- 1. A random sample of m=10 women and n=20 men is gathered, and each person is tested for a disease. We assume for this problem that the test is completely accurate. The numbers of women and men in the sample who have the disease are X and Y respectively, with $X \sim \text{Binomial}(m=10, p=0.1)$ and $Y \sim \text{Binomial}(n=20, p=0.1)$, independently. Answer the following questions:
 - (a) Calculate $\mathbb{P}(X=1,Y=2)$. Quote your numerical answer to 4 decimal places.
 - (b) Calculate $\mathbb{P}(X + Y = 3)$. Quote your numerical answer to 4 decimal places.
 - (c) Let R = X + Y. Note that R represents the number of the people in the sample that have the disease. Find the conditional pmf of X given that R = 3.
 - (d) Use the result that you have obtained in part (c) in order to compute $\mathbb{E}(X|R=3)$.
 - (e) Compute $\mathbb{E}(X|R=3)$ under the hypothesis that p=0.2 instead of p=0.1.
- 2. I do three different experiments:
 - Experiment₁: I toss a coin 104 times and get 81 heads.
 - Experiment₂: I toss a coin 84 times and get 68 heads.
 - Experiment₃: I toss a coin 86 times and get 57 heads.

Answer the following questions:

- (a) Let X_1 , X_2 and X_3 be the number of heads in Experiment₁, Experiment₂ and Experiment₃, respectively. In all experiments, the null hypothesis is that the coin is fair. Under the null hypothesis, state the distributions of X_1 , X_2 and X_3 .
- (b) In each experiment, we wish to test the hypothesis that the coin is fair. For Experiment₁, formulate the null hypothesis and alternative hypothesis, in terms of the distribution of X_1 and its parameters. Remember to specify the full distribution of X, and use a two-sided alternative hypothesis.
- (c) For each experiment, write down the R command required to find the p-value for the hypothesis test, and run this command in R to find the p-value.
- (d) Based on the *p*-values computed in part (c), decide the experiment in which we have the weakest evidence against the null hypothesis.
- 3. Let $X \sim \text{Geometric}\left(\frac{1}{\lambda+1}\right)$, where $0 < \lambda < \infty$.

Answer the following questions:

- (a) For the particular case when $\lambda = 1$, calculate $F_X(1.99)$ and $\mathbb{P}(X > 2)$.
- (b) In the general case when $\lambda \in (0, \infty)$, show that

$$\mathbb{P}(X = k + t | X \ge k) = \mathbb{P}(X = t)$$
, for all nonnegative integers k and t.

For ease of computation, you may use the notation $p = \frac{1}{\lambda + 1}$. It is obvious that 0 .

(c) Let x_1, \ldots, x_n be independent observations for the random variable X. Suppose that n > 1 and $x_1 + x_2 + \cdots + x_n > 0$. Assume that the parameter λ is unknown. Show that the log-likelihood function has the expression:

$$\log L(\lambda; x_1, \dots, x_n) = -n(\bar{x}+1)\log(\lambda+1) + n\bar{x}\log(\lambda),$$

where $\log(\cdot) = \log_e(\cdot)$ denotes the natural logarithm and $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$.

(d) Use the result in part (c) to obtain the maximum likelihood estimate $\hat{\lambda} = \bar{x}$. In your answer, you can refer to Figure 1.

Figure 1: Plot for question 3, part (d). Note that $\bar{x} = 1.93$.