

Modern Optimization Techniques

3. Equality Constrained Optimization / 3.1. Duality

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 30.10.	(1)	0. Overview
Mon. 6.11.	(2)	 Theory Convex Sets and Functions
Mon. 13.11. Mon. 20.11. Mon. 27.11. Mon. 4.12. Mon. 11.12. Mon. 18.12.	(3) (4) (5) (6) (7)	2. Unconstrained Optimization 2.1 Gradient Descent 2.2 Stochastic Gradient Descent 2.3 Newton's Method 2.4 Quasi-Newton Methods 2.5 Subgradient Methods — canceled — — Christmas Break —
Mon. 8.01.	(8)	2.6 Coordinate Descent
Mon. 15.01. Mon. 22.01.	(9) (10)	3. Equality Constrained Optimization3.1 Duality3.2 Methods
Mon. 29.01. Mon. 5.02. Mon. 12.02.	(11) (12) (13)	 4. Inequality Constrained Optimization 4.1 Primal Methods 4.2 Barrier and Penalty Methods 4.3 Cutting Plane Methods Q & A

Outline

1. Constrained Optimization

2. Duality

3. Karush-Kuhn-Tucker Conditions

Outline

1. Constrained Optimization

2. Duality

3. Karush-Kuhn-Tucker Conditions

Constrained Optimization Problems

A constrained optimization problem has the form:

minimize
$$f(\mathbf{x})$$

subject to $g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P$
 $h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q$

where:

- ▶ $f: \mathbb{R}^N \to \mathbb{R}$ is called the **objective** or **cost function**,
- ▶ $g_1, ..., g_P : \mathbb{R}^N \to \mathbb{R}$ are called **equality constraints**,
- ▶ $h_1, ..., h_Q : \mathbb{R}^N \to \mathbb{R}$ are called **inequality constraints**,
- ▶ a feasible, optimal x* exists

Constrained Optimization Problems

A convex constrained optimization problem:

minimize
$$f(\mathbf{x})$$
 subject to $g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P$ $h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q$

is convex iff:

- ► *f* , the objective function is **convex**,
- ▶ $g_1, ..., g_P$ the equality constraint functions are **affine**: $g_p(x) = \mathbf{a}_p^T \mathbf{x} b_p$, and
- $ightharpoonup h_1, \ldots, h_Q$ the inequality constraint functions are **convex**.

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{a}_p^T \mathbf{x} - b_p = 0, \quad p = 1, \dots, P$
 $h_q(\mathbf{x}) \le 0, \qquad q = 1, \dots, Q$

Linear Programming

A convex problem with an

- ► affine objective and
- ► affine constraints

is called **Linear Program (LP)**.

Standard form LP:

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{a}_p^T \mathbf{x} = b_p, \quad p = 1, \dots, P$
 $\mathbf{x} \ge 0$

Inequality form LP:

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{a}_q^T \mathbf{x} \leq b_q, \quad q = 1, \dots, Q$

Quadratic Programming

A convex problem with

- ► a quadratic objective and
- ► affine constraints

is called Quadratic Program (QP).

Inequality form QP:

$$\begin{split} & \text{minimize} & & \frac{1}{2} \mathbf{x}^T C \mathbf{x} + \mathbf{c}^T \mathbf{x} \\ & \text{subject to} & & \mathbf{a}_q^T \mathbf{x} \leq b_q, \quad q = 1, \dots, Q \end{split}$$

where:

- $ightharpoonup C \succ 0$ pos.def. or
- ightharpoonup C = 0, a special case: linear programs.
- 3. Equality Constrained Optimization / 3.1. Duality 1. Constrained Optimization

Example: Support Vector Machines

For linear separable problems $(a_n, b_n) \in \mathbb{R}^M \times \{0, 1\} \ (n = 1, \dots, N)$:

minimize
$$\frac{1}{2}||\mathbf{x}||^2$$

subject to $b_n(x_0 + \mathbf{x}^T \mathbf{a_n}) \ge 1, \quad n = 1, \dots, N$
over $x \in \mathbb{R}^M, \quad x_0 \in \mathbb{R}$

Note: For linear inseparable problems, optimization variables $x=(\beta,\beta_0,\xi)$ are the hyperplane and the slack variables.

