Année universitaire 2021/2022 Filières SMP(S4), SMC(S4) Prof. : Said Ouannasser

Examen, Session Ordinaire (Durée: 1h 30 min) Module 24: Mécanique Quantique

Exercice 1 (10 points)

On réalise une expérience d'effet photoélectrique en utilisant une cellule photoélectrique d'argent dont l'énergie d'extraction est W = 4,30 eV. Ce dispositif permet d'éclairer cette cellule par des radiations lumineuses afin de produire un courant photoélectron (I_{ph}).

- 1. Donner le schéma du montage permettant de réaliser une expérience d'effet photoélectrique.
- **2.** En fonction de la fréquence ν de la radiation lumineuse, le photo-courant (I_{ph}) peut avoir l'allure suivante:

Expliquer brièvement cette courbe puis calculer la fréquence v_0 de la cellule d'argent.

3. Les longueurs d'ondes des radiations utilisées dans cette expérience sont regroupées dans le tableau suivant:

λ (nm)	100	200	300	400
--------	-----	-----	-----	-----

Calculer les fréquences ν des différents rayonnements utilisés (Présenter les résultats sous forme d'un tableau). Parmi les quatre longueurs d'ondes utilisées, quelles sont celles susceptibles de satisfaire l'effet photoélectrique?

4. Après avoir écrire l'équation d'Einstein pour la conservation de l'énergie, déterminer l'expression de la vitesse v des photoélectrons en fonction de v, v_0 , la constante de Planck h et la masse m de l'électron. Calculer v pour les radiations qui sont susceptibles de produire l'effet photoélectrique.

On donne: $m = 9.1.10^{-31} \text{ kg}$; $c = 3.10^8 \text{ m.s}^{-1}$; $h = 6.62.10^{-34} \text{ J.s}$; $1 \text{ eV} = 1.6.10^{-19} \text{ J}$

Exercice 2 (10 points)

Une particule de masse m et d'énergie E est animée d'un mouvement, dans un espace à une dimension, suivant la direction x (x \rangle 0). Cette particule est soumise à un potentiel de type coulombien d'expression:

$$V(x) = -\frac{A}{x}$$

où A est une constante positive.

- 1. Donner l'expression de l'opérateur hamiltonien H et écrire l'équation de Schrödinger des états stationnaires $\varphi(x)$ de la particule.
- 2. Cette équation différentielle admet une solution, appartenant à l'espace des fonctions d'onde, de la forme:

$$\varphi(x) = Cx \exp\left(-\frac{x}{a}\right)$$

où C et a sont des constantes.

Déterminer la constante a et l'énergie E de la particule en fonction de m, A et \hbar .

- **3.** Ecrire la relation de normalisation de la fonction d'onde $\varphi(x)$ puis établir l'expression de la constante C.
- **4.** Donner l'expression de la densité de probabilité de présence D(x) de la particule. Montrer que D(x) présente un maximum pour une valeur de x que l'on calculera en fonction de a.
- 5. Représenter l'allure de la densité de probabilité de présence D(x) en fonction de x.