LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 19: Schur's upper triangularization theorem

► Recall:

Lecture 19: Schur's upper triangularization theorem

- Recall:
- ▶ Definition 17.1: A matrix A is said to be diagonalizable if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}$$
.

Lecture 19: Schur's upper triangularization theorem

- ► Recall:
- ▶ Definition 17.1: A matrix A is said to be diagonalizable if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}$$
.

► The diagonal entries of D are eigenvalues of A and columns of S are corresponding eigenvectors.

▶ Theorem 17.4: Let A be an $n \times n$ complex matrix. Then the following are equivalent:

- ▶ Theorem 17.4: Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ► (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}$$
.

- ▶ Theorem 17.4: Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}$$
.

 \blacktriangleright (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A.

- ▶ Theorem 17.4: Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- \blacktriangleright (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A.
- ▶ (iii) The geometric multiplicity is same as the algebraic multiplicity for every eigenvalue of *A*.

- ▶ Theorem 17.4: Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}$$
.

- \blacktriangleright (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A.
- ▶ (iii) The geometric multiplicity is same as the algebraic multiplicity for every eigenvalue of A.
- ► There are matrices which are not diagonalizable. The next best would be to make the matrix 'triangular'.

Upper and lower triangular matrices

▶ Definition 19.1: A matrix $T = [t_{ij}]_{1 \le i,j \le n}$ is said to be upper triangular if

$$t_{ij} = 0$$
, for $1 \le j < i \le n$.

Upper and lower triangular matrices

▶ Definition 19.1: A matrix $T = [t_{ij}]_{1 \le i,j \le n}$ is said to be upper triangular if

$$t_{ij} = 0$$
, for $1 \le j < i \le n$.

A matrix $T = [t_{ij}]_{1 \le i,j \le n}$ is said to be lower triangular if $t_{ij} = 0$, for $1 \le i < j \le n$.

Upper and lower triangular matrices

▶ Definition 19.1: A matrix $T = [t_{ij}]_{1 \le i,j \le n}$ is said to be upper triangular if

$$t_{ij} = 0$$
, for $1 \le j < i \le n$.

- A matrix $T = [t_{ij}]_{1 \le i, j \le n}$ is said to be lower triangular if $t_{ij} = 0$, for $1 \le i < j \le n$.
- Upper triangular:

$$T = \begin{bmatrix} t_{11} & t_{12} & t_{13} & \dots & t_{1n} \\ 0 & t_{22} & t_{23} & \dots & t_{2n} \\ 0 & 0 & t_{33} & \dots & t_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & t_{nn} \end{bmatrix}.$$

Note that products of upper triangular matrices are upper triangular. If a matrix is both upper triangular and lower triangular then it is diagonal.

▶ Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*$$
.

▶ Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*$$
.

▶ Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*$$
.

▶ Proof: We will prove this by induction on *n*.

▶ Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*$$
.

- ▶ Proof: We will prove this by induction on *n*.
- For n=1 there is nothing to prove, as every 1×1 matrix is upper triangular, we can take U as the 1×1 identity matrix.

▶ Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*$$
.

- ▶ Proof: We will prove this by induction on *n*.
- For n=1 there is nothing to prove, as every 1×1 matrix is upper triangular, we can take U as the 1×1 identity matrix.
- Now take $n \ge 2$ and assume the result for all $(n-1) \times (n-1)$ matrices.

► Consider $A = [a_{ij}]_{1 \le i,j \le n}$.

- ► Consider $A = [a_{ij}]_{1 \le i, j \le n}$.
- ▶ Let a_1 be some eigenvalue of A.

- ► Consider $A = [a_{ij}]_{1 \le i, j \le n}$.
- Let a_1 be some eigenvalue of A.
- Let v_1 be an eigenvector of A with eigenvalue a_1 . (Since $\det(A a_1 I) = 0$, $A a_1 I$ is singular and so there exists a non-zero vector v_1 such that $(A a_1 I)v_1 = 0$.)

- ► Consider $A = [a_{ij}]_{1 \le i, j \le n}$.
- ▶ Let a_1 be some eigenvalue of A.
- Let v_1 be an eigenvector of A with eigenvalue a_1 . (Since $det(A a_1I) = 0$, $A a_1I$ is singular and so there exists a non-zero vector v_1 such that $(A a_1I)v_1 = 0$.)
- ▶ By dividing v_1 by its norm if necessary, we may assume that v_1 is a unit vector.

Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n . (Such an extension exists due to Gram-Schmidt orthogonalization process.)

- Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n . (Such an extension exists due to Gram-Schmidt orthogonalization process.)
- We have $Av_1 = a_1v_1$ and for every j, expanding Av_j using the basis $\{v_1, \ldots, v_n\}$,:

$$Av_j = \sum_{i=1}^n \langle v_i, Av_j \rangle v_i.$$

- Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n . (Such an extension exists due to Gram-Schmidt orthogonalization process.)
- We have $Av_1 = a_1v_1$ and for every j, expanding Av_j using the basis $\{v_1, \ldots, v_n\}$,:

$$Av_j = \sum_{i=1}^n \langle v_i, Av_j \rangle v_i.$$

▶ Let V be the matrix $V = [v_1, v_2, ..., v_n]$. Then these linear equations can be written as:

$$AV = VS$$

where $S = [s_{ij}]$ is the matrix defined by

$$s_{ij} = \langle v_i, Av_i \rangle.$$

- Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n . (Such an extension exists due to Gram-Schmidt orthogonalization process.)
- We have $Av_1 = a_1v_1$ and for every j, expanding Av_j using the basis $\{v_1, \ldots, v_n\}$,:

$$Av_j = \sum_{i=1}^n \langle v_i, Av_j \rangle v_i.$$

Let V be the matrix $V = [v_1, v_2, \dots, v_n]$. Then these linear equations can be written as:

$$AV = VS$$

where $S = [s_{ij}]$ is the matrix defined by

$$s_{ij} = \langle v_i, Av_j \rangle.$$

▶ In other words, S is the matrix of the linear map $x \mapsto Ax$, on the basis $\{v_1, \dots, v_n\}$.

ightharpoonup We have AV = VS.

- ightharpoonup We have AV = VS.
- ▶ Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.

- ightharpoonup We have AV = VS.
- Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.
- ► Hence we get,

$$A = VSV^*$$
.

- ightharpoonup We have AV = VS.
- Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.
- Hence we get,

$$A = VSV^*$$
.

Note that since $Av_1 = a_1v_1$ and $s_{ij} = \langle v_i, Av_j \rangle$, the matrix S is of the form:

$$S = \left[\begin{array}{cc} a_1 & y \\ 0 & B \end{array} \right]$$

for some $1 \times (n-1)$ vector y and $(n-1) \times (n-1)$ matrix B.

- ightharpoonup We have AV = VS.
- Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.
- ► Hence we get,

$$A = VSV^*$$
.

Note that since $Av_1 = a_1v_1$ and $s_{ij} = \langle v_i, Av_j \rangle$, the matrix S is of the form:

$$S = \left[\begin{array}{cc} a_1 & y \\ 0 & B \end{array} \right]$$

for some $1 \times (n-1)$ vector y and $(n-1) \times (n-1)$ matrix B.

▶ By induction hypothesis, there exists an $(n-1) \times (n-1)$ unitary matrix U_1 and an upper triangular matrix T_1 such that

$$B=U_1T_1U_1^*.$$

► So we get

$$A = VSV^*$$

$$= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^*$$

$$= V \begin{bmatrix} 1 & y \\ 0 & U_1T_1U_1^* \end{bmatrix} V^*$$

So we get

$$A = VSV^*$$

$$= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^*$$

$$= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^*$$

$$A = V \left[egin{array}{ccc} 1 & 0 \ 0 & U_1 \end{array}
ight] \left[egin{array}{ccc} a_1 & z \ 0 & T_1 \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & U_1^* \end{array}
ight] V^* = UTU^*,$$

So we get

$$A = VSV^*$$

$$= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^*$$

$$= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^*$$

$$A = V \left[egin{array}{ccc} 1 & 0 \ 0 & U_1 \end{array}
ight] \left[egin{array}{ccc} a_1 & z \ 0 & T_1 \end{array}
ight] \left[egin{array}{ccc} 1 & 0 \ 0 & U_1^* \end{array}
ight] V^* = UTU^*,$$

- where $U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$ and $z = yU_1$.
- ▶ Now *U* being a product of two unitaries is a unitary and

So we get

$$A = VSV^*$$

$$= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^*$$

$$= V \begin{bmatrix} 1 & y \\ 0 & U_1T_1U_1^* \end{bmatrix} V^*$$

$$A = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} a_1 & z \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} V^* = UTU^*,$$

- where $U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$ and $z = yU_1$.
- ▶ Now *U* being a product of two unitaries is a unitary and

So we get

$$A = VSV^*$$

$$= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^*$$

$$= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^*$$

$$A = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} a_1 & z \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} V^* = UTU^*,$$

- where $U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$ and $z = yU_1$.
- Now U being a product of two unitaries is a unitary and
- ► This completes the proof.

