Анализ метода отбора признаков QPFS для обобщенно-линейных моделей*

 $A.\ \mathcal{A}.\ Toлмaues,\ A.\ A.\ Adyenso,\ B.\ B.\ Cmpuэсos$ tolmachev.a.d.@phystech.edu; aduenko1@gmail.com; strijov@ccas.ru

В данной работе исследуется проблема мультиколлинеарности и её влияние на точность методов выбора признаков. Решается задача выбора признаков и различные подходы к ее решению. Проведен анализ метода отбора признаков на основе квадратичного программирования. В работе приводятся критерии сравнения различных способов отбора признаков, и проведено сравнение различных методов на тестовых выборках. Сделан вывод об эффективности рассматриваемых подходов на синтетических данных.

Ключевые слова: регрессионный анализ; мультиколлинеарность; число обусловленности; выбор признаков; квадратичное программирование

1 Введение

10

11

12

13

14

15

16

17

18

19

21

Работа посвящена анализу метода отбора признаков QPFS на основе квадратично го программирования и сравнительному анализу различных методов отбора признаков.

- 4 Предполагается, что исследуемая выборка содержит значительное число мультиколлине-
- 5 арных признаков. Мультиколлинеарность это сильная корреляционная связь между
- 6 отбираемыми для анализа признаками, совместно воздействующими на целевой вектор.
- 7 Это явление затрудняет оценивание регрессионных параметров и выявление зависимости
- между признаками и целевым вектором. Проблема мультиколлинеарности и возможные
- способы её обнаружения и устранения описаны в [1, 10, 14].

Задача выбора оптимального подмножества признаков является одной из основных частей выбора модели в исследуемом методе обучения (см. в [3]). Методы выбора признаков основаны на минимизации некоторого функционала, который отражает качество рассматриваемого подмножества признаков. В [6,7] сделан обзор основных существующих методов отбора признаков.

В [9,13] предложен новый метод отбора признаков, использующий один из основных методов оптимизации, квадратичное программирование (см. [13]), для задачи отбора признаков. Цель данной работы состоит в анализе возможностей применения метода квадратичного программирования в задаче выбора признаков.

Важной частью этой работы является сравнение различных методов отбора признаков, описанных, например, в [8], на различных тестовых выборках.

2 Постановка задачи

2.1 Рассматриваемая модель

Задана выборка $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}$, где $i \in \{1, 2, ..., m\}$, где множество свободных переменных — вектор $\mathbf{x} = [x_1, x_2, ..., x_j, ..., x_n]$, где $j \in \mathcal{J} = \{1, 2,, n\}$. Предполагается, что $\mathbf{x}_i \in \mathbb{X} \subset \mathbb{R}^n$ и $y_i \in \mathbb{Y} \subset \mathbb{R}$.

Введем обозначения $\mathbf{y} = [y_1, y_2, ... y_m]^\mathsf{T}$ - вектор значений зависимой переменной (целевой вектор), $\chi_j = [x_{1j}, x_{2j}, ..., x_{mj}]^\mathsf{T}$ - реализация j-ой свободной переменной (j-ый признак), и $\mathbf{X} = [x_1^\mathsf{T}, x_2^\mathsf{T}, ... x_n^\mathsf{T}]^\mathsf{T} = [\chi_1, \chi_2, ..., \chi_n]$ - матрица плана эксперимента.

^{*}Работа выполнена в рамках курса «Моя первая научная статья», НИУ МФТИ, 2021

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

Предполагается, что вектор \mathbf{x}_i и значение целевой переменной y_i связаны соотношени-

$$y_i = f(\mathbf{w}, \mathbf{x}_i) + \varepsilon(\mathbf{x}_i),$$

где $f: \mathbb{W} \times \mathbb{X} \to \mathbb{Y}$ есть отображение декартова произведения пространства допустимых параметров \mathbb{W} и пространства значений \mathbb{X} свободной переменной в область значений \mathbb{Y} зависимой целевой переменной, а $\varepsilon(\mathbf{x}_i)$ - i-ый компонент вектора регрессионных остатков $\varepsilon = \mathbf{f} - \mathbf{y}$. Обозначим вектор-функцию

$$\mathbf{f} = \mathbf{f}(\mathbf{w}, \mathbf{X}) = [f(\mathbf{w}, \mathbf{x}_1), f(\mathbf{w}, \mathbf{x}_2), ..., f(\mathbf{w}, \mathbf{x}_m)]^\mathsf{T} \in \mathbb{Y}^m.$$

Назовем моделью пару $(\mathbf{f}, \mathcal{A})$, где $\mathcal{A} \subset \mathcal{J}$ — подмножество индексов признаков, используемое для вычисления вектор-функции \mathbf{f} . Предполагается гомоскедастичность модели, т.е. $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_m)$.

