Temporal Protection in Real-Time Systems

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

November 2016

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0004174

OS Dual Objective

Time-Sharing CPU – Round robin

Same time requirement – Fair Scheduling

Consolidation of Mixed-Criticality Tasks

Consolidation of Mixed-Criticality Tasks

Consolidation of Mixed-Criticality Tasks

Criticality Inversion

A higher-criticality task waits for a lower-criticality task to release a resource

- Symmetric temporal protection
- Scheduling policy is aimed at maximizing utilization (RMS/DMS/EDF)

Carnegie Mellon

Rate-Monotonic Priority

Shorter Period → Higher Priority

Ideal utilization

BUT: Poor Criticality Protection Due to Criticality Inversion

If criticality order is opposite to rate-monotonic priority order

Criticality As Priority Assignment (CAPA)

Higher Criticality → Higher Priority

- Ideal criticality protection:
 - lower criticality cannot interfere with higher criticality

BUT: Poor Utilization Due to Priority Inversion

If criticality order is opposite to rate-monotonic priority order

Task Model

$$\tau_i = \left(C_i, C_i^o, T_i, D_i, \zeta_i\right)$$

- $C_{\scriptscriptstyle i}$ Normal Execution Budget of task ${\it i}$
- $C_i^{\,o}$ Overload Execution Budget of task i
- $T_{\scriptscriptstyle i}$ Period of task i
- D_i Deadline of task i $D_i \le T_i$
- ζ_i Criticality of task *i*

Zero-Slack Scheduling

Start with RM

Calculate the last instant before τ_{HC} misses its deadline

this is called the zero-slack instant

Switch to criticality-as-priority

- Splits the execution window into
 - Normal mode (RM)
 - Critical mode (CAPA)

Critical Instant of a Task τ_i

Interference in Zero-Slack Scheduling

Task Set Divided into

- Hlc: Higher priority, lower criticality
- Hhc: Higher priority, higher criticality
- Llc: Lower priority, lower criticality
- Lhc: Lower priority, higher criticality

Interfering tasks in normal mode (Normal mode)

• Hlc + Hhc + Lhc

Interfering tasks in critical mode (C mode)

• Hhc + | hc

Scheduling Guarantee

A task ${ au}_i$ is guaranteed C_i^o before D_i

if no
$$\tau_j \mid \zeta_j < \zeta_i$$

executes beyond its $\,C_{j}\,$

Calculating The Zero-Slack Instant

Calculating The Zero-Slack Instant

New slack can open after each iteration Needs to repeat until no new slack opens

ZSRM Properties

Subsumes RM

- If criticalities are aligned to priorities
- No critical mode

Subsumes CAPA

· If not enough slack, only critical mode

Graceful Degradation

In overloads, deadlines are missed in reverse criticality order

Carnegie Mellon

Implementation

ZSRM

Scheduling algorithm calculates zero-slack instants offline Linux/ RK

- Resource reservation in Linux
 - CPU, Net, Mem, Disk
- Bundled into resource sets that provide a form of virtual machine

Carnegie Mellon

- Multiple implementations
 - Nano/RK for sensor networks

Special Zero-Slack Reserves

- Switch to critical mode
 - Stop lower-criticality tasks on zero-slack instant
- Tasks in critical mode in stack

What about Shared Resources?

Potentially leads to unboundeds cattle ality Inversion of 1/2 V Task

Priority and Criticality Inversion

Blocking in Zero-Slack Scheduling

A job J_h waiting for a job J_l to exit critical section $Z_{l,k}$ is considered to be <u>blocked</u> at time t, <u>if and only if</u> one of the following conditions is satisfied at t:

- 1) The priority of J_i is lower than J_h 's priority and J_i is running in its **normal** mode.
- 2) The criticality of J_l is lower than J_h 's criticality and J_h is running in its *critical* mode.

