Unitary Renormalization Group Approach to the Single-Impurity Anderson model

ABHIRUP MUKHERJEE (18IP014)

SUPERVISOR: DR. SIDDHARTHA LAL

IISER KOLKATA

JANUARY 8, 2021

THE SINGLE-IMPURITY ANDERSON MODEL

THE SINGLE-IMPURITY ANDERSON MODEL

NRG Results - Symmetric Model

- the **free-orbital** fixed point $(U = \Delta = 0)$ unstable
- the **local moment** fixed point $(U = \infty, \Delta = 0)$ saddle point, and
- the **strong-coupling** fixed point $(\Delta = \infty, U = \text{finite})$ stable.

■ Is it possible to get **nonperturbative scaling equations** for the whole journey?

- Is it possible to get **nonperturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?

- Is it possible to get **nonperturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?
- Is it possible to show the **transfer of spectral weight** along the flow, possibly by tracking the spectral function?

- Is it possible to get **nonperturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?
- Is it possible to show the **transfer of spectral weight** along the flow, possibly by tracking the spectral function?
- How does the renormalization affect the **many-particle entanglement** between the electrons?

- Is it possible to get **nonperturbative scaling equations** for the whole journey?
- What is the nature of the strong-coupling fixed point for a **finite system** where $J \neq \infty$?
- Is it possible to show the **transfer of spectral weight** along the flow, possibly by tracking the spectral function?
- How does the renormalization affect the **many-particle entanglement** between the electrons?
- Are there any interesting **topological aspects** of the fixed points?

UNITARY RENORMALIZATION GROUP FORMALISM

The Short Version

Apply unitary many-body transformations to the Hamiltonian so as to successively decouple high energy states and hence obtain scaling equations.

UNITARY RENORMALIZATION GROUP FORMALISM

Step 1:

Start with the electrons farthest from the Fermi surface. Write the Hamiltonian as diagonal and off-diagonal terms in this basis.

UNITARY RENORMALIZATION GROUP FORMALISM

Step 2: Rotate the Hamiltonian to kill the off-diagonal blocks.

Unitary Renormalization Group Formalism

Step 3: Repeat the process with the new blocks.

RESULTS: RG EQUATIONS

$$\Delta U = 4|V|^2 \left[\frac{1}{\omega - \frac{1}{2}D + \frac{U}{2} + \frac{1}{2}J} - \frac{1}{\omega - \frac{1}{2}D - \frac{U}{2} + \frac{1}{2}K} \right] + \sum_{k < \Lambda_j} \frac{3}{4} \frac{K^2 - J^2}{\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K}$$

$$\Delta V = \frac{VK}{16} \left(\frac{1}{\omega - \frac{1}{2}D - \frac{U}{2} + \frac{1}{2}K} + \frac{1}{\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K} \right) - \frac{3VJ}{4} \left(\frac{1}{\omega - \frac{1}{2}D + \frac{U}{2} + \frac{1}{2}J} + \frac{1}{\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K} \right)$$

$$\Delta J = -J^{2} \left(\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K \right)^{-1}$$

$$\Delta K = -K^{2} \left(\omega - \frac{1}{2}D + \frac{1}{4}J + \frac{1}{4}K \right)^{-1}$$

RESULTS: U > 0, J > K

RESULTS: U < 0, J < K

RESULTS: PHASE DIAGRAM

RESULTS: EFFECTIVE ZERO-MODE HAMILTONIAN

$$H_{IR} = \epsilon_d^* \left(\hat{n}_{1\uparrow} - \hat{n}_{1\downarrow} \right)^2 + V^* \sqrt{N^*} \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + \text{h.c.} \right) + J^* N^* \vec{S_1} \cdot \vec{S_2} + K^* N^* \vec{C_1} \cdot \vec{C_2}$$

1.

RESULTS: SPIN SUSCEPTIBILITY

$$(\chi \times T)(T \rightarrow 0) = \frac{1}{2j}$$

$$T_K \equiv \frac{2N^*}{\pi} (D^* - 2\omega)$$

$$\chi$$
 ($T o \infty$) = $\frac{1}{8}$

9 | 14

RESULTS: CHARGE SUSCEPTIBILITY

$$(\chi_c \times T)(T \to 0) \bigg|_{K>1} = \frac{1}{2k}$$

$$(\chi_c \times T)(T \to 0)$$
 = 0

$$\chi$$
 ($T o \infty$) = $\frac{1}{8}$

RESULTS: SPECTRAL FUNCTION

CONCLUSIONS

- No renormalization in U unless J or Δ is nonzero.
- The spin-spin interaction is the main interaction
- U remains non-zero at strong-coupling

WHAT'S NEXT?

We have barely scratched the surface of the problem.

- Asymmetric model and valence fluctuations
- effective Hamiltonians and wavefunctions.
- entanglement measures and dynamic quantities like susceptibility
- use as impurity solver in DMFT
- extensions to the Kondo and Anderson lattices, and hence to the problem of heavy Fermions

Thank You!