Napredni operacijski sustavi — Međuispit Rješenja

29. travnja 2021.

- 1. (a) Prema tipu poruke.
 - (b) Ne.
 - (c) close(fd[pisanje]), close(std_in), dup(fd[čitanje]), close(fd[čitanje])
 - (d) Cijeli protokol će zatajiti.
 - (e) Primitak poruka ZAHTJEV i ODGOVOR.
 - (f) 2*(N-1).
- 2. (a) Skica koja pokazuje komunikaciju, pravilno ažuriranje logičkih satova i sadržaj poruka.
 - (b) (P_1, P_3, P_2)
 - (c) P1: 15 ili 16, P2: 16, P3: 15 ili 16
- 3. (a) 3*(4-1)*(1+2+3+4) = 90
 - (b) 9Z + 3O + 9I = 21, 3Z + 9O + 3I = 15 8Z + 6O + 8I = 22, 2*3Z + 8O + 2*3I = 20 7Z + 9O + 7I = 23, 3*3Z + 7O + 3*3I = 256Z + 12O + 6I = 24, 4*3Z + 6O + 4*3I = 30
- 4. (a) Pomoću digitalnog potpisa.
 - (b) Ne možemo jer potpis može biti vezan uz više identiteta koji dijele isti ključ.
 - (c) Iz $C = P \oplus K$ imamo $K = C \oplus P = 0101$.
 - (d) Duljina ključa mora biti veća ili jednaka duljini jasnog teksta, ključ mora biti iskorišten samo jednom.
 - (e) $3DES(P, K_1, K_2, K_3) = DES(DES^{-1}(DES(P, K_1), K_2), K_3).$
 - (f) Kada su svi ključevi jednaki.
- 5. (a) ECB, OFB, CTR.

- (b) Galoisovo polje ili $GF(2^8)$.
- (c) Neka je OFB blok toka za kriptiranje. S obzirom da koristimo isti inicijalizacijski vektor IV, vrijedi da je OFB jednak za prvi i drugi tok pa imamo:

$$C_1 = M_1 \oplus OFB$$
$$C_2 = M_2 \oplus OFB$$

Iz toga vrijedi da je $C_1 \oplus C_2 = M_1 \oplus M_2$. Iz teksta zadatka ne znamo je li $M = M_1$ ili $M = M_2$, no to nije ni bitno jer $M' = C_1 \oplus C_2 \oplus M = M_1 \oplus M_2 \oplus M$ sigurno predstavlja prvi blok jasnog teksta onog drugog toka.

Stoga, napadač može zaključiti da je prvi blok jasnog teksta drugog toka jednak

```
M' = (01001100 \ 01101001 \ 01110110 \ 01100101 \ 01110011)_2 = (\text{L i v e s})_{ascii}
```

Primjetite da smo odmah, bez računanja, mogli zaključiti da se slova "v" i "s" nalaze u drugoj poruci! Da bi zadatak bio priznat dovoljno je naći binarnu ili hex reprezentaciju od M', nije nužno zaključiti o kakvom je ASCII tekstu riječ.

Zbog greške, u tablici nije navedeno slovo "e" pa su se priznavala rješenja bez istog.

6. (a) $\varphi(N) = |\mathbb{Z}_N^*|$ (ovo je dovoljno), odnosno broj prirodinih brojeva manjih od N koji su relativno prostih s N.

Sljedeća rješenja nisu ispravna jer ne predstavljaju definiciju.

i.
$$\varphi(p \times q) = (p-1) \times (q-1)$$

ii. $a^{\varphi(N)} = 1 \mod N$

- (b) S obzirom da je $\varphi(N) = (p-1) * (q-1)$ paran broj, da bi e bio relativno prost s $\varphi(N)$, e nužno mora biti neparan.
- (c) (1) (0.5) $\varphi(N) = \varphi(65) = \varphi(5*13) = (5-1)*(13-1) = 48$
 - (2) (0.5) 5 * 29 = 145 = 1 + 3 * 48
 - (3) (0.5) $4^5 = 1024 \mod 65 = 49 \mod 65$.

Rješenja gdje se umjesto modulo N koristilo modulo $\varphi(N)$ ne priznaju se.

(4)
$$(1.5)$$
 $29 = 16 + 8 + 4 + 1 = (11101)_2$
 i 4 3 2 1 0
 $a[i]$ 1 1 1 0 1
 d 17 38 43 29 62

Rješenja gdje se umjesto modulo N koristilo modulo $\varphi(N)$ ne priznaju se.

- 7. (4 boda ukupno) Razmatramo sustav digitalnog potpisa.
 - (a) Sustav digitalnog potpisa je uređena trojka: (G, S, V), gdje je G algoritam generiranja para ključeva pk i sk, S(m, sk) algoritam potpisivanja, $V(m, \sigma, pk)$ algoritam verifikacije.

Bez navođenja algoritma generiranja para ključeva nisu se mogli dobiti svi bodovi.

- (b) Autentičnost i integritet.
- (c) Nasumično odaberemo $x \in \mathbb{Z}_N$ i definiramo $y = x^e$. Sada je x ispravan potpis za poruku y.
- (d) U praksi je javni eksponent $e \in \mathbb{Z}_{\varphi(N)}^*$ znatno manji od privatnog eksponenta $d \in \mathbb{Z}_{\varphi(N)}^*$ pa ćemo sa znatno manjim brojem množenja izračunati $m = \sigma^e$ u odnosu na $\sigma = m^d$ za poruku $m \in \mathbb{Z}_N^*$.