Homework 3 Solutions

1. Indicator Random Variables

	1) Indicator Random Variables (10 points)
7	
	Let X; be the indicator random variable for the event
	"the ith customer gets their hat back."
	*
	Given a sample space S with n! permutations of outcomes
	Where n customers are randomly assigned one of n hats,
	it can be shown that the Pr(the ith customer gets their hat back)
	is equal to $\frac{1}{n}$.
	And since $E[X_A] = Pr(A)$
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1	We have, by Linearity of Expectations,
1	ove maye, by michany or expectations,
_	
+	$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E\left[X_{i}\right] = n \times n = 1$

2. Indicator Random Variables

Let
$$X$$
 is be indicator vandom variable.

Xij = I {A[i] > A[j]} for $i \le i < j \le n$

The probability of getting first number is bigger than second so $(X_{ij} : 1) = V_2$.

Using Lemma, $E[X_{ij}] = V_2$ since $A[i] > A[j]$ or $A[j] > A[i]$.

$$X : \sum_{i=1}^{n} X_{ij} \dots \rightarrow E[X] = E[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}]$$

$$\rightarrow E[X] = \sum_{i=1}^{n} X_{ij} \dots \rightarrow E[X] = E[X_{ij}] \text{ with } V_2$$

$$= E[X] = \sum_{i=1}^{n} \sum_{j=1}^{n} V_2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} V_2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} V_2$$

$$= \sum_{i=1}^{n} (n - (i+1)+1) V_2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} U_2$$

$$= \sum_{i=1}^{n} U_2$$

3. Heaps

4. Heap and Heap Property

5. Heap and Heap Property

The smallest element resides on one of the leaves. About n/2 of the nodes are the leaves as we discussed in the class. Intuitively, we'll need O(n/2) time to find the smallest element (by comparison). So the worst running time is O(n).

6. Heap Sort

Follow the algorithm and figure in the textbook

7. Priority Queue

