GTI HS 23 Serie 5

Tobias Kohler, Nicolas Wyss, Maya Nedir

Die 5. Serie ist bis Mittwoch, den 8. November 2023 um 16:00 Uhr zu lösen und in schriftlicher Form in der Übungsstunde abzugeben. Für Fragen steht im ILIAS jederzeit ein Forum zur Verfügung. Zu jeder Frage wird, falls nicht anders deklariert, der Lösungsweg erwartet. Lösungen ohne Lösungsweg werden nicht akzeptiert. Allfällige unlösbare Probleme sind uns so früh wie möglich mitzuteilen, wir werden gerne helfen.

Viel Spass!

1 Schaltungsunabhängige Fehlerdiagnose (3 Punkte)

- (a) (0.5 Punkte) Welche Fehlerannahme treffen wir bei der schaltungsunabhängigen Fehlerdiagnose?
- (b) (2 Punkte) Bestimme für die folgenden Schaltfunktionen je eine minimale Testmenge für eine schaltungsunabhängige Fehlerdiagnose.
 - i) (2 Punkte) $f: B^3 \to B, f(x_0, x_1, x_2) = x_0(x_1 + \neg x_2)$
 - ii) (1 Bonuspunkt) $f: B^n \to B, f(x_0, ..., x_{n-1}) = 0$ wobei $n \ge 1$.
 - iii) (1 Bonuspunkt) $f: B^n \to B, f(x_0, ..., x_{n-1}) = \neg x_0 + x_{n-1}$ wobei $n \ge 2$.
- (c) (0.5 Punkte) Gib eine Schaltfunktion $f: B^3 \to B$ an, die für eine schaltungsunabhängige Fehlerdiagnose eine minimale Testmenge $\{(000), (010)\}$ hat. Begründe deine Antwort!

2 Funktionshazards (3 Punkte)

- (a) (0.5 Punkte) Gegeben sei eine Schaltung, die die Funktion $f(x_0, x_1, x_2) = x_0(x_1 + \neg x_2)$ realisiert. Nun soll von (011) auf (101) umgeschaltet werden. Welche Schaltfolge eignet sich besser, wenn möglichst kein Hazard auftreten soll? Begründe.
 - i. $(011) \rightarrow (001) \rightarrow (101)$
 - ii. $(011) \to (111) \to (101)$
- (b) (2 Punkte) Gegeben sei eine Funktion mit dem folgenden Karnaughdiagramm.

$x_2x_3 \backslash x_0x_1$	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	1	0	0	1
10	0	1	0	1

Bestimme alle(!) Inputwechsel der Form

i.
$$x_a = (x_0, x_1, x_2, x_3) \leftrightarrow x_b = (x_0, x_1, \neg x_2, \neg x_3)$$

ii.
$$x_a = (x_0, x_1, x_2, x_3) \leftrightarrow x_b = (x_0, \neg x_1, \neg x_2, \neg x_3)$$

(mit $x_0, x_1, x_2, x_3 \in \{0, 1\}$) bei denen (statische) Funktionshazards vorliegen können. Gib auch jeweils einen "Zeugen" x_z für den Hazard an d.h. die (möglichst direkte) Umschaltung von x_a nach x_b findet über x_z statt und $f(x_a) = f(x_b) \neq f(x_z)$.

(c) (0.5 Punkte) Erkläre, warum bei einer Umschaltung des Inputs, bei der sich genau 2 Bits ändern, kein dynamischer Funktionshazard auftreten kann.

3 Schaltungshazards (3 Punkte)

Gegeben sei die folgende Schaltung:

- a) (1 Punkt) Erkläre anhand einer Skizze, wie bei dem Inputwechsel (000) \leftrightarrow (100) ein Schaltungshazard auftreten kann.
- b) (0.5 Punkte) Bestimme mittels eines Karnaugh-Diagramms alle(!) Primimplikanten der durch die Schaltung berechneten Funktion.
- c) (0.5 Punkte) Benutze den Satz von Eichelberger, um eine zweistufige Schaltung in disjunktiver Form zu konstruieren, die dieselbe Funktion berechnet, aber keine Schaltungshazards besitzt.
- d) (1 Punkt) Erkläre anhand einer Skizze, warum die neue Schaltung bei dem Inputwechsel $(000) \leftrightarrow (100)$ keinen Schaltungshazard mehr aufweist.