Outline

1. Constrained Optimization

2. Duality

3. Karush-Kuhn-Tucker Conditions

Lagrangian

Given a constrained optimization problem in the standard form:

minimize
$$f(\mathbf{x})$$

subject to $g_p(\mathbf{x}) = 0, \quad p = 1, \dots, P$
 $h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q$

We can put

- ► the objective function *f* and
- ► the constraints g_p and h_q

in a joint function called primal Lagrangian:

$$f(\mathbf{x}) + \sum_{p=1}^{P} \nu_p \, g_p(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_q \, \frac{h_q(\mathbf{x})}{h_q(\mathbf{x})}$$

Primal Lagrangian

The **primal Lagrangian** of a constrained optimization problem is a function

$$L: \mathbb{R}^{N} \times \mathbb{R}^{P} \times \mathbb{R}^{Q} \to \mathbb{R}$$

$$L(\mathbf{x}, \nu, \lambda) := f(\mathbf{x}) + \sum_{p=1}^{P} \nu_{p} g_{p}(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_{q} h_{q}(\mathbf{x})$$

where:

- \triangleright ν_p and λ_q are called Lagrange multipliers.
 - $ightharpoonup
 u_p$ is the Lagrange multiplier associated with the constraint $g_p(\mathbf{x}) = 0$
 - $ightharpoonup \lambda_q$ is the Lagrange multiplier associated with the constraint $h_q(\mathbf{x}) \leq 0$.

Dual Lagrangian

Let \mathcal{X} be the domain of the problem.

Dual Lagrangian of a constrained optimization problem:

$$g: \mathbb{R}^{P} \times \mathbb{R}^{Q} \to \mathbb{R}$$

$$g(\nu, \lambda) := \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \nu, \lambda)$$

$$= \inf_{\mathbf{x} \in \mathcal{X}} \left(f(\mathbf{x}) + \sum_{p=1}^{P} \nu_{p} g_{p}(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_{q} \frac{h_{q}(\mathbf{x})}{h_{q}(\mathbf{x})} \right)$$

ightharpoonup Q: What type of function is g?

Note: From here onwards, g denotes the dual Lagrangian, not the equality constraints anymore.

Dual Lagrangian

Let \mathcal{X} be the domain of the problem.

Dual Lagrangian of a constrained optimization problem:

$$g: \mathbb{R}^{P} \times \mathbb{R}^{Q} \to \mathbb{R}$$

$$g(\nu, \lambda) := \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \nu, \lambda)$$

$$= \inf_{\mathbf{x} \in \mathcal{X}} \left(f(\mathbf{x}) + \sum_{p=1}^{P} \nu_{p} g_{p}(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_{q} h_{q}(\mathbf{x}) \right)$$

- ightharpoonup g is concave.
 - ► as infimum over concave (affine) functions
- ▶ for non-negative λ_a , g is a **lower bound** on $f(\mathbf{x}^*)$:

$$g(\nu, \lambda) \le f(\mathbf{x}^*)$$
 for $\lambda \ge 0$

Note: From here onwards, g denotes the dual Lagrangian, not the equality constraints anymore.

Dual Lagrangian / Proof

Proof of the lower bound property of:

$$g(\nu, \lambda) := \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \nu, \lambda)$$

$$= \inf_{\mathbf{x} \in \mathcal{X}} \left(f(\mathbf{x}) + \sum_{p=1}^{P} \nu_p \, g_p(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_q \, h_q(\mathbf{x}) \right)$$

$$\leq f(\mathbf{x}^*) + \sum_{p=1}^{P} \nu_p \, \underbrace{g_p(\mathbf{x}^*)}_{=0} + \sum_{q=1}^{Q} \underbrace{\lambda_q}_{\geq 0} \underbrace{h_q(\mathbf{x}^*)}_{\leq 0}$$

$$\leq f(\mathbf{x}^*)$$

Example / Least-norm solution of linear equations

minimize
$$\mathbf{x}^T \mathbf{x}$$
 subject to $A\mathbf{x} = \mathbf{b}$

- ► Lagrangian: $L(\mathbf{x}, \nu) = \mathbf{x}^T \mathbf{x} + \nu^T (A\mathbf{x} \mathbf{b})$
- **▶** Dual Lagrangian:
 - ► minimize *L* over **x**:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \nu) = 2\mathbf{x} + A^{T} \nu = 0$$
$$\mathbf{x} = -\frac{1}{2} A^{T} \nu$$

ightharpoonup Substituting **x** in *L* we get *g*:

$$g(\nu) = \frac{1}{4} \nu^T A A^T \nu - \frac{1}{2} \nu^T A A^T \nu - \nu^T b$$
$$= -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$$

The Dual Problem

Compute the **best** lower bound on $f(\mathbf{x}^*)$:

maximize
$$g(\nu, \lambda)$$
 subject to $\lambda \geq 0$

▶ this is a convex optimization problem (g is concave).

Weak and Strong Duality

Say p^* is the optimal value of f and d^* is the optimal value of g.

Weak duality: $d^* \leq p^*$

- ► always holds.
- ► can be useful to find informative lower bounds for difficult problems.

Strong duality: $d^* = p^*$

- ► does not always hold.
- but holds for a range of convex problems.
- properties that guarantee strong duality are called constraint qualifications.

