WHAT IS CLAIMED IS:

1. A compound of the formula $U-V-A-\left(Alk\right)_{,-}-\left(C\left(O\right)-NH\right)_{h}-\left(Alk\right)_{,q}-B$

or a pharmaceutically acceptable salt thereof, wherein g, h and j are each independently 0 or 1; provided when h is 0, then g is 0;

each Alk is independently a alkyl radical;

10

U represents amidino, guanidino, $-(G-alkyl)_k-NH-R_1$, $-(G-alkyl)_k-NH-C(Q)-R_1$, $-(G-alkyl)_k-C(Q)-N(R)-R_1$, $-(G-alkyl)_k-NH-C(Q)-N(R)-R_1$, $-(G-alkyl)_k-NH-C(Q)-O-R_1$ or $-(G-alkyl)_k-O-C(Q)-N(R)-R_1$ radical; or U represents a

hydroxyalkyl-G- radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

20

wherein k is 0 or 1;

G represents a bond, O, S or NH;

25 Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

 R_1 is a radical of alkyl, haloalkyl, $R_{21}R_{22}N$ -alkyl, $R_{21}O$ -alkyl, $R_{21}S$ -alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein R_{21} and R_{22} are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl-alkyl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R₂ is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

15

20

5

V represents a radical of formula

$$W_{7}$$
 W_{1}
 W_{1}
 W_{2}
 W_{3}
 W_{4}
 W_{3}
 W_{4}
 W_{3}
 W_{4}
 W_{5}
 W_{5}
 W_{4}
 W_{5}
 W_{5}
 W_{4}
 W_{5}
 W_{5}
 W_{4}
 W_{5}
 W_{5}
 W_{5}
 W_{4}
 W_{5}
 W_{5

$$R_7$$
 W_8
 R_3
 W_7
 W_9
 W_{10}
 W_{10}

5 wherein W_1 is O, S or N-R₃; wherein each R₃ is independently a hydrogen or alkyl radical; W_7 is N or C-R₇; W_8 is N or C-R₅;

 W_9 is $C(R_3)_2$ and W_{10} is W_1 ; or W_9 is CR_3R_5 and W_{10} is $C(R_3)_2$;

each W_2 , W_3 , W_4 and W_5 are independently N or $C-R_4$; provided the total number of cycloalkyl, aryl, heteroaryl, heterocyclyl, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-C(O)-N(R_{19})_2$ and $-R_{19}$ radicals in W_2 , W_3 , W_4 and W_5 is O-2;

each W_6 is independently N or C-H; provided that not more than two of W_2 , W_3 , W_4 , W_5 and W_6 represent N; and

20 each R_4 is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy,

cyano, carboxy, $-C(0)-0-R_{19}$, $-C(0)-R_{19}$, $-C(0)-NH-R_{19}$, $-C(0)-N(R_{19})_2$, cycloalkyl, cycloalkyl-alkyl, aryl, arylalkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl radical, wherein the cycloalkyl,

- aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; or two adjacent R_4 radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein
- the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

 $\rm R_{\scriptscriptstyle 5},\ R_{\scriptscriptstyle 6}$ and $\rm R_{\scriptscriptstyle 7}$ are each independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy,

- hydroxy or cyano radical; or $R_{\rm s}$ and $R_{\rm e}$ or $R_{\rm e}$ and $R_{\rm r}$ taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of
- R_2 ; or R_3 and R_6 taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R_2 ;
- 25 A represents a radical of formula

$$R_{8}$$
 R_{9}
 R_{10}
 R_{11}
 R_{11}
 R_{10}
 R_{11}
 R_{11}
 R_{10}
 R_{11}
 R_{11}
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 $R_{$

5 wherein X₁ is N or C-H;

X₂ is C-H, C-alkyl, a spirocycloalkyl or spiroheterocyclyl radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally
 substituted by an oxo or thiooxo radical and 1-2 radicals of alkyl, haloalkyl, hydroxy, alkoxy or haloalkoxy;

$$Y_1$$
 is $-C(0)-$, $-C(S)-$, $-S(0)-$ or $-S(0)_2-$;

 Z_1 is O or N- R_{12} ;

15

 Z_2 is O, S or N-R₁₂;

n and m are each independently 0, 1 or 2, provided n + m = 1, 2, 3 or 4;

p and q are each independently 0, 1 or 2, provided p + q = 1, 2 or 3;

r is 1 or 2;

