Q4001 Thermodynamics of Materials September, 2019 Homework 5 Jour Alberto Martinez Espinosa A01750270 CEM 1. The Helmholtz function of a certain gas is A=-n2a-nRTln(V-nb)+J(T) where Jisa function of Tonly. Derne an expression for the pressure of the gas. We know that dA=-SdT-PdV (3A) = -SdT-PN = -P(2V) T $\left(\frac{\partial A}{\partial V}\right)_{T} = -P$ Then, $\left(\frac{\partial A}{\partial V}\right)_{T} = \frac{n^{2}a}{V^{2}} - nRT\left[\frac{1}{V-nb}\right] + \frac{\partial J(T)}{\partial V}$ $\left(\frac{\partial A}{\partial V}\right)_{T} = \frac{n^{2}q}{V^{2}} - \frac{nRT}{V-nb} = -P$ $P = \frac{nRT}{V-nb} - \frac{n^2q}{\sqrt{2}}$

2. The 6: bbs function of a gas is given by Where B is a function of T. Find the expression for:

(a) The equation of state 26 = -SdT + VdP (36) = -SOT + VOP - (36) = V $\left(\frac{\partial G}{\partial P}\right)_{T} = nRT \left[ln(P) - ln(PO)\right] - nB$ (36) = nRT[p]-nB_(2) N]TSn=A $\left(\frac{\partial G}{\partial P}\right)_{T} = \frac{nRT}{nRP} - nB$ $(b) The entropy
<math display="block">V = \frac{nRT}{P} - nB \rightarrow PV = nRT - nBBM \rightarrow MANN.$ $\left(\frac{\partial G}{\partial T}\right)_{p} = -S$ $\left(\frac{\partial G}{\partial T}\right)_{p} = nR \ln\left(\frac{P}{P_{0}}\right) - nP \frac{\partial B}{\partial T}$ (26) p = nRln(p) -nPJB S=nPJB-nRln(P)

() The Helmholtz function up 1: 200 000 months add and and some A=U-TS; H=U+PV, G=H=TS G=U+PV-TS→ G=U-TS+PV + TO NOT AND SITE (D) Using 96V+T66-= 26 G=A+PV A=G-PV - from (a) and - $A = nRT ln(\frac{P}{P0}) - nBP - PV$ $A = nRT ln(\frac{P}{B}) - nBP - nPT + nPB$ $A = nRT ln(\frac{P}{B}) - nBP - nPT + nPB$ A=nRT[ln(P)-19-1+]TAn= (36) 3. Read the article by J. Pellicer et al. "Thermodynamics of 4. With the information from Pellicen's paper -(a) Write an expression for conformation work for a elastic system at We can use the following equations from the appendix. the term - Polv = 0 owing to V constant, then (= 6) W= TdL (9) mln - 269 n = 2

(b) What is the relation between the constant to in this paper and the young's modulus of the elastic menterial? It is a content (Intensive) and is not possible to defermine F=-KDX Et is anintensive quantity and depends on the material, & 95 determined experimentally. In the equation T=KT[to-(12)2] K depends only on the composition and geometry and La without stress. In Hooke's Law, the constant is defined by the composition and geometry (c) Derive equations 2, 3, 6, 7, 9 and 10. dv= Tds-pdv+~dl Equation (2) TO SOL I DU = TOS + TOLL OF TO THE $\left(\frac{\partial V}{\partial L}\right)_{T,V} = T\left(\frac{\partial S}{\partial L}\right)_{T,V} + T\left(\frac{\partial L}{\partial L}\right)_{T,V}$ $\left(\frac{\partial V}{\partial L}\right)_{T,V} = T + T\left(\frac{\partial S}{\partial L}\right)_{T,V}$ Equation (3) == KT [= -(-1)2] (=)T,v= T+T(=)T,v $\left(\frac{\partial \mathcal{T}}{\partial T}\right)_{1,N} = KT \left[-\frac{1}{2}\frac{\partial L}{\partial T} - \frac{2}{2}\left(\frac{L_0}{T}\right)\frac{\partial L_0}{\partial T}\right] \left(\frac{\partial S}{\partial T}\right)_{T,N} = -\left(\frac{\partial C}{\partial T}\right)_{1,N}$ $\left(\frac{\partial \tau}{\partial T}\right)_{L,V} = KT \left[\frac{1}{L_0}\left(\frac{L}{L_0}\right)\frac{\partial L_0}{\partial T} - \frac{2L_0}{L^2}\frac{\partial L_0}{\partial T}\left(\frac{L_0}{L_0}\right)\right]$ $\uparrow_0 = \frac{1}{L_0}\frac{\partial L_0}{\partial T}$ (35) LN = KT[-(+0) to 310 - 210 (+0) 310] 1s the coefficient of linear expansion (2t) 1 - KT[-(10) To -2(10)2 70] of rubber inder zero stress -T(3=) LN= KT2(10) 70+2KT2(10)270 7=0 一丁(子)1,1=1730[七十2(台)2] (3) TU = 7 + T(35) TU (学)+V=大下次「十0+2(中)?]

