COMP3711

Design and Analysis of Algorithms

Larry128

A summary notes for revision

 $Fall\ 2024\text{-}2025$

Contents

1	Pre	requisites	2
	1.1	Input size of Problems	2
	1.2	Asymptotic Notation	2
	1.2	Introduction to Algorithms	6

1 Prerequisites

1.1 Input size of Problems

Input size how large the input is.

Assumption 1. any number can be stored in a computer word

2. each arithmetic operation takes constant time

Examples Sorting: Size of the list or array

Graph problems: Numbers of vertices and edges

Searching: Number of input keys

1.2 Asymptotic Notation

- 1. Running time/ Cost of algorithms
 - i. a function of input size: T(n)
 - ii. number of operations (e.g., comparisons between two numbers)
 - iii. using asymptotic notation, which ignores constants and non-dominant growth terms

2. Intuitions

From the figure above, Algorithm 1 is better for large n.

3. Rigorous definition of asymptotic notation

	Upper bound $T(n) = O(f(n))$	if $\exists c > 0$ and $n_0 \ge 0$ such that $\forall n \ne n_0, T(n) \le cf(n)$
	Lower bound $T(n) = \Omega(f(n))$	if $\exists c > 0$ and $n_0 \neq 0$ such that $\forall n \neq n_0, T(n) \geq cf(n)$
Ì	Tight bound $T(n) = \Theta(f(n))$	if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

4. Big-O Notation

$$T(n) = O(g(n)) \iff \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0, 0 \le T(n) \le c \cdot g(n)$$

Below are some examples of Big-O notation proofs

(a) $T(n) = n, g(n) = n \log_2 n$ We wish to proof $T(n) = n \in O(n \log_2 n)$. Choose $c = 1, n_0 = 2$, for all $n \ge 2 = n_0$,

$$1 \le \log_2 n \iff n \le n \log_2 n \iff n \le c \cdot n \log_2 n$$

(b) $T(n) = n^2, g(n) = n$

We wish to proof $T(n) = n^2 \notin O(g(n))$ by contradiction.

Suppose there exists some c and n_0 such that for all $n \ge n_0$, $n^2 \le c \cdot n$. Then, $n \le c$, $\forall n \ge n_0$, which is not possible as c is a constant and n can be arbitrarily large.

5. Big- Ω Notation

$$T(n) = \Omega(g(n)) \iff \exists n_0 > 0 \text{ s.t. } \forall n \geq n_0, 0 \leq c \cdot g(n) \leq T(n)$$

6. Big- Θ Notation

$$T(n) = \Theta(f(n)) \iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

- 7. Implementation and experimentation are needed sometimes
 If algorithm A is $T_1(n) = 10n \in \Theta(n)$, algorithm B is $T_2(n) = 1000n \in \Theta(n)$, but algorithm A is superior in practice. In this case, Implementation and experimentation are needed.
- $8. \ \, \text{Basic facts on exponents and logarithms}$
 - (a) $2^{2n} \neq \Theta(2^n)$, proof: set $x = 2^n$, then $x^2 \neq \Theta(x)$
 - (b) $2^{n+2} = 4 \cdot 2^n = \Theta(2^n)$
 - (c) $\log_a(n^b) = \frac{b \log n}{\log a} = \Theta(\log n)$
 - (d) $\log_b a = \frac{1}{\log_a b}$
 - (e) $a^{\log_b n} = n^{\log_b a}$
- 9. Important note on growth of functions

$$k < \log n < n^a < n \log n < n^b < c^n$$

, where $k, c \in \mathbb{R}, 0 < a < 2, b \ge 2$ are constants

- (a) $999^{999^{999}} = \Theta(1)$
- (b) $\log \log n = O(\log n)$, proof: for $n \ge 2$, $\log \log n \le \log n$

(c) $n \log n = O(\frac{n^2}{\log n})$

proof: To show $n \log n = O(\frac{n^2}{\log n})$, it suffices to show that there exists a C > 0, such that

 $n \log n < C \cdot \frac{n^2}{\log n}$ for sufficiently large n.

$$n \log n < C \cdot \frac{n^2}{\log n}$$

$$\iff (\log n)^2 < C \cdot n$$

It's obvious that for large n, $\log(n) < n^{\epsilon}$ for $\epsilon > 0$, then we can pick $\epsilon = \frac{1}{2}$

$$\log n < n^{\frac{1}{2}}$$
$$(\log n)^2 < n$$

Since C > 0, we can see $(\log n)^2 < n < C \cdot n$. We are done.

