Computer Security

A Hands-on Approach

Wenliang Du Syracuse University ©2017 by Wenliang Du.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the author.

The author of this book has used his best efforts in preparing this book. These efforts include the development, research, and testing of theories and programs to determine their effectiveness. The author makes no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Printed by: CreateSpace

First Printing: October 2017

ISBN-13: 978-1548367947

ISBN-10: 154836794X

10987654321

Contents

Pr	Preface xii							
Al	About the Author xvi							
Ac	cknov	vledgme	ents xiz					
I	Sof	tware	Security					
			·					
1			ograms					
	1.1		eed for Privileged Programs					
		1.1.1	The Password Dilemma					
		1.1.2	Different Types of Privileged Programs					
	1.2		et-UID Mechanism					
		1.2.1	A Superman Story					
		1.2.2	How It Works					
		1.2.3	An Example of Set-UID Program					
		1.2.4	How to Ensure Its Security					
		1.2.5	The Set-GID Mechanism					
	1.3	What (Can Go Wrong: What Happened to Superman					
	1.4	Attack	Surfaces of Set-UID Programs					
		1.4.1	User Inputs: Explicit Inputs					
		1.4.2	System Inputs					
		1.4.3	Environment Variables: Hidden Inputs					
		1.4.4	Capability Leaking					
	1.5	Invoki	ng Other Programs					
		1.5.1	Unsafe Approach: Using system() 16					
		1.5.2	Safe Approach: Using execve()					
		1.5.3	Invoking External Commands in Other Languages					
		1.5.4	Lessons Learned: Principle of Isolation					
	1.6	Princip	ple of Least Privilege					
	1.7		nary					
2	Env	ironme	nt Variables and Attacks 23					
	2.1	Enviro	onment Variables					
		2.1.1	How to Access Environment Variables					
		212	How a Process Gets Its Environment Variables					

iv CONTENTS

		2.1.3 Memory Location for Environment Variables	6
		2.1.4 Shell Variables and Environment Variables	7
	2.2	Attack Surface	0
	2.3	Attacks via Dynamic Linker	2
		2.3.1 Static and Dynamic Linking	2
		2.3.2 Case Study: LD_PRELOAD and LD_LIBRARY_PATH	4
		2.3.3 Case Study: OS X Dynamic Linker	6
	2.4	Attack via External Program	7
		2.4.1 Two Typical Ways to Invoke External Programs	7
		2.4.2 Case Study: the PATH environment variable	7
		2.4.3 Reduce Attack Surface	8
	2.5	Attack via Library	8
		2.5.1 Case Study - Locale in UNIX	9
	2.6	Application Code	9
		2.6.1 Case Study - Using getenv() in Application Code	0
	2.7	Set-UID Approach versus Service Approach	1
	2.8	Summary	2
3	Shel	lshock Attack 4.	
	3.1	Background: Shell Functions	
	3.2	The Shellshock Vulnerability	
		3.2.1 The Shellshock Bug	
		3.2.2 Mistake in the Bash Source Code	
		3.2.3 Exploiting the Shellshock vulnerability	
	3.3	Shellshock Attack on Set-UID Programs	
	3.4	Shellshock Attack on CGI Programs	
		3.4.1 Experiment Environment Setup	
		3.4.2 How Web Server Invokes CGI Programs	
		3.4.3 How Attacker Sends Data to Bash	
		3.4.4 Launching the Shellshock Attack	
		3.4.5 Creating Reverse Shell	
	3.5	Remote Attack on PHP	
	3.6	Summary	6
4	D60	er Overflow Attack 5	_
4			
	4.1 4.2	Program Memory Layout	
	4.2		
		4.2.1 Stack Memory Layout	
	1.2		
	4.3		
		4.3.1 Copy Data to Buffer	
	1.1	1 6	
	4.4	Setup for Our Experiment	
	4.5		
	4.3	Conduct Buffer-Overflow Attack	
		4.3.1 Finding the Address of the injected Code	0

