Transformada de Fourier

Joshua Chicoj

Universidad del Valle de Guatemala

2023

Agenda

- Transformada de Fourier
- 2 Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- 5 Álgebra de Wiener, convergencia débil y teorema de Plancherel
- $oldsymbol{6}$ Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Agenda

- Transformada de Fourier
- 2 Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- Álgebra de Wiener, convergencia débil y teorema de Plancherel
- \bigcirc Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

ullet $C_b(\mathbb{R}^n)$ hace referencia a las funciones continuas y acotadas en \mathbb{R}^n

- $C_b(\mathbb{R}^n)$ hace referencia a las funciones continuas y acotadas en \mathbb{R}^n
- $C_c(\mathbb{R}^n)$ hace referencia a las funciones continuas en \mathbb{R}^n con soporte compacto

- $C_b(\mathbb{R}^n)$ hace referencia a las funciones continuas y acotadas en \mathbb{R}^n
- $C_c(\mathbb{R}^n)$ hace referencia a las funciones continuas en \mathbb{R}^n con soporte compacto
- $C_\infty(\mathbb{R}^n)$ hace referencia a las funciones continuas en \mathbb{R}^n tales que $\lim_{|x|\to\infty} u(x)=0$

- $C_b(\mathbb{R}^n)$ hace referencia a las funciones continuas y acotadas en \mathbb{R}^n
- $C_c(\mathbb{R}^n)$ hace referencia a las funciones continuas en \mathbb{R}^n con soporte compacto
- $C_\infty(\mathbb{R}^n)$ hace referencia a las funciones continuas en \mathbb{R}^n tales que $\lim_{|x|\to\infty} u(x)=0$
- $\langle x, \xi \rangle = \sum_{k=1}^{n} x_k \xi_k$, el producto escalar euclidiano usual en \mathbb{R}^n

Transformada de Fourier

La transformada de Fourier de una medida finita μ sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ está dada por

$$\hat{\mu}(\xi) := \mathcal{F}\mu(\xi) := (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \mu(dx)$$

Transformada de Fourier

La transformada de Fourier de una medida finita μ sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ está dada por

$$\hat{\mu}(\xi) := \mathcal{F}\mu(\xi) := (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \mu(dx)$$

Y la transformada de Fourier de una función $f \in L^1(\lambda^n)$ está dada por

$$\hat{f}(\xi) = \mathcal{F}f(\xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-if(x)\langle x,\xi\rangle} f(x) \ d\lambda^n$$

Propiedades de la transformada de Fourier

Sea μ una medida finita sobre \mathbb{R}^n y $f \in L^1(\lambda^n)$. Las transformadas de Fourier $\hat{\mu}, \hat{f}$ son funcinoes continuas acotadas por

$$|\hat{\mu}(\xi)| \leqslant \hat{\mu}(0) = (2\pi)^{-n} \mu(\mathbb{R}^n)$$

$$|\hat{f}(\xi)| \leqslant \hat{f}(0) = (2\pi)^{-n} ||f||_1$$

Propiedades de la transformada de Fourier

Funci	ón Trans	formada de Four	ier
$\tilde{\mu}(dx) = \mu$	u(-dx)	$\overline{\hat{\mu}(\xi)}$	Relexión en el origen
$\tilde{f}(x) = f$	(-x)	$\overline{\hat{f}(\xi)}$	
$\mu \circ \mathcal{T}^{-1}$	(dx)	$e^{-i\langle b,\xi\rangle}\hat{\mu}(\lambda\xi)$	$Ty = \lambda y + b \ni \lambda \in \mathbb{R}, b \in \mathbb{R}^n$
f(rx +	r^{-n}	$e^{i\langle c,r^{-1}\xi\rangle}\hat{f}(r^{-1}\xi)$	$r \neq 0, c \in \mathbb{R}^n$
$f(x)e^{-i}$	$\langle x,c \rangle$	$\hat{f}(c+\xi)$	$c \in \mathbb{R}^n$
f(Rx	()	$\hat{f}(R\xi)$	$R \in R^{n \times n}$ ortogonal

