7. Mobile Net V1 V2

2017年Google团队提出MobileNetV1, 2018年Google团队提出MobileNetV2, 论文地址MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, MobileNetV2: Inverted Residuals and Linear Bottlenecks

专注于移动端或嵌入式设备中的轻量级CNN网络,相比于传统CNN,在准确率小幅度降低的前提下大大减小模型参数与运算量。(相比VGG16准确率减少了0.9%,模型参数只有1/32)。

MobileNetV1:

网络的亮点:深度可分离卷积 (Depthwise Separable Convolution)

图24 传统卷积

卷积核channel=输入特征矩阵channel 输出特征矩阵channel=卷积核个数

图25 DW卷积

卷积核channel=1

输入特征矩阵channel=卷积核个数=输出特征矩阵channel

每个卷积核只负责与输入中的一个channel进行运算

图26 PW卷积

图27 卷积参数对比

在训练过程中,Depthwise部分的卷积核容易废掉,即卷积核参数大部分为0,在MobileNetV2中会进行改善。

MobileNetV2:

网络的亮点:

Inverted Residuals倒残差结构 Linear Bottleneck

(a) Residual block

(b) Inverted residual block

图28 倒残差结构

普通残差结构: 1×1conv降维, 3×3conv, 1×1conv升维

倒残差结构: 1×1conv升维, 3×3DW, 1×1PW降维

针对倒残差结构的最后一个1×1卷积层,使用线性激活函数而不是ReLU,因为ReLU激活函数对低维特征信息造成大量损失,而倒残差结构中间大两边小,最后一个1×1卷积后是低维的,则使用线性激活函数来替代ReLU,来避免信息损失。

Input	Operator	Output
$h \times w \times k$	1x1 conv2d, ReLU6	$h \times w \times (tk)$
$h \times w \times tk$	3x3 dwise $s=s$, ReLU6	$\frac{h}{s} \times \frac{w}{s} \times (tk)$
$\frac{h}{s} \times \frac{w}{s} \times tk$	linear 1x1 conv2d	$\frac{h}{s} \times \frac{w}{s} \times k'$

图29 Bottleneck residual block

Input	Operator	t	c	n	s
$224^2 \times 3$	conv2d	-	32	1	2
$112^{2} \times 32$	bottleneck	1	16	1	1
$112^{2} \times 16$	bottleneck	6	24	2	2
$56^2 \times 24$	bottleneck	6	32	3	2
$28^{2} \times 32$	bottleneck	6	64	4	2
$14^{2} \times 64$	bottleneck	6	96	3	1
$14^{2} \times 96$	bottleneck	6	160	3	2
$7^{2} \times 160$	bottleneck	6	320	1	1
$7^{2} \times 320$	conv2d 1x1	_	1280	1	1
$7^2 \times 1280$	avgpool 7x7	_	-	1	_
$1\times1\times1280$	conv2d 1x1	-	k	-	

图30 MobileNetV2网络结构

其中,t是图29中的扩展因子,c是输出特征矩阵深度,n为bottleneck重复次数,s为步距(针对第一层,其他为1)

pytorch实现

在pytorch实现时,在bottleneck的conv运算中,加入了groups,分解卷积。