UNIT-3

knapsack problem

Greedy method - An algorithm that always takes the best immediate, or local, solution while finding an answer

- Greedy algorithms find the overall, or globally optimal solutions for some optimization problems, but may find less than optimal solutions for some instances of other problem.

Some of the applications of greedy method are in

- 2) Job sequencing with deadlines
- 3) Minimum cost spanning trees
- 4) prims algorithm.
 5) single source shortest path (Dijkstrals alg.)

1) knapsack problem

Objects 1 2 3 4 5 6 7 n=7

profits 10 5 15 7 6 18 3 m=15 weight 2 3 5 7 1 4 1

Here, the weight of the bag is 15

- Fill the bag with the objects such that profit is maximized and weight should por not exceed 15

Zxiwi = 1 x2 + = x3 + 1 x5 + 0 x7 + 1 x1 + 4 x4 +

EXIP - 1 ×10+ = x5 +11 ×15 +1 ×6+ 1 ×16 = 54.6 constraint - Sziwi & m objective - maxsxipi Job sequencing with deadlines problem statement - In job sequencing problem the objective is to find a sequence of jobs which is completed within their deadlines and gives maximum profit Job J1 J2 J3 J4 J5 1 3 2 1 1 peadline 2 Profit 60 100 20 40 20 -) The jobs have to be sorted according to their profit in descending order After sorting J4 J3 万 万 J5 Job peadline 1 2 profit 100 60 40 20 20 1 J2 (1) J1 (2) J3 (3) # Explanation of job selection Total profit = 100+60+20 = 180 step1: - Arrange all jobs in decreasing order Mgorithm of profit -(nlogn) step2 : For each job [mi) do linear rearch to find particular slot in array of size(n) n= maximum deadline m= Total jobs - n2 Time complexity = O(n)

Algorithm for Enapsack problem -) -for i - 1 - to n calculate profit I weight - sort objects in decreasing order of plw rates - for i= 1 to n if M > 0 and wi = M Time complexity -M=M-Wi O(nlogn) P = P + P; else break if (M>0) P= P + P (M) Minimum cost spanning tree spanning tree - A spanning tree is a subset of graph G, which has all the vertices covered with minimum possible no of edges - Hence, a spanning tree doesn't have eycles and it cannot be disconnected ext Graph q properties of a spanning tree - A connected graph or can have more than one spanning tree - All possible spanning trees for graph G have same no of edges and vertices - spanning tree doesn't have any eycle -) spanning tree cannot be disconnected

Applications , civil network planning computer network routing protocol , luster analysis Minimum spanning tree - In a weighted graph. a minimum spanning tree is a spanning tree that has minimum weight than all other spanning trees of the same graph. MST Algorithms - kruskal's Algorithm - prims Algorithm. In real world the weight may be measured as distance, traffic load etc. prims algorithm prim's algorithm is to find minimum cost spanning tree it uses greedy method SHEPT step1- Remove all loops and parallel edges -Incase of parallel edges teep one has least cost and remove other step2 - choose any one of the node as root node

CONTRACT BIC BIT TITO	15
2 2 3 4 4 5 6 7	5
3KP3- Add the edges which has least weight	
(B)	
2 0	
continue tadding edges acc to their weight	
in increasing order such that a spanning	
tree is formed	
3 2 0	
6	
Twe avoid the edges that cost 4,5,6 because	
it makes a circuit in	8
the rules of spanning tree	
7 (A) WOOD (B)	
G 3 2 2 2	
0-3	
and north problem (or)	
single source shortest path problem (00) Dijkstra's algorithm	* 1
Dijkstra s and to find minime	190
I Dijkstra's algorithm is used to find minime	
ost spanning tree This algorithm updates the values of the	
THIN I LD O-DI	- 14
to but the	1
if (a[u] + c(u,v) = d[v])	
The second of th	
This process is called as reluxation	143
	715

brawback- It does not work for the cycles with negative weights - consume much time.

