第四节幂级数

习 题 11-4

1. 求下列幂级数的收敛半径和收敛域:

(1)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2 + 1} x^n;$$

(2)
$$\sum_{n=1}^{\infty} \frac{x^n}{3^n + n}$$
;

$$(3) \quad \sum_{n=1}^{\infty} \frac{\ln n}{n} x^n \; ;$$

(4)
$$\sum_{n=0}^{\infty} \frac{2n+1}{n!} x^{2n+1};$$

(5)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1};$$
 (6)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{n} x^n;$$

$$(6) \quad \sum_{n=1}^{\infty} \frac{2^n + 3^n}{n} x^n$$

(7)
$$x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots;$$

(8)
$$x + 2^2 x^2 + 3^3 x^3 + \dots + n^n x^n + \dots;$$

(9)
$$\frac{1}{2} + \frac{3}{4}x^2 + \frac{5}{8}x^6 + \dots + \frac{2n-1}{2^n}x^{2n} + \dots;$$

(10)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n \cdot n}$$

(10)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n \cdot n};$$
 (11)
$$\sum_{n=0}^{\infty} \frac{1}{4^n} (x-3)^{2n};$$

(12)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^p} (p > 0).$$

解 (1) 设
$$a_n = \frac{2^n}{n^2 + 1}$$
,则 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)^2 + 1} \frac{n^2 + 1}{2^n} = 2$,所以收敛半径

$$R = \frac{1}{2}$$
. 当 $x = \frac{1}{2}$ 时,原级数为 $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ 收敛;当 $x = -\frac{1}{2}$ 时,原级数为 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}$ 收敛,

所以原级数的收敛域为 $\left[-\frac{1}{2},\frac{1}{2}\right]$.

$$x = 3$$
 时,级数为 $\sum_{n=1}^{\infty} \frac{3^n}{3^n + n}$,而 $\lim_{n \to \infty} \frac{3^n}{3^n + n} = \lim_{n \to \infty} \frac{1}{1 + \frac{n}{3^n}} = 1$,故 $\sum_{n=1}^{\infty} \frac{3^n}{3^n + n}$ 发散;同理当

x = -3 时,级数 $\sum_{n=1}^{\infty} \frac{(-3)^n}{3^n + n}$ 发散,所以原级数的收敛域为 (-3,3).

(3) 设
$$a_n = \frac{\ln n}{n}$$
,而 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{\ln(n+1)}{n+1} \frac{n}{\ln n} = 1$,所以收敛半径 $R = 1$.当

$$x = 1$$
 时,级数为 $\sum_{n=1}^{\infty} \frac{\ln n}{n}$,而 $\frac{\ln n}{n} \ge \frac{1}{n} (n \ge 4)$,故 $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ 发散;当 $x = -1$ 时,级数为

$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}, \quad \text{if } a_n = \frac{\ln n}{n} \ge 0, \quad \text{if } a_n \ge a_{n+1} (n \ge 4) \text{ if } \lim_{n \to \infty} a_n = 0, \quad \text{if } \text{if } \text{if } m \ge n \text{ if } n \ge n \text{ if }$$

收敛, 所以原级数的收敛域为[-1,1).

(4) 设
$$u_n = \frac{2n+1}{n!}x^{2n+1}$$
,而 $\lim_{n\to\infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n\to\infty} \frac{2(n+1)+1}{(n+1)!} \frac{n!}{2n+1}x^2 = 0$,所以收敛半径 $R = \infty$,收敛域 $(-\infty, +\infty)$.

数收敛, 当|x|>1时原级数发散, 收敛半径 R=1. 当 x=1时, 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n+1}$ 收

敛, 而当
$$x = -1$$
 时, 级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1}$ 收敛, 所以原级数的收敛域[-1,1].

注意 对缺项幂级数
$$\sum_{n=1}^{\infty} a_n x^n$$
 不能直接套用系数公式 $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ 求收敛半径.

一般地,应该对该幂级数的绝对值级数直接应用比值审敛法或根值审敛法去求出原幂级数的收敛半径.

(6) 设
$$a_n = \frac{2^n + 3^n}{n}$$
,而 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2(\frac{2}{3})^n + 3}{(\frac{2}{3})^n + 1} = 3$,所以收敛半径 $R = \frac{1}{3}$. 当

因为
$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}(\frac{2}{3})^n} = \lim_{n\to\infty} \frac{2}{3} \frac{1}{\sqrt[n]{n}} = \frac{2}{3} < 1$$
,所以 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} (\frac{2}{3})^n$ 收敛,而 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ 显然收

敛, 故
$$x = -\frac{1}{3}$$
 时级数 $\sum_{n=1}^{\infty} (-1)^n \frac{2^n + 3^n}{n} (\frac{1}{3})^n$ 收敛; 当 $x = \frac{1}{3}$ 时, 对级数 $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{n} (\frac{1}{3})^n$,

令
$$u_n = \frac{2^n + 3^n}{n} (\frac{1}{3})^n = \frac{1}{n} + \frac{1}{n} (\frac{2}{3})^n$$
,由上知 $\sum_{n=1}^{\infty} \frac{1}{n} (\frac{2}{3})^n$ 收敛,而 $\sum_{n=1}^{\infty} \frac{1}{n}$ 显然发散,故当

$$x = \frac{1}{3}$$
 时级数 $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{n} (\frac{1}{3})^n$ 发散,所以原级数的收敛域 $[-\frac{1}{3}, \frac{1}{3})$.

