ST116 Problem Sheet 2 - Solutions

- 1. (a) They are sets.
 - (b) f(A) = [1, 2] and $f^{-1}(B) = (-2, -1) \cup (1, 2)$.

- (c) $A = f_{a,b}^{-1}([0,1]), B = f_{a,b}([0,1]), C = f_{a,b}(\mathbb{R}).$
- (d) Z(1,2) = -1, Z(5,9) = -4, Z(7,11) = -4, hence $Z(\{(1,2),(5,9),(7,11)\}) = \{Z(i,j) \mid (i,j) \in \{(1,2),(5,9),(7,11)\}\} = \{-1,-4\}$. $Z(\{8,10\}) = \{(12,4),(12,2)\}$.
- (e) $A = Z(E), B = Z^{-1}(\{1, 3, 5, 8, 10\}) \text{ or } B = Z^{-1}(\mathbb{R}^+), C = Z^{-1}(\{-10, 10\}),$ $D = Z(\{(i, k) \mid i \in \{5, 7\}, j \in \{2, 4, 9, 11\}\}).$
- (f) The image of a set A under the function f is the set containing the function values that f assigns to the elements of A. The pre-image of a set B under the function f is the set containing the elements in the domain of f that f maps onto an element of B.
- 2. The Venn diagram is the same in all sub-questions.

- (a) See Venn diagram above.
- (b) In the Venn diagram above, A is depicted as regions 1 and 2. The set B^c is given by the regions other than regions 2 and 3, and thus is depicted by regions 1 and 4. $A \cap B^c$ is depicted by the regions that are common to A and B^c and thus by region 1.

1

- (c) The set $A \cap B$ is depicted by region 2, hence $(A \cap B)^c$ is depicted by the regions other than region 2 and thus by regions 1, 3 and 4. The set A is given by the regions 1 and 2. Finally, $A \cap (A \cap B)^c$ is illustrated by the regions that are common to A and $(A \cap B)^c$ and thus by region 1.
- (d) B^c is depicted by regions 1 and 4. $A \cup B$ is represented by combining the regions depicting A (regions 1 and 2) and the regions depicting B (regions 2 and 3) and thus is given by regions 1, 2 and 3. Finally, $(A \cup B) \cap B^c$ is shown as the region common to $A \cup B$ and B^c and thus as region 1.
- (e) $A \setminus B = A \cap B^c = A \cap (A \cap B)^c = (A \cup B) \cap B^c$.
- 3. (a) [2 points] As $A \subseteq B$, if $a \in A$, then $a \in B$. (*) As $C \subseteq D$, if $a \in C$, then $a \in D$. (**) Let $a \in A \cap C$, then $a \in A$ and $a \in C$. It follows from (*) that $a \in B$ and from (**) that $a \in D$. Hence $a \in B \cap D$. Therefore $A \cap C \subseteq B \cap D$.
 - (b) [2 points] Let $a \in A$. As $A \subseteq B$, it follows that $a \in B$. Since $B \subseteq C$, if $a \in B$, then $a \in C$. Taking both statements together, if $a \in A$, then $a \in C$. It follows that $A \subseteq C$.
 - (c) [3 points] If $A \subset B$, then $A \subseteq B$ and so we can deduce with (b) that $A \subseteq C$. So we only need to show that there is an element of C that does not belong to A. As $A \subset B$, there exists an element $b \in B$ such that $b \notin A$. As $B \subseteq C$, $b \in C$. Therefore $b \in C$ and $b \notin A$, hence $A \subset C$.
 - (d) [3 points] Let $a \in A$. As $A \subseteq B \cup C$ we have $a \in B \cup C$, that is $a \in B$ or $a \in C$. Case 1: $a \in B$. Then $a \in A$ and $a \in B$ and so $a \in A \cap B$. However, this contradicts the assumption that $A \cap B = \emptyset$. Hence this case cannot occur. Case 2: $a \in C$. Since Case 2 is the only case that can occur, if $a \in A$, then $a \in C$. Hence $A \subseteq C$.
 - (a) $A \subseteq B$: the set A is a subset of B, that is, all elements of A belong to B.
 - $A \cup B$: the union of A and B is the set containing the elements that belong to A or belong to B.
 - $\mathcal{P}(A)$: the power set of A, that is, the set containing all subsets of A.
 - (b) The proposition specifies the relationship between the union of the power set of two sets and the power set of the union of these two sets.
 - (c) Let $A = \{1, 2\}$ and $B = \{2, 3\}$, then $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}, \mathcal{P}(B) = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\})$ and $\mathcal{P}(A \cup B) = \mathcal{P}(\{1, 2, 3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$. Hence $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}\} \subseteq \mathcal{P}(A \cup B)$.
 - (d) Choose $A = \{1, 2\}$ and $B = \{2, 3\}$, then as shown above $\{1, 2, 3\} \in \mathcal{P}(A \cup B)$ but $\{1, 2, 3\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.
 - (e) If $A \subseteq B$ or $B \subseteq A$, then $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$. **Proof:**
 - Case 1: $A \subseteq B$. Then, by Proposition 4.4, $A \cup B = B$ and so $\mathcal{P}(A \cup B) = \mathcal{P}(B)$. Furthermore, if $C \subseteq A$, then, since $A \subseteq B$, $C \subseteq B$ (this was shown in Question 3 (b)). Hence if $C \in \mathcal{P}(A)$, then $C \in \mathcal{P}(B)$ and so $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. By Proposition 4.4 it follows that $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(B)$ and so $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$.
 - Case 2: $B \subseteq A$. We can make an analogous argument to Case 1 by reversing the roles of A and B.