Lycée Qualifiant Zitoun

Année scolaire : 2024-2025

Niveau: 2 Bac Sciences Physiques

Durée totale : 5h

Etapes Contenu du cour Durée

1. Les équations du deuxiéme degrée :

Proposition 1

On considère dans \mathbb{R} l'équation $ax^2 + bx + c = 0$ où $a \neq 0$.

On pose $\Delta=b^2-4ac$ comme discriminant de cette équation. Les solutions possibles sont les suivantes :

- Si $\Delta < 0$, l'équation n'admet pas de solution, et son ensemble de solutions est $S = \emptyset$.
- Si $\Delta=0$, l'équation admet une solution unique, $S=\left\{\frac{-b}{2a}\right\}$.
- Si $\Delta>0,$ l'équation admet deux solutions distinctes, à savoir :

$$x_1 = rac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = rac{-b - \sqrt{\Delta}}{2a}$.

Exemple 1

- 1. Résolvons dans $\mathbb R$ l'équation : $x^2 + 4x 5 = 0$
- 2. Résolvons dans \mathbb{R} l'équation : $2x^2 3x 5 = 0$
- 3. Résolvons dans \mathbb{R} l'équation : $x^2 + x + 1 = 0$

Proposition 2

On considère le trinôme $P(x) = ax^2 + bx + c$ $(a \neq 0)$ et soit Δ son discriminant.

- Si $\Delta < 0$, alors le signe de P(x) est celui de a pour tout $x \in \mathbb{R}$.
- Si $\Delta = 0$, alors le signe de P(x) est celui de a pour tout $x \neq -\frac{b}{2a}$.
- Si $\Delta > 0$, alors le signe de P(x):
 - est celui de a à l'extérieur des racines ;
 - est le signe contraire de a à l'intérieur des racines.

Exemple 2

1. Etudions le signe du trinôme $P(x) = -3x^2 + x - 2$

Application 1

Résoudre dans $\mathbb R$ les équations suivantes et étudier le signe de chaque trinôme sur $\mathbb R$:

1.
$$2x^2 - x - 1 = 0$$

2.
$$x^2 - 6x + 9 = 0$$

2. Le domaine de définition d'une fonction :

Définition 1

Soit f une fonction numérique. Le domaine de définition de f, noté D_f , est l'ensemble des réels x pour lesquesls f(x) est bien définie.

Autrement dit, D_f est l'ensemble des $x \in \mathbb{R}$ tels que l'expression de f(x) existe et a un sens.

Exemple 3

- 1. L'ensemble de définition de la fonction $x \longmapsto \frac{1}{x}$ est $\mathbb{R} \setminus \{0\}$.
- 2. L'ensemble de définition de la fonction $x \longmapsto \sqrt{x}$ est \mathbb{R}^+ .

Proposition 3

Soient P et Q deux polynômes et f une fonction numérique.

1. Si
$$f(x) = P(x)$$
 alors, $D_f = \mathbb{R}$

2. Si
$$f(x) = \frac{P(x)}{Q(x)}$$
 alors, $D_f = \{x \in \mathbb{R} \setminus Q(x) \neq 0\}$

3. Si
$$f(x) = \sqrt{P(x)}$$
 alors, $D_f = \{x \in \mathbb{R} \setminus P(x) \ge 0\}$

4. Si
$$f(x) = \frac{\sqrt{P(x)}}{Q(x)}$$
 alors, $D_f = \{x \in \mathbb{R} \setminus P(x) \ge 0 \text{ et } Q(x) \ne 0\}$

5. Si
$$f(x) = \sqrt{\frac{P(x)}{Q(x)}}$$
 alors, $D_f = \{x \in \mathbb{R} \setminus \frac{P(x)}{Q(x)} \ge 0 \text{ et } Q(x) \ne 0\}$

Application 2

Déterminer l'ensemble de définition des fonctions suivantes :

1.
$$f(x) = x^3 + 2x^2 - x - 5$$

2.
$$f(x) = \frac{x^2 - 4x + 3}{x^2 - x - 2}$$

3.
$$f(x) = \sqrt{x^2 - 4x + 3}$$

4.
$$f(x) = \frac{\sqrt{x^2 - x - 2}}{x - 2}$$

5.
$$f(x) = \sqrt{\frac{x^2 - 8x + 9}{x^2 - 4x}}$$

3. Limite d'une fonction numérique :

3.1. Limites usuelles::

Proposition 4

Soit n un entier naturel non nul. Alors:

a)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

b)
$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

c)
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\mathrm{d}) \lim_{x \to -\infty} \frac{1}{x^n} = 0$$

