SRN	1					1	

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE18/19CS312

DECEMBER 2021: END SEMESTER ASSESSMENT (ESA) B.TECH FIFTH SEMESTER

UE18/19CS312 - Data Analytics

T	me:	3 Hrs		Ar	swer All	Questions		N	/lax Ma	arks: 100	
1	a)	(i) Who demo	has asked would yographics gest any	d you to help you recomme s that could p two variables	them desend collections of the collection of the	d entrepreneurs ign a survey to cting the data f meaningful anso outes) that you ordinal/interva	gather thing from? (sugarder to the would co	s information ggest any to question) llect and al	on. two sou so iden	irces or	6 (2+4)
	b)	measured la fitness bar throughout	by PESFi ad (referr t each of	it, a fitness bared to as Fith	and devel Band) tha	ctivity and aver oped by PES w it is worn on the	orn on or he other	ne hand and	l a com	mercial person	8 (2+2+ 2+2)
		Activity	Swim- ming	Basketball	Tennis	Skipping (2 jumps/ sec.)	Soccer	cleaning	GOIT	Yoga	
		PESFit	165	140	155	114	145	120	130	95	
		FitBand	171	164	242	NA	145	126	134	72	
		(ii) A gyn inferre is not (iii) The co and he MCAl (iv) What	n instructed from to true. commercial ence, no R or MN. is the bes	tor feels the in he number of al Fitness Bar reading has AR? Substant st way to deal	intensity steps. G nd used i been rec tiate your with the	is data to help not activity and ive one reason in this study rand corded for this answer with a missing data in	hence, the to convint out of clusteristics. The activity. The transfer out this table.	the calories ce the gymnarge just but Is this cor	burned, instruction pefore s isidered	skipping d MAR,	
	c)	The averag (i) Is (ii) He (iii) If	e is found this data s ow does the	to be: 12. skewed? Substance average char from 9-15 shou	antiate you	ws: 6, 10, 11, ar answer with a satypographical eped to a new ran	reason.	nat entry was	s actuall	y 9?	6 (2+2+2)
2	a)	List any t	three assiplain how	umptions that y you would o	t are dee	med necessary ether this assum	for mult	iple linear ds for a giv	regress en data	sion and	6 (3*2)

		SRN	
	b)	 A logistic regression model for the probability of becoming a successful entrepreneur if someone in the family is also an entrepreneur has the intercept -1.93 and coefficient of 0.38 for x, the binary independent variable (x = 1 for at least one family member is an entrepreneur and x=0 for no family member is an entrepreneur): (i) What does the intercept = -1.93 mean? Interpret this value, with a brief explanation. (ii) What is the change in the odds ratio that associates a family member being an entrepreneur to a person becoming a successful entrepreneur? (You may use the fact: ln(odds ratio) = β₀+β₁x, where x is the independent variable.) (iii) In a dataset of 100 people, the model predicts 94 can become successful entrepreneurs of which 9 are found to be false positives and the number of correct predictions for 'cannot become a successful entrepreneur' = 1, what is the F1-score of this model? 	8 (2+3+ 3)
	c)	 In the context of regression models, answer the following questions: (i) Does the L1 regularization in Lasso regression help in feature selection? Explain. (ii) If the Pearson's correlation between two variables = 0.20, can we conclude that the two variables are not at all related to each other? Briefly explain. 	6 (3*2)
3	a)	Briefly answer the questions: (i) Sketch the figure of a stationary signal and one of a non-stationary signal, identifying the features that make the signal stationary and nonstationary, respectively. (ii) Tabulate the guidelines for selecting model parameters for AR(p) and MA(q) models using the autocorrelation function (ACF) and the partial autocorrelation function (PACF)	8 (4+4)
	b)	Suppose the attendance at Hogwarts School during the months of November and December 2021 are as follows: 150, 200. (i) What is the attendance predicted to be in January 2022 based on single exponential smoothing for this data, with alpha = 0.4? (You may assume the value of the forecast for November, F ₀ = actual attendance Y ₀ in November) (ii) Professor Marazion wants to order new cauldrons for the class on potions and has asked you to build a model to predict the requirement. Which model would you opt for and why? (iii) The seasonality index (SI) for receiving a Howler (a letter of reprimand) from home in October after midterms is found to be 1.37. What does SI=1.37 mean?	6 (2*3)
	c)	Write the equation form of the following models: (i) ARIMA(2,0,0) and (ii) ARIMA(0,1,0)	6 (2*3)
4	a)	The table details transaction data on the purchase of Plush toys from a Pokemon themed store. Given that any itemset with the support count >= 2 is considered frequent, answer the following questions: (i) Which items are not frequent 1-itemsets? (ii) What are the frequent 2-itemsets formed? (iii) Compute the confidence for the association rule {Eevee, Mew} → {Pikachu}. Is this symmetric? (iv) What does Confidence = 1 for an association rule mean?	8 (2*4)
		T4 Pikachu, Eevee association rule mean?	

