SEGMENTAÇÃO DE IMAGENS

Distinguir, em uma imagem de entrada, entre regiões de interesse e regiões irrelevantes.

SEGMENTAÇÃO DE IMAGENS

Definição formal:

Seja \mathbf{R} a imagem de entrada, a segmentação é o processo que particiona \mathbf{R} em k sub-regiões, \mathbf{R}_1 ,

$$\mathbf{R_{2}}, \dots, \mathbf{R_{k'}}$$
 tal que:

$$U_{i=1}^{k} \mathbf{R}_{i} = \mathbf{R}$$

 \mathbf{R}_{i} é uma região conexa, i = 1, 2, ..., k

 $\mathbf{R_i} \cap \mathbf{R_j} = \emptyset$ para todo $i \in j, i \neq j$

 $P(\mathbf{R}_i) = VERDADEIRO para i = 1, 2, ..., k$

 $P(\mathbf{R_i} \cup \mathbf{R_i}) = FALSO para i \neq j$

onde $P(\mathbf{R}_i)$ é um predicado lógico sobre os pontos no conjunto \mathbf{R}_i

ANÁLISE DO HISTOGRAMA

Idéia:

Analisar o histograma para identificar agrupamentos de *pixels* em um mesmo valor ou dentro de uma faixa de variação, de acordo com um limiar estipulado.

Procura separar a imagem em duas classes C_1 e C_2 , que podem representar objeto e fundo

Idéia:

Minimizar a variação interna das classes Maximizar a variação entre classes

O histograma deve ser bimodal

Algoritmo

Considere uma imagem com *L* níveis de cinza

Seja V_B a variação entre classes e V_T a variação total da imagem

Encontrar t (0 $\leq t < L$) que maximize a divisão de $\mathbf{V}_{\mathbf{B}}$ por $\mathbf{V}_{\mathbf{T}}$.

 $P_i \rightarrow probabilidade de um pixel ser do tom de cinza$ *i*

$$P_i = n_i/n$$

sendo \mathbf{n}_i o número de pixels com o valor i e \mathbf{n} o número total de pixels.

M → valor médio dos pixels da imagem

$$\mathbf{M} = \sum_{i=0}^{L-1} i.P_i$$

Variação total da imagem:

$$V_{T} = \sum_{i=0}^{L-1} (i - M)^{2}.P_{i}$$

 $w_o \rightarrow \text{probabilidade de um pixel pertencer à 1}^{\text{a}}$ classe

$$W_0 = \sum_{i=0}^{t} P_i$$

 $W_1 \rightarrow \text{probabilidade de um pixel pertencer à 2° classe}$

$$W_{1} = 1 - W_{0}$$

 $u_0 \rightarrow \text{valor médio dos pixels da 1}^{\text{a}} \text{ classe}$

$$\mathbf{m}_{\mathbf{t}} = \sum_{i=0}^{t} i.P_{i}$$

$$u_0 = \mathbf{m}_{\mathbf{t}}/w_0$$

 $u_1 \rightarrow \text{valor médio dos pixels da 2}^{\text{a}} \text{ classe}$

$$u_1 = (\mathbf{M} - \mathbf{m_t})/(1 - w_0)$$

Variação entre classes:

$$\mathbf{V}_{\mathbf{B}} = W_0.W_1.(U_1-U_0)^2$$

Exemplo:

$$\mathbf{M} = \sum_{i=0}^{L-1} i.P_i$$

$$\mathbf{V}_{\mathbf{T}} = \sum_{i=0}^{L-1} (i - \mathbf{M})^2.P_i$$

$$P_0 = 5/49 \approx 0.10$$
 $P_1 = 9/49 \approx 0.18$
 $P_2 = 6/49 \approx 0.12$
 $P_3 = 4/49 \approx 0.08$
 $P_4 = 0/49 \approx 0.00$
 $P_5 = 6/49 \approx 0.12$
 $P_6 = 8/49 \approx 0.16$
 $P_7 = 11/49 \approx 0.22$

$$\mathbf{M} \cong 3.84$$
 $\mathbf{V}_{\mathsf{T}} \cong 4.95$

Exemplo:

$$\mathbf{W}_{0} = \sum_{i=0}^{t} \mathbf{P}_{i}$$

$$\mathbf{W}_{1} = \mathbf{1} - \mathbf{W}_{0}$$

$$\mathbf{m}_{t} = \sum_{i=0}^{t} i.\mathbf{P}_{i}$$

$$u_{0} = \mathbf{m}_{t}/w_{0}$$

$$u_{1} = (\mathbf{M} - \mathbf{m}_{t})/(1 - w_{0})$$

t	$\mathbf{W}_0^{}$	\mathbf{W}_{1}	\mathbf{u}_{0}	\mathbf{u}_{1}
0	0.10	0.90	0.00	4.27
1	0.29	0.71	0.64	5.11
2	0.41	0.59	1.05	5.76
3	0.49	0.51	1.38	6.20
4	0.49	0.51	1.38	6.20
5	0.61	0.39	2.10	6.58
6	0.78	0.22	2.92	7.00
7	1.00	0.00	3.84	0.00

Exemplo:

$$\mathbf{V}_{\mathbf{B}} = w_0.w_1.(u_1-u_0)^2$$

$$V_{B-0}/V_{T} = 1.64/3.84 = 0.43$$
 $V_{B-1}/V_{T} = 4.11/3.84 = 1.07$
 $V_{B-2}/V_{T} = 5.37/3.84 = 1.40$
 $V_{B-3}/V_{T} = 5.81/3.84 = 1.51$
 $V_{B-4}/V_{T} = 5.81/3.84 = 1.51$
 $V_{B-5}/V_{T} = 4.77/3.84 = 1.24$
 $V_{B-6}/V_{T} = 2.86/3.84 = 0.74$
 $V_{B-7}/V_{T} = 0.00/3.84 = 0.00$

LIMIAR = 3 ou 4 o resultado na imagem é o mesmo