MATH 1502 TEST 6, PAGE 1, FALL 2013, GRODZINSKY Print Your Name: Key-
T.A. or Section Number:
 For the matrix A given below, determine: (a) (10 points) the rank and nullity of the matrix. (b) (10 points) a basis for the column space of the matrix, and a geometric description of the column space (i.e., is it a line, plane, hyperplane, in R^k, etc.). (c) (12 points) a basis for the nullspace of the matrix, and a geometric description of the nullspace.
nullspace. $A = \begin{bmatrix} 2 & 3 & 4 & -7 \\ -8 & -9 & -10 & 19 \\ 4 & -3 & -10 & 13 \end{bmatrix}$
Row reduce to RREF.
$ \begin{bmatrix} 234-7 \\ 036-9 \\ 0-9-1827 \end{bmatrix} \begin{bmatrix} 20-22 \\ 036-9 \\ 0000 \end{bmatrix} \begin{bmatrix} 10-17 \\ 036-9 \\ 0000 \end{bmatrix} $
(a) There are two pivotal columns, 50 [rank (A) = 2) and [nullity (A) = 4-2=2)
(b) The first two columns are protal, so a basis for the column space is $\left[\begin{bmatrix} 3\\ -8\\ 4\end{bmatrix}, \begin{bmatrix} 3\\ -9\\ -3\end{bmatrix}\right]$.
This space is a plane in IR3).
(c) Solving $A\bar{x}=\bar{o}$ (c) Solving $A\bar{x}=\bar{o}$ (c) $X_2=-25+3t$ $X_3=5$ $X_4=t$
50 a basis for the nullspace 15 \{ \left[-2], \left[-3]\}. Plane in R4.

2. (20 points) Find the determinant of the matrix A below.

$$A = \begin{bmatrix} -3 & -2 & 2 & 0 \\ -5 & 6 & 2 & 0 \\ -6 & 0 & 3 & 0 \\ 4 & 8 & 0 & -3 \end{bmatrix}$$

Expand on 4th column:

$$det(A) = -3 \begin{vmatrix} \pm 3 - 2 & 2 \\ -5 & 6 & 2 \end{vmatrix}$$
 (expand on 3rd row)
 $= -3(-6) \begin{vmatrix} -2 & 2 \\ 6 & 2 \end{vmatrix} + 3 \begin{vmatrix} -3 - 2 \\ -5 & 6 \end{vmatrix}$
 $= (3)(-6)(-4-12) + 3(-18-(10))$
 $= (3)(-6)(-16) + 3(-28)$
 $= (-3)(96-84) = (-36)$

3. (14 points) Given the vectors $\vec{a} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 3 \\ -4 \\ -1 \end{bmatrix}$, find a vector that is orthogonal to both \vec{a} and \vec{b} .

orthogonal to both
$$\vec{a}$$
 and \vec{b} .

The vector $\vec{a} \times \vec{b}$ is orthogonal to both

 \vec{a} and \vec{b} :

 $\vec{a} \times \vec{b} = \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -3 & 5 \end{bmatrix}$

$$= (3+20)\vec{i} - (-1-15)\vec{j} + (-4+9)\vec{k}$$

$$= 23\vec{i} + 16\vec{j} + 5\vec{k}, \text{ or } \begin{bmatrix} 23 \\ 16 \\ 5 \end{bmatrix} \text{ (any multiple of this vector are)}$$

MATH 1502 TEST 6, PAGE 2, FALL 2013, GRODZINSKY

Print Your Name: Key -)

T.A. or Section Number:

4. (20 points) Find all eigenvalues and a basis for the eigenspace corresponding to each eigenvalue (i.e. all the eigenvectors) for the matrix B below.

Be
$$\begin{bmatrix} -7 & -1 \\ 15 & 1 \end{bmatrix}$$

To find the eigenvalues, set $P(N) = \det(B - \lambda I) = 0$:

 $P(N) = \begin{bmatrix} -7 - \lambda & -1 \\ 15 & 1 - \lambda \end{bmatrix} = (-7 - \lambda)(1 - \lambda) + 15$
 $= -7 + 6\lambda + \lambda^2 + 15 = \lambda^2 + 6\lambda + 8$
 $= (7 + 4)(\lambda + 2)$, so the eigenvalues

