# Kalman Filter Particle Filter

Lab3

#### When will we use it?

- 1) When we have some model of the world.
- 2) When we can gather some observations which will tell us something about the real world.

### Example:

- 1) A car is driving at a constant speed: x = x0+v \* t
- 2) Measurement of inaccurate GPS signal

### Kalman Filter and Particle Filter

When will we use it?

1) We want to treat a problem where information is presented over time, not all at once.

State (x) - What we want

Measurement (z) - What we have

Kalman - assumes linear relation between the two and Gaussian all around

Particle - Relaxes the Gaussian assumption (but still assumes linear transition matrix between states)

#### When will we use it?

- 1) When we have some model of the world.
- 2) When we can gather some observations which will tell us something about the real world.

### Example:

- 1) A car is driving at a constant speed: x = x0+v \* t
- 2) Measurement of inaccurate GPS signal

Noise in the model is modeled by a matrix Q

$$x_{k+1} = \Phi x_k + w_k$$

$$Q = E \left[ w_k w_k^T \right]$$

#### When will we use it?

- 1) When we have some model of the world.
- When we can gather some observations which will tell us something about the real world.

### Example:

- 1) A car is driving at a constant speed: x = x0+v \* t
- 2) Measurement of inaccurate GPS signal

Measurement noise is modeled by matrix R

$$R = E \left[ v_k v_k^T \right] - z_k = H x_k + v_k$$

When will we use it?

- 1) When we have some model of the world.
- 2) When we can gather some observations which will tell us something about the real world.

### Example:

- 1) A car is driving at a constant speed: x = x0+v \* t
- 2) Measurement of inaccurate GPS signal

What do we obtain? An estimate of the state.

# Kalman Filter - What's a state anyway?

Goal: We're interested in the state:  $x_k$ 

Kalman Filter outputs:  $\hat{x}_k$ 

# Kalman formulation

#### The state:

We are interested in estimating some  $x_k$ .

We know (or assume / model) that the  $x_k$ 's progress in time is:

$$x_{k+1} = \Phi \cdot x_k + w_k$$

The measurements:

We observe:  $z_k$  - These are our measurements.

The measurements are related to the state via:

$$z_k = H \cdot x_k + v_k$$

The goal accroding to Kalman's formulation:

Find:  $\hat{x}_k$  which minimizes:

$$f(e_k) = (x_k - \hat{x}_k)^2$$

for every time step.

# Example

We're interested in the location of the subject in the

$$\rightarrow x_k = [x_c, y_c, w, h, v_x, v_y]$$



### Kalman Filter Checklist

#### We need to answer the following questions:

- 1. What is the state that we're interested in?
- 2. What can we measure?
- 3. How well do we measure it?
- 4. What can we assume about the physics of the problem?
- 5. How well do we model the physics of the problem?



# Kalman Filter Checklist



#### We need to answer the following questions:

- 1. What is the state that we're interested in?  $\rightarrow x_k$
- 2. What can we measure?  $\rightarrow z_k$
- 3. How well do we measure it?  $\rightarrow v_k$  Modeled by:  $R = E[v_k v_k^T]$
- 4. What can we assume about the physics of the problem?  $ightarrow \Phi$
- 5. How well do we model the physics of the problem?  $\rightarrow w_k$  Modeled by:  $Q = E[w_k w_k^T]$

## Kalman Filter Checklist

- 1. What is the state that we're interested in?  $\rightarrow x_k = [x_c, y_c, w, h, v_x, v_y]$
- 2. What can we measure?  $\rightarrow z_k = SSD(template, candidate)$
- 3. How well do we measure it?  $\rightarrow v_k$  Modeled by:  $R = E[v_k v_k^T]$
- 4. What can we assume about the physics of the problem?  $\rightarrow \Phi$  s.t:

$$x_{k+1}[0] = x_k[0] + x_k[4] \cdot 1$$

and:

$$x_{k+1}[1] = x_k[1] + x_k[5] \cdot 1$$



## Kalman's Goal:

### Goal:

Find:  $\hat{x}_k$  which minimizes:

$$f(e_k) = (x_k - \hat{x}_k)^2$$

for every time step.

