Support Vector Machine (with Python)

Tutorial 3 Yang

Through this tutorial, you will better know:

- What is Support Vector Machine
- The SVM in Scikit-learn C-Support Vector Classification
- The method to train the SVM SMO algorithm
- The parameters in SVC
- How to use the Sickit-learn.SVM
- Other SVMs in Scikit-learn

Linear model

Support vector machine:

- Margin: the smallest distance between the decision boundary and any of the samples
- maximizing the margin ⇒ a particular decision boundary
- Location of boundary is determined by support vectors

- Canonical representation:

$$\arg\min\frac{1}{2}\|w\|^2,$$

s.t.
$$t_n(w * x_i + b) \ge 1$$
, $n = 1, 2, ..., N$

- By Lagrangian, its dual form (QP problem)

$$\min_{\vec{a}} \psi(\vec{a}) = \min_{\vec{a}} \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m (x_n \cdot x_m) a_n a_m - \sum_{n=1}^{N} a_n,$$

$$s.t.a_n \ge 0, \ n = 1,2,...,N,$$

$$\sum_{n=1}^{N} a_n t_n = 0.$$

Nonlinear model

Soft margin:

- Slack variables $\xi_n \geq 0$, n = 1, ..., N
- Maximize the margin while softly penalizing incorrect points

$$\arg\min\frac{1}{2}\|w\|^2 + C\sum_{n=1}^N \xi_n$$
,

$$s.t. \ t_n(w * x_i + b) \ge 1 - \xi_n, \ n = 1, ..., N.$$

 The corresponding dual form by Lagrangian:

$$\min_{\vec{a}} \psi(\vec{a}) = \min_{\vec{a}} \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} t_n t_m k(x_n, x_m) a_n a_m - \sum_{n=1}^{N} a_n$$

$$s. t. 0 \le a_n \le C, \quad n = 1, 2, ..., N,$$

$$\sum_{n=1}^{N} a_n t_n = 0.$$

C controls Trade-off between the slack variable penalty and the margin

Kernel Method

- The kernel trick (kernel substitution)
 - map the inputs into high-dimensional feature spaces properly
 - solve the problems of high complexity and computation caused by inner product

• Example: kernel function-- $k(X_i, X_j) = \langle \phi(X_i) \cdot \phi(X_j) \rangle$

Defined two vectors: $x = (x_1, x_2, x_3)$; $y = (y_1, y_2, y_3)$

Defined the equations: $f(x) = (x_1x_1, x_1x_2, x_1x_3, x_2x_1, x_2x_2, x_2x_3, x_3x_1, x_3x_2, x_3x_3),$ $K(x,y) = (\langle x,y \rangle)^2,$

Assume x = (1, 2, 3), y = (4, 5, 6)

$$f(x) = (1, 2, 3, 2, 4, 6, 3, 6, 9), f(y) = (16, 20, 24, 20, 25, 36, 24, 30, 36),$$

 $< f(x), f(y) >= 16 + 40 + 72 + 40 + 100 + 180 + 72 + 180 + 324 = 1024,$
 $K(x, y) = (4 + 10 + 18)^2 = 1024.$ Kernel is much simpler

C-Support Vector Classification:

- The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples.
- The multiclass support is handled according to a one-vs-one scheme

LibSVM:

 LIBSVM implements the SMO algorithm for kernelized support vector machines (SVMs), supporting classification and regression.[1]

- Sequential Minimal Optimization[2]:
 - A Fast Algorithm for Training Support Vector Machines
 - Quickly solve the SVM quadratic programming (QP) problem
 - The main steps:

Repeat till convergence {

- 1. Select some pair a_i and a_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Reoptimize $\Psi(\vec{a})$ with respect to a_i and a_j , while holding all the other a_k 's $(k \neq i,j)$ fixed.

