Medida Badajoz

Tomás Ricardo Basile Álvarez 316617194

24 de enero de 2021

1. Medida

1.1. σ -Álgebras

Def (Anillos): Un anillo en Ω es una colección no vacía $\mathcal{A} \subset P(\Omega)$, pata la que:

$$A, B \in \mathcal{A} \Rightarrow A \cup B, A - B \in \mathcal{A}$$

Lo que implica que $A \cap B \in \mathcal{A}$ y que $\emptyset = A - A \in \mathcal{A}$.

Álgebra: Es un anillo que además contiene al todo Ω . (y por tanto, es cerrado bajo complementos)

 σ -Álgebra: Es un álgebra cerrada bajo uniones numerables en vez de finitas.

Def (Espacio Medible): Es el par (Ω, \mathcal{A}) , donde Ω es un conjunto y A es una σ -álgebra de Ω y **conjuntos medibles** a los elementos de \mathcal{A}

Si C es una familia de subconjuntos de Ω , denotamos por $\sigma(C)$ la mínima σ -álgebra que contiene a C. Se puede conseguir intersectando a todas las σ -álgebras que contienen a C.

1.1.1. σ -álgebra de Bórel

Se refiere a un caso especial de un espacio medible.

Def (σ -álgebra de Bórel): Dado un espacio topológico (Ω, τ), su sigma álgebra de Borel es la generada por sus abiertos (los conjuntos que se obtienen como unión numerable de abiertos o como restas entre abiertos, por tanto, contiene a los cerrados también).

Los elementos se llaman Borelianos.

La denotamos como $\sigma(\tau) = B(\Omega)$

Prop 1.2.11: Si X es un espacio topológico y $Y \subset X$ es un subespacio, entonces:

$$B(Y) = B(X) \cap Y$$

1.1 σ -Álgebras 1 MEDIDA

Si un espacio topológico tiene una base numerable de abiertos N, entonces $B(\Omega) = \sigma(N)$

Ejemplo 1.2.13: En $\Omega = \mathbb{R}$ con la topología usual $\tau_{\mathbb{R}}$, la base topológica es $N = \{(a, b) | a, b \in \mathbb{Q}\}$. Por tanto, el σ -álgebra de Borel es $\sigma(N) = B(\mathbb{R})$

1.1.2. El conjunto de Cantor

Consideramos a los compactos de \mathbb{R} definidos como:

$$K_0 = [0, 1]$$

$$K_1 = K_0 \cap (1/3, 2/3)^c = [0, 1/3] \cup [2/3, 1]$$

$$K_2 = K_1 \cap (1/9, 2/9)^c \cap (7/9, 8/9)^c = [0, 1/9] \cup [2/9, 3/9] \cup [6/9, 7/9] \cup [8/9, 1]$$

Y así.

Conjunto de Cantor: Es el conjunto $K = \cap K_n$

El conjunto de Cantor es compacto y perfecto (todos los puntos son límites y no aislados).

1.1.3. Clases Monótonas

Def Límite Superior e Inferior: De una sucesión de conjuntos A_n es:

$$\limsup A_n \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_n$$

$$\liminf A_n \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} A_n$$

Denotamos como:

$$A_n \uparrow A \Leftrightarrow A_n \subset A_{n+1}$$
 para cada $n \in \mathbb{N}$ y $\cup A_n = A$ $A_n \downarrow A \Leftrightarrow A_n \supset A_{n+1}$ para cada $n \in \mathbb{N}$ y $\cap A_n = A$

Def Clase Monótona: C es una clase monótona de Ω es una familia de subconjuntos de Ω que satisface:

- a) Si $A_n \in C$ y $A_n \uparrow A$, entonces $A \in C$
- b) Si $A_n \in C$ y $A_n \downarrow A$, entonces $A \in C$

Prop 1.2.20: Una familia A de Ω es una σ -álgebra sii es un álgebra y una clase monótona.

Dada una familia C de subconjuntos de Ω existe la mínima clase monótona que la contiene, que denotamos como M(C)

Lema 1.2.21: Si \mathcal{A} es álgebra, $M(\mathcal{A})$ es álgebra.

Teorema de la clase monótona: Si A es un álgebra, entonces:

$$\sigma(\mathcal{A}) = M(\mathcal{A})$$

1.2 Medida 1 MEDIDA

1.2. Medida

Def: Una medida en un espacio medible (Ω, \mathcal{A}) con \mathcal{A} un álgebra o anillo, es una función:

$$\mu: \mathcal{A} \to [0, \infty]$$

que satisface:

- a) $\mu(\emptyset) = 0$
- b) Es **numerablemente aditiva**, es decir, si dados $A_1, \dots, A_n, \dots \in \mathcal{A}$ disjuntos y cuya unión está en \mathcal{A} (se cumple trivialmente si es una σ -álgebra), entonces:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

Si la condición (b) es sólo válida para colección finita, decimos sencillamente que es una función aditiva.

 σ -finita: Si existe una sucesión de conjuntos medibles y disjuntos $A_n \in \mathcal{A}$ tal que $\cup A_n = \Omega$ y cada $\mu(A_n) < \infty$

Probabilidad: Es una medida con $\mu(\Omega) = 1$

Def Espacio de Medida: Es una terna $(\Omega, \mathcal{A}, \mu)$ con μ una medida sobre la σ -álgebra

Def. Completo: Un espacio de medida $(\Omega, \mathcal{A}, \mu)$ es **completo** si para cada $B \subset A$, con $A \in \mathcal{A}$ y $\mu(A) = 0$, también es $B \in \mathcal{A}$

Es decir, los subconjuntos de conjuntos de medida cero son medibles.

- Ejemplo 1.3.1 Medida Delta de Dirac: Consideramos $(\Omega, \mathcal{A}, \mu)$. Fijamos un $x_0 \in \Omega$. Para cada $E \in \mathcal{A}$, $\mu(E) = 0$ si $x_0 \notin E$ y $\mu(E) = 1$ si $x \in E$. Suele denotarse con δ_{x_0}
- Ejemplo 1.3.2 Medida de Contar: Consideramos un espacio de medida $(\Omega, \mathcal{A}, \mu)$ y definimos $\mu(A) = n$ si A es finito y tiene n elementos.
- Medida de Lebesgue: Será la úncia medida en los borelianos invariable sobre traslaciones y que vale 1 en el cubo unidad.
- Medida de Haar: Se define en un grupo compacto y generaliza a la de Lebesgue (es invarainte bajo traslaciones en el grupo).

Proposición (Propiedades): Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida, entonces para $A, B \in \mathcal{A}$:

- a) $\mu(B) = \mu(B \cap A) + \mu(B \cap A^c)$
- b) Monótona: Si $A \subset B$ entonces $\mu(B) = \mu(A) + \mu(B A)$ y en particular $\mu(B) \le \mu(A)$
- c) Si $A \subset B$ y $\mu(A) = \infty$, entonces $\mu(B) = \infty$

1.2 Medida 1 MEDIDA

- d) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$
- e) $\mu(A \cup B) \le \mu(A) + \mu(B)$. Lo cual se generaliza para uniones numerables.

Prop 1.311: Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida y $A_n \in \mathcal{A}$ una sucesión, entonces:

- a) Si $A_n \uparrow A$, entonces $\mu(A_n) \to \mu(A)$
- b) Si $A_n \downarrow A$ y $\mu(A_1) < \infty$, entonces $\mu(A_n) \to \mu(A)$

1.3. Extensión de Medidas

1.3.1. Medida Exterior

Con lo que veremos podremos extender una medida μ sefinida en un anillo \mathcal{A}_0 a una colección más grande.

Def (Medida Exterior): Una medida exterior en Ω es una función de conjunto:

$$\mu^*: P(\Omega) \to [0, \infty]$$

que verifica lo siguiente:

- a) $\mu^*(\emptyset) = 0$
- b) Si $A \subset B \implies \mu^*(A) \le \mu^*(B)$
- c) Si B_n es una sucesión de subconjuntos de Ω , entonces:

$$\mu^*(\bigcup_{n=1}^{\infty} B_n) \le \sum_{n=1}^{\infty} \mu^*(B_n)$$

Vamos a construir varias medidas exteriores:

Proposición 1.4.3: Sea \mathcal{C} una colección de subconjuntos de Ω y $\rho : \mathcal{C} \to [0, \infty]$ una función cualquiera tales que $\emptyset \in C$, $\rho(\emptyset) = 0$. Para cada $B \subset \Omega$,

$$\mu^*(B) = \inf\{\sum_{n=1}^{\infty} \rho(A_n) : A_n \in \mathcal{C}, B \subset \bigcup_{n=1}^{\infty} A_n\}$$

Esto define la **medida exterior generada por** ρ (que es lo que queremos probar). Además, si $\mathcal{C} = \mathcal{A}_0$ es un anillo y ρ una medida, μ^* coincide con ρ sobre \mathcal{A}_0 . Y es una medida para todos los conjuntos B cubiertos por numerables A_n .

Es decir, dada una función $\rho: \mathcal{C} \to [0, \infty]$ que cumpla con lo de antes, se puede definir una medida exterior a todos los conjuntos que se pueden cubrir con C. Y la medida es la obvia, que se consigue como el ínfimo de las medidas de todas las cubiertas.

■ Medida Exterior de Lebesgue: En \mathbb{R} definimos $\mathcal{C} = \{(a, b] : a \leq b \in \mathbb{R}\}$ y definimos $\rho(a, b] = b - a$, entonces para $A \subset \mathbb{R}$ tenemos:

$$m^*(A) = \inf\{\sum_{n=1}^{\infty} (b_n - a_n) : a_n \le b_n \in \mathbb{R}, A \subset \bigcup_{n=1}^{\infty} (a_n, b_n)\}$$

es una medida exterior. Es decir, podemos medir todos los conjuntos que se pueden cubrir con intervalos de \mathcal{C} (que son todos) y los medimos sacando el ínfimo de esas cubiertas. Con ello esta medida exterior funciona para todos los conjuntos de \mathbb{R} . Además, como \mathcal{C} es un anillo y ρ una medida, esta extensión coincide con ρ en \mathcal{C}

1.3.2. Teoremas de Extensión de medidas:

Aunque una medida exterior μ^* está definida en todo $P(\Omega)$, tiene la desventaja de no ser numerablemente aditiva, ni si quiera aditiva.

