

最优化理论 第五章: 无约束最优化方法

人工智能学院 智能感知与图像理解教育部重点实验室

无约束最优化方法

共轭方向法 共轭梯度法 FR共轭梯度法 算法总结

无约束最优化方法

一、共轭方向法引入动机

构成各种不同最优化方法,往往取决于如何从基本迭代公式 $X_{k+1} = X_k + t_k P_k$ 中确定搜索方向 P_k 。

最速下降法: 计算步骤简单,但 $P_k = -\nabla f(X_k)$ 导致搜索路线出现锯齿状,收敛速度慢。

Newton法和修正Newton法: $P_k = -[\nabla^2 f(X_k)]^{-1} \nabla f(X_k)$ 使得<mark>收敛速度快</mark>,但计算计算量大且要求Hesse矩阵正定,导致算法对初始点选择要求严格。

因此需要寻找一种好的算法,它的收敛速度介于最速下降法和牛顿法之间,对于正定二次函数只需迭代有限次就可达到极小点,收敛速度快同时计算简单的算法——**共轭方向法**。

一、共轭方向法引入动机

共轭方向法涉及共轭方向的概念和性质。共轭方向的概念是在研究正定二次

函数

$$f(\vec{x}) = \frac{1}{2}\vec{x}^T A \vec{x} + b^T \vec{x} + c \tag{5.13}$$

其中 $A \in \mathbb{R}^{n \times n}$ 是正定矩阵, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^1$ 。

任选取初始点 X_0 , 沿某个下降方向 P_0 作精确一维搜索得

$$X_1 = X_0 + t_0 P_0$$

由精确一维搜索的性质,可知

$$\left(\nabla f(X_1)\right)^T P_0 = 0$$

下一次迭代如果按最速下降法选择负梯度为搜索方向,将会发生锯齿现象。

一、共轭方向法引入动机

为了克服锯齿现象,假设能够选定下一次迭代的搜索方向直指极小点 X^* ,那么对于二元二次函数只需依次沿搜索方向 P_0 , P_1 进行两次精确一维搜索就可以求到极小点 X^* ,即

$$X^* = X_1 + \mathbf{t}_1 P_1$$

X*是f(x)的极小点,故X*是f(x)的驻点。对(5.13)函数求导数得

$$\nabla f(X) = AX + \boldsymbol{b}$$

一、共轭方向法引入动机

$$\nabla f(X^*) = AX^* + \boldsymbol{b}$$

$$= A(X_1 + \boldsymbol{t}_1 P_1) + \boldsymbol{b}$$

$$= (AX_1 + \boldsymbol{b}) + \boldsymbol{t}_1 A P_1$$

$$= \nabla f(X_1) + + \boldsymbol{t}_1 A P_1 = 0$$

$$P_0^T (\nabla f(X_1) + \boldsymbol{t}_1 A P_1) = 0$$

$$P_0^T \nabla f(X_1) + \boldsymbol{t}_1 P_0^T A P_1 = 0$$

$$\overrightarrow{\Pi} P_0^T \nabla f(X_1) = 0 \perp \boldsymbol{t}_1 \neq 0,$$

$$\square P_0^T A P_1 = 0$$

2次迭代要得到二元二次函数的极小点, P_1 必须满足的条件是:

$$(P_0)^T A P_1 = 0$$

搜索方向 P_0 , P_1 是A共轭的。

P₀是某个下降方向

二、共轭方向法基本原理

定义5.1

设 $A \in \mathbb{R}^{n \times n}$ 是对称正定矩阵, $P_1, P_2 \in \mathbb{R}^n$,如果 $P_1^T A P_2 = 0$,则称向量 P_1 和 P_2 是A共轭(或A正交)的。

如果对有限个向量 $P_1, P_2, ..., P_m$, 有

$$(P_i)^T A P_j = 0 \ (i \neq j, j = 1, 2, ..., m)$$

则称这个向量组是A共轭方向组(或A正交方向组),也称它们是一组A的共轭方向。

若 A=I, $P_i^T P_j=0$ ($i \neq j$),则 $P_i = P_j$ 是正交的。 共轭是正交的推广 共轭向量组是正交向量组的推广。

二、共轭方向法基本原理

定理5.1: 在n维空间中与n个线性无关的向量都正交的一定是零向量。

证明: 假设 $P_1,P_2,...,P_n \in R^n$ 线性无关,向量 $d \in R^n$ 与 $P_1,P_2,...,P_n$ 正交,证 d=0.

