Learning protein affinity codes with dynamic residues selection and multidimensional feature interactions using graph transformer

Algorithm 1 Dynamic residues selection

Input:

data: Shape as (L,). Each element of L contains all the information characterizing each residue in that protein complex, e.g., atomic coordinates, residue name, corresponding chain, index on the residue sequence.

pos: Shape as (L, 14, 3). Each element of L records information on the 3D coordinates of all heavy atoms in the residue.

core_index: Shape as $(N_{core},)$. An index of all the residues located in the core region of this protein complex was recorded.

 mut_index : Shape as (N_{mut_i}) . An index of all mutated residues in this protein complex was recorded.

G: Expected CORE regional share.

 lr_d : Optimising the move step of the virtual mutation point at each iteration.

 $N_{Maxstep}$: Maximum number of iterations.

 N_{res} : Number of residues selected.

Output:

select_data: Shape as $(N_{res},)$. Each element of N_{res} records all the characteristic information of the corresponding residue.

- 1: FUNCTION DynamicResiduesSelection(data, pos, core_index, mut_index,G, lr_d, N_{maxstep}, N_{res}):
- 2: # Extract CA coordinates from pos
- 3: SET pos_CA TO pos[:, 1, :]
- 4: # Extract core and mutated CA coordinates
- 5: SET pos_core_CA TO pos_CA[core_index]
- 6: SET pos_mut_CA TO pos_CA[mut_index]
- 7: # Initialize selection
- 8: # Find the indices of the N_{res} residues closest to pos_mut_CA
- 9: SET select_index TO indices of the N_{res} closest residues to pos_mut_CA based on pos_CA
- 10: # Calculate the geometric center of all points in pos_core_CA
- 11: SET pos_core_CA_center TO the geometric center of all points in pos_core_CA
- 12: SET rnum TO 0
- 13: # Iteratively refine selection
- 14: WHILE (LENGTH(SET(core_index) SET(select_index)) / LENGTH(core_index)) > (1 G) DO
- 15: # Move the virtual mutation point towards the core center
- 16: SET pos_mut_CA TO pos_mut_CA moved towards pos_core_CA_center by lr_d
- 17: # Update select_index with the N_{res} closest residues to pos_mut_CA
- 18: SET select_index TO indices of the N_{res} closest residues to pos_mut_CA based on pos_CA
- 19: INCREMENT rnum BY 1
- 20: IF rnum \geq N_{Maxstep} THEN

- 21: BREAK

 22: END IF

 23: END WHILE

 24: SET select_data TO data[select_index]

 25: RETURN select_data
- 26: END FUNCTION

Algorithm 2 Gating strongly affect coding

Input:

 $\{f_i^{pos_CB}\}$: Shape as $(N_{res}, 3)$. The coordinates of the CB atom corresponding to the residue are recorded for each element of N_{res} .

Output:

$$\{d_{ij}^h\}$$
: Shape as (N_{res}, N_{res}, H) .

- 1: **FUNCTION** GatingStronglyAffectCoding($\{f_i^{pos_CB}\}$):
- 2: gamma = softplus(W) $gamma, W \in \mathbb{R}^H$, W is a learnable parameter with an initial value of log(e-1) for each element
- 3: $d_{ij} = norm(f_i^{pos_{CB}} f_i^{pos_CB})$ $d_{ij} \in \mathbb{R}$, units: Å, $i, j \in \{1, ..., N_{res}\}$
- 4: $g_{ij} = sigmoid(LinearNoBias(d_{ij}))$ $h \in \{1, ..., H\}$, The initial value of the learnable parameter in LinearNoBias is 10
- 5: $d_{ij} = \frac{\sqrt{2}}{6} \cdot gamma \cdot d_{ij} \cdot g_{ij} \qquad d_{ij} \in \mathbb{R}^H$
- 6: **RETURN** $\{d_{ij}^h\}$
- 7: END FUNCTION

Algorithm 3 Structural fusion coding

Input:

 $\{f_i^{chain}\}$: Shape as $(N_{res},)$. Each element of N_{res} corresponds to the chain to which the residue belongs. $\{f_i^{seq}\}$: Shape as $(N_{res},)$. Each element of N_{res} corresponds to the ordinal number of the residue on the primary sequence.

 $\{f_i^{res_type}\}$: Shape as $(N_{res},)$. Each element of N_{res} corresponds to the name of the residue. $\{f_i^{pos_CB}\}$: Shape as $(N_{res},3)$. The coordinates of the CB atom corresponding to the residue are recorded for each element of N_{res} .

Output:

$$\{p_{ij}^h\}$$
: Shape as (N_{res}, N_{res}, H) .

- 1: **FUNCTION** FusionCoding($\{f_i^{chain}\}, \{f_i^{seq}\}, \{f_i^{res_type}\}, \{f_i^{pos_CB}\}$):
- 2: # Encoding sequence, structure and type information