Para ello, tratamos de encontrar una σ -álgebra sobre la que sí sea numerablemente aditiva.

Def: Sea μ^* una medida exterior en Ω . Decimos que $E \subset \Omega$ es μ^* -medible si para todo $A \subset \Omega$:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

y denotamos por \mathcal{A}_* la familia de conjuntos μ^* medibles.

Nota: Se sigue que $E \in \mathcal{A}_*$ sii $E^c \in \mathcal{A}_*$ Y que si $\mu^*(E) = 0$, entonces $E \in \mathcal{A}_*$

Teorema de Extensión de Caratheodoty: (1) Sea μ^* una medida exterior en Ω , entonces \mathcal{A}_* es una σ -álgebra. La restricción de μ^* a ella es una medida y $(\Omega, \mathcal{A}_*, \mu^*)$ es completo (todo subconjunto de conjuntos de medida cero son medibles).

(2) Si además μ^* es la medida exterior generada por una medida ρ de un anillo \mathcal{A}_0 de Ω , entonces:

$$\mathcal{A}_0 \subset \mathcal{A}_*$$
 , $\rho = \mu^*$ en \mathcal{A}_0

Teorema de extensión de Hahn: Toda medida σ -finita en un anillo \mathcal{A}_0 se extiende de modo único a cada σ -álgebra entre \mathcal{A}_0 y \mathcal{A}_*

Es decir, si empezamos con una función ρ en una familia $\mathcal{C} \subset P(\Omega)$, que cumpla que $\emptyset \in \mathcal{C}$, $\rho(\emptyset) = 0$. Entonces, podemos generar una medida exterior μ^* generada por ρ que funciona en todo $P(\Omega)$ usando cubiertas de los conjuntos de \mathcal{C} .

Sin embargo, μ^* no es una medida (no es aditiva)

Por ello, el teorema de extensión de Cathedory nos dice que nos fijemos sólo en los E que 'no afectan'. Que cumplen $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

A estos conjuntos les llamamos μ^* medibles y denotamos su familia como \mathcal{A}_* (que es cerrada bajo complementos y contiene a los de medida 0 y es una σ -álgebra).

Además, μ^* es una medida (ya cumple aditividad y eso). Entonces $(\Omega, \mathcal{A}_*, \mu^*)$ es un espacio de medida completo.

Además, si ρ estaba definida en un anillo, μ coincide con ρ en este anillo.

1.4. Medida de Lebesgue-Stieljes

1.4.1. medida de Lebesgue-Stieljes en \mathbb{R}

Sigma Álgebra: Cerrada bajo uniones numerables y restas y contiene a \emptyset y al conjunto completo.

Sigma Álgebra de Borel: Es la generada por los conjuntos abiertos (todas las uniones numerables de abiertos y las restas). Que por tanto contiene a todos los cerrados y muchos más.

En \mathbb{R} la sigma -álgebra se denota $\mathcal{B}(\mathbb{R})$.

Función de Distribución: Es una función $F : \mathbb{R} \to \mathbb{R}$ monótona creciente y continua a la derecha.

Llamamos medida de Lebesgue-Stieljes en \mathbb{R} a toda medida en $\mathcal{B}(\mathbb{R})$ finita en cada compacto.

Teorema 1.5.1: Sea μ una medida de Lebesgue-Stieljes en \mathbb{R} . Entonces cada función F: $\mathbb{R} \to \mathbb{R}$ que para todo $a < b \in \mathbb{R}$ verifique:

$$F(b) - F(a) = \mu(a, b]$$

es una función de distribución. Existen infinitas así y difieren por una constante.

Recíprocamente, dada una función de distribución $F: \mathbb{R} \to \mathbb{R}$, existe una única medida $\mu: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ que para $a < b \in \mathbb{R}$ verifica:

$$\mu(a,b] = F(b) - F(a)$$

Tal medida la conocemos sobre los semiintervalos (a, b]

Lema 1.5.2: Para cada $A \in \mathcal{A}_0$ y todo $\epsilon > 0$ existe un $B \in \mathcal{A}_0$, con $\bar{B} \subset A$ tal que $\mu(A - B) < \epsilon$

Teorema 1.5.5: Dada una función de distribución F en \mathbb{R} , existe una única medida μ en $\mathcal{B}(\mathbb{R})$ tal que $\mu(a,b] = F(b) - F(a)$, para cada a < b de \mathbb{R} y es una medida de **Lebesgue Stieljes**.

Ejemplo: La medida de Lebesgue unidimensional: Definimos en particular a la distribución F(x) = x y a la medida de la 'base de Borel' como $\mu(a, b] = b - a$ La correspondiente medida σ -finita $\mu : \mathcal{A}_0 \to [0, \infty]$ define la medida exterior de Lebesgue que para $A \subset \mathbb{R}$ vale:

$$\mu^*(A) = \inf\{\sum \mu(A_i) : A_i \in \mathcal{A}_0, A \subset \cup A_i\}$$
$$= \int\{\sum \mu(I_i) : I_i \in \mathcal{C}, A \subset \cup I_i\}$$
$$\inf\{\sum (b_i - a_i) : a_i \leq b_i, A \subset \cup (a_i, b_i)\}$$

Luego, a los conjuntos que satisfacen el criterio de Cathedoroy los denotamos \mathcal{A}_* y forman una $\sigma-$ álgebra. Les llamamos **Lebesgue medibles** de \mathbb{R} . Y llamamos **medida de Lebesgue** a la restricción $m=\mu^*\Big|_{\mathcal{A}_*}$. Que en esta reestricción ya es una medida aditiva numerable en una σ -álgebra.

Denotamos $\mathcal{A}_* = \mathcal{L}(\mathbb{R})$ a la σ -álgebra (los conjuntos que cumplen lo de Cathedoroy).

1.4.2. Medidas de Lebesgue-Stieltjes en \mathbb{R}^n

Rectángulo (acotado) en \mathbb{R}^n : Es el producto de n intervalos acotados de \mathbb{R} . Y semirectángulo si los n semi-intervalos son cerrados a la derecha (pueden ser no acotados). Llamaremos cubo si todos los n intervalos son de la misma longitud. Llamaremos cubo unidad
a $Q = [0,1]^n$.

Nota 1.5.9: Denotamos
$$(-\infty, x] = \prod_{i=1}^{n} (-\infty, x_i]$$
 para $x = (x_1, \dots, x_n)$

Luego $\mathcal{B}(\mathbb{R}^n)$ es la σ - álgebra generada por los abiertos de \mathbb{R}^n (bajo uniones numerables y restas), o bien, basta con los generados por los semirectángulos acotados.

Prop: La familia \mathcal{A}_0 de las uniones finitas disjuntas de semi-rectángulos acotados de \mathbb{R}^n en un anillo.

Def: Diremos que una medida $\mu : \mathcal{B}(\mathbb{R}^n) \to [0, \infty]$ es de **Lebesgue-Stieltjes** si es finita en los compactos.

Def Función de Distribución: Diremos que $F: \mathbb{R}^n \to \mathbb{R}$ es una función de distribución si:

- a) Es continua a la derecha (Es decir, si $x \leq \cdots \leq x_{n+1} \leq x_n$ y $x_n \to x$, entonces $F(x_n) \to F(x)$
- b) Es monótona creciente para cada dirección.

Ejemplo 1.5.12: Dadas n funciones de distribución en \mathbb{R} , F_1, \dots, F_n . $F: \mathbb{R}^n \to \mathbb{R}$ con $F(x_1, \dots, x_n) = F_1(x_1) \dots F_n(x_n)$ es una función de distribución en \mathbb{R}^n

Como en el caso unidimensional, tenemos una biyección entre medidas de Lebesgue-Stieltjes y funciones de distribución (con diferencias por una constante)

Teorema 1.5.14: Sea μ una medida finita en $\mathcal{B}(\mathbb{R}^n)$, entonces $F(x) = \mu(-\infty, x]$ es una función de distribución.

Teorema 1.5.15: Dada F una función de distribución en \mathbb{R}^n , hay una única medida μ en $\mathcal{B}(\mathbb{R}^n)$, tal que $\mu(a,b] = \sum_{x \in S_{a,b}} \sigma(x) F(x)$ para cada semirectángulo acotado (a,b]. Además, μ es de Lebesgue-Stieltjes.

Y es aditiva.

Esto nos permite extender μ al anillo \mathcal{A}_0 de las uniones finitas disjuntas de semi-rectángulos acotados, $\mu(\bigcup_{i=1}^k R_i) = \sum \mu(R_i)$.

De este modo μ es aditiva en \mathcal{A}_0 .

Y vemos que para cada $A \in \mathcal{A}_0$ y cada $\epsilon > 0$ existe un $B \in \mathcal{A}_0$ con $\bar{B} \subset A$ y $\mu(A - B) < \epsilon$.

El teorema de Caratheodory nos permite construir la medida exterior $\mu^* : \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$, asociada a μ , de la forma:

$$\mu^*(A) = \inf \{ \sum_{i=1}^{\infty} \mu(A_i) : A_i \in \mathcal{A}_0 , A \subset \cup A_i \}$$
$$= \int \{ \sum_{i=1}^{\infty} \mu(R_i) : R_i \in \mathcal{C}^n , A \subset \cup R_i \}$$

Ejemplo: La medida de Lebesgue n-dimensional: Consideramos la función de distribución $F(a_1, \dots, x_n) = x_1 \dots x_n$, entonces su medida asociada en los semi rectángulos es:

$$\mu(a,b] = (b_1 - a_1) \cdots (b_n - a_n)$$

Esta medida exterior funciona para todos los subconjuntos de \mathbb{R}^n . Luego, consideramos $\mathcal{A}_* = \mathcal{L}(\mathbb{R}^n)$ a los conjuntos que cumplen lo de Catheodory y forman una sigma-álgebra. En estos conjuntos, $m = \mu^*$ es la medida de Lebesgue y es aditiva numerable.

1.4.3. Propiedades de la medida de Lebesgue

Vemos algunas propiedades de la medida de Lebesgue en \mathbb{R}^n .

