Mines-Ponts PSI 2020 Mathématiques 2

corrigé

I. Question préliminaire

1. Il s'agit de démontrer que la relation ORTS, définie par :

$$\forall A, B \in \mathcal{M}_n, A \text{ est ORTS à } B \iff \exists Q \in \mathcal{O}_n, B = {}^{\mathsf{t}} Q A Q,$$

est réflexive, symétrique et transitive.

- Réflexivité: $\forall A \in \mathcal{M}_n$, A est ORTS à A, car $I_n \in \mathcal{O}_n$ et $A = {}^{t}I_nAI_n$.
- Symétrie : $\forall A, B \in \mathcal{M}_n$, A est ORTS à $B \Longrightarrow B$ est ORTS à A, car si $Q \in \mathcal{O}_n$ est tel que $B = {}^{t}QAQ$, alors ${}^{t}Q = Q^{-1} \in \mathcal{O}_n$ et $A = QB{}^{t}Q = {}^{t}({}^{t}Q)B{}^{t}Q$.
- Transitivité : $\forall A, B, C \in \mathcal{M}_n$, A est ORTS à B et B est ORTS à $C \Longrightarrow A$ est ORTS à C, car si $Q, Q' \in \mathcal{O}_n$ sont tels que $B = {}^tQAQ$ et $C = {}^tQ'BQ'$, alors $QQ' \in \mathcal{O}_n$ et $C = {}^tQ'{}^tQAQQ' = {}^t(QQ')A(QQ')$.

Donc la relation ORTS est bien une relation d'équivalence sur \mathcal{M}_n .

II. Exemples

- 2. (a) Soit $S \in \mathcal{S}_n$. On a ${}^{t}S = S$, donc :
 - (C₁) ${}^{t}S = S = P(S)$ où P est le monôme P(X) = X.
 - (C₂) S est normale puisqu'elle commute avec ${}^{t}S = S$.
 - (C₃) Pour tout $X \in E_n$, $||^t SX|| = ||SX||$ de façon évidente.
 - (C₄) D'après le théorème spectral, S est ORTS à une matrice diagonale, donc diagonale par blocs avec des blocs diagonaux tous de taille (1,1), donc S vérifie (C₄).
 - (b) Soit $A \in \mathcal{A}_n$. On a ${}^{t}A = -A$, donc :
 - (C_1) ${}^{t}A = -A = P(A)$ où P est le monôme P(X) = -X.
 - (C₂) A est normale puisqu'elle commute avec ${}^{t}A = -A$.
 - (C₃) Pour tout $X \in E_n$, $\| {}^t AX \| = \| -AX \| = \|AX \|$ par homogénéité de la norme.
- 3. Soit $Q \in \mathcal{O}_n$. On a ${}^tQ = Q^{-1} \in \mathcal{O}_n$, donc :
 - (C₂) Q est normale puisqu'elle commute avec ${}^{t}Q = Q^{-1}$.
 - (C₃) Pour tout $X \in E_n$, $\| {}^tQX \| = \|X\| = \|QX\|$ puisque les endomorphismes de E_n canoniquement associés à Q et ${}^tQ = Q^{-1}$ sont des isométries.

 $\pmb{Rq.}$ Cela se retrouve par le calcul $\|QX\|^2 = {}^{\mathrm{t}}(QX)QX = {}^{\mathrm{t}}X{}^{\mathrm{t}}QQX = {}^{\mathrm{t}}XX = \|X\|^2$.

- 4. La matrice $T \in \mathcal{O}_2$ est de type $R(\theta)$ ou $S(\theta)$, où $\theta \in \mathbb{R}$ (voir les rappels de cours en préambule).
 - (a) Cas $T = S(\theta)$.

Dans ce cas, la matrice M = rT est symétrique réelle, donc d'après la question 2, elle vérifie les conditions (C_1) à (C_4).

(b) Cas $T = R(\theta)$.

Dans ce cas, la matrice $M = rT = rR(\theta)$ vérifie la condition (C_4) de façon évidente (M est ORTS à elle-même), et elle vérifie la condition (C_1) puisque

$${}^{t}M = r \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = 2r \cos(\theta) I_2 - r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

donc ${}^{t}M = P(M)$ où $P(X) = 2r\cos(\theta) - X \in \mathbb{R}[X]$.

Rq. On peut « deviner » ce polynôme en en cherchant un de degré 1, ou en se souvenant que pour toute matrice inversible A de taille (2,2), on a $A^{-1} = \frac{1}{\det(A)}(\operatorname{tr}(A)I_2 - A)$, ce qui donne ici ${}^{t}T = T^{-1} = 2\cos(\theta)I_2 - T$, ou en regardant la question 14 de la partie V.

III. Deux premières implications

- 5. Si A vérifie (C_1) , alors A vérifie (C_2) puisque la matrice A commute avec tout polynôme en A.
- 6. Supposons que A vérifie (C₂), i.e. que $A^{t}A = {}^{t}AA$. Alors pour tout $X \in E_n$:

$$\| {}^{t}AX \|^{2} = {}^{t}({}^{t}AX) {}^{t}AX = {}^{t}XA {}^{t}AX \stackrel{(\mathbf{C_{2}})}{=} {}^{t}X {}^{t}AAX = {}^{t}(AX)AX = \|AX\|^{2}.$$

Donc $\forall X \in E_n$, $\| {}^{t}AX \| = \|AX \|$ (puisque les normes sont positives), i.e. A vérifie (C₃).

IV. La condition (C_3) implique la condition (C_4)

- 7. On suppose que $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2$ vérifie la condition $(\mathbf{C_3})$, i.e. que $\forall X \in E_2, \| {}^{\mathrm{t}}\!AX \| = \|AX\|$.
 - (a) Montrons qu'on a nécessairement b = c ou $(b = -c \neq 0 \text{ et } a = d)$.
 - Pour $X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, on a $||AX|| = \sqrt{a^2 + b^2} = ||^t AX|| = \sqrt{a^2 + c^2}$, donc $b^2 = c^2$, i.e. $b = \pm c$. Si b = c, alors on a le résultat voulu.
 - Sinon, alors $b = -c \neq 0$ et pour $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, on a alors :

$$||^{t}AX||^{2} = (a+b)^{2} + (d-b)^{2} = ||AX||^{2} = (a-b)^{2} + (b+d)^{2}$$

i.e. après simplification (a-d)b = (d-a)b, et donc a=d puisque $b \neq 0$.

On a donc bien nécessairement b = c ou $(b = -c \neq 0 \text{ et } a = d)$.

- (b) Si b = c, alors A est symétrique réelle donc A vérifie (C_4) d'après la question 2.
 - Si $b = -c \neq 0$ et a = d, alors

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = rR(\theta) = \begin{bmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix}$$

où $r \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$ sont tels que $a = r \cos \theta$ et $b = r \sin \theta$, i.e. où r et θ sont respectivement le module et un argument du complexe a + ib (on a bien r > 0 car $b \neq 0$).

