- Q1. A curve passing through the point (1,2) and satisfying the condition that slope of the normal at any point is equal to the
- ratio of ordinate and abscissa of that point, then the curve also passes through the point
- (1) (0,0)thongo /// mathongo /// mathongo /// mathongo (2)(2,2)
- (3)(2,1)(4)(3,2)
- **Q2.** Let α be the angle in radians between $\frac{x^2}{36} + \frac{y^2}{4} = 1$ and the circle $x^2 + y^2 = 12$ at their points of intersection. If $\tan^{-1} \frac{k}{2\sqrt{3}}$, then find the value of $\frac{k^2}{4}$. The mathong with mathong with mathon $\frac{k^2}{4}$ mathon $\frac{k^2}{4}$
- Q3. The equation of the tangent line at the point (4, 2) to the curve with parametric equation given by $x = t^2$ and $y = t^3 - 3t$ most most more mathematical equations $y = t^3 - 3t$ most more mathematical equations $y = t^3 - 3t$ most more mathematical equations $y = t^3 - 3t$ most more mathematical equations $y = t^3 - 3t$ more equa where t is parameter is
- (1) y = 15x 58 /// mathongo /// mathongo /// mathongo (2) y = 2
- (3) y = x 2(4) $y = \frac{9x}{4} - 7$
- **Q4.** If the line joining the points (0,3) and (5,-2) is a tangent to the curve $y = \frac{c}{x+1}$, then find the value of c
- **Q5.** The shortest distance between the line y = x and the curve $y^2 = x 2$ is
- $(1) \frac{7}{4\sqrt{2}}$

(4) 2

- (2) $\frac{7}{8}$ mathongo /// mathongo /// mathongo $(3) \frac{11}{4\sqrt{3}}$
- **Q6.** The number of values of a for which the curves $4x^2 + a^2y^2 = 4a^2$ and $y^2 = 16x$ are orthogonal is athongo /// mathongo /// mathongo
- **Q7.** Find the least positive integer m for which function f defined as $f(x) = \sin x - mx + k$ is a decreasing function for all $x \in R$ muthongo
- **Q8.** Find the maximum value of the function $f(x) = 3x^3 18x^2 + 27x 40$ in the set $S = \{x \in R : x^2 + 30 - 11x \le 0\}$
- (1) 122(2) 222 athongo ///. mathongo ///. mathongo
- (4) -222 thongo ///. mathongo ///. mathongo
- **Q9.** Let $f(x) = ax^3 + 5x^2 + cx + 1$ be a polynomial function. If f(x) has
- extreme at $x = \alpha$ and β such that $\alpha\beta < 0$ and $f(\alpha)f(\beta) < 0$, then the equation f(x) = 0 has

- (2) one positive root, if $f(\alpha) < 0$ and $f(\beta) > 0$.
- (3) one negative root, if $f(\alpha) > 0$ and $f(\beta) < 0$.
- (4) All of the above // mathongo // mathongo // mathongo
- **Q10.** Let a function f:[0,5] o R be continuous, f(1)=3 and F be defined
- $F(x) = \int_1^x t^2 g(t) dt$, where $g(t) = \int_1^t f(u) du$.
- Then for the function F(x), the point x = 1 is: athongo /// mathongo
- (1) a point of local minima
- (2) not a critical point mathongo /// mathongo /// mathongo
- (3) a point of local maxima
- (4) a point of inflection
- **Q11.** If $y = a \log |x| + bx^2 + x$ has its extremum values at x = -1 and x = 2then find value of a + b. mathongo /// mathongo /// mathongo
- **Q12.** The point on the curve $y = x^2$ which is closest to $\left(4, -\frac{1}{2}\right)$, is
- (1) (1) 1) hongo ///. mathongo ///. mathongo
- (2)(2,4)
- $(3)\left(\frac{2}{3},\frac{4}{9}\right)$ ongo ///. mathongo ///. mathongo
- **Q13.** If x = 1 is a critical point of the function $f(x) = (3x^2 + ax 2 a)e^x$,
- (1) x = 1 and $x = -\frac{2}{3}$ are local minima of f mathongo /// mathongo
- (2) x = 1 and $x = -\frac{2}{3}$ is a local maxima of f
- (3) x = 1 is a local maxima and $x = -\frac{2}{2}$ is a local minima of f
- (4) x = 1 is a local minima and $x = -\frac{2}{3}$ are local maxima of f
- Q14. On the interval [0, 1] the function $x^{25}(1-x)^{75}$ takes its maximum value at the point
- (1) Onathongo ///. mathongo ///. mathongo
- (3) 1/2 mathongo /// mathongo /// mathongo
- **Q15.** The value of k in order that $f(x) = \sin x \cos x kx + b$ decreases for all real values is given by:
- (1) k < 1(2) k > 1
- (3) $k > \sqrt{2}$
- **Q16.** $f(x) = x^3 + 4x^2 + \lambda x + 2$ is monotonically decreasing in the largest possible interval $\left(-2, \frac{-2}{3}\right)$. Then find greatest value of

Mathematics	MathonGo
Q17. The set of value(s) of a for which the function ongo //// mathongo	(4) $\frac{11}{18\pi}$ thongo /// mathongo /// mathongo /// mathongo
$f(x)=rac{ax^3}{3}+(a+2)x^2+(a-1)x+2$ possess a negative point of	Q20. A spherical balloon is expanding. If the radius is increasing at the rate of
inflection, isongo /// mathongo /// mathongo /// mathongo	2 cm/min the rate at which the volume increases
(1) empty set.	(in cubic centimeters per minute) when the radius is 5 cm, is
$(2)\left\{-\frac{4}{m_5}\right\}_{\text{hongo}}$ /// mathongo /// mathongo	(1) 10 athongo /// mathongo /// mathongo /// mathongo
(3)(-2,0)	(2) 100π
(4) $(-\infty, -2) \cup (0, \infty)$ mathongo /// mathongo /// mathongo	(3) 200π hongo /// mathongo /// mathongo
Q18. Consider the function $f:R o R$ defined by	$(4) 50\pi$
$f(x) = \left\{ \left(2 - \sin\left(\frac{1}{x}\right)\right) x , x \neq 0, x = 0. \text{ Then } f \text{ is :} \right\}$	Q21. Suppose that f is differentiable for all x and that $f'(x) \le 2$ for all x. If
(0	f(1) = 2 and $f(4) = 8$, then $f(2)$ has the value equal to
(1) monotonic on $(-\infty,0) \cup (0,\infty)$ (2) not monotonic on $(-\infty,0)$ and $(0,\infty)$	(1) 3mathongo /// mathongo /// mathongo
(2) not monotonic on $(-\infty, 0)$ and $(0, \infty)$ (3) monotonic on $(0, \infty)$ only	(2) 4
(4) monotonic on $(-\infty,0)$ only mathongo /// mathongo	(3) 6 mathongo /// mathongo /// mathongo
(4) monotonic on $(-\infty,0)$ only	(4) 8
Q19. A spherical iron ball of 10 cm radius is coated with a layer of ice of	Q22. If Rolle's theorem holds for the function athongo ///. mathongo
uniform thickness that melts at a rate of 50 cm ^o /min.	$f(x)=2x^3+bx^2+cx, x\in[-1,1],$ at the point $x=rac{1}{2},$ then 2 b $+$ c equals:
When the thickness of ice is 5 cm, then the rate (in cm/min.) at which of the	(1) 2 mathongo /// mathongo /// mathongo /// mathongo
thickness of ice decreases, is: thongo // mathongo // mathongo	(2) 1
(1) $\frac{5}{6\pi}$	(3) -1
(2) $\frac{1}{3\pi}$ nathongo /// mathongo /// mathongo /// mathongo (3) $\frac{1}{36\pi}$	(3) -1 /// mathongo /// mathongo /// mathongo /// mathongo

Answer Key			
Q1 (3)	Q2 (4)	Q3 (4)	Q4 (4.00) /// mathongo /// mathongo /// mathongo
Q5 (1)	Q6 (2)	Q7 (2)	Q8 (1)
Q9 (4) athongo /// ma	thongo Q10 (1) athongo	mathong Q11 (1.50) thongo	///. mathongo Q12 (1) athongo ///. mathongo
Q13 (4) //. mathongo ///. ma	Q14 (2) thongo // mathongo //	Q15 (3) // mathongo /// mathongo	Q16 (4) /// mathongo /// mathongo /// mathongo
Q17 (4)	Q18 (2)	Q19 (4)	Q20 (3)
Q21 (2) ma	thongo Q22 (3)		

$$\text{iven} - \frac{1}{\left(\frac{dy}{dx}\right)} = \frac{y}{x}$$
 mothongo

$$\frac{dy}{dx} = -\frac{x}{y}$$

$$ydy+xdx=0$$

$$\frac{dx}{ydy} = \frac{y}{x^2}$$
 mathongo /// mathongo // mathongo /

$$y^2 + x^2 = C$$

Since, it passes through
$$(1,2)\Rightarrow 4+1=C\Rightarrow C=5$$
 may we mathongo we mathongo

$$x^2 + y^2 = 5$$

Q2.

mathongo // mathongo // mathongo // mathongo // mathongo // Given ellipse equation
$$\frac{x^2}{36} + \frac{y^2}{4} = 1 \dots (i)$$

and circle equation
$$x^2+y^2=12 \ldots (ii)$$

$$y = \pm \sqrt{3} & x = \pm 3$$
 thongo /// mathongo /// mathongo

$$y=\pm\sqrt{3}\ \&\ x=\pm 3$$
 consider the point $P\!\left(3,\sqrt{3}\right)$

Equation of the tangent at
$$P$$
 to the circle is though mathong
$$3x+\sqrt{3}y=12$$
 Equation of the tangent at P to the ellipse is $\frac{x}{12}+\frac{\sqrt{3}}{4}y=1$

if
$$\alpha$$
 is angle between these tangents, then

$$\tan \alpha = \frac{2}{\sqrt{3}} = \frac{4}{\sqrt{2}\sqrt{3}}$$
 mathongo ///. mathongo ///. mathongo ///.

compare with
$$\alpha=\tan^{-1}\left(\frac{k}{2\sqrt{3}}\right)$$
 we get $k=4$, so, $\frac{k^2}{4}=\frac{4^2}{4}=4$

$$\therefore M = \frac{3t^2 - 3}{2t} \text{ at } t = 2 \Rightarrow M = \frac{9}{4} \text{ mathongo}$$
 mathongo /// mathongo

Equation of tangent at
$$(4,2)$$
 is $M=\frac{9}{4}$

$$\therefore (y-2) = \frac{9}{4}(x-4) \Rightarrow y = \frac{9}{4}x - 7.$$
The differentiating equation (1), we get,
The differentiating equation (1), we

Q4.

c = 4

$$\begin{array}{l} y-3=\frac{-2-3}{5-0}(x-0)\\ \text{/// mathongo} \text{/// mathongo} \text{/// mathongo} \text{/// mathongo}\\ y-3=-x \end{array}$$

$$y-3=-x$$

 $y=3-x$ is tangent to curve i.e

$$\frac{\text{mathongo}}{\text{touches } y = \frac{1}{x+1}}$$
 mathongo /// mathongo /// mathongo

$$(3-x) = \frac{c}{x+1}$$

$$3x + 3 \cdot 2x^2 \cdot 2x = c^{1/2} \text{ mathongo } \text{ math$$

$$x^2 + 2x + (c - 3) = 0$$

$$D = 0 \text{ nathongo } \text{ /// mathongo } \text{ // mathongo }$$

$$4-4c+12=0$$
 /// mathongo /// mathongo /// mathongo

Q5.
$$y^2 = x-2$$

Differentiating w.r.t.
$$x$$
 we get, $2yy'=1\Rightarrow y'=rac{1}{2y}$

For the shortest distance, the tangent at point
$$P$$
 will be parallel to the given

$$|y|_p = \frac{1}{2y_1} = 1 \Rightarrow y_1 = \frac{1}{2}$$
 mathongo /// mathongo $|y|_p = \frac{1}{2}$ mathongo /// mathongo

= The perpendicular distance of point
$$P$$
 from the line

$$= \left| \frac{\frac{9}{4+2\gamma}}{\sqrt{1^2+1^2}} \right| = \left| \frac{\frac{7}{4}}{\sqrt{2}} \right| = \frac{7}{4\sqrt{2}} \text{ mathongo } \text{ ///. mathongo } \text{ ///. mathongo}$$

$$4x^2 + a^2y^2 = 4a^2$$
 ...(i) and $y^2 = 16x$...(ii) mathongo // mathongo

If the curves intersect at
$$P(\alpha, \beta)$$
, then
$$\frac{\alpha^2}{2} + \frac{\beta^2}{4} = 1 \text{ and } \beta^2 = 16\alpha.$$
 mathongo /// mathongo

$$\left| rac{2x}{a^2} + rac{2y}{4}y'
ight| = 0$$
 /// mathongo /// mathongo /// mathongo

$$\Rightarrow m_1 \equiv \frac{-4\alpha}{a^2 eta}$$
go /// mathongo /// mathongo /// mathongo

$$2yy^{'}=16$$
 mathongo /// mathongo /// mathongo /// mathongo

i.e.
$$\left(-\frac{4\alpha}{a^2\beta}\right)\left(\frac{8}{\beta}\right) = -1$$
 $\Rightarrow 32\alpha = a^2\beta^2$
// mathongo // mathongo // mathongo

$$\Rightarrow 32\alpha = a^2\beta^2$$

$$\Rightarrow 2\beta^2 = a^2\beta^2$$

Hence, two values of a mathongo /// mathongo /// mathongo

go
$$\Rightarrow a^2 \equiv 2$$
iongo /// mathongo /// mathongo $\Rightarrow a = \pm \sqrt{2}$

 $\overline{Q7}$, mathongo ///. mathongo

 $\Rightarrow f(0)f(\beta) < 0 [:: \mu \text{ lies between } 0 \text{ and } \beta]$

 $f(x) = \sin x - mx + k$

f is differentiable. $f'(x) = \cos x + m$ /// mathongo // mat

Thus, third option is also correct.

 $f'(x) < 0 \Leftrightarrow \cos x - m < 0$

 $\Leftrightarrow m > \cos x$

010 mathongo ///. mathongo ///. mathongo ///. mathongo

For function f to be decreasing for all x m > 1

 \Rightarrow The least positive integer m=2

Given, $F(x) = \int_1^x t^2 g(t) dt$

By Leibnitz rule we get, mathongo ///. mathongo ///. mathongo

08.

athongo /// mathongo /// mathongo

 $F'(x) = x^2 g(x)$

 $\Rightarrow F'(1) = 1. \ g(1) = 0 \ (\because g(1) = 0)$ mathongo /// mathongo

 $f(x) = 3x^3 - 18x^2 + 27x - 40$ mathongo /// mathongo $x^2 - 11x + 30 \le 0 \Rightarrow x \in [5, 6]$

Now $F''(x) = 2xg(x) + x^2g'(x)$

 $\Rightarrow F''(1) = 0 + 1 \times 3$

 $f'(x) = 9x^2 - 36x + 27 = 9(x^2 - 4x + 3) = 9(x - 1)(x - 3)$

 $\Rightarrow F''(x) = 2xg(x) + x^2 f(x) \ (\because g'(x) = f(x))$

for $x \in [5, 6]$ f(x) is increasing function

hence maximum value in this interval occurs at x = 6so f(6) = 648 - 648 + 162 - 40 = 122 /// mathongo $\Rightarrow F''(1) = 3$

F(x) has a local minimum at x = 1.

Given.

Q11. $\frac{dy}{dx} = \frac{a}{x} + 2bx + 1$ or $\frac{dy}{dx} = 0$ at $x = -1, \ 2$

lphaeta < 0 go ///. mathongo ///. mathongo ///. mathongo

 $\frac{a}{-1} + 2b(-1) + 1 = 0$ or -a - 2b + 1 = 0

 $\frac{a}{2} + 4b + 1 = 0$ or a + 8b + 2 = 0 /// mathongo /// mathongo

 $\Rightarrow \alpha$ and β are of opposite signs.

solving we get; $a=2, b=-\frac{1}{2}$

Let $\alpha < 0$ and $\beta > 0$.

It is given that f(x) has extremum at $x = \alpha$, β . Therefore, α and β are two distinct real roots of f'(x) = 0.

there is at least one real root of its derivative.

 $y = x^2$ Let any point on this parabola is (t, t^2) mathongo ///. mathongo

But we know that between two distinct real roots of a polynomial,

Equation of normal at this point is

Therefore, f(x) has three distinct real roots λ , μ and v (say) such

 $x + 2ty = t + 2t^3$

that $\lambda < \alpha < \mu < \beta < v$.

It passes through $\left(4,-\frac{1}{2}\right)$ athongo /// mathongo /// mathongo

mathon λ /// n μ athongo λ /// mathongo /// mathongo

Thus, first option is correct. mathongo /// mathongo

 $2t^3 + 2t + 4 = 0$ /// mathongo /// mathongo /// mathongo $t^3 + t - 2 = 0$

If f(x) = 0 has exactly one positive root, then it is evident from

t≣ Inathongo ///. mathongo ///. mathongo ///. mathongo So point is (1,1)

the figure that v>0 and $\lambda,\ \mu<0$. Moreover, mathongo

Q13.mathongo ///. mathongo ///. mathongo

 $f(x) = (3x^2 + ax - 2 - a)e^x$

 $f'(x) = (3x^2 + ax - 2 - a)e^x + e^x(6x + a) = e^x(3x^2 + (a+6)x - 2)$ $\therefore x = 1$ is a critical point $\therefore f'(1) = 0$

Therefore, $\alpha < \mu < 0$

 $\Rightarrow f(\alpha) < 0 \ [\because f(0) = 1 > 0]$

 $\Rightarrow f(\alpha)f(0) < 0 \ [\because \mu \text{ lies between } \alpha \text{ and } 0]$

 $\therefore 3 + a + 6 - 2 = 0$ mathongo /// mathongo /// mathongo

 $\Rightarrow f(\beta) > 0 [:: f(\alpha)f(\beta) < 0]$ Thus, second option is also correct. $\therefore f'(x) = e^x(3x^2 - x - 2) = e^x(3x^2 - 3x + 2x - 2) = e^x(3x + 2)(x - 1)$ $\therefore \text{ maxima at } \mathbf{x} = \frac{-2}{3} \therefore \text{ minima at } \mathbf{x} = 1$

If f(x) = 0 has exactly one negative real root, then from the

Q14. Let $f(x) = x^{25} (1 - x)^{75}, x \in [0,1]$ mathongo

figure, we have $\lambda < 0$ and $\mu, \ v > 0$.