Teorema 1.5.18 Invariancia bajo traslaciones: Sea $x \in \mathbb{R}^n$ y $B \in \mathcal{L}(\mathbb{R}^n)$, entonces $B + x \in \mathcal{L}(\mathbb{R}^n)$ y m(B) = m(B + x). Además, si $B \in \mathcal{B}(\mathbb{R}^n)$, entonces $B + x \in \mathcal{B}(\mathbb{R}^n)$

Teorema de unicidad 1.5.19: Sea μ una medida de $\mathcal{B}(\mathbb{R}^n)$ invariante por traslaciones, tal que $\mu[(0,1]^n] < \infty$. Entonces existe $c \in [0,\infty)$ tal que $\mu(A) = c \cdot m(A)$ para cada $A \in \mathcal{B}(\mathbb{R}^n)$

1.5. Medidas de Hausdorff

Medida exterior métrica: Sea (Ω, d) un e.m. Si dados $A, B \subset \Omega$ tales que d(A, B) > 0 se cumple que:

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

Prop 1.6.1: Si μ^* es una medida exterior métrica en un espacio métrico (Ω, d) , entonces $\mathcal{B}(\Omega) \subset \mathcal{A}_*$

1.5.1. Las Medidas de Borel H_p

Sea (Ω, d) un espacio métrico.

Llamamos **diámetro** de un $B \subset \Omega$ al valor:

$$d(B) = \sup\{d(x, y) : x, y \in B\}$$

Ahora para cada $p > 0, \delta > 0$ definimos la función de conjunto que para cada $A \subset \Omega$ vale:

$$H_{p,\delta}(A) = \inf\{\sum_{n=1}^{\infty} d(B_n)^p : A \subset \bigcup B_n, d(B_n) \leq \delta\}$$

Es decir, es mínimo de las sumas de los diámetros elevados a la p de una cubierta numerable de A con $d(B_n) \leq \delta$.

Estas funciones son medidas exteriores, que verifican $\delta \leq \epsilon \implies H_{p,\delta}(A) \geq H_{p,\epsilon}(A)$. Entonces podemos definir una **medida exterior** límite como:

$$H_p(A) = \lim_{\delta \to 0} H_{p,\delta}(A)$$

La llamamos medida exterior p-dimensional de Hausdorff.

Teorema 1.6.3: Las medidas $H_{p,\delta}$ no son métricas pero H_p sí lo es.

Medida de Hausdorff p-dimensional: Es la restricción de H_p a los borelianos $\mathcal{B}(\Omega)$

Prop 1.6.4: Sea $A \subset \Omega$ y sean $0 \le p < q$, entonces:

$$H_p(A) < \infty \Rightarrow H_q(A) = 0$$

 $H_q(A) > 0 \Rightarrow H_p(A) = \infty$

Dimensión de Hausdorff: De $A \subset \Omega$ al valor:

$$\dim_H(A) = \sup\{p \ge 0 : H_p(A) = \infty\} = \inf\{q > 0 : H_q(A) = 0\}$$

Prop 1.6.7: Sea $T: \Omega \to \Omega$ una biyección isométrica (d(T(x), T(y)) = d(x, y)). Entonces para todo $B \subset \Omega$ y todo $p \geq 0$, se tiene que $H_p[T(B)] = H_p(B)$

1.5.2. Medidas de Hausdorff en \mathbb{R}^n

Lema 1.6.8: Sea B = B[0,1] la bola unidad cerrada de \mathbb{R}^n , m la medida de Lebesgue y $Q = [0,1]^n$ el cubo unidad, entonces:

$$\frac{1}{m[B]} \le H_n(Q) \le (\sqrt{n})^n$$

Teorema 1.6.9: Existe una constante $\gamma_n > 0$, tal que $\gamma_n H_n$ es la medida de Lebesgue en \mathbb{R}^n .

De hecho, se tiene que
$$\gamma_n = m(B) = \frac{\pi^{n/2}}{2^n \Gamma(1+n/2)}$$

2. Resumen Medida:

Álegras

- Anillo en Ω : Es una familia de conjuntos de Ω cerrada bajo uniones y restas
- Álgebra: Es un anillo que incluye Ω (y por tanto es cerrado bajo complementos e intersecciones)

Sigma-Álgebra: Si es cerrado bajo uniones numerables (En resumen, incluye a Ω , es cerrado bajo complementos y bajo uniones numerables).

- Espacio Medible: Al par (Ω, \mathcal{A}) , con Ω un conjunto y \mathcal{A} una sigma álgebra de Ω . Los conjuntos de \mathcal{A} se llaman medibles.
- Generado: Si \mathcal{C} es una familia de subconjuntos de Ω , su generado $\sigma(\mathcal{C})$ es la mínima sigma-álgebra que contiene a \mathcal{C} y se obtiene tomando todas las uniones numerables, complementos y agregando Ω
- σ -álgebra Borel: En un espacio topológico (Ω, τ) , es la que se genera con todos los abiertos (y por tanto incluye todos los cerrados y muchos más). Se denota como $\mathcal{B}(\Omega)$ y es igual a $\sigma(\tau)$ Si el espacio topo tiene una base numerable \mathcal{N} , enotnces $\mathcal{B}(\Omega) = \sigma(\mathcal{N})$.

En \mathbb{R} , los borelianos se pueden generar con (a, b]

• Límites: Decimos que $A_n \uparrow A$ si $A_n \subset A_{n+1}$ y $\cup A_n = A$ Decimos que $A_n \downarrow A$ si $A_n \supset A_{n+1}$ y $\cap A_n = A$

Medida:

• Medida: En un espacio medible (Ω, \mathcal{A}) con \mathcal{A} es un álgebra o anillo. Es una función que cumple:

$$\circ \ \mu : \mathcal{A} \to [0, \infty] \\
\circ \ \mu(\emptyset) = 0$$

• Es numerablemente aditiva. Si
$$A_1, A_2, \cdots$$
 son disjuntos, entonces

$$\mu(\cup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$$

• Espacio de Medida: Es una terna $(\Omega, \mathcal{A}, \mu)$ con \mathcal{A} una σ -álgebra, μ una medida.

Es **completo** si para cada $B \subset A$ con $A \in \mathcal{A}$ y $\mu(A) = 0 \Rightarrow B \in \mathcal{A}$

• Propiedades: Si $A, B \in \mathcal{A}$, entonces: $\mu(B) = \mu(B \cap A) + \mu(B \cap A^c)$, si $A \subset B \Rightarrow \mu(B) = \mu(A) + \mu(B - A)$ (y en particular, monotonía) $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$, en particular $\mu(A \cup B) \leq \mu(A) + \mu(B)$

Si
$$A_n \uparrow A \Rightarrow \mu(A_n) \to \mu(A)$$

Si $A_n \downarrow A$ y $\mu(A_1) < \infty \Rightarrow \mu(A_n) \to \mu(A)$

Extensión de medidas

• Medida Exterior: en Ω es una función:

$$\circ \mu^* : \mathcal{P}(\Omega) \to [0, \infty]$$

$$\circ \mu^*(\emptyset) = 0$$

$$\circ \text{ Si } A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$$

$$\circ \mu^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \mu^*(B_n)$$

Notar que a diferencia de la medida, no nos restringimos a una álgebra, sino que usamos todo $\mathcal{P}(\Omega)$

• **Def de una medida exterior:** Si \mathcal{C} es una colección de subconjuntos de Ω y $\rho: \mathcal{C} \to [0, \infty]$ una función tal que $\emptyset \in \mathcal{C}$ y $\rho(\emptyset) = 0$. Entonces, para cada $B \subset \Omega$, podemos definir la medida exterior de cubiertas:

$$\mu^*(B) = \inf\{\sum_{n=1}^{\infty} \rho(A_n) : A_n \in \mathcal{C}, B \subset \bigcup_{n=1}^{\infty} A_n\}$$

Esto es siempre una medida exterior.

Y si \mathcal{C} era un anillo y ρ una medida en ese anillo, entonces $\rho = \mu^*$ en \mathcal{A}_0

Extensión de medidas exteriores:

si μ^* es una medida exterior en Ω . Decimos que E es μ^* medible: si para todo $A \subset \Omega$:

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

Vemos si E es medible, también su complemento y que los de medida exterior 0 son medibles.

Extensión de Caratheodory: Si μ^* es una medida exterior, consideramos la familia de conjuntos \mathcal{A}_* que son los que cumplen la condición de Caratheodoty. Entonces \mathcal{A}_* es una σ -álgebra. Y la restricción de μ^* a \mathcal{A}_* es una medida y $(\Omega, \mathcal{A}_*, \mu^*)$ es completo. Si μ^* es la medida exterior generada por una medida ρ en un anillo \mathcal{A}_0 , entonces esta exterior μ^* coincide con ρ en el anillo \mathcal{A}_0

Es decir, podemos empezar desde una función $\rho: \mathcal{C} \to [0, \infty]$ que mande el vacío al 0. Luego la extendemos a una medida exterior μ^* en todo $\mathcal{P}(\Omega)$. Si la restringimos a sólo los conjuntos que cumplan el criterio de Catheodory, estos conjuntos forman una familia \mathcal{A}_* que es una σ -álgebra. Y μ^* reestringido ya es una medida (es ahora numerablemente aditiva).

Teorema de Extensión de Hahn: Toda medida σ -finita en un anilo \mathcal{A}_0 se extiende de modo único a una σ -álgebra \mathcal{A} entre \mathcal{A}_0 y \mathcal{A}_*

Medida de Lebesgue

- Función de distribución: Es una función $F : \mathbb{R} \to \mathbb{R}$ monótona creciente y continua a la derecha.
- Medida de Lebesgue-Stieljes en \mathbb{R} : Es toda medida en el sigma álgebra $\mathcal{B}(\mathbb{R})$ finita en cada compacto.

Teorema: Si μ es una medida de Lebesgue en \mathbb{R} . Entonces cada función $F: \mathbb{R} \to \mathbb{R}$ que verifique para a < b, $F(b) - F(a) = \mu(a, b]$ es una función de distribución. Y dos difieren por una constante.

Dada una función de distribución $F : \mathbb{R} \to \mathbb{R}$, existe una única medida $\mu : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ que verifica $\mu(a, b] = F(b) - F(a)$ y luego la podemos extender a más conjuntos.