Agenda

- Transformada de Fourier
- Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- 5 Álgebra de Wiener, convergencia débil y teorema de Plancherel
- \bigcirc Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Lema

$$\lim_{T \to \infty} \int_0^T \frac{\sin \xi}{\xi} \ d\xi = \frac{\pi}{2}$$

En particular, para $x, a \in \mathbb{R}$

$$\lim_{T \to \infty} \int_0^T \frac{\sin((a-x)\xi)}{\xi} \ d\xi = \lim_{T \to \infty} \int_0^{(a-x)T} \frac{\sin\eta}{\eta} \ d\eta = \begin{cases} \frac{\pi}{2}, & x < a \\ 0, & x = a \\ -\frac{\pi}{2}, & x > a \end{cases}$$

Teorema de Lévy

Sea μ una medida finita sobre $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, entonces para todo a < b

$$\frac{1}{2} \mu \{a\} + \mu(a,b) + \frac{1}{2} \mu \{b\} = \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{ib\xi} - e^{ia\xi}}{i\xi} \hat{\mu}(\xi) \ d\xi$$

Demostración

$$\int_{-T}^{T} \frac{e^{i(b-x)\xi} - e^{i(a-x)\xi}}{i\xi} d\xi$$

$$= \int_{-T}^{0} \frac{e^{i(b-x)\xi} - e^{i(a-x)\xi}}{i\xi} d\xi + \int_{0}^{T} \frac{e^{i(b-x)\xi} - e^{i(a-x)\xi}}{i\xi} d\xi$$

$$= \int_{0}^{T} \frac{e^{-i(a-x)\xi} - e^{-i(b-x)\xi}}{i\xi} d\xi + \int_{0}^{T} \frac{e^{i(b-x)\xi} - e^{i(a-x)\xi}}{i\xi} d\xi$$

$$= 2 \int_{0}^{T} \frac{\sin((b-x)\xi)}{\xi} d\xi - 2 \int_{0}^{T} \frac{\sin((a-x)\xi)}{\xi} d\xi.$$

Demostración

$$\lim_{T \to \infty} \int_{-T}^{T} \frac{e^{i(b-x)\xi} - e^{i(a-x)\xi}}{i\xi} d\xi = \begin{cases} 0, & \text{if } x < a \text{ or } x > b, \\ \pi, & \text{if } x = a \text{ or } x = b, \\ 2\pi, & \text{if } a < x < b. \end{cases}$$

Demostración

$$\begin{split} \lim_{T \to \infty} \int_{-T}^T \frac{e^{ib\xi} - e^{ia\xi}}{i\xi} \widehat{\mu}(\xi) d\xi &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{ib\xi} - e^{ia\xi}}{i\xi} \int e^{-ix\xi} \mu(dx) d\xi \\ &\stackrel{(\mathbf{F})}{=} \lim_{T \to \infty} \frac{1}{2\pi} \int \int_{-T}^T \frac{e^{ib\xi} - e^{ia\xi}}{i\xi} e^{-ix\xi} d\xi \, \mu(dx) \\ &= \lim_{T \to \infty} \frac{1}{2\pi} \int \int_{-T}^T \frac{e^{i(b-x)\xi} - e^{i(a-x)\xi}}{i\xi} d\xi \, \mu(dx) \\ &\stackrel{(\mathbf{L})}{=} \int \left[\frac{1}{2} \mathbbm{1}_{\{a\}} + \mathbbm{1}_{(a,b)} + \frac{1}{2} \mathbbm{1}_{\{b\}} \right] d\mu \\ &= \frac{1}{2} \mu\{a\} + \mu(a,b) + \frac{1}{2} \mu\{b\}. \end{split}$$

Corolario 1 al teorema de Lévy

Sea μ una medida finita sobre $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, entonces para todo rectángulo abierto $I \in \mathcal{J}^0 \ni \mu(\partial I) = 0$

$$\mu(I) = \lim_{T \to \infty} \int_{-T}^{T} \dots \int_{-T}^{T} \prod_{k=1}^{n} \frac{e^{ib_k \xi_k} - e^{ia_k \xi_k}}{i\xi_k} \hat{\mu}(\xi) \ d\xi_1 \dots d\xi_n$$

Corolario 2 al teorema de Lévy

- **1** Sean μ, ν medidas finitas, si $\hat{\mu} = \hat{\nu} \implies \mu = \nu$
- ② Sean $f, g \in L^1(\lambda^n)$, si $\hat{f} = \hat{g} \implies f = g$ Lebesgue c.t.p.