 $f'(x) = 25 x^{24} (1-x)^{75} - 75 x^{25} (1-x)^{74}$ mathongo mathongo

///
$$ma = 25 x^{24} (1-x)^{74} (1-4x) = ///$$
 mathongo /// mathongo

For maximum value of f(x), put f(x) = 0 mathongo /// mathongo

$$\therefore 25x^{24} (1-x)^{74} (1-4x) = 0$$

$$\therefore 25x^{24}(1-x)^{74}(1-4x) = 0$$
 mathongo /// mathongo

$$\therefore \quad x = 0, 1, \frac{1}{4}$$

$$x = 0.1, \frac{1}{4}$$
 mathongo /// mathongo /// mathongo

Also, at x = 0, y = 0

Also, at
$$x = 0$$
, $y = 0$
/// mathongo at $x = 1$, $y = 0$
/// mathongo /// mathongo

and x = 1/4, y > 0

f (x) attains maximum at
$$x = 174.00$$
 /// mathongo /// mathongo

Q15.

Given:

 $\Rightarrow f(x) = \sin x - \cos x - kx + b \Rightarrow f'(x) = \cos x + \sin x - k$

For decreasing function
$$f'(x) < 0$$
 mathongo mathongo

So,
$$\cos x + \sin x - k < 0$$

The maximum value of
$$\cos x$$
 + $\sin x$ is $\sqrt{2}$ and $\cos x$ mathongo $\sin x + \sin x = \sqrt{2} - k < 0$

$$\Rightarrow k > \sqrt{2}$$
 ongo /// mathongo /// mathongo /// mathongo

Q16.
$$f'(x) = 3\left(x^2 + \frac{8x}{3} + \frac{16}{9}\right) + \lambda - \frac{16}{3} = 3\left(x + \frac{4}{3}\right)^2 + \lambda - \frac{16}{3}$$

 $1 + \frac{16}{3} = 3\left(x + \frac{4}{3}\right)^2 + \lambda - \frac{16}{3} = 3\left(x + \frac{4}{3}\right)^2 + \lambda$

$$\Leftrightarrow -\frac{2}{3} < \left(x + \frac{4}{3}\right) < \frac{2}{3} \Leftrightarrow \left(x + \frac{4}{3}\right)^2 < \frac{4}{9}$$

$$\Leftrightarrow -\frac{\pi}{3} < (x + \frac{\pi}{3}) < \frac{\pi}{3} \Leftrightarrow (x + \frac{\pi}{3}) < \frac{\pi}{9}$$

$$\therefore f'(x) < 3 \cdot \frac{4}{9} + \lambda - \frac{16}{3} \quad \text{mathongo} \quad \text{///} \quad \text{mathongo}$$

$$\therefore \lambda \le 4$$

∴ Greatest value of
$$\lambda$$
 is 4 mothongo

: Greatest value of
$$\lambda$$
 is 4 mathongo /// mathongo /// mathongo

Q17.

mathongo /// mathongo /// mathongo /// mathongo Given
$$f(x) = \frac{ax^3}{3} + (a+2)x^2 + (a-1)x + 2$$

Differentiating both sides with respect to x, we get

$$f'(x) = rac{3ax^2}{3} + 2(a+2)x + (a-1) = ax^2 + 2(a+2)x + (a-1)$$

Again, differentiating both sides with respect to x, we get

"
$$f''(x) = 2ax + 2(a+2)$$
 mathongo
"
mathongo
"
mathongo

Since, f(x) has a point of inflection.

/// nSo,
$$f''(x) = 0$$
 /// mathongo /// mathongo /// mathongo $\Rightarrow 2ax + 2(a+2) = 0$

///
$$m \stackrel{?}{\Rightarrow} x = \frac{(a+2)}{a}$$
 mathongo /// mathongo /// mathongo

Since,
$$f(x)$$
 has a negative point of inflection.

So,
$$x = -\frac{(a+2)}{a} < 0$$
 mathongo /// mathongo /// mathongo

Q18.

$$f(x) = \begin{cases} -x \left(2 - \sin\left(\frac{1}{x}\right)\right) & \text{thongo} \\ x < 0 \end{cases}$$
 mathongo /// mathongo

$$f(x) = \begin{cases} -x\left(2 - \sin\left(\frac{1}{x}\right)\right) & x < 0 \\ 0 & x = 0 \end{cases}$$

$$f'(x) = \begin{cases} 0 & x = 0 \\ -\left(2 - \sin\frac{1}{x}\right) - x\left(-\cos\frac{1}{x} \cdot \left(-\frac{1}{x^2}\right)\right) & x < 0 \end{cases}$$

$$f'(x) = \begin{cases} \left(2 - \sin\frac{1}{x}\right) + x\left(-\cos\frac{1}{x}\left(-\frac{1}{x^2}\right)\right) & x > 0 \end{cases}$$

$$f'(x) = \begin{cases} -2 + \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x}, & x < 0 \\ 2 - \sin\frac{1}{x} + \frac{1}{x}\cos\frac{1}{x}, & x > 0 \end{cases}$$

$$f'(x) = \begin{cases} -2 + \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x} , & x < 0 \\ 2 - \sin\frac{1}{x} + \frac{1}{x}\cos\frac{1}{x} , & x > 0 \end{cases}$$
 mathongo

f'(x) is an oscillating function which is non-monotonic in $(-\infty,0) \cup (0,\infty)$.

Q19. Let thickness = x cm

Total volume
$$V=rac{4}{3}\pi(10+x)^3$$
 $rac{dV}{dt}=4\pi(10+x)^2rac{dx}{dt}\ldots \cdot \left(i
ight)$

Given
$$\frac{dV}{dt} = 50 \text{ cm}^3/\text{min}$$

M. mothongo /// mathongo /// mathongo /// mathongo

$$50 = 4\pi (10+5)^2 \frac{dx}{dt}$$

$$\frac{dx}{dt} = \frac{1}{18\pi} \text{ cm/min}'' \text{ mathongo } \text{ mat$$

As, volume of sphere
$$V = \frac{4}{3}\pi r^3$$

$$\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt} = 2$$

$$\Rightarrow \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} = 4\pi r^2 \cdot \left(2\right) \left[\because \frac{dr}{dt} = 2\right]$$

$$\Rightarrow \frac{dV}{dt} = 4\pi \cdot 25 \cdot 2 = 200\pi$$
mathongo
/// mathongo

Q21. Using Lagrange's mean value theorem for f in [1, 2] for
$$c \in (1, 2), \frac{f(2) - f(1)}{2 - 1} = f'(c) \le 2$$

$$\Rightarrow f(2)-f(1) \le 2$$

$$\Rightarrow f(2) \le 4$$

$$\Rightarrow f(2) \le 4$$

$$\Rightarrow f(2) \le 4$$

$$\Rightarrow f(1) = 1$$

$$\Rightarrow f(2) = 1$$

$$\Rightarrow f(3) = 1$$

for
$$d \in (1, 2)$$
, $\frac{f(4)-f(2)}{4-2} = f'(d) \le 2$ ///////// mathongo ///////// mathongo

$$\Rightarrow \quad \mathrm{f}(4)\mathrm{-f}(2) \! \leq 4$$

$$\Rightarrow$$
 $_{1}8_{\text{TI}}f(2) \le 4$ /// mathongo /// mathongo /// mathongo \Rightarrow $f(2) \ge 4$ (2)

from (1) and (2),
$$f(2) = 4$$
.

mathongo /// mathongo /// mathongo

Q22. If Rolle's theorem is satisfied in the interval [-1, 1], then

$$f(-1)\equiv f(1)_{igo}$$
 /// mathongo /// mathongo /// mathongo $-2+b-c=2+b+c$

$$c=-2$$
 also $f'(x)=6x^2+2bx+c$ mathongo Mathongo Mathongo

$$6\frac{1}{4} + 2b\frac{1}{2} + c = 0$$
 mathongo /// mathongo /// mathongo

Mathematics			MathonGo
=1_r2athongo /// mathor			
= -1. ///. mathongo ///. mathon			

MathonGo

y = f(x), x-axis, x = 0 & x = 1

Q6. The area common to $x^2 + y^2 = 64$ and $y^2 = 4x$ is

Mathematics MathonGo

athematics MathonGo

Mathematics MathonGo Q1. mathongo ///. mathongo ///. mathongo ///. mathongo Curve : $y = \log_e(x + e)$, x - axis, y - axis mathongo ///. n at x-axis $y = 0 \Rightarrow \log_e(x + e) = 0 \Rightarrow x + e = 1$ We have, $y = \sin ax$ Given that the given curve is above the axis from $x=\frac{\pi}{a}$ to $x=\frac{\pi}{3a}$. Then, the area bounded by the curve from when $x
ightarrow -e^+ \Rightarrow y
ightarrow -\infty$ $x=rac{\pi}{a}$ to $x=rac{\pi}{3a}=\int_{\pi/a}^{\pi/3a}ydx$ ongo //// mathongo /// mathongo // matho $\Rightarrow A = \int_{rac{\pi}{2a}}^{rac{\pi}{a}} \sin ax dx$ $\Rightarrow A = \frac{1}{a}(-\cos ax)_{\pi/a}^{\pi/3a}$ mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. $\Rightarrow A = \frac{1}{a} \left| \frac{3}{2} \right|$ $A = \frac{3}{2a} = 3$ (Given) mathongo /// mathongo // mathongo /// mathongo // mat mathongo /// mathongo // matho mathongo /// mathongo mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. Q2. mathong | ///. mathongo | Area = $2\int_{0}^{2} \left(\sqrt{9y} - \sqrt{\frac{y}{4}}\right) dy$ Required area = $\int_{1-e}^{0} \log(x+e) dx$ = $x \log (x+e) \Big|_{1-e}^{0} - \int_{1-e}^{0} \frac{1}{x+e} x dx$ = $2\left\{3.\frac{2}{3}(y)^{\frac{3}{2}} - \frac{1}{2} \cdot \frac{2}{3}(y)^{\frac{3}{2}}\right\}_{0}^{2}$ mathongo

mathon $=2\left\{\frac{5}{3},y^{\frac{3}{2}}\right\}_{0}^{2}$ mathongo /// mathongo // matho $=\frac{10}{3}\cdot2\sqrt{2}$ nongo ///. mathongo ////. Q3. $f(x) = \begin{cases} \cos x \text{ for } 0 \le x \le \pi/4 \\ \sin x \text{ for } \pi/4 < x \le \pi/2 \end{cases} \text{ mathongo } \text$ mathongo $= \sqrt{2}$ sq units mathongo $= \sqrt{2}$ ma Y-axis athongo /// mathongo /// nathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. n X-axis
///. T√2athongo ///. mathongo ///. $\Rightarrow k = \sqrt{2}$ mathongo /// mathongo // m

Q4. mathongo ///. mathongo

MathonGo

$$xy = 8$$
 and $y = 1$ and $y = x^2$

For point of intersection

(i)
$$xy = 8$$
 and $y = 1 \Rightarrow A(8,1)$

(ii)
$$xy=8$$
 and $y=x^2 \ \Rightarrow x^3=8 \ \Rightarrow x=2 \ \Rightarrow B\big(2,\ 4\big)$

(iii)
$$y=x^2$$
 and $y=1\Rightarrow C(1,\ 1)$ and $D(\ 1,\ 1)$

$$y \geq 1 \Rightarrow$$
 region above line $y = 1$

$$y \le x^2 \Rightarrow$$
 region outside the parabola

Now required area

Method I:

Using x-axis:

$$A = \int_{1}^{2} (x^{2} - 1) \cdot dx + \int_{2}^{8} \left(\frac{8}{x} - 1\right) \cdot dx$$
 mathongo /// mathongo /// mathongo

$$A = \left[rac{x^3}{3} - x
ight]_1^2 + [8 {
m ln} x - x]_2^8$$

$$A = -\frac{14}{3} + 16 \ln 2$$

$$A=-rac{14}{3}+16 ext{ln}2$$

Method II:

$$A = \int_{1}^{4} \left(\frac{8}{y} - \sqrt{y}\right) \cdot dy$$

$$A = \left[8 ext{ln} y - rac{2}{3} y^{3/2}
ight]_1^4 \Rightarrow A = -rac{14}{3} + 16 ext{ln} 2$$

there exist a area which satisfy the inequality and is unbounded.

$$A = \int_0^1 (1 - x^2) dx = \left(x - \frac{x^3}{3}\right)_0^1 = 1 - \frac{1}{3} = \frac{2}{3}$$

mathongo /// mathongo /// Hence, area bounded by circle $x^2 + y^2 = 1$ and $|y| = 1 - x^2$ /// n

$$=$$
 Lined area

$$= Area of curcle - Area bounded by |y| = 1 - x^2$$

$$=\pi-4.\left(\frac{2}{3}\right)=\frac{3\pi-8}{3} \; {
m sq. \; units}$$

$$A = \int\limits_{1}^{4} \left(\frac{8}{y} - \sqrt{y}\right) \cdot dy$$
 mathongo /// ma

Note: The question should include bounded area term as in
$$2^{\text{nd}}$$
 quadrant or $= [x \ln x - x]_1^2$ hongo /// mathongo /// nthere exist a area which satisfy the inequality and is unbounded.

ongo /// mathongo /// mathongo /// mathongo /// n coordinate of
$$A$$
, $(1-x)^2 = 2x(1-x)$

$$x = \frac{1}{3}$$
, $A(\frac{1}{3},0)$ coordinate of B 100. If mathongs If mathon $B(\frac{1}{3},0)$ Regives $A(\frac{1}{3},0)$ Regives $A(\frac{1}{3},0)$ and $A(\frac{1}{3},0)$ coordinate of B 100. If $A(\frac{1}{3},0)$ and $A(\frac{1}{3},0)$ and an analysis of $A(\frac{1}{3},0)$ and analysi

	mathongo /// mathongo /// mathongo /// mathongo /// mathongo
$f(x)= egin{cases} rac{x+2}{x^2+3x+2}, & ext{if } x\in R-\{-1,-2\} \ -1, & ext{if } x=-2 \ 0, & ext{if } x=-1 \end{cases}$ then f is continuous on the se	(2) 0
$ \begin{array}{cccc} & -1, & \text{if } x = -2 \\ & 0, & \text{if } x = -1 \end{array} $	mc(3)2ngo /// mathongo /// mathongo /// mathongo /// mathongo
(1) R	(4) none of these
$//(2)R_{TT}\{ \pi^2 \}_0$ /// mathongo /// mathongo ///	Q8. Let $f:[0,3] \to \mathbb{R}$ be defined by $f(x) = \min\{x - [x], 1 + [x] - x\}$ where [x] is
(3) $R - \{-1\}$	the greatest integer less than or equal to x .
(4) $R - \{-1, -2\}$ /// mathongo /// mathongo /// mathongo ///	Let P denote the set containing all $x \in [0,3]$ where ${f f}$ is discontinuous, and ${f Q}$ denote
	the set containing all $x \in (0,3)$ mathongo mat
Q2. If $f(x)$	where f is not differentiable. Then the sum of number of elements in P and Q is
/// $r = \frac{\sin(p+1)x + \sin x}{x}$, mathongo /// mathongo /// mathongo ///	mathongo /// mathongo /// mathongo /// mathongo /// mathongo
x = 0 is continuous at $x = 0$, then the ordered pair (n, q)	$q)$ is equal to $\mathbf{Q9.}$ Let $f(x)=x x , g(x)=\sin x$ and $h(x)=(gof)(x).$ Then
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$(1)\left(-\frac{3}{2},-\frac{1}{2}\right)$	(1) $h(x)$ is differentiable at $x = 0$, but $h'(x)$ is not continuous at $x = 0$
$(2)\left(-\frac{1}{2},\frac{3}{2}\right)$	(2) $h(x)$ is not differentiable at $x = 0$
(3) $(\frac{5}{2},\frac{1}{2})$ /// mathongo /// mathongo /// mathongo ///	(a) $h'(x)$ is differentiable at $x = 0$ mathong when $h'(x)$ is continuous at $x = 0$ but is not differentiable at $x = 0$
$(4)\left(-\frac{3}{2},\frac{1}{2}\right)$	(4) $h'(x)$ is continuous at $x=0$ but is not differentiable at $x=0$
///. mathongo ///. mathongo ///. mathongo ///.	Q10. Let $f:(-1,1)\to R$ be a differentiable function with $f(0)=-1$ and
Q3. The number of points of discontinuity of $f(x) = \left[x^3 + 1\right]$ in $(1,2)$ is/are (who	ere $f'(0) = 1$, $g(x) = \{f(2f(x) + 2)\}^2$. Then $g'(0) =$
[.] denotes Greatest Integer Function) "anathongo " mathongo " ma	(1) 4 mathongo /// mathongo /// mathongo /// mathongo /// mathongo
(1) 1 mathongo 72 mathongo 72 mathongo 72	(2) -4
(2) 6	(3) 0
//(3)·5athongo ///. mathongo ///. mathongo ///.	mc(4)=230 /// mathongo /// mathongo /// mathongo /// mathongo
(4) 4	Q11. Let S be the set of points where the function, $f(x) = 2 - x - 3 , x \in R$, is
Q4. Let $y = \frac{1}{u^2 + u - 2}$ where $u = \frac{1}{x - 1}$ then y is discontinuous only at $x = 1$	Monot differentiable. Then $\sum_{x \in S} f(f(x))$ is equal to $\frac{1}{2}$ mothering $\frac{1}{2}$ mothering $\frac{1}{2}$
(1) 1, 2	
(2) 1, -2	Q12. Let $f(x) = egin{cases} 3x-p &: 0 \leq x \leq 2 \ 2x^2+qx &: 2 < x \leq 3 \end{cases}$
(3) $1, \frac{1}{2}, 2$ mathongo /// mathongo /// mathongo ///	If $f(x)$ is differentiable at $x = 2, (p, q) =$
(4) None of these	(1)(8,-5)
/// mathongo /// mathongo /// mathongo ///	$mq(2)\left(\pm\frac{5}{2},3\right)$ mathongo mathongo mathongo mathongo mathongo
Q5. Let $f(x) = \operatorname{sgn}(x)$ and $g(x) = x (x^2 - 5x + 6)$. The function $f(g(x))$ is	(3) (-10,4)
discontinuous at (1) infinitely many points. (2) mathongo (3) mathongo (4) mathon	(4) None of these mathongo /// mathongo /// mathongo /// mathongo
	Q13. If $f(x+y) = f(x) + f(y) + x y + x^2y^2, \forall x,y \in R \text{ and } f'(0) = 0$, then
(2) exactly one point.	
//(3) exactly three points. athongo /// mathongo /// mathongo ///	(1) not be differentiable at every non-zero x . (2) differentiable for all $x \in R$.
(4) no point.	(2) twice differentiable at $n=0$
Q6. Let $f(x)=\left\{egin{array}{ll} rac{1+\cos x}{(\pi-x)^2}\cdotrac{\sin^2x}{\log(1+\pi^2-2\pi x+x^2)} &, x eq\pi \end{array} ight.$. If $f(x)$ is continuous k $, x=\pi$	mathons whathons which was a second with the second was a
$k \qquad , x=\pi$	
functions at $x = \pi$, then k is equal to mathematical mathematic	Q14. If $f(x) = \begin{cases} 3^x, & -1 \le x \le 1 \\ 4 - x, & 1 < x < 4 \text{ at hongo} \end{cases}$, then at $x = 1$, $f(x)$ will be mathematically continuous but set differentiable.
	(1) Continuous but not differentiable
(2) $\frac{1}{2}$	(2) Neither continuous nor differentiable
$//(3)$ $\frac{-1}{2}$ thongo $///$ mathongo $///$ mathongo $///$	(3) Continuous and differentiable mathongo matho
$(4) - \frac{1}{4}$	(4) Differentiable but not continuous
///Q7. Ifthongo ///. mathongo ///. mathongo ///.	Q15. Let $g(x)$ be a polynomial of degree one and $f(x)$ be a continuous and
f(x)	differentiable function defined by
(+ 2	
x + 2, $x > 0x = \begin{cases} x + 2, & x > 0 \\ x^2 - 2, & 0 < x < 1, \text{ then the number of points of discontinuity of } f(x) \end{cases}$	

