# CSP2020 模拟赛

| 题目名称    | DNA 序列      | 数列递推    | 七曜圣贤        | 旅游路线     |
|---------|-------------|---------|-------------|----------|
| 题目类型    | 传统型         | 传统型     | 传统型         | 传统型      |
| 目录名     | dna         | seq     | sage        | trip     |
| 可执行文件名  | dna         | seq     | sage        | trip     |
| 输入文件名   | dna.in      | seq.in  | sage.in     | trip.in  |
| 输出文件名   | dna.out     | seq.out | sage.out    | trip.out |
| 每个测试点时限 | $1.0  \sec$ | 1.0 sec | $2.5  \sec$ | 1.0 sec  |
| 内存限制    | 512 MiB     | 512 MiB | 1024 MiB    | 512 MiB  |
| 测试点数量   | 10          | 20      | 10          | 20       |
| 单个测试点分值 | 10          | 5       | 10          | 5        |
| 结果比较方式  | 全文比较        | 全文比较    | 全文比较        | 全文比较     |
| 编译选项    | -02 -lm     | -02 -lm | -02 -lm     | -02 -1m  |

CSP2020 模拟赛 DNA 序列 (dna)

# DNA 序列 (dna)

### 【问题描述】

CSP-S 复赛之前,HSD 桑进行了一项研究,发现人某条染色体上的一段 DNA 序列中连续的 k 个碱基组成的碱基序列与做题的 AC 率有关!于是他想研究一下这种关系。现在给出一段 DNA 序列,请帮他求出这段 DNA 序列中所有连续 k 个碱基形成的碱基序列中,出现最多的一种的出现次数。

### 【输入格式】

两行,第一行为一段 DNA 序列,保证 DNA 序列合法,即只含有 A,G,C,T 四种碱基;第二行为一个正整数,意义与题目描述相同。

#### 【输出格式】

一行,一个正整数,为题目描述中所求答案。

## 【样例 1 输入】

AAAAA

1

#### 【样例 1 输出】

5

# 【样例 1 解释】

对于这段 DNA 序列,连续的 1 个碱基组成的碱基序列只有 A,共出现 5 次,所以答案为 5。

#### 【样例 2 输入】

ACTCACTC

4

#### 【样例 2 输出】

2

CSP2020 模拟赛 DNA 序列 (dna)

# 【样例 2 解释】

对于这段 DNA 序列,连续的 4 个碱基组成的碱基序列为: ACTC,CTCA,TCAC 与 CACT。其中 ACTC 出现 2 次,其余均出现 1 次,所以出现最多的次数为 2,即为答案。

# 【数据规模与约定】

记 DNA 序列长度为 n。

下面给出每组数据的范围和满足性质情况:

| 测试点编号      | n                   | k         | 其他   |
|------------|---------------------|-----------|------|
| 1          | $=10^{5}$           | = 1       | 满足性质 |
| 2,3        | $< 5 \times 10^{5}$ | — 1       |      |
| 4          | <u></u>             | < 10      | 满足性质 |
| $5 \sim 8$ | $\leq 10^{6}$       | $\leq 10$ |      |
| 9, 10      | $=5\times10^6$      | = 10      |      |

性质:给出的 DNA 碱基序列中每个碱基均相同。

对于所有数据均保证  $k \le n$ 

CSP2020 模拟赛 数列递推 (seq)

# 数列递推 (seq)

#### 【问题描述】

sosusosu 虐爆 OI 之后成为了一名文化课选手。一天,他做作业碰到了一堆数列问题,每道题给出的数列都是以下形式:

给定一个下标从 0 开始,无限长的整数列  $a_i, i \in \mathbb{N}$ ,已知  $a_0, a_1$  的值,已经递推式  $a_{i+2} = ka_{i+1} + a_i, i \in \mathbb{N}, k \in \mathbb{N}^+$ 

sosusosu 研究了这些数列,发现它们十分优美充满人类智慧,于是决定出一道 OI 题。sosusosu 给了你一个集合  $S \subset \mathbb{N}$ ,他想问你对于 S 中的每个数  $s_i$ ,使得  $a_{s_i}$  最大的  $s_i$ 和使得  $a_{s_i}$  最小的  $s_i$ 分别是多少。如果这样的  $s_i$  有多个,请你回答最小的一个。

