The Effects of Class Size on Academic Success

Eric Pan

November 2022

1 Introduction

Academic success is one of the most important factors for ensuring that young people grow up to become economically successful and engaged members of society. A large part of this academic success depends on the quality of students' schooling, especially in secondary education, where performance in classes and on exams such as the SAT or ACT may have a large impact on whether or not they go college as well as the quality of the college they attend. Present literature supports the existence of a positive impact of small class size on academic performance (Arias & Walker, 2010; Nye et al., 2000). Moreover, for schools with limited resources, it is important to know whether reducing class size would serve more benefit for students as compared to other policy choices.

2 Methods

To determine the effect of class size on academic success, I will use the data contained in the *star.dta* dataset, which contains observations recording BLAH. In my analysis, I will control for factors including teacher experience and teacher's degree of education. I will run a linear regression to determine the effect of class size on math, reading, and listening scores on the SAT, and to determine whether this has a more meaningful impact on students' academic success when compared to teacher quality. Additionally, we will see on which subjects these factors play the largest role when it comes to student success.

In my analysis, I have controlled for teacher experience as well as teachers' education. With regards to the former, I have created a new variable indicating all teachers within one standard deviation of teaching experience, which is measured in years teaching. My analysis is focused on students in classrooms with teachers having an average amount of experience and without master's degrees.

3 Results

Let us begin with the following regression table depicting the regression of math on class size:

Source	SS	df			er of obs 2151)	s = =	2,153 24.46
Model Residual	56078.8514 4930986.23	1 2,151	56078.8514 2292.41573	Prob R-sq		=	0.0000 0.0112 0.0108
Total	4987065.08	2,152	2317.40943	•		=	47.879
math	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
class_size _cons	-1.26374 511.773	.2555082 5.355648	-4.95 95.56	0.000 0.000	-1.7648 501.27		762671 522.2758

First, we can see that our results are significant at the p < 0.001 level. The coefficient tells us that on average, an extra student in the classroom correlates with an approximately 1.25 point decrease in math SAT score. However, because R-squared is only 0.0112, not much of the variance in these scores is caused by the classroom size. In fact, the average score for math was approximately 486, and so the benefit of smaller class size on math scores is fairly negligible.

Now, let's look at a similar regression table, this time for reading scores:

Source	ss	df	MS	Numbe	er of obs	=	2,153
Model Residual	26846.9999 2206388.23	1 2.151	26846.9999 1025.7499	Prob	F(1, 2151) Prob > F R-squared		26.17 0.0000 0.0120
Total	2233235.23	2,151	1037.7487	– Adj F	R-squared	=	
read	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
class_size	8743916	.1709145	-5.12	0.000	-1.2095	66	5392168

These results look very familiar — the regression coefficient gives an approximately 0.9 point decrease per extra student, but we have a comparable R-squared as in our math regression, and the average reading score was 437, suggesting a similarly negligible effect of class size. Finally, let's take a look at the regression table for listening:

126.98

0.000

447.8917

461.9427

3.582499

_cons

454.9172

Source	ss	df	MS	Number of obs	=	2,153
Model Residual	18468.3454 2208128.38	1 2,151	18468.3454 1026.55899	F(1, 2151) Prob > F R-squared	= =	17.99 0.0000 0.0083
Total	2226596.72	2,152	1034.6639	Adj R-squared Root MSE	=	0.0078 32.04
listen	Coefficient	Std. err.	t	P> t [95% c	onf.	interval]

153.73

0.000

0.000

-1.060531

543.9272

-.3899169 557.9837

Again, it does look like a significant negative effect of class size on score, though the effect is rather small. It is notable that the effect of class size on math score was larger than that on reading and listening, however, lending some credence to the effectiveness of smaller classes, especially for more technical subjects such as math.

.1709819

3.583912

Now let's compare these three subjects on a scatter plot:

-.7252239

550.9555

class_size

_cons

As expected, no clear trends appear when comparing the three, though it does seem that overall students do better on listening than on other subjects.

Finally, let's take another look at the math regression, but with teachers who have earned master's degrees:

Source	ss	df	MS		er of obs		1,716
Model Residual	40419.1425 3721107.33	1 1,714	40419.1425 2171.00777	Prob R-sq	uared	= =	18.62 0.0000 0.0107
Total	3761526.47	1,715	2193.30989	-	R−squared MSE	= =	0.0102 46.594
math	Coefficient	Std. err.	t	P> t	[95% c	onf.	interval]
class_size _cons	-1.200154 509.7827	.2781467 5.679322	-4.31 89.76	0.000 0.000	-1.7456 498.64		6546108 520.9218

The table here looks functionally identical to that of the other regression of math—it seems as though more qualified teachers have no particular advantage when it comes to teaching students in smaller classes.

4 Conclusion

From our results, we have determined that although class size has a significant effect on students' academic performance, the effect is relatively small, and the difference in performance is not greatly affected by class size overall. It is worth noting, however, that more well-funded schools may be able to better support smaller classes, or schools serving more students may have more funding which can be used to support students in other ways. It is worth investigating other factors contributing to student performance, as reducing the number of students per class is not likely to grant students a large advantage on exams such as the SAT.

In this exercise, I learned the complete process of formulating a research question based on given data and analyzing it in different ways to make conclusions.