Особые случаи

То, что в точке x_0 функция f(x) непрерывна не означает, разумеется, что в этой точке у нее обязательно существует производная. Функция может быть непрерывной, а производной может и не существовать. Что же там может быть?

1. Односторонние производные

Назовем

$$f'(x_0 - 0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}$$

производной от функции f(x) в точке x_0 *слева*, а

$$f'(x_0 + 0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0}$$

производной в той же точке справа.

Разумеется, если $f'(x_0 - 0) = f'(x_0 + 0)$, то это означает, что в точке x_0 существует $f'(x_0)$. Но могут быть случаи, когда $f'(x_0 - 0)$ и $f'(x_0 + 0)$ существуют, но не равны друг другу. В этом случае не существует и $f'(x_0)$. График функции f(x) имеет в точке x_0 в этом случае «излом», и в этой точке к графику можно провести две касательные

2. Бесконечная производная

Рассмотрим функцию $f(x) = \sqrt{x}$ определенную для $x \ge 0$ и потребуем найти f'(0) . Имеем

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt{\Delta x}} = +\infty$$

и производная равна $+\infty$. Касательная в этой точке параллельна оси OY.

3. Несуществование производной

Наконец, может быть ситуация, когда lim, фигурирующий в определении производной, не существует.

Рассмотрим для примера,
$$f(x) = x \cdot \sin\left(\frac{1}{x}\right)$$
. Так как $\left|\sin\left(\frac{1}{x}\right)\right| \le 1$,

то
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$$
. Поэтому, полагая $f(0) = 0$, получим

$$f'(0) = \lim_{\Delta x \to 0} \frac{\Delta x \sin\left(\frac{1}{\Delta x}\right) - 0}{\Delta x} = \lim_{\Delta x \to 0} \sin\left(\frac{1}{\Delta x}\right),$$

и этот предел просто не существует.

Теорема Ферма

Теорема. Пусть функция f(x) определена и непрерывна на промежутке [a,b] и в некоторой внутренней точке x_0 этого промежутка достигает своего наибольшего или наименьшего значения. Если в этой точке существует производная, то она равна нулю: $f'(x_0) = 0$.

Доказательство

Пусть, для определенности, в точке x_0 функция f(x) достигает своего наибольшего значения.

По условию теоремы эта точка внутренняя, то есть $a < x_0 < b$, и поэтому к этой точке можно подойти и слева и справа.

Пусть мы подходим к x_0 слева. Тогда

$$f(x) < f(x_0)$$
 (так как $f(x_0)$ – наибольшее значение); $f(x) - f(x_0) < 0$; $x < x_0$ (так как мы подходим слева); $x - x_0 < 0$; $\frac{f(x) - f(x_0)}{x - x} > 0$

Делая предельный переход $x \to x_0 - 0$, получим

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0$$

Пусть мы подходим к точке x_0 справа. Тогда

$$f(x) < f(x_0)$$
 (так как $f(x_0)$ – наибольшее значение); $f(x) - f(x_0) < 0$; $x > x_0$ (так как мы подходим справа); $x - x_0 > 0$; $\frac{f(x) - f(x_0)}{x - x_0} < 0$.

Делая предельный переход $x \to x_0 + 0$, получим

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \le 0.$$

Совместить два полученных неравенства можно только в одном случае: $f'(x_0) = 0$.

Геометрический смысл доказанной теоремы: в точке наибольшего или наименьшего значения функции касательная к графику функции параллельна оси OX.

Существенность ограничений

В теореме Ферма по сути дела два ограничения: а) точка \mathcal{X}_0 расположена внутри отрезка [a,b] и б) $\exists f'(x_0)$. а) «внутренность» точки x_0

б) существование производной.

В точке x_0 существуют только односторонние производные.

Теорема Ролля.

Пусть функция f(x)

- а) определена и непрерывна на [a,b];
- б) $\forall x \in [a,b] \exists f'(x)$;
- B) f(a) = f(b)

Тогда существует точка $c \in [a,b]$ в которой f'(c) = 0.

