BCM0504

Natureza da Informação

Compressão

Prof. Alexandre Donizeti Alves

Bacharelado em Ciência e Tecnologia

Bacharelado em Ciências e Humanidades

Terceiro Quadrimestre - 2018

Códigos

- Representação de objetos complexos
 - Exemplo: por cadeias (padrões) de bits
 - Focaremos o uso de cadeias de bits
- Código: mapeamento entre objetos a serem representados (símbolos) e as cadeias de bits usadas para representá-los

Queremos códigos pequenos e pouco suscetíveis a erros

Veremos técnicas de compressão para geração de representações eficientes

Compressão

- Objetivo: converter cadeia de bits representando símbolos sucessivos em uma cadeia menor para economia em:
 - Transmissão
 - Armazenamento
 - Processamento

 Diminui mensagens, mas aumenta processamento necessário

Modelo de sistema de comunicação

Modelo estendido

Tipos de compressão

- Sem perda ou reversível
 - Símbolo original/codificado pode ser reconstruído exatamente a partir da versão comprimida
 - Usualmente explora redundâncias
 - Exemplo: tem padrões de bits não usados ou tem alguns símbolos mais usados que outros

Tipos de compressão

- Com perda ou irreversível
 - Símbolo original/codificado não pode ser reconstruído exatamente a partir da versão comprimida
 - Expansor produz aproximação

Tipos de compressão

- **Exemplo**: mensagem 25.888888888
 - Pode ser comprimida sem perda como: 25.[9]8
 - "vinte e cinco ponto 9 oitos"
 - Cadeia original pode ser perfeitamente recriada
 - Ou comprimida com perda como: 26
 - O dado exato é perdido, porém há o benefício de uma codificação menor

Técnicas de compressão sem perda

- Permitem reconstrução exata da mensagem:
 - Codificação de tamanho variável
 - Codificação run-length
 - Dicionário estático
 - Dicionário semi-adaptativo
 - Dicionário dinâmico

Codificação de tamanho variável

- Atribuição de códigos menores a símbolos mais frequentes
- E códigos maiores para símbolos menos frequentes
- Pode ser feita no codificador da fonte ou no compressor
 - Procedimento geral será discutido em aula posterior

Codificação run-length

- Suponha mensagem com sequências longas de repetições de símbolos
 - Pode codificar mensagem como lista do símbolo e número de vezes que ele ocorre
 - Exemplo: mensagem "a B B B B B B a a a a a a" poderia ser codificada como "a[1] B[5] a[3] B[2] a[4]"
 - □ Funciona bem em poucas circunstâncias

Codificação run-length

Exemplos:

- Bandeira da Alemanha
 - X pixels pretos, X pixels vermelhos, X pixels amarelos

Fax

- Documento é escaneado em preto e branco
- Longos grupos de pixels brancos ou pretos são transmitidos como o número desses pixels
- Otimização de uso de discos em computadores

Codificação run-length

- Não funciona bem para mensagens sem repetições de sequências de um mesmo símbolo
 - Exemplo: fotografias, em que pequenas mudanças em sombreamento de um pixel a outro requer o uso de vários símbolos

- Se um código tem padrões não usados, eles podem ser atribuídos a sequências que ocorrem frequentemente
 - Como abreviações
 - E essas sequências passam a requerer menos bits do que a transmissão símbolo a símbolo
 - Exemplo: DEL em ASCII pode ser desnecessário
 - □ ⇒ atribuir código 127 à palavra "the"
 - Lista de códigos e seus significados é chamada livro de códigos ou dicionário

Exemplo:

- Telégrafo mecânico da marinha britânica (1796)
 - Comunicação entre sede e portos
 - Séries de guaritas, cada uma com visão para a próxima
 - Cada uma com seis grandes paletas

- Cada uma com seis grandes paletas
 - Podiam ser rotacionadas para posição horizontal (aberto) e vertical (fechado)
 - Operação: todas abertas até ter que mandar uma mensagem, quando todas eram fechadas, sinalizando início de mensagem
 - Os operadores deveriam checar se havia mensagem a cada 5 minutos
 - Mensagem: sequência de padrões das paletas, terminando com todas abertas

Exemplo:

- Telégrafo mecânico da marinha britânica (1796)
 - Seis paletas, dois símbolos cada \Rightarrow 2⁶ = 64 padrões
 - Dois deles: de controle
 - Todos abertos = começo e final
 - Todos fechados = inativo
 - Outros 62:
 - 24 letras do alfabeto Inglês da época (sem J e U)
 - 10 dígitos
 - Marcador de fim de palavra
 - Marcador de fim de página
 - Sobram 20

Exemplo:

- Telégrafo mecânico da marinha britânica (1796)
 - 20 padrões não usados foram sendo atribuídos a palavras ou frases frequentes
 - **Exemplo**: "the", localidades, "east", "Sentence of court-martial to be put in execution" etc.
 - Assim, mensagens grandes podiam ser reduzidas consideravelmente com escolhas boas de abreviações
 - Mas havia riscos: os efeitos de erros podem ser maiores
 - Transmissão de texto completo: erros pontuais podem ser detectados pelo humano
 - Abreviações: um único bit incorreto pode resultar em um significado indesejado

Exemplo:

 Telégrafo mecânico da marinha britânica (1796)

Funcionou bem na época

 Uma mensagem foi transmitida a uma distância de aproximadamente 800 km em 3 minutos

- Uso de abreviações para comprimir mensagens implica necessidade de dicionário
 - E de transmiti-lo antes da primeira mensagem
 - Deve ser cuidadosamente construído e não pode ser alterado com frequência
 - Bom para conjuntos de mensagens similares
 - Não adequado para mensagens diversas

Dicionário semi-adaptativo

- Se um novo dicionário pudesse ser definido para cada mensagem, a compressão seria maior
 - Sequências de símbolos da mensagem em particular poderiam ser entradas do dicionário

Problemas:

- Novo dicionário teria que ser transmitido junto à mensagem
- Mensagem deve ser analisada antes para descobrir as melhores entradas para o dicionário
 - Deve ser conhecida antes e armazenada como um todo antes

Uso limitado

Dicionário dinâmico

- Calculado à medida que a mensagem é processada
- Não precisa acompanhar a mensagem
- Pode ser usado antes do fim da mensagem ser processado

Dicionário dinâmico

Técnica de compressão LZW

Abraham Lempel, Jacob Ziv, Terry Welch

- Lempel e Ziv: várias técnicas de compressão, LZ77 e LZ78
- Modificações de Welch em 1984

Dicionário dinâmico

- Welch queria reduzir número de bits enviados a cabeça de gravação em discos
 - Aumentar capacidade dos discos
 - Melhorar velocidade de transmissão de dados
- Aplicado a arquivos de:
 - Textos: reduz tipicamente a metade do tamanho
 - Imagens, com grandes áreas com mesma cor: pode reduzir a menos da metade
 - GIF usa compressão LWZ
 - Em fotos com mudanças graduais de cor, compressão é muito mais modesta

Problema: patente até 2004

- Reversível: não perde informação, decodificador reconstrói mensagem original exatamente
- Dicionário inicial: 8 bits (0 a 255)
 - ASCII nos primeiros caracteres
- Entrada 256: começo da transmissão (limpar dicionário)
- Entrada 257: fim de transmissão ou parada
- Mensagem codificada = sequência de números
 - Códigos representando as entradas no dicionário

 Dicionário inicialmente contém caracteres isolados, mas novas entradas com dois ou mais caracteres vão sendo definidas a medida que a mensagem é analisada

- Codificação:
 - nova_entrada = novas entradas do dicionário = ∅
 - Manda código de início (256)
 - Adiciona a nova_entrada os caracteres, um a um, da mensagem sendo comprimida

- Codificação:
 - Assim que nova_entrada se torna diferente de qualquer outra cadeia já no dicionário, coloca-a no dicionário e manda código da cadeia sem o último caractere
 - Quando mensagem termina, manda código de nova_entrada e código de parada (257)

Decodificação:

- Se recebe código de início (256), limpa
 dicionário novo e seta nova_entrada' = φ
- Para o código seguinte recebido, produz como saída o caractere representado pelo código e coloca-o em nova_entrada'

Decodificação:

- Para códigos subsequentes recebidos
 - Se conhece o código:
 - Adiciona o primeiro caractere da cadeia
 representada pelo código nova_entrada',
 insere resultado no dicionário e produz como saída a cadeia do código recebido