 $\mathbf{x} \geq 1$

$$f(x) = \begin{cases} \frac{1+x}{2+x} \\ \frac{1}{x}, & x > 0 \end{cases}$$
 If $f'(1) = f'(-1)$, then
$$f(x) = \begin{cases} \frac{1+x}{2+x} \\ \frac{1}{x}, & x > 0 \end{cases}$$
 If $f'(1) = f'(-1)$, then
$$f(x) = \begin{cases} \frac{1+x}{2+x} \\ \frac{1}{x} \\ \frac$$

mathongo (2)
$$f'(-1) = +\frac{3}{2} \left(\frac{1}{6} + \ln \frac{3}{2}\right)$$

(3) $f'(-1) = -\frac{2}{3} \left(\frac{6}{1} + \ln \frac{2}{3}\right)$

$$(1) f'(-1) = -\frac{2}{3} \left(\frac{1}{6} + \ln \frac{3}{2} \right)$$

$$(4) f'(-1) = -\frac{2}{3} \left(\frac{1}{6} - \ln \frac{3}{2} \right)$$

(1)
$$f'(-1) \equiv -\frac{2}{3} \left(\frac{1}{6} + \ln \frac{3}{2}\right)$$
 mathongo /// mathongo

Q1. athongo /// mathongo /// mathongo /// mou = 1 then $1 = \frac{1}{x-1} \Rightarrow x = 2$. Hence the composite function is discontinuous athongo /// mathongo only at $x = 1, \frac{1}{2}, 2.$ Since, f(x) is continuous for R, not sure about $\{-1, -2\}$. Now, we have check continuity at these points, thongo /// mathongo // mathongo /// mathongo // m At x=-2, $\begin{array}{l} \text{LHL} = \lim \frac{(-2-n)+2}{n - 1} \\ \text{matth} = \lim \frac{-n}{2} = -1 \\ \text{lim} = -1 \\ \text{l$ RHL = $\lim_{n\to 0} \frac{(-2+n)+2}{(-2+n)^2+3(-2+n)+2}$ $g(x) = x(x^2 - 5x + 6) = x(x - 2)(x - 3)$ go /// mathongo $= \lim_{n \to 0} \frac{n}{n^2 - n} = -1$ $= \lim_{n \to 0} \frac{\ddot{x}}{n^2 - n} = -1$ $= \begin{cases} -1 \ , \ x(x-2)(x-3) < 0 \\ 0 \ , \ x(x-2)(x-3) = 0 \\ 1 \ , \ x(x-2)(x-3) > 0 \end{cases}$ It is continuous at x = -2 thongo /// mathongo // mathongo /// mathongo // mathongo // mathongo // mathongo // mathongo // m Now, check for x = -1Let h(x) = f(g(x)) $\text{LHL} = \lim_{n \to 0} \frac{(-1-n)+2}{(-1-n)^2+3(-1-n)+2} \text{ mathongo } \text{ m$ $=\lim_{n\to 0}\frac{1-n}{n^2-n}=\infty$ h(x) = 0, if x = 0, 2, 3 $\text{RHL} = \lim_{n \to 0} \frac{(-1+n)+2}{(-1+n)^2+3(-1+n)+2}$ $= \lim_{n \to 0} \frac{1+n}{n^2+n} = \infty$ h(x) = 0, if x = 0, 2, 3 $h(x) = 1 \text{ if } x \in (0,2) \cup (3,\infty)$ mathongs mathongsLHL = RHL $\neq f(-1)$ Mathons (Mathons $f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x} & : x < 0 \\ 0 & \text{q math} : x = 0 \end{cases} \text{ mathongo } \text{mathongo } \text{$ O2. = p + 2 $R. H. L = \lim_{h \to 0} \frac{\sqrt{h^2 + h} - \sqrt{h}}{\frac{3}{h^{\frac{3}{2}}}} \times \frac{\sqrt{h^2 + h} + \sqrt{h}}{\sqrt{h^2 + h} + \sqrt{h}} = \lim_{h \to 0} \frac{h^2 + h - h}{h^{\frac{3}{2}} \frac{1}{h^2} \left(\sqrt{h} + 1 + 1\right)}$ $\lim_{h \to 0} \frac{1}{\sqrt{1 + h} + 1} = \frac{1}{2}$ $\Rightarrow L. H. L. = R. H. L. = f(0) \Rightarrow p + 2 = \frac{1}{2} = q$ $\Rightarrow L. H. L. = R. H. L. = f(0) \Rightarrow p + 2 = \frac{1}{2} = q$ $\therefore |f(x)| = \begin{cases} |x + 2|, & x > 0 \\ |x + 2|, & x > 0 \end{cases}$ $\therefore |f(x)| = \begin{cases} |x + 2|, & x < 0 \text{ thongo} \\ |x^2 + 2|, & 0 \le x < 1 \\ |x|, & x \ge 1 \end{cases}$ $\therefore |f(x)| = \begin{cases} |x + 2|, & x > 0 \\ |x + 2|, & x < 0 \text{ thongo} \\ |x + 2|, & 0 \le x < 1 \\ |x|, & x \ge 1 \end{cases}$ Using properties of modulus function, // mathongo // math mathongo /// mathongo /// mathongo /// mathongo /// mathongo $f(x) = [x^3 + 1]$ By property of GIF, we know that [x] is discontinuous at every integral point. // mothon: $|f(x)| = \begin{cases} -x - 2, & x > -2 \\ x + 2, & -2 \le x < 0 \\ x^2 + 2, & 0 \le x < 1 \text{ thongo} \end{cases}$ // mathons $|f(x)| = \begin{cases} -x - 2, & x > -2 \\ x + 2, & -2 \le x < 0 \\ x^2 + 2, & 0 \le x < 1 \text{ thongo} \end{cases}$ // mathons $|f(x)| = \begin{cases} -x - 2, & x > -2 \\ x + 2, & -2 \le x < 0 \\ x + 2, & 0 \le x < 1 \text{ thongo} \end{cases}$ So we have to just check that for how many values of $x \in (1,2)$, (x^3+1) is taking integral values. $1 < x < 2 \Rightarrow \ 1 < x^3 < 8 \Rightarrow \ 2 < x^3 + 1 < 9$ For continuity of |f(x)| at x = 1, As (x^3+1) \in (2,9), then integer lying in this range are $L. H. L. = f(1^-) = 1^2 + 2 = 3$ $[x^3+1]=3,4,5,6,7,8$ — 6 points are there at which f(x) is becoming discontinuous. Hence, function is discontinuous at x = 1. **Q4.** $u = \emptyset(x) = \frac{1}{x-1}$ is discontinuous at $x = 1, \ y = f(u) = \frac{1}{u^2 + u - 2} = \frac{1}{(u+2)(u-1)}$ nathon Therefore, number of discontinuity is 1.300 ///. mathongo ///. math is discontinuous at u=-2, u=1. If u=-2 then $-2=\frac{1}{x-1} \Rightarrow x=\frac{1}{2}$. If

is discontinuous at u=-2, u=1. If u=-2 then $-2=\frac{1}{x-1} \Rightarrow x=\frac{1}{2}$. If Q8.

We mathong with mathon with math

 $/''f(x) = \min\{x - [x], 1 + [x] - x\}$ /// mathongo /// mathongo /// model mathongo /// mathongo // mathongo //

So, the graph of the function is

interval
$$[0,3]$$
.

My mathengo My matheng

Again, from the diagram, we can say that at
$$x=\frac{1}{2},\ 1,\ \frac{3}{2},\ 2,\ \frac{5}{2},$$
 there are sharp

So, the function is non differentiable at
$$x = \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}$$

Hence, Q = 5

So,
$$P+Q=5$$

Q9.
$$h(x) = \begin{cases} \sin x^2 & x \ge 0 \\ -\sin x^2 & x < 0 \end{cases}$$
 mathong with mathons with mathons of $f(1-0) = \lim_{x \to 1} 3^x = 3$ mathons with mathons of $f(1+0) = \lim_{x \to 1} (4-x) = 3$

$$\frac{x \to 0^+}{h'(0^-)} = \lim_{x \to 0^-} \frac{-\sin x^2}{x} = 0$$
 mathongo /// m

$$\begin{cases} 2x \cos x^2 & x > 0 \\ \cos h'(x) \begin{cases} 2x \cos x^2 & x > 0 \\ \cos h'(x) \begin{cases} x = 0 \text{ ongs} \end{cases} & \text{mathongs} \end{cases} & \text{mathongs} \end{cases} & \text{mathongs} \end{cases}$$

$$\begin{cases} 2x \cos x^2 & x > 0 \\ -2x \cos x^2 & x < 0 \end{cases} & \text{mathongs} \end{cases} & \text$$

Now,
$$h''(0^+) = \lim_{x \to 0^+} \frac{2x \cos x^2}{x} = 2$$
 and $f(1^+) = \lim_{x \to 1^+} \frac{2x \cos x^2}{x} = 2$ and $f(1^+) = \lim_{x \to 1^+} \frac{2x \cos x^2}{x} = 2$ mathongo /// mathon

Hence,
$$h'(x)$$
 is non-derivable at $x = 0$.

Q10.
$$g(x) = \{ f(2 f(x) + 2) \}^2$$

We have on differentiation with respect to x,

$$g'(x) = 2f(2f(x) + 2) f'(2f(x) + 2) 2f'(x)$$
 mathongo // mathongo

$$g'(0) = 2f(2f(0) + 2) f'(2f(0) + 2 f'(0)$$

$$= -4$$

Check non-differentiability of function, we get, mongo /// mathongo /// m

$$f(x)$$
 is non differentiable at $x=1,3,5$

$$\sum f(f(x)) = f(f(1)) + f(f(3)) + f(f(5))$$
mathons $f(x)$ mathons $f(x)$ mathons $f(x)$

$$= 1 + 1 + 1$$

$$= 3$$
"" mathongo" mathongo "" mathongo

 \Rightarrow f(x) is not differentiable at x = 1

 $\therefore \ f(2) = f(2+) \Rightarrow 6 - \ p = 8 + 2q \Rightarrow \ p + 2q = - \ 2 \ldots \ldots (1)$

 $f(x+y) = f(x) + f(y) + |x|y + x^2y^2$ mathongo /// math

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ mathongo /// mathongo /// mathongo

Given:

and f'(0) = 0

f(0+0) = f(0) + f(0) + 0 + 0

 $=\lim_{h\to 0}rac{f(h)}{h}+|x|+x^2h$

f'(x) = 0 + |x| = |x|

Clearly f(x) is differentiable at all points.

= f'(0) + |x|

 $f(1+0) = \lim_{x \to 1} (4-x) = 3$

 \Rightarrow f(x) is continuous at x = 1

$$\ln(f(x)) = rac{1}{x}(\ln(1+x) - \ln(2+x))$$
 mathons $\frac{1}{f(x)}f'(x) = \left[rac{-1}{x^2}\left(\lograc{(1+x)}{(2+x)}
ight) + rac{1}{x}\left(rac{1}{1+x} - rac{1}{2+x}
ight)
ight]$ $f'(1) = f(1)\left(-\lnrac{2}{3} + 1\left(rac{1}{2} - rac{1}{3}
ight)
ight)$

- **Q1.** If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x dx$, where n > 1, then
- (1) $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^n$
- (2) $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$ (2) Mathons

- **Q2.** The value of x > 1 satisfying the equation $\int_1^x t \log t dt = \frac{1}{4}$, is
- (1) \sqrt{e}
- (2) $e^{\frac{3}{2}}$ mathongo /// mathongo /// mathongo
- (3) e^2
- (4) 2e-1 mathongo ///. mathongo ///. mathongo ///.
- Q3. The integral $\int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x dx$ is equal to $(1)3\frac{7}{6}$ ng $3\frac{5}{6}$ ongo ///. mathongo ///. mathongo ///. mathongo
- (2) $3^{\frac{4}{3}} 3^{\frac{1}{3}}$
- (3) $3^{\frac{5}{6}}$ \cong $3^{\frac{2}{3}}$ ongo ///. mathongo ///. mathongo
- $(4) \ 3^{\frac{5}{3}} 3^{\frac{1}{3}}$
- **Q4.** Let $l_1=\int_0^\infty rac{x^2\sqrt{x}}{(1+x)^6}dx, l_2=\int_0^\infty rac{x\sqrt{x}}{(1+x)^6}dx$, then
- (1) $l_1 = 2l_2$
- (2) $l_2 = 2l_1$
- (3) $l_1 = l_2^2$
- **Q5.** A value of α such that $\int_{\alpha}^{\alpha+1} \frac{dx}{(x+\alpha)(x+\alpha+1)} = \log_e(\frac{9}{8})$ is

- (3) -2
- mathongo ///. mathongo ///. mathongo ///. mathong
- **Q6.** The value of $\int_{-\pi/2}^{\pi/2} \frac{dx}{[x]+[\sin x]+4}$, where [t] denotes the greatest integer
- less than or equal to t, is mathongo /// mathongo /// mathon $(1) \frac{3}{20} (4\pi - 3)$
- $(2) \frac{3}{10} (4\pi 3)_{90}$ /// mathongo /// mathongo /// mathongo
- $(3) \frac{1}{12} (7\pi 5)$
- $(4) \frac{1}{12} (7\pi + 5)_{go}$ /// mathongo /// mathongo /// mathongo **Q7.** Consider $I(\alpha) = \int_{\alpha}^{\alpha^2} \frac{dx}{x}$ (where $\alpha > 0$), then the value of
- $\sum_{r=2}^{5} \mathrm{I}(r) + \sum_{k=2}^{5} \mathrm{I}\left(rac{1}{k}
 ight)$ is athongo /// mathongo /// mathon
- (2) 1 mathongo ///. mathongo ///. mathongo ///. mathon (3) ln 2
- (4) ln 4 athongo ///. mathongo ///. mathongo ///. mathon

- **Q8.** If f is a real valued function defined by f(x + y) + f(x y) = f(2x),
- then the value of $\int_{f(2)}^{f(-2)} f(x)$ is equal to (1) 0 mathongo mathongo mathongo mathongo mathongo mathongo
- (3) $I_n n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^n$ (2) 1

 (4) $I_n n(n-1)I_{n-2} = -n\left(\frac{\pi}{2}\right)^{n}$ (2) 1

 (4) $I_n n(n-1)I_{n-2} = -n\left(\frac{\pi}{2}\right)^{n}$ (2) 1

 (5) $I_n n(n-1)I_{n-2} = -n\left(\frac{\pi}{2}\right)^{n}$ (7) mathongo (8) 2 mathongo (9) mathongo (10) mathongo (11) mathongo (11) mathongo (12) mathongo (13) 2 mathongo (13) 2 mathongo (14) 2 mathongo (14) 2 mathongo (15) 2 mathongo (1
 - $(4) \ 3$
 - **Q9.** If $\int_0^{10\pi+\alpha} |\sin x| dx = k \cos \alpha$, where $0 < \alpha < \pi$, then k =

 - (2) 100
 - $(3)\ 201$
 - (4) none of these ///. mathongo ///. mathongo ///. math
 - **Q10.** The value of $\int_0^{2\pi} [\sin 2x (1+\cos 3x)] dx$, where [t] denotes the greatest integer function is

 - 0 ///. mathongo ///. mathongo ///. mathongo ///. mathongo

 - Q11. $\int_0^{2n\pi} \left\{ |\sin x| \left| \frac{1}{2} \sin x \right| \right\} dx$ equals: _____ mathongo _____ math
 - nongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

 - (4) None of these /// mathongo /// mathongo /// mathongo
 - **Q12.** If $I = \int_1^4 (\{x\})^{[x]} dx$ then $\frac{24}{13}I$ is equal to
- $(2)\frac{1}{2}$ mathongo /// mathongo // math
 - (2) 2
 - (3) 3 / mathongo ///. mathongo ///. mathongo ///. math
 - Q13. The integral value of $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{athons}{1+\sin x} dx =$ mathongo /// math
- - $(2) \ 2\pi (\sqrt{2} 1)$ mathongo /// mathongo /// mathongo

- (4) $\frac{1/4}{\sqrt{2}+1}$ mathongo $\frac{1}{4}$ mathongo $\frac{1}{4}$ mathongo $\frac{1}{4}$ mathongo $\frac{1}{4}$
- **Q14.** Statement I : If $\int_0^1 e^{\sin x} dx = \lambda$, then $\int_0^{200} e^{\sin x} dx = 200\lambda$ Statement II : $\int_0^{na} fx dx = n \int_0^a f(x) dx$, $n \in I$ given f(a + x) = f(x)
- (1) Both Statement I and Statement II are true and the Statement II is the correct explanation of the Statement I
- (2) Both Statement I and Statement II are true but the Statement II is not the correct explanation of the Statement I

 $= \int\limits_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{(\pi - x) dx}{1 + \sin x} \dots (ii)$ mathongo /// mathongo /// mathongo /// mathongo /// Q16. Let, $I = \int\limits_{-\pi}^{\pi} \sqrt{\left(\frac{1 - \cos 2x}{2}\right)} dx$

 $I = \int\limits_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\left(\frac{3\pi}{4} + \frac{\pi}{4} - x\right)}{1 + \sin\left(\frac{3\pi}{4} + \frac{\pi}{4} - x\right)} \quad \text{mathongo} \quad \text{'''} \quad \text{''} \quad$

MathonGo

$$= (199 - (-1)) \int_{0}^{\pi} |\sin x| dx$$
 mathongo /// mathong

(: $|\sin x|$ is periodic with period π and $\int_{mT}^{nT} f(x) dx = (n-m) \int_{0}^{T} f(x) dx = \int_{0}^{1} x^{p} dx \left[\frac{x^{p+1}}{p+1} \right]_{0}^{1} = \frac{1}{p+1}$

if
$$T$$
 is the period of the function $f(x)$).

