保密★启用前

2020-2021 学年第一学期期末考试 《工科数学分析基础 1》 A 卷

考生注意事项

- 1. 答题前,考生须在试题册指定位置上填写考生学号和考生姓名。
- 2. 在<u>答题卡</u>指定位置上填写考试科目、考生姓名和考生学号,并涂写考生 学号信息。

特别提醒 由于<u>答题卡</u>上学号只设了九位空格,所以请 <u>2020 级学生</u>在 答题卡上填涂学号时,去掉最前面的"20".例如,如果学号为 20201234567,则填涂 201234567。其它年级的同学填涂完整的学号。

- 3. 第一题的答案必须涂写在答题卡相应题号的选项上,其它题的答案必须 书写在答题卡指定位置的边框区域内。超出答题区域书写的答案无效: 在草稿纸、试题册上答题无效。
- 4. 填(书)写部分必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用 2B 铅笔填涂。
- 5. 考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)

考生学号						
考生姓名						

一、选择题 每小题 项是符合题目要求的,			选项中,只有一个选			
1、点 $x = 0$ 是函数 f	$F(x) = \frac{1}{1 + e^{\frac{1}{x}}} \text{ in } ($)				
(A) 可去间断点. (C) 无穷间断点.		(B) 跳跃间断点. (D) 振荡间断点.				
2、设 f(x) 为不恒等于	于零的奇函数, 且	<i>f</i> ′(0) 存在,则函数	$g(x) = \frac{f(x)}{x} \ ()$			
		(B) 有跳跃间断点 (D) 有可去间断点				
3 、设 $f(x) = \lim_{t \to \infty} x \Big(1$	• /					
$(A) (1+2x)e^{2x}.$	(B) $(1+x)e^x$	(C) xe^{2x} .	(D) 1 .			
$4、函数 f(x) = \cos\frac{1}{x}$						
(A) $(0,1)$.	(B) (1,2).	(C) [2,3].	(D) $(3, +\infty)$.			
5、设函数 $y = y(x)$ 自						
		(C) -1 .				
6、设 $\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$	t),其中 $f(t)$ 有二	阶连续导数,且 f "(t	$)\neq0$,则 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=($			
(A) $f''(t) + tf'''(t)$. (B) 1.	(C) $\frac{t}{f''(t)}$.	(D) $\frac{1}{f''(t)}$.			
7、设函数 $f(x) = xe$	-					
(A) 2019 .	(B) 2020 .	(C) 2021 .	(D) 0 .			
8、设周期为4的函数	$f(x)$ 在 $(-\infty,+\infty)$	\circ) 内可导,且 $\lim_{x\to 0} \frac{f(x)}{x}$	$\frac{1)-f(1-x)}{2x} = -1$,则曲			
线 $y = f(x)$ 在点 $(5,$						
(A) 1.	(B) − 1 .	(C) 2 .	(D) -2.			
9、函数 $f(x) = \int_0^x \frac{2t-1}{t^2-t+1} dt$ 在 $[-1,1]$ 上的最大值为(
(A) $\ln \frac{3}{4}$.	(B) $\ln \frac{3}{2}$.	(C) 0 .	(D) ln3 .			

10 、定积分 $\int_0^{\pi} 2e^x \sin x dx = $ ()						
(A) $-e^{\pi} + 1$.	(B) $-e^{\pi}-1$.	(C) $e^{\pi} + 1$.	(D) $e^{\pi} - 1$.			
11、定积分 ∫ _π ^{2π} sin ⁴ z	x dx = ()					
(A) $\frac{\pi}{2}$.	(B) $\frac{3\pi}{8}$.	(C) $\frac{\pi}{4}$.	(D) $\frac{\pi}{8}$.			
12 、定积分 $\int_0^4 \frac{x}{\sqrt{2x+1}}$	dx = ()					
(A) $\frac{5}{3}$.	(B) $\frac{10}{3}$.	(C) 5 .	(D) $\frac{20}{3}$.			
13 、心形线 $r=1+\cos\theta$ (极坐标系下的方程)所围平面图形的面积为(
$(A) \frac{3\pi}{8}.$	(B) $\frac{3\pi}{4}$.	(C) $\frac{3\pi}{2}$.	(D) 3π.			
14、函数 $f(x) = \ln x - \frac{x}{e} + 1$ 在 $(0, +\infty)$ 内的零点个数为(
(A) 0.	C	(C) 2.	(D) 3.			
15、微分方程	os x · csc y 的通解)	为()				

(A)
$$\sin x + \cos y = c$$
.

(B)
$$\sin x - \cos y = c$$
.

)

(C)
$$\cos x - \sin y = c$$
.

(D)
$$\cos x + \sin y = c$$
.

二、(15 分) 求解微分方程初值问题
$$\begin{cases} \frac{dy}{dx} = \frac{2xy}{2x^2 + y^2} \\ y(0) = 1 \end{cases}$$

三、(15分) 求极限
$$\lim_{x\to 0} \frac{\ln{(1+x^2)}-\ln{(1+\sin^2{x})}}{(e^x-1)\sin^3{x}}$$
.

四、(15分)设函数f(x)在[$-\pi$, π]上连续.

(1) 证明:
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

(2) 当
$$f(x) = \frac{x}{1+\cos^2 x} + \int_{-\pi}^{\pi} f(x) \sin x dx$$
 时,利用(1)的结论求 $f(x)$.

五、(10 分) 设函数f(x)在[0,1]上二阶可导,且 $|f''(x)| \le 1$. 已知f(x)在(0,1)内取到最大值 $\frac{1}{4}$. 证明: $|f(0)| + |f(1)| \le 1$.