

RESONANCES AND SCATTERING POLES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

COLIN GUILLARMOU

ABSTRACT. On an asymptotically hyperbolic manifold (X, g) , we show that the poles (called resonances) of the meromorphic extension of the resolvent $(\Delta_g - \lambda(n - \lambda))^{-1}$ coincide, with multiplicities, with the poles (called scattering poles) of the renormalized scattering operator, except for the points of $\frac{n}{2} - \mathbb{N}$. At each $\lambda_k := \frac{n}{2} - k$ with $k \in \mathbb{N}$, the resonance multiplicity $m(\lambda_k)$ and the scattering pole multiplicity $\nu(\lambda_k)$ do not always coincide: $\nu(\lambda_k) - m(\lambda_k)$ is the dimension of the kernel of a differential operator on the boundary $\partial\bar{X}$ introduced by Graham and Zworski; in the asymptotically Einstein case, this operator is the k -th conformal Laplacian.

1. INTRODUCTION

The purpose of this work is to give a ‘more direct’ proof of the result of Borthwick and Perry [1] about the equivalence between resolvent resonances and scattering poles, notably in order to analyze the special points $(\frac{n-k}{2})_{k \in \mathbb{N}}$ that they did not deal with. This problem is especially interesting on convex co-compact hyperbolic quotients since these are the scattering poles (not the resonances) which appear in the divisor of Selberg’s zeta function associated to the group (cf. Patterson-Perry [14]).

Let $\bar{X} = X \cup \partial\bar{X}$ a $n + 1$ -dimensional smooth compact manifold with boundary and x a defining function for the boundary, that is a smooth function x on \bar{X} such that

$$x \geq 0, \quad \partial\bar{X} = \{m \in \bar{X}, x(m) = 0\}, \quad dx|_{\partial\bar{X}} \neq 0$$

We say that a smooth metric g on the interior X of \bar{X} is *conformally compact* if $x^2 g$ extends smoothly as a metric to \bar{X} . An *asymptotically hyperbolic manifold* is a conformally compact manifold such that for all $y \in \partial\bar{X}$, all sectional curvatures at $m \in X$ converge to -1 as $m \rightarrow y$. Notice that convex co-compact hyperbolic quotients are included in this class of manifolds. An asymptotically hyperbolic manifold is necessarily complete and the spectrum of its Laplacian Δ_g acting on functions consists of absolutely continuous spectrum $[\frac{n^2}{4}, \infty)$ and a finite set of eigenvalues $\sigma_{pp}(\Delta_g) \subset (0, \frac{n^2}{4})$. The resolvent $(\Delta_g - z)^{-1}$ is a meromorphic family on $\mathbb{C} \setminus [\frac{n^2}{4}, \infty)$ of bounded operators and the new parameter $z = \lambda(n - \lambda)$ with $\Re(\lambda) > \frac{n}{2}$ induces a modified resolvent

$$R(\lambda) := (\Delta_g - \lambda(n - \lambda))^{-1}$$

which is meromorphic on $\{\Re(\lambda) > \frac{n}{2}\}$, its poles being the points λ_e such that $\lambda_e(n - \lambda_e) \in \sigma_{pp}(\Delta_g)$. Mazzeo and Melrose [12] have constructed the finite-meromorphic extension (i.e. with poles whose residue is a finite rank operator) of $R(\lambda)$ on $\mathbb{C} \setminus \frac{1}{2}(n - \mathbb{N})$. We proved in a previous work [6] that this extension is finite-meromorphic on \mathbb{C} if and only if the metric is even in the sense that there exists a boundary defining function x such that the metric can be expressed by

$$(1.1) \quad g = \frac{dx^2 + h(x^2, y, dy)}{x^2}$$

in the collar $[0, \epsilon) \times \partial\bar{X}$ induced by x , with $h(z, y, dy)$ smooth up to $\{z = 0\}$. We will only consider these cases of even metrics to simplify the statements, but our result works as long as

2000 *Mathematics Subject Classification.* Primary 58J50, Secondary 35P25.

the studied singularity is a pole of finite multiplicity for the resolvent.

The poles of the extension $R(\lambda)$ are called *resonances* and the multiplicity of a resonance λ_0 is defined by

$$m(\lambda_0) := \text{rank} \int_{C(\lambda_0, \epsilon)} (n - 2\lambda) R(\lambda) d\lambda = \text{rankRes}_{\lambda_0}((n - 2\lambda) R(\lambda))$$

where $C(\lambda_0, \epsilon)$ is a circle around λ_0 with radius $\epsilon > 0$ chosen sufficiently small to avoid other resonances in $D(\lambda_0, \epsilon)$ and Res means the residue. In other words, this is the rank of the residue at $z_0 = \lambda_0(n - \lambda_0)$ of the resolvent as a function of $z = \lambda(n - \lambda)$.

The scattering operator $S(\lambda)$ is the operator on $\partial\bar{X}$ defined as follows: let $\lambda \in \{\Re(\lambda) = \frac{n}{2}\}$ and $\lambda \neq \frac{n}{2}$, for all $f_0 \in C^\infty(\partial\bar{X})$ there exists a unique solution $F(\lambda)$ of the problem

$$\begin{aligned} (\Delta_g - \lambda(n - \lambda))F(\lambda) &= 0, & F(\lambda) &= x^\lambda f_- + x^{n-\lambda} f_+ \\ f_-, f_+ &\in C^\infty(\bar{X}), & f_+|_{\partial\bar{X}} &= f_0 \end{aligned}$$

we then set $S(\lambda)$ the operator $S(\lambda) : f_0 \rightarrow f_-|_{\partial\bar{X}}$. In fact we should use half-densities and define $S(\lambda)$ on conormal bundles on $\partial\bar{X}$ to get invariance with respect to x , but this is dropped here. Joshi and Sá Barreto showed [10] that this family of operators extends meromorphically in $\mathbb{C} \setminus \frac{1}{2}(n - \mathbb{N})$ in the sense of pseudo-differential operators on $\partial\bar{X}$ and that $S(\lambda)$ has the principal symbol

$$(1.2) \quad \sigma_0(S(\lambda)) = c(\lambda)\sigma_0(\Lambda^{2\lambda-n}), \text{ with } \Lambda := (1 + \Delta_{h_0})^{\frac{1}{2}}, \quad c(\lambda) := 2^{n-2\lambda} \frac{\Gamma(\frac{n}{2} - \lambda)}{\Gamma(\lambda - \frac{n}{2})}$$

and $h_0 := x^2 g|_{T\partial\bar{X}}$, which leads to the factorization (see [16, 9, 14, 1] for a similar approach)

$$(1.3) \quad \tilde{S}(\lambda) := c(n - \lambda)\Lambda^{-\lambda+\frac{n}{2}} S(\lambda)\Lambda^{-\lambda+\frac{n}{2}} = 1 + K(\lambda)$$

with $K(\lambda)$ compact finite-meromorphic. It is clear that the poles of $S(\lambda)$ and $\tilde{S}(\lambda)$ coincide except for the points of $\frac{n}{2} + \mathbb{Z}$. A pole λ_0 of $\tilde{S}(\lambda)$ is called a *scattering pole* and we define its multiplicity by

$$\nu(\lambda_0) := -\text{Tr} \left(\frac{1}{2\pi i} \int_{C(\lambda_0, \epsilon)} \tilde{S}'(\lambda) \tilde{S}^{-1}(\lambda) d\lambda \right) = -\text{TrRes}_{\lambda_0}(\tilde{S}'(\lambda) \tilde{S}^{-1}(\lambda)).$$

Using a method close to that of Guilloté-Zworski [9] and Gohberg-Sigal theory [4], we then obtain the

Theorem 1.1. *Let (X, g) be an asymptotically hyperbolic manifold with g even in the sense of (1.1) and let $\lambda_0 \in \{\Re(\lambda) < \frac{n}{2}\}$ such that $\lambda_0 \notin \{\lambda \in \mathbb{C}; \lambda(n - \lambda) \in \sigma_{pp}(\Delta_g)\} \cap \frac{1}{2}(n - \mathbb{N})$. Then λ_0 is a pole of $R(\lambda)$ if and only if it is a pole of $S(\lambda)$ and we have*

$$(1.4) \quad m(\lambda_0) = m(n - \lambda_0) + \nu(\lambda_0) - \mathbb{1}_{\frac{n}{2}-\mathbb{N}}(\lambda_0) \dim \ker \text{Res}_{n-\lambda_0} S(\lambda)$$

where $\mathbb{1}_{\frac{n}{2}-\mathbb{N}}$ is the characteristic function of $\frac{n}{2} - \mathbb{N}$ and Res means the residue.

