Kodavimo teorija

Vilius Stakėnas

2010 metų ruduo

Maksimalūs kodai	2
Maksimalūs kodai	3
Įverčiai	4
Hammingo įvertis	5
Gilberto įvertis	6
Singletono įvertis	7
Kiek simbolių reikia pridėti, kad kodas taisytų t klaidų?	8
Klaidingo dekodavimo tikimybė	Ć
Hadamardo matricos	10
Kroneckerio sandauga	11
Normalinės Hadamardo matricos	12
Hadamardo matricų egzistavimas	13
Hadamardo kodas	14

Maksimalūs kodai

2/14

Maksimalūs kodai

Apibrėžimas. Pažymėkime

$$A_q(n,d) = \max\{N : egzistuoja\ (n,N,d)\ kodas\ \mathbf{C} \subset \mathcal{A}_q^n\}.$$

Kodus su parametrais $(n, A_q(n, d), d)$ vadinsime maksimaliais. Bet kokiems $q \ge 1, n \ge 1$,

$$A_q(n,1) = q^n, \quad A_q(n,n) = q.$$

3 / 14

Įverčiai

Teorema. Teisingos nelygybės

$$A_q(n,d) \le A_q(n-1,d-1), \quad (n \ge 2, d \le n),$$

 $A_q(n,d) \le qA_q(n-1,d), \quad (n \ge 2, 1 \le d \le n-1).$

Teisingos lygybės

$$A_2(n, 2l - 1) = A_2(n + 1, 2l), \quad A_2(n, 2) = 2^{n-1}.$$

4 / 14

Hammingo įvertis

Teorema. Bet kokiems $n \ge 1, \ q > 1, \ n \ge d \ge 1$, teisingas įvertis

$$A_q(n,d) \le q^n \left(\sum_{k=0}^t \binom{n}{k} (q-1)^k\right)^{-1}, \quad t = \left[\frac{d-1}{2}\right].$$

Gilberto įvertis

Teorema. Bet kokiam $n \ge 1, q > 1, d \ge 1$,

$$A_q(n,d) \ge q^n \left(\sum_{k=0}^{d-1} \binom{n}{k} (q-1)^k\right)^{-1}.$$

6/14

Singletono įvertis

Teorema. Bet kokiems $n \ge 1, q > 1, n \ge d \ge 1$, teisingas įvertis

$$A_q(n,d) \le q^{n-d+1}.$$

7/14

Kiek simbolių reikia pridėti, kad kodas taisytų t klaidų?

l – koduojamo žodžio ilgis

n-kodo žodžio ilgis

r = n - l – pridedamų simbolių kiekis

$$\log_q V_q(n,t) \le r \le 1 + \log_q V_q(n,2t)$$

8 / 14

Klaidingo dekodavimo tikimybė

Jei kanalas yra skirtas dvejetainės abėcėlės simboliams siųsti, neturi atminties ir iškraipo simbolį su tikimybe p, tai iškraipytas dvejetainio kodo su parametrais (n, N, 2t + 1) žodis bus dekoduotas klaidingai su tikimybe

$$p_{klaidos} = 1 - \sum_{i=0}^{t} \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Hadamardo matricos

Apibrėžimas. n-tos eilės kvadratinė matrica $H_n = (h_{ij})$ vadinama Hadamardo matrica, jei

$$h_{ij} = \pm 1, \quad H_n \cdot H_n^{\top} = nI_n,$$

čia H_n^{\top} žymi transponuotą matricą, I_n – vienetinę.

10 / 14

Kroneckerio sandauga

Apibrėžimas. Tegu $A=(a_{ij})$ yra $n\times n, B=(b_{ij}), \ m\times m$ matricos. Jų Kroneckerio sandauga vadinama $nm\times nm$ matrica

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1m}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{11}B & a_{12}B & \dots & a_{1m}B \end{pmatrix}$$

Teorema. Jei A,B yra Hadamardo matricos, tai $A\otimes B$ irgi Hadamardo matrica.

Normalinės Hadamardo matricos

Teorema. Sukeitus Hadamardo matricos dvi eilutes (stulpelius) vietomis gautoji matrica vėl yra Hadamardo matrica. Padauginus Hadamardo matricos eilutę (stulpelį) iš -1, gaunama Hadamardo matrica.

Apibrėžimas. n-tos eilės Hadamardo matrica $H_n = (h_{ij})$ vadinama normaline, jei visiems j teisinga lygybė

$$h_{1j} = h_{j1} = 1.$$

Teorema. Keičiant atitinkamas eilutes (stulpelius) vietomis bei dauginant eilutes (stulpelius) iš -1 kiekvieną Hadamardo matricą galima suvesti į normalinę matricą.

12 / 14

Hadamardo matricų egzistavimas

Teorema. Jei H_n yra Hadamardo matrica, tai n = 1, 2 arba n dalijasi iš 4.

Teorema. Jei q yra pirminis skaičius ir $q \equiv 3 \mod 4$, tai egzistuoja q+1-os eilės Hadamardo matrica.

13 / 14

Hadamardo kodas

Apibrėžimas. Tegu H_n yra Hadamardo matrica, M_n, M'_n - matricos, gautos iš H_n ir $-H_n$ pakeitus elementus -1 į 0. Hadamardo kodu \mathcal{H}_n vadinsime dvejetainės abėcėlės kodą, kurį sudaro žodžiai, sudaryti iš M_n, M'_n eilučių.

Teorema. Hadamardo kodo \mathcal{H}_n parametrai - (n, 2n, n/2).