

Nachrichtentechnik II - Kanalbeschreibung

Holger Jäkel

Communications Engineering Lab (CEL)

Übersicht

- Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

- Pfadverlust
 - Abnahme der Empfangsleistung wegen räumlicher Trennung von Tx und Rx
 - Üblicherweise mit der Entfernung zunehmend
 - \blacksquare Meist beschrieben durch Ausbreitungskoeffizienten ("path loss factor") α
- "large-scale fading"

Nachrichtentechnik II - Kanalbeschreibung

Holger Jäkel

- Veränderung der Signalamplitude durch Abschattungen o.ä.
- \blacksquare Oft beschrieben durch Lognormal-Verteilung, d. h. $\log(P_{\rm r})$ ist normalverteilt.
- Aus [Mol11]: "[...] These fluctuations occur on a larger scale typically a few hundred wavelengths [...]"

- "small-scale fading"
 - (kurzfristige) Änderung der Kanalparameter
 - Ursachen: Überlagerung von Mehrwegen
 - Aus [Mol11]: "[...] These fluctuations happen on a scale that is comparable with one wavelength [...]"
 - Meist wird für smale-scale fading eine mittlere Leistung von 1 verwendet, da die anderen Effekte durch large-scale fading und Pfadverlust erfasst sind.

Insgesamt folgt eine Gesamtbilanz¹ von

$$P_{
m r} = \underbrace{|h|^2}_{
m small\ scale\ fading} \cdot \underbrace{g}_{
m path\ loss} \cdot \underbrace{rac{1}{d^{lpha}}}_{
m path\ loss} P_{
m t}.$$

 $^{^{1}}$ Beachte: h beschreibt einen Amplitudenfaktor und g einen Leistungsfaktor.

Bemerkung: Zur Analyse der unterschiedlichen Fading-Arten nach [Jun97]:

"[...] Es hat sich als zweckmäßig erwiesen, den langsamen Schwund [...] und den schnellen Schwund getrennt voneinander zu betrachten [94]. Da innerhalb einer Zelle von Leistungsregelung ausgegangen werden kann, ist die Langzeitstatistik innerhalb einer Zelle weitgehend ausregelbar und daher unbedeutend [94]. Innerhalb einer Zelle des Zellennetzes spielt deshalb nur die Kurzzeitstatistik eine Rolle [94]. [...]"

Kanalbeschreibung

 Folgende Diskussionen betrachten nur das small-scale Fading und erfolgen gemäß

[TV08]: D. Tse, P. Viswanath, *Fundamentals of Wireless Communications*, Cambridge University Press, 2008

Übersicht

- Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

Konvention

Konvention

■ In Erweiterung der bisherigen Konvention bezeichnen im Folgenden

$$h(t), h(t, \tau), h[n], h[n, n+k]$$

Kanäle im Basisband.

■ Sollten die Bandpasskanäle referenziert werden, erfolgt dies durch einen tiefgestellte Kennzeichner, etwa " $h_{\rm BP}(t)$ ".

Zeitinvariante Kanäle: "einfache" LTI-Darstellung

$$y(t) = x(t) * h(t) = \int h(\tau)x(t - \tau)d\tau,$$

die die Konstruktion des Ausgangssignals y(t) zum Zeitpunkt t durch "Aufsummieren" beschreibt. Hierbei wird der um τ verschobene Eingangswert mit dem Faktor $h(\tau)$ gewichtet².

²Gelegentlich findet sich in der Literatur für die Impulsantwort auch die Bezeichnung *Gewichtsfunktion*.

■ Bemerkung: Die Notation der Faltung als x(t)*h(t) kann gelegentlich irreführend sein. Die in diesem Fall "bessere" Darstellung ist (x*h)(t). Diese bringt deutlicher zum Ausdruck, dass durch Faltung eine neue Funktion entsteht, deren Wert an der Stelle t betrachtet wird. Meist gönnen wir uns die faule Notation.

- Aber: In drahtloser Kommunikation sind Teilnehmer (und/oder deren Umgebung) mobil. Somit ändert sich die Charakteristik der Impulsantwort.
- Konsequenz: Berücksichtigung der Zeitabhängigkeit der Impulsantwort 3 gemäß $h(t,\tau)$ und damit

$$y(t) = \int h(t,\tau)x(t-\tau)d\tau.$$

Die Gewichte sind zeitveränderlich (Linear Time Variant System, LTV).