Remark 1: the term $m(n - \lambda_0)$ vanishes when $\lambda_0(n - \lambda_0) \notin \sigma_{pp}(\Delta_g)$ and that (1.4) can be extended to the line $\{\Re(\lambda) = \frac{n}{2}\}$ by using that $R(\lambda)$ and $\tilde{S}(\lambda)$ are continuous on this line except possibly at $\frac{n}{2}$, where only $R(\lambda)$ can have a pole; in this case $\nu(\lambda_0) = 0$ and (1.4) is satisfied.

Remark 2: the additional term introduced at $\lambda_0 = \frac{n}{2} - k$ is exactly the dimension of the kernel of the operator p_{2k} defined by Graham-Zworski in [5, Prop. 3.5]. Therefore it only depends on the $2k$ first derivatives of the metric at the boundary. When the manifold is asymptotically Einstein, this is

$$\dim \ker \text{Res}_{\frac{n}{2}+k} S(\lambda) = \dim \ker P_k$$

P_k being the k -th conformally invariant power of the Laplacian (cf. [5]), which depends only on the conformal class of the metric $h_0 = x^2 g|_{T\partial\bar{X}}$ at the boundary. If n is even, it is worth noting

that $\dim \ker p_n \geq 1$ since p_n always annihilates constants. Moreover, if $(\partial\bar{X}, h_0)$ is conformally flat with (X, g) asymptotically Einstein, the additional term is $\dim \ker P_k = H_0(\partial\bar{X})$, the number of connected components of the boundary.

The recent formula obtained by Patterson-Perry [14] and Bunke-Olbrich [2] for the divisor at $\lambda_0 \in \mathbb{C}$ of Selberg's zeta function on a convex co-compact hyperbolic quotient always makes the ‘spectral term’ $\nu(\lambda_0)$ appear and an additional ‘topological term’ (an integer multiple of the Euler characteristic) comes when $\lambda_0 \in -\mathbb{N}_0$. As a matter of fact, the ‘spectral term’ at $\lambda_0 = \frac{n}{2} - k$ (with $k \in \mathbb{N}$) could be splitted in a ‘resonance term’ $m(\lambda_0)$ and a ‘conformal term’ $\dim \ker p_{2k}$ with p_{2k} the residue of $S(\lambda)$ at $\frac{n}{2} + k$. Notice also that for $\lambda_0 \in \frac{n}{2} - \mathbb{N}$, $m(\lambda_0)$ can be 0 though $\nu(\lambda_0)$ is not (this is the case of \mathbb{H}^{n+1} when $n+1$ is odd).

Moreover the Poisson formula obtained by Perry [17] for convex co-compact quotients is used to give a lower bound of poles of $\tilde{S}(\lambda)$ (with multiplicity $\nu(\lambda_0)$) in a disc $D(\frac{n}{2}, R) \subset \mathbb{C}$ with radius R . It is clear that the number of these poles is bigger than the number of resonances, in view of Theorem 1.1. In the trivial case of \mathbb{H}^{n+1} with $n+1$ odd, we notably have no resonance though the number of poles of $\tilde{S}(\lambda)$ in $D(\frac{n}{2}, R)$ is CR^{n+1} . However, in dimension $n+1 = 2$, the explicit formula of the scattering matrix for a hyperbolic funnel by Guilloté-Zworski [8] or the work of Bunke-Olbrich [3, Prop.4.3] show that the conformal term cancels, so $\nu(\lambda_0) = m(\lambda_0)$ (modulo the discrete spectrum).

To conclude it would be interesting to study the dimension of the kernels of the conformal Laplacians on such quotients to use Perry's results and give a lower bound of the number of resonances in a disc.

Acknowledgements. I would like to thank L. Guilloté for help and comments. I also thank R. Graham, M. Olbrich, M. Zworski and G. Vodev for useful discussions.

2. BACKGROUND ON MULTIPLICITIES

Let $\mathcal{H}_1, \mathcal{H}_2$ some Hilbert spaces. If $M(\lambda)$ is meromorphic on an open set $U \subset \mathbb{C}$ with values in the space $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ of bounded linear operators and if λ_0 is a pole of $M(\lambda)$, there exists a neighborhood V_{λ_0} of λ_0 , an integer $p > 0$ and some $(M_i)_{i=1,\dots,p}$ in $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ such that for $\lambda \in V_{\lambda_0} \setminus \{\lambda_0\}$

$$(2.1) \quad \begin{aligned} M(\lambda) &= \Xi_{\lambda_0}(M(\lambda)) + H(\lambda), \\ \Xi_{\lambda_0}(M(\lambda)) &= \sum_{i=1}^p M_i(\lambda - \lambda_0)^{-i}, \quad H(\lambda) \in \mathcal{Hol}(V_{\lambda_0}, \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)). \end{aligned}$$

We will call $\Xi_{\lambda_0}(M(\lambda))$ the polar part of $M(\lambda)$ at λ_0 , p the order of the pole λ_0 , $M_1 = \text{Res}_{\lambda_0} M(\lambda)$ the residue of $M(\lambda)$ at λ_0 , $m_{\lambda_0}(M(\lambda)) := \text{rank } M_1$ the multiplicity of λ_0 and

$$\text{Rank}_{\lambda_0} M(\lambda) := \dim \sum_{i=1}^p \text{Im}(M_i)$$

the total polar rank of $M(\lambda)$ at λ_0 . Finally, a meromorphic family of operators in $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ whose poles have finite total polar rank will be called finite-meromorphic.

Assume now that $\mathcal{H}_1 = \mathcal{H}_2$; taking essentially Gohberg-Sigal notations [4], a root function of $M(\lambda)$ at λ_0 is a function $\varphi(\lambda) \in \mathcal{Hol}(V_{\lambda_0}, \mathcal{H}_1)$ such that $\lim_{\lambda \rightarrow \lambda_0} M(\lambda)\varphi(\lambda) = 0$ and $\varphi(\lambda_0) \neq 0$, the vanishing order of $M(\lambda)\varphi(\lambda)$ being called the multiplicity of $\varphi(\lambda)$. The vector $\varphi_0 := \varphi(\lambda_0)$ is called an eigenvector of $M(\lambda)$ at λ_0 and the set of eigenvectors of $M(\lambda)$ at λ_0 form a vectorial subspace of \mathcal{H}_1 denoted $\ker_{\lambda_0} M(\lambda)$. The rank of an eigenvector φ_0 is defined as being the supremum of the multiplicities of the root functions $\varphi(\lambda)$ of $M(\lambda)$ at λ_0 such that $\varphi(\lambda_0) = \varphi_0$. If $\dim \ker_{\lambda_0} M(\lambda) = \alpha < \infty$ and the ranks of all eigenvectors are finite, a canonical system of eigenvectors is a basis $(\varphi_0^{(i)})_{i=1,\dots,\alpha}$ of $\ker_{\lambda_0} M(\lambda)$ such that the ranks of $\varphi_0^{(i)}$ have the following property: the rank of $\varphi_0^{(1)}$ is the maximum of the ranks of all eigenvectors of $M(\lambda)$ at λ_0 and

the rank of $\varphi_0^{(i)}$ is the maximum of the ranks of all eigenvectors in a direct complement of $\text{Vect}(\varphi_0^{(1)}, \dots, \varphi_0^{(i-1)})$ in $\ker_{\lambda_0} M(\lambda)$. A canonical system of eigenvectors is not unique but the family of ranks of its eigenvectors does not depend on the choice of the canonical system. We then denote $r_i = \varphi_0^{(i)}$ the partial null multiplicities of $M(\lambda)$ at λ_0 and

$$N_{\lambda_0}(M(\lambda)) = \sum_{i=1}^{\alpha} r_i$$

the null multiplicity of $M(\lambda)$ at λ_0 .