Dynamic programming Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard bellman in the 1950's and found applications in numerous fields. some of the applications of dynamic programmi-

is - Multistage graph

- oll knapsack problem

- Travelling sales person problem

· -> Reliability design

- optimal binary search tree

Multistage graph

Muttistage problem is an optimization problem done using dynamic programming

- Multistage graph Gi= (V, E, W) is a weighted directed graph in which vertices are partitioned into t = 2 disjoint sub sets
- -) The algorithm operates in the backward direction i.e , it starts from end (last verter) and proceeds in backward direction
- The goal of multistage graph problem is to find minimum cost path from source to destination.

V	11	2	3	4	5	6	7	8	9	lo	11	12
cost	16	7	9	18	15	7	5	7	4	2	5	0
d	2 (01)	7	6	8	8	10	10	10	12	12	12	12

cost (5,12) = 0 cost (4,9) = 4 cost (4/10) = 2 cost (4111) = 5

$$c(6, 9) + cost(4, 9),$$

$$c(6, 9) + cost(4, 9),$$

$$c(6, 10) + cost(4, 10)f$$

$$min f 6 + 4, 5 + 2f$$

$$min f 10, 7f$$

$$cost(3, 6) = 7$$

$$cost(3, 1) = min f c(7, 9) + cost(4, 10)f$$

$$= min f 4 + 4, 3 + 2f$$

$$min f 8, 5f$$

$$cost(3, 1) = 5$$

$$cost(3, 1) = 5$$

$$cost(3, 1) = min f c(8, 10) + cost(4, 10)f$$

$$c(1, 11) + cost(4, 11)f$$

$$min f 5 + 2, 6 + 5f$$

$$min f 7, 11f$$

$$cost(3, 1) = 7$$

$$cost(2, 1) = min f c(2, 1) + cost(3, 1),$$

$$c(2, 1) + cost(3, 1),$$

$$c(3, 1) + cost(3, 1),$$

```
cost(214) = minfc(4,8) + cost (3,8)}
            = * 11 +7
cost (215) = min { c(5,7) + cost(3,7)}
                   E(518) + cost (318) }
           = min {11+5,8+7}
              min & 16, 15%
 cost (215) = 15
cost (1,1) = minfc(1,2) + cost (2,12),
                 e(113) + cost (213),
                 c(1,4) + cost(214),
                 c(1,5) + cost (215)4
      min {9+7, 7+9, 3+18, 2+15}
      min { 16, 16, 21, 17}
      = 16
 Formula - cost(i,j) +min{c(i,1)+cost(i+1,1)
         <j,l) EE
         1 E Viti
- solving by sequence of decisions by data
          -taken
   d(1,1)=2 path 1-2-7-10
   d(2,2) = 7
   d (317) = 10
   d (4,10) = 12
```

oli knapsack problem

-In the dynamic programming we have no Hems each with an associated weight and value.

- The objective is to fill the traplact with items such that we have a maximum profit without exceeding the weight limit of knapsack

- since it is all knapsack we cannot break

an item and fill the trapsack.

constraint - Zwixi = m objective - max z pixi

$$m=8$$
 $p=\{1,2,5,6\}$
 $n=4$ $w=\{2,3,4,5\}$

		٧	0	1	2	3	4	5	6	7	8
P	ω	0	0	0	0	0	D	0	0	0	0
1	2	1	0	0	1	1	1.	1	1	1	1
2	3	2	0	D	1	(2)	2	3	3	3	3
5	4						5				
6	5	4	0	0	1	2	5	6	6	7	3