Donc dans ce cas, A vérifie (C_4) de façon évidente (A est ORTS à elle-même).

Dans tous les cas, la matrice A vérifie donc bien la condition (C_4) .

8. Rq. Les deux méthodes ci-dessous présentent les mêmes calculs sous deux formes différentes. Méthode 1.

Les identités remarquables $||u \pm v||^2 = ||u||^2 + ||v||^2 \pm 2(u|v)$ donnent, pour tout $X \in E_n$:

- $\|(A \lambda I_n)X\|^2 = \|AX \lambda X\|^2 = \|AX\|^2 + \lambda^2 \|X\|^2 2\lambda (AX|X)$, et
- $\| {}^{\mathsf{t}}(A \lambda I_n)X \|^2 = \| ({}^{\mathsf{t}}A \lambda I_n)X \|^2 = \| {}^{\mathsf{t}}AX \lambda X \|^2 = \| {}^{\mathsf{t}}AX \|^2 + \lambda^2 \|X\|^2 2\lambda ({}^{\mathsf{t}}AX |X).$

Or $(AX|X) = {}^{\mathsf{t}}(AX)X = {}^{\mathsf{t}}X {}^{\mathsf{t}}AX = (X|{}^{\mathsf{t}}AX) = ({}^{\mathsf{t}}AX|X)$, et on suppose que A vérifie $(\mathbf{C_3})$, donc $||AX||^2 = ||{}^{\mathsf{t}}AX||^2$. Ainsi $\forall X \in E_n$, $||(A - \lambda I_n)X|| = ||{}^{\mathsf{t}}(A - \lambda I_n)X||$ (car les normes sont positives), i.e. $A - \lambda I_n$ vérifie $(\mathbf{C_3})$.

Méthode 2.

En revenant à la définition de la norme associée au produit scalaire, on a, pour tout $X \in E_n$:

•
$$\|(A - \lambda I_n)X\|^2 = {}^{t}X({}^{t}A - \lambda I_n)(A - \lambda I_n)X = {}^{t}X({}^{t}AA - \lambda A - \lambda {}^{t}A + \lambda^2 I_n)X$$
.
= ${}^{t}X{}^{t}AAX - \lambda {}^{t}XAX - \lambda {}^{t}X{}^{t}AX + \lambda^2 {}^{t}XX$

•
$$\| {}^{t}(A - \lambda I_{n})X \|^{2} = {}^{t}X(A - \lambda I_{n})({}^{t}A - \lambda I_{n})X = {}^{t}X(A {}^{t}A - \lambda A - \lambda {}^{t}A + \lambda^{2}I_{n})X$$

= ${}^{t}XA {}^{t}AX - \lambda {}^{t}XAX - \lambda {}^{t}X {}^{t}AX + \lambda^{2} {}^{t}XX$

Or A vérifie (C₃) donc ${}^{t}X{}^{t}AAX = {}^{t}(AX)AX = ||AX||^{2} = ||{}^{t}AX||^{2} = {}^{t}({}^{t}AX){}^{t}AX = {}^{t}XA{}^{t}AX$. Ainsi $\forall X \in E_{n}, ||(A - \lambda I_{n})X|| = ||{}^{t}(A - \lambda I_{n})X||$ (car les normes sont positives), i.e. $A - \lambda I_{n}$ vérifie (C₃).

9. (a) Vu la question précédente (et la séparation de la norme), pour tout $X \in E_n$ et tout $\lambda \in \mathbb{R}$:

$$(A - \lambda I_n)X = 0_{E_n} \iff \|(A - \lambda I_n)X\| = 0$$

$$\iff \|{}^{\mathsf{t}}(A - \lambda I_n)X\| = 0$$

$$\iff {}^{\mathsf{t}}(A - \lambda I_n)X = ({}^{\mathsf{t}}A - \lambda I_n)X = 0_{E_n}.$$

Ainsi pour tout $\lambda \in \mathbb{R}$, $\operatorname{Ker}(A - \lambda I_n) = \operatorname{Ker}({}^{t}A - \lambda I_n)$, et donc les matrices A et ${}^{t}A$ ont les mêmes sous-espaces propres.

(b) Soient $\lambda \neq \mu$ dans \mathbb{R} et soient $X \in \text{Ker}(A - \lambda I_n)$ et $Y \in \text{Ker}(A - \mu I_n) = \text{Ker}({}^{t}A - \mu I_n)$. Alors $AX = \lambda X$ et ${}^{t}AY = \mu Y$, donc :

$$\lambda(X|Y) = (AX|Y) = {}^{t}(AX)Y = {}^{t}X {}^{t}AY = (X|{}^{t}AY) = \mu(X|Y)$$

et donc (X|Y) = 0 puisque $\lambda \neq \mu$.

Les sous-espaces propres de A sont donc bien deux à deux orthogonaux.

- 10. Montrons que A, qui vérifie (C_3), est diagonalisable si et seulement si elle est symétrique.
 - Si A est symétrique, alors A est diagonalisable d'après le théorème spectral.
 - Supposons A diagonalisable. Alors ses sous-espaces propres sont supplémentaires dans E_n (caractérisation de la diagonalisabilité), et d'après la question 9, ils sont deux à deux orthogonaux. En concaténant des bases orthonormales des sous-espaces propres de A, on obtient donc une base orthonormale de diagonalisation de A, donc la matrice de passage P de la base canonique à cette base de diagonalisation est orthogonale et telle que $D = P^{-1}AP = {}^{t}PAP$ est diagonale. Ainsi $A = PD {}^{t}P$ est symétrique puisque ${}^{t}A = {}^{t}(PD {}^{t}P) = P {}^{t}D {}^{t}P = PD {}^{t}P = A$.
- 11. (a) Montrons comme indiqué que toute matrice orthogonalement semblable à A vérifie (C₃). Soient $Q \in \mathcal{O}_n$ et $B = {}^{\mathsf{t}}QAQ$. Alors pour tout $X \in E_n$, sachant que $Q {}^{\mathsf{t}}Q = {}^{\mathsf{t}}QQ = I_n$:
 - $\bullet \|BX\|^2 = {}^{\mathsf{t}}(BX)BX = {}^{\mathsf{t}}X {}^{\mathsf{t}}BBX = {}^{\mathsf{t}}X {}^{\mathsf{t}}Q {}^{\mathsf{t}}AQ {}^{\mathsf{t}}QAQX = {}^{\mathsf{t}}X {}^{\mathsf{t}}Q {}^{\mathsf{t}}AAQX = \|AQX\|^2$
 - $\bullet \ \| {}^{\operatorname{t}}\!BX\|^2 = {}^{\operatorname{t}}\!({}^{\operatorname{t}}\!BX) {}^{\operatorname{t}}\!BX = {}^{\operatorname{t}}\!XB {}^{\operatorname{t}}\!BX = {}^{\operatorname{t}}\!X {}^{\operatorname{t}}\!QAQ {}^{\operatorname{t}}\!QX = {}^{\operatorname{t}}\!X {}^{\operatorname{t}}\!QA {}^{\operatorname{t}}\!AQX = \| {}^{\operatorname{t}}\!AQX\|^2$

Or A vérifie (C₃) et $QX \in E_n$, donc $||AQX|| = ||^t AQX||$. Ainsi $\forall X \in E_n$, $||BX|| = ||^t BX||$ (car les normes sont positives), i.e. B vérifie (C₃).

