Project 2

Timing Analysis Report

by Xinqiao Zhang

EE-670

April 28, 2018

Content

L.	Positive flip-flop to Positive flip-flop		
	1.1. Mc	odule Figure	8
	1.2. Mo	odule Verilog file	8
	1.3. Mc	odule netlist file	10
	1.4. Lib	rary file	11
	1.5. Set	tup time check(met)	11
	1.5.1.	Setup time check script file	11
	1.5.2.	Setup time check result	12
	1.6. Set	tup time check (violated)	13
	1.6.1.	Setup time check script file	13
	1.6.2.	Setup time check result	14
	1.7. Ho	ld time check(met)	15
	1.7.1.	Hold time check script file	15
	1.7.2.	Hold time check result	16
	1.8. Ho	ld time check(violated)	17
	1.8.1.	Hold time check script file	17
	1.8.2.	Hold time check result	18
	1.9. Inp	out delay(met)	19
	1.9.1.	Input delay script file	19
	1.9.2.	Input delay settings	20
	1.9.3.	Input delay result	21
	1.10. Inp	out delay(violated)	22
	1.10.1.	Input delay script file	22
	1.10.2.	Input delay settings	23
	1.10.3.	Input delay result	24
	1.11. out	tput delay(met)	25
	1.11.1.	output delay script file	25
	1.11.2.	output delay settings	26
	1.11.3.	Input delay result	27
	1.12. out	tput delay(violated)	28
	1.12.1.	output delay script file	28

	1.12.2.	output delay settings	29
	1.12.3.	Input delay result	30
2.	Positive flip-	-flop to Negative flip-flop	31
	2.1. mo	odule figure	31
	2.2. mo	odule Verilog file	31
	2.3. mo	odule netlist file	33
	2.4. lib	rary file	34
	2.5. Se	tup time check(met)	34
	2.5.1.	Setup time check script file	34
	2.5.2.	Setup time check result	35
	2.6. Se	tup time check (violated)	36
	2.6.1.	Setup time check script file	36
	2.6.2.	Setup time check result	37
	2.7. Ho	old time check(met)	38
	2.7.1.	Hold time check script file	38
	2.7.2.	Hold time check result	39
	2.8. Ho	old time check(violated)	40
	2.8.1.	Hold time check script file	40
	2.8.2.	Hold time check result	41
	2.9. Inp	out delay(met)	42
	2.9.1.	Input delay script file	42
	2.9.2.	Input delay settings	43
	2.9.3.	Input delay result	44
	2.10. Inp	out delay(violated)	45
	2.10.1.	Input delay script file	45
	2.10.2.	Input delay settings	46
	2.10.3.	Input delay result	47
	2.11. Ou	ıtput delay(met)	48
	2.11.1.	Output delay script file	48
	2.11.2.	Output delay settings	49
	2.11.3.	Output delay result	50
	2.12. Ou	rtput delay(violated)	51

	2.12.1.	Output delay script file	51
	2.12.2.	Output delay settings	52
	2.12.3.	Output delay result	53
3.	Negative flip	-flop to Negative flip-flop	54
	3.1. mo	odule figure	54
	3.2. mo	odule Verilog file	54
	3.3. mo	odule netlist file	56
	3.4. libr	ary file	56
	3.5. Set	cup time check(met)	57
	3.5.1.	Setup time check script file	57
	3.5.2.	Setup time check result	58
	3.6. Set	cup time check (violated)	59
	3.6.1.	Setup time check script file	59
	3.6.2.	Setup time check result	60
	3.7. Ho	ld time check(met)	61
	3.7.1.	Hold time check script file	61
	3.7.2.	Hold time check result	62
	3.8. Ho	ld time check(violated)	63
	3.8.1.	Hold time check script file	63
	3.8.2.	Hold time check result	64
	3.9. Inp	out delay(met)	65
	3.9.1.	Input delay script file	65
	3.9.2.	Input delay settings	66
	3.9.3.	Input delay result	67
	3.10. Inp	out delay(violated)	68
	3.10.1.	Input delay script file	68
	3.10.2.	Input delay settings	69
	3.10.3.	Input delay result	70
	3.11. Ou	tput delay(met)	71
	3.11.1.	Output delay script file	71
	3.11.2.	Output delay settings	72
	3.11.3.	Output delay result	73

	3.12. Ou	tput delay(violated)	74
	3.12.1.	Output delay script file	74
	3.12.2.	Output delay settings	75
	3.12.3.	Input delay result	76
4.	Negative flip	p-flop to Positive flip-flop	77
	4.1. mc	odule figure	77
	4.2. mc	odule Verilog file	77
	4.3. mc	odule netlist file	79
	4.4. libi	rary file	79
	4.5. Set	tup time check(met)	80
	4.5.1.	Setup time check script file	80
	4.5.2.	Setup time check result	81
	4.6. Set	tup time check (violated)	82
	4.6.1.	Setup time check script file	82
	4.6.2.	Setup time check result	83
	4.7. Ho	ld time check(met)	84
	4.7.1.	Hold time check script file	84
	4.7.2.	Hold time check result	85
	4.8. Ho	ld time check(violated)	86
	4.8.1.	Hold time check script file	86
	4.8.2.	Hold time check result	87
	4.9. Inp	out delay(met)	88
	4.9.1.	Input delay script file	88
	4.9.2.	Input delay settings	89
	4.9.3.	Input delay result	
	4.10. Inp	out delay(violated)	
	4.10.1.		
	4.10.2.	, , ,	
	4.10.3.		
	4.11. Ou	tput delay(met)	
	4.11.1.		
	4.11.2.	Output delay settings	95

	4.1	1.3. Output delay result	96
	4.12.	Output delay(violated)	97
	4.1	2.1. Output delay script file	97
	4.1	2.2. Output delay settings	98
	4.1	2.3. Output delay result	99
5.	Recover	y time and removal time	100
	5.1.	module figure	100
	5.2.	module Verilog file	100
	5.3.	module gate-level file	101
	5.4.	time script file	102
	5.5.	recovery time check (met)	103
	5.6.	recovery time check(violet)	104
	5.7.	removal time check(met)	105
	5.8.	removal time check(violet)	106
6.	Half-cyc	le paths	107
	6.1.	Module figure	107
	6.2.	Module Verilog file	107
	6.3.	Module gate-level file	108
	6.4.	Module script file (met)	109
	6.5.	Half-cycle (met)	110
	6.6.	Module script file (violeted)	111
	6.7.	Half-cycle (violeted)	112
7.	Multicyd	cle setup specification	113
	7.1.	Script file	113
	7.2.	Setup (violated)	114
	7.3.	Hold(violated)	115
	7.4.	Script file(met)	116
	7.5.	Setup (met)	117
	7.6.	Hold (met)	118
8.	Non-inte	eger multiple clocks	119
	8.1.	Script files (met)	119
	8.2.	Script files (violeted)	120

	8.3.	Setup (met)	. 121
	8.4.	Setup (violeted)	. 122
	8.5.	Hold(met)	. 123
	8.6.	Hold(violated)	. 124
9.	Phase sh	ift clocks	. 125
	9.1.	Script file(met)	. 125
	9.2.	Setup(met)	
	9.3.	Hold(met)	. 127
	9.4.	Script file (violated)	. 128
	9.5.	Setup (violated)	. 129
	9.6.	Hold(violated)	. 130

1. Positive flip-flop to Positive flip-flop

1.1. Module Figure

1.2. Module Verilog file

```
`timescale 1ns/1ns
module time test (
output Q2 ,
input CLK
);
reg D1;
wire Q1, D2;
reg reset;
dff ff1 (.data(D1), .clk(CLK), .q(Q1), .reset(reset));
dff ff2 (.data(D2), .clk(CLK), .q(Q2), .reset(reset));
halfadder
               hal (.a(Q1), .b(Q1), .cout(D2));
initial D1 =1;
always @(posedge CLK)
begin D1 <= ~D1;</pre>
end
endmodule
module dff (
       , // Data Input
data
clk
       , // Clock Input
reset , // Reset input
        // Q output
```

```
//----Input Ports-----
input data, clk, reset ;
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//-----Code Starts Here-----
always @ ( posedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
module halfadder(
a ,
b ,
cout,
q
);
input a,b;
output cout,q;
assign cout = a ^ b;
assign q = a & b;
endmodule
```

1.3. Module netlist file

```
module dff 0 ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N3;
  fdf1a2 q reg (.D(N3), .CLK(clk), .Q(q));
  and2a3 U3 ( .A(reset), .B(data), .Y(N3) );
endmodule
module halfadder ( a, b, cout, q );
  input a, b;
  output cout, q;
  and2a3 U1 ( .A(b), .B(a), .Y(q) );
  xor2a1 U2 ( .A(b), .B(a), .Y(cout) );
endmodule
module dff 1 ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N3;
  fdf1a2 q_reg (.D(N3), .CLK(clk), .Q(q));
  and2a3 U3 ( .A(reset), .B(data), .Y(N3) );
endmodule
module time test ( Q2, CLK );
  input CLK;
  output Q2;
  wire D1, Q1, D2, n1;
  dff 0 ff1 ( .data(D1), .clk(CLK), .reset(1'b0), .q(Q1) );
  dff_1 ff2 ( .data(D2), .clk(CLK), .reset(1'b0), .q(Q2) );
  halfadder hal ( .a(Q1), .b(Q1), .cout(D2));
  fdf1a2 D1 reg (.D(n1), .CLK(CLK), .Q(D1));
  invla1 U4 ( .A(D1), .Y(n1) );
endmodule
```

1.4. Library file

Link library /home/zhang/Asic/time/libs/core_typ.db

Target library /home/zhang/Asic/time/libs/core_typ.db

Symbol library /home/zhang/Asic/time/libs/core.sdb

1.5. Setup time check(met)

1.5.1. Setup time check script file

```
# Create user defined variables
set CLK PORT [get ports CLK]
set CLK PERIOD 5.00
set CLK SKEW 0.14
set INPUT DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library setup time 0.04
set_clock_uncertainty -setup 0.4 $CLK_PORT
set clock latency 1.0 $CLK PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.01
```

