PAT-NO:

JP405065158A

DOCUMENT-IDENTIFIER: JP 05065158 A

TITLE:

BIAXIALLY ORIENTED BLOW-MOLDED CONTAINER

PUBN-DATE:

March 19, 1993

INVENTOR-INFORMATION:

NAME

COUNTRY

MORIZUMI, KENICHI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

DAINIPPON PRINTING CO LTD N/A

APPL-NO:

JP03258363

APPL-DATE: September 10, 1991

INT-CL (IPC): B65D001/02

US-CL-CURRENT: 220/675

ABSTRACT:

PURPOSE: To provide a biaxially oriented blow-molded container which is not so much deformed that strength of recessed and protruding parts in a body part is decreased by hot filling.

CONSTITUTION: A plurality of recessed parts 42 extending in the vertical direction and arranged in the peripheral direction are formed at least from a central part of a body 4 of a container 1 to a lower part of it. A rib 44 which extends partially in the vertical direction is provided at a protruding column part 43 formed between the recessed parts 42. Thus, strength of the part from the central part of the body 4 to the lower part can be increased much enough to prevent generation of permanently expanded deformation of the recessed part 42 due to change of pressure inside the container 1.

COPYRIGHT: (C) 1993, JPO&Japio

(19)日本国特新 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-65158

(43)公開日 平成5年(1993)3月19日

(51)IntCL*

識別記号 庁内整理番号 FI

技術表示箇所

B 6 5 D 1/02

B 7445-3E

審査請求 未請求 請求項の数3(全 5 頁)

(21)出顧番号

特颐平3-258363

(71)出題人 000002897

(22)出顧日

平成3年(1991)9月10日

東京都新宿区市谷加賀町一丁目1番1号

(72)発明者 森住 港一

東京都新宿区市谷加賀町一丁目1番1号

大日本印刷株式会社内

大日本印刷株式会社

(74)代理人 弁理士 高石 橘馬

(54) 【発明の名称】 二軸延伸ブロー成形容器

(57)【要約】

【目的】 ホットフィルを行っても、その厨部に設けた 凹凸部が強度低下をきたすように大きく変形することの ない二軸延伸ブロー成形容器を提供する。

【構成】 少なくとも容器1の胴部4の中央部から下部 にかけて、縦方向に延びる複数の凹部42が周方向に配 列して形成されており、各凹部42間に形成された凸状 の柱部43には部分的に縦方向に延びるリブ44が形成 されており、もって胴部中央部から下部にかけての部分 の強度が増加し、容器1内の圧力変化による凹部42の 永久的な脳出変形を防止した二軸延伸プロー成形容器で ある。

【特許請求の範囲】

【請求項1】 二軸延伸ブロー成形容器において、少な くとも容器の胴部中央部から下部にかけて、縦方向に延 びる複数の凹部が周方向に配列して形成されており、前 記各凹部間に形成された凸状の柱部には部分的に縦方向 に延びるリブが形成されており、もって前記開部中央部 から下部にかけての部分の強度が増加し、容器内の圧力 変化による前記四部の永久的な脚出変形を防止したこと を特徴とする二軸延伸プロー成形容器。

【請求項2】 請求項1に記載の二軸延伸ブロー成形容 10 器において、前記凹部は一段凹んだ周辺部とわずかに外 方に湾曲した中央部とを有しており、前記容器内部の減 圧により前記四部の湾曲状中央部が凹むことにより減圧 を吸収するバネル構造となっていることを特徴とする二 軸延伸ブロー成形容器。