 $= (7 + 4)(\lambda + 2)$, so the eigenvalues

 $= (7 + 4)(\lambda + 2)$, so the eigenvalues

 $= (7 + 4)(\lambda + 2)$, so the eigenvalues

 $= (7 + 4)(\lambda + 2)$, so the eigenspace of $\lambda = 4$
 $= (7 + 4)(\lambda + 2)$, so $= (7 + 4)(\lambda + 2)$
 $= (7 + 4)(\lambda + 2)$, so $= (7 + 4)(\lambda + 2)(\lambda + 2)$
 $= (7 + 4)(\lambda + 2)(\lambda + 2)(\lambda + 2)(\lambda + 2)$
 $= (7 + 4)(\lambda + 2)(\lambda + 2)(\lambda$

5. (14 points) Let S be the set of all vectors in \Re^3 that have the form $\begin{bmatrix} t \\ 2t \\ -t \end{bmatrix}$. Prove that

S is a subspace of \Re^3 . Recall: that means you must show that (i) S contains $\vec{0}$ and (ii) if

 $\vec{x}, \vec{y} \in S$ and $a \in \Re$, then $a\vec{x} + \vec{y} \in S$.

(i) If
$$t=0$$
, we have $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \hat{0}$, so $\hat{0} \in S$.
(ii) Let $\hat{x}, \hat{y} \in S$, then $\hat{x} = \begin{bmatrix} 2t_1 \\ 2t_1 \end{bmatrix}$ and $\hat{y} = \begin{bmatrix} 2t_2 \\ 2t_3 \end{bmatrix}$ for some $t_1, t_2 \in \mathbb{R}$. Let $a \in \mathbb{R}$. Then:
 $a\hat{x} + \hat{y} = \begin{bmatrix} at_1 + t_2 \\ 2at_1 + 2t_2 \end{bmatrix} = \begin{bmatrix} at_1 + t_2 \\ 2(at_1 + t_2) \end{bmatrix} = \begin{bmatrix} at_1 + t_2 \\ -at_1 - t_2 \end{bmatrix}$

$$t = at_1 + t_2 \begin{bmatrix} t \\ 2t \end{bmatrix}, so a\hat{x} + \hat{y} \in S.$$
Thus, S is a subspace of \mathbb{R}^3 ged

BONUS: (5 points) Use the Big Theorem of Linear Algebra to explain why the eigenvalues λ of a matrix A must satisfy the equation $\det(A - \lambda I) = 0$.

If
$$\vec{X}$$
 is an eigenvector with associated eigenvalue γ , then $A\vec{X} = \gamma \vec{X}$ (by definition)

(a) $(A - \gamma \vec{I})\vec{X} = \vec{0}$

Since $\vec{X} \neq \vec{0}$, this means there exists an $\vec{X} \neq 0$

with $(A - \gamma \vec{I})\vec{X} = \vec{0}$, so nullify $(A - \gamma \vec{I}) \geq 1$

with $(A - \gamma \vec{I})\vec{X} = \vec{0}$, so nullify $(A - \gamma \vec{I}) \geq 1$

(b) the matrix $(A - \gamma \vec{I})$ is not inversible

(c) Let $(A - \gamma \vec{I}) = 0$.

MATH 1502 TEST 6, PAGE 1, FALL 2013, GRODZINSKY

Print Your Name: Key - 2

T.A. or Section Number:

1. (20 points) Find all eigenvalues and a basis for the eigenspace corresponding to each eigenvalue (i.e. all the eigenvectors) for the matrix B below.

$$B = \begin{bmatrix} -8 & -1 \\ 14 & 1 \end{bmatrix}$$

First, find the eigenvalues by solving P(7) = det (B-7I) = 0:

$$\det(B-\lambda I) = \begin{vmatrix} -8-\lambda & -1 \\ 14 & 1-\lambda \end{vmatrix} = (-8-\lambda)(1-\lambda) + 14$$

$$= -8 + 7\lambda + \lambda^{2} + 14 = \lambda^{2} + 7\lambda + 6$$

$$= (\lambda + 6)(\lambda + 1), so (\lambda = 6, \lambda = -1)$$

$$= (\lambda + 6)(\lambda + 1), so (\lambda = 6, \lambda = -1)$$

$$7 = -6$$
: A+6 $I = \begin{bmatrix} -2 & -1 \\ 14 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ 0 & 0 \end{bmatrix}$

=) nullspace looks like $x_1 = -/3t = 3$ basis for $\left\{ \begin{bmatrix} -1/3 \\ 1 \end{bmatrix} \right\}$ eigenspace

$$73=-1$$
: A+I= $\begin{bmatrix} -7 & -1 \\ 14 & 2 \end{bmatrix}$ - $\begin{bmatrix} 1 & 1/4 \\ 1/4 \end{bmatrix}$ - $\begin{bmatrix} 1 & 1/4 \\ 0 & 0 \end{bmatrix}$
 $\Rightarrow \text{Solving}$
 $\Rightarrow \text{Solving}$

