1 Реални числа

1.1 Поле

Множеството \mathbb{R} на реалните числа е **поле**, което означава, че в него са зададени две операции

- събиране означавано стандартно +
- умножение означавано стандартно.

1.1.1 Поле — аксиоми

Сумата и произведението на две числа също е число, като:

• П1 операциите са асоциативни

$$a + (b + c) = (a + b) + c$$
 $a.(b.c) = (a.b).c$

• П2 операциите са комутативни

$$a+b=b+a$$
 $a.b=b.a$

• П3 имат неутрален елемент

$$0 + a = a \qquad 1.a = a \qquad 0 \neq 1$$

- П4 съществува противоположен елемент за всяко a има x, за което a+x=0 за всяко $a\neq 0$ има x, за което a.x=1
- П5 операциите са "свързани"

$$a.(b+c) = (a.b) + (a.c)$$

1.1.2 Означения и някои свойства

• Означения

$$-a$$
 – противоположен на $a, a^{-1} = \frac{1}{a}$ – реципрочен на a

$$\sum_{k=1}^{n} a_k, \quad \prod_{k=1}^{n} b_k$$

$$na = \sum_{k=1}^{n} a, \quad b^n = \prod_{k=1}^{n} b$$

- Някои свойства
 - неутралните елементи са единствени

– противоположният и реципрочният са единствени

$$-a.0 = 0, -a = (-1).a, (-1).(-1) = 1, (-a).(-a) = a.a$$

• Пример

$$2\sum_{k=1}^{n} k = \sum_{k=1}^{n} (n+1) = n(n+1)$$

1.2 Наредено поле

Горните условия не определят еднозначно \mathbb{R} . Има важни полета с краен брой елементи. Ако p е просто число (например 2017), множеството от остатъците по модул p е поле.

1.2.1 Наредено поле — аксиоми

Множеството \mathbb{R} на реалните числа е **наредено поле**, което означава, че в него е зададено подмножество $\mathcal{P} \subset \mathbb{R}$ (положителни числа) със свойствата

- ullet Н1 сумата на положителни числа е положително $a\in\mathcal{P}$, $b\in\mathcal{P}$ \Rightarrow $(a+b)\in\mathcal{P}$
- ullet Н2 произведението на положителни числа е положително $a\in\mathcal{P}\,,\;b\in\mathcal{P}$ \Rightarrow $(a.b)\in\mathcal{P}$
- Н3 0 $\notin \mathcal{P}$ нулата не е положително число

• Н4 за всяко $a \neq 0$ е изпълнено поне едно от двете 1) $a \in \mathcal{P}$, 2) $-a \in \mathcal{P}$

1.2.2 Важни следствия

Означаваме $a < b \ (b > a) \iff (b - a) \in \mathcal{P}$.

- ullet За всяко $a\in\mathbb{R}$ е изпълнено точно едно от трите
 - 1) a < 0, 2) a = 0, 3) 0 < a
- 0 < 1
- За всеки две числа $a \in \mathbb{R}$, $b \in \mathbb{R}$ е изпълнено точно едно от трите 1) a < b, 2) a = b, 3) b < a
- ullet От a < b и b < c следва a < c
- Всяко наредено поле е безкрайно.

Означение $a \le b \iff a < b$ или a = b

1.2.3 Аритметични действия и неравенства

• От $a < b \ (a \le b)$ и $c < d \ (c \le d)$ следва $a + c < b + d \ (a + c \le b + d)$.

- $0 < a.a \, (=a^2)$ за всяко $a \neq 0$
- ullet От $a < b \ (a \le b)$ и 0 < c следва $a.c < b.d \ (a.c \le b.d)$.
- ullet От $0 \le a \le b$ и $0 \le c \le d$ следва $a.c \le b.d.$