Parameters of SVC

class sklearn. svm. **SVC** (C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None) [source]

C: Penalty parameter *C* of the error term, controls trade-off between the penalty and the margin, default=1.0

Kernel: 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed', default= 'rbf'

degree: Degree of the polynomial kernel function gamma: Kernel coefficient('rbf', 'poly' and 'sigmoid'), gamma=auto means 1/n_features coef0: Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability: whether to enable probability estimates (true or false)

shrinking: Whether to use the shrinking heuristic

tol: Tolerance for stopping criterion

Cache_size: Specify the size of the kernel cache class_weight: set different penalty for different data classes by the class weight values verbose: Enable verbose output, if enabled, may not work properly in a multithreaded context max_iter: Hard limit on iterations within solver, or -1 for no limit

decision_function_shape: for multiple classifications, ovo for one-vs-one, ovr for one-vs-rest

random_state: The seed of the pseudo random number generator to use when shuffling the data

Kernel selection

Linear kernel: Choose based on the accuracy

11 * 12 Linear:

Mainly for linear classification, it has fewer parameters, computing fast

Nonlinear kernel

Polynomial: $(\gamma * u' * v + coef 0)^{degree}$

 $\exp(-\gamma * |u-v|^2)$ rbf:

Sigmoid: $tanh(\gamma * u' * v + coef 0)$

More parameters so take more time for computing, however, better performance with properlytuned parameters

C: the penalty coefficient, low C makes the decision surface smooth, high C aims at classifying all training examples correctly $\gamma(gamma)$: defines how far the influence of a single training example reaches, low values mean 'far' and high values mean 'close'.

from sklearn.svm import SVC import numpy as np X=np.array([[-1,-1],[-2,-1],[1,1],[2,1]]) y=np.array([1,1,2,2])

clf=SVC(kernel='linear')
clf.fit(X,y)
print(clf.fit(X,y))
print(clf.predict([[-0.8,-1]]))

import matplotlib.pyplot as plt

```
y1=y.copy()
a=np.hstack((X,y1.reshape(4,1)))
for i in range(len(a)):
    if a[i,2]==1:
        plt.plot(a[i,0],a[i,1], 'b*')
    else:
        plt.plot(a[i,0],a[i,1], 'rx')
plt.plot(-0.8, -1,'bo')
```

```
w=clf.coef_[0] #Only for linear kernel
xx=np.linspace(-2,2)
yy=-(w[0]*xx+clf.intercept_[0])/w[1]
plt.plot(xx, yy, 'k-', label='$hyperplane$')
plt.legend()
plt.savefig(path+'\frac{2}{2}$SVM.png')
plt.show()
```

Exercise 1 -Linear model-Tasks

- First load the training data and testing data of a linear example
- Create a SVM by SVC
- Train the SVM model by the data in training file
- Classify the data in test file
- Plot the figure of data points and the hyperplane
- Pls change the parameter C and observe

Exercise 1-Linear model(1)

import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn import metrics import matplotlib.pyplot as plt import os

```
# load data
path=os.getcwd()
train x=traindata.iloc[:,:-1]
train y=traindata.iloc[:, -1]
testdata=pd.read csv(path+'\text{\text}testdata.csv')
test x=testdata.iloc[:,:-1]
test y=testdata.iloc[:, -1]
```

```
# introduce the SVC
clf=SVC(C=10, kernel='linear')
clf.fit(train x, train y)
Test y=pd.Series(clf.predict(test x), name='Y')
print('Classification report for classifier %s:\u00e4n%s\u00e4n'
   % (clf, metrics.classification report(test y,
Test y)))
print("Confusion matrix:\forall n\%s" \%
metrics.confusion matrix(test y, Test y))
```


Exercise 1-Linear model(2)

```
#plot the training data
label=train y.copy()
label[label<0]=0
label=label.astype(int)
label=label.values
colormap=np.array(['r','b'])
plt.scatter(train _x.iloc[:,0], train_x.iloc[:,1],
zorder=3, marker='o', c=colormap[label],
label='traindata')
```

