Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Teste 1 de Análise Matemática I - Engenharia Informática

26 de novembro de 2021 Duração: 1h30m

- A avaliação do portfólio de actividades do CeaMatE substitui a resposta ao grupo 1.

- Não é permitido utilizar máquina de calcular ou telemóvel durante a prova.

 $[2.0 \, val.]$

1. (a) Das simplificações seguintes, identifique as erradas:

i)
$$\frac{2+x}{x} = 2;$$

ii)
$$\sqrt{x^2} = |x|$$
;

i)
$$\frac{2+x}{x} = 2$$
; ii) $\sqrt{x^2} = |x|$; iii) $\arccos(x) = \frac{1}{\cos(x)}$.

(b) Qual das funções g(x), h(x) ou i(x) é a inversa da função f(x)?

- (c) Determine o domínio e a expressão analítica da função inversa de $f(x) = 1 + 2 \arcsin(3x)$.
- (d) Calcule o valor numérico da expressão $\arccos\left(2\sin\left(\frac{59\pi}{6}\right)\right)$.

2. A equação $\sin(x) = -x + 1$ tem apenas uma solução real, pertencente ao intervalo [0,1].

- (a) Recorrendo ao método gráfico, justifique a afirmação anterior.
- (b) Partindo da aproximação inicial $x_0 = 0$, efectue 2 iterações do método de Newton para estimar a solução da equação dada. Indique um majorante para o erro dessa estimativa e utilize 2 casas decimais em todos os cálculos que realizar.

Nota: $\frac{2}{188} \simeq 0.01$, $\frac{84}{154} \simeq 0.55$

[1.5 val.] 3. Calcule as seguintes primitivas:

a)
$$\int \frac{\sqrt{\ln(x)}}{x} dx$$
;

a)
$$\int \frac{\sqrt{\ln(x)}}{x} dx$$
; b) $\int \frac{4+9x}{16+25x^2} dx$.

 $[2.0\,val.]$ 4. (a) Recorrendo à definição de primitiva, mostre que

$$\int \arcsin(x) dx = x \arcsin(x) + \sqrt{1 - x^2} + c, \quad c \in \mathbb{R}.$$

- (b) Considere o integral definido $\int_{-1}^{1} \arcsin(x) dx$.
 - i) Determine uma estimativa para o integral, recorrendo à regra dos trapézios e a uma partição em 4 sub-intervalos.
 - ii) Recorrendo à alínea (a), determine o valor exacto do integral.

 $[4.5 \, val.]$ 5. Considere a região \mathcal{A} , sombreada, da figura seguinte.

- (a) Usando integrais, indique expressões simplificadas que permitam calcular a área de \mathcal{A}
 - i) em função da variável x; ii) em função da variável y.
- (b) Usando integrais, calcule o volume da região que se obtém pela rotação da região $\mathcal A$ em torno do eixo Ox.
- (c) Identifique, justificando, a medida explicitada pela expressão $\int_2^3 \sqrt{1 + \frac{1}{4(-x+3)}} dx$.

DEPARTMENT OF PHYSICS AND MATHEMATICS

Calculus I - Informatics Engineering - test 1

November 26th, 2021 1h30m

[2.0 val.] 1. (a) From the following sentences, identify the wrong ones:

i)
$$\frac{2+x}{x} = 2;$$

ii)
$$\sqrt{x^2} = |x|;$$

iii)
$$\arccos(x) = \frac{1}{\cos(x)}$$
.

i) $\frac{2+x}{x}=2$; ii) $\sqrt{x^2}=|x|$; iii) $\arccos(x)=\frac{1}{\cos(x)}$. (b) Which of the functions g(x), h(x) or i(x) is the inverse function of f(x)?

(c) Define the domain and the analytical expression of the inverse function of

$$f(x) = 1 + 2\arcsin(3x).$$

(d) Perform the numerical value of $\arccos\left(2\sin\left(\frac{59\pi}{6}\right)\right)$.

[1.0 val.] 2. The equation $\sin(x) = -x + 1$ has only one solution, on the interval [0, 1].

- (a) Using graphical method, prove the previous statement.
- (b) Using the initial approximation $x_0 = 0$, perform 2 iterations of Newton's method to estimate the solution of the equation. Present an upper bound for the error of this estimate and use 2 decimal places on all your calculations.

Remark:
$$\frac{2}{188} \simeq 0.01$$
, $\frac{84}{154} \simeq 0.55$

3. Perform the following indefinite integrals:

a)
$$\int \frac{\sqrt{\ln(x)}}{x} dx;$$

b)
$$\int \frac{4+9x}{16+25x^2} dx$$
.

[2.0 val.] 4. (a) Using indefinite integral definition, prove that

$$\int \arcsin(x) dx = x \arcsin(x) + \sqrt{1 - x^2} + c, \quad c \in \mathbb{R}.$$

- (b) Consider the definite integral $\int_{-1}^{1} \arcsin(x) dx$.
 - i) Using trapezoidal rule and 4 sub-intervals, determine an estimate for the definite integral.
 - ii) Using result from paragraph (a), determine the exact value of the definite integral.

