Regression-Stratified Sampling for Optimized Algorithm Selection in Time-Constrained Tabular AutoML

Mehdi Bahrami, So Hasegawa, Lei Liu, Wei-Peng Chen Fujitsu Research of America

SPIGM

TL;DR: a Regression-Stratified Sampling method with a PDF Energy metric for selecting optimized ML algorithms in Tabular AutoML

Introduction

ML algorithm is indispensable for tabular AutoML training. It can be expensive for large tabular datasets, especially under time constraints. One of the popular approaches for exploring ML algorithms is a simple random sampling approach. However, this approach can result in poor algorithm selection [1]. Let M be a Bayesian model in a supervised setting for the given input X to predict Y with a parameter of θ with \mathbb{D}_{ν} distribution as follows.

$$\mathcal{P}(y,\theta|x) = \mathcal{P}(y|x,\theta)\mathcal{P}(\theta)$$

Algorithm Selection

Our hypothesis in this study to be tested is:

 $\mathcal{PDF}(f(\mathcal{X}^{\rho})) \approx PDF(f(\mathcal{X})) \text{ if } PDF(\mathcal{Y}^{\rho}) \approx \mathcal{PDF}(\mathcal{Y})$

$$\mathcal{M}^o = \underset{i=[1,..,n]}{\operatorname{argmin}} (\mathcal{A}(\mathcal{L}_i(\mathcal{D})))$$

$$\mathcal{M}^{
ho} = \operatorname*{argmin}_{i=[1,..,n]} (\mathcal{A}(\mathcal{L}_i(\mathcal{D}^{
ho})))$$

$$\mathcal{L} = \mathcal{PDF}(f(\mathcal{X}^{\rho})) - PDF(f(\mathcal{X}))$$

PDF Energy Metric

$$\mathbb{S}(\hat{y}_i) = \begin{cases} \mathbb{D}(y_i) & \beta_i \leq \hat{y}_i < \beta_{i+1} \\ -\mathbb{D}(y_i) * ||\beta_i - \hat{\beta}_i|| & \hat{y}_i < \beta_i \text{ or } \hat{y}_i > \beta_{i+1} \end{cases}$$

$$\mathbb{E}_X(\hat{y}) = \sum_{k=1}^{||\mathbb{D}^{\rho}||} \mathbb{S}(\hat{y}_k)$$

$$\mathcal{M} = \operatorname*{argmax}_{\gamma \in \Gamma} (\mathbb{E}_X^{\gamma}(\hat{y}))$$

Experimental Setup

We utilized a tabular AutoML benchmark [2] and defined two sets of sub-benchmarks: #1 consists of 31 datasets, and #2 includes 14 realworld datasets for regression tasks.

AutoML	# of Choices				
MLJAR	10				
AutoGuon	6				
H2O	5 categories includes 14 algorithms				
Auto-Scikit Learn	15				
TPOT	6				
FLAML	6 (w/ hyperparameters)				
Baseline+RSS (Our)	14				

Regression Stratified Sampling

Overview of the proposed approach for algorithm selection

Experiment Results

Performance Comparison Simple Random Sampling vs RSS

				Final Evaluation on 25% hold-out data							
	eta			10		100		1000		Dynamic Stratified	
		Sampling Method	Eval. Method	$R^2\uparrow$	RMSE↓	$R^2\uparrow$	RMSE↓	$R^2\uparrow$	RMSE↓	$R^2\uparrow$	RMSE↓
A	verage	Random Sampling	Metric	0.8425 ± 0.012	9.6812 ± 0.359	0.8425 ± 0.012	9.6812 ± 0.3590	0.8425 ± 0.012	9.6812 ± 0.359	0.8425 ± 0.012	9.6812 ± 0.359
		PDF Sampling (our)	PDF Energy (our)	0.8183 ± 0.024	9.5147 ± 0.356	0.8455 ± 0.016	9.5432 ± 0.363	0.8468 ± 0.01	9.6453 ± 0.332	0.8254 ± 0.036	9.6757 ± 0.87
	Total Number of Champions		Metric	3	3	4	4	5	5	5	5
T)	(Top rank across 14 possible datasets)		Equal Results	2	2	0	0	1	1	1	1
			PDF Energy (our)	9	9	10	10	8	8	8	8

R^2 Performance comparison (KL vs PDF)

R² score of AutoML evaluation across 31 datasets

Time (s)	Baseline	MLJAR	FLAML	AutoSKLearn	H2O	TPOT	AutoGluon	RSS (our)
30	0.7601 ± 0.28	0.7662 ± 0.28	0.8069 ± 0.21	0.6607 ± 0.35	0.7885 ± 0.22	0.6597 ± 0.33	0.7047 ± 0.32	$\textbf{0.8222} \pm \textbf{0.21}$
60	0.7663 ± 0.27	0.7764 ± 0.27	0.8152 ± 0.2	0.7179 ± 0.3	0.8004 ± 0.21	0.689 ± 0.32	0.7341 ± 0.3	$\textbf{0.8239} \pm \textbf{0.2}$
120	0.7629 ± 0.28	0.7691 ± 0.28	0.8177 ± 0.2	0.7518 ± 0.27	0.8039 ± 0.22	0.7506 ± 0.27	0.7751 ± 0.27	$\textbf{0.8242} \pm \textbf{0.2}$
180	0.7598 ± 0.28	0.7365 ± 0.28	0.819 ± 0.2	0.7819 ± 0.24	0.8054 ± 0.22	0.7618 ± 0.26	0.777 ± 0.27	$\textbf{0.8243} \pm \textbf{0.2}$
300	0.761 ± 0.28	0.7277 ± 0.28	0.8217 ± 0.2	0.7923 ± 0.23	0.8131 ± 0.21	0.7748 ± 0.25	0.7716 ± 0.28	$\textbf{0.8262} \pm \textbf{0.2}$

 R^2 of algorithm selection (KL vs PDF Energy)

Diversity of Algorithm Selection (left: KL vs right: RSS)

More details?

Conclusion

Utilizing PDF in tabular AutoML for optimized algorithm selection is beneficial.

Algorithm selection (KL vs PDF)