1.2.4 Първи дефиниции

- Две нови "операции" $\max(a, b)$ и $\min(a, b)$
- Нова функция абсолютна стойност $|x| = \max(x, -x)$
- ullet Неравенство на триъгълника $|a+b| \leq |a| + |b|$
- ullet Неравенство на триъгълника $||x|-|y||\leq |x-y|$
- Интервали

$$-(a, +\infty) = \{x : a < x\} \ ((-\infty, a) = \{x : x < a\})$$

$$-[a, +\infty) = \{x : a \le x\} \ ((-\infty, a] = \{x : x \le a\})$$

$$-(a,b) = (a,+\infty) \cap (-\infty,b) = \{x : a < x < b\} \ (a < b)$$

$$-[a,b] = [a, +\infty) \cap (-\infty, b] = \{x : a \le x \le b\} \ (a \le b)$$

1.3 Принцип за непрекъснатост

1.3.1 Реалните числа не са ЕДИНСТВЕНОТО наредено поле

Примери

- Рационалните числа Q. Ho:
 - а) дължината на диагонала на квадрат с дължина на страната 1 не е рационално число
 - б) отношението на дължината на окръжност към дължината на диаметъра и́ не е рационално число
- Полето от рационални функции с цели коефициенти. Това наредено поле не е Архимедово.

1.3.2 Ограничено множество

- Ø $\neq A \subset \mathbb{R}$ се нарича ограничено отгоре, ако има число $c \in \mathbb{R}$, за което $a \leq c$ за всяко $a \in A$. c се нарича горна граница за A; ако $c \leq c_1$, то c_1 също е горна граница за A; множеството от горните граници е ограничено отдолу.
- Ø \neq A \subset \mathbb{R} се нарича ограничено отдолу, ако има число $b \in \mathbb{R}$, за което $b \leq a$ за всяко $a \in A$.
- A е ограничено, ако за подходящо число $C: |a| \leq C$ за всяко $a \in A$.
- $a_0 \in A$ е най-голям (най-малък) елемент, ако $a \le a_0$ ($a \ge a_0$) за всяко $a \in A$.
- Най-малкият елемент (когато съществува) на множеството от горните граници на множеството A (непразно и ограничено отгоре) се нарича точна горна граница на A; означава се с $\sup A$.
- Най-големият елемент (когато съществува) на множеството от долните граници на множеството A (непразно и ограничено отдолу) се нарича точна долна граница на A; означава се с inf A.

1.3.3 Принцип за непрекъснатост – формулировка

- Всяко непразно ограничено отгоре множество от реални числа има точна горна граница.
- (дуално) Всяко непразно ограничено отдолу множество от реални числа има точна долна граница.

1.3.4 Теорема на Кантор

- Често използвано твърдение Ако A и B са ограничени множества от числа, $A\subset B$, то inf $B\leq\inf A$ и $\sup A\leq\sup B$.
- Теорема на Кантор
 - Нека $\emptyset \neq A \subset \mathbb{R}$ и $\emptyset \neq B \subset \mathbb{R}$ са такива, че $a \leq b$ за всяко $a \in A$ и всяко $b \in B$. Тогава съществуват $c_1 \leq c_2$, за които $a \leq c_1$ за всяко $a \in A$ и $c_2 \leq b$ за всяко $b \in B$.
 - (единственост) Ако за всяко $\varepsilon > 0$ съществуват $a \in A$ и $b \in B$ с $b-a \le \varepsilon$, то $c_1 = c_2$.

2 Естествени числа

Псевдо история $\mathbb{N} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{R}$

2.1 Индуктивни множетва

- Нека $\emptyset \neq X \subset \mathbb{R}$ се нарича индуктивно, ако 1) $1 \in X$; 2) от $x \in X$ следва $(x+1) \in X$.
- Примери \mathbb{R} , \mathbb{Q} , \mathcal{P} , $\{x \in \mathbb{R} : 1 \leq x\}$.
- ullet $\mathbb N$ е сечението на всички индуктивни множества; то е индуктивно; то е "най-малкото" индуктивно множество.
- \mathbb{N} не е ограничено отгоре в \mathbb{R} (принцип на Архимед).

2.2 Математическа индукция

Математическата индукция е метод на доказателство, основан на твърдението:

За всяко $n \in \mathbb{N}$ е дадено твърдение $\mathcal{T}(n)$. Ако

 $I) \mathcal{T}(1)$ е вярно и

II) за всяко $n \in \mathbb{N}$ от $\mathcal{T}(n)$ следва $\mathcal{T}(n+1)$, то всички твърдения $\mathcal{T}(n)$ са верни (за всяко $n \in \mathbb{N}$ твърдението $\mathcal{T}(n)$ е вярно).

