## Towards Optimal Garbled Circuit Constructions

Mike Rosulek
Oregon State OSU

Samee Zahur, Mike Rosulek, David Evans: Two Halves Make a Whole: Reducing Data Transfer in Garbled Circuits using Half Gates. Eurocrypt 2015, ia.cr/2014/756







#### Garbling a circuit:

▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire



#### Garbling a circuit:

▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate



#### Garbling a circuit:

- ▶ Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Garbled encoding** ≡ one label per wire



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Garbled encoding =** one label per wire

#### Garbled evaluation:

Only one ciphertext per gate is decryptable



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire



#### Garbling a circuit:

- Pick random **labels**  $W_0$ ,  $W_1$  on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding** ≡ one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

## **Applications**

secure computation zero-knowledge proofs private function evaluation

randomized encodings

secure outsourcing

one-time programs

 $\ key-dependent\ security\ for\ encryption$ 

:

# How small can garbled circuits get?

|               |                         | size per gate $(\times \lambda)$ |     |
|---------------|-------------------------|----------------------------------|-----|
|               |                         | XOR                              | AND |
| Classical     | [Yao86,GMW87]           | ?                                | ?   |
| Point/permute | [BeaverMicaliRogaway90] | 4                                | 4   |

|               |                         | size per gate $(\times \lambda)$ |     |
|---------------|-------------------------|----------------------------------|-----|
|               |                         | XOR                              | AND |
| Classical     | [Yao86,GMW87]           | ?                                | ?   |
| Point/permute | [BeaverMicaliRogaway90] | 4                                | 4   |
| GRR3          | [NaorPinkasSumner99]    | 3                                | 3   |

|               |                         | size per gate $(\times \lambda)$<br>XOR AND |     |
|---------------|-------------------------|---------------------------------------------|-----|
|               |                         | XOR                                         | AND |
| Classical     | [Yao86,GMW87]           | ?                                           | ?   |
| Point/permute | [BeaverMicaliRogaway90] | 4                                           | 4   |
| GRR3          | [NaorPinkasSumner99]    | 3                                           | 3   |
| Free XOR      | [KolesnikovSchneider08] | 0                                           | 3   |

|               |                                  | size per gate $(\times \lambda)$ |     |
|---------------|----------------------------------|----------------------------------|-----|
|               |                                  | XOR                              | AND |
| Classical     | [Yao86,GMW87]                    | ?                                | ?   |
| Point/permute | [BeaverMicaliRogaway90]          | 4                                | 4   |
| GRR3          | [NaorPinkasSumner99]             | 3                                | 3   |
| Free XOR      | [KolesnikovSchneider08]          | 0                                | 3   |
| GRR2          | [PinkasSchneiderSmartWilliams09] | 2                                | 2   |

|               |                                  | size per gate $(\times \lambda)$ |     |
|---------------|----------------------------------|----------------------------------|-----|
|               |                                  | XOR                              | AND |
| Classical     | [Yao86,GMW87]                    | ?                                | ?   |
| Point/permute | [BeaverMicaliRogaway90]          | 4                                | 4   |
| GRR3          | [NaorPinkasSumner99]             | 3                                | 3   |
| Free XOR      | [KolesnikovSchneider08]          | 0                                | 3   |
| GRR2          | [PinkasSchneiderSmartWilliams09] | 2                                | 2   |
| FleXOR        | [KolesnikovMohasselRosulek14]    | {0, 1, 2}                        | 2   |
| HalfGates     | [Zahur <u>Rosulek</u> Evans15]   | 0                                | 2   |

#### Is there a lower bound?

#### Pitfalls:

Want to resolve optimal constants

• e.g.,  $3\lambda$  vs  $2\lambda$  per AND gate

#### Pitfalls:

Want to resolve optimal constants

• e.g.,  $3\lambda$  vs  $2\lambda$  per AND gate

Asymptotically superior (but impractical) constructions exist

• e.g., size  $|C| + O(\text{poly}(\lambda))$  [BonehGGHNSVV14] vs  $O(\lambda |C|)$  [Yao]

#### Pitfalls:

Want to resolve optimal constants

• e.g.,  $3\lambda$  vs  $2\lambda$  per AND gate

Asymptotically superior (but impractical) constructions exist

• e.g., size  $|C| + O(\text{poly}(\lambda))$  [BonehGGHNSVV14] vs  $O(\lambda |C|)$  [Yao]

Can we prove a lower bound in a **restricted model** that captures "known, **practical** techniques?"