因为 $P_1,P_2,...,P_n$ 线性无关,所以 $P_1,P_2,...,P_n$ 可作为 R^n 中的一组基,故 d可由 $P_1,P_2,...,P_n$ 线性表示,即存在一组实数 $\alpha_1,\alpha_2,...,\alpha_n \in R, s.t.$

$$d = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

二、共轭方向法基本原理

定理**5.2**: 若 R^n 中的非零向量 $P_1, P_2, ..., P_m (m \le n)$ 是A共轭向量组,则这m个向量是线性无关的。

证明: 假设 $\alpha_1 P_1 + \alpha_2 P_2 + ... + \alpha_m P_m = 0$, 要证 $P_1, P_2, ..., P_m$ 线性无关, 只需证明 $\alpha_1 = \alpha_2 = ... = \alpha_m = 0$.

因为 $P_1, P_2, ..., P_m$ 是A共轭向量组,两边同乘 $(P_k)^T A, \forall k=1,...,m$,

$$0 = (P_k)^T A(\alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_m P_m)$$

$$= 0 + 0 + \dots + \alpha_k (P_k)^T A P_k + \dots + 0 \qquad (P_i)^T A P_j = 0 \ (i \neq j, j = 1, 2, \dots, m)$$

 $=\alpha_{k}\left(P_{k}\right)^{T}AP_{k},$

因为A正定, $p^k \neq 0$, 所以 $\left(P_k\right)^T A P_k > 0$, 故 $\alpha_k = 0$, $\forall k = 1,...,m$, 得证。

二、共轭方向法基本原理

定理5.3:

设n元函数 $f(x) = \frac{1}{2}X^TAX + b^TX + c$, $A = A^T$ 正定,又设n维非零向量组 $P_1, P_2, ..., P_n$ 是A共轭向量组,从任意点 X_1 出发,依次以该向量组为搜索方向进行精确一维搜索,则

- (1) $\nabla f(X_{k+1})$ 与 $P_1, P_2, ..., P_k (k = 1, 2, ..., n)$ 正交;
- (2) 最多n次迭代必达到二次函数f(x)的极小点。

二、共轭方向法基本原理

(1)
$$\nabla f(X_{k+1})$$
 与 $P_1, P_2, ..., P_k(k = 1, 2, ..., n)$ 正交;
证明: $f(X) = \frac{1}{2} X^T A X + b^T X + c$, 即 $\nabla f(X) = A X + b$
$$\nabla f(X_{k+1}) = A X_{k+1} + b = A(X_k + t_k P_k) + b = (A X_k + b) + t_k A P_k$$
$$= \nabla f(X_k) + t_k A P_k$$

 t_k 是按照精确一维搜索得到的,所以有 $\nabla f(X_{k+1})^T P_k = 0$

Fif
$$\nabla f(X_{k+1})^T P_i = 0, \quad i = 1, 2, ..., k-1.$$

$$\nabla f(X_{k+1}) = \nabla f(X_{k}) + t_{k} A P_{k}$$

$$= \nabla f(X_{k-1}) + t_{k-1} A P_{k-1} + t_{k} A P_{k} = ...$$

$$= \nabla f(X_{i+1}) + t_{i+1} A P_{i+1} + ... + t_{k-1} A P_{k-1} + t_{k} A P_{k}, i = 1, 2, ..., k - 1.$$