This can be also formulated as the minimization of the trace of the matrix:

$$\min trace(P_k) = \min trace(E[e_k e_k^T]) = \\ \min trace(E[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T])$$

#### Prior Estimate:

The prior estimate of  $\hat{x}_k$  is denoted  $\hat{x}'_k$ .

The prior estimate = was gained by knowledge of the system (system = model =  $\Phi$ ).

#### The posterior estimate of $x_k$ is $\hat{x}_k$

According to Kalman's derivation, the posterior is given by:

$$\hat{x}_k = \hat{x}_k' + K_k \cdot (z_k - H \cdot \hat{x}_k')$$

This eqation ties together:

- 1. The prior:  $\hat{x}'_k$
- 2. The error between the measurement  $(z_k)$  and the prior state estimate, translated to measurement coordinates:  $H \cdot \hat{x}'_k$

You've seen in class that it all boils down to the following scheme:

#### Iterate:

- Update
- 2. Project

#### The Update Step:

1. Compute the Kalman Gain:

$$K_k = P_k' \cdot H^T \cdot (H \cdot P_k' \cdot H^T + R)^{-1}$$

- 2. The posterior estimate:  $\hat{x}_k = \hat{x}_k' + K_k \cdot (z_k H \cdot \hat{x}_k')$
- 3. Update the Covariance Matrix:  $P_k = (I K_k \cdot H) \cdot P_k'$

#### The Project Step:

- 1. State Projection:  $\hat{x}'_{k+1} = \Phi \hat{x}_k$
- 2. Covariance Matrix Projectyion:  $P'_{k+1} = \Phi \cdot P_k \cdot \Phi^T + Q$



| Description        | Equation                                                           |
|--------------------|--------------------------------------------------------------------|
| Kalman Gain        | $K_k = P_k' H^T \left( H P_k' H^T + R \right)^{-1}$                |
| Update Estimate    | $\hat{x}_k = \hat{x}'_k + K_k (z_k - H \hat{x}'_k)$                |
| Update Covariance  | $P_k = (I - K_k H) P_k'$                                           |
| Project into $k+1$ | $ \hat{x}'_{k+1} = \Phi \hat{x}_k  P_{k+1} = \Phi P_k \Phi^T + Q $ |
|                    | $P_{k+1} = \Phi P_k \Phi^T + Q$                                    |
|                    |                                                                    |



| Description        | Equation                                                           |
|--------------------|--------------------------------------------------------------------|
| Kalman Gain        | $K_k = P_k' H^T \left( H P_k' H^T + R \right)^{-1}$                |
| Update Estimate    | $\hat{x}_k = \hat{x}'_k + K_k (z_k - H \hat{x}'_k)$                |
| Update Covariance  | $P_k = (I - K_k H) P_k'$                                           |
| Project into $k+1$ | $ \hat{x}'_{k+1} = \Phi \hat{x}_k  P_{k+1} = \Phi P_k \Phi^T + Q $ |
|                    | $P_{k+1} = \Phi P_k \Phi^T + Q$                                    |
|                    |                                                                    |





# Particle filter



## Particle Filter - Goal

Given the previous State - estimate the new state.

### Input:

$$\{S_{t-1}^{(n)}, \pi_{t-1}^{(n)}, C_{t-1}^{(n)}\}_{n=1}^{N} = \{State, Weight, Slack\}$$

### Output:

```
\{S_t^{(n)}, \pi_t^{(n)}, C_t^{(n)}\}_{n=1}^N = \{State, Weight, Slack\}
```

### Input:

$$\{S_{t-1}^{(n)}, \pi_{t-1}^{(n)}, C_{t-1}^{(n)}\}_{n=1}^{N}$$

### Output:

$$\{S_t^{(n)}, \pi_t^{(n)}, C_t^{(n)}\}_{n=1}^N$$

### The Algorithm:

1. Select  $S_t^{\prime(n)}$  as follows:

- a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)} >= r$ c) Set  $S_t^{\prime(n)} = S_{t-1}^{(j)}$
- 2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

