PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
H04S 1/00

A1

(11) International Publication Number: WO 98/20706
(43) International Publication Date: 14 May 1998 (14.05.98)

(21) International Application Number: PCT/EP97/05902

(22) International Filing Date: 25 October 1997 (25.10.97)

(30) Priority Data: 196 46 055.7 7 November 1996 (07.11.96) DE

(71) Applicant (for all designated States except US):
DEUTSCHE THOMSON-BRANDT GMBH [DE/DE];
Hermann-Schwer-Strasse 3, D-78048 Villingen-Schwenningen (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BOEHM, Johannes [DE/DE]; An der Strangriede 12, D-30167 Hannover (DE). SPILLE, Jens [DE/DE]; Kleines Feld 58, D-30966 Hemmingen (DE).
- (74) Agent: HARTNACK, Wolfgang: Deutsche Thomson-Brandt GmbH, Licensing and Intellectual Property, Göttinger Chaussee 76, D-30453 Hannover (DE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: METHOD AND DEVICE FOR PROJECTING SOUND SOURCES ONTO LOUDSPEAKERS

(57) Abstract

For the purpose of spatial reproduction of an audio signal, the latter must be projected onto the positions of the existing loudspeakers. It is desirable in this case not to have to be fixed on a specific loudspeaker configuration for transmitting the audio signal. However, a problem here is that a multiplicity of possible combinations exists. In the method according to the invention, the sound sources (3) are interpreted as acoustic objects for the purpose of projecting them onto an arbitrary loudspeaker configuration (2). Here, an acoustic object consists in that in addition to the audio signal a sound source is assigned an item of spatial information which specifies a virtual, spatial position of the sound source. In order to reproduce an acoustic object, the spatial information of the sound source and the actual position of a loudspeaker are used to calculate the virtual distance from the sound source via the loudspeaker to the hearer (1). Before reproduction, separate processing (7, 8, 9) of the audio signal for each loudspeaker is then performed for each acoustic object.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	A 11 !-	ES	Spain	LS	Lesotho	SI	Slovenia
AL	Albania	FI	Finland	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑU	Australia	-	United Kingdom	MC	Monaco	TD	Chad
ΑZ	Azerbaijan	GB	-	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GE	Georgia Ghana	MG	Madagascar	TJ	Tajikistan
BB	Barbados	GH	•	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN	Guinea	MIK	Republic of Macedonia	TR	Turkey
BF	Burkina Faso	GR	Greece	241	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary	ML		ÜA	Ukraine
ВЈ	Benin	IE	Ireland	MN	Mongolia	UG	Uganda
BR	Brazil	IL	Israel	MR	Mauritania	US	United States of America
BY	Belarus	IS	Iceland	MW	Malawi	UZ	Uzbekistan
CA	Canada	IТ	Italy	MX	Mexico	_	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	ΥU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
	Denmark	LK	Sri Lanka	SE	Sweden		
DK		LR	Liberia	SG	Singapore		
EE	Estonia	LK	Dioc. ia		.		

Method and device for projecting sound sources onto loudspeakers

The invention relates to a method and a device for projecting sound sources onto loudspeakers in order, in particular, to permit spatial reproduction of the sound sources.

Prior art

It is known from the MPEG-2 Standard ISO 13818 to aim at a spatial representation by means of multichannel 10 also called surround sound, for stereophony, reproduction. Six channels are provided in this case for the multichannel sound, of which three channels (left, centre, right) are arranged in space in front of the listener, two channels (left surround, right surround) 15 are arranged in space behind the listener, and a sixth channel is provided for reproducing low-pitched tones for special effects. The sound channels are matrixed in order, on the one hand, to ensure reverse compatibility with MPEG-1 audio signals and, on the other hand, also to 20 render satisfactory reproduction possible, if instead of a complete surround-sound loudspeaker configuration only a pair of loudspeakers are present. In this case, the calculated stereosignals are transmitted as compatible stereosignal and the remaining signals as 25 additional data.

The invention

30

35

It is the object of the invention to specify a method for spatial reproduction of virtual sound sources. This object is achieved by means of the method specified in Claim 1.

It is the further object of the invention to specify a device for applying the method according to the invention. This object is achieved by means of the device specified in Claim 8.

In order to reproduce an audio signal, the latter frequently has to be projected onto the positions of the

WO 98/20706 PCT/EP97/05902 *

- 2 -

existing loudspeakers. A few projections may be mentioned here by way of example:

- a) The projection of a mono signal onto a pair of stereo loudspeakers.
- 5 b) The projection of a 3/2-signal (3 loudspeakers in front/2 loudspeakers behind) onto a 2/2 loudspeaker arrangement.

