1.a)
Attached below are snapshots of the 5 different network protocols

No.	Time	Source	Destination	Protocol Lengti				
Г	1 0.000000	10.7.45.155	31.13.79.2		3 Application D			
	2 0.020443	31.13.79.2	10.7.45.155				=30 Win=709 Len=0	
1	3 0.061163	172.217.20.206	10.7.45.155		8 443 → 65163 L			
	4 0.100317	142.250.178.138	10.7.45.155		8 443 → 64616 L			
	5 0.154673	31.13.79.2	10.7.45.155	TLSv1.2 7	9 Application D	ata		
	בטששיים דר	177.	.40.100	44.77.14	0.111	ICF	14 UMTIVI 7 444 1 LE	CV DEA-T WCV-T MIH-IDIO
							-	.e., sed 1 //ex 2 //2/1
	52 9.70209	91 10.7	7.45.155	42.99.12	8.153	TLSv1.3	348 Client Hello	
	F3 0 7070	**	00 400 453	40 7 45	***	TCD	CC [TCD D	1 1 443 - 64000 [678]
		201711		1,2,20,11	0.100	00.	,1 0,010	
130	15.622915	Cisco	bb:7c:c0	Broadcast		ARP	42 Gratuitous ARP	for 0.0.0.0 (Request)
		_						` ' '
105	5 39.873946	10.7.45.	155	31.13.79.174	OUIC	115 0-1	RTT, DCID=7e2eee53e51†7d	8†
105	6 39.888571	31.13.79	.174	10.7.45.155	OUIC			b92e, PKN: 9742921, CRYPTO,
	7 39.888571	31.13.79		10.7.45.155	QUIC		ndshake, SCID=9a1d006541	
103	7 39.0003/1	31.13.79	.1/4	10.7.45.155	010	255 Hai	nusnake, SCID=9a1u000541	CID92e
169	93 56.059	9496	te80::6534	4:1ee9:da8	. ++02:::	16	ICMPv6	90 Multicast
160	94 56.059	0640	10.7.45.19		224.0.	0 22	IGMPv3	E4 Mombonshin
105	94 00.005	1040	10.7.45.1	00	224.0.	0.22	IdinbA2	54 Membership
169	95 56.068	3444	fe80::6534	4:1ee9:da8	. ff02::	16	ICMPv6	90 Multicast
169	96 56.068	3452	10.7.45.19	55	224.0.	0.22	IGMPv3	54 Membership
160	97 56.068	2711	f-20653/	4:1ee9:da8	ffa2	16	ICMPv6	90 Multicast
103	77 30.000	,,11	1600033	+.1cc3.uao	1102	10	TCHEVO	50 Multileast
169	98 56.068	3953	10.7.45.19	55	224.0.	0.22	IGMPv3	54 Membership
			·					
169	99 56.069	9356	te80::6534	4:1ee9:da8	. ++02:::	1:2	DHCPv6	156 Solicit XI

1) TLSv1.2 protocol

TLS 1.2 is a cryptographic protocol that operates at the Transport Layer (layer 4) of the OSI model. It is used to secure communications between two applications by encrypting the data that is being transmitted.

The RFC number for TLS 1.2 is RFC 5246.

2) TLSv1.3 protocol

TLS 1.3 is the latest version of the Transport Layer Security (TLS) protocol, which is used to secure communications between two applications over the Internet. TLS 1.3 operates at the Transport Layer (layer 4) of the OSI model. It is used to secure communications between two applications by encrypting the data that is being transmitted.

The RFC number for TLSv 1.3 is RFC 8446.

3) ARP protocol

The Address Resolution Protocol (ARP) is a network protocol that maps an IP address to a physical address, such as a Media Access Control (MAC) address. This is necessary because IP addresses are used to identify hosts on a network, while MAC addresses are used to identify devices on a network. ARP operates at the Data Link Layer (layer 2) of the OSI model. It works by broadcasting an ARP request message to all devices on the network.

The RFC number for ARP is RFC 826.

4) QUIC Protocol

QUIC stands for Quick UDP Internet Connections. It is a new transport layer protocol that is designed to improve the performance and security of web applications. QUIC is based on UDP, but it adds a number of features that make it more reliable and secure. QUIC operates at the Transport Layer (layer 4) of the OSI model. It is designed to replace TCP as the default transport protocol for web applications.

The RFC number for QUIC is RFC 9000.

