Knowledge Representation for the Semantic Web

Lecture 8: Answer Set Programming III

Daria Stepanova

partially based on slides by Thomas Eiter

D5: Databases and Information Systems Max Planck Institute for Informatics

WS 2017/18

Unit Outline

The DLV System and its Features

Weak Constraints

Aggregates

DLV Usage: Examples

Overview: DLV-Extensions

The DLV System

The DLV System: Introduction

http://www.dlvsystem.com/

- DLV is a premier disjunctive answer set solver
- Based on strong theoretical foundations
- Incorporates a lot of database technology
- Features non-monotonic negation and disjunction
- Rich program syntax (⇒ high expressiveness)
- Front-ends for specific problems (diagnosis, planning, etc.).
- Many extensions
 - DLVHEX, DLV DB , DLT, DLV-Complex, DL-programs, OntoDLV, ...
- Industrial applications
 - Exeura Srl www.exeura.it/

Features of DLV

- Language: logic programs admitting
 - · disjunctions in rule heads,
 - default negation,
 - strong (classical) negation.

¹with the release of DLV 2010-10-14, function terms have been introduced.

Features of DLV

- · Language: logic programs admitting
 - · disjunctions in rule heads,
 - default negation,
 - strong (classical) negation.
- Additionally:
 - integer, arithmetic, and comparison built-ins,
 - · integrity constraints,
 - weak constraints,
 - aggregate functions,
 - function symbols;¹
 - support for brave & cautious reasoning.
 - + further

¹with the release of DLV 2010-10-14, function terms have been introduced.

Frontends

- Besides the answer set semantics core, DLV offers front-ends for particular KR tasks:
 - diagnosis
 - inheritance
 - knowledge-based planning (\mathcal{K} language)
- Also:
 - front-end to SQL3
 - weak constraints with weights and layers
 - aggregate functions

Using DLV

DLV [build BEN/Dec 17 2012 gcc 4.6.1]
usage: dlv (FRONTEND) {OPTIONS} [filename [filename [...]]]
Specify -help for more detailed usage information.

- DLV is command-line oriented
- Input is read from files whose names are passed on the command-line
- If the command-line option "--" has been specified, input is also read from standard input (stdin)
- Output is printed to standard output (stdout), one line per model,
 i.e., answer set
- Detailed documentation at http://www.dlvsystem.com

DLV Syntax

• Rules:

$$a_1 \vee \cdots \vee a_n := b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m.$$

where $n \ge 1$, $m \ge 0$ and all a_i , b_j are atoms or strongly negated atoms (e.g., -a); no function symbols.

DLV Syntax

Rules:

$$a_1 \vee \cdots \vee a_n := b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m.$$

where $n \ge 1$, $m \ge 0$ and all a_i , b_j are atoms or strongly negated atoms (e.g., -a); no function symbols.

Integrity constraints:

$$:-b_1,\ldots,b_k$$
, not b_{k+1},\ldots , not b_m .

Can be regarded as rules with an empty (false) head.

DLV Syntax

Rules:

$$a_1 \vee \cdots \vee a_n := b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m.$$

where $n \ge 1$, $m \ge 0$ and all a_i , b_j are atoms or strongly negated atoms (e.g., -a); no function symbols.

Integrity constraints:

:-
$$b_1, \ldots, b_k$$
, not b_{k+1}, \ldots , not b_m .

Can be regarded as rules with an empty (false) head.

Queries:

$$b_1, \ldots, b_k$$
, not b_{k+1}, \ldots , not b_m ?

Support for query answering besides model computation (satisfied in at least one / in all answer sets, called brave / cautious reasoning)

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (not b), or
- · a built-in comparison predicate,

must occur in at least one non-comparison not-free literal in the body.

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (not b), or
- a built-in comparison predicate,

must occur in at least one non-comparison not-free literal in the body.

Example:

```
a(X) := not b(X), c(X).

a(X) := X > Y, node(X), node(Y).
```

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (not b), or
- a built-in comparison predicate,

must occur in at least one non-comparison not-free literal in the body.

Example:

Safe!

```
a(X) := not b(X), c(X).

a(X) := X > Y, node(X), node(Y).
```

```
a(X) v -a(X).
a(X) :- not b(X).
:- X <= Y, node(X).</pre>
```

Each variable occurring in a rule (resp., constraint) in

- the head,
- a default literal (not b), or
- a built-in comparison predicate,

must occur in at least one non-comparison not-free literal in the body.

Example:

Safe!

```
a(X) := not b(X), c(X).

a(X) := X > Y, node(X), node(Y).
```

Unsafe!

```
a(X) v -a(X).
a(X) :- not b(X).
:- X <= Y, node(X).</pre>
```

Built-in Predicates

• Comparison predicates (for integers and strings):

Built-in Predicates

Comparison predicates (for integers and strings):

Arithmetic predicates:

```
\#int(X):
                  X is a known integer (1 \le X \le N).
\#succ(X,Y):
                  Y is successor of X, i.e., Y = X + 1.
+(X,Y,Z):
                  Z = X + Y. (both variants are possible)
*(X, Y, Z):
                  Z = X * Y.
```

Built-in Predicates

• Comparison predicates (for integers and strings):

• Arithmetic predicates:

```
#int(X): X is a known integer (1 \le X \le N).

#succ(X,Y): Y is successor of X, i.e., Y = X + 1.

+(X,Y,Z): Z = X + Y. (both variants are possible)

*(X,Y,Z): Z = X * Y.
```

 Just auxiliary predicates. An upper bound for integers has to be specified when DLV is invoked.

