Instruction Formats

ALU Design

Operations	ALU Mux			
And	00			
Or	01			
Add	10 bin=0 cin0			
Sub	10 bin=1 cin1			

Fig: 1 bit ALU

Register File

8 Registers
Each-> 16 Bits

Fig: 8 bit Register File

From opt code to control unit

Signal Name	R-f	Lw	Sw	beq	jump	slt
	0	0	0	0	1	1
Op2	U				1	T
Op1	0	0	1	1	0	0
Op0	0	1	0	1	0	1
RegDst	1	0	X	X	0	0
ALUSrc	0	1	1	0	0	1
MemtoReg	0	1	X	X	0	0
RegWrite	1	1	0	0	0	1
MemRead	0	1	0	0	0	0
MemWrite	1	1	0	0	0	0
Branch	0	0	0	1	0	0
ALUOp1	1	0	0	0	0	0
ALUOp2	0	0	0	1	0	1
SLT	0	0	0	0	0	1
JUMP	0	0	0	0	1	0

Input

Control Unit

Fig: Control Unit

ALU Control

From ALU OP of control signal and Function to 4 Bit ALU control bit

OPCode	Format	ALU-OP	Function	Operation	ALU-op	Alu control bits
000	R	10	0000	Add	Add	0010
000	R	10	0010	Sub	Sub	0110
000	R	10	0100	And	And	0000
000	R	10	0101	Or	Or	0001
001	1	00	XXXX	LW	Add	0010
010	1	00	XXXX	SW	Add	0010
011	1	01	XXXX	BEQ	SUB	0110
101	1	01	XXXX	SLT	SUB	0110
100	J	XX	XXXX	JUMP	-	-

Alu control bits:

O Bin A B

SELECTION

ALU CONTROL

ALU OP1 – A ALU OP0 – B FUN 3,2,1,0 = C,D,E,F

Fig: Alu Control

JUMP

SET LESS THEN

SLT \$s3, \$s2, 10

SLT(op) Rs Rd 7 bit Immediate value

If Rs - immediate < 0:
 Store 1 and extend to
16bit in RD
Else:
 Store 0 and extend to
16bit in RD</pre>

DATA PATH

Problem

Find the sum of 10 decimal number using loop

Assembly code

add \$s4, \$s0, \$s0 add \$s2, \$s0, \$s0 slt \$s3, \$s2, 10 beq \$s3, \$s1, 1 jump 000000001000 add \$s4, \$s4, \$s2 add \$s2, \$s2, \$s1 jump 000000000010 sw \$s4, 2(\$s0)

Compiler

Machine code

Hexadecimal

0x0040 0x0020 0xA98A 0x6581 0x8008 0x0A40 0x0520 0x8002 0x4202