Decodificação:

 Coloca em nova_entrada' a cadeia anterior, para começar nova entrada do dicionário

Decodificação:

- Senão:
 - □ Repete em nova_entrada' primeiro caractere do código recebido anteriormente, insere resultado no dicionário e produz como saída a cadeia do código recebido
- Quando o código de parada (257) é recebido,
 nada precisa ser feito

Codificação — Decodificação

Entrada		nova_entrada dicionário	
105	i		I
116	t	258 i t	

256 (start) 105 i nova_entrada Saída dicionário

1) Nova_entrada = i t
 (não tem no dicionário)
 ⇒ 2) Insere no dicionário

3) Mandacódigo denova_entrada,sem o caracterefinal ⇒ i

5) Produz como saída o caractere do código recebido ⇒ i

6) Nova_entrada' = i

4) nova_entrada=t

Codificação — Transmissão — Decodificação

Entrada		nova_entrada dicionário	
105	i		
116	\mathbf{t}	258 i t	
116	\mathbf{t}	259 t t	

256	(start)
105	i
116	t

nova did	Saída	
_	_	_
_	_	i
258	i t	t

- 1) Nova_entrada = t (tem no dicionário)
- 2) Nova_entrada = t t (não tem)
- ⇒ 3) Insere no dicionário

4) Manda
 código de
 nova_entrada,
 sem o caractere
 final ⇒ t

6) Nova_entrada' = i t
7) Insere
nova_entrada' no
dicionário
8) Produz saída =
cadeia do código
recebido ⇒ t

5) nova_entrada=t

9) nova_entrada'=t

Entrada		r		a_entrada cionário	
105	i		_	_	7
116	t		258	i t	
116	t		259	t t	
121	y		260	t y	
		1			1

256	(start)
105	i
116	\mathbf{t}
116	\mathbf{t}

nov d	Saída	
_	_	_
_	_	i
258	i t	t
259	t t	t

- 1) Nova_entrada = t (tem no dicionário)
- 2) Nova_entrada = t y (não tem)
- ⇒ 3) Insere no dicionário

4) Manda
 código de
 nova_entrada,
 sem o caractere
 final ⇒ t

5) nova_entrada=y

- 6) Nova_entrada' = t t
 7) Insere
 nova_entrada' no
 dicionário
 8) Produz saída =
 cadeia do código
 recebido ⇒ t
 - 9) nova_entrada'=t

Entrada			a_entrada cionário
105	i	_	_
116	\mathbf{t}	258	i t
116	\mathbf{t}	259	t t
121	y	260	t y
32	space	261	y space
		I	

256	(start)
105	i
116	t
116	t
121	y

	a_entrada cionário	Saída
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	y

- Nova_entrada = y
 (tem no dicionário)
 Nova_entrada = y
 y space (não tem)
- ⇒ 3) Insere no dicionário

4) Manda código de nova_entrada, sem o caractere final ⇒ y 6) Nova_entrada' = t y
7) Insere
nova_entrada' no
dicionário
8) Produz saída =
cadeia do código
recebido ⇒ y

5) nova_entrada=space

9) nova_entrada'=y

Entrada			a_entrada cionário
105	i	_	_
116	\mathbf{t}	258	i t
116	t	259	t t
121	y	260	t y
32	space	261	y space
98	b	262	space b

256	(start)
105	i
116	t
116	t
121	y
32	space

	a_entrada cionário	Saída
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	у
261	y space	space

- Nova_entrada = space (tem no dicionário)
 Nova_entrada = space b (não tem)
 ⇒ 3) Insere no dicionário
- 4) Manda
 código de
 nova_entrada,
 sem o caractere
 final ⇒ space
- 5) nova_entrada=b

- 6) Nova_entrada' = y
 space
 7) Insere
 nova_entrada' no
 dicionário
 8) Produz saída =
 cadeia do código
 recebido ⇒ space
- 9) nova_entrada'=space

Codificação — Transmissão — Decodificação

Entrada			a_entrada cionário
105	i	_	_
116	t	258	i t
116	t	259	t t
121	y	260	t y
32	space	261	y space
98	b	262	space b
105	i	263	b i

