Mathematics

Robin Adams

June 26, 2024

Contents

Ι	Ca	ategory Theory	9
1	Fou	undations	11
	1.1	Relations	11
2	Cat	egories	13
	2.1	Definition	13
	2.2	Examples	13
	2.3	Subcategories	14
3	Mo	rphisms	15
	3.1	Monomorphisms and Epimorphisms	15
	3.2	Sections and Retractions	17
	3.3	Isomorphisms	18
	3.4	Initial and Terminal Objects	18
	3.5	Comma Categories	19
4	Fun	actors	21
5	Cor	nstructions of Categories	23
	5.1	Opposite Category	23
	5.2	Product Categories	23
	5.3	Arrow Category	23
	5.4	Slice Category	24
6	\mathbf{Pre}	orders	25
	6.1	Definition	25
	6.2	Partial Orders	25
		6.2.1 Definition	25
7	Ob	jects	27
	7.1	Terminal and Initial Objects	27

4		CONTENTS

II	Number Theory	29
II	I Group Theory	33
8	Semigroups	35
9	Monoids	37
	9.1 Free Monoids	37
10	Groups	39
	10.1 Symmetric Groups	42
	10.2 Order of an Element	43
	10.3 Generators	45
	10.4 <i>p</i> -groups	47
11	Group Homomorphisms	49
	11.1 Subgroups	51
	11.2 Kernel	53
	11.3 Inner Automorphisms	54
	11.4 Semidirect Products	54
	11.5 Direct Products	57
	11.6 Free Groups	57
	11.7 Normal Subgroups	60
	11.8 Quotient Groups	61
	11.9 Cosets	65
	11.10Congruence	69
	11.11Cyclic Groups	70
	11.12Commutator Subgroup	70
	11.13Presentations	71
	11.14 Index of a Subgroup $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	72
	11.15Cokernels	74
	11.16Cayley Graphs	74
	11.17Characteristic Subgroups	74
	11.18Simple Groups	75
	11.19Sylow Subgroups	75
	11.20Series of Subgroups	76
12	Abelian Groups	83
	12.1 The Category of Abelian Groups	89
	12.2 Free Abelian Groups	90
	12.3 Cokernels	92
	12.4 Commutator Subgroups	93
	12.5 Derived Series	94
	12.6 Solvable Groups	94

CONTENTS	T T
CONTENTS	·

13 Gro	up Actions 97
	Group Actions
13.2	Category of G -Sets
13.3	Center
13.4	Centralizer
13.5	Conjugacy Class
13.6	Conjugation on Sets
13.7	Nilpotent Groups
13.8	Symmetric Groups
	13.8.1 Transitive Subgroups
13.9	Alternating Groups
14 Ext	ensions 123
15 Clas	ssification of Groups 127
IV F	Ring Theory 141
16 Rng	rs 143
16.1	Commutative Rngs
16.2	Rng Homomorphisms
16.3	Quaternions
17 Rin	gs 14'
	Units
17.2	Euler's ϕ -function
17.3	Nilpotent Elements
18 Rin	g Homomorphisms 153
	Products
10.1	110000000000000000000000000000000000000
19 Sub	9
19.1	Centralizer
19.2	Center
20 Moi	noid Rings 159
20.1	Polynomials
	Laurent Polynomials
	Power Series
21 Idea	ds 16
	Characteristic
	Nilradical
	Principal Ideals
	Maximal Ideals
21.4	Maximal rueals

6		CONTENTS

22	Integral Domains 22.1 Prime Ideals	169 170
23	Unique Factorization Domains	173
24	Principal Ideal Domains	175
25	Euclidean Domains	177
26	Division Rings	179
27	Simple Rings	181
2 8	Reduced Rings	183
2 9	Boolean Rings	185
30	Modules 30.1 Homomorphisms 30.2 Submodules 30.2 Submodules 30.3 Quotient Modules 30.4 Products 30.5 Coproducts 30.5 Coproducts 30.6 Direct Sum 30.7 Kernels and Cokernels 30.8 Free Modules 30.8 Free Modules 30.9 Generators 30.10Projections 30.11Pullbacks 30.12Pushouts 30.12Pushouts	190 191 191 191 192 193 194 195
31	Cyclic Modules	197
32	Simple Modules	199
33	Noetherian Modules	201
34	Noetherian Rings	203
35	Algebras35.1 Rees Algebra35.2 Free Algebras	
36	Algebras of Finite Type	2 11
37	Finite Algebras	213
38	Division Algebras	215

CONTENTS	7
39 Chain Complexes 39.1 Split Exact Sequences	217 228
40 Homology	231
V Field Theory	233
41 Fields	235
42 Algebraically Closed Fields	239
VI Linear Algebra	241
43 Vector Spaces	243
VII Linear Algebra	245
44 Vector Spaces	247

249

VIII Measure Theory

8 CONTENTS

Part I Category Theory

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed.

1.1 Relations

Definition 1.1 (Reflexive). A relation R on a class A is *reflexive* iff, for all $x \in A$, we have xRx.

Definition 1.2 (Transitive). A relation R on a class A is *transitive* iff, whenever xRy and yRz, then xRz.

Categories

2.1 Definition

Definition 2.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set C[A, B] of morphisms from A to B. We write $f: A \to B$ for $f \in C[A, B]$.
- For any object A, a morphism $id_A : A \to A$, the *identity* morphism on A.
- For any morphisms $f:A\to B$ and $g:B\to C$, a morphism $g\circ f:A\to C$, the *composite* of f and g.

such that:

Associativity Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have $h \circ (g \circ f) = (h \circ g) \circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

2.2 Examples

Example 2.2 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Example 2.3 (Category of Finite Sets). The *category of finite sets* $\mathbf{Set_{fin}}$ has objects all finite sets and morphisms all functions.

Example 2.4 (Category of Sets and Relations). The category of sets and relations **Rel** has:

- objects all sets
- morphism $A \to B$ all relations between A and B
- the identity on A is $\{(a, a) : a \in A\}$
- given $R \subseteq A \times B$ and $S \subseteq B \times C$, we define

$$S \circ R = \{(a,c) \in A \times C : \exists b \in B.aRb \land bSc\}$$
.

2.3 Subcategories

Definition 2.5 (Subcategory). A category $\mathcal C$ is a *subcategory* of a category $\mathcal D$ iff:

- $|\mathcal{C}| \subseteq |\mathcal{D}|$
- for all $A, B \in \mathcal{C}$, we have $\mathcal{C}[A, B] \subseteq \mathcal{D}[A, B]$
- for all $A \in \mathcal{C}$, the identity on A is the same in \mathcal{C} and \mathcal{D}
- composition in $\mathcal C$ and composition in $\mathcal D$ agree on composable pairs of morphisms from $\mathcal C.$

It is a full subcategory iff, for all $A, B \in \mathcal{C}$, we have $\mathcal{C}[A, B] = \mathcal{D}[A, B]$.

Morphisms

Definition 3.1 (Endomorphism). In a category C, an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

3.1 Monomorphisms and Epimorphisms

Definition 3.2 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 3.3 (Epimorphism). In a category, let $f:A\to B$. Then f is a epimorphism or epi iff, for every object X and morphism $x,y:B\to X$, if xf=yf then x=y.

Proposition 3.4. The composite of two monomorphism is monic.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. \ \ \mathrm{Lett} : \ f : A \rightarrowtail B \ \mathrm{and} \ g : B \rightarrowtail C \ \mathrm{be} \ \mathrm{monic}. \\ \langle 1 \rangle 2. \ \ \mathrm{Lett} : \ x,y : X \to A \\ \langle 1 \rangle 3. \ \ \mathrm{Assume} : \ g \circ f \circ x = g \circ f \circ y \\ \langle 1 \rangle 4. \ \ f \circ x = f \circ y \\ \langle 1 \rangle 5. \ \ x = y \\ \end{array}
```

Proposition 3.5. The composite of two epimorphisms is epi.

Proof: Dual.

Proposition 3.6. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 3.7. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 3.8. A function is a monomorphism in **Set** iff it is injective.

```
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is monic then f is injective.
    \langle 2 \rangle 1. Assume: f is monic.
    \langle 2 \rangle 2. Let: x, y \in A
    \langle 2 \rangle 3. Assume: f(x) = f(y)
    \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
    \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
    \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
    \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
    \langle 2 \rangle 1. Assume: f is injective.
    \langle 2 \rangle 2. Let: X be a set and x, y: X \to A.
    \langle 2 \rangle 3. Assume: f \circ x = f \circ y
             PROVE: x = y
    \langle 2 \rangle 4. Let: t \in X
             PROVE: x(t) = y(t)
```

Proposition 3.9. A function is an epimorphism in **Set** iff it is surjective.

```
Proof:
```

 $\langle 1 \rangle 1$. Let: $f: A \to B$

 $\langle 2 \rangle$ 5. f(x(t)) = f(y(t)) $\langle 2 \rangle$ 6. x(t) = y(t)PROOF: By $\langle 2 \rangle$ 1.

- $\langle 1 \rangle 2$. If f is an epimorphism then f is surjective.
 - $\langle 2 \rangle 1$. Assume: f is an epimorphism.
 - $\langle 2 \rangle 2$. Let: $b \in B$
 - $\langle 2 \rangle$ 3. Let: $x,y:B \to 2$ be defined by x(b)=1 and x(t)=0 for all other $t \in B, \ y(t)=0$ for all $t \in B$.
 - $\langle 2 \rangle 4. \ x \neq y$
 - $\langle 2 \rangle 5. \ x \circ f \neq y \circ f$
 - $\langle 2 \rangle 6$. There exists $a \in A$ such that f(a) = b.
- $\langle 1 \rangle 3$. If f is surjective then f is an epimorphism.
 - $\langle 2 \rangle 1$. Assume: f is surjective.
 - $\langle 2 \rangle 2$. Let: $x, y : B \to X$
 - $\langle 2 \rangle 3$. Assume: $x \circ f = y \circ f$ Prove: x = y
 - $\langle 2 \rangle 4$. Let: $b \in B$
 - PROVE: x(b) = y(b)
 - $\langle 2 \rangle$ 5. PICK $a \in A$ such that f(a) = b

$$\langle 2 \rangle 6. \ x(f(a)) = y(f(a))$$

 $\langle 2 \rangle 7. \ x(b) = y(b)$

Proposition 3.10. In a preorder, every morphism is monic and epi.

Proof: Immediate from definitions. \square

3.2 Sections and Retractions

Definition 3.11 (Section, Retraction). In a category, let $r:A\to B$ and $s:B\to A$. Then r is a retraction of s, and s is a section of r, iff $r\circ s=\mathrm{id}_B$.

Proposition 3.12. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions.

Proposition 3.13. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 3.14. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 3.15. Every section is monic.

Proof:

$$\langle 1 \rangle 1.$$
 Let: $s:A \to B$ be a section of $r:B \to A.$ $\langle 1 \rangle 2.$ Let: $x,y:X \to A$ satisfy $sx=sy.$ $\langle 1 \rangle 3.$ $rsx=rsy$ $\langle 1 \rangle 4.$ $x=y$

Proposition 3.16. Every retraction is epi.

Proof: Dual. \square

Proposition 3.17. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice.

Example 3.18. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

3.3 Isomorphisms

Definition 3.19 (Isomorphism). In a category C, a morphism $f: A \to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $\operatorname{Aut}_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 3.20. The inverse of an isomorphism is unique.

Proof: Proposition 3.13. \square

Proposition 3.21. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 3.22. *If* $f : A \cong B$ *then* $f^{-1} : B \cong A$ *and* $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions. \Box

Proposition 3.23. If $f: A \cong B$ and $g: B \cong C$ then $g \circ f: A \cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

PROOF: From Proposition 3.14.

Definition 3.24 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

3.4 Initial and Terminal Objects

Definition 3.25 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 3.26. The empty set is the initial object in **Set**.

Definition 3.27 (Terminal Object). An object T in a category is *terminal* iff, for any object X, there is exactly one morphism $X \to T$.

Example 3.28. Every singleton is terminal in **Set**.

19

Proposition 3.29. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$.
- $\langle 1 \rangle 3$. $i \circ i^{-1} = \mathrm{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4. \ i^{-1} \circ i = \mathrm{id}_I$

PROOF: Since there is only one morphism $I \to I$.

Proposition 3.30. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.

Proof: Dual. \square

3.5 Comma Categories

Definition 3.31 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

- objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$
- morphisms $(u, v): (C, D, f) \to (C', D', g)$ all pairs $u: C \to C': \mathcal{C}$ and $v: D \to D': \mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow^{Fu} \qquad \downarrow^{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 3.32 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^1 A$.

Definition 3.33 (Coslice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The coslice category over A, denoted $\mathcal{C} \setminus A$, is the comma category $K^1A \downarrow 1_{\mathcal{C}}$.

Definition 3.34 (Pointed Sets). The category of pointed sets \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

Functors

Definition 4.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 4.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 4.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

Definition 4.4 (Composition of Functors). Given functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$, define the *composite* functor $G \circ F: \mathcal{C} \to \mathcal{E}$ by

$$(G \circ F)A = G(FA)$$
$$(G \circ F)f = G(Ff)$$

Definition 4.5 (Category of Categories). For any universe \mathcal{U} , let $\mathbf{Cat}_{\mathcal{U}}$ be the category of categories whose sets of objects and morphisms are in \mathcal{U} , and functors.

Constructions of Categories

5.1 Opposite Category

Definition 5.1 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

5.2 Product Categories

Definition 5.2 (Product Category). Given categories C and D, the *product category* $C \times D$ has:

- objects $|\mathcal{C} \times \mathcal{D}| = |\mathcal{C}| \times |\mathcal{D}|$
- a morphism $(C,D) \to (C',D')$ is a pair (f,g) where $f:C \to C':\mathcal{C}$ and $g:D \to D':\mathcal{D}$
- $id_{(C,D)} = (id_C, id_D)$
- $\bullet \ (g',f')\circ (g,f)=(g'\circ g,f'\circ f)$

Define the projection functors $\pi_1: \mathcal{C} \times \mathcal{D} \to \mathcal{C}$ and $\pi_2: \mathcal{C} \times \mathcal{D} \to \mathcal{D}$ by

$$\pi_1(C,D) = C \qquad \qquad \pi_2(C,D) = D$$

$$\pi_1(f,g) = f \qquad \qquad \pi_2(f,g) = g$$

5.3 Arrow Category

Definition 5.3 (Arrow Category). For any category C, the *arrow category* C^{\rightarrow} has:

• objects all triples (A, B, f) where $A, B \in \mathcal{C}$ and $f : A \to B : \mathcal{C}$

• morphisms $(u, v): (A, B, f) \to (C, D, g)$ all pairs $(u: A \to C, v: B \to D)$ such that the following diagram commutes.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{u} & & \downarrow^{v} \\
C & \xrightarrow{g} & D
\end{array}$$

We have the domain and codomain functors dom : $\mathcal{C}^{\to} \to \mathcal{C}$ and cod : $\mathcal{C}^{\to} \to \mathcal{C}$ given by

$$dom(A, B, f) = A cod(A, B, f) = B$$
$$dom(u, v) = u cod(u, v) = v$$

5.4 Slice Category

Definition 5.4 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* \mathcal{C}/A is the category with

- objects all pairs (B, f) such that $f: B \to A$
- morphisms $u:(B,f)\to (C,g)$ all morphisms $u:B\to C$ such that $g\circ u=f.$

Definition 5.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *coslice category* $A \setminus \mathcal{C}$ is the category with

- objects all pairs (B, f) such that $f: A \to B$
- morphisms $u:(B,f)\to (C,g)$ all morphisms $u:B\to C$ such that $u\circ f=g.$

Example 5.6. The category of pointed sets \mathbf{Set}_* is $\mathbf{1}\backslash\mathbf{Set}$.

Preorders

6.1 Definition

Definition 6.1 (Thin Category). A category \mathcal{C} is *thin* or a *preorder* iff, for any objects A and B, there is at most one morphism $A \to B$. We write $A \leq B$ iff there exists a morphism $A \to B$; this is called the *ordering relation* on \mathcal{C} .

Proposition 6.2. For any preorder C, the relation \leq is reflexive and transitive. Conversely, given any class A and relation \leq on A that is reflexive and transitive, there exists a preorder A with class of objects A, unique up to unique isomorphism that is the identity on objects, such that \leq is the ordering relation on A.

Proof: All parts are immediate from definitions. \Box

Proposition 6.3. Let C and D be preorders and $F: C \to D$ be a functor. Then F is monotone: for all $x, y \in C$, if $x \leq y$ then $F(x) \leq F(y)$.

Conversely, given any monotone function f from the objects of C to the objects of D, there exists a unique functor whose action on objects is f.

PROOF: Immediate from definitions.

Example 6.4 (Discrete Category). For any set A, the discrete category A is the preorder with objects the elements of A and order relation =.

Example 6.5. For any ordinal α , let α be the preorder $\{\beta : \beta < \alpha\}$ under \leq .

6.2 Partial Orders

6.2.1 Definition

Definition 6.6 (Partial Order). A partial order, partially ordered set or poset is a preorder such that, for any x and y, if $x \le y$ and $y \le x$ then x = y.

Example 6.7. Every discrete category is a poset.

Example 6.8. For any ordinal α , the preorder α is a poset.

Definition 6.9 (Category of Posets). Let **Pos** be full subcategory of **Cat** whose objects are the posets.

Objects

7.1 Terminal and Initial Objects

Definition 7.1 (Terminal Object). Let \mathcal{C} be a category. An object $T \in \mathcal{C}$ is terminal iff, for every object X, there is exactly one morphism $X \to T$.

Example 7.2.

- The terminal objects in **Set** are the singletons.
- 1 is terminal in Cat.

Definition 7.3 (Initial Object). Let \mathcal{C} be a category. An object $I \in \mathcal{C}$ is *initial* iff, for every object X, there is exactly one morphism $I \to X$.

Example 7.4.

- The empty set is the initial object in **Set**.
- 0 is initial in Cat.

$\begin{array}{c} {\bf Part~II} \\ {\bf Number~Theory} \end{array}$

Definition 7.5 (Partition). A partition of a natural number n is a nonincreasing sequence of positive integers whose sum is n.

Part III Group Theory

Semigroups

Definition 8.1 (Semigroup). A *semigroup* consists of a set S and an associative binary operation \cdot on S.

Definition 8.2 (Unit). Let S be a semigroup. An element $e \in S$ is a *unit* iff $\forall x \in S. xe = ex = x$.

Chapter 9

Monoids

Definition 9.1 (Monoid). A monoid is a category with one object.

Proposition 9.2. Let M be a monoid with object *. Then the set of morphisms M[*,*] is a semigroup with a unit. Conversely, given any semigroup with a unit M, there exists a monoid, unique up to isomorphism that is the identity on morphisms, such that the morphisms are the elements of M with composition given by the semigroup operation.

PROOF: Immediate from definitions.

Definition 9.3 (Monoid Homomorphism). A $monoid\ homomorphism$ is a functor between monoids.

Proposition 9.4. The monoid homomorphisms are exactly the semigroup homomorphisms that preserve the unit.

PROOF: Immediate from definitions.

Example 9.5. \mathbb{N} , \mathbb{Q} and \mathbb{R} are monoids under addition.

Example 9.6. For any category \mathcal{C} and object $A \in \mathcal{C}$, the full subcategory of \mathcal{C} with only one object A is a monoid. We write $\mathcal{C}[A, A]$ for this monoid.

Definition 9.7. Let **Mon** be the full subcategory of **Cat** whose objects are the monoids.

Let $U : \mathbf{Mon} \to \mathbf{Cat}$ be the functor that maps a monoid to its *underlying* set of morphisms.

9.1 Free Monoids

Theorem 9.8. Let A be a set. Then there exists a monoid F(A) and function $i: A \to UF(A)$ such that, for any monoid M and function $f: A \to UM$, there exists a unique monoid homomorphism $\overline{f}: FA \to M$ such that

$$f = U\overline{f} \circ i$$

Proof: Take FA to be the set of all finite sequences in A under concatenation. \Box

Definition 9.9. We call FA the *free* monoid on A.

Chapter 10

Groups

Definition 10.1 (Group). Let \mathcal{C} be a category with finite products. A *group* (object) in \mathcal{C} consists of an object $G \in \mathcal{C}$ and morphisms

$$m: G^2 \to G, e: 1 \to G, i: G \to G$$

such that the following diagrams commute.

$$G^{3} \xrightarrow{m \times \operatorname{id}_{G}} G^{2} \\ \downarrow_{\operatorname{id}_{G} \times m} \qquad \downarrow_{m} \\ G^{2} \xrightarrow{m} G$$

$$1 \times G \xrightarrow{e \times \operatorname{id}_{G}} G^{2} \qquad G \times 1 \xrightarrow{\operatorname{id}_{G} \times e} G^{2} \\ \stackrel{\cong}{\searrow} \downarrow_{m} \qquad \stackrel{\cong}{\searrow} \downarrow_{m} \\ G \qquad G \xrightarrow{G} G^{2} \xrightarrow{\operatorname{id}_{G} \times i} G^{2} \qquad G \xrightarrow{A} G^{2} \xrightarrow{i \times \operatorname{id}_{G}} G^{2} \\ \downarrow \qquad \qquad \downarrow_{m} \qquad \downarrow \qquad \downarrow_{m} \\ 1 \xrightarrow{e} G \qquad 1 \xrightarrow{e} G$$

Proposition 10.2. A group in **Set** is exactly (the set of morphisms of) a monoid that is also a groupoid.

PROOF: Immediate from definitions.

Proposition 10.3. The inverse of an element is unique.

PROOF: If i and j are inverses of x then i = ixj = j. \square

Example 10.4. • The *trivial* group is $\{e\}$ under ee = e.

• \mathbb{Z} is a group under addition

- \mathbb{Q} is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \mathbb{C} is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication
- $\{-1,1\}$ is a group under multiplication
- For any category \mathcal{C} and object $A \in \mathcal{C}$, we have $\operatorname{Aut}_{\mathcal{C}}(A)$ is a group under $gf = f \circ g$.

For A a set, we call $S_A = \operatorname{Aut}_{\mathbf{Set}}(A)$ the symmetric group or group of permutations of A.

- For $n \geq 3$, the dihedral group D_{2n} consists of the set of rigid motions that map the regular n-gon onto itself under composition.
- Let $SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad bc = 1 \right\}$ under matrix multiplication.
- The quaternionic group Q_8 is the group

$$\{1, -1, i, -i, j, -j, k, -k\}$$

with multiplication table

Example 10.5. • The only group of order 1 is the trivial group.

- The only group of order 2 is \mathbb{Z}_2 .
- The only group of order 3 is \mathbb{Z}_3 .
- There are exactly two groups of order 4: \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ under (a, b)(c, d) = (ac, bd).

Proposition 10.6 (Cancellation). Let G be a group. Let $a, g, h \in G$. If ag = ah or ga = ha then g = h.

PROOF: If ag = ah then $g = a^{-1}ag = a^{-1}ah = h$. Similarly if ga = ha. \square

Proposition 10.7. Let G be a group and $g, h \in G$. Then $(gh)^{-1} = h^{-1}g^{-1}$.

PROOF: Since $ghh^{-1}g^{-1} = e$. \square

Definition 10.8. Let G be a group. Let $g \in G$. We define $g^n \in G$ for all $n \in \mathbb{Z}$ as follows:

$$g^{0} = e$$

 $g^{n+1} = g^{n}g$ $(n \ge 0)$
 $g^{-n} = (g^{-1})^{n}$ $(n > 0)$

Proposition 10.9. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$g^{m+n} = g^m g^n \ .$$

Proof:

 $\begin{array}{l} \langle 1 \rangle 1. \text{ For all } k \in \mathbb{Z} \text{ we have } g^{k+1} = g^k g \\ \langle 2 \rangle 1. \text{ For all } k \geq 0 \text{ we have } g^{k+1} = g^k g \end{array}$

PROOF: Immediate from definition.

$$\langle 2 \rangle 2. \ g^{-1+1} = g^{-1}g$$

PROOF: Both are equal to e.

 $\langle 2 \rangle 3$. For all k > 1 we have $g^{-k+1} = g^{-k}g$

Proof:

$$g^{-k+1} = (g^{-1})^{k-1}$$

$$= (g^{-1})^{k-1}g^{-1}g$$

$$= (g^{-1})^kg$$

$$= g^{-k}g$$

 $=g^{-k}g$ $\langle 1\rangle 2.$ For all $k\in\mathbb{Z}$ we have $g^{k-1}=g^kg^{-1}$ PROOF: Substitute f

PROOF: Substitute k = k - 1 above and multiply by q^{-1} .

$$\langle 1 \rangle 3. \ g^{m+0} = g^m g^0$$

PROOF: Since $g^m g^0 = g^m e = g^m$.

 $\langle 1 \rangle 4$. If $g^{m+n} = g^m g^n$ then $g^{m+n+1} = g^m g^{n+1}$

Proof:

$$\begin{split} g^{m+n+1} &= g^{m+n}g \\ &= g^m g^n g \end{split} \tag{$\langle 1 \rangle 1$}$$

$$=g^mg^{n+1} \qquad (\langle 1\rangle 1)$$

 $=g^mg^{n+1} \\ \langle 1 \rangle 5. \text{ If } g^{m+n}=g^mg^n \text{ then } g^{m+n-1}=g^mg^{n-1}$

$$g^{m+n-1}g = g^{m+n}$$

$$= g^m g^n$$

$$(\langle 1 \rangle 1)$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$
$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

Proposition 10.10. *Let* G *be a group. Let* $g \in G$ *and* $m, n \in \mathbb{Z}$ *. Then*

$$(g^m)^n = g^{mn} .$$

Proof:

 $\langle 1 \rangle 1. \ (g^m)^0 = g^0$

PROOF: Both sides are equal to e.

 $\langle 1 \rangle 2$. If $(g^m)^n = g^{mn}$ then $(g^m)^{n+1} = g^{m(n+1)}$.

Proof:

$$(g^m)^{n+1} = (g^m)^n g^m$$
 (Proposition 10.9)
= $g^{mn} g^m$
= g^{mn+m} (Proposition 10.9)

 $=g^{mn+m}$ $\langle 1\rangle 3.$ If $(g^m)^n=g^{mn}$ then $(g^m)^{n-1}=g^{m(n-1)}.$ PROOF:

$$(g^{m})^{n} = g^{mn}$$

$$\therefore (g^{m})^{n-1}g^{m} = g^{mn-m}g^{m}$$
 (Proposition 10.9)
$$\therefore (g^{m})^{n-1} = g^{mn-m}$$
 (Cancellation)

Definition 10.11 (Commute). Let G be a group and $g, h \in G$. We say g and h commute iff gh = hg.

Definition 10.12. Let G be a group. Given $g \in G$ and $A \subseteq G$, we define

$$gA = \{ga : a \in A\}, \qquad Ag = \{ag : a \in A\} .$$

Given sets $A, B \subseteq G$, we define

$$AB = \{ab : a \in A, b \in B\} .$$

10.1 Symmetric Groups

Definition 10.13. Let n be a natural number and $a_1, \ldots, a_r \in \{1, \ldots, n\}$ be distinct. The *cycle* or r-cycle

$$(a_1 \ a_2 \ \cdots \ a_r) \in S_n$$

is the permutation that sends a_i to a_{i+1} $(1 \le i < r)$ and a_r to a_1 .

We call r the *length* of the cycle.

A transposition is a 2-cycle.

Proposition 10.14. Disjoint cycles commute.

Proof: Easy. \square

Proposition 10.15. For any cycle $(a_1 \ a_2 \ \cdots \ a_r)$ in S_n and $\tau \in S_n$ we have

$$\tau(a_1 \ a_2 \ \cdots \ a_n)\tau^{-1} = (\tau(a_1) \ \tau(a_2) \ \cdots \ \tau(a_n))$$
.

Proof: Easy. \square

10.2 Order of an Element

Definition 10.16 (Order). Let G be a group. Let $g \in G$. Then g has finite order iff there exists a positive integer n such that $g^n = e$. In this case, the order of g, denoted |g|, is the least positive integer n such that $g^n = e$.

If g does not have finite order, we write $|g| = \infty$.

Proposition 10.17. Let G be a group. Let $g \in G$ and n be a positive integer. If $g^n = e$ then |g| | n.

Proof:

 $\langle 1 \rangle 1$. Let: n = q|g| + d where $0 \le d < |g|$

Proof: Division Algorithm.

 $\langle 1 \rangle 2. \ g^d = e$

Proof:

$$e=g^n$$

$$=g^{q|g|+d}$$

$$=(g^{|g|})^q g^d$$
 (Propositions 10.9, 10.10)
$$=e^q g^d$$

$$=g^d$$

 $\langle 1 \rangle 3.$ d=0

PROOF: By minimality of |g|.

PROOF: By
$$\langle 1 \rangle 4$$
. $n = q|g|$

Corollary 10.17.1. Let G be a group. Let $g \in G$ have finite order and $n \in \mathbb{Z}$. Then $g^n = e$ if and only if |g| | n.

Proposition 10.18. Let G be a group and $g \in G$. Then $|g| \leq |G|$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. G is finite.

 $\langle 1 \rangle 2$. Pick i, j with $0 \le i < j \le |G|$ such that $g^i = g^j$.

PROOF: Otherwise $g^{\overline{0}}$, g^1 , ..., $g^{|G|}$ would be |G|+1 distinct elements of G.

 $\langle 1 \rangle 3. \ g^{j-i} = e$

 $\langle 1 \rangle 4$. g has finite order and $|g| \leq |G|$

PROOF: Since $|g| \le j - i \le j \le |G|$.

Proposition 10.19. Let G be a group. Let $g \in G$ have finite order. Let $m \in \mathbb{N}$. Then

$$|g^m| = \frac{\text{lcm}(m, |g|)}{m} = \frac{|g|}{\text{gcd}(m, |g|)}$$

Proof: Since for any integer d we have

$$g^{md} = e \Leftrightarrow |g| \mid md \qquad \qquad \text{(Corollary 10.17.1)}$$

$$\Leftrightarrow \operatorname{lcm}(m, |g|) \mid md$$

$$\Leftrightarrow \frac{\operatorname{lcm}(m, |g|)}{m} \mid d$$
 and so $|g^m| = \frac{\operatorname{lcm}(m, |g|)}{m}$ by Corollary 10.17.1. \square

Corollary 10.19.1. If g has odd order then $|g^2| = |g|$.

Proposition 10.20. Let G be a group. Let $g, h \in G$ have finite order. Assume gh = hg. Then |gh| has finite order and

$$|gh| \mid \operatorname{lcm}(|g|, |h|)$$

Proof: Since $(gh)^{\operatorname{lcm}(|g|,|h|)} = g^{\operatorname{lcm}(|g|,|h|)}h^{\operatorname{lcm}(|g|,|h|)} = e.$

Example 10.21. This example shows that we cannot remove the hypothesis that gh = hg.

In $GL_2(\mathbb{R})$, take

$$g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad h = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$
.

Then |g| = 4, |h| = 3 and $|gh| = \infty$.

Proposition 10.22. Let G be a group and $g, h \in G$ have finite order. If gh = hgand gcd(|g|, |h|) = 1 then |gh| = |g||h|.

Proof:

- $\langle 1 \rangle 1$. Let: N = |gh|
- $\langle 1 \rangle 2. \ g^N = (h^{-1})^N$
- $\langle 1 \rangle 3. \ g^{N|g|} = e$
- $\begin{array}{ll} \langle 1 \rangle 4. & |g^N| \mid |g| \\ \langle 1 \rangle 5. & h^{-N|h|} = e \end{array}$
- $\langle 1 \rangle 6. |g^N| |h|$
- $\langle 1 \rangle 7$. $|g^N| = 1$
 - PROOF: Since gcd(|q|, |h|) = 1.
- $\langle 1 \rangle 8. \ g^N = e$
- $\langle 1 \rangle 9$. |g| | N
- $\langle 1 \rangle 10. \ h^{-N} = e$
- $\langle 1 \rangle 11. \mid h \mid \mid N$

 $\langle 1 \rangle 12$. N = |g||h|

Proof: Using Proposition 10.20.

Proposition 10.23. Let G be a finite group. Assume there is exactly one element $f \in G$ of order 2. Then the product of all the elements of G is f.

PROOF: Let the elements of G be g_1, g_2, \ldots, g_n . Apart from e and f, every element and its inverse are distinct elements of the list. Hence the product of the list is ef = f. \square

Proposition 10.24. Let G be a finite group of order n. Let m be the number of elements of G of order 2. Then n-m is odd.

PROOF: In the list of all elements that are not of order 2, every element and its inverse are distinct except for e. Hence the list has odd length. \square

Corollary 10.24.1. If a finite group has even order, then it contains an element of order 2.

Proposition 10.25. Let G be a group and $a, g \in G$. Then $|aga^{-1}| = |g|$.

PROOF: Since

$$(aga^{-1})^n = e \Leftrightarrow ag^n a^{-1} = e$$
$$\Leftrightarrow q^n = e$$

Proposition 10.26. Let G be a group and $g, h \in G$. Then |gh| = |hg|.

PROOF: Since $|gh| = |ghgg^{-1}| = |hg|$. \square

Proposition 10.27. Let G be a group of order n. Let k be relatively prime to n. Then every element in G has the form x^k for some x.

- $\langle 1 \rangle 1$. PICK integers a and b such that an + bk = 1.
- $\langle 1 \rangle 2$. Let: $g \in G$
- $\langle 1 \rangle 3. \ g = (g^b)^k$

Proof:

$$g = g \cdot (g^n)^{-a} \qquad (g^n = e)$$
$$= g^{1-an}$$
$$= g^{bk}$$

10.3 Generators

Definition 10.28 (Generator). Let G be a group and $a \in G$. We say a generates the group iff, for all $x \in G$, there exists an integer n such that $x^n = a$.

Example 10.29. $SL_2(\mathbb{Z})$ is generated by

$$s = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \qquad t = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Proof:

 $\langle 1 \rangle 1$. Let: $H = \langle s, t \rangle$

$$\langle 1 \rangle 2$$
. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} \in H$.

PROOF: It is t^q .

 $\langle 1 \rangle 3$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \in H$.

Proof:

$$st^{-q}s^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$$

 $\langle 1 \rangle 4$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & q \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & qa+b \\ c & qc+d \end{array}\right)$$

 $\langle 1 \rangle 5$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ q & 1 \end{array}\right) = \left(\begin{array}{cc} a+qb & b \\ c+qd & d \end{array}\right)$$

 $\langle 1 \rangle$ 6. For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, if c and d are both nonzero, then there exists $N \in H$ such that the bottom row of MN has one entry the same as M and one entry with smaller absolute value.

PROOF: From $\langle 1 \rangle 4$ and $\langle 1 \rangle 5$ taking q = -1.

 $\langle 1 \rangle$ 7. For any $M \in \mathrm{SL}_2(\mathbb{Z})$, there exists $N \in H$ such that MN has a zero on the bottom row.

Proof: Apply $\langle 1 \rangle 6$ repeatedly.

 $\langle 1 \rangle 8$. Any matrix in $SL_2(\mathbb{Z})$ with a zero on the bottom row is in H.

$$\begin{array}{l} \langle 2 \rangle 1. \, \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \in H \\ \text{Proof: } \langle 1 \rangle 2 \\ \langle 2 \rangle 2. \, \left(\begin{array}{cc} -1 & b \\ 0 & -1 \end{array} \right) \in H \\ \text{Proof: It is } s^2 \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \text{ since } s^2 = -I. \\ \langle 2 \rangle 3. \, \left(\begin{array}{cc} a & 1 \\ -1 & 0 \end{array} \right) \in H \\ \text{Proof: It is } \left(\begin{array}{cc} 1 & -a \\ 0 & 1 \end{array} \right) s. \\ \langle 2 \rangle 4. \, \left(\begin{array}{cc} a & -1 \\ 1 & 0 \end{array} \right) \in H \\ \text{Proof: It is } s^2 \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) s. \end{array}$$

 $\langle 1 \rangle 9$. Every matrix in $\operatorname{SL}_2(\mathbb{Z})$ is in H.

10.4 p-groups

Definition 10.30 (p-group). Let p be a prime. A p-group is a finite group whose order is a power of p.

Chapter 11

Group Homomorphisms

Definition 11.1 (Homomorphism). Let G and H be groups. A (group) homomorphism $\phi: G \to H$ is a function such that, for all $x, y \in G$,

$$\phi(xy) = \phi(x)\phi(y) .$$

Proposition 11.2. Let G and H be groups with identities e_G and e_H . Let $\phi: G \to H$ be a group homomorphism. Then $\phi(e_G) = e_H$.

PROOF: Since $\phi(e_G) = \phi(e_G e_G) = \phi(e_G) \phi(e_G)$ and so $\phi(e_G) = e_H$ by Cancellation. \square

Proposition 11.3. Let $\phi: G \to H$ be a group homomorphism. For all $x \in G$ we have $\phi(x^{-1}) = \phi(x)^{-1}$.

PROOF: Since $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(e_G) = e_H$.

Proposition 11.4. Let G, H and K be groups. If $\phi: G \to H$ and $\psi: H \to K$ are homomorphisms then $\psi \circ \phi: G \to K$ is a homomorphism.

PROOF: For $x, y \in G$ we have $\psi(\phi(xy)) = \psi(\phi(x)\phi(y)) = \psi(\phi(x))\psi(\phi(y)) \ .$

Proposition 11.5. Let G be a group. Then $id_G : G \to G$ is a group homomorphism.

PROOF: For $x, y \in G$ we have $id_G(xy) = xy = id_G(x)id_G(y)$. \square

Proposition 11.6. Let $\phi: G \to H$ be a group homomorphism. Let $g \in G$ have finite order. Then $|\phi(g)|$ divides |g|.

PROOF: Since $\phi(g)^{|g|} = \phi(g^{|g|}) = e$. \square

Definition 11.7 (Category of Groups). Let **Grp** be the category of groups and group homomorphisms.

Example 11.8. The trivial group 1 is both initial and terminal in **Grp**.

Example 11.9. There are 49487365402 groups of order 1024 up to isomorphism.

Proposition 11.10. A group homomorphism $\phi: G \to H$ is an isomorphism in **Grp** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Assume: ϕ is bijective.

PROVE: ϕ^{-1} is a group homomorphism.

- $\langle 1 \rangle 2$. Let: $h, h' \in H$
- $\langle 1 \rangle 3. \ \phi(\phi^{-1}(hh')) = \phi(\phi^{-1}(h)\phi^{-1}(h'))$

PROOF: Both are equal to hh'.

$$\langle 1 \rangle 4. \ \phi^{-1}(hh') = \phi^{-1}(h)\phi^{-1}(h')$$

Corollary 11.10.1.

$$D_6 \cong C_3$$

Proof: The canonical homomorphism $D_6 \to C_3$ is bijective. \square

Corollary 11.10.2.

$$(\mathbb{R}, +) \cong (\{x \in \mathbb{R} : x > 0\}, \cdot)$$

PROOF: The function that maps x to e^x is a bijective homomorphism. \square

Proposition 11.11. The trivial group is the zero object in Grp.

PROOF: For any group G, the unique function $G \to \{e\}$ is a group homomorphism, and the only group homomorphism $\{e\} \to G$ maps e to e_G . \square

Proposition 11.12. For any groups G and H, the set $G \times H$ under (g,h)(g',h') = (gg',hh') is the product of G and H in \mathbf{Grp} .

Proof:

- $\langle 1 \rangle 1$. $G \times H$ is a group.
 - $\langle 2 \rangle 1$. The multiplication is associative.

PROOF: Since $(g_1, h_1)((g_2, h_2)(g_3, h_3)) = ((g_1, h_1)(g_2, h_2))(g_3, h_3) = (g_1g_2g_3, h_1h_2h_3).$

 $\langle 2 \rangle 2$. (e_G, e_H) is the identity.

PROOF: Since $(g, h)(e_G, e_H) = (e_G, e_H)(g, h) = (g, h)$.

 $\langle 2 \rangle 3$. The inverse of (g,h) is (g^{-1},h^{-1}) .

PROOF: Since $(g,h)(g^{-1},h^{-1})=(g^{-1},h^{-1})(g,h)=(e_G,e_H).$

 $\langle 1 \rangle 2$. $\pi_1 : G \times H \to G$ is a group homomorphism.

Proof: Immediate from definitions.

 $\langle 1 \rangle 3$. $\pi_2 : G \times H \to H$ is a group homomorphism.

Proof: Immediate from definitions.

 $\langle 1 \rangle 4$. For any group homomorphism $\phi : K \to G$ and $\psi : K \to H$, the function $\langle \phi, \psi \rangle : K \to G \times H$ where $\langle \phi, \psi \rangle (k) = (\phi(k), \psi(k))$ is a group homomorphism.

Proof:

$$\begin{split} \langle \phi, \psi \rangle (kk') &= (\phi(kk'), \psi(kk')) \\ &= (\phi(k)\phi(k'), \psi(k)\psi(k')) \\ &= (\phi(k), \psi(k))(\phi(k'), \psi(k')) \\ &= \langle \phi, \psi \rangle (k) \langle \phi, \psi \rangle (k') \end{split}$$

11.1 Subgroups

Definition 11.13 (Subgroup). Let (G, \cdot) and (H, *) be groups such that H is a subset of G. Then H is a subgroup of G iff the inclusion $i: H \hookrightarrow G$ is a group homomorphism.

Proposition 11.14. *If* (H, *) *is a subgroup of* (G, \cdot) *then* * *is the restriction of* \cdot *to* H.

PROOF: Given $x, y \in H$ we have $x * y = i(x * y) = i(x) \cdot i(y) = x \cdot y \ .$

Example 11.15. For any group G we have $\{e\}$ is a subgroup of G.

Proposition 11.16. Let G be a group. Let H be a subset of G. Then H is a subgroup of G iff H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$.

PROOF:

 $\langle 1 \rangle 1$. If H is a subgroup of G then H is nonempty.

PROOF: Since every group has an identity element and so is nonempty.

- $\langle 1 \rangle 2$. If H is a subgroup of G then, for all $x, y \in H$, we have $xy^{-1} \in H$. PROOF: Easy.
- $\langle 1 \rangle 3$. If H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$, then H is a subgroup of G.
 - $\langle 2 \rangle 1$. Assume: *H* is nonempty.
 - $\langle 2 \rangle 2$. Assume: $\forall x, y \in H.xy^{-1} \in H$
 - $\langle 2 \rangle 3. \ e \in H$

PROOF: Pick $x \in H$. We have $e = xx^{-1} \in H$.

 $\langle 2 \rangle 4. \ \forall x \in H.x^{-1} \in H$

PROOF: Given $x \in H$ we have $x^{-1} = ex^{-1} \in H$.

 $\langle 2 \rangle$ 5. H is closed under the restriction of \cdot

PROOF: Given $x, y \in H$ we have $xy = x(y^{-1})^{-1} \in H$.

 $\langle 2 \rangle 6$. H is a group under the restriction of \cdot

PROOF: Associativity is inherited from G and the existence of an identity element and inverses follows from $\langle 2 \rangle 3$ and $\langle 2 \rangle 4$.

 $\langle 2 \rangle 7$. The inclusion $H \hookrightarrow G$ is a group homomorphism.

PROOF: For $x, y \in H$ we have i(xy) = i(x)i(y) = xy.

Ш

Corollary 11.16.1. The intersection of a set of subgroups of G is a subgroup of G.

Corollary 11.16.2. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of H. Then $\phi^{-1}(K)$ is a subgroup of G.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \ \phi^{-1}(K) \ \text{is nonempty.} \\ \text{Proof: Since } e \in \phi^{-1}(K). \\ \langle 1 \rangle 2. \ \text{Let: } x,y \in \phi^{-1}(K) \\ \langle 1 \rangle 3. \ \phi(x),\phi(y) \in K \\ \langle 1 \rangle 4. \ \phi(x)\phi(y)^{-1} \in K \\ \langle 1 \rangle 5. \ \phi(xy^{-1}) \in K \\ \langle 1 \rangle 6. \ xy^{-1} \in \phi^{-1}(K) \\ \sqcap \end{array}
```

Corollary 11.16.3. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of G. Then $\phi(K)$ is a subgroup of H.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \ \ \mathrm{Let:} \ \ x,y \in \phi(K) \\ \langle 1 \rangle 2. \ \ \mathrm{Pick} \ \ a,b \in K \ \ \mathrm{such \ that} \ \ x = \phi(a) \ \ \mathrm{and} \ \ y = \phi(b) \\ \langle 1 \rangle 3. \ \ xy^{-1} = \phi(ab^{-1}) \\ \langle 1 \rangle 4. \ \ xy^{-1} \in \phi(K) \\ \sqcap \end{array}
```

Proposition 11.17. Let G be a subgroup of \mathbb{Z} . Then there exists $d \geq 0$ such that $G = d\mathbb{Z}$.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \  \, \text{Assume: w.l.o.g.} \  \, G \neq \{0\} \\ \  \, \text{Proof: Since } \{0\} = 0\mathbb{Z}. \\ \langle 1 \rangle 2. \  \, \text{Let: } d \text{ be the least positive element of } G. \\ \  \, \text{Prove: } \  \, G = d\mathbb{Z} \\ \  \, \text{Proof: If } n \in G \text{ then } -n \in G \text{ so } G \text{ must contain a positive element.} \\ \langle 1 \rangle 3. \  \, G \subseteq d\mathbb{Z} \\ \  \, \langle 2 \rangle 1. \  \, \text{Let: } n \in G \\ \  \, \langle 2 \rangle 2. \  \, \text{Let: } q \text{ and } r \text{ be the integers such that } n = qd + r \text{ and } 0 \leq r < d. \\ \  \, \langle 2 \rangle 3. \  \, r \in G \\ \  \, \text{Proof: Since } r = n - qd. \\ \  \, \langle 2 \rangle 4. \  \, r = 0 \\ \  \, \text{Proof: By minimality of } d. \\ \  \, \langle 2 \rangle 5. \  \, n = qd \in d\mathbb{Z} \\ \  \, \langle 1 \rangle 4. \  \, d\mathbb{Z} \subseteq G \\ \  \, \Box \end{array}
```

11.2. KERNEL 53

11.2Kernel

Definition 11.18 (Kernel). Let $\phi: G \to H$ be a group homomorphism. The kernel of ϕ is

$$\ker \phi = \{ g \in G : \phi(g) = e \} .$$

Proposition 11.19. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a subgroup of G.

Proof: Corollary 11.16.2.

Proposition 11.20. Let $\phi: G \to H$ be a group homomorphism. Then the inclusion $i : \ker \phi \hookrightarrow G$ is terminal in the category of pairs $(K, \alpha : K \to G)$ such that $\phi \circ \alpha = 0$.

Proof:

- $\langle 1 \rangle 1. \ \phi \circ i = 0$
- $\langle 1 \rangle 2$. For any group K and homomorphism $\alpha : K \to G$ such that $\phi \circ \alpha = 0$, there exists a unique homomorphism $\beta: K \to \ker \phi$ such that $i \circ \beta = \alpha$.

Proposition 11.21. Let $\phi: G \to H$ be a group homomorphism. Then the following are equivalent:

- 1. ϕ is monic.
- 2. $\ker \phi = \{e\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1$. $1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is monic.
 - $\langle 2 \rangle 2$. Let: $i : \ker \phi \hookrightarrow G$, $j : \{e\} \hookrightarrow \ker \phi \hookrightarrow G$ be the inclusions.
 - $\langle 2 \rangle 3. \ \phi \circ i = \phi \circ j$
 - $\langle 2 \rangle 4$. i = j
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\ker \phi = \{e\}$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3$. Assume: $\phi(x) = \phi(y)$

 - $\langle 2 \rangle 4. \quad \phi(xy^{-1}) = e$ $\langle 2 \rangle 5. \quad xy^{-1} \in \ker \phi$ $\langle 2 \rangle 6. \quad xy^{-1} = e$
- $\langle 2 \rangle 7$. x = y
- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

Proposition 11.22. A group homomorphism is an epimorphism if and only if it is surjective.

11.3 Inner Automorphisms

Proposition 11.23. Let G be a group and $g \in G$. The function $\gamma_g : G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism on G.

PROOF

 $\langle 1 \rangle 1$. γ_g is a homomorphism.

Proof:

$$\gamma_g(ab) = gabg^{-1}$$

$$= gag^{-1}gbg^{-1}$$

$$= \gamma_g(a)\gamma_g(b)$$

 $\langle 1 \rangle 2$. γ_g is injective.

PROOF: By Cancellation.

 $\langle 1 \rangle 3$. γ_q is surjective.

PROOF: Given $b \in G$, we have $\gamma_g(g^{-1}bg) = b$.

Definition 11.24 (Inner Automorphism). Let G be a group. An *inner automorphism* on G is a function of the form $\gamma_g(a) = gag^{-1}$ for some $g \in G$. We write Inn(G) for the set of inner automorphisms of G.

Proposition 11.25. Let G be a group. The function $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ that maps g to γ_g is a group homomorphism.

