Università di Genova

Macchine di Turing Quantistiche

Relatori

Elena Zucca

Francesco Dagnino

Candidato

Pietro Zignaigo

16-12-2024

Introduzione

Computazione quantistica

Modello matematico

Macchina di Turing

Macchina di Turing quantistica

Configurazioni

Definizione

Operatore di transizione

Funzioni calcolabili quantistiche

PPD e computazioni

Definizione

Categorie di terminazione

Conclusione

 Stato di un computer quantistico = sovrapposizione di stati discreti

- Stato di un computer quantistico = sovrapposizione di stati discreti
- L'unità minima di informazione quantistica è il qubit

$$\begin{split} &1\left|0\right\rangle + 0\left|1\right\rangle = \left|0\right\rangle \\ &\frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle \\ &\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle \end{split}$$

- Stato di un computer quantistico = sovrapposizione di stati discreti
- L'unità minima di informazione quantistica è il qubit

$$\begin{aligned} &1\left|0\right\rangle + 0\left|1\right\rangle = \left|0\right\rangle \\ &\frac{1}{\sqrt{2}}\left|0\right\rangle + \frac{1}{\sqrt{2}}\left|1\right\rangle \\ &\frac{1}{\sqrt{2}}\left|0\right\rangle - \frac{1}{\sqrt{2}}\left|1\right\rangle \end{aligned}$$

• Osservazione distrugge parte dell'informazione, facendo collassare su $|0\rangle$ o su $|1\rangle$

Quantum advantage: A parità di problema, la complessità temporale degli algoritmi quantistici può essere minore di quella degli algoritmi classici

Modello matematico

Spazi di Hilbert

 Per modellare uno stato quantistico si utilizzano gli spazi di Hilbert

$$\ell^{2}\left(\mathcal{B}\right)=\left\{ \phi:\mathcal{B}
ightarrow\mathbb{C}\ \middle|\ \sum_{\mathcal{C}\in\mathcal{B}}\left|\phi\left(\mathcal{C}
ight)\right|^{2}<\infty
ight\}$$

Prendiamo in considerazione solo ℓ_1^2

$$\ell_1^2\left(\mathcal{B}\right) = \left\{\phi \in \ell^2\left(\mathcal{B}\right) \;\middle|\; \|\phi\|^2 = 1\right\}$$

Modello matematico

Operatori

- L'equivalente delle porte logiche classiche sono gli operatori lineari
- Possono essere usati solo operatori unitari
 - invertibili
 - conservano la norma
- Perché l'operatore, visto in forma matriciale, sia unitario
 - Deve avere colonne con norma 1 (perché la norma sia sempre conservata)
 - Ogni coppia di colonne deve essere ortogonale, ovvero due configurazioni pure non possono sovrapporsi dopo aver applicato l'operatore

Macchina di Turing

- Modello matematico per descrivere funzioni calcolabili da un algoritmo
- Funzioni calcolabili: Funzioni parziali $f: \mathbb{N} \to \mathbb{N}$ modellabili da una macchina di Turing

Configurazioni

Una configurazione di una macchina di Turing è

$$\langle \alpha, \mathbf{q}, \beta, \mathbf{i} \rangle \in \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z}$$

- Q-configurazioni: Elementi di $\ell_1^2(\Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z} \times \mathbb{N})$
- Definiamo $\mathfrak{C}_M = \Sigma^* \times \mathcal{Q} \times \Sigma^* \times \mathbb{Z} \times \mathbb{N}$

8 di 15

Definizione

Una pre-macchina di Turing quantistica è una tupla

$$M = \langle \Sigma \times \mathcal{Q} \times \mathcal{Q}_s \times \mathcal{Q}_t \times \delta_0 \times q_i \times q_f \rangle$$

• Funzione δ_0

$$\delta_0: (\mathcal{Q} \backslash \mathcal{Q}_t) \times \Sigma \to \ell^2_1((\mathcal{Q} \backslash \mathcal{Q}_s) \times \Sigma \times \mathbb{D})$$

• Una pre-macchina di Turing quantistica è una macchina di Turing quantistica se l'operatore di transizione U_M è unitario

9 di 15

Operatore di transizione

- Definiamo U_M su ogni $|C\rangle$ con $C \in \mathfrak{C}_M$
- Se $C \in \mathfrak{C}_M^0 \backslash \mathfrak{C}_M^t$

$$U_{M}(|C\rangle) = \sum_{(p,v,d)\in(\mathcal{Q}\setminus\mathcal{Q}_{s})\times\Sigma\times\mathbb{D}} \delta_{0}(q,u)(p,v,d) |C_{p,v,d}\rangle$$

Esiste un teorema che garantisce l'unitarietà se δ_0 rispetta certe condizioni

Funzioni calcolabili quantistiche

PPD e computazioni

- Una Partial Probability Distribution (PPD) è una funzione $\mathcal{P}: \mathbb{N} \to \mathbb{R}_{[0,1]}$ tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) \leq 1$ Una Probability Distribution (PD) è una PPD tale che $\sum_{n \in \mathbb{N}} \mathcal{P}(n) = 1$
- A ogni $|\phi\rangle$ si può associare una PPD $\mathcal{P}_{|\phi\rangle}$ $\mathcal{P}_{|\phi\rangle}(n)=$ probabilità di $|\phi\rangle$ di collassare su una configurazione finale con n simboli 1 sul nastro

Funzioni calcolabili quantistiche

PPD e computazioni

- lacksquare Una computazione $K^M_{|\phi
 angle}$ è una sequenza $|\phi_i
 angle$ tale che
 - 1. $|\phi_0\rangle = |\phi\rangle$ è una q-configurazione finale
 - 2. $|\phi_i\rangle = U_M^i |\phi\rangle$
- lacksquare A ogni computazione si associa una sequenza di PPD $\mathcal{P}_{|\phi_i
 angle}$
- La sequenza $\sum_{n \in \mathbb{N}} \mathcal{P}_{|\phi_i\rangle}(n)$ è crescente

Funzioni calcolabili quantistiche

Definizione

- Prendiamo in considerazione funzioni di forma $f: \ell_1^2(\mathbb{N}) \to PPD$
- $\mathcal{P} = \lim_{n \to \infty} \mathcal{P}_{|\phi_i\rangle}$ è l'output calcolato di M
- Scegliamo una codifica da $\ell_1^2\left(\mathbb{N}\right)$ a $\ell_1^2\left(\mathfrak{C}_M^{init}\right)$
- Funzioni calcolabili quantistiche: Funzioni $f: \ell_1^2(\mathbb{N}) \to PPD$ rappresentabili da una Macchina di Turing quantistica

Categorie di terminazione

Una data computazione può

- 1. Produrre una PD in un numero di passi finito
- 2. Non produrre una *PD* in un numero di passi finito, ma avere una *PD* come *PPD* limite
- 3. Non avere una PD come PPD limite

Conclusione

L