 R_8 , R_9 , R_{10} , R_{11} and R_{12} are each independently a hydrogen or alkyl radical; or $-CR_8R_9$ - represents a -C(0)-;

B represents a radical of formula

wherein (a) R_{15} is a hydrogen or alkyl radical; and R_{17} is (1) an aryl, heteroaryl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

- wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ; or
- 25 (b) R_{17} is a hydrogen or alkyl radical; and R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(0)- R_{19} , -C(0)-NH- R_{19} , -NH-C(0)-NH- R_{19} , -O-C(0)-NH- R_{19} , -NH-C(0)-O- R_{19} , -S(0)₂- R_{19} , -NH-S(0)₂- R_{19} , -S(0)₂-NH- R_{19} or -NH-S(0)₂-NH- R_{19} radical, or (2) an alkyl radical
- substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(0)-R_{19}$, $-C(0)-NH-R_{19}$, $-NH-C(0)-NH-R_{19}$, $-O-C(0)-NH-R_{19}$, $-NH-C(0)-O-R_{19}$, $-S(0)_2-C(0)-NH-R_{19}$, $-O-C(0)-NH-R_{19}$, $-O-C(0)-NH-R_{19}$

 R_{19} , $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

5

10

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or $-C(O)-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

wherein R_{19} is a alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

20

 $\mathbf{R}_{\mathbf{16}}$ and $\mathbf{R}_{\mathbf{18}}$ are each independently a hydrogen or alkyl radical; and

E is a radical of carboxy, amido, tetrazolyl, $-C(0)-O-R_{20}$, $-C(0)-NH-R_{20}$, $-C(0)-NH-S(0)-R_{20}$, $-C(0)-NH-S(0)-R_{20}$, or $-C(0)-NH-C(0)-R_{20}$;

wherein R_{20} is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; and

provided that when U represents amidino, guanidino, $-C(Q)-NH-R_1$ or $-NH-C(Q)-NH-R_1$ radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

5

- 2. The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein
- 10 each Alk is independently a C_1-C_{12} alkyl radical;

- 15 $(C_1-C_8 \text{ alkyl}))_k$ -NH-C(Q)-O-R₁ or $-(G_1-C_8 \text{ alkyl}))_k$ -O-C(Q)-N(R)-R₁ radical; or U represents a hydroxy(C₁-C₁₂ alkyl)-G- radical which is optionally substituted by a C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the
- cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

Q represents O, S, NH, N-CN or N-(C_1 - C_8 alkyl);

25 R is a radical of hydrogen or C₁-C₈ alkyl;

 R_1 is a radical of C_1-C_8 alkyl, halo(C_1-C_8 alkyl) of 1-7 halo radicals, $R_{21}R_{22}N-(C_1-C_8$ alkyl), $R_{21}O-(C_1-C_8$ alkyl), $R_{21}S-(C_1-C_8$ alkyl), C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_8

- alkyl), aryl, aryl(C_1 - C_8 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_8 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_8 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are
- 35 optionally substituted by 1-3 radicals of R_2 ;

THE PROPERTY OF STREET

A-648 178

wherein R_{21} and R_{22} are each independently a radical of hydrogen, C_1 - C_8 alkyl, halo(C_1 - C_8 alkyl) of 1-7 halo radicals, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl(C_1 - C_8 alkyl), aryl, aryl(C_1 - C_8 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_8 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_8 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

10

5

each R_2 is independently a halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, halo(C_1 - C_4 alkyl) of 1-5 halo radicals, halo(C_1 - C_4 alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino,

- nitro, amino, C₁-C₈ alkylamino or di(C₁-C₈ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;
- each R_3 is independently a hydrogen or C_1 - C_6 alkyl radical;

each R_4 is independently a hydrogen, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, halo(C_1-C_4 alkyl) of 1-5

- halo radicals, halo(C_1 - C_4 alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(0)-0- R_{19} , -C(0)- R_{19} , -C(0)-NH- R_{19} , -C(0)-N(R_{19})₂, C_3 - C_6 cycloalkyl, C_3 - C_6 cycloalkyl(C_1 - C_4 alkyl), aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_4 alkyl)
- of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl (C_1 - C_4 alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; or two adjacent R_4 radicals taken
- 35 together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl

of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

 $R_{\scriptscriptstyle 5}$, $R_{\scriptscriptstyle 6}$ and $R_{\scriptscriptstyle 7}$ are each independently a hydrogen, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, halo(C_1-C_4 alkyl) of 1-5 halo radicals, halo(C_1-C_4 alkoxy) of 1-5 halo radicals, hydroxy or cyano radical; or R_5 and R_6 or $\boldsymbol{R}_{\scriptscriptstyle{6}}$ and $\boldsymbol{R}_{\scriptscriptstyle{7}}$ taken together with the carbon atoms to which