【論求項3】 論求項2に記載の二軸延伸ブロー成形容 器において、前記凹部の中央よりやや上方の部分が前記 凹んだ周辺部に連続して凹んでおり、もって前記凹部は 上部分と下部分の2か所でそれぞれ中央部が外方に向け て湾曲した形状の減圧吸収パネル構造となっていること 20 を特徴とする二軸延伸ブロー成形容器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は二輪延伸ブロー成形によ り製造された容器に関し、特に、ホットフィルを行って も関部に設けた凹部が膨出して永久的な変形をきたすこ とのない耐熱変形性の容器に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】ポリエ ル樹脂等からなる二軸延伸ブロー成形ポトルは、極めて 優れた透明性及び表面光沢を有し、美麗で、ガスバリヤ 一性、水分不透過性、耐内容物性および保存性等に優れ ている。また、可塑剤や安定剤等の添加物において有毒 ガスを発生せず、燃焼時の発熱も少なく、炉をいためる こともないため易廃棄性である等、多くの利点を有して いる。そのため、各種飲料水、調味料、酒類その他の食 品用の容器 (ボトル) 等に広く用いられている。

【0003】 最近では、ジュース等の飲料用容器として てきたが、このような大型の容器では、たとえば図7に 示す容器6のように、内容物の重量を支えるため、また 充填された容器の搬送時にかかる外力に抗するために胴 部に凹凸部を設けて機械的強度を向上させている。この 容器6において、縦方向に延びる複数の凹部61は胴部周 方向に配列するように形成されており、各凹部61間には 凸状部62が形成されている。図7のX-X線に沿った部 分断面図である図8に示すように、このような容器6に おいては、この凸状部62はその上面(外側の面)がほぼ 平坦な曲面となるように形成されており、また凸状部6 2、62間の凹部61も、単純な曲面(凹面状)となってい るのが一般的である。

【0004】ところで、最近では、この二軸延伸ブロー 成形によるポリエステル製容器に、80~95°Cの温度に保 ったジュース等の液体を充填するいわゆるホットフィル が行われるようになってきた。ジュース等の飲料を、図 7に示すような従来形状の薄肉のプラスチック製容器6 にホットフィルし、その直後に栓をすると、容器の上部 に存在するいわゆるヘッドスペースが膨張しようとする ために内圧が大きくなり、容器の開部に設けた凹部分が 外側に励れて反転変形することがあった。たとえば、上 述の容器6においては、図8に破線で示すように容器の 凹部61の部分が膨れてしまう。このように凹部が変形す ると、内容物が冷却して容器内圧が低下しても膨れた部 分はそのままとなり、容器外観を悪くし、商品価値を低 下させる。また、変形により容器関部の強度も低下する こととなり、搬送において問題となる。

【0005】従って本発明の目的は、ホットフィルを行 っても容器胴部に設けた凹凸部が強度低下をきたすよう に大きく変形することのないような二触延伸ブロー成形 容器を提供することである。

[0006]

【課題を解決するための手段】上記目的に鑑み叙意研究 の結果、本発明者は、容器の関部に複数の凹部を縦方向 に形成し、この凹部間に形成された凸状部にさらに超方 向のリブを部分的に形成すれば、ホットフィルを行って も凹部が膨出して反転するようなことがなく、良好な容 器外観を維持できることを発見し、本発明に想到した。 【0007】すなわち、本発明の二軸延伸ブロー成形容 チレンテレフタレートにより代表される飽和ポリエステ 30 器は、少なくとも容器の胴部中央部から下部にかけての 部分に、縦方向に延びる複数の凹部が周方向に配列して 形成されており、前記各凹部間に形成された凸状の柱部 には部分的に縦方向に延びるリブが形成されており、も って前記闘部中央部から下部にかけた部分の強度が増加 し、容器内の圧力変化による前記凹部の永久的な膨出変 形を防止したことを特徴とする。

[8000]

【実施例及び作用】図1は本発明の一実施例による二軸 延伸プロー成形容器を示す正面図である。本実施例にお 大型の二輪延伸ブロー成形容器が使用されるようになっ 40 いて、ポリエチレンテレフタレート等のプラスチックを 用いてブロー成形により一体的に形成された二軸延伸ブ ロー成形容器1は、口部2と、肩部3と、肩部4と、底 部5とからなり、口部2、肩部3及び底部5は従来の二 軸延伸ブロー成形容器と同様の形状となる。