Assume that $M(\lambda)$ is meromorphic family of Fredholm operators in $\mathcal{L}(\mathcal{H}_1)$ and λ_0 a pole of finite total polar rank. If the index of $(M(\lambda) - \Xi_{\lambda_0}(M(\lambda)))|_{\lambda=\lambda_0}$ is 0, Gohberg and Sigal [4] show that there exist some holomorphically invertible operators $U_1(\lambda)$ and $U_2(\lambda)$ near λ_0 , some orthogonal projections $(P_l)_{l=0,\dots,m}$ and some non zero integers $(k_l)_{l=1,\dots,m}$ such that

$$(2.2) \quad M(\lambda) = U_1(\lambda) \left(P_0 + \sum_{l=1}^m (\lambda - \lambda_0)^{k_l} P_l \right) U_2(\lambda),$$

$$P_i P_j = \delta_{ij} P_j, \quad \text{rank}(P_l) = 1 \text{ for } l = 1, \dots, m, \quad \dim(1 - P_0) < \infty.$$

If moreover $M(\lambda)$ has a meromorphic inverse $M^{-1}(\lambda)$ (ie. when $P_0 + \sum_{l=1}^m P_l = 1$) then λ_0 is at most a pole of finite total polar rank of $M^{-1}(\lambda)$ and

$$(2.3) \quad M^{-1}(\lambda) = U_2^{-1}(\lambda) \left(P_0 + \sum_{l=1}^m (\lambda - \lambda_0)^{-k_l} P_l \right) U_1^{-1}(\lambda).$$

It is important to notice that the set of partial null multiplicities remains invariant under multiplication by a holomorphically invertible family of operators (cf. [4]). In view of (2.2) and (2.3), it is then easy to see that

$$\dim \ker_{\lambda_0} M(\lambda) = \#\{l; k_l > 0\}, \quad \dim \ker_{\lambda_0} M^{-1}(\lambda) = \#\{l; k_l < 0\}$$

and that the set of partial null multiplicities of $M(\lambda)$ (resp. $M^{-1}(\lambda)$) at λ_0 is $\{k_l; k_l > 0\}$ (resp. $\{k_l; k_l < 0\}$). We deduce

$$N_{\lambda_0}(M(\lambda)) = \sum_{k_l > 0} k_l, \quad N_{\lambda_0}(M^{-1}(\lambda)) = \sum_{k_l < 0} k_l$$

and from the factorization (2.2) Gohberg-Sigal [4] obtain the generalized logarithmic residue theorem

$$(2.4) \quad \text{Tr}(\text{Res}_{\lambda_0}(M'(\lambda)M^{-1}(\lambda))) = N_{\lambda_0}(M(\lambda)) - N_{\lambda_0}(M^{-1}(\lambda)).$$

This integer is essentially the order of the zero or the pole of $\det(M(\lambda))$ at λ_0 (when $\det(M(\lambda))$ exists).

To conclude, let $M(\lambda)$ be a meromorphic family of Fredholm operators with index 0 in $\mathcal{L}(\mathcal{H}_1)$ and λ_0 a pole of finite total polar rank. We write $M(\lambda)$ as in (2.2) and if $L(\lambda) := (\lambda - \lambda_0)^{-1}M(\lambda)$, we deduce that $\dim \ker_{\lambda_0} L(\lambda) = \#\{l; k_l > 1\}$, the set of partial null multiplicities of $L(\lambda)$ at λ_0 is $\{k_l - 1; k_l > 1\}$ and

$$(2.5) \quad N_{\lambda_0}(L(\lambda)) = \sum_{k_l > 1} (k_l - 1) = \sum_{k_l > 0} (k_l - 1) = N_{\lambda_0}(M(\lambda)) - \dim \ker_{\lambda_0} M(\lambda).$$

This formula will be essential for what follows since the scattering operator $S(\lambda)$ is not finite-meromorphic near $\frac{n}{2} + k$ (with $k \in \mathbb{N}$) whereas $(\lambda - \frac{n}{2} - k)S(\lambda)$ is.

3. RESONANCES AND SCATTERING POLES

3.1. Stretched products, half-densities. To begin, let us introduce a few notations and recall some basic things on stretched products and singular half-densities (the reader can refer to Mazzeo-Melrose [12], Melrose [13] for details). Let \bar{X} a smooth compact manifold with boundary and x a boundary defining function. The manifold $\bar{X} \times \bar{X}$ is a smooth manifold with corners, whose boundary hypersurfaces are diffeomorphic to $\partial\bar{X} \times \bar{X}$ and $\bar{X} \times \partial\bar{X}$, and defined by the functions π_L^*x, π_R^*x (π_L and π_R being the left and right projections from $\bar{X} \times \bar{X}$ onto \bar{X}). For notational simplicity, we now write x, x' instead of π_L^*x, π_R^*x and let

$$\delta_{\partial\bar{X}} := \{(m, m) \in \partial\bar{X} \times \partial\bar{X}; m \in \partial\bar{X}\}.$$

The blow-up of $\bar{X} \times \bar{X}$ along the diagonal $\delta_{\partial\bar{X}}$ of $\partial\bar{X} \times \partial\bar{X}$ will be noted $\bar{X} \times_0 \bar{X}$ and the blow-down map

$$\beta : \bar{X} \times_0 \bar{X} \rightarrow \bar{X} \times \bar{X}$$

This manifold with corners has three boundary hypersurfaces $\mathcal{T}, \mathcal{B}, \mathcal{F}$ defined by some functions ρ, ρ', R such that $\beta^*(x) = R\rho, \beta^*(x') = R\rho'$. Globally, $\delta_{\partial\bar{X}}$ is replaced by a larger manifold, namely by its doubly inward-pointing spherical normal bundle of $\delta_{\partial\bar{X}}$, whose each fiber is a quarter of sphere. From local coordinates (x, y, x', y') on $\bar{X} \times \bar{X}$, this amounts to introducing polar coordinates $(R, \rho, \rho', \omega, y)$ around $\delta_{\partial\bar{X}}$:

$$R := (x^2 + x'^2 + |y - y'|^2)^{\frac{1}{2}}, \quad (\rho, \rho', \omega) := \left(\frac{x}{R}, \frac{x'}{R}, \frac{y - y'}{R} \right)$$

with $R, \rho, \rho' \in [0, \infty)$. In these polar coordinates the Schwartz kernel of $R(\lambda)$ has a better description.

Using evident identifications induced by the inclusions

$$\delta_{\partial\bar{X}} \subset \partial\bar{X} \times \partial\bar{X} \subset \partial\bar{X} \times \bar{X} \subset \bar{X} \times \bar{X},$$

we denote by $\partial\bar{X} \times_0 \bar{X}$ the blow-up of $\partial\bar{X} \times \bar{X}$ along $\delta_{\partial\bar{X}}$ and $\partial\bar{X} \times_0 \partial\bar{X}$ the blow-up of $\partial\bar{X} \times \partial\bar{X}$ along $\delta_{\partial\bar{X}}$. $\tilde{\beta}$ and β_∂ are the associated blow-down map

$$\tilde{\beta} : \partial\bar{X} \times_0 \bar{X} \rightarrow \partial\bar{X} \times \bar{X}, \quad \beta_\partial : \partial\bar{X} \times_0 \partial\bar{X} \rightarrow \partial\bar{X} \times \partial\bar{X}$$

with $\tilde{\beta} = \beta|_{\mathcal{T}}$ and $\beta_\partial = \beta|_{\mathcal{B} \cap \mathcal{T}}$. Note that $r := R|_{\mathcal{B} \cap \mathcal{T}}$ is a defining function of the boundary of $\partial\bar{X} \times_0 \partial\bar{X}$ (which is the lift of $\delta_{\partial\bar{X}}$ under β_∂).