Q21. The given limit can be written as

$$= 200 \int_{0}^{\infty} \sin x dx$$

$$= 200 |-\cos x|_{0}^{\pi}$$

$$= 200(1 - (-1)) = 400.$$
 mathongo /// matho

Applying Ectolic Rule,
$$-\sin^2 x \, f(\sin x) \cos x = -\cos x$$

$$\Rightarrow f(\sin x) = \frac{1}{\sin^2 x} \qquad \text{mathongo} \qquad \text{matho$$

$$\Rightarrow f(t) = \frac{1}{t^2}$$

$$f\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{\left(\frac{1}{\sqrt{3}}\right)^2} = \frac{3}{3} \text{ mathongo } \text{ mathongo$$

$$f\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{\left(\frac{1}{\sqrt{3}}\right)^2} = 3$$

$$f(x+y) = f(x) + 3y^2 + kxy..(i)$$

Differentiating both sides w.r.t.
$$x$$
, we get

Differentiating both sides w.r.t.
$$x$$
, we get $\Rightarrow f(y+1)=3y^2+ky+1$(ii)
$$f(x^2(1+x))\times(2x+3x^2)=1 \text{ (Use Newton-Leibniz Rule for } \text{In (ii), put } y=1, f(2)=3(1)+k+1=6$$
 differentiation) $\Rightarrow k=2$

At
$$x=1 \Rightarrow f(2)=\frac{1}{5}$$
 mathongo /// mathongo /// mathongo /// Using (ii), $f(y+1)=3y^2+2y+1$ /// mathongo /// mathongo /// Replace $y \to x-1$

Q20. Replace
$$y \to x - 1$$

Lt $\frac{1^p + 2^p + \ldots + n^p}{n^p} \times \frac{1}{n}$ mathongo /// mathongo ///

Q1. Given a differential equation $x\left(\frac{dy}{dx}\right)^{\frac{3}{2}} - 1 = 2\left(\frac{d^2y}{dx^2}\right) + \sin x$, (1) $\ln \tan \left(\frac{y}{2}\right) = c - 2\sin x$ (2) mathongo // mathongo //

whose order and degree are p&q respectively, then

$$(1) - q = 3$$

Mathematics

(2)
$$p - q = 1$$

(3)
$$p^q + q^p = 8$$

$$(4) p^q - q^p = 1$$

$$\mathbf{Q2.}$$
 If m and n are order and degree of the differential equation

Q3. The degree of the differential equation, of which $y^2 = 4a(x+a)$

is a solution, is ______ mathongo _____ mathongo _____ mathongo _____ mathongo

(3) 3

Q4. Solution of the differential equation $\frac{x + \frac{x^3}{3!} + \frac{x^9}{5!} \cdots}{1 + \frac{x^2}{2} + \frac{x^4}{4!} \cdots} = \frac{dx - dy}{dx + dy}$ is

$$(1) 2ye^{2x} = ce^{2x} + 1$$

(2)
$$2ye^{2x} = 2ce^{2x} - 1$$
 mathongo /// mathongo /// mathongo

(3)
$$ye^{2x} = ce^{2x} + 2$$

(4) None of these /// mathongo /// mathongo

Q5. If f(x) satisfies the differential equation $\frac{dy}{dx} = (x-y)^2$ and given that y(1) = 1, then

$$(1) - \ln \left| \frac{1 - x + y}{1 + x - y} \right| = 2(x - 1)$$

(2)
$$\ln \left| \frac{2-y}{2-x} \right| = x + y - 1$$

(3)
$$\ln \left| \frac{1-x+y}{1+x-y} \right| = 2(x-1)$$

$$(4) \frac{1}{2} \ln \left| \frac{1 - x + y}{1 + x - y} \right| + \ln |x| = 0$$

and it passes through (-1,1) The equation of the curve is

(1)
$$y = x^3 + 2$$

(2)
$$y = -x^3 - 2$$

(3)
$$y = 3x^3 + 4$$

$$(4) y = -x^3 + 2$$

(4) $y = -x^3 + 2$ mathongo m

Q7. The general solution of the differential equation

$$(1)\ln\tan\left(\frac{y}{2}\right) = c - 2\sin x$$

(2)
$$\ln \tan \left(\frac{y}{4}\right) = c - 2\sin\left(\frac{x}{2}\right)$$
(3) $\ln \tan \left(\frac{y}{2} + \frac{\pi}{4}\right) = c - 2\sin x$

$$(3)\ln\tan\left(\frac{y}{2} + \frac{\pi}{4}\right) = c - 2\sin x$$

$$(4) \ln \tan \left(\frac{y}{4} + \frac{\pi}{4}\right) = c - 2\sin \left(\frac{x}{2}\right)$$
 mathongo

Q8. If $x^3 dy + xy \cdot dx = x^2 dy + 2y dx$; y(2) = e and x > 1, then y(4)

(4)
$$p^q - q^p = 1$$
 mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo // mat

$$(1)\frac{\sqrt{e}}{2}$$

$$(2)\frac{1}{2} + \sqrt{e}$$
 mathong

$$(3) \frac{3}{2} \sqrt{e}$$

$$(4) \frac{3}{2} + \sqrt{e}$$
 mathongo ///. mathongo ///. mathongo

Q9. The equation of the curve satisfying the equation

$$\left(xy-x^2
ight)rac{dy}{dx}=y^2$$
 and passing through the point $(-1,1)$ is

(2)
$$2_{\text{mathongo}}$$
 /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

$$(2) y = (\log y + 1)x$$

$$(4) x = (\log x + 1)y$$

$$(4) x = (\log x + 1)y$$

Q10. The solution of
$$(x^2 + xy) dy = (x^2 + y^2) dx$$
 is

$$(1)\log x = \log(x - y) + \frac{y}{x} + C$$

(1)
$$\log x = \log(x-y) + \frac{y}{x} + C$$

(2) $\log x = 2\log(x-y) + \frac{y}{x} + C$

(3)
$$\log x = \log(x - y) + \frac{x}{y} + C$$
(4) none of these

Q11. Let y = y(x) be the solution of the differential equation

given that
$$y(1)=1$$
, then
$$\sin x \frac{dy}{dx} + y \cos x = 4x, x \in (0,\pi). \text{ If } y\left(\frac{\pi}{2}\right) = 0, \text{ then } y\left(\frac{\pi}{6}\right) \text{ is}$$

$$(1) -\ln\left|\frac{1-x+y}{1+x-y}\right| = 2(x-1)$$

$$(2) \ln\left|\frac{2-y}{y}\right| = x+y-1$$

$$(2) \ln\left|\frac{2-y}{y}\right| = x+y-1$$

$$(1) - \frac{4}{9}\pi^2$$

(3)
$$\ln \left| \frac{1-x+y}{1+x-y} \right| = 2(x-1)_{\text{mathongo}}$$
 /// mathongo ///

$$(2) \frac{1}{9\sqrt{3}} \pi$$
 $(3) \frac{-8}{9\sqrt{3}} \pi^2$

3)
$$\frac{-8}{9\sqrt{3}}\pi^2$$

Q6. The slope at any point of a curve
$$y = f(x)$$
 is given by $\frac{dy}{dx} = 3x^2$ (4) $-\frac{8}{9}\pi^2$ mathongo /// mathongo ///

$$-\frac{6}{9}\pi^2$$

mathongo /// mathongo // mathong

(1)
$$\left(\frac{1}{\log z}\right)x=2-x^2c$$

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$(2) \left(\frac{1}{\log z}\right) x = 2 + x^2 c$$

$$(3) \left(\frac{1}{\log z}\right) x = x^2 c$$

$$(4) \left(\frac{1}{x}\right) x = \frac{1}{x} + cx^2$$

$$(4) \left(\frac{1}{\log z}\right) x = \frac{1}{2} + cx^2$$

 $\frac{dy}{dx} + \sin\left(\frac{x+y}{2}\right) = \sin\left(\frac{x-y}{2}\right)$ is (where c is an arbitrary constant) mathongo /// mathongo /// mathongo ///

MathonGo

Q13. A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the slope of the $\cot^2(1)\sin^2 x \cdot y = x^2 + C$ $(2)\sin^2 x \cdot y^2 = x^2 + C$ curve at each point (x, y) be $\frac{y}{x} + \sec(\frac{y}{x}), x > 0$. Then the equation (3) $\sin x \cdot y^2 = x^2 + C^{\odot}$ /// mathongo /// mathongo mathongo ///. mathongo ///. matl of the curve is $(4)\sin^2 x \cdot y^2 = x + C$ (2) $\csc\left(\frac{y}{x}\right) = \log x + 2$ mathongo /// m $(1)\sin\left(\frac{y}{x}\right) = \log x + \frac{1}{2}$

Q18. If $xdy = ydx + y^2dy$ and y(1) = 1 then find the value of y(-3)(3) $\sec\left(\frac{2y}{x}\right) = \log x + 2$ mathongo /// mathongo /// mathongo

Q19. If a curve y = f(x) passing through (1, 2) satisfies the $(4)\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$ differential equation y(1 + xy)dx - xdy = 0, then which of the following option is correct? /// mathongo /// mathongo Q14. The integrating factor of the differential equation

 $\frac{dy}{dx} + \frac{y}{(1-x)\sqrt{x}} = 1 - \sqrt{x} \text{ may be}$ $(1) f(x) = \frac{2x}{2-x^2}$ $(2) f(x) = \frac{x+1}{x^2+1}$ mathongo /// m (3) $f(x) = \frac{x-1}{4-x^2}$ (4) $f(x) = \frac{4x}{1-2x^2}$

(4) $\frac{\sqrt{x}}{1-\sqrt{x}}$ thongo /// mathongo /// mathongo /// mathongo /// mathongo /// ishongo

Q15. The solution of differential equation $\left(1+y^2\right)+\left(x-e^{ an^{-1}y}\right)rac{dy}{dx}=0$ is with mathongo with math (2) f(x)=y(c-x) and y=0 with mathongo with mathongo with mathongo with mathongo with mathon (2) f(x)=y(c-x) and (2) f(x)=y(c-x) f(x)=y(

 $(1) 2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$ (2) $2xe^{\tan^{-1}y} = e^{\tan^{-1}y} + k$ athongo /// mathongo /// mathongo /// mathongo /// mathongo

(3) $xe^{\tan^{-1}y} = e^{\tan^{-1}y} + k$ **Q21.** The orthogonal trajectory of $x^2 - y^2 = a^2$, where a is an (4) $xe^{\tan^{-1}y} = e^{\tan^{-1}y} - k$ mathongo ///. mathongo ///.

Q16. The solution of the initial value problem mathongo /// mat (1) A parabola (2) A circle

arbitrary constant, is

 $(2\ln x)\frac{dy}{dx} + \frac{y}{x} = \frac{1}{y}\cos x, y > 0, x > 1$ and $y\left(\frac{3\pi}{2}\right) = 0$ is given by (3) An ellipse mathongo /// mathongo /// mathongo

which of the following options? ongo /// mathongo /// mat (4) A hyperbola $(1) y = a\sqrt{\frac{1-\sin x}{\ln x}}$

(2) $y = a\sqrt{\frac{1+\sin x}{\ln x}}$ /// mathongo /// mathongo /// mathongo **Q22.** The population p(t) at a time t of a certain mouse species (3) $y=a\sqrt{\frac{1-\cos x}{\ln x}}$ (4) $y=a\sqrt{\frac{1+\cos x}{\ln x}}$ /// mathongo /// mathongo /// mathongo satisfies the differential equation $rac{dp(t)}{dt} = 0.5p(t) - 450.$ If

p(0) = 850, then the time at which the population becomes zero is $(1) \frac{1}{2} \ln 18$ Q17. The solution of the differential equation //. mathongo //. mathongo //. mathongo /

 $(2) \ln 18$ $y(\sin^2 x) dy + (\sin x \cos x)y^2 dx = x dx$ is (where C is the constant $(3) 2 \ln 18$

(4) ln 9

QI.	$\mathbf{Q5.}\ x-y=t$		
We have, $x\left(\frac{dy}{dx}\right)^{\frac{3}{2}}=2\left(\frac{d^2y}{dx^2}\right)+\sin x+1$ Square both the sides we get,	$1-rac{dy}{dx}=rac{dt}{dx}$ Hence $1-rac{dt}{dx}=t^2$		

Square both the sides we get,
$$x^2 \left(\frac{dy}{dx}\right)^3 = \left(2\left(\frac{d^2y}{dx}\right) + \sin x + 1\right)^2 \\ \text{Here. Order} = p = 2$$

$$\Rightarrow 1 - t^2 = \frac{dt}{dx}$$

$$\Rightarrow \int \frac{dt}{1 - t^2} = \int dx$$

Here, Order= p =

Degree=
$$q=2$$

Then, $p^q + q^p = 2^2 + 2^2 = 8$

The given differential equation can be written as

$$\left(rac{d^2y}{dx^2}
ight)^5rac{d^3y}{dx^3}+4\left(rac{d^2y}{dx^2}
ight)^3+\left(rac{d^3y}{dx^3}
ight)^2$$
 mothongo ///

$$= \left(x^2 - 1\right) \frac{d^3y}{dx^3}$$

$$\Rightarrow m=3, \ n=2$$

Q3. mathongo /// mathongo /// mathongo /// mathongo $\frac{dy}{dx} = 3x^2$ mathongo /// mathongo $\frac{dy}{dx} = 3x^2 dx$

We have,
$$v^2 = 4a (x + a)... (1)$$

$$2y \; \tfrac{\mathrm{d} y}{\mathrm{d} x} = 4a \; \Rightarrow \; a = \tfrac{y}{2} \tfrac{\mathrm{d} y}{\mathrm{d} x}.$$

On substituting the value of a in equation (1), we get $y = 3\left(\frac{x^3}{3}\right) + c$ much ongo

$$y^2=2yrac{\mathrm{d}y}{\mathrm{d}x}\left[x+rac{y}{2}rac{\mathrm{d}y}{\mathrm{d}x}
ight]$$

$$\Rightarrow y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx}\right)^2$$

$$\Rightarrow y \left[1 - \left(\frac{dy}{dx}\right)^2\right] = 2x \cdot \frac{dy}{dx}, \text{ which is the required differential}$$
Hence, the required curve is nathongo

The degree of the differential equation is 2/ mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Hence, (B) is the correct answer.

ce, (B) is the correct answer. Mathongo Mathon

$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \infty$$

$$\frac{1}{1+\frac{x^3}{3!}+\frac{x^5}{5!}\dots} = \frac{dx-dy}{dx+dy} = \frac{dx-dy}{dx+dy} = \frac{dx-dy}{dx+dy} = \frac{dx-dy}{dx+dy} = \frac{dx-dy}{dx+dy}.$$
 mathongo /// mathongo /// On integrating both sides, we get

$$rac{dy}{dx} = e^{-2x}$$

$$\int \frac{dy}{dx} = \int e^{-2x} \Rightarrow y = -\frac{1}{2}e^{-2x} + c$$

$$2ye^{2x} = 2ce^{2x} - 1.$$

 $2ye^{2x}=2ce^{2x}-1.$ mathongo /// mathongo ///

$$1 - \frac{dy}{dx} = \frac{dt}{dx}$$

Hence
$$1-rac{dt}{dx}=t^2$$

$$\Rightarrow rac{1}{2} \log \left| rac{1+t}{t-1}
ight| = x+c$$

Here, Order=
$$p=2$$

$$\Rightarrow \frac{1}{2}\log\left|\frac{1+t}{t-1}\right| = x+c$$

$$\Rightarrow \frac{1}{2}\log\left|\frac{x-y+1}{x-y-1}\right| = x+c$$
Then, $p^q+q^p=2^2+2^2=8$

At
$$x = 1$$
 and $y = 1$, we get $c = -1$

At
$$x = 1$$
 and $y = 1$, we get $c = -$

At
$$x=1$$
 and $y=1$, we get $c=-1$
Hence $\frac{1}{2}\log\left|\frac{x-y+1}{x-y-1}\right|=x-1$
Hence $-\ln\left|\frac{1-x+y}{1+x-y}\right|=2(x-1)$

