Gramáticas livre-de-contexto

Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

Da aula passada: Definição formal

- Uma gramática é definida por G = $\langle V, \Sigma, R, S \rangle$
 - V: conjunto das variáveis
 - Σ : conjunto dos terminais (símbolos do alfabeto da linguagem)
 - R: conjunto das regras que definem a gramática
 - S: variável inicial

Da aula passada: Que tipo de linguagens são geradas por gramáticas?

- Considere agora um tipo especial de gramática...
- Uma gramática G = $\langle V, \Sigma, R, S \rangle$ é linear (à direita) se suas produções forem da forma A \rightarrow xB, onde
 - A ∈ V
 - $B \in (V \cup \lambda)$
 - $x \in (\Sigma \cup \lambda)$

```
Exemplo 1: Exemplo 2: A \rightarrow 0B \qquad A \rightarrow 0BB \rightarrow 0C \qquad B \rightarrow 0CC \rightarrow 1 \qquad C \rightarrow 1C \mid 0
```

Da aula passada: Gramáticas Sensíveis ao Contexto

- Mais de um símbolo do lado esquerdo da regra
- Ou seja, certas trocas podem só estar habilitadas em determinados contextos

```
    Exemplo: G = <{S,B,C},{a,b,c},R,S>
    R: S → aBC | aSBC | λ
    CB → BC
    aB → ab
    bB → b
    bC → bc
    cC → cc
```

Da aula passada: $L = 0^n 1^n 2^n$

$S \rightarrow LDABCR$
LDA → LAAD
$ADA \rightarrow AAD$
ADB → ABBD
$BDB \rightarrow BBD$
$BDC \rightarrow BCCD$
$CDC \rightarrow CCD$
$DR \rightarrow ER$

$$CE \rightarrow EC$$
 $BE \rightarrow EB$
 $AE \rightarrow EA$
 $LE \rightarrow LD$
 $A \rightarrow 0$
 $B \rightarrow 1$
 $C \rightarrow 2$
 $R \rightarrow \lambda$
 $LD \rightarrow \lambda$

Gramática "livre de contexto" - Definição

- $G = (V, \Sigma, R, S)$
 - V é o conjunto de variáveis
 - Σ é o conjunto de terminais
 - R é um conjunto de regras do tipo $\alpha \to \beta$ onde $\alpha \in V$ e $\beta \in (V \cup \Sigma)^*$
 - S ∈ V é o símbolo inicial

Regras do tipo S → OS1 são possíveis

- Toda vez que a regra for usada duas partes da palavra vão crescer de forma proporcional
- A seguinte gramática gera um linguagem que não é regular

```
S \rightarrow OS1 \mid \lambda
```

Para gramaticas lineares à direita: $A \rightarrow xB$, onde $A \in V$

$$A \in V$$
 $B \in (V \cup \lambda)$
 $X \in (\Sigma \cup \lambda)$

Exemplo de geração de palavra

•
$$a + a \times a$$

$$\rightarrow$$
 + | <
 \rightarrow \times | <
 \rightarrow () | a

Gramáticas livre-de-contexto

Formas normais

Linguagem "livre de contexto"

• G= $\langle V, \Sigma, R, S \rangle$ uma gramática livre de contexto

• Então:

$$L(G) = \{ w \in \Sigma^* \mid S \implies^* w \}$$

• L é uma <u>linguagem livre de contexto</u> se, e somente se, existir uma gramática G livre-de-contexto tal que L = L(G)

Forma normal de Chomsky

- Limita os tipos de regra em uma gramática (mas sem mudar a sua capacidade!)
 - A variável inicial não aparece do lado direito e toda regra deve ser de uma das formas

```
A \rightarrow BC
A \rightarrow a
```

- Mas isso não é uma gramática linear?
 - Não! Tem duas variáveis!
 - Tente converter a seguinte gramática nesse formato: S → OS1 | #

Forma normal de Chomsky

- Mas como chegar lá? Vamos remover os itens proibidos, tomando cuidado para não alterar a linguagem resultante!
- Ou seja, removeremos
 - O símbolo inicial do lado direito
 - Regras com mais de duas variáveis
 - Regras que misturam variáveis e terminais
 - Regras que levam uma variável à λ (a não ser para a variável inicial)

Forma normal de Chomsky

- Motivação: simplifica algoritmos que trabalham com gramáticas
 - Reconhecedores de linguagens, provas (bombeamento, autômatos)
 - Uma palavra de comprimento n precisa de 2*n -1 passos de derivação
- Teorema: toda GLC possui uma GLC equivalente na forma normal de Chomsky
- Prova: podemos transformar uma GLC comum
 - Modificar todas as regras fora do padrão
 - Compensar as alterações para garantir que a mesma linguagem é gerada

Passo 1: símbolo inicial

- Adicione uma nova regra $S_0 \rightarrow S$
 - Assim garantimos que o símbolo inicial não apareça do lado direito
- Não precisa de compensação

Passo 2: regras com λ

Precisam ser removidas (a não ser para o símbolo inicial): se existe A
 → λ, remova a regra

Passo 2: regras com λ

- Precisam ser removidas (a não ser para o símbolo inicial): se existe A
 → λ, remova a regra
- Compense a remoção
 - Se existe uma regra R \rightarrow uAv, rescreva como R \rightarrow uAv | uv
 - Obs: "u" pode conter terminais e outras variáveis
 - Se existe algo do tipo R → uAvAx, rescreva como R → uAvAx | uAvx | uvAx | uvx
 - Se existe uma regra do tipo R \rightarrow A, adicione R \rightarrow λ a não ser que esta regra tenha sido removida anteriormente (pois nesse caso já foi compensada)