Example: Fibonacci Numbers

- \blacktriangleright $\underbrace{1}_{F_1}$, $\underbrace{1}_{F_2}$, $\underbrace{2}_{F_3}$, $\underbrace{3}_{\dots}$, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...
 - Except for first two numbers, each value is defined as the sum of the previous two.

Example: Fibonacci Numbers

- **▶** 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...
 - Except for first two numbers, each value is defined as the sum of the previous two.

Encoding:

```
fib0(1,1). fib0(2,1).
fib(N,X) := fibO(N.X).
F_{N+2} = F_N + F_{N+1}
fib(N,X) := fib(N1,Y1), fib(N2,Y2),
            N=N2+2, N=N1+1, X=Y1+Y2.
```

An upper bound for integers has to be specified when dlv is invoked.

Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by $empl(_{-},_{-})$

Problem: Compute linear ordering and successor relation

for employees

Linear Ordering, Successor

Example: Employees

Input: Employees and their salaries, represented by $empl(_, _)$

Problem: Compute linear ordering and successor relation

for employees

Solve problem using projection and double negation!

Example: Employees

Input: Employees and their salaries, represented by $empl(_-,_-)$

Problem: Compute linear ordering and successor relation for employees

Solve problem using projection and double negation!

% Order employees by id

$$prec(X,Y) := empl(X,_), empl(Y,_), X < Y.$$

% Define successor

$$-\operatorname{succ}(X,Y) := \operatorname{prec}(X,Z), \operatorname{prec}(Z,Y).$$

 $\operatorname{succ}(X,Y) := \operatorname{prec}(X,Y), \operatorname{not} - \operatorname{succ}(X,Y).$

Smallest, Largest in a Linear Ordering

Example: Employees

Problem: Determine employee with smallest (resp., largest) id

Smallest, Largest in a Linear Ordering

Example: Employees

Problem: Determine employee with smallest (resp., largest) id

 Computing smallest and largest elements in a linear ordering works accordingly:

```
- \texttt{first}(X) := \texttt{succ}(Y, X).  \texttt{first}(X) := \texttt{empl}(X, \_), \ \texttt{not} \ - \texttt{first}(X). - \texttt{last}(X) := \texttt{succ}(X, Y).  \texttt{last}(X) := \texttt{empl}(X, \_), \ \texttt{not} \ - \texttt{last}(X).
```

Exercise: determine maximal (resp. minimal) salary of employees

Counting and Sum

How about counting or computing sums?

Example: Employees (cont'd)

Problem: Compute the sum of salaries of the employees

Counting and Sum

How about counting or computing sums?

Example: Employees (cont'd)

Problem: Compute the sum of salaries of the employees

Recursion is needed:

```
partialSum(X,S) := first(X), empl(X,S).
partialSum(Y, S) := succ(X, Y), partialSum(X, S1),
                    empl(Y, S2), S = S1 + S2.
          sum(S) := last(X), partialSum(X,S).
```

Weak Constraints

- Allow to formalize optimization problems in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints "kill" unwanted models;
 - weak constraints express desiderata to satisfy if possible.

Weak Constraints

- Allow to formalize optimization problems in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints "kill" unwanted models;
 - weak constraints express desiderata to satisfy if possible.
- Syntax (DLV):

```
b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. [Weight: Level]
```

where

- all b_i are atoms (resp. "classical" literals)
- Weight, Level are numbers (or variables occurring in some b_i , $i \leq k$, that instantiate to numbers)

Weak Constraints

- Allow to formalize optimization problems in an easy and natural way.
- Integrity constraints vs. weak constraints:
 - integrity constraints "kill" unwanted models;
 - weak constraints express desiderata to satisfy if possible.
- Syntax (DLV):

```
:\sim \ b_1, \dots, b_k, \ \text{not} \ b_{k+1}, \dots, \ \text{not} \ b_m \ . \ \ [\text{Weight} : Level]
```

where

- all b_i are atoms (resp. "classical" literals)
- Weight, Level are numbers (or variables occurring in some b_i , $i \leq k$, that instantiate to numbers)
- Informally: for (P, WC), where P is a program and WC is a set of weak constraints, each $M \in AS(P)$ with least violation of WC is an answer set (best model), where AS(P) = set of answer sets of P.

Semantics via aggregated violation cost ($WC = \{wc_1, \dots, wc_n\}$):

```
wc: \sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. [Weight: Level]
```

- as usual, consider the grounding grnd(wc) of wc
- Interpretation I violates a ground wc $(I \not\models wc)$, if $\{b_1, \ldots, b_k\} \subseteq I$ and $I \cap \{b_{k+1}, \ldots, b_m\} = \emptyset$

Semantics via aggregated violation cost ($WC = \{wc_1, \dots, wc_n\}$):

```
wc: :\sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. [Weight: Level]
```

- ullet as usual, consider the grounding grnd(wc) of wc
- Interpretation I violates a ground wc ($I \not\models wc$), if $\{b_1,\ldots,b_k\} \subseteq I$ and $I \cap \{b_{k+1},\ldots,b_m\} = \emptyset$
- The cost of I at level ℓ is

$$c(I,\ell) = \sum_{i=1}^{n} \sum_{(\theta,w) \in \mathcal{V}_i(I,\ell)} w$$
,

where

$$\mathcal{V}_i(I,\ell) = \{(\theta, w) \mid wc_i\theta = :\sim B. \ [w,\ell] \in grnd(wc_i), I \not\models wc_i\theta\}$$

Semantics via aggregated violation cost ($WC = \{wc_1, \dots, wc_n\}$):

```
wc: :\sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. [Weight: Level]
```

