Introduction Method Results Discussion

Acoustics of coronal stops in Spanish-English bilingual speech

Joseph V. Casillas, Yamile Díaz & Miquel Simonet University of Arizona, Tucson

Dep. of Spanish & Portuguese February, 2016 | Tucson, Arizona University of Arizona

Overview

- Spanish and English both have /d/ and /t/
- Phonetic descriptions differ as a function of language
 - Spanish /d t/ described as dental
 - English /d t/ described as alveolar
- Present study is concerned with:
 - description of acoustics of /d t/ at release
 - comparisons of monolinguals and bilinguals
 - comparisons of two languages of a bilingual

- Spanish and English contrast between /p t k/ and /b d g/
- The phonetics of 'voicing' in stop differs
 - Spanish /d/ is prevoiced and /t/ is voiceless
 - \bullet English /d/ is voiceless and /t/ is aspirated

- Spanish and English coronal stops (/d t/) also differ in place of articulation
 - Spanish /d/ and /t/ are described as dental
 - English /d/ and /t/ are described as alveolar
- Some articulatory data are available
- How is this reflected on the acoustic signal?

- Jongman et al. (1985)
 - for Malayalam, which contrasts dental and alveolar stops, and Dutch (dental) vs. English (alveolar) stops
- Stoel-Gamon et al. (1994)
 - for Swedish (dental) vs. English (alveolar) stops
- Sundara (2005, 2006)
 - for Canadian French and Canadian English and French-English bilinguals

- At release burst, alveolar stops are louder than dental stops (relative amplitude, intensity)¹
- Spectral envelope of burst captures differences between alveolar and dental stops²
 - center of gravity of spectrum, higher for alveolars
 - standard deviation of spectrum, more compact for alveolars
 - kurtosis of spectrum, more peaked for alveolars

¹Jongman et al., 1985; Stoel-Gamon et al., 1994; Sundara, 2005, 2006 ²Stoel-Gamon et al., 1994; Sundara, 2005, 2006

- Malayalam, which contrasts alveolars and dentals, uses 'strict' acoustic correlates for both consonant types; i.e., there is little overlap between acoustic distributions³
- Languages tend to have either dental or alveolar; i.e., few languages contrast dentals and alveolars
- In languages with no contrast, acoustic correlates are more variable, flexible (leading to more overlap)
 - what happens in bilingualism?
 - one individual = dental + alveolar

- In bilingualism, links are formed between sound categories in the two languages
- Interlingual links lead to assimilations, compromise
- Caramazza et al., 1973:
 - French-English bilinguals in Montréal, Québec
 - bilinguals use VOT differently in their two languages
 - but values 'compromised' between two languages
- Bilinguals with dental and alveolar stops might compromise their place of articulation for [coronal] stops
 - articulatory difference is small
 - acoustic difference is unstable

- Sundara, 2006 (simultaneous bilinguals)
 - French-English bilinguals in Montréal, Québec
 - French /d t/ (dental) vs. English /d t/ (alveolar)
 - Bilinguals keep languages separate, but they also differ from monolinguals (acoustic correlates not fully distinctive)

- Some early and simultaneous bilinguals use language-specific phonetics consistently
- Bilinguals might have separate phonetic (sub)systems
- Magloire and Green, 1999:
 - early Spanish-English bilinguals from Arizona
 - recruited in unilingual sessions (Spanish, English)
 - in production of VOT categories, bilinguals did not differ from monolinguals in any language and any condition
- Perhaps this population allows for the study of dental-alveolar place in within-subjects design

Introduction

Method

Results

Discussion

Speakers Materials Analyses

METHOD

speakers | materials | analyses

Participants

- 32 participants, all of them females
 - 8 Spanish-speaking monolinguals from Majorca, Spain
 - 8 English-speaking monolinguals from Tucson, Arizona
 - 16 Spanish-English bilinguals from Tucson, Arizona
 - 8 dominant in Spanish
 - 8 dominant in English
- Young adults: ages 18–25
- Bilingual Language Profile {BLP} questionnaire⁴

Participants

- Bilingual Language Profile has four components:
 - history (6 questions)
 - use (5 questions)
 - competency (4 questions)
 - attitudes (4 questions)
- Responses are numeric⁵
 - score assigned to each language
 - dominance score obtained by subtraction (-218 to 218)
 - Negative values = dominant in English (M = -33.37)
 - Positive values = dominant in Spanish (M = 30)

⁵age of learning, years of use, percentages of use, Likert-type scales, etc.