	b)	The table	below s	hows the	rating of	f three m	ovies (m1, m2	2 and	m3)	by for	ır use	ers (ı	u1,ı	u2, t	13	6	
	"	and u4).														(2+2-	+2	
			m1		n3			the iten				mnar	ny (CS,):			
١		u1	2	? 3		(ii) W						2 by	user	u1				
l		u2	5		NA.			n-item										
١		u3	3	3 1				the co				in co	llabo	orat	tive			
		u4	NA	2 2	2		_	How c		is be	remed	lied?	(Su	igge	est			
		(You may	use the	fact CS((a, b) = tr			sqrt(tra		se(a)	*a*tra	nspo	se(b))*b))			
ŀ	۵)	(i) How can DBSCAN be used to identify 'noise' points or outliers in the given data?													6	_		
	c)	(ii) Why	is 'nove	lty' impo	ortant for	a recom	mende	r system	m? Ho	ow c	an this	be e	valu	ate	d?		(3+	
	_																,	
T	a)	The state	transitio	n diagra	m of a 2-	state Ma	rkov C	hain is	show	n be	low.						8	
١	,				0.7												(2+3	
١		0.3	TO			-	B)0	2								+3)
		0.3 (A) (B) (0.2)																
		(X) WII				124	D		andin.	~ 40	thia di		~ ?					
					probabi					g to	this di	agrar	n?					
		(ii) Find	the stat	ionary di	probabi istributio	$n \left[\pi_1 \ \pi_2 \right]$	for th	is matr		g to	this di	agrar	n?					
		(ii) Find	the stat		probabi istributio	$n \left[\pi_1 \ \pi_2 \right]$	for th	is matr		g to	this di	agrar	n?					
		(ii) Find	l the stat Hint: π _j	ionary di $= \sum_{k=1}^{m}$	i probabi istribution $\pi_j P_{kj}$ and	$ n \left[\pi_1 \ \pi_2 \right] \\ nd \sum_{k=1}^{m} $	for the $n_k = 1$	is matr	ix	g to	this di	agrar	n? 1					
		(ii) Find	I the stat Hint: π_j es the adj	ionary di $= \sum_{k=1}^{m}$ jacent ma	i probabi istribution $\pi_j P_{kj}$ and atrix have	$ n [\pi_1 \ \pi_2] $ $ nd \sum_{k=1}^{m} $ $ e a station $	for the $n_k = 1$ hary	is matr 1)	ix [-		this di	agrar						
		(ii) Find (iii) Doe dist	If the state that: π_j as the adjustion?	ionary di = $\sum_{k=1}^{m}$ jacent ma 2 Substan	n probabi istribution $\pi_j P_{kj}$ and atrix have utiate you	$ n [\pi_1 \ \pi_2] $ $ nd \sum_{k=1}^{m} $ $ e a station $	for the $n_k = 1$ hary	is matr 1)	ix [-	0	this di	agrar	1					
	b)	(ii) Find (iii) Doe dist	If the state Hint: π_j is the adjustion he follows	ionary di $= \sum_{k=1}^{m}$ jacent ma P Substantian	n probabi istribution $\pi_j P_{kj}$ and atrix have stiate you	$ \begin{array}{ll} \text{n } [\pi_1 \ \pi_2] \\ \text{nd } \sum_{k=1}^m \\ \text{e a station} \\ \text{ar answer} \end{array} $	for the $n_k = 1$ hary with a	is matri 1)	ix n.	0			1 0	lone	a .		6 (3+3	
	(b)	(ii) Find (iii) Doe dist	If the state Hint: π_j as the adjustion to the following rovide a	ionary di = $\sum_{k=1}^{m}$ jacent ma 2 Substant wing que any two s	is probabilistribution $\pi_j P_{kj}$ and atrix have stions suggestion	on $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^m$ be a stationar answer	for the $n_k = 1$ hary with a ure the	is matri	ix n.	0 1 an A	/B test		1 0	lone	e.		6 (3+3)
		(ii) Find (iii) Doe dist	If the state that the state of the adjusted in the following and the following at the state of	cionary di $= \sum_{k=1}^{m}$ iacent ma P Substant wing que uny two s any two r	is probabilistribution $\pi_j P_{kj}$ and atrix have stions suggestion methods to	on $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^m$ be a stationar answer ans to enseto infer h	for the $n_k = 1$ mary with a ure the idden $n_k = 1$	is matri 1) reason analys	n.	0 1 an A	/B test	is w	1 0				(3+3)
	b)	(ii) Find (iii) Doe dist Answer t (i) H (ii) S	If the state that the state that the state adjusted in the follow of the following state and the state of th	ionary di = $\sum_{k=1}^{m}$ jacent ma ? Substant wing que any two services any two re- ights can	is probabilistribution $\pi_j P_{kj}$ and atrix have attiate you stions suggestion methods to celled by	In $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^{m}$ is a stationar answer in s to ense to infer here an airling an	nary with a ure the idden via e daily	is matri 1) reason analys variable	ix is of a es in a delled	0 1 an A a stud	/B test dy.	is w	1 0	ain	. The	e	-	_
