Ins	truction Set	for the Single-Bus Processor Ar	chitecture						
Sl.No.	Instruction	Action	Op Code (Hex)						
1	nop	No action	00						
2	stop	Exit the program	01						
3	adi xx	$[AR] \leftarrow [AR] + xx$	02						
4	subi xx	$[AR] \leftarrow [AR] - xx$	03						
5	xri xx	$[AR] \leftarrow [AR] \oplus xx$	04						
6	ani xx	$[AR] \leftarrow [AR] \wedge xx$	05						
7	ori xx	$[AR] \leftarrow [AR] \lor xx$	06						
8	cmi xx	[AR] - xx (Flags only)	07						
9- 16	ret <fl></fl>	$[PC] \leftarrow [[SP]], [SP] \leftarrow [SP]+1$ if $\langle FL \rangle = 1$	08 to 0F						
17	add <r></r>	[AR] ← [AR] + [<r>]</r>	10-1F (n:0-F)						
18	sub <r></r>	[AR] ← [AR] - [<r>]</r>	20-2F (n:0-F)						
19	xor <r></r>	[AR] ← [AR] ⊕ [<r>]</r>	30-3F(n:0-F)						
20	and <r></r>	[AR] ← [AR] ∧ [<r>]</r>	40-4F(n:0-F)						
21	or <r></r>	[AR] ← [AR] ∨ [<r>]</r>	50-5F(n:0-F)						
22	cmp <r></r>	[AR] - [<r>] (Flags only)</r>	60-6F(n:0-F)						
23	movs <r></r>	$[OR] \leftarrow [\langle R \rangle], [AR] \leftarrow [\langle R \rangle]$	70-7F(n:0-F)						
24	movd <r></r>	[<r>] ← [AR]</r>	80-8F(n:0-F)						
25	movi <r> xx</r>	[<r>] ← xx</r>	90-9F(n:0-F)						
26	store <r></r>	[[AR]] ← [<r>]</r>	A0-AF(n:0-F)						
27	load <r></r>	[<r>] ← [[AR]]</r>	B0-BF(n:0-F)						
28	push <r></r>	$[SP] \leftarrow [SP]-1, [[SP]] \leftarrow []$	C0-CF(n:0-F)						
29	pop <r></r>	$[] \leftarrow [[SP]], [SP] \leftarrow [SP]+1$							
30- 37	jmpd <fl> xx</fl>	[PC] ← xx if <fl> = 1</fl>	EO to E7						
38- 45	jmpr <fl></fl>	[PC] ← [AR] if <fl> = 1</fl>	E8 to EF						
46- 53	cd <fl> xx</fl>	$[SP] \leftarrow [SP]-1, [[SP]] \leftarrow [PC],$ $[PC] \leftarrow xx \text{ if } \langle FL \rangle = 1$	F0 to F7						
54- 61	cr <fl></fl>	$[SP] \leftarrow [SP]-1, [[SP]] \leftarrow PC],$ $[PC] \leftarrow [AR] \text{ if } \langle FL \rangle = 1$	F8 to FF						
Flace:	lags: Zero (Z) Carry (CY) Sign (S) Parity (P)								

Flags: Zero (Z), Carry (CY), Sign (S), Parity (P)

 $\langle FL \rangle = u/z/nz/c/nc/p/m/op \Rightarrow$

FL = 0/Z/Z'/CY/CY'/S/S'/1 if Parity odd

< R > = r1/r2/r3/r4/r5/r6/r7/r8/r9/r10/r11/PC/SP/AR/OR

ALU Function Codes:

0000	0001	0010	0011	0100	0101	0110	1111
-	ADD	SUB	XOR	AND	OR	CMP	A1

Architecture based on a Single Internal Data Bus

Nomenclature:

E_{XY}: Enables the Output of the module XY on to the Data Bus;

 L_{XY} : Enables the Data Input applied to module XY to be loaded into the module at the next Active Clock edge; I_{PC} , I_{SP} , D_{SP} : Enable Incrementing PC, Incrementing SP and Decrementing SP at the next Active Clock edge; S_{XY} : Select bits for module XY; R_{0R} / R_{AR} : Clears the register OR / AR

The actual CLEAR input applied to the Microprogram Sequencer is given by:

CLEAR_{MS} = $R_{MS} \cdot FL' \cdot E_{FL}$, where FL is the selected FLAG and E_{FL} is the Flag Register output enable control.

Hence in conditional Branch instructions, the MS is cleared resulting in the next FETCH, if R_{MS} = 1 AND the selected FLAG is not set (FL = 0); for unconditional Branch, FL = 0, and hence the MS is cleared if R_{MS} = 1.