위 꼬리가 긴 양봉이 자주 발생한다.

```
import FinanceDataReader as fdr
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')

pd.options.display.float_format = '{:,.3f}'.format
```

위 꼬리는 종가보다 고가가 더 높이 위치해 있는 양봉입니다. 따라서 고가를 종가로 나눈 값이 1 보다 상당히 크면 위꼬리 양봉이라고 할 수 있습니다. 양봉의 조건은 종가가 시가보다 큰 것입니다. 이 것 을 데이터로 표현합니다.

```
mdl_data = pd.read_pickle('mdl_data.pkl')
mdl_data.head().style.set_table_attributes('style="font-size: 12px"')
```

	open	high	low	close	volume	change	code	name	kosdaq_return	return	win_market	close_r1	close_r2	close_r3	close_r4	close_r5	max_close
2021- 01-05	2270	2285	2200	2250	410263	-0.004425	060310	3S	1.008326	0.995575	0	1.017778	1.017778	0.997778	0.966667	0.971111	1.017778
2021- 01-06	2225	2310	2215	2290	570349	0.017778	060310	3S	0.995567	1.017778	1	1.000000	0.980349	0.949782	0.954148	0.949782	1.000000
2021- 01-07	2290	2340	2240	2290	519777	0.000000	060310	3S	1.007612	1.000000	0	0.980349	0.949782	0.954148	0.949782	0.958515	0.980349
2021- 01-08	2300	2315	2225	2245	462568	-0.019651	060310	3S	0.998918	0.980349	0	0.968820	0.973274	0.968820	0.977728	0.973274	0.977728
2021- 01-11	2230	2275	2130	2175	409057	-0.031180	060310	3S	0.988702	0.968820	0	1.004598	1.000000	1.009195	1.004598	1.002299	1.009195

```
kosdaq_list = pd.read_pickle('kosdaq_list.pkl')
data_h3 = pd.DataFrame()
for code in kosdaq_list['code']:
    data = mdl_data[mdl_data['code']==code].sort_index().copy()
    data['positive_candle'] = (data['close'] > data['open']).astype(int) # 양봉
    data['high/close'] = (data['positive_candle']==1)*(data['high']/data['close'] >
1.1).astype(int) # 양봉이면서 고가가 종가보다 높게 위치 10% 이상 높은 경우
    data['num_high/close'] = data['high/close'].rolling(20).sum()
    data['max_close'] =
data[['close_r1','close_r2','close_r3','close_r4','close_r5']].max(axis=1) # 5 영업일 종
가 수익율 중 최고 값
   data.dropna(subset=
['num_high/close','close_r1','close_r2','close_r3','close_r4','close_r5'], inplace=True)
# missing 이 있는 행은 제거
    data_h3 = pd.concat([data, data_h3], axis=0)
data_h3.to_pickle('data_h3.pkl')
```

윗 꼬리가 긴 양봉이 많이 발생할 수 록 수익율에 좋은 영향을 주는 것으로 분석이 되었습니다.

```
data_h3 = pd.read_pickle('data_h3.pkl')
print(data_h3.groupby('num_high/close')['max_close'].agg(['count','mean']))
data_h3.groupby('num_high/close')['max_close'].mean().plot(kind='bar', ylim=(0.9,1.2)) #
막대그래프로 표현
```

```
<AxesSubplot:xlabel='num_high/close'>
```


윗 꼬리가 긴 양봉도 궁금하지만, 장대양봉은 어떨지도 궁금합니다. 이렇게 가설을 검증하는 과정에서 새로운 가설을 테스트하기도 합니다. 장대양봉이 과거 60일 동안 몇 번 발생했는지 카운트해보고, 장대양봉의 갯 수와 수익율 사이에 상관성이 있는 지 함 보겠습니다.

```
kosdaq_list = pd.read_pickle('kosdaq_list.pkl')
data_h3 = pd.DataFrame()
for code in kosdaq_list['code']:
    data = mdl_data[mdl_data['code']==code].sort_index().copy()
    data['positive_candle'] = (data['close'] > data['open']).astype(int) # 양봉
    data['long_candle'] = (data['positive_candle']==1)*(data['high']==data['close'])*\
    (data['low']==data['open'])*(data['close']/data['open'] > 1.2).astype(int) # 장대 양
봉을 데이터로 표현
    data['num_long'] = data['long_candle'].rolling(60).sum() # 지난 20 일 동안 장대양봉의
갯 수
    data['max_close'] =
data[['close_r1','close_r2','close_r3','close_r4','close_r5']].max(axis=1) # 5 영업일 종
가 수익율 중 최고 값
    data.dropna(subset=
['num_long','close_r1','close_r2','close_r3','close_r4','close_r5'], inplace=True) #
missing 이 있는 행은 제거
    data_h3 = pd.concat([data, data_h3], axis=0)
data_h3.to_pickle('data_h3.pkl')
```

과거 60일 동안 장대양봉이 2 번 발생한 경우 좋은 수익율을 보여주고 있습니다.

```
data_h3 = pd.read_pickle('data_h3.pkl')
print(data_h3.groupby('num_long')['max_close'].agg(['count','mean']))
data_h3.groupby('num_long')['max_close'].mean().plot(kind='bar', ylim=(0.9,1.1))
```

```
count mean
num_long
0.000 337432 1.031
1.000 5394 1.047
2.000 88 1.056
```

```
<AxesSubplot:xlabel='num_long'>
```


By KHS © Copyright 2022.