

# Project II: Data Mangling

## **Table of Contents**

- 1. Introduction
- 2. Problem Statement
- 3. Output

#### 1. Introduction

This assignment will help you to consolidate the concepts learnt in the session.

#### 2. Problem Statement

```
import pandas as pd import

numpy as np import

matplotlib.pyplot as plt

%matplotlib inline

df = pd.read_csv('https://raw.githubusercontent.com/jackiekazil/data-
wrangling/master/dat a/chp3/data-text.csv') df.head(2)

df1 = pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/master/d

ata/berlin weather oldest.csv') df1.head(2)
```

1. Get the Metadata from the above files.

#### **Expected Output:**

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4656 entries, 0 to 4655
Data columns (total 12 columns):
Indicator
                        4656 non-null object
PUBLISH STATES
                        4656 non-null object
Year
                        4656 non-null int64
WHO region
                        4656 non-null object
World Bank income group 4656 non-null object
                        4656 non-null object
Country
Sex
                         4656 non-null object
Display Value
                        4656 non-null int64
Numeric
                        4656 non-null float64
Low
                         0 non-null float64
High
                         0 non-null float64
                          0 non-null float64
Comments
```

dtypes: float64(4), int64(2), object(6)

memory usage: 436.6+ KB

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 117208 entries, 0 to 117207
Data columns (total 21 columns):
               117208 non-null object
STATION
STATION NAME
               117208 non-null object
DATE
               117208 non-null int64
PRCP
              117208 non-null int64
               117208 non-null int64
SNWD
              117208 non-null int64
SNOW
              117208 non-null int64
XAMT
TMIN
              117208 non-null int64
              117208 non-null int64
WDFG
              117208 non-null int64
PGTM
              117208 non-null int64
WSFG
WT09
              117208 non-null int64
WT07
              117208 non-null int64
WT01
              117208 non-null int64
WT06
               117208 non-null int64
WT05
              117208 non-null int64
               117208 non-null int64
WT04
               117208 non-null int64
WT16
               117208 non-null int64
WT08
WT18
               117208 non-null int64
               117208 non-null int64
WT03
dtypes: int64(19), object(2)
memory usage: 18.8+ MB
```

2. Get the row names from the above files.

#### **Expected Output:**

```
array([ 0, 1, 2, ..., 4653, 4654, 4655], dtype=int64)

array([ 0, 1, 2, ..., 117205, 117206, 117207], dtype=int64)
```

3. Change the column name from any of the above file.

#### **Expected Output:**

|   | Indicator_id                     | PUBLISH<br>STATES | Year | WHO region | World Bank income group | Country | Sex           | Display<br>Value | Numeric | Low | High | Comments |
|---|----------------------------------|-------------------|------|------------|-------------------------|---------|---------------|------------------|---------|-----|------|----------|
| 0 | Life expectancy at birth (years) | Published         | 1990 | Europe     | High-income             | Andorra | Both<br>sexes | 77               | 77.0    | NaN | NaN  | NaN      |
| 1 | Life expectancy at birth (years) | Published         | 2000 | Europe     | High-income             | Andorra | Both<br>sexes | 80               | 80.0    | NaN | NaN  | NaN      |

4. Change the column name from any of the above file and store the changes made permanently.

## **Expected Output:**

| 6 8 | Indicator_id                     | PUBLISH<br>STATES | Year | WHO<br>region | World Bank income group | Country | Sex           | Display<br>Value | Numeric | Low | High | Comments |
|-----|----------------------------------|-------------------|------|---------------|-------------------------|---------|---------------|------------------|---------|-----|------|----------|
| 0   | Life expectancy at birth (years) | Published         | 1990 | Europe        | High-income             | Andorra | Both<br>sexes | 77               | 77.0    | NaN | NaN  | NaN      |
| 1   | Life expectancy at birth (years) | Published         | 2000 | Europe        | High-income             | Andorra | Both<br>sexes | 80               | 80.0    | NaN | NaN  | NaN      |

