EXERCICIS PER DCISE BLOC 1: TRANSISTOR MOS I ANÀLISI ESTÀTICA DE CIRCUITS

1. Determineu el punt de polarització (V_{GS} , V_{DS} I_{DS}) del transistor NMOS de la figura. Considereu tensió llindar V_{TN} = 1 V i un factor de transconductància K_n = 1 mA/V²

2.- Dimensioneu el transistor de la figura anterior per a que presenti un corrent de 100 μ A Paràmetres NMOS: λ = 0,02 V⁻¹, K'_n=24 μ A/V², V_{Tn}=0,7 V.

3.- Dimensioneu el següent transistor (donant la seva relació d'aspecte W/L) si es vol conseguir una tensió V_{out} = 2 V. Dades: K'_p = 38,61 μ A/V², V_{Tp} =-0,5 V, λ_p =0,012 V^{-1} .

a) Suposant comportament de canal llarg

b) Suposant model de canal curt, V_{DSsat}=-1.5 V

4.- Es vol dissenyar la següent referència de tensió per obtenir tensions de 2.4, 1.6 i 0.8 V a les sortides V_1 , V_2 i V_3 , respectivament, limitant el consum del circuit a 330 μW

a) Trobeu les dimensions (relació W/L) del transistor MP

b) Trobeu les dimensions (relació W/L) dels transistors MN1, MN2 i MN3

Dades:

Suposeu que els transistors es comporten com a canal llarg

 $\begin{array}{lll} K_{n}{}^{'}=205.6 \; \mu A/V^{2} & K_{p}{}^{'}=67.34 \; \mu A/V^{2} \\ V_{Tn}=0.544 \; V & V_{Tp}=-0.714 \; V \\ \lambda_{n}=0.01 \; V^{-1} & \lambda_{p}=0.01 \; V^{-1} \end{array}$

 t_{ox} =7.9 nm $V_{DDnominal}$ =3.3 V

 ε_{rSiO2} =3.9 ε_{o} =8.854·10⁻¹⁴ F/cm

5.- Es té el següent circuit, alimentat a una tensió V_{DD}= 5 V

$$K_{N}' = 154.3 \ \mu A/V^{2}$$

 $V_{TN} = 0.6 \ V$
 $K_{P}' = 54.42 \ \mu A/V^{2}$
 $V_{TP} = -0.6 \ V$
 $\lambda = 0$

- a) Calculeu la mida (W/L) del transistor M1 per a que circuli un corrent de 1 mA per la resistència.
- b) Suposant que les dimensions de M2 són idèntiques a les de M1, quina restricció ha de complir la mida (W/L) de M3 per a que el transistor M2 estigui en saturació?
- 6.- Es té el següent circuit, alimentat a una tensió V_{DD}= 3 V

- a) Calculeu la mida (W/L) del transistor M1 per a que circuli un corrent de 25 μ A per la resistència.
- b) Si les dimensions de M2 són idèntiques a les de M1 (de forma que circula el mateix corrent pels dos transistors), quines han de ser les mides (W/L) dels transistors M4 i M5 per a obtenir les tensions V_{out1} i V_{out2} que s'indiquen a la figura?
- c) Quines poden ser les tensions màxima i mínima al drenador de M2 per tal que estigui en saturació?
- 7.- Es té el següent circuit, alimentat a una tensió V_{DD} = 3 V. Suposeu que el transistor opera en condicions de canal llarg. V_{DD} =3 V

$$K_{N}' = 200 \mu A/V^{2}$$

 $V_{TN} = 0.6 V$
 $\lambda = 0$

- a) Determineu les condicions que han de complir les tensions de drenador (V_D) i sortidor (V_S) per a que el transistor M1 estigui en saturació
- b) Assumint que el transistor M1 està en saturació, calculeu la tensió V_S que s'obté pels valors de R_C i mida del transistor especificats a la figura.
- c) Quins valors por prendre R_L per tal que el transistor efectivament estigui en saturació?

