ICEFOSS 2019

organized by

FISAT Free Software Cell (FFSC)

 19^{th} Feb - 20^{th} Feb **2019**

at

Federal Institute of Science And Technology (FISAT)TM

Event Coordinators **FFSC**

Dept. of Computer Science & Engineering Federal Institute of Science And Technology (FISAT) Kerala – 683577

Transformaciones Lineales

Transformación Lineal. Sean V y W. dos espacios vectoriales sobre el cuerpo \mathbb{F} . Una transformación lineal de V en W es una función T de V en W tal que

$$T(c\alpha + \beta) = cT(\alpha) + T(\beta)$$

todos los vectores α y β de V y todos los escalares c de $\mathbb{F}.$

Teorema 1. Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{F} , $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ una base ordenada de V. Sean W un espacio vectorial sobre el mismo cuerpo \mathbb{F} y $\{\beta_1, \beta_2, \ldots, \beta_n\}$, vectores cualesquiera de W. Entonces existe una una transformación lineal de T de V en W tal que

$$T(\alpha_i) = \beta_i, \forall i = 1, 2, \dots, n$$

Definición. Sean V y W dos espacios vectoriales sobre el cuerpo \mathbb{F} y sea T una transformación lineal de V en W. El espacio nulo de T es el conjunto de todos los vectores α de V tales que $T(\alpha) = 0$.

Si V es de dimensión finita, el rango de T es la dimensión de la imagen de T y la nulidad de T es la dimensión del espacio nulo de T.

Teorema 2. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} y sea T una transformación lineal de V en W. Supóngase que V es de dimensión finita. Entonces

$$rango(T) + nulidad(T) = dimV.$$

Teorema 2. Si A es una matriz $m \times n$ de elementos en el cuerpo \mathbb{F} , entonces

rango de filas(A) = rango de columnas(A).

Álgebra de las Transformaciones Lineales

Teorema 4. Sean V y W espacios vectoriales sobre el cuerpo \mathbb{F} . Sean T y U transformaciones lineales de V en W. La función (T+U) definida por

$$(T+U)(\alpha) = T\alpha + U\alpha$$

es una transformación lineal de V en W. Si c es cualquier elemento de \mathbb{F} , la función (cT) definida por

$$(cT)(\alpha) = c(T\alpha)$$

es una transformación lineal de V en W. El conjunto de todas las transformaciones lineales de V en W, junto con la adición y la multiplicación escalar aquí definidas, es un espacio vectorial sobre el cuerpo \mathbb{F} .

Teorema 5. Sea V un subespacio vectorial de dimensión finita n sobre el cuerpo \mathbb{F} y sea W un espacio vectorial de dimensión finita m sobre \mathbb{F} . Entonces el espacio L(V,W) es de dimensión finita y tiene dimensión mn.

Teorema 6. Sean V, W y Z espacios vectoriales sobre el cuerpo \mathbb{F} . Sea T una transformación lineal de V en W y U una transformación lineal de W en Z. Entonces la función compuesta UT definida por $UT(\alpha) = U(T(\alpha))$ es una transformación lineal de V en Z.

Definición. Si V es un espacio vectorial sobre el cuerpo \mathbb{F} , un **operador lineal** sobre V es una transformación lineal de V en V.

Lema. Sea V un espacio vectorial sobre el cuerpo \mathbb{F} , sean U, T_1 y T_2 operadores lineales sobre V, sea c un elemento de \mathbb{F} .

- (i) IU = UI = U,
- (ii) $U(T_1+T_2) = UT_1+UT_2$, $(T_1+T_2)U = T_1U+T_2U$,
- (iii) $(c(UT_1) = (cU)T_1 = U(cT_1).$

L(V,W)es el espacio de las transformaciones lineales de V en W sobre el mismo cuerpo $\mathbb F.$

Una función T de V en W se dice inversible si existe una función U de W en V tal que UT es la función identidad de V y TU es la función identidad de W. Si T es inversible, la función U es única y se representa por T^{-1} . Más aún, T es inversible si y, solo si

- (i) T es invectiva, esto es, $T\alpha = T\beta$ implica $\alpha = \beta$,
- (ii) T es sobreyectiva, esto es, la imagen de T es W.

Teorema 7. Sean V y W dos espacios vectoriales sobre el cuerpo \mathbb{F} y sea T una transformación lineal de V en W. Si T es inversible, entonces la función recíproca T^{-1} es una transformación lineal de W en V.

Se dice que la transformación lineal T es no singular si $T\alpha=0$ implica $\alpha=0$, es decir, si el espacio nulo de T es $\{0\}$. Evidentemente, T es inyectiva si y, solo si, T es no singular. El alcance de esta observación es que las transformaciones lineales no singulares son las que preservan la independencia lineal.

