Mecânica Clássica I André Del Bianco Giuffrida

Segundo Kepler:

Os quadrados dos períodos de revolucão (T) são proporcionais aos cubos das distâncias médias (a) do Sol aos planetas. $T^2 = ka^3$, onde k é uma constante de proporcionalidade.

Partindo dos dados:

Orbital Data

Name	Distance (km)	Period (days)	Incl	Eccen
Mercury	57910	87.97	7.00	0.21
Venus	108200	224.70	3.39	0.01
Earth	149600	365.26	0.00	0.02
Mars	227940	686.98	1.85	0.09
Jupiter	778330	4332.71	1.31	0.05
Saturn	1429400	10759.50	2.49	0.06
Uranus	2870990	30685.00	0.77	0.05
Neptune	4504300	60190.00	1.77	0.01

Table 1: Fonte: http://nineplanets.org/data.html

Para Verificar se a afirmação de kepler é precisa foi utilizado o seguinte racioncínio,

$$\frac{T_i^2}{a_i^3} - \frac{T_j^2}{a_j^3} = \pm E_{ij}$$

Onde E_{ij} é o erro encontrado ao calcular para os planetas i e j, a matriz gerada pelos elementos $|E_{ij}|$ é uma matriz triangular, é tomado o módulo pois o erro pode estar acima ou abaixo do valor de k porém não agrega nenhuma nova informação, apenas que uma razão é maior que a outra, por isso o uso do módulo do Erro.

Figure 1: Erro E_{ij} na teoria de Kepler vs dados medidos para os Planetas

Podemos notar que o erro é da ordem de 10^{-13} o que é muito bom de acordo com a incerteza das medidas, porém 9 planetas são poucos dados para validar uma relação tão importante. Se a relação de Kepler vale para o sol, deve valer para outros astros também.

Então podemos utilizar todos os dados encontrados para a Distância da órbita e o Periodo de cada astro. e assim obtemos a seguinte figura:

Figure 2: Erro E_{ij} cada linha é um planeta ou satelite natural, os nomes são os astros que os satelites orbitam

Agora notamos que a precisão ainda é boa porém é melhor quando trabalhado com astros massivos, ou quando a distância entre os astros comparados é pequena, ou seja, ainda resta algo na constante de kepler k que dependa da massa, e isso vai ser definido por Newton com $\frac{R^3}{T^2} = \frac{GM}{4\pi^2}$