Sieci komputerowe, ćwiczenia 1

Patryk Maciąg

13 March 2024

Zadanie 1

Dla każdego z podanych poniżej adresów IP w notacji CIDR określ, czy jest to adres sieci, adres rozgłoszeniowy czy też adres komputera. W każdym przypadku wyznacz odpowiadający mu adres sieci, rozgłoszeniowy i jakiś adres IP innego komputera w tej samej sieci.

- 10.1.2.3/8
- 156.17.0.0/16
- 99.99.99.99/27
- 156.17.64.4/30
- 123.123.123.123/32

Notacja CIDR (Classless Inter-Domain Routing): opisuje zakres adresów IP posiadających wspólny prefiks za pomocą pary (pierwszy adres z zakresu, długość prefiksu).

• 10.1.2.3/8

postać binarna: 00001010.00000001.00000010.00000011₂

rodzaj adresu: adres komputera.

adres innego komputera w tej samej sieci: 00001010.00000000.00000000.00000001 = 10.0.0.1/8

156.17.0.0/16

postać binarna: $10011100.00010001.00000000.000000000_2$

rodzaj adresu: adres sieci.

adres przykładowego komputera w tej samej sieci: 10011100.00010001.000000000.000000012 = 156.17.0.1/16

• 99.99.99.99/27

postać binarna: $01100011.01100011.01100011.01100011_2$

rodzaj adresu: adres komputera.

adres sieci: $01100000.01100011.01100011.01100000_2 = 99.99.99.96/27$

adres rozgłoszeniowy: $01100111.01100011.01100011.01111111_2 = 99.99.99.127/27$

adres innego komputera w tej samej sieci: $01100000.01100011.01100011.01100001_2 = 99.99.99.97/27$

156.17.64.4/30

postać binarna: $10011100.00010001.01000000.00000100_2$

rodzaj adresu: adres sieci.

adres rozgłoszeniowy: $10011100.00010001.01000000.00000111_2 = 156.17.64.7/30$

adres przykładowego komputera w tej samej sieci: 10011100.00010001.01000000.00000101 $_2=156.17.64.5/30$

123.123.123.123/32

postać binarna: 01111011.01111011.01111011.01111011 $_2$

rodzaj adresu: pojedynczy adres IP komputera. Prefiks ma 32 bity, zatem jest to jednocześnie adres sieci oraz adres rozgłoszeniowy.

Zadanie 2

Podziel sieć 10.10.0.0/16 na 5 rozłącznych podsieci, tak aby każdy z adresów IP sieci 10.10.0.0/16 był w jednej z tych 5 podsieci. Jak zmieniła się liczba adresów IP możliwych do użycia przy adresowaniu komputerów? Jaki jest minimalny rozmiar podsieci, który możesz uzyskać w ten sposób?

```
\begin{array}{l} 10.10.0.0/16 -> 00001010.00001010.00000000.000000000_2 \\ 32-16=16 \ \mathrm{adres\acute{o}w} \end{array}
```

Rozdzielamy sieć na 4 cześci, a jedną z nich dzielimy jeszcze na 2. Po pierwszym podziale na 2 podsieci:

- $00001010.00001010.000000000.000000000_2 = 10.10.0.0/17$
- $00001010.00001010.10000000.000000000_2 = 10.10.128.0/17$

 2^{15} adresów na sieć.

Po drugim podziale każdej z 2 poprzednio utworzonych podsieci na 2 podsieci:

- $\bullet \ 00001010.00001010.0000000000.000000000_2 = 10.10.0.0/18$
- $00001010.00001010.100000000.000000000_2 = 10.10.128.0/18$
- $00001010.00001010.11000000.000000000_2 = 10.10.192.0/18$

2¹⁴ adresów na sieć.

Po ostatnim podziale 1 z wybranych utworzonych podsieci na 2 podsieci:

- $00001010.00001010.11000000.000000000_2 = 10.10.192.0/19$
- $00001010.00001010.11100000.00000000_2 = 10.10.224.0/19$

 2^{13} adresów na sieć.

