Removable Singularities of Harmonic Functions

BY AMEER QAQISH

November 2022

Theorem 1. Let B be the unit ball in \mathbb{R}^n . Suppose $u \in C^2(B \setminus 0) \cap C(\overline{B} \setminus 0)$ is harmonic in $B \setminus 0$ and bounded. Then u can be extended to a harmonic function on B.

Proof. Consider u as a distribution on B. Since u is harmonic on $B \setminus 0$, we have $\sup(\Delta u) \subset \{0\}$. By a famous result, this implies that there is $N \in \mathbb{N}_0$ such that

$$\Delta u = \sum_{|\alpha| \le N} c_{\alpha} \, \partial^{\alpha} \, \delta,$$

where $c_{\alpha} \in \mathbb{C}$. Assume $n \geq 3$ (the n = 2 case can be handled similary). Let $\Gamma(x) = C_n |x|^{2-n}$ be the fundamental solution for the Laplace operator, satisfying $\Delta \Gamma = \delta$. Then for $|\alpha| \leq N$, $\Delta \partial^{\alpha} \Gamma = \partial^{\alpha} \Delta \Gamma = \partial^{\alpha} \delta$. Let

$$v = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \Gamma.$$

We have u = w + v, with $\Delta w = 0$. By Weyl's theorem, $w \in C^{\infty}(B)$. Thus w is bounded near 0. Thus v is bounded near 0. Now Lemma 2 below finishes the proof.

Lemma 2. Assume $n \ge 3$. Suppose $v = \sum_{|\alpha| \le N} c_{\alpha} \partial^{\alpha} \Gamma$ with $c_{\alpha} \in \mathbb{C}$. If v is bounded near 0, then v = 0.

Proof. Suppose v is bounded near 0. Let $s=2-n \le -1$. Note that for $x \ne 0$, r > 0, $f(rx) = r^s f(x)$. Thus if $|\alpha| = k$, then $r^k \partial^{\alpha} f(rx) = r^s \partial^{\alpha} f(x)$, so $\partial^{\alpha} f(rx) = r^{s-k} \partial^{\alpha} f(x)$. Thus

$$v = \sum_{k=0}^{N} \sum_{|\alpha|=k} c_{\alpha} \partial^{\alpha} \Gamma =: \sum_{k=0}^{N} g_{k},$$

Where each g_k satisfies $g_k(rx) = r^{s-k}g(x)$ for $x \neq 0$, r > 0. Thus for $x \neq 0$,

$$v(x) = \sum_{k=0}^{N} |x|^{s-k} g_k \left(\frac{x}{|x|}\right)$$

$$= |x|^{s-N} \sum_{k=0}^{N} |x|^{N-k} g_k \left(\frac{x}{|x|}\right)$$

$$= |x|^{s-N} \left(g_N \left(\frac{x}{|x|}\right) + O(|x|)\right).$$

If $g_N \neq 0$, then by continuity of g_N , there is ω with $|\omega| = 1$ such that $|g_N(\omega)| = \sup_{|x|=1} |g_N(x)| > 0$ and

$$|v(r\omega)| = r^{s-N}(|g_N(\omega)| + O(r)) \to \infty \text{ as } r \setminus 0,$$

contradicting that v is bounded near 0. Thus $g_N = 0$. Thus $v = \sum_{k=0}^{N-1} g_k$. Repeating the same argument shows that $g_{N-1} = 0$, and then $g_{N-2} = 0$, and so forth, showing that $g_k = 0$ for each k.

Remark 3. The assumption that u be bounded is stronger than necessary. The proof of lemma 2 shows that if $v \neq 0$, then $v = \Omega(|x|^{2-n})$ as $x \to 0$. Thus the theorem remains true if we only assume that $u = o(|x|^{2-n})$.