Hence
$$-\ln\left|\frac{1}{1+x-y}\right| = 2(x-1)$$

Q6.

we have,
$$\frac{dy}{dx} = 3x^2$$

$$\Rightarrow dy = 3x^2 dx$$

On differentiating w.r.t. x , we get $\int dy = 3 \int x^2 dx$ Integrating both sides, we have $\int dy = 3 \int x^2 dx$

$$\int dy = 3 \int x^2 dx$$

$$\Rightarrow y = 3\Big(rac{x^3}{3}\Big) + c$$

$$\Rightarrow y = 3\left(\frac{x}{3}\right) + c$$

$$\Rightarrow y = x^3 + c$$

 $y = 2y \frac{dy}{dx} \left[x + \frac{1}{2} \frac{dx}{dx} \right]$ mathongo It is passing through (-1, 1). Therefore, $\Rightarrow y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx} \right)^2$ $\Rightarrow 1 = (-1)^3 + c \Rightarrow c = 2$

$$\Rightarrow 1 = (-1)^3 + c \Rightarrow c = 2$$

$$\Rightarrow \frac{dy}{dx} = \sin\left(\frac{x-y}{2}\right) - \sin\left(\frac{x+y}{2}\right)$$

$$\Rightarrow rac{dy}{dx} = -2\sin\left(rac{y}{2}
ight)\cos\left(rac{x}{2}
ight)$$

$$+\Rightarrow \; \mathrm{cosec} \; \Big(rac{y}{2}\Big) dy = -2 \cos\Big(rac{x}{2}\Big) dx$$

$$\Rightarrow \csc\left(\frac{y}{2}\right)dy = -2\cos\left(\frac{x}{2}\right)dx$$
 of

$$-2\cos\left(\frac{x}{2}\right)dx$$
 athong

On integrating both sides, we get

$$\frac{dy}{dx} = e^{-2x}$$

$$\int \frac{dy}{dx} = \int e^{-2x} \Rightarrow y = -\frac{1}{2}e^{-2x} + c$$

$$\Rightarrow \frac{\ln\left(\tan\frac{y}{4}\right)}{\frac{1}{2}} = -\frac{2\sin\left(\frac{x}{2}\right)}{\frac{1}{2}} + c$$

$$\Rightarrow \ln\left(\tan\frac{y}{4}\right) = c - 2\sin\left(\frac{x}{2}\right)$$

$$\Rightarrow \ln\left(\tan\frac{y}{4}\right) = c - 2\sin\left(\frac{x}{2}\right)$$

$$\Rightarrow \ln\Bigl(anrac{y}{4}\Bigr) = c - 2\sin\Bigl(rac{y}{4}\Bigr)$$

$$x^3dy+xy\cdot dx=x^2dy+2y$$

Mathematics MathonGo

$$\Rightarrow (x^3 - x^2) dy = (2 - x)y dx$$
 thongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow rac{dy}{y} = rac{(2-x)}{(x^3-x^2)} dx$$
 We have, $(xy-x^2) rac{dy}{dx} = y^2$

Integrating both sides with respect to x, we get $y^2 \frac{dx}{dy} = xy - x^2$ mathongo $y^2 \frac{dx}{dy} = xy - x^2$

$$\int \frac{dy}{y} = \int \frac{(2-x)}{x^2(x-1)} dx + k \dots (i)$$

$$\Rightarrow \frac{1}{x^2} \frac{dx}{dy} - \frac{1}{x} \cdot \frac{1}{y} = -\frac{1}{y^2}$$

$$\text{Put } \frac{1}{x} = \mathbf{v} \Rightarrow -\frac{1}{x^2} \frac{dx}{dy} = \frac{d\mathbf{v}}{dy}$$

$$\Rightarrow (2-x) = Ax(x-1) + B(x-1) + Cx^2$$

$$\Rightarrow (2-x) = Ax(x-1) + B(x-1) + Cx^2$$

$$\therefore \frac{dv}{dy} + \frac{v}{y} = \frac{1}{y^2}, \text{ which is linear}$$

$$\Rightarrow (2-x) = Ax(x-1) + B(x-1) + Cx^2$$

$$\Rightarrow (3-x) = Ax(x-1) + B(x-1) + B(x-1) + Cx^2$$

$$\Rightarrow (3-x) = Ax(x-1) + B(x-1) +$$

Putting
$$x=1\Rightarrow 2-1=C\Rightarrow C=1$$
Putting $x=1\Rightarrow 2-1=C\Rightarrow C=1$

$$\Rightarrow \frac{y}{x}=\log|y|+c$$

$$x=2\Rightarrow 2-2=A(2)(1)+B(1)+C\left(2^2\right)\Rightarrow 2A+2=0\Rightarrow A=-1\Rightarrow y=x(\log|\mathrm{y}|+c)$$

From equation (i), we get This posses through the point (-1, 1).

$$\int \frac{dy}{y} = \int \left(\frac{-1}{x} + \frac{-2}{x^2} + \frac{1}{x-1}\right) dx + k$$

$$\Rightarrow \ln y = -\ln x + \frac{2}{x} + \ln|x-1| + k \dots (ii)$$
ie, $c = -1$

Given
$$y(2) = e$$
 i.e. at $x = 2$, $y = e$ /// mathong // Thus, the equation of the curve is $y = x (\log |y| - 1)$

$$\Rightarrow$$
 1 \Rightarrow 2 \Rightarrow 1 \Rightarrow 1

Putting in equation (ii), we get ongo /// mathongo /// mathongo
$$x^2dy + xydy = x^2dx + y^2dx$$
 thougo /// mathongo dividing both sides by x^2

Now putting
$$x=4$$
, we get athongo /// mathongo /// mathongo $dy+\frac{y}{x}dy=dx+\left(\frac{y}{x}\right)^2dx$ // mathongo /// mathongo

$$\ln y = -\ln 4 + \frac{2}{4} + \ln|4 - 1| + \ln 2$$

$$\Rightarrow \ln y = -2\ln 2 + \frac{1}{2} + \ln 3 + \ln 2$$

$$(1 + \frac{y}{x})\frac{dy}{dx} = 1 + \left(\frac{y}{x}\right)^2 \qquad \dots (i)$$
As it is of type $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$

$$\Rightarrow \ln y = -2 \ln 2 + rac{1}{2} + \ln 3 + \ln 2$$
 // mathongo // mathongo // As it is of type $rac{dy}{dx} = f \left(rac{y}{x}
ight)$ // mathongo

$$\Rightarrow \ln y = -\ln 2 + \frac{1}{2} + \ln 3$$

$$\Rightarrow \ln y = \frac{1}{2} + \ln \frac{3}{2}$$
mathongo | math

$$\Rightarrow \ln \frac{2y}{3} = \frac{1}{2}$$
 from equations (i) and (ii), we get
$$\frac{2y}{3} = e^{\frac{1}{2}}$$
 mathongo /// mathongo

$$\Rightarrow y = \frac{3}{2}\sqrt{e}$$

$$\Rightarrow y(4) = \frac{3}{2}\sqrt{e}$$

$$\text{mathongo}$$

$$\Rightarrow y(4) = \frac{3}{2}\sqrt{e}$$

$$\text{mathongo}$$

$$\text{integrating both sides,}$$

Q9.
$$\max \frac{dy}{dx} = \frac{y^2}{xy - x^2}$$
 mathongo /// mathongo // mathongo /

Put,
$$y = vx$$

$$\Rightarrow v + x \frac{dv}{dx} = \frac{v^2}{v-1} - v = \frac{v}{v-1} \text{ mathongo } v \text{ mathongo$$

MathonGo

$$y\left(\frac{\pi}{2}\right)$$
 and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right)$ are $y\left(\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{2}\right$

$$\begin{array}{l} \vdots \ g\left(\frac{1}{2}\right) = 0 \\ \vdots \ 0 \times 1 = 2 \times \left(\frac{\pi}{2}\right)^2 + c \\ \vdots \ mathematical mathematical$$

$$y\left(\frac{\pi}{6}\right) = \frac{2\times\left(\frac{\pi}{6}\right)^2 - \left(\frac{\pi^2}{2}\right)}{\frac{1}{2}} = \left[\left(\frac{\pi^2}{18}\right) - \left(\frac{\pi^2}{2}\right)\right] \times 2 \text{ nathongo } \text{ mathongo } \text{ mathongo$$

$$=\frac{\pi^2}{9}-\pi^2$$

$$=\frac{8\pi^2}{9}$$
.: If $=e^{\int \frac{2}{1-t^2}dt}$ mathongo /// mathongo // mathong

Given equation can be rewritten as

Dividing given equation by
$$z(\log z)^2$$
, and though $\frac{dx}{dy} + \frac{1}{(1+y^2)}x = \frac{1}{(1+y^2)}$ mathong $\frac{dx}{dy} + \frac{1}{(1+y^2)}x = \frac{1}{(1+y^2)}$

Put
$$\frac{1}{\log z} = t \Rightarrow -\frac{1}{(\log z)^2} \cdot \frac{1}{z} \cdot \frac{dz}{dx} = \frac{dt}{dx}$$
 mathongo $\frac{1}{\log z} = \frac{1}{\log z$

$$\therefore -\frac{dt}{dx} + \frac{t}{x} = \frac{1}{x^2}$$

$$\Rightarrow \frac{dt}{dx} = \frac{t}{x} = -\frac{1}{x^2} \dots (i)$$

$$\Rightarrow \frac{dt}{dx} = \frac{1}{x^2} \dots (i)$$

Now, integrating factor
$$I$$
. $F = e^{\int -\frac{dx}{x}} = e^{-\ln x} = e^{\ln \frac{1}{x}} = \frac{1}{x}$

Put $e^{\tan^{-1}y} = t \Rightarrow e^{\tan^{-1}y} = t$
 $\Rightarrow \frac{t}{x} = -\int \frac{1}{x^3} dx = \frac{1}{2x^2} + c$, where, c is the constant of integration.

 $\Rightarrow 2xe^{\tan^{-1}y} = e^{2\tan^{-1}y} + k$

$$\Rightarrow \frac{1}{x \log z} = \frac{1}{2x^2} + c$$

$$\Rightarrow \left(\frac{1}{\log z}\right) x = \left(\frac{1}{2}\right) + cx^2.$$
mathongo /// mathongo // mathongo /

Differentiating this wrt
$$x$$
 mathongo /// mathongo /// mathongo /// which is a LDE,

$$\Rightarrow \frac{dy}{dx} = t + x \frac{dt}{dx} \dots (ii)$$
Now using equation (i) and (ii), we have
$$t + x \frac{dt}{dx} = t + \sec(t)$$
Which is a LDE,
$$\therefore y^2 \ln x = z \ln x = \sin x + C$$
Now, $y(\frac{3\pi}{2}) = 0 \Rightarrow C = 1$

$$\begin{array}{c} \mathrm{Now},\;y\left(\frac{3t}{2}\right)=0\;\Rightarrow C=1\\ \\ \overset{dt}{\Rightarrow}\frac{dt}{\sec(t)}=\frac{dx}{x} \\ \\ \mathrm{Integrating\;both\;sides}. \end{array}$$

Integrating both sides.
$$y = \sqrt{\frac{1}{\ln x}}$$
 $(\because y > 0)$

[1] You have $y = \sqrt{\frac{1+\sin x}{\ln x}}$ where a is any constant. Hongo

The grating both sides.
$$\int \cos(t) dt = \int \frac{1}{x} dx$$
 where a is any constant. Hongo

$$\sin(t) = \ln(x) + c$$

/// mathongo // mathongo /// mathongo // mathongo // mathongo // mathongo // mathongo //

Now Put value of
$$t$$
 in above equation. Q17. The given equation is

$$\sin\left(\frac{y}{x}\right) = \ln(x) + \text{c....}(iii)$$
 $\left(\sin^2 x\right)(2ydy) + (2\sin x\cos x dx)y^2 = 2xdx$ Given that curve passes through $\left(1, \frac{\pi}{6}\right)$ so put in above equation. or $d\left(\sin^2 x \cdot y^2\right) = 2xdx$

$$\sin\left(\frac{\pi}{6}\right) = \ln(1) + c \Rightarrow c = \frac{1}{2}$$
 Mow, put the value of c in equation (iii)

On integrating, we get mathongo

 $\sin^2 x \cdot y^2 = x^2 + C$

$$\sin\left(\frac{y}{x}\right) = \ln(x) + \frac{1}{2}$$
 /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Q1. Let f(x), g(x) be two continuous differentiable functions satisfying the relationships f'(x) = g(x) and f''(x) = -f(x).

Let $h(x) = [f(x)]^2 + [g(x)]^2$. If h(0) = 5, then h(10) = 6

(1) 10 mathongo $^{1/\!\!/}$ mathongo $^{1/\!\!/}$ (2)5

(3) 15 nathongo /// mathongo /// mathongo ///

(4) None of these

(1) 1 mathongo ///. mathongo ///. mathongo ///.

Q2. If $\log(x+y) - 2xy = 0$. Then y'(0) =

(2) -1(3) 2 mathongo ///. mathongo ///. mathongo ///.

(4) 0

Q3. If $x = e^t \sin t$, $y = e^t \cos t$, t is a parameter, then $\frac{d^2y}{dt^2}$ at

(1,1) is equal to /// mathongo /// mathongo

 $(1)-\frac{1}{2}$ $\frac{2}{1/4}$ mathongo $\frac{2}{1/4}$ mathongo $\frac{2}{1/4}$ mathongo

(3) 0 mathongo /// mathongo /// mathongo ///

 $(4) \frac{1}{2}$

Q4. If the derivative of $f(\tan x)$ w.r.t. $g(\sec x)$ at $x = \frac{\pi}{4}$, where f'(1)=2 and $g'(\sqrt{2})=4$ is $\frac{\sqrt{2}}{k}$ then find k?

Q5. $\frac{d}{dx} \left(\tan^{-1} \frac{\cos x}{1 + \sin x} \right) =$

mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$ mathongo $\frac{1}{2}$

nongo ///. mathongo ///. mathongo ///. ma

(4) 1 hongo ///. mathongo ///. mathongo ///. ma

Q6. If $y = \sin^{-1}\left(\frac{5x + 12\sqrt{1 - x^2}}{13}\right)$, then $\frac{dy}{dx}$ is equal to

(2) $\frac{100100}{\sqrt{1-x^2}}$ //// mathongo //// mathongo //// mathongo

(3) $\frac{3}{\sqrt{1-x_1^2}}$ mathongo /// mathongo /// mathongo ///

Q7. Let $f(x) = x + \frac{mathogo}{2x + \frac{1}{2x + \frac{1}{2r + \frac{1}2r + \frac{1}{2r + \frac{1}{2r + \frac{1}{2r + \frac{1}{2r + \frac{1}{2r + \frac{1}{2r +$

f(100). f'(100) is mathongo /// mathongo /// mathongo

(1) 100 mathongo /// mathongo // mathongo //

(3) $\overline{1100}$ mathongo mathon

Answer Key				
Q1 (2) ///.	math Q2 (1)	Q3 (1) muthongo	/// mathony Q4 (2.00) mathongo ///. ma
Q5 (1) ///. mathongo ///.	Q6 (1) mathongo //	Q7 (1) mathongo		

MathonGo

01. mathongo ///. mathongo ///. mathongo ///.

Again differentiating w.r.t. x, we get

Given f(x), g(x) are two continuous differentiable functions

satisfying
$$f^{\,\prime}(x) {=} \; g(x), \; f^{\,\prime\prime}(x) {=} \; g^{\,\prime}(x)$$
 and $f^{\,\prime\prime}(x) {=} \; -f(x)$

Hence
$$g'(x) = -f(x)$$
 mathongo /// mathongo

Given
$$h(x) = [f(x)]^2 + [g(x)]^2$$

$$h'(x) = 2f(x) f'(x) + 2g(x) g'(x)$$

$$h'(x) = 2[f(x) g(x) + g(x) [-f(x)]]$$

Q2. mathongo ///. mathongo ///. mathongo

Differentiate equation (1) w.r.t x mode /// mothongo

$$h'(x) = 2[f(x) g(x) - f(x) g(x)] = 0$$

$$h(x) = C$$
, a constant

$$\therefore$$
 h(0)= C i.e. C = 5 mathongo /// mathongo

$$h(x) = 5$$
 for all x.

Hence
$$h(10)=5$$
. /// mathongo /// mathongo

 $\frac{1}{x+y}\left(1+\frac{dy}{dx}\right)-2\left(x\frac{dy}{dx}+y\right)=0$

 $\log(0+y) = 0 \Rightarrow y_{(0)} = 1$

 $\tan t = 1 \implies t = \frac{\pi}{4}$

Given, $\log(x+y) - 2xy = 0$ (1)

$$\frac{d^2y}{dx^2} = \frac{dx}{dt} \left(\frac{\cos t - \sin t}{\cos t - \sin t} \right) \frac{dt}{dx}$$

$$\frac{d^2y}{dx^2} = \frac{dx}{dt} \left(\frac{\cos t - \sin t}{\cos t - \sin t} \right) \frac{dt}{dx}$$

$$= \left[\frac{\left[(\cos t + \sin t) \left(-\sin t - \cos t \right) - (\cos t - \sin t) \left(-\sin t + \cos t \right) \right]}{(\cos t + \sin t)^2} \right] \frac{dt}{dx}$$

$$= \frac{-2}{(\cot t + \cot t)^2} \cdot \frac{1}{\cot (\sin t + \cot t)}$$

$$= \frac{-2}{(\cos t + \sin t)^2} \cdot \frac{1}{e^t (\sin t + \cos t)}$$
 mothongo /// mathongo /// mo

$$egin{aligned} &= rac{-2}{(e^t \cos t + e^t \sin t)} \cdot rac{1}{(\cos t + \sin t)^2} \ &= rac{-2}{x + y} \cdot rac{1}{(\cos t + \sin t)^2} \; ext{ [from Equation(1)]} \end{aligned}$$

At
$$t=\frac{\pi}{4}, x=1, y=1$$
 thongo /// mathongo /// mo

$$\therefore \frac{d^2y}{dx^2} = \frac{-2}{1+1} \cdot \frac{1}{\left(\cos\frac{\pi}{4} + \sin\frac{\pi}{4}\right)^2} \\ = \frac{-1}{\left\lceil \frac{1}{1} + \frac{1}{1} \right\rceil} = -\frac{1}{2}$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \end{bmatrix}$$
 mathongo ///. mathongo ///. mathongo ///.