2.2 Применение квадратичной оптимизации для задачи отбора признаков

В [8, 13] предлагается подход с применением квадратичной оптимизации для задачи выбора признаков в сформулированной выше модели. Основная идея предлагаемого подхода заключается в минимизации количества схожих признаков и максимизации количества релевантных признаков. Пусть \mathcal{J} – множество признаков в рассматриваемой модели, и $|\mathcal{J}| = n$.

Положим, $\mathbf{Q} \in \mathbb{R}^{n \times n}$ - матрица попарных корреляций Пирсона между признаками $[\chi_1, \chi_2, ..., \chi_n]$, а $\mathbf{b} \in \mathbb{R}^n$ - вектор корреляций Пирсона между признаками $[\chi_1, \chi_2, ..., \chi_n]$ и целевым вектором $\mathbf{y} = [y_1, y_2, ... y_m]^\mathsf{T}$.

В [8] рассматривается функционал $Q(\mathbf{a}) = \mathbf{a}^\mathsf{T} \mathbf{Q} \mathbf{a} - \mathbf{b}^\mathsf{T} \mathbf{a}$, где $\mathbf{a} \in \mathbb{R}^n$ и $\mathbf{Q} \in \mathbb{R}^{n \times n}$ – матрица схожести признаков, а $\mathbf{b} \in \mathbb{R}^n$ — вектор релевантности признаков, определенные выше. Матрицу \mathbf{Q} и вектор \mathbf{b} будем представлять как функции Sim и Rel соответственно, где Sim: $\mathcal{J} \times \mathcal{J} \to [0,1]$, Rel: $\mathcal{J} \to [0,1]$. Таким образом, необходимо решить задачу оптимизации:

$$\mathbf{a}^* = \arg\min_{\mathbf{a} \in \mathbb{B}^n} Q(\mathbf{a}).$$

Важно отметить, что задача целочисленного квадратичного программирования, сформулированная выше, является **NP**-полной, так как поиск минимума функции **Q** ведется по вершинам булева куба $\mathbb{B}^n = \{0,1\}^n$. Поэтому, чтобы можно было применять различные методы выпуклой оптимизации будем искать минимум функции по выпуклой оболочке булева куба $\operatorname{Conv}(\mathbb{B}^n) = [0,1]^n$.

Тогда получаем следующую задачу выпуклой оптимизации:

$$\begin{cases} \mathbf{z}^* = \arg\min_{z \in [0,1]^n} \mathbf{z}^\mathsf{T} \mathbf{Q} \mathbf{z} - \mathbf{b}^\mathsf{T} \mathbf{z} \\ \|z\|_1 \leqslant 1 \end{cases}$$

В рассматриваемом в [8] методе не используется коэффициент для балансировки между частями минимизируемого функционала, что вносит неопределенность в этот метод. Поэтому далее будем рассматривать оптимизационную задачу, предложенную в [13], где добавлена балансировка:

$$\frac{1}{2}(1-\alpha)\mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{a} - \alpha\mathbf{b}^{\mathsf{T}}\mathbf{a} \to \min_{\mathbf{a}}$$
s.t. $\mathbf{a} \geqslant 0, \sum_{i=1}^{n} a_i = 1.$ (1)

Решение задачи (1) \mathbf{a}^* определяет, какие признаки используются при построении модели. Признак j активен $\iff a_j > 0$.