10

15

20

30

- c) The projection of a signal with the position 3m away, 30° left, 10° high onto a loudspeaker ring which comprises 8 loudspeakers at a distance of 2m with a respective 45° spacing.
- d) The projection of 2 sound sources in the room onto 2 loudspeakers.

It is desirable not to have to be fixed on a specific configuration for the transmission of an audio signal. However, the problem arises in this case that there is an unlimited number of possible combinations.

In principle, the method according to the invention for projecting sound sources onto loudspeakers consists in that the sound sources are interpreted as acoustic objects, an acoustic object consisting in that in addition to the audio signal a sound source is assigned an item of spatial information which specifies a virtual, spatial position of the sound source.

25 The audio signal is advantageously processed as a function of the associated item of spatial information in order to reproduce an acoustic object.

In this case, the spatial position of the loudspeakers is preferably additionally considered, the virtual distance of the sound source from the loudspeaker being calculated from the spatial information and the position of the loudspeakers, and separate processing of the audio signal for each of the loudspeakers being performed for an acoustic object.

It is, furthermore, advantageous when one or more of the following parameters are considered when processing the audio signals:

WO 98/20706

5

10

15

30

35

PCT/EP97/05902 `

- amplitude attenuation, for example by damping or diffraction,

- 3 -

- a different propagation time for the various acoustic objects and loudspeakers,
- consideration of the dependence of the loudspeaker level on the spatial arrangement by means of the outer ear function.

In this case, the processing of the audio signals can be further improved when the frequency dependence of the parameters is also considered.

The mathematical functions required for considering the parameters such as, for example, an attenuation function are preferably transmitted and/or stored as a function of the distance and/or the angle of deflection.

It is particularly advantageous when the data of an acoustic object are stored and/or transmitted by means of a compressed data stream in accordance with the MPEG-4 Standard.

In principle, the device according to the invention for projecting sound sources onto loudspeakers consists in that an arithmetic unit is provided which calculates the distance of the virtual acoustic objects from the respective loudspeakers from an item of spatial information transmitted with the audio signal and the actual position of the loudspeakers.

In this case, a memory is preferably provided in which the respective loudspeaker positions and/or mathematical functions for considering parameters are stored.

It is advantageous to provide $n \times k$ actuators for n acoustic objects and k loudspeakers, an actuator carrying out processing of an audio signal with reference to one of the loudspeakers.

In this case, a frequency dependence of the parameters is preferably also considered by the actuators, the signals firstly being resolved into frequency bands by a split filter (10), the individual

PCT/EP97/05902

frequency bands then being processed individually, and the processed frequency bands subsequently being recombined by a merge filter (12).

It is particularly advantageous when the split filter and/or the merge filter are part of an audio decoder which is present in any case.

Furthermore, one or more directional microphones can preferably be provided which are used to measure the loudspeaker position.

The directional microphones are preferably integrated in a remote control.

Drawings

10

20

30

35

Exemplary embodiments of the invention will be described with the aid of the drawings, in which:

15 Figure 1 shows virtual sound sources which are to be projected onto an existing pair of loudspeakers;

Figure 2 shows the graphical representation of a model for calculating sound paths;

Figure 3 shows the block diagram of a presentation circuit of the described model; and

Figure 4 shows a section of an audio decoder according to the invention.

Exemplary embodiments

A typical problem arising is represented in 25 Figure 1. Two virtual sound sources 3, violin and trumpet, are to be projected onto an existing pair of loudspeakers 2 such that the listener 1 has the impression that the violin and trumpet are located in the spatial positions represented in Figure 1.

A model can be developed for such a projection, and is based on the following observation: that a person be located in a room having a plurality of windows which are all open. That there be various sound sources outside the room, also termed acoustic objects below, such as street musicians, a car horn etc., for example. The person can locate the various sound sources effectively in acoustic terms, even if they are not visible. This is based on the fact that the sound paths through the

15

20

25

30

35

various windows are different. The model described below is based on replacing each window by a loudspeaker. Given that the loudspeakers are correctly driven, the same sound field should result, and it should thus also be possible identically to locate the acoustic objects.

graphical representation of the model represented in Figure 2. A listener 1 is located in an arbitrarily shaped room whose walls 5 consist of absorber material, with the result that no sound can penetrate from outside and no reflections are produced inside the room. The sound sources 3 are basically located outside The loudspeakers or windows are taken into the room. account by holes 6 in the wall of the room. This produces various sound paths 4 from the sound source 3 to the listener 1 through the various loudspeakers or window openings 6. The sound enters the room in this case through all loudspeakers or window openings, although each sound path has its own characteristics.