W ten sposób otrzymaliśmy 5 podsieci:

- $00001010.00001010.01000000.000000000_2 = 10.10.64.0/18$
- $00001010.00001010.100000000.000000000_2 = 10.10.128.0/18$
- $\bullet \ 00001010.00001010.11000000.000000000_2 = 10.10.192.0/19$
- $00001010.00001010.11100000.000000000_2 = 10.10.224.0/19$

Jak zmieniła się liczba adresów? $2^{16}-2-(3*2^{14}-3*2+2*2^{13}-2*2)=2^{16}-2-(3*2^{14}+2^{14}-6-4)=2^{16}-2-(2^{16}-10)=8$

Minimalny rozmiar podsieci: zaczynamy podział sieci od 10.10.0.0/16, ponieważ zawiera ona najwięcej adresów IP, a następnie za każdym razem dzielmy 1 wybraną sieć z ostatniego podziału, aż otrzymamy 5 różnych podsieci. Uzyskamy dzięki temu następujący podział:

- 10.10.128.0/17
- 10.10.64.0/18
- 10.10.32.0/19
- 10.10.16.0/20
- 10.10.0.0/20

Minimalny rozmiar podsieci to $2^{32-20} - 2 = 2^{12} - 2 = 4094$.

Zadanie 3

Tablica routingu zawiera następujące wpisy (podsieć \rightarrow dokąd wysłać):

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/23 \rightarrow do routera B$
- $10.0.2.0/24 \rightarrow do routera B$
- $10.0.3.0/24 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.0.128/25 \rightarrow do routera B$
- $10.0.1.8/29 \rightarrow do routera B$
- $10.0.1.16/29 \rightarrow do routera B$
- $10.0.1.24/29 \rightarrow do routera B$

Napisz równoważną tablicę routingu zawierającą jak najmniej wpisów.

- 3. $10.0.2.0/24 = 00001010.000000000.0000010.00000000_2 (\rightarrow do routera B)$
- 4. $10.0.3.0/24 = 00001010.000000000.00000011.000000000_2 (\rightarrow do routera B)$
- 5. $10.0.1.0/24 = 00001010.000000000.0000001.00000000_2 (\rightarrow do routera C)$
- 6. $10.0.0.128/25 = 00001010.00000000.00000000.10000000_2 (\rightarrow do routera B)$
- 7. $10.0.1.8/29 = 00001010.000000000.0000001.00001000_2 (\rightarrow do routera B)$
- 8. $10.0.1.16/29 = 00001010.000000000.0000001.00010000_2 (\rightarrow do routera B)$
- 9. $10.0.1.24/29 = 00001010.000000000.0000001.00011000_2 (\rightarrow do routera B)$

Obserwacje: Sieci 2, 3, 4 i 6 to podsieci 10.0.0.0/22 oraz ida razem do B. Sieci 7, 8 i 9 podobnie, jednak są one również podsieciami 5, która idzie do C, zatem 7 zapisujemy osobno, a 8 oraz 9 łączymy w 10.0.1.24/29.

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/22 \rightarrow do routera B$
- $10.0.1.0/24 \rightarrow do routera C$
- $10.0.0.16/28 \rightarrow do routera B$
- $10.0.1.8/29 \rightarrow do routera B$

Zadanie 4

Wykonaj powyższe zadanie dla tablicy

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.0/24 \rightarrow do routera C$
- $10.3.0.32/27 \rightarrow do routera B$
- $10.3.0.64/27 \rightarrow do routera B$
- $10.3.0.96/27 \rightarrow do routera B$

- 3. $10.3.0.0/24 = 00001010.00000011.00000000.000000000_2 (\rightarrow do routera C)$
- 4. $10.3.0.32/27 = 00001010.00000011.00000000.00100000_2 (\rightarrow do routera B)$
- 5. $10.3.0.64/27 = 00001010.00000011.00000000.01000000_2 \ (\rightarrow \mbox{do routera B})$
- 6. $10.3.0.96/27 = 00001010.00000011.00000000.01100000_2 (\rightarrow do routera B)$

- $0.0.0.0/0 \rightarrow do routera A$
- $10.0.0.0/8 \rightarrow do routera B$
- $10.3.0.128/25 \rightarrow do routera C$
- $10.3.0.0/27 \rightarrow do routera C$

Zadanie 6

W podanej niżej sieci tablice routingu budowane są za pomocą algorytmu wektora odległości. Pokaż (krok po kroku), jak będzie się to odbywać. W ilu krokach zostanie osiągnięty stan stabilny?