		(ii) Find (iii) Doe dist	If the state that the state that the state adjusted in the follow of the following state and the state of th	ionary di = $\sum_{k=1}^{m}$ jacent ma ? Substant wing que any two services any two re- ights can	is probabilistribution $\pi_j P_{kj}$ and atrix have attiate you stions suggestion methods to celled by	In $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^{m}$ is a stationar answer in s to ense to infer here an airling an airling $[\pi_1 \ \pi_2]$	for the $n_k = \frac{1}{2}$ mary with a ure the idden via the daily, 1, 2 a	is matri 1) reason analys variable y is mound 3 ca	ix a. sis of a delled ancella	0 1 an A a stud I usin	/B test dy. ng a M ns per o	is water	1 0 v chas sho	ain	. The	e	6	_
		(ii) Find (iii) Doe dist Answer t (i) H (ii) S	If the state that the state that the state adjusted in the follow of the following state and the state of th	ionary di = $\sum_{k=1}^{m}$ jacent ma ? Substant wing que any two services any two re- ights can	is probabilistribution $\pi_j P_{kj}$ and atrix have attiate you stions suggestion methods to celled by	In $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^{m}$ is a stationar answer in s to ense to infer here an airling an airling $[\pi_1 \ \pi_2]$	nary with a ure the idden via de daily, 1, 2 a	is matri 1) a reason c analys variable y is mound 3 ca	ix sis of a es in a delled ancella	an A a studiusination	/B test dy. ng a M ns per o	is w	1 0 v chas sho	ain	. The	eeow	6	_
		(ii) Find (iii) Doe dist Answer t (i) H (ii) S	If the state Hint: π_j as the adjustment of the following beroff flat probability and the state of the probability of the state of the	ionary di = $\sum_{k=1}^{m}$ jacent may Substantian ying que any two suny two rights can	is probabilistribution $\pi_j P_{kj}$ and atrix have attiate you stions suggestion methods to celled by ix for the	In $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^{m}$ is a stationar answer in s to ense to infer her an airling e states 0	nary with a ure the idden vie daily, 1, 2 a	is matri 1) reason analys variable y is mod and 3 ca	sis of a delled ancellations i	0 1 an A a studination (in lass shows	/B test dy. ng a M ns per o akhs of	arko day is	1 0 v chas sho	ain own due	. The bel	e	6	_
		(ii) Find (iii) Doe dist. Answer t (i) I (ii) S The num transition	If the state Hint: π_j as the adjustion of the follow ber of flater probability of the	ionary di = $\sum_{k=1}^{m}$ jacent may substant wing que any two substant work with the substant with two substant is any two resignates can illity matrix.	is probabilistribution $\pi_j P_{kj}$ and atrix have atrix have atriate your stions suggestion methods to celled by this for the \mathbf{Z}	In $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^{m}$ the a stationar answer answer to infer here a states 0	for the $n_k = \frac{1}{2}$ mary with a ure the idden vie daily, 1, 2 a	is matri 1) a reason c analys variable y is mod and 3 ca evenue ancellat	ix sis of a es in a delled ancella tions i	an A studing a s	/B test dy. ng a M ns per o akhs of own be	f rupe	1 0 veell d	ain own due	. The bel	eeoow	6	_
		(ii) Find (iii) Doe dist Answer t (i) I (ii) S The num transition	If the state Hint: π_j as the adjustment of the follow ber of flater or the probability of the follow of of the f	ionary di = $\sum_{k=1}^{m}$ jacent ma ? Substant wing que my two sony two rights can ility matr	is probabilistribution $\pi_j P_{kj}$ and atrix have attiate you stions suggestion methods to celled by the for the \mathbf{Z}	In $[\pi_1 \ \pi_2]$ and $\sum_{k=1}^{m}$ he a stationar answer answer to enset to infer he an airline states 0	for the $n_k = \frac{1}{2}$ mary with a ure the idden vie daily, 1, 2 a	is matri 1) reason analys variable y is mod and 3 ca	sis of a delled ancellations i	an A studing a s	/B test dy. ng a M ns per o akhs of	f rupe	1 0 v chas sho	ain own due	. The bel	eeow	6	_