EXERCICE 1

3.1. Monocouche à renfort unidirectionnel

3.1.1. Données de base dans le repère d'orthotropie

On a un monocouche composé d'une matrice en résine polyester renforcée par de fibres d'aramide bas module.

E_f = 71 000 MPa : Module d'élasticité des fibres

 $v_f = 0.20$: Coefficient de Poisson des fibres

 $V_f = 0,353$: Fraction volumique des fibres

E_m = 3 000 MPa : Module d'élasticité de la matrice

 $v_m = 0,4$: Coefficient de Poisson de la matrice

Xt = 1000 MPa : Limite admissible en traction suivant (0,X)

Xc = -650 MPa : Limite admissible en compression suivant (0,X)

12 MPa ≤ Yt ≤ 40 MPa : Limite admissible en traction suivant (0,Y)

-135 MPa ≤ Yc ≤ -110 MPa : Limite admissible en compression suivant (0,Y)

35 MPa ≤ T ≤ 55 MPa : Limite admissible en cisaillement dans (0,1,2)

Pour un renfort unidirectionnel, la valeur du coefficient Fo est nulle.

3.1.2. Constantes pratiques

En tenant compte de la variation de l'angle θ , Remplir le tableau suivant

		0 °	10°	30°	60°	90°
E ₁	[MPa]	27004,00	21672,29	10105,28	7693,54	10093,49
E ₂	[MPa]	10093,49	9574,65	7693,54	10105,28	27004,00
G ₁₂	[MPa]	2450,66	2637,86	4496,61	4496,61	2450,66
V12		0,33	0,42	0,59	0,45	0,12
V16		0,00	-1,09	-0,81	0,21	0,00
V26		0,00	0,28	0,21	-0,81	0,00

Commenter ce tableau :

3.1.3. Contraintes admissibles uniaxiales et biaxiales dans le repère de sollicitation

Prenons Yc = -120 MPa, Yt = 30 MPa, T = 45 MPa. En tenant compte de la variation de l'angle θ , remplir le tableau suivant :

	0°	10°	30°	60°	90°
σ1t [MPa]					
σ1c [MPa]					
σ2t [MPa]					
σ2c [MPa]					
σ 6+ [MPa]					
σ 6- [MPa]					
σb+ [MPa]					
ნ- [MPa]					

Commenter ce tableau :

3.2. Monocouche à renfort par tissu équilibré

3.2.1. Données de base dans le repère d'orthotropie

On a un monocouche composé d'une matrice en résine polyester renforcée par de fibres d'aramide bas module croisées à 90°.

$$\begin{array}{lll} E_f & = & 72\,000 & \text{MPa} \\ \\ v_f & = & 0,20 \\ \\ V_f & = & 0,34 & \text{Fraction volumique du tissu} \\ \\ A_1 & = & 0,5 & \text{Proportion des fibres suivant (0X)} \\ \\ E_m & = & 3\,000 & \text{MPa} \\ \\ v_m & = & 0,4 \\ \end{array}$$

$$Xt = Yt = 650 \text{ MPa}$$
 $Xc = Yc = -650 \text{ MPa}$
 $T = 50 \text{ MPa}$

Pour un tissu équilibré, on prendra Fo = -0,5.

3.2.2. Constantes pratiques

En tenant compte de la variation de l'angle θ , remplir le tableau :

		0°	10°	30°	60°	90°
E ₁	[MPa]					
E ₂	[MPa]					
G ₁₂	[MPa]					
V12						
V16						
V26						

Commentaires:

Commenter ce tableau

3.2.3. Contraintes admissibles uniaxiales et biaxiales dans le repère de sollicitation

En tenant compte de la variation de l'angle θ , remplir le tableau

	0°	10°	30°	60°	90°
σ1t [MPa]					
σ1c [MPa]					
σ2t [MPa]					
σ _{2c} [MPa]					
σ6+ [MPa]					
σ 6- [MPa]					
σb+ [MPa]					
σь- [MPa]					

Commenter ce tableau :