Let $\Gamma_0^{\frac{1}{2}}(\bar{X})$ the line bundle of singular half-densities on \bar{X} , trivialized by $\nu := |dvol_g|^{\frac{1}{2}}$, and $\Gamma^{\frac{1}{2}}(\partial\bar{X})$ the bundle of half densities on $\partial\bar{X}$, trivialized by $\nu_0 := |dvol_{h_0}|^{\frac{1}{2}}$ (where $h_0 = x^2 g|_{T\partial\bar{X}}$). From these bundles, one can construct the bundles $\Gamma_0^{\frac{1}{2}}(\bar{X} \times \bar{X}), \Gamma_0^{\frac{1}{2}}(\partial\bar{X} \times \bar{X})$ and $\Gamma^{\frac{1}{2}}(\partial\bar{X} \times \partial\bar{X})$ by tensor products and the bundles $\Gamma_0^{\frac{1}{2}}(\bar{X} \times_0 \bar{X}), \Gamma_0^{\frac{1}{2}}(\partial\bar{X} \times_0 \bar{X})$ and $\Gamma^{\frac{1}{2}}(\partial\bar{X} \times_0 \partial\bar{X})$ by lifting under $\beta, \tilde{\beta}$ and β_∂ the three previous bundles. If M denotes $\bar{X}, \bar{X} \times \bar{X}$ or $\partial\bar{X} \times \bar{X}$, we write $\dot{C}^\infty(M, \Gamma_0^{\frac{1}{2}})$ the space of smooth sections of $\Gamma_0^{\frac{1}{2}}(M)$ that vanish to all order at all the boundary hypersurfaces of M , and $C^{-\infty}(M, \Gamma_0^{\frac{1}{2}})$ is its topological dual. The Hilbert space $L^2(\bar{X}, \Gamma_0^{\frac{1}{2}})$ and $L^2(\partial\bar{X}, \Gamma^{\frac{1}{2}})$ are isomorphic to $L^2(X, dvol_g)$ and $L^2(\partial\bar{X}, dvol_{h_0})$, they will be denoted $L^2(X), L^2(\partial\bar{X})$.

For $\alpha \in \mathbb{R}$, let $x^\alpha L^2(X) := \{f \in C^{-\infty}(\bar{X}, \Gamma_0^{\frac{1}{2}}); x^{-\alpha} f \in L^2(X)\}$ and we set $\langle \cdot, \cdot \rangle$ the symmetric non-degenerate products

$$\langle u, v \rangle := \int_X uv \text{ on } L^2(X), \quad \langle u, v \rangle := \int_{\partial\bar{X}} uv \text{ on } L^2(\partial\bar{X}).$$

We can check by using the first pairing that the dual space of $x^\alpha L^2(X)$ is isomorphic to $x^{-\alpha} L^2(X)$. We shall also use the following tensorial notation for $E = x^\alpha L^2(X)$ (resp. $E =$

$$L^2(\partial\bar{X})), \psi, \phi \in E'$$

$$\phi \otimes \psi : \begin{cases} E & \rightarrow E' \\ f & \rightarrow \phi \langle \psi, f \rangle \end{cases}.$$

3.2. Resolvent. From [12, 6], we know that on an asymptotically hyperbolic manifold (X, g) with g even, the modified resolvent

$$R(\lambda) := (\Delta_g - \lambda(n - \lambda))^{-1}$$

extends for all $N > 0$ to a finite-meromorphic family of operators in $\{\Re(\lambda) > \frac{n}{2} - N\}$ with values in $\mathcal{L}(x^N L^2(X), x^{-N} L^2(X))$, whose poles, the resonances, form a discrete set \mathcal{R} in \mathbb{C} . Moreover $R(\lambda)$ is a continuous operator from $\dot{C}^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$ to $C^{-\infty}(\bar{X}, \Gamma_0^{\frac{1}{2}})$, its associated Schwartz kernel being

$$r(\lambda) = r_0(\lambda) + r_1(\lambda) + r_2(\lambda) \in C^{-\infty}(\bar{X} \times \bar{X}, \Gamma_0^{\frac{1}{2}})$$

with (see [12] or [1, Th. 2.1]):

$$\beta^*(r_0(\lambda)) \in I^{-2}(\bar{X} \times_0 \bar{X}, \Gamma_0^{\frac{1}{2}}),$$

$$(3.1) \quad \beta^*(r_1(\lambda)) \in \rho^\lambda \rho'^\lambda C^\infty(\bar{X} \times_0 \bar{X}, \Gamma_0^{\frac{1}{2}}), \quad r_2(\lambda) \in x^\lambda x'^\lambda C^\infty(\bar{X} \times \bar{X}, \Gamma_0^{\frac{1}{2}}),$$

where $I^{-2}(\bar{X} \times_0 \bar{X}, \Gamma_0^{\frac{1}{2}})$ denotes the set of conormal distributions of order -2 on $\bar{X} \times_0 \bar{X}$ associated to the closure of the lifted interior diagonal

$$\overline{\beta^{-1}(\{(m, m) \in \bar{X} \times \bar{X}; m \in X\})}$$

and vanishing to infinite order at $\mathcal{B} \cup \mathcal{T}$ (note that the lifted interior diagonal only intersects the topological boundary of $\bar{X} \times_0 \bar{X}$ at \mathcal{F} , and it does transversally). Moreover, $(\rho\rho')^{-\lambda} \beta^*(r_1(\lambda))$ and $(xx')^{-\lambda} r_2(\lambda)$ are meromorphic in $\lambda \in \mathbb{C}$ and $r_0(\lambda)$ is the kernel of a holomorphic family of operators

$$R_0(\lambda) \in \mathcal{H}ol(\mathbb{C}, \mathcal{L}(x^\alpha L^2(X), x^{-\alpha} L^2(X))), \quad \forall \alpha \geq 0.$$

Note also that Patterson-Perry arguments [14, Lem.4.9] prove that $R(\lambda)$ does not have poles on the line $\{\Re(\lambda) = \frac{n}{2}\}$, except maybe $\lambda = \frac{n}{2}$. The set of poles of $R(\lambda)$ in the half plane $\{\Re(\lambda) > \frac{n}{2}\}$ is $\{\lambda_e; \Re(\lambda_e) > \frac{n}{2}, \lambda_e(n - \lambda_e) \in \sigma_{pp}(\Delta_g)\}$, they are first order poles and their residue is

$$(3.2) \quad \text{Res}_{\lambda_e} R(\lambda) = (2\lambda_e - n)^{-1} \sum_{k=1}^p \phi_k \otimes \phi_k, \quad \phi_k \in x^{\lambda_e} C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}),$$

where $(\phi_k)_{k=1, \dots, p}$ are the normalized eigenfunctions of Δ_g for the eigenvalue $\lambda_e(n - \lambda_e)$. One can see by a Taylor expansion at $x = 0$ of the eigenvector equation that if $x^{-\lambda_e + \frac{n}{2}} \phi_k|_{\partial\bar{X}} = 0$ then $\phi_k \in \dot{C}^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$, which is excluded according to Mazzeo's results [11].

To simplify the notations, we shall set $z(\lambda) := \lambda(n - \lambda)$ the holomorphically invertible function from $\Re(\lambda) < \frac{n}{2}$ to $\mathbb{C} \setminus [\frac{n^2}{4}, \infty)$.