A presentation circuit in which the model converted is illustrated in the block diagram shown in Figure 3. Two acoustic objects 3, violin and trumpet, are projected in this case on the three existing loudspeakers 2. For each acoustic object the audio signals are now processed as a function of the virtual spatial position of this acoustic object and the actual position of each loudspeaker, in order to permit driving in accordance respective virtual sound path. the generalization to n acoustic objects and k loudspeakers, this means that n x k actuators are used. In this case, one or more of the following parameters 7, 8, 9 are considered in each of the actuators in accordance with the virtual sound path. In order to drive the amplitude correctly, the latter must firstly be calculated as a function of the path length. In addition, consideration can also be given to attenuation or absorption by the air. Different functions can be considered in this case depending on the type of the sound source or the attenuation of the air. Thus, a spherical sound source

loses its acoustic power with the square of the distance, that is to say the received power is given by the following formula:

Received power (r): = transmitted power/ r^2

By contrast, a cylindrical sound source such as a train or a street, for example, looses its acoustic power only with the simple distance. The respective functions can be stored in this case in the presentation circuit, 10 but can likewise be transmitted and stored with the signal. They can likewise be determined by the respective application or the user. In addition, it is also possible to consider diffraction which occurs at the loudspeakers or the window openings. In order to be able to consider 15 diffraction these diffraction effects precisely, the would have to be calculated by the sum of all sound paths a specific hole geometry, taking the by means of frequency and phase into consideration. This gives rise, in approximate terms, to the fact that at low frequencies 20 propagation takes place in all directions independently of the angle of incidence, while at higher frequencies the amplitude of the audio signal is a function of the angle between the entry to and exit from the respective hole. An approximate formula can be used to reduce the 25 Such a formula can also, outlay on computation. attenuation, be case of described in the transmitted at the same time or be set by the application or the user. Since the diffraction effects depend on would be necessary to consider this frequency, it 30 dependence on frequency in order to be able to calculate the diffraction attenuation exactly. In order to realize this in technical terms, it is necessary either to use filters with defined group delay times, or to resolve the process them frequency bands and 35 signals into individually.

As represented in Figure 4, in this case the division could be performed by a split filter 10,

subsequent to which processing would be performed by various actuators 11 and, finally, the processed signals would be recombined by a merge filter 12. This can be integrated particularly well into a typical audio decoder for MPEG, AC3 or ATRAC signals, since in their case processing is performed in the frequency domain and a split filter has already been provided for this purpose, with the result that there is no need to provide an additional split filter.

A further parameter is the propagation time (delay) of the signal. It holds here in principle that the sound wave first impinging on the ear is decisively involved in the perception of direction. For a path length r and a mean velocity of sound c of approximately 340 m/s, it holds as:

Delay (r) := r/c

25

In this case, the length r can be shortened by the shortest distance between the loudspeakers and the listener. This reduces the storage requirement in the presentation unit.

There is a transfer function, also called the outer ear function, which is dependent on the direction and frequency, between a sound source and the human eardrum. In simple terms: the sound from the front is filtered differently by the ear muscles than the sound from behind.

The outer ear function should be considered if desire is to radiate a virtual sound 30 positioned at the angle x, by means of a loudspeaker which is provided at the angle z. This requires the the virtual differential level signal between loudspeaker positions to be determined and the signal to be appropriately filtered. Since the outer ear function 35 is not the same for all people, it is conceivable to enable the user to choose between different outer ear

10

15

35

functions for the purpose of a particularly good correction.

Here, as well, the filters can be realised by actuators in the frequency plane of an audio decoder.

loudspeaker position actual The determined in order to determine the path length between the virtual acoustic object and the actual loudspeaker position. Various methods are conceivable for this. Thus, the user could measure the space coordinates of the respective loudspeaker boxes using a meter similar, and input the corresponding distance data into these device which relays data input presentation circuit. The input can be performed here via keyboard on the appropriate device, or a control, it also being possible, if appropriate, monitor the input data or for the user to be guided by an on-screen display on a display device or on a viewing screen.

It is also possible to measure the loudspeaker directional one aid or more with the of 20 system microphones, in order to save the user the mechanical The distance of the distances. measurement loudspeakers from the directional microphone or microphones can be determined in this case by reproducing via the loudspeakers a test sequence with pulses and by 25 propagation time. The angles measuring the individual loudspeakers can then be determined via the characteristic of the directional directional then possible to measure is microphones. Ιt loudspeaker configuration automatically. In particular, 30 self evident in this case to integrate microphones in a remote control.