 $^{^3}$ Beachte: $h(t,\tau)$ ist die Antwort des Kanals auf einen Impuls zum Zeitpunkt $t-\tau$. Damit beschreibt τ eine Verzögerung (und "keine Zeit").

Begriffe der LTV-Systemtheorie⁴

Zeitabhängige Impulsantwort

$$h(t,\tau)$$

Beschreibt zeitabhängiges Verhalten im Zeitbereich

Zeitabhängiger Frequenzgang

$$H(t,f) = \mathcal{F}_{\tau}\{h(t,\tau)\}$$

Beschreibt zeitabhängiges Verhalten im Frequenzbereich

Spreading Function

Spreading Function

$$S(\nu, \tau) = \mathcal{F}_t\{h(t, \tau)\}$$

Beschreibt "Verschmieren" in Frequenz- und Zeitrichtung

Doppler Frequenzgang

$$B(\nu, f) = \mathcal{F}_{t,\tau}\{h(t,\tau)\}\$$

Beschreibt Verhalten des Kanals in Doppler- und Frequenzrichtung

⁴Nach [Mol11]; Beispiele kommen im Abschnitt zu COST 207

Physikalische Effekte führen im Bandpassbereich auf den Zusammenhang⁵

$$y_{\mathrm{BP}}(t) = \sum_{i} a_{\mathrm{BP},i}(t) x_{\mathrm{BP}}(t - \tau_{i}(t));$$

also:

$$h_{\mathrm{BP}}(t,\tau) = \sum_{i} a_{\mathrm{BP},i}(t) \delta(\tau - \tau_{i}(t))$$

⁵Siehe [TV08]

Im Basisband folgt daraus der Zusammenhang⁶

$$y(t) = \sum_{i} a_{\text{BP},i}(t)e^{-j2\pi f_{\text{c}}\tau_{i}(t)}x(t - \tau_{i}(t));$$

also:

$$h(t,\tau) = \sum_i a_i(t) \delta(\tau - \tau_i(t)), \qquad a_i(t) := a_{\mathrm{BP},i}(t) e^{-j2\pi f_c \tau_i(t)} \in \mathbb{C}$$

⁶Siehe [TV08]

■ Bemerkung: Für die Impulsantwort

$$h(t,\tau) = \sum_{i} a_i(t)\delta(\tau - \tau_i(t))$$

ist

$$\mathcal{F}_{\tau}\{h(t,\tau)\} = \sum_{i} a_i(t)e^{-j2\pi f \tau_i(t)};$$

der Kanal ist nicht bandbegrenzt.

Impulsantwort - Diskretisierung

■ Ist x(t) bandbegrenzt⁷ auf $\left(-\frac{B}{2},\frac{B}{2}\right)$, so folgt mit x[n]:=x(n/B)

$$x(t) = \sum_{n} x[n] \operatorname{sinc}\left(\pi B\left(t - \frac{n}{B}\right)\right)$$

■ Damit ergibt sich⁸ für y[m] := y(m/B) mit $a_i[m] := a_i(m/B)$:

$$y[m] = \sum_{n,i} a_i[m]x[n] \operatorname{sinc}\left(\pi(m-n) - \pi B \tau_i\left(\frac{m}{B}\right)\right)$$
$$= \sum_{\ell} \sum_i a_i[m] \operatorname{sinc}\left(\pi \ell - \pi B \tau_i\left(\frac{m}{B}\right)\right) x[m-\ell]$$
$$=: \sum_{\ell} h_{\ell}[m]x[m-\ell]$$

 $^{^8}$ Bei Doppler-Verbreiterung ist $y(\cdot)$ spektral breiter als $x(\cdot)$, damit würde $y(\cdot)$ zu langsam abgetastet. Zur Vereinfachung rechnen wir mit derselben Abtastrate.

⁷Gleiches Resultat durch Anwendung des Abtasttheorems auf $h(t,\tau)$ bzgl. au und "etwas Rechnung".