For the poles of $R(\lambda)$ in $\{\Re(\lambda) < \frac{n}{2}\}$, we use Lemma 2.4 and 2.11 of [9] to show the

Lemma 3.1. *Let $\lambda_0 \in \mathcal{R}$ and N such that $\frac{n}{2} > \Re(\lambda_0) > \frac{n}{2} - N$, then in a neighbourhood V_{λ_0} of λ_0 we have the decomposition*

$$(3.3) \quad R(\lambda) = {}^t \Phi F_1(\lambda) \left(\sum_{j=1}^m (z(\lambda) - z(\lambda_0))^{k_j} P_j \right) F_2(\lambda) \Phi + H(\lambda),$$

with $m \in \mathbb{N}$, $k_1, \dots, k_m \in -\mathbb{N}$,

$$H(\lambda) \in \mathcal{H}ol(V_{\lambda_0}, \mathcal{L}(x^N L^2(X), x^{-N} L^2(X))), \quad F_i(\lambda) \in \mathcal{H}ol(V_{\lambda_0}, \mathcal{L}(\mathbb{C}^q)),$$

where $q = -\sum_{j=1}^m k_j = m_{\lambda_0}(z'(\lambda)R(\lambda))$ is the multiplicity of the resonance λ_0 , $(P_j)_{j=1,\dots,m}$ are some orthogonal projections on \mathbb{C}^q such that $P_i P_j = \delta_{ij} P_j$ and $\text{rank}(P_j) = 1$, Φ is defined by

$$\Phi : \begin{cases} x^N L^2(X) & \rightarrow \mathbb{C}^q \\ f & \rightarrow (\langle \psi_l, f \rangle)_{l=1,\dots,q} \end{cases},$$

$(\psi_l)_{l=1,\dots,q}$ being a basis of $\text{Im}(A)$ with $A := \text{Res}_{\lambda_0}(z'(\lambda)R(\lambda))$. Moreover we have

$$(3.4) \quad \text{Im}(A) \subset \sum_{j=0}^{p-1} x^{\lambda_0} \log^j(x) C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$$

with p the order of the pole λ_0 of $R(\lambda)$.

Proof: it suffices to use Lemmas 2.4 and 2.11 of [9] but we factorize the resolvent and not the scattering operator. The arguments used in these lemmas are essentially that the polar part of $R(\lambda)$ be expressed by

$$\Xi_{\lambda_0}(R(\lambda)) = \Xi_{\lambda_0} \left(\sum_{i=1}^p \frac{(\Delta_g - z(\lambda_0))^{i-1} A}{(z(\lambda) - z(\lambda_0))^i} \right)$$

and the factorization into its Jordan form of the nilpotent matrix of $\Delta_g - z(\lambda_0)$ acting on $\text{Im}(A)$. Observe that the elliptic regularity implies that the elements of $\text{Im}(A)$ are smooth in X .

To study the structure of the Schwartz kernel a_j of A_j , we first consider the following operator

$$(3.5) \quad \tilde{R}(\lambda) := x^{-\lambda + \frac{n}{2}} R(\lambda) x^{-\lambda + \frac{n}{2}}$$

in a disc $D(\lambda_0, \epsilon)$ around λ_0 with radius ϵ . If ϵ is taken sufficiently small, $\tilde{R}(\lambda)$ is meromorphic in this disc with values in $\mathcal{L}(x^{2\epsilon} L^2(X), x^{-2\epsilon} L^2(X))$, λ_0 is the only pole and its order is p . The Schwartz kernel $(xx')^{-\lambda + \frac{n}{2}} r(\lambda)$ of $\tilde{R}(\lambda)$ is meromorphic and its polar part at λ_0 is the same as the one of $(xx')^{-\lambda + \frac{n}{2}} (r_1(\lambda) + r_2(\lambda))$ since $r_0(\lambda)$ is holomorphic in \mathbb{C} . We then can easily check [6, Prop. 3.3] that we have in V_{λ_0}

$$(3.6) \quad \Xi_{\lambda_0}(\tilde{R}(\lambda)) = \sum_{j=-p}^{-1} B_j (\lambda - \lambda_0)^j$$

where $B_j \in \mathcal{L}(x^{2\epsilon} L^2(X), x^{-2\epsilon} L^2(X))$ has a Schwartz kernel of the form

$$(3.7) \quad b_j(x, y, x', y') = \sum_{i=1}^{r_j} \psi_{ji}(x, y) \varphi_{ji}(x', y') \left| \frac{dxdydx'dy'}{x^{n+1}x'^{n+1}} \right|^{\frac{1}{2}}, \quad \psi_{ij}, \varphi_{ij} \in x^{\frac{n}{2}} C^\infty(\bar{X}).$$

Observe now that $x^{\lambda - \frac{n}{2}}$ has the following Taylor expansion at λ_0

$$x^{\lambda - \frac{n}{2}} = x^{\lambda_0 - \frac{n}{2}} \sum_{j=0}^{p-1} \log^j(x) \frac{(\lambda - \lambda_0)^j}{j!} + O((\lambda - \lambda_0)^p)$$

in the sense of operators of $\mathcal{L}(x^N L^2(X), x^{2\epsilon} L^2(X))$ and $\mathcal{L}(x^{-2\epsilon} L^2(X), x^{-N} L^2(X))$. We deduce that $z'(\lambda)R(\lambda)$ has a residue A satisfying

$$\text{Im}(A) \subset \sum_{j=0}^{p-1} x^{\lambda_0} \log^j(x) C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$$

and we are done. □

3.3. Scattering matrix. Joshi and Sá Barreto [10] have shown that the scattering matrix $S(\lambda)$ (defined in the introduction) has the following Schwartz kernel

$$(3.8) \quad s(\lambda) := (2\lambda - n)(\beta_\partial)_*(\beta^*(x^{-\lambda+\frac{n}{2}}x'^{-\lambda+\frac{n}{2}}r(\lambda))|_{\mathcal{T} \cap \mathcal{B}})$$

Following (3.1) and (3.8) we have in $\mathbb{C} \setminus (\mathcal{R} \cup (\frac{n}{2} + \mathbb{N}))$

$$(3.9) \quad s(\lambda) = (\beta_\partial)_*(r^{-2\lambda}k_1(\lambda)) + k_2(\lambda),$$

$$k_1(\lambda) \in C^\infty(\partial\bar{X} \times_0 \partial\bar{X}, \Gamma^{\frac{1}{2}}), \quad k_2(\lambda) \in C^\infty(\partial\bar{X} \times \partial\bar{X}, \Gamma^{\frac{1}{2}})$$

where $k_1(\lambda)$ and $k_2(\lambda)$ are meromorphic in $\lambda \in \mathbb{C}$. Outside its poles, $s(\lambda)$ is a conormal distribution of order -2λ associated to $\delta_{\partial\bar{X}}$ and $S(\lambda)$ is a pseudo-differential operator of order $2\lambda - n$ on $\partial\bar{X}$. In the sense of Shubin [18, Def. 11.2], $S(\lambda)$ is a holomorphic family in $\{\Re(\lambda) < \frac{n}{2}\} \setminus \mathcal{R}$ of zeroth order pseudo-differential operators. We then deduce that $S(\lambda)$ is holomorphic in the same open set, with values in $\mathcal{L}(L^2(\partial\bar{X}))$. Recall the functional equation satisfied by $S(\lambda)$ (cf. [5])

$$(3.10) \quad S(\lambda)^{-1} = S(n - \lambda) = S(\lambda)^*, \quad \Re(\lambda) = \frac{n}{2}, \quad \lambda \neq \frac{n}{2}$$

which also proves that $S(\lambda)$ is regular on the line $\{\Re(\lambda) = \frac{n}{2}\}$. Furthermore, (3.10) holds also for $\tilde{S}(\lambda)$ and by analytic extension we have on $\mathbb{C} \setminus \mathcal{R}$

$$\tilde{S}^{-1}(\lambda) = \tilde{S}(n - \lambda).$$

The principal symbol of $S(\lambda)$ is given in (1.2) and the renormalization $\tilde{S}(\lambda)$ of $S(\lambda)$ defined in (1.3) is Fredholm with index 0, consequently we are in the framework of Section 2.

Using Lemmas 3.1 and (3.9), we then obtain the

Lemma 3.2. *Let $\lambda_0 \in \{\Re(\lambda) < \frac{n}{2}\}$ a pole of $S(\lambda)$. Then $\lambda_0 \in \mathcal{R}$ and, following the notations of Lemma 3.1, we have near λ_0*

$$(3.11) \quad S(\lambda) = (2\lambda - n)^t \Phi^\sharp(\lambda) F_1(\lambda) \left(\sum_{j=1}^m (z(\lambda) - z(\lambda_0))^{k_j} P_j \right) F_2(\lambda) \Phi^\sharp(\lambda) + H^\sharp(\lambda)$$

with $H^\sharp(\lambda) \in \mathcal{H}ol(V_{\lambda_0}, \mathcal{L}(L^2(\partial\bar{X})))$ and $\Phi^\sharp(\lambda) \in \mathcal{H}ol(V_{\lambda_0}, \mathcal{L}(L^2(\partial\bar{X}), \mathbb{C}^q))$.