Weak Duality / Example

► convex optimization problem:

min.
$$f(x_1, x_2) := e^{-x_1}$$

s.t. $h(x_1, x_2) := \frac{x_1^2}{x_2} \le 0$
over $(x_1, x_2) \in \mathcal{X} := \mathbb{R} \times \mathbb{R}^+$

- ▶ h is a complicated way to say: $x_1 = 0$, and thus $x^* = (0, x_2)$ for any $x_2 > 0$ and $p^* = 1$.
- ► dual Lagrange function:

$$egin{aligned} g(\lambda) &:= \inf_{(x_1,x_2) \in \mathcal{X}} e^{-x_1} + \lambda rac{x_1^2}{x_2} \ &= 0, \quad \text{e.g., as limit of } x^{(n)} := (n,n^3), \quad n \in \mathbb{N} \ &\leadsto \ d^* := \sup_{\lambda \in \mathbb{R}^+_+} g(\lambda) = 0 < p^* = 1 \end{aligned}$$

Strong Duality of Equality Constraints Only

Convex problems with only equality constraints

minimize
$$f(\mathbf{x})$$
 subject to $A\mathbf{x} = \mathbf{b}$

are always strongly dual.

Proof:

$$g(\nu^*) = \sup_{\nu} \inf_{x} f(x) + \nu^T (Ax - b) = \sup_{(*)} \inf_{\nu} \inf_{x:Ax - b = 0} f(x) + \nu^T 0$$
$$= \inf_{x:Ax - b = 0} f(x)$$
$$= f(x^*)$$

where (*) holds as:

- \blacktriangleright assume $g(\nu^*) = f(x') + \nu^*(Ax' b)$ with $Ax' b \neq 0$.
- ▶ then sup, $\nu^T(Ax'-b)=\infty$. Contradiction to $g(\nu^*)$ being finite.

Slater's Condition / Strict Feasibility

If a convex problem

minimize
$$f(\mathbf{x})$$
 subject to $A\mathbf{x} = \mathbf{b}$ $h_q(\mathbf{x}) \leq 0, \quad q = 1, \dots, Q$

is strictly feasible, i.e.

$$\exists \mathbf{x} : A\mathbf{x} = \mathbf{b} \text{ and } h_q(\mathbf{x}) < 0, \forall q = 1, \dots, Q$$

then strong duality holds for this problem.

Duality Gap

How close is the value of the dual lagrangian to the primal objective?

For a primal feasible **x** (i.e., Ax = b and $h(x) \le 0$) and dual feasible ν, λ (i.e., $\lambda \ge 0$), the **duality gap** is defined as:

$$f(\mathbf{x}) - g(\nu, \lambda)$$

Since $g(\nu, \lambda)$ is a lower bound on f:

$$f(\mathbf{x}) - f(\mathbf{x}^*) \le f(\mathbf{x}) - g(\nu, \lambda)$$

If the duality gap is zero, then x is primal optimal.

► This is a useful stopping criterion: if $f(\mathbf{x}) - g(\nu, \lambda) \le \epsilon$, then we are sure that $f(\mathbf{x}) - f(\mathbf{x}^*) \le \epsilon$

Outline

1. Constrained Optimization

2. Duality

3. Karush-Kuhn-Tucker Conditions

Consequences of Optimality under Strong Duality

Assume strong duality:

- ► let x* be primal optimal and
- \blacktriangleright (ν^*, λ^*) be dual optimal.

$$f(\mathbf{x}^*) = g(\nu^*, \lambda^*) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \nu^*, \lambda^*)$$

$$\leq L(\mathbf{x}^*, \nu^*, \lambda^*)$$

$$\leq f(\mathbf{x}^*)$$
lower bound

hence

$$L(\mathbf{x}^*, \nu^*, \lambda^*) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \nu^*, \lambda^*) = f(\mathbf{x}^*)$$

Consequences of Optimality under Strong Duality I: Stationarity

Assume strong duality:

- ► let x* be primal optimal and
- \blacktriangleright (ν^*, λ^*) be dual optimal.

$$L(\mathbf{x}^*, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\nu}^*, \boldsymbol{\lambda}^*)$$

i.e., \mathbf{x}^* minimizes $L(\mathbf{x}, \nu^*, \lambda^*)$ and thus

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \nu^*, \lambda^*) = \nabla f(\mathbf{x}^*) + \sum_{p=1}^{P} \nu_p^* \nabla g_p(\mathbf{x}^*) + \sum_{q=1}^{Q} \lambda_q^* \nabla h_q(\mathbf{x}^*) \stackrel{!}{=} 0$$

condition called stationarity.

Note: g_p denote again the equality constraints, not the dual Lagrangian.