ν[i,ω]=max{v[i-1,ω], ν[i-1,ω-ω[i]] +ρ[i]} ν[4,1]=max{v[3,1], ν[3,1-5]+6} ν[4,5]=max{ν[3,5], ν[3,5-5}+6} = max{5,0+6}

$$v[u,7] = mux [v[3,7], v[3,7-5] + 6 = 7$$

 $v[u,8] = max [v[3,8], v[3,8-5] + 6 = 8$

```
X1 X2 X3 X4
  0 1 0
- Max profil - 8 [Not present in other rows
               8-6 (ath row profit) = 2
 -) 2 present in 3rd rows as well as and so,
    profit a is not due to 3rd row so don't include
       x3, include x2 if 2 is not present in strow
                2-2 = 0
- 10 is present in row 2 as well as row 1
     so it is due to row 1 so don't include 1,
sets method
    P = \{1, 2, 5, 6\} m = 8.

w = \{2, 3, 14, 15\} n = 4

s^{\circ} = \{(0, 0)\}
          si = { (112)}
     5'= {(0,0)(1,2)}
              s' = f(213) (3,5)4
    5° = {(0,0)(1,2)(0,13) (3,5)}
              5= {(5,4) (6,6) (7,7) (8,9)}
    53 = $(0,0)(1,2) (2,13) (3/5) (514) (6,6) (7,7)(4/
   Ace to dominants rule PT wit
            At (3,5) (5,4) PT WY SO cancel the
                       one with less profit
               51 = {(6,5) (7,7) (8,8) (11,4) (12,11)
                                (1315)4
   3 = $ (0,0)(1,2)(2,13)(5,14)(6,6)(6,5)(6,5)
               (818)4
```

(8,8) € 54 but (8,8) \$ 53, : xy=1 (8-6,8-5)-(213) J (213) € 53 and (213) E 52 1 13=0 → (213) E 52 1 (213) & s1 -: x2=1 (2-2,3-3)= (0,0) - (010) ES' & (0,0) Eso . x = 0 Travelling sales person problem -Travelling sales person problem is based on real life scenario, whereas a salesman from a company how to start from his own city and visit all the assigned cities exactly once and return to his home till the end of ire, we are given a set of cities and the day distance between them, the good is to find the shortest path that visits every city once and returns to the starting point + It can be done using brute-force method and dynamic programming

Scanned with CamScanner

Reliability design In reliability the problem is to design a system mat is composed of several devices connected in series If we imagine It is the reliability of device Then reliability of function can be given by IT81 If there are n devices reliability is TT xi to design a system with good condition and high reliability we can take set of same copies and connect them in parallel [D2] |P3 Dy DL 81=0.9 1-81 = 1-0.9=0.1 (1-81)3 = 0.001 (not working) 1-(1-81)3=10.90A) (working) Zci = 30 + 15 + 20 = 65 di 31 C: Di 0.9 30 DI remaining C-ZC1 = 105-65 =40 0.8 15 02 Mi [C- Eci +1 Cupper bound 10.5 3 20 c=105 For device 1 - 40+1 = 2For device $2 - \frac{40}{15} + 1 = 3$ For device 3 - 40 +1 = 3

Consider of devia
$$S_1 = \{(0.9, 30)\}^2$$

Consider of devia $S_2 = \{(0.9, 30)\}^2$
 $S_2 = \{(0.99, 60)\}^2$
 $S_3 = \{(0.9130), (0.99, 60)\}^2$
 $S_4 = \{(0.812, 45), (0.792, 75)\}^2$
 $S_2 = \{(0.82, 45), (0.792, 75)\}^2$
 $S_3 = \{(0.812, 45), (0.792, 75)\}^2$
 $S_4 = \{(0.8728, 75), (-105)\}^2$
 $S_4 = \{(0.8928, 75)\}^2$
 $S_5 = \{(0.8928, 75)\}^2$
 $S_7 = \{(0.8928, 7$

```
optimal binary search tree
In computer science on optimal binary rearch
Tree, cometimes coiled a weight balanced
binary tree
It is a binary search tree which provides the
   emallest possible search time for given
   sequence of accesses
a optimal BST's are generally divided into
   two types: static and dynamic
                           94
                   1 x 0.2 + 2 x 0.1 + 2 x 0.1 + 3 x 0.2
                   + 2 7 0 1 + 2 x 0 . 05 + 2 x 0 . 15 +
                      3 x 0.05 + 3 x 0.05
                           = 2.1
     cost [o,n] = E Pi +level (ai) + Zqi + (level(ti)-)
[[ij] = min { [[i,k-i] + c[k,j] } + w[i,j]
DBST
j-i=0 [[0,0] c[4,1] c[2,2] c[3,3] 000
j-i=1 c[0,1] c[1,2] c[213]
j-i=2 c [0,2] c [1,3]
1-1=3 c[0,3]
                               ex w[0,2] = 90+P1+94
  w[ij] = w[i,j-i]+Pj+qj
                              w (0,3)=90+P,+9,+
                                      P2+92 1 P3+93
                                 11 [0,3] - W[0,2] + x
                                           P3 F/2
```

