CS-E5710 Bayesian Data Analysis Assignment 8

November 17, 2019

NB Source code is given in the Appendix.

1 Pooled Model

Pystan outcome

					0 50	0.50	F 0 0	7.50	07 50		D1
1			se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
2	mu	92.97	0.07	3.44	86.19	90.68	92.92	95.33	99.46	2208	1.0
3	sigma	18.88	0.05	2.63	14.57	17.0	18.59	20.46	24.83	2387	1.0
4	ypred6	93.26	0.32	19.46	54.8	80.29		106.05		3727	1.0
5	log_lik[1]	-4.01	3.1e-3	0.14	-4.29	-4.11	-4.01	-3.92	-3.75	2029	1.0
6	log_lik[2]	-4.72	5.1e-3	0.26	-5.29	-4.87	-4.69	-4.53	-4.3	2487	1.0
7	log_lik[3]	-3.96	3.0e-3	0.14	-4.25	-4.05	-3.95	-3.86	-3.7	2218	1.0
8	log_lik[4]	-4.08	3.1e-3	0.15	-4.39	-4.17	-4.07	-3.97		2251	1.0
9	log_lik[5]	-4.16	3.2e-3	0.15	-4.47	-4.26	-4.15	-4.05	-3.89	2268	1.0
10	log_lik[6]	-5.79	0.01	0.53	-7.0	-6.1	-5.72	-5.4	-4.93	2563	1.0
11	log_lik[7]	-3.87	3.0e-3	0.14	-4.15	-3.96	-3.86	-3.77	-3.61	2135	1.0
12	log_lik[8]	-4.24	3.5e-3	0.17	-4.6	-4.35	-4.24	-4.12	-3.95	2322	1.0
13	log_lik[9]	-3.86	3.0e-3	0.14	-4.15	-3.96	-3.86	-3.77	-3.61	2139	1.0
14	log_lik[10]	-4.87	5.8e-3	0.29	-5.52	-5.04	-4.83	-4.66	-4.4	2514	1.0
15	log_lik[11]	-3.89	3.0e-3	0.14	-4.18	-3.98	-3.88	-3.79	-3.63	2150	1.0
16	log_lik[12]	-3.87	3.0e-3	0.14	-4.15	-3.96	-3.86	-3.77	-3.61	2135	1.0
17	log_lik[13]	-3.87	3.0e-3	0.14	-4.15	-3.96	-3.86	-3.77	-3.61	2135	1.0
18	log_lik[14]	-4.52	4.3e-3	0.21	-4.98	-4.65	-4.5	-4.37	-4.16	2433	1.0
19	log_lik[15]	-3.87	3.0e-3	0.14	-4.15	-3.96	-3.86	-3.77	-3.61	2135	1.0
20	log_lik[16]	-4.65	4.9e-3	0.24	-5.18	-4.79	-4.62	-4.48	-4.25	2470	1.0
21	log_lik[17]	-4.01	3.0e-3	0.14	-4.31	-4.1	-4.01	-3.91	-3.75	2230	1.0
22	log_lik[18]	-4.04	3.1e-3	0.15	-4.35	-4.14	-4.04	-3.94	-3.78	2239	1.0
23	log_lik[19]	-7.14	0.02	0.9	-9.15	-7.67	-7.06	-6.49	-5.68	2579	1.0
24	log_lik[20]	-4.04	3.1e-3	0.15	-4.35	-4.14	-4.04	-3.94	-3.78	2239	1.0
25	log_lik[21]	-3.94	3.0e-3	0.14	-4.21	-4.03	-3.93	-3.84	-3.68	2046	1.0
26	log_lik[22]	-3.98	3.0e-3	0.14	-4.28	-4.07	-3.98	-3.89	-3.73	2223	1.0
27	log_lik[23]	-4.16	3.2e-3	0.15	-4.47	-4.26	-4.15	-4.05	-3.89	2268	1.0
28	log_lik[24]	-4.24	3.4e-3	0.16	-4.59	-4.35	-4.23	-4.13	-3.96	2315	1.0
29	log_lik[25]	-4.87	5.9e-3	0.3	-5.53	-5.04	-4.83	-4.66	-4.39	2506	1.0
30	log_lik[26]	-3.92	3.0e-3	0.14	-4.19	-4.01	-3.92	-3.82	-3.66	2061	1.0
31	log_lik[27]	-4.87	5.9e-3	0.3	-5.53	-5.04	-4.83	-4.66	-4.39	2506	1.0
32	log_lik[28]	-4.65	4.9e-3	0.24	-5.18	-4.79	-4.62	-4.48	-4.25	2470	1.0
33	log_lik[29]	-3.87	3.0e-3	0.14	-4.15	-3.96	-3.86	-3.77	-3.61	2135	1.0

```
PSIS-LOO: -130.99351268833743
p_eff: 2.0472676065418227
```


