Зміст

Розділ 1

Практика

1.1 PDP

17.02.2014

Регістр R_4 . Його вміст має бути зменшений на 2. Отриманий результат є адрес, який потрібно отримати і занулити молодший розряд. І цей код записати у комірку пам'яті, що зсунута відносно номеру 155776 на -40 комірок.

1.1.1 Алгоритм

- 1. Зменшити значення регістру R_4 на 2;
- 2. Прочитати значення за адресою (R_4) і помістити його в R_3 ;
- 3. Накласти на значення, що міститься в R_3 маску, інвертовану відносно 111116;
- 4. Записати її у відповідну адресу.

1.1.2 Програмний код

```
SUB # 000002, R_4;
MOV (R_4), R_3;
BIC # 000001, R_3;
MOV # 155776, R_2;
MOV R_3, -40(R_2);
```

1.2 Intel 8080

05.03.2014

Типи завдань:

- Призначення команди (інфіксна нотація, кількість циклів та інше);
- Функціонування та коментарі до нього;
- Швидкодія;

• Вміст регістрів та комірок пам'яті.

М - це завжди регістрова пара HL. addr - це пряма адресація, адреса лежить в регістровій парі WZ. СС addr С - це сеггу flag, в цей регістр буде поміщено ссув, який був отриманий у випадку арифметичних та інших операцій.

1.3 MIPS

1.3.1 Функціонування

Що буде на контрольній роботі з MIPS:

- описание команды, обрамление, машинный код;
- описание алгоритма, комментарии к коду, (10 б);
- описать функционирование.

MIPS-lite інструкції, які можуть трапитися:

- ADD або SUB
- OR I
- LOAD ago STORE Word
- BRANCH

$$lw\$t1, offset(\$t2); \tag{1.1}$$

12.05.2014

T 7	•	(A) 1		, .		A . A	œ
K OMOTITE DODOTIESTANCE	T DODIOM	n W+ I	TOTTI D	TION (ATTIL DE	OTDOODIO	サナリ つ	OVER OHEOT
Команда завантажує	v berici		лантз	нам ятт за	галоесою	むしと ろ	CVBOM OHSet.

Ŋo		Vировидоний сигноп			
	Микрооперация	Управляющий сигнал			
1	PCout	IorD=0;			
2	Цикл пам'яті;	${ m MemRead}{=}1$			
3	ALU_a :=(PC)	${ m AluSrcA}{=}0$			
4	$ALU_b := (4)$	AluSrcB=01			
5	$ALU := ALU_a + ALU_b$	ALU_{op} =00 -> $ALU_{control}$ = 0010(= 2)			
6	$\operatorname{ALUout} := (\operatorname{ALU})$	PCSource=00;			
7	PC:=(ALU)	PCWrite=1;			
8	$IR:=((PC_{old}))$	$IR_{wr}{=}1;$			
9	CU[5-0] := IR[31-26]				
10	$\overline{\mathrm{DC}}$				
11	A := IR[25-21]				
		9,10,11 пункт			
	D. ID[90 16]	виконуються майже одночасно.			
	B := IR[20-16]	Цими мікроопераціями мікропроцесор			
		готує майбутню операцію R типу			
12	$ALU_a := (PC_{new})$	$ALU_{srcA}=0$			
13	$ALU_b := (SE(IR[15:0])? < 2$	$ALU_{srcB} = 11$			
14	$ALU:=(ALU_a)+(ALU_B)$				
15	$ALU_{out} = (ALU)$	$ALU_{op} = 00$ -> $ALU_{control} = 0010$			
16	ALU_a := A	$ALU_{srcA}=0$			
17	ALU_b :=SE(IR[15:0])	$ALU_{scrB}=10$			
18	$ALU:=(ALU_a)+(ALU_b)$	$ALU_{op}=00$			
19	$ALU_{out} := (ALU)$	$ALU_{control} = 0010$			
20	$M_{adress} := (ALU_{out})$	IorD = 1			
21	ЦП	MemRead = 1			
22	$\mathrm{MDR} := ((ALU_{out}))$	$\operatorname{MemToReg} = 1$			
23	((IR[20-16])) := (MDR)	RegWrite = 1			

1.3.2 Практчні задачі

Поміняти місцем дві змінні t1 та t2 так, щоб не використовувалась додаткова пам'ять. Математичний алгоритм:

$$t1 = t1 + t2 (1.2)$$

$$t2 = t1 - t2 (1.3)$$

$$t1 = t1 - t2 (1.4)$$

(1.5)

add \$t1,\$t1,\$t2 sub \$t2,\$t1,\$t2 sub \$t1,\$t1,\$t2

Знайти кількість ненульових бітів у числі п.

addi \$t1,\$t1,0x49249249 # 0100 1001 0010 0100 1001 0010 0100 1001 addi \$t2,\$t2,0x381c0e07 # 0011 1000 0001 1100 0000 1110 0000 0111 addi \$t3,\$v0,0

and \$t4,\$t3,\$t1

sra \$t5,\$t3,1
and \$t5,\$t5,\$t1

sra \$t6,\$t3,2
and \$t6,\$t6,\$t1

add \$t3,\$t4,\$t5 add \$t3,\$t3,\$t6

sra \$t5,\$t3,3
add \$t4,\$t3,\$t5

and \$t4,\$t4,\$t2

sra \$t6,\$t3,6
and \$t6,\$t6,\$t2

add \$t3,\$t4,\$t6

sra \$t4,\$t3,9
sra \$t5,\$t3,18
sra \$t6,\$t3,27

add \$t4,\$t3,\$t4 add \$t4,\$t4,\$t5 add \$t4,\$t4,\$t6

and \$t4,\$t4,0x3f