

Lecture Outline

The Geometry Processing Pipeline

Geometric Computer Vision

GCV v2021.1, Module 1

Alexey Artemov, Spring 2021

§1. The geometry processing pipeline [45 min]

- 1.1. Goals of 3D/geometric computer vision systems
- 1.2. Common stages of geometry processing
- 1.3. Scanning [next video]
- 1.4. Registration
- 1.5. Reconstruction and meshing
- 1.6. Postprocessing [next videos]

GCV v2021.1, Moduli

Lecture Outline

§2. 3D representations in computer vision/graphics [15 min, Friday]

- 2.1. Directly measurable: multiple-view images, range-images, point clouds, volumes
- 2.2. Derived: surface meshes, implicit functions
- 2.3. Higher-level: CAD, shape programs

§2. 3D representations in vision and graphics

GCV v2021.1, M

GCV v2021.1, Module 1

Range-images [Depth maps]

GCV v2021.1, Module 1

2.1. Range-images [Depth maps]

Skolkova Institute of Science and Technology

§2. 3D representations in vision and graphics

- Like conventional camera images, with each pixel storing depth rather than a color
- Likely the most common datatype acquired directly
- We commonly need multiple depth images to capture the full scene or object

Skoltec

Skoltech

Point clouds [Point sets]

2.1. Point clouds [Point sets]

§2. 3D representations in vision and graphics

- A set of data points in space, representing a shape of an object
- Commonly:
- registered depth maps
- directly acquired (e.g. LIDAR, ToF)
- Permutation invariance (points are unordered!)

Video credit: Iconem, 3D models of Armenian Heritage

GCV v2021.1, Module

GCV v2021.1, Module 1

Volumetric pixels [Voxels, volumes]

GCV v2021.1, Module 1

2.1. Volumetric pixels [Voxels, volumes] Skoltech §2. 3D representations in vision and graphics

Voxelized 643 Picture Credit: OctNet: Learning Deep 3D Representations at High Resolutions

PartNet synthetic data

- Define a regular grid in 3D
- Store per-cell values of signed distance function (SDF) or a truncated SDF (TSDF)
- Store occupancy grid: OG(x) = 1 if TSDF(x) < T

GCV v2021.1, Module 1

Skoltech 2.1. Volumetric pixels [Voxels, volumes] Science and Technology §2. 3D representations in vision and graphics

- Storing raw voxels is inefficient compared to points or meshes
- Low spatial resolution
- Need adaptive data structures
- Need sparsity enabled methods

2.1. Volumetric pixels [Voxels, volumes] Skoltech

§2. 3D representations in vision and graphics

Video Credit: Atomontage

 Volumetric rendering and volumetric graphics (old idea but still impressive)

Implicit surface representations

2.2. Implicit surface representations

Skoltech

§2. 3D representations in vision and graphics

Assumes the existence of a function

$$f: \mathbb{R}^3 \to \mathbb{R}$$

with value > 0 outside the shape and < 0 inside

Extract zero-level set

$$\{\mathbf{x}: f(\mathbf{x}) = 0\}$$

Slide Credit: Denis Zorin GCV v2021.1, Module :

Skoltech

Surface meshes [Polygonal/Triangular meshes, triangulations]

2.2. Polygon

§2. 3D representations in vision and graphics

- Vertices:
- Edges:
- Closed:
- Planar: all vertices on a plane
- Simple: not self-intersecting

 $v_0, v_1, \ldots, v_{n-1}$ $\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}\$

2.2. Polygonal Mesh

§2. 3D representations in vision and graphics

- A finite set M of closed, simple polygons O_i is a polygonal mesh
- The intersection of two polygons in M is either empty, a vertex, or an edge

 $M = \langle V, E, F \rangle$

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

2.2. Triangle Meshes

§2. 3D representations in vision and graphics

- Connectivity: vertices, edges, triangles
- Geometry: vertex positions

ertex positions
$$V = \{v_1, \dots, v_n\}$$

$$E = \{e_1, \dots, e_k\}, \quad e_i \in V \times V$$

$$F = \{f_1, \dots, f_m\}, \quad f_i \in V \times V \times V$$

$$P = {\mathbf{p}_1, \dots, \mathbf{p}_n}, \quad \mathbf{p}_i \in \mathbb{R}^3$$

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

2.2. Triangulation

§2. 3D representations in vision and graphics

- Polygonal mesh where every face is a triangle
- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

2.2. Data Structures

§2. 3D representations in vision and graphics

- What should be stored?
- Geometry: 3D coordinates
- Connectivity
- Adjacency relationships
- Attributes
- Normal, color, texture coordinates
- Per vertex, face, edge

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

Skoltech

Skoltech

2.2. Data Structures

§2. 3D representations in vision and graphics

- What should be supported?
- Rendering
- Geometry queries
- What are the vertices of face #2?
- Is vertex A adjacent to vertex H?
- Which faces are adjacent to face #1?
- Modifications
- Remove/add a vertex/face
- Vertex split, edge collapse

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

2.2. Data Structures

§2. 3D representations in vision and graphics

- How good is a data structure?
- Time to construct
- Time to answer a query
- Time to perform an operation
- Space complexity
- Redundancy
- Criteria for design
- Expected number of vertices
- Available memory
- Required operations
- Distribution of operations

2.2. Triangle List

§2. 3D representations in vision and graphics

- STL format (used in CAD)
- Storage
- Face: 3 positions
- 4 bytes per coordinate
- 36 bytes per face
- Euler: f = 2v
- 72*v bytes for a mesh with v vertices
- No connectivity information

Triangles						
0	×0	УO	z 0			
1	x1	x1	z1			
2	x2	у2	z2			
3	хЗ	у3	z3			
4	x4	у4	z 4			
5	x5	у5	z5			
6	х6	у6	z 6			

Slide Credit: Daniele Panozzo GCV v2021.1, Module

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

§2. 3D representations in vision and graphics

- Used in formats OBJ, OFF, WRL
- Storage
- Vertex: position
- Face: vertex indices
- 12 bytes per vertex
- 12 bytes per face
- 36*v bytes for the mesh
- No explicit neighborhood info

١	Vertices				
٧	0	x0	λO	z0	
٧	1	x1	x1	z1	
٧	2	x2	у2	z2	
٧	3	хЗ	уЗ	z3	
٧	4	x4	у4	z4	
V	_′ 5	х5	у5	z5	
٧	6	х6	у6	z6	
	••				

Triangles					
t0	v0	v1	v2		
t1	v0	v1	v3		
t2	v2	v4	v3		
t3	v5	v2	v6		
		• • •			

Slide Credit: Daniele Panozzo GCV v2021.1, Module 1

References

Skoltech

1. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Lévy, B. (2010). *Polygon* mesh processing. CRC press.

GCV v2021.1, Module 1