Домашнее задание по теме

«Случайные векторы и математическая статистика» (модуль 3) по дисциплине «Теория вероятностей и математическая статистика», ИУ1Б, 3-й семестр

Задача №1 (1 балл).

Совместная двумерная плотность распределения случайного вектора $\xi(\omega) = \begin{pmatrix} \xi_1(\omega) \\ \xi_2(\omega) \end{pmatrix}$ имеет вид

$$f_{\xi}(x,y) = \begin{cases} \alpha xy, & (x,y) \in G; \\ 0, & (x,y) \notin G, \end{cases}$$

где G — прямоугольник ABCD.

Найти:

- 1) постоянную α ;
- 2) одномерные плотности распределения компонент случайного вектора;
- 3) вероятность попадания случайного вектора $\xi(\omega) = \begin{pmatrix} \xi_1(\omega) \\ \xi_2(\omega) \end{pmatrix}$ в треугольник *ABC*.
- 4) проверить, являются ли случайные величины $\xi_1(\omega)$ и $\xi_2(\omega)$ независимыми;
- 5) математическое ожидание и ковариационную матрицу случайного вектора $\xi(\omega) = {\xi_1(\omega) \choose \xi_2(\omega)}.$

№	Α	В	С	D	№	Α	В	С	D
варианта					варианта				
1	(2,1)	(2,3)	(5,3)	(5,1)	11	(1,2)	(1,5)	(3,5)	(3,2)
2	(2,3)	(5,3)	(5,1)	(2,1)	12	(1,5)	(3,5)	(3,2)	(1,2)
3	(5,3)	(5,1)	(2,1)	(2,3)	13	(3,5)	(3,2)	(1,2)	(1,5)
4	(5,1)	(2,1)	(2,3)	(5,3)	14	(3,2)	(1,2)	(1,5)	(3,5)
5	(2,2)	(2,4)	(5,4)	(5,2)	15	(5,4)	(5,2)	(2,2)	(2,4)
6	(2,4)	(5,4)	(5,2)	(2,2)	16	(5,2)	(2,2)	(2,4)	(5,4)
7	(2,1)	(5,1)	(5,3)	(2,3)	17	(1,2)	(3,2)	(3,5)	(1,5)
8	(5,1)	(5,3)	(2,3)	(2,1)	18	(3,2)	(3,5)	(1,5)	(1,2)
9	(5,3)	(2,3)	(2,1)	(5,1)	19	(3,5)	(1,5)	(1,2)	(3,2)
10	(2,3)	(2,1)	(5,1)	(5,3)	20	(1,5)	(1,2)	(3,2)	(3,5)

№	A	В	С	D	№	A	В	С	D
варианта					варианта				
21	(2,2)	(5,2)	(5,4)	(2,4)	25	(2,2)	(4,2)	(4,5)	(2,5)
22	(5,2)	(5,4)	(2,4)	(2,2)	26	(4,2)	(4,5)	(2,5)	(2,2)
23	(5,4)	(2,4)	(2,2)	(5,2)	27	(4,5)	(2,5)	(2,2)	(4,2)
24	(2,4)	(2,2)	(5,2)	(5,4)					

Задача №2 (1 балл).

Вариант 1.

Радиус шара $\xi(\omega)$ — случайная величина, распределенная равномерно в интервале (1,3). Найти математическое ожидание и дисперсию объема шара.

Вариант 2.

Математическое ожидание числа солнечных дней в году для определенной местности равно 180 дням. Найти вероятность того, что в данном году здесь будет не менее 230 солнечных дней. Как изменится искомая вероятность, если будет известно, что среднее квадратичное отклонение числа солнечных дней равно 10?

Вариант 3.

Диаметр круга $\xi(\omega)$ — случайная величина, распределенная равномерно в интервале (2,4). Найти математическое ожидание и дисперсию площади круга.

Вариант 4.

Случайные величины $\xi_1(\omega)$ и $\xi_2(\omega)$ имеют следующие числовые характеристики: $M[\xi_1(\omega)] = -1$, $D[\xi_1(\omega)] = 2$, $M[\xi_2(\omega)] = 2$, $D[\xi_2(\omega)] = 4,5$, коэффициент корреляции $\rho_{\xi_1\xi_2} = 0,8$. Найти математическое ожидание, дисперсию и ковариацию случайных величин $\eta_1(\omega) = 2\xi_1(\omega) + \xi_2(\omega)$ и $\eta_2(\omega) = \xi_2(\omega) - \xi_1(\omega)$.

Вариант 5.

Математическое ожидание годового количества осадков для данной местности равно 600 мм. Каково минимальное количество осадков за год с вероятностью, не превышающей величины 0,8?

Вариант 6.

Случайная величина $\xi(\omega)$ распределена равномерно в интервале (0,10), а случайная величина $\eta(\omega)$ имеет экспоненциальное распределение с параметром $\lambda=0,5$. Найти математическое ожидание и дисперсию случайной величины $\varepsilon(\omega)=2\xi(\omega)-3\eta(\omega)+5$, если коэффициент корреляции равен $\rho_{\xi\eta}=0,7$.

Вариант 7.