256	(start)
105	i
116	\mathbf{t}
116	\mathbf{t}
121	y
32	space
98	b

	a_entrada cionário	Saída
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	у
261	y space	space
262	space b	b

- 1) Nova_entrada = b (tem no dicionário)
 - 2) Nova_entrada = b i (não tem)
- ⇒ 3) Insere no dicionário

4) Manda
 código de
 nova_entrada,
 sem o caractere
 final ⇒ b

5) nova_entrada=i

- 6) Nova_entrada' =
 space b
 7) Insere
 nova_entrada' no
 dicionário
 8) Produz saída =
 cadeia do código
 recebido ⇒ b
 - 9) nova entrada'=b

Entrada		nova_entrada dicionário	
105	i	_	_
116	\mathbf{t}	258	i t
116	\mathbf{t}	259	t t
121	y	260	t y
32	space	261	y space
98	b	262	space b
105	i	263	b i
116	\mathbf{t}	_	_
			ı

256	(start)
105	i
116	\mathbf{t}
116	\mathbf{t}
121	y
32	space
98	b
_	_

	_entrada cionário	Saída
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	у
261	y space	space
262	space b	b
_	_	_

- Nova_entrada = i (tem no dicionário)
- 2) Nova_entrada = i t (tem)

En	trada		a_entrada cionário
105	i	_	_
116	\mathbf{t}	258	i t
116	\mathbf{t}	259	t t
121	y	260	t y
32	space	261	y space
98	b	262	space b
105	i	263	b i
116	\mathbf{t}	_	_
116	\mathbf{t}	264	i t t
		· •	

256	(start)
105	i
116	\mathbf{t}
116	\mathbf{t}
121	y
32	space
98	b
_	_
258	i t

nova did	Saída	
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	у
261	y space	space
262	space b	b
_	_	_
263	b i	i t

- Nova_entrada = i t
 (tem no dicionário)
 Nova_entrada =
 i t t (não tem)
 ⇒ 3) Insere no dicionário
- 4) Manda
 código de
 nova_entrada,
 sem o caractere
 final ⇒ i t
- 5) nova_entrada=t

- 6) Nova_entrada' = b i 7) Insere nova_entrada' no dicionário
- 8) Produz saída = cadeia do código recebido ⇒ i t
 - 9) nova_entrada'=i t

Entrada		nova_entrada dicionário		
105	i	_	_	
116	\mathbf{t}	258	i t	
116	\mathbf{t}	259	t t	
121	y	260	t y	
32	space	261	y space	
98	b	262	space b	
105	i	263	b i	
116	t	_	_	
116	\mathbf{t}	264	i t t	
121	У	_	_	

6	256	(start)
]	105	i
	116	\mathbf{t}
	116	t
1	121	y
	32	space
	98	b
	_	_
2	258	i t
	_	_

		$\overline{}$	
`		_entrada cionário	Saída
	_	_	_
	_	_	i
	258	i t	t
	259	t t	t
	260	t y	y
	261	y space	space
	262	space b	b
	_	_	_
	263	b i	i t
	_	_	_

- Nova_entrada = t
 (tem no dicionário)
- 2) Nova_entrada = t y (tem)

	Finite de la contra de						
Entrada		nova_entrada					
			dic	cionário			
10	05	i	_	_		256	(start)
13	16	t	258	i t		105	i
13	16	t	259	t t		116	t
12	21	y	260	t y		116	t
	32	space	261	y space		121	y
9	98	b	262	space b		32	space
10	05	i	263	b i		98	b
13	16	\mathbf{t}	_	5) nova	Ant	rada	=space
13	16	t	264	5) 110 va		200	1-Space
12	21	y	_	_		_	_
:	32	space	265	t y space		260	t y
			•				1

1) Nova_entrada = t y	
(tem no dicionário)	
2) Nova_entrada =	
t y space (não tem)	
> 3) Insere no dicionário	

4) Manda código de nova_entrada, sem o caractere final ⇒ t y

- 6) Nova_entrada' = i t t
- 7) Insere nova_entrada' no dicionário
- 8) Produz saída = cadeia do código recebido ⇒ t y

Entrada			a_entrada cionário
105	i	_	_
116	t	258	i t
116	t	259	t t
121	y	260	t y
32	space	261	y space
98	b	262	space b
105	i	263	b i
116	\mathbf{t}	_	_
116	\mathbf{t}	264	i t t
121	y	_	_
32	space	265	t y space
98	b		_