另外,sosusosu 准备对他作业中碰到的每个数列都让你回答一次,不过每次的集合 S 是一样的。

#### 【输入格式】

输入第一行一个整数 m 表示 S 中元素个数。

第二行 m 个整  $s_1, s_2, ..., s_m$  表示 S 中的元素。保证它们是非负整数且严格递增 (即  $s_i < s_{i+1}$ )。

第三行一个整数 n 表示询问的数列个数。

接下来 n 行每行三个整数  $a_0, a_1, k$  描述一个数列。

#### 【输出格式】

输出共n 行,每行依次输出两个整数 maxsi, minsi,依次表示S 的元素  $s_i$  中,使得 $a_{s_i}$  最大的 $s_i$  和使得 $a_{s_i}$  最小的 $s_i$  的值。如果这样的 $s_i$  有多个,请你回答最小的一个。

# 【样例 1 输入】

8

1 2 3 4 5 6 7 8

2

10 -6 1

0 0 1

#### 【样例 1 输出】

2 1

1 1

CSP2020 模拟赛 数列递推 (seq)

### 【样例1解释】

第一个数列的前 9 项分别为 10, -6, 4, -2, 2, 0, 2, 2, 4,使得  $a_{s_i}$  最大的  $s_i$  为 2 和  $8(a_2 = a_8 = 4)$  其中 2 较小,使得  $a_{s_i}$  最小的  $s_i$  为  $(a_1 = -6)$ 。第二个数列每项都等于 0,因此 S 中的每个元素  $s_i$  都既使  $a_{s_i}$  最大也使  $a_{s_i}$  最小,故答案是 S 中最小元素。

### 【样例 2 输入】

3

0 1 2

2

-2 3 1

3 -2 2

#### 【样例 2 输出】

10

0 1

#### 【样例 2 解释】

第一个数列的前 4 项分别为 -2,3,1,4,使得  $a_{s_i}$  最大的  $s_i$  为  $1(a_1=3)$ ,使得  $a_{s_i}$  最小的  $s_i$  为  $0(a_0=-2)$ 。第二个数列的前 4 项分别为 3,-2,-1,-4,使得  $a_{s_i}$  最大的  $s_i$  为  $0(a_0=3)$ ,使得  $a_{s_i}$  最小的  $s_i$  为  $1(a_1=-2)$ 。

# 【样例 3】

样例 3 见下发文件 seq3.in, seq3.ans。

#### 【更多的样例】

更多的样例见下发文件。其中除了前 3 个样例外还有约定分别和测试点 1,9,14 相同的样例各一个。

#### 【数据规模与约定】

对于所有数据, $1 \le n \le 3 \times 10^5, 1 \le m \le 10^5, 0 \le s_i \le 10^9, -10^7 \le a_0, a_1 \le 10^7, 1 \le k \le 5000$ ,保证  $s_i$  严格递增。

所有测试数据的范围和特点如下表所示:

(未标明的以上述所有数据的限制为准)

 CSP2020 模拟赛
 数列递推 (seq)

| 测试点编号 | n, m 的限制                | $a_0, a_1, k$ 的范围                     | 特殊限制                   |
|-------|-------------------------|---------------------------------------|------------------------|
| 1     |                         |                                       |                        |
| 2     | $n, m \le 100$          | $-100 \le a_0, a_1 \le 100, k \le 10$ | $s_m \le 10$           |
| 3     |                         |                                       |                        |
| 4     |                         |                                       |                        |
| 5     |                         | k = 1                                 |                        |
| 6     |                         |                                       |                        |
| 7     |                         |                                       | $a_0 \times a_1 \ge 0$ |
| 8     |                         |                                       | $ a_1  \ge  a_0 $      |
| 9     | $n \le 10^5$            |                                       |                        |
| 10    | $n \leq 10$             |                                       |                        |
| 11    |                         |                                       | S 中的元素都是偶数             |
| 12    |                         | $k \le 10$                            |                        |
| 13    |                         | $k \le 100$                           |                        |
| 14    |                         | $k \le 1000$                          |                        |
| 15    |                         |                                       |                        |
| 16    | $n \le 1.5 \times 10^5$ | $k \le 10$                            |                        |
| 17    | $n \le 2 \times 10^5$   | $k \le 100$                           |                        |
| 18    | $n \le 2.5 \times 10^5$ | $k \le 1000$                          |                        |
| 19    |                         |                                       |                        |
| 20    |                         |                                       |                        |