- $S_t^{(n)} = A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$
- 3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$

Return:  $\sum_{n=1}^{N} \pi_{t}^{(n)} f(s_{t}^{(n)})$ 

Prior = Before measurement observed

### The Algorithm:

- 1. Select  $S_t^{\prime(n)}$  as follows:
- a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)}>=r$
  - c) Set  $S_t'^{(n)} = S_{t-1}^{(j)}$
- 2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

$$S_t^{(n)} = A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$$

3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$ 

Return:  $\sum_{n=1}^{N} \pi_{t}^{(n)} f(s_{t}^{(n)})$ 

Prior = Before measurement observed

Apply deterministic drift according to the "physics"

### The Algorithm:

- 1. Select  $S_t^{\prime(n)}$  as follows:
  - a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)} >= r$
  - c) Set  $S_t^{\prime(n)} = S_{t-1}^{(j)}$
- 2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

$$S_t^{(n)} = A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$$
  
3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$ 

Return:  $\sum_{n=1}^{N} \pi_{t}^{(n)} f(s_{t}^{(n)})$ 

Prior = Before measurement observed

Apply deterministic drift according to the "physics"

System noise / stochastic diffusion

### The Algorithm:

- 1. Select  $S_t^{\prime(n)}$  as follows:
  - a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)} >= r$

c) Set 
$$S_t^{\prime(n)} = S_{t-1}^{(j)}$$

2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

$$S_t^{(n)} = A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$$
  
3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$ 

Return: 
$$\sum_{n=1}^{N} \pi_{t}^{(n)} f(s_{t}^{(n)})$$

Prior = Before measurement observed

Apply deterministic drift according to the "physics"

System noise / stochastic diffusion

Given that the state vector is indeed at s<sub>t</sub><sup>n</sup> how well does it describe the measurement

### The Algorithm:

- 1. Select  $S_t^{\prime(n)}$  as follows:
  - a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)} >= r$
  - c) Set  $S_t^{\prime(n)} = S_{t-1}^{(j)}$
- 2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

$$S_t^{(n)} \neq A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$$

3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$ 

Return: 
$$\sum_{n=1}^{N} \pi_t^{(n)} f(s_t^{(n)})$$

Prior = Before measurement observed

Apply deterministic drift according to the "physics"

System noise / stochastic diffusion

Given that the state vector is indeed at s<sub>t</sub><sup>n</sup> how well does it describe the measurement

### The Algorithm:

- 1. Select  $S_t^{\prime(n)}$  as follows:
  - a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)} >= r$
  - c) Set  $S_t^{\prime(n)} = S_{t-1}^{(j)}$
- 2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

$$S_t^{(n)} = A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$$

3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$ 

Return: 
$$\sum_{n=1}^{N} \pi_{t}^{(n)} f(s_{t}^{(n)})$$

Use template here

Prior = Before measurement observed

Apply deterministic drift according to the "physics"

System noise / stochastic diffusion

This is the score per particle n at time t.

### The Algorithm:

- 1. Select  $S_t^{\prime(n)}$  as follows:
  - a) Generate r at random
  - b) Find smallest j such that  $C_{t-1}^{(j)} >= r$
  - c) Set  $S_t^{\prime(n)} = S_{t-1}^{(j)}$
- 2. Predict:

$$p(x_t|x_{t-1} = s_t^{\prime(n)})$$

i.e:

$$S_t^{(n)} = A \cdot S_t^{\prime(n)} + B \cdot w_t^{(n)}$$

3. Measure:  $\pi_t^{(n)} = p(z_t | x_t = s_t^{(n)})$ 

Return: 
$$\sum_{n=1}^{N} \pi_{t}^{(n)} f(s_{t}^{(n)})$$

Use template here

















# Let's code it...