Laboratoria zestaw 4 Krystian Baran 145000 30 marca 2021

Zużycie wody (w hektolitrach) w pewnym osiedlu w ciągu dnia ma rozkład $N(m=?,\sigma=11)$. Obliczyć prawd. zdarzenia, że empiryczna wariancja zużycia wody w losowo wybranych 90 dniach

- a) nie będzie większa niż 100[hl],
- b) będzie większa niż 200[hl].

Niech X_i będzie zużycie wody w jednym dniu i niech m będzie parametr m rozkładu normalnego. Oznaczmy \overline{X} , jako rozkład średniej zużycia wody w 90 dniach; wtedy \overline{X} będzie także rozkładem normalny następującym:

$$\overline{X} \sim N\left(m, \frac{11}{\sqrt{90}}\right) = N\left(m, \frac{11}{3\sqrt{10}}\right)$$

Oznaczmy Y, jako $X_i - \overline{X}$; wtedy Y ma rozkład normalny:

$$Y \sim N\Big(m+m, \sqrt{\frac{121}{90} + 121}\Big) = N\Big(2m, \sqrt{\frac{91}{90}}11\Big)$$

Korzystając z twierdzenia mówiącego że, jeżeli $X_i, i=1,2,\ldots n$ są zmiennymi losowymi z rozkładem normalnym z parametrami $\mu=0$ i $\sigma=1$, to ich suma ma rozkład χ^2 z n stopniami swobody.

$$X_1 + X_2 + \dots + X_n = \chi_n^2$$

Wtedy wariancja będzie miała następujący wzór:

$$S_n^2 = \frac{1}{89} \sum_{i=1}^{90} (Y_i)^2$$

$$= \frac{1}{89} \sum_{i=1}^{90} \left(\frac{Y_i \cdot \sqrt{90}}{\sqrt{91} \cdot 11} \right)^2 \cdot \frac{91 \cdot 11^2}{90}$$

$$= \frac{91 \cdot 121}{90 \cdot 89} \chi_{90}^2$$

a)

Można wtedy obliczyć prawdopodobieństwo, że wariancja będzie mniejsza niż 100 [hl], jako:

$$P(S_n^2 < 100) = P\left(\frac{91 \cdot 121}{90 \cdot 89} \chi_{90}^2 < 100\right)$$

$$= P\left(\chi_{90}^2 < \frac{9000 \cdot 89}{91 \cdot 121}\right)$$

$$\stackrel{R}{=} pchisq(9000 * 121/(91 * 121), 90) \approx 0.7555559$$

Zatem prawdopodobieństwo, że wariancja będzie mniejsza niż 100 [hl] wynosi 0.7556.

b)

Prawdopodobieństwo, że wariancja będzie większa niż 200[hl] wyraża się następujaco:

$$\begin{split} P(S_n^2 > 200) &= 1 - P\Big(\frac{91 \cdot 121}{90 \cdot 89} \chi_{90}^2 < 200\Big) \\ &= 1 - P\Big(\chi_{90}^2 < \frac{18000 \cdot 89}{91 \cdot 121}\Big) \\ &\stackrel{R}{=} 1 - pchisq(18000 * 121/(91 * 121), 90) \approx 4.589235e - 10 \end{split}$$

Jest to liczba bardzo bliska zeru, zatem jest mało prawdopodobne, że wariancja będzie większa niż 200 [hl].

Wiadomo, że błąd pomiaru pewnego przyrządu ma rozkład normalny $N(0,\sigma)$ i z prawd. 0,95 nie wychodzi poza prze-dział (-1,1). Dokonanych zostanie i) 10, ii) 100 niezależ-nych pomiarów tym przyrządem. Oblicz prawd. zdarzenia, że wariancja pomiarów

- a) przyjmie wartość między 0,2 a 0,3,
- b) będzie większa od 0,28.