10 they are attached represent a fused-phenyl or fusedheteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R2; or R3 and R6 taken together with the carbon atoms to which they are attached represent a

15 fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R2;

 $\rm X_2$ is C-H, C-($\rm C_1$ - $\rm C_4$ alkyl), a $\rm C_3$ - $\rm C_8$ spirocycloalkyl or spiroheterocyclyl of 5-8 ring members radical; wherein 20 the spirocycloalkyl and spiroheterocyclyl radicals are optionally substituted by an oxo or thiooxo radical and 1-2 radicals of C_1 - C_6 alkyl, halo(C_1 - C_4 alkyl) of 1-5 halo radicals, hydroxy, C_1-C_6 alkoxy or halo (C_1-C_4) alkoxy) of 1-5 halo radicals;

25

 $\rm R_{\rm 8}\text{, }\rm R_{\rm 9}\text{, }\rm R_{\rm 10}\text{, }\rm R_{\rm 11}$ and $\rm R_{\rm 12}$ are each independently a hydrogen or C_1-C_6 alkyl radical; or $-CR_8R_9-$ represents a -C(0)-;

B represents a radical of formula

30

wherein (a) R_{15} is a hydrogen or C_1-C_5 alkyl radical; and R_{17} is (1) an aryl, heteroaryl of 5-10 ring members, -

10

5

(b) R_{17} is a hydrogen or C_1-C_6 alkyl radical; and R_{15} is (1) an aryl, heteroaryl of 5-10 ring members, C_3-C_8 cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(O)- R_{19} , -C(O)-NH- R_{19} , -NH-C(O)-NH- R_{19} , -O-C(O)-NH- R_{19} , -NH-

- C(0)-O-R₁₉, -S(0)₂-R₁₉, -NH-S(0)₂-R₁₉, -S(0)₂-NH-R₁₉ or -NH-S(0)₂-NH-R₁₉, radical, or (2) an C_1 -C₄ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C_3 -C₈ cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(0)-R₁₉, -C(0)-NH-R₁₉, -NH-C(0)-NH-R₁₉, -O-
- C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -S(O)₂- R_{19} , -NH-S(O)₂- R_{19} , -S(O)₂-NH- R_{19} or -NH-S(O)₂-NH- R_{19} radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_{2} ;
- provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(0)-NH- R_{19} radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl,
- 30 $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

wherein R_{19} is a C_1-C_6 alkyl, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_6 alkyl), aryl, aryl(C_1-C_6 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_6 alkyl)

of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl (C_1 - C_6 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

 $\rm R_{\rm 16}$ and $\rm R_{\rm 18}$ are each independently a hydrogen or $\rm C_1-\rm C_6$ alkyl radical; and

- 10 R_{20} is a C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members radical or a C_1 - C_6 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, C_3 - C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or
- heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 .
- 3. The compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C_1-C_8 alkyl radical;

25 V represents a radical of formula

$$W_4$$
 W_5
 W_5
 W_4
 W_5
 W_4
 W_4
 W_3
 W_4
 W_5
 W_4
 W_5
 W_4
 W_5
 W_4
 W_5
 W_4
 W_5
 W_5
 W_4
 W_5
 W_4
 W_5
 W_5
 W_4
 W_5
 W_5
 W_4
 W_5
 W_5
 W_5
 W_4
 W_5
 W_5

A represents a radical of formula

 Y_1 is -C(0) - or -C(S) -.

4. The compound of Claim 3 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C_1 - C_6 alkyl radical;

15 V represents a radical of formula

 X_2 is C-H or C-(methyl) radical;

 Y_1 is -C(0)-; and

- R_8 , R_9 , R_{10} , R_{11} and R_{12} are each independently a hydrogen or methyl radical; or $-CR_8R_9$ represents a -C(0)-.
 - 5. The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C_1 - C_4 alkyl radical;

U represents amidino, guanidino, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-R_1$