Impulsantwort - Diskretisierung

■ Die Kanalkoeffizienten sind gegeben durch

$$h_{\ell}[m] = \sum_{i} a_{\mathsf{BP},i}[m] e^{-j2\pi f_{\mathsf{c}} \tau_{i}[m]} \mathrm{sinc} \left(\pi \ell - \pi B \tau_{i}[m]\right)$$

mit

$$a_{\mathsf{BP},i}[m] = a_{\mathsf{BP},i}(m/B),$$

 $\tau_i[m] = \tau_i(m/B).$

Impulsantwort - Diskretisierung

- Tapped-Delay-Line-Modell
 - Pfade eingeteilt in "Taps" ähnlicher Ausbreitungsdauer/Verzögerung
 - Anzahl der Pfade bestimmt durch die Umgebung
 - Physikalische Pfade können bei Umgebungsänderung in anderen Tap wandern

Bemerkungen:

- Es lässt sich zeigen, dass die Doppler-Verschiebung $-f_{\rm c}{
 m d} au_i(t)/{
 m d}t$ ist
- Das Modell entspricht bei Zeitunabhängigkeit der Amplituden und der Verzögerungen dem bekannten LTI-Modell (Übung!)
- Herleitung über sinc-Pulsformung

 aufgrund ihrer Form und ihres langsamen Abfalls nicht realistisch
- Die Kanäle zellularer Mobilfunksysteme k\u00f6nnen meist mit wenigen Taps beschrieben werden (GSM: < 6 Taps)
- Es wird deutlich, dass der von einem Kommunikationssystem "gesehene"
 Kanal stark von der Bandbreite des Systems abhängt.

- Bemerkungen: (ctd.)
 - Aus [Mol11]: "[...] Fortunately, most wireless channels can be classified as slowly time-variant systems, also known as quasi-static. In that case many of the concepts of LTI-systems can be retained with only minor modifications."

Veranschaulichung des TDL-Modells⁹

⁹Nach [Mol11]

Veranschaulichung des TDL-Modells

Übersicht

- Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

■ Erinnerung:

$$h_{\ell}[m] = \sum_{i} a_{\mathrm{BP},i} \left(\frac{m}{B}\right) e^{-j2\pi f_{\mathrm{c}} \tau_{i} \left(\frac{m}{B}\right)} \mathrm{sinc} \left(\pi \ell - \pi B \tau_{i} \left(\frac{m}{B}\right)\right)$$

- Beobachtungen:
 - Änderungen im sinc-Term der IA abhängig von der Bandbreite
 - Änderungen im Phasenterm der IA abhängig von der Trägerfrequenz
 - ⇒ Änderungen der Tap-Werte aufgrund von Phasenänderungen

Definition

Der *Doppler-Spread* ist die maximale Differenz der auftretenden Doppler-Verschiebungen

$$D_{s} := \max_{i,k} f_{c} \cdot \left| \frac{\mathrm{d}}{\mathrm{d}t} \tau_{i}(t) - \frac{\mathrm{d}}{\mathrm{d}t} \tau_{k}(t) \right|$$

■ Erinnerung:

$$h_{\ell}[m] = \sum_{i} a_{\mathsf{BP},i} \left(\frac{m}{B}\right) e^{-j2\pi f_{\mathsf{c}} \tau_{i} \left(\frac{m}{B}\right)} \mathrm{sinc} \left(\pi \ell - \pi B \tau_{i} \left(\frac{m}{B}\right)\right)$$

Beobachtungen:

- Phasenänderung um $\frac{\pi}{2}$, falls sich $\tau_i(t)$ um $\frac{1}{4f_c}$ ändert
- \blacksquare Entspricht Längenänderung um eine viertel Wellenlänge: $\frac{c}{4f_c}$
- \blacksquare Ändert sich Pfadlänge mit Geschwindigkeit v, so geschieht signifikante Phasenänderung in Zeitdauer $\frac{c}{4f_{\rm c}v}=\frac{1}{4D_{\rm s}}$, $D_{\rm s}$ =Doppler-Spread

Definition

Die Kohärenzzeit eines Kanals wird definiert durch

$$T_{\rm c} := \frac{1}{4D_{\rm s}}.$$

Mit Hilfe von T_c unterscheidet man:

- $\,\blacksquare\,$ fast fading, falls^{10} $T_{\rm c} \ll$ zulässige Verzögerung oder $T_{\rm c} <$ Symboldauer
- lacksquare slow fading, falls $T_{
 m c}>$ Symboldauer

¹⁰Erste Definition nach [TV08]; zweite Definition in der Literatur üblicher

Definition

Der *Delay-Spread* ist die Differenz zwischen Ausbreitungsdauer des kürzesten und des längsten Pfades:

$$T_{\rm d} := \max_{i,k} |\tau_i(t) - \tau_k(t)|$$

Definition

Die Kohärenzbandbreite wird definiert durch:

$$B_{\rm c} := \frac{1}{2T_{\rm d}}$$

Mit Hilfe von B_c unterscheidet man:

