} = \cdots = \frac{8}{2} = 4$. Derfor blir $\frac{72 \otimes 8}{18 \otimes 2} = \frac{72 \cdot 64 \cdots 8}{18 \cdot 16 \cdots 2} = 4^9$.

Oppgave 17: Ved å bruke linjen mellom (1,1) og (9,1) som grunnlinje finner vi at trekanten har grunnlinje 8 og høyde 1. Det gir areal lik 4. Hvis vi kutter trekanten med linjen x = c, kan vi finne arealet av den høyre delen på samme måte: grunnlinjen

får lengde 9-c og høyden blir $\frac{1}{9}(9-c)$ fordi den skrå linjen har stigningstall $\frac{1}{9}$. Arealet av denne biten blir da $\frac{1}{18}(9-c)^2$. For at dette arealet skal bli 2, må $c = 10 - \sqrt{36} = 3$.

Oppgave 18: Vi legger trekanten inn i et koordinatsystem med B i origo, C=(1,0) og A=(0,a). Da er $M=(0,\frac{1}{2}a)$ og $N=(\frac{1}{2},\frac{1}{2}a)$. Linjene BN og CM har stigningstall a og $-\frac{a}{2}$. Linjene står normalt på hverandre når produktet av stigningstallene er -1: Det skjer når $a=\sqrt{2}$. Da er $M=(0,\frac{\sqrt{2}}{2})$ hvilket gir $CM=\frac{\sqrt{6}}{2}$.

Oppgave 19: Hvis sirkelen L har radius R, har K radius 2R. La r være radien til M. Vi får da at ST = R + r og at SU = SP - UP = R - r. Dette gir at $UT^2 = ST^2 - SU^2 = 4Rr$. Vi har også at PT = PV - TV = 2R - r og at $PT^2 = PQ^2 + TQ^2 = UT^2 + r^2 = 4Rr + r^2$. Dette gir at $PT^2 = 4Rr + r^2 = (2R - r)^2$ som har løsningen $r = \frac{1}{2}R$. Da er radien til K fire ganger så stor som radien til M. Arealet til K blir da 16 ganger arealet til M.

Oppgave 20: Ligningen kan skrives (a+1)(b+1)(c+1) = 1001. Tallet 1001 kan faktoriseres i primtall: $1001 = 7 \cdot 11 \cdot 13$. Altså må a, b og c være tallene 6, 10 og 12. a+b+c=28.

1: B	11: C	
2: D	12: D	
3: C	13: D	
4: B	14: D	
5: E	15: A	
6: E	16: D	
7: E	17: B	
8: D	18: E	
9: B	19: C	
10: C	20: A	
	•	

BRUKSANVISNING:

Denne tabellen har samme format som svartabellen i oppgavesettet. Ved å klippe den ut og klippe ut de to spaltene kan du, ved å legge dette tablået over svaret, raskt finne ut hvor mange riktige og gale svar det er.

Dersom du har mange oppgaver å rette, burde den være hendig å bruke. Jeg håper ihvertfall det. Pass bare på i tilfelle noen har skrevet noe utenfor rutene.