Action en robotique Brique ROSE

Samuel Tardieu sam@rfc1149.net

École Nationale Supérieure des Télécommunications

Définitions

- Pour agir sur le monde extérieur, le robot applique une action
- Cette action est appliquée grâce à un actionneur ou effecteur
- Par exemple, le robot doit pouvoir se déplacer

Un message de notre sponsor

Bedidon

Roue

La roue permet de se déplacer

Pour l'actionner, on utilise :

- un moteur pas-à-pas
- un moteur simple couplé avec un retour d'informations

Roues

Plusieurs roues permettent de choisir la direction :

Chenilles

Les chenilles offrent une meilleure adhérence

Golgot

mais prennent plus de place

Pattes

Des pattes permettent d'aborder d'autres reliefs

Hexapode AnimatLab

mais sont beaucoup plus complexes à mettre en œuvre

Actionneurs mécaniques

Caractéristiques :

- nombre de degrés de libertés
- type de mouvement (préhension, déplacement)
- type de motorisation (pas à pas, servomoteur)

Moteurs pas à pas

- Des bobines contrôlent finement la position de l'axe
- L'axe tourne pas à pas
- Le mouvement à basse vitesse est saccadé
- Le mouvement à haute vitesse est fluide

Pas à pas : avantages

- Faible coût
- Fonctionnement en boucle ouverte
- Couple à l'arrêt très élevé
- Précision élevée
- Mise au point inutile

Pas à pas : inconvénients

- Faibles performances à basse vitesse
- Consommation de courant élevée en permanence
- Bruit important
- Diminution du couple avec la vitesse
- Risque de décalage

Servomoteurs

- Fonctionnement d'un moteur classique (à balais sur courant continu)
- Boucle de rétroaction nécessaire (habituellement PID) pour obtenir la vitesse ou la position souhaitée
- Utilisés en modélisme (direction)

Servomoteurs: avantages

- Rapport couple/inertie élevé
- Vitesses élevées
- Très bon contrôle de la vitesse
- Nombreuses tailles disponibles
- Peu bruyant

Servomoteurs: inconvénients

- Prix élevé
- Contre-réaction nécessaire (pas de boucle ouverte)
- Nécessite une mise au point
- Entretien contraignant pour les moteurs à balais

Un message de notre sponsor

Bedidon

PID

Chaque lettre désigne un des trois coefficients de la rétroaction face à une erreur.

- P (proportionnel): plus l'erreur est grande, plus la correction est grande
- I (intégral) : plus l'erreur persiste, plus la correction augmente (évite les offsets)
- D (dérivé) : plus l'erreur diminue vite, plus la correction diminue (évite les réactions trop fortes)

P: erreur d'offset

P+I : convergence lente

P+I+D: convergence

I+D : divergence

P+D : offset (comme P seul)

Robot à roues

- Roues gauche et droite indépendantes :
 - rotation sur place possible
 - direction difficile à maintenir
- Propulsion et direction séparées :
 - rayon de courbure minimum défini par par la forme du robot
 - direction précise

Choix de trajectoire

Un rayon de courbure *r* impose le choix de la trajectoire.

La technique consistant à s'approcher du cercle tangent à la cible est itérative (pas de planification nécessaire).

Robots à pattes

- Bipède : équilibre précaire, redressement difficile, anthropomorphe
- Hexapode : plus stable, coordination difficile, résistance aux défaillances (contrôle par réseaux neuronaux)

Robot nageur

- Robot poisson du MIT
- Moteur extrêmement silencieux

Action: bras articulé

Plusieurs types de mouvement existent :

- Action rotative autour d'un axe
- Déplacement le long d'une crémaillière
- Préhension (effet de pince)

Tous ces mouvements doivent être coordonnés.

Cinématique inverse

Problématique : comment amener un membre de coordonnées A à des coordonnées B en évitant

- les boucles (contraintes anatomiques)
- les déséquilibres (contraintes physiques)
- les collisions et les auto-collisions

Plus il y a de degrés de liberté, plus le problème est difficile.

Résolution

- Méthodes analytiques :
 - simples, rapides
 - ne fonctionnent qu'avec quelques degrés de liberté
- Méthodes numériques :
 - résolution itérative du problème jusqu'à la convergence
 - plus lentes que les méthodes analytiques
 - permettent de résoudre les conflits entre tâches

Engins volants

Projet Alpha (ENST, LIP6/AnimatLab, Airstar)

