Aufgabe

Überprüfen Sie, ob die folgenden Abbildungen lineare Abbildungen sind.

(i)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 1$$

(ii)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_1 + 2x_2 + 4x_3, x_1x_2)$

(iii)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (-x_1 + 2x_2 - 4x_3, 2x_2 + 3x_3, x_1 - 2x_3)$

(iv)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 - 2x_2 - 1, 3x_1 - 4x_2 + 3)$

(i)
$$f(0) = 3.0 + 1 = 1 + 0$$
.

Dann gilt:

$$f(1, c) = f(2, 2, 2) = (2 + 2.2 + 4.2, 2.2) = (14, 4)$$

$$1 \cdot f(\omega) = 2 \cdot f(1,1,1) = 2 \cdot (1 + 2 \cdot 1 + 4 \cdot 1, 1 \cdot 1) = 2 \cdot (7,1) = (14,2)$$

Setze
$$A := \begin{pmatrix} -1 & 2 & -4 \\ 0 & 2 & 3 \\ 1 & 0 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
.

Dann gilt:

$$f(x_1, x_2, x_3) = A \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 and f ist linear

(iv)
$$f(0,0) = (0-2.0-1, 3.0-4.0+3) = (-1,3) + (0,0)$$

Aufgabe:

Untersuchen Sie die folgenden Abbildungen auf Lincarität:

(a)
$$f_1: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,5) = (x-5, 1+5)$

(b)
$$f_2: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x, 5, 2) = (x - 5, 22 - x + 5)$

Lösung:

(a)
$$f(0,0) = (0,1) + (0,0) = f$$
 ist nicht linear.

(b)
$$f(x,y,z) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ z \\ z \end{pmatrix} = f$$
 ist linear.

$$f(1.2) = \overline{1.2} = \overline{1.2} = \overline{1} \cdot f(2)$$

Also ist & linear.

$$f(1.2) = f(i) = i = -i$$

$$2 \cdot f(x) = i \cdot f(x) = i \cdot \overline{1} = i \cdot 1 = i + -i = f(x \cdot x)$$

Def.:

Bem.:

Bew	:																										
Sch	veibe	2,	= >	۲ ₁ -	t je	อา	, 7	2 -	= ×	₂ +	۱۶	2	mi	t ;	۲ 1,	×ι	ָל,	1,5	12 E	IR	. [)an	N	5i l	† :		
	+ 72																										
<u>τη</u>	1 22																	ן א	· -J.	<i>L'</i>							_
		=	×,	, -	۱5,	, †	· ×	2 -	·iĘ	12		=	7	, t	- 5	2											
2 1 ·	₹2	=	(×	.η †	i9.	,).	(×2	2 +	192)	=	×	(۱۰	ΚZ	- v	วา ")2 ¹	ŀ į.	(×,	٠ ئ	z+	×z.	51)			
		=	(×,	۱·×	2 -	· ഗ	זקי.	,)	_	(×	ام. ري ا	12+	×	ر ک · کر)1)												
a .	72						-										γ.	<u>ر</u>	- i	. د	🗸		L (.	_ ;	2		-
(1	7-2																		•	O'	1 ^	2	' <u>`</u>		1) J2	•
		=	(×,	۰.×	2 -	. <i>(</i> 2	י קיי	.)	-	(×	اء. ہ	12+	×	۲ . د)1 [/]		V										
																											+
																											1
																											+
																											_
																											+
																											+
																											+
																											1
																											+
																											+

Sei K ein Körper, $n \in \mathbb{N}, A \in K^{n \times n}$ invertierbar, $b \in K^n \setminus \{0\}$.

- (a) Man zeige, daß die Abbildung $f: K^n \to K^n$; f(x) := Ax + b injektiv und surjektiv, aber nicht linear ist.
- (b) Man zeige, daß die Abbildung $g: K^{n+1} \to K^n$; $\binom{x}{\alpha} \mapsto Ax + \alpha b$ linear und surjektiv, aber nicht injektiv ist.

In
$$\begin{pmatrix} x \\ \alpha \end{pmatrix}$$
 sei dabei $x \in K^n$ und $\alpha \in K$.

Beweis:

Ad (a):

• f ist nicht linear, da für jede lineare Abbildung g(0) = 0 gelten muß, hier aber

$$f(0) = A \cdot 0 + b = b \neq 0$$

ist.