CONTENTS

		4.5.2	Improving Chances of Guessing	69
		4.5.3	Finding the Address Without Guessing	
		4.5.4	Constructing the Input File	
	4.6	Writing	g a Shellcode	
		4.6.1		73
		4.6.2		74
		4.6.3		74
	4.7	Counte		77
	4.8			79
		4.8.1		79
		4.8.2		8
	4.9	StackG	huard	82
		4.9.1	The Observation and the Idea	82
		4.9.2	Manually Adding Code to Function	
		4.9.3	StackGuard Implementation in gcc	
	4.10	Summa	ary	
5	Retu	ırn-to-li	bc Attack	89
	5.1	Introdu	ection	9(
	5.2		1 1	9
	5.3	Launch	the Return-to-libc Attack: Part I	93
		5.3.1	Task A: Find the Address of the system() Function	93
		5.3.2	Task B: Find the Address of the String "/bin/sh"	94
	5.4	Launch	the Return-to-libc Attack: Part II	95
		5.4.1	Function Prologue	95
		5.4.2	Function Epilogue	96
		5.4.3	Function Prologue and Epilogue Example	97
		5.4.4	Perform Task C	98
		5.4.5	Construct Malicious Input	99
		5.4.6	Launch the Attack	00
	5.5	Summa	ary	0
_	_			
6			ng Vulnerability 10	
	6.1		ons with Variable Number of Arguments	
		6.1.1	How to Access Optional Arguments	
		6.1.2	How printf() Accesses Optional Arguments	
	6.2		String with Missing Optional Arguments	
			able Program and Experiment Setup	
	6.4	-	ting the Format String Vulnerability	
		6.4.1	Attack 1: Crash Program	
		6.4.2	Attack 2: Print out Data on the Stack	
		6.4.3	Attack 3: Change the Program's Data in the Memory	
		6.4.4	Attack 4: Change the Program's Data to a Specific Value	
		6.4.5	Attack 4 (Continuation): A Much Faster Approach	
		6.4.6	Attack 5: Inject Malicious Code	
		6.4.7	Reducing the Size of Format String	
	6.5		rmeasures	
		6.5.1	Developer	10

vi *CONTENTS*

		6.5.2 Compiler	119
		6.5.3 Address Randomization	120
	6.6	Summary	120
7	Door	e Condition Vulnerability	123
,	7.1	The General Race Condition Problem	
	7.1		
		Race Condition Vulnerability	
	7.3	Experiment Setup	
	7.4	Exploiting Race Condition Vulnerabilities	
		7.4.1 Choose a Target File	
		7.4.2 Launch Attack	
		7.4.3 Monitor the Result	
		7.4.4 Running the Exploit	
	7.5	Countermeasures	
		7.5.1 Atomic Operation	
		7.5.2 Repeating Check and Use	
		7.5.3 Sticky Symlink Protection	
		7.5.4 Principle of Least Privilege	135
	7.6	Summary	136
8	Dirt	y COW	137
	8.1	Memory Mapping using mmap()	138
	8.2	MAP_SHARED, MAP_PRIVATE and Copy On Write	
	8.3	Discard the Copied Memory	
	8.4	Mapping Read-Only Files	
	8.5	The Dirty COW Vulnerability	
	8.6	Exploiting the Dirty COW Vulnerability	
	0.0	8.6.1 Selecting /etc/passwd as Target File	
		8.6.2 Set Up the Memory Mapping and Threads	
		8.6.4 The madvise Thread	
	0.7	8.6.5 The Attack Result	
	8.7	Summary	148
**	**7		40
II	W	eb Security 1	49
9	Cros	1 0 0	153
	9.1	Cross-Site Requests and Its Problems	
	9.2	Cross-Site Request Forgery Attack	155
	9.3	CSRF Attacks on HTTP GET Services	156
		9.3.1 HTTP GET and POST Services	156
		9.3.2 The Basic Idea of CSRF Attacks	
		9.3.3 Attack on Elgg's Add-friend Service	
	9.4	CSRF Attacks on HTTP POST Services	
		9.4.1 Constructing a POST Request Using JavaScript	
		9.4.2 Attack on Elgg's Edit-Profile Service	
	9.5		162

