

AD.

AD-E400 846

CONTRACTOR REPORT ARLCD-CR-82022

THT EQUIVALENCY OF RDX

L. MARS
TECHNICAL SERVICES LABORATORY
COMPUTER SCIENCES CORPORATION
NASA NATIONAL SPACE TECHNOLOGY LABORATORIES
NSTL STATION. MS 39529

D. WESTOVER
PROJECT ENGINEER
J. CALTAGIRONE
PROJECT LEADER
ARRADCOM

JUNE 1982

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

LARGE CALIBER

WEAPON SYSTEMS LABORATORY

DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DITE FILE COPY

D

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed. Do not return to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	3. RECIPIENT'S CATALOG NUMBER			
Contractor Report ARLCD-CR-82022	AD-A115 610			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
TNT EQUIVALENCY OF RDX		Test Report		
	į	6. PERFORMING ORG. REPORT NUMBER		
7. Author(*) L. Mars, Computer Science Corporation	on	8. CONTRACT OR GRANT NUMBER(s)		
D. Westover, Project Engineer, ARRAI J. Caltagirone, Project Leader, ARRA	MIPR 8311-0089			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	· · · · · · · · · · · · · · · · · · ·	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Technical Services Laboratory Computer Sciences Corporation				
NASA National Space Technology Labor NSTL Station, MS 39529	ratories	MMT-5794285		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
ARRADCOM, TSD		June 1982		
STINFO Div (DRDAR-TSS)		13. NUMBER OF PAGES		
Dover, NJ 07801 '	45			
14. MONITORING AGENCY NAME & ADDRESS(II ditterent	trom Controlling Office)	15. SECURITY CLASS. (of this report)		
ARRADCOM, LCWSL	Unclassified			
Energetic Systems Process Div (DRDAI				
Dover, NJ 07801		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE		
14 Distribution of Assets 4 (1)		<u> </u>		

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This project was accomplished as part of the U.S. Army's Manufacturing Methods and Technology program. The primary objective of this program is to develop, on a timely basis, manufacturing processes, techniques, and equipment for use in production of Army materiel.

19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)

TNT equivalency

Fireball duration MMT-Ammunition

Shipping containers

Transfer container (Nutsche)

Fireball diameter

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

Peak side-on blast overpressure and scaled positive impulse have been measured for RDX using configurations typical in a manufacturing facility. Quantities of 22.68 kg (50 lb), 45.36 kg (100 lb), 27.22 kg (60 lb), and 54.4 kg (120 1b) were tested in simulated shipping drums and simulated Nutsche containers. High explosive equivalency values for each test size were obtained as a function of scaled distance by comparison to known pressure and impulse characteristics for TNT surface bursts

SECURITY.C	LASSIFICATION OF THIS PAGE(When Data Entered)		
				.]
			•	1
<u> </u>				İ
}				1
1				1
1				
<u> </u>				
1				
i				
1				ŀ
1				1
.				ļ
ì				Į
1				
				İ
	•			
				ł
ł				İ
1				
1				
j				
I				
1				
1				

SUMMARY

High explosive RDX was detonated in scaled down configurations representative of the transfer container (Nutsche) and the shipping container typical in a manufacturing facility. Blast output parameters were measured and TNT equivalency was computed based on comparison with TNT hemispherical surface bursts. The results are shown in the table below.

Within experimental error, the pressures were greater than 100% at all scaled distances in all configurations. Impulse equivalencies were greater than 100% at the near-field scaled distances $\leq 2.14 \text{ m/kg}^{1/3}$ (5.4 ft/lb^{1/3}), and varied above and below 100% at the far-field scaled distances $\geq 3.57 \text{ m/kg}^{1/3}$ (9 ft/lb^{1/3}). Test results indicated that pressure and impulse values were dependent upon geometry (transfer container versus shipping container) and, to within experimental error, scaled according to the cube root of the charge weight. These high equivalency results are consistent with tests performed on $C4^1$ and $A3^2$ which contain high percentages of RDX. It is recognized that charge shape has a significant effect on airblast parameters. Studies of cylinders, spheres, and hemispheres show the equivalency to be variable with scaled distance. Airblast measurements from spherical and hemispherical surface bursts of TNT are well documented in many other literature sources concerning airblast phenomenon. In comparing the RDX airblast measurements to TNT hemispherical data it should be noted that pressure and impulse changes are relatively insensitive to weight changes ($Z\approx 1/w^{1/3}$), however equivalent weights amplify the pressure (or impulse) differences.

		TNT Equivalency (%) at Scaled Distance										
Configuration	1.19 m/kg ^{1/3} 1.59 m (3.0 ft/lb ^{1/3}) (4.0 ft/		.59 m/kg1/3 2, 14 m/kg1/3 3, 14 m/kg1/3 5, 4 ft/lb1/3)		3.57 m/kg ^{1/3} (9.0 ft/lb ^{1/3})		7.14 m/kg ^{1/3} (18.0 ft/lb ^{1/3})		15.87 m/kg ^{1/3} (40.0 ft/lb ^{1/3})			
	P	ī	P	I	P	I	Р	1	P	1	P	I
Simulated shipping drum 22, 68 kg (50 lb) charge	350	150	413	155	210	120	150	144	200	70	259	54
Simulated shipping drum 45,36 kg (100 lb) charge	329	102	423	126	246	120	147	77	156	102	244	55
Simulated Nutsche container 27, 22 kg (60 lb) charge	493	135	540	254	367	258	172	94	116	113	223	67
Simulated Nutsche container 54, 43 kg (120 lb) charge	526	113	515	241	316	232	148	75	132	107	255	39

Acces	sion For		
NTIS	GRA&I	X	
DTIC	TAB]	}
Unann	ounced []	
Justi	fication		
	······································		
Ву			OTIC OT CO
Distr	ibution/		COPY CED
Avai	lability Code	S	MSPE 2
	Avail and/or		
Dist	Special		
1	1		
H			

CONTENTS

	Page
	1
Introduction	
Background	1 1
Objective	1
Experimental Methods	
Materials	1
Test Plan	10
Instrumentation	
Results	' 14
	14
Data Analysis	14
Test Results	14
Discussion	29
Conclusions	23
Recommendations	29
Kecommendacions	29
References	2)
Appendixes	
A Test Data Sheets	31
	39
B Selected Photographs	
Distribution List	45
DISCLIDECTOR HEAD	