The entire virtual path length is then yielded from the position of the virtual acoustic object and, as described above, the position determined for the respective loudspeaker. Various possibilities of representation are conceivable in this case for the two positions. Thus, this can be performed, for example, by

25

30

0

Cartesian coordinates, that is to say a specification of distance in all three directions in space, or by spherical coordinates, that is to say a specification of distance and the specification of the horizontal and, if appropriate, vertical angle.

While the position of the loudspeaker should remain unchanged in most cases, a change in the virtual position of the acoustic objects can by all means frequently occur. This will be the case, in particular, reproduced the audio signals are whenever 10 accompaniment with video signals. Thus, for example, in a film an actor or a vehicle can move on the viewing screen or disappear from the screen and thus change his spatial position. It is likewise conceivable that in computer games having sound outputs a game 15 participant is moved by the player, for example with the aid of a joystick, and that the reproduction of a sound signal, which is assigned to the game participant, adapted in accordance with the position prescribed or altered by the player. 20

The invention can be used to transmit, but also record and reproduce digital audio signals, example in accordance with the MPEG-4, MPEG-2 or AC3audio signal can be both pure Standards. This reproduction, for example by a CD player, DAB or ADR receivers, and reproduction of the audio signals conjunction with video signals, for example a DVD player receiver. Furthermore, digital television or also conceivable in the case application is systems such as videophones or computer interactive games.

PCT/EP97/05902 ~

15

20

25

30

Patent Claims

- 1. Method for projecting sound sources (3) onto loudspeakers (2), characterized in that the sound sources (3) are interpreted as acoustic objects, an acoustic object consisting in that in addition to the audio signal a sound source is assigned an item of spatial information which specifies a virtual, spatial position of the sound source.
- Method according to Claim 1, characterized in
 that the audio signal is processed as a function of the associated item of spatial information in order to reproduce an acoustic object.
 - 3. Method according to Claim 2, characterized in that the spatial position of the loudspeakers (2) is additionally considered, the virtual distance of the sound source from the loudspeaker being calculated from the spatial information and the position of the loudspeakers, and separate processing of the audio signal for each of the loudspeakers being performed for an acoustic object.
 - 4. Method according to Claim 2 or 3, characterized in that one or more of the following parameters are considered when processing the audio signals:
 - amplitude attenuation, for example by damping or diffraction (7),
 - a different propagation time for the various acoustic objects and loudspeakers (8),
 - consideration of the dependence of the loudspeaker level on the spatial arrangement by means of the outer ear function (9).
 - 5. Method according to Claim 4, characterized in that the frequency dependence of the parameters is also considered in processing the audio signals.
 - 6. Method according to Claim 5, characterized in that mathematical functions required for considering the parameters such as, for example, an attenuation function are transmitted and/or stored as a function of the distance and/or the angle of deflection.

O

- 7. Method according to one of the preceding claims, characterized in that the data of an acoustic object are stored and/or transmitted by means of a compressed data stream in accordance with the MPEG-4 Standard.
- projecting sources sound Device for loudspeakers, characterized in that the sound sources are interpreted as acoustic objects, $n \times k$ actuators (7, 8, acoustic objects being provided for n 9) loudspeakers, and an actuator carrying out processing of with reference to one acoustic object 10 loudspeakers.
 - 9. Device according to Claim 8, characterized in that an actuator contains at least one of the following units:
- a unit (7) for amplitude matching,
 - a time-delay unit (8) for correcting the different propagation times,
 - a unit (9) for considering the outer ear function.
- 10. Device according to Claim 9, characterized in that a frequency dependence of the parameters is also considered by the actuators, the signals firstly being resolved into frequency bands by a split filter (10), the individual frequency bands then being processed
- 25 individually, and the processed frequency bands subsequently being recombined by a merge filter (12).
 - 11. Device according to Claim 10, characterized in that the split filter and/or the merge filter are part of an audio decoder which is present in any case.
- 30 12. Device according to one of Claims 8 to 11, characterized in that an arithmetic unit is provided which calculates the distance of the virtual acoustic objects from the respective loudspeakers from an item of spatial information transmitted with the audio signal and the actual position of the loudspeakers.
 - 13. Method according to one of Claims 8 to 12, characterized in that a memory is provided in which the

PCT/EP97/05902 `

respective loudspeaker positions and/or mathematical functions for considering parameters are stored.