CONTENTS	vii

		9.5.1 Using the referer Header
		9.5.2 Same-Site Cookies
		9.5.3 Secret Token
		9.5.4 Case Study: Elgg's Countermeasures
9	.6	Summary
10 (cros	s-Site Scripting Attack 16'
1	0.1	The Cross-Site Scripting Attack
		10.1.1 Non-persistent (Reflected) XSS Attack
		10.1.2 Persistent XSS Attack
		10.1.3 What damage can XSS cause?
1	0.2	XSS Attacks in Action
		10.2.1 Prelude: Injecting JavaScript Code
		10.2.2 Use XSS Attacks to Befriend with Others
		10.2.3 Use XSS Attacks to Change Other People's Profiles 175
1	0.3	Achieving Self-Propagation
		10.3.1 Creating a Self-Propagating XSS Worm: the DOM Approach 178
		10.3.2 Create a Self-Propagating Worm: the Link Approach 180
1	0.4	Preventing XSS attacks
1	0.5	Summary
11 S	QL	Injection Attack 183
1	1.1	A Brief Tutorial of SQL
		11.1.1 Log in to MySQL
		11.1.2 Create a Database
		11.1.3 CREATE a Table
		11.1.4 INSERT a Row
		11.1.5 The SELECT Statement
		11.1.6 WHERE Clause
		11.1.7 UPDATE SQL Statement
		11.1.8 Comments in SQL Statements
1	1.2	Interacting with Database in Web Application
		11.2.1 Getting Data from User
		11.2.2 Getting Data From Database
1	1.3	Launching SQL Injection Attacks
		11.3.1 Attack Using CURL
		11.3.2 Modify Database
		11.3.3 Multiple SQL Statements
		The Fundamental Cause
1	1.5	Countermeasures
		11.5.1 Filtering and Encoding Data
		11.5.2 Prepared Statement
1	1.6	Summary

viii CONTENTS

III	N	etworl	k Security	201
12	Pack	et Sniff	ing and Spoofing	205
	12.1	How P	ackets Are Received	206
		12.1.1	Network Interface Card (NIC)	206
		12.1.2	BSD Packet Filter (BPF)	207
	12.2		Sniffing	
			Receiving Packets Using Sockets	
			Packet Sniffing using Raw Sockets	
			Packet Sniffing Using the pcap API	
			Processing Captured Packet	
	12.3		Spoofing	
	12.0		Sending Normal Packets Using Socket	
			Sending Spoofed Packets Using Raw Sockets	
			Constructing ICMP Packets	
			Constructing UDP Packets	
	12.4		ng: Sniffing and Spoofing	
			ness	
			ating Checksum	
			ary	
	12.7	Summe	шу	220
13	Atta	cks on t	he TCP Protocol	227
	13.1	How th	ne TCP Protocol Works	228
		13.1.1	TCP Client Program	228
		13.1.2	TCP Server Program	229
		13.1.3	Data Transmission: Under the Hood	232
		13.1.4	TCP Header	233
	13.2	SYN F	looding Attack	234
		13.2.1	TCP Three-Way Handshake Protocol	234
		13.2.2	The SYN Flooding Attack	235
		13.2.3	Launching the SYN Flooding Attack	236
		13.2.4	Launching SYN Flooding Attacks Using Our Own Code	238
		13.2.5	Countermeasure	239
	13.3	TCP R	eset Attack	240
		13.3.1	Closing TCP Connections	240
		13.3.2	How the Attack Works	241
		13.3.3	Launching the TCP Reset Attack: Setup	241
		13.3.4	TCP Reset Attack on Telnet connections	242
		13.3.5	TCP Reset Attack on SSH connections	244
			TCP Reset Attack on Video-Streaming Connections	
	13.4		ession Hijacking Attack	
			TCP Session and Session Hijacking	
			Launching the TCP Session Hijacking Attack	
			What Happens to the Hijacked TCP Connection	
			Causing More Damage	
			Creating Reverse Shell	
	13.5		ary	

