MAINLINE

- 1. Map I2C2
 - a. Read **conf_uart1_rtsn** (Address: =0x44E1 097C)
 - b. Modify (set bits 0,1, 4, 5) #0x33 for MODE3 (pin 19 of P9)
 - c. Write back
 - d. Read **conf_uart1_ctsn** (Address: =0x44E1 0978)
 - e. Modify (set bits 0,1, 4, 5) #0x33 for MODE3 (pin 20 of P9)
 - f. Write back
- 2. Initialize I2C2 clock (CM_PER base: =0x44E0 0000)
 - a. Write #0x02 to CM PER I2C2 CLKCTRL (offset: #0x44)
- 3. Configure I2C2 module (**I2C2** base: =0x4819 C000)
 - a. Write #0x3 to I2C_PSC (offset: #0xB0)
 - i. Sets clock divider to 4 so that $48 \div 4 = 12 MHz$
 - ii. i = PSC + 1
 - b. Write #0x08 to I2C_SCLL (offset: #0xB4)
 - i. Sets SCL low time to 50% duty with 400kbps and 12MHz clock
 - ii. tLOW = (SCLL + 7) * ICLK
 - c. Write #0x0A to I2C_SCLH (offset: #0xB8)
 - i. Sets SCL high time to 50% duty with 400kbps and 12MHz clock
 - ii. tHIGH = (SCLH + 5) * ICLK
 - d. Write #0x40 to **I2C_OA** (offset: #0xA8)
 - i. Sets it's own address to 0x40
 - e. Write #0x8000 to I2C CON (offset: #0xA4)
 - i. Take I2C2 out of reset
- 4. Initialize I2C2 (**I2C2** base: =0x4819 C000)
 - a. Read I2C_CON (offset: #0xA4)
 - b. Modify (set bits 9 [**TRX**], 10 [**MST**]) #0x600
 - i. Set to master transmitter
 - c. Write back
- 5. Configure slave address and DATA counter (I2C2 base: =0x4819 C000)
 - a. Write #0x60 to I2C SA (offset: #0xAC)
 - i. Set slave address for current transmission
 - b. Write #0x01 to I2C_CNT (offset: #0x98)
 - i. Set data count to one byte
- 6. Initiate a transfer (I2C2 base: =0x4819 C000)
 - a. Poll BB (bit 12) of I2C_IRQSTATUS_RAW (offset: #0x24)
 - i. See if line is busy; if bit = 0 continue, if bit = 1 keep polling
 - b. Read **I2C CON** (offset: #0xA4)
 - c. Modify (set bits 0 [STT], 1 [STP]) #0x3
 - i. Start transfer
 - d. Write back
 - e. Go to LOOP

- 1. Create endless loop
 - a. To let logic analyzer see results