5. Change the names of multiple columns.

## **Expected Output:**

| 8 3 | Indicator_id                     | Publication<br>Status | Year | WHO<br>Region | World Bank income group | Country | Sex           | Display<br>Value | Numeric | Low | High | Comments |
|-----|----------------------------------|-----------------------|------|---------------|-------------------------|---------|---------------|------------------|---------|-----|------|----------|
| 0   | Life expectancy at birth (years) | Published             | 1990 | Europe        | High-income             | Andorra | Both sexes    | 77               | 77.0    | NaN | NaN  | NaN      |
| 1   | Life expectancy at birth (years) | Published             | 2000 | Europe        | High-income             | Andorra | Both<br>sexes | 80               | 80.0    | NaN | NaN  | NaN      |

6. Arrange values of a particular column in ascending order.

## **Expected Output:**

|      | Indicator_id                      | Publication<br>Status | Year | WHO<br>Region | World Bank<br>income group | Country                | Sex           | Display<br>Value | Numeric | Low | High | Comments |
|------|-----------------------------------|-----------------------|------|---------------|----------------------------|------------------------|---------------|------------------|---------|-----|------|----------|
| 0    | Life expectancy at birth (years)  | Published             | 1990 | Europe        | High-income                | Andorra                | Both<br>sexes | 77               | 77.0    | NaN | NaN  | NaN      |
| 1270 | Life expectancy at birth (years)  | Published             | 1990 | Europe        | High-income                | Germany                | Male          | 72               | 72.0    | NaN | NaN  | NaN      |
| 3193 | Life expectancy at birth (years)  | Published             | 1990 | Europe        | Lower-middle-<br>income    | Republic of<br>Moldova | Male          | 65               | 65.0    | NaN | NaN  | NaN      |
| 3194 | Life expectancy at birth (years)  | Published             | 1990 | Europe        | Lower-middle-<br>income    | Republic of<br>Moldova | Both<br>sexes | 68               | 68.0    | NaN | NaN  | NaN      |
| 3197 | Life expectancy at age 60 (years) | Published             | 1990 | Europe        | Lower-middle-<br>income    | Republic of<br>Moldova | Male          | 15               | 15.0    | NaN | NaN  | NaN      |

7. Arrange multiple column values in ascending order.

## **Expected Output:**

|   | Indicator_id                      | Country | Year | WHO Region | Publication Status |
|---|-----------------------------------|---------|------|------------|--------------------|
| 0 | Life expectancy at birth (years)  | Andorra | 1990 | Europe     | Published          |
| 1 | Life expectancy at birth (years)  | Andorra | 2000 | Europe     | Published          |
| 2 | Life expectancy at age 60 (years) | Andorra | 2012 | Europe     | Published          |

#### 8. Make **country** as the first column of the dataframe. **Expected Output:**

|   | Country                 | Indicator_id                      | Publication<br>Status | Year | WHO Region               | World Bank<br>income group | Sex           | Display<br>Value | Numeric | Low | High | Comments |
|---|-------------------------|-----------------------------------|-----------------------|------|--------------------------|----------------------------|---------------|------------------|---------|-----|------|----------|
| 0 | Andorra                 | Life expectancy at birth (years)  | Published             | 1990 | Europe                   | High-income                | Both<br>sexes | 77               | 77.0    | NaN | NaN  | NaN      |
| 1 | Andorra                 | Life expectancy at birth (years)  | Published             | 2000 | Europe                   | High-income                | Both<br>sexes | 80               | 80.0    | NaN | NaN  | NaN      |
| 2 | Andorra                 | Life expectancy at age 60 (years) | Published             | 2012 | Europe                   | High-income                | Female        | 28               | 28.0    | NaN | NaN  | NaN      |
| 3 | Andorra                 | Life expectancy at age 60 (years) | Published             | 2000 | Europe                   | High-income                | Both<br>sexes | 23               | 23.0    | NaN | NaN  | NaN      |
| 4 | United Arab<br>Emirates | Life expectancy at birth (years)  | Published             | 2012 | Eastern<br>Mediterranean | High-income                | Female        | 78               | 78.0    | NaN | NaN  | NaN      |