Teorema: Dada una función de distribución $F : \mathbb{R} \to \mathbb{R}$, existe una única medida μ en $\mathcal{B}(\mathbb{R})$ tal que $\mu(a,b] = F(b) - F(a)$ para a < b. Y es una medida de Lebesgue-Stieljes.

Medida de Lebesgue 1d: Empezamos con la función $\mu(a, b] = b - a$ en los semiabiertos \mathcal{C} . Luego, se puede extender a una función:

$$\mu^*(A) = \inf\{\sum \mu(I_i) : I_u \in \mathcal{C}, A \subset \cup I_i\}$$

Esta medida funciona en todo \mathcal{A}_* (los que cumplen lo de Catheodory) y es de Lebesgue-Stieljes (finita en compactos).

Los conjuntos de la σ -álgebra \mathcal{A}_* se llaman **Lebesgue medibles** y definimos $m = \mu^*$ restringida a estos conjuntos. Denotamos además $\mathcal{A}_* = \mathcal{L}(\mathbb{R})$

Se extiende similarmente a \mathbb{R}^n , empezando con una medida ρ en rectángulos \mathcal{C}^n y extendiendo a una medida exterior en $\mathcal{P}(\mathbb{R}^n)$ como:

$$\mu^*(A) = \int \{ \sum_{i=1}^{\infty} \mu(R_i) : R_i \in \mathcal{C}^n , A \subset \cup R_i \}$$

Los conjuntos que cumplen Catheodory se denotan $\mathcal{A}_* := \mathcal{L}(\mathbb{R}^n)$.

La medida exterior μ^* en $\mathcal{L}(\mathbb{R}^n)$ ya es una medida (con aditividad numerable) y es una medida de Lebesgue-Stieljes y se denota m.

Propiedades: Es invariante bajo traslación: Si $x \in \mathbb{R}^n$, $B \in \mathcal{L}(\mathbb{R}^n)$ entonces $B + x \in \mathcal{L}(\mathbb{R}^n)$ y m(B) = m(B + x).

Y es la única medida de Lebesgue-Stieljes invariante bajo traslaciones (salvo factor de proporcionalidad). Nos fijamos en particular en la que vale 1 en $[0,1]^n$

Medida de Hausdorff

• Medida exterior métrica: Es una medida en un e.m. tal que si $A, B \subset \Omega$, d(A, B) > 0, entonces $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ Propo: Si μ^* es una medida

exteiror métrica en un espacio m. (Ω, d) , entonces $\mathcal{B}(\Omega) \subset \mathcal{A}_*$

• Medida Exterior de Hausdorff: Si (Ω, d) es un e.m. y d(B) es el diam de B, entonces definimos:

$$H_{p,\delta}(A) = \inf\{\sum_{n=1}^{\infty} d(B_n)^p : A \subset \bigcup B_n, d(B_n) \leq \delta\}$$

es una medida exterior.

Y definimos $H_p(A) = \lim_{\delta \to 0} H_{p,\delta}(A)$.

Entonces $H_p: \mathcal{P}(\Omega) \to [0, \infty]$ es una medida exterior métrica.

Llamamos medida de Hausdorff p -dim a la restricción de H_p sobre los borelianos $\mathcal{B}(\Omega)$

- **Prop:** si $A \subset \Omega$ y $0 \le p < q$, entonces: $H_p(A) < \infty \implies H_q(A) = 0$, $H_q(A) > 0 \implies H_p(A) = \infty$
- Dimensión de Hausdorff de $A \subset \Omega$ es el valor $\dim_H(A) = \sup\{p \geq 0 \mid H_p(A) = \infty\}$

Teorema: Si $T: \Omega \to \Omega$ es isometriía biyectiva, entonces $H_p[T(B)] = H_p[B]$

Apéndice

- Dada una clase $T\mathcal{F}$ de conjuntos de Ω , denotamos por \mathcal{F}_{δ} a las familia de intersecciones numerables de \mathcal{F} y a \mathcal{F}_{σ} a la familia de uniones numerables de elementos de \mathcal{F} .
- Carga: En un espacio medible (Ω, \mathcal{A}) (i.e, \mathcal{A} es una σ -álbegra). llamamos carga a una función $\mu : \mathcal{A} \to (-\infty, \infty]$ numerablemente aditiva y tal que $\mu(\emptyset) = 0$ (i.e., tiene la diferencia de que puede tomar valores negativos).

Prop: Sea μ una carga en (Ω, \mathcal{A}) con \mathcal{A} anillo. Enotnces para $A, B \in \mathcal{A}$ se tiene que:

$$\mu(B) = \mu(B \cap A) + \mu(B \cap A^c) , \text{ si } A \subset B \Rightarrow \mu(B) = \mu(A) + \mu(B - A).$$

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) , \text{ si } A_n \uparrow A \Rightarrow \mu(A_n) \to \mu(A) , \text{ si } A_n \downarrow A, |\mu(A_1)| \leq \infty \Rightarrow \mu(A_n) \to \mu(A)$$

• Sobre los conjuntos Lebesgue-Medibles:

Tenemos las inclusiones $\mathcal{B}(\mathbb{R})\subset\mathcal{L}(\mathbb{R})\subset\mathcal{P}(\mathbb{R})$

Se puede ver que $\mathcal{B}(\mathbb{R}) \neq \mathcal{L}(\mathbb{R})$ con un contraejemplo.

Sin embargo, que $\mathcal{L}(\mathbb{R}) \neq \mathcal{P}(\mathbb{R})$ sólo se puede demostrar usando el axioma de elección.

3. Integración

3.1. Funciones Medibles

Def: Diremos que una aplicación $F:(\Omega_1, \mathcal{A}_1) \to (\Omega_2, \mathcal{A}_2)$ es **medible** si para cada $B \in \mathcal{A}_2$, $F^{-1}(B) \in \mathcal{A}_1$.

Si $(\Omega_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ diremos que F es una función medible (o Borel medible). Si además $(\Omega_1, \mathcal{A}_1) = (\mathbb{R}, \mathcal{L}(\mathbb{R}))$, diremos que es **Lebesgue medible**.

Prop 2.2.1:

- a) La composición de aplicaciones medibles es medible
- b) Si $(\Omega_1, \mathcal{A}_1), (\Omega_2, \mathcal{A}_2)$ son espacios medibles y $\mathcal{C} \subset \mathcal{A}_2$ es tal que $\sigma(\mathcal{C}) = \mathcal{A}_2$, entonces $F: \Omega_1 \to \Omega_2$ es medible si y sólo si para cada $B \in \mathcal{C}$, $F^{-1}(B) \in \mathcal{A}_1$. Es decir, basta con buscar medibilidad en la 'base' antes de borel-extenderla
- c) Las aplicaciones continuas entre espacios topológicos son medibles para las σ -álgebras de borel.

Proposición 2.2.2:

d) Una función $f:(\Omega, \mathcal{A}) \to (\bar{\mathbb{R}}, \mathcal{B}(\bar{\mathbb{R}}))$ es medible sii para cada $c \in \mathbb{R}$:

$$\{x \in \Omega : f(x) > c\} \in \mathcal{A}$$

Nota: Podemos cambiar > por <, \leq , \geq (porque cada una de estas familias son una base de $B(\bar{\mathbb{R}})$ antes de Borel-extender.)

- e) Si f es medible, -f y |f| lo son también.
- f) Si f es medible, $f^+ = \max(f, 0)$ y $f^- = \max(-f, 0)$ son medibles también.

Teorema: Sean $f_n: \Omega \to \overline{\mathbb{R}}$ para $n \in \mathbb{N}$ funciones medibles, entonces:

- $\sup f_n$, $\inf f_n$ son medibles
- lím sup f_n , lím inf f_n son medibles
- Si existe en todo $x \in \Omega$ el límite $f(x) = \lim_{n \to \infty} f_n(x)$, entonces f es medible.

Def: Dado un espacio medible (Ω, \mathcal{A}) y un $A \in \mathcal{A}$ denotaremos con :

$$\mathcal{F}(A) = \{ f : A \to \mathbb{R}, \text{ funciones medibles reales} \}$$

Notemos que le pdeimos que tomen valores en \mathbb{R} pero no en $\overline{\mathbb{R}}$.

Def: Sea (Ω, \mathcal{A}) un espacio medible y $A \in \mathcal{A}$, llamaremos **indicador** de A a la función medible:

$$I_A: \Omega \to \mathbb{R} \text{ dada por } I_A(x) = \begin{cases} 1 & , x \in A \\ 0 & , x \in A^c \end{cases}$$

3.1.1. Funciones Simples

Def: Decimos que una función $f: \Omega \to \mathbb{R}$ es **simple** si es medible y toma un número finito de valores. Denotamos el conjunto de las funciones simples con:

$$\mathcal{S} = \{s : \Omega \to \mathbb{R} \mid s \text{ es simple } \}$$

Prop: $f: \Omega \to \mathbb{R}$ es simple sii existen $n \in \mathbb{N}$, $A_i \in \mathcal{A}$ disjuntos y $a_i \in \mathbb{R}$ tales que:

$$f = \sum a_i I_{A_i}$$
 , $\bigcup_{i=1}^n A_i = \Omega$

Prop: Si $f, g \in \mathcal{S}$, entonces $f + g, fg \in \mathcal{S}$. Y si g no es nula, también $f/g \in \mathcal{S}$

Nota: Consideramos en $[0, \infty]$ la sucesión de funciones simples no negativas $s_n : [0, \infty] \to [0, \infty)$ que para $0 \le r \le \infty$ valen:

$$s_n(r) = \begin{cases} \frac{i-1}{2^n}, & r \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right), & i = 1, 2, \dots, n2^n \\ n, & n \le r \end{cases}$$

Y se tiene que $s_n(r) \leq r$, $0 \leq s_n \leq n$, $s_n \leq s_{n+1}$, $s_n(r) \uparrow r$ Y la convergencia $s_n(r) \to r$ es uniforme en todo acotad de $\mathbb R$

Teorema: Sea $f: \Omega \to [0, \infty]$ una función medible, entonces existe una sucesión creciente $f_n \in \mathcal{S}$ de funciones simples, con $0 \le f_n \le n$ tales que $f_n \uparrow f$. Además, la convergencia es uniforme en cada conjunto en el que f es acotada.

