MATH 131B Homework #2

Nathan Solomon

December 13, 2024

Problem 0.1. Exercises 1.5.6, 1.5.7, 1.5.8, 2.1.1, 2.1.2, 2.3.3, 2.3.4, and 2.4.4 from the textbook.

Exercise 1.5.6: prove corollary 1.5.9.

For every $n \in \mathbb{N}$, let $V_n = K_1 - K_n$, so that V_n is open in K_1 . Suppose for the sake of contradiction that $\bigcap_{n=1}^{\infty} K_n = \emptyset$. That is equivalent to saying $\bigcup_{n=1}^{\infty} V_n = K_1$, so by theorem 1.5.8, there is a finite subset $\{V_i\}_{i \in I}$ which covers K_1 – that is, $\bigcup_{i \in I} V_i = K_1$. Applying De Morgan's law again, $\bigcap_{i \in I} K_i = \emptyset$. Since I is finite, we can let $j = \max(I)$. K_j is nonempty, and K_j is a subset of K_i for any $i \in I$. Therefore the intersection $\bigcap_{i \in I} K_i$ must contain K_j , which contradicts our earlier statement that that intersection is empty. Since we have reached a contradiction, $\bigcap_{n \in \mathbb{N}} K_n$ is nonempty.

Exercise 1.5.7: prove theorem 1.5.10.

- (a) If Z is closed, then let $\{U_i\}_{i\in I}$ be an open cover of Z. The complement of Z is open, so $\{X-Z\}\cup\{U_i\}_{i\in I}$ is an open cover of Y, which we know is compact. Therefore there exists some finite $I'\subset I$ such that $\{X-Z\}\cup\{U_i\}_{i\in I'}$ is an open cover of Y, which means $\{U_i\}_{i\in I'}$ is a finite subset of $\{U_i\}_{i\in I}$ which still covers Z. That implies that if Z is closed, it is also compact.
 - If Z is not closed, then there exists some $x \in \partial Z Z$. Define $U_n = Z B(x, 1/n)$ for any $n \in \mathbb{N}$, so that $\{U_n\}$ is an open cover of Z. Suppose Z is compact, so there exists a finite set $I \subset \mathbb{N}$ such that $\bigcup_{i \in I} U_i = Z$. Take $j := \max(I)$, so then $B(x, 1/j) \cap Z = \emptyset$. Since x is an adherent point of Z, for any $\varepsilon > 0$, the intersection $Z \cap B(x, \varepsilon)$ is nonempty, so this is a contradiction. Therefore if Z is closed, Z is also compact.
- (b) Let $\{U_i\}_{i\in I}$ be an open cover of $Y_1 \cup \cdots \cup Y_n$. Then there is a finite subset of $\{U_i\}$ which covers Y_1 , a finite subset of $\{U_i\}$ which covers Y_2 , and so on. Now take the union of all the finite subcovers, and call that new set $\{V_i\}_{i\in I'}$. That new set clearly covers the union of each Y_j , and it's finite, because it's defined as the union of n finite sets. We have found a finite subcover for the union of each Y_j , so that union is compact.
- (c) The empty set is vacuously compact, so assume X is finite but nonempty. Let x_1, x_2, x_3, \ldots be a sequence in X. By the pigeonhole principle, there must be some $x \in X$ which occurs infinitely many times in that sequence, so we can take an infinite subsequence just by taking the terms which are exactly x. That subsequence converges to $x \in X$, so X is compact.

Exercise 1.5.8.

Let $e^{(n)}, e^{(m)}$ be any two sequences in $E := \{e^{(n)} : n \in \mathbb{N}\}$. If $n \neq m$, then those sequences differ by one at exactly two indices, and are equal at every other index, so their distance apart in X is 2, meaning E is bounded.

Also, for any $f \in X - E$, since all elements of E are distance 2 apart, the triangle inequality guarantees there is at most one element of E which is distance r < 1 from f. Thus, $B(f, r/2) \cap E = \emptyset$, so X - E is open, so E is closed.

However, E is not compact. Since every element of E is a distance of 2 apart, no sequence in E can be Cauchy, therefore no sequence in E can have a convergent subsequence (because the convergent subsequence would have to be Cauchy).

Exercise 2.1.1: prove theorem 2.1.4.