Proposition 5

Soit n un entier naturel non nul. Alors:

a)
$$\lim_{x \to +\infty} x = +\infty$$

b)
$$\lim_{x \to +\infty} x^2 = +\infty$$

a)
$$\lim_{x \to +\infty} x = +\infty$$
 b) $\lim_{x \to +\infty} x^2 = +\infty$ c) $\lim_{x \to +\infty} x^3 = +\infty$

d)
$$\lim_{x \to +\infty} x^n = +\infty$$

e)
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$
 f) $\lim_{x \to -\infty} x = -\infty$ g) $\lim_{x \to -\infty} x^2 = +\infty$

f)
$$\lim_{x \to -\infty} x = -\infty$$

g)
$$\lim_{x \to -\infty} x^2 = +\infty$$

$$h) \lim_{x \to -\infty} x^3 = -\infty$$

i) Si
$$n$$
 est paire et $n\neq 0,$ alors $\lim_{x\rightarrow -\infty}x^n=+\infty$

j) Si
$$n$$
 est impaire et $n \neq 0$, alors $\lim_{x \to -\infty} x^n = -\infty$

Proposition 6

Soit n un entier naturel non nul. Alors:

a)
$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

b)
$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

c)
$$\lim_{x \to 0^+} \frac{1}{x^n} = +\infty$$

$$d) \lim_{x \to 0^+} \sqrt{x} = 0$$

e)
$$\lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$$

f) Si
$$n$$
 est paire et $n \neq 0$, alors $\lim_{x \to 0^-} \frac{1}{x^n} = +\infty$

g) Si
$$n$$
 est impaire et $n \neq 0$, alors $\lim_{x \to 0^-} \frac{1}{x^n} = -\infty$

Théorème 1

Soit f une fonction numérique.

$$\lim_{x \to a} f(x) = l \Leftrightarrow \lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = l$$

3.2. Limite d'une fonction polynômiale - Limite d'une fonction rationnelle :

Proposition 7

Soit P et Q deux fonctions polynômes et x_0 un réel. alors :

a)
$$\lim_{x \to x_0} P(x) = P(x_0)$$

b)
$$\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$$
 si $Q(x_0) \neq 0$

Si ax^n et bx^m sont respectivement les termes du plus haut degré des polynômes P et Q, alors :

a)
$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^n$$

b)
$$\lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^n$$

c)
$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{ax^n}{bx^{n}}$$

c)
$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{ax^n}{bx^m}$$
 d) $\lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{ax^n}{bx^m}$

Application 3

Calculer les limites suivantes :

a)
$$\lim_{x \to +\infty} x^2 + x + 1$$

b)
$$\lim_{x \to +\infty} \frac{2x^4 + 4x - 10}{3x^5 - x}$$

a)
$$\lim_{x \to +\infty} x^2 + x + 1$$
 b) $\lim_{x \to +\infty} \frac{2x^4 + 4x - 10}{3x^5 - x}$ c) $\lim_{x \to -\infty} \frac{2x^6 + 4x - 10}{3x^6 + 2x + 1}$

3.3. Opérations sur les limites :

Proposition 8

Dans tout ce qui suit, a est un nombre réel ou $+\infty$ ou $-\infty$; $(a \in \mathbb{R} \cup \{-\infty; +\infty\})$;

l et l' sont des nombres réels. Ces opérations restent valables pour les limites à droite et à gauche en a.

$\lim_{x\to a} f(x)$	1	1	1	+∞	$-\infty$	$-\infty$	+∞
$\lim_{x\to a}g(x)$	l'	+8	-∞	+∞	-∞	+8	-8
$\lim_{x \to a} [f(x) + g(x)]$	l+l'	+∞	-∞	+∞	-∞	Forme indéterminée	

$\lim_{x \to a} f(x)$	1	l > 0	<i>l</i> < 0	l > 0	<i>l</i> < 0	+∞	+∞	-∞	0
$\lim_{x\to a}g(x)$	ľ	+∞	+8	-∞	-∞	+∞	-∞	-∞	±∞
$\lim_{x \to a} [f(x)g(x)]$	11'	+∞	$-\infty$	$-\infty$	+∞	+∞	+∞	+∞	F.I

$\lim_{x\to a}g(x)$	$l \in \mathbb{R}^*$	+∞	-∞	0+	0-
$\lim_{x\to a}\frac{1}{g(x)}$	$\frac{1}{l}$	0	0	+∞	-8

$\lim_{x\to a} f(x)$	1	1	+∞	+∞	$-\infty$	$-\infty$
$\lim_{x\to a}g(x)$	$l^{'} \neq 0$	±8	l > 0	l < 0	l > 0	l < 0
$\lim_{x\to a}\frac{f(x)}{g(x)}$	$\frac{l}{l'}$	0	+∞	-∞	-∞	+∞