CONTENTS ix

14	Fire				255
	14.1	Introdu	ection	 	 . 256
			of Firewalls		
			Packet Filter		
			Stateful Firewall		
			Application/Proxy Firewall		
	14 3		ag a Simple Firewall using Netfilter		
	17.5		Writing Loadable Kernel Modules		
			Compiling Kernel Modules		
			Installing Kernel Modules		
	144		er		
	14.4				
			netfilter Hooks for IPv4		
	145		Implementing a Simple Packet Filter Firewall		
	14.5		etables Firewall in Linux		
			The structure of the iptables Firewall		
			Traversing Chains and Rule Matching		
			iptables Extensions		
			Building a Simple Firewall		
	14.6		l Firewall using Connection Tracking		
			Stateful Firewall		
			The Connection Tracking Framework in Linux .		
			Example: Set up a Stateful Firewall		
			ation/Proxy Firewall and Web Proxy		
	14.8		g Firewalls		
			Using SSH Tunneling to Evade Firewalls		
		14.8.2	Dynamic Port Forwarding	 	 . 275
		14.8.3	Using VPN to Evade Firewall	 	 . 276
	14.9	Summa	nry	 	 . 276
15			ne System (DNS) and Attacks		279
	15.1		lierarchy, Zones, and Servers		
			DNS Domain Hierarchy		
			DNS Zone		
			Authoritative Name Servers		
			The Organization of Zones on the Internet		
	15.2		uery Process		
			Local DNS Files		
		15.2.2	Local DNS Server and the Iterative Query Process	 	 . 285
	15.3	Set Up	DNS Server and Experiment Environment	 	 . 287
		15.3.1	Configure the User Machine	 	 . 287
		15.3.2	Configure the Local DNS server	 	 . 289
		15.3.3	Set Up Zones in the Local DNS Server	 	 . 290
	15.4		.ttacks: Overview		
			ONS Cache Poisoning Attack		
			e DNS Cache Poisoning Attack		
			The Kaminsky Attack		
			Construct the IP and UDP headers of DNS reply .		
			Construct the DNS Header and Payload		

X CONTENTS

		15.6.4	Result Verification	. 301
	15.7	Reply F	orgery Attacks from Malicious DNS Servers	. 302
		15.7.1	Fake Data in the Additional Section	. 302
			Fake Data in the Authority Section	
			Using Both Sections	
			Fake Data in the Answer Section: for Reverse DNS Lookup	
	15.8		on Against DNS Cache Poisoning Attacks	
			DNSSEC	
			TLS/SSL Solution	
	15 9		of Service Attacks on DNS Servers	
	13.7		Attacks on the Root and TLD Servers	
			Attacks on Nameservers of a Particular Domain	
	15 10		ry	
	13.10	Jouinna	.,	. 510
16	Virtu	ıal Priva	te Network	311
	16.1	Introduc	ction	. 312
			Virtual Private Network	
			How a Virtual Private Network Works	
	16.2		rview of How TLS/SSL VPN Works	
			Establishing A TLS/SSL Tunnel	
			Forwarding IP packets	
			Releasing IP Packets	
	16 3		S/SSL VPN Works: Details	
	10.5		Virtual Network Interfaces	
			Creating a TUN Interface	
			Routing Packets to a TUN Interface	
			Reading and Writing Operations on the TUN Interface	
			Forwarding Packets via the Tunnel	
			Packet's Return Trip	
	16.4		g a VPN	
	10.4	-	Establish the Tunnel	
			Monitoring File Descriptors	
			From TUN To Tunnel	
			From Tunnel to TUN	
	16.5		Bring Everything Together	
	10.5			
			Network Configuration	
	166		Testing VPN	
	10.0	_	PN to Bypass Egress Firewall	
			Network Setup	
	167		Setting Up VPN to Bypass Firewall	
	10./	Summai	ry	. 333
17	The	Hearthla	eed Bug and Attack	337
1/			ound: the Heartbeat Protocol	
			the Heartbleed Attack	
	11.2		Attack Environment and Setup	
			Attack Environment and Setup	. 340 341