5) ICMPv6 protocol

The Internet Control Message Protocol version 6 (ICMPv6) is a network layer protocol that is used to send control messages between IPv6 nodes.

ICMPv6 operates at the Network Layer (layer 3) of the OSI model. It is defined in RFC 4443.

b)

1 0.000000	10.7.45.155	31.13.79.2	TLSv1.2	83 Application Data
2 0.020443	31.13.79.2	10.7.45.155	TCP	54 443 → 63878 [ACK] Seq=1 Ack=30 Win=709 Len=0
3 0.061163	172.217.20.206	10.7.45.155	UDP	68 443 → 65163 Len=26
4 0.100317	142.250.178.138	10.7.45.155	UDP	68 443 → 64616 Len=26
5 0.154673	31.13.79.2	10.7.45.155	TLSv1.2	79 Application Data

From data point 1& 5 we can see the RTT for the process using TLSv1.2 is 0.154673 seconds.

2)

The public IP address of google server is 142.250.192.142, which is found by ping google.com in command terminal. Attached below is the snapshot of the packet information captured by wireshark on host machine.

```
10.7.45.155 142.250.192.142
                                                                                         QUIC 1292 Initial, DCID=852e07f4c8921173, PKN: 1, PADDING,
337 17.813673
339 17.813869 10.7.45.155 142.250.192.142 QUIC 122 0-RTT, DCID=852e07f4c8921173
                      10.7.45.155 142.250.192.142
10.7.45.155 142.250.192.142
                                                                                        QUIC 121 Handshake, DCID=e52e07f4c8921173
QUIC 73 Protected Payload (KP0), DCID=e5.
347 17.885351
348 17.885566
                                                                                                        73 Protected Payload (KPO), DCID=e52e07f4c8921173
                                                       142.250.192.142
                                                                                        QUIC 868 Protected Payload (KP0), DCID=e52e07f4c8921173
351 17.885836 10.7.45.155
                                                                                       QUIC 74 Protected Payload (KP0), DCID=e52e07f4c8921173
QUIC 74 Protected Payload (KP0), DCID=e52e07f4c8921173
QUIC 77 Protected Payload (KP0), DCID=e52e07f4c8921173
QUIC 77 Protected Payload (KP0), DCID=e52e07f4c8921173
QUIC 78 Protected Payload (KP0), DCID=e52e07f4c8921173
QUIC 78 Protected Payload (KP0), DCID=e52e07f4c8921173
QUIC 74 Protected Payload (KP0), DCID=e52e07f4c8921173
                                                       142.250.192.142
142.250.192.142
362 17.895503
                      10.7.45.155
371 17.922042
371 17.922032

374 17.959289 10.7.45.155

375 17.959962 10.7.45.155 142.250.192.12

377 17.960244 10.7.45.155 142.250.192.142

37 45 155 142.250.192.142
                          10.7.45.155
                                                       142.250.192.142
                                                       142.250.192.142
                                                                                                         74 Protected Payload (KP0), DCID=e52e07f4c8921173
```

The public IP address of GitHub server is 20.207.73.82, which is found by ping google.com in command terminal. Attached below is the snapshot of the packet information captured by wireshark on host machine.

156	8.764876	10.7.45.155	20.207.73.82	TCP	55 64731 → 443 [ACK] Seq=1 Ack=1 Win=515 Len=1 [TCP
2158	29.259820	10.7.45.155	20.207.73.82	TCP	54 64675 → 443 [ACK] Seq=1 Ack=65 Win=515 Len=0
2159	29.259927	10.7.45.155	20.207.73.82	TCP	54 64675 → 443 [FIN, ACK] Seq=1 Ack=65 Win=515 Len=0
3032	33.465067	10.7.45.155	20.207.73.82	TLSv1.2	141 Ignored Unknown Record
3033	33.465127	10.7.45.155	20.207.73.82	TLSv1.2	93 Application Data
3050	33.478121	10.7.45.155	20.207.73.82	TCP	54 64731 → 443 [ACK] Seq=128 Ack=40 Win=515 Len=0
3069	33.742514	10.7.45.155	20.207.73.82	TCP	54 64731 → 443 [ACK] Seq=128 Ack=5123 Win=515 Len=0
3078	33.743166	10.7.45.155	20.207.73.82	TCP	54 64731 → 443 [ACK] Seq=128 Ack=15063 Win=515 Len=0
3079	33.744222	10.7.45.155	20.207.73.82	TLSv1.2	89 Application Data
3103	33.744588	10.7.45.155	20.207.73.82	TCP	54 64731 → 443 [ACK] Seq=163 Ack=39032 Win=515 Len=0
3113	33.744958	10.7.45.155	20.207.73.82	TCP	54 64731 → 443 [ACK] Seq=163 Ack=46660 Win=515 Len=0

The public IP address of Netflix.com server is 10.7.45.155, which is found by ping google.com in command terminal. Attached below is the snapshot of the packet information captured by wireshark on host machine.