Математическое ожидание скорости ветра у земли для данной местности составляет 8 км/ч. Найти вероятность того, что скорость ветра превысит 20 км/ч и что ее значение будет меньше 50 км/ч. Как изменятся искомые вероятности, если будет известно, что среднее квадратичное отклонение скорости ветра равно 2 км/ч?

Вариант 8.

Дана последовательность $\xi_1(\omega), \xi_2(\omega), \cdots, \xi_n(\omega), \cdots$ независимых дискретных случайных величин. Ряд распределения случайной величины $\xi_k(\omega)$ имеет вид:

$\xi_k(\omega)$	$-k\alpha$	0	kα
P	1	1	1
	$\frac{\overline{2^k}}{2^k}$	$1 - \frac{1}{2^{k-1}}$	$\frac{\overline{2k}}{2}$

Проверьте, применим ли к этой последовательности закон больших чисел в форме Чебышева.

ДЗ «Случайные векторы и математическая статистика», модульЗ (ТВиМС, ИУ1Б, 3-й семестр, 2022г.)

Вариант 9.

Сторона квадрата $\xi(\omega)$ — случайная величина, распределенная равномерно в интервале (2,4). Найти математическое ожидание и дисперсию площади квадрата.

Вариант 10.

Вероятность случайного события равна 0,67. Сколько нужно провести испытаний, чтобы с вероятностью $P \ge 0,98$ можно было ожидать, что наблюдаемая частота случайного события отклониться по абсолютной величине от его вероятности не более, чем на 0,01? Решите задачу двумя способами: используя неравенство Чебышева и интегральную теорему Муавра-Лапласа.

Вариант 11.

Случайная величина $\xi(\omega)$ распределена равномерно в интервале (5,15), а случайная величина $\eta(\omega)$ имеет экспоненциальное распределение с параметром $\lambda=2$. Найти математическое ожидание и дисперсию случайной величины $\varepsilon(\omega)=\eta(\omega)-3\xi(\omega)+1$, если коэффициент корреляции равен $\rho_{\xi\eta}=-0.4$.

Вариант 12.

Проведено 200 измерений некоторой случайной величины. Известно, что дисперсия измерения для каждой случайной величины не превосходит 4. Оценить вероятность того, что отклонение по абсолютной величине среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий не превзойдет 0,2.

Вариант 13.

Случайные величины $\xi_1(\omega)$ и $\xi_2(\omega)$ имеют следующие числовые характеристики: $M[\xi_1(\omega)] = -1$, $D[\xi_1(\omega)] = 2$,5, $M[\xi_2(\omega)] = 2$, $D[\xi_2(\omega)] = 2$, $cov[\xi_1(\omega), \xi_2(\omega)] = 2$. Найти математическое ожидание, дисперсию и коэффициент корреляции случайных величин $\eta_1(\omega) = \xi_1(\omega) + \xi_2(\omega)$ и $\eta_2(\omega) = \xi_2(\omega) - 2\xi_1(\omega)$.

Вариант 14.

Диагональ квадрата $\xi(\omega)$ — случайная величина, распределенная равномерно в интервале (2,4). Найти математическое ожидание и дисперсию площади квадрата.

Вариант 15.

Вероятность случайного события равна 0,7. Используя неравенство Чебышева, найти вероятность того, что частота появления случайного события при проведении 200 испытаний отклонится от вероятности его появления по абсолютной величине не более, чем на 0,05. Найденный ответ сравнить с результатом, полученным с помощью интегральной теоремы Муавра-Лапласа.

Вариант 16.

Случайная величина $\xi(\omega)$ распределена равномерно в интервале (0,10), а случайная величина $\eta(\omega)$ имеет экспоненциальное распределение с параметром $\lambda=1$. Найти математическое ожидание и дисперсию случайной величины $\varepsilon(\omega)=\xi(\omega)-2\eta(\omega)+5$, если коэффициент корреляции равен $\rho_{\xi\eta}=-0.6$.

Вариант 17.

Математическое ожидание скорости ветра на высоте $10 \, \text{км}$ равно $30 \, \text{км/ч}$, а среднее квадратичное отклонение равно $5 \, \text{км/ч}$. Какую скорость ветра на этой высоте можно ожидать с вероятностью, не меньшей 0.85?

Вариант 18.

Генератор обеспечивает выходное напряжение, которое может отклоняться от номинального на значение, не превышающее 1 В, с вероятностью 0,95. Какие значения дисперсии выходного напряжения можно ожидать?

Вариант 19.

Случайные величины $\xi_1(\omega)$ и $\xi_2(\omega)$ имеют следующие числовые характеристики: $M[\xi_1(\omega)]=2$, $D[\xi_1(\omega)]=3$, $M[\xi_2(\omega)]=5$, $D[\xi_2(\omega)]=3$, коэффициент корреляции $\rho_{\xi_1\xi_2}=-0.7$. Найти математическое ожидание, дисперсию и ковариацию случайных величин $\eta_1(\omega)=2\xi_1(\omega)-\xi_2(\omega)$ и $\eta_2(\omega)=3\xi_1(\omega)+\xi_2(\omega)$.

Вариант 20.

Ребро куба $\xi(\omega)$ — случайная величина, распределенная равномерно в интервале (1,3). Найти математическое ожидание и дисперсию объема куба.