Q4.

Let
$$u = f(\tan x)$$
 and $v = g(\sec x)$ // mathongo /// m

$$\Rightarrow rac{du}{dx} = f'(an x) \mathrm{sec}^2 \, x$$

$$\Rightarrow rac{du}{dx} = f'(an x) \sec^2 x$$
 and $rac{dv}{dx} = g'(\sec x) \sec^2 x$ tan x

and
$$\frac{dv}{dx} = g'(\sec x)\sec x \tan x$$

$$\Rightarrow \frac{du}{dv} = \frac{du}{dx} / \frac{dv}{dx} = \frac{f'(\tan x)\sec^2 x}{g'(\sec x)\sec x \tan x}$$

$$\Rightarrow \left[\frac{du}{dv}\right]_{x=\frac{\pi}{4}} = \frac{f'\left(\tan\frac{\pi}{4}\right)}{g'\left(\sec\frac{\pi}{4}\right)\sin\frac{\pi}{4}} = \frac{f'(1)\sqrt{2}}{g'\left(\sqrt{2}\right)}$$

$$= \frac{2\sqrt{2}}{2} = \frac{1}{2}$$

$$\Rightarrow \left[\frac{du}{dv}\right]_{x=\frac{\pi}{4}} = \frac{f\left(\operatorname{val}\frac{\pi}{4}\right)}{g'\left(\operatorname{sec}\frac{\pi}{4}\right)\operatorname{sin}\frac{\pi}{4}} = \frac{f'(1)\sqrt{2}}{g'\left(\sqrt{2}\right)}$$

$$\frac{1}{x+y} \left(1 + \frac{uy}{dx} \right) - 2 \left(x \frac{dy}{dx} + y \right) = 0
\left(\frac{1}{x+y} - 2x \right) \frac{dy}{dx} + \left(\frac{1}{x+y} - 2y \right) = 0
\Rightarrow \frac{dy}{dx} = -\frac{1-2xy-2y^2}{1-2xy-2x^2}
\text{Hence,} y'(0) = -\frac{1-0-2y_{(0)}^2}{1-0-0} \dots (2)$$

$$\Rightarrow \left[\frac{1}{dv} \right]_{x=\frac{\pi}{4}} = \frac{1}{y'\left(\sec\frac{\pi}{4}\right)\sin\frac{\pi}{4}} = \frac{1}{y'\left(\sqrt{2}\right)} \\
= \frac{2\sqrt{2}}{4} = \frac{1}{\sqrt{2}} \\
= \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
= \frac{\sqrt{2}}{2}$$

Now put
$$x = 0$$
 in equation (1) hongo /// mathongo /// $= \frac{\sqrt{2}}{k}$ ongo /// mathongo /// mat

$$\frac{\sqrt{2}}{k}$$
 mathongo $\frac{\sqrt{2}}{k}$ mathongo $\frac{\sqrt{2}}{k}$

$$\Rightarrow k = 2$$
.

from equation (2) // mathongo // mathongo // y'(0) = 1

Given that, $x = e^t \sin t$, $y = e^t \cos t$...(1)

Q5.
$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos x}{1 + \sin x} \right) \right] \text{ mathongo } \text{ ///} \text{ mathongo } \text{ ///} \text{ mother}$$

$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan \left(\frac{x}{2} \right)}{1 + \tan \left(\frac{x}{2} \right)} \right) \right]$$

At point
$$(1,1), 1=e^t \sin t, 1=e^t \cos t$$

$$\tan t = 1 \Rightarrow t = \frac{\pi}{4}$$

$$= \frac{\frac{d}{dx} \left[\tan^{-1} \left(\frac{\frac{2}{\cos \frac{x}{2} + \sin \frac{x}{2}}}{\cos \frac{x}{2} + \sin \frac{x}{2}} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan \left(\frac{x}{2} \right)}{1 + \tan \left(\frac{x}{2} \right)} \right) \right]$$

$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan \left(\frac{x}{2} \right)}{1 + \tan \left(\frac{x}{2} \right)} \right) \right]$$
mathongo
$$= \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan \left(\frac{x}{2} \right)}{1 + \tan \left(\frac{x}{2} \right)} \right) \right]$$

On differentiating Equation (1) w.r.t.
$$x$$
, we get
$$dx = \frac{dx}{dx} \left[\tan^{-1} \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right]$$

$$dx = \frac{d}{dx} \left[\tan^{-1} \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right]$$

$$dx = \frac{d}{dx} \left[\tan^{-1} \tan \left(\frac{\pi}{4} - \frac{x}{2} \right) \right]$$

$$= -\frac{1}{2}$$
o ///. mathongo ///. mathongo ///. mathongo ///.

$$rac{dy}{dt} = e^t(\cos t - \sin t)$$
 $= -rac{1}{2}$ and $rac{dx}{dt} = e^t(\sin t + \cos t)$ athongo ///. mathongo ///. mathongo ///. mathongo ///.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t - \sin t}{\cos t + \sin t}$$
 mathongo /// mathongo // mathongo //

$$y = \sin^{-1}\left(\frac{3\sin(2\sqrt{1-x^2})}{10}\right) = \cos^{-1}\left(\frac{3\sin(2\sqrt{1-x^2})}{10}\right) = \cos^{-1}\left(\frac{3\sin(2\sqrt{1-x^2})}{10$$

Q1. If the domain of f(x) is [1,3], then the domain of $f(\log_2(x^2+3x-2))$

- (1) [-5,14] U [1, 2] /// mathongo /// mathongo /// mathongo
- $(2) [-13, -2] \cup \left| \frac{3}{5}, 5 \right|$
- (4)[-3,2]
- **Q2.** The domain of the function $f(x) = e^{\sin(x-[x])} + [x] \cos\left(\frac{\pi}{(x+1)}\right)$, (where
- [·] represents greatest integer function), is:
- (1) R mathongo /// mathongo /// mathongo /// mathongo
- (2) R [-1, 0]
- (3) $R = \{0,1\}$ ngo /// mathongo /// mathongo /// mathongo
- (4) R [-1, 0)
- Q3. The range of values of m for which the line y = mx and the curve
- $y = \frac{x}{x^2+1}$ enclose a region, is

- (1) (#1,1) ongo ///. mathongo ///. mathongo ///. mathongo
- (2)(0,1)
- (3) 1]mathongo ///. mathongo ///. mathongo ///. mathongo
- $(4) (1, \infty)$
- **Q4.** For p > 2 and $x \in R$, if the number of natural numbers in the range of
- $f(x) = rac{x^2 + 2x + p}{x^2 + 2x + 2}$ is 3, then the value of p is equal to
- (1) 3 mathongo /// mathongo /// mathongo /// mathongo
- (2)4
- (3) 5 mathongo ///. mathongo ///. mathongo
- **Q5.** If the graph of the function $f(x) = \frac{a^x 1}{x^n (a^x + 1)}$ is symmetrical about Y-axis, then n equals
- (1) 2 mathongo ///. mathongo ///. mathongo ///. mathongo
- $(2)^{\frac{2}{3}}$ $(3) \frac{1}{4}$ mathongo /// mathongo /// mathongo
- $(4) \frac{1}{2}$
- **Q6.** The function $f(x) = \frac{x}{e^x 1} + \frac{x}{2} + 1$ is mathongo /// mathongo
- (1) an odd function
- (2) an even function /// mathongo /// mathongo /// mathongo
- (3) neither an odd nor an even function
- (4) a periodic function
- Q7. The period of the function $f(\theta) = \sin \frac{\theta}{3} + \cos \frac{\theta}{3}$ is
- (1) 3πnathongo ///. mathongo ///. mathongo
- $(2) 6\pi$
- (3) $9\pi_{\text{nathongo}}$ /// mathongo /// mathongo

- $(4)^{\circ}12\pi$ athongo ///. mathongo ///. mathongo
- **Q8.** If $f(x) = \frac{x}{\sqrt{1+x^2}}$, then (fofof)(x) is mathon $\frac{x}{\sqrt{1+x^2}}$ mathon $\frac{x}{\sqrt{1+x^2}}$ mathon $\frac{x}{\sqrt{1+x^2}}$ mathon $\frac{x}{\sqrt{1+x^2}}$ mathon $\frac{x}{\sqrt{1+x^2}}$
- (2) $\frac{x}{\sqrt{1+3x^2}}$ nongo /// mathongo ///. mathongo ///. mathongo (3) $\frac{3x}{\sqrt{1-x^2}}$
- (4) none of these /// mathongo /// mathongo /// mathongo
- **Q9.** For $x \in \left(0, \frac{3}{2}\right)$, let $f(x) = \sqrt{x}$, $g(x) = \tan x$ and $h(x) = \frac{1-x^2}{1+x^2}$. If $\phi(x) = (\text{hof}) \text{ og})(x)$, then $\phi\left(\frac{\pi}{3}\right)$ is equal to: mathongo /// mathongo
- (1) $\tan \frac{\pi}{12}$
- (2) $\tan \frac{5\pi}{12}$ hongo ///. mathongo ///. mathongo ///.
- (3) $\tan \frac{7\pi}{12}$
- (4) $\tan \frac{11\pi}{12 \cdot \text{nongo}}$ /// mathongo /// mathongo
- **Q10.** The function $f: R \to R$ is defined as $f(x) = 3^{-x}$. From the following
- statements, hongo ///. mathongo ///. mathongo ///. mathong
- I. f is one-one
- II. f is onto mathong f mathong f mathong f mathong f mathong f
- III. f is a decreasing function
- the true statements are
- (1) only I, II
- (2) only II, III
- (3) only I, III
- (4) I, II, III
- **Q11.** If $f: R \to A$ defined as $f(x) = \tan^{-1}\left(\sqrt{4(x^2+x+1)}\right)$ is surjective,
- then A is equal to $(1)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
- (2) $\left[0, \frac{\pi}{2}\right]$ thongo /// mathongo /// mathongo /// mathongo
- $(4) \left(0, \frac{\pi}{3}\right)$
- **Q12.** If $A = \left\{ x : -\frac{2}{5} \le x \le \frac{\pi 2}{5} \right\}$, $B = \left\{ y : -1 \le y \le 1 \right\}$ and
- $f(x) = \cos(5x+2)$, then the mapping f: A o B is once
- (1) one-one but not onto
- (2) onto but not one-one
- (3) both one-one and onto
- (4) neither one-one nor onto nathongo ///. mathongo ///. mathongo
- Q13. Which of the following functions is inverse of itself?
- (1) $f(t) = \frac{(1-t)}{(1+t)}$ (2) $f(t) = \frac{(1-t^2)}{(1+t^2)}$
- (3) $f(t) = 4^{\log t}$ /// mathongo /// mathongo ///

material control of the control of t
(4) $f(t) = 2^t \log 2^t \mod 2^t 2$
Q14. The inverse of $f(x) = \frac{2}{3} \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$ is (1) $\frac{1}{4}$ (2) $\frac{1}{3} \log_{10} \frac{1+x}{1-x}$ mathongo ///
(1) $\frac{1}{3}\log_{10}\frac{1+x}{1-x}$ mathong // mathong // mathong // mathong // mathong // mathong // mathong
(2) $\frac{1}{2}\log_{10}\frac{2+3x}{2-3x}$ (3) 1 (3) $\frac{1}{2}\log_{10}\frac{2+3x}{2}$ /// mathongo // ma
73 Sin $2-3x$
(4) $\frac{1}{6}\log_{10}\frac{2-3x}{2+3x}$ Q16. If f is a function such that $2f(x)+f(2-x)=x^2$ then find value of mathongo /// mathongo // mathongo // mathongo // mathongo // matho
<i>y</i> (1).

Answer Key			
Q1 (1) ///. mathongo ///.	Q2 (4) mathongo /// mathongo	Q3 (2) ///. mathongo ///. mathongo	Q4 (3) ///. mathongo ///. mathongo ///. mathongo
Q5 (4)	Q6 (2)	Q7 (4)	Q8 (2)
Q9 (4) athongo ///	mathongo Q10 (3) nathongo	/// mathong Q11 (3) mathongo	/// mathon $_{Q12}$ (3) mathongo /// mathongo
Q13 (1) ///. mathongo ///.	mathongo Q14 (2) mathongo	//. mathongo //. mathongo	///. mathongo ///. mathongo ///. mathongo

It is the same as solving two inequalities.

Case
$$1: x^2 + 3x - 2 \ge 2$$
 mathongo mathongo or, $x^2 + 3x - 4 \ge 0$

or,
$$(x+4)(x-1)\geq 0$$
 $\therefore x\in (-\infty,-4]\cup [1,\infty)$

Case
$$2: x^2 + 3x - 2 \le 8$$

Mathongo what hongo which has hongo what hongo w

or,
$$(x+5)(x-2) \le 0$$

$$(x,y) = (-5,-4] \cup [1,2]$$
 mathongo $(x,y) = (-5,-4] \cup [1,2]$ mathongo $(x,y) = (-5,-4]$

$$[x+1]
eq 0$$
 $f(-x) = \frac{-x-xe^{-x}}{2(e^{x}-1)} + 1 = \frac{x+xe^{x}}{2(e^{x}-1)} + 1$ $\Rightarrow [x] + 1 \neq 0$ mathongo /// $\therefore f(-x) = f(x)$ for all x . $\Rightarrow [x] \neq -1$ $\therefore f(x)$ is an even function.

$$\Rightarrow x \notin [-1, 0)$$
 go we mathongo we mathongo we mathongo we hence, domain of $f(x)$ is $x \in R - [-1, 0)$.

$$x=0$$
/// mathongo /// mathongo /// mathongo

$$x^2+1=rac{1}{m}$$
 $x^2+\frac{1}{m}=1$ mathongo mathongo mathongo mathongo

If there are 3 natural numbers in the range $\Rightarrow p-1=4 \Rightarrow p=5$

ongo /// mathongo /// mathongo ///
$$nf(x) = \frac{a^x - 1}{x^n (a^x + 1)}$$
 mathongo /// mathongo /// mathongo since, $f(x)$ is symmetrical about Y -axis.

$$\begin{array}{c} \therefore \ f(x) = f(-x) \\ \text{or, } (x+5)(x-2) \leq 0 \\ \text{or, } x \in [-5,2] \text{ mathongo } \text$$

Considering both Case 1 and Case 2 we have,
$$x^n (a^2+1) = (-x)^n (1+a^x)$$

$$\Rightarrow x^n = -(-x)^n$$

$$\Rightarrow x^n$$

$$f(-x) = \frac{x}{2(e^{-x}-1)} + 1 = \frac{x}{2(e^{x}-1)} + 1$$

$$\therefore f(-x) = f(x) \text{ for all } x.$$

$$\therefore f(x) \text{ is an even function.}$$

And period of
$$\cos\frac{\theta}{2}=4\pi$$
 \therefore Period of $f(x)=\mathrm{LCM}(6\pi,\,4\pi)=12\pi$

Then,
$$(fof)(x)=f[f(x)]=f\left(\frac{x}{\sqrt{x^2+1}}\right)=\frac{x}{\sqrt{1+x^2}}=\frac{x}{\sqrt{2x^2+1}}$$
 mathons

mathongo // mathongo //
$$(fofof)(x) = f[f\{f(x)\}] = f\left(\frac{x}{\sqrt{2x^2+1}}\right) = \frac{x}{\sqrt{1+\frac{x^2}{2x^2+1}}} = \frac{x}{\sqrt{1+3x^2}}$$

$$g(x) = an x$$
 mathongo /// mathongo /// mathongo /// mathongo

$$fog(x) = \sqrt{ an x}$$
 $hofog(x) = h\left(\sqrt{ an x}
ight)$ mathongo /// mathongo

$$\phi\left(\frac{\pi}{3}\right) = \tan\left(\frac{\pi}{4} - \frac{\pi}{3}\right)$$
 mathongo /// mathongo /// mathongo

Q10.

Since,
$$f: R \to R$$
 such that $f(x) = 3^{-x}$

Let
$$y_1$$
 and y_2 be two elements of $f(x)$ such that $y_1=y_2$

$$\Rightarrow 3^{-x_1} \stackrel{\text{th}}{=} 3^{-x_2} \Rightarrow x_1 \stackrel{\text{mathongo}}{=} x_2$$
 mathongo /// mathongo

Since,
$$f(x)$$
 is positive for every value of x , therefore $f(x)$ is into.

On differentiating w.r.t.
$$x$$
, we get $\frac{dy}{dx} = -3^{-x} \log 3 < 0$ for every value of x .

Q11.

$$\therefore x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$
 ongo /// mathongo /// mathongo

$$\therefore \ 4\big(x^2+x+1\big){\geq 3}$$

$$\Rightarrow \sqrt{4(x^2+x+1)} \ge \sqrt{3} \text{ nathongo } \text{ mathongo } \text{mathongo}$$

$$\Rightarrow \tan^{-1}\left(\sqrt{4(x^2+x+1)}\right) \ge \tan^{-1}\left(\sqrt{3}\right)$$

⇒
$$f(x) \ge \frac{\pi}{3}$$
 go /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

Let
$$t = 5x + 2$$
, then $A = (t : 0 \le t \le \pi)$ mathongo.

A bijective function is both one-one and onto.

$$f(t) = \cos t$$
, which is bijective in $[0, \pi]$ since $\cos t$ is decreasing in $[0, \pi]$ and Range of $\cos t$ is $[-1, 1]$.

Hence,
$$f(x)$$
 is bijective.