- as usual, consider the grounding grnd(wc) of wc
- Interpretation I violates a ground wc $(I \not\models wc)$, if $\{b_1,\ldots,b_k\} \subseteq I$ and $I \cap \{b_{k+1},\ldots,b_m\} = \emptyset$
- The cost of I at level ℓ is

$$c(I,\ell) = \sum_{i=1}^{n} \sum_{(\theta,w) \in \mathcal{V}_i(I,\ell)} w$$
,

where

$$\mathcal{V}_i(I,\ell) = \{(\theta, w) \mid wc_i\theta = :\sim B. \ [w,\ell] \in grnd(wc_i), I \not\models wc_i\theta\}$$

• I is safe, if each $c(I, \ell)$ is well-defined (all w's are numbers)

Semantics via aggregated violation cost ($WC = \{wc_1, \dots, wc_n\}$):

```
wc: :\sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m. [Weight: Level]
```

- as usual, consider the grounding grnd(wc) of wc
- Interpretation I violates a ground wc ($I \not\models wc$), if $\{b_1,\ldots,b_k\} \subseteq I$ and $I \cap \{b_{k+1},\ldots,b_m\} = \emptyset$
- The cost of I at level ℓ is

$$c(I,\ell) = \sum_{i=1}^{n} \sum_{(\theta,w) \in \mathcal{V}_i(I,\ell)} w$$
,

where

$$\mathcal{V}_i(I,\ell) = \{(\theta, w) \mid wc_i\theta = : \sim B. \ [w,\ell] \in grnd(wc_i), I \not\models wc_i\theta\}$$

- I is safe, if each $c(I, \ell)$ is well-defined (all w's are numbers)
- a safe $M \in AS(P)$ dominates a safe $M' \in AS(P)$, if $c(M,\ell) < c(M',\ell)$ for some ℓ and $c(M,\ell') = c(M',\ell')$ for all $\ell' > \ell$

Semantics via aggregated violation cost ($WC = \{wc_1, \dots, wc_n\}$):

$$wc: :\sim b_1, \ldots, b_k, \text{ not } b_{k+1}, \ldots, \text{ not } b_m$$
. [Weight: Level]

- ullet as usual, consider the grounding grnd(wc) of wc
- Interpretation I violates a ground wc ($I \not\models wc$), if $\{b_1,\ldots,b_k\} \subseteq I$ and $I \cap \{b_{k+1},\ldots,b_m\} = \emptyset$
- The cost of I at level ℓ is

$$c(I,\ell) = \sum_{i=1}^{n} \sum_{(\theta,w) \in \mathcal{V}_i(I,\ell)} w$$

where

$$\mathcal{V}_i(I,\ell) = \{(\theta, w) \mid wc_i\theta = : \sim B. \ [w,\ell] \in grnd(wc_i), I \not\models wc_i\theta\}$$

- I is safe, if each $c(I, \ell)$ is well-defined (all w's are numbers)
- a safe $M \in AS(P)$ dominates a safe $M' \in AS(P)$, if $c(M,\ell) < c(M',\ell)$ for some ℓ and $c(M,\ell') = c(M',\ell')$ for all $\ell' > \ell$
- a safe $M \in AS(P)$ is **best (optimal)**, if no $M' \in AS(P)$ dominates M

Weak Constraints: Examples

Example: Default values for weights and levels

a v b. c :- b.

 $:\sim$ a.

 $:\sim$ b.

 $:\sim$ c.

Example: Default values for weights and levels

```
a v b. c :- b.

:~ a.

:~ b.

:~ c.

Best model: a

Cost ([Weight:Level]): <[1:1]>
```

Answer set $\{b, c\}$ is discarded because it violates two weak constraints!

Example: Weights vs levels

Weights:

```
a v b.
```

 $:\sim$ a. [1:]

 $:\sim$ a. [1:]

 $:\sim$ b. [2:]

Example: Weights vs levels

Weights:

```
a v b.
  :~ a. [1:]
  :~ a. [1:]
  :\sim b. [2:]
 Best model: b
 Cost ([Weight:Level]): <[2:1]>
 Best model: a
 Cost ([Weight:Level]): <[2:1]>
Note: WC = \{wc_1, wc_2, wc_3\},\
       wc_1 =: \sim a.[1:],
        wc_2 =: \sim a.[1:],
        wc_3 =: \sim b.[2:]
```

Example: Weights vs levels

Weights:

a v b.

:~ a. [1:]

:~ a. [1:]

 $:\sim$ b. [2:]

Best model: b

Cost ([Weight:Level]): <[2:1]>

Best model: a

Cost ([Weight:Level]): <[2:1]>

Note: $WC = \{wc_1, wc_2, wc_3\}$, $wc_1 =: \sim a.[1:],$

 $wc_2 =: \sim a.[1:],$

 $wc_3 =: \sim b.[2:]$

Levels:

a v b1 v b2.

:~ a. [:1]

 $:\sim$ b1. $\lceil:2\rceil$

 $:\sim b2. [:2]$

Example: Weights vs levels

Weights:

```
a v b.
:~ a. [1:]
```

:~ a. [1:]

 $:\sim b. [2:1]$

Best model: b

Cost ([Weight:Level]): <[2:1]>

Best model: a

Cost ([Weight:Level]): <[2:1]>

Note: $WC = \{wc_1, wc_2, wc_3\},\$

 $wc_1 =: \sim a.[1:],$ $wc_2 =: \sim a.[1:],$

 $wc_3 =: \sim b.[2:]$

Levels:

a v b1 v b2.