#### 9. Get the column array using a variable **Expected Output:**

array(['Europe', 'Europe', 'Europe', ..., 'Africa', 'Africa', 'Africa'], dtype=object)

#### 10. Get the subset rows 11, 24, 37 **Expected Output:**

|    | Indicator_id                         | Publication<br>Status | Year | WHO<br>Region      | World Bank income group | Country              | Sex    | Display<br>Value | Numeric | Low | High | Comments |
|----|--------------------------------------|-----------------------|------|--------------------|-------------------------|----------------------|--------|------------------|---------|-----|------|----------|
| 11 | Life expectancy at birth (years)     | Published             | 2012 | Europe             | High-income             | Austria              | Female | 83               | 83.0    | NaN | NaN  | NaN      |
| 24 | Life expectancy at age 60 (years)    | Published             | 2012 | Western<br>Pacific | High-income             | Brunei<br>Darussalam | Female | 21               | 21.0    | NaN | NaN  | NaN      |
| 37 | Life expectancy at age<br>60 (years) | Published             | 2012 | Europe             | High-income             | Cyprus               | Female | 26               | 26.0    | NaN | NaN  | NaN      |

#### 11. Get the subset rows excluding 5, 12, 23, and 56 Expected Output:

|   | Indicator_id                      | Publication<br>Status | Year | WHO Region               | World Bank income group | Country                 | Sex           | Display<br>Value | Numeric | Low | High | Comments |
|---|-----------------------------------|-----------------------|------|--------------------------|-------------------------|-------------------------|---------------|------------------|---------|-----|------|----------|
| 0 | Life expectancy at birth (years)  | Published             | 1990 | Europe                   | High-income             | Andorra                 | Both<br>sexes | 77               | 77.0    | NaN | NaN  | NaN      |
| 1 | Life expectancy at birth (years)  | Published             | 2000 | Europe                   | High-income             | Andorra                 | Both<br>sexes | 80               | 80.0    | NaN | NaN  | NaN      |
| 2 | Life expectancy at age 60 (years) | Published             | 2012 | Europe                   | High-income             | Andorra                 | Female        | 28               | 28.0    | NaN | NaN  | NaN      |
| 3 | Life expectancy at age 60 (years) | Published             | 2000 | Europe                   | High-income             | Andorra                 | Both<br>sexes | 23               | 23.0    | NaN | NaN  | NaN      |
| 4 | Life expectancy at birth (years)  | Published             | 2012 | Eastern<br>Mediterranean | High-income             | United Arab<br>Emirates | Female        | 78               | 78.0    | NaN | NaN  | NaN      |

#### **Load datasets from CSV**

users =

```
pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data
/ users.csv'_)

sessions =
pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data
/ sessions.csv'_)

products =
pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data
/ products.csv'_)

transactions =
pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data
/ transactions.csv') users.head() sessions.head() transactions.head()
```

12. Join users to transactions, keeping all rows from transactions and only matching rows from users (left join) **Expected Output:** 