11 1/)	-∞	+∞	+∞	-∞	0	±∞
$\lim_{x\to a} f(x)$	ou	ou	ou	ou		
	l < 0	l > 0	l > 0	l < 0		
	0+	0+	0-	0-	0	±∞
$\lim_{x\to a}g(x)$						
(()	-∞	+∞	-∞	+∞	Forme indéterminée	
$\lim_{x \to a} \frac{f(x)}{g(x)}$						

Application 4

Calculer les limites suivantes :

a)
$$\lim_{x \to 1^+} \frac{x+1}{x-1}$$

b)
$$\lim_{x\to 0^+} 3x + \frac{1}{\sqrt{x}}$$

c)
$$\lim_{x \to +\infty} x - \sqrt{x}$$

b)
$$\lim_{x \to 0^+} 3x + \frac{1}{\sqrt{x}}$$
 c) $\lim_{x \to +\infty} x - \sqrt{x}$ d) $\lim_{x \to +\infty} (x^2 + 1) \frac{1}{x}$

3.4. Limites d'une fonction irrationnelle :

Proposition 9

Soit f une fonction numérique définie sur un intervalle de la forme $[a; +\infty[$ (où a est un réel) telle que:

$$\forall x \in [a; +\infty[, f(x) \ge 0]$$

Si $\lim_{x \to +\infty} f(x) = \ell$ et $\ell \ge 0$, alors:

$$\lim_{x \to +\infty} \sqrt{f(x)} = \sqrt{\ell}$$

Si $\lim_{x\to +\infty} f(x) = +\infty$, alors:

$$\lim_{x\to +\infty} \sqrt{f(x)} = +\infty$$

Application 5

Calculer les limites suivantes :

a)
$$\sqrt{2x^2 + x + 1}$$

b)
$$\sqrt{\frac{2x}{x+1}}$$

c)
$$\sqrt{\frac{x}{x^2+4}}$$

3.5. Limite de fonctions trigonométriques :

Proposition 10

On a les limites suivantes :

a)
$$\lim_{x\to 0} \sin x = 0$$

b) Pour tout réel a, $\lim_{x \to a} \sin x = \sin a$

c)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

c) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ d) Pour tout réel a, $\lim_{x\to a} \frac{\sin(ax)}{x} = a$

e)
$$\lim_{x\to 0}\cos x=1$$

e) $\lim_{x\to 0} \cos x = 1$ f) Pour tout réel a, $\lim_{x\to a} \cos x = \cos a$ g) $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$ h) $\lim_{x\to 0} \frac{\tan x}{x} = 1$

g)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$h) \lim_{x \to 0} \frac{\tan x}{x} = 1$$

Application 6

Calculer les limites suivantes :

a)
$$\lim_{x \to 0} \frac{\sin(2x)}{5x}$$

b)
$$\lim_{x\to 0} \frac{x}{\sin x}$$

c)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x}$$

d)
$$\lim_{x\to 0} \frac{\sin(x)}{\tan x}$$

3.6. Limite et ordre:

Proposition 11

Soit a et l deux réels et $x_0 \in \mathbb{R} \cup \{+\infty; -\infty\}$.

Soit f, u et v des fonction numériques définie sur un voisinage de x_0 I.

1. Si
$$\begin{cases} (\forall x \in I); \ u(x) \leq f(x) \\ \lim_{x \to x_0} u(x) = +\infty \end{cases}$$
 alors, $\lim_{x \to x_0} f(x) = +\infty$

2. Si
$$\begin{cases} (\forall x \in I); \ f(x) \le u(x) \\ \lim_{x \to x_0} u(x) = -\infty \end{cases}$$
 alors, $\lim_{x \to x_0} f(x) = -\infty$

3. Si
$$\begin{cases} (\forall x \in I); |f(x) - l| \le u(x) \\ \lim_{x \to x_0} u(x) = 0 \end{cases}$$
 alors, $\lim_{x \to x_0} f(x) = l$

4. Si
$$\begin{cases} (\forall x \in I); \ u(x) \le f(x) \le v(x) \\ \lim_{x \to x_0} u(x) = \lim_{x \to x_0} v(x) = l \end{cases} \text{ alors, } \lim_{x \to x_0} f(x) = l$$

Application 7

Calculer les limites suivantes :

a)
$$\lim_{x \to +\infty} 2x + \cos^2(x)$$
 b) $\lim_{x \to 0} x^2 \sin(\frac{1}{x})$

b)
$$\lim_{r\to 0} x^2 \sin(\frac{1}{r})$$

c)
$$\lim_{x\to 0} 1 + x^2 \cos \frac{1}{x}$$

d)
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$