Imogen Hergeth

January 2023

We will present the result from A.A. Razborov, "Lower Bounds for the Polynomial Calculus", in: Computational Complexity 7.4 (Dec. 2, 1998).

- Introduction
- 2 The Pigeonhole Principle
- The Pigeon Dance
- 4 Conclusion

Introduction

Background

• Lower bounds for proofs in various systems

Background

- Lower bounds for proofs in various systems
- In particular for the pigeonhole principle

Background

- Lower bounds for proofs in various systems
- In particular for the pigeonhole principle
- Polynomial calculus is a strong proof system

Background

- Lower bounds for proofs in various systems
- In particular for the pigeonhole principle
- Polynomial calculus is a strong proof system
- Provide a lower bound for it with the pigeonhole principle

The Pigeon Dance

Definition

• Similar to sequent calculus, but lines are polynomials

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$
- Addition

$$\frac{f}{af + bg}$$

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$
- Addition

$$\frac{f}{af + bg}$$

Multiplication

$$\frac{f}{f \cdot x}$$

ullet g is provable from f_1,\ldots,f_n if and only if it is in the ideal generated by them

- g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- ullet A proof of 1 exists if and only if f_1,\ldots,f_n have no common zeroes

- g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- A proof of 1 exists if and only if f_1, \ldots, f_n have no common zeroes
- We construct polynomials such that their zeroes correspond to satisfying assignments

- g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- A proof of 1 exists if and only if f_1, \ldots, f_n have no common zeroes
- We construct polynomials such that their zeroes correspond to satisfying assignments
- ullet Proving 1 from them is a refutation

Introduction 0000•0

Example proof

Introduction

Example proof

$$x + 1$$

Example proof

$$(\cdot y) \frac{x+1}{xy+y}$$

000000

Example proof

$$(\cdot y) \frac{x+1}{xy+y} \frac{z}{xy+y+z} (+)$$

Example proof

• Try to prove xy + z from x + 1 and z

$$(\cdot y) \frac{x+1}{xy+y} \frac{z}{xy+y+z} (+)$$

ullet We now want to subtract y

Example proof

$$\frac{(y)}{\frac{x+1}{xy+y}} \frac{z}{z} (+)$$

- We now want to subtract y
- There is no way to prove y from x+1 and z

Example proof

$$\frac{(y)}{xy+y} \frac{x+1}{xy+y+z} (+)$$

- We now want to subtract y
- There is no way to prove y from x+1 and z
- Closest to xy + z we can prove is xy + y + z

Algebraic view of proofs

 \bullet V are polynomials we can prove

$$xy + y + z$$

ullet Δ are leading terms of ones we cannot prove

y

•
$$S_n(\mathbb{K}) \cong \mathbb{K} \Delta \oplus V$$

$$xy + z = -y + xy + y + z$$

• R is the projection onto Δ

$$R(xy+z) = y$$

• Similarly:

 V_d, Δ_d, R_d for polynomials up to degree d V_I, Δ_I, R_I for polynomials using variables for subset of pigeons I

The pigeonhole principle

• If there are m pigeons, n pigeon holes, and m > n then at least two pigeons have to share a hole

Overview

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$

Overviev

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$
- Variables: $x_{ij}, i \in [m], n \in [n]$

Overview

The pigeonhole principle

- If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$
- Variables: $x_{ij}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

Overviev

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$
- Variables: $x_{ij}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

Definition $(\neg \mathcal{PHP}_n^m)$

$$Q_i \coloneqq 1 - \sum_{j \in [n]} x_{ij}$$

$$\text{ for each } i \in [m]$$

$$Q_{i_1,i_2,j} \coloneqq x_{i_1j} x_{i_2j}$$

for each
$$i_1 \neq i_2 \in [m], j \in [n]$$

Overviev

Main result

Theorem

Every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

Main result

Theorem

Every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

• Derived polynomials are constraints on pigeon assignments

Theorem

Every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

- Derived polynomials are constraints on pigeon assignments
- Locally valid assignments are possible

Main result

Theorem

Every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

- Derived polynomials are constraints on pigeon assignments
- Locally valid assignments are possible
- Polynomials need to have large degree to prove inconsitencies

Valid Pigeon Arrangements

Semantics of $\neg \mathcal{PHP}_n^m$

• Pigeons cannot share holes

Valid Pigeon Arrangements

- Pigeons cannot share holes
- ullet Possible for pigeons $I\subseteq [m]$ with $|I|\le n$

Valid Pigeon Arrangements

- Pigeons cannot share holes
- ullet Possible for pigeons $I\subseteq [m]$ with $|I|\le n$
- ullet Locally valid assignments are injections $I\hookrightarrow [n]$

- Pigeons cannot share holes
- Possible for pigeons $I \subseteq [m]$ with $|I| \le n$
- ullet Locally valid assignments are injections $I\hookrightarrow [n]$
- ullet Corresponding varliable assignments are M_I

- Pigeons cannot share holes
- ullet Possible for pigeons $I\subseteq [m]$ with $|I|\le n$
- ullet Locally valid assignments are injections $I\hookrightarrow [n]$
- ullet Corresponding varliable assignments are M_I
- ullet V_I is the set of all polynomials with a(f)=0 for all $a\in M_I$

Valid Pigeon Arrangements

Done?

ullet Not all polynomials are identically zero on M_I

Valid Pigeon Arrangements

Done?

