Section 9.2: Regular Markov Chains

• **Irreducible Markov Chain:** When all its states <u>communicate</u> with each others, or it is easier to think of it as: *connectable.* (*It is strongly recommended to draw the transition diagram*)

Example 1: Determine if the following is irreducible (*connectable*):

$$T = \begin{bmatrix} 0.25 & 0.75 \\ 0.65 & 0.35 \end{bmatrix}$$

Example 2: Determine if the following is irreducible (*connectable*):

$$T = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.3 & 0 & 0.7 \\ 0 & 0 & 1 \end{bmatrix}$$

Note: Anytime a state is communicating only with <u>itself</u> as in state 3, the matrix is not irreducible (not connectable)

Example 3: Determine if the following is irreducible (*connectable*):

$$T = \begin{bmatrix} 0.6 & 0 & 0.4 \\ 0.2 & 0 & 0.8 \\ 0 & 0.8 & 0.2 \end{bmatrix}$$

Regular Markov Chain: A transition matrix is regular when there is power of *T* that contains all positive *no zeros* entries.

- a) If the transition matrix is not irreducible (not connectable), then it is not regular
- b) If the transition matrix is irreducible (*connectable*) and at least one entry of the main diagonal is nonzero, then it is regular
- c) If all entries on the main diagonal are zero, but T^n (after multiplying by itself n times) contain all postive entries, then it is regular.

Example 4: Determine which of the following matrices is regular:

a)
$$T = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$$

b)
$$T = \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0 \end{bmatrix}$$

a)
$$T = \begin{bmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{bmatrix}$$
 b) $T = \begin{bmatrix} 0.5 & 0.5 \\ 1 & 0 \end{bmatrix}$ c) $T = \begin{bmatrix} 1 & 0 & 0 \\ 0.25 & 0.5 & 0.25 \\ 0 & 1 & 0 \end{bmatrix}$

- a) yes, all entries are positive
- b) yes because has only positive entries. You can also look at it as irreducible matrix with at least one element in the main diagonal not equal to zero.

$$T^2 = \begin{bmatrix} 0.75 & 0.25 \\ 0.5 & 0.5 \end{bmatrix}$$

c) No, because it is not irreducible (not connectable). Also, if you multiply it by itself over and over it will still contain zeros

$$T = \begin{vmatrix} 0.000 & 0.100 & 0.900 \\ 0.700 & 0.000 & 0.300 \\ 1.000 & 0.000 & 0.000 \end{vmatrix}$$

$$T^{2} = \begin{vmatrix} 0.970 & 0.000 & 0.030 \\ 0.300 & 0.070 & 0.630 \\ 0.000 & 0.100 & 0.900 \end{vmatrix}$$

$$T^{3} = \begin{vmatrix} 0.030 & 0.097 & 0.873 \\ 0.679 & 0.030 & 0.291 \\ 0.970 & 0.000 & 0.030 \end{vmatrix}$$

$$T^{4} = \begin{vmatrix} 0.941 & 0.003 & 0.056 \\ 0.312 & 0.068 & 0.620 \\ 0.030 & 0.097 & 0.873 \end{vmatrix}$$

Notice that T^4 have all postive entries, so it is regular.

T =	0.000	1.000	0.000
	0.500	0.000	0.500
	0.000	1.000	0.000
T ² =	0.500	0.000	0.500
	0.000	1.000	0.000
	0.500	0.000	0.500
T ³ =	0.000	1.000	0.000
	0.500	0.000	0.500
	0.000	1.000	0.000

Notice that T^3 is the same as the original matrix, so it cycles back and forth. This is called periodic and it is not regular.

For T= $\begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}$

 $\text{find}\ T^2$

Draw the transition diagram

a) Irreducible ? Yes____ No ____

b) Regular? Yes____ No____

For T=
$$\begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}$$

Draw the transition diagram

a) Irreducible ? Yes___ No ___

find
$$T^2 = T$$
. T

$$= \begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0.7 & 0.3 \\ 0.8 & 0 & 0.2 \\ 0.4 & 0.6 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.680 & 0.180 & 0.140 \\ 0.080 & 0.680 & 0.240 \\ 0.480 & 0.280 & 0.240 \end{bmatrix}$$

b) Regular? Yes____ No___

From section 9.1, we had:

$$P_n = P_0 T^n$$
 (P_0 : the initial state vector, T : the transition matrix)

Example 5: Previously in section 9.1, we had the following example:

A market analyst is interested in whether consumers prefer Dell or Gateway computers. two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

If a consumer has Dell Computer now:	If a consumer has Gateway Computer now:		
After 6 year:	After 6 year:		
$\begin{bmatrix} 0.79 & 0.21 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.74 & 0.26 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.76 & 0.24 \end{bmatrix}$		
After 7 year:	After 7 year:		
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.76 & 0.24 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.77 & 0.23 \end{bmatrix}$		
After 8 year:	After 8 year:		
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.77 & 0.23 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$		
After 9 year:	After 9 year:		
$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$	$\begin{bmatrix} 0.78 & 0.22 \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} 0.78 & 0.22 \end{bmatrix}$		

^{*} After certain years, the probability stabilizes at 78% for Dell and 22% for Gateway. Notice that whether we start with Gateway or Dell, the result is the same and that is not accidental.

^{*} The state vector of is called the **Steady State Vector** where: P.T = P (multiplying the Steady State Vector by the Transition Matrix = the Steady State Vector.)