二、共轭方向法基本原理

故 $\nabla f(X_{k+1})$ 与 $P_1, P_2, ..., P_k(k=1,2,...,n)$ 正交。

 $P_1, P_2, ..., P_k$ 是A共轭向量组

二、共轭方向法基本原理

(2) 最多n次迭代必达到二次函数f(x)的极小点。

证明: 假设 $\nabla f(X_1), \nabla f(X_2), ..., \nabla f(X_n)$ 都不是 $\mathbf{0}$, 下证

$$\nabla f(X_{n+1}) = 0.$$

利用(1)的结果, $\nabla f(X_{n+1})$ 与A共轭向量组 $P_1, P_2, ..., P_k$ 都正交,由定理5.1可知,

$$\nabla f(x^{n+1}) = 0.$$

定理5.1: 在n维空间中与n个线性无关的向量都正交的一定是零向量。

二、共轭方向法基本原理

在下降迭代法中,若取下降方向是共轭方向,所得到的方法我们称为共轭方向法。

由定理5.3可知,若能找到一组A共轭向量,以这组共轭向量为下降方向进行搜索,则在有限步可得到正定二次函数的极小点,即共轭方向法具有二次收敛性。

定义5.2: 一个算法若能在有限步内求得正定二次函数的极小点,则称该算法具有二次收敛性(又称二次终止性)。

三、共轭方向法流程图

怎么选取共轭方向?

无约束最优化方法

一、共轭方向与共轭梯度法关系

共轭方向的选取有很大任意性,而一组不同的共轭方向就对应着不同的共轭方向法。作为一种迭代算法,我们自然希望共轭方向能在迭代过程中逐次生成。

下面先以正定二次函数为例,介绍一种生成共轭方向 的方法,再将这种方法推广到非二次函数上。这种方法中 每一个共轭向量都是依赖于迭代点处的负梯度而构造出来, 所以称为共轭梯度法,它是共轭方向法中的一种。

二、共轭梯度法

$$\diamondsuit f(\mathbf{X}) = \frac{1}{2} \mathbf{X}^{\mathsf{T}} A \mathbf{X} + b^{\mathsf{T}} \mathbf{X} + c$$
,A对称正定

(1) 从任取初始点 X_1 出发,沿负梯度方向进行精确一维搜索:

$$P_{1} = -\nabla f(X_{1})$$
 $X_{2} = X_{1} + t_{1}P_{1}$

(2) 若 $\nabla f(X_2) = 0$ 则停止,否则在 $-\nabla f(X_2)$ 和 P_1 形成的正交 锥中找一个向量 P_2 ,即令 $P_2 = -\nabla f(X_2) + \alpha_1 P_1$ 使得 $P_1 = P_2$ 共轭,即 $(P_2)^T A P_1 = 0$

$$\alpha_{1} = \frac{\nabla f(\mathbf{X}_{2})^{T} A P_{1}}{(P_{1})^{T} A P_{1}}$$

二、共轭梯度法

- (3) 在 X_2 处沿 P_2 方向进行精确一维搜索, $X_3 = X_2 + t_2 P_2$
- (4) 以此类推, X₄, X₅,....
- (5) 若 $\nabla f(X_{k+1}) = 0$,停止; 否则在 $-\nabla f(X_{k+1})$ 和 P_k 形成的正交 锥中找一个向量 P_{k+1} ,即令 $P_{k+1} = -\nabla f(X_{k+1}) + \alpha_k P_k$ 使得 $P_{k+1} = P_k$ 共轭,即 (P_{k+1}) $^T A P_k = 0$.

$$\alpha_{k} = \frac{\nabla f(\mathbf{X}_{k+1})^{T} A P_{k}}{(P_{k})^{T} A P_{k}}$$

二、共轭梯度法

这样便构造了一组向量 P_1, P_2, \dots, P_n ,相邻两个向量是共轭的。

$$P_{1} = -\nabla f(X_{1})$$

$$P_{k+1} = -\nabla f(X_{k+1}) + \alpha_{k} P_{k}, k = 1, 2, ..., n - 1,$$

$$\alpha_{k} = \frac{\nabla f(X_{k+1})^{T} A P_{k}}{(P_{k})^{T} A P_{k}}$$

实际上,这组向量 $P_1, P_2, ..., P_n$ 是一个A共轭向量组。 每一个搜索方向都依赖迭代点处的负梯度构造出来,对应 的算法称为共轭梯度法。

二、共轭梯度法

定理5.4: 设向量组 $P_1, P_2, ..., P_n$ 是由上述方法产生的向量组,向量 $g_1, g_2, ..., g_n$ 是由各点的梯度生成的向量组 $\left(g_k = \nabla f(\mathbf{X}_k)\right)$,则 $g_1, g_2, ..., g_n$ 是正交向量组,且 $P_1, P_2, ..., P_n$ 是**A共轭向量组**。