CONTENTS xi

	17.3	Fixing	the Heartbleed Bug	 	 		 343
	17.4	Summa	ary	 	 		 343
18	Publ	ic Key]	Infrastructure				345
		-	on Public Key Cryptography	 	 		 346
			Man-in-the-Middle (MITM) Attack				
			Defeating MITM Attacks				
			Public Key Infrastructure				
	18.2		Key Certificates				
			X.509 Digital Certificate				
			Get Certificate from a Real Server				
	18.3		cate Authority (CA)				
			Being a CA				
			Getting X.509 Certificate from CA				
			Deploying Public Key Certificate in Web Server				
			Apache Setup for HTTPS				
	18.4		nd Intermediate Certificate Authorities				
			Root CAs and Self-Signed Certificate				
			Intermediate CAs and Chain of Trust				
			Creating Certificates for Intermediate CA				
			Apache Setup				
			Trusted CAs in the Real World				
	18.5		KI Defeats the MITM Attack				
			Attacker Forwards the Authentic Certificate				
			Attacker Creates a Fake Certificate				
			Attacker Sends Its Own Certificate				
			The Man-In-The-Middle Proxy				
	18.6		s on the Public-Key Infrastructure				
	10.0		Attack on CA's Verification Process				
			Attack on CA's Signing Process				
			Attacks on the Algorithms				
			Attacks on User Confirmation				
	18.7		of Digital Certificates				
			Domain Validated Certificates (DV)				
			Organizational Validated Certificates (OV)				
			Extended Validated Certificates (EV)				
	18.8		ary				
10	Tron	cnort I	ayer Security				371
1)			ew of TLS				
			andshake				
	19.2		Overview of the TLS Handshake Protocol				
			Certificate Verification				
			Key Generation and Exchange				
	10.2		ata Transmission				
	17.3		Sending Data with TLS Record Protocol				
			=				
	10.4		Receiving Data with TLS Record Protocol rogramming: A Client Program				
	17.4	ILOPI	ogramming. A Chem Flogram	 	 		 219

xii CONTENTS

	19.4.1	The Overall Picture
	19.4.2	TLS Initialization
	19.4.3	TCP Connection Setup
	19.4.4	TLS Handshake
	19.4.5	Application Data Transmission
	19.4.6	Set Up the Certificate Folder
	19.4.7	The Complete Client Code
19.5	Verifyi	ng Server's Hostname
	19.5.1	Modified Client Code
	19.5.2	An Experiment: Man-In-The-Middle Attack
	19.5.3	Hostname Checking
19.6	TLS Pr	rogramming: the Server Side
	19.6.1	TLS Setup
	19.6.2	TCP Setup
	19.6.3	TLS Handshake
	19.6.4	TLS Data Transmission
	19.6.5	Testing
19.7	Summa	ary

Preface

This book is for students, computer scientists, computer engineers, programmers, software developers, network and system administrators, and others who want to learn the principles of computer security and understand how various security attacks and countermeasures work. Equipped with the knowledge from this book, readers will be able to design and implement software systems and applications that are secure against attacks. They will also be able to evaluate the risks faced by computer and network systems, detect common vulnerabilities in software, use proper methods to protect their systems and networks, and more importantly, apply the learned security principles to solve real-world problems.

The author strongly believes in "learning by doing", so the book takes a hands-on approach. For each security principle, the book uses a series of hands-on activities to help explain the principle; readers can *touch*, *play with*, and *experiment with* the principle, instead of just reading about it. For instance, if a security principle involves an attack, the book guides readers to actually launch the attack (in a contained environment). If a principle involves a security mechanism, such as firewall or Virtual Private Network (VPN), the book guides readers to implement a mini-firewall or mini-VPN. Readers can learn better from such hands-on activities.

All the hands-on activities are conducted in a virtual machine image provided by the author. They can be downloaded from this URL: http://www.cis.syr.edu/~wedu/seed/. Everything needed for the activities have already been set up; readers just need to download the VM (free), launch it using VirtualBox, and they can immediately work on the activities covered in the book. This book is based on the Ubuntu12.04 VM image. The author will regularly upgrade the VM image in every few years.