Proof: the fact that $\lambda_0 \in \mathcal{R}$ is straightforward since if $r(\lambda)$ was holomorphic one would have $s(\lambda)$ holomorphic in view of (3.8). Now, $\tilde{R}(\lambda)$ being defined in (3.5), we saw in Lemma 3.1 that the polar part of $\tilde{R}(\lambda)$ at λ_0 has a Schwartz kernel $\Xi_{\lambda_0}(\tilde{r}(\lambda))$ satisfying

$$(3.12) \quad \Xi_{\lambda_0}(\tilde{r}(\lambda)) \in (xx')^{\frac{n}{2}} C^\infty(\bar{X} \times \bar{X}, \Gamma_0^{\frac{1}{2}}).$$

Let $\Phi(\lambda) := \sum_{i=0}^{p-1} \frac{(\lambda - \lambda_0)^i}{i!} \frac{d^i}{d\lambda^i} (\Phi x^{-\lambda + \frac{n}{2}})|_{\lambda=\lambda_0}$ in the sense of operators of $\mathcal{L}(x^{2\epsilon} L^2(X), \mathbb{C}^q)$:

$$\Phi(\lambda) : \begin{cases} x^{2\epsilon} L^2(X) & \rightarrow \mathbb{C}^q \\ f & \rightarrow \left(\sum_{j=0}^{p-1} \frac{(\lambda_0 - \lambda)^j}{j!} \langle \log^j(x) x^{-\lambda_0 + \frac{n}{2}} \psi_l, f \rangle \right)_{l=1,\dots,q} \end{cases}.$$

Lemma 3.1 implies that

$$(3.13) \quad \Xi_{\lambda_0}(\tilde{R}(\lambda)) = \Xi_{\lambda_0} \left({}^t \Phi(\lambda) F_1(\lambda) \left(\sum_{j=1}^m (z(\lambda) - z(\lambda_0))^{k_j} P_j \right) F_2(\lambda) \Phi(\lambda) \right).$$

Let $C := \sum_{j=-p}^{-1} \text{Im}(B_j)$ with B_j the operators defined in (3.6) and let Π_C be the orthogonal projection of $x^{-2\epsilon} L^2(X)$ onto C . We multiply (3.13) on the left by Π_C and on the right by ${}^t \Pi_C$,

and using that $\Xi_{\lambda_0}(\tilde{R}(\lambda))$ is symmetric (since $tR(\lambda) = R(\lambda)$) we deduce that (3.13) remains true if $\Phi(\lambda)$ is replaced by

$$\begin{cases} x^{2\epsilon}L^2(X) & \rightarrow \mathbb{C}^q \\ f & \rightarrow \left(\sum_{j=0}^{p-1} \frac{(\lambda_0 - \lambda)^j}{j!} \langle \Pi_C(\log^j(x)x^{-\lambda_0 + \frac{n}{2}}\psi_l), f \rangle \right)_{l=1,\dots,q} \end{cases}$$

so that the logarithmic terms disappear. Finally, we can use the representation of $S(\lambda)$ by its Schwartz kernel (3.9) and we obtain

$$\Xi_{\lambda_0}(S(\lambda)) = \Xi_{\lambda_0} \left((2\lambda - n)^t \Phi^\sharp(\lambda) F_1(\lambda) \left(\sum_{j=1}^m (z(\lambda) - z(\lambda_0))^{k_j} P_j \right) F_2(\lambda) \Phi^\sharp(\lambda) \right),$$

with

$$\Phi^\sharp(\lambda) : \begin{cases} L^2(\partial\bar{X}) & \rightarrow \mathbb{C}^q \\ f & \rightarrow \left(\sum_{j=0}^{p-1} \frac{(\lambda_0 - \lambda)^j}{j!} \langle \Pi_C(\log^j(x)x^{-\lambda_0 + \frac{n}{2}}\psi_l)|_{\partial\bar{X}}, f \rangle \right)_{l=1,\dots,q} \end{cases},$$

the proof is achieved. \square

From this lemma, we deduce the

Corollary 3.3. *If $\lambda_0 \in \{\Re(\lambda) < \frac{n}{2}\}$ is a pole of $S(\lambda)$, it is a pole of $R(\lambda)$ such that*

$$m_{\lambda_0}(z'(\lambda)R(\lambda)) \geq N_{\lambda_0}(c(n - \lambda)\tilde{S}(n - \lambda)).$$

Proof: firstly, (3.11) can be expressed by

$$\begin{aligned} c(\lambda)\tilde{S}(\lambda) &= F_3(\lambda) \left(\sum_{j=1}^m (z(\lambda) - z(\lambda_0))^{k_j} P_j \right) F_4(\lambda) + \tilde{H}^\sharp(\lambda), \\ F_3(\lambda) &:= (2\lambda - n)\Lambda^{-\lambda + \frac{n}{2}} t \Phi^\sharp(\lambda) F_1(\lambda), \quad F_4(\lambda) := F_2(\lambda) \Phi^\sharp(\lambda) \Lambda^{-\lambda + \frac{n}{2}}, \\ \tilde{H}^\sharp(\lambda) &:= (2\lambda - n)\Lambda^{-\lambda + \frac{n}{2}} H^\sharp(\lambda) \Lambda^{-\lambda + \frac{n}{2}}. \end{aligned}$$

Note that we can take $k_1 \leq \dots \leq k_m < 0$ and set $(\varphi_0^{(j)})_{j=1,\dots,M}$ a canonical system of eigenvectors of $c(n - \lambda)\tilde{S}(n - \lambda)$ at λ_0 with $r_1 \geq \dots \geq r_M$ the associated partial null multiplicities (this canonical system exists and is deduced from the one of $\tilde{S}(n - \lambda)$). Let us show that $M \leq m$ and, by induction, that $r_j \leq -k_j$ for all $j = 1, \dots, M$.

If $\varphi^{(j)}(\lambda)$ is a root function of $c(n - \lambda)\tilde{S}(n - \lambda)$ at λ_0 corresponding to $\varphi_0^{(j)}$, there exists a holomorphic function $\phi^{(j)}(\lambda)$ such that

$$c(n - \lambda)\tilde{S}(n - \lambda)\varphi^{(j)}(\lambda) = (z(\lambda) - z(\lambda_0))^{r_j} \phi^{(j)}(\lambda)$$

with $\phi^{(j)}(\lambda_0) \neq 0$, hence when λ approaches λ_0 in the following identity

$$\varphi^{(j)}(\lambda) = \sum_{l=1}^m (z(\lambda) - z(\lambda_0))^{r_j + k_l} F_3(\lambda) P_l F_4(\lambda) \phi^{(j)}(\lambda) + (z(\lambda) - z(\lambda_0))^{r_j} \tilde{H}^\sharp(\lambda) \phi^{(j)}(\lambda),$$

we find that $r_1 \leq -k_1$ and $\varphi_0^{(j)}$ is in the vectorial space

$$E_j := \text{Vect}\{F_3(\lambda_0)P_l F_4(\lambda_0)L^2(\partial\bar{X}); r_j \leq -k_l\}.$$

Moreover, the order on $(r_j)_{j=1,\dots,M}$ implies that $E_j \subset E_M$ for $j = 1, \dots, M$ but $\dim E_M \leq m$ since $\text{rank}(P_l) = 1$, thus we necessarily have $M \leq m$, $(\varphi_0^{(j)})_j$ being independent by assumption. Now let $j \leq M$ and suppose that $r_i \leq -k_i$ for all $i \leq j$. We first note that $E_j \subset E_{j+1}$ since $r_{j+1} \leq r_j$. If $r_{j+1} > -k_{j+1}$, we would have $\dim E_{j+1} \leq j$ but E_{j+1} contains the linearly independent vectors $\varphi_0^{(1)}, \dots, \varphi_0^{(j+1)}$, so a contradiction. One concludes that $r_{j+1} \leq -k_{j+1}$ and

$$N_{\lambda_0}(c(n - \lambda)\tilde{S}(n - \lambda)) = \sum_{j=1}^M r_j \leq - \sum_{l=1}^m k_l = q = m_{\lambda_0}(z'(\lambda)R(\lambda)),$$

the corollary is proved. \square

Lemma 3.4. *Let $\lambda_0 \in \{\Re(\lambda) < \frac{n}{2}\}$ be a pole of $R(\lambda)$ of finite multiplicity. If $\lambda_0(n - \lambda_0) \notin \sigma_{pp}(\Delta_g)$ or $\lambda_0 \notin \frac{1}{2}(n - \mathbb{N})$, then λ_0 is a pole of $S(\lambda)$ such that*

$$m_{\lambda_0}(z'(\lambda)R(\lambda)) \leq N_{\lambda_0} \left(c(n - \lambda) \tilde{S}(n - \lambda) \right).$$