1.5.2. Setup time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1 reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/Clust/Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
clock CLKP (rise edge)	0.00	0.00
clock network delay (ideal)	1.00	1.00
D1_reg/CLK (fdf1a2)	0.00	1.00 r
D1_reg/Q (fdf1a2)	0.62	1.62 f
U4/Y (inv1a1)	0.51	2.13 r
D1_reg/D (fdf1a2)	0.00	2.13 r
data arrival time		2.13
clock CLKP (rise edge)	5.00	5.00
clock network delay (ideal)	1.00	6.00
clock uncertainty	-0.40	5.60
D1_reg/CLK (fdf1a2)	0.00	5.60 r
library setup time	-0.17	5.43
data required time		5.43
data required time		5.43
data arrival time		-2.13
slack (MET)		3.31

1.6. Setup time check (violated)

1.6.1. Setup time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK PERIOD 1.00
set CLK SKEW 0.14
set INPUT_DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set_dont_touch_network my_clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library_setup_time 0.04
set_clock_uncertainty -setup 0.4 $CLK_PORT
set clock latency 1.0 $CLK PORT
set clock uncertainty -hold 0.54 $CLK PORT
set library hold time 0.01
```

1.6.2. Setup time check result

slack (VIOLATED)

	(rising edge-trigge (rising edge-trigger	_	_
Des/Clust/Port	Wire Load Model	Library	
time_test	5KGATES	ssc_core	9
Point		Incr	Path
clock CLKP (rise	edge)	0.00	0.00
clock network dela	ay (ideal)	1.00	1.00
D1_reg/CLK (fdf1a	2)	0.00	1.00 r
D1_reg/Q (fdf1a2)		0.62	1.62 f
U4/Y (invla1)		0.51	2.13 r
D1_reg/D (fdf1a2)		0.00	2.13 r
data arrival time			2.13
clock CLKP (rise	edge)	1.00	1.00
clock network dela	ay (ideal)	1.00	2.00
clock uncertainty		-0.40	1.60
D1_reg/CLK (fdf1a	2)	0.00	1.60 r
library setup time	9	-0.17	1.43
data required time	9		1.43
data required time			1.43
data arrival time			-2.13

-0.69

1.7. Hold time check(met)

1.7.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 2.0 $CLK PORT
set clock uncertainty -hold 0.14 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.51
```

1.7.2. Hold time check result

slack (MET)

	rising edge-triggered rising edge-triggered ock				_
	Wire Load Model				
time_test		ssc_core			
Point		Incr	Path		
clock my_clock (ri	.se edge)	0.00	0.00		
clock network dela	ay (ideal)	2.00	2.00		
D1_reg/CLK (fdf1a2	2)	0.00	2.00	r	
D1_reg/Q (fdf1a2)		0.55	2.55	r	
U4/Y (inv1a1)		0.37	2.92	f	
D1_reg/D (fdf1a2)		0.00	2.92	f	
data arrival time			2.92		
clock my_clock (ri	.se edge)	0.00	0.00		
clock network dela	ay (ideal)	2.00	2.00		
clock uncertainty		0.14	2.14		
D1_reg/CLK (fdf1a2	2)	0.00	2.14	r	
library hold time		0.32	2.46		
data required time) 		2.46		
data required time	÷		2.46		
data arrival time			-2.92		

0.46

1.8. Hold time check(violated)

1.8.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 3.0 $CLK PORT
set clock uncertainty -hold 0.84 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 1.51
```

1.8.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered Endpoint: D1_reg (rising edge-triggered Path Group: my_clock Path Type: min		
Des/Clust/Port Wire Load Model	Library	
time_test 5KGATES	ssc_core	
Point	Incr	Path
clock my_clock (rise edge)	0.00	0.00
clock network delay (ideal)	3.00	3.00
D1_reg/CLK (fdf1a2)	0.00	3.00 r
D1_reg/Q (fdf1a2)	0.55	3.55 r
U4/Y (inv1a1)	0.37	3.92 f
D1_reg/D (fdf1a2)	0.00	3.92 f
data arrival time		3.92
<pre>clock my_clock (rise edge)</pre>	0.00	
clock network delay (ideal)	3.00	3.00
clock uncertainty	0.84	
D1_reg/CLK (fdf1a2)	0.00	3.84 r
library hold time	0.32	4.16
data required time		4.16
data required time		4.16
data arrival time		-3.92
slack (VIOLATED)		-0.24

1.9. Input delay(met)

1.9.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

1.9.2. Input delay settings

1.9.3. Input delay result

Startpoint: ff1/data (internal path startpoint clocked by theclk)

Endpoint: ff1/q_reg (rising edge-triggered flip-flop clocked by theclk)

Path Group: theclk
Path Type: max

Des/Clust/Port	Wire Load Model	Library	
-	5KGATES 5KGATES	ssc_core	
Point		Incr	Path
clock theclk (rise clock network dela input external de	ay (ideal)	0.00	0.00 0.00 4.00 r
ff1/data (dff)	ECT OP 2.1 2.1 1)	0.00	4.00 r
ff1/q_reg/next_standata arrival time	ate (**SEQGEN**)	0.00	4.00 r 4.00
clock theclk (rise clock network dela clock uncertainty ff1/q_reg/clocked library setup time data required time	ay (ideal) _on (**SEQGEN**) e	20.00 1.00 -0.40 0.00 0.00	21.00 20.60 20.60 r
	e 		20.60
slack (MET)			16.60

1.10. Input delay(violated)

1.10.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 3 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

1.10.2. Input delay settings

1.10.3. Input delay result

Endpoint: ff1/q_reg (rising edge-trig Path Group: <u>theclk</u> Path Type: max	gered flip-	flop clocked by <u>thecl</u>
Des/Clust/Port Wire Load Model	Library	
time_test 5KGATES	ssc_core	€
dff 5KGATES	ssc_core	9
Point	Incr	Path
clock <u>theclk</u> (rise edge)	0.00	0.00
clock network delay (ideal)	0.00	
input external delay		
ff1/data (dff)		4.00 r
ff1/C11/Z_0 (*SELECT_OP_2.1_2.1_1)		
ff1/q_reg/next_state (**SEQGEN**)	0.00	
data arrival time		4.00
clock theclk (rise edge)	3.00	3.00
clock network delay (ideal)	1.00	4.00
clock uncertainty	-0.40	
ff1/q_reg/clocked_on (**SEQGEN**)		
library setup time	0.00	
data required time		3.60
		3.60
data required time data arrival time		-4.00
data allival time		
slack (VIOLATED)		-0.40

1.11. output delay(met)

1.11.1. output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

1.11.2. output delay settings

1.11.3. Input delay result

slack (MET)

Startpoint: ff2/q_reg Endpoint: ff2/q (in Path Group: theclk Path Type: max			_	d by theclk)
Des/Clust/Port	Wire Load Model	Library		
time_test	5KGATES	ssc_core	;	
Point		Incr	Path	
clock theclk (rise clock network delay ff2/q_reg/clocked_o ff2/q_reg/Q (**SEQO ff2/q (dff) data arrival time	y (ideal) on (**SEQGEN**)	0.00	1.00	
clock theclk (rise clock network delay		20.00		
output external ded	Lay	-8.00	12.00	
data required time data arrival time			12.00 -1.00	

11.00

1.12. output delay(violated)

1.12.1. output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 5 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

1.12.2. output delay settings

1.12.3. Input delay result

slack (VIOLATED)

-	reg (rising edge-tri (internal path endpoi lk		_	by theclk)
Des/Clust/Port	Wire Load Model			
time_test		ssc_core	Э	
Point		Incr	Path	
clock theclk (ri	se edge)	0.00	0.00	
clock network delay (ideal)		1.00		
	d_on (**SEQGEN**)	0.00	1.00 r	
ff2/q_reg/Q (**S	EQGEN**)	0.00	1.00 r	
ff2/q (dff)		0.00	1.00 r	
data arrival time	e		1.00	
clock theclk (ri	se edge)	5.00	5.00	
clock network de	lay (ideal)	0.00	5.00	
output external	delay	-8.00	-3.00	
data required ti	me		-3.00	
data required ti			-3.00	
data arrival time	e		-1.00	

-4.00

2. Positive flip-flop to Negative flip-flop

2.1. module figure

2.2. module Verilog file

```
`timescale 1ns/1ns
module time_test (
output Q2 ,
input CLK
);
reg D1;
wire Q1, D2;
reg reset;
dff ff1 (.data(D1), .clk(CLK), .q(Q1), .reset(reset));
dff sync reset ne ff2 (.data(D2), .clk(CLK), .q(Q2), .reset(reset));
halfadder
              ha1 (.a(Q1), .b(Q1), .cout(D2));
initial D1 =1;
always @ (posedge CLK)
begin D1 <= ~D1;</pre>
end
endmodule
module dff (
data , // Data Input
      , // Clock Input
reset , // Reset input
        // Q output
);
//----Input Ports-----
input data, clk, reset ;
```

```
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//-----Code Starts Here-----
always @ ( posedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
module halfadder (
a ,
b,
cout,
q
);
input a,b;
output cout,q;
assign cout = a ^ b;
assign q = a & b;
endmodule
module dff_sync_reset_ne (
data , // Data Input
clk , // Clock Input
reset , // Reset input
       // Q output
);
//----Input Ports-----
input data, clk, reset ;
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//----Code Starts Here----
always @ ( negedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
```

2.3. module netlist file

