

Définition

Tribus:

Soit Ω un ensemble non vide, appelle un ensemble universel. On appelle Tribu (on σ -algèbre sur Ω un ensemble A de parties de Ω danc un sous-ensemble A C PC Ω) tel que:

. DE A . A est stable par possage au complémentaire:

- a) Soit $n \geq 1$ un entier. Rappeler la définition du groupe $(\mathbb{Z}/n\mathbb{Z})^{\times}$.
- b) Dresser la liste des éléments du groupe $(\mathbb{Z}/18\mathbb{Z})^{\times}$.
- c) Calculer les ordres des groupes $(\mathbb{Z}/8\mathbb{Z})^{\times}$, $(\mathbb{Z}/27\mathbb{Z})^{\times}$ et $(\mathbb{Z}/216\mathbb{Z})^{\times}$.
- d) Déterminer l'ordre de la classe de 2 et celui de la classe de 8 dans le groupe $(\mathbb{Z}/27\mathbb{Z})^{\times}$. Ce groupe est-il cyclique?
- e) Montrer qu'il existe un unique morphisme de groupes de $(\mathbb{Z}/12\mathbb{Z}, +)$ vers $(\mathbb{Z}/27\mathbb{Z})^{\times}$ qui envoie la classe de 1 sur celle de 8. Déterminer son noyau et son image.

by
$$(7/187)^{*}$$

1 2 3 4 5 6 7 8 9 10 T1 12 T3 14 15 16 T7

Leate:

1, 5, 7, 11, 13, 17

Le nombre de cardinal:

 $[(2/187)^{*}] = 9(18) = 9(2.9)$
 $= 9(2) + 9(3^{2})$
 $= (2^{1}-2^{1-1})(3^{2}-3^{2-1})$
 $= 1.6 = 6$

3 y Calculu ler ardres de $(2,87)^{*}$, $(2,27)^{*}$
 $(2,2182)^{*}$

On a $1(7/n7)^{*}1 = 9(n)$, $9(nm) = 9(n) + 9(m)$

si paged $(n,m) = 1$ et $9(p^{e}) = p^{e} - p^{e-1}$ si pest primin et e 7, 1 m entier

$$|(7/87)^{\kappa}| = 9(2^3) = (2^3 - 2^{3-1}) = 8 - 4 = 4$$

$$|(7/277)^{\kappa}| = 9(2^3) = (3^3 - 2^{3-1}) = 18$$

$$|(7/2167)^{\kappa}| = 9(2^3 \times 3^3) = 9(2^3) \cdot 9(3^3)$$

$$= (2^3 - 2^3 - 1)(3^3 - 3^{3-1})$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3)$$

$$= (2^3 - 2^3)(3^3 - 3^3)$$

$$= (2^3 - 2^3)(3^3 - 3^3)$$

$$= (2^3 - 2^3)(3^3 - 3^3)$$

$$= (2^3 - 2^3)(3^3 - 3^3)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 3^3 - 1)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3 - 2^3)$$

$$= (2^3 - 2^3)(3^3$$

Comme 2 est d'ordre 18 et 1(72/27) = 18, =7 le glaupe (2 /272) et formé des puessances de 2. Danc 2 est un générateur de ce groupe et (71/24712) est bien un george cyclique ey Nous avour vu dons de que nous avons $8^{6} = 1$ dans $(2/272)^{2}$. Done nous avons $8^{12} = (8^{6})^{2}$ Par le lemane 2.26 du cours, il existe = 1 un unique marphisme de graupes tel que f (1/2 1/4) -> CZ/27 Z)

tel que f (1/2) = 278 et nous avans f (k)= 8k

pour tout h e z. Nous obtenous les table 1 K 0 1 2 3 4 5 6 7 8 9 10 11 f(k) 1 8 10 -1 -8 -10 7 8 10 -1 -8 -10 Imf = 41,8,10, -1, -8, -10 1 her f = 40,64 => |Imf|. (kerf| = 12/122)