Part II Long Quan

High-quality Textured Surface Reconstruction from Registered Images: State-of-the-art methods

(b) Structure-from-Motion

(c) Multi-view Stereo

(d) Surface generation

(e) Texture mapping

(a) Image collection

(b) Structure-from-Motion

(c) Multi-view Stereo

(d) Surface generation

(e) Texture mapping

(a) Image collection

(b) Structure-from-Motion

(c) Multi-view Stereo

(e) Texture mapping

(c) Multi-view Stereo

(e) Texture mapping

(a) image collection

(b) Structure-from-Motion

- (c) Multi-view Stereo
- THE DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
- (d) Surface generation
- + Surface refinement
- (e) Texture mapping

11/24/2016 ACCV 2016 TUTORIAL 50

(c) Multi-view Stereo

(d) Surface generation

(e) Texture mapping

(a) Image collection

(b) Structure-from-Motion

(c) Multi-view Stereo

(d) Surface generation

(e) Texture mapping

Content

- •Multi-view Stereo
 - Pairwise Stereo
 - Propagation Stereo

- •Surface generation
 - Surface extraction
 - Surface refinement

- •Texture mapping
 - View selection
 - Color adjustment and blending

Content

- •Multi-view Stereo
 - Pairwise Stereo
 - Propagation Stereo

- Surface generation
 - Surface extraction
 - Surface refinement

- Texture mapping
 - View selection
 - Color adjustment and blending

Multi-view Stereo

- Problem definition: given several registered images of the same object or scene, compute a dense representation of its 3D shape
- "Registered images of same object or scene"
 - Known camera parameter
 - Arbitrary number of images (from two to thousands)
- "Dense representation of 3D shape"
 - Depth maps
 - Point clouds
 - Patch clouds
 - Meshes
 - Voxels

Multi-view Stereo

- Problem definition: given several registered images of the same object or scene, compute a dense representation of its 3D shape
- "Registered images of same object or scene"
 - Known camera parameter
 - Arbitrary number of images (from two to thousands)

- "Dense representation of 3D shape"
 - Depth maps
 - Point clouds
 - Patch clouds
 - Meshes
 - Voxels

Multi-view Stereo

- Problem definition: given several registered images of the same object or scene, compute a dense representation of its 3D shape
- "Registered images of same object or scene"
 - Known camera parameter
 - Arbitrary number of images (from two to thousands)
- "Dense representation of 3D shape"
 - Depth maps
 - Point clouds
 - Patch clouds
 - Meshes
 - Voxels

Multi-view Stereo: 1D matching problem

Compare the similarity between $p \bullet$ and $q \bullet$, find the best q

Multi-view Stereo: Similarity measure

• Convert the patches $p \bullet$ and $q \bullet$ in to vectors f and g

SSD (Sum of Squared Differences)

$$\rho_{SSD}(f,g) = ||f - g||^2$$

- Pros: efficient, derivable
- Cons: sensitive to bias/gain

SAD (Sum of Absolute Differences)

$$\rho_{SAD}(f,g) = ||f - g||_1$$

- Pros: efficient, robust to salt/pepper noise
- Cons: non-derivable, sensitive to bias/gain

NCC (Normalized Cross Correlation)

$$\rho_{NCC}(f,g) = \left\langle \frac{f}{||f||}, \frac{g}{||g||} \right\rangle$$
$$= \frac{f \cdot g}{||f|| \cdot ||g||}$$

- Pros: robust to gain, derivable
- Cons: sensitive to bias

ZNCC (Zero-mean Normalized Cross Correlation)

$$\rho_{ZNCC}(f,g) = \left\langle \frac{f - \hat{f}}{||f - \hat{f}||}, \frac{g - \hat{g}}{||g - \hat{g}||} \right\rangle$$
$$= \frac{(f - \hat{f}) \cdot (g - \hat{g})}{\sigma_f \sigma_g}$$

- Pros: robust to bias/gain, derivable
- Cons: less efficient

Multi-view Stereo: Similarity measure

• Convert the patches $p \bullet$ and $q \bullet$ in to vectors f and g

SSD (Sum of Squared Differences)

$$\rho_{SSD}(f,g) = ||f - g||^2$$

- Pros: efficient, derivable
- Cons: sensitive to bias/gair

SAD (Sum of Absolute Differences) $a_{GAD}(f, a) = ||f - a||_{1}$

- Pros: efficient, robust to salt/pepper noise
- Cons: non-derivable, sensitive to bias/gair

NCC (Normalized Cross Correlation)

$$\rho_{NCC}(f,g) = \left\langle \frac{f}{||f||}, \frac{g}{||g||} \right\rangle$$
$$= \frac{f \cdot g}{||f|| \cdot ||g||}$$

