Curso: Transformadores y Máquinas Eléctricas CIRCUITOS FERROMAGNÉTICOS EN C.D.

Ing. Sergio A. Morales Hernández

Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

II Semestre 2020

AGENDA

1 CIRCUITO MAGNÉTICOS REALES

AGENDA

1 CIRCUITO MAGNÉTICOS REALES

CÁLCULO PARA MATERIALES FERROMAGNÉTICOS

AGENDA

1 CIRCUITO MAGNÉTICOS REALES

CÁLCULO PARA MATERIALES FERROMAGNÉTICOS

3 EJERCICIO

• Representa la pérdida de energía en el material (¿por qué?).

- Representa la pérdida de energía en el material (¿por qué?).
- La remanencia se puede definir como la densidad de flujo que permanece después de quitar la fuente de energía.

- Representa la pérdida de energía en el material (¿por qué?).
- La remanencia se puede definir como la densidad de flujo que permanece después de quitar la fuente de energía.
- La retentividad se presenta cuando se lleva el material a saturación, ⇒ el máximo de la remanencia.

- Representa la pérdida de energía en el material (¿por qué?).
- La remanencia se puede definir como la densidad de flujo que permanece después de quitar la fuente de energía.
- La retentividad se presenta cuando se lleva el material a saturación, ⇒ el máximo de la remanencia.
- El flujo remanente también se conoce como densidad de flujo residual.

- Representa la pérdida de energía en el material (¿por qué?).
- La remanencia se puede definir como la densidad de flujo que permanece después de quitar la fuente de energía.
- La retentividad se presenta cuando se lleva el material a saturación, ⇒ el máximo de la remanencia.
- El flujo remanente también se conoce como densidad de flujo residual.
- Coercitividad es la energía utilizada para tener un CM = 0.

 Un circuito ferromagnético básico, se puede representar de la siguiente forma:

 Un circuito ferromagnético básico, se puede representar de la siguiente forma:

• Un circuito ferromagnético básico, se puede representar de la siguiente forma:

• Un circuito ferromagnético básico, se puede representar de la siguiente forma:

• Un circuito ferromagnético básico, se puede representar de la siguiente

forma:

• Un circuito ferromagnético básico, se puede representar de la siguiente forma:

• Pasamos de un circuito tridimensional a uno más simple.

• Un circuito ferromagnético básico, se puede representar de la siguiente forma:

- Pasamos de un circuito tridimensional a uno más simple.
- Suponemos configuraciones geométricas simétricas.

• Un circuito ferromagnético básico, se puede representar de la siguiente forma:

- Pasamos de un circuito tridimensional a uno más simple.
- Suponemos configuraciones geométricas simétricas.
- El flujo se limita a recorrer caminos de alta permeabilidad.

 Un circuito ferromagnético básico, se puede representar de la siguiente forma:

- Pasamos de un circuito tridimensional a uno más simple.
- Suponemos configuraciones geométricas simétricas.
- El flujo se limita a recorrer caminos de alta permeabilidad.
- Núcleo no lineal.

 Un circuito ferromagnético básico, se puede representar de la siguiente forma:

- Pasamos de un circuito tridimensional a uno más simple.
- Suponemos configuraciones geométricas simétricas.
- El flujo se limita a recorrer caminos de alta permeabilidad.
- Núcleo no lineal.
- El aire sirve de "aislante".

• La relación $\phi=BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.

- La relación $\phi=BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.
- La ℓ_m para la trayectoria del flujo se puede considerar como la ℓ_m del material ferromagnético.

- La relación $\phi = BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.
- La ℓ_m para la trayectoria del flujo se puede considerar como la ℓ_m del material ferromagnético.
- La fuerza magnetomotriz tiene 2 componentes

- La relación $\phi=BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.
- La ℓ_m para la trayectoria del flujo se puede considerar como la ℓ_m del material ferromagnético.
- La fuerza magnetomotriz tiene 2 componentes

$$\bullet$$
 $\mathscr{F} = NI$ y

- La relación $\phi=BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.
- La ℓ_m para la trayectoria del flujo se puede considerar como la ℓ_m del material ferromagnético.
- La fuerza magnetomotriz tiene 2 componentes
 - ℱ = NI y
 - $\mathscr{F}=H\ell_m$ ("caídas de tensión" magnéticas).

- La relación $\phi=BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.
- La ℓ_m para la trayectoria del flujo se puede considerar como la ℓ_m del material ferromagnético.
- La fuerza magnetomotriz tiene 2 componentes
 - F = NI y
 - $\mathscr{F} = H\ell_m$ ("caídas de tensión" magnéticas).
- Si el núcleo tiene diferentes materiales, $\mathscr{F} = NI = \sum_{i=1}^{n} H_i \ell_{m_i}$ (LVK).

- La relación $\phi = BA$ es válida en cualquier área transversal, donde ϕ se puede considerar uniforme.
- La ℓ_m para la trayectoria del flujo se puede considerar como la ℓ_m del material ferromagnético.
- La fuerza magnetomotriz tiene 2 componentes
 - F = NI y
 - $\mathscr{F} = H\ell_m$ ("caídas de tensión" magnéticas).
- Si el núcleo tiene diferentes materiales, $\mathscr{F} = NI = \sum_{i=1}^{n} H_i \ell_{m_i}$ (LVK).
- La suma algebraica de 2 potenciales magnéticos alrededor de una trayectoria cerrada es igual a 0.