简单证明:
$$g_{k+1} = p_k, p_{k-1}, \dots, p_1$$
正交
$$p_k = g_k + \alpha_k p_{k-1}$$
$$g_{k+1}^T p_k = g_{k+1}^T g_k + \alpha_k g_{k+1}^T p_{k-1} = 0$$
$$\rightarrow g_{k+1}, g_k$$
正交

注:为保证方向的共轭性,初始方向取负梯度方向。

二、共轭梯度法

注: 初始方向为下降方向, 但不是负梯度方向

例 用共轭梯度法求下列问题的极值

$$f(\mathbf{x}) = x_1^2 + \frac{1}{2}x_2^2 + \frac{1}{2}x_3^2 , \quad \Box \Xi \Xi X_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad P_1 = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}.$$

解:第一次迭代:沿 P_1 方向进行精确一维搜索,得 $t_1 = 2/3$

$$X_2 = X_1 + t_1 P_1 = \left(\frac{1}{3}, -\frac{1}{3}, 1\right)^T, g_2 = \nabla f(X_2) = \left(\frac{2}{3}, -\frac{1}{3}, 1\right)^T,$$

$$\alpha_1 = \frac{g_2^T A P_1}{(P_1)^T A P_1} = -\left(\frac{2}{3}\right) / 6 = -\frac{1}{9},$$

$$P_2 = -g_2 + \alpha_1 P_1 = \left(-\frac{5}{9}, \frac{5}{9}, -1\right)^T.$$

二、共轭梯度法

第二次迭代: $沿 P_2$ 方向进行精确一维搜索, 得 $t_2 = 21/26$

$$X_3 = X_2 + t_2 P_2 = \left(-\frac{9}{78}, \frac{9}{78}, \frac{5}{26}\right)^T, g_3 = \left(-\frac{18}{78}, \frac{9}{78}, \frac{5}{26}\right)^T,$$

$$\alpha_2 = \frac{g_3^T A P_2}{(P_2)^T A P_2} = \frac{45}{676},$$

$$P_3 = -g_3 + \alpha_2 P_2 = \frac{1}{676} (131, -53, -175)^T.$$

容易验证, P_1 与 P_2 关于A共轭, P_2 与 P_3 也关于A共轭,但是 P_1 与 P_3 不共轭。因此, P_1 , P_2 与 P_3 不是A共轭向量组。

初始方向选择负梯度方向特别重要。

二、共轭梯度法

针对 $f(X) = \frac{1}{2}X^TAX + b^TX + c$, A对称正定,最多n次迭代达到极小点找到了一组共轭方向:

$$\begin{cases} P_{1} = -\nabla f(X_{1}) \\ P_{k+1} = -\nabla f(X_{k+1}) + \alpha_{k} P_{k}, k = 1, 2, ..., n - 1, \\ \alpha_{k} = \frac{\nabla f(X_{k+1})^{T} A P_{k}}{(P_{k})^{T} A P_{k}} \end{cases}$$

存在问题: 计算量、存储量都很大, 对任意目标函数,无法得到A

在正定二次函数的前提下,将 α_k 变形?

=、 α 、不同的五种共轭梯度法

(1) Daniel共轭梯度法
$$\alpha_k = \frac{\nabla f(x^{k+1})^T A p^k}{(p^k)^T A p^k} = \frac{(g_{k+1})^T A p^k}{(p^k)^T A p^k}$$
 (Daniel,1967)

(2) SW共轭梯度法
$$\alpha_k = \frac{(g_{k+1})^T (g_{k+1} - g_k)}{(p^k)^T (g_{k+1} - g_k)}$$
 (Sorenson – Wolfe, 1972)

$$\alpha_k = -\frac{(g_{k+1})^T g_{k+1}}{(p^k)^T g_k}$$
 (Dixon – Myers, 1972)