(b) Montrons que A est ORTS à une matrice de type $\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$ où $A_1 \in \mathcal{M}_p$ et $A_2 \in \mathcal{M}_{n-p}$ vérifient $(\mathbf{C_3})$, avec $p \in \{1, 2\}$.

• D'après le théorème 1 du préambule, l'endomorphisme f de \mathbb{R}^n canoniquement associé à A admet une droite ou un plan stable. Notons F ce sous-espace stable, $p \in \{1,2\}$ sa dimension, et Q la matrice de passage de la base canonique de \mathbb{R}^n à une base orthonormale de \mathbb{R}^n adaptée à F (i.e. commençant par une base orthonormale de F).

Alors Q est orthogonale (comme matrice de passage entre deux bases orthonormales) et la matrice $B = Q^{-1}AQ = {}^{t}QAQ$ est la matrice de f dans une base adaptée au sous-espace stable F, donc est triangulaire supérieure par blocs, de type

$$B = {}^{\mathsf{t}}QAQ = \begin{bmatrix} A_1 & A_3 \\ 0 & A_2 \end{bmatrix}$$

où $A_1 \in \mathcal{M}_p$, $A_2 \in \mathcal{M}_{n-p}$ et où A_3 est une matrice réelle de taille (p, n-p).

• Montrons que $A_3 = 0$.

D'après l'indication montrée en (a), la matrice B vérifie la condition (C_3) , donc $\forall X \in E_n$, $\|BX\|^2 = \|{}^tBX\|^2$, i.e. en explicitant ces calculs de normes comme en (a) :

$$(\star): \quad \forall X \in E_n, \quad {}^{\mathrm{t}}X {}^{\mathrm{t}}BBX = {}^{\mathrm{t}}XB {}^{\mathrm{t}}BX.$$

Or pour toute matrice $M \in \mathcal{M}_n$ et tout $i \in [1; n]$, en notant e_i le i-ème élément de la base canonique de E_n (i.e. la colonne dont tous les coefficients sont nuls sauf le i-ème qui vaut 1), le calcul ${}^t\!e_i M e_i$ donne le i-ème coefficient diagonal $(M)_{i,i}$ de M.

Vu (\star) , les matrices ${}^{t}BB$ et $B{}^{t}B$ ont donc les mêmes coefficients diagonaux. Or un calcul par blocs donne

$${}^{t}BB = \begin{bmatrix} {}^{t}A_{1}A_{1} & {}^{t}A_{1}A_{3} \\ {}^{t}A_{3}A_{1} & {}^{t}A_{3}A_{3} + {}^{t}A_{2}A_{2} \end{bmatrix}$$
 et $B {}^{t}B = \begin{bmatrix} A_{1} {}^{t}A_{1} + A_{3} {}^{t}A_{3} & A_{3} {}^{t}A_{2} \\ A_{2} {}^{t}A_{3} & A_{2} {}^{t}A_{2} \end{bmatrix}$

donc les égalités des coefficients diagonaux de ${}^{t}BB$ et $B{}^{t}B$ donnent en particulier, pour tout $i \in [1; p]$, $({}^{t}A_{1}A_{1})_{i,i} = (A_{1}{}^{t}A_{1})_{i,i} + (A_{3}{}^{t}A_{3})_{i,i}$ et donc en sommant ces égalités :

$$\operatorname{tr}({}^{t}A_{1}A_{1}) = \operatorname{tr} A_{1}{}^{t}A_{1}) + \operatorname{tr}(A_{3}{}^{t}A_{3}).$$

Or par propriété usuelle de la trace, on a $\operatorname{tr}({}^t\!A_1A_1)=\operatorname{tr}(A_1{}^t\!A_1),$ et donc :

$$\operatorname{tr}(A_3{}^t A_3) = \operatorname{tr}({}^t A_3 A_3) = ||A_3||^2 = 0$$

où l'on a encore noté $\|\cdot\|$ la norme associée au produit scalaire usuel $(M,N) \mapsto \operatorname{tr}({}^t M N)$ sur $\mathcal{M}_{p,n-p}(\mathbb{R})$. Ainsi $\|A_3\| = 0$, et donc $A_3 = 0$ (par séparation de la norme).

Ainsi A est orthogonalement semblable à la matrice $B = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$.

• Montre que A_1 et A_2 vérifient (C_3) .

En calculant par blocs les produits de l'égalité (\star) ci-dessus, avec $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ où $X_1 \in E_p$ et $X_2 \in E_{n-p}$, on obtient :

$$\forall (X_1, X_2) \in E_p \times E_{n-p}, \quad {}^{\mathrm{t}}X_1 \, {}^{\mathrm{t}}A_1 A_1 X_1 + \, {}^{\mathrm{t}}X_2 \, {}^{\mathrm{t}}A_2 A_2 X_2 = \, {}^{\mathrm{t}}X_1 A_1 \, {}^{\mathrm{t}}A_1 X_1 + \, {}^{\mathrm{t}}X_2 A_2 \, {}^{\mathrm{t}}A_2 X_2.$$

En considérant successivement les cas où $X_2 = 0$ puis $X_1 = 0$, on obtient :

$$\begin{cases} \forall X_1 \in E_p, & {}^{t}X_1 {}^{t}A_1A_1X_1 = {}^{t}X_1A_1 {}^{t}A_1X_1, & \text{i.e.} & \|A_1X_1\|^2 = \|{}^{t}A_1X_1\|^2 \\ \forall X_2 \in E_{n-p}, & {}^{t}X_2 {}^{t}A_2A_2X_2 = {}^{t}X_2A_2 {}^{t}A_2X_2 & \text{i.e.} & \|A_2X_2\|^2 = \|{}^{t}A_2X_2\|^2 \end{cases}$$

où l'on a encore noté $\|\cdot\|$ les normes associées aux produits scalaires usuels sur E_p et E_{n-p} . Ainsi $\forall X_1 \in E_p$, $\|A_1X_1\| = \|{}^tA_1X_1\|$ et $\forall X_2 \in E_{n-p}$, $\|A_2X_2\| = \|{}^tA_2X_2\|$ (car les normes sont positives), i.e. A_1 et A_2 vérifient ($\mathbf{C_3}$).

