α) Η περίοδος της συνάρτησης είναι $T=\frac{2\pi}{3}$, η μέγιστη τιμή της είναι $\max f(x)=2+1=3$, και η ελάχιστη τιμή της είναι $\min f(x)=-2+1=-1$.

β)

i. Από την γραφική παράσταση της ημιτονοειδούς συνάρτησης g, παρατηρούμε ότι παρουσιάζει μέγιστο για $x=-\frac{\pi}{2}$ και το επόμενο μέγιστο για $x=\frac{3\pi}{2}$. Άρα η περίοδος της συνάρτησης είναι $T=\frac{3\pi}{2}-\left(-\frac{\pi}{2}\right)=2\pi$, οπότε $\beta=1$. Η καμπύλη προκύπτει από κατακόρυφη μετατόπιση της γραφικής παράστασης της $\alpha\eta\mu x$ κατά 1 μονάδα προς τα πάνω, άρα $\gamma=1$. Επίσης

$$g\left(\frac{3\pi}{2}\right) = 3 \Leftrightarrow$$

$$\alpha \cdot \eta \mu \frac{3\pi}{2} + 1 = 3 \Leftrightarrow$$

$$\alpha \cdot (-1) = 2 \Leftrightarrow$$

$$\alpha = -2$$

Τελικά $g(x) = -2\eta \mu x + 1$.

ii. Η εξίσωση γίνεται:

$$f(x) = g(x) \Leftrightarrow$$

$$2\eta \mu 3x + 1 = -2\eta \mu x + 1 \Leftrightarrow$$

$$\eta \mu 3x = -\eta \mu x \Leftrightarrow$$

$$\eta \mu 3x = \eta \mu (-x) \Leftrightarrow$$

$$\begin{cases}
3x = 2\kappa \pi - x \\
\dot{\eta} &, \kappa \in \mathbb{Z}. \\
3x = 2\kappa \pi + (\pi + x)
\end{cases}$$

 $\Delta \eta \lambda \alpha \delta \dot{\eta} \colon \begin{cases} x = \frac{\kappa \pi}{2} \\ \dot{\eta} &, \kappa \in \mathbb{Z} \;. \; \text{Επειδ} \dot{\eta} \quad x \in [0,\pi) \;, \; \text{για} \quad \kappa = 0 \quad \text{στον πρώτο τύπο λύσεων} \\ x = \kappa \pi + \frac{\pi}{2} \end{cases}$

προκύπτει x=0 και στον δεύτερο τύπο λύσεων προκύπτει $x=\frac{\pi}{2}$ (που προκύπτει και από

τον πρώτο τύπο λύσεων για $\kappa=1$). Από τις άλλες τιμές του $\kappa\in\mathbb{Z}$ προκύπτουν λύσεις οι οποίες δεν ανήκουν στο διάστημα $[0,\pi)$.

Η γραφική λύση της εξίσωσης φαίνεται στο παρακάτω σχήμα.

Τελικά ή εξίσωση έχει δυο λύσεις στο $[0,\pi)$, τις x=0 και $x=\frac{\pi}{2}$.