Teorema 8. Sean T una transformación lineal de V en W. Entonces T es no singular si, y solo si, T aplica cada subconjunto linealmente independiente de V sobre un subconjunto linealmente independiente de W.

Teorema 9. Sean V y W espacios vectoriales de dimensión finita sobre el mismo \mathbb{F} tal que dimV = dimW. Si T es una transformación lineal de V en W, las siguientes afirmaciones son equivalentes:

- (i) T es inversible.
- (ii) T es no singular.
- (iii) T es sobreyectiva, es decir, la imagen de T es W.

Teorema 9.bis Sean V y W espacios vectoriales de dimensión finita sobre el mismo \mathbb{F} tal que dimV = dimW. Si T es una transformación lineal de V en W, las siguientes afirmaciones son equivalentes:

- (i) T es inversible.
- (ii) T es no singular.
- $(iii)\ T$ es sobreyectiva, es decir, la imagen de Tes W.
- (iv) Si $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ es una base de V, entonces $\{T\alpha_1, T\alpha_2, \dots, T\alpha_n\}$ es una base W.

(v) Existe una base $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ de V tal que $\{T\alpha_1, T\alpha_2, \dots, T\alpha_n\}$ es una base de W.

Isomorfismo

Si V y W son espacios vectoriales sobre el cuerpo \mathbb{F} , toda transformación lineal T de V en W sobreyectiva e inyectiva, se dice isomorfismo de V sobre W.

Si existe un isomorfismo de V sobre W, se dice que V es isomorfo a W.

Teorema 10. Todo espacio vectorial de dimensión n sobre el cuerpo \mathbb{F} isomorfo al espacio \mathbb{F}^n .

Representación de transformaciones por matrices

Sea V un espacio vectorial de dimensión n sobre el cuerpo \mathbb{F} , y sea W un espacio vectorial de dimensión m sobre \mathbb{F} . Sea $\mathcal{B} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ una base ordenada de V, y $\mathcal{B}' = \{\beta_1, \beta_2, \dots, \beta_m\}$ una base ordenada de W. Si T es cualquier transformación lineal de V en W, entonces T está determinada por su efecta sobre los vectores α_j . Cada uno de los n vectores $T\alpha$ se expresa de manera única como combinación lineal

$$T\alpha_j = \sum_{1}^{m} A_{ij}\beta_j \tag{1}$$

de los β_j . los escalares A_{1j} , A_{2j} , ..., A_{mj} son las coordenadas de $T\alpha_j$, en la base ordenada \mathcal{B}' . Por consiguiente, la transformación T está determinada por los mn escalares A_{ij} mediante la expresión (1). La matriz $m \times n$, A, definida por $A(i,j) = A_{ij}$ se llama matriz de T respecto al par de bases ordenadas \mathcal{B} y \mathcal{B}' .

La tarea inmediata es comprender claramente cómo la matriz A determina la transformación lineal T.

Si $\alpha = x_1\alpha_1 + x_1\alpha_2 + \cdots + x_n\alpha_n$, es un vector de V, entonces

$$T\alpha = T\left(\sum_{j=1}^{n} x_j \alpha_j\right)$$

$$= \sum_{j=1}^{n} x_j (T\alpha_j)$$

$$= \sum_{j=1}^{n} x_j \sum_{i=1}^{m} A_{ij} \beta_i$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} A_{ij} x_j\right) \beta_i$$

Si X es la matriz de las coordenadas de α en la base ordenada (\mathcal{B} entonces el cálculo anterior muestra que AX es la matriz de las coordenadas del vector $T\alpha$ en la base ordenada \mathcal{B}' , ya que el escalar

$$\sum A_{ij}x_j$$

es el elemento de la *i*-ésima fila de la matriz columna AX. Obsérvese también que si A es cualquier matriz $m \times n$ sobre el cuerpo \mathbb{F} , entonces

$$T\left(\sum_{j=1}^{n} x_j \alpha_j\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j\right) \beta_j \tag{2}$$

define una transformación lineal T de V en W, la matriz de la cual es A, respecto a \mathcal{BB}' .

Teorema 11. Sean V un espacio vectorial de dimensión n sobre el cuerpo \mathbb{F} y W un espacio vectorial de dimensión m sobre \mathbb{F} . Sean \mathcal{B} y \mathcal{B}' una base ordenada de V y de W respectivamente. Para cada transformación lineal T de V en W, existe una matriz $m \times n$, A, cuyos elementos pertenecen a \mathbb{F} , tal que

$$[T\alpha]_{\mathcal{B}'} = A[\alpha]_{\mathcal{B}}$$

mm todo vector α en V. Además, $T \to A$ es una correspondencia biyectiva entre el conjunto de todas las transformaciones lineales de V en W y el conjunto de todas las matrices $m \times n$ sobre el cuerpo \mathbb{F} .