

EECS 16B

Designing Information Devices and Systems II Lecture 25

Prof. Yi Ma

Department of Electrical Engineering and Computer Sciences, UC Berkeley, yima@eecs.berkeley.edu

Outline

- Principal Component Analysis (Statistics)
 - Least Squares versus Principal Components
- Linearization of Nonlinear Systems

Principal Component Analysis (Statistics)

$$U = [U_{\ell}, U_{m-\ell}] \in \mathbb{R}^{m \times m} \text{ orthogonal } ||A||_F^2 = ||UU^{\top}A||_F^2 = ||U_{\ell}U_{\ell}^{\top}A||_F^2 + ||U_{m-\ell}U_{m-\ell}^{\top}A||_F^2$$

$$\max_{U_{\ell}} \|U_{\ell}U_{\ell}^{\top}A\|_{F}^{2} \quad \Leftrightarrow \min_{U_{\ell}} \|A - U_{\ell}U_{\ell}^{\top}A\|_{F}^{2} \quad \Leftrightarrow \quad \min_{U_{m-\ell}} \|U_{m-\ell}U_{m-\ell}^{\top}A\|_{F}^{2} \qquad U_{m-\ell}$$

Applications of PCA

Eigenfaces [Turk & Pentland 1991]:

Cell

The Code for Facial Identity in the Primate Brain

Authors

Le Chang, Doris Y. Tsao

Correspondence lechang@caltech.edu (L.C.), dortsao@caltech.edu (D.Y.T.)

risaoecanecii

Facial identity is encoded via a remarkably simple neural code that relies on the ability of neurons to distinguish facial features along specific axes in face space, disavowing the long-standing assumption that single face cells encode individual faces.

Article

Highlight

- Facial images can be linearly reconstructed using response of ~200 face cells
- Face cells display flat tuning along dimensions orthogonal the axis being coded
- The axis model is more efficient, robust, and flexible than the exemplar model
- Face patches ML/MF and AM carry complementary

PCANet [Chan & Ma et. al. 2015]:

Recognition rates (%) on FERET dataset.

Probe sets	Fb	Fc	Dup-I	Dup-II	Avg.
LBP [18]	93.00	51.00	61.00	50.00	63.75
DMMA [25]	98.10	98.50	81.60	83.20	89.60
P-LBP [21]	98.00	98.00	90.00	85.00	92.75
POEM [26]	99.60	99.50	88.80	85.00	93.20
G-LQP [27]	99.90	100	93.20	91.00	96.03
LGBP-LGXP [28]	99.00	99.00	94.00	93.00	96.25
sPOEM+POD [29]	99.70	100	94.90	94.00	97.15
GOM [30]	99.90	100	95.70	93.10	97.18
PCANet-1 (Trn. CD)	99.33	99.48	88.92	84.19	92.98
PCANet-2 (Trn. CD)	99.67	99.48	95.84	94.02	97.25
PCANet-1	99.50	98.97	89.89	86.75	93.78
PCANet-2	99.58	100	95.43	94.02	97.26

Least Squares (Regression) versus PCA

Least Squares (Regression) versus PCA

Example:
$$A = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$

Prediction versus Correlation

System Modeling & Control

All autonomous intelligent (AI) systems rely on closed-loop learning and control:

mathematical modeling from first principles

approximation & linearization

discretization & digitization

$$\overrightarrow{x}_c(t) = f(\overrightarrow{x}_c(t), \overrightarrow{u}_c(t), \overrightarrow{w}(t))$$

$$\overrightarrow{y}_c(t) = h(\overrightarrow{x}_c(t), \overrightarrow{u}_c(t))$$

$$\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) + \vec{n}(t)$$
$$\vec{y}(t) = C\vec{x}(t) + D\vec{u}(t)$$

$$\dot{\vec{x}}_c(t) = f(\vec{x}_c(t), \vec{u}_c(t), \vec{w}_c(t))
\vec{y}_c(t) = h(\vec{x}_c(t), \vec{u}_c(t))
\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) + \vec{n}(t)
\vec{y}(t) = C\vec{x}(t) + D\vec{u}(t)$$

$$\dot{\vec{x}}(t) = A\vec{x}(t) + B\vec{u}(t) + \vec{n}(t)
\vec{y}_d[i+1] = A_d\vec{x}_d[i] + B_d\vec{u}_d[i] + \vec{e}[i]
\vec{y}_d[i+1] = C_d\vec{x}_d[i] + D_d\vec{u}_d[i]$$

Linear versus Nonlinear Systems

Objectives: Identification (learning), Analysis (stability), Control (closed-loop feedback)

Continuous Time

Discrete Time

Linear Control Systems

$$\frac{d\vec{x}(t)}{dt} = A\vec{x}(t) + B\vec{u}(t)$$

$$\vec{x}[i+1] = A\vec{x}[i] + B\vec{u}[i]$$

Nonlinear Control Systems

$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), \vec{u}(t))$$

$$\vec{x}[i+1] = \vec{f}(\vec{x}[i], \vec{u}[i])$$

Autonomous Systems

$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t))$$

$$\vec{x}[i+1] = \vec{f}(\vec{x}[i])$$

Nonlinear Systems: Examples

Nonlinear Autonomous Systems: Equilibrium Points

$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t)) \in \mathbb{R}^n$$

$$\vec{x}[i+1] = \vec{f}(\vec{x}[i]) \in \mathbb{R}^n$$

Nonlinear Autonomous Systems: Linearization

Scalar case:
$$\frac{dx(t)}{dt} = f(x(t))$$

Vector case:
$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t)) \in \mathbb{R}^n$$

Nonlinear Autonomous Systems: Example

$$\frac{dx_1(t)}{dt} = x_2(t) = f_1(x_1(t), x_2(t))$$

$$\frac{dx_2(t)}{dt} = -\frac{g}{\ell}\sin(x_1(t)) - \frac{k}{m}x_2(t) = f_2(x_1(t), x_2(t))$$

Nonlinear Autonomous Systems: Example

$$\frac{d\vec{\delta}(t)}{dt} = \frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t))$$

$$J_{\vec{x}}\vec{f}(\vec{x})\mid_{(x_1^*,x_2^*)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^*, x_2^*) & \frac{\partial f_1}{\partial x_2}(x_1^*, x_2^*) \\ \frac{\partial f_2}{\partial x_1}(x_1^*, x_2^*) & \frac{\partial f_2}{\partial x_2}(x_1^*, x_2^*) \end{bmatrix}$$

Nonlinear Control Systems: Operating Points

$$\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), \vec{u}(t)) \in \mathbb{R}^n$$

$$\vec{x}[i+1] = \vec{f}(\vec{x}[i], \vec{u}[i]) \in \mathbb{R}^n$$

Nonlinear Control Systems: Linearization

Scalar case:
$$\frac{dx(t)}{dt} = f(x(t), u(t))$$

Nonlinear Control Systems: Example

$$m\frac{v(t)}{dt} = -\beta v(t)^2 + u(t)$$

$$\frac{dx(t)}{dt} = -\frac{\beta}{m}x(t)^{2} + \frac{1}{m}u(t) = f(x(t), u(t))$$