3:
$$d_{ij}^{seq} = f_i^{seq} - f_j^{seq}$$
 $i, j \in \{1, \dots, N_{res}\}$

4: **IF**
$$f_i^{chain} \neq f_i^{chain}$$
 THEN

5:
$$d_{ii}^{seq} = 33$$

6: ELIF
$$d_{ij}^{seq} < -32$$
 THEN

7:
$$d_{ii}^{seq} = -32$$

8: **ELIF**
$$d_{ij}^{seq} > 32$$
 THEN

```
d_{ij}^{seq} = 32
9:
              END IF
10:
              d_{ij}^{seq} = Embedding(d_{ij}^{seq} + 32)
11:
              f_i^{res\_type\_OneHot} = one\_hot(f_i^{res\_type})
                                                                                                            f_i^{res\_type\_OneHot} \in \mathbb{R}^{N_{res} \times 21}
12:
              d_{ij}^{res\_type} = Linear \left(f_i^{res\_type\_OneHot}\right) + Linear \left(f_j^{res\_type\_OneHot}\right)
13:
              d_{ij}^{distance} = Linear(one\_hot(norm(f_i^{pos\_CB} - f_j^{pos\_CB})))
                                                                                                           d_{ij}^{seq}, d_{ij}^{res\_type}, d_{ij}^{distance} \in \mathbb{R}^{64}
14:
15:
              # Output projection
              d_{ii}^{seq} \leftarrow LayerNorm(d_{ii}^{seq})
16:
              d_{ij}^{res\_type} \leftarrow LayerNorm(d_{ij}^{res\_type})
17:
              d_{ij}^{distance} \leftarrow LayerNorm(d_{ij}^{distance})
18:
              p_{ij} = Linear(d_{ij}^{seq} + d_{ij}^{res\_type} + d_{ij}^{distance})
                                                                                                              p_{ij} \in \mathbb{R}^H
19:
              RETURN \{p_{i,i}^h\}
20:
21: END FUNCTION
```

Algorithm 3 Global node aggregation excitation attention

Input:

- $\{v_{ij}^h\}$: Shape as (N_{res}, N_{res}, H) . Correlation matrix between residue pairs obtained using node feature encoding.
- $\{d_{ij}^h\}$: Shape as (N_{res}, N_{res}, H) . Gating strongly affects coding matrix.
- $\{p_{ij}^h\}$: Shape as (N_{res}, N_{res}, H) . Structural fusion coding matrix.

Output:

- $\{A_{ij}^h\}$: Shape as (N_{res}, N_{res}, H) . Correlation matrix after modelling dependencies between multi-scale features.
- 1: **FUNCTION** GlobalNodeAggregationExcitationAttention($\{v_{ij}^h\}, \{d_{ij}^h\}, \{p_{ij}^h\}$):
- 2: # Global node aggregation
- 3: $v_i = \sum_i \sum_h v_{ij}^h$
- 4: $d_i = \sum_i \sum_h d_{ij}^h$
- 5: $p_j = \sum_i \sum_h p_{ij}^h$ $j \in \{1, ..., N_{res}\}, h \in \{1, ..., H\}$
- 6: # Adaptive recalibration
- 7: $x_m \leftarrow \{v_j\}, \{d_j\}, \{p_j\}$ $x_m \in \mathbb{R}^{N_{res}}, m \in \{1, 2, 3\}$
- 8: $Q_m^h, K_m^h, V_m^h = LinearNoBias(x_m)$ $Q_m^h, K_m^h, V_m^h \in \mathbb{R}^c$
- 9: $a_{mn}^h = softmax_n \left(\frac{1}{\sqrt{c}} Q_m^h K_n^h \right)$
- 10: $O_m^h = \sum_n a_{mn}^h V_n^h$
- 11: $O_m = Linear(concat_h(O_m^h))$
- 12: $a = softplus(O_0)$
- 13: $b = softplus(O_1)$
- 14: $c = sigmoid(O_2)$
- 15: # Output projection
- 16: $A_{ij}^h = softmax_j (av_{ij}^h cd_{ij}^h + bp_{ij}^h)$
- 17: **RETURN** $\{A_{i,i}^h\}$
- 18: END FUNCTION

Algorithm 4 The Side-chain Structure Modelling and Information Interaction

Input:

 $\{R_i\}$: Shape as $(N_{res}, 3, 3)$. Each element in N_{res} records the Euclidean transformation matrix of the corresponding residue.

 $\{A_{ij}^h\}$: Shape as (N_{res}, N_{res}, H) . Correlation matrix after modelling the dependencies between multi-scale features at the residue level.

 $\{f_i^{pos_CB}\}$: Shape as $(N_{res}, 3)$. The coordinates of the CB atom corresponding to the residue are recorded for each element of N_{res} .

 $\{f_i^{pos_CA}\}$: Shape as $(N_{res}, 3)$. The coordinates of the CA atom corresponding to the residue are recorded for each element of N_{res} .

Output:

 $\{S_i\}$: Shape as $(N_{res}, 7H)$. Encoding of side-chain geometry features at the atomic level after establishing informative interactions with the residue level.

1: **FUNCTION** SideChainStructureModellingAndInformationInteraction($\{R_i\}, \{A_{ij}^h\}, \{f_i^{pos_CB}\}, \{f_i^{pos_CA}\}$):

2: # Mapping to multidimensional space

3:
$$f_i^{hpos_CB} = \sum_j A_{ij}^h f_i^{pos_CB}$$

4: # Euclidean transformation

5:
$$f_i^{h \text{ pos_CB}} = R_i^T \left(f_i^{h \text{ pos_CB}} - f_i^{\text{pos_CA}} \right)$$

6: # Direction, distance and position

7:
$$\xi_i^h = f_i^{hpos_CB} \qquad \qquad \xi_i^h \in \mathbb{R}^3$$

8:
$$\zeta_i^h = norm \left(f_i^{hpos_CB} \right)$$
 $\zeta_i^h \in \mathbb{R}$

9:
$$\psi_i^h = \frac{f_i^{h^{pos_CB}}}{norm(f_i^{h^{pos_CB}})} \qquad \psi_i^h \in \mathbb{R}^3$$

10:
$$S_i = concat_{\chi \in \{\xi, \zeta, \psi\}} \left(concat_h(\chi_i^h) \right)$$
 $S_i \in \mathbb{R}^{7H}$

11: **RETURN** $\{S_i\}$

12: END FUNCTION