Вариант 21.

Дана последовательность $\xi_1(\omega), \xi_2(\omega), \cdots, \xi_n(\omega), \cdots$ независимых дискретных случайных величин. Ряд распределения случайной величины $\xi_k(\omega)$ имеет вид:

$\xi_k(\omega)$	$-k\alpha$	0	kα
P	1	_ 1	1
	$\overline{2k^2}$	$1-\frac{1}{k^2}$	$\overline{2k^2}$

Проверьте, применим ли к этой последовательности закон больших чисел в форме Чебышева.

Вариант 22.

Вероятность случайного события равна 0,8. Проведено 1500 испытаний. Какому интервалу с вероятностью $P \ge 0,95$ принадлежит наблюдаемая частота случайного события? Решить задачу, используя неравенство Чебышева и интегральную теорему Муавра-Лапласа.

Вариант 23.

Случайная величина $\xi(\omega)$ распределена равномерно в интервале (0,20), а случайная величина $\eta(\omega)$ имеет экспоненциальное распределение с параметром $\lambda=0,4$. Найти математическое ожидание и дисперсию случайной величины $\varepsilon(\omega)=2\eta(\omega)-\xi(\omega)+5$, если коэффициент корреляции равен $\rho_{\xi\eta}=-0,5$.

Вариант 24.

Математическое ожидание годового количества осадков для данной местности равно 700 мм. Найти вероятность того, что в данном году здесь будет не менее 800 мм осадков. Как изменится искомая вероятность, если будет известно, что среднее квадратичное отклонение годового количества осадков равно 20 мм?

Вариант 25.

Радиус круга $\xi(\omega)$ — случайная величина, распределенная равномерно в интервале (1,3). Найти математическое ожидание и дисперсию площади круга.

ДЗ «Случайные векторы и математическая статистика», модульЗ (ТВиМС, ИУ1Б, 3-й семестр, 2022г.)

Вариант 26.

Вероятность случайного события равна 0,6. Используя неравенство Чебышева, найти вероятность того, что частота появления случайного события при проведении 1000 испытаний отклонится от вероятности его появления по абсолютной величине не более, чем на 0,02. Найденный ответ сравнить с результатом, полученным с помощью интегральной теоремы Муавра-Лапласа.

Вариант 27.

Математическое ожидание числа солнечных дней в году для определенной местности равно 150 дням. Найти вероятность того, что в данном году здесь число солнечных дней будет находиться в интервале 120-180 дней, если среднее квадратичное отклонение числа солнечных дней равно 10?

Задача №3 (1 балл).

Для заданной выборки:

- 1. постройте:
 - а) статистический ряд;
 - б) интервальный статистический ряд, предварительно определив число интервалов;
- 2. найдите значения точечных оценок математического ожидания и дисперсии;
- 3. постройте гистограмму;
- 4. на основе анализа результатов наблюдений выдвинете гипотезу о виде закона распределения генеральной совокупности.

Вариант 1.

Чувствительность канала изображения телевизора в метровом диапазоне, мкВ.

20,5	15,0	21,5	20,0	19,0	21,5	19,0	19,0	24,0	28,0	24,0	28,0	24,0	25,0	29,0	25,0
28,0	37,5	26,0	29,0	23,4	12,6	20,6	27,0	23,2	22,6	28,5	23,0	27,2	25,2	21,0	24,2
24,2	24,2	25,2	21,6	21,0	21,6	20,8	22,2	30,2	25,0	28,0	25,0	27,0	17,4	25,8	24,2
23,2	21,2	26,6	27,0	31,0	33,4	26,0	27,0	21,6	30,2	22,8	26,4	25,8	25,2	29.0	25,0
25,2	25,2	25,0	27,3	20.4	22,7	21,0	26,0	20,0	21,6	24,0	22,0	27,0	24,2	25,8	26,2
30,0	31,0	25,0	26,2	20,6	25.2	23,0	25,0	27,0	25,1	22,0	29,2	24,0	30,0	24,5	21,5
29,0	23,4	23,5	25,9	22,6	25,0	30,0	30,2	32,6	23,8	39,2	25,0	27,2	25.6	23,4	26,2
21,9	26,9	23,6	26,9	23,1	19,9	23,4	19,2	14,4	20,7	29,2	21,9	21,0	21,9	30,0	22,6
24,6	24,1	20,6	27,8	22,7	23,4	21,6	24,6	21,9	23.8	27,2	34,0	25,4	23.2	27,7	23,0
30,0	25,1	22,7	27,8	27,0	22,6	20,7	19,4	21,4	23,0	21,0	24,3	23,0	23,2	29,2	24,4
24,4	21,8	29,4	30,0	29,7	29,2	23,0	23,4	23,0	25,9	24,6	22,6	29,2	23,4	28,8	25,4
23,8	30,0	27,8	21,0	28,6	27,2	23,1	26,9	25,9	24,2	31,2	25,9	23,1	27,6	26,2	22,2
25,9	27,6	20,0	27,0												

Вариант 2.

Точность измерительного прибора, систематическая ошибка которого практически равна нулю, м.