• f ist injektiv, denn es ist für alle $x, y \in K^n$:

$$f(x) = f(y) \iff Ax + b = Ay + b$$

$$\iff Ax = Ay$$

$$\stackrel{A}{\Longrightarrow} x = E_n \cdot x = (A^{-1}A) \cdot x = A^{-1}(Ax) = A^{-1}(Ay) = (A^{-1}A) \cdot y = E_n \cdot y = y$$

$$\implies x = y$$

• f ist surjektiv, denn für jedes $z \in K^n$ gilt für geeignetes $x \in K^n$:

$$z = f(x) = Ax + b \iff z - b = Ax \iff_{\text{invertierbar}} A^{-1} \cdot (z - b) = A^{-1} \cdot Ax = x$$

Wir verifizieren, daß dieses x tatsächlich ein Urbild von z unter f ist:

$$f(x) = f\left(A^{-1}(z-b)\right) \stackrel{\text{Def.}}{=} A \cdot \left(A^{-1}(z-b)\right) + b = (A \cdot A^{-1}) \cdot (z-b) + b = (z-b) + b = z$$

Ad (b):

• g ist linear, denn für alle $\begin{pmatrix} x \\ \alpha \end{pmatrix}, \begin{pmatrix} y \\ \beta \end{pmatrix} \in K^{n+1}$ und $\gamma \in K$ gilt:

$$g\left(\begin{pmatrix} x \\ \alpha \end{pmatrix} + \begin{pmatrix} y \\ \beta \end{pmatrix}\right) = g\left(\begin{pmatrix} x+y \\ \alpha+\beta \end{pmatrix}\right) \quad \stackrel{\text{Def.}}{=} \quad A \cdot (x+y) + (\alpha+\beta) \cdot b$$

$$= \quad A \cdot x + A \cdot y + \alpha \cdot b + \beta \cdot b$$

$$= \quad (Ax + \alpha b) + (Ay + \beta b)$$

$$\stackrel{\text{Def.}}{=} \quad g\left(\begin{pmatrix} x \\ \alpha \end{pmatrix}\right) + g\left(\begin{pmatrix} y \\ \beta \end{pmatrix}\right)$$

und

$$g\left(\gamma\cdot\begin{pmatrix}x\\\alpha\end{pmatrix}\right)=g\left(\begin{pmatrix}\gamma x\\\gamma\alpha\end{pmatrix}\right)\overset{\mathrm{Def.}}{=}A(\gamma x)+(\gamma\alpha)b=\gamma(Ax)+\gamma(\alpha b)=\gamma\cdot(Ax+\alpha b)\overset{\mathrm{Def.}}{=}\gamma\cdot g\left(\begin{pmatrix}x\\\alpha\end{pmatrix}\right)$$

• g ist surjektiv, denn mit A invertierbar ist für jedes $z \in K^n$ der Vektor $A^{-1} \cdot z \in K^n$ wohldefiniert und es gilt

$$g\left(\begin{pmatrix} A^{-1}z\\0\end{pmatrix}\right) = A \cdot (A^{-1}z) + 0 \cdot b = (AA^{-1})z = E_n \cdot z = z$$

also $K^n \subseteq \operatorname{Bild}(g) \subseteq K^n \implies K^n = \operatorname{Bild}(g) \implies g$ surjektiv

• g ist nicht injektiv, denn wie eben gezeigt, gilt $g\left(\begin{pmatrix} A^{-1}b\\0\end{pmatrix}\right)=b$, aber auch

$$g\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) = A \cdot 0 + 1 \cdot b = b$$
, also

$$g\left(\begin{pmatrix} A^{-1}b\\0\end{pmatrix}\right) = b = g\left(\begin{pmatrix} 0\\1\end{pmatrix}\right)$$
, aber $\begin{pmatrix} A^{-1}b\\0\end{pmatrix} \neq \begin{pmatrix} 0\\1\end{pmatrix}$

Alternativ kann man dies auch mit der Dimensionsformel beweisen, denn mit $g: K^{n+1} \to K^n$ linear ist

$$n + 1 = \dim(K^{n+1}) = \dim(\operatorname{Kern} g) + \dim(\underbrace{\operatorname{Bild} g}_{=K^n, \operatorname{da} g}) = \dim(\operatorname{Kern} g) + n$$

 \implies dim (Kern g) = $(n + 1) - n = 1 \implies$ Kern $g \neq \{0\}$, also ist g nicht injektiv