Эта задача эквивалетна

57

60

61

62

64

71

72

73

74

$$\frac{1}{2}\mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{a} - \frac{\alpha}{1-\alpha}\mathbf{b}^{\mathsf{T}}\mathbf{a} \to \min_{\mathbf{a}}$$
s.t. $\mathbf{a} \geqslant 0$, $\sum_{i=1}^{n} a_i = 1$. (2)

Обозначим задачу (2) как $S\left(\underbrace{\frac{\alpha}{1-\alpha}}_{\beta^{-1}},\,1\right)$, где 1 указывает на норму решения. Далее

рассмотрим задачу $S(\beta^{-1},\,\gamma)$ и сделаем замену переменной ${f a}=\gamma { ilde {f a}},$ получим

$$\gamma^{2} \left(\frac{1}{2} \tilde{\mathbf{a}}^{\mathsf{T}} \mathbf{Q} \tilde{\mathbf{a}} - \frac{1}{\beta \gamma} \mathbf{b}^{\mathsf{T}} \tilde{\mathbf{a}} \right) \to \min_{\tilde{\mathbf{a}}}$$
s.t. $\tilde{\mathbf{a}} \geqslant 0, \sum_{i=1}^{n} \tilde{a}_{i} = 1,$ (3)

откуда задача $S(\beta^{-1}, \gamma)$ эквивалентна задаче $S((\beta\gamma)^{-1}, 1)$ в терминах активных признаков (сами же решения отличаются в γ раз), а потому мы имеем дело именно с однопараметрическим семейством и задание нормы решения, равной одному, не ограничивает общности.

Рассмотрим теперь замену переменной $\mathbf{a}=\beta^{-1}\tilde{\mathbf{a}}$ в (2). Получим, что задача (2) оквивалентна при $\alpha\in(0,\,1)$ задаче

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}}$$
s.t. $\tilde{\mathbf{a}} \geqslant 0$, $\sum_{i=1}^{n} \tilde{a}_{i} = \beta$. (4)

Наряду с задачей (4) можно рассмотреть задачу

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}}$$
s.t. $\tilde{\mathbf{a}} \geqslant 0$, $\sum_{i=1}^{n} \tilde{a}_{i} \leqslant \beta$ (5)

и соответствующую задачу без ограчения на норму вектора ã:

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}} \\
\text{s.t. } \tilde{\mathbf{a}} \geqslant 0. \tag{6}$$

75

3 Теоретическая часть

77

3.1 Сравнение различных задач

Задача (1) не позволяет выбросить все признаки, поскольку $\|\mathbf{a}\| = 1 > 0$. Задача (5) эквивалентна ограничению неравенства в исходной задаче и, например, при $\alpha = 0$ будет иметь решением исключение всех признаков. Далее приведем анализ свойств решения (1) с ограничением равенства и неравенства для разных значений α .

Таблица 1 Свойства реше	ния в методе QPFS в зависимости	от параметра α
--------------------------------	---------------------------------	-----------------------

	zaomina z obonetka pemenim z metoge Will z z zakiemitetin et napametpa a			
	α	Равенство	Неравенстсво	
-	$\alpha = 0$	Используются все признаки, $\mathbf{Q}\mathbf{a}^* = \eta\mathbf{e},\ \eta > 0$	Выброшены все признаки	
	$\alpha \to 0$	Используются все признаки, $\mathbf{Q}\mathbf{a}^* \to \eta\mathbf{e},\ \eta>0$	Решение (6)	
	lpha ightarrow 1 Сходимся к отбору одного признака с максимальным b		То же, что и в «равенство»	
Ì	$\alpha = 1$	Отбор одного признака с максимальным b_i	То же, что и в «равенство»	

В случае $\alpha=0$ для неравенства $(\sum_{i=1}^n a_i\leqslant 1)$ решением является $\mathbf{a}^*=0$. В случае равенства $(\sum_{i=1}^n a_i=1)$, чтобы минимизировать потери от необходимости иметь ненулевой \mathbf{a} , в оптимальном \mathbf{a}^* оптимизируемая функция $\frac{1}{2}\mathbf{a}^\mathsf{T}\mathbf{Q}\mathbf{a}$ должна иметь одинаковый градиент по всем направлениям (так как иначе можно уменьшить одну координату, увеличить другую, оставив норму \mathbf{a} неизменной, уменьшив значение функции). Тот же результат можно получить и другим способом - из рассмотрения Лагранжиана задачи.

3.2 Анализ решения QPFS в зависимости от параметра α

Задачи (4) и (5) эквивалентны для некоторых η задаче

$$\frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} + \eta \sum_{j=1}^{n} \mathbf{a}_{j} \to \min_{\tilde{\mathbf{a}}} \text{ s.t. } \tilde{\mathbf{a}} \geqslant 0,$$

что эквивалентно

92

93

95

96

97

$$\frac{1}{2}\tilde{\mathbf{a}}^\mathsf{T}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^\mathsf{T}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}} \text{ s.t. } \tilde{\mathbf{a}} \geqslant 0,$$

где $\tilde{b}_j = b_j - \eta$ и η монотонно убывает по $\|\tilde{\mathbf{a}}\|_1 = \beta$. При этом для случая неравенства $\eta \geqslant 0$, в для равенства $\eta < 0$, если $\beta > \|\mathbf{a}^*\|_1$, где \mathbf{a}^* есть решение задачи (6) без ограничения на норму.

