Approximate Reduction of Finite Automata for High-Speed Network Intrusion Detection

Milan Češka Vojtěch Havlena Lukáš Holík Ondřej Lengál Tomáš Vojnar

> Brno University of Technology Czech Republic

18 April 2018 (TACAS'18)

■ reduction of nondeterministic finite automata (NFAs)

- reduction of nondeterministic finite automata (NFAs)
- the reduction does NOT preserve language

- reduction of nondeterministic finite automata (NFAs)
- the reduction does NOT preserve language
- BUT guarantees maximum error

- reduction of nondeterministic finite automata (NFAs)
- the reduction does NOT preserve language
- BUT guarantees maximum error
- w.r.t. a probabilistic distribution

- reduction of nondeterministic finite automata (NFAs)
- the reduction does NOT preserve language
- BUT guarantees maximum error
- w.r.t. a probabilistic distribution
- application in high-speed network intrusion detection

- recently a large number of security incidents, e.g.
 - WannaCry
 - ransomware, 1 G\$
 - Spectre & Meltdown
 - security vulnerabilities in Intel CPUs

- exploits often spread via networks
 - these attacks can be detected

■ NIDS = Network Intrusion Detection System

- SNORT
 - popular NIDS
 - RegExes to describe attacks

SNORT

- popular NIDS
- RegExes to describe attacks


```
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*DROP TABLE/
/^HTTP\/1\.[01] 404[\x00-\xff]*(admin|wordpress)/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*admin:admin/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*admin:password/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*YWRtaW46cGFzc3dvcmQ/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*YWRtaW46YWRtaW4/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*\/bin\/sh/
```

- High-speed networks
 - ▶ 100 Gbps, 400 Gbps

- High-speed networks
 - ▶ 100 Gbps, 400 Gbps
- **100 Gbps** max. ~150 Mpkt/s
 - ► cf. 56 kbps dial-up max. ~80 pkt/s
 - ► ~10 GB/s (of data)

(100 / 84*8)

- High-speed networks
 - ▶ 100 Gbps, 400 Gbps
- **100 Gbps** max. \sim **150 Mpkt/s** (100 / 84*8)
 - ► cf. 56 kbps dial-up max. ~80 pkt/s
 - ightharpoonup ~10 GB/s (of data)
- consider 4 GHz CPU
 - 0.4 cycle/B
 - ► ~27 cycles/pkt cf. DRAM latency ~100 cycles

- High-speed networks
 - ► 100 Gbps, 400 Gbps
- (100 / 84*8)■ 100 Gbps — max. \sim 150 Mpkt/s
 - ightharpoonup cf. 56 kbps dial-up max. \sim 80 pkt/s
 - \sim 10 GB/s (of data)
- consider 4 GHz CPU
 - 0.4 cycle/B

no hope for SW solutions

HW-accelerated NIDS

cooperation with ANT@FIT

- cooperation with ANT@FIT
- using a COMBO-100G accelerator card
 - ► FPGA Xilinx Virtex-7 H580T

HW-accelerated NIDS

- cooperation with ANT@FIT
- using a COMBO-100G accelerator card
 - FPGA Xilinx Virtex-7 H580T

NIDS <1 Gbps 100 Gbps

used as a pre-filter

HW-accelerated NIDS

■ RegEx matching in HW

- RegEx matching in HW
 - ► NFAs!

- RegEx matching in HW
 - ▶ NFAs!
 - smaller than DFAs
 - but still too big (even after language-preserving reduction)

- RegEx matching in HW
 - ► NFAs!
 - smaller than DFAs
 - but still too big (even after language-preserving reduction)
 - many units in parallel

- RegEx matching in HW
 - ▶ NFAs!
 - smaller than DFAs
 - but still too big (even after language-preserving reduction)
 - many units in parallel
 - ▶ http-backdoor.pcre: 38.4 Gbps

- RegEx matching in HW
 - ► NFAs!
 - smaller than DFAs
 - but still too big (even after language-preserving reduction)
 - many units in parallel
 - ▶ http-backdoor.pcre: 38.4 Gbps
 - ► → language non-preserving reduction

Language non-preserving NFA reduction $A \rightarrow A_{red}$:

Language non-preserving NFA reduction $A \rightarrow A_{red}$:

trivial solutions not satisfactory

Language non-preserving NFA reduction $A \rightarrow A_{red}$:

- trivial solutions not satisfactory
- need to quantify the error
 - distance of NFAs

Language non-preserving NFA reduction $A \rightarrow A_{red}$:

- trivial solutions not satisfactory
- need to quantify the error
 - distance of NFAs

Distance of NFAs:

- Jaccard distance, Cesàro-Jaccard distance
- Levenshtein (edit) distance
 - not suitable for languages
- **.**..

