

Sumário

- 1. Definição e Propriedades
- 2. Lista de Exercícios
- 3. Gabarito

Definição e Propriedades

AVISO

Nesta aula, todas os entes geométricos estão situados num mesmo plano α .

Semirretas

Definição 1

Um ponto O de uma reta r divide-a em duas partes, cada uma delas denominada semirreta.

O ponto *O* é denominado a **origem** dessas semirretas e as mesmas são denominadas semirretas **opostas**.

Semirretas

Denotaremos as semirretas com letras minúsculas (como as retas) ou através de dois dos seu pontos, sendo um deles a origem.

Acima, temos as semirretas opostas \overrightarrow{OA} e \overrightarrow{OB} .

Ângulos

Definição 2

Chamamos de **ângulo** a figura formada por duas semirretas que têm a mesma origem.

As semirretas \overrightarrow{OA} e \overrightarrow{OB} são chamados **lados** do ângulo e a origem comum O é o seu vértice.

Notações

Para denotar este ângulo, escrevemos:

- ► Ô
- ► AÔB
- ► BÔA
- ightharpoonup uma letra grega: $\alpha, \beta, \gamma, \eta, \dots$

Ângulos

Definição 3

Denominamos de ângulo **raso** ao ângulo cujos lados são semirretas opostas (estão sobre a mesma reta, em sentidos opostos).

Figura 1: Ô é um ângulo raso

Medida de Ângulos

Definição 4

O número de graus de um ângulo chama-se a sua medida.

Figura 2: A área em verde representa o ângulo AÔB

8º Postulado

▶ Postulado 8: Todo ângulo tem sua medida, em graus, compreendida entre 0 e 180. A medida de um ângulo é zero se, e somente se, seus lados são semirretas coincidentes. Se seus lados são semirretas opostas, sua medida é 180°.

Figura 3: Transferidor: a 'régua' para medir ângulos

Ângulos Congruentes

Definição 5

Dois ângulos são ditos **congruentes** se têm a mesma medida.

Interior

Diz-se que um ponto P pertence ao interior de um ângulo AÔB, se

- ▶ P e A estão num mesmo semiplano definido pela reta ᠪB;
- ▶ P e B estão num mesmo semiplano definido pela reta 🛱 .

Figura 4: *P* pertence ao interior do ângulo *AÔB*

Exterior

Definição 7

O **exterior** de um ângulo AÔB é o conjunto de todos os pontos do plano que o contém, tais que:

- não pertencem aos lados do ângulo;
- não pertencem ao interior do ângulo dado.

Figura 5: *Q* pertence ao exterior do ângulo *AÔB*

9º Postulado

Postulado 9 (Da adição de Ângulos): Se P é um ponto de interior de um ângulo $A\hat{O}B$, então $A\hat{O}B = A\hat{O}P + P\hat{O}B$.

10° Postulado

Postulado 10: Qualquer que seja o número real ζ , com $0 < \zeta < 180$, podemos construir um único ângulo de ζ graus, a partir de uma semirreta dada num semiplano.

Tipos de Ângulos

Definição 8

Um ângulo AÔB é dito:

- ► reto, se sua medida for de 90°;
- **▶ agudo**, se sua medida for menor que 90°;
- **b** obtuso, se sua medida for maior que 90°.

Perpendicularidade

Definição 9

Se duas retas \overrightarrow{AB} e \overrightarrow{AC} formam um ângulo reto, diz-se que elas são **perpendiculares** e escrevemos $\overrightarrow{AB} \perp \overrightarrow{AC}$.

Perpendicularidade

Empregamos o mesmo termo e a mesma notação para semirretas e segmentos. Assim, se $B\hat{A}C = 90$, escrevemos:

- $ightharpoonup \overrightarrow{AB} \perp \overrightarrow{AC};$
- ightharpoonup $AB \perp \overline{AC}$.