Proof: we first suppose that λ_0 is not a pole of $c(\lambda)$ (i.e. $\lambda_0 \notin \frac{n}{2} - \mathbb{N}$). From Gohberg-Sigal theory, one can factorize $\tilde{S}(\lambda)$ near λ_0 as in (2.2)

$$(3.14) \quad c(\lambda)\tilde{S}(\lambda) = U_1(\lambda) \left(P_0 + \sum_{l=1}^m (\lambda - \lambda_0)^{k_l} P_l \right) U_2(\lambda)$$

with $U_1(\lambda)$, $U_2(\lambda)$ some holomorphically invertible operators near λ_0 and

$$P_i P_j = \delta_{ij} P_j, \quad \text{rank}(P_l) = 1 \text{ for } l = 1, \dots, m, \quad 1 = \sum_{j=0}^m P_j, \quad k_l \in \mathbb{Z}^*.$$

Take the Green equation between the resolvent and the scattering operator (see [15, 16, 7, 9, 6])

$$(3.15) \quad R(\lambda) - R(n - \lambda) = (2\lambda - n)^t E(n - \lambda) \Lambda^{\lambda - \frac{n}{2}} c(\lambda) \tilde{S}(\lambda) \Lambda^{\lambda - \frac{n}{2}} E(n - \lambda)$$

on $\mathcal{L}(x^N L^2(X), x^{-N} L^2(X))$ with $\frac{n}{2} - N < |\Re(\lambda)| < \frac{n}{2}$ and $E(\lambda)$ the transpose of the Eisenstein operator, its Schwartz kernel being

$$e(\lambda) := \tilde{\beta}_* (\beta^*(x^{-\lambda + \frac{n}{2}} r(\lambda))|_{\mathfrak{T}}).$$

We can suppose that $k_1 \leq \dots \leq k_m$ and set $p := \max(0, -k_1)$. We consider the following Laurent expansions at λ_0

$$(3.16) \quad \begin{aligned} (n - 2\lambda)R(n - \lambda) &= \sum_{i=-1}^{p-1} R_i(\lambda - \lambda_0)^i + O((\lambda - \lambda_0)^p), \\ (2\lambda - n)U_2(\lambda)\Lambda^{\lambda - \frac{n}{2}}E(n - \lambda) &= \sum_{i=-1}^{p-1} E_i^{(2)}(\lambda - \lambda_0)^i + O((\lambda - \lambda_0)^p), \\ (n - 2\lambda)^t E(n - \lambda)\Lambda^{\lambda - \frac{n}{2}}U_1(\lambda) &= \sum_{i=-1}^{p-1} E_i^{(1)}(\lambda - \lambda_0)^i + O((\lambda - \lambda_0)^p), \end{aligned}$$

where R_{-1} and $E_{-1}^{(j)}$ are not 0 if and only if $\lambda_0(n - \lambda_0) \in \sigma_{pp}(\Delta_g)$, and in this case

$$(3.17) \quad \begin{aligned} R_{-1} &= -\sum_{i=1}^k \phi_i \otimes \phi_i, \\ E_{-1}^{(2)} &= \sum_{i=1}^k U_2(\lambda_0)\Lambda^{\lambda_0 - \frac{n}{2}}(x^{\lambda_0 - \frac{n}{2}}\phi_i)|_{\partial\bar{X}} \otimes \phi_i, \\ E_{-1}^{(1)} &= -\sum_{i=1}^k \phi_i \otimes {}^t U_1(\lambda_0)\Lambda^{\lambda_0 - \frac{n}{2}}(x^{\lambda_0 - \frac{n}{2}}\phi_i)|_{\partial\bar{X}}, \end{aligned}$$

with $\phi_i \in x^{n-\lambda_0} C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$ the normalized eigenfunctions of Δ_g for the eigenvalue $\lambda_0(n - \lambda_0)$. From (3.14), (3.15) and (3.16) we obtain

$$(3.18) \quad A := \text{Res}_{\lambda_0}((n - 2\lambda)R(\lambda)) = R_{-1} + \sum_{\substack{j+i+k_l=-1 \\ k_l \geq 0}} E_i^{(1)} P_l E_j^{(2)} + \sum_{\substack{j+i+k_l=-1 \\ k_l < 0}} E_i^{(1)} P_l E_j^{(2)}$$

where by convention $k_l = 0 \iff l = 0$. We set $V := \text{Im}(A_1) + \text{Im}(A_2)$ with

$$\begin{aligned} A_1 &:= R_{-1} + E_{-1}^{(1)} P_0 E_0^{(2)} + E_{-1}^{(1)} \left(\sum_{k_l=1} P_l \right) E_{-1}^{(2)}, \\ A_2 &:= E_0^{(1)} P_0 E_{-1}^{(2)} + \sum_{\substack{j+i+k_l=-1 \\ k_l < 0}} E_i^{(1)} P_l E_j^{(2)}. \end{aligned}$$

Remark from (3.17) that

$$\text{Im}(A_1) \subset x^{n-\lambda_0} C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}), \quad (\Delta_g - \lambda_0(n - \lambda_0)) A_1 = 0$$

and in view of Lemma 3.1 we know that there exists $p \in \mathbb{N}$ such that

$$\text{Im}(A) \subset \sum_{j=0}^{p-1} x^{\lambda_0} \log^j(x) C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}), \quad (\Delta_g - \lambda_0(n - \lambda_0))^p A = 0$$

thus we can argue that

$$\forall u \in V, \quad (\Delta_g - \lambda_0(n - \lambda_0))^p u = 0.$$

Note that if $\lambda_0 \notin \frac{1}{2}(n - \mathbb{N})$, we clearly have

$$x^{n-\lambda_0} C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}) \cap \sum_{j=0}^{p-1} x^{\lambda_0} \log^j(x) C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}) \subset \dot{C}^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}),$$

therefore, if V_1, V_2 are defined by

$$V_1 = V \cap x^{n-\lambda_0} C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}), \quad V_2 = V \cap \sum_{j=0}^{p-1} x^{\lambda_0} \log^j(x) C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}),$$

we deduce from the unique continuation principle proved by Mazzeo [11] that

$$V_1 \cap V_2 \subset \dot{C}^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}}) \cap \ker_{L^2}(\Delta_g - \lambda_0(n - \lambda_0))^p = 0.$$

Hence, we can split $V = V_1 \oplus V_2 \oplus V_3$ with V_3 a direct complement of $V_1 \oplus V_2$ in V . Let Π_{V_2} be the projection of V onto V_2 parallel to $V_1 \oplus V_3$, Π_V the orthogonal projection of $x^{-N} L^2(X)$ onto V and ι_V the inclusion of V into $x^{-N} L^2(X)$. We multiply (3.18) on the left by $\Pi'_{V_2} := \iota_V \Pi_{V_2} \Pi_V$ and on the right by ${}^t \Pi'_{V_2}$ to obtain

$$A = \sum_{\substack{j+i+k_l=-1 \\ k_l < 0}} \Pi'_{V_2} E_i^{(1)} P_l E_j^{(2)} {}^t \Pi'_{V_2}$$

by construction of V_2 and using the symmetry ${}^t A = A$ (since ${}^t R(\lambda) = R(\lambda)$). Now remark that

$$\sum_{\substack{j+i+k_l=-1 \\ k_l < 0}} \Pi'_{V_2} E_i^{(1)} P_l E_j^{(2)} {}^t \Pi'_{V_2} = \sum_{k_l < 0} \sum_{i=0}^{-k_l-1} \Pi'_{V_2} E_i^{(1)} P_l E_{-k_l-1-i}^{(2)} {}^t \Pi'_{V_2}$$

and the rank of this operator is bounded by $-\sum_{k_l < 0} k_l = N_{\lambda_0}(c(n-\lambda)\tilde{S}(n-\lambda))$ since $\text{rank}(P_l) = 1$. The lemma is proved when $\lambda_0 \notin \frac{n}{2} - \mathbb{N}$.