Przechowuje wektor odległości V zawierający odległości do znanych mu routerów i sieci. Początkowo: V = tylko sieci dostępne bezpośrednio Co pewien czas (w każdym kroku) każdy router, wysyła swój V do sąsiednich routerów, uaktualnia tablicę routingu na podstawie informacji od sąsiadów. (tablica routingu = tablica przekazywania + informacja z V o odległościach do celu)

(krok 0.)	A	В	С	D	Е
trasa do SV	1	1			
trasa do SW		1		1	
trasa do SX		1	1		
trasa do SY				1	1
trasa do SZ			1	1	

(krok 1.)	A	В	С	D	E
trasa do SV	1	1	2 (via B)	2 (via B)	
trasa do SW	2 (via B)	1	2 (via B)	1	2 (via D)
trasa do SX	2 (via B)	1	1	2 (via B)	
trasa do SY		2 (via D)	2 (via D)	1	1
trasa do SZ		2 (via D)	1	1	2 (via D)

(krok 2.)	A	В	С	D	E
trasa do SV	1	1	2 (via B)	2 (via B)	3 (via D)
trasa do SW	2 (via B)	1	2 (via B)	1	2 (via D)
trasa do SX	2 (via B)	1	1	2 (via B)	3 (via D)
trasa do SY	3 (via B)	2 (via D)	2 (via D)	1	1
trasa do SZ	3 (via B)	2 (via D)	1	1	2 (via D)

Stan stabilny: po 2 krokach (wszystkie ścieżki są już najkrótsze).

Zadanie 7

Załóżmy, że w powyższej sieci tablice routingu zostały już zbudowane. Co będzie się działo, jeśli zostanie dodana sieć SQ łącząca routery A i E ?

Po dodaniu połączenia między A i E otrzymamy taką sieć:

Nowa ścieżka między routerami A i D \rightarrow inne ścieżki mogą ulec skróceniu.

(krok 0.)	A	В	С	D	Е
trasa do SV	1	1	2 (via B)	2 (via B)	3 (via D)
trasa do SW	2 (via B)	1	2 (via B)	1	2 (via D)
trasa do SX	2 (via B)	1	1	2 (via B)	3 (via D)
trasa do SY	3 (via B)	2 (via D)	2 (via D)	1	1
trasa do SZ	3 (via B)	2 (via D)	1	1	2 (via D)
trasa do SQ	1				1

(krok 1.)	A	В	C	D	E
trasa do SV	1	1	2 (via B)	2 (via B)	3 (via D)
trasa do SW	2 (via B)	1	2 (via B)	1	2 (via D)
trasa do SX	2 (via B)	1	1	2 (via B)	3 (via D)
trasa do SY	1 (via E)	2 (via D)	2 (via D)	1	1
trasa do SZ	3 (via B)	2 (via D)	1	1	2 (via D)
trasa do SQ	1	2 (via A)		2 (via E)	1

(krok 2.)	A	В	С	D	E
trasa do SV	1	1	2 (via B)	2 (via B)	3 (via D)
trasa do SW	2 (via B)	1	2 (via B)	1	2 (via D)
trasa do SX	2 (via B)	1	1	2 (via B)	3 (via D)
trasa do SY	1 (via E)	2 (via D)	2 (via D)	1	1
trasa do SZ	3 (via B)	2 (via D)	1	1	2 (via D)
trasa do SQ	1	2 (via A)	3 (via B)	2 (via E)	1

Stan stabilny: po 2 krokach (wszystkie ścieżki są już najkrótsze).