- 8.- Suposeu que un transistor en tall presenta les capacitats C_{GB} =5 fF, C_{GS} =0,2 fF, C_{GD} =0,2 fF, C_{BS} =0,3 fF, C_{BD} =0,3 fF. Calculeu el valor d'aquestes capacitats quan el transistor està en saturació.
- 9.- Doneu els valors de W i L del PMOS i NMOS d'una porta NOT CMOS per tal que la seva tensió de inversió ($V_{INV}=V_{IN}=V_{OUT}$) sigui de 1,1V. Dades: $V_{DD}=3$ V, $V_{Tn}=0,7$ V, $V_{Tp}=-0,8$ V, $K'_{n}=340~\mu\text{A/V}^2$ i $K'_{p}=75~\mu\text{A/V}^2$. Trieu els transistors més petits possibles respectant els límits de fabricació de la tecnologia, que és de 130nm (canal llarg).
- 10.- La contribució del corrent sotsllindar dels transistors MOS en la potència total consumida s'espera que sigui més important per tecnologies futures. Mencioneu algunes raons que justifiquin aquesta previsió.
- 11.- Considereu una porta NOT CMOS amb mides de transistors L_n = L_p =0,2 μ m, W_n =0,6 μ m i W_p =1,8 μ m.
 - a) Calculeu la capacitat que té a l'entrada degut a la suma de capacitats de canal del PMOS i NMOS si la capacitància de l'òxid prim és C_{ox} =8E-3 F/m²
 - b) Si a la sortida d'una porta NOT hi ha una interconnexió de capacitància $CM=40E-6F/m^2$ amb amplada $W=2~\mu m$, calculeu per quina longitud, L, la capacitat que presenta a la NOT es fa igual a la d'entrada d'una altra porta NOT igual a ella.
 - c) Si K'_n =340 μ A/V² i K'_p =75 μ A/V², calculeu la tensió de commutació de la porta NOT, per V_{DD} =3 V, Vtn=0,6 V, Vtp= -0,6V.
 - d) Determineu per quin rang de tensions d'entrada tindrem el PMOS en Saturació i el NMOS en Ohmica.
 - e) Determineu per la mateixa situació (PMOS sat, NMOS ohm), el rang de tensions de sortida.

Nota: per c), d) i f) no considereu efecte de modulació de canal en saturació

- 12.- Es vol analitzar un inversor CMOS fet amb una tecnologia de 0.1 μ m que utilitza V_{DD} = 3 V, V_{TN} =0,5 V, V_{TP} =-0,5 V. Altres dades tecnològiques són C_{ox} = 10 fF/ μ m², λ_n = λ_p =0.01 V⁻¹, μ_n =370 cm²/V·s, μ_p =150 cm²/V·s.
 - a) Suposeu que les dimensions dels transistors són $W_n=W_p=2~\mu m,~L_n=L_p=1~\mu m.$ Calculeu la tensió d'inversió V_{INV} teòrica (suposant transistors de canal llarg, ignorant λ).
 - b) Per la tensió d'inversió obtinguda, calculeu el corrent I_D que circula pels dos transistors.
 - c) Troba una expressió per la tensió tensió d'inversió V_{INV} , on els dos transistors estiguin en règim de saturació per velocitat de portadors (canal curt) (proporciona l'expressió en funció dels paràmetres transconductància, tensió llindar i V_{DSsat} de cada transistor; considera λ =0).
 - d) Suposeu ara que les dimensions dels transistors passen a ser $W_n=W_p=0.2~\mu m$, $L_n=L_p=0.1~\mu m$. Verificar si cal aplicar el model de canal curt. Si és el cas, recalculeu V_{TH} i I_D .

13.- Es vol dissenyar el següent circuit per a que, en fixar-hi una tensió V_{in} = 2 V, la tensió al node de sortida sigui també de V_{out} = 2 V, amb un consum del circuit de 0,18 mW.

