

Microsimulación

Docente: Daniel Ciganda

3^{ra} Clase

3 de Septiembre de 2025

Modelo de Segregación de Schelling (1971)

· El modelo:

- Agentes de dos tipos en un tablero.
- Cada agente tiene una regla simple: se siente "infeliz" y se muda si menos de un determinado % de sus vecinos son de su mismo tipo.
- La pregunta: ¿Como podemos "explicar" los patrones de segregación que observamos en las ciudades?
- El resultado: Podemos observar un nivel elevado de segregación a nivel macro incluso con agentes moderadamente tolerantes (emergencia).

Figure 1: Estado aleatorio inicial (arriba) y estado final segregado (abajo).

1

Raíces Intelectuales

- El enfoque de Schelling no surgió en el vacío. Se nutrió de varias corrientes de pensamiento que buscaban entender sistemas complejos desde la base.
- Teoría de Juegos: Analiza cómo las decisiones de un individuo se ven afectadas por las decisiones de otros (interacciones estratégicas).
- Cibernética y Sistemas Complejos (autoorganización): cómo dinámicas locales y retroalimentación generan patrones globales sin coordinación central.
- Economía del orden espontáneo (mercados): de Smith a Hayek, los precios agregan información dispersa; decisiones locales generan patrones macro sin coordinación central.
- Autómatas Celulares: Proporcionaron la metodología computacional fundamental. La idea de un mundo-cuadrícula, entidades simples y reglas locales que generan patrones emergentes es la inspiración directa.

Autómatas Celulares

- 1940s Ulam & von Neumann.
 1970s Conway. 1980 Wolfram.
- Modelos computacionales que consisten en entidades (celdas) adjacentes que cambian de estado a medida que interactúan en un ambiente predefinido de acuerdo a una regla o conjunto de reglas.

Figure 2: Autómata Celular Unidimensional

AC unidimensional: regla y numeración (Wolfram)

- Rejilla 1D de celdas indexadas por $i=1,\ldots,n$, con estados $s_i(t)\in\{0,1\}.$
- **Vecindad**: $(s_{i-1}(t), s_i(t), s_{i+1}(t))$.
- Actualización discreta: $s_i(t+1) = f(s_{i-1}(t), s_i(t), s_{i+1}(t))$.
- Numeración de Wolfram: ordenar las 8 tripletas 111,110,101,100,011,010,001,000; las salidas forman $b_7b_6\cdots b_0$; el número de la regla es $\sum_{k=0}^7 b_k 2^k$.

Ejercicio rápido: AC 1D (bordes periódicos)

Instrucciones. Con la regla mostrada abajo y la configuración inicial: (i) dibuja a mano la fila en t+1; (ii) calcula el *número decimal* de la regla (numeración de Wolfram).

Regla (orden Wolfram): 111 110 101 100 011 010 001 000

Convención: b₇ . . . b₀ siguen el orden de arriba.

Ejercicio: completa t+1 y calcula el número decimal de la regla.

Ejercicio rápido: AC 1D (bordes periódicos)

Instrucciones. Con la regla mostrada abajo y la configuración inicial: (i) dibuja a mano la fila en t+1; (ii) calcula el *número decimal* de la regla (numeración de Wolfram).

Regla (orden Wolfram): 111 110 101 100 011 010 001 000

Convención: $b_7 \dots b_0$ siguen el orden de arriba.

Solución (i): así queda t+1.

Ejercicio rápido: AC 1D (bordes periódicos)

Instrucciones. Con la regla mostrada abajo y la configuración inicial: (i) dibuja a mano la fila en t+1; (ii) calcula el *número decimal* de la regla (numeración de Wolfram).

Regla (orden Wolfram): 111 110 101 100 011 010 001 000

Convención: $b_7 ldots b_0$ siguen el orden de arriba. bits $b_7 ldots b_0 = 01101110 \Rightarrow decimal = 110$.

Solución (ii): la regla es 110.

Explorando el Simulador: Reglas Sugeridas

- Ahora vamos a explorar libremente la evolución de distintos autómatas celulares en un simulador online. La dinámica puede ser sorprendentemente variada. Aquí hay cuatro reglas clásicas con comportamientos muy distintos para empezar a explorar:
 - Regla 90: Genera un patrón fractal perfectamente ordenado y predecible (el Triángulo de Sierpinski). Es un ejemplo de cómo la complejidad anidada puede surgir de una regla muy simple.
 - Regla 30: A pesar de su simpleza, genera un comportamiento completamente caótico y aperiódico. Es tan impredecible que se ha utilizado para generar números aleatorios.
 - Regla 110: Es una de las más famosas. Se caracteriza por estructuras localizadas que se mueven e interactúan (como los "gliders").

Simulador online:

http://kidojo.com/cellauto/generate.cgi

Temas Clave y Aplicaciones de los AC

 Complejidad desde la Simplicidad: Es el tema central. Reglas locales y deterministas pueden generar una increíble riqueza de comportamientos globales (orden, caos, complejidad).

Aplicaciones:

- Modelado de fenómenos naturales (patrones en conchas, copos de nieve).
- Simulación de tráfico, flujos de fluidos y propagación de incendios.
- Criptografía y generación de números aleatorios (usando reglas caóticas como la 30).

Figure 3: El patrón en la concha del *Conus textile*.

Game of Life

- Creado por J.H. Conway en 1970.
- Juego sin jugadores solo requiere un input inicial.
- Las celdas tienen inicialmente dos estados: vivas o muertas

Figure 4: Game of Life

Reglas:

- Cualquier célula viva con menos de dos vecinos vivos muere: despoblación.
- Cualquier célula viva con dos o tres vecinos vivos continua viviendo.
- Cualquier célula viva con mas de tres vecinos vivos, muere: sobrepoblación.
- Cualquier célula muerta con exactamente tres vecinos vivos, revive: reproducción.

De Celdas Pasivas a Agentes Activos

Característica	Autómatas Celulares (AC)	Modelos Basados en Agentes (MBA)
Entidad	Celda (pasiva, con estado simple).	Agente (activo, con atributos y estado interno).
Reglas	Idénticas y uniformes para todas las celdas.	Heterogéneas, individuales, pueden adaptarse.
Ambiente	Cuadrícula regular (lattice).	Flexible (cuadrícula, red, espacio continuo).
Movimiento	El estado cambia, la celda es estática.	Los agentes pueden moverse en el ambiente.
Interacción	Con vecinos locales fijos (Moore, von Neumann).	Flexible (local, a distancia, o en red).

• Los MBA son una generalización de los AC, permitiendo mayor realismo para modelar sistemas complejos, especialmente los sociales.

Modelo de Segregación de Schelling (1971)

· El modelo:

- Agentes de dos tipos en un tablero.
- Cada agente tiene una regla simple: se siente "infeliz" y se muda si menos de un determinado % de sus vecinos son de su mismo tipo.
- La pregunta: ¿Como podemos "explicar" los patrones de segregación que observamos en las ciudades?
- El resultado: Podemos observar un nivel elevado de segregación a nivel macro incluso con agentes moderadamente tolerantes (emergencia).

Figure 5: Estado aleatorio inicial (arriba) y estado final segregado (abajo).