• Dem: Para ello se usan las funciones definidas antes y se define $f_n = s_n \circ f$

3.2 Integración 3 INTEGRACIÓN

Corolario: Sea $f: \Omega \to \overline{\mathbb{R}}$ medible. Entonces existe una sucesión $f_n \in \mathcal{S}$ de funciones simples con $|f_n| \leq n$, tales que $f_n \to f$, $|f_n| \leq |f|$. Además, la convergencia es uniforme en cada conjunto en el que f sea acotada.

3.1.2. Operaciones de Funciones medibles

Si (Ω, \mathcal{A}) es un espacio medible y $A \in \mathcal{A}$, definimos:

- Si $f, g: A \to \bar{R}$ son medibles, también lo son cf, f+g, fg, f/g si están bien definidas (no hay a/0 o $\infty \infty$ o así)
- $\mathcal{F}(A)$ tiene estructura de \mathbb{R} -álgebra (contiene a las funciones constatnes y es cerrada para suma y producto)

Teorema: Existen conjuntos Lebesgue medibles no Borel medibles. Existe $D \in \mathcal{L}(\mathbb{R})$ pero $D \notin \mathcal{B}(\mathbb{R})$

3.2. Integración

Def: Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida y $h \in \mathcal{S}$ una función simple y no negativa. Es decir:

$$h = \sum_{i=1}^{\infty} a_i I_{A_i} : \Omega \to [0, \infty)$$

con los $0 \le a_i < \infty$ y los $A_i \in \mathcal{A}$ disjuntos y $\cup A_i = \Omega$. Definimos la integral de h respecto de μ como el valor de $[0, \infty]$:

$$\int_{\Omega} h d\mu = \sum a_i \mu(A_i)$$

Se puede probar que está bien definido (vale lo mismo en distintas representaciones)

Prop 2.3.2: Sean $f, g \in \mathcal{S}$ no negativas y $c \in [0, \infty)$ entonces:

- a) $\int cfd\mu = c \int fd\mu$
- b) $\int f + g d\mu = \int f d\mu + \int g d\mu$
- c) Si $f \leq g \Rightarrow \int f d\mu \leq \int g d\mu$

Def (Integral): Si $h \ge 0$ es una función medible, definimos la integral de h respecto a μ en Ω como:

$$\int_{\Omega} h d\mu = \sup \{ \int_{\Omega} s d\mu : s \in \mathcal{S}, \ 0 \le s \le h \}$$

3.2 Integración 3 INTEGRACIÓN

Si $h: \Omega \to \bar{\mathbb{R}}$ es medible, descomponemos $h = h^+ - h^-$ y definimos:

$$\int_{\Omega} h d\mu = \int_{\Omega} h^+ d\mu - \int_{\Omega} h^- d\mu$$

Si ambos términos son finitos, diremos que h es **integrable**.

Def: Para $K = \mathbb{R}$ o \mathbb{C} enotamos por $\mathcal{L}_1[\Omega, \mathcal{A}, \mu, K]$ o simplemente \mathcal{L}_1 al espacio de funciones integrables:

$$f:\Omega\to K$$

3.2.1. Propiedades Básicas

Prop: Sean $f, g: (\Omega, \mathcal{A}, \mu) \to \overline{\mathbb{R}}$ medibles, entonces:

- a) Si existe la integral de f y $c \in \mathbb{R}$, entonces existe la integral de cf y $\int cf d\mu = c \int f d\mu$
- b) Si $f \leq g$ y existen sus integrales, entonces $\int f d\mu \leq \int g d\mu$
- c) Si $f \leq g$, existe la $\int f d\mu$ y $-\infty < \int f d\mu$, entonces existe la $\int g d\mu$. Y si existe la $\int g d\mu < \infty$, entonces existe $\int f d\mu$
- d) Si existe la integral de f, entonces $|\int f d\mu| \leq \int |f| d\mu$

Prop 2.3.6:

e) Si $f \geq 0$ es medible y $B \in \mathcal{A}$, entonces:

$$\int_{B} f d\mu = \int I_{B} f d\mu$$

f) Si existe la integral de f, entonces existe la integral de f en cada $B \in \mathcal{A}$ y $\int_B f d\mu = \int I_B f d\mu$ y si f es integrable en Ω , también lo es en cada B.

3.3. Teoremas Básicos de Integración

3.4. Teorema de la carga

Sea h una función medible con integral, entonces

$$\lambda: \mathcal{A} \to \bar{\mathbb{R}} , \qquad \lambda(A) = \int_A h d\mu$$

es una medida si $h \ge 0$ y en general es una carga (medida que se permite ser negativa). Además, si $\mu(A)=0$, entonces $\lambda(A)=0$

Nota 1: Denotamos la carga λ del resultado anterior por $\lambda = h\mu$ y llamaremos a μ la medida base de λ .

Nota 2: Se sigue del resultado anterior que si $f:\Omega\to \mathbb{R}$ es medible, entonces para todo $A\in\mathcal{A}$:

$$\int |f| d\mu = \int_{A} |f| d\mu + \int_{A^{c}} |f| d\mu = \int f^{+} d\mu + \int f^{-} d\mu$$

Ejemplo 2.4.4 Veamos como consecuencia de los resultados anteriores que la función sen x/x no es Lebesgue integrable en $(0, \infty)$,

$$\int_{(0,\infty)} \left| \frac{\sin x}{x} \right| dm = \sum_{n=0}^{\infty} \int_{(n\pi,(n+1)\pi)} \left| \frac{\sin x}{x} \right| dm \ge$$

$$\ge \sum_{n=0}^{\infty} \frac{1}{(n+1)\pi} \int_{(n\pi,(n+1)\pi)} \left| \sin x \right| dm = \sum_{n=0}^{\infty} \frac{2}{(n+1)\pi} = \infty,$$

sin embargo veremos en el ejemplo (3.4.4), pág.134, que es Riemann integrable (impropia), pues existe el límite

$$\int_0^\infty \frac{\sin x}{x} \, dx = \lim_{a \to \infty} \int_0^a \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

3.4.1. Teorema de Convergencia Monótona

Teorema de convergencia monótona:

Sea h_n una sucesión creciente de funciones medibles no negativas, entonces existe $h(x) = \lim h_n(x)$, es medible, tiene integral y:

$$\int h_n d\mu \uparrow \int h d\mu$$

3.4.2. Integral de una Suma

Aditividad: Sea f, g funciones medibles, con integral tales que tanto f + g como $\int f d\mu + \int g d\mu$ están bien definidas, entonces f + g tiene integral y:

$$\int f + g d\mu = \int f d\mu + \int g d\mu$$

Corolario: \mathcal{L}_1 (funciones Lebesgue- integrables a los K) es un K-espacio vectorial y la aplicación:

$$\Lambda: \mathcal{L}_1 \to K$$
 , $\Lambda(f) = \int f d\mu$

es K lineal (es un elemento del espacio dual). Además, para cada $f \in \mathcal{L}_1$, $|\int f d\mu| \leq \int |f| d\mu$

Corolario: Si h_n son funciones medibles no negativas, entonces:

$$\int \left(\sum_{n=1}^{\infty} h_n\right) d\mu = \sum_{n=1}^{\infty} \int h_n d\mu$$

3.5. Teorema de Convergencia Dominada

Sean h, f, f_n funciones medibles, tales que existe $\int h d\mu$, entonces:

a) Si $-\infty < \int h d\mu, h \leq f_n \ y \ f_n \uparrow f$, entonces:

$$\int f_n d\mu \to \int f d\mu$$

b) Si $\int h d\mu < \infty$ y $f_n \leq h$ y $f_n \downarrow f$, entonces:

$$\int f_n d\mu \downarrow \int f d\mu$$

Lema de Fatou: Sean h, f_n funciones medibles tales que existe $\int h d\mu$, entonces:

a) Si $h \leq f_n$, $-\infty < \int h d\mu$, entonces:

lím inf
$$\int f_n d\mu \ge \int (\text{lím inf } f_n) d\mu$$

b) Si $f_n \leq h$ y $\int h d\mu < \infty$, entonces:

$$\limsup \int f_n d\mu \le \int (\limsup f_n) d\mu$$

Teorema de la convergencia dominada: Sean $h, f, f_n : \Omega \to K$ medibles tales que $|f_n| \le h$, h es integrable y $f_n \to f$, entonces f es integrable y :

$$\int f_n d\mu \to \int f d\mu$$

3.6. Teorema de convergencia dominada

Teorema de convergencia monótona extendido: Sea h, f, f_n funciones medibles, tales que existe $\int h d\mu$, entonces:

• Si $-\infty < \int h d\mu, h \leq f_n \text{ y } f_n \uparrow f$, entonces:

$$\int f_n d\mu \uparrow \int f d\mu$$

• Si $\int hd\mu < \infty$, $f_n \leq h$ y $f_n \downarrow f$, entonces:

$$\int f_n d\mu \downarrow \int f d\mu$$

Teorema de la Convergencia Dominada: Sean $h, f, f_n : \Omega \to K$ funciones medibles con $|f_n| \le h$, h es integrable y $f_n \to f$, entonces f es integrable y:

$$\int f_n d\mu \to \int f d\mu$$

Teorema: Sean h_n medibles tales que $\sum \int |h_n| d\mu < \infty$, entonces $\sum h_n$ converge casi siempre a una función medible finita y:

$$\int \sum h_n d\mu = \sum \int h_n d\mu$$

3.7. Integrales de Riemann y Lebesgue

Def Partición: Sea $a < b \in \mathbb{R}, \ I = [a, b] \subset \mathbb{R} \ \text{y} \ f : I \to \mathbb{R}$ una función acotada $|f| \leq M$. Por una partición finita de I entendemos un conjunto finito $P = \{x_0 = a, x_1, \cdots, x_n = b\}$

Def: Para cada partición P de I consideramos los intervalos disjuntos correspondientes E_i y los valores $M_i = \sup\{f(x) | x \in E_i\}$, $m_i = \inf\{f(x) | x \in E_i\}$ y las funciones simples:

$$\beta_P = \sum m_i I_{E_i}$$
 , $\alpha_P = \sum M_i I_{E_i}$

Que son las funciones simples inferior y superior de f relativas a P. Y cuyas integrales son:

$$\int_{[a,b]} \beta_P dm = \sum_i m_i (x_i - x_{i-1}) , \int_{[a,b]} \alpha_P dm = \sum_i M_i (x_i - x_{i-1})$$

llamamos suma inferir y superior de f respecto a P.