```
module dff ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N3;
  fdf1a2 q req (.D(N3), .CLK(clk), .Q(q));
  and2a3 U3 ( .A(reset), .B(data), .Y(N3) );
endmodule
module dff sync reset ne ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N4, n1;
  fdf1a2 q_reg (.D(N4), .CLK(n1), .Q(q));
  inv1a1 U3 ( .A(clk), .Y(n1) );
  and2a3 U4 ( .A(reset), .B(data), .Y(N4) );
endmodule
module halfadder ( a, b, cout, q );
  input a, b;
  output cout, q;
  and2a3 U1 ( .A(b), .B(a), .Y(q) );
  xor2a1 U2 ( .A(b), .B(a), .Y(cout) );
endmodule
module time test ( Q2, CLK );
  input CLK;
  output Q2;
  wire D1, Q1, D2, n1;
  dff ff1 ( .data(D1), .clk(CLK), .reset(1'b0), .q(Q1) );
  dff sync reset ne ff2 ( .data(D2), .clk(CLK), .reset(1'b0), .q(Q2) );
  halfadder hal ( .a(Q1), .b(Q1), .cout(D2));
  fdf1a2 D1 reg ( .D(n1), .CLK(CLK), .Q(D1) );
  inv1a1 U4 ( .A(D1), .Y(n1) );
endmodule
```

2.4. library file

Link library /home/zhang/Asic/time/libs/core_typ.db
Target library /home/zhang/Asic/time/libs/core_typ.db
Symbol library /home/zhang/Asic/time/libs/core.sdb

2.5. Setup time check(met)

2.5.1. Setup time check script file

```
# Create user defined variables
set CLK PORT [get ports CLK]
set CLK PERIOD 5.00
set CLK SKEW 0.14
set INPUT DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 1.0 $CLK PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT
#set_input_delay $INPUT_DELAY -max -clock my_clock [remove_from_collection [all_inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.01
```

2.5.2. Setup time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/Clust/Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
clock CLKP (rise edge)	0.00	0.00
clock network delay (ideal)	1.00	1.00
D1_reg/CLK (fdf1a2)	0.00	1.00 r
D1_reg/Q (fdf1a2)	0.62	1.62 f
U4/Y (invla1)	0.51	2.13 r
D1_reg/D (fdf1a2)	0.00	2.13 r
data arrival time		2.13
clock CLKP (rise edge)	3.00	3.00
clock network delay (ideal)	1.00	4.00
clock uncertainty	-0.40	3.60
D1_reg/CLK (fdf1a2)	0.00	3.60 r
library setup time	-0.17	3.43
data required time		3.43
data required time		3.43
data arrival time		-2.13
slack (MET)		1.31
SIGOR (IEI)		1.01

2.6. Setup time check (violated)

2.6.1. Setup time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK PERIOD 1.00
set CLK SKEW 0.14
set INPUT_DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set_dont_touch_network my_clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library_setup_time 0.04
set_clock_uncertainty -setup 0.4 $CLK_PORT
set clock latency 1.0 $CLK PORT
set clock uncertainty -hold 0.54 $CLK PORT
set library hold time 0.01
```

2.6.2. Setup time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1 reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/ <u>Clust</u> /Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
<pre>clock CLKP (rise edge) clock network delay (ideal) D1_reg/CLK (fdf1a2) D1_reg/Q (fdf1a2) U4/Y (inv1a1) D1_reg/D (fdf1a2) data arrival time</pre>		0.00 1.00 1.00 r 1.62 f 2.13 r 2.13 r 2.13
<pre>clock CLKP (rise edge) clock network delay (ideal) clock uncertainty D1_reg/CLK (fdf1a2) library setup time data required time</pre>	1.00 1.00 -0.40 0.00 -0.17	1.00 2.00 1.60 1.60 r 1.43 1.43
data required time data arrival time		1.43
slack (VIOLATED)		-0.69

2.7. Hold time check(met)

2.7.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 2.0 $CLK PORT
set clock uncertainty -hold 0.14 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.51
```

2.7.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_clock

Path Type: min

Path Type: min				
Des/Clust/Port			_	
time_test			ssc_core	
Point			Incr	
clock my clock (r	ise edge)		0.00	
clock network dela	ay (ideal)		3.00	3.00
D1 reg/CLK (fdf1a	2)		0.00	3.00 r
D1 reg/Q (fdf1a2)			0.55	3.55 r
D1 (net)		2	0.00	3.55 r
U4/Y (inv1a1)			0.37	3.92 f
n1 (net)		1	0.00	3.92 f
D1_reg/D (fdf1a2)			0.00	
data arrival time				3.92
clock my_clock (r:	ise edge)		0.00	0.00
clock network dela	ay (ideal)		3.00	3.00
clock uncertainty			0.14	3.14
D1_reg/CLK (fdf1a	2)		0.00	3.14 r
library hold time			0.32	3.46
data required time	€			3.46
data required time	 9			3.46
data arrival time				-3.92
slack (MET)				0.46

2.8. Hold time check(violated)

2.8.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 3.0 $CLK PORT
set clock uncertainty -hold 0.84 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 1.51
```

2.8.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)
Endpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_clock

Path Type: min

Des/Clust/Port	Wire Load Model	_	
time_test		ssc_core	
Point		Incr	Path
<pre>clock my_clock (ri clock network dela D1_reg/CLK (fdf1a2) D1_reg/Q (fdf1a2) U4/Y (inv1a1) D1_reg/D (fdf1a2) data arrival time</pre>	ay (ideal)	0.55 0.37	
clock my_clock (riclock network delactions uncertainty D1_reg/CLK (fdf1a2 library hold time data required time data required time	y (ideal)	3.00 0.84	3.84 3.84 r 4.16 4.16
data arrival timeslack (VIOLATED)			-3.92 -0.24

2.9. Input delay(met)

2.9.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

2.9.2. Input delay settings

2.9.3. Input delay result

Startpoint: ff1/data Endpoint: ff1/q_rec Path Group: theclk Path Type: max				
Des/Clust/Port	Wire Load Model	Library		
time_test	5KGATES 5KGATES	ssc_core ssc_core		
Point		Incr	Path	
clock theclk (rise clock network delay input external delay	y (ideal)	0.00 0.00 4.00	0.00	
ff1/data (dff) ff1/C11/Z_0 (*SELEC	-	0.00	4.00 r	
ff1/q_reg/next_stardata arrival time				
clock theclk (rise clock network delay clock uncertainty ff1/q_reg/clocked_o library setup time data required time	y (ideal)	0.00	41.00 40.60	_
data required time data arrival time			40.60 -4.00	
slack (MET)			36.60	-

2.10. Input delay(violated)

2.10.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 3 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

2.10.2. Input delay settings

2.10.3. Input delay result

Endpoint: ff1/q_r Path Group: thecl Path Type: max	reg (rising edge-trig	gered flip-f	lop clocked by thecl
Des/Clust/Port	Wire Load Model	Library	
time_test dff	5KGATES 5KGATES	ssc_core ssc_core	
Point		Incr	Path
clock theclk (ris	_	0.00 0.00	0.00
input external de	elay	4.00	
ff1/data (dff)	ECT_OP_2.1_2.1_1)	0.00	
_	cate (**SEQGEN**)		
data arrival time		0.00	4.00
clock theclk (ris	se edge)	3.00	3.00
clock network del	lay (ideal)	1.00	4.00
clock uncertainty	•	-0.40	
_	d_on (**SEQGEN**)		
library setup tim		0.00	3.60
data required tim	ne		3.60
data required tim	ne		3.60
data arrival time			-4.00
slack (VIOLATED)			-0.40

2.11. Output delay(met)

2.11.1. Output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

2.11.2. Output delay settings

2.11.3. Output delay result

Startpoint: ff2/q_reg (rising edge-triggered flip-flop clocked by theclk')

Endpoint: ff2/q (internal path endpoint clocked by theclk)

Path Group: theclk Path Type: max

Des/Clust/Port	Wire Load Model	Library
dff_sync_reset_ne	5KGATES	ssc_core
time_test	5KGATES	ssc_core

Point	Incr	Path
clock theclk' (rise edge)	10.00	10.00
clock network delay (ideal)	1.00	11.00
ff2/q reg/clocked on (**SEQGEN**)	0.00	11.00 r
ff2/q reg/Q (**SEQGEN**)	0.00	11.00 r
ff2/q (dff sync reset ne)	0.00	11.00 r
data arrival time		11.00
clock theclk (rise edge) clock network delay (ideal)	20.00	20.00
output external delay	-8.00	12.00
data required time		12.00
data required time		12.00
data arrival time		-11.00
slack (MET)		1.00

2.12. Output delay(violated)

2.12.1. Output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 5 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

2.12.2. Output delay settings

2.12.3. Output delay result

data arrival time

slack (VIOLATED)

Startpoint: ff2/q_reg (rising edge-trigg Endpoint: ff2/q (internal path endpoint Path Group: theclk Path Type: max	_	_
Des/Clust/Port Wire Load Model	_	
dff_sync_reset_ne 5KGATES time_test 5KGATES	ssc_core	
Point	Incr	Path
clock theclk' (rise edge) clock network delay (ideal) ff2/q_reg/clocked_on (**SEQGEN**) ff2/q_reg/Q (**SEQGEN**) ff2/q (dff_sync_reset_ne) data arrival time	0.00	3.50
clock theclk (rise edge) clock network delay (ideal) output external delay data required time	5.00 0.00 -8.00	5.00
data required time		-3.00