- ullet Not all polynomials are identically zero on M_I
- This definition completely ignores the degrees of the proofs!

Done?

- ullet Not all polynomials are identically zero on M_I
- This definition completely ignores the degrees of the proofs!
- It only works if $R_I(t)$ is independent of I

Valid Pigeon Arrangements

Done?

- ullet Not all polynomials are identically zero on M_I
- This definition completely ignores the degrees of the proofs!
- It only works if $R_I(t)$ is independent of I
- Looks like this does not work at all

The pigeon dance

• The first pigeon flies to an unoccupied hole to its right

Idea

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon cannot find an empty hole, the dance is aborted

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon cannot find an empty hole, the dance is aborted
- Encode pigeon positions as terms $(x_{1,4}x_{2,1}x_{3,2})$

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon cannot find an empty hole, the dance is aborted
- Encode pigeon positions as terms $(x_{1,4}x_{2,1}x_{3,2})$
- ullet Δ_I is the set of terms that let pigeons complete the dance

- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon cannot find an empty hole, the dance is aborted
- Encode pigeon positions as terms $(x_{1,4}x_{2,1}x_{3,2})$
- ullet Δ_I is the set of terms that let pigeons complete the dance
- ullet $t \in \Delta_I$ independent of I since pigeons not in the dance do not affect it

The Kill operator

• Idea: operator that lets us block specific holes

The Kill operator

- Idea: operator that lets us block specific holes
- The Kill operator kills the first pigeon and moves its hole to the left

The Kill operator

- Idea: operator that lets us block specific holes
- The Kill operator kills the first pigeon and moves its hole to the left
- $\operatorname{Kill}(x_{i_1j_1}\cdots x_{i_d,j_d})=x_{i_2j'_2}\cdots x_{i_dj'_d}$ with

$$j'_k \coloneqq \begin{cases} j_k + 1, & \text{if } j_k < j_1 \\ j_k, & \text{if } j_k > j_1. \end{cases}$$

The dance in terms of Kill

Theorem

 $x_{i_1j_1}\cdots x_{i_dj_d}\in \Delta_I$ if and only if there is a $j'>j_1$ such that $\mathrm{Kill}(x_{i_1j'}\cdots x_{i_dj_d})\in \Delta_I$.

Proof sketch

This operator effectively moves the first pigeon to an empty hole to its right and then kills it. This is the same as each step in the dance, where the first pigeon flies to some free hole to its right and then occupies it. \Box

Closure of Δ_I

Theorem

 Δ_I is closed under Kill.

Closure of Δ_I

Theorem

 Δ_I is closed under Kill.

Proof sketch

If $t \in \Delta_I$ then the pigeons can complete their dance. During this the first pigeon will start at j and fly to j'. Killing the pigeon frees up j' so any other pigeon that wanted to use j can use it instead.

The lower bound

Theorem 1

If $|I| \le (n+1)/2, t \in \Delta_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

The lower bound

Theorem

If $|I| \leq (n+1)/2, t \in \Delta_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

Proof sketch

At most

$$|\operatorname{dom}(t)| \le |I \setminus \{i\}| \le \frac{n-1}{2}$$

pigeons involved in the dance, each occupying two holes. Thus the total number of holes is n-1 and one hole j remains free. For the purposes of the dance, $\mathrm{Kill}(x_{ij}t)$ is the same as t since the only difference is j being moved to the left. \Box

• Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable

- Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable
- Each f has a locally consistent assignment $a \in M_I$ with $a(f) \neq 0$

- Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable
- Each f has a locally consistent assignment $a \in M_I$ with $a(f) \neq 0$
- ullet Induction over |I|

- Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable
- Each f has a locally consistent assignment $a \in M_I$ with $a(f) \neq 0$
- ullet Induction over |I|
- ullet Remove variables x_{ij} for minimal $i\in I$ from f

- Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable
- Each f has a locally consistent assignment $a \in M_I$ with $a(f) \neq 0$
- Induction over |I|
- Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$

- Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable
- Each f has a locally consistent assignment $a \in M_I$ with $a(f) \neq 0$
- Induction over |I|
- ullet Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$
- Pick a j such that $Kill(x_{ij}t) \in \Delta_I$

- Prove polynomials $f \in \mathbb{K}\Delta_I$ are not derivable
- Each f has a locally consistent assignment $a \in M_I$ with $a(f) \neq 0$
- Induction over |I|
- Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$
- Pick a j such that $Kill(x_{ij}t) \in \Delta_I$
- Extend assignment to I with $a(f) \neq 0$

Theorem

For any m>n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

• If the degree is small, pigeons can complete the dance

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

- If the degree is small, pigeons can complete the dance
- You need to have n/2 + 1 pigeons to block enough holes

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

- If the degree is small, pigeons can complete the dance
- You need to have n/2 + 1 pigeons to block enough holes
- Only polynomials corresponding to locally consistent assignments are derivable