Physics through Computational Thinking Lecture-20

Random walks

Auditya Sharma and Ambar Jain

Dept. of Physics, IISER Bhopal

Outline

In this module, we discuss

1. numerical simulation of random walks to verify some of the main results.

Numerical Simulation of a random walk

Special Case: The unbiased random walk

Let us numerically generate a few sample random walks and visualize them.

```
a = \{0\};

Do[AppendTo[a, a[n - 1]] + RandomChoice[\{1, -1\}]], \{n, 2, 500\}]

ListPlot[a, Joined \rightarrow True];
```

Such structures are commonly encountered in the study of polymers, stock price time series data, and trajectories of Brownian particles, to name only a few. We recall the key result

$$\langle m^2 \rangle = N. \tag{1}$$

Can we verify this with our numerics?

```
 \begin{array}{l} \mbox{data = Table} \Big[ \Big\{ n, \, Table[Table[RandomChoice[\{1,\,-1\}]\,,\,\{n\}] \,\,//\,\, Total\,,\,\, \{10\,000\}]^2 \,\,//\,\, N \,\,//\,\, Mean \Big\} \,,\,\, \{n,\,100\,,\,1000\,,\,1000\} \Big] \,; \\ \mbox{nMax = 1000;} \\ \mbox{binsize = 10;} \\ \mbox{histdata = Histogram}[Table[Table[RandomChoice[\{1,\,-1\}]\,,\,\{nMax\}] \,\,//\,\, Total\,,\,\, \{10\,000\}] \,,\,\, \{binsize\} \,,\,\, "PDF"] \,; \\ \mbox{Show} \Big[ \mbox{histdata, Plot} \Big[ \sqrt{\frac{1}{2\,\pi\,nMax}} \,\, e^{-x^2/(2\,nMax)} \,,\,\, \Big\{ x\,,\,\, -5\,\sqrt{nMax} \,\,,\,\, 5\,\sqrt{nMax} \,\,\Big\} \Big] \Big] \,; \\ \end{array}
```

The biased random walk

What about the general biased random walk, for which p maybe different from $\frac{1}{2}$?

```
p = 0.55;
a = \{0\};
Do[AppendTo[a, a[n-1]] + 1 - 2 UnitStep[RandomReal[]-p]], \{n, 2, 500\}]
ListPlot[a, Joined \rightarrow True];
```

Homework

Show that for the biased random walk in the limit of large N

$$\langle m^2 \rangle = N(N-1)(2p-1)^2$$
 (2)

```
 data = Table \Big[ \Big\{ n, Table [Table [1 - 2 UnitStep [RandomReal [] - p], \{n\}] // Total, \{10000\}]^2 // N // Mean \Big\}, \{n, 1000, 10000, 10000\} \Big]; \\ Show \Big[ ListPlot [data], Plot \Big[ x (x - 1) (2 p - 1)^2, \{x, 0, 10000\} \Big] \Big];
```

Homework

Work out the distribution $P_N(m)$ for the biased random walk and check that your numerical simulation result agrees with your expectation.