Niech $X_i \sim N(0,\sigma)$ będzie zmienną losową opisującą błąd jednego pomiaru. Wiedząc, że $P(-1 < X_i < 1) = 0.95$ błąd pomiaru mieści się w przedziale (-1,1) z prawdopodobieństwem 0.95, można wyznaczyć parametr σ .

$$P(-1 < X_i < 1) = P\left(-\frac{1}{\sigma} < \frac{X_i}{\sigma} < \frac{1}{\sigma}\right)$$
$$= \Phi\left(\frac{1}{\sigma}\right) - \Phi\left(-\frac{1}{\sigma}\right)$$
$$= 2 \cdot \Phi\left(\frac{1}{\sigma}\right) - 1 = 0.95$$

$$2 \cdot \Phi\left(\frac{1}{\sigma}\right) = 1.95$$

$$\Phi\left(\frac{1}{\sigma}\right) = 0.975$$

$$\frac{1}{\sigma} = \Phi^{-1}(0.975)$$

$$\sigma = \frac{1}{\Phi^{-1}(0.975)} \stackrel{R}{=} \frac{1}{qnorm(0.975, 0, 1)}$$

$$\approx 0.5102135$$

a)

Wariancja w próby wyznacza się następującym wzorem:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

Zatem skorzystamy ze wzoru na rozkład średniej:

$$\overline{X}_n \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

Wprowadzamy nową zmienna $Y=X_i-\overline{X}_n,$ taka zmienna będzie miała także rozkład normalny

$$\sim N\left(0+0,\sqrt{\frac{\sigma^2}{n}+\sigma^2}\right) = N\left(0,\sqrt{\frac{n+1}{n}}\sigma\right)$$

Korzystając z twierdzenia mówiącego że, jeżeli $X_i, i=1,2,\ldots n$ są zmiennymi losowymi z rozkładem normalnym z parametrami $\mu=0$ i $\sigma=1$, to ich suma ma rozkład χ^2 z n stopniami swobody.

$$X_1 + X_2 + \dots + X_n = \chi_n^2$$

Wtedy wariancja z próby będzie miała następujący wzór:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i)^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{Y_i \cdot \sqrt{n}}{\sqrt{n+1}\sigma} \right)^2 \cdot \frac{(n+1)\sigma^2}{n}$$

$$= \frac{(n+1)\sigma^2}{n(n-1)} \chi_n^2$$

Następnie można obliczyć szukane prawdopodobieństwo

$$\begin{split} P(0.2 < S_n^2 < 0.3) &= P\Big(0.2 < \frac{(n+1)\sigma^2}{n(n-1)}\chi_n^2 < 0.3\Big) \\ &= P\Big(0.2 \frac{n(n-1)}{(n+1)\sigma^2} < \chi_n^2 < 0.3 \frac{n(n-1)}{(n+1)\sigma^2}\Big) \\ &\stackrel{R}{=} pchisq\Big(0.3 \frac{n(n-1)}{(n+1)\sigma^2}, n\Big) - pchisq\Big(0.2 \frac{n(n-1)}{(n+1)\sigma^2}, n\Big) \end{split}$$

Dla n = 10:

$$= pchisq\left(0.3\frac{90}{11\sigma^2}, 10\right) - pchisq\left(0.2\frac{90}{11\sigma^2}, 10\right)$$
$$= pchisq(9.429035, 10) - pchisq(6.286024, 10)$$
$$\approx 0.2987605$$

Dla n = 100:

$$= pchisq\left(0.3\frac{9900}{101\sigma^2}, 100\right) - pchisq\left(0.2\frac{9900}{101\sigma^2}, 100\right)$$
$$= pchisq(112.9617, 100) - pchisq(75.30781, 100)$$
$$\approx 0.7918889$$

Zatem prawdopodobieństwo, że wariancja będzie w przedziale (0.2,0.3) wynosi:

- i) 0.2988
- ii) 0.7919

b)

Podobnie jak w podpunkcie a obliczymy prawdopodobieństwo:

$$\begin{split} P(S_n^2 > 0.28) &= 1 - P(S_n^2 < 0.28) \\ &= 1 - P\Big(\frac{(n+1)\sigma^2}{n(n-1)}\chi_n^2 < 0.28\Big) \\ &= 1 - P\Big(\chi_n^2 < 0.28\frac{n(n-1)}{(n+1)\sigma^2}\Big) \\ &\stackrel{R}{=} 1 - pchisq\Big(0.28\frac{n(n-1)}{(n+1)\sigma^2}, n\Big) \end{split}$$

Dla n = 10:

$$= 1 - pchisq(0.28 \frac{90}{11\sigma^2}, 10)$$

= 1 - pchisq(8.800433, 10)
\approx 0.5511423

Dla n = 100:

$$= 1 - pchisq \left(0.28 \frac{9900}{101\sigma^2}, 100\right)$$
$$= 1 - pchisq (105.4309, 100)$$
$$\approx 0.3356967$$

Zatem prawdopodobieństwo, że wariancja będzie większa niż 0.28 wynosi:

- i) 0.5511
- ii) 0.3357

Losujemy 100 liczb według rozkładu jednostajnego na przedziale (0, 1).