TABLES

		Page
1	Transducer calibration and placement	
2	Summary of test results of 22.68 kg (50 lb) charge simulated shipping drum scaled	17
3	Summary of test results of 45.36 kg (100 lb) charge simulated shipping drum scaled	17
4	Summary of test results of 27.22 kg (60 lb) charge simulated Nutshe container scaled	18
5	Summary of test results of 54.43 kg (120 lb) charge simulated Nutsche container scaled	18
6	Fireball diameter and duration	28
	FIGURES	
1	Test container configuration	11
2	Typical charge placement for equivalency tests	12
3	Test area showing transducer and camera placement	12
4	TNT hemisphere reference data	15
5	Pressure and impulse versus scaled distance for 22.68 kg (50 lb) charge simulated shipping drum scaled	19
6	Pressure and impulse equivalencies for the 22.68 kg (50 lb) charge simulated shipping drum scaled	20
7	Pressure and impulse versus scaled distance for the 45.36 kg (100 lb) charge simulated shipping drum scaled	21
8	Pressure and impulse equivalencies for the 45.36 kg (100 lb) charge simulated shipping drum scaled	22
9	Pressure and impulse versus scaled distance for 27.22 kg (60 lb) charge simulated Nutsche container scaled	23
10	Pressure and impulse equivalencies for the 27.22 kg (60 lb) charge simulated Nutsche container scaled	24
11	Pressure and impulse versus scaled distance for 54.43 kg (120 lb) charge simulated Nutsche container scaled	25

12	simulated Nutsche container scaled	Źħ
13	Deviation from cube root scaling	27

Section of the sectio

INTRODUCTION

BACKGROUND

Tests were conducted under Project No. 5794285, TNT Equivalency, as an engineering effort to provide TNT equivalency data in support of Project 5873000.

The tests covered those configurations which are to be encountered at sensitive locations at the explosive manufacturer's facility. These configurations are the transfer container (Nutsche) and the shipping container. The amounts of RDX in these configurations are 544.3 kg (1200 lb) and 90.7 kg (200 lb). The large weights contained in these configurations were scaled down for these tests.

OBJECTIVE

The objective of these tests was to determine the maximum output from the detonation of RDX explosive in terms of the peak airbiast overpressure and positive impulse. The measured pressure and impulse data will be compared with known TNT test data to determine the equivalency of RDX explosive in relation to TNT.

EXPERIMENTAL METHODS

MATERIALS

The test material was RDX, high explosive, Batch No. 4RA59-217, Lot No. HOL 80A675-027. The explosive was received from Holston Army Ammunition Plant in standard shipping containers with a dry weight of 72.57 kg (160 lb) and a gross weight of approximately 113.4 kg (250 lb). The RDX was received and tested in the wet condition, The wetting agent was isopropyl alcohol.

TEST PLAN

Airblast output was evaluated for weights and configurations of RDX representing bulk RDX in a scaled down simulated Nutsche and a simulated drum. Physical characteristics of the test items are as follows:

- (1) A cylindrical container (figure 1a) with a charge weight of 22.68 kg (50 lb) of RDX was used to simulate the shipping drum with a dimensional scaling factor of 0.63. The container was constructed from fiberboard with a height of 42.93 cm (16.9 in) and a diameter of 29.22 cm (11.7 in).
- (2) A cylindrical container (figure 1b) with a charge weight of 45.36 kg (100 lb) of RDX was used to simulate the shipping drum with a dimensional scaling factor of 0.63. The container was constructed from fiberboard with a height of 53.34 cm (21.0 in) and a diameter of 37.34 cm (14.7 in).

- (3) An orthorhombic container (figure 1c) with a charge weight of 27.22 kg (60 lb) of RDX was used to simulate the transfer container (Nutsche) with a dimensional scaling factor of 0.37. The container was constructed from plywood with dimensions of 46.74 cm (18.4 in) long by 29.97 cm (11.8 in) wide by 22.68 cm (9.0 in) high. The long side of the container was positioned facing the even gage line.
- (4) An orthorhombic container (figure 1d) with a charge weight of 54.43 kg (120 lb) of RDX was used to simulate the transfer container (Nutsche) with a dimensional scaling factor of 0.46. The container was constructed from plywood with dimensions of 58.42 cm (23.0 in) long by 37.59 cm (14.8 in) wide by 27.94 cm (11.0 in) high. The long side of the container was positioned facing the even gage line.

Each test charge was initiated with a J2 blasting cap and a conically shaped booster of composition C4 high explosive. The weight of C4 used was 2 percent of the charge weight for each test. The C4 was shaped conically with an aspect ratio of 1:2 h/w. The C4 was centered on top of the RDX in the simulated Nutsche container and shipping drum and the blasting cap inserted at the apex and embedded to the center of the cone.

The test charge for each configuration was placed on a mild steel witness plate 1.27 cm (0.5 in) thick with the outside dimensions being 5.08 cm (2 in) larger than the base of the test configuration dimensions. Figure 2 shows the test area. The area was refurbished after each test subsequent to measurement of crater diameter and depth.

INSTRUMENTATION

Twelve PCB Piezotronics, Inc. side-on pressure transducers were mounted and placed at ground level in two 90° arrays within the test area shown in figure 2. Distances between the transducers and charge were calculated to correspond to scaled distances of 1.19, 1.59, 2.14, 3.57, 7.14 and 15.87 m/kg^{1/3} (3.0, 4.0, 5.4, 9.0, 18.0 and 40.0 ft/lb^{1/3}). The transducers were individually calibrated prior to each test series with quasistatic pressure pulses using a standard solenoid-actuated air pressure calibration fixture, adjusted to correspond to expected blast pressures based on an assumed TNT equivalency of 100%. Signal line continuity and channelization were checked prior to each test. Details of distances between charge and transducers, calibration pressures, and expected peak blast pressure at each distance are shown in table 1.

Before and after color still photographs were taken of each test setup and posttest configuration. Motion picture coverage consisted of a 16mm color movie (500 frames per second) for a single test of each test series and a documentary of 24 frames per second. Both cameras were pointed down the center line of the even gage line. Fiducial markers were positioned behind the test setup at 3.5 m (10 ft) intervals. Typical camera location and fiducial marker locations are shown in figure 3.

Figure 1b. Simulated shipping drum (scaled)

(Shaded area denotes approximate height of explosives in the drum or container.)