:~ a. [:1] $:\sim$ b1. $\lceil:2\rceil$

 $:\sim b2. [:2]$

Best model: a

Cost ([Weight:Level]): <[1:1],[0:2]>

Weak Constraints with Levels

Levels express the relative importance of the requirements.

Example: Divide employees in two project groups p_1 and p_2

- 1. Skills of group members should be different
- 2. Persons in the same group should not be married to each other
- 3. Members of a group should possibly know each other

Requirement (3) is less important than (1) and (2)

Weak Constraints with Levels

Levels express the relative importance of the requirements.

Example: Divide employees in two project groups p_1 and p_2

- 1. Skills of group members should be different
- 2. Persons in the same group should not be married to each other
- 3. Members of a group should possibly know each other

Requirement (3) is less important than (1) and (2)

```
assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), X!=Y, same_skill(X,Y). [:2]
:~ assign(X,P), assign(Y,P), X!=Y, married(X,Y). [:2]
:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y). [:1]
```

Weak Constraints with Weights

- A single weak constraint in some layer n is more important than all weak constraints in lower layers (n-1, n-2, ...) together!
- Weak constraints are weighted to make finer distinctions among elements of the same priority: :~ B1.[3.5:1] :~ B2.[4.6:1]
- The weights of violated weak constraints are summed up for each layer.

Weak Constraints with Weights

- A single weak constraint in some layer n is more important than all weak constraints in lower layers (n-1, n-2, ...) together!
- Weak constraints are weighted to make finer distinctions among elements of the same priority: :~ B1.[3.5:1] :~ B2.[4.6:1]
- The weights of violated weak constraints are summed up for each layer.

Example: High School Time Tabling Problem

Structural Requirements > Pedagogical Requirements > Personal Wishes.

Example: Traveling Salesperson (TSP)

Input: a directed graph represented by node(_), straight connections

 $edge(_{-,-,-})$ and a starting node $start(_{-})$.

Problem: find a cheapest roundtrip beginning at the starting node

Example: Traveling Salesperson (TSP)

Input: a directed graph represented by node(_), straight connections $edge(_{-},_{-},_{-})$ and a starting node $start(_{-})$. find a cheapest roundtrip beginning at the starting node Problem:

```
inPath(X,Y) v outPath(X,Y) := edge(X,Y). Guess
:-inPath(X,Y ), inPath(X,Y1 ), Y != Y1.
:-inPath(X,Y ), inPath(X1,Y ), X != X1. Check
:-node(X), notreached(X).
:-not start_reached.<sup>2</sup>
reached(X):-start(X).
reached(X):-reached(Y), inPath(Y,X ).
start_reached :- start(Y), inPath(X,Y).
```

²This line is added, since the trip must be round.

Example: Traveling Salesperson (TSP)

```
Input:
           a directed graph represented by node(_), straight connections
           edge(_{-},_{-},_{-}) and a starting node start(_{-}).
Problem:
           find a cheapest roundtrip beginning at the starting node
    inPath(X,Y,C) v outPath(X,Y,C) : -edge(X,Y,C). } Guess
    :-inPath(X,Y,C), inPath(X,Y1,C1), Y != Y1.
    :-inPath(X,Y,C), inPath(X1,Y,C1), X != X1.
    :-node(X), notreached(X).
    :-not start_reached.<sup>2</sup>
    reached(X):-start(X).
    reached(X):-reached(Y), inPath(Y,X,C).
    start_reached :- start(Y), inPath(X,Y,C).
    :\sim inPath(X,Y,C).[C:1]
                                       Optimize
```

²This line is added, since the trip must be round.

Example: Minimum Spanning Tree

```
Input:
                 A directed graph represented by node(_), weighted
                 edges edge(\_,\_,\_) and a starting node start(\_).
Problem:
                 Find a minium spanning tree with root at the starting node
      inTree(X,Y ) v outTree(X,Y ) :- edge(X,Y ). } Guess
      \label{eq:check}  \begin{array}{ll} \text{:-inTree(X,Y)}, & \text{start(Y).} \\ \text{:-inTree(X,Y)}, & \text{inTree(X1,Y)}, & \text{X != X1.} \\ \text{:-node(X)}, & \text{not reached(X).} \end{array} \right\} \textbf{Check}
      reached(X):-start(X).
reached(X):-reached(Y), inTree(Y,X ).
Auxiliary Def.
```

Example: Minimum Spanning Tree

```
Input:
                 A directed graph represented by node(_), weighted
                 edges edge(\_,\_,\_) and a starting node start(\_).
Problem:
                 Find a minium spanning tree with root at the starting node
      inTree(X,Y ) v outTree(X,Y ) :- edge(X,Y ). } Guess
      \label{eq:check}  \begin{array}{ll} \text{:-inTree(X,Y)}, & \text{start(Y).} \\ \text{:-inTree(X,Y)}, & \text{inTree(X1,Y)}, & \text{X != X1.} \\ \text{:-node(X)}, & \text{not reached(X).} \end{array} \right\} \textbf{Check}
      reached(X):-start(X).
reached(X):-reached(Y), inTree(Y,X ).
Auxiliary Def.
```

Example: Minimum Spanning Tree

```
Input:
            A directed graph represented by node(_), weighted
            edges edge(\_,\_,\_) and a starting node start(\_).
            Find a minium spanning tree with root at the starting node
Problem:
    inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C). } Guess
    :-inTree(X,Y,C), start(Y).
:-inTree(X,Y,C), inTree(X1,Y,C), X != X1.
    :-node(X), not reached(X).
    reached(X):-start(X).
reached(X):-reached(Y), inTree(Y,X,C).
Auxiliary Def.
    reached(X):-start(X).
    :\sim \text{inPath}(X,Y,C).[C:1]
                                           Optimize
```

