Essentials of Analytical Geometry and Linear Algebra. Lecture 10.

Vladimir Ivanov

Innopolis University

November 13, 2020

Lecture 10. Outline

- Part 1. Recap on equations of conic sections
- Part 2. Problem solving

Part 1. Recap on equations of conic sections

Think – Pair – Share

(aka TPS)

Recall conic sections along with their equations. 1. Write a list on a paper (1-2 min.)

Recall conic sections along with their equations. 1. Write a list on a paper (1-2 min.)

2. Find a neighbour who has a **different** list with different formulas (1-2 min.)
Online students use google forms

innoborization

Recall conic sections along with their equations. 1. Write a list on a paper (1-2 min.)

- 2. Find a neighbour who has a **different** list with different formulas (1-2 min.)
 Online students use google forms
 - 3. Discuss with them in pairs (try to explain your to them) (2-3 min.)

Recall conic sections along with their equations. 1. Write a list on a paper (1-2) min.)

- 2. Find a neighbour who has a **different** list with different formulas (1-2 min.) Online students use google forms
 - 3. Discuss with them in pairs (try to explain your to them) (2-3 min.) 4. Share results

1)
$$y = mx + c$$
 — $tine$.

2) $b^2x^2 + a^2y^2 = a^2b^2$
 $b^2x^2 + a^2(mx + c)^2 = a^2b^2$
 $(a^2m^2 + b^2)x^2 + 2a^2mcx + a^2c^2 - a^2b^2 = 0$
 $x_{1,2} = \frac{-a^2mc}{a^2m^2 + b^2} + \frac{a^2m^2 + b^2 - c^2}{a^2m^2 + b^2}$
 $D = a^2m^2 + b^2 - c^2$
 $D = 0$
 $D > 0$
 $D = 0$
 D

given
$$(x, y, y) - is$$
 a thought point

 $y - y = m(x - x)$
 $\frac{b^2}{c}$
 $x, \frac{a^2m}{c}$
 $\frac{b^2}{a^2} \frac{x_1}{y_1}$
 $y - y = -\frac{b^2}{a^2} \frac{x_1}{y_1}$
 $y - y = -\frac{b^2}{a^2$

Recall conic sections along with their equations. 1. Write a list on a paper (1-2) min.)

- 2. Find a neighbour who has a **different** list with different formulas (1-2 min.) Online students use google forms
 - 3. Discuss with them in pairs (try to explain your to them) (2-3 min.) 4. Share results

Relation to Quadratic forms and Matrices

Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation (A, B, C, D, E, F) are numbers):

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

Relation to Quadratic forms and Matrices

Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation (A, B, C, D, E, F) are numbers):

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

In matrix form (it is the **same** equation):

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} D & E \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + F = 0.$$

Relation to Quadratic forms and Matrices

Conic sections are the sets of points whose coordinates satisfy a second-degree polynomial equation (A, B, C, D, E, F) are numbers):

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

In matrix form (it is the **same** equation):

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} D & E \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + F = 0.$$

This following expression is called the **quadratic form**: $Ax^2 + Bxy + Cy^2$.

Matrix of the quadratic form : $\begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix}$

Given a conic

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

Matrix of the quadratic form :
$$\begin{bmatrix} A & B/2 \\ B/2 & C \end{bmatrix}$$

Discriminant of a conic is Δ

$$B^2 - 4AC = 4\Delta$$

As you can see,

$$\Delta = \begin{vmatrix} A & B/2 \\ B/2 & C \end{vmatrix}$$

IMOPOLIS

Given a conic

$$Q(x,y) = Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0.$$

- $B^2 4AC < 0$, the equation represents an ellipse; A = C and B = 0, the equation represents a circle,
- $B^2 4AC = 0$, the equation represents a parabola;
- $B^2 4AC > 0$, the equation represents a hyperbola; A + C = 0, the equation represents a rectangular hyperbola

Useful links

- https://www.geogebra.org
- https://youtu.be/fNk_zzaMoSs
- http://immersivemath.com/ila