#### Pitfalls:

Want to resolve optimal constants

• e.g.,  $3\lambda$  vs  $2\lambda$  per AND gate

Asymptotically superior (but impractical) constructions exist

• e.g., size  $|C| + O(\text{poly}(\lambda))$  [BonehGGHNSVV14] vs  $O(\lambda |C|)$  [Yao]

Can we prove a lower bound in a **restricted model** that captures "known, **practical** techniques?"

#### Theorem ([ZahurEvansRosulek15])

A **linear gate garbling scheme** requires  $2\lambda$  bits to garble a single AND gate. Within this model, "half-gates" construction is optimal.

#### Rest of talk

- Restricted model: What is a "linear gate garbling scheme?"
- The lower bound for AND gates (sketch)
- 3 Looking forward

## "Known, practical techniques"

#### Symmetric-key cryptography only

- Formalize via computationally unbounded adversaries + random oracle [ImpagliazzoRudich88]
- e.g.: encrypt garbled truth table as  $\mathbb{E}_{A,B}(C) = H(A||B) \oplus C$

## "Known, practical techniques"

#### Symmetric-key cryptography only

- Formalize via computationally unbounded adversaries + random oracle [ImpagliazzoRudich88]
- e.g.: encrypt garbled truth table as  $\mathbb{E}_{A,B}(C) = H(A||B) \oplus C$

#### Linear operations exclusively

- ▶ Wire labels, garbled gates, RO outputs are field/ring elements (e.g.:  $GF(2^{\lambda})$ )
- Garbling/evaluation = linear operations + calls to RO.
- e.g.: xor, polynomial interpolation

## "Known, practical techniques"

#### Symmetric-key cryptography only

- Formalize via computationally unbounded adversaries + random oracle [ImpagliazzoRudich88]
- e.g.: encrypt garbled truth table as  $\mathbb{E}_{A,B}(C) = H(A||B) \oplus C$

#### Linear operations exclusively

- ▶ Wire labels, garbled gates, RO outputs are field/ring elements (e.g.:  $GF(2^{\lambda})$ )
- Garbling/evaluation = linear operations + calls to RO.
- e.g.: xor, polynomial interpolation

One caveat: state of art schemes are all non-linear in one specific way . . .





- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors
- ✓  $\mathbb{E}_{A,B}(C)$  doesn't need verifiable decryption
  - ⇒ smaller garbled circuit, encryption/decryption "linear"



- Randomly assign (•,•) or (•,•) to each pair of wire labels
- Include color in the wire label (e.g., as last bit)
- Order the 4 ciphertexts canonically, by color of keys
- Evaluate by decrypting ciphertext indexed by your colors
- $\bigvee \mathbb{E}_{A,B}(C)$  doesn't need verifiable decryption
  - ⇒ smaller garbled circuit, encryption/decryption "linear"
- X Non-linear: evaluator's choice of linear operation depends on color
- Optimized GC schemes crucially take advantage of nonlinearity!

Apart from point-permute, and calls to random oracle, everything is linear.

Important: only the constructions, not adversary, must be linear!

\$

#### Garbler:

samples field elements

**\$**⊮

RO resp.

- samples field elements
- calls random oracle

\$<sub>F</sub>

RO resp.

```
A^{\bullet} = \text{true}
A^{\bullet} = \text{false}
B^{\bullet} = \text{false}
B^{\bullet} = \text{true}
```

- samples field elements
- calls random oracle
- picks secret "color mapping"



- samples field elements
- ► calls random oracle
- picks secret "color mapping"
- applies linear combination

RO resp.  $A^{\bullet}$  $A^{\circ}$ R<sup>o</sup> B gb gate Cfalse Ctrue

#### **Evaluator:**

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination

RO resp.