Таким образом, добавление ограничения на норму, фактически штрафует релевантность и происходит исключение тех признаков, у которых $b_j < \eta$, поскольку у них поправленная релевантность \tilde{b}_j становится отрицательной.

3.3 Связь с Lasso-моделью для линейной регрессии

Стандартная задача линейной регрессии с L_1 -регуляризацией (Lasso) имеет вид

$$\frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \tau \|\mathbf{w}\|_{1} \to \min_{\mathbf{w}}.$$
 (7)

Предположим, что $\mathbf{x}_j^\mathsf{T} \mathbf{x}_j = 1$, $\mathbf{y}^\mathsf{T} \mathbf{y} = 1$, то есть признаки и целевая переменная нормированы. В качестве функций сходства (Sym) и релевантности (Rel) в QPFS рассмотрим

корреляцию Пирсона, как сказано в постановке задачи. Имеем

$$\frac{1}{2}|\mathbf{y} - \mathbf{X}\mathbf{w}||_{2}^{2} + \tau ||\mathbf{w}||_{1} = \frac{1}{2} \underbrace{\mathbf{y}^{\mathsf{T}}\mathbf{y}}_{=1} + \frac{1}{2}\mathbf{w}^{\mathsf{T}} \underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{X}}_{\tilde{\mathbf{Q}}} \mathbf{w} - (\underbrace{\mathbf{X}^{\mathsf{T}}\mathbf{y}}_{\tilde{\mathbf{p}}})^{\mathsf{T}}\mathbf{w},$$

где учтена нормированность всех признаков и целевой переменной, поэтому корреляция и ковариация совпадают; Здесь, $\tilde{\mathbf{Q}}$, $\tilde{\mathbf{b}}$ — корреляции между признаками и признаками и целевой переменной соответственно (см. раздел 2.2). Отсюда задачу (7) можно переписать в виде

$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\tilde{\mathbf{Q}}\mathbf{w} - \tilde{\mathbf{b}}^{\mathsf{T}}\mathbf{w} + \tau \|\mathbf{w}\|_{1} \to \min_{\mathbf{w}},$$

что может быть переписано в эквивалентную задачу с ограничением равенства (так же для неравенства) для некоторого η :

$$\frac{1}{2} \mathbf{w}^{\mathsf{T}} \tilde{\mathbf{Q}} \mathbf{w} - \tilde{\mathbf{b}}^{\mathsf{T}} \mathbf{w} \to \min_{\mathbf{w}}
\text{s.t. } ||\mathbf{w}||_{1} = \eta.$$
(8)

Если все корреляции Пирсона между признаками и между признаками и целевой переменной неотрицательны (то есть векторы $\mathbf{x}_1, \ldots, \mathbf{x}_n, \mathbf{y}$ лежат в одном многомерном квадранте), то $\tilde{\mathbf{Q}} = \mathbf{Q}$, $\tilde{\mathbf{b}} = \mathbf{b}$, то есть задача (8) тождественна QPFS, но без ограничения $\mathbf{w} \geqslant 0$. Таким образом, QPFS можно рассматривать как Lasso ограничением на неотрицательность весов, если все корреляции Пирсона между признаками и между признаками и целевой переменной неотрицательны. Далее, если истинный вектор весов в линейной регрессии $\mathbf{w} \geqslant 0$, то условие на не неотрицательность оценки весов тоже избыточно (так как \mathbf{w}^* в задаче (8) и так будет неотрицательным, начиная с некоторого размера выборки), и QPFS будет полностью тождественен Lasso-модели для линейной регрессии. Значит, получаем условия тождественности QPFS(α) методу lasso(τ), где между α и τ существует некоторая связь:

- Rel = Sim = |Pearson correlation|;

100

101

102

103

104

105

106

107

108

109

110

122

123

124

126

- Нормированность признаков и целевой переменной: $\mathbf{y}^\mathsf{T}\mathbf{y} = \mathbf{x}_j^\mathsf{T}\mathbf{x}_j = 1;\ j = 1,\ \dots,\ n;$
- 114 Неотрицательность попарных корреляций: $\mathbf{y}^{\mathsf{T}}\mathbf{x}_{j} \geqslant 0, \ \mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{l} \geqslant 0; \ j, \ l = 1, \ldots, n;$
- 115 Неотрицательность истинного вектора весов $\mathbf{w}^* \geqslant 0$.