PROOF: Since $\gamma_{gh}(a) = ghah^{-1}g^{-1} = \gamma_g(\gamma_h(a))$. \square

Corollary 11.25.1. Inn(G) is a subgroup of $Aut_{Grp}(G)$.

11.4 Semidirect Products

Definition 11.26 (Semidirect Product). Let N and H be groups. Let $\theta: H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ be a homomorphism. The *semidirect product* $N \rtimes_{\theta} H$ is the group $N \times H$ under

$$(n_1, h_1)(n_2, h_2) = (n_1\theta(h_1)(n_2), h_1h_2)$$

If N and H are subgroups of a group G, we write $N \rtimes H$ for $N \rtimes_{\theta} H$ where $\theta(n)(h) = nhn^{-1}$.

We prove that this is a group.

Proof:

 $\langle 1 \rangle 1$. Associativity

$$(n_1, h_1)((n_2, h_2)(n_3, h_3)) = (n_1, h_1)(n_2\theta(h_2)(n_3), h_2h_3)$$

$$= (n_1\theta(h_1)(n_2\theta(h_2)(n_3)), h_1h_2h_3)$$

$$= (n_1\theta(h_1)(n_2)\theta(h_1h_2)(n_3), h_1h_2h_3)$$

$$= (n_1\theta(h_1)(n_2), h_1h_2)(n_3, h_3)$$

$$= ((n_1, h_1)(n_2, h_2))(n_3, h_3)$$

$$\langle 1 \rangle 2. \ (e_N, e_H)(n,h) = (n,h)$$
 PROOF:
$$(e_N, e_H)(n,h) = (e_N \theta(e_H)(n), e_H h)$$

$$= (n,h)$$

$$\langle 1 \rangle 3. \ (n,h)(e_N, e_H) = (n,h)$$
 PROOF:
$$(n,h)(e_N, e_H) = (n\theta(h)(e_N), he_H)$$

$$= (n,h)$$

$$\langle 1 \rangle 4. \ (n,h)(\theta(h^{-1})(n^{-1}), h^{-1}) = (e_N, e_H)$$
 PROOF:
$$(n,h)(n^{-1},h^{-1}) = (n\theta(h)(\theta(h^{-1})(n^{-1})), hh^{-1})$$

$$= (nn^{-1}, hh^{-1})$$

$$= (e_N, e_H)$$

$$\langle 1 \rangle 5. \ (\theta(h^{-1})(n^{-1}), h^{-1})(n, h) = (e_N, e_H)$$
PROOF:
$$(\theta(h^{-1})(n^{-1}), h^{-1})(n, h) = (\theta(h^{-1})(n^{-1})\theta(h^{-1})(n), h^{-1}h)$$

 $(\theta(h^{-1})(n^{-1}), h^{-1})(n, h) = (\theta(h^{-1})(n^{-1})\theta(h^{-1})(n), h^{-1}h)$ $= (e_N, e_H)$

Example 11.27. Let n > 0. Let D_{2n} be presented by $(a, b \mid a^n, b^2, (ab)^2)$. Define $\theta: C_2 \to \operatorname{Aut}_{\mathbf{Grp}}(C_n)$ by

$$\theta(1)(i) = n - i$$

Then $\phi: C_n \rtimes_{\theta} C_2 \cong D_{2n}$ with the isomorphism being given by

$$\phi(i,j) = a^i b^j$$
 $(0 \le i < n, 0 \le i < 2)$.

Proposition 11.28. The function $i: N \to N \rtimes_{\theta} H$ that maps n to (n, e_H) is a group monomorphism.

Proof:

$$\langle 1 \rangle 1. \ i(nn') = i(n)i(n')$$

PROOF:

$$i(n)i(n') = (n, e_H)(n', e_H)$$

= $(n\theta(e_H)(n'), e_He_H)$
= (nn', e_H)
= $i(nn')$

 $\langle 1 \rangle 2$. *i* is injective.

Proposition 11.29. The function $J: h \to N \rtimes_{\theta} H$ that maps h to (e_N, h) is a group monomorphism.

$$\langle 1 \rangle 1. \ j(hh') = j(h)j(h')$$

Proof:

$$j(h)j(h') = (e_N, h)(e_N, h')$$

$$= (e_N \theta(h)(e_N), hh')$$

$$= (e_N, hh')$$

$$= j(hh')$$

 $\langle 1 \rangle 2$. *i* is injective.

Proposition 11.30. The natural projection $N \rtimes_{\theta} H \to H$ is a surjective group homomorphism with kernel N.

Proof: Easy. \square

Proposition 11.31. Let N and H be groups and $\theta: H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ a homomorphism. Let $G = N \rtimes_{\theta} H$. Let $i: H \hookrightarrow G$ and $j: N \hookrightarrow G$ be the injections. Then θ is realised by conjugation in G. That is, for all $h \in H$ and $n \in N$ we have

$$j(\theta(h)(n)) = i(h)j(n)i(h)^{-1}$$

I.e.

$$j \circ \theta(h) = \gamma_{i(h)}$$
.

Proof:

$$i(h)j(n)i(h)^{-1} = (e_N, h)(n, e_H)(e_N, h)^{-1}$$

$$= (e_N, h)(n, e_H)(\theta(h^{-1})(e_N), h^{-1})$$

$$= (e_N, h)(n, e_H)(e_N, h^{-1})$$

$$= (\theta(h)(n), h)(e_N, h^{-1})$$

$$= (\theta(h)(n)\theta(h)(e_N), hh^{-1})$$

$$= (\theta(h)(n), e_H)$$

$$= j(\theta(h)(n))$$

Proposition 11.32. Let G be a group. Let N and H be subgroups of G with N normal. Assume $N \cap H = \{e\}$ and G = NH. Let $\gamma : H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ be conjugation. Then

$$G \cong N \rtimes_{\gamma} H$$

Proof:

 $\langle 1 \rangle 1.$ Let: $\phi: N \rtimes_{\gamma} H \to G$ be the homomorphism

$$\phi(n,h) = nh$$
.

$$\phi((n_1, h_1)(n_2, h_2)) = \phi(n_1\theta(h_1)(n_2), h_1h_2)$$

$$= n_1\theta(h_1)(n_2)h_1h_2$$

$$= n_1h_1n_2h_1^{-1}h_1h_2$$

$$= n_1h_1n_2h_2$$

$$= \phi(n_1, h_1)\phi(n_2, h_2)$$

```
\langle 1 \rangle 2. \ker \phi = \{e\}
\langle 1 \rangle 3. \phi is surjective.
   PROOF: Since G = NH.
```

Definition 11.33 (Internal Product). Let G be a group. Let N and H be subgroups of G. Then G is the *internal product* of N and H iff N is normal, $N \cap H = \{e\}$ and G = NH.

11.5 Direct Products

Definition 11.34 (Direct Product). The direct product of groups G and H is their product in **Grp** (which is the same as their product in **Cat**).

Proposition 11.35. $G \times H$ is the semidirect product $G \rtimes_{\theta} H$ where $\theta(g) = e$ for all $q \in G$.

Proof: Easy.

11.6 Free Groups

Proposition 11.36. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G, j) where G is a group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: W(A) be the set of words in the alphabet whose elements are the elements of A together with $\{a^{-1}: a \in A\}$.
- $\langle 1 \rangle 2$. Let: $r: W(A) \to W(A)$ be the function that, given a word w, removes the first pair of letters of the form aa^{-1} or $a^{-1}a$; if there is no such pair, then r(w) = w.
- $\langle 1 \rangle 3$. Let us say that a word w is a reduced word iff r(w) = w.
- $\langle 1 \rangle 4$. For any word w of length n, we have $r^{\lceil \frac{n}{2} \rceil}(w)$ is a reduced word.

PROOF: Since we cannot remove more than n/2 pairs of letters from w.

- $\langle 1 \rangle$ 5. Let: $R: W(A) \to W(A)$ be the function $R(w) = r^{\lceil \frac{n}{2} \rceil}(w)$, where n is the length of w.
- $\langle 1 \rangle 6$. Let: F(A) be the set of reduced words.
- $\langle 1 \rangle 7$. Define $\cdot : F(A)^2 \to F(A)$ by $w \cdot w' = R(ww')$
- $\langle 1 \rangle 8$. · is associative.

PROOF: Both $w_1 \cdot (w_2 \cdot w_3)$ and $(w_1 \cdot w_2) \cdot w_3$ are equal to $R(w_1 w_2 w_3)$.

- $\langle 1 \rangle 9$. The empty word is the identity element in F(A)
- $\langle 1 \rangle 10$. The inverse of $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ is $a_n^{\mp 1} \cdots a_2^{\mp 1} a_1^{\mp 1}$. $\langle 1 \rangle 11$. Let: $j: A \to F(A)$ be the function that maps a to the word a of length
- $\langle 1 \rangle 12$. Let: G be any group and $k: A \to G$ any function.

 $\langle 1 \rangle 13$. The only morphism $f: (F(A), j) \to (G, k)$ in \mathcal{F}^A is $f(a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}) = k(a_1)^{\pm 1} k(a_2)^{\pm 1} \cdots k(a_n)^{\pm 1}$.

Definition 11.37 (Free Group). For any set A, the *free group* on A is the initial object (F(A), i) in \mathcal{F}^A .

Proposition 11.38. $i: A \to F(A)$ is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in A$
- $\langle 1 \rangle 2$. Assume: $x \neq y$ Prove: $i(x) \neq i(y)$
- $\langle 1 \rangle 3$. Let: $f: A \to C_2$ be the function that maps x to 0 and all other elements of A to 1.
- $\langle 1 \rangle 4$. Let: $\phi : F(A) \to C_2$ be the group homomorphism such that $f = \phi \circ i$.
- $\langle 1 \rangle 5. \ f(x) \neq f(y)$
- $\langle 1 \rangle 6. \ \phi(i(x)) \neq \phi(i(y))$
- $\langle 1 \rangle 7. \ i(x) \neq i(y)$

Proposition 11.39.

$$F(0) \cong \{e\}$$

PROOF: For any set A, the unique group homomorphism $\{e\} \to A$ makes the following diagram commute.

Proposition 11.40. The free group on 1 is \mathbb{Z} with the injection mapping 0 to 1.

PROOF: Given any group G and function $a:1\to G$, the required unique homomorphism $\phi:\mathbb{Z}\to G$ is defined by $\phi(n)=a(0)^n$. \square

Proposition 11.41. For any sets A and B, we have that F(A + B) is the coproduct of F(A) and F(B) in **Grp**.

 $\langle 1 \rangle 1$. Let: $i_A: A \to F(A), i_B: B \to F(B), j: A+B \to F(A+B)$ be the canonical injections.

 $\langle 1 \rangle 2$. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.

 $\langle 1 \rangle 3.$ Let: G be any group and $f:F(A) \to G, \ g:F(B) \to G$ any group homomorphisms.

 $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.

 $\langle 1 \rangle 5.$ Let: $k: F(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h.$

 $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.

 $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Definition 11.42 (Subgroup Generated by a Group). Let G be a group and A a subset of G. Let $\phi: F(A) \to G$ be the unique group homomorphism such that $\phi(a) = a$ for all $a \in A$. The subgroup *generated* by A is

$$\langle A \rangle := \operatorname{im} \phi$$

$$F(A) \xrightarrow{\phi} G$$

Proposition 11.43. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the set of all elements of the form $a_1^{\pm 1}a_2^{\pm 1}\cdots a_n^{\pm 1}$ (where $n \geq 0$) such that $a_1,\ldots,a_n \in A$.

PROOF: Immediate from definitions. \Box

Corollary 11.43.1. Let G be a group and $g \in G$. Then

$$\langle g \rangle = \{g^n : n \in \mathbb{Z}\} .$$

Proposition 11.44. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the intersection of all the subgroups of G that include A.

Proof: Easy. \square

Definition 11.45 (Finitely Generated). Let G be a group. Then G is *finitely generated* iff there exists a finite subset A of G such that $G = \langle A \rangle$.

Proposition 11.46. Every subgroup of a finitely generated free group is free.

PROOF: TODO.

Proposition 11.47. F(2) includes subgroups isomorphic to the free group on arbitrarily many generators.

PROOF: TODO

Proposition 11.48.

$$[F(2), F(2)] \cong F(\mathbb{Z})$$

PROOF: TODO

11.7 Normal Subgroups

Definition 11.49 (Normal Subgroup). A subgroup N of G is normal iff, for all $g \in G$ and $n \in N$, we have $gng^{-1} \in N$.

Example 11.50. Every subgroup of Q_8 is normal.

Proposition 11.51. Let G be a group and N a subgroup of G. Then the following are equivalent.

1. N is normal.

$$2. \ \forall g \in G.gNg^{-1} \subseteq N$$

3.
$$\forall g \in G.gNg^{-1} = N$$

4.
$$\forall g \in G.gN \subseteq Ng$$

5.
$$\forall g \in G.gN = Ng$$

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If 2 holds then we have $gNg^{-1} \subseteq N$ and $g^{-1}Ng \subseteq N$ hence $N = gNg^{-1}$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

Proof: Trivial.

 $\langle 1 \rangle 4$. $2 \Leftrightarrow 4$

Proof: Easy.

 $\langle 1 \rangle 5$. $3 \Leftrightarrow 5$

Proof: Easy.

П

Proposition 11.52. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a normal subgroup of G.

PROOF: Given $g \in G$ and $n \in \ker \phi$ we have

$$\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1}$$
$$= \phi(g)\phi(g)^{-1}$$
$$= e$$

and so $gng^{-1} \in \ker \phi$. \square

Proposition 11.53. If H and K are normal subgroups of a group G then HK is normal in G.

PROOF: For $g \in G$, $h \in H$ and $k \in K$ we have $ghkg^{-1} = (ghg^{-1})(gkg^{-1}) \in HK$. \sqcap

11.8 Quotient Groups

Definition 11.54. Let G be a group. Let \sim be an equivalence relation on G. Then we say that \sim is *compatible* with the group operation on G iff, for all $a, a', g \in G$, if $a \sim a'$ then $ga \sim ga'$ and $ag \sim a'g$.

Proposition 11.55. Let G be a group. Let \sim be an equivalence relation on G. Then there exists an operation $\cdot: (G/\sim)^2 \to G/\sin$ such that

$$\forall a, b \in G.[a][b] = [ab]$$

iff \sim is compatible with the group operation on G. In this case, G/\sim is a group under \cdot and the canonical function $\pi: G \to G/\sim$ is a group homomorphism, and is universal with respect to group homomorphisms $\phi: G \to G'$ such that if $a \sim a'$ then $\phi(a) = \phi(a')$.

Proof: Easy.

Definition 11.56 (Quotient Group). Let G be a group. Let \sim be an equivalence relation on G that is compatible with the group operation on G. Then G/\sim is the quotient group of G by \sim under [a][b]=[ab].

Proposition 11.57. Let G be a group and H a subgroup of G. Then H is normal if and only if there exists a group K and homomorphism $\phi: G \to K$ such that $H = \ker \phi$.

PROOF: One direction is given by Proposition 11.52. For the other direction, take K=G/H and ϕ to be the canonical map $G\to G/H$. \square

Definition 11.58 (Modular Group). The modular group $PSL_2(\mathbb{Z})$ is $SL_2(\mathbb{Z})/\{I, -I\}$.

Proposition 11.59.
$$\operatorname{PSL}_2(\mathbb{Z})$$
 is generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

PROOF: By Example 10.29.

Proposition 11.60 (Roger Alperin). $PSL_2(\mathbb{Z})$ is presented by $(x, y|x^2, y^3)$.

$$\langle 1 \rangle 1$$
. Let: $x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
 $\langle 1 \rangle 2$. Let: $y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$

 $\langle 1 \rangle 3$. Define an action of $\mathrm{PSL}_2(\mathbb{Z})$ on $\mathbb{R} - \mathbb{Q}$ by

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) r = \frac{ar+b}{cr+d} \ .$$

- $\langle 2 \rangle 1$. Given $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}_2(\mathbb{Z})$ and r irrational we have $\frac{ar+b}{cr+d}$ is irrational.
 - $\langle 3 \rangle 1$. Assume: for a contradiction $\frac{ar+b}{cr+d} = \frac{p}{q}$ where p and q are integers with q > 0.
 - $\langle 3 \rangle 2$. aqr + bq = cpr + dp
 - $\langle 3 \rangle 3$. (aq cp)r = dp bq
 - $\langle 3 \rangle 4$. aq = cp = dp bq = 0
 - $\langle 3 \rangle 5$. adq cdp = 0
 - $\langle 3 \rangle 6$. cdp cbq = 0
 - $\langle 3 \rangle 7$. (ad cb)q = 0

PROOF: Since ad - cb = 1.

- $\langle 3 \rangle 8. \ q = 0$
- $\langle 3 \rangle 9$. Q.E.D.

PROOF: This contradicts $\langle 3 \rangle 1$.

 $\langle 2 \rangle 2$. -Ir = r

PROOF: Since $-Ir = \frac{-r}{-1} = r$. $\langle 2 \rangle 3$. Given $A, B \in \mathrm{PSL}_2(\mathbb{Z})$ we have A(Br) = (AB)r.

Proof:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{bmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} r \end{bmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \frac{er + f}{gr + h}$$

$$= \frac{a \frac{er + f}{gr + h} + b}{c \frac{er + f}{gr + h} + d}$$

$$= \frac{a(er + f) + b(gr + h)}{c(er + f) + d(gr + h)}$$

$$= \frac{(ae + bg)r + (af + bh)}{(ce + dg)r + (cf + dh)}$$

$$= \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} r$$

$$= \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{bmatrix} r$$

 $\langle 1 \rangle 4$.

$$yr = 1 - \frac{1}{r}$$

 $\langle 1 \rangle 5$.

$$y^{-1}r = \frac{1}{1 - r}$$

PROOF: Since $y^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$

 $\langle 1 \rangle 6$.

$$yxr = 1 + r$$

63

PROOF: Since
$$yx = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$$
.

 $\langle 1 \rangle 7$.

$$y^{-1}xr = \frac{r}{1+r}$$

PROOF: Since $y^{-1}x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

- $\langle 1 \rangle 8$. If r > -1 is positive then yxr is positive.
- $\langle 1 \rangle 9$. If r is positive then $y^{-1}xr$ is positive.
- $\langle 1 \rangle 10$. If r < -1 then $y^{-1}xr$ is positive.
- $\langle 1 \rangle 11$. If r is negative then yr is positive.
- $\langle 1 \rangle 12$. If r is negative then $y^{-1}r$ is positive.
- $\langle 1 \rangle 13$. No product of the form

$$(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)$$

with one or more factors can equal the identity.

PROOF: If the last factor is (yx), then the product maps numbers in (-1,0) to positive numbers. If the last factor is $(y^{-1}x)$, then the product maps numbers <-1 to positive many $\langle 1 \rangle 14$. No product of the form $(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)y^{\pm 1}$ < -1 to positive numbers.

$$(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)y^{\pm 1}$$

with one or more factors can equal the identity.

PROOF: The product maps negative numbers to positive numbers.

PROOF: The product maps negative number
$$\langle 1 \rangle 15$$
. PSL₂(\mathbb{Z}) is presented by $(x, y|x^2, y^3)$.

Corollary 11.60.1. $PSL_2(\mathbb{Z})$ is the coproduct of C_2 and C_3 in Grp.

Theorem 11.61. Every group homomorphism $\phi: G \to H$ may be decomposed as

$$G \longrightarrow G/\ker \phi \stackrel{\cong}{\longrightarrow} \operatorname{im} \phi \longrightarrow H$$

Proof: Easy.

Corollary 11.61.1 (First Isomorphism Theorem). Let $\phi: G \to H$ be a surjective group homomorphism. Then $H \cong G/\ker \phi$.

Proposition 11.62. Let H_1 be a normal subgroup of G_1 and H_2 a normal subgroup of G_2 . Then $H_1 \times H_2$ is a normal subgroup of $G_1 \times G_2$, and

$$\frac{G_1 \times G_2}{H_1 \times H_2} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2} .$$

PROOF: $\pi \times \pi : G_1 \times G_2 \twoheadrightarrow G_1/H_1 \times G_2/H_2$ is a surjective homomorphism with kernel $H_1 \times H_2$. \square

Example 11.63.

$$\mathbb{R}/\mathbb{Z} \cong S^1$$

PROOF: Map a real number r to $(\cos r, \sin r)$. The result is a surjective group homomorphism with kernel \mathbb{Z} . \sqcup

Proposition 11.64. Let H be a normal subgroup of a group G. For every subgroup K of G that includes H, we have H is a normal subgroup of K, and K/H is a subgroup of G/H. The mapping

 $u: \{subgroups \ of \ G \ including \ H\} \rightarrow \{subgroups \ of \ G/H\}$

with u(K) = K/H is a poset isomorphism.

Proof:

- $\langle 1 \rangle 1$. If K is a subgroup of G that includes H then H is normal in K.
- $\langle 1 \rangle 2$. If K is a subgroup of G that includes H then K/H is a subgroup of G/H.
- $\langle 1 \rangle 3$. If $H \subseteq K_1 \subseteq K_2$ then $K_1/H \subseteq K_2/H$.
- $\langle 1 \rangle 4$. If $K_1/H = K_2/H$ then $K_1 = K_2$
 - $\langle 2 \rangle 1$. Assume: $K_1/H = K_2/H$
 - $\langle 2 \rangle 2$. $K_1 \subseteq K_2$
 - $\langle 3 \rangle 1$. Let: $k \in K_1$
 - $\langle 3 \rangle 2. \ kH \in K_2/H$
 - $\langle 3 \rangle 3$. Pick $k' \in K_2$ such that kH = k'H
 - $\langle 3 \rangle 4. \ kk'^{-1} \in H$
 - $\langle 3 \rangle 5. k k'^{-1} \in K_2$
 - $\langle 3 \rangle 6. \ k \in K_2$
 - $\langle 2 \rangle 3. \ K_2 \subseteq K_1$

PROOF: Similar.

- $\langle 1 \rangle$ 5. For any subgroup L of G/H, there exists a subgroup K of G that includes H such that L = K/H.
 - $\langle 2 \rangle 1$. Let: L be a subgroup of G/H.
 - $\langle 2 \rangle 2$. Let: $K = \{ k \in G : kH \in L \}$
 - $\langle 2 \rangle 3$. K is a subgroup of G.

PROOF: Given $k, k' \in K$ we have $kH, k'H \in L$ hence $k{k'}^{-1}H \in L$ and so $k{k'}^{-1} \in K$.

 $\langle 2 \rangle 4. \ H \subseteq K$

PROOF: For all $h \in H$ we have $hH = H \in L$.

 $\langle 2 \rangle 5$. L = K/H

Proof: By definition.

Proposition 11.65 (Third Isomorphism Theorem). Let H be a normal subgroup of a group G. Let N be a subgroup of G that includes H. Then N/H is normal in G/H if and only if N is normal in G, in which case

$$\frac{G/H}{N/H}\cong \frac{G}{N}$$

- $\langle 1 \rangle 1$. If N/H is normal in G/H then N is normal in G.
 - $\langle 2 \rangle 1$. Assume: N/H is normal in G/H.
 - $\langle 2 \rangle 2$. Let: $g \in G$ and $n \in N$.

11.9. COSETS 65

```
\langle 2 \rangle 3. \ gng^{-1}H \in N/H
```

- $\langle 2 \rangle 4$. PICK $n' \in N$ such that $gng^{-1}H = n'H$
- $\langle 2 \rangle 5$. $gng^{-1}n'^{-1} \in H$
- $\langle 2 \rangle 6. \ gng^{-1}n'^{-1} \in N$
- $\langle 2 \rangle 7. \ gng^{-1} \in N$
- $\langle 1 \rangle 2$. If N is normal in G then N/H is normal in G/H and $(G/H)/(N/H) \cong G/N$.
 - $\langle 2 \rangle 1$. Assume: N is normal in G.
 - $\langle 2 \rangle 2$. Let: $\phi: G/H \to G/N$ be the homomorphism $\phi(gH) = gN$
 - $\langle 3 \rangle 1$. If gH = g'H then gN = g'N

PROOF: If $gg'^{-1} \in H$ then $gg'^{-1} \in N$.

 $\langle 3 \rangle 2. \ \phi((gH)(g'H)) = \phi(gH)\phi(g'H)$

PROOF: Both are gg'N. $\langle 2 \rangle 3$. ϕ is surjective.

- $\langle 2 \rangle 4$. ker $\phi = N/H$
- $\langle 2 \rangle 5. \ (G/H)/(N/H) \cong G/N$

PROOF: By the First Isomorphism Theorem.

Proposition 11.66 (Second Isomorphism Theorem). Let H and K be subgroups of a group G. Assume that H is normal in G. Then:

- 1. HK is a subgroup of G, and H is normal in HK.
- 2. $H \cap K$ is normal in K, and

$$\frac{HK}{H} \cong \frac{K}{H \cap K} \ .$$

Proof:

 $\langle 1 \rangle 1$. HK is a subgroup of G.

PROOF: Since $hkh'k' = hh'(h'^{-1}kh')k' \in HK$.

- $\langle 1 \rangle 2$. H is normal in HK.
- $\langle 1 \rangle 3$. $H \cap K$ is normal in K and $HK/H \cong K/(H \cap K)$

PROOF: The function that maps k to kH is a surjective homomorphism K woheadrightarrow HK/H with kernel $H \cap K$. Surjectivity follows because $hkH = hkh^{-1}H$.

See also Proposition 11.81 for a result that holds even if H is not normal.

11.9 Cosets

Proposition 11.67. Let G be a group. Let \sim be an equivalence relation on G such that, for all $a, b, g \in G$, if $a \sim b$ then $ga \sim gb$. Let $H = \{h \in G : h \sim e\}$. Then H is a subgroup of G and, for all $a, b \in G$, we have

$$a \sim b \Leftrightarrow a^{-1}b \in H \Leftrightarrow aH = bH$$
.

```
Proof:
```

- $\langle 1 \rangle 1. \ e \in H$
- $\langle 1 \rangle 2$. For all $x, y \in H$ we have $xy^{-1} \in H$.
 - $\langle 2 \rangle 1$. Assume: $x \sim e$ and $y \sim e$.
 - $\langle 2 \rangle 2$. $e \sim y^{-1}$

PROOF: Since $yy^{-1} \sim ey^{-1}$.

 $\langle 2 \rangle 3. \ xy^{-1} \sim e$

PROOF: Since $xy^{-1} \sim ey^{-1} \sim e$.

 $\langle 1 \rangle 3$. If $a \sim b$ then $a^{-1}b \in H$.

PROOF: If $a \sim b$ then $a^{-1}b \sim a^{-1}a = e$.

- $\langle 1 \rangle 4$. If $a^{-1}b \in H$ then aH = bH.
 - $\langle 2 \rangle 1$. Assume: $a^{-1}b \in H$
 - $\langle 2 \rangle 2$. $bH \subseteq aH$

PROOF: For any $h \in H$ we have $bh = aa^{-1}bh \in aH$.

 $\langle 2 \rangle 3. \ aH \subseteq bH$

PROOF: Similar since $b^{-1}a \in H$.

- $\langle 1 \rangle 5$. If aH = bH then $a \sim b$.
 - $\langle 2 \rangle 1$. Assume: aH = bH
 - $\langle 2 \rangle 2$. PICK $h \in H$ such that a = bh.
 - $\langle 2 \rangle 3. \ b^{-1}a = h$
 - $\langle 2 \rangle 4. \ b^{-1}a \in H$
 - $\langle 2 \rangle 5. \ b^{-1}a \sim e$
 - $\langle 2 \rangle 6$. $a \sim b$

PROOF: $a = bb^{-1}a \sim be = b$.

П

Definition 11.68 (Coset). Let G be a group and H a subgroup of G. A *left coset* of H is a set of the form aH for $a \in G$. A *right coset* of H is a set of the form Ha for some $a \in G$.

We write G/H for the set of all left cosets of H, and $G\backslash H$ for the set of all right cosets of H.

Proposition 11.69.

$$G/H \cong G \backslash H$$

PROOF: The function that maps aH to Ha^{-1} is a bijection. \square

Proposition 11.70. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $a^{-1}b \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a,b,g \in G$, if $a \sim b$, then $ga \sim gb$. The equivalence class of a is aH.

PROOF

- $\langle 1 \rangle 1$. For any subgroup H, we have \sim_H is an equivalence relation on G.
 - $\langle 2 \rangle 1$. \sim is reflexive.

PROOF: For any $a \in G$ we have $a^{-1}a = e \in H$.

 $\langle 2 \rangle 2$. \sim is symmetric.

PROOF: If $a^{-1}b \in H$ then $b^{-1}a \in H$.

11.9. COSETS 67

 $\langle 2 \rangle 3$. \sim is transitive.

PROOF: If $a^{-1}b \in H$ and $b^{-1}c \in H$ then $a^{-1}c = (a^{-1}b)(b^{-1}c) \in H$.

 $\langle 1 \rangle 2$. If $a \sim_H b$ then $ga \sim_H gb$.

PROOF: If $a^{-1}b \in H$ then $(ga)^{-1}(gb) = a^{-1}g^{-1}gb = a^{-1}b \in H$.

 $\langle 1 \rangle 3$. For any equivalence relation \sim on G such that, whenever $a \sim b$, then $ga \sim gb$, there exists a subgroup H such that $\sim = \sim_H$.

Proof: Proposition 11.67.

 $\langle 1 \rangle 4$. The \sim_H -equivalence class of a is aH.

Proof:

$$\begin{split} a \sim b &\Leftrightarrow a^{-1}b \in H \\ &\Leftrightarrow \exists h \in H.a^{-1}b = h \\ &\Leftrightarrow \exists h \in H.b = aH \\ &\Leftrightarrow b \in aH \end{split}$$

Proposition 11.71. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $ab^{-1} \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a, b, g \in G$, if $a \sim b$, then $aq \sim bq$. The equivalence class of a is Ha.

Proof: Similar.

Proposition 11.72. Let G be a group and H be a subgroup of G. Define \sim_L and \sim_R on G by:

$$a \sim_L b \Leftrightarrow a^{-1}b \in H, \qquad a \sim_R b \Leftrightarrow ab^{-1} \in H.$$

Then $\sim_L = \sim_R$ if and only if H is normal.

Proof:

- $\langle 1 \rangle 1$. If $\sim_L = \sim_R$ then H is normal.
 - $\langle 2 \rangle 1$. Assume: $\sim_L = \sim_R$
 - $\langle 2 \rangle 2$. Let: $h \in H$ and $g \in G$
 - $\langle 2 \rangle 3. \ g \sim_L gh^{-1}$
 - $\langle 2 \rangle 4$. $g \sim_R gh^{-1}h$
 - $\langle 2 \rangle 5. \ ghg^{-1} \in H$
- $\langle 1 \rangle 2$. If H is normal then $\sim_L = \sim_R$.
 - $\langle 2 \rangle 1$. Assume: *H* is normal.
 - $\langle 2 \rangle 2$. If $a \sim_L b$ then $a \sim_R b$.
 - $\langle 3 \rangle 1$. Assume: $a \sim_L b$
 - $\langle 3 \rangle 2. \ a^{-1}b \in H$
 - $\langle 3 \rangle 3. \ aa^{-1}ba^{-1} \in H$
 - $\langle 3 \rangle 4. \ ba^{-1} \in H$
 - $\langle 3 \rangle 5$. $a \sim_R b$
 - $\langle 2 \rangle 3$. If $a \sim_R b$ then $a \sim_L b$.

Proof: Similar.

Corollary 11.72.1. Let G be a group and H be a normal subgroup of G. Define \sim on G by $a \sim b$ iff $a^{-1}b \in H$. Then G/\sim is a group under [a][b]=[ab].

Definition 11.73 (Quotient Group). Let G be a group and H be a normal subgroup of G. The quotient group G/H is G/\sim where $a\sim b$ iff $a^{-1}b\in H$, under [a][b]=[ab] or (aH)(bH)=abH.

Corollary 11.73.1. Let H be a normal subgroup of a group G. For every group homomorphism $\phi: G \to G'$ such that $H \subseteq \ker \phi$, there exists a unique group homomorphism $\overline{\phi}: G/H \to G'$ such that the following diagram commutes.

Proposition 11.74. $\mathbb{Z}/n\mathbb{Z}$ has exactly n elements.

PROOF: Every integer is congruent to one of $0, 1, \ldots, n-1$ by the division algorithm, and no two of them are conguent to one another, since if $0 \le i < j < n$ then 0 < j - i < n. \square

Proposition 11.75. Let m and n be integers with n > 0. The order of m in $\mathbb{Z}/n\mathbb{Z}$ is $\frac{n}{\gcd(m,n)}$.

PROOF: By Proposition 10.19 since the order of 1 is n. \square

Proposition 11.76. The integer m generates $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(m, n) = 1.

Proof: By Proposition 11.75. \square

Corollary 11.76.1. If p is prime then every non-zero element in $\mathbb{Z}/p\mathbb{Z}$ is a generator.

Proposition 11.77.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\cong S_3$$

PROOF: Every permutation of $\{(1,0),(0,1),(1,1)\}$ gives an automorphism of $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. \square

Example 11.78. Not all monomorphisms split in Grp.

Define $\phi: \mathbb{Z}/3\mathbb{Z} \to S_3$ by

$$\phi(0) = id_3, \qquad \phi(1) = (1\ 3\ 2), \qquad \phi(2) = (1\ 2\ 3).$$

Then ϕ is monic but has no retraction.

For if $r: S_3 \to \mathbb{Z}/3\mathbb{Z}$ is a retraction, then we would have

$$r(1\ 2) + r(2\ 3) = 1,$$
 $r(2\ 3) + r(1\ 2) = 2$

which is impossible.

Proposition 11.79. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to gh is a bijection $H \cong gH$.

PROOF: By Cancellation. \square

Proposition 11.80. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to hg is a bijection $H \cong Hg$.

PROOF: By Cancellation. \square

Proposition 11.81. Let H and K be finite subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|} .$$

Proof:

 $\langle 1 \rangle 1$. Let: $f : \{ hK : h \in H \} \to H/(H \cap K)$ be the function $f(hK) = h(H \cap K)$ Proof: This is well-defined because if hK = h'K then $h^{-1}h' \in H \cap K$ so $h(H \cap K) = h'(H \cap K)$.

 $\langle 1 \rangle 2$. f is injective.

PROOF: If $h(H \cap K) = h'(H \cap K)$ then hK = h'K.

 $\langle 1 \rangle 3$. f is surjective.

PROOF: Clear.

 $\langle 1 \rangle 4$.

$$\frac{|HK|}{|K|} = \frac{|H|}{|H \cap K|}$$

П

11.10 Congruence

Definition 11.82 (Congruence). Given integers a, b, n with n positive, we say a is congruent to b modulo n, and write $a \equiv b \pmod{n}$, iff $a + n\mathbb{Z} = b + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$.

Proposition 11.83. Given integers a, b, n with n positive, we have $a \equiv b \pmod{n}$ iff $n \mid a - b$.

Proof: By Proposition 11.67. \square

Proposition 11.84. *If* $a \equiv a' \mod n$ *and* $b \equiv b' \mod n$ *then* $a+b \equiv a'+b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid (a' + b') - (a + b)$. \square

Proposition 11.85. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $ab \equiv a'b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid a'b' - ab = a'(b' - b) + (a' - a)b$. \square

11.11 Cyclic Groups

Definition 11.86 (Cyclic Group). The *cyclic* groups are \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for positive integers n.

Proposition 11.87. If m and n are positive integers with gcd(m,n) = 1 then $C_{mn} \cong C_m \times C_n$.

PROOF: The function that maps x to $(x \mod m, x \mod n)$ is an isomorphism. \square

Proposition 11.88. Let G be a group and $g \in G$. Then $\langle g \rangle$ is cyclic.

PROOF: If g has finite order then $\langle g \rangle \cong C_{|g|}$, otherwise $\langle g \rangle \cong \mathbb{Z}$. \square

Proposition 11.89. Every finitely generated subgroup of \mathbb{Q} is cyclic.

Proof:

- $\langle 1 \rangle 1$. Let: $G = \langle a_1/b, \dots, a_n/b \rangle$ where a_1, \dots, a_n, b are integers with b > 0
- $\langle 1 \rangle 2$. Let: $a = \gcd(a_1, \ldots, a_n)$
- $\langle 1 \rangle 3. \ G = \langle a/b \rangle$

Corollary 11.89.1. \mathbb{Q} is not finitely generated.

Proposition 11.90. Let n > 0. Let G be a subgroup of $\mathbb{Z}/n\mathbb{Z}$. Then there exists d such that $d \mid n$ and $G = \langle d \rangle$.

Proof:

- $\langle 1 \rangle 1$. Let: $\pi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the canonical projection.
- $\langle 1 \rangle 2$. Let: $G' = \pi^{-1}(G)$
- $\langle 1 \rangle 3$. G' is a cyclic subgroup of \mathbb{Z} .
- $\langle 1 \rangle 4$. Pick $d \in \mathbb{Z}$ such that d > 0 and $G' = \langle d \rangle$.
- $\langle 1 \rangle 5$. $G = \langle d \rangle$
- $\langle 1 \rangle 6. \ n \in G'$
- $\langle 1 \rangle 7. \ d \mid n$

11.12 Commutator Subgroup

Definition 11.91 (Commutator). Let G be a group and $g, h \in G$. The *commutator* of g and h is

$$[g,h] = ghg^{-1}h^{-1}$$
 .

Definition 11.92 (Commutator Subgroup). Let G be a group. The *commutator subgroup*, denoted [G, G] or G', is the subgroup generated by the elements of the form $aba^{-1}b^{-1}$.

We write $G^{(i)}$ for the result of taking the commutator subgroup i times starting with G.

Lemma 11.93. Let $\phi: G_1 \to G_2$ be a group homomorphism. Then, for all $g, h \in G_1$, we have

$$\phi([g,h]) = [\phi(g), \phi(h)]$$

and so $\phi(G_1) \subseteq G_2'$.

Proof: Easy.

Lemma 11.94. Let N and H be normal subgroups of a group G. Then $[N, H] \subseteq N \cap H$.

Proof:

 $\langle 1 \rangle 1$. Let: $n \in N$ and $h \in H$

PROVE: $nhn^{-1}h^{-1} \in N \cap H$

 $\langle 1 \rangle 2$. $nhn^{-1} \in H$

PROOF: Since H is normal.

 $\langle 1 \rangle 3. \ nhn^{-1}h^{-1} \in H$

 $(1)^4$. $hn^{-1}h^{-1} \in N$

PROOF: Since N is normal.

 $\langle 1 \rangle 5. \ nhn^{-1}h^{-1} \in N$

 $\langle 1 \rangle 6. \ nhn^{-1}h^{-1} \in N \cap H$

Corollary 11.94.1. Let N and H be normal subgroups of G. If $N \cap H = \{e\}$, then every element in N commutes with every element in H.

Proposition 11.95. Let N and H be normal subgroups of G. If $N \cap H = \{e\}$ then $NH \cong N \times H$.

Proof: From Proposition 11.32. \square

11.13 Presentations

Definition 11.96 (Presentation). A presentation of a group G is a pair (A, R) where A is a set and $R \subseteq F(A)$ is a set of words such that

$$G \cong F(A)/N(R)$$

where N(R) is the smallest normal subgroup of F(A) that includes R.

Example 11.97. • The free group on a set A is presented by (A, \emptyset) .

- S_3 is presented by $(x, y|x^2, y^3, xyxy)$.
- $(a, b \mid a^2, b^2, (ab)^n)$ is a presentation of D_{2n} .
- $(x,y \mid x^2y^{-2}, y^4, xyx^{-1}y)$ is a presentation of Q_8 .

Proposition 11.98 (Word Problem). Let (A, R) be a presentation of the group G. Let $w_1, w_2 \in F(A)$ be two words. Then it is undecidable in general if $w_1N(R) = w_2N(R)$ in G.

Definition 11.99 (Finitely Presented). A group is *finitely presented* iff it has a presentation (A, R) where both A and R are finite.

Proposition 11.100. Let (A|R) be a presentation of G and (A'|R') a presentation of H. Assume w.l.o.g. A and A' are disjoint. Then the group G*G' presented by $(A \cup A'|R \cup R')$ is the coproduct of G and G' in Grp.

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G * G'$ and $\kappa_2 : G' \to G * G'$ be the unique homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 2$. Let: $\phi: G \to H$ and $\psi: G' \to H$ be any homomorphisms.
- $\langle 1 \rangle 3$. Let: $[\phi, \psi] : F(A \cup A') \to H$ be the unique homomorphism such that ...
- $\langle 1 \rangle 4$. $R \cup R' \subseteq \ker[\phi, \psi]$
- $\langle 1 \rangle 5. \ [\phi,\psi]$ factors uniquely through the morphism $F(A \cup A') \to G * G'$ \Box

11.14 Index of a Subgroup

Definition 11.101 (Index). Let G be a group and H a subgroup of G. The *index* of H in G, denoted |G:H|, is the number of left cosets of H in G if this is finite, otherwise ∞ .

Theorem 11.102 (Lagrange's Theorem). Let G be a finite group and H a subgroup of G. Then

$$|G| = |G:H||H| .$$

PROOF: G/H is a partition of G into |G:H| subsets, each of size |H|. \square

Corollary 11.102.1. For p a prime number, the only group of order p is C_p .

PROOF: Let G be a group of order p and $g \in G$ with $g \neq e$. Then $|\langle g \rangle|$ divides p and is not 1, hence is p, that is, $G = \langle g \rangle$. \square

Theorem 11.103 (Cauchy's Theorem). Let G be a finite group. If p is prime and $p \mid |G|$ then the number of cyclic subgroups of order p is congruent to 1 modulo p. In particular, there exists an element of order p.

$$\langle 1 \rangle 1$$
. Let: $S = \{(a_1, a_2, \dots, a_p) \in G^p : a_1 a_2 \cdots a_p = e\}$
 $\langle 1 \rangle 2$. $|S| = |G|^{p-1}$

```
PROOF: Given any a_1, \ldots, a_{p-1} \in G, there exists a unique a_p such that
   (a_1, \ldots, a_p) \in S, namely a_p = (a_1 \cdots a_{p-1})^{-1}.
\langle 1 \rangle 3. p \mid |S|
\langle 1 \rangle 4. Define an action of \mathbb{Z}/p\mathbb{Z} on S by
                     m \cdot (a_1, \dots, a_p) = (a_m, a_{m+1}, \dots, a_p, a_1, a_2, \dots, a_{m-1}).
   PROOF: If (a_1, ..., a_p) \in S then (a_2, a_3, ..., a_p, a_1) \in S since a_1 = (a_2 ... a_p)^{-1}.
\langle 1 \rangle5. Let: Z be the set of fixed points of this action.
\langle 1 \rangle 6. |Z| \equiv 0 \pmod{p}
   Proof: Corollary 13.18.1, \langle 1 \rangle 3.
\langle 1 \rangle 7. \ Z = \{(a, a, \dots, a) : a^p = e\}
\langle 1 \rangle 8. \ Z \neq \emptyset
   PROOF: Since (e, e, \dots, e) \in Z.
\langle 1 \rangle 9. An element a has order p iff (a, a, \ldots, a) \in \mathbb{Z} and a \neq e.
\langle 1 \rangle 10. Let: N be the number of cyclic subgroups of order p.
\langle 1 \rangle 11. The number of elements of order p is N(p-1)
\langle 1 \rangle 12. \ |Z| = N(p-1) + 1
\langle 1 \rangle 13. -N+1 \equiv 0 \pmod{p}
   PROOF: From \langle 1 \rangle 6.
\langle 1 \rangle 14. N \equiv 1 \pmod{p}
```

Proposition 11.104. Let G be a group. Let K be a subgroup of G and H a subgroup of K. If |G:H|, |G:K| and |K:H| are all finite then

$$|G:H| = |G:K||K:H|$$
 .

```
Proof:
\langle 1 \rangle 1. Let: G/K = \{g_1 K, g_2 K, \dots, g_m K\}
\langle 1 \rangle 2. Let: K/H = \{k_1 H, k_2 H, \dots, k_n H\}
\langle 1 \rangle 3. \ G/H = \{ g_i k_j H : 1 \le i \le m, 1 \le j \le n \}
    \langle 2 \rangle 1. Let: g \in G
    \langle 2 \rangle 2. PICK i such that gK = g_i K
    \langle 2 \rangle 3. \ g^{-1}g_i \in K
    \langle 2 \rangle 4. PICK j such that g^{-1}g_iH = k_iH
    \langle 2 \rangle 5. \ g^{-1}g_i k_i \in H
    \langle 2 \rangle 6. gH = g_i k_i H
\langle 1 \rangle 4. If g_i k_j H = g_{i'} k_{j'} H then i = i' and j = j'.
    \langle 2 \rangle 1. Assume: g_i k_j H = g_{i'} k_{j'} H
    \langle 2 \rangle 2. g_i K = g_{i'} K
    \langle 2 \rangle 3. i = i'
    \langle 2 \rangle 4. \ k_j H = k_{j'} H
    \langle 2 \rangle 5. \ j = j'
```

11.15 Cokernels

Proposition 11.105. Let $\phi: G \to H$ be a homomorphism between groups. Then there exists a group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

- $\langle 1 \rangle 1$. Let: N be the intersection of all the normal subgroups of H that include im ϕ .
- $\langle 1 \rangle 2$. Let: K = H/N and π be the canonical homomorphism.
- $\langle 1 \rangle 3$. Let: $\pi \circ \phi = 0$
- $\langle 1 \rangle 4$. Let: $\alpha: H \to L$ satisfy $\alpha \circ \phi = 0$
- $\langle 1 \rangle 5$. im $\phi \subseteq \ker \alpha$
- $\langle 1 \rangle 6. \ N \subseteq \ker \alpha$
- $\langle 1 \rangle$ 7. There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$

Definition 11.106 (Cokernel). For any homomorphism $\phi: G \to H$ in **Grp**, the *cokernel* of ϕ is the group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Example 11.107. It is not true that a homomorphism with trivial cokernel is epi. The inclusion $\langle (1\ 2) \rangle \hookrightarrow S_3$ has trivial cokernel but is not epi.

11.16 Cayley Graphs

Definition 11.108 (Cayley Graph). Let G be a finitely generated group. Let A be a finite set of generators for G. The Cayley graph of G with respect to A is the directed graph whose vertices are the elements of G, with an edge $g_1 \to g_2$ labelled by $a \in A$ iff $g_2 = g_1 a$.

Proposition 11.109. G is the free group on A iff the Cayley graph with respect to A is a tree.

PROOF: Both are equivalent to saying that the product of two different strings of elements of A and/or their inverses are not equal. \square

11.17 Characteristic Subgroups

Definition 11.110 (Characteristic Subgroup). Let G be a group. Let H be a subgroup of G. Then H is a *characteristic* subgroup of G iff, for every automorphism ϕ of G, we have $\phi(H) \subseteq H$.

Proposition 11.111. Characteristic subgroups are normal.

PROOF: Take ϕ to be conjugation with respect to an arbitrary element. \square

Proposition 11.112. Let G be a group. Let K be a normal subgroup of G and H a characteristic subgroup of K. Then H is normal in G.

PROOF: For any $a \in G$ we have conjugation by a is an automorphism on K, hence H is closed under it. \square

Proposition 11.113. Let G be a group. Let H be a subgroup of G. Suppose there is no other subgroup of G isomorphic to H. Then H is characteristic, hence normal.

PROOF: For any automorphism ϕ on G, we have $\phi(H)$ is isomorphic to H, hence $\phi(H) = H$. \square

Proposition 11.114. Let G be a finite group. Let K be a normal subgroup of G. Assume |K| and |G/K| are relatively prime. Then K is characteristic.

Proof:

- $\langle 1 \rangle 1$. Let: K' be a subgroup of G isomorphic to K.
 - Prove: K' = K
- $\langle 1 \rangle 2$. $|K'/(K \cap K')|$ divides both |K'| = |K| and |G/K|
- $\langle 1 \rangle 3. |K'/(K \cap K')| = 1$
- $\langle 1 \rangle 4. \ K' = K \cap K'$
- $\langle 1 \rangle 5. \ K' = K$

Proposition 11.115. The commutator subgroup of a group is characteristic.

PROOF: Lemma 11.93.

11.18 Simple Groups

Definition 11.116 (Simple Group). A group G is simple iff its only normal subgroups are $\{e\}$ and G.

Proposition 11.117. Let G be a group. Then G is simple if and only if the only homomorphic images of G are 1 and G.

PROOF: Both are equivalent to saying that, for any surjective homomorphism $\phi: G \to G'$, either ϕ has kernel $\{e\}$ (in which case it is an isomorphism) or ϕ has kernel G (in which case G' = 1.) \square

11.19 Sylow Subgroups

Definition 11.118 (Sylow Subgroup). Let p be a prime number. Let G be a finite group. A p-Sylow subgroup of G is a subgroup of order p^r , where r is the largest integer such that p^r divides |G|.

Proposition 11.119. Let p be prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. If P is normal then P is characteristic.

Proof: Proposition 11.114.