Example: Minimum Spanning Tree (ctd.)


```
P_D = \{node(a), node(b),
        node(c), node(d),
        edge(a, b, 1), edge(a, c, 1)
        edge(c, b, 2), edge(b, c, 1)
        edge(b, d, 1), edge(c, d, 1)
        start(a)
```

Example: Minimum Spanning Tree (ctd.)

$$\begin{split} P_D &= \{node(a), node(b), \\ &node(c), node(d), \\ &edge(a,b,1), edge(a,c,1) \\ &edge(c,b,2), edge(b,c,1) \\ &edge(b,d,1), edge(c,d,1) \\ &start(a) \} \end{split}$$

 Allow arithmetic operations over a set of elements, as e.g. in SQL: select count(*) from empl;

- Allow arithmetic operations over a set of elements, as e.g. in SQL: select count(*) from empl;
- ASP provides aggregation functions #count, #sum, #min, #max #count{Emp,Dept,Job: empl(Emp,Dept,Job)}

- Allow arithmetic operations over a set of elements, as e.g. in SQL: select count(*) from empl;
- ASP provides aggregation functions #count, #sum, #min, #max #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
- these aggregate functions occur in aggregate atoms in rule bodies small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)

- Allow arithmetic operations over a set of elements, as e.g. in SQL: select count(*) from empl;
- ASP provides aggregation functions #count, #sum, #min, #max #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
- these aggregate functions occur in aggregate atoms in rule bodies
 small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
 - aggregates as first-class citizen: need no auxiliary computations
 - linear ordering, successor relation, smallest and largest element, and
 - recursion needed to count the employees

- Allow arithmetic operations over a set of elements, as e.g. in SQL: select count(*) from empl;
- ASP provides aggregation functions #count, #sum, #min, #max #count{Emp,Dept,Job: empl(Emp,Dept,Job)}
- these aggregate functions occur in aggregate atoms in rule bodies
 small_dept(D) :- #count{ E,D: empl(E,D,J) } < 10, dept(D)
 - aggregates as first-class citizen: need no auxiliary computations
 - linear ordering, successor relation, smallest and largest element, and
 - recursion needed to count the employees
 - challenging: semantics of aggregates (problem: recursion)
- we consider non-recursive aggregates, DLV (general: ASP-Core2)

Symbolic Set

Symbolic Set Expression

 $\{Vars: Conj\}$

where

- Vars is a set of variables, and
- *Conj* is a conjunction of standard literals, i.e., literals and default negated literals.

Symbolic Set

Symbolic Set Expression

 $\{ Vars : Conj \}$

where

- Vars is a set of variables, and
- Conj is a conjunction of standard literals, i.e., literals and default negated literals.

```
Example: {S,X : empl(X,S)}
```

Informal Meaning: The set of ids and salaries of all employees, i.e.,

- for a set of standard literals (an interpretation) $I = \{empl(1, 2200), empl(2, 1800)\},$
- the symbolic set above represents a set of tuples $S = \{\langle 2200, 1 \rangle, \langle 1800, 2 \rangle\}.$

Aggregate Functions

Aggregate Function Expression

 $f\{S\}$

where

- S is a symbolic set, and
- f is a function among {#count, #sum, #times, #min, #max}

Aggregate Functions

Aggregate Function Expression

 $f\{S\}$

where

- S is a symbolic set, and
- f is a function among {#count, #sum, #times, #min, #max}

Example: $\#sum{S,X : empl(X,S)}$

Informal Meaning: The sum of salaries of all employees.

Aggregate Functions

Aggregate Function Expression

 $f\{S\}$

where

- S is a symbolic set, and
- f is a function among {#count, #sum, #times, #min, #max}

```
Example: \#sum{S,X : empl(X,S)}
```

Informal Meaning: The sum of salaries of all employees.

- #count returns the cardinality of the symbolic set;
- the other functions apply to the multiset of the elements in the symbolic set projected to the first component.

Aggregate Functions, cont'd

Identical Projections

Note:

$$\#sum\{S: empl(X,S)\} \neq \#sum\{S,X: empl(X,S)\}$$

as identical projections S of different elements count multiple times

Aggregate Functions, cont'd

Identical Projections

Note:

$$\#sum{S : empl(X,S)} \neq \#sum{S,X : empl(X,S)}$$

as identical projections S of different elements count multiple times for $S=\emptyset$:

- #sum returns 0
- #times returns 1
- #min and #max undefined

Aggregate Atoms

Aggregate Atom Syntax

$$Lg <_1 f\{S\} <_2 Rg$$

where

- Lq and Uq are terms, called left guard and right guard, respectively,
- and $<_1, <_2$ in $\{=, <, \le, >, \ge\}$;
- one of the guards can be omitted (assuming "0 <" and " $< +\infty$ "

Aggregate Atoms

Aggregate Atom Syntax

$$Lg <_1 f\{S\} <_2 Rg$$

where

- Lq and Uq are terms, called left guard and right guard, respectively,
- and $<_1,<_2$ in $\{=,<,<,>,>\}$;
- one of the guards can be omitted (assuming " $0 \le$ " and " $\le +\infty$ "

Example: $\#sum{S, X : empl(X, S)} < 3800$

Informal Meaning: True if sum of salaries ≤ 3800 , false otherwise.

 If the argument of an aggregate function does not belong to its domain, then false and warning.

Aggregate Atom: Common Mistakes

Let pay(transaction, person, value) represent a payment, consider: $\{pay(t1, p1, 5), pay(t2, p1, 8), pay(t3, p1, 5), pay(t4, p2, 10), pay(t5, p2, 20)\}$. Task: Compute the sum of payments for each person.

