Term Project Phase 1 Report

Yusuf Şahin - 2380889

Figure 1. Plot for average RTT for ping packets

1. Report

The graph shows how the average RTT changes as you add exponentially distributed random delays to packets. At first, as the delay increases, the RTT drops significantly, but after a certain point, it levels out and doesn't change much when the lambda gets higher.

I tested the latency by pinging a secure network alongside an insecure one using the command:

```
ping insec -30 -i 0.1
```

This command sends 30 ping packets with a 0.1-second interval between each, aiming to measure the average rtt between networks.

2. All ping results

```
lambda = 1
2
   rtt min/avg/max/mdev = 339.776/7584.346/9815.589/2369.67
        \hookrightarrow 1 ms, pipe 10
   lambda = 2
   rtt min/avg/max/mdev = 212.761/1661.333/4236.702/1039.26
        \hookrightarrow 0 ms, pipe 5
5
   lambda = 4
   rtt min/avg/max/mdev = 34.666/437.041/1051.609/286.345
6
        \hookrightarrow ms, pipe 2
   lambda = 32
   rtt min/avg/max/mdev = 19.693/69.774/129.713/29.152 ms
   rtt min/avg/max/mdev = 6.598/21.868/60.776/12.507 ms
10
   lambda = 1000
11
   rtt min/avg/max/mdev = 3.541/5.263/9.711/1.543 ms
12
   lambda = 10000
14
   rtt min/avg/max/mdev = 3.499/3.615/3.974/0.112 ms
   lambda = 100000
15
   rtt min/avg/max/mdev = 3.510/3.640/3.946/0.123 ms
16
   lambda = 1000000
17
   rtt min/avg/max/mdev = 3.702/3.809/3.955/0.060 ms
19
   rtt min/avg/max/mdev = 3.384/3.798/3.962/0.112 ms
20
   lambda = no_delay
21
   rtt min/avg/max/mdev = 3.517/3.794/4.014/0.112 ms
```

Code 1. ping results