Corollary 11.119.1. Let p be prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Let H be a subgroup of G that includes P. If P is normal in H and H is normal in G then P is normal in G.

Proposition 11.120. Let G be a finite group. Let P_1, \ldots, P_r be its nontrivial Sylow subgroups. Assume all P_i are normal in G. Then

$$G \cong P_1 \times \cdots \times P_r$$
.

Proof:

$$\langle 1 \rangle 1$$
. $P_1 P_2 \cdots P_r \cong P_1 \times P_2 \times \cdots \times P_r$

 $\langle 2 \rangle 1. P_1 \cong P_1$

$$\langle 2 \rangle 2$$
. For $1 \leq i < r$, if $P_1 P_2 \cdots P_i \cong P_1 \times P_2 \times \cdots \times P_i$ then $P_1 P_2 \cdots P_i P_{i+1} \cong P_1 \times P_2 \times \cdots P_i \times P_{i+1}$

 $\langle 3 \rangle 1$. Let: $1 \leq i < r$

$$\langle 3 \rangle 2$$
. Assume: $P_1 P_2 \cdots P_i \cong P_1 \times P_2 \times \cdots \times P_i$

$$\langle 3 \rangle 3$$
. $P_1 P_2 \cdots P_i$ is normal in G .

$$\langle 3 \rangle 4. \ P_1 P_2 \cdots P_i \cap P_{i+1} = \{e\}$$

$$\langle 4 \rangle 1$$
. Let: $|P_j| = p_j^{k_j}$ for all j .

$$\langle 4 \rangle 2$$
. The order of any element of $P_1 P_2 \cdots P_i$ divides $p_1^{k_1} p_2^{k_2} \cdots p_i^{k_i}$

$$\langle 4 \rangle 3$$
. The order of any element of P_{i+1} divides $p_{i+1}^{k_{i+1}}$

 $\langle 4 \rangle 4$. The p_i are all distinct.

PROOF: Any p_j -Sylow subgroup is congruent to P_j hence equal to P_j since P_j is normal.

 $\langle 4 \rangle 5$. The only element in $P_1 P_2 \cdots P_i$ and P_{i+1} is e.

$$\langle 3 \rangle 5. P_1 P_2 \cdots P_i P_{i+1} \cong P_1 P_2 \cdots P_i \times P_{i+1}$$

Proof: Proposition 11.95.

$$\langle 3 \rangle 6. \ P_1 P_2 \cdots P_i P_{i+1} \cong P_1 \times P_2 \times \cdots \times P_i \times P_{i+1}$$

 $\langle 1 \rangle 2$. $G = P_1 P_2 \cdots P_r$

PROOF: Since
$$|G| = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$$
.

11.20 Series of Subgroups

Definition 11.121 (Series of Subgroups). Let G be a group. A *series* of subgroups of G is a sequence (G_n) of subgroups of G such that

$$G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots$$

It is a normal series iff G_{n+1} is normal in G_n for all n.

Proposition 11.122. The maximal length of a normal series in G is 0 iff G is trivial.

PROOF: Since 1 is normal in G for every G. \square

Proposition 11.123. The maximal length of a normal series in G is 1 iff G is non-trivial and simple.

Proof: Immediate from definitions. \Box

Example 11.124. \mathbb{Z} has normal series of arbitrary length.

Proof: We have $\mathbb{Z} \supsetneq 2\mathbb{Z} \supsetneq 4\mathbb{Z} \supsetneq \cdots$. \square

Example 11.125. The maximal length of a normal series in $\mathbb{Z}/n\mathbb{Z}$ is the number of primes in the prime factorization of n.

PROOF: Let $n = p_1 p_2 \cdots p_k$. A normal series of maximal length is $\mathbb{Z}/p_1 p_2 \cdots p_k \mathbb{Z} \supsetneq \mathbb{Z}/p_1 p_2 \cdots p_{k-1} \mathbb{Z} \supsetneq \cdots \supsetneq \mathbb{Z}/p_1 \mathbb{Z} \supsetneq \{e\}$. \square

Definition 11.126 (Equivalent Normal Series). Let

$$G = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots \supsetneq G_n = \{e\}$$

$$G = G'_0 \supsetneq G'_1 \supsetneq G'_2 \supsetneq \cdots \supsetneq G'_m = \{e\}$$

be two normal series in a group G. Then the two series are *equivalent* iff m=n and there exists a permutation $\sigma \in S_n$ such that, for all i, we have $G_i/G_{i+1} \cong G'_{\sigma(i)}/G'_{\sigma(i)+1}$.

Definition 11.127 (Composition Series). Let G be a group. A composition series for G is a series of subgroups in G

$$G = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots \supsetneq G_n = \{e\}$$

such that, for all i, we have G_i/G_{i+1} is simple.

Proposition 11.128. A normal series of maximal length in a group is a composition series.

Proof: Easy.

Corollary 11.128.1. Every finite group has a composition series.

Corollary 11.128.2. If a group has a composition series then every normal subgroup has a composition series.

Definition 11.129 (Refinement). A series of subgroups S_1 is a *refinement* of the series S_2 iff every subgroup in S_2 appears in S_1 .

Lemma 11.130. Let G be a group. Let Q, N and L be subgroups of G. Assume L is a normal subgroup of Q and qN = Nq for all $q \in Q$. Then

$$\frac{QN}{LN} \cong \frac{Q}{L(Q \cap N)} \ .$$

Proof:

 $\langle 1 \rangle 1$. QN is a subgroup of G.

PROOF: Since QN = NQ.

 $\langle 1 \rangle 2$. LN is a subgroup of G.

```
PROOF: Since LN = NL.
\langle 1 \rangle 3. LN is normal in QN.
   \langle 2 \rangle 1. Let: l \in L, q \in Q, and n, n' \in N.
            PROVE: qnln'n^{-1}q^{-1} \in LN
   \langle 2 \rangle 2. PICK n_1 \in N such that nl = ln_1
   \langle 2 \rangle 3. Pick n_2 \in N such that n_1 n' n^{-1} q^{-1} = q^{-1} n_2
   \langle 2 \rangle 4. qnln'n^{-1}q^{-1} = qlq^{-1}n_2 \in LN
      PROOF: Since L is normal in Q.
\langle 1 \rangle 4. The function f: Q \to QN/LN that maps q to qLN is a surjective homo-
        morphism.
\langle 1 \rangle 5. ker f = L(Q \cap N)
   \langle 2 \rangle 1. ker f \subseteq L(Q \cap N)
       \langle 3 \rangle 1. Let: x \in \ker f
       \langle 3 \rangle 2. \ x \in LN
       \langle 3 \rangle 3. Pick l \in L and n \in N such that x = ln
       \langle 3 \rangle 4. \ n = l^{-1}x \in Q \cap N
       \langle 3 \rangle 5. \ x \in L(Q \cap N)
   \langle 2 \rangle 2. L(Q \cap N) \subseteq \ker f
      PROOF: Since L(Q \cap N) \subseteq Q and L(Q \cap N) \subseteq LN.
\langle 1 \rangle 6. Q.E.D.
   PROOF: First Isomorphism Theorem.
Theorem 11.131 (Schreier). Any two normal series in a group have equivalent
refinements.
Proof:
\langle 1 \rangle 1. Let: G be a group.
\langle 1 \rangle 2. Let: S_1: G = G_0 \supsetneq G_1 \supsetneq G_2 \supsetneq \cdots \supsetneq G_m = \{e\} and S_2: G = H_0 \supsetneq G_1 \supsetneq G_2 
                 H_1 \supseteq H_2 \supseteq \cdots \supseteq H_n = \{e\} be two normal series in G.
\langle 1 \rangle 3. For each i, we have
                           G_i = G_i \cap H_0 \supseteq G_i \cap H_1 \supseteq \cdots \supseteq G_i \cap H_n = \{e\}
        is a series of subgroups in G_i.
\langle 1 \rangle 4. For each i, we have
           G_i = (G_i \cap H_0)G_{i+1} \supseteq (G_i \cap H_1)G_{i+1} \supseteq \cdots \supseteq (G_i \cap H_n)G_{i+1} = G_{i+1}
        is a normal series in G_i.
   \langle 2 \rangle 1. Let: 0 \le i < m and 0 \le j < n
            PROVE: (G_i \cap H_{i+1})G_{i+1} is normal in (G_i \cap H_i)G_{i+1}
   \langle 2 \rangle 2. Let: x \in G_i \cap H_{j+1}, y \in G_{i+1}, a \in G_i \cap H_j \text{ and } b \in G_{i+1}
            PROVE: abxyb^{-1}a^{-1} \in (G_i \cap H_{i+1})G_{i+1}
   \langle 2 \rangle 3. \ axa^{-1} \in G_i \cap H_{j+1}
      PROOF: Since a, x \in G_i and H_{j+1} is normal in H_j.
   \langle 2 \rangle 4. \ ax^{-1}bxa^{-1} \in G_{i+1}
```

PROOF: Since G_{i+1} is normal in G_i .

PROOF: Since G_{i+1} is normal in G_i .

 $\langle 2 \rangle 5. \ yb^{-1} \in G_{i+1}$ $\langle 2 \rangle 6. \ ayb^{-1}a^{-1} \in G_{i+1}$

$$\langle 2 \rangle 7$$
. $abxyb^{-1}a^{-1} = (axa^{-1})(ax^{-1}bxa^{-1}ayb^{-1}a^{-1}) \in (G_i \cap H_{i+1})G_{i+1}$

- $\langle 1 \rangle$ 5. Let S be the series obtained by concatenating the series $\langle 1 \rangle$ 4 for G_0 to $G_1, G_1 \text{ to } G_2, \ldots, G_{m-1} \text{ to } G_m$
- $\langle 1 \rangle 6$. S is a refinement of S_1 .
- $\langle 1 \rangle 7$. S is normal.
- $\langle 1 \rangle 8$. Let: T be the similarly constructed normal refinement of S_2 .
- $\langle 1 \rangle 9$. For all i, j we have

$$\frac{(G_i\cap H_j)G_{i+1}}{(G_i\cap H_{j+1})G_{i+1}}\cong \frac{G_i\cap H_j}{(G_i\cap H_{j+1})(G_{i+1}\cap H_j)}$$

- $\langle 2 \rangle 1$. $G_i \cap H_{i+1}$ is normal in $G_i \cap H_i$
- $\langle 2 \rangle 2$. For all $q \in G_i \cap H_j$ we have $qG_{i+1} = G_{i+1}q$

PROOF: Since for all $q \in G_i$ we have $qG_{i+1} = G_{i+1}q$.

 $\langle 2 \rangle 3$. Q.E.D.

Proof: Lemma 11.130

 $\langle 1 \rangle 10$. For all i, j we have

$$\frac{(G_i\cap H_j)H_{j+1}}{(G_{i+1}\cap H_j)H_{j+1}}\cong \frac{G_i\cap H_j}{(G_{i+1}\cap H_j)(G_i\cap H_{j+1})}$$

Proof: Lemma 11.130

 $\langle 1 \rangle 11$. For all i, j we have

$$\frac{(G_i \cap H_j)G_{i+1}}{(G_i \cap H_{j+1})G_{i+1}} \cong \frac{(G_i \cap H_j)H_{j+1}}{(G_{i+1} \cap H_j)H_{j+1}}$$

 $\langle 1 \rangle 12$. S and T are equivalent.

Corollary 11.131.1 (Jordan-Hölder). Any two composition series for a group are equivalent.

Definition 11.132 (Composition Factors). Let G be a group that has a composition series. The multiset of composition factors of G is the multiset of quotients of any composition series.

Example 11.133. Non-isomorphic groups can have the same composition factors. For example, $C_2 \times C_2$ and C_4 both have composition factors $\{|C_2, C_2|\}$.

Proposition 11.134. Let G be a group. Let N be a normal subgroup of G. Then G has a composition series if and only if N and G/N both have composition series, in which case the composition factors of G are the union of the composition factors of N and the composition factors of G/N.

- $\langle 1 \rangle 1$. If G has a composition series then N and G/N have composition series.
 - $\langle 2 \rangle 1$. Let: $G = G_0 \supseteq G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n = \{e\}$ be a composition series for

 - $\langle 2 \rangle 2$. N has a composition series. $\langle 3 \rangle 1$. For all i, we have $\frac{G_i \cap N}{G_{i+1} \cap N}$ is either trivial or isomorphic to G_i/G_{i+1} .
 - $\langle 4 \rangle 1$. The homomorphism $G_i \cap N \hookrightarrow G_i \twoheadrightarrow G_i/G_{i+1}$ has kernel $G_{i+1} \cap N$.
 - $\langle 4 \rangle 2$. There is an injective homomorphism $(G_i \cap N)/(G_{i+1} \cap N) \to G_i/G_{i+1}$.

PROOF: First Isomorphism Theorem.

- $\langle 4 \rangle 3$. $(G_i \cap N)/(G_{i+1} \cap N)$ is either trivial or isomorphic to G_i/G_{i+1} . PROOF: Since G_i/G_{i+1} is simple.
- $\langle 3 \rangle 2$. Eliminating all duplicates from the series $N = G_0 \cap N \supseteq G_1 \cap N \supseteq$ $G_2 \cap N \supseteq \cdots \supseteq G_n \cap N = \{e\}$ gives a composition series for N.
- $\langle 2 \rangle 3$. G/N has a composition series.
 - $\langle 3 \rangle$ 1. For all *i* we have $\frac{(G_i N)/N}{(G_{i+1} N)/N}$ is either trivial or isomorphic to G_i/G_{i+1} .

 - $\langle 4 \rangle$ 1. Let: $0 \le i < n$ $\langle 4 \rangle$ 2. $\frac{(G_i N)/N}{(G_{i+1} N)N} \cong G_i N/G_{i+1} N$

PROOF: Third Isomorphism Theorem.

 $\langle 4 \rangle 3$. There exists a surjective homomorphism

$$\frac{G_i}{G_{i+1}} \twoheadrightarrow \frac{G_i N}{G_{i+1} N}$$

- $\frac{G_i}{G_{i+1}} \twoheadrightarrow \frac{G_i N}{G_{i+1} N} \ .$ $\langle 5 \rangle 1$. Let: f be the homomorphism $G_i \hookrightarrow G_i N \twoheadrightarrow G_i N/G_{i+1} N$
- $\langle 5 \rangle 2$. f is surjective.
- $\langle 5 \rangle 3. \ f(G_{i+1}) = \{e\}$
- $\langle 5 \rangle 4$. Q.E.D.

PROOF: By the universal property of quotient groups.

- $\langle 4 \rangle 4$. $G_i N/G_{i+1} N$ is either trivial or isomorphic to G_i/G_{i+1} . Proof: Proposition 11.117.
- $\langle 3 \rangle 2$. Eliminating all duplicates from the series $G/N = G_0 N/N \supseteq G_1 N/N \supseteq$ $G_2N/N \supset \cdots \supset G_nN/N = \{e\}$ gives a composition series for G/N.
- $\langle 1 \rangle 2$. If N and G/N have composition series, then G has a composition series, and the composition factors of G are the union of the composition factors of N and the composition factors of G/N.
 - $\langle 2 \rangle 1$. Let: $N = N_0 \supseteq N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n = \{e\}$ be a composition series
 - $\langle 2 \rangle 2$. Let: $G/N = H_0 \supseteq H_1 \supseteq H_2 \supseteq \cdots \supseteq H_m = \{e\}$ be a composition series for G/N.
 - $\langle 2 \rangle 3.$ $G = \pi^{-1}(H_0) \supseteq \pi^{-1}(H_1) \supseteq \cdots \pi^{-1}(H_m) = N_0 \supseteq N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n$ is a composition series for G.

Proposition 11.135. Let G_1 and G_2 be groups. Then $G_1 \times G_2$ has a composition series if and only if G_1 and G_2 both have composition series.

- $\langle 1 \rangle 1$. If $G_1 \times G_2$ has a composition series then G_1 has a composition series.
 - $\langle 2 \rangle 1$. Let: $G_1 \times G_2 = A_0 \supsetneq A_1 \supsetneq \cdots \supsetneq A_n = \{e\}$ be a composition series.
 - $\langle 2 \rangle 2$. For each i, we have $\pi_1(A_i)/\pi_1(A_{i+1})$ is either isomorphic to A_i/A_{i+1} or
 - $\langle 2 \rangle 3$. Eliminating duplicates from $G_1 = \pi_1(A_0) \supseteq \pi_1(A_1) \supseteq \cdots \supseteq \pi_1(A_n) =$ $\{e\}$ gives a composition series for G_1 .
- $\langle 1 \rangle 2$. If $G_1 \times G_2$ has a composition series then G_2 has a composition series. Proof: Similar.
- $\langle 1 \rangle 3$. If G_1 and G_2 have composition series then $G_1 \times G_2$ has a composition

series.

- $\langle 2 \rangle$ 1. Let: $G_1 = H_0 \supsetneq H_1 \supsetneq \cdots \supsetneq H_m = \{e\}$ be a composition series for G_1 . $\langle 2 \rangle$ 2. Let: $G_2 = K_0 \supsetneq K_1 \supsetneq \cdots \supsetneq K_n = \{e\}$ be a composition series for G_2 . $\langle 2 \rangle$ 3. $G_1 \times G_2 = H_0 \times K_0 \supsetneq H_1 \times K_0 \supsetneq \cdots \supsetneq H_m \times K_0 \supsetneq H_m \times K_1 \supsetneq \cdots \supsetneq H_m \times K_n = \{e\}$ is a composition series for $G_1 \times G_2$.

Definition 11.136 (Cyclic Series). A normal series of subgroups is cyclic iff every quotient is cyclic.

Chapter 12

Abelian Groups

Definition 12.1 (Abelian Group). A group is *Abelian* iff any two elements commute.

In an Abelian group G, we often denote the group operation by +, the identity element by 0 and the inverse of an element g by -g. We write ng for g^n ($g \in G$, $n \in \mathbb{Z}$).

Example 12.2. Every group of order ≤ 4 is Abelian.

Example 12.3. For any positive integer n, we have $\mathbb{Z}/n\mathbb{Z}$ is an Abelian group under addition.

Example 12.4.
$$S_n$$
 is not Abelian for $n \geq 3$. If $x = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ then $xy = \begin{pmatrix} 2 & 3 \end{pmatrix}$ and $yx = \begin{pmatrix} 1 & 3 \end{pmatrix}$.

Example 12.5. There are 42 Abelian groups of order 1024 up to isomorphism.

Proposition 12.6. Let G be a group. If $g^2 = e$ for all $g \in G$ then G is Abelian.

PROOF: For any $g, h \in G$ we have

$$ghgh = e$$
∴ $hgh = g$ (multiplying on the left by g)
∴ $hg = gh$ (multiplying on the right by h)

Proposition 12.7. Let G be a group. Then G is Abelian if and only if the function that maps g to g^{-1} is a group homomorphism.

Proof:

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^{-1} is a group homomorphism.

PROOF: Since $(gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1}$.

 $\langle 1 \rangle 2$. If the function that maps g to g^{-1} is a group homomorphism then G is Abelian.

PROOF: Since $gh = (g^{-1})^{-1}(h^{-1})^{-1} = (g^{-1}h^{-1})^{-1} = hg$.

Proposition 12.8. Let G be a group. Then G is Abelian if and only if the function that maps g to g^2 is a group homomorphism.

Proof:

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^2 is a group homomorphism.

PROOF: Since $(gh)^2 = g^2h^2$.

 $\langle 1 \rangle 2$. If the function that maps g to g^2 is a group homomorphism then G is Abelian.

PROOF: Since we have $(gh)^2 = ghgh = g^2h^2$ and so hg = gh.

Proposition 12.9. Let G be a group. Then G is Abelian if and only if the homomorphism $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ is the trivial homomorphism.

Proof:

 $\langle 1 \rangle 1$. If G is Abelian then γ is trivial.

PROOF: Since $\gamma_g(a) = gag^{-1} = a$.

 $\langle 1 \rangle 2$. If γ is trivial then G is Abelian.

PROOF: If $\gamma_g(a) = gag^{-1} = a$ for all g and a then ga = ag for all g, a.

Proposition 12.10. Let G be an Abelian group. Let $g, h \in G$. If g has maximal finite order in G, and h has finite order, then |h| |g|.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $|h| \nmid |g|$.
- $\langle 1 \rangle 2$. Pick a prime p such that $|g| = p^m r$, $|h| = p^n s$ where $p \nmid r$, $p \nmid s$ and m < n.
- $\langle 1 \rangle 3. |g^{p^m} h^s| = p^n r$

Proof: Proposition 10.22.

- $\langle 1 \rangle 4$. $|g| < |g^{p^m} h^s|$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the maximality of |g|.

Proposition 12.11. Given a set A and an Abelian group H, the set H^A is an Abelian group under

$$(\phi + \psi)(a) = \phi(a) + \psi(a) \qquad (\phi, \psi \in H^A, a \in A) .$$

- $\langle 1 \rangle 1. \ \phi + (\psi + \chi) = (\phi + \psi) + \chi$
- $\langle 1 \rangle 2. \ \phi + \psi = \psi + \phi$
- $\langle 1 \rangle 3$. Let: $0: A \to H$ be the function 0(a) = 0.
- $\langle 1 \rangle 4. \ \phi + 0 = 0 + \phi = \phi$

$$\langle 1 \rangle$$
5. Given $\phi : A \to H$, define $-\phi : A \to H$ by $(-\phi)(a) = -(\phi(a))$. $\langle 1 \rangle$ 6. $\phi + (-\phi) = (-\phi) + \phi = 0$

Proposition 12.12. Given a group G and an Abelian group H, the set Grp[G, H]is a subgroup of H^G .

Proof:

 $\langle 1 \rangle 1$. Given $\phi, \psi : G \to H$ group homomorphisms, we have $\phi - \psi$ is a group homomorphism.

Proof:

$$(\phi - \psi)(g + g') = \phi(g + g') - \psi(g + g')$$

$$= \phi(g) + \phi(g') - \psi(g) - \psi(g')$$

$$= \phi(g) - \psi(g) + \phi(g') - \psi(g')$$

$$= (\phi - \psi)(g) + (\phi - \psi)(g')$$

Proposition 12.13. Let G be a group. The following are equivalent.

- 1. Inn(G) is cyclic.
- 2. Inn(G) is trivial.
- 3. G is Abelian.

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $Inn(G) = \langle \gamma_g \rangle$
 - $\langle 2 \rangle 2$. g commutes with every element of G
 - $\langle 3 \rangle 1$. Let: $x \in G$
 - $\langle 3 \rangle 2$. PICK $n \in \mathbb{Z}$ such that $\gamma_x = \gamma_g^n \langle 3 \rangle 3$. $\forall y \in G.xyx^{-1} = g^nyg^{-n}$

 - $\langle 3 \rangle 4$. $xgx^{-1} = g$
 - $\langle 2 \rangle 3. \ \gamma_g = \mathrm{id}_G$
- $\langle 1 \rangle 2$. $2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\forall g \in G. \gamma_q = \mathrm{id}_G$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3. \ \gamma_x(y) = y$
 - $\langle 2 \rangle 4$. $xyx^{-1} = y$
 - $\langle 2 \rangle 5$. xy = yx
- $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: If xy = yx for all x, y then $\gamma_x(y) = y$ for all x, y.

 $\langle 1 \rangle 4. \ 2 \Rightarrow 1$

Proof: Easy.

Corollary 12.13.1. If $Aut_{Grp}(G)$ is cyclic then G is Abelian.

Proposition 12.14. Every subgroup of an Abelian group is normal.

PROOF: Let G be an Abelian group and N a subgroup of G. Given $g \in G$ and $n \in N$ we have $gng^{-1} = n \in N$. \square

Proposition 12.15. For any group G, the group G/[G,G] is Abelian.

PROOF: For any $g, h \in G$ we have

$$gh(hg)^{-1} \in [G, G]$$
$$\therefore gh[G, G] = hg[G, G]$$

Proposition 12.16. Let G be a finite Abelian group. Let p be a prime divisor of |G|. Then G has an element of order p.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result holds for all groups smaller than G.
- $\langle 1 \rangle 2$. Pick $g \in G \{0\}$.
- $\langle 1 \rangle 3$. PICK an element $h \in \langle g \rangle$ with prime order q.
- $\langle 1 \rangle 4$. Case: q = p

Proof: h is the required element.

- $\langle 1 \rangle 5$. Case: $q \neq p$
 - $\langle 2 \rangle 1$. Pick $r \in G$ such that $r + \langle h \rangle$ has order p in $G/\langle h \rangle$.

PROOF: By induction hypothesis since $|G/\langle h \rangle| = |G|/q$.

- $\langle 2 \rangle 2. \ pr \in \langle h \rangle$
- $\langle 2 \rangle 3$. Pick k such that pr = kh
- $\langle 2 \rangle 4$. pqr = e
- $\langle 2 \rangle 5$. qr has order p.

Corollary 12.16.1. For n an odd integer, any Abelian group of order 2n has exactly one element of order 2.

PROOF: If x and y are distinct elements of order 2 then $\langle x,y\rangle=\{e,x,y,xy\}$ has size 4 and so 4 | 2n which is a contradiction. \square

Example 12.17. It is not true that, if G is a finite group and $d \mid |G|$, then G has an element of order d. The quaternionic group has no element of order 4.

Proposition 12.18. If G is a finite Abelian group and $d \mid |G|$ then G has a subgroup of size d.

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result is true for all d' < d.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $d \neq 1$.
- $\langle 1 \rangle 3$. PICK a prime p such that $p \mid d$.
- $\langle 1 \rangle 4$. Pick an element $g \in G$ of order p.
- $\langle 1 \rangle 5. \ d/p \mid |G/\langle g \rangle|$
- $\langle 1 \rangle 6$. Pick a subgrop H of $G/\langle g \rangle$ of size d/p.
- $\langle 1 \rangle 7$. $\pi^{-1}(H)$ is a subgroup of G of size d.

Proposition 12.19. Let (G, \cdot) be a group. Let $\circ : G^2 \to G$ be a group homomorphism such that (G, \circ) is a group. Then \circ and \cdot coincide, and G is Abelian.

Proof:

 $\langle 1 \rangle 1$. For all $g_1, g_2, h_1, h_2 \in G$ we have

$$(g_1g_2)\circ(h_1h_2)=(g_1\circ h_1)(g_2\circ h_2)$$

 $\langle 1 \rangle 2$. $e \circ e = e$

Proof:

$$e \circ e = (ee) \circ (ee)$$

= $(e \circ e)(e \circ e)$

Hence $e \circ e = e$ by Cancellation.

 $\langle 1 \rangle 3$. e is the identity of (G, \circ)

 $\langle 1 \rangle 4$. For all $g, h \in G$ we have

$$g \circ h = gh$$

Proof:

$$g \circ h = (ge) \circ (eh)$$

= $(g \circ e)(e \circ h)$
= ah

 $\langle 1 \rangle 5$. For all $g, h \in G$ we have gh = hg.

Proof:

$$gh = (e \circ g)(h \circ e)$$
$$= (eh) \circ (ge)$$
$$= h \circ g$$
$$= hg$$

П

Corollary 12.19.1. If $(G, m: G^2 \to G, e: 1 \to G, i: G \to G)$ is a group object in **Grp** then m is the multiplication of G, e(*) is the identity of G, $i(g) = g^{-1}$, and G is Abelian.

Conversely, if (G, m) is any Abelian group, then (G, m, e, i) is a group object in **Grp** where e(*) = e and $i(g) = g^{-1}$.

Proposition 12.20. Let G be a group. If every element of G has order ≤ 2 then G is Abelian.

Proof:

 $\langle 1 \rangle 1$. Let: $x, y \in G$

Prove: xy = yx

 $\langle 1 \rangle 2$. Assume: w.l.o.g. $x \neq e \neq y$.

 $\langle 1 \rangle 3. \ x^2 = e = y^2$

 $\langle 1 \rangle 4$. $x^{-1} = x$ and $y^{-1} = y$.

 $\langle 1 \rangle 5$. Case: xy = e

PROOF: Then $y = x^{-1}$ and so xy = yx = e.

 $\langle 1 \rangle 6$. Case: $xy \neq e$

$$\langle 2 \rangle 1$$
. $(xy)^2 = e$

$$\langle 2 \rangle 2$$
. $xyxy = e$

$$\langle 2 \rangle 3. \ xy = y^{-1}x^{-1}$$

 $\langle 2 \rangle 4. \ xy = yx$

Proposition 12.21. Every Abelian group is solvable.

PROOF: If G is Abelian then $G' = \{e\}$. \square

Proposition 12.22. The only non-trivial simple finite Abelian groups are $\mathbb{Z}/p\mathbb{Z}$ for p a prime.

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-trivial simple finite Abelian group.
- $\langle 1 \rangle 2$. PICK a prime p that divides |G|.
- $\langle 1 \rangle 3$. PICK an element $a \in G$ of order p.

PROOF: Cauchy's Theorem.

$$\begin{array}{l} \langle 1 \rangle 4. \ \langle a \rangle = G \\ \square \end{array}$$

Proposition 12.23. If $N \rtimes_{\theta} H$ is Abelian then $N \rtimes_{\theta} H \cong N \times H$.

PROOF: By Proposition 11.35 since $\theta(h)(n) = hnh^{-1} = n$. \square

Lemma 12.24. Let p be a prime integer and $r \ge 1$. Let G be a noncyclic Abelian group of order p^{r+1} , and let $g \in G$ be an element of order p^r . Then there exists an element $h \in G$ such that $h \notin \langle g \rangle$ and |h| = p.

Proof:

- $\langle 1 \rangle 1$. Let: $K = \langle G \rangle$
- $\langle 1 \rangle 2$. Pick $h' \in G$ such that $h' \notin K$.
- $\langle 1 \rangle 3$. |G/K| = p
- $\langle 1 \rangle 4. \ ph' \in K$
- $\langle 1 \rangle 5$. Let: k = ph'
- $\langle 1 \rangle 6$. |k| is a power of p.
- $\langle 1 \rangle 7$. $|k| \neq p^r$

PROOF: If $|k| = p^r$ then $|h'| = p^{r+1}$ contradicting the hypothesis that G is not cyclic.

- $\langle 1 \rangle 8$. Pick s < r such that $|\langle k \rangle| = p^s$.
- $\langle 1 \rangle 9. \ \langle k \rangle = \langle p^{r-s}g \rangle$

Proof: Proposition 11.90.

- $\langle 1 \rangle 10$. Pick $m \in \mathbb{Z}$ such that k = mpg.
- $\langle 1 \rangle 11$. Let: h = h' mg
- $\langle 1 \rangle 12$. |h| = p

$$ph = ph' - pmg$$
$$= k - k$$
$$= 0$$

12.1 The Category of Abelian Groups

Definition 12.25 (Category of Abelian Groups). Let **Ab** be the full subcategory of **Grp** whose objects are the Abelian groups.

Proposition 12.26. If $(G, m : G^2 \to G, e : 1 \to G, i : G \to G)$ is a group object in **Ab** then m is the multiplication of G, e(*) is the identity of G, $i(g) = g^{-1}$, and G is Abelian.

Conversely, if (G, m) is any Abelian group, then (G, m, e, i) is a group object in **Ab** where e(*) = e and $i(g) = g^{-1}$.

PROOF: Immediate from Corollary 12.19.1.

Definition 12.27 (Direct Sum). Given Abelian groups G and H, we also call the direct product of G and H the direct sum and denote it $G \oplus H$.

Proposition 12.28. Given Abelian groups G and H, the direct sum $G \oplus H$ is the coproduct of G and H in \mathbf{Ab} .

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G \oplus H$ be the group homomorphism $\kappa_1(g) = (g, e_H)$.
- $\langle 1 \rangle 2$. Let: $\kappa_2 : H \to G \oplus H$ be the group homomorphism $\kappa_2(h) = (e_G, h)$.
- $\langle 1 \rangle 3$. Given group homomorphism $\phi: G \to K$ and $\psi: H \to K$, define $[\phi, \psi]: G \oplus H \to K$ by $[\phi, \psi](g, h) = \phi(g) + \psi(h)$.
- $\langle 1 \rangle 4$. $[\phi, \psi]$ is a group homomorphism.

PROOF:

$$\begin{aligned} [\phi, \psi]((g, h) + (g', h')) &= [\phi, \psi](g + g', h + h') \\ &= \phi(g + g') + \psi(h + h') \\ &= \phi(g) + \phi(g') + \psi(h) + \psi(h') \\ &= \phi(g) + \psi(h) + \phi(g') + \psi(h') \\ &= [\phi, \psi](g, h) + [\phi, \psi](g', h') \end{aligned}$$

 $\langle 1 \rangle 5. \ [\phi, \psi] \circ \kappa_1 = \phi$ PROOF:

$$[\phi, \psi](\kappa_1(g)) = [\phi, \psi](g, e_h)$$
$$= \phi(g) + \psi(e_H)$$
$$= \phi(g) + e_K$$
$$= \phi(g)$$

 $\langle 1 \rangle 6. \ [\phi, \psi] \circ \kappa_2 = \psi$

PROOF: Similar.

 $\langle 1 \rangle$ 7. If $f: G \oplus H \to K$ is a group homomorphism with $f \circ \kappa_1 = \phi$ and $f \circ \kappa_2 = \psi$ then $f = [\phi, \psi]$.

$$f(g,h) = f((g,e_H) + (e_G,h))$$
$$= f(\kappa_1(g)) + f(\kappa_2(h))$$
$$= \phi(g) + \psi(h)$$

П

Theorem 12.29. Every finitely generated Abelian group is a direct sum of cyclic groups.

PROOF: TODO

Proposition 12.30. Let G be an Abelian group. Let H and K be subgroups of G such that |H| and |K| are relatively prime. Then $H + K \cong H \oplus K$.

Proof: Proposition 11.95. \square

Corollary 12.30.1. Every finite Abelian group is the direct sum of its Sylow subgroups.

12.2 Free Abelian Groups

Proposition 12.31. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is an Abelian group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbb{Z}^{\oplus A}$ be the subgroup of \mathbb{Z}^A consisting of all functions $\alpha : A \to \mathbb{Z}$ such that $\alpha(a) = 0$ for only finitely many $a \in A$.
- (1)2. Let: $i:A\to\mathbb{Z}^{\oplus A}$ be the function such that i(a)(b)=1 if a=b and 0 if $a\neq b$.
- $\langle 1 \rangle 3$. Let: G be any Abelian group and $j: A \to G$ any function.
- (1)4. The unique homomorphism $\phi: \mathbb{Z}^{\oplus A} \to G$ required is defined by $\phi(\alpha) = \sum_{a \in A} \alpha(a) j(a)$

Definition 12.32 (Free Abelian Group). For any set A, the *free Abelian group* on A is the initial object $(F^{ab}(A),i)$ in \mathcal{F}^A .

Proposition 12.33. For any sets A and B, we have that $F^{ab}(A+B)$ is the coproduct of $F^{ab}(A)$ and $F^{ab}(B)$ in **Grp**.

- $\langle 1 \rangle 1$. Let: $i_A: A \to F^{ab}(A), i_B: B \to F^{ab}(B), j: A+B \to F^{ab}(A+B)$ be the canonical injections.
- $\langle 1 \rangle$ 2. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F^{ab}(A) \to G, \, g: F^{ab}(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F^{ab}(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.
- $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Proposition 12.34. For A and B finite sets, if $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

Proof:

- $\langle 1 \rangle 1$. For any set C, define \sim on $F^{ab}(C)$ by: $f \sim f'$ iff there exists $g \in F^{ab}(C)$ such that f f' = 2g.
- $\langle 1 \rangle 2$. For any set C, \sim is an equivalence relation on $F^{ab}(C)$.
- $\langle 1 \rangle 3$. For any set C, we have $F^{ab}(C) / \sim$ is finite if and only if C is finite, in which case $|F^{ab}(C)| / \sim |=2^{|C|}$.

PROOF: There is a bijection between $F^{ab}(C) / \sim$ and the finite subsets of C, which maps f to $\{c \in C : f(c) \text{ is odd}\}.$

 $\langle 1 \rangle 4$. If $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

PROOF: If $|F^{ab}(A)/\sim| = |F^{ab}(B)/\sim|$ then $2^{|A|} = 2^{|B|}$ and so |A| = |B|.

Proposition 12.35. Let G be an Abelian group. Then G is finitely generated if and only if there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \to G$ for some n.

Proof:

 $\langle 1 \rangle 1$. If G is finitely generated then there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

PROOF: Let $G = \langle a_1, \dots, a_n \rangle$. Define $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ by $\phi(i_1, \dots, i_n) = i_1 \cdot a_1 + \dots + i_n \cdot a_n$.

 $\langle 1 \rangle 2$. If there exists a surjective homomorphism $\phi: \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n then G is finitely generated.

Proof: G is generated by $\phi(1,0,\ldots,0),\,\phi(0,1,0,\ldots,0),\,\ldots,\,\phi(0,\ldots,0,1).$

Proposition 12.36. Let A be a set. Let $i: A \hookrightarrow F(A)$ be the free group on A. Then $\pi \circ i: A \to F(A)/[F(A), F(A)]$ is the free Abelian group on A.

Proof:

- $\langle 1 \rangle 1$. Let: G be an Abelian group and $f: A \to G$ a function.
- $\langle 1 \rangle 2$. Let: $g: F(A) \to G$ be the unique group homomorphism such that $g \circ i = f$.
- $\langle 1 \rangle 3$. $[F(A), F(A)] \subseteq \ker g$ PROOF: For all $x, y \in F(A)$ we have $g(xyx^{-1}y^{-1}) = g(x) + g(y) - g(x) - g(y) = 0$.
- (1)4. Let: h: F(A)/[F(A), F(A)] be the unique group homomorphism such that $h \circ \pi = g$.
- $\langle 1 \rangle$ 5. h is the unique group homomorphism such that $h \circ \pi \circ i = f$.

Corollary 12.36.1. Let A and B be sets. Let F(A) and F(B) be the free groups on A and B respectively. If $F(A) \cong F(B)$ then $A \cong B$.

Proof: Proposition 12.34. \square

12.3 Cokernels

Proposition 12.37. Let $\phi: G \to H$ be a homomorphism between Abelian groups. Then there exists an Abelian group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof

- $\langle 1 \rangle 1$. Let: $K = H/\operatorname{im} \phi$ and π be the canonical homomorphism.
- $\langle 1 \rangle 2$. Let: $\pi \circ \phi = 0$
- $\langle 1 \rangle 3$. Let: $\alpha: H \to L$ satisfy $\alpha \circ \phi = 0$
- $\langle 1 \rangle 4$. im $\phi \subseteq \ker \alpha$
- $\langle 1 \rangle$ 5. There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$

Definition 12.38 (Cokernel). For any homomorphism $\phi: G \to H$ in \mathbf{Ab} , the cokernel of ϕ is the Abelian group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proposition 12.39. $\pi: H \to \operatorname{coker} \phi$ is initial among functions $f: H \to X$ such that, for all $x, y \in H$, if $x + \operatorname{im} \phi = y + \operatorname{im} \phi$ then f(x) = f(y).

Proof: Easy. \square

Proposition 12.40. Let $\phi: G \to H$ be a homomorphism of Abelian groups. Then the following are equivalent.

- ϕ is an epimorphism.
- $\operatorname{coker} \phi$ is trivial.
- ϕ is surjective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is epi.
 - $\langle 2 \rangle 2$. Let: $\pi: H \to \operatorname{coker} \phi$ be the canonical homomorphism.
 - $\langle 2 \rangle 3$. $\pi \circ \phi = 0 \circ \phi$
 - $\langle 2 \rangle 4. \ \pi = 0$
 - $\langle 2 \rangle$ 5. coker $\phi = \operatorname{im} \pi$ is trivial.
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If coker $\phi = H/\operatorname{im} \phi$ is trivial then $\operatorname{im} \phi = H$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

PROOF: If it is surjective then it is epi in **Set**.

12.4 Commutator Subgroups

Proposition 12.41. Let G be a group. Let G' be the commutator subgroup of G. Then G/G' is Abelian.

PROOF: Since $ghg^{-1}h^{-1}G'=G'$ so ghG'=hgG'. \square

Proposition 12.42. Let G be a group and A an Abelian group. Let $\alpha : G \to A$ be a homomorphism. Then $G' \subseteq \ker \alpha$.

Proof: Since $\phi([g,h]) = \phi(g)\phi(h)\phi(g)^{-1}\phi(h)^{-1} = e$. \square

Corollary 12.42.1. Let G be a group. The canonical projection G woheadrightarrow G/G' is initial in the category of homomorphisms from G to an Abelian group.

Definition 12.43 (Abelian Series). A normal series of subgroups is *Abelian* iff every quotient is Abelian.

Lemma 12.44. Let G be a group. Let H be a normal subgroup of G. If G/H is Abelian then $G' \subseteq G/H$.

Proof: Given $g, h \in G$ we have

$$ghH = hgH$$
$$\therefore ghg^{-1}h^{-1} \in H$$

12.5 Derived Series

Definition 12.45 (Derived Series). Let G be a group. The *derived series* of G is the series of subgroups

$$G\supset G'\supset G''\supset G'''\supset\cdots$$

where G' is the commutator subgroup of G.

We write $G^{(i)}$ for the i+1st entry in the derived series

Proposition 12.46. Each $G^{(i)}$ is characteristic.

```
Proof:
```

 $\langle 1 \rangle 1$. G is characteristic in G.

PROOF: Trivial.

- $\langle 1 \rangle 2$. If $G^{(i)}$ is characteristic in G then $G^{(i+1)}$ is characteristic in G.
 - $\langle 2 \rangle 1$. Assume: $G^{(i)}$ is characteristic.
 - $\langle 2 \rangle 2$. Let: $\phi : G \cong G$ be an automorphism of G.
 - $\langle 2 \rangle$ 3. For all $g, h \in G^{(i)}$ we have $\phi([g, h]) \in G^{(i+1)}$.

PROOF: Since $\phi([g,h]) = [\phi(g),\phi(h)]$ and $\phi(g),\phi(h) \in G^{(i)}$.

 $\langle 2 \rangle 4. \ \phi(G^{(i+1)}) \subseteq G^{(i+1)}$

12.6 Solvable Groups

Definition 12.47 (Solvable). A group is *solvable* iff its derived series terminates in $\{e\}$.

Theorem 12.48 (Feit-Thompson). Every finite group of odd order is solvable.

Corollary 12.48.1. Every non-Abelian finite simple group has even order.

PROOF: A non-Abelian finite simple group of odd order is solvable, hence its composition factors are all Abelian. But a simple group is its own only composition factor. \Box

Proposition 12.49. Let H be a nontrivial normal subgroup of a solvable group G. Then H contains a nontrivial Abelian subgroup that is normal in G.

Proof:

- $\langle 1 \rangle 1$. Let: r be the largest number such that $H \cap G^{(r)}$ is non-trivial.
- $\langle 1 \rangle 2$. Let: $K = H \cap G^{(r)}$
- $\langle 1 \rangle 3$. K is Abelian.

PROOF: Since $[K, K] \subseteq G^{(r+1)} = \{e\}.$

 $\langle 1 \rangle 4$. K is normal.

Proof: Proposition 12.46.

Theorem 12.50 (Burnside). Let p and q be primes. Every group of order $p^a q^b$ is solvable.

Proposition 12.51. The semidirect product of two solvable groups is solvable.

```
PROOF: \begin{split} \langle 1 \rangle 1. & \text{ LET: } N \text{ and } H \text{ be solvable groups.} \\ \langle 1 \rangle 2. & \text{ LET: } \theta : H \to \text{Aut}_{\mathbf{Grp}}(N) \\ [(n_1, h_1), (n_2, h_2)] &= (n_1, h_1)(n_2, h_2)(n_1, h_1)^{-1}(n_2, h_2)^{-1} \\ &= (n_1, h_1)(n_2, h_2)(\theta(h_1^{-1})(n_1^{-1}), h_1^{-1})(\theta(h_2^{-1})(n_2^{-1}), h_2^{-1}) \\ &= (n_1\theta(h_1)(n_2), h_1h_2)(\theta(h_1^{-1})(n_1^{-1})\theta(h_1^{-1})(\theta(h_2^{-1})(n_2^{-1})), h_1^{-1}h_2^{-1}) \\ &= (n_1\theta(h_1)(n_2), h_1h_2)(\theta(h_1^{-1})(n_1^{-1}\theta(h_2^{-1})(n_2^{-1})), h_1^{-1}h_2^{-1}) \\ &= (n_1\theta(h_1)(n_2)\theta(h_1h_2)(\theta(h_1^{-1})(n_1^{-1}\theta(h_2^{-1})(n_2^{-1}))), [h_1, h_2]) \\ &= (n_1\theta_{h_1}(n_2)\theta_{h_1h_2h_1^{-1}}(n_1^{-1})\theta_{[h_1, h_2]}(n_2^{-1}), [h_1, h_2]) \end{split}
```

Proposition 12.52. Let G be a finite group. The following are equivalent.

- 1. All composition factors of G are cyclic.
- 2. G has a cyclic series of subgroups ending in $\{e\}$.
- 3. G has an Abelian series of subgroups ending in $\{e\}$.
- 4. G is solvable.

```
Proof:
```

 $\langle 1 \rangle 1. \ 1 \Rightarrow 2$

PROOF: Trivial.

 $\langle 1 \rangle 2$. $2 \Rightarrow 3$

Proof: Trivial.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 4$

 $\langle 2 \rangle 1$. Let: $G = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_n = \{e\}$ be an Abelian series of subgroups.

 $\langle 2 \rangle 2$. For all i we have $G^{(i)} \subseteq G_i$.

Proof: Lemma 12.44.

$$\langle 2 \rangle 3. \ G^{(n)} = \{e\}$$

 $\langle 1 \rangle 4. \ 4 \Rightarrow 1$

Proof: Extend the derived series of G to a composition series, using the fact that every simple Abelian group is cyclic.

Corollary 12.52.1. All p-groups are solvable.

PROOF: Their composition factors are simple p-groups, hence cyclic. \sqcup

Corollary 12.52.2. Let G be a group and N a normal subgroup. Then G is solvable if and only if both N and G/N are solvable.

Proof: By Proposition 11.134. \square

Corollary 12.52.3. The semidirect product of two solvable groups is solvable.

Corollary 12.52.4. Let G be a finite solvable group. Then the composition factors of G are exactly C_p for p a prime factor of G (with the same multiplicities).

PROOF: Since each composition factor is simple and cyclic hence removes one prime factor in |G|. \square

Chapter 13

Group Actions

13.1 Group Actions

Definition 13.1 (Action). Let G be a group. Let A be an object of a category C. A (left) action of G on A is a group homomorphism $G \to \operatorname{Aut}_{\mathcal{C}}(A)$. It is faithful or effective iff it is injective.

Proposition 13.2. Let A be a set. An action of the group G on the set A is given by a function $\cdot : G \times A \to A$ such that

- $\forall a \in A.ea = a$
- $\forall g, h \in G. \forall a \in A. (gh)a = g(ha)$

Proof: Just unfolding definitions.

Example 13.3. Left multiplication defines a faithful action of any group on its own underlying set.

In fact, for any subgroup H of a group G, left multiplication defines an action of G on G/H.

Corollary 13.3.1 (Cayley's Theorem). Every group G is a subgroup of a symmetric group, namely $\operatorname{Aut}_{\mathbf{Set}}(G)$.

Example 13.4. Conjugation $g * h = ghg^{-1}$ is an action of any group on its own underlying set.

Definition 13.5 (Transitive). An action of a group G on a set A is *transitive* iff, for all $a, b \in A$, there exists $g \in G$ such that ga = b.

Example 13.6. Left multiplication of a group G is a transitive action of G on G.

Definition 13.7 (Orbit). Given an action of a group G on a set A and $a \in A$, the *orbit* of a is

$$O_G(a) := \{ga : g \in G\}$$
.

Proposition 13.8. Given an action of a group G on a set A, the orbits form a partition of A.

Proof:

 $\langle 1 \rangle 1$. Every element of A is in some orbit.

PROOF: Since $a \in O_G(a)$.

- $\langle 1 \rangle 2$. Distinct orbits are disjoint.
 - $\langle 2 \rangle 1$. Let: $a \in \mathcal{O}_G(b) \cap \mathcal{O}_G(c)$
 - $\langle 2 \rangle 2$. Pick $g, h \in G$ such that a = gb = hc.
 - $\langle 2 \rangle 3$. $O_G(b) \subseteq O_G(c)$

PROOF: For all $k \in G$ we have $kb = kg^{-1}hc$.

 $\langle 2 \rangle 4$. $O_G(c) \subseteq O_G(b)$ PROOF: Similar.

Proposition 13.9. Given an action of a group G on a set A and $a \in A$, the action is transitive on $O_G(a)$.

Proof:

 $\langle 1 \rangle 1$. The restriction of the action is an action on $O_G(a)$.

PROOF: Since g(ha) = (gh)a, the action maps $O_G(a)$ to itself.

 $\langle 1 \rangle 2$. The restricted action is transitive.

PROOF: Given $ga, ha \in O_G(a)$, we have $ha = (hg^{-1})(ga)$.