381	421	372	418	392	427	385	358	370
412	411	386	395	382	376	380	383	395
391	430	391	377	372	406	429	429	376
431	405	430	382	429	413	421	395	413
430	373	393	375	364	449	382	375	371
411	427	362	388	409	400	392	378	421
399	396	384	373	391	340	410	428	382
397	389	403	440	418	412	378	398	418
365	399	418	400	402	405	410	423	373
399	389	440	429	369	394	432	390	409
351	384	425	407	383	415	418	456	303
398	420	418	404	400	383	425	422	388
388	421	437	418	379	383	347	428	388
395	429	363	410	384	416	380	433	398

Вариант 3.

Расстояние безотказной работы тепловозов (расстояние, пройденное тепловозами до выхода из строя одного из его контрольных приборов), тыс. км.

46,0	120,0	122,5	93,5	69,5	102,5	76,5	37,5	22,5	77,0
107,0	123,0	48,5	78,5	108,5	127,5	51,5	80,0	112,5	131,5
53,0	81,5	113,5	132,0	54,6	82,0	116,0	134,0	57,5	83,0
117,0	66,5	84,0	118,5	68,0	91,5	119,0	38,5	66,0	43,5
60,5	91,5	39,0	65,5	137,5	40,5	99,5	52,5	143,0	89,5
94,5	80,5	79,0	62,0	87,5	97,5	62,5	64,0	23,5	78,5
61,0	98,0	62,5	97,5	70,0	65,5	71,5	99,0	72,5	63,5
47,0	77,0	76,5	64,0	63,5	56,5	77,0	63,5	72,0	66,0
87,6	66,5	55,0	108,5	99,0	110,0	86,6	88,0	66,0	105,5

Вариант 4.

Процентное содержание триоксида серы в горной породе некоторого региона, %.

15,6	15,8	15,7	15,8	15,7	16,0	15,7	15,9	15,7	15,8	15,7
15,8	15,4	15,8	15,7	15,7	15,9	16,0	15,7	16,0	15,7	16,0
15,9	15,8	15,5	16,0	15,7	15,7	15,7	15,9	15,7	15, 8	15, 8
15,1	15,8	16,0	16,2	15,7	15,5	15,9	15,7	15,7	15, 3	15, 6
16,1	15,7	16,1	15,9	15,8	16,0	15,0	15,7	15,6	15, 5	15,8
15,6	15,8	15,8	15,5	15,6	15,6	15,9	15,8	15,9	15, 8	15,7
15,5	15,7	15,8	15,9	15,4	15.8	15,3	15,4	15,5	15, 7	15,6
15,8	15,9	15,4	15,9	15,6	15,7	15,6	15,7	15,7	15, 7	15, 7
15,3	16,1	15,6	16,0	16. 1	15,6	15,5	15,6	15,7	15, 5	16,1
15,8	15,7	15,4	16,3	15,7	15,6	16,2	15,6	15,6	15, 3	15, 5
15,4	15,9	15,6	16,0	15,7	15,8	15,9	16,0	16,1	15, 8	15,9
15,7	15,6	15,7	15,9	16,0	16,1	15,5				

Вариант 5.

Результаты измерения обхвата грудной клетки120 женщин, см.

95	93	89	100	94	95	94	101	90	95
103	98	99	91	95	94	95	94	89	93
98	95	93	89	100	107	100	98	101	97
90	95	103	98	99	91	94	95	94	89
93	98	93	96	101	97	102	97	106	101
96	96	94	100	95	92	93	96	97	98
99	97	104	101	98	109	98	104	95	100
102	98	95	99	98	92	97	99	98	102
98	94	98	97	94	90	95	97	103	100
97	91	96	108	100	91	93	106	93	97
93	90	95	97	97	99	93	96	101	96
100	106	105	94	102	91	94	106	96	100

Вариант 6.

Результаты измерения обхвата грудной клетки 123 мужчин, см.

, y z i i i i i i i	DI 11.5	penna	COADG	ru rpj,	,	TOTAL	125 My	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·					
98	92	101	102	99	109	101	104	94	96	104	100	100	97	106
101	101	102	99	109	101	104	93	96	104	100	110	97	106	101
101	99	103	101	99	93	100	103	98	108	102	103	88	97	116
97	105	103	110	102	96	109	104	112	97	98	114	105	116	102
101	109	98	109	98	105	103	101	97	92	106	109	98	103	104
100	101	91	99	101	101	105	97	110	99	93	107	88	103	94
111	98	90	100	116	97	108	104	112	96	92	110	103	105	87
96	109	98	109	101	102	110	105	109	103	98	108	106	92	97
101	103	105												

Вариант 7.

Результаты определения выносливости шерстяной ткани при многократном растяжении при заданной циклической деформации 8%, число циклов.

0,0,		/	•											
102	99	102	113	91	101	107	94	109	111	106	95	103	87	97
106	101	93	98	95	105	98	101	88	99	100	107	108	97	92
104	102	97	114	101	97	111	101	104	111	101	103	101	92	102
110	106	105	95	96	103	108	93	112	96	99	116	100	112	101
103	112	102	97	95	94	100	107	103	99	105	104	110	108	98
97	103	102	89	92	99	89	109	98	111	106	102	99	110	86
97	106	105	97	101	109	96	104	103	109	103	85	105	100	102
100	100	98	103	100	110	99	96	94	103	110	103	109	99	102
91	100	97	93	110	109	104	103	101	103	106	87	105	96	101
101	93	98	103	11	102	92	98	109	104	114	108	103	101	70
108	99	102	103	106	101	105	97	116	102	109	98	97	100	95

Вариант 8.

