Subgroups

· Symmetry group for this is Dy

· What if we only want the motions that fix 1?

→ Then H= {id, f} is a group under composition and is a subset of Dy.

We refer to H as a subgroup of Dy.

<u>Definition</u>: Let (G, *) be a group. We say a nonempty subset $H \subseteq G$ is a <u>subgroup</u> if (H, *) is a group.

For H to be a group, we need:

- ·nonempty
- ·iduntity
- · associative (for free if it is a subset of a group.)
- ·inverses
- ·closed

However, suppose we know H+Ø and whenever x, yeH, then x * y + EH. This implies the following:

· XGH , X * x TEH ⇒ egeH.

(identity)

· XEH, eg * x-1 => x-1 €H

(inverse)

* XEH, y-1 EH, X*(y-1) => X *y EH.

<u>Proposition</u>: If $H \subseteq G$, where (G, *) is a group. if $H \neq \emptyset$ and $\times \times y^{-1}GH$ for all $\times y \in H$, then H is a subgroup

Example: Let G = 74, *=+.

Fix n ∈ Z. Consider H=nZ = {meZ: nlm} = {nK: KEZ}

Note H + Ø b/c neH.

Let a, b ∈ H. We on write a=ns and b=nt for some s, t ∈ Z.

We have a-b= ns-nt = n(s-t)EH.

So H is a subgroup of G.

Example: Consider the group D3. Its subgroups are:

Suppose we have a subgroup Hx with or, or EH. Note that:

oror2 eH ⇔ orr20 eH

 \Rightarrow \Rightarrow r2∈H

So Hx also contains r2. But:

Orr2 EH ₩ JEH

So Hx also contains or. But:

₩ O(Or) EH O EH r eH

and \$ o(or2) &H rZEH.

So Hx = D3.

Subgroup lattice

03 {e, \sigma} {e, \sigma r} {e, \sigma^2} {e, \sigma_r}

Exercise: What are the subgroups of Z1/6Z = [0,1,2,3,4,5]

-> Clearly 74/624 and {0} are.

If H is a subgroup and 1 EH, then H= 72/67/ If 2 EH, then 4 CH, and 0 EH. So H= {0,2,4}.

If 36H, then O6H. So H & {0,3}.

If 46H, then 26H, and O6H. So H= {0,2,43.

If 564, then H= 71/671.

• Is $H = \{(0, 1) : b \in \mathbb{R}\}$ a subgroup of $GL_2(\mathbb{R})$?

→ H is clearly nonempty since (69) ∈H.

Let A, BEH. WTS ABTEH.

So AB" = (6) (6-b) = (6) 6H.

So H is a subgroup.

- · Let G be a group, where H, K are subgroups. We denote this as H, K ≤ G. Show H 1 K ≤ G.
 - → Since H,K are subgroups, each and eack. So each nk

 Let a,b ∈ H nk. Then a,b ∈ H and a,b ∈ k.

 Since H ∈ G, a * b ¬ ∈ H

 Since K ∈ G, a * b ¬ ∈ K.

 So a * b ¬ ∈ H nk.

 Thus H nk is a subgroup.

· Is HUK a subgroup?

— Not in general. Suppose H= Eid, or 3 and K= Eid, or 2 3

Then HUK= {id, or, or 2 3, which is not closed under multiplication because or or 2=...= r² € HUK.

Cyclic Groups:

Let (G,*) be a group. We say G is cyclic if there exists yeG so that G= Lg)= {gk: KEZI}

For any group (G,*) and $a \in G$, set $La > = \{a^k : k \in 7L\}$ as the cyclic subgroup generated by a.

Example: Let G=D3. H= Lr>= {r": KEZL} = {r, r2, r3 = e}

Definition: Let a \in G with $a^n = e$ for some $n \in \mathbb{Z}_{\geq 1}$. If $a^m \neq e$ for all $0 \perp m \perp n$, we say n is the order of a and write |a| = n or order $a^m \neq e$.

If there is no such n, we say a has infinite order and write $|a| = \infty$.

Example: G = ZL, then $|Q| = \infty$ $G = D_3$, then |r| = 3

$$a^n = e$$
 $a^k = e$ iff $n \mid k$

On our Way I	ah a c C	مرا المان			
Proposition: Let $a \in G$ with $ a = N$. 1) $a^k = e$ iff $n \mid k$ iff $k \equiv O(mod n)$ 2) $a^i = a^j$ iff $i \equiv j \pmod n$ 3) $\# \langle a \rangle = a $ 4) $\angle a^k \rangle = \langle a \rangle$ iff $\gcd(k,n) = 1$ 5) $\angle a^k \rangle = \langle a \gcd(k,n) \rangle$					
			6) $ a^k = h / \gcd(kn)$		
			proof: 1) is a special car of 2).		
				For 2) ((⇒) suggest a = a3.
12971	so aia	$ \begin{array}{ll} \Rightarrow) \text{ suppose } \alpha^1 = \alpha^3. \\ i = e \iff \alpha^{1-i} $			
	Using the	division algorith, write i-i= nater be some q, r = 1/2,			
		have $e = a^{-1}$			
o\b	So we	have e= a'-v			
3ce7 s.t.		$= \alpha^{NQ^{+\Gamma}}$			
		$= (a^n)^{q} a^{r}$ $= e^{q} a^{r}$			
b=ac.		=a.			
`					
Thus a = e. However, ren and n is the smallest					
positive integer with $a^n = e$. So $r = 0$. Thus, $n(i-j)$, i.e, $i=j \pmod{n}$					
⇒ i-j=nq,	(€) A@	sume i = j(mod n).			
n ((i - j)		exists $K \in \mathbb{Z}$ with $i-j=n\mathbb{Z}$.			
late langer of oil					
= ajtnk					
		$=\alpha_{i}^{j}(\alpha^{n})^{k}$			
		= aj ek			
		= e ^J			
ጲጴጛ	$\Lambda \alpha c$	C 2			
	£36	GA TI			
112	81	7 1			
62	33	23			