Materials

- words with /d/ or /t/ in utterance-initial position
- words in carrier sentence
 - 'tanto es la palabra'
 - 'tantrum is the word'
- lexical stress, controlled (stressed, prestressed)
- first vowel, controlled (always low: /a/ or /æ/)
 - Spanish: danza (12), tanto (12)
 - English: dancing (12), tantrum (12)

Procedure

Delayed shadowing technique

- auditory stimuli: male speech
- six male "talkers" (3 Spanish, 3 English) recorded stimuli
- stimuli played in random order to the speakers⁶
- speakers "listened and repeated sentences"

• Who produced what?

- Spanish monolinguals, only Spanish materials
- English monolinguals, only English materials
- Spanish-English bilinguals, both languages
 - both languages in one block
 - random order

^{6&#}x27;talkers' were monolinguals from Spain (Spanish) or Texas (English)

Data

- 24 (words) \times 3 (iterations) \times 2 (languages)
 - 576 tokens, Spanish monolinguals
 - 576 tokens, English bilinguals
 - 1152 tokens, Spanish-dominant bilinguals
 - 1152 tokens, English-dominant bilinguals
- Total: 3,456 (- 76 errors) = 3380 tokens in dataset

Acoustic analyses

- Voice Onset Times (ms)
 - onset of burst minus onset of modal voicing
 - from negative (lead VOT) to positive (long-lag VOT)
- Gaussian window left-aligned with burst onset
 - if VOT positive, but less than 20 ms, analysis window equals VOT
 - if VOT positive, but more than 20m, analysis window equals 20 ms
 - if VOT negative, analysis window equals 20 ms
- Power spectrum from gaussian window

Acoustic analyses

- VOTs (ms)
- Spectral characteristics of burst
 - Center of Gravity (Hz)
 - Standard Deviation
 - Skewness
 - Kurtosis
- Relative burst intensity
 - Intensity of burst (dB) minus intensity at vowel midpoint

Acoustic analyses

- VOTs (ms)
- Spectral characteristics of burst
 - Center of Gravity (Hz)
 - Standard Deviation
 - Skewness
 - Kurtosis
- Relative burst intensity
 - Intensity of burst (dB) minus intensity at vowel midpoint

- Linear mixed-effects regression
- Here, by-subject (mixed-design) ANOVAs
 - response: VOT, COG, RI separately
 - factors: language (2), voicing (2), group (4)

- How do English and Spanish /d t/ differ?
 - only monolingual productions
 - 2 (voicing) \times 2 (language) \times 2 (group)
- How do monolinguals and bilinguals differ?
 - only Spanish productions
 - 2 (voicing) × 3 (group)
- How do monolinguals and bilinguals differ?
 - only English productions
 - 2 (voicing) × 3 (group)
- How do the two languages of a bilingual differ?
 - only bilingual productions
 - 2 (voicing) × 2 (language) × 2 (group)

- How do English and Spanish /d t/ differ?
 - only monolingual productions
 - 2 (voicing) \times 2 (language) \times 2 (group)
- How do monolinguals and bilinguals differ?
 - only Spanish productions
 - 2 (voicing) × 3 (group)
- How do monolinguals and bilinguals differ?
 - only English productions
 - 2 (voicing) × 3 (group)
- How do the two languages of a bilingual differ?
 - only bilingual productions
 - 2 (voicing) × 2 (language) × 2 (group)

- How do English and Spanish /d t/ differ?
 - only monolingual productions
 - 2 (voicing) \times 2 (language) \times 2 (group)
- How do monolinguals and bilinguals differ?
 - only Spanish productions
 - 2 (voicing) × 3 (group)
- How do monolinguals and bilinguals differ?
 - only English productions
 - 2 (voicing) × 3 (group)
- How do the two languages of a bilingual differ?
 - only bilingual productions
 - 2 (voicing) × 2 (language) × 2 (group)