Corolario 3 al teorema de Lévy

Sea μ una medida finita sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ y $\hat{\mu}\in L^1_{\mathbb{C}}(\lambda^n)$. En el caso $\mu(dx)=u(x)$ dx entonces

$$u(x) = \int \hat{\mu}(\xi) e^{i\langle x, \xi \rangle} d\xi$$

Si $u \in L^1_{\mathbb{C}} \& \hat{u} \in L^1_{\mathbb{C}}$ entonces

$$u(x) = \int \hat{u}(\xi) e^{i\langle x, \xi \rangle} d\xi$$

Transformada inversa de Fourier

Sea μ una medida finita sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$. La transformada inversa de Fourier está dada por

$$\check{\mu}(x) = \mathcal{F}^{-1}\mu(x) = \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} \mu(\xi) \ d\xi$$

Transformada inversa de Fourier

Sea μ una medida finita sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$. La transformada inversa de Fourier está dada por

$$\check{\mu}(x) = \mathcal{F}^{-1}\mu(x) = \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} \mu(\xi) \ d\xi$$

La transformada inversa de una función $u \in L^1_{\mathbb{C}}(\lambda^n)$ está dada por

$$\check{u}(x) = \mathcal{F}^{-1}u(x) = \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle}u(\xi) d\xi$$

Transformada inversa de Fourier

Sea μ una medida finita sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$. La transformada inversa de Fourier está dada por

$$\check{\mu}(x) = \mathcal{F}^{-1}\mu(x) = \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} \mu(\xi) \ d\xi$$

La transformada inversa de una función $u \in L^1_{\mathbb{C}}(\lambda^n)$ está dada por

$$\check{u}(x) = \mathcal{F}^{-1}u(x) = \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} u(\xi) \ d\xi$$

Además, dada la naturaleza de la transformada de Fourier y su inversa, se tienen las siguientes relaciones

$$\check{u}(x) = (2\pi)^n \hat{\mu}(-x) \quad \overline{\hat{\mu}(x)} = (2\pi)^{-n} \check{\mu}(x) \quad \overline{\hat{u}(x)} = (2\pi)^{-n} \check{\underline{u}}(x)$$

Agenda

- Transformada de Fourier
- 2 Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- Álgebra de Wiener, convergencia débil y teorema de Plancherel
- \bigcirc Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Teorema de convolución

Convolución de dos medidas

La convolución de dos medidas finitas μ, ν es una medida finita

$$\mu \star \nu(B) = \int \int \mathbb{1}_B(x+y) \ \mu(dx)\nu(dy), \ \forall B \in \mathcal{B}(\mathbb{R}^n)$$

Sean μ, ν medidas finitas sobre $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, entonces

- $\bullet \ \widehat{\mu \star \nu}(\xi) = (2\pi)^n \widehat{\mu}(\xi) \widehat{\nu}(\xi)$
- $\bullet \ \widecheck{\mu \star \nu}(\xi) = \widecheck{\mu}(\xi)\widecheck{\nu}(\xi)$

Simetría de la transformada de Fourier

Para una medida finita μ sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$ y $u\in L^1(\lambda^n)$ se tiene que

$$\int \hat{u}(x)\mu(dx) = \int u(\xi)\hat{\mu}(\xi) \ d\xi$$

Agenda

- Transformada de Fourier
- 2 Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- Álgebra de Wiener, convergencia débil y teorema de Plancherel
- \bigcirc Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Teorema de Riemann-Lebesgue

Sea
$$u \in L^1(\lambda^n) \implies \hat{u} \in C_{\infty}(\mathbb{R}^n)$$

Agenda

- Transformada de Fourier
- 2 Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- 5 Álgebra de Wiener, convergencia débil y teorema de Plancherel
- \bigcirc Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Álgebra de Wiener

Consideremos

$$\mathcal{A}(\mathbb{R}^n) = \{u \in L^1(\lambda^n) : \hat{u} \in L^1(\lambda^n)\}$$

, entonces

Lema de aproximación de unidad

Lema previo

Sean
$$u \in L^1(\lambda^n)$$
 y $g_t = (2\pi t)^{-n/2} e^{-|x|^2/tt} \implies u \star g_t \in \mathcal{A}(\mathbb{R}^n)$

Sea $u \in C_b(\mathbb{R}^n)$ uniformemente continua, entonces $\lim_{t\to 0} ||u-u\star g_t||_{\infty} = 0$

