

Dissertation Title: Neural Network Development for Socio-ecological **Modelling of Conservation Conflict**

Author: SeyedPouria Modaresi Student Number: 2644995 Degree: MSc Big Data (2018-19)

Motivation

Agricultural activities are one of the key reasons for loss of biodiversity as it has a reciprocal relationship with climate change. This project will look into such agricultural practices in terms of land-use issues using a structured dataset generated through a simulated game.

This project has two objectives:

- Firstly, to generate an AI to replicate the decision-making of a game player (i.e. a farmer).
- Secondly, predicting the behaviour of a typical farmer.

Consequently, agricultural policies for optimum land-use can be adjusted based on farmer's behaviour and ultimately protecting environmental biodiversity.

NonCropshare: a Coordination Game as a tool to address land-use conservation conflict

Methods to build the models using machine learning and deep learning approaches

Project Flow (Methodology)

Results

1	111111111								
		Results							
	Method1					Method2			
	Random Forest	C	XGB lassifier	Keras Classifier	MLP classifier	Random Forest	XGB Classifier	Keras Classifier	MLP classifier
	62%-68%	,	67%- 73.46%	62 .9%- 69%	64% - 68.63%	60%	80%	67%	64%

Challenges & Limitations

- Given data is not a big data.
- Suitability of Neural network approach-Unstructured data.
- Lack of feature labels which may be important for algorithm.

Conclusion

- Building model for Each cells –XGBoost classifier
- → Building a single model for all cells- Keras Classifier

ANY QUESTIONS?

Thanks!