> 【0009】本実施例において、胴部4の中央よりやや 上方の部分には、周に沿ったくびれ部41が形成されてお り、このくびれ部41より上の胴部分は肩部3からスムー ズに続く滑らかな壁面を有する。一方、このくびれ部41 より下の胸部分には、縦方向に延びる形状の複数の凹部 50 42が周方向に配列して形成されており、もってこの凹部

42、42間には梃方向に延びる凸状の柱部(以下凸状部と 呼ぶ) 43が形成されている。また、それぞれの凸状部43 の上面には縦方向に延びるリブ44が形成されている。こ のリブは、凸状部43の全体にわたっては成形されてはお らず、部分的に成形されている。本実施例では、このリ ブは、凹部42が膨れていく際、容器の外側に向かって最 も移動距離の大きくなる部分の長さとほぼ等しい長さを 有し(すなわち、容器が膨張する際に最も径外方に膨れ ようとする部分に対応する位置にリブが形成されてお り)、またリブの高さは容器の最大径となる底部5の高 10 さから突出しない高さを有する。

【0010】図2は図1のA-A線に沿った部分断面図 である。この図からわかるように、容器1の胴部4に設 けたくびれ部41より下の部分では、凸状部43と凹部42と が交互になる壁面を有する。

図2では容器1のA-A断 面として半分しか示していないが、この図から容易に推 測できるように、本実施例の容器1では6つの凸状部43 と6つの凹部42とが交互に繰り返す胴部構造となる。

【0011】なお、凹部42は図1のA-A線における断 ような凹部となっているが、後述するように、他の部分 (A-A枠の上又は下の部分)では、凹部の中央部が周 辺部より外方に僅かに盛り上がるような形状となってい

【0012】図3は図1のB-B線に沿った部分断面図 であり、関部に設けた凸状部(柱部)43付近を拡大して 示す。図において、容器壁40の下の部分が容器内部とな る。この図からわかるように、凸状部43の中央部をリブ 44が走っている。また図3からわかるように、図1の容 部43の場部に隣接する部分では容器内部の方向に凹んで いるが、凸状部43から遠ざかるにつれてわずかに容器外 方に向かうように湾曲している。

【0013】図4は図1のC-C線に沿った部分断面図 である。ここで容器壁40の下部が容器内部となる。この 図からわかるように、容器1のC-C線近傍では凹部42 は周辺部(凸状部43に近い部分)では容器内方に凹んで いるが、中央部では外方に弧を描くように膨らんでい る。なお、この付近でも凸状部沿にはリブ44が形成され ている。

【0014】以上説明したように、本発明の容器では、 その胴部に設けた凸状部に縦方向に走るリブを設けてい るので、凸状部の強度が向上する。これにより、容器内 圧が大きくなっても、柱部の役目をする凸状部が容器軸 線方向から逸脱するように変形(凸状部の折れや曲が り) することがない。したがって、凸状部間に設けられ た凹部が、先に図7において破線で示したように外側に **膨れるように変形することはない。**

【0015】本実施例の容器1は、ホットフィル直後の 容器胴部の膨れ変形を防止するばかりではなく、充填し 50 説明したが、この凹部の数は適宜変更してよい。また、

・た内容物が冷却して容器内圧が低下した場合に、容器外 観を損なうことなく、また容器としての機械的強度を低

下させることなく減圧を相殺するように変形する闘部バ ネル構造を有する。凹部位がこのパネル構造における減 圧変形部となる。

【0016】図5は図1の容器1のD-D線に沿った部 分断面図であり、凹部42の凹凸状態を示している。ここ で容器壁40の右側が容器内部となる。図5からわかるよ うに、本実施例の容器1は、その凹部42において上部分 422 と下部分426 との2か所で外方に湾曲するパネル構 遺となっている。すなわち、上部分42a と下部分42bの それぞれの周辺部分が凹んだ構造となっている。なお、 両者の境界部分となる凹部分42c が上述のA-A線付近 となる。なお、図5においては、上部分42aと下部分42 bの湾曲状態は説明のために多少誇張してある。

