BECA / Dr. Huson / Geometry 6 Trigonometry

6.9 Classwork: Solving triangles

CCSS.HSG.SRT.C.8

Write an equation expressing $\tan \theta$ as a ratio of *opposite* over *adjacent*, then solve for the missing length.

1. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JK = 8, $m \angle J = 24^{\circ}$. Let x be the length of the side opposite $\angle J$, x = KL.

- 2. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, BC = 15, $m \angle A = 41^{\circ}$.
 - (a) Solve for x = AC.
 - (b) Find the length of the hypotenuse AB using the Pythagorean theorem.

3. Given right $\triangle ABC$ with $m\angle C=90^\circ,\ BC=4,\ AC=19,\ {\rm and}\ m\angle A=x^\circ.$

4. Given right $\triangle ABC$ with $\overline{AC} \perp \overline{BC}, BC = 7, m \angle B = 55^{\circ}$. Let x = AC.

Mastery topic: Algebraic solution

5. Solve each equation for x, rounding to the nearest hundredth.

(a)
$$\tan 63^{\circ} = \frac{x}{14}$$

(c)
$$\tan 46^{\circ} = \frac{x}{3.5}$$

(b)
$$\tan 77^{\circ} = \frac{10}{x}$$

(d)
$$\tan 35^{\circ} = \frac{21}{x}$$

6. Solve for x, rounding to the nearest whole degree.

(a)
$$\theta = \tan^{-1}(\frac{12}{5})$$

(b)
$$\tan \theta = \frac{3.2}{4.8}$$

Mastery topic: Calculator use

7. Express the result to the nearest thousandth. Angle measures are in radians.

(a)
$$\tan \frac{\pi}{4} =$$

(c)
$$\tan \frac{\pi}{6} =$$

(b)
$$\tan \frac{\pi}{3} =$$

(d)
$$\tan \frac{\pi}{12} =$$

8. Find each value in radians, rounding to the nearest thousandths.

(a)
$$\tan^{-1}(1) =$$

(b)
$$\tan^{-1}(\sqrt{3}) =$$

9. Convert between radians and degrees. Leave radians in terms of π .

(a)
$$45^{\circ} =$$

(b)
$$\frac{\pi}{6} =$$

10. Round each value to the nearest hundredth.

(a)
$$AB = \sqrt{11^2 + 7^2}$$

(c)
$$AB = \sqrt{(-8.0)^2 + (14.5)^2}$$

(b)
$$AB = \sqrt{3.2^2 + 1.9^2}$$

(d)
$$AB = \sqrt{(4-3)^2 + (7-11)^2}$$