2.2.1 Примери

- Всяко непразно множестно от естествени числа има най-малък елемент.
- Ако $n_1 < n_2 < \ldots < n_k < \ldots$ е строго растяща редица от естествени числа (т.е. $n_k \in \mathbb{N}$), то всеки член на редицата не е по-малък от номера си (т.е. $n_k \geq k$ за всяко $k \in \mathbb{N}$).
- (Неравенство на Бернули) Нека $x \ge -1$ е реално число. За всяко $n \in \mathbb{N}$ е изпълнено $(1+x)^n \ge 1+nx$.
- Биномна формула на Нютон:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2} x^2 + \dots + \binom{n}{k} x^k + \dots + x^n$$

2.2.2 Рекурентни (индуктивни) дефиниции

Както се вижда от примерите, доказателство на стъпката се опира на връзката на твърдението $\mathcal{T}(n+1)$ с предходните твърдения. Когато тази връзка е зададена като дефиция на обектите

имаме рекуретна (индуктивна) дефиниция на (редица от) обекти.

Малко по-точно, рекурентната дефиниция се състои от две:

- ullet "база" дефиниция на обекта $\mathcal{O}(1)$
- "стъпка" дефиниция на обекта $\mathcal{O}(n+1)$ чрез предходните обекти
- Примери
 - факториел (произведението на първите n естествени числа)

I)
$$0! = 1$$
; II) $(n+1)! = (n+1) \cdot n!$

- двоен факториел (произведението на първите n четни естествени чисала)
 - I) 0!! = 1; II) (2(n+1))!! = 2(n+1).(2n)!!, имаме (след групиране на множителите) $(2n)!! = 2^n.n!$
- двоен факториел (произведението на първите n нечетни естествени чисала)

I)
$$1!! = 1$$
; II) $(2n+1)!! = (2n+1) \cdot (2n-1)!!$

- биномни коефициенти (триъгълник на Паскал)
 - $I) \qquad \binom{0}{0} = 1$

II)
$$\binom{n+1}{0} = 1$$
, $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ sa $1 \le k \le n$, $\binom{n+1}{n+1} = 1$

3 Рационални числа

3.1 Цели числа

- за $X \subset \mathbb{R}$ и $a \in \mathbb{R}$ полагаме $aX = \{ax : x \in X\}$
- за $X \subset \mathbb{R}$ и $Y \subset \mathbb{R}$ полагаме $X + Y = \{x + y : x \in X, y \in Y\}$
- ullet примери: четни числа $2\mathbb{N}$, нечетни числа $2\mathbb{N}+\{1\}$
- ullet цели числа $\mathbb{Z} = (-1)\mathbb{N} \cup \{0\} \cup \mathbb{N}$
- ullet же в праничено отгоре в $\mathbb R$, всяко $\varnothing \neq X \subset \mathbb Z$, ограничено отгоре, има най-голям елемент
- ullet ако $a \in \mathbb{R}$, $b \in \mathbb{R}$ и b-a>1, то съществува $m \in \mathbb{Z}$ такова, че a < m < b , ($m \in (a,b)$,)
- множеството \mathbb{Z} е изброимо

3.2 Рационални числа

$$\mathbb{Q} = \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

- $\sqrt{2} \notin Q$ ако $\sqrt{2} \in Q$, то $\sqrt{2} = \frac{m}{n}$, като можем да считаме, че най-много едното е четно от равенството $2n^2 = m^2$ следва, че m е четно (m=2k), но тогава $n^2 = 2k^2$, т.е. и n е четно
- Съществуват положителни ирационални числа a и b, за които a^b е рационално два случая $2^{\sqrt{2}} \in \mathbb{Q}$ и $2^{\sqrt{2}} \notin \mathbb{Q}$
- множеството $\mathbb Q$ е изброимо
- Във всеки отворен интервал има рационални числа
- ullet множеството $\mathbb R$ HE е изброимо
- Във всеки отворен интервал има ирационални числа