RESUMEN DE ALGUNAS DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE ALEATORIA DISCRETA

Generada por prof. Sr. Rosamel Sáez Espinoza

Nombre Distribución	Función de probabilidad f(x)	Recorrido	Parámetros	μ	σ^2	$M_X(t)$
Bernoulli	$p^x(1-p)^{1-x}$	x=0,1	0 <p<1< td=""><td>р</td><td>p(1-p)</td><td>(1-p)+p<i>e</i>^t</td></p<1<>	р	p(1-p)	(1-p)+p <i>e</i> ^t
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	x=0, 1,,n	n 0 <p<1< td=""><td>np</td><td>np(1-p)</td><td>$((1-p)+pe^{t})^{n}$</td></p<1<>	np	np(1-p)	$((1-p)+pe^{t})^{n}$
Geométrica (forma 1)	$(1-p)^{x-1}p$	x=1, 2,	0 <p<1< td=""><td>$\frac{1}{p}$</td><td>$\frac{(1-p)}{p^2}$</td><td>$\left(\frac{pe^t}{1-(1-p)e^t}\right)$</td></p<1<>	$\frac{1}{p}$	$\frac{(1-p)}{p^2}$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)$
Geométrica (forma 2)	$(1-p)^x p$	x=0, 1, 2,	0 <p<1< td=""><td>$\frac{1-p}{p}$</td><td>$\frac{(1-p)}{p^2}$</td><td>$\left(\frac{p}{1-(1-p)e^t}\right)$</td></p<1<>	$\frac{1-p}{p}$	$\frac{(1-p)}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)$
Binomial negativa (forma 1)	$\binom{x-1}{r-1} (1-p)^{x-r} p^r$	x=r, r+1, r+2, r=2, 3	0 <p<1 r=2, 3,</p<1 	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$
Binomial negativa (forma 2)	$\binom{x+r-1}{r-1} (1-p)^x p^r$	x=0, 1, r=2, 3	0 <p<1 r= 2, 3</p<1 	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)^r$
Uniforme Discreta	$\frac{1}{m}$	x=1, 2,,m	m=1,2,3,	$\frac{m+1}{2}$	$\frac{9m^2 + 10m - 13}{12}$	$\frac{e^t(1-e^{mt})}{m(1-e^t)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	x, natural tal que max(0,m-N+n)≤ x≤min(n,m)	N=1,2,3, m=0,1,2,,N n=1,2,3,,N	np donde $p = \frac{m}{N}$	$\left(\frac{N-n}{N-1}\right) np(1-p)$	
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}$	x=0, 1, 2,	$\lambda > 0$	λ	λ	$e^{\lambda\left(e^t-1 ight)}$

RESUMEN DE ALGUNAS DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE ALEATORIA CONTINUA

Generada por prof. Sr. Rosamel Sáez Espinoza

Nombre Distribución	Función de probabilidad f(x)	Recorrido	Parámetros	μ	σ^2	$M_X(t)$
Uniforme	$\frac{1}{b-a}$	a <x<b< td=""><td>a<b< td=""><td>$\frac{a+b}{2}$</td><td>$\frac{(b-a)^2}{12}$</td><td>$\frac{e^{tb}-e^{ta}}{t(b-a)}$</td></b<></td></x<b<>	a <b< td=""><td>$\frac{a+b}{2}$</td><td>$\frac{(b-a)^2}{12}$</td><td>$\frac{e^{tb}-e^{ta}}{t(b-a)}$</td></b<>	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb}-e^{ta}}{t(b-a)}$
Exponencial	$\lambda e^{-\lambda x}$	x> 0	$\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	$-\infty < x < +\infty$	μ y σ^2	μ	σ^2	$e^{t\mu+rac{t^2}{2}\sigma^2}$
Gama	$\frac{1}{\Gamma(\alpha)\cdot\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}$	$x>0$ β : parámetro de escala α : parámetro de forma	αуβ	αβ	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha} t < \frac{1}{\beta}$
Chi-Cuadrado	$\frac{1}{\Gamma\left(\frac{v}{2}\right)2^{\frac{v}{2}}}x^{\frac{v}{2}-1}e^{-\frac{x}{2}}$	x > 0	v=1, 2,	V	2v	$\left(\frac{1}{1-2t}\right)^{\frac{v}{2}}$
Erlang	$\frac{\lambda^r x^{r-1} e^{-\lambda x}}{(r-1)!}$	x > 0	ryλ	$\frac{r}{\lambda}$	$rac{r}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^r$
Weubull	$\frac{\alpha}{\theta^{\alpha}} x^{\alpha-1} e^{-\left(\frac{x}{\theta}\right)^{\alpha}}$	x > 0	$\alpha, \theta > 0$	$\theta\Gamma\left(1+\frac{1}{\alpha}\right)$		