 $A^{\circ}$ 

gb gate

#### **Evaluator:**

knows subset of garbler's values (and knows colors)

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination



#### **Evaluator:**

- knows subset of garbler's values (and knows colors)
- applies linear combination
- result is output label

- samples field elements
- calls random oracle
- picks secret "color mapping"
- applies linear combination







$$(\mathbf{v} - \mathbf{v}')(\mathbf{M} - \mathbf{M}') = 0$$

$$(\mathbf{v} - \mathbf{v}')(\mathbf{M} - \mathbf{M}') = 0$$

#### Rest of proof:

- ▶ v, v' distinct (otherwise privacy can be violated)
- $\Rightarrow$  dim(ker(M M'))  $\geq 1$

$$(\mathbf{v} - \mathbf{v}')(\mathbf{M} - \mathbf{M}') = 0$$

#### Rest of proof:

- $\triangleright$  v, v' distinct (otherwise privacy can be violated)
- $\Rightarrow$  dim(ker(M M'))  $\geq 1$
- M, M' distinct (otherwise correctness is violated)
- $\Rightarrow$  dim(rowspace(M M'))  $\ge 1$

$$(\mathbf{v} - \mathbf{v}')(\mathbf{M} - \mathbf{M}') = 0$$

#### Rest of proof:

- $\triangleright$  v, v' distinct (otherwise privacy can be violated)
- $\Rightarrow$  dim(ker(M M'))  $\geq 1$
- M, M' distinct (otherwise correctness is violated)
- $\Rightarrow$  dim(rowspace(M M'))  $\ge 1$
- $\Rightarrow$  M, M' have at least 2 rows
- $\Rightarrow$  garbled gate has at least  $2\lambda$  bits

# Just the beginning...

#### Theorem

A linear garbling scheme requires  $2\lambda$  bits to garble a single AND gate.

# Just the beginning...

#### Theorem

A linear garbling scheme requires  $2\lambda$  bits to garble a single AND gate.

Purpose of lower bounds in a restricted model:

Give up, you can't do any better

# Just the beginning...

#### Theorem

A linear garbling scheme requires  $2\lambda$  bits to garble a single AND gate.

Purpose of lower bounds in a restricted model:

- Give up, you can't do any better
- ▶ Try to do better by avoiding assumptions of the restricted model

#### Limitation:

point-and-permute is sole source of non-linearity

### **Opportunity:**

smaller GC using alternatives to point-permute [BallMalkinRosulek16]

#### Limitation:

point-and-permute is sole source of non-linearity

optimal for gate-by-gate garbling, in {AND, XOR, NOT} basis

### **Opportunity:**

smaller GC using alternatives to point-permute [BallMalkinRosulek16]

smaller GC by garbling larger "chunks" of a circuit at a time [MalkinPastroShelat16]

#### **Limitation:**

point-and-permute is sole source of non-linearity

optimal for gate-by-gate garbling, in {AND, XOR, NOT} basis

model doesn't allow nested calls to random oracle

### **Opportunity:**

smaller GC using alternatives to point-permute [BallMalkinRosulek16]

smaller GC by garbling larger "chunks" of a circuit at a time [MalkinPastroShelat16]

maybe nesting leads to smaller GC? e.g.:  $H(H(A) \oplus B)$ 

|    |   | • . | - ' | •            |    |
|----|---|-----|-----|--------------|----|
| Li | m | 11  | atı | $\mathbf{a}$ | n. |
|    |   | 10  | aι  | v            |    |

point-and-permute is sole source of non-linearity

optimal for gate-by-gate garbling, in {AND, XOR, NOT} basis

model doesn't allow nested calls to random oracle

linear!

### **Opportunity:**

smaller GC using alternatives to point-permute [BallMalkinRosulek16]

smaller GC by garbling larger "chunks" of a circuit at a time [MalkinPastroShelat16]

maybe nesting leads to smaller GC? e.g.:  $H(H(A) \oplus B)$ 

maybe non-linear (but still practical) techniques lead to smaller GC? e.g., compute  $GF(2^{\lambda})$ -inverse of a wire label

# Beyond garbled circuits

### General model of "practical symmetric-key crypto"?

- ► Random oracle + linear operations
- ▶ Can prove fine-grained lower bounds about concrete constants

# Beyond garbled circuits

### General model of "practical symmetric-key crypto"?

- Random oracle + linear operations
- Can prove fine-grained lower bounds about concrete constants

Similar models have been fruitful for lower bounds / impossibility results.

### Generic group model [Shoup97]:

- Algorithm only uses prescribed group operations
- ► Generic ("structure preserving") signature schemes require 3 group elements, etc. [AbeGHO11,AbeGOT14]

#### [Black-box] Arithmetic cryptography

[Ishai Prabhakaran Sahai 09, Applebaum Avron Brzuska 15]

- Algorithm uses arbitrary field as black-box
- Asymptotic lower bounds & impossibility results

### the end!