Convergencia débil

Sea $(\mu_k)_{k\in\mathbb{N}}$ y μ medidas finitas sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$. La secuencia de medidas converge debilmente si

$$\lim_{k\to\infty}\int_{\mathbb{R}^n}u(x)\mu_k(dx)=\int_{\mathbb{R}^n}u(x)\mu(dx)\ \forall u\in C_b(\mathbb{R}^n)$$

Teorema de convergencia débil

Sean μ y $(\mu_k)_{k\in\mathbb{N}}$ medidas finitas sobre $(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$

$$\hat{\mu}_k(\xi) \xrightarrow[\forall \xi]{k \to \infty} \hat{\mu}(\xi) \iff \mu_k \xrightarrow[\text{débil}]{k \to \infty} \mu$$

Teorema de Plancherel

Lema previo

El álgebra de Wiener $\mathcal{A}(\mathbb{R}^n)$ es densa en $L^p_\mathbb{C}(\lambda^n),\ 1\leqslant p<\infty$ y $\mathcal{C}_\infty(\mathbb{R}^n,\mathbb{C})$

Sea $u \in L^2_{\mathbb{C}}(\lambda^n) \cap L^1_{\mathbb{C}}(\lambda^n) \Longrightarrow ||\hat{u}||_2 = (2\pi)^{-n/2}||u||_2$. En particular, hay una extensión contínua $\mathcal{F}: L^2_{\mathbb{C}}(\lambda^n) \to L^2_{\mathbb{C}}(\lambda^n)$

Agenda

- Transformada de Fourier
- 2 Inyectividad y existencia de la transformada inversa de Fourier
- Teorema de convolución
- 4 Teorema de Riemann-Lebesgue
- 5 Álgebra de Wiener, convergencia débil y teorema de Plancherel
- $oldsymbol{6}$ Transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Lema

Sea μ una medida finita sobre $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)), 1 \leq k \leq n$. Entonces

- $② Si <math>u, x_k u \in L^1(\lambda^n) \implies \partial_k \hat{u} \in C_b(\mathbb{R}^n) \text{ y } \partial_k \hat{u}(\xi) = \widehat{(-i)x_k} u(\xi)$

Espacio de Schwartz

El espacio de Schwartz $\mathcal{S}(\mathbb{R}^n)$ de funciones suaves rápidamente decrecientes de valores complejos $u \in C^\infty(\mathbb{R}^n)$, las cuales decresen, junto a su derivada, más rápido que otro polinomio

$$\sup_{\mathbf{x} \in \mathbb{R}^n} \left| \mathbf{x}^{\alpha} \partial^{\beta} \mathbf{u}(\mathbf{x}) \right| < \infty \ \forall \alpha, \beta \in \mathbb{N}_0^n$$

En particular, $(n + x_1^{2n} + ... + x_n^{2n})|u(x)| \leq c$, $\forall u \in \mathcal{S}(\mathbb{R}^n)$. Utilizando desigualdades

$$\prod_{k=1}^n = (1+x_k^2) \leqslant \left[\max_{1 \leqslant k \leqslant n} (1+x_k^2) \right]^n \leqslant \sum_{k=1}^n (1+x_k^2)^n \stackrel{\text{H\"older}}{\leqslant} 2^{n-1} \sum_{k=1}^n (1+x_k^{2n})$$

y combinando con el teorema de Fubini-tonelli, tenemos que $\forall u \in \mathcal{S}(\mathbb{R}^n)$

$$\int |u(x)| \ dx \le c_d \int ... \int \frac{dx_1 \cdots dx_n}{\prod_{k=1}^n (1 + x_k^2)} = c_d \prod_{k=1}^n \int \frac{dx_k}{1 + x_k^2} < \infty$$

Biyectividad de la transformada de Fourier en $\mathcal{S}(\mathbb{R}^n)$

Sea
$$u \in \mathcal{S}(\mathbb{R}^n) \implies \hat{u} \in \mathcal{S}(\mathbb{R}^n)$$
, i.e. $\mathcal{F} : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$

Biyectividad

La transformada de Fourier $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ es biyectiva y $\forall u, v \in \mathcal{S}(\mathbb{R}^n)$

- ② $\mathcal{F}^{-1}v(\xi) = (2\pi)^n \mathcal{F}v(-\xi) \text{ y } \mathcal{F} \circ \mathcal{F}u(x) = (2\pi)^{-n}u(-x)$