MATH6303 - Modern Algebra II Homework 4

Joel Sleeba

March 30, 2025

1. Solution:

(a) Since $\operatorname{Tor}(M) \subset M$ by the definition, the distributivity properties of the R-addition and R-multiplication hold. We only need to prove that $\operatorname{Tor}(M)$ is a subgroup of M to show that it is a submodule. Let $g, h \in \operatorname{Tor}(M)$, then there exits $r_g, r_h \in R \setminus \{0\}$ such that $r_g g = r_h h = 0$. Since R is an integral domain, $r_g r_h \neq 0$, and by the commutativity of the ring R,

$$r_g r_h(g+h) = r_g r_h g + r_g r_h h = r_h r_g g + 0 = 0$$

Thus $g + h \in \text{Tor}(M)$. To see $-g \in \text{Tor}(M)$, notice that

$$0 = r_q g = (-r_q)(-g)$$

Thus Tor(M) is a subgroup of M, and hence a submodule of M

- (b) Consider the ring $Z_6 := \mathbb{Z}/6\mathbb{Z}$ and the module Z_6 over Z_6 . Then $\text{Tor}(Z_6) = \{0, 2, 3, 4\}$. Clearly this is not a submodule since $2 + 3 \notin \text{Tor}(Z_6)$.
- (c) Let $a \in \mathbb{R}$ be a zero divisor such that ab = 0 for some $b \neq 0 \in \mathbb{R}$. If $M = \operatorname{Tor}(M)$, we are done. So Let $x \in M \setminus \operatorname{Tor}(M)$. Then a(bx) = (ab)x = 0 shows that $bx \in \operatorname{Tor}(M)$. Since $x \notin \operatorname{Tor}(M)$, $bx \neq 0$, and we are done.
- 2. **Solution:** Let $A_N = \{r \in R \mid rn = 0, \forall n \in N\}$ be the annihilator of the submodule N of M. If $a, b \in A_N$, then clearly $a + b, ab \in A_N$ since for any $n \in N$

$$(a + b)n = an + bn = 0 + 0 = 0$$

 $(ab)n = a(bn) = a(0) = 0$

Thus A_N is a subring of R. Now let $c \in R$, then for any $n \in N$, $cn \in N$ since N is a submodule. Also

$$(ac)n = a(cn) = 0$$

thus $ac \in A_N$. Since (ca)n = c(an) = c0 = 0, we also get $ca \in A_N$ proving that A_N is a two sided ideal of R.

3. **Solution:** Let I be a right ideal of R and $N_I = \{m \in M \mid am = 0, \forall a \in I\}$. By the submodule criterion, we'll be done if we show that $r(x - y) \in N_I$ for all $x, y \in N_I$ and $r \in R$. Let $x, y \in N_I$. Then for any $a \in I$,

$$ar(x - y) = (ar)x - (ar)y = 0 - 0 = 0$$

where arx, ary = 0 since $ar \in I$ as I is a right-ideal. Thus N_I is a submodule of M.

4. Solution:

- (a) Let I be the annihilator of M in \mathbb{Z} , then by the definition of annihilator $n \in I$ if and only if nm = 0 for all $m \in M$. A typical element of M is of the form (x, y, z), where $x \in \mathbb{Z}/24\mathbb{Z}$, $y \in \mathbb{Z}/15\mathbb{Z}$, and $z \in \mathbb{Z}/50\mathbb{Z}$. Therefore n(x, y, z) = (nx, ny, nz) = 0 if and only if 24|nx, 15|ny and 50|nz. Since this must hold true for all x, y, z, the least positive integer n which satisfy all the three conditions is n = lcm(24, 15, 50) = 600. Hence $I = \langle 600 \rangle = 600\mathbb{Z}$.
- (b) Given that $I = 2\mathbb{Z}$. Let $N_I \subset M$ be the annihilator of I in M. Then by the definition of N_I , $(x, y, z) \in N_I$ (where x, y, z are as before) if and only if (ax, ay, az) = 0 for all $a \in I$. Since $I = 2\mathbb{Z}$, for a = 2n, this reduces to having 24|2nx, 15|2ny, 50|2nz for all $n \in \mathbb{Z}$. Thus, we see that 12|x, 15|y, 25|z.

Thus
$$N_I = \langle (12,0,0), (0,0,25) \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

5. Solution: From what we have done in the lecture, we know that submodules of F[x] correspond to the invariant subspaces of T. Thus we'll be done if we show that the invariant subspaces of $T: \mathbb{R}^2 \to \mathbb{R}^2 := (x,y) \mapsto (0,y)$ are precisely $\{0\}, \mathbb{R}^2$, x-axis and the y-axis. Clearly all of these are invariant subspaces by basic verification.

Now let V be any proper non-trivial invariant subspace of V with $(x,y) \in V$. Since V is proper, $V = \mathrm{span}\{(x,y)\}$. If either x=0 or y=0, then V would be x-axis or y-axis respectively. Hence for the sake of contradiction, assume $x,y \neq 0$. But T(x,y) = (0,y) and since (x,y),(0,y) are linearly independent, invariance of V under T forces $V = \mathbb{R}^2$ which contradicts the proper subspace assumption. Hence we are done.