

# **GLG: Automated Text Analysis** for Improved Service Demand

**Curtis Pond and Julia Nickerson** 



### Who is GLG?





### **Problem**

- Hundreds of requests are submitted daily to GLG via an intake form
- GLG wants to help people reach experts faster by:
  - Grouping common topics together
  - Grouping similar client requests together
  - Identifying underlying patterns in the data (NER, time-based patterns)



### Problem & Solution

- Hundreds of requests are submitted daily to GLG via an intake form
- GLG wants to help people reach experts faster by:
  - Grouping common topics together
  - Grouping similar client requests together
  - Identifying underlying patterns in the data (NER, time-based patterns)
- Metadata named entities are auto-extracted from intake submissions
- Intake submissions are categorized by topic (healthcare and technology)
- Clustering mechanism that shows topic trends over time



### Workflow





# Two Datasets: NER Corpus & All the News 2.0

|             | NER Corpus                                                                                                                         | All the News 2.0                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Description | <ul> <li>47,959 sentences</li> <li>Includes each word's part-of-speech (noun, verb, etc.) and NER (geo, org, per, etc.)</li> </ul> | <ul> <li>2.7 million news articles published between 2016 and 2020</li> <li>includes date, author, title, and publication name</li> </ul> |
| Size        | 15 MB                                                                                                                              | 9 GB                                                                                                                                      |
| Labels      | Labeled                                                                                                                            | Unlabeled                                                                                                                                 |
| Task(s)     | Supervised learning (named entity recognition)                                                                                     | Unsupervised (clustering) and supervised (text classification) learning                                                                   |



### Modeling — Supervised Learning

#### Named Entity Recognition (NER)

• **Data**: NER Corpus

Model: LSTM RNN

Library: Flair

• **Baseline Result**: 0.81 F1 score (using a subset of data)

Latest Result: 0.86 F1 score (using all data)

#### Text Classification

Data: All the News 2.0

Model: Logistic Regression

Library: scikit-learn

• **Baseline Result**: 0.95 F1 score (using 25k articles)

Latest Result: 0.92 F1 score (using 60k articles)



## Modeling — *Unsupervised Learning*

#### **Topic Word Scores**





# Modeling — *Unsupervised Learning*

#### **Topics over Time**





### Demo

- Our demo's web interface is built using Gradio, and hosted on Hugging
   Face Spaces at <a href="https://huggingface.co/spaces/curtpond/mle10-glg-demo">https://huggingface.co/spaces/curtpond/mle10-glg-demo</a>
- Let's check it out!





# **Concluding Thoughts**

- A challenging project involving multiple different tasks (NER, text classification, unsupervised topic modeling)
- Considered connecting different models together sequentially, but went with separate standalone models
- Text classification model explainability analysis was helpful for informing our final approach
- Would have preferred using actual GLG data instead of news articles



# Thank You! Questions?