# 七曜圣贤 (sage)

### 【问题描述】

不知道大家有没有听过物凄系列的一首歌,帕秋莉用卡车给博丽老板运货的故事。

又一次,卡车司机帕秋莉被拜托。红魔馆之主蕾米莉亚喜欢喝红茶,一天他要求帕秋 莉开卡车帮他运红茶过来。

红茶其实是编好号了的,每个红茶都用一个非负整数来编号,从 0 开始一直到正无穷。 帕秋莉请来好朋友魔理沙,帮他一起运红茶。

一开始卡车上已经有了编号为 0 到 a 的红茶(注意 a = -1 就表示初始卡车上没有任何红茶),然后接下来到红魔馆的路上有 m 个时刻,每个时刻都会发生一种事件。

- 第一种事件,帕秋莉到了一个红茶店,买了一个编号为x的红茶 (卡车上初始没有这种编号的红茶,之前也不会买过相同编号的红茶)。
- 第二种事件,一个目前在卡车上的编号为x的红茶飞出了卡车。
- 第三种事件,魔理沙把目前不在卡车上的最早飞出去的红茶捡回了卡车上 (如果一个红茶曾经飞出去被捡回来过然后再飞出去,这里认为其飞出去的时间为最近一次飞出去的时间)。

由于描述这些事件实在是太麻烦了,聪明的魔理沙用了一个长度为 m 的整数序列 p 来描述每个时刻发生的事件。

- 这个序列 p 里所有元素均为 [-1,b] 的整数。
- 若  $p_i = -1$  则表示时刻 i 发生了第三种事件,如果此时并不存在满足条件的飞出去的红茶,则代表魔理沙脑子没转过来,忽视此次事件。
- 否则,如果在时刻 i 编号为  $p_i$  的红茶初始不在卡车上也从来没有通过第一种事件 买过,则表示时刻 i 发生了一个买编号为  $p_i$  的红茶的第一种事件。
- 否则,如果在时刻 i 编号为  $p_i$  的红茶在卡车上,则表示时刻 i 发生了一个编号为  $p_i$  的红茶飞出卡车的第二种事件。
- 否则,表示时刻 *i* 发生了第三种事件,如果此时并不存在满足条件的飞出去的红茶,则忽视此次事件。

如果某个时刻的事件被忽视,那么我们不执行对应的操作,也不计算此时的答案。

帕秋莉是一个勤奋的人,每个时刻过后,如果这个时刻 i 发生了事件 (如果一个时刻发生的事件被忽视了,就不认为这个时刻发生了事件),令  $ans_i$  表示时刻 i 过后卡车上所有编号小于  $ans_i$  的红茶都出现了,而编号为 i 的红茶没有出现 (很显然这个值是唯一的)。当然如果时刻 i 没有发生事件,则令  $ans_i = 0$ 。

请你对于  $1 \le i \le m$  计算出  $ans_i \times (i^2 + 7i) \mod 998244353$  的异或和。

#### 【输入格式】

第一行一个整数 T,表示数据组数。

接下来有 T 行,每行表示一组数据。

每组数据依次有 m, seed, a, b, c, d 六个整数, 其中 m, a, b 的意义与题面中相同;

d 表示是否只考虑第一种事件: d 的取值为 0 或 1,为特殊参数。当 d=1 时,请忽视所有的第二种事件与第三种事件 (忽视的含义见题面描述)。

seed, c 是随机数生成器的参数。

我们使用如下实现的随机数生成器 randnum()。每组数据输入该组数据中 seed 的初始值。

```
unsigned 32bit integer seed

function randnum()
  seed = seed xor (seed lsh 13)
  seed = seed xor (seed rsh 17)
  seed = seed xor (seed lsh 5)
  return seed
end function
```

### 计算 p[] 的代码如下:

```
for i = 1 to m by step 1
  if randnum() mod c == 0 then
    p[i] = -1
  else
    p[i] = randnum() mod b
  end if
end for
```