J424 214.030003	10./.43.133	104.10.131.530	ICF	33 [ICL VEED-WIIAE] 04000 4 443 [MCV] 364-I MCV-I MI"
3413 211.807564	54.246.79.9	10.7.45.155	TCP	54 [TCP Keep-Alive ACK] 80 → 64912 [ACK] Seq=1 Ack=1
3412 211.806616	10.7.45.155	54.246.79.9	TCP	55 [TCP Keep-Alive] 64912 → 80 [ACK] Seq=0 Ack=1 Win
3411 211.806504	54.246.79.9	10.7.45.155	TCP	54 [TCP Keep-Alive ACK] 80 → 64913 [ACK] Seq=1 Ack=1
3410 211.805596	10.7.45.155	54.246.79.9	TCP	55 [TCP Keep-Alive] 64913 → 80 [ACK] Seq=0 Ack=1 Win
2400 040 700000	404 00 46 404	40 7 45 455	TCD	CO FTOD W AND AND CARDO FACUL O A A L

Difference between QUIC and TCP are summarized under: -

QUIC	TCP
features a faster, one-round trip connection	TCP requires a three-way handshake to establish
establishment, reducing initial connection	a connection. This involves a series of messages
latency. It combines the handshake and	exchanged between the client and server to
encryption setup in a single step, making it more	ensure reliability and order of data transmission.
efficient for quickly establishing connections.	This process can introduce latency.
QUIC inherently supports multiplexing. It allows	Multiplexing multiple streams over a single
multiple streams to be sent concurrently within a	connection in TCP is accomplished using
single connection, eliminating head-of-line	techniques like HTTP/2 or HTTP/3 (over TLS).
blocking issues.	
QUIC incorporates encryption from the start. It	Encryption in TCP typically relies on TLS
uses Datagram Transport Layer Security (DTLS) for	(Transport Layer Security) for secure
encryption, and this encryption is applied to the	communication. While TLS provides strong
entire communication, including the initial	security, it can introduce some overhead due to
handshake.	the initial handshake.
QUIC was initially developed by Google and is	TCP is widely used for various applications,
commonly used for web services, particularly	including web browsing, email, file transfers, and
Google services (HTTP/3 is based on QUIC). It	more. It's a versatile protocol suitable for most
excels in situations where low-latency and high-	scenarios.
performance are critical, such as real-time	
communication and video streaming.	

Similarity between QUIC and TCP

QUIC	TCP
QUIC also offers reliability. Like TCP, QUIC includes	TCP is known for its reliability. It provides
mechanisms for retransmitting lost packets and	guaranteed, in-order delivery of data packets.
ensuring the correct order of data delivery. It aims	When data is sent over TCP, the protocol ensures
to maintain data integrity, similar to TCP.	that the data arrives at its destination without
	errors and in the correct order.
QUIC incorporates flow control as well. It uses a	TCP includes flow control mechanisms to prevent
similar flow control mechanism to prevent	congestion and ensure that the sender doesn't
congestion and optimize the transfer of data	overwhelm the receiver with data. It uses
between sender and receiver.	techniques like TCP sliding window to manage the
	flow of data.
QUIC also includes error detection and correction	TCP employs error detection and correction
mechanisms, such as checksums and	mechanisms, including checksums,

retransmissions, to maintain data integrity and	acknowledgments, and retransmissions, to ensure
reliability.	that data is transmitted accurately and reliably.
QUIC integrates encryption from the start. It uses	TCP itself does not provide encryption. If
Datagram Transport Layer Security (DTLS) for	encryption is desired, it is typically implemented
encryption, ensuring data privacy and security.	at a higher layer using protocols like TLS
	(Transport Layer Security) when using HTTPS.

3)

Attached below are the observed attributes of the cookies of eoffice.iitgn.ac.in

References:-

- 1) YouTube tutorial on socket programming
- 2) https://www.opensourceforu.com/2015/03/a-guide-to-using-raw-sockets/
- 3) https://www.geeksforgeeks.org/socket-programming-cc/