(7) 设
$$a_n = (-1)^{n-1} \frac{1}{n}$$
,而 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{n}{n+1} = 1$,所以收敛半径 $R = 1$.当 $x = 1$

时,级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 收敛;当 x = -1 时,级数 $\sum_{n=1}^{\infty} (-\frac{1}{n})$ 发散,所以原级数的收敛域 (-1,1].

(8) 设
$$a_n = n^n$$
,而 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)^{n+1}}{n^n} = \lim_{n \to \infty} (\frac{1}{n} + 1)^n (n+1) = \infty$,所以收敛
半径 $R = 0$,因此原级数仅在 $x = 0$ 处收敛.

 $|x|<\sqrt{2}$ 时原级数收敛,当 $|x|>\sqrt{2}$ 时原级数发散,收敛半径 $R=\sqrt{2}$. 当 $x=\pm\sqrt{2}$ 时,

级数 $\sum_{n=1}^{\infty} (2n-1)$ 发散, 所以原级数的收敛域 $(-\sqrt{2},\sqrt{2})$.

(10) 设
$$t = x - 1$$
,则级数为 $\sum_{n=1}^{\infty} \frac{t^n}{2^n \cdot n}$.设 $a_n = \frac{1}{2^n \cdot n}$,而 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \frac{1}{2}$,所以当

$$|t| < 2$$
 时级数 $\sum_{n=1}^{\infty} \frac{t^n}{2^n \cdot n}$ 收敛, 当 $|t| > 2$ 时级数 $\sum_{n=1}^{\infty} \frac{t^n}{2^n \cdot n}$ 发散, 收敛半径 $R = 2$. 而当

t=2 时级数 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,当 t=-2 时级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ 收敛,所以原级数的收敛域 [-1,3) .

当|x-3| < 2 时级数 $\sum_{n=1}^{\infty} \frac{1}{4^n} (x-3)^{2n}$ 收敛, |x-3| > 2 时级数 $\sum_{n=1}^{\infty} \frac{1}{4^n} (x-3)^{2n}$ 发散, 故收

敛半径 R=2. 当 $x-3=\pm 2$ 时,级数 $\sum_{n=1}^{\infty} 1$ 发散,所以原级数的收敛域 (1,5).

时级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^p} \ (p>0)$ 收敛,当 $\left|x-1\right|>1$ 时级数 $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^p} \ (p>0)$ 发散.当

$$x-1=1$$
且 $p>1$ 时,级数 $\sum_{n=1}^{\infty}\frac{1}{n^{p}}\,(p>0)$ 收敛; $x-1=1$ 且 $p\leq 1$ 时级数 $\sum_{n=1}^{\infty}\frac{1}{n^{p}}\,(p>0)$ 发散;

x-1=-1 时级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ (p>0) 收敛. 综上, 当 p>1 时, 原级数的收敛域 [0,2], 当 0 时, 原级数的收敛域 <math>[0,2).

2. 求幂级数 $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n-1}$ 的收敛半径.

解 设
$$u_n = \frac{(2n)!}{(n!)^2} x^{2n-1}$$
,而 $\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n \to \infty} \frac{[2(n+1)]!}{[(n+1)!]^2} \frac{(n!)^2}{(2n)!} x^2 = 4x^2$,所以当

 $4x^2 < 1$ 时,即 $|x| < \frac{1}{2}$ 时,级数 $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n-1}$ 收敛,当 $4x^2 > 1$ 时,即 $|x| > \frac{1}{2}$ 时,级数

$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} x^{2n-1} \, \text{ \not t} \, \text{ \not h} \, \text{$$

3. 利用逐项求导或逐项积分运算求下列级数的和函数:

(1)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
; (2) $\sum_{n=1}^{\infty} nx^n$;

(3)
$$\sum_{n=1}^{\infty} \frac{n(n+1)}{2} x^{n-1}$$
; (4) $\sum_{n=2}^{\infty} \frac{x^n}{n(n-1)}$.

解 (1) 设
$$a_n = (-1)^{n-1} \frac{1}{n}$$
, 而 $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{n}{n+1} = 1$, 当 $x = 1$ 时 级 数

 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ 收敛, 当 x = -1 时级数 $\sum_{n=1}^{\infty} (-\frac{1}{n})$ 发散, 所以级数的收敛域 (-1,1].

$$\stackrel{\text{TR}}{\boxtimes} S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad \text{則 } S'(x) = \sum_{n=1}^{\infty} [(-1)^{n-1} \frac{x^n}{n}]' = \sum_{n=1}^{\infty} (-x)^{n-1} = \frac{1}{1+x}, \quad \text{从而}$$

$$S(x) = \int_0^x \frac{1}{1+x} dx + S(0) = \ln(1+x), \quad x \in (-1,1].$$

时级数 $\sum_{n=1}^{\infty} (-1)^n n$ 发散, 所以级数的收敛区间 (-1,1).