Figure 1: k-values for pooled model

For the pooled model, all the machines are considered as an entity, thus all the measurements are combined into one and performed prediction on the whole data. μ will be the same for all the machines.

2 Separate Model

Pystan outcomes

1		mean	se mean	sd	2.5%	25%	50%	75%	97.5%	n eff	Rhat
1			_							_	
2	mu[1]	76.27	0.47	16.18	45.81	68.51	76.12	83.74	109.77	1184	1.0
3	mu[2]	106.43	0.34	10.13	85.72	101.78	106.36	111.04	126.63	910	1.0
4	mu[3]	87.18	0.36	11.58	62.81	82.48	87.57	92.73	107.66	1017	1.0
5	mu [4]	111.99	0.14	5.61	101.39	108.96	111.8	114.74	124.08	1709	1.0
6	mu[5]	89.95	0.24	9.03	71.83	85.69	89.95	94.35	108.34	1449	1.0
7	mu[6]	86.71	0.74	18.95	53.44	79.05	86.14	93.58	120.44	662	1.0
8	sigma[1]	31.3	0.7	25.1	12.54	19.02	24.99	35.71	84.27	1287	1.0
9	sigma[2]	19.16	0.42	13.89	7.7	11.73	15.46	21.66	55.06	1094	1.01
10	sigma[3]	20.98	0.66	19.12	8.23	12.66	16.53	23.14	61.78	841	1.0
11	sigma[4]	11.49	0.17	6.92	4.81	7.35	9.59	13.47	29.6	1691	1.0
12	sigma[5]	17.43	0.36	11.74	6.96	10.55	14.12	20.12	48.33	1093	1.0
13	sigma[6]	31.27	1.0	29.75	12.45	19.19	24.88	34.81	88.61	885	1.01
14	ypred6	87.55	0.94	47.47	11.4	68.4	86.97	105.76	168.46	2542	1.0
15	log_lik[1]	-4.36	0.01	0.5	-5.5	-4.65	-4.29	-4.0	-3.58	1173	1.0
16	log_lik[2]	-4.57	0.01	0.48	-5.65	-4.84	-4.51	-4.23	-3.8	1406	1.0

```
log_lik[3]
                   -4.57
                            0.01
                                    0.48 -5.65 -4.84 -4.51 -4.23 -3.8
                                                                                   1406
17
                                    0.75
                                                   -5.53
                                                           -5.06
                                           -7.23
    log_lik[4]
                   -5.21
                             0.01
                                                                  -4.72
                                                                          -4.24
                                                                                   3629
                                                                                            1.0
    log_lik[5]
                   -4.39
                             0.01
                                    0.49
                                           -5.53
                                                   -4.67
                                                           -4.32
                                                                  -4.04
                                                                          -3.63
                                                                                   1316
                                                                                            1.0
19
                                                                  -3.79
    log_lik[6]
                   -4.13
                             0.01
                                    0.49
                                           -5.26
                                                   -4.39
                                                           -4.06
                                                                          -3.37
                                                                                   1486
                                                                                            1.0
20
    log_lik[7]
                   -3.85
                                           -5.07
                                                   -4.13
                                                           -3.77
                                                                  -3.49
                                                                          -3.05
                             0.02
                                    0.51
                                                                                   1062
                                                                                            1.0
21
    log_lik[8]
                   -3.98
                             0.01
                                    0.48
                                           -5.13
                                                   -4.25
                                                           -3.91
                                                                  -3.64
                                                                          -3.22
                                                                                   1183
22
                                                                                            1.0
    log_lik[9]
                   -3.84
                             0.02
                                    0.51
                                           -5.08
                                                   -4.13
                                                           -3.77
                                                                  -3.48
                                                                          -3.05
                                                                                   1046
23
                                                                                           1.01
24
    log_lik[10]
                   -4.82
                             0.01
                                     0.8
                                           -6.99
                                                   -5.14
                                                           -4.65
                                                                   -4.3
                                                                           -3.8
                                                                                   3827
                                                                                            1.0
25
    log_lik[11]
                   -4.31
                             0.01
                                    0.51
                                           -5.52
                                                   -4.59
                                                           -4.23
                                                                  -3.95
                                                                          -3.52
                                                                                   1805
                                                                                            1.0
    log_lik[12]
                   -3.97
                                           -5.19
                                                   -4.23
                                                           -3.9
                                                                  -3.62
                                                                           -3.2
                                                                                   1246
                             0.01
                                    0.51
                                                                                            1.0
26
    log_lik[13]
                   -3.95
                             0.01
                                    0.51
                                           -5.18
                                                   -4.21
                                                           -3.87
                                                                   -3.6
                                                                          -3.16
                                                                                   1235
                                                                                            1.0
27
                                                                          -3.11
    log_lik[14]
                   -3.91
                             0.01
                                    0.52
                                           -5.17
                                                   -4.18
                                                           -3.83
                                                                  -3.55
                                                                                            1.0
28
                                                                                   4528
    log_lik[15]
                                    0.79
                                           -6.95
                                                   -5.22
                                                            -4.7
                                                                   -4.35
                                                                          -3.87
29
                   -4.88
                             0.01
                                                                                            1.0
30
    log_lik[16]
                   -3.64
                             0.01
                                    0.46
                                           -4.69
                                                   -3.91
                                                           -3.58
                                                                   -3.3