Language non-preserving NFA reduction $A \rightarrow A_{red}$:

- trivial solutions not satisfactory
- need to quantify the error
 - distance of NFAs

Distance of NFAs:

- Jaccard distance, Cesàro-Jaccard distance
- Levenshtein (edit) distance
 - not suitable for languages
- **.** . . .
- not suitable!
 - distribution of network packets is not uniform

- various packets have different likelihood
 - e.g. Pr(HTTP) > Pr(Gopher)
 - e.g. $Pr_{\text{HTTP}}(\text{GET}) > Pr_{\text{HTTP}}(\text{POST})$

- various packets have different likelihood
 - e.g. Pr(HTTP) > Pr(Gopher)
 - e.g. $Pr_{\text{HTTP}}(\text{GET}) > Pr_{\text{HTTP}}(\text{POST})$
- probabilistic automaton

- various packets have different likelihood
 - ▶ e.g. Pr(HTTP) > Pr(Gopher)
 - e.g. $Pr_{\text{HTTP}}(\text{GET}) > Pr_{\text{HTTP}}(\text{POST})$
- probabilistic automaton b(0.4) $q_1(0.35)$ $q_0(0.2)$ a(0.5)c(0.3)b(0.25)Represents $Pr_P: \Sigma^* \to \langle 0, 1 \rangle$ c(0.9) $q_2(0.1)$ 0.58

Probabilistic distance of NFAs:

- various packets have different likelihood
 - e.g. Pr(HTTP) > Pr(Gopher)
 - e.g. $Pr_{\text{HTTP}}(\text{GET}) > Pr_{\text{HTTP}}(\text{POST})$
- probabilistic automaton

Represents $Pr_P: \Sigma^* \to \langle 0, 1 \rangle$

$$Pr_P(abc) = 0.42 \cdot 0.5 \cdot 0.4 \cdot 0.3 \cdot 0.1 + 0.42 \cdot 0.5 \cdot 0.25 \cdot 0.9 \cdot 0.1$$

$$\mathit{dist}_{P}(\mathcal{A}, \mathcal{A}_\mathit{red}) = \mathit{Pr}_{P}(\mathcal{L}(\mathcal{A}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathcal{L}(\mathcal{A}_\mathit{red}))$$
 symmetric difference

$$= Pr_P(\mathcal{L}(\mathcal{A})) + Pr_P(\mathcal{L}(\mathcal{A}_{red})) - 2Pr_P(\mathcal{A} \cap \mathcal{A}_{red})$$

Probabilistic distance of NFAs:

$$\mathit{dist}_P(\mathcal{A}, \mathcal{A}_\mathit{red}) = \mathit{Pr}_P(\mathcal{L}(\mathcal{A}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathcal{L}(\mathcal{A}_\mathit{red}))$$
 symmetric difference

$$= Pr_P(\mathcal{L}(\mathcal{A})) + Pr_P(\mathcal{L}(\mathcal{A}_{red})) - 2Pr_P(\mathcal{A} \cap \mathcal{A}_{red})$$

Theorem

Computing $Pr_P(\mathcal{L}(A))$ is **PSPACE**-complete. If A is unambiguous, it is in **PTIME**.