Ângulos Complementares

Definição 10

Dois ângulos são ditos **complementares**, se a soma de suas medidas é 90°. Cada um deles é denominado o **complemento** do outro.

Figura 6: Temos que $\eta + \zeta = 90^{\circ}$, logo são ângulos complementares.

Ângulos Suplementares

Definição 11

Dois ângulos são ditos **suplementares**, se a soma de suas medidas é 180°. Cada um deles é denominado o **suplemento** do outro.

Figura 7: Temos que $\tau + \theta = 180^\circ$, logo são ângulos suplementares.

Ângulos Consecutivos

Definição 12

Dois ângulos são ditos **consecutivos**, se têm o mesmo vértice, um lado em comum e os outros dois lados situados em semiplanos opostos determinados pelo lado comum.

Figura 8: Os ângulos *AÔB* e *BÔC* são consecutivos.

Ângulos Adjacentes

Definição 13

Dois ângulos consecutivos, cujos lados não comuns são semirretas opostas, são denominados **adjacentes**.

Figura 9: Os ângulos $\tau + \theta = 180^\circ$ são adjacentes.

Ângulos Opostos pelo Vértice

Definição 14

Dois ângulos são ditos **opostos pelo vértice**, se os lados de um deles são as semirretas opostas dos lados do outro.

Figura 10: Os ângulos μ e θ são opostos pelo vértice.

Teorema

Teorema 1

Dois ângulos opostos pelo vértice são congruentes.

Figura 11: Os ângulos μ e θ são opostos pelo vértice.

- **Hipótese:** μ e θ são opostos pelo vértice .
- ▶ Tese: $\mu = \theta$.

Usaremos a prova direta (partimos da hipótese).

Seja τ o ângulo simultaneamente adjacente aos ângulos μ e θ .

Figura 12: Os ângulos μ e θ são adjacentes ao mesmo ângulo τ .

Com isso,

$$\mu + au = 180^{\circ}$$
 e $\theta + au = 180^{\circ}$.

Daí, obtemos

$$\mu + \tau = \theta + \tau \Rightarrow \mu + \tau - \tau = \theta + \tau - \tau$$
$$\Rightarrow \mu = \theta.$$

Bissetriz

Definição 15

Seja P um ponto interior do ângulo AÔB. A **bissetriz** do ângulo AÔB, é a semirreta \overrightarrow{OP} , tal que $A\hat{OP} = P\hat{OB}$.

Figura 13: Os ângulos $A\hat{O}P$ e $P\hat{O}B$ possuem a mesma medida.

Teorema

Teorema 2

Por um ponto de uma reta pode-se traçar uma única reta perpendicular a reta dada.

- ightharpoonup Hipótese: A é um ponto da reta r.
- ▶ **Tese:** Existe uma única reta perpendicular a reta *r*, passando por *A*.

Sejam r uma reta e A um ponto da mesma. Seja r_1 uma das semirretas de r, com origem em A. Escolha também um dos semiplanos delimitado pela reta r.

Pelo Postulado 10, existe um único ângulo de 90° que pode ser construído a partir de uma semirreta dada. Seja s_1 a semirreta que forma com r_1 este ângulo de 90° .

A reta s que contém s_1 é perpendicular a r no ponto A. Pela unicidade de s_1 (Postulado 10), segue que a perpendicular s é única.

Lista de Exercícios

Exercício 1

Exercício 1

Escreva algebricamente as seguintes frases:

- a) A medida de um ângulo.
- b) O dobro da medida de um ângulo.
- c) A terça parte de um ângulo.
- d) Os três quintos de um ângulo.
- e) O complemento de um ângulo.
- f) A metade do complemento de uma ângulo.
- g) O complemento da metade de um ângulo.

Exercício 1

- h) O suplemento de um ângulo.
- i) A terça parte do suplemento de um ângulo.
- j) O suplemento da terça parte de um ângulo.
- k) A soma entre as medidas de dois ângulos.
- l) A metade da soma entre as medidas de dois ângulos.
- m) A quinta parte da soma entre dois ângulos.
- n) O suplemento da soma entre dois ângulos.