                                                                          -2.89
                                                                                   2102
                                                                                            1.0
    log_lik[17]
                   -3.7
                          9.1e-3
                                    0.46
                                           -4.77
                                                   -3.96
                                                           -3.65
                                                                  -3.37
                                                                          -2.95
                                                                                   2543
                                                                                            1.0
31
    log_lik[18]
                   -3.46
                             0.01
                                    0.45
                                           -4.45
                                                   -3.73
                                                           -3.42
                                                                  -3.14
                                                                          -2.73
                                                                                   1884
                                                                                            1.0
32
                                                                          -3.14
    log_lik[19]
                                           -5.28
                                                                  -3.57
                   -3.97
                          9.7e-3
                                    0.56
                                                   -4.26
                                                          -3.88
                                                                                   3405
                                                                                            1.0
33
                                                                  -3.14
-3.77
    log_lik[20]
                   -3.46
                             0.01
                                    0.45
                                           -4.45
                                                   -3.73
                                                           -3.42
                                                                          -2.73
                                                                                   1884
                                                                                            1.0
34
                                                           -4.07
                                                                          -3.35
                                                                                   1766
    log_lik[21]
                                           -5.32
35
                   -4.14
                             0.01
                                    0.51
                                                   -4.41
                                                                                            1.0
    log_lik[22]
                   -3.89
                             0.01
                                    0.48
                                           -5.02
                                                   -4.17
                                                           -3.82
                                                                  -3.54
                                                                          -3.12
                                                                                   1349
                                                                                            1.0
36
37
    log_lik[23]
                   -4.27
                             0.01
                                    0.55
                                           -5.56
                                                   -4.57
                                                           -4.19
                                                                  -3.89
                                                                          -3.43
                                                                                   3012
                                                                                            1.0
    log_lik[24]
                   -4.14
                             0.01
                                           -5.32
                                                   -4.41
                                                           -4.07
                                                                  -3.77
                                                                          -3.35
                                                                                   1766
                                    0.51
                                                                                            1.0
38
    log_lik[25]
                   -3.75
                             0.02
                                    0.51
                                           -4.98
                                                   -4.05
                                                           -3.67
                                                                  -3.37
                                                                          -2.93
                                                                                   1151
39
                                                                                            1.0
    log_lik[26]
                   -5.16
                                           -7.03
                                                   -5.47
                                                                  -4.68
                                                                          -4.19
                                                                                   3795
                             0.01
                                    0.72
                                                           -5.0
40
                                                                                            1.0
    log_lik[27]
                                           -5.53
                                                           -4.26
                   -4.34
                             0.02
                                    0.51
                                                   -4.62
                                                                   -4.0
                                                                          -3.55
                                                                                    849
                                                                                            1.0
41
                  -4.64
                                                                   -4.3
42
    log_lik[28]
                             0.01
                                    0.49
                                           -5.79
                                                    -4.9
                                                           -4.57
                                                                          -3.87
                                                                                   1227
                                                                                            1.0
    log_lik[29]
                                                                          -3.61
                   -4.39
                             0.02
                                     0.5
                                           -5.59
                                                   -4.66
                                                           -4.31
                                                                  -4.04
                                                                                    836
                                                                                            1.0
43
    log_lik[30]
                   -4.51
                             0.02
                                     0.48
                                           -5.65
                                                   -4.77
                                                           -4.44
                                                                  -4.17
                                                                          -3.77
                                                                                    992
                                                                                            1.0
44
                                    3.22 -88.76 -83.17 -80.92 -78.97 -76.26
45
    lp__
                  -81.31
                             0.11
                                                                                    873
                                                                                            1.0
```

