IMPERIAL

Uncovering Allosteric Pathways: A thermodynamic framework and computational method

Ralph Holden

PI: Prof. Sophia Yaliraki Co-PI: Prof. Mauricio Barahona

Motivation

Off Site Drug Targets

- Antimicrobial resistance poses major global health challenge
- Insufficient innovative antimicrobials to meet demand

- Allosteric sites influence active site
- New possibilities for off-site drug targets
- Drug the "undruggable" proteins?

Scientific Background Dynamic Allostery

- No change in the average structure
- Significant entropic contribution to allostery
- Subtle changes in the frequency and amplitude of thermal fluctuations

Two extreme models of allosteric communication

Allosteric site Active site Active site Allosteric site Allosteric site

Localised path

Scientific Background Graph Methods

Uncovering Allosteric Pathways

Imperial College London

Novel methods

More principled approaches to allosteric pathways

Imperial College London Uncovering Allosteric Pathways 5 02/06/2025

Theoretical Framework Thermodynamic Perspective

- Allosteric pathway with optimum "free energy" balances two effects energy & entropy
 - Minimum entropic cost: path with minimum no. steps

Drives path through shortcuts otherwise energetically insignificant weak interactions

2) Best energetic link: strongest energy weighted path Imposes energetic cost: weak steps must be carefully chosen & highly specialised

Imperial College London

Uncovering Allosteric Pathways

6

Method Design for Path Search Maximum Flow

Maximum flow algorithms optimise for greatest flow rate through graph edges

7

- Two constraints:
 - 1) Flow conserved into & out of nodes
 - 2) Flow rate through edge is limited by "capacity"

Applied to BagPype graph with heuristic: BagPype edge energy weights are proportional to flow capacity

Maximum Flow Graph, Φ

Node
Source/ target node
Backbone interaction
Weak interaction

Imperial College London

Uncovering Allosteric Pathways

Method Design for Path Search Maximum Flow

BagPype Graph, U

Observation:

- Graph complexity reduced
- Edge max flow rate less than BagPype energy (capacity)

Interpretation:

Importance sampling for robust flows

Effective ability of edge to transfer energy, dependant on surrounding environment

Imperial College London Uncovering Allosteric Pathways 8 02/06/2025

Method for Path Search Flow Path

- Path must optimise for both:
 - 1) Strongest interactions (energy)
 - 2) Minimum steps (entropy)
- Flow, ϕ must be converted to alternative form, ϕ' for balanced optimisation by Dijkstra's algorithm

$$\phi' = 1/\phi$$

- 1) Favours backbone step-by-step
- 2) "Cost" buildup over many steps prefers shortcuts

Optimum Free Energy Path Node Source/ target node Backbone interaction Weak interaction

Method for Path Score Path Rank

- Ruelle-Bowen random walk stationary distribution optimises the sum of:
 - 1) Shannon entropy
 - 2) Expected energy
- Construct transition matrix, B
 - Energetic transition probabilities between nodes
- Spectral decomposition for dominant eigenvectors

$$Bv = \lambda v$$

$$\boldsymbol{u}^{\mathsf{T}}\boldsymbol{B} = \boldsymbol{u}^{\mathsf{T}}\lambda$$

 $u_i v_i$ Random walk stationary distribution (probability at node i)

 λ Spectral radius, related to topological entropy

BagPype Graph, U

Transition Matrix, B

$$\mathbf{B}_{ij} = \exp\left(-1/\beta U_{ij}\right)$$

$$\mathbf{B} = \begin{bmatrix} \dots & \dots & \exp\left(-\frac{1}{\beta U_{ij}}\right) \\ \vdots & \ddots & \vdots \\ \exp\left(-\frac{1}{\beta U_{ii}}\right) & \dots & \dots \end{bmatrix}$$

Method for Path Score Path Rank

Interpretation

- Transition probability takes form akin to Boltzmann factor
- Crucial difference: exponent is the inverse

Random Walker Path Probability

Balance of energy and entropy

$$p_{k\to l} = \lambda^{-t} \left(\prod \boldsymbol{B}_{k\to l} \right) \boldsymbol{u}_k \boldsymbol{v}_l$$

Used to score Flow Paths

λ^{-t}	Entropic factor scaled by path length, global
$\prod B_{k o l}$	Product of energetic transition probabilities, local
$oldsymbol{u}_koldsymbol{v}_l$	Boltzmann stationary distribution of Ruelle-Bowen random walk

Workflow Integrating Search and Score

Imperial College London Uncovering Allosteric Pathways 12 02/06/2025

Validation Benchmarking Flow Path

Effect of Temperature Scaling Factor

Low Temperature Limit

- λ much reduced

High Temperature Limit

Entropy dominating, recovering Ruelle-Bowen random walk on unweighted graph

→ λ increases

• Transition probability smaller for weak interactions \longleftrightarrow Transition probability even between interactions

14 Imperial College London **Uncovering Allosteric Pathways** 02/06/2025

Experimental Alanine Mutation Scanning

Flow path on caspase-1 (PDB: 2HBQ)

- Experimental alanine mutation "turns off" weak interactions in signalling pathways
- Weak interactions scored by sum of all Flow Paths weighted by Path Rank

Residue	Computational Score
SER332 [†]	9.0
ARG286 [†]	6.8
GLU390 †	6.3
ARG179	5.0
ALA284	4.6
SER339 [†]	4.5

[†] Highly functionally important

Uncovering Allosteric Pathways Summary

Theory

- Thermodynamic perspective of allostery
- Balance of energetic and entropic effects
- Weak interactions important via entropic effect

Computation

- Computational methods for thermodynamic path
 - 1) Search: "Flow Path"
 - 2) Score: "Path Rank"
- No a priori choice of dominant factor

Application

- Identify allosteric pathways
- Identify functional allosteric residues

Imperial College London Uncovering Allosteric Pathways 16 02/06/2025

Method Design for Path Score

Graph-thermodynamic formalism

Ruelle-Bowen random walk has optimum free energy rate

- Expected energy is ensemble average
 - In Path Rank formulation, contains temperature factor
- Node stationary probability distribution that maximises free energy rate: vu^{T}
 - ! Takes form of Boltzmann distribution

Path partition function

$$Q = \sum_{\substack{paths \ of \\ length \ t}} \exp(\sum U_{i \to j})$$

Total path free energy

$$F = \ln \sum_{\substack{paths \ of \\ length \ t}} \exp(\sum U_{i \to j})$$

- Analogous to free energy of the canonical ensemble in thermodynamics
- In Path Rank, collapses to microcanonical ensemble equivalent at very large temperatures

Experimental Alanine Mutation Scanning

Residue	Computational Score
GLU109 †	47.7
ASN111 [†]	46.9
ARG105 [†]	40.5
ASP87	21.2
ARG14	21.2

[†] Highly functionally important

ATCase (PDB: 1D09)

Experimental Alanine Mutation Scanning

Residue	Computational Score
ASN326 [†]	5.3
PHE340 [†]	5.3
LEU323 [†]	2.6
ALA347 [†]	2.6
ASN363	2.2

[†] Highly functionally important

Experimental Alanine Mutation Scanning

Residue	Computational Score
LYS109 [†]	7.6
ASP57 [†]	5.1
ASP12 [†]	4.0
ASP13 [†]	4.0
GLU89	2.9

[†] Highly functionally important

CheY (PDB: 1F4V)

Evolutionary Conservation

- Functional residues conserved due to evolutionary pressure
- Conservation score calculated across amino acid sequences of variants and families
- Weak signalling residues in predicted allosteric pathway highly conserved