[4.5 val.] 5. Consider the region \mathcal{A} presented in the following figure.

- (a) Using definite integrals, determine simplified analytical expressions that allow to determine the area of the region A
 - i) using the variable x;
- ii) using the variable y.
- (b) Using definite integrals, determine the volume of the solid obtained by rotating the region \mathcal{A} about x-axis.
- (c) Identify the measure defined by the definite integral $\int_2^3 \sqrt{1 + \frac{1}{4(-x+3)}} dx$. Justify.

- 1. (a) As simplificações (i) e (iii) estão erradas.
 - (b) O gráfico da função inversa de f(x) é h(x), porque é o gráfico simétrico do de f(x), relativamente à recta y=x.
 - (c) Começamos por notar que a função f é injectiva e portanto é invertível. A função inversa tem expressão analítica dada por

$$\begin{array}{ll} y = 1 + 2\arcsin(3x) & \Leftrightarrow & y - 1 = 2\arcsin(3x) \\ & \Leftrightarrow & \frac{y - 1}{2} = \arcsin(3x) \\ & \Leftrightarrow & \sin\left(\frac{y - 1}{2}\right) = 3x \,, \quad \text{desde que } \frac{y - 1}{2} \in \left[-\frac{\pi}{2}\frac{\pi}{2}\right] \\ & \Leftrightarrow & \frac{1}{3}\sin\left(\frac{y - 1}{2}\right) = x \,. \end{array}$$

e, consequentemente, tem domínio

$$D_{f^{-1}} = \{ y \in \mathbb{R} : -\frac{\pi}{2} \le \frac{y-1}{2} \le \frac{\pi}{2} \} = \{ y \in \mathbb{R} : -\pi \le y - 1 \le \pi \} = [1 - \pi, 1 + \pi].$$

(d) Tendo em conta a periodicidade da função seno e respectiva restrição principal, tem-se

$$\arccos\left(2\sin\left(\frac{59\pi}{6}\right)\right) = \arccos\left(2\sin\left(10\pi - \frac{\pi}{6}\right)\right)$$

$$= \arccos\left(2\sin\left(-\frac{\pi}{6}\right)\right)$$

$$= \arccos\left(2\left(-\frac{1}{2}\right)\right)$$

$$= \arccos(-1)$$

$$= \pi.$$

.

2. (a) Tendo em conta que

$$\sin(x) = -x + 1$$

as soluções da equação correspondem às abcissas dos pontos de intersecção dos gráficos das funções $f_1(x) = \sin(x)$ e $f_2(x) = -x + 1$.

(b) Consideremos a função $f(x) = \sin(x) + x - 1$. Então, $f'(x) = \cos(x) + 1$, pelo que

n	x_n	erro
0	$x_0 = 0$	
1	$x_1 = 0 - \frac{f(0)}{f'(0)} = 0 - \frac{\sin(0) + 0 - 1}{\cos(0) + 1} = 0.5$	0.5
2	$x_2 = 0.5 - \frac{f(0.5)}{f'(0.5)} = 0.5 - \frac{\sin(0.5) + 0.5 - 1}{\cos(0.5) + 0.5} \simeq 0.5 - \frac{0.48 - 0.5}{0.88 + 1} = 0.5 + \frac{0.02}{1.88} \simeq 0.51$	0.01

Então, $\overline{x} = 0.51$ é uma aproximação para a solução, com erro aproximado de 0.01.

3. (a) Recorrendo às regras das primitivas imediatas, tem-se

$$\int \frac{\sqrt{\ln(x)}}{x} \, dx = \int \underbrace{\frac{1}{x} \left(\ln(x) \right)^{\frac{1}{2}}}_{R^2} \, dx = \frac{\left(\ln(x) \right)^{\frac{3}{2}}}{\frac{3}{2}} + c = \frac{2}{3} \sqrt{\ln^3(x)} + c, \quad c \in \mathbb{R}.$$

(b) Recorrendo às regras das primitivas imediatas, tem-se

$$\int \frac{4+9x}{16+25x^2} dx = 4 \int \frac{1}{16+25x^2} dx + 9 \int \frac{x}{16+25x^2} dx$$

$$= 4 \int \frac{1}{16\left(1+\frac{25x^2}{16}\right)} dx + \frac{9}{50} \int \underbrace{\frac{50x}{16+25x^2}}_{R2} dx$$

$$= \frac{1}{4} \frac{4}{5} \int \underbrace{\frac{\frac{5}{4}}{1+\left(\frac{5x}{4}\right)^2}}_{R19} dx + \frac{9}{50} \ln(16+25x^2) + c$$

$$= \frac{1}{5} \arctan\left(\frac{5x}{4}\right) + \frac{9}{50} \ln(16+25x^2) + c, \quad c \in \mathbb{R}.$$

