Step-1

If Q_1, Q_2 are orthogonal, then $Q_1^T Q_1 = I_{\text{and}} Q_2^T Q_2 = I_{\hat{a}} \in \hat{a} \in \hat{a} \in [\hat{a} \in [1, 1]]$

We consider $(Q_1Q_2)^T(Q_1Q_2)$

= $(Q_2^T Q_1^T) Q_1 Q_2$ By the properties of transposing matrices

= $Q_2^T (Q_1^T Q_1) Q_2$ By the associativity of multiplication

 $=Q_2^T \left(IQ_2\right) \text{ by (1)}$

 $= Q_2^T Q_2$

Therefore $(Q_1Q_2)^T(Q_1Q_2) = I$

Hence Q_1Q_2 is orthogonal

Step-2

Given that \mathcal{Q}_{I} is the rotation through θ

$$Q_{1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Similarly, Q_2 is a rotation matrix through ϕ

$$Q_2 = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

 $Q_1 Q_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \theta \end{bmatrix}$ Let us consider

$$= \begin{bmatrix} \cos\theta\cos\phi - \sin\theta\sin\phi & -\cos\theta\sin\phi - \sin\theta\cos\phi \\ \sin\theta\cos\phi + \cos\theta\sin\phi & \cos\theta\cos\phi - \sin\theta\sin\phi \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

This is nothing but the rotation matrix through an angle α where $\alpha = \theta + \phi$

Therefore, Q_1Q_2 is a rotation matrix through an angle $\theta + \phi$.