Equation 9.

Using equations 7 and 6

$$x_0 = \frac{1}{2} \frac{1}{2}$$

(10)
$$\gamma = kT \left[\frac{1}{Lo} - \left(\frac{Lo}{L}\right)^2\right] + k \left[\frac{1}{Lo} - \left(\frac{Lo}{Lo}\right)^2\right] + k \left[\frac{Lo}{Lo} - \left(\frac{Lo}{Lo}\right) + k \left[\frac{Lo}{Lo}\right] +$$

(e) why is it that nubberlike elasticity is an entropic effect?

According to (1)
$$\left(\frac{\partial S}{\partial L}\right)_{\tau} = \left(\frac{\partial L}{\partial \tau}\right)_{F} \left(\frac{\partial F}{\partial L}\right)_{\tau}$$

If we consider a change is the styn, determined by observing the temperature dependence of the elastic bond length under the condition of constant tension (all). The determination of (all) will give the sign of (as).

Using deformation force, which us an energetic and entropic effect

When stretching a number, the force exerted is not used to very the internal energy but to make variations of conformation that decrease entopy. Then

$$f = (\frac{34}{31})_{v,T} - T(\frac{35}{31})_{v,T}$$
 $f = -T(\frac{35}{31})_{v,T}$

5. Remarkable the following thermodypoints reaction:

(a)
$$C_p = C_v + \frac{\alpha^2 T V}{K_T}$$

We can modify the equation
$$C_p - (v = \frac{d^2 T V}{K_T}) = C_p - (v = \frac{d^2 T V}{dT}) = C_p - (v = \frac{$$

(b)
$$k_{T} - k_{S} = 2\sqrt{2} T$$
 where $k_{S} = -\frac{1}{2} \left(\frac{\partial V}{\partial P} \right)_{ST}$

$$-\frac{1}{2} \left(\frac{\partial V}{\partial P} \right)_{T} + \frac{1}{2} \left(\frac{\partial V}{\partial P} \right)_{S}$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{T} + \left(\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{T} + \left(\frac{\partial V}{\partial P} \right)_{T} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{T} + \left(\frac{\partial V}{\partial P} \right)_{T} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = \left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} = V \mathcal{A} \left(\frac{\partial F}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S} + \left(-\frac{\partial V}{\partial P} \right)_{S} \right]$$

$$\frac{1}{2} \left[-\left(\frac{\partial V}{\partial P} \right)_{S$$

(c)
$$\frac{1}{k_s} = \frac{1}{k_s}$$

We know that $\frac{1}{k_s} = \frac{1}{k_s} \left(\frac{2s}{2} \right)_{r}$ and $\frac{1}{k_s} = \frac{1}{k_s} \left(\frac{2s}{2} \right)_{r}$

and $\frac{1}{k_s} = \frac{1}{k_s} \left(\frac{2s}{2} \right)_{r}$

But, It is necessary to formation experiment for $\left(\frac{2s}{2} \right)_{r}$

Using $\frac{2s}{2} = \frac{1}{2k_s} \left(\frac{2s}{2} \right)_{r}$
 $\left(\frac$

(d)
$$\left(\frac{\partial H}{\partial V}\right)_{S} = \frac{C\rho}{k_{T}CV}$$
 $\frac{\partial H}{\partial V} = \frac{1}{S} + \frac{1}{S$