-3.50

-6.50

3. Negative flip-flop to Negative flip-flop

3.1. module figure

3.2. module Verilog file

```
`timescale 1ns/1ns
module time_test (
output Q2 ,
input CLK
);
reg D1;
wire Q1, D2;
reg reset;
dff_sync_reset_ne ff1 (.data(D1), .clk(CLK), .q(Q1), .reset(reset));
dff_sync_reset_ne ff2 (.data(D2), .clk(CLK), .q(Q2), .reset(reset));
               hal (.a(Q1), .b(Q1), .cout(D2));
halfadder
initial D1 =1;
always @ (posedge CLK)
begin D1 <= ~D1;</pre>
end
endmodule
module dff (
data , // Data Input
       , // Clock Input
reset , // Reset input
        // Q output
q
);
```

```
//----Input Ports-----
input data, clk, reset ;
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//-----Code Starts Here-----
always @ ( posedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
module halfadder(
a ,
b,
cout,
q
);
input a,b;
output cout,q;
assign cout = a ^ b;
assign q
        = a & b;
endmodule
module dff_sync_reset_ne (
data , // Data Input
clk , // Clock Input
reset , // Reset input
q
      // Q output
);
//----Input Ports-----
input data, clk, reset ;
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//-----Code Starts Here-----
always @ ( negedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
```

3.3. module netlist file

```
module dff sync reset ne 0 ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N4, n1;
  fdf1a3 q_reg ( .D(N4), .CLK(n1), .Q(q) );
  inv1a1 U3 ( .A(clk), .Y(n1) );
  and2a3 U4 ( .A(reset), .B(data), .Y(N4) );
endmodule
module halfadder ( a, b, cout, q );
  input a, b;
  output cout, q;
  and 2a3 U1 ( .A(b), .B(a), .Y(q));
  xor2a1 U2 ( .A(b), .B(a), .Y(cout) );
endmodule
module dff_sync_reset_ne_1 ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N4, n2;
  fdf1a3 q reg (.D(N4), .CLK(n2), .Q(q));
  invla1 U3 ( .A(clk), .Y(n2) );
  and2a3 U4 ( .A(reset), .B(data), .Y(N4) );
endmodule
module time test ( Q2, CLK );
  input CLK;
  output Q2;
  wire D1, Q1, D2, n1;
  dff sync reset ne 0 ff1 ( .data(D1), .clk(CLK), .reset(1'b0), .q(Q1) );
  dff_sync_reset_ne_1 ff2 ( .data(D2), .clk(CLK), .reset(1'b0), .q(Q2) );
  halfadder hal (.a(Q1), .b(Q1), .cout(D2));
  fdf1a2 D1 reg ( .D(n1), .CLK(CLK), .Q(D1) );
  inv1a1 U4 ( .A(D1), .Y(n1) );
endmodule
```

3.4. library file

Link library /home/zhang/Asic/time/libs/core typ.db

Target library /home/zhang/Asic/time/libs/core_typ.db

Symbol library /home/zhang/Asic/time/libs/core.sdb

3.5. Setup time check(met)

3.5.1. Setup time check script file

```
# Create user defined variables
set CLK PORT [get ports CLK]
set CLK_PERIOD 5.00
set CLK_SKEW 0.14
set INPUT DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set_dont_touch_network my_clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.01
```

3.5.2. Setup time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/ <u>Clust</u> /Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
clock CLKP (rise edge)	0.00	0.00
clock network delay (ideal)	1.00	1.00
D1_reg/CLK (fdf1a2)	0.00	1.00 r
D1_reg/Q (fdf1a2)	0.62	1.62 f
U4/Y (inv1a1)	0.51	2.13 r
D1_reg/D (fdf1a2)	0.00	2.13 r
data arrival time		2.13
clock CLKP (rise edge)	3.00	3.00
clock network delay (ideal)	1.00	4.00
clock uncertainty	-0.40	3.60
D1_reg/CLK (fdf1a2)	0.00	3.60 r
library <mark>setup</mark> time	-0.17	3.43
data required time		3.43
data required time		3.43
data arrival time		-2.13
slack (MET)		1.31

3.6. Setup time check (violated)

3.6.1. Setup time check script file

```
# Create user defined variables
set CLK PORT [get ports CLK]
set CLK PERIOD 1.00
set CLK SKEW 0.14
set INPUT DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
create_clock -period $CLK_PERIOD -name CLKP [get_ports CLK]
set_multicycle_path 2 -from [get_pins ff1/clk] -to [get_pins ff2/data]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 1.0 $CLK PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT
set library hold time 0.01
```

3.6.2. Setup time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/Clust/Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
<pre>clock CLKP (rise edge) clock network delay (ideal) D1_reg/CLK (fdf1a2) D1_reg/Q (fdf1a2) U4/Y (inv1a1) D1_reg/D (fdf1a2) data arrival time</pre>	0.00 1.00 0.00 0.62 0.51 0.00	0.00 1.00 1.00 r 1.62 f 2.13 r 2.13 r 2.13
<pre>clock CLKP (rise edge) clock network delay (ideal) clock uncertainty D1_reg/CLK (fdf1a2) library setup time data required time</pre>	1.00 1.00 -0.40 0.00 -0.17	1.00 2.00 1.60 1.60 r 1.43 1.43
data required time data arrival time		1.43
slack (VIOLATED)		-0.69

3.7. Hold time check(met)

3.7.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 2.0 $CLK PORT
set clock uncertainty -hold 0.14 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.51
```

3.7.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_clock

Path Type: min

Path Type: min				
Des/Clust/Port			Library	
time_test			ssc_cor	
Point			Incr	
clock my clock (ri	se edge)		0.00	
clock network dela	y (ideal)		3.00	3.00
D1_reg/CLK (fdf1a2)		0.00	3.00 r
D1_reg/Q (fdf1a2)			0.55	3.55 r
D1 (net)		2	0.00	3.55 r
U4/Y (inv1a1)			0.37	3.92 f
n1 (net)		1	0.00	3.92 f
D1_reg/D (fdf1a2)			0.00	3.92 f
data arrival time				3.92
clock my_clock (ri	se edge)		0.00	0.00
clock network dela	y (ideal)		3.00	3.00
clock uncertainty				3.14
D1_reg/CLK (fdf1a2)		0.00	3.14 r
library hold time			0.32	3.46
data required time				3.46
data required time				3.46
data arrival time				-3.92
slack (MET)				0.46

3.8. Hold time check(violated)

3.8.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 3.0 $CLK PORT
set clock uncertainty -hold 0.84 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 1.51
```

3.8.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock) Endpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_clock

Path Type: min

Des/Clust/Port	Wire Load Model	Library	
time_test	5KGATES	ssc_core	
Point		Incr	Path
<pre>clock my_clock (ri clock network dela D1_reg/CLK (fdf1a2) D1_reg/Q (fdf1a2) U4/Y (inv1a1) D1_reg/D (fdf1a2) data arrival time</pre>	y (ideal)	0.00 3.00 0.00 0.55 0.37	3.00
<pre>clock my_clock (ri clock network dela clock uncertainty D1_reg/CLK (fdf1a2</pre>	y (ideal)	0.00 3.00 0.84 0.00	0.00 3.00 3.84 3.84 r

library hold time data required time	0.32	4.16 4.16
data required time data arrival time		4.16 -3.92
slack (VIOLATED)		-0.24

3.9. Input delay(met)

3.9.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

3.9.2. Input delay settings

3.9.3. Input delay result

slack (MET)

Startpoint: ff1/data (internal path st Endpoint: ff1/q_reg (rising edge-trice Path Group: theclk Path Type: max				theclk	ξ')
Des/Clust/Port Wire Load Model	Library				
time_test 5KGATES dff_sync_reset_ne 5KGATES	ssc_core ssc_core				
Point	Incr	Path			
clock theclk (rise edge) clock network delay (ideal)	0.00 0.00				
input external delay	4.00	4.00	r		
ff1/data (dff_sync_reset_ne)	0.00	4.00	r		
ff1/C12/Z_0 (*SELECT_OP_2.1_2.1_1)					
ff1/q_reg/next_state (**SEQGEN**)	0.00	4.00	r		
data arrival time		4.00			
clock theclk' (rise edge)	10.00	10.00			
clock network delay (ideal)	1.00	11.00			
clock uncertainty	-0.40				
ff1/q_reg/clocked_on (**SEQGEN**)	0.00	10.60	r		
library setup time	0.00	10.60			
data required time		10.60			
data required time		10.60			
data arrival time		-4.00			

6.60

3.10. Input delay(violated)

3.10.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 3 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

3.10.2. Input delay settings

3.10.3. Input delay result

slack (VIOLATED)

ff1/q_rep: theclk	g (rising edge-t					
/Port	Wire Load Model	I	ibrary			
			_			
		ĩ	ncr	Path		
	_					
(drr_sync	_reset_ne)		.00	4.00	r	
_	te (**SEQGEN**)	·	.00		r	
vai time				4.00		
clk' (ris	e edge)	1	.50	1.50		
	-	1	.00	2.50		
ertainty		-0	.40	2.10		
/clocked	on (**SEQGEN**)	C	.00	2.10	r	
_						
ired time				2.10		
				0 10		
	ff1/q_re p: theclk : max /Port reset_ne clk (rise work dela ernal del (dff_sync /next_sta val time clk' (rise work dela ertainty /clocked_ etup time etup time etired time	ff1/q_reg (rising edge-t p: theclk : max //Port Wire Load Model	ff1/q_reg (rising edge-triggered up: theclk up: theclk up: max //Port Wire Load Model I // SKGATES // STESET_NE SKGATES // SCLK (rise edge) // Work delay (ideal) // Clocked_on (**SEQGEN**) // Setup time // Clocked_time	ff1/q_reg (rising edge-triggered flip-fip: theclk e: max //Port Wire Load Model Library SKGATES ssc_core reset_ne 5KGATES ssc_core Incr Calk (rise edge) 0.00 Work delay (ideal) 0.00 Gernal delay 4.00 (dff_sync_reset_ne) 0.00 (a) (*SELECT_OP_2.1_2.1_1) 0.00 (val time Calk' (rise edge) 1.50 Work delay (ideal) 1.00 Exertainty -0.40 (coked_on (**SEQGEN**) 0.00 Exertainty -0.40 Exertainty -0.40	### ### ##############################	### A SECOPT STATES ### A SECOPT STATE STATES ### A SECOPT STATE S

