

planetmath.org

Math for the people, by the people.

Cantor-Bendixson derivative

Canonical name CantorBendixsonDerivative

Date of creation 2013-03-22 15:01:37 Last modified on 2013-03-22 15:01:37

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Definition
Classification msc 54H05
Classification msc 03E15
Synonym set derivative
Related topic DerivedSet

Defines Cantor-Bendixson rank

Let A be a subset of a topological space X. Its Cantor-Bendixson derivative A' is defined as the set of accumulation points of A. In other words

$$A' = \{ x \in X \mid x \in \overline{A \setminus \{x\}} \}.$$

Through transfinite induction, the Cantor-Bendixson derivative can be defined to any order α , where α is an arbitrary ordinal. Let $A^{(0)} = A$. If α is a successor ordinal, then $A^{(\alpha)} = (A^{(\alpha-1)})'$. If λ is a limit ordinal, then $A^{(\lambda)} = \bigcap_{\alpha < \lambda} A^{(\alpha)}$. The Cantor-Bendixson rank of the set A is the least ordinal α such that $A^{(\alpha)} = A^{(\alpha+1)}$. Note that A' = A implies that A is a perfect set.

Some basic properties of the Cantor-Bendixson derivative include

- 1. $(A \cup B)' = A' \cup B'$,
- 2. $(\bigcup_{i \in I} A_i)' \supseteq \bigcup_{i \in I} A'_i$
- 3. $(\bigcap_{i \in I} A_i)' \subseteq \bigcap_{i \in I} A_i'$
- 4. $(A \setminus B)' \supseteq A' \setminus B'$,
- 5. $A \subseteq B \Rightarrow A' \subseteq B'$,
- 6. $\overline{A} = A \cup A'$
- 7. $\overline{A'} = A'$.

The last property requires some justification. Obviously, $A' \subseteq \overline{A'}$. Suppose $a \in \overline{A'}$, then every neighborhood of a contains some points of A' distinct from a. But by definition of A', each such neighborhood must also contain some points of A. This implies that a is an accumulation point of A, that is $a \in A'$. Therefore $\overline{A'} \subseteq A'$ and we have $\overline{A'} = A'$.

Finally, from the definition of the Cantor-Bendixson rank and the above properties, if A has Cantor-Bendixson rank α , the sets

$$A^{(1)}\supset A^{(2)}\supset\cdots\supset A^{(\alpha)}$$

form a strictly decreasing chain of closed sets.