 $(a) \Rightarrow (c)$ For any $V \subset Y$ which contains $f(x_0)$, there exists some $\varepsilon > 0$ such that $B(f(x_0), \varepsilon) \subset V$. Since f is continuous at x_0 , there exists δ such that whenever $d(x, x_0) < \delta$, $d(f(x), f(x_0)) < \varepsilon$. Define $U := B(x_0, \delta)$. Then $f(U) \subset B(f(x_0), \varepsilon) \subset V$.

 $(b) \Rightarrow (c)$

 $(c) \Rightarrow (a)$ For any $\varepsilon > 0$, let $V = B(f(x_0), \varepsilon)$. Then there exists some open set $U \subset X$ containing x_0 such that $f(U) \subset V$. Since U is open, there exists $\delta > 0$ such that $B(x_0, \delta) \subset U$. Whenever $d(x, x_0) < \delta$, $d(f(x), f(x_0)) < \varepsilon$, so f is continuous at x_0 .

Exercise 2.1.2: prove theorem 2.1.5.

 $(a) \Rightarrow (b)$ This is proven in the previous problem.

 $(b) \Rightarrow (c)$

 $(c) \Rightarrow (d)$

 $(d) \Rightarrow (a)$

Exercise 2.3.3. Let f be a uniformly continuous function. Then f is continuous.

Suppose f is uniformly continuous, meaning for every $\varepsilon > 0$, there exists $\delta > 0$ such that whenever x, x' are in the domain of f and are distance less than δ apart, $d(f(x), f(x')) < \varepsilon$. For any x_0 in the domain of f, we could let $x' = x_0$. Then whenever $d(x, x_0) < \delta$, $d(f(x), f(x_0)) < \varepsilon$.

Let f be the function on (0,1) which maps x to 1/x. The domain and codomain of f are both \mathbb{R} with the Euclidean metric. f is continuous but not uniformly continuous.

Exercise 2.3.4.

For any $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $d(y,y') < \delta$, $d(g(y),g(y')) < \varepsilon$. Also, there exists $\gamma > 0$ such that whenever $d(x,x') < \gamma$, $d(f(x),f(x')) < \delta$. Thus, whenever $d(x,x') < \gamma$, $d(g(f(x)),g(f(x'))) < \varepsilon$, so $g \circ f$ is uniformly continuous.

Exercise 2.4.4.

Let Y_1 be one connected component of f(E) which contains f(x), let $Y_2 = f(E) - Y_1$, and assume for the sake of contradiction that Y_2 is nonempty. Then Y_1 and Y_2 are both open in f(E), they are both nonempty, their intersection is empty, and their union is f(E). The preimages $f^{-1}(Y_1)$ and $f^{-1}(Y_2)$ are both open and nonempty, their union is E, and their intersection is empty. This would mean E is disconnected, which is a contradiction, so f(E) must be connected.

Problem 0.2. Complete the proof of case 3 from Theorem 1.5.8.

Case 3 is when $r_0 = \infty$, but that can only occur if $r(y) = \infty$ for every $y \in Y$. That would imply $V_{\alpha} = X$ for every $\alpha \in A$, in which case for any $a \in A$, the singleton set $\{V_a\}$ covers Y.

Problem 0.3.

- (a) Let (X, d_X) and (Y, d_Y) both be \mathbb{R} with the Euclidean metric, and let U = (0, 1). Then let f(x) = 0 for all x, so U is open but $f(U) = \{0\}$ is not open.
- (b) Once again, let X and Y be \mathbb{R} with the Euclidean metric. Let K = X and let $f(x) = \tanh(x)$, so K is closed but f(K) = (-1, 1) is not closed.

24F-MATH-131B HOMEWORK 2 DUE SUNDAY, OCTOBER 20

- $(1) \ \ \text{Exercise:} \ 1.5.6, \, 1.5.7, \, 1.5.8, \, 2.1.1, \, 2.1.2, \, 2.3.3, \, 2.3.4, \, 2.4.4.$
- (2) Complete the proof of case 3 of Theorem 1.5.8.
- (3) Given following examples.
 - (a) A continuous function $f:(X,d_X)\to (Y,d_Y)$ and an open set $U\subset X$ such that $f(U)\subset Y$ is not open.
 - (b) A continuous function $f:(X,d_X)\to (Y,d_Y)$ and a closed set $K\subset X$ such that $f(K)\subset Y$ is not closed.