- 12. Montrons par récurrence sur $n \in \mathbb{N}^*$ que $\forall A \in \mathcal{M}_n$, A vérifie $(\mathbf{C_3}) \Longrightarrow A$ vérifie $(\mathbf{C_4})$.
 - Initialisation.

Le cas n=1 est trivial puisque toute matrice de \mathcal{M}_1 vérifie (C₃) et (C₄). Le cas n=2 a été démontré en question 7.

• Hérédité.

Soit $n \ge 3$ tel que toute matrice carrée de taille $\le n-1$ vérifiant $(\mathbf{C_3})$ vérifie aussi $(\mathbf{C_4})$. Soit alors $A \in \mathcal{M}_n$ vérifiant $(\mathbf{C_3})$.

D'après la question 11, A est orthogonalement semblable à une matrice $B = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$ où $A_1 \in \mathcal{M}_p$ et $A_2 \in \mathcal{M}_{n-p}$ vérifient ($\mathbf{C_3}$), avec $p \in \{1,2\}$. Par hypothèse de récurrence, les matrices A_1 et A_2 vérifient donc aussi ($\mathbf{C_4}$), i.e. sont ORTS à des matrices B_1 et B_2 diagonales par blocs avec des blocs diagonaux de type (λ) ou $rR(\theta)$, où r > 0 et $\lambda, \theta \in \mathbb{R}$.

Notons $Q_1 \in \mathcal{O}_p$ et $Q_2 \in \mathcal{O}_{n-p}$ des matrices telles que $B_1 = {}^tQ_1A_1Q_1$ et $B_2 = {}^tQ_2A_2Q_2$. Alors un calcul par blocs donne :

$$\begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix} = \begin{bmatrix} {}^{t}Q_1 & 0 \\ 0 & {}^{t}Q_2 \end{bmatrix} \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}$$

et la matrice $Q = \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix}$ est orthogonale puisque

$${}^{\mathsf{t}}\!QQ = \begin{bmatrix} {}^{\mathsf{t}}\!Q_1 & 0 \\ 0 & {}^{\mathsf{t}}\!Q_2 \end{bmatrix} \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix} = \begin{bmatrix} {}^{\mathsf{t}}\!Q_1 Q_1 & 0 \\ 0 & {}^{\mathsf{t}}\!Q_2 Q_2 \end{bmatrix} = \begin{bmatrix} I_p & 0 \\ 0 & I_{n-p} \end{bmatrix} = I_n.$$

Ainsi par transitivité de la relation ORTS, A est ORTS à la matrice $\begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}$, qui est diagonale par blocs avec des blocs diagonaux de type (λ) ou $rR(\theta)$, où r > 0 et $\lambda, \theta \in \mathbb{R}$, puisque c'est le cas de B_1 et B_2 . Ainsi A vérifie $(\mathbf{C_4})$.

• Conclusion.

On en déduit par récurrence que $\forall n \in \mathbb{N}^*$, si $A \in \mathcal{M}_n$ vérifie (C₃), alors A vérifie (C₄).

V. La condition (C_4) implique la condition (C_1)

13. (a) *Méthode 1*.

L'application $\varphi: \mathbb{C}_{n-1}[X] \to \mathbb{C}^n$, $P \mapsto (P(z_1), \dots, P(z_n))$, est clairement linéaire et injective (car le seul polynôme de degré $\leqslant n-1$ admettant n racines distinctes est le polynôme nul). Et comme les espaces $\mathbb{C}_{n-1}[X]$ et \mathbb{C}^n sont de même dimension finie (à savoir n), l'application φ est un isomorphisme.

Ainsi le *n*-uplet $(\overline{z_1}, \dots, \overline{z_n}) \in \mathbb{C}^n$ a un unique antécédent par φ . Autrement dit, il existe un unique $P \in \mathbb{C}_{n-1}[X]$ tel que pour tout $k \in [1; n]$, $P(z_k) = \overline{z_k}$.

Méthode 2 (constructive, avec les polynômes de Lagrange).

Considérons, pour tout $k \in [1; n]$, le polynôme L_k défini par $L_k(X) = \prod_{\substack{j=1\\j\neq k}}^n \frac{X-z_j}{z_k-z_j}$.

Par construction, L_k est de degré n-1, admet les z_j pour $j \neq k$ comme racines, et vaut 1 en z_k . De plus si des scalaires $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ sont tels que $\sum_{k=1}^n \lambda_k L_k = 0$, alors en évaluant en z_j , où $j \in [1; n]$, on trouve $\lambda_j = 0$, donc la famille (L_1, \ldots, L_n) est libre, et est donc une base de $\mathbb{C}_{n-1}[X]$ au vu de son cardinal.

5

Ainsi tout $P \in \mathbb{C}_{n-1}[X]$ se décompose de façon unique comme combinaison linéaire

$$P = \sum_{k=1}^{n} \lambda_k L_k,$$

où $(\lambda_1,\ldots,\lambda_n)\in\mathbb{C}^n$, et l'on a alors, à nouveau en évaluant en $z_j,\,P(z_j)=\lambda_j,\,\mathrm{donc}:$

$$\forall j \in [1; n], P(z_j) = \overline{z_j} \iff \forall j \in [1; n], \lambda_j = \overline{z_j}.$$

D'où l'existence et l'unicité de $P \in \mathbb{C}_{n-1}[X]$ tel que $\forall j \in [1; n], P(z_j) = \overline{z_j}$: c'est l'unique polynôme de $\mathbb{C}_{n-1}[X]$ dont les coordonnées dans la base (L_1, \ldots, L_n) sont les scalaires $\overline{z_1}, \ldots, \overline{z_n}$.

(b) On suppose de plus que pour tout $k \in [1; n]$, $\overline{z_k} \in Z$, donc on a aussi $P(\overline{z_k}) = \overline{\overline{z_k}} = z_k$. Montrer que $P \in \mathbb{R}[X]$ revient à montrer que $\overline{P} = P$, où \overline{P} est le polynôme dont les coefficients sont les conjugués de ceux de P. Et vu l'unicité montrée en (a), il suffit pour cela de montrer que pour tout $k \in [1; n]$, $\overline{P}(z_k) = \overline{z_k}$.

Or il est clair que pour tout $z \in \mathbb{C}$, $\overline{P(z)} = \overline{P}(\overline{z})$, donc pour tout $k \in [1; n]$, $\overline{P}(z_k) = \overline{P(\overline{z_k})} = \overline{z_k}$. On a donc bien $\overline{P} = P$, i.e. $P \in \mathbb{R}[X]$.