10. Extra Examples

- (a) $1000n + n \log n = O(n \log n)$
- (b) $n^2 + n \log(n^3) = n^2 + 3n \log n = O(n^2)$
- (c) $n^3 = \Omega(n)$
- (d) $n^3 = O(n^{10})$
- (e) Let f(n) and g(n) be non-negative functions. Using basic definition of Θ -notation, proof that $\max\{f(n),g(n)\}=\Theta(f(n)+g(n))$
 - i. Step 1: proof $\max\{f(n), g(n)\} = O(f(n) + g(n))$ For all n, $\max\{f(n), g(n)\}$ is either equal to f(n) or equal to g(n). So we can deduce that $\max\{f(n), g(n)\} \leq f(n) + g(n)$. Therefore, $\max\{f(n), g(n)\} = O(f(n) + g(n))$.
 - ii. Step 2: proof $\max\{f(n),g(n)\}=\Omega(f(n)+g(n))$ Note that $\max\{f(n),g(n)\}\geq f(n)$ and $\max\{f(n),g(n)\}\geq g(n)$. So

$$\max\{f(n), g(n)\} + \max\{f(n), g(n)\} \ge f(n) + g(n)$$
$$2 \cdot \max\{f(n), g(n)\} \ge f(n) + g(n)$$
$$\max\{f(n), g(n)\} \ge \frac{1}{2}(f(n) + g(n))$$

Then, we have $\max\{f(n), g(n)\} = \Omega(f(n) + g(n))$

- (f) if $A = \log \sqrt{n}$, $B = \sqrt{\log n}$, then $A = \Omega(B)$ proof: $A = \log \sqrt{n} = \frac{1}{2} \log n = \Theta(\log n)$, $B = \sqrt{\log n} = \Theta(\log n)$. We can simply deduce that $\log \sqrt{n} = \Omega(\sqrt{\log n})$
- (g) Bounds of series Arithmetic Series Proof that $\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n = \Theta(n^2)$
 - i. Approach 1: use formula $\sum_{i=1}^{n} i = \frac{n(1+n)}{2} = \Theta(n^2)$
 - ii. Approach 2

A. Step 1: proof $\sum_{i=1}^{n} i = O(n^2)$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$\leq n + n + \dots + n$$

$$= \sum_{i=1}^{n} n$$

$$= n \cdot n$$

$$= n^2 = O(n^n)$$

B. Step 2: proof $\sum_{i=1}^{n} i = \Omega(n^2)$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$\geq 0 + 0 + \dots + 0 + \dots + \frac{n}{2} + (\frac{n}{2} + 1) + \dots + n$$

$$\geq \frac{n}{2} \cdot \frac{n}{2}$$

$$= \frac{n^2}{4} = \Omega(n^2)$$

Then, we can say that $\sum_{i=1}^{n} i = \Theta(n^2)$

- (h) Bounds of series Polynomial Series Proof that $\sum_{i=1}^{n} i^c = 1^c + 2^c + 3^c + \dots + (n-1)^c + n^c = \Theta(n^{c+1})$ (The proof is more or less the same as the approach 2 of arithmetic series.)
- (i) Bounds of series Harmonic Series H_n Proof that $H_n = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$. Let $k = \log_2 n$, then $n = 2^k$.

Let $\kappa = \log_2 n$, then $n = 2$.							
index	lower bound	parts of H_n	upper bound				
0	$\left \begin{array}{c} 1 \\ \overline{2} \end{array} \right $	1	1				
1	$2 \times \frac{1}{4} = \frac{1}{2}$	$\frac{1}{2} + \frac{1}{3}$	$2 \times \frac{1}{2} = 1$				
2	$4 \times \frac{1}{8} = \frac{1}{2}$	$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$	$4 \times \frac{1}{4} = 1$				
	• • •	•••					
k-1	$2^{k-1} \times \frac{1}{2^k} = \frac{1}{2}$	$\frac{1}{2^{k-1}} + \frac{1}{2^{k-1} + 1} \cdots + \frac{1}{2^k - 1}$	$2^{k-1} \times \frac{1}{2^{k-1}} = 1$				
k	0	$\frac{1}{2^k} = \frac{1}{n}$	1				

Therefore, $H_n < \sum_{i=0}^k 1 = k+1 = \log_2 n + 1 = O(\log n)$ and $H_n > \sum_{i=0}^{k-1} \frac{1}{2} + 0 = \frac{k}{2} = \frac{\log_2 n}{2} = \Omega(\log n)$. So, $H_n = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$.

1.3 Introduction to Algorithms

1. What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elementary instructions.

- 2. Examples of algorithms
 - (a) adding two numbers

```
Input: 2 numbers x = \overline{x_n x_{n-1} \cdots x_1}, y = \overline{y_n y_{n-1} \cdots y_1}.
Output: A number z = \overline{z_{n+1} z_n \cdots z_1}, such that z = x + y.
```

```
1 /*We assume x, y are arrays of length n, z is of length n+1 */
2 int c = 0; // offset
3 for (int i = 0; i < n; ++i){
4    z[i] = x[i] + y[i] + c;
5    if (z[i] >= 10) {
6        c = 1;
7        z[i] = z[i] - 10;
8    }else c = 0;
9 }
10 z[n] = c;
```