Машинное обучение: линейные модели классификации и регрессии

Эмели Драль CBR, Москва 2020

Программа курса

Курс состоит из 5ти блоков:

- 1. Базовые концепции машинного обучения
- 2. Линейные модели классификации и регрессии
- 3. **Деревья решений** в классификации и регрессии, **ансамбли моделей**
- 4. Обучение без учителя и частичное обучение
- Нейронные сети и глубокое обучение, backpropagation, регуляризация и методы оптимизации

План занятия

- 1. Обзор алгоритмов обучения с учителем
- 2. Линейные модели: интуиция
- 3. Линейные модели: построение
- 4. Обзор метрик качества (если успеем)

Обзор алгоритмов обучения с учителем

Базовые концепты

Объекты и признаки:

- х объект
- y otbet
- (f₁, f₂ ... f_n) признаки,
- описывающие объекты
- Х пространство объектов
- Y пространство ответов

Модель:

- a: X -> Y
- a(x) = y
- А семейство моделей

Оценка качества

• Q(a, X) – ошибки модели a(x) на группе объектов X

Как построить модель?

- 1. Подготовить набор данных $X = (x_i, y_i)_{i=1,l}$
- 2. Выбрать семейство алгоритмов А
- 3. Минимизировать ошибки модели Q(a, X) -> за счет этого получить конкретную модель a(x) из выбранного семейства A

? Какие идеи заложены в модели?

Семейства алгоритмов

- Метод ближайших соседей
- Линейные модели
- Деревья решений
- Ансамбли
- Нейронные сети
 и др.

Семейства алгоритмов

- Метод ближайших соседей: похожие объекты относятся к одному классу
- Линейные модели
- Деревья решений
- Ансамбли
- Нейронные сети
 и др.

Метод ближайших соседей

Семейства алгоритмов

- Метод ближайших соседей: похожие объекты относятся к одному классу
- Линейные модели: класс линейно зависит от характеристик объекта
- Деревья решений
- Ансамбли
- Нейронные сети

и др.

Стоит ли одобрить кредит данному клиенту?

Стоит ли одобрить кредит данному клиенту?

Стоит ли одобрить кредит данному клиенту?

Обучение с учителем

15

99

35

Обучение с учителем

Стоит ли одобрить кредит данному клиенту?

Семейства алгоритмов

- Метод ближайших соседей: похожие объекты относятся к одному классу
- Линейные модели: класс линейно зависит от характеристик объекта
- Деревья решений: класс получается в результате последовательных ответов на простые вопросы
- Ансамбли
- Нейронные сети

и др.

Дерево решений

Дерево решений

Дерево решений

Дерево решений

Уйдет ли этот клиент к конкуренту?

Дерево решений

Семейства алгоритмов

- Метод ближайших соседей: похожие объекты относятся к одному классу
- Линейные модели: класс линейно зависит от характеристик объекта
- Деревья решений: класс получается в результате последовательных ответов на простые вопросы
- **Ансамбли**: решение принимается на основе ответов нескольких моделей
- Нейронные сети

и др.

Обучение с учителем

2 vs 1

Семейства алгоритмов

- Метод ближайших соседей: похожие объекты относятся к одному классу
- Линейные модели: класс линейно зависит от характеристик объекта
- Деревья решений: класс получается в результате последовательных ответов на простые вопросы
- **Ансамбли**: решение принимается на основе ответов нескольких моделей
- Нейронные сети: нелинейная комбинация линейных моделей

и др.

Нейронные сети

Нейронные сети

Нейронные сети

To take away:

- Алгоритмов очень много, области применения сильно различаются
- Все алгоритмы основаны на принципах базовой логики и математике
- Практически для всех алгоритмов есть готовая реализация (часто таких реализаций много), этим нужно пользоваться!

Линейные модели: интуиция

Линейные модели: интуиция

? Давайте обучим модель?