Figure 1. Test container configuration

Figure 2. Typical charge placement for equivalency tests

Figure 3. Test area showing transducer and camera placement

Table 1. Transducer calibration and placement

		Full-Scale		R ₁ distance in meters (ft) from charge				
Channel number	Scaled distance m/kg ^{1/3} (ft/lb ^{1/3})	calibration pressure kPa (psi)	Expected pressure kPa (psi)	Charge weight 27.22 kg (60 lb)	Charge weight 54.43 kg (120 lb)	Charge weight 22.68 kg (50 lb)	Charge weight 45.36 kg (100 lb)	
1	1.19	1034	922	3.58	4.51	3.37	4.24	
2	(3.0)	(150)	(133,71)	(11.75)	(14.80)	(11.05)	(13.92)	
3	1.59	517	480	4.77	6.01	4.49	5.66	
4	(4.0)	(75)	(69,58)	(15.66)	(19.73)	(14.74)	(18.57)	
5 ·	2.14	345	243	6.44	8, 12	6.06	7.64	
6	(5.4)	(50)	(35,17)	(21.14)	(26, 64)	(19.89)	(25.06)	
7	3.57	103	81.5	10,74	13.53	10.11	12.73	
8	(9.0)	(15)	(11.82)	(35,23)	(44.39)	(33.16)	(41.77)	
9	7.14	34.5	24.07	21, 48	27.06	20,21	25.47	
10	(18.0)	(5)	(3.49)	(70, 47)	(88.78)	(66,31)	(83.55)	
11	15.87	34 . 5	8.14	47,73	60.14	44.92	56,59	
12	(40.0)	(ნ)	(1.18)	(156,60)	(197.3)	(147.36)	(185,66)	

RESULTS

DATA ANALYSIS

Peak blast overpressure and positive impulse information were obtained in digital form. Data that could be attributed to instrumentation or explosive malfunction were excluded. The mean and standard deviation were then obtained and all data which fell outside two standard deviations were excluded from the TNT equivalency calculations. The data were then compared to data from TNT Hemispheres. A computer program is employed which utilizes an iterative process that factors out the contribution of the booster charge weight and calculates the pressure and impulse equivalencies. The calculated TNT equivalencies were arranged in tabular form and also plotted as functions of sample scaled distance. The standard curve for TNT hemisphere reference data is shown in figure 4.

TEST RESULTS

Data sheets for all tests with pertinent measured parameters are given in Appendix A. Selected pretest and posttest still photographs are given in Appendix B. Test numbers shown are for local reference only and provide access to original range data files. Average pressure and scaled positive impulse are summarized by test configuration in tables 2 through 5 and figures 5, 7, 9, and 11. Plots of pressure and scaled impulse equivalency are given in figures 6, 8, 10, and 12. Deviation from cube root scaling is shown in figure 13. Fireball diameter and duration as measured from the high speed motion picture are given in table 6.

DISCUSSION

Plots of peak pressure and scaled positive impulse for the simulated shipping drum with a charge weight of 22.68 kg (50 lb) are shown in figure 5. The plots of TNT equivalencies for pressure and scaled impulse are shown in figure 6. Pressure values were greater than expected at all scaled distances. Pressure equivalency values were greater than 100% at all scaled distances. At a near-field value of 1.59 m/kg^{1/3} (4.0 ft/lb^{1/3}) the pressure equivalency was 413% for the highest value ranging to a low of 150% at 3.57 m/kg^{1/3} (9.0 ft/lb^{1/3}) and increasing to a value of 259% at the far-field value of 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}). Scaled impulse values were greater than expected except at the far-field values of \geq 7.14 m/kg^{1/3} (18 ft/lb^{1/3}). Scaled impulse equivalencies were greater than 100% at all scaled distances except at the far-field values of \geq 7.14 m/kg^{1/3} (18 ft/lb^{1/3}). At a near-field value of 1.59 m/kg^{1/3} (4.0 ft/lb^{1/3}) the scaled impulse equivalency was 155% for the highest value ranging to a low of 54% at a scaled distance of 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}).

Plots of peak pressure and scaled positive impulse for the simulated shipping drum with a charge weight of 45.36 kg (100 lb) are shown in figure 7. The plots of INT equivalencies for pressure and scaled impulse are shown in figure 8. Pressure values were greater than expected at all scaled distances. Pressure equivalency values were greater

Figure 4. TNT hemisphere reference data.

than 100% at all scaled distances. At a near-field value of 1.59 m/kg $^{1/3}$ (4.0 ft/lb $^{1/3}$) the pressure equivalency was 423% for the highest value ranging to a low of 147% at 3.57 m/kg $^{1/3}$ (9.0 ft/lb $^{1/3}$) and increasing to a value of 244% at the far-field value of 15.87 m/kg $^{1/3}$ (40.0 ft/lb $^{1/3}$). Scaled impulse equivalencies were greater than 100% at all scaled distances except at a scaled distance of 3.57 m/kg $^{1/3}$ (9.0 ft/lb $^{1/3}$) and at a scaled distance of 15.87 m/kg $^{1/3}$ (40.0 ft/lb $^{1/3}$). At a near-field value of 1.59 m/kg $^{1/3}$ (\frac{1}{2}\$,0 ft/lb $^{1/3}$) the impulse equivalency was 126% for the highest value ranging to a low of 55% at a scaled distance of 15.87 m/kg $^{1/3}$ (40.0 ft/lb $^{1/3}$).

The plots of peak pressure and scaled impulse versus scaled distance for the simulated shipping drum for charge weights of 22.68 kg (50 lb) and 45.36 kg (100 lb) show the same general trend. Pressure and scaled impulse TNT equivalencies as a function of scaled distance are similar.

Plots of peak pressure and scaled positive impulse for the simulated Nutsche container with a charge weight of 27.22 kg (60 lb) are shown in figure 9. The plots of TNT equivalencies for pressure and scaled impulse are shown in figure 10. Pressure values were greater than expected at all scaled distances. Pressure equivalency values were greater than 100% at all scaled distances. At a near-field value of 1.59 m/kg^{1/3} (4.0 ft/lb^{1/3}) the pressure equivalency was 540% for the highest value ranging to a low of 116% at the far-field value of 7.14 m/kg^{1/3} (18.0 ft/lb^{1/3}) and increasing to a value of 223% at the far-field value of 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}). Scaled impulse values were greater than expected except at the scaled distances of 3.57 m/kg^{1/3} (9.0 ft/lb^{1/3}) and 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}). At a near-field value of 2.14 m/kg^{1/3} (5.4 ft/lb^{1/3}) the impulse equivalency was 258% for the highest value ranging to a low of 67% at a scaled distance of 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}).