Aggregate Atom: Common Mistakes

Let pay(transaction, person, value) represent a payment, consider: $\{pay(t1,p1,5), pay(t2,p1,8), pay(t3,p1,5), pay(t4,p2,10), pay(t5,p2,20)\}.$ Task: Compute the sum of payments for each person.

```
• Correct: sum(P,S):-person(P), S = \#sum\{V,T:pay(T,P,V)\}; symbolic set is \{\langle 5, t1 \rangle, \langle 8, t2 \rangle, \langle 5, t3 \rangle\} for p1 \Rightarrow sum(p1, 18); symbolic set is \{\langle 10, t2 \rangle, \langle 20, t2 \rangle\} for p2 \Rightarrow sum(p2, 30).
```

Aggregate Atom: Common Mistakes

Let pay(transaction, person, value) represent a payment, consider: $\{pay(t1,p1,5), pay(t2,p1,8), pay(t3,p1,5), pay(t4,p2,10), pay(t5,p2,20)\}.$ Task: Compute the sum of payments for each person.

- Correct: sum(P,S):-person(P), $S = \#sum\{V,T:pay(T,P,V)\}$; symbolic set is $\{\langle \mathbf{5}, \mathbf{t} 1 \rangle, \langle \mathbf{8}, \mathbf{t} 2 \rangle, \langle \mathbf{5}, \mathbf{t} 3 \rangle\}$ for $p1 \Rightarrow sum(p1,18)$; symbolic set is $\{\langle \mathbf{10}, \mathbf{t} 2 \rangle, \langle \mathbf{20}, \mathbf{t} 2 \rangle\}$ for $p2 \Rightarrow sum(p2,30)$.
- Mistake 1: $sum(P,S):-person(P), S = \#sum\{T,V: pay(T,P,V)\};$ symbolic set is $\{\langle t1,5\rangle, \langle t1,8\rangle, \langle t1,5\rangle\}$ for p1 \Rightarrow wrong first element! (here t1 is not even numeric)

Let pay(transaction, person, value) represent a payment, consider: $\{pay(t1, p1, 5), pay(t2, p1, 8), pay(t3, p1, 5), pay(t4, p2, 10), pay(t5, p2, 20)\}.$ Task: Compute the sum of payments for each person.

- Correct: $sum(P, S) := person(P), S = \#sum\{V, T : pay(T, P, V)\};$ symbolic set is $\{\langle 5, \pm 1 \rangle, \langle 8, \pm 2 \rangle, \langle 5, \pm 3 \rangle\}$ for p1 \Rightarrow sum(p1, 18); symbolic set is $\{(10, t2), (20, t2)\}\$ for $p2 \Rightarrow sum(p2, 30)$.
- Mistake 1: $sum(P, S) := person(P), S = #sum\{T, V : pay(T, P, V)\};$ symbolic set is $\{\langle t1,5\rangle, \langle t1,8\rangle, \langle t1,5\rangle \}$ for p1 \Rightarrow wrong first element! (here t1 is not even numeric)
- Mistake 2: $sum(P, S) := person(P), S = #sum\{V : pay(T, P, V)\};$ symbolic set is $\{\langle 5 \rangle, \langle 8 \rangle\}$ for p1, value 5 is added only once.

Let pay(transaction, person, value) represent a payment, consider: $\{pay(t1,p1,5), pay(t2,p1,8), pay(t3,p1,5), pay(t4,p2,10), pay(t5,p2,20)\}.$ Task: Compute the sum of payments for each person.

- Correct: sum(P,S):-person(P), $S = \#sum\{V,T:pay(T,P,V)\}$; symbolic set is $\{\langle \mathbf{5}, \mathbf{t}1 \rangle, \langle \mathbf{8}, \mathbf{t}2 \rangle, \langle \mathbf{5}, \mathbf{t}3 \rangle\}$ for $p1 \Rightarrow sum(p1,18)$; symbolic set is $\{\langle \mathbf{10}, \mathbf{t}2 \rangle, \langle \mathbf{20}, \mathbf{t}2 \rangle\}$ for $p2 \Rightarrow sum(p2,30)$.
- Mistake 1: sum(P,S):-person(P), $S = \#sum\{T,V: pay(T,P,V)\}$; symbolic set is $\{\langle t1,5\rangle, \langle t1,8\rangle, \langle t1,5\rangle\}$ for p1 \Rightarrow wrong first element! (here t1 is not even numeric)
- Mistake 2: sum(P,S):-person(P), S = #sum{V : pay(T,P,V)}; symbolic set is {\(\delta\bar{5}\), \(\delta\bar{8}\)} for p1, value 5 is added only once.
- Mistake 3: $sum(S) := S = \#sum\{V, P : pay(T, P, V)\};$ symbolic set is $\{\langle 5, p1 \rangle, \langle 8, p1 \rangle, \langle 10, p2 \rangle, \langle 20, p2 \rangle\}$, persons merged.

Safety

- Variables that appear solely in aggregate functions are called local variables.
 - Additional safety requirements:
 - Each local variable in {Vars : Conj} also appears in a positive literal in Conj.
 - Each global variable also appears
 - in a non-comparison, non-aggregate, not-free literal in the body; or
 - as a guard of an assignment aggregate atom $X=f\{S\},\ f\{S\}=X,$ or $X=f\{S\}=X,$ respectively
 - Each guard of an aggregate atom is either a constant or a global variable.

Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set M of literals and a ground program P, the reduct (or Gelfond-Lifschitz reduct) P^M is now as follows:

- remove rules from P
 - with not a in the body, such that a is true wrt. M, or
 - with a in the body, such that a is an aggregate atom that is false wrt. M; and
- remove literals not a and aggregate atoms from all other rules.

Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set M of literals and a ground program P, the reduct (or Gelfond-Lifschitz reduct) P^M is now as follows:

- remove rules from P
 - with not a in the body, such that a is true wrt. M, or
 - with a in the body, such that a is an aggregate atom that is false wrt. M; and
- remove literals not a and aggregate atoms from all other rules.
- limitations (dlv build 21-12-2012):
 - #min, #max just on integer constants like #sum and #times
 - no recursion through aggregates (aggregate stratification)

Semantics of Programs with Aggregates

Generalized Gelfond-Lifschitz Reduct

Given a set M of literals and a ground program P, the reduct (or Gelfond-Lifschitz reduct) P^M is now as follows:

- remove rules from P
 - with not a in the body, such that a is true wrt. M, or
 - with a in the body, such that a is an aggregate atom that is false wrt. M; and
- remove literals not a and aggregate atoms from all other rules.
- limitations (dlv build 21-12-2012):
 - #min, #max just on integer constants like #sum and #times
 - no recursion through aggregates (aggregate stratification)
- recursion through aggregates: use instead GL-reduct P^M the FLP-reduct $fP^M = \{r \in P \mid r = H \leftarrow B, M \models B\};$ that is, keep the rules r whose bodies are satisfied.

DLV Usage: Examples

Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

```
% Guess the edges that are part of the tree. inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).
```

Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

```
% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).

% Check that we are really dealing with a tree!
:- start(R), not #count{X : inTree(X,R,C)} = 0.
:- edge(_,Y,_), not start(Y),
   not #count{X : inTree(X,Y,C)} = 1.

% Note: ensures also that each node
% in the graph is reached.
```

Example: Minimum Spanning Tree Using Aggregates

Minimum spanning tree (with aggregates and weak constraints)

```
% Guess the edges that are part of the tree.
inTree(X,Y,C) v outTree(X,Y,C) :- edge(X,Y,C).
% Check that we are really dealing with a tree!
:- start(R), not \#count\{X : inTree(X,R,C)\} = 0.
:- edge(_{-},Y,_{-}), not start(Y),
   not \#count\{X : inTree(X,Y,C)\} = 1.
% Note: ensures also that each node
% in the graph is reached.
% Nothing in life is free..
% pay for every edge that is in the solution
\sim inTree(X,Y,C). [C:1]
```

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

```
at(P,T) v not_at(P,T) :- person(P), table(T).
```

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

```
at(P,T) v not_at(P,T) :- person(P), table(T).
:- table(T), nchairs(C), not#count(P : at(P,T)) <= C.</pre>
```

- people liking each other should sit at the same table, and
- people disliking each other should not sit at the same table.

```
at(P,T) v not_at(P,T) :- person(P), table(T).
:- table(T), nchairs(C), not#count{P : at(P,T)} <= C.
:- person(P), not #count{T : at(P,T)} = 1.
:- like(P1,P2), at(P1,T), not at(P2,T).
:- dislike(P1,P2), at(P1,T), at(P2,T).</pre>
```

Example: Seating Problem, cont'd


```
P_D = \{person(p1), person(p2), \\ person(p3), person(p4), \\ table(t1), table(t2), \\ nchairs(4), \\ like(p1, p2), \\ dislike(p1, p3)\}
```

Example: Seating Problem, cont'd

Example: Optimal Golomb Ruler (OGR)

Problem: Place a given number of marks on a ruler, such that no two pairs of marks measure the same distance, and the length of the ruler is minimal.

Applications: antenna design, mobile communication technology

Example: Optimal Golomb Ruler (OGR)

Problem: Place a given number of marks on a ruler, such that no two pairs of marks measure the same distance, and the length of the ruler is minimal.

Applications: antenna design, mobile communication technology

% Example input for an OGR of size 4
position(0..10).
mark(1..4).

```
% The position 0 is always used, % a position is used if a mark is placed on it. used(0).
```

```
% Guess the other positions. free(P) v used(P) :- position(P).
```

```
% a position is used if a mark is placed on it.
used(0).
% Guess the other positions.
free(P) v used(P) :- position(P).
% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.
```

% The position 0 is always used,

```
% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).

% Guess the other positions.
free(P) v used(P) :- position(P).

% Exactly N used positions, where N is the number of marks.
num(N) :- #count{M : mark(M)} = N.
:- num(N), not #count{P : used(P)} = N.

% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) :- used(P1), used(P2), P1 < P2, D = P2 - P1.</pre>
```

```
% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).
% Guess the other positions.
free(P) v used(P) :- position(P).
% Exactly N used positions, where N is the number of marks.
num(N) := \#count\{M : mark(M)\} = N.
:- num(N), not \#count\{P : used(P)\} = N.
% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) := used(P1), used(P2), P1 < P2, D = P2 - P1.
% Discard models in which more than one pair
% of used positions have the same distance.
:- d(P1,D), d(P2,D), P1 < P2.
```

```
% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).
% Guess the other positions.
free(P) v used(P) :- position(P).
\% Exactly N used positions, where N is the number of marks.
num(N) := \#count\{M : mark(M)\} = N.
:- num(N), not \#count\{P : used(P)\} = N.
% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) := used(P1), used(P2), P1 < P2, D = P2 - P1.
% Discard models in which more than one pair
% of used positions have the same distance.
:= d(P1.D), d(P2.D), P1 < P2.
% Find the maximum used position P.
non_maxused(P1) := used(P1), used(P2), P1 < P2.
maxused(P) :- used(P), not non_maxused(P).
```

```
% The position 0 is always used,
% a position is used if a mark is placed on it.
used(0).
% Guess the other positions.
free(P) v used(P) :- position(P).
\% Exactly N used positions, where N is the number of marks.
num(N) := \#count\{M : mark(M)\} = N.
:- num(N), not \#count\{P : used(P)\} = N.
% For each used position P1, compute distance
% with each successive used position P2.
d(P1,D) := used(P1), used(P2), P1 < P2, D = P2 - P1.
% Discard models in which more than one pair
% of used positions have the same distance.
:= d(P1.D), d(P2.D), P1 < P2.
% Find the maximum used position P.
non_maxused(P1) := used(P1), used(P2), P1 < P2.
maxused(P): - used(P), not non maxused(P).
% Minimize the cost of the solution.
\sim \text{maxused(P)}. [P:1]
```

Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the #max aggregate atom to find the maximum used position:

```
% Minimize the cost of the solution,
% i.e.,the value of the largest used position.
:~ #int(P1), P1 = #max{P:used(P)}. [P1:]
```

Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the #max aggregate atom to find the maximum used position:

```
% Minimize the cost of the solution,
% i.e.,the value of the largest used position.
:~ #int(P1), P1 = #max{P:used(P)}. [P1:]

Program output for both variants (run with option -filter=used):
Best model: used(0), used(2), used(5), used(6)
Cost ([Weight:Level]): <[6:1]>
Best model: used(0), used(1), used(4), used(6)
Cost ([Weight:Level]): <[6:1]>
```

Example: Optimal Golomb Ruler (OGR) Variants

More elegant: use the #max aggregate atom to find the maximum used position:

```
% Minimize the cost of the solution,
% i.e.,the value of the largest used position.
:~ #int(P1), P1 = #max{P:used(P)}. [P1:]
```

Program output for both variants (run with option -filter=used):

```
Cost ([Weight:Level]): <[6:1]>
Best model: used(0), used(1), used(4), used(6)
Cost ([Weight:Level]): <[6:1]>
```

Best model: used(0), used(2), used(5), used(6)

Results are by chance perfect optimal Golomb Rulers (i.e., no gaps in the sequence of all occurring distances).

Exercise: Which additional constraint would be needed to ensure only perfect optimal Golomb Rulers to be calculated?

Overview: DLV Extensions

- DLV-Complex extension of DLV with function symbols, lists and sets fully integrated into DLV since release 2010-10-14
 - dlvex an extension of DLV providing access to "external predicates" which are supplied via libraries
 - dlvhex a system for ASP with external computation sources

http://www.kr.tuwien.ac.at/research/systems/dlvhex/ http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php

- enables queries to Description Logic KBs in rules
- DLT extends DLV with reusable template predicate definitions
- \overline{DLV} DB an extension of \overline{DLV} with a tight coupling to relational DBs
 - native DLV offers an ODBC interface
 - NLP-DL a coupling of ASP programs with Description Logics https://www.mat.unical.it/ianni/swlp/index.html

Summary

- 1. The DLV system
 - DLV syntax
 - Rule safety
 - Built-in predicates
- 2. Weak constraints
 - Weights
 - Levels
- 3. Aggregates
 - Symbolic sets
 - · Aggregate functions
- 4. DLV usage: Examples
- 5. DIV extensions

Software Engineering Issues

- Software engineering tools for ASP are subject of ongoing research IDEs: ASPIDE³, SeaLion⁴
- Particular problem: debugging
- What to do if my program does not have (intended) answer sets?
- Some naive suggestions:
 - Decompose: divide & conquer
 - Use small/specific instances for testing
 - · Test constraints one by one
 - Check auxiliary predicates separately
- Support for debugging: e.g. Spock⁵

³www.mat.unical.it/~ricca/aspide/

⁴www.kr.tuwien.ac.at/research/projects/mmdasp/#Software

⁵www.kr.tuwien.ac.at/research/systems/debug/index.html

Appendix References

ASP Integrated Development Environments (IDEs)

IDE: ease programming for both novice and skilled developers

- SEA LION [Busoniu et al., 2013]
 - first environment offering debugging for non-ground programs
 - unique tools for model-based engineering (ER diagrams), testing via annotations, and bi-directional visualization of interpretations.
- ASPIDE [Febbraro et al., 2011]
 - comprehensive framework integrating several tools for advanced program composition and execution.
 - test-driven software development in the style of JUnit, e.g.
 - dependency graph visualizer, designed to inspect predicate dependencies and browsing the program,
 - debugger (Dodaro et al. 2015),
 - DLV profiler,
 - ARVis comparator of answer sets,
 - answer set visualizer IDPDraw.
 - data source plugin for JDBC connectivity

ASP Development Environments, cont'd

- ASPIDE is extensible
- user can provide new plugins:
 - new input formats
 - new program rewritings
 - customizing the visualization/output format of solver results
- more information: See RR 2013 tutorial

https://www.mat.unical.it/ricca/downloads/rr2013-tutorial.pdf

References I

Sealion: An eclipse-based IDE for answer-set programming with advanced debugging support.

TPLP, 13(4-5):657-673, 2013.

Onofrio Febbraro, Kristian Reale, and Francesco Ricca.

ASPIDE: integrated development environment for answer set programming.

In James P. Delgrande and Wolfgang Faber, editors, *Logic Programming* and *Nonmonotonic Reasoning - 11th International Conference, LPNMR* 2011, *Vancouver, Canada, May 16-19, 2011. Proceedings*, volume 6645 of *Lecture Notes in Computer Science*, pages 317–330. Springer, 2011.