Consequences of Optimality under Strong Duality II: Complementary Slackness

Assume strong duality:

- ► let x* be primal optimal and
- \blacktriangleright (ν^*, λ^*) be dual optimal.

$$L(\mathbf{x}^*, \nu^*, \lambda^*) = f(\mathbf{x}^*) + \sum_{p=1}^{P} \nu_p^* g_p(\mathbf{x}^*) + \sum_{q=1}^{Q} \lambda_q^* \frac{h_q(\mathbf{x}^*)}{h_q(\mathbf{x}^*)} = f(\mathbf{x}^*)$$

→ complementary slackness:

$$\lambda_q^* h_q(\mathbf{x}^*) = 0, \quad q = 1, \dots, Q$$

which means that

- ▶ If $\lambda_a^* > 0$, then $h_a(\mathbf{x}^*) = 0$
- \blacktriangleright If $h_a(\mathbf{x}^*) < 0$, then $\lambda_a = 0$

Karush-Kuhn-Tucker (KKT) Conditions

The following conditions on \mathbf{x}, ν, λ are called the KKT conditions:

1. primal feasibility: $g_p(\mathbf{x}) = 0$ and $h_q(\mathbf{x}) \leq 0$, $\forall p, q$

2. dual feasibility: $\lambda \geq 0$

3. complementary slackness: $\lambda_q h_q(\mathbf{x}) = 0$, $\forall q$

4. stationarity:
$$\nabla f(\mathbf{x}) + \sum_{p=1}^{P} \nu_p \nabla g_p(\mathbf{x}) + \sum_{q=1}^{Q} \lambda_q \nabla h_q(\mathbf{x}) = 0$$

If strong duality holds and \mathbf{x}, ν, λ are optimal, then they **must** satisfy the KKT conditions.

If \mathbf{x}, λ, ν satisfy the KKT conditions, then \mathbf{x} is primal optimal and (ν, λ) is dual optimal.

Karush-Kuhn-Tucker (KKT) Conditions

Theorem (Karush-Kuhn-Tucker)

For a strongly dual problem, if \mathbf{x}, λ, ν satisfy the KKT conditions,

1. primal feasibility:
$$g_p(\mathbf{x}) = 0$$
 and $h_q(\mathbf{x}) \leq 0$, $\forall p, q$

- **2.** dual feasibility: $\lambda \geq 0$
- **3.** complementary slackness: $\lambda_q h_q(\mathbf{x}) = 0$, $\forall q$

4. stationarity:
$$\nabla f(\mathbf{x}) + \sum_{p=1}^P \nu_p \nabla g_p(\mathbf{x}) + \sum_{q=1}^Q \lambda_q \nabla h_q(\mathbf{x}) = 0$$

then **x** is the primal solution and (ν, λ) is the dual solution.

Karush-Kuhn-Tucker (KKT) Conditions / Proof

Proof:

$$g(\lambda, \nu) = \inf_{x' \in \mathcal{X}} f(x') + \sum_{p=1}^{P} \nu_p g_p(x') + \sum_{q=1}^{Q} \lambda_q h_q(x')$$

$$= \int_{\text{4. stat.}} f(x) + \sum_{p=1}^{P} \nu_p g_p(x) + \sum_{q=1}^{Q} \lambda_q h_q(x)$$

$$= \int_{1,3} f(x)$$

i.e. duality gap is 0, and thus x and λ, ν optimal.

Summary

- ► The **primal Lagrangian** combines objective and constraints linearly
 - constraint weights called multipliers
 - multipliers viewed as additional variables
 - ► inequality multipliers ≥ 0
- ► The dual Lagrangian g is the pointwise infimum of the primal Lagrangian over the primal variables x.
 - ightharpoonup a lower-bound for $f(\mathbf{x}^*)$
 - ▶ difference $f(x) g(\nu, \lambda)$ called duality gap
- ▶ Dual problem: Maximizing the dual Lagrangian
 - ► = finding the best lower bound
 - a convex problem
 - ► solves the primal problem under **strong duality** (duality gap = 0)
- Constraint qualifications guarantee strong duality for a problem
 - e.g., **Slater's condition**: existence of a **strictly feasible** point.

Summary (2/2)

- **Karush-Kuhn-Tucker (KKT) conditions** for (x, ν, λ) :
 - 1. primal feasibility
 - 2. dual feasibility
 - 3. complementary slackness
 - 4. stationarity
- KKT is a necessary condition for primal/dual optimality under strong duality.
- If a problem is strongly dual, KKT are also a sufficient condition for a primal/dual solution.

Further Readings

- ▶ Boyd and Vandenberghe, 2004, ch. 5
- ► The proof that Slater's condition is sufficient for strong duality can be found in Boyd and Vandenberghe, 2004, ch. 5.3.2.

References

Boyd, Stephen and Lieven Vandenberghe (2004). *Convex Optimization*. Cambridge University Press.