### **SESSION 7**

#### **MATPLOTLIB**

- 1. What is matplotlib?
- 2. Display Multiple Plots
- 3. Matplotlib Pie Charts
- 4. Matplotlib Adding Grid Lines
- 5. Matplotlib Subplot
  - 5.1 Draw Multiple plots
  - 5.2 Subplot function Arguments
  - 5.3 matplotlib add\_subplot() function
- 6. Title
  - 6.1. Super Title
- 7. Legend function in Matplotlib

### 1. What is matplotlib?

- Matplotlib is a Python library that helps you create different types of graphs and charts.
- Matplotlib is an amazing visualization library in Python for 2D plots of arrays.
- Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.

### Usage of matplotlib:

- Matplotlib is often used in machine learning applications to visualize data and model predictions, helping researchers and engineers to evaluate the performance of their models.
- Matplotlib is widely used in education to teach students about data visualization.
- Scientists use Matplotlib to visualize data from experiments and simulations, allowing them to present their findings in a clear and concise manner.
- Matplotlib is commonly used to visualize and explore data, helping researchers and analysts to understand trends, patterns, and relationships between variables.

5/25/23, 5:24 PM Session7 - Revised

#### Importing matplotlib

```
In [ ]:
         # Importing matplotlib :
         from matplotlib import pyplot as plt
         # or
         import matplotlib.pyplot as plt
```

#### Line plot

• It also known as a line graph, is a type of graph that displays data points as a series of connected line segments.

```
In [ ]:
         # Line plot :
         # importing matplotlib module
         from matplotlib import pyplot as plt
         # x-axis values
         x = [5, 2, 9, 4, 7]
         # Y-axis values
         y = [10, 5, 8, 4, 2]
         # Function to plot
         plt.plot(x,y)
         # function to show the plot
         plt.show()
```



#### Bar plot

• It is also known as a bar chart, is a type of graph that uses rectangular bars to represent the data values.

```
In [ ]:
         #Bar plot :
         # importing matplotlib module
         from matplotlib import pyplot as plt
         # x-axis values
         x = [5, 2, 9, 4, 7]
         # Y-axis values
         y = [10, 5, 8, 4, 2]
         # Function to plot the bar
         plt.bar(x,y)
         # function to show the plot
         plt.show()
```



#### **Scatter Plot**

• It is also known as a scatter chart, is a type of graph that uses dots to represent individual data points.

```
In [ ]:
         # Scatter
         # importing matplotlib module
         from matplotlib import pyplot as plt
         # x-axis values
         x = [5, 2, 9, 4, 7]
         # Y-axis values
         y = [10, 5, 8, 4, 2]
         # Function to plot scatter
         plt.scatter(x, y)
         # function to show the plot
         plt.show()
```



# 2. Display Multiple Plots

With the subplot() function you can draw multiple plots in one figure:

```
In [ ]:
         import matplotlib.pyplot as plt
         import numpy as np
         #plot 1:
         x = np.array([0, 1, 2, 3])
         y = np.array([3, 8, 1, 10])
         plt.subplot(1, 2, 1)
         plt.plot(x,y)
         #plot 2:
         x = np.array([0, 1, 2, 3])
         y = np.array([10, 20, 30, 40])
         plt.subplot(1, 2, 2)
         plt.plot(x,y)
         plt.show()
```



### **Matplotlib Markers**

- Markers are symbols used to represent individual data points in a plot.
- Markers are often used in scatter plots to distinguish between different data points.

```
In [ ]:
         # Matplotlib Markers
         import matplotlib.pyplot as plt
         import numpy as np
         ypoints = np.array([3, 8, 1, 10])
         plt.plot(ypoints, marker = 'o')
         plt.show()
```



# 3. Matplotlib Pie Charts

With Pyplot, you can use the pie() function to draw pie charts:

```
import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])

plt.pie(y)
plt.show()
```

5/25/23, 5:24 PM Session7 - Revised



# 4. Matplotlib Adding Grid Lines

```
In [ ]:
         # Matplotlib Adding Grid Lines
         import numpy as np
         import matplotlib.pyplot as plt
         x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
         y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])
         plt.title("Sports Watch Data")
         plt.xlabel("Average Pulse")
         plt.ylabel("Calorie Burnage")
         plt.plot(x, y)
         plt.grid()
         plt.show()
```