PSIS-LOO: -132.26760017922143

p_eff: 9.727184814117123

Figure 2: k-values for separate model

For separate model we treat each machine separately.

Hierarchical Model

Pystan outcome

		m	m	sd	2.5%	25%	50%	75%	97.5%	n eff	Rhat
1 2	mu0	93.16	se_mean 0.2	8.4	77.4	88.62	93.05		110.52	1779	1.0
3	sigma0	16.34	0.27	10.17	4.67	10.13	14.03	19.34	43.27	1441	1.0
4	mu[1]	80.13	0.19	7.06	66.12	75.51	79.99	84.87	94.3	1383	1.0
5	mu[2]	103.11	0.13	6.71	89.88		102.91			2524	1.0
6	mu[3]	89.1	0.13	6.09	77.05	85.16	89.06		101.11	2783	1.0
7	mu[4]	107.15	0.18	7.01		102.51				1549	1.0
8	mu[5]	90.7	0.1	6.15	78.45	86.67	90.73		102.88	4065	1.0
9	mu[6]	87.68	0.12	6.29	75.16	83.6	87.73	92.01	99.74	2651	1.0
10	sigma	15.32	0.05	2.4	11.45	13.64	15.02	16.67	20.77	2316	1.0
11	vpred6	87.45	0.25	16.09	56.09	76.53	87.13		119.33	4165	1.0
12	mii7	93.5	0.35	20.39	55.33	83.17		103.42		3325	1.0
13	log lik[1]	-3.77	4.4e-3	0.22	-4.29	-3.88	-3.74	-3.62	-3.42	2602	1.0
14	log_lik[2]	-4.08	7.5e-3	0.42	-5.17	-4.26	-3.99	-3.79	-3.57	3116	1.0
15	log_lik[3]	-4.08	7.5e-3	0.42	-5.17	-4.26	-3.99	-3.79	-3.57	3116	1.0
16	log_lik[4]	-6.34	0.02	1.12	-8.81	-7.06	-6.22	-5.52	-4.51	2229	1.0
17	log lik[5]	-4.11	0.01	0.42	-5.13	-4.35	-4.03	-3.8	-3.52	1002	1.0
18	log_lik[6]	-4.15	7.9e-3	0.41	-5.14	-4.39	-4.1	-3.84	-3.56	2716	1.0
19	log_lik[7]	-3.8	5.4e-3	0.25	-4.41	-3.94	-3.77	-3.63	-3.41	2074	1.0
20	log_lik[8]	-3.99	6.8e-3	0.34	-4.82	-4.18	-3.94	-3.74	-3.49	2498	1.0
21	log_lik[9]	-3.73	4.6e-3	0.2	-4.21	-3.84	-3.71	-3.6	-3.41	1865	1.0
22	log lik[10]	-4.34	9.7e-3	0.52	-5.68	-4.62	-4.22	-3.96	-3.67	2930	1.0
23	log_lik[11]	-4.04	5.7e-3	0.35	-4.9	-4.21	-3.97	-3.8	-3.55	3674	1.0
24	log_lik[12]	-3.75	4.1e-3	0.21	-4.22	-3.86	-3.73	-3.61	-3.43	2461	1.0
25	log_lik[13]	-3.74	4.1e-3	0.2	-4.18	-3.85	-3.71	-3.6	-3.41	2283	1.0
26	log_lik[14]	-3.74	4.6e-3	0.2	-4.19	-3.85	-3.71	-3.6	-3.4	1909	1.0
27	log_lik[15]	-4.82	0.01	0.63	-6.35	-5.16	-4.72	-4.37	-3.89	3431	1.0
28	log_lik[16]	-3.75	4.4e-3	0.2	-4.22	-3.87	-3.73	-3.61	-3.42	2121	1.0
29	log_lik[17]	-4.04	0.01	0.39	-4.99	-4.25	-3.96	-3.75	-3.49	1323	1.0
30	log_lik[18]	-3.9	9.0e-3	0.32	-4.7	-4.07	-3.83	-3.67	-3.44	1275	1.0
31	log_lik[19]	-3.81	4.6e-3	0.24	-4.4	-3.92	-3.77	-3.65	-3.45	2626	1.0
32	log_lik[20]	-3.9	9.0e-3	0.32	-4.7	-4.07	-3.83	-3.67	-3.44	1275	1.0
33	log_lik[21]	-4.03	5.5e-3	0.34	-4.88	-4.2	-3.97	-3.79	-3.54	3752	1.0
34	log_lik[22]	-3.81	4.4e-3	0.24	-4.4	-3.93	-3.77	-3.64	-3.44	3042	1.0
35	log_lik[23]	-4.07	5.7e-3	0.37	-4.98	-4.24	-3.99	-3.81	-3.56	4078	1.0
36	log_lik[24]	-4.03	5.5e-3	0.34	-4.88	-4.2	-3.97	-3.79	-3.54	3752	1.0
37	log_lik[25]	-3.72	4.1e-3	0.19	-4.15	-3.83	-3.7	-3.59	-3.41	2205	1.0
38	log_lik[26]	-5.85	0.02	0.95	-8.01	-6.41	-5.73	-5.16	-4.37	3680	1.0
39	log_lik[27]	-3.77	4.2e-3	0.22	-4.29	-3.88	-3.74	-3.62	-3.43	2669	1.0
40	log_lik[28]	-4.34	8.5e-3	0.5	-5.6	-4.58	-4.24	-3.98	-3.68	3457	1.0
41	log_lik[29]	-3.97	6.6e-3	0.33	-4.75	-4.15	-3.92	-3.74	-3.49	2416	1.0
42	log_lik[30]	-4.08	6.4e-3	0.38	-5.07	-4.25	-4.0	-3.81	-3.57	3623	1.0
43	lp	-108.9	0.07	2.56	-114.8	-110.4	-108.5	-107.0	-105.1	1209	1.01