- 15 $C(Q) N(R) R_1$, $-(G (C_1 C_8 \text{ alkyl}))_k NH C(Q) N(R) R_1 \text{ or } -(G (C_1 C_8 \text{ alkyl}))_k NH C(Q) O R_1 \text{ radical}$;
 - G represents a bond, O or NH;
- 20 Q represents O, S, NH, N-CN or N-(C_1 - C_4 alkyl);
 - R is a radical of hydrogen or C_1-C_4 alkyl;
- R_1 is a radical of C_1 - C_6 alkyl, halo(C_1 - C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N$ -(C_1 - C_6 alkyl), $R_{21}O$ -(C_1 - C_6 alkyl), C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl(C_1 - C_6 alkyl), aryl, aryl(C_1 - C_6 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_6 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_6
- 30 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;
- R_{21} and R_{22} are each independently a radical of hydrogen, 35 C_1-C_8 alkyl, aryl, aryl(C_1-C_4 alkyl), heteroaryl of 5-10 ring members or heteroaryl(C_1-C_4 alkyl) of 5-10 ring

members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, halo(C_1 - C_2 alkyl) of 1-5 halo radicals, halo(C_1 - C_2 alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy,

ethylenedioxy or propylenedioxy radical;

each W_6 is C-H;

each R_4 is independently a hydrogen, halo, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 alkylthio, halo(C_1-C_2 alkyl) of 1-5 halo radicals, halo(C_1-C_2 alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, $-C(0)-O-R_{19}$, $-C(0)-R_{19}$, -C

cycloalkyl(C_1-C_4 alkyl), aryl, aryl(C_1-C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_4 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_4 alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and

25 heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; and

 R_{20} is a C_1 - C_4 alkyl, aryl or heteroaryl of 5-10 ring members or a C_1 - C_4 alkyl radical substituted by 1-3

radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 .

- 6. The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein
- U represents amidino, guanidino, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C_1$ R_1 , $-NH-C(Q)-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-C(Q)-N(R)-R_1$, $-NH-C(Q)-N(R)-R_1$ or $-NH-C(Q)-O-R_1$ radical;
 - Q represents O or NH;
- 10 R is a radical of hydrogen or C,-C, alkyl;

 $R_{\scriptscriptstyle 1}$ is a radical of $C_{\scriptscriptstyle 1}-C_{\scriptscriptstyle 6}$ alkyl, halo($C_{\scriptscriptstyle 1}-C_{\scriptscriptstyle 6}$ alkyl) of 1-5 halo radicals, $R_{\scriptscriptstyle 21}R_{\scriptscriptstyle 22}N-(C_{\scriptscriptstyle 1}-C_{\scriptscriptstyle 4}$ alkyl), $R_{\scriptscriptstyle 21}O-(C_{\scriptscriptstyle 1}-C_{\scriptscriptstyle 4}$ alkyl), $C_{\scriptscriptstyle 3}-C_{\scriptscriptstyle 8}$ cycloalkyl, $C_{\scriptscriptstyle 3}-C_{\scriptscriptstyle 8}$ cycloalkyl($C_{\scriptscriptstyle 1}-C_{\scriptscriptstyle 4}$ alkyl), aryl,

- aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_4 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_4 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are
- 20 optionally substituted by 1-3 radicals of R,;

 $\rm R_{21}$ and $\rm R_{22}$ are each independently a radical of hydrogen, $\rm C_1-\rm C_6$ alkyl, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally

- 25 substituted by 1-3 radicals of R₂;
 - each R_2 is independently a halo, C_1-C_2 alkyl, C_1-C_2 alkoxy, C_1-C_2 alkylthio, CF_3- , CF_3O- , hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1-C_2
- alkylamino or $di(C_1-C_2 alkyl)$ amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;
- 35 each W_2 , W_3 , W_4 and W_5 are independently $C-R_2$;

each R_4 is independently a hydrogen, halo, C_1-C_4 alkyl, C_1-C_4 alkoxy, C_1-C_4 alkylthio, halo(C_1-C_2 alkyl) of 1-5 halo radicals, halo(C_1-C_2 alkoxy) of 1-5 halo radicals, hydroxy or cyano radical;

5

A represents a radical of formula

(a) R_{15} is a hydrogen or C_1-C_2 alkyl radical; and R_{17} is - NH-C(O)- R_{19} , -NH-C(O)-NH- R_{19} , -NH-C(O)-O- R_{19} , -NH-S(O)₂- R_{19} or -NH-S(O)₂-NH- R_{19} radical; or (b) R_{17} is a hydrogen or C_1-C_2 alkyl radical; and R_{15} is (1) an aryl, heteroaryl of 5-10 ring members, C_3-C_8 cycloalkyl or heterocyclyl

of 5-8 ring members radical, or (2) an C_1 - C_2 alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C_3 - C_8 cycloalkyl or heterocyclyl of 5-8 ring members radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