- 14. Device according to one of Claims 8 to 13, characterized in that one or more directional microphones are provided which are used to measure the loudspeaker position.
 - 15. Device according to Claim 14, characterized in that the directional microphone or the directional microphones is/are integrated in a remote control.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

, a,

ational Application No

			PCT/EP 97/05902	
A. CLASS	IFICATION OF SUBJECT MATTER H04S1/00			
			-	
According t	o International Patent Classification (IPC) or to both national cla	assification and IPC		
	SEARCHED	(d) _ alice _ alice _ l		
IPC 6	ocumentation searched (classification system followed by class HO4S HO4N HO4R G10H	silication symbols)		
Documenta	ation searched other than minimumdocumentation to the extent	that such documents are includ	ed in the fields searched	<u>.</u>
Electronic o	data base consulted during the international search (name of d	ata base and, where practical, s	earch terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of t	he relevant passages	Relevant to claim N	10.
Χ	WO 81 03407 A (P.F.BRUNEY) 26	November	1,2	
Y	see page 1, line 2-10	line 10	4	
Α	see page 2, line 18 - page 4,	line IU	3,5,6,8, 12	
	see page 4, line 29 - page 8, see page 11, line 22 - page 1 see page 15, line 17 - page 29	2, line 24		
Υ	WO 91 20167 A (NORTHWESTERN U	NIVERSITY) 26	4	
Α	December 1991 see page 1, line 1-3 see page 7, line 5 - page 11,	line 29	8-11	
		-/		
		,		
X Furt	ther documents are listed in the continuation of box C.	X Patent family m	embers are listed in annex.	
° Special ca	ategories of cited documents:		shed after the international filing date	
consid	ent defining the general state of the art which is not dered to be of particular relevance		not in conflict with the application but the principle or theory underlying the	
filing o		cannot be consider	ar relevance; the claimed invention ed novel or cannot be considered to	
which	ent which may throw doubts on priority claim(s) or n is cited to establish the publicationdate of another nn or other special reason (as specified)	"Y" document of particul	e step when the document is taken alone ar relevance; the claimed invention ed to involve an inventive step when the	
"O" docum other	nent referring to an oral disclosure, use, exhibition or means	document is combii ments, such combii	ned with one or more other such docu- nation being obvious to a person skilled	
	ent published prior to the international filling date but than the priority date claimed	in the art. "&" document member o	of the same patent family	
Date of the	actual completion of theinternational search	Date of mailing of the	e international search report	-
1	.9 March 1998	26/03/19	198	

Form PCT/ISA/210 (second sheet) (July 1992)

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

1

Authorized officer

Zanti, P

		PCT/EP 97/05902		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
egory '	Citation of document, with indication,where appropriate, of the relevant passages	Relevant to daim No.		
	GB 2 151 439 A (DEUTSCHE POST) 17 July 1985	1-3,6, 8-12,14, 15		
	see page 1, line 50-73 see page 1, line 130 - page 2, line 24 see page 2, line 54-81 see page 3, line 5-92 see page 4, line 40-65 see page 4, line 85 - page 5, line 14 see page 7, line 30 - page 8, line 25			
	EP 0 036 337 A (MATSUSHITA) 23 September 1981 see page 1, line 1-4 see page 7, line 1 - page 18, line 2	1,8		
A	PATENT ABSTRACTS OF JAPAN vol. 96, no. 6, 28 June 1996 & JP 08 050479 A (MATSUSHITA), 20 February 1996, see abstract	1,3,8,13		
	WO 96 20567 A (CIRRUS LOGIC) 4 July 1996 see page 1, line 5-8 see page 1, line 11-29 see page 5, line 21-30 see page 11, line 20 - page 13, line 10	1,7		
	·			

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int tional Application No PCT/EP 97/05902

Patent document cited in search repo		Publication date	Patent family member(s)	Publication date
WO 8103407	A	26-11-81	AU 7374581 A EP 0052144 A	07-12-81 26-05-82
WO 9120167	Α	26-12-91	US 5235646 A AU 8222691 A CA 2085480 A	10-08-93 07-01-92 16-12-91
GB 2151439	A	17-07-85	DE 3413181 A FR 2556914 A JP 60248099 A SU 1513636 A US 4618987 A	27-06-85 21-06-85 07-12-85 07-10-89 21-10-86
EP 36337	A	23-09-81	JP 1579018 C JP 2003600 B JP 56132100 A JP 1042200 B JP 1574065 C JP 57009200 A JP 1761932 C JP 4032600 B JP 57024200 A JP 57064000 A US 4524451 A	13-09-90 24-01-90 16-10-81 11-09-89 20-08-90 18-01-82 28-05-93 29-05-92 08-02-82 17-04-82 18-06-85
WO 9620567	Α	04-07-96	EP 0799551 A	08-10-97

THIS PAGE BLANK (USPTO)