Definition 13.10 (Stabilizer Subgroup). Given an action of a group G on a set A and $a \in A$, the *stabilizer subgroup* of a is

$$\operatorname{Stab}_{G}(a) := \{ g \in G : ga = a \}$$
.

Proposition 13.11. Stabilizer subgroups are subgroups.

PROOF: If $g, h \in \operatorname{Stab}_G(a)$ then $gh^{-1}a = a$ so $gh^{-1} \in \operatorname{Stab}_G(a)$. \square

Proposition 13.12. Let G act on a set A. Let $a \in A$ and $g \in G$. Then

$$\operatorname{Stab}_{G}(ga) = g\operatorname{Stab}_{G}(a)g^{-1}$$
.

Proof:

$$h \in \operatorname{Stab}_G(ga) \Leftrightarrow hga = ga$$

 $\Leftrightarrow g^{-1}hga = a$
 $\Leftrightarrow g^{-1}hg \in \operatorname{Stab}_G(a)$
 $\Leftrightarrow h \in g\operatorname{Stab}_G(a)g^{-1}$

Corollary 13.12.1. Let G be an action on a set A and $a \in A$. If $Stab_G(a)$ is normal in G, then for any $b \in O_G(a)$ we have $Stab_G(a) = Stab_G(b)$.

Definition 13.13 (Free). An action of a group G on a set A is *free* iff, whenever ga = a, then g = e.

Example 13.14. The action of left multiplication is free.

Proposition 13.15. Let G be a group. Let H be a subgroup of G of finite index n. Then H includes a subgroup K that is normal in G and such that |G:K| divides gcd(|G|, n!).

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } \sigma : G \to \operatorname{Aut}_{\mathbf{Set}} (G/H) \text{ be the action of left multiplication.}   \langle 1 \rangle 2. \text{ Let: } K = \ker \sigma   \langle 1 \rangle 3. K \subseteq H   \langle 2 \rangle 1. \text{ Let: } g \in K   \langle 2 \rangle 2. \sigma(g)(H) = H   \langle 2 \rangle 3. gH = H   \langle 2 \rangle 4. g \in H   \langle 1 \rangle 4. K \text{ is normal in } G.  PROOF: Proposition 11.52.  \langle 1 \rangle 5. |G:K| |G|  PROOF: Lagrange's Theorem.  \langle 1 \rangle 6. |G:K| |n!  PROOF: Since G/K is a subgroup of \operatorname{Aut}_{\mathbf{Set}} (G/H).
```

Corollary 13.15.1. Let G be a finite group. Let H be a subgroup of G of index p where p is the smallest prime that divides |G|. Then H is normal in G.

Proof:

```
\langle 1 \rangle 1. PICK a subgroup K of H normal in G such that |G:K| divides \gcd(|G|,p!). \langle 1 \rangle 2. |G:K| divides p. \langle 1 \rangle 3. |G:H||H:K| divides p. \langle 1 \rangle 4. |H:K|=1 \langle 1 \rangle 5. H=K \langle 1 \rangle 6. H is normal.
```

Corollary 13.15.2. Any subgroup of index 2 is normal.

Proposition 13.16. Let G be a group with finite set of generators A. Then left multiplication defines a free action of G on its Cayley graph.

PROOF: Easy since if $g_2 = g_1 a$ then $hg_2 = hg_1 a$. \square

Corollary 13.16.1. A free group acts freely on a tree.

Theorem 13.17. If a group G acts freely on a tree then G is free.

Corollary 13.17.1. Every subgroup of the free group on a finite set is free.

PROOF: If H is a subgroup of F(A) then left multiplication defines a free action of H on the Cayley graph of F(A), which is a tree. \square

Proposition 13.18. Let S be a finite set. Let G be a group acting on S. Let Z be the set of fixed points of the action:

$$Z = \{a \in S : \forall g \in G.ga = a\} .$$

Let A be a set of representatives for the nontrivial orbits of the action. Then

$$|S| = |Z| + \sum_{a \in A} [G : \operatorname{Stab}_G(a)]$$
.

PROOF: Immediate from the fact that the orbits partition S. \square

Corollary 13.18.1. Let p be a prime. Let S be a finite set. Let G be a p-group acting on S. Let Z be the set of fixed points of the action. Then $|Z| \cong |S| \pmod{p}$.

Corollary 13.18.2. Let p be a prime. Let S be a finite set. Let G be a p-group acting on S. If p does not divide |S| then the action has a fixed point.

Category of G-Sets 13.2

Definition 13.19. Given a group G, let $G - \mathbf{Set}$ be the category with:

- objects all pairs (A, ρ) such that A is a set and $\rho: G \times A \to A$ is an action of G on A;
- morphisms $f:(A,\rho)\to (B,\sigma)$ are functions $f:A\to B$ that are (G-) equivariant, i.e.

$$\forall g \in G. \forall a \in A. f(\rho(g, a)) = \sigma(g, f(a))$$
.

Proposition 13.20. A G-equivariant function $f: A \to B$ is an isomorphism in G – **Set** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Let: $f: A \to B$ be G-equivariant and bijective. PROVE: f^{-1} is G-equivariant. $\langle 1 \rangle 2$. Let: $g \in G$ and $b \in B$

 $\langle 1 \rangle 3. \ f^{-1}(gb) = gf^{-1}(b)$

Proof:

$$f(f^{-1}(gb)) = gb$$

= $gf(f^{-1}(b))$
= $f(gf^{-1}(b))$

Proposition 13.21. Let G be a group and A a transitive G-set. Let $a \in A$. Then A is isomorphic to $G/\operatorname{Stab}_G(a)$ under left multiplication.

Proof:

 $\langle 1 \rangle 1$. Let: $f: G/\operatorname{Stab}_G(a) \to A$ be the function $f(g\operatorname{Stab}_G(a)) = ga$.

$$\langle 2 \rangle 1$$
. Assume: $g\operatorname{Stab}_{G}(a) = h\operatorname{Stab}_{G}(a)$

PROVE: ga = ha

 $\langle 2 \rangle 2. \ g^{-1}h \in \operatorname{Stab}_G(a)$

 $\langle 2 \rangle 3.$ $g^{-1}ha = a$

 $\langle 2 \rangle 4$. ha = ga

 $\langle 1 \rangle 2$. f is G-equivariant.

PROOF: Since $f(gh\operatorname{Stab}_G(a)) = gha = gf(h\operatorname{Stab}_G(a))$.

 $\langle 1 \rangle 3$. f is injective.

PROOF: If ga = ha then $g^{-1}h \in \operatorname{Stab}_G(a)$ so $g\operatorname{Stab}_G(a) = h\operatorname{Stab}_G(a)$.

 $\langle 1 \rangle 4$. f is surjective.

PROOF: Since for all $b \in A$ there exists $g \in G$ such that ga = b.

Corollary 13.21.1. If O is an orbit of the action of a finite group G on a set A, then O is finite and |O| divides |G|.

Corollary 13.21.2. Let H be a subgroup of G and $g \in G$. Then

$$G/H \cong G/(gHg^{-1})$$

in $G - \mathbf{Set}$.

PROOF: Taking A = G/H and a = gH. \square

Proposition 13.22. Given a family of G-sets $\{A_i\}_{i\in I}$, we have $\prod_{i\in I} A_i$ is their product in G – **Set** under

$$g\{a_i\}_{i\in I} = \{ga_i\}_{i\in I}$$
.

Proof: Easy.

Proposition 13.23. Given a family of G-sets $\{A_i\}_{i\in I}$, we have $\coprod_{i\in I} A_i$ is their product in G – **Set** under

$$g(i,a_i) = (i,ga_i) .$$

Proof: Easy. \square

Proposition 13.24. Every finite G-set is a coproduct of G-sets of the form G/H.

PROOF: If $O(a_1), \ldots, O(a_n)$ are the orbits of the G-set A, then G is the coproduct of $G/\operatorname{Stab}_G(a_1), \ldots, G/\operatorname{Stab}_G(a_n)$. \square

Proposition 13.25. For any group G we have $G \cong \operatorname{Aut}_{G-\mathbf{Set}}(G)$ (considering G as a G-set under left multiplication).

- 13.3 Center

 $\langle 2 \rangle 3. \ \sigma(h) = hg$

 $\langle 2 \rangle 2$. Let: $g = \sigma(e)$

PROVE: $\sigma = \phi(g^{-1})$

PROOF: $\sigma(h) = \sigma(he) = h\sigma(e) = hg$.

Definition 13.26 (Center). The *center* of a group G, Z(G), is the kernel of the conjugation action $\sigma: G \to S_G$.

Proposition 13.27. The center of a group G is

$$Z(G) = \{g \in G : \forall a \in G.ag = ga\} \ .$$

PROOF: Immediate from definitions. \square

Lemma 13.28. Let G be a finite group. Assume G/Z(G) is cyclic. Then G is Abelian and so G/Z(G) is trivial.

Proof:

- $\langle 1 \rangle 1$. Pick $q \in G$ such that qZ(G) generates G/Z(G).
- $\langle 1 \rangle 2$. Let: $a, b \in G$
- (1)3. Pick $r, s \in \mathbb{Z}$ such that $aZ(G) = g^r Z(G)$ and $bZ(G) = g^s Z(G)$
- $\langle 1 \rangle 4$. Let: $z = g^{-r}a \in Z(G)$ and $w = g^{-s}b \in Z(G)$
- $\langle 1 \rangle 5$. $a = g^r z$ and $b = g^s w$
- $\langle 1 \rangle 6$. ab = ba

$$ab = g^r z g^s w$$

$$= g^{r+s} z w$$

$$= g^s w g^r z$$

$$= ba$$

13.3. CENTER 103

П

Proposition 13.29. Let G be a group. Let N be a subgroup of Z(G). Then N is normal in G.

PROOF: For all $n \in N$ and $g \in G$ we have $gng^{-1} = ngg^{-1} = n \in N$ since $n \in Z(G)$. \square

Proposition 13.30. For any group G we have $G/Z(G) \cong \text{Inn}(G)$.

PROOF: The homomorphism $g \mapsto \gamma_g$ is a surjective homomorphism with kernel Z(G). \square

Proposition 13.31. Let p and q be prime integers. Let G be a group of order pq. Then either G is Abelian or the center of G is trivial.

PROOF: Otherwise we would have |Z(G)| = p say and so |Inn(G)| = q, meaning |Inn(G)| = q,

Theorem 13.32 (First Sylow Theorem). Let p be a prime and $k \in \mathbb{N}$. Let G be a finite group. If p^k divides |G| then G has a subgroup of order p^k .

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the statement is true for all groups smaller than G.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $k \neq 0$ and $|G| \neq p$
- $\langle 1 \rangle$ 3. CASE: There exists a proper subgroup H of G such that p does not divide [G:H].

PROOF: Then H has a subgroup of order p^k by induction hypothesis $\langle 1 \rangle 1$.

- $\langle 1 \rangle 4$. CASE: For every proper subgroup H of G we have p divides [G:H].
 - $\langle 2 \rangle 1$. p divides |Z(G)|.

PROOF: By the Class Formula.

 $\langle 2 \rangle 2$. Pick $a \in Z(G)$ that has order p.

PROOF: Cauchy's Theorem.

- $\langle 2 \rangle 3$. Let: $N = \langle a \rangle$
- $\langle 2 \rangle 4$. N is normal.

Proof: Proposition 13.29.

- $\langle 2 \rangle 5.$ p^{k-1} divides |G/N|.
- $\langle 2 \rangle$ 6. PICK a subgroup Q of G/N of order p^{k-1} .

PROOF: Induction hypothesis $\langle 1 \rangle 1$.

- $\langle 2 \rangle 7$. Let: $P = \pi^{-1}(Q)$
- $\langle 2 \rangle 8. |P| = p^k$

Theorem 13.33 (Second Sylow Theorem). Let G be a finite group. Let p be a prime. Let P be a p-Sylow subgroup of G. Let H be a subgroup of G that is a p-group. Then H is a subgroup of a conjugate of P.

 $\langle 1 \rangle 1$. PICK a fixed point gP for the action of H on the set of left cosets of P by left multiplication.

Proof: Corollary 13.18.2.

- $\langle 1 \rangle 2$. For all $h \in H$ we have hgP = gP
- $\langle 1 \rangle 3. \ H \subseteq gPg^{-1}$

Proposition 13.34.

$$Z(G \times H) = Z(G) \times Z(H)$$

Proof:

$$(g,h) \in Z(G \times H) \Leftrightarrow \forall g' \in G. \forall h' \in H.(g,h)(g',h') = (g',h')(g,h)$$

$$\Leftrightarrow \forall g' \in G. \forall h' \in H.(gg',hh') = (g'g,h'h)$$

$$\Leftrightarrow \forall g' \in G. \forall h' \in H(gg' = g'g \wedge hh' = h'h)$$

$$\Leftrightarrow g \in Z(G) \wedge h \in Z(H)$$

13.4 Centralizer

Definition 13.35 (Centralizer). Let G be a group. Let $a \in G$. The *centralizer* or *normalizer* of a, denoted $Z_G(a)$, is the stabilizer of a under the action of conjugation.

Proposition 13.36.

$$Z_G(a) = \{ g \in G : ga = ag \}$$

Proof: Immediate from definitions. \Box

13.5 Conjugacy Class

Definition 13.37 (Conjugacy Class). Let G be a group. Let $a \in G$. The *conjugacy class* of a, denoted [a], is the orbit of a under the action of conjugation.

Proposition 13.38 (Class Formula). Let G be a finite group. Let A be a set of representatives of the non-trivial conjugacy classes. Then

$$|G| = |Z(G)| + \sum_{a \in A} [G : Z(a)]$$
.

Proof: Proposition 13.18. \square

Corollary 13.38.1. Let p be a prime. Let G be a p-group and H a nontrivial normal subgroup of G. Then $H \cap Z(G) \neq \{e\}$.

PROOF: Let A be a set of representatives of the non-trivial conjugacy classes. Let $A \cap H = \{a_1, \dots, a_n\}$. Then

$$|H| = |H \cap Z(G)| + \sum_{i=1}^{n} [G : Z(a_i)]$$
.

Since $p \mid |H|$ and $p \mid [G:Z(a_i)]$ for all i, we have $p \mid |H \cap Z(G)|$. \square

Corollary 13.38.2. Let p be a prime. Every p-group has a non-trivial center.

Corollary 13.38.3. Let p be a prime. Every group G of order p^2 is Abelian.

Proof: By Proposition 13.31.

Proposition 13.39. Let p be a prime and r a non-negative integer. Let G be a group of order p^r . Then, for k = 0, 1, ..., r, we have G has a normal subgroup of order p^k .

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result holds for r' < r.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. k > 0

PROOF: Since $\{e\}$ is a normal subgroup of order p^0 .

- $\langle 1 \rangle 3$. PICK a subgroup N of Z(G) of order p.
 - $\langle 2 \rangle 1.$ $p \mid |Z(G)|$

PROOF: From Corollary 13.38.2.

 $\langle 2 \rangle 2$. Z(G) has a subgroup of order p.

PROOF: Cauchy's Theorem.

 $\langle 1 \rangle 4$. N is normal.

Proof: Proposition 13.29.

 $\langle 1 \rangle$ 5. PICK a normal subgroup M of G/N of order p^{k-1} .

PROOF: From the induction hypothesis $\langle 1 \rangle 1$.

 $\langle 1 \rangle$ 6. $\pi^{-1}(M)$ is a normal subgroup of G of order p^k .

Example 13.40. The only non-Abelian group of order 6 is S_3 .

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-Adelian group of order 6.
- $\langle 1 \rangle 2$. $Z(G) = \{e\}$

PROOF: Otherwise $\mathbb{Z}(G)$ has order 2 or 3 and is cyclic, contradicting Lemma 13.28.

 $\langle 1 \rangle 3$. G has three conjugacy classes: Z(G), a class of size 2 and a class of size 3.

PROOF: By the Class Formula since the only way to make 5 using non-trivial factors of 6 is 2+3.

 $\langle 1 \rangle 4$. PICK an element $y \in G$ of order 3.

PROOF: It cannot be that every element is of order ≤ 2 by Proposition 12.20.

 $\langle 1 \rangle 5$. $\langle y \rangle$ is normal in G.

PROOF: Since it has index 2.

 $\langle 1 \rangle 6$. The conjugacy class y is $\{y, y^2\}$.

PROOF: Since $\langle y \rangle$ must be a union of conjugacy classes.

 $\langle 1 \rangle 7$. The conjugacy class of size 2 is $\{y, y^2\}$.

PROOF: Since y^2 has order 3 and so its conjugacy class is of size 2 similarly, and there is only one conjugacy class of size 2.

 $\langle 1 \rangle 8$. Pick $x \in G$ such that $yx = xy^2$.

PROOF: y^2 is conjugate to y so there exists x such that $x^{-1}yx = y^2$.

 $\langle 1 \rangle 9$. x has order 2.

PROOF: x is not in the conjugacy class of size 2 so its order cannot be 3.

 $\langle 1 \rangle 10$. x and y generate G.

PROOF: Since e, y, y^2, x, xy, xy^2 are all distinct.

 $\langle 1 \rangle 11$. $G \cong S_3$

Proof: We now know the entire multiplication table of G.

Proposition 13.41. Let G be a finite group. Let H be a subgroup of G of order 2. Let $a \in H$. Let $[a]_H$ be the conjugacy class of a in H, and $[a]_G$ the conjugacy class of a in G. If $Z_G(a) \subseteq H$ then $[a]_H$ is half the size of $[a]_G$; otherwise, $[a]_H = [a]_G$.

Proof:

 $\langle 1 \rangle 1$. *H* is normal in *G*.

PROOF: Corollary 13.15.2.

- $\langle 1 \rangle 2$. $HZ_G(a)$ is a subgroup of G.
- $\langle 1 \rangle 3$. H is normal in $HZ_G(a)$.
- $\langle 1 \rangle 4$. $H \cap Z_G(a)$ is normal in $Z_G(a)$.
- $\langle 1 \rangle 5$.

$$\frac{HZ_G(a)}{H} \cong \frac{Z_G(a)}{H \cap Z_G(a)}$$

 $\langle 1 \rangle 6$. If $Z_G(a) \subseteq H$ then $|[a]_H| = |[a]_G|/2$.

PROOF: In this case we have $Z_H(a) = Z_G(a)$ and so $|[a]_H| = |H|/|Z_H(a)| = (|G|/2)/|Z_G(a)| = |[a]_G|/2$.

 $\langle 1 \rangle 7$. If $Z_G(a) \nsubseteq H$ then $[a]_H = [a]_G$.

Proof:

- $\langle 2 \rangle 1$. Pick $b \in Z_G(a) H$
- $\langle 2 \rangle 2$. $Hb^{-1} = G H$
- $\langle 2 \rangle 3.$ $G = HZ_G(a)$

PROOF: For $x \in H$ we have x = xe and for $x \notin H$ we have $x \in Hb^{-1}$ hence $xb \in H$ and x = (xb)b.

 $\langle 2 \rangle 4. \ |[a]_H| = |[a]_G|$

$$|[a]_{H}| = \frac{|H|}{|Z_{H}(a)|}$$

$$= \frac{|H|}{|H \cap Z_{G}(a)|}$$

$$= \frac{|Z_{G}(a)||H|}{|Z_{G}(a)||H \cap Z_{G}(a)|}$$

$$= \frac{|HZ_{G}(a)|}{|Z_{G}(a)|}$$

$$= \frac{|G|}{|Z_{G}(a)|}$$

$$= |[a]_{G}|$$

13.6 Conjugation on Sets

Definition 13.42 (Conjugation). Let G be a group. Define an action of G on $\mathcal{P}G$ called *conjugation* that takes g and A to

$$gAg^{-1} = \{gag^{-1} : a \in A\}$$
.

Proposition 13.43. The conjugate of a subgroup is a subgroup.

PROOF: Let H be a subgroup of G. Given $gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1}$, we have $(gh_1g^{-1})(gh_2g^{-1})^{-1} = gh_1h_2^{-1}g^{-1} \in gHg^{-1}$.

Definition 13.44 (Normalizer). Let G be a group and $A \subseteq G$. The *normalizer* of A, denoted $N_G(A)$, is its stabilizer under conjugation.

Proposition 13.45. Let G be a group, $g \in G$ and A a finite subset of G. If $gAg^{-1} \subseteq A$ then $gAg^{-1} = A$ and so $g \in N_G(A)$.

PROOF: Conjugation by q is an injection from A into A, hence a bijection. \square

Proposition 13.46. Let G be a group and H a subgroup of G. Then $N_G(H)$ is the largest subgroup of G that includes H such that H is normal in $N_G(H)$.

Proof:

 $\langle 1 \rangle 1$. $N_G(H)$ is a subgroup of G.

PROOF: If $a, b \in N_G(H)$ then $ab^{-1}Hba^{-1} = aHa^{-1} = H$ so $ab^{-1} \in N_G(H)$.

 $\langle 1 \rangle 2$. $H \subseteq N_G(H)$

Proof: Easy.

 $\langle 1 \rangle 3$. H is normal in $N_G(H)$.

PROOF: If $a \in N_G(H)$ then $aHa^{-1} = H$ by definition.

 $\langle 1 \rangle 4$. For any subgroup K of G, if $H \subseteq K$ and H is normal in K then $K \subseteq N_G(H)$.

PROOF: H is normal in K means that, for all $a \in K$, we have $aHa^{-1} = H$ and so $a \in N_G(H)$.

Corollary 13.46.1. Let G be a group and H a subgroup of G. Then H is normal if and only if $G = N_G(H)$.

Proposition 13.47. Let G be a group and H a subgroup of G. If $[G:N_G(H)]$ is finite, then it is the number of subgroups conjugate to H.

PROOF: By the Orbit-Stabilizer Theorem.

Corollary 13.47.1. Let G be a group and H a subgroup of G. If [G : H] is finite, the the number of subgroups conjugate to H is finite and divides [G : H].

Lemma 13.48. Let H be a p-group that is a subgroup of a finite group G. Then

$$[N_G(H):H] \equiv [G:H] \pmod{p} .$$

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. H is non-trivial.
- $\langle 1 \rangle$ 2. gH is a fixed point of the action of H on the set of left cosets of H by left multiplication if and only if $g \in N_G(H)$.

Proof:

gH is a fixed point $\Leftrightarrow \forall h \in H.hgH = gH$

$$\Leftrightarrow H \subseteq gHg^{-1}$$

$$\Leftrightarrow H = gHg^{-1} \qquad (|gHg^{-1}| = |H|)$$

$$\Leftrightarrow g \in N_G(H)$$

- $\langle 1 \rangle 3$. The number of fixed points in $[N_G(H):H]$.
- $\langle 1 \rangle 4$. Q.E.D.

Proof: Corollary 13.18.1.

r ROOF: Colollary 13

Proposition 13.49. Let H be a p-subgroup of a finite group G that is not a p-Sylow subgroup. Then there exists a p-subgroup H' of G such that H is a normal subgroup of H' and [H':H]=p.

Proof:

 $\langle 1 \rangle 1$. p divides $[N_G(H): H]$.

Proof: Lemma 13.48.

 $\langle 1 \rangle 2$. Pick $gH \in N_G(H)/H$ of order p.

PROOF: Cauchy's Theorem.

- $\langle 1 \rangle 3$. Let: $H' = \pi^{-1}(\langle gH \rangle)$
- $\langle 1 \rangle 4$. H is a normal subgroup of H'.
- $\langle 1 \rangle 5. \ [H':H] = p$

Corollary 13.49.1. No p-group of order $\geq p^2$ is simple.

Lemma 13.50. Let p be a prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Every p-subgroup of $N_G(P)$ is a subgroup of P.

Proof:

- $\langle 1 \rangle 1$. Let: H be a p-subgroup of $N_G(P)$.
- $\langle 1 \rangle 2$. P is normal in $N_G(P)$.

Proof: Proposition 13.46.

 $\langle 1 \rangle 3$. PH is a subgroup of $N_G(P)$.

PROOF: Second Isomorphism Theorem.

 $\langle 1 \rangle 4$. $|PH/P| = |H/(P \cap H)|$

PROOF: Second Isomorphism Theorem.

- $\langle 1 \rangle 5$. PH is a p-group.
 - $\langle 2 \rangle 1$. Assume: for a contradiction q is prime, $q \mid |PH|$ and $q \neq p$

```
\langle 2 \rangle 2. \ q \mid |PH/P|

\langle 2 \rangle 3. \ q \mid |H/(P \cap H)|

\langle 2 \rangle 4. \ q \mid |H|

\langle 2 \rangle 5. \ Q.E.D.

PROOF: This contradicts the fact that H is a p-group, \langle 1 \rangle 1.

\langle 1 \rangle 6. \ PH = P

PROOF: By maximality of P.

\langle 1 \rangle 7. \ H \subseteq P
```

Lemma 13.51. Let p be a prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Let P act by conjugation on the set of p-Sylow subgroups of G. Then P is the unique fixed point of this action.

Proof:

```
\langle 1 \rangle 1. P is a fixed point of this action. PROOF: For any x \in P we have xPx^{-1} = P. \langle 1 \rangle 2. If Q is any fixed point of the action then Q = P. \langle 2 \rangle 1. Let: Q be a fixed point of the action. \langle 2 \rangle 2. For all x \in P we have xQx^{-1} = Q. \langle 2 \rangle 3. P \subseteq N_G(Q) \langle 2 \rangle 4. P \subseteq Q PROOF: Lemma 13.50. \langle 2 \rangle 5. P = Q PROOF: Since |P| = |Q|.
```

Theorem 13.52 (Third Sylow Theorem). Let p be a prime. Let G be a finite group of order p^rm where p does not divide m. Then the number of p-Sylow subgroups of G divides m and is congruent to 1 modulo p.

Proof:

```
\langle 1 \rangle 1. Let: N_p be the number of p-Sylow subgroups of G. \langle 1 \rangle 2. Pick a p-Sylow subgroup P. Proof: One exists by the First Sylow Theorem.
```

 $\langle 1 \rangle$ 3. The p-Sylow subgroups of G are exactly the conjugates of P.

Proof: Second Sylow Theorem

```
\begin{split} \langle 1 \rangle 4. & \ m = N_p[N_G(P):P] \\ \text{PROOF: Since } N_p = [G:N_G(P)] \text{ by Proposition 13.47.} \\ \langle 1 \rangle 5. & \ N_p \text{ divides } m. \\ \langle 1 \rangle 6. & \ mN_p \equiv m (\text{mod } p) \\ & \ \langle 2 \rangle 1. & \ m \equiv [N_G(P):P] (\text{mod } p) \\ & \ \text{PROOF: Lemma 13.48.} \\ & \ \langle 2 \rangle 2. & \ mN_p \equiv m (\text{mod } p) \end{split}
```

PROOF: By $\langle 1 \rangle 4$. $\langle 1 \rangle 7$. $N_p \equiv 1 \pmod{p}$

Proof:

```
\langle 1 \rangle 1. Let: N_p be the number of p-Sylow subgroups of G.
\langle 1 \rangle 2. Pick a p-Sylow subgroup P of G.
   PROOF: First Sylow Theorem.
\langle 1 \rangle 3. N_p is the number of conjugates of P.
   PROOF: Second Sylow Theorem.
\langle 1 \rangle 4. N_p \mid m
   Proof: Corollary 13.47.1.
\langle 1 \rangle 5. P acts on the set of conjugates of P with one fixed point.
   PROOF: Lemma 13.51.
\langle 1 \rangle 6. \ N_p \equiv 1 \pmod{p}
   Proof: Corollary 13.18.1.
Corollary 13.52.1. Let G be a finite group. Let p be a prime number. If
|G| = mp^r and the only divisor d of m such that d \equiv 1 \pmod{p} is d = 1, then G
is not simple.
PROOF: There must be 1 p-Sylow subgroup, which has order p^r and is normal.
Corollary 13.52.2. Let G be a finite group. Let p be a prime number. If
|G| = mp^r where 1 < m < p then G is not simple.
Proposition 13.53. Let p and q be prime numbers with p < q. Let G be a
group of order pq with a normal subgroup H of order p. Then G is cyclic.
Proof:
\langle 1 \rangle 1. Let: \gamma : G \to \operatorname{Aut}_{\mathbf{Grp}}(H) be the action of conjugation.
\langle 1 \rangle 2. H is cyclic of order p.
\langle 1 \rangle 3. |\operatorname{Aut}_{\mathbf{Grp}}(H)| = p - 1
\langle 1 \rangle 4. |\operatorname{im} \gamma| |pq|
   PROOF: Since im \gamma is a quotient group of G.
\langle 1 \rangle 5. |\operatorname{im} \gamma| |p-1
\langle 1 \rangle 6. |\operatorname{im} \gamma| = 1
\langle 1 \rangle 7. \ \gamma = 0
\langle 1 \rangle 8. \ H \subseteq Z(G)
\langle 1 \rangle 9. G is Abelian.
   Proof: Lemma 13.28.
\langle 1 \rangle 10. PICK an element g of order p.
   PROOF: Cauchy's Theorem.
\langle 1 \rangle 11. Pick an element h of order q.
   PROOF: Cauchy's Theorem.
\langle 1 \rangle 12. |gh| = pq
   Proof: Proposition 10.22.
Proof:
```

 $\langle 1 \rangle 1$. Assume: w.l.o.g. $q \not\equiv 1 \pmod{p}$

PROOF: Since the only non-cyclic group of order 6 is S_3 which does not have a normal subgroup of order 2.

- $\langle 1 \rangle 2$. PICK a subgroup K of order q.
- $\langle 1 \rangle 3$. K is normal.

PROOF: Since K is the unique q-Sylow subgroup by the Third Sylow Theorem.

- $\langle 1 \rangle 4$. $H \cap K = \{e\}$
- $\langle 1 \rangle 5$. $HK \cong H \times K$

PROOF: Proposition ??.

- $\langle 1 \rangle 6$. |HK| = pq
- $\langle 1 \rangle 7$. HK = G
- $\langle 1 \rangle 8. \ G \cong \mathbb{Z}/pq\mathbb{Z}$

Proof:

$$G \cong H \times K$$

$$\cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$$

$$\cong \mathbb{Z}/pq\mathbb{Z}$$

Corollary 13.53.1. Let p and q be prime numbers with p < q and $q \not\equiv 1 \pmod{p}$. Then the only group of order pq is the cyclic group.

PROOF: By the Third Sylow Theorem, such a group must have exactly one p-Sylow subgroup, which is therefore normal. \square

Proposition 13.54. Let p be prime. Let G be a finite group. Let P be a p-Sylow subgroup of G. Then

$$N_G(N_G(P)) = N_G(P)$$
.

Proof:

 $\langle 1 \rangle 1$. P is normal in $N_G(P)$.

Proof: Proposition 13.46.

 $\langle 1 \rangle 2$. $N_G(P)$ is normal in $N_G(N_G(P))$.

Proof: Proposition 13.46.

 $\langle 1 \rangle 3$. P is normal in $N_G(N_G(P))$.

Proof: Corollary 11.119.1.

 $\langle 1 \rangle 4. \ N_G(N_G(P)) \subseteq N_G(P)$

Proof: Proposition 13.46.

$$\langle 1 \rangle 5. \ N_G(N_G(P)) = N_G(P)$$

Proposition 13.55. Let p, q and r be three distinct prime numbers. Then there is no simple group of order pqr.

Proof:

- $\langle 1 \rangle 1$. Let: G be a group of order pqr.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. p < q < r
- $\langle 1 \rangle 3$. Assume: for a contradiction G is simple.
- $\langle 1 \rangle 4$. The number of subgroups of order p is at least p+1.

PROOF: Third Sylow Theorem

 $\langle 1 \rangle 5$. The number of subgroups of order q is at least q+1.

Proof: Third Sylow Theorem

 $\langle 1 \rangle 6$. The number of subgroups of order r is pq.

PROOF: By the Third Sylow Theorem, the number divides pq, and it cannot be 1 (lest that subgroup be normal) or p or q (as these are less than r hence not congruent to 1 modulo r).

- $\langle 1 \rangle$ 7. There are at least p^2-1 elements of order p. $\langle 1 \rangle$ 8. There are at least q^2-1 elements of order q.
- $\langle 1 \rangle 9$. There are at least pqr pq elements of order r.
- $\langle 1 \rangle 10$. Q.E.D.

PROOF: This is a contradiction as the total number of elements of order 1, p, q and r is

$$1 + (p^{2} - 1) + (q^{2} - 1) + (pqr - pq) = p^{2} + q^{2} + pqr - pq - 1$$

$$> pqr + p^{2} - 1$$

$$> pqr$$

П

Proposition 13.56. Let G be a finite simple group. Let H be a subgroup of G of index N > 1. Then |G| divides N!.

- (1)1. PICK a subgroup K of H that is normal in G such that [G:K] divides $\gcd(|G|, N!).$
- $\langle 1 \rangle 2. \ K = \{e\}$
- $\langle 1 \rangle 3. \ [G:K] = |G|$
- $\langle 1 \rangle 4$. |G| divides N!

Corollary 13.56.1. Let G be a finite simple group. Let p be a prime factor of |G|. Let N_p be the number of p-Sylow subgroups of G. Then |G| divides $N_p!$.

PROOF: Since $N_p = [G : N_G(P)]$ and $N_p > 1$ since G is simple.

Definition 13.57 (Centralizer). Let G be a group and $A \subseteq G$. The *centralizer* of A is

$$Z_G(A) := \{ g \in G : \forall a \in A. gag^{-1} = a \} .$$

Proposition 13.58. Let H and K be subgroups of G with $H \subseteq N_G(K)$. Then the function $\gamma: H \to \operatorname{Aut}_{\mathbf{Grp}}(K)$ defined by conjugation

$$\gamma_h(k) = hkh^{-1}$$

is a homomorphism of groups with $\ker \gamma = H \cap Z_G(K)$.

Proof:

- $\langle 1 \rangle 1$. For all $g, h \in H$ we have $\gamma_{gh} = \gamma_g \circ \gamma_h$. PROOF: Since $\gamma_{gh}(k) = \gamma_g(\gamma_h(k)) = ghkh^{-1}g^{-1}$.
- $\langle 1 \rangle 2$. For all $h \in H$ we have $\gamma_h = \mathrm{id}_K$ iff $h \in Z_G(K)$.

PROOF: Both are equivalent to $\forall k \in K.hkh^{-1} = k$, i.e. $\forall k \in K.hk = kh$.

13.7 Nilpotent Groups

Definition 13.59 (Nilpotent). Let G be a group. Define inductively a sequence (Z_n) of subgroups of G by $Z_0 = \{e\}$, and Z_{i+1} is the inverse image under π of the center of G/Z_i .

Then G is nilpotent iff $Z_n = G$ for some n.

We prove this is well-defined by proving that, for all i, we have Z_i is normal in G.

Proof:

 $\langle 1 \rangle 1$. Assume: as induction hypothesis Z_i is normal in G.

PROVE: Z_{i+1} is normal in G.

 $\langle 1 \rangle 2$. Let: $x \in Z_{i+1}$ and $g \in G$

PROVE: $gxg^{-1} \in Z_{i+1}$

PROVE: For all $h \in G$ we have $gxg^{-1}hZ_i = hgxg^{-1}Z_i$

 $\langle 1 \rangle 3$. Let: $h \in G$

 $\langle 1 \rangle 4. \ qxq^{-1}hZ_i = hqxq^{-1}Z_i$

PROOF:

$$gxg^{-1}hZ_i = gg^{-1}hxZ_i$$
$$= hxZ_i$$
$$= hgg^{-1}xZ_i$$
$$= hqxg^{-1}Z_i$$

П

Proposition 13.60. Every Abelian group is nilpotent.

PROOF: Let G be an Abelian group. The center of G/Z_0 is G/Z_0 , hence $Z_1 = G$.

Example 13.61. The semidirect product of two nilpotent groups is not necessarily nilpotent. S_3 is the semidirect product of $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ but is not nilpotent.

Proposition 13.62. Let G be a group. Then G is nilpotent if and only if G/Z(G) is nilpotent.

Proof:

- $\langle 1 \rangle 1$. Let: (Z_n) be the sequence of subgroups of G where $Z_0 = \{e\}$ and Z_{n+1} is the inverse image of the center of G/Z_n .
- $\langle 1 \rangle 2$. $G/Z_0 \cong G$
- $\langle 1 \rangle 3. \ Z_1 = Z(G)$
- $\langle 1 \rangle 4$. The corresponding sequence of subgroups for G/Z(G) is $G/Z(G), Z_2/Z(G), Z_3/Z(G), \ldots$
- $\langle 1 \rangle$ 5. G is nilpotent iff G/Z(G) is nilpotent.

PROOF: Both are equivalent to $\exists n. Z_n = g$ and to $\exists n. Z_n/Z(G) = G/Z(G)$.

Proposition 13.63. Every p-group is nilpotent.

PROOF: Each Z_n is a p-group and so has non-trivial center, hence each Z_{n+1} is larger than Z_n and so the sequence must terminate. \square

Proposition 13.64. Every nilpotent group is solvable.

PROOF: Let (Z_n) be the defining sequence of subgroups. Then $Z_{n+1}/Z_n = Z(G/Z_n)$ is Abelian for all n, hence the group is solvable by Proposition 12.52.

Example 13.65. The converse is not true — S_3 is solvable but not nilpotent.

Proposition 13.66. Let G be a nilpotent group. Then every nontrivial normal subgroup of G intersects Z(G) non-trivially.

Proof:

- $\langle 1 \rangle 1$. Let: H be a nontrivial normal subgroup of G.
- $\langle 1 \rangle 2$. Let: (Z_n) be the sequence of subgroups with $Z_0 = \{e\}$ and Z_{n+1} the inverse image of $Z(G/Z_n)$.
- $\langle 1 \rangle 3$. Let: r be least such that $H \cap Z_r \neq \{e\}$.
- $\langle 1 \rangle 4$. PICK $h \in H \cap Z_r$ with $h \neq e$.
- $\langle 1 \rangle 5. \ hZ_{r-1} \in Z(G/Z_{r-1})$
- $\langle 1 \rangle 6$. For all $g \in G$ we have $ghZ_{r-1} = hgZ_{r-1}$
- $\langle 1 \rangle 7$. For all $g \in G$ we have $ghg^{-1}h^{-1} \in Z_{r-1}$
- $\langle 1 \rangle 8$. For all $g \in G$ we have $ghg^{-1}h^{-1} = e$

PROOF: Since $ghg^{-1}h^{-1} \in H$ and $H \cap Z_{r-1} = \{e\}$.

- $\langle 1 \rangle 9$. For all $g \in G$ we have gh = hg
- $\langle 1 \rangle 10. \ h \in H \cap Z(G)$

Example 13.67. We cannot weaken the hypothesis to G being solvable. S_3 is solvable and $\mathbb{Z}/2\mathbb{Z}$ is a nontrivial normal subgroup but its intersection with $Z(S_3)$ is just $\{e\}$.

Proposition 13.68. Let G be a finite nilpotent group. Let H be a proper subgroup of G. Then $H \subseteq N_G(H)$.

Proof

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the theorem holds for all groups smaller than G.
- $\langle 1 \rangle 2$. Z(G) is non-trivial.
- $\langle 1 \rangle 3$. Case: $Z(G) \not\subseteq H$
 - $\langle 2 \rangle 1$. Pick $g \in Z(G) H$
 - $\langle 2 \rangle 2. \ g \in N_G(H) H$
- $\langle 1 \rangle 4$. Case: $Z(G) \subseteq H$
 - $\langle 2 \rangle 1. \ H/Z(G) \subsetneq N_{G/Z(G)}(H/Z(G))$

PROOF: By induction hypothesis $\langle 1 \rangle 1$.

- $\langle 2 \rangle 2$. PICK g such that $gZ(G) \in N_{G/Z(G)}(H/Z(G)) H/Z(G)$
- $\langle 2 \rangle 3. \ g \in N_G(H)$
 - $\langle 3 \rangle 1$. Let: $h \in H$

```
Prove: ghg^{-1} \in H
    \langle 3 \rangle 2. ghg^{-1}Z(G) \in H/Z(G)
    \langle 3 \rangle 3. Pick h_1 \in H such that ghg^{-1}Z(G) = h_1Z(G)
   \langle 3 \rangle 4. \ ghg^{-1}h_1^{-1} \in Z(G)
\langle 3 \rangle 5. \ ghg^{-1}h_1^{-1} \in H
        Proof: \langle 1 \rangle 4
    \langle 3 \rangle 6. \ ghg^{-1} \in H
\langle 2 \rangle 4. \ g \notin H
```

Corollary 13.68.1. Let G be a finite group. Then G is nilpotent if and only if every Sylow subgroup of G is normal.

```
Proof:
\langle 1 \rangle 1. If G is nilpotent then every Sylow subgroup of G is normal.
   \langle 2 \rangle 1. Assume: G is nilpotent.
   \langle 2 \rangle 2. Let: P be Sylow subgroup of G
   \langle 2 \rangle 3. \ N_G(P) = N_G(N_G(P))
      Proof: Proposition 13.54.
   \langle 2 \rangle 4. N_G(P) = G
      Proof: Proposition 13.68.
   \langle 2 \rangle 5. P is normal.
\langle 1 \rangle 2. If every Sylow subgroup of G is normal then G is nilpotent.
   \langle 2 \rangle 1. Assume: As induction hypothesis the result holds for all groups smaller
                       than G.
   \langle 2 \rangle 2. Assume: Every Sylow subgroup of G is normal.
   \langle 2 \rangle 3. Let: P_1, \ldots, P_r be the nontrivial Sylow subgroups of G.
   \langle 2 \rangle 4. G \cong P_1 \times \cdots \times P_r
      Proof: Proposition 11.120.
   \langle 2 \rangle5. Assume: w.l.o.g. r > 1
      PROOF: The case r = 1 holds by Proposition 13.63.
   \langle 2 \rangle 6. \ Z(G) \cong Z(P_1) \times \cdots \times Z(P_r)
      Proof: Proposition 13.34.
   \langle 2 \rangle 7. \ G/Z(G) \cong P_1/Z(P_1) \times \cdots \times P_r/Z(P_r)
      Proof: Proposition 11.62.
   \langle 2 \rangle 8. The nontrivial Sylow subgroups of G/Z(G) are P_1/Z(P_1), \ldots, P_r/Z(P_r).
   \langle 2 \rangle 9. Every Sylow subgroup of G/Z(G) is normal.
   \langle 2 \rangle 10. |G/Z(G)| < |G|
      PROOF: Because of Corollary 13.38.2.
   \langle 2 \rangle 11. G/Z(G) is nilpotent.
      PROOF: By the induction hypothesis ??.
   \langle 2 \rangle 12. G is nilpotent.
      Proof: Proposition 13.62.
```

13.8Symmetric Groups

Proposition 13.69. Every permutation in S_n is the product of a unique set of disjoint cycles.

Proof: Since any permutation acts as a cycle on any of its orbits. \sqcup

Corollary 13.69.1. The transpositions generate S_n .

PROOF: Since any cycle is a product of transpositions:

$$(a_1 \ a_2 \ \cdots \ a_n) = (a_1 \ a_n) \circ \cdots \circ (a_1 \ a_3) \circ (a_1 \ a_2) \ . \square$$

Corollary 13.69.2. S_n is generated by $(1\ 2)$ and $(1\ 2\ 3\ \cdots\ n)$.

Proof:

 $\langle 1 \rangle 1$. Any transposition of the form $(i \ i+1)$ is in the subgroup generated by these two permutations.

PROOF: It is $(1 \ 2 \ \cdots \ n)^i (1 \ 2) (1 \ 2 \ \cdots \ n)^{-i}$.

 $\langle 1 \rangle 2$. Any transposition of the form (1 i) is in the subgroup generated by these two permutations.

PROOF: It is $(i-1 \ i) \cdots (3 \ 4)(2 \ 3)(1 \ 2)(2 \ 3) \cdots (i-1 \ i)$.

 $\langle 1 \rangle$ 3. Any transposition is in the subgroup generated by these two permutations.

PROOF: Since $(i \ j) = (1 \ i)(1 \ j)(1 \ i)$

 $\langle 1 \rangle 4$. These two permutations generate S_n .

Proof: By the previous Corollary.

Definition 13.70 (Type). For any $\sigma \in S_n$, the type of σ is the partition of n consisting of the sizes of the orbits of σ .

Proposition 13.71. Two permutations in S_n are conjugate if and only if they have the same type.

Proof:

 $\langle 1 \rangle 1$. Two permutations that are conjugate have the same type.

Proof: Since

$$\tau(a_1 \ a_2 \ \cdots \ a_r)(b_1 \ b_2 \ \cdots \ b_s) \cdots (c_1 \ c_2 \ \cdots \ c_t)tau^{-1} = (\tau(a_1) \ \tau(a_2) \ \cdots \ \tau(a_r))(\tau(b_1) \ \tau(b_2) \ \cdots \ \tau(b_s)) \cdots (\tau(b_s) \ \tau(b_s) \ \cdots \ \tau(b_s)) \cdots (\tau(b_s) \ \tau(b_s) \ \tau(b_s)$$

 $\langle 1 \rangle 2$. Two permutaitons with the same type are conjugate.

$$\langle 2 \rangle$$
1. Let: $\rho = (a_1 \ a_2 \cdots a_r)(b_1 \ b_2 \cdots b_s) \cdots (c_1 \ c_2 \cdots c_t)$ and $\sigma = (a'_1 \ a'_2 \cdots a'_r)(b'_1 \ b'_2 \cdots b'_s) \cdots (c'_1 \ c'_2 \cdots c'_t)$
 $\langle 2 \rangle$ 2. Let: τ be the permutation $\tau(a_i) = a'_i, \tau(b_i) = b'_i, \ldots, \tau(c_i) = c'_i$

$$\langle 2 \rangle 3. \ \sigma = \tau \rho \tau^{-1}$$

Corollary 13.71.1. The number of conjugacy classes in S_n equals the number of permutations of n.

Definition 13.72 (Sign). Define $\Delta_n \in \mathbb{Z}[x_1,\ldots,x_n]$ by

$$\Delta_n = \prod_{1 \le i < j \le n} (x_i - x_j)$$

Define an action of S_n on $\mathbb{Z}[x_1,\ldots,x_n]$ by

$$\sigma p(x_1,\ldots,x_n) = p(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$
.

The sign of a permutation $\sigma \in S_n$ is the number $\epsilon(\sigma) \in \{1, -1\}$ such that

$$\sigma \Delta_n = \epsilon(\sigma) \Delta_n .$$

We say σ is even if $\epsilon(\sigma) = 1$ and odd if $\epsilon(\sigma) = -1$.

Proposition 13.73. ϵ is a group homomorphism $S_n \to \mathbb{Z}^*$.

Proof:

 $\langle 1 \rangle 1$. Let: $\rho, \sigma \in S_n$ $\langle 1 \rangle 2$. $(\rho \circ \sigma) \Delta_n = \rho(\sigma \Delta_n)$ $\langle 1 \rangle 3$. $\epsilon(\rho \circ \sigma) \Delta_n = \epsilon(\rho) \epsilon(\sigma) \Delta_n$ $\langle 1 \rangle 4$. $\epsilon(\rho \circ \sigma) = \epsilon(\rho) \epsilon(\sigma)$

Proposition 13.74. Let $\sigma = \tau_1 \cdots \tau_r$ where each τ_i is a transposition. Then σ is even if and only if r is even.

PROOF: Since every transposition is odd and ϵ is a homomorphism, we have $\epsilon(\tau_1 \cdots \tau_r) = (-1)^r$. \square

Corollary 13.74.1. A cycle is even if and only if its length is odd.

13.8.1 Transitive Subgroups

Definition 13.75 (Transitive). A subgroup of S_n is *transitive* iff its action on $\{1, \ldots, n\}$ is transitive.

Proposition 13.76. If G is a transitive subgroup of S_n then $n \mid |G|$.

PROOF: By Proposition 13.18 we have

$$n = [G : \operatorname{Stab}_{G}(1)]$$

and so $n \mid |G|$. \sqcup

13.9 Alternating Groups

Definition 13.77. Let $n \in \mathbb{N}$. The alternating group A_n is the subgroup of S_n consisting of the even permutations.

We call A_5 the icosahedral (rotating) group.

Proposition 13.78. For $n \geq 2$ we have A_n is normal in S_n and

$$[S_n:A_n]=2.$$

PROOF: Since $\epsilon: S_n \to \{1, -1\}$ is a homomorphism with kernel A_n . \sqcup

Proposition 13.79. Let $n \geq 2$ and $\sigma \in A_n$. Let $[\sigma]_{A_n}$ be the conjugacy class of σ in A_n , and $[\sigma]_{S_n}$ the conjugacy class of σ is S_n . Then:

1. If
$$Z_{S_n}(\sigma) \subseteq A_n$$
 then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$.

2. If not then $[\sigma]_{S_n} = [\sigma]_{A_n}$.

Proof:

$$\langle 1 \rangle 1. \ Z_{A_n}(\sigma) = A_n \cap Z_{S_n}(\sigma)$$

$$\langle 1 \rangle 2$$
. $|[\sigma]_{S_n}| = [S_n : Z_{S_n}(\sigma)]$

PROOF: Orbit-Stabilizer Theorem.

$$\langle 1 \rangle 3. |[\sigma]_{A_n}| = [A_n : Z_{A_n}(\sigma)]$$

PROOF: Orbit-Stabilizer Theorem.

 $\langle 1 \rangle 4$. If $Z_{S_n}(\sigma) \subseteq A_n$ then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$. PROOF:

$$|[\sigma]_{S_n}| = [S_n : Z_{S_n}(\sigma)]$$

= $[S_n : A_n][A_n : Z_{S_n}(\sigma)]$
= $2|[\sigma]_{A_n}|$

 $\langle 1 \rangle 5$. If $Z_{S_n}(\sigma) \nsubseteq A_n$ then $[\sigma]_{S_n} = [\sigma]_{A_n}$.

 $\langle 2 \rangle 1$. Assume: $Z_{S_n}(\sigma) \nsubseteq A_n$

 $\langle 2 \rangle 2$. $A_n Z_{S_n}(\sigma) = S_n$

PROOF: Since $A_n \subseteq A_n Z_{S_n}(\sigma)$ and $[S_n : A_n] = 2$.

 $\langle 2 \rangle 3. |[\sigma]_{S_n}| = |[\sigma]_{A_n}|$

Proof:

$$\begin{split} |[\sigma]_{S_n}| &= [S_n: Z_{S_n}(\sigma)] \\ &= [A_n Z_{S_n}(\sigma): Z_{S_n}(\sigma)] \\ &= [A_n: A_n \cap Z_{S_n}(\sigma)] \qquad \text{(Second Isomorphism Theorem)} \\ &= [A_n: Z_{A_n}(\sigma)] \\ &= |[\sigma]_{A_n}| \end{split}$$

Proposition 13.80. Let $n \geq 2$. Let $\sigma \in A_n$. Then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$ if and only if the type of σ consists of distinct odd numbers.

Proof:

- $\langle 1 \rangle 1$. If $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$ then the type of σ consists of distinct odd numbers.
 - $\langle 2 \rangle 1$. If the type of σ has an even number then $Z_{S_n}(\sigma) \not\subseteq A_n$.

PROOF: If $(a_1 \ a_2 \cdots a_n)$ is an even cycle that is a factor of σ then $(1 \ 2 \cdots n)$ is an odd permutation in $Z_{S_n}(\sigma)$.

 $\langle 2 \rangle 2$. If the type of σ has an odd number repeated then $Z_{S_n}(\sigma) \nsubseteq A_n$. PROOF: If $(a_1 \ a_2 \ \cdots \ a_n)$ and $(b_1 \ b_2 \ \cdots \ b_n)$ are two distinct odd factors of σ then $(a_1 \ b_1)(a_2 \ b_2) \cdots (a_n \ b_n)$ is an odd permutation in $Z_{S_n}(\sigma)$. $\langle 2 \rangle 3$. Q.E.D.

Proof: Proposition 13.79

 $\langle 1 \rangle 2$. If the type of σ consists of distinct odd numbers then $|[\sigma]_{S_n}| = 2|[\sigma]_{A_n}|$.

Corollary 13.80.1. A_5 is simple.

- $\begin{array}{lll} \langle 2 \rangle 1. & \text{Let: } \sigma = (a_{11} \ \cdots \ a_{1\lambda_1})(b_{21} \ \cdots \ b_{2\lambda_2}) \cdots (c_{n1} \ \cdots \ c_{n\lambda_n}) \text{ where the } \lambda_i \\ & \text{are all odd and distinct.} \\ \langle 2 \rangle 2. & \text{Let: } \tau \in Z_{S_n}(\sigma) \\ & \text{Prove: } \tau \text{ is even.} \\ \langle 2 \rangle 3. & (\tau(a_{i1}) \ \cdots \ \tau(a_{i\lambda_i})) = (\tau_{i1} \ \cdots \ \tau_{i\lambda_i}) \\ \langle 2 \rangle 4. & \text{The action of } \tau \text{ on } \{a_{i1}, \ldots, a_{i\lambda_i}\} \text{ is } (a_{i1} \ \cdots \ a_{i\lambda_i})^{r_i} \text{ for some } r_i \\ \langle 2 \rangle 5. & \tau = \prod_{i=1}^n (a_{i1} \ \cdots \ a_{i\lambda_i})^{r_i} \end{array}$
- $\langle 2 \rangle 6$. τ is even.

-

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction G is a non-trivial proper normal subgroup of A_5 .
- $\langle 1 \rangle 2$. |G| is one of 2, 3, 4, 5, 6, 10, 12, 15, 20 or 30.
- $\langle 1 \rangle 3$. There are conjugacy classes in A_5 whose sizes total to 1, 2, 3, 4, 5, 9, 11, 14, 19 or 29.
- $\langle 1 \rangle 4$. The types of the even permutations in S_5 are [1, 1, 1, 1, 1], [2, 2, 1], [3, 1, 1] and [5].
- $\langle 1 \rangle$ 5. The size of the conjugacy class of type [2, 2, 1] in S_5 is 15.

PROOF: There are 5 ways to choose the element not in the 2-cycles, and then 3 ways to arrange the other 4 elements into two 2-cycles.

 $\langle 1 \rangle 6.$ The size of the conjugacy class of type [2,2,1] in A_5 is 15.

Proof: Proposition 13.80.

 $\langle 1 \rangle 7$. The size of the conjugacy class of type [3, 1, 1] in S_5 is 20.

PROOF: There are 10 ways to choose the three elements in the 3-cycle, and then two 3-cycles that they can form.

- $\langle 1 \rangle 8$. The size of the conjugacy class of type [3, 1, 1] in A_5 is 20. PROOF: Proposition 13.80.
- $\langle 1 \rangle 9$. The size of the conjugacy class of type [5] in S_5 is 24.

PROOF: There are four choices for the value at 1, then three choices for its value, then two choices for its value, then one choice for its value.

 $\langle 1 \rangle 10.$ The size of the conjugacy class of type [5] in S_5 is 12.

Proof: Proposition 13.80.

 $\langle 1 \rangle 11$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

Proposition 13.81. A_6 is simple.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction G is a non-trivial proper normal subgroup of A_6 .
- $\langle 1 \rangle 2. \ |G|$ is one of 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180.
- $\langle 1 \rangle$ 3. There are conjugacy classes in A_6 whose sizes total to 1, 2, 3, 4, 5, 7, 8, 9, 11, 14, 17, 19, 23, 29, 35, 39, 44, 59, 71, 89, 119 or 179.