Diagonal entries

Remark 19.2: Suppose A is an $n \times n$ matrix, U is a unitary and T is an $n \times n$ upper triangular matrix such that $A = UTU^*$. Then the charactristic polynomials of A and T are same. Further, diagonal entries of T are eigenvalues of A.

Diagonal entries

- Remark 19.2: Suppose A is an $n \times n$ matrix, U is a unitary and T is an $n \times n$ upper triangular matrix such that $A = UTU^*$. Then the charactristic polynomials of A and T are same. Further, diagonal entries of T are eigenvalues of A.
- ► AS A and T are similar they have same characteristic polynomial.

Diagonal entries

- ▶ Remark 19.2: Suppose A is an $n \times n$ matrix, U is a unitary and T is an $n \times n$ upper triangular matrix such that $A = UTU^*$. Then the charactristic polynomials of A and T are same. Further, diagonal entries of T are eigenvalues of A.
- ► AS A and T are similar they have same characteristic polynomial.
- ► The second part follows as determinant of any upper triangular matrix is product of its diagonal entries and hence

$$\det(I - A) = \det(xI - T) = (x - t_{11})(x - t_{22}) \cdots (x - t_{nn}).$$

▶ Recall: Suppose $a_0, a_1, ..., a_n, ...$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \ge 2$$

where v_0, v_1, b, c are some complex numbers.

▶ Recall: Suppose $a_0, a_1, ..., a_n, ...$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

▶ We want to get a formula for a_n .

▶ Recall: Suppose $a_0, a_1, ..., a_n, ...$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \ \forall n \ge 2$$

where v_0, v_1, b, c are some complex numbers.

- \blacktriangleright We want to get a formula for a_n .
- ▶ Take

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

▶ Recall: Suppose $a_0, a_1, ..., a_n, ...$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \ \forall n \ge 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- Take

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

We have

$$A\left(\begin{array}{c}a_{n-1}\\a_{n-2}\end{array}\right)=\left(\begin{array}{c}a_n\\a_{n-1}\end{array}\right).$$

▶ Recall: Suppose $a_0, a_1, ..., a_n, ...$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- Take

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

We have

$$A\left(\begin{array}{c}a_{n-1}\\a_{n-2}\end{array}\right)=\left(\begin{array}{c}a_n\\a_{n-1}\end{array}\right).$$

Therefore,

$$\left(\begin{array}{c} a_n \\ a_{n-1} \end{array}\right) = A^{n-1} \left(\begin{array}{c} v_1 \\ v_0 \end{array}\right).$$

$$\blacktriangleright A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

► The characteristic polynomial of *A* is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

$$\blacktriangleright A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

► The characteristic polynomial of *A* is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

Solving p(x) = 0, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

► The characteristic polynomial of *A* is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

Solving p(x) = 0, we get the eigenvalues of A as

$$\alpha = \frac{b+\sqrt{b^2+4c}}{2}, \quad \beta = \frac{b-\sqrt{b^2+4c}}{2}.$$

► Case I: $\alpha \neq \beta$, that is, $b^2 + 4c \neq 0$. We have solved this case by diagonalization.

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

► The characteristic polynomial of *A* is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

Solving p(x) = 0, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

- ► Case I: $\alpha \neq \beta$, that is, $b^2 + 4c \neq 0$. We have solved this case by diagonalization.
- ► Case (ii): $b^2 + 4c = 0$. So the two roots are equal to $\frac{b}{2}$.

Linear recurrence relation with repeated roots

Consider the matrix

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

where $b^2 + 4c = 0$ and so the eigenvalues of A are $\frac{b}{2}$ and $\frac{b}{2}$.

Linear recurrence relation with repeated roots

Consider the matrix

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

where $b^2 + 4c = 0$ and so the eigenvalues of A are $\frac{b}{2}$ and $\frac{b}{2}$.

Now

$$\begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}$$

is an eigenvector with eigenvalue $\frac{b}{2}$. Up to scaling this is the only eigenvector.

Linear recurrence relation with repeated roots

Consider the matrix

$$A = \left[\begin{array}{cc} b & c \\ 1 & 0 \end{array} \right].$$

where $b^2 + 4c = 0$ and so the eigenvalues of A are $\frac{b}{2}$ and $\frac{b}{2}$.

Now

$$\begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}$$

is an eigenvector with eigenvalue $\frac{b}{2}$. Up to scaling this is the only eigenvector.

► Further

$$\left(\begin{array}{c} -1\\ \frac{\overline{b}}{2} \end{array}\right)$$

is a vector orthogonal to

$$\begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}$$
.