Результаты измерения стойкости резца из T15К6 при скорости резания 0,33 м/с и подаче 0,12 мм/об, мин.

162	143	170	162	163	151	164	161	163	165	159	163	170	166	168
155	164	165	174	159	165	170	158	159	160	158	160	162	166	163
164	165	165	158	158	160	163	164	170	169	170	172	170	165	158
164	171	176	170	158	165	160	164	167	170	161	160	165	165	158
170	168	168	160	164	158	160	162	156	170	163	160	163	168	162
165	163	163	165	158	168	164	171	166	160	160	162	164	155	169
165	165	165	165	166	164	164	150	165	170	175	160	165	166	162
168	164	164	170	164	167	160	168	158	170	165				

Вариант 9.

Результаты измерений максимальной скорости испытаний спортивного самолета, м/с.

431	398	423	401	423	404	389	428	402	404
427	398	422	409	420	422	397	458	403	411
398	408	438	414	413	404	426	434	430	397
383	415	418	438	394	417	412	404	389	398
431	423	401	423	435	427	428	405	414	415
439	409	391	416	419	401	372	395	418	413
407	445	428	420	429	395	433	406	402	398
399	432	405	412	425	417	424	416	396	403
432	402	431	419	423	441	424	410	424	413
393	412	302	408	437	416	436	415	421	407
404	404	403	434	412	419	405	402	394	423
398	415	401	398	428	416	453	371	424	417

Вариант 10.

Результаты измерения роста 149 девушек некоторого региона, см .

168	163	160	170	160	155	158	157	157	159	155	155	160	163
164	168	173	170	163	160	156	158	163	164	165	164	171	163
172	168	165	168	170	168	159	172	166	154	165	164	164	168
165	154	167	159	160	164	165	164	169	158	163	156	170	174
179	172	163	162	160	164	170	174	167	167	154	164	170	160
167	167	165	168	158	156	167	155	162	170	170	170	164	168
160	166	162	164	162	165	157	166	155	158	160	162	163	167
157	164	163	158	168	158	164	162	164	166	170	162	168	169
167	174	169	175	168	166	168	168	168	166	170	160	165	170
168	162	155	168	164	163	166	168	164	165	166	156	165	164
159	156	163	164	165	165	157	170	166					

Вариант 11.

Масса одного колоса пшеницы сорта Sonnora (Япония) при плотности посева 15×2,5 см, г.

1,80	1,40	1,12	2,30	2,70	3,30	1,30	1,13	1,70	1,40
1,25	1,90	1,64	1,47	1,65	1,50	1,85	1,68	1,51	1,48
1,95	0,80	2,80	2,40	2,95	2,50	2,30	2,90	1,84	2,20
1,68	2,50	2,52	1,29	3,30	1,85	2,10	3,60	2,40	2,55
1,50	1,29	1,85	1,58	1,31	1,69	1,28	1,90	1,87	1,70
1,49	2,10	1,90	1,49	1,80	2,45	2,30	3,00	3,10	3,10
1,60	1,88	2,20	1,63	0,80	1,63	1,45	1,29	1,47	2,55
1,49	2,40	2,55	1,26	0,80	1,25	2,10	0,70	2,00	1,85
0,90	1,90	2,10	2,55	2,55	2,40	0,60	2,10	0,40	2,50
1,50	1,69	2,70	1,48	1,50	1,69	1,46	1,48	1,52	1,30

Вариант 12.

Масса одного колоса пшеницы сорта Sonnora (Япония) при плотности посева 15×5 см, г.

3,91	4,21	1,73	2,70	1,57	2,00	4,00	1,10	1,62	1,30
2,50	1,10	2,60	3,90	0,70	1,45	1,51	1,97	1,46	3,82
1,42	1,62	2,45	0,78	3.50	3,75	1,39	2,40	3,80	2,48
1,10	2,03	1,47	5,40	0,71	1,41	1,40	1,48	1,49	5,20
2,35	1,49	1,61	1,44	3,40	0,75	2,60	2,95	3,00	2,08
1,49	2,85	1,58	3,90	1,59	1,98	0,80	2,80	1,49	1,90
5,10	1,49	2,01	3,65	2,08	1,48	3,25	1,50	4,19	0,94
1,95	2,03	0,80	1,58	1,90	2,02	1,53	0,84	1,85	2,01
2,02	2,38	1,96	2,10	2,47	1.41	2,07	1,50	0,80	1,45
3,80	1.50	1,49	3.98	1,98	2,78	3,95	2,91	2,50	1,90
1,35	2,10	0,74	1,28	0,75	1,59	1,50			

Вариант 13.