256	(start)
105	i
116	t
116	t
121	y
32	space
98	b
_	_
258	i t
_	_
260	t y
_	_

	a_entrada cionário	Saída
_	_	- i
258	i t	t
259	t t	t
260	t y	y
261	y space	space
262	space b	b
_	_	_
263	b i	i t
_	_	_
264	i t t	t y
_	_	_

 Nova_entrada = space (tem no dicionário)
 Nova_entrada = space b (tem)

space

space b

262

265

space b

t y space

b

5) nova_entrada=i 264 116 9) nova entrada'=spa b 121 264itt 32265260 t y t y space space

262

98

1) Nova_entrada = space b (tem no dicionário) 2) Nova_entrada =

263

266

b i

space-b i

105

116

98 105

- space b i (não tem)
- ⇒ 3) Insere no dicionário
- código de nova_entrada, sem o caractere final \Rightarrow space b

4) Manda

6) Nova entrada' = t y spa 7) Insere nova_entrada' no dicionário

space

t y

space b

8) Saída = cadeia do código recebido ⇒ spa b

Гю	do	10.01/10					, a a satura da	- Coído
Entrada		nova_entrada 🖂				nov	/a_entrada	Saída
		dic	cionário			c	licionário	
105	i	_	_	256	(start)	_		_
116	\mathbf{t}	258	i t	105	i	_		i
116	\mathbf{t}	259	t t	116	t	258	3 it	t
121	y	260	t y	116	t	259	tt	t
32	space	261	y space	121	y	260) ty	y
98	b	262	space b	32	space	261	y space	space
105	i	263	b i	98	b	262	2 space b	b
116	t	_	_	_	_	_	_	_
116	\mathbf{t}	264	i t t	258	i t	263	B bi	i t
121	y	_	_	_	_	_		_
32	space	265	t y space	260	t y	264	1 itt	t y
98	b		_	_	_	-	_	_
105	i	266	space-b i	262	space b	265	t y space	space b
116	t	_	_	_		-		_

- Nova_entrada = i (tem no dicionário)2) Nova_entrada =
 - i t (tem)

Codificação — Transmissão — Decodificação

Entrada		nova_entrada dicionário		
105	i	_	_	
116	t	258	i t	
116	t	259	t t	
121	y	260	t y	
32	space	261	y space	
98	b	262	space b	
Nova_entrada = i t (tem no dicionário) 2) Nova_entrada = i t space (não tem)				

⇒ 3) Insere no dicionário

space

267

i t space

	256	(start)		
	105	i		
	116	t		
	116	t		
	121	y		
	32	space		
4) Manda				
código de				
nova_entrada,				
<u>_</u> 51111.4444,				

sem o caractere

final \Rightarrow i t

i t

258

nova_entrada dicionário	Saída
	- •
258 i t	t
259 t t	t
260 t y	у
6) Nova_entrada' 7) Insere nova_e no dicioná 8) Saída = cac código recebid	entrada' rio leia do
265 t y space	space b
266 space b i	i t

5) nova_entrada=space

9) nova_entrada'=i t

Entrada		nova_entrada dicionário			
105	i	_	_		
116	t	258	i t		
116	t	259	t t		
121	y	260	t y		
32	space	261	y space		
98	b	262	space b		
105	i	263	b i		
116	t	_	_		
116	+	264	; + +		
1 •	Nova_	entrada	= space		
	(tem n	o dicior	nário)		
1	2) Nova_entrada =				
1	space b (tem)				
32	space	267	i t space		
98	b	_	_		

256	(start)
105	i
116	\mathbf{t}
116	t
121	y
32	space
98	b
_	_
258	i t
_	_
260	t y
_	_
262	space b
202	space b
_	space b
258	i t

	a_entrada cionário	Saída
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	У
261	y space	space
262	space b	b
_	_	_
263	b i	i t
_	_	_
264	i t t	t y
_	_	_
265	t y space	space b
_	_	_
266	space b i	i t