-1.90

3.11. Output delay(met)

3.11.1. Output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

3.11.2. Output delay settings

3.11.3. Output delay result

Startpoint: ff2/q_reg (rising edge-triggered flip-flop clocked by theclk')

Endpoint: ff2/q (internal path endpoint clocked by theclk)

Path Group: theclk Path Type: max

Des/Clust/Port	Wire Load Model	Library
dff_sync_reset_ne time_test	5KGATES 5KGATES	ssc_core

Point	Incr	Path	
clock theclk' (rise edge)	10.00	10.00	
clock network delay (ideal)	1.00	11.00	
ff2/q_reg/clocked_on (**SEQGEN**)	0.00	11.00 r	
ff2/q_reg/Q (**SEQGEN**)	0.00	11.00 r	
ff2/q (dff_sync_reset_ne)	0.00	11.00 r	
data arrival time		11.00	
clock theclk (rise edge)	20.00	20.00	
clock network delay (ideal)	0.00	20.00	
output external delay	-8.00	12.00	
data required time		12.00	
data required time		12.00	
data arrival time		-11.00	
slack (MET)		1.00	

3.12. Output delay(violated)

3.12.1. Output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 5 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

3.12.2. Output delay settings

3.12.3. Input delay result

slack (VIOLATED)

Startpoint: ff2/q_reg Endpoint: ff2/q (int Path Group: theclk Path Type: max		_	_	_	eclk
Des/Clust/Port W		_			
dff_sync_reset_ne 5 time_test 5	KGATES	ssc_core ssc_core			
Point		Incr			
clock theclk' (rise	edge)	2.50	2.50		
clock network delay		1.00			
ff2/q_reg/clocked_on					
ff2/q_reg/Q (**SEQGE		0.00			
ff2/q (dff_sync_rese	t_ne)	0.00			
data arrival time			3.50		
clock theclk (rise e	dge)	5.00	5.00		
clock network delay	-	0.00	5.00		
output external dela		-8.00	-3.00		
data required time			-3.00		
data required time			-3.00		
data arrival time			-3.50		

-6.50

4. Negative flip-flop to Positive flip-flop

4.1. module figure

4.2. module Verilog file

```
`timescale 1ns/1ns
module time_test (
output Q2 ,
input CLK
);
reg D1;
wire Q1, D2;
reg reset;
dff_sync_reset_ne ff1 (.data(D1), .clk(CLK), .q(Q1), .reset(reset));
dff ff2 (.data(D2), .clk(CLK), .q(Q2), .reset(reset));
halfadder
               hal (.a(Q1), .b(Q1), .cout(D2));
initial D1 =1;
always @ (posedge CLK)
begin D1 <= ~D1;</pre>
end
endmodule
module dff (
data , // Data Input
       , // Clock Input
reset , // Reset input
        // Q output
q
);
```

```
//----Input Ports-----
input data, clk, reset ;
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//-----Code Starts Here-----
always @ ( posedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
module halfadder(
a ,
b,
cout,
q
);
input a,b;
output cout,q;
assign cout = a ^ b;
assign q
        = a & b;
endmodule
module dff_sync_reset_ne (
data , // Data Input
clk , // Clock Input
reset , // Reset input
q
      // Q output
);
//----Input Ports-----
input data, clk, reset ;
//-----Output Ports-----
output q;
//----Internal Variables-----
reg q;
//-----Code Starts Here-----
always @ ( negedge clk)
if (~reset) begin
 q <= 1'b0;
end else begin
 q <= data;
end
endmodule //End Of Module dff sync reset
```

4.3. module netlist file

```
module dff sync reset ne 0 ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire
       N4, n1;
  fdf1a3 q reg (.D(N4), .CLK(n1), .Q(q));
  invla1 U3 ( .A(clk), .Y(n1) );
  and2a3 U4 ( .A(reset), .B(data), .Y(N4) );
endmodule
module halfadder ( a, b, cout, q );
  input a, b;
  output cout, q;
  and2a3 U1 ( .A(b), .B(a), .Y(q) );
  xor2a1 U2 ( .A(b), .B(a), .Y(cout) );
endmodule
module dff sync reset ne 1 ( data, clk, reset, q );
  input data, clk, reset;
  output q;
  wire N4, n2;
  fdf1a3 q reg (.D(N4), .CLK(n2), .Q(q));
  inv1a1 U3 ( .A(clk), .Y(n2) );
  and2a3 U4 ( .A(reset), .B(data), .Y(N4) );
endmodule
module time test ( Q2, CLK );
  input CLK;
  output Q2;
  wire D1, Q1, D2, n1;
  dff_sync_reset_ne_0 ff1 ( .data(D1), .clk(CLK), .reset(1'b0), .q(Q1) );
  dff sync reset ne 1 ff2 ( .data(D2), .clk(CLK), .reset(1'b0), .q(Q2) );
  halfadder hal (.a(Q1), .b(Q1), .cout(D2));
  fdf1a2 D1 reg ( .D(n1), .CLK(CLK), .Q(D1) );
  inv1a1 U4 ( .A(D1), .Y(n1) );
endmodule
```

4.4. library file

Link library /home/zhang/Asic/time/libs/core_typ.db

Target library /home/zhang/Asic/time/libs/core_typ.db

Symbol library /home/zhang/Asic/time/libs/core.sdb

4.5. Setup time check(met)

4.5.1. Setup time check script file

```
# Create user defined variables
set CLK PORT [get ports CLK]
set CLK_PERIOD 5.00
set CLK_SKEW 0.14
set INPUT DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set_dont_touch_network my_clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.01
```

Setup time check result 4.5.2.

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/Clust/Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
clock CLKP (rise edge)	0.00	0.00
clock network delay (ideal)	1.00	1.00
D1 reg/CLK (fdf1a2)	0.00	1.00 r
D1_reg/Q (fdf1a2)	0.62	1.62 f
U4/Y (inv1a1)	0.51	2.13 r
D1_reg/D (fdf1a2)	0.00	2.13 r
data arrival time		2.13
clock CLKP (rise edge)	3.00	3.00
clock network delay (ideal)	1.00	4.00
clock uncertainty	-0.40	3.60
D1_reg/CLK (fdf1a2)	0.00	3.60 r
library setup time	-0.17	3.43
data required time		3.43
data required time		3.43
data arrival time		-2.13
slack (MET)		1.31

4.6. Setup time check (violated)

4.6.1. Setup time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK PERIOD 1.00
set CLK SKEW 0.14
set INPUT_DELAY 0.1
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set_dont_touch_network my_clock
create clock -period $CLK PERIOD -name CLKP [get ports CLK]
set multicycle path 2 -from [get pins ff1/clk] -to [get pins ff2/data]
set library_setup_time 0.04
set_clock_uncertainty -setup 0.4 $CLK_PORT
set clock latency 1.0 $CLK PORT
set clock uncertainty -hold 0.54 $CLK PORT
set library hold time 0.01
```

Setup time check result 4.6.2.

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by CLKP)

Endpoint: D1 reg (rising edge-triggered flip-flop clocked by CLKP)

Path Group: CLKP Path Type: max

Des/Clust/Port	Wire Load Model	Library
time_test	5KGATES	ssc_core

Point	Incr	Path
clock CLKP (rise edge)	0.00	0.00
clock network delay (ideal)	1.00	1.00
D1 reg/CLK (fdf1a2)	0.00	1.00 r
D1 reg/Q (fdf1a2)	0.62	1.62 f
U4/Y (inv1a1)	0.51	2.13 r
D1 reg/D (fdf1a2)	0.00	2.13 r
data arrival time		2.13
clock CLKP (rise edge)	1.00	1.00
clock network delay (ideal)	1.00	2.00
clock uncertainty	-0.40	1.60
D1_reg/CLK (fdf1a2)	0.00	1.60 r
library setup time	-0.17	1.43
data required time		1.43
data required time		1.43
data arrival time		-2.13
slack (VIOLATED)		-0.69

4.7. Hold time check(met)

4.7.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 2.0 $CLK PORT
set clock uncertainty -hold 0.14 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 0.51
```

4.7.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Endpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)

Path Group: my_clock

Path Type: min

Path Type: min					
Des/Clust/Port					
time_test			ssc_core		
Point			Incr		
clock my clock (ri	.se edge)		0.00		
clock network dela	y (ideal)		3.00	3.00	
D1 reg/CLK (fdf1a2	2)		0.00	3.00 r	
D1 reg/Q (fdf1a2)			0.55	3.55 r	
D1 (net)		2	0.00	3.55 r	
U4/Y (inv1a1)			0.37	3.92 f	
n1 (net)		1	0.00	3.92 f	
D1_reg/D (fdf1a2)			0.00	3.92 f	
data arrival time				3.92	
clock my_clock (ri	.se edge)		0.00	0.00	
clock network dela	y (ideal)		3.00	3.00	
clock uncertainty			0.14		
D1_reg/CLK (fdf1a2	2)		0.00	3.14 r	
library <mark>hold</mark> time			0.32	3.46	
data required time				3.46	
data required time				3.46	
data arrival time				-3.92	
slack (MET)				0.46	