Normalizing these vectors we get an orthonormal basis $\{u_1, u_2\}$ for \mathbb{C}^2 where

$$u_1 = \frac{1}{d} \left(\begin{array}{c} \frac{b}{2} \\ 1 \end{array} \right), \quad u_2 = \frac{1}{d} \left(\begin{array}{c} -1 \\ \frac{\bar{b}}{2} \end{array} \right)$$

with
$$d=\sqrt{\frac{|b|^2}{4}+1}$$
.

Normalizing these vectors we get an orthonormal basis $\{u_1, u_2\}$ for \mathbb{C}^2 where

$$u_1 = \frac{1}{d} \left(\begin{array}{c} \frac{b}{2} \\ 1 \end{array} \right), \quad u_2 = \frac{1}{d} \left(\begin{array}{c} -1 \\ \frac{\bar{b}}{2} \end{array} \right)$$

with
$$d = \sqrt{\frac{|b|^2}{4} + 1}$$
.

▶ It follows that

$$A = UTU^*$$

for a unitary U with T upper-triangular.

Normalizing these vectors we get an orthonormal basis $\{u_1, u_2\}$ for \mathbb{C}^2 where

$$u_1 = \frac{1}{d} \left(\begin{array}{c} \frac{b}{2} \\ 1 \end{array} \right), \quad u_2 = \frac{1}{d} \left(\begin{array}{c} -1 \\ \frac{\bar{b}}{2} \end{array} \right)$$

with
$$d = \sqrt{\frac{|b|^2}{4} + 1}$$
.

It follows that

$$A = UTU^*$$

for a unitary U with T upper-triangular.

 \triangleright By comparing eigenvalues of A and T,

$$T = \left[\begin{array}{cc} \frac{b}{2} & p \\ 0 & \frac{b}{2} \end{array} \right]$$

for some p.

▶ It is easy to see from induction that

$$T^{n} = \begin{bmatrix} \left(\frac{b}{2}\right)^{n} & np\left(\frac{b}{2}\right)^{n-1} \\ 0 & \left(\frac{b}{2}\right)^{n} \end{bmatrix}$$

It is easy to see from induction that

$$T^{n} = \begin{bmatrix} \left(\frac{b}{2}\right)^{n} & np\left(\frac{b}{2}\right)^{n-1} \\ 0 & \left(\frac{b}{2}\right)^{n} \end{bmatrix}$$

Now the recurrence relations yields

$$a_n = s(\frac{b}{2})^n + tn(\frac{b}{2})^n, \quad \forall n \ge 0,$$

for some scalars s,t. (Do the necessary matrix computations to verify this.)

It is easy to see from induction that

$$T^{n} = \begin{bmatrix} \left(\frac{b}{2}\right)^{n} & np\left(\frac{b}{2}\right)^{n-1} \\ 0 & \left(\frac{b}{2}\right)^{n} \end{bmatrix}$$

Now the recurrence relations yields

$$a_n = s(\frac{b}{2})^n + tn(\frac{b}{2})^n, \quad \forall n \ge 0,$$

for some scalars s, t. (Do the necessary matrix computations to verify this.)

► The scalars can be determined using the initial conditions $a_0 = v_0$ and $a_1 = v_1$.

Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \ge 2.$$

Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \ge 2.$$

► The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \ge 2.$$

► The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

We have $b^2 + 4c = 6^2 - 4.9 = 0$. Hence the two roots are 3 and 3.

Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \ge 2.$$

► The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

- We have $b^2 + 4c = 6^2 4.9 = 0$. Hence the two roots are 3 and 3.
- So we must have

$$a_n = s3^n + tn3^n, \quad \forall n \geq 0.$$

Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \ge 2.$$

► The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

- We have $b^2 + 4c = 6^2 4.9 = 0$. Hence the two roots are 3 and 3.
- So we must have

$$a_n = s3^n + tn3^n, \forall n \geq 0.$$

▶ Taking n = 0, 1 we get

$$s = 1, s.3 + t.3 = 2.$$

Hence $t = -\frac{1}{3}$.

Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \ge 2.$$

► The initial few terms are:

$$1, 2, 3, 0, -27, \ldots$$

- We have $b^2 + 4c = 6^2 4.9 = 0$. Hence the two roots are 3 and 3.
- So we must have

$$a_n = s3^n + tn3^n, \quad \forall n \geq 0.$$

▶ Taking n = 0, 1 we get

$$s = 1, s.3 + t.3 = 2.$$

Hence $t = -\frac{1}{3}$.

Therefore

$$a_n=3^n(1-\frac{n}{3}), \quad \forall n\geq 0.$$

► END OF LECTURE 19.