Scanned with CamScanner

	1 2			The same of the same of
keysed	10 , 20	, 30,0	109	
Pi = {	3, 3	, 1,	13	
91 = {2,	3 -, 1	1.11	13	
woo= 2	1 Wile 3	ا ارودر	0011 1	way= !
C 01 = 0	En= 0	(3) = 0	en o	C44-0
103 O	Yet - 0	822 0	193 - D	744 0
was = 8	wis = 7	3 : ا رس	way 3	100
CO1 8	C12 = 7	C23=3	C34: 3	
Yo 1	810 - 2	321: 3	834-4	
wa = 12	wi1: 9	בי - ויכני		
C02=19	C13= 12 1	co4=8		100
Ta) = [113- 2	834.3		The second
	wiy: 11			
14	1 1 1			2 2 1
cos = 25	214:19			
763 = 2	014: 2			200
www 16				and the same of th
CO4:32				and the second
704=2	h			100
w = [i i i] = u	(i, j-1] + P)	195		5 (5)
1	101 -	Mai tondi	d same a	s to
~ [0,0] = wi	s Ich	k-1) + el	K 1)] + w	o[ii]
5 [2]] . m.	TEKET		,	
c[0,0] , m	nz (0-0		
Berring 1	ato v.bu			10.78
w [0,1] = w	[0,0] + A		2+6	
w[1,2] = w	[1,1] + Ps	192 =	3+3+	
w[2,3] = w			1 - 1 - 1	
w (314) = u	[313] + P34	194	- 1-11-11	-3
	1,000		Sea	unnod with CamScann

$$|| [0,1]| = \min_{0 \neq 1} || [0,0]| + \infty || [0,1]|$$

$$|| [0,1]| = \min_{0 \neq 1} || [-1,1]| + 3 = [3,1]| + 3$$

$$|| [0,1]| = \min_{0 \neq 1} || [-1,1]| + [3,1]| + [$$

Scanned with CamScanner

Backtracking

- -> Backtracking strategy is used to solve the problems
- This strategy wees brute force approach Brute-force approach says that for any given problem you should try out all the possible solutions and pick up desired solutions.
- Backtracking is not an optimization problem.
 - The solution is represented in the form of
 - -> Backtracking is used when there are multiple solutions and we want to approach all the colations

82 Gil sitting state space tree arrangements

constraint - Girl should not sit in midle

killed the node Bounding function

1 It is also some as backtracking but it follows Branch and Bound BFS

H Queens problem This problem is to find an arrangement of N queens on a chess board, such that no queen can attack any other queens on the board The chess queens can attack in any direction as konzontal, vertical, and diagnal way Conditions - I Two queens should not be in the same row a Two quiens should not be in the same column + same diagnol No of modes possible Bounding function = Hod in some row column diagnol 2 solution 2,4,1,3 SW other solution 3,1,4,2

* Algorithm Algorithm place (xii) for j=1 to k-1 .do -if (x[j]=. Graph colouring Graph coloring is the procedure of assignment of colors to each vertex of a graph of such that no adjacent vertices get came colour. The objective is to minimize the number of colors while adoring a graph. R,61, B 6 R For the simple graph 11= 5 Time complexity - entl

Scanned with CamScanner

Scanned with CamScanner