Отметим, что в Lasso-модели реализуется ситуация, в которой исключаются все признаки, где $\tau \to \infty$, что соответствует QPFS с ограничением неравенства при $\alpha = 0$. Кроме того, "закритический" режим из QPFS с равенством, когда $\|\mathbf{a}\|_1 = \beta > \|\mathbf{a}^*\|$, где \mathbf{a}^* есть решение (6), в lasso не реализуется, поскольку, штраф за норму приводит всегда к ее сокращению, а потому $\tau \to 0$ в lasso соотетствует $\beta \to \|\mathbf{a}^*\|$ в QPFS с ограничением типа равенства.

4 Базовый эксперимент

4.1 Проблемы метода QPFS

Благодаря условию на неотрицательность коэффициентов $\mathbf{a} \geqslant 0$ в задаче QPFS (4), штраф на $\|\mathbf{a}\|_1$ становится штрафом на сумму коэффициентов, что упрощает оптимизацию. Авторы оригинального метода [13] прямо указывают на скорость оптимизации как на основное преимущество метода QPFS при сопоставимом качестве прогноза (например, с Lasso-моделью) на тестовых выборках в рассмотренных наборах данных.

Как показано в предыдущей главе, при выполнении некоторых условий (в частности, неотрицательности истинного вектора параметров модели **w***), QPFS будет в точности эквивалентен методу Lasso, то есть метод обладает лучшими свойствами с точкиы зрения оптимизации, при этом давая то же решение, что и Lasso. Однако, когда условия эквивалентности не выполнены, качество метода становится хуже, чем Lasso, поскольку не учитывает, например, что релевантность пары признаков может быть значительно выше, чем релевантность каждого из них.

4.2 Первый эксперимент

Рассмотрим выборку (**X**, **y**) в признаковом пространстве размерности n=2. В исследуемой модели будут два признака x_1, x_2 и целевая переменная y. Пусть $x_1 \sim \mathcal{N}(0,1)$, $y \sim \mathcal{N}(0,1)$, а $x_2 = x_1 + \varepsilon \cdot y$, т.е. x_1 и y - независимые случайные величины из стандартного нормального распределения, а ε - заранее выбранное малое значение, где $\varepsilon > 0$. Таким образом, мы получаем, что $y_i = \frac{x_{2i} - x_{1i}}{\varepsilon}$.

Истинная корреляция Пирсона первого признака и целевой переменной y равна 0, а корреляция со вторым – равна $\varepsilon/\sqrt{1+\varepsilon^2}$, схожесть двух признаков $1/\sqrt{1+\varepsilon^2}$. При малом ε выборочная корреляция обоих признаков с целевой переменной будет мала, а схожесть двух признаков - велика. При этом надежное восстановление целевой переменной y возможно только при наличии обоих признаков в выборке, что соответствует ситуации с отсутствием отбора признаков (малое α).

Добавим теперь в выборку N шумовых признаков. Истинное сходство каждого из таких признаков с целевой переменной равно 0 (такое же как и для признака 1) и с учетом того, что QPFS не учитывает взаимодействия между признаками, признаки 1 и 2 не имеют значительного преимущества по отношению к шумовым в терминах релевантности целевой переменной (признак 1 в точности шумовой в изоляции, так как независим от y). При этом признаки 1 и 2 получают штраф за "похожесть" друг на друга. По этой причине при работе QPFS либо происходит исключение одного или обоих признаков 1 и 2 при исключении некоторых или вех шумовых, или оба признака 1 и 2 остаются, но вместе с ними остаются почти все или все шумы (см. рис. 2). В то же время Lasso учитывает взаимосвязи между признаками и не требует нетрицательности коэффициентов (ссылка на сравнение на этом датасете QPFS и Lasso). В рассматриваемом примере не выполнено одно из условий эквивалентности Lasso и QPFS, т.к. среди компонент вектора $\mathbf{w}^* = (-1/\varepsilon, 1/\varepsilon)^\mathsf{T}$ есть отрицательные значения, т.к. одно из чисел $-1/\varepsilon$, $1/\varepsilon$ меньше нуля.