(4) FR共轭梯度法

(简洁,应用广泛)

$$\alpha_k = \frac{\|g_{k+1}\|^2}{\|g_k\|^2} \quad (Flecher - \text{Re}\,eves, 1964)$$

$$\alpha_k = \frac{(g_{k+1})^T (g_{k+1} - g_k)}{(g_k)^T g_k} \quad (Polyak - Polak - Ribiere, 1969)$$

对于正定二次函数,上面得到的5个计算公式是等价的。

无约束最优化方法

-、FR共轭梯度法

设
$$f(x) = \frac{1}{2}x^T Ax + bx + c, x_0$$
为初始点, $p_0 = -\nabla f(x_0)$ 为初始方向 求解 $t_0 = \min_t f(x_0 + tp_0)$
$$x_1 = x_0 + t_0 p_0, (有 p_0 = \frac{1}{t_0}(x_1 - x_0))$$
 令 $p_1 = -\nabla f(x_1) + \alpha_0 p_0$

目的: 求解 α_0 使得 $p_1^T A p_0 = 0$

一、 FR

FR共轭梯度法

注意
$$\nabla f(x) = Ax + b$$

$$\nabla f(x_0) = Ax_0 + b$$

$$\nabla f(x_1) = Ax_1 + b$$

$$\nabla f(x_1) - \nabla f(x_0) = A(x_1 - x_0)$$

要求
$$p_1^T A p_0 = 0$$

$$\rightarrow p_1^T A(\frac{1}{t_0}(x_1 - x_0)) = 0$$

$$\rightarrow \left(-\nabla f(x_1) - \alpha_0 \nabla f(x_0)\right)^T \left(\nabla f(x_1) - \nabla f(x_0)\right) = 0$$

$$\rightarrow \alpha_0 = \frac{\left\|\nabla f(x_1)\right\|^2}{\left\|\nabla f(x_0)\right\|^2}$$

$$\overline{f}p_0 = \frac{1}{t_0}(x_1 - x_0)$$

$$p_1 = -\nabla f(x_1) + \alpha_0 p_0$$

$$= -\nabla f(x_1) - \alpha_0 \nabla f(x_0)$$

二、FR共轭梯度法计算步骤

Step 1. 选定初始点 x^1 。

Step 2. 如果
$$\|g_1\| \le \varepsilon$$
,算法停止, $\chi^* = \chi^1$,否则转Step 3;

Step 3. 取
$$p^1 = -g_1, k=1;$$

Step 4. 精确一维搜索找最佳步长
$$\lambda_k$$
 , 令 $x^{k+1} = x^k + \lambda_k p^k$;

Step 5. 如果
$$\|g_{k+1}\| \le \varepsilon$$
,算法停止, $x^* = x^{k+1}$,否转Step 6;

Step 6. 如果
$$k=n$$
, 令 $x^1=x^{k+1}$, $p^1=-g_{k+1}$, 算法停止, $k=1$,转Step 4; 否则转步骤7;

否则转步骤7;
$$g_{k+1}\|^2$$
 Step 7. 计算 $\alpha_k = \frac{\|g_{k+1}\|^2}{\|g_k\|^2}$, $p^{k+1} = -g_{k+1} + \alpha_k p^k$, $k = k+1$,转 Step 4。

三、FR共轭梯度法流程图

Rⁿ中共轭方向最多有n个, n 步后构造的搜索方向不再是 共轭的, 会降低收敛速度,

因此**Step 6 重新开始:** x^{n+1}

作为新的x1

四、FR共轭梯度法举例

例用FR共轭梯度法 $f(\mathbf{x}) = x_1^2 + 2x_2^2 - 4x_1 - 2x_1x_2$ 的极小值,已知初始点为 $(1,1)^T$,迭代精度 $\varepsilon = 0.001$ 。

解: (1)第一次迭代:沿负梯度方向搜寻。

计算初始点处的梯度

$$g_{0} = \nabla f(x^{0}) = \begin{pmatrix} 2x_{1} - 2x_{2} - 4 \\ 4x_{2} - 2x_{1} \end{pmatrix} \Big|_{x=x^{0}} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$$

$$p^{0} = -g_{0} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

$$x^{0} + \lambda p^{0} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 + 4\lambda \\ 1 - 2\lambda \end{pmatrix}$$