5/25/23, 5:24 PM Session7 - Revised



### 5. Matplotlib Subplot

- Subplot is a way to create multiple plots within the same figure. A figure can contain one or more subplots arranged in a grid of rows and columns.
- Matplotlib provides the feature to create a figure with multiple plots in a single call, with proper control over each plot in the figure

## 5.1 Draw Multiple plots:

• You can draw as many plots you like on one figure, just descibe the number of rows, columns, and the index of the plot.

```
In [ ]:
         # Drawing 6 plots in one figure
         import matplotlib.pyplot as plt
         import numpy as np
         x = np.array([0, 1, 2, 3])
         y = np.array([3, 8, 1, 10])
         plt.subplot(2, 3, 1)
         plt.plot(x,y)
         x = np.array([0, 1, 2, 3])
         y = np.array([10, 20, 30, 40])
```

```
plt.subplot(2, 3, 2)
plt.plot(x,y)
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])
plt.subplot(2, 3, 3)
plt.plot(x,y)
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])
plt.subplot(2, 3, 4)
plt.plot(x,y)
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])
plt.subplot(2, 3, 5)
plt.plot(x,y)
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])
plt.subplot(2, 3, 6)
plt.plot(x,y)
plt.show()
```



## **5.2 Subplot function Arguments:**

- The subplot() function takes three arguments that describes the layout of the figure.
- The layout is organized in rows and columns, which are represented by the first and second argument.
- The third argument represents the index of the current plot.
  - Plot 1 subplot(1, 2, 1) In the case of plt.subplot(1, 2, 1) argument, the figure has 1 row, 2 columns, and this plot is the first plot.
  - Plot 2 subplot(1, 2, 2) The plt.subplots(1, 2, 2) the figure has 1 row, 2 columns, and this plot is the second plot.

```
import matplotlib.pyplot as plt
import numpy as np

#plot 1:
    x = np.array([0, 1, 2, 3])
    y = np.array([3, 8, 1, 10])

# In the case of the (1, 2, 1) argument, the figure has 1 row, 2 columns, and this plot is the first plot.
    plt.subplot(1, 2, 1)
    plt.plot(x,y)

#plot 2:
    x = np.array([0, 1, 2, 3])
    y = np.array([10, 20, 30, 40])
```

5/25/23, 5:24 PM Session7 - Revised

```
# In the case of the (1, 2, 2) argument, the figure has 1 row, 2 columns, and this plot is the second plot.
plt.subplot(1, 2, 2)
plt.plot(x,y)
plt.show()
```



# 5.3 matplotlib add\_subplot() function:

The figure module provides the top-level Artist, the Figure, which contains all the plot elements. This module is used to control the default spacing of the subplots and top level container for all plot elements.

#### matplotlib.figure.Figure. add subplot() function:

The add\_subplot() method figure module of matplotlib library is used to add an Axes to the figure as part of a subplot arrangement.

```
In [ ]:
    # Implementation of matplotlib function
    import matplotlib.pyplot as plt
    import numpy as np

np.random.seed(19680801)

xdata = np.random.random([2, 10])
```

```
xdata1 = xdata[0, :]
xdata2 = xdata[1, :]

ydata1 = xdata1 ** 2
ydata2 = 1 - xdata2 ** 3

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(xdata1, ydata1, color ='tab:blue')
ax.plot(xdata2, ydata2, color ='tab:orange')

ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
fig.suptitle('matplotlib.figure.Figure.add_subplot() function Example\n\n', fontweight ="bold")

plt.show()
```

#### matplotlib.figure.Figure.add\_subplot() function Example



### 6. Title

- Title is a text label that is displayed at the top of a plot to describe the content of the plot or convey important information about the data being displayed.
- You can add a title to each plot with the title() function.

```
In [ ]:
         # Adding Title 'INCOME' in Matplotlib
         import matplotlib.pyplot as plt
         import numpy as np
         #plot 1:
         x = np.array([0, 1, 2, 3])
         y = np.array([3, 8, 1, 10])
         plt.subplot(1, 2, 1)
         plt.plot(x,y)
         plt.title("SALES")
         #plot 2:
         x = np.array([0, 1, 2, 3])
         y = np.array([10, 20, 30, 40])
         plt.subplot(1, 2, 2)
         plt.plot(x,y)
         plt.title("INCOME")
         plt.show()
```