На рис. 2 приведен график отбора признаков методом QPFS в данном примере при N=10. При фиксированном значении порога $\tau \in [0,1]$ было найдено количество основных (а их всего 2: $\mathbf{x}_1, \mathbf{x}_2$) и шумовых признаков, при которых $a_j > \tau$. Видим, что если отбираются оба основных признака, то вместе с ними отбирается и много шумовых признаков.

Рис. 1 результаты первого эксперимента

4.3 Стабильность модели

Стабильностью модели будем называть отношение $\lambda_{\max}(\mathbf{X}^\mathsf{T}\mathbf{X})/\lambda_{\min}(\mathbf{X}^\mathsf{T}\mathbf{X})$, где λ_{\min} и λ_{\max} — минимальное и максимальное собственные числа соответствующей матрицы.

В статьях [8,9], стабильность модели имеет самостоятельную ценность и наряду с качеством прогноза на тестовой выборке определяет решение о превосходстве одного метода отбора признаков над другим. В данной работе предлагается рассматривать стабильность как априорное знание, которое указывает на то, что априори мы считаем, что выборки с меньшим числом обусловленности на множестве активных признаков появляются чаще в рассматриваемой задаче, чем выборки с большим числом обусловленности. При отсутствии такого знания стабильность стоит рассматривать в контексте повышения качества прогноза: если низкая стабильность модели ведет к снижению качества прогноза, стоит добавить штраф за низкую стабильность модели. А если качество не снижается, а повышается при уменьшении стабильности, то не стоит отдавать предпочтение менее качественной, но более стабильной модели.

Обозначим через $\mathbf{X}(\mathbf{w})$ сужение матрицы признаков на множество признаков $j: w_j \neq 0$. Примером соответствующей задачи оптимизации, где есть априорное знание о том, что низкое число обусловленности более предпочтительно, является задача

$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \tau \lambda_{\max}(\mathbf{X}(\mathbf{w})^\mathsf{T}\mathbf{X}(\mathbf{w})) / \lambda_{\min}(\mathbf{X}(\mathbf{w})^\mathsf{T}\mathbf{X}(\mathbf{w})) \to \min_{\mathbf{w}},$$

что соответствует показательному распределению на числе обусловленности активных признаков выборки с гиперпараметром τ . В таком виде задача является слишком трудной для оптимизации и требует перебора наборов активных признаков, например, с помощью генетического алгоритма.

4.4 Второй эксперимент

Рассмотрим выборку (**X**, **y**) в признаковом пространстве размерности n. Пусть, $y \sim \mathcal{N}(0,1)$, $\varepsilon_j \sim \mathcal{N}(0,1)$ — независимые стандартно нормально распределенные случайные величины (здесь $j \in \{1,2,...n\}$). Положим, $x_j = y + \nu \varepsilon_j$, где x_j - j-ый признак, а ν - некоторое заранее выбранное значение.

Оптимальная модель использует все признаки и усредняет их для получения наилучшего прогноза целевой переменной: $\mathbf{w}^* = (1/n, \dots, 1/n)^\mathsf{T}$.

Исследуем зависимость числа обусловленности η от параметра ν . При каждом значении параметра ν будем находить число обусловленности соответствующей матрицы и усреднять результат по 100 итерациям генерации целевого вектора и выборки. На каждой итерации размер целевого вектора и выборок по каждому из признаков полагаем равным 100.

Рис. 2 Зависимость стабильности модели от параметра ν

Получаем, что число обусловленности $\eta = \lambda_{\max}(\mathbf{X}(\mathbf{w})^\mathsf{T}\mathbf{X}(\mathbf{w}))/\lambda_{\min}(\mathbf{X}(\mathbf{w})^\mathsf{T}\mathbf{X}(\mathbf{w}))$ при малом ν может быть большим.

4.5 Третий эксперимент

Пусть в выборке есть дублирование признаков. Снова положим, что целевой вектор имеет стандартное нормальное распределени: $y \sim \mathcal{N}(0,1)$. Признаки x_1 и x_2 получим как $x_1x_2 = y + \nu\varepsilon$, где $\varepsilon \sim \mathcal{N}(0,1)$.

