Metody numeryczne #8

9 grudnia 2020

Układ przedstawiony na rysunku jest w równowadze, sprężyny pozostają luźne. Napisz program do numerycznego obliczenia dynamiki układu, po włączeniu siły grawitacji i wychyleniu ciężarka do punktu (x_0,y_0) . Uwzględnij również siłę oporu aerodynamicznego, $\vec{F_o} = -\beta v^2 \hat{v}$. Użyj wartości parametrów: współczynnik sprężystości każdej sprężyny $k=50{\rm N/m}$, rozmiar ramki: $a=1{\rm m}$, przyspiesznie grawitacyjne: $\vec{g}=-9.81{\rm m/s^2}\cdot\hat{y}$, masa ciężarka: $m=1{\rm kg}$, współczynnik oporu aerodynamicznego: $\beta=10^{-3}{\rm kg/m}$, punkt startowy: $(x_0,y_0)=(0.4,0.1)$.

Oblicz (metodą RK4) i narysuj trajektorię ruchu ciężarka, do zatrzymania się w nowym położeniu równowagi. (Położenie równowagi można porównać z wynikiem uzyskanym w jednej z poprzednich prac domowych).

Siłę oporu można rozpisać:

$$\vec{F}_o = -\beta v^2 \hat{v} = -\beta v^2 \frac{\vec{v}}{v} = -\beta \cdot v \cdot \begin{pmatrix} v_x \\ v_y \end{pmatrix} = -\beta \sqrt{v_x^2 + v_y^2} \begin{pmatrix} v_x \\ v_y \end{pmatrix}.$$