Признаки (1/0)

Вы свободны в данный момент

Вы голодны

Вам хочется спать

Признаки (1/0)

Вы свободны в данный момент

Вы голодны

Вам хочется спать

Признаки (1/0)

Вы свободны в данный момент

Вам хочется спать

Вы голодны

Признаки (1/0)

Вы свободны в данный момент

Вам хочется спать

Вы голодны

Признаки (1/0)

Вы свободны в данный момент

Вам хочется спать

Вы голодны

Линейные модели

Пример: занимать ли очередь в банке?

Порог для решающего правила: 0 Если сумма больше 0 – занимаем очередь!

Линейные модели: интуиция

Линейные модели

$$a(x) = egin{cases} \mathbf{1}, \operatorname{если} f(x) \geq \mathbf{0} \ -\mathbf{1}, \operatorname{если} f(x) < \mathbf{0} \end{cases}$$

$$\mathbf{f}(\mathbf{x}) = \mathbf{w_0} + \mathbf{w_1}\mathbf{x_1} + \dots + \mathbf{w_n}\mathbf{x_n}$$

Геометрическая интерпретация: разделяем классы плоскостью

Показатель	Диапазон значений
Возраст заёмщика	До 35 лет
	От 35 до 45 лет
	От 45 и старше
Образование	Высшее
	Среднее специальное
	Среднее
Состоит ли в браке	Да
	Нет
Наличие кредита в прошлом	Да
	Нет
Стаж работы	До 1 года
	От 1 до 3 лет
	От 3 до 6 лет
	Свыше 6 лет
Наличие автомобиля	Да
	Нет

Показатель	Диапазон значений	Скоринг-балл
Возраст заёмщика	До 35 лет	7,60
	От 35 до 45 лет	29,68
	От 45 и старше	15,87
Образование	Высшее	29,82
	Среднее специальное	20,85
	Среднее	22,71
Состоит ли в браке	Да	29,46
	Нет	9,38
Наличие кредита в прошлом	Да	40,55
	Нет	13,91
Стаж работы	До 1 года	15,00
	От 1 до 3 лет	18,14
	От 3 до 6 лет	19,85
	Свыше 6 лет	23,74
Наличие автомобиля	Да	51,69
	Нет	15,93

Почему нельзя продолжать так же?

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Почему нельзя продолжать так же?

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Решение

Автоматизируем подбор параметров: придумаем функцию от параметров, которую надо минимизировать, и используем методы численной оптимизации

Почему нельзя продолжать так же?

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных и уточнение весов (эксперт может что-то не учесть)

Решение

Автоматизируем подбор параметров: придумаем функцию от параметров – Q(a), которую надо минимизировать Q(a)->min, и используем методы численной оптимизации

Линейная регрессия

$$a(x) = \langle w, x \rangle + w_0$$

Линейная регрессия

$$a(x) = \langle w, x \rangle + w_0$$

Линейные модели: построение

А как получить ответ в задаче классификации?

Линейная классификация

$$a(x) = \langle w, x \rangle + w_0$$

Линейные модели: построение

А как получить ответ в задаче классификации?

$$a(x) = sign(\langle w, x \rangle + w_0)$$

Если скалярное произведение неотрицательное – класс 1, в противном случае класс 0

Линейная модель

$$a(x) = \langle w, x \rangle + w_0$$

$$a(x) = sign(\langle w, x \rangle + w_0)$$

Вид модели задан. Теперь нужно выписать задачу оптимизации для настройки параметров модели (весов).

Отступ

Отступом алгоритма $a(x) = sign\{f(x)\}$ на объекте x_i называется величина

$$M_i = y_i f(x_i)$$

 $(y_i$ - класс, к которому относится $x_i)$

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Эмпирический риск

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right]$$

Функция потерь

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

Линейные модели: построение

Общий вид задачи оптимизации задан, остается несколько степеней свободы:

- функция потерь (L)
- дополнительные ограничения
- метод оптимизации

Давайте обсудим варианты.