4. (a) Basta verificar que a derivada de $x \arcsin(x) + \sqrt{1-x^2} + c$ é $\arcsin(x)$:

$$\underbrace{\left(x \arcsin(x) + \sqrt{1 - x^2} + c\right)'}_{R4 + R3}$$

$$= \underbrace{\left(x \arcsin(x)\right)' + \left(\sqrt{1 - x^2}\right)' + \left(c\right)'}_{R5}$$

$$= \underbrace{\left(x\right)'}_{R5} \arcsin(x) + x \underbrace{\left(\arcsin(x)\right)'}_{R19 + R2} + \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} (-2x) + 0$$

$$= \arcsin(x) + x \frac{1}{\sqrt{1 - x^2}} - \frac{x}{\sqrt{1 - x^2}}$$

$$= \arcsin(x) \checkmark$$

(b) i) Considerando a regra dos trapézios e uma partição uniforme do intervalo [-1,1] em 4 sub-intervalos, tem-se

$$\int_{-1}^{1} \underbrace{\arcsin(x)}_{f(x)} dx$$

$$\simeq \frac{0.5}{2} \Big(f(-1) + 2 f(-0.5) + 2 f(0) + 2 f(0.5) + f(1) \Big)$$

$$= 0.25 \Big(\arcsin(-1) + 2 \arcsin(-0.5) + 2 \arcsin(0) + 2 \arcsin(0.5) + \arcsin(1) \Big)$$

$$= 0.25 \Big(-\frac{\pi}{2} + 2 \Big(-\frac{\pi}{6} \Big) + 0 + 2 \frac{\pi}{6} + \frac{\pi}{2} \Big)$$

$$= 0.$$

ii) Tendo em conta o resultado da alínea (a), tem-se

$$\int_{-1}^{1} \arcsin(x) dx = \left[x \arcsin(x) + \sqrt{1 - x^2} \right]_{-1}^{1}$$

$$= \arcsin(1) + 0 - \left(-\arcsin(-1) + 0 \right)$$

$$= \frac{\pi}{2} + \left(-\frac{\pi}{2} \right)$$

$$= 0.$$

i) Começamos por notar que a recta que delimita um dos sectores da fronteira é definida por

$$\bullet \ y = -x + 1$$

Então,

$$\text{Área}(\mathcal{A}) = \int_{1}^{2} \underbrace{0}_{f_{sup}} - \underbrace{\left(-x+1\right)}_{f_{inf}} dx + \int_{2}^{3} \underbrace{0}_{f_{sup}} - \underbrace{\left(-\sqrt{-x+3}\right)}_{f_{inf}} dx
= \int_{1}^{2} x - 1 dx + \int_{2}^{3} \sqrt{-x+3} dx .$$

- ii) Comecemos por explicitar as curvas que delimitam a região, em função da variável y:
 - $y = -\sqrt{-x+3}$ \Leftrightarrow $y^2 = -x+3$ \Leftrightarrow $x = 3-y^2$ y = -x+1 \Leftrightarrow x = 1-y

Então

$$\text{Área}(\mathcal{A}) = \int_{-1}^{0} \underbrace{3 - y^2}_{f_{sup}} - \underbrace{(1 - y)}_{f_{inf}} dy$$

$$= \int_{-1}^{0} -y^2 + y + 2 dy$$

(b) O volume do sólido de revolução que se obtém pela rotação da região $\mathcal A$ em torno do eixo Oxé dado por

Volume(
$$\mathcal{A}_{Ox}$$
) = $\pi \int_{1}^{2} \left(\underbrace{-x+1}_{R_{ext}}\right)^{2} dx + \pi \int_{2}^{3} \left(\underbrace{-\sqrt{-x+3}}_{R_{ext}}\right)^{2} dx$
= $-\pi \int_{1}^{2} -(-x+1)^{2} dx + \pi \int_{2}^{3} -x + 3 dx$
= $-\pi \left[\frac{(-x+1)^{3}}{3}\right]_{1}^{2} + \pi \left[-\frac{x^{2}}{2} + 3x\right]_{2}^{3}$
= $-\frac{\pi}{3} \left(-1+0\right) + \pi \left(\frac{-9}{2} + 9 - (-2+6)\right)$
= $\frac{5\pi}{6}$.

A expressão representa o comprimento da lado referente à parábola, que delimita a região \mathcal{A} :

comprimento
$$= \int_{2}^{3} \sqrt{1 + \left[\left(-\sqrt{-x+3} \right)' \right]^{2}} dx$$

$$= \int_{2}^{3} \sqrt{1 + \left[\frac{1}{2} \left(-x+3 \right)^{-\frac{1}{2}} \right]^{2}} dx$$

$$= \int_{2}^{3} \sqrt{1 + \frac{1}{4 \left(-x+3 \right)}} dx .$$