В этом случае число обусловленности равно ∞ и имеется неоднозначность решения, минимизирующего $\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$. Однако все эти решения имеют $w_1 + w_2 = C = \text{const}$, а потому если на тестовой выборке признаки 1 и 2 останутся идентичными, качество прогноза будет одинаковым независимо от того, какое разбиение этой константы между w_1 , w_2 , мы предпочтем. Обычно для того, чтобы сделать решение однозначным, добавляют слабую квадратичную регуляризацию на \mathbf{w} для того, чтобы из всех решений более предпочтительным было то решение, где $w_1^2 + w_2^2$ минимально, то есть $w_1 = w_2 = C/2$.

Заметим, что если есть основания полагать, что сильная мультиколлинеарность в обучающей выборке не будет продолжена в тестовой (см. [2]), то специальная обработка

муьтиколлинеарности приобретает важность, а конкретный вид поправок зависит от пред положений об эволюции корреляций.

5 Заключение

212

213

214

215

216

217

218

219

220

В данной работе был проведен анализ QPFS, который осуществляет отбор признаков на основе метода квадратичного программированияыла Была показана связь метода QPFS с Lasso-моделью для линейной регресии, и теоретически и экспериментально подтверждены недостатки метода QPFS на синтетических данных. Рассмотрены возможности применения числа обусловленности как априорного знания в рассматриваемой модели.

В дальнейшем планируется рассмотреть возможности применения байесовского подхода к методу QPFS для задачи отбора признаков.

Литература

- [1] Ronald Askin. Multicollinearity in regression: Review and examples. *Journal of Forecasting*, 1(3):281–292, 1982.
- 223 [2] David Belsley. Collinearity and forecasting. Journal of Forecasting, 3:183 196, 04 1984.
- ²²⁴ [3] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos. A review of feature selection methods on synthetic data. *Knowledge and Information Systems*, 34, 03 2012.
- [4] Pablo Estevez, Michel Tesmer, Claudio Perez, and Jacek Zurada. Normalized mutual information
 feature selection. *IEEE transactions on neural networks / a publication of the IEEE Neural* Networks Council, 20:189–201, 02 2009.
- ²²⁹ [5] Pedram Ghamisi and Jon Benediktsson. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. *Geoscience and Remote Sensing Letters, IEEE*, 12:309–313, 02 2015.
- [6] Isabelle Guyon and André Elisseeff. An introduction of variable and feature selection. J. Machine Learning Research Special Issue on Variable and Feature Selection, 3:1157 – 1182, 01 2003.
- Nuhu Ibrahim, H.A. Hamid, Shuzlina Rahman, and Simon Fong. Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy. *Pertanika Journal of Science and Technology*, 26:329–340, 01 2018.
- [8] Aleksandr Katrutsa and Vadim Strijov. Stresstest procedure for feature selection algorithms.

 Chemometrics and Intelligent Laboratory Systems, 142, 02 2015.
- 239 [9] Alexandr Katrutsa and Vadim V. Strijov. Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria. Expert Syst. Appl, 76:1–11, 2017.
- ²⁴¹ [10] Edward Leamer. Multicollinearity: A bayesian interpretation. The Review of Economics and Statistics, 55(3):371–80, 1973.
- ²⁴³ [11] David Madigan and Greg Ridgeway. Discussion of "least angle regression" by efron et al. *Ann* Stat, 32, 07 2004.
- ²⁴⁵ [12] Ranjit Paul. Multicollinearity: Causes, effects and remedies. 04 2021.
- ²⁴⁶ [13] Irene Rodriguez-Lujan, Ramón Huerta, Charles Elkan, and Carlos Cruz. Quadratic programming feature selection. *Journal of Machine Learning Research*, 11:1491–1516, 04 2010.
- ²⁴⁸ [14] Ron Snee. Regression diagnostics: Identifying influential data and sources of collinearity, book review. *Journal of Quality Technology*, 01 1980.
- Vadim Strijov, Katya Krymova, and Gerhard-Wilhelm Weber. Evidence optimization for
 consequently generated models. Mathematical and Computer Modelling, 57, 01 2013.
- ²⁵² [16] Robert Tibshirani. Regression shrinkage selection via the lasso. *Journal of the Royal Statistical*²⁵³ Society Series B, 73:273–282, 06 2011.

[17] Konstantin Vorontsov. Combinatorial probability and the tightness of generalization bounds.
 Pattern Recognition and Image Analysis, 18:243–259, 06 2008.

 ${\it Поступила} \ {\it в} \ {\it pedaкцию}$