Домашняя работа №3

Бредихин Александр

11 марта 2020 г.

Задача 1

3adaчa: язык 2-COLOR состоит из кодировок всех графов, заданных матрицами смежности, вершины которых можно корректно окрасить в два цвета (никакие две смежные вершины не имеют один цвет). Верно ли, что язык 2-COLOR лежит в \mathcal{P} ? В \mathcal{NP} ? В $co-\mathcal{NP}$?

Построим алгоритм, которое за полиномиальное время будет определять, можно ли правильно раскрасить данный граф, который подаётся матрицей смежности, в два цвета (пусть n – количество вершин в графе) (алгоритм построен на приципе обхода графа в ширину)

Алгоритм:

- 1) Выбираем произвольную непокрашенную вершину графа и красим её в цвет с номером 0 (в любой из двух цветов: 0 или 1)
- 2) По матрице смежности смотрим на все смежные вершины с выбранной: если смежная вершина непокрашена ни в какой цвет, красим её в противоположный и добавляем в стек, если она уже покрашена в противоположный цвет, то не изменяем его, и вершину тоже добавляем в стек. Если смежная вершина уже окрашена в такой же цвет, то заканчиваем алгоритм. Это говорит, что в графе есть цикл нечётной длины и то, что нельзя правильно раскрасить граф в 2 цвета.

Также создаём массив просматренных вершин, куда добавляем каждую вершину после проверки всех вершин ей смежных. В стек добавляем только если этой вершины нет в массиве просмотренных (чтобы не возникло зацикливания)

3) Для каждой из вершин в стеке запускаем пункт 2 пока стек не будет пустым. Если все вершины в графе попали в массив просмотренных

и алгоритм не завершился досрочно, то мы получили правильную раскраску графа в 2 цвета. Если какая-то вершина не попала в массив просмотренных, то в графе несколько компонент связности и запускаем пункт 1 от этой вершины.

Коректность понятна, так как каждые смежные вершины нужно красить в разные цвета, что и делает алгоритм. Алгоритм проходит все вершины по одному разу и проверяет по матрице смежности все смежные с ней вершины. Следовательно, грубо сложность можно оценить как $O(n^2)$ Получили алгоритм, решающий задачу 2-COLOR за полиноминальное время \longrightarrow 2-COLOR лежит в $\mathcal{P} \longrightarrow$ лежит в \mathcal{NP} и в $co-\mathcal{NP}$

Задача 2

3adaчa: язык HP состоит из всех графов, имеющих гамильтонов путь (несамопересекающийся путь, проходящий через все вершины графа). Язык HC состоит из всех графов, имеющих гамильтонов цикл (цикл, проходящий через все вершины, в котором все вершины, кроме первой и последней, попарно различны). Постройте явные полиномиальные сводимости HC к HP и наоборот.

Сводимость: $HC \leq_p HP$, то есть нужно построить функцию f, такую что $x \in HC \iff f(x) \in HP$ Пусть функция f по данному ей графу делает следующее:

- 1 Выбирает произвольную вершину графа (назовём её A) и дублирует её $-A^*$.
- 2 Проводит рёбра от вершины A^* ко всем вершинам, с которыми соединена A.
- 3 Создаёт ещё 2 вершины M и N и соединяет одну из них с A (б.о.о. вершину M), а другую с A^*

Пусть граф $x \in HC$, покажем что в созданном графе f(x) будет гамильтонов путь: начинаем из вершины M переходим в вершину A а затем идём по гамильтонову циклу (так как $x \in HC$, то в графе без вершин M, N, A^* он существует). Когда доходим до вершины которя соединена с A (и при этом мы уже обошли все вершины графа x), то идём в вершину A^* и затем в N. Получили гамильтонов путь, так как прошли по всем вершинам графа f(x) без самопересечений $\longrightarrow f(x) \in HP$

Пусть граф $x \notin HC$, покажем, что у графа f(x) не будет гамильтонова пути: от противного, пусть в f(x) есть гамильтонов путь, тогда он

точно начинается или заканчивается в вершинах M и N (так как они висячие) \longrightarrow в f(x) без этих двух вершин есть гамильтонов путь, но тогда в x есть гамильтонов цикл, так как последний переход гамильтонова пути в графе f(x) без M и N можно заменить на переход в вершину A (то есть замкнуть гамильтонов путь и получить гамильтонов цикл в x). Получили противоречие, что $x \notin HC \longrightarrow$ в f(x) нет гамильтонова пути.

Функция f — полиномиальна, так как мы достраиваем только 3 вершины и проводим n-1+1+1 ребро (можно сказать добавляем в матрицу смежности 3 строки, это полином)

Сводимость: $HP \leq_p HC$,

то есть нужно построить функцию f, такую что $x \in HP \iff f(x) \in H$. Пусть функция f(x) по данному графу делает следующие: создаёт вершину (назовём её A) и проводит из этой вершины рёбра ко всем вершинам графа x

Пусть $x \in HP$, покажем, что тогда в графе f(x) найдётся гамильтонов цикл. Так как $x \in HP \longrightarrow$ в графе x есть гамильтонов путь, который начинается в вершине B и заканчивается в вершине C. Тогда идя из вершины A графа f(x) в вершину B, затем по обозначенному гамельтонову пути в D и затем из D в A получим гамильтонов цикл (прошли все вершины графа и нигде кроме вершины A не было самопересечений)