```
\langle 1 \rangle 4. The types of the even permutations in S_6 are [1,1,1,1,1,1], [2,2,1,1],
       [3, 1, 1, 1], [3, 3], [4, 2], [5, 1].
\langle 1 \rangle 5. The size of the conjugacy class of type [2, 2, 1, 1] in S_6 is 45.
\langle 1 \rangle 6. The size of the conjugacy class of type [2, 2, 1, 1] in A_6 is 45.
\langle 1 \rangle 7. The size of the conjugacy class of type [3, 1, 1, 1] in S_6 is 40.
\langle 1 \rangle 8. The size of the conjugacy class of type [3, 1, 1, 1] in A_6 is 40.
\langle 1 \rangle 9. The size of the conjugacy class of type [3, 3] in S_6 is 80.
\langle 1 \rangle 10. The size of the conjugacy class of type [3, 3] in A_6 is 80.
\langle 1 \rangle 11. The size of the conjugacy class of type [4, 2] in S_6 is 90.
\langle 1 \rangle 12. The size of the conjugacy class of type [4, 2] in A_6 is 90.
\langle 1 \rangle 13. The size of the conjugacy class of type [5, 1] in S_6 is 144.
\langle 1 \rangle 14. The size of the conjugacy class of type [5, 1] in A_6 is 72.
\langle 1 \rangle 15. The size of the conjugacy class of type [6] in S_6 is 120.
\langle 1 \rangle 16. The size of the conjugacy class of type [6] in A_6 is 120.
\langle 1 \rangle 17. Q.E.D.
  PROOF: This is a contradiction.
```

Proposition 13.82. The icosahedral group A_5 is the group of symmetries of an icosahedron obtained through rigid motions.

PROOF: Routine.

Proposition 13.83. The alternating group A_n is generated by 3-cycles.

Proof:

```
\langle 1 \rangle 1. The product of two transpositions is generated by 3-cycles. \langle 2 \rangle 1. (ab)(ab) = e
```

 $\langle 2 \rangle 2$. (ab)(ac) = (acb) for $b \neq c$

 $\langle 2 \rangle 3.$ (ab)(cd) = (adc)(abc) for $c \neq d$ and $c, d \notin \{a, b\}$

Proposition 13.84. Let $n \geq 5$. If a normal subgroup of A_n contains a 3-cycle, then it contains all 3-cycles.

Proof:

- $\langle 1 \rangle 1$. Let: N be a normal subgroup of A_n .
- $\langle 1 \rangle 2$. Let: $(abc) \in N$
- $\langle 1 \rangle 3$. N contains the conjugacy class of (abc).
- $\langle 1 \rangle 4$. The conjugacy class of (abc) in N is the same as its conjugacy class in S_n . PROOF: Proposition 13.80 since the type of (abc) is $[3, 1, 1, \ldots]$.
- $\langle 1 \rangle 5$. N contains all 3-cycles.

Proposition 13.85. For $n \geq 4$, the center of A_n is trivial.

Theorem 13.86. For $n \geq 5$, the alternating group A_n is simple.

Proof:

```
\langle 1 \rangle 1. A_5 is simple.
   Proof: Corollary 13.80.1.
\langle 1 \rangle 2. For n \geq 6 we have A_n is simple.
   \langle 2 \rangle 1. Let: n \geq 6
   \langle 2 \rangle 2. Let: N be a nontrivial normal subgroup of A_n.
   \langle 2 \rangle 3. N contains a 3-cycle.
      \langle 3 \rangle 1. Pick \tau \in N such that \tau \neq \text{id} and \tau acts on at most 6 elements.
      \langle 3 \rangle 2. PICK T \subseteq \{1, \ldots, n\} with |T| = 6 such that \tau acts on T.
      \langle 3 \rangle 3. Consider A_6 as a subgroup of A_n by letting it act on T.
      \langle 3 \rangle 4. N \cap A_6 is normal.
      \langle 3 \rangle 5. N \cap A_6 is nontrivial.
      \langle 3 \rangle 6. \ N \cap A_6 = A_6
         Proof: Proposition 13.81.
      \langle 3 \rangle 7. N contains a 3-cycle.
   \langle 2 \rangle 4. N contains all 3-cycles.
      Proof: Proposition 13.84.
   \langle 2 \rangle 5. \ N = A_n
      Proof: Proposition 13.83.
```

Corollary 13.86.1. For $n \geq 5$, we have S_n is unsolvable.

PROOF: Since the composition factors of S_n are C_2 and A_n . \square

Chapter 14

Extensions

Definition 14.1 (Extension). Let G, N and H be groups. Then G is an extension of H by N iff there exist homomorphisms $phi: N \to G$ and $\psi: G \to H$ such that

$$1 \to N \to G \to H \to 1$$

is an exact sequence; i.e. ϕ is injective, ψ is surjective, and im $\phi = \ker \psi$.

Proposition 14.2. Let G be an extension of H by N. Then the composition factors of G are the union of the composition factors of H and the composition factors of N.

PROOF: From Proposition 11.134 since $H \cong G/N$. \square

Definition 14.3 (Split Extension). An exact sequence of groups

$$1 \to N \to G \to H \to 1$$

splits iff H is a subgroup of G and $N \cap H = \{e\}$.

Example 14.4. The sequence

$$0 \to \mathbb{Z} \stackrel{\times 2}{\to} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

is exact but does not split as there is no subgroup of \mathbb{Z} isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

Proposition 14.5. Let N be a normal subgroup of G and let H be a subgroup such that G = NH and $N \cap H = \{e\}$. Then G is a split extension of H by N.

Proof:

- $\langle 1 \rangle 1. \ G/N \cong H$
 - $\langle 2 \rangle 1$. Let: α be the homomorphism $H \hookrightarrow G \twoheadrightarrow G/N$
 - $\langle 2 \rangle 2$. α is injective.

PROOF: Since $\ker \alpha = \{e\}$

 $\langle 2 \rangle 3$. α is surjective.

PROOF: For all $g \in G$, pick $n \in N$ and $h \in H$ such that $g^{-1} = nh$. Then $gN = \alpha(h^{-1})$.

 $\langle 2 \rangle 4$. $\alpha : H \cong G/N$ is an isomorphism.

 $\langle 1 \rangle 2.$ The exact sequnce $1 \to N \to G \twoheadrightarrow G/N \cong H \to 1$ splits. \sqcap

Proposition 14.6. Let N and H be groups. Let $\theta: H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ be a homomorphism. The sequence

$$1 \to N \to N \rtimes_{\theta} H \to H \to 1$$

is split exact.

Proof: Easy.

Proposition 14.7. Let G be an Abelian p-group. Let $g \in G$ be an element of maximal order. Then the exact sequence

$$0 \to \langle q \rangle \to G \to G/\langle q \rangle \to 0$$

splits.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the proposition is true for all Abelian p-groups smaller than G.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. G is non-trivial.
- $\langle 1 \rangle 3$. Let: $|g| = p^r$
- $\langle 1 \rangle 4$. Let: $K = \langle g \rangle$
- $\langle 1 \rangle$ 5. K is normal.
- $\langle 1 \rangle 6$. Assume: w.l.o.g. $G \neq K$
- $\langle 1 \rangle 7$. PICK an element $h + K \in G/K$ of order p.

PROOF: Cauchy's Theorem

- $\langle 1 \rangle 8$. Let: $G' = \pi^{-1}(\langle h + K \rangle)$
- $(1)^{9}$. $|G'| = p^{r+1}$
- $\langle 1 \rangle 10. \ K \subseteq G'$
- $\langle 1 \rangle 11$. G' is not cyclic.

PROOF: By maximality of the order of g.

 $\langle 1 \rangle 12$. Pick $h \in G'$ with $h \notin K$ and |h| = p.

Proof: Lemma 12.24.

- $\langle 1 \rangle 13$. Let: $H = \langle h \rangle$
- $\langle 1 \rangle 14. \ K \cap H = \{0\}$
 - $\langle 2 \rangle 1$. Let: $x \in K \cap H$
 - $\langle 2 \rangle 2$. Let: x = ih where $0 \le i < p$
 - $\langle 2 \rangle 3. \ x + K = K$
 - $\langle 2 \rangle 4$. ih + K = K
 - $\langle 2 \rangle 5$. i = 0

PROOF: Since the order of h + K is p.

 $\langle 1 \rangle 15. |G/H| < |G|$

 $\langle 1 \rangle 16$. Let: $K' = \langle g + H \rangle$

 $\langle 1 \rangle 17$. K' is a cyclic subgroup of maximal order in G/H.

Proof:

$$K' = \frac{K + H}{H}$$

$$\cong \frac{K}{K \cap H}$$
 (Second Isomorphism Theorem)
$$\cong K$$

 $\langle 1 \rangle 18$. PICK a subgroup L' of G/H such that K' + L' = G/H and $K' \cap L' = \{0\}$. PROOF: By the induction hypothesis $\langle 1 \rangle 1$.

- $\langle 1 \rangle 19$. Let: $L = \pi^{-1}(L')$
- $\langle 1 \rangle 20$. $H \subseteq L$
- $\langle 1 \rangle 21$. K + L = G
- $\langle 1 \rangle 22. \ K \cap L = \{0\}$

Proposition 14.8. Let p be a prime. If

$$G = \frac{\mathbb{Z}}{p^{r_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_m}\mathbb{Z}} \cong \frac{\mathbb{Z}}{p^{s_1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{s_n}\mathbb{Z}}$$

with $r_1 \ge \cdots \ge r_m$ and $s_1 \ge \cdots \ge s_n$ then m = n and $r_i = s_i$ for all i.

Proof:

- $\langle 1 \rangle 1.$ Assume: as induction hypothesis the result is true for all groups smaller than G.
- $\langle 1 \rangle 2$. Let: pG be the image of the homomorphsim $g \mapsto pg$
- $\langle 1 \rangle 3$.

$$pG \cong \frac{\mathbb{Z}}{p^{r_1-1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{r_m-1}\mathbb{Z}} \cong \frac{\mathbb{Z}}{p^{s_1-1}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p^{s_n-1}\mathbb{Z}}$$

 $\langle 1 \rangle 4$. Q.E.D.

PROOF: The result follows by induction.

Corollary 14.8.1. Every finite Abelian group is the direct sum of a unique multiset of cyclic p-groups.

Definition 14.9. Let G be a finite Abelian group. The multiset of *elementary divisors* of G are the numbers e_1, \ldots, e_n such that each is a power of a prime and

$$G \cong \frac{\mathbb{Z}}{e_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{e_n \mathbb{Z}}$$
.

Proposition 14.10. For any finite Abelian group G, there exist positive integers d_1, \ldots, d_s such that

$$1 < d_1 \mid \cdots \mid d_s$$

and

$$G \cong \frac{\mathbb{Z}}{d_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_s \mathbb{Z}}$$
.

Proof:

 $\langle 1 \rangle 1$. Let: p_1, \ldots, p_s be the prime factors of |G|.

 $\langle 1 \rangle 2$. For i = 1, ..., s, let n_{ij} be the integers such that $n_{i1} \geq n_{i2} \geq \cdots$ such that either $p_i^{n_{ij}}$ is an elementary divisor of G, or $n_{ij} = 0$

 $\langle 1 \rangle 3$. Let: r be the greatest integer such that some n_{ir} is non-zero.

 $\langle 1 \rangle 4$. Let: $d_{r-j+1} = \prod_i p_i^{n_{ij}}$

 $\langle 1 \rangle 5$.

$$\frac{\mathbb{Z}}{d_{r-j+1}\mathbb{Z}} \cong \frac{\mathbb{Z}}{p_1^{n_{1j}}\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{p_s^{n_{sj}}\mathbb{Z}}$$

$$\langle 1 \rangle 6.$$

$$G \cong \frac{\mathbb{Z}}{d_1\mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_r\mathbb{Z}}$$

Definition 14.11 (Invariant Factors). For any finite Abelian group G, the invariant factors of G are the positive integers d_1, \ldots, d_s such that

$$1 < d_1 \mid \cdots \mid d_s$$

and

$$G \cong \frac{\mathbb{Z}}{d_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_s \mathbb{Z}}$$
.

Lemma 14.12. Let G be a finite Abelian group. Assume that, for every n, the number of elements g such that ng = 0 is at most n. Then G is cyclic.

Proof:

 $\langle 1 \rangle 1$. Let: $1 < d_1 \mid \cdots \mid d_r$ be the invariant factors of G. Prove: r = 1 hence $G \cong \mathbb{Z}/d_1\mathbb{Z}$

 $\langle 1 \rangle 2$. Assume: for a contradiction s > 1

 $\langle 1 \rangle 3. |G| > d_s$

 $\langle 1 \rangle 4$. For all $g \in G$ we have $d_s g = 0$.

 $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the assumption that the number of elements g such that $d_s g = 0$ is at most d_s .

Chapter 15

Classification of Groups

Example 15.1. • The only group of order 1 is the trivial group.

- The only group of order 2 is C_2 .
- The only group of order 3 is C_3 .
- There are two groups of order 4: C_4 and $C_2 \times C_2$.
- The only group of order 5 is C_5 .
- There are two groups of order 6: C_6 and S_3 .
- The only group of order 7 is C_7 .
- There are two groups of order 9: C_9 and $C_3 \times C_3$.
- There are two groups of order 10: C_{10} and D_{10} .
- The only group of order 11 is C_{11} .
- The only group of order 13 is C_{13} .
- There are two groups of order 14: C_{14} and D_{14} .
- The only group of order 15 is C_{15} .

Proposition 15.2. The only non-Abelian groups of order 8 are D_8 and Q_8 .

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-Abelian group of order 8.
- $\langle 1 \rangle 2$. G has no element of order 8.

PROOF: If it does then it is C_8 and hence Abelian.

- $\langle 1 \rangle 3$. PICK an element y of order 4.
 - $\langle 2 \rangle 1$. Pick an element a of order 2.
 - $\langle 2 \rangle 2$. $G/\langle a \rangle$ is isomorphic to C_4 or $C_2 \times C_2$.
 - $\langle 2 \rangle 3$. PICK an element $y \langle a \rangle$ of order 2 in $G/\langle a \rangle$

- $\langle 2 \rangle 4. \ y^2 \in \langle a \rangle$
- $\langle 2 \rangle 5$. Case:

$$y^2 = a$$

PROOF: In this case y is of order 4.

 $\langle 2 \rangle 6$. Case:

$$y^2 = e$$

- PROOF: In this case $G\cong C_2^3$ which is Abelian. $\langle 1\rangle 4$. PICK $x\notin \langle y\rangle$ such that $x^2=e$ or $x^2=y^2$
 - $\langle 2 \rangle 1. \ G/\langle y \rangle \cong C_2$
 - $\langle 2 \rangle 2$. Pick $x \langle y \rangle \in G/\langle y \rangle$ of order 2.

 - $\langle 2 \rangle 3. \quad x^2 \in \langle y \rangle$ $\langle 2 \rangle 4. \quad x^2 \neq y \text{ and } x^2 \neq y^3$ $\langle 2 \rangle 5. \quad x^2 = e \text{ or } x^2 = y^2$
- $\langle 1 \rangle 5$. $xy = y^3 x$
 - $\langle 2 \rangle 1. \ xy \neq e$

PROOF: Since $y^{-1} = y^3 \neq x$.

 $\langle 2 \rangle 2$. $xy \neq y$

PROOF: xy = y implies x = e.

 $\langle 2 \rangle 3. \ xy \neq y^2$

PROOF: $xy = y^2$ implies x = y.

 $\langle 2 \rangle 4. \ xy \neq y^3$

PROOF: $xy = y^3$ implies $x = y^2$.

 $\langle 2 \rangle 5$. $xy \neq x$

PROOF: xy = x implies y = e.

 $\langle 2 \rangle 6. \ xy \neq yx$

PROOF: xy = yx implies G is Abelian.

- $\langle 2 \rangle 7$. $xy \neq y^2 x$
 - $\langle 3 \rangle 1$. Assume: for a contradiction $xy = y^2x$
 - $\langle 3 \rangle 2$. $xy^2 = x$

Proof:

$$xy^2 = y^2xy$$
$$= y^4x$$
$$= x$$

$$\langle 3 \rangle 3. \ y^2 = e$$

 $\langle 1 \rangle 6$. The multiplication table of G is one of the following.

e	y	y^2	y^3	x	yx	y^2x	y^3x
y	y^2	y^3	e	yx	y^2x	y^3x	x
y^2	y^3	e	y	y^2x	y^3x	\boldsymbol{x}	yx
y^3	e	y	y^2	y^3x	x	yx	y^2x
\boldsymbol{x}	y^3x	y^2x	yx	e	y^3	y^2	
yx	x	y^3x	y^2x	y	e	y^3	y^2
y^2x		\boldsymbol{x}		y^2		e	y^3
y^3x	y^2x	yx	x	y^3	y^2	y	e

 $\langle 1 \rangle 7$. $G \cong D_8$ or $G \cong Q_8$.

Corollary 15.2.1. The groups of order 8 are D_8 , Q_8 , $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.

Proposition 15.3. Let q be an odd prime. Then D_{2q} is the only non-Abelian group of order 2q.

Proof:

- $\langle 1 \rangle 1$. Let: G be a non-Abelian group of order 2q.
- $\langle 1 \rangle 2$. Pick $y \in G$ of order q.

PROOF: Cauchy's Theorem

 $\langle 1 \rangle 3$. $\langle y \rangle$ is the only subgroup of order q.

PROOF: Third Sylow Theorem

- $\langle 1 \rangle 4$. $\langle y \rangle$ is normal.
- $\langle 1 \rangle 5$. Pick $x \in G \langle y \rangle \{e\}$
- $\langle 1 \rangle 6. |x| = 2$

PROOF: We cannot have |x| = 2q since G is not cyclic, and $|x| \neq q$ since $\langle x \rangle$ is not the subgroup of order q.

 $\langle 1 \rangle 7. \ xyx^{-1} \in \langle y \rangle$

PROOF: Since $x\langle y\rangle x^{-1}=\langle y\rangle$ by $\langle 1\rangle 3$.

- $\langle 1 \rangle 8$. PICK r such that $0 \le r < q$ and $xyx^{-1} = y^r$.
- $\langle 1 \rangle 9. \ y^{r^2} = y$

Proof:

$$y^{r^2} = (xyx^{-1})^r \qquad (\langle 1 \rangle 8)$$

$$= xy^r x^{-1}$$

$$= x^2 y x^{-2} \qquad (\langle 1 \rangle 8)$$

$$= y \qquad (\langle 1 \rangle 6)$$

 $\langle 1 \rangle 10. \ q \mid (r-1)(r+1)$

PROOF: Since $y^{(r-1)(r+1)} = e$ and |y| = q by $\langle 1 \rangle 2$.

 $\langle 1 \rangle 11$. r = 1 or r = q - 1

PROOF: Since $0 \le r < q$ by $\langle 1 \rangle 8$.

- $\langle 1 \rangle 12. \ r \neq 1$
 - $\langle 2 \rangle 1$. Assume: for a contradiction r = 1.
 - $\langle 2 \rangle 2$. xy = yx

Proof: $\langle 1 \rangle 8$

 $\langle 2 \rangle 3$. |xy| = 2q

```
PROOF: Proposition 10.22 \langle 2 \rangle 4. G is cyclic. \langle 2 \rangle 5. Q.E.D. PROOF: This contradicts \langle 1 \rangle 1. \langle 1 \rangle 13. x^2 = e and y^q = e and yx = xy^{q-1} \langle 1 \rangle 14. G \cong D_{2q}
```

Corollary 15.3.1. For q an odd prime, the only groups of order 2q are C_{2q} and D_{2q} .

Proposition 15.4. There is no non-Abelian simple group of order less than 60.

PROOF: We rule out the other sizes as follows:

- 1 Only group is the trivial group.
- 2 Prime therefore cyclic
- 3 Prime therefore cyclic
- 4 Corollary 13.49.1
- 5 Prime therefore cyclic
- 6 Corollary 13.52.2
- 7 Prime therefore cyclic
- 8 Corollary 13.49.1
- 9 Corollary 13.49.1
- 10 Corollary 13.52.2
- 11 Prime therefore cyclic
- 12
 - $\langle 1 \rangle 1$. There is no simple non-Abelian group of order 12.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 12.
 - $\langle 2 \rangle 2$. G has 4 3-Sylow subgroups.
 - $\langle 2 \rangle 3$. G has 8 elements of order 3.
 - $\langle 2 \rangle 4$. G has 3 elements of order 2 or 4.
 - $\langle 2 \rangle$ 5. G has one 2-Sylow subgroup.
 - $\langle 2 \rangle$ 6. The 2-Sylow subgroup of G is normal.
 - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

• 13 — Prime therefore cyclic

- 14 Corollary 13.52.2
- 15 Corollary 13.52.2
- 16 Corollary 13.49.1
- 17 Prime therefore cyclic
- 18 Corollary 13.52.2
- 19 Prime therefore cyclic
- 20 Corollary 13.52.2
- 21 Corollary 13.52.2
- 22 Corollary 13.52.2
- ullet 23 Prime therefore cyclic
- 24
 - $\langle 1 \rangle 2$. There is no simple non-Abelian group of order 24.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 24.
 - $\langle 2 \rangle 2$. G has 3 2-Sylow subgroups.
 - $\langle 2 \rangle 3$. Let: $\gamma: G \to S_3$ be the action of conjugation of G on the set of 2-Sylow subgroups.
 - $\langle 2 \rangle 4$. $\ker \gamma \neq \{e\}$

PROOF: γ cannot be injective since $|G| > |S_3|$.

- $\langle 2 \rangle 5$. ker $\gamma \neq G$
- $\langle 2 \rangle 6$. ker γ is a proper non-trivial normal subgroup of G.
- $\langle 2 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

- 25 Corollary 13.49.1
- 26 Corollary 13.52.2
- 27 Corollary 13.49.1
- 28 Corollary 13.52.2
- 29 Prime therefore cyclic
- 30 Proposition 13.55
- 31 Prime therefore cyclic
- 32 Corollary 13.49.1
- 33 Corollary 13.52.2

- 34 Corollary 13.52.2
- 35 Corollary 13.52.2
- 36
 - $\langle 1 \rangle 3$. There is no simple non-Abelian group of order 36.
 - $\langle 2 \rangle$ 1. Assume: for a contradiction G is a simple non-Abelian group of order 36.
 - $\langle 2 \rangle 2$. G has 4 3-Sylow subgroups.
 - $\langle 2 \rangle 3$. Let: $\gamma: G \to S_4$ be the action of conjugation of G on the set of 2-Sylow subgroups.
 - $\langle 2 \rangle 4$. $\ker \gamma \neq \{e\}$

PROOF: γ cannot be injective since $|G| > |S_4|$.

- $\langle 2 \rangle 5$. $\ker \gamma \neq G$
- $\langle 2 \rangle 6$. ker γ is a proper non-trivial normal subgroup of G.
- $\langle 2 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

- 37 Prime therefore cyclic
- 38 Corollary 13.52.2
- 39 Corollary 13.52.2
- 40 There can be only 1 5-Sylow subgroup.
- 41 Prime therefore cyclic
- 42 Proposition 13.55
- 43 Prime therefore cyclic
- 44 Corollary 13.52.2
- 45 There can be only 1 5-Sylow subgroup.
- 46 Corollary 13.52.2
- 47 Prime therefore cyclic
- 48
 - $\langle 1 \rangle 4$. There is no simple non-Abelian group of order 48.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 48.
 - $\langle 2 \rangle 2$. G has 3 2-Sylow subgroups.
 - $\langle 2 \rangle$ 3. Let: $\gamma: G \to S_3$ be the action of conjugation of G on the set of 2-Sylow subgroups.
 - $\langle 2 \rangle 4$. $\ker \gamma \neq \{e\}$

PROOF: γ cannot be injective since $|G| > |S_3|$.

- $\langle 2 \rangle 5$. ker $\gamma \neq G$
- $\langle 2 \rangle 6$. ker γ is a proper non-trivial normal subgroup of G.
- $\langle 2 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 2 \rangle 1$.

- 49 Corollary 13.49.1
- 50 Corollary 13.52.2
- 51 Corollary 13.52.2
- 52 Corollary 13.52.2
- 53 Prime therefore cyclic
- 54 Corollary 13.52.2
- 55 Corollary 13.52.2
- 56 Corollary 13.52.2
- 57 Corollary 13.52.2
- 58 Corollary 13.52.2
- 59 Prime therefore cyclic

Proposition 15.5. Every simple group of order 60 has a subgroup of index 5.

Proof:

- $\langle 1 \rangle 1$. Let: G be a simple group of order 60.
- $\langle 1 \rangle 2$. The number of 2-Sylow subgroups of G is either 5 or 15.
 - $\langle 2 \rangle 1$. Let: n be the number of 2-Sylow subgroups.
 - $\langle 2 \rangle 2$. 60|n!

Proof: Corollary 13.56.1.

- $\langle 2 \rangle 3. \ n \geq 5$
- $\langle 2 \rangle 4$. $n \mid 15$

PROOF: Third Sylow Theorem

- $\langle 2 \rangle 5. \ n = 5 \text{ or } n = 15$
- $\langle 1 \rangle 3$. Assume: w.l.o.g. G has 15 2-Sylow subgroups.
- $\langle 1 \rangle 4$. G has 4 or 10 3-Sylow subgroups.
- $\langle 1 \rangle$ 5. G has 10 3-Sylow subgroups.

Proof: Corollary 13.56.1.

- $\langle 1 \rangle 6$. G has exactly 6 5-Sylow subgroups.
- $\langle 1 \rangle$ 7. The number of elements of order 3 is 20.
- $\langle 1 \rangle 8$. The number of elements of order 5 is 24.
- $\langle 1 \rangle 9$. The number of elements of order 2 or 4 is 15.
- $\langle 1 \rangle 10$. Pick two 2-Sylow subgroups H_1 and H_2 with non-trivial intersection.
- $\langle 1 \rangle 11$. Let: $g \in G$ be such that $H_1 \cap H_2 = \{e, g\}$.
- $\langle 1 \rangle 12$. Let: $K = Z_G(H_1 \cap H_2)$

 $\langle 1 \rangle 13$. |K| = 12 or |K| = 20PROOF: We have $4 \mid |K|$ since $H_1 \leq K$, and $|K| \geq 6$ since $H_1 \cup H_2 \subseteq K$. We also have $|K| \mid 60$. $\langle 1 \rangle 14$. $|G:K| \neq 3$ PROOF: There cannot be an embedding of G in S_3 . $\langle 1 \rangle 15$. |G:K| = 5

Theorem 15.6. A_5 is the only simple group of order 60.

Proof:

- $\langle 1 \rangle 1$. Let: G be a simple group of order 60.
- $\langle 1 \rangle 2$. Pick a subgroup K of G of index 5.
- $\langle 1 \rangle 3$. Let: $\phi: G \to S_5$ be the action of G on G/K of left multiplication.
- $\langle 1 \rangle 4$. ϕ is injective.

PROOF: Since $\ker \phi$ is a proper normal subgroup of G hence $\ker \phi = \{e\}$.

- $\langle 1 \rangle 5$. $\phi(G)$ is a subgroup of S_5 of index 2.
- $\langle 1 \rangle 6$. $\phi(G)$ is normal in S_5 .
- $\langle 1 \rangle 7$. $\phi(G) \cap A_5$ is a normal subgroup of A_5
- $\langle 1 \rangle 8. \ \phi(G) \cap A_5 = \{e\} \text{ or } \phi(G) \cap A_5 = A_5$

Proof: Corollary 13.80.1.

 $\langle 1 \rangle 9. \ \phi(G) \cap A_5 = A_5$

PROOF: We cannot have $\phi(G) \cap A_5 = \{e\}$ lest

$$|\phi(G)A_5| = |\phi(G)||A_5|/|\phi(G) \cap A_5| = 3600$$

by the Second Isomorphism Theorem.

- $\langle 1 \rangle 10. \ \phi(G) = A_5$
- $\langle 1 \rangle 11. \ \phi : G \cong A_5$

Proposition 15.7. There is no non-Abelian simple group of order between 60 and 168.

PROOF: We rule out the other sizes as follows:

- 61 prime therefore cyclic
- 62 Corollary 13.52.2
- 63 Corollary 13.52.1
- 64 Corollary 13.49.1
- 65 Corollary 13.52.2
- 66 Corollary 13.52.2
- 67 prime therefore cyclic
- 68 Corollary 13.52.2
- 69 Corollary 13.52.2

- 70 Proposition 13.55
- 71 prime therefore cyclic
- 72
 - $\langle 1 \rangle 1$. There is no simple non-Abelian group of order 72

PROOF

- $\langle 2 \rangle 1$. Assume: for a contradiction G is a simple non-Abelian group of order 72.
- $\langle 2 \rangle 2$. G has 4 3-Sylow subgroups.
- $\langle 2 \rangle 3$. Let: $\gamma: G \to S_4$ be the action of conjugation on the set of 3-Sylow subgroups.
- $\langle 2 \rangle 4$. $\ker \gamma \neq 1$

PROOF: Since $|G| > |S_4|$.

- $\langle 2 \rangle$ 5. ker γ is a non-trivial proper subgroup of G.
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

- 73 prime therefore cyclic
- 74 Corollary 13.52.2
- 75 Corollary 13.52.2
- 76 Corollary 13.52.2
- 77 Corollary 13.52.2
- 78 Corollary 13.52.2
- 79 prime therefore cyclic
- 80
 - $\langle 1 \rangle 2$. There is no simple non-Abelian group of order 80.

Proof:

- $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 80.
- $\langle 2 \rangle 2$. G has 5 2-Sylow subgroups.
- $\langle 2 \rangle$ 3. Let: $\gamma: G \to S_5$ be the action of conjugation on the set of 2-Sylow subgroups.
- $\langle 2 \rangle 4$. $\ker \gamma \neq 1$

PROOF: Otherwise im γ would be a subgroup of S_5 of order 80, contradicting Lagrange's Theorem.

- $\langle 2 \rangle$ 5. ker γ is a non-trivial normal subgroup of G.
- $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

• 81 — Corollary 13.49.1

- 82 Corollary 13.52.2
- 83 prime therefore cyclic
- 84 Corollary 13.52.1
- 85 Corollary 13.52.2
- 86 Corollary 13.52.2
- 87 Corollary 13.52.2
- 88 Corollary 13.52.2
- 89 prime therefore cyclic
- 90 Corollary 13.52.1
- 91 Corollary 13.52.2
- 92 Corollary 13.52.2
- 93 Corollary 13.52.2
- 94 Corollary 13.52.2
- 95 Corollary 13.52.2
- 96 There are 3 2-Sylow subgroups. The kernel of the action of conjugation $G \to S_3$ is a non-trivial normal subgroup of G.
- 97 prime therefore cyclic
- 98 Corollary 13.52.2
- 99 Corollary 13.52.2
- 100 Corollary 13.52.2
- 101 prime therefore cyclic
- 102 Proposition 13.55
- 103 prime therefore cyclic
- 104 Corollary 13.52.2
- 105 Proposition 13.55
- 106 Corollary 13.52.2
- 107 prime therefore cyclic
- 108 There are 4 3-Sylow subgroups. The kernel of the action of conjugation $G \to S_4$ is a non-trivial normal subgroup of G.

- 109 prime therefore cyclic
- 110 Proposition 13.55
- 111 Corollary 13.52.2
- 112
 - $\langle 1 \rangle 3$. There is no simple non-Abelian group of order 112.
 - $\langle 2 \rangle 1$. Assume: for a contradiction G is a simple non-Abelian group of order 112.
 - $\langle 2 \rangle 2$. G has exactly 7 2-Sylow subgroups.
 - $\langle 2 \rangle$ 3. Let: $\gamma: G \to A_7$ be the action of conjugation of G on the set of 2-Sylow subgroups.

PROOF: $\gamma(g)$ is always an even permutation since G has no subgroup of index 2.

 $\langle 2 \rangle 4$. $\ker \gamma \neq 1$

PROOF: Since |G| does not divide $|A_7| = 7!/2$.

- $\langle 2 \rangle$ 5. ker γ is a non-trivial normal subgroup of G.
- $\langle 2 \rangle 6$. Q.E.D.
- 113 prime therefore cyclic
- 114 Proposition 13.55
- \bullet 115 Corollary 13.52.2
- 116 Corollary 13.52.2
- 117 Corollary 13.52.2
- 118 Corollary 13.52.2
- 119 Corollary 13.52.2
- 120
 - $\langle 1 \rangle 4$. There is no simple non-Abelian group of order 120.

Proof:

- $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 120.
- $\langle 2 \rangle 2.$ There are exactly 6 5-Sylow subgroups.
- $\langle 2 \rangle$ 3. Let: $\gamma: G \to A_6$ be the action of conjugation on the set of 5-Sylow subgroups.
- $\langle 2 \rangle 4$. im γ is a subgroup of A_6 of order 120.
- $\langle 2 \rangle$ 5. Q.E.D.

PROOF: This is a contradiction by inspection of the list of subgroups of A_6 .

• 121 — Corollary 13.49.1

- 122 Corollary 13.52.2
- 123 Corollary 13.52.2
- 124 Corollary 13.52.2
- 125 Corollary 13.49.1
- 126 Corollary 13.52.1
- 127 prime therefore cyclic
- 128 Corollary 13.49.1
- 129 Corollary 13.52.2
- 130 Proposition 13.55
- 131 prime therefore cyclic
- 132
 - $\langle 1 \rangle$ 5. There is no simple non-Abelian group of order 132.
 - $\langle 2 \rangle 1.$ Assume: for a contradiction G is a simple non-Abelian group of order 132.
 - $\langle 2 \rangle 2$. There are at least 4 3-Sylow subgroups.
 - $\langle 2 \rangle 3$. There are at least 8 elements of order 3.
 - $\langle 2 \rangle 4$. There are exactly 12 11-Sylow subgroups.
 - $\langle 2 \rangle$ 5. There are exactly 120 elements of order 11.
 - $\langle 2 \rangle 6$. There are exactly 3 elements of order 2.
 - $\langle 2 \rangle$ 7. There is a unique 2-Sylow subgroups.
 - $\langle 2 \rangle 8$. Q.E.D.

PROOF: This is a contradiction.

- 133 Corollary 13.52.2
- 134 Corollary 13.52.2
- 135 Corollary 13.52.1
- 136 Corollary 13.52.2
- 137 prime therefore cyclic
- 138 Proposition 13.55
- 139 prime therefore cyclic
- 140 Corollary 13.52.1
- 141 Corollary 13.52.2
- 142 Corollary 13.52.2

- 143 Corollary 13.52.2
- 144 Burnside's Theorem
- 145 Burnside's Theorem
- 146 Burnside's Theorem
- 147 Burnside's Theorem
- 148 Burnside's Theorem
- 149 prime therefore cyclic
- 150 There are exactly 6 5-Sylow subgroups. The kernel of the action of conjugation G → A₅ is a non-trivial normal subgroup since 150 does not divide |A₅| = 60.
- 151 prime therefore cyclic
- 152 Burnside's Theorem
- 153 Burnside's Theorem
- 154 Proposition 13.55
- $\bullet~155$ Burnside's Theorem
- 156 Corollary 13.52.2
- 157 prime therefore cyclic
- 158 Burnside's Theorem
- 159 Burnside's Theorem
- 160 Burnside's Theorem
- 161 Burnside's Theorem
- 162 Burnside's Theorem
- 163 prime therefore cyclic
- 164 Burnside's Theorem
- 165 Proposition 13.55
- 166 Burnside's Theorem
- 167 prime therefore cyclic

Proposition 15.8. Every group of order < 120 and $\neq 60$ is solvable.

Proof:

- $\langle 1 \rangle 1$. Let: G be a group of order n where n < 120 and $n \neq 60$.
- $\langle 1 \rangle 2$. If *n* is odd then *G* is solvable.

PROOF: Feit-Thompson Theorem

 $\langle 1 \rangle 3$. If n has at most two prime factors then G is solvable.

PROOF: Burnside's Theorem

 $\langle 1 \rangle 4$. Case: n = pqr for some primes p, q, r

PROOF: Its composition factors must be C_p , C_q and C_r .

 $\langle 1 \rangle 5$. Case: n = 84

PROOF: By the Third Sylow Theorem, the 7-Sylow subgroup is normal. Since every group of order 12 is solvable, so is every group of order 84.

Proposition 15.9. Let p and q be primes with p < q.

- 1. If $q \not\equiv 1 \pmod{p}$, then the only group of order pq is C_{pq}
- 2. If $q \equiv 1 \pmod{p}$, then there are exactly two groups of order pq: the cyclic group C_{pq} and a non-Abelian group.

Proof:

- $\langle 1 \rangle 1$. Let: |G| = pq
- $\langle 1 \rangle 2$. Assume: G is not cyclic.
- $\langle 1 \rangle 3$. There is exactly one q-Sylow subgroup $\langle a \rangle$, say.

PROOF: Third Sylow Theorem.

- $\langle 1 \rangle 4$. There is more than one *p*-Sylow subgroup.
- $\langle 1 \rangle$ 5. The number of *p*-Sylow subgroups divides *q* and is congruent to 1 modulo *p*.
- $\langle 1 \rangle 6. \ q \equiv 1 \pmod{p}$
- $\langle 1 \rangle 7$. Pick an element b of order q.
- $\langle 1 \rangle 8$. Let: $N = \langle a \rangle$ and $H = \langle b \rangle$
- $\langle 1 \rangle 9. \ N \cap H = \{e\}$
- $\langle 1 \rangle 10. \ G = NH$
- $\langle 1 \rangle 11$. Define $\gamma : H \to \operatorname{Aut}_{\mathbf{Grp}}(N)$ by $\gamma(h)(n) = hnh^{-1}$
- $\langle 1 \rangle 12$. Aut_{**Grp**} $(N) \cong C_{q-1}$
- $\langle 1 \rangle 13$. Aut_{**Grp**} (N) has a unique subgroup of order p.

Part IV Ring Theory

Chapter 16

Rngs

Definition 16.1 (Ring). A rng consists of a set R and binary operations $+, \cdot : R^2 \to R$ such that:

- (R, +) is an Abelian group
- \bullet · is associative.
- The distributive properties hold: for all $r, s, t \in R$ we have

$$(r+s)t = rt + st,$$
 $r(s+t) = rs + rt.$

Example 16.2. • The zero rng is $\{0\}$.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are rngs.
- $2\mathbb{Z}$ is a rng.
- Given a rng R and natural number n, then the set $\mathfrak{gl}_n(R)$ of all $n \times n$ matrices with entries in R is a rng under matrix addition and matrix multiplication.
- For any set S, the power set $\mathcal{P}S$ is a rng under $A+B=(A\cup B)-(A\cap B)$ and $AB=A\cap B$.
- Given a rng R and a set S, then R^S is a rng under (f+g)(s)=f(s)+g(s) and (fg)(s)=f(s)g(s) for all $f,g\in R^S$ and $s\in S$.
- The set $\mathfrak{sl}_n(\mathbb{R}) = \{ M \in \mathfrak{gl}_n(\mathbb{R}) : \operatorname{tr} M = 0 \}$ is a rng.
- The set $\mathfrak{sl}_n(\mathbb{C}) = \{ M \in \mathfrak{gl}_n(\mathbb{C}) : \operatorname{tr} M = 0 \}$ is a rng.
- $\mathbb{Z}/n\mathbb{Z}$ is a rng.

• The ring \mathbb{H} of quaternions is \mathbb{R}^4 under the following operations, where we write (a, b, c, d) as a + bi + cj + dk:

$$(a+bi+cj+dk) + (a'+b'i+c'j+d'k) = (a+a') + (b+b')i$$

$$+ (c+c')j + (d+d')k$$

$$(a+bi+cj+dk)(a'+b'i+c'j+d'k) = (aa'-bb'-cc'-dd')$$

$$+ (ab'+ba'+cd'-dc')i$$

$$+ (ac'-bd'+ca'+db')j$$

$$+ (ad'+bc'-cb'+da')k$$

• For any Abelian group G, the set $\operatorname{End}_{\mathbf{Ab}}(G)$ is a ring under pointwise addition and composition.

Proposition 16.3. In any rng R we have

$$\forall x \in R. x0 = 0x = 0 .$$

Proof:

$$x0 = x(0+0)$$
$$= x0 + x0$$

and so x0 = 0 by Cancellation. Similarly 0x = 0. \square

Definition 16.4 (Zero Divisor). Let R be a rng and $a \in R$.

Then a is a left-zero-divisor iff there exists $b \in R - \{0\}$ such that ab = 0.

The element a is a right-zero-divisor iff there exists $b \in R - \{0\}$ such that ba = 0.

Example 16.5. 0 is a left- and right-zero-divisor in every non-zero rng. The zero rng is the only ring with no zero-divisors.

Proposition 16.6. Let R be a rng and $a \in R$. Then a is not a left-zero-divisor if and only if left multiplication by a is an injective function $R \to R$.

Proof:

- $\langle 1 \rangle 1$. If a is not a left-zero-divisor then left multiplication by a is injective.
 - $\langle 2 \rangle 1$. Assume: a is not a left-zero-divisor.
 - $\langle 2 \rangle 2$. Let: ab = ac
 - $\langle 2 \rangle 3$. a(b-c)=0
 - $\langle 2 \rangle 4$. b-c=0
 - $\langle 2 \rangle 5.$ b = c
- $\langle 1 \rangle 2$. If a is a left-zero-divisor then left multiplication by a is not injective.
 - $\langle 2 \rangle 1$. Pick $b \neq 0$ such that ab = 0.
 - $\langle 2 \rangle 2$. ab = a0 but $b \neq 0$

16.1 Commutative Rngs

Definition 16.7 (Commutative). A rng R is *commutative* iff $\forall x, y \in R.xy = yx$.

Example 16.8. • The zero rng is commutative.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative.
- $2\mathbb{Z}$ is commutative.
- $\mathfrak{gl}_2(\mathbb{R})$ is not commutative.
- For any set S, the rng $\mathcal{P}S$ is commutative.
- If R is commutative then R^S is commutative.

16.2 Rng Homomorphisms

Definition 16.9. Let R and S be rngs. A rng homomorphism $\phi: R \to S$ is a function such that, for all $x, y \in R$, we have

$$\phi(x+y) = \phi(x) + \phi(y)$$
$$\phi(xy) = \phi(x)\phi(y)$$

Let **Rng** be the category of rngs and rng homomorphisms.

16.3 Quaternions

Definition 16.10 (Norm). The *norm* of a quaternion is defined by

$$N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$$
.

Rings

Definition 17.1 (Ring). A ring R is a rng such that there exists $1 \in R$, the multiplicative identity, such that

$$\forall x \in R.x1 = 1x = x$$
.

Example 17.2. • The zero rng is a ring with 1 = 0.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are rngs.
- $2\mathbb{Z}$ is not a ring.
- If R is a ring then $\mathfrak{gl}_n(R)$ is a ring.
- For any set S, the rng PS is a ring with 1 = S.
- If R is a ring then R^S is a ring.
- $\mathfrak{sl}_n(\mathbb{R})$ is not a ring for n > 0.
- $\mathfrak{sl}_n(\mathbb{C})$ is not a ring for n > 0.
- $\mathfrak{so}_n\left(\mathbb{R}\right)=\left\{M\in\mathfrak{sl}_n\left(\mathbb{R}\right):M+M^T=0\right\}$ is not a ring.
- $\mathbb{Z}/n\mathbb{Z}$ is a ring.

Proposition 17.3. In any ring R, if 0 = 1 then R is the zero ring.

PROOF: For any $x \in R$ we have x = 1x = 0x = 0. \square

Proposition 17.4. In any ring we have (-1)x = -x.

PROOF: Since

$$x + (-1)x = 1x + (-1)x$$

= $(1 + (-1))x$
= $0x$
= 0

17.1 Units

Definition 17.5 (Left-Unit, Right-Unit). Let R be a ring and $a \in R$. Then a is a *left-unit* iff there exists $b \in R$ such that ab = 1. The element a is a *right-unit* iff there exists $b \in R$ such that ba = 1.

An element is a *unit* iff it is a left-unit and a right-unit.

Proposition 17.6. Let R be a ring and $a \in R$. Then a is a left-unit iff left multiplication by a is a surjective function $R \to R$.

Proof:

- $\langle 1 \rangle 1$. If a is a left-unit then left multiplication by a is surjective.
 - $\langle 2 \rangle 1$. Pick $b \in R$ such that ab = 1.
 - $\langle 2 \rangle 2$. For all $c \in R$ we have c = a(bc).
- $\langle 1 \rangle 2.$ If left multiplication by a is surjective then a is a left-unit.

PROOF: Immediate.

Proposition 17.7. Let R be a ring and $a \in R$. Then a is a right-unit iff right multiplication by a is a surjective function $R \to R$.

Proof: Similar.

Proposition 17.8. No left-unit is a right-zero-divisor.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction ab = 1 and ca = 0 where $c \neq 0$.
- $\langle 1 \rangle 2. \ c = 0$

PROOF:

$$0 = 0b$$

$$= cab$$

$$= c1$$

$$= c$$

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: This is a contradiction.

Proposition 17.9. No right-unit is a left-zero-divisor.

Proof: Similar.

Proposition 17.10. The inverse of a unit is unique.

PROOF: If ba = 1 and ac = 1 then b = bac = c. \square

Proposition 17.11. The units of a ring form a group under multiplication.

Proof:

 $\langle 1 \rangle 1$. If a and b are units then ab is a unit.

PROOF: We have $b^{-1}a^{-1}ab = 1$ and $abb^{-1}a^{-1} = 1$.

17.1. UNITS 149

```
\langle 1 \rangle 2. 1 is a unit.