Plots of peak pressure and scaled positive impulse for the simulated Nutsche container with a charge weight of 54.43 kg (120 lb) are shown in figure 11. The plots of TNT equivalencies for pressure and scaled impulse are shown in figure 12. Pressure values were greater than expected at all scaled distances. Pressure equivalency values were greater than 100% at all scaled distances. At a near-field value of 1.19 m/kg^{1/3} (3.0 ft/lb^{1/3}) the pressure equivalency was 526% for the highest value ranging to a low of 132% at the far-field value of 7.14 m/kg^{1/3} (18.0 ft/lb^{1/3}) and increasing to a value of 255% at the far-field value of 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}). Scaled impulse values were greater than expected except at the scaled distance of 3.57 m/kg^{1/3} (9.0 ft/lb^{1/3}) and 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}). At a near-field value of 1.59 m/kg^{1/3} (4.0 ft/lb^{1/3}) the scaled impulse equivalency was 241% for the highest value ranging to a low of 39% at a scaled distance of 15.87 m/kg^{1/3} (40.0 ft/lb^{1/3}).

The plots of peak pressure and scaled impulse versus scaled distance for the simulated Nutsche container for charge weights of 27,22 kg (60 lb) and 54,43 kg (120 lb) show the same general trend. Pressure and scaled impulse TNT equivalencies as a function of scaled distance are similar.

Figure 13 is a graphic presentation of the deviation from cube root scaling for the 22.68 kg (50 lb), 45.36 kg (100 lb), 27.22 kg (60 lb), and 54.43 kg (120 lb) charge weights

Table 2. Summary of Test Results of 22.68 kg (50 lb) charge simulated shipping drum scaled

Radius Meters (ft)	Scaled Distance M/kg ^{l/3} (ft/lb ^{1/3})	Peak Pressure !:Pa (psi)	Scaled Positive Impulse kPa.ms/kg ^{1/3} (psi ms/ ¹ / ³)	Pressure TNT Equivalency	Impulse TNT Equivalency %
3.37 (11.05)	1.19 (3.0)	2289 (331.91)	217 (24.16)	350	150
4.49 (14.74)	1.59 (4.0)	1350 (195.78	177 (19.68)	413	155
6.06 (19.89)	2.14 (5.4)	427 (61.86)	119 (13.26)	210	120
10,11 (33,16)	3.57 (9.0)	108 (15,64)	87 (9.68)	150	144
20.21 ⁻ (66.31)	7.14 (18.0)	35.1 (5.09)	28 (3.15)	200	70
44.92 (147.36)	15.87 (40.0)	12 (1.75)	11.8 (1.31)	259	54

Table 3. Summary of test results of 45.36 kg (100 lb) charge simulated shipping drum scaled

Radius Meters (ft)	Scaled Distance M/kg ^{l/3} (ít/lb ^{l/3})	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa.ms/kgl/3 (psi ms/lb ^{1/3})	Pressure TNT Equivalency %	Impulse TNT Equivalency
4.24 (13.92)	1.19 (3.0)	2188 (317.25)	174 (19.41)	329	102
5.66 (18.57)	1.59 (4.0)	1390 (201.63)	156 (17.43)	423	126
7.64 (25.06)	2.14 (5.4)	474 (68.69)	118 (13.18)	246	120
12.73 (41.77)	3.57 (9.0)	105 (15.26)	59 (6.56)	147	77
25.47 (83.55)	7.14 (18.0)	30.5 (4.43)	37 (4.16)	156	102
56.59 (185.66)	15.87 (40.0)	12 (1.75)	11.7 (1.30)	244	55

Table 4. Summary of test results of 27.22 kg (60 lb) charge simulated Nutsche container scaled

Radius Meters (ft)	Scaled Distance M/kg ^{l/3} (ft/lb ^{l/3})	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa.ms/kg ^{1/3} (psi ms/lb ^{1/3})	Pressure TNT Equivalency %	Impulse TNT Equivalency %
3.58 (11.745)	1.19 (3.0)	2941 (426.46)	206 (22.99)	493	135
4.77 (15.66)	1.59 (4.0)	1655 (240.04)	234 (26.02)	540	254
6.44 (21.14)	2.14 (5.4)	644 (93.39)	186 (20.76)	367	258
10.74 (35.234)	3.57 (9.0)	119 (17.24)	66 (7.39)	172	94
21.48 (70.468)	7.14 (18.0)	25.6 (3.72)	40 (4.49)	116	113
47.73 (156.595)	15.87 (40.0)	11.4 (1.65)	13 (1.45)	223	67

Table 5. Summary of test results of 54.43 kg (120 lb) charge simulated Nutsche container scaled

Radius Meters (ft)	Scaled Distance M/kg ^{l/3} (ft/lb ^{l/3})	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa.ms/kg ^{1/3} (psi ms/lb ^{1/3})	Pressure TNT Equivalency %	Impulse TNT Equivalency %
4.51 (14.80)	1.19 (3.0)	3061 (444.00)	184 (20.48)	526	113
6.01 (19.73)	1.59 (4.0)	1608 (233.19)	230 (25.59)	515	241
8.12 (26.64)	2.14 (5.4)	620 (89.87)	174 (19.35)	316	232
13.53 (44.39)	(3.57 (9.0)	106 (15.41)	58 (6.50)	148	75
27.06 (88.78)	7.14 (18.0)	27.7 (4.02)	37 (4.17)	132	107
60.14 (197.3)	15.87 (40.0)	12.1 (1.76	9 (1.02)	255	39

Figure 5. Pressure and impulse versus scaled distance for 22.68 kg (50 lb) charge simulated shipping drum scaled

Figure 6. Pressure and impulse equivalencies for the 22,68 kg (50 lb) charge simulated shipping drum scaled

Figure 7. Pressure and impulse versus scaled distance for the 45.36 kg (100 lb) charge simulated shipping drum scaled

Figure 8. Pressure and impulse equivalencies for the 45.36 kg (100 lb) charge simulated shipping drum scaled

Figure 9. Pressure and impulse versus scaled distance for 27,22 kg (60 lb) charge simulated Nutsche container scaled

Figure 10. Pressure and impulse equivalencies for the 27.22 kg (60 lb) charge simulated Nutsche container scaled

Figure 11. Pressure and impulse versus scaled distance for 54, 43 kg (120 lb) charge simulated Nutsche container scaled