- \bullet flat fading, falls $B_{\rm c} \geq$ Systembandbreite \implies Im TDL-Modell genügt 1 Tap zur Beschreibung des Kanals
- frequency selective fading, falls $B_{\rm c}\ll$ Systembandbreite \implies mehrere Taps zur Beschreibung des Kanals notwendig

Kenngrößen der Kanalcharakterisierung

Aus dem Doppler-Spread ergibt sich die Kohärenzzeit eines Kanals gemäß:

$$D_{\mathrm{s}} := \max_{i,k} f_{\mathrm{c}} \cdot \left| \frac{\mathrm{d}}{\mathrm{d}t} \tau_i(t) - \frac{\mathrm{d}}{\mathrm{d}t} \tau_k(t) \right| \implies T_{\mathrm{c}} := \frac{1}{4D_{\mathrm{s}}}.$$

Aus dem Delay-Spread folgt die Kohärenzbandbreite:

$$T_{\rm d} := \max_{i,k} |\tau_i(t) - \tau_k(t)| \implies B_{\rm c} := \frac{1}{2T_{\rm d}}$$

Kanalcharakterisierung

Fadingbegriffe

Bzgl. der Fading-Charakteristik eines Kanals ergeben sich die folgenden Begriffe bzw. Unterscheidungen:

	Fadingbegriffe	$T < T_{\rm d}$	$T > T_{\rm d}$
	$T < T_{\rm c}$	freq. selective, slow	flat, slow
	$T > T_{\rm c}$	freq. selective, fast	flat, fast

Kanalcharakterisierung

Zahlenwerte:¹¹

Parameter	Variable	Größenordnung	
Trägerfrequenz	$f_{ m c}$	$\sim 1-5$ GHz für drahtlose Übertragung	
Bandbreite	B	200 kHz - 20 MHz	
Doppler Spread	$D_{ m s}$	einige 100 Hz für schnelle Bewegung	
Kohärenzzeit	$T_{\rm c}$	\sim ms	
Delay Spread	$T_{ m d}$	$\sim \mu$ s	
Kohärenzbandbreite	$B_{\rm c}$	$\sim 500~\mathrm{kHz}$	
Delay Spread	$T_{ m d}$	$\sim \mu$ s	

¹¹Nach [TV08]

Übersicht

- 3 Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

Betrachtung der Kanalkoeffizienten

- Übergang von zeitkontinuierlicher auf zeitdiskrete Darstellung: Abtasttheorem $\Longrightarrow h_\ell[m]$ beschreibt alle Pfade mit "ungefähr der Verzögerung $\frac{\ell}{B}$ "
- Phase des i-ten Pfades ist $2\pi f_c \tau_i \mod 2\pi = 2\pi d_i/\lambda \mod 2\pi$, wobei d_i die von dem i-ten Pfad zurückgelegt Strecke ist \implies Wegen $d_i \gg \lambda$ kann die Phase als gleichverteilt angenommen werden
- Annahme: Große Anzahl von Pfaden trägt zu $h_\ell[m]$ bei \implies Mit ZGWS und obiger Phasenbetrachtung folgt, dass $\operatorname{Re}\{h_\ell[m]e^{j\phi}\}$ und $\operatorname{Im}\{h_\ell[m]e^{j\phi}\}$ für jedes ϕ normalverteilt sind.

Rayleighverteilung

• $h_{\ell}[m] \sim \mathcal{CN}(0, \sigma_{\ell}^2) \implies r := |h_{\ell}[m]|$ hat eine Rayleighverteilung: 12

$$f(r) = \frac{2r}{\sigma_\ell^2} \exp\left(-\frac{r^2}{\sigma_\ell^2}\right) \sigma(r)$$

■ Die Momentanleistung $p := |h_{\ell}[m]|^2$ ist exponentialverteilt¹³:

$$f(p) = \frac{1}{\sigma_{\ell}^2} \exp\left(-\frac{p}{\sigma_{\ell}^2}\right) \sigma(p)$$

 $^{^{12} \}text{Unter Verwendung von: } \sigma(x) = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases}; \text{([PJ15])}$

 $^{^{13}}$ Eigentlich erwartet man bei Betrachtung von Leistungen (zweiten Momenten) die χ^2 -Verteilung. Die Exponentialverteilung entspricht gerade der zentralen χ^2 -Verteilung mit 2 Freiheitsgraden.