PROOF: Since 1 \cdot 1 = 1.

\langle 1 \rangle 3. If a is a unit then its inverse is a unit.

PROOF: Immediate from definitions.
```

Definition 17.12 (Group of Units). For any ring R, we write R^* for the group of the units of R under multiplication.

Example 17.13. The quaternionic group is a subgroup of \mathbb{H}^* .

Example 17.14. The norm is a group homomorphism $\mathbb{H}^* \to \mathbb{R}^+$ where \mathbb{R}^+ is the group of positive real numbers under multiplication with kernel isomorphic to $\mathrm{SU}_2(\mathbb{C})$. The isomorphism maps a quaternion a+bi+cj+dk to $\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$.

Theorem 17.15 (Fermat's Little Theorem). Let p be a prime number and a any integer. Then $a^p \equiv a \pmod{p}$.

PROOF: If $p \mid a$ then $a^p \equiv a \equiv 0 \pmod{p}$. Otherwise, we have $a^{p-1} \equiv 1 \pmod{p}$ by applying Lagrange's Theorem to $(\mathbb{Z}/p\mathbb{Z})^*$. \square

Example 17.16. It is not true that, if $n \mid |G|$, then G has a subgroup of order n. The group A_4 has order 12 but no subgroup of order 6.

Proposition 17.17. If p is prime then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

```
Proof:
```

- $\langle 1 \rangle 1$. LET: g be an element of maximal order in $(\mathbb{Z}/p\mathbb{Z})^*$.
- $\langle 1 \rangle 2$. For all $h \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $h^{|g|} = 1$. PROOF: Proposition 12.10.

 $\langle 1 \rangle 3$. There are at most |g| elements x such that $x^{|g|} = 1$ in $\mathbb{Z}/p\mathbb{Z}$

- $\langle 1 \rangle 4. \ \ p-1 \le |g|$
- $\langle 1 \rangle 5$. |g| = p 1
- $\langle 1 \rangle 6$. g generates $(\mathbb{Z}/p\mathbb{Z})^*$.

Example 17.18. $(\mathbb{Z}/12\mathbb{Z})^*$ is not cyclic. Its elements are 1, 5, 7 and 11 with orders 1, 2, 2 and 2.

Theorem 17.19 (Wilson's Theorem). A positive integer p is prime if and only if $(p-1)! \equiv 1 \pmod{p}$.

- $\langle 1 \rangle 1$. If p is prime then $(p-1)! \equiv 1 \pmod{p}$.
 - $\langle 2 \rangle 1$. Assume: p is prime.
 - $\langle 2 \rangle 2$. (p-1)! is the product of all the elements of $(\mathbb{Z}/p\mathbb{Z})^*$
 - $\langle 2 \rangle 3$. The only element of $(\mathbb{Z}/p\mathbb{Z})^*$ with order 2 is -1.
 - $\langle 2 \rangle 4$. $(p-1)! \equiv -1 \pmod{p}$

Proof: Proposition 10.23.

```
⟨1⟩2. If (p-1)! \equiv -1 \pmod{p} then p is prime. ⟨2⟩1. Assume: ( (p-1)! \equiv -1 \pmod{p}) ⟨2⟩2. Let: d be a proper divisor of p. Prove: d=1 ⟨2⟩3. d \mid (p-1)! ⟨2⟩4. d \mid 1 Proof: Since d \mid p \mid (p-1)! + 1. ⟨2⟩5. d=1
```

Proposition 17.20. If p and q are distinct odd primes then $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. & |(\mathbb{Z}/pq\mathbb{Z})^*| = (p-1)(q-1) \\ \langle 1 \rangle 2. & \text{Let: } g \in (\mathbb{Z}/pq\mathbb{Z})^* \\ & \text{Prove: } g \text{ does not have order } (p-1)(q-1) \\ \langle 1 \rangle 3. & g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } p) \\ \langle 1 \rangle 4. & g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } q) \\ \langle 1 \rangle 5. & pq \mid g^{(p-1)(q-1)/2} = 1 (\text{mod } pq) \\ \langle 1 \rangle 6. & g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } pq) \\ \langle 1 \rangle 7. & |g| \mid (p-1)(q-1)/2 \\ \square \end{array}
```

Proposition 17.21. For any prime p, we have $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$.

```
Proof:
```

```
\begin{split} &\langle 1 \rangle 1. \text{ Let: } \phi: \operatorname{Aut}_{\mathbf{Grp}}(C_p) \to (\mathbb{Z}/p\mathbb{Z})^* \text{ be the function } \phi(\alpha) = \alpha(1). \\ &\operatorname{PROOF: } \alpha(1) \text{ has order } p \text{ in } C_p \text{ and so is coprime with } p. \\ &\langle 1 \rangle 2. \ \phi \text{ is a homomorphism.} \\ &\operatorname{PROOF: } \phi(\alpha \circ \beta) = \alpha(\beta(1)) = \alpha(\beta(1)1) = \beta(1)\alpha(1) = \phi(\alpha)\phi(\beta) \\ &\langle 1 \rangle 3. \ \phi \text{ is injective.} \\ &\operatorname{PROOF: } \operatorname{If } \phi(\alpha) = \phi(\beta) \text{ then for any } n \text{ we have } \alpha(n) = n\alpha(1) = n\phi(\alpha) = n\phi(\beta) = n\beta(1) = \beta(n). \\ &\langle 1 \rangle 4. \ \phi \text{ is surjective.} \\ &\operatorname{PROOF: } \operatorname{For any } r \in (\mathbb{Z}/p\mathbb{Z})^* \text{ we have } r = \phi(\alpha) \text{ where } \alpha(n) = nr \operatorname{mod} p. \\ &\langle 1 \rangle 5. \ (\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1} \end{split}
```

17.2 Euler's ϕ -function

Proposition 17.22. For n a positive integer, we have $(\mathbb{Z}/n\mathbb{Z})^* = \{m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m,n)=1\}.$

Proof:

$$m \in (\mathbb{Z}/n\mathbb{Z})^* \Leftrightarrow \exists a.am \equiv 1 \pmod{n}$$

 $\Leftrightarrow \exists a, b.am + bn = 1$
 $\Leftrightarrow \gcd(m, n) = 1$

Definition 17.23 (Euler's Totient Function). For n a positive integer, let $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$.

Proposition 17.24. If n is an odd positive integer then $\phi(2n) = \phi(n)$.

Proof:

- $\langle 1 \rangle 1$. Let: n be an odd positive integer.
- $\langle 1 \rangle$ 2. For any integer m, if gcd(m, n) = 1 then gcd(2m + n, 2n) = 1PROOF: For p a prime, if $p \mid 2m + n$ and $p \mid 2n$ then $p \neq 2$ (since 2m + n is odd) so $p \mid n$ and hence $p \mid m$, which is a contradiction.
- $\langle 1 \rangle 3$. For any integer r, if $\gcd(r, 2n) = 1$ then $\gcd(\frac{r+n}{2}, n) = 1$

PROOF: If $p \mid n$ and $p \mid \frac{r+n}{2}$ then $p \mid r+n$ so $p \mid r$ which is a contradiction.

 $\langle 1 \rangle 4$. The function that maps m to 2m+n is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$.

Theorem 17.25. For any positive integer n we have

$$\sum_{m>0,m|n}\phi(m)=n .$$

Proof:

- $\langle 1 \rangle 1$. Define $\chi : \{0, 1, \dots, n-1\} \to \{(m, d) : m > 0, m \mid n, d \text{ generates } \langle n/m \rangle \}$ by: $\chi(x) = (\gcd(x, n), x)$.
- $\langle 1 \rangle 2$. χ is injective.
- $\langle 1 \rangle 3$. χ is surjective.

PROOF: Given (m, d) such that d generates $\langle n/m \rangle$ we have $\chi(d) = (m, d)$.

 $\langle 1 \rangle 4$. $n = \sum_{m>0, m|n} \phi(m)$

PROOF: Since $\langle n/m \rangle \cong C_m$ and so has $\phi(m)$ generators.

Proposition 17.26. For any positive integers a and n, we have $n \mid \phi(a^n - 1)$.

PROOF: Since the order of a is n in $(\mathbb{Z}/(a^n-1)\mathbb{Z})^*$. \square

Theorem 17.27 (Euler's Theorem). For any coprime integers a and n we have $a^{\phi(n)} \equiv a \pmod{n}$.

PROOF: Immediate from Lagrange's Theorem.

Proposition 17.28.

$$|\operatorname{Aut}_{\mathbf{Grp}}(C_n)| = \phi(n)$$

PROOF: An automorphism α is determined by $\alpha(1)$ which is any element of order n, and g has order n iff $\gcd(g,n)=1$. \square

Example 17.29.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}) \cong C_2$$

PROOF: The only automorphisms are the identity and multiplication by -1. \Box

17.3 Nilpotent Elements

Definition 17.30 (Nilpotent). Let R be a ring and $a \in R$. Then a is *nilpotent* iff there exists n such that $a^n = 0$.

Proposition 17.31. Let R be a ring and $a, b \in R$. If a and b are nilpotent and ab = ba then a + b is nilpotent.

Proof:

 $\langle 1 \rangle 1$. Pick m and n such that $a^m = b^n = 0$.

 $\langle 1 \rangle 2$. $(a+b)^{m+n} = 0$

PROOF: Since $(a+b)^{m+n} = \sum_k \binom{m+n}{k} a^k b^{m+n-k}$ and every term in this sum is 0 since, for every k, either $k \geq m$ or $m+n-k \geq n$.

Proposition 17.32. m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$ if and only if m is divisible by all the prime factors of n.

Proof:

 $\langle 1 \rangle 1$. If m is nilpotent then m is divisible by all the prime factors of n.

 $\langle 2 \rangle 1$. Assume: $m^a \equiv 0 \pmod{n}$

 $\langle 2 \rangle 2$. For every prime p, if $p \mid n$ then $p \mid m^a$.

 $\langle 2 \rangle 3$. For every prime p, if $p \mid n$ then $p \mid m$.

 $\langle 1 \rangle 2$. If m is divisible by all the prime factors of n then m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

 $\langle 2 \rangle 1$. Assume: m is divisible by all the prime factors of n.

 $\langle 2 \rangle 2$. Let: a be the largest number such that $p^a \mid n$ for some prime p.

 $\langle 2 \rangle 3$. For every prime p that divides n we have $p^a \mid m^a$

 $\langle 2 \rangle 4$. $n \mid m^a$

 $\langle 2 \rangle 5$. $m^a \equiv 0 \pmod{n}$

 $\langle 2 \rangle 6$. m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

Ring Homomorphisms

Definition 18.1 (Ring Homomorphism). Let R and S be rings. A *ring homomorphism* $\phi: R \to S$ is a rng homomorphism such that $\phi(1) = 1$.

Proposition 18.2. The zero-ring is terminal in Ring.

Proof: Easy.

Proposition 18.3. The ring \mathbb{Z} is initial in Ring.

Proof: Easy. \square

Proposition 18.4. Let R and S be rings and $\phi: R \to S$ be a rng homomorphism. If ϕ is surjective, then ϕ is a ring homomorphism.

Proof:

$$\langle 1 \rangle 1$$
. Pick $a \in R$ such that $\phi(a) = 1$

$$\langle 1 \rangle 2. \ \phi(1) = 1$$

PROOF:

$$\phi(1) = \phi(1)\phi(a)$$

$$= \phi(1a)$$

$$= \phi(a)$$

$$= 1$$

Example 18.5. For any set S we have $\mathcal{P}S\cong (\mathbb{Z}/2\mathbb{Z})^S$ in **Ring** with the isomorphism

П

$$\phi: \mathcal{P}S \cong (\mathbb{Z}/2\mathbb{Z})^S$$

$$\phi(A)(s) = \begin{cases} 1 & \text{if } s \in A \\ 0 & \text{if } s \notin A \end{cases}$$

Example 18.6. The function $\mathbb{H} \to \mathfrak{gl}_4(\mathbb{R})$ that maps a + bi + cj + dk to

$$\begin{pmatrix}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{pmatrix}$$

is a monomorphism in **Ring**, as is the function $\mathbb{H} \to \mathfrak{sl}_2(\mathbb{C})$ that maps a + bi + cj + dk to

$$\left(\begin{array}{cc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right) .$$

Proposition 18.7. Ring homomorphisms preserve units.

PROOF: If uv = 1 then $\phi(u)\phi(v) = 1$.

Proposition 18.8. Let $\phi: R \to S$ be a ring homomorphism. Then the following are equivalent.

- 1. ϕ is a monomorphism.
- 2. $\ker \phi = \{0\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is a monomorphism.
 - $\langle 2 \rangle 2$. Let: $r \in \ker \phi$
 - $\langle 2 \rangle 3$. Let: $\operatorname{ev}_r : \mathbb{Z}[x] \to R$ be the unique ring homomorphism such that $\operatorname{ev}_r(x) = r$.
 - $\langle 2 \rangle$ 4. Let: ev₀ : $\mathbb{Z}[x] \to R$ be the unique ring homomorphism such that ev₀(x) = 0.
 - $\langle 2 \rangle 5. \ \phi \circ \text{ev}_r = \phi \circ \text{ev}_0$
 - $\langle 2 \rangle 6$. $ev_r = ev_0$
 - $\langle 2 \rangle 7. \ r = 0$
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

Proof: Proposition 11.21.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

Г

Example 18.9. It is not true that every epimorphism in **Ring** is surjective. The inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is an epimorphism but not surjective.

The same example shows that a ring homomorphism may be a monomorphism and an epimorphism but not be an isomorphism.

Example 18.10.

$$\operatorname{End}_{\mathbf{Ab}}\left(\mathbb{Z}\right)\cong\mathbb{Z}$$

The isomorphism maps any group endomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$ to $\phi(1)$.

18.1. PRODUCTS 155

Example 18.11. The group of units of $\mathrm{End}_{\mathbf{Ab}}\left(G\right)$ is $\mathrm{Aut}_{\mathbf{Ab}}\left(G\right).$

Example 18.12. Let R be a ring. Then the function $\lambda:R\to\operatorname{End}_{\mathbf{Ab}}(R)$ defined by

$$\lambda(a)(b) = ab$$

is a ring monomorphism.

Proof: Easy.

18.1 Products

Proposition 18.13. Let R and S be rings. Then $R \times S$ is a ring under componentwise addition and multiplication, and this ring is the product of R and S in Ring.

Proof: Easy.

Subrings

Definition 19.1 (Subring). Let S be a ring. A *subring* of S is a ring R such that R is a subset of S and the inclusion $R \hookrightarrow S$ is a ring homomorphism.

Proposition 19.2. Let R and S be rings. Then R is a subring of S if and only if R is a subset of S, the unit 1 of S is an element of R, and the operations of R are the restrictions of the operations of S to R.

Proof: Easy. \square

Corollary 19.2.1. The zero ring is not a subring of any non-zero ring.

Proposition 19.3. Let $\phi: R \to S$ be a ring homomorphism. Then $\phi(R)$ is a subring of S.

Proof: Easy.

19.1 Centralizer

Definition 19.4 (Centralizer). Let R be a ring and $a \in R$. The *centralizer* of a is $\{r \in R : ar = ra\}$.

Proposition 19.5. The centralizer of a is a subring of R.

Proof: Easy.

19.2 Center

Definition 19.6 (Center). The *center* of a ring R is $\{x \in R : \forall y \in R.xy = yx\}$.

Proposition 19.7. The center of a ring is a subring.

Proof: Easy. \square

Proposition 19.8. Let R be a ring. The center of $\operatorname{End}_{\mathbf{Ab}}(R)$ is isomorphic to the center of R.

```
Proof:
```

Corollary 19.8.1. If R is a commutative ring then R is isomorphic to the center of $\operatorname{End}_{\mathbf{Ab}}(R)$.

Example 19.9. For n a positive integer we have $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$. Since, for any $\phi \in \operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$ we have $\phi(m) = m\phi(1)$ and so the whole of $\operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$ is the image of λ .

Monoid Rings

Definition 20.1 (Monoid Ring). Let R be a ring and M a monoid. Define R[M] to be the ring whose elements are the families $\{a_m\}_{m\in M}$ such that $a_m=0$ for all but finitely many $m\in M$, written

$$\sum_{m \in M} a_m m ,$$

under

$$\sum_{m} a_m m + \sum_{m} b_m m = \sum_{m} (a_m + b_m) m$$

$$\left(\sum_{m} a_m m\right) \left(\sum_{m} b_m m\right) = \sum_{m \in M} \sum_{m_1 m_2 = m} a_{m_1} b_{m_2} m$$

Example 20.2. Ring homomorphisms do not necessarily preserve zero-divisors. The canonical homomorphism $\pi: \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ maps the non-zero-divisor 2 to a zero-divisor.

20.1 Polynomials

Definition 20.3 (Polynomial). Let R be a ring. The ring of polynomials R[x] is $R[\mathbb{N}]$. We write

$$\sum_{n} a_n x^n \text{ for } \sum_{n} a_n n .$$

Concretely, a polynomial in R is a sequence (a_n) in R such that there exists N such that $\forall n \geq N.a_n = 0$. We write the polynomial as

$$\sum_{n=0}^{N-1} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} .$$

We write R[x] for the set of all polynomials in R.

Define addition and multiplication on R[x] by

$$\sum_{n} a_n x^n + \sum_{n} b_n x^n = \sum_{n} (a_n + b_n) x^n$$
$$\left(\sum_{n} a_n x^n\right) \left(\sum_{n} b_n x^n\right) = \sum_{n} \sum_{i+j=n} a_i b_j x^n$$

A constant is a polynomial of the form $a + 0x + 0x^2 + \cdots$ for some $a \in R$. We write $R[x_1, \dots, x_n]$ for $R[x_1][x_2] \cdots [x_n]$.

Proposition 20.4. For any ring R, the set of polynomials R[x] is a ring.

Proof: Easy.

Definition 20.5 (Degree). The *degree* of a polynomial $\sum_n a_n x^n$ is the largest integer d such that $a_d \neq 0$. We take the degree of the zero polynomial to be $-\infty$.

Proposition 20.6. Let R be a ring and $f, g \in R[x]$ be nonzero polynomials. Then

$$deg(f+g) \le max(deg f, deg g)$$
.

PROOF: If $a_n + b_n \neq 0$ then $a_n \neq 0$ or $b_n \neq 0$. \square

Proposition 20.7. The function $i: n \to \mathbb{Z}[x_1, \ldots, x_n]$ that maps k to x_k is initial in the category with:

- objects all pairs $j: n \to R$ where R is a commutative ring and j a function
- morphisms $\phi:(j_1,R_1)\to (j_2,R_2)$ are ring homomorphisms $\phi:R_1\to R_2$ such that $\phi\circ j_1=j_2$.

PROOF: The unique morphism $(i, \mathbb{Z}[x_1, \dots, x_n]) \to (j, R)$ maps a polynomial p to $p(j(0), j(1), \dots, j(n-1))$. \square

Proposition 20.8. Let $\alpha: R \to S$ be a ring homomorphism. Let $s \in S$ commute with $\alpha(r)$ for all $r \in R$. Then there exists a unique ring homomorphism $\overline{\alpha}: R[x] \to S$ such that $\overline{\alpha}(x) = s$ and the following diagram commutes:

PROOF: The map $\overline{\alpha}$ is given by $\overline{\alpha}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = \alpha(a_0) + \alpha(a_1)s + \alpha(a_2)s^2 + \dots + \alpha(a_n)s^n$.

Definition 20.9. Let R be a commutative ring. Given a polynomial $p \in R[x]$, the polynomial function $p: R \to R$ is the function given by: $p(r) = \alpha_r(p)$, where $\alpha_r: R[x] \to R$ is the unique ring homomorphism such that the following diagram commutes.

$$R[x] \xrightarrow{\alpha_r} R$$

$$x \uparrow \qquad r \downarrow$$

Proposition 20.10. $\mathbb{Z}[x,y]$ is the coproduct of $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ in the category of commutative rings.

PROOF: Given ring homomorphisms $f: \mathbb{Z}[x] \to R$ and $g: \mathbb{Z}[y] \to R$, the required morphism $\mathbb{Z}[x,y] \to R$ maps p(x,y) to p(f(x),g(y)). \sqcup

Example 20.11. $\mathbb{Z}[x,y]$ is not the coproduct of $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ in Ring. Given $f: \mathbb{Z}[x] \to R$ and $g: \mathbb{Z}[y] \to R$ with $f(x) \neq g(y)$, the mediating morphism $\mathbb{Z}[x,y] \to R$ cannot exist since it must map xy to both f(x)g(y) and g(y)f(x).

Definition 20.12. A polynomial is *monic* iff its last non-zero coefficient is 1.

Proposition 20.13. A monic polynomial is not a left- or right-zero-divisor.

Proof: Easy.

Proposition 20.14. Let R be a ring. Let $f, g \in R[x]$ with f monic. Then there exist unique polynomials $q, r \in R[x]$ with deg $r < \deg f$ such that

$$q = qf + r$$
.

Proof:

 $\langle 1 \rangle 1$. Let: $d = \deg f$

 $\langle 1 \rangle 2$. For all $a \in R$ and n > d, there exists $h \in R[x]$ with $\deg h < n$ such that $ax^n = ax^{n-d}f + h$.

PROOF: Take $h = ax^n - ax^{n-d}f$.

 $\langle 1 \rangle 3$. For all $a \in R$ and n > d, there exists $q, h \in R[x]$ with deg $h \leq d$ such that $ax^n = qf + h$.

PROOF: Repeating $\langle 1 \rangle 2$ by induction.

 $\langle 1 \rangle 4$. Let: $g = \sum_{i=0}^{n} a_i x^i$ $\langle 1 \rangle 5$. For i > d, Pick $q_i h_i \in R[x]$ with $\deg h < \deg f$ such that $a_i x^i = q_i f + h_i$

 $\langle 1 \rangle 6.$ $g = \left(\sum_{i=d+1}^{n} q_i \right) f + \sum_{i=d+1}^{n} h_i$ $\langle 1 \rangle 7.$ q and r are unique.

PROOF: If $q_1f + r_1 = q_2f + r_2$ then $r_1 - r_2 = (q_2 - q_1)f$ and so $r_1 - r_2 =$ $(q_2 - q_1)f = 0$ since $\deg(r_1 - r_2) < \deg f$.

Laurent Polynomials 20.2

Definition 20.15 (Laurent Polynomial). Let R be a ring. The ring of Laurent polynomials is the group ring $R[\mathbb{Z}]$. We write $\sum_{n\in\mathbb{Z}} a_n x^n$ for $\sum_n a_n n$.

20.3 Power Series

Definition 20.16 (Power Series). Let R be a ring. A power series in R is a sequence (a_n) in R. We write the power series as

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

We write R[[x]] for the set of all power series in R. Define addition and multiplication on R[[x]] by

$$\sum_{n} a_n x^n + \sum_{n} b_n x^n = \sum_{n} (a_n + b_n) x^n$$
$$\left(\sum_{n} a_n x^n\right) \left(\sum_{n} b_n x^n\right) = \sum_{n} \sum_{i+j=n} a_i b_j x^n$$

Proposition 20.17. For any ring R, the set of power series R[[x]] is a ring.

Proof: Easy.

Proposition 20.18. A power series $\sum_n a_n x^n$ is a unit in R[[x]] if and only if a_0 is a unit in R.

Proof:

 $\langle 1 \rangle 1$. If $\sum_n a_n x^n$ is a unit then a_0 is a unit. $\langle 2 \rangle 1$. Let: $\sum_n b_n x^n$ be the inverse of $\sum_n a_n x^n$.

 $\langle 2 \rangle 2$. $a_0 b_0 = b_0 a_0 = 1$

 $\langle 1 \rangle 2$. If a_0 is a unit then $\sum_n a_n x^n$ is a unit. PROOF: Define the sequence (b_n) in R by

$$b_n = -a_0^{-1} \sum_{i=1}^n a_i b_{n-1}$$

 $b_n = -{a_0}^{-1} \sum_{i=1}^n a_i b_{n-i}$ Then $\sum_n b_n x^n$ is the inverse of $\sum_n a_n x^n$.

Ideals

Definition 21.1 (Left-Ideal). Let R be a ring.

A subgroup I of R is a *left-ideal* iff, for all $r \in R$, we have $rI \subseteq I$.

A subgroup I of R is a right-ideal iff, for all $r \in R$, we have $Ir \subseteq I$.

A subgroup I of R is a (two-sided) ideal iff it is a left-ideal and a right-ideal.

Example 21.2. Let R be a ring and $a \in R$. Then Ra is a left-ideal and aR is a right-ideal.

In particular, {0} is always a two-sided ideal.

Example 21.3. Let S be a set and $T \subseteq S$. Then $\{X \in \mathcal{P}S : X \subseteq T\}$ is an ideal in $\mathcal{P}S$.

Proposition 21.4. Let S be a finite set. Then every ideal in $\mathcal{P}S$ is of the form $\{X \in \mathcal{P}S : X \subseteq T\}$ for some $T \subseteq S$.

Proof:

```
\langle 1 \rangle 1. Let: I be an ideal in \mathcal{P}S.
```

 $\langle 1 \rangle 2$. Let: $T = \bigcup I$

 $\langle 1 \rangle 3$. For all $i \in T$ we have $\{i\} \in I$.

 $\langle 2 \rangle 1$. Let: $i \in T$

 $\langle 2 \rangle 2$. Pick $X \in I$ such that $i \in X$

 $\langle 2 \rangle 3. \ \{i\} = \{i\} \cap X \in I$

 $\langle 1 \rangle 4$. For all $X \subseteq T$ we have $X \in I$.

PROOF: If $X = \{x_1, ..., x_n\}$ then $X = \{x_1\} + \cdots + \{x_n\} \in I$.

Example 21.5. If S is an infinite set, then there is always an ideal in $\mathcal{P}S$ that is not of the form $\{X \in \mathcal{P}S : X \subseteq T\}$ for some $T \subseteq S$, namely the set of all finite subsets of S.

Proposition 21.6. Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Let J be an ideal in R. Then $\phi(J)$ is an ideal in S.

Proof:

- $\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } j \in J \text{ and } s \in S \\ & \text{Prove: } s\phi(j), \phi(j)s \in \phi(J) \\ \langle 1 \rangle 2. & \text{Pick } r \in R \text{ such that } \phi(r) = s \\ \langle 1 \rangle 3. & rj, jr \in J \\ \langle 1 \rangle 4. & s\phi(j), \phi(j)s \in \phi(J) \\ & \square \end{array}$
- **Example 21.7.** We cannot remove the hypothesis that ϕ is surjective. Let $i: \mathbb{Z} \hookrightarrow \mathbb{Q}$ be the inclusion. Then $i(2\mathbb{Z}) = 2\mathbb{Z}$ is not an ideal in \mathbb{Q} .

Proposition 21.8. Let $\phi: R \to S$ be a ring homomorphism and I a (left-right-)ideal in S. Then $\phi^{-1}I$ is a (left-, right-)ideal in R.

Proof: Easy.

Corollary 21.8.1. Let $\phi: R \to S$ be a ring homomorphism. Then $\ker \phi$ is an ideal in R.

Definition 21.9 (Quotient Ring). Let I be an ideal in R. The quotient ring R/I is the quotient group R/I under

$$(a+I)(b+I) = ab+I .$$

This is well-defined as, if a + I = a' + I and b + I = b' + I then

$$a - a' \in I$$

$$b - b' \in I$$

$$\therefore ab - a'b \in I$$

$$a'b - a'b' \in I$$

$$\therefore ab - a'b' \in I$$

Proposition 21.10. Let I be an ideal in R. Then the canonical group homomorphism $\pi: R \to R/I$ is a ring homomorphism.

Proof: By construction. \square

Proposition 21.11. Let I be an ideal in a ring R. For every ring homomorphism $\phi: R \to S$ such that $I \subseteq \ker \phi$, there exists a unique ring homomorphism $\overline{\phi}: R/I \to S$ such that the following diagram commutes.

Proof: Easy. \square

Corollary 21.11.1. Every ring homomorphism $\phi: R \to S$ decomposes as follows.

Corollary 21.11.2 (First Isomorphism Theorem). Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Then

$$S \cong R/\ker \phi$$
.

Theorem 21.12 (Third Isomorphism Theorem). Let I and J be ideals in R with $I \subseteq J$. Then J/I is an ideal in R/I, and

$$\frac{R/I}{J/I} \cong R/J$$

PROOF: Since the function $R/I \to R/J$ that maps r+I to r+J is a surjective ring homomorphism with kernel J/I. \square

Corollary 21.12.1. Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Let J be an ideal in R. Then

$$\frac{S}{\phi(J)} \cong \frac{R}{\ker S + J}$$

Proposition 21.13. Let R be a ring and J an ideal in $\mathfrak{gl}_n(R)$. Let $A \in \mathfrak{gl}_n(R)$. Then $A \in J$ if and only if the matrices obtained by placing any entry of A in any position and zeros elsewhere all belong to J.

PROOF: Each such matrix can be obtained by pre- and post-multiplying A by matrices which have a single 1 and 0s elsewhere. Conversely, A is a sum of such matrices. \square

Corollary 21.13.1. Let R be a ring. Let J be an ideal in $\mathfrak{gl}_n(R)$. Let I be the set of all entries of elements of J. Then I is an ideal in R, and J is the set of all matrices whose entries are in I.

Proposition 21.14. Let R be a ring. Let $\{I_{\alpha}\}_{{\alpha}\in A}$ be a family of ideals in R. Let

$$\sum_{\alpha \in A} I_{\alpha} = \{ \sum_{\alpha \in A} r_{\alpha} : \forall \alpha. r_{\alpha} \in I_{\alpha}, r_{\alpha} = 0 \text{ for all but finitely many } \alpha \in A \} \ .$$

Then $\sum_{\alpha \in A} I_{\alpha}$ is an ideal, and is the smallest ideal that includes every I_{α} .

Proof: Easy. \square

Proposition 21.15. The intersection of a set of ideals is an ideal.

Proof: Easy.

21.1 Characteristic

Definition 21.16 (Characteristic). The *characteristic* of a ring R is the non-negative integer n such that $n\mathbb{Z}$ is the kernel of the unique ring homomorphism $\mathbb{Z} \to R$.

Proposition 21.17. Let R be a ring. If the unit 1 has finite order in R, then its order is the characteristic of R; otherwise, the characteristic of R is 0.

Proof: Easy. \square

Example 21.18. The zero ring is the only ring with characteristic 1.

21.2 Nilradical

Definition 21.19 (Nilradical). Let R be a commutative ring. The *nilradical* of R is the set of all nilpotent elements.

Proposition 21.20. Let R be a commutative ring. The nilradical of R is an ideal in R.

PROOF: If $a^n = 0$ then for any b we have $(ba)^n = 0$. \square

Example 21.21. We cannot remove the assumption that R is commutative. In $\mathfrak{gl}_2(\mathbb{R})$ we have that $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent but $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is not.

21.3 Principal Ideals

Definition 21.22 (Principal Ideal). Let R be a commutative ring and $a \in R$. The *principal ideal* generated by a is (a) = Ra = aR.

Example 21.23. $\{0\} = (0)$ and $R = \{1\}$ are principal ideals.

Definition 21.24. Let R be a commutative ring and $\{a_{\alpha}\}_{{\alpha}\in A}$ be a family of elements of R. The *ideal generated by the elements* a_{α} is

$$(a_{\alpha})_{\alpha \in A} := \sum_{\alpha \in A} (a_{\alpha})$$
.

An ideal is *finitely generated* iff it is generated by a finite family of elements.

Definition 21.25. Let R be a commutative ring and I, J be ideals in R. Then IJ is the ideal generated by $\{ij\}_{i\in I, j\in J}$.

Proposition 21.26.

$$IJ \subseteq I \cap J$$

Proof: Easy.

Proposition 21.27. Let R be a commutative ring. Let I and J be ideals in R. If I + J = R then $IJ = I \cap J$.

Proof:

- $\langle 1 \rangle 1$. Let: $r \in I \cap J$
- $\langle 1 \rangle 2$. Pick $i \in I$ and $j \in J$ such that i + j = 1.
- $\langle 1 \rangle 3. \ ri, rj \in IJ$
- $\langle 1 \rangle 4. \ r = ri + rj \in IJ$

Proposition 21.28. Let R be a commutative ring. Let $f \in R[x]$ be a monic polynomial of degree d. Then the function

$$\phi: R[x] \to R^{\oplus d}$$

that sends a polynomial g to the remainder of the division of g by f induces an isomorphism of Abelian groups

$$\frac{R[x]}{(f(x))} \cong R^{\oplus d} .$$

PROOF: It is clearly a group homomorphism; it is surjective since it maps any polynomial of degree < d to itself, and its kernel is (f(x)) since these are the polynomials with remainder 0. \square

Corollary 21.28.1. Let R be a commutative ring and $a \in R$. Then we have

$$\frac{R[x]}{(x-a)} \cong R$$

Proof:

- $\langle 1 \rangle 1$. Let: $\phi : R[x] \to R$ be evaluation at a.
- $\langle 1 \rangle 2$. $\phi(g)$ is the remainder when dividing g by x a.

PROOF: If g = (x - a)q + r then g(a) = (a - a)q(a) + r = r.

 $\langle 1 \rangle 3$. ϕ induces a group isomorphism $R[x]/(x-a) \cong R$

PROOF: By the theorem.

 $\langle 1 \rangle 4$. This isomorphism is a ring isomorphism.

PROOF: Since evaluation at a is a ring homomorphism.

Example 21.29. We have

$$\frac{\mathbb{R}[x]}{(x^2+1)} \cong \mathbb{C}$$

as rings.

21.4 Maximal Ideals

Definition 21.30 (Maximal Ideal). Let R be a ring and I an ideal in R. Then I is a maximal ideal iff $I \neq R$ and, whenever J is an ideal with $I \subseteq J$, then either I = J or J = R.

Integral Domains

Definition 22.1 (Integral Domain). An integral domain is a non-trivial commutative ring with no nonzero zero-divisors.

Example 22.2. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are integral domains.

Proposition 22.3. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n is prime.

Proof:

$$n$$
 is prime $\Leftrightarrow \forall a, b \in \mathbb{Z}(n \mid ab \Rightarrow n \mid a \lor n \mid b)$
 $\Leftrightarrow \forall a, b \in \mathbb{Z}/n\mathbb{Z}(ab \cong 0 \pmod{n}) \Rightarrow a \cong 0 \pmod{n} \lor b \cong 0 \pmod{n})$
 $\Leftrightarrow \mathbb{Z}/n\mathbb{Z}$ is an integral domain

Proposition 22.4. In an integral domain, if $x^2 = 1$ then $x = \pm 1$.

PROOF: We have
$$x^2 - 1 = (x - 1)(x + 1) = 0$$
 so $x - 1 = 0$ or $x + 1 = 0$. \Box

Proposition 22.5. Let R be an integral domain and $f, g \in R[x]$. Then

$$\deg(fg) = \deg f + \deg g$$

Proof:

- $\langle 1 \rangle 1.$ Let: $f = \sum_n a_n x^n$ and $g = \sum_n b_n x^n.$ $\langle 1 \rangle 2.$ Let: $d = \deg f$ and $e = \deg g.$
- $\langle 1 \rangle 3$. The d + eth term of fg is

$$a_d b_e x^{d+e}$$

which is non-zero.

$$\langle 1 \rangle 4$$
. For $n > d + e$ the *n*th term of fg is 0.

Corollary 22.5.1. Let R be a ring. Then R[x] is an integral domain if and only if R is an integral domain.

Proposition 22.6. Let R be a ring. Then R[[x]] is an integral domain if and only if R is an integral domain.

Proof:

 $\langle 1 \rangle 1$. If R[[x]] is an integral domain then R is an integral domain. Proof: Easy.

 $\langle 1 \rangle 2$. If R is an integral domain then R[[x]] is an integral domain.

 $\langle 2 \rangle 1$. Assume: R is an integral domain.

$$\langle 2 \rangle 2$$
. Let: $(\sum_n a_n x^n) (\sum_n b_n x^n) = 0$
 $\langle 2 \rangle 3$. $a_0 b_0 = 0$

 $\langle 2 \rangle 4$. $a_0 = 0$ or $b_0 = 0$

 $\langle 2 \rangle$ 5. Assume: w.l.o.g. $b_0 \neq 0$ PROVE: For all n we have $a_n = 0$

 $\langle 2 \rangle 6$. Assume: as induction hypothesis $a_0 = a_1 = \cdots = a_{n-1} = 0$

 $\langle 2 \rangle 7. \sum_{i=0}^{n} a_i b_{n-i} = 0$

 $\langle 2 \rangle 8. \ \overrightarrow{a_n b_0} = 0$

 $\langle 2 \rangle 9. \ a_n = 0$

Proposition 22.7. Let R be a ring and S an integral domain. Every rng homomorphism $\phi: R \to S$ is a ring homomorphism.

Proof:

$$\phi(1) = \phi(1 \cdot 1)$$
$$= \phi(1)\phi(1)$$

and so $\phi(1) = 1$ by Cancellation. \square

Proposition 22.8. The characteristic of an integral domain is either 0 or a prime number.

Proof:

 $\langle 1 \rangle 1$. Let: D be an integral domain.

 $\langle 1 \rangle 2$. Let: n be the characteristic of D

 $\langle 1 \rangle 3$. Assume: $n \neq 0$

 $\langle 1 \rangle 4$. Assume: n = ab

 $\langle 1 \rangle 5$. ab = 0 in D

 $\langle 1 \rangle 6$. a = 0 or b = 0 in D

 $\langle 1 \rangle 7$. $n \mid a \text{ or } n \mid b$

 $\langle 1 \rangle 8$. One of a, b is 1 and the other is n.

Prime Ideals 22.1

Definition 22.9 (Prime Ideal). Let I be an ideal in a commutative ring R. Then I is a prime ideal iff R/I is an integral domain.

Example 22.10. Let R be a commutative ring and $a \in R$. Then (x - a) is a prime ideal in R iff R is an integral domain.

Proposition 22.11. Let R be a commutative ring and I a proper ideal in R. Then I is prime iff, whenever $ab \in I$, then $a \in I$ or $b \in I$.

PROOF: The condition is the same as saying that, if (a+I)(b+I)=I, then a+I=I or b+I=I. \square

Definition 22.12 (Spectrum). The *spectrum* of a commutative ring R, Spec R, is the set of prime ideals.

Proposition 22.13. Let $\phi: R \to S$ be a ring homomorphism. If I is a prime ideal in S then $\phi^{-1}(I)$ is a prime ideal in R.

PROOF:If $ab \in \phi^{-1}(I)$ then $\phi(a)\phi(b) \in I$ so either $\phi(a) \in I$ or $\phi(b) \in I$, i.e. either $a \in \phi^{-1}(I)$ or $b \in \phi^{-1}(I)$. \square

Proposition 22.14. Let R be a commutative ring. Suppose there exists a prime ideal P in R such that the only zero-divisor in P is 0. Then R is an integral domain.

Proof:

```
\langle 1 \rangle 1. Assume: ab = 0 in R \langle 1 \rangle 2. ab \in P \langle 1 \rangle 3. a \in P or b \in P \langle 1 \rangle 4. a = 0 or b = 0
```

Proposition 22.15. Let R be a commutative ring. The nilradical of R is included in every prime ideal of R.

PROOF: Let P be a prime ideal. If $a^n = 0$ then $a^n \in P$ hence $a \in P$. \square

Definition 22.16 (Krull Dimension). The (Krull) dimension of a commutative ring R is the length of the longest chain of prime ideals in R.

Example 22.17. $\mathbb{Z}[x]$ has Krull dimension 2.

Unique Factorization Domains

Example 23.1. \mathbb{Z} is a UFD.

Principal Ideal Domains

Definition 24.1 (Principal Ideal Domain). A commutative ring is a *principal ideal domain (PID)* iff every ideal is principal.

Example 24.2. \mathbb{Z} is a PID by Proposition 11.17.

Example 24.3. $\mathbb{Z}[x]$ is not a PID. The ideal (2, x) is not principal.

Proposition 24.4. Every nonzero prime ideal in a PID is maximal.

```
Proof:
\langle 1 \rangle 1. Let: R be a PID.
\langle 1 \rangle 2. Let: I be a nonzero prime ideal in R.
\langle 1 \rangle 3. Pick a \in R such that I = (a).
\langle 1 \rangle 4. Let: J be an ideal such that I \subseteq J
\langle 1 \rangle 5. Pick b \in R such that J = (b).
\langle 1 \rangle 6. Pick t \in R such that a = bt.
\langle 1 \rangle 7. \ b \in I \text{ or } t \in I
\langle 1 \rangle 8. Case: b \in I
   PROOF: Then J \subseteq I so I = J.
\langle 1 \rangle 9. Case: t \in I
   \langle 2 \rangle 1. Pick s \in R such that t = as.
   \langle 2 \rangle 2. a = ast
   \langle 2 \rangle 3. \ st = 1
       PROOF: Since R is an integral domain.
    \langle 2 \rangle 4. \ 1 \in I
    \langle 2 \rangle 5. \ I = R
```

Corollary 24.4.1. Any PID has Krull dimension 1.

Euclidean Domains

Example 25.1. \mathbb{Z} is a Euclidean domain.

Division Rings

Definition 26.1 (Division Ring). A *division ring* is a ring in which every nonzero element is a two-sided unit.

Example 26.2. The quaternions form a division ring, with the inverse of a non-zero element a + bi + cj + dk being

$$\frac{1}{a^2 + b^2 + c^2 + d^2}(a - bi - cj - dk) .$$

Example 26.3. For any ring R, the ring of polynomials R[x] is not a division ring, since x has no inverse.

Proposition 26.4. Every centralizer in a division ring is a division ring.

PROOF: If ar = ra then $ra^{-1} = a^{-1}r$. \square

Proposition 26.5. A non-trivial ring R is a division ring if and only if its only left-ideals and right-ideals are $\{0\}$ and R.

Proof:

- $\langle 1 \rangle 1.$ If R is a division ring then the only left-ideals and right-ideals are $\{0\}$ and R
 - $\langle 2 \rangle 1$. Assume: R is a division ring.
 - $\langle 2 \rangle 2$. The only left-ideals are $\{0\}$ and R.
 - $\langle 3 \rangle 1$. Let: I be a left-ideal that is not $\{0\}$. Prove: I=R
 - $\langle 3 \rangle 2$. Pick $a \in I \{0\}$
 - $\langle 3 \rangle 3$. PICK a left inverse b for a
 - $\langle 3 \rangle 4. \ 1 \in I$

PROOF: Since 1 = ba.

 $\langle 3 \rangle 5. I = R$

PROOF: For any $r \in R$ we have $r = r1 \in I$.

 $\langle 2 \rangle 3$. The only right-ideals are $\{0\}$ and R.

PROOF: Similar.

 $\langle 1 \rangle 2.$ If the only left-ideals and right-ideals are $\{0\}$ and R then R is a division ring. \Box

Proposition 26.6. Let K be a division ring and R a non-trivial ring. Every ring homomorphism $K \to R$ is injective.

Proof:

 $\langle 1 \rangle 1$. Let: $\phi : K \to R$ be a ring homomorphism.

Prove: $\ker \phi = \{0\}$

- $\langle 1 \rangle 2$. Let: $x \in \ker \phi$
- $\langle 1 \rangle 3$. Assume: for a contradiction $x \neq 0$.
- $\langle 1 \rangle 4. \ \phi(xx^{-1}) = 1$
- $\langle 1 \rangle 5. \ 0 = 1$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This contradicts the assumption that R is non-trivial.

Simple Rings

Definition 27.1 (Simple Ring). A non-trivial ring is R simple iff its only two-sided ideals are $\{0\}$ and R.

Example 27.2. For any simple ring R we have $\mathfrak{gl}_n(R)$ is simple, by Corollary 21.13.1.

Proposition 27.3. Let R be a ring and I an ideal in R. Then I is maximal iff R/I is simple.

Proof:

```
R/I is simple \Leftrightarrow the only ideals in R/I are \{I\} and R/I \Leftrightarrow the only ideals in R that include I are I and R \Leftrightarrow I is maximal
```

Reduced Rings

Definition 28.1 (Reduced Ring). A ring is *reduced* iff it has no non-zero nilpotent elements.

Proposition 28.2. Let R be a commutative ring. Let N be its nilradical. Then R/N is reduced.

Proof:

```
\langle 1 \rangle 1. Let: r + N be nilpotent.

\langle 1 \rangle 2. Pick n such that (r + N)^n = N

\langle 1 \rangle 3. r^n \in N

\langle 1 \rangle 4. Pick k such that (r^n)^k = 0

\langle 1 \rangle 5. r^{nk} = 0

\langle 1 \rangle 6. r \in N

\langle 1 \rangle 7. r + N = N
```

Proposition 28.3. Let R be a commutative ring. Let I and J be ideals in R. If R/IJ is reduced then $IJ = I \cap J$.

```
\begin{split} \langle 1 \rangle 1. & \text{ Let: } r \in I \cap J \\ & \text{ Prove: } r \in IJ \\ \langle 1 \rangle 2. & r^2 \in IJ \\ \langle 1 \rangle 3. & (r+IJ)^2 = IJ \\ \langle 1 \rangle 4. & r+IJ = IJ \\ & \text{ Proof: Since } R/IJ \text{ is reduced.} \\ \langle 1 \rangle 5. & r \in IJ \\ & \Box \end{split}
```

Boolean Rings

Definition 29.1 (Boolean). A ring is *Boolean* iff $a^2 = a$ for every element a.

Example 29.2. For any set S, the ring PS is Boolean.

Proposition 29.3. Every non-trivial Boolean ring has characteristic 2.

PROOF: We have 4 = 2 and so 2 = 0. \square

Proposition 29.4. Every Boolean ring is commutative.