【0017】 ここで凸状の柱部に設けるリブの形態につ いて説明する。本実施例の容器の凹部は、容器の内圧が 上昇した場合、図1のA-A線における断面部分が容器 の外側に向かって最も激しく脳出しようとするため、凸 面部分では図2に示すように単純になめらかに弧を描く 20 状部もこの部分では他の部分に比較してより強固な補強 が必要となる。

> 【0018】従って図6にリブの縦筋面(図1のE-E 線に相当)を示すが、凹部42の最も凹んだ部分に相当す る付近のリブ44cを高く、かつ幅広とし、42の外側に湾 曲した部分に相当する部分44a、44bにおいては、除々 に凸状部と同じ高さとして形成させることが、機能、デ ザインの上からも好ましい。

【0019】上述した凹部42のバネル構造は、容器に内 容物をホットフィルして栓をした後に冷却されて容器内 器1のB-B娘における断面部分では、凹部42は、凸状 30 圧が低下した場合に、図5に破線46a、46b で示すよう に変形する。このように、凹部の中央部分の湾曲部が内 方に変形することにより容器内の減圧を吸収する。この とき、湾曲状の凹部中央部は滑らかに、不自然な形状と ならずに変形するので、容器の外観に違和感はない。

> 【0020】なお本発明の二軸延伸ブロー成形容器とし ては、ポリエチレンテレフタレート等の熱可塑性プラス チックを材料に用いたものが好ましい。

【0021】以上本発明の二軸延伸プロー成形容器を添 付図面を参照して説明したが、本発明はこれに限定され 40 ることなく、本発明の思想を逸脱しない限り種々の変形 を施すことができる。 "えば胴部に設けた凹部を減圧吸 収パネル構造とせず、、、本な曲面構造としてもよいし、 また凹部を減圧変形部とする場合でも、上述した実施例 のように、2か所において (図5の42a と42b)外方に湾 曲した中央部を形成する必要はなく、一つの凹部におい て、その中央部1か所が外方に湾曲し、その周りは一段 と凹んでいるような減圧吸収パネル構造としてもよい。 【0022】以上の実施例では、胴部周方向に6つの凹 部と6つの凸状部とが交互に配列してなる容器について

リブの幅及び長さ、凹部の大きさ等は容器のデザインに 合わせて適宜変更してよい。

[0023]

【発明の効果】以上詳述したように、本発明では、容器 の厨部に設けた凹部間の柱部となる凸状部に、縦方向の リブを部分的に形成してその部分の機械的強度を向上し ている。これによって、ホットフィル後に容器内圧が上 がった場合でも、胴部に設けた凹部が開現反転するよう な大きな永久的変形は起こらない。

【0024】また本発明においては、前記凹部を周辺部 10 が内方に凹んで、中央部がわずかに外方に湾曲している パネル構造とすることができる。このようなパネル構造 は減圧時の変形部となり、容器内圧が減少すると消曲状 中央部が凹み、減圧を自然に吸収する。本発明の容器は ホットフィルを施す種々の容器として用いることができ ٥.

【図面の簡単な説明】

【図1】本発明の一実施例による二軸延伸ブロー成形容 器を示す正面図である。

【図2】図1に示す二輪延伸ブロー成形容器のA-A線 20 43、62····凸状部 に沿った部分断面図である。

【図3】図1に示す二軸延伸ブロー成形容器のB-B線

に沿った部分断面図である。

【図4】図1に示す二軸延伸ブロー成形容器のC-C線 に沿った部分断面図である。

【図5】図1に示す二軸延伸ブロー成形容器のD-D線 に沿った部分断面図である。

【図6】図1に示す二軸延伸プロー成形容器のE-E提 に沿った部分断面図である。

【図7】従来の二軸延伸ブロー成形容器の一例を示す正 面図である。

【図8】図7に示す容器のX-X線に沿った部分断面図 である.

【符号の説明】

1、6···容器

2 · · · · · 口部

3・・・・ 肩部

4 · · · · · 顯部

5 · · · · · 底部

41・・・・くびれ部

42、61···凹部

44 リブ