#plot the support vectors plt.scatter(clf.support vectors [:,0], clf.support vectors [:,1],zorder=2,facecolors ='none', s=80, edgecolors='k', label='Support Vectors')

```
#plot the hyperplane
w=clf.coef [0]
xx=np.linspace(-2, 2)
yy=-(w[0]*xx+clf.intercept [0])/w[1]
plt.axis([-2, 2, -2, 2])
plt.plot(xx, yy, 'k-', label='$hyperplane$')
#calculate the bias of margins
margin=1/np.sqrt(np.sum(clf.coef **2))
yy down=yy-np.sqrt(1+(w[0]/w[1])**2)*margin
yy up=yy+np.sqrt(1+(w[0]/w[1])**2)*margin
#plot margins
plt.plot(xx, yy down, 'k--')
plt.plot(xx, yy up, 'k--')
```


Exercise 1-Linear model(3)

```
#plot the test data set
labelt=test y.copy()
labelt[labelt<0]=0
labelt=labelt.astype(int)
labelt=labelt.values
plt.scatter(test_x.iloc[:,0], test_x.iloc[:,1], zorder=3, marker='+',
c=colormap[labelt], label='testdata')
                                                  2.0
```

plt.legend(loc=[0.26,0.01])plt.savefig(path+'\frac{1}{2}\frac{1}{2}\svc-linear.png') plt.show()

Exercise 2-nonlinear model-Tasks

- First load the training data and testing data of a nonlinear example
- Create a SVM by SVC with three kernels
- Train the SVM model by the data in training file
- Classify the data in test file
- Plot the figure of data points and the hyperplane
- Pls change the parameter
 - Change parameter C and observe
 - Change parameter γ and observe

Exercise 2-nonlinear model(1)

import numpy as np import pandas as pd from sklearn.svm import SVC import matplotlib.pyplot as plt import os

```
# load data
path=os.getcwd()
traindata=pd.read csv(path+'\text{\text{\text{$Y$}}}traindata.csv')
train x=traindata.iloc[:,:-1]
train y=traindata.iloc[:, -1]
testdata=pd.read csv(path+'\text{\text}testdata.csv')
test x=testdata.iloc[:,:-1]
test y=testdata.iloc[:, -1]
```

```
# introduce the SVC and fit the model
for fig n, kernel in enumerate(('linear', 'rbf', 'poly')):
  clf=SVC(C=1.0, kernel=kernel, gamma=10)
  clf.fit(train x, train y)
  print('Classification report: %s\u00e4nAccuracy rate:\u00dfs\u00e4n'
   % (clf, clf.score(test x, test y)))
  #plot new window for figure
  plt.figure(fig n)
  #clear the current figure
  plt.clf()
```

Exercise 2-nonlinear model(2)

```
#plot the train data
plt.scatter(train x.iloc[:,0], train x.iloc[:,1], c=train y.iloc[:], cmap=plt.cm.Paired,
       edgecolor='k', zorder=10, s=20)
#plot the support vectors
plt.scatter(clf.support vectors [:,0], clf.support vectors [:,1], s=80,
       facecolors='none', zorder=10, edgecolors='k')
plt.axis('tight')
x min, x max = train x.iloc[:,0].min()-1, train x.iloc[:,0].max()+1
y min, y max= train x.iloc[:,1].min()-1, train x.iloc[:,1].max()+1
# create a mesh to plot in
XX, YY = np.mgrid[x min:x max:200j, y min:y max:200j]
Z = clf.decision function(np.c [XX.ravel(), YY.ravel()])
```


1.5

1.0

-1.0

-1.5

-2.0

Exercise 2-nonlinear model(3)

```
# Put the result into a color plot
  Z = Z.reshape(XX.shape)
  plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
  plt.contour(XX, YY, Z, colors=['k', 'k', 'k'],linestyles=['--', '-', '--'], levels=[-.5, 0, .5])
  #plot the test data set
  plt.scatter(test x.iloc[:,0], test x.iloc[:,1],c=test y.iloc[:], cmap=plt.cm.Paired,
          edgecolor='b', zorder=10, s=20)
  plt.title(kernel)
plt.show()
                                                 rbf
                                                                                         poly
        linear
                                                                      1.0
                              1.0
                              -0.5
                                                                      -0.5
                             -1.0
                                                                      -1.0
                             -1.5
                                                                      -1.5
                              -2.0
                                                                      -2.0
```


