Импортируем библиотеки

```
import numpy as np
import matplotlib.pyplot as plt
```

1 График кривой в декартовой системе координат

Задание

Необходимо построить область \mathcal{D} , которая ограничена кривыми: $y = x^2$, $y = -x^2$ и x = 2.

Вычисления

Задаём массив x и вспомогательный массив для заливки области x_fill.

```
x = np.linspace(0, 2.5, 1000)
x_fill = np.linspace(0, 2, 100)
```

Определим функции, вычисляющие значения в точках

```
def y_1(x):
    return x**2

def y_2(x):
    return -x**2
```

Построение графика

Полученный график показан на рисунке 1.

2 График параметрически заданной кривой

Задание

Необходимо построить кривые

$$\begin{cases} x_1(t) = \cos t, \\ y_1(t) = \sin 2t, \end{cases} \quad \mathbf{X} \quad \begin{cases} x_2(t) = \cos 3t, \\ y_2(t) = \sin 2t. \end{cases}$$

Рис. 1: Кривые с выделенной областью \mathcal{D}

Вычисления

Задаём массив t и вычисляем массивы значений функций x_1, x_2, y_1 и y_2.

```
t = np.linspace(0, 2*np.pi, 1000)

x_1 = np.cos(1*t)
y_1 = np.sin(2*t)

x_2 = np.cos(3*t)
y_2 = np.sin(2*t)
```

Построение графика

```
plt.figure(figsize=(4, 4))
plt.plot(x_1, y_1, label='a=1, b=2', color='red', lw=3)
plt.plot(x_2, y_2, label='a=3, b=2', color='blue', lw=3)
plt.xlabel('x', fontsize=12)
plt.ylabel('y', fontsize=12)
plt.legend(fontsize=12)
plt.grid()
plt.savefig(r'pic\graph_2.pdf')
```

Полученный график показан на рисунке 2.

Рис. 2: Параметрически заданные кривые

3 График кривой в полярной системе координат

Задание

Необходимо построить графики кривых $\rho_1(\varphi) = 2(1 + \cos \varphi)$ и $\rho_2(\varphi) = 2(1 - \cos \varphi)$ в полярной системе координат.

Вычисления

Задаём массив phi и вычисляем массивы значений функций rho_1 и rho_2.

```
phi = np.linspace(0, 2*np.pi, 1000)
pho_1 = 2*(1+np.cos(phi))
pho_2 = 2*(1-np.cos(phi))
```

Построение графика

```
plt.figure(figsize=(4, 4))
plt.subplot(111, projection='polar')
plt.polar(phi, pho_1, label=r'$\rho_1(\varphi)=2(1+\cos\varphi)$',
color='red', lw=3)
plt.polar(phi, pho_2, label=r'$\rho_2(\varphi)=2(1-\cos\varphi)$',
color='blue', lw=3)
plt.yticks([0, 1, 2, 3, 4])
```

```
8 plt.legend(fontsize=12)
9 plt.savefig(r'pic\graph_3.pdf')
```

Полученный график показан на рисунке 3.

Рис. 3: График в полярных координатах

4 График параметрически заданной трёхмерной кривой

Задание

Необходимо построить график кривой, заданной параметрически

$$\begin{cases} x = t \cos t, \\ y = t \sin t. \end{cases} \quad t \in [0, 8\pi].$$

$$z = t.$$

Вычисления

Задаём массив t и вычисляем массивы значений функций x, y и z.

```
t = np.linspace(0, 8*np.pi, 1000)

x = t*np.cos(t)
y = t*np.sin(t)
z = t
```

Построение графика

```
plt.figure(figsize=(5, 4))
ax = plt.subplot(111, projection='3d')
ax.plot(x, y, z, c='red', lw=3, label=r'$f\left(x(t),y(t),z(t)\right)$')
ax.set_xlabel('x', fontsize=12)
ax.set_ylabel('y', fontsize=12)
ax.set_zlabel('z', fontsize=12)
ax.zaxis.labelpad = -1
plt.legend(fontsize=12)
plt.tight_layout()
plt.savefig(r'pic\graph_4.pdf')
```

Полученный график показан на рисунке 4.

Рис. 4: Параметрически заданная трёхмерная кривая

5 График поверхности

Задание

Необходимо построить график функции двух переменных $z(x,y) = x^2 - y^2$.

Вычисления

Зададим сетку значений (x,y) и найдём значения функции в узлах полученной сетки.

```
1  x = np.linspace(-5, 5, 100)
2  y = np.linspace(-5, 5, 100)
3
4  x, y = np.meshgrid(x, y)
5
6  z = x**2-y**2
```

Построение графика

```
plt.figure(figsize=(5, 4))
ax = plt.subplot(111, projection='3d')
ax.plot_surface(x, y, z, cmap="turbo")
ax.set_xlabel('x', fontsize=12)
ax.set_ylabel('y', fontsize=12)
ax.set_zlabel('z', fontsize=12)
ax.zaxis.labelpad = -1
plt.tight_layout()
plt.savefig(r'pic\graph_5.pdf')
```

Полученный график показан на рисунке 5.

Рис. 5: График поверхности