Assumiu les següents dades tecnològiques:

$$\begin{split} k_{\text{N}}' &= 200 \; \mu \text{A/V}^2 \; ; \; k_{\text{P}}' = 60 \; \mu \text{A/V}^2 \\ V_{\text{TN}} &= 0.5 \; \text{V} \; ; \; V_{\text{TP}} = -0.5 \; \text{V} \\ \lambda_{\text{n}} &= \lambda_{\text{p}} = 0.02 \; \text{V}^{-1} \\ \mu_{\text{n}} &= 400 \; \text{cm}^2/\text{V} \cdot \text{s} \; ; \; \mu_{\text{p}} = 120 \; \text{cm}^2/\text{V} \cdot \text{s} \end{split}$$

- a) Suposeu que les dades anteriors corresponen a una tecnologia de 0,25 μm. Dimensioneu els transistors (doneu al seva relació d'aspecte W/L) per tal d'aconsequir les tensions i consum desitjats. Afegiu com a restricció de disseny que les dimensions dels transistors MN1 i MN2 siguin iguals.
- Repetiu l'apartat anterior, però suposant ara que les dades anteriors corresponen a una tecnologia de 0.13 μm.
- 14.- Donada una tecnologia que utilitza V_{DD} = 3 V, V_{TN} =0,5 V, V_{TP} =-0,5 V, k_N '=250 μ A/V², k_P '=100 μ A/V², determineu la tensió llindar V_{TH} de la transferència estàtica (V_{TH} = V_{IN} = V_{OUT}) d'un inversor on el NMOS i el PMOS tinguin la mateixa mida. Quina ha de ser la relació d'aspecte W/L del PMOS, respecte a la del NMOS, per a que V_{TH} = V_{DD} /2? Suposeu comportament de canal llarg.
 - a) V_{TH} quan NMOS i PMOS són de la mateixa mida:
 - b) Relació de mides per a $V_{TH}=V_{DD}/2$:

15.- Considereu la porta NAND de la figura.

Dades: $K_n=0.5 \text{ mA/V}^2$; $K_p=3 \text{ mA/V}^2$; $\lambda_p=\lambda_n=0.02 \text{ V}^{-1}$

- a) Indiqueu en el dibuix del circuit per a cada transistor NMOS i PMOS, la posició de drenador i surtidor, així com la connexió del substrat.
- b) Per als NMOS M1 i M2, el valor de V_T serà el mateix? Si no ho és, indica quin serà el més gran i raona la resposta.

Ara, considera que la sortida de la porta va connectada a una porta NOT, amb dimensions de transistors: $L_n=L_p=0.2~\mu m,~W_n=0.6~\mu m$ i $W_p=1.8~\mu m$

- c) Calculeu la capacitat que té a l'entrada degut a la suma de capacitats de canal del PMOS i NMOS si la capacitància de l'òxid prim és C_{ox} =8E-3 F/m2
- d) Si a la sortida d'una porta NOT hi ha una interconnexió de capacitància CM=40E-6 F/m2 amb amplada W=2um, calculeu per quina longitud, L, la capacitat que presenta a la NOT es fa igual a la d'entrada d'una altra porta NOT igual a ella.