- Pros: robust to gain, derivable
- Cons: sensitive to bias

ZNCC (Zero-mean Normalized Cross Correlation)

$$\rho_{ZNCC}(f,g) = \left\langle \frac{f - \hat{f}}{||f - \hat{f}||}, \frac{g - \hat{g}}{||g - \hat{g}||} \right\rangle$$
$$= \frac{(f - \hat{f}) \cdot (g - \hat{g})}{\sigma_f \sigma_g}$$

- Pros: robust to bias/gain, derivable
- Cons: less efficient

Multi-view Stereo: two branches of methods

- Pairwise depth map reconstruction
 - Input two images
 - Output per-image depth map
 - Need fusion afterwards

- •Global point cloud propagation
 - Input *N* images
 - Output global 3D points
 - Difficult parallelism

Multi-view Stereo: matching strategy

Vocal tradictions

Naive winner-take-all

Image segmentation Gerrits et.al., CRV2006

Graph cuts Kolmogorov et.al. ICCV2001

Semi-global matching Hirschmüller, CVPR2006

Belief Propagation Klaus et.at. ICPR2006

Deed Editing

CNN Žbontar and LeCun. CVPR2015

next.....?

Multi-view Stereo: plane sweep stereo

- Winner-take-all
- GPU projective texture mapping
- Highly efficient and parallelable
- Noisy output, need filter afterwards

Space-sweep (Pioneer) Collins, 1996

Multi-direction Planesweep Gallup et.al. CVPR2007

Local Planesweep Sinha et.al. CVPR2014

Multi-view Stereo: point cloud propagation

Pioneer: Quasi-dense approach Lhuillier and Quan. PAMI2005

Patch-based MVS (PMVS)
Furukawa and Ponce. PAMI2010

PatchMatch Stereo Bleyer et.al. BMVC2011

GPU PatchMatch Galliani et.al. ICCV2015

Multi-view Stereo: PMVS

Patch model

- A 3D patch has
 - Position
 - Normal
 - Scale
 - Visibility

Patch-based MVS (PMVS)
Furukawa and Ponce. PAMI2010

Multi-view Stereo: PMVS

- Harris and DoG
- Sparse seed patches
- Propagation, then optimize
- Optimize via Levenberg–Marquardt
 - Position
 - Normal
- Confidence filter
- Visibility filter
- Small group filter
- Point cloud with **orientations**

Multi-view Stereo: PMVS

Content

- Multi-view Stereo
 - Pairwise Stereo
 - Propagation Stereo

- •Surface generation
 - Surface extraction
 - Surface refinement

- Texture mapping
 - View selection
 - Color adjustment and blending

Surface representation

	Meshes	Volumetric
Space Discretization	Adaptive	Yes
Topology Handling	Difficult (Self intersections,)	Naturally handled
Memory	Compact, Limited	Large
Parallelization	Sometimes	Very good
Scalability	Very good	Difficult
Adaptive Resolution	Very good	Difficult (Octree, Narrow band)
Surface extraction	Natural	Precision Loss (Marching cubes)

Mesh rocks! triangular mesh is more suitable for mesh processing

Surface extraction from point cloud

Definition: Given a set of points $\mathbf{P} = \{P_i\}_{i \in [1,N]} \in \mathbf{R}^3$ sampled from a surface S, find a best approximate surface S' to the original S.

- Implicit surface (Computer Graphics)
 - Model the surface implicitly with a function f(x, y, z) = 0

Bloomenthal, 1997

- Delaunay approach (Computational geometry)
 - Based on Delaunay triangulation/tetrahedra, find the best mesh surface

Cheng et.al. 2012

Implicit Surface

Distance functions

Happy Buddha: from original to hardcopy

Local tangent plane + MST Line of sight distance weighted Hoppe et.al. SIGGRAPH1992 Curless & Levoy. SIGGRAPH1996

Radial basis functions (RBF)

Multi-level partition of unity Ohtake et.al. SIGGRAPH2003

Moving Least-squares (MLS)

Pioneer of MLS method Lancaster and Salkauskas. 1981

Least-MEDIAN-of-squares Fleishman et.al. SIGGRAPH2005

Interactive, constrained Shen et.al. SIGGRAPH2004

Indicator functions

Poisson Surface Kazhdan et.al. SGP2006

Signed distance function Hornung & Kobbelt. SGP2006

Implicit Surface: Poisson method

Reconstruct the surface of the model by solving for the <u>indicator function</u> of the shape.

$$\chi_M(p) = \begin{cases} 1 & \text{if } p \in M \\ 0 & \text{if } p \notin M \end{cases}$$

Implicit Surface: Poisson method

•There is a relationship between the normal field and gradient of indicator function

points + oriented normals

Indicator gradient $abla\chi_{M}$

Implicit Surface: Poisson method

- •Represent the points by a vector field $ec{V}$
- •Find the function χ whose gradient best approximates \vec{V} :

$$\min_{\chi} \left\| \nabla \chi - \vec{V} \right\|$$

•Applying the divergence operator, we can transform this into a **Poisson** problem:

$$\nabla \cdot (\nabla \chi) = \nabla \cdot \vec{V} \quad \Leftrightarrow \quad \Delta \chi = \nabla \cdot \vec{V}$$

•Discretize from coarse-to-fine over an octree.