Passo 3: regras com uma variável

Removemos as regras do tipo A → B

- Compense
 - Se existe um B → U...
 - Adicione A \rightarrow U...
 - A não ser que essa regra tenha sido removida anteriormente (i.e., não precisa de compensação)

Passo 3: regras com uma variável

• Removemos as regras do tipo A → B

Passo 4: apenas dois símbolos por regra

• Transforme todas as regras da forma A \rightarrow $u_1u_2...u_k$ onde $k \ge 3$

Passo 4: apenas dois símbolos por regra

- Transforme todas as regras da forma A → u₁u₂...u_k onde k ≥ 3
 - Seja u_i um símbolo terminal ou variável
 - Objetivo: máximo dois símbolos do lado direito
 - Resultado
 - $A \rightarrow u_1 A_1$
 - $A_1 \rightarrow U_2 A_2$
 - ...
 - $A_{k-2} \rightarrow U_{k-1}U_k$

Passo 5: não misturar terminais e variáveis

Passo 5: não misturar terminais e variáveis (ou ter dois terminais)

- Se y é um terminal
 - Transforme A \rightarrow yB em A \rightarrow UB
 - Crie $U \rightarrow y$
- Substituição simples, não precisa de compensação
- A mesma estratégia é aplicada quando temos dois terminais

Exemplo

• R:
$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \lambda$

Exemplo

$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \lambda$

• Removendo símbolo inicial do lado direito

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB

A \rightarrow B \mid S

B \rightarrow b \mid \lambda
```

Removendo regras com λ

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB$
 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \lambda$

Removendo regras com λ

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \lambda$
 $B \rightarrow b \mid \lambda$

• Novamente: removendo regras com λ

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \lambda$
 $B \rightarrow b$

• Novamente: removendo regras com λ

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a$
 $A \rightarrow B \mid S \mid \lambda$
 $B \rightarrow b$

• Novamente: removendo regras com λ

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A \rightarrow B \mid S \mid \lambda$
 $B \rightarrow b$

• Removidas regras com λ

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

• Removendo regras com uma variável

```
S_0 \rightarrow S

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \mid S

A \rightarrow B \mid S

B \rightarrow b
```

• Removendo regras com uma variável

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

$$S_0 \rightarrow S$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S$
 $B \rightarrow b$

```
S_0 \rightarrow S \mid ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow B \mid S

B \rightarrow b
```

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow B \mid S \mid b$
 $B \rightarrow b$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow S \mid b

B \rightarrow b
```

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow S \mid b$$

$$B \rightarrow b$$

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$$

$$A \rightarrow S \mid b$$

$$B \rightarrow b$$

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow S \mid b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

```
S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

B \rightarrow b
```

```
S_0 \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS

S \rightarrow ASA \mid aB \mid a \mid SA \mid AS

A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS

A_1 \rightarrow SA

B \rightarrow b
```

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid ASA \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

• Não misturar símbolos terminais e variáveis

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

• Não misturar símbolos terminais e variáveis (ou ter dois terminais)

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow SA$
 $B \rightarrow b$

Não misturar símbolos terminais e variáveis

$$S_0 \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid aB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid aB \mid a \mid SA \mid AS$
 $A_1 \rightarrow AS$
 $U \rightarrow a$
 $B \rightarrow b$

Não misturar símbolos terminais e variáveis

$$S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

 $S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$
 $A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$
 $A_1 \rightarrow AS$
 $U \rightarrow a$
 $B \rightarrow b$

Transformação de uma gramática para FNC

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \lambda$$

$$S_0 \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$S \rightarrow AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A \rightarrow b \mid AA_1 \mid UB \mid a \mid SA \mid AS$$

$$A_1 \rightarrow SA$$

$$U \rightarrow a$$

$$B \rightarrow b$$

Forma normal de Greibach

- Uma GLC G = $\langle V, \Sigma, R, S \rangle$ está na forma normal de Greibach se suas produções forem da forma A \rightarrow xB, onde
 - A ∈ V
 - $B \in (V \cup \lambda)^*$
 - $x \in \Sigma$
- Toda GLC pode ser escrita na FNG
- Uma vantagem: toda palavra de n símbolos é gerada em <u>n</u> derivações

Ambiguidade

Derivando uma palavra de formas diferentes

• Como gerar a palavra 0011 usando a seguinte gramática?

```
S \rightarrow AB

A \rightarrow 0A \mid \lambda

B \rightarrow 1B \mid \lambda
```

- Existe mais de uma forma de gerar a mesma palavra?
- São regras diferentes ou as mesmas regras? A árvore sintática é diferente?
 - Note que a sequência de derivações para cada variável é o que importa
 - (É isso que explica como a palavra foi gerada)

Derivação mais à esquerda

- Fazer primeiro a substituição das variáveis à esquerda
- Poderia ser também "à direita", o importante é fixar uma ordem
- No caso anterior, as regras aplicadas são claramente as mesmas e a árvore não era realmente diferente

Árvore de derivação

- Mas nem sempre substituir mais à esquerda resolve...
 - S \rightarrow OS1 | 1S0 | SS | λ
 - Como gerar 010101?

Árvore de derivação

- Mas nem sempre substituir mais à esquerda resolve...
 - S \rightarrow OS1 | 1S0 | SS | λ
 - Como gerar 010101?
 - Aí sim, é ambiguidade!
- Lembre que a árvore sintática dá a interpretação da palavra, então ambiguidade é ruim para geração de um compilador
 - Não sabe qual foi a regra aplicada
- Qual o impacto de ambiguidade em expressões?