Q13. Let
$$y = f(t)$$
 : $t = f^{-1}(y)$

Now,
$$y = f(t) = \frac{1-t}{1+t} \Rightarrow y + ty = 1-t$$

$$\Rightarrow f(x) = \frac{1}{3} \left[2x^{2} - (2-x) \right]$$

$$\Rightarrow t + ty = 1 - y \Rightarrow t = \frac{1-y}{1+y}$$
Then, $f((4)) = \frac{1}{3} \left[2(4)^{2} - (2-4)^{2} \right]$

Now,
$$y = f(t) = \frac{1-t}{1+t} \Rightarrow y + ty = 1-t$$
 mathong $t + ty = 1 - y \Rightarrow t = \frac{1-y}{1+y}$

$$\Rightarrow t+ty=1-y\Rightarrow t=rac{1-y}{1+y}$$
 mathongo // mathongo

$$\Rightarrow t + ty = 1 - y \Rightarrow t = rac{1 - y}{1 + y}$$
 mathongo /// mathongo /// mathongo

Thus, this function is inverse of itself.

Given, mathong // mathong // mathong // mathong // mathong //
$$y = \frac{2}{3} \left[\frac{10^x - 10^{-x}}{10^x + 10^{-x}} \right]$$
 $y = \frac{2}{3} \left[\frac{10^2 x - 1}{10^{2x} + 1} \right]$ mathong // m

$$y=rac{3}{3}\left[rac{1}{10^{2x}+1}
ight]$$
 mathong // mathong // mathong // mathong // mathong // $\Rightarrow 10^{2x}=rac{3y+2}{2-3y}$ Taking log both sides, we get // mathong // mathon

$$\Rightarrow x = \frac{1}{2}\log_{10}\left(\frac{2+3y}{2-3y}\right)$$

$$\therefore f^{-1}(x) = \frac{1}{2}\log_{10}\left(\frac{2+3x}{2-3x}\right).$$
mathongo

Q15.
$$5f(x)+3f\left(\frac{1}{x}\right)=x+2$$
 at x (1) x mathong x mathong x by $\frac{1}{x}$

$$\therefore 5f\left(\frac{1}{x}\right)_{t+1} + 3f(x) = \frac{1}{x} + 2at + 2at$$

$$25f(x)+15f\left(\frac{1}{x}\right)=5x+10$$
 ...(3) mathongo mathongo and from (2)

$$9f(x)+15f\left(\frac{1}{x}\right)=\frac{3}{x}+6 \qquad \dots (4)$$
 mathongo /// ma

$$\therefore 16f(x) = 5x - \frac{3}{x} + 4$$

$$\therefore xf(x) = \frac{5x^2 - 3 + 4x}{16} = y$$

$$\therefore xf(x) = \frac{5x^2 - 3 + 4x}{16} = y$$

Substitute
$$x$$
 by $(2-x)$ in equation (i) we get,
$$2f(2-x)+f(x)=(2-x)^2\ldots(ii)$$

$$2f(2-x)+f(x) = (2-x)^2 \dots (ii)$$

Now, $(i) \times 2 - (ii)$ we get,

$$3f(x)=2x^2-(2-x)^2$$
 mathongo /// mathongo ///

$$=\frac{1}{3}[32-4]=\frac{28}{3}=9.33$$
 | | | | mathongo | mathongo

Q1. If f(x) is a differentiable function such that

 $\int f(x)dx = 2[f(x)]^2 + C$, (where, C is the constant of integration) and f(1) = 1/4, then $f(\pi)$ equals

- (1) $\frac{3}{4}$ mathongo ///. mathongo ///. mathongo
- $\binom{3}{2}$ mathongo $\binom{3}{2}$ mathongo $\binom{3}{2}$ mathongo
- Q2. $\int \sqrt{\frac{1-x}{1+x}} dx =$
- (1) $\sin^{-1} x \frac{1}{2}\sqrt{1 x^2} + c$ mathongo
- (2) $\sin^{-1} x + \frac{1}{2}\sqrt{1-x^2} + c$ mathongo
- (3) $\sin^{-1} x \sqrt{1 x^2} + c$
- (4) $\sin^{-1} x + \sqrt{1-x^2} + c$ athongo /// mathongo
- Q3. mathongo ///. mathongo

$$\int e^{-x} an^{-1}(e^x) dx = f(x) - rac{1}{2} ext{log} ig(1 + e^{2x}ig) + c \Rightarrow f(x) =$$

- (1) $e^x e^{-x} \tan^{-1}(e^x)$ mathongo /// mathongo
- $(2) x^2 + e^{-x} \tan^{-1}(e^x)$ mathongo ///. mathongo
- $(3) -e^x \tan^{-1}(e^x)$
- (4) $x e^{-x} \tan^{-1}(e^x)$ mathongo /// mathongo

- $\begin{aligned}
 \mathbf{Q4.} & \int \frac{\cos x \sin x}{7 9 \sin 2x} dx = \\
 (1) & \frac{1}{24} \log \left| \frac{4 + 3(\sin x + \cos x)}{4 3(\sin x + \cos x)} \right| + c \\
 (2) & \frac{1}{24} \log \left| \frac{4 3(\sin x + \cos x)}{4 + 3(\sin x + \cos x)} \right| + c \\
 (3) & \frac{1}{24} \log \left| \frac{4 (\sin x \cos x)}{4 + (\sin x \cos x)} \right| + c \\
 (4) & \frac{1}{24} \log \left| \frac{4 + (\sin x \cos x)}{4 (\sin x \cos x)} \right| + c
 \end{aligned}$

- **Q5.** The value of $\int \frac{f(x)\phi'(x)+\phi(x)f'(x)}{(f(x)\cdot\phi(x)+1)\sqrt{\phi(x)\cdot f(x)-1}}dx$ is (Where C is

the constant of integration) athongo /// mathongo

- (1) $\cos^{-1} \sqrt{f(x)^2 \phi(x)^2}$
- (2) $\tan^{-1}[f(x)\phi(x)]$ mathongo mathongo
- (3) $\sin^{-1} \sqrt{\frac{f(x)}{\phi(x)}}$ mathongo ///. mathongo ///.
- (4) None of these

- **Q6.** $\int (\cos^{-3/7} x) (\sin^{-11/7} x) dx$ is equal to
- $(1) \log \left| \sin^{4/7} x \right| + c$ mathongo /// mathongo
- (2) $\frac{4}{7} \tan^{4/7} x + c$
- $(3) = \frac{7}{4} \tan^{-4/7} x + c \quad \text{mathongo} \quad /// \quad \text{mathongo}$
- (4) $\log \left| \cos^{3/7} x \right| + c$
- **Q7.** If a function $f: R \to R$ is defined as
- $f(x)=\intrac{x^8+4}{x^4-2x^2+2}dx$ and f(0)=1, then which of the

following is correct?

- (1) f(x) is an even function // mathongo
- (2) f(x) is an onto function mothongo
- (3) f(x) is an odd function
- (4) f(x) is many one function 190 // mothongo
- **Q8.** The value of indefinite integral: $\int \sqrt{\frac{\sin x \sin^3 x}{1 \sin^3 x}} dx$

equals: (where c is constant of integration)

- $(1) \frac{3}{2} \cos^{-1} \left(\sin^{\frac{3}{2}} x \right) + c$
- $(2) \frac{2}{3} \sin^{-1} \left(\sin^{\frac{3}{2}} x\right) + c$ othongo /// mathongo
- $(3) \frac{3}{2} \sin^{-1} \left(\sin^{\frac{3}{2}} x \right) + c$
- (4) $\frac{3}{3} \tan^{-1} \left(\sin^{\frac{3}{2}} x \right) + c$ mathongo
- **Q9.** If $I_n = \int (\ln x)^n dx$, then $I_n + nI_{n-1} = mathongo$
- $(1)\,\frac{(\ln x)^n}{x} + C$
- (2) $x(\ln x)^{n-1} + C$
- $(3) x(\ln x)^n + C$ /// mathongo /// mathongo
- (4) None of these
- **Q10.** $\int e^x \left[\frac{2+\sin 2x}{1+\cos 2x} \right] dx =$
- (1) $e^x \tan x + C$ /// mathongo /// mathongo
- $(2) e^x + \tan x + C$
- (3) $2e^x \tan x + C$

- (4) $e^x \tan 2x + C$ mathongo /// mathongo

If you want to solve these questions online, download the MARKS App from Google Play or visit https://web.getmarks.app

Mathematics

MathonGo

Q11. If
$$\int \frac{(3a_1)}{(a-3)(a-3)} dx = \int \frac{-3}{(a-3)} dx + \int \frac{9}{(a-3)} dx$$
; then the value of B is we mathongo we mathongo

Answer Key				
Q1 (2) nathongo ///. m	Q2 (4)	Q3 (4) athongo	///. math Q4 (1)	
Q5 (4) ///. m	Q6 (3)	Q7 (2) athongo	///. math Q8 (2)	
Q9 (3) ///. mathongo ///. m	Q10 (1) ///.	Q11 (4) mathongo	///. mathongo	///. mathongo ///.
Q13 (3) /// mathongo ///. m	Q14 (3) nathongo ///.			

$$f'(x)=0$$
 or $\frac{1}{4}=f(x)$ mathongo // mathongo //

$$\int \frac{1}{4} dx = \int f'(x) dx$$

$$\Rightarrow rac{x}{4} = f(x) + C$$

As
$$f(1) = \frac{1}{4} \rightarrow C = 0$$
 mathongo /// mathongo

$$\Rightarrow f(x) = \frac{x}{4}$$

$$\Rightarrow f(x) = \pi$$

$$\int \sqrt{\frac{1-x}{1+x}} dx$$

Multiply and divide by $\sqrt{1-x}$

$$= \int \frac{1-x}{\sqrt{1-x^2}} dx = \int \frac{dx}{\sqrt{1-x^2}} - \int \frac{x}{\sqrt{1-x^2}} dx / / /$$
 mathongo

$$= \sin^{-1} x + \frac{1}{2} \int \frac{(-2x)}{\sqrt{1-x^2}} dx$$

$$= \sin^{-1} x + \sqrt{1-x^2} + c$$

$$= \int \tan^{-11/7} x \sec^2 x \, dx$$
Put $\tan x = t \Rightarrow \sec^2 x \, dx = dt$

$$=\sin^{-1}x + \sqrt{1-x^2} + c$$

Q3. Put $e^x = t$, $e^x dx = dt$, $dx = \frac{1}{t} dt$

$$=\intrac{ an^{-1}t}{t^2}dt= an^{-1}t\Big(rac{-1}{t}\Big)-\int\!\Big(rac{-1}{t}\Big)rac{1}{1+t^2}dt$$

$$=\int rac{ an^{-1}t}{t^2} + rac{1}{2}\,\int rac{2t}{t^2\,(1+t^2)}dt\;t^2 = z,\;2tdt = dz$$

$$= \int \frac{1}{t^2} + \frac{1}{2} \int \frac{1}{t^2(1+t^2)} dt \ t^2 = z, \ 2t dt = dz$$

$$= \frac{-\tan^{-1}t}{t} + \frac{1}{2} \int \frac{(z+1)-z}{z(1+z)} dz = \frac{-\tan^{-1}t}{t} + \frac{1}{2} \left[\int \frac{1}{z+1} dz \right]$$

$$= \frac{-\tan^{-1}t}{t} + \frac{1}{2}log\left|\frac{t^2}{1+t^2}\right| + c = \frac{-\tan^{-1}t}{t} + \frac{1}{2}log\left|\frac{e^{2x}}{1+e^{2x}}\right| + c$$

$$= -e^{-x} \tan^{-1}(e^x) - \frac{1}{2} \log |1 + e^{2x}| + \frac{1}{2} |2x + e^{2x}|$$

$$= x - e^{-x} \tan^{-1}(e^x) - \frac{1}{2} \log |1 + e^{2x}| + c$$
 mathongo

Q4. mathongo /// mathongo /// mathongo /// mathongo

$$I = \int \frac{\cos x - \sin x}{7 - 9\sin 2x} dx$$

$$\Rightarrow~I=\intrac{\cos x-\sin x}{7-9\left[~(1+\sin 2x)-1
ight]}dx$$

$$\Rightarrow I = \int rac{\cos x - \sin x}{7 - 9 \left[\left(\sin^2 x + \cos^2 x + 2 \sin x \cos x \right) - 1
ight]}$$

$$\Rightarrow I = \int \frac{\cos x - \sin x}{7 - 9 \left[\left(\sin x + \cos x \right)^2 - 1 \right]} dx$$

Let $\sin x + \cos x = t \Rightarrow (\cos x - \sin x)dx = dt$

$$\Rightarrow$$
 $I = \int \frac{dt}{7-9(t^2-1)}$ /// mathongo /// mathongo

$$\Rightarrow~I=\intrac{dt}{4^2-\left(3t
ight)^2}$$

Q1. Differentiating w.r.t. 'x' we get
$$f(x) = 4f(x) \cdot f'(x)$$
 $\Rightarrow I = \frac{1}{2 \cdot 4} \cdot \frac{1}{3} \log \left| \frac{4+3t}{4-3t} \right| + c$ mathongo

$$\Rightarrow I = \frac{1}{24} \log \left| \frac{4+3(\sin x + \cos x)}{4-3(\sin x + \cos x)} \right| + c$$

mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
$$I = \int \frac{f(x)\phi'(x) + \phi(x)f'(x)}{(f(x)\cdot\phi(x) + 1)\sqrt{\phi(x)\cdot f(x) - 1}} dx$$

Let
$$I = \int \frac{f(x)\phi'(x) + \phi(x)f'(x)}{(f(x)\cdot\phi(x)+1)\sqrt{\phi(x)\cdot f(x)-1}}dx$$

Let
$$\phi(x)\cdot f(x)-1=t^2$$

$$egin{align} \Rightarrow (\phi(x)\cdot f'(x)+f(x)\phi'(x))dx &= 2tdt \ dots &: I = \int rac{2tdt}{\left(t^2+2
ight)\sqrt{t^2}} &= \int rac{2dt}{t^2+\left(\sqrt{2}
ight)^2} \ \end{aligned}$$

$$= 2 \cdot \frac{1}{\sqrt{2}} \tan^{-1} \frac{t}{\sqrt{2}} + C$$
 mathongo

$$\int \sqrt{\frac{1-x}{1+x}} dx \qquad \text{mathongo} \qquad \text{math$$

Q6.
$$\int (\cos^{-3/7} x) \Big(\sin^{-11/7} x \Big) dx = \int \frac{\sin^{-11/7} x}{\cos^{-11/7} x} . \sec^2 x \ dx$$

$$=\int an^{-11/7} x \sec^2 x \, dx$$

Put
$$\tan x = t \Rightarrow \sec^2 x \ dx = dt$$

:.
$$I = \int t^{-11/7} dt = -\frac{7}{4} tan^{-4/7} x + c$$

We have,
$$f(x) = \int \frac{x^8 + 4}{x^4 - 2x^2 + 2} dx$$

Now,
$$f(x) = \int \frac{(x^8 + 4 + 4x^4) - (4x^4)}{x^4 - 2x^2 + 2} dx$$

We have,
$$f(x) = \int \frac{1}{x^4 - 2x^2 + 2} dx$$

Now, $f(x) = \int \frac{1}{x^4 - 2x^2 + 2} dx$

$$= \int \left(\frac{1}{x^4 - 2x^2 + 2} \right) dx$$

$$= \int \frac{1}{x^4 - 2x^2 + 2} dx$$

Therefore,
$$f(x)=rac{x^5}{5}+rac{2x^3}{3}+2x+C$$
/// mathongo ///

$$\Rightarrow f(0) = 0 + 0 + 0 + C = 1$$

$$\stackrel{\text{//.}}{\Rightarrow} C = 1$$
 mathongo $\stackrel{\text{//.}}{=}$ mathongo $\stackrel{\text{//.}}{=}$

$$\Rightarrow f(x) = rac{x^5}{5} + rac{2x^3}{3} + 2x + 1$$

$$\Rightarrow f(x) = \frac{1}{5} + \frac{1}{3} + 2x + \frac{1}{3}$$
Range of $f(x)$ is R ,

So,
$$f(x)$$
 is an onto function hongo /// mathongo

So,
$$f(x)$$
 is an onto function $f(-x) \neq f(x)$,

$$f(-x) \neq f(x),$$
 mathongo So, $f(x)$ is not even

$$f(-x)
eq -f(x),$$

$$f^{'}(x) > 0 \forall x \in R$$
.

$$f(-x) \neq -f(x)$$
, mathongo /// mathongo ///

So,
$$f(x)$$
 is not odd

So, f(x) is one-one " mathongo " mathongo

Q8. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Let
$$\int \frac{3x+1}{(x-3)(x-5)} dx = \int \frac{-5}{(x-3)} dx + \int \frac{B}{(x-5)} dx$$

$$I = \int \sqrt{\frac{\sin x - \sin^3 x}{1 - \sin^3 x}} dx$$
So, let
$$\int \frac{3x+1}{(x-3)(x-5)} dx = \int \frac{-5}{(x-3)} dx + \int \frac{B}{(x-5)} dx$$

$$\Rightarrow I = \int \left\{ \frac{\left(\sqrt{\sin x}\right)\sqrt{1-\sin^2 x}}{\sqrt{1-\sin^3 x}} \right\} dx$$

$$\Rightarrow 3x + 1 = -5(x-5) + B(x-3)$$

$$\Rightarrow I = \int \left\{ \frac{\left(\sqrt{\sin x}\right)\cos x}{\sqrt{1-\sin^3 x}} \right\} dx \text{ mothongo }$$
 Putting $x = 5$ in the above equation, we get
$$\frac{2(5)+1-0+R(5-2)}{2(5)+1-R(5-2)}$$

Put
$$\sin^{\frac{3}{2}}x = t \Rightarrow \frac{3}{2}\sqrt{\sin x}\cos x dx = dt$$
 mathongo

$$\Rightarrow I = \frac{2}{3} \int \frac{dt}{\sqrt{1-t^2}}$$

$$\implies I = \frac{2}{3} \sin^{-1}t + c$$
mathongo

/// mathongo

/// mathongo

$$\Rightarrow I = rac{2}{3} \sin^{-1} \left(\sin^{rac{3}{2}} x \right) + c$$
 mathongo

Q9. Integrate by parts by taking $\int (\ln x)^n dx$ as

$$egin{aligned} & ext{I}_{ ext{n}} = \int (\ln x)^{ ext{n}}.1.\,dx \ ext{I}_{ ext{n}} = ext{x} (\,\ln x)^{ ext{n}} - \int rac{ ext{x}(ext{n})\,(\,\ln x)^{ ext{n-1}}}{ ext{x}} ext{dx} \ & ext{x} = ext{x} (\,\ln x)^{ ext{n}} - ext{n} \, ext{I}_{(ext{n-1})} \end{aligned}$$

$$\Rightarrow$$
 $I_n + n I_{n-1} = x (\ln x)^n$
///. mathongo ///. mathongo ///. mathongo

Q10.