The the was a second of the se

Figure 12. Pressure and impulse equivalencies for the 54.43 kg (120 lb) charge simulated Nutsche container scaled

Figure 13. Deviation from cube root scaling

Table 6. Fireball diameter and duration

Charge Weight kg (1b)	Maximum Fireball Diameter meters (ft)	Fireball Duration msec
22.68 kg (50 lb) Simulated shipping drum	13.1 m (43 ft)	102
45.36 kg (100 lb) Simulated shipping drum	22.9 m (75 ft)	97
27.22 kg (60 lb) Simulated Nutsche container	21.3 m (70 ft)	170
54.43 kg (120 lb) Simulated Nutsche container	25,9 m (85 ft)	232

for pressure and impulse. Specifically, TNT hemispherical data scales as a slope of one at all charge weights. An increase in pressure with increasing charge weights will be indicated by a positive slope. A decrease in pressure with increasing charge weights is indicated by a negative slope. Generally, an explosive can be said to scale as a function of the cube root of the charge weight when the slope of the line is no greater than 1.000 (± 0.001) from the mean. To within experimental error limits of the tests, RDX explosive scales as a function of the cube root of the charge weights.

CONCLUSIONS

- (1) RDX, when detonated, can generate peak pressure and positive impulse values which are greater than those produced from an equivalent weight of TNT.
- (2) The blast output from RDX is dependent upon the configuration from which it detonates.
- (3) TNT equivalency values were determined for RDX in two configurations that simulate in-plant processing and shipping containers.
- (4) To within experimental limits, blast pressure and impulse scale as a cube root function of the charge weight.

RECOMMENDATIONS

In order to design meaningful experiments and for the resulting data to be intelligently applied, it is important that the many factors and parameters that affect the airblast be recognized, and that the data be used in the context in which they were derived.

REFERENCES

- 1. McIntyre, F. L., TNT Equivalency of Composition C-4 in shipping and Process Containers, Feb 81 ARLCD-CR-80061.
- 2. McIntyre, F. L., TNT Equivalency of Composition A3, Dec 1981 ARLCD-CR-81044.
- 3. Wisotski, John and Snyer, W. H., Characteristics of Blast Waves Obtained from Cylindrical High Explosive Charges, Denver Research Institute, November 1965.
- 4. Tancreto, J. E., TNT Equivalencies of RDX Slurry and Various Geometries of Composition B, Pueliminary Report, Picatinny Arsenal, Dover, NJ, May 1975.
- 5. Kingery, C. N., Airblast Parameters Versus Distance for Hemispherical TNT Surface Bursts, BRL Report No. 1344, September 1966.

6. McKown, G. L., TNT Equivalency of P.284 Tracer Composition, I559, Igniter Mix, and I560 Subigniter Mix, ARLCD-TR-79026, Picatinny Arsenal, Aug 1979.

APPENDIX A

TEST DATA SHEETS

TEST TITLE _	THT EQUIVALENCY	DATE 6 Mar 80
TEST SAMPLE _	RDX (98/2)	TIME 1309
SAMPLE WEIGHT	22.68 kg (50 1b)	TEMP. 18.9°C (66°F)
	J2 Blasting Cap	
BOOSTER WT	0.4536 kg (1.0 1b)	BAR. PRESS. 30.12
TEST NO	10-80-C1	WIND DIR. 150
	NAS13-50	

Booster Charge Comp. C4	L/D= 1.19:1
	72 cm Initiator ,7 in) → J-2 Cap
42, 92 cm (16, 9 in) Ground Zero	35.3 om (13.9 in) Witness Plate
	Not Drawn To Scale

FIELD EVALUATION: Detonation occurred, no unreacted																
explosive.	Crater	size	50.8	cm	bу	233.7	cm	(1	ft	8	in	X	7	ft	8	in

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	3.37	2275 (329.87)	216.03 (24.07)	1.6
2	(11.05)	_	-	-
3	4.49	998 (144.76)	173.8 (19.37)	2.6
4	(14.74)	_	-	
5	6,06	433 (62.75)	121.3 (13.52)	4.7
6	(19.89)	511 (74.15)	130.4 (14,53)	4.7
7	10,11	115 (16.64)	96.3 (10.73)	12.0
8	(33, 16)	129 (18.67)	95.4 (10,63)	12,0
9	20,21	39 (5.67)	14.6 (1.63)	36.5
10	(66.31)	31 (4.524)	43.8 (4.88)	36.7
11	44.92	15 (2.11)	11.7 (1.30)	105.7
12	(147.36)	10 (1.44)	12.0 (1.34)	106.5

TEST TITLE _	THT EQUIVALENCY	DATE 6 Mar 80
	RDX (98/2)	
	22.68 kg (50 1b)	
	J2 Blasting Cap	
BOOSTER NT	0,4536 kg (1,0 1b)	BAR. PRESS. 30.11
TEST NO.	10-80-C2	WIND DIR. 153
CONTRACT KO		WIND VEL. 0-2 knots

FIELD EVALUATION.	Detonation occurred, ro unreacted	
explosive. Crater	size 53.3 cm by 233. cm (1 ft 9 in x 7 ft 8 i	r

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	3.37	2298 (333,20)	268 (29.86)	2.9
2	(11.05)	1960 (284.26)	152 (16.94)	2.8
3	4,49	962 (139,50)	184.5 (20.56)	3.7
4	(14.74)	1896 (275.00)	145 (16.16)	3,6
5	6.06	529 (76,69)	121.8 (13.57)	5.7
6	(19.89)	289 (41.91)	108.7 (12.11)	5.9
7	10.11	95 (13.73)	88.6 (9.87)	13.5
8	(33.16)	126 (18.30)	95.7 (10,66)	13.5
9	20.21	40 (5.73)	15,5 (1,73)	37.8
10	(66.31)	33 (4.84)	42.4 (4.72)	37.8
11	44.92	15 (2.11)	12.1 (1.35)	102.7
12	(147.36)	9 (1.35)	11.0 (1.23)	103.8

TEST TITLE	TNT Equivalency	DATE 6 Mar 80
TEST SAMPLE.	RDX (98/2)	TIME 1432
SAMPLE WEIGH	T 22.68 kg (50 1b)	TEMP. 20°C (68°F)
	J2 Blasting Cap	
BOOSTER WT.	0.4536 kg (1.0 1b)	BAR. PRESS. 30.10
TEST NO	10-80-C3	WIND DIR. 200
CONTRACT NO.	NAS13-50	WIND VEL. 0-2 knots