四、FR共轭梯度法举例

例用FR共轭梯度法 $f(\mathbf{x}) = x_1^2 + 2x_2^2 - 4x_1 - 2x_1x_2$ 的极小值,已知初始点为 $(1,1)^T$,迭代精度 $\varepsilon = 0.001$ 。

精确一维搜索求最佳步长, $\phi(\lambda)=f(x^0+\lambda p^0)=f(1+4\lambda,1-2\lambda)=40\lambda^2-20\lambda-3$,

$$\Leftrightarrow 0 = \phi'(\lambda) = 80\lambda - 20,$$

得
$$\lambda_0 = 0.25$$

$$x^{1} = x^{0} + \lambda_{0} p^{0} = \begin{pmatrix} 1 + 4\lambda \\ 1 - 2\lambda \end{pmatrix} = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix}$$
$$g_{1} = \nabla f(x^{1}) = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

不满足精度,继续迭代:

四、FR共轭梯度法举例

例用FR共轭梯度法 $f(\mathbf{x}) = x_1^2 + 2x_2^2 - 4x_1 - 2x_1x_2$ 的极小值,已知初始点为 $(1,1)^T$,迭代精度 $\varepsilon = 0.001$ 。

(2) 第二次迭代:

$$g_{0} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}, \qquad g_{1} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \qquad p^{0} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}, \qquad x^{1} = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix},$$

$$\alpha_{0} = \frac{\|g_{1}\|^{2}}{\|g_{0}\|^{2}} = \frac{5}{20} = 0.25 \qquad p^{1} = -g_{1} + \alpha_{0} p^{0} = \begin{pmatrix} 2 \\ 1.5 \end{pmatrix},$$

$$x^{1} + \lambda p^{1} = \begin{pmatrix} 2 \\ 0.5 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 2 + 2\lambda \\ 0.5 + 1.5\lambda \end{pmatrix},$$

精确一维搜索求最佳步长, $\phi(\lambda)=f(x^1+\lambda p^1)=f(2+2\lambda,0.5+1.5\lambda)$

$$= (2+2\lambda)^2 + 2(0.5+1.5\lambda)^2 - 2(2+2\lambda)(0.5+1.5\lambda) - 4(2+2\lambda)$$

四、FR共轭梯度法举例

例 用FR共轭梯度法 $f(x) = x_1^2 + 2x_2^2 - 4x_1 - 2x_1x_2$ 的极小值,已知初始点为 $(1,1)^T$,迭代精度 $\varepsilon = 0.001$ 。

$$\phi(\lambda) = (2+2\lambda)^2 + 2(0.5+1.5\lambda)^2 - 2(2+2\lambda)(0.5+1.5\lambda) - 4(2+2\lambda)$$

$$\Leftrightarrow 0=\phi'(\lambda),$$

得
$$\lambda_1 = 1$$
,

$$x^{2}=x^{1}+\lambda_{1}p^{1}=\begin{pmatrix} 2+2\lambda\\ 0.5+1.5\lambda \end{pmatrix}=\begin{pmatrix} 4\\ 2 \end{pmatrix}, \qquad g_{2}=\nabla f(x^{2})=\begin{pmatrix} 0\\ 0 \end{pmatrix},$$

$$||g_2|| = 0 < \varepsilon$$

得到最优解:
$$x^* = x^2 = \binom{4}{2}$$
.

0.999996D+00

OUTPUT OF STEEPEST DESCENT FOR ROSENBROCK'S FUNCTION

Rosenbrock function 举例

ITERATION	FUNCTIONAL VALUE
1	0.800000D+01
2	0.812503D+00
3	0.451564D+00
4	0.262715D+00
5	0.184997D+00
6	0.133115D+00
7	0.101903D+00
8	0.788786D-01
9	0.629818D-01
10	0.506272D-01
11	0.414636D-01
12	0.341084D-01
13	0.284133D-01
14	0.237435D-01
15	0.200203D-01
16	0.169190D-01
17	0.143938D-01
18	0.122669D-01
19	0.105079D-01
20	0.901350D-02
180	0.268216D-10
181	0.237863D-10
182	0.210944D-10