Proof:

$$(a+b)^2 = a+b$$

$$\therefore a^2 + ab + ba + b^2 = a+b$$

$$\therefore a + ab + ba + b = a+b$$

$$\therefore ab + ba = 0$$

$$\therefore ab = -ba$$

$$= ba$$
(Proposition 29.3)

Example 29.5. The only Boolean integral domain is $\mathbb{Z}/2\mathbb{Z}$. For, if D is a Boolean integral domain and $x \in D$, we have $x^2 = x$, so $x^2 - x = x(x - 1) = 0$ and so x = 0 or x = 1, i.e. $D = \{0, 1\}$.

Proposition 29.6. Every Boolean ring has Krull dimension 0.

- $\langle 1 \rangle 1$. Let: R be a Boolean ring.
- $\langle 1 \rangle 2$. Let: I be a prime ideal in R. Prove: I is maximal.
- $\langle 1 \rangle 3$. Let: J be an ideal with $I \subseteq J$
- $\langle 1 \rangle 4$. Pick $a \in J$ with $a \notin I$
- $\langle 1 \rangle 5$. $a^2 a = 0 \in I$
- $\langle 1 \rangle 6. \ a(a-1) \in I$

$$\begin{array}{l} \langle 1 \rangle 7. \ a-1 \in I \\ \langle 1 \rangle 8. \ a-1 \in J \\ \langle 1 \rangle 9. \ 1 \in J \\ \langle 1 \rangle 10. \ J=R \\ \Box \end{array}$$

Modules

Definition 30.1 (Left Module). Let R be a ring and M an Abelian group. A left-action of R on M is a ring homomorphism

$$R \to \operatorname{End}_{\mathbf{Ab}}(M)$$
.

A left R-module consists of an Abelian group M and a left-action of R on M.

Proposition 30.2. Let R be a ring and M an Abelian group. Let $\cdot : R \times M \to M$. Then \cdot defines a left-action of R on M if and only if, for all $r, s \in R$ and $m, n \in M$:

- r(m+n) = rm + rn
- (r+s)m = rm + sm
- (rs)m = r(sm)
- 1m = m

PROOF: Immediate from definitions.

Proposition 30.3. In any R-module M we have 0m = 0 for all $m \in M$.

PROOF: Since 0m = (0+0)m = 0m + 0m and so 0m = 0 by cancellation in M.

Proposition 30.4. In any R-module M we have (-1)m = -m for all $m \in M$.

PROOF: Since m + (-1)m = 1m + (-1)m = (1 + (-1))m = 0m = 0.

Proposition 30.5. Every Abelian group is a \mathbb{Z} -module in exactly one way.

Proof: Since \mathbb{Z} is initial in Ring. \square

Definition 30.6 (Right Module). Let R be a ring. A right R-module consists of an Abelian group M and a function $\cdot: M \times R \to M$ such that, for all $r, s \in R$ and $m, n \in M$:

- (m+n)r = mr + nr
- m(r+s) = mr + ms
- m(rs) = (mr)s
- m1 = m

30.1 Homomorphisms

Definition 30.7 (Homomorphism of Left-Modules). Let R be a ring. Let M and N be left-R-modules. A homomorphism of left-R-modules $\phi: M \to N$ is a group homomorphism such that, for all $r \in R$ and $m \in M$, we have $\phi(rm) = r\phi(m)$.

Let $R-\mathbf{Mod}$ be the category of left-R-modules and left-R-module homomorphisms.

Example 30.8.

$$\mathbb{Z}-\mathbf{Mod}\cong\mathbf{Ab}$$

Example 30.9. The trivial group 0 is the zero object in $R - \mathbf{Mod}$.

Proposition 30.10. Every bijective R-module homomorphism is an isomorphism.

Proof: Easy. \square

Proposition 30.11. Let R be a ring. Let M be an R-module. Then

$$M \cong R - \mathbf{Mod}[R, M]$$

as R-modules.

PROOF: The isomorphism maps m to the function $\lambda r.rm$. Its inverse maps an R-module homomorphism α to $\alpha(1)$. \square

Proposition 30.12. Let R be a commutative ring. Let M be an R-module. Then there is a bijection between the set of R[x]-module structures on M that extend the given R-module structure and $\operatorname{End}_{R-\operatorname{Mod}}(M)$.

- $\langle 1 \rangle 1$. Let: $\alpha : R \to \operatorname{End}_{\mathbf{Ab}}(M)$ be the given R-module structure on M.
- $\langle 1 \rangle$ 2. An R[x]-module structure on M that extends α is a ring homomorphism $\beta: R[x] \to \operatorname{End}_{\mathbf{Ab}}(M)$ such that $\beta \circ i = \alpha$, where i is the inclusion $R \to R[x]$.
- $\langle 1 \rangle$ 3. There is a bijection between the R[x]-module structures on M that extend α and the elements $s \in \operatorname{End}_{\mathbf{Ab}}(M)$ that commute with $\alpha(r)$ for all $r \in R$. PROOF: By the universal property for polynomials.
- $\langle 1 \rangle 4$. There is a bijection between the R[x]-module structures on M that extend α and the R-module homomorphisms $(M, \alpha) \to (M, \alpha)$.

П

Proposition 30.13. Let R be a commutative ring. Let M and N be R-modules. Then $R - \mathbf{Mod}[M, N]$ is an R-module under

$$(\phi + \psi)(m) = \phi(m) + \psi(m)$$
$$(r\phi)(m) = r\phi(m)$$

Proof: Easy.

Proposition 30.14. *Let* R *be an integral domain. Let* I *be a nonzero principal ideal of* R. Then $I \cong R$ in $R - \mathbf{Mod}$.

Proof:

- $\langle 1 \rangle 1$. PICK $a \in R$ such that I = (a).
- $\langle 1 \rangle 2$. Let: $\phi : R \to I$ be the map $\phi(r) = ra$.
- $\langle 1 \rangle 3$. ϕ is an R-module homomorphism.

PROOF: Since (r + s)a = ra + sa and (rs)a = r(sa).

- $\langle 1 \rangle 4$. ϕ is surjective.
- $\langle 1 \rangle 5$. ϕ is injective.

PROOF: If ra = sa then (r - s)a = 0 so r - s = 0 and r = s.

 $\langle 1 \rangle 6. \ \phi : R \cong I$

Ù

30.2 Submodules

Definition 30.15 (Submodule). Let M be a left-R-module and $N \subseteq M$. Then N is a submodule of M iff N is a subgroup of M and $\forall r \in R. \forall n \in N. rn \in N$.

Proposition 30.16. Let R be a ring and $I \subseteq R$. Then I is a left-ideal in R iff I is a submodule of R as an R-module.

Proof: Immediate from definitions. \Box

Proposition 30.17. Let R be a ring. Let M and N be left-R-modules and $\phi: M \to N$ an R-module homomorphism. Then $\ker \phi$ is a submodule of M and $\operatorname{im} \phi$ is a submodule of N.

Proof: Easy.

Proposition 30.18. Let R be a commutative ring. Let M be a left-R-module. Let $r \in R$. Then $rM = \{rm : m \in M\}$ is a submodule of M.

Proof: Easy.

Proposition 30.19. Let R be a ring. Let M be a left-R-module. Let I be a left-ideal in R. Then $IM = \{rm : r \in I, m \in M\}$ is a submodule of M.

- $\langle 1 \rangle 1$. IM is a subgroup of M.
 - $\langle 2 \rangle$ 1. Let: $r, s \in I$ and $m, n \in M$. Prove: $rm + sn \in IM$
 - $\langle 2 \rangle 2$. rm + sn = r(m-n) + (s-r)n
- $\langle 1 \rangle$ 2. For all $r \in R$ and $x \in IM$ we have $rx \in IM$.

30.3 Quotient Modules

Definition 30.20 (Quotient Module). Let R be a ring. Let M be a left-R-module. Let N be a submodule of M. Then the quotient module M/N is the quotient group M/N under

$$r(m+N) = rm + N .$$

Proposition 30.21. Let R be a ring. Let M and P be left-R-modules. Let N be a submodule of M. Let $\phi: M \to P$ be an R-module homomorphism. If $N \subseteq \ker \phi$, then there exists a unique R-module homomorphism $\overline{\phi}: M/N \to P$ such that the following diagram commutes.

Proof: Easy.

Theorem 30.22. Every R-module homomorphism $\phi: M \to M'$ may be decomposed as:

$$M \longrightarrow M/\ker \phi \stackrel{\cong}{\longrightarrow} \operatorname{im} \phi \longrightarrow N$$

Proof: Easy.

Corollary 30.22.1 (First Isomorphism Theorem). Let $\phi: M \to M'$ be a surjective R-module homomorphism. Then

$$M' \cong \frac{M}{\ker \phi}$$
.

Proposition 30.23 (Second Isomorphism Theorem). Let R be a ring. Let M be a left-R-module. Let N and P be submodules of M. Then N+P is a submodule of M, $N \cap P$ is a submodule of P, and

$$\frac{N+P}{N} \cong \frac{P}{N \cap P}$$

PROOF: The function that maps P to p+N is a surjective homomorphism $P \to (N+P)/N$ with kernel $N \cap P$. \square

Proposition 30.24 (Third Isomorphism Theorem). Let R be a ring. Let M be a left-R-module. Let N be a submodule of M and P a submodule of N. Then N/P is a submodule of M/P and

$$\frac{M/P}{N/P} \cong \frac{M}{N}$$

PROOF: The canonical map $M \to M/N$ induces a surjective homomorphism $M/P \to M/N$ which has kernel N/P. \square

Proposition 30.25. Let R be a ring. Let M be a left-R-module. The sum and intersection of a family of submodules of M are submodules of M.

Proof: Easy.

30.4 Products

Proposition 30.26. $R-\mathbf{Mod}$ has products.

PROOF: Given a family $\{M_{\alpha}\}_{{\alpha}\in A}$ of left-R-modules, we make $\prod_{{\alpha}\in A} M_{\alpha}$ into a left-R-module by

$$(f+g)(\alpha) = f(\alpha) + g(\alpha)$$
$$(rf)(\alpha) = rf(\alpha)$$

30.5 Coproducts

Proposition 30.27. $R-\mathbf{Mod}$ has coproducts.

PROOF: Given a family $\{M_{\alpha}\}_{\alpha\in A}$ of left-R-modules, take $\bigoplus_{\alpha\in A}M_{\alpha}$ to be $\{f\in\prod_{\alpha\in A}M_{\alpha}:f(\alpha)=0\text{ for all but finitely many }\alpha\in A\}$. \square

30.6 Direct Sum

Definition 30.28 (Direct Sum). Let R be a ring. Let M and N be left-R-modules. Then the direct sum $M \oplus N$ is an R-module under

$$r(m,n) = (rm,rn)$$
.

Proposition 30.29. $M \oplus N$ is the biproduct of M and N in $R - \mathbf{Mod}$.

Proof: Easy.

Example 30.30. Infinite products and coproducts are in general different. We have $\mathbb{Z}^{\mathbb{N}} \ncong \mathbb{Z}^{\oplus \mathbb{N}}$ since $\mathbb{Z}^{\mathbb{N}}$ is uncountable but $\mathbb{Z}^{\oplus \mathbb{N}}$ is countable.

30.7 Kernels and Cokernels

Proposition 30.31. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then $\ker \phi \hookrightarrow M$ is terminal in the category of left-R-module homomorphisms $\alpha: P \to M$ such that $\phi \circ \alpha = 0$.

Proof: Easy. \square

Proposition 30.32. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then $N \to \operatorname{coker} \phi$ is initial in the category of left-R-module homomorphisms $\alpha: N \to P$ such that $\alpha \circ \phi = 0$.

Proof: Easy.

Proposition 30.33. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then the following are equivalent.

- ϕ is a monomorphism.
- $\ker \phi$ is trivial.
- ϕ is injective.

Proof: Easy. \square

Proposition 30.34. Let R be a ring. Let $\phi: M \to N$ be a left-R-module homomorphism. Then the following are equivalent.

- ϕ is an epimorphism.
- $\operatorname{coker} \phi$ is trivial.
- ϕ is surjective.

Proof: Easy.

Proposition 30.35. Every monomorphism in $R-\mathbf{Mod}$ is the kernel of some homomorphism.

PROOF: If $\phi: M \to N$ is a monomorphism then it is the kernel of $N \twoheadrightarrow N/\operatorname{im} \phi$. \sqcap

Proposition 30.36. Every epimorphism in $R-\mathbf{Mod}$ is the cokernel of some homomorphism.

PROOF: If $\phi: M \to N$ is epi then it is the cokernel of $\ker \phi \hookrightarrow M$. \square

Example 30.37. Monomorphisms do not split in $R-\mathbf{Mod}$. Multiplication by 2 is a monomorphism $\mathbb{Z} \to \mathbb{Z}$ but has no left inverse.

Example 30.38. Epimorphisms do not split in $R - \mathbf{Mod}$. The canonical map $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ is an epimorphism without a right inverse.

Free Modules 30.8

Proposition 30.39. Let R be a ring and A a set. Then there exists a left-Rmodule $F^R(A)$ and function $j: A \to F^R(A)$ such that, for any left-R-module M and function $f:A \to M$, there exists a unique left-R-module homomorphism $\overline{f}: F^R(A) \to M$ such that the following diagram commutes.

Proof:

 $\langle 1 \rangle 1$. Let: $R^{\oplus A} = \{ \alpha : A \to R : \alpha(a) = 0 \text{ for all but finitely many } a \in A \}$ under the operations

$$(\alpha + \beta)(a) = \alpha(a) + \beta(a)$$
$$(r\alpha)(a) = r\alpha(a)$$

 $\langle 1 \rangle 2$. $R^{\oplus A}$ is a left-R-module.

 $\langle 1 \rangle 3$. Let: $j: A \to R^{\oplus A}$ be the function

$$j(a)(a') = \begin{cases} 1 & \text{if } a = a' \\ 0 & \text{if } a \neq a' \end{cases}$$

 $\langle 1 \rangle 4.$ Let: M be any left-R -module.

$$\begin{array}{l} \langle 1 \rangle 4. \text{ Let: } M \text{ be any left-}R\text{-module.} \\ \langle 1 \rangle 5. \text{ Let: } \underline{f}: A \to M \text{ be a function.} \\ \langle 1 \rangle 6. \text{ Let: } \overline{f}: R^{\oplus A} \to M \text{ be the function} \\ \overline{f}(\alpha) = \sum_{a \in A, \alpha(a) \neq 0} \alpha(a) f(a) \\ \langle 1 \rangle 7. \ \overline{f} \text{ is a left-}R\text{-module homomorphism.} \end{array}$$

 $\langle 1 \rangle 7$. \overline{f} is a left-R-module homomorphism.

 $\langle 1 \rangle 8. \ \overline{f} \circ j = f$

 $\langle 1 \rangle 9$. \overline{f} is unique.

Definition 30.40. We call $j: A \to F^R(A)$ the free left-R-module over A.

Proposition 30.41. *j is injective.*

PROOF: By the proof of the previous proposition.

Proposition 30.42. Let R be a ring. Let F be a non-zero free left-R-module. Let $\phi: M \to N$ be a left-R-module homomorphism. Then ϕ is onto if and only if, for every left-R-module homomorphism $\alpha: F \to N$, there exists a left-Rmodule homomorphism $\beta: F \to M$ such that the diagram below commutes.

$$M \xrightarrow{\phi} N$$

$$\beta \uparrow \qquad \alpha \nearrow$$

$$F$$

- $\langle 1 \rangle 1$. Let: F be the free left-R-module over A with injection $j: A \to F$.
- $\langle 1 \rangle 2$. If ϕ is onto then, for every homomorphism $\alpha : F \to N$, there exists a homomorphism $\beta : F \to M$ such that $\phi \circ \beta = \alpha$.
 - $\langle 2 \rangle 1$. Assume: ϕ is onto.
 - $\langle 2 \rangle 2$. Let: $\alpha : F \to N$ be a homomorphism.
 - $\langle 2 \rangle 3$. For $a \in A$, PICK $f(a) \in M$ such that $\phi(f(a)) = \alpha(j(a))$
 - $\langle 2 \rangle 4$. Let: $\beta: F \to M$ be the unique homomorphism such that $\beta \circ j = f$
 - $\langle 2 \rangle 5. \ \phi \circ \beta = \alpha$

PROOF: Each is the unique homomorphism such that $\alpha \circ j = \phi \circ f$.

- $\langle 1 \rangle$ 3. If, for every homomorphism $\alpha : F \to N$, there exists a homomorphism $\beta : F \to M$ such that $\phi \circ \beta = \alpha$, then ϕ is onto.
 - $\langle 2 \rangle$ 1. Assume: For every homomorphism $\alpha: F \to N$ there exists a homomorphism $\beta: F \to M$ such that $\phi \circ \alpha = \beta$.
 - $\langle 2 \rangle 2$. Let: $n \in N$
 - $\langle 2\rangle 3.$ Let: $\alpha:F\to N$ be the unique homomorphism such that, for all $a\in A,$ we have $\alpha(j(a))=n$
 - $\langle 2 \rangle 4$. PICK a homomorphism $\beta : F \to M$ such that $\phi \circ \beta = \alpha$
 - $\langle 2 \rangle 5$. Pick $a \in A$
- $\langle 2 \rangle 6. \ \phi(\beta(j(a))) = n$

30.9 Generators

Definition 30.43 (Submodule Generated by a Set). Let R be a ring. Let M be a left-R-module. Let A be a subset of M. Let $\phi_A : F^R(A) \to M$ be the unique left-R-module homomorphism such that the following diagram commutes.

The submodule of M generated by A, denoted $\langle A \rangle$, is defined to be im ϕ_A .

Definition 30.44 (Finitely Generated). Let R be a ring. Let M be a left-R-module. Then M is *finitely generated* iff there exists a finite set $A \subseteq M$ such that $M = \langle A \rangle$.

Example 30.45. A submodule of a finitely generated module is not necessarily finitely generated.

Let $R = \mathbb{Z}[x_1, x_2, \ldots]$. Then R is finitely generated as an R-module, but (x_1, x_2, \ldots) is not.

Proposition 30.46. The homomorphic image of a finitely generated module is finitely generated.

Proof: Easy.

Proposition 30.47. Let R be a ring. Let M be a left-R-module. Let N be a submodule of M. If N and M/N are finitely generated then M is finitely generated.

Proof:

- $\langle 1 \rangle 1$. PICK a_1, \ldots, a_n that generate N.
- $\langle 1 \rangle 2$. PICK b_1, \ldots, b_m such that $b_1 + N, \ldots, b_m + N$ generate M/N. PROVE: $a_1, \ldots, a_n, b_1, \ldots, b_m$ generate M.
- $\langle 1 \rangle 3$. Let: $m \in M$
- $\langle 1 \rangle 4$. PICK $r_1, \ldots, r_m \in R$ such that $m + N = r_1 b_1 + \cdots + r_m b_m + N$
- $\langle 1 \rangle 5. \ m r_1 b_1 \dots r_m b_m \in N$
- $\langle 1 \rangle 6$. Pick $s_1, \ldots, s_n \in R$ such that $m r_1 b_1 \cdots r_m b_m = s_1 a_1 + \cdots + s_n a_n$
- $\langle 1 \rangle 7. \ m = r_1 b_1 + \dots + r_m b_m + s_1 a_1 + \dots + s_n a_n$

30.10 Projections

Definition 30.48 (Projection). Let R be a ring. Let M be a left-R-module. Let $p: M \to M$ be a left-R-module homomorphism. Then p is a projection iff $p^2 = p$.

Proposition 30.49. Let R be a ring. Let M be a left-R-module. Let $p: M \to M$ be a projection. Then

$$M \cong \ker p \oplus \operatorname{im} p$$
.

Proof:

- $\langle 1 \rangle 1$. Let: $\phi: M \to \ker p \oplus \operatorname{im} p$ be the map $\phi(m) = (m p(m), p(m))$
- $\langle 1 \rangle 2$. ϕ is a left-R-module homomorphism.
- $\langle 1 \rangle 3$. ϕ is injective.
- $\langle 1 \rangle 4$. ϕ is surjective.

30.11 Pullbacks

Proposition 30.50. $R-\mathbf{Mod}$ has pullbacks.

Proof:

- $\langle 1 \rangle 1$. Let: $\mu: M \to Z$, $\nu: N \to Z$ be left-R-module homomorphisms.
- $\langle 1 \rangle 2$. Let: $M \times_Z N = \{(m,n) \in M \times N : \mu(m) = \nu(n)\}$ under (m,n) + (m',n') = (m+m',n+n')

$$r(m,n) = (rm,rn)$$

 $\langle 1 \rangle 3.$ $M \times_Z N$ is the pullback of M and N.

30.12 Pushouts

Proposition 30.51. $R-\mathbf{Mod}$ has pushouts.

Proof:

 $\langle 1 \rangle 1.$ Let: $\mu: A \to M$ and $\nu: A \to N$ be left-R-module homomorphisms.

Cyclic Modules

Definition 31.1 (Cyclic Module). Let R be a ring. Let M be a left-R-module. Then M is cyclic iff there exists $m \in M$ such that $M = \langle m \rangle$.

Proposition 31.2. Let R be a ring. Let M be a left-R-module. Then M is cyclic if and only if there exists a left-ideal I in R such that $M \cong R/I$.

Proof:

- $\langle 1 \rangle 1$. If M is cyclic then there exists a left-ideal I in R such that $M \cong R/I$.
 - $\langle 2 \rangle 1$. Assume: M is cyclic.
 - $\langle 2 \rangle 2$. Pick $m \in M$ such that $M = \langle m \rangle$
 - $\langle 2 \rangle 3$. Let: $\phi: R \to M$ be the left-R-module homomorphism $\phi(r) = rm$.
 - $\langle 2 \rangle 4$. ϕ is surjective.
 - $\langle 2 \rangle 5$. $M \cong R / \ker \phi$
- $\langle 1 \rangle 2$. For every left-ideal I in R, we have that R/I is cyclic.

PROOF: R/I is generated by 1+I.

Proposition 31.3. A quotient of a cyclic module is cyclic.

PROOF: If M is generated by m then M/N is generated by m+N. \square

Proposition 31.4. Let R be a ring. For any left-ideal I in R and any left-R-module N, we have

$$R - \mathbf{Mod}[R/I, N] \cong \{n \in N : \forall a \in I.an = 0\}$$
.

Proof:

 $\langle 1 \rangle 1$. Let: $\Phi: R - \mathbf{Mod}[R/I, N] \to \{n \in N : \forall a \in I.an = 0\}$ be the function $\Phi(\alpha) = \alpha(1+I)$

PROOF: For all $a \in I$ we have $a\alpha(1+I) = \alpha(a+I) = \alpha(I) = 0$.

 $\langle 1 \rangle 2$. Φ is injective.

PROOF: If $\alpha(1+I) = \beta(1+I)$ then $\alpha(r+I) = r\alpha(1+I) = r\beta(1+I) = \beta(r+I)$ for all $r \in R$, hence $\alpha = \beta$.

 $\langle 1 \rangle 3$. Φ is surjective.

PROOF: Given $n \in N$ such that $\forall a \in I.an = 0$, define $\alpha : R/I \to N$ by $\alpha(r+I) = rn$.

 $\langle 1 \rangle 4.$ If R is commutative then Φ is an R-module homomorphism. \Box

Corollary 31.4.1. For all $a, b \in \mathbb{Z}$ we have $\mathbf{Ab}[\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}] \cong \mathbb{Z}/\gcd(a, b)\mathbb{Z}$.

$$\mathbf{Ab}[\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}] \cong \mathbb{Z} - \mathbf{Mod}[\mathbb{Z}/a\mathbb{Z}, \mathbb{Z}/b\mathbb{Z}]$$

$$\cong \{ n \in \mathbb{Z}/b\mathbb{Z} : \forall x \in a\mathbb{Z}.xn \cong 0 (\text{mod } b) \}$$

$$\cong \{ n \in \mathbb{Z}/b\mathbb{Z} : \forall x \in \mathbb{Z}.b \mid xan \}$$

$$= \{ n \in \mathbb{Z}/b\mathbb{Z} : b \mid an \}$$

Proof:

 $\langle 1 \rangle 1$. Assume: $\phi \neq 0$ $\langle 1 \rangle 2$. $\ker \phi = 0$

Simple Modules

Definition 32.1 (Simple Module). Let R be a ring. An R-module M is *simple* or *irreducible* iff its only submodules are $\{0\}$ and M.

Proposition 32.2 (Schur's Lemma). Let R be a ring. Let M and N be simple R-modules. Let $\phi: M \to N$ be an R-module homomorphism. Then either $\phi = 0$ or ϕ is an isomorphism.

```
\langle 1 \rangle 3. \text{ im } \phi = N
PROOF: Since im \phi is a submodule of N that is not \{0\}. \square

Proposition 32.3. Every simple module is cyclic.

PROOF: \langle 1 \rangle 1. \text{ Let: } M \text{ be a simple module.}
\langle 1 \rangle 2. \text{ Assume: w.l.o.g. } M \neq \{0\}
PROOF: \{0\} = \langle 0 \rangle is cyclic.
\langle 1 \rangle 3. \text{ PICK } m \in M \text{ with } m \neq 0
\langle 1 \rangle 4. \langle m \rangle = M
PROOF: Since \langle m \rangle is a submodule of M that is not \{0\}.
```

PROOF: Since ker ϕ is a submodule of M that is not M.

Noetherian Modules

Definition 33.1 (Noetherian Module). Let R be a ring. A left-R-module is *Noetherian* iff every submodule is finitely generated.

Proposition 33.2. Let R be a ring. Let M be a left-R-module and N a submodule of M. Then M is Noetherian if and only if N and M/N are Noetherian.

Proof:

```
\langle 1 \rangle 1. If M is Noetherian then N is Noetherian.
```

PROOF: Every submodule of N is a submodule of M, hence finitely generated.

- $\langle 1 \rangle 2$. If M is Noetherian then M/N is Noetherian.
 - $\langle 2 \rangle 1$. Assume: M is Noetherian.
 - $\langle 2 \rangle 2$. Let: $\pi: M \twoheadrightarrow M/N$ be the canonical epimorphism.
 - $\langle 2 \rangle 3$. Let: P be a submodule of M/N.
 - $\langle 2 \rangle 4$. PICK $a_1, \ldots, a_n \in M$ that generate $\pi^{-1}(P)$.
 - $\langle 2 \rangle 5$. $a_1 + N, \ldots, a_n + N$ generate P.
- $\langle 1 \rangle 3$. If N and M/N are Noetherian then M is Noetherian.
 - $\langle 2 \rangle 1$. Assume: N and M/N are Noetherian.
 - $\langle 2 \rangle 2$. Let: P be a submodule of M.
 - $\langle 2 \rangle 3$. PICK $a_1, \ldots, a_m \in P$ such that $a_1 + N, \ldots, a_m + N$ generate $\pi(P)$.
 - $\langle 2 \rangle 4$. PICK $b_1, \ldots, b_n \in M$ that generated $P \cap N$. PROVE: $a_1, \ldots, a_m, b_1, \ldots, b_n$ generate P.
 - $\langle 2 \rangle$ 5. Let: $p \in P$

П

- $\langle 2 \rangle 6$. PICK $r_1, \ldots, r_m \in R$ such that $p + N = r_1 a_1 + \cdots + r_m a_m + N$
- $\langle 2 \rangle 7. \ p r_1 a_1 \cdots r_m a_m \in P \cap N$
- $\langle 2 \rangle 8$. PICK $s_1, \ldots, s_n \in R$ such that $p r_1 a_1 \cdots r_m a_m = s_1 b_1 + \cdots + s_n b_n$
- $\langle 2 \rangle 9. \ p = r_1 a_1 + \dots + r_m a_m + s_1 b_1 + \dots + s_n b_n$

Proposition 33.3. Let R be a commutative ring. Let M be an R-module. Then the following are equivalent.

1. M is Noetherian.

2. Ascending Chain Condition (a.c.c.) Every ascending chain of submodules of M stabilizes; that is, if

$$N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$$

is a chain of submodules of M, then there exists i such that $\forall j \geq i.N_i = N_j$.

3. Every nonempty set of submodules of M has a maximal element.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: M is Noetherian.
 - $\langle 2 \rangle 2$. Let: $N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$ be an ascending chain of submodules of M.
 - $\langle 2 \rangle 3$. PICK generators a_1, \ldots, a_k that generate $\bigcup_i N_i$
 - $\langle 2 \rangle 4$. PICK j such that $a_1, \ldots, a_k \in N_j$
 - $\langle 2 \rangle 5$. N_j is maximal.
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If S is a nonempty set of submodules of M with no maximal element, then we can choose a sequence (N_i) in S with $N_i \subseteq N_{i+1}$ for all i.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: Pick i such that N_i is maximal in $\{N_j : j \geq 1\}$.

- $\langle 1 \rangle 4. \ 2 \Rightarrow 1$
 - $\langle 2 \rangle$ 1. Assume: M is not Noetherian. Prove: a.c.c. does not hold.
 - $\langle 2 \rangle 2$. PICK a submodule N of M that is not finitely generated.
 - $\langle 2 \rangle 3$. Choose a sequence of elements (n_i) in N such that $n_{i+1} \notin \langle n_1, \ldots, n_i \rangle$.
 - $\langle 2 \rangle 4$. Let: $N_i = \langle n_1, \dots, n_i \rangle$ for all i.
 - $\langle 2 \rangle 5. \ N_1 \subsetneq N_2 \subsetneq \cdots$

Noetherian Rings

Definition 34.1 (Noetherian Ring). A commutative ring is *Noetherian* iff it is Noetherian as a module over itself.

Proposition 34.2. The homomorphic image of a Noetherian ring is Noetherian.

Proof:

 $\langle 1 \rangle 1.$ Let: R be a Noetherian ring, S be a commutative ring, and $\phi:R\to S$ a surjective ring homomorphism.

 $\langle 1 \rangle 2$. Let: I be an ideal in S.

 $\langle 1 \rangle 3$. Let: $\phi^{-1}(I) = (a_1, \dots, a_n)$

$$\langle 1 \rangle 4. \ I = (\phi(a_1), \dots, \phi(a_n))$$

Proposition 34.3. Every PID is Noetherian.

Proof: Trivial.

Proposition 34.4. If R is a Noetherian ring then $R^{\oplus n}$ is a Noetherian left-R-module

PROOF: The proof is by induction on n. The case n=1 is immediate. The induction step holds by Proposition 33.2 since $R^{\oplus (n+1)}/R^{\oplus n} \cong R$. \square

Corollary 34.4.1. If R is a Noetherian ring and M is a finitely generated left-R-module then M is Noetherian.

PROOF: There is a surjective homomorphism $R^{\oplus n} \twoheadrightarrow M$ for some n, so M is a quotient of $R^{\oplus n}$. \square

Proposition 34.5. A ring is Noetherian iff every ascending chain of ideals stabilizes.

Proof: Proposition 33.3. \square

Proposition 34.6. Let R be a commutative Noetherian ring and I an ideal of R. Then R/I is Noetherian.

Proof:

- $\langle 1 \rangle 1$. Let: J be an ideal in R/I.
- $\langle 1 \rangle 2$. $\pi^{-1}(J)$ is an ideal in R.
- $\langle 1 \rangle 3$. $\pi^{-1}(J)$ is finitely generated.
- $\langle 1 \rangle 4$. *J* is finitely generated.

Lemma 34.7 (Hilbert's Basis Theorem). If R is a commutative Noetherian ring then R[x] is a Noetherian ring.

Proof:

- $\langle 1 \rangle 1$. Let: R be a commutative Noetherian ring.
- $\langle 1 \rangle 2$. Let: I be an ideal of R[x]. PROVE: I is finitely generated.
- $\langle 1 \rangle 3$. Let: $A = \{0\} \cup \{a \in R : a \text{ is the leading coefficient of an element of } I\}$
- $\langle 1 \rangle 4$. A is an ideal of R.
 - $\langle 2 \rangle 1. \ \forall a, b \in A.a b \in A$
 - $\langle 3 \rangle 1$. Let: $a, b \in A$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. $a \neq 0 \neq b$
 - $\langle 3 \rangle 3$. Pick $f, g \in I$ such that a is the leading coefficient of f and b is the leading coefficient of g.
 - $\langle 3 \rangle 4$. Let: $d = \deg f$
 - $\langle 3 \rangle 5$. Let: $e = \deg g$
 - $\langle 3 \rangle 6$. Assume: w.l.o.g. $d \leq e$
 - $\langle 3 \rangle 7$. a-b is the leading coefficient of $x^{e-d}f-g \in I$
 - $\langle 3 \rangle 8. \ a-b \in A$
 - $\langle 2 \rangle 2. \ \forall r \in R. \forall a \in A. ra \in A$

PROOF: If a is the leading coefficient of f then ra is the leading coefficient of rf.

 $\langle 1 \rangle$ 5. PICK $a_1, \ldots, a_r \in A$ that generate A.

PROOF: Since R is Noetherian.

- $\langle 1 \rangle 6$. PICK $f_1, \ldots, f_r \in I$ such that a_i is the leading coefficient of f_i .
- $\langle 1 \rangle 7$. For $i = 1, \dots, r$, Let: $d_i = \deg f_i$.
- $\langle 1 \rangle 8$. Let: $d = \max(d_1, \dots, d_r)$
- $\langle 1 \rangle 9$. Let: M be the following submodule of R[x]: $M = \langle 1, x, x^2, \dots, x^{d-1} \rangle$.
- $\langle 1 \rangle 10$. M is a Noetherian R-module.

Proof: Corollary 34.4.1.

- $\langle 1 \rangle 11$. $M \cap I$ is a finitely generated R-module.
- $\langle 1 \rangle 12$. Pick $g_1, \ldots, g_s \in M \cap I$ that generate $M \cap I$. Prove: $I = (f_1, \ldots, f_r, g_1, \ldots, g_s)$
- $\langle 1 \rangle 13$. For all $\alpha \in I$, there exist $\beta_1, \ldots, \beta_r \in R[x]$ such that $\deg(\alpha + \beta_1 f_1 + \cdots + \beta_r f_r) < d$
 - $\langle 2 \rangle$ 1. For all $\alpha \in I$ with $\deg \alpha \geq d$, there exist $\beta_1, \ldots, \beta_r \in R[x]$ such that $\deg(\alpha + \beta_1 f_1 + \cdots + \beta_r f_r) < \deg \alpha$

```
 \begin{array}{l} \langle 3 \rangle 1. \ \ \mathrm{Let:} \ \alpha \in I \\ \langle 3 \rangle 2. \ \ \mathrm{Let:} \ e = \deg \alpha \\ \langle 3 \rangle 3. \ \ \mathrm{Let:} \ a \ \mathrm{be} \ \mathrm{the} \ \mathrm{leading} \ \mathrm{coefficient} \ \mathrm{of} \ \alpha. \\ \langle 3 \rangle 4. \ \ \mathrm{Pick} \ b_1, \ldots, b_r \in R \ \mathrm{such} \ \mathrm{that} \ a = b_1 a_1 + \cdots + b_r a_r. \\ \langle 3 \rangle 5. \ \ \deg(\alpha - b_1 x^{e-d_1} f_1 - \cdots - b_r x^{e-d_r} f_r) < e \\ \langle 1 \rangle 14. \ \ \mathrm{Let:} \ \alpha \in I \\ \langle 1 \rangle 15. \ \ \mathrm{Pick} \ \beta_1, \ldots, \beta_r \in R[x] \ \mathrm{such} \ \mathrm{that} \ \deg(\alpha + \beta_1 f_1 + \cdots + \beta_r f_r) < d \\ \langle 1 \rangle 16. \ \ \alpha + \beta_1 f_1 + \cdots + \beta_r f_r \in M \cap I = (g_1, \ldots, g_s) \\ \langle 1 \rangle 17. \ \ \alpha \in (f_1, \ldots, f_r, g_1, \ldots, g_s) \\ \square \end{array}
```

Algebras

Definition 35.1 (Algebra). Let R be a commutative ring. An R-algebra consists of a ring S and a ring homomorphism $\alpha: R \to S$ such that $\alpha(R)$ is included in the center of S. We write rs for $\alpha(r)s$.

Proposition 35.2. Let R be a commutative ring and S a ring. Let $\cdot : R \times S \rightarrow S$. Then there exists $\alpha : R \rightarrow S$ that makes S into an R-algebra such that

$$rs = \alpha(r)s$$
 $(r \in R, s \in S)$

iff S is an R-module under \cdot and, for all $r_1, r_2 \in R$ and $s_1, s_2 \in S$,

$$(r_1s_1)(r_2s_2) = (r_1r_2)(s_1s_2)$$
.

Proof: Immediate from definitions.

Example 35.3. Let R be a commutative ring. Then R is an R-algebra under multiplication.

Example 35.4. Let R be a commutative ring and I an ideal in R. Then R/I is an R-algebra.

Example 35.5. Let R be a commutative ring and M an R-module. Then $\operatorname{End}_{R-\operatorname{\mathbf{Mod}}}(M)$ is an R-algebra under composition.

Example 35.6. Let R be a commutative ring. Then $\mathfrak{gl}_n\left(R\right)$ is an R-algebra under matrix multiplication.

Definition 35.7 (Algebra Homomorphism). Let R be a commutative ring. Let S and T be R-algebras. An R-algebra homomorphism $\phi: S \to T$ is a ring homomorphism such that, for all $r \in R$ and $s \in S$, we have $\phi(rs) = r\phi(s)$.

Let $R - \mathbf{Alg}$ be the category of R-algebras and R-algebra homomorphisms.

Example 35.8.

$$\mathbb{Z}-\mathbf{Alg}\cong\mathbf{Ring}$$

Example 35.9. Let R be a commutative ring. Then $R[x_1, \ldots, x_n]$, and any quotient ring of $R[x_1, \ldots, x_n]$, is a commutative R-algebra.

Example 35.10. R is the initial object in $R - \mathbf{Alg}$.

Rees Algebra 35.1

Definition 35.11 (Rees Algebra). Let R be a commutative ring. Let I be an ideal in R. The Rees algebra is the direct sum

$$\operatorname{Rees}_R(I) = \bigoplus_{j \ge 0} I^j$$

under the multiplication

$$(r_0, r_1, r_2, r_3, \ldots)(s_0, s_1, s_2, \ldots) = (r_0 s_0, r_1 s_0 + r_0 s_1, r_0 s_2 + r_1 s_1 + r_2 s_0, \ldots)$$

 $r(r_0, r_1, r_2, \ldots) = (rr_0, rr_1, rr_2, \ldots)$

Proposition 35.12. Let R be a commutative ring. Let $a \in R$ be a non-zerodivisor. Then R[x] is the Rees algebra of (a).

Proof:

- (1)1. Let: $\phi: R[x] \to \operatorname{Rees}_R((a))$ be the function $\phi(r_0 + r_1x + r_2x^2 + \cdots) =$ $(r_0, r_1 a, r_2 a^2, \ldots).$
- $\langle 1 \rangle 2$. ϕ is an R-algebra homomorphism.
- $\langle 1 \rangle 3$. ϕ is injective.
 - $\langle 2 \rangle 1$. Let: $\phi(r_0 + r_1 x + r_2 x^2 + \cdots) = \phi(s_0 + s_1 x + s_2 x^2 + \cdots)$
 - $\langle 2 \rangle 2$. For all n we have $r_n a^n = s_n a^n$
 - $\langle 2 \rangle 3. \ (r_n s_n)a^n = 0$
 - $\langle 2 \rangle 4$. $r_n s_n = 0$

PROOF: Since a is not a zero-divisor.

- $\langle 2 \rangle 5$. $r_n = s_n$
- $\langle 1 \rangle 4$. ϕ is surjective.

Proposition 35.13. Let R be a commutative ring. Let $a \in R$ be a non-zerodivisor. Let I be an ideal of R. Then $\operatorname{Rees}_R(I) \cong \operatorname{Rees}_R(aI)$.

Proof:

- $\langle 1 \rangle 1$. Let: $\phi : \operatorname{Rees}_R(I) \to \operatorname{Rees}_R(aI)$ be the function $\phi(r_0, r_1, r_2, \ldots) = (r_0, ar_1, a^2r_2, \ldots)$.
- $\langle 1 \rangle 2$. ϕ is an R-algebra homomorphism.
- $\langle 1 \rangle 3$. ϕ is injective.
- $\langle 1 \rangle 4$. ϕ is surjective.

35.2 Free Algebras

Proposition 35.14. Let R be a ring. Then $R[x_1, \ldots, x_n]$ is the free commutative R-algebra on $\{1,\ldots,n\}$.

Proof: Easy.

Proposition 35.15. Let R be a ring and A a set. Let A^* be the free monoid on A. Then the monoid ring $R[A^*]$ is the free R-algebra on A.

Proof:	Easy.	
--------	-------	--

Proposition 35.16. Let R be a commutative ring and S a commutative R-algebra. Then S is finitely generated as an R-algebra if and only if S is finitely generated as a commutative R-algebra.

PROOF: Since a subalgebra of a commutative subalgebra is commutative, so the smallest algebra that contains $\{a_1,\ldots,a_n\}$ is the smallest commutative subalgebra that contains $\{a_1,\ldots,a_n\}$. \square

Algebras of Finite Type

Definition 36.1 (Algebra of Finite Type). Let R be a ring. Let S be an R-algebra. Then R is of *finite type* iff S is a finitely generated R-algebra.

Theorem 36.2. Let R be a Noetherian ring. Let S be a finite-type R-algebra. Then S is a Noetherian ring.

PROOF: $S \cong R[x_1, \ldots, x_n]/J$ for some n and some ideal J in $R[x_1, \ldots, x_n]$. We have that $R[x_1, \ldots, x_n]$ is Noetherian by Hilbert's Basis Theorem, hence $R[x_1, \ldots, x_n]/J$ is Noetherian by Proposition 34.6. \square

Finite Algebras

Definition 37.1 (Finite Algebra). Let R be a ring. Let S be an R-algebra. Then S is a *finite* R-algebra iff it is a finitely generated left-R-module.

Proposition 37.2. Let R be a ring. Every finite R-algebra is of finite type.

PROOF: If S is generated by a_1, \ldots, a_n as an R-module, then it is generated by a_1, \ldots, a_n as an R-algebra. \square

Example 37.3. The converse does not hold. R[x] is of finite type but is not finite.

Division Algebras

Definition 38.1 (Division Algebra). Let R be a commutative ring. A *division* R-algebra is an R-algebra that is a division ring.

Example 38.2. Let R be a commutative ring. Let M be a simple R-algebra. Then $\operatorname{End}_{R-\mathbf{Mod}}(M)$ is a division algebra. For if $\phi \circ \psi = 0$ then ϕ and ψ cannot both be isomorphisms, hence $\phi = 0$ or $\psi = 0$ by Schur's Lemma.

Chain Complexes

Definition 39.1 (Chain Complex). Let R be a ring. A chain complex of left-R-modules $M_{\bullet} = (M_{\bullet}, d_{\bullet})$ consists of a family of left-R-modules $\{M_i\}_{i \in \mathbb{Z}}$ and a family of left-R-module homomorphisms $\{d_i : M_i \to M_{i-1}\}_{i \in \mathbb{Z}}$ such that, for all i,

$$d_i \circ d_{i+1} = 0 .$$

We call each d_i a differential and the family $\{d_i\}_i$ the boundary of the chain complex.

Definition 39.2 (Exact). A chain complex M_{\bullet} is *exact* at M_i iff im $d_{i+1} = \ker d_i$.

It is exact or an exact sequence iff it is exact at M_i for all i.

Proposition 39.3. A complex

$$\cdots \to 0 \to L \stackrel{\alpha}{\to} M \to \cdots$$

is exact at L iff α is a monomorphism.

PROOF: Since both are equivalent to $\ker \alpha = 0$. \square

Proposition 39.4. A complex

$$\cdots \to M \stackrel{\beta}{\to} N \to 0 \to \cdots$$

is exact at N iff β is a epimorphism.

PROOF: Since both are equivalent to im $\beta = N$. \square

Definition 39.5 (Short Exact Sequence). A *short exact sequence* is an exact complex of the form

$$0 \to L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$$
.

Proposition 39.6 (Four-Lemma). *If*

$$A_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{g_{1}} C_{1} \xrightarrow{h_{1}} D_{1}$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \downarrow^{\delta}$$

$$A_{2} \xrightarrow{f_{2}} B_{2} \xrightarrow{g_{2}} C_{2} \xrightarrow{h_{2}} D_{2}$$

is a commutative diagram of left-R-modules with exact rows, α is an epimorphism, and β and δ are monomorphisms, then γ is an monomorphism.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in C_1$
- $\langle 1 \rangle 2$. Assume: $\gamma(x) = \gamma(y)$
- $\langle 1 \rangle 3. \ \delta(h_1(x)) = \delta(h_1(y))$
- $\langle 1 \rangle 4. \ h_1(x) = h_1(y)$

PROOF: δ is injective.

- $\langle 1 \rangle 5$. $x y \in \ker h_1$
- $\langle 1 \rangle 6. \ x y \in \operatorname{im} g_1$
- $\langle 1 \rangle 7$. PICK $b \in B_1$ such that $g_1(b) = x y$.
- $\langle 1 \rangle 8.$ $q_2(\beta(b)) = 0$

PROOF: $g_2(\beta(b)) = \gamma(g_1(b)) = \gamma(x - y) = 0$

- $\langle 1 \rangle 9. \ \beta(b) \in \ker g_2$
- $\langle 1 \rangle 10. \ \beta(b) \in \operatorname{im} f_2$
- $\langle 1 \rangle 11$. PICK $a' \in A_2$ such that $f_2(a') = \beta(b)$
- $\langle 1 \rangle 12$. PICK $a \in A_1$ such that $\alpha(a) = a'$

PROOF: α is surjective.

- $\langle 1 \rangle 13. \ \beta(f_1(a)) = \beta(b)$
- $\langle 1 \rangle 14. \ f_1(a) = b$

PROOF: β is injective.

 $\langle 1 \rangle 15. \ 0 = g_1(b)$

PROOF: Since $g_1(b) = g_1(f_1(a)) = 0$.

 $\langle 1 \rangle 16. \ x = y$ Proof: $\langle 1 \rangle 7$

Proposition 39.7 (Four-Lemma). If

$$\begin{array}{ccccc} A_1 & \xrightarrow{f_1} & B_1 & \xrightarrow{g_1} & C_1 & \xrightarrow{h_1} & D_1 \\ \downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow^{\delta} & & \downarrow^{\epsilon} \\ A_2 & \xrightarrow{f_2} & B_2 & \xrightarrow{g_2} & C_2 & \xrightarrow{h_2} & D_2 \end{array}$$

is a commutative diagram of left-R-modules with exact rows, β and δ are epimorphisms, and ϵ is a monomorphism, then γ is an epimorphism.

Proof:

 $\langle 1 \rangle 1$. Let: $b_2 \in B_2$

```
\langle 1 \rangle 2. Pick c_1 \in C_1 such that \delta(c_1) = g_2(b_2)
    PROOF: \delta is surjective.
\langle 1 \rangle 3. \ \epsilon(h_1(c_1)) = 0
\langle 1 \rangle 4. \ h_1(c_1) = 0
    PROOF: \epsilon is injective.
\langle 1 \rangle 5. c_1 \in \ker h_1
\langle 1 \rangle 6. \ c_1 \in \operatorname{im} g_1
\langle 1 \rangle 7. PICK b_1 \in B_1 such that g_1(b_1) = c_1
\langle 1 \rangle 8. \ g_2(\gamma(b_1)) = g_2(b_2)
\langle 1 \rangle 9. \ \gamma(b_1) - b_2 \in \ker g_2
\langle 1 \rangle 10. \ \gamma(b_1) - b_2 \in \operatorname{im} f_2
\langle 1 \rangle 11. PICK a_2 \in A_2 such that f_2(a_2) = \gamma(b_1) - b_2.
\langle 1 \rangle 12. PICK a_1 \in A_1 such that \beta(a_1) = a_2.
    PROOF: \beta is surjective.
\langle 1 \rangle 13. \ \gamma(f_1(a_1)) = \gamma(b_1) - b_2
\langle 1 \rangle 14. \ b_2 = \gamma(b_1 - f_1(a_1))
```

Theorem 39.8 (Snake Lemma). Suppose we have R-modules and homomorphisms

$$0 \longrightarrow L_1 \xrightarrow{\alpha_1} M_1 \xrightarrow{\beta_1} N_1 \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{\nu}$$

$$0 \longrightarrow L_0 \xrightarrow{\alpha_0} M_0 \xrightarrow{\beta_0} N_0 \longrightarrow 0$$

such that the diagram commutes and the two rows are short exact sequences. Then there exists a homomorphism $\delta : \ker \nu \to \operatorname{coker} \lambda$ such that the following is an exact sequence.

$$0 \to \ker \lambda \overset{\alpha_1}{\to} \ker \mu \overset{\beta_1}{\to} \ker \nu \overset{\delta}{\to} \operatorname{coker} \lambda \overset{\alpha_0}{\to} \operatorname{coker} \mu \overset{\beta_0}{\to} \operatorname{coker} \nu \to 0 \ .$$

Proof:

- $\langle 1 \rangle 1$. Define $\delta : \ker \nu \to \operatorname{coker} \lambda$.
 - $\langle 2 \rangle 1$. Let: $a \in \ker \nu$
 - $\langle 2 \rangle 2$. Pick $c \in M_1$ such that $\beta_1(c) = a$.