- a) Ustalić rozkład sumy tych liczb.
- b) Obliczyć prawd. zdarzenia, że suma wylosowanych liczb nie będzie należała do przedziału (45, 55).
- c) Wyznaczyć dystrybuantę największej z wylosowanych liczb i oblicz prawd., że liczba ta będzie mniejsza od 0,95.
- d) Jaki wniosek należy wyciągnąć, jeśli że suma wylosowanych liczb będzie mniejsza niż 40?

a)

Niech X_i będzie wylosowana i-ta liczba. $X_i \sim U(0,1)$ jest rozkładem jednostajnym na przedziale (0,1) z następującą funkcją gęstości:

$$f_{X_i}(x) = \begin{cases} 0 & , x \le 0 \lor x \ge 1 \\ 1 & , 0 < x < 1 \end{cases}$$

Wtedy dystrybuanta przyjmuję następujący wzór:

$$F_{X_i}(t) = \begin{cases} 0 & , t \leq 0 \\ t & , 0 < t < 1 \\ 1 & , t \geq 1 \end{cases}$$

Korzystając z centralnego twierdzenia granicznego dla sumy, przyjmując, że 100 jest wystarczającą dużą liczbą, rozkład sumy przyjmuje rozkład normalny z następującymi parametrami.

$$X = \sum_{i=1}^{100} X_i \sim N(n \cdot \mathbb{E}X, \sqrt{n} \cdot \mathbb{D}X)$$

Gdzie $\mathbb{E} X$ jest wartością oczekiwaną, czyli $\frac{b-a}{2}=\frac{1}{2},$ a $\mathbb{D} X$ jest odchyleniem standardowym czyli $\sqrt{\mathbb{D}^2(X)}=\sqrt{\frac{(b-a)^2}{12}}=\frac{1}{\sqrt{12}}.$ Zatem $X\sim N\big(\frac{100}{2},\sqrt{\frac{100}{12}}\big)=N\big(50,\frac{5}{\sqrt{3}}\big).$

b)

Znając rozkład sumy można obliczyć prawdopodobieństwo że suma nie będzie w przedziale (45,55), $P(X<45\lor X>55)$, przechodząc na prawdopodobieństwo przeciwne:

$$\begin{split} P(X < 45 \lor X > 55) &= 1 - P(45 < X < 55) \\ &\stackrel{R}{=} 1 - (pnorm(55, 50, 5/sqrt(3)) - pnorm(45, 50, 5/sqrt(3))) \\ &\approx 0.08326452 \end{split}$$

Zatem prawdopodobieństwo, że suma nie będzie w danym przedziale wynosi $0.0834.\,$

c)

Aby wyznaczyć dystrybuantę liczby maksymalnej skorzystamy z definicji dystrybuanty; niech $Y=\sum_{i=1}100X_i.$

$$F_Y(t) = P(Y \le t) = \prod_{i=1}^{100} P(X_i \le t)$$

Ponieważ losowanie liczb jest niezależne to $X_i \cap X_j = 0, i \neq j$, wtedy:

$$\prod_{i=1}^{100} P(X_i \leqslant t) = P(X_i \leqslant t)^{100} = \begin{cases} 0 & , t \leqslant 0 \\ t^{100} & , 0 < t < 1 \\ 1 & , t \geqslant 1 \end{cases}$$

Mając już dystrybuantę można wyliczyć P(Y < 0.95):

$$P(Y < 0.95) = F_Y(0.95) = 0.95^{100} \approx 0.0059205292$$

Zatem prawdopodobieństwo, że maksymalna liczba będzie mniejsza niż 0.95 wynosi 0.006.

 \mathbf{d}

Jeżeli suma z wylosowanych liczby będzie z dużym prawdopodobieństwem mniejsza od 40, oznacza to, że wartość oczekiwana jest podwyższona lub że stosowane przybliżenie jest błędne.

$$P(X<40) \stackrel{R}{=} pnorm(40,50,5/sqrt(3)) \approx 0.0002660028$$

Zatem nie jest mocno prawdopodobne, że wartość oczekiwana jest błędna o ± 10 .

Zobacz plik z wykładów.

