Contents

Week x	
Friday, November 13 - Quiz 18	2

Week x

Friday, November 13 - Quiz 18

1. Which parameter, kinetic or thermodynamic, gives us information about the rate and mechanism of the reaction?

> Kinetics

- Kinetics refers to the rate of a reaction, while thermodynamics refers to the equilibrium concentrations of the reactants and products.
- 2. For a reaction to be spontaneous, ΔG° must be

> Negative

Gibbs free energy (\Delta G^{\circ}): the maximum amount of non-expansion work that can be extracted from a closed system.

- Essentially a repackaged way of expressing entropy in a closed system.
- $-\Delta G^{\circ}$ is just ΔS° multiplied by the negative temperature in order to measure the entropy of the surroundings.
- Thus, ΔG° must be negative for a reaction to be spontaneous. (second law of thermodynamics)
- 3. Which part of the energy level diagram shown below, represents the kinetic component, and which represents the the thermodynamic component?

A is kinetic, B is thermodynamic

- A represents the activation energy $(E_a, \Delta G_{act})$ required for a reaction to form products.
- \circ **B** represents the difference in free energy (ΔG°) of the products from the initial reactants.
 - **Endergonic**: nonspontaneous $(+\Delta G^{\circ})$ processes.
 - **Exergonic**: spontaneous $(-\Delta G^{\circ})$ processes.
- 4. Which factors affect the equilibrium of a reaction?
 - ▶ a and b (temperature and concentration)
 - Rate of the reaction and catalysts effect the kinetics (rate), not equilibrium (thermodynamics)

- 5. Which factors affect the rate of a reaction?
 - ▶ a, c, and c (concentration, temperature, and presences of catalysts)
 - There are more, such as, substrate type, physical state, surface area, concentration, temperature, catalysts, pressure, and light absorption.
 - Essentially concentration effects the *rate order*, while everything else effects the rate constant k (rate = k[reactants])
 - As described above, endergonic and exergonic has to do with ΔG° (equilibrium).
- 6. A small activation energy, ΔG_{act} , corresponds to a

> a fast reaction

- Lower the activation energy, the less potential energy is needed for a reaction to occur, and thus more likely (faster) that a larger portion of molecules will undergo the reaction upon colliison.
- 7. Which parameter, kinetic or thermodynamic, determines the equilibrium constant and how much product will form?

> Thermodynamic

- Kinetics refers to the rate of a reaction, while thermodynamics refers to the equilibrium concentrations of the reactants and products.
- 8. A large and negative ΔG° will correspond to
 - \triangleright a large K_{eq}
 - A large $-\Delta G^{\circ}$ means the products are favored. (1 < $K_{\rm eq}$)
 - A large $+\Delta G^{\circ}$: the reactants are favored. $(K_{\rm eq} < 1)$
 - \circ K_{eq} says nothing about rate, that is determined by the kinetics, instead it just determine the direction and spontaneity.