4.8. Hold time check(violated)

4.8.1. Hold time check script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 4.00
set CLK SKEW 0.14
set INPUT_DELAY 2.0
set OUTPUT DELAY 0.5
set MAX AREA 380000
# Time Budget
create clock -period $CLK PERIOD -name my clock $CLK PORT
set dont touch network my clock
set_clock_uncertainty $CLK_SKEW [get_clocks my_clock]
set library setup time 0.04
set clock uncertainty -setup 0.4 $CLK PORT
set clock latency 3.0 $CLK PORT
set clock uncertainty -hold 0.84 $CLK PORT
#set input delay $INPUT DELAY -max -clock my clock [remove from collection [all inputs]
$CLK PORT]
#set output delay $OUTPUT DELAY -max -clock my clock [all outputs]
set library hold time 1.51
```

4.8.2. Hold time check result

Startpoint: D1_reg (rising edge-triggered flip-flop clocked by my_clock)
Endpoint: D1 reg (rising edge-triggered flip-flop clocked by my clock)

Path Group: my_clock

Path Type: min

	Wire Load Model	_	
time_test		ssc_core	
Point		Incr	Path
<pre>clock my_clock (risclock network delay D1_reg/CLK (fdf1a2) D1_reg/Q (fdf1a2) U4/Y (inv1a1) D1_reg/D (fdf1a2) data arrival time</pre>	y (ideal)	0.00 3.00 0.00 0.55 0.37	3.00 3.00 r 3.55 r 3.92 f
clock my_clock (riclock network delay clock uncertainty D1_reg/CLK (fdf1a2 library hold time data required time	y (ideal)	0.00 3.00 0.84 0.00 0.32	3.00 3.84 3.84 r
data required time data arrival time			4.16 -3.92
slack (VIOLATED)			-0.24

4.9. Input delay(met)

4.9.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

4.9.2. Input delay settings

4.9.3. Input delay result

Startpoint: ff1/data (internal path star Endpoint: ff1/q_reg (rising edge-trigge Path Group: theclk Path Type: max		
Des/Clust/Port Wire Load Model	Library	
time_test 5KGATES dff_sync_reset_ne 5KGATES	ssc_cor	
Point	Incr	Path
2 • • • • • • • • • • • • • • • • • • •	0.00	0.00
input external delay		
<pre>ff1/data (dff_sync_reset_ne) ff1/C12/Z 0 (*SELECT OP 2.1 2.1 1)</pre>		
ff1/q req/next state (**SEQGEN**)		4.00 r 4.00 r
data arrival time	0.00	4.00
clock theclk' (rise edge)	10.00	10.00
clock network delay (ideal)	1.00	11.00
clock uncertainty	-0.40	10.60
ff1/q_reg/clocked_on (**SEQGEN**)		
library setup time	0.00	
data required time		10.60
		10.50
data required time data arrival time		10.60 -4.00
uata arrivai time		-4.00
slack (MET)		6.60

4.10. Input delay(violated)

4.10.1. Input delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 3 [get_ports CLK]

set_input_delay -clock theclk -max 4 [get_ports ff1/data]
set_input_delay -clock theclk -min 2 [get_ports ff1/data]
```

4.10.2. Input delay settings

4.10.3. Input delay result

Startpoint: ff1/data (internal path star Endpoint: ff1/q_reg (rising edge-trigg Path Group: theclk Path Type: max			
Des/Clust/Port Wire Load Model	Library		
time_test 5KGATES dff_sync_reset_ne 5KGATES	ssc_core		
Point	Incr	Path	
<u> </u>	0.00	0.00	
<pre>input external delay ff1/data (dff_sync_reset_ne) ff1/C12/Z_0 (*SELECT_OP_2.1_2.1_1)</pre>	0.00	4.00 r	
<pre>ff1/q_reg/next_state (**SEQGEN**) data arrival time</pre>	0.00	4.00 r 4.00	
	1.50 1.00 -0.40	2.50	
<pre>ff1/q_reg/clocked_on (**SEQGEN**) library setup time data required time</pre>	0.00		
data required time data arrival time		2.10	
slack (VIOLATED)		-1.90	

4.11. Output delay(met)

4.11.1. Output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 20 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

4.11.2. Output delay settings

4.11.3. Output delay result

slack (MET)

	eg (rising edge-trig internal path endpoi k			
Des/Clust/Port	Wire Load Model	Library		
time_test	5KGATES	ssc_cor	е	
Point		Incr	Path	
clock theclk (ris	e edge)	0.00	0.00	
clock network del	ay (ideal)	1.00	1.00	
ff2/q_reg/clocked	l_on (**SEQGEN**)	0.00	1.00	r
ff2/q reg/Q (**SE	QGEN**)	0.00	1.00	r
ff2/q (dff)		0.00	1.00	r
data arrival time			1.00	
clock theclk (ris	e edge)	20.00	20.00	
clock network del	ay (ideal)	0.00	20.00	
output external d	lelay	-8.00	12.00	
data required tim	_		12.00	
data required tim	ie		12.00	
data arrival time			-1.00	

11.00

4.12. Output delay(violated)

4.12.1. Output delay script file

```
# Create user defined variables
set CLK_PORT [get_ports CLK]
set CLK_PERIOD 3.00
set CLK_SKEW 0.14

set_clock_uncertainty -setup 0.4 $CLK_PORT

set_clock_latency 1.0 $CLK_PORT
set_clock_uncertainty -hold 0.54 $CLK_PORT

create_clock -name theclk -period 5 [get_ports CLK]
set_output_delay -clock theclk -max 8 [get_ports ff2/q]
set_output_delay -clock theclk -min -3 [get_ports ff2/q]
```

4.12.2. Output delay settings

4.12.3. Output delay result

slack (VIOLATED)

_	reg (rising edge-trig (internal path endpoi lk			by theclk)
Des/Clust/Port	Wire Load Model	Library		
time_test	5KGATES	ssc_core	Э	
Point		Incr	Path	
clock theclk (rise edge) clock network delay (ideal) ff2/q_reg/clocked_on (**SEQGEN**) ff2/q_reg/Q (**SEQGEN**) ff2/q (dff) data arrival time		1.00 0.00 0.00		
clock theclk (rise edge) clock network delay (ideal) output external delay data required time		5.00 0.00 -8.00	5.00	
data required ti			-3.00	
data arrival time			-1.00	

-4.00

5. Recovery time and removal time

5.1. module figure

5.2. module Verilog file

5.3. module gate-level file

```
module dff_async ( CLK, D, R, Q );
  input CLK, D, R;
  output Q;
  wire   D_reg, n10, n11, n12, n13, n14;

  DFFPOSX1 D_reg_reg ( .D(D), .CLK(CLK), .Q(D_reg) );
  DFFSR Q_reg ( .D(D_reg), .CLK(CLK), .R(n13), .S(n12), .Q(Q) );
  AND2X1 U11 ( .A(R), .B(D_reg), .Y(n10) );
  INVX1 U12 ( .A(n10), .Y(n12) );
  AND2X1 U13 ( .A(D_reg), .B(n14), .Y(n11) );
  INVX1 U14 ( .A(n11), .Y(n13) );
  INVX1 U15 ( .A(R), .Y(n14) );
endmodule
```

5.4. time script file

```
#/* All verilog files, separated by spaces
set my verilog files [list /home/zhang/Asic/time/dff async fr/dff async fr.v]
#/* Top-level Module
                                               */
set my toplevel dff async
#/* No modifications needed below
#/***************
set OSU FREEPDK [format "%s%s" [getenv "PDK DIR"] "/osu soc/lib/files"]
set search path [concat $search path $OSU FREEPDK]
set alib library analysis path $OSU FREEPDK
set link library [set target library [concat [list
/export/opt/FreePDK45/osu_soc/lib/files/gscl45nm.db] [list dw foundation.sldb]]]
set target library "/export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db"
define design lib WORK -path ./
set verilogout show unconnected pins "true"
analyze -f verilog $my_verilog_files
elaborate $my toplevel
current design $my toplevel
link
uniquify
compile -ungroup all -map effort medium
compile -incremental_mapping -map_effort medium
set filename [format "%s%s" $my toplevel " gatelevel.v"]
write -f verilog -output $filename
#quit
```

5.5. recovery time check (met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLK)

Endpoint: Q_reg (recovery check against rising-edge clock CLK)

Path Group: **async default**

Path Type: max

Point	Incr	Path
clock CLK (fall edge)	6.00	6.00
clock network delay (ideal)	0.00	6.00
D_reg_reg/CLK (DFFNEGX1)	0.00	6.00 f
<pre>D_reg_reg/Q (DFFNEGX1)</pre>	0.08	6.08 f
U8/Y (AND2X1)	0.04	6.12 f
U9/Y (INVX1)	0.00	6.13 r
Q_reg/S (DFFSR)	0.00	6.13 r
data arrival time		6.13
clock CLK (rise edge)	12.00	12.00
clock network delay (ideal)	0.00	12.00
clock <u>reconvergence</u> pessimism	0.00	12.00
Q_reg/CLK (DFFSR)		12.00 r
library recovery time	0.02	12.02
data required time		12.02
data required time		12.02
data arrival time		-6.13
slack (MET)		5.89

5.6. recovery time check(violet)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLK)

Endpoint: Q_reg (recovery check against rising-edge clock CLK)

Path Group: **async default**

Path Type: max

Point	Incr	Path
clock CLK (fall edge)	6.00	6.00
clock network delay (ideal)	8.00	14.00
D_reg_reg/CLK (DFFNEGX1)	0.00	14.00 f
D_reg_reg/Q (DFFNEGX1)	0.08	14.08 f
U8/Y (AND2X1)	0.04	14.12 f
U9/Y (INVX1)	0.00	14.13 r
Q_reg/S (DFFSR)	0.00	14.13 r
data arrival time		14.13
:lock CLK (rise edge)	12.00	12.00
lock network delay (ideal)	8.00	20.00
:lock <u>reconvergence</u> pessimism	0.00	20.00
lock uncertainty	-12.00	
reg/CLK (DFFSR)		8.00 r
ibrary recovery time	0.02	
lata required time		8.02
data required time		8.02
data arrival time		-14.13
slack (VIOLATED)		-6.11

5.7. removal time check(met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLK)

Endpoint: Q_reg (removal check against rising-edge clock CLK)