Процентное содержание лавсанового волокна в хлопко-лавсановой пряже (данные чулочно-носочной фабрики им. В.Н.Ногина), $\frac{9}{6}$

13,39	13,43	13,54	13,64	13,40	13,55	13,40	13,26	13,42	13,50
13,32	13,31	13,28	13,52	13,46	13,63	13,38	13,44	13,52	13,53
13,37	13,33	13,24	13,13	13,53	13,53	13,39	13,57	13,51	13,34
13,39	13,47	13,51	13,48	13,62	13,58	13,57	13,33	13,51	13,40
13,30	13,48	13,40	13,57	13,51	13,40	13,52	13,56	13,40	13,34
13,23	13,37	13,48	13,48	13,62	13,35	13,40	13,36	13,45	13,48
13,29	13,58	13,44	13,56	13,38	13,20	13,54	13,62	13,46	13,47
13,59	13,29	13,43	13,30	13,56	13,51	13,47	13,40	13,29	13,20
13,46	13,44	13,42	13,29	13,41	13,39	13,50	13,48	13,53	13,34
13,45	13,42	13,29	13,38	13,45	13,50	13,56	13,33	13,32	13,69
13,46	13,32	13,48	13,29						

Вариант 14.

Глубина вдавливания (глубокий отпуск) стальных образцов, мм

9,57	10,07	10,77	10,24	9,98	9,65	9,30	10,33	11,51	9,23
10,32	9,12	10,33	9,28	10,57	10,24	10,62	10,18	10,85	11,02
9,78	10,42	10,90	10,23	9,45	10,50	10,48	II, II	9,53	10,05
11,58	9,72	10,59	9,68	10,92	9,87	10,27	10,22	10,97	10,82
10,66	10,69	10,80	9,42	10,69	10,54	10,85	10,24	10,48	10,35
11,07	9,54	11,18	9,67	11,43	9,80	10,86	11,25	10,23	10,08
9,75	11,05	10,07	10,03	10,57	10,27	9,97	9,92	10,62	10,87
10,47	10,12	10,08	9,99	9,96	9,85	9,85	10,63	10.22	9,30
9,83	10,75	10,65	10,20	9,57	9,89	10,17	10,05	10,02	10,35
10,34	10,22	9,75	10,00	9,85	10,77	11,23	10,05	10,30	10,03
10,73	9,79	10,88	10,03	10,17	10,22	9,10	10,02	11,53	11.40
9,80	9,80	9,83	10,13	10,23	10,50	11,45	10,51	10,67	10,48
10,77	9,97	10,72	10,55	10,42	11,66	9,31	9,46	10,00	11,35
9,33	10,05	10,27	10,38	10,24	10,43	10,30	11,61	10,22	9,08
10,34	10,41	11,22	11,28	9,85	9,63	10,03	10,40	10,93	10,46

Вариант 15.

Содержание влаги в 80 кирпичах, используемых для футеровки печи, после хранения их течение месяца, %

7,1	6,7	7,0	7,3	7.2	7,1	6,9	6,8	7,5	7,0
7,0	7,1	7,1	6,8	7,2	7,0	7,2	6,9	6,7	6,9
6.9	7,0	7,0	6,8	6,9	7,0	7,0	7,1	6,8	7,1
7,2	7,1	6,9	6,7	7,1	6,9	6,9	7,1	7,0	7,3
6,8	7,3	7,4	6,8	7,2	7,2	6,8	6,7	7,3	7,1
6,9	7,6	7,0	6,5	7,1	7,2	7,0	7,0	6,9	7,0
6,7	6,8	7,1	7,2	7,1	7,5	7,1	6,8	6,9	7,2
7,2	6,9	7,1	7,5	7,0	7,1	7,0	7,1	6,8	7,0

Вариант 16.

Результаты определения линейной плотности стальной проволоки, г/м

381	388	384	418	373	364	376	383	432	428	413	412	395	420
440	440	409	406	416	418	398	371	391	421	421	425	400	391
413	385	425	423	421	431	429	411	418	429	418	449	380	347
390	382	430	372	430	437	407	402	400	429	380	456	418	411
385	405	363	404	369	340	421	358	422	373	399	391	373	418
418	383	412	382	383	428	409	397	427	430	395	410	400	405
392	376	433	363	365	395	393	377	392	379	394	410	385	370
388	399	389	362	382	382	384	415	378	375	395	388	361	399
384	375	372	427	385	410	378	392	398	398	389	403	388	429

Вариант 17.

Время безотказной работы некоторого прибора, тыс.ч

26,7	94,2	74,8	88,7	93,2	78,7	90,5	73,3	76,3	71,9	80,3	27,3
73,3	69,8	69,1	81,9	67,7	57,7	68,4	96,1	67,0	64,4	92,3	67,0
39,9	53,8	79,5	74,1	63,8	77,1	86,9	87,8	81,1	61,3	97,0	5.5
41,5	48,7	95,1	71,2	58,3	53,3	49,2	55.4	50,7	47,7	52,7	60,0
13,5	50,2	77,9	60,6	45,4	98,0	100	72,6	44,9	59,5	56,5	56,0
16,5	42,7	70,5	43,2	41,9	85,2	38,7	48,2	39,1	44,5	9,5	39,5
26,1	49,7	99,0	45,8	40,3	82,7	86,1	51,7	83,5	43,6	52,2	51,2
22,3	30,2	89,6	39,9	33,3	91,4	38,3	26,2	37,6	36,8	28,3	37,9
65,0	13,5	84,4	27,3	24,7	66,4	58,9	54,9	46,8	61,9	47,2	65,7
30,0	42,3	75,6	63,1	62,5	40,7	41,1	46,3	44,0	37,2	57,1	54,9

Вариант 18.