- How do English and Spanish /d t/ differ?
 - only monolingual productions
 - 2 (voicing) \times 2 (language) \times 2 (group)
- How do monolinguals and bilinguals differ?
 - only Spanish productions
 - 2 (voicing) × 3 (group)
- How do monolinguals and bilinguals differ?
 - only English productions
 - 2 (voicing) × 3 (group)
- How do the two languages of a bilingual differ?
 - only bilingual productions
 - 2 (voicing) × 2 (language) × 2 (group)

- How do English and Spanish /d t/ differ?
 - only monolingual productions
 - 2 (voicing) \times 2 (language) \times 2 (group)
- How do monolinguals and bilinguals differ?
 - only Spanish productions
 - 2 (voicing) × 3 (group)
- How do monolinguals and bilinguals differ?
 - only English productions
 - 2 (voicing) × 3 (group)
- How do the two languages of a bilingual differ?
 - only bilingual productions
 - 2 (voicing) × 2 (language) × 2 (group)

Introduction Method Results Discussion Study 1: Spanish vs. English /d t/ in monolinguals study 2: Spanish /d t/ across groups study 3: English /d t/ across groups

RESULTS

study 1 | study 2 | study 3 | study 4

Introduction Method Results Discussion Study 1: Spanish vs. English /d t/ in monolinguals Study 2: Spanish /d t/ across groups Study 3: English /d t/ across groups

study 1

Spanish vs. English /d t/ in monolinguals

Study 2: Spailish /d t/ across groups

study 3: English /d t/ across groups

udy 4: Spanish vs. English /d t/in bilinguals

Voice Onset Times (ms)

- study 3: English /d t/ across groups
- Study 3: English /d t/ across groups

Center of Gravity (Hz)

- Study 2: Spanish /d t/ across groups
- study 3: English /d t/ across groups

Stady 4. Spanish vs. English / a t/ in billinga

tudy 2: Spanish /d t/ across groups

Study 3: English /d t/ across groups

udy 4: Spanish vs. English $/\mathrm{d}\ \mathrm{t}/$ in bilinguals

Summary of findings

Spanish /d t/ differ from English /d t/...

```
✓ VOT (ms)
```

- ✓ Center of Gravity (Hz)
- ✓ Relative Intensity (dB)

Introduction Method Results Discussion Study 1: Spanish vs. English /d t/ in monolinguals Study 2: Spanish /d t/ across groups Study 3: English /d t/ across groups Study 4: Spanish vs. English /d t/ in hillinguals

study 2

Spanish /d t/ across groups

Study 2: Spanish /d t/ across groups

Study 3: English /d t/ across groups

Voice Onset Times (ms)

Study 2: Spanish $/d\ t/$ across groups

Study 3: English /d t/ across groups

dy 4: Spanish vs. English /d t/ in bilinguals

Center of Gravity (Hz)

Study 2: Spanish /d t/ across groups

Study 3: English /d t/ across groups

Discussion Study 4: Spanish vs. English /d t/ in bilinguals

Study 1: Spanish vs. English /d t/ in monolinguals Study 2: Spanish /d t/ across groups

tudy 3: English /d t/ across groups

Study 4: Spanish vs. English /d t/ in biling

Summary of findings

Monolingual and bilingual Spanish speakers differ...

X VOT (ms)

✓ Center of Gravity (Hz)

X Relative Intensity (dB)

but effect size is tiny

Introduction Method Results Discussion Study 1: Spanish vs. English /d t/ in monolinguals Study 2: Spanish /d t/ across groups Study 3: English /d t/ across groups Study 4: Spanish vs. English /d t/ in bilinguals

study 3

English /d t/ across groups

dy 1: Spanish vs. English /d t/ in monolinguals

Study 3: English /d t/ across groups

study 4: Spanish vs. English /d t/ in bilinguals

Voice Onset Times (ms)

dy 1: Spanish vs. English /d t/ in monolinguals

Study 3: English /d t/ across groups

Study 4: Spanish vs. English /d t/ in bilinguals

Center of Gravity (Hz)

dy 1: Spanish vs. English /d t/ in monolinguals

Study 3: English /d t/ across groups

tudy 4: Spanish vs. English /d t/ in bilinguals

Relative Intensity (dB)

tudy 1: Spanish vs. English /d t/ in monolingual: tudy 2: Spanish /d t/ across groups

Study 3: English /d t/ across groups

Study 4: Spanish vs. English $/d\ t/$ in bilinguals

Summary of findings

Monolingual and bilingual Spanish speakers differ...

```
X VOT (ms)
```

Center of Gravity (Hz)

x Relative Intensity (dB)