Exercise 3-Multiclass classification-Tasks

- Pls import the digital dataset, divide the data into 5 parts
- Use 4 parts for training and others for prediction
- Tuning the parameters via cross validation
- Split the data to train and test subset
- Pls plot the first 4 images of training set
- Train the model of SVC by training data
- Print the classifier report and the score
- Plot the other 4 sub-figures in the end of prediction set

Exercise 3-Multiclass classification (1)

Standard scientific Python imports

import matplotlib.pyplot as plt import numpy as np

Import datasets, classifiers and cross validation

from sklearn import datasets, svm from sklearn.model selection import cross val score The multiclass support is handled according to a one-vs-one scheme

The digits dataset

digits = datasets.load digits() print (digits.keys()) data=digits.data target=digits.target image=digits.images print (data.shape)

Exercise 3-Multiclass classification(2)

```
# define the SVC and set its parameter
clf=svm.SVC(kernel='rbf')
gamma=np.logspace(-9,1,10)
# Calculate the Cross Validation scores for clf model to different gamma
s mean=[]
s std=[]
for x in gamma:
  clf.gamma=x
  scores = cross val score(clf, data, target, cv=5)
  s mean.append(scores.mean())
  s std.append(scores.std())
print (s mean)
print (s std)
```


Exercise 3-Multiclass classification(3)

```
# plot the figure to find the best setting for gamma
plt.figure(1, figsize=(6, 4))
plt.clf()
plt.semilogx(gamma, s mean)
plt.semilogx(gamma, np.array(s mean) + np.array(s std), 'b--')
plt.semilogx(gamma, np.array(s mean) - np.array(s std), 'b--')
locs, labels = plt.yticks()
plt.yticks(locs, list(map(lambda x: "%g" % x, locs)))
plt.ylabel('CV score')
                                                          0.8
plt.xlabel('Parameter Gamma')
                                                        O.6
plt.ylim(0, 1.1)
plt.show()
                                                          0.2
#gamma=0.001 can get the best performance
                                                                 10<sup>-8</sup>
                                                                        10-6
                                                                               10^{-4}
                                                                                      10^{-2}
                                                                                              10°
```

Parameter Gamma

Exercise 3-Multiclass classification(4)

```
# plot the first 4 images of training set
for index in range(4):
  plt.subplot(2, 4, index + 1)
  plt.axis('off')
  plt.imshow(image[index], cmap=plt.cm.gray r, interpolation='nearest')
  plt.title('Training: %i' % target[index])
# split arrays into train and test subsets
from sklearn.model selection import train test split as split
train x, test x, train y, test y=split(data, target, test size=0.25, shuffle=False,
random state=0)
clf = svm.SVC(gamma=0.001)
clf.fit(train x,train y)
print("Classification report for classifier: %s¥nAccuracy: %s¥n"
   % (clf, clf.score(test x,test y)))
```


Exercise 3-Multiclass classification (5)

```
for index in range(4):
  plt.subplot(2, 4, index + 5)
  plt.axis('off')
  plt.imshow(digits.images[index-4], cmap=plt.cm.gray r, interpolation='nearest')
  plt.title('Prediction: %i' % clf.predict(test x)[index-4])
                                                    Training: 0
                                                                Training: 1
                                                                            Training: 2
                                                                                        Training: 3
plt.show()
#subplot(numRows, numCols, plotNum)
                                                               Prediction: 8 Prediction: 9
                                                                                       Prediction: 8
```


sklearn.svm.NuSVC

- Nu-Support Vector Classification:
 - Similar to SVC but uses a parameter to control the number of support vectors
 - The implementation is based on libsym
 - Parameter: nu--An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]

```
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import NuSVC
>>> clf = NuSVC()
>>> clf.fit(X, y)
>>> print(clf.predict([[-0.8, -1]]))
```

sklearn.svm.LinearSVC

Nu-Support Vector Classification:

- Similar to SVC with parameter kernel='linear'
- implemented in terms of liblinear rather than libsvm
- it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples

Parameters:

- penalty: Specifies the norm used in the penalization;
- loss: Specifies the loss function;
- dual: Select the algorithm to either solve the dual or primal optimization problem.
 Prefer dual=False when n samples > n features.