4 Schaltungsabhängige Fehlerdiagnose (3 Punkte)

Gegeben sei folgende Funktion

$$f(x_0, x_1, x_2) = x_0(\neg x_1 + x_2) + \neg x_0 x_1$$

durch die Schaltung:

Führe unter der Fehlerannahme, dass höchstens ein Stuck-at-Zero-Fault vorliegt, eine Fehlerdiagnose wie folgt durch:

- (a) (1 Punkt) Bestimme die Ausfalltafel für $f_1, ..., f_{10}$, wobei f_i die Funktion ist, die berechnet wird, wenn bei Draht i ein Stuck-at-Zero-Fehler vorliegt.
- (b) (1 Punkt) Bestimme die Fehlermatrix.
- (c) (0.5 Punkte) Gib eine ausreichende Testmenge an.
- (d) (0.5 Punkte) Nenne alle nicht feststellbaren Fehler.

Freiwillige Aufgaben

Schaltungsunabhängige Fehlerdiagnose

Gegeben sei die Funktion

$$f(x, y, z) = xyz + \neg xy\neg z$$

Gib eine minimale Testmenge für eine schaltungsunabhängige Fehlerdiagnose für diese Funktion an.

Schaltungsunabhängige Fehlerdiagnose (3 Punkte)	F	aulo l	Rang	el Ga	rcia,	23-1	11-4
$(0.5~\mathrm{Punkte})$ Welche Fehler annahme treffen wir bei der schaltungsunabhängigen Fehlerdiagnose?							
(2 Punkte) Bestimme für die folgenden Schaltfunktionen je eine minimale Testmenge für eine schaltungsunabhängige Fehlerdiagnose.							
i) (2 Punkte) $f: B^3 \to B, f(x_0, x_1, x_2) = x_0(x_1 + \neg x_2)$							
ii) (1 Bonuspunkt) $f: B^n \to B, f(x_0,, x_{n-1}) = 0$ wobei $n \ge 1$.							
iii) (1 Bonuspunkt) $f: B^n \to B, f(x_0,, x_{n-1}) = \neg x_0 + x_{n-1}$ wobei $n \ge 2$. (0.5 Punkte) Gib eine Schaltfunktion $f: B^3 \to B$ an, die für eine schaltungsunabhängige							
Fehlerdiagnose eine minimale Testmenge {(000), (010)} hat. Begründe deine Antwort!							
Fehler, der die Abhängigheit von f von der i-ten Variable zerstört.							
No K1 XL X0(X1+7X2)							
000 07 für xo: {(000),(100)}, {(010),(11	10) 3 {	(01)	ι) (1	11)3			
	751		//				
0 1 0 0 7 für x1: { (101), (111)}							
100 1 [ic K.] (100), (101)}							
1 1 1 Minimale Test mergu:							
- & (100), (101), (111), (011) }							
- { (100) (101) (111) (000) }							
triviale minimale Testmenge, da unabhängig von den Eine	gärge	imme	<i>O</i>	ausg	egebe	\ w	ird.
Jeder beliebige Testfall reicht aus. Bepu & (000)}.							
general sections of the section of t							
Minimale Testmenge enthalt immer 3 Element da die Beider.	Padina			/	ال موامد	"	,)
	Bearign	ger	11000	schne	icera	getest	er we
ξύς ¬(xo - {(00.0), (100)}							
fix xn - {(10.0), (101)},							
=> Minimale Testmerger {(000), (100), (101)}							
De Einzige Eingeng des das Ergebnis becenflussi ist X7	. Dest	alb	Kon	nte	eine		
Funtion bspr. $f(x_0, x_1, x_2) = x_1 auter.$							
						+	_