Результаты определения плотности в петлях трикотажного полотна, петл./5 см.

					¥ .			.,				
67	65	65	62	63	66	68	71	68	64	61	63	60
71	64	64	69	59	65	64	64	65	64	66	64	62
64	68	65	67	67	67	67	71	68	71	69	65	67
62	68	70	67	64	65	65	64	61	66	67	61	65
64	70	64	68	60	61	68	65	60	67	65	63	65
65	63	64	66	62	65	65	68	61	65	61	64	62
68	69	70	71	70	69	70	71	65	71	70	71	69
70	64	71	70	70	68	70	62	66	69	70	71	69
72	73	74	73	70	63	67	65	63	68	70		

Вариант 19.

Результаты определения поверхностной плотности асбестового полотна, Γ/M^2 .

431	470	431	432	434	450	449	437	448	445	351	393
370	261	360	362	368	361	369	411	412	413	4IZ	430
429	425	424	427	402	429	411	419	414	417	429	415
421	420	419	429	427	424	430	420	421	421	429	417
415	414	413	411	391	392	398	400	410	409	406	400
399	397	396	409	408	410	400	405	407	406	400	403
404	405	410	410	405	401	402	407	406	391	392	399
405	407	407	402	371	372	390	385	380	381	382	383
380	375	375	374	380	379	379	372	374	377	376	371
373	374	376	378	376	376	378	379	380	381	382	383
383	383	371	372	372	390	378	400	399	390	387	401

Вариант 20.

Горизонтальное отклонение от цели при испытаниях 190 ракет, м.

4,3	-29,3	20,5	27,3	-20,8	-28,7	26,4	-30,1	20,8	-27,3
11,2	9,5	-5,3	19,2	5,2	-6,0	2,6	4,9	-0,8	0,2
7.5	15,1	8,0	17,9	10,3	11,4	5,1	14,8	17,8	-8,3
2,5	-5,8	56,9	9,0	-5,9	1,2	19,2	-22,4	19,4	-19,5
21,3	19,8	-32,2	48,1	-21,1	-21,3	-8,8	10,2	-37,2	-0,3
14,5	26,3	-1,9	26,3	-1,9	12,4	14,9	18,2	1,5	1,6
1,7	-10,5	1,7	2,7	16,1	1,8	3,2	32,1	-50,8	6,9
51,2	31,3	-47,9	53,4	30,2	-56,1	14,0	11,8	-7,5	18,4
11,5	-5,0	-6,2	-11,2	18,6	16,7	-12,3	17,1	-12,3	25,3
1,9	-16,3	-54,3	-32,7	-19,3	3,7	2,0	3,8	0,1	0
13,5	0,3	6,8	46,2	42,3	-40,1	22,3	27,1	-23,0	21,8
0	-2,5	0,8	-5,2	2,9	6,0	18,8	-8,1	-20,0	-23,7
23,4	5,4	4,2	-9,0	23,8	4,4	-18,3	15,7	5,0	-3,2
10,8	7.2	12,8	13,0	-7,3	7,8	17,3	7,9	13,9	12,0
7,8	-13,2	8,1	24,3	-16,5	-14,2	-12,3	-15,2	8,8	-6,8
13,8	-20,8	15,5	8,9	15,3	8,7	-6,5	9,3	18,8	-17,7
10,0	24,8	-8,1	19,9	0	9,8	-10,0	16,9	25,8	-7,2
16,5	-14,8	-33,5	-6,9	12.4	-26,2	27,8	28,5	29,5	-27,3
29,8	30,0	-24,8	-46,3	-25,2	-34,5	38,3	-37,5	37,4	42,3

Вариант 21.

Распределение скорости автомобилей на одном из участков шоссе, км/ч.

65	85	78	73	80	76	81	70	80	80	77	90	75	69	77	87	78	84
79	75	79	67	80	95	83	68	72	76	83	89	76	84	79	85	74	86
79	74	78	81	92	81	66	81	82	59	87	58	75	88	77	79	80	77
73	69	79	72	80	78	75	73	101	73	83	89	97	83	103	73	94	79
74	91	79	76	63	74	92	78	84	80	83	99	78	82	59	79	61	78
94	92	79	85	82	84	68	76	71	79	73							

Вариант 22.

Результаты определения разрывной нагрузки асбестовых нитей, сН.

780	860	820	860	600	720	720	600	800	820
980	1020	600	760	1220	1060	1240	1020	860	740
660	600	580	780	500	800	680	600	760	1160
880	1040	960	800	760	980	840	840	700	1000
640	620	1000	1000	1040	740	640	860	840	1000
1040	820	920	900	880	840	700	1120	900	660
860	680	1080	920	780	700	660	640	580	640
720	720	580	840	840	920	940	900	500	980
760	620	580	1040	1080	840	920	900	660	1040
520	900	860	1060	980	900	860	980	1300	1160
880	780	580	880	900	880	900	720	640	660
820	930	680	500	780	910	700	760	780	660
740	300	760	780	860	780	560	560	900	700
740	740	1300	740	940	940	740	900	900	1220

Вариант 23.

