

Recall: random variables

- A random variable X on a sample space Ω is a function $X: \Omega \to \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.
- For each random variable, we should understand:
 - The set of values it can take.
 - The probabilities with which it takes on these values.
- The distribution of a discrete random variable X is the collection of pairs $\{(a, \Pr[X = a])\}$.

You roll two dice. Let X be the random variable that represents the sum of the numbers you roll.

What is the probability of the event X=6?

- **A**. 1/36
- B. 1/9
- **C**. 5/36
- **D.** 1/6
- E. None of the above.

You roll two dice. Let X be the random variable that represents the sum of the numbers you roll.

How many different values can X take on?

- A. 6
- B. 11
- **C**. 12
- D. 36
- E. None of the above.

You roll two dice. Let X be the random variable that represents the sum of the numbers you roll.

What is the distribution of X?

- A. Uniform distribution on the set of possible values.
- **B**. It satisfies $Pr[X = 2] < Pr[X = 3] < \dots < Pr[X = 12]$.
- C. It satisfies $Pr[X = 2] > Pr[X = 3] > \dots > Pr[X = 12]$.
- D. It satisfies $\Pr[X = 2] < \Pr[X = 3] < \dots < \Pr[X = 7]$ and $\Pr[X = 7] > \Pr[X = 8] > \dots > \Pr[X = 12]$.
- E. None of the above is true.

Independent RVs: definition

• Random variables X and Y are independent if $\Pr[(X = x) \cap (Y = y)]$ = $\Pr[X = x] \cdot \Pr[Y = y]$

for all values x and y.

• Random variables $X_1, X_2, ..., X_n$ are mutually independent if for all subsets of $I \subseteq [n]$ and all values x_i , where $i \in I$, $\Pr[\cap_{i \in I} (X_i = x_i)]$

$$= \prod_{i \in I} \Pr[X_i = x_i].$$

You roll one die. Let X be the random variable that represents the result.

What value does X take, on average?

- A. 1/6
- B. 3
- C. 3.5
- D. 6
- E. None of the above.

Random variables: expectation

• The expectation of a discrete random variable X over a sample space Ω is

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr[\omega].$$

• We can group together outcomes ω for which $X(\omega) = a$:

$$E[X] = \sum_{a} a \cdot \Pr[X = a],$$

where the sum is over all possible values a taken by X.

The second equality is more useful for calculations.

Example: random hats

- Example: permutations
 - *n* students exchange their hats, so that everybody gets a random hat
 - R.V. X: the number of students that got their own hats.
 - E.g., if students 1,2,3 got hats 2,1,3 then X=1.
- Distribution of X:

$$Pr[X = 0] = \frac{1}{3}, Pr[X = 1] = \frac{1}{2}, Pr[X = 3] = \frac{1}{6}.$$

• What's the expectation of X?

Example: roulette

• 38 slots: 18 black, 18 red, 2 green.

• If we bet \$1 on red, we get \$2 back if red comes up. What's the expected value of our winnings?

Linearity of expectation

• Theorem. For any two random variables X and Y on the same probability space,

$$E[X + Y] = E[X] + E[Y].$$

Also, for all $c \in \mathbb{R}$,

$$E[cX] = c \cdot E[X].$$

Indicator random variables

- An indicator random variable takes on two values: 0 and 1.
- Lemma. For an indicator random variable X, E[X] = Pr[X = 1].

You have a coin with bias 3/4 (the bias is the probability of HEADS). Let X be the number of HEADS in 1000 tosses of your coin.

You represent X as the sum: $X = X_1 + X_2 + \cdots + X_{1000}$.

What is X_1 ?

- **A**. 3/4.
- B. The number of HEADS.
- C. The probability of HEADS in toss 1.
- D. The number of heads in toss 1.
- E. None of the above.

You have a coin with bias 3/4 (the bias is the probability of HEADS). Let X be the number of HEADS in 1000 tosses of your coin.

What is the expectation of X?

- **A.** 3/4.
- B. 4/3.
- C. 500.
- D. 750.
- E. None of the above.