RIABLE VALUES
-0.100000D+01
-0.500332D+00
-0.505562D-01
0.463002D-01
0.238476D+00
0.286628D+00
0.403629D+00
0.434408D+00
0.515845D+00
0.537735D+00
0.598561D+00
0.615022D+00
0.662288D+00
0.675226D+00
0.713055D+00
0.723433D+00
0.754365D+00
0.762839D+00
0.788518D+00
0.795530D+00
•
•
0.999988D+00
0.999989D+00

0.999990D+00

THE MINIMAL SOLUTION FOUND

F(X) = 0.210944D-10

X(1) = 0.999996D+00X(2) = 0.999990D+00

OUTPUT OF FLETCHER-REEVES FOR ROSENBROCK'S FUNCTION

(RESETTING $d_k = -\nabla f(x_k)$ AFTER EACH N ITERATIONS)

FUNCTIONAL VALUE	INDEPENDENT	VARIABLE VALUES
.800000D+01	100000D+01	100000D+01
.812503D+00	.500966D+00	499678D+00
.383289D+00	.390233D+00	.451686D-01
.227756D+00	.647871D+00	.976166D-01
.262354D-02	.967714D+00	.976233D+00
.193254D-03	.987238D+00	.969126D+00
.121901D-05	.999491D+00	.999963D+00
.847627D-08	.999915D+00	.999794D+00
.111635D-08	.999977D+00	
.148806D-09	.999989D+00	.999973D+00
.711720D-12	.100000D+01	
.468360D-14	.100000D+01	
.430046D-15	.100000D+01	.100000D+01
	.800000D+01 .812503D+00 .383289D+00 .227756D+00 .262354D-02 .193254D-03 .121901D-05 .847627D-08 .111635D-08 .148806D-09 .711720D-12 .468360D-14	.800000D+01100000D+01 .812503D+00 .500966D+00 .383289D+00 .390233D+00 .227756D+00 .647871D+00 .262354D-02 .967714D+00 .193254D-03 .987238D+00 .121901D-05 .999491D+00 .847627D-08 .999915D+00 .111635D-08 .999977D+00 .148806D-09 .999989D+00 .711720D-12 .100000D+01 .468360D-14 .100000D+01

THE MINIMAL SOLUTION FOUND

F(X)	=	.430046D-15
X(1) X(2)		.100000D+01

无约束最优化方法

算法总结

一、共轭梯度法

共轭梯度法对正定二次函数,具有二次收敛性;

对非二次函数,由于目标函数的Hesse矩阵不再是常数矩阵,因而产生的方向不再是共轭方向;

共轭梯度法在一定条件下也是收敛的,且收敛速度通常优于最速下降法,具有较高的求解效率。

算法总结

一、共轭梯度法

设f(x)存在连续一阶偏导数,且函数为凸函数,且水平集 $L = \{x | f(x) \le f(x^0)\}$ 有界,则由共轭梯度法得到的点列 $\{x^k\}$ 有如下性质:

- $(1)\{f(x^k)\}$ 为严格单调下降序列,且 $\lim_{k\to\infty}f(x^k)$ 存在;
- (2) $\{x^k\}$ 的任意聚点 x^* 都是 f(x) 的最优解。

共轭梯度法在无约束优化方法中占有重要的地位,是目前最常用的方法之一。

二、共轭梯度法的特点

- (1) 对凸函数全局收敛(下降算法);
- (2) 计算公式简单,不用求Hesse矩阵或者逆矩阵,计算量小,存储量小,每步迭代只需存储若干向量,适用于大规模问题;
- (3) 具有二次收敛性; (对于正定二次函数,至多n次迭代可达最优解)
- (4) Crowder和Wolfe证明,共轭梯度法的收敛速率不坏于最速下降法。如果初始方向不用负梯度方向,则其收敛速率是线性收敛的;
- (5) 共轭梯度法是目前求解无约束优化问题最常用的方法之一。
- 注:不同的 α_k 公式,对于正定二次函数是等价的,对非正定二次函数,有不同的效果,经验上PPR 效果较好。

第四次作业:

习题五 (P119)

第1, 2, 3, 4, 6题

Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education

THE END

Thanks for your participation!