Delaunay method

Points -> Delaunay tetrahedron -> Mesh surface

Power Crust Ameta et.al. SIGGRAPH1998

Robust Cocone Dey & Goswami. SoSMA2003

Point cloud reconstructed by multi-view images

(credit to the course material of ETH Computer Vision)

Delaunay Triangulation of Point cloud

Visibility of a vertex, labeling the tetrahedra

Visibility conflicts

(credit to the course material of ETH Computer Vision)

Extract a mesh surface from tetrahedron

- A tetrahedron is a graph
 - Every tetrahedral (cell) is a node
 - Linking the source and sink by visibility
 - Smoothness by neighboring relations
 - Additional terms
 - Surface area
 - Photo-consistency

Energy minimization via Graph Cuts

Mesh surface as the boundary between IN and OUT

(credit to the course material of ETH Computer Vision)

Preserving weakly supported surface

Visibility-consistent surface reconstruction Vu et.al. PAMI2012

Surface extraction from point cloud

Weakly-supported surface reconstruction Jancosek & Pajdla. CVPR2013 Visibility-consistent surface reconstruction Vu et.al. PAMI2012

Surface refinement: crucial to high accuracy!

input images

initial surface

dataset: Cluny-161-Small

Refined surface

Variational surface refinement Vu et.al. PAMI2012

Surface refinement: formulation

Minimizing the error between the observed **image** *i* and **reprojection of image** *j*:

$$E_{\text{error}}(S) = \sum_{i,j} \int_{\Omega_{ij}^S} h(I_i, I_{ij}^S)(x_i) \, dx_i$$

- Ill-posed, difficult to solve directly
 - Local minima
 - Bad initialization
- Can be modeled via *variational methods*

Variational surface refinement Vu et.al. PAMI2012

Surface refinement: formulation

	Continuous (level-set)	Discretized (triangular mesh)
Energy ron	$\mathcal{M}(S) = \sum_{i} \sum_{j \neq i} \mathcal{M}_{ij}(S) \;,$ $\mathcal{M}_{ij}(S) = \underline{M} _{\Omega_{i} \cap \Pi_{i}(S_{j})} \left(\underline{I_{i}} \;,\; \underline{I_{j} \circ \Pi_{j} \circ \Pi_{i,S}^{-1}} \right) \;.$ similarity measure—observed image i —reprojection image j	similarity measure $\mathrm{E}_{\mathrm{error}}(S) = \sum_{i,j} \int_{\Omega^S_{ij}} h(I_i, I^S_{ij})(x_i) \mathrm{d}x_i$ observed image i reprojection image j
Valiations defivative	$\frac{\partial \mathcal{M}_{ij}(S + \epsilon \delta S)}{\partial \epsilon} \bigg _{\epsilon=0} = -\int_{S_i \cap S_j} \left[\partial_2 M(\mathbf{x}_i) DI_j(\mathbf{x}_j) D\Pi_j(\mathbf{x}) \frac{\mathbf{d}_i}{z_i^3} \right] \left[\mathbf{N}^T \delta S(\mathbf{x}) \right] d\mathbf{x} .$	$\frac{d\mathbf{E}_{\text{error}}(S)}{dX} = \int_{S} \phi(x) \sum_{i,j} \nabla \mathcal{M}_{ij}(x) dx$ $= \sum_{i,j} \int_{\Omega_{ij}} \phi(x) f_{ij}(x_i) / (\mathbf{N}^T \mathbf{d}_i) \mathbf{N} dx_i$
Regulativation	$E_{fair}(S) = \int_{S} (\kappa_1^2 + \kappa_2^2) \mathrm{d}S$	Umbrella operator on mesh

11/24/2016 ACCV 2016 TUTORIAL 88

Vu et.al. PAMI2012

Pons et.al. IJCV2007

Surface refinement: results

Top to bottom: evolution of iterative refinement COMPUTER SCIENCE & ENGINEERING

Refinement recovers the fine details of the scene Variational surface refinement
Vu et.al. PAMI2012

Surface refinement: problems?