Пусть $x \notin HP$, покажем, что тогда в графе f(x) НЕ найдётся гамильтонова цикла. От противного, пусть он есть, следовательно он проходит через вершину A и все вершины графа x. Пусть в A этот цикл попадает из вершины B а затем идёт в вершину C, тогда путь из вершины B в C гамильтоновый для графа x (так как проходит через все его вершины и нигде не пересекается (получен из гамильонова цикла «удалением» добавленной вершины)). Получаем противоречие $\longrightarrow f(x) \notin HC$

Задача 4

Задача: докажите следующие свойства полиномиальной сводимости: (i) Рефлексивность: $A \leq_p A$; транзитивность: $A \leq_p B, B \leq_p C \implies A \leq_p C$;

- (ii) Если $B \in \mathcal{P}$ и $A \leq_p B$, то $A \in \mathcal{P}$;
- (iii) Если $B \in \mathcal{NP}$ и $A \leq_p B$, то $A \in \mathcal{NP}$.

P.S. задача была разобрана на лекции

(*i*) Рефлексивность (то есть $A \leq_p A$)): рассмотрим функцию f(x) = x (очевидно, что тогда будет выполняться утверждение $x \in A \iff f(x) \in A$)

Транзитивность (то есть $A \leq_p B, B \leq_p C \implies A \leq_p C$): рассмотрим функцию f как композицию $f = h \circ g$, где h сводит A к B, а g сводит B к C. Получается: если $x \in A \Leftrightarrow h(x) \in B \Leftrightarrow f(x) = g(h(x)) \in C$. И так как h и g – полиномиально вычислимы, то $h \circ g$ также вычисляется за полиномиальное время.

- (ii) Так как $B \in \mathcal{P}$, то $\exists \chi_B$ характеристическая функция языка B (говорит за полиномиальное время лежит произвольный x в языке B или нет). Так как $A \leq_p B \longrightarrow \exists f$ -полиномиальная : $x \in A \Longleftrightarrow f(x) \in B$. Рассмотрим функцию $\chi_A = f \circ \chi_B$, она является характеристической функцией для A, так как $x \in A \Leftrightarrow f(x) \in B \Leftrightarrow \chi_B(f(x)) = 1$. Аналогично предыдущему пункту, так как f, χ_B полиномиальны, следовательно их композиция вычисляется тоже за полиномиальное время (то есть характеристическая функция для A вычисляется за полиномиальное время) $\longrightarrow A \in \mathcal{P}$
- (iii) Аналогично предыдущему пункту, только теперь χ_B вычисяляется на недетерменированной МТ (так как $B \in \mathcal{NP}$). $\chi_A = \chi_B \circ f$ является характерестической функцией для языка A и вычисляется за полиномиальное время на недетременнированной МТ (так как f полиномиальная даже на детерменированной МТ) по определению $\mathcal{NP} \Rightarrow A \in \mathcal{NP}$

Задача 5

Докажите, что классы \mathcal{P} и \mathcal{NP} замкнуты относительно операции * — звезды Клини (была в ТРЯПе). Приведите также и сертификат принадлежности слова языку L^* , где $L \in \mathcal{NP}$.

```
для \mathcal{P}
```

Пусть p - характеристическая функция языка L, построим характеристическую функцию q для языка L^* . Ниже представлен псевдокод, который реализует её:

```
q(w) : n=|w| \\ endPoses = \{0\} \quad \  \  \,  //позиции, где могут заканчиваться слова, принадлежащие L_1 for (i=1\dots n) for (j\in endPoses) if (p(w[j+1\dots i])) { if (i=n) return true endPoses\ \cup = \{i\} } return false
```

Алгоритм:

в цикле по входному слову w провереят с помощью характеристической

функции для языка L-p принадлежит ли подслово языку. Для этого создаём массив END, который первоначально пуст и кладём туда индексы концов слов, которые разбиваются на подслова из L (для этого для каждого индекса из END и текущего значения i берём слайс от входного слова и проверяем из L оно или нет: если из L, то добавляем i в массив END, что говорит что подслово w до этого элемента может быть получено конкатинацией слов из L)

Количество элементов в массиве END не может быть больше, чем n (длина входного слова). Следовательно в худшем случае, так как есть цикл в цикле, сложность оценивается $O(n^2)$ – полином. Следовательно, мы получили полиномиальную характеристическую функцию для L^* , значит $L^* \in \mathcal{P}$

для \mathcal{NP}

 $L \in \mathcal{NP} \longrightarrow \exists$ предикат $R_L(x,y)$. Построим предикат для L^* . Для этого предикату R_L^* в качестве подсказки (сертификата) подаём начала слов из L и подсказки для каждого из этих слов. Тогда предикат R_L^* запускает предикат R_L на каждом подслове и переданной для неё подсказкой. R_L^* выдаёт 1, когда на всех подславах предикат для L выдал 1, иначе 0. Подсказка полиномиальна от длины входного слова (количество индексов разбиения не может превышать длины входного слова). R_L выполняется полиномиально и не может быть запущен ,чем n раз, следовательно

мы построили полиномиальный предикат для L^* .