Priority and Criticality Inheritance Protocol (PCIP)

PCIP Definition

A task τ_i that holds a lock to a resource can <u>inherit the</u> <u>priority</u> from a task τ_j and <u>the criticality from a task</u> τ_k (τ_k can be the same as τ_j), both requesting a lock to the resource held by τ_i as follows:

- τ_i inherits the priority of τ_j if τ_j 's priority is higher.
 - This inherited priority has an immediate effect on the scheduling of $au_{\dot{1}}$
- τ_i inherits the criticality of τ_k if τ_k 's criticality is higher.
 - This criticality is used by τ_{i} immediately as soon as τ_{k} requests the lock held by τ_{i}

PCIP Possible Blocking

Consider a Job J_o

 $L_i^{hc}(J_0)$ is the set of jobs with lower priority and higher criticality

 $L_i^{lc}(J_0)$ is the set of jobs with lower priority and lower criticality

thnighteam higrity, and othersertsicalityead to priority or criticality inversion

PCIP Properties

- Under PCIP, given a job J_0 for which there are n jobs $\{J_1, J_2, ..., J_n\}$, with J_i in $\{L_i^{hc}(J_0) \cup L_i^{lc}(J_0) \cup H_i^{lc}(J_0)\}$, job J_0 can be blocked for <u>at most</u> the duration of one critical section in each of $\beta^*_{0,i}$.
 where,
 - $\beta^*_{0,i}$ is the set of critical sections of J_i that can block J_0

Under PCIP, if there are "m" locks which can block job J, then J can be blocked at most "m" times in its normal mode and blocked at most "m" times in its critical mode.

PCIP Illustration

Medium Criticality $(P_1 P_2 V_2 V_1)^{T_1}$ Medium Priority

High Criticality Low Priority

 $(P_2 V_2)$

Task	C	C^{o}	T	D	Criticality	Priority
$ au_0$	10	70	100	100	2	0
$ au_1$	20	100	200	200	1	1
$ au_2$	40	200	400	400	0	2

Priority and Criticality Ceiling Protocol (PCCP)

PCCP Definition

- Each lock is assigned <u>both</u> a *priority ceiling* and a criticality ceiling
 - Priority ceiling is the highest possible priority of any locker of the lock
 - Criticality ceiling is the highest possible criticality of any locker of the lock
- Both the priority ceiling and the criticality ceiling of a lock are acquired by task whenever it holds the lock

PCCP – Maximum Blocking

- Each job J can only be blocked twice
 - At most once in **Normal** execution mode
 - At most once in *Critical* execution mode
- Each job J_w can block job J only once
 - Otherwise, J_w is $L_i^{lc}(J_0)$
 - And, Job J has to be blocked by J_w once in Normal mode
 - However, J_w cannot obtain the processor again as it is in $L_i^{lc}(J_0)$!!!

PCCP - No Deadlocks

- Under PCCP, no job J_k can preempt another job J_i while J_i holds a lock (i.e. is inside the critical section) that is also accessed by J_k .
- PCCP <u>prevents</u> Transitive Blocking
- PCCP <u>prevents</u> <u>Deadlocks</u>

PCCP Illustration

Task τ_0 acquires the Priority and Criticality Ceiling of Task $\tilde{\tau}_1$ acquires the divice Into Van Criticality Ceiling of

Medium Criticality

Medium Priority

High Criticality

Low Priority

Task	C	C^{o}	T	D	Criticality	Priority
$ au_0$	10	70	100	100	2	0
$ au_1$	20	100	200	200	1	1
$ au_2$	40	200	400	400	0	2

 $(P_2 V_2)$

PCIP Blocking Term Analysis

• PCIP Blocking Term B_i for Task τ_i

$$B_i = \min(\sum_{\tau_j \in \{H_i^{lc} \cup L_i^{lc} \cup L_i^{hc}\}} \lambda(\beta_{i,j}^*), \sum_{\Psi_{i,k} \in \Psi_i} 2\Lambda(\Psi_{i,k}))$$

where,

- $_{\circ}$ $_{}$ $_{\mathrm{i},\mathrm{j}}^{st}$ is the set of critical sections of $_{\mathrm{t}_{\mathrm{j}}}$ that can block $_{\mathrm{t}_{\mathrm{i}}}$
- $_{\circ}$ $\lambda(\beta^*_{i,j})$ is the length of the *longest critical sections* of $\beta^*_{i,j}$ that can block task τ_i
- $_{\circ}$ $\Lambda(\Psi_{i,j})$ is the length of the critical section protected by lock $\Psi_{i,j}$