Ze zbioru $\{1, 2, 3, 4\}$ wylosowano dwie liczby

- a) ze zwracaniem,
- b) bez zwracania,

Wyznaczyć rozkład oraz wartość oczekiwaną i wariancję rozstępu

a)

Niech X_1, X_2 będą wylosowane liczby ze zbioru. Ponieważ losowane są ze zwracaniem możliwości będzie 4^2 , czyli 16.

Oznaczmy $A=(X_1,X_2),\,\Omega=16,\,$ R rozstęp, i niech wylosowane liczby posortujemy oznaczając je posortowane, jako $X_{(1)}$ i $X_{(2)}$ wtedy można sporządzić tabele w następujący sposób:

A	$P(X_1, X_2)$	$X_{(1)}$	$X_{(2)}$	R
(1,1)	1/16	1	1	0
(1,2)	1/16	1	2	1
(1,3)	1/16	1	3	2
(1,4)	1/16	1	4	3
(2,1)	1/16	1	2	1
(2,2)	1/16	2	2	0
(2,3)	1/16	2	3	1
(2,4)	1/16	2	4	2
(3,1)	1/16	1	3	2
(3,2)	1/16	2	3	1
(3,3)	1/16	3	3	0
(3,4)	1/16	3	4	1
(4,1)	1/16	1	4	3
(4,2)	1/16	2	4	2
(4,3)	1/16	3	4	1
(4,4)	1/16	4	4	0

Za pomocą tej tabeli można wyznaczyć rozkład łączy i rozkłady brzegowe (widoczne w ostatniej kolumnie i w ostatnim wierszu):

$x_1 \backslash x_2$	1	2	3	4	$f_{X_{(1)}}(x_1)$
1	1/16	2/16	2/16	2/16	7/16
2	0	1/16	2/16	2/16	5/16
3	0	0	1/16	2/16	3/16
4	0	0	0	1/16	1/16
$f_{X_{(2)}}(x_2)$	1/16	3/16	5/16	7/16	16/16

Wyznaczymy teraz wartość oczekiwaną i wariancje wraz z kowariancją.

$$\mathbb{E}(X_{(1)}) = \sum_{i=1}^{4} x_i \cdot f_{X_{(1)}}(x_i)$$

$$= 1\frac{7}{16} + 2\frac{5}{16} + 3\frac{3}{16} + 4\frac{1}{16}$$

$$= \frac{30}{16} = \frac{15}{8}$$

$$\mathbb{E}(X_{(1)}^2) = \sum_{i=1}^4 x_i^2 \cdot f_{X_{(1)}}(x_i)$$

$$= 1\frac{7}{16} + 4\frac{5}{16} + 9\frac{3}{16} + 16\frac{1}{16}$$

$$= \frac{70}{16} = \frac{35}{8}$$

$$\mathbb{D}^{2}(X_{(1)}) = \mathbb{E}(X_{(1)}^{2}) - \mathbb{E}(X_{(1)})^{2}$$
$$= \frac{35}{8} - \frac{225}{64} = \frac{55}{64}$$

$$\mathbb{E}(X_{(2)}) = \sum_{i=1}^{4} x_i \cdot f_{X_{(2)}}(x_i)$$

$$= 1\frac{1}{16} + 2\frac{3}{16} + 3\frac{5}{16} + 4\frac{7}{16}$$

$$= \frac{50}{16} = \frac{25}{8}$$

$$\mathbb{E}(X_{(2)}^2) = \sum_{i=1}^4 x_i^2 \cdot f_{X_{(2)}}(x_i)$$

$$= 1\frac{1}{16} + 4\frac{3}{16} + 9\frac{5}{16} + 16\frac{7}{16}$$

$$= \frac{170}{16} = \frac{85}{8}$$

$$\mathbb{D}^{2}(X_{(2)}) = \mathbb{E}(X_{(2)}^{2}) - \mathbb{E}(X_{(2)})^{2}$$
$$= \frac{85}{8} - \frac{625}{64} = \frac{55}{64}$$

$$\mathbb{E}(X_{(1)}X_{(2)}) = \sum_{i=1}^{4} \sum_{j=1}^{4} x_i \cdot x_j \cdot f_X(x_i, x_j)$$

$$= \left(1\frac{1}{16} + 2\frac{2}{16} + 3\frac{2}{16} + 4\frac{2}{16}\right) + 2\left(2\frac{1}{16} + 3\frac{2}{16} + 4\frac{2}{16}\right) + 3\left(3\frac{1}{16} + 4\frac{2}{16}\right) + \left(4\frac{1}{16}\right)$$