Es fácil demostrar que si $P_n \uparrow P$ es una sucesión creciente de particiones finitas de I y denotamos α_n, β_n las funciones simples inferior y superior de f relativas a P_n , entonces:

$$-M \le \beta_1 \le \beta_2 \le \dots \le f \le \dots \le \alpha_2 \le \alpha_1 \le M$$

Y por tanto, existe los límites $\alpha_n \downarrow \alpha$ y $\beta_n \uparrow \beta$ que son funciones Borel medibles y $\beta \leq f \leq \alpha$ y son funciones integrables porque $|\alpha_n| \leq M$, $|\beta_n| \leq M$ por el teorema de la convergencia dominada.

Riemann Integrable: Diremos que f lo es si existe $r \in \mathbb{R}$ tal que para toda sucesión creciente $P_n \uparrow P$ de particiones finitas de I, tales que $|P_n| \to 0$, las funciones Borel-medibles α, β verifican:

$$\int_{[a,b]} \alpha dm = \int_{[a,b]} \beta dm = r$$

Valor que denotamos por $\int_a^b f(x)dx$

Teorema de Caracterización: Sea $f: I \to \mathbb{R}$ acotada, entonces lo siguiente es equivalente:

- a) f es Riemann integrable
- b) Existe una sucesión creciente de particiones finitas P_n cuyas funciones límite superior e inferior cumplen:

$$\int_{[a,b]} \alpha dm = \int_{[a,b]} \beta dm$$

c) f es continua casi siempre. Y en cualquiera de estos casos, f es Lebesgue medible y la integral de Lebesgue y de Riemann coinciden.

4. Espacios de Funciones Medibles

4.1. Los espacios \mathcal{L}_p

A lo largo de todo el tema consideramos un espacio de medida $(\Omega, \mathcal{A}, \mu)$.

Definición: Para cada $0 y <math>K = \mathbb{R}, \mathbb{C}$, definimos el espacio $\mathcal{L}_p(\Omega, \mathcal{A}, \mu, K)$ de las funciones medibles $f: \Omega \to K$ tales que:

$$\int |f|^p d\mu < \infty$$

y para cada $f \in \mathcal{L}_p$ y $p \ge 1$, definimos:

$$||f||_p = \left(\int |f|^p d\mu\right)^{1/p}$$

Prop: Para $0 , <math>\mathcal{L}_p(\Omega, K)$ es un K-e.v.

4.1.1. El espacio \mathcal{L}_{∞}

Localmente nulo: Es un conjunto $A \in \mathcal{A}$ tal que para cada $B \in \mathcal{A}$ con $m(B) < \infty$, se tiene que $\mu(A \cap B) = 0$.

Diremos que una propiedad se vale casi seguro si el conjunto de puntos en el que se cumple es localmente nulo.

Denotamos con \mathcal{L}_{∞} al espacio de funciones medibles $f: \Omega \to K$ que llamamos **esencialmente acotados**, para los que existe $0 \le c < \infty$ tal que $\{|f| > c\}$ es localmente nulo, y para ellas definimos:

$$||f||_{\infty} = \inf\{c > 0 \mid \{|f| > c\} \in \mathcal{N}^*\}$$

Prop. \mathcal{L}_{∞} es un K-espacio vectorial y $||f||_{\infty}$ es una semi-norma.

4.2. Los Espacios de Banach L_p

4.2.1. Desigualdades fundamentales

Def: Decimos que $1 < p, q < \infty$ son conjugados si p + q = pq o equivalentemente, $\frac{1}{p} + \frac{1}{q} = 1$.

Lema: Sean $1, p, q < \infty$ conjugados y $a, b \ge 0$, entonces:

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Sean a, b > 0 y r > 0 entonces:

$$0 < r < 1 \quad \Rightarrow \quad (a+b)^r < a^r + b^r$$
$$r > 1 \quad \Rightarrow \quad (a+b)^r > a^r + b^r$$

Desigualdad de Holder: Sean $1 \leq p, q \leq \infty$ conjugados. Si $f \in \mathcal{L}_p, g \in \mathcal{L}_q$, entonces $fg \in \mathcal{L}_1$ y:

$$||fg||_1 \le ||f||_p ||g||_q$$

Desigualdad de Cauchy-Schwartz (es un caso especial): Si $f, g \in \mathcal{L}_2, f\bar{g} \in \mathcal{L}_1$ y:

$$\left| \int f \bar{g} d\mu \right| \le ||f||_2 ||g||_2$$

Desigualdad de Minkowsky: Sean $1 \le p \le \infty$ y $f, g \in \mathcal{L}_p$, entonces $f + g \in \mathcal{L}_p$ y:

$$||f + g||_p \le ||f||_p + ||g||_p$$

Corolario: Para cada $1 \le p \le \infty$, \mathcal{L}_p es un e.v. sobre K y $||\cdot||_p$ es una seminorma sobre él. Es decir, cumple la desigualdad del triángulo, saca escalares con valor absoluto. Sin embargo, es semi porque ||f|| = 0 no implica f = 0 (implica f = 0 casi siempre).

4.2.2. El espacio \mathcal{L}_p para 0

Para $0 , <math>||\cdot||_p$ no es ni una seminorma pues no cumple la desigualdad del triángulo. Para verlo, consideramos conjuntos medibles disjuntos A, B con $\mu(A) = a$, $\mu(B) = b$ finitos y no nulos.

Sea $f = I_A$ y $g = I_B$, entonces $f + g = I_{A \cup B}$ y:

$$||f+g|||_p = \left(\int I_{A\cup B}d\mu\right)^{1/p} = (a+b)^{1/p} > a^{1/p} + b^{1/p} = ||f||_p + ||g||_p$$

Sin embargo, en estos espacios podemos definir directamente una seudométrica como sigue:

$$d_p(f,g) = \int |f - g|^p d\mu$$

y tiene las propiedades:

- $d_p(f,g) \ge 0$
- $d_p(f,g) = 0$ sii f = g casi siempre
- $d_p(f,g) = d_p(g,f)$
- $d_p(f,g) \le d_p(f,h) + d_p(h,g)$

4.3. Los espacios L_p

En general, las seudométricas para $0 no son métricas y las seminormas <math>||\cdot||_p$ para $1 \le p \le \infty$ no son normas, pues tenemos que:

- Para $0 : La semimétrica es <math>d_p(f,g) = \int |f-g|^p d\mu$, y es pseudo porque $d_p(f,g) = 0$ sii f = g c.s.
- Para $1 \le p < \infty$: La seminorma es $||f||_p = (\int |f|^p d\mu)^{1/p}$. Es pseudo porque $||f||_p = 0$ sii f = 0 casi siempre
- Para $p = \infty$: La seminorma es $||f||_{\infty} = \inf\{c > 0 \mid \{|f| > c\} \text{ es localmente nulo }\}$. Es seminorma porque $||f||_{\infty} = 0$ sii f = 0 es localmente casi siempre 0.

Sin embargo, podemos convertir esto en una norma, pues:

Definición: Decimos que dos funciones medibles $f,g:\Omega\to K$ son **equivalentes**, $f\simeq g$ si f=g localmente casi siempre. Es fácil ver que es una relación de equivalencia. Entonces, definimos los espacios cocientes para $0< p\le \infty$:

$$L_p = \mathcal{L}_p / \simeq$$

Es decir, en este espacio vamos a identificar a dos funciones como iguales si son iguales l.c.s. Y ahora las seminormas y semimétricas ya son normas y métricas.

Lema: Si $0 y <math>f, g \in \mathcal{L}_p$, entonces:

$$f = g$$
 c.s sii $f = g$ l.c.s.

Por lo que ahora ya tenemos verdaderamente espacios normados y espacios métricos. En vez de ecribir los elementos como clases de equivalencia, los escribiremos como funciones.

■ Ejemplo (Los espacios de Banach $(K^n, ||\cdot||_p)$ Si $\Omega = \{\omega_1, \dots, \omega_n\}$ es finito y μ es la medida de contar, entonces cada función $f: \Omega \to K$ se identifica con $x = (x_1, \dots, x_n) \in K^n$ como $f(\omega_i) = x_i$, en cuyo caso, para $p < \infty$ tenemos que:

$$||f||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} = ||x||_p \quad , \quad (L_p, ||\cdot||_p) = (K^n, ||\cdot||_p)$$

y para $p = \infty$, $||f||_{\infty} = \max\{|x_i|\} = ||x||_{\infty}$ Es decir, la norma de la función se reduce a la p-norma típica de K^n .

■ Ejemplo (Los espacios l_p de sucesiones): En el caso particular de $(\Omega, \mathcal{A}, \mu) = (\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ para μ la medida de contar. Es habitual escribir l_p en vez de L_p . Es común

pensar en f como sucesiones $f(n) = x_n \in K$ en vez de como funciones. Entonces, l_p es el espacio de las sucesiones $f = (x_n)$ tales que:

$$\sum_{n=1}^{\infty} |x_n|^p < \infty$$

y para $p = \infty$, l_{∞} es el espacio de sucesiones acotadas.

4.3.1. Compleción de los Espacios L_p

Vamos a demostrar que toda sucesión de Cauchy en L_p es convergente. Notar que la convergencia en L_p no es igual a la convergencia puntual y se define que $f_n \to f$ en L_p como:

■ Para $0 : <math>d_p(f, f_n) \to 0 \Leftrightarrow \int |f_n - f|^p d\mu \to 0$

■ Para $1 \le p < \infty$: $||f - f_n||_p \to 0 \iff \int |f_n - f|^p d\mu \to 0$ omitimos el ()^{1/p} porq no importa

• Para $p = \infty$: $||f - f_n||_{\infty} \to 0$

Lema: Sea $0 y <math>f_n \in \mathcal{L}_p$ una sucesión de Cauchy, entonces existe f medible y una subsucesión g_n de f_n tal que $g_n \to f$ casi siempre.