FIELD EVALUATION: Detonation occurred, no unreacted explosive. Crater size 50.8 cm by 233.7 cm (1 ft 8 in x 7 ft 8 in)

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	3.37	2298 (333.2)	277.8 (30.96)	1.5_
2	(11.05)	2614 (379.01)	237.7 (26.48)	1.4
3	4.49	1670 (242,14)	203.3 22.65	2.2
4	(14,74)	1224 (177.5)	-	2.2
5	6.06	409 (59, 26)	116.1 (12.94)	4.2
6	(19,89)	389 (56,42)	115.8	4.0
7	10.11	92 (13.31)	74.6 (8.31)	12,0
8	(33,16)	91 (13, 18)	70.0 (7.80)	11,5
9	20,21	38 (5,51)	15.8 (1.76)	36,7
10	(66.31)	29 (4,21)	37.4 (4.17)	36.4
11	44.92	15 (2,24)	12.0	101.7
12	(147.36)	9 (1.26)	4.8 (.53)	102.3

TEST TITLE I	NT EQUIVALENC	Υ	DATE 7 Har 80
rest sample _	RDX (98/2)		TIME 1315
SAMPLE WEIGHT	27.22 kg	(60 16)	TEMP. 22,8°C (73°F)
			HUMIDITY 82%
BOOSTER WT.	0.544 kg	(1.2 16)	BAR. PRESS. 30.10
TEST NO.	10-80-C4		WIND DIR. 160
CONTRACT NO	NAS13-50		WIND VEL . 2-8 knots

FIELD EVALUATION: Detonation occurred, no unreacted

explosive, 63.5 cm by 256.5 cm (2 ft 1 in x 8 ft 5 in) Crater size

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	3.58	3150.7 (456.96)	203.5 (22,67)	1.3
2	(11.745)	3102.8 (450.0)	220.6 (24.58)	1.0
3	4.77	1483 (215.0)	209.6 (23,35)	2.0
4	(15.66)	1946. (282.24)	224.6 (25.02)	1.8
5	6,44	603 (87.5)	150.1 (16.72)	4.0
6	(21.14)	628 (91.08)	-	
7	10.74	97 (14,04)	52.7 (5.87)	12.3
8	(35.234)	145 (21,06)	82.4 (9.18,	10.7
9	21.48	25 (3.59)	30 (3.34)	39.0
10	(70.468)	28 (4.08)	29.8 (3.32)	37.0
11	47.73	14.56 (2.112)	7.8 (0.87)	108.5
12	(156.595)	10 (1.38)	20.0 (2.23)	107.2

TEST TITLE	TNT Equivalency	DATE 7 Mar 80
TEST SAMPLE	RDX (98/2)	TIME 1405
SAMPLE WEIGH	T 27.22 kg (60 1b)	TEMP. 22.8°C (73°F)
	J2 Blasting Cap	
BOOSTER WT.	0.544 kg (1.2 _{1b})	BAR. PRESS. 30.10
	10-80-C5	- · ·
	NAS13-50	

FIELD EVALL	ATION:	0e t	onati	on ·	occu	rre	d,	no	unr	·ea	cte	d				
explosive.	Crater	size	73.7	In	x 24	.6	Cm	(2	ft	5	in	x	8	ft	1	in)
															~	~

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	3.58	2954 (428.4)	223.4 (24.89)	1.9
2	(11.745)	3413 (495,00)	-	2,0
3	4.77	1552 (225.00)	199.8 (22.26)	2.6
4	(15,66)	1825 (264,60)	247.5 (27.58)	2.6
5	6.44	543 (78.75)	151.0 (16.83)	4.6
6	(21.14)	728 (105,60)	232.1 (25.86)	4,6
7	10.74	116	43.0 (4.79)	12.8
8	(35.234)	132 (19.19)	76.5 (8.52)	11.9
9	21.48	24 (3.45)	48.0 (5,35)	39.1
10	(70.468)	29 (4.22)	46.4 (5.17)	37.8
11	47.73	14.5 (2.112)	7.6 (0.85)	109.1
12	(156.595)	8 (1.17))8.8 (2.09)	107.9

TEST TITLE TNT Fquivalency FEST SAMPLE RDX (98/2)	
SAMPLE WEIGHT 27.22 kg (60 1b) IGN. SOURCE J2 Blasting Cap	TEMP. 23.3°C (74°F)
BOOSTER WT. 0.544 kg (1.2 1b)	BAR. PRESS. 30.10
TEST NO. 10-80-C6 CONTRACT NO. NAS13-50	

Booster Charge Comp. C4	L/D= 0.59:1
Conically Shaped	
contently shaped	Initiator
	J-2 Cap
22, 8 cm (9, 0 in) Grount Zero	0.0 cm 1, 8 in) WITNESS PIATE 17.8 cm (7.0 in)
	Not Drawn To Scale

FIELD EVALUATION:	Detonation occurred, no unreacted
explosive Crater	size 66.0 cm x 248.9 cm (2 ft 2 in x 8 ft 2 in

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	3 58	2954 (428,40)	209.3 (23.32)	1.3
2	(11.745)	2069 (300.00)	175.0 (19.50)	1.4
3	4.77	1103 (160.00)	149.9 (16.71)	2,1
4	(15.66)	2027 (204,00)	369.7 (41.19)	2,2
5	6.44	560 (81.25)	161.6 (18.01)	4.0
6	(21.14)	801 (116.16)	236.9 (26.40)	3.5
7	10,74	87 (12.64)	-	12.3
8	(35.234)	136 (19.66)	77.) (8,59)	10.5
9	21.48	24 (3.45)	45.0 (5.02)	39.5
10	(70.468)	24 (3.54)	42.5 (4.73)	37.3
11	47.73	12 (1.72)	10.9	109.4
12	(156.595)	9.3 (1.378)	-	107.8

TEST TITLE THY Equivalency	DATE 8 Mar 80
rest sample RDX (98/2)	TIME
SAMPLE WEIGHT 45.36 kg (100 16)	
IGN. SOURCE	
BOOSTER WT. 0.907 kg (2.0 16)	BAR. PRESS. 29.94
TEST NO. 10-80-C7	WIND DIR. 345
CONTRACT NO. NAS13-50	

FIELD EVALUATION: Detonation occurred, no unreacted												
explosive.												in)
						 			_	 _	_	