Rayleighverteilung

Bemerkungen:

- Rayleighverteilung setzt mittelwertfreie Pfadvariablen voraus und führt auf gleichverteilte Phase
- Rayleighverteilung modelliert NLOS¹⁴-Szenarien
- Aus [Mol11]:
 - "It describes a worst case scenario in the sense that there is no dominant signal component [...] Such a worst case assumption is useful for the design of robust systems."
 - "It depends on a single parameter [..] is easier and less error-prone, to obtain this single parameter from measurements or deterministic prediction methods [...] "

¹⁴Non-Line-of-Sight

Rayleighverteilung

Illustration: Rayleighdichte für verschiedene Werte von σ^2

Riceverteilung

- Trägt ein dominanter Pfad zu $h_{\ell}[m]$ bei, so sind Real- und Imaginärteil nicht mehr mittelwertfrei
- Es folgt $h_{\rm R} \sim \mathcal{N}(m_{\rm R}, \frac{\sigma_\ell^2}{2})$ und $h_{\rm I} \sim \mathcal{N}(m_{\rm I}, \frac{\sigma_\ell^2}{2})$
- lacktriangle Damit ergibt sich für $r:=|h_\ell[m]|$ eine Rice-Verteilung mit Dichte

$$f(r) = \frac{2r}{\sigma_{\ell}^2} \exp\left(-\frac{r^2 + A^2}{\sigma_{\ell}^2}\right) I_0\left(\frac{2rA}{\sigma_{\ell}^2}\right) \sigma(r)$$

 $\min A^2 := m_{\rm R}^2 + m_{\rm I}^2.$

Für die Momentanleistung $p:=|h_\ell[m]|^2$ folgt eine nichtzentrale χ^2 -Verteilung mit Wdichte:

$$f(p) = \frac{1}{\sigma_{\ell}^2} \exp\left(-\frac{p+A^2}{\sigma_{\ell}^2}\right) I_0\left(\frac{2\sqrt{pA^2}}{\sigma_{\ell}^2}\right) \sigma(p)$$

Riceverteilung

■ Bemerkungen:

- Phase nicht mehr gleichverteilt
- Modelliert LOS-Szenarien
- Oft realistischer als Rayleigh-Fading
- Dichte aufgrund der modifizierten Besselfunktion erster Art analytisch schwer handhabbar; hilfreiche Approximation

$$I_{\alpha}(x) \approx \frac{e^x}{\sqrt{2\pi x}}, x \gg \alpha$$

Riceverteilung

• Illustration: Ricedichte für verschiedene Werte von σ^2 und A^2

Communications Engineering Lab

Nakagami-Verteilung

 Andere hilfreiche Verteilung zur Modellierung von Mehrwege-Ausbreitung ist die Nakagami-Verteilung mit der Wdichte

$$f(r) = \frac{2}{\Gamma(m)} \left(\frac{m}{\Omega}\right)^m r^{2m-1} \exp\left(-\frac{mr^2}{\Omega}\right) \sigma(r)$$

- Bemerkungen:
 - 2 Parameter ⇒ "mächtiger" als Rayleigh-Verteilung
 - lacktriangleright = 1: liefert die Rayleigh-Verteilung
 - $m \in [0,5;1]$: mehr WMasse (als Rayleigh) auf kleinen Werten; höhere Wdichte als Rayleigh bei großen Werten
 - $oldsymbol{m}>1$: WMasse eher auf großen Werten; niedrigere Wdichte als Rayleigh bei großen Werten

Nakagami-Verteilung

lacktriangle Illustration: Nakagamidichte für verschiedene Werte von m und Ω

Übersicht

- Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

Alternative Kanalcharakterisierung

Ansatz:¹⁵ Betrachte Korrelationsfunktion der Impulsantwort

$$\phi_{hh}(t,\tau;t+\Delta t,\tau+\Delta \tau):=E(h(t+\Delta t,\tau+\Delta \tau)h^*(t,\tau))$$

- Annahme: Wide Sense Stationary, Uncorrelated Scattering
 - WSS: Kanal schwach stationär
 - US: Pfade ungleicher Laufzeit unabhängig

liefert:

$$\phi_{hh}(t,\tau;t+\Delta t,\tau+\Delta \tau) = \phi_{hh}(\Delta t,\tau)\delta(\Delta \tau)$$

¹⁵Nach [Bel63]; der Artikel ist lesenswert und führt unter anderem auch das Tapped-Delay-Line-Modell ein. Dessen Lektüre – wenngleich verhältnismäßig "anstrengend" – kann lehrreich sein.