Path Group: **async_default**

Path Type: min

Point 	Incr	Path
clock CLK (fall edge)	6.00	6.00
clock network delay (ideal)	0.00	6.00
D_reg_reg/CLK (DFFNEGX1)	0.00	6.00 f
_reg_reg/Q (DFFNEGX1)	0.08	6.08 f
J10/Y (AND2X1)	0.03	6.11 f
J11/Y (INVX1)		6.12 r
Q_reg/R (DFFSR)	0.00	
data arrival time		6.12
ock CLK (rise edge)	0.00	0.00
lock network delay (ideal)	0.00	0.00
lock <u>reconvergence</u> pessimism	0.00	0.00
lock uncertainty	-0.80	-0.80
reg/CLK (DFFSR)		-0.80 r
ibrary removal time	0.21	
ata required time		-0.59
ata required time		-0.59
ata arrival time		-6.12
Lack (MET)		6.71

5.8. removal time check(violet)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLK)

Endpoint: Q_reg (removal check against rising-edge clock CLK)

Path Group: **async_default**

Path Type: min

Point	Incr	Path	
clock CLK (fall edge)	6.00	6.00	
clock network delay (ideal)	8.00	14.00	
<pre>D_reg_reg/CLK (DFFNEGX1)</pre>	0.00	14.00 f	
D_reg_reg/Q (DFFNEGX1)	0.08	14.08 f	
U10/Y (AND2X1)	0.03	14.11 f	
U11/Y (INVX1)	0.01	14.12 r	
Q_reg/R (DFFSR)	0.00	14.12 r	
data arrival time		14.12	
clock CLK (rise edge)	0.00	0.00	
clock network delay (ideal)	8.00	8.00	
clock <u>reconvergence</u> pessimism	0.00	8.00	
clock uncertainty	12.00	20.00	
Q_reg/CLK (DFFSR)		20.00 r	
library removal time	0.21	20.21	
data required time		20.21	
data required time		20.21	
data arrival time		-14.12	
slack (VIOLATED)		-6.09	

6. Half-cycle paths

6.1. Module figure

6.2. Module Verilog file

6.3. Module gate-level file

```
module dff_async ( CLK, D, R, Q );
  input CLK, D, R;
  output Q;
  wire   D_reg, n10, n11, n12, n13, n14;

  DFFPOSX1 D_reg_reg ( .D(D), .CLK(CLK), .Q(D_reg) );
  DFFSR Q_reg ( .D(D_reg), .CLK(CLK), .R(n13), .S(n12), .Q(Q) );
  AND2X1 U11 ( .A(R), .B(D_reg), .Y(n10) );
  INVX1 U12 ( .A(n10), .Y(n12) );
  AND2X1 U13 ( .A(D_reg), .B(n14), .Y(n11) );
  INVX1 U14 ( .A(n11), .Y(n13) );
  INVX1 U15 ( .A(R), .Y(n14) );
endmodule
```

6.4. Module script file (met)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async gatelevel.v
link design dff async
#Create clock with period 10 (default waveform)
create clock -name CLK -period 12 [get ports CLK]
#Report the setup time check (should pass)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLK**
set clock uncertainty -0.8 -hold [get clocks CLK]
report timing -path full -delay min -nworst \frac{1}{1} -max paths \frac{1}{1} -significant digits \frac{2}{1} -sort by
group -group **CLK**
#Add clock uncertainty for setup and clock latency
set_clock_latency -source 8 [get_clocks CLK]
set clock uncertainty 5 -setup -hold [get clocks CLK]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLK**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLK**
```

6.5. Half cycle (met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLK)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLK)

Path Group: CLK Path Type: max

Point		Path
clock CLK (fall edge)		6.00
clock network delay (ideal)	8.00	14.00
D reg reg/CLK (DFFNEGX1)	0.00	14.00 f
D_reg_reg/Q (DFFNEGX1)	0.06	14.06 r
Q_reg/D (DFFSR)	0.00	14.06 r
data arrival time		14.06
clock CLK (rise edge)	12.00	12.00
clock network delay (ideal)	8.00	20.00
clock reconvergence pessimism	0.00	20.00
clock uncertainty	-5.00	15.00
Q_reg/CLK (DFFSR)		15.00 r
library setup time	-0.08	14.92
data required time		14.92
data required time		14.92
data arrival time		-14.06
slack (MET)		0.86

6.6. Module script file (violeted)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async gatelevel.v
link design dff async
#Create clock with period 10 (default waveform)
create clock -name CLK -period 12 [get ports CLK]
#Report the setup time check (should pass)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLK**
set clock uncertainty -0.8 -hold [get clocks CLK]
report timing -path full -delay min -nworst \frac{1}{1} -max paths \frac{1}{1} -significant digits \frac{2}{1} -sort by
group -group **CLK**
#Add clock uncertainty for setup and clock latency
set_clock_latency -source 8 [get_clocks CLK]
set clock uncertainty 8 -setup -hold [get clocks CLK]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLK**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLK**
```

6.7. Half-cycle (violeted)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLK)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLK)

Path Group: CLK Path Type: max

Point	**********	Path
clock CLK (fall edge)		6.00
clock network delay (ideal)	8.00	14.00
<pre>D_reg_reg/CLK (DFFNEGX1)</pre>	0.00	14.00 f
<pre>D_reg_reg/Q (DFFNEGX1)</pre>	0.06	14.06 r
Q_reg/D (DFFSR)	0.00	14.06 r
data arrival time		14.06
clock CLK (rise edge)	12.00	12.00
clock network delay (ideal)	8.00	20.00
clock reconvergence pessimism	0.00	20.00
clock uncertainty	-8.00	12.00
Q_reg/CLK (DFFSR)		12.00 r
library setup time	-0.08	11.92
data required time		11.92
data required time		11.92
data arrival time		-14.06
slack (VIOLATED)		-2.14

7. Multicycle setup specification

7.1. Script file

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async fr/dff async multi gatelevel.v
link_design dff_async
#Create clock with period 10 (default waveform)
create clock -name CLKM -period 12 [get ports CLKM]
create clock -name CLKP -period 3 [get ports CLKP]
#Report the setup time check (should pass)
report timing -path full -delay max -nworst \frac{1}{1} -max paths \frac{1}{1} -significant digits \frac{2}{1} -sort by
group -group **CLKP**
set_clock_uncertainty -0.8 -hold [get_clocks CLKM]
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKP**
#Add clock uncertainty for setup and clock latency
set clock latency -source 8 [get clocks CLKM]
set clock uncertainty 8 -setup -hold [get clocks CLKM]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
```

7.2. Setup (violated)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: max

Point	Incr	Path	
clock CLKP (fall edge)	10.50	10.50	_
clock network delay (ideal)	8.00	18.50	
D reg reg/CLK (DFFNEGX1)	0.00	18.50 f	
D_reg_reg/Q (DFFNEGX1)	0.06	18.56 r	
Q_reg/D (DFFSR)	0.00	18.56 r	
data arrival time		18.56	
clock CLKM (rise edge)	12.00	12.00	
clock network delay (ideal)	8.00	20.00	
clock reconvergence pessimism	0.00	20.00	
clock uncertainty	-8.00	12.00	
Q_reg/CLK (DFFSR)		12.00 r	
library setup time	-0.08	11.92	
data required time		11.92	
data required time		11.92	_
data arrival time		-18.56	
slack (VIOLATED)		-6.64	_

7.3. Hold(violated)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: min

Point		Path
clock CLKP (fall edge)	1.50	
clock network delay (ideal)	8.00	9.50
D reg reg/CLK (DFFNEGX1)	0.00	9.50 f
D reg reg/Q (DFFNEGX1)	0.06	9.56 r
Q reg/D (DFFSR)	0.00	9.56 r
data arrival time		9.56
clock CLKM (rise edge)	0.00	0.00
clock network delay (ideal)	8.00	8.00
clock reconvergence pessimism	0.00	8.00
clock uncertainty	8.00	16.00
Q reg/CLK (DFFSR)		16.00 r
library hold time	-0.01	15.99
data required time		15.99
data required time		15.99
data arrival time		-9.56
slack (VIOLATED)		-6.43

7.4. Script file(met)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async fr/dff async multi gatelevel.v
link design dff async
#Create clock with period 10 (default waveform)
create_clock -name CLKM -period 12 [get_ports CLKM]
create clock -name CLKP -period 3 [get ports CLKP]
#Report the setup time check (should pass)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKP**
set clock uncertainty -0.8 -hold [get clocks CLKM]
report timing -path full -delay min -nworst \frac{1}{1} -max paths \frac{1}{1} -significant digits \frac{2}{1} -sort by
group -group **CLKP**
#Add clock uncertainty for setup and clock latency
set clock latency -source 8 [get_clocks CLKM]
set clock uncertainty 1 -setup -hold [get clocks CLKM]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
```

7.5. Setup (met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: max

Point	Incr	Path
clock CLKP (fall edge)	10.50	10.50
clock network delay (ideal)	8.00	
D reg reg/CLK (DFFNEGX1)	0.00	18.50 f
D reg reg/Q (DFFNEGX1)	0.06	18.56 r
Q reg/D (DFFSR)	0.00	18.56 r
data arrival time		18.56
clock CLKM (rise edge)	12.00	12.00
clock network delay (ideal)	8.00	20.00
clock reconvergence pessimism	0.00	20.00
clock uncertainty	-1.00	19.00
Q_reg/CLK (DFFSR)		19.00 r
library setup time	-0.08	18.92
data required time		18.92
data required time		18.92
data arrival time		-18.56
slack (MET)		0.36

7.6. Hold (met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: min

Point	Incr	Path
clock CLKP (fall edge)	1.50	1.50
clock network delay (ideal)	8.00	9.50
<pre>D_reg_reg/CLK (DFFNEGX1)</pre>	0.00	9.50 f
<pre>D_reg_reg/Q (DFFNEGX1)</pre>	0.06	9.56 r
Q_reg/D (DFFSR)	0.00	9.56 r
data arrival time		9.56
clock CLKM (rise edge)	0.00	0.00
clock network delay (ideal)	8.00	8.00
clock reconvergence pessimism	0.00	8.00
clock uncertainty	1.00	9.00
Q_reg/CLK (DFFSR)		9.00 r
library hold time	-0.01	8.99
data required time		8.99
data required time		8.99
data arrival time		-9.56
slack (MET)		0.57