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	4.24	2069 (300.00)	171.1 (19.06)	2.6
2	(13.92)	2534 (367.5)	173.7 (19.35)	2.8
3	5.66	1451 (210.4)	153.6 (17,11)	3.5
4	(18.57)	1668 (241.96)	143.4 (15.98)	3.6
5	7.64	559 (81.00)	-	5.0
6	(25.06)	420 (60.9)	97.0 (10.81)	5.3
7	12.73			14.8
8	(41,77)	139 (20.12)	75.1 (8.37)	15.0
9	25,47	30 (4.40)	51.3 (5.72)	46,1
10	(83,55)	31.4 (4.557)	38.0	46.1
11	56.59	11.2 (1.625)	10.1	128.2
12	(185.66)	14.4 (2.09)	-	129.0

のできることである。 あるとは、これのは、これのできるとは、これのは、これのできるとは、これのできることは、これのできるとは、これので

TEST TITLE THY Equivalency	DATE 8 Har 80
rest sample RDX (98/2)	TIME 1003
SAMPLE WEIGHT 45,36 kg (100 lb)	
IGN. SOURCEJ2_Blasting Cap	
BOOSTER WT. 0.907 kg (2.0 1b)	BAR. PRESS. 29.94
TEST NO. 10-80-C8	WIND DIR, 025
CONTRACT NO. NAS13-50	

FIELD EVALUATION. Detonation occurred, no unreacted explosive. Crater size 78.7 cm x 325.1 cm (2 ft 7 in x 10 ft 8 in)

Channel Number	Distance Meters (ft)	Peak Pressure kPa (ps1)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	4.24	1903 (276,00)	195.2 (21.75)	2.4
2	(13,92)	2327 (337.50)	206.8 (23.04)	2.4
3	5.66	1197 (173.58)	162.4 (18.09)	3.2
4	(18.57)	1451 (210.40)		3.1
5	7.64	642 (93,15)	129.9 (14.47)	5.7
6	(25.06)	294 (42.63)	103.6 (11.54)	5.6
7	12.73	124 (17.98)	48.3	5,8
8	(41,77)	97 (14,12)	-	£.2
9	25.47	27 (3,976)	43.8 (4.88)	46.0
10	(83.55)	36 (5.25)	34.8 (3.88)	47.4
11	56.59	10.3	7.0 (0.78)	128.0
12	(185.66)	12 (1.74)	15.7 (1.75)	130.1

TEST TITLE _	TNT Equivalency	DATE 8 Mar 80
(EST SAMPLE_	RDX (98/2)	TIME 1044
SAMPLE WEIGHT	r 45.36 kg (100 lb)	TEMP. 27.2°C (81°F)
	J2 Blasting Cap	
BOOSTER WT.	0.907 kg (2.0 1b)	BAR. PRESS. 29.94
TEST NO.	10-80-C9	WIND DIR. 033
CONTRACT NO.	NAS13-50	WIND VEL. 0-1 knots

FIELD EVALUATION: Detonation occurred, no unreacted												
explosive.	Crater	size	66.0	cm :		cm						

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
3	4.24	2482 (360.0)	158.7 (17.68)	2.9
2	(13.92)	1810 (262.5)	140 (15,60)	2.8
3	5.66	1306 (189.36)	154.6 (17.23)	3.9
4	(18.57)	1269 (184.1)	168.4 (18.76)	3.6
5	7.64	633 (91.8)	137.9 (15.37)	5.7
6	(25.06)	294 (42.63)	122.6 (13.66)	5.6
7	12.73	133 (19.26)	47.1 (5.25)	6.6
8	(41.77)	92 (13.27)	•	8.0
9	25.47	29 (4,26)	22.3 (2,49)	46,7
10	(83.55)	28 (4.12)	33.8 (3,77)	47.2
11	56.59	13 (1.83)	14.2 (1.58)	128.5
12	(185.66)	12 (1.74)	11.5 (1.28)	129.5

The property of the state of th

TEST TITLE THE EQ	uivalency	DATE 8 Har 80
TEST SAMPLE RDX (9	8/2)	TIME 1229
SAMPLE WEIGHT 54.4	3 kg (120 ₁₆₎	TEMP. 27.8°C (82°F)
	lasting Cap	
BOOSTER WT1.08	8 kg (2.4 1b)	BAR. PRESS. 29.93
TEST NO	0-010	WIND DIR. 140
CONTRACT NO. NAS13	-50	WIND VEL. 0-1 knots

FIELD EVAL	ATION.	Det	onati	on (occi	irrec	l, n	ο ι	nre	ac	tec	<u>_</u>				
explosive.	Crater	size	73.7	cm .	x 3	20.0	CDI	(2	ft	5	in	x	10	ft	6	in)
										-			_		_	

Channel Number	Distance Peters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
١	4.51	2854.8 (414.00)	188.6 (21.01)	2.4
2	(14.80)	3568 (517.50)	223.4 (24.89)	1.5
3	6.01	1632 (236.70)	219.2 (24.42)	3.9
4	(19.73)	1523	291.8 (32.51)	3.8
5	8,12	623.7 (90.45)	122.3 (13.63)	6.2
6	(26.64)	_		
7	13.53	76.7 (11.13)	51.1 (5.69)	16.4
8	(44.39)	76.7 (11.13)	29.7 (3.31)	14.8
9	27.06	25.4	62.8	50.0
10	(88.78)	31.3 (4.54)	41.6 (4.64)	47.7
11	60.14	14.3 (2.07)	7.1 (0.79)	138.0
12	(197.3)	8.5 (1.23)	16.7	135.8

TNT Equivalency DATE 8 Mar 80 RDX (98/2) TEST SAMPLE __ TIME TEMP. 27.2°C (81°F) SAMPLE WEIGHT 54.43 kg (120 16) J2 Blasting Cap IGN. SOURCE _ HUMIDITY __50%_ 1.088 kg (2.4 16) BAR. PRESS. 29.93 BOOSTER WT. WIND DIR. 110 TEST NO. 10-80-011 CONTRACT NO. NAS13-50 WIND VEL. 0-1 knots

i

ETIELD EVALUATION: Detonation occurred, no unreacted

explosive. Crater size 73.7 cm x 312.4 cm (2 ft 5 in x 10 ft 3 in)