Distance of NFAs

Probabilistic distance of NFAs:

$$\mathit{dist}_P(\mathcal{A}, \mathcal{A}_\mathit{red}) = \mathit{Pr}_P(\mathcal{L}(\mathcal{A}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathcal{L}(\mathcal{A}_\mathit{red}))$$
 symmetric difference

$$= \textit{Pr}_{\textit{P}}(\mathcal{L}(\mathcal{A})) + \textit{Pr}_{\textit{P}}(\mathcal{L}(\mathcal{A}_{\textit{red}})) - 2\textit{Pr}_{\textit{P}}(\mathcal{A} \cap \mathcal{A}_{\textit{red}})$$

Theorem

Computing $Pr_P(\mathcal{L}(\mathcal{A}))$ is **PSPACE**-complete. If \mathcal{A} is unambiguous, it is in **PTIME**.

Proof. **PSPACE**-hardness: reduction from NFA universality (**PSPACE**):

- let $\forall w \in \Sigma^* : Pr_P(w) > 0$
- check $Pr_P(\mathcal{L}(\mathcal{A})) = 1$

Distance of NFAs

Probabilistic distance of NFAs:

$$\mathit{dist}_P(\mathcal{A}, \mathcal{A}_\mathit{red}) = \mathit{Pr}_P(\mathcal{L}(\mathcal{A}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathcal{L}(\mathcal{A}_\mathit{red}))$$
 symmetric difference

$$= Pr_P(\mathcal{L}(\mathcal{A})) + Pr_P(\mathcal{L}(\mathcal{A}_{red})) - 2Pr_P(\mathcal{A} \cap \mathcal{A}_{red})$$

Theorem

Computing $Pr_P(\mathcal{L}(A))$ is **PSPACE**-complete. If A is unambiguous, it is in **PTIME**.

Proof. **PSPACE**-hardness: reduction from NFA universality (**PSPACE**):

- let $\forall w \in \Sigma^* : Pr_P(w) > 0$
- check $Pr_P(\mathcal{L}(\mathcal{A})) = 1$

Upper bounds:

- **PTIME**: product of A and $P \rightsquigarrow$ system of linear equations
- **PSPACE**: on-the-fly determinize $A \times \text{run} \uparrow \text{(std. composition)}$

Probability-driven NFA Reduction

2 optimization problems:

Probability-driven NFA Reduction

- 2 optimization problems:
 - ▶ size-driven: (n) $A \rightsquigarrow A_{red}$ s.t. $|A_{red}| \leq n$ and $dist_P(A, A_{red})$ minimal

Probability-driven NFA Reduction

- 2 optimization problems:
 - ▶ size-driven: (n) $A \rightsquigarrow A_{red}$ s.t. $|A_{red}| \leq n$ and $dist_P(A, A_{red})$ minimal
 - error-driven: (ϵ) $\mathcal{A} \leadsto \mathcal{A}_{red}$ s.t. $dist_P(\mathcal{A}, \mathcal{A}_{red}) \le \epsilon$ and $|\mathcal{A}_{red}|$ minimal

Probability-driven NFA Reduction

- 2 optimization problems:
 - ▶ size-driven: (n) $A \rightsquigarrow A_{red}$ s.t. $|A_{red}| \leq n$ and $dist_P(A, A_{red})$ minimal
 - ▶ error-driven: (ϵ) $\mathcal{A} \leadsto \mathcal{A}_{red}$ s.t. $dist_P(\mathcal{A}, \mathcal{A}_{red}) \le \epsilon$ and $|\mathcal{A}_{red}|$ minimal

Theorem

Determining existence of A_{red} s.t. $dist_P(A, A_{red}) \le \epsilon$ and $|A_{red}| \le n$ is **PSPACE**-complete.

- not easier than finding minimal NFA
- an enumerative algorithm ~ not practical
- prob. (bi-)simulations don't work

Practical reductions:

based on removing states and transitions

Practical reductions:

- based on removing states and transitions
- 2 approaches:

Practical reductions:

- based on removing states and transitions
- 2 approaches:

Practical reductions:

- based on removing states and transitions
- 2 approaches:

Self-Loop Reduction

Self-Loop Reduction

■ introduces self-loops ⇒ over-approximating

Self-Loop Reduction

Self-Loop Reduction

■ introduces self-loops ⇒ over-approximating

Theorem

Given \mathbf{n} and ϵ , determining whether there exists \mathcal{A}_{red} with \mathbf{n} states and error $\leq \epsilon$ obtained from \mathcal{A} by adding self-loops is **PSPACE**-complete.

