<u>Notes</u>

<u>Course</u>

<u>Dates</u>

<u>Help</u>

sandipan_dey ~

Next >

★ Course / Unit 2: Geometry of Derivatives / Problem Set 2A

()

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

<u>Calendar</u>

Discussion

End My Exam

Previous

43:41:39

<u>Progress</u>

☐ Bookmark this page

Problem Set A due Aug 18, 2021 20:30 IST Completed

Practice

2A-9

2.0/2 points (graded)

Consider a rectangular mass on a frictionless plane as in the figure shown below. (The figure is not drawn to scale.)

The force of gravity on the mass is $\vec{F}_g=\langle 0,-10\rangle$. Suppose the unit normal vector to the plane is $\hat{n}=\langle -3/5,4/5\rangle$. The inclined plane exerts a force \vec{F}_p on the mass in the direction \hat{n} . The net force on the mass is

$$\vec{F}_{\text{net}} = \vec{F}_g + \vec{F}_p \tag{3.127}$$

and this net force is parallel to the inclined plane. Given this information, find $ec{F}_p$ and $ec{F}_{
m net}$.

? INPUT HELP

Solution:

First, rewrite equation 3.127 as

$$\vec{F}_g = \vec{F}_{\text{net}} - \vec{F}_p. \tag{3.128}$$

Decompose \vec{F}_g into a vector parallel to the unit vector \hat{n} (which will give us $-\vec{F}_p$) an \Box Calculator \Box Hide Notes

, v (vvinon vvin give do + net). Doing tine gives

$$-\vec{F}_p = \left(\vec{F}_g \cdot \hat{n}\right)\hat{n} = -8\langle -\frac{3}{5}, \frac{4}{5}\rangle = \langle \frac{24}{5}, -\frac{32}{5}\rangle. \tag{3.129}$$

Therefore,

$$\vec{F}_p = \langle -\frac{24}{5}, \frac{32}{5} \rangle. \tag{3.130}$$

Then we can find $ec{F}_{
m net}$ by computing

$$\vec{F}_{\mathrm{net}} = \vec{F}_g + \vec{F}_p = \langle 0, -10 \rangle + \langle -\frac{24}{5}, \frac{32}{5} \rangle = \langle -\frac{24}{5}, -\frac{18}{5} \rangle.$$
 (3.131)

Submit

You have used 1 of 9 attempts

1 Answers are displayed within the problem

7. Application (physics)

Hide Discussion

Topic: Unit 2: Geometry of Derivatives / 7. Application (physics)

Add a Post

Show all posts 💙	by recent activity 🗸
small typo in solution Hello. "vector perpendicular to n^ (which will give us F sub p)" probably needs to be F net. Best wishes.	2
[staff] Are solutions exact numbers? Given F_g is [0,-10] and normal unit vector [-3/5,4/5], I suppose there are many solutions to this questions. If my arguments are many solutions to this questions.	5 ument is incorre
? Stumped again. I am assuming that the net force represents the tangent component? So does that mean I have to find the tangent component?	5 omponent of the
Staff] Inconsistent Notation	2

Previous

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>