Box #_	(Name on Back)
	Math 65 Section
	Homework 2
	11/2/18

Problems for Section 6.3: Change of Basis

B1: For problems B1-B3 you will answer (a)-(e). Consider

$$\vec{x} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}, \ \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \ \mathcal{C} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

where \mathcal{B} and \mathcal{C} are bases for \mathbb{R}^2 .

- (a) Find the coordinate vectors $[\vec{x}]_{\mathcal{B}}$ and $[\vec{x}]_{\mathcal{C}}$ of \vec{x} with respect to the bases \mathcal{B} and \mathcal{C} , respectively.
- (b) Find the change-of-basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C} .
- (c) Use your answer to part (b) to compute $[\vec{x}]_{\mathcal{C}}$, and compare your answer with the one found in part (a).
- (d) Find the change-of-basis matrix $P_{\mathcal{B}\leftarrow\mathcal{C}}$ from \mathcal{C} to \mathcal{B} .
- (e) Use your answers to parts (c) and (d) to compute $[\vec{x}]_{\mathcal{B}}$, and compare your answer with the one found in part (a).

Problem B1 Continued:

B2: Answer (a)-(e) from exercise B1 using p(x) instead of \vec{x} . Consider

$$p(x) = 2 - x + 3x^2$$
, $\mathcal{B} = \{1 + x, 1 + x^2, x + x^2\}$, $\mathcal{C} = \{1, x, 1 + x + x^2\}$

where \mathcal{B} and \mathcal{C} are bases for \mathcal{P}_2 .

B3: Answer (a)-(e) from exercise B1 using f(x) instead of \vec{x} . Consider

$$f(x) = \cos x, \ \mathcal{B} = \{\sin x, \sin x + \cos x\}, \ \mathcal{C} = \{\sin x + \cos x, \sin x - \cos x\}$$

where \mathcal{B} and \mathcal{C} are bases for the vector space $\mathcal{V} = \operatorname{span}(\sin x, \cos x)$.

Box #____

B4: (Poole, p. 472) Section 6.3 #18.

Express $p(x) = 1 + 2x - 5x^2$ as a Taylor polynomial about a = -2.

Note: It may help to consider this as a problem in \mathcal{P}_2 . Remember that the Taylor polynomial about a = -2 will take the form

$$p(x) = a_0 + a_1(x+2) + a_2(x+2)^2.$$

Finally, think about why $\mathcal{B} = \{1, x+2, (x+2)^2\}$ is a basis for \mathcal{P}_2 .

Problems for Section 6.4: Linear Transformations

B5: (Poole, p. 480) Section 6.4 #5.

Determine whether T is a linear transformation.

$$T \colon M_{nn} \to \mathbb{R}$$
 defined by $T(A) = \operatorname{tr}(A)$

Note: Here tr(A) is the trace of the matrix A. If you have forgotten the definition, try googling it.

Box	#		

B6: (Poole, p. 480) Section 6.4 #6.

Determine whether ${\cal T}$ is a linear transformation.

$$T \colon M_{nn} \to \mathbb{R}$$
 defined by $T(A) = a_{11}a_{22}\cdots a_{nn}$

B7: (Poole, p. 480) Section 6.4 #12.

Determine whether T is a linear transformation.

 $T \colon \mathcal{F} \to \mathbb{R}$ defined by T(f) = f(c), where c is a fixed scalar

Note: Here \mathcal{F} is the set of functions f(x) defined for all $x \in \mathbb{R}$.