Zápočtová úloha z předmětu KIV/ZSWI

TESTOVACÍ PROTOKOL

16. května 2017

Tým: Carel

Členové:

Kateřina Kopřivová kcermak@students.zcu.cz

Jakub Šantora santoraj93@gmail.com

Valentin Horáček valentin.horacek@gmail.com

Obsah

1.	Uvod	. 1
	1.1 Aplikace	
	1.2 Dokumentace	1
	1.3 Účel systému.	1
	Výsledky funkčních testů	
	2.1 Testy položek GUI	1
	2.2 Test snímání oka	1
	Výsledky externího testování	
	3.1 Testování zadavatelem	2
	3.2 Testování na subjektech	2
	Závěr	

1. Úvod

1.1 Aplikace

Testovaná aplikace je vytvářená v rámci předmětu KIV/ZSWI. Software určený pro Eye Tracker umožňuje výběr obrázku na monitoru.

1.2 Dokumentace

Tento testovací protokol vychází z testovacího plánu pro Eye Tracker projekt: https://github.com/teamCarel/EyeTracker/blob/master/dokumenty/Testovaci%20pl%C3%A1n.pdf

1.3 Účel systému

Hlavním účelem programu je vybrat jeden z obrázků na monitoru pouze snímáním pohybu zorničky. Obrázky představují činnosti nebo potřeby člověka. projekt má do budoucna za úkol pomoci lidem bez možnosti pohybu a komunikace s okolním světem.

2. Výsledky funkčních testů

2.1 Testy položek GUI

Při funkčním testování aplikace se přišlo na to, že bylo možné otevřít více oken s rozložením obrázků v mřížce a zárověň ovládat hlavní okno aplikace. Další z nalezených problémů bylo překrytí sliderů labely, což bránilo v jejich nastavení. Oba tyto problémy byly ihned odstraněny.

2.2 Test snímání oka

Pro ověření přesnosti algoritmu pro výběr sledovaného obrázku ze mřížky jsme stanovili hranici 75,00 %.

3. Výsledky externího testování

3.1 Testování zadavatelem

Během testování aplikace zadavatelem se objevilo několik nedostatků ohledně nastavení aplikace, proto jsme do hlavního okna přidělali slidery pro nastavení doby snímaní sledování jedné dlaždice potřebné k jejímu vybrání, nastavení kolik procent z daného intervalu musí být oko zaměřené na jednu dlaždici a nastavení konfidence zaměření dané dlaždice.

3.2 Testování na subjektech

Nastavení aplikace pro testování:

Capture time: 5s

Capture percent: 80,00 %

Confidency: *90,00 %*

Číslo subjektu	Úspěšné zobrazení	Neúspěšné zobrazení	Úspěšnost testu
1	9	1	90,00%
2	6	4	60,00%
3	5	5	50,00%
4	10	0	100,00%
5	8	2	80,00%
6	7	3	70,00%
7	5	5	50,00%
8	5	5	50,00%
9	10	0	100,00%
10	10	0	100,00%

Cleková úspěšnost testování: 75,00 %.

4. Závěr

Aplikace byla kompletně otestována dle testovacího plánu a veškeré chyby nalezené během těchto testů byly opraveny.

Během testů bylo pozorováno jak velkou roli v úspěšnosti rozpoznávání hraje osvětlení místnosti a velikost monitoru. Proto pro budoucí použití aplikace doporučujeme používat větší monitory nebo projekci , pokud je to možné. Dalším faktorem v něúspěšnosti testů bylo nastavení kamery a kalibrace, které jsou podstatné již pro původní software Pupil. Chyby provedené v těchto krocích mají pak nepříznivý vliv na algoritmus rozpoznání dlaždice na monitoru. Celková úspěšnost rozpoznání při testování na 10 subjektech je přesně 75,00 %, což splnilo dle očekávání naši požadovanu úspěšnost rozpoznání dlaždice v mřížce.