读
$$S(x) = \sum_{n=1}^{\infty} nx^n = \sum_{n=1}^{\infty} (n+1)x^n - \sum_{n=1}^{\infty} x^n, S_1(x) = \sum_{n=1}^{\infty} (n+1)x^n$$
,则

$$\int_0^x S_1(x) dx = \sum_{n=1}^\infty x^{n+1} = \frac{x^2}{1-x} ,$$

故
$$S(x) = (\frac{x^2}{1-x})^{1} - \frac{x}{1-x} = \frac{x}{(x-1)^2}, \quad x \in (-1,1).$$

注意 一些常见幂级数的和函数是由其的初始项决定的, 如 $\sum_{n=1}^{\infty} x^{n+1}$ 的和函数为

$$\frac{x^2}{1-x}$$
, 而 $\sum_{n=0}^{\infty} x^{n+1}$ 的和函数为 $\frac{x}{1-x}$.

(3)
$$\ddot{\mathbb{Q}} a_n = \frac{n(n+1)}{2}$$
, $\ddot{\mathbb{D}} \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)(n+2)}{n(n+1)} = 1$, $\ddot{\mathbb{D}} \overset{\text{def}}{=} x = 1$ $\ddot{\mathbb{D}} \overset{\text{def}}{=} x = 1$

 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2}$ 发散,当 x = -1 时级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n(n+1)}{2}$ 发散,所以级数的收敛区间 (-1,1).

设
$$S(x) = \sum_{n=1}^{\infty} \frac{n(n+1)}{2} x^{n-1}$$
,则由上题知

$$\int_0^x S(x)dx = \frac{1}{2} \sum_{n=1}^\infty (n+1)x^n = \frac{1}{2} \left[-1 + \frac{1}{(x-1)^2} \right],$$

故

$$S(x) = \frac{1}{2}(-1 + \frac{1}{(x-1)^2}) = \frac{1}{(1-x)^3}, \quad x \in (-1,1).$$

收敛, 当 x = -1 时级数 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)}$ 收敛, 所以级数的收敛区间 [-1,1].

设
$$S(x) = \sum_{n=2}^{\infty} \frac{x^n}{n(n-1)}$$
,则 $S''(x) = \sum_{n=2}^{\infty} x^{n-2} = \frac{1}{1-x}$,从而

$$S'(x) = \int_0^x S''(x)dx + S'(0) = -\ln(1-x)$$
,

故 $S(x) = \int_0^x S'(x)dx + S(0) = (1-x)\ln(1-x) + x$,因此

$$S(x) = \begin{cases} x + (1-x)\ln(1-x), -1 \le x < 1, \\ 1, & x = 1. \end{cases}$$

4. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$ 的和函数,并求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n}$ 的和.

解 设
$$u_n = \frac{x^{2n-1}}{2n-1}$$
, 而 $\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n \to \infty} \frac{2n-1}{2(n+1)-1} x^2 = x^2$, 当 $x = 1$ 时 级 数

$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$
 发散, 当 $x = -1$ 时级数 $\sum_{n=1}^{\infty} (-\frac{1}{2n-1})$ 发散, 所以级数的收敛区间 $(-1,1)$.

设
$$S(x) = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}$$
,则 $S'(x) = \sum_{n=1}^{\infty} x^{2n-2} = \frac{1}{1-x^2}$,从而
$$S(x) = \int_0^x S'(x) dx + S(0) = \frac{1}{2} \ln \frac{1+x}{1-x}, \quad x \in (-1,1) ,$$

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)2^n} = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{(\frac{1}{\sqrt{2}})^{2n-1}}{(2n-1)} = \frac{1}{\sqrt{2}} S(\frac{1}{\sqrt{2}}) = \frac{\sqrt{2}}{2} \ln(1+\sqrt{2}) .$$

- 5. 求级数 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2^n}$ 的和.
- 解 构造幂级数 $\sum_{n=1}^{\infty} n(n+1)x^{n-1}$, 易得其的收敛区间为 (-1,1).

设
$$S(x) = \sum_{n=1}^{\infty} n(n+1)x^{n-1}$$
 ,则由第 3 题的(3)知 $S(x) = -\frac{2}{(x-1)^3}$, $x \in (-1,1)$,从而

$$\sum_{n=1}^{\infty} \frac{n(n+1)}{2^n} = \frac{1}{2} \sum_{n=1}^{\infty} n(n+1) (\frac{1}{2})^{n-1} = \frac{1}{2} S(\frac{1}{2}) = 8.$$

注意 本题中幂级数的构造: 因为数项级数 $\sum_{n=1}^{\infty} \frac{n(n+1)}{2^n}$ 含有 2^n , 所以构造幂级

数 $\sum_{n=1}^{\infty} n(n+1)x^{n-1}$, 从而使得构造出的幂级数和函数较易求出.