PSIS-LOO: -126.94254994864687 p_eff: 5.717938460621397

Figure 3: k-values for hierarchical model

The hierarchical model not only treats every machine separately, but also computes the combination of all the machines as one entity. Thus, it can predict or the machines even without data.

	PSIS-LOO	p_eff
Pooled Model	-130.9935	2.0473
Separate Model	-132.2676	9.7272
Hierarchical Model	-126.9425	5.7179

From the tabular summary above, we can see that both pooled and hierarchical models are reliable for PSIS-LOO estimations. It's because of the way how pooled and hierarchical model use the parameters. The effective number of parameters is more than 1 and less than 7 for the two models.

A Code

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm
import pystan
import psis

machines = pd.read_fwf('./factory.txt', header=None).values
machines_transposed = machines.T

def psisloo_computation(log_lik, fig_name, model_name):

#PSIS-LOO values
```

```
psis_loo = psis.psisloo(log_lik)
14
15
        lppd_loocv = psis_loo[0]
        print('PSIS-LOO: ', lppd_loocv)
16
17
        #The effective number of parameters
18
        S = np.size(log_lik, 0)
19
        lppd = sum(np.log([1/S*sum(np.exp(col)) for col in log_lik.T]))
20
21
        p_loocv = lppd - lppd_loocv
        print('p_eff: ', p_loocv)
22
23
        #k-values visualization
        psis_hist = psis_loo[2]
25
        plt.hist(psis_hist, bins= np.linspace(0, 1, num=50), color='grey',ec='white')
plt.savefig('./{0}'.format(fig_name))
26
27
        plt.show()
28
29
30
31
    Pooled model
32
   stan_code_pooled = '''
33
34
        int<lower=0> N;
                                // number of data points
35
        vector[N] y;
36
37
    parameters {
38
                                // group means
39
       real mu;
        real<lower=0> sigma; // common std
40
41
    model {
42
     y ~ normal(mu, sigma);
43
44
    generated quantities {
45
46
        real ypred6;
        vector[N] log_lik;
47
        ypred6 = normal_rng(mu, sigma);
49
        for (i in 1:N)
50
            log_lik[i] = normal_lpdf(y[i] | mu, sigma);
51
    1.1.1
52
   machines_pooled = machines.flatten()
    model_pooled = pystan.StanModel(model_code=stan_code_pooled)
54
    data_pooled = dict(
55
56
       N=machines_pooled.size,
        y=machines_pooled
57
58
59
60
   fit_pooled = model_pooled.sampling(data=data_pooled)
61
    print(fit_pooled)
62
   log_lik_pooled = fit_pooled.extract(permuted=True)['log_lik']
    psisloo_computation(log_lik_pooled, 'pooled_hist.png', 'Pool')
64
65
66
67
    Separate model
68
    stan_code_separate = '''
69
```