Most of the activities in the book are based on the author's SEED labs, which are widely used by instructors all over the world. These labs are the results of 15 years' research, development, and testing efforts conducted by the author and his students in a project called SEED, which has been funded by the National Science Foundation since 2002.

The Organization of the Book

The book are organized in three broad topics: software security, web security, and network security. Software security and web security cover some of the well-known vulnerabilities and attacks in general software and web applications, including a few recent attacks, such as the Shellshock and Dirty COW attacks. By learning these topics, readers can understand why a computer or a program can be attacked, what is under the hood in these attacks, and how to

xiv CONTENTS

write better programs so they are immune or more resilient to attacks. The network security part focuses on the security principles related to the Internet. It not only covers some of well-known attacks on the Internet, but also covers important defense mechanisms, such as firewall, VPN, and PKI.

The book is not intended to cover every attack or security measure. The topics covered in the book are representative in terms of covering the fundamental security principles. Some of the topics, such as cryptography, system security, and mobile security, are left out for the time being, so the publication of this book will not be delayed for another one or two years. Some of these topics will be added in future editions. The contents of this book are sufficient for the courses that cover the fundamental principles of cybersecurity. For example, two of the author's courses (*Computer Security* and *Internet Security*) are based on the contents of this book. These two courses are taught at both undergraduate and graduate levels.

While some chapters depend on previous chapters, most chapters are self-contained, and can be read independently. The following list describes the partial dependence relationship among chapters.

- Chapter 1 (Set-UID Programs) is the basis for most chapters in software security. This chapter describes how the Set-UID mechanism works and gives an overview of the attacks that can be launched against this type of privileged program. Although there are many other types of privileged program, we use this type of program to explain how various attacks work.
- Chapter 2 (Environment Variables) is the basis for Chapter 3 (Shellshock).
- Chapter 4 (Buffer Overflow) is the basis for Chapter 5 (Return-to-libc Attack), because return-to-libc attacks defeat one of the countermeasures covered in Chapter 4.
- Chapter 7 (Race Condition) and Chapter 8 (Dirty COW) are both related to the race condition vulnerability, but we suggest readers to read Chapter 7 first, as it is easier to understand.
- Chapter 12 (Sniffing and Spoofing) is the basis for most of the network attacks covered in the book, so it should be read first before the other chapters in Network Security.
- Chapter 18 (Public Key Infrastructure) is the basis for Chapter 19 (Transport Layer Protocol).

The History of the SEED labs

"I hear and I forget. I see and I remember. I do and I understand". This famous saying, by Chinese philosophy Confucius (551 BC - 479 BC), has been a motto for many educators, who firmly believe that learning must be grounded in experience. This is particularly true for computer security education. Sixteen years ago, with this motto taken to the heart, and a desire to become an excellent instructor in computer security, The author searched the Web, looking for hands-on projects that he could use for his security classes. He could only find a few, but they came from various places, and were incoherent; their coverage of security topics was quit narrow, even jointly, and the lab environments they used were not easy nor inexpensive to set up.

Determined, he decided to develop his own hands-on exercises (called labs in short), not one lab, but many of them, covering a wide spectrum of security topics; not just for his own

CONTENTS xv

use, but for many other instructors who share the same teaching philosophy as he does. All the labs should be based on one unified environment, so students do not need to spend too much time learning a new environment for different labs. Moreover, the lab environment should be easy and inexpensive to set up, so instructors are not hindered even if they have limited time or resources.

With the above goals in mind and an initial grant from NSF (\$74,984.00, Award No. 0231122), he started the journey in 2002, naming the project as SEED (standing for SEcurity EDucation). Ten years later, after another NSF grant (\$451,682, Award No. 0618680) and the help from over 20 students, he has developed about 30 SEED labs, covering many security topics, including vulnerabilities, attacks, software security, system security, network security, web security, access control, cryptography, mobile security, etc. Most SEED labs have gone through multiple development-trial cycles—development, trial, improvement, and trial again—in actual courses at Syracuse University and many other institutes.

