

we seek the probability that the HMM was in state ω_2 at t=3 and generated the observed visible symbol up through that step (including the observed visible symbol v_k). The probability the HMM was in state $\omega_j(t=2)$ and generated the observed sequence through t=2 is $\alpha_j(2)$ for $j=1,2,\ldots,c$. To find $\alpha_2(3)$ we must sum these and multiply the probability that state ω_2 emitted the observed symbol v_k . Formally, for this particular illustration we have $\alpha_2(3)=b_{2k}\sum_{j=1}^c\alpha_j(2)a_{j2}$. From: Richard O. Duda, Peter E. Hart,

and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,

Inc.

alized by means of a trellis—a sort of "unfolding" of the HMM through time. Suppose