"Experimental Data Processing"

Assignment 7
Tracking in conditions
of correlated state and measurement noise

Tatiana Podladchikova
Term 1, September-October 2020
t.podladchikova@skoltech.ru

Standard Kalman filter provides optimal estimate

State noise and measurement noise are uncorrelated and unbiased

In practice these assumptions are often not true

Analysis and modifications of Kalman filter

Correlated state noise

In practice correlated noise is often presented as a Gauss-Markov first-order process

Random acceleration
$$a_i = e^{-\lambda T}a_{i-1} + \zeta_i$$

Uncorrelated noise with variance
$$\sigma_{\zeta}^2 = \sigma_a^2 (1 - e^{-2\lambda T})$$

Value that is inverse to correlation interval

$$\lambda = 1000$$
 a $_i$ - uncorrelated noise $\lambda = 0.1$ α_i - correlated noise

$$\sigma_a^2$$
 Variance of acceleration

Moving object which trajectory is disturbed by correlated random acceleration

Moving object which trajectory is disturbed by correlated random acceleration

$$X_i = \begin{vmatrix} x_i \\ V_i \\ a_i \end{vmatrix}$$
 State Extension of state vector

Beside estimation of coordinate x_i and velocity V_i , Kalman filter will also estimate the dynamics of correlated acceleration a_i

State space model