|   | TransactionID | TransactionDate | UserID | ProductID | Quantity | User     | Gender | Registered | Cancelled  |
|---|---------------|-----------------|--------|-----------|----------|----------|--------|------------|------------|
| 0 | 1             | 2010-08-21      | 7      | 2         | 1        | NaN      | NaN    | NaT        | NaT        |
| 1 | 2             | 2011-05-26      | 3      | 4         | 1        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 2 | 3             | 2011-06-16      | 3      | 3         | 1        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 3 | 4             | 2012-08-26      | 1      | 2         | 3        | Charles  | male   | 2012-12-21 | NaT        |
| 4 | 5             | 2013-06-06      | 2      | 4         | 1        | Pedro    | male   | 2010-08-01 | 2010-08-08 |
| 5 | 6             | 2013-12-23      | 2      | 5         | 6        | Pedro    | male   | 2010-08-01 | 2010-08-08 |
| 6 | 7             | 2013-12-30      | 3      | 4         | 1        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 7 | 8             | 2014-04-24      | NaN    | 2         | 3        | NaN      | NaN    | NaT        | NaT        |
| 8 | 9             | 2015-04-24      | 7      | 4         | 3        | NaN      | NaN    | NaT        | NaT        |
| 9 | 10            | 2016-05-08      | 3      | 4         | 4        | Caroline | female | 2012-10-23 | 2016-06-07 |

13. Which transactions have a UserID not in users?

#### **Expected Output:**

|   | TransactionID | TransactionDate | UserID | ProductID | Quantity |
|---|---------------|-----------------|--------|-----------|----------|
| 0 | 1             | 2010-08-21      | 7.0    | 2         | 1        |
| 7 | 8             | 2014-04-24      | NaN    | 2         | 3        |
| 8 | 9             | 2015-04-24      | 7.0    | 4         | 3        |

14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join) **Expected Output:** 

|   | TransactionID | TransactionDate | UserID | ProductID | Quantity | User     | Gender | Registered | Cancelled  |
|---|---------------|-----------------|--------|-----------|----------|----------|--------|------------|------------|
| 0 | 2             | 2011-05-26      | 3      | 4         | 1        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 1 | 3             | 2011-06-16      | 3      | 3         | 1        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 2 | 7             | 2013-12-30      | 3      | 4         | 1        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 3 | 10            | 2016-05-08      | 3      | 4         | 4        | Caroline | female | 2012-10-23 | 2016-06-07 |
| 4 | 4             | 2012-08-26      | 1      | 2         | 3        | Charles  | male   | 2012-12-21 | NaT        |
| 5 | 5             | 2013-06-06      | 2      | 4         | 1        | Pedro    | male   | 2010-08-01 | 2010-08-08 |
| 6 | 6             | 2013-12-23      | 2      | 5         | 6        | Pedro    | male   | 2010-08-01 | 2010-08-08 |

15. Join users to transactions, displaying all matching rows AND all non-matching rows (full outer join)

## **Expected Output:**

|    | TransactionID | TransactionDate | UserID | ProductID | Quantity | User     | Gender | Registered | Cancelled  |
|----|---------------|-----------------|--------|-----------|----------|----------|--------|------------|------------|
| 0  | 1.0           | 2010-08-21      | 7.0    | 2.0       | 1.0      | NaN      | NaN    | NaT        | NaT        |
| 1  | 9.0           | 2015-04-24      | 7.0    | 4.0       | 3.0      | NaN      | NaN    | NaT        | NaT        |
| 2  | 2.0           | 2011-05-26      | 3.0    | 4.0       | 1.0      | Caroline | female | 2012-10-23 | 2016-06-07 |
| 3  | 3.0           | 2011-06-16      | 3.0    | 3.0       | 1.0      | Caroline | female | 2012-10-23 | 2016-06-07 |
| 4  | 7.0           | 2013-12-30      | 3.0    | 4.0       | 1.0      | Caroline | female | 2012-10-23 | 2016-06-07 |
| 5  | 10.0          | 2016-05-08      | 3.0    | 4.0       | 4.0      | Caroline | female | 2012-10-23 | 2016-06-07 |
| 6  | 4.0           | 2012-08-26      | 1.0    | 2.0       | 3.0      | Charles  | male   | 2012-12-21 | NaT        |
| 7  | 5.0           | 2013-06-06      | 2.0    | 4.0       | 1.0      | Pedro    | male   | 2010-08-01 | 2010-08-08 |
| 8  | 6.0           | 2013-12-23      | 2.0    | 5.0       | 6.0      | Pedro    | male   | 2010-08-01 | 2010-08-08 |
| 9  | 8.0           | 2014-04-24      | NaN    | 2.0       | 3.0      | NaN      | NaN    | NaT        | NaT        |
| 10 | NaN           | NaT             | 4.0    | NaN       | NaN      | Brielle  | female | 2013-07-17 | NaT        |
| 11 | NaN           | NaT             | 5.0    | NaN       | NaN      | Benjamin | male   | 2010-11-25 | NaT        |