- •Iterative, repeated computations of
 - visibility
 - image reprojection
 - image similarity

Surface refinement: problems?

- •Iterative, repeated computations of
 - visibility
 - image reprojection
 - image similarity
- •Not all regions contribute equally
 - Potential regions may gain details

• A flat plane is still a flat plane

Surface refinement: adaptive refinement

1. Evaluate the importance of a vertex movement

$$gc_{\mathbf{v}} = max_{\mathbf{p} \in planes(\mathbf{v}')} \{ (\mathbf{p}^{\mathbf{t}} \mathbf{v})^{2} \}$$
$$gc_{t} = \frac{1}{3} \sum_{i=1}^{3} gc_{\mathbf{v}_{i}},$$

where $\mathbf{p} = [a\ b\ c\ d]^t$ represents a plane and $\mathbf{v}' = [v_x'\ v_y'\ v_z'\ 1]$.

2. Optimal trade-off between accuracy & efficiency

$$u(r_o, l_o) = \max_{(r,l) \in curve} u(r, l)$$
$$u(r, l) = u(r) + u(l)$$
$$= w_r \cdot r + w_l \cdot (1 - l)$$

3. Graph cuts optimization

$$\mathbf{E}(f) = \mathbf{E}_{optimality}(f) + \mathbf{E}_{smoothness}(f) + \mathbf{E}_{prior}(f).$$

Surface refinement: adaptive refinement

Uniform refinement, Vu et.al. PAMI2012

Adaptive refinement, our method

- Adaptive refinement
 - ~5x more efficient that uniform refinement
 - much more compact mesh
 - Similar reconstruction details.

Surface refinement: adaptive refinement

Uniform refinement

2,414,767 #vertex, 4,829,450 #triangle

Adaptive refinement

817,254 #vertex, 1,592,022 #triangle

Herz-Jesu-P25

Content

- •Texture mapping
 - View selection
 - Color adjustment and blending

Texture mapping (for 3D reconstruction)

- •Texturing a point cloud
 - Trivial, directly fetch color from image for every 3D point
- •Texturing a triangular mesh surface
 - Non-trivial
 - Triangle view selection
 - For each triangle, select its best image for texture (data term)
 - Minimize number of texture seam (smoothness term)
 - Color adjustment and blending
 - Alleviate the artifacts at seams between two texture patches (atlas), due to inaccurate camera or imbalance illumination

Texture mapping: Triangle view selection

For each triangle, select multiple view

blending multiple image Callieri et.al. CG2008

Color interpolation Grammatikopoulos et.al. ISPRS2007

• For each triangle, select one best view

Seam optimization
Gal et.al. CG2010
COMPUTER SCIENCE & ENGINEERING

MRF+Poisson blending Lempitsky & Ivanov. CVPR2007

Continuous color optimization Velho & Sossai. CVPR2007

Texture mapping: Triangle view selection

• Triangle view selection as a MRF problem

$$E(l) = \sum_{F_i \in Faces} E_{data}(F_i, l_i) + \sum_{(F_i, F_j) \in Edges} E_{smooth}(F_i, F_j, l_i, l_j),$$

- Each triangle selects a best view
- Neighboring triangles select same view
- Solved by alpha expansion

Texture mapping: Triangle view selection

- Difficulties:
 - dynamic objects

Handle by photo-consistency check and outlier removal

out-of-focus image

Handle by weighting the gradient magnitude

Large-scale texturing. Waechter et.al. ECCV2014

Texture mapping: Color adjustment and blending

Let f be the original intensity, g be the adjustment (gain)

$$\arg\min_{g} \sum_{v_{left/right}} (f_{v_{left}} + g_{v_{left}} - (f_{v_{right}} + g_{v_{right}}))^2 + \frac{1}{\lambda} \sum_{i,j} (g_i - g_j),$$

- •Minimize the difference of neighboring intensity
- •Minimize the imposed adjustment (be as much original as possible)

Blending

- Alpha blending causes ghosting effect
- Poisson blending:

Poisson Image Editing Perez et.al. SIGGRAPH2003

Unsolved problems and future work

•local camera optimization for MVS

- SfM computes globally optimized camera, which is not locally optimized
- Inaccurate camera is detrimental
- Related work: (Zhu et.al. CVPR2014)
- Simultaneously surface **refinement** + **texturing**
 - Repeated computations of depth, visibility, etc.
 - Not and end-to-end optimization
 - Optimize the surface **geometry** and **textures**, for the rendering photo-realism
- Fine-scale object reconstruction (such sticks, wire)
 - Due to sparse point cloud at that objects
 - Can be improved by more structural point cloud, such as adding connectivity information