14. Notons $\chi(X) = X^2 - \operatorname{tr}(rR(\theta))X + \det(rR(\theta)) = X^2 - 2r\cos(\theta)X + r^2 = (X - re^{i\theta})(X - re^{-i\theta})$ le polynôme caractéristique de la matrice $rR(\theta)$, et

$$P(X) = \chi(X)B(X) + aX + b$$

la division euclidienne de P par χ , où $B \in \mathbb{R}[X]$ et $a, b \in \mathbb{R}$.

Puisque $\chi(re^{i\theta}) = 0$, on a $P(re^{i\theta}) = are^{i\theta} + b = re^{-i\theta}$, i.e. en séparant les parties réelle et imaginaire :

$$ar\cos(\theta) + b = r\cos(\theta)$$
 et $ar\sin(\theta) = -r\sin(\theta)$.

Et comme χ est annulateur de $rR(\theta)$ (par le théorème de Cayley-Hamilton ou par calcul direct), on obtient :

$$P(rR(\theta)) = arR(\theta) + bI_2 = \begin{bmatrix} ar\cos(\theta) + b & -ar\sin(\theta) \\ ar\sin(\theta) & ar\cos(\theta) + b \end{bmatrix} = \begin{bmatrix} r\cos(\theta) & r\sin(\theta) \\ -r\sin(\theta) & r\cos(\theta) \end{bmatrix} = {}^{\mathrm{t}}(rR(\theta)).$$

 $\mathbf{Rq.}\ Si\sin(\theta) = 0$, $alors\ P(r\cos(\theta)) = r\cos(\theta)$, $et\ rR(\theta) = r\cos(\theta)I_2$, $donc\ de\ façon\ évidente$, $P(rR(\theta)) = rR(\theta) = t(rR(\theta))$. Mais il n'est pas nécessaire de distinguer ce cas dans les calculs précédents.

15. Soit $A \in \mathcal{M}_n$ vérifiant $(\mathbf{C_4})$, i.e. A est orthogonalement semblable à une matrice $B \in \mathcal{M}_n$ diagonale par blocs avec des blocs diagonaux de type (λ) ou $rR(\theta)$, où r > 0 et $\lambda, \theta \in \mathbb{R}$.

Soit alors $Q \in \mathcal{O}_n$ telle que $B = {}^{\mathsf{t}}QAQ$, i.e. telle que $A = QB{}^{\mathsf{t}}Q$.

Notons $(\lambda_1), \ldots, (\lambda_p)$ les (éventuels) blocs diagonaux de B de taille (1,1), et $r_1R(\theta_1), \ldots, r_qR(\theta_q)$ les (éventuels) blocs diagonaux de B de taille (2,2), et posons :

$$Z = \{\lambda_1, \dots, \lambda_p, r_1 e^{i\theta_1}, r_1 e^{-i\theta_1}, \dots, r_q e^{i\theta_q}, r_q e^{-i\theta_q}\}.$$

Par construction, pour tout $z \in Z$, on a $\overline{z} \in Z$, et donc d'après la question 13, appliquée en notant z_1, \ldots, z_n les éléments deux à deux distincts de la liste $\lambda_1, \ldots, \lambda_p, r_1 e^{i\theta_1}, r_1 e^{-i\theta_1}, \ldots, r_q e^{i\theta_q}, r_q e^{-i\theta_q}$, il existe un polynôme réel P tel que pour tout $z \in Z$, $P(z) = \overline{z}$, i.e. tel que :

$$\forall k \in [1; p], P(\lambda_k) = \lambda_k \text{ et } \forall k \in [1; q], P(r_k e^{i\theta_k}) = r_k e^{-i\theta_k}.$$

D'après la question 14, on a alors $\forall k \in [1; q]$, $P(r_k R(\theta_k)) = {}^{t}(r_k R(\theta_k))$, et donc par un calcul par blocs, $P(B) = {}^{t}B$. On conclut alors avec le théorème 2 du préambule que :

$$P(A) = QP(B) {}^{\mathsf{t}}Q = Q {}^{\mathsf{t}}B {}^{\mathsf{t}}Q = {}^{\mathsf{t}}(QB {}^{\mathsf{t}}Q) = {}^{\mathsf{t}}A.$$

Donc A vérifie (C_1) .

Rq. On a ainsi montré par les questions 5, 6, 12 et 15 que les conditions (C_1) , (C_2) , (C_3) et (C_4) sont équivalentes, donc le premier objectif du problème est atteint.

VI. Exponentielle d'une matrice normale

- 16. (a) Pour tout $k \in \mathbb{N}$, $\left| \frac{r^k \cos(k\theta)}{k!} \right| \leqslant \frac{|r|^k}{k!}$ et $\left| \frac{r^k \sin(k\theta)}{k!} \right| \leqslant \frac{|r|^k}{k!}$, et la série exponentielle $\sum_{k \in \mathbb{N}} \frac{|r|^k}{k!}$ converge, donc par comparaison, les séries $\sum_{k \in \mathbb{N}} \frac{r^k \cos(k\theta)}{k!}$ et $\sum_{k \in \mathbb{N}} \frac{r^k \sin(k\theta)}{k!}$ convergent absolument, donc convergent.
 - (b) Par linéarité de la somme des séries convergentes, puisque $\cos(k\theta) + i\sin(k\theta) = e^{ik\theta}$:

$$\sum_{k=0}^{+\infty} \frac{r^k \cos(k\theta)}{k!} + i \sum_{k=0}^{+\infty} \frac{r^k \sin(k\theta)}{k!} = \sum_{k=0}^{+\infty} \frac{(re^{i\theta})^k}{k!} = e^{re^{i\theta}} = e^{r\cos(\theta)} e^{ir\sin(\theta)}$$

donc en séparant les parties réelle et imaginaire :

$$\sum_{k=0}^{+\infty} \frac{r^k \cos(k\theta)}{k!} = e^{r\cos(\theta)} \cos(r\sin\theta) \quad \text{et} \quad \sum_{k=0}^{+\infty} \frac{r^k \sin(k\theta)}{k!} = e^{r\cos(\theta)} \sin(r\sin\theta).$$

17. Notons $A = (a_{i,j})$ et $B = (b_{i,j})$, de sorte que $AB = (c_{i,j})$ où $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$

Alors
$$\forall (i,j) \in [1,n]^2$$
, $|c_{i,j}| \leq \sum_{k=1}^n |a_{i,k}| |b_{k,j}| \leq \sum_{k=1}^n ||A||_{\infty} ||B||_{\infty} = n||A||_{\infty} ||B||_{\infty}$.

Donc $||AB||_{\infty} \leq n||A||_{\infty}||B||_{\infty}$.

18. Comme suggéré par l'énoncé, on note $(M)_{i,j}$ le coefficient d'indices (i,j) d'une matrice M.

Rappels. On rappelle qu'une suite $(M_p)_{p\in\mathbb{N}}$ d'éléments de \mathcal{M}_n converge vers une matrice M dans \mathcal{M}_n si et seulement si pour tout $(i,j)\in[1,n]^2$, la suite de terme général $(M_p)_{i,j}$ converge vers $M_{i,j}$.

