Propositional Logic in Lean

Heshan Du University of Nottingham Ningbo China

October 2024

Aims and Learning Objectives

- To be able to apply the tactics *constructor*, *cases*, *left*, *right* in Lean.
- To be able to construct proofs for tautologies in propositional logic using Lean.

Reading

- Thorsten Altenkirch, *Introduction to Formal Reasoning*, 2023.
 - Chapter 2. Propositional Logic
- Kenneth H. Rosen, *Discrete Mathematics and its Applications*, 6th edition, 2007.
 - Chapter 1. The Foundations: Logic and Proofs

Conjunction: Example 1

- To prove a conjunction $P \land Q$, we need to prove both P and Q.
- This is achieved via the *constructor* tactic. *constructor* turns the goal $P \land Q$ into two goals P and Q.
- How to prove $P \rightarrow Q \rightarrow P \land Q$ in Lean?

2024

4/25

Conjunction: Exercise 2

- Now we show that \wedge is *commutative*.
- Prove $P \land Q \rightarrow Q \land P$ in Lean.

```
1 variables P Q : Prop
2
3 theorem comAnd : P ∧ Q → Q ∧ P :=
4 begin
5
6 end
```

Use a Conjunction in an assumption

- Assume $P \land Q$ is the same as assuming both P and Q.
- This is facilitated via the *cases* tactic which needs to know which assumption we are going to use and how we want to name the assumptions which replaces it.
- E.g., cases pq with p q.
- The name cases seems to be a bit misleading, since there is only one case to consider here.

Conjunction: Exercise 3

```
Prove P \wedge Q \leftrightarrow Q \wedge P in Lean.
```

```
1 variables P Q : Prop
2
3 theorem comAndIff : P ∧ Q ↔ Q ∧ P :=
4 begin
5
6 end
```

Use a Theorem to Prove a Theorem

- Lean always abstracts the propositional variables we have declared.
- We can actually use *comAnd* with different instantiation to prove $P \land Q \leftrightarrow Q \land P$.

8 / 25

Answer to Exercise 3

```
21 theorem comAndIff : P ∧ Q ↔ Q ∧ P :=
22 begin
23 | constructor,
24 | apply comAnd,
25 | apply comAnd,
26 end
```

In the second use of comAnd, Q is instantiated with P, and P is instantiated with Q.

The Currying Equivalence

- A statement like $P \rightarrow Q \rightarrow R$ means that R can be proved from assuming both P and Q.
- Indeed, it is equivalent to $P \land Q \rightarrow R$.
- We can show this formally by using \leftrightarrow . Remember that $P \leftrightarrow Q$ is the same as $(P \rightarrow Q) \land (Q \rightarrow P)$.
- How to prove $P \land Q \rightarrow R \leftrightarrow P \rightarrow Q \rightarrow R$ in Lean?

Proving The Currying Equivalence in Lean

```
1 variables P Q R: Prop

2

3 theorem curry : P ∧ Q → R ↔ P → Q → R :=

4 begin

5

6 end
```

Disjunction

- To prove a disjunction $P \lor Q$, we can either prove P or we can prove Q.
- This is achieved via the appropriately named tactics *left* and *right*.
- How to prove $P \rightarrow P \lor Q$ in Lean?

```
1 variables P Q R: Prop
2
3 example : P → P v Q :=
4 begin
5 6 end
```

■ How to prove $Q \rightarrow P \lor Q$ in Lean?

Disjunction: Exercise

```
Prove (P \to R) \to (Q \to R) \to P \lor Q \to R in Lean.

1 variables P Q R: Prop

2 
3 theorem case_lem: (P \to R) \to (Q \to R) \to P \lor Q \to R :=
4 begin
5 
6 end
```

Use a Disjunction

- To use a disjunction $P \lor Q$, we have to show that the current goal follows both from assuming P and from assuming Q.
- To achieve this, we use *cases*. This time the name actually makes sense.

Tactics: Cases

- We use *cases pq with p q*, which means that we are going to use $P \lor Q$.
- There are two cases, resulting in two subgoals.

```
2 goals
case or.inl
P Q R: Prop,
pr : P \rightarrow R,
qr: Q \rightarrow R,
p : P
⊢ R
case or.inr
P Q R: Prop,
pr : P \rightarrow R,
qr: Q \rightarrow R,
q:Q
```

Logic and Algebra 1

■ As an example which involves both conjunction and disjunction, we prove *distributivity*. How to prove it in Lean?

■ In algebra, we know a similar law x(y+z) = xy + xz.

Logic and Algebra 2

- What is the counterpart to implication?
- The translation of the law $x^{yz} = (x^y)^z$ corresponds to the currying equivalence $P \land Q \rightarrow R \leftrightarrow P \rightarrow Q \rightarrow R$.
- The translation of the law $x^{y+z} = x^y x^z$ is also a law of logic: $P \lor Q \to R \leftrightarrow (P \to R) \land (Q \to R)$.
- How to prove it in Lean?

```
1 variables P Q R: Prop

2

3 theorem case_thm: P v Q → R ↔ (P → R) ∧ (Q → R) :=

4 begin

5 

6 end
```

True, False and Negation 1

- There are two logical constants *true* and *false*.
- E.g., It sometimes rains in Ningbo. Pigs can fly.
- As far is logic and proof concerned, *true* is like an empty conjunction, and *false* is an empty disjunction.
- How to prove true?

```
variables P Q R: Prop

example : true :=
begin

fill
end
```

True, False and Negation 2

- There is no way to prove false.
- Doing cases on *false* as an assumption makes the current goal go away and leaves no goals to be proven.
- How to prove false → P in Lean?

```
variables P Q R: Prop

theorem efq : false → P :=
begin
end
```

• *efq* is short for the latin phrase *Ex falso quod libet*, which means *from false follows everything*.

19 / 25

True, False and Negation 3

- We define $\neg P$ as $P \rightarrow false$, which means that P is impossible.
- Dear gentlemen, if you ask a girl to marry you and she replies *If* we get married then pigs can fly, this means no.

The Law of Contradiction

- The law of contradiction states that *it cannot be that both P and* ¬*P hold*.
- How to prove it in Lean?

```
variables P Q R: Prop

theorem contr: ¬ (P Λ ¬ P) :=

begin

end
```

Summary of Tactics 1

Below is a table summarising the tactics we have seen so far:

	How to prove?	How to use?
\rightarrow	assume h	apply h
\wedge	constructor	cases h with p q
V	left right	cases h with p q
true	constructor	
false		cases h

They are related to introduction and elimination rules in natural deduction, a system devised by the German logician Gerhard Gentzen (1909-1945).

Summary of Tactics 2

- The syntax for using conjunction and disjunction is the same, cases h with p q, but the effect is different.
- In the case of conjunction, both assumptions are added to the context.
- In the case of disjunction, each assumption is added to one subproof.

Summary of Tactics 3

- In addition, we also introduced *exact h* which is a structural tactic.
- There is an alternative. The tactic *assumption* checks whether any assumption matches the current goal.
- How to prove $P \rightarrow P$ using assumption in Lean?

Some Important Notes

- There are many more tactics available in Lean some with a higher degree of automatisation.
- Some of the tactics we have introduced are applicable in ways we have not explained.
- When solving exercises, please use only the tactics we have introduced and only in the way we have introduced them.