Let,
$$I=\int e^x \left[rac{2+\sin 2x}{1+\cos s \, 2x}
ight] dx$$

We know that
$$x = 2 \sin x \cos x + 2 \cos^2 x - 1$$

Using the above formulas we can write
$$I = \int_{-\infty}^{\infty} x \left(\frac{2+2\sin x \cos x}{2} \right) dx$$

$$I=\int e^x \Big(rac{2+2\sin x\cos x}{2\cos^2 x}\Big) dx \ I=\int e^x \Big(rac{2\left(1+\sin x\cos x
ight)}{2\cos^2 x}\Big) dx$$

$$I = \int e^x \Big(rac{1}{\cos^2 x} + rac{\sin x \cos x}{\cos^2 x}\Big) dx$$
 mothongo

$$I = \int e^x \left(\tan x + \sec^2 x \right) dx$$

We know that
$$\int e^{x} (f(x)+f'(x)) dx = e^{x} \cdot f + C$$

$$I = e^x \tan x + C$$
/// mathongo /// mathongo /// mathongo

$$\int rac{3x+1}{(x-3)(x-5)} dx = \int rac{-5}{(x-3)} dx + \int rac{B}{(x-5)} dx$$

$$\frac{3x+1}{(x-3)(x-5)} = \frac{-5}{x-3} + \frac{B}{x-5}$$
 mathongo //

Putting
$$x=5$$
 in the above equation, we get

$$3(5)+1=0+B(5-3)$$
 mathongo $3(5)+1=0+B(5-3)$ mathongo $3(5)+1=0+B(5-3)$ mathongo $3(5)+1=0+B(5-3)$

We have.

$$\int rac{2\cos x - \sin x + \lambda}{\cos x + \sin x - 2} dx = A \log_e(|\cos x + \sin x - 2|) + Bx + C$$

Differentiating R. H. S. w.r.t. x, we get

$$rac{d}{dx}[A\log_e(|\cos x + \sin x - 2|) + Bx + C]$$

$$= A \frac{\cos x - \sin x}{\cos x + \sin x - 2} + B$$

$$= \frac{A \cos x - A \sin x + B \cos x + B \sin x - 2B}{\cos x + \sin x - 2}$$

$$\therefore \frac{2\cos x - \sin x + \lambda}{\cos x + \sin x - 2} = \frac{A\cos x - A\sin x + B\cos x + B\sin x - 2B}{\cos x + \sin x - 2}$$

So,
$$A+B=2,\ B-A=-1,\ \lambda=-2B$$

$$A = \frac{3}{2}, B = \frac{1}{2}, \lambda = -1$$
 mathongo /// mathongo ///

Method1: by cross checking the options

Consider
$$f(x) = \frac{x}{(\log x)^2 + 1}$$
 hongo /// mathongo ///

Consider
$$f(x) = \frac{x}{(\log x)^2 + 1}$$
 mathong ///
$$\therefore f'(x) = \frac{1 + (\log x)^2 - \frac{2x \log x}{x}}{\left(1 + (\log x)^2\right)^2}$$

$$f'(x) = \frac{1 + (\log x)^2 - 2\log x}{\left(1 + \log^2 x\right)^2} = \left(\frac{(\log x - 1)}{(1 + \log x)^2}\right)^2$$

$$egin{align} \therefore & \int igg(rac{(\log x - 1)^2}{1 + (\log x)^2}igg) dx = \int f'(x) dx = f(x) + C \ & \therefore & \int igg(rac{\log x - 1}{1 + (\log x)^2}igg)^2 dx = rac{x}{1 + (\log x)^2} + C \end{aligned}$$

Hence option 3 is the correct answer and we can check the $=\frac{e^t}{t^2+1}+C$ $\left[\because \int e^x(f(x)+f'(x))dx=e^xf(x)+C\right]$ other choices by the similar argument. imilar argument. $=\frac{x}{(\log x)^2+1}$ mathongo /// mathongo /// mathongo **Alternate solution** $\int \left\{ \frac{\log(x) - 1}{1 + (\log x)^2} \right\}^2 dx$ mathongo /// mathongo /// Let $I = \int e^{x \sin x} (x^2 \cos x + x \sin x + 1) dx$ $egin{align} ext{Put} \log(x) &= t \Rightarrow x = e^t \Rightarrow dx = e^t dt \ &= \int e^t igg\{ rac{(t-1)^2}{(t^2+1)^2} igg\} dt \end{aligned}$ $\Rightarrow I = \int ig(x.(x\cos x + \sin x)e^{x\sin x} + 1.e^{x\sin x}ig)dx$ Let $e^{x\sin x} = t \Rightarrow e^{x\sin x}(\sin x + x\cos x)dx = dt$ $\int e^t \left\{ \frac{t^2+1-2t}{(t^2+1)^2} \right\} dt$ mathongo /// mathongo /// wathongo /// mathongo $I = \int \left(\frac{t^2+1}{t^2+1} + \left(\frac{-2t}{(t^2+1)^2}\right)\right) dt$ $= \int e^t \left\{\frac{1}{t^2+1} + \left(\frac{-2t}{(t^2+1)^2}\right)\right\} dt$ $= \int e^t \left(\frac{1}{t^2+1} + \left(\frac{-2t}{(t^2+1)^2}\right) dt$ $= \int e^t \left(\frac{1}{t^2+1} + \left(\frac{-2$

(1) is equal to 1

Q1. At t=0, the function $f(t)=\frac{\sin t}{t}$ has

- (1) A minimum
- (2) A discontinuity
- (3) A point of inflexion mathongo /// mathongo
- (4) A maximum
- **Q2.** The value of $\lim_{x\to 1} \frac{\sqrt[5]{x^2}-2\sqrt[5]{x}+1}{4(x-1)^2}$ is equal to
- **Q3.** If $\lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2$, then (a,b,c)
- (1)(2,-4,2)ngo /// mathongo /// mathongo
- (2)(2,4,2)
- (3) (2,4,-2) mathongo (4) mathongo
- **Q4.** $\lim_{x \to \infty} \frac{x(\log x)^3}{1+x+x^2}$ equals
- (2)—Inathongo /// mathongo /// mathongo
- (4) Does not exist
- **Q5.** The value of $\lim_{x\to 0} \left(\left\lceil \frac{100x}{\sin x} \right\rceil + \left\lceil \frac{99\sin x}{x} \right\rceil \right)$, (where [x] represents greatest integral function less than or equal to x) is 99 λ . Then the value of λ is
- **Q6.** $\lim_{x\to 0} \frac{1}{x} \sin^{-1} \left(\frac{2x}{1+x^2}\right)$ is equal to
- $\binom{(1)}{2}$ mathongo $\binom{(1)}{2}$ mathongo $\binom{(1)}{2}$ mathongo (2) 0
- (3) 2 mathongo ///. mathongo ///. mathongo
- $(4) \infty$
- **Q7.** If $f(x) = [\tan x]^2, x \in \left(0, \frac{\pi}{3}\right)$, then $f'\left(\frac{\pi}{4}\right)$ (where, [.] is the greatest integer function) and mathongo

- (2) is equal to 0
- (3) does not exist (4) None of these /// mathongo /// mathongo
- **Q8.** $\lim_{x\to 2} \frac{3^x + 3^{3-x} 12}{\frac{2^x}{2} \cdot \frac{1-x}{2}}$ is equal to
- **Q9.** The value of $\lim_{x\to\infty}\frac{e^{x+1}\log(x^3e^{-x}+1)}{10x^3}$ is equal to (Use e = 2.7)
- mathongo // mathongo // mathongo Q10. The value of $\lim_{x\to 0}(\cos x + \sin x)^{\frac{1}{x}}$ is equal to (take
- e = 2.71)ongo /// mathongo /// mathongo
- **Q11.** $\lim_{x \to 0} \left\{ (1+x)^{rac{2}{x}} \right\}$ (where $\{.\}$ denotes the fractional part of x) is equal to
- (1) e² ¹ 7 ongo /// mathongo /// mathongo
- (2) $e^2 8$ mathongo mathongo mathongo
- (4) None of these mothongo mothongo
- **Q12.** The value of $\lim_{x\to 0} \frac{\int_0^{x^2} \sin\sqrt{t}}{x^3} dt$ is
- (2) 2/9 hongo /// mathongo /// mathongo
- (3) 1/3 mathongo /// mathongo /// mathongo (4) 2/3
- **Q13.** Let $f: R \to R$ be a positive increasing function
- with $\lim_{x \to \infty} \frac{f(3x)}{f(x)} = 1$. Then $\lim_{x \to \infty} \frac{f(2x)}{f(x)} =$
- (1)1
- $(2)\frac{2}{3}$ athongo /// mathongo /// mathongo
- (3) $\frac{3}{2}$ (4) 3

Answer Key					
Q1 (4) nathongo	///. mat Q2	(0.01) /// mathong	Q3 (1) uthongo	///. matQ4(1)	
Q5 (2)	///. mat Q6	(3) /// mathong	Q7 (3)	///. mat Q8 (36.0	00)/// mathongo //
Q9 (0.27)	///. mathor	0 (2.71) mgo mathong	Q11 (1) mathongo	///. mathongo	
Q13 (1) mathongo					

Mathematics

MathonGo

Q1. Given,
$$f(t) = \frac{\sin t}{t}$$
 mathongo /// mathongo

At t = 0, first we will check continuity of the function.

Now,
$$LHL = f(0 - h)$$

$$= \lim_{h \to 0} \frac{\sin(0-h)}{(0-h)} \text{ go /// mathongo /// mathongo}$$

$$= \lim_{h \to 0} \frac{-\sin h}{-h}$$

$$= \lim_{h \to 0} \frac{-\sin h}{-h}$$

$$= 1$$
mathongo /// mathongo

$$RHL = f(0+h)$$
 mathongo mathongo $= \lim_{h o 0} rac{\sin(0+h)}{(0+h)}$

$$\lim_{h o 0} \frac{(0+h)}{h} = \lim_{h o 0} rac{\sin h}{h} = 1$$

And
$$f(0)=1_{ngo}$$
 /// mathongo /// mathongo

Since,
$$LHL = RHL = f(0)$$

So, the function is continuous at
$$t = 0$$

Now, we check the function is maximum or minimum

$$f'(t) = \frac{1}{t}\cos t - \frac{1}{t^2}\sin t$$

and
$$f''(t) = \frac{-1}{t} \sin t - \frac{1}{t^2} \cos t - \frac{1}{t^2} \cos t + \frac{2}{t^3} \sin t$$
 hongo
$$= \frac{-\sin t}{t} - \frac{2\cos t}{t^2} + \frac{2\sin t}{t^2}$$

For maximum or minimum value of f(x), put

$$f'(x)=0$$
 mathongo mathongo mathongo $\frac{\cos t}{t}-\frac{\sin t}{t^2}=0$

$$\Rightarrow \frac{\tan t}{t}$$
 and t and t

Now,
$$\lim_{t\to 0} f$$
 " (t)

$$\begin{array}{l} \text{Now, } \lim_{t \to 0} f \text{ " } (t) \\ = - \lim_{t \to 0} \left(\frac{\sin t}{t} \right) - 2 \lim_{t \to 0} \left(\frac{t \cos t - \sin t}{t^3} \right) \quad \left[\frac{0}{0} \text{ from} \right] \end{array}$$

$$= -1 - 2 \lim_{t \to 0} \left(\frac{\cos t - \sin t - \cos t}{3t^2} \right)$$
 [using L' Hospital rule]

$$= -1 + \frac{2}{3} \lim_{t \to 0} \frac{\sin t}{t}$$

$$= -1 + \frac{2}{3} \times 1 = \frac{-1}{3} < 0$$

$$\lim_{x \to 0} \left(\left[\frac{100x}{\sin x} \right] \right) \Rightarrow \lim_{x \to 0} \left(\left[\frac{100}{\sin x} \right] \right) = 100$$
mathongo

So, function
$$f(t)$$
 is maximum at $t = 0$ /// mathongo

Q2.
$$\lim_{x \to 1} \frac{\sqrt[5]{x^2 - 2\sqrt[5]{x} + 1}}{4(x-1)^2} = \lim_{y \to 1} \frac{y^2 - 2y + 1}{4(y^5 - 1)^2}$$
 mathongo

$$x o 1$$
 $4(x-1)^2$ $y o 1$ $4(y^5-1)^2$ (Putting $\sqrt[5]{x} = y$; as $x o 1, \ y o 1$)

$$=$$
 $\frac{1}{25 \times 4}$ \equiv 0.01 o $///. mathongo ///. mathongo ///. mathongo ///. mathongo$

Q3. Given,
$$\lim_{x\to 1} \frac{ax^2+bx+c}{\left(x-1\right)^2} = 2$$
 mothongo //

$$ax^2 + bx + c = 2(x-1)^2$$
 $\Rightarrow ax^2 + bx + c = 2x^2 - 4x + 2$ mathons

$$\Rightarrow \quad a=2, \;\; b=-4, \qquad c=2$$

mathongo // mathongo // mathongo // mathongo // Q4.
$$\lim_{x\to\infty} \frac{(\log x)^3 + x \cdot 3(\log x)^2 \times \frac{1}{x}}{1+2x}$$

$$\Rightarrow \lim_{x \to \infty} \frac{3(\log x)^2 \times \frac{1}{x} + 6(\log x) \times \frac{1}{x}}{2}$$
 mathongo /// mathongo

$$\Rightarrow \lim_{x \to \infty} \frac{3(\log x)^2 + 6\log x}{2x}$$
 mathongo /// mathongo

(By D.L. Hospital rule)
$$\Rightarrow \lim_{x \to \infty} \frac{6 \log x \times \frac{1}{x} + \frac{6}{x}}{2}$$

$$\Rightarrow \lim_{x \to \infty} \frac{6 \log x + 6}{2x}$$
// mathongo /// mathongo

$$\stackrel{\prime\prime}{\Rightarrow} \lim_{\mathrm{x} o \infty} \frac{6\left(rac{1}{\mathrm{x}}
ight) + 0}{2}$$
 /// mathongo /// mathongo

$$\frac{\lim_{x\to 0}\frac{\sin x}{x}}{\lim_{x\to 0}\frac{\sin x}{x}}\to 1^-$$

$$\lim_{x \to 0} \left(\left[\frac{100x}{\sin x} \right] \right) \Rightarrow \lim_{x \to 0} \left(\left[\frac{100}{\frac{\sin x}{x}} \right] \right) = 100$$
 mathongo

$$\lim_{x \to 0} \left(\left[\frac{99 \sin x}{x} \right] \right) \Rightarrow \lim_{x \to 0} \left(\left[99 \frac{\sin x}{x} \right] \right) = 98$$
Hence $\Rightarrow \lim_{x \to 0} \left[\frac{100x}{\sin x} \right] + \left[\frac{99 \sin x}{x} \right] = 100 + 98 = 198$

Hence
$$\Rightarrow \lim_{x \to 0} \left[\frac{100x}{\sin x} \right] + \left[\frac{99\sin x}{x} \right] = 100 + 98 = 198$$

$$99\lambda = 198$$
 mathongo /// mathongo ///

Hence,
$$\lambda = 2$$
 ///// mathongo ///// mathongo /////

Mathematics

MathonGo

Q6. Put
$$x = \tan \theta \Rightarrow \theta = \tan^{-1} x$$
 mathong $x = \lim_{n \to 0} \frac{|f(x)|}{|f(x)|} |f(x)| = \lim$

indice in the second se	
Q1. If R be a relation defined as aRb iff $ a-b >0$, then the relation is	Q4. Out of 64 students, the number of students taking Mathematics is 45 and the
(1) Reflexive	number of students taking both Mathematics and Biology is 10. Then, the number
(2) Symmetric go /// mathongo /// mathongo ///	of students taking the only Biology is // mathongo /// mathongo /// m
(3) Transitive	(1) 18
(4) Symmetric and transitive mathongo /// mathongo /// mathongo ///	(2) 19 mathongo ///. mathongo ///. mathongo ///. m
Q2. A relation R is defined as $(x,y) \in R \Rightarrow x^y = y^x$ for $x,y \in I - \{0\}$, where I	(3) 20
is the set of all integers. Then the relation R is:	(4) 17 mathongo ///. mathongo ///. mathongo ///. mathongo ///. m
(1) reflexive but not symmetric	Q5. In a class of 60 students, 25 students play cricket and 20 students play tennis
(2) symmetric but not reflexive mathons // mathons /// mathons //	and 10 students play both the games, then the number of students who play neither mathongo was m
(4) equivalence relation	(1) 45
/// mathongo /// mathongo /// mathongo /// mathongo ///	(2) 0thongo /// mathongo /// mathongo /// mathongo /// m
$n(A) = 11, n(B) = 13, n(C) = 16, n(A \cap B) = 3, n(B \cap C) = 6, n(A \cap C) = 5$	(3) 25
and $n(A \cap B \cap C) = 2$, then the value of $n[A^c \cap (B\Delta C)] = 0$	(4)35nongo ///. mathongo ///. mathongo ///. mathongo ///. m
(1) 4	Q6. Let $P = \{\theta : \sin \theta - \cos \theta = \sqrt{2}\cos \theta\}$ and
(2) 7 mathongo ///. mathongo ///. mathongo ///. mathongo	$Q=\{ heta:\sin heta+\cos heta=\sqrt{2}\sin heta\}$ be two sets. Then $///$ mathongo $///$ m
(3) 13	(1) $P\subset Q$ and $P eq \varnothing$
(4) 23 mathongo /// mathongo /// mathongo ///	(2) $Q \not\subset P$ mathongo /// mathongo // mathong
	(4) P = Q

Mathematics Answer Key /// mathongo /// **Q3** (3) /// mathongo **Q5** (3)