Teorema 6.2.13: Para $1 \le p \le \infty$, $(L_p, ||\cdot||_p)$ son espacios de Banach (un espacio métrico completo) y para $0 , los espacios métricos <math>(L_p, d_p)$ son completos.

Teorema 6.2.14: Si $f_n \in \mathcal{L}_p$ es una sucesión de Cauchy, con límite f, entonces: Para $p = \infty$, $f_n(x) \to f(x)$ l.c.s.

Y para $0 , existe una subsucesión de <math>f_n$ que converge c.s. a f.

4.4. Espacio Dual

Entenderemos V_1, V_2, V_3 espacios normados sobre $K = \mathbb{R}, \mathbb{C}$.

Definición: Dada una aplicación lineal $T: V_1 \to V_2$, definimos su **norma** como:

$$||T|| = \sup\{||T(x)||/||x|| : 0 \neq x \in V_1\}$$

y decimos que T es acotada si $||T|| < \infty$.

Nota: Podemos tomar el supremo sólo sobre las x con ||x|| = 1 por la linealidad. Además, vemos que T es **acotada** sii existe $k \in [0, \infty)$ tal que para todo $x \in V_1$:

$$||T(x)|| \le k||x||$$

Y que de hecho ||T|| es el ínfimo de estas constantes k.

Teorema: Para una aplicación lineal $T: V_1 \to V_2$ son equivalentes:

- a) T es u.c
- b) T es continua en un punto.
- c) T es acotada.

Claro que para e.v. finitos, siempre se cumplen las tres propiedades.

■ Dem: a) a b) es obvio. b) a c): Supongamos que T es continua en y, entonces $\forall \epsilon > 0$ existe $\delta > 0$ tal que si $||x-y|| \le \delta \Rightarrow ||T(x-y)|| = ||T(x)-T(y)|| \le \epsilon$. En particular, si z = x-y, quiere decir que si $||z|| \le \delta \Rightarrow ||T(z)|| \le \epsilon$. Se sigue que si $x \ne 0$, llamamos $x = \frac{\delta x}{||x||}$, $||z|| = \delta$

y:

$$||T(x)|| = ||x|| ||T(z)|| / \delta \le (\epsilon/\delta) ||x||$$

Por lo que $||T(x)|| \le k||x||$ y entonces T es acotada.

c) a a): $||T(x) - T(y)|| = ||T(x - y)|| \le ||T||||x - y||$ (por acotada). Entonces T es Lipschitz y por tanto es u.c.

Teorema: Sean V_1, V_2 K-e.v. normados. Entonces definimos el espacio $B(V_1, V_2)$ de las aplicaciones **lineales continuas** $T: V_1 \to V_2$ con la suma y producto por escalares como esperamos.

Se le define el operador norma como definimos antes y entonces eso implica que $B(V_1, V_2)$ es un **espacio normado**.

Además, si V_2 es de Banach (normado completo) entonces $B(V_1, V_2)$ es de Banach.

Def: Dado un espacio normado V, denotamos por V' el espacio vectorial dual de las funciones lineales $f:V\to K$ y denotamos con $V^*=B(V,K)$ el espacio de los funcionales **lineales y continuos**.

Teorema: El dual V^* de un espacio normado V es un espacio de Banach con la norma definida en él como:

$$||f|| = \sup\{|f(x)| \mid ||x|| \le 1\}$$

Dem: Es una consecuencia del teorema anterior y de que K es completo.

Def: Diremos que una aplicación $T: V_1 \to V_2$ es una **isometría** si es lineal y para cualquier $x \in V$ se cumple:

$$||T(x)|| = ||x||$$

Nota que es acotada y por tanto continua. Si es sobre, diremos que es un isomorfismo.

Nota: Hay una aplicación lineal y continua natural entre un espacio normado V y su bidual V^** , dada por:

$$\pi: V \to V^* *$$
 , $\pi(x) = \widehat{x}$, $\widehat{x}(f) = f(x)$

Que está bien definida, pues $\hat{x} \in V^**$ porque es un operador lineal y acotado de V^* a K.

Teorema de Hahn-Banach: Sea V un espacio normado, $W \subset V$ un subespacio y $f_0 \in W^*$, entonces existe $f \in V^*$ tal que $f|_W = f_0$ y $||f|| = ||f_0||$

4.5. Espacio Dual de L_p

Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida y sean $1 \leq p, q \leq \infty$ conjugados. Entonces para cada $g \in \mathcal{L}_q$, podemos definir el funcional asociado a g como:

$$T_g: \mathcal{L}_p \to K$$
 , $T_g(f) = \int fg d\mu$

O podemos extenderlo de modo obvio a $T_g: L_{[} \to K.$

Esta función es lineal y continua, por lo que $T_g \in L_p^*$. Esto por la desigualdad de Holder que dice que para todo $f \in \mathcal{L}_p$:

$$|T_g(f)| \le ||g||_q ||f||_p \implies ||T_g|| \le ||g||_q$$

Entonces, la desigualdad de Holder nos permite acotar la función $T_g: L_p \to K$ y entonces T_g es lineal y continua.

Entonces, podemos definir la aplicación:

$$T: L_q \to L_p^*$$
 , $g \to T(g) = T_g$

Donde:

$$T_g(f) = \int fg d\mu$$

Teorema 6.4.1: Para $1 \le p, q \le \infty$ conjugados, la aplicación $T: L_q \to L_p^*$ es una isometría. Es decir $||T(g)|| = ||g||_q$.

Además. la isometría $T:L_q\to L_p^*$ es un isomorfismo en casi todos los casos:

• Si $1 < p, q < \infty$, entonces $L_q \simeq L_p^*$

• Si p=1, $q=\infty$, entonces $L_{\infty}\simeq L_1^*$

Lema: Toda aplicación lineal continua $F: V_1 \to V_2$ entre espacios normados define otra entre los duales, a la que llamamos dual o traspuesta.

$$F^*: V_2^* \to V_1^*$$
 , $F^*(f) = f \circ F$

Teorema: Para $1 < p, q < \infty$ conjugados, la isometría $T: L_q \to L_p^*$ es sobre y los espacios son isorfos.

Si el espacio es σ -finita, $T:L_{\infty}\to L_1^*$ es sobre

4.6. Tipos de Convergencia

Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida y $f_n, f: \Omega \to K$ funciones medibles.

■ Casi seguro: Decimos que $f_n \to f$ casi seguro si:

$$\mu\{x \in \Omega \mid f_n(x) \text{ no converge a } f(x)\} = 0$$

- Casi uniformemente: Decimos $f_n \to f$ casi uniformemente si para todo $\epsilon > 0$ existe $A \in \mathcal{A}$ tal que f_n converge uniformemente a f en A y $\mu(A^c) < \epsilon$.
- En medida: Decimos que $f_n \to f$ en medida si para todo $\epsilon > 0$:

$$\mu\{|f_n - f| \ge \epsilon\} \to 0$$

■ En L_p Diremos que $f_n \to f$ en L_p si $f_n, f \in L_p$ y $d_p(f_n, f) \to 0$

Def De Cauchy: Diremos que f_n es de Cauchy casi seguro si:

$$\mu\{x \in \Omega \mid f_n(x) \text{ no es de Cauchy}\} = 0$$

De Cauchy uniformemente: Diremos que f_n es de Cauchy uniformemente si para todo $\epsilon > 0$ existe $A \in \mathcal{A}$ tal que f_n es de Cauchy uniformemente en A y $\mu(A^c) < \epsilon$.

De Cauchy en medida: f_n es de Cauchy en medida si para todo $\epsilon > 0$:

$$\mu\{|f_n - f_m| \ge \epsilon\} \to 0$$

cuando $n, m \to \infty$

Proposición:

a) Si f_n converge en medida a f y a g entonces f = g casi siempre

- b) Si $f_n \to f$ y $g_n \to g$ en medida, entonces $f_n + g_n \to f + g$ en medida
- c) Si $f_n \to 0$ y $g_n \to 0$ en medida entonces $f_n g_n \to 0$ en medida
- d) Si $f_n \to 0$ en medida, g es medible y $\mu(\Omega) < \infty$, entonces $f_n g \to 0$ en medida
- e) Si $f_n \to f, g_n \to g$ en meidida y $\mu(\Omega) < \infty$, entonces $f_n g_n \to f g$ en medida.
- a) Si $\mu(\Omega) < \infty$, entonces para cualquiera $1 \le p \le q \le \infty$:

$$f_n \to f \text{ en } L_q \implies f_n \to f \text{ en } L_p$$

- c) Si $f_n \to f$ (L_p) , para un $0 , entonces <math>f_n \to f$ en medida
- d) Si $f_n \to f$ casi uniformemente, ent
noces $f_n \to f$ en medida y $f_n \to f$ casi seguro.

5. Espacios de Hilbert

Def Producto Interior: Sea $K = \mathbb{R}$, \mathbb{C} . Llamamos producto interior sobre un K-e.v. V a toda función.

$$\langle,\rangle:V\times V\to K$$

que cumple las siguientes propiedades:

- $\langle x, x \rangle > 0$ para todo $x \in V/\{0\}$ y $\langle x, x \rangle = 0$ si x = 0
- $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- $\overline{\langle x, y \rangle} = \langle y, x \rangle$

Espacio Prehilbertiano: Es u K - e.v V junto con un produto interior.

Desigualdad de Cauchy-Schwarz: Para todo espacio pre-hilbertiano se cumple que:

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Def Espacio de Hilbert: Es un espacio prehilbertiano tal que la norma $||x|| = \langle x, x \rangle^{1/2}$ lo convierte en un espacio completo.

Podríamos restringir nuestro estudio a sólo espacios de Hilbert, pues todo espacio pre hilbertiano es isomorfo a subespacio denso de un Hilbert.

Compleción: Dado un espacio prehilbertiano V, le llamamo compleción de V al espacio de Hilbert H (determinado salvo isomorfismos) al espacio de Hilbert tal que tiene un subespacio denso isomorfo a V.