Kanalcharakterisierung

Definition

Die spreading function bzw. scatter function

$$\Phi_{hh}(\nu,\tau) := \mathcal{F}_{\Delta t} \{ \phi_{hh}(\Delta t,\tau) \}$$

beschreibt die Verbreiterung des Signals in Zeit- und Frequenzrichtung. Aus ihr lassen sich wichtige Kenngrößen ableiten (siehe nachfolgend).

Kanalcharakterisierung

Definition

Das Power Delay Profile, PDP,

$$P_{\rm d}(\tau) := \int \Phi_{hh}(\nu, \tau) d\nu = \phi_{hh}(0, \tau) = E(|h(0, \tau)|^2),$$

beschreibt die Verteilung der Leistung über die Verzögerung. Dessen "Breite", ähnlich der Varianz einer W'dichte, ergibt¹⁶ den Delay Spread.

¹⁶... bis auf Skalierung ...

Kanalcharakterisierung

Definition

Das Doppler Power Profile, DPP,

$$S_{\rm D}(\nu) := \int \Phi_{hh}(\nu, \tau) d\tau = E(|H(\nu, 0)|^2),$$

beschreibt die Verteilung der Leistung über die Dopplerverschiebung. Dessen "Breite", ähnlich der Varianz einer W'dichte, ergibt¹⁶ den Doppler Spread.

- Beispiel: Kanalmodellierung in COST 207¹⁷
 - Power Delay Profile: Für das PDP werden vier Szenarien angegeben:¹⁸
 - Rural Area:

$$P_{\rm d}(\tau)e^{-9.2\frac{\tau}{\mu \rm s}}, \ 0 < \tau < 0.7\mu \rm s$$

Typical (non hilly) Urban:

$$P_{\mathrm{d}}(\tau)e^{-\frac{\tau}{\mu\mathrm{s}}},\ 0<\tau<7\mu\mathrm{s}$$

Bad hilly Urban:

$$P_{\rm d}(\tau) = \begin{cases} e^{-\frac{\tau}{\mu \rm s}}, & 0 < \tau < 5 \mu \rm s \\ 0.5 e^{5 - \frac{\tau}{\mu \rm s}}, & 5 \mu \rm s < \tau < 10 \mu \rm s \end{cases}$$

Hilly Terrain:

$$P_{\rm d}(\tau) = \begin{cases} e^{-3.5 \frac{\tau}{\mu_{\rm B}}}, & 0 < \tau < 2\mu s \\ 0.1e^{15 - \frac{\tau}{\mu_{\rm B}}}, & 15\mu s < \tau < 20\mu s \end{cases}$$

¹⁷Folgendes nach [COST207]

 $^{^{18}}$ Hinweis: Zur Vereinfachung ist zu allen nicht anderen Verzögerungen $P_{\mathrm{d}}(au)=0.$

- Beispiel: Kanalmodellierung in COST 207 (ctd.)
 - Power Delay Profile:

- Beispiel: Kanalmodellierung in COST 207 (ctd.)
 - Doppler Power Profile: Für das DPP werden vier Typen angegeben^{19 20}:
 - CLASS: Jakes-Spektrum; verwendet für $\nu \in (-f_{\mathrm{D}}, f_{\mathrm{D}})$ und $\tau_i \leq 0.5 \mu \mathrm{s}$

$$\Phi(\nu, \tau_i) = \frac{A}{\sqrt{1 - (\nu/f_{\rm D})^2}}$$

 $\,$ GAUS1: Summe zweier Gauß-Funktionen^{21} ; verwendet für $0.5\mu\mathrm{s} < \tau_i \leq 2\mu\mathrm{s}$

$$\Phi(\nu, \tau_i) = G(A, -0.8f_{\mathrm{D}}, 0.05f_{\mathrm{D}}) + G(A - 10dB, 0.4f_{\mathrm{D}}, 0.1f_{\mathrm{D}})$$

 $^{^{19}}$ Die Größe $f_{
m D}=rac{v}{c}f_{
m c}$ beschreibt die maximale Doppler-Verschiebung.

²⁰Der Parameter A wird gemäß $\int \Phi(\nu, \tau_i) d\nu = 1$ gewählt.