Self-Loop Reduction

Self-Loop Reduction

■ introduces self-loops ⇒ over-approximating

Theorem

Given \mathbf{n} and ϵ , determining whether there exists \mathcal{A}_{red} with \mathbf{n} states and error $\leq \epsilon$ obtained from \mathcal{A} by adding self-loops is **PSPACE**-complete.

- practical
- greedy algorithm to select states to add self-loops
- redundant states removed
- labelling approximates the error

Pruning Reduction

Pruning Reduction:

■ removes states ⇒ under-approximating

Pruning Reduction

Pruning Reduction:

■ removes states ⇒ under-approximating

Theorem

Given \mathbf{n} and ϵ , determining whether there exists \mathcal{A}_{red} with \mathbf{n} states and error $\leq \epsilon$ obtained from \mathcal{A} by removing states is **PSPACE**-complete.

Pruning Reduction

Pruning Reduction:

■ removes states ⇒ under-approximating

Theorem

Given \mathbf{n} and ϵ , determining whether there exists \mathcal{A}_{red} with \mathbf{n} states and error $\leq \epsilon$ obtained from \mathcal{A} by removing states is **PSPACE**-complete.

- practical
- greedy algorithm to select states to remove
- labelling approximates the error

- case studies from SNORT
 - targeting attacks over HTTP
 - self-loop reduction

- case studies from SNORT
 - targeting attacks over HTTP
 - self-loop reduction

- structure constructed manually
- ▶ probabilities learnt using real traffic (~243 kpkt from ~30 GiB)

- case studies from SNORT
 - targeting attacks over HTTP
 - self-loop reduction

- structure constructed manually
- ▶ probabilities learnt using real traffic (~243 kpkt from ~30 GiB)
- RABIT (R. Mayr) used for exact NFA reduction
 - simulation-based

- case studies from SNORT
 - targeting attacks over HTTP
 - self-loop reduction

- structure constructed manually
- ▶ probabilities learnt using real traffic (~243 kpkt from ~30 GiB)
- RABIT (R. Mayr) used for exact NFA reduction
 - simulation-based
- synthesis for Xilinx Virtex-7
 - reporting #LUTs (look-up tables)

- case studies from SNORT
 - targeting attacks over HTTP
 - self-loop reduction

- structure constructed manually
- ▶ probabilities learnt using real traffic (~243 kpkt from ~30 GiB)
- RABIT (R. Mayr) used for exact NFA reduction
 - simulation-based
- synthesis for Xilinx Virtex-7
 - reporting #LUTs (look-up tables)
- tool AppReAL
 - APProximate REduction of Automata and Languages
 - https://github.com/vhavlena/appreal

http-malicious.pcre

```
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*DROP TABLE/
/^HTTP\/1\.[01] 404[\x00-\xff]*(admin|wordpress)/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*admin:admin/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*admin:password/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*YWRtaW46cGFzc3dvcmQ/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*YWRtaW46YWRtaW4/
/^POST HTTP\/1\.[01]\r\n(\V+\r\n)*\r\n[\x00-\xff]*YWRtaW46YWRtaW4/
```

Before Pr reduction

- |*A*_{mal}| = 249 states
- $|A_{\text{mal}}^{\text{RED}}| = 98 \text{ states}$
- *time*(*label*) = 39 s
- time(APP) < 1 s</p>
- $LUT(A_{\text{mal}}^{\text{RED}}) = 382$

k	 A APP	A' mal	Error label	Error P _{HTTP}	Error traffic	LUTs
0.1	9	9	0.0704	0.0704	0.0685	_
0.2	19	19	0.0677	0.0677	0.0648	_
0.3	29	26	0.0279	0.0278	0.0598	154
0.4	39	36	0.0032	0.0032	0.0008	_
0.5	49	44	2.8e-05	2.8e-05	4.1e-06	_
0.6	58	49	8.7e-08	8.7e-08	0.0	224
8.0	78	75	2.4e-17	2.4e-17	0.0	297

http-attacks.pcre

```
/calendar(|[-_]admin)\.pl[\x00-\xff]*/Ui
/db4web_c(\.exe)?\/.*(\.\.[\#\/]|[a-z]\:)[\x00-\xff]*/smiU
/evtdump\x3f.*?\x2525[^\x20]*?\x20HTP[\x00-\xff]*/i
/instancename=[^&\x3b\r\n]{10}[\x00-\xff]*/smi
/itemid=\d*[^\d\&\;\r\n][\x00-\xff]*/i
/*GET\s+[^\x20]*\x2Ewm[zd][\x00-\xff]*/smi
/mstshash\s*\x3d\s*Administr[\x00-\xff]*/smi
/SILC\x2d\d\x2e\d[\x00-\xff]*/smi
```

