## IAML PP 2012-2013

1. a. Principal Component Analysis

$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
  $y_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$   $x_3 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$   $x_4 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$   $x_5 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$   $x_6 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ 

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0 \\
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Na = 0 \\
Nanian = 0$$

$$\begin{array}{c}
Nanian = 0
\end{array}$$

$$\begin{array}{c}
Nanian = 0$$

$$\begin{array}$$

ii. all eigenvectors
$$\det \begin{bmatrix} \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \\ 0 & 1 - \frac{1}{3} \end{bmatrix} = (\frac{1}{3} - \frac{1}{3})(1 - \frac{1}{3}) - (0)(0) = \frac{2}{3} - \frac{2}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3} = \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} - \frac{1}{3} + \frac{1}{3} = \frac{1}{$$

$$\begin{bmatrix}
2/3 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
e_1 \\
e_2
\end{bmatrix} \Rightarrow \begin{bmatrix}
2/3 & e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
2/3 & e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
2/3 & e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
2/3 & e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix}$$

$$\begin{bmatrix}
2/3 & e_1 \\
e_2
\end{bmatrix} = \begin{bmatrix}
0 \\
3/3 & e_1
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
1
\end{bmatrix}$$

iii. 1 of ergenvalues

$$\lambda_1 = \frac{1}{1+2/3} \times 100 = 60$$
.

non-linearly separables urghest ace: 3

$$\begin{array}{lll}
v_{i}i \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1/2 \end{pmatrix} \begin{pmatrix} -1/3 \\ -1/2 \end{pmatrix} \begin{pmatrix} -1/3 \\ 1/2 \end{pmatrix} \begin{pmatrix} 1/3 \\ 1/2 \end{pmatrix} \\
det \begin{pmatrix} 1/3 - \lambda \\ 0 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 - \lambda \end{pmatrix} \begin{pmatrix} 1/3 - \lambda \\ 0 \end{pmatrix}$$

## 2. a. Linear classification

I. Non-linearly separable



For all 
$$x_1, x_2$$
, if  $x_1^2 + x_2^2 > 1 \cdots$  else map  $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow \begin{pmatrix} x_1^2 + x_2^2 \end{pmatrix} \uparrow$ 

b. Overfitting
Y= Wo X2+ Wix+ E



i. model that will moder fit. X over fit: x<sup>3</sup>





## 3. Naive Bayes

Gaussian distribution:  $I(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ Diagnose cancer, lests  $\rightarrow$  real number.

Training examples

| Class | rest 1 (11) | test 2 Ltz |
|-------|-------------|------------|
| +     | 4.0         | 5.0        |
| -     | b.O         | 6.0        |
| +     | 2.0         | E.0        |
| -     | g.D         | 40         |
| +     | 4-0         | 3.0        |
| -     | 8.0         | 6.0        |
| +     | 2.0         | 3.0        |
| -     | 6.0         | 4.0        |
|       |             |            |



## a. Estimate NB classifier

$$M_{t} = \frac{4 + 5 + 2 + 5}{8} + 4 + 3 + 2 + 3 = 3.5$$

10.5)2