2. (14 points) Given the vectors $\vec{a} = \begin{bmatrix} 2 \\ 4 \\ -3 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}$, find a vector that is orthogonal to both \vec{a} and \vec{b} . The cross product is orthogonal to both a and 3: $\vec{a}_{x}\vec{b} = \begin{vmatrix} \vec{1} & \vec{1} & \vec{k} \\ \vec{a} & 4 - 3 \end{vmatrix} = (-8 - 3)\vec{1} - (-4 + 15)\vec{1} + (-2 - 20)\vec{k}$ = -11\vec{1} - 11\vec{1} - 22\vec{k}, (-11) (any multiple of this vector also works) 3. (14 points) Let S be the set of all vectors in \Re^3 that have the form $\begin{bmatrix} 2t \\ -t \\ t \end{bmatrix}$. Prove that S is a subspace of \Re^3 . Recall: that means you must show that (i) S contains $\vec{0}$ and (ii) if $\vec{x}, \vec{y} \in S$ and $a \in \Re$, then $a\vec{x} + \vec{y} \in S$. (i) Letting t=0 gives the vector $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \bar{0}$, so $\bar{0} \in S$ (a) Let $\vec{x}, \vec{y} \in S$. Then $\vec{x} = \begin{bmatrix} 2t_1 \\ -t_1 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 2t_2 \\ -t_3 \end{bmatrix}$ For some ti, to ER. Let a ER. Then: $\vec{ax} + \vec{y} = \begin{bmatrix} 2at_1 + 2t_2 \\ -at_1 + (-t_2) \end{bmatrix} = \begin{bmatrix} 2(at_1 + t_2) \\ -(at_1 + t_2) \end{bmatrix}$ $= \begin{bmatrix} at_1 + t_2 \\ at_1 + t_2 \end{bmatrix}$ t=atitta (at), so axty e S. Thus, S is a subspace of R3

MATH 1502 TEST 6, PAGE 2, FALL 2013, GRODZINSKY

Print Your Name: 14 - 2
T.A. or Section Number:
4. For the matrix A given below, determine: (a) (10 points) the rank and nullity of the matrix. (b) (10 points) a basis for the column space of the matrix, and a geometric description of the column space (i.e., is it a line, plane, hyperplane, in \Re^k , etc.). (c) (12 points) a basis for the nullspace of the matrix, and a geometric description of the nullspace. $A = \begin{bmatrix} 2 & 3 & 8 & -6 \\ -8 & -9 & -20 & 12 \\ 6 & 0 & -12 & 18 \end{bmatrix}$
200 reduce to RREF:
1 1 2 non-protal columns
a) 2 protal and 2 non-protal columns
- Tank (A) = hand
a solvens form a basis
for Col(H) . [-8], [0]
CollA & a plane in PR.
Salve AX=0: X2=-4s+4t
$\begin{array}{c} X_3 = 5 \\ X_4 = t \end{array} \qquad \begin{array}{c} \left(\begin{array}{c} -3 \\ 4 \end{array} \right) \end{array}$
$x_3 = 5$ $x_4 = 1$ $x_4 $
NullA) is a plane in R4).
Nul(H) I> La Faire

5. (20 points) Find the determinant of the matrix A below.

$$A = \begin{bmatrix} 3 & 0 & 1 & 0 \\ 2 & -1 & 8 & 0 \\ 3 & -3 & 11 & 0 \\ 4 & -4 & 12 & 2 \end{bmatrix} + \frac{1}{2}$$

Expand on column 4:

$$det(A) = 2 \begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 8 \end{vmatrix}$$
 expand on now!

$$= 2 \left[3 \begin{vmatrix} -1 & 8 \\ 3 & -3 \end{vmatrix} + 1 \begin{vmatrix} 2 & -1 \\ 3 & -3 \end{vmatrix} \right]$$

$$= 2 \left[3 \left(-11 + 24 \right) + \left(-6 + 3 \right) \right]$$

$$= 2 \left[3 \left(13 \right) - 3 \right] = 2 \left(36 \right) = \boxed{72}$$

BONUS: (5 points) Use the Big Theorem of Linear Algebra to explain why the eigenvalues λ of a matrix A must satisfy the equation $\det(A - \lambda I) = 0$.

See Form 1.