16. Determine which sessions occurred on the same day each user registered ExpectedOutput:

|   | UserID | User    | Gender | Registered | Cancelled  | SessionID | SessionDate |  |
|---|--------|---------|--------|------------|------------|-----------|-------------|--|
| 0 | 2      | Pedro   | male   | 2010-08-01 | 2010-08-08 | 2         | 2010-08-01  |  |
| 1 | 4      | Brielle | female | 2013-07-17 | NaN        | 9         | 2013-07-17  |  |

17. Build a dataset with every possible (UserID, ProductID) pair (cross join) **Expected**Output:

|    | UserID | ProductID |
|----|--------|-----------|
| 0  | 1      | 1         |
| 1  | ۹.     | 2         |
| 2  | 1      | 3         |
| 3  | 1      | 4         |
| 4  | 1      | 5         |
| 5  | 2      | 1         |
| 6  | 2      | 2         |
| 7  | 2      | 3         |
| 8  | 2      | 4         |
| 9  | 2      | 5         |
| 10 | 3      | 1         |
| 11 | 3      | 2         |
| 12 | 3      | 3         |

18. Determine how much quantity of each product was purchased by each user **Expected** 

## Output:

|    | UserID | ProductID | Quantity |
|----|--------|-----------|----------|
| 0  | 1      | 1         | 0.0      |
| 1  | 1      | 2         | 3.0      |
| 2  | 1      | 3         | 0.0      |
| 3  | 1      | 4         | 0.0      |
| 4  | 1      | 5         | 0.0      |
| 5  | 2      | 1         | 0.0      |
| 6  | 2      | 2         | 0.0      |
| 7  | 2      | 3         | 0.0      |
| 8  | 2      | 4         | 1.0      |
| 9  | 2      | 5         | 6.0      |
| 10 | 3      | 1         | 0.0      |
| 11 | 3      | 2         | 0.0      |
| 12 | 3      | 3         | 1.0      |
| 13 | 3      | 4         | 6.0      |
| 14 | 3      | 5         | 0.0      |