Before Pr reduction

- $|A_{att}| = 142 \text{ states}$
- $|A_{\text{att}}^{\text{RED}}| = 112 \text{ states}$
- time(label) = 28 min
- $time(APP) \approx 1 s$

k	A APP	A' _{att}	Error label	Error P _{HTTP}	Error traffic
0.2	22	14	1.0	0.8341	0.2313
0.3	33	24	0.081	0.0770	0.0067
0.4	44	37	0.0005	0.0005	0.0010
0.5	56	49	3.3e-06	3.3e-06	0.0010
0.6	67	61	1.2e-09	1.2e-09	8.7e-05
0.7	78	72	4.8e-12	4.8e-12	1.2e-05
0.9	100	93	3.7e-16	1.1e-15	0.0

http-backdoor.pcre

```
/000File\s+is\s+executed\x2E\x2E\x2E/smi
```

/^0000k\s+echter\s+server\s+\?/smi

 $/^001\\ xACOptix\\ s+Pro\\ s+v\\ d+\\ x2E\\ d+\\ s+Connected\\ s+Successfully\\ x21/sminute for the connected for the connected$

 $/^100013$ Agentsvr\x5E\x5EMerlin/smi

 $/^666\d+\xFF\d$

/^A-311 Death welcome/smi

/^answer\x00{6}NetControl\x2EServer\s+\d+\x2E\d+\x+\x22The\s+UNSEEN\x22\s-

[... 42 more lines ...]

Before Pr reduction $|A_{bd}| = 1,352$ states

- ABEDI OO . .
- $|A_{\rm bd}^{\sf RED}| = ??$ states
- time(label) = 20 min
- time(APP) ≈ 1.5 min
- $LUT(A_{mai}^{RED}) = 2,266$

k	A APP	A' _{bd}	Error label	Error traffic	LUTs
0.1	135	8	1.0	0.997	202
0.2	270	111	0.0012	0.0631	579
0.3	405	233	3.4e-08	0.0003	894
0.4	540	351	1.0e-12	0.0003	1063
0.5	676	473	1.2e-17	0.0	1249
0.7	946	739	8.3e-30	0.0	1735
0.9	1216	983	1.3e-52	0.0	2033

Real impact on COMBO-100G (Xilinx Virtex-7 H580T)

- http-malicious.pcre
 - $ightharpoonup LUT(A_{mail}^{RED}) = 382$
- http-backdoor.pcre
 - ► $LUT(A_{bd}^{RED}) = 2,266$
- available LUTs = 15,000

Speed	LUTs	$A_{\text{mal}}^{\text{RED}}$ speed	$A_{ exttt{mal}}'$ error	$A_{\rm bd}^{\sf RED}$ speed	$A'_{\rm bd}$ error
100 Gbps	937	100 Gbps	0	38.4 Gbps	3.4e-18
400 Gbps	238	250 Gbps	8.7e-8	38.4 Gbps	1

Future Work

Future work:

- learning of prob. automaton
- different automaton models (e.g. delayed input DFA)
- better cost function

Summary

- reduction of nondeterministic finite automata (NFAs)
- the reduction does NOT preserve language
- BUT guarantees maximum error
- w.r.t. a probabilistic distribution
- application in high-speed network intrusion detection
- obtained significant speed improvement w/ small error

Summary

- reduction of nondeterministic finite automata (NFAs)
- the reduction does NOT preserve language
- BUT guarantees maximum error
- w.r.t. a probabilistic distribution
- application in high-speed network intrusion detection
- obtained significant speed improvement w/ small error

THANK YOU!