PROOF: Since β_1 is surjective.

- $\langle 2 \rangle 3$. Let: $d = \mu(c)$
- $\langle 2 \rangle 4$. $d \in \ker \beta_0 = \operatorname{im} \alpha_0$

PROOF: Since $\beta_0(d) = \beta_0(\mu(c)) = \nu(a) = 0$.

- $\langle 2 \rangle$ 5. Let: $e \in L_0$ be the element such that $\alpha_0(e) = d$.
- $\langle 2 \rangle 6$. Let: $\delta(a) = e + \operatorname{im} \lambda$
- $\langle 1 \rangle 2$. δ is a left-R-module homomorphism.
 - $\langle 2 \rangle 1$. For $a, a' \in \ker \nu$ we have $\delta(a + a') = \delta(a) + \delta(a')$.
 - $\langle 3 \rangle 1$. Let: $a, a' \in \ker \nu$

 $\langle 3 \rangle 2$. Let: $c, c', c'' \in M_1$ and $e, e', e'' \in L_0$ be the elements such that

$$\beta_1(c) = a$$

$$\beta_1(c') = a'$$

$$\beta_1(c'') = a + a'$$

$$\alpha_0(e) = \mu(c)$$

$$\alpha_0(e') = \mu(c')$$

$$\alpha_0(e'') = \mu(c'')$$

$$\delta(a) = e + \operatorname{im} \lambda$$

$$\delta(a') = e' + \operatorname{im} \lambda$$

$$\delta(a + a') = e'' + \operatorname{im} \lambda$$

- $\langle 3 \rangle 3. \ c'' c c' \in \ker \beta_1 = \operatorname{im} \alpha_1$
- $\langle 3 \rangle 4$. Pick $g \in L_1$ such that $\alpha_1(g) = c'' c c'$.
- $\langle 3 \rangle 5$. $\alpha_0(\lambda(g)) = \alpha_0(e'' e e')$
- $\langle 3 \rangle 6$. $\lambda(g) = e'' e e'$
- $\langle 3 \rangle 7. \ e'' e e' \in \operatorname{im} \lambda$
- $\langle 3 \rangle 8. \ e'' + \operatorname{im} \lambda = e + e' + \operatorname{im} \lambda$
- $\langle 3 \rangle 9. \ \delta(a+a') = \delta(a) + \delta(a')$
- $\langle 2 \rangle 2$. For $r \in R$ and $a \in \ker \nu$ we have $\delta(ra) = r\delta(a)$.
 - $\langle 3 \rangle 1$. Let: $r \in R$ and $a \in \ker \nu$
 - $\langle 3 \rangle 2$. Let: $c, c' \in M_1$ and $e, e' \in L_0$ be the elements such that

$$\beta_1(c) = a$$

$$\beta_1(c') = ra$$

$$\alpha_0(e) = \mu(c)$$

$$\alpha_0(e') = \mu(c')$$

$$\delta(a) = e + \operatorname{im} \lambda$$

$$\delta(ra) = e' + \operatorname{im} \lambda$$

- $\langle 3 \rangle 3$. $rc c' \in \ker \beta_1 = \operatorname{im} \alpha_1$
- $\langle 3 \rangle 4$. PICK $g \in L_1$ such that $\alpha_1(g) = rc c'$.
- $\langle 3 \rangle 5$. $\alpha_0(\lambda(g)) = \alpha_0(re e')$
- $\langle 3 \rangle 6$. $\lambda(g) = re e'$
- $\langle 3 \rangle 7$. $re e' \in \operatorname{im} \lambda$
- $\langle 3 \rangle 8. \ re + \operatorname{im} \lambda = e' + \operatorname{im} \lambda$
- $\langle 3 \rangle 9. \ r\delta(a) = \delta(ra)$
- $\langle 1 \rangle 3$. The sequence is exact at ker λ .

PROOF: Since α_1 is injective.

 $\langle 1 \rangle 4$. The sequence is exact at ker μ .

PROOF: Since im $\alpha_1 = \ker \beta_1$.

- $\langle 1 \rangle$ 5. The sequence is exact at ker ν , i.e. $beta_1(\ker \mu) = \ker \delta$.
 - $\langle 2 \rangle 1$. Let: $a \in \ker \nu$
 - $\langle 2 \rangle$ 2. Let: $c \in M_1$ and $e \in L_0$ be the elements such that $\beta_1(c) = a$, $\alpha_0(e) = \mu(c)$, and $\delta(a) = e + \operatorname{im} \lambda$.

```
\langle 3 \rangle 1. Assume: \delta(a) = \operatorname{im} \lambda
         \langle 3 \rangle 2. \ e \in \operatorname{im} \lambda
        \langle 3 \rangle 3. Pick g \in L_1 such that \lambda(g) = e
        \langle 3 \rangle 4. \mu(\alpha_1(g)) = \mu(c)
         \langle 3 \rangle 5. \ c - \alpha_1(g) \in \ker \mu
         \langle 3 \rangle 6. a = \beta_1(c - \alpha_1(g))
    \langle 2 \rangle 4. If a \in \beta_1(\ker \mu) then \delta(a) = \operatorname{im} \lambda
         \langle 3 \rangle 1. Assume: c' \in \ker \mu and a = \beta_1(c')
         \langle 3 \rangle 2. c - c' \in \ker \beta_1 = \operatorname{im} \alpha_1
         \langle 3 \rangle 3. Pick g \in L_1 such that \alpha_1(g) = c - c'
         \langle 3 \rangle 4. \alpha_0(\lambda(g)) = \mu(c) - \mu(c') = \alpha_0(e) - 0 = \alpha_0(e)
         \langle 3 \rangle 5. \lambda(g) = e
         \langle 3 \rangle 6. \ e \in \operatorname{im} \lambda
         \langle 3 \rangle 7. \ \delta(a) = \operatorname{im} \lambda
\langle 1 \rangle 6. THe sequence is exact at coker \lambda.
    \langle 2 \rangle 1. Let: e \in L_0
                PROVE: e + \operatorname{im} \lambda \in \operatorname{im} \delta \text{ iff } \alpha_0(e) \in \operatorname{im} \mu.
    \langle 2 \rangle 2. For all a \in \ker \nu, if \delta(a) = e + \operatorname{im} \lambda then \alpha_0(e) \in \operatorname{im} \mu
        PROOF: From \langle 1 \rangle 1 and the fact that \alpha_0 is injective hence e is unique given
    \langle 2 \rangle 3. For all e \in L_0, if \alpha_0(e) \in \operatorname{im} \mu then e + \operatorname{im} \lambda \in \operatorname{im} \delta.
         \langle 3 \rangle 1. Let: e \in L_0
         \langle 3 \rangle 2. Assume: \alpha_0(e) \in \operatorname{im} \mu
        \langle 3 \rangle 3. Pick c \in M_1 such that \mu(c) = \alpha_0(e).
                    PROVE: e + \operatorname{im} \lambda = \delta(\beta_1(c))
        \langle 3 \rangle 4. PICK c' \in M_1 and e' \in L_0 such that \beta_1(c') = \beta_1(c), \alpha_0(e') = \mu(c')
                    and \delta(\beta_1(c)) = e' + \operatorname{im} \lambda
         \langle 3 \rangle 5. c - c' \in \ker \beta_1 = \operatorname{im} \alpha_1
         \langle 3 \rangle 6. Pick g \in L_1 such that \alpha_1(g) = c - c'.
        \langle 3 \rangle 7. \alpha_0(\lambda(g)) = \alpha_0(e - e')
         \langle 3 \rangle 8. \ \lambda(g) = e - e'
        \langle 3 \rangle 9. e + \operatorname{im} \lambda = e' + \operatorname{im} \lambda = \delta(\beta_1(c))
\langle 1 \rangle 7. The sequence is exact at coker \mu.
    PROOF: Since im \alpha_0 = \ker \beta_0.
\langle 1 \rangle 8. The sequence is exact at coker \nu.
    PROOF: Since \beta_0 is surjective.
```

 $\langle 2 \rangle 3$. If $\delta(a) = \operatorname{im} \lambda$ then $a \in \beta_1(\ker \mu)$

Corollary 39.8.1. Suppose we have R-modules and homomorphisms

such that the diagram commutes and the two rows are short exact sequences.

Suppose μ is surjective and ν is injective. Then λ is surjective and ν is an isomorphism.

PROOF: We have $\ker \nu = \operatorname{coker} \mu = 0$ and so $0 \xrightarrow{\delta} \operatorname{coker} \lambda \xrightarrow{\alpha_0} 0$ is an exact sequence, hence $\operatorname{coker} \lambda = 0$ and so λ is surjective.

Since coker $\mu = 0$ we have $0 \to \operatorname{coker} \nu \to 0$ is an exact sequence and so coker $\nu = 0$, hence ν is surjective, hence ν is an isomorphism. \square

Proposition 39.9 (Short Five-Lemma). Suppose we have R-modules and homomorphisms

$$0 \longrightarrow L_1 \xrightarrow{\alpha_1} M_1 \xrightarrow{\beta_1} N_1 \longrightarrow 0$$

$$\downarrow^{\lambda} \qquad \downarrow^{\mu} \qquad \downarrow^{\nu}$$

$$0 \longrightarrow L_0 \xrightarrow{\alpha_0} M_0 \xrightarrow{\beta_0} N_0 \longrightarrow 0$$

such that the diagram commutes and the two rows are short exact sequences. If λ and ν are isomorphisms then μ is an isomorphism.

Proof:

 $\langle 1 \rangle 1$. There exists a homomorphism $\delta: 0 \to L_0$ such that the following is an exact sequence.

$$0 \to 0 \to \ker \mu \to 0 \xrightarrow{\delta} L_0 \xrightarrow{\alpha_0} \operatorname{coker} \mu \xrightarrow{\beta_0} N_0 \to 0$$
.

Proof: Snake Lemma

 $\langle 1 \rangle 2$. $\ker \mu = 0$

 $\langle 1 \rangle 3$. coker $\mu = M_0$

Proposition 39.10. If $L \stackrel{\alpha}{\to} M \stackrel{\beta}{\to} N$ is an exact sequence and L and N are Noetherian then M is Noetherian.

Proof:

- $\langle 1 \rangle 1$. Let: P be a submodule of M.
- $\langle 1 \rangle 2$. Pick a_1, \ldots, a_m generate $\alpha^{-1}(P)$.
- $\langle 1 \rangle 3$. PICK c_1, \ldots, c_n that generate $\beta(P)$.
- $\langle 1 \rangle 4$. For i = 1, ..., n, PICK b_i such that $\beta(b_i) = c_i$. PROVE: $\alpha(a_1), ..., \alpha(a_m), b_1, ..., b_n$ generate P.
- $\langle 1 \rangle 5$. Let: $p \in P$
- $\langle 1 \rangle 6$. PICK $r_1, \ldots, r_n \in R$ such that $r_1 c_1 + \cdots + r_n c_n = \beta(p)$
- $\langle 1 \rangle 7$. $r_1 b_1 + \dots + r_n b_n p \in \ker \beta = \operatorname{im} \alpha$
- $\langle 1 \rangle 8$. PICK $s_1, \ldots, s_m \in R$ such that $\alpha(s_1 a_1 + \cdots + s_m a_m) = r_1 b_1 + \cdots + r_n b_n p$.
- $\langle 1 \rangle 9. \ p = s_1 \alpha(a_1) + \dots + s_m \alpha(a_m) + r_1 b_1 + \dots + r_n b_n$

Proposition 39.11. Let R be a ring. Let

$$0 \to M \overset{\alpha}{\to} N \overset{\beta}{\to} P \to 0$$

be a short exact sequence of left-R-modules. Let L be an R-module. Then the following is an exact sequence:

$$0 \to R - \mathbf{Mod}[P, L] \overset{R - \mathbf{Mod}[\beta, \mathrm{id}_L]}{\longrightarrow} R - \mathbf{Mod}[N, L] \overset{R - \mathbf{Mod}[\alpha, \mathrm{id}_L]}{\longrightarrow} R - \mathbf{Mod}[M, L] \ .$$

Proof:

 $\langle 1 \rangle 1$. $R - \mathbf{Mod}[\beta, \mathrm{id}_L]$ is injective.

PROOF: Since β is epi.

- $\langle 1 \rangle 2$. im $R \mathbf{Mod}[\beta, \mathrm{id}_L] = \ker R \mathbf{Mod}[\alpha, \mathrm{id}_L]$
 - $\langle 2 \rangle 1. \operatorname{im} R \mathbf{Mod}[\beta, \operatorname{id}_L] \subseteq \ker R \mathbf{Mod}[\alpha, \operatorname{id}_L]$

PROOF: For any $\gamma \in R - \mathbf{Mod}[P, L]$ we have $\gamma \circ \beta \circ \alpha = 0$ because $\beta \circ \alpha = 0$.

- $\langle 2 \rangle 2$. ker $R \mathbf{Mod}[\alpha, \mathrm{id}_L] \subseteq \mathrm{im} R \mathbf{Mod}[\beta, \mathrm{id}_L]$
 - $\langle 3 \rangle 1$. Let: $\gamma \in \ker R \mathbf{Mod}[\alpha, \mathrm{id}_L]$
 - $\langle 3 \rangle 2$. $\gamma \circ \alpha = 0$
 - $\langle 3 \rangle 3$. PICK $\delta: P \to L$ by: for all $p \in P$, we have $\delta(p) = \gamma(n)$ where $n \in N$ is an element such that $\beta(n) = p$.

Prove: $\delta \circ \beta = \gamma$

 $\langle 3 \rangle 4$. Let: $n \in N$

Prove: $\delta(\beta(n)) = \gamma(n)$

- $\langle 3 \rangle 5$. Pick $n' \in N$ such that $\delta(\beta(n)) = \gamma(n')$ and $\beta(n') = \beta(n)$
- $\langle 3 \rangle 6$. $n n' \in \ker \beta = \operatorname{im} \alpha$
- $\langle 3 \rangle$ 7. Pick $m \in M$ such that $\alpha(m) = n n'$
- $\langle 3 \rangle 8. \ 0 = \gamma(\alpha(m)) = \gamma(n) \gamma(n')$
- $\langle 3 \rangle 9. \ \gamma(n) = \gamma(n') = \delta(\beta(n))$

Theorem 39.12 (Nine-Lemma). Let the following be a commuting diagram of left-R-modules.

If the rows are exact and the two rightmost columns are exact then the left column is exact.

Proof:

 $\langle 1 \rangle 1$. (L_2, f_2) is the kernel of g_2 , (L_1, f_1) is the kernel of g_1 and (L_0, f_0) is the kernel of g_0 .

- $\langle 1 \rangle 2$. 0 is the cokernel of g_2 , g_1 and g_0 .
- $\langle 1 \rangle$ 3. PICK a homomomorphism $\delta: L_0 \to 0$ such that the following is an exact sequence:

$$L_2 \stackrel{\beta_1 \upharpoonright L_2}{\to} L_1 \stackrel{\beta_0 \upharpoonright L_1}{\to} L_0 \stackrel{\delta}{\to} 0 \to 0 \to 0$$

Proof: Snake Lemma.

- $\langle 1 \rangle 4$. $\beta_1 \upharpoonright L_2 = \alpha_1$
- $\langle 1 \rangle 5. \ \beta_0 \upharpoonright L_1 = \alpha_0$
- $\langle 1 \rangle 6$. The following is an exact sequence:

$$0 \to L_2 \stackrel{\alpha_1}{\to} L_1 \stackrel{\alpha_0}{\to} L_0 \to 0$$

Theorem 39.13. Let the following be a commuting diagram of left-R-modules.

Assume the central column is a complex and every row is an exact complex. Then the left and right columns are complexes. Further, if any two of the columns are exact, then so is the third.

Proof:

- $\langle 1 \rangle 1$. The left column is a complex.
 - $\langle 2 \rangle 1$. Let: $x \in L_{i+1}$
 - $\langle 2 \rangle 2$. $f_{i-1}(\alpha_i(\alpha_{i+1}(x))) = 0$
 - $\langle 2 \rangle 3. \ \alpha_i(\alpha_{i+1}(x)) = 0$

PROOF: f_{i-1} is injective.

- $\langle 1 \rangle 2$. The right column is a complex.
 - $\langle 2 \rangle 1$. Let: $x \in N_{i+1}$
 - $\langle 2 \rangle 2$. Pick $y \in N_{i+1}$ such that $g_{i+1}(y) = x$
 - $\langle 2 \rangle 3. \ \gamma_i(\gamma_{i+1}(x)) = 0$

Proof:

$$\gamma_{i}(\gamma_{i+1}(x)) = \gamma_{i}(\gamma_{i+1}(g_{i+1}(y)))
= g_{i-1}(\beta_{i}(\beta_{i+1}(y)))
= g_{i-1}(0)
= 0$$

```
\langle 1 \rangle3. If the left and center columns are exact then the right column is exact.
    \langle 2 \rangle 1. Let: n_i \in \ker \gamma_{i-1}
               PROVE: n_i \in \operatorname{im} \gamma_i
    \langle 2 \rangle 2. Pick m_i \in M_i such that g_i(m_i) = n_i
    \langle 2 \rangle 3. \ g_{i-1}(\beta_i(m_i)) = 0
    \langle 2 \rangle 4. \beta_i(m_i) \in \ker g_{i-1} = \operatorname{im} f_{i-1}
    \langle 2 \rangle 5. Pick l_{i-1} \in L_{i-1} such that f_{i-1}(l_{i-1}) = \beta_i(m_i)
    \langle 2 \rangle 6. \ \beta_{i-1}(f_{i-1}(l_{i-1})) = 0
    \langle 2 \rangle 7. \ f_{i-2}(\alpha_{i-1}(l_{i-1})) = 0
    \langle 2 \rangle 8. \ \alpha_{i-1}(l_{i-1}) = 0
    \langle 2 \rangle 9. \ l_{i-1} \in \ker \alpha_{i-1} = \operatorname{im} \alpha_i
    \langle 2 \rangle 10. Pick l_i \in L_i such that \alpha_i(l_i) = l_{i-1}
    \langle 2 \rangle 11. \ \beta_i(f_i(l_i)) = \beta_i(m_i)
    \langle 2 \rangle 12. f_i(l_i) - m_i \in \ker \beta_i = \operatorname{im} \beta_{i+1}
    \langle 2 \rangle 13. PICK m_{i+1} \in M_{i+1} such that \beta_{i+1}(m_{i+1}) = f_i(l_i) - m_i
    \langle 2 \rangle 14. \ \gamma_{i+1}(-g_{i+1}(m_{i+1})) = n_i
\langle 1 \rangle 4. If the left and right columns are exact then the center column is exact.
    \langle 2 \rangle 1. Let: x \in \ker \beta_i
               PROVE: x \in \operatorname{im} \beta_{i+1}
    \langle 2 \rangle 2. g_{i-1}(\beta_i(x)) = 0
    \langle 2 \rangle 3. \ \gamma_i(g_i(x)) = 0
    \langle 2 \rangle 4. \ g_i(x) \in \ker \gamma_i = \operatorname{im} \gamma_{i+1}
    \langle 2 \rangle5. PICK n_{i+1} \in N_{i+1} such that \gamma_{i+1}(n_{i+1}) = g_i(x)
    \langle 2 \rangle 6. Pick m_{i+1} \in M_{i+1} such that g_{i+1}(m_{i+1}) = n_{i+1}
    \langle 2 \rangle 7. \ g_i(\beta_{i+1}(m_{i+1})) = g_i(x)
    \langle 2 \rangle 8. \ \beta_{i+1}(m_{i+1}) - x \in \ker g_i = \operatorname{im} f_i
    \langle 2 \rangle 9. Pick l_i \in L_i such that f_i(l_i) = \beta_{i+1}(m_{i+1}) - x
    \langle 2 \rangle 10. \ \beta_i(f_i(l_i)) = 0
    \langle 2 \rangle 11. \ f_{i-1}(\alpha_i(l_i)) = 0
    \langle 2 \rangle 12. \alpha_i(l_i) = 0
    \langle 2 \rangle 13. \ l_i \in \ker \alpha_i = \operatorname{im} \alpha_{i+1}
    \langle 2 \rangle 14. PICK l_{i+1} \in L_{i+1} such that \alpha_{i+1}(l_{i+1}) = l_i
    \langle 2 \rangle 15. \ \beta_{i+1}(f_{i+1}(l_{i+1})) = \beta_{i+1}(m_{i+1}) - x
    \langle 2 \rangle 16. \ \ x = \beta_{i+1} (m_{i+1} - f_{i+1}(l_{i+1}))
\langle 1 \rangle5. If the center and right columns are exact then the left column is exact.
    \langle 2 \rangle 1. Let: l_i \in \ker \alpha_i
              PROVE: l_i \in \operatorname{im} \alpha_{i+1}
    \langle 2 \rangle 2. \beta_i(f_i(l_i)) = 0
    \langle 2 \rangle 3. f_i(l_i) \in \ker \beta_i = \operatorname{im} \beta_{i+1}
    \langle 2 \rangle 4. Pick m_{i+1} \in M_{i+1} such that \beta_{i+1}(m_{i+1}) = f_i(l_i)
    \langle 2 \rangle 5. \ \gamma_{i+1}(g_{i+1}(m_{i+1})) = 0
    \langle 2 \rangle 6. \ g_{i+1}(m_{i+1}) \in \ker \gamma_{i+1} = \operatorname{im} \gamma_{i+2}
    \langle 2 \rangle 7. PICK n_{i+2} \in N_{i+2} such that \gamma_{i+2}(n_{i+2}) = g_{i+1}(m_{i+1})
    \langle 2 \rangle 8. Pick m_{i+2} \in M_{i+2} such that g_{i+2}(m_{i+2}) = n_{i+2}
    \langle 2 \rangle 9. \ g_{i+1}(\beta_{i+2}(n_{i+2})) = g_{i+1}(m_{i+1})
```

 $\langle 2 \rangle 10. \ \beta_{i+2}(n_{i+2}) - m_{i+1} \in \ker g_{i+1} = \operatorname{im} f_{i+1}$

$$\langle 2 \rangle 11$$
. PICK $l_{i+1} \in L_{i+1}$ such that $f_{i+1}(l_{i+1}) = \beta_{i+2}(n_{i+2}) - m_{i+1}$
 $\langle 2 \rangle 12$. $f_i(\alpha_{i+1}(l_{i+1})) = -f_i(l_i)$
 $\langle 2 \rangle 13$. $l_i = \alpha_{i+1}(-l_{i+1})$

Corollary 39.13.1 (Nine-Lemma). Let the following be a commuting diagram of left-R-modules.

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow L_2 \xrightarrow{f_2} M_2 \xrightarrow{g_2} N_2 \longrightarrow 0$$

$$\downarrow^{\alpha_1} \qquad \downarrow^{\beta_1} \qquad \downarrow^{\gamma_1}$$

$$0 \longrightarrow L_1 \xrightarrow{f_1} M_1 \xrightarrow{g_1} N_1 \longrightarrow 0$$

$$\downarrow^{\alpha_0} \qquad \downarrow^{\beta_0} \qquad \downarrow^{\gamma_0}$$

$$0 \longrightarrow L_0 \xrightarrow{f_0} M_0 \xrightarrow{g_0} N_0 \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow 0$$

If the rows are exact and the two leftmost columns are exact then the right column is exact.

Proposition 39.14. Let the following be a commuting diagram of left-R-modules.

If the rows are exact and the left and right columns are exact then β_1 is monic.

PROOF: By the Snake Lemma, the following is an exact sequence

$$0 \to \ker \alpha_1 \to \ker \beta_1 \to \ker \gamma_1$$

But $\ker \alpha_1 = \ker \gamma_1 = 0$ so $\ker \beta_1 = 0$. \square

Proposition 39.15. Let the following be a commuting diagram of left-R-modules.

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow L_2 \xrightarrow{f_2} M_2 \xrightarrow{g_2} N_2 \longrightarrow 0$$

$$\downarrow^{\alpha_1} \qquad \downarrow^{\beta_1} \qquad \downarrow^{\gamma_1}$$

$$0 \longrightarrow L_1 \xrightarrow{f_1} M_1 \xrightarrow{g_1} N_1 \longrightarrow 0$$

$$\downarrow^{\alpha_0} \qquad \downarrow^{\beta_0} \qquad \downarrow^{\gamma_0}$$

$$0 \longrightarrow L_0 \xrightarrow{f_0} M_0 \xrightarrow{g_0} N_0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

If the rows are exact and the left and right columns are exact then β_0 is epi.

PROOF: Similar. \square

Proposition 39.16. Let the following be a commuting diagram of left-R-modules.

If the rows are exact, the left and right columns are exact, and the central column is a complex, then the central column is exact.

Proof:

- $\langle 1 \rangle 1$. Let: $x \in \ker \beta_0$ Prove: $x \in \operatorname{im} \beta_1$
- $\langle 1 \rangle 2. \ \gamma_0(g_1(x)) = 0$
- $\langle 1 \rangle 3. \ g_1(x) \in \ker \gamma_0 = \operatorname{im} \gamma_1$
- $\langle 1 \rangle 4$. PICK $n_2 \in N_2$ such that $\gamma_1(n_2) = g_1(x)$
- $\langle 1 \rangle$ 5. Pick $m_2 \in M_2$ such that $g_2(m_2) = n_2$
- $\langle 1 \rangle 6. \ g_1(\beta_1(m_2)) = g_1(x)$
- $\langle 1 \rangle 7$. $\beta_1(m_2) x \in \ker g_1 = \operatorname{im} f_1$
- $\langle 1 \rangle 8$. PICK $l_1 \in L_1$ such that $f_1(l) = \beta_1(m_2) x$.

```
\begin{array}{ll} \langle 1 \rangle 9. & f_0(\alpha_0(l_1)) = 0 \\ \langle 1 \rangle 10. & \alpha_0(l_1) = 0 \\ \langle 1 \rangle 11. & l_1 \in \ker \alpha_0 = \operatorname{im} \alpha_1 \\ \langle 1 \rangle 12. & \operatorname{PICK} \ l_2 \in L_2 \ \operatorname{such \ that} \ \alpha_1(l_2) = l_1. \\ \langle 1 \rangle 13. & \beta_1(f_2(l_2)) = \beta_1(m_2) - x \\ \langle 1 \rangle 14. & x = \beta_1(m_2 - f_2(l_2)) \end{array}
```

Example 39.17. We cannot remove the hypothesis that the central column is a complex. Consider the situation

This diagram commutes, the rows are exact, the left and right columns are exact, but the central column is not a complex and im $\Delta \neq \ker \pi_1$.

39.1 Split Exact Sequences

Definition 39.18 (Split Sequence). Let $0 \to M_1 \stackrel{\alpha}{\to} N \stackrel{\beta}{\to} M_2 \to 0$ be a short exact sequence. Then this sequence *splits* iff there exists an isomorphism

$$\phi: N \cong M_1 \oplus M_2$$

such that $\phi \circ \alpha = \kappa_1 : M_1 \to M_1 \oplus M_2$ and $\beta \circ \phi^{-1} = \pi_2 : M_1 \oplus M_2 \to M_2$.

Proposition 39.19. Let $\phi: M \to N$ be a left-R-module homomorphism. Then ϕ has a left-inverse if and only if the sequence

$$0 \to M \stackrel{\phi}{\to} N \to \operatorname{coker} \phi \to 0$$

splits.

PROOF:

- $\langle 1 \rangle 1$. If ϕ has a left-inverse then the sequence splits.
 - $\langle 2 \rangle 1$. Assume: ϕ has a left-inverse $\psi : N \to M$.
 - $\langle 2 \rangle 2$. Define $i: N \to M \oplus \operatorname{coker} \phi$ by $i(n) = (\psi(n), n + \operatorname{im} \phi)$.

 $\langle 2 \rangle 3$. Define $i^{-1}: M \oplus \operatorname{coker} \phi$ by $i^{-1}(m, x + \operatorname{im} \phi) = \phi(m) + x - \phi(\psi(x))$.

 $\langle 2 \rangle 4$. $i \circ i^{-1} = \mathrm{id}_{M \oplus \mathrm{coker} \, \phi}$

Proof:

$$\psi(\phi(m) + x - \phi(\psi(x))) = m + \psi(x) - \psi(x)$$

$$- m$$

 $\langle 2 \rangle 5. \ i^{-1} \circ i = \mathrm{id}_N$

Proof:

$$i^{-1}(\psi(n), n + \operatorname{im} \phi) = \phi(\psi(n)) + n - \phi(\psi(n))$$
$$= n$$

 $\langle 2 \rangle 6. \ i \circ \phi = \kappa_1 : M \to M \oplus \operatorname{coker} \phi$

Proof:

$$i(\phi(m)) = (\psi(\phi(m)), \phi(m) + \operatorname{im} \phi)$$
$$= (m, \operatorname{im} \phi)$$

 $\langle 2 \rangle 7$. $\pi \circ i^{-1} = \pi_2 : M \oplus \operatorname{coker} \phi \to \operatorname{coker} \phi$

Proof:

$$i^{-1}(\psi(n), n + \operatorname{im} \phi) + \operatorname{im} \phi = \phi(\psi(n)) + n - \phi(\psi(n)) + \operatorname{im} \phi$$
$$= n + \operatorname{im} \phi$$

 $\langle 1 \rangle 2$. If the sequence splits then ϕ has a left-inverse.

PROOF: Since $\kappa_1: M \to M \oplus \operatorname{coker} \phi$ has left inverse π_1 .

Proposition 39.20. Let $\phi: M \to N$ be a left-R-module homomorphism. Then ϕ has a right-inverse if and only if the sequence

$$0 \to \ker \phi \to M \stackrel{\phi}{\to} N \to 0$$

splits.

Proof:

- $\langle 1 \rangle 1$. If ϕ has a right-inverse then the sequence splits.
 - $\langle 2 \rangle 1$. Let: $\psi : N \to M$ be a right inverse to ϕ .
 - $\langle 2 \rangle 2$. Let: $i: M \to \ker \phi \oplus N$ be the function $i(m) = (m \psi(\phi(m)), \phi(m))$. Proof: $m \psi(\phi(m)) \in \ker \phi$ since $\phi(m \psi(\phi(m))) = \phi(m) \phi(m) = 0$.
 - $\langle 2 \rangle 3$. Let: i^{-1} : $\ker \phi \oplus N \to M$ be the function $i^{-1}(x,n) = x + \psi(n)$.
 - $\langle 2 \rangle 4. \ i \circ i^{-1} = \mathrm{id}_{\ker \phi \oplus N}$

Proof:

$$i(i^{-1}(x,n)) = i(x + \psi(n))$$

$$= (x + \psi(n) - \psi(\phi(x)) - \psi(\phi(\psi(n))), \phi(x) + \phi(\psi(n)))$$

$$= (x + \psi(n) - \psi(n), n)$$

$$= (x, n)$$

 $\langle 2 \rangle 5. \ i^{-1} \circ i = \mathrm{id}_M$

Proof:

$$i^{-1}(i(m)) = m - \psi(\phi(m)) + \psi(\phi(m))$$
$$= m$$

 $\langle 2 \rangle 6. \ i \circ \iota = \kappa_1$

PROOF: For $m \in \ker \phi$ we have $i(m) = (m - \psi(\phi(m)), \phi(m)) = (m, 0)$. $\langle 2 \rangle 7$. $\phi \circ i^{-1} = \pi_2$

Proof:

$$\phi(i^{-1}(x,n)) = \phi(x) + \phi(\psi(n))$$
$$= 0 + n$$
$$= n$$

 $\langle 1 \rangle 2.$ If the sequence splits then ϕ has a right-inverse.

PROOF: Since $\kappa_2: N \to M \oplus N$ is a right-inverse to π_2 .

Proposition 39.21. Let

$$0 \to M \stackrel{\alpha}{\to} N \stackrel{\beta}{\to} F \to 0$$

be a short exact sequence where F is free. Then the sequence splits.

Proof:

- $\langle 1 \rangle 1$. Let: $F = R^{\oplus A}$
- $\langle 1 \rangle 2$. PICK $\gamma : F \to N$ such that $\mathrm{id}_F = \beta \circ \gamma$
- $\langle 1 \rangle 3$. Let: $i: M \oplus F \to N$ be the homomorphism $i(m, f) = \alpha(m) + \gamma(f)$
- $\langle 1 \rangle 4$. *i* is injective.
 - $\langle 2 \rangle 1$. Assume: i(m, f) = i(m', f')
 - $\langle 2 \rangle 2$. $\alpha(m) + \gamma(f) = \alpha(m') + \gamma(f')$
 - $\langle 2 \rangle 3$. $\alpha(m-m') = \gamma(f-f')$
 - $\langle 2 \rangle 4$. f f' = 0

PROOF: Applying β to both sides of $\langle 2 \rangle 3$.

- $\langle 2 \rangle 5.$ f = f'
- $\langle 2 \rangle 6$. $\alpha(m-m')=0$
- $\langle 2 \rangle 7. \ m = m'$

PROOF: Since α is injective.

- $\langle 1 \rangle 5$. *i* is surjective.
 - $\langle 2 \rangle 1$. Let: $n \in N$
 - $\langle 2 \rangle 2$. $n \gamma(\beta(n)) \in \ker \beta = \operatorname{im} \alpha$
 - $\langle 2 \rangle 3$. Pick $m \in M$ such that $\alpha(m) = n \gamma(\beta(n))$
 - $\langle 2 \rangle 4$. $n = i(m, \beta(n))$
- $\langle 1 \rangle 6. \ \alpha = i \circ \kappa_1$
- $\langle 1 \rangle 7$. $\beta \circ i = \pi_2$

Homology

Definition 40.1 (Homology). Let $(M_{\bullet}, d_{\bullet})$ be a chain complex. The *ith homology* of the complex is the R-module

$$H_i(M_{\bullet}) := \frac{\ker d_i}{\operatorname{im} d_{i+1}}$$
.

Proposition 40.2. Consider the complex

$$0 \to M_1 \stackrel{\phi}{\to} M_0 \to 0$$
.

The 1st homology is $\ker \phi$, and the 0th homology is $\operatorname{coker} \phi$.

Part V Field Theory

Fields

Proof: Easy. \square

 $\langle 1 \rangle 3$. Z is non-trivial.

 $\langle 1 \rangle 1$. Let: R be a division ring. $\langle 1 \rangle 2$. Let: Z be the center of R.

Proof:

Example 41.2. \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.
Proposition 41.3. Every field is an integral domain.
Proof: By Propositions 17.8 and 17.9. \square
Example 41.4. The converse does not hold: $\mathbb Z$ is an integral domain but not a field.
Proposition 41.5. Every finite integral domain is a field.
Proof: In a finite integral domain, multiplication by any non-zero element is injective, hence surjective. \Box
Corollary 41.5.1. For any positive integer n, the following are equivalent:
• n is prime.
• $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.
$ullet$ $\mathbb{Z}/n\mathbb{Z}$ is a field.
Theorem 41.6 (Wedderburn's Little Theorem). Every finite division ring is a field.
Proposition 41.7. Every subring of a field is an integral domain.

Definition 41.1 (Field). A *field* is a non-trivial commutative division ring.

Proposition 41.8. The center of a division ring is a field.

```
PROOF: Since 1 \in Z. \langle 1 \rangle 4. Z is commutative. \langle 1 \rangle 5. Z is a division ring. \langle 2 \rangle 1. Let: a \in Z \langle 2 \rangle 2. a^{-1} \in Z \langle 3 \rangle 1. Let: x \in R \langle 3 \rangle 2. ax = xa \langle 3 \rangle 3. xa^{-1} = a^{-1}x
```

Definition 41.9. For any prime p and positive integer r, define a multiplication on $(\mathbb{Z}/p\mathbb{Z})^r$ that makes this group into a field by:

Proposition 41.10. A commutative ring is a field if and only if it is simple.

Proof: Proposition 26.5.

Corollary 41.10.1. Every field has Krull dimension 0.

Proposition 41.11. Let K be a field. Then K[x] is a PID, and every non-zero ideal in K[x] is generated by a unique monic polynomial.

Proof:

- $\langle 1 \rangle 1$. Let: I be a non-zero ideal in K[x]
- $\langle 1 \rangle 2$. PICK a monic polynomial $f \in K[x]$ of minimal degree.

PROVE: I = (f)

- $\langle 1 \rangle 3$. Let: $g \in I$
- $\langle 1 \rangle 4$. PICK polynomials q, r with deg $r < \deg f$ such that g = qf + r
- $\langle 1 \rangle 5. \ r \in I$
- $\langle 1 \rangle 6. \ r = 0$
- $\langle 1 \rangle 7. \ g \in (f)$

Proposition 41.12. Let R be a commutative ring and I an ideal in R. Then I is maximal iff R/I is a field.

PROOF: From Proposition 27.3.

Example 41.13. Let R be a commutative ring and $a \in R$. Then (x - a) is a maximal ideal in R[x] iff R is a field, since $R[x]/(x - a) \cong R$.

Example 41.14. The ideal (2, x) is a maximal ideal in $\mathbb{Z}[x]$, since $\mathbb{Z}[x]/(2, x) \cong \mathbb{Z}/2\mathbb{Z}$.

Proposition 41.15. Every maximal ideal in a commutative ring is a prime ideal.

PROOF: Since every field is an integral domain.

Proposition 41.16. Let R be a commutative ring and I an ideal in R. If I is a prime ideal and R/I is finite then I is a maximal ideal.

PROOF: Since every finite integral domain is a field. \square

Proposition 41.17. Let R be a commutative ring and I a proper ideal in R. Then I is maximal iff, whenever J is an ideal and $I \subseteq J$, then I = J or J = R.

Example 41.18. The inverse image of a maximal ideal under a homomorphism is not necessarily maximal.

Let $i: \mathbb{Z}[x] \to \mathbb{Q}[x]$ be the inclusion. Then (x) is maximal in $\mathbb{Q}[x]$ but its inverse image (x) is not maximal in $\mathbb{Z}[x]$.

Definition 41.19 (Maximal Spectrum). Let R be a commutative ring. The maximal spectrum of R is the set of all maximal ideals in R.

Proposition 41.20. Let K be a field. The Krull dimension of $K[x_1, \ldots, x_n]$ is n.

Theorem 41.21 (Hilbert's Nullstellensatz). Let K be a field and L a subfield of K. If K is an L-algebra of finite type, then K is a finite L-algebra.

Proposition 41.22. Let K be a subfield of L. Then L is a K-algebra under multiplication.

Proof: Easy.

Theorem 41.23. Let F be a field. Let G be a finite subgroup of F^* . Then G is cyclic.

Proof:

- $\langle 1 \rangle 1$. For every n, there are at most n elements $a \in G$ such that $a^n = 1$. PROOF: Since the polynomial $x^n - 1$ in F[x] can have at most n linear factors (x - a).
- $\langle 1 \rangle 2$. Q.E.D.

Proof: Lemma 14.12.

Algebraically Closed Fields

Definition 42.1 (Algebraically Closed). A field K is algebraically closed iff, for every $f \in K[x]$ that is not constant, there exists $r \in K$ such that f(r) = 0.

Theorem 42.2. \mathbb{C} is algebraically closed.

Proposition 42.3. Let K be an algebraically closed field. Let I be an ideal in K[x]. Then I is maximal if and only if I = (x - c) for some $c \in K$.

Proof:

```
\begin{array}{l} \langle 1 \rangle 1. \text{ If } I \text{ is maximal then there exists } c \in K \text{ such that } I = (x-c). \\ \langle 2 \rangle 1. \text{ Assume: } I \text{ is maximal.} \\ \langle 2 \rangle 2. \text{ PICK } f \text{ monic of minimal degree such that } f \in I. \\ \langle 2 \rangle 3. f \text{ is not constant.} \\ \text{PROOF: Otherwise } f = 1 \text{ and } I = K[x]. \\ \langle 2 \rangle 4. \text{ PICK } c \in K \text{ such that } f(c) = 0 \\ \langle 2 \rangle 5. x - c \mid f \\ \langle 2 \rangle 6. I \subseteq (x-c) \\ \langle 2 \rangle 7. I = (x-c) \\ \langle 1 \rangle 2. \text{ For all } c \in K \text{ we have } (x-c) \text{ is maximal.} \\ \text{PROOF: Example 41.13.} \\ \Box
```

Part VI Linear Algebra

Vector Spaces

Definition 43.1 (Vector Space). Let K be a field. A K-vector space is a K-module. A linear map is a homomorphism of K-modules. We write $K - \mathbf{Vect}$ for $K - \mathbf{Mod}$.

Definition 43.2. Let $GL_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices. $GL_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication.

Definition 43.3. Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ complex matrices. $GL_n(\mathbb{C})$ acts on \mathbb{C}^n by matrix multiplication.

Definition 43.4. Let $SL_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : \det M = 1\}.$

Proposition 43.5. $\mathrm{SL}_n(\mathbb{R})$ is a normal subgroup of $\mathrm{GL}_n(\mathbb{R})$.

PROOF: If det M = 1 then det $(AMA^{-1}) = (\det A)(\det M)(\det A)^{-1} = 1$.

Proposition 43.6.

$$\operatorname{GL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{R}) \cong \mathbb{R}^*$$

Definition 43.7. Let $\mathrm{SL}_n(\mathbb{C}) = \{ M \in \mathrm{GL}_n(\mathbb{C}) : \det M = 1 \}.$

Definition 43.8. Let $O_n(\mathbb{R}) = \{ M \in GL_n(\mathbb{R}) : MM^T = M^TM = I_n \}.$

Proposition 43.9. The action of $O_n(\mathbb{R})$ on \mathbb{R}^n preserves lengths and angles.

Definition 43.10. Let $SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}) : \det M = 1 \}.$

Definition 43.11. Let $U_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : MM^{\dagger} = M^{\dagger}M = I_n \}.$

Definition 43.12. Let $SU_n(\mathbb{C}) = \{M \in U_n(\mathbb{C}) : \det M = 1\}.$

Proposition 43.13. Every matrix in $SU_2(\mathbb{C})$ can be written in the form

$$\left(\begin{array}{ccc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right)$$

for some $a, b, c, d \in \mathbb{R}$ with $a^2 + b^2 + c^2 + d^2 = 1$.

PROOF:

$$\langle 1 \rangle 1$$
. Let: $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SU_2(\mathbb{C})$
 $\langle 1 \rangle 2$. $M^{-1} = M^{\dagger}$
 $\langle 1 \rangle 3$. $\begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma} \\ \overline{\beta} & \overline{\delta} \end{pmatrix}$
 $\langle 1 \rangle 4$. Let: $\alpha = a + bi$ and $\beta = c + di$

$$\langle 1 \rangle 2. \ M^{-1} = M^{-1}$$

$$\langle 1 \rangle 3. \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix} = \begin{pmatrix} \overline{\alpha} & \overline{\gamma} \\ \overline{\beta} & \overline{\delta} \end{pmatrix}$$

- $\langle 1 \rangle 5$. $\delta = \overline{\alpha} = a bi$
- $\langle 1 \rangle 6. \quad \gamma = \frac{1}{\beta} =$

Corollary 43.13.1. $SU_2(\mathbb{C})$ is simply connected.

Corollary 43.13.2.

$$SO_3(\mathbb{R}) \cong SU_2(\mathbb{C})/\{I, -I\}$$

PROOF: The function that maps $\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$ to $\begin{pmatrix} a^2+b^2-c^2-d^2 & 2(bc-ad) & 2(ad+bc) & a^2-b^2+c^2-d^2 & 2(ad+bc) & 2(ad+bc) & a^2-b^2+c^2-d^2 & a^2-b^2-d^2 & a^$ is a surjective homomorphism with kernel $\{I, -I\}$. \square

Corollary 43.13.3. The fundamental group of $SO_3(\mathbb{R})$ is C_2 .

Part VII Linear Algebra

Vector Spaces

Definition 44.1 (Vector Space). Let K be a field. A *vector space* over K is a module over K. A *linear transformation* is a K-module homomorphism.

Definition 44.2 (Bilinear Map). Let K be a field. Let U, V and W be vector spaces over K. A function $f: U \times V \to W$ is bilinear iff, for all $u_1, u_2 \in U$ and $v_1, v_2 \in V$ and $\alpha \in K$,

$$f(u_1 + \alpha u_2, v_1) = f(u_1, v_1) + \alpha f(u_2, v_1)$$

$$f(u_1, v_1 + \alpha v_2) = f(u_1, v_1) + \alpha f(u_1, v_2)$$

Theorem 44.3. Let K be a field. Let U and V be vector spaces. There exists a vector space $U \otimes V$ over K and bilinear map $-\otimes -: U \times V \to U \otimes V$, unique up to isomorphism, such that, for every vector space W over K and bilinear map $f: U \times V \to W$, there exists a unique linear map $\overline{f}: U \otimes V \to W$ such that the following diagram commutes.

$$U \otimes V \xrightarrow{\overline{f}} W$$

$$- \otimes - \uparrow \qquad \qquad \downarrow$$

$$U \times V$$

Further, $-\otimes -$ is injective and its image spans $U\otimes V$.

PROOF: We can construct $U \otimes V$ as follows. Let L be the free vector space generated by $U \times V$. Let R be the subspace generated by all vectors of the form $(u_1 + \alpha u_2, v) - (u_1, v) - \alpha(u_2, v)(u, v_1 + \alpha v_2) - (u, v_1) - \alpha(u, v_2)$ Take $U \otimes V := L/R$. \square

Proposition 44.4. If $\sum_{i=1}^{n} u_i \otimes v_i = 0$ and v_1, \ldots, v_n are linearly independent in V then $u_1 = \cdots = u_n = 0$.

Proof:

 $\langle 1 \rangle 1$. Let: $f: U \times V \to V^{U^*}$ be the function $f(u,v)(\Phi) = \Phi(u)v$

- $\langle 1 \rangle 2$. f is bilinear.
- \(\frac{1}{2}\). \(\frac{1}{3}\). Let: \(\frac{f}{f}: U \otimes V \rightarrow V^{U^*}\) be the induced linear transformation. \(\frac{1}{2}\)4. \(\frac{f}{f}(\sum_{i=1}^n u_i \otimes v_i) = 0\)
 \(\frac{1}{5}\)5. \(\sum_{i=1}^n f(u_i, v_i) = 0\)
 \(\frac{1}{6}\)6. For all \(\Phi \in U^*\) we have \(\sum_{i=1}^n \Phi(u_i)v_i = 0\)
 \(\frac{1}{6}\)7. For all \(\Phi \in U^*\) we have \(\Phi(u_1) = \cdots = \Phi(u_n) = 0\)

- $\langle 1 \rangle 8. \ u_1 = \dots = u_n = 0$

Proposition 44.5. Let U and V be vector spaces over K with bases \mathcal{B}_1 and \mathcal{B}_2 . Then $\mathcal{B} = \{b_1 \otimes b_2 : b_1 \in \mathcal{B}_1, b_2 \in \mathcal{B}_2\}$ is a basis for $U \otimes V$.

Proof:

- $\langle 1 \rangle 1$. \mathcal{B} is linearly independent.

 - $\langle 2 \rangle 1$. Assume: $\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{ij} b_i \otimes b'_j = 0$ $\langle 2 \rangle 2$. For all j we have $\sum_{i=1}^{m} \alpha_{ij} b_i = 0$
 - PROOF: Proposition $\overline{44.4}$.
- $\langle 2 \rangle 3$. Each α_{ij} is 0. $\langle 1 \rangle 2$. \mathcal{B} spans $U \otimes V$.

$$u \otimes v = \sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_i \beta_j (b_i \otimes b'_j)$$

PROOF: If $u = \alpha_1 b_1 + \dots + \alpha_m b_m$ and $v = \beta_1 b'_1 + \dots + \beta_n b'_n$ then $u \otimes v = \sum_{i=1}^m \sum_{j=1}^n \alpha_i \beta_j (b_i \otimes b'_j)$ The result follows since the vectors of the form $u \otimes v$ span $U \otimes V$.

Corollary 44.5.1. If U and V are finite dimensional vector spaces over K then

$$\dim(U \otimes V) = (\dim U)(\dim V) .$$

Proposition 44.6. Vect_K is a symmetric monoidal category under \otimes .

Part VIII Measure Theory

Definition 44.7 (σ -algebra). Let X be a set. A σ -algebra on X is a nonempty set $\Sigma \subseteq \mathcal{P}X$ that is closed under complement, countable union, and countable intersection.

A measurable space consists of a set with a σ -algebra.

Definition 44.8 (Measure). Let (X, σ) be a measurable space. A *measure* on (X, σ) is a function $\mu: \Sigma \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$ such that:

- $\mu(\emptyset) = 0$
- For any countable set of pairwise disjoint sets $\{E_n : n \in \mathbb{N}\}\$ in Σ ,

$$\mu\left(\bigcup_{n=0}^{\infty} E_n\right) = \sum_{n=0}^{\infty} \mu(E_n) .$$