The SEED project has been quite successful. As of now, more than 600 instructors worldwide told the author that they have used some of the SEED labs; more people simply used the SEED labs without telling (which is perfectly fine), as all the SEED lab materials and the lab environment are available online, free of charge. To help others use the SEED labs, NSF gave the author another grant (\$863,385.00, Award No. 1303306), so he can organize two training workshops each year and fund those who are interested to come to attend the workshops. Every year, about 70 instructors attended the workshops.

xvi CONTENTS

About the Author

Wenliang (Kevin) Du, PhD, received his bachelor's degree from the University of Science and Technology of China in 1993. After getting a Master's degree from Florida International University, he attended Purdue University from 1996 to 2001, and received his PhD degree in computer science. He became an assistant professor at Syracuse University after the graduation. He is currently a full professor in the Department of Electrical Engineering and Computer Science.

Professor Du has taught courses in cybersecurity at both undergraduate and graduate levels since 2001. As a firm believer of "learning by doing", he has developed over 30 hands-on labs called SEED labs, so students can gain first-hand experiences on security attacks, countermeasures, and fundamental security principles. These labs are now widely known; more than six

hundred universities, colleges, and high schools worldwide are using or have used these labs. In 2010, the SEED project was highlighted by the National Science Foundation in a report sent to the Congress. The report, titled "New Challenges, New Strategies: Building Excellence in Undergraduate STEM Education (Page 16)", highlights "17 projects that represent cutting-edge creativity in undergraduate STEM classes nationwide". Due to the impact of the SEED labs, he was given the "2017 Academic Leadership" award from the 21st Colloquium for Information System Security Education.

Professor Du works in the area of computer and network security, with specific interests in system security. He has published over 100 technical papers. As of August 2017, his research work has been cited for over 12,500 times (based on Google Scholar). He is a recipient of the ACM CCS Test-of-Time Award in 2013 due to the impact of one of his papers published in 2003. His current research focuses on smartphone security. He has identified a number of security problems in the design and implementation of the Android operating system. He also developed novel mechanisms to enhance the system security of smartphones.

xviii CONTENTS

Acknowledgments

I would like to thank the National Science Foundation for providing the funding support for my SEED project, which laid the foundation for this book. Since 2002, three NSF grants supported the SEED project, including Award No. 0231122, 0618680, and 1303306. I especially thank the Program Director Dr. Victor P. Piotrowski for his leadership in cybsecurity education and for putting the trust in my SEED project.

The SEED project is built on the joint effort of many of my students over the past 15 years. I would like to acknowledge the following students for their contributions: Dr. Yousra Aafer, Amit Ahlawat, Francis Akowuah, Swapnil Bhalode, Ashok Bommisetti, Sudheer Bysani, Bandan Das, Nishant Doshi, Jinkai Gao, Hao Hao, Lin Huang, Sridhar Iyer, Apoorva Iyer, Dr. Karthick Jayaraman, Yuexin (Eric) Jiang, Xing Jin, Vishtasp Jokhi, Sharath B. Koratikere, Dr. Tongbo Luo, Sankara Narayanan, Nagesh Gautam Peri, Karankumar H. Patel, Amey Patil, Balamurugan Rajagopalan, Dr. Paul Ratazzi, Divyakaran Sachar, Mingdong Shang, Sunil Vajir, Dr. Ronghua Wang, Shaonan Wang, Yifei Wang, Zhenyu Wang, Kailiang Ying, Haichao Zhang, Dr. Xiao Zhang, Zhuo Zhang, and Dr. Zutao Zhu.

I would like to acknowledge all the instructors who have used my SEED labs in their classes, as well as those who attended my workshops. Many of them send me encouraging words, suggestions, and feedbacks; they also helped spread the words about my SEED labs. They made my work meaningful, and inspired me to keep moving forward in my project.

Most importantly, I would like to thank my family for their support, for their trust in me, and for the sacrifice of family time due to the writing of this book.