

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Number Theory

Author: Adam J. Gray Student Number: 3329798

Question 1

Write $\omega(n)$ for the number of (distinct) prime divisors of n, $\Omega(n)$ for the number of prime factors of n, counted with repetition. Thus if, $n = \prod_{j=1}^m p_j^{k_j}$, then $\omega(n) = m$, and $\Omega(n) = \sum_{j=1}^m k_j$.

Part a

Prove that $2^{\omega(n)} \le \tau(n) \le 2^{\Omega(n)} \le n$ for $n \ge 2$.

Part b

When does $\tau(n) = 2^{\omega(n)}$.

Solution

Part a

Firstly we prove that $2^{\omega}(n) \leq \tau(n)$. From the lecture notes we have that if $n = \prod_{j=1}^m p_j^{k_j}$ then $\tau(n) = \prod_{j=1}^m (k_j + 1)$ so we can say

$$\tau(n) = \prod_{j=1}^{m} \underbrace{(k_j + 1)}_{\geq 2}$$

$$\leq \prod_{j=1}^{m} 2$$

$$= 2^{m}$$

$$= 2^{\omega(n)}$$
(1)

so $2^{\omega(n)} \le \tau(n)$.

We now show that $\tau(n) \leq 2^{\Omega(n)}$. See that

$$2^{\Omega(n)} = 2^{\sum_{j=1}^{m} k_j}$$
$$= \prod_{j=1}^{m} 2^{k_j}$$

and because for all $k_j \geq 1$, $k_j + 1 \leq 2^{k_j}$. then

$$\prod_{j=1}^{m} 2^{k_j} \ge \prod_{j=1}^{m} (k_j + 1)$$

and thus

$$\tau(n) \le 2^{\Omega(n)}.$$

It remains to show that $2^{\Omega(n)} \leq n$. Because we have that

$$n = \prod_{j=1}^{m} p_j^{k_j}$$

and

$$2^{\Omega(n)} = \prod_{j=1}^{m} 2^{k_j}$$

then it is clear because $2 \le k_j$ for all j. So we have shown that $2^{\omega(n)} \le \tau(n) \le 2^{\Omega(n)} \le n$.

Question 2

Define the Jordan totient function by

$$n^k \prod_{p|n} (1 - p^- k),$$

where, as usual, the product is taken over the primes. This is a generalisation of Euler's totient function.

Part a

Prove that J is multiplicative.

Part b

Show that $J_k(n) = \sum_{d|n} \mu(d) (\frac{n}{d})^k$.

Part c

Find a simple expression (as a product over primes) for $J^{-1}(n)$.

Solution

Part a

For (n, m) = 1 see that

$$J_k(nm) = (nm)^k \prod_{p|nm} (1 - p^{-k})$$

but as (n, m) = 1 then p|n or p|m but not both so

$$J_k(nm) = n^k m^k \prod_{p|n} (1 - p^{-k}) \prod_{p|m} (1 - p^{-k})$$

$$= \left(n^k \prod_{p|n} (1 - p^{-k}) \right) \left(n^k \prod_{p|m} q|m(1 - q^{-k}) \right)$$

$$= J_k(n) J_k(m)$$

Part b

Let p be a prime and observe that

$$J_k(p^{\alpha}) = p^{\alpha k}(1 - p^{-k})$$

and note in addition that $J_k(1) = 1$. Now define

$$\gamma_k(n) := \sum_{d|n} J_k(d)$$

and note that since J_k is multiplicative, so is γ_k .

Therefor it we only need to see consider $\gamma_k(p^{\alpha})$, where p is prime, to characterise γ_k .

Therefore observe that

$$\gamma_k(p^{\alpha}) = \sum_{j=0}^{\alpha} J_k(p^{\alpha})$$

$$= \sum_{j=1}^{\alpha} p^{jk} (1 - p^k) + 1$$

$$= (1 - p^{-k}) \sum_{j=1}^{\alpha} p^{jk} + 1$$

$$= (1 - p^{-k}) \left(\frac{p^k - p^{k(\alpha+1)}}{1 - p^k} \right) + 1$$

$$= p^{\alpha k}.$$

So if $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ then

$$\gamma_k(n) = \gamma_k(p_1^{\alpha_1}) \dots \gamma_k(p_r^{\alpha_r})$$
$$= p_1^{\alpha_1 k} \dots p_r^{\alpha_r k}$$
$$= n^k.$$

So we have that

$$\sum_{d|n} J_k(d) = n^k$$

Adam J. Gray

and hence by Mobius inversion

$$J_k(d) = \sum_{d|n} \mu(d) \left(\frac{n}{d}\right)^k.$$

Part c

Let $N^k(n)=n^k$. It is clear that N^k is completly multiplicative. Also see that $J_k=\mu*N^k$. So by the result in the notes, since N^k is completly multiplicative $J_k^{-1}=N^k$.