Exercício 2

Exercício 2

Complete:

- a) Se e B̂ são ângulos suplementares, então _____
- b) Se e B̂ são suplementos de Ĉ, então _____
- c) Se e B̂ são ângulos complementares, então _____
- d) Se e B̂ são complementos de ângulos congruentes, então _____

Exercícios 3 e 4

Exercício 3

A terça parte da soma entre dois ângulos vale 72°. Determiná-los, sabendo-se que um deles é o quíntuplo do outro.

Exercício 4

O complemento de um ângulo x está para seu suplemento, assim como 4 está para 19. Calcular esse ângulo.

Exercícios 5 e 6

Exercício 5

Dois ângulos consecutivos têm um lado em comum e suas medidas somam 134°. Determine o ângulo formado pelas suas bissetrizes.

Exercício 6

Em torno de um ponto, e num mesmo plano, constroem-se quatro ângulos consecutivos. Sabendo-se que cada um deles é igual ao dobro do anterior, achar esses ângulos.

Exercícios 7 e 8

Exercício 7

Prove que a reta perpendicular à bissetriz de um ângulo, traçada pelo vértice do mesmo, forma ângulos congruentes com os lados do ângulo.

Exercício 8

Mostre que as bissetrizes de um ângulo e do seu suplemento são perpendiculares.

Exercícios 9 e 10

Exercício 9

Prove que as bissetrizes de dois ângulos opostos pelo vértice são semirretas opostas.

Exercício 10

Dois ângulos retos, AÔB e CÔD, têm em comum o ângulo BÔC. Mostre que os ângulos AÔC e BÔD são congruentes e que os ângulos AÔD e BÔC são suplementares.

Gabarito

Exercício 1:

- a) A medida de um ângulo.
 - **R:** *x*
- b) O dobro da medida de um ângulo.
 - **R:** 2*x*.
- c) A terça parte de um ângulo.
 - **R:** $\frac{x}{3}$.
- d) Os três quintos de um ângulo.
 - **R:** $\frac{3}{5}x$.
- e) O complemento de um ângulo.
 - **R:** 90 x.
- f) A metade do complemento de uma ângulo.
 - **R:** $\frac{90-x}{2}$.
- g) O complemento da metade de um ângulo.
 - **R:** 90 $-\frac{x}{2}$.

Exercício 1:

- h) O suplemento de um ângulo.
 - **R:** 180 x.
- i) A terça parte do suplemento de um ângulo.
 - **R:** $\frac{180-x}{3}$.
- j) O suplemento da terça parte de um ângulo.
 - **R:** $180 \frac{x}{3}$.
- k) A soma entre as medidas de dois ângulos.
 - $\mathbf{R}: x + y$.
- l) A metade da soma entre as medidas de dois ângulos.
 - **R:** $\frac{x+y}{2}$.
- m) A quinta parte da soma entre dois ângulos.
 - **R:** $\frac{x+y}{5}$.
- n) O suplemento da soma entre dois ângulos. **R:** 180 (x + y).

Exercício 2:

- a) Se \hat{A} e \hat{B} são ângulos suplementares, então $\hat{A} + \hat{B} = 180$.
- b) Se \hat{A} e \hat{B} são suplementos de \hat{C} , então \hat{A} e \hat{B} são congruentes.
- c) Se \hat{A} e \hat{B} são ângulos complementares, então $\hat{A} + \hat{B} = 90$.
- d) Se \hat{A} e \hat{B} são complementos de ângulos congruentes, então \hat{A} e \hat{B} também são congruentes.

Exercício 3: 36° e 180°.

Exercício 4: 66°.

Exercício 5: 67°.

Exercício 6: 24°, 48°, 96° e 192°.