Exercice (corrigé):

En utilisant <u>le théorème des travaux virtuels</u>, calculer <u>les efforts normaux</u> dans les barres **DE** et **BC** du treillis suivant :

Calcul de l'effort normal N_{BC} :

Rappel:

- Procédures d'utilisation du théorème des travaux virtuels :
 - Pour déterminer S_i (effort ou réaction), on coupe la liaison unique dans laquelle se développe S_i et on remplace avec S_i comme force extérieure, dans notre cas :

- On arrive ainsi à un mécanisme plan avec un degré de liberté cinématique qui doit rester en équilibre sous l'action de la charge $\bf P$ et de $\bf S_i$
- On donne à ce mécanisme un déplacement virtuel compatible avec S_i et on écrit que la somme des travaux est nulle $(\sum W = 0)$. On obtient ainsi l'expression de S_i .

RDM 3 Par CHBIHI Youness

Le corps 2 est fixe par rapport au sol, le corps 1 va tourner autour du point qui le lie au corps 1, c'est-à-dire le point D, θ_{12} étant l'angle de rotation entre le corps 2 et 1, et du fait que le corps 1 est fixe alors $\theta_{12} = \theta_{10}$, d'où :

$$AA' = AD \cdot \theta_{12}$$

Le théorème des travaux virtuels donne :

$$\overrightarrow{N_{BC}} \cdot \overrightarrow{\Delta_i} + \overrightarrow{P} \cdot \overrightarrow{AA'} = 0$$
$$-N_{BC} \cdot \Delta_i + P \cdot AA' \cdot \cos(\alpha) = 0$$

(Le signe moins provient du fait que la force N_{BC} est résistante c'est-à-dire N_{BC} et Δ_i sont de sens opposés)

$$-N_{BC} \cdot 1 + P \cdot AD \cdot \frac{1}{h} \cdot \frac{AB}{AD} = 0$$

RDM 3 Par CHBIHI Youness

$$-N_{BC}\cdot 1 + P\cdot \frac{8}{2\sqrt{2}} = 0$$

$$N_{BC} = 2\sqrt{2} \cdot P$$

Calcul de l'effort normal N_{DE} :

De la même manière on a :

$$N_{DE} \cdot \Delta_i + P \cdot AA' \cdot \cos(\alpha') = 0$$

$$N_{DE} \cdot 1 + P \cdot AC \cdot \frac{1}{DC} \cdot \frac{AB + DC}{AC} = 0$$

$$N_{DE} \cdot 1 + P \cdot \frac{1}{4} \cdot 12 = 0$$

$$N_{BC} = -3 \cdot P$$

RDM 3 Par CHBIHI Youness