(a) Montrer que la suite $(S_p(A))_{p\in\mathbb{N}}$ converge dans \mathcal{M}_n revient à montrer que pour tout $(i,j)\in [1,n]^2$, la suite de terme général $(S_p(A))_{i,j}=\sum_{k=0}^p\frac{(A^k)_{i,j}}{k!}$ converge, i.e. que la série $\sum_{k\in\mathbb{N}}\frac{(A^k)_{i,j}}{k!}$ converge.

Or par récurrence immédiate à partir de la question 17, on a $\forall k \in \mathbb{N}, \|A^k\|_{\infty} \leq (n\|A\|_{\infty})^k$, donc

$$\forall k \in \mathbb{N}, \quad \left| \frac{(A^k)_{i,j}}{k!} \right| \leqslant \frac{\|A^k\|_{\infty}}{k!} \leqslant \frac{(n\|A\|_{\infty})^k}{k!},$$

et la série exponentielle $\sum_{k\in\mathbb{N}} \frac{(n\|A\|_{\infty})^k}{k!}$ converge, donc par comparaison, la série $\sum_{k\in\mathbb{N}} \frac{(A^k)_{i,j}}{k!}$ converge absolument, donc converge.

Ainsi la suite $(S_p(A))_{p\in\mathbb{N}}$ converge bien dans \mathcal{M}_n .

(b) Soit $Q \in \mathcal{O}_n$. Par le théorème 2 du préambule, on a pour tout $p \in \mathbb{N}$:

$$S_p({}^{\mathsf{t}}QAQ) = {}^{\mathsf{t}}QS_p(A)Q.$$

Or par définition de l'exponentielle d'une matrice donnée en (a), on a $S_p({}^tQAQ) \underset{p \to +\infty}{\longrightarrow} \operatorname{Exp}({}^tQAQ)$.

Et vu la définition du produit matriciel (ou puisque l'application $M \mapsto {}^{t}QMQ$ est continue car linéaire en dimension finie, ou via la question 17), on a ${}^{t}QS_{p}(A)Q \underset{p \to +\infty}{\longrightarrow} {}^{t}Q\operatorname{Exp}(A)Q$.

Donc par unicité de la limite :

$$\operatorname{Exp}({}^{\operatorname{t}}\!QAQ) = {}^{\operatorname{t}}\!Q\operatorname{Exp}(A)Q.$$

19. (a) Par caractérisation séquentielle des fermés, montrer que \mathcal{E}_n est fermé revient à montrer que pour toute suite $(A_p)_{p\in\mathbb{N}}$ d'éléments de \mathcal{E}_n convergeant vers une matrice $B\in\mathcal{M}_n$, on a $B\in\mathcal{E}_n$.

Mais si $A_p \xrightarrow[p \to +\infty]{} B$, alors de façon évidente, ${}^tA_p \xrightarrow[p \to +\infty]{} {}^tB$ (on peut aussi invoquer la continuité de la transposition, qui est continue car linéaire en dimension finie), et donc vu la définition du produit matriciel (ou via la guestion 17) :

$$A_p {}^{t}A_p \xrightarrow[p \to +\infty]{} B {}^{t}B \quad \text{et} \quad {}^{t}A_p A_p \xrightarrow[p \to +\infty]{} {}^{t}BB.$$

Ainsi si pour tout $p \in \mathbb{N}$, $A_p \in \mathcal{E}_n$, i.e. si $A_p \, {}^{\mathrm{t}} \! A_p = {}^{\mathrm{t}} \! A_p A_p$, alors en passant à la limite, $B \, {}^{\mathrm{t}} \! B = {}^{\mathrm{t}} \! B B$, i.e. $B \in \mathcal{E}_n$.

On a donc montré par caractérisation séquentielle que \mathcal{E}_n est une partie fermée de \mathcal{M}_n .

- (b) Si $A \in \mathcal{E}_n$, i.e. si A et ${}^{t}A$ commutent, alors tout polynôme en A commute avec tout polynôme en ${}^{t}A$, donc en particulier, pour tout $P \in \mathbb{R}[X]$, P(A) et $P({}^{t}A) = {}^{t}(P(A))$ commutent, i.e. $P(A) \in \mathcal{E}_n$. Ainsi si $A \in \mathcal{E}_n$, alors pour tout $p \in \mathbb{N}$, $S_p(A) \in \mathcal{E}_n$, et donc par (a), $\operatorname{Exp}(A) \in \mathcal{E}_n$.
- 20. (a) On sait que pour tout $k \in \mathbb{N}$, $R(\theta)^k = R(k\theta)$. Donc pour tout $p \in \mathbb{N}$,

$$S_p(rR(\theta)) = \sum_{k=0}^{p} \frac{r^k}{k!} R(k\theta) = \begin{bmatrix} \sum_{k=0}^{p} \frac{r^k \cos(k\theta)}{k!} & -\sum_{k=0}^{p} \frac{r^k \sin(k\theta)}{k!} \\ \sum_{k=0}^{p} \frac{r^k \sin(k\theta)}{k!} & \sum_{k=0}^{p} \frac{r^k \cos(k\theta)}{k!} \end{bmatrix}.$$

Ainsi vu la question 16:

$$\operatorname{Exp}(rR(\theta)) = \lim_{p \to +\infty} S_p(rR(\theta)) = \operatorname{e}^{r\cos(\theta)} \begin{bmatrix} \cos(r\sin\theta) & -\sin(r\sin\theta) \\ \sin(r\sin\theta) & \cos(r\sin\theta) \end{bmatrix} = \operatorname{e}^{r\cos(\theta)} R(r\sin\theta).$$

- (b) Notons \mathcal{G}_n l'ensemble des matrices de \mathcal{M}_n qui sont ORTS à une matrice diagonale par blocs avec des blocs diagonaux de type (μ) ou $\alpha R(\beta)$, où $\mu, \alpha > 0$ et $\beta \in \mathbb{R}$. On montre que $\operatorname{Exp}(\mathcal{E}_n) = \mathcal{G}_n$ par double inclusion.
 - Soit A ∈ E_n. Montrons que Exp(A) ∈ G_n.
 Les conditions (C₂) et (C₄) étant équivalentes, A est ORTS à une matrice B diagonale par blocs avec des blocs diagonaux de type (λ) ou rR(θ), où r > 0 et λ, θ ∈ ℝ.
 D'après la question 18, Exp(A) est alors ORTS à Exp(B).
 Mais pour tout p ∈ N, un calcul par blocs montre que la matrice S_p(B) est diagonale par blocs

Mais pour tout $p \in \mathbb{N}$, un calcul par blocs montre que la matrice $S_p(B)$ est diagonale par blocs avec des blocs diagonaux de type $S_p((\lambda)) = (\sum_{k=0}^p \frac{\lambda^k}{k!})$ ou $S_p(rR(\theta))$, donc en passant à la limite quand $p \to +\infty$, on voit avec (a) que $\operatorname{Exp}(B)$ est diagonale par blocs avec des blocs diagonaux de type (e^{λ}) ou $\operatorname{Exp}(rR(\theta)) = e^{r\cos(\theta)}R(r\sin\theta)$.