^{*} The above can only applied on **Regular** Markov chain

Example 6: The same example again:

A market analyst is interested in whether consumers prefer Dell or Gateway computers. two market surveys taken one year apart reveals the following:

- 10% of Dell owners had switched to Gateway and the rest continued with Dell.
- 35% of Gateway owners had switched to Dell and the rest continued with Gateway.

Find the distribution of the market after "a long period of time" or the **Steady State Vector**.

Solution:

The answer is in finding the Steady State Vector P where: P.T = P

$$P = \begin{bmatrix} x & y \end{bmatrix} \qquad ; \qquad T = \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix}$$

$$P.T = P \text{ then}: \begin{bmatrix} x & y \end{bmatrix} \cdot \begin{bmatrix} 0.9 & 0.1 \\ 0.35 & 0.65 \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix}$$

$$Or: \qquad 0.9x + 0.35y = x \qquad \Rightarrow \qquad 0.9x - x + 0.35y = 0$$

$$0.1x + 0.65y = y \qquad \Rightarrow \qquad 0.1x + 0.65y - y = 0$$

Simplify the above equations by moving all variable to one side:

$$-0.1x + 0.35y = 0$$
$$0.1x - 0.35y = 0$$

The two equations are dependent and have infinite number of solutions. We must add another equation in order to get the answer: x + y = 1

Now, use the Echelon's Method to solve:

$$-0.1x + 0.35y = 0$$

$$0.1x - 0.35y = 0$$

$$x+y=1$$

Multiply each equation by 100 to remove decimals, except the last equation:

$$-10x + 35y = 0$$

$$10x - 35y = 0$$

$$x+y=1$$

0	-45	-10	
1	0	0.78	
0	1	0.22	

The answer is x = 78% and y = 22% way.

Example 7: Suppose that General Motors (GM), Ford (F), and Chrysler (C) each introduce a new SUV vehicle.

- General Motors keeps 85% of its customers but loses 10% to Ford and 5% to Chrysler.
- Ford keeps 80% of its customers but loses 10% to General motors and 10% to Chrysler.
- Chrysler keeps 60% of its customers but loses 25% to General Motors and 15% to Ford...

Find the distribution of the market in the long run or the Steady State Vector.

Solution: Lets assume the probabilities to be x for GM, y for F and z for C just to make it easier to solve

$$P = \begin{bmatrix} x & y & z \end{bmatrix} \qquad \qquad ; \qquad \qquad T = \begin{bmatrix} 0.85 & 0.1 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.25 & 0.15 & 0.6 \end{bmatrix}$$

$$P.T = P$$
 then: $\begin{bmatrix} x & y & z \end{bmatrix} \cdot \begin{bmatrix} 0.85 & 0.1 & 0.05 \\ 0.1 & 0.8 & 0.1 \\ 0.25 & 0.15 & 0.6 \end{bmatrix} = \begin{bmatrix} x & y & z \end{bmatrix}$

Or:
$$0.85x + 0.1y + 0.25z = x$$
 $\rightarrow 0.85x - x + 0.1y + 0.25z = 0$
 $0.1x + 0.8y + 0.15z = y$ $\rightarrow 0.1x + 0.8y - y + 0.25z = 0$
 $0.05x + 0.1y + 0.6z = z$ $\rightarrow 0.05x + 0.1y + 0.6z - z = 0$

Simplify the above equations by moving all variable to one side:

$$-0.15x + 0.1y + 0.25z = 0$$

$$0.1x - 0.2y + 0.15z = 0$$

$$0.05x + 0.1y - 0.4z = 0$$
and: $x + y + z = 1$

Multiply each equation by 100 to remove decimals, except the last equation:.

$$-0.15x + 0.1y + 0.25z = 0$$

$$0.1x - 0.2y + 0.15z = 0$$

$$0.05x + 0.1y - 0.4z = 0$$

$$x + y + z = 1$$

$$-15x + 10y + 25z = 0$$

$$10x - 20y + 15z = 0$$

$$5x + 10y - 40z = 0$$
and: $x + y + z = 1$

It makes it easier if you multiply the first 3 equations by 100 to remove the decimal:

	v	l			
_	X	у	Z		
	-15*	10	25	0	
	10	-20	15	0	
	5	10	-40	0	
	1	1	1	1	_
	-15	10	25	0	
	0	200*	-475	0	
	0	-200	475	0	
	0	-25	-40	-15	
	200	0	-650	0	
	0	200	-475	0	
	0	0	0	0	Remove the line with all zeros
	0	0	1325	200	_
	200	0	-650	0	
	0	200	-475	0	
	0	0	1325*	200	
	1325	0	0	650	•
	0	1325	0	475	
	0	0	1325	200	
	1	0	0	0.49	GM = 49%
	0	1	0	0.36	Ford = 36%
	0	0	1	0.15	Chrysler = 15%

Example 8: A marketing analysis shows that 63% of the consumers who currently drink Coke will purchase Coke the next time, and 12% of consumers who drink Pepsi will switch to Coke. Find the steady state vector.

Example 9: A an extensive survey of customers of three major cable companies (**A, B and C**) found the following:

Company A will keep 71% of its customers, 12% will move to **B** and the rest will move to **C**.

Company B will lose 32% of its customer to A and 34% to C.

Company C will keep 96% of its customers with half of the rest moving to A and half to B.

Find the steady state vector