 $^{^{21} \}text{Abk\"{u}rzung: } G(A,f_1,f_2) := A \exp(-\frac{(f-f_1)^2}{2f_2^2}).$

- Beispiel: Kanalmodellierung in COST 207 (ctd.)
 - Doppler Power Profile: (ctd.)
 - $\,\blacksquare\,$ GAUS2: Summe zweier Gauß-Funktionen; verwendet für $\tau_i>2\mu\mathrm{s}$

$$\Phi(\nu, \tau_i) = G(A, 0.7f_D, 0.1f_D) + G(A - 15dB, -0.4f_D, 0.15f_D)$$

■ RICE: Summe eines klassischen Doppler-Spektrums und eines direkten Pfads; verwendet für $\nu \in (-f_D, f_D)$ und rural areas

$$\Phi(\nu, \tau_i) = \frac{0.41}{2\pi f_{\rm D} \sqrt{1 - (\nu/f_{\rm D})^2}} + 0.91\delta(\nu - 0.7f_{\rm D})$$

- Beispiel: Kanalmodellierung in COST 207 (ctd.)
 - Doppler Power Profile:²²

²²Beispiele sind auf diskrete Leistung 1 normiert.

- Beispiel: Kanalmodellierung in COST 207 (ctd.)
 - Simulation der Kanäle über²³

$$H(t,f) = \lim_{E \to \infty} \frac{1}{\sqrt{E}} \sum_{i=1}^{E} e^{j\theta_i} e^{j2\pi\nu_{D,i}t} e^{-j2\pi f \tau_i}$$

mit zufällig bestimmten Parametern²⁴

$$\theta_i \sim \mathcal{U}[0, 2\pi)$$

$$\tau_i \sim P_d(\tau) / \|P_d(\tau)\|_1$$

$$\nu_{D,i} \sim \Phi(\nu, \tau_i) / \|\Phi(\nu, \tau_i)\|_{1,\nu}$$

²³Nach [Jun97]

 $^{^{24}}$ Durch Normierung haben das PDP und das DPP die Fläche 1 und definieren eine Wdichte.

Übersicht

- Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

Hinweis: Alle folgenden Betrachtungen geben lediglich einen groben Überblick darüber, "was es alles gibt". Für Details sei auf die zitierten Bücher oder klassische HF-Literatur verwiesen.

- Link Budget
 - Zusammenhang zwischen Sende- und Empfangsleistung
 - Vereinfachend geschrieben als²⁵

$$P_{
m r} = \underbrace{G_{
m t}G_{
m r}}_{
m Antennengewinne} \cdot \underbrace{L_{
m s}}_{
m Freiraumdämpfung} \cdot \underbrace{L_{
m a}}_{
m Sonstige} {
m Verluste}$$

- Ermöglicht Abschätzung der benötigten Sendeleistung
- Fading margin
 - Sicherheitszuschlag in der Berechnung des Link-Budget, welches oft mittlere Leistungen betrachtet
 - Beispiel: Eine System wird so ausgelegt, dass Zielpegel nur in x % aller Fälle unterschritten wird

²⁵Nach [PS08]

- Rauschzahl ²⁶
 - Beschreibt SNR-Degradation in einem Zweitor

$$F := \frac{\mathrm{SNR}_{\mathsf{in}}}{\mathrm{SNR}_{\mathsf{out}}}$$

lacktriangle Beispiel: Ein Verstärker um Faktor G mit interner Rauschleistung $N_{
m amp}$ liefert

$$F = \frac{S_{\rm in}/N_{\rm in}}{GS_{\rm in}/(GN_{\rm in}+N_{\rm amp})} = \frac{N_{\rm in}+\frac{N_{\rm amp}}{G}}{N_{\rm in}} = 1 + \frac{N_{\rm amp,\,in}}{N_{\rm in}}, \label{eq:final_final_final}$$

wobei $N_{
m amp,\,in}:=N_{
m amp}/G$ die (virtuelle) zusätzliche Eingangs-Rauschleistung bei einem als ideal angenommenen Verstärker kennzeichnet.

Friis' Formel besagt, dass für eine Kaskade von Zweitoren gilt:

$$F_{\text{ges}} = F_1 + \frac{F_2 - 1}{G_1} + \dots + \frac{F_n - 1}{G_1 G_2 \dots G_{n-1}}$$

²⁶Nach [Sklar01]

- Rauschtemperatur²⁷
 - Interpretiert eine Rauschleistung N als von Johnson-Rauschen stammend und berechnet die Temperatur gemäß

$$T_{\rm R} := \frac{N}{k_{\rm B}B}$$

■ Einsetzen in $(F-1)N_{\rm in}=N_{\rm amp,\,in}$ liefert:

$$k_{\mathrm{B}}T_{\mathrm{amp,\,in}}B=(F-1)k_{\mathrm{B}}T_{\mathrm{in}}B\implies T_{\mathrm{amp,\,in}}=(F-1)T_{\mathrm{in}}$$

