✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Recurrent Neural Networks

LATEST SUBMISSION GRADE

100%

1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

1/1 point

- $\bigcirc \hspace{0.1in} x^{(i) < j >}$
- $\bigcirc \ x^{< i > (j)}$
- $\bigcirc \ x^{(j) < i >}$
- $\bigcirc \ x^{< j > (i)}$

✓ Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

2. Consider this RNN:

1/1 point

This specific type of architecture is appropriate when:

- \bigcirc $T_x = T_y$
- $\bigcap T_x < T_y$
- $\bigcap T_x > T_y$
- $\bigcap T_x = 1$

✓ Correct

It is appropriate when every input should be matched to an output.

3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1/1 point

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

4. You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\bigcirc \ \, \operatorname{Estimating} P\big(y^{<1>},y^{<2>},\dots,y^{< t-1>}\big)$
- $\bigcirc \ \ \operatorname{Estimating} P(y^{< t>})$
- Estimating $P\big(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>}\big)$
- $\bigcirc \ \, \text{Estimating} \, P\big(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>}\big)$

✓ Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- \bigcirc (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<\!\!\!/>\!\!\!>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<\!t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{<\!c>}$. (ii) Then pass this selected word to the next time-step.

✓ Correct
Yes!

6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1 / 1 point

1 / 1 point

1 / 1 point

O Vanishing gradient problem.

- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.
- O Sigmoid activation function g(.) used to compute g(z), where z is too large.

1/1 point

O 1

100

O 300

0 10000

✓ Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Here're the update equations for the GRU.

1/1 point

GRU

$$\begin{split} &\bar{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \\ &\Gamma_u = \sigma(W_u[\ c^{< t-1>}, x^{< t>}] + b_u) \\ &\Gamma_r = \sigma(W_r[\ c^{< t-1>}, x^{< t>}] + b_r) \\ &c^{< t>} = \Gamma_u * \bar{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \\ &a^{< t>} = c^{< t>} \end{split}$$

Alice proposes to simplify the GRU by always removing the Γ_u . i.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . i. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- igoplus Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \bigcirc Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

✓ Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

LSTM

9. Here are the equations for the GRU and the LSTM:

1 / 1 point

GRU

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ___ in the GRU. What should go in the the blanks?

 $\bigcap \ \Gamma_u \ {\rm and} \ \Gamma_r$

 $\bigcap \ 1 - \Gamma_u \ {\sf and} \ \Gamma_u$

 $\bigcirc \ \ \Gamma_r \ {\rm and} \ \Gamma_u$

✓ Correct

Yes, correct!

10. You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as x⁻¹⁻,..., x⁻³⁶⁵⁻. You've also collected data on your dog's mood, which you represent as y⁻¹⁻,..., y⁻³⁶⁵⁻. You'd like to build a model to map from x → y. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?
○ Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
○ Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
○ Unidirectional RNN, because the value of y^{-(t)} depends only on x⁻⁽¹⁾,...,x^{-(t)}, but not on x^{-(t+1)},...,x⁻³⁶⁵
○ Unidirectional RNN, because the value of y^{-(t)} depends only on x^{-(t)}, and not other days' weather.

Yes!

1/1 point