8. Non-integer multiple clocks

8.1. Script files (met)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async fr/dff async multi gatelevel.v
link_design dff_async
#Create clock with period 10 (default waveform)
create clock -name CLKM -period 15 [get ports CLKM]
create clock -name CLKP -period 17 [get ports CLKP]
#Report the setup time check (should pass)
report timing -path full -delay max -nworst \frac{1}{1} -max paths \frac{1}{1} -significant digits \frac{2}{1} -sort by
group -group **CLKP**
set clock uncertainty 0.1 -hold [get clocks CLKM]
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKP**
#Add clock uncertainty for setup and clock latency
set clock latency -source 8 [get clocks CLKM]
set clock uncertainty 0.2 -setup -hold [get clocks CLKM]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
```

8.2. Script files (violeted)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async fr/dff async multi gatelevel.v
link design dff async
#Create clock with period 10 (default waveform)
create_clock -name CLKM -period 13 [get_ports CLKM]
create clock -name CLKP -period 14 [get ports CLKP]
#Report the setup time check (should pass)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKP**
set clock uncertainty -0.8 -hold [get clocks CLKM]
report timing -path full -delay min -nworst \frac{1}{1} -max paths \frac{1}{1} -significant digits \frac{2}{1} -sort by
group -group **CLKP**
#Add clock uncertainty for setup and clock latency
set clock latency -source 8 [get_clocks CLKM]
set clock uncertainty 1 -setup -hold [get clocks CLKM]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CLKM**
```

8.3. Setup (met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: max

Point	Incr	Path
clock CLKP (fall edge)	59.50	59.50
clock network delay (ideal)	8.00	67.50
D_reg_reg/CLK (DFFNEGX1)	0.00	67.50 f
D_reg_reg/Q (DFFNEGX1)	0.06	67.56 r
Q_reg/D (DFFSR)	0.00	67.56 r
data arrival time		67.56
clock CLKM (rise edge)	60.00	60.00
clock network delay (ideal)	8.00	68.00
clock reconvergence pessimism	0.00	68.00
clock uncertainty	-0.20	67.80
Q_reg/CLK (DFFSR)		67.80 r
library setup time	-0.08	67.72
data required time		67.72
data required time		67.72
data arrival time		-67.56
slack (MET)		0.16

8.4. Setup (violeted)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: max

Point	Incr	Path	_
clock CLKP (fall edge)	77.00	77.00	
clock network delay (ideal)	8.00	85.00	
D reg reg/CLK (DFFNEGX1)	0.00	85.00 f	
D reg reg/Q (DFFNEGX1)	0.06	85.06 r	
Q reg/D (DFFSR)	0.00	85.06 r	
data arrival time		85.06	
clock CLKM (rise edge)	78.00	78.00	
clock network delay (ideal)	8.00	86.00	
clock reconvergence pessimism	0.00	86.00	
clock uncertainty	-1.00	85.00	
Q reg/CLK (DFFSR)		85.00 r	
library setup time	-0.08	84.92	
data required time		84.92	
data required time		84.92	-
data required time			
data arrival time		-85.06 	_
slack (VIOLATED)		-0.14	

8.5. Hold(met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: min

Point	Incr	Path
clock CLKP (fall edge)	195.50	195.50
clock network delay (ideal)	8.00	203.50
<pre>D_reg_reg/CLK (DFFNEGX1)</pre>	0.00	203.50 f
D_reg_reg/Q (DFFNEGX1)	0.06	203.56 r
Q_reg/D (DFFSR)	0.00	203.56 r
data arrival time		203.56
clock CLKM (rise edge)	195.00	195.00
clock network delay (ideal)	8.00	203.00
clock reconvergence pessimism	0.00	203.00
clock uncertainty	0.10	203.10
Q reg/CLK (DFFSR)		203.10 r
library hold time	-0.01	203.09
data required time		203.09
data required time		203.09
data arrival time		-203.56
slack (MET)		0.47

8.6. Hold(violated)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CLKP)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CLKM)

Path Group: CLKM Path Type: min

Point		Path	
clock CLKP (fall edge)	91.00		_
clock network delay (ideal)	8.00	99.00	
D reg reg/CLK (DFFNEGX1)	0.00	99.00 f	
D reg reg/Q (DFFNEGX1)	0.06	99.06 r	
Q reg/D (DFFSR)	0.00	99.06 r	
data arrival time		99.06	
clock CLKM (rise edge)	91.00	91.00	
clock network delay (ideal)	8.00	99.00	
clock reconvergence pessimism	0.00	99.00	
clock uncertainty	1.00	100.00	
Q reg/CLK (DFFSR)		100.00 r	
library hold time	-0.01	99.99	
data required time		99.99	
data required time		99.99	_
data arrival time		-99.06	
slack (VIOLATED)		-0.93	_

9. Phase shift clocks

9.1. Script file(met)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async fr/dff async shift gatelevel.v
link_design dff_async
#Create clock with period 10 (default waveform)
create clock -name CKM
                       -period 2.0 -waveform {0 1.0} [get_ports CKM]
create clock -name CKM90 -period 2.0 -waveform {0.5 1.5}
                                                              [get ports CKM90]
#Report the setup time check (should pass)
set clock uncertainty 1 -hold [get clocks CKM90]
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM**
set_clock_uncertainty 0.1 -hold [get_clocks CKM90]
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM**
#Add clock uncertainty for setup and clock latency
set clock latency -source 8 [get clocks CKM90]
set clock uncertainty 0.2 -setup [get clocks CKM]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM90**
set clock uncertainty 0.2 -setup [get clocks CKM]
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM90**
```

9.2. Setup(met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CKM)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CKM90)

Path Group: CKM90 Path Type: max

Point	Incr	Path
clock CKM (fall edge)		1.00
clock network delay (ideal)	8.00	9.00
D_reg_reg/CLK (DFFNEGX1)	0.00	9.00 f
D_reg_reg/Q (DFFNEGX1)	0.06	9.06 r
Q_reg/D (DFFSR)	0.00	9.06 r
data arrival time		9.06
clock CKM90 (rise edge)	2.50	2.50
clock network delay (ideal)	8.00	10.50
clock reconvergence pessimism	0.00	10.50
Q reg/CLK (DFFSR)		10.50 r
library setup time	-0.08	10.42
data required time		10.42
data required time		10.42
data arrival time		-9.06
slack (MET)		1.36

9.3. Hold(met)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CKM)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CKM90)

Path Group: CKM90 Path Type: min

Point	*******	Path
clock CKM (fall edge)	1.00	1.00
clock network delay (ideal)	8.00	9.00
D reg reg/CLK (DFFNEGX1)	0.00	9.00 f
D reg reg/Q (DFFNEGX1)	0.06	9.06 r
Q_reg/D (DFFSR)	0.00	9.06 r
data arrival time		9.06
clock CKM90 (rise edge)	0.50	0.50
clock network delay (ideal)	8.00	8.50
clock reconvergence pessimism	0.00	8.50
clock uncertainty	0.10	8.60
Q_reg/CLK (DFFSR)		8.60 r
library hold time	-0.01	8.59
data required time		8.59
data required time		8.59
data arrival time		-9.06
slack (MET)		0.47

9.4. Script file (violated)

```
set link path {* /export/opt/FreePDK45/osu soc/lib/files/gscl45nm.db}
read verilog /home/zhang/Asic/time/dff async fr/dff async shift gatelevel.v
link design dff async
#Create clock with period 10 (default waveform)
#Report the setup time check (should pass)
set clock uncertainty 2 -hold [get clocks CKM90]
report\_timing - path full - delay max - nworst 1 - max paths 1 - significant digits 2 - sort by
group -group **CKM**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM**
#Add clock uncertainty for setup and clock latency
set clock latency -source 8 [get clocks CKM90]
set clock uncertainty 4.5 -setup [get clocks CKM90]
#Report the setup time check (should fail)
report timing -path full -delay max -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM90**
report timing -path full -delay min -nworst 1 -max paths 1 -significant digits 2 -sort by
group -group **CKM90**
```

9.5. Setup (violated)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CKM)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CKM90)

Path Group: CKM90 Path Type: max

Point		Path
clock CKM (fall edge)	1.00	
clock network delay (ideal)	8.00	9.00
D reg reg/CLK (DFFNEGX1)	0.00	9.00 f
D reg reg/Q (DFFNEGX1)	0.06	9.06 r
Q_reg/D (DFFSR)	0.00	9.06 r
data arrival time		9.06
clock CKM90 (rise edge)	2.50	2.50
clock network delay (ideal)		10.50
clock reconvergence pessimism	0.00	10.50
clock uncertainty	-4.50	6.00
Q reg/CLK (DFFSR)		6.00 r
library setup time	-0.08	5.92
data required time		5.92
data required time		5.92
data arrival time		-9.06
slack (VIOLATED)		-3.14

9.6. Hold(violated)

Startpoint: D_reg_reg (falling edge-triggered flip-flop clocked by CKM)

Endpoint: Q_reg (rising edge-triggered flip-flop clocked by CKM90)

Path Group: CKM90 Path Type: min

Point	Incr	Path
clock CKM (fall edge)		1.00
clock network delay (ideal)	8.00	9.00
D reg reg/CLK (DFFNEGX1)	0.00	9.00 f
D reg reg/Q (DFFNEGX1)	0.06	9.06 r
Q reg/D (DFFSR)	0.00	9.06 r
data arrival time		9.06
clock CKM90 (rise edge)	0.50	0.50
clock network delay (ideal)	8.00	8.50
clock reconvergence pessimism	0.00	8.50
clock uncertainty	2.00	10.50
Q_reg/CLK (DFFSR)		10.50 r
library hold time	-0.01	10.49
data required time		10.49
data required time		10.49
data arrival time		-9.06
slack (VIOLATED)		-1.43