							_
Entrada nova_entrada dicionário							
105	i	_	_		256	(start)	
116	\mathbf{t}	258	i t		105	i	
116	\mathbf{t}	259	t t		116	t	
121	y	260	t y		116	t	
32	space	261	y space		121	y	
00	1	000	1		32	space	
•	Nova_e	entrada	= space		98	b	
		b (tem)			_	_	
	2) Nova	` '			258	i t	
	•				_	_	
	space	e b i (te	m)		260	t y	
98	\neg /		_		_	_	
105		266	space-b i		262	space b	
116		_	_		_		
32	ace	267	i t space		258	i t	
98	Ь	_	_		_		
105	i	_	_		_		

	a_entrada icionário	Saída
_	_	_
_	_	i
258	i t	t
259	t t	t
260	t y	y
261	y space	space
262	space b	b
_	_	_
263	b i	i t
_	_	_
264	i t t	t y
_	_	_
265	t y space	space b
_	_	_
266	space b i	i t
_	_	_

Codificação — Transmissão — Decodificação

Entrada		nova_entrada ˈ	
		dicionário	
105	i		
116	t	258 i t	
116	t	259 t t	
121	y	260 t y	
20	00000	261 ** 32233	
•		entrada = space b i (tem)	
		bi (teili)	
	2) Nova	a_entrada =	
	space b	i n (não tem)	
	3) Inser	re no dicionário	
98	\neg '	_	
105	i	266 space-b i	
116	t		
32	SI	267 it space	
98	b		
105	i V		
110	\mathbf{n}	268 space b i n	

256	(start)
105	i
116	t
116	t
121	y
32	space
98	b
_	_
258	i t

4) Manda código de nova_entrada, sem o caractere final ⇒ space b i

space b i

nova_entrada dicionário	Saída		
	_		
	i		
258 i t	t		
259 t t	t		
260 ty	у		
261 y space	space		
262 space b	b		
6) Nova_entrada' = i t spa 7) Insere nova entrada'			
no dicioná	rio		
8) Saída = cac	leia do		
código recebido :	⇒ spa b i		
266 space b i	i t		
	_		
	_		
267 it space	space b i		

5) nova_entrada=n

266

9) nova_entrada'=spa b i

Codificação → Transmissão — Decodificação

		$\overline{}$			
Entrada		nova_entrada dicionário			
105	i	_	_		
116	t	258	i t		
116	t	259			
121	у	260			
32	space	261	y space		
98	b	262	space b		
Nova_entrada = n (tem)2) Acabou mensagem					
105	i	266	space-b i		
116	t	-	_		
32	S	267	i t space		
98	b	_	_		
105	i /	_	_		

268

110

space b i n

	256	(start)
	105 116	i t
	116 121	t V
	32	space
	98	b _
3)	Mar	nda código
•	nov	a_entrada
•	nov	•

nova_entrada dicionário	Saída	
	_	
	i	
258 i t	\mathbf{t}	
259 t t	t	
260 ty	y	
261 y space	space	
262 space b	b	
6) Nova_entrada' = spa b i		

- 7) Insere nova entrada' no dicionário
 - 8) Saída = cadeia do código recebido ⇒ n 9) Recebe parada

267 i t space space b i space b i n 268

Codificação Entrada Saída nova entrada nova entrada dicionário dicionário 105 256 (start) 116 258i t 105 116 259t t 116 258 i t 121 260 116 259t y t t v t 32 261121 260 t y space y space y 262 98 b space b 32 261y space space space 105 263 bi 98 b 262space b b 116 258 i t bi 116 264itt 263i t 121 32 itt 265260 264t y space t y space t y 98 space-b i 105 266 262 space b 265space b t y space 116 i t 32 267 i t space 258 266 space b i i t space 98 b 105 space b i n space b i 110 268 266 267 space b i i t space \mathbf{n} space b i n 268 110 \mathbf{n} \mathbf{n}

(stop)

Codificação — Decodificação

Entrada	nova_entrada dicionário
97 a	
97 a	258 aa

256 (início) 97 (a) 1) Nova_entrada = aa
 (não tem no dicionário)
 ⇒ 2) Insere no dicionário

3) Mandacódigo denova_entrada,sem o caracterefinal ⇒ a

5) Produz como saída o caractere do código recebido ⇒ a

6) Nova_entrada' = a

4) nova_entrada=a (último caractere recebido)

Entrada	nova_entrada dicionário		nova_entrada dicionário	Saída
97 a		256 (início)		-
97 a	258 aa	97 (a)		а
97 a				_