(perhaps) some tendencies for prevoicing in /d/ (in bilinguals) and higher-frequency resonances in /t/ (in bilinguals)

Introduction Method Results Discussion Study 1: Spanish vs. English /d t/ in monolinguals Study 2: Spanish /d t/ across groups Study 3: English /d t/ across groups Study 4: Spanish vs. English /d t/ in bilinguals

study 4

Spanish vs. English /d t/ in bilinguals

Voice Onset Times (ms)

Center of Gravity (Hz)

Relative Intensity (dB)

ıdy 1: Spanish vs. English /d t/ in monolinguals ıdv 2: Spanish /d t/ across groups

Study 3: English /d t/ across groups

Study 4: Spanish vs. English $/d\ t/$ in bilinguals

Summary of findings

English /d t/ differ from Spanish /d t/ in bilinguals in...

✓ VOT (ms)

✓ Center of Gravity (Hz)

Relative Intensity (dB)

bilinguals keep separate (sub)systems

dy 1: Spanish vs. English /d t/ in monolinguals dy 2: Spanish /d t/ across groups dy 3: English /d t/ across groups

Study 4: Spanish vs. English /d t/ in bilinguals

The plot of all plots

Introduction Method Results Discussion

Summary nterpretatior Conclusion

DISCUSSION

summary | interpretation | conclusion

Findings

- Spanish and English coronal stops (/d t/) differ in their acoustic characteristics
 - differences in use of VOT for fortis-lenis contrast
 - differences in resonant frequencies at burst
 - differences in amplitude of burst
- Spanish /d t/
 - have softer bursts with lower resonance frequencies
- English /d t/
 - have louder bursts with higher resonance frequencies

Findings

- Spanish and English coronal stops (/d t/) differ in their acoustic characteristics
 - differences hold across across individuals (languages) when monolingual speakers are compared
 - and they hold within individuals when bilingual speakers are compared
- bilinguals differ from monolinguals only very slightly
- bilinguals have separate (sub)systems for stops in their two languages

Context

Findings in line with...

- Jongman et al. (1985)
 - for Malayalam, which contrasts dental and alveolar stops, and Dutch (dental) vs. English (alveolar) stops
- Stoel-Gamon et al. (1994)
 - for Swedish (dental) vs. English (alveolar) stops
- Sundara (2005, 2006)
 - for Canadian French and Canadian English and French-English bilinguals
- Spanish /d t/ pattern with French, Dutch and Swedish Spanish /d t/ are (probably) dental or laminal

Acoustics and articulation

burst amplitude differences

- perhaps laminal (dental) constrictions, which have more contact surface, are released more slowly than apical (alveolar) constrictions
- perhaps path of airstrem after constriction differs and it hits more of an obstacle (teeth) in alveolars than in dentals
- resonance frequencies
 - if dental contact is more fronted than alveolar contact, we expect higher resonance frequencies for dentals because the size of the front cavity would be smaller for dentals
 - not the obtained pattern (pattern is consistently reversed)
 - at release, there must not be a difference in fronting of constriction

Acoustics and articulation

- burst amplitude differences
 - perhaps laminal (dental) constrictions, which have more contact surface, are released more slowly than apical (alveolar) constrictions
 - perhaps path of airstrem after constriction differs and it hits more of an obstacle (teeth) in alveolars than in dentals

resonance frequencies

- if dental contact is more fronted than alveolar contact, we expect higher resonance frequencies for dentals, because the size of the front cavity would be smaller for dentals
- not the obtained pattern (pattern is consistently reversed)
- at release, there must not be a difference in fronting of constriction

Conclusion

- Acoustics of Spanish and English coronal stops differ
 - attested differences in line with prior descriptions of dental vs. alveolar stops, within and across languages
 - articulatory-acoustic link continues to be a mistery
- Early, proficient Spanish-English bilinguals from Arizona keep separate (sub)systems for their coronal consonants
 - sometimes the bilingual is two monolinguals in one person⁷

Thank you

Joseph V. Casillas Yamile Díaz Miquel Simonet jvcasill ydiaz44 simonet

@

@ email.arizona.edu@ email.arizona.edu

email.arizona.edu