Comme $\mu = e^{\lambda} > 0$, $\alpha = e^{r\cos(\theta)} > 0$, et $\beta = r\sin\theta \in \mathbb{R}$, cela montre que $\text{Exp}(A) \in \mathcal{G}_n$. D'où l'inclusion $\text{Exp}(\mathcal{E}_n) \subset \mathcal{G}_n$.

• Soit $M \in \mathcal{G}_n$. Montrons l'existence d'une matrice $A \in \mathcal{E}_n$ telle que $M = \operatorname{Exp}(A)$. Puisque $M \in \mathcal{G}_n$, M est ORTS à une matrice N diagonale par blocs avec des blocs diagonaux de type (μ) ou $\alpha R(\beta)$, où $\mu, \alpha > 0$ et $\beta \in \mathbb{R}$.

Soit alors $Q \in \mathcal{O}_n$ tel que $N = {}^{t}QMQ$, i.e. $M = QN {}^{t}Q$. Puisque $R(0) = R(2\pi) = I_2$, on peut supposer que pour chaque bloc diagonal de type $\alpha R(\beta)$

Puisque $R(0) = R(2\pi) = I_2$, on peut supposer que pour chaque bloc diagonal de type $\alpha R(\beta)$ dans N, on a $(\alpha, \beta) \neq (1, 0)$, quitte à changer $\beta = 0$ en $\beta = 2\pi$, ou à voir le bloc $R(0) = I_2$ comme deux blocs (1) de taille (1, 1).

Soit alors $B \in \mathcal{M}_n$ la matrice diagonale par blocs déduite de N en remplaçant :

- * chaque bloc diagonal de type (μ) de N par un bloc (λ) où $\lambda = \ln(\mu)$,
- * chaque bloc diagonal de type $\alpha R(\beta)$ de N par un bloc $rR(\theta)$ où r > 0 et $\theta \in \mathbb{R}$ sont respectivement le module et un argument du complexe $\ln(\alpha) + i\beta$, qui est non nul puisqu'on a supposé $(\alpha, \beta) \neq (1, 0)$ (ce qui garantit que $r = |\ln(\alpha) + i\beta| > 0$ et que θ est bien défini modulo 2π), de sorte que $r\cos(\theta) = \ln(\alpha)$, i.e. $e^{r\cos(\theta)} = \alpha$, et $r\sin(\theta) = \beta$.

Et soit enfin $A = QB^{\dagger}Q$, de sorte que $B = {}^{\dagger}QAQ$.

Alors par définition, A est ORTS à B qui est du type décrit en (C_4) , donc A vérifie (C_4) , i.e. $A \in \mathcal{E}_n$ puisque les conditions (C_4) et (C_2) sont équivalentes.

Et vu la question 18, $\text{Exp}(B) = {}^{t}Q \text{Exp}(A)Q$. Mais vu les calculs faits dans le point précédent, on a Exp(B) = N, donc

$$\operatorname{Exp}(A) = Q \operatorname{Exp}(B)^{\mathsf{t}} Q = Q N^{\mathsf{t}} Q = M.$$

Ainsi $M \in \text{Exp}(\mathcal{E}_n)$. D'où l'inclusion $\mathcal{G}_n \subset \text{Exp}(\mathcal{E}_n)$.

- On a donc bien, par double inclusion, $\text{Exp}(\mathcal{E}_n) = \mathcal{G}_n$.
- 21. Vu la question 20, il s'agit de démontrer que $\mathcal{G}_n = \mathcal{F}_n$, avec la notation \mathcal{G}_n qui y est introduite. On procède par double inclusion.
 - Soit $M \in \mathcal{G}_n$, i.e. $M \in \mathcal{M}_n$ et M est ORTS à une matrice N diagonale par blocs avec des blocs diagonaux de type (μ) ou $\alpha R(\beta)$, où $\mu, \alpha > 0$ et $\beta \in \mathbb{R}$. Et soit $Q \in \mathcal{O}_n$ tel que $N = {}^t\!QMQ$. Montrons que $M \in \mathcal{F}_n$.
 - Montrons que les valeurs propres négatives de M sont de multiplicité paire. Puisque les matrices M et N sont semblables, elles ont les mêmes valeurs propres, et un calcul par blocs montre que le polynôme caractéristique de N est un produit de termes de type :
 - * $X \mu$ pour chaque bloc diagonal de N de type (μ) , et
 - * $\chi_{\alpha R(\beta)} = X^2 \text{tr}(\alpha R(\beta))X + \det(\alpha R(\beta)) = X^2 2\alpha \cos(\beta)X + \alpha^2 = (X \alpha e^{i\beta})(X \alpha e^{-i\beta})$ pour chaque bloc diagonal de N de type $\alpha R(\beta)$ (calcul déjà fait en question 14).

Les valeurs propres de M sont donc les réels $\mu > 0$ pour chaque bloc diagonal de N de type (μ) , et les complexes $\alpha e^{\pm i\beta}$ pour chaque bloc diagonal de N de type $\alpha R(\beta)$.

Les valeurs propres négatives de M sont donc les éventuels $\alpha e^{\pm i\beta}$ où $\beta \equiv \pi [2\pi]$, auquel cas $\alpha e^{i\beta} = \alpha e^{-i\beta} = -\alpha$. Ces valeurs propres sont donc de multiplicité paire, chaque bloc $\alpha R(\pi)$ apportant deux copies de la valeur propre $-\alpha$.

- Montrons que M = ST = TS où $S \in \mathcal{S}_n^{++}$ et $T \in \mathcal{SO}_n$. Un calcul par blocs montre que $N = S_1T_1 = T_1S_1$, où les matrices diagonales par blocs S_1 et T_1 se déduisent de N en remplaçant :
 - * chaque bloc diagonal de type (μ) de N par un bloc (μ) dans S_1 et un bloc (1) dans T_1 ,
 - * chaque bloc diagonal de type $\alpha R(\beta)$ de N par un bloc αI_2 dans S_1 et un bloc $R(\beta)$ dans T_1 .