#### 【输出格式】

每组数据输出一行表示答案。

#### 【样例 1 输入】

1

7 327711436 4 6 3 0

# 【样例 1 输出】

292

#### 【样例1解释】

p 序列为 [5,-1,2,-1,2,5,4]。初始时卡车上已经有了编号为 [0,4] 的红茶。

第一个时刻,发生第一种事件,编号为 5 的红茶加入卡车,此时卡车上编号为 [0,5] 的 红茶都有,而编号为 6 的红茶没有,因此  $ans_1 = 6$ 。

第二个时刻,理论上应该发生第三种事件,但是并没有红茶飞出了卡车,因此该事件被忽视, $ans_2 = 0$ 。

第三个时刻,发生第二种事件,编号为 2 的红茶飞出卡车,此时卡车上编号为 [0,1] 的 红茶都有,而编号为 2 的红茶没有,因此  $ans_3 = 2$ 。

第四个时刻,发生第三种事件,魔理沙捡回编号为 2 的红茶回卡车,此时与第一个时刻后情况一致,因此  $ans_4=6$ 。

第五个时刻和第三个时刻一致,因此  $ans_5 = 2$ 。

第六个时刻,发生第二种事件,编号为 5 的红茶飞出卡车,此时卡车上编号为 0,1,3,4 的红茶都有,而编号为 2,5 的红茶没有,因此  $ans_6=2$ 。

第七个时刻,发生第二种事件,编号为 4 的红茶飞出卡车,此时卡车上编号为 0,1,3 的红茶都有,而编号为 2,4,5 的红茶没有,因此  $ans_7=2$ 。

#### 【更多的样例】

更多的样例见下发文件。

#### 【数据规模与约定】

对于所有数据  $1 \le m \le 10^6, 1 \le T \le 50, -1 \le a \le m, 1 \le b \le 2 \times m, 1 \le c \le 10^7, 0 \le d \le 1$ 。

d 表示是否只考虑第一种事件,d 的取值为 0 或 1,为特殊参数。当 d=1 时,请忽视所有的第二种事件与第三种事件(忽视的含义见题面描述)。

注意,d=1 时原本合法的事件也要被忽视,故即使你没有用到这个性质,也要记得判断 d=1 的情况。除测试点 7 以外的测试点也有可能出现 d=1 的数据。

| 测试点编号 | m                    | T         | 特殊限制 |  |
|-------|----------------------|-----------|------|--|
| 1     |                      | $\leq 20$ |      |  |
| 2     | $\leq 3000$          | $\leq 25$ |      |  |
| 3     |                      | $\leq 30$ | <br> |  |
| 4     |                      | $\leq 20$ |      |  |
| 5     | $m \leq 10^5$        | $\leq 30$ |      |  |
| 6     |                      |           |      |  |
| 7     | $\leq 10^{5}$        | ≤ 50      | d=1  |  |
| 8     | $\leq 8 \times 10^5$ |           |      |  |
| 9     | $< 10^{6}$           |           | 无    |  |
| 10    | <u>&gt;</u> 10       |           |      |  |

本题提供输入输出模板,在下发文件中 sage 文件夹里有。

# 旅游路线 (trip)

#### 【问题描述】

T 城是一个旅游城市,具有 n 个景点和 m 条道路,所有景点编号 1, 2, ..., n。每条道路 连接这 n 个景区中的某两个景区,道路是**单向通行**的。每条道路都有一个长度。

为了方便旅游,每个景点都有一个加油站。第 i 个景点的加油站的费用为  $p_i$ ,加油量为  $c_i$ 。若汽车在第 i 个景点加油,则需要花费  $p_i$  元钱,之后车的油量将被加至**被加至**油量上限与  $c_i$  中的较小值。不过如果加油前汽车油量已经不小于  $c_i$ ,则不能在该景点加油。

小 C 准备来到 T 城旅游。他的汽车油量上限为 C。旅游开始时,汽车的油量为 0。在旅游过程中:

- 1、当汽车油量大于 0 时,汽车可以沿从当前景区出发的任意一条道路**到达**另一个景点 (不能只走道路的一部分),汽车油量将减少 1;
- 2、当汽车在景点 i 且当前油量小于  $c_i$  时,汽车可以在当前景点加油,加油需花费  $p_i$  元钱,这样汽车油量将变为  $\min\{c_i,C\}$ 。
- 一次旅游的总花费等于每次加油的花费之和,旅游的总路程等于每次经过道路的长度 之和。注意多次在同一景点加油,费用也要计算多次,同样地,多次经过同一条道路,路 程也要计算多次。

小 C 计划旅游 T 次,每次旅游前,小 C 都指定了该次旅游的起点和目标路程。由于行程不同,每次出发前带的钱也不同。为了省钱,小 C 需要在旅游前先规划好旅游路线 (包括旅游的路径和加油的方案),使得从起点出发,按照该旅游路线旅游结束后总路程不小于目标路程,且剩下的钱尽可能多。请你规划最优旅游路线,计算这 T 次旅游每次结束后最多可以剩下多少钱。

