## CMSC 460 - HW7

## Gudjon Einar Magnusson

November 30, 2016

1

| f(x)                          | a   | b          | tol       | Itter | Value   |
|-------------------------------|-----|------------|-----------|-------|---------|
| humps(x)                      | 0   | 1          | $10^{-4}$ | 93    | 29.8583 |
| humps(x)                      | 0   | 1          | $10^{-6}$ | 265   | 29.8583 |
| humps(x)                      | -1  | 2          | $10^{-6}$ | 165   | 26.3450 |
| $\sin(x)$                     | 0   | $\pi$      | $10^{-8}$ | 121   | 2.0     |
| $\cos(x)$                     | 0   | $(9/2)\pi$ | $10^{-6}$ | 241   | 1.0     |
| $\sqrt{x}$                    | 0   | 1          | $10^{-8}$ | 153   | 0.6667  |
| $\sqrt{x}\log x$              | eps | 1          | $10^{-8}$ | 205   | -0.4444 |
| $\tan(\sin x) - \sin(\tan x)$ | 0   | $\pi$      | $10^{-8}$ | ?     | ?       |
| $\tan(\sin x) - \sin(\tan x)$ | 0   | $\pi$      | $10^{-4}$ | 505   | 2.6644  |
| 1/(3x-1)                      | 0   | 1          | $10^{-4}$ | ?     | ?       |
| $x^{8/3}(1-x)^{10/3}$         | 0   | 1          | $10^{-8}$ | 73    | 0.0074  |
| $x^{25}(1-x)^2$               | 0   | 1          | $10^{-8}$ | 49    | 0.0001  |

In general the evaluation points are concentrated at peaks and valleys of the function.

 $f(x) = \tan(\sin x) - \sin(\tan x), x \in [0, \pi]$  fails to converge in a reasonable time because function fluctuates wildly close to  $x = \frac{\pi}{2}$  where  $\tan x$  shoots to infinity.

f(x) = 1/(3x - 1),  $x \in [0, 1]$  gets stuck and fails at  $x = \frac{1}{3}$ . On either side of that point f(x) shoots to infinity and negative infinity. Evidentially it fails with a division by zero.



Figure 1: Error of approximating  $\pi$  using the composite trapezoid rule with n equally spaced points

2

## 3

The error drops quickly as n increases. Figure 1 shows the error as a function of n.