$$= \frac{19}{16} + \frac{32}{16} + \frac{33}{16} + \frac{4}{16}$$

$$= \frac{88}{16} = \frac{11}{2}$$

$$Cov(X_{(1)}, X_{(2)}) = \mathbb{E}(X_{(1)}X_{(2)}) - \mathbb{E}(X_{(1)}) \cdot \mathbb{E}(X_{(2)})$$
$$= \frac{11}{2} - \frac{15}{8} \cdot \frac{25}{8}$$
$$= \frac{352 - 375}{64} = -\frac{33}{64}$$

Rozstęp pomiędzy wylosowanymi liczbami posiada rozkład następujący, jeżeli w pierwszej tabeli odejmiemy wartość $X_{(2)}$ od wartości $X_{(1)}$:

R_i	0	1	2	3
$P(R_i)$	4/16	6/16	4/16	2/16

Wtedy wartość oczekiwana i wariancja rozstępu wynoszą:

$$\mathbb{E}R = \sum_{i=0}^{3} R_i \cdot P(R_i)$$
$$= 0 + \frac{6}{16} + 2\frac{4}{16} + 3\frac{2}{16}$$
$$= \frac{20}{16} = \frac{5}{4}$$

$$\mathbb{E}(R^2) = \sum_{i=0}^{3} R_i^2 \cdot P(R_i)$$
$$= 0 + \frac{6}{16} + 4\frac{4}{16} + 9\frac{2}{16}$$
$$= \frac{40}{16} = \frac{5}{2}$$

$$\mathbb{D}^{2}(R) = \mathbb{E}(R^{2}) - \mathbb{E}R^{2}$$

$$= \frac{5}{2} - \frac{25}{16} = \frac{40 - 25}{16}$$

$$= \frac{15}{16}$$

b)

Podobnie jak poprzednio oznaczymy X_1,X_2 , jako wylosowane liczby ze zbioru, $A=(X_1,X_2),~\Omega=12,$ R rozstęp, i niech wylosowane liczby posortujemy oznaczając je posortowane, jako $X_{(1)}$ i $X_{(2)}$ wtedy można sporządzić tabele w następujący sposób:

A	$P(X_1, X_2)$	$X_{(1)}$	$X_{(2)}$	R
(1,2)	1/12	1	2	1
(1,3)	1/12	1	3	2
(1,4)	1/12	1	4	3
(2,1)	1/12	1	2	1
(2,3)	1/12	2	3	1
(2,4)	1/12	2	4	2
(3,1)	1/12	1	3	2
(3,2)	1/12	2	3	1
(3,4)	1/12	3	4	1
(4,1)	1/12	1	4	3
(4,2)	1/12	2	4	2
(4,3)	1/12	3	4	1

Wtedy rozkład będzie następujący:

$x_1 \backslash x_2$	2	3	4	$f_{X_{(1)}}(x_1)$
1	2/12	2/12	2/12	6/12
2	0	2/16	2/16	4/16
3	0	0	2/16	2/16
$f_{X_{(2)}}(x_2)$	1/12	4/12	6/12	12/12

Rozstęp pomiędzy wylosowanymi liczbami posiada rozkład następujący, jeżeli w pierwszej tabeli odejmiemy wartość $X_{(2)}$ od wartości $X_{(1)}$:

R_i 1		2	3	
$P(R_i)$	6/12	4/12	2/12	

Wtedy wartość oczekiwana i wariancja rozstępu wynoszą:

$$\mathbb{E}R = \sum_{i=1}^{3} R_i \cdot P(R_i)$$

$$= \frac{6}{12} + 2\frac{4}{12} + 3\frac{2}{12}$$

$$= \frac{20}{12} = \frac{5}{3}$$

$$\mathbb{E}(R^2) = \sum_{i=1}^3 R_i^2 \cdot P(R_i)$$
$$= \frac{6}{12} + 4\frac{4}{12} + 9\frac{2}{12}$$
$$= \frac{40}{12} = \frac{10}{3}$$

$$\mathbb{D}^{2}(R) = \mathbb{E}(R^{2}) - \mathbb{E}R^{2}$$

$$= \frac{10}{3} - \frac{25}{9} = \frac{30 - 25}{9}$$

$$= \frac{5}{9}$$