#### 【输入格式】

输入第一行包含四个正整数 n, m, C, T,每两个整数之间用一个空格隔开,分别表示景点数、道路数、汽车油量上限和旅行次数。

接下来 n 行,每行包含两个正整数  $p_i, c_i$ ,每两个整数之间用一个空格隔开,按编号顺序依次表示编号为 1, 2, ..., n 的景点的费用和油量。

接下来 m 行,每行包含三个正整数  $a_i, b_i, l_i$ ,每两个整数之间用一个空格隔开,表示一条从编号为  $a_i$  的景点到编号为  $b_i$  的景点的道路,道路的长度为  $l_i$ 。保证  $a_i \neq b_i$  ,但从一个景点到另一个景点可能有多条道路。

最后 T 行,每行包含三个正整数  $s_i, q_i, d_i$  描述一次旅游计划,旅游的起点为编号为  $s_i$  的景点,出发时带了  $q_i$  元钱,目标路程为  $d_i$ 。

# 【输出格式】

输出 T 行,每行一个整数,第 i 行的整数表示第 i 次旅游结束后最多剩下多少元钱。如果旅游无法完成,也就是说不存在从景点  $s_i$  出发用不超过  $q_i$  元钱经过不小于  $d_i$  的路程的路线,则该行输出 -1。

# 【样例 1 输入】

- 6632
- 4 1
- 6 2
- 2 1
- 8 1
- 5 4
- 9 1
- 1 2 1
- 1 3 1
- 101
- $2\ 4\ 1$   $3\ 5\ 1$
- 001
- 4 6 1
- 5 6 1
- $1\ 12\ 3$
- 193

# 【样例 1 输出】

2

-1

# 【样例1解释】

T 城的景区和道路如下图所示:



由图可知,从景点 1 出发,路程为 3 的路线有两条:  $1 \rightarrow 2 \rightarrow 4 \rightarrow 6$  和  $1 \rightarrow 3 \rightarrow 5 \rightarrow 6$ 。 第 1 次旅游,最优路线为先在景点 1 加油,花费 4 元,此时油量为 1,然后到景 2,此时油量为 0,在景点 2 加油,花费 6 元,此时油量为 2,接着到景点 4,此时油量为 1,最后到景点 6,总路程为 3,最后剩余 12-4-6=2 元。

第2次旅游,只用9元无论如何也无法走3的路程,因此旅游无法完成。

#### 【样例2】

见下发文件的 trip2.in 和 trip2.ans

 CSP2020 模拟赛
 旅游路线 (trip)

# 【数据规模与约定】

| 测试点编号 | n              | m               | C           | T             | $p_i, c_i$  | 特殊性质 |
|-------|----------------|-----------------|-------------|---------------|-------------|------|
| 1     |                |                 |             | = 1           |             |      |
| 2     | ≤ 10           | = n-1           |             |               |             | 1, 2 |
| 3     |                | -n-1            |             | $\leq 10$     |             | 1, 2 |
| 4     |                |                 | $\leq 10$   | ≥ 10          | $\leq 10$   |      |
| 5     | =              | = 10            |             |               |             |      |
| 6     | =              | = 15            |             | $\leq 20$     |             | 2    |
| 7     | =              | = 20            |             |               |             |      |
| 8     |                |                 |             |               |             |      |
| 9     | $\leq 100$     | = n - 1         |             |               |             | 1,3  |
| 10    |                |                 |             |               | $\leq 100$  |      |
| 11    | $\leq 40$      | $\leq 400$      | $\leq 1000$ | $\leq 50$     |             | 3    |
| 12    |                |                 | 1000        |               |             | J    |
| 13    | $\leq 60$      | ≤ 600           |             |               |             |      |
| 14    |                |                 |             |               | $\leq 1000$ |      |
| 15    | $\leq 80$      | < 800           |             |               |             |      |
| 16    |                | $\leq 800$      |             |               |             | ·    |
| 17    | $\leq 90$      | ≤ 900           |             | $\leq 1000$   |             | )L   |
| 18    | <u>&gt; 30</u> | <u>&gt; 900</u> | $\leq 10^5$ | ≥ 1000        | $\leq 10^5$ |      |
| 19    | ≤ 100          | ≤ 1000          |             |               |             |      |
| 20    | 100            |                 |             | $\leq 10^{5}$ |             |      |