- 16.- El corrent sotsllindar d'un transistor es pot modelar amb l'expressió $I_D = I_{SPEC} e^{\frac{V_{GS} V_T}{nU_T}}$, amb $I_{SPEC} = 2nk \frac{W}{L}U_T^2$. En aquestes expressions, n és paràmetre que varia lleugerament amb la tecnologia i que, per corrent sotsllindar, es situa al voltant de 1.45. El paràmetre U_T fa referència a la tensió tèrmica, $U_T = \frac{kT}{q}$, i a temperatura ambient és igual a 26 mV. Per últim, la tensió llindar es pot expressar (en un NMOS) com $V_T = V_{THO} + \gamma \left(\sqrt{2\phi V_{BS}} \sqrt{2\phi} \right)$.
- a) Prenent les dades d'una tecnologia de 0.35 μm per transistors NMOS (V_{TH0}=0.5 V; k_N'=80 μ A/V²; n=1.45; γ =0.58 V^{1/2}; ϕ =0.428 V), calculeu el corrent sotsllindar d'un transistor de W=1 μ m i L=0.35 μ m quan V_{GS}=V_{BS}=0 V.
- b) Suposeu un circuit integrat amb 10 milions de transistors com el de l'apartat anterior. El circuit integrat s'alimenta a una tensió de 3 V amb dues bateries AA de 1.5 V, amb una capacitat de 1000 mA-h cadascuna. El circuit està inactiu, és a dir que no té *clock* ni senyals d'entrada, l'únic consum de potència és degut al corrent sotsllindar dels transistors. Calculeu quants dies trigaran les bateries en perdre el 50% de la seva càrrega inicial.
- c) Suposeu que el mateix circuit s'integra ara en una tecnologia més moderna de 90 nm (V_{TH0} =0.35 V; k_N '=150 μ A/V²; n=1.45; γ =0.58 V¹/²; ϕ =0.45 V). Calculeu de nou el corrent sotsllindar per un transistor NMOS de la mateixa relació d'aspecte i V_{GS} = V_{BS} =0 V. Repetiu l'apartat b) tenint en compte que la tensió V_{DD} dels circuits en aquesta tecnologia és de 1.5V.
- d) Una tècnica que s'utilitza en circuits integrats molt avançats per reduir el consum estàtic és la que es coneix com *adaptive body biasing*, consistent en disminuir la tensió V_{BS} dels circuits inactius. Això es pot fer connectant el substrat a tensions negatives, o augmentant la tensió V_{S} respecte al substrat. Repetiu l'apartat anterior suposant que s'aplica aquesta tècnica a l'anterior circuit, V_{GS} =0 V i V_{BS} =-0.25 V.
- 17.- Es tenen dos inversors connectats en cascada, com es mostra a la figura. La mida dels NMOS és W=10 μm i L=0.25 μm . La mida dels PMOS és W=20 μm i L=0.25 μm . L'amplada de les difusions de sortidor/drenador és de 0.5 μm . En el node intermig entre els dos inversors hi ha una capacitat de la interconnexió de 50 fF. La tensió d'alimentació és de 3 V, mentre que a la taula es mostren paràmetres tecnològics relacionats amb les capacitats del MOS.

Technological parameters:

Parameter	Units	NMOS	PMOS	Note
C _{ox}	fF/um ²	4.54	4.54	Gate oxide capacitance
C_{GSD}	fF/um_	0.131	0.108	Overlap gate to source/drain (per unit width)
C _{JA}	fF/um ²	1.36	1.36	Diffusion (drain/source) area junction capacitance
M_{JA}	-	0.54		Diffusion area grading exponent
PB _A	V	1.02		Diffusion area junction potential
C _{JSW}	fF/um	0.35		Diffusion (drain/source) sidewall junction capacitance
M _{JSW}	-	0.46		Diffusion sidewall grading exponent
PB _{SW}	V	1.02		Diffusion sidewall junction potential

Per cada una de les següents situacions, identifiqueu els estats en què es trobaran cada un dels 4 transistors, identifiqueu les diverses capacitats presents en el node intermig, calculeu-ne el valor, i calculeu la capacitat total.

- a) Quan a l'entrada del primer inversor hi ha un '0' lògic.
- b) Quan a l'entrada del primer inversor hi ha un '1' lògic.
- c) Quan a l'entrada del primer inversor hi ha una tensió de 1.5 V, que coincideix amb la tensió de inversió dels inversors.

Resultat de la capacitat total: a) 142.29 fF; b) 129.8 fF; c) 111.3 fF.

- 18.- El circuit de la figura té un NMOS de K=120 μ A/V², corresponent a unes dimensions de L=350 nm, W=350 nm. Per a aquestes dimensions de L, la V_{DSsat}=2,1 V. La tensió d'alimentació V_{DD} és 3 V.
 - a) Troba el valor màxim de R que compleix que per qualsevol valor de V_{in} (entre 0 i V_{DD}), el transistor no es troba mai en zona lineal.
- b) Per a aquest valor de R trobat, calcula el corrent per Vin= V_{DD} i per Vin= $V_{DD}/2$. Ara considereu les dimensions del NMOS L=700 nm, W=700 nm.
 - c) Calcula el nou V_{DSsat}.
 - d) Amb la mateixa R anterior, calcula els corrents per V_{DD} i per $V_{DD}/2$.

Dades: V_{DD} =3 V V_{TN} =0.5 V K=120 μ A/V²