On the other hand if $\lambda_0 \in \frac{n}{2} - \mathbb{N}$ and $\lambda_0(n - \lambda_0) \notin \sigma_{pp}(\Delta_g)$, we have $R_{-1} = 0$, $E_{-1}^{(1)} = 0$ and $E_{-1}^{(2)} = 0$ in (3.16). Therefore, the same proof works if we replace (3.14) and (3.18) by

$$c(\lambda)\tilde{S}(\lambda) = U_1(\lambda) \left((\lambda - \lambda_0)P_0 + \sum_{l=1}^m (\lambda - \lambda_0)^{k_l+1} P_l \right) U_2(\lambda),$$

$$\text{Res}_{\lambda_0}((n-2\lambda)R(\lambda)) = \sum_{\substack{j+i+k_l=-2 \\ k_l < -1}} E_i^{(1)} P_l E_j^{(2)}$$

the first one being obtained from Gohberg-Sigal factorization (2.2) of $\tilde{S}(\lambda)$ at λ_0 . Now observe that the rank of

$$\sum_{\substack{j+i+k_l=-2 \\ k_l < -1}} \Pi'_{V_2} E_i^{(1)} P_l E_j^{(2)} {}^t \Pi'_{V_2} = \sum_{k_l < -1} \sum_{i=0}^{-k_l-2} \Pi'_{V_2} E_i^{(1)} P_l E_{-k_l-2-i}^{(2)} {}^t \Pi'_{V_2}$$

is bounded by

$$-\sum_{k_l < -1} (k_l + 1) = -\sum_{k_l < 0} (k_l + 1) = N_{\lambda_0}(\tilde{S}(n-\lambda)) - \dim \ker_{\lambda_0} \tilde{S}(n-\lambda) = N_{\lambda_0}(c(n-\lambda)\tilde{S}(n-\lambda))$$

in view of (2.5), the proof is complete. \square

Proof of Theorem 1.1: we combine the results of Corollary 3.3 and Lemma 3.4 with (2.5) and (2.4), and observe that

$$\ker_{\lambda_0} \tilde{S}(n - \lambda) = \ker \tilde{S}(n - \lambda_0) = \ker \text{Res}_{n-\lambda_0} S(\lambda),$$

then it remains to show that

$$(3.19) \quad N_{\lambda_0}(\tilde{S}(\lambda)) = m_{n-\lambda_0}.$$

Whereas the case $\lambda_0(n - \lambda_0) \notin \sigma_{pp}(\Delta_g)$ is clear since $\tilde{S}(\lambda)^{-1} = \tilde{S}(n - \lambda)$ is holomorphic near λ_0 and $m_{n-\lambda_0} = 0$, the case $\lambda_0(n - \lambda_0) \in \sigma_{pp}(\Delta_g)$ needs a little more care. In view of (3.2) and (3.8), $\tilde{S}(\lambda)$ has the following polar part at $n - \lambda_0$

$$C(\lambda_0)(\lambda - n + \lambda_0)^{-1} \sum_{j=1}^k \Lambda^{\lambda_0 - \frac{n}{2}} \phi_j^\sharp \otimes \Lambda^{\lambda_0 - \frac{n}{2}} \phi_j^\sharp$$

with $C(\lambda_0) \neq 0$ if $\lambda_0 \notin \frac{n}{2} - \mathbb{N}$, $k = m_{n-\lambda_0}$ and $\phi_j^\sharp := x^{\lambda_0 - \frac{n}{2}} \phi_j|_{\partial \bar{X}}$ (where $(\phi_j)_j$ is an orthonormal basis of $\ker_{L^2}(\Delta_g - \lambda_0(n - \lambda_0))$ as in (3.2)). It is not difficult to see that $(\phi_j^\sharp)_j$ are independent, otherwise there would exist a non zero solution $u \in x^{n-\lambda_0+1} C^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$ of $(\Delta_g - \lambda_0(n - \lambda_0))u = 0$ and a Taylor expansion of this equation at $x = 0$ proves that $u \in \dot{C}^\infty(\bar{X}, \Gamma_0^{\frac{1}{2}})$, which is excluded according to Mazzeo's result [11]. Since the pole is a first order pole, the factorization of $\tilde{S}(\lambda)$ as in (2.2) near $n - \lambda_0$ is clear for the $k_l < 0$: we have $m = k$ and $k_l = -1$ for $l = 1, \dots, k$. Using (2.3) and $\tilde{S}(\lambda)^{-1} = \tilde{S}(n - \lambda)$, one then obtain that the partial null multiplicities of $\tilde{S}(\lambda)$ at λ_0 are $\{-k_1, \dots, -k_k\}$ which gives (3.19) and the theorem. \square

REFERENCES

- [1] D. Borthwick, P. Perry, *Scattering poles for asymptotically hyperbolic manifolds*, Trans. Amer. Math. Soc. **354** (2002) 1215-1231.
- [2] U. Bunke, M. Olbrich, *Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group*, Ann. Math **149** (1999), 627-689.
- [3] U. Bunke, M. Olbrich, *Fuchsian groups of the second kind and representations carried by the limit set*, Invent. Math. **127** (1997), 127-154.
- [4] I. Gohberg, E. Sigal, *An Operator Generalization of the logarithmic residue theorem and the theorem of Rouché*, Math. U.S.S.R. Sbornik, **13** (1970), 603-625.
- [5] C. Graham, M. Zworski, *Scattering matrix in conformal geometry*, Invent. Math. **152** (2003), 89-118.
- [6] C. Guillarmou *Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds*, preprint Arxiv: math.SP/0311424.
- [7] L. Guillopé *Fonctions Zêta de Selberg et surfaces de géométrie finie*, Adv. Stud. Pure Math. **21** (1992), 33-70.
- [8] L. Guillopé, M. Zworski, *Upper bounds on the number of resonances for non-compact complete Riemann surfaces*, J. Funct. Anal. **129** (1995), 364-389.
- [9] L. Guillopé, M. Zworski, *Scattering asymptotics for Riemann surfaces*, Ann. Math. **145** (1997), 597-660.
- [10] M. Joshi, A. Sá Barreto, *Inverse scattering on asymptotically hyperbolic manifolds*, Acta Math. **184** (2000), 41-86.
- [11] R. Mazzeo, *Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds*, American J. Math. **113** (1991), 25-56.
- [12] R. Mazzeo, R. Melrose, *Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature*, J. Funct. Anal. **75** (1987), 260-310.
- [13] R. Melrose, *Manifolds with corners*, book in preparation (<http://www-math.mit.edu/~rbm/>)
- [14] S. Patterson, P. Perry, *The divisor of Selberg's zeta function for Kleinian groups*, Duke Math. J. **106** (2001), 321-391.
- [15] P. Perry, *The Laplace operator on a hyperbolic manifold II, Eisenstein series and the scattering matrix*, J. Reine Angew. Math. **398** (1989), 67-91.
- [16] P. Perry, *The Selberg Zeta function and a local trace formula for Kleinian groups*, J. Reine Angew. Math. **410**, (1990) 116-152.

- [17] P. Perry, *A poisson formula and lower bounds for resonances in hyperbolic manifolds*, Int. Math. Res. Not. **34**, (2003) 1837-1851.
- [18] M. Shubin *Pseudodifferential operators and spectral theory*, Springer Ser. Soviet Math., Springer, Berlin, 1987.

LABORATOIRE DE MATHÉMATIQUES JEAN LERAY, UMR 6629 CNRS/UNIVERSITÉ DE NANTES, 2, RUE DE LA HOUSSINIÈRE, BP 92208, 44322 NANTES CEDEX 03, FRANCE

E-mail address: cguillar@math.univ-nantes.fr