Функция потерь

$$Q(w) = \sum_{i=1}^{\ell} \left[M_i(w) < 0 \right] \leqslant \widetilde{Q}(w) = \sum_{i=1}^{\ell} \mathscr{L}(M_i(w)) \to \min_{w};$$

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$
 $L(y_i, a(x_i)) = |y_i - a(x_i)|$

Задача оптимизации

Линейные модели: построение

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

 $a(x) = \langle w, x \rangle + w_0$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2 \qquad L(y_i, a(x_i)) = |y_i - a(x_i)|$$

$$V(w) = ||w||_{l_2}^2 = \sum_{n=1}^d w_n^2 \qquad V(w) = ||w||_{l_1} = \sum_{n=1}^d |w_n|$$

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

Гребневая регрессия (Ridge regression):

$$V(w) = ||w||_{l2}^2 = \sum_{n=1}^d w_n^2$$

LASSO (least absolute shrinkage and selection operator):

$$V(w) = ||w||_{l1} = \sum_{n=1}^{a} |w_n|$$

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$L(y_i, a(x_i)) = (y_i - a(x_i))^2$$

А без регуляризатора и с квадратичными потерями получаем привычную нам линейную регрессию

Конструирование линейных моделей

Классификатор	Функция потерь	Регуляризатор
SVM (Support vector machine, метод опорных векторов)	$L(M) = \max\{0, 1 - M\} = $ $= (1 - M)_{+}$	$\sum_{k=1}^{m} w_k^2$
Логистическая регрессия	$L(M) = \log(1 + e^{-M})$	Обычно $\sum_{k=1}^{m} w_k^2$ или $\sum_{k=1}^{m} w_k $

Модель: $y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$

Модель: $y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$

Если добавить $x_{i0} = 1$:

Модель: $y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$

Если добавить $x_{i0} = 1$:

 $y_i \approx \hat{y}_i = \langle w, x_i \rangle$

Модель: $y_i \approx \hat{y}_i = \langle w, x_i \rangle + w_0$

Если добавить $x_{i0} = 1$: $y_i \approx \hat{y}_i = \langle w, x_i \rangle$

$$y_1 \approx \hat{y}_1 = x_1^T w$$

$$\vdots$$

$$y_i \approx \hat{y}_i = x_i^T w$$

$$\vdots$$

$$y_l \approx \hat{y}_l = x_l^T w$$

Решение задачи оптимизации

Матричная запись

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \dots \\ \widehat{y_l} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \dots \\ x_l^T \end{pmatrix} w$$

$$y \approx \widehat{y} = Fw$$

$$w = \underset{w}{\operatorname{argmin}} \|y - \widehat{y}\|^2$$

Решение задачи оптимизации

$$\frac{\partial (Fw - y)^2}{\partial w} = 2F^T(Fw - y) = 0$$
$$F^T F w = F^T y$$

$$w = (F^T F)^{-1} F^T y$$

Решение задачи оптимизации

Если добавить ℓ_2 регуляризацию

$$\frac{\partial (Fw - y)^2 + \gamma w^2}{\partial w} = 2F^T(Fw - y) + 2\gamma w = 0$$
$$(F^T F + \gamma I)w = F^T y$$
$$w = (F^T F + \gamma I)^{-1} F^T y$$

Решение задачи оптимизации

Численное решение возможно с помощью градиентного спуска (GD, Gradient Decent)

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$x_{k+1} = x_{k} - \gamma_{k} \nabla F(x_{k})$$

$$\nabla_{w} \tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \Longrightarrow \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

To take away:

Линейные модели имеют ряд преимуществ:

- Простота реализации
- Скорость работы
- Хорошее качество, когда много признаков
- Приемлемое качество, когда мало данных

Особенности применения

- Модель может оказаться слишком простой для задачи
- Требуется бороться с переобучением: регуляризация, масштабирование признаков

Машинное обучение: линейные модели классификации и регрессии

Спасибо! Эмели Драль