19. For each user, get each possible pair of pair transactions (TransactionID1, TransacationID2)

## **Expected Output:**

|    | TransactionID_x | TransactionDate_x | UserID | ProductID_x | Quantity_x | TransactionID_y | TransactionDate_y | ProductID_y | Quantity_y |
|----|-----------------|-------------------|--------|-------------|------------|-----------------|-------------------|-------------|------------|
| 0  | 1               | 2010-08-21        | 7.0    | 2           | 1          | 1               | 2010-08-21        | 2           | 1          |
| 1  | 1               | 2010-08-21        | 7.0    | 2           | 1          | 9               | 2015-04-24        | 4           | 3          |
| 2  | 9               | 2015-04-24        | 7.0    | 4           | 3          | 1               | 2010-08-21        | 2           | 1          |
| 3  | 9               | 2015-04-24        | 7.0    | 4           | 3          | 9               | 2015-04-24        | 4           | 3          |
| 4  | 2               | 2011-05-26        | 3.0    | 4           | 1          | 2               | 2011-05-26        | 4           | 1          |
| 5  | 2               | 2011-05-26        | 3.0    | 4           | 1          | 3               | 2011-06-16        | 3           | 1          |
| 6  | 2               | 2011-05-26        | 3.0    | 4           | 1          | 7               | 2013-12-30        | 4           | 1          |
| 7  | 2               | 2011-05-26        | 3.0    | 4           | 1          | 10              | 2016-05-08        | 4           | 4          |
| 8  | 3               | 2011-06-16        | 3.0    | 3           | 1          | 2               | 2011-05-26        | 4           | 1,         |
| 9  | 3               | 2011-06-16        | 3.0    | 3           | 1          | 3               | 2011-06-16        | 3           | 1          |
| 10 | 3               | 2011-06-16        | 3.0    | 3           | 1          | 7               | 2013-12-30        | 4           | 1          |
| 11 | 3               | 2011-06-16        | 3.0    | 3           | 1          | 10              | 2016-05-08        | 4           | 4          |
| 12 | 7               | 2013-12-30        | 3.0    | 4           | 1          | 2               | 2011-05-26        | 4           | 1          |
| 13 | 7               | 2013-12-30        | 3.0    | 4           | 1          | 3               | 2011-06-16        | 3           | 1          |
| 14 | 7               | 2013-12-30        | 3.0    | 4           | 1          | 7               | 2013-12-30        | 4           | 1          |

20. Join each user to his/her first occuring transaction in the transactions table **Expected** 

#### **Output:**

|   | UserID | User     | Gender | Registered | Cancelled  | TransactionID | TransactionDate | ProductID | Quantity |
|---|--------|----------|--------|------------|------------|---------------|-----------------|-----------|----------|
| 0 | 1      | Charles  | male   | 2012-12-21 | NaT        | 4.0           | 2012-08-26      | 2.0       | 3.0      |
| 1 | 2      | Pedro    | male   | 2010-08-01 | 2010-08-08 | 5.0           | 2013-06-06      | 4.0       | 1.0      |
| 2 | 3      | Caroline | female | 2012-10-23 | 2016-06-07 | 2.0           | 2011-05-26      | 4.0       | 1.0      |
| 3 | 4      | Brielle  | female | 2013-07-17 | NaT        | NaN           | NaT             | NaN       | NaN      |
| 4 | 5      | Benjamin | male   | 2010-11-25 | NaT        | NaN           | NaT             | NaN       | NaN      |

21. Test to see if we can drop columns

#### **Code with Output:**

my\_columns = list(data.columns) my\_columns

['UserID',

'User',

'Gender',

'Registered',

'Cancelled',

'TransactionID',

'TransactionDate',

```
'ProductID', 'Quantity'] list(data.dropna(thresh=int(data.shape[0] * .9), axis=1).columns)
       #set threshold to drop NAs
       ['UserID', 'User', 'Gender', 'Registered'] missing_info
       = list(data.columns[data.isnull().any()]) missing_info
       ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
       //for col in missing_info:
num_missing = data[data[col].isnull() == True].shape[0]
                                                       print('number
missing for column {}: {}'.format(col, num missing)) Output: Count of
missing data
       number missing for column Cancelled: 3 number
       missing for column TransactionID: 2 number
       missing for column TransactionDate: 2 number
       missing for column ProductID: 2 number missing
       for column Quantity: 2
       //for col in missing_info:
        column {}: {}'.format(col, num missing)) #count of missing data
       for col in missing info:
       percent missing = data[data[col].isnull() == True].shape[0] /
data.shape[0] print('percent missing for column {}: {}'.format(
                                                              col,
percent_missing))
        Output of percentage missing data
       percent missing for column Cancelled: 0.6 percent
       missing for column TransactionID: 0.4 percent
```

missing for column TransactionDate: 0.4 percent

missing for column ProductID: 0.4 percent missing for column Quantity: 0.4

NOTE: The solution shared through Github should contain the source code used and the screenshot of the output.

## 3. Output

This project consists of 3000 marks and has to be submitted in .ipynb/PDF format in the upcoming session for evaluation