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	4.51	1862 (270.00)	179 (19.95)	1,2
2	(14.80)	3103 (450.00)	224.8 (25.05)	1.2
3	6.01	1342 (194.62)	162.5 (18.11)	2,0
4	(19.73)	1632 (236.70)	271.3 (30.23)	2.1
5	8.12	614 (89.10)	157 (17,49)	4.3
6	(26.64)	605 (87./0)	193.5 (21,56)	4.2
7	13.53	127 (18.40)	55.6 (6.19)	14,6
8	(44.39)	127 (18.40)	67.0 (7.47)	12.8
9	27.06	22.5 (3.27)	17.2 (1.92)	48.8
10	(88.78)	31.3 (4.54)	35.4 (3.94)	45.9
11	60,14	14.3 (2.07)	6.3 (0.70)	137.4
12	(197.3)	23.5 (3.41)	7.5 (0.84)	133.7

TEST TITLE THY Equivalency DATE 8 Mar 80 TEST SAMPLE RDX (98/2) TEMP. 27.2°C (81°F) SAMPLE WEIGHT 54,43 kg (120 16) IGN. SOURCE ____ J2 Blasting Cap HUMIDITY ____ 50% BOOSTER WT. ____1.088 kg (2,4 16) BAR. PRESS. 29.92 TEST NO. 10-80-012 WIND DIR. ____ 110 CONTRACT NO. NAS13-50 WIND VEL. 0-1 knots

FIELD EVALUATION: Detonation occurred, no unreacted

explosive-76.2 cm x 325.1 cm (2 ft 6 in x 10 ft 8 in) Crater size

The state of the s

Channel Number	Distance Meters (ft)	Peak Pressure kPa (psi)	Scaled Positive Impulse kPa msec/kg ^{1/3} (psi msec/lb ^{1/3})	Time of Arrival (msec)
1	4.51	2896 (420.00)	149,1 (16.61)	2.5
2	(14.80)	4086 (592.50)	137.9 (15.37)	2.4
3	6.01	1886 (273,52)	217.3 (24.21)	3.4
4	(19.73)	1632 (236.70)	215. <i>7</i> (24.03)	3.4
5	8.12	559 (81,00)	114,4 (12,75)	5.7
6	(26.64)	697 (101.09)	229.7 (25.59)	5.3
7	13.53	(13.27)	56.6 (6.31)	15.7
8	(44.39)	139 (20.12)	61.4 (6.84)	14.0
9	27.06	25.4 (3.69)	47.2 (5.26)	49.4
10	(88 78)	30.3 (4.40)	20.4 (2 27)	46 9
11	60.14	13.4 (1.95)	6.8 (0.76)	137.4
12	(197.3)	10.1 (1.46)	10.4 (1.16)	134.5

APPENDIX B SELECTED PHOTOGRAPHS

RDX pretest configuration 22.68 kg (50 lb) charge

RDX posttest crater 22.68 kg (50 lb) charge

RDX pretest configuration 45.36 kg (100 lb) charge weight

RDX posttest crater 45.36 kg (100 lb) charge weight

RDX pretest configuration 27.22 kg (60 lb) charge weight

RDX posttest crater 27.22 kg (60 lb) charge weight

RDX pretest configuration 54.43 kg (120 lb) charge weight

RDX posttest crater 54.43 kg (120 lb) charge weight

DISTRIBUTION LIST

Commander

U.S. Army Armament Research and Development Command

ATTN: DRDAR-CG

DRDAR-LCM-E

DRDAR-LCM-S (5)

DRDAR-SF

DRDAR-TSS (5)

Dover, NJ 07891

Chairman

Department of Defense Explosive Safety Board (2) Room 856C, Hoffman Building I 2461 Eisenhower Avenue Alexandria, VA 22331

Administrator

Defense Technical Information Center

ATTN: Accessions Division (12)

Cameron Station

Alexandria, VA 22314

Commander

Department of the Army Office, Chief of Research, Development and Acquisition ATTN: DAMA-CSM-P Washington, DC 20310

Office, Chief of Engineers

ATTN: DALK-MCZ

Washington, DC 20314

Commander

U.S. Army Materiel Development and Readiness Command ATTN: DRCSF 5001 Eisenhower Avenue Alexandria, VA 22333

Commander

DARCOM Installations and Services Agency ATTN: DRCIS-RI

Rock Island, IL 61299

Director

Industrial Base Engineering ACtivity

ATTN: DRXIB-MT (2)

DRXIB-EN

Rock Island, IL 61299

Commander

 $U {\hspace{-0.1em}\raisebox{0.1em}{\text{\circle*{1.5}}}} S {\hspace{-0.1em}\raisebox{0.1em}{\text{\circle*{1.5}}}} Army Munitions Production$

Base Modernization Agency

ATTN: SARPM-PBM

SARPM-PBM-T

SARPM-PBM-L (2)

SARPM-PBM-E (2)

SARPM-PBM-LN-CE

Dover, NJ 07801

Commander

U.S. Army Armament Materiel

Readiness Command

ATTN: DRSAR-SF (3)

DRSAR-SC

DRSAR-EN

DRSAR-IRC

DRSAR-LEP-L

Rock Island, IL 61299

Director

DARCOM Field Safety Activity

ATTN: DRXOS-ES

Charlestown, IN 47111

Commander

Kansas Army Ammunition Plant

Parsons, KS 67357

Commander

Holston Army Ammunition Plant

Kingsport, TN 37660

Commander

Milan Army Ammunition Plant

Milan, TN 38358

Commander

Iowa Army Ammunition Plant

Middletown, IA 52638

District Engineer

U.S. Army Engineer District, Kansas

601 E. 12th Street

Kansas City, MO 64106

Civil Engineering Laboratory Naval Construction Battalion Center ATTN: L51 Port Hueneme, CA 93043

Commander
Naval Facilities Engineering Command
(Code 04, J. Tyrell)
200 Stovall Street
Alexandria, VA 22322

Commander
Chesapeake Division
Naval Facilities Engineering Command
Building S7
Washington Navy Yard
Washington, DC 20374

Commander
Naval Ammunition Depot
Naval Ammunition Production
Engineering Center
Crane, IN 47522

Commander/Director
Chemical Systems Laboratory
U.S. Army Armament Research
and Development Command
ATTN: DRDAR-CLJ-L
DRDAR-CLB-PA
APG, Edgewood Area, MD 21010

Director
I llistics Research Laboratory
U.S. Army Armament Research
and Development Command
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21005

Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research
and Development Command
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Ammann and Whitney 2 World Trade Center New York, NY 10048 Director
U.S. Army Materiel Systems
Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005