Первая теорема Вейерштрасса.

Пусть функция f(x) определена и непрерывна на замкнутом отрезке [a, b]. Тогда она ограничена на этом отрезке, то есть существуют такие числа m и M, что $\forall x \in [a, b]$ $m \le f(x) \le M$.

Вторая теорема Вейерштрасса.

Пусть функция f(x) определена и непрерывна на замкнутом отрезке [a, b]. Тогда существуют такие точки $x_1, x_2 \in [a, b]$, что $f(x_1) = \inf_{x \in [a,b]} f(x), \ f(x_2) = \sup_{x \in [a,b]} f(x), \ \text{то есть инфимум и}$

супремум f(x) достигаются на [a, b].

Доказательство:

- 1. Так как f(x) определена и непрерывна на [a,b], то, по первой теореме Вейерштрасса, она ограничена на [a,b], то есть существуют конечные $m = \inf_{x \in [a,b]} f(x)$ и $M = \sup_{x \in [a,b]} f(x)$.
- 2. Если m = M , то f(x) есть константа, то есть f(x) = m = M и поэтому f'(x) = 0 $\forall x \in [a,b]$. В качестве точки c можно взять любую точку из [a,b].

3. Если m < M , то, в силу условия f(a) = f(b) и второй теоремы Вейерштрасса, хотя бы одно из значений m или M достигается во внутренней точке промежутка [a,b]. По теореме Ферма, в этой точке (их может быть и несколько) производная равна нулю.

Внутри промежутка достигаются и sup и inf.

ФОРМУЛА КОШИ

Теорема. Пусть функции f(x) и g(x)

- а) определены и непрерывны на [a,b];
- **6)** $\forall x \in [a,b] \exists f'(x) \mathbf{u} g'(x);$
- **B)** $\forall x \in [a,b]$ $g'(x) \neq 0$.

Тогда существует точка $c \in [a,b]$ такая, что

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

Доказательство.

Отметим, что $g(a) \neq g(b)$, иначе, по теореме Ролля, существовала бы точка $x_0 \in [a,b]$, где $g'(x_0) = 0$, что противоречит ограничению «в».

Рассмотрим функцию

$$F(x) = [f(x) - f(a)] - \frac{f(b) - f(a)}{g(b) - g(a)} [g(x) - g(a)].$$

Для этой функции выполняются условия Ролля:

а) определена и непрерывна на [a,b], так как $g(a) \neq g(b)$ и функции f(x) и g(x) непрерывны на [a,b];

6)
$$\exists F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(x)$$
.

B)
$$F(a) = F(b) = 0$$
.

Поэтому
$$\exists c \in [a,b]$$
 $F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) = 0$

Тогда
$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

Формула Лагранжа

Рассмотрим частный случай, когда g(x) = x. Тогда формула Коши приобретает вид

$$\frac{f(b)-f(a)}{b-a}=f'(c),$$

ИЛИ

$$f(b) - f(a) = f'(c)(b - a),$$

где $c \in [a,b]$. Эта формула и называется формулой Лагранжа.

Геометрическая интерпретация

Существует точка
$$c \in [a,b]$$

в которой касательная параллельна секущей, соединяющей точки

Геометрическая интерпретация формулы Лагранжа

Дифференциал

Величина $\Delta f = f(x + \Delta x) - f(x)$ называется приращением функции.

<u>Определение 1</u>. Функция f(x) называется дифференцируемой в точке x, если ее приращение можно представить в виде

$$\Delta f(x) = A \cdot \Delta x + o(\Delta x)$$
.

Определение 2. Линейная часть приращения функции, то есть $A \cdot \Delta x$ называется дифференциалом функции f(x) и обозначается df(x)

$$df(x) = A \cdot \Delta x$$
.

https://www.youtube.com/watch?v=EkVTJyX2TY8

Геометрический смысл дифференциала