• El número de líneas de flujo que entran por un área transversal es igual al número de líneas que salen de ella (LCK).

• El número de líneas de flujo que entran por un área transversal es igual al número de líneas que salen de ella (LCK).

• El número de líneas de flujo que entran por un área transversal es igual al número de líneas que salen de ella (LCK).

EJERCICIO CON 2 MATERIALES

EJERCICIO CON 2 MATERIALES

Su circuito equivalente sería:

EJERCICIO CON 2 MATERIALES

Su circuito equivalente sería:

Los datos del problema son:

- Los datos del problema son:
 - $\ell_{m_1} = 0.2m$.

- Los datos del problema son:
 - $\ell_{m_1} = 0.2m$.
 - $\ell_{m_2} = 0.4m$.

- Los datos del problema son:
 - $\ell_{m_1} = 0.2m$.
 - $\ell_{m_2} = 0.4m$.
 - $A_1 = A_2 = 0.0015 m^2$.

- Los datos del problema son:
 - $\ell_{m_1} = 0.2m$.
 - $\ell_{m_2} = 0.4m$.
 - $A_1 = A_2 = 0.0015 m^2$.
 - N = 100 vueltas.

- Los datos del problema son:
 - $\ell_{m_1} = 0.2m$.
 - $\ell_{m_2} = 0.4m$.
 - $A_1 = A_2 = 0.0015 m^2$.
 - N = 100 vueltas.
- Calcule la corriente necesaria para producir un $\phi = 1.5 x 10^{-4}$ Wb.

Solución:

- Solución:
 - Como los dos materiales le ofrecen un camino en "serie" al flujo, y debido a que ambos materiales tiene la misma área, tenemos $B_1 = B_2$.

- Solución:
 - Como los dos materiales le ofrecen un camino en "serie" al flujo, y debido a que ambos materiales tiene la misma área, tenemos $B_1 = B_2$.
 - $B = \frac{\phi}{A} = 0.1 Wb/m^2$.

- Solución:
 - Como los dos materiales le ofrecen un camino en "serie" al flujo, y debido a que ambos materiales tiene la misma área, tenemos $B_1 = B_2$.
 - $B = \frac{\phi}{A} = 0.1 Wb/m^2$.
- Con este dato, se debe utilizar las curvas de magnetización de los materiales, para obtener el valor de *H*.

$$B=0.1Wb/m^2\Rightarrow H_2=160, H_1=225 \text{ AV/m}$$

- (□) (□) (巨) (巨) (巨) (O)

ullet Con $H_2=160$ (acero fundido) y $H_1=225$ (hierro fundido), tenemos

- Con $H_2 = 160$ (acero fundido) y $H_1 = 225$ (hierro fundido), tenemos
 - $\mathscr{F} = NI = H_1 \ell_{m_1} + H_2 \ell_{m_2}$.

- Con $H_2 = 160$ (acero fundido) y $H_1 = 225$ (hierro fundido), tenemos
 - $\mathscr{F} = NI = H_1 \ell_{m_1} + H_2 \ell_{m_2}$.
 - $\mathscr{F} = NI = 160 * 0.4 + 225 * 0.2.$

- Con $H_2 = 160$ (acero fundido) y $H_1 = 225$ (hierro fundido), tenemos
 - $\mathscr{F} = NI = H_1 \ell_{m_1} + H_2 \ell_{m_2}$.
 - $\mathscr{F} = NI = 160 * 0.4 + 225 * 0.2.$
 - $\mathscr{F} = NI = 109 \, Av$.

- Con $H_2 = 160$ (acero fundido) y $H_1 = 225$ (hierro fundido), tenemos
 - $\mathscr{F} = NI = H_1 \ell_{m_1} + H_2 \ell_{m_2}$.
 - $\mathscr{F} = NI = 160 * 0.4 + 225 * 0.2.$
 - $\mathscr{F} = NI = 109 \, Av$.
 - I = 1,09 A.

- Con $H_2 = 160$ (acero fundido) y $H_1 = 225$ (hierro fundido), tenemos
 - $\mathscr{F} = NI = H_1 \ell_{m_1} + H_2 \ell_{m_2}$.
 - $\mathscr{F} = NI = 160 * 0.4 + 225 * 0.2.$
 - $\mathscr{F} = NI = 109 \, Av$.
 - I = 1,09 A.

- Con $H_2 = 160$ (acero fundido) y $H_1 = 225$ (hierro fundido), tenemos
 - $\mathscr{F} = NI = H_1 \ell_{m_1} + H_2 \ell_{m_2}$.
 - $\mathscr{F} = NI = 160 * 0.4 + 225 * 0.2.$
 - $\mathscr{F} = NI = 109 \, Av$.
 - I = 1.09 A.

Cambio de materiales

Realicen ahora el mismo desarrollo pero para los materiales *Casting cast Iron y Steel st3*. Usen la aplicación elaborada por el egresado Luis León https://lleon95.github.io/appHB/ y comparen.

