DIS 5D

Thursday, July 19, 2018 11:50 AM

Topic: Variance. Joint Distribution (ront.)

Variance "deviation"

- $Var(x) = E((x E(x))^2) = E(x^2) (E(x))^2$
- A closer look out E(x²)...

if X is the number of something, it's a common strategy to break up X into indicators (give each "object" one indicator)

if $X = \sum_{i=1}^{n} X_i$ where Xi's are indicators, then

 $E(X^2) = n E(Xi^2) + n(n-1) E(XiX_3)$

=n P(Xi=1) + n(n-1) P(Xi=1, Xj=1)

Xi, Xj might not be independent!

joint distribution

Distribution of one RV ...

either this of it as a one-dimensional table:

$$X \mid X_0 \mid X_1 \mid ...$$

 $X=X \mid P(X=X_0) \mid P(X=X_1)$

or a function with one variable:

$$\beta_X(x) = f(x) = P(X=x)$$

plug in x, it'll give you the probability of the event "X=x"

	Joint Distribution of 2 RVs						
	either				12	2 2-dimensional table:	
		χ _D	χ_1		χi		
	40		7				
	<u>4,</u>		-				
	Yi		+				
	- 13		+		1		
		P(X=X1,Y=46) P(X=Xi,Y=4j)					
		Fill in the entire table like this					
	or a function that has two variables						
	$P_{XX}(x,y) = f(x,y) = P(X=x,Y=y)$						
	plug in x and y, it'll give you the probability of the event "X=x, Y=y"						
•	We can learn a lot from this 2-D table!						
	Specifically, conditional distribution and marginal distribution						
	→ Conditional Distribution						
	a fancy way of saying "looking at one row/one column".						
	eg. 101712_						
	0 0.1 0.05 0.15						
	1	_	101	_	_		
	2 015 0.1 0.05						
	This is a valid joint distribution since probability sums up to 1. $Q: What is the distribution of X \mid Y=1?$						
	This means, we want to know the distribution of X at this row						
	012						
	V 1 0.2 0.1 0.1						
	,	_					
	2 0.15 0.1 0.05						
	Let's directly copy thus distribution into a 1-0 table:						
				1 2			
	P(X=x Y=1) 0.2 0.1 0.1 0.1						
	This does not seem correct the probability is not 1! Let's scale each term so it sums up to 1:						
	x 0 1 2						
	P(X=x/)	_		<u>i</u> 5	1		
	(/	1.0		+.0			

Looks pretty good now "

Let's see what we did above:

$$P(X=x|Y=y) = \frac{P(X=x, Y=y)}{P(Y=y)}$$

This exactly how we would calculate the conditional probability of two events.

-> Marginal Distribution

You can use joint distribution to recover distribution of each RV!

Q: What's the distribution of X?

Let's calculate P(X=0) first.

When X=0, Y can be 0, 1, or 2.

That is, P(X=0) = P(X=0,Y=0) + P(X=0,Y=1)+P(X=0,Y=2)

We write this probability in the margin like this:

Keep doing the same thing to get the distribution of X:

$$\frac{x}{P(x=x)} = 0.45 = 0.35 = 0.3$$

Let's generalize this:

$$P(X=x) = \sum_{y} P(X=x, Y=y)$$
 marginal distribution of X
 $P(Y=y) = \sum_{y} P(X=x, Y=y)$ marginal distribution of Y