Verwenden von Friis' Formel liefert:

$$T_{\text{ges}} = T_1 + \frac{T_2}{G_1} + \dots + \frac{T_n}{G_1 G_2 \dots G_{n-1}}$$

²⁷Nach [Sklar01]

- Outage Wahrscheinlichkeit
 - Wahrscheinlichkeit, mit der ein gewisser Pegel unterschritten wird, ab welchem das System als "nicht funktionstüchtig" eingestuft wird
- Level crossing rate, LCR
 - Charakterisiert die Häufigkeit, mit der eine bestimmte Fadingtiefe erreicht wird
 - Bezeichnet $f(r, \dot{r})$ die Verbunddichte von Pegel r und Ableitung \dot{r} , so folgt²⁸

$$N(r) = \int_0^\infty \dot{r} f(r, \dot{r}) d\dot{r}$$

- Average duration of fades
 - $\,\blacksquare\,$ Charakterisiert die mittlere Verweildauer in einem Fade mit Tiefe mehr als r
 - lacktriangle Bezeichnet r den Pegel und F(r) dessen Verteilungsfunktion, so folgt 28

$$ADF(r) = \frac{F(r)}{N(r)}$$

²⁸Nach [Mol11]

Übersicht

- Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

Lernziele

- Die folgende Aufstellung fasst die zentralen Punkte zusammen.
- Es wird aufgezeigt, welche Punkte nach Bearbeitung des Kapitels klar sein sollten.
- Hinweise:
 - Die Auflistung ist nicht vollständig, sondern führt die wichtigsten Aussagen auf; nicht erwähnte Inhalte sind dennoch bedeutsam.
 - Oft enthalten die Nachweise wichtige Ideen; diese also nicht vernachlässigen.
 - Stets versuchen, Gleichungen in Verbindung mit Interpretationen und Anwendungen zu sehen
 - Des weiteren sollten alle kleinen nützlichen Ergänzungen verstanden sein.
 - Es ist immer eine gute Idee, etwas Gelerntes im Rechner umzusetzen. Dies hilft beim Verständnis und schärft das Bewusstsein für mögliche Probleme.

Lernziele

Nach diesem Kapitel sollten als zentrale Punkte klar sein:

- Unterscheidung/Beiträge der verschiedenen Ausbreitungscharakteristika
- Herleitung des Tapped-Delay-Modells durch Abtastung
- Physikalische Ursachen der Gestalt der Impulsantwort und deren Interpretation
- lacktriangle Diskussion über Dynamik der $h_\ell[m]$ und hierfür verantwortliche Parameter
- Doppler- und Delay-Spread; Kohärenzbegriffe; Fadingbegriffe

Lernziele

Nach diesem Kapitel sollten als zentrale Punkte klar sein:

- Herleitung und Bedeutung der komplexen (zirkulären) Normalverteilung
- Fading-Verteilungen
- Alternative Kanalcharakterisierung, insbesondere Scatter-Funktion, Power Delay Profile und Doppler Power Profile
- Grundidee der Kanalmodellierung am Beispiel COST 207

Übersicht

- 3 Kanalbeschreibung
 - Vorbetrachtungen
 - Betrachtung der Impulsantwort
 - Kohärenzbegriffe und ihre Bedeutung
 - Kanalkoeffizienten und Fadingverteilungen
 - Kanalsimulation am Beispiel von COST 207
 - Ergänzungen
 - Lernziele
 - Literatur

Literatur I

- [Mol11] A. Molisch, Wireless Communications, Wiley, 2011
- [Jun97] P. Jung, Analyse und Entwurf digitaler Mobilfunksysteme, Teubner, 1997
- [TV08] D. Tse, P. Viswanath, *Fundamentals of Wireless Communications*, Cambridge University Press, 2008
- [PS08] J. Proakis, M. Salehi, *Digital Communications*, McGraw-Hill, 2008
- [PJ15] F. Puente Leon, H. Jäkel, Signale und Systeme, Oldenbourg, 2015
- [Bel63] P. Bello, *Characterization of Randomly Time-Variant Linear Channels*, IEEE Transactions on Communications Systems, 1963
- [COST207] COST 207, Digital land mobile radio-communications, final report, 1989
- [Sklar01] B. Sklar, Digital Communications, Prentice Hall, 2001