Ejemplo: Dado un espacio de medida $(\Omega, \mathcal{A}, \mu)$, el espacio L_2 correspondiente es de Hilbert, pues su norma está inducida por el producto interior:

$$\langle f, g \rangle = \int f \bar{g} d\mu$$

Y es completo bajo la norma.

5.1. Propiedades de los Espacios de Hilbert

Sea H un espacio prehilbertiano sobre \mathbb{R} o \mathbb{C} .

Proposición: La aplicación $\langle,\rangle:H^2\to K$ es continua.

Para cada $x \in H$, las aplicaciones en H dadas por $\langle x, \cdot \rangle$ y por $\langle \cdot, x \rangle$ son uniformemente continuas.

Ley del paralelogramo: Un espacio noramdo H es prehilbertiano sii para todo $x, y \in H$ cumple la ley del paralelogramo:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Ya que si cumple esta ley, le podemos definir un producto interno dado por:

$$4\langle x, y \rangle = ||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - ||x - iy||^2 \quad , K = \mathbb{C}$$
$$4\langle x, y \rangle = ||x + y||^2 - ||x - y||^2 \quad , K = \mathbb{R}$$

Y ahora su norma inducida por el producto punto es la norma original.

Ortogonal: Dos elementos $x, y \in H$ son ortogonales si $\langle x, y \rangle = 0$.

Complemento Ortogonal: Para un subespacio $M \subset H$, el complemento ortogonal es:

$$M^{\perp} = \{ y \in H \mid \forall x \in M \ y \perp x \} = \cap_{x \in M} \ker(\langle x, \cdot \rangle)$$

Un subconjunto es ortogonal si todos sus elementos son ortogonales entre sí. Y es **ortonormal** si ||x|| = 1.

Teorema de Pitágoras: Para cualesquiera $x_1, \dots, x_n \in H$ ortogonales:

$$||\sum x_i||^2 = \sum ||x_i||^2$$

Teorema: Sea $B = \{e_1, \dots, e_n\} \subset H$ ortonormal y $x \in H$. Entonces $||x - \sum a_i e_i||$ es mínimo sii $a_i = \langle x, e_i \rangle$ para $i = 1, \dots, n$

coeficiente de Fourier: Dado un subconjunto $B = \{e_i | i \in I\}$ de H ortonormal, llamamos coeficiente i-ésimo de Fourier de un punto $x \in H$ relativo a B como $\langle x, e_i \rangle$.

Def: Dado un conjunto $B \subset H$ y una función $f: B \to [0, \infty]$, llamaremos:

$$\sum_{x \in B} f(x)$$

al supremo de todas las sumas finitas $f(x_1) + \cdots + f(x_n)$ donde los $x_i \in B$. Se puede demostrar que:

$$\sum_{x \in B} f(x) = \int_{B} f d\mu$$

Desigualdad de Bessel: Sea $B \subset H$ ortonormal y $x \in H$, entonces:

$$\sum_{y \in B} |\langle x, y \rangle|^2 \le ||x||^2$$

Teorema de Riesz - Fischer: Si H es de Hilbert y $B \subset H$ ortonormal, entonces para cada $f \in l_2(B)$, existe un $x \in H$ tal que $f = \langle x, \cdot \rangle$.

Teorema: Sea H prehilbertiano, entonces:

a) Si $C \subset H$ es convexo, completo y no vacío, entonces para cada $x \in H$ existe un único $y \in C$ aproximación óptica de $x \in C$ tal que:

$$||x - y|| = \inf\{||x - z|| \mid z \in C\}$$

Teorema de Proyección: Sea M un subespacio completo de un espacio prehilbertiano H. Entonces existe únicas transformaciones lineales:

$$P: H \to M$$
 , $Q: H \to M^{-1}$

tales que:

- a) Para cada $x \in H$, x = P(X) + Q(x)
- b) Para cada $x \in M$, P(x) = x y para cada $x \in M^{\perp}$, Q(x) = x
- c) $||x P(x)|| \le ||x y||$, para $x \in H, y \in M$
- d) Para cada $x \in H$,

$$||x||^2 = ||P(x)||^2 + ||Q(x)||^2$$

Como consecuencia, se tiene que $H = M \oplus M^{\perp}$.

En H prehilbertiano, podemos definir la aplicación:

$$\sigma: H \to H^*$$
, $\sigma(x) = \sigma_x = \langle \cdot, x \rangle$

Teorema de Riesz: Si H es de Hilbert, σ es un isomorfismo y la norma de H^* viene inducida por el producto interior, entonces:

$$\langle \sigma_x, \sigma_y \rangle = \langle y, x \rangle$$

Corolario: Si H es de Hilbert, enotnces H^* es de Hilbert y H es reflexivo, es decir, la isometría canónica dada por:

$$\pi: x \in H \to \widehat{x} \in H^{**}$$
, $\widehat{x}(\omega) = \omega(x)$

es sobre.

5.2. Clasificación de los espacios de Hilbert

Dado $B \subset H$, entendemos por $\langle B \rangle$ el subespacio generado por B y por s(B) el mínimo subespacio cerrado que contiene a B.

Teorema de Gramm-Schmidt: Sea H un espacio prehilbertiano y $A \subset H$ un subconjunto con vectores independiente. Entonces existe $B \subset H$ tal que #A = #B y $\langle A \rangle = \langle B \rangle$.

Base Ortonormal: Diremos que $B \subset H$ es una base ortonormal de H si B es ortonormal y dado C ortonormal con $B \subset C \subset H$, entonces B = C.

Teorema: Sea H de Hilbert y B ortonormal, entonces son equivalente:

- a) B es una base ortonormal
- b) $B^{\perp} = \{0\}$
- c) S(B) = H
- d) Para cada $x \in H$ se tiene:

$$x = \sum_{y \in B} \langle x, y \rangle y = \sum_{y \in B} \sigma_y(x) y$$

e) Identidad de Parseval: Para $x, y \in H$ se tiene:

$$\langle x, y \rangle = \sum_{z \in B} \langle x, z \rangle \langle z, y \rangle$$

f) Si $x \in H$,

$$||x||^2 = \sum_{z \in B} |\langle x, z \rangle|^2 = \sum_{z \in B} |\sigma_x(z)|^2$$

Prop: Cada espacio prehilbertiano tiene una base ortonormal. Dos bases ortonormales en un espacio de Hilbert tienen el mismo cardinal

Teorema: Sea S un conjunto arbitrario y H un espacio de Hilbert con base ortonormal B con #B = #S, entonces hay un isomorfismo isométrico entre H y $l_2(S)$

5.3. Teorema Ergódico en L_2

Teorema: Sea $(\Omega, \mathcal{A}, \mu)$ un espacio de medida σ -finito, $T: \Omega \to \Omega$ una transformación conservando la medida. $f_1 \in L_2, f_{n+1} = T^*(f_n) = f_1 \circ T^n$ y:

$$g_n = \frac{1}{n} \sum_{i=1}^n f_i$$

Entonces existe $g \in L_2$ tal que $g_n \to g$ y cumple:

- $T^*(g) = g$ casi siempre
- $||g||_2 \le ||f_1||_2$
- \blacksquare Se tiene $\langle f,g\rangle=\langle f,f_1\rangle$ para cada $f\in L_2$ tal que $T^*(f)=f$

6. Espacios de Banach

6.1. Teorema de Hahn Banach

Lema: Sea V un \mathbb{R} e.v. y sea $p:V\to\mathbb{R}$ tal que:

- a) $p(x+y) \le p(x) + p(y)$
- b) p(tx) = tp(x)

Si $g: S \to \mathbb{R}$ es lineal y $g \leq p$ en S. Entonces son equivalentes para $e \in V$ y $c \in R$:

- c) $g(x) + tc \le p(x + te)$
- d) $-p(-x-e) g(x) \le c \le p(x+e) g(x)$

Teorema de Hahn Banach: En las condionces anteriores, si $g \leq p$ en S, existe un funcional lineal $\bar{q}: V \to \mathbb{R}$ tal que $\bar{q} = q$ en $S \vee \bar{q} \leq p$ en V.

Seminorma: Diremos que $p: V \to [0, \infty)$ es una seminorma si:

- a) $p(x + y) \le p(x) + p(y)$
- b) $p(\lambda x) = |\lambda| p(x)$

Si además p(x) = 0 sii x = 0, entonces es una norma.

Teorema de Hahn Banach complejo: Sea V un \mathbb{C} -ev y $p:V\to 0,\infty)$ una seminorma. Si $g:S\to\mathbb{C}$ es lineal y $|g|\leq p$ en S, entonces existe $\bar{g}:V\to\mathbb{C}$ lineal tal que $\bar{g}=g$ en S y $|\bar{g}(x)|\leq p(x)$ para todo $x\in V$.

Corolario: Sea V un K—ev normado, $S \subset V$ un subespacio y $g \in S^*$, entonces existe $\bar{g} \in V^*$ tal que $\bar{g} = g$ en S y $||\bar{g}|| = ||g||$. Es decir, el dual no es vacío

6.2. Teoremas clásicos

Espacio de Banach; Es un espacio normado y completo.

Teorema de Baire: Sea X un espacio métrico completo y U_n una sucesión de abiertos densos en X, entonces $\cap U_n$ es denso en X.

Decimos que un conjunto es de primera categoría si es la unión numerable de conjuntos densos en ninguna parte y de segunda categoría sino.

Denso en ningún lado: Un conjunto E es d.e.n.l en X espacio topolórigo si $(\bar{E})^o = \emptyset$. Se tiene que $E^o = \emptyset$ sii B = X/E cumple $\bar{B} = X$

Corolario: Todo espacio métrico es de segunda categoría

Teorema de Banach-Steinhaus (principio de acotación uniforme): Sea V un espacio de Banach, N un espacio normado y $\{L_i: V \to N \ , i \in I\}$ un conjunto de aplicaciones lineales acotadas puntualmente, es decir, tales que para cada $x \in V$ existe un k > 0 tal que para todo $i \in I, ||L_i(x)|| < k$. Entonces:

$$\sup\{||L_i|| : i \in I\} < \infty$$

Teorema de Aplicación continua: Sea $L:V\to W$ una aplicación lineal continua y sobre entre espacios de Banach, entonces es abierta. Por tanto, si L es también inyectiva entonces L es un isomorfismo lineal y continuo.