PCCP Blocking Term Analysis

PCCP Blocking Term B_i for Task τ_i

$$B_i = \max_{\tau_j \in \{H_i^{l_c} \cup L_i^{l_c} \cup L_i^{h_c}\}} 2\lambda(\beta_{i,j}^*)$$

where,

- $\beta^*_{i,j}$ is the set of critical sections of τ_i that can block task τ_i
- $\lambda(\beta^*_{i,i})$ is the length of the longest critical sections of $\beta^*_{i,i}$ that can block task τ_i

Software Engineering Institute

Criticality isolation strategy (S)

Low Criticality
High Criticality

Processor 1

H L

Processor 2

Both overload	0	0
High criticality overload	0	1
Low criticality overload	1	0
No overload	1	1

Assume that the system is schedulable without overloads

Under overloads only one task can meet its deadline

Criticality mixture strategy (T)

Low Criticality

High Criticality

Processor 1

Both overload
High criticality overload
Low criticality overload
No overload
1 0
1 0
1 1

T is better than S

Processor 2

Assume that the system is schedulable without overloads Under overloads only one task can meet its deadline Assume that a uniprocessor mixed-criticality scheduling algorithm like ZSRM is used within each processor

Generalization: Ductility Matrix

Say we have 'k' criticality levels 2^k possible overload scenarios

All criticality levels overload to No overload

Quantification of Ductility

$$P_d(D) = \sum_{c=1}^k \left\{ \frac{1}{2^c} \frac{\sum_{r=1}^{2^k} d_{r,c}}{2^k} \right\}$$

Scheme S	Н	L	Scheme T	Н	L	
Both overload	0	0	Both overload	1	0	
High criticality overload	0	1	High criticality overload	1	0	
Low criticality overload	1	0	Low criticality overload	1	0	
No overload	1	1	No overload	1	1	

For S,
$$P_d$$
 (D) = 0.375 For T, P_d (D) = 0.5625

Shows that T is better than SOther Projection functions can be used $P_d(D)$ favors the more critical tasks **exponentially** over the lower criticality tasks

Outline

Mixed-criticality task scheduling problem

Zero-slack scheduling for uni-processors

Zero-slack metrics & properties

Generalizing resource allocation to distributed mixed criticality tasks

Generalized metric: Ductility matrix

Compress-on-Overload Packing (COP)

COP Performance

Radar surveillance case study

Conclusions

40

COP Performance

Carnegie Mellon

Overloading in Mixed-Criticality Systems

Task	Period	Criticality	WCET	NCET
t ₁ Surveillance Cov.	4	Mission	2	2
t ₂ Collision Avoid.	8	Safety	5	2.5

Zero-Slack Rate Monotonic

Task	Period	Criticality	WCET	NCET
t ₁ Surveillance Cov.	4	Mission	2	2
t ₂ Collision Avoid.	8	Safety	5	2.5

Zero-Slack Rate Monotonic

Task	Period	Criticality	WCET	NCET
t ₁ Surveillance Cov.	4	Mission	2	2
t ₂ Collision Avoid.	8	Safety	5	2.5

Reclaiming Resources in Mixed-Criticality Systems

Task	Period	Criticality	WCET	NCET	Utility
t ₁ Surveillance Cov.	4	Mission	2	2	{2,2.5}
t ₂ Collision Avoid.	8	Safety	5	2.5	
t ₃ Amount of Intelligence	4	Mission	2	2	{2,2.5}

Using Reclaimed Resources to Maximized Utility

Task	Period	Criticality	WCET	NCET	Utility Levels
t ₁ Surveillance Cov.	4	Mission	2	2	{2,2.5}
t ₂ Collision Avoid.	8	Safety	5	2.5	
t ₃ Amount of Intelligence	4	Mission	2	2	{2,2.5}

Utility Diminishes: Utility ≠ Criticality

ection RT Systems ber 2016

Using Reclaimed Resources to Maximized Utility

Task	Period	Criticality	WCET	NCET	Utility Levels
t ₁ Surveillance Cov.	4	Mission	2	2	{2,2.5}
t ₂ Collision Avoid.	8	Safety	5	2.5	
t ₃ Amount of Intelligence	4	Mission	2	2	{2,2.5}

ZS-QRAM: More mission-critical utility from same resources

Carnegie Mellon

Carnegie Mellon