

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.03 Прикладная информатика

ОТЧЕТ

по лабораторной работе № 1

	٦				
Название	: Исследование	возможностей	испол	тьзования	пакета
прикладні	_ ых программ Mul	tisim при анализе	е элект	рических о	схем
Дисципли	ина:				
Электротехника					
Студент	ИУ6-34Б			П. А. Мит	ин
	(Группа)	(Подписн	ь, дата)	(И.О. Фами.	лия)
Преподават	гель				
		(Полпись	ъ лата)	(И.О. Фами	пия)

Цель работы: получить навыки использования пакета Multisim при анализе электрических цепей.

Часть 1

Рис. 1. Исходная схема

Рис. 2. Измерение силы тока при коротком замыкании.

Рис. 3. Измерение напряжения при холостом ходе.

Приведенное сопротивление $R_{\text{прив}} = U / I = 1,871103 \text{ Ом.}$

Рис. 4. Эквивалентная схема по теореме Нортона.

Рис. 5. Эквивалентная схема по теореме Тевенина.

Рис. 6. ВАХ схемы рис. 5

Рис. 7. ВАХ схемы рис. 4

Рис. 8. ВАХ схемы рис. 3

Вывод: т. к. три ВАХ схем эквивалентны, можно заключить, что теоремы Нортона и Тевенина справедливы.

Часть 2

Рис. 9. Схема с конденсатором.

Рис. 10. АЧХ и ФЧХ схемы рис. 9.

 $U_{max} = 257.1429 \text{ mV}$

 $U_{\text{действ}} = U_{\text{max}} / \text{sqrt}(2) = 181.8275 \text{ mV}$

Граничная частота = 1.5654kHz

Сдвиг по фазе – 45 градусов

Рис. 11. Диаграммы входного и выходного сигналов по времени схемы рис. 9.

Сдвиг по фазе = (798.56 - 718.56) * 2pi / 638 = pi / 4 = 45 градусов.

Вывод: входной сигнал отстает от выходного.

Часть 3

Рис. 12. Новая схема.

Рис. 13. АЧХ и ФЧХ схемы рис. 12.

На данной схеме видно, что граничных частоты стало уже две. Сдвиг по фазе на второй граничной частоте составляет -45 градусов, на первой он неизменен.

Рис. 14. Диаграммы входного, выходного сигналов по времени схемы рис. 12. Сдвиг по фазе = (14.3784 - 15.8184) * 2pi / (14.3784 - 2.8884) = -45 градусов. Вывод: выходной сигнал отстает от входного.

Вывод

Были получены навыки использования пакета Multisim при анализе электрических цепей.