Rascunho do Roteiro de Curricularização da Extensão - Lógica Digital: Somador

Discentes:

Arthur Gagliardi Azorli - 16855452

Marcos Vinicius Reballo - 7576746

Matheus Cardoso Vargas Saracuza - 13674087

Nicolas Silva Scorza - 17025079

Pedro Benedito Rondi - 17097914

Pedro dos Santos Kemp – 17064431

1. Introdução

Bem rapidamente se apresenta e fala sobre o tema a ser abordado no vídeo, "Somador e Subtrator".

2. Definindo e explicando

Explicar o conceito de soma com binário utilizando de portas lógicas, definindo Meio Somador (Half Adder) e "Carry". [Mostrar a soma e o circuito na tela.]

Explicar o conceito de Somador Completo (Full Adder) utilizando de Meios Somadores como portas lógicas, definindo "Carry-in" e "Carry-out". [Mostrar o circuito na tela.]

Explicar o conceito de overflow e como utilizar disso para realizar uma subtração, definindo o que um inversor. [Mostrar um inversor na tela.]

Mostrar como utilizar do Somador Completo e do Inversor (de 4 bits) para construir um circuito de um Somador de 4 bits, que realiza soma ou subtração a depender de um bit seletor. [Mostrar um Somador de 4 bits na tela.]

3. Demonstração

Mostrar o Somador de 4 bits funcionando, realizando algumas operações.

4. Finalizar o vídeo

Agradecer por assistir e se despedir.

Título: Somador e Subtrator (4 bits de saída)

Duração estimada: até 3 minutos

Mídias e dimensões: 9:16 = 1080 x 1920 pixels (Retrato, formato Reels/Shorts)

Roteiro de montagem final:

Elementos Textuais/Gráficos	Roteiro de Apresentação
-Legenda do texto narrado -Projeto Somador e subtrator com seleção - Calculadora digital com números binários piscando Transição para uma representação simplificada de um processador com destaque para uma ALU(Unidade Lógica Aritmética)	"Você já se perguntou como um computador ou calculadora consegue somar e subtrair na sua essência? Que como sabemos, ele somente compreende a linguagem binária, ou seja, 0 e 1"
-Legenda com o texto narrado -Elementos de narração (imagens correlacionadas com binário, sinais de operações,	"E nesse vídeo, nós, alunos do Bacharelado em Sistemas de Informação da USP, vamos te mostrar como funciona a lógica por trás das duas operações mais básicas na área da computação"
-Legenda com o texto narrado -Elementos de narração (imagens correlacionadas com binário, tabela operações binárias 'img 1') - Tabela verdade do meio somador	"De início, precisamos entender que para calcular em binário, seguimos regras diferentes da matemática convencional, e que nossas operações são apenas com 0 e 1, e que seguindo essa tabelinha de guia (mostrar tabela na tela) podemos realizar nossas operações"
Mostrar elementos do circuito - Mostrar animação do circuito ligando/desligando; - Circuito mostrando as portas XOR para	"Agora que entendemos essas operações básicas, vamos introduzir a ideia de um circuito chamado somador completo, ou Full Adder, que vai realizar nossa soma."

-Diagrama do Full Adder com três entradas (A,B,carry-in) e duas saídas (Soma, Carry-out) - Animação do fluxo de bits em Full Adder	"O Full Adder tem três entradas: o bit A, o bit B e o Carry-in, que vem da operação anterior. Ele calcula a soma desses três valores e gera uma saída de soma e um carry-out."
 Circuito de um somador de 4 bits em cascata, com 4 full adders conectados; Legenda narrada da soma 0101(5) + 0011(3) = 1000(8) Inserir comentário sobre overflow, inserir exemplo 1001 (9) + 0111 (7) = 10000 (16) 	"Ao encadearmos vários Full Adders, um para cada bit dos números, conseguimos somar números binários de vários bits, como por exemplo 4 bits. Se somarmos A = 0101 (que é 5) e B = 0011 (que é 3), os Full Adders irão calcular bit a bit e o resultado será 1000, que representa o número 8 em decimal. Veja que essa soma não causa overflow , que quer dizer que o valor não vaza para além dos bits que conseguimos representar no circuito. Se a soma fosse 1001 (9) + 0111 (7) = 10000 (16), não conseguiríamos representar o último algarismo! "
 Animação/legenda do processo de inversão de bits (complemento de um); Passo a passo do complemento de B mais 1 (inversão + adição de 1) 	"Agora vamos falar da subtração binária , que é um pouco diferente. Em vez de criar um circuito novo, podemos aproveitar os mesmos Full Adders da soma, aplicando um conceito chamado complemento de dois ."
 Circuito do somador/subtrator de 4 bits com bit seletor; Destaque para o inversor de bits (portas XOR) e o Carry-in forçado para 1. 	"No sistema binário, subtrair B de A pode ser feito somando A com o complemento de B e somá-lo a 1. Para isso, seguimos dois passos: Primeiro, invertemos todos os bits de B, fazendo o complemento de B. Depois, somamos 1 ao resultado, formando o complemento de dois de B. Essa lógica é controlada por um sinal chamado seletor. Quando esse sinal está em 0, o circuito funciona como um somador normal. Mas quando está em 1, ele ativa um bloco chamado inversor, que é composto por portas XOR que invertem os bits de B, e também adiciona 1 no Carry-in do primeiro Full Adder."
-Diagrama Simplificado de uma ALU com	"Esse tipo de circuito é muito comum na

destaque para o bloco de somador/subtrator.; - Comparação entre circuito teórico (desenho em logisim) e aplicação em um processador real;	ALU, a unidade lógica e aritmética dos processadores, e mostra como podemos realizar operações complexas com componentes simples de lógica digital."
 Imagem de joinha, logos dos programas/sites que simulam circuitos imagens dos circuitos sendo escritos Finalização com fade-out 	"Espero que essa explicação tenha te ajudado a entender melhor como funcionam os somadores e subtratores binários. Se quiser visualizar isso na prática, você pode montar o circuito em um dos programas que simulam circuitos e fazer alguns testes. Agradecemos sua atenção e obrigado por assistir!"

Imagem 1 (Tabela lógica Booleana)

► Half Adder and Full Adder Explained | The Full Adder using Half Adder Vídeo com os circuitos e estilo de equações úteis para o vídeo em si.

Imagens dos Circuitos a serem utilizados no vídeo

Adder de 4 bits(e subtrator)

inversor de 4 bits

full adder

half-adder