Tutorial Problems - Sections 6 to 7 - MAT 327 - Summer 2014

6 Continuous Functions and Homeomorphisms

- 1. Give examples of topological spaces (X, \mathcal{T}) and (Y, \mathcal{U}) and a function $f: X \longrightarrow Y$ such that
 - (a) f is open but not closed.
 - (b) f is closed but not open.
- 2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function, and define $g: \mathbb{R} \longrightarrow \mathbb{R}^2$ by g(x) = (x, f(x)). Prove that g is continuous.
- 3. Prove that the function $\times: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $\times (a,b) = a \cdot b$ is a continuous function.
- 4. Assuming the previous problem and all the material proved in class, convince us that the determinant function $\det: M_n \longrightarrow \mathbb{R}$ is continuous, (where M_n is the collection of all $n \times n$ matrices with real entries).
- 5. Give an example of a homeomorphism $f:(X,\mathcal{T}) \longrightarrow (X,\mathcal{U})$, where \mathcal{T} does not refine \mathcal{U} and \mathcal{U} does not refine \mathcal{T} (hint: we've mentioned this in one of the first lectures).
- 6. Give an example of a homeomorphism $f:(X,\mathcal{T})\longrightarrow (X,\mathcal{U})$, where $\mathcal{T}\subsetneq \mathcal{U}$.
- 7. Recall that $A \subseteq \mathbb{R}$ is **convex** if whenever a < b < c and $a, c \in A$ then $b \in A$. Prove that a convex subset of \mathbb{R}_{usual} is never homeomorphic to a non-convex subset of \mathbb{R}_{usual} . (Hint: You may wish to use the intermediate value theorem.)
- 8. Remind us of the defintion of convex in \mathbb{R}^2 and convince us that the previous problem is false in \mathbb{R}^2 .
- 9. Using only material from 1st year calculus, convince us that [0, 1] is not homeomorphic to \mathbb{R} (both with their usual topology).

7 Subspaces

1. Give an example of a topological space (X, \mathcal{T}) , a subspace (A, \mathcal{T}_A) of (X, \mathcal{T}) , and a closed set in (A, \mathcal{T}_A) that is not closed in (X, \mathcal{T}) . (Is there more than one way to "break" this question?)

- 2. Let $(X, \mathcal{T}), (Y, \mathcal{U})$, and (Z, \mathcal{V}) be topological spaces such that there is an embedding of X in Y and an embedding of Y in Z. Prove that there is an embedding of X in Z. (X is embedded in Y if X is homeomorphic to a subspace of Y.)
- 3. Let (X, \mathcal{T}) be a topological space, and let $B \subseteq A \subseteq X$. Show that the boundary of B, considered as a subset of A, is a subset of the boundary of B, considered as a subset of X, intersected with A.
- 4. Let A be an open subset of a separable space (X, \mathcal{T}) . Prove that (A, \mathcal{T}_A) is separable.
- 5. Let (A, \mathcal{T}_A) be a subspace of a topological space (X, \mathcal{T}) . Prove that the inclusion map $i: A \longrightarrow X$ defined by i(a) = a for each $a \in A$ is continuous.
- 6. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, let (A, \mathcal{T}_A) be a subspace of (X, \mathcal{T}) , and let $f: X \longrightarrow Y$ be a continuous function. Prove that $f|_A: A \longrightarrow Y$ is continuous.
- 7. Let \mathcal{B}' be the collection of all open disks in \mathbb{R}^2 with a finite number of straight lines through the center removed, and let

$$\mathcal{B} = \{ B \cup \{c\} : B \in \mathcal{B}' \text{ and } c \text{ is the center of } B \}$$

- (a) Show that \mathcal{B} is a basis for a topology \mathcal{T} on \mathbb{R}^2 .
- (b) Compare \mathcal{T} with the usual topology \mathcal{U} on \mathbb{R}^2 .
- (c) Let A denote a striaght line in \mathbb{R}^2 . Describe \mathcal{T}_A .
- (d) Let A denote a circle in \mathbb{R}^2 . Compare \mathcal{T}_A and \mathcal{U}_A .
- 8. Let \mathcal{T} denote the subspace topology on [0,1) determined by the usual topology on \mathbb{R} , and let \mathcal{U} denote the subspace topology on $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ determined by the usual topology on \mathbb{R}^2 . Define $f:[0,1) \longrightarrow (S^1,\mathcal{U})$ by

$$f(x) = (\cos(2\pi x), \sin(2\pi x)).$$

- (a) Prove that f is a bijection.
- (b) Prove that f is continuous.
- (c) Prove that f^{-1} is not continuous.