	nshazards (3 Punkte)		Lukas Batschelet, 16-499-7 Paulo Rangel Garcia, 23-111-4
	Gegeben sei eine Schaltung, die die Funktion $f(x_0, x_1, x_2) = x_0(x_1 + \neg x_2)$ soll von (011) auf (101) umgeschaltet werden. Welche Schaltfolge eignet sich	<u> </u>	i auto natiget Galcia, 23-111-4
besser, wenn m	öglichst kein Hazard auftreten soll? Begründe.		
i. $(011) \to (000)$ ii. $(011) \to (100)$		0000	
	geben sei eine Funktion mit dem folgenden Karnaughdiagramm.	0010	X2 X. KA 00 01 11 10
		0100	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0110	0 0 0 1 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100 1	1 404 50 -21-06
Pastimma alla/	!) Inputwechsel der Form	1010	
	$(x_1, x_2, x_3) \leftrightarrow x_b = (x_0, x_1, \neg x_2, \neg x_3)$	1101	11 1 1
	$(x_1, x_2, x_3) \leftrightarrow x_b = (x_0, \neg x_1, \neg x_2, \neg x_3)$		Variance i eigned sich besser da
jeweils einen "Z	$x_3 \in \{0,1\}$) bei denen (statische) Funktionshazards vorliegen können. Gib auch Zeugen" x_z für den Hazard an d.h. die (möglichst direkte) Umschaltung von x_a über x_z statt und $f(x_a) = f(x_b) \neq f(x_z)$.	1111	sich der Oitput nicht änder).
	Erkläre, warum bei einer Umschaltung des Inputs, bei der sich genau 2 Bits zumischer Funktionshazard auftreten kann.		
	X ₀ X ₁		
2) ;	91 00 01 11 10	Ka Xb	X_{2} $(\neq X_{\alpha})$
11)	22/3	1 h c	1 12 1 12
	00 1 0 0 0		1 1 2 2 2 1
	00 1 0 0 0	000000	
			0010
	01 0 1 0 0	000100	
			0000
	11 1 0 6 1	010001	110101
			0110
	10 0 1 0 1	010101	100111
			0100
		for all weins	en Wechsel lieger hime Hatards vos
1:1			
+ ")	Y.	Barras	100000
/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jewegeng nor mi	li li
	111111111111111111111111111111111111111	im erskn spa	m- pour nonner here Hazards
		vorliege, da sich	- our Copput immer andort.
		In zouh Paar	nor halb du Spaller paoue (00,01) und (11) lin-poor hönner heine Hazards - der Object immer ändert. gibt es auch nur zwei roglide
	1111010011001	weeksel xo = x	(1 + X2
4	Wechsel finder immer über eine ,, welcher sich erst nach einiger Zeit stabilisteren	diagonale statt. So	pmil entitlet hein unsicher Zustrand.
	welcher sich erst nach einiau Zeit stabilister	hann.	
			+++++++++++++++++++++++++++++++++++++++

4 Schaltungsabhängige Fehlerdiagnose (3 Punkte)

Gegeben sei folgende Funktion

 $f(x_0, x_1, x_2) = x_0(\neg x_1 + x_2) + \neg x_0 x_1$

durch die Schaltung:

Führe unter der Fehlerannahme, dass höchstens ein Stuck-at-Zero-Fault vorliegt, eine Fehlerdiagnose wie folgt durch:

- (a) (1 Punkt) Bestimme die Ausfalltafel für $f_1, ..., f_{10}$, wobei f_i die Funktion ist, die berechnet wird, wenn bei Draht i ein Stuck-at-Zero-Fehler vorliegt.
- (b) (1 Punkt) Bestimme die Fehlermatrix.
- (c) (0.5 Punkte) Gib eine ausreichende Testmenge an.
- (d) (0.5 Punkte) Nenne alle nicht feststellbaren Fehler.

Lukas Batschelet, 16-499-733