On a alors $S_1 \in \mathcal{S}_n^{++}$ de façon évidente (car S_1 est diagonale et à coefficients diagonaux strictement positifs), et $T_1 \in \mathcal{SO}_n$ puisque des calculs par blocs montrent que ${}^tT_1T_1 = I_n$ et $\det(T_1) = 1$. Et on a alors $M = QN {}^tQ = (QS_1 {}^tQ)(QT_1 {}^tQ) = (QT_1 {}^tQ)(QS_1 {}^tQ)$, i.e.

$$M = ST = TS$$

où $S = QS_1 Q \in \mathcal{S}_n^{++}$ puisque $S = QS_1 Q = QS_1 Q = S$ et que S = S et que S = S sont semblables donc ont les mêmes valeurs propres, et où $S = QS_1 Q = S$ et que S = S e

Donc par définition, $M \in \mathcal{F}_n$. D'où l'inclusion $\mathcal{G}_n \subset \mathcal{F}_n$.

• Soit $B \in \mathcal{F}_n$, i.e. B a toutes ses (éventuelles) valeurs propres négatives de multiplicité paire, et B = ST = TS où $S \in \mathcal{S}_n^{++}$ et $T \in \mathcal{SO}_n$.

Montrons que $B \in \mathcal{G}_n$, i.e. en notant b l'endomorphisme de E_n canoniquement associé à B, qu'il existe une base orthonormale \mathcal{B} de E_n dans laquelle la matrice B' de b est diagonale par blocs avec des blocs diagonaux de type (μ) ou $\alpha R(\beta)$, où $\mu, \alpha > 0$ et $\beta \in \mathbb{R}$.

- Notons respectivement s et t les endomorphismes de E_n canoniquement associés à S et T. Par hypothèse, s est un endomorphisme symétrique à valeurs propres strictement positives, et t est une rotation (i.e. une isométrie de déterminant 1) de E_n .

Comme s est symétrique, ses sous-espaces propres sont deux à deux orthogonaux, et d'après le théorème spectral, ils sont supplémentaires dans E_n .

- Soit $\lambda > 0$ une valeur propre de s.

Comme t commute avec s (car ST = TS), t stabilise le sous-espace propre $\text{Ker}(S - \lambda I_n)$ de s, et comme t est une isométrie, l'endomorphisme t_{λ} induit par t sur $\text{Ker}(S - \lambda I_n)$ est encore une isométrie, de sorte que sa matrice T_{λ} dans une base orthonormale de $\text{Ker}(S - \lambda I_n)$ est une matrice orthogonale.

Mais alors T_{λ} vérifie (C₂) (cf. question 3), donc aussi (C₄) (ces conditions étant équivalentes). Autrement dit, il existe une base orthonormale \mathcal{B}_{λ} de $\mathrm{Ker}(S-\lambda I_n)$ dans laquelle la matrice T'_{λ} de t_{λ} est diagonale par blocs avec des blocs diagonaux de type (ν) ou $rR(\theta)$, où r>0 et $\nu, \theta \in \mathbb{R}$. De plus comme T'_{λ} est inversible (car t_{λ} l'est puisque c'est une isométrie), les blocs diagonaux de type (ν) de T'_{λ} sont nécessairement tous non nuls.

Rq. Plus précisément, les blocs diagonaux de T'_{λ} de taille (1,1) sont égaux à (± 1) , et ceux de taille (2,2) sont de type $R(\theta)$ (i.e. avec r=1) puisque T'_{λ} est orthogonale (comme matrice d'une isométrie dans une base orthonormale), donc ses colonnes sont normées.

Cela généralise la réduction des isométries en dimension ≤ 3 , au programme de la classe PSI, au cas des isométries en dimension finie arbitraire.

Comme l'endomorphisme s_{λ} induit par s sur $\operatorname{Ker}(S - \lambda I_n)$ est l'homothétie de rapport λ , sa matrice dans la base \mathcal{B}_{λ} (comme dans toute base) est λI_p où $p = \dim \operatorname{Ker}(S - \lambda I_n)$.

Ainsi $b = s \circ t = t \circ s$ stabilise $\operatorname{Ker}(S - \lambda I_n)$ et y induit un endomorphisme b_{λ} dont la matrice dans la base \mathcal{B}_{λ} est $\lambda T'_{\lambda}$, donc est diagonale par blocs de type (μ) ou $\alpha R(\theta)$, où $\mu = \lambda \nu \neq 0$ et $\alpha = \lambda r > 0$ (car $\lambda, r > 0$ et $\nu \neq 0$).

– En concaténant les bases orthonormales \mathcal{B}_{λ} de chaque sous-espace propre $\operatorname{Ker}(S - \lambda I_n)$ de s, on obtient ainsi une base orthonormale \mathcal{B} de E_n (car les sous-espaces propres de s sont deux à deux orthogonaux) dans laquelle la matrice B' de b est $\operatorname{Diag}((\lambda T'_{\lambda})_{\lambda \in \operatorname{Sp}(s)})$, donc est diagonale par blocs avec des blocs diagonaux de type (μ) ou $\alpha R(\beta)$, où $\mu \neq 0$, $\alpha > 0$ et $\beta \in \mathbb{R}$, puisque c'est le cas des matrices $\lambda T'_{\lambda}$.

Enfin, les éventuels blocs diagonaux de type (μ) avec $\mu < 0$ dans B' correspondent aux valeurs propres négatives de b, et apparaissent donc un nombre pair de fois par hypothèse sur B. Quitte à réordonner la base \mathcal{B} , on peut supposer que ces blocs sont consécutifs dans B', ce qui permet de les regrouper deux par deux en des blocs de type $\mu I_2 = -\mu R(\pi)$, où $-\mu > 0$.

Donc B est bien ORTS à une matrice B' diagonale par blocs avec des blocs de type (μ) ou $\alpha R(\beta)$, où $\mu, \alpha > 0$ et $\beta \in \mathbb{R}$.

On a ainsi montré que $B \in \mathcal{G}_n$. D'où l'inclusion $\mathcal{F}_n \subset \mathcal{G}_n$.

- On a donc bien, par double inclusion, $\mathcal{F}_n = \mathcal{G}_n$.
- 22. Vu la question 21, il s'agit de voir si $B = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & & 1 \\ 1 & 0 & \cdots & 0 \end{bmatrix} \in \mathcal{F}_n$.

Or par définition, B est une matrice orthogonale (car ses colonnes forment une base orthonormale de E_n), de déterminant $(-1)^{n+1}$ et de polynôme caractéristique $\chi_B(X) = \det(XI_n - B) = X^n - 1$ (en développant ces deux déterminants par rapport à la première colonne, le second redonnant le premier en l'évaluant en 0), d'où la discussion suivante :

- Si n est pair, alors B admet -1 comme valeur propre de multiplicité 1, impaire, donc $B \notin \mathcal{F}_n$.
- Si n est impair, alors B n'admet pas de valeur propre négative et appartient à \mathcal{SO}_n , donc $B \in \mathcal{F}_n$ (avec la décomposition évidente B = ST = TS où $S = I_n$ et T = B).