### 6.1. Super Title

• You can add a title to the entire figure with the suptitle() function

```
In [ ]:
         import matplotlib.pyplot as plt
         import numpy as np
         #plot 1:
         x = np.array([0, 1, 2, 3])
         y = np.array([3, 8, 1, 10])
         plt.subplot(1, 2, 1)
         plt.plot(x,y)
         plt.title("SALES")
         #plot 2:
         x = np.array([0, 1, 2, 3])
         y = np.array([10, 20, 30, 40])
         plt.subplot(1, 2, 2)
         plt.plot(x,y)
         plt.title("INCOME")
         plt.suptitle("MY SHOP")
         plt.show()
```



5/25/23, 5:24 PM Session7 - Revised

### 7. Legend function in Matplotlib

- A legend is an area describing the elements of the graph. In the matplotlib library, there's a function called legend() which is used to Place a legend on the axes.
- The attribute Loc in legend() is used to specify the location of the legend. Default value of loc is loc="best" (upper left). The strings 'upper left', 'upper right', 'lower left', 'lower right' place the legend at the corresponding corner of the axes/figure.
- The attribute bbox\_to\_anchor=(x, y) of legend() function is used to specify the coordinates of the legend, and the attribute ncol represents the number of columns that the legend has.It's default value is 1.

```
In [ ]:
         # 2 Lines
         # importing modules
         import numpy as np
         import matplotlib.pyplot as plt
         # Y-axis values
         y1 = [2, 3, 4.5]
         # Y-axis values
         y2 = [1, 1.5, 5]
         # Function to plot
         plt.plot(y1)
         plt.plot(y2)
         # Function add a Legend
         plt.legend(["blue", "green"], loc ="lower right")
         # function to show the plot
         plt.show()
```



#### **Change Legend Font Size**

• Here, we are trying to change the font size of the x and y labels.

```
In [ ]:
         # Change Font Size
         import matplotlib.pyplot as plt
         import numpy as np
         plt.figure(figsize = (5, 5))
         x = ['Arjun', 'Bharath', 'Raju', 'Seeta', 'Ram']
         y = [5, 7, 8, 4, 6]
         plt.bar(x, y, color = 'b')
         plt.xlabel('Students', fontsize = 10)
         plt.ylabel('Marks', fontsize = 10)
         #Default fontsize of text using legend
         plt.legend(['Marks scored'],fontsize=12,facecolor='green')
         plt.show()
```



### **Homework Questions**

1) Make a Matplotlib for below array with Review and TRP's of Broadcasting shows, by Adding Grid Lines

```
x: ([87, 81, 19, 95, 10, 105, 1100, 15, 12, 125])
y: ([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])
```

- 2) Create pie charts using Pyplot library, using the pie() function
- 3) Create Matplotlib Markers with star using Pyplot library
- 4) Display Multiple Plots for

5) Make a scatter plot for the given array

```
# x-axis values
x = [15, 32, 79, 94, 77]
# Y-axis values
y = [10, 95, 48, 49, 27]
```

6) Make a Bar plot for the following array

```
# x-axis values
x = [95, 62, 91, 45, 77]
# Y-axis values
y = [10, 25, 84, 49, 27]
```

7) Display Line plot for the below arrays

$$x = [12,23,45,67]$$
  
 $y = [74,12,56,36]$ 

8) Display Multiple Plots for the below arrays

```
### plot 1:
x = np.array([10, 12, 25, 73])
y = np.array([43, 48, 29, 40])

### plot 2:
x = np.array([50, 71, 82, 73])
y = np.array([10, 20, 40, 60])
```

9) Display Bar plot for the below arrays

$$x = [25, 32, 49, 74, 87]$$
  
 $y = [10, 25, 68, 54, 72]$ 

10) Create a subplot (1, 2, 1) & (1, 2, 2) for the below arrays

```
plot 1:
x = np.array([80, 19, 72, 93])
y = np.array([37, 89, 19, 10])

plot 2:
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])
```

### 11) Create a subplot and add subtitle for

```
plot 1:
x = np.array([0, 1, 2, 3])
y = np.array([3, 8, 1, 10])
plot 2:
x = np.array([0, 1, 2, 3])
y = np.array([10, 20, 30, 40])
```

### 12) Create a subplot, subtitle, title and font size

```
plot 1:
a = np.array([29,23,45,76])
b = np.array([21,82,44,65])
plot 2:
x = np.array([102,230,453,564])
y = np.array([10, 20, 30, 40])
```

### 13) Add legend for

```
#X-axis values
x = [19, 22, 34, 49, 57]

#Y-axis values
y = [14, 84, 29, 16, 25]
```

For solutions of Homework questions, please refer to the HomeworkSolution.ipynb file