20

 R_{19} is a C_1-C_4 alkyl, aryl, aryl(C_1-C_4 alkyl), heteroaryl of 5-10 ring members or heteroaryl(C_1-C_4 alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

25

 R_{16} and R_{18} are each independently a hydrogen or $C_1 - C_4$ alkyl radical;

E is a radical of carboxy, amido, tetrazolyl or -C(0)-30 $O-R_{20}$; and

 R_{20} is a C_1-C_2 alkyl, aryl or heteroaryl of 5-10 ring members or a C_1-C_2 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 .

7. The compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein

Alk is independently a C_1 - C_2 alkyl radical;

G represents a bond or NH;

15

5

 R_{21} and R_{22} are each independently a radical of hydrogen, C_1-C_6 alkyl or aryl, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

20

each R_4 is independently a hydrogen, halo, C_1-C_2 alkyl, C_1-C_2 alkoxy, C_1-C_2 alkylthio, CF_3- , CF_3O- , hydroxy or cyano radical;

25 A represents a radical of formula

(a) R_{15} is a hydrogen or C_1-C_2 alkyl radical; and R_{17} is -NH-C(0)-O-R₁₉ or -NH-S(O)₂-R₁₉ radical; or (b) R_{17} is a hydrogen or C_1-C_2 alkyl radical; and R_{15} is (1) an aryl or heteroaryl of 5-10 ring members, or (2) an C_1-C_2

alkyl radical substituted by a radical of aryl or heteroaryl of 5-10 ring members; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

5

- R_{19} is a C_1-C_4 alkyl, aryl or aryl(C_1-C_4 alkyl), wherein the aryl radicals are optionally substituted by 1-3 radicals of R_2 ;
- 10 R_{16} and R_{18} are each independently a hydrogen or C_1-C_2 alkyl radical;
 - E is a radical of carboxy or $-C(0)-0-R_{20}$; and
- 15 R_{20} is a C_1-C_2 alkyl, aryl or aryl(C_1-C_2 alkyl) radical, wherein the aryl radicals are optionally substituted by 1-3 radicals of R_2 .
- 8. A pharmaceutical composition comprising a compound according to any of Claims 1 to 7 and a pharmaceutically acceptable carrier.
- 9. A method for the treatment of a disease or 25 disorder modulated by an integrin receptor comprising administering an effective amount of a compound according to any of Claims 1 to 7.
- 10. The method of Claim 9 wherein the integrin 30 receptor is vitronectin receptor $\alpha_{\nu}\beta_{3}$, $\alpha_{\nu}\beta_{5}$ or $\alpha_{\nu}\beta_{5}$.
 - 11. A method for the treatment of a disease or disorder modulated by an integrin receptor comprising administering an effective amount of a composition of Claim 8.

- 12. The method of Claim 11 wherein the an integrin receptor is vitronectin receptor $\alpha_{\nu}\beta_{3}$, $\alpha_{\nu}\beta_{5}$ or $\alpha_{\nu}\beta_{6}$.
- 5 13. A method of antagonizing an integrin receptor comprising administering an effective amount of a compound according to any of Claims 1 to 7.
- 14. The method of Claim 13 wherein the an integrin 10 receptor is vitronectin receptor $\alpha_{\nu}\beta_{3}$, $\alpha_{\nu}\beta_{5}$ or $\alpha_{\nu}\beta_{6}$.
 - 15. A method of antagonizing an integrin receptor comprising administering an effective amount of a composition of Claim 8.

16. The method of Claim 15 wherein the an integrin receptor is vitronectin receptor $\alpha_{\nu}\beta_{3}$, $\alpha_{\nu}\beta_{5}$ or $\alpha_{\nu}\beta_{5}$.

- 17. A method for the treatment of
 20 atherosclerosis, restenosis, inflammation, wound
 healing, cancer, metastasis, bone resorption related
 diseases, diabetic retinopathy, macular degeneration,
 angiogenesis or viral infections comprising
 administering an effective amount of a compound
 25 according to any of Claims 1 to 7.
- 18. A method for the treatment of atherosclerosis, restenosis, inflammation, wound healing, cancer, metastasis, bone resorption related diseases, diabetic retinopathy, macular degeneration, angiogenesis or viral infections comprising administering an effective amount of a composition of Claim 8.