НИУ Высшая школа экономики Факультет социальных наук (департамент политической науки)

Теория игр

2019/2020 учебный год (Л. Н. Сысоева, Н.А. Василенок, Н.Е. Сахарова, Д. А. Дагаев, К. И. Сонин, И. А. Хованская)

Семинарский листик 4

 $(8/11/15 \ октября \ 2019 \ года)$

Задание 1.

- а) Дайте определение смешанной стратегии.
- б) Дайте определение ожидаемому платежу игрока.

Задание 2. Существуют ли строго доминируемые чистые стратегии у игроков в следующих играх? Укажите, какими стратегиями они доминируются, и рассчитайте ожидаемый платеж в одной такой стратегии.

a)

	t_1	t_2	t_3
s_1	1;9	-1;8	3;11
s_2	0;4	4;6	2;3

б)

	t_1	t_2	t_3
s_1	-3;10	1;18	1;12
s_2	1;10	-2;7	1;9

Задание 3. Войска Наполеона начинают наступление на Андалусию. Они могут пройти через горы или через равнины. Защищающая Испанию, армия принимает решение, укреплять свои гарнизоны в горах или на равнинах. Если Наполеон нападает на незащищенную местность, он получает 1. Если он нападает на укрепленный гарнизон, он получает -1. Если испанцы правильно предсказали направление наступления, они получают 1, в противном случае -1. Формализуйте описанную игру игру.

- а) Старушка в деревне сказала Наполеону, что с вероятностью 0.7 испанцы будут защищать горы, и с вероятностью 0.3 равнины. Запишите матрицу игры, в которой испанцы играют описанную выше стратегию, и найдите луший ответ Наполеона на нее. Является ли такой профиль стратегий равновесием Нэша?
- б) Нарисуйте график ожидаемого выигрыша Наполеона в зависимости от вероятности, с которой испанцы будут защищать горы, в каждой из его стратегий.
- в) Испанцы ожидают, что Наполеон будет принимать решение о нападении, подбрасывая правильную монетку. Запишите матрицу игры, в которой Наполеон играет описанную выше стратегию, и найдите луший ответ испанцев на нее. Является ли такой профиль стратегий равновесием Нэша?
- г) Нарисуйте график ожидаемого выигрыша испанцев в зависимости от вероятности, с которой Наполеон будет нападать на горы, в каждой их стратегии.
 - д) Есть ли в этой игре равновесия Нэша?

 $^{^{1}}$ Про испанскую войну за независимость см. https://en.wikipedia.org/wiki/Peninsular_War.

Задание 4. Рассмотрим игру в нормальной форме, заданную матрицей

	t_1	t_2
s_1	3; 1	-1;2
s_2	1;2	2;1

1. Существуют ли в игре равновесия Нэша в чистых стратегиях?

2. Является ли $\frac{1}{3}t_1 + \frac{1}{2}t_2$ смешанной стратегией?

3. Найдите ожидаемые платежи первого и второго игрока для профилей $(s_1, \frac{1}{3}t_1 + \frac{2}{3}t_2)$, $(s_2, \frac{3}{5}t_1 + \frac{2}{5}t_2)$, $(\frac{1}{2}s_1 + \frac{1}{2}s_2, t_1)$, $(\frac{1}{4}s_1 + \frac{3}{4}s_2, t_2)$.

4. Существует ли в игре равновесие Нэша, в котором один игрок играет чистую стратегию, а другой — смешивает? Обоснуйте свой ответ!

5. Является ли профиль $(\frac{2}{3}s_1 + \frac{1}{3}s_2, \frac{1}{4}t_1 + \frac{3}{4}t_2)$ равновесием Нэша?

6. Является ли профиль $(\frac{1}{10}s_1 + \frac{9}{10}s_2, \frac{4}{5}t_1 + \frac{1}{5}t_2)$ равновесием Нэша?

7. Найти такое $1 > \alpha > 0$, что ожидаемый платеж первого игрока для профиля $(s_1, \alpha t_1 + (1 - \alpha)t_2)$ равен ожидаемому платежу первого игрока для профиля $(s_2, \alpha t_1 + (1 - \alpha)t_2)$.

8. Найти такое $1 > \beta > 0$, что ожидаемый платеж второго игрока для профиля $(\beta s_1 + (1-\beta)s_2, t_1)$ равен ожидаемому платежу второго игрока для профиля $(\beta s_1 + (1-\beta)s_2, t_2)$.

9. Найти все равновесия Нэша в смешанных стратегиях в данной игре.

Задание 5. Найти все равновесия Нэша в смешанных стратегиях в следующих играх:

a)

	t_1	t_2
s_1	0;2	1;0
s_2	3;-2	1;1

б)

	t_1	t_2	t_3
s_1	4;5	0;6	-3;1
s_2	-2;5	2;3	1;6

в)

	t_1	t_2	t_3
s_1	2;5	1;3	4;4
s_2	4;1	3;7	2;4

 Γ

	t_1	t_2	t_3
s_1	12;5	9;3	2;4
s_2	7;0	6;3	4;4
s_3	3;1	10;5	8;4