- Nova_entrada = a (tem no dicionário)
- 2) Nova_entrada = aa (tem)

Entrada	nova_entrada dicionário
97 a	
97 a	258 aa
97 a	
97 a	259 aaa

1) Nova_entrada = aa

(tem no dicionário)

2) Nova_entrada = aaa

(não tem)

⇒ 3) Insere no dicionário

256 (início) 97 (a) - -258 (aa)

- 4) Manda
 código de
 nova_entrada,
 sem o caractere
 final ⇒ aa
- 5) nova_entrada=a (último caractere recebido)

nova_entrada dicionário	Saída
	-
	а
	-
258 aa	aa

6) Não conhece código
258 ⇒ repete 1o
caractere de cód. anter.
em Nova_entrada' = aa
7) Insere nova_entrada'
no dicionário
8) Produz saída = cadeia

9) nova_entrada'=aa

do código recebido ⇒ aa

Entrada	nova_entrada
97 a	
97 a	258 aa
97 a	
97 a	259 aaa
97 a	

256 (início)
97 (a)
258 (aa)

nova_entrada dicionário	Saída
	-
	а
	-
258 aa	aa
	_

- 1) Nova_entrada = a (tem no dicionário)
- 2) Nova_entrada = aa (tem)

Entrada	nova_entrada	I	∣∣ nova_e
	dicionário		dicio
97 a		256 (início)	
97 a	258 aa	97 (a)	
97 a			
97 a	259 aaa	258 (aa)	258
97 a			
97 a			
	1	I	11

nova_entrada dicionário	Saída
	-
	a
	_
258 aa	aa
	-
	_

- 1) Nova_entrada = aa (tem no dicionário)
- 2) Nova_entrada = aaa (tem)

Codificação

→ Transmissão — Decodificação

Entrada	nova_entrada dicionário
97 a	
97 a	258 aa
97 a	
97 a	259 aaa
97 a	
97 a	

256 (início) 97 (a) 258 (aa) 259 (aaa) 257 (parada)

6) Não conhece código 259 ⇒ repete 1o carac. de cód. ant. em nova_entrada' = aaa 7) Insere nova_entrada' no dicionário

1) Nova_entrada = aaa (tem no dicionário) 2) Recebeu parada

4) Manda código de nova_entrada, seguido por parada

nova_entrada dicionário	Saída
	-
	а
	-
258 aa	aa
	-
	-
259 aaa 🦴	aaa

- 8) Produz saída = cadeia do código recebido ⇒ aaa

Entrada	nova_entrada dicionário		nova_entrada dicionário	Saída
97 a		256 (início)		-
97 a	258 aa	97 (a)		а
97 a				-
97 a	259 aaa	258 (aa)	258 aa	aa
97 a				-
97 a				-
		259 (aaa)	259 aaa	aaa
		257 (parada)		-

Compressão LZW

- Codificador e decodificador criam dicionário a medida que processamento é feito
 - Dicionário não precisa ser transmitido explicitamente
 - Codificador lida com o texto em um único passo

Compressão LZW

O número de bits transmitido é reduzido?

Exemplo 1:

- Manda 18 caracteres de 8 bits (144 bits) em 14 transmissões de 9 bits (126 bits)
 - □ Redução de 12,5%

Exemplo 2:

- Manda 6 caracteres de 8 bits (48 bits) em 5 transmissões de 9 bits (45 bits)
 - □ Redução de 6,25%

Exercícios

- Codifique e decodifique a mensagem "itty bitty nitty grrrity bit bin"
 - Como feito no exemplo anterior
- Qual foi a compactação obtida?
- Você notou situações em que poderia haver melhoras no processo?

Discussão: compressão sem perda

- É usada em várias aplicações
 - Exemplos: formato zip do Unix, formato GIF
- É usada em casos em que é importante que os dados originais e descomprimidos sejam idênticos (ou desvios nos dados originais podem ser prejudiciais)
 - Exemplos: programas executáveis, programa fonte, texto, registros de banco, artigos etc.

Discussão: compressão sem perda

 Não há algoritmo sem perda eficiente para todos os tipos de dados possíveis

 Sequências de dados completamente aleatórias não podem ser comprimidas