Результаты определения долговечности шерстяной пряжи при самоистирании в петле на приборе ИПП, число циклов.

288	284	291	268	265	280	382	290	335	353	440	353	400
366	338	315	384	367	328	388	348	360	409	311	336	280
290	335	353	400	335	300	361	360	325	345	349	307	344
323	360	397	379	334	399	352	349	361	385	333	377	347
321	359	449	356	343	391	332	375	345	358	320	342	420
352	368	331	373	357	339	319	309	341	335	367	375	371
292	356	317	340	329	334	366	383	332	354	313	328	425
295	355	345	339	334	365	379	349	401	367	364	386	318
407	381	337	289	366	369	384	347	405	360	344	336	306
350	369	403	346	362	326	346	340	385	419	351	356	377

Вариант 24.

Результаты измерений геометрического размера изделий, мм.

14,12	14,55	14,26	14,43	14,50	14,46	14,15	14,40	14,22	14,61
14,24	14,42	14,03	14,35	14,18	14,48	14,51	14,52	14,62	14,45
14,32	14,14	14,59	14,51	14,54	14,38	14,27	14,53	14,54	14,64
14,37	14,58	14,56	14,80	14,60	14,48	14,44	14,50	14,38	14,63
14,45	14,46	14,36	14,52	14,33	14,65	14,82	14,61	14.49	14,78
14,81	14,40	14,88	14,47	14,57	14,94	14,60	14,59	14,64	14,70
14,80	14,62	14,43	14,96	14,53	14,58	14,85	14,44	14,41	14,79
14,92	14,55	15,84	14,67	14,57	14,95	14,50	15,06	14,66	14,65
14,71	14.51	14,66	14,94	14,67	15,14	14,56	14,86	14,69	14,77
15,04	14,71	14,79	14,73	14,68	14,78	14,93	14,68	14,75	14,70

Вариант 25.

Предел прочности образцов сварного шва, Н/мм2.

34,0	39,4	36,3	34,1	39,1	33,1	40,1	35,3	39,2	38,7	38,4
41,5	34,9	38,8	36,9	41,1	33,8	38,0	37,8	42,3	35,2	35,4
35,4	36,4	32,9	37,3	36,5	30,2	30,0	30,4	30,1	40,7	35,9
37,0	40,9	35,8	37,2	31,1	36,9	36,9	37,4	40,8	38,1	33,5
30,8	38,2	32,5	41,1	33,2	38,9	39,9	38,9	38,3	35,3	37,1
35,5	37,1	43,9	35,0	32,6	28,9	34,4	29,0	33,9	32,8	40,4
28,1	31,8	39,5	33,4	42,3	35,5	39,6	37,8	39,9	37,6	29,4
32,4	40,0	34,6	28,3	32,3	38,7	28,7	29,8	34,8	38,6	41,8
31,9	43,1	30,4	41,9	30,6	38,8	32,7	42,8	39,7	33,3	34,5
40,0	31,6	36,8	31,3	39,8	37,2					

Вариант 26.

Точность измерительного прибора, систематическая ошибка которого практически равна нулю, м.

381	421	372	418	392	427	385	358	370
412	411	386	395	382	376	380	383	395
391	430	391	377	372	406	429	429	376
431	405	430	382	429	413	421	395	413
430	373	393	375	364	449	382	375	371
411	427	362	388	409	400	392	378	421
399	396	384	373	391	340	410	428	382
397	389	403	440	418	412	378	398	418
365	399	418	400	402	405	410	423	373
399	389	440	429	369	394	432	390	409
351	384	425	407	383	415	418	456	303
398	420	418	404	400	383	425	422	388
388	421	437	418	379	383	347	428	388
395	429	363	410	384	416	380	433	398

Вариант 27.

Время безотказной работы некоторого прибора, тыс.ч

26,7	94,2	74,8	88,7	93,2	78,7	90,5	73,3	76,3	71,9	80,3	27,3
73,3	69,8	69,1	81,9	67,7	57,7	68,4	96,1	67,0	64,4	92,3	67,0
39,9	53,8	79,5	74,1	63,8	77,1	86,9	87,8	81,1	61,3	97,0	5.5
41,5	48,7	95,1	71,2	58,3	53,3	49,2	55.4	50,7	47,7	52,7	60,0
13,5	50,2	77,9	60,6	45,4	98,0	100	72,6	44,9	59,5	56,5	56,0
16,5	42,7	70,5	43,2	41,9	85,2	38,7	48,2	39,1	44,5	9,5	39,5
26,1	49,7	99,0	45,8	40,3	82,7	86,1	51,7	83,5	43,6	52,2	51,2
22,3	30,2	89,6	39,9	33,3	91,4	38,3	26,2	37,6	36,8	28,3	37,9
65,0	13,5	84,4	27,3	24,7	66,4	58,9	54,9	46,8	61,9	47,2	65,7
30,0	42,3	75,6	63,1	62,5	40,7	41,1	46,3	44,0	37,2	57,1	54,9