```
int<lower=0> N;
                                          // number of data points
71
72
         int<lower=0> K;
                                          // number of groups
         int<lower=1,upper=K> x[N];
                                         // group indicator
73
74
         vector[N] y;
75
    parameters {
76
                                          // group means
77
         vector[K] mu;
         vector<lower=0>[K] sigma;
                                         // group stds
78
79
    model {
80
       y ~ normal(mu[x], sigma[x]);
81
82
     generated quantities {
83
84
         real ypred6;
         vector[N] log_lik;
85
         ypred6 = normal_rng(mu[6], sigma[6]);
         for (i in 1:N)
87
88
             log_lik[i] = normal_lpdf(y[i] | mu[x[i]], sigma[x[i]]);
89
     111
90
91
     model_seperate = pystan.StanModel(model_code=stan_code_separate)
92
     data_separate = dict(
93
         N=machines_transposed.size,
94
         K=6,
95
96
         X = [
             1, 1, 1, 1, 1,
97
             2, 2, 2, 2, 2,
99
             3, 3, 3, 3, 3,
             4, 4, 4, 4, 4,
100
101
             5, 5, 5, 5, 5,
             6, 6, 6, 6, 6,
102
103
         y=machines_transposed.flatten()
104
105
106
     fit_separate = model_separate.sampling(data=data_separate, n_jobs=-1)
107
108
     print(fit_separate)
109
    log_lik_separate = fit_separate.extract(permuted=True)['log_lik']
     psisloo_computation(log_lik_separate, 'separate_hist.png', 'Separate')
111
112
113
     Hierarchical model
114
115
     stan_code_hierarchical = '''
116
117
     data {
                                       // number of data points
118
         int<lower=0> N;
         int<lower=0> K;
                                       // number of groups
119
         int<lower=1,upper=K> x[N]; // group indicator
120
         vector[N] y;
121
122
     parameters {
123
         real mu0;
                                       // prior mean
124
         real<lower=0> sigma0;
                                       // prior std
125
                                       // group means
         vector[K] mu;
126
         real<lower=0> sigma;
                                       // common std
```

```
128
     }
     model {
    mu ~ normal(mu0, sigma0);
    y ~ normal(mu[x], sigma);
129
130
131
132
     generated quantities {
133
         real ypred6;
134
          real mu7;
135
          vector[N] log_lik;
136
          ypred6 = normal_rng(mu[6], sigma);
137
          mu7 = normal_rng(mu0, sigma0);
          for (i in 1:N)
139
140
               log_lik[i] = normal_lpdf(y[i] | mu[x[i]], sigma);
141
     1.1.1
142
143
     model_hierarchical = pystan.StanModel(model_code=stan_code_hierarchical)
data_hierarchical = dict(
144
145
          {\tt N=machines\_transposed.size,}
146
147
          K=6,
148
          X = [
               1, 1, 1, 1, 1,
149
               2, 2, 2, 2, 2,
150
               3, 3, 3, 3, 3,
151
               4, 4, 4, 4, 4,
               5, 5, 5, 5, 5,
153
               6, 6, 6, 6, 6,
154
155
          y=machines_transposed.flatten()
156
157
     \label{eq:fit_hierarchical} fit\_hierarchical = model\_hierarchical.sampling(data=data\_hierarchical, n\_jobs=-1)
158
     print (fit_hierarchical)
159
160
     log_lik_hierarchical = fit_hierarchical